PETRI NET ENCODINGS FOR REGULAR OPEN MAS

TEST CASES

Test Case 1

Let $\mathcal{O} = \langle A, E \rangle$ be a regular OMAS given as follows:

Agent Template $A = (L, \iota, Act, P, tr, leave)$ with

- $L = \{l_0, l_1, l_2\}$
- $\iota = l_0$
- $Act = \{a_1, a_2\}$
- $P = \{l_0 : a_1, l_1 : a_2\}$
- $leave = l_2$
- $tr = \{\langle l_0, a_1, \{a_1\}, b, l_1 \rangle, \langle l_0, a_1, \emptyset, b, l_1 \rangle, \langle l_1, a_2, \{a_2\}, b, l_2 \rangle, \langle l_1, a_2, \emptyset, b, l_2 \rangle\}$

Environment $E = (L_E, \iota_E, Act_E, P_E, tr_E)$ with

- $L_E = \{l_e\}$
- $\iota_E = l_e$
- $Act_E = \{b\}$
- $P_E = \{l_e : b\}$
- $tr_E = \{\langle l_e, b, \{a_1\}, l_e \rangle, \langle l_e, b, \{a_2\}, l_e \rangle\}$

The equivalent Petri net $\langle P_{\mathcal{O}}, T_{\mathcal{O}}, F_{\mathcal{O}}, W_{\mathcal{O}} \rangle$ is defined as follows:

- $P_{\mathcal{O}} = L \cup L_E = \{l_0, l_1, l_2, l_e\}.$
- Recall that the computation of $T_{\mathcal{O}}$ depends, essentially, on the computation of $\mathcal{TR}_{\mathcal{O}}$, which is done iteratively over the transitions in tr_E . In the present case, $\mathcal{TR}_{\mathcal{O}} = \mathcal{TR}_{\langle l_e, b, \{a_1\}, l_e \rangle} \cup \mathcal{TR}_{\langle l_e, b, \{a_2\}, l_e \rangle}$.
 - $\mathcal{TR}_{\langle l_e, b, \{a_1\}, l_e \rangle}$ contains all those global joint transitions which are consistent with environment transition $\langle l_e, b, \{a_1\}, l_e \rangle$ and crucially depends on $(b, \{a_1\})$. Hence, $\mathcal{TR}_{\langle l_e, b, \{a_1\}, l_e \rangle} = \{(\langle l_0, a_1, \emptyset, b, l_1 \rangle, \langle l_e, b, \{a_1\}, l_e \rangle), (\langle l_0, a_1, \{a_1\}, b, l_1 \rangle, \langle l_0, a_1, \{a_1\}, b, l_1 \rangle, \langle l_e, b, \{a_1\}, l_e \rangle)\}$
 - Similarly, $\mathcal{TR}_{\langle l_e, b, \{a_2\}, l_e \rangle}$ contains all those global joint transitions which are consistent with environment transition $\langle l_e, b, \{a_2\}, l_e \rangle$ and crucially depends on $(b, \{a_2\})$. Hence, $\mathcal{TR}_{\langle l_e, b, \{a_1\}, l_e \rangle} = \{(\langle l_1, a_2, \emptyset, b, l_2 \rangle, \langle l_e, b, \{a_2\}, l_e \rangle), (\langle l_1, a_2, \{a_2\}, b, l_2 \rangle, \langle l_1, a_2, \{a_2\}, b, l_2 \rangle, \langle l_e, b, \{a_2\}, l_e \rangle)\}$
