

Desafío - Introducción a Big Data

- Para realizar este desafío debes haber estudiado previamente todo el material disponibilizado correspondiente a la unidad.
- Una vez terminado el desafío, comprime la carpeta que contiene el desarrollo de los requerimientos solicitados y sube el .zip en el LMS.
- Desarrollo desafío:
 - o El desafío se debe desarrollar de manera Individual/Grupal.

Requerimientos

Ejercicio 1: Ingesta de datos semiestructurados

- Utilizando las librerías requests y json, realice una consulta a la API BallDontLie.
- Mediante esta API, genere una consulta de 100 juegos (busquen el endpoint Get All Games en la página, dentro de Games). Puede usar la opción ?per_page=100 en la dirección de la API para lograr esto.
- Guarde la consulta en una variable, y asegúrese que ésta sea semiestructurada. Consulte los datos y metadatos asociados.
- Dentro de la lista de datos, comente cuáles son las llaves de cada registro.

Ejercicio 2: Organización de los datos

• En base a los datos consultados en la API, genere un objeto pd.DataFrame con la siguiente estructura:

 ${\sf games_df.head(2)}$

	se as on	p e r i o d	hom e	ho me _co nfe ren ce	ho me_ divi sion	visi tor	visitor_ confere nce	visito r_divi sion	ho me_ sco re	visit or_s cor e	home_ differe ntial	visitor_ differe ntial
0	20 18	4	Bost on Celti cs	Eas t	Atla ntic	Ch arl ott e Hor net s	East	South east	126	94	32	-32
1	20 18	4	Bost on Celti cs	Eas t	Atla ntic	LA Cli ppe rs	West	Pacifi c	112	123	-11	11

visitor	visitor_conference	visitor_division	home_score	visitor_score	home_differential	visitor_differentia
Charlotte Hornets	East	Southeast	126	94	32	-32
LA Clippers	West	Pacific	112	123	-11	11

• Para obtener la estructura, sólo puede utilizar operaciones map y comprensiones de lista.

Ejercicio 3: El efecto de jugar de local

- Genere una columna en el pd.DataFrame que identifique si el equipo que jugó de local ganó (1) o no (0).
- Repita el procedimiento para identificar si el equipo que jugó de visitante ganó (1) o no (0).
- Reporte cuáles son los primeros y últimos 5 equipos en cuanto a desempeño por jugar local.
- Reporte cuáles son los primeros y últimos 5 equipos en cuanto a desempeño por jugar de visita.

Ejercicio 4: Obteniendo el porcentaje de ganar local y de visita

- Genere un nuevo objeto que guarde el porcentaje de juegos ganados como local por equipo.
- Repita lo mismo para los juegos donde el equipo fue visitante.
- ¿Qué equipos tienen iguales chances de ganar como visitante o local?