Nguyễn Hồng Điệp

ÔN THI TỐT NGHIỆP THPT

 $\mathbf{\tilde{D}}$ ẠI SỐ 11

LUONG GIÁC

Tên Chữ kí (^ .^)

Phần I

Lý thuyết

1 Công thức lượng giác

1.1 Công thức lượng giác cơ bản

$$\bullet \quad \sin^2 x + \cos^2 x = 1$$

•
$$\tan x = \frac{\sin x}{\cos x}$$

•
$$\cot x = \frac{\cos x}{\sin x}$$

•
$$\tan x \cdot \cot x = 1$$

$$1 + \tan^2 x = \frac{1}{\cos^2 x}$$

$$\bullet 1 + \cot^2 x = \frac{1}{\sin^2 x}$$

1.2 Mất dấu trừ

$$-\cos(x) = \cos(\pi - x)$$

•
$$-\sin x = \sin(-x)$$

•
$$-\tan x = -\tan(-x)$$

•
$$-\cot x = \cot(-x)$$

1.3 Đổi chéo

•
$$\cos x = \sin\left(\frac{\pi}{2} - x\right)$$

•
$$\sin x = \cos\left(\frac{\pi}{2} - x\right)$$

•
$$\cot x = \tan\left(\frac{\pi}{2} - x\right)$$

•
$$\tan x = \cot \left(\frac{\pi}{2} - x\right)$$

1.4 Hơn kém nhau $\frac{\pi}{2}$

•
$$-\sin x = \cos\left(\frac{\pi}{2} + x\right)$$

$$-\cot x = \tan\left(\frac{\pi}{2} + x\right)$$

•
$$-\tan x = \cot\left(\frac{\pi}{2} + x\right)$$

$$\bullet -\cos x = \sin\left(x - \frac{\pi}{2}\right)$$

2 Công thức cộng

•
$$\sin(x+y) = \sin x \cos y + \sin y \cos x$$

•
$$\sin(x - y) = \sin x \cos y - \sin y \cos x$$

•
$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

•
$$\cos(x-y) = \cos x \cos y + \sin x \sin y$$

•
$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

•
$$\tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

2.1 Công thức nhân đôi

•
$$\sin 2x = 2\sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$= 2\cos^2 x - 1$$

$$= 1 - 2\sin^2 x$$

$$\bullet \ \tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

$$\bullet \cos^2 x = \frac{1 + \cos 2x}{2}$$

$$\bullet \sin^2 x = \frac{1 - \cos 2x}{2}$$

2.2 Công thức nhân ba

$$\bullet \quad \sin 3x = 3\sin x - 4\sin^3 x$$

$$\bullet \quad \cos 3x = 4\cos^3 x - 3\cos x$$

$$\bullet \ \tan 3x = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}$$

$$\bullet \ \cos^3 x = \frac{3\cos x + \cos 3x}{4}$$

$$\bullet \sin^3 x = \frac{3\sin x - \sin 3x}{4}$$

2.3 Tích thành tổng

•
$$\cos x \cdot \cos y = \frac{1}{2} [\cos(x - y) + \cos(x + y)]$$

•
$$\sin x \cdot \sin y = \frac{1}{2} [\cos(x - y) - \cos(x + y)]$$

•
$$\sin x \cdot \cos y = \frac{1}{2} \left[\sin(x - y) + \sin(x + y) \right]$$

2.4 Tổng thành tích

•
$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$$

•
$$\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$$

•
$$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}$$

•
$$\sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2}$$

•
$$\tan x + \tan y = \frac{\sin(x+y)}{\cos x \cos y}$$

•
$$\tan x - \tan y = \frac{\sin(x - y)}{\cos x \cos y}$$

•
$$\cot x + \cot y = \frac{\sin(x+y)}{\sin x \sin y}$$

•
$$\cot x - \cot y = \frac{\sin(x - y)}{\sin x \sin y}$$

•
$$\sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4}\right)$$

= $\sqrt{2} \cos \left(x - \frac{\pi}{4}\right)$

•
$$\sin x - \cos x = \sqrt{2} \sin \left(x - \frac{\pi}{4}\right)$$

= $-\sqrt{2} \cos \left(x + \frac{\pi}{4}\right)$

$$\bullet \quad 1 + \sin 2x = (\sin x + \cos x)^2$$

$$\bullet \quad 1 - \sin 2x = (\sin x - \cos x)^2$$

3 Phương trình lượng giác

3.1 Phương trình cơ bản

•
$$\sin x = \sin u \Leftrightarrow \begin{bmatrix} x = u + k2\pi \\ x = \pi - u + k2\pi \end{bmatrix}$$

