Danmarks Tekniske Universitet

Danmarks Tekniske Universitet

Written examination date: 15/5/2024

Pages: 7 (including this front page)

Course title: Bayesian Machine Learning

Course number: 02477

Aids allowed: All aids except internet

Exam duration: 4 hours

Weighting: 100%

02477 Bayesian Machine Learning Exam 2024

Technical University of Denmark

- **Duration**: 4 hours
- Aids: All aids except internet
- Student number: Make sure you student number is visible on all pages.
- Results: Report all numeric results with 2 digits after the decimal point.
- Explain how you arrived at your results, document intermediate results when possible.
- Hand-in: Your solution must be handed in digitally as a PDF.

Contents

- Part 1: Linear Gaussian systems
- Part 2: Gaussian process regression
- Part 3: Binary classification
- Part 4: Variational inference
- Part 5: Markov Chain Monte Carlo

Part 1: Linear Gaussian systems

Consider the following Markov Chain

$$x_1 \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$$
 (1)

$$x_2|x_1 \sim \mathcal{N}(Ax_1, \Sigma)$$
 (2)

$$x_3|x_2 \sim \mathcal{N}(Ax_2, \Sigma)$$
 (3)

where $\boldsymbol{A} \in \mathbb{R}^{2 \times 2}$ and $\boldsymbol{\Sigma} \in \mathbb{R}^{2 \times 2}$ are constants.

Question 1.1: Determine the conditional distribution of x_1 given x_2 .

Question 1.2: Determine the marginal distribution of x_3 , i.e. $p(x_3)$.

Question 1.3: Determine the conditional distribution of x_3 given x_1 .

Part 2: Gaussian process regression

Let $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N$ be a dataset for regression, where $x_n \in \mathbb{R}$ and $y_n \in \mathbb{R}$ are the input and output for the *n*'th observation, respectively.

Assume a Gaussian process regression model of the form

$$y_n = f(x_n) + \epsilon_n,\tag{4}$$

where $f \sim \mathcal{GP}(0, k(x, x'))$ and $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$ is i.i.d additive Gaussian noise.

Assume the following kernel:

$$k_1(x, x') = \kappa^2 \exp\left(-\frac{1}{2\ell^2}||x - x'||_2^2\right)$$
 (5)

and the following dataset with N=8 observations

$$\mathbf{x} = \begin{bmatrix} -2.17 & 1.99 & 0.57 & -3.01 & -1.16 & 3.30 & -4.85 & -0.86 \end{bmatrix}$$

 $\mathbf{y} = \begin{bmatrix} 0.88 & 0.46 & -0.06 & 0.98 & 0.45 & 0.88 & -0.66 & 0.05 \end{bmatrix}$

such that x_n and y_n are the n'th elements in \boldsymbol{x} and \boldsymbol{y} , respectively.

Question 2.1: Determine the likelihood for the regression model in eq. (4).

Assume the following values for the hyperparameters:

$$\kappa = 0.7, \quad \ell = \frac{1}{2}\sqrt{2}, \quad \sigma = \frac{1}{5}.$$
(6)

Question 2.2: Determine the analytical prior predictive distribution $p(y^*|x^*=1)$ for $y^*=y(x^*)$.

Question 2.3: Determine the analytical posterior predictive distribution $p(y^*|y, x^* = 227)$ for $y^* = y(x^*)$.

Question 2.4: Determine the analytical expression for the marginal likelihood $p(y|\kappa, \ell, \sigma)$ and compute the numerical value of $\log p(y|\kappa, \ell, \sigma)$.

Question 2.5: Determine the analytical posterior distribution $p(f^*|y, x^* = 1)$ for $f^* = f(x^*)$ as well as the analytical posterior predictive distribution for $p(y^*|y, x^* = 1)$ for $y^* = y(x^*)$.

Consider now a different kernel

$$k_2(x, x') = c_1 \left(1 + \frac{||x - x'||}{2\ell^2} \right)^{-1} + c_2 x x',$$

with hyperparameters $c_1, c_2, \ell > 0$.

Question 2.6: Determine whether k_2 is a stationary kernel and determine whether k_2 is an isotropic kernel.

Question 2.7: Compute the prior covariance between $f = [f(x_1), f(x_2), \dots, f(x_8)]$ and $f^* = f(x^*)$ for $x^* = -1$ for $c_1 = c_2 = 1$ and $\ell = \frac{1}{\sqrt{2}}$.

Part 3: Binary classification

Consider the following generalized linear model for binary classification:

$$y_n | \boldsymbol{w}, x_n \sim \text{Ber}(\sigma(f(x_n)))$$

 $f(x) = w_0 + w_1 x + w_2 x^2$
 $\boldsymbol{w} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I}),$

where $\mathbf{w} = \begin{bmatrix} w_0 & w_1 & w_2 \end{bmatrix} \in \mathbb{R}^3$, $\mathbf{I} \in \mathbb{R}^{3 \times 3}$ is the identity matrix, $\sigma(\cdot)$ is the logistic sigmoid function, $x_n \in \mathbb{R}$ and $y_n \in \{0, 1\}$.

Assume $\hat{\boldsymbol{w}}_{\text{MAP}} = \begin{bmatrix} 2.647 \\ -1.688 \\ -0.596 \end{bmatrix}$ is the MAP-estimator for \boldsymbol{w} given some dataset $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N$, where $\boldsymbol{y} \in \mathbb{R}^N$ denotes the targets.

Question 3.1: Suppose you suspect a bug in the code for computing the MAP estimator. Explain how you could verify that \hat{w}_{MAP} is indeed the correct MAP estimator.

