Εισαγωγή στην Αριθμητική Ανάλυση

Σταμάτης Σταματιάδης stamatis@materials.uoc.gr

Τμήμα Επιστήμης και Τεχνολογίας Υλικών, Πανεπιστήμιο Κρήτης

ΠΕΜΠΤΗ ΔΙΑΛΕΞΗ

Επαναληπτικές μέθοδοι επίλυσης του Ax = b: εισαγωγή (1)

Σε αυτή την κατηγορία μεθόδων ξεκινάμε από μια αρχική προσέγγιση της λύσης, $x^{(0)}$, και παράγουμε μια ακολουθία καλύτερων προσεγγίσεων $x^{(1)}, x^{(2)}, \ldots$ η οποία συγκλίνει στη λύση σε άπειρες επαναλήψεις. Στην πράξη, μια προσέγγιση $x^{(k)}$ είναι ικανοποιητική όταν

- το διάνυσμα $Ax^{(k)}-b$ έχει «μικρό» μέτρο ή «μικρά» (κατ' απόλυτη τιμή) στοιχεία.
- Η διαφορά (ή η σχετική διαφορά) των $x^{(k+1)}$ και $x^{(k)}$ έχει «μικρό» μέτρο ή «μικρά» (κατ' απόλυτη τιμή) στοιχεία.

Στις στατικές επαναληπτικές μεθόδους ο υπολογισμός της προσέγγισης $x^{(k)}$ γίνεται με τον ίδιο ακριβώς τρόπο ανεξάρτητα από το k.

Μέθοδοι αυτής της κατηγορίας: Jacobi, Gauss-Seidel, SOR.

Επαναληπτικές μέθοδοι επίλυσης του Ax = b: εισαγωγή (2)

Ένα σύστημα η γραμμικών εξισώσεων της μορφής

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

για το οποίο ισχύει ότι

$$|a_{ii}| \geq \sum_{\substack{j=1\j
eq i}}^n |a_{ij}| \;,\quad i=1,\ldots,n\;,$$

και για ένα τουλάχιστον ί ισχύει η αυστηρή ανισότητα,

$$|a_{ii}| > \sum_{\substack{j=1 \ i \neq i}}^n |a_{ij}| ,$$

λέμε ότι έχει «κυρίαρχη» διαγώνιο.

Επαναληπτικές μέθοδοι επίλυσης του Ax = b: εισαγωγή (3)

Συμμετρικός πίνακας

Ένας πραγματικός τετραγωνικός πίνακας A είναι συμμετρικός αν είναι ίσος με τον ανάστροφό του, $A=A^T$. Ο ανάστροφος πίνακας, A^T , έχει στοιχεία $a_{ij}^T=a_{ji}$.

Συμμετρικός θετικά ορισμένος πίνακας

Ένας πραγματικός συμμετρικός πίνακας Α χαρακτηρίζεται ως θετικά ορισμένος αν ισχύουν (μεταξύ άλλων) τα ισοδύναμα κριτήρια:

- Ισχύει $x^T \cdot A \cdot x > 0$ για κάθε πραγματικό μη μηδενικό διάνυσμα x.
- Όλες οι ιδιοτιμές του είναι πραγματικές και θετικές.
- Υπάρχει πραγματικός αντιστρέψιμος πίνακας B για τον οποίο ισχύει $A=B^T\cdot B.$

Επαναληπτικές μέθοδοι επίλυσης του Ax = b: εισαγωγή (4)

Ένα γραμμικό σύστημα με κυρίαρχη διαγώνιο, μπορεί να επιλυθεί χωρίς να τροποποιηθεί, ως εξής:

Καταρχάς, λύνουμε προς x_i την εξίσωση i

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{ii}x_i + \dots + a_{in}x_n = b_i \Rightarrow$$

$$x_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij}x_j - \sum_{j=i+1}^n a_{ij}x_j \right), \quad i = 1, \dots, n.$$

Όταν i=1 το πρώτο άθροισμα είναι 0 και όταν i=n το δεύτερο άθροισμα είναι 0.

