Práctica 4 – Matriz insumo - producto.

El economista W. Leontief es el autor del modelo o tabla de insumo - producto. Esta tabla refleja la interrelación entre distintos sectores de la economía y los montos de bienes intermedios utilizados durante un período. Actualmente todos los países desarrollados calculan esta matriz para planificar su economía. Conocer la matriz insumo producto ayuda a decidir cuales son los sectores que conviene (económicamente hablando) promover o subsidiar. Un ejemplo en Argentina: la apertura de la economía durante la convertibilidad trató al sector automotriz de forma excepcional. Fue porque según la matriz de insumo producto se trata de un sector muy dinámico (está relacionado con muchos otros), si aumenta la demanda final de autos, esto afecta la producción de los sectores de combustible, metalúrgico, neumáticos, etc.

En este texto presentaremos un ejemplo de una matriz insumo producto. Los interesados pueden ampliar este tema consultando la obra $\acute{A}lgebra,\ de\ A.\ E.\ Garc\'ia\ Venturini\ y\ A.\ Kicillof.$

Presentamos acá una tabla con tres sectores: Agricultura, Industria y Servicios. Los sectores están relacionados entre sí. Por ejemplo Industria debe utilizar como **insumo** productos de otros sectores y por eso **compra**: a Agricultura 200, a Industria 350 y a Servicios 300 (esto se lee en la **columna** de industria). Además la producción de Industria es consumida, en parte, por los mismos sectores: Agricultura 70, Industria 350 y Servicios 230 (y aparece en la **fila** de Industria).

	Agricultura	Industria	Servicios	Demanda final	Valor bruto de
					la producción
Agricultura	50	200	15	235	500
Industria	70	350	230	350	1000
Servicios	100	300	110	445	955
Valor agregado	280	150	600		
Valor bruto de					
la producción	500	1000	955		2455

En la columna de **Demanda final** aparecen los consumos que no corresponden a los sectores acá incluidos, a los consumidores finales (que no se encuandran en ningún sector productivo) y a la inversión (es la parte de la producción del período que se "acumula" para los siguientes). Por ejemplo, siguiendo con Industria, vende 350 además de lo que vende a los 3 sectores acá incluidos. La última columna corresponde al **Valor Bruto de la producción** correspondiente a cada sector: es la suma de todas las ventas, por ejemplo en el caso de Industria: 70 + 350 + 230 + 350 = 1000.

La fila de Valor Agregado corresponde a la diferencia entre el Valor Bruto de la producción y la suma de todos los insumos. En el caso de Industria es: 1000 - (200 + 350 + 300) = 150.

La tabla como sistema de ecuaciones.

Ahora expresaremos esta tabla como sistema de ecuaciones lineales. Primero reemplazaremos los números y sectores por letras genéricas. Por ejemplo x_{23} representa el valor de insumo 2 (que era industria) que utiliza el sector 3 (que era Servicios).

	S_1	S_2	S_3	DF	VBP
S_1	x_{11}	x_{12}	x_{13}	Y_1	X_1
S_2	x_{21}	x_{22}	x_{23}	Y_2	X_2
S_3	x_{31}	x_{32}	x_{33}	Y_3	X_3
VA	VA_1	VA_2	VA_3		
VBP	X_1	X_2	X_3		

Si representamos esta tabla como sistema de ecuaciones tenemos:

$$\begin{cases} x_{11} + x_{12} + x_{13} + Y_1 = X_1 \\ x_{21} + x_{22} + x_{23} + Y_2 = X_2 \\ x_{31} + x_{32} + x_{33} + Y_3 = X_3 \end{cases}$$

Coeficientes técnicos.

Las **columnas** representan la estructura de costos de cada sector. Si se divide cada insumo por el valor bruto de producción correspondiente (el total de la columna), se obtienen los **coeficientes técnicos** (que registran la necesidad de insumos de cada sector para producir una unidad del producto que dicho sector produce):

$$a_{ij} = \frac{x_{ij}}{X_j}$$
 (*i* indica al sector que vende y *j* al que produce).

