

- 物体检测环境配置
- **直用物体检测概述**
- 基于锚框的检测算法
- 无需锚框的检测算法
- 物体检测算法的对比总结
- **实用检测算法的研究思路**

# **\$**

## 通用物体检测与特定物体检测

• 物体检测:找出一副图像上感兴趣的物体,并给出它们的类别和位置

• 通用物体检测: 感兴趣物体是很多类的物体

• 特定物体检测: 感兴趣物体是某一类或某一大类物体

### 通用物体检测

- 类别数 > 10
- PASCAL VOC (20类)
- MS COCO (80类)
- 各类物体
- 通用性质
- 通用问题

#### 特定物体检测

- 类别数一般为1
- 人脸检测
- 行人检测
- 特定物体
- 特定性质
- 特定问题



## 通用物体检测与特定物体检测

- 通用物体检测针对各类物体研究通用性的问题,为特定物体检测提供非常好的基础算法
- 特定物体检测利用特定物体的特殊性来解决特定问题,然后反哺通用物体检测







# 本课程重点讲解的内容





# 本课程重点讲解的通用物体检测算法



# **\$** 通用物体检测数据集

| 数据库             | 图片数量   | 标注数量  | 类别数量  | 难度指数                                         |
|-----------------|--------|-------|-------|----------------------------------------------|
| PASCAL VOC 2007 | 9963   | 24640 | 20    | **                                           |
| PASCAL VOC 2012 | 11540  | 27450 | 20    | ***                                          |
| MS COCO         | 约14万   | 5171  | 80    | ***                                          |
| LVIS            | 16.4 万 | 200万  | 1000+ | <i>**</i> ********************************** |
| OpenImages      | 190万   | 1600万 | 600   | ****                                         |



## 通用物体检测评价指标 (mAP)



#### $IoU \geq 0.5$ , 常用评价指标



- $IoU \ge [0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95]$
- 10个不同IoU阈值下的mAP
- 再一次求平均得到mmAP
- MS COCO数据集用的评价指标



- 利用Anaconda配好detectron2物体检测平台,并利用PyCharm完成下面两个步骤:
- 利用detectron2提供的Faster R-CNN\_R50-FPN\_1x模型和RetinaNet\_R50\_1x模型测试 <u>https://github.com/rbgirshick/py-faster-rcnn/tree/master/data/demo</u>里面的5张图片, 对比两者的检测结果
- 2. 利用detectron2提供的Faster R-CNN\_R50-FPN\_1x模型和RetinaNet\_R50\_1x模型在MS COCO验证集上进行评测,得到官方给出的精度



# 感谢各位聆听 Thanks for Listening