Special Topics on Basic EECS I VLSI Devices Lecture 17

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Recombination

 When the recombination in the depletion region is considered, we can find the following relation:

$$F_p(\infty) = F_n(-\infty) = F_n(x_p) + F_p(-x_n) + \int_{-x_n}^{x_p} [R(x) - G(x)] dx$$

2

Approximate expression

• We can estimate the upper bound.

$$\int_{-x_n}^{x_p} [R(x) - G(x)] dx < [R(x) - G(x)]_{maximum} (x_p + x_n)$$

- -Assume that $R G = CN_t \frac{np n_i^2}{n + p + 2n_i}$ for the SRH centers.
- –Also, in the depletion region, $np=n_i^2\exp{\frac{V_{app}}{k_BT/q}}$. (Why?)
- -Then, we have the maximum value

$$[R(x) - G(x)]_{maximum} = CN_t \frac{n_i}{2} \left(\exp \frac{V_{app}}{2 k_B T/q} - 1 \right)$$
$$= \frac{n_i}{2\tau_i} \left(\exp \frac{V_{app}}{2 k_B T/q} - 1 \right)$$
EIST Lecture

Current

By using the previous results, the current can be obtained.

$$I_{total} = I_{diode} + I_{SC}$$
 Taur, Eq. (2.138)

– With the ideal factor, m, the forward diode current is often expressed in the form

$$I_{total} \sim \exp \frac{qV_{app}}{mk_BT}$$
 Taur, Eq. (2.139)

- When m is unity, the current is considered "ideal."
- The nonideality at small forward bias ($m \sim 2$) is caused by the space-charge-region current.

Diode IV curves

• A diode with $I_0 = 5 \times 10^{-16} \text{A}$ (Only different y scales)

Important observation

- In order to obtain 10x higher current,
 - We must apply only 60 mV additionally. (300 K)

Short diode

- Consider a case where p- and n-regions are shorter than the diffusion length.
 - -Our previous solution: $n(x) = n_{p0} \left(\exp \frac{v_{app}}{k_B T/q} 1 \right) \exp \left(-\frac{x x_p}{L_n} \right) + n_{p0}$
 - It assumes infinitely long p- and n-regions.
 - Opposite extreme:

$$n(x) = n_{p0} \left(\exp \frac{V_{app}}{k_B T/q} - 1 \right) \left(1 - \frac{x - x_p}{W_p - x_p} \right) + n_{p0}$$

Linearized system

- Our device is nonlinear in general. However, we can <u>linearize</u> it,
 - When signals have small amplitudes.
 - -Consider $y = \exp x$.
 - -When $x = 24 + 12 \sin \omega t$, how does y look like?
 - -When $x = 24 + 0.04 \sin \omega t$, how does y look like?
 - Can you justify the Taylor expansion?

$$y = \exp(x_0 + \delta x) = \exp x_0 \quad (1 + \delta x)$$

Switching from OFF to ON

- It takes some time before the diode is turned on and reaches the steady state.
 - Charging up the depletion-layer capacitor
 - Filling up the p- and n-regions with excess minority carriers
- Similarly, when a diode is switched from the ON state to the OFF state, it takes some time before the diode is turned off.

Excessive minority carriers

- (The lightly doped side is often referred to as the *base* of the diode. The other one is called the *emitter*.)
 - Total excess minority-carrier charge per unit area

$$Q_B = -q \int_0^W (n_p - n_{p0}) dx$$
 Taur, Eq. (2.144)

- For a wide-base diode,

$$Q_B = J_n(x=0)\tau_n$$

Taur, Eq. (2.145)

For a narrow-base diode,

$$Q_B = J_n(x=0)t_B$$

Taur, Eq. (2.146)

Base-transit time, $\frac{W^2}{2D_n}$

GIST Lecture

10

Discharging time of a forward-biased diode

• External voltage changes from V_F to V_R at t=0. Assume that $|V_F|$ and $|V_F|$ are sufficiently higher than 1.0 V.

$$-At t < 0$$
,

$$I \approx \frac{V_F}{R}$$

Reverse voltage of V_R

- Electrons at the edge of the depletion region are swept away by the electric field in the depletion region towards the n⁺ emitter at a saturated velocity.
 - -The reverse current is limited by the external resistor,

Later,

- The reverse current is limited by the diffusion of electrons instead of by the external resistor.
 - Finally, when all the excess electrons removed, the pn diode is completely off.

Thank you!