Statistics and Probability

Discrete Random Variables

www.Stats-Lab.com

Twitter: @StatsLabDublin

Consider the random variables X and Y. Both X and Y take the values 0, 1 and 2. The joint probabilities for each pair are given by the following table.

	X = 0	X = 1	X = 2
Y = 0	0.1	0.15	0.1
Y = 1	0.1	0.1	0.1
<i>Y</i> = 2	0.2	0.05	0.1

Compute the E(U) expected value of U, where U = X - Y.

Compute X - Y

	X = 0	X = 1	X=2
Y = 0	0.1	0.15	0.1
Y=1	0.1	0.1	0.1
<i>Y</i> = 2	0.2	0.05	0.1

Compute X - Y

	U	X = 0	U	X = 1	U	X = 2
Y = 0	0	0.1	1	0.15	2	0.1
Y = 1	-1	0.1	0	0.1	1	0.1
<i>Y</i> = 2	-2	0.2	-1	0.05	0	0.1

Determine the probability of each outcome of U.

u _i	-2	-1	0	1	2
$p(u_i)$					

$$E(U) = \sum u_i \cdot p(u_i)$$

u _i	-2	-1	0	1	2
$p(u_i)$	0.20	0.15	0.30	0.25	0.10
$u_i \cdot p(u_i)$					

$$E(U) = \sum u_i \cdot p(u_i)$$

u _i	-2	-1	0	1	2
$p(u_i)$	0.20	0.15	0.30	0.25	0.10
$u_i \cdot p(u_i)$	-0.40	-0.15	0.00	0.25	0.20

$$E(U) = \sum u_i \cdot p(u_i)$$

u _i	-2	-1	0	1	2
$p(u_i)$	0.20	0.15	0.30	0.25	0.10
$u_i \cdot p(u_i)$	-0.40	-0.15	0.00	0.25	0.20

$$E(U) = \sum u_i \cdot p(u_i)$$

Ui	-2	-1	0	1	2
$p(u_i)$	0.20	0.15	0.30	0.25	0.10
$u_i \cdot p(u_i)$	-0.40	-0.15	0.00	0.25	0.20

$$E(U) = -0.10$$

$$E(U) = \sum u_i \cdot p(u_i)$$

Ui	-2	-1	0	1	2
$p(u_i)$	0.20	0.15	0.30	0.25	0.10
$u_i \cdot p(u_i)$	-0.40	-0.15	0.00	0.25	0.20

$$E(U) = -0.10$$