Assumption 4.1. The following assumptions are imposed on the cost function ${\mathcal J}$

- 1. There exist $\tilde{\theta}$ such that $\mathcal{J}(\tilde{\theta}) = \inf_{\theta} \mathcal{J}(\theta) =: \underline{J}$. Also, it is bounded from above by $\sup \mathcal{J} \leq \overline{J}$.
- 2. The cost function \mathcal{J} is locally Lipschitz continuous $\|\mathcal{J}[\theta_1] \mathcal{J}[\theta_2]\| \le L_J(\|\theta_1\| + \|\theta_2\|)\|\theta_1 \theta_2\|$.
- 3. There exists a constant $c_{\mathcal{J}} > 0$ such that $\mathcal{J}(\theta) \underline{J} \leq c_{\mathcal{J}}(1 + \|\theta\|^2)$.
- 4. There exist $\delta_J, R_0, \eta, \mu > 0$ such that $\|\theta \tilde{\theta}\| \leq \frac{(\mathcal{J} \underline{J})^{\mu}}{\eta}$, for all $\theta \in B_{\theta, R_0}(\tilde{\theta}) = \{\theta : \|\theta \tilde{\theta}\| \leq R_0\}$, and $\mathcal{J}(\theta) \underline{J} > \delta_J$ for all $\theta \in \left(B_{\theta, R_0}(\tilde{\theta})\right)^c$.
- 5. The parameters we choose $\sigma(t)$ has upper and lower bound $\underline{\sigma} \leq \sigma(t) \leq \overline{\sigma}$.

Lemma D.2 Under Assumption 4.1, $\forall r > 0$, we define $J_r := \sup_{\theta \in B_{\theta,r}(\tilde{\theta})} \mathcal{J}(\theta)$. Then $\forall r \in [0, R_0]$ and q > 0 such that $(q + J_r - \underline{J})^{\mu} \leq \delta_J$, we have

$$\|\mathcal{M}_{\beta}[\mu] - \tilde{\theta}\| \leq \frac{(q + J_r - \underline{J})^{\mu}}{\eta} + \frac{\exp(-\beta q)}{\rho(B_{\theta,r}(\tilde{\theta}))} \int \|\theta - \tilde{\theta}\| d\rho(\theta,\omega).$$

Proof. Let $\tilde{r} = \frac{(q+J_r-\underline{J})^{\mu}}{\eta} \ge \frac{(J_r-\underline{J})^{\mu}}{\eta} \ge r$, we have

$$\begin{aligned} \|\mathcal{M}_{\beta}[\mu] - \tilde{\theta}\| &\leq \int_{B_{\theta,\tilde{r}}(\tilde{\theta})} \|\theta - \tilde{\theta}\| \frac{w_{\beta}(\theta)}{\|w_{\beta}(\theta)\|_{L^{1}(\rho)}} d\rho + \int_{B_{\theta,\tilde{r}}^{c}(\tilde{\theta})} \|\theta - \tilde{\theta}\| \frac{w_{\beta}(\theta)}{\|w_{\beta}(\theta)\|_{L^{1}(\rho)}} d\rho \\ &\leq \tilde{r} + \int_{B_{\theta,\tilde{r}}^{c}(\tilde{\theta})} \|\theta - \tilde{\theta}\| \frac{w_{\beta}(\theta)}{\|w_{\beta}(\theta)\|_{L^{1}(\rho)}} d\rho. \end{aligned}$$

By Markov's inequality, we have $||w_{\beta}||_{L^{1}(\rho)} \geq a\rho(\{(\theta,\omega) : \exp(-\beta \mathcal{J}(\theta) \geq a)\})$. By choosing $a = \exp(-\beta J_r)$, we have

$$||w_{\beta}||_{L^{1}(\rho)} \ge \exp(-\beta J_{r})\rho\left(\{(\theta,\omega) : \exp(-\beta J(\theta)) \ge \exp(-\beta J_{r}))\}\right)$$

$$= \exp(-\beta J_{r})\rho\left(\{(\theta,\omega) : J(\theta) \le J_{r})\}\right)$$

$$\ge \exp(-\beta J_{r})\rho(B_{\theta,r}(\tilde{\theta})),$$

where the second inequality comes from the definition of J_r . Thus for the second term in (1), we obtain

