CMPE 185 Autonomous Mobile Robots

Mobile Robot Kinematics

Dr. Wencen Wu

Computer Engineering Department

Kinematics

- Definition of kinematics
 - "Description of the motion of points, bodies or systems of bodies"
 - ...without consideration of the causes of motion (=> dynamics)
 - Required for kinematic simulation and control

- Types of motion of single bodies
 - Translation
 - Rotation
 - Combined motion

Translation and rotation

Kinematics

Forward kinematics

 Given a set of actuator positions, determine the corresponding pose

Inverse kinematics

 Given a desired pose, determine the corresponding actuator positions

Wheeled Kinematics

- Not all degrees of freedom of a wheel can be actuated or have encoders
- Wheels can impose differential constraints that complicate the computation of kinematics

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} \dot{\phi}r \\ 0 \end{bmatrix}$$
The rolling constraint no-sliding constraint no-slidint no-sliding constraint no-sliding constraint no-sliding constra

Wheeled Kinematics

- P: center of the robot
- r: radius of the wheel
- 2L: length of the axles
- *v*: linear velocity of the robot
- w: angular (rotational) velocity of the robot
- $\dot{\varphi}_1$: rotational speed of the right wheel
- $\dot{\varphi}_2$: rotational speed of the left wheel

Differential Kinematics

Differential forward kinematics

• Given the wheels' speed inputs - $\dot{\varphi}_1$ and $\dot{\varphi}_2$, determine the robot's velocity $\dot{\xi}_I = \left[\dot{x}, \dot{y}, \dot{\theta} \right]$ or state (x, y, θ) in the global frame

Differential Kinematics

Differential inverse kinematics

• Given the desired $\dot{\xi}_I = [\dot{x}, \dot{y}, \dot{\theta}]_{\text{desired}}$ or state $(x, y, \theta)_{\text{desired}}$ of the robot in the global frame, determine the corresponding wheels' speed input $(\dot{\varphi}_1, \dot{\varphi}_2)$

Differential Forward Kinematics

 Before we continue, we need to understand the relation between angular velocity and linear velocity

Differential Forward Kinematics

- Apply this to a wheel on the robot
- Kinematic constraint: $r\dot{\phi}_i = v_i$

Two-Wheeled Robot Kinematic Model

 Linear velocity of the robot is the average of the two wheel velocities

$$v = \frac{v_1 + v_2}{2} = \frac{r\dot{\varphi}_1 + r\dot{\varphi}_2}{2}$$

Two-Wheeled Robot Kinematic Model

- Use the instantaneous center of rotation (ICR)
- Similar triangles give the angular rate of rotation

$$\omega = \frac{-v_2}{\rho} = \frac{-(v_2 - v_1)}{2L}$$

$$\omega = \frac{r\dot{\varphi}_1 - r\dot{\varphi}_2}{2L}$$

Fun Time

Forward Kinematics

- We now know how to calculate how wheel speeds affect the robot velocities (linear velocity v and angular velocity w) in the global coordinate frame
- This will be useful when we want to control the robot to track points in the global coordinate frame by controlling wheel speeds

$$\dot{x}_I = v \cdot \cos\theta$$

$$\dot{y}_I = v \cdot \sin\theta$$

$$\dot{\theta}_I = \dot{\theta}_R = w$$

Inverse Kinematics

 How to determine the speed of the wheels to obtain the desired velocities of the robot?

Differential Inverse Kinematics

- Given the desired velocity of the robot, determine the corresponding wheel's speed, or
- Standing in pose (x, y, θ) at time t, determine the control parameters, i.e., (v, w) or $(\dot{\varphi}_1, \dot{\varphi}_2)$, such that the pose at time $t + \delta t$ is (x', y', θ')

Differential Inverse Kinematics

- Finding some solutions are not hard, but finding the "best" solution is very difficult
- "Best" in the sense of
 - Quickest time
 - Most energy efficient
 - Smoothest velocity profiles
 - **■** Etc...

