VIII. Appendix

An analysis of variance for the top sieve takes the following form (for terminology, see any standard text on the analysis of variance, for example [18]):

Analysis of variance including all four knockers

[The value of F for significance at the 5-percent level is about 10 and at the 1-percent level about 30.]

Source of variation	Degrees of freedom	Sum of squares	Variance	F value
Knockers	3	3. 255	1.085	93. 0
Machines	1	0.0625	0.0625	5. 36
Chars	1	131. 1	131.1	11, 230
chars	1	0.16	0.16	13. 7
Machines and knockers	3	2, 0625	. 6875	58. 8
Chars and knockers	3	0.0525	. 0175	1.5
Triple interaction (error)	3	. 035	. 01167	
Total	15	136, 73		

Since it is noted that the absence of a knocker (condition knocker 4) is the greatest cause of the variation, the above analysis of variance is repeated omitting K₄:

Analysis of variance omitting K₄ (no knocker)

[The value of F for significance at the 5-percent level is about 20 and at the 1-percent level about 100.]

	Тор	sieve	Secon	d sieve	Third	sieve	Pan	
Source of variation	Vari- ance	F	Vari- ance	F	Vari- ance	F	Vari- ance	F
Knockers	0.0258		0. 01		0. 2580		0. 01	
Machines	. 8533	49	. 0208		. 1633	5. 3	. 48	
Chars Interactions:	98.06	5, 600	6. 02	1,800	6.45	209	. 03	
Machines and chars	0.120	6.8	0.0208	6.2	0.0533	1.8	. 12	
Machines and knockers	. 0308	1.8	. 0133	4	.0108	2.8	. 01	
Chars and knockers Triple interaction (er-	. 0583	1.5	. 0133	4	. 0358	1. 2	0	
ror)	. 0175		. 0033		. 0308		0	

Washington, March 21, 1950.

Journal of Research of the National Bureau of Standards

Vol. 45, No. 4, October 1950

Research Paper 2144

First Spectrum of Arsenic

By William F. Meggers, Allen G. Shenstone, and Charlotte E. Moore

The spectrum emitted by neutral arsenic atoms was observed photographically in the infrared, visible, and ultraviolet, and new lines were discovered in each spectral region. Measured wavelengths and estimated relative intensities are given for 330 lines, ranging from 1407.34 to 11679.9 A in wavelength and from 1 to 2000 in intensity. More than 74 percent of the total number and 97 percent of the total intensity of observed lines have been explained as combinations of 30 odd energy levels arising from $4s^2 4p^3$ and $4s^2 4p^2 np$ electron configurations and 58 even levels from $4s 4p^4$, $4s^2 4p^2 ns$, and $4s^2 4p^2 nd$. The average difference between observed and computed wave numbers is 0.14 cm^{-1} . Most of the observed levels have been assigned to doublet and quartet terms, and spectral series of the type $4s^2 4p^3 - 4s^2 4p^2 ns$ have been identified. Calculations based on these series yield an absolute value of 79165 cm⁻¹ for the ground state $4s^2 4p^3 ^4 S_{0/2}^{o}$ of neutral arsenic atoms, that is, an ionization potential of 9.81 ± 0.01 electron volts.

I. Introduction

In 1929 Meggers and deBruin [1] 2 published a paper on the arc spectrum of arsenic, based on measurements of 54 ultraviolet lines (1889.85 to 3119.60 A) and 23 infrared lines (7410.07 to 10023.98 A). At that time this spectrum had not been observed in the region of shorter waves, and the assumption that the Blochs [2] had observed As I lines in spark spectra in the extreme ultraviolet could not be verified. Although it was not possible then to determine absolute term values from spectral series, the ground state was recognized as ${}^4S^{\circ}$, and by comparison with analogous terms in the spectra of neighboring elements the absolute value of this ground state was tentatively estimated as 80693 cm⁻¹, which corresponded to an ionization potential of about 10 ev. This was 13 percent lower than the value 11.54 ± 0.5 ev derived in 1922 by Ruark,

Department of Physics, Princeton University, Princeton, N. J.
 Figures in brackets indicate the literature references at the end of this paper.

et al. [3] from experiments on low-voltage arcs in arsenic vapor.

A paper on spectra of arsenic in the extreme ultraviolet, 2500 to 710 A, by Queney [4] reported about 300 arsenic lines from electrodeless discharges but added nothing to the As I spectrum.

The shorter waves of this spectrum were first investigated by K. R. Rao [5], who burned metallic arsenic in an arc between carbon poles and photographed the spectrum with an evacuated spectrograph containing a 1 m-radius grating, giving a scale of 8.6 A/mm. He measured 64 lines between 1995.45 and 1563.08 A with estimated probable errors of ± 0.03 A. Because no spectral series could be found, Rao adopted the absolute value ${}^{4}S^{\circ} = 93500$ cm⁻¹ from the ionization potential 11.54 ev reported by Ruark, et al. [3].

In 1932 further investigations of the arc spectrum of arsenic were reported by A. S. Rao [6], who measured 160 ultraviolet As I lines (1995.45 to 1319.48 A) on a hollow-cathode spectrogram having a scale of 17 A/mm. He quoted infrared data from Meggers and deBruin [1], ultraviolet data (3119.576 to 1563.08 A) from K.R. Rao [5], and classified 200 lines with 66 levels. Earlier interpretations of the As I spectrum were revised and extended, and an estimate of the ionization potential as 10.5 ev was derived from two members of several assumed series terms. In the light of present data, many of Rao's designations of spectral terms appear to be incorrect, the reality of some of his levels is doubtful, and his value of the ionization potential for arsenic is certainly too large.

In 1933 Hicks [7] attempted to obtain an absolute value of the spectral terms of arsenic by "the application of the oun-multiple law to the separations". Mysterious calculations led him to a value of 87945 cm⁻¹ for the ionization limit, and he stated that "this is equivalent to 10.85 volts, and closer to the value 11.52 ±.5 referred to by Rao than his 85000 with 10.5 volts". It now appears that this correction was

wrong in both direction and magnitude.

The only other investigation of the first spectrum of arsenic published during the past 20 years deals with the Zeeman effect. Green and Barrows [8], in 1935, published Zeeman patterns for 11 lines (2288.2 to 3033.0 A), derived g-values for 13 levels, and concluded that "the levels of As I are so close to LS coupling that the g-values are almost normal".

The lack of a reliable ionization potential was inspiration and justification for another investigation of the first spectrum of arsenic. Such an investigation has been made at the National Bureau of Standards from time to time during the past 20 years, and as a result, the As I spectrum has been exhaustively explored photographically from 12500 A in the infrared to 1200 A in the ultraviolet. This spectrum has been found to consist of three separated groups of lines, 71 infrared, 46 visible, and 210 ultraviolet. More than 74 percent of the total number and 97 percent of the total intensity of observed As I lines have been explained as combinations of 88 atomic-energy levels, and a principal ionization potential of 9.81 ev has been calculated with confidence. Because further investigation of this spectrum is neither likely nor profitable, this final report is now presented.

II. Wavelength Measurements

The infrared As I lines reported by Meggers and deBruin [1] were observed with photographic plates sensitized in the laboratory by bathing them in dilute solutions of neocyanine, and the greatest wavelength that could be recorded was 10024 A. In 1934 "Xenocyanine Plates" prepared by the Eastman Kodak Co. permitted an extension of the infrared recording of As I lines to 10888 A, and in 1940 Eastman I-Z plates were used to explore this spectrum to 12500 A. No As I lines were recorded beyond 11680 A, but this wavelength is more than 1000 A greater than the limit observed radiometrically by Randall [9] in 1911.

The light sources, spectrographs, and standard

wavelengths employed in observing the infrared, visible, and air-transparent ultraviolet As I spectrum were described in detail by Meggers and deBruin [1].

A number of visible lines not previously noted in the arc spectrum of arsenic and not identifiable with impurities were observed in 1929 [1], but few details were given because no structural connection was found between the visible lines and the invisible ones. Such a connection was first found in 1932 by deBruin,³ who saw that some of the visible lines exhibited the same wave-number differences as some infrared ones. At that time it was not possible to classify and interpret all the visible lines, but this was facilitated by the more recent extensions of the infrared data.

The most important improvements of As I data were made in the extreme ultraviolet, from are spectrograms exposed at Princeton University and measured at the National Bureau of Standards. The spectrograms were made with a normal incidence vacuum spectrograph having a 2 m-radius glass grating ruled 30,000 lines per inch. The dispersion is 4.2 A/mm and the definition and resolving power are excellent, but Rowland ghosts are prominent on strong exposures. All the identified ghosts contributed to determinations of the wavelengths of

their respective parent lines.

Our first attempt to observe the short waves of the As I spectrum was made in 1940 with electrodes of 25 percent As and 75 percent Cu prepared in the Metallurgy Division of this Bureau. Four spectrograms were measured relative to copper standards, but only 100 As I lines were found between 1995.43 and 1472.38 Because the arsenic spectrum could not be fully developed with this alloy without greatly overexposing the copper spectra, additional spectrograms were made in 1949 with metallic arsenic in a cupped carbon electrode opposite a copper electrode. These were highly satisfactory for the final description of the As I spectrum to its ultraviolet limit near 1400 A; after eliminating lines due to As II, impurities, and ghosts, they yielded 168 As I lines between 1995.43 and 1407.34 A. These wavelengths were measured relative to Cu I and Cu II lines given in Shenstone's papers [10] supplemented by carbon, nitrogen, and oxygen "impurity" lines recommended as tentative standards by Boyce and Robinson [11]. All except the weak lines were measured on six or seven spectrograms, and the agreement between determinations, as well as the agreement between values observed and calculated from atomic-energy levels, prove that the probable error rarely exceeds ± 0.01 A. complete list of observed lines was compared with the Table of Principal Lines of all Elements [12] for the purpose of identifying possible impurities, and the ultraviolet portion was also compared with a description by Rao [13] of the first spark spectrum of arsenic for the purpose of eliminating about 10 As II lines that appeared in the arc spectrum.

Measured wavelengths and estimated intensities of 330 lines characteristic of neutral arsenic atoms are

 $^{^3}$ Communicated by T. L. deBruin to W. F. Meggers in a note dated Feb. 27, 1932.

presented in the first and second columns, respectively, of table 1. The wavelengths greater than 2000 A are valid for standard air; those smaller than 2000 A are vacuum values. The intensity numbers are assigned from visual comparisons of the blackness and width of slit images on the most strongly exposed spectrograms; they are comparable only for

lines in limited regions of spectra and obviously decline rapidly beyond 11000A as photographic sensitivity decreases for increasing wavelength. In addition to intensity, the character of certain lines is indicated by symbols: R=wide self-reversal, r=narrow self-reversal, h=hazy, e=observed at electrode.

Table 1. First spectrum of arsenic (As I)

