The Perceptron

HackCU Episode IV

Learn New Skills
Build Something Cool
Meet Awesome People
Discover Job Opportunities

February 24th and 25th 2018

HackCU.org

Administrivia

- o Reminder: Homework 1 is due by 5pm Friday on Moodle
- o Friday is a notebook day, so bring your laptops
- o Need a Note Taker for this course. CU Bookstore gift certificate at end of semester.

Previously on CSCI 4622

In classification problems our outputs are discrete classes (eg. SPAM vs HAM)

Goal: Given features $\mathbf{x}=(x_1,x_2,\ldots,x_p)$ predict which class $Y=k,\ \mathbf{x}$ belongs to

Instance-based methods like KNN are called non-parametric models

When we learn parameters we call the model a parametric model

Today we look at our first parametric model for classification

Z = <x1, x2 > Linear Classifier

- o Binary Classification: Only two classes
- A linear classifier draws a line through space separating the two classes.
- o For two-features, a linear classifier takes form:

$$\hat{y} = \alpha(\omega_1 x_1 + \omega_2 x_2 + b)$$
 $\omega_1 x_1 + \omega_2 x_2 + b = 0$
 $\omega_1 x_1 + \omega_2 x_2 + b = 0$
 $\omega_2 x_2 + b = 0$
 $\omega_3 x_1 + \omega_4 x_2 + b = 0$
 $\omega_4 x_1 + \omega_5 x_2 + b = 0$
 $\omega_5 x_1 + \omega_5 x_2 + b = 0$

The Perceptron

Assume that the labels are given by:

sume that the labels are given by:

$$RED = Pos \Rightarrow y = 1$$
 $RED = Pos \Rightarrow y = 1$

The perceptron activation function is given by:

Décision pult:
$$a > 0 \Rightarrow y = +1$$

$$a < 0 \Rightarrow y = -1$$

o For two-features, a linear classifier takes form:

$$y = \operatorname{sign} (\mathbf{w}^T \mathbf{x} + b) = \begin{cases} +1 & \text{if } \mathbf{w}^T \mathbf{x} + b \ge 0 \\ -1 & \text{if } \mathbf{w}^T \mathbf{x} + b < 0 \end{cases}$$

The Perceptron Algorithm 1011111 90255 POL WYB

while not converged:

for all (x, y) in training set:

$$a \leftarrow \sum_{k=1}^{p} w_k x_k + b = \mathbf{w}^T \mathbf{x} + b$$

(BANDOMIZE DAMA)

$$\mathbf{w} \leftarrow \mathbf{w} + y\mathbf{x}$$

$$b \leftarrow b + y$$

- \circ Start with $\mathbf{w} = [1, 0], b = 0$
- Process points in order:

$$(1,1), (0.5,-1), (-1,-1), (-1,1)$$

$$\vec{x}_{i} = (1_{i}1)$$
 $Q_{i} = \omega^{T}\vec{x}_{i} + b = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$
 $Q_{i} = 1 = y_{i}$

- \circ Start with $\mathbf{w} = [1, 0], b = 0$
- Process points in order:

$$(1,1), (0.5,-1), (-1,-1), (-1,1)$$

$$Q_2 = [1,0][-5]+0=.5$$
 $Q_2 = .5 > .0 = .5$

- \circ Start with $\mathbf{w} = [1, 0], b = 0$
- Process points in order:

$$(1,1), (0.5,-1), (-1,-1), (-1,1)$$
 $w \leftarrow w + 42 \times 2 \qquad b \leftarrow b + 42 \times 2$

$$w = \begin{bmatrix} 17 + (-1) & -57 \\ -17 & -17 \end{bmatrix} = \begin{bmatrix} -57 \\ 17 & -17 \end{bmatrix}$$

- \circ Start with $\mathbf{w} = [1, 0], b = 0$
- Process points in order:

$$(1,1), (0.5,-1), (-1,-1), (-1,1)$$

MODEL WILL CLASSIFY
All Points correctly
From NOW on

Why Does This Work (Geometry Edition)

Why Does This Work (Algebra Edition)

- \circ Assume we have a current set of weights w_1, w_2, \ldots, w_p
- \circ Assume we've just misclassified a point (\mathbf{x},y) with y=+1
- \circ We compute activation a < 0 and update the weights and bias

$$a' = \left[\sum_{k=1}^{p} w'_k x_k\right] + b'$$

$$= \left[\sum_{k=1}^{p} \left(W_k + X_k\right) X_k + \left(b + 1\right)\right]$$

$$= \left[\sum_{k=1}^{p} \left(W_k X_k\right) + b\right] + \left[\sum_{k=1}^{p} X_k^2 + 1\right]$$

$$= \left[A_k + \left(\|X\|^2 + 1\right) + A_k + A$$

Why Does This Work (Algebra Edition)

