

Klausur

W151 Ingenieurmathematik 2 (Q2/2019)

Name des Prüflings:					Matrikelnummer:			Zenturie:	
Dauer: 90 m	in						Γ	Datum: 25. Juni 2019	
Erlaubte Hi schrieben od			Tasche	nrechne	r, 3 Bla	t Forme	lsamm	lung (beidseitig, be-	
	ergänzen S nd Ihre Ze		liesem I	Deckblat	tt zunäch	ıst Ihren	Namer	n, Ihre Matrikelnum-	
	ausuraufg Seiten. B							gen aber ohne Deck- gkeit!	
• Zum B	Bestehen d	er Klau	ısur sind	50 Pur	nkte / 50	% hinre	ichend.		
Au	fgabe:	1	2	3	4	5	6	Gesamt:	
Pu	nktzahl:	17	24	14	10	14	21	100	
Em	reicht:								
Datum:				Note:			Ergänzungsprüfung:		
Unterschrift:	Unterschrift:								

Aufgabe 1 (17 Punkte)

Gegeben ist die Funktion $f(x) = x \cdot \ln(x)$.

(1.1) (2 Punkte) Geben Sie den Definitionsbereich von f an.

Lösung:

$$D = (0, \infty)$$

(1.2) (3 Punkte) Berechnen Sie die Nullstellen von f.

Lösung:

Da $x \neq 0$ muss ln(x) = 0 sein.

Also $e^{\ln(x)} = e^0 = 1$ und somit x = 1. Die einzige Nullstelle ist daher x = 1.

(1.3) (4 Punkte) Berechnen Sie die ersten beiden Ableitungen von f.

Lösung:

$$f'(x) = \ln(x) + 1$$

$$f''(x) = \frac{1}{x}$$

(1.4) (4 Punkte) Berechnen Sie die Extremstellen der Funktion f. Geben Sie zu den berechneten x-Werten auch die zugehörigen y-Werte an.

Lösung:

$$f'(x) = \ln(x) + 1 = 0 \implies x = e^{-1} = \frac{1}{e}$$

$$f''(\frac{1}{e}) = e > 0 \implies x = \frac{1}{e}$$
 ist lokales Minimum

Zugehöriger y-Wert ist $f(\frac{1}{e}) = -\frac{1}{e}$.

(1.5) (4 Punkte) Beurteilen Sie mit Hilfe der ersten Ableitung, für welche $x \in D$ die Funktion f monoton wachsend und für welche $x \in D$ monoton fallend ist?

Die einzige Nullstelle von $f'(x)=\ln(x)+1$ ist $\frac{1}{e}$. Für $x<\frac{1}{e}$ ist f'(x)<0 und für $x>\frac{1}{e}$ ist f'(x)>0. Somit ergibt sich

- f ist monoton fallend für $x \in (0, \frac{1}{e})$.
- f ist monoton wachsend für $x \in (\frac{1}{e}, \infty)$.

Aufgabe 2 (24 Punkte)

(2.1) (10 Punkte) Berechnen Sie das unbestimmte Integral

$$\int \frac{3x+6}{x^2-x-2} dx$$

mittels Partialbruchzerlegung.

Lösung:

- $x^2 x 2 = 0$ für x = -1 und x = 2 (beides einfache Nullstellen)
- Ansatz: $\frac{3x+6}{x^2-x-2} = \frac{A}{x+1} + \frac{B}{x-2}$
- $\Rightarrow \frac{3x+6}{x^2-x-2} = \frac{A(x-2)+B(x+1)}{(x+1)\cdot(x-2)} \Rightarrow 3x+6 = A(x-2)+B(x+1)$
- Einsetzen von x = -1 liefert A = -1
- Einsetzen von x = 2 liefert B = 4.
- Also $\frac{3x+6}{x^2-x-2} = -\frac{1}{x+1} + \frac{4}{x-2}$ und somit

$$\int \frac{3x-2}{x^2-2x+1} dx = \int -\frac{1}{x+1} dx + \int \frac{4}{x-2} dx = -\ln|x+1| + 4\ln|x-2| + c, \ c \in \mathbb{R}$$

(2.2) (8 Punkte) Berechnen Sie den Flächeninhalt der Fläche, die von der *x*-Achse und dem Graphen von

$$f(x) = 4 \cdot e^{x^2 - 1} \cdot x$$

zwischen x = 0 und x = 1 eingeschlossen wird.

f besitzt im Intervall (0,1) keine Nullstelle, daher kann von 0 bis 1 integriert werden.

