Planche 1:

1) a) Si n est le degré de P et α son coefficient dominant, on a $P(x) \sim \alpha x^n$ quand $x \to +\infty$, donc $\frac{P(k)}{k!} \sim \frac{\alpha k^n}{k!} = \mathcal{O}(\frac{1}{k^2})$ quand $k \to +\infty$.

Le critère de domination assure donc la convergence de la série S(P).

b) Pour $P,Q \in \mathbb{R}[X]$ et $\lambda, \mu \in \mathbb{R}$, on a pour tout $k \in \mathbb{N}$ l'identité $\frac{(\lambda P + \mu Q)(k)}{k!} = \lambda \frac{P(k)}{k!} + \mu \frac{Q(k)}{k!}$. On peut sommer ces égalités (les séries convergent d'après la question précédente) pour obtenir

$$S(\lambda P + \mu Q) = \sum_{k=0}^{+\infty} \frac{(\lambda P + \mu Q)(k)}{k!} = \lambda \sum_{k=0}^{+\infty} \frac{P(k)}{k!} + \mu \sum_{k=0}^{+\infty} \frac{Q(k)}{k!} = \lambda S(P) + \mu S(Q).$$

```
c)
  >>> from math import factorial, exp
  >>> def somme(P) :
           s = 0
           for i in range(51):
               s+ = P(i)/factorial(i)
           return(s)
  >>> for d in range(10) :
           P = lambda x : x**d
           print(somme(P)/exp(1))
  1.00000000000000000
  1.0000000000000000
  2.0
  5.00000000000001
  15.000000000000002
  51.999999999998
  203.0
  876.999999999999
  4140.0
  21147.000000000004
  >>> P = lambda x :x**9 + 36*x**6 - x**3 + x**2 - 3
   >>> somme(P)/exp(1)
```

Les résultats numériques permettent de formuler l'hypothèse que $\frac{1}{e}S(P)$ est un entier lorsque P est à coefficients entiers...

- 2) a) La famille $(H_n)_{n\in\mathbb{N}}$ est formée de polynômes de degrés étagés, c'est donc une base de $\mathbb{R}[X]$.
 - **b)** Soit $n \in \mathbb{N}^*$. Pour tout $k \in \mathbb{N}$, on a $H_n(k) = \prod_{i=0}^{n-1} (k-i) = 0$ si $k \leq n-1$, et $H_n(k) = \frac{k!}{(k-n)!}$ si $k \geq n$. Il vient

$$S(H_n) = \sum_{k=n}^{+\infty} \frac{k!}{k!(k-n)!} = \sum_{k=n}^{+\infty} \frac{1}{(k-n)!} = \sum_{i=0}^{+\infty} \frac{1}{i!} = e.$$

Ce résultat reste valable pour n=0.

28448.99999999985

c) Il suffit de décomposer P dans la base $(H_n)_{n\in\mathbb{N}}$ pour calculer S(P) par linéarité. Précisément, si $P = \sum_{k=0}^{n} \alpha_k H_k$ alors $S(P) = \sum_{k=0}^{n} \alpha_k S(H_k) = e \sum_{k=0}^{n} \alpha_k$.

Pour ce faire, si $n = \deg(P)$, il suffit de faire la division euclidienne de P par H_n pour trouver α_n (quotient) et le reste, qui vaut $P - \alpha_n H_n = \sum_{k=0}^{n-1} \alpha_k H_k$. On itère alors le procédé avec une division par H_{n-1} , etc.

Remarque. — Si P est à coefficients entiers, α_n est le coefficient dominant de P donc un entier (H_n est unitaire). Et le reste de la division euclidienne vaut $P - \alpha_n H_n$ donc reste à coefficients entiers. En itérant, tous les coefficients α_k sont des entiers donc $\frac{1}{e}S(P) = \sum_{k=0}^{n} \alpha_k$ est un entier.

Planche 2:

- 2) Python renvoie 0.0 dans le premier cas, 49.02934290985918 dans le second, ce qui montre la sensibilité à de petites perturbations...
- 3) Supposons (i), soit donc n tel que $u_{n+1} \leqslant u_n$. Nécessairement $u_{n+1} \geqslant 0$ donc $u_{n+1}^2 \leqslant u_n^2$, donc $u_{n+2} = \frac{u_{n+1}^2}{n+2} \leqslant \frac{u_n^2}{n+2} \leqslant \frac{u_n^2}{n+1} = u_{n+1}$. Par récurrence, on montre que la suite $(u_k)_{k\geqslant n}$ est alors décroissante.