O sea: se divide cada coeficiente de una columna por el total de la misma. En nuestro ejemplo queda (redondeando al segundo decimal)

	Agricultura	Industria	Servicios
Agricultura	$\frac{50}{500} = 0,10$	$\frac{200}{1000} = 0,20$	$\frac{15}{955} = 0,02$
Industria	$\frac{70}{500} = 0,14$	$\frac{350}{1000} = 0,35$	$\frac{230}{955} = 0,24$
Servicios	$\frac{100}{500} = 0,20$	$\frac{300}{1000} = 0,30$	$\frac{110}{955} = 0, 12$

Como $a_{ij} = \frac{x_{ij}}{X_j}$, entonces $x_{ij} = a_{ij} \cdot X_j$. Usando esto, podemos reescribir el sistema de ecuaciones así:

$$\begin{cases} a_{11} \cdot X_1 + a_{12} \cdot X_2 + a_{13} \cdot X_3 + Y_1 = X_1 \\ a_{21} \cdot X_1 + a_{22} \cdot X_2 + a_{23} \cdot X_3 + Y_2 = X_2 \\ a_{31} \cdot X_1 + a_{32} \cdot X_2 + a_{33} \cdot X_3 + Y_3 = X_3 \end{cases}$$

En nuestro ejemplo quedaría:

$$\begin{cases}
0, 10 X_1 + 0, 20 X_2 + 0, 02 X_3 + Y_1 = X_1 \\
0, 14 X_1 + 0, 35 X_2 + 0, 24 X_3 + Y_2 = X_2 \\
0, 20 X_1 + 0, 30 X_2 + 0, 12 X_3 + Y_3 = X_3
\end{cases}$$

Si llamamos A a la matriz de coeficientes técnicos, Y a la de demandas finales y X a la de valor bruto de producción, y las notamos:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \qquad X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} \qquad Y = \begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \end{bmatrix}$$

el sistema expresado en forma matricial nos queda: $X = A \cdot X + Y$.

(De más está decir, que todo lo que hicimos con 3 sectores, se puede hacer con cualquier cantidad n de ellos).

Coeficientes de requisitos directos e indirectos.

Para medir las necesidades de producción de cada sector ante un cambio de la demanda final (la matriz Y) se opera algebraicamente con las matrices a partir de la ecuación de más arriba:

$$X = A \cdot X + Y \implies X - A \cdot X = Y \implies (I - A) \cdot X = Y \implies$$

$$\Rightarrow X = (I - A)^{-1} \cdot Y \quad \text{(multiplicando a izquierda por } (I - A)^{-1}\text{)}$$

A la matriz (I-A) se la llama **matriz de Leontief**, y a $(I-A)^{-1}$ se la llama **matriz de coeficientes directos e indirectos**. Utilizando esta última, a partir de una variación de la demanda final Y^* se obtiene una nueva matriz de producción X^* , y se puede construir la nueva tabla:

$$X^* = (I - A)^{-1} \cdot Y^* \qquad (\star)$$

Y en nuestro ejemplo:

$$X = \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 0,10 & 0,20 & 0,02 \\ 0,14 & 0,35 & 0,24 \\ 0,20 & 0,30 & 0,12 \end{bmatrix} \right)^{-1} \cdot \begin{bmatrix} Y_1^* \\ Y_2^* \\ Y_3^* \end{bmatrix} =$$

$$= \begin{bmatrix} 0,90 & -0,20 & -0,02 \\ -0,14 & 0,65 & -0,24 \\ -0,20 & -0,30 & 0,88 \end{bmatrix}^{-1} \cdot \begin{bmatrix} Y_1^* \\ Y_2^* \\ Y_3^* \end{bmatrix}$$

De esta forma, si la demanda final, en vez de ser Y = fuera $Y^* =$, se podría calcular el nuevo valor bruto de la producción X^* haciendo:

$$X^* = \begin{bmatrix} 0,90 & -0,20 & -0,02 \\ -0,14 & 0,65 & -0,24 \\ -0,20 & -0,30 & 0,88 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 700 \\ 500 \\ 1000 \end{bmatrix} = \begin{bmatrix} 1,21 & 0,44 & 0,14 \\ 0,41 & 1,91 & 0,53 \\ 0,41 & 0,75 & 1,35 \end{bmatrix} \cdot \begin{bmatrix} 700 \\ 500 \\ 1000 \end{bmatrix} = \begin{bmatrix} 1207 \\ 1772 \\ 2012 \end{bmatrix}$$

El modelo de Leontief afirma que, bajo ciertas hipótesis económicas, la matriz de coeficientes técnicos A es siempre la misma, aunque cambie la demanda final, y por lo tanto, la matriz de coeficientes directos e indirectos $(I-A)^{-1}$ también, lo que justifica el razonamiento hecho en la ecuación (\star) .

Observación: Dado que tendremos que calcular la matriz inversa en repetidas oportunidades, daremos aquí una forma práctica de hacerlo para el caso de matrices de 2×2 , queda como ejercicio verificar este resultado.

Sea $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ una matriz inversible. Entonces la matriz inversa de A es

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} .$$

Ejercicios.

