Sistemi Elettronici, Tecnologie e Misure Appello del 4/9/2018

Nome:	SOLUZIONE	
Cognome:		•
Matricola:		

ATTENZIONE

- 1. Compilare subito questa pagina con nome, cognome e numero di matricola
- 2. Per i quesiti a risposta multipla, la risposta errata determina la sottrazione di un punteggio pari a metà del valore della risposta esatta
- 3. Riportare le risposte esatte dei quesiti a risposta multipla nella tabella posta all'inizio della relativa sezione
- 4. Le risposte ai vari quesiti vanno riportate esclusivamente nello spazio reso disponibile immediatamente dopo il quesito stesso
- 5. Si può fare uso di fogli di brutta bianchi resi disponibili a cura dello studente. La brutta non deve essere consegnata
- 6. Non si possono utilizzare libri, appunti o formulari

Domande a risposta multipla

	I	2	3	4	5	6
a		X				X
ь			X	X		
С	X					
d					X	

- 1. Un amplificatore operazionale con amplificazione differenziale a bassa frequenza pari a 80dB, prodotto bandaguadagno pari a 1MHz, resistenze d'ingresso e uscita trascurabili (cioè $R_{\rm in,d} \to \infty, R_{\rm in,cm} \to \infty, R_{\rm out} = 0$), è utilizzato in un amplificatore di tensione non invertente con amplificazione di tensione in banda di 20dB. La banda dell'amplificatore di tensione non invertente è pari a:
 - (a) 100Hz
 - (b) 10MHz
 - (c) 100kHz
 - (d) 10kHz
- 2. In un amplificatore invertente basato su operazionale ideale, il resistore che collega la sorgente di segnale $v_{\rm in}$ all'ingresso invertente è sostituito da un diodo, con anodo collegato alla sorgente e catodo collegato all'ingresso invertente. Per $v_{\rm in} > 0$ il circuito che si ottiene si comporta come
 - (a) amplificatore esponenziale invertente
 - (b) amplificatore esponenziale non invertente
 - (c) amplificatore logaritmico invertente
 - (d) amplificatore logaritmico non invertente
- 3. La conduttanza d'uscita di piccolo segnale g_o di un transistore MOS nel punto di lavoro Q è definita come:

(a)
$$g_{o} = \frac{\partial i_{D}}{\partial v_{GS}} \Big|_{Q}$$
 (b) $g_{o} = \frac{\partial i_{D}}{\partial v_{DS}} \Big|_{Q}$ (c) $g_{o} = \frac{\partial i_{G}}{\partial v_{GS}} \Big|_{Q}$ (d) $g_{o} = \frac{\partial v_{DS}}{\partial i_{D}} \Big|_{Q}$

- 4. Un amplificatore di tensione è descritto dai parametri A_v , R_{in} , R_{out} , tutti finiti e non nulli. Se la porta d'uscita è lasciata a vuoto e la porta d'ingresso è chiusa su un bipolo incognito che presenta tensione a vuoto v_a :
 - (a) $v_{\text{out}} = A_{\text{v}} v_{\text{s}}$ indipendentemente dal bipolo in ingresso e da R_{out}
 - (b) se il bipolo in ingresso è un generatore ideale di tensione, $v_{
 m out}=A_{
 m v}v_{
 m s}$ per qualsiasi valore di $R_{
 m in}$ ed $R_{
 m out}$
 - (c) se $R_{\text{out}} = 0$, allora $v_{\text{out}} = A_{\text{v}}v_{\text{s}}$ indipendentemente dal bipolo in ingresso
 - (d) non è possibile determinare $v_{
 m out}$ dal momento che la porta d'uscita è a vuoto
- 5. In uno stadio amplificatore MOS drain comune, descritto dai parametri A_v , $R_{\rm in}$ e $R_{\rm out}$:
 - (a) è sempre $A_v < 0$ (stadio invertente)
 - (b) è sempre $|A_{\rm v}| > 1$
 - (c) R_{out} è indipendente dalla transconduttanza g_m del transistore MOS
 - (d) l'ingresso è applicato al terminale di gate e l'uscita è prevelata al terminale di source del transistore
- 6. Per ricavare il circuito equivalente per il piccolo segnale di un amplificatore:
 - (a) è necessario conoscere il punto di funzionamento a riposo dei dispositivi non lineari
 - (b) i generatori di corrente costanti nel tempo possono essere sostituiti con corto circuiti
 - (c) i condensatori possono essere sempre sostituiti da circuiti aperti
 - (d) è necessario assumere che i segnali applicati siano in banda

Esercizio 1.

