Le Modèle des Croyances Transférables

Une interprétation de la théorie des fonctions de croyance

David Mercier^{1,2}

¹Laboratoire de Génie Informatique et d'Automatique de l'Artois (LGI2A), ²Université d'Artois, IUT Béthune

Séminaire LGI2A, 13 novembre 2007

Imperfection des connaissances

Principales formes d'incertitudes

- L'incertitude
 - Relative à la vérité d'une proposition ;
 - Ex: « Je crois que Jean mesure 1,5 mètre » (incertain et précis).
- L'imprécision
 - Relative à la nature d'une proposition ;
 - Ex : « Jean mesure entre 1,5 mètre et 2 mètres » (certain et imprécis).
- L'ambiguïté
 - Passage graduel d'une catégorie à une autre.
 - Ex : langage courant : « Jean est grand ».
 - Ex : phénomènes naturels : le passage graduel du jour et de la nuit, la maturation d'un fruit.

Fonctions de croyance

Cadre de représentation des incertitudes

- Un des principaux cadres pour raisonner avec des connaissances imparfaites (imprécises, incertaines, ...), introduit par Dempster (1967) et Shafer (1976).
- Fonctions de croyance généralisent :
 - Mesures de probabilité ;
 - Mesures de possibilité (et sous-ensembles flous).
- Différentes sémantiques de fonctions de croyance :
 - Lower-upper probabilities (modèle de Dempster, Hint model);
 - Ensembles aléatoires;
 - Degrés de croyance (Modèle des Croyances Transférables MCT).
- Les bases de ce dernier modèle, développé par Ph. Smets, so présentées ici.

Fonctions de croyance

Cadre de représentation des incertitudes

- Un des principaux cadres pour raisonner avec des connaissances imparfaites (imprécises, incertaines, ...), introduit par Dempster (1967) et Shafer (1976).
- Fonctions de croyance généralisent :
 - Mesures de probabilité ;
 - Mesures de possibilité (et sous-ensembles flous).
- Différentes sémantiques de fonctions de croyance :
 - Lower-upper probabilities (modèle de Dempster, Hint model);
 - Ensembles aléatoires;
 - ▶ Degrés de croyance (Modèle des Croyances Transférables MCT).
- Les bases de ce dernier modèle, développé par Ph. Smets, sont présentées ici.

Plan

- Introduction
- Le Modèle des Croyances Transférables (MCT)
 - La partie statique (fonctions de croyance)
 - La partie dynamique (combinaison, conditionnement, ...)
 - La partie décisionnelle
- Conclusion

Plan

- Introduction
- Le Modèle des Croyances Transférables (MCT)
 - La partie statique (fonctions de croyance)
 - La partie dynamique (combinaison, conditionnement, ...)
 - La partie décisionnelle
- 3 Conclusion

Fonction de Masse

Définition

• $\Omega = \{\omega_1, \dots, \omega_K\}$: ensemble fini de réponses à une certaine question Q (cadre de discernement).

Définition (fonction de masse)

Une fonction de masse de croyance sur Ω est une application $m: \mathbf{2}^{\Omega} \to [0,1]$ t.q.

$$\sum_{A\subseteq\Omega}m(A)=1.$$

Tout $A \subseteq \Omega$, m(A) > 0 est appelé élément focal (EF) de m.

Fonction de Masse

Interprétation

- La fonction de masse *m* représente :
 - L'état de connaissance d'un agent rationel Ag à un certain instant t, relativement à Q;
 - Par extension, un élément d'évidence qui induit un tel état de connaissance.
- m(A): part de croyance allouée à A (et à aucun sous-ensemble strict).
- $m(\Omega)$: degré d'ignorance.
- m(∅) : degré de conflit. Joue un rôle d'alarme dans le MCT.

The Peter, Paul and Mary Saga (Smets)

- Problème
 - Un juge sait ceci :
 - Big Boss a décidé que M. Jones devait mourir;
 - ★ 3 tueurs possibles : Peter, Paul, Mary ;
 - ★ Big Boss désigne à pile ou face le sexe du tueur (pièce non truquée);
 - Aucune idée sur le choix entre Peter et Paul, dans le cas où un homme est choisi;
 - ★ M. Jones est tué par un tueur de Big Boss.
 - Comment représenter cette connaissance du juge sur l'auteur du meurtre?
- Solution dans le MCT
 - k, le tueur, $\in \Omega = \{Peter, Paul, Mary\}$;
 - $m(\{Peter, Paul\}) = 0.5 \text{ et } m(\{Mary\}) = 0.5.$

Fonctions associées

Fonctions de croyance et d'implicabilité

Définition (Fonction de croyance)

$$bel(A) = \sum_{\emptyset
eq B \subseteq A} m(B), \quad \forall A \subseteq \Omega$$

Interprétation de bel(A): degré de croyance en A.

