SEQUENCE LISTING

	Ballance, David J. Sleep, Darrell Turner, Andrew J. Sadeghi, Homa Prior, Christopher P.	
<120>	Albumin Fusion Proteins	
<130>	PF542	
	Unassigned 2001-04-12	
	60/229,358 2000-04-12	
	60/256,931 2000-12-21	
	60/199,384 2000-04-25	
<160>	37	
<170>	PatentIn Ver. 2.1	
<210><211><211><212><213>	23	
	primer_bind primer useful to clone human growth hormone cDNA	
<400> cccaag	1 gaatt ceettateea gge	23
<210><211><211><212><213>	33	
	<pre>primer_bind primer useful to clone human growth hormone cDNA</pre>	
<400> gggaag	C gotta gaagocacag gatoootoca cag	33
<210><211><211><212><213>	16	

<220>

<2223>	misc_structure synthetic oligonucleotide on-cohesive ends.	used	to	join	DNA	fragments	;
<400> (3 gatt cccaac						16
<210> 4 <211> 1 <212> 1 <213> 2	17						
<223> \$	misc_structure synthetic oligonucleotide on-cohesive ends.	used	to	join	DNA	fragments	s
<400> 4	4 tggg aatcttt						17
<210> 9 <211> 1 <212> I <213> I	17						
<223> s	misc_structure synthetic oligonucleotide on-cohesive ends.	used	to	join	DNA	fragments	;
<.100> 5	5 ttat toccaac						17
<210> 6 <211> 1 <212> I <213> A	18						
<223> s	misc_structure synthetic oligonucleotide on-cohesive ends.	used	to	join	DNA	fragments	;
<400> (aattgtt	6 tggg aataagcc						18
<210> 0 <211> 2 <212> 1 <213> 4	24						
	SITE 1)(19) invertase leader sequence						

<pre><320> <321> SITE <322> 20)(24) <323> first 5 amino acids of mature human serum albumin</pre>	
<pre><400> 7 Met Leu Leu Gln Ala Phe Leu Phe Leu Leu Ala Gly Phe Ala Ala Lys 1 5 10 15</pre>	
Ile Ser Ala Asp Ala His Lys Ser 20	
<210> 8 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <221> misc_structure <223> synthetic oligonucleotide used to join DNA fragments with non-cohesive ends.	
<400> 8 gagatgcaca cctgagtgag g	21
<210> 9 <211> 27 <212> DNA <213> Artificial Sequence	
<pre><320> <321> misc_structure <223> synthetic oligonucleotide used to join DNA fragments with non-cohesive ends.</pre>	
<400> 9 gatectgtgg cttcgatgca cacaaga 2	27
<210> 10 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <221> misc_structure <223> synthetic oligonucleotide used to join DNA fragments with non-cohesive ends.	
<400> 10 ctcttgtgtg catcgaagcc acag	24
<210> 11 <311> 30 <212> DNA <213> Artificial Sequence	

<pre><220> <221> misc_structure <203> synthetic oligonucleotide used to join DNA fragments with non-cohesive ends.</pre>	
<400> 11 tgtggaagag ceteagaatt tatteecaae	30
<210> 12 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <221> misc_structure <223> synthetic oligonucleotide used to join DNA fragments with non-cohesive ends.	
<400> 12 aattgttggg aataaattct gaggetette e	31
<210> 13 <211> 47 <212> DNA <213> Artificial Sequence	
<220> <221> misc_structure <223> synthetic oligonucleotide used to join DNA fragments with non-cohesive ends.	
<400> 13 ttaggettag gtggeggtgg atceggeggt ggtggatett teceaac	47
<210> 14 <211> 48 <212> DNA <213> Artificial Sequence	
<220> <221> misc_structure <223> synthetic oligonucleotide used to join DNA fragments with non-cohesive ends.	
$<\!400\!>\ 14$ aattgttggg aaagatccac caccgccgga tccaccgcca cctaagcc	48
<210> 15 <211> 62 <212> DNA <213> Artificial Sequence	
<220> <221> misc_structure <223> synthetic oligonucleotide used to join DNA fragments with non-cohesive ends	