1. Dada la matriz de insumo producto correspondiente a un año para la economía de un país dividida en dos sectores S_1 y S_2 ,

	S_1	S_2	DF	VBP
S_1	5	3	12	20
S_2	10	9	5	24
VA	5	12		
VBP	20	24		44

4

construir la tabla del año para el cual la demanda final es $Y^* = \begin{bmatrix} 26 \\ 39 \end{bmatrix}$.

2. Se sabe que la matriz de coeficientes técnicos correspondiente a un año para la economía de un país dividida en los sectores S_1 y S_2 es $\begin{bmatrix} \frac{2}{5} & \frac{4}{5} \\ \frac{2}{5} & 0 \end{bmatrix}$. Si la matriz de insumo producto correspondiente a ese mismo año es

	S_1	S_2	DF	VBP
S_1			16	100
S_2			15	55
VA	20	11		
VBP	100	55		155

completar dicha tabla y construir la tabla que corresponde a una demanda final de

$$Y^* = \left| \begin{array}{c} 21 \\ 14 \end{array} \right|.$$

3. Dada la tabla de insumo producto correspondiente a un año para la economía de un país dividida en los sectores S_1 y S_2 :

	S_1	S_2	DF	VBP
S_1		18	21	
S_2		12		
VA	13			
VBP				

- (a) Completar la tabla si se cumplen todas las condiciones siguientes:
 - (i) El sector S_1 utiliza insumos del sector S_2 por un valor de 26.
 - (ii) El sector S_2 tiene una demanda final de 10.
 - (iii) El sector S_1 utiliza para si 13 unidades de su propia producción.
 - (iv) El producto bruto total de la economía es 100.
- (b) Construir la tabla del año para la cual la demanda final es $Y^* = \begin{bmatrix} 24 \\ 12 \end{bmatrix}$.
- 4. La siguiente tabla representa la matriz de insumo producto correspondiente a un año para la economía de un país dividida en los sectores S_1 y S_2 :

	S_1	S_2	DF	VBP
S_1		28	36	
S_2		7		
VA	48			
VBP				

- (a) Completar la tabla si se cumplen las siguientes condiciones:
 - (i) El sector S_1 utiliza insumos del sector S_2 por un valor de 16.

5

- (ii) El sector S_2 tiene una demanda final de 19.
- (iii) El sector S_1 utiliza para si 32 unidades de su propia producción.
- (iv) El producto bruto total de la economía es 138.
- (b) Construir la tabla del año para la cual la demanda final es $Y^* = \begin{bmatrix} 48 \\ 20 \end{bmatrix}$.
- 5. La matriz de coeficientes técnicos correspondientes a un año para la economía de un país dividida en dos sectores S_1 y S_2 es $A = \begin{bmatrix} \frac{1}{4} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{4} \end{bmatrix}$. Completar la tabla si la demanda final es $Y^t = \begin{bmatrix} 210 & 160 \end{bmatrix}$.
- 6. La matriz de Leontief correspondiente a un año para la economía de un país dividida en dos sectores S_1 y S_2 es $\begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ -\frac{2}{5} & 1 \end{bmatrix}$. Completar la tabla si la producción final es $X^t = \begin{bmatrix} 200 & 110 \end{bmatrix}$.
- 7. Dada la tabla de insumo producto para un sistema económico de dos sectores: S_1 y S_2 .

	S_1	S_2	DF	VBP
S_1	20	40	40	100
S_2	50	100	50	200
VA	30	60		
VBP	100	200		300

- (a) Hallar la matriz A de coeficientes técnicos, la matriz de Leontief I A, y la matriz de requerimientos directos e indirectos $(I A)^{-1}$.
- (b) Si la demanda final programada para el año siguiente es de 150 para S_1 y de 300 para S_2 , hallar el valor bruto de producción y completar la tabla para el nuevo período.
- 8. (a) Completar la siguiente tabla de insumo producto correspondiente a una economía dividida en dos sectores S_1 y S_2 .

	S_1	S_2	DF	VBP
S_1	60		70	180
S_2		25	45	
VA	90	25		
VBP				

- (b) Hallar la matriz de coeficientes técnicos, la matriz de Leontief y la matriz de requerimientos directos e indirectos.
- (c) Construir la tabla de insumo-producto para un año en que se espera una demanda final $DF^t = [50 \ 30]$.

6

9. (a) Completar la siguiente tabla de insumo-producto correspondiente a una economía dividida en dos sectores S_1 y S_2 .

	S_1	S_2	DF	VBP
S_1	80		20	200
S_2			100	
VA		50		
VBP		300		

- (b) Hallar la matriz de coeficientes técnicos, la matriz de Leontief y la matriz de requerimientos directos e indirectos.
- (c) Construir la tabla de insumo producto para