1 Аннотация

Целью данной работы является изучение конструкции Т-многообразий сложности 1 в терминах CDP (комбинаторных дивизориальных многогранников) и компьютерная реализация этих многообразий и некоторых их свойств. В данной работе был разработан и реализован алгоритм проверки CDP на эквивалентность, а также была реализована генерация CDP из многогранников. Весь код написан на руthon3 с использованием библиотеки sagemath.

Содержание

1	Анн	кирате	1
2	Вве	ение	3
	2.1	Торические многообразия	3
	2.2	CDP и Т-многообразия	6
	2.3	Преобразования CDP	7
	2.4	Эквивалентность	7
	2.5	Генерация CDP из многогранников	8
3	Ком	ьютерная реализация CDP	9
	3.1	Преобразования CDP	12
	3.2	Алгоритм проверки эквивалентности	14
		3.2.1 Описание	14
		3.2.2 Поиск матрицы преобразования	16
		3.2.3 Примеры работы:	17
		3.2.4 Доказательство корректности	18
	3.3	Алгоритм генерации CDP из многогранников	22
		3.3.1 Примеры работы алгоритма	22
4	При	ожение	25
	4.1	piecewise_affine_function.py	25
	4.2	cdp.py	28
	43	generate cdn ny	34

2 Введение

Библиотека sagemath предоставляет функционал для работы с нормальными торическими многообразиями, однако торические многообразия покрывают лишь малую часть многообразий с эффективным действием тора на них. Большинство этих многообразий сложны для реализации, однако существует подкласс таких многообразий - Т-многообразия сложности 1 - имеющий удобное для хранения представление.

Для понимания теории, связанной с Т-многообразиями, необходимо понимание теории торических многообразий. Торические многообразия — это алгебраические многообразия, возникающие из элементарных геометрических и комбинаторных объектов, таких как выпуклые многогранники в евклидовом пространстве с вершинами в точках решетки. Поскольку многие понятия алгебраической геометрии, такие как особенности, бирациональные отображения, циклы, гомологии, переводятся в простые факты о многогранниках, торические многообразия представляют собой хороший источник примеров в алгебраической геометрии. С другой стороны, общие факты из алгебраической геометрии имеют значение для таких многогранников, например, для проблемы количества содержащихся в них узлов решетки. Несмотря на то, что торические многообразия занимают особое место в спектре всех алгебраических многообразий, они обеспечивают чрезвычайно полезную испытательную площадку для общих теорий. ([2])

Все определения взяты из [1].

2.1 Торические многообразия

Пусть $N\simeq \mathbb{Z}^n$ - решетка размерности n, $M\simeq \mathbb{Z}^n$ - двойственная к ней решетка. Определим $N_{\mathbb{Q}}=N\otimes_{\mathbb{Z}}\mathbb{Q}\simeq \mathbb{Q}^n,\ M_{\mathbb{Q}}=M\otimes_{\mathbb{Z}}\mathbb{Q}\simeq \mathbb{Q}^n,$ аналогично определим $N_{\mathbb{R}}\simeq \mathbb{R}^n,\ M_{\mathbb{R}}\simeq \mathbb{R}^n$

Определение 2.1 (Рациональный выпуклый полиэдральный конус). Пусть $S\subset N$ - конечное подмножество. Рациональным выпуклым полиэдральным конусом называется $\sigma=Cone(S)=\{\sum_{u\in S}\lambda_uu|\lambda_u\geq 0\}\subseteq N_\mathbb{R}$

Определение 2.2 (Двойственный конус). Пусть $\sigma \subset N_{\mathbb{R}}$ - полиэдральный конус. Тогда двойственным конусом называется $\sigma^{\vee} = \{m | \langle u, m \rangle \geq 0 \forall u \in \mathbb{R} \}$

 $\sigma\}\subseteq M_{\mathbb{R}}$

Пусть $m\in M$, определим гиперплоскость $H_m=\{b\in N_{\mathbb{R}}|\langle v,m\rangle=0\}$ и замкнутое полупространство $H_m^+=\{v\in N_{\mathbb{R}}|\langle v,m\rangle\geq 0\}$

Определение 2.3 (Опорная гиперплоскость). Гиперплоскость H_m называется опорной для σ , если H_m^+ содержит σ .

Определение 2.4 (Грань конуса). Гранью конуса σ называется его пересечение с опорной гиперплоскостью.

Пусть \mathbb{C}^n - афинное пространство, $\mathbb{C}[z_1,\dots,z_n]=\mathbb{C}[z]$ - кольцо регулярных функций на \mathbb{C}^n .

Определение 2.5 (Афинное алгебраическое множество). Пусть $I \subset \mathbb{C}[z]$ - идеал, тогда множество общих нулей всех его многочленов $V(I) = \{z \in \mathbb{C}^n | f(z) = 0\} \forall f \in I$ называется афинным алгебраическим множеством.

Определение 2.6 (Афинное многообразие). Афинное алгебраическое множество V неприводимо, если его нельзя представить в виде объединения двух афинных алгебраических множеств, являющихся строгими подмножествами V. Неприводимое афинное алгебраическое множество называется афинным многообразием.

Определение 2.7. Пусть $V \subset \mathbb{V}^n$ — некоторое множество точек. Тогда идеалом, порождённым V, называется $I(V) = \{f \in \mathbb{C}[z] | f(z) = 0 \forall z \in V\}.$

Определение 2.8 (Координатное кольцо). Пусть $V \subset \mathbb{C}^n$ — некоторое аффинное многообразие. Тогда назовём координатным кольцом V кольцо $\mathbb{C}[V] = \mathbb{C}[z]/I(V)$.

Определение 2.9 (Нормальное афинное многообразие). Афинное многообразие $V \subset \mathbb{C}^n$ называется нормальным, если его координатное кольцо является областью целостности.

Определение 2.10 (Афинная полугруппа). Конечно-порожденная полугруппа S называется афинной, если она изоморфна некоторой полугруппе \mathbb{Z}^n .

Определение 2.11 (Афинное торическое многообразие). Пусть дан конус $\sigma \subset N_{\mathbb{R}}$ и его двойственный конус $\sigma^{\vee} \subset M_{\mathbb{R}}$. Тогда $S_{\sigma} = \sigma^{\vee} \cap M$ - конечнопорожденная афинная полугруппа, $V_{\sigma} = Spec(\mathbb{C}[S_{\sigma}])$ называется афинным торическим многообразием, порожденным конусом σ (Spec - спектр кольца $\mathbb{C}[S_{\sigma}]$, то есть множество максимальных идеалов).

Определение 2.12 (Тор). Множество $\mathbb{T} = (\mathbb{C}^*)^n$ называется алгебраическим тором.

Пусть $\sigma \subset N_{\mathbb{R}}$ - полиэдральный конус. Афинное торическое многообразие X_{σ} содержит тор $\mathbb{T} = (\mathbb{C}^*)^n$ в качестве открытого плотного подмножества в топологии Зарисского ([1]).