Définition (Fonction d'implicabilité)

$$b(A) = bel(A) + m(\emptyset), \quad \forall A \subseteq \Omega$$

Fonctions associées

Fonction de plausibilité et communalité

Définition (Fonction de plausibilité)

$$pI(A) = \sum_{B \cap A \neq \emptyset} m(B), \quad \forall A \subseteq \Omega$$

Propriété : $pl(A) = bel(\Omega) - bel(\overline{A})$.

Définition (Fonction de communalité)

$$q(A) = \sum_{B\supset A} m(B), \quad \forall A\subseteq \Omega$$

Les fonctions bel, b, pl, q, m sont en correspondance biunivoques.
 → représentations équivalentes.

Fonctions associées

Fonction de plausibilité et communalité

Définition (Fonction de plausibilité)

$$pI(A) = \sum_{B \cap A \neq \emptyset} m(B), \quad \forall A \subseteq \Omega$$

Propriété : $pl(A) = bel(\Omega) - bel(\overline{A})$.

Définition (Fonction de communalité)

$$q(A) = \sum_{B\supset A} m(B), \quad \forall A\subseteq \Omega$$

Peter, Paul and Mary Saga

Α	m(A)	bel(A)	b(A)	pl(A)	q(A)
Ø	0	0	0	0	1
{Peter}	0	0	0	0.5	0.5
{Paul}	0	0	0	0.5	0.5
{Peter, Paul}	0.5	0.5	0.5	0.5	0.5
{Mary}	0.5	0.5	0.5	0.5	0.5
{Peter, Mary}	0	0.5	0.5	1	0
{Paul, Mary}	0	0.5	0.5	1	0
Ω	0	1	1	1	0

Cas particuliers

- Éléments focaux sont des singletons : $m(A) > 0 \Rightarrow |A| = 1$
 - ▶ bel = pl, mesure de probabilité;
 - Probabilité = fonction de croyance maximalement précise.
- Éléments focaux sont emboites $A_1 \subseteq ... \subseteq A_n$
 - ▶ $pl(A \cup B) = max(pl(A), pl(B))$: pl = mesure de possibilité ;
 - bel(A∩B) = min(bel(A), bel(B)) : bel = mesure de nécessité duale;
 - Mesure de possibilité = fonction de plausibilité consonante (absence de conflit interne).
- Fonctions de croyance englobent mesures de probabilité et de possibilité.

Plan

- Introduction
- Le Modèle des Croyances Transférables (MCT)
 - La partie statique (fonctions de croyance)
 - La partie dynamique (combinaison, conditionnement, ...)
- Conclusion

Combinaison conjonctive

- Soient deux fonctions de masse m_1 et m_2 issues de deux sources d'informations fiables et distinctes.
- Somme conjonctive :

$$m_1 \bigcirc_2(A) = m_1 \bigcirc m_2(A) = \sum_{B \cap C = A} m_1(B) m_2(C), \quad \forall A \subseteq \Omega$$

$$q_1 \bigcirc 2 = q_1.q_2$$

- Propriétés :
 - Commutative et associative (→ ordre de combinaison des sources n'a pas d'importance);
 - élément neutre : ignorance totale $m(\Omega)=1$, fonction de masse vide noté m_{Ω} ;
 - non idempotente.

Degré de conflit

- Degré de conflit $m_1 \bigcirc 2(\emptyset) = \sum_{B \cap C = \emptyset} m_1(B) m_2(C)$.
- Joue un rôle d'alarme dans le MCT.
- Plusieurs raisons possibles :
 - L'une des hypothèses de la combinaison conjonctive n'est pas satisfaite (sources non fiables ou non distinctes);
 - La vérité est en dehors de Ω (hypothèse du monde ouvert);
 - Les sources ne font pas référence au même objet.
- Si $m(\emptyset)$ = 0 est imposé. Règle de Dempster = somme conjonctive puis normalisation.

$$m_{1\bigoplus 2}(A) = \frac{m_{1\bigoplus 2}(A)}{1 - m_{1\bigoplus 2}(\emptyset)}, \quad \forall A \neq \emptyset$$

Autres combinaisons

- Combinaison disjonctive
 - Soient deux fonctions de masse m_1 et m_2 issues de deux sources d'informations dont l'une au moins est fiable.
 - Somme disjonctive :

$$m_1 \bigcirc_2(A) = m_1 \bigcirc m_2(A) = \sum_{B \cup C = A} m_1(B) m_2(C), \quad \forall A \subseteq \Omega$$

$$b_1_{02} = b_1.b_2$$

- Propriétés :
 - commutative et associative;
 - ★ élément neutre : conflit totale $m(\emptyset) = 1$;
 - non idempotente.
- Moyenne
 - $m = \frac{1}{n} \sum_{i=1}^{n} m_i$.