En particulier, elle est majorée par son premier terme u_n , et en considérant un entier $k \ge n$ tel que $\frac{u_n^2}{k+1} < 1$, qui existe, on a alors $u_{k+1} = \frac{u_k^2}{k+1} \le \frac{u_n^2}{k+1} < 1$, d'où (ii).

Supposons (ii) et soit $n \in \mathbb{N}^*$ tel que $u_n < 1$. Alors une récurrence élémentaire montre que $\forall k \ge n$, $0 \le u_k < 1$ donc $0 \le u_{k+1} < \frac{1}{k+1}$. Par le théorème d'encadrement, on a donc (iii).

Supposons enfin (iii). La suite est à valeurs positives (à partir du rang 1) et de limite nulle, elle ne peut donc être strictement croissante, d'où (i).

- 4) Supposoons trouvé $N \in \mathbb{N}$ tel que $u_N \geqslant N+2$. Soit, pour $n \geqslant N$, $\mathcal{P}(n)$ la propriété $u_n \geqslant n+2$.
 - $\mathcal{P}(N)$ est l'hypothèse faite ici.
 - Soit $n \ge N$, supposons $\mathscr{P}(n)$. Alors $u_n^2 \ge (n+2)^2$ donc $u_{n+1} \ge \frac{(n+2)^2}{n+1} \ge n+3$, en effet $(n+2)^2 = n^2 + 4n + 4 \ge n^2 + 4n + 3 = (n+1)(n+3)$, soit $\mathscr{P}(n+1)$.

On conclut par récurrence que $\forall n \geq N, u_n \geq n+2$.

5) Pour x = 1, on a $u_0 = 1 = u_1$ et $u_2 = \frac{1}{2} \le u_1$ donc u est de limite nulle, soit $1 \in E_0$. Pour x = 2, on a $u_0 = 2$, $u_1 = 4 \ge 3$ donc $\forall n \ge 1$, $u_n \ge n + 2$ donc u est de limite $+\infty$, soit $2 \in E_\infty$. La question c montre que pour tout x, on a soit $(u_n(x))$ strictement croissante (et positive), soit il existe $n \in \mathbb{N}$ tel que $u_{n+1}(x) \le u_n(x)$ et alors $(u_n(x))$ est de limite nulle. Dans tous les cas, $(u_n(x))$ admet une limite dans $\mathbb{R}_+ \cup \{+\infty\}$.

Or si $u_n(x) \xrightarrow[n \to +\infty]{} \ell \in \mathbb{R}_+$, alors $\frac{u_n(x)^2}{n+1} \xrightarrow[n \to +\infty]{} 0$ soit $u_{n+1}(x) \xrightarrow[n \to +\infty]{} 0$ donc $\ell = 0$. Donc pour tout x > 0, $(u_n(x))$ admet une limite égale à 0 ou à $+\infty$, c'est-à-dire que $\mathbb{R}_+^* = E_0 \cup E_\infty$.

Enfin pour $0 < x \le y$, on a par une récurrence immédiate $\forall n \in \mathbb{N}, u_n(x) \le u_n(y)$ donc $\lim_{n \to +\infty} u_n(x) \le \lim_{n \to +\infty} u_n(y)$. Donc si $y \in E_0$ alors $x \in E_0$. Finalement $\forall y \in E_0, \]0; y] \subset E_0$. E_0 est donc convexe donc c'est un intervalle.

De même si $x \in E_{\infty}$ alors $y \in E_{\infty}$. Finalement $\forall x \in E_{\infty}$, $[x; +\infty[\subset E_{\infty}. E_{\infty}]$ est donc convexe donc c'est un intervalle.

