Fernando Madeira

Roteiro da Aula

- Performance do Motor
- Operação do Motor
- Sistema de Alimentação
- Carburação e Injeção
- Anexo: Familiarização e Cultura Aeronáutica
 - Qual é a lógica na atuação dos controles e alavancas utilizados em aeronáutica?

Vamos estudar a potência que o motor desenvolve em diversas situações.

TORQUE

 Torque é a capacidade de uma força produzir rotação.
 No motor do avião, o torque indica o esforço rotacional do eixo sobre a hélice.

POTÊNCIA

- Potência é o trabalho que o motor realiza por unidade de tempo.
- Watt, HP, CV
- 1HP (mecânico e hidráulico) = 745,6999 Watt
- 1HP (elétrico) = 746 Watt
- 1 CV (metric HP) = 735,49875 Watt
- No motor → Potência é o torque multiplicado pela velocidade de rotação.
- Os fatores mais importantes na determinação de um motor são: CILINDRADA, EFICIÊNCIA ou RENDIMENTO e a VELOCIDADE DE ROTAÇÃO.

CILINDRADA

- É o volume deslocado pelo pistão durante seu curso (PMA ↔ PMB)
- Nos motores multicilíndricos, é o volume deslocado por todos os pistões desse motor.
- ATENÇÃO: Não confundir CILINDRADA com VOLUME DO CILINDRO.

EFICIÊNCIA ou RENDIMENTO

- É a parcela da energia calorífica do combustível que é convertida em energia mecânica pelo motor.
- Os motores atuais, varia de 25 a 30%.
- Depende da qualidade na construção do motor e da taxa de compressão.

TAXA ou RAZÃO DE COMPRESSÃO

- É a razão entre o volume do cilindro pelo volume da câmara de combustão.
- Para aumentar a eficiência, poder-se-ia aumentar a taxa de compressão. Porém, para valores superiores a 8:1 começa a aparecer o fenômeno da detonação ou batida de pinos.

LIMITAÇÕES DE ROTAÇÃO DA HÉLICE

A eficiência da hélice cai acentuadamente quando suas pontas atingem velocidades próximas à velocidade do som.

EIXO DA HÉLICE MOTOR COMUM DE ACIONAMENTO DIRETO

Como solução a essa situação, utiliza-se motores aeronáuticos com baixa rotação e torque elevado (grandes cilindradas).

Existem motores de alta rotação que acionam as hélices através de engrenagens de redução.

Potências do Motor

- > Potência Teórica
- > Potência Indicada
- > Potência Efetiva
- > Potência Máxima
- > Potência Nominal
- > Potência de Atrito
- > Potência Útil

Potência Teórica

- É a potência liberada pela queima de combustível.
- É determinada utilizando-se um calorímetro.

Potência Indicada (IHP – Indicated Horse Power)

- É a potência desenvolvida pelos gases queimados sobre o pistão sem referência a perdas por atrito no interior do motor.
- Calculada através de aparelhos chamados indicadores, onde é medida as pressões dentro do cilindro. Por isso o nome "Potência Indicada"
- É menor que 60% da potência teórica.

Potência Efetiva (potência ao Freio) (BHP – Brake Horse Power)

- É igual à potência indicada menos as perdas por atrito nas partes internas do motor.
- Medida utilizando-se dinamômetros. Em motores aeronáuticos usam-se molinetes (hélices especiais calibradas).
- Não é constante: varia desde a marcha lenta até a potência máxima.

Potência Máxima

- É a potência efetiva máxima que o motor é capaz de fornecer.
- Supera a potência de projeto do motor, que pode ser utilizada por um tempo curto, como nas decolagens e em situações de emergência.

Potência Nominal

• É a potência efetiva máxima para o qual o motor foi projetado e construído.

Potência de Atrito (FHP – Friction Horse Power)

- É a potência perdida por atrito nas partes internas do motor para vencer as diferentes formas de atrito interno das suas peças, para acionamento do pistão nas fases improdutivas e para acionamento de acessórios (gerador, magnetos, bombas, etc).
- Varia com a rotação.
- Pode ser medida utilizando-se dinamômetros, girando o motor por meios externos.
- Em motores aeronáuticos, varia entre 10 a 15% da potência indicada.

Potência Útil (Potência Tratora)

(THP - Thrust Horse Power)

IHP = BHP + FHP

THP = η *BHP

Além de um bom motor devemos ter também uma boa hélice, uma vez que a potência útil é o resultado de uma boa relação entre o motor e a hélice. A potência efetiva (BHP), informada pelo fabricante, não se altera com a troca da hélice. Assim, se colocarmos uma hélice ruim ou inapropriada para o motor, ele vai continuar desenvolvendo a mesma potência efetiva, porém uma menor potência útil, ou seja, menor rendimento com a mesma potência.

