AVERTISSEMENT: Il est rappelé à tous les candidats que le programme officiel de l'épreuve est le programme de Mathématiques des classes préparatoires au concours d'admission du groupe Sciences sociales (B/L) de la section des lettres de l'Ecole normale supérieure, dites "Khagnes S".

Toute résolution faisant appel à des résultats ne figurant pas explicitement à ce programme sera rejetée.

Objet du Problème :

Le sujet est un problème d'analyse et de probabilités dont le but est la détermination des lois de probabilité de certaines variables aléatoires discrètes ou à densité définies à partir d'une suite de variables aléatoires indépendantes de même loi de densité exponentielle.

Les candidats sont invités à lire attentivement le problème en entier et à l'aborder dans son intégralité, quitte à utiliser des résultats fournis par l'énoncé même s'ils n'ont pas su les démontrer (en indiquant clairement quels résultats ils ont admis).

Les 3 parties sont indépendantes, sauf la question II.3.b) qui utilise les résultats de la partie I

Notations:

- Pour deux entiers naturels p et $q \ge p$, on note $[p,q] = [p,q] \cap \mathbb{N}$, c'est-à-dire l'ensemble des entiers naturels compris, au sens large, entre p et q.
- Dans tout le problème, on considère un univers Ω muni d'une probabilité P et des variables aléatoires définies sur Ω , discrètes ou à valeurs dans \mathbb{R}_+ , à densité continue sur \mathbb{R}_+ . Dans ce cas, on ne s'intéressera qu'à la restriction à \mathbb{R}_+ de leur densité ou de leur fonction de répartition.
- Pour deux événements A et B, on désigne par $P(A \mid B)$ la probabilité de A sachant B.

Partie I

1° Soit f une fonction de classe C^{∞} sur un intervalle ouvert I de \mathbb{R} contenant 0. Prouver par récurrence sur p que

$$(\forall \ x \in I) \ (\forall \ p \in \mathbb{N}) \qquad f(x) = \sum_{k=0}^{p} \left(f^{(k)}(0) \frac{x^k}{k!} \right) + \int_0^x f^{(p+1)}(t) \frac{(x-t)^p}{p!} \, \mathrm{d}t \tag{1}$$

où $f^{(k)}$ désigne la dérivée k-ième de f.

Pour $x \in [0, 1]$, on pose $h(x) = \ln(1 - x)$.

- 2° Calculer la dérivée p-ième de h.
- 3° Soit $x \in [0,1]$ fixé. Déterminer

$$\lim_{p\to+\infty} \left(\int_0^x h^{(p+1)}(t) \, \frac{(x-t)^p}{p!} \, \mathrm{d}t \right) \; .$$

On pourra commencer par étudier les variations de la fonction $\varphi(t) = \frac{t-x}{t-1}$ sur l'intervalle [0,x].

4° En déduire que

$$(\forall x \in [0,1[) \quad \ln(1-x) = -\sum_{k=1}^{\infty} \frac{x^k}{k}.$$
 (2)

Maths 2/4

5° Montrer que

$$(\forall x \in [0,1[) \qquad x + (1-x) \ln(1-x) = \sum_{k=1}^{\infty} \frac{x^{k+1}}{k(k+1)}.$$
 (3)

Partie II

- 1° Soit X une variable aléatoire réelle à densité continue sur \mathbb{R}_+ , qu'on peut interpréter comme la durée de vie d'un phénomène aléatoire, ayant la propriété suivante : la durée de vie résiduelle à chaque instant suit la même loi de probabilité que X.
 - a) Montrer que cette condition s'écrit:

$$(\forall s \in \mathbb{R}_+) (\forall t \in \mathbb{R}_+) \quad G(t+s) = G(t) G(s) \tag{4}$$

où l'on a posé, pour tout $t \in \mathbb{R}_+$, G(t) = P(X > t).

b) Vérifier que la propriété (4) ci-dessus est satisfaite lorsque X suit une loi exponentielle sur \mathbb{R}_+ .

Dans toute la suite du problème, on considère une suite $(X_n)_{n\in\mathbb{N}}$ de variables aléatoires indépendantes et de même loi de probabilité exponentielle sur \mathbb{R}_+ de paramètre $\alpha>0$, c'est-à-dire de densité

$$g(t) = \alpha e^{-\alpha t}$$
 pour $t \in \mathbb{R}_+$.

On note F la fonction de répartition associée, c'est-à-dire la fonction définie sur \mathbb{R}_+ par

$$F(x) = P(X_0 \leqslant x) .$$

Dans la suite de cette partie, on considère la variable aléatoire N à valeurs dans \mathbb{N}^* égale au plus petit indice $n \in \mathbb{N}^*$ tel que $X_n > X_0$.

- **2°** a) Soit $x_0 \in \mathbb{R}_+^*$ et $n \in \mathbb{N}^*$. Exprimer $P(N = n \mid X_0 = x_0)$ en fonction de $p_0 = e^{-\alpha x_0}$.
 - **b**) En déduire que la loi de probabilité de N est

$$(\forall n \in \mathbb{N}^*)$$
 $P(N=n) = \frac{1}{n(n+1)}$.

- c) La variable aléatoire N a-t-elle une espérance?
- **3°** a) Soit $x \in \mathbb{R}_+^*$ et $n \in \mathbb{N}^*$. Calculer $P(X_N \le x \mid N = n)$.
 - **b**) Déterminer la fonction de répartition Ψ de X_N et sa densité ψ . On pourra utiliser la partie I.