Substitution: $u = x^2 - 1$, $\frac{du}{dx} = 2x \implies dx = \frac{du}{2x}$

$$\int_0^1 4 \cdot e^{x^2 - 1} \cdot x dx = \int_{-1}^0 4 \cdot e^u \cdot x \frac{du}{2x} = \left[2e^u \right]_{-1}^0 = 2 - 2e^{-1} = 2 - \frac{2}{e}$$

(2.3) (6 Punkte) Bestimmen Sie das Volumen des Rotationskörpers, der durch Drehung des Graphens von $f(x) = e^{-x}$ um die x-Achse im Intervall $[0, \infty)$ entsteht.

Lösung:

$$V_x = \lim_{b \to \infty} \pi \cdot \int_0^b f(x)^2 dx$$

$$= \lim_{b \to \infty} \pi \cdot \int_0^b e^{-2x} dx$$

$$= \lim_{b \to \infty} \pi \cdot \left[-\frac{1}{2} e^{-2x} \right]_0^b$$

$$= \lim_{b \to \infty} \pi \cdot \left[-\frac{1}{2} e^{-2b} + \frac{1}{2} \right]$$

$$= \frac{\pi}{2} \approx 1,571$$

Aufgabe 3 (14 Punkte)

(3.1) (9 Punkte) Gegeben ist die Funktion $f(x) = \cos(\frac{x}{2})$.

Berechnen Sie das Taylorpolynom 4. Ordnung um den Entwicklungspunkt a = 0.

Formel Taylorpolynom: $T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$. Mit obiger Funktion ergibt sich

$$f(x) = \cos(\frac{x}{2})$$

$$f'(x) = -\frac{1}{2} \sin(\frac{x}{2})$$

$$f''(x) = -\frac{1}{4} \cos(\frac{x}{2})$$

$$f'''(x) = \frac{1}{8} \sin(\frac{x}{2})$$

$$f^{(4)}(x) = \frac{1}{16} \cos(\frac{x}{2})$$

$$T_4(x) = 1 - \frac{1}{2! \cdot 4} \cdot x^2 + \frac{1}{4! \cdot 16} \cdot x^4 = 1 - \frac{1}{8} \cdot x^2 + \frac{1}{384} \cdot x^4$$

für die korrekte Auswertung der Formel

(3.2) (5 Punkte) Untersuchen Sie die Reihe $\sum_{n=0}^{\infty} \frac{2n}{e^n}$ auf Konvergenz.

Lösung:

Sei
$$a_n = \frac{2n}{e^n}$$
. Dann gilt $\frac{a_{n+1}}{a_n} = \frac{2(n+1)}{e^{n+1}} \cdot \frac{e^n}{2n} = \frac{1}{e} \cdot \frac{n+1}{n} \to \frac{1}{e} < 1$.

Nach dem Quotientenkriterium konvergiert die Reihe $\sum_{n=0}^{\infty} \frac{2n}{e^n}$.

Aufgabe 4 (10 Punkte)

(4.1) (7 Punkte) Berechnen Sie das unbestimmte Integral

$$\int x^2 \cdot \sin(x) \, dx.$$

Lösung:

Zweifach partiell Integrieren liefert

$$\int x^2 \cdot \sin(x) dx = -x^2 \cos(x) + 2x \sin(x) + 2\cos(x) + c, \ c \in \mathbb{R}$$

(4.2) (3 Punkte) Bestätigen Sie ihr Ergebnis durch Ableitung der in 4.1 berechneten Stammfunktion.