Potência Teórica > IHP > BHP > THP > FHP

Potência Necessária

 É a potência que o avião necessita para manter voo nivelado em uma dada velocidade.

Potência Disponível

• É a potência útil máxima que o grupo moto-propulsor pode fornecer ao avião.

Formação da Mistura Combustível

Combustão

Formação da Mistura Combustível

A gasolina para queimar necessita se vaporizar a fim de combinar com o oxigênio para formar a mistura combustível.

A queima completa da gasolina produz os seguintes gases => CO_2 , CO, vapor H_2O .

Quando os gases de combustão têm gasolina ou O_2 , é porque a combustão não foi completa devido ao excesso ou falta de gasolina ou O_2 .

Formação da Mistura Combustível

Durante o funcionamento do motor, este admite ar onde está o O_2 e não o O_2 puro. Assim, quando se fala em mistura combustível, os elementos envolvidos são ar e gasolina.

Formação da Mistura Combustível

Formação da Mistura Combustível

Assim, a expressão MISTURA é usada para indicar a relação entre as massas de ar e gasolina. Essa relação pode ser expressa de três modos diferentes:

> 10:1 (10 partes de ar e 1 de gasolina)

> 1:10 (1 parte de gasolina e 10 de ar)

> 0,1:1 (0,1 parte de gasolina e 1 de ar)

Sempre o maior número é sempre a massa de ar.

Formação da Mistura Combustível

A proporção ar-gasolina não pode ser variada a vontade, pois ela pode se tornar incombustível. Os limites são:

- Mistura mais pobre que 25:1

 (não queima por falta de gasolina)
- Mistura mais rica de 5,55:1

 (não queima por falta de ar)

Formação da Mistura Combustível

Consumo-Potência-Temperatura

Os diversos valores de mistura, alteram as três grandezas do motor: consumo, potência e

temperatura.

Formação da Mistura Combustível: As Principais Misturas são:

16:1

• É a mistura econômica. O motor produz maior potência com um consumo baixo.

12,5:1

• É a mistura de maior potência em qualquer condição operacional. Não é econômica.

15:1

• É a mistura quimicamente correta.

10:1

• É a mistura utilizada em decolagem. Produz potência menor que a 12,5:1, mas não deixa o motor esquentar muito na decolagem, evitando, assim, o fenômeno da detonação.

25:1

• Limite pobre de queima. Mistura mais pobre que 25:1 não queima por falta de gasolina.

5,55:1

• Limite rico de queima. Mistura mais rica que 5,55:1 não queima por falta de ar.

FASES OPERACIONAIS DO MOTOR

São as diversas condições em que o motor funciona durante o voo. São elas:

- > Marcha lenta (idle)
- > Decolagem
- > Subida
- > Cruzeiro
- > Aceleração
- > Parada

S OPERACIONAIS DO MOTOR

Marcha Lenta (idle)

- O motor funciona sem solicitação de esforço, com rotação suficiente para não parar.
- Utilizada para aquecimento ou espera de uma mudança de potência.
- A manete de potência deve estar toda para trás.
- A mistura deve ser rica porque parte da gasolina se perde misturando-se com os gases queimados e com o ar que penetram pelo escapamento devido ao cruzamento de válvulas e porque a pressão dentro dos cilindros é inferior à atmosférica.

OPERACIONAIS DO MOTOR

Decolagem

- A manete de potência é levada toda à frente
- Manete de mistura toda a frente.
- Máxima quantidade de ar e gasolina em excesso (mistura rica 10:1).
- A temperatura do motor poderá aumentar rapidamente, mas não causará danos ao motor pois em poucos minutos o avião terá decolado e atingido uma altura segura para redução da potência.

ASES OPERACIONAIS DO MOTOR

Subida

- Nesta fase o piloto reduz a rotação do motor, ajustando para potência máxima contínua (potência máxima que o motor pode funcionar sem limite de tempo).
- Mistura recomendada: 12,5:1
- A medida que a altitude aumenta, a mistura vai ficando mais rica, pois o ar vai se tornando mais rarefeito => É necessário empobrecer a mistura (correção altimétrica da mistura).

FASES OPERACIONAIS DO MOTOR

Cruzeiro

- É a fase mais longa do voo.
- Usa-se uma potência mais reduzida e mistura mais pobre (16:1), para economia de combustível.
- A manete deve ser reduzida para a rotação recomendada para o cruzeiro.