- o Assume we have a current set of weights w_1, w_2, \ldots, w_p
- \circ Assume we've just misclassified a point (\mathbf{x},y) with y=-1
- \circ We compute activation a>0 and update the weights and bias

$$a' = \sum_{k=1}^{p} w_k' x_k + b'$$

=

=

=

Perceptron Weight Interpretation

Remember that we classify points according to

$$y = \operatorname{sign} (\mathbf{w}^T \mathbf{x} + b) = \begin{cases} +1 & \text{if } \mathbf{w}^T \mathbf{x} + b \ge 0 \\ -1 & \text{if } \mathbf{w}^T \mathbf{x} + b < 0 \end{cases}$$

O How sensitive is the final classification to changes in individual features?

Perceptron Weight Interpretation

Remember that we classify points according to

$$y = \operatorname{sign} (\mathbf{w}^T \mathbf{x} + b) = \begin{cases} +1 & \text{if } \mathbf{w}^T \mathbf{x} + b \ge 0 \\ -1 & \text{if } \mathbf{w}^T \mathbf{x} + b < 0 \end{cases}$$

O How sensitive is the final classification to changes in individual features?

$$\frac{\partial}{\partial w_k} \left(\mathbf{w}^T \mathbf{x} + b \right) = \frac{\partial}{\partial w_k} \left(\sum_{k=1}^p w_k x_k + b \right) = \mathbf{W}$$

o If features are similar size then large weights indicate important features

o If possible for a linear classifier to separate data, Perceptron will find it

Such training sets are called linearly separable

o If possible for a linear classifier to separate data, Perceptron will find it

Such training sets are called linearly separable

- o If possible for a linear classifier to separate data, Perceptron will find it
- Such training sets are called linearly separable
- How long it takes depends on depends on data

- o If possible for a linear classifier to separate data, Perceptron will find it
- o Such training sets are called linearly separable
- How long it takes depends on depends on data

- o If possible for a linear classifier to separate data, Perceptron will find it
- Such training sets are called linearly separable
- How long it takes depends on depends on data

- o If possible for a linear classifier to separate data, Perceptron will find it
- Such training sets are called linearly separable
- How long it takes depends on depends on data

Def: The margin of a classifier is the distance between decision boundary and nearest point.

Perceptron Convergence Theorem: Suppose you train a perceptron on a **linearly separable** training set with margin M>0. If $\|\mathbf{x}\|\leq 1$ then the algorithm will converge after at most $1/M^2$ updates.

Perceptron Wrap-Up

- The perceptron is a simple classifier that occasionally works very well
- o Linear classifiers in general will pop up again and again
- o Logistic Regression (next week) is pretty similar
- o The idea of margins will show up again when we talk Support Vector Machines
- Neural Networks are essentially generalizations of the perceptron

If-Time Bonus: The Voting Perceptron

Suppose you have a data set with 10,000 training examples

Suppose that after 100 examples it's learned a really good set of weights

So good that for the next 9,899 examples it doesn't make any mistakes

And then on 10,000th example it misclassifies and totally changes the weights

Idea: Give more vote to weights that persist for a long time

If-Time Bonus: The Voting Perceptron

- \circ Train as usual, save weights $(\mathbf{w},b)^{(1)},\ldots,(\mathbf{w},b)^{(k)}$ and steps they persist $c^{(1)},\ldots,c^{(k)}$
- Then predict using a weighted activation:

$$\hat{y} = \operatorname{sign}\left(\sum_{k=1}^{K} c^{(k)} \operatorname{sign}(\mathbf{w}^{(k)}^{T} \mathbf{x} + b^{(k)})\right)$$

If-Time Bonus: The Voting Perceptron

- \circ Train as usual, save weights $(\mathbf{w},b)^{(1)},\ldots,(\mathbf{w},b)^{(k)}$ and steps they persist $c^{(1)},\ldots,c^{(k)}$
- Then predict using a weighted activation:

$$\hat{y} = \operatorname{sign}\left(\sum_{k=1}^{K} c^{(k)} \operatorname{sign}(\mathbf{w}^{(k)}^{T} \mathbf{x} + b^{(k)})\right)$$

A more efficient method is the Averaged Perceptron

$$\hat{y} = \operatorname{sign}\left(\left(\sum_{k=1}^{K} c^{(k)} \mathbf{w}^{(k)}\right) \cdot \mathbf{x} + \sum_{k=1}^{K} c^{(k)} b^{(k)}\right)$$