

Clifford Tableaus and the Stabilizer Algorithm

Leonard Uscinowicz

Technical University of Munich

December 20th, 2024

Outline

- Preliminary Definitions
- Stabilizer Formalism

Pauli Matrices

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Pauli Matrices

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Products of Pauli matrices:

$$I^2 = X^2 = Y^2 = Z^2 = I$$

$$IX = XI = X \qquad IY = YI = Y \qquad IZ = ZI = Z$$

$$XY = iZ \qquad YX = -iZ$$

$$YZ = iX \qquad ZY = -iX$$

$$ZX = iY \qquad XZ = -iY$$

[1] Scott Aaronson and Daniel Gottesman. "Improved simulation of stabilizer circuits". In: *Physical Review A—Atomic, Molecular, and Optical Physics* 70.5 (2004), p. 052328

Group (G, \cdot) is a non-empty set G with a binary group multiplication operation " \cdot ".

Group (G, \cdot) is a non-empty set G with a binary group multiplication operation " \cdot ".

Properties:

■ Closure: $\forall g_1, g_2 \in G \Longrightarrow g_1 \cdot g_2 \in G$

Group (G, \cdot) is a non-empty set G with a binary group multiplication operation " \cdot ".

Properties:

- Closure: $\forall g_1, g_2 \in G \Longrightarrow g_1 \cdot g_2 \in G$
- **Associativity:** $\forall g_1, g_2, g_3 \in G \Longrightarrow g_1 \cdot (g_2 \cdot g_3) = (g_1 \cdot g_2) \cdot g_3$

Group (G, \cdot) is a non-empty set G with a binary group multiplication operation " \cdot ".

Properties:

- Closure: $\forall g_1, g_2 \in G \Longrightarrow g_1 \cdot g_2 \in G$
- **Associativity:** $\forall g_1, g_2, g_3 \in G \Longrightarrow g_1 \cdot (g_2 \cdot g_3) = (g_1 \cdot g_2) \cdot g_3$
- Identity: $\exists e \in G$ such that $\forall g \in G \Longrightarrow e \cdot g = g \cdot e = g$

Group (G, \cdot) is a non-empty set G with a binary group multiplication operation " \cdot ".

Properties:

- Closure: $\forall g_1, g_2 \in G \Longrightarrow g_1 \cdot g_2 \in G$
- **Associativity:** $\forall g_1, g_2, g_3 \in G \Longrightarrow g_1 \cdot (g_2 \cdot g_3) = (g_1 \cdot g_2) \cdot g_3$
- Identity: $\exists e \in G$ such that $\forall g \in G \Longrightarrow e \cdot g = g \cdot e = g$
- Inverse: $\forall g \in G \Longrightarrow \exists g^{-1} \in G$ such that $g \cdot g^{-1} = g^{-1} \cdot g = e$

 \mathcal{P}_n is defined as the group of n-qubit Pauli operators. It consists of all tensor products of n Pauli matrices, with a phase factor ± 1 or $\pm i$.

[1] Scott Aaronson and Daniel Gottesman. "Improved simulation of stabilizer circuits". In: *Physical Review A—Atomic, Molecular, and Optical Physics* 70.5 (2004), p. 052328

 \mathcal{P}_n is defined as the group of n-qubit Pauli operators. It consists of all tensor products of n Pauli matrices, with a phase factor ± 1 or $\pm i$.

$$\mathcal{P}_1 = \{ \pm I, \pm iI, \pm X, \pm iX, \pm Y, \pm iY, \pm Z, \pm iZ \}$$

[1] Scott Aaronson and Daniel Gottesman. "Improved simulation of stabilizer circuits". In: *Physical Review A—Atomic, Molecular, and Optical Physics* 70.5 (2004), p. 052328

 \mathcal{P}_n is defined as the group of n-qubit Pauli operators.