- Let us denote the tuples in $\mathcal{TR}_{\langle l_e, b, \{a_1\}, l_e\rangle}$ by \mathfrak{t}_1 and \mathfrak{t}_2 and $\mathcal{TR}_{\langle l_e, b, \{a_2\}, l_e\rangle}$ by \mathfrak{t}_3 and \mathfrak{t}_4 , respectively. Then, $T_{\mathcal{O}} = \{t_{aj}, t_{al}, t_{\mathfrak{t}_1}, t_{\mathfrak{t}_2}, t_{\mathfrak{t}_3}, t_{\mathfrak{t}_4}\}.$
- The information computed in \mathcal{TR} helps us to augment $F_{\mathcal{O}}$ as follows. Recall that $F_{\mathcal{O}}$ is initialized to be $\{\langle t_{aj}, l_0 \rangle, \langle l_2, t_{al} \rangle\}$. We add the following edges to $F_{\mathcal{O}}$: $\{\langle l_0, t_{\mathfrak{t}_1} \rangle, \langle l_e, t_{\mathfrak{t}_1} \rangle, \langle t_{\mathfrak{t}_1}, l_1 \rangle, \langle t_{\mathfrak{t}_1}, l_e \rangle\}$ $\cup \{\langle l_0, t_{\mathfrak{t}_2} \rangle, \langle t_{\mathfrak{t}_2} \rangle, \langle t_{\mathfrak{t}_2} \rangle, \langle t_{\mathfrak{t}_2} \rangle, \langle t_{\mathfrak{t}_3} \rangle, \langle t_{\mathfrak{t}_4} \rangle\}$ $\cup \{\langle l_1, t_{\mathfrak{t}_4} \rangle, \langle t_{\mathfrak$
- Similarly, the initial content of $W_{\mathcal{O}} = \{\langle t_{aj}, l_0 \rangle \mapsto 1, \langle l_2, t_{al} \rangle \mapsto 1\}$. We augment $W_{\mathcal{O}}$ with the following weights computed from \mathcal{TR} , corresponding to the edges in $F_{\mathcal{O}}$: $\{\langle l_0, t_{\mathfrak{t}_1} \rangle \mapsto 1, \langle l_e, t_{\mathfrak{t}_1} \rangle \mapsto 1, \langle t_{\mathfrak{t}_1}, l_1 \rangle \mapsto 1, \langle t_{\mathfrak{t}_1}, l_e \rangle \mapsto 1\} \cup \{\langle l_0, t_{\mathfrak{t}_2} \rangle \mapsto 2, \langle l_e, t_{\mathfrak{t}_2} \rangle \mapsto 1, \langle t_{\mathfrak{t}_2}, l_1 \rangle \mapsto 2, \langle t_{\mathfrak{t}_2}, l_e \rangle \mapsto 1\} \cup \{\langle l_1, t_{\mathfrak{t}_3} \rangle \mapsto 1, \langle l_e, t_{\mathfrak{t}_3} \rangle \mapsto 1, \langle t_{\mathfrak{t}_3}, l_e \rangle \mapsto 1\} \cup \{\langle l_1, t_{\mathfrak{t}_4} \rangle \mapsto 2, \langle l_e, t_{\mathfrak{t}_4} \rangle \mapsto 1, \langle t_{\mathfrak{t}_4}, l_e \rangle \mapsto 2, \langle t_{\mathfrak{t}_4}, l_e \rangle \mapsto 1\}.$