$\overset{\lambda_{\text{air}}}{A}$	Intensity, character	Wave No. vac. cm ⁻¹	Obs.— Calc. Wave No. 0.1 cm ⁻¹	Term combination	$\overset{\lambda_{\text{air}}}{A}$	Intensity, character	Wave No. vac. cm ⁻¹	Obs. — Calc. Wave No. 0.1 cm ⁻¹	Term combination
1	2	3	4	5	1	2	3	4	5
11679. 9 11520. 9 11377. 1 11244. 5 10888. 82	3 10 4 10 20	8559. 37 8677. 54 8787. 19 8890. 79 9181. 22	0 +1 +1 -1	$\begin{array}{c} 58\ ^{2}\mathrm{P}_{134}-5p\ ^{4}\mathrm{P}_{234}^{2}\\ 58\ ^{4}\mathrm{P}_{234}-5p\ ^{4}\mathrm{D}_{234}^{2}\\ 58\ ^{2}\mathrm{P}_{034}-5p\ ^{4}\mathrm{P}_{034}^{3}\\ 58\ ^{4}\mathrm{P}_{134}-5p\ ^{4}\mathrm{D}_{032}^{3}\\ \end{array}$	7863. 43 7829. 82 7648. 15 7410. 02 7384. 97	4 2 2 8 10	12713. 61 12768. 17 13071. 46 13491. 53 13537. 29	0 +1 +1	$5s {}^{4}P_{1}{}_{2} - 5p {}^{2}P_{0}{}_{2} + 5p {}^{4}D_{2}{}_{2} - 4d'' {}^{2}D_{2} + 5p {}^{4}D_{2}{}_{2} - 75176$
10808. 11 10793. 37 10780. 36 10614. 07 10575. 02	50 8 5 200 100	9249. 78 9262. 42 9273. 59 9418. 87 9453. 65	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & +1 \\ 0 & 0 & 0 \end{pmatrix}$	$\begin{array}{c} 58\ ^4\mathrm{P}_{112}\!-\!5p\ ^4\mathrm{D}_{112}^9\\ 58\ ^2\mathrm{P}_{012}\!-\!5p\ ^4\mathrm{P}_{112}^9\\ 58'\ ^2\mathrm{D}_{112}\!-\!5p'\ ^2\mathrm{D}_{112}^9\\ 58\ ^2\mathrm{P}_{012}\!-\!5p\ ^2\mathrm{D}_{122}^9\\ 58\ ^2\mathrm{P}_{122}\!-\!5p\ ^2\mathrm{S}_{012}^9\\ \end{array}$	7384. 62 6338. 94 6176. 68 6049. 48 5815. 40	10 40 1 5h 2h	13537. 94 15771. 16 16185. 46 16525. 78 17190. 97	-1 +1 +1	$5s\ ^2\mathrm{P}_{1\frac{1}{2}}-5p'\ ^2\mathrm{D}_{2\frac{3}{2}}^2, \\ 5s\ ^2\mathrm{P}_{1\frac{3}{2}}-6p\ ^4\mathrm{D}_{2\frac{3}{2}}^2, \\ 5s\ ^2\mathrm{P}_{1\frac{3}{2}}-5p'\ ^2\mathrm{P}_{0\frac{3}{2}}^6,$
10490. 29 10477. 30 10455. 64 10453. 09	2h 4 20 100	9530. 02 9541. 83 9561. 60 9563. 93	0 0 0	$5s'\ ^2\mathrm{D}_{112}-5p'^2\mathrm{D}_{212}^2 \ 5s'\ ^2\mathrm{D}_{212}-5p'^2\mathrm{D}_{212}^2 \ 5s'\ ^2\mathrm{P}_{112}-5p\ ^2\mathrm{D}_{212}^2$	5751. 85 5739. 54 5534. 47 5497. 10 5494. 40	5h 2h 3 4 5	17380. 90 17418. 18 18063. 57 18186. 37 18195. 31	-1 +1 0	$5s\ ^2\mathrm{P}_{0lag{1}2}-6p\ ^4\mathrm{D}_{1lag{2}2}^\circ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
10445. 6 10325. 74 10304. 82 10286. 85 10024. 04	3h 10 5 50 400	9570. 84 9681. 88 9701. 54 9718. 49 9973. 30	$\begin{array}{c} +2 \\ +1 \\ -1 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 5p\ ^2\mathrm{D}_{114}^\circ - 4d'\ ^2\mathrm{P}_{112} \\ 5s'\ ^2\mathrm{D}_{134} - 6p\ ^4\mathrm{D}_{134}^\circ \\ 5s'\ ^2\mathrm{D}_{234} - 6p\ ^4\mathrm{D}_{134}^\circ \\ 5s\ ^2\mathrm{P}_{132} - 5p\ ^2\mathrm{P}_{034}^\circ \\ 5s\ ^4\mathrm{P}_{232} - 5p\ ^4\mathrm{D}_{334}^\circ \end{array}$	5451. 32 5422. 66 5408. 13 5363. 54 5361. 12	$ \begin{array}{c} 150 \\ 2 \\ 100 \\ 60 \\ 10 \end{array} $	18339. 10 18436. 02 18485. 56 18639. 23 18647. 65	0 -2 -3	$5s^2\mathrm{P}_{11\!2}-6p^2\mathrm{D}_{21\!2}^2 \ 5s^2\mathrm{P}_{01\!2}-6p^2\mathrm{D}_{11\!2}^2 \ 5s^2\mathrm{P}_{11\!2}-6p^2\mathrm{P}_{11\!2}^2$
10010. 63 9990. 87 9923. 05 9915. 71 9900. 55	100 5 400 200 150	9986. 65 10006. 40 10074. 78 10082. 24 10097. 68	$\begin{array}{c} 0 \\ 0 \\ 0 \\ -1 \\ 0 \end{array}$	$\begin{array}{c} 5s' \ ^2\mathrm{D}_{1}\!\!^{1/2}\!\!-\!5p' \ ^2\mathrm{F}_{2}\!\!^{2/2} \\ 5s' \ ^2\mathrm{D}_{2}\!\!^{1/2}\!\!-\!5p' \ ^2\mathrm{F}_{2}\!\!^{2/2} \\ 5s \ ^4\mathrm{P}_{1}\!\!^{1/2}\!\!-\!5p \ ^4\mathrm{D}_{2}\!\!^{2/2} \\ 5s \ ^2\mathrm{P}_{1}\!\!^{1/2}\!\!-\!5p \ ^2\mathrm{P}_{1}\!\!^{2/2} \\ 5s \ ^4\mathrm{P}_{0}\!\!^{1/2}\!\!-\!5p \ ^4\mathrm{D}_{0}\!\!^{0/2} \end{array}$	5357. 42 5318. 76 5212. 14 5210. 23	$ \begin{array}{c} 1h \\ 5 \\ 5 \\ 20 \end{array} $	18660. 53 18796. 16 19180. 65 19187. 68	$-1 \\ +1 \\ 0 \\ 0$	$\begin{array}{c} 5s^2\mathrm{P}_{034} - 5p'^2\mathrm{P}_{034}^\circ \\ 5s^2\mathrm{P}_{032} - 5p'^2\mathrm{P}_{134}^\circ \\ 5s^4\mathrm{P}_{032} - 6p'^4\mathrm{P}_{032}^\circ \\ \end{array}$
9886. 05 9869. 5 9850. 4 9833. 76 9781. 32	100 2 1 300 30	10112. 49 10129. 5 10149. 1 10166. 26 10220. 77	0 +1	$5s' {}^{2}\mathrm{D}_{21/2} - 5p' {}^{2}\mathrm{F}_{31/2}^{\circ}$ $5s {}^{4}\mathrm{P}_{01/2} - 5p {}^{4}\mathrm{D}_{11/2}^{\circ}$	5203. 84 5196. 20 5141. 63 5130. 78 5121. 34 5105. 55	50 100 80 100 30 Cu?	19211. 24 19239. 49 19443. 68 19484. 80 19520. 72 19581. 09	$0 \\ 0 \\ +1 \\ -1 \\ 0$	$\begin{array}{c} 58^4\mathrm{P}_{112} - 5p'^2\mathrm{F}_{212}^2 \\ 58^4\mathrm{P}_{112} - 6p^4\mathrm{P}_{112}^3 \\ 58^4\mathrm{P}_{212} - 6p^4\mathrm{P}_{312}^3 \\ 58^2\mathrm{P}_{012} - 6p^4\mathrm{S}_{112}^3 \\ 58^4\mathrm{P}_{112} - 6p^4\mathrm{D}_{012}^3 \\ 58^4\mathrm{P}_{012} - 6p^4\mathrm{D}_{012}^3 \\ 58^4\mathrm{P}_{112} - 6p^2\mathrm{S}_{012}^3 \end{array}$
9772. 08 9721. 8 9714. 64 9690. 83 9654. 54	7 1 10 10 10	10230. 43 10283. 3 10290. 92 10316. 20 10354. 98	+2	$5s'$ $^{2}\mathrm{D}_{2\frac{1}{2}}-6p$ $^{4}\mathrm{D}_{2\frac{1}{2}}^{3}$	5103. 53 5099. 59 5083. 76 5068. 98 5043. 31	20 60 10 100 50	19588. 84 19603. 97 19665. 02 19722. 35 19822. 74	-1 0 0 0 -1	$5s {}^{4}\mathrm{P}_{21/2} - 6p {}^{4}\mathrm{P}_{21/2}^{2} - 6p {}^{2}\mathrm{P}_{01/2}^{2} - 6p {}^{2}\mathrm{P}_{01/2}^{0} - 6p {}^{2}\mathrm{P}_{01/2}^{0} - 6p {}^{4}\mathrm{S}_{11/2}^{0} - 6p {}^{4}\mathrm{D}_{11/2}^{0} - 6p {}^{4}\mathrm{D}_{11/2}^{0}$
9648. 06 9645. 8 9626. 70 9597. 95 9510. 9	20 3 400 300 3	10361. 94 10364. 4 10384. 93 10416. 04 10511. 4	$^{+1}_{0}_{-1}_{0}$	$\begin{array}{c} 5s'\ ^2\mathrm{D}_{134} - 6p\ ^2\mathrm{S}_{014}^{\circ} \\ 5s\ ^4\mathrm{P}_{234} - 5p\ ^4\mathrm{P}_{234}^{\circ} \\ 5s\ ^4\mathrm{P}_{134} - 5p\ ^4\mathrm{P}_{034}^{\circ} \\ 5s\ ^2\mathrm{P}_{034} - 5p\ ^4\mathrm{S}_{134}^{\circ} \end{array}$	4995. 83 4987. 02 4952. 56 4919. 49 4910. 23	$ \begin{array}{c} 6h \\ 10 \\ 2 \\ 10h \end{array} $	20011. 13 20046. 48 20185. 96 20321. 65 20359. 98	-1 0 0 +1	$\begin{array}{l} 58^{4}\mathrm{P}_{1}\!\!{}_{2}\!$
9300. 61 9267. 28 9165. 6 9134. 78 9120. 32	250 150 3 Cu? 50 10	10749. 04 10787. 70 10907. 4 10944. 17 10961. 52	$ \begin{cases} -1 \\ -1 \\ +11 \end{cases} $ $ \begin{array}{c} 0 \\ +1 \end{array} $	$\begin{array}{c} 58 ^{4}\mathrm{P}_{2} _{4} - 5p ^{4}\mathrm{S}_{1} _{4} \\ 58 ^{4}\mathrm{P}_{1} _{4} - 5p ^{4}\mathrm{P}_{1} _{4} \\ (58' ^{2}\mathrm{D}_{1} _{4} - 6p ^{2}\mathrm{D}_{1} _{2}) \end{array}$	4873. 78 4785. 27 4777. 02 4758. 28 4622. 82 4621. 27	2h $3h$ $1h$ $5h$ $6h$ $4h$	20512. 24 20891. 64 20927. 72 21010. 14 21625. 78 21633. 03	$^{-1}_{+1}_{0}$	$\begin{array}{c} 5s{}^{4}\mathrm{P}_{1}\!$
9027. 8 9008. 95 8993. 05 8980. 13 8935. 56	2 2 20 5 50	11073. 9 11097. 02 11116. 65 11132. 64 11188. 17	$\begin{array}{c} +1 \\ -1 \\ -3 \\ 0 \end{array}$	$\begin{array}{c} 5s'\ ^2\mathrm{D}_{11/2} - 5p'\ ^2\mathrm{P}_{11/2}^\circ \\ 5s'\ ^2\mathrm{D}_{21/2} - 5p'\ ^2\mathrm{P}_{11/2}^\circ \\ 5p\ ^4\mathrm{D}_{01/2}^\circ - 4d'\ ^2\mathrm{P}_{01/2}^\circ \\ 5s\ ^2\mathrm{P}_{01/2} - 5p\ ^2\mathrm{P}_{01/2}^\circ \end{array}$	4355, 39 4342, 05 4336, 15 4320, 12 4313, 16	10h 10h 5h 3h 4h	22953. 63 23024. 15 23055. 47 23141. 02 23178. 36		
8874. 8 8869. 66 8821. 73 8654. 14 8646. 03	2h 100 150 100 3	11264. 8 11271. 30 11332. 41 11551. 99 11562. 83	$ \begin{array}{c} -2 \\ 0 \\ -1 \\ 0 \end{array} $	$\begin{array}{c} 5p \ \mathrm{ID}_{1 \downarrow 2}^{\circ} - 4d' \ ^{2}\mathrm{P}_{1 \downarrow 4} \\ 5s \ \mathrm{^{4}P}_{2 \downarrow 4}^{\circ} - 5p \ ^{2}\mathrm{D}_{2 \downarrow 4}^{\circ} \\ 5s \ \mathrm{^{4}P}_{0 \downarrow 4}^{\circ} - 5p \ ^{4}\mathrm{P}_{0 \downarrow 4}^{\circ} \\ 5s \ \mathrm{^{2}P}_{0 \downarrow 4}^{\circ} - 5p \ ^{2}\mathrm{P}_{1 \downarrow 4}^{\circ} \end{array}$	4301. 56 3119. 60 3075. 32 3032. 85 2990. 99	5hl 50 20 40 20	23240. 87 32046. 1 32507. 5 32962. 7 33424. 0	$ \begin{array}{c} -2 \\ -2 \\ 0 \\ -1 \end{array} $	$\begin{array}{c} 4p^3 {}^2\mathrm{P}^{\circ}_{152} - 5s {}^4\mathrm{P}_{032} \\ 4p^3 {}^2\mathrm{P}^{\circ}_{152} - 5s {}^4\mathrm{P}_{032} \\ 4p^3 {}^2\mathrm{P}^{\circ}_{152} - 5s {}^4\mathrm{P}_{132} \\ 4p^3 {}^2\mathrm{P}^{\circ}_{152} - 5s {}^4\mathrm{P}_{132} \end{array}$
8564.71 8541.60 8455.1 8428.91 8354.84	100 50 8 100 10	11672.62 11704.20 11823.9 11860.66 11965.82	0 0 +1 0	$\begin{array}{c} 5s \ ^{4}\mathrm{P}_{1}\mathrm{y}_{2} - 5p \ ^{4}\mathrm{P}_{2}^{2}\mathrm{y}_{2} \\ 5s \ ^{4}\mathrm{P}_{0}\mathrm{y}_{2} - 5p \ ^{4}\mathrm{P}_{1}^{2}\mathrm{y}_{2} \end{array}$ $\begin{array}{c} 5s \ ^{4}\mathrm{P}_{0}\mathrm{y}_{2} - 5p \ ^{2}\mathrm{D}_{1}^{2}\mathrm{y}_{2} \\ 5s' \ ^{2}\mathrm{D}_{1}\mathrm{y}_{2} - 6p \ ^{2}\mathrm{P}_{0}^{2}\mathrm{y}_{2} \end{array}$	2918. 82 2898. 71 2860. 44 2780. 22 2745. 00	$\begin{array}{c} 2\\ 50r\\ 100r\\ 200r\\ 50r \end{array}$	34250. 4 34488. 0 34949. 4 35957. 8 36419. 1	$\begin{array}{c} 0 \\ -1 \\ -1 \\ 0 \\ -1 \end{array}$	$\begin{array}{c} 4p^3 {}^2P_{112}^\circ - 5s {}^4P_{212} \\ 4p^2 {}^2P_{112}^\circ - 5s {}^2P_{012} \\ 4p^3 {}^2P_{012}^\circ - 5s {}^2P_{012} \\ 4p^3 {}^2P_{112}^\circ - 5s {}^2P_{112} \\ 4p^3 {}^2P_{012}^\circ - 5s {}^2P_{112} \end{array}$
8305. 61 8242. 15 8055. 72 8042. 95 7960. 27	50 20 5h 8 30	12036. 75 12129. 43 12410. 13 12429. 83 12558. 94	$\begin{array}{c} 0 \\ 0 \\ +1 \\ 0 \\ -1 \end{array}$	$\begin{array}{c} 58^4\mathrm{P}_{11/2}\!-\!5p^4\mathrm{S}_{11/2}^{\circ} \\ 58'^2\mathrm{D}_{21/2}\!-\!6p^2\mathrm{D}_{21/2}^{\circ} \\ 58'^2\mathrm{D}_{11/2}\!-\!6p^2\mathrm{P}_{11/2}^{\circ} \\ 58'^2\mathrm{D}_{21/2}\!-\!6p^2\mathrm{P}_{11/2}^{\circ} \\ 58'^4\mathrm{P}_{11/2}\!-\!5p^2\mathrm{D}_{21/2}^{\circ} \end{array}$	2492. 91 2456. 53 2437. 23 2381. 18 2370. 77	$50 \\ 200r \\ 50 \\ 150r \\ 100r$	40101. 7 40695. 5 41017. 7 41983. 2 42167. 5	$ \begin{array}{c c} +4 \\ -1 \\ 0 \\ -1 \\ 0 \end{array} $	$\begin{array}{c} 4p^3 ^2\mathrm{D}_{132}^{\circ} - 5s ^4\mathrm{P}_{034} \\ 4p^3 ^2\mathrm{D}_{232}^{\circ} 5s ^4\mathrm{P}_{132} \\ 4p^3 ^2\mathrm{D}_{132}^{\circ} - 5s ^4\mathrm{P}_{132} \\ 4p^3 ^2\mathrm{D}_{232}^{\circ} - 5s ^4\mathrm{P}_{232} \\ 4p^3 ^2\mathrm{D}_{132}^{\circ} - 5s' ^2\mathrm{D}_{232} \end{array}$

