KEY_Practice24_Basic_Stats_IV_Significance

February 24, 2020

1 Practice: Statistical Significance

Let's continue to work with the diabetes dataset to apply a t-test to real world data.

```
[1]: # Import pandas, so that we can import the diabetes dataset and work with the
     \rightarrow data frame version of this data
    import pandas as pd
[2]: # Set the path
    path = 'https://raw.githubusercontent.com/GWC-DCMB/ClubCurriculum/master/'
    # This is where the file is located
    filename = path + 'SampleData/diabetes.csv'
[3]: # Load the diabetes dataset into a DataFrame
    diabetes_df = pd.read_csv(filename)
    diabetes_df
[3]:
          AGE
               SEX
                      BMI
                              MAP
                                     TC
                                            LDL
                                                  HDL
                                                         TCH
                                                                  LTG
                                                                       GLU
                                                                               Y
                                                 38.0
           59
                    32.1
                           101.00
                                           93.2
    0
                 2
                                    157
                                                        4.00
                                                              4.8598
                                                                         87
                                                                             151
    1
          48
                 1
                    21.6
                            87.00
                                    183
                                         103.2
                                                 70.0
                                                        3.00
                                                               3.8918
                                                                              75
    2
          72
                 2
                    30.5
                            93.00
                                    156
                                           93.6
                                                 41.0
                                                        4.00
                                                              4.6728
                                                                         85
                                                                             141
    3
          24
                 1
                    25.3
                            84.00
                                    198
                                         131.4
                                                 40.0
                                                        5.00
                                                               4.8903
                                                                             206
    4
          50
                    23.0
                           101.00
                                    192
                                         125.4
                                                 52.0
                                                              4.2905
                                                        4.00
                                                                         80
                                                                             135
                      . . .
                               . . .
                                    . . .
                                            . . .
                                                   . . .
                                                         . . .
                                                                  . . .
                                                                        . . .
                                                                             . . .
                                         113.8
    437
           60
                 2
                    28.2
                           112.00
                                    185
                                                 42.0
                                                        4.00
                                                               4.9836
                                                                         93
                                                                             178
    438
          47
                    24.9
                            75.00
                                         166.0
                 2
                                    225
                                                 42.0
                                                        5.00
                                                              4.4427
                                                                        102
                                                                             104
    439
          60
                 2
                    24.9
                            99.67
                                    162
                                         106.6
                                                 43.0
                                                        3.77
                                                               4.1271
                                                                         95
                                                                             132
    440
                    30.0
                            95.00
                                    201
                                         125.2
                                                 42.0
                                                        4.79
                                                               5.1299
                                                                             220
           36
                                                                         85
    441
           36
                    19.6
                            71.00
                                    250
                                         133.2 97.0
                                                        3.00
                                                               4.5951
                                                                         92
                                                                              57
```

[442 rows x 11 columns]

We are interested in understanding whether there are differences in LDL levels (the "bad" cholesterol) by sex, i.e. are LDL levels different for males vs. females?

1. Formulate the null hypothesis and the alternative hypothesis. - Null hypothesis: There is NO difference in LDL levels between male and female. - Alternative hypothesis: There is a difference in LDL levels by sex.

```
[4]: # Import numpy import numpy as np
```

Males are indicated by "1" for the variable "SEX", while females are indicated by "2".

```
[5]: # Define a vector of the LDL levels for males and name it ldl_male
diabetes_male = diabetes_df.query('SEX == 1')
ldl_male = diabetes_male['LDL']

# Define a vector of the LDL levels for females and name it ldl_female
diabetes_female = diabetes_df.query('SEX == 2')
ldl_female = diabetes_female['LDL']
```

- **2.** Identify and compute a test statistic that can be used to reject or fail to reject the null **hypothesis.** As we are working with two independent samples, we will use the two-sample t-test and use the t-statistic.
 - 3. Compute the test statistic and p-value.

p-value = 0.0026499873735660695

```
[6]: # Import stats methods to help calculate the t-statistic and p-value from scipy import stats

[7]: # Run a Student's t-test t_statistic, p_value = stats.ttest_ind(ldl_male, ldl_female)

# Print out the test statistic and p-value print("t-statistic = " + str(t_statistic)) print("p-value = " + str(p_value))

t-statistic = -3.022893334345971
```

4. Compare the p-value to an acceptable significance value, α and compare the test statistic to acceptable critical value(s). If p-value $\leq \alpha$ and the test-statistic \geq +critical value or test-statistic \leq -critical value, that the observed effect is statistically significant, the null hypothesis is rejected, and the alternative hypothesis is valid.** - p-value = 0.0026 < 0.05, so we reject the null hypothesis. - t-statistic = -3.02 < -1.96, so this reaffirms that we reject the null hypothesis. - Interpretation: There is a significant difference in LDL levels between males and females.

Congratulations on completing the lesson and practice!

It's a lot of information, but you learned powerful tools to be on your way to answer your own research questions by analyzing real world data!

Challenge: Using the code you wrote above as a template, can you run a t-test comparing LDL Cholesterol for people 50 & older vs. people under 50?

```
[8]: # Define a vector of the LDL levels for people 50 or older
diabetes_over50 = diabetes_df.query('AGE >= 50')
ldl_over50 = diabetes_over50['LDL']

# Define a vector of the LDL levels for females and name it ldl_female
diabetes_under50 = diabetes_df.query('AGE < 50')
ldl_under50 = diabetes_under50['LDL']

# Run a Student's t-test
t_statistic, p_value = stats.ttest_ind(ldl_over50, ldl_under50)</pre>
```

```
# Print out the test statistic and p-value
print("t-statistic = " + str(t_statistic))
print("p-value = " + str(p_value))
```

t-statistic = 3.185760417933572 p-value = 0.001546465356577734