•
$$\cos x = \cos u \Leftrightarrow \begin{bmatrix} x = u + k2\pi \\ x = -u + k2\pi \end{bmatrix}$$

•
$$\tan = \tan u \Leftrightarrow x = u + k\pi$$

•
$$\cot = \cot u \Leftrightarrow x = u + k\pi$$

3.2 Công thức nghiệm thu gọn

•
$$\sin x = 1 \Leftrightarrow x = \frac{\pi}{2} + k2\pi$$

•
$$\sin x = -1 \Leftrightarrow x = -\frac{\pi}{2} + k2\pi$$

•
$$\sin x = 0 \Leftrightarrow x = k\pi$$

•
$$\cos x = 1 \Leftrightarrow x = k2\pi$$

•
$$\cos x = -1 \Leftrightarrow x = \pi + k2\pi$$

•
$$\cos x = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi$$

4 Tập xác định

• Căn thức $\sqrt{f(x)}$ xác định $\Leftrightarrow f(x) \ge 0$

• Phân thức $\frac{1}{f(x)}$ xác định $\Leftrightarrow f(x) \neq 0$

• Căn thức ở mẫu: $\frac{1}{\sqrt{f(x)}}$ xác định $\Leftrightarrow f(x) > 0$

• $y = \sin f(x)$ xác định $\Leftrightarrow f(x)$ xác định.

• $y = \cos f(x)$ xác định $\Leftrightarrow f(x)$ xác định.

• $y = \tan x$ xác định $\Leftrightarrow \cos x \neq 0 \Leftrightarrow x \neq \frac{\pi}{2} + k\pi$

• $y = \cot x \text{ xác dịnh } \Leftrightarrow \sin x \neq 0 \Leftrightarrow x \neq k\pi$.

5 GTLN, GTNN của hàm số lượng giác

• $-1 \le \cos x \le 1$, $-1 \le \sin x \le 1$

• $-1 \le \cos x \le 1 \Leftrightarrow -1 \le -\cos x \le 1$

• $0 \le \cos^2 x \le 1$, $0 \le \sin^2 x \le 1$

• $0 \le |\cos x| \le 1$, $0 \le |\sin x| \le 1$

• $-1 \le \sin x \le 1 \Leftrightarrow -1 \le -\sin x \le 1$

6 Phương trình lượng giác cơ bản

6.1 Phương trình sin

① $\sin x = \sin \alpha \Leftrightarrow \begin{bmatrix} x = \alpha + k2\pi \\ x = \pi - \alpha + k2\pi \end{bmatrix}, k \in \mathbb{Z}$

• Nếu |m| > 1 thì phương trình vô nghiệm.

• Nếu $|m| \le 1$ $\circ m \in \left\{0, \pm \frac{1}{2}, \pm \frac{\sqrt{2}}{2}, \pm \frac{\sqrt{3}}{2}, \pm 1\right\} \text{ thì } m = \sin \alpha \text{ với } \alpha \text{ là các góc đặc biệt trong bảng lượng giác.}$ $\circ m \notin \left\{0, \pm \frac{1}{2}, \pm \frac{\sqrt{2}}{2}, \pm \frac{\sqrt{3}}{2}, \pm 1\right\} \text{ thì}$

$$\sin x = m \Leftrightarrow \begin{bmatrix} x = \arcsin m + k2\pi \\ x = \pi - \arcsin m + k2\pi \end{bmatrix}, k \in Z$$

6.2 Phương trình cos

① $\cos x = \cos \alpha \Leftrightarrow \begin{bmatrix} x = \alpha + k2\pi \\ x = -\alpha + k2\pi \end{bmatrix}, k \in \mathbb{Z}$

② $\sin x = m$

• Nếu |m| > 1 thì phương trình vô nghiệm.

