Übungsblatt 4

Aufgabe 1 (Router, Layer-3-Switch, Gateway)

- 1. Beschreiben Sie den Zweck von **Routern** in Computernetzen. (Erklären Sie auch den Unterschied zu Layer-3-Switches.)
- 2. Beschreiben Sie den Zweck von **Layer-3-Switches** in Computernetzen. (Erklären Sie auch den Unterschied zu Routern.)
- 3. Beschreiben Sie den Zweck von Gateways in Computernetzen.
- 4. Erklären Sie warum **Gateways** in der Vermittlungsschicht von Computernetzen heutzutage selten nötig sind.

Aufgabe 2 (Kollisionsdomäne, Broadcast-Domäne)

		,		
1.	Markieren Sie die Geräte, die die Kollisionsdomäne unterteilen.			
	□ Repeater □ Hub	☐ Bridge ☐ Layer-2-Switch	☐ Router ☐ Layer-3-Switch	
2.	Markieren Sie die Geräte, d	e unterteilen.		
	☐ Repeater ☐ Hub	☐ Bridge ☐ Layer-2-Switch	☐ Router ☐ Layer-3-Switch	
3.	Zeichnen Sie alle Kollision abgebildete Netzwerktopole		cast-Domänen in di	

Inhalt: Themen aus Foliensatz 7 + 8 Seite 1 von 13

Aufgabe 3 (Adressierung in der Vermittlungsschicht)

- 1. Erklären Sie die Bedeutung von **Unicast** in der Vermittlungsschicht von Computernetzen.
- 2. Erklären Sie die Bedeutung von **Broadcast** in der Vermittlungsschicht von Computernetzen.
- 3. Erklären Sie die Bedeutung von **Anycast** in der Vermittlungsschicht von Computernetzen.
- 4. Erklären Sie die Bedeutung von **Multicast** in der Vermittlungsschicht von Computernetzen.
- 5. Erklären Sie warum der **Adressraum** von IPv4 nur 4.294.967.296 Adressen enthält.
- 6. Erklären Sie warum das klassenlose Routing Classless Interdomain Routing (CIDR) eingeführt wurde.
- 7. Beschreiben Sie in einfachen Worten die **Funktionsweise von CIDR**. Legen Sie den Schwerpunkt auf die Art und Weise, wie IP-Adressen behandelt und Subnetze erstellt werden.

Aufgabe 4 (Adressierung in der Vermittlungsschicht)

Berechnen Sie für jede Teilaufgabe die erste und letzte Hostadresse, die Netzadresse und die Broadcast-Adresse des Subnetzes.

IP-Adresse: Netzmaske: Netzadresse? Erste Hostadresse? Letzte Hostadresse? Broadcast-Adresse?	151.175.31.100 255.255.254.0 	10010111.10101111.00011111.01100100 11111111
IP-Adresse: Netzmaske: Netzadresse? Erste Hostadresse? Letzte Hostadresse? Broadcast-Adresse?	151.175.31.100 255.255.255.240 	10010111.10101111.00011111.01100100 11111111
IP-Adresse: Netzmaske: Netzadresse? Erste Hostadresse? Letzte Hostadresse? Broadcast-Adresse?	151.175.31.100 255.255.255.128 	10010111.10101111.00011111.01100100 11111111

binäre Darstellung dezimale Darstel		binäre Darstellung	dezimale Darstellung
10000000	128	11111000	248
11000000	192	11111100	252
11100000	224	11111110	254
11110000	240	11111111	255

Aufgabe 5 (Adressierung in der Vermittlungsschicht)

In jeder Teilaufgabe überträgt ein Sender ein IP-Paket an einen Empfänger. Berechnen Sie für jede Teilaufgabe die **Subnetznummern von Sender und Empfänger** und geben Sie an, ob das IP-Paket **während der Übertragung das Subnetz verlässt** oder nicht.

Seite 3 von 13

Prof. Dr. Christian Baun	FB 2: Informatik und Ingenieurwissenschaften
Computernetze (WS2324)	Frankfurt University of Applied Sciences

 Sender:
 11001001.00010100.11011110.00001101
 201.20.222.13

 Netzmaske:
 11111111.1111111.1111111.11110000
 255.255.255.240

Empfänger: 11001001.00010100.11011110.00010001 201.20.222.17 Netzmaske: 11111111.11111111.1111111.11110000 255.255.255.240

Subnetznummer des Senders?