Определение 2.13 (Веер). Веером Σ на $N_{\mathbb{R}}$ называется объединение полиэдральных выпуклых рациональных конусов в $N_{\mathbb{R}}$ таких что:

- 1. Грань конуса в Σ является конусом в Σ
- 2. Пересечение любых двух конусов в Σ является гранью обоих

Определение 2.14 (Торическое многообразие). Любой конус по определению является веером. Каждый конус веера Σ задает афинное торическое многообразие. Пересечение любых двух из них также является конусом в Σ . Можно построить склейку данных многообразий по их подмногообразиям и получить многообразие веера V_{Σ} , называемое торическим многообразием.

Каждое торическое многообразие размерности n содержит тор $\mathbb{T}=(\mathbb{C}^*)^n$ в качестве открытого плотного подмножества в торологии Зарисского ([1]).

Определение 2.15 (Простой дивизор). Простым дивизором D многообразия X называется подмногообразие коразмерности 1, то есть dim D = dim X - 1

Каждый простой дивизор порождает подкольцо. Множество всех простых дивизоров порождает свободную абелеву группу, обозначим ее Div(X). Элементы этой группы называются дивизорами Вейля, они могут быть записаны в виде формальной суммы $D = \sum_i n_i A_i - \sum_j m_j B_j, n_i, m_j > 0$, где A_i, B_j - простые дивизоры.

2.2 CDP и Т-многообразия

Определения взяты из [3], [5], [4].

Пусть задана решетка N, \square - многогранник с вершинами в узлах решетки, \square° - внутренность многогранника, $\partial\square$ - его граница.

Определение 2.16 (Дивизориальный многогранник). Дивизориальный многогранник на гладкой проективной кривой Y относительно решетки N - это кусочно-линейная вогнутая функция $\Psi = \sum_{P \in Y} \psi_P \cdot P : \square \to Div_{\mathbb{Q}}Y$, область определения которой - многогранник \square на решетке N, область значений - подмножество группы \mathbb{Q} -дивизоров на Y, такая что

- 1. $deg\Psi(u) > 0$ для $u \in \square^{\circ}$
- 2. $deg\Psi(u) > 0$ или $\Psi(u) \sim 0$ для $u \in \square$
- 3. График ψ_P имеет целочисленные вершины для всех $P \in Y$

, где
$$deg\Psi(u) = \sum_{P \in Y} \psi_P$$

Определение 2.17 (Т-многообразие). Т-многообразием сложности k называется нормальное многообразие X над \mathbb{C}_n эффективным действием тора $T \simeq (\mathbb{C}^*)^{n-k}$

Как видно из определения, торические многообразия являются T-многообразиями сложности 0.

Дивизориальные многогранники соответствуют рациональным поляризованным Т-многообразиям сложности 1 ([5]).

Определение 2.18 (CDP). Комбинаторный дивизориальный многогранник (combinatorial divisorial polytope) относительно решетки М состоит из многогранника $\square \subset M \otimes \mathbb{R}$ и кортежа (ψ_1, \dots, ψ_n) кусочно-линейных вогнутых функций $\psi_i : \square \to \mathbb{R}$ таких что

1 Для всех i граф ψ_i - полиэдральный комплекс с целочисленными вершинами

$$2 \ \forall u \in \square^{\circ} \sum_{i=1}^{n} \psi_i(u) > 0$$

□ называется базой CDP

Если прикрепить каждую из функций ψ_i к точке P_i на кривой \mathbb{P}^1 (проективная прямая) - получится дивизориальный многогранник на \mathbb{P}^1 ([4]), что соответствует рациональным поляризованным Т-многообразиям сложности 1.

2.3 Преобразования CDP

Пусть дан исходный CDP с набором функций (ψ_1, \ldots, ψ_n) и базой \square Определение 2.19 (Трансформация базы (transformation of the base)). Пусть ϕ - линейное обратимое преобразование решетки N, тогда CDP с базой $\phi(\square)$ и набором функций $\psi_i \circ \phi^{-1}$ получен из исходного с помощью трансформации базы.

Определение 2.20 (Скашивание (shearing)). Пусть $v \in M^*, \beta_1, \dots, \beta_n \in \mathbb{Z}$, тогда CDP с базой \square и набором функций $u \mapsto \psi_i(u) + \beta_i \langle u, v \rangle, \forall u \in \square$, $\sum_{i=1}^n \beta_i = 0$, получен из исходного с помощью скашивания.

Определение 2.21 (Перенос (translation)). Пусть $\alpha_1, \ldots, \alpha_n \in \mathbb{Z}$, $\sum_{i=1}^n \alpha_i = 0$, тогда CDP с базой \square и набором функций $\psi_i + \alpha_i$ получен из исходного с помощью переноса.

2.4 Эквивалентность

Определение 2.22 (Эквивалентные CDP). CDP, полученный из исходного с помощью преобразований скашивания, переноса и трансформации базы, примененных в любой последовательности и в любых количествах, эквивалентен исходному.

Определение 2.23 (Эквивариантный изоморфизм). Пусть дана группа, X и Y - действия этой группы на множестве S, тогда функция $f: X \to Y$ - эквивариантная, если $f(g\dot{x}) = g\dot{f}(x)$ для всех $g \in G$ и $x \in X$. Если, кроме того, f биективно, то f - эквивариантный изоморфизм.

Геометрический смысл определения эквивалентности заключается в следующем: если для CDP ψ прикрепить точки $P_i \in \mathbb{P}^1$ - получится дивизориальный многогранник на \mathbb{P}^1 , который соответствует рациональному

поляризованному Т-многообразию сложности 1. Эквивалентные CDP задают эквивариантно изоморфные Т-многообразия сложности 1 при условии "правильного" выбора точек P_i .

Определение 2.24 (Грань высоты 1). Грань F многогранника $P \in (M \times \mathbb{Z}) \otimes \mathbb{R}$ является гранью высоты 1, если существует вектор $u \in M^* \times \mathbb{Z}$ такой что $\langle v, u \rangle = 1$ для всех $v \in F$

Определение 2.25 (CDP со свойством Фано). CDP обладает свойством Фано, если он эквивалентен какому-то CDP с базой \square и функциями $\psi_1, \dots \psi_n$ для которого существуют коэффициенты a_1, \dots, a_n такие что

- 1. $0 \in \square^{\circ}$
- 2. $\sum_{i=1}^{n} a_i = -2$
- 3. Для всех і $\psi_i(0) + a_i + 1 > 0$, и каждая грань $\Gamma(\psi_i + a_i + 1)$ грань высоты 1
- 4. Для каждой грани F многогранника \square не являющейся гранью высоты 1 верно $\sum_{i=1}^n \psi_i \equiv 0$ на всей F

Все свойства определения Фано сохраняются для эквивалентных СDP при условии что трансформация базы оставляет начало координат внутри базы ([4]). Внутри класса рациональных поляризованных Т-многообразий сложности 1, CDP, удовлетворяющие свойству Фано, соответствуют каноническим Т-многообразиям Горенштейна-Фано с антиканонической поляризацией.

2.5 Генерация CDP из многогранников

Рассмотрим многогранник $P \in (M \times \mathbb{Z}) \otimes \mathbb{R}$ с вершинами на решетке $N \times \mathbb{Z}$. Из него можно получить CDP. Пусть π_1 - проекция на $M \otimes \mathbb{R}$, π_2 - проекция на \mathbb{R} . Возьмем $\square = \pi_1(P)$ и $\psi_1, psi_2 : \square \to \mathbb{R}$: $\psi_1(u) = max(\pi_2(\pi_1^{-1}(u) \cap P)), \, \psi_2(u) = -min(\pi_2(\pi_1^{-1}(u) \cap P))$. Таким образом, из любого многогранника на решетке можно получить CDP с двумя функциями. И наоборот, из любого CDP с двумя функциями можно получить многогранник на решетке.