Planche 3:

1) Le théorème spectral dit que toute matrice symétrique réelle est diagonalisable, donc A_n l'est. Son rang est n comme le montre la succession d'opérations sur les colonnes suivante, conservant le rang. On commence par $C_j \leftarrow C_j - C_n$ pour $j \in \{1, \ldots, n-1\}$ et on enchaîne avec $C_1 \leftarrow C_1 - C_2 - \cdots - C_{n-1}$:

$$\begin{pmatrix} 1 & \cdots & \cdots & \cdots & 1 \\ \vdots & 1 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 1 & 0 & \cdots & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 1 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ 1 & \vdots & \ddots & \ddots & 0 \\ 0 & -1 & \cdots & -1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 1 & 0 & \cdots & 0 & 1 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ 0 & \vdots & \ddots & \ddots & 0 \\ n-2 & -1 & \cdots & -1 & 1 \end{pmatrix}.$$

Enfin, l'échange $C_1 \leftrightarrow C_n$ donne :

$$rg(A_n) = rg \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ 0 & \vdots & \ddots & \ddots & 0 \\ 1 & -1 & \cdots & -1 & n-2 \end{pmatrix} = n.$$

2) a) On valide import numpy as np et on utilise le script suivant :

```
A3 = np.ones((3, 3))
A3[1, 2] = 0
A3[2, 1] = 0
print(A3)
u = [0]*15
M = np.eye(3)
for k in range(15) :
u[k] = np.trace(M)
M = np.dot(M, A3)}
print(u)
```

L'exécution python renvoie [3, 3, 7, 15, 35, 83, 199, 479, 1155, 2787, 6727, 16239, 39203, 94643, 228487].

b) Pour calculer $B = A_3^3 - 3A_3^2 + A_3 + I_3$, on valide

```
A32 = np.dot(A3, A3)^ # calcul de A_3^2
A33 = np.dot(A32, A3)^ # calcul de A_3^3
B = A33 - 3*A32 + A3 + np.eye(3)
print(B)
```

Python renvoie la matrice nulle.

c) On multiplie, pour $n \ge 3$, cette relation par A_3^{n-3} et on prend la trace :

$$\forall n \geqslant 3, \quad u_n = 3u_{n-1} - u_{n-2} - u_{n-3}.$$

Ceci qui permet un calcul récursif avec python :

def u(p) :
 if p = = 0 :
 return 3
 if p = = 1 :
 return 3
 if p = = 2 :
 return 7
 else :
 return 3*u(p - 1) - u(p - 2) - u(p - 3)

3) a) Soit λ une valeur propre de A_n différente de 1. Il existe une colonne non nulle $X=(x_1,x_2,\ldots,x_n)^{\top}$ telle que:

$$\begin{cases} x_1 + x_2 + \cdots + x_n &= \lambda x_1 \\ x_1 + x_2 & &= \lambda x_2 \\ x_1 & + x_3 & &= \lambda x_3 \\ & & \vdots \\ x_1 & & + x_n &= \lambda x_n. \end{cases}$$

On a donc

$$\begin{cases} (1-\lambda)x_1 + x_2 + \dots + x_n &= 0 \\ \forall i \in [2, n], & x_i &= \frac{x_1}{\lambda - 1}, \end{cases}$$

ce qui impose que x_1 est non nul (sinon X le serait) et

$$1 - \lambda + \frac{n-1}{\lambda - 1} = 0.$$

La fonction f_n cherchée est donc $f_n(x) = x - 1 - \frac{n-1}{x-1}$.

b) Une valeur propre de A_n différente de 1 est donc racine de $(x-1)f_n(x) = x^2 - 2x - n + 2$, polynôme dont 1 n'est pas racine. Or 1 est une valeur propre évidente de A_n $(A_n - I_n$ n'est pas inversible) donc une valeur propre de A_n est solution de $(x^2 - 2x + n)(x - 1) = 0$ donc racine du polynôme $P_n(X) = X^3 - 3X^2 + (4 - n)X + (n - 2)$.

Remarque. Ce résultat est cohérent avec le cas n=3.