Subnetznummer des Empfängers?

Verlässt das IP-Paket das Subnetz [ja/nein]?

Sender: 10000100.10011000.01010011.1111111 132.152.83.254 Netzmaske: 11111111.11111111.11111100.00000000 255.255.252.0

Empfänger: 10000100.10011000.01010001.00000010 132.152.81.2 Netzmaske: 11111111.11111111.11111100.00000000 255.255.252.0

Subnetznummer des Senders?

Subnetznummer des Empfängers?

Verlässt das IP-Paket das Subnetz [ja/nein]?

Sender: 00001111.11001000.01100011.00010111 15.200.99.23 Netzmaske: 11111111.11000000.00000000.00000000 255.192.0.0

Empfänger: 00001111.11101111.00000001.00000001 15.239.1.1 Netzmaske: 11111111.11000000.00000000.00000000 255.192.0.0

Subnetznummer des Senders?

Subnetznummer des Empfängers?

Verlässt das IP-Paket das Subnetz [ja/nein]?

Aufgabe 6 (Adressierung in der Vermittlungsschicht)

Berechnen Sie für jede Teilaufgabe **Netzmaske** und beantworten Sie die **Fragen**.

1. Teilen Sie das Klasse C-Netz 195.1.31.0 so auf, das 30 Subnetze realisi sind.	erba
Netzadresse: 11000011.00000001.00011111.00000000 195.1.31.0 Anzahl Bits für Subnetznummern? Netzmaske:	·
Anzahl Bits für Hostadressen? Anzahl Hostadressen pro Subnetz?	
2. Teilen Sie das Klasse A-Netz 15.0.0.0 so auf, das 333 Subnetze realisi sind.	erba
Netzadresse: 00001111.00000000.00000000.00000000 15.0.0.0 Anzahl Bits für Subnetznummern? Netzmaske:	··
Anzahl Bits für Hostadressen? Anzahl Hostadressen pro Subnetz?	
3. Teilen Sie das Klasse B-Netz 189.23.0.0 so auf, das 20 Subnetze realisi sind.	erba
Netzadresse: 10111101.00010111.00000000.00000000 189.23.0.0 Anzahl Bits für Subnetznummern? Netzmaske:	
Anzahl Bits für Hostadressen? Anzahl Hostadressen pro Subnetz?	
4. Teilen Sie das Klasse C-Netz 195.3.128.0 in Subnetze mit je 17 Hosts	auf.
Netzadresse: 11000011.00000011.10000000.00000000 195.3.128.0 Anzahl Bits für Hostadressen? Anzahl Bits für Subnetznummern? Anzahl möglicher Subnetze? Netzmaske:	
5 Teilen Sie das Klasse R-Netz 129 15 0 0 in Subnetze mit ie 10 Hosts a	ııf

Inhalt: Themen aus Foliensatz 7 + 8 Seite 5 von 13

Anzahl Bits für Hostadressen?

Netzadresse: 10000001.00001111.00000000.00000000 129.15.0.0

Anzahl Bits für Subnetznummern? Anzahl möglicher Subnetze?

Netzmaske:

binäre Darstellung dezimale Darstellung		binäre Darstellung	dezimale Darstellung	
10000000	128	11111000	248	
11000000	192	11111100	252	
11100000	224	11111110	254	
11110000	240	11111111	255	

Aufgabe 7 (Kollisionsdomäne, Broadcast-Domäne)

1. Zeichnen Sie alle **Kollisionsdomänen** und alle **Broadcast-Domänen** in die abgebildete Netzwerktopologie.

2. Zeichnen Sie alle **Kollisionsdomänen** und alle **Broadcast-Domänen** in die abgebildete Netzwerktopologie.

Inhalt: Themen aus Foliensatz 7 + 8

Aufgabe 8 (Broadcast-Domäne)

- 1. Zeichnen Sie alle **Broadcast-Domänen** in die abgebildete Netzwerktopologie.
- 2. Geben Sie an, **wie viele Subnetze** für die abgebildete Netzwerktopologie nötig sind.

