Лекция 12: Деревья решений

м

Методы, основанные на деревьях решений

- Ключевые особенности:
 - □ Эти методы используют *стратификацию или сегментирование* пространства признаков на области.
 - □ Для сегментации пространства признаков может использоваться набор правил, который можно представить в виде дерева
 - □ Деревья решений могут применяться как к *задачам регрессии*, так и к *классификации*.
 - □ Методы, основанные на деревьях, просты в *интерпретации*, при этом показывают достаточно хорошие результаты по точности прогнозирования.
 - □ Нестабильные модели это плюс для ансамблей бэггинг, методы случайного леса и бустинг. Эти методы строят множество деревьев, результаты прогнозирования которых потом объединяются для получения итогового прогноза.

Деревья решений в задачах классификации и регрессии

- Дерево решений граф (древовидная структура), в котором:
 - □ Внутренние узлы условия на атрибуты
 - □ Каждая исходящая ветка соответствует выходному значению условия, ветка целиком альтернативное решение
 - □ В листьях метки классов (или распределение классов) или значения целевой переменной для регрессии
 - □ Каждому узлу соответсвует область в пространсве признаков R
 - □ Области для листьев финальные, не содержат внутри других областей
- Построение дерева обычно 2 фазы
 - «рост» : в начале в корне все примеры, далее рекурсивное разбиение множества примеров по выбранному(ым) атрибуту(ам)
 - «отсечение» ветвей pruning выявление и удаление ветвей (решений), приводящих к шуму или к выбросам
- Применение дерева решений для нового объекта
 - □ Проверка атрибутов путь по ветви до листа. В листе отклик.

Непрерывный отклик

1

Непрерывный отклик

If RM \in {values} and NOX \in {values}, then MEDV=value.

<u>Leaf</u>	<u>RM</u>	<u>NOX</u>	Прогноз MEDV
1	<6.5	<.51	22
2	<6.5	[.51, .63)	19
3	<6.5	[.63, .67)	27
4	[6.5, 6.9)	<.67	27
5	<6.9	≥.67	14
6	[6.9, 7.4)	<.66	33
7	≥7.4	<.66	46
8	≥6.9	, ≥.66	16

- Модели регрессии на основе деревьев решений:
 - Решающая (регрессионная) функция кусочно-постоянная: $a(x) = \sum_{m=1}^M c_m I(x \in R_m), \text{ где } c_m \text{ константа, } M \text{ число регионов (листьев)}$ $R_m = \prod_{i=1}^d I(a_{mi} < x_i \le b_{mi}) \text{ или } R_m = \bigwedge_{i=1}^d [a_{mi} < x_i \le b_{mi}] \text{ }$ «прямоугольный» регион (для числовых признаков), d размерность X
- Эмпирический риск (однородность регионов):
 - □ один из вариантов, без регуляризации и с кв. функцией потерь:

$$Q(a(x),\{(x_i,y_i)\}_{i=1}^l) = \sum_{i=1}^l \sum_{m=1}^M (y_i - a(x))^2 I(x_i \in R_m) \to \min_{R_m, c_m} \Rightarrow c_m = \frac{1}{|R_m|} \sum_{i: x_i \in R_m} y_i$$

Категориальный отклик

Категориальный отклик

- Модели классификации на основе деревьев решений:
 - \square Классификатор $a(x) = \operatorname{argmax}_{k,m}[p_{mk}I(x \in R_m)]$, где $p_{mk} = P(y = k | x \in R_m) = \frac{1}{|R_m|} \sum_{i:x_i \in R_m} (y_i = k)$ оценка вероятности класса

k в регионе m, если m(x) – индекс региона, куда попало наблюдение x, то $p_{m(x)k}$ является дискриминантной функцией класса k

- Эмпирический риск (однородность регионов):
 - □ Ошибка классификации (не гладкая):

$$Q_{miss} = \sum_{i=1}^{l} \sum_{m=1}^{M} I(x_i \in R_m) \frac{I(y_i \neq a(x_i))}{|R_m|} = \sum_{i=1}^{l} (1 - p_{m(x_i) | a(x_i)})$$

