

BlinkML:

Efficient Maximum Likelihood Estimation with Probabilistic Guarantees

Yongjoo Park Jingyi Qing Xiaoyang Shen Barzan Mozafari

University of Michigan

Machine learning workloads are slow and costly

More data ⇒ slower training

• 1 hour 35 minutes for 37M training examples

Often training multiple models

- New data becoming available
- Feature engineering

Criteo dataset, Logistic Regression with L-BFGS optimization algorithm

Key Question: Can sampling accelerate ML training?

SQL analytics

sum(X) =
$$(1/N) \sum_{i=1..N} X_i$$

 $\approx (1/n) \sum_{i=1..n} X_i$

ML training

iterative gradient computation

grad =
$$(1/N) \sum_{i=1..N} g(x_i \mid \theta_t)$$

 $\approx (1/n) \sum_{i=1..N} g(x_i \mid \theta_t)$

[Park et al. SIGMOD'18]

A platform-independent approach

Do similar properties hold?

Three key challenges

Model quality guarantee

- No closed-form solution: $grad(\theta_N) = (1/N) \sum_{i=1...N} g(x_i \mid \theta_N) = 0$
- CLT or Hoeffding is NOT directly applicable

Generalization

Logistic Regression ≠ Principal Component Analysis

Efficiency

Too many approximate models >(longer) A single full model

Our core contribution

A system for efficient, quality-guaranteed ML training

It supports models trained via maximum likelihood estimation

- 1. Linear Regression
- 2. Logistic Regression (#1 classifier according to 2017 Kaggle survey)
- 3. Probabilistic PCA
- 4. Generalized Linear Models, ...

[https://www.kaggle.com/surveys/2017]

We bring **Fisher**'s theory to practice, and apply it in a **novel way** for **quality-guaranteed**, **sampling-based ML**

To put things into context

We: Uniform random sampling is effective!

Much different from the work on biased/importance sampling

- 1. simple
- 2. no a priori knowledge required
- 3. still significant speedups

Generalize AQP to **multivariate** models

Orthogonal to AutoML

<SystemOverview>...

BlinkML: interface

Accuracy 1- ε means

 $E_x[\mathbf{1}(\text{full}(x) \neq \text{approx}(x))] \leq \varepsilon \text{ with high probability (e.g., 95%)}$

BlinkML: internal workflow

Step 1: **profile** model/data complexity

Step 2: **estimate** *min sample size*

l Crucial component (= AccEstimator):

estimate accuracy of approx model w/o full model

Step 3: train an approximate model

BlinkML: architecture

Convex
Optimization
(scipy.optimize)

Gradient
Computation
(numpy & pyspark)

Model
Specification
(e.g., LinearReg)

- 1. ease of implementation
- 2. compatibility with existing ecosystems
- 3. distributed computation

...</systemOverview>

<QualityGuarantee>...

Goal: bounding the prediction difference

The expected prediction difference:

diff(full, approx**)** =
$$E_x[\mathbf{1}(approx(x) \neq full(x))]$$

(for classification tasks)

Our goal:

```
diff(full, approx) \leq \epsilon with high probability e.g., \epsilon = 0.01 \rightarrow 99\% same predictions
```

How can we estimate **diff**(full, approx)?

Difference in params \rightarrow diff(full, approx)

A model is a function of parameters

A logistic regression model predicts:

1 (pos) if $1/(1+\exp(-\theta^T x)) > 0.5$

0 (neg) otherwise

 $f(x; \theta)$

If we know θ_N and θ_n we can infer **diff**($f(x; \theta_N)$, $f(x; \theta_n)$)

BUT, we don't know θ_N . How to infer the difference?

Infer probabilistically w/ Monte Carlo simulation

We estimate **diff**(full, approx) using **samples from Pr(\theta_N)** $= E_x[\mathbf{1}(f(x; \theta_N) \neq f(x; \theta_n))]$

$$\theta_{N,1}$$
 $\theta_{N,2}$ $\theta_{N,3}$ $\theta_{N,4}$ $\theta_{N,5}$ diff(full, approx) 0.01 0.005 0.015 0.01 0.008 We say diff(full, approx) ≤ 0.01 with 80% probability (4/5)

BlinkML uses thousands of samples for accurate estimation

How do we obtain **samples** from $Pr(\theta_N)$?

Obtain samples from Fisher + optimization

Based on Fisher's theory, we get:

$$\theta_N$$
 - θ_n ~ Normal(0, $\alpha_n H^{-1}JH^{-1}$) H-1: model complexity param of param of full model approx model multivariate normal distribution J: data variance

The size of covariance matrix, O(#features^2), makes sampling slow

We employ mathematical tricks

$$z \sim N(0, I) \rightarrow L z \sim N(0, LL^{T})$$
 sampling = matrix multiplication

We obtain L such that $LL^T = H^{-1}JH^{-1}$ directly from gradients using the information matrix equality

Recap of our quality guarantee mechanism

For a certain sample size n:

- 1. Obtain a parameter θ_n and a factor L
- 2. Obtain samples of full model parameters θ_N
- 3. Compute many diff(full, approx) using samples
- 4. Ensure **diff(**full, approx**)** ≤ ε with high probability

We must train an approximate model to obtain θ_n

In our paper: performs this by training at most TWO approx models

...</QualityGuarantee>

<Experiments>...

Models and datasets

Model	Dataset	# of examples	# of features
Linear Regression	Gas	4M	57
	Power	2M	114
Logistic Regression	Criteo	46M	998,922
	HIGGS	11M	28
Max Entropy Classifier	MNIST	M8	784
	Yelp	5M	100,000
Probabilistic PCA	MNIST	M8	784
	HIGGS	11M	28

Publicly available **GB-scale** machine learning datasets The number of features range from 28 to 1 million

BlinkML offers large speedups

Speedups adjust based on requested accuracy

BlinkML offers large speedups

Speedups adjust based on model/data complexity

(see more systematic study in our paper)

Approx. models satisfy requested accuracy

Max Entropy Classifier, Yelp

Accuracy guarantees were **conservative** (which is not bad)

Faster hyperparameter searching with BlinkML

Logistic Regression, Criteo

Regular

3 models in 30 mins

BlinkML

961 models in 30 mins (sample size: 10K–9M)

BlinkML found the best model at itr #91 (in 6 mins, test acc 75%) **Regular** could not find it in 1 hour

...</Experiments>

Summary

- 1. Extended sampling-based analytics to commonly used ML
- 2. Our approach offers probabilistic quality-guarantees
- 3. Core: uncertainty on params → uncertainty on predictions
- 4. Empirical studies show that min sample size automatically adjusts

What's next?

Can we extend this approach to other models?

• SVM, ensemble models, deep neural nets, ...

Run BlinkML directly on SQL engines?

- Relational DBs are well optimized for structured data
- No need to move/migrate data

Propagating errors to downstream applications

Formal semantics required

Thank you!