Lösung:

Nachrechnen mit Produktregel.

Aufgabe 5 (14 Punkte)

Gegeben ist die Differentialgleichung (DGL)

$$y' = y \cdot x + x.$$

Berechnen Sie die allgemeine Lösung der DGL mittels Variation der Konstanten.

Lösung:

DGL lässt sich schreiben als $y' + f(x) \cdot y = g(x)$ mit f(x) = -x und g(x) = x.

• Variation der Konstanten liefert

$$y(x) = c(x) \cdot e^{-F(x)} = c(x) \cdot e^{\frac{1}{2}x^2}.$$

• Dabei ergibt sich c(x) durch

$$c(x) = \int g(x) \cdot e^{F(x)} dx = \int x \cdot e^{-\frac{1}{2}x^2} dx$$

Mittels Substitution ($u = -\frac{1}{2}x^2$) erhält man

$$c(x) = -e^{-\frac{1}{2}x^2} + c, \quad c \in R$$

• Die allgemeine Lösung der DGL lautet also

$$y(x) = (-e^{-\frac{1}{2}x^2} + c) \cdot e^{\frac{1}{2}x^2} = -1 + c \cdot e^{\frac{1}{2}x^2}, \quad c \in \mathbb{R}$$

Aufgabe 6 (21 Punkte)

Gegeben ist die Differentialgleichung (DGL) $2y'' - 8y' + 8y = 2e^{-x}$.

(6.1) (2 Punkte) Geben Sie die Differentialgleichung in Standardform an.

$$y'' - 4y' + 4y = e^{-x}$$

(6.2) (4 Punkte) Klassifizieren Sie die Differentialgleichung.

Lösung:

- Gewöhnlich
- 2. Ordnung
- Linear
- Konst. Koeffizienten
- inhomogen
- (6.3) (4 Punkte) Berechnen Sie die allgemeine Lösung der homogenen Differentialgleichung.

Lösung:

Die (zweifache) Nullstelle von $\lambda^2 - 4\lambda + 4$ ist 2.

$$\Rightarrow y_h(x) = c_1 e^{2x} + c_2 x e^{2x}, c_1, c_2 \in \mathbb{R}$$

(6.4) (5 Punkte) Berechnen Sie eine partikuläre Lösung der inhomogenen DGL.

Lösung:

Ansatz:
$$y_p(x) = A \cdot e^{-x}$$

Ableiten:
$$y'_{p}(x) = -Ae^{-x}$$
, $y''_{p}(x) = Ae^{-x}$

Einsetzen:
$$Ae^{-x} + 4Ae^{-x} + 4Ae^{-x} = e^{-x} \implies A = \frac{1}{9}$$

Also ist eine Partikulärlösung $y_p(x) = \frac{1}{9} \cdot e^{-x}$

(6.5) (1 Punkt) Berechnen Sie die allgemeine Lösung der inhomogenen DGL.

Lösung:

$$y(x) = y_h(x) + y_p(x) = c_1 e^{2x} + c_2 x e^{2x} + \frac{1}{9} \cdot e^{-x}, c_1, c_2 \in \mathbb{R}$$

(6.6) (5 Punkte) Berechnen Sie die spezielle Lösung der Differentialgleichung mit Anfangsbedingung $y(0)=\frac{10}{9}$ und $y'(0)=\frac{8}{9}$.

Lösung:

$$y(0) = c_1 + \frac{1}{9} = \frac{10}{9} \implies c_1 = 1$$

$$y'(x) = 2c_1e^{2x} + c_2e^{2x} + 2c_2xe^{2x} - \frac{1}{9}e^{-x}$$

$$y'(0) = 2c_1 + c_2 - \frac{1}{9} = \frac{8}{9} \implies c_2 = -1$$

$$\implies y(x) = e^{2x} - xe^{2x} + \frac{1}{9}e^{-x}$$