 $\ \square$ Индекс Джини (гладкая, ограничивает Q_{miss} сверху):

$$Q_{Gini} = \sum_{m=1}^{M} \sum_{k=1}^{K} p_{mk} (1 - p_{mk})$$

 \square Энтропия (ограничивает Q_{Gini} сверху):

$$Q_{KL} = -\sum_{m=1}^{M} \sum_{k=1}^{K} p_{mk} \log_2(p_{mk})$$

Более сложные варианты деревьев

- Типы регионов:
 - □ Порядковые и числовые предикторы $(a_{mi} < x_i \le b_{mi})$
 - \square Категориальные предикторы ($x_i \in S_{mi}$)
 - \square «Многогранники» ($\bigcup \sum_i w_{mi} x_i \leq b_m$)
 - \square «Сферы» $(\sum_i (a_{mi} x_i)^2 \le b_m)$
- Стратифицированные модели :
 - В регионах не константа, а ф-ция $c_m(x)$, например, непараметрическая модель (сплайн)
- Разбиение регионов:
 - □ Бинарное каждый регион делится на два
 - □ Множественное много ветвей в дереве
 - □ Нечеткие правила отдельная история

Процесс построения деревьев решений – рекурсивное разбиение

- Цель:
 - □ найти непересекающиеся области $R_1, ..., R_M, \forall i \neq j : R_i \cap R_j = \emptyset,$ покрывающие все пространство признаков $X = \bigcup_m R_m$ так, чтобы поведение отклика внутри каждого региона было максимально однородным, т.е. минимизировать некий целевой *критерий разбиения* $Q(R_1, ..., R_M) \to \min$
- Подход на основе рекурсивного разбиения (нисходящий, жадный):
 - □ Вычислительно нецелесообразно (NP-полная задача) рассматривать все возможные разбиения пространства признаков, даже в рамках фиксированной структуры правил и критерия разбиения
 - □ Нисходящий начинается в корне дерева, где один регион (все пространство признаков), затем последовательно рекурсивно разбиваются доступные регионы на более мелкие и каждое разбиение приводит к образованию новых ветвей, расположенных ниже по дереву.
 - Жадный лучшее разбиение выбирается по критерию на каждом шаге, просмотра вглубь нет (иначе тоже NP-полная задача), не приведет к глобально лучшему дереву даже по выбранному критерию

Рекурсивное разбиение

- **Алгоритм поиска разбиения** для региона *R* начинаем с корня, первый регион разбиения равен всему *R=X*.
 - 1. Проверить *условия остановки/роста дерева* для данного региона
 - 2. Сформировать множество *гипотез* $\{f_i\}$ *для разбиения,* таких что $f_i \colon R \to B$ разбивает «родительский» регион на B «дочерних» регионов (B- число ветвей), удовлетворяющих *условиям остановки/роста*
 - 3. Рассчитать значение *критерия разбиения* $Q(f_i)$ для каждой гипотезы и выбрать лучшую по критерию
 - 4. Дорастить дерево (лист, соответствующий разбиваемому региону превращается во внутренний узел) новыми *В* ветвями, заменив «родительский» регион на *В* «дочерних»
 - 5. Для каждого полученного региона (соответствующего новым листьям) применить **Алгоритм поиска разбиения**
- Особенности (упрощения) для поиска прямоугольных регионов:
 - □ Гипотезы разбиения (в виде порогов для порядковых/числовых и в виде подмножеств для категориальных) строятся по каждому предиктору отдельно, выбирается лучшая по предиктору
 - □ Затем лучшие гипотезы сравниваются между предикторами

Рекурсивное разбиение

м

Гипотезы-кандидаты для поиска разбиения числового предиктора

- Рассмотрим прямоугольные регионы для числового предиктора x:
 - □ Разбиваем одномерный «родительский» регион $(a < x \le b)$ с N различными значениями на B ветвей
 - □ Надо сформировать варианты разбиения (гипотезы), каждая задается порогами $a < \theta_1 < \theta_2 < \dots < \theta_{B-2} < \theta_{B-1} < b$, ветви задаются условиями $(a < x \le \theta_1)$, $(\theta_1 < x \le \theta_2)$,..., $(\theta_{B-1} < x \le b)$
- Варианты разбиения для числового или порядкового предиктора:
 - \square В общем случае: $C_{B-1}^{N-1} = \frac{(N-1)!}{(B-1)!}$, для бинарного разбиения: N-1