Let $\mathcal{O} = \langle A, E \rangle$ be a regular OMAS given as follows:

Agent Template $A = (L, \iota, Act, P, tr, leave)$ with

- $L = \{l_0, l_1, l_2\}$
- $\iota = l_0$
- $Act = \{a_1, a_2\}$
- $P = \{l_0 : a_1, l_1 : a_2\}$
- $leave = l_2$
- $tr = \{\langle l_0, a_1, \{a_1\}, b, l_1 \rangle, \langle l_1, a_2, \{a_2\}, b, l_2 \rangle\}$

Environment $E = (L_E, \iota_E, Act_E, P_E, tr_E)$ with

- $L_E = \{l_e\}$
- $\iota_E = l_e$
- $Act_E = \{b\}$
- $P_E = \{l_e : b\}$
- $tr_E = \{\langle l_e, b, \{a_1\}, l_e \rangle, \langle l_e, b, \{a_2\}, l_e \rangle\}$

The equivalent Petri net $\langle P_{\mathcal{O}}, T_{\mathcal{O}}, F_{\mathcal{O}}, W_{\mathcal{O}} \rangle$ is defined as follows:

- $P_{\mathcal{O}} = L \cup L_E = \{l_0, l_1, l_2, l_e\}.$
- Recall that the computation of $T_{\mathcal{O}}$ depends, essentially, on the computation of $\mathcal{TR}_{\mathcal{O}}$, which is done iteratively over the transitions in tr_E . In the present case, $\mathcal{TR}_{\mathcal{O}} = \mathcal{TR}_{\langle l_e, b, \{a_1\}, l_e \rangle} \cup \mathcal{TR}_{\langle l_e, b, \{a_2\}, l_e \rangle}$.
 - $\mathcal{TR}_{\langle l_e, b, \{a_1\}, l_e \rangle}$ contains all those global joint transitions which are consistent with environment transition $\langle l_e, b, \{a_1\}, l_e \rangle$ and crucially depends on $(b, \{a_1\})$. Hence, $\mathcal{TR}_{\langle l_e, b, \{a_1\}, l_e \rangle} = (\langle l_0, a_1, \{a_1\}, b, l_1 \rangle, \langle l_0, a_1, \{a_1\}, b, l_1 \rangle, \langle l_e, b, \{a_1\}, l_e \rangle)$
 - Similarly, $\mathcal{TR}_{\langle l_e, b, \{a_2\}, l_e \rangle}$ contains all those global joint transitions which are consistent with environment transition $\langle l_e, b, \{a_2\}, l_e \rangle$ and crucially depends on $(b, \{a_2\})$. Hence, $\mathcal{TR}_{\langle l_e, b, \{a_1\}, l_e \rangle} = (\langle l_1, a_2, \{a_2\}, b, l_2 \rangle, \langle l_1, a_2, \{a_2\}, b, l_2 \rangle, \langle l_e, b, \{a_2\}, l_e \rangle)$
- Let us denote the tuple in $\mathcal{TR}_{\langle l_e, b, \{a_1\}, l_e \rangle}$ by \mathfrak{t}_1 and $\mathcal{TR}_{\langle l_e, b, \{a_2\}, l_e \rangle}$ by \mathfrak{t}_2 , respectively. Then, $T_{\mathcal{O}} = \{t_{aj}, t_{al}, t_{\mathfrak{t}_1}, t_{\mathfrak{t}_2}\}.$
- The information computed in \mathcal{TR} helps us to augment $F_{\mathcal{O}}$ as follows. Recall that $F_{\mathcal{O}}$ is initialized to be $\{\langle t_{aj}, l_0 \rangle, \langle l_2, t_{al} \rangle\}$. We add the following edges to $F_{\mathcal{O}} : \{\langle l_0, t_{\mathfrak{t}_1} \rangle, \langle l_e, t_{\mathfrak{t}_1} \rangle, \langle t_{\mathfrak{t}_1}, l_1 \rangle, \langle t_{\mathfrak{t}_1}, l_e \rangle\} \cup \{\langle l_1, t_{\mathfrak{t}_2} \rangle, \langle l_e, t_{\mathfrak{t}_2} \rangle, \langle t_{\mathfrak{t}_2}, l_2 \rangle, \langle t_{\mathfrak{t}_2}, l_e \rangle\}.$
- Similarly, the initial content of $W_{\mathcal{O}} = \{\langle t_{aj}, l_0 \rangle \mapsto 1, \langle l_2, t_{al} \rangle \mapsto 1\}$. We augment $W_{\mathcal{O}}$ with the following weights computed from \mathcal{TR} , corresponding to the edges in $F_{\mathcal{O}}$: $\{\langle l_0, t_{\mathfrak{t}_1} \rangle \mapsto 2, \langle l_e, t_{\mathfrak{t}_1} \rangle \mapsto 1, \langle t_{\mathfrak{t}_1}, l_1 \rangle \mapsto 2, \langle t_{\mathfrak{t}_1}, t_{e} \rangle \mapsto 1\} \cup \{\langle l_1, t_{\mathfrak{t}_2} \rangle \mapsto 2, \langle l_e, t_{\mathfrak{t}_2} \rangle \mapsto 1, \langle t_{\mathfrak{t}_2}, l_2 \rangle \mapsto 2, \langle t_{\mathfrak{t}_2}, l_e \rangle \mapsto 1\}$.

Let $\mathcal{O} = \langle A, E \rangle$ be a regular OMAS given as follows:

Agent Template $A = (L, \iota, Act, P, tr, leave)$ with

- $L = \{l_0, l_1, l_2\}$
- $\iota = l_0$
- $Act = \{a_1, a_2\}$
- $P = \{l_0 : a_1, l_1 : a_2\}$
- $leave = l_2$
- $tr = \{\langle l_0, a_1, \emptyset, b, l_1 \rangle, \langle l_1, a_2, \emptyset, b, l_2 \rangle\}$