Table 1. First spectrum of arsenic (As I)—Continued

$\overset{\lambda_{\text{air}}}{\Lambda}$	Intensity, character	Wave No. vac. cm ⁻¹	Obs.— Calc. Wave No. 1.0 cm ⁻¹	Term combination	λ vac.	Intensity, character	Wave No. vac. cm ⁻¹	Obs.— Calc. Wave No. 0.1 cm ⁻¹	Term combination
1	2	3	4	5	1	2	3	4	5
2369. 67 2363. 05 2349. 84 2344. 03 2288. 12	80r 10 $500R$ 50 $500R$	42187. 1 42305. 2 42543. 0 42648. 5 43690. 5	$ \begin{array}{r} -2 \\ -2 \\ -1 \\ -2 \\ -2 \end{array} $	$\begin{array}{c} 4p^3 \ ^2\mathrm{P}_{152}^{\circ} - 5s' \ ^2\mathrm{D}_{152} \\ 4p^3 \ ^2\mathrm{D}_{152}^{\circ} - 5s \ ^4\mathrm{P}_{252} \\ 4p^3 \ ^2\mathrm{D}_{152}^{\circ} - 5s \ ^2\mathrm{P}_{052} \\ 4p^3 \ ^2\mathrm{P}_{052}^{\circ} - 5s' \ ^2\mathrm{D}_{152} \\ 4p^3 \ ^2\mathrm{P}_{052}^{\circ} - 5s' \ ^2\mathrm{D}_{152} \\ 4p^3 \ ^2\mathrm{D}_{252}^{\circ} - 5s \ ^2\mathrm{P}_{152} \end{array}$	1844. 57 1844. 36 1840. 48 1831. 74 1831. 30	40 40 10 30 50	54213. 2 54219. 3 54333. 6 54592. 9 54606. 0	$ \begin{array}{c} -1 \\ +3 \\ +3 \\ 0 \\ +7 \end{array} $	$\begin{array}{c} 4p^3 \ ^2\mathrm{P}_{012}^{0} - 5s^{\prime\prime} \ ^2\mathrm{S}_{01} \\ 4p^3 \ ^2\mathrm{D}_{112}^{1} - 4p^4 \ ^2\mathrm{P}_{11}^{1} \\ 4p^3 \ ^2\mathrm{P}_{012}^{0} - 72519 \\ 4p^3 \ ^2\mathrm{P}_{012}^{0} - 72779 \\ 4p^3 \ ^4\mathrm{S}_{112}^{1} - 5s \ ^2\mathrm{P}_{112}^{1} \end{array}$
2271. 36 2266. 70 2228. 66 2205. 97 2205. 16	50 25 20 15 10	44012. 8 44103. 3 44856. 0 45317. 4 45334. 0	$ \begin{array}{c c} 0 \\ -3 \\ -1 \\ -1 \\ -2 \end{array} $	$\begin{array}{c} 4p^3 \ ^2\mathrm{D}^{\circ}_{13'_2} - 5s \ ^2\mathrm{P}_{13'_2} \\ 4p^3 \ ^2\mathrm{P}^{\circ}_{13'_2} - 4d \ ^4\mathrm{P}_{23'_2} \\ 4p^3 \ ^2\mathrm{P}^{\circ}_{13'_2} - 4d \ ^4\mathrm{P}_{13'_2} \\ 4p^3 \ ^2\mathrm{P}^{\circ}_{03'_2} - 4d \ ^4\mathrm{P}_{13'_2} \\ 4p^3 \ ^2\mathrm{P}^{\circ}_{13'_2} - 4d \ ^4\mathrm{P}_{03'_2} \end{array}$	1821. 32 1818. 59 1816. 72 1806. 15	2 5h 10 200	54905. 2 54987. 7 55044. 3 55366. 4	+3 +2 0	$4p^3 ^2\mathrm{D}_{1}^{\circ}_{1} - 4p^4 ^2\mathrm{P}_{0} + 4p^3 ^2\mathrm{P}_{1}^{\circ}_{2} - 73635 \\ 4p^3 ^4\mathrm{S}_{1}^{\circ}_{2} - 4p^4 ^4\mathrm{P}_{2} + 4p^4 ^4P$
2198. 34 2187. 75 2182. 94 2176. 26	5 5 20 5	45474. 6 45694. 7 45795. 5 45935. 9	$\begin{array}{c c} -2 \\ +1 \\ -2 \\ -1 \\ 0 \end{array}$	$\begin{array}{c} 4p^3 \cdot 1 \cdot 1_{12} - 4d \cdot 1 \cdot 0_{12} \\ 4p^3 \cdot 2P_{15}^2 - 4d \cdot 2P_{032} \\ 4p^3 \cdot 2P_{15}^2 - 4d \cdot 2P_{132} \\ 4p^3 \cdot 2P_{05}^2 - 4d \cdot 4P_{052} \\ 4p^3 \cdot 2P_{05}^2 - 4d \cdot 2P_{052} \\ 4p^3 \cdot 2P_{05}^2 - 4p^4 \cdot 2P_{152} \end{array}$	1803. 46 1801. 92 1799. 51 1798. 61 1791. 77	10h 3 2 9 40	55449. 0 55496. 4 55570. 7 55598. 5 55810. 7	+1 +1 +1 -1	$\begin{array}{c} 4p^3 {}^{2}\mathrm{P}_{012}^{3} - 73635 \\ 4p^3 {}^{2}\mathrm{P}_{112}^{3} - 74143 \\ 4p^3 {}^{2}\mathrm{D}_{212}^{2} - 4d {}^{2}\mathrm{P}_{112} \\ 4p^3 {}^{2}\mathrm{D}_{212}^{2} - 4d {}^{2}\mathrm{D}_{213} \end{array}$
2165. 52 2144. 08 2142. 80 2133. 80 2112. 99 2089. 74	150 100 2 50 100 6	46163. 8 46625. 3 46653. 2 46849. 9 47311. 3 47837. 6	$ \begin{array}{cccc} -2 \\ -1 \\ 0 \\ 0 \\ -1 \end{array} $	$\begin{array}{c} 4\hat{p}^3 ^2 P_{1/2}^{\circ} - 4p^4 ^2 P_{1/2}^{\circ} \\ 4p^3 ^2 P_{0/2}^{\circ} - 4p^4 ^2 P_{1/2}^{\circ} \\ 4p^3 ^2 P_{0/2}^{\circ} - 4p^4 ^2 P_{0/2}^{\circ} \\ 4p^3 ^2 P_{0/2}^{\circ} - 4p^4 ^2 P_{0/2}^{\circ} \\ 4p^3 ^2 P_{0/2}^{\circ} - 4p^4 ^2 P_{0/2}^{\circ} \\ 4p^3 ^2 P_{1/2}^{\circ} - 4d ^2 P_{1/2}^{\circ} \end{array}$	1789. 85 1789. 14 1787. 07 1785. 84 1781. 48	50 15 6 3 50	55870. 6 55892. 8 55957. 5 55996. 1 56133. 1	$ \begin{array}{c} 0 \\ +1 \\ -2 \\ +3 \\ +2 \end{array} $	$\begin{array}{c} 4p^3 \ ^2\mathrm{D}_{24}^2 - 4d \ ^2\mathrm{F}_{342} \\ 4p^3 \ ^2\mathrm{D}_{13}^2 - 4d \ ^2\mathrm{P}_{132} \\ 4p^3 \ ^2\mathrm{P}_{02}^3 - 74143 \\ 4p^3 \ ^2\mathrm{D}_{132}^3 - 4p^4 \ ^2\mathrm{S}_{034} \\ 4p^3 \ ^2\mathrm{D}_{132}^3 - 4d \ ^2\mathrm{D}_{234} \end{array}$
2085. 25 2079. 30 2069. 78 2067. 11 2065. 36	30 7 30 20 50	47940. 6 48077. 7 48298. 8 48361. 2 48402. 2	$ \begin{array}{c} -1 \\ -2 \\ -2 \\ -3 \\ 0 \\ 0 \end{array} $	$\begin{array}{c} 4p^3 \cdot 2\Gamma_{1/2} - 4a \cdot 4\Gamma_{1/2} \\ 4p^3 \cdot 2P_{1/2}^2 - 4p^4 \cdot 2S_{0/2} \\ 4p^3 \cdot 2P_{1/2}^2 - 4d \cdot 2D_{2/2} \\ 4p^3 \cdot 2P_{0/2}^2 - 4d \cdot 2P_{1/2} \\ 4p^3 \cdot 2P_{0/2}^2 - 4P^4 \cdot 2S_{0/2} \\ 4p^3 \cdot 2P_{0/2}^2 - 4p^4 \cdot 2S_{0/2} \end{array}$	1780. 52 1775. 12 1772. 54 1771. 84 1768. 97	50 2 8 2 5	56163. 4 56334. 2 56416. 2 56438. 5 56530. 1	$^{+4}$ 0 0 $^{+12}$	$\begin{array}{c} 4p^3 \ ^2\mathrm{P}_{112}^{\circ} - 4d^{\prime\prime\prime2}\mathrm{D}_{13} \\ 4p^3 \ ^2\mathrm{D}_{112}^{\circ} - 6s \ ^4\mathrm{P}_{012} \\ 4p^3 \ ^2\mathrm{P}_{112}^{\circ} - 75086 \\ 4p^3 \ ^2\mathrm{P}_{122}^{\circ} - 75176? \end{array}$
2061. 61 2047. 57 2028. 86 2024. 34 2013. 32	3 50 2 5 100	48490. 2 48822. 6 49272. 8 49382. 8 49653. 1	0 +1 0	$4p^3 ^2\mathrm{P}_{0}^3 _4 - 6s ^4\mathrm{P}_{0} _{1} _{2} \\ 4p^3 ^2\mathrm{P}_{1}^3 _2 - 6s ^4\mathrm{P}_{1} _{2} \\ 4p^3 ^2\mathrm{P}_{1}^3 _2 - 4p^4 ^2\mathrm{D}_{1} _{2} _{2}$	1767. 97 1758. 60 1757. 47 1756. 51 1754. 21	6e,h? 100 4 2h 10	56562. 0 56863. 6 56900. 0 56931. 1 57005. 7	$\begin{array}{c} 0 \\ +1 \\ -1 \\ +1 \end{array}$	$\begin{array}{c} 4p^3 \ ^4\mathrm{S}^\circ_{1} \cancel{1}_2 - 4p^4 \ ^4\mathrm{P}_{1} \cancel{1}_3 \\ 4p^3 \ ^2\mathrm{P}^\circ_{0} \cancel{1}_2 - 75086 \\ 4p^3 \ ^2\mathrm{P}^\circ_{1} \cancel{1}_2 - 75578 \\ 4p^3 \ ^2\mathrm{D}^\circ_{2} \cancel{1}_2 - 68 \ ^4\mathrm{P}_{1} \cancel{1}_2 \end{array}$
2012. 76 2010. 04 2009. 19 2003. 34 2002. 54	15 20 100r 300r 20	49666. 9 49734. 0 49755. 1 49900. 4 49920. 3	$ \begin{array}{c} -1 \\ -1 \\ -1 \\ 0 \\ +1 \end{array} $	$\begin{array}{c} 4p^3 \ ^2\mathrm{P}^3_{12} - 6s \ ^2\mathrm{P}_{032} \\ 4p^3 \ ^2\mathrm{P}^3_{04} - 6s \ ^4\mathrm{P}_{14} \\ 4p^3 \ ^2\mathrm{P}^3_{14} - 4p^4 \ ^2\mathrm{P}_{232} \\ 4p^2 \ ^2\mathrm{P}^3_{24} - 5s' \ ^2\mathrm{D}_{232} \\ 4p^3 \ ^2\mathrm{D}^3_{232} - 5s' \ ^2\mathrm{D}_{142} \end{array}$	1750. 37 1749. 72 1745. 60 1742. 59 1741. 28	$\begin{array}{c} 2 \\ 1e,h \\ 1 \\ 10 \\ 10 \end{array}$	57130. 8 57152. 0 57286. 9 57385. 8 57429. 0	+1 -2 +3	$4p^{3} {}^{2}\mathrm{P}_{1/2}^{\circ} - 75799$ $4p^{3} {}^{2}\mathrm{D}_{2/2}^{\circ} - 4p^{4} {}^{2}\mathrm{D}_{1/2}$ $4p^{3} {}^{2}\mathrm{P}_{1/2}^{\circ} - 76076$