Aufgabe 9 (Private IP-Adressbereiche)

Nennen Sie die drei privaten IPv4-Adressbereiche.

Aufgabe 10 (Adressierung in der Vermittlungsschicht)

Geben Sie für jede Teilaufgabe die korrekte Netzmaske an.

- 1. Maximal viele Subnetze mit je 5 Hosts in einem Klasse B-Netz.
- 2. 50 Subnetze mit je 999 Hosts in einem Klasse B-Netz.
- 3. 12 Subnetze mit je 12 Hosts in einem Klasse C-Netz.

Quelle: Jörg Roth. Prüfungstrainer Rechnernetze. Vieweg (2010)

Aufgabe 11 (IP-Pakete fragmentieren)

Es sollen 4.000 Bytes Nutzdaten via IP-Protokoll übertragen werden. Die Nutzdaten müssen fragmentiert werden, weil es über mehrere physische Netzwerke transportiert wird, deren MTU < 4.000 Bytes ist.

	LAN A	LAN B	LAN C	LAN D	LAN E
Vernetzungstechnologie	Ethernet	PPPoE	ISDN	Ethernet	WLAN
MTU [Bytes]	1,500	1,492	576	1,400	2,312
IP-Header [Bytes]	20	20	20	20	20
Max. Nutzdaten [Bytes] theoretisch	1,480	1,472	556	1,380	2,292
Vielfaches von 8					
Max. Nutzdaten [Bytes] in der Praxis					

Zeigen Sie grafisch den Weg, wie das Paket fragmentiert wird und wie viele Bytes Nutzdaten jedes Fragment enthält.

Aufgabe 12 (Weiterleitung und Wegbestimmung)

- 1. Nennen Sie die zwei Hauptklassen der existierenden Routing-Protokolle.
- 2. Geben Sie an, welche **Algorithmen zur Berechnung des besten Weges** die Klassen von Routing-Protokollen aus Teilaufgabe 1 implementieren.
- 3. Beschreiben Sie was ein autonomes System ist
- 4. Das Border Gateway Protocol (BGP) ist ein Protokoll für...
 - ☐ Intra-AS-Routing ☐ Inter-AS-Routing
- 5. Geben Sie an, zu welcher Klasse von **Routing-Protokollen** aus Teilaufgabe 1 das Protokoll BGP gehört.
- 6. Das **Open Shortest Path First** (OSPF) ist ein Protokoll für...
 - ☐ Intra-AS-Routing ☐ Inter-AS-Routing
- 7. Geben Sie an, zu welcher Klasse von **Routing-Protokollen** aus Teilaufgabe 1 das Protokoll OSPF gehört.
- 8. Das Routing Information Protocol (RIP) ist ein Protokoll für...

☐ Intra-AS-Routing ☐ Inter-AS-Routing

- 9. Geben Sie an, zu welcher Klasse von **Routing-Protokollen** aus Teilaufgabe 1 das Protokoll RIP gehört.
- 10. Bei RIP kommuniziert jeder Router nur mit seinen direkten Nachbarn. Nennen Sie die Vorteile und Nachteile dieser Vorgehensweise.
- 11. Bei RIP hängen die Wegkosten (Metrik) ausschließlich von der Anzahl der Router (**Hops**) ab, die auf dem Weg zum Zielnetz hängen, passiert werden müssen. Nennen Sie die **Vorteile** und **Nachteile** dieser Vorgehensweise.
- 12. Bei OSPF kommunizieren **alle Router** miteinander. Nennen Sie die **Vorteile** und **Nachteile** dieser Vorgehensweise.

Aufgabe 13 (Dijkstra-Algorithmus)

1. Berechnen Sie mit dem Dijkstra-Algorithmus den kürzesten Pfad von Knoten A zu allen anderen Knoten.

Quelle: Jörg Roth. Prüfungstrainer Rechnernetze. Vieweg (2010)

2. Berechnen Sie mit dem Dijkstra-Algorithmus den kürzesten Pfad von Knoten A zu allen anderen Knoten.

Aufgabe 14 (Internet Control Message Protocol)

- 1. Beschreiben Sie die **Funktion** des Internet Control Message Protocol (ICMP).
- 2. Nennen Sie zwei Beispiele für **Kommandozeilenwerkzeuge**, die das ICMP verwenden.

