PH202: Optics

Lecture #7

21.11.2018

Newton's rings

A thin air film of r.i. (n = 1) of variable thickness (t) is entrapped between the lens and the glass plate: t is 0 at the point of contact O and increases away from O. For near-normal incidence, and for points close to O, opt. path difference $\approx 2nt$. Interference takes place between light reflected from AOB and POQ. Interfering light which is reflected from POQ accumulates an additional phase of π

$$\therefore \text{ for maxima: } 2t = \left(m + \frac{1}{2}\right)\lambda; m = 0,1,2, \dots$$
 for minima: $2t = m\lambda; m = 1,2, \dots$

Due to the spherical surface of the lens, t will be const over a circle with O as its center \Rightarrow we will get concentric dark and bright fringes in the form of rings

AOB: A plano-convex lens S

POQ: A plane glass plate

S: An extended light source

G: A glass plate beam splitter

Radius r_m of the m^{th} dark ring:

From the figure

$$(R-t)^{2} + r_{m}^{2} = R^{2}$$

$$\Rightarrow R^{2} \cong r_{m}^{2} + R^{2} - 2tR + t^{2}$$

$$\Rightarrow r_{m}^{2} \cong t(2R-t)$$

Typically, $R \sim 100$ cm; $t \sim 10^{-3}$ cm $\Rightarrow t$ can be neglected rel to 2R

$$\Rightarrow$$
 $2t = \frac{r_m^2}{R} = m\lambda \Rightarrow r_m = \sqrt{mR\lambda}$; $m = 1,2,...$ (for m^{th} dark ring)

- ⇒ Radii of the dark rings vary as sq root of natural numbers
- \Rightarrow Rings will become close to each other as the radius increases In expt, diameters of m^{th} and $(m + p)^{th}$ rings are measured $(p \sim 10)$ and from the following relation source wavelength λ is measured:

$$(D_{m+p})^{2} - (D_{m})^{2} = 4(m+p-m)R\lambda$$

$$\Rightarrow \lambda = \frac{D_{m+p}^{2} - D_{m}^{2}}{4nR}$$

Michelson interferometer

"Following a method suggested by Fizeau in 1868, Professor Michelson has produced what is perhaps the most ingenious and sensational instrument in the service of astronomy – the Interferometer"

- Sir James Jeans in "The Universe Around us", Cambridge Univ Press (1930)

Computer generated interference patterns from a Michelson interferometer for different *d*'s

Multiple beam interferometry

A third variety of interferometry involves multiple beams derived from same source through division of amplitude by multiple reflections

Consider incidence of a plane wave of amplitude A_0 from medium 1 of r.i. n_1 at an angle θ_1 on a glass plate of thickness h and of r.i. n_2

If r_1 and t_1 represent reflection and transmission coeffs of the plate as incident light from medium 1 enters medium 2, then amps of successive reflected waves will be

$$A_0 r_1, A_0 t_1 r_2 t_2 e^{i\delta}, A_0 t_1 r_2 r_2 r_2 \ t_2 e^{2i\delta},$$

where

$$\delta = \frac{2\pi}{\lambda_0} \times \Delta = \frac{2\pi}{\lambda_0} (2h \, n_2 \cos \theta_2) = \frac{4\pi h \, n_2 \cos \theta_2}{\lambda_0}$$

$$A_r = A_0 \left(r_1 + t_1 t_2 r_2 e^{i\delta} \left[1 + r_2^2 e^{i\delta} + r_2^4 e^{2i\delta} + \dots \right] \right) = A_0 \left(r_1 + \frac{t_1 t_2 r_2 e^{i\delta}}{1 - r_2^2 e^{i\delta}} \right)$$

$$\Rightarrow$$
 Net reflectivity \mathcal{R} :

$$\left| \frac{A_r}{A_0} \right|^2 = R \left| \frac{1 - e^{i\delta}}{1 - Re^{i\delta}} \right|^2; \quad R = r_1^2 = r_2^2$$

 \mathcal{R} can be shown to be :

$$\mathcal{R} = \frac{F \sin^2 \frac{\delta}{2}}{1 + F \sin^2 \frac{\delta}{2}} \quad \text{where} \quad F = \frac{4R}{(1 - R)^2}$$

F is called coefficient of finesse

Similarly, amplitude of successive transmitted waves (assuming zero phase for the 1st transmitted wave):

$$A_0 t_1 t_2$$
, $A_0 t_1 t_2 r_2^2 e^{i\delta}$,

It can be shown that transmittivity T of the film/glass plate will be given by $T = \left|\frac{A_t}{A_0}\right|^2 = \frac{1}{1+F \sin^2 \frac{\delta}{2}}$

Also for
$$\delta = 2m\pi, m = 1,2,3, ...$$

$$T = \frac{1}{1 + F \sin^2 m\pi} = 1$$

transmittivity T as a function of δ for different F is plotted in the figure

 \Rightarrow Transmission resonances become sharper with increase in F

These results are useful in designing resonators used to construct lasers

DIFFRACTION

"No one has ever been able to define the difference between interference and diffraction satisfactorily. It is just a question of usage, and there is no specific, important physical difference between them. The best we can do is, roughly speaking, is to say that when there are only a few sources, say two, then the result is called interference, but if there is a large number of them, it seems that the word diffraction is more often used."