Рис. 1: Многогранник

Рис. 2: $\Box = \pi_1(P)$

Рис. 3: CDP

Рис. 4: Пример (На втором и третьем рисунках пунктирная линия - грани, которые вошли в график ψ_1 , голубая линия - грани, которые вошли в график ψ_2)

Определение 2.26 (Торический CDP). CDP называется торическим, если он эквивалентен CDP с ровно двумя функциями

Любой торический CDP можно получить из многогранника с помощью алгоритма, описанного выше.

Торический CDP является Фано тогда и только тогда, когда соответствующий ему многогранник изоморфен рефлексивному.

3 Компьютерная реализация CDP

Весь код реализован на Python3 и представлен в Приложении, а также доступен по ссылке . В реализации используется класс Polyhedron из библиотеки sagemath.

Класс CDP имеет два поля - base (класс Polyhedron из sage) и psi_list - список объектов класса PiecewiseAffineFunction. Класс PiecewiseAffineFunction - peaлизация кусочно-линейной функции, класс имеет одно поле - affine_pieces, список объектов класса AffineFunction. Класс AffineFunction - peaлизация линейной функции, содержит два поля - domain (класс Polyhedron из sage, это область, на которой задана функция) и coefs - список коэффициентов в формате $[a_0, a_1, \ldots, a_{k-1}]$, тогда функция имеет вид $x_k = a_0 + a_1x_1 + \cdots + a_{k-1}x_{k-1}$

CDP - сложный объект, нужно соблюсти множество условий, чтобы сконструировать правильный CDP, поэтому в конструкторе проверяется

корректность поданных на вход данных.

Пример корректного CDP:

Пример взят из статьи [4]

```
base = Polyhedron(vertices = [[-1], [1]])
# y = 1 + x, x \in [-1, 0]

f_11 = AffineFunction([1, 1], Polyhedron(vertices = [[-1], [0]]))
# y = 1 - x, x \in [0, 1]

f_12 = AffineFunction([1, -1], Polyhedron(vertices = [[0], [1]]))

f_1 = PiecewiseAffineFunction([f_11, f_12])

# y = 1/2x + 1/2, x \in [-1, 1]

f_2 = PiecewiseAffineFunction([AffineFunction([1 / 2, 1 / 2], Polyhedron(vertices = [[-1], [1]]))])

cdp = CDP([f_1, f_2], base)

print(cdp)
```


Рис. 5: Корректный CDP

Программа выведет:

```
CDP object, psi list:
Piecewise affine function:
Affine function 1 + x_1 with domain [(-1), (0)]
Affine function 1 - x_1 with domain [(0), (1)]

Piecewise affine function:
Affine function 0.5 + 0.5x_1 with domain [(-1), (1)],
base: (A vertex at (-1), A vertex at (1))
```

Пример некорректного CDP (сумма ψ_i отрицательная в одной из точек базы):

Рис. 6: Некорректный CDP

```
base = Polyhedron(vertices = [[-1], [1]])
# y = x, x \in [-1, 0]

f_11 = AffineFunction([0, 1], Polyhedron(vertices = [[-1], [0]]))

# y = -x, x \in [0, 1]

f_12 = AffineFunction([0, -1], Polyhedron(vertices = [[0], [1]]))

f_1 = PiecewiseAffineFunction([f_11, f_12])

# y = -1/2 + 1/2x, x \in [-1, 1]

f_2 = PiecewiseAffineFunction([AffineFunction([-1 / 2, 1 / 2], Polyhedron(vertices = [[-1], [1]]))])

cdp = CDP([f_1, f_2], base)
```

Программа выведет:

```
Traceback (most recent call last):
    File "test_cdp_validity.py", line 65, in <module>
        test.test_not_valid_cdp()
    File "test_cdp_validity.py", line 30, in
        test_not_valid_cdp
        cdp = CDP([f_1, f_2], base)
    File "cdp.py", line 27, in __init__
        raise ValueError(
ValueError: Not a valid CDP - sum of psi is -2.0 on A
        vertex at (-1)
```

3.1 Преобразования CDP

Применим скашивание к CDP из примера 3: с коэффициентом -1 для первой функции и 1 для второй, с вектором (-1).

```
cdp = CDP([f_1, f_2], base)
cdp.shear([-1, 1], [-1])
print(cdp)
```

Программа выведет:

```
CDP object, psi list:
Piecewise affine function:
Affine function 1 + 2x_1 with domain [(-1), (0)]
Affine function 1 with domain [(0), (1)]

Piecewise affine function:
Affine function 0.5 - 0.5x_1 with domain [(-1), (1)],
base: (A vertex at (-1), A vertex at (1))
```


Рис. 7: Исходный CDP

Рис. 8: После скашивания

Применим сдвиг с коэффициентами 1, -1 к результату предыдущего преобразования:

```
cdp.translate([1, -1])
print(cdp)
```

Результат:

```
CDP object, psi list:
Piecewise affine function:
Affine function 2 + 2x_1 with domain [(-1), (0)]
Affine function 2 with domain [(0), (1)]

Piecewise affine function:
Affine function -0.5 - 0.5x_1 with domain [(-1), (1)],
base: (A vertex at (-1), A vertex at (1))
```

Применим трансформацию базы - зеркальное отображение относительно начала координат - к результату предыдущего преобразования:

```
A = matrix(ZZ, [[-1]])

phi = linear_transformation(A)

cdp.transform_base(phi)

print(cdp)
```

Результат:

```
CDP object, psi list:
Piecewise affine function:
Affine function 2 - 2x_1 with domain [(0), (1)]
Affine function 2 with domain [(-1), (0)]

Piecewise affine function:
Affine function -0.5 + 0.5x_1 with domain [(-1), (1)],
base: (A vertex at (-1), A vertex at (1))
```


Рис. 9: После переноса

Рис. 10: После трансформации

3.2 Алгоритм проверки эквивалентности

Считаем, что трансформация базы всегда происходит только 1 раз, и это первая операция в цепочке преобразований (ниже будет доказано, почему такое предположение корректно).

Введем операцию обобщенного скашивания:

Определение 3.1 (Обобщенное скашивание). пусть $\sum_{i=1}^{n} v_i = 0$, тогда CDP с базой \square и набором функций $u \mapsto \psi_i(u) + \langle u, v_i \rangle$ получен из CDP $(\square, \psi_1, \dots, \psi_n)$ с помощью обобщенного скашивания.