для всех ветвей от 2 до
$$N$$
: $\sum_{b=2}^{N} C_{b-1}^{N-1} = 2^{N-1} - 1$,

□ Выбор вариантов – серединные точки

$$\begin{array}{ccc}
1 - 234 & \binom{3}{1} = 3 \\
12 - 34 & \binom{3}{1} = 3
\end{array}$$

$$\begin{array}{ccc}
 1 - 2 - 34 \\
 1 - 23 - 4 \\
 12 - 3 - 4
 \end{array}
 \qquad
 \begin{pmatrix}
 3 \\
 2
 \end{pmatrix}
 = 3$$

$$1-2-3-4$$
 $\binom{3}{3}=1$

Потенциальные точки разбиения

Гипотезы-кандидаты для поиска разбиения категориального предиктора

- Разбиваем множество категориальных значений предиктора из региона «родительского» узла S_m :
 - □ Ищем B ветвей: $S_m = \bigcup_{b=1}^B S_{bm}$: $\forall i \neq j \Rightarrow S_{im} \cap S_{jm} = \emptyset$, если $|S_m| = N$, то всего вариантов число Стирлинга 2 порядка:B: [-2] 3____4 | total

$$S(N,B) = B \cdot S(N-1,B) + S(N-1,B-1)$$

- □ Для бинарного дерева: $2^{N-1} 1$
- Сокращение числа гипотез:
 - \square Ограничение снизу на $|S_m|$ или $|S_{jm}|$
 - □ Эвристические, жадные алгоритмы
- Пример иерархическая кластеризация гипотез (алгоритм Касса):
 - □ Строим N ветвей (каждая ветвь значение)
 - □ Рассматриваем все варианты склейки двух
 - □ Выбираем лучшую склейку по критерию
 - \square Продолжаем, пока не «склеим» все в B ветвей

Критерии разбиения на основе однородности

- Сравнить гипотезы о разбиении (внутри одного предиктора):
 - на основе прироста однородности дочерних регионов по сравнению с родительским внутри :

- Лучшие разбиения разных предикторов:
 - \square сравнивать либо по тому же критерию $\Delta i(x_k) \vee \Delta i(x_j)$, либо по нормированному $\frac{\Delta i(x_j)}{i(x_i)} \vee \frac{\Delta i(x_k)}{i(x_k)}$
- Примеры критерия однородности:
 - □ Вариации (числовой отклик)
 - □ Энтропия, Джини, ошибка классификации (категориальный отклик)

м

Критерии разбиения на основе уменьшения вариации

- Для числового отклика:
 - □ Выбираем гипотезу, для которой средняя взвешенная вариация (квадратичная ошибка) по дочерним узлам максимально уменьшается.
 - □ В результате «разбегаются» средние отклики по регионам и уменьшается дисперсия в них.
 - □ Получаемый эмпирический риск квадратичной функции потерь и его можно регулизировать (по регионам):

×

Критерии разбиения на основе уменьшения энтропии

- Мера неоднородности Q распределения классов в регионе R_m :
 - $p_{mk} = P(y = k | x \in R_m) = \frac{1}{|R_m|} \sum_{i:x_i \in R_m} (y_i = k)$
 - \square Q максимальна в чистом регионе, т.е. $\exists k$ `: $p_{mk}=1$, $\forall k \neq k$ `: $p_{mk}=0$
 - □ Q минимальна, если классы равновероятны, т.е. $\forall k : p_{mk} = 1/K$
 - □ Если отклик категориальный (не порядковый), то Q не зависит от порядка классов.
- Мера неоднородности выборки в регионе R_m на основе энтропии:

$$Q_{Entropy}(R_m) = H(Y|x \in R_m) = -\sum_{k=1}^{K} p_{mk} \log_2(p_{mk})$$

- $\ \square$ мера неопределенности (неоднородности) отклика Y в регионе R_m
- \square мат. ожидание (по классам) ф-ции потерь: $L(p) = -\log_2(p)$
- □ $-\log_2(p_{mk})$ KL-дивергенция для распределения с «чистым» классом k в регионе R_m , $(0, ..., 1_k, ..., 0)$, насколько оно близко к p_{mk}

