

```
timescale lns/lns
module mymulti(input a,b,s, output w);
          wire i, j;
          not # (7,9) Nl(i,s);
          notif1 # (14,18,16) NT1(j,a,i);
          notif1 # (14,18,16) NT2(j,b,s);
          notif1 # (14,18,16) NT3(w,j,1);
  endmodule
```

```
timescale lns/lns
23456789
    module testbenchl ();
               logic aa=1,bb=0,ss=0;
              wire ww;
              mymulti MMT(.a(aa),.b(bb),.s(ss),.w(ww));
               initial begin
               #50 aa=0;bb=1;
               #50 ss=1;
              #50 Satop;
              end
      endmodule
```

% +	Msgs	27	 								
🥠 /testbench1/aa	1			5	7	7	7	y	,	7	7
/testbench1/bb	0							2			
🍫 /testbench1/ss	0										
/testbench1/ww	StX	-							2		

```
timescale lns/lns
     module testbench2 ();
                logic DD=0,cc=1;
 4 5
                wire QQ;
                mydlatch MDL(.D(DD),.clk(cc),.Q(QQ));
                initial begin
                #50 cc=0;
                #50 DD=1;
                #50 cc=1; DD=1;
10
                #50 cc=0;
                #50 DD=0;
                #50 $stop;
13
                end
       endmodule
14
```

& →	Msgs				o	100				 .,,		
/testbench2/DD	0											
🥠 /testbench2/cc	1											
🥠 /testbench2/QQ	StX		+									
R												

```
timescale lns/lns
     module testbench3 ();
 3
                logic DD=0,cc=1;
                wire 00:
 5
                mydlatch MDL(.D(DD),.clk(cc),.Q(QQ));
                initial begin
 78
                #50 DD=1;
                #20 cc=0;
                #80 cc=1;
10
                #50 DD=0;
11
                #20 DD=1;
12
                #40 cc=0;
13
                #10 cc=1; DD=0;
14
                #20 cc=0;
15
                #30 Sstop;
16
                end
       endmodule
```

& -	Msgs	and the same and	N	 A1 2 2		
/testbench3/DD /testbench3/cc	0					
/testbench3/QQ	StX				 	
—	· · · · · · · · · · · · · · · · · · ·					

```
'timescale lns/lns
2 3 4 5 6 7 8 9 10
     module mydshift (input serIn,clk, output [7:0] PO);
                wire [8:0] Q;
                assign Q[8] = serIn;
                genvar i;
                generate
                    for (i=8; i > 0; i=i-1) begin
                          mydlatch MDL(Q[i],clk,Q[i-1]);
                    end
                endgenerate
                assign PO = Q[7:0];
       endmodule
```

```
timescale lns/lns
23456789
    module testbench ();
               logic SERIN=1, CLK=1;
               wire [7:0] po;
               mydshift MDS(.serIn(SERIN),.clk(CLK),.PO(po));
               initial begin
               #300 CLK=0;
               #50 CLK=1; SERIN=0;
               #300 CLK=0;
               #50 Satop;
               end
      endmodule
```

≨ 0 +	Msgs		200																	100	
/testbench/SERIN	1																y.				
/testbench/CLK	1					V			V		Va		V004444	V 2004444	V 00001111	V 000000444	V 00000044	V 0000000	V 20000000		
+> /testbench/po	XXXXXXXX	1xxxxxxx	11xxxxxx	x 111xxxx	x 1111xxxx	111111xxx	1111111xx	11111111x	(111111111		,,0	,,,,,,,,,	,0011111.	1 ,0001111	00001111	00000111	100000011	,0000001	, 00000000	Z Z	

```
`timescale lns/lns
     module testbench ();
                logic RESET=0, DD=1, CLK=1;
                wire 00:
 5
                myMSDFF MDS(.D(DD),.reset(RESET),.clk(CLK),.Q(QQ));
                initial begin
                #100 CLK=0;
                #50 CLK=1; RESET=1;
                #100 CLK=0:
10
                #50 RESET=0;
11
                #20 CLK=1;
12
                #20 CLK=0:
13
                #50 CLK=1:
14
                #50 CLK=0; DD=0;
15
                #50 CLK=1;
16
                #50 RESET=1;
17
                #20 CLK=0:
18
                #20 CLK=1:
19
                #10 RESET=0;
20 🗬
                #50 $stop;
21
                end
22
       endmodule
```



```
'timescale lns/lns
       module mydshift (input serIn,clk,reset, output [7:0] PO);
 3
                wire [8:0] Q;
 4 5
               assign Q[8] = serIn;
                genvar i;
                generate
7 8 9
                    for (i=8; i > 0; i=i-1) begin
                         myMSDFF MMSDFF(Q[i], reset, clk, Q[i-1]);
                    end
10
               endgenerate
               assign PO = Q[7:0];
       endmodule
12
```

```
'timescale lns/lns
1 2 3 4 5 6 7 8 9 10
     module testbench ();
                 logic RESET=1, SERIN=1, CLK=1;
                wire [7:0] po;
                 mydshift MDS (.serIn (SERIN), .reset (RESET), .clk(CLK), .PO (po));
                 initial begin
                 #100 CLK=0;
                 #50 CLK=1;
                 #50 RESET=0; CLK=1;
                 #100 CLK=0;
\Pi
                 #50 CLK=1:
12
                 #100 CLK=0;
13
                 #50 SERIN=0; CLK=1;
14
                 #100 CLK=0:
15
                 #100 $stop;
16
                 end
        endmodule
```

≨ 1+	Msgs						
/testbench/RESET	1				4		
/testbench/SERIN	1						
/testbench/CLK	1				السطارات		R R
/testbench/po	XXXXXXXX	(00000000	(10	0000000	(1)	000000) 01100000

```
'timescale lns/lns
2345678910
     module LSFR (input syncInit, clk, reset, output [7:0] PO);
               wire [8:0] Q;
               wire x, y, z;
               xor #(23,25) X1(x,Q[0],Q[2]);
               xor # (23,25) X2(y,x,Q[5]);
               xor #(23,25) X3(Q[8],y,Q[6]);
                assign Q[8] = syncInit | Q[8];
               genvar i;
               generate
11
                    for (i=8; i > 0; i=i-1) begin
12
                         myMSDFF MMSDFF(Q[i], reset, clk, Q[i-1]);
13
                    end
14
                endgenerate
15
                assign PO = Q[7:0];
16
       endmodule
```

```
`timescale lns/lns
 2
     module testbench2 ():
 3
               logic RESET=1, SYNCINIT=0, CLK=1;
               wire [7:0] po:
               LSFR LSFRTB(.syncInit(SYNCINIT),.reset(RESET),.clk(CLK),.PO(po));
 5
 6
               initial begin
 7
               #200 CLK=0:
 8
               #150 RESET=0:
 9
               #150 CLK=1:
10
               #200 CLK=0:
11
               #150 CLK=1;
12
               #200 CLK=0:
13
               #150 SYNCINIT=1; CLK=1;
14
               #200 CLK=0:
15
               #150 SYNCINIT=0;
16
               #150 CLK=1:
17
               #200 CLK=0;
18
               #150 CLK=1:
19
               #200 CLK=0;
20
               #150 CLK=1;
21
               #200 CLK=0:
22
               #150 CLK=1;
23
               #200 CLK=0;
24
               #150 CLK=1:
25
               #200 CLK=0;
26
               #150 CLK=1:
27
               #200 CLK=0;
28
               #250 $stop;
29
               end
30
       endmodule
```