vac. 1995. 43 1994. 89 1991. 13 1990. 35 1973. 65	100r 20 100r 200r 3	50114. 5 50128. 3 50222. 7 50242. 4 50667. 5	$ \begin{array}{c} 0 \\ -1 \\ +2 \\ +1 \\ +2 \end{array} $	$\begin{array}{c} 4p^3 \ ^2\mathrm{P}_{0/2}^{9} - 4p^4 \ ^2\mathrm{D}_{1/2}^{1/2} \\ 4p^3 \ ^2\mathrm{P}_{0/2}^{9} - 6s \ ^2\mathrm{P}_{0/2}^{1/2} \\ 4p^3 \ ^2\mathrm{D}_{1/2}^{1/2} - 5s' \ ^2\mathrm{D}_{2/2}^{1/2} \\ 4p^3 \ ^2\mathrm{D}_{1/2}^{9} - 4s^4 \ ^2\mathrm{D}_{1/2}^{1/2} \\ 4p^3 \ ^2\mathrm{P}_{1/2}^{9} - 6s \ ^4\mathrm{P}_{2/2}^{2/2} \end{array}$	1740. 93 1739. 49 1735. 70 1732. 86 1732. 44	3 60 3 30 30	57440. 6 57488. 1 57613. 6 57708. 1 57722. 1	$\left\{\begin{array}{c} 0 \\ 0 \\ +3 \\ 0 \\ +1 \end{array}\right.$	$rac{4p^3 \cdot 2D_{5/2}^2 - 4p^4 \cdot ^2D_2}{4p^3 \cdot 4S_{5/2}^2 - 4p^4 \cdot 4P_{0/2}} \ rac{4p^3 \cdot 2P_{0/2}^2 - 75799}{4p^3 \cdot 2D_{5/2}^2 - 4p^4 \cdot ^2D_{1/2}} \ rac{4p^3 \cdot 2D_{1/2}^2 - 6s \cdot ^2P_{0/2}}{4p^3 \cdot 2D_{1/2}^2 - 6s \cdot ^2P_{0/2}}$
1972. 62 1960. 89 1958. 91 1958. 82 1950. 38	1000 <i>R</i> 2 40 <i>r</i> 20 2	50694. 0 50997. 2 51048. 8 51051. 1 51272. 1	$\begin{array}{c} +2 \\ -1 \\ +1 \\ +3 \end{array}$	$\begin{array}{c} 4p^3 \ ^4\mathrm{S}_{114}^{\circ} - 5s \ ^4\mathrm{P}_{014} \\ 4p^3 \ ^2\mathrm{P}_{114}^{\circ} - 69644 \\ 4p^3 \ ^2\mathrm{P}_{114}^{\circ} - 68 \ ^2\mathrm{P}_{114} \\ 4p^3 \ ^2\mathrm{P}_{114}^{\circ} - 69698 \end{array}$	1729. 80 1727. 38 1724. 77 1722. 37 1718. 55	$\begin{array}{c} 30 \\ 4 \\ 7 \\ 4e \\ 1 \end{array}$	57810. 2 57891. 1 57978. 7 58059. 5 58188. 6	$^{0}_{+10}$ $^{+5}$	$4p^{3} {}^{2}\mathrm{D}_{1/2}^{9} - 4p^{4} {}^{2}\mathrm{D}_{2}$ $4p^{3} {}^{2}\mathrm{P}_{0/2}^{9} - 76076?$ $4p^{3} {}^{2}\mathrm{P}_{1/2}^{9} - 76835$
1943. 30 1941. 36 1937. 59 1929. 14 1928. 30	$\begin{array}{c} 2e \\ 5 \\ 1500R \\ 3 \\ 1 \end{array}$	51458. 9 51510. 3 51610. 4 51836. 6 51859. 2	+2 +2 +2 +1	$\begin{array}{c} 4p^3 \ ^2\mathrm{P}_{0/4}^{6} - 69644 \\ 4p^3 \ ^2\mathrm{P}_{0/4}^{6} - 6s \ ^2\mathrm{P}_{1/2} \\ 4p^3 \ ^4\mathrm{S}_{1/2}^{7} - 5s \ ^4\mathrm{P}_{1/2} \\ 4p^3 \ ^2\mathrm{D}_{2/2}^{5} - 4d \ ^4\mathrm{P}_{2/2} \end{array}$	1712. 32 1710. 16 1709. 26 1709. 03 1705. 74	$ \begin{array}{c} 10 \\ 7h \\ 2h \\ 2 \\ 4 \end{array} $	58400. 3 58474. 1 58504. 8 58512. 7 58625. 6	$^{+1}_{-1}$	$4p^3 ^2\mathrm{D}_{^2^1\!2}^2 - 68 ^4\mathrm{P}_{^2^1\!2}^2 + 77121$ $4p^3 ^2\mathrm{P}_{^1^1\!2}^2 - 77272$
1919. 72 1918. 39 1917. 21 1908. 13 1902. 31	1 3 20 1 6	52090. 9 52127. 0 52159. 1 52407. 3 52567. 7	+5 -4	$4p^3~^2\mathrm{D}^{\circ}_{112}\!-\!4d~^4\mathrm{P}_{212}\ 4p^3~^2\mathrm{P}^{\circ}_{112}\!-\!71055$	1702. 94 1701. 22 1701. 16 1691. 87 1687. 12	$\begin{array}{c} 3 \\ 30 \\ 15 \\ 7 \\ 3e \end{array}$	58722. 0 58781. 3 58783. 4 59106. 2 59272. 6	$ \begin{array}{r} -3 \\ -3 \\ -3 \\ +4 \end{array} $	$\begin{array}{c} 4p^3 \ ^2\mathrm{D}_{112}^{\circ} - 6s \ ^4\mathrm{P}_{234} \\ 4p^3 \ ^2\mathrm{D}_{232}^{\circ} - 6s \ ^2\mathrm{P}_{132} \\ 4p^3 \ ^2\mathrm{D}_{232}^{\circ} - 69698 \\ 4p^3 \ ^2\mathrm{D}_{132}^{\circ} - 69698 \end{array}$
1901. 54 1891. 47 1890. 42 1889. 95 1881. 96	5 5 2000 R 5 40	52589. 0 52868. 9 52898. 2 52911. 4 53136. 1	$ \begin{array}{c} 0 \\ -2 \\ +3 \\ +3 \\ +5 \end{array} $	$4p^3 \ ^2\mathrm{D}_{5/4}^2 - 4d \ ^4\mathrm{P}_{1/2} \ 4p^3 \ ^2\mathrm{P}_{5/4}^3 - 71055 \ 4p^3 \ ^4\mathrm{S}_{1/2} - 5s \ ^4\mathrm{P}_{2/2} \ 4p^3 \ ^2\mathrm{D}_{1/2}^3 - 4d \ ^4\mathrm{P}_{1/2} \ 4p^3 \ ^4\mathrm{S}_{1/2}^3 - 5s \ ^2\mathrm{P}_{0/2}$	1684. 63 1681. 47 1679. 14 1674. 59 1671. 88	$egin{array}{c} 2e \ 1 \ 2 \ 3 \ 2 \ \end{array}$	59360. 2 59471. 8 59554. 3 59716. 1 59812. 9		
1876. 98 1873. 02 1871. 68 1871. 14 1869. 94	2 40 30 2 15	53277. 1 53389. 6 53427. 9 53443. 4 53477. 6	+2 +4 +1 +1	$\begin{array}{c} 4p^{3} ^{2}P_{1}^{\circ}_{1} - 4d' ^{2}P_{0},_{2} \\ 4p^{3} ^{2}D_{1}^{\circ}_{1} - 4d ^{4}P_{0},_{2} \\ 4p^{3} ^{2}D_{2},_{2} - 4d ^{2}D_{1},_{2} \end{array}$ $4p^{3} ^{2}P_{1}^{\circ}_{2} - 4d' ^{2}P_{1},_{2} \end{array}$	1670. 79 1670. 12 1662. 76 1653. 92 1649. 55	$\frac{4}{2}$ $\frac{2}{2}$ $\frac{4}{2}$	59851. 9 59875. 9 60141. 0 60462. 4 60622. 6	$^{+4}_{-3}$	$4p^3 {}^2\mathring{\mathrm{D}}{}^{3}_{1/2} - 71055 \ 4p^3 {}^2\mathrm{D}{}^{3}_{1/2} - 71055$
1865. 10 1860. 87 1860. 46 1860. 40 1856. 24	8 5 80 80 2	53616. 6 53738. 3 53750. 1 53751. 9 53872. 3	$\begin{pmatrix} 0 \\ +2 \\ 0 \\ +4 \end{pmatrix}$	$\begin{array}{c} 4p^3 ^2\mathrm{P}_{0\frac{1}{2}}^{0} - 4d' ^2\mathrm{P}_{0\frac{1}{2}} \\ 4p^3 ^2\mathrm{D}_{1\frac{1}{2}}^{0} - 4d ^2\mathrm{D}_{1\frac{1}{2}} \\ 4p^3 ^2\mathrm{P}_{1\frac{1}{2}}^{\circ} - 5s'' ^2\mathrm{S}_{0\frac{1}{2}} \\ 4p^3 ^2\mathrm{P}_{1\frac{1}{2}}^{\circ} - 72519 \end{array}$	1644. 33 1643. 79 1633. 71 1630. 48 1625. 17	5 2 5 4 1	60815. 0 60835. 0 61210. 4 61331. 6 61532. 0	$\begin{array}{c} 0 \\ +2 \\ 0 \\ -3 \\ -5 \end{array}$	$\begin{array}{c} 4 \mathcal{D}^3 \ ^4 S_{112}^3 - 5 S' \ ^2 D_{23} \\ 4 \mathcal{D}^3 \ ^4 S_{112}^3 - 5 S' \ ^2 D_{13} \\ 4 \mathcal{D}^3 \ ^2 D_{212}^3 - 4 d' \ ^2 P_{13} \\ 4 \mathcal{D}^3 \ ^2 D_{112}^3 - 4 d' \ ^2 P_{13} \\ 4 \mathcal{D}^3 \ ^2 D_{112}^3 - 4 d' \ ^2 P_{13} \end{array}$
1855, 39 1853, 95 1853, 21 1850, 24 1847, 32	10 3 20 40 10	53897. 0 53938. 9 53960. 4 54047. 0 54132. 5	$\begin{array}{c} +1 \\ 0 \\ 10 \\ +0 \end{array}$	$\begin{array}{c} 4p^3 \ ^2\mathrm{D}_{^3/^2}^2 - 4p^4 \ ^2\mathrm{P}_{^{1/2}} \\ 4p^3 \ ^2\mathrm{P}_{^{3/2}}^2 - 4d' \ ^2\mathrm{P}_{^{1/2}} \end{array}$ $\begin{array}{c} 4p^3 \ ^2\mathrm{D}_{^{1/2}} - 4d' \ ^2\mathrm{P}_{^{2/2}} \\ 4p^3 \ ^2\mathrm{D}_{^{1/2}} - 4d \ ^2\mathrm{F}_{^{2/2}} \\ 4p^3 \ ^2\mathrm{P}_{^{1/2}}^2 - 72779 \end{array}$	1623. 26 1620. 94 1616. 44 1614. 82 1612. 57	$\begin{array}{c} 2 \\ 5 \\ 6 \\ 5 \\ 4 \end{array}$	61604. 4 61692. 6 61864. 5 61926. 5 62012. 8	$-4 \\ +1 \\ -4$	$4p^{3} {}^{2}\mathrm{D}^{\circ}_{21/2} - 72519$ $4p^{3} {}^{2}\mathrm{D}^{\circ}_{21/2} - 72779$ $4p^{3} {}^{2}\mathrm{D}^{\circ}_{11/2} - 72519$