It consists of all tensor products of n Pauli matrices, with a phase factor ± 1 or $\pm i$.

$$\mathcal{P}_{1} = \{ \pm I, \pm iI, \pm X, \pm iX, \pm Y, \pm iY, \pm Z, \pm iZ \}$$

$$\mathcal{P}_{n} = \left\{ i^{m} \bigotimes_{j=1}^{n} \sigma_{k_{j}} \middle| m, k_{j} \in \{0, 1, 2, 3\}, \sigma_{0} = I, \sigma_{1} = X, \sigma_{2} = Y, \sigma_{3} = Z \right\}$$

[1] Scott Aaronson and Daniel Gottesman. "Improved simulation of stabilizer circuits". In: *Physical Review A—Atomic, Molecular, and Optical Physics* 70.5 (2004), p. 052328

 \mathcal{P}_n is defined as the group of n-qubit Pauli operators.

It consists of all tensor products of n Pauli matrices, with a phase factor ± 1 or $\pm i$.

$$\mathcal{P}_{1} = \{ \pm I, \pm iI, \pm X, \pm iX, \pm Y, \pm iY, \pm Z, \pm iZ \}$$

$$\mathcal{P}_{n} = \left\{ i^{m} \bigotimes_{j=1}^{n} \sigma_{k_{j}} \middle| m, k_{j} \in \{0, 1, 2, 3\}, \sigma_{0} = I, \sigma_{1} = X, \sigma_{2} = Y, \sigma_{3} = Z \right\}$$

Size of a Pauli Group: $|\mathcal{P}_n| = 4^{n+1}$

[1] Scott Aaronson and Daniel Gottesman. "Improved simulation of stabilizer circuits". In: *Physical Review A—Atomic, Molecular, and Optical Physics* 70.5 (2004), p. 052328

Pauli Group Operations

Given two Pauli operators $P=i^{m_P}\bigotimes_{j=1}^n P_j$ and $Q=i^{m_Q}\bigotimes_{j=1}^n Q_j$, their product, as necessitated by Group Definition, is:

$$P \cdot Q = i^{m_P + m_Q} \bigotimes_{j=1}^n P_j Q_j$$

Pauli Group Operations

Given two Pauli operators $P=i^{m_P}\bigotimes_{j=1}^n P_j$ and $Q=i^{m_Q}\bigotimes_{j=1}^n Q_j$, their product, as necessitated by Group Definition, is:

$$P \cdot Q = i^{m_P + m_Q} \bigotimes_{j=1}^n P_j Q_j$$

P commutes with Q if the number of indices j such that P_j anti-commutes with Q_j is even.

[1] Scott Aaronson and Daniel Gottesman. "Improved simulation of stabilizer circuits". In: *Physical Review A—Atomic, Molecular, and Optical Physics* 70.5 (2004), p. 052328

Group Generators

A set of l elements $\{g_i\}_{1\leq i\leq l}$ generates a group G if every element $g\in G$ can be written as a product of the generators.

In this case, the group ${\cal G}$ can be written in terms of its generators:

$$G = \langle g_i \mid i \in \mathbb{N}, 1 \le i \le l \rangle$$

Group Generators

A set of l elements $\{g_i\}_{1 \leq i \leq l}$ generates a group G if every element $g \in G$ can be written as a product of the generators.

In this case, the group ${\cal G}$ can be written in terms of its generators:

$$G = \langle g_i \mid i \in \mathbb{N}, 1 \le i \le l \rangle$$

Examples:
$$\mathcal{P}_1 = \langle X, Z, iI \rangle$$
 $\langle X \rangle = \{I, X\}$

Outline

- Preliminary Definitions
- Stabilizer Formalism

Stabilizer Groups Definitions

Element $g \in \mathcal{P}_n$ stabilizes $|\psi\rangle$ iff $g |\psi\rangle = |\psi\rangle$. $|\psi\rangle$ is eigenstate of g with eigenvalue +1.