• Nếu $|m| \le 1$ • $m \in \left\{0, \pm \frac{1}{2}, \pm \frac{\sqrt{2}}{2}, \pm \frac{\sqrt{3}}{2}, \pm 1\right\}$ thì $m = \sin \alpha$ với α là các góc đặc biệt trong bảng lượng giác. • $m \notin \left\{0, \pm \frac{1}{2}, \pm \frac{\sqrt{2}}{2}, \pm \frac{\sqrt{3}}{2}, \pm 1\right\}$ thì

$$\cos x = m \Leftrightarrow \begin{bmatrix} x = \arcsin m + k2\pi \\ x = -\arcsin m + k2\pi \end{bmatrix}, k \in Z$$

6.3 Phương trình tan

- ① $\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi, k \in \mathbb{Z}$
- ② $\tan x = m$
 - Nếu $m \in \left\{0, \pm \frac{\sqrt{3}}{3}, \pm 1, \pm \sqrt{3}\right\}$ thì $m = \tan \alpha$ với α là các góc đặc biệt trong bảng lượng giác.
 - Nếu $m \notin \left\{0, \pm \frac{\sqrt{3}}{3}, \pm 1, \pm \sqrt{3}\right\}$ thì

 $\tan x = m \Leftrightarrow x = \arctan m + k\pi, k \in \mathbb{Z}$

6.4 Phương trình cotan

- ① $\cot x = \cot \alpha \Leftrightarrow x = \alpha + k\pi, k \in \mathbb{Z}$
- ② $\cot x = m$
 - Nếu $m \in \left\{0, \pm \frac{\sqrt{3}}{3}, \pm 1, \pm \sqrt{3}\right\}$ thì $m = \cot \alpha$ với α là các góc đặc biệt trong bảng lượng giác.
 - Nếu $m \notin \left\{0, \pm \frac{\sqrt{3}}{3}, \pm 1, \pm \sqrt{3}\right\}$ thì

 $\cot x = m \Leftrightarrow x = \arctan m + k\pi, k \in \mathbb{Z}$

7 Phương trình bậc 2 đối với hàm số lượng giác

- $a\sin^2 x + b\sin x + c = 0$, đặt $t = \sin x$, điều kiện $|t| \le 1$
- $a\cos^2 x + b\cos x + c = 0$, đặt $t = \cos x$, điều kiện $|t| \le 1$
- $a \tan^2 x + b \tan x + c = 0$, đặt $t = \tan x$, điều kiện $x \neq \frac{\pi}{2} + k\pi$ $(k \in \mathbb{Z})$
- $a\cot^2 x + b\cot x + c = 0$, đặt $t = \cot x$, điều kiện $x \neq k\pi$ $(k \in \mathbb{Z})$
- Nếu đặt : $t = \sin^2 x$ hoặc $t = |\sin x|$, thì điều kiên là $0 \le t \le 1$.

8 Phương trình bậc nhất theo sin và cos

Dang $a \sin x + b \cos x = c$ (1),

- ① điều kiện có nghiệm $a^2 + b^2 \ge c^2$.
- ② Chia hai vế phương trình (1) cho $\sqrt{a^2+b^2}$ ta được

$$\frac{a}{\sqrt{a^2 + b^2}} \sin x + \frac{b}{\sqrt{a^2 + b^2}} \cos x = \frac{c}{\sqrt{a^2 + b^2}}$$

9 Phương trình đối xứng

- Dang: $a.(\sin x \pm \cos x) + b.\sin x.\cos x + c = 0$
- Đặt: $t = \cos x \pm \sin x = \sqrt{2} \cdot \cos \left(x \mp \frac{\pi}{4}\right), |t| \le \sqrt{2}$ $\Rightarrow t^2 = 1 \pm 2 \sin x \cdot \cos x \Rightarrow \sin x \cdot \cos x = \pm \frac{1}{2}(t^2 - 1).$
- Lưu ý: $\circ \cos x + \sin x = \sqrt{2} \cos \left(x - \frac{\pi}{4}\right) = \sqrt{2} \sin \left(x + \frac{\pi}{4}\right)$ $\circ \cos x - \sin x = \sqrt{2} \cos \left(x + \frac{\pi}{4}\right) = -\sqrt{2} \sin \left(x - \frac{\pi}{4}\right)$

Phần II

Trắc nghiệm hàm số lượng giác

1 Tập xác định

1.1 Hàm sin và côsin

Câu 1. Tìm tập xác định D của hàm số $y = \sin 4x$.

 $(\mathbf{A}) D = \mathbb{R}.$

 $(\mathbf{B}) D = [-1; 1].$

(C) D = [-4; 4].