Table 1. First spectrum of arsenic (As I)—Continued

A vac	Intensity, character	Wave No. vac. em ⁻¹	Obs.— Calc. Wave No. 0.1 cm ⁻¹	Term combination	λ _{vac} Α	Intensity, character	Wave No. vac. cm ⁻¹	Obs.— Calc. Wave No. 0.1 cm ⁻¹	Term combination
1	2	3	4	5	1	2	3	4	5
1608. 07 1597. 48 1596. 13 1594. 39 1593. 60	3 2 2 1e 100R	62186. 3 62598. 6 62651. 5 62719. 9 62751. 0	$ \begin{array}{r} -2 \\ +1 \\ -5 \\ -1 \end{array} $	$4p^3 ^2\mathrm{D}_{15}^9 - 72779$ $4p^3 ^2\mathrm{D}_{25}^9 - 73566$ $4p^3 ^2\mathrm{D}_{254}^9 - 73635$ $4p^3 ^4\mathrm{S}_{152}^9 - 4d ^4\mathrm{P}_{252}$	1516. 97 1515. 48 1510. 70 1510. 41 1509. 70	1e 20h 6h 6h 3	65920. 9 65985. 7 66194. 5 66207. 2 66238. 3	-1 +1	$4p^3 {}^{2}\mathrm{D}^{3}_{2/2} - 76835$ $4p^3 {}^{2}\mathrm{D}^{3}_{2/2} - 77121$
1587. 97 1583. 90 1575. 87 1574. 72 1573. 85	20 2 20 30r 60	62973. 5 63135. 3 63457. 0 63503. 4 63538. 5	$\begin{array}{c} 0 \\ +2 \\ -2 \\ -2 \\ 0 \end{array}$	$\begin{array}{c} 4p^3 ^2\mathrm{D}_{124}^{\bullet} - 73566 \\ 4\nu^3 ^2\mathrm{D}_{214}^{\bullet} - 74049 \\ 4p^3 ^2\mathrm{D}_{134}^{\bullet} - 74049 \\ 4p^3 ^4\mathrm{S}_{134}^{\circ} - 4d ^4\mathrm{P}_{112} \\ 4p^3 ^2\mathrm{D}_{214}^{\circ} - 4d' ^2\mathrm{D}_{214} \end{array}$	1509. 60 1506. 99 1504. 09 1503. 47 1492. 81	3 2 2 1e,h 1e	66242. 7 66357. 4 66485. 4 66512. 8 66987. 8	$ \begin{array}{c} -4 \\ -5 \\ +2 \end{array} $	$4p^3 {}^2\mathrm{D}_{156}^\circ - 76835 4p^3 {}^2\mathrm{D}_{256}^\circ - 77272 4p^3 {}^4\mathrm{S}_{156}^\circ - 4d {}^2\mathrm{P}_{156}$
1572. 19 1566. 39 1565. 05 1562. 95 1559. 53	1 <i>e</i> , <i>h</i> 15 7 10 4	63605. 5 63841. 1 63895. 7 63981. 6 64121. 9	$ \begin{array}{r} -2 \\ -1 \\ -1 \end{array} $	$4p^3 ^2\mathrm{D}^2_{234} - 4d^{\prime\prime} ^2\mathrm{D}_{134} \ 4p^3 ^4\mathrm{S}^3_{134} - 4d ^4\mathrm{P}_{034} \ 4p^3 ^4\mathrm{S}^3_{134} - 4d ^2\mathrm{P}_{034}$	1492. 34 1484. 36 1472. 32 1470. 09 1468. 42	$\begin{array}{c} 4\\5h\\4\\3e\\2e\end{array}$	67008. 9 67369. 1 67920. 0 68023. 0 68100. 4	+2 -2	$4p^3$ ${}^4S_{14}^{\circ}-6s$ ${}^4P_{04}$ $4p^3$ ${}^4S_{14}^{\circ}-6s$ ${}^4P_{14}$
1559. 48 1558. 28 1557. 20 1556. 14 1554. 19	4d+Cu? 30 40 4	64124. 1 64173. 3 64217. 8 64261. 6 64342. 2	$ \begin{array}{r} -2 \\ -2 \\ -2 \end{array} $	$\begin{array}{c} 4p^3 ^2\mathrm{D}_{^1 ^1 ^4}^{\circ} - 4d'' ^2\mathrm{D}_{^1 ^1 ^2}\\ 4p^3 ^2\mathrm{D}_{^2 ^1 ^4}^{\circ} - 75176\\ 4p^3 ^4\mathrm{S}_{^1 ^1 ^2}^{\circ} - 4d ^2\mathrm{D}_{^1 ^1 ^2} \end{array}$	1464. 10 1461. 92 1442. 69 1434. 77 1434. 66	2e 3e,g? 5 3e 1e,h	68301. 1 68403. 0 69315. 0 69697. 6 69702. 9	$^{+5}_{+3}_{+2}_{-7}$	$\begin{array}{c} 4p^3 \ ^4\mathrm{S}_{112}^6 - 4p^4 \ ^2\mathrm{D}_{1} \\ 4p^3 \ ^4\mathrm{S}_{112}^6 - 4p^4 \ ^2\mathrm{D}_{2} \\ 4p^3 \ ^4\mathrm{S}_{112}^6 - 68 \ ^4\mathrm{P}_{212} \\ 4p^3 \ ^4\mathrm{S}_{112}^6 - 69698 \end{array}$
1547. 59 1546. 45 1542. 94 1538. 79 1534. 65	3 2 4 20 4	64616. 6 64664. 2 64811. 3 64986. 1 65161. 4	$^{+1}_{-2}_{-1}_{-2}$	$\begin{array}{c} 4p^{3} ^{2}\mathrm{D}_{^{2}34}^{2} - 75578 \\ 4p^{3} ^{4}\mathrm{S}_{^{1}34}^{2} - 4p^{4} ^{2}\mathrm{P}_{^{1}34} \\ 4p^{3} ^{2}\mathrm{D}_{^{1}34}^{2} - 75578 \\ 4p^{3} ^{2}\mathrm{D}_{^{2}34}^{2} - 76076 \end{array}$	1422. 95 1412. 95 1407. 34	2e,h 2e,h 2e	70276. 5 70773. 9 71056. 0		
1533. 67 1533. 60 1526. 78 1521. 81 1518. 10	$egin{array}{c} 3 \\ 3 \\ 2 \\ 1e \\ 1e \end{array}$	65203. 1 65206. 0 65497. 3 65711. 2 65871. 8	$-9 \\ -1$	$\begin{array}{c} 4p^{3} ^{2}\mathrm{D}_{112}^{\circ} - 75799? \\ 4p^{3} ^{4}\mathrm{S}_{112}^{\circ} - 4p^{4} ^{2}\mathrm{P}_{012} \end{array}$					

III. Analysis of the First Spectrum of Arsenic

The above-described efforts to obtain a better description of the Ası spectrum were made primarily for the purpose of establishing atomic energy levels characteristic of neutral arsenic atoms and to determine the spectroscopic ionization potential.

1. Observed As I Lines

The first two columns of table 1 contain the observational material upon which a new analysis is based, but as atomic energy levels are directly proportional to frequencies or wave numbers, the wavelengths in column 1 were converted to vacuum wave numbers in column 3. Wave lengths shorter than 2000 A, being vacuum values, were converted to vacuum wave numbers by calculating the reciprocals [14] of the observed wavelengths. Vacuum wave numbers for lines between 2000 and 10000 A were taken directly from Kayser's Table of Wave Numbers [15], but for lines of greater wavelength the values were obtained by computing the reciprocals of the wavelengths after correcting them to vacuum with the aid of the atmospheric dispersion formula of Meggers and Peters [16].

The first regularities among arsenic lines were discovered in 1894 by Kayser and Runge [17], who found 20 ultraviolet lines to be connected by wavenumber differences of 461 and 8058. Thirty years later, another significant wavenumber difference was found by Ruark, et al. [3], and in 1927 McLennan

and McLay [18] interpreted these constant differences as intervals between five low-energy odd levels, namely ${}^4S_{1/2}^{\circ}$, ${}^2D_{1/2}^{\circ}$, ${}^2D_{2/2}^{\circ}$, ${}^2P_{0/2}^{\circ}$, ${}^2P_{1/2}^{\circ}$, arising from the electron configuration $4s^24p^3$. Naturally, the separations of these five levels were exploited in each subsequent attempt to extend the analysis of the As I spectrum; they have accounted for most of the observed ultraviolet lines and coincidentally disclosed a considerable number of high-energy even levels, the lowest of which are important for the classification of visible and infrared lines, thus revealing other high-energy odd levels. In the present instance, the separations of the five lowest odd levels $(0.0, 10592.5, 10914.6, 18186.1, 18647.5 \text{ cm}^{-1}), \text{ when}$ applied to the wave numbers of ultraviolet As I lines, yielded about 50 even levels (50693.8 to 77272.5 cm⁻¹), and the separations of seven lowest even levels $(50693.8, 51610.2, 52897.9, 53135.6, 54605.3, 60815.0, 60834.8 \text{ cm}^{-1})$, when applied to the wave numbers of visible and infrared lines, led to some 25 high-energy odd levels (60791.5 to 73244.8 cm⁻¹). It is seen that the latter set of odd levels is completely interlaced and surrounded by the even levels with which they combine. Consequently, only fringe combinations of these odd and even levels have been observed, and a considerable number of permitted combinations must exist in the unexplored infrared.

The inner quantum number (J-value) assigned to each level was originally based on the assumption that the first five odd levels have J-values $1\frac{1}{2}$, $1\frac{1}{2}$, $2\frac{1}{2}$, $0\frac{1}{2}$, $1\frac{1}{2}$, respectively. These and the values for four even levels were verified in 1934 by

Zeeman patterns observed by Green and Barrows [8]. Because all As I levels of unlike parity are permitted to combine if their J-values differ by 0 or by ± 1 , the J-values of new levels are usually fixed unambiguously by the observed combinations, but there are still a few high levels whose J-values

are uncertain by one unit.

