

Continuous Random Variables Continuous random variables can assume the infinitely many values corresponding to points on a line interval. Examples: heights, weights length of life of a particular product experimental laboratory error

Properties of Continuous Probability Distributions

- The area under the curve is equal to 1.
- $P(a \le x \le b)$ = area under the curve between a and b.

There is no probability attached to any single value of x. That is, P(x = a) = 0.

6 - 7 Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara

Continuous Probability Distributions

- There are many different types of continuous random variables
- We try to pick a model that
- Fits the data well
- Allows us to make the best possible inferences using the data.
- One important continuous random variable is the normal random variable.

6 - 8 Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara Universit

The Normal Distribution

The formula that generates the normal probability distribution is:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \text{ for } -\infty < x < \infty$$

$$e = 2.7183 \qquad \pi = 3.1416$$

 μ and σ are the population mean and standard deviation.

The $\underline{\textit{shape}}$ of the normal curve changes as the $\underline{\textit{standard deviation}}$ changes.

6 - 9 Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara Universi

The Normal Distribution

The mean μ locates the *center* of the distribution, and the distribution is *symmetric* about its mean μ .

The Normal Distribution

The shape of the distribution is determined by \(\sigma \). Large values of \(\sigma \) reduces the height of the curve and increases the spread.

The Standard Normal Distribution

- To find **P(a < x < b)**, we need to find the area under the appropriate normal curve.
- There are infinitely large number of normal distributions, one for each different $\mu \text{and } \sigma$
 - → the use of separate table of areas for each curve is impractical.
- To simplify the tabulation of these areas, we standardize each value of x by expressing it as a z-score, the number of standard deviations σ it lies from the mean μ.

$$z = \frac{x - \mu}{\sigma}$$

or $x = \mu + z\sigma$

6 - 12 Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara University

Approximating the Binomial Make sure to include the entire rectangle for the values of x in the interval of interest. This is called the continuity correction. Standardize the values of x using z = x - np / √npq Make sure that np and nq are both greater than 5 to avoid inaccurate approximations!