Environment $E = (L_E, \iota_E, Act_E, P_E, tr_E)$ with

- $L_E = \{l_e\}$
- $\iota_E = l_e$
- $Act_E = \{b\}$
- $P_E = \{l_e : b\}$
- $tr_E = \{\langle l_e, b, \{a_1\}, l_e \rangle, \langle l_e, b, \{a_2\}, l_e \rangle\}$

The equivalent Petri net $\langle P_{\mathcal{O}}, T_{\mathcal{O}}, F_{\mathcal{O}}, W_{\mathcal{O}} \rangle$ is defined as follows:

- $P_{\mathcal{O}} = L \cup L_E = \{l_0, l_1, l_2, l_e\}.$
- Recall that the computation of $T_{\mathcal{O}}$ depends, essentially, on the computation of $\mathcal{TR}_{\mathcal{O}}$, which is done iteratively over the transitions in tr_E . In the present case, $\mathcal{TR}_{\mathcal{O}} = \mathcal{TR}_{\langle l_e, b, \{a_1\}, l_e \rangle} \cup \mathcal{TR}_{\langle l_e, b, \{a_2\}, l_e \rangle}$.
 - $-\mathcal{TR}_{\langle l_e,b,\{a_1\},l_e\rangle}$ contains all those global joint transitions which are consistent with environment transition $\langle l_e,b,\{a_1\},l_e\rangle$ and crucially depends on $(b,\{a_1\})$. Hence, $\mathcal{TR}_{\langle l_e,b,\{a_1\},l_e\rangle} = \{(\langle l_0,a_1,\emptyset,b,l_1\rangle,\langle l_e,b,\{a_1\},l_e\rangle)\}$
 - Similarly, $\mathcal{TR}_{\langle l_e, b, \{a_2\}, l_e \rangle}$ contains all those global joint transitions which are consistent with environment transition $\langle l_e, b, \{a_2\}, l_e \rangle$ and crucially depends on $(b, \{a_2\})$. Hence, $\mathcal{TR}_{\langle l_e, b, \{a_1\}, l_e \rangle} = \{(\langle l_1, a_2, \emptyset, b, l_2 \rangle, \langle l_e, b, \{a_2\}, l_e \rangle)\}$
- Let us denote the tuple in $\mathcal{TR}_{\langle l_e, b, \{a_1\}, l_e \rangle}$ by \mathfrak{t}_1 and $\mathcal{TR}_{\langle l_e, b, \{a_2\}, l_e \rangle}$ by \mathfrak{t}_2 , respectively. Then, $T_{\mathcal{O}} = \{t_{aj}, t_{al}, t_{\mathfrak{t}_1}, t_{\mathfrak{t}_2}\}.$
- The information computed in \mathcal{TR} helps us to augment $F_{\mathcal{O}}$ as follows. Recall that $F_{\mathcal{O}}$ is initialized to be $\{\langle t_{aj}, l_0 \rangle, \langle l_2, t_{al} \rangle\}$. We add the following edges to $F_{\mathcal{O}} : \{\langle l_0, t_{\mathfrak{t}_1} \rangle, \langle l_e, t_{\mathfrak{t}_1} \rangle, \langle t_{\mathfrak{t}_1}, l_1 \rangle, \langle t_{\mathfrak{t}_1}, l_e \rangle\} \cup \{\langle l_1, t_{\mathfrak{t}_2} \rangle, \langle l_e, t_{\mathfrak{t}_2} \rangle, \langle t_{\mathfrak{t}_2}, l_2 \rangle, \langle t_{\mathfrak{t}_2}, l_e \rangle\}.$
- Similarly, the initial content of $W_{\mathcal{O}} = \{\langle t_{aj}, l_0 \rangle \mapsto 1, \langle l_2, t_{al} \rangle \mapsto 1\}$. We augment $W_{\mathcal{O}}$ with the following weights computed from \mathcal{TR} , corresponding to the edges in $F_{\mathcal{O}}$: $\{\langle l_0, t_{\mathfrak{t}_1} \rangle \mapsto 1, \langle l_e, t_{\mathfrak{t}_1} \rangle \mapsto 1, \langle t_{\mathfrak{t}_1}, l_1 \rangle \mapsto 1, \langle t_{\mathfrak{t}_1}, l_e \rangle \mapsto 1\}$ $\cup \{\langle l_1, t_{\mathfrak{t}_2} \rangle \mapsto 1, \langle l_e, t_{\mathfrak{t}_2} \rangle \mapsto 1, \langle t_{\mathfrak{t}_2}, l_e \rangle \mapsto 1, \langle t_{\mathfrak{t}_2}, l_e \rangle \mapsto 1\}$.