4) a) Une valeur propre évidente est $\gamma_n = 1$ puisque

$$A - I_n = \begin{pmatrix} 0 & 1 & \cdots & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

est de rang 2 donc (sachant que A est diagonalisable) $\gamma_n = 1$ est valeur propre de multiplicité égale à n-2. On trouve α_n et β_n , classiquement, avec la trace des deux matrices :

$$A_{n} = \begin{pmatrix} 1 & \cdots & \cdots & 1 \\ \vdots & 1 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 1 & 0 & \cdots & 0 & 1 \end{pmatrix} \quad \text{et} \quad A_{n}^{2} = \begin{pmatrix} n & 1 & 1 & \cdots & 1 \\ 1 & 2 & 1 & \cdots & 11 \\ 1 & 1 & 2 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 1 \\ 1 & 1 & \cdots & 1 & 2 \end{pmatrix}$$

Ce qui donne par similitude

$$\begin{cases} \alpha_n + \beta_n + n - 2 &= n \\ \alpha_n^2 + \beta_n^2 + (n - 2)1^2 &= 3n - 2 \end{cases} \text{ soit } \begin{cases} \alpha_n + \beta_n &= 2 \\ \alpha_n^2 + \beta_n^2 &= 2n, \end{cases}$$

et en substituant $\beta_n = 2 - \alpha_n$ dans la deuxième équation, on voit que α_n et β_n sont solution de : $x^2 - 2x + 2 - n = 0$. On sait (mais on retrouve aussi) que 1 n'est pas racine de cette équation et le discriminant réduit de cette équation du second degré est $\Delta' = n - 1$. Il est non nul donc $\alpha_n = 1 - \sqrt{n-1}$ et $\beta_n = 1 + \sqrt{n-1}$ en sont les racines distinctes, et distinctes de 1.

- b) Le système considéré est alors de Cramer (Vandermonde non nul).
- c) Script en python permettant de résoudre ce système, le format n étant donné.

```
n = 8
A = np.eye(n)
for i in range(1, n) :
    A[0, i] = A[i, 0] = 1
print(A)
v = alg.eigvals(A)
print(v)^ # on remarque que python semble renvoyer dans l'ordre alpha, beta, 1, ..., 1
M = np.array([[1, v[0], v[0]**2], [1, v[1], v[1]**2], [1, v[2], v[2]**2]])
Y = np.array([v[0]**4, v[1]**4, v[2]**4]
X = np.linalg.solve(M, Y)
print(X)
```

d) Les valeurs 3 propres de A_n annulent donc le polynôme $X^4 - zX^2 - yX - x$ donc A_n aussi puisqu'elle est diagonalisable. Vérifions-le avec python

```
A2 = np.dot(A, A) # calcul de A_n^2
A3 = np.dot(A2, A) # calcul de A_n^3
A4 = np.dot(A3, A) # calcul de A_n^4
C = A4 - X[2]*A2 - X[1]*A - X[0]*np.eye(n)
print(C)
et ça marche !!!
```

Planche 4:

- 1) Si |x| < 1 est fixé, les trois termes généraux des séries étudiées sont équivalents à des termes généraux de séries géométriques de raison x ou x^2 , donc les trois séries convergent absolument, donc convergent. Si $|x| \ge 1$, la première série est grossièrement divergente, et les deux autres sont soit grossièrement divergentes, soit ne sont même pas définies. En conclusion, les domaines de définition de S_1 , S_2 , S_3 sont les mêmes et valent]-1,1[.
- 2) Voici les fonctions utilisées pour cette question et la suivante.

```
def S1(n, x) :
    resultat = 0
    for k in range(1, n + 1) :
        resultat = resultat +log(1 + x**(2*k))
```

```
return(resultat)
def S2(n, x) :
    resultat = 0
    for k in range(1, n + 1):
        resultat = resultat +log(1 + x**(2*k - 1))
    return(resultat)
def S3(n, x) :
    resultat = 0
    for k in range(1, n + 1):
        resultat = resultat +log(1 - x**(2*k + 1))
    return(resultat)
def S(n, x) :
    return(S1(n, x)+S2(n, x)+S3(n, x))
def trace_sommes_partielles(n) :
    x = linspace(-0.9, 0.9, 100)
    y1 = S1(n, x)
    y2 = S2(n, x)
    y3 = S3(n, x)
    grid()
    title("Graphes des sommes partielles d'ordre "+ str(n)+" de S1, S2 et S3 sur ]-1, 1[")
    xlabel("x")
    axhline(color = "black")
    axvline(color = "black")
    plot(x, y1, color = "red")
    plot(x, y2, color = "blue")
    plot(x, y3, color = "green")
    show()
def trace_somme_des_trois_sommes_partielles(n) :
    x = linspace(-0.9, 0.9, 100)
    y = S(n, x)
    grid()
    title("Graphe de la somme des trois partielles d'ordre "+ str(n)+" sur ]-1, 1[")
    xlabel("x")
    axhline(color = "black")
    axvline(color = "black")
    plot(x, y, color = "red")
    show()
```