Παρατηρήστε ότι για να υπολογίσουμε το x_i χρειαζόμαστε τις τιμές όλων των x_j με $j \neq i$.

Κατόπιν, εφαρμόζουμε μία από τις ακόλουθες παραλλαγές:

Μέθοδος Jacobi

Σε αυτήν την παραλλαγή, οι «παλαιές» τιμές για τα x_i (δηλαδή της προηγούμενης επανάληψης, $x_i^{(k)}$), χρησιμοποιούνται για να υπολογιστούν οι «νέες», $x_i^{(k+1)}$:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right) , \quad i = 1, \ldots, n .$$

Μέθοδος Jacobi

Σε αυτήν την παραλλαγή, οι «παλαιές» τιμές για τα x_i (δηλαδή της προηγούμενης επανάληψης, $x_i^{(k)}$), χρησιμοποιούνται για να υπολογιστούν οι «νέες», $x_i^{(k+1)}$:

$$x_i^{(k+1)} = rac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)}
ight) , \quad i = 1, \ldots, n .$$

Παρατηρήστε ότι η παραπάνω σχέση γράφεται:

$$x_i^{(k+1)} = x_i^{(k)} + \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^n a_{ij} x_j^{(k)} \right) , \quad i = 1, \dots, n .$$

Oi apaitoúmenes práxeis mia ton upologismó tou $x^{(k+1)}$ eínai the táxeis tou $n^2.$

Μέθοδος Gauss-Seidel (1)

Στη δεύτερη παραλλαγή, οι «νέες» τιμές των x_i , οι $x_i^{(k+1)}$, χρησιμοποιούνται στον τύπο αμέσως μόλις υπολογιστούν:

$$x_i^{(k+1)} = rac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)}
ight) , \quad i = 1, \dots, n .$$

Προσέξτε ότι ο υπολογισμός του $x_i^{(k+1)}$ χρειάζεται τις «νέες» τιμές $x_j^{(k+1)}$ για j < i και τις «παλαιές» τιμές $x_i^{(k)}$ για j > i.

Μέθοδος Gauss–Seidel (1)

Στη δεύτερη παραλλαγή, οι «νέες» τιμές των x_i , οι $x_i^{(k+1)}$, χρησιμοποιούνται στον τύπο αμέσως μόλις υπολογιστούν:

$$x_i^{(k+1)} = rac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)}
ight) , \quad i = 1, \ldots, n .$$

Προσέξτε ότι ο υπολογισμός του $x_i^{(k+1)}$ χρειάζεται τις «νέες» τιμές $x_j^{(k+1)}$ για j < i και τις «παλαιές» τιμές $x_i^{(k)}$ για j > i.

Παρατηρήστε ότι η παραπάνω σχέση γράφεται:

$$x_i^{(k+1)} = x_i^{(k)} + rac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i}^n a_{ij} x_j^{(k)}
ight) , \quad i = 1, \dots, n .$$

Οι απαιτούμενες πράξεις για τον υπολογισμό του $x^{(k+1)}$ είναι της τάξης του n^2 .

Μέθοδος Gauss-Seidel (1)

Στη δεύτερη παραλλαγή, οι «νέες» τιμές των x_i , οι $x_i^{(k+1)}$, χρησιμοποιούνται στον τύπο αμέσως μόλις υπολογιστούν:

$$x_i^{(k+1)} = rac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)}
ight) , \quad i = 1, \ldots, n .$$

Προσέξτε ότι ο υπολογισμός του $x_i^{(k+1)}$ χρειάζεται τις «νέες» τιμές $x_j^{(k+1)}$ για j < i και τις «παλαιές» τιμές $x_i^{(k)}$ για j > i.