Richard Feynman

Recollect

A plane wave of wavelength λ incident on a circular aperture of diameter 2b (>> > λ) on a screen and a screen is placed at a distance D behind the aperture what will you observe?

Two classes of diffraction:

a) Fresnel diffraction: source and observation screen are at a finite distances from the aperture

b) Fraunhofer diffraction: source and observation screen are at infinite distances from the aperture How to realize infinite distance within a laboratory?

Use a pair of convex lenses or a laser light, which emits almost parallel light

How do you check if a beam of light is parallel or not?

Fraunhofer diffraction is much easier to study/model as compared to Fresnel diffraction

Fraunhofer diffraction by a single slit:

Let the slit width be b

Diffraction pattern To obtain the intensity at P at the focal plane of Lens Assume the slit consists of N number of equally spaced (Δ) point sources $A_{1,2,3,\ldots}$

Fields due to sources $A_{1,2,3,\ldots}$ will superimpose at P with different phases due to slight path length difference between consecutive point sources

If we assume *n* number of point sources $\Rightarrow b = (N-1)\Delta$

It can be shown through detailed algebra (as given at the end after the after the final discussions on single slit diffraction)

$$E = A \frac{\sin \beta}{\beta} \cos(\omega t - \beta) \Rightarrow$$
 where
$$(N-1) \frac{\phi}{2} \approx N \frac{\phi}{2} = \frac{\pi}{\lambda_0} b \sin \theta = \beta$$

A = aN; a represents amplitude of light emitted by each point source

Intensity:
$$|E|^2 = I = \left| A \frac{\sin \beta}{\beta} e^{i(\omega t - \beta)} \right|^2 = I_0 \frac{\sin^2 \beta}{\beta^2}$$

From

$$I = I_0 rac{sin^2 eta}{eta^2}$$
 for single-slit diff pattern

I will be minimum for $\ eta=m\pi; m
eq 0$

$$\beta = \frac{\pi}{\lambda_0} b \sin \theta = m\pi ; m = 0, 1, 2, 3,$$

 \Rightarrow $b \sin \theta = m\lambda_0$; $m = \pm 1, \pm 2, \pm 3, \dots$: represents condition for min

$$\Rightarrow 1^{\rm st} \text{ minimum appears at } \theta = \sin^{-1} \left(\frac{\lambda_0}{b} \right)$$

2nd minimum appears at
$$\theta = \sin^{-1}\left(\frac{2\lambda_0}{b}\right)$$
;

What will be the max value of *m* allowed?

Integer
$$\leq \frac{b}{\lambda_0}$$

For maxima, we differentiate $I = I_0 \frac{\sin^2 \beta}{\beta^2}$

$$\frac{dI}{d\beta} = I_0 \left[\frac{2\sin\beta\cos\beta}{\beta^2} - \frac{2\sin^2\beta}{\beta^3} \right] = 0 \quad \Rightarrow \quad 2\cos\beta \left[\beta\sin\beta - \frac{\sin^2\beta}{\cos\beta} \right] = 0$$

 \Rightarrow Either $\cos \beta = 0$ or $\sin \beta [\beta - \tan \beta] = 0$

But

 $\sin \beta = 0$ corresponds to minima: $\beta = m\pi$; $m \neq 0$

Thus maxima will be given by roots of the transcendental eq:

$$\beta - \tan \beta = 0$$
 i.e. $\tan \beta = \beta$

Intersections of the plots of LHs and RHS yields roots as

$$\beta = 1.43\pi, 2.46\pi, \dots$$

$$\Rightarrow I = I_0 \frac{\sin^2 1.43\pi}{(1.43\pi)^2} = 0.0496$$
 for the 1st maxima

Fraunhofer diffraction by a single slit:

Let the slit width be b

Diffraction pattern To obtain the intensity at P at the focal plane of Lens Assume the slit consists of N number of equally spaced (Δ) point sources $A_{1,2,3,\ldots}$

again $\angle A_1 A_2 A_2^{\prime} + \angle A_2 A_1 A_2^{\prime} = \frac{\pi}{2} = \pi/2 - \theta + \angle A_2 A_1 A_2^{\prime}$ $\Rightarrow \angle A_2^{\prime} A_1 A_2 = \theta$ $\Rightarrow A_2 A_2^{\prime} / \Delta = \cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$ $\Rightarrow \text{Corresponding phase diff: } \phi = \frac{2\pi}{\lambda_0} \Delta \sin\theta$