3.2.1 Описание

Полный код алгоритма находится в Приложении в разделе 28 Пусть $CDP_1 = (\Box, (\psi_1, \ldots, \psi_n)), CDP_2 = (\Box', (\psi_1', \ldots, \psi_n')),$ проверим их на эквивалентность:

1 Выберем нумерацию вершин в □′. Если уже перебрали все возможные нумерации - завершаем алгоритм, CDP не эквивалентны. Этому шагу соотвеутствуют строки 201-203 в коде алгоритма (перебираем все возможные перестановки вершин, проверяем каждую из них на то, что она сохраняет ребра - функция _vert_permutation_is_valid)

- 2 Найдем такую матрицу A, которая переводит \square в \square' с учетом нумерации вершин (поиск матрицы преобразования описан в разделе 3.2.2), найдем матрицу обратного преобразования A^{-1} . Если не удалось найти A или A^{-1} переходим к шагу 1 (выбираем другую нумерацию вершин). Применим A^{-1} к $\psi_1, ..., \psi_n$, получим $\chi_1 := \psi_1 \phi^{-1}, ..., \chi_n := \psi_n \phi^{-1}$. Этому шагу соответствуют строки 204-213 (находим матрицу A, пробуем применить трансформацию базы с такой матрией к исходному CDP)
- 3 Для каждой χ_i найдем множество $S_i = \{j : \chi_i \sim \psi_j'\}$ множество ииндексов функций ψ_j' , имеющих такие же области линейности (иллюстрация 11). С помощью переноса или скашивания нельзя из линейной функции получить кусочно-линейную и наоборот, поэтому если для каких-то χ_i или ψ_j' не нашлось соответствия возвращаемся на шаг 1, выбираем другую нумерацию вершин базы. Иллюстрация к этому шагу: 11. Этому шагу соответствует функция _get_equivalence_classes в коде алгоритма.

Рис. 11: Зеленые функции имеют области линейности [[0,3],[3,5]], голубая - [[0,2],[2,3],[3,5]], черная - [[0,4],[4,5]]. Зеленые функции имеют одинаковые области линейности.

4 Каждая функция представляется в виде набора коэффициентов a_0, a_1, \ldots, a_m , где a_0 - свободный коэффициент (константа), а a_1, \ldots, a_m - коэффициенты перед переменными x_1, \ldots, x_m . Выберем σ - перестановку функций χ_i с учетом классов эквивалентности (то

есть рассматриваем только такие σ , что $\sigma(i) \in S_i$ - $\chi_{\sigma(i)}$ и ψ_i' имеют одинаковые области линейности). Если все перестановки уже перебрали - переходим к шагу 1. Этим действиям соответствуют строки 218-219 в коде алгоритма. Функция _list_mappings возвращает все возможные перестановки с учетом классов эквивалентности.

Пусть у $\chi_{\sigma(i)}$ коэффициенты $a_{i0}, a_{i1}, \ldots, a_{im},$ у ψ_{i}' - $b_{i0}, b_{i1}, \ldots, b_{im},$ тогда если $\sum_{i=1}^{n} (b_{i0} - a_{i0}) = 0$, то существует перенос, позволяющий коэффициенты a_{i0} перевести в b_{i0} (перенос по определению меняет только свободные коэффициенты). Если $\sum_{i=1}^{n} (b_{i0} - a_{i0}) = 0$ - обозначаем функции с коэффициентами $b_{i0}, a_{i1}, \ldots, a_{im}$ как χ_{i}' и переходим к шагу 5, если нет - повторяем шаг 4 для другой перестановки. Этому действию соответствует функция _can_be_translated в коде алгоритма.

5 Для каждой пары функций χ_i', ψ_i' пытаемся найти вектор v_i , такой что $\chi_i'(u) + \langle u, v_i \rangle = \psi_i'(u)$, при этом для всех областей линейности должен получиться одинаковый вектор. Если для всех пар функций получилось найти такой вектор и $\sum_{i=1}^n v_i = 0$ - CDP эквивалентны (поскольку удалось найти последовательность из трансформации базы, переноса и обобщенного скашивания, переводящую CDP1 в CDP2), если нет - возвращаемся к пункту 4, выбирая другую перестановку. Этому шагу соответствует функция—сап—be—sheared в коде алгоритма.

3.2.2 Поиск матрицы преобразования

Пусть n - размерность пространства, в котором находятся многогранники \square и \square' , k - число вершин в этих многогранниках. Составим матрицу V из вершин многогранника \square и матрицу W из вершин многогранника \square' . Получатся матрицы размерности $n \times k$. Нужно найти матрицу A такую что AV = W, домножим обе стороны справа на V^T : $AVV^T = WV^T$. Если V невырожденная матрица (то есть многогранник \square действительно имеет размерность n, а не меньшую), то VV^T - обратимая матрица. Тогда $A = WV^T(VV^T)^{-1}$.

3.2.3 Примеры работы:

Пример из статьи [4]. В предыдущем разделе (преобразования CDP) CDP2 был получен из CDP1 с помощью цепочки преобразований.

```
base1 = Polyhedron (vertices = [[-1], [1]])
2 \# y = 1 + x, x \setminus in [-1, 0]
_3 f_11 = AffineFunction([1, 1], Polyhedron(vertices = [[-1], [0]]))
4 \# y = 1 - x, x \setminus in [0, 1]
_{5} f_12 = AffineFunction([1, -1], Polyhedron(vertices=[[0], [1]]))
6 f 1 = PiecewiseAffineFunction([f 11, f 12])
7 \# y = 1/2 + 1/2x, x \setminus in [-1, 1]
s f_2 = PiecewiseAffineFunction([AffineFunction([1 / 2, 1 / 2], Polyhedron(
      vertices = [[-1], [1]]))
g \ \text{cdp1} = \text{CDP}([f \ 1, f \ 2], \text{base1})
base2 = Polyhedron (vertices = [[-1], [1]])
11 \# y = 2, x \setminus in [-1, 0]
y_1 = AffineFunction([2, 0], Polyhedron(vertices = [[-1], [0]]))
13 \# y = 2 - 2x, x \setminus in [0, 1]
14 y 12 = AffineFunction([2, -2], Polyhedron(vertices = [[0], [1]]))
15 y 1 = PiecewiseAffineFunction([y 11, y 12])
16 \# y = -1/2 + 1/2x, x \setminus in [-1, 1]
y_2 = Piecewise Affine Function ([Affine Function ([-1 / 2, 1 / 2], Polyhedron (
      vertices = [[-1], [1]]))
18 \text{ cdp2} = \text{CDP}([y 1, y 2], \text{base2})
print (cdp1.equal(cdp2))
print(cdp2.equal(cdp1))
```

True

True

Пример для большей размерности:

```
base1 = Polyhedron(vertices = [[1, 0], [0, -1], [-1, 0], [0, 1]])

f_11 = AffineFunction([1, -1, -1], Polyhedron(vertices = [[0, 0], [1, 0], [0, 1]]))

f_12 = AffineFunction([1, -1, 1], Polyhedron(vertices = [[0, 0], [1, 0], [0, -1]]))

f_13 = AffineFunction([1, 1, -1], Polyhedron(vertices = [[0, 0], [-1, 0], [0, 1]]))

f_14 = AffineFunction([1, 1, 1], Polyhedron(vertices = [[0, 0], [-1, 0], [0, -1]]))

f_1 = PiecewiseAffineFunction([f_11, f_12, f_13, f_14]))

f_21 = AffineFunction([1, 0, 0], Polyhedron(vertices = [[0, 1], [1, 0], [0, -1]]))

f_22 = AffineFunction([1, 1, 1], Polyhedron(vertices = [[0, 0], [0, -1], [-1, 0]]))

f_23 = AffineFunction([1, 1, -1], Polyhedron(vertices = [[0, 0], [-1, 0], [0, -1]]))
```

```
10 f_2 = PiecewiseAffineFunction([f_21, f_22, f_23])
11 cdp1 = CDP([f_1, f_2], base1)
12 cdp2 = deepcopy(cdp1)
13 cdp2.shear([1, -1], [1, 1])
14 phi = linear_transformation(matrix(ZZ, [[-1, 0], [0, -1]]))
15 cdp2.transform_base(phi)
16 print(cdp1.equal(cdp2))
17 print(cdp2.equal(cdp1))
```

```
True
True
```