Peter, Paul and Mary Saga

- Un témoin fournit l'information m_t;
- Combinaison :

Α	m(A)	$m_t(A)$	$\bigcirc(A)$	⊕(<i>A</i>)	(A)	moy(A)
Ø	0	0	0.45	0	0	0
{Peter}	0	0	0	0	0	0
{Paul}	0	8.0	0.40	0.73	0	0.40
{Peter, Paul}	0.5	0	0.05	0.09	0.40	0.25
{Mary}	0.5	0.1	0.10	0.18	0.05	0.30
{Peter, Mary}	0	0	0	0	0	0
{Paul, Mary}	0	0	0	0	0.40	0
Ω	0	0.1	0	0	0.15	0.05

Règle de conditionnement de Dempster

- Soit m notre fonction de masse représentant notre état de connaissance à t;
- À t' > t, on apprend que la réponse à la question se trouve dans $A \subset \Omega$:
- Une nouvelle fonction de masse est obtenue en transférant toute masse m(B) à B ∩ A;

• D'où l'appellation « modèle des croyances transférables ».

Règle de conditionnement de Dempster

- Soit m notre fonction de masse représentant notre état de connaissance à t;
- À t' > t, on apprend que la réponse à la question se trouve dans $A \subseteq \Omega$;
- Une nouvelle fonction de masse est obtenue en transférant toute masse m(B) à B ∩ A;
- Cette opération de conditionnement par rapport à A est un cas particulier de la somme conjonctive :

$$m[A] = m \bigcirc m_A$$
, avec $m_A(A) = 1$.

Peter, Paul and Mary Saga

- Supposons qu'à t' > t, le juge apprenne que Peter a un parfait alibi (il n'est pas le coupable, Paul ou Mary est le tueur).
- Révision de la croyance du juge :

Α	m(A)	$m_{\{Paul,Mary\}}(A)$	m[Paul, Mary](A)	
Ø	0	0	0	
{Peter}	0	0	0	
{Paul}	0	0	0.5	
{Peter, Paul}	0.5	0	0	
{Mary}	0.5	0	0.5	
{Peter, Mary}	0	0	0	
{Paul, Mary}	0	1	0 1	GI2A
Ω	0	0	0	

Notion d'information

- Comment définir le « contenu informationnel » d'une fonction de croyance ?
- Approche ordinale : définition d'un ordre partiel sur l'ensemble des fonctions de croyance.
 - Ex: m₁ est moins informative que m₂ ssi

$$\operatorname{pl}_1(A) \geq \operatorname{pl}_2(A) \ \forall A \subseteq \Omega.$$

- Approche quantitative : définition de « mesures d'incertitude »
 - Ex : la mesure de nonspécificité :

$$N(m) = \sum_{\emptyset \neq A \subseteq \Omega} m(A) \log_2(|A|)$$

Principe du minimum d'information

Choisir la fonction de croyance la moins informative (lorsqu'elle existe) parmi l'ensemble des fonctions de croyance compatibles avec les informations disponibles

- Ce principe est un principe de précaution : transfert des masses vers les sous-ensembles les plus larges possibles;
- Joue le même rôle que principe du maximum d'entropie en probabilités.

Applications:

- extension vide
- déconditionnement.

Extension vide

- Soit m^{Θ} une fonction de masse sur Θ traduisant un certain état de connaissance ;
- Comment exprimer cet état de connaissance dans un réferentiel Ω plus fin ? (Transport de m^{Θ} dans Ω)
- Solution la moins informative : $m^{\Omega}(\rho(A)) = m^{\Theta}(A)$, $\forall A \subseteq \Theta$;
- Définitions :
 - Ω est un raffinement de Θ;
 - ightharpoonup Θ est un grossissement de Ω .