Aufgabe 15 (IPv6)

- 1. Erklären Sie das Konzept der Scopes in IPv6.
- 2. Erklären, was der Host-Scope ist.
- 3. Erklären Sie, was der Link-Local Scope ist.
- 4. Erklären Sie, was der Unique-Local Scope ist.
- 5. Erklären Sie, was der Global Scope ist.
- 6. Geben Sie an, was die IPv6-Adresse ::1/128 anspricht.
- 7. Geben Sie den Namen des Bereichs der IPv6-Adresse ::1/128 an.

- 8. Geben Sie den Namen des Bereichs von Adressen an, die das Präfix fe80::/10 haben.
- 9. Geben Sie den Namen des Bereichs der Adressen an, die das Präfix fc00::/7 haben.
- 10. Geben Sie den Namen des Bereichs der Adressen an, die das Präfix 2000::/3 haben.
- 11. IPv6 hat keine Broadcast-Adressen, aber für einige Zwecke ist eine broadcastähnliche Funktionalität erforderlich. Erklären Sie, wie IPv6 die Broadcast-Funktionalität emuliert.
- 12. Geben Sie das Präfix von Multicast-Adressen an.
- 13. Nennen Sie drei Möglichkeiten zur Konfiguration der Schnittstellen-ID.
- 14. Erklären Sie, was Stable Privacy Addresses ist und warum es manchmal im Zusammenhang mit der Konfiguration der Interface-ID verwendet wird.
- 15. Erläutern Sie, was Privacy Extension ist und warum sie manchmal im Zusammenhang mit der Konfiguration der Interface-ID verwendet wird.
- 16. Wenn ein Knoten eine Interface-ID über SLAAC erstellt hat, muss er sicherstellen, dass kein anderer Knoten im Netz die gleiche Interface-ID hat. Erklären Sie, wie dies in der Praxis gemacht wird.
- 17. Geben Sie eine kurze Erklärung für einen konkreten Anwendungsfall der ICMPv6-Nachricht Router Advertisement (RA) in der Praxis.
- 18. Geben Sie eine kurze Erklärung für einen konkreten Anwendungsfall der ICMPv6-Nachricht Router Solicitation (RS) in der Praxis.
- 19. Geben Sie eine kurze Erläuterung für einen konkreten Anwendungsfall der ICMPv6-Nachricht Neighbor Solicitation (NS) in der Praxis.
- 20. Geben Sie eine kurze Erklärung für einen konkreten Anwendungsfall der ICMPv6-Nachricht Neighbor Advertisement (NA) in der Praxis.
- 21. Erklären Sie, wie ein Knoten erfährt, ob er einen DHCPv6-Server für die Anforderung einer Adresskonfiguration verwenden soll (zustandsabhängige Adresskonfiguration) oder ob er eine Interface-ID selbst erstellen darf (zustandslose Adresskonfiguration).

Aufgabe 16 (IPv6 – Adressen vereinfachen)

1. Vereinfachen Sie die folgende IPv6-Adressen:

Inhalt: Themen aus Foliensatz 7 + 8 Seite 12 von 13

	• 1080:0000:0000:0000:0007:0700:0003:316b
	Lösung:
	• 2001:0db8:0000:0000:f065:00ff:0000:03ec
	Lösung:
	• 2001:0db8:3c4d:0016:0000:0000:2a3f:2a4d
	Lösung:
	• 2001:0c60:f0a1:0000:0000:0000:0000
	Lösung:
	• 2111:00ab:0000:0004:0000:0000:1234
	Lösung:
2.	Geben Sie alle Stellen der folgenden vereinfachten IPv6-Adressen an:
	• 2001::2:0:0:1
	Lösung:::::::
	• 2001:db8:0:c::1c
	Lösung:::::::
	• 1080::9956:0:0:234
	Lösung:::::::
	• 2001:638:208:ef34::91ff:0:5424
	Lösung:::::::
	• 2001:0:85a4::4a1e:370:7112

Lösung: ___: __: __: __: __: __: