SOLUTION Section 4.6 – Graphs: Definitions and Basic Properties

Exercise

Determine whether the graph shown has directed or undirected edges, whether it has multiple edges, and whether it has one or more loops.

Solution

- a) This is a simple graph; the edges are undirected, and there are no parallel edges or loops.
- b) This is a multigraph; the edges are undirected, and there are no loops, but there are parallel edges.
- c) This is a pseudograph; the edges are undirected, and there are no parallel edges or loops.
- d) This is a multigraph; the edges are undirected, and there are no loops, but there are parallel edges.
- e) This is a directed graph; the edges are directed, and there are no parallel edges.
- f) This is a directed multigraph; the edges are directed, and there are parallel edges.
- g) This is a directed multigraph; the edges are directed, and there is a set of parallel edges.

Define each graph formally by specifying its vertex set, its edge set, and a table giving the edge-endpoint function

Solution

a) Vertex set
$$\{v_1, v_2, v_3, v_4\}$$

Edge set $\{e_1, e_2, e_3\}$

Edge-endpoint function:

Edge	Endpoints
e_1	$\left\{v_1, v_2\right\}$
e_2	$\left\{v_1, v_3\right\}$
e_3	$\{v_3\}$

b) Vertex set
$$\{v_1, v_2, v_3, v_4\}$$

Edge set $\{e_1, e_2, e_3, e_4, e_5\}$

Edge-endpoint function:

Edge	Endpoints
e_1	$\left\{v_1, v_2\right\}$
e_2	$\left\{v_2, v_3\right\}$
e_3	$\left\{v_2, v_3\right\}$
e_4	$\left\{v_2, v_4\right\}$
e ₅	$\{v_4\}$

Graph G has vertex set $\{v_1, v_2, v_3, v_4, v_5\}$ and edge set $\{e_1, e_2, e_3, e_4\}$, with edge-endpoint function as follow

Edge	Endpoints
e_1	$\left\{v_1, v_2\right\}$
e_2	$\left\{v_1, v_2\right\}$
e_3	$\left\{v_2, v_3\right\}$
e_4	$\{v_2\}$

Solution

Exercise

Graph H has vertex set $\{v_1, v_2, v_3, v_4, v_5\}$ and edge set $\{e_1, e_2, e_3, e_4\}$, with edge-endpoint function as follow

Edge	Endpoints
e_1	$\{v_1\}$
<i>e</i> ₂	$\left\{v_2, v_3\right\}$
e_3	$\left\{v_2, v_3\right\}$
e_4	$\left\{v_1, v_5\right\}$

Solution

Show that the 2 drawings represent the same graph by labeling the vertices and edges of the right-hand drawing to correspond to those of the left-hand drawing.

Solution

a) If you just hold the vertex v_5 turn it around to up position and stretch vertically little

b) Hold the edge e_4 and twisted as the vertices switch position.

c)

Exercise

For each of the graphs

i. Find all edges that are incident on v_1

ii. Find all vertices that are adjacent to v_3

iii. Find all edges that are adjacent to e_1

iv. Find all loops

v. Find all parallel edges

vi. Find all isolated vertices

vii. Find the degree of v_3

viii. Find the total degree of the graph

Solution

a) e_1 , e_2 , and e_3 are incident on v_1 v_1 , v_2 and v_3 are adjacent to v_3

```
e_2, e_3, e_8, and e_9 are adjacent to e_1
e_6 and e_7 are loops.
e_4 and e_5 are parallel; e_8 and e_9 are parallel v_6 is an isolated vertex.

Degree of v_3 = 5
Total degree = 20
```

b) e_1 , e_2 , and e_7 are incident on v_1 v_1 , v_2 and v_3 are adjacent to v_3 e_2 and e_7 are adjacent to e_1 e_1 and e_3 are loops. e_4 and e_5 are parallel
Isolated vertex: none.
Degree of $v_3 = 2$ Total degree = 14

Exercise

Let G be a simple graph. Show that the relation R on the set of vertices of G such that uRv if and only if there is an edge associated to $\{u, v\}$ is a symmetric, irreflexive relation on G.

Solution

In a simple graph, edges are undirected.

If uRv, then there is edge associated with $\{u, v\}$. But $\{u, v\} = \{v, u\}$, so this edge is associated with $\{v, u\}$ and, therefore. So, R is symmetric.

A simple graph does not allow loops; that is if there is an edge associated with $\{u, v\}$, then $u \neq v$.

Thus uRu never holds, and so by definition R is irreflexive.

Let G be an undirected graph with a loop at every vertex. Show that the relation R on the set of vertices of G such that uRv if and only if there is an edge associated to $\{u, v\}$ is a symmetric, reflexive relation on G.

Solution

If uRv, then there is edge associated with $\{u, v\}$, and since the graph is undirected, this is also edge joining vertices $\{v, u\}$ and therefore. So, R is symmetric.

The relation is reflexive because the loops guarantees that uRu for each vertex u.

Exercise

Explain how graphs can be used to model electronic mail messages in a network. Should the edges be directed or undirected? Should multiple edges be allowed? Should loops be allowed? Describe a graph that models the electronic mail sent in a network in a particular week.

Solution

We can have a vertex for each mailbox or e-mail address in the network, with a directed edge between two vertices if a message is sent from the tail of the edge to the head.

We use directed edge for each message sent during the week.

Exercise

A bipartite graph G is a simple graph whose vertex set can be portioned into two disjoint nonempty subsets V_1 and V_2 such that vertices in V_1 may be connected to vertices in V_2 , but no vertices in V_1 are connected to other vertices in V_1 and no vertices in V_2 are connected to other vertices in V_2 . For example, the graph G illustrated in (i) can be redrawn as shown in (ii). From the drawing in (ii), you can see that G is bipartite with mutually disjoint vertex set $V_1 = \left\{v_1, v_3, v_5\right\}$ and $V_1 = \left\{v_2, v_4, v_6\right\}$

Solution

a)

b) $\{v_1, v_2, v_3\}$ form a triangle, we can't create a bipartite graph G.

c)

d) $\{v_2, v_4, v_5\}$ form a triangle, therefore we can't create a bipartite graph G.

e)