$<\!400\!>15$ traggettag geggtggtgg atettggtgge ggeggatetg gtggeggtgg ateetteeca ac	60 62												
<pre><210> 16 <211> 63 <212> DNA <213> Artificial Sequence</pre>													
<pre><220> <221> misc_structure <223> synthetic oligonucleotide used to join DNA fragments with non-cohesive ends.</pre>													
<400> 16 aattgttggg aaggatccac cgccaccaga tccgccgcca ccagatccac caccgcctaa gcc													
<210> 17 <211> 1782 <212> DNA <213> Homo sapiens													
<220> <221> CDS <222> (1)(1755)													
<pre><400> 17 gat gca cac aag agt gag gtt gct cat cgg ttt aaa gat ttg gga gaa Asp Ala His Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly Glu 1 5 10 15</pre>	48												
gaa aat ttc aaa gcc ttg gtg ttg att gcc ttt gct cag tat ctt cag Glu Asn Phe Lys Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr Leu Gln 20 25 30	96												
cag tgt cca ttt gaa gat cat gta aaa tta gtg aat gaa gta act gaa Gln Cys Pro Phe Glu Asp His Val Lys Leu Val Asn Glu Val Thr Glu 35 40 45	144												
ttt gca aaa aca tgt gtt gct gat gag tca gct gaa aat tgt gac aaa Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys 50 55 60	192												
tca ctt cat acc ctt ttt gga gac aaa tta tgc aca gtt gca act ctt Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr Leu 65 70 75 80	240												
cgt gaa acc tat ggt gaa atg gct gac tgc tgt gca aaa caa gaa cct Arg Glu Thr Tyr Gly Glu Met Ala Asp Cys Cys Ala Lys Gln Glu Pro 85 90 95	288												
gag aga aat gaa tgc ttc ttg caa cac aaa gat gac aac cca aac ctc Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asn Pro Asn Leu 100 105 110	336												

					cca Pro									384
-		_			ttt Phe	-						-		432
_					tat Tyr 150	_	_	-						480
					aca Thr									528
_	_	_		-	ctc Leu	_	_			_	_			576
	_		_	_	ctc Leu			_	_					624
					tgg Trp									672
	_				gaa Glu 230	-		-				_		720
					tgc Cys									768
		_			aag Lys			_	_		_	_		816
					tgc Cys									864
_		_	_		gaa Glu		_		_					912
					gtt Val 310									960
	-	_	_	-	ttc Phe	_		_		-				1008
					tct Ser									1056

		gag Glu										1104
		ttc Phe										1152
		caa Gln 390										1200
		gcg Ala										1248
~ ~		act Thr	_		-							1296
		tgt Cys										1344
		tcc Ser										1392
		agt Ser 470										1440
		cca Pro										1488
_		 ttt Phe	_	_								1536
		gag Glu										1584
		aaa Lys										1632
		gat Asp 550										1680
		acc Thr										1728
		gcc Ala			taad	catc	tac (attt	aaaa	gc at	tctcag	1782

.