Marginalisation et extension vide

Illustration du transfert d'une masse dans le cas d'un espace produit

Conditionnement et déconditionnement

Illustration du transfert d'une masse dans le cas d'un espace produit

Affaiblissement

- m_S^{Ω} : information fournie par une source S au regard de Q;
- La source S est fiable ou non fiable : $\mathcal{R}=\{F, NF\}$;
- On suppose :
 - $\qquad \qquad m^{\Omega}[\{F\}] = m_{\mathcal{S}}^{\Omega}, \, m^{\Omega}[\{NF\}] = m_{\Omega} \; .$
 - croyance sur \mathcal{R} : $m^{\mathcal{R}}(\{F\}) = 1 \alpha$, $m^{\mathcal{R}}(\mathcal{R}) = \alpha$.
- Combinaison:

$$m^{\Omega}[m_{S}^{\Omega}, m^{\mathcal{R}}] = \left(m^{\Omega}[\{F\}]^{\uparrow\Omega\times\mathcal{R}} \bigcirc m^{\mathcal{R}\uparrow\Omega\times\mathcal{R}}\right)^{\downarrow\Omega}$$

• Résultat : $m^{\Omega}[m_S^{\Omega}, m^{\mathcal{R}}]$ noté ${}^{\alpha}m$ = affaiblissement de m_S t.q.

$$\begin{cases}
{}^{\alpha}m(A) = (1-\alpha)m_{S}(A), \quad \forall A \subset \Omega, \\
{}^{\alpha}m(\Omega) = (1-\alpha)m_{S}(\Omega) + \alpha,
\end{cases}$$

- Plus simplement : ${}^{\alpha}m = (1 \alpha)m_{S} + \alpha m_{\Omega}$.
- Opération donnée par Shafer (1976), preuve issue de Smets

Peter, Paul and Mary Saga

- Supposons :
 - Choix du tueur par Big Boss = correct;
 - Peter a un alibi ;
 - Fiabilité du témoin = 0.5 .
- Synthèse des croyances du juge :

	m_t	lpha m_{t}	m[Paul, Mary]	$m[Paul, Mary] igoplus^{lpha} m_t$
Ø	0	0	0	0.225
{Peter}	0	0	0	0
{ Paul }	0.8	0.40	0.5	0.475
{Peter, Paul}	0	0	0	0
{Mary}	0.1	0.05	0.5	0.300
{Peter, Mary}	0	0	0	0
{ Paul, Mary}	0	0	0	0 LG12
Ω	0.1	0.55	0	0
	'		1	

Prolongement : affaiblissement contextuel

Prise en compte de connaissances plus fines sur la fiabilité de la source

- m_S^{Ω} : information fournie par une source S au regard de Q;
- La source S est fiable ou non fiable : $\mathcal{R}=\{F, NF\}$;
- On suppose :
 - $m^{\Omega}[\{F\}] = m_{S}^{\Omega}, m^{\Omega}[\{NF\}] = m_{\Omega};$
 - Croyance sur R:
 - * $m^{\mathcal{R}}[\{\omega_k\}](\{F\}) = 1 \alpha_k, m^{\mathcal{R}}[\{\omega_k\}](\mathcal{R}) = \alpha_k, \quad \forall \omega_k \in \Omega;$
 - ★ Fiabilité de la source connue dans chaque contexte $\{\omega_k\}$.
- Combinaison :

$$\begin{split} & m^{\Omega}\left[m_{S}^{\Omega}, m^{\mathcal{R}}[\{\omega_{1}\}], \dots, m^{\mathcal{R}}[\{\omega_{K}\}]\right] \\ & = \left(m^{\Omega}[\{F\}]^{\uparrow\Omega\times\mathcal{R}} \bigcirc m^{\mathcal{R}}[\{\omega_{1}\}]^{\uparrow\Omega\times\mathcal{R}} \bigcirc \dots \bigcirc m^{\mathcal{R}}[\{\omega_{K}\}]^{\uparrow\Omega\times\mathcal{R}}\right)^{\downarrow\Omega} \end{split}$$

Plan

- Introduction
- Le Modèle des Croyances Transférables (MCT)
 - La partie statique (fonctions de croyance)
 - La partie dynamique (combinaison, conditionnement, ...)
 - La partie décisionnelle
- Conclusion

Prise de décision

Principes généraux (Théorie de la décision classique)

- Au moment de prendre une décision il faut préciser :
 - $oldsymbol{0}$ L'ensemble des décisions $\mathcal D$ pouvant être prises ;
 - Les états de la nature considérés = cadre de pari noté Γ.
- Principes de rationalité (Savage, DeGroot) : choisir la décision d minimisant le risque espéré

$$\rho(\mathbf{d}) = \sum_{\gamma \in \Gamma} \mathbf{c}(\mathbf{d}, \gamma) \mathbf{P}^{\Gamma}(\{\gamma\})$$

- ▶ $c : \mathcal{D} \times \Gamma \rightarrow \mathbb{R}$: une fonction de coût;
- ▶ $P^{\Gamma}: 2^{\Gamma} \rightarrow [0,1]$: une mesure de probabilité.