Пример не эквивалентных CDP:

```
base1 = Polyhedron (vertices = [[-1], [1]])
2 \# y = 1 + x, x \setminus in [-1, 0]
_3 f_11 = AffineFunction([1, 1], Polyhedron(vertices = [[-1], [0]]))
4 \# y = 1 - x, x \setminus in [0, 1]
_{5} f _{12} = AffineFunction([1, -1], Polyhedron(vertices=[[0], [1]]))
f_1 = PiecewiseAffineFunction([f_11, f_12])
7 \# y = 1/2 + 1/2x, x \setminus in [-1, 1]
8 f 2 = PiecewiseAffineFunction([AffineFunction([1 / 2, 1 / 2], Polyhedron(
      vertices = [[-1], [1]]))])
odp1 = CDP([f 1, f 2], base1)
base 2 = Polyhedron(vertices = [[-1], [1]])
11 \# y = 2, x \setminus in [-1, 0]
y_1 = AffineFunction([2, 0], Polyhedron(vertices = [[-1], [0]]))
13 \# y = 2 - x, x \setminus in [0, 1]
14 y 12 = AffineFunction([2, -1], Polyhedron(vertices = [[0], [1]]))
y_1 = PiecewiseAffineFunction([y_11, y_12])
16 \# y = -1/2 + 1/2x, x \setminus in [-1, 1]
17 y 2 = Piecewise Affine Function ([Affine Function ([-1 / 2, 1 / 2], Polyhedron (
      vertices = [[-1], [1]]))
cdp2 = CDP([y_1, y_2], base2)
print (cdp1.equal(cdp2))
print (cdp2.equal(cdp1))
```

```
False
False
```

3.2.4 Доказательство корректности

Теорема 3.1. Любую цепочку преобразований CDP можно представить в виде трех последовательных преобразований: трансформации базы, переноса и обобщенного скашивания.

Доказательство. Все трансформации базы, присутствующие в цепочке преобразований, можно перенести в ее начало по Лемме 3.3. После этого все трансформации можно объединить в одну по Лемме 3.4. Далее можно поменять местами переносы и скашивания так, чтобы все переносы происходили последовательно следом за трансформацией базы по Лемме 3.5. Оставшиеся операции скашивания можно объединить в одно обобщенное скашивание по Лемме 3.7.

Теорема 3.2. Если удалось найти цепочку преобразований, переводящую CDP1 в CDP2 и состоящую из трех последовательных преобразований - трансформации базы, переноса и обобщенного скашивания - то эти CDP эквивалентны.

Доказательство. Нужно доказать, что существует цепочка, состоящая из трансформаций базы, переносов и обычных скашиваний, переводящая CDP1 в CDP2, то есть нужно доказать, что обощенное скашивание можно представить в виде композиции обычных. Это доказывается в лемме 3.8.

Лемма 3.3. Трансформацию базы можно всегда считать первой в цепочке преобразований

Доказательство. Пусть CDP_1 ($\Box, \psi_1, ..., \psi_n$) переводится в CDP_2 ($\Box', \psi'_1, ..., \psi'_n$) с помощью цепочки преобразований BC, где B - операция скашивания, C - трансформация базы. Покажем, что тогда существует другая цепочка преобразований - C'B', где C' - трансформация базы, B' - операция скашивания, - которая также переводит CDP_1 в CDP_2 . $\psi_i(u) \xrightarrow{C'B'} \psi'_i(u_{new}) = \psi_i(\phi^{-1}(u_{new})) + \beta_i\langle u_{new}, v\rangle$ $\psi_i(u) \xrightarrow{B} \psi_i(u) + \beta_i\langle u, \psi_1\rangle$, положим $v_1 = \phi(v)$, тогда $\psi_i(u) \xrightarrow{B} \psi_i(u) + \beta_i\langle u, \phi(v)\rangle$, теперь применим трансформацию $C: \psi_i(u) \xrightarrow{BC} \psi_i(\phi^{-1}(u_{new})) + \beta_i\langle \phi^{-1}(u_{new}), \phi(v)\rangle = \psi_i(\phi^{-1}(u_{new})) + \beta_i\langle u_{new}, v\rangle = \psi'_i(u_{new})$, то есть цепочки преобразований BC и C'B' дают одинаковый результат Аналогично для операции переноса (translation)

Лемма 3.4. Можно считать, что трансформация базы происходит только 1 раз в цепочке преобразований

Доказательство. Все трансформации базы можно перенести в начало цепочки по предыдущему пункту, а композиция линейных обратимых преобразований также является линейным обратимым преобразованием, поэтому можно заменить композицию трансформаций на единственную трансформацию базы.

Лемма 3.5. Перенос и скашивание можно менять местами

Доказательство.
$$\psi_i(u) + \beta_i \langle u, v \rangle + \alpha_i = \psi_i(u) + \alpha_i + \beta_i \langle u, v \rangle$$

Лемма 3.6. Два переноса можно объединить в один

Доказательство.
$$\psi_{i} + \alpha_{i} + \alpha_{i}^{'}$$
, $\sum_{i=1}^{n} \alpha_{i} = 0$, $\sum_{i=1}^{n} \alpha_{i}^{'} = 0$ - значит и $\sum_{i=1}^{n} (\alpha_{i} + \alpha_{i}^{'}) = 0$, тогда $\psi_{i} + \alpha_{i}^{'}$, $\alpha_{i}^{''} = \alpha_{i} + \alpha_{i}^{'}$ - корректный перенос.

Лемма 3.7. Два скашивания можно объединить в одно обобщенное скашивание

Доказательство. Пусть $\phi_i(u) = \psi_i(u) + \beta_i \langle u, v \rangle$, $\chi_i(u) = \phi_i(u) + \beta_i' \langle u, v' \rangle$, тогда $\chi_i(u) = \psi_i(u) + \beta_i \langle u, v \rangle + \beta_i' \langle u, v' \rangle = \psi_i(u) + \langle u, w \rangle \sum_{i=1}^n \beta_i = 0$, $\sum_{i=1}^n \beta_i' = 0$, тогда $\sum_{i=1}^n \beta_i \langle u, v \rangle = 0$ и $\sum_{i=1}^n \beta_i' \langle u, v' \rangle = 0$, а значит $\sum_{i=1}^n w = 0$, то есть χ_i можно получить из ϕ_i с помощью операции обощенного скашивания.

