

EP 0 720 293 A1

DEMANDE DE BREVET EUROPEEN

(43) Date de publication: 03.07.1996 Bulletin 1996/27

(51) Int Cl.6: H03K 17/96, H03K 17/94

(21) Numéro de dépôt: 95402876.7

(22) Date de dépôt: 19.12.1995

(84) Etats contractants désignés: DE ES GB IE IT PT

(30) Priorité: 28.12.1994 FR 9415767

(71) Demandeur: SEXTANT AVIONIQUE (Société Anonyme)
F-78141 Velizi VIllacoublay (FR)

(72) Inventeurs:

 Gaultler, Philippe F-78150 Le Chesnay (FR) Vouillon, Patrick
 F-91140 Villebon sur Yvette (FR)

Simon, Frédéric
 F-78550 Elancourt (FR)

(74) Mandataire: de Saint-Palais, Arnaud Marie
 CABINET MOUTARD
 35, Avenue Victor Hugo
 78960 Voisins le Bretonneux (FR)

(54) Codeur multivoie à structure monovoie

(57) Le codeur multivoie selon l'invention comprend un bouton (B) couplé à une roue codeuse (C) à laquelle sont associés des moyens de détection (ER) de la position angulaire et, éventuellement, du sens de rotation de la roue (C). Il comprend, d'une part, des moyens de sélection de voie (AF, AM₂, AM₃) incorporés au bouton

(B) et, d'autre part, des moyens permettant d'associer à l'information délivrée par les moyens de détection (ER), une information relative à la voie (V₁ à V₃) qui a été sélectionnée sur les susdits moyens de sélection (AF, AM₂, AM₃).

L'invention peut servir à la modification de paramètres.

Description

La présente invention concerne un codeur multivoie permettant d'effectuer des modifications de paramètres d'un processus.

Elle s'applique notamment, mais non exclusivement, à l'équipement de cockpits d'aéronefs. Ainsi, dans ce type d'application, elle peut être avantageusement utilisée pour assurer, par exemple, la commande d'un récepteur ADF (radio compas).

Habituellement, les codeurs simple voie se composent d'un bouton rotatif couplé à une roue codeuse à laquelle est associé un ou plusieurs détecteurs permettant de délivrer une information relative à la position angulaire du codeur et à son sens de rotation.

Bien entendu, la conception de la roue codeuse et des détecteurs qui lui sont associés est fonction du principe de détection mis en oeuvre, lequel peut être de nature électromécanique, magnétique, optique, etc...

Les codeurs multivoie font, quant à eux, intervenir plusieurs structures de codeurs simple voie agencés de manière à ce que les boutons et les roues codeuses soient disposés coaxialement tout en étant décalés les uns par rapport aux autres.

Les axes des ensembles bouton/roue codeuse sont alors conçus de manière à s'engager coaxialement les uns dans les autres de manière à pouvoir tourner les uns par rapport aux autres.

Avantageusement, ces boutons présentent des diamètres différents de manière à ce que leur superposition définisse un ensemble de forme conique dans lequel chacun des boutons est identifiable au toucher.

Compte tenu de leur structure et du fait qu'ils nécessitent autant de codeurs que de nombre de voies, les codeurs multivoie sont des appareils relativement coûteux et volumineux.

L'invention a donc plus particulièrement pour but de supprimer ces inconvénients.

Elle propose à cat effet un codeur multivoie utilisant une structure de codeur monovoie, c'est-à-dire comportant un seul bouton couplé à une seule roue codeuse à laquelle sont associés des moyens de détection de la position angulaire et du sens de rotation de la roue.

Selon l'invention, ce codeur est caractérisé en ce qu'il comprend, d'une part, des moyens de sélection de voie incorporés au bouton et, d'autre part, des moyens permettant d'associer à l'information délivrée par les susdits moyens de détection, une information relative à la voie qui a été sélectée sur les susdits moyens de sélection.

Avantageusement, les moyens de sélection de voie pourront consister en des moyens de détection de présence d'un doigt, de type capacitif.

Dans ce cas, ces moyens de détection de présence pourront faire intervenir une armature fixe de condensateur, sur laquelle est appliquée une tension alternative ou impulsionnaire à haute fréquence, et au moins une armature externe de condensateur solidaire du bouton et disposée en regard de l'armature fixe.