Stabilizer Groups Definitions

- Element $g \in \mathcal{P}_n$ stabilizes $|\psi\rangle$ iff $g |\psi\rangle = |\psi\rangle$. $|\psi\rangle$ is eigenstate of g with eigenvalue +1.
- $S \cong$ Subgroup of the Pauli Group \mathcal{P}_n : $S \subseteq \mathcal{P}_n$.

Stabilizer Groups Definitions

- Element $g \in \mathcal{P}_n$ stabilizes $|\psi\rangle$ iff $g |\psi\rangle = |\psi\rangle$. $|\psi\rangle$ is eigenstate of g with eigenvalue +1.
- $S \cong$ Subgroup of the Pauli Group \mathcal{P}_n : $S \subseteq \mathcal{P}_n$.
- $V_S =$ Set of n-qubit states stabilized by S:

$$V_S = \{ |\psi\rangle \mid S \subseteq \mathcal{P}_n, \forall g \in S \text{ holds: } g |\psi\rangle = |\psi\rangle \}$$

Not just any subgroup S of the Pauli group can be used as the stabilizer for a non-trivial vector space V_S .

Not just any subgroup S of the Pauli group can be used as the stabilizer for a non-trivial vector space V_S .

Example: $S = \{\pm I, \pm X\}$

Not just any subgroup S of the Pauli group can be used as the stabilizer for a non-trivial vector space V_S .

Example:
$$S = \{\pm I, \pm X\}$$

$$(-I) \in S \text{ and } (-I) \ket{\psi} = -\ket{\psi} \implies \ket{\psi} = \vec{0} \implies V_S = \left\{\vec{0}\right\} \text{ (trivial)}$$

Not just any subgroup S of the Pauli group can be used as the stabilizer for a non-trivial vector space V_S .

Conditions for S such that V_S not trivial:

Commutativity: $\forall g_1, g_2 \in S$ holds: $g_1g_2 = g_2g_1$

Not just any subgroup S of the Pauli group can be used as the stabilizer for a non-trivial vector space V_S .

Conditions for S such that V_S not trivial:

- **Commutativity:** $\forall g_1, g_2 \in S$ holds: $g_1g_2 = g_2g_1$
- Strict Identity: $-I \notin S$, $iI \notin S$, $-iI \notin S$

Let V_S be non-trivial and let $g_1, g_2 \in S$.

Let V_S be non-trivial and let $g_1, g_2 \in S$.

 \implies g_1 and g_2 are tensor products of Pauli matrices.

Let V_S be non-trivial and let $g_1, g_2 \in S$.

 \implies g_1 and g_2 are tensor products of Pauli matrices.

 \implies g_1 and g_2 must either commute or anti-commute.

Let V_S be non-trivial and let $q_1, q_2 \in S$.

- \implies g_1 and g_2 are tensor products of Pauli matrices.
- \implies g_1 and g_2 must either commute or anti-commute.

Suppose g_1 and g_2 anti-commute:

$$|\psi\rangle=g_1g_2\,|\psi\rangle=-g_2g_1\,|\psi\rangle=-\,|\psi\rangle\quad\Longleftrightarrow\quad |\psi\rangle=\vec{0}\quad\Longrightarrow\quad V_S \ \text{is trivial}.$$

Stabilizer Conditions

Commutativity Proof

Let V_S be non-trivial and let $g_1, g_2 \in S$.

- $\Longrightarrow g_1$ and g_2 are tensor products of Pauli matrices.
- \implies g_1 and g_2 must either commute or anti-commute.

Suppose g_1 and g_2 anti-commute:

$$|\psi\rangle=g_1g_2\,|\psi\rangle=-g_2g_1\,|\psi\rangle=-\,|\psi\rangle\quad\Longleftrightarrow\quad |\psi\rangle=\vec{0}\quad\Longrightarrow\quad V_S \ \text{is trivial}.$$

 \implies g_1 and g_2 anti-commuting leads to a contradiction.

Stabilizer Conditions

Commutativity Proof

Let V_S be non-trivial and let $q_1, q_2 \in S$.

- $\Longrightarrow g_1$ and g_2 are tensor products of Pauli matrices.
- \implies g_1 and g_2 must either commute or anti-commute.