Question 3.2: Determine the posterior predictive distribution for $p(y^*|y,x^*=-3)$ using the plug-in approximation based on the MAP-estimator.

Consider now the following Gaussian approximation of the posterior distribution for the weights

$$p(\boldsymbol{w}|\boldsymbol{y}) \approx \mathcal{N}(\boldsymbol{w}|\boldsymbol{w}_{\text{MAP}}, \boldsymbol{S}) \quad \text{for} \quad \boldsymbol{S} = \begin{bmatrix} 3. & -0.39 & -0.3 \\ -0.39 & 1.55 & 0.37 \\ -0.3 & 0.37 & 0.14 \end{bmatrix}.$$
 (7)

Question 3.3: Use the Gaussian approximation to compute a 90% posterior credibility interval for w_0 .

Question 3.4: Use the Gaussian approximation to compute the approximate posterior distribution $p(f^*|\mathbf{y},x^*=-3)$ and the approximate posterior predictive distribution for $p(y^*|\mathbf{y},x^*=-3)$ using the probit approximation.

Consider the following utility matrix for a decision (i.e. the prediction) $\hat{y} \in \{0,1\}$ and the true value $y \in \{0,1\}$:

$$\begin{array}{c|cc} \mathcal{U}(y,\hat{y}) & \hat{y} = 0 & \hat{y} = 1 \\ \hline y = 0 & 2 & 1 \\ y = 1 & 1 & 2 \end{array}$$

Suppose the predictive posterior distribution for a specific x^* is given by $p(y^* = 1|\mathbf{y}, x^*) = 0.129$.

Question 3.5: Compute the expected utility for each decision $\hat{y} \in \{0,1\}$ and determine the optimal decision wrt. the utility matrix above.

Part 4: Variational inference

Consider the following probabilistic model

$$y|w_1, w_2 \sim \mathcal{N}(w_1 w_2, \sigma^2)$$
$$w_1 \sim \mathcal{N}(0, 1)$$
$$w_2 \sim \mathcal{N}(0, 1),$$

for a single observation $y \in \mathbb{R}$ and parameters $w_1, w_2 \in \mathbb{R}$.

Consider a variational family Q consisting of distributions of the form:

$$q(w_1, w_2) = \mathcal{N}(w_1|m_1, v_1)\mathcal{N}(w_2|m_2, v_2)$$

with variational means $m_1, m_2 \in \mathbb{R}$ and variational variances $v_1, v_2 > 0$.

Assume y = 1 and $\sigma^2 = 1$ and assume the variational parameters are initialized as follows: $m_1 = -1$, $m_2 = 1$ and $v_1 = v_2 = 1$.

Question 4.1: Determine the analytical expression of the entropy of $q(w_1, w_2)$ and evaluate it for the initial variational parameter values given above.

The evidence lowerbound (ELBO) for this model can be written as

$$\mathcal{L}[q] = \mathbb{E}_{q(w_1, w_2)} \left[\log p(y|w_1, w_2) \right] - \text{KL}\left[q(w_1, w_2) || p(w_1, w_2) \right], \tag{8}$$

where the first term is the expected log likelihood and the second term is the KL-divergence is calculated between the posterior approximation $q(w_1, w_2)$ and the prior $p(w_1, w_2)$.

Question 4.2: Determine the analytical expression for the expected log likelihood and evaluate it for the initial variational parameter values given above.

Let $q^* = \arg\min_{q \in \mathcal{Q}} \operatorname{KL}[q(w_1, w_2)||p(w_1, w_2|y)]$ denote the optimal variational approximation.

Question 4.3: Determine the approximate posterior covariance between w_1 and w_2 with respect to the optimal approximation q^* .

Part 5: Markov Chain Monte Carlo

Assume the posterior density for a model with parameters $z_1, z_2 \in \mathbb{R}$ and data \mathcal{D} are given by

$$\log p(z_1, z_2 | \mathcal{D}) = -(1 - z_1)^2 - 20(z_2 - z_1^2)^2 - z_1^2 - z_2^2 + \text{constant}$$
(9)

Question 5.1: Plot the contours of the posterior density for the ranges $z_1 \in [-2, 2]$ and $z_2 \in [-1, 3]$ with 100 equidistant points for both z_1 and z_2 .

Let $z = \begin{bmatrix} z_1 & z_2 \end{bmatrix}$ and consider a Metropolis sampler with an isotropic Gaussian proposal distribution $q(z^*|z^{(k-1)}) = \mathcal{N}(z^*|z^{(k-1)}, \mathbf{I})$ for $z^{(k)} = \begin{bmatrix} z_1^{(k)}, z_2^{(k)} \end{bmatrix}$, where $k \in \mathbb{N}$ denotes the iteration number.

Question 5.2: Run a single MCMC chain using the Metropolis algorithm for 10^4 iterations using the proposal distribution given above. Initialize the chain at $(z_1, z_2) = (0, 1.5)$. Discard 10% of the samples as warm up. Plot the resulting traces for both parameters.

Use the posterior samples of z from Question 5.2 to answer the next two questions. If you did not solve the previous question, you can draw 10^4 samples of z as

$$z \sim \mathcal{N}\left(\begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 1 & 0.3\\0.3 & 1 \end{bmatrix}\right)$$
 (10)

and assume these are samples from the correct posterior distribution when solving the next two questions.

Question 5.3: Estimate the posterior mean of $\sin(z_1z_2)$ using the samples.

Question 5.4: Estimate the posterior probability $p(z_1 > z_2 | \mathcal{D})$ using the samples.