After establishing a large number of atomic energy levels, mostly with definite J-values, the next ambition was to group and interpret these as spectral terms characteristic of various configurations of the valence electrons. Aside from eight levels identified by Zeeman effect, the remainder could be grouped and named only by applying interval and intensity rules and by comparison with analogous spectra of other elements, in particular with the N I [19], P I [19], and Se II [20] spectra, which were not well known 20 years ago. This procedure consumed all the established As I levels except a few very high ones, which are retained as "miscellaneous levels" because they may represent fragments of terms approaching the ionization limit. At this stage it was possible to discard some false levels involving

doubly classified lines, and also to add some levels resting on a single combination, as for example those with J-value 3½. For fixing the latter, strong lines, otherwise unclassified, were usually found in their expected places.

2. As I Multiplets

As a check on the consistency and plausibility of spectral term designations, the square arrays of consecutive level combinations were rewritten to display As1 multiplets and electron configurations so that level separations and line intensities could be easily seen. These combinations, grouped into multiplets, are presented in table 2 (ultraviolet) and table 3 (infrared and visible). All of the observed combinations are included in these tables except three that account for five lines due to transitions from 5p ⁴D° to higher levels. From tables 2 and 3 stem the "Term combination" entered in column 5 of table 1 for each classified As I line, and also the difference between observed and calculated wave number shown in column 4 of table 1.

Table 2. As I combination of odd and even terms

Desig.	Desig. Level	$4p^3 {}^4\mathrm{S}^{\circ}_{1}$	$^{4p^3}_{10914.6}^{2\mathrm{D}^2_{2\mathrm{1/2}}}$	$4p^3 {}^2\mathrm{D}_{1}^{\circ}_{1}$	$4p^3\ ^2\mathrm{P}_{112}^{\circ}$ 18647. 5	4p³ ²P°0½ 18186.1
1p4 4P2½ 1p4 4P1¼ 1p4 4P0½	55366. 4 56863. 6 57488. 1	55366. 4 (200) 56863. 6 (100) *57488. 1 (60)				
$p^{4} {}^{2}D_{2}$ $p^{4} {}^{2}D_{1}$	68402. 7 68300. 6	68403. 0 (3eg?) 68301. 1 (2e)	*57488. 1 (60) 57385. 8 (10)	57810. 2 (30) 57708. 1 (30)	$\begin{array}{c} 49755.\ 1\ (100r) \\ 49653.\ 1\ (100) \end{array}$	50114. 5 (100r)
4p4 2P11/2 4p4 2P01/2	61811. 5 65497. 4	64811. 3 (4) 65497. 3 (2)	53897. 0 (10)	54219. 3 (40) 54905. 2 (2)	46163. 8 (150) 46849. 9 (50)	46625. 3 (100) 47311. 3 (100)
p4 2S _{0½}	66588. 3			55996.1 (3)	47940. 6 (30)	48402. 2 (50)
58 ⁴ P ₂ / ₄ 58 ⁴ P ₁ / ₄ 58 ⁴ P ₀ / ₄	52897. 9 51610. 2 50693. 8	52898. 2 (2000 <i>R</i>) 51610. 4 (1500 <i>R</i>) 50694. 0 (1000 <i>R</i>)	41983. 2 (150r) 40695. 5 (200r)	42305. 2 (10) 41017. 7 (50) 40101. 7 (50)	34250. 4 (2) 32962. 7 (40) 32046. 1 (50)	33424. 0 (20) 32507. 5 (20)
58 ² P ₁ ½ 58 ² P ₀ ½	54605. 3 53135. 6	54606. 0 (50) 53136. 1 (40)	$43690.\ 5\ (500R)$	44012.8 (50) 42543.0 (500 <i>R</i>)	35957. 8 (200 <i>r</i>) 34488. 0 (50 <i>r</i>)	36419.1 (50r) 34949.4 (100r)
$\frac{1}{108}$ $\frac{1}{2}$ $\frac{1}{108}$ $\frac{1}{2}$ $\frac{1}{108}$ $\frac{1}{108}$ $\frac{1}{108}$ $\frac{1}{108}$ $\frac{1}{108}$ $\frac{1}{108}$ $\frac{1}{108}$	60815. 0 60834. 8	60815. 0 (5) 60835. 0 (2)	49900. 4 (300 <i>r</i>) 49920. 3 (20)	50222.7 (100r) 50242.4 (200r)	42167. 5 (100r) 42187. 1 (80r)	42648. 5 (50)
58" 2S014	72399. 4				53751.9 (80)	54213. 2 (40)
58 ⁴ P ₂ , 68 ⁴ P ₁ , 68 ⁴ P ₀ , 68	69314. 8 67920. 2 67008. 7	69315. 0 (5) 67920. 0 (4) 67008. 9 (4)	58400. 3 (10) 57005. 7 (10)	58722. 0 (3) 56416. 2 (8)	50667. 5 (3) 49272. 8 (2) 48361. 2 (20)	49734. 0 (20) 48822. 6 (50)
68 ² P ₁ ½ 68 ² P ₀ ½	69696. 2 68314. 5		58781. 3 (30)	57722.1 (30)	51048. 8 (40 <i>r</i>) 49666. 9 (15)	51510.3 (5) 50128.3 (20)
4d ⁴ P _{2½} 4d ⁴ P _{1½} 4d ⁴ P _{0½}	62751. 1 63503. 6 63981. 7	62751. 0 (100 <i>R</i>) 63503. 4 (30 <i>r</i>) 63981. 6 (10)	51836. 6 (3) 52589. 0 (5)	52159.1 (20) 52911.4 (5) 53389.6 (40)	44103. 3 (25) 44856. 0 (20) 45334. 0 (10)	45317. 4 (15) 45795. 5 (20)
1d ² F _{3½} 1d ² F _{2½}	66785. 2 64639. 5		55870. 6 (50)	54047. 0 (40)		
ld ² D ₂ 1/ ₂ ld ² D ₁ 1/ ₂	66725. 4 64342. 4	64342. 2 (4)	55810. 7 (40) 53427. 9 (30)	56133. 1 (50) 53750. 1 (80)	48077.7 (7) 45694.7 (5)	
d ² P ₁ / ₄ d ² P ₀ / ₄	66485. 2 64122. 0	66485. 4 (2) 64121. 9 (4)	55570.7 (2)	55892.8 (15)	47837. 6 (6) 45474. 6 (5)	48298. 8 (30) 45935. 9 (5)
d' ² P _{1½} d' ² P _{0½}	72125. 0 71924. 4		61210. 4 (5)	61532. 0 (1) 61331. 6 (4)	53477. 6 (15) 53277. 1 (2)	53938. 9 (3) 53738. 3 (5)
d'' 2D2½ d'' 2D1½	74453. 1 74810. 5		63538. 5 (60) 63895. 7 (7)	64217. 8 (30)	56163. 4 (50)	

Table 2. As I combination of odd and even terms—Continued

Desig.	Desig. Level	$\frac{4p^3}{0.0}$	$4p^3 \ ^2\mathrm{D}^2_{21/2}$ 10914.6	$4p^3\ ^2\mathrm{D}_{11/2}^{\circ}$ 10592. 5	$4p^3 {}^2\mathrm{P}_{14}^{\circ}$ 18647. 5	$4p^3 {}^2\mathrm{P}_{01/2}^{\circ}$ 18186. 1
	69644. 8	.5771.355			50997. 2 (2)	51458. 9 (2e)
	69698.3	69697. 6 (3e)	58783.4 (15)	59106. 2 (7)	51051.1 (20)	
	71055. 2		60141.0 (2)	60462. 4 (4)	52407.3 (1)	52868. 9 (5)
	72519.4		61604.4(2)	61926. 5 (5)	53872.3 (2)	54333. 6 (10)
	72779.0		61864. 5 (6)	62186. 3 (3)	54132. 5 (10)	54592. 9 (30)
	73566. 0		62651.5(2)	62973. 5 (20)		
	73635. 0		62719.9 (1e)		54987.7 (5h)	55449. 0 (10h)
	74049.7	The second management of the second	63135, 3 (2)	63457, 0 (20)		
	74143.8				55496. 4 (3)	55957. 5 (6)
	75086. 0				56438. 5 (2)	56900. 0 (4)
	75176, 4		64261. 6 (40)		†56530.1? (5)	
	75578.7		64664. 2 (2)	64986.1 (20)	56931.1 (2h)	
	75799.4			65206.0(3)	57152.0 (1eh)	57613. 6 (3)
	76076, 2		65161, 4 (4)	002000 (0)	57429.0 (10)	57891.1 (4)?
	76835. 6		65920. 9 (1e)	66242.7 (3)	58188.6 (1)	
	77121.7		66207. 2 (6h)		58474.1 (7h)	
	77272.5		66357.4(2)		58625.6 (4)	

^{*}Blend. †Blend with As II?.

Table 3. As I Combinations of even and odd terms

Desig	Desig Level	$58 {}^{4}\mathrm{P}_{^{2}}$ 52897. 9	$58 {}^{4}\mathrm{P}_{1\frac{1}{2}}$ $51610. 2$	$\frac{58 ^4 \mathrm{P}_{0}}{50693.8}$	$58 \ ^{2}P_{1\frac{1}{2}}$ 54605, 3	$58\ ^{2}\mathrm{P}_{0\frac{1}{2}}$ $53135.\ 6$	$\frac{58' {}^{2}\mathrm{D}_{232}}{60815.0}$	$\frac{58' ^2\mathrm{D}_{1\frac{1}{2}}}{60834.8}$
5p 4D3½ 5p 4D3½ 5p 4D3½ 5p 4D3½	62871.2 61685.0 60860.0 60791.5	9973, 30 (400) 8787, 19 (4)	10074. 78 (400) 9249. 78 (50) 9181. 22 (20)	10166, 26 (300) 10097, 68 (150)				
p 4P2½ p 4P1½ p 4P0½	63282.8 62398.0 62026.3	10384. 93 (400)	11672. 62 (100) 10787. 70 (150) 10416. 04 (300)	11704, 20 (50) 11332, 41 (150)	8677, 54 (10)	9262, 42 (8) 8890, 79 (10)		
p 4S11/2	63647.0	10749. 04 (250)	12036, 75 (50)			10511.4 (3)		
$\stackrel{\circ}{p}_{^2\mathrm{D}_{11/2}^2}^{^2\mathrm{D}_{21/2}^2}$	64169. 2 62554. 4	11271. 30 (100)	12558. 94 (30) 10944. 17 (50)	11860.66 (100)	9563. 93 (100)	9418. 87 (200)		
$\stackrel{\circ}{p}^2\mathrm{P}^{^\circ}_{^{1}\!$	64687.6 64323.8		12713.61 (4)		10082. 24 (200) 9718. 49 (50)	11551, 99 (100) 11188, 17 (50)		
p 2S01/2	64059.0				9453, 65 (100)			
$p'{}^2{ m F}^3_{3}_{2}_{2} \ p'{}^2{ m F}^2_{2}_{2}$	70927.5 70821.4		19211. 24 (4)				10112. 49 (100) 10006. 40 (5)	9986.65 (100
$p' {}^{2}\mathrm{D}_{11/2}^{2} p' {}^{2}\mathrm{D}_{11/2}^{2}$	70376.6 70108.4				15771.16 (40)		9561. 60 (20)	9541. 83 (4) 9273. 59 (5)
$p' {}^{2}\mathrm{P}_{01/2}^{\circ} \\ p' {}^{2}\mathrm{P}_{01/2}^{\circ}$	71931.7 71796.2		20321. 65 (2) 20185, 96 (10)		17190. 97 (2h)	18796. 16 (5) 18660. 53 (1h?)	11116.65 (20)	11097, 02 (2) 10961, 52 (10)
5p 4D3½ 5p 4D3½ 5p 4D3½ 5p 4D3½	72341.6 71131.0 70516.6 70274.9	19443. 68 (100)	19520.72 (100)	19822, 74 (50) 19581, 09 (30) Cu?	16525.78 (5h)	17380. 90 (5h)	10316, 20 (10) 9701, 5 4 (5)	9681.88 (10)
5p 4P ² ½ 5p 4P ¹ ½ 5p 4P ⁰ ½	72501.9 70849.7 69881.5	19603. 97 (60)	20891, 64 (3k) 19239, 49 (50)	19187. 68 (20)				
5p 4S _{11/2}	72620.3	19722.35 (100)	21010.14 (5k)	dig.		19484. 80 (80)		
$p^2 D_{11/2}^2 \ p^2 D_{11/2}^2$	72944.4 71621.4	20046. 48 (6ħ)	20011.13 (8)	20927.72 (1h)	18339. 10 (150)	18485, 56 (100)	12129. 43 (20)	(10786.6)§
$p^{2}\mathrm{P}_{0}^{1}$	73244.8 72800.6				18639. 23 (60) 18195. 31 (5)	19665. 02 (10)	12429. 83 (8)	12410. 13 (5h) 11965. 82 (10)
p 2S01/2	71199.1		19588, 84 (20)			18063, 57 (3)		10364, 4 (3)

[§] Calculated wave numbers line masked.