Voici les graphes des sommes partielles d'ordre 2 et 10, tracés en fait sur l'intervalle $\left[-\frac{9}{10}, \frac{9}{10}\right]$:

3) Et voici les graphes de la somme des trois sommes partielles d'ordre 2, 10 et 100 :

On conjecture que $S_1 + S_2 + S_3$ est identiquement nulle sur]-1,1[.

4) On pose $u_n : x \in]-1, 1[\mapsto \ln(1+x^{2n}), v_n : x \in]-1, 1[\mapsto \ln(1+x^{2n-1}), w_n : x \in]-1, 1[\mapsto \ln(1-x^{2n-1}).$ Ces fonctions sont de classe \mathscr{C}^1 avec

$$\forall x \in]-1,1[, \quad u_n'(x) = \frac{2nx^{2n-1}}{1+x^{2n}}, \quad v_n'(x) = \frac{(2n-1)x^{2n-2}}{1+x^{2n-1}}, \quad w_n'(x) = -\frac{(2n-1)x^{2n-2}}{1-x^{2n-1}}.$$

Soit $a \in [0,1[$. La norme uniforme commune aux fonctions $x \mapsto \frac{1}{1+x}$ et $x \mapsto \frac{1}{1-x}$ sur [-a,a] est $K := \frac{1}{1-a}$. Comme $x \in [-a,a]$ implique $\{x^{2n},x^{2n-1},-x^{2n-1}\} \subset [-a,a]$, on en déduit que

$$\|u_n'\|_{\infty}^{[-a,a]} \le 2na^{2n-1}, \quad \|v_n'\|_{\infty}^{[-a,a]} \le (2n-1)Ka^{2n-2}, \quad \|w_n'\|_{\infty}^{[-a,a]} \le (2n-1)Ka^{2n-2}.$$

Les théorèmes de croissance comparées montrent alors que les trois séries dérivées $\sum u'_n$, $\sum v'_n$ et $\sum w'_n$ convergent normalement sur [-a, a]. Comme la convergence simple des trois séries elles-mêmes sur]-1,1[a été prouvée à la question précédente, on déduit du théorème de dérivation que S_1 , S_2 et S_3 sont de classe \mathscr{C}^1 sur]-1,1[, et que

$$\forall x \in]-1,1[, \quad S_1'(x) = \sum_{n=1}^{+\infty} \frac{2nx^{2n-1}}{1+x^{2n}}, \quad S_2'(x) = \sum_{n=1}^{+\infty} \frac{(2n-1)x^{2n-2}}{1+x^{2n-1}}, \quad S_3'(x) = -\sum_{n=1}^{+\infty} \frac{(2n-1)x^{2n-2}}{1-x^{2n-1}}.$$

5) On pose $S = S_1 + S_2 + S_3$. Soit $x \in]-1,1[$. Dans la somme S(x), on regroupe les termes provenant de $S_2(x)$ et $S_3(x)$, en profitant de ce que $(1-x^{2n-1})(1-x^{2n+1})=1-x^{4n-2}$:

$$S(x) = \sum_{n=1}^{+\infty} \ln(1+x^{2n}) + \sum_{n=1}^{+\infty} \ln(1-x^{4n-2}).$$

On sépare ensuite, dans la première somme, les termes d'indice pair de ceux d'indice impair : $\sum_{n=1}^{+\infty} \ln(1+x^{2n}) = \sum_{n=1}^{+\infty} \ln(1+x^{4n}) + \sum_{n=1}^{+\infty} \ln(1+x^{4n-2}).$ Cette séparation est légitime car les

deux séries qu'on vient d'écrire convergent, et elle permet le regroupement des termes $\ln(1+x^{4n-2})$ et $\ln(1-x^{4n-2})$:

$$S(x) = \sum_{n=1}^{+\infty} \ln(1 + x^{4n}) + \sum_{n=1}^{+\infty} \ln(1 - x^{8n-4}).$$