Differential Inverse Kinematics – Decomposition

- One simple working approach: decompose the problem into two operations:
 - Move in a straight line

$$v_1 = v_2$$
, $\omega \delta t = 0$

- Rotate in place about center
 - $\circ v_1 = -v_2$
 - $\theta' = \theta + \omega \delta t$

Differential Inverse Kinematics – Decomposition

 Step 1: turn so that the wheels are parallel to the line between the original and final position of the robot origin.

$$v_1(t) = -v_2(t) = v_{\text{max}}$$

 Step 2: drive straight until the robot's origin coincides with the destination

$$v_1(t) = v_2(t) = v_{\text{max}}$$

 Step 3: rotate again in order to achieve the desired final orientation

$$-v_1(t) = v_2(t) = v_{\text{max}}$$

Differential Inverse Kinematics – Decomposition

Velocity profile

Kinematic Models of a Simple 2D Robot in Practice

Two models

$$\begin{cases} \dot{x} = v \cos \theta \\ \dot{y} = v \sin \theta \\ \dot{\theta} = w \end{cases}$$

Design for this model!

$$\begin{cases} \dot{x} = \frac{r}{2} (\dot{\varphi}_1 + \dot{\varphi}_2) \cos \theta \\ \dot{y} = \frac{r}{2} (\dot{\varphi}_1 + \dot{\varphi}_2) \sin \theta \\ \dot{\theta} = \frac{r}{2L} (\dot{\varphi}_2 - \dot{\varphi}_1) \end{cases}$$

Implement this model

Kinematic Model of a Simple 2D Robot

Continuous time model:

$$\begin{cases} \dot{x} = \frac{r}{2}(\dot{\varphi}_1 + \dot{\varphi}_2)\cos\theta \\ \dot{y} = \frac{r}{2}(\dot{\varphi}_1 + \dot{\varphi}_2)\sin\theta \\ \dot{\theta} = \frac{r}{2L}(\dot{\varphi}_2 - \dot{\varphi}_1) \end{cases}$$

Discrete time model

$$\begin{cases} x_{k+1} = x_k + \frac{r}{2} (\dot{\varphi}_{1,k} + \dot{\varphi}_{2,k}) \cos \theta_k \Delta t \\ y_{k+1} = y_k + \frac{r}{2} (\dot{\varphi}_{1,k} + \dot{\varphi}_{2,k}) \sin \theta_k \Delta t \\ \theta_{k+1} = \theta_k + \frac{r}{2L} (\dot{\varphi}_{2,k} - \dot{\varphi}_{1,k}) \Delta t \end{cases}$$

From One Model to Another

A simple task: move from A to B in 10s

- High level task!
- Control design: \mathbf{v} and $\boldsymbol{\omega}$

t = 10.5

• Commands sent to the robots: $\dot{\phi}_1$ and $\dot{\phi}_2$

$$v(t) = \frac{r}{2}(\dot{\varphi}_1 + \dot{\varphi}_2)$$
 \Rightarrow $\frac{2v}{r} = \dot{\varphi}_1 + \dot{\varphi}_2$

$$\frac{2v}{r} = \dot{\varphi}_1 + \dot{\varphi}_2$$

$$w(t) = \frac{r}{2L}(\dot{\varphi}_2 - \dot{\varphi}_1) \qquad \Longrightarrow \qquad \frac{wL}{r} = \dot{\varphi}_2 - \dot{\varphi}_1$$

$$\frac{wL}{r} = \dot{\varphi}_2 - \dot{\varphi}_1$$

$$\dot{\varphi}_1 = \frac{2v + wL}{2r}$$

$$\dot{\varphi}_2 = \frac{2v - wL}{2r}$$

$$\dot{\varphi}_2 = \frac{2v - wL}{2r}$$

From One Model to Another

- An intuitive example
- For inputs v = 0, $\omega = C$ (a constant), find the corresponding angular wheels velocities $\dot{\varphi}_1$ and $\dot{\varphi}_2$

$$\dot{\varphi}_1 = \frac{2v + wL}{2r}$$

$$\dot{\varphi}_2 = \frac{2v - wL}{2r}$$

$$\dot{\varphi}_1 = \frac{CL}{2r}$$

$$\dot{\varphi}_2 = -\frac{CL}{2r}$$

Experiment: Multi-Robot Source Seeking

- Khepera III robots
- Infrared sensors

Self-Organizing Swarming Robots

Multi-robot Dynamic Field Mapping

• Thank you!