Fields due to sources $A_{1,2,3,\ldots}$ will superimpose at P with different phases due to slight path length difference between consecutive point sources

If we assume n number of point sources \Rightarrow

$$b = (N-1)\Delta$$

Likewise, subsequent rays will also be differing in phase from the previous one – all of which will superimpose at P

Thus the resultant electric field of the light at *P* will be $E = a \cos \omega t + a \cos(\omega t - \phi) + a \cos(\omega t - 2\phi) + ...$

$$E = a[\cos \omega t + \cos(\omega t - \phi) + \cos(\omega t - 2\phi) + \dots + \cos(\omega t - (N-1)\phi)]$$

From complex analysis one can represent

$$E_1 = a \cos \omega t$$
 as real part of $E_1 = ae^{i\omega t}$

Likewise

$$E_2 = a \cos(\omega t - \phi_1)$$
 is the real part of $ae^{i(\omega t - \phi_1)}$

Thus one can express total E at P as

$$\begin{split} E &= E_1 + E_2 + \dot{E_3} + \ldots = a \, e^{i\omega t} \Big[1 + e^{-i\phi} + e^{-2i\phi} + \cdots + e^{-i(N-1)\phi} \Big] \\ &= a \, e^{i\omega t} \, \frac{1 - e^{-iN\phi}}{1 - e^{-i\phi}} = a \, e^{i\omega t} \, \frac{e^{-iN\phi/2}}{e^{-i\phi/2}} \times \frac{e^{+iN\phi/2} - e^{-iN\phi/2}/2i}{e^{+i\phi/2} - e^{-i\phi/2}/2i} \\ &= a \, \frac{\sin \frac{N\phi}{2}}{\sin \frac{\phi}{2}} \times \frac{e^{i\left[\omega t - \frac{N\phi}{2}\right]}}{e^{-i\frac{\phi}{2}}} = a \, \frac{\sin \frac{N\phi}{2}}{\sin \frac{\phi}{2}} \times e^{i\left[\omega t - (N-1)\frac{\phi}{2}\right]} \end{split}$$

Thus

$$E = a \frac{\sin \frac{N\phi}{2}}{\sin \frac{\phi}{2}} \times e^{i\left[\omega t - (N-1)\frac{\phi}{2}\right]} = E_{\theta} \cos\left[\omega t - (N-1)\frac{\phi}{2}\right]; \quad E_{\theta} = a \frac{\sin\left(\frac{N\phi}{2}\right)}{\sin \frac{\phi}{2}} \dots \dots \dots (X)$$

In the limit, $N \to \infty$ and $\Delta \to 0 \Rightarrow N\Delta \to b$

$$\frac{N\phi}{2} = \frac{N}{2} \times \frac{2\pi}{\lambda_0} \Delta \sin \theta = \frac{\pi}{\lambda_0} N\Delta \sin \theta = \frac{\pi}{\lambda_0} b \sin \theta$$

Moreover

$$\phi = \frac{2\pi}{\lambda_0} \Delta \sin \theta = \frac{2\pi}{\lambda_0} \times \frac{b}{N} \times \sin \theta \rightarrow 0 \text{ for large } N \Rightarrow \sin \frac{\phi}{2} \approx \frac{\phi}{2}$$

Hence

$$E_{\theta} \approx a \frac{\sin \frac{N\phi}{2}}{\frac{\phi}{2}} = a \frac{\sin \left(\frac{\pi}{\lambda_0} b \sin \theta\right)}{\frac{\pi}{N \lambda_0} b \sin \theta} = a N \frac{\sin \left(\frac{\pi}{\lambda_0} b \sin \theta\right)}{\frac{\pi}{\lambda_0} b \sin \theta} = A \frac{\sin \beta}{\beta}; \ \beta = \frac{\pi}{\lambda_0} b \sin \theta$$

$$\Rightarrow \text{From (X)} \quad E = A \frac{\sin \beta}{\beta} \cos(\omega t - \beta) \Rightarrow \text{Intensity:} \quad |E|^2 = I = \left|A \frac{\sin \beta}{\beta} e^{i(\omega t - \beta)}\right|^2 = I_0 \frac{\sin^2 \beta}{\beta^2}$$

$$(N-1) \frac{\phi}{2} \approx N \frac{\phi}{2} = \frac{\pi}{\lambda_0} b \sin \theta = \beta$$