Table 4.—Asi predicted and observed terms

Electron configuration	Limit As II	Predicted	Observed
$48^2 4p^3$		4S° 2(P° D°)	$4p^3{}^4{ m S}^\circ,4p^3{}^2{ m P}^\circ,4p^3{}^2{ m D}^\circ$
48 4p4		4P 2(S P D)	$4p^4$ ⁴ P, $4p^4$ ² S, $4p^4$ ² P, $4p^4$ ² D
$4p^5$		2P°	
182 4p2 ns	³ P ¹ D ¹ S	4P 2P 2D 2S	58 ⁴ P, 68 ⁴ P, 58 ² P, 68 ² P 58' ² D 58" ² S
482 4p2 np	³ P ¹ D ¹ S	4(S° P° D°) 2(S° P° D°) 2(P° D° F°) 2P°	$ \begin{array}{l} \{5p\ ^4{\rm S}^{\circ},\ 6p\ ^4{\rm S}^{\circ},\ 5p\ ^4{\rm P}^{\circ},\ 6p\ ^4{\rm P}^{\circ},\ 5p\ ^4{\rm D}^{\circ},\ 6p\ ^4{\rm P}^{\circ},\ 5p\ ^4{\rm P}^{\circ},\ 6p\ ^2{\rm P}^{\circ},\ 5p\ ^2{\rm D}^{\circ},\ 6p\ ^2{\rm D}^{\circ},\ 6p\$
$4s^2 \ 4p^2 \ nd$	³ P ¹ D ¹ S	4(P D F) 2(P D F) 2(S P D F G) 2D	4d ⁴ P, 4d ² P, 4d ² D, 4d ² F 4d' ² P 4d'' ² D

3. Ası Spectral Terms

Arsenic has atomic number 33, and the neutral atoms have electronic structure as follows: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^3$. The first spectrum of arsenic arises from changes in atomic energy resulting from alterations of the principal quantum numbers and total momenta of the last-named five valence electrons. The theoretical spectral terms associated with various configurations of electrons [21] are listed in table 4.

It was stated above that the empirically established atomic energy levels derived from analysis of the As I spectrum occur in three groups (1) five odd levels of low energy content (including zero, the normal state), (2) about 50 even levels of higher energy, and (3) some 25 odd levels intermingled with group (2). That group 1 is identified with the normal configuration $4s^2$ $4p^3$ is verified by many experimental facts including line intensities, selfreversals, and Zeeman patterns. Group 2 arises in part from the configuration 4s $4p^4$, which yields eight levels, ${}^4P_{2\frac{1}{2}}$, ${}^4P_{1\frac{1}{2}}$, ${}^4P_{0\frac{1}{2}}$, ${}^2S_{0\frac{1}{2}}$, ${}^2P_{0\frac{1}{2}}$, ${}^2P_{1\frac{1}{2}}$, ${}^2D_{1\frac{1}{2}}$, ${}^2D_{1\frac{1}{2}}$, ${}^2D_{1\frac{1}{2}}$, all of which have been selected with the aid of analogous spectra as guides. The remainder of group 2 must be ascribed to $4s^2$ $4p^2$ ns and $4s^2$ $4p^2$ nd, whereas group 3 can originate only in $4s^2 4p^2 np$. There is, naturally, no difficulty about distinguishing even and odd levels, but the proper choice of even levels for terms due to ns and nd electrons added to $4s^2 4p^2$ is complicated by overlapping of energies of the different electron configurations. These configurations give rise respectively to 8 and 28 levels, which converge toward five limits (${}^{3}P_{0}$, ${}^{3}P_{1}$, ${}^{3}P_{2}$, ${}^{1}D_{2}$, ${}^{1}S_{0}$) in the As II spectrum when the running electron is removed by ionization. According to Rao [13], these levels in the As II spectrum have the following values in cm⁻¹: ${}^{3}P_{0}=0$; ${}^{3}P_{1}=1063$, ${}^{3}P_{2}=2540$, ${}^{1}D_{2}=$ 10095, ¹S₀=22599. Guided by these intervals in

convergence limits, we have provisionally interpreted the observed As I even levels as shown in table 4. Although the configuration $4s^2 4p^3$ yields only five levels, including the ground term of As I, if the total quantum number is altered for one of the p electrons so that they are not all equivalent, the configuration produces no less than 21 levels, which converge also to the above mentioned five limits in As II. Terms associated with 5p and 6p electrons have been identified, as indicated in table 4. Ten hazy lines from 4910.23 to 4301.56 A could not be classified; they may represent some leading combinations of terms arising from 7p electrons with those from 5s.

Full particulars (except g values) regarding the now known terms of the As 1 spectrum are presented in table 5, where columns 1 to 5 contain (1) electron configuration (and convergence limit), (2) term designation, (3) level value (relative to $4p^3$ $^4S_{1\frac{1}{2}}^{\circ}=0.0$, (4) intervals between levels of terms, and (5) combinations observed for each term.

4. First Ionization Potential of Arsenic

In 1942, before the ultraviolet portion of the As I spectrum had been satisfactorily observed, an attempt was made to obtain a value of the effective quantum number of the 5s electron for As by comparing the values of neighboring elements and thus arrive at an estimate of the ionization potential. The result was not published, but it will be given here because it adds credence to the value recently derived from spectral series. The effective quantum numbers, $n^* = \sqrt{R/T}$, corresponding to 5s in spectra of elements flanking As are shown in table 6.

By interpolation, the 5s value of n^* for As I is found to be about 1.960. The corresponding term, $T=R/n^{*2}$, has a numerical value of $109737/(1.960)^2=28565$, and if this is added to the wave number 50694 of the resonance line (1972.62 A), a value of 79259

Table 5. Terms of the As I spectrum

Electron configuration	Term designation	$ m _{cm^{-1}}$	Interval cm ⁻¹	Combinations
1	2	3	4	5
$4s^2 4p^3$	4p³ 4S°1½	0.0		{4p ⁴ ⁴ P, 5s ⁴ P, 6s ⁴ P, 4d ⁴ P, 4p ⁴ ² P, 5s ² P, 4d ² P, 4p ⁴ ² D 5s' ² D, 4d ² D, 69698.
$4s^2 4p^3$	$rac{4p^3\ ^2\mathrm{D}_{112}^\circ}{4p^3\ ^2\mathrm{D}_{212}^\circ}$	10592.5 10914.6	322.1	(58 ⁴ P, 68 ⁴ P, 4d ⁴ P, 4p ⁴ ² S, 4p ⁴ ² P, 58 ² P, 68 ² P, 4d ² P 4d ² P, 4p ⁴ ² D, 58 ² D, 4d ² D, 4d ² D, 4d ² P, 69698 71055, 72519, 72779, 73566, 73635, 74049, 75176, 75578 75799, 76076, 76835, 77121, 77272.
$4s^2 4p^3$	$rac{4p^3}{4p^3}rac{^2 ext{P}^{\circ}_{01_2}}{^2 ext{P}^{\circ}_{11_2}}$	18186.1 18647.5	461.4	
$4s^2 4p^2(^3\mathrm{P})5s$	58 ⁴ P _{0½} 58 ⁴ P _{1½} 58 ⁴ P _{2½}	50693. 8 51610. 2 52897. 9	916. 4 1287. 7	$ \left\{ \begin{array}{l} \{4p^3 + \mathbf{S}^{\circ}, 5p + \mathbf{S}^{\circ}, 6p + \mathbf{S}^{\circ}, 5p + \mathbf{P}^{\circ}, 6p + \mathbf{P}^{\circ}, 5p + \mathbf{D}^{\circ}, 6p + $
$4s^2 4p^2(^3P)5s$	$\begin{array}{ccc} 5s & {}^{2}\mathrm{P}_{0}!_{2} \\ 5s & {}^{2}\mathrm{P}_{1}!_{2} \end{array}$	53135, 6 54605, 3	1469. 7	$\begin{cases} 4p^3 \cdot 4S^{\circ}, \ 5p \cdot 4S^{\circ}, \ 6p \cdot 4S^{\circ}, \ 5p \cdot 4P^{\circ}, \ 6p \cdot 4D^{\circ}, \ 5p \cdot 2S^{\circ}, \ 6p \cdot 2S^{\circ} \\ 4p^3 \cdot 2P^{\circ}, \ 5p \cdot 2P^{\circ}, \ 6p \cdot 2P^{\circ}, \ 5p' \cdot 2P^{\circ}, \ 4p^3 \cdot 2D^{\circ}, \ 5p \cdot 2D^{\circ} \\ 6p \cdot 2D^{\circ}, \ 5p' \cdot 2D^{\circ}. \end{cases}$
4s 4p4	$\begin{array}{c} 4p^4 \ ^4\mathrm{P}_{^{21}\!4} \\ 4p^4 \ ^4\mathrm{P}_{^{11}\!2} \\ 4p^4 \ ^4\mathrm{P}_{^{01}\!4} \end{array}$	55366, 4 56863, 6 57488, 1	$-1497.2 \\ -624.5$	$\left. \right\} 4p^{3} {}^{4}{ m S}^{\circ}.$
$4s^2 4p^2 (^3{ m P}) 5p$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60791.5 60860.0 61685.0 62871.2	68. 5 825. 0 1186. 2	5s ⁴ P, 4d' ² P, 4d'' ² D, 75176.
$4s^2 4p^2({}^1{ m S})5s$	$\frac{58'}{58'}$ $\frac{^2D_{21/2}}{^2D_{11/2}}$	$60815, 0 \\ 60834, 8$	-19.8	$ \left\{ \begin{matrix} 4p^3 ^4\mathrm{S}^{\circ}, 6p ^4\mathrm{D}^{\circ}, 6p ^2\mathrm{S}^{\circ}, 4p^3 ^2\mathrm{P}^{\circ}, 6p ^2\mathrm{P}^{\circ}, 5p' ^2\mathrm{P}^{\circ}, 4p^3 ^2\mathrm{D}^{\circ} \\ 6p ^2\mathrm{D}^{\circ}, 5p' ^2\mathrm{D}^{\circ}, 5p' ^2\mathrm{F}^{\circ}. \end{matrix} \right. $
$4s^2 4p^2(^3P)5p$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62026.3 62398.0 63282.8	371. 7 884. 8	}58 ⁴ P, 58 ² P.
$4s^2 4p^2(^3\mathrm{P})5p$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	62554.4 64169.2	1614.8	58 ⁴ P, 58 ² P, 4d′ ² P.
$4s^2 4p^2(^3\mathrm{P})4d$	$\begin{array}{cccc} 4d & ^4\mathrm{P}_{^{2}\cancel{5}_2} \\ 4d & ^4\mathrm{P}_{^{1}\cancel{5}_2} \\ 4d & ^4\mathrm{P}_{^{0}\cancel{5}_2} \end{array}$	62751.1 63503.6 63981.7	-752.5 -478.1	$\left.\right\}$ $4p^{3,4}S^{\circ}, 4p^{3}^{2}P^{\circ}, 4p^{3}^{2}D^{\circ}.$
$4s^2 4p^2 (^3{ m P}) 5p$	5p 4S _{11/2}	63647.0		58 ⁴ P, 58 ² P.
$4s^2 4p^2 (^3{ m P}) 5p$	5p 2S ₀ ½	64059.0		58 ² P.
$4s^2 4p^2(^3P)4d$	4d ² P _{0½} 4d ² P _{1½}	64122.0 66485.2	2363. 2	$4p^3 {}^4{\rm S}^{\circ}, 4p^3 {}^2{\rm P}^{\circ}, 4p^3 {}^2{\rm D}^{\circ}.$
$4s^2 4p^2 (^3{ m P}) 5p$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64323.8 64687.6	363.8	58 ⁴ P, 58 ² P.
$4s^2 4p^2(^3{ m P})4d$	$\begin{array}{cccc} 4d & {}^{2}\mathrm{D}_{1\frac{1}{2}} \\ 4d & {}^{2}\mathrm{D}_{2\frac{1}{2}} \end{array}$	64342. 4 66725. 4	2383.0	$4p^3 {}^4\mathrm{S}^{\circ}, 4p^3 {}^2\mathrm{P}^{\circ}, 4p^3 {}^2\mathrm{D}^{\circ}.$
$4s^2 4p^2 (^3{ m P}) 4d$	4d ² F _{2½} 4d ² F _{3½}	64639. 5 66785. 2	2145. 7	$4p^3$ 2 D $^\circ$.
$4s \ 4p^4$	$4p^4 {}^2P_{1\frac{1}{2}} \ 4p^4 {}^2P_{0\frac{1}{2}}$	64811. 5 65497. 4	-685.9	$4p^3 {}^4{ m S}^{\circ}, 4p^3 {}^2{ m P}^{\circ}, 4p^3 {}^2{ m D}^{\circ}.$
$4s \ 4p^4$	$4p^4 {}^2S_{0\frac{1}{2}}$	66588.3		$4p^{3} {}^{2}P^{\circ}, 4p^{3} {}^{2}D^{\circ}.$
$4s^2 4p^2(^3{ m P})6s$	$\begin{array}{cccc} 68 & ^4\mathrm{P}_{0\frac{1}{2}} \\ 68 & ^4\mathrm{P}_{1\frac{1}{2}} \\ 68 & ^4\mathrm{P}_{2\frac{1}{2}} \end{array}$	67008. 7 67920. 2 69314. 8	911. 5 1394. 6	
$4s$ $4p^4$	$4p^{4} {}^{2}\mathrm{D}_{112} \ 4p^{4} {}^{2}\mathrm{D}_{212}$	68300. 6 68402. 7	102. 1	$4p^3 {}^4{ m S}^{\circ}, 4p^3 {}^2{ m P}^{\circ}, 4p^3 {}^2{ m D}^{\circ}.$
$4s^2 4p^2 (^3{ m P}) 6s$	68 ² P _{0½} 68 ² P _{1½}	68314. 5 69696. 2	1381.7	$4p^3 {}^{2}\mathrm{P}^{\circ}, 4p^3 {}^{2}\mathrm{D}^{\circ}.$
	01/2, 11/2	69644.8		4p3 2P°.
	1½, 2½	69698.3		$4p^3 ^4S^{\circ}, 4p^3 ^2P^{\circ}, 4p^3 ^2D^{\circ}.$
$48^2 4p^2(^3\mathrm{P})6p$	$\begin{array}{c c} 6p & ^{4}P^{\circ}_{0}, \\ 6p & ^{4}P^{\circ}_{1}, \\ 6p & ^{4}P^{\circ}_{2}, \\ \end{array}$	69881.5 70849.7 72501.9	968. 2 1652. 2	}5s +P.
$4s^2 4p^2(^1\mathrm{D}) 5p$	$5p' {}^{2}\mathrm{D}_{1\frac{1}{2}}^{6}$ $5p' {}^{2}\mathrm{D}_{2\frac{1}{2}}^{6}$	70108.4 70376.6	268. 2	58 ² P, 58 ¹ ² D.
$4s^2 4p^2 (^3{ m P}) 6p$	$6p^{4}\mathrm{D}_{0}^{6}$ $6p^{4}\mathrm{D}_{1}^{6}$ 1 2 $6p^{4}\mathrm{D}_{2}^{6}$ 2 2 2 2 2 2 2 2 2 2 2 2 2	70274.9 70516.6 71131.0 72341.6	241. 7 614. 4 1210. 6	58 ⁴ P, 58 ² P, 58′ ² D.
$4s^2 4p^2(^1{ m D}) 5p$	$\frac{5p'{}^{2}\mathrm{F}_{21/2}^{2}}{5p'{}^{2}\mathrm{F}_{31/2}^{2}}$	70821.4 70927.5	106.1	58 ⁴ P, 58′ ² D.
	11/2	71055. 2		$4p^3 {}^{2}\mathrm{P}^{\circ}, 4p^3 {}^{2}\mathrm{D}^{\circ}.$
$48^2 4p^2 (^3{ m P}) 6p$		71055. 2 71199. 1		4p ³ ² P°, 4p ³ ² D°. 58 ⁴ P, 58 ² P, 58' ² D.