Câu 2. Tập xác định của hàm số $y = \cos \sqrt{x}$ là

 $(\mathbf{A}) x > 0.$

 $(\mathbf{B}) x \ge 0.$

 $(\mathbf{C})R$.

 $(\mathbf{\overline{D}}) x \neq 0.$

Câu 3. Trong các hàm số sau, hàm số nào có tập xác định là \mathbb{R} ?

 $(\mathbf{A}) \ y = \sin \sqrt{x}.$

 $\mathbf{B} y = \cos \frac{2}{r}.$

Câu 4. Tìm tập xác định D của hàm số $y = \sin \sqrt{x}$.

 $(\mathbf{A}) D = \mathbb{R}.$

 $\mathbf{(B)} D = \mathbb{R} \setminus \{0\}.$

 $(\mathbf{C}) D = [0; +\infty).$

 $(\mathbf{D}) D = (0; +\infty).$

Câu 5. Tìm tập xác định D của hàm số $y = \sin \frac{1}{x^2 - 4}$.

 $(\mathbf{A}) D = \mathbb{R}.$

 $\mathbf{B} D = \mathbb{R} \setminus \{4\}.$

 $(\mathbf{C}) D = \mathbb{R} \setminus \{-4; 4\}.$

 $(\mathbf{D}) D = \mathbb{R} \setminus \{-2; 2\}.$

Câu 6. Tìm tập xác định D của hàm số $y = \cos \sqrt{\frac{1}{1-x^2}}$.

 $\mathbf{A}D = \mathbb{R}$.

 $\mathbf{B} D = \mathbb{R} \setminus \{-1; 1\}.$

 $(\mathbf{C}) D = [-1; 1].$

 $(\mathbf{D}) D = (-1; 1).$

Câu 7. Tìm tập xác định D của hàm số $y = \cos x$.

 $(\mathbf{A}) D = \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}.$

 $egin{aligned} oldsymbol{B} D = \mathbb{R} \setminus \Big\{ rac{\pi}{2} + k2\pi, k \in \mathbb{Z} \Big\}. \end{aligned}$

 $(\mathbf{C})D = \mathbb{R}.$

 $(\mathbf{D}) D = \mathbb{R} \setminus \{k2\pi, k \in \mathbb{Z}\}.$

Câu 8. Tập xác định của hàm số $y = \sin \frac{x}{x+1}$ là :

 $\mathbf{\widehat{A}} D = \mathbb{R} \setminus \{-1\} .$

 $\widehat{\mathbf{B}} D = (-1; +\infty) .$

 $(\widehat{\mathbf{C}}) D = (-\infty; -1) \cup (0; +\infty).$

 $(\mathbf{D}) D = \mathbb{R}.$

Câu 9. Tập xác định của hàm số $y = \sin \sqrt{-x}$ là :

 $(\widehat{\mathbf{A}}) D = [0; +\infty).$

 $(\mathbf{B}) D = (-\infty; 0).$

 $(\mathbf{C}) D = \mathbb{R}.$

 $(\mathbf{D}) D = (-\infty; 0].$

Câu 10. Tập xác định của hàm số $y = \cos \sqrt{1-x^2}$ là :

A D = (-1; 1).

B D = [-1;1].

 (\mathbf{C}) $D = (-\infty; -1) \cup (1; +\infty).$

 $(\mathbf{\overline{D}}) D = (-\infty; -1] \cup [1; +\infty).$

Câu 11. Tập xác định của hàm số $y = \cos \sqrt{\frac{x+1}{x}}$ là :

 $(\mathbf{A}) D = [-1; 0).$

 $(\widehat{\mathbf{B}}) D = \mathbb{R} \setminus \{0\}.$

 (\mathbf{C}) $D = (-\infty; -1] \cup (0; +\infty).$

 $(\mathbf{\overline{D}}) D = (0; +\infty).$

1.2 Hàm tan và côtan

Câu 12. Tìm tập xác định D của hàm số $y = \tan x$.

$$(\mathbf{A}) D = \mathbb{R}.$$

$$\mathbf{B} D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}.$$

$$\bigcirc$$
 $D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k2\pi, k \in \mathbb{Z} \right\}.$

Câu 13. Hàm số $y = \tan x$ xác định trên khoảng nào dưới đây?

$$\mathbf{A}(0;\pi)$$
.

$$(\mathbf{B})\left(-\frac{3\pi}{2};0\right).$$

$$(\mathbf{C})\left(\frac{-\pi}{2};\frac{\pi}{2}\right).$$

$$\bigcirc$$
 $(-\pi;0)$.