×

Information Gain (прирост информации)

■ Энтропия в родительском узле - совместная:

$$H_p(y, x \in R_p) = -\sum_{k=1}^{K} P(Y = k, x \in R_p) \log_2 P(Y = k, x \in R_p)$$

■ Энтропия в дочернем узле b — условная, неопределенность отклика, если знаем что $x \in R_b$:

$$H_b(y|x \in R_b) = -\sum_{k=1}^K P(Y = k|x \in R_b) \log_2 P(Y = k|x \in R_b)$$

• Ожидаемая условная энтропия по всем дочерним узлам $1 \le b \le B$, неопределенность при условии разбиения на $R_p = R_1 \cup \dots \cup R_B$:

$$H(y|R_1, ..., R_B) = \sum_{b=1}^B P(x \in R_b) H_b(y|x \in R_b) = \sum_{b=1}^B \frac{|R_b|}{|R_p|} H_b(y|x \in R_b)$$

- Information Gain (как раз то, что мы максимизируем):
 - □ уменьшение энтропии при заданном разбиении:

$$IG(y|R_p = R_1 \cup \dots \cup R_B) = H_p(y, x \in R_p) - H(y|R_1, \dots, R_b)$$

Критерии разбиения на основе индекса Джини

- Интерпретации индекса Gini:
 - Изначально в экономике оценка неравенства населения по доходам
 - Модельный пример вероятность вытащить (с возвратом) из закрытой корзины с цветными шарами два шара разного цвета:

$$Gini(R_m) = 1 - \sum_{k=1}^{K} p_{mk}^2 = \sum_{j < k}^{K} 2p_{mk} p_{mj}$$

Пара Аналогично энтропии - мера неоднородности выборки в регионе и мат. ожидание (по классам) убывающей ф-ции потерь: L(p) = (1-p):

$$Q_{Gini}(R_m) = \sum_{k=1}^{K} p_{mk} (1 - p_{mk})$$

Интересный факт: если мера $Y = \{0,1\}$, то индекс
 Джини совпадает с вариацией

$$Gini = 1 - 2\left(\frac{3}{8}\right)^2 - 2\left(\frac{1}{8}\right)^2 = 0.69$$

$$Gini = 1 - \left(\frac{6}{7}\right)^2 - \left(\frac{1}{7}\right)^2 = 0.24$$

Оценка важности переменных

- Варианты оценки важности переменных (всегда на выборке):
 - Вариант 1: по каждому предиктору x_i суммирование прироста меры однородности $Gain(x_i) = \sum_{node: x_i \in node} \Delta Q_{node}(x_i)$ (Джини или Энтропии для категориального отклика или вариации для числового) по всем вхождениям переменной в дерево, т.е. по всем внутренним узлам с условиями на переменную x_i
 - Вариант 2: считаем качество полной модели (дерева) и модели, где все $x_i = missing$, сравниваем ухудшение:

$$Gain(x_i) = \frac{Q(T) - Q(T|x_i = missing)}{Q(T)}$$

□ Нормировка:

Importance
$$(x_i) = \frac{Gain(x_i)}{\max_{j} [Gain(x_j)]}$$

или

Importance
$$(x_i) = \frac{Gain(x_i)}{\sum_j Gain(x_j)}$$

Пример дерева

```
DecisionTreeClassifier

DecisionTreeClassifier(max depth=5, min samples leaf=3, min samples split=5)
```

tree.fit(X, y)

Пример дерева

plot_tree(tree, fontsize=8, feature_names=iris.feature_names)
plt.gcf().set size inches(8, 8)

DecisionBoundaryDisplay.from_estimator(tree, X, cmap="Pastel1")
plt.scatter(*X.T, c=y, cmap="Set1")

<matplotlib.collections.PathCollection at 0x7fa63f56b1c0>

tree.feature_importances_

array([0.76047482, 0.23952518])

Статистические критерии разбиения

Недостатки крите	оиев на основе	е оценки одн	ородности выборки	1:
		, <u> </u>	- b - H	

- □ При сравнении предикторов с разной мощностью (число различных значений) тяготеют к выбору более мощного варианта
- □ При сравнении вариантов разбиения с разным числом ветвей (больше2) тяготеют к выбору большего числа ветвей
- □ В общем случае не позволяют разумно задать порог на остановку роста (например, на минимально допустимое улучшение)