Table 5. Terms of the As I spectrum—Continued

Electron configuration	Term designation	$\begin{array}{c} \text{Level} \\ \text{cm}^{-1} \end{array}$	$rac{ ext{Interval}}{ ext{cm}^{-1}}$	Combinations
1	2	3	4	5
$4s^2 4p^2 (^3{ m P}) 6p$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71621. 4 72944. 4	1323. 0	5s 4P, 5s ² P, 5s' ² D.
$48^2 4p^2 (^1\mathrm{D}) 5p$	$\frac{5p'{}^{2}\mathrm{P}_{012}^{\circ}}{5p'{}^{2}\mathrm{P}_{112}^{\circ}}$	71796. 2 71931. 7	135. 5	58 ⁴ P, 58 ² P, 58′ ² D.
$4s^2 \ 4p^2(^1{ m D})4d$	4d′ ² P ₆ ½ 4d′ ² P ₁ ½	71924. 4 72125. 0	200. 6	5p 4D°, 4p3 2P°, 4p3 2D°, 5p 2D°.
$4s^2 4p^2 ({}^1{ m S}) 5s$	58'' 2S014	72399. 4		4p³ 2P°.
	1½	72519. 4		$4p^{3} {}^{2}\mathrm{P}^{\circ}, 4p^{3} {}^{2}\mathrm{D}^{\circ}.$
$4s^2 4p^2(^3P)6p$	6p 4S _{11/2}	72620.3		58 ⁴ P, 58 ² P.
	1½	72779. 0		$4p^3 {}^2\mathrm{P}^{\circ}, 4p^3 {}^2\mathrm{D}^{\circ}.$
$4s^2 \ 4p^2(^3\mathrm{P})6p$	6p ² P ₁ / ₂ 6p ² P ₁ / ₂	72800.6 73244.8	444. 2	58 ² P, 58′ ² D.
	1½, 2½	73566. 0		$4p^3$ 2 D $^{\circ}$.
	1½	73635. 0		$4p^{3} {}^{2}P^{\circ}, 4p^{3} {}^{2}D^{\circ}.$
	1½, 2½	74049. 7		$4p^3$ 2 D $^{\circ}$.
	01/2, 11/2	74143. 8		$4p^3$ 2 P $^{\circ}$.
$48^2 \ 4p^2(^1\mathrm{S})4d$	$\frac{4d^{\prime\prime}\ ^{2}\mathrm{D}_{2}}{4d^{\prime\prime}\ ^{2}\mathrm{D}_{1}}$	74453. 1 74810. 5	-357.4	$5p\ ^4{ m D}^{\circ}, 4p^3\ ^2{ m P}^{\circ}, 4p^3\ ^2{ m D}^{\circ}.$
	01/2, 11/2	75086. 0		$4p^3$ 2 P $^{\circ}$.
	1½, 2½	75176. 4		$5p\ ^4{ m D}^{\circ}, 4p^3\ ^2{ m P}^{\circ}, 4p^3\ ^2{ m D}^{\circ}.$
	11/2, 21/2	75578. 7		$4p^{3} {}^{2}{\rm P}^{\circ}, 4p^{3} {}^{2}{\rm D}^{\circ}.$
	01/2, 11/2	75799. 4		$4p^3 {}^2{ m P}^{\circ}, 4p^3 {}^2{ m D}^{\circ}.$
	1½	76076. 2		$4p^3 {}^2{ m P}^{\circ}, 4p^3 {}^2{ m D}^{\circ}.$
	1½, 2½	76835. 6		$4p^3 {}^2{\rm P}^{\circ}$, $4p^3 {}^2{\rm D}^{\circ}$.
	1½, 2½	77121. 7		$4p^3 {}^2{\rm P}^{\circ}, 4p^3 {}^2{ m D}^{\circ}.$
	1½, 2½	77272. 5		$4p^3 {}^2{\rm P}^{\circ}, 4p^3 {}^3{\rm D}^{\circ}.$
As $\mathrm{II}(^{3}\mathrm{P}_{0})$	Limit	79165		

cm⁻¹ is obtained for the limit (${}^{3}P_{0}$ of As II). This corresponds to a value of $79259 \times 1.2395 \times 10^{-4} = 9.82$ ev for the principal ionization potential of arsenic.

In January 1950, after our ultraviolet As lines had been assembled and classified, it was observed that three high even levels (67009, 67920, 69315 cm⁻¹) had the same *J*-values and nearly the same separations as the three lowest even levels (50694, 51610, 52898 cm⁻¹). Since the latter group had already been identified as 58 ⁴P₀₃, 115, 235, it was natural to regard the higher group as 68 ⁴P₀₃, 115, 225. While writing this paragraph, we observed that Rao [12] interpreted these levels in exactly this way but

Table 6. Effective quantum numbers n* for 5s

Spectrum	Term	T	R/T	$n^* = \sqrt{R/T}$
29 Cu I	58 2S034	19180	5. 724	2.3920
30 Zn 1	58 3S1	22094	4. 967	2. 229
31 Ga I	58 2S016	23592	4. 651	2.157
32 Ge 1	58 3P6	26173	4. 193	2.048
33 As I	58 4P014	28565	3.842	1.960
34 Se I	58 5S2	30476	3. 598	1.898
35 Br 1	5. 4P214	32120	3. 416	1.848
36 Kr I	58 3P2	32943	3. 331	1.825
37 Rb1	58 2S014	33691	3. 257	1.805

nevertheless arrived at an erroneous value of the ionization potential. Because the line intensities corresponding to transitions from these terms to the ground state are in the ratio of several hundred to one, it seems hopeless to detect similar levels of 7s, and we must be content with two terms of a spectral series. With the aid of a Rydberg interpolation table, the effective quantum numbers and limits were calculated as shown in table 7.

The last column of table 7 contains three values of As I series limits corrected to the first level (${}^{3}P_{0}$) of As II. The average of these values is 79527 cm⁻¹, which corresponds to 9.85 ev. Experience shows that the Rydberg formula generally yields too large

Table 7. As I effective quantum numbers and series

Elec- tron	Lines cm ⁻¹	Rydberg terms	$n^* = \sqrt{R/T}$	Limits in As II	Lowest
58	50694	28948	1. 947	} 3P0=79642	79642
68 58 68	67009 51610 67920	12633 28941 12631	2. 947 1. 947 2. 947	$P_1 = 80551$	79488
58 68	52898 69315	29094 12677	1. 942 2. 942	$P_2 = 81992$	79452

a limit, and a more reliable value will result from the use of a Ritz formula of the type,

$$\nu = L - R/(n + \mu + \alpha T)^2$$
.

An examination of s-series represented by the Ritz formula in Zn I, Ga I, and Ge I spectra indicates that $\alpha=2.5\times10^{-6}$ for As I. On this assumption, the lowest limits in the final column of table 7 are calculated to be 79185, 79033, and 78995, respectively. The average of these values is $79071~\rm{cm^{-1}}$; it corresponds to 9.80 ev and is in good agreement with 9.82 ev calculated with the interpolated effective quantum number for the 5s electron. We believe that the average of these two figures, 79165 cm⁻¹, corresponding to 9.81 ± 0.01 ev, gives a reliable value for the principal ionization potential of arsenic.

IV. References

- [1] William F. Meggers and T. L. deBruin, J. Research NBS **3,** 765 (1929) RP116.
- [2] L. Bloch and E. Bloch, J. Phys. Rad. [6] 2, 229 (1921).
 [3] A. E. Ruark, F. L. Mohler, P. D. Foote, and R. L. Chenault, BS Sci. Pap. 19, 463 (1924) S490.
 [4] P. Queney, J. Phys. Rad. [6] 10, 448 (1929).
 [5] K. R. Rag, Proc. Pap. Sec. [Add 27, 282 (1923)]
- [5] K. R. Rao, Proc. Roy. Soc. [A] 125, 238 (1929).

- [6] A. S. Rao, Proc. Phys. Soc. London, 44, 594 (1932).
 [7] W. M. Hicks, Phil. Mag. 15, 1080 (1933).
 [8] J. B. Green and W. M. Barrows, Jr., Phys. Rev. 47.
- 131 (1935). [9] H. M. Randall, Astrophys. J. **34**, 1 (1911).
- [10] A. G. Shenstone, Phil. Trans. Roy Soc. London [A] 235, 195, No. 751 (1936); 241, 297, No. 832 (1948).
- Boyce and H. A. Robinson, J. Opt. Soc. Am. 26, 133 (1936).
- [12] H. Kayser und R. Ritschl, Tabelle der Hauptlinien der Linienspektren aller Elemente. (Julius Springer, Berlin, 1939).
- [13] A. S. Rao, Ind. J. Phys. 7, 561 (1933). [14] Table of Reciprocals of the Integers from 100,000 through 200,009. (Columbia University Press, New York, N. Y., 1943).

 [15] H. Kayser, Tabelle der Schwingungszahlen. (Julius Springer, Berlin 1926).
- [16] W. F. Meggers and C. G. Peters, BS Sci. Pap. 14, 697 (1918) S327.
- [17] H. Kayser and C. Runge, Wiedemann's Ann. 52, 93 (1894)
- [18] J. C. McLennan and A. B. McLay, Trans. Roy. Soc.
- Can. 21, 3, 63 (1927).
 [19] C. E. Moore, Atomic Energy Levels, 1, NBS Circular C467 (1949).
- [20] J. C. Van den Bosch, Physica 14, 249, No. 4 (1948).
- [21] F. Hund, Linienspektren und Periodisches System der Elemente. (Julius Springer, Berlin, 1927).

Washington, May 16, 1950.

0