Παρατηρήστε ότι η παραπάνω σχέση γράφεται:

$$x_i^{(k+1)} = x_i^{(k)} + \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i}^n a_{ij} x_j^{(k)} \right) , \quad i = 1, \dots, n .$$

Οι απαιτούμενες πράξεις για τον υπολογισμό του $x^{(k+1)}$ είναι της τάξης του n^2 .

Η μέθοδος μπορεί να εφαρμοστεί και να συγκλίνει οπωσδήποτε, και σε συστήματα στα οποία ο πίνακας των συντελεστών είναι συμμετρικός θετικά ορισμένος.

Μέθοδος Gauss–Seidel (2)

Αν A είναι ένας γενικός αντιστρέψιμος πραγματικός πίνακας, ο πίνακας $A^T \cdot A$ είναι συμμετρικός θετικά ορισμένος: ισχύει

$$(A^T \cdot A)^T = A^T \cdot A$$

και

$$x^T \cdot A^T \cdot A \cdot x = (A \cdot x)^T (A \cdot x) = ||A \cdot x||^2 > 0, \forall x \neq 0.$$

Επομένως, ένα γενικό σύστημα $A \cdot x = b$ μπορεί να μετατραπεί στο

$$(A^T \cdot A) \cdot x = A^T \cdot b$$

και να επιλυθεί με τη μέθοδο Gauss–Seidel (με συνολικά περισσότερες πράξεις από την απαλοιφή Gauss καθώς μόνο ο πολλαπλασιασμός των A^T , A απαιτεί n^3 πράξεις). Στην περίπτωση βέβαια που οι πολλαπλασιασμοί του A^T με τα A, x μπορούν να γίνουν με λιγότερες πράξεις (π.χ. όταν ο πίνακας A είναι αραιός (sparse) ή έχει ειδική μορφή), η μέθοδος Gauss–Seidel μπορεί να είναι πιο γρήγορη από την απαλοιφή Gauss (που δεν λαμβάνει υπόψη τη δομή του πίνακα A).

Μέθοδος Successive overrelaxation (SOR)

Στη μέθοδο αυτή, υπολογίζουμε σε κάθε επανάληψη τη νέα προσέγγιση με τη μέθοδο Gauss–Seidel, $\bar{x}_i^{(k+1)}$, αλλά η βελτίωση που κάνουμε τελικά είναι ένα ποσοστό της βελτίωσης που προβλέπει η Gauss–Seidel:

$$x_i^{(k+1)} = x_i^{(k)} + \omega \left(\bar{x}_i^{(k+1)} - x_i^{(k)} \right) .$$

- Το ω πρέπει να είναι στο διάστημα (0,2) για να υπάρχει δυνατότητα σύγκλισης.
- Αν ο πίνακας των συντελεστών είναι συμμετοικός θετικά ορισμένος τότε η μέθοδος SOR συγκλίνει με οποιαδήποτε τιμή του ω στο (0,2) (αλλά με διαφορετική ταχύτητα σύγκλισης).
- Αν $\omega=1$ η μέθοδος SOR καταλήγει στη μέθοδο Gauss–Seidel.
- Αν $\omega>1$ δίνει στην μέθοδο μεγαλύτε
οη ταχύτητα σύγκλισης από την Gauss–Seidel.
- Για κάποιο $\omega < 1$
n SOR μποφεί να συγκλίνει στην πεφίπτωση που η Gauss–Seidel δεν συγκλίνει.

Εφαρμογές

Αντίστοοφος πίνακας

Κάθε μέθοδος επίλυσης γραμμικού συστήματος της μορφής $A \cdot x = b$ παράγει τελικά το

$$x = A^{-1} \cdot b .$$

Συνεπώς, αν επιλέξουμε για διάνυσμα b διαδοχικά τα n διανύσματα

$$b_1 = egin{bmatrix} 1 \ 0 \ 0 \ \vdots \ 0 \end{bmatrix}, b_2 = egin{bmatrix} 0 \ 1 \ 0 \ \vdots \ 0 \end{bmatrix}, b_3 = egin{bmatrix} 0 \ 0 \ 1 \ \vdots \ 0 \end{bmatrix}, \cdots, b_n = egin{bmatrix} 0 \ 0 \ 0 \ \vdots \ 1 \end{bmatrix},$$

θα έχουμε ως λύσεις τις αντίστοιχες στήλες του πίνακα A^{-1} .