<pre><010> 16 <011> 585 <212> PRT <013> Homo Sapiens</pre>															
)> 18 Ala		Lys	Ser 5	Glu	Val	Ala	His	Arg 10	Phe	Lys	Asp	Leu	Gly 15	Glu
Glu	Asn	Phe	Lys 20	Ala	Leu	Val	Leu	11e 25	Ala	Phe	Ala	Gln	Tyr 30	Leu	Gln
Gln	Cys	Pro 35	Phe	Glu	Asp	His	Val 40	Lys	Leu	Val	Asn	Glu 45	Val	Thr	Glu
Phe	Ala 50	Lys	Thr	Cys	Val	Ala 55	Asp	Glu	Ser	Ala	Glu 60	Asn	Cys	Asp	Lys
Ser 65	Leu	His	Thr	Leu	Phe 70	Gly	Asp	Lys	Leu	Cys 75	Thr	Val	Ala	Thr	Leu 80
Arg	Glu	Thr	Tyr	Gly 85	Glu	Met	Ala	Asp	Cys 90	Cys	Ala	Lys	Gln	Glu 95	Pro
Glu	Arg	Asn	Glu 100	Cys	Phe	Leu	Gln	His 105	Lys	Asp	Asp	Asn	Pro 110	Asn	Leu
Pro	Arg	Leu 115	Val	Arg	Pro	Glu	Val 120	Asp	Val	Met	Cys	Thr 125	Ala	Phe	His
Asp	Asn 130	Glu	Glu	Thr	Phe	Leu 135	Lys	Lys	Tyr	Leu	Tyr 140	Glu	Ile	Ala	Arg
Arg 145	His	Pro	Tyr	Phe	Tyr 150	Ala	Pro	Glu	Leu	Leu 155	Phe	Phe	Ala	Lys	Arg 160
Tyr	Lys	Ala	Ala	Phe 165	Thr	Glu	Cys	Cys	Gln 170	Ala	Ala	Asp	Lys	Ala 175	Ala
Cys	Leu	Leu	Pro 180	Lys	Leu	Asp	Glu	Leu 185	Arg	Asp	Glu	Gly	Lys 190	Ala	Ser
Ser	Ala	Lys 195	Gln	Arg	Leu	Lys	Cys 200	Ala	Ser	Leu	Gln	Lys 205	Phe	Gly	Glu
Arg	Ala 210	Phe	Lys	Ala	Trp	Ala 215	Val	Ala	Arg	Leu	Ser 220	Gln	Arg	Phe	Pro
Lys 225	Ala	Glu	Phe	Ala	Glu 230	Val	Ser	Lys	Leu	Val 235	Thr	Asp	Leu	Thr	Lys 240
Val	His	Thr	Glu	Cys 245	Cys	His	Gly	Asp	Leu 250	Leu	Glu	Cys	Ala	Asp 255	Asp
Arg	Ala	Asp	Leu 260	Ala	Lys	Tyr	Ile	Суs 265	Glu	Asn	Gln	Asp	Ser 270	Ile	Ser
Ser	Lys	Leu 275	Lys	Glu	Cys	Cys	Glu 280	Lys	Pro	Leu	Leu	Glu 285	Lys	Ser	His