$$\int_{B_{\theta,\bar{r}}^{c}(\tilde{\theta})} \|\theta - \tilde{\theta}\| \frac{w_{\beta}(\theta)}{\|w_{\beta}(\theta)\|_{L^{1}(\rho)}} d\rho \leq \frac{1}{\exp(-\beta J_{r})\rho(B_{\theta,r}(\tilde{\theta}))} \int_{B_{\theta,\bar{r}}^{c}(\tilde{\theta})} \|\theta - \tilde{\theta}\| w_{\beta}(\theta) d\rho$$

$$\leq \frac{\exp(-\beta(\inf_{B_{\theta,\bar{r}}^{c}(\tilde{\theta})} J(\theta) - J_{r}))}{\rho(B_{\theta,r}(\tilde{\theta})} \int_{B_{\theta,\bar{r}}^{c}(\tilde{\theta})} \|\theta - \tilde{\theta}\| d\rho$$

$$\leq \frac{\exp(-\beta(\inf_{B_{\theta,\bar{r}}^{c}(\tilde{\theta})} J(\theta) - J_{r}))}{\rho(B_{\theta,r}(\tilde{\theta}))} \int \|\theta - \tilde{\theta}\| d\rho.$$

We also notice

$$\inf_{B_{\theta,\bar{r}}^{\sigma}(\tilde{\theta})} J(\theta) - J_r \ge \min\{\delta_J + \underline{J}, (\eta \tilde{r})^{1/\mu} + \underline{J}\} - J_r \ge (\eta \tilde{r})^{1/\mu} - J_r + \underline{J} = q,$$

where the first inequality comes from Assumption 4.1 and the second inequality comes from the definition of \tilde{r} and q, $\tilde{r} = \frac{(q+J_r-J)^{\mu}}{\eta} \leq \frac{\delta_J}{\eta}$. Combining the above inequality and the definition of \tilde{r} , we have

$$\|\mathcal{M}_{\beta}[\mu] - \tilde{\theta}\| \leq \frac{(q + J_r - \underline{J})^{\mu}}{\eta} + \frac{\exp(-\alpha(\inf_{B_{\theta,r}^c(\tilde{\theta})} J(\theta) - J_r))}{\rho(B_{\theta,r}(\tilde{\theta}))} \int \|\theta - \tilde{\theta}\| d\rho$$
$$\leq \frac{(q + J_r - \underline{J})^{\mu}}{\eta} + \frac{\exp(-\beta q)}{\rho(B_{\theta,r}(\tilde{\theta}))} \int \|\theta - \tilde{\theta}\| d\rho.$$

Theorem 4.5 Let \mathcal{J} satisfy the Assumption 4.1. Moreover, let $\rho_0 \in \mathcal{P}_4(\mathbb{R}^{2D})$ and $(\tilde{\theta},0) \in supp(\rho_0)$. By choosing parameters $\sigma(t)$ is exponentially decaying as $\sigma(t) = \sigma_1 \exp(-\sigma_2 t)$ with $\sigma_1 > 0$ and $\sigma_2 > 1$ and $\lambda = \max\{m, \gamma_1\} \geq 2\sigma_2$ and $\gamma = \min\{\gamma_1, \gamma_2\} > 0$. Fix any $\epsilon \in (0, E[\rho_0])$ and $\tau \in (0, 1 - \frac{2\sigma_2}{\lambda})$, and define the time horizon

$$T^* := \frac{1}{(1-\tau)\lambda} \log \left(\frac{E[\rho_{T_0}]}{\epsilon} \right) \tag{2}$$

Then there exists $\beta > 0$ such that for all $\beta > \beta_0$, if $\rho \in \mathcal{C}([0, T^*], \mathcal{P}_4(\mathbb{R}^{2D}))$ is a weak solution to the Fokker-Planck equation in the time interval $[0, T^*]$ with initial condition ρ_0 , we have

$$\min_{t \in [0, T^*]} E[\rho_t] \le \epsilon.$$

Furthermore, until $E[\rho_t]$ reaches the prescribed accuracy ϵ , we have the exponential decay

$$E[\rho_t] \le E[\rho_0] \exp(-(1-\tau)\lambda t) \tag{3}$$

and, up to a constant, the same behavior for $W_2^2(\rho_t, \delta_{(\tilde{\theta}, 0)})$.