FASES OPERACIONAIS DO MOTOR

Aceleração

- A aceleração rápida é efetuada em caso de emergência ou urgência, como no caso de uma arremetida.
- O motor possui um sistema de aceleração rápida, que injeta uma quantidade adicional de gasolina no ar admitido, tornando a mistura rica.
- Esse sistema é acionado automaticamente quando a manete é levada toda à frente.

FASES OPERACIONAIS DO MOTOR

Parada do Motor

- Nos motores de automóveis, o corte do motor é pela chave de ignição=> interrompe-se o fornecimento de energia elétrica e não haverá a fase de ignição.
- Este procedimento deixa certa quantidade de combustível nos cilindros, causando remoção do óleo lubrificante.
- Para evitar esse inconveniente, em motores aeronáuticos, a parada do motor é realizada cortando a mistura, interrompendo o fornecimento de gasolina.

SISTEMA DE ALIMENTAÇÃO

O sistema de alimentação tem o objetivo de fornecer a mistura ar-combustível ao motor, na pressão e temperatura adequadas e livre de impurezas.

- O sistema de alimentação tem 3 partes:
 - > Sistema de Indução
 - > Sistema de Superalimentação
 - > Sistema de Formação de Mistura

SISTEMA DE ALIMENTAÇÃO

- b) Sistema de Superalimentação é o conjunto que aumenta a pressão do ar admitido. Os aviões mais simples não têm esse sistema.
- a) **Sistema de Indução** é o conjunto que admite, filtra e aquece o ar (se necessário).

SISTEMA DE ALIMENTAÇÃO

SISTEMA DE INDUÇÃO => É constituído pelas seguintes partes:

- ➤ Bocal de admissão
- >Filtro de ar
- > Aquecedor de ar
- > Válvula de ar quente
- > Coletor de Admissão

Tem as seguintes funções:

> Fornecer um fluxo uniforme de ar à unidade formadora de mistura.

FIGURA EXTRAÍDA DA REF 51

- > Fornecer as cilindres uma mistura combustível contínua.
- >Admitir ar quente em lugar de ar frio quando se fizer necessário.

SISTEMA DE SUPERALIMENTAÇÃO

Motor não SuperAlimentado

- O pistão aspira o ar através da rarefação que ele cria no cilindro durante a admissão.
- A pressão no tubo de admissão é sempre menor que a pressão atmosférica.
- Os motores não superalimentados perdem potência com a altitude, devido à diminuição da quantidade de ar.

SISTEMA DE SUPERALIMENTAÇÃO

Motor SuperAlimentado

- O ar é aspirado por um compressor que o comprime e envia sob pressão para os cilindros.
- A pressão de admissão pode ser maior que a atmosférica.
- Pode funcionar em altitude como se estivesse ao nível do mar.
- Porém, acima de uma determinada altitude (altitude crítica), começa a perder potência.

SISTEMA DE FORMAÇÃO DE MISTURA

Tem a finalidade de vaporizar a gasolina e misturá-la ao ar. Existem 3 tipos básicos:

- > Carburação
- > Injeção indireta
- > Injeção direta

SISTEMA DE FORMAÇÃO DE MISTURA

Carburação

 O ar passa através do carburador, onde se mistura com a gasolina.

Carburador de Sucção (pressão diferencial)

• Gasolina é aspirada pelo fluxo de ar de admissão.

Carburador de Injeção

A gasolina é injetada sob pressão dentro do fluxo de ar.

FIGURA EXTRAÍDA DA REF. 5.1

SISTEMA DE ALIMENTAÇÃO SISTEMA DE FORMAÇÃO DE MISTURA

Injeção Indireta

- A gasolina é injetada no fluxo de ar de admissão por uma bomba, antes de chegar aos cilindros.
- Como não há carburador para dosar o combustível e misturá-lo ao ar admitido, a tarefa é dividida entre a Unidade Controladora ou Reguladora de Combustível, que efetua a dosagem, e o Bico Injetor, que pulveriza a gasolina dentro do fluxo de ar admitido.

SISTEMA DE FORMAÇÃO DE MISTURA

Injeção Direta

 Os cilindros aspiram ar puro, e o combustível é injetado diretamente dentro dos cilindros.

O Carburador

- É a unidade formadora de mistura.
- Controla a quantidade de ar e dosa a gasolina na proporção correta.
- Se a mistura não for adequada, o motor pode parar por falta ou por excesso de gasolina (afogamento).