Αντίστοοφος πίνακας

Κάθε μέθοδος επίλυσης γραμμικού συστήματος της μορφής $A\cdot x=b$ παράγει τελικά το

$$x = A^{-1} \cdot b .$$

Συνεπώς, αν επιλέξουμε για διάνυσμα b διαδοχικά τα n διανύσματα

$$b_1 = egin{bmatrix} 1 \ 0 \ 0 \ \vdots \ 0 \end{bmatrix}, b_2 = egin{bmatrix} 0 \ 1 \ 0 \ \vdots \ 0 \end{bmatrix}, b_3 = egin{bmatrix} 0 \ 0 \ 1 \ \vdots \ 0 \end{bmatrix}, \cdots, b_n = egin{bmatrix} 0 \ 0 \ 0 \ \vdots \ 1 \end{bmatrix},$$

θα έχουμε ως λύσεις τις αντίστοιχες στήλες του πίνακα A^{-1} .

Παρατήρηση

Η μέθοδος απαιτεί την επίλυση n γραμμικών συστημάτων $A \cdot x = b$ με διαφορετικά δεξιά μέλη. Αν επιλέξουμε για την επίλυσή τους τη μέθοδο Gauss, οποιαδήποτε μεταβολή των συστημάτων καθορίζεται αποκλειστικά από τα στοιχεία του A και, συνεπώς, μπορούν να επιλυθούν ταυτόχρονα.

Ορίζουσα

- Η ορίζουσα είναι ένας αριθμός που σχετίζεται με κάθε τετραγωνικό πίνακα.
- Μπορεί να οριστεί με πολλούς ισοδύναμους τρόπους. Ένας ορισμός είναι το ανάπτυγμα Laplace: η ορίζουσα δίνεται ως ανάπτυγμα κατά κάποια στήλη j της επιλογής μας με την αναδρομική σχέση

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij}) ,$$

όπου A_{ij} είναι ο πίνακας διαστάσεων $(n-1)\times(n-1)$ που προκύπτει από τον A διαγράφοντας τη γραμμή i και τη στήλη j.

- Ο τύπος ισχύει για n>1 και είναι ανεξάςτητος από την επιλογή του j. Αντίστοιχος τύπος προκύπτει με ανάπτυξη κατά γραμμή.
- Η ορίζουσα ενός πίνακα 1×1 είναι το μοναδικό στοιχείο του.

Υπολογισμός ορίζουσας (1)

Το ανάπτυγμα Laplace είναι πολύπλοκο και απαιτεί πολλές πράξεις. Πιο γρήγορη μέθοδος:

- Μετασχηματίζουμε τον αρχικό πίνακα σε τριγωνικό (άνω ή κάτω) με τις εξής πράξεις:
 - Εναλλαγή της σειράς δύο γραμμών. Η ορίζουσα αλλάζει πρόσημο.
 - Πρόσθεση σε μία γραμμή μιας άλλης, πολλαπλασιασμένης με μη μηδενικό αριθμό. Η ορίζουσα διατηρείται.
 - Πολλαπλασιασμός μιας γραμμής με ένα μη μηδενικό αριθμό. Η ορίζουσα πολλαπλασιάζεται με αυτόν τον αριθμό.
- Υπολογίζουμε την ορίζουσα του τριγωνικού πίνακα από το ανάπτυγμα Laplace. Είναι ίση με την ορίζουσα του αρχικού πίνακα με πιθανώς άλλο πρόσημο ή πολλαπλάσιό της με συγκεκριμένο συντελεστή.

