Digital Image Processing

Lecture 3

Image Pre-processing (Image Color Transformations)

Lecturer: Associate Prof. Lý Quốc Ngọc

3. Image Pre-processing

- 3.1. Color Transformations
- 3.2. Geometric Transformations
- 3.3. Local Pre-processing

3.1. Color Transformations

- 3.1.1. Linear mapping
- 3.1.2. Non-linear mapping
- 3.1.3. Probability Density Function-based mapping

Brightness modification

$$g(x, y) = f(x, y) + b$$

Contrast modification

$$g(x, y) = a.f(x, y)$$

Brightness+ Contrast modification

$$g(x, y) = a.f(x, y) + b$$

Brightness modification

$$g(x, y) = f(x, y) + b$$

Contrast modification

$$g(x, y) = a.f(x, y)$$

Brightness+ Contrast modification

$$g(x, y) = a.f(x, y) + b$$

Map a particular range of grey levels onto a new range

Ex: map image from range of grey levels [f₁ f₂] onto

range $[g_1 g_2]$.

Logarithmic mapping function

$$g(x, y) = c \log f(x, y)$$

Exponential mapping function

$$g(x, y) = e^{f(x, y)}$$

Logarithmic mapping function

$$g(x, y) = c \log f(x, y)$$

Logarithmic mapping function

$$g(x, y) = c \log f(x, y)$$

Logarithmic mapping function

Exponential mapping function

$$g(x,y) = e^{f(x,y)}$$

Exponential mapping function

$$g(x,y) = e^{f(x,y)}$$

Ex: Exponential mapping function

Ex: Exponential mapping function

Ex: Logarithmic mapping function

Ex: Logarithmic mapping function

Associate Prof. Lý Quốc Ngọc

3.1.3.1. Histogram Equalization

Problem statement

Given image f(x,y), it is necessary to define the nonlinear transformation T such that the output image g=T(f) whose pdf is uniform.

3.1.3.1. Histogram Equalization

3.1.3.1. Histogram Equalization

3.1.3.1. Histogram Equalization

Method

$$g = T(f) \Rightarrow p_g(g) = \frac{p_f(f)}{|dT(f)/df|}$$

$$p_g(g) = 1 \Rightarrow T(f) = \int_0^f p_f(w)dw$$

$$g_k = T(f_k) = \sum_{j=0}^k p_f(f_j) = \sum_{j=0}^k \frac{n_j}{n}$$

- 3.1.3.1. Histogram Equalization (Algorithm)
 - **Step1**. Create an array H of length nG initialized with 0 values (for an NxM image f of nG grey-levels).
 - Step2. Form the image histogram of f, save to H H[f(x, y)] + = 1
 - Step3. Form the cumulative image histogram of f, save to T T[0] = H[0]; T[p] = T[p-1] + H[p], p = 1,2,...,nG-1
 - **Step4**. Constructing a lookup table T in range [0;nG-1] T[p] = round((nG-1)/NM)T[p])
 - **Step5**. Form the output image g:g(x,y) = T[f(x,y)]

3.1.3.1. Histogram Equalization (Algorithm)

3.1.3.1. Histogram Equalization (Algorithm)

3.1.3.1. Histogram Equalization

Ex: Histogram equalization of f

2	2	2	2	2	2	2	5
2	6	6	6	6	5	5	5
1	7	7	6	6	5	5	5
1	7	7	1	1	8	6	4
2	9	8	8	8	8	6	4
2	9	10	10	11	12	12	3
2	9	9	10	10	14	13	3
2	2	2	2	2	3	3	3

3.1.3.1. Histogram Equalization

nG=15, N.M=64

f	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Н	0	4	16	5	2	7	8	4	5	4	4	1	2	1	1
Т	0	4	20	25	27	34	42	46	51	55	59	60	62	63	64
TR	0	1	4	5	6	7	9	10	11	12	13	13	14	14	14

$$T[0] = H[0]$$

$$T[p] = T[p-1] + H[p], p = 1,2,...,nG-1$$

$$T[p] = round((nG-1/NM)T[p])$$

3.1.3.1. Histogram Equalization

2	2	2	2	2	2	2	5
2	6	6	6	6	5	5	5
1	7	7	6	6	5	5	5
1	7	7	1	1	8	6	4
2	9	8	8	8	8	6	4
2	9	10	10	11	12	12	3
2	9	9	10	10	14	13	3
2	2	2	2	2	3	3	3

4	4	4	4	4	4	4	7
4	9	9	9	9	7	7	7
1	10	10	9	9	7	7	7
1	10	10	1	1	11	9	6
4	12	11	11	11	11	9	6
4	12	13	13	13	14	14	5
4	12	12	13	13	14	14	5
4	4	4	4	4	5	5	5

$$g(x,y)] = T[f(x,y)]$$

3.1.3.1. Histogram Equalization

g	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Hg	0	4	0	0	16	5	0	7	0	8	4	4	4	5	4

4	4	4	4	4	4	4	7
4	9	9	9	9	7	7	7
1	10	10	9	9	7	7	7
1	10	10	1	1	11	9	6
4	12	11	11	11	11	9	6
4	12	13	13	13	14	14	5
4	12	12	13	13	14	14	5
4	4	4	4	4	5	5	5

3.1.3.2. Histogram Specification

Problem statement

Given an image f(x,y), a predefined histogram $p_g(g)$, it is necessary to define the non-linear transformation F such that the output image g=F(f).

3.1.3.2. Histogram Specification

Method

$$s = T(f) = \int_{0}^{f} p_{f}(w)dw$$

$$z = G(g) = \int_{0}^{g} p_{g}(w)dw$$

$$g = G^{-1}(z) = G^{-1}(s) = G^{-1}[T(f)]$$

$$g = F(f), F = G^{-1} \circ T$$

3.1.3.2. Histogram Specification

Method

3.1.3.2. Histogram Specification (Algorithm)

- **Step1**. Create an array H of length nG initialized with 0 values (for an NxM image f of nG grey-levels).
- **Step2**. Form the image histogram of f, save to Hf Hf[f(x, y)] + = 1
- Step3. Form the cumulative image histogram of f, save to T T[0] = H[0]; T[p] = T[p-1] + Hf[p], p = 1,2,...,nG-1
- **Step4**. Constructing a lookup table T in range [0;nG-1] T[p] = round((nG-1)/NM)T[p])

- 3.1.3. Probability Density Function-based mapping
- 3.1.3.2. Histogram Specification (Algorithm)
- Step5. Form the cumulative image histogram of g, save to G

$$G[0] = Hg[0]$$

 $G[p] = G[p-1] + Hg[p], p = 1,2,...,nG-1$

- Step 6. Constructing a lookup table G in range [0;nG-1] G[p] = round((nG-1/NM)G[p])
- **Step 7**. Form the output image **g**:

$$g(x, y) = G^{-1}[T[f(x, y)]]$$