Лемма 3.8. Любое обобщенное скашивание можно представить в виде суммы обычных

Доказательство. Пусть v_1, \ldots, v_n - обобщенное скашивание. Покажем, что v_i можно представить в виде $\beta_{i1}v_1^{'} + \cdots + \beta_{ik}v_k^{'}, \forall j \sum_{i=1}^n \beta_{ij} = 0$

$$v_{1} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, \dots, v_{n} = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

$$(1)$$

$$\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} = a_{11} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + a_{21} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \dots + a_{m1} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} = a_{12} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + a_{22} \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \dots + a_{m2} \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} = a_{1n} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + a_{2n} \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \dots + a_{mn} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

 $\forall i \sum_{j=1}^n a_{ij} = 0$ (суммы коэффициентов в столбцах), поскольку $\sum_{i=1}^n v_i = 0$.

Значит,
$$a_{1j}\begin{bmatrix}1\\0\\0\\0\\\vdots\\0\end{bmatrix}$$
, $a_{2j}\begin{bmatrix}0\\1\\0\\\vdots\\0\end{bmatrix}$, ..., $a_{mj}\begin{bmatrix}0\\0\\\vdots\\0\\1\end{bmatrix}$ - корректные операции скашивания

(в качестве вектора v для каждого преобразования берем базисный вектор, а в качестве коэффициентов β_i - координаты исходных векторов).

Таким образом, если в пункте 4 нашли обобщенное скашивание, которое переводит CDP_1 в CDP_2 - найдется и последовательность обычных, которые делают то же самое.

3.3 Алгоритм генерации CDP из многогранников

Полный код алгоритма находится в Приложении в разделе 34 Алгоритм принимает на вход многогранник P размерности k.

- 1. Для каждой грани находим вектор нормали, внешний по отношению к многограннику. Если проекция вектора нормали на последнюю ось координат (x_k) положительная относим грань к списку $psi1_list$, если отрицательная к $psi2_list$, а если равна нулю пропускаем грань, не относим ее ни к какому списку. В коде алгоритма строки 50-54, находим нормальный конус к грани с помощью функции normal_cone из библиотеки sagemath.
- 2. Находим проекцию многогранника на подпространство (x_1, \ldots, x_{k-1}) , для этого достаточно избавиться от последней координаты каждой из вершин и взять выпуклую оболочку полученного множества точек. Полученная выпуклая оболочка это база CDP. В коде алгоритма строки 57-58.
- 3. Каждая грань соответствует области линейности одной из функций ψ_1, ψ_2 (класс AffineFunction). Для каждой грани из списка $psi1_list$ выполняем следующее: по точкам, соответствующим вершинам грани, строим уравнение гиперплоскости (функция plane_from_points, строки 13-24). Таким образом заполняем поле соеfs класса AffineFunction. Берем выпуклую оболочку проекций вершин грани на подпространство (x_1, \ldots, x_{k-1}) получается многогранник, на котором функция ψ_1 линейна (строки 42-43). Это соответствует полю domain класса AffineFunction. Аналогично для списка $psi2_list$ (для ψ_2 берем все коэффициенты с минусом, поскольку нужно получить зеркальное отображение относительно (x_1, \ldots, x_{k-1})).

3.3.1 Примеры работы алгоритма

Генерация CDP из пирамиды:

4 print (cdp)

Результат:

```
CDP object, psi list: Piecewise affine function: Affine function 1 - x_1 - x_2 with domain [(0, 0), (0, 1), (1, 0)] Affine function 1 + x_1 - x_2 with domain [(-1, 0), (0, 0), (0, 1)] Piecewise affine function: Affine function 1 - x_1 - x_2 with domain [(0, 0), (0, 1), (1, 0)] Affine function 1 + x_1 - x_2 with domain [(-1, 0), (0, 0), (0, 1)], base: (A vertex at (-1, 0), (0, 0), (0, 1))
```

Генерация CDP для двумерного случая:

```
poly = Polyhedron(vertices = [[-2, 0], [0, 2], [1, 2], [2, 1], [2, -2], [-2, -2]])
cdp = generate_cdp_from_polytope(poly)
print(cdp)
```

Результат:

```
CDP object, psi list:
Piecewise affine function:
Affine function 3 - x_1 with domain [(1), (2)]
Affine function 2 with domain [(0), (1)]
Affine function 2 + x_1 with domain [(-2), (0)]
Piecewise affine function:
Affine function 2 with domain [(-2), (2)],
```


Рис. 12: Пример генерации CDP из многогранника: голубым обозначены ребра, которые войдут в ψ_1 , черным (сплошным) - ребра, которые войдут в ψ_2

4 Приложение

4.1 piecewise_affine_function.py

```
1 #!/usr/bin/env sage
2 from typing import List
3 from sage.all import *
4 import numpy as np
  class AffineFunction:
      def __init__(self, coefficients: List[float], domain: Polyhedron):
           \dim = \operatorname{len}(\operatorname{domain.vertices}()[0].\operatorname{vector}())
           if len(coefficients) != dim + 1:
               raise ValueError(f'Domain dimension {len(coefficients) - 1} '
11
                                 f'and coefficients list dimension {dim} do not match')
           self.coefs = list (coefficients)
           self.domain = domain
14
           self.dim = dim
      def eq (self, other):
17
           return self.coefs = other.coefs and self.domain = other.domain
18
      def value(self, x: List[int]):
           if x not in self.domain:
21
               raise ValueError(
                   f'{x} is not in function domain {self.domain.vertices()}')
           if len(x) != self.dim:
               raise ValueError (f'Wrong dimension of x: {len(x)}')
           return sum([a * b for a, b in zip(self.coefs[1:], x)]) + self.coefs[0]
      def coef str(self, i):
           if self.coefs[i] == 0:
               return ',
30
           if self.coefs[i] == 1:
               return f' + x \{i\}
           elif self.coefs[i] == -1:
               return f' - x_{i}'
           elif self.coefs [i] > 0:
               return f' + {self.coefs[i]}x {i}'
36
           return f' - {-self.coefs[i]}x {i}'
      def __str__(self):
39
           coefs_repr = []
40
           if self.coefs[0] := 0 or len(self.coefs) == 2 and self.coefs[1] == 0:
```

```
coefs repr.append(str(self.coefs[0]))
42
          for i in range(1, len(self.coefs)):
43
               coefs repr.append(self. coef str(i))
44
          coefs_repr = "".join(coefs_repr)
45
          return f'Affine function {coefs repr} with domain '\
46
                  f'\{[vert.vector() for vert in self.domain.vertices()]\}'
48
49
  class Piecewise Affine Function:
      def init (self, affine pieces: List[AffineFunction]):
51
          self.affine pieces = affine pieces
      def __eq__(self , other):
54
          if not len(self.affine pieces) = len(other.affine pieces):
              return False
          for piece in self. affine pieces:
               if not piece in other.affine pieces:
                   return False
          return True
61
      def value(self, x: List[int]):
62
          for piece in self.affine pieces:
               if x in piece.domain:
64
                   return piece.value(x)
          raise ValueError(f'{x} is not in function domain')
67
      def transform(self, phi, phi inverse):
68
          for j in range(len(self.affine pieces)):
               res = np.matmul(self.affine pieces[j].coefs[1:], phi inverse)
70
               self.affine pieces[j].coefs = [self.affine pieces[j].coefs[0]]
71
               self.affine pieces [j].coefs.extend(res)
72
               vertices = []
               for vert in self.affine_pieces[j].domain.vertices():
74
                   vertices.append(phi(vert.vector()))
               self.affine pieces[j].domain = Polyhedron(vertices=vertices)
76
      def _domains_mapping(self, other_psi):
          if len(self.affine pieces) != len(other psi.affine pieces):
79
               return False, 0
80
          domains mapping = [0 for in range(len(other psi.affine pieces))]
          for i, piece in enumerate (self.affine pieces):
82
               for j, other_piece in enumerate(other_psi.affine_pieces):
83
                   if piece.domain = other piece.domain:
                       domains mapping [i] = j
85
          return domains_mapping
86
```

```
87
       def can be translated (self, other psi):
88
           domains_mapping = self._domains_mapping(other_psi)
           alpha = other psi.affine pieces [domains mapping [0]]
90
                                              coefs [0] - self.affine pieces [0].coefs [0]
91
           for i in range(1, len(domains_mapping)):
               a = other psi.affine_pieces[domains_mapping[i]
93
                                              coefs [0] - self.affine pieces [i].coefs [0]
94
                if a != alpha:
                    return False, 0
96
           return True, alpha
97
98
       def cat be sheared (self, other psi):
99
           domains mapping = self. domains mapping(other psi)
100
           n = len(other_psi.affine_pieces[domains_mapping[0]].coefs)
101
           v = [other psi.affine pieces[domains_mapping[0]].coefs[i] -
                 self.affine pieces [0].coefs[i]
                for i in range(1, n)
104
           for j in range (1, len (domains mapping)):
               other_v = [other_psi.affine_pieces[domains_mapping[j]].coefs[i] -
106
                           self.affine pieces[j].coefs[i]
107
                           for i in range (1, n)
                if other v != v:
109
                    return False
110
           return True
111
       def __str__(self):
113
           resp = '\n'.join([str(piece) for piece in self.affine pieces])
114
           return 'Piecewise affine function:\n' + resp
```