Υπολογισμός ορίζουσας (2)

Η ορίζουσα ενός τριγωνικού πίνακα υπολογίζεται πολύ εύκολα από το ανάπτυγμα Laplace με ανάπτυξη κατά την πρώτη στήλη. Αν

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & a_{nn} \end{bmatrix}$$

τότε

$$\det A = \prod_{i=1}^n a_{ii} .$$

Δηλαδή, η ορίζουσα είναι το γινόμενο των διαγώνιων στοιχείων τού τριγωνικού πίνακα.

Ιδιοτιμές-Ιδιοδιανύσματα (1)

Ορισμός

Για ένα πίνακα Α:

Αν υπάρχει ένας αριθμός λ , εν γένει μιγαδικός, και ένα διάνυσμα (πίνακας–στήλη) x, διάφορο του 0 για τα οποία ισχύει

$$A \cdot x = \lambda x$$
,

τότε το x λέγεται ιδιοδιάνυσμα του A ενώ το λ είναι η αντίστοιχη ιδιοτιμή.

- Το ιδιοδιάνυσμα *x* δεν είναι μοναδικό: οποιοδήποτε πολλαπλάσιό του αποτελεί επίσης λύση της εξίσωσης για την ίδια ιδιοτιμή.
- Συνήθως επιλέγουμε για ιδιοδιάνυσμα που αντιστοιχεί σε μία ιδιοτιμή αυτό που έχει μέτρο 1.

Ιδιοτιμές-Ιδιοδιανύσματα (1)

Ορισμός

Για ένα πίνακα Α:

Αν υπάρχει ένας αριθμός λ , εν γένει μιγαδικός, και ένα διάνυσμα (πίνακας–στήλη) x, διάφορο του 0 για τα οποία ισχύει

$$A \cdot x = \lambda x$$
.

τότε το x λέγεται ιδιοδιάνυσμα του A ενώ το λ είναι η αντίστοιχη ιδιοτιμή.

- Το ιδιοδιάνυσμα x δεν είναι μοναδικό: οποιοδήποτε πολλαπλάσιό του αποτελεί επίσης λύση της εξίσωσης για την ίδια ιδιοτιμή.
- Συνήθως επιλέγουμε για ιδιοδιάνυσμα που αντιστοιχεί σε μία ιδιοτιμή αυτό που έχει μέτρο 1.

Κανονικοποίηση ιδιοδιανύσματος

Επιλέγουμε την πολλαπλασιαστική σταθερά c στο διάνυσμα cx να είναι τέτοια ώστε

$$(cx)^{\dagger} \cdot (cx) = 1 \Rightarrow |c|^2 = \frac{1}{x^{\dagger} \cdot x}$$
.

Τη φάση της γενικά μιγαδικής ποσότητας c μπορούμε να την πάρουμε αυθαίρετα ίση με 0.

Ιδιοτιμές-Ιδιοδιανύσματα (2)

Εύρεση ιδιοτιμών

Η εξίσωση $A \cdot x = \lambda x$ γράφεται ως εξής

$$A \cdot x = \lambda x \Rightarrow A \cdot x = \lambda I \cdot x \Rightarrow (A - \lambda I) \cdot x = 0$$
.

Το σύστημα έχει μοναδική λύση, την x=0, αν και μόνο αν ο πίνακας $A-\lambda I$ αντιστρέφεται. Καθώς δεν ενδιαφερόμαστε για τη μηδενική λύση, οδηγούμαστε στην απαίτηση να ισχύει $\det(A-\lambda I)=0$.

Η έκφραση $\det(A-\lambda I)$ είναι ένα πολυώνυμο βαθμού n ως προς λ , όπου n είναι η διάσταση του πίνακα A, και ονομάζεται χαρακτηριστικό πολυώνυμο του A. Οι ρίζες του είναι οι ιδιοτιμές του A.

