Practical Optimization

A Slight Change

$$D = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$$

$$L(\theta) = \sum_{i} \mathcal{L}(\theta; \mathbf{x}_{i}, \mathbf{y}_{i})$$

$$L(\theta) = \frac{1}{|D|} \sum_{i} \mathcal{L}(\theta; \mathbf{x}_{i}, \mathbf{y}_{i})$$
$$= \mathbf{E}_{\mathbf{x}, \mathbf{y} \sim D} [\mathcal{L}(\theta; \mathbf{x}, \mathbf{y})]$$

Gradient Descent

How do we find $\operatorname{argmin}_{\theta}L(\theta)$

Stochastic Gradient Descent

Gradient Descent:

Initialize random θ

N iterations:

$$\begin{aligned} & B_0 & \longleftarrow \\ & \text{For } \mathbf{x}, \mathbf{y} \in D \\ & \theta \leftarrow \theta - \frac{\epsilon}{|D|} \nabla_{\theta_\bullet} \mathcal{E}(\theta_\bullet; f(\mathbf{x}), \mathbf{y}) \end{aligned}$$

Stochastic Gradient Descent:

Initialize random θ

N iterations:

For
$$x, y \in D$$
 Iteration
$$\theta \leftarrow \theta - \frac{\epsilon}{|D|} \nabla_{\theta} \mathcal{E}(\theta; f(x), y)$$
 Epoch

Noisy but much faster than standard GD

SGD – Variance

$$\mathbf{E}_{\mathbf{x},\mathbf{y}\sim D}[\nabla_{\theta} \mathcal{E}(\theta;\mathbf{x},\mathbf{y})] = \nabla_{\theta} L(\theta)$$

$$\nabla_{\theta} \mathcal{L}(\theta; \mathbf{x}_i, \mathbf{y}_i) \neq \nabla_{\theta} L(\theta)$$

$$\begin{aligned} \operatorname{Var} \left[\nabla_{\theta} \ell(\theta; \mathbf{x}, y) \right] &= \operatorname{E}_{\mathbf{x}, y \sim D} \left[\left\| \nabla_{\theta} \ell(\theta; \mathbf{x}, y) - \nabla_{\theta} L(\theta) \right\|^{2} \right] \\ &= \operatorname{E}_{\mathbf{x}, y \sim D} \left[\left\| \nabla_{\theta} \ell(\theta; \mathbf{x}, y) \right\|^{2} \right] - \left\| \nabla_{\theta} L(\theta) \right\|^{2} \end{aligned}$$

Mini-batches

Stochastic Gradient Descent:

Initialize random θ

N iterations:

For
$$x, y \in D$$

$$\theta \leftarrow \theta - \frac{\epsilon}{|D|} \nabla_{\theta} \mathcal{E}(\theta; f(\mathbf{x}), y)$$

Minibatch Gradient Descent:

Initialize random θ

N iterations:

Partition D into D_1, \ldots, D_k

For $1 \le i \le k$

$$\theta \leftarrow \theta - \epsilon E_{x, y \sim D_i} [\nabla_{\theta} \mathcal{L}(\theta; f(x), y)]$$

Batch size =
$$|D_1| = |D_2| = ... = |D_k|$$

Gradient Descent Algorithms

Mini-batch Variance

Stochastic Gradient Descent

$$\operatorname{Var}\left[\nabla_{\theta} \mathcal{E}(\theta; \mathbf{x}, y)\right] = \operatorname{E}_{\mathbf{x}, y \sim D}\left[\left\|\nabla_{\theta} \mathcal{E}(\theta; \mathbf{x}, y)\right\|^{2}\right] - \left\|\nabla_{\theta} L(\theta)\right\|^{2}$$

Minibatch Gradient Descent

$$\operatorname{Var}\left[\nabla_{\theta} \mathcal{L}(\theta; \mathbf{x}, \mathbf{y})\right] = \operatorname{E}_{D_{i}}\left[\operatorname{E}_{\mathbf{x}, \mathbf{y} \sim D_{i}}\left[\left\|\nabla_{\theta} \mathcal{L}(\theta; \mathbf{x}, \mathbf{y})\right\|\right]^{2}\right] - \left\|\nabla_{\theta} L(\theta)\right\|^{2}$$

Smaller

Momentum

Initialize random θ

N iterations:

For
$$x, y \in D$$

$$\mathbf{v} \leftarrow \nabla_{\theta} \mathcal{C}(\theta, f(\mathbf{x}), \mathbf{y})$$

$$\mathbf{v} \leftarrow \rho \mathbf{v} + \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}; f(\mathbf{x}), \mathbf{y})$$

$$\theta \leftarrow \theta - \epsilon v$$

$$\rho = 0.9$$