Let $\mathcal{O} = \langle A, E \rangle$ be a regular OMAS given as follows:

Agent Template $A = (L, \iota, Act, P, tr, leave)$ with

- $L = \{l_0, l_1, l_2\}$
- $\iota = l_0$
- $Act = \{a_1, a_2\}$
- $P = \{l_0 : \{a_1, a_2\}, l_1 : \{a_1, a_2\}\}$
- $leave = l_2$
- $tr = \{\langle l_0, a_1, \{a_1\}, b, l_1 \rangle, \langle l_0, a_1, \emptyset, b, l_1 \rangle, \langle l_0, a_2, \{a_2\}, b, l_2 \rangle, \langle l_0, a_2, \emptyset, b, l_2 \rangle, \langle l_1, a_2, \{a_2\}, b, l_2 \rangle, \langle l_1, a_2, \emptyset, b, l_2 \rangle, \langle l_1, a_1, \{a_1\}, b, l_0 \rangle, \langle l_1, a_1, \emptyset, b, l_0 \rangle\}$

Environment $E = (L_E, \iota_E, Act_E, P_E, tr_E)$ with

- $L_E = \{le_0, le_1, le_2\}$
- $\iota_E = le_0$
- $Act_E = \{b\}$
- $P_E = \{le_0 : b, le_1 : b, le_2 : b\}$
- $tr_E = \{\langle le_0, b, \{a_1\}, le_1 \rangle, \langle le_e, b, \{a_2\}, le_2 \rangle, \langle le_2, b, \{a_1\}, le_1 \rangle, \langle le_1, b, \{a_2\}, le_2 \rangle\}$

The equivalent Petri net $\langle P_{\mathcal{O}}, T_{\mathcal{O}}, F_{\mathcal{O}}, W_{\mathcal{O}} \rangle$ is defined as follows:

 $P_{\mathcal{O}}$: As usual $P_{\mathcal{O}} = L \cup L_E = \{l_0, l_1, l_2, le_0, le_1, le_2\}$

 $T_{\mathcal{O}}$: In order to define $T_{\mathcal{O}}$, we need to compute $\mathcal{TR}_{\mathcal{O}}$ which is equal to $\mathcal{TR}_{\langle le_0,b,\{a_1\},le_1\rangle} \cup \mathcal{TR}_{\langle le_e,b,\{a_2\},le_2\rangle} \cup \mathcal{TR}_{\langle le_1,b,\{a_2\},le_2\rangle}$. These sets are, in turn, computed from $\mathcal{TR}_{\langle b,\{a_1\}\rangle}$ and $\mathcal{TR}_{\langle b,\{a_2\}\rangle}$. So, we proceed to compute them first.

 $\mathcal{TR}_{\langle b,\{a_1\}\rangle}$ contains two (2) tuples of size one (1): $\langle l_0,a_1,\emptyset,b,l_1\rangle$ and $\langle l_1,a_1,\emptyset,b,l_0\rangle$. $\mathcal{TR}_{\langle b,\{a_1\}\rangle}$ contains three (3) tuples of size one (2): $(\langle l_0,a_1,\{a_1\},b,l_1\rangle,\langle l_0,a_1,\{a_1\},b,l_1\rangle)$, $(\langle l_1,a_1,\{a_1\},b,l_0\rangle,\langle l_1,a_1,\{a_1\},b,l_0\rangle)$ and $(\langle l_0,a_1,\{a_1\},b,l_1\rangle,\langle l_1,a_1,\{a_1\},b,l_0\rangle)$.

Now, $\mathcal{TR}_{\langle le_0,b,\{a_1\},le_1\rangle} = \mathcal{TR}_{\langle b,\{a_1\}\rangle} \times \{\langle le_0,b,\{a_1\},le_1\rangle\} \text{ and } \mathcal{TR}_{\langle le_2,b,\{a_1\},le_1\rangle} = \mathcal{TR}_{\langle b,\{a_1\}\rangle} \times \{\langle le_2,b,\{a_1\},le_1\rangle\}.$

 $\mathcal{TR}_{\langle b,\{a_2\}\rangle}$ contains two (2) tuples of size one (1): $\langle l_0,a_2,\emptyset,b,l_2\rangle$ and $\langle l_1,a_2,\emptyset,b,l_2\rangle$.

