HC-06 BT Module+Adapter

PIN Name	PIN#	Pad type	Description	Not
GND	13 21	VS	Ground pot	
	2	S		
1V8	1	VDD	Integrated 1.8V (+) supply	

			with On-chip linear regulator output within	
VCC	1 2	3.3V		
AIO0	9	Bi-Directional	Programmable input/output	
AIO1	1 0	Bi-Directional	Programmable input/output	
PIO0	2 3	Bi-Directional RX EN	Programmable input/output line, control output for LNA(if fitted)	
PIO1	2 4	Bi-Directional TX EN	Programmable input/output line, control output for PA(if fitted)	
PIO2	2 5	Bi-Directional	Programmable input/output	
PIO3	2 6	Bi-Directional	Programmable input/output	
PIO4	2 7	Bi-Directional	Programmable input/output	
PIO5	2 8	Bi-Directional	Programmable input/output	
PIO6	2 9	Bi-Directional	Programmable input/output	CLK_REQ
PIO7	3 0	Bi-Directional	Programmable input/output	CLK_OUT
PIO8	3 1	Bi-Directional	Programmable input/output	
PIO9	3 2	Bi-Directional	Programmable input/output	

PIO10	3	Bi-Directional	Programmable	
	3		input/output	
PIO11	34	Bi-Directional	Programmable	
			input/output	

DECETE	4			
RESETB	1	CMOS		
	1	Input with		
		weak		
		intemal		
UART_RT	4	CMOS	UART request to	
S		output, tri-	send, active	
		stable with	low	
		weak		
UART_CT	3	CMOS input	UART clear to send,	
S		with weak	active low	
		internal		
UART_RX	2	CMOS input	UART Data input	
		with weak		
		internal		
UART_TX	1	CMOS	UART Data output	
		output, Tri-		
		stable with		
		weak internal		
SPI_MOSI	1	CMOS input	Serial peripheral	
	7	with weak	interface data	
		internal	input	
SPI_CSB	1	CMOS input	Chip select for serial	
	6	with weak	peripheral interface,	
		internal	active low	
SPI_CLK	1	CMOS input	Serial peripheral	
	9	with weak	interface clock	
		internal		
SPI_MISO	1	CMOS input	Serial peripheral	
	8	with weak	interface data	
		internal	Output	
USB	1	Bi-Directional		
	5			
IICD :	2	Pi Directional		
USB_+	2 0	Bi-Directional		
	0			

1.8V	1 4		1.8V	1.8V
PCM	5	Bi-Directional		
_ CLK				
	6	CMOS output		
PCM_OUT				
PCM_IN	7	CMOS Input		
PCM_ SYNC	8	Bi-Directional		

Test Condition 25RH 65%

		Min	Тур	Max	Unit	
<u>1.</u>	Carrier Freq. (ISM Band)	2.4		2.4835	MHz	
2.	RF O/P Power	-6	2	4	dBm	
3.	Step size of Power control	2		8	dB	
<u>5.</u>	Freq. Offset (Typical Carrier freq.)	-75		75	KHz	
<u>6.</u>	Carrier Freq. drift (Hopping on, drift rate/50uS)	-20		20	KHz	
	1 slot packet	-25		25	KHz	
	3 slot packet	-40		-40	KHz	
<u>7.</u>	Average Freq. Deviations (Hopping off, modulation	on) 140)	175	KHz	
	Freq. Deviation	115			KHz	
	Ratio of Freq. Deviation	0.8				
8.	Receive Sensitivity @< 0.1% BER(Bit error re	ate)-83	dBm

How to make the module enters the AT command mode:

- 1. Make sure the BT module is working under idle mode, its LED will blink quickly,(if the module is already setup a connection with any BT hosts, then the LED will light up forever.)
- 2. Set the UART device connected with the BT module to 9600bsp, 1 stop bit, non-flow control, now user can send the AT command to the device, take the basic AT command "AT" for example, you can send it to the BT module , and the BT module will response with "OK", please note, there is no " \r\n" characters after the "AT" command. You just need to send "AT", the HEX value is "41 54", you can not send "41 54 0D 0A". If everything is correct, then the module will be OK for response.

For the KEY function, when used for the old HC-05 modules, the KEY pin is used to pull up high to make the module enters the AT command mode; For the new HC-06 slave module, it's used to make the module research the new devices after power up and stop the device to be connected from the old BT host. So the KEY pin is working as the "new device search function".

Typical AT commands as followed:

1, test communications

Send: AT (returns OK, send a second or so)

Return: OK

2, change the Bluetooth serial port baud rate

Send: AT + BAUD1 Returns: OK1200

Send: AT + BAUD2 Returns: OK2400

Not recommended for use in more than 115200 baud rate, signal interference make the system unstable. After setting more than 115,200 can not be used with a computer, use the microcontroller programming on more than 115200 baud rate and re-use this to send AT command set baud rate low. The baud rate with AT command set, the next time do not need to use the power set, you can power down to save the baud rate.

3, change device name Send: AT + NAMEname

Returns: OKname

Parameter name: name of the current to be set, that Bluetooth is the name search. 20 characters or less.

Example: Sending AT + NAMEbill_gates

Back OKname

Then the Bluetooth name to bill gates

Parameters can power down to save, just modify one. PDA terminal services can see the changes after refreshing the Bluetooth name.

4, change pairing password

Send: AT + PINxxxx Returns: OKsetpin

Parameters xxxx: password pair to be set, 4 bytes, this command can be used from the machine or host. Adapter from the machine or cell phone is asked to enter the pairing password pop-up window, then manually enter this parameter, you can connect from the machine. Host is in the Bluetooth module connected with the main digital camera, digital camera from the machine, find the camera pairs, and then entered the Bluetooth module is located, the main Bluetooth module can automatically connect the camera.

Example: Sending AT + PIN8888

Back OKsetpin

Bluetooth passkey to 8888 when module pair

factory default password is 1234.