MinUnion results

Timothy G. Griffin & Matthew L. Daggitt

July 13, 2016

Abstract

The document presents some theoretical results for the \cup_{\min}^{\leq} operator.

1 Definition

Let \leq be a partial order on some set S with at least two elements. For $X\subseteq S,$ define

$$\min_{\leq}(X) \equiv \{x \in X \mid \forall y \in X, \ \neg(y < x)\}.$$

Define

$$\mathcal{P}_{\mathrm{fin}}(S,\ \lesssim) \equiv \{X \subseteq S \mid X \text{ finite and } \min_{\leq}(X) = X\}$$

and

$$X \ \cup_{\min}^{\leq} Y \equiv \min_{\leq} (X \cup Y)$$

then

$$\operatorname{MinUnion}(S,\,\leq) \ \equiv \ (\mathcal{P}_{\operatorname{fin}}(S,\,\leq),\,\,\cup_{\min}^{\leq})$$

2 Summary

The current pre-conditions required for generating necessary and sufficient conditions for each of the currently tracked properties are:

• $\mathbb{TR}(S, \leq)$: required for associativity

• $\mathbb{BM}(S, \leq)$: required for annihilator

• $\mathbb{AY}(S, \leq)$: required for annihilator

Interestingly $\mathbb{RX}(S, \leq)$ is not required.

3 Lemmas

3.1 Absorbing

 $\mathbb{TR}(S, \leq) \Rightarrow \forall XY : \min_{\leq}(X \cup \min_{\leq}(Y)) = \min_{\leq}(X \cup Y)$

Proof

Assume $z \in \min_{<} (X \cup Y)$.

Then we have:

$$z \in X \ \lor \ z \in Y \tag{1}$$

$$\forall x \in X : \neg (x < z) \tag{2}$$

$$\forall y \in Y : \neg (y < z) \tag{3}$$

By Eq 3 and the fact that $\min_{\leq}(Y) \subseteq Y$, we have that

$$\forall y \in \min_{<}(Y) : \neg(y < z)$$

and combining this with Eq 2 gives

$$\forall x \in X \cup \min_{\leq}(Y) : \neg(x < z) \tag{4}$$

Case $z \in X$

Clearly $z \in X \cup \min_{\leq}(Y)$ and by combining this with Eq 4 we have that $x \in \min_{\leq}(X \cup \min_{\leq}(Y))$.

Case $z \in Y$

By Eq 3 we have that $z \in \min_{\leq}(Y)$ and hence we have that $z \in X \cup \min_{\leq}(Y)$. By Eq 4 we have that $z \in \min_{\leq}(X \cup \min_{\leq}(Y))$.

Hence $z \in \min_{\prec}(X \cup Y) \Rightarrow z \in \min_{\prec}(X \cup \min_{\prec}(Y))$.

Assume $z \in \min_{<}(X \cup \min_{<}(Y))$.

Then we have:

$$z \in X \ \lor \ z \in \min_{\leq}(Y) \tag{5}$$

$$\forall x \in X : \neg (x < z) \tag{6}$$

$$\forall y \in \min_{\leq}(Y) : \neg(y < z) \tag{7}$$

Assume $\exists w \in Y : y < w$

Clearly $w \notin \min_{\leq}(Y)$ otherwise Eq 7 would be contradicted. Therefore by definition of \min_{\leq} and $\mathbb{TR}(S, \leq)$ there exists a $y \in \min_{\leq}(Y)$ such that y < w. But again by $\mathbb{TR}(S, \leq)$ this gives us y < w < z which contradicts Eq 7.

Hence

$$\forall y \in Y : \neg(y < z) \tag{8}$$

Case $z \in X$

Then $z \in X \cup Y$, and by Eq 6 & 8 we have that $\forall x \in X \cup Y : \neg(x < z)$. Therefore $z \in \min_{x \in X} (X \cup Y)$.

Case $z \in \min_{<}(Y)$

Then $z \in Y$ and hence $z \in X \cup Y$, and by Eq 6 & 8 we have that $\forall x \in X \cup Y : \neg(x < z)$. Therefore $z \in \min_{x \in X} (X \cup Y)$.

Hence $z \in \min_{\leq} (X \cup \min_{\leq} (Y)) \Rightarrow z \in \min_{\leq} (X \cup Y)$.

Therefore $\min_{<}(X \cup \min_{<}(Y)) = \min_{<}(X \cup Y)$

4 Properties

4.1 Associative

$$\mathbb{TR}(S,\leq) \Rightarrow (\mathbb{AS}(MinUnion(S,\leq)) \Leftrightarrow \mathbb{TRUE})$$

Proof

Using the absorbing lemma we have:

$$X \cup_{\min}^{\leq} (Y \cup_{\min}^{\leq} Z) = \min_{\leq} (X \cup \min_{\leq} (Y \cup Z))$$

$$= \min_{\leq} (X \cup (Y \cup Z))$$

$$= \min_{\leq} ((X \cup Y) \cup Z)$$

$$= \min_{\leq} (\min_{\leq} (X \cup Y) \cup Z)$$

$$= (X \cup_{\min}^{\leq} Y) \cup_{\min}^{\leq} Z$$

4.2 Identity

 $\mathbb{ID}(\mathrm{MinUnion}(S,\leq)) \Leftrightarrow \mathbb{TRUE}$

Proof

Witness : \emptyset

$$\begin{split} X \cup_{\min}^{\leq} \emptyset &= \min_{\leq} (X \cup \emptyset) \\ &= \min_{\leq} (X) \\ &= X \end{split}$$

$$\emptyset \cup_{\min}^{\leq} X = \min_{\leq} (\emptyset \cup X)$$
$$= \min_{\leq} (X)$$
$$= X$$