Идея статистических критериев:

- Оценивать как меняются распределения отклика в дочерних узлах по сравнению с родительским, чем больше меняются, тем лучше
- \square Оценивать по p-value базовую гипотезу H_0 о том, что распределение не изменилось, чем меньше p-value, тем более мы уверены, что разбиение полезно
- \square Сравнивать гипотезы о разбиении по $logworth = -log_{10}(p_{\alpha})$
- □ Использовать порог для p-value для отбора гипотез и остановки роста
- Использовать корректировку Бонферрони для множественного сравнения гипотез

Критерий Фишера для числового отклика

- Идея из дисперсионного анализа:
 - \square Гипотеза H_0 все групповые средние в B ветвях совпадают
 - □ Считается статистика Фишера:

$$F = \left(\frac{SS_{model}}{SS_{error}}\right) \left(\frac{N-B}{B-1}\right) \sim F_{B-1,N-B}$$
, где $SS_{total} = \sum_{i=1}^{N} (y_i - \overline{y})^2$, $SS_{error} = \sum_{b=1}^{B} \sum_{i:x_i \in R_b} (y_i - \overline{y_b})^2$, $SS_{model} = SS_{total} - SS_{error}$

□ По распределению Фишера со степенями свободы B-1 и N-B находится p-value (уровень значимости) гипотезы H_0 , чем он меньше, тем увереннее мы отклоняем H_0

Критерий χ^2 для категориального отклика

- Идея из анализа таблиц частот:
 - □ Строим матрицу сопряженности для заданного разбиения (строки – ветви, столбцы – классы, ячейки – сколько наблюдений класса попало в соответствующую ветвь)
 - □ Гипотеза H_0 распределение классов в B ветвях одинаковое и совпадает с родительским, считается статистика:

$$\chi^2 = \sum_{k=1}^K \sum_{b=1}^B rac{(O_{bk} - E_{bk})^2}{E_{bk}} \sim \chi^2_{(B-1)(K-1)}$$
 , где

 O_{bk} - сколько наблюдений из класса k попало в ветвь b $E_{bk} = P_k |R_b|$ - сколько бы попало, если H_0 верна

По распределению χ^2_v со степенями свободы v = (B-1)(K-1) находится p-value (уровень значимости) гипотезы H_0 , чем меньше тем лучше

Матрица О

<38.5			
293	71	.342	
363	1	.342	
42	294	.316	
.656	.344	<i>n</i> =1064	

Матрица *Е*

9

239	125
239	125
225	116

Матрица χ^2

12	23
64	123
149	273

- Корректируется p-value с учетом множественного сравнения гипотез:
 - □ Для серии m сравнений нескольких гипотез, каждая с уровнем значимости α , уровень значимости всей серии $\alpha_m \leq 1 (1 \alpha)^m$
 - □ Корректировка Бонферрони домножаем уровень значимости α на число сравнений m, что тоже самое, домножаем p-value на m
 - \square Скорректированный на m сравнений критерий разбиения logworth: $\log \operatorname{worth}_m(p_\alpha) = -\log(mp_\alpha) = -\log(p_\alpha) \log(m) = \operatorname{logworth}(p_\alpha) \log(m)$
 - $\ \square \ \log(m)$ штраф за мощность предиктора и/или число ветвей

X:	3	88.5			$oldsymbol{\gamma}^2$	ν -	$-\log_{10}(P)$	m -	$-\log_{10}(m\mathrm{P}$
1	293	3	71		- N _V		10810(17)	т	10810 (1112
7	363	3	1		644	2	140	96	138
9	42		294					†	
X: 17.5 36.5									
1	249	42	73		000		4.44	4500	407
7	338	25	1		660	4	141	4560	137
9	26	16	294						

M

Множитель глубины

■ В теории разбиение на глубине d также зависит от предыдущих разбиений, поэтому p-value можно корректировать по Бонферрони с учетом глубины и числа ветвей на уровнях выше