Maths 3/4

Partie III

Dans toute cette partie, m désigne un entier naturel non nul fixé. On range les variables aléatoires $X_0, X_1, \ldots X_m$ par ordre décroissant, pour obtenir une nouvelle suite de variables aléatoires notées $Y_0, Y_1, \ldots Y_m$. Ainsi, on a

$$Y_0 = \operatorname{Max} \{X_k, 0 \leqslant k \leqslant m\} \text{ et } Y_m = \operatorname{Min} \{X_k, 0 \leqslant k \leqslant m\}.$$

- 1° Déterminer la fonction de répartition Φ_0 de Y_0 ainsi que sa densité φ_0 .
- 2° Déterminer la fonction de répartition Φ_m de Y_m ainsi que sa densité φ_m .
- 3° On désigne par \widehat{N} la variable aléatoire à valeurs dans \mathbb{N}^* égale au plus petit indice $n \in \mathbb{N}^*$ tel que $X_{m+n} > Y_0$.
 - a) Soit $n \in \mathbb{N}$. Montrer que

$$P(\widehat{N} > n) = \frac{m+1}{m+n+1}.$$

- **b**) En déduire la loi de la variable aléatoire \widehat{N} .
- c) La variable aléatoire \widehat{N} a-t-elle une espérance ?
- 4° a) Prouver que, pour tout $k \in [1, m]$ et $(y_0, y_1, \dots, y_k) \in (\mathbb{R}_+)^{k+1}$, on a :

$$P(X_0 - X_1 > y_0, X_1 - X_2 > y_1, \dots, X_{k-1} - X_k > y_{k-1}, X_k > y_k) = \frac{1}{(k+1)!} \exp \left[-\alpha \sum_{j=0}^k (j+1) y_j \right].$$
 (5)

On pourra procéder par récurrence sur k en exprimant la probabilité cherchée en fonction de

$$P(X_0-X_1>y_0,\ X_1-X_2>y_1,\ \dots,\ X_{k-2}-X_{k-1}>y_{k-2},\ X_{k-1}>y_{k-1}+t)\ ,$$
 pour t dans un domaine à préciser.

On admet que, pour tout $k \in \mathbb{N}^*$ et $(y_0, y_1, \dots, y_k) \in (\mathbb{R}_+)^{k+1}$, on a par symétrie :

$$P(Y_0 - Y_1 > y_0, Y_1 - Y_2 > y_1, \dots, Y_{k-1} - Y_k > y_{k-1}, Y_k > y_k) = (k+1)! P(X_0 - X_1 > y_0, X_1 - X_2 > y_1, \dots, X_{k-1} - X_k > y_{k-1}, X_k > y_k).$$
 (6)

b) En choisissant des valeurs particulières de y_0, \ldots, y_k , prouver que, pour $k \in [1, m]$, la loi de probabilité de la variable aléatoire $Y_{k-1} - Y_k$ a pour densité sur \mathbb{R}_+ la fonction

$$t \to \alpha k e^{-\alpha kt}$$

et montrer que les variables aléatoires $Y_0 - Y_1$, $Y_1 - Y_2$, ..., $Y_{m-1} - Y_m$ et Y_m sont indépendantes.

c) Montrer que, pour $k \in [1, m]$, la variable aléatoire $Y_0 - Y_k$ a pour fonction de répartition sur \mathbb{R}_+

$$F_k(y) = [1 - e^{-\alpha y}]^k (7)$$

et déterminer sa densité f_k .

On pourra encore procéder par récurrence sur k.

5° On désigne par \widetilde{N} la variable aléatoire à valeurs dans N* égale au plus petit indice $n \in \mathbb{N}^*$ tel que $X_{m+n} \notin [Y_m, Y_0]$, c'est-à-dire tel que

$$X_{m+n} < \min \{X_k / 0 \leqslant k \leqslant m\}$$
 ou $X_{m+n} > \max \{X_k / 0 \leqslant k \leqslant m\}$.

a) Soit $n \in \mathbb{N}^*$, $x \in \mathbb{R}_+^*$ et $z \in \mathbb{R}_+^*$. Calculer

$$P(x \leqslant X_{m+k} \leqslant x+z, \forall k \in \llbracket 1, n \rrbracket).$$

b) Soit $n \in \mathbb{N}^*$ et $z \in \mathbb{R}_+^*$. Montrer que

$$P(Y_m \leqslant X_{m+k} \leqslant Y_m + z, \forall k \in [[1,n]]) = \frac{m+1}{m+n+1} [1 - e^{-\alpha z}]^n.$$
 (8)

c) Soit $n \in \mathbb{N}$. Montrer que,

$$P(\tilde{N} > n) = \frac{m(m+1)}{m+n+1} \int_0^{+\infty} \alpha \left[1 - e^{-\alpha z}\right]^{m+n-1} e^{-\alpha z} dz$$
 (9)

et en déduire $P(\tilde{N} > n)$.

- d) En déduire la loi de probabilité de \tilde{N} . La variable aléatoire \tilde{N} a-t-elle une espérance?
- 6° Soit $k \in \llbracket 0, m \rrbracket$.
 - a) Pour $z \in \mathbb{R}_+^*$, déterminer $P(Y_k \le z)$. On pourra exprimer l'événement $(Y_k \le z)$ à l'aide des événements $(X_j \le z)$, pour obtenir une expression de $P(Y_k \le z)$ faisant intervenir un symbole \sum , qu'on ne cherchera pas à calculer explicitement.
 - b) En déduire que la densité de la loi de probabilité de Y_k est la fonction définie sur \mathbb{R}_+ par

$$\varphi_k(z) = \alpha (k+1) C_{m+1}^{k+1} \left[1 - e^{-\alpha z} \right]^{m-k} e^{-\alpha (k+1)z} . \tag{10}$$

c) Les variables aléatoires $(Y_k)_{0 \le k \le m}$ sont-eiles indépendantes ?