Controle de Potência

- A manete de potência está ligada diretamente à borboleta do carburador.
- Quando a manete é levada toda à frente, a borboleta estará totalmente aberta => Motor aspira máxima quantidade de ar.
- Quando a manete está toda para trás (marcha lenta), a borboleta ficará na posição quase toda fechada.

Tipos de Sistemas de Carburação e Injeção

- > Carburador de Nível Constante (Sucção ou Pressão Diferencial)
- > Carburador de Injeção
- > Sistema de Injeção Direta
- > Sistema de Injeção Indireta

Carburador de Nível Constante

- EN2208: Aeronáutica I-A (Aviões)

 A Elem

 Menturi

 Mentur > Elemento básico: Tubo de
 - > A sucção no estrangulamento do venturi faz a gasolina subir pelo pulverizador ou injetor, misturando-se com o ar.
 - > O nível de gasolina é mantido constante dentro da cuba através de uma bóia.

Carburador de Nível Constante

Gicleur ou Giglê

É um orifício calibrado que serve para dosar a quantidade de gasolina que sai do pulverizador.

Quanto menor o diâmetro, mais pobre será a mistura.

Esse diâmetro é fixo e determinado pelo fabricante do motor.

Carburador de Nível Constante

Marcha Lenta (Pulverizador de Marcha lenta)

Quando a borboleta está em marcha lenta, o fluxo de ar no tubo de Venturi diminui e a gasolina deixa de ser aspirada pelo pulverizador.

Assim, entra em ação o pulverizador de marcha lenta, o qual aproveita a sucção formada entre a borboleta e a parede do tubo.

Carburador de Nível Constante

Aceleração

(Bomba Aceleradora)

Quando o motor é acelerado, o fluxo de ar aumenta imediatamente, mas a gasolina sofre um retardo ao subir pelo pulverizador e chegar ao tubo de Venturi. Para compensar esse retardo, o carburador possui uma bomba aceleradora, cujo pistão injeta uma pequena quantidade adicional de gasolina no instante em que a borboleta é aberta.

Carburador de Nível Constante

Válvula Economizadora

Quando a borboleta está na posição de potência máxima, é aberta a válvula economizadora, fazendo passar mais gasolina para o pulverizador.

A mistura torna-se rica (10:1).

Reduzindo um pouco a potência (máxima contínua), a mistura empobrece para 12,5:1.

Reduzindo para potência de cruzeiro, a válvula se fecha totalmente, tornando a mistura pobre (16:1)

Carburador de Nível Constante

Fatores que Influenciam na Mistura

Parâmetro	Variação	Densidade do ar	Mistura
Pressão Atmosférica	Diminui	Diminui	Enriquece
	Aumenta	Aumenta	Empobrece
Temperatura	Aumenta	Diminui	Enriquece
	Diminui	Aumenta	Empobrece
Altitude	Aumenta	Diminui	Enriquece
	Diminui	Aumenta	Empobrece
Umidade	Aumenta	Diminui	Enriquece
	Diminui	Aumenta	Empobrece

Carburador de Nível Constante

Formação de Gelo

A gasolina ao evaporar no tubo de Venturi resfria o ar. A umidade contida no ar pode congelar, vindo a se acumular no carburador.

Sintomas de formação de gelo:

- > Queda de rotação do motor
- Queda na pressão de admissão
- > Funcionamento irregular do motor

Eliminação do gelo: Sistema que aquece o ar de admissão, acionado pelo piloto através de uma alavanca no painel de controle.

Carburador de Injeção

Funciona em conjunto com uma bomba que fornece combustível sob pressão. O carburador precisa apenas dosar o combustível na proporção correta com o ar admitido.

Vantagens:

- Evita o acúmulo de gelo no venturi e na borboleta, pois o combustível é injetado após a borboleta.
- Funciona em todas as atitudes do avião, inclusive de dorso, pois não há espaços vazios onde o combustível possa balançar.
- > Vaporização mais perfeita do combustível.
- > Dosagem mais precisa e constante do combustível.

Carburador de Injeção

Sistema de Injeção Indireta

Os cilindros recebem a mistura já formada.

Sistema de Injeção Direta

O combustível é pulverizado dentro dos cilindros, durante a

fase de admissão.

O fluxo é descontínuo.

REFERÊNCIAS

5.1 - Jorge M. Homa, Aeronaves e Motores, Editora Asa, 29ª Edição.

5.2 - Acyr Costa Schiavo, Conhecimentos Técnicos e Motores para Pilotos, Editora EAPAC, 1982.