 $\mathcal{TR}_{\langle b, \{a_2\}\rangle}$ contains three (3) tuples of size one (2): $(\langle l_0, a_2, \{a_2\}, b, l_2\rangle, \langle l_0, a_2, \{a_2\}, b, l_2\rangle), (\langle l_1, a_2, \{a_2\}, b, l_2\rangle, \langle l_1, a_2, \{a_2\}, b, l_2\rangle)$ and $(\langle l_0, a_2, \{a_2\}, b, l_2\rangle, \langle l_1, a_2, \{a_2\}, b, l_2\rangle)$

Now, $\mathcal{TR}_{\langle le_1,b,\{a_2\},le_2\rangle} = \mathcal{TR}_{\langle b,\{a_2\}\rangle} \times \{\langle le_1,b,\{a_2\},le_2\rangle\}$ and $\mathcal{TR}_{\langle le_0,b,\{a_2\},le_2\rangle} = \mathcal{TR}_{\langle b,\{a_2\}\rangle} \times \{\langle le_0,b,\{a_2\},le_2\rangle\}$. $\mathcal{T}_{\mathcal{O}} = \{t_{aj},t_{al}\} \cup \{t_{tr} \mid tr \in \mathcal{TR}_{\mathcal{O}}\}$.

Let $\mathcal{O} = \langle A, E \rangle$ be a regular OMAS given as follows:

Agent Template $A = (L, \iota, Act, P, tr, leave)$ with

- $L = \{l_0, l_1, l_2\}$
- $\iota = l_0$
- $Act = \{a_1, a_2\}$
- $P = \{l_0 : \{a_1, a_2\}, l_1 : \{a_1, a_2\}\}$
- $leave = l_2$
- $tr = \{\langle l_0, a_1, \{a_1\}, b_1, l_0 \rangle, \langle l_0, a_2, \{a_2\}, b_1, l_0 \rangle, \langle l_0, a_1, \{a_1, a_2\}, b_2, l_1 \rangle, \langle l_0, a_2, \{a_1, a_2\}, b_2, l_1 \rangle, \langle l_1, a_1, \{a_2\}, b_2, l_1 \rangle, \langle l_1, a_2, \{a_1\}, b_2, l_1 \rangle, \langle l_1, a_1, \{a_1, a_2\}, b_2, l_2 \rangle, \langle l_1, a_2, \{a_1, a_2\}, b_2, l_2 \rangle\}$

Environment $E = (L_E, \iota_E, Act_E, P_E, tr_E)$ with

- $L_E = \{le_0, le_1\}$
- $\iota_E = le_0$
- $Act_E = \{b_1, b_2\}$
- $P_E = \{le_0 : \{b_1, b_2\}, le_1 : b_2\}$
- $tr_E = \{\langle le_0, b_1, \{a_1\}, le_0 \rangle, \langle le_0, b_1, \{a_2\}, le_0 \rangle, \langle le_0, b_2, \{a_1, a_2\}, le_1 \rangle, \langle le_1, b_2, \{a_1, a_2\}, le_1 \rangle\}$

The equivalent Petri net $\langle P_{\mathcal{O}}, T_{\mathcal{O}}, F_{\mathcal{O}}, W_{\mathcal{O}} \rangle$ is defined as follows:

- $P_{\mathcal{O}} = L \cup L_E = \{l_0, l_1, l_2, le_0, le_1\}.$
- Recall that the computation of $T_{\mathcal{O}}$ depends, essentially, on the computation of $\mathcal{TR}_{\mathcal{O}}$, which is done iteratively over the transitions in tr_E . In the present case,

$$\mathcal{TR}_{\mathcal{O}} = \mathcal{TR}_{\langle le_0,b_1,\{a_1\},le_0\rangle} \cup \mathcal{TR}_{\langle le_0,b_1,\{a_2\},le_0\rangle} \cup \mathcal{TR}_{\langle le_0,b_2,\{a_1,a_2\},le_1\rangle} \cup \mathcal{TR}_{\langle le_1,b_2,\{a_1,a_2\},le_1\rangle}.$$