<210> 18

Cys	Ile 290	Ala	Glu	Val	Glu	Asn 295	Asp	Glu	Met	Pro	Ala 300	Asp	Leu	Pro	Ser
Leu 305	Ala	Ala	Asp	Phe	Val 310	Glu	Ser	Lys	Asp	Val 315	Cys	Lys	Asn	Tyr	Ala 320
Glu	Ala	Lys	Asp	Val 325	Phe	Leu	Gly	Met	Phe 330	Leu	Tyr	Glu	Tyr	Ala 335	Arg
Arg	His	Pro	Asp 340	Tyr	Ser	Val	Val	Leu 345	Leu	Leu	Arg	Leu	Ala 350	Lys	Thr
Tyr	Glu	Thr 355	Thr	Leu	Glu	Lys	Cys 360	Cys	Ala	Ala	Ala	Asp 365	Pro	His	Glu
Cys	Tyr 370	Ala	Lys	Val	Phe	Asp 375	Glu	Phe	Lys	Pro	Leu 380	Val	Glu	Glu	Pro
Gln 385	Asn	Leu	Ile	Lys	Gln 390	Asn	Cys	Glu	Leu	Phe 395	Glu	Gln	Leu	Gly	Glu 400
Tyr	Lys	Phe	Gln	Asn 405	Ala	Leu	Leu	Val	Arg 410	Tyr	Thr	Lys	Lys	Val 415	Pro
Gln	Val	Ser	Thr 420	Pro	Thr	Leu	Val	Glu 425	Val	Ser	Arg	Asn	Leu 430	Gly	Lys
Val	Gly	Ser 435	Lys	Cys	Cys	Lys	His 440	Pro	Glu	Ala	Lys	Arg 445	Met	Pro	Cys
Ala	Glu 450	Asp	Tyr	Leu	Ser	Val 455	Val	Leu	Asn	Gln	Leu 460	Cys	Val	Leu	His
Glu 465	Lys	Thr	Pro	Val	Ser 470	Asp	Arg	Val	Thr	Lys 475	Cys	Cys	Thr	Glu	Ser 480
Leu	Val	Asn	Arg	Arg 485	Pro	Cys	Phe	Ser	Ala 490	Leu	Glu	Val	Asp	Glu 495	Thr
Tyr	Val	Pro	Lys 500	Glu	Phe	Asn	Ala	Glu 505	Thr	Phe	Thr	Phe	His 510	Ala	Asp
Ile	Cys	Thr 515	Leu	Ser	Glu	Lys	Glu 520	Arg	Gln	Ile	Lys	Lys 525	Gln	Thr	Ala
Leu	Val 530	Glu	Leu	Val	Lys	His 535	Lys	Pro	Lys	Ala	Thr 540	Lys	Glu	Gln	Leu
Lys 545	Ala	Val	Met	Asp	Asp 550	Phe	Ala	Ala	Phe	Val 555	Glu	Lys	Cys	Cys	Lys 560
Ala	Asp	Asp	Lys	Glu 565	Thr	Cys	Phe	Ala	Glu 570	Glu	Gly	Lys	Lys	Leu 575	Val
Ala	Ala	Ser	Gln 580	Ala	Ala	Leu	Gly	Leu 585							

```
<210> 19
<011> 50
<012> DNA
<213> Artificial Sequence
<220>
<!!!!> primer_bind
<223> primer used to generate XhoI and ClaI
site in pPPC0006
<400> 19
                                                                    57
geotegagaa aagagatgca cacaagagtg aggttgctca tegatttaaa gatttgg
<210> 20
<211> 58
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> primer used in generation XhoI and ClaI
site in pPPC0006
<400> 20
aatcgatgag caacctcact cttgtgtgca tctcttttct cgaggctcct ggaataag
<210> 21
<211> 24
<1112> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> primer used in generation XhoI and ClaI
site in pPPC0006
<400> 21
                                                                    24
tacaaactta agagtccaat tagc
<210> 22
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> primer used in generation XhoI and ClaI
site in pPPC0006
<400> 22
                                                                    29
cactteteta gagtggttte atatgtett
<210> 23
<211> 60
<212> DNA
```

<213> Artificial Sequence

```
< 2.20>
<221> Misc_Structure
<223> Synthetic oligonucleotide used to alter restriction
sites in pPPC0007
<400> 23
aagetgeett aggettataa taaggegege eggeeggeeg titaaaetaa gettaattet 60
<210> 24
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<221> Misc_Structure
<223> Synthetic oligonucleotide used to alter restriction
sites in pPPC0007
<400> 24
agaattaagc ttagtttaaa cggccggccg gcgcgcctta ttataagcct aaggcagctt 60
<210> 25
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> forward primer useful for generation of albumin
fusion protein in which the albumin moiety is N-terminal
of the Therapeutic Protein
<220>
<221> misc_feature
<222> (18)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (19)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (20)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (21)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (22)
<223> n equals a,t,g, or c
```

```
<220>
<221> misc_feature
<.1.12> (23)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (24)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (25)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (26)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (27)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (28)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (29)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (30)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (31)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (32)
<223> n equals a,t,g, or c
                                                                    32
aagctgcctt aggcttannn nnnnnnnnn nn
<210> 26
<211> 51
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
```