On a alors l'idée de démontrer par récurrence sur $p \in \mathbb{N}^*$ que

$$\forall x \in]-1,1[, \quad S(x) = \underbrace{\sum_{n=1}^{+\infty} \ln\left(1 + x^{2^{p}n}\right)}_{u_{p}(x)} + \underbrace{\sum_{n=1}^{+\infty} \ln\left(1 - x^{2^{p}(2n-1)}\right)}_{v_{p}(x)}. \tag{\mathscr{H}_{p}}$$

Les propriétés (\mathcal{H}_1) et (\mathcal{H}_2) ont été établies plus haut. Si (\mathcal{H}_p) est vraie, alors, en séparant les termes pour n pair de ceux pour n impair dans la première somme, puis en regroupant ces derniers avec ceux de la seconde somme, on obtient :

$$\forall x \in]-1,1[, \quad S(x) = \sum_{n=1}^{+\infty} \ln\left(1 + x^{2^{p+1}n}\right) + \sum_{n=1}^{+\infty} \ln\left(1 + x^{2^{p}(2n-1)}\right) + \sum_{n=1}^{+\infty} \ln\left(1 - x^{2^{p}(2n-1)}\right)$$
$$= \sum_{n=1}^{+\infty} \ln\left(1 + x^{2^{p+1}n}\right) + \sum_{n=1}^{+\infty} \ln\left(1 - x^{2^{p+1}(2n-1)}\right) = u_{p+1}(x) + v_{p+1}(x).$$

C'est bien la propriété (\mathscr{H}_{p+1}) . Il convient de noter que le membre de gauche, S(x), est indépendant de p. On va alors montrer que S(x) = 0 en fixant $x \in]-1,1[$, et en faisant varier p.

Comme l'exposant $2^p n$ est pair, $x^{2^p n}$ est positif, donc on peut lui appliquer l'encadrement $\forall y \in \mathbb{R}_+, \ 0 \leq \ln(1+y) \leq y$. On obtient alors

$$0 \leqslant \sum_{n=1}^{+\infty} \ln\left(1 + x^{2^p n}\right) \leqslant \sum_{n=1}^{+\infty} x^{2^p n} = \frac{x^{2^p}}{1 - x^{2^p}}.$$

Comme le majorant tend vers zéro quand p tend vers $+\infty$, on a déjà prouvé que la suite $(u_p(x))_{p\in\mathbb{N}^*}$ converge vers zéro. On ne dispose pas d'inégalités aussi efficaces pour établir la convergence de la suite $(v_p(x))_{p\in\mathbb{N}^*}$, mais on va se contenter d'appliquer l'équivalent $\ln(1+y) \sim y$ en zéro. On en déduit l'existence de $\varepsilon_0 > 0$ tel que $\forall y \in [-\varepsilon_0, \varepsilon_0], |\ln(1+y)| \leq \frac{3}{2}|y|$. Comme on dispose de la majoration uniforme en n suivante

$$\forall n \in \mathbb{N}^*, \quad \left| -x^{2^p(2n-1)} \right| \leqslant x^{2^p},$$

et comme x^{2^p} tend vers zéro quand p tend vers $+\infty$, il existe $p_0 \in \mathbb{N}^*$ tel que $\forall n \in \mathbb{N}^*$, $|\ln(1 - x^{2^p(2n-1)})| \leq \frac{3}{2}x^{2^p(2n-1)}$. Par suite,

$$\forall p \geqslant p_0, \quad |v_p(x)| \leqslant \frac{3}{2} \sum_{n=1}^{+\infty} x^{2^p(2n-1)} = \frac{3}{2} \frac{x^{2^p}}{1 - x^{2^{p+1}}}.$$

Cela prouve que la suite $(v_p(x))_{p\in\mathbb{N}^*}$ converge vers zéro et, finalement, que S(x)=0, pour tout $x\in]-1,1[$. La conjecture est prouvée. On remarque pour terminer que, comme l'indiquent les graphes de la question 3), la convergence de $(S_n(x))_{n\in\mathbb{N}^*}$ vers la fonction nulle ne semble pas uniforme sur]-1,1[.