Con riferimento al circuito in figura, in cui sono date le tensioni continue ai nodi A, B e C:

- 1. verificare la regione di funzionamento di MN e determinarne i parametri del modello per il piccolo segnale;
- 2. valutare l'amplificazione di tensione $A_v = \frac{v_{\rm out}}{v_{\rm in}}$, la resistenza d'ingresso $R_{\rm in}$ e la resistenza d'uscita $R_{\rm out}$ in condizioni di piccolo segnale e nell'ipotesi che il condensatore $C_{\rm s}$ si comporti come un corto circuito ed il condensatore $C_{\rm p}$ si comporti come un circuito aperto [sono richiesti: il circuito equivalente per il piccolo segnale, le espressioni simboliche (passaggi essenziali) ed i valori numerici];
- 3. determinare l'espressione della funzione di trasferimento $A_{v}(s) = \frac{V_{\rm out}(s)}{V_{\rm in}(s)}$ assumendo $C_{\rm s} = \frac{5}{2\pi} \mu {\rm F}$ e $C_{\rm p} = \frac{500}{2\pi} {\rm pF}$ e tracciarne i diagrammi di Bode di modulo e fase [sono richiesti: l'espressione simbolica della funzione di trasferimento, i valori numerici della costante moltiplicativa e delle frequenze centrali di poli/zeri ed i diagrammi di Bode di modulo e fase, da tracciarsi sugli assi quotati forniti].

1)
$$V_{GS} = V_A - V_B = 1.1V$$
 $V_{GS} > V_{TM} = 0.9V$
 $V_{DS} = V_C - V_B = 7.5V$ $V_{GS} - V_{TH}) = 0.2V$

FUNZIONAMENTO IN REGIONE DI SATURAZIONA

 $V_{GS} = V_{GS} - V_{TH} = 0.9V$
 $V_{DS} = V_C - V_B = 7.5V$ $V_{GS} - V_{TH} = 0.9V$

$$N_{oss} = - O_{m}$$

$$- A_{V} = - \frac{g_{m} N_{oss} R_{oll} R_{s}}{O_{vn}} = g_{on} \cdot R_{oll} R_{s} = 10$$
(20 d8)

$$C_t = -g_m v_{gs} + \frac{V_t}{R_u} = \left(g_m + \frac{1}{R_u}\right) v_t$$

$$Q_m = \frac{V_t}{C_t} = \frac{1}{g_m + \frac{1}{R_u}} = 166,72$$

Zni S=0 Poli : $S_{pi} - \overline{C_5 \Omega_m}$ $\rightarrow \int_{p_1} = 1.2 \text{ RHz}$ $S_{p_2} - \frac{1}{C_p \Omega_m}$ $\rightarrow \int_{p_2} = 1.2 \text{ RHz}$ $K = C_5 \Omega_m A_v = 1.3 \cdot 10^{-3} \text{ s}^{-1}$

Esercizio 2.

Con riferimento al circuito di figura, si assumano i seguenti valori: $R_1=R_2=\cdots=R_{12}=1\mathrm{k}\Omega, V_0=3\mathrm{V}, V_1=1\mathrm{V}, I_0=10\mathrm{mA}.$ Si supponga inoltre che gli amplificatori operazionali siano ideali e che lavorino sempre nella zona ad alto guadagno. Calcolare le tensioni di uscita degli operazionali $V_1^{\mathrm{out}}, V_2^{\mathrm{out}}, V_3^{\mathrm{out}}$ e V_4^{out} .

$$V_{\ell} = \overline{J}_{0} R_{1} = 10V$$

$$V_{2}^{auk} = V_{4} = 1V$$

$$V_{3}^{cun} = V_{0} \cdot \frac{R_{11}}{R_{11} + R_{2}} \cdot \left(\frac{1}{R_{11}} \cdot \frac{R_{11}}{R_{2}} \right) = V_{0} = 3V$$

$$V_{4}^{un} = V_{4}^{t} = \frac{V_{3}^{un} + V_{2}^{un} + V_{1}^{un}}{R_{12} + R_{2} + R_{2}} = \frac{1}{R_{12}} \left(V_{3}^{un} + V_{2}^{un} + V_{1}^{un} \right) = \frac{1}{R_{12}} V_{2}^{un}$$

$$= \frac{1}{R_{12}} \left(V_{3}^{un} + V_{2}^{un} + V_{1}^{un} \right) = \frac{1}{R_{12}} V_{2}^{un}$$

$$= \frac{1}{R_{12}} \left(V_{3}^{un} + V_{2}^{un} + V_{1}^{un} \right) = \frac{1}{R_{12}} V_{2}^{un}$$