4.3 Annihilator

 $\mathbb{BM}(S,\leq) \land \mathbb{AY}(S,\leq) \Rightarrow (\mathbb{AN}(MinUnion(S,\leq)) \Leftrightarrow \mathbb{TRUE})$

Proof

Witness: $\{\bot\}$

$$\begin{split} X \cup_{\min}^{\leq} \{\bot\} &= \min_{\leq} (X \cup \{\bot\}) \\ &= \{\bot\} \end{split}$$

$$\{\bot\} \cup_{\min}^{\leq} X = \min_{\leq} (\{\bot\} \cup X)$$
$$= \{\bot\}$$

4.4 Commutative

 $\mathbb{CM}(\mathrm{MinUnion}(S,\leq)) \Leftrightarrow \mathbb{TRUE}$

Proof

$$\begin{split} X \cup_{\min}^{\leq} Y &= \min_{\leq} (X \cup Y) \\ &= \min_{\leq} (Y \cup X) \\ &= Y \cup_{\min}^{\leq} X \end{split}$$

4.5 Selective

 $\mathbb{SL}(\mathrm{MinUnion}(S,\leq)) \Leftrightarrow \mathbb{TO}((S,\leq))$

Proof

Assume $\mathbb{TO}((S, \leq))$.

Then every set can only contain a single element. Hence for all x and y:

$$\begin{aligned} \{x\} \cup_{\min}^{\leq} \{y\} &= \min_{\leq} (\{x\} \cup \{y\}) \\ &= \min_{\leq} (\{x,y\}) \end{aligned}$$

and as x and y are totally ordered, the result must either equal $\{x\}$ or $\{y\}$ and therefore we have that $\mathbb{SL}(\mathrm{MinUnion}(\mathcal{S},\leq))$.

Assume $\neg \mathbb{TO}((S, \leq))$.

Then there exists x and y such that $x \nleq y$ and $y \nleq x$.

$$\{x\} \cup_{\min}^{\leq} \{y\} = \min_{\leq} (\{x\} \cup \{y\})$$

$$= \min_{\leq} (\{x, y\})$$

$$= \{x, y\}$$

Hence we have that $\neg \mathbb{SL}(MinUnion(S, \leq))$.

4.6 Idempotent

 $\mathbb{IP}(MinUnion(S, \leq)) \Leftrightarrow \mathbb{TRUE}$

Proof

$$X \cup_{\min}^{\leq} X = \min_{\leq} (X \cup X)$$
$$= \min_{\leq} (X)$$
$$= X$$

4.7 IsLeft

 $\mathbb{IL}(\mathrm{MinUnion}(S,\leq)) \Leftrightarrow \mathbb{FALSE}$

Proof

There exists an identity for $MinUnion(S, \leq)$, therefore $\neg \mathbb{IL}(MinUnion(S, \leq))$.

4.8 IsRight

 $\mathbb{IR}(MinUnion(S, \leq)) \Leftrightarrow \mathbb{FALSE}$

Proof

There exists an identity for $MinUnion(S, \leq)$, therefore $\neg \mathbb{IR}(MinUnion(S, \leq))$.

4.9 LeftCancellative

 $\mathbb{LC}(MinUnion(S, \leq)) \Leftrightarrow \mathbb{FALSE}$

Proof

There exists an identity for $\operatorname{MinUnion}(S, \leq)$, and at least two elements in S and therefore two non-identity elements in $\mathcal{P}_{\operatorname{fin}}(S, \leq)$. Therefore $\neg \mathbb{LC}(\operatorname{MinUnion}(S, \leq))$.

4.10 RightCancellative

 $\mathbb{RC}(MinUnion(S, \leq)) \Leftrightarrow \mathbb{FALSE}$

Proof

There exists an identity for $\operatorname{MinUnion}(S, \leq)$, and at least two elements in S and therefore two non-identity elements in $\mathcal{P}_{\operatorname{fin}}(S, \leq)$. Therefore $\neg \mathbb{RC}(\operatorname{MinUnion}(S, \leq))$.

4.11 LeftConstant

 $\mathbb{LK}(MinUnion(S, \leq)) \Leftrightarrow \mathbb{FALSE}$

Proof

There exists an identity for $MinUnion(S, \leq)$, therefore $\neg \mathbb{LK}(MinUnion(S, \leq))$.

4.12 RightConstant

 $\mathbb{RK}(MinUnion(S, \leq)) \Leftrightarrow \mathbb{FALSE}$

Proof

There exists an identity for $MinUnion(S, \leq)$, therefore $\neg \mathbb{RK}(MinUnion(S, \leq))$.

4.13 AntiLeft

 $AL(MinUnion(S, \leq)) \Leftrightarrow FALSE$

Proof

There exists an identity for $MinUnion(S, \leq)$, therefore $\neg AL(MinUnion(S, \leq))$.

4.14 AntiRight

 $\mathbb{AR}(MinUnion(S, \leq)) \Leftrightarrow \mathbb{FALSE}$

Proof

There exists an identity for $MinUnion(S, \leq)$, therefore $\neg AR(MinUnion(S, \leq))$.