Un dispositif de détection est en outre prévu de manière à détecter une perte d'énergie parasite due au contact d'un doigt sur l'une ou l'autre des armatures mobiles.

Bien entendu, l'invention ne se limite pas à un mode de détection de type capacitif. Une telle détection pourrait être aussi bien de type résistive, mécanique, piézoélectrique, thermoélectrique, ou même optique.

Des modes d'exécution de l'invention seront décrits ci-après, à titre d'exemples non limitatifs, avec référence aux dessins annexés :

La figure 1 est une vue de la face avant d'un récepteur ADF (radio compas) équipant le poste de pilotage d'un aérodyne;

La figure 2 est une représentation schématique illustrant un mode de modification d'un paramètre affiché sur un afficheur associé à un codeur à trois voies :

La figure 3 est une coupe schématique d'un codeur à trois voies de type classique ;

La figure 4 est un premier mode d'exécution d'un codeur à trois voies selon l'invention dans lequel la sélection de voie s'effectue par effet capacitif;

La figure 5 est une variante d'exécution du codeur représenté sur la figure 4;

La figure 6 est un schéma synoptique du circuit électronique associé au codeur;

La figure 7 est un diagramme représentant les niveaux de tension aux bornes du système de condensateur du sélecteur capacitif, selon la nature de la sollicitation du bouton.

La face avant 1 du récepteur ADF, qui est représentée sur la figure 1, constitue un exemple parmi d'autrés, d'utilisation de codeurs dans un tableau de commande d'un cockpit d'aérodyne.

Dans cet exemple, la face avant 1 comprend deux afficheurs V, V auxquels sont associés deux codeurs respectifs à trois voies, par exemple du type de celui qui se trouve représenté sur la figure 3.

Les boutons B₁, B₂, B₃, B'₁, B'₂, B'₃ de chacun de ces codeurs comprennent trois couronnes cylindriques coaxiales axialement superposées dont les diamètres vont en décroissant (en allant de la première couronne qui est adjacente à la face avant 1 jusqu'à la dernière qui se trouve la plus éloignée de ladite face 1).

La modification d'un paramètre à l'aide de ces codeurs peut s'effectuer digit par digit et/ou par groupes de digits par exemple de la façon indiquée sur la figure 2.

Dans cet exemple, la rotation du bouton B1 com-

mande une modification (incrémentation ou décrémentation, selon le sens de rotation) des deux premiers digits $D_{1,2}$ affichés sur l'afficheur. Le bouton B_2 est affecté au digit central D_3 tandis que le bouton B_3 commande la modification des deux derniers digits $D_{4,5}$.

Pour parvenir à ces résultats, la solution utilisée jusqu'ici consiste à utiliser trois boutons indépendants B₁, B₂, B₃ couplés à trois codeurs respectifs au moyen de trois axes coaxiaux s'emboîtant les uns dans les autres, à savoir

- un axe central A₃ reliant le bouton B₃ à la roue codeuse C₃ du premier codeur;
- un premier axe tubulaire A₂ monté rotatif autour de l'axe central A₃ et reliant le bouton B₂ à la roue codeuse C₂ du deuxième codeur;
- un deuxième axe tubulaire A₁ monté rotatif autour du premier axe tubulaire A₂ et reliant le bouton B₁ à la roue codeuse C₁ du troisième codeur.

Bien entendu, à chaque roue codeuse C_1 , C_2 , C_3 est associé au moins un système de détection SD_1 , SD_2 , SD_3 faisant intervenir par exemple deux couples émetteur/récepteur d'ondes lumineuses, les roues codeuses C_1 , C_2 , C_3 étant alors percées d'une multiplicité de trous uniformément répartis sur un cercle concentrique

Comme précédemment mentionné, l'invention a pour objet une solution, à la fois plus simple, moins coûteuse, plus efficace et se prêtant mieux au traitement numérique des informations.

Elle consiste à utiliser un codeur comprenant une a roue codeuse unique C entraînée par un seul bouton B associé à un sélecteur.

