Nom:

Prénom:

Note: /10

Contrôle de connaissances 10

Électrocinétique en RSF (12')

/1 $\boxed{1}$ Convertir les signaux suivants en complexes sous la forme « amplitude complexe × exponentielle temporelle » :

 $e(t) = E_0 \cos(\omega t)$; $s(t) = S \cos(\omega t + \varphi)$; $u(t) = U \sin(\omega t)$

/2 $\boxed{2}$ Donner et démontrer la relation du pont diviseur de tension pour deux impédances \underline{Z}_1 et \underline{Z}_2 en série d'une part, et en parallèle d'autre part.

FIGURE 10.1 – Association série

FIGURE 10.2 – Association parallèle

/3 [3] Pour un système excité par un signal d'entrée $e(t) = E_0 \cos(\omega t)$, indiquer ce qu'est le RSF et la forme réelle des signaux de sortie s(t). Application au circuit RC série en RSF : transformez-le en RSF, puis déterminer $\underline{U}_C(\omega)$ par un pont diviseur de tension et en déduire $U_C(\omega)$ et $\varphi_C(\omega)$.

FIGURE 10.3 - RC en RSF.

/4 4 Définir ce qu'est la résonance avec vos propres mots. Citer sans détailler un exemple du quotidien **autre que la balan- coire**. Indiquer comment se définit mathématiquement la résonance pour un système, et définissez mathématiquement ce qu'est la bande passante en donnant les mots de vocabulaire nécessaires et à l'aide d'un schéma.

FIGURE 10.4 – Bande passante