<2.23> reverse primer useful for generation of albumin fusion protein in which the albumin moiety is N-terminal of the Therapeutic Protein $\frac{1}{2}$

```
<2.20>
<221> misc_feature
<2.12> (37)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (38)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (39)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (40)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (41)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (42)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (43)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (44)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (45)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (46)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<322> (47)
<223> n equals a,t,g, or c
<220>
```

```
<221> misc_feature
<2.22> (48)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (49)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (50)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (51)
<223> n equals a,t,g, or c
<400> 26
                                                                    51
gegegegttt aaacggeegg ceggegege ttattannnn nnnnnnnnn n
<210> 27
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> forward primer useful for generation of albumin fusion
protein in which the albumin moiety is c-terminal of the
Therapeutic Protein
<220>
<221> misc_feature
<222> (19)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (20)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (21)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (22)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (23)
<223> n equals a,t,g, or c
< 220>
<221> misc_feature
```

```
222 > (24)
<223> n equals a,t,g, or c
<2.10>
<221> misc_feature
<222> (25)
<223> n equals a,t,g, or c
<020>
<221> misc_feature
<222> (26)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (27)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (28)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (29)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (30)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (31)
<223> n equals a,t,g, or c
<230>
<221> misc_feature
222> (32)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<200> (33)
<223> n equals a,t,g, or c
<400> 27
                                                                    33
aggagegteg acaaaagann nnnnnnnnn nnn
<210> 28
<211> 52
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> reverse primer useful for generation of albumin
```

fusion protein in which the albumin moiety is c-terminal of the Therapeutic Protein

```
<2330>
<221> misc_feature
<2::::> (38)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (39)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (40)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (41)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (42)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (43)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (44)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (45)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (46)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (47)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (48)
<223> n equals a,t,g, or c
< 220>
<221> misc_feature
```

```
<222> (49)
<2003> n equals a,t,g, or c
< 0.00>
<2011> misc_feature
<1122> (50)
<123> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (51)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (52)
<223> n equals a,t,g, or c
<400> 28
ctttaaatcg atgagcaacc tcactcttgt gtgcatcnnn nnnnnnnnn nn
                                                                    52
<210> 29
<211> 24
<212> PRT
<213> Artificial Sequence
<220>
<221> signal
<223> signal peptide of natural human serum albumin protein
<400> 29
Met Lys Trp Val Ser Phe Ile Ser Leu Leu Phe Leu Phe Ser Ser Ala
                                      10
Tyr Ser Arg Ser Leu Asp Lys Arg
             20
<210> 30
<311> 114
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> forward primer useful for generation of PC4:HSA
albumin fusion VECTOR
<220>
<221> misc_feature
<222> (5)..(10)
<223> BamHI retsriction site
<220>
<221> misc_feature
<222> (11)..(16)
<223> Hind III retsriction site
<220>
<221> misc_feature
```

```
<222> (17)..(27)
<11.13> Kozak sequence
<200>
<!!!!> misc_feature
<222> (25)..(97)
<223> cds natural signal sequence of human serum albumin
<220>
<221> misc_feature
<222> (75)..(81)
<223> XhoI restriction site
<220>
<221> misc_feature
<000> (98)..(114)
<223> cds first six amino acids of human serum albumin
<400> 30
tragggator aagottorge carcatgaag tgggtaacet ttatttoret totttttote 60
                                                                    114
tttagctcgg cttactcgag gggtgtgttt cgtcgagatg cacacaagag tgag
<210> 31
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> reverse primer useful for generation of
PC4:HSA albumin fusion VECTOR
<220>
<221> misc_feature
<222> (6)..(11)
<223> Asp718 restriction site
<220>
<221> misc_feature
<222> (12)..(17)
<223> EcoRI restriction site
<220>
<221> misc_feature
<222> (15)..(17)
<223> reverse complement of stop codon
<220>
<221> misc_feature
<222> (18)..(25)
<223> AscI restriction site
<000>
<221> misc_feature
<222> (18)..(43)
<223> reverse complement of DNA sequence encoding last 9 amino acids
<400> 31
```

```
gcagcggtac cgaattcggc gcgccttata agcctaaggc agc
<210> 32
<211> 46
<012> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> forward primer useful for inserting Therapeutic
protein into pC4:HSA vector
<220>
<221> misc_feature
<222> (29)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (30)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (31)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (32)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (33)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (34)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (35)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (36)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (37)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
```