Ιδιοτιμές-Ιδιοδιανύσματα (2)

Εύρεση ιδιοτιμών

Η εξίσωση $A \cdot x = \lambda x$ γράφεται ως εξής

$$A \cdot x = \lambda x \Rightarrow A \cdot x = \lambda I \cdot x \Rightarrow (A - \lambda I) \cdot x = 0$$
.

Το σύστημα έχει μοναδική λύση, την x=0, αν και μόνο αν ο πίνακας $A-\lambda I$ αντιστρέφεται. Καθώς δεν ενδιαφερόμαστε για τη μηδενική λύση, οδηγούμαστε στην απαίτηση να ισχύει $\det(A-\lambda I)=0$.

Η έκφραση $\det(A - \lambda I)$ είναι ένα πολυώνυμο βαθμού n ως προς λ , όπου n είναι η διάσταση του πίνακα A, και ονομάζεται χαρακτηριστικό πολυώνυμο του A. Οι ρίζες του είναι οι ιδιοτιμές του A.

Εύρεση ιδιοδιανυσμάτων

Με γνωστή ιδιοτιμή λ επιλύουμε το γραμμικό σύστημα

$$(A - \lambda I) \cdot x = 0.$$

Το σύστημα έχει άπειρες λύσεις, οπότε τουλάχιστον μία από τις συνιστώσες του διανύσματος x είναι «ελεύθερη». Τη θέτουμε αυθαίρετα 1. Αφού προσδιοριστεί το διάνυσμα x με την αυθαίρετη επιλογή μίας συνιστώσας του, μπορούμε να το κανονικοποιήσουμε.

Χρήσιμα θεωρήματα για τη εύρεση ιδιοτιμών (1)

Θεώρημα κύκλων του Gershgorin

 Υπολογίζουμε το άθροισμα των απόλυτων τιμών των στοιχείων κάθε γραμμής, εκτός από το διαγώνιο:

$$R_i = \sum_{\substack{j=1\\i\neq j}}^n |a_{ij}| .$$

- Σχηματίζουμε στο μιγαδικό επίπεδο, τους κυκλικούς δίσκους με κέντρα τα διαγώνια στοιχεία, a_{ii}, και ακτίνες τα R_i.
- Οι ιδιοτιμές του πίνακα βρίσκονται σε αυτούς τους κύκλους (χωρίς να σημαίνει αυτό ότι κάθε κύκλος έχει μία ιδιοτιμή).
- αν m κυκλικοί δίσκοι επικαλύπτονται μεταξύ τους και είναι απομονωμένοι από τους υπόλοιπους δίσκους, περιέχουν ακριβώς m ιδιοτιμές.

Χρήσιμα θεωρήματα για τη εύρεση ιδιοτιμών (2)

Θεωρήματα Perron-Frobenius και Ostrowski

- Ένας πραγματικός πίνακας με θετικά στοιχεία έχει μία θετική (πραγματική) ιδιοτιμή λ₁ και όλες τις υπόλοιπες, γενικά μιγαδικές, με μέτρο μικρότερο από λ₁.
- Αν *Μ* είναι το μέγιστο στοιχείο και *m* το ελάχιστο, ισχύει

$$|\lambda_i| \le \lambda_1 \frac{M^2 - m^2}{M^2 + m^2}, \qquad i = 2, 3, \dots, n.$$

Χρήσιμα θεωρήματα για τη εύρεση ιδιοτιμών (3)

Ανισότητες του Schur

Οι ιδιοτιμές λ_i ενός πραγματικού ή μιγαδικού πίνακα $A_{n\times n}$ με στοιχεία a_{ij} ικανοποιούν τις σχέσεις

$$\sum_{i=1}^{n} |\lambda_{i}|^{2} \leq \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^{2} ,$$

$$\sum_{i=1}^{n} |\operatorname{Re}(\lambda_{i})|^{2} \leq \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij} + a_{ji}^{*}|^{2} ,$$

$$\sum_{i=1}^{n} |\operatorname{Im}(\lambda_{i})|^{2} \leq \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij} - a_{ji}^{*}|^{2} .$$