4.2 cdp.py

```
1 #!/usr/bin/env sage
2 from sage.all import *
3 from typing import List
4 from piecewise affine function import PiecewiseAffineFunction
 from collections import defaultdict
6 from itertools import permutations
 import numpy as np
g
  class CDP:
      def __init__(
11
              self, psi_list: List[PiecewiseAffineFunction], base: Polyhedron):
          # Check that sum of psi is non negative on borders of domains
          # (check polytop vertices of domains laying inside of function scope)
14
          for psi in psi list:
               for piece in psi.affine pieces:
                   for vert in piece.domain.vertices():
                       if vert in base:
                           try:
                               s = sum([ps.value(vert.vector())]
20
                                        for ps in psi_list])
21
                           except ValueError:
                               continue
                           else:
24
                               if s < 0:
                                    raise ValueError (
26
                                        f'Not a valid CDP - sum of psi is {s} on {vert}
      ')
          # Check that sum of psi is non negative on base vertices
          for vert in base. vertices():
29
              try:
                   s = sum([ps.value(vert) for ps in psi list])
               except ValueError:
32
                   raise ValueError ('Not a valid CDP: psi is not defined on base')
               else:
                   if s < 0:
35
                       raise ValueError(
36
                           f'Not a valid CDP - sum of psi is {s} on {vert}')
          self.psi list = psi list
38
          self.base = base
39
          self.n = len(self.base.vertices()[0].vector())
          self.k = len(self.base.vertices())
41
          self.base_adjacency_map = defaultdict(set)
42
```

```
43
      def str (self):
44
           psi str = "\n\n".join([str(psi) for psi in self.psi list])
45
           return f'CDP object, psi list:\n{psi str},\n\nbase: {self.base.vertices()}\
46
     n'
47
      def __eq__(self , other):
48
49
          Note: the order of the functions in psi list is not important for this
50
      implementation.
           11.11.11
           if not self.base = other.base:
               return False
           if not len(self.psi list) = len(other.psi list):
54
               return False
           for psi in self.psi list:
56
               if psi not in other.psi list:
                   return False
           return True
60
      def build adjacency map(self):
61
          for i in range(self.k):
62
               for j in range (i + 1, self.k):
63
                   if self.base.vertices()[i].is incident(
                            self.base.vertices()[j]):
65
                       self.base_adjacency_map[i].add(j)
66
                       self.base_adjacency_map[j].add(i)
67
      def transform base (self, phi: linear transformation):
69
           vertices = []
70
           for vert in self.base.vertices():
71
               vertices.append(phi(vert.vector()))
72
           self.base = Polyhedron(vertices=vertices)
73
           try:
               inv = phi.inverse().matrix()
75
          except ZeroDivisionError:
               raise ValueError (f'phi is not invertible')
          inv = np.array([np.array(row) for row in inv])
           for i in range(len(self.psi_list)):
79
               self.psi list[i].transform(phi, inv)
81
      def translate(self, alpha_list: List[int]):
82
           if len(alpha list) != len(self.psi list):
               raise ValueError(f'Length of alpha list is {len(alpha list)}, '
84
                                 f'should be {len(self.psi_list)}')
85
```

```
if sum(alpha list) != 0:
86
               raise ValueError ('Sum of coefficients should be 0')
87
           for idx, psi in enumerate(self.psi list):
               for piece in psi. affine pieces:
89
                   piece.coefs[0] += alpha list[idx]
90
91
       def shear(self, beta list: List[int], v: List[int]):
92
           if len(beta list) != len(self.psi list):
93
               raise ValueError(f'Length of beta_list is {len(beta_list)}, '
                                 f'should be {len(self.psi list)}')
95
           if sum(beta_list) != 0:
96
               raise ValueError ('Sum of coefficients should be 0')
           m = len(self.psi list[0].affine pieces[0].coefs) - 1
           if len(v) != m:
99
               raise ValueError(f'Wrong dimension of v: {len(v)}, should be {m}')
           for idx, psi in enumerate(self.psi list):
               for piece in psi.affine pieces:
                   for j, coef in enumerate(v):
                        piece.coefs[j + 1] += coef * beta_list[idx]
       def vert permutation is valid (self, perm):
106
           """Check that vertices permutation saves incidence
108
           for vert, inc list in self.base adjacency map.items():
               for other vert in inc list:
                   if not perm[other vert] in self.base adjacency map[perm[vert]]:
                        return False
           return True
113
114
       def get transform matrix (self, points, point images):
           left = np.matmul(points.T, points)
           trv:
               inverse = np.linalg.inv(left)
118
           except np.linalg.LinAlgError:
               raise ValueError(f'Base of the CDP should be non-degenerate'
                                 f'(dimension {self.n} is provided, but '
121
                                 'the real dimension is lower)')
           A = np.matmul(np.matmul(point images, points), inverse)
           return A
124
       def domains match (self, psi1: Piecewise Affine Function,
                           psi2: PiecewiseAffineFunction) -> bool:
127
           if len(psi1.affine pieces) != len(psi2.affine pieces):
129
           return set ([p.domain for p in psi1.affine_pieces]) = set(
130
```

```
[p.domain for p in psi2.affine pieces])
132
       def _get_equivalence_classes(self, other_psi_list):
            used = [False for _ in range(len(other_psi_list))]
134
            classes = [[] for _ in range(len(self.psi_list))]
135
            for i, psi1 in enumerate(self.psi_list):
                for j, psi2 in enumerate(other psi list):
137
                     if self._domains_match(psi1, psi2):
138
                         used[j] = True
                         classes [i].append(j)
140
            if len([c \text{ for } c \text{ in } classes \text{ if } len(c) = 0]) > 0 \text{ or } len(c)
141
                     [u for u in used if not u]) > 0:
                return False, []
143
           return True, classes
144
145
       def list mappings (self, classes):
146
           dicts_res = self._list_mappings_recursive(classes, dict(), idx=0)
147
           res = []
148
            for small res in dicts res:
149
                res.append([0] * len(classes))
                for k, v in small res.items():
151
                     res[-1][v] = k
            return res
154
       def list mappings recursive (self, classes, current dict, idx=0):
            res = []
            for elem in classes [idx]:
157
                if elem in current dict:
158
                    continue
159
                if idx + 1 = len(classes):
                    d = deepcopy(current dict)
161
                    d[elem] = idx
                    return [d]
163
                d = deepcopy(current_dict)
                d[elem] = idx
165
                res += self._list_mappings_recursive(classes, d, idx + 1)
            return res
168
       def _can_be_translated(self, mapping, other_psi_list):
169
            alpha list = []
            for i, j in enumerate (mapping):
                can, alpha = self.psi_list[i].can_be_translated(other_psi_list[j])
172
                if not can:
                    return False
174
                alpha_list.append(alpha)
175
```

```
if sum(alpha list) != 0:
176
                return False
177
           return True
179
       def can be sheared (self, mapping, other psi list):
180
           for i, j in enumerate (mapping):
                if not self.psi_list[i].cat_be_sheared(other_psi_list[j]):
182
                    return False
183
           return True
185
       def equal(self, other cdp):
186
187
           Suppose that zero functions are already removed
188
189
           # Check that self.base is convertible to other cdp.base with some phi
           # Check that psi lists split into matching equivalence classes
191
           # Check that a constant for translation exists
192
           # Check that a vector for shearing exists
193
           if len(self.base.vertices()) != len(other cdp.base.vertices()):
                return False
195
           if len(self.psi list) != len(other cdp.psi list):
196
               return False
197
           G = np.array([np.array(vert.vector())
198
                         for vert in other cdp.base.vertices()])
199
           G = G.T
           for perm in permutations ([i for i in range(self.k)]):
201
                if not self. vert permutation is valid (perm):
202
                    continue
               V = np.array([np.array(self.base.vertices()[i].vector())
204
                              for i in perm ])
205
               # A transforms base of one CDP to the base of another
               A = self. get transform matrix(V, G)
207
               A = linear transformation(matrix(QQ, A))
208
                cdp after base_transform = deepcopy(self)
210
                    cdp\_after\_base\_transform.transform\_base(A)
211
                except ValueError:
                    continue
213
                splits, classes = cdp_after_base_transform._get_equivalence_classes(
214
                    other_cdp.psi_list)
                if not splits:
216
                    continue
217
                mappings = cdp after base transform. list mappings (classes)
                for m in mappings:
219
                    can = cdp_after_base_transform._can_be_translated(
220
```

```
m, \ other\_cdp.\,psi\_list\,)
221
                        if not can:
222
                            continue
223
                       can \ = \ cdp\_after\_base\_transform \, . \, \_can\_be\_sheared \, (
224
                            m, other_cdp.psi_list)
225
                        if not can:
                            continue
227
                       return True
228
             return False
```