43

<222> (38)

```
<2.23> n equals a,t,g, or c
< 3.20 >
<!!!!> misc_feature
<222> (39)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (40)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (41)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (42)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (43)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (44)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (45)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (46)
<223> n equals a,t,g, or c
<400> 32
                                                                    46
ccgccgctcg aggggtgtgt ttcgtcgann nnnnnnnn nnnnnn
<210> 33
<211> 55
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> reverse primer useful for inserting Therapeutic
protein into pC4:HSA vector
<220>
<221> misc_feature
<222> (38)
<223> n equals a,t,g, or c
```

```
<220>
<221> misc_feature
<11112> (39)
<113> n equals a,t,g, or c
<220>
<321> misc_feature
<322> (40)
<223> n equals a,t,g, or c
<230>
<221> misc_feature
<223> (41)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (42)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (43)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (44)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (45)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (46)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (47)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (48)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (49)
<223> n equals a,t,g, or c
<0220>
<221> misc_feature
<222> (50)
<223> n equals a,t,g, or c
```

```
<1:20>
<221> misc_feature
<222> (51)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (52)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (53)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (54)
<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (55)
<223> n equals a,t,g, or c
<400> 33
agteceateg atgageaace teactettgt gtgcatennn nnnnnnnnn nnnnn
                                                                   55
<210> 34
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<221> signal
<223> Stanniocalcin signal peptide
<400> 34
Met Leu Gln Asn Ser Ala Val Leu Leu Leu Val Ile Ser Ala Ser
 1
                                     10
Ala
<210> 35
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<221> signal
<223> Synthetic signal peptide
< 100 > 35
Met Pro Thr Trp Ala Trp Trp Leu Phe Leu Val Leu Leu Ala Leu
                  5
 1
Trp Ala Pro Ala Arg Gly
             20
<210> 36
```

22

<1:11 > 66

<012> PRT

<213 > Agkistrodon piscivorus

<400> 36

Lie Thr Tyr Thr Asp Cys Thr Glu Ser Gly Gln Asn Leu Cys Leu Cys $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Glu Gly Ser Asn Val Cys Gly Lys Gly Asn Lys Cys Ile Leu Gly Ser 20 25 30

Gln Gly Lys Asp Asn Gln Cys Val Thr Gly Glu Gly Thr Pro Lys Pro 35 40 45

Gln Ser His Asn Gln Gly Asp Phe Glu Pro Ile Pro Glu Asp Ala Tyr 50 60

Asp Glu

65

<210> 37

<211> 71

<212> PRT

<213> Agkistrodon piscivorus

<400> 37

Glu Ala Gly Glu Glu Cys Asp Cys Gly Ser Pro Glu Asn Pro Cys Cys 1 5 10 15

Asp Ala Ala Thr Cys Lys Leu Arg Pro Gly Ala Gln Cys Ala Glu Gly 20 25 30

Leu Cys Cys Asp Gln Cys Lys Phe Met Lys Glu Gly Thr Val Cys Arg
35 40 45

Ala Arg Gly Asp Asp Val Asn Asp Tyr Cys Asn Gly Ile Ser Ala Gly 50 55 60

Cys Pro Arg Asn Pro Phe His 65 70