Câu 14. Tìm tập xác định D của hàm số $y = \tan 2x$.

$$\bigcirc$$
 $D = \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}.$

$$(\mathbf{D}) D = \mathbb{R} \setminus \left\{ \frac{\pi}{4} + \frac{k\pi}{2}, k \in \mathbb{Z} \right\}.$$

Câu 15. Tìm tập xác định D của hàm số $y = \cot x$.

$$(\mathbf{A}) D = \mathbb{R}.$$

$$(\mathbf{B})\,D=\mathbb{R}\setminus\Bigl\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\Bigr\}.$$

$$(\mathbf{C}) D = \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}.$$

$$(\mathbf{D}) D = \mathbb{R} \setminus \{k2\pi, k \in \mathbb{Z}\}.$$

Câu 16. Hàm số $y = \cot x$ xác định trên khoảng nào dưới đây?

$$\mathbf{A}(0;\pi)$$
.

$$\mathbf{B}\left(\frac{-\pi}{2};\frac{\pi}{2}\right).$$

$$\bigcirc$$
 $(-\pi;\pi)$.

$$(\mathbf{D})\left(-\frac{3\pi}{2};0\right).$$

Câu 17. Tìm tập xác định D của hàm số $y = \tan \frac{x}{2}$

$$(\mathbf{A}) D = \mathbb{R} \setminus \{2\}.$$

$$egin{aligned} \widehat{f B} \ D &= \mathbb{R} \setminus \{\pi + k2\pi, k \in \mathbb{Z}\}. \ egin{aligned} \widehat{f D} \ D &= \mathbb{R} \setminus \{k2\pi, k \in \mathbb{Z}\}. \end{aligned}$$

$$\mathbf{D} D = \mathbb{R} \setminus \{k2\pi, k \in \mathbb{Z}\}.$$

Câu 18. Tìm tập xác định D của hàm số $y = \tan\left(x + \frac{\pi}{\epsilon}\right)$.

$$(\mathbf{A}) D = \mathbb{R} \setminus \left\{ -\frac{\pi}{6} + k\pi, k \in \mathbb{Z} \right\}.$$

$$\mathbf{B} D = \mathbb{R} \setminus \left\{ \frac{2\pi}{3} + k\pi, k \in \mathbb{Z} \right\}.$$

$$\bigcirc D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}.$$

Hàm phân thức lương giác

Câu 19. Tìm tập xác định *D* của hàm số $y = \frac{2}{\sin x}$.

$$\mathbf{\hat{A}}D = \mathbb{R}.$$

$$\mathbf{B} D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}.$$

$$(\mathbf{C}) D = \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}.$$

Câu 20. Tập xác định của hàm số $y = \frac{1 - 3\cos x}{\sin x}$ là

$$\bigcirc$$
 $x \neq \frac{k\pi}{2}$.

$$(\mathbf{D}) x \neq k\pi.$$

 $\mathbf{C\hat{a}u} \ \mathbf{21.} \ \mathbf{T\hat{a}p} \ \mathbf{x\acute{a}c} \ \mathbf{d}i\mathbf{nh} \ \mathbf{c\acute{u}a} \ \mathbf{h\grave{a}m} \ \mathbf{s\acute{o}} \ y = \frac{1}{\sin x - \cos x} \ \mathbf{l\grave{a}}$ $\mathbf{C} \ \mathbf{x} \neq \frac{\pi}{2} + k\pi.$

$$\mathbf{A}$$
 $x \neq k\pi$.

$$(\mathbf{B}) x \neq k2\pi$$

$$\mathbf{C} x \neq \frac{\pi}{2} + k\pi.$$

Câu 22. Tập xác định của hàm số $y = \frac{\sqrt{2}}{\sin x}$ là:

$$(\mathbf{A}) \mathbb{R}$$
.

$$(\mathbf{B}) \mathbb{R} \setminus \{0\}.$$

$$(\mathbf{C}) \mathbb{R} \setminus \{k\pi\}.$$

Câu 23. Tập xác định của hàm số $y = \frac{2\sin x}{1 + \cos x}$ là:

$$\mathbf{B} \mathbb{R} \setminus \{\pi + k2\pi\}.$$

$$(\mathbf{C}) \mathbb{R}$$
.