Proof of Theorem 4.5. We choose parameters β such that

$$\beta > \beta_0 := \frac{1}{q_{\epsilon}} \left(\log \left(\frac{4\sqrt{2E[\rho_0]}}{c(\tau, \lambda)\sqrt{\epsilon}} + \frac{p}{(1-\tau)\lambda} \log \left(\frac{E[\rho_0]}{\epsilon} \right) - \log \rho_0(B_{\frac{r_{\epsilon}}{2}}(\tilde{\theta}, 0)) \right) \right),$$

where we introduce

$$\mathbf{c}(\tau,\lambda) = \frac{\tau\gamma}{\lambda}, \quad q_{\epsilon} = \frac{1}{2}\min\left\{\left(\frac{\underline{c}(\tau,\lambda)\sqrt{\epsilon\eta}}{2}\right)^{1/\mu}, \delta_J\right\}, \text{ and } r_{\epsilon} = \max_{x \in [0,R_0]}\{\max_{(\theta,\omega) \in B_s(\bar{\theta},0)} J(\theta) \leq q_{\epsilon} + \underline{J}\},$$

and define the time horizon $T_{\beta} \geq 0$, which may depend on β , by

$$T_{\beta} = \sup\{t \geq 0 : E[\mu_{t'}] > \epsilon \text{ and } \|\mathcal{M}_{\beta}[\mu_{t'}] - \tilde{\theta}\| < C(t') \text{ for all } t' \in [0, t]\}$$

with $C(t) = c(\tau, \lambda)\sqrt{E(\rho_t)}$. First we want to prove $T_{\beta} > 0$, which follows from the continuity of the mappings $t \to E[\rho_t]$ and $t \to \|\mathcal{M}_{\beta}[\mu_t] - \tilde{\theta}\|$ since $E[\rho_0] > 0$ and $\|\mathcal{M}_{\beta}[\mu_0] - \tilde{\theta}\| < C(0)$. While the former holds by assumption, the latter follows by

$$\|\mathcal{M}_{\beta}[\mu_{0}] - \tilde{\theta}\| \leq \frac{(q_{\epsilon} + J_{r_{\epsilon}} - \underline{J})^{\mu}}{\eta} + \frac{\exp(-\beta q_{\epsilon})}{\rho(B_{\theta, r_{\epsilon}}(\tilde{\theta}))} \int \|\theta - \tilde{\theta}\| d\rho_{0}(\theta, \omega)$$

$$\leq \frac{(q_{\epsilon} + J_{r_{\epsilon}} - \underline{J})^{\mu}}{\eta} + \frac{\exp(-\beta q_{\epsilon})}{\rho(B_{r_{\epsilon}}(\tilde{\theta}, 0))} \int \|\theta - \tilde{\theta}\| d\rho_{0}(\theta, \omega)$$

$$\leq \frac{c(\tau, \lambda)\sqrt{\epsilon}}{2} + \frac{\exp(-\beta q_{\epsilon})}{\rho(B_{r_{\epsilon}}(\tilde{\theta}, 0))} \sqrt{2E[\rho_{0}]}$$

$$\leq c(\tau, \lambda)\sqrt{\epsilon} \leq c(\tau, \lambda)\sqrt{E[\rho_{0}]} = C(0),$$

where we use the definition of β in the first inequality of the last line. Recall the Lemma ??, up to time T_{β}

$$\frac{\mathrm{d}}{\mathrm{d}t}E[\rho_t] \le -\gamma E[\rho_t] + \lambda \sqrt{E[\rho_t]} \|\mathcal{M}_{\beta}[\mu_t] - \tilde{\theta}\| + \frac{\sigma^2(t)D(m+1)}{2}$$
$$\le -(1-\tau)\gamma E[\rho_t] + \frac{\sigma^2(t)D(m+1)}{2}.$$

Thus we have

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\exp\left((1-\tau)\gamma t \right) E[\rho_t] \right) = (1-\tau)\gamma \left(\exp\left((1-\tau)\gamma t \right) E[\rho_t] \right) + \exp\left((1-\tau)\gamma t \right) \frac{\mathrm{d}}{\mathrm{d}t} E[\rho_t]
\leq \exp\left((1-\tau)\gamma t \right) \frac{\sigma^2(t)D(m+1)}{2}.$$

Therefore we have

$$(\exp((1-\tau)\gamma t) E[\rho_t]) - E[\rho_0] \le \int_0^t \exp((1-\tau)\lambda s) \sigma^2(s) ds$$
$$= \frac{\sigma_1^2 (1 - \exp((-2\sigma_2 + \lambda(1-\tau))t)}{2\sigma_2 - \lambda(1-\tau)}.$$