Prise de décision

Dans le MCT

- Dans le MCT, ces principes sont acceptés :
 - ightharpoonup Γ = composition de grossissements ou raffinements de Ω;
 - ► Transformation pignistique : $m^{\Omega} \rightarrow m^{\Gamma} \rightarrow$ probabilité

$$betP(\{\gamma\}) = \sum_{\{A \subseteq \Gamma, \gamma \in A\}} \frac{m(A)}{|A|} \times \frac{1}{1 - m(\emptyset)}, \quad \forall \gamma \in \Gamma.$$

Peter, Paul and Mary Saga

• Avec $\Gamma = \Omega$ et en omettant les $\{\}$:

	Ø	Pe	Ра	Pe, Pa	Ма	Pe, M	Pa, M	Pe, Pa, M
m	0	0	0	0.5	0.5	0	0	0
betP		0.25	0.25	0.5	0.5	0.75	0.75	1

- Avec $\mathcal{D} = \bigcup \{d_i\}$
 - $\rho(d_i) = c(d_i, Pe)betP(\{Pe\}) + c(d_i, Pa)betP(\{Pa\}) + c(d_i, M)betP(\{M\})$
- Avec $\mathcal{D} = \Omega$, et des coûts 0-1 ($c(\gamma_i, \gamma_j) = 0$ si $\gamma_i = \gamma_j$, 1 sinon) :
 - ▶ Décision minisant ρ = Décision de probabilité maximum
 - $\rho(Pe) = 0.75 = 1 betP(\{Pe\}), \rho(Pa) = 0.75, \rho(M) = 0.5$

Peter, Paul and Mary Saga

• Avec $\Gamma = \Omega$ et en omettant les $\{\}$:

	Ø	Pe	Ра	Pe, Pa	Ма	Pe, M	Pa, M	Pe, Pa, M
m	0	0	0	0.5	0.5	0	0	0
betP		0.25	0.25	0.5	0.5	0.75	0.75	1

- Avec $\mathcal{D} = \bigcup \{d_i\}$:
 - $\rho(d_i) = c(d_i, Pe)betP(\{Pe\}) + c(d_i, Pa)betP(\{Pa\}) + c(d_i, M)betP(\{M\}) .$
- Avec $\mathcal{D} = \Omega$, et des coûts 0-1 ($c(\gamma_i, \gamma_j) = 0$ si $\gamma_i = \gamma_j$, 1 sinon) :
 - ▶ Décision minisant ρ = Décision de probabilité maximum
 - $\rho(Pe) = 0.75 = 1 betP(\{Pe\}), \, \rho(Pa) = 0.75, \, \rho(M) = 0.5$

Peter, Paul and Mary Saga

• Avec $\Gamma = \Omega$ et en omettant les $\{\}$:

	Ø	Pe	Ра	Pe, Pa	Ма	Pe, M	Pa, M	Pe, Pa, M
m	0	0	0	0.5	0.5	0	0	0
betP		0.25	0.25	0.5	0.5	0.75	0.75	1

- Avec $\mathcal{D} = \bigcup \{d_i\}$:
 - $\rho(d_i) = c(d_i, Pe)betP(\{Pe\}) + c(d_i, Pa)betP(\{Pa\}) + c(d_i, M)betP(\{M\}).$
- Avec $\mathcal{D} = \Omega$, et des coûts 0-1 ($c(\gamma_i, \gamma_j) = 0$ si $\gamma_i = \gamma_j$, 1 sinon) :
 - ▶ Décision minisant ρ = Décision de probabilité maximum ;
 - $\rho(Pe) = 0.75 = 1 betP(\{Pe\}), \, \rho(Pa) = 0.75, \, \rho(M) = 0.5$.

Résumé

Principaux concepts du MCT

- Fonction de croyance = opinion pondérée; à chaque alternative du monde est associé un nombre entre 0 et 1;
- Deux niveaux cognitifs sont distingués dans le raisonnement d'un agent :
 - niveau crédal : seules des fonctions de croyance sont manipulées ;
 - niveau décisionnel : une fonction de probabilité est construite.

Bibliographie

A mathematical theory of evidence. Princeton University Press, 1976.

P. Smets.

http://iridia.ulb.ac.be/~psmets articles (1994,1998,2005).

T. Denœux.

http://www.hds.utc.fr/~tdenoeux articles et exposés.

Fin...

Merci de votre attention

