

S₆(DSMA36B16)Mathematics

BSMS-6th SEMESTER, MID-TERM EXAMINATION-2019 NAME OF THE SUBJECT: Complex Analysis

SUBJECT CODE: DSMA36B16

Full Marks: 50

Time: 2 hours

Group-A

Answer all questions:

Marks: 25

- 1. (a) If f(z) is analytic within and on a circle C, given by |z-a|=R and if $|f(z)| \le M$ for every z on C, then show that $|f^n(a)| \le \frac{M n!}{R^n}$
 - (b) State and prove the Liouville's theorem.
 - (c) Suppose a function f(z) is analytic in the closed ring bounded by two concentric circles C and C' of centre a and radii R and R', (R' < R). If z is any point of the annulus, then show that $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n + \sum_{n=1}^{\infty} b_n (z-a)^{-n}$ where $a_n = \frac{1}{2\pi i} \int_C \frac{f(t)}{(t-a)^{n+1}} dt$ and $b_n = \frac{1}{2\pi i} \int_{C'} \frac{f(t)}{(t-a)^{-n+1}} dt$

[3+4+6=13]

- 2. (a) State and prove the Cauchy integral formula for higher order derivative.
 - (b) Calculate $\int_C \frac{\sin z}{\left(z \frac{\pi}{4}\right)^3} dz$ where C is $\left|z \frac{\pi}{4}\right| = \frac{1}{2}$
 - (c) Find the Laurent's series of $\frac{1}{z^2-3z+2}$ for 1 < |z| < 2.

[6+3+3=12]

Group B Answer all the following questions

Marks: 25

When a function f(z) of complex variable z is said to be uniformly continuous? A relation R on the set of complex numbers is defined by $zRz \Leftrightarrow \frac{z_1-z_2}{z_1+z_2}$ is real. Show that R is an equivalence relation.

2. State the necessary condition for a function to be analytic and prove it.

[1+5]

3. Define Harmonic function. Prove that the function $e^{-x}(x\cos y + y\sin y)$ is harmonic and find the harmonic conjugate.

[6]

4. (a) State the principle of uniform convergence for a sequence of complex function.

(b) If f(z) = u + iv is an analytic function of z = x + iy and $u - v = \frac{e^y - \cos x + \sin x}{\cosh y - \cos x}$, find f(z) subject to the condition $f\left(\frac{\pi}{2}\right) = \frac{3-i}{2}$.

[2+6]

e7- E7 - grinh e7 + E7 = 001 hy

AH IIIII

S₆(DSMA36B17) Mathematics

BS-MS 6th SEMESTER, MID-TERM EXAMINATION-2019

Subject Name: Discrete Mathematics Subject Code: DSMA36B17

larks: 50

Symbols used here have their usual meanings

Group-A

1. The inverse of the composition of two functions is equal to the composition of the inverses of the functions in the reverse order.

[5]

2. If f is a characteristic function of a set and A and B are any two subsets of U, then $f_{A \cup B}(x) = f_A(x) + f_B(x) - f_{A \cap B}(x)$, $\forall x \in U$.

151

3. Define Hashing functions. Determine whether the functions $f: Z \to Z$, defined by $f(x) = x^2 + 14x - 51$ is an injection and/or a surjection.

[1+4=5]

4. Define characteristic function of a set, absolute value function and permutation function with an example.

|2+1+2=5|

5. If $f: Z \times Z \to Z$, where Z is the set of integers and f(x,y) = x * y = x + y - xy, show that the binary operation * is commutative and associative. Find the identity element and the inverse of each element.

12+3=51

Group-B

Answer all the following questions

1. Define generating function. Using generating functions solve the recurrence relation $a_n = 4a_{n-1} + 3$, for $n \ge 1$ with initial conditions and $a_0 = 2$.

[1+4=5]

2. In how many ways we can distribute 7 objects into 3 distinct boxes in such a way that the first box contains 0, 1 or 3 balls, the second box contains 1, 2 or 3 balls and the third one contains 4 or 6 balls.

[4]

3. Prove that a simple graph with n vertices and m components can have at $\frac{(n-m)(n-m+1)}{2}$ edges.

151

4. Define cycles and circuit. Give one example of graph which is circuit but not a cycle.

|1+1=2|

5. Solve the recurrence relation $a_n = a_{n-1} + a_{n-2}, n \ge 3$ with initial conditions $a_1 = a_2 = 1$. Find an explicit formula for $\{a_n\}$.

141

6. Define Euler circuit with example. Prove that if a connected graph G is Eulerian, then every vertex of G has even degree.

-3) f(w) = 9 - 42 - 51 9 = 951 29 - 84Scanned by CamScanner

S₆(DSMA36B20): MA

BS-MS 6th SEMESTER, MID TERM EXAMINATION – 2019 NAME OF THE SUBJECT: Number Theory and Cryptology CODE NO: DSMA36B20

Il Marks: 50

Time: 2 Hours

Symbols used here have their usual meanings

Group - A

Answer the following questions:

Marks: 25

1. What do you mean by the Principle of Mathematical Induction? Apply the same to show that $\sum_{j=1}^{n-1} x^j = 1 + x + x^2 + \dots + x^{n-1} = \frac{x^{n-1}}{x-1}$, for any real number x other than 1 and hence show that $n < m^n$, for any two positive integers with m > 1.

