STUDENT	ID:	620040546
, , , , , , , , ,	110.	0200.00.0

COMP2240 - Computer Organization Exercise Sheet (Lab #1) (1 coursework mark)

Exercise #1: (7 points)

Complete the following truth tables for the logic gates. Please remember to order your inputs in the conventional manner (i.e. in counting order).

NOT	
In	Out
0	1
1	0

AND		
A	В	Out
0	0	0
0	1	0
1	0	0
1	1	1

OR		
A	В	Out
0	0	0
0	1	1
1	0	1
1	1	1

	2	KOR
A	В	Out
0	0	0
0	1	1
1	0	1
1	1	0

NAND		
A	В	Out
0	0	1
0	1	1
1	0	1
1	1	0

NOR		
A	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

	X	NOR
A	В	Out
0	0	1
0	1	0
1	0	0
1	1	1

Exercise #2: (4 points)

Complete the truth table for each of the combinational logic circuits given and write the Boolean function for the output of each circuit.

Circuit #1		
A	В	Out
0	0	0
0	1	1
1	0	1
1	1	1

		Circuit	#2
A	В	Out	
0	0		
0	1		
1	0		
1	1		

Identify	the
Boolean	function

that this circuit implements

OR GATE____

___OR GATE____

STUDENT ID:	620040546
-------------	-----------

Completion of half-adder: (6 marks)

Exercise 3 (3 points) Implementation of Full Adder

Exercise 4.1: (4 points) Implement an 8-adder

STUDENT	ID:	620040546

Exercise 4.2 (10 points)

Using the 8-adder

Exercise 4.2.1 (7 points)

Use the 8-bit adder to perform the following arithmetic operations by setting the bits at the inputs. All binary numbers should be expressed/interpreted as 2's complement.

Operation to be carried out (Base 10)	Add	er Inputs	ADDER OUTPUT	Adder output Convered to base 10
	A	В		
14 + 12	00001110	00001100	00011010	26
8 - 6	00001000	00000110	00000010	2
6 - 18	00000110	00010010	11110100	244
-120 - 95	01111000	00101111	11010111	215
8 - 8	00001000	00001000	00000000	0
76 + 68	01001100	01000100	10010000	144
120-92	01111000	01011100	00011100	28

Observation: (4.2.2) (3 points)

There may have been at least one case in which the result that was produced by the adder was invalid. Identify the case(s) and explain briefly why this (these) situation(s) arose

The fact is, the 8-adder is limited to addition so all the arithmetic calculations
cannot be completed by the adder. The alu had to be used to do the the other
calculations not involving addition, this is because it has the necessary properties
to do so.

Tutorials

Question 2