We can get the boundedness for $E[\rho_t]$, for $2\sigma_2 - \lambda(1-\tau) < 0$ by the chosen of τ and λ , then we have

$$E[\rho_t] \le \exp(-(1-\tau)t\lambda) E[\rho_0].$$

Accordingly, we note that $E(\rho_t)$ is decreasing in t, which implies the decay of the function C(t) as well. Hence, recalling the definition of T_{β} , we may bound $\max_{t \in [0,T_{\beta}]} \|\mathcal{M}_{\beta}[\rho_{t'}] - \tilde{\theta}\| \leq \max_{t \in [0,T_{\beta}]} C(t) \leq C(0)$. We now conclude by showing $\min_{t \in [0,T_{\beta}]} E(\rho_t) \leq \epsilon$ with $T_{\beta} \leq T^*$. For this, we distinguish the following three cases.

Case $T_{\beta} \geq T^*$: If $T_{\beta} \geq T^*$, we can use the definition of $T^* = \frac{1}{(1-\tau)\lambda} \log(\frac{E[\rho_0]}{\epsilon})$

and the time evolution bound of $E[\rho_t]$ to conclude that $E[\rho_{T^*}] \leq \epsilon$. Hence, by definition of T_{β} , we find $E[\rho_{T_{\beta}}] \leq \epsilon$ and $T_{\beta} = T^*$.

Case $T_{\beta} < T^*$ and $E[\rho_{T_{\beta}}] \le \epsilon$: Nothing need to discussed in this case. Case $T_{\beta} < T^*$ and $E[\rho_{T_{\beta}}] > \epsilon$: We shall prove that this case will never occur.

$$\|\mathcal{M}_{\beta}[\mu_{T_{\beta}}] - \tilde{\theta}\| \leq \frac{(q_{\epsilon} + J_{r_{\epsilon}} - \underline{J})^{\mu}}{\eta} + \frac{\exp(-\beta q_{\epsilon})}{\rho(B_{\theta, r_{\epsilon}}(\tilde{\theta}))} \int \|\theta - \tilde{\theta}\| d\rho_{T_{\beta}}(\theta, \omega)$$
$$< \frac{c(\tau, \lambda)\sqrt{E[\rho_{T_{\beta}}]}}{2} + \frac{\exp(-\beta q_{\epsilon})}{\rho(B_{\theta, r_{\epsilon}}(\tilde{\theta}))} \sqrt{E[\mu_{T_{\beta}}]}.$$

Since, we have $\max_{t \in [0,T_{\beta}]} \|\mathcal{M}_{\beta}[\mu_{t'}] - \tilde{\theta}\| = B = C(0)$ guarantees that there exist a p > 0 with

$$\rho_{T_{\beta}}(B_{\theta,r_{\epsilon}}(\tilde{\theta})) \ge \left(\int \phi_{r_{\epsilon}}(\theta,\omega) d\rho_{0}(\theta,\omega) \right) \exp(-pT_{\beta}) \ge \frac{1}{2} \rho_{0} \left(B_{\frac{r_{\epsilon}}{2}}(\tilde{\theta},0) \right) \exp(-pT^{*}), \tag{4}$$

where we used $(\tilde{\theta}, 0) \in supp(\rho_0)$ for bounding the initial mass ρ_0 and the fact that ϕ_r is bounded from below on $B_{\frac{r_s}{2}}(\tilde{\theta}, 0)$ by 1/2. With this, we can conclude that

$$\|\mathcal{M}_{\beta}[\mu_{T_{\beta}}] - \tilde{\theta}\| < \frac{c(\tau, \lambda)\sqrt{E[\rho_{T_{\beta}}]}}{2} + \frac{2\exp(-\beta q_{\epsilon})}{\rho(B_{\frac{r_{\epsilon}}{2}}(\tilde{\theta}, 0))\exp(-pT^{*})}\sqrt{E[\rho_{T_{\beta}}]}$$
$$\leq c(\tau, \lambda)\sqrt{E[\rho_{T_{\beta}}]} = C(T_{\beta}),$$

where the first inequality in the last line holds by the choice of β . This establishes the desired contradiction, against the consequence of the continuity of the mappings $t \to E[\rho_t]$ and $t \to \|\mathcal{M}_{\beta}[\mu_t] - \tilde{\theta}\|$.