4.3 generate cdp.py

```
1 #!/usr/bin/env sage
2 from sage.all import *
3 from sympy.matrices import Matrix
4 from sympy import Rational, lcm
  from piecewise_affine_function import PiecewiseAffineFunction, AffineFunction
  from cdp import CDP
  def generate cdp from polytope(poly: Polyhedron):
      # Walk over all facets, if facet's normal projection to x_n is positive -
      # this facet if a part of psi 1 graph, otherwise - part of -psi 2 grapg
11
       def plane_from_points(points):
13
           \# (p_11, \ldots, p_1n), \ldots, (p_n1, \ldots, p_nn)
14
           # p_11, p_21, ..., p_n1
           #
                                        = P
           \# p 1n, p 2n, ..., p nn
           \# AP = b, b = (1, ..., 1) \Rightarrow A = bP^-1
18
           # 1 - a 1*x 1 - ... - a n*x n = 0, return [1, -a1, ..., -a n]
           points = points [: len (points [0])]
           b = Matrix([[1 \text{ for } i \text{ in } range(len(points[0]))]])
21
           P = Matrix (points).T
           A = b * P.inv()
           return [Rational(1)] + [-a \text{ for a in } list(A.row(0))]
24
       def integer coefs from rational (coefs):
26
           qs = [c.q \text{ for } c \text{ in } coefs]
           1 = lcm(qs)
           coefs = [c * l for c in coefs]
29
           return [c / coefs[-1] for c in coefs]
30
       def piecewise from facets (facets, invert coefs=False):
32
           pieces = []
33
           for facet in facets:
34
               # Find a plane equation with rational coefficients from facet's
35
      vertices
               # and multiply by least common multiple of denominators to obtain
36
      integer
               # coefficients.
               r = integer_coefs_from_rational(
38
                    plane from points ([p.vector() for p in facet]))
               if invert coefs:
40
                    r = [-c \text{ for } c \text{ in } r]
41
```

```
pieces.append(AffineFunction(coefficients=r[:-1], domain=Polyhedron(
42
                   vertices = [p.vector()[:-1] for p in facet])))
43
          return PiecewiseAffineFunction(affine_pieces=pieces)
44
45
      psi1_facets = []
46
      psi2\_facets = []
47
      for facet in poly.facets():
48
          # Find out whether a facet belongs to psi1 or psi2
49
          coef = facet.normal_cone(direction='outer').rays_list()[0][-1]
          if coef > 0:
51
               psi1 facets.append(facet.vertices())
          elif coef < 0:
53
               psi2 facets.append(facet.vertices())
      psi1 = piecewise_from_facets(psi1_facets, invert_coefs=True)
      psi2 = piecewise_from_facets(psi2_facets)
56
      return CDP(psi list=[psi1, psi2], base=Polyhedron(
57
          vertices = [v.vector()[:-1] for v in poly.vertices()]))
58
```

Список литературы

- [1] Jean-Paul Brasselet. Introduction to Toric Varieties. 2008.
- [2] William Fulton. Introduction to Toric Varieties. 1993.
- [3] Nathan Ilten и Hendrik Suss. "K-stability for Fano manifolds with torus action of complexity one". B: (2017). DOI: https://arxiv.org/pdf/1507. 04442.pdf.
- [4] Marni Mishna Nathan Ilten и Charlotte Trainor. "Classyfying Fano complexity-one T-varieties via Divisorial Polytopes". B: (2018). DOI: https://arxiv.org/pdf/1710.04146.pdf.
- [5] Nathan Owen Ilten Hendrik S"uß. "Polarized Complexity-One T-Varieties". B: (2011). DOI: https://arxiv.org/pdf/0910.5919.pdf.