[1.5 + 3.5 + 2] = 7

2. State and prove the Basis Representation theorem. Moreover, if $a_r k^r + a_{r-1} k^{r-1} + \dots + a_0$ is a representation of n to the base k, then show that $0 < n \le k^{r-1} - 1$.

[1.5 + 4.5 + 3] = 9

3. Only state Euclid's Division lemma. Show that the smallest divisor (other than 1) of a composite number is a prime. Then establish the Fundamental Theorem of Arithmetic.

$$[1+2.5+5.5]=9$$

Group - B

- 1. a) Let a and b be any integers at least one of them is non-zero. Then prove that there exist integers x and y such that g.c.d(a,b) = ax + by.
 - b) Find the particular and general solutions to the equation 21x + 14y = 35.
 - c) Using Extended Euclidean Algorithm find the multiplicative inverse of 23 in Z_{100} .

d Write a short note on Ciphers.

[3+3+3+3] = 12

2. (a) Discuss different types of Cipher text only attacks.

b) Use additive cipher with key = 15 to decrypt the message "WTAAD".

c) Solve the following system of equations

$$3x + 2y \equiv 5 \pmod{7}$$
$$4x + 6y \equiv 4 \pmod{7}$$

d) Define Residue Matrix. Find the multiplicative inverse of the following residue matrix A over

 Z_{10}

$$A = \begin{bmatrix} 3 & 0 \\ 1 & 1 \end{bmatrix}.$$
 [3+2+4+(1+3)] = 1

S_{6(DSMA36B19)} MA

BSMS VIth SEMESTER, MID-TERM EXAMINATION-2019 NAME OF THE SUBJECT: OBJECT ORIENTED PROGRAMMING CODE NO: DSMA36B19

ull Marks: 50 Time: 2 hours

wer all questions from the following:

 $[10 \times 5 = 50 \text{ Marks}]$

State whether the following statements are true or false, justify:

- (i) Templates are declared inside classes or functions.
- (ii) Base class is known as the subclass and derived class as superclass.
- (iii) A member function can't be used in a derived class that override.
- (iv) The scope resolution operator can be overloaded.
- (v) Templates should be global and should not be local.

 $[1 \times 5]$

- 2. Answer the following questions in one word.
 - (i) How can you prevent your class to be inherited further?
 - (ii) What is the index value of the first element in an array?
 - (iii) Can you specify the accessibility modifier for methods inside the interface?
 - (iv) Is it possible for a class to inherit the constructor of its base class? « >
 - (v) Can you allow a class to be inherited, but prevent a method from being overridden in C#?

 $[1 \times 5]$

- What is object-oriented programming (OOP)? Explain the basic features of OOPs.
 - What down the differences between a class and a structure?
- 5 What is a delegate? Write down all the features of an interface.
- What are abstract classes? What are the distinct characteristics of an abstract class?
- What are the differences an abstract class and an interface.
- What is access modifier? What are the various types of constructors in OOP? Explain.
- Define Class. What is the relationship between a class and an object?
- What are the different types of arguments? Explain different types of inheritance in OOP.

* * * * * * * * * * * *

S₆ (DSMA36B18): MATH

BS/MS 6th SEMESTER, MID-TERM EXAMINATION-2019 SUBJECT NAME: STOCHASTIC PROCESSES SUBJECT CODE NO: DSMA36B18

Marks: 50

Time: 2 Hours

Symbols used here have their usual meanings

Group - A

er all of the following questions:

(a) Define absorbing state with an example.

(b) Describe Markov chain as a graph with an example.

[2+3=5]

2. (a) Establish the relationship between probability distribution and transition probability. (b) Transition probability matrix of a Markov chain $\{X_n, n = 1, 2, ...\}$ having three states 1, 2 and 3 is given below:

$$\begin{pmatrix} 0.1 & 0.5 & 0.4 \\ 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3 \end{pmatrix}$$

The initial distribution is $\pi_0 = (0.7, 0.2, 0.1)$.

Find Pr $\{X_3 = 2, X_2 = 3, X_1 = 3, X_0 = 2\}$.

[3+2=5]

3. (a) Suppose that a coin with probability p for ahead is tossed infinite times. Let X_n be the outcome of the nth trial be k (= 0,1,...,n) denotes that there is a run of k successes. Show that $\{X_n : n > 0\}$ constitute a Markov Chain. Find out one step transition probabilities and hence form the transition matrix.

(b) Define class of state with example.

[3+2=5]

4. (a) Define periodicity of a state.

State first entrance theorem. Verify first entrance theorem for the following transition matrix with state space $S = \{1, 2, 3\}$ for the transition from the state 1 to 3 using 3 steps:

$$P = \begin{pmatrix} 3/4 & 1/4 & 0 \\ 1/4 & 1/2 & 1/4 \\ 0 & 3/4 & 1/4 \end{pmatrix}$$

[1+(1+3)=5]

5. Suppose that the probability of a dry day following a rainy day is 1/3 and probability of a rainy day following a dry day is 1/2. Also probability of a dry day following a dry day is 1/2 and probability of a rainy day following a rainy day is 2/3. Form two step transition matrix. Given that May 1 is dry day, find the probability that May 3 is a rainy day. Also find the probability that May 5 is a dry day under the given condition May 1 is a dry day.