Evidencia de aprendizaje Unidad 2

Cristopher Aldama Pérez

September 2, 2018

1 Demuestra los enunciados por medio de los diferentes métodos de demostración que consideres adecuado

1. Demostrar que no hay ningún número racional cuyo cuadrado sea 15.

Proof. Usando el método de reducción al absurdo, negamos la preposición y suponemos que $\sqrt{15}$ es racional, lo que implica que:

$$\sqrt{15} = \frac{p}{q}$$

$$15 = \frac{p^2}{q^2}$$

$$15q^2 = p^2$$

Así pes un multiplo de 15 por lo que puede ser escrito como: p=15k $15q^2=(15k)^2$

$$q^2 = 15k^2$$

Así q tambien es multiplo de 15, lo cual significa que tanto p como q tienen 15 como factor común, lo cual contradice nuestra suposición inicial

2. Si x es racional y distinto de cero y y es irracional, entonces (x+y) y (xy) son racionales.

Proof. Si x es racional se cumple que $x=\frac{a}{b},$ en cambio y=c ya que es irracional, así:

$$x+y=\frac{a}{b}+c$$

$$=\frac{a}{b}+\frac{cb}{b}$$
 Multiplando c por $\frac{b}{b}$
$$=\frac{a+cb}{b}$$
 Introduciendo $d=a+cb$
$$=\frac{d}{b}$$

$$xy=\frac{a}{b}c$$
 Introduciendo $e=ac$
$$=\frac{e}{b}$$

3. Se
a $x\in\mathbb{R},$ demuestre que si|x+y|>|x|+|y|entonce
syno es un número real

Proof. Sabiendo que $p \to q \equiv \neg q \to \neg p$ podemos reformular la premisa como: si y es un número real entonces |x+y| <= |x| + |y| ya que x y y son números reales podemos definir el valor absoluto como: $|a| = \sqrt{a^2}$.

$$|x+y| = \sqrt{(x+y)^2}$$

$$= x+y$$

$$= \sqrt{x^2} + \sqrt{y^2}$$

$$= |x| + |y|$$

4. Pruebe por inducción que 5 + 9 + 13 + ... + (4n + 1) = n(2n + 3).

Proof.

$$L(1) = \sum_{1}^{1} 4n + 1$$

$$= 4(1) + 5$$

$$= (1)[2(1) + 3]$$

$$= \sum_{1}^{1} n(2n + 3)$$

$$L(2) = \sum_{1}^{2} 4n + 1$$

$$= 4(1) + 5 + 4(2) + 5$$

$$= (1)[2(1) + 3] + (2)[2(2) + 3]$$

$$= \sum_{1}^{2} n(2n + 3)$$

$$L(k) = \sum_{1}^{k} 4n + 1$$

$$= \sum_{1}^{k} n(2n + 3)$$
 suposición
$$L(k + 1) = \sum_{1}^{k+1} 4n + 1$$

$$= 4(k + 1) + 1 + \sum_{1}^{k} 4n + 1$$

$$= 4(k + 1) + 1 + k(2k + 3)$$

$$= 2k^{2} + 7k + 5$$

$$= (k + 1)(2k + 5)$$

$$= (k + 1)[2(k + 1) + 3]$$

5. Probar por inducción que $1+3+5+\ldots+(2n-1)=n^2$

Proof.

$$L(1) = \sum_{1}^{1} 2n - 1$$

$$= 2(1) - 1$$

$$= 1^{2}$$

$$L(2) = \sum_{1}^{2} 2n - 1$$

$$= 2(1) - 1 + 2(2) - 1$$

$$= 2^{2}$$

$$L(k) = \sum_{1}^{k} 2n - 1$$

$$= k^{2}$$

$$L(k+1) = \sum_{1}^{k+1} 2n - 1$$

$$= 2(k+1) - 1 + \sum_{1}^{k} 2n - 1$$

$$= k^{2} + 2k + 1 \qquad \text{inducción}$$

$$= (k+1)^{2}$$