	$-\log_{10}(P)$	m	$-\log_{10}ig(m ext{P}ig)$	d	$-\mathrm{log}_{10}ig(2^d m\mathrm{P}ig)$
000	26.7	53	24.9	0	24.9
	3.12	14	1.97	1	1.67
	1.63	39	.039	1	26
	2.40	11	1.36	2	.76

- Важное преимущество деревьев решений:
 - □ Могут работать с пропусками без подстановки
- Основные подходы:
 - Строим гипотезы о разбиении без учета пропусков
 - □ Направляем пропуски по отдельной ветке (если дерево не бинарное), по самой большой ветке, по самой точной ветке, по всем веткам одновременно пропорционально их размеру
 - □ Расширяем множество гипотез разбиения проверкой: что будет, если запустить пропуски по каждой ветке b (пример справа вверху)
 - □ Суррогатные правила (пример справа внизу): No для каждого лучшего разбиения по предиктору x_i , находим разбиение по $x_{j\neq i}$, максимально согласованное (максимальное пересечения регионов дочерних узлов) с исходным. Обычно строят несколько дублирующих правил

Уровень согласия=76%

Переобучение и сложность деревьев

решений Максимальное дерево Тренировочный набор Новые данные

часто переобучено

Небольшое дерево часто недообучено

м

Контроль сложности деревьев решений

Сложность д	epe	ва:
-------------------------------	-----	-----

- □ Обычно оценивают по числу листьев
- □ Как и у других моделей рост сложности влечет рост дисперсии и уменьшение смещения, и наоборот.
- □ Сложность можно контролировать: ограничением роста (pre-pruning) или упрощением максимального дерева обрубанием ветвей (pruning)
- Параметры ограничение роста:
 - □ Максимально допустимая глубина дерева
 - □ Минимально допустимое число наблюдений в листе
 - □ Максимально допустимое число ветвей
 - Минимально допустимое число различных значений в предикторе для формирования по нему гипотез о разбиении
 - □ Порог останова на p-value или другой нормированный критерий
 - □ Корректировка порогов отсечения с учетом глубины или числа ветвей
- Обрубание ветвей дальше

Обрубание дерева

- Процедура обрубания ветвей (или удаление слабых связей):
 - \square построение большого дерева T_0 , а затем выполнение *отсечения* для получения *поддерева* для *сокращения сложности*
- Простой подход с использование валидационного набора
 - Строим максимальное дерево и последовательно проверяем варианты обрубания листьев (из одного общего родителя) с оценкой качества поддерева на валидационной выборке
 - □ Получаем семейство поддеревьев, выбираем лучшее
 - □ Важно: критерий обрубания может не совпадать с критерием роста, например, строим дерево по IG, а упрощаем по ROC или критерию из прикладной задачи

Сложность дерева - пример

```
from sklearn.metrics import accuracy_score
from sklearn.datasets import load_digits
```

```
digits = load_digits()
X, y = digits.data, digits.target
X.shape, np.unique(y)
```

```
((1797, 64), array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]))
```

```
plt.imshow(X[0].reshape(8, 8), cmap="gray");
```



```
N = 1000 # labels are scattered evenly enough
train_X, train_y = X[:N], y[:N]
test_X, test_y = X[N:], y[N:]
```


Обрубание дерева с регуляризацией (cost-complexity/MDL)

Регуляризированный эмпирический риск:

$$Q_{\alpha}(T) = \sum_{m \in T} |T_m| \cdot Q_m(T) + \alpha |T|,$$

 Q_m - оценка неоднородности в листе $m, \ |T|$ - сложность дерева T (обычно, число листьев), мощность листа $|T_m|$ - число наблюдений

- \square Что обрубить? Если $Q_{\alpha}(T)-Q_{\alpha}(T_t)\to 0$, то $\alpha_{eff}(t)=rac{Q(t)-Q(T_t)}{|T_t|-1},\ t-$ узел, T_t его поддерево, $\alpha_{eff}(t)$ его параметр регуляризации
- Процедура обрубания
 - \square Инициализация $T^{(1)}=T$, $lpha_1=0$, i=1
 - \square Повторять: выбрать $\min_{t \in T^{(i)}} \alpha_{eff}(t)$

$$\alpha_{i+1} = \alpha_{eff}(t), T^{(i+1)} = T^{(i)} - T_t^{(i)}$$

Результат:

$$\begin{array}{ll} \square & 0 = \alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k \Leftrightarrow \\ & T = T^{(1)} \subset T^{(2)} \subset \cdots \subset T^{(k)} = \{root\} \end{array}$$

