Теорема Виета

Задача 1. а) Пусть многочлен $P(x) = x^3 + ax^2 + bx + c$ раскладывается на *линейные* множители (то есть многочлены первой степени): $P(x) = (x - \alpha_1)(x - \alpha_2)(x - \alpha_3)$. Докажите формулы Buema:

$$\alpha_1 + \alpha_2 + \alpha_3 = -a$$
, $\alpha_1 \alpha_2 + \alpha_2 \alpha_3 + \alpha_3 \alpha_1 = b$, $\alpha_1 \alpha_2 \alpha_3 = -c$.

б) Найдите подобные формулы, если $\deg P = n$ и P раскладывается на линейные множители.

Задача 2. Пусть a+b+c+d>0, ab+bc+ac+ad+bd+cd>0, abc+abd+acd+bcd>0 и abcd>0. Докажите, что a,b,c и d положительны.

Задача 3. а) Пусть число $c \neq 0$. Докажите, что многочлен $x^5 + ax^2 + bx + c$ не может раскладываться на пять линейных множителей. **б**) Та же задача для многочлена $x^5 + ax^4 + bx^3 + c$.

Задача 4. а) Коэффициенты многочлена (x-a)(x-b) целые. Докажите, что a^n+b^n целое при $n\in\mathbb{N}$. **6)** Найдите первые n цифр после запятой в десятичной записи числа $(\sqrt{26}+5)^n$.

Задача 5. Целые числа a,b и c таковы, что числа $\frac{a}{b} + \frac{b}{c} + \frac{c}{a}$ и $\frac{a}{c} + \frac{b}{b} + \frac{b}{a}$ целые. Докажите, что |a| = |b| = |c|.

Многочлены и целые числа

Задача 6. Коэффициенты многочленов P и Q целые. Коэффициенты их произведения делятся на 5. Докажите, что либо коэффициенты P, либо коэффициенты Q делятся на 5.

Задача 7. На графике многочлена из $\mathbb{Z}[x]$ отмечены две точки с целыми координатами. Докажите, что если расстояние между ними — целое число, то у них одинаковые ординаты.

Задача 8. Пусть p(x) — многочлен с целыми коэффициентами.

- а) Докажите, что a-b делит p(a)-p(b) при любых различных целых числах a и b.
- **б)** Пусть уравнения p(x) = 1 и p(x) = 3 имеют целое решение. Может ли уравнение p(x) = 2 иметь два различных целых решения?

Задача 9. Пусть p(x) — непостоянный многочлен с целыми коэффициентами.

- а) Докажите, что при любом целом числе n либо p(n) делит p(n+p(n)), либо p(n)=p(n+p(n))=0.
- **б)** Могут ли все числа $p(0), p(1), p(2), \dots$ быть простыми?

Задача 10. Квадратный трёхчлен $ax^2 + bx + c$ при всех целых x принимает целые значения. Верно ли, что среди его коэффициентов **a)** хотя бы один — целое число; **б)** все — целые числа?

Задача 11. Докажите, что для любого многочлена P(x) степени n, принимающего при всех целых x целые значения, существуют такие целые числа b_0, b_1, \ldots, b_n , что

$$P(x) = b_n C_x^n + b_{n-1} C_x^{n-1} + \dots + b_1 C_x^1 + b_0$$
, где $C_x^i = \frac{x(x-1)\dots(x-i+1)}{i!}$.

У казание: P(x+1) - P(x) тоже многочлен, принимающий целые значения при целых x, но он меньшей степени.

Задача 12. Многочлен P(x) степени n-1 принимает целые значения при n последовательных целых значениях x. Докажите, что $P(x) \in \mathbb{Q}[x]$ и $P(k) \in \mathbb{Z}$ при всех $k \in \mathbb{Z}$.

Задача 13. Докажите, что многочлен $(x-a_1)\dots(x-a_n)-1$ не раскладывается в произведение двух многочленов меньшей степени из $\mathbb{Z}[x]$ при любых попарно различных целых числах a_1,\dots,a_n .

Разное

Задача 14. Пусть P(x) — многочлен степени n, и пусть a — число. Докажите, что P(x) можно записать в виде $c_0 + c_1(x-a) + \ldots + c_n(x-a)^n$, подобрав подходящие числа c_0, \ldots, c_n .

Задача 15. Многочлен f таков, что $f(x^n)$ делится на x-1. Докажите, что $f(x^n)$ делится на x^n-1 .

Задача 16. Даны многочлены положительной степени P(x) и Q(x), причём выполнены тождества P(P(x)) = Q(Q(x)) и P(P(P(x))) = Q(Q(Q(x))). Обязательно ли P(x) и Q(x) совпадают?

Задача 17. Барон Мюнхгаузен попросил задумать непостоянный многочлен P(x) с целыми неотрицательными коэффициентами и сообщить ему только значения P(2) и P(P(2)). Барон утверждает, что лишь по этим данным всегда может восстановить задуманный многочлен. Не ошибается ли барон?

Задача 18. Существует ли такой многочлен P(x), что у него есть отрицательный коэффициент, а у каждой его степени $(P(x))^n$, где n > 1, все коэффициенты положительны?

Задача 19. Существуют ли такие многочлены P(x) и Q(x) из $\mathbb{R}(x)$, что каждое рациональное число r представимо в виде r = P(k)/Q(k) для некоторого целого числа k?

1 a	1 6	2	3 a	3 6	4 a	4 6	5	6	7	8 a	8	9 a	9	10 a	10 6	11	12	13	14	15	16	17	18	19