- $\mathcal{TR}_{\langle le_0,b_1,\{a_1\},le_0\rangle} = \{(\langle l_1,a_1,\{a_1\},b_2,l_1\rangle,\langle l_1,a_1,\{a_1\},b_2,l_1\rangle,\langle le_0,b_1,\{a_1\},le_0\rangle)\}.$
- $\mathcal{TR}_{\langle le_0,b_1,\{a_2\},le_0\rangle} = \{(\langle l_0,a_2,\{a_2\},b_1,l_0\rangle,\langle l_0,a_2,\{a_2\},b_1,l_0\rangle,\langle le_0,b_1,\{a_2\},le_0\rangle)\}.$
- $\mathcal{TR}_{\langle le_0,b_2,\{a_1,a_2\},le_1\rangle}$ and $\mathcal{TR}_{\langle le_1,b_2,\{a_1,a_2\},le_1\rangle}$ are computed from $\mathcal{TR}_{\langle b_2,\{a_1,a_2\}\rangle}$. $\mathcal{TR}_{\langle b_2,\{a_1,a_2\}\rangle}$ contains tuples of sizes 2, 3 and 4 from tr.
 - * $\mathcal{TR}_{\langle b_2, \{a_1, a_2\} \rangle}$ contains one (1) tuple of size $2 (\langle l_1, a_1, \{a_2\}, b_2, l_1 \rangle, \langle l_1, a_2, \{a_1\}, b_2, l_1 \rangle)$.
 - * $\mathcal{TR}_{\langle b_2, \{a_1, a_2\} \rangle}$ contains eight (8) tuples of size 3 These tuples are obtained from the following pair of tuple by replacing (l, l') and $(l^{\dagger}, l^{\ddagger})$ by the pairs from the set $\{(l_0, l_1), (l_1, l_2)\}$: $(\langle l, a_1, \{a_1, a_2\}, b_2, l' \rangle, \langle l_1, a_2, \{a_1\}, b_2, l_1 \rangle, \langle l^{\dagger}, a_1, \{a_1, a_2\}, b_2, l^{\ddagger} \rangle)$ and $(\langle l, a_2, \{a_1, a_2\}, b_2, l' \rangle, \langle l_1, a_1, \{a_2\}, b_2, l_1 \rangle, \langle l^{\dagger}, a_2, \{a_1, a_2\}, b_2, l^{\ddagger} \rangle)$.
 - * $\mathcal{TR}_{\langle b_2, \{a_1, a_2\}\rangle}$ contains sixteen (16) tuples of size 4 These tuples are obtained from the following tuple by replacing (l, l') by the pairs from the set $\{(l_0, l_1), (l_1, l_2)\}$: $(\langle l, a_1, \{a_1, a_2\}, b_2, l' \rangle, \langle l, a_1, \{a_1, a_2\}, b_2, l' \rangle, \langle l, a_2, \{a_1, a_2\}, b_2, l' \rangle, \langle l, a_2, \{a_1, a_2\}, b_2, l' \rangle)$. Note that in each sub-tuple $\langle l, \{a_1, a_2\}, b_2, l' \rangle, (l, l')$ may be replaced by an arbitrary pair from the set $\{(l_0, l_1), (l_1, l_2)\}$.

After we have computed the set $\mathcal{TR}_{\langle b_2, \{a_1, a_2\} \rangle}$, we define the sets $\mathcal{TR}_{\langle le_0, b_2, \{a_1, a_2\}, le_1 \rangle}$ and $\mathcal{TR}_{\langle le_1, b_2, \{a_1, a_2\}, le_1 \rangle}$ as follows:

$$\mathcal{TR}_{\langle le_0, b_2, \{a_1, a_2\}, le_1 \rangle} = \mathcal{TR}_{\langle b_2, \{a_1, a_2\} \rangle} \times \{\langle le_0, b_2, \{a_1, a_2\}, le_1 \rangle\}$$

$$\mathcal{TR}_{\langle le_1, b_2, \{a_1, a_2\}, le_1 \rangle} = \mathcal{TR}_{\langle b_2, \{a_1, a_2\} \rangle} \times \{\langle le_1, b_2, \{a_1, a_2\}, le_1 \rangle\}$$

• We omit further details regarding $T_{\mathcal{O}},\,F_{\mathcal{O}}$ and $W_{\mathcal{O}}$ as they are self evident.