Qin Yang, Ph.D.

☑ RickYang2014@gmail.com qyang2@bradley.edu

https://www.is3rlab.org/

https://rickyang2016.github.io/

https://scholar.google.com/citations?user=t6e_A9kAAAAJ&hl=en

Education Background

01/2019 – 05/2022 Ph.D., University of Georgia in Computer Science

Specializing in: Distributed Artificial Intelligence (DAI), Swarm Intelligence, Multi-

Agent/Robot Systems (MAS), Robotics, and Human-Robot Interaction

Thesis title: Self-Adaptive Swarm System (SASS)

Dissertation:https://esploro.libs.uga.edu/esploro/outputs/

9949451030302959

08/2017 – 12/2018 M.Sc. Colorado School of Mines in Computer Science.

Speciality: Multi-Agent Systems (MAS) and Multi-Robot Systems (MRS).

09/2008 – 07/2011 M.Eng. Peking University in Software Engineering.

09/2000 – 07/2004 B.Eng. Harbin Institute of Technology in Mechatronics.

Academic Positions and Working Experiences

08/2023 – Present Assistant Professor, Director of Intelligent Social Systems and Swarm Robotics Lab (IS³R), Computer Science and Information Systems Department, Bradley Uni-

versity.

10/2022 – 05/2023 Research Scientist in Automated Driving Systems, Automotive Products Re-

search Laboratory, Hitachi America, Ltd.

01/2019 - 07/2023 Research & Teaching Assistant/Instructor, Computer Science Department,

University of Georgia.

o8/2017 − 12/2018 **Teaching Assistant,** Computer Science Department, Colorado School of Mines.

06/2017 – 08/2017 **Research Scientist,** Robotics and Artificial Intelligence Laboratory, The Chinese

University of Hong Kong - Shenzhen.

05/2014 – 08/2017 Senior Engineer & Project Manager, Intelligent Engineering Department, China

Architecture Design & Research Group.

Institute.

07/2004 – 05/2010 Electrical Engineer & Project Manager, China Aerospace Science and Industry

Corporation.

Research Publications

Conference Proceedings

- Yang, Q. (2023). Hierarchical needs-driven agent learning systems: From deep reinforcement learning to diverse strategies. In *The 37th aaai conference on artificial intelligence and robotics bridge program*. AAAI.
- Yang, Q., & Parasuraman, R. (2023a). A hierarchical game-theoretic decision-making for cooperative multi-agent systems under the presence of adversarial agents. In *The 38th acm/sigapp symposium on applied computing (sac) on intelligent robotics and multi-agent systems (irmas) track*. ACM.
- Yang, Q., & Parasuraman, R. (2023b). A strategy-oriented bayesian soft actor-critic model. In *The 14th international conference on ambient systems, networks and technologies (ant)*. Elsevier.
- Yang, Q., & Parasuraman, R. (2022a). A game-theoretic utility network for cooperative multi-agent decisions in adversarial environments. In *Iros22 workshop on decision making in multi-agent systems*. IEEE.
- **Yang**, **Q.**, & Parasuraman, R. (2022c). Game-theoretic utility tree for multi-robot cooperative pursuit strategy. In 2022 the 54th international symposium on robotics (isr europe). IEEE.
- **Yang**, Q. (2021). Self-adaptive swarm system (sass). In *Proceedings of the thirtieth international joint conference on artificial intelligence, IJCAI-21* (pp. 5040–5041). Doctoral Consortium.
- Yang, Q., & Parasuraman, R. (2021). How can robots trust each other for better cooperation? a relative needs entropy based robot-robot trust assessment model. In 2021 ieee international conference on systems, man, and cybernetics (smc). IEEE.
- Yang, Q., & Parasuraman, R. (2020a). Hierarchical needs based self-adaptive framework for cooperative multi-robot system. In 2020 ieee international conference on systems, man, and cybernetics (smc) (pp. 2991–2998). IEEE.
- **Yang**, Q., & Parasuraman, R. (2020b). Needs-driven heterogeneous multi-robot cooperation in rescue missions. In 2020 ieee international symposium on safety, security, and rescue robotics (ssrr) (pp. 252–259). IEEE.
- Yang, Q., Luo, Z., Song, W., & Parasuraman, R. (2019). Self-reactive planning of multi-robots with dynamic task assignments. In 2019 international symposium on multi-robot and multi-agent systems (mrs) (pp. 89–91). IEEE.

Submitted Papers

Yang, Q., & Parasuraman, R. (2022b). Bayesian strategy network based soft actor critic in deep reinforcement learning.

Peer Review Service

Review Editor:

Journal Frontiers in Robotics and AI

- IEEE Robotics and Automation Letters (**RA-L**)
- IEEE Transactions on Circuits and Systems for Video Technology

Peer Review Service (continued)

Reviewer for the follows:

Conference

- The 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2020)
- The 3rd IEEE International Symposium on Multi-Robot and Multi-Agent Systems (MRS 2021)
- The 2021/2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2021/2022)
- The 2023 IEEE International Conference on Robotics and Automation (ICRA) (ICRA 2023)
- The 22nd International Conference on Autonomous Agents and Multiagent Systems (AA-MAS) Blue Sky committee member (AAMAS 2023)

Skills

Languages

Strong reading, writing and speaking competencies for English and Mandarin Chinese.

Coding

Python, C#, c++, C, sql, xml/xsl, MatLab, ros, LaTeX.

Misc.

Academic research, Teaching, Hiking, Traveling, Reading, Cooking, Watching Movies, Classic & Jazz Lover, Exploring, Thinking and Dreaming.

Miscellaneous Experience

Certification

Certified Senior Engineer in Electric Automatic Control System. Awarded by China Architecture Design Institute.

2009 Certified Engineer. Awarded by China Aerospace Architectural Design Research Institute.