 $(\mathbf{D}) \mathbb{R} \setminus \{-1\}.$

Câu 24. Tập xác định của hàm số $y = \frac{1 - \sin x}{\cos x - 1}$ là:

$$oldsymbol{A}$$
 \mathbb{R} .

$$\bigcirc$$
 $\mathbb{R} \setminus \{k\pi\}.$

(**D**) $\mathbb{R} \setminus \{k2\pi\}$.

1.4 Hàm căn thức

Câu 25. Tìm tập xác định *D* của hàm số $y = \sqrt{\cos x + 1}$.

$$\mathbf{\widehat{A}} D = \mathbb{R}.$$

$$\mathbf{B} D = \mathbb{R} \setminus \{-\pi + k2\pi, k \in \mathbb{Z}\}.$$

$$(\mathbf{D}) D = \{\pi + k2\pi, k \in \mathbb{Z}\}.$$

Câu 26. Tập xác định của hàm số $y = \sqrt{1 - \sin x}$ là:

$$(\mathbf{A}) D = \emptyset.$$

$$(\mathbf{B}) D = \mathbb{R}.$$

$$(\mathbf{C}) D = [-1; 1].$$

$$(\mathbf{D}) D = (-1; 1).$$

Câu 27. Tập xác định của hàm số $y = \sqrt{\sin x - 2}$ là:

$$\mathbf{A}$$
 \mathbb{R} .

$$(\mathbf{B})$$
 Ø.

$$\mathbf{C}$$
 $\mathbb{R} \setminus \{1\}$.

Các dang kết hợp

Câu 28. Mênh đề nào dưới đây đúng?

(A) Hàm số
$$y = \frac{1}{\sin x}$$
 có tập xác định $D = \mathbb{R}$.

$$oxed{B}$$
 Hàm số $y = \tan x$ có tập xác định $D = \mathbb{R}$.

$$\bigcirc$$
 Hàm số $y = \cot x$ có tập xác định $D = \mathbb{R}$.

$$(\mathbf{D})$$
 Hàm số $y = \sin x$ có tập xác định $D = \mathbb{R}$.

Câu 29. Tập xác định của hàm số $y = \tan 2x + \cot 2x$ là:

$$\mathbf{B} \mathbb{R} \setminus \left\{ \frac{k\pi}{2} \right\}.$$

$$\bigcirc$$
 $\mathbb{R} \setminus \{k\pi\}.$

Câu 30. Tập xác định của hàm số $y = \frac{\tan x}{\cos x - 1}$ là:

$$\mathbf{B}) x = \frac{\pi}{3} + k2\pi.$$

$$\mathbf{B} \ x = \frac{\pi}{3} + k2\pi. \qquad \mathbf{C} \begin{cases} x \neq \frac{\pi}{2} + k\pi \\ x \neq k2\pi \end{cases}. \qquad \mathbf{D} \begin{cases} x \neq \frac{\pi}{2} + k\pi \\ x \neq \frac{\pi}{3} + k\pi \end{cases}.$$

Câu 31. Tập xác định của hàm số $y = \frac{\cot x}{\cos x}$ là:

$$(\mathbf{A}) x = \frac{\pi}{2} + k\pi.$$

$$\mathbf{B} x = k2\pi.$$

$$\bigcirc$$
 $x = k\pi$.

Câu 32. Tập xác định của hàm số $y = \sqrt{\frac{1 + \cos x}{\sin^2 x}}$ là:

$$(\mathbf{A}) \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \right\}.$$

$$(\mathbf{B}) \mathbb{R} \setminus \{k\pi\}$$
 .

$$(\mathbf{C}) \mathbb{R}$$
.

$$(\mathbf{D}) \mathbb{R} \setminus \{\pi + k2\pi\}.$$

$$\mathbf{B} D = \left\{ -\frac{\pi}{4} + k\pi; \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}.$$

$$\mathbf{D} D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$$

Câu 34. Tìm tập xác định D của hàm số $y = \frac{1}{(\cos x - 1) \cdot \sin x}$

$$(\mathbf{C}) D = \mathbb{R} \setminus \{k2\pi, k \in \mathbb{Z}\}.$$

$$(\widehat{\mathbf{D}}) D = \{k\pi, k \in \mathbb{Z}\}.$$