Ce bouton B peut être alors conformé de manière à présenter une forme analogue à celle constituée par l'ensemble des trois boutons B₁, B₂, B₃ utilisés dans la solution antérieure.

Ainsi, pour obtenir un codeur analogue à celui représenté sur la figure 3, le bouton B pourra comprendre, comme illustré sur les figures 4, 5, 6, trois couronnes cylindriques coaxiales superposées C₁, C₂, C₃ solidaires les unes des autres et présentant des diamètres différents les uns des autres.

Dans ces exemples, le sélecteur de voies fait intervenir un système capacitif comprenant :

- d'une part, une armature fixe de condensateur AF de forme cylindrique, solidaire du boîtier 2 du codeur, cette armature AF₁ s'engage dans une cavité annulaire coaxiale 3 du bouton B qui débouche au niveau de sa base 4, et
- d'autre part, deux armatures de condensateur AM₁, AM₂ de formes cylindriques, recouvrant respectivement les couronnes cylindriques C₁ et C₂ du bouton B

Bien entendu, le corps du bouton B est réalisé en un matériau diélectrique tel que, par exemple, une matière plastique moulée.

Tel que représenté sur la figure 6, le circuit de sélection de voie associé à ce bouton 8 fait intervenir un générateur G apte à engendrer un signal périodique de fréquence de l'ordre de quelques MHz, par exemple 4 MHz.

Ce signal est appliqué à un circuit comprenant successivement un condensateur C₁, une diode DR₁ montée en direct et une résistance R₁ reliée à la masse.

Le point de jonction J_1 entre le condensateur C_1 et la diode DR_1 est relié, d'une part, à la masse, par l'intermédiaire d'une diode DR_2 montée en inverse et, d'autre part, à l'armature fixe AF du système capacitif associé au bouton B.

Le point de jonction J_2 entre la diode DR_1 et la résistance R_1 est relié à un circuit de comparaison comprenant au moins deux comparateurs CP_1 , CP_2 qui comparent la tension aux bornes de la résistance R_1 à deux tensions de seuil respective VS_1 , VS_2 .

Les sorties de ces deux comparateurs CP_1 , CP_2 sont reliées à un circuit logique L qui effectue la commande d'un sélecteur SEL (multiplexeur) à trois sorties V_1 , V_2 , V_3 qui correspondent aux trois voies du dispositif

Le fonctionnement de ce dispositif est alors le suivant :

Dans le cas où seule la couronne C_3 du bouton B est sollicitée, aucune capacité parasite n'est introduite dans le circuit par le système capacitif. La tension U_1 au point de jonction J_2 est alors supérieure au seul VS_1 , les sorties des comparateurs CP_1 et CP_2 sont à l'état 1.1 et, en conséquence, le circuit logique L commande le sélecteur SEL de manière à connecter les sorties O_1 , O_2 du codeur à la voie V_1 . La rotation du bouton B entraîne donc l'émission sur la voie V_1 d'une information impulsionnaire exploitable par exemple pour commander l'incrémentation ou la décrémentation d'un digit ou d'un groupe de digits d'un paramètre.

Dans le cas où la rotation du bouton B est engendrée par une action sur la couronne C_2 , le contact des doigts sur l'électrode cylindrique AM_2 introduit une capacité parasite qui engendre une atténuation du signal fonction de la capacité introduite.

Cette capacité qui est sensiblement proportionnelle à la surface en regard des armatures AM₂ et AF et inversement proportionnelle à la distance qui sépare ces armatures, provoque une chute de tension qui amène la tension au point J₂ à une valeur U₂ inférieure au seuil de tension VS₁ mais supérieure au seuil de tension VS₂. Les sorties des comparateurs CP₁ CP₂ se trouvent alors à l'état logique O₁. Compte tenu de cet état, le circuit logique commande alors le sélecteur SEL de manière à connecter les sorties O₁, O₂ du codeur (codage en position angulaire/sens de rotation) à la voie V₂.