Suppose g_1 and g_2 anti-commute:

$$|\psi
angle = g_1 g_2 \, |\psi
angle = -g_2 g_1 \, |\psi
angle = - \, |\psi
angle \quad \Longleftrightarrow \quad |\psi
angle = \vec{0} \quad \Longrightarrow \quad V_S \ ext{is trivial}.$$

- \implies g_1 and g_2 anti-commuting leads to a contradiction.
- $\Longrightarrow g_1$ and g_2 commute.

Stabilizer Conditions Strict Identity Proof

Let V_S be non-trivial.

Stabilizer Conditions Strict Identity Proof

Let V_S be non-trivial.

$$\begin{aligned} (-I) \in S & \implies |\psi\rangle = (-I) |\psi\rangle = -|\psi\rangle & \iff |\psi\rangle = \vec{0} & \implies V_S \text{ is trivial.} \\ (iI) \in S & \implies |\psi\rangle = (iI) |\psi\rangle = i |\psi\rangle & \iff |\psi\rangle = \vec{0} & \implies V_S \text{ is trivial.} \\ (-iI) \in S & \implies |\psi\rangle = (-iI) |\psi\rangle = -i |\psi\rangle & \iff |\psi\rangle = \vec{0} & \implies V_S \text{ is trivial.} \end{aligned}$$

Stabilizer Conditions Strict Identity Proof

Let V_S be non-trivial.

$$\begin{split} &(-I) \in S & \implies |\psi\rangle = (-I) \, |\psi\rangle = - \, |\psi\rangle & \iff |\psi\rangle = \vec{0} & \implies V_S \text{ is trivial.} \\ &(iI) \in S & \implies |\psi\rangle = (iI) \, |\psi\rangle = i \, |\psi\rangle & \iff |\psi\rangle = \vec{0} & \implies V_S \text{ is trivial.} \\ &(-iI) \in S & \implies |\psi\rangle = (-iI) \, |\psi\rangle = -i \, |\psi\rangle & \iff |\psi\rangle = \vec{0} & \implies V_S \text{ is trivial.} \\ &-I \in S, \, iI \in S, \, -iI \in S \text{ lead to contradictions.} \end{split}$$

Check Matrix Structure

Suppose $S = \langle g_i \mid i \in \mathbb{N}, 1 \leq i \leq l \rangle$.

Check Matrix Structure

Suppose $S = \langle g_i \mid i \in \mathbb{N}, 1 \leq i \leq l \rangle$.

Extremely useful way of presenting the generators: Check Matrix H_S

Check Matrix Structure

Suppose $S = \langle g_i \mid i \in \mathbb{N}, 1 \leq i \leq l \rangle$.

Extremely useful way of presenting the generators: Check Matrix H_S

 H_S is an $l \times 2n$ binary matrix whose rows correspond to the generators g_1 through g_l .

Check Matrix Structure

Suppose $S = \langle g_i \mid i \in \mathbb{N}, 1 \leq i \leq l \rangle$.

Extremely useful way of presenting the generators: Check Matrix H_S

 H_S is an $l \times 2n$ binary matrix whose rows correspond to the generators g_1 through g_l .

Row *i* corresponds to generator $q_i \in S$.

- Row *i* corresponds to generator $g_i \in S$.
- Left $l \times n$ submatrix contains 1s to indicate which generators contain Xs.

- Row *i* corresponds to generator $g_i \in S$.
- Left $l \times n$ submatrix contains 1s to indicate which generators contain Xs.
- Right $l \times n$ submatrix contains 1s to indicate which generators contain Zs.

- Row i corresponds to generator $g_i \in S$.
- Left $l \times n$ submatrix contains 1s to indicate which generators contain Xs.
- Right $l \times n$ submatrix contains 1s to indicate which generators contain Zs.
- Presence of 1 in both submatrices indicates Y in that generator.

