Continuous Random Variables

Common continuous random variables

A) Uniform random variables [Ross 5.3]

We say X is uniform on the interval (a,b), denoted $X \sim U(a,b)$, if

$$f_X(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{else} \end{cases}$$

So,
$$F_X(x) = \begin{cases} 0 & x \le a \\ \frac{x}{b-a} - \frac{a}{b-a} & a \le x \le b \\ 1 & b \le x \end{cases}$$

Note: If X has units of kg, then a and b have units of kg, and 1/(b-a) has units kg⁻¹.

Example 17.1: Buses arrive at a stop at 7:00, 7:15 and 7:30. If a person arrives between 7:00 and 7:30 uniformly, what is probability that they wait less than 5 minutes?

Solution:

Example 17.2: Let $X \sim U(a,b)$. Find E[X] and Var[X].

Solution:

2) Normal (Gaussian) random variables [Ross 5.4]

Definition 17.1: X is normal (or Gaussian) with parameters μ and σ^2 if

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (17.1)

This is denoted $X \sim \mathcal{N}(\mu, \sigma^2)$.

To verify that $f_X(x)$ has unit area, see Notes #21.

Note: If X has units of kg, then μ has units of kg and σ^2 has units of kg².

Proposition 17.1 If $X \sim \mathcal{N}(\mu, \sigma^2)$, then Y = aX + b is $\mathcal{N}(a\mu + b, a^2\sigma^2)$

Why? [Assume a > 0; a < 0 is similar]

$$F_Y(u) = P[Y \le u]$$

$$= P[aX + b \le u]$$

$$= P[X \le (u - b)/a]$$

$$= F_X\left(\frac{u - b}{a}\right)$$

Then
$$f_Y(u) = \frac{d}{du} F_Y(u)$$

$$= \frac{d}{du} F_X \left(\frac{u-b}{a}\right)$$

$$= f_X \left(\frac{u-b}{a}\right) \times \frac{1}{a}$$

$$= \frac{1}{\sqrt{2\pi}a\sigma} \exp\left(-\frac{(\frac{u-b}{a}-\mu)^2}{2\sigma^2}\right)$$

$$= \frac{1}{\sqrt{2\pi}a\sigma} \exp\left(-\frac{(u-b-a\mu)^2}{2(a\sigma)^2}\right)$$

So $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.