D'une façon analogue, lorsque la rotation du bouton ${\sf B}$ est engendrée par une action sur la couronne ${\sf C_3}$, le

contact des doigts sur l'armature cylindrique AMa introduit une capacité parasite, par exemple d'une valeur égale à la moitié de la précédente, qui engendre une attenuation de la tension au point 12 qui passe à une valeur U3 inférieure au seuil S2. Les sorties des comparateurs CP1, CP2 se trouvent alors à l'état 0.0. Compte tenu de cet état, ce circuit logique L commande alors le sélecteur SEL de manière à connecter les sorties O1 et O₂ du codeur à la voie V₃.

Bien entendu, l'invention ne se limite pas au mode d'execution du mode de sélection de voies précédemment décrit. Ainsi, les sorties O1 et O2 du codeur pourraient être directement transmises à un microcontrôleur με indiqué en traits interrompus.

L'information de sélection de voie est alors transmise à ce microcontrôleur µc par un convertisseur analogique/numérique AD (également en traits interrompus) dont l'entrée est connectée au point J2. Cette solution permet d'associer à chaque information délivrée par le codeur une information d'identification de la voie. Le traitement de ces informations est ensuite effectué par le microcontrôleur µc en fonction du programme applicatif qui lui est associé.

Dans la variante d'exécution représentée figure 5, le système de détection capacitive associé au bouton B' fait intervenir, en plus des armatures externes de condensateur AM'2, AM'3, des armatures internes annulaires coaxiales Al2, Al3 situées à proximité de l'armature fixe AF'.

La surface de ces armatures internes Al₂, Al₃ qui 30 sont respectivement connectées aux armatures externes AM'2, AM'3, est alors déterminée de manière à obtenir des écarts de tension U1 - U2, U2 - U3 et U1 - U3, les plus importants possibles, pour diminuer au maximum les risques d'erreur de sélection de voie.

Un avantage des solutions précédemment décrites consiste en ce qu'elles permettent d'adjoindre sans difficulté aux fonctions du bouton, une fonction supplémentaire telle que, par exemple, une fonction de valida-

Il suffit en effet de faire en sorte que l'axe reliant le bouton à la roue codeuse soit mobile axialement de manière à pouvoir actionner un interrupteur INT logé dans le boîtier du codeur. Un ressort de rappel R peut alors être prévu pour maintenir l'interrupteur INT en position de repos et n'obtenir un changement d'état de l'interrupteur INT qu'à la suite d'un effort axial exercé sur le bouton B, à l'encontre de l'action exercée par le ressort R.

Dans les codeurs multivoie précédemment décrits. le fait que le bouton soit monobloc et, qu'en conséquence, les éléments cylindriques en couronne sont solidaires, ne pose pas de problème ergonomique particulier.

En effet, l'opérateur ne regarde pas le codeur pendant son utilisation mais le paramètre qu'il modifie et qui est indiqué sur l'afficheur.

Par ailleurs, grâce aux dispositions précédemment décrites, le microcontrôleur ou éventuellement le processeur qui lui est associé, peut commander des

moyens de signalisation permettant d'indiquer à l'opérateur la fonction de la couronne qui est touchée avant même qu'elle soit actionnée. Cette signalisation peut, par exemple, consister en une modification graphique du paramètre affiché telle que, par exemple, une surbrillance, une vidéo inverse, une modification de la couleur, un clignotement. Cette signalisation pourrait être également assurée au moyen d'une information sonore telle que, par exemple, un message vocal obtenu par synthèse vocale.

Revendications

- Codeur multivoie du type comprenant un bouton (B) couplé à une roue codeuse (C) à laquelle sont associés des moyens de détection (ER) de la position angulaire et, éventuellement, du sens de rotation de la roue (C),
 - caractérisé en ce qu'il comprend, d'une part, des moyens de sélection de voie (AF, AM₂, AM₃) incorporés au bouton (B) et comportant des moyens de détection de présence aptes à détecter la présence d'un doigt sur une zone déterminée du bouton (B) et, d'autre part, des moyens permettant d'associer à l'information délivrée par les susdits moyens de détection (ER), une information relative à la voie (V1 à V₃) qui a été sélectée sur les susdits moyens de sélection (AF, AM2, AM3).
 - 2. Codeur selon la revendication 1, caractérisé en ce que les susdits moyens de détection (AF, AM2, AM3) de présence sont de type capacitif.
- Codeur selon la revendication 2. caractérisé en ce que les susdits moyens de détection de présence comprennent une armature fixe de condensateur (AF) solidaire de la structure fixe (2) du capteur et sur laquelle est appliquée une tension alternative ou impulsionnaire à haute fréquence, et au moins une armature externe de condensateur (AM2 AM3) solidaire du bouton (B) et disposée en regard de l'armature fixe (AF), cette armature étant conçue de manière à pouvoir être amenée en contact électrique avec un doigt de l'opérateur.
 - 4. Codeur selon la revendication 3, caractérisé en ce que la susdite armature externe (AM2, AM3) présente une forme cylindrique et recouvre une couronne (C_2 , C_3) du bouton (B).
- Codeur seion la revendication 4, caractérisé en ce que l'armature externe (AM2, AM₃) est reliée à une armature interne (Al₂, Al₃) plus rapprochée de l'armature fixe (AF).
- Codeur selon l'une des revendications 3 à 5.