 Можно построить «трассу» зависимости однородности Q_{α} от α_{eff} и подобрать порог кросс-валидацией или на тестовой выборке

Деревья решений как инструмент предобработки данных

- Подстановка пропусков
 - \square на основе оценок $x_i = F_{tree}(x_1, ..., x_{i-1}, x_{i+1}, ...)$
 - много достоинств: любой отклик, работа с числовыми, категориальными и пропущенными значениями других признаков, произвольные зависимости, сохранение распределений
 - □ недостатки: нестабильность и невысокая точность (но они тут не

важны)

x_1	x_2	x_3
8.6	14	?
?	43	1.4
6.3	22	2.7
3.8	?	?
1.4	19	1.1
4.6	63	1.0
5.5	26	2.3
?	?	?
1.7	82	2.8
6.8	23	1.8
5.8	30	1.2

$$y = x_1$$

$$\mathbf{x} = (x_2, x_3)$$

$$y = x_2$$

$$\mathbf{x} = (x_1, x_3)$$

$$y = x_3$$

$$\mathbf{x} = (x_1, x_2)$$

Деревья решений как инструмент предобработки данных

- Выделение «чистых» регионов:
 - для задач классификации с большим дисбалансом классов (PNrule), пример алгоритма:
 - 1. Р-фаза: строим дерево решений, находим самый большой и «чистый» лист (пропорция целевого класса и размер выше заданных порогов), удаляем наблюдения найденного листа из выборки, повторяем Р-фазу
 - 2. N-фаза: «очищенный» набор не такой дисбалансный, имеет смешанные области со сложными границами, в них строим гибкие точные модели (например, ансамбли или нейросети)
 - □ для «негладких» регрессий (PRIM, bump hunting)

Деревья решений как инструмент предобработки данных

- Преобразование предикторов с учетом отклика:
 - □ строится одномерное дерево (с одним входом)
 - значения, попавшие в листья формируют подмножества группировки (для категориальных)

□ отрезки дискретизации (для числовых предикторов)

Explainable AI:

- Чем модель более сложная, тем более точная и менее понятная человеку (менее интерпретируемая)
- Как получить описание не интерпретируемой модели?

Суррогатные модели:

- Строится сложная не интерпретируемая модель (например, нейросеть, сплайны или ансамбль)
- □ На ее прогнозах (а не на реальных откликах) строится суррогатное «объясняющее» дерево (можно оценить уровень его согласованности или аппроксимации исходной модели)
- На реальных откликах такое дерево не построить

Особенности классических алгоритмов построения деревьев решений

Свойства	CHAID (Kass)	CART (Breiman)	C4.5 (Quinlan)
Критерий для числ. отклика	Фишер	Вариация	нет
Критерий для кат. отклика	Хи-квадрат	Джини	Энтропия
Число ветвей	Больше или равно двум	Всегда две	Больше или равно двум
Работа с пропусками	Отдельная ветвь или перебор гипотез	Подстановка или суррогатные правила	Пропорция по веткам или подстановка
Особенности	Корректировка Бонферрони и глубина	Линейные комбинации при разбиении	Алгоритм «сокращения» правил
Обрубание вервей	Нет или по валидации	Cost-complexity	На основе ошибок

Преимущества и недостатки деревьев решений

■ Достоинства:

- Деревья решений имеют самую высокую интерпретируемость,
 считается, что они отражают процесс принятия решений людьми
- Деревья могут обрабатывать разные типы входных переменных и откликов, пропуски, относительно не чувствительны к выбросам в признаках (но чувствительны в отклике)
- Деревья не делают предположений о виде и сложности зависимости
- □ Есть эффективные инструменты борьбы с переобучением
- □ Легко адаптируются к разным задачам машинного обучения
- □ Быстро обучаются и применяются
- □ Инструмент отбора и преобразования признаков

Преимущества и недостатки деревьев решений

- Недостатки:
 - Невысокая качество модели (особенно на гладких зависимостях, где растет сложность)

□ Нестабильность модели (жадный алгоритм)