- Row *i* corresponds to generator $g_i \in S$.
- Left $l \times n$ submatrix contains 1s to indicate which generators contain Xs.
- Right $l \times n$ submatrix contains 1s to indicate which generators contain Zs.
- \blacksquare Presence of 1 in both submatrices indicates Y in that generator.

More explicitly, with $h_{i,j}$ denoting the element of H_S at row i and column j:

If g_i contains I on the j^{th} qubit $\Longrightarrow h_{i,j} = 0$ and $h_{i,n+j} = 0$.

- Row *i* corresponds to generator $g_i \in S$.
- Left $l \times n$ submatrix contains 1s to indicate which generators contain Xs.
- Right $l \times n$ submatrix contains 1s to indicate which generators contain Zs.
- \blacksquare Presence of 1 in both submatrices indicates Y in that generator.

More explicitly, with $h_{i,j}$ denoting the element of H_S at row i and column j:

- If g_i contains I on the j^{th} qubit $\Longrightarrow h_{i,j} = 0$ and $h_{i,n+j} = 0$.
- If g_i contains X on the j^{th} qubit $\Longrightarrow h_{i,j} = 1$ and $h_{i,n+j} = 0$.

- Row *i* corresponds to generator $g_i \in S$.
- Left $l \times n$ submatrix contains 1s to indicate which generators contain Xs.
- Right $l \times n$ submatrix contains 1s to indicate which generators contain Zs.
- \blacksquare Presence of 1 in both submatrices indicates Y in that generator.

More explicitly, with $h_{i,j}$ denoting the element of H_S at row i and column j:

- If g_i contains I on the j^{th} qubit $\Longrightarrow h_{i,j} = 0$ and $h_{i,n+j} = 0$.
- If g_i contains X on the j^{th} qubit $\Longrightarrow h_{i,j} = 1$ and $h_{i,n+j} = 0$.
- If g_i contains Z on the j^{th} qubit $\Longrightarrow h_{i,j} = 0$ and $h_{i,n+j} = 1$.

- Row *i* corresponds to generator $g_i \in S$.
- Left $l \times n$ submatrix contains 1s to indicate which generators contain Xs.
- Right $l \times n$ submatrix contains 1s to indicate which generators contain Zs.
- \blacksquare Presence of 1 in both submatrices indicates Y in that generator.

More explicitly, with $h_{i,j}$ denoting the element of H_S at row i and column j:

- If g_i contains I on the jth qubit $\Longrightarrow h_{i,j} = 0$ and $h_{i,n+j} = 0$.
- If g_i contains X on the j^{th} qubit $\Longrightarrow h_{i,j} = 1$ and $h_{i,n+j} = 0$.
- If g_i contains Z on the j^{th} qubit $\Longrightarrow h_{i,j} = 0$ and $h_{i,n+j} = 1$.
- If g_i contains Y on the j^{th} qubit $\Longrightarrow h_{i,j} = 1$ and $h_{i,n+j} = 1$.

Check Matrix Example Steane Code

For Readability tensor product operator signs are left out. $\sigma_i \sigma_j$ corresponds to $\sigma_i \otimes \sigma_j$.

Γ0	0	0	1	1	1	1	0	0	0	0	0	0	07
0	1	1	0	0	1	1	0	0	0	0	0	0	0
1	0	1	0	1	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	1	1	0	0	1	1
0	0	0	0	0	0	0	1	0	1	0	1	0	$1 \rfloor$

	Generator	Operator					
	g_1	IIIXXXX					
	g_2	IXXIIXX					
-	g_3	XIXIXIX					
	g_4	IIIZZZZ					
	g_5	IZZIIZZ					
	g_6	ZIZIZIZ					

References

- [1] Scott Aaronson and Daniel Gottesman. "Improved simulation of stabilizer circuits". In: *Physical Review A—Atomic, Molecular, and Optical Physics* 70.5 (2004), p. 052328.
- [2] Michael A Nielsen and Isaac L Chuang. *Quantum computation and quantum information*. Cambridge university press, 2010.