55

35

25

caractérisé en ce que l'armature fixe (AF) présente une forme tubulaire cylindrique et s'engage dans une cavité annulaire (3) coaxiale formée dans le bouton (B) et qui débouche au niveau de sa base (4).

- Codeur selon l'une des revendications 2 à 6, caractérisé en ce que le bouton (B) comprend trois couronnes (C₁, C₂, C₃) de diamètre différent dont deux seulement sont revêtues d'une armature externe de condensateur (AM₂, AM₃) éventuellement associée à deux armatures internes respectives (Al₂, Al₃).
- 8. Codeur selon l'une des revendications 3 à 6, caractérisé en ce que les susdits moyens de sélection de voies comprennent au moins un comparateur (CP₁, CP₂) apte à comparer la tension (U) appliquée à l'armature fixe (AF) à une valeur de seuil (VS₁, VS₂) et un circuit logique (L) associé à un sélecteur de voies (SEL) qui reçoit les informations émanant des susdits moyens de détection (ER) et qui les transmet sur une voie (V₁, V₂, V₃) selon le niveau de ladite tension (U).
- 9. Codeur selon l'une des revendications 3 à 6, caractérisé en ce que les susdits moyens de sélection comprennent un convertisseur analogique/numérique (AD) qui reçoit un signal représentatif de la tension (U) appliquée à l'armature fixe (AF) et qui transmet un signal numérique correspondant à un microcontrôleur (µc) qui reçoit les informations délivrées par les moyens de détection (ER) du codeur.
- Codeur selon l'une des revendications précédentes, caractérisé en ce qu'il comprend des moyens de signalisation, par exemple lumineux ou sonore, de la voie sélectée.
- 11. Codeur selon l'une des revendications précédentes, caractérisé en ce que l'ensemble comprenant le bouton (B), la roue codeuse (C) et l'axe d'accouplement (A), est mobile axialement avec rappel par ressort (R), de manière à pouvoir actionner un interrupteur (INT) en exerçant sur le bouton (B) une force antagoniste à l'action du ressort (R).

55

50

Fig.1

Fig.2

RAPPORT DE RECHERCHE EUROPEENNE

EP 95 40 2876

atégoric	Citation du document avec i des parties per	adication, en car de beroin, incater	Revendicacion concursós	CLASSEMENT DE LA DEMANDE (LACLA)
′	DE-U-89 10 606 (J. 1 WERKE GMBH) 26 Octol * page 8, ligne 29 * page 9, ligne 19 * figure 2 *		1	H03K17/96 H03K17/94
	1983	DUE TERRY A) 4 Octobr 20 - ligne 56; figure		,
	US-A-4 054 860 (HEN AL) 18 Octobre 1977 * colonne 1, ligne		1	·
				DOMAINES TECHNIQUES
				HO3K
	-	·		•
	-	· · · · · · · · · · · · · · · · · · ·		-
Le pr	résent rapport a ôté établé peur tec	ster les revendications	-	÷
	Lies de la recherche	Date d'achtroment de la recherche		Donaster
	LA HAYE	11 Avril 1996	D/L	PINTA BALLE, L
CATEGORIE DES DOCUMENTS CITES I : théorie ou E : document			iscipe à la base de l'Invention hrovet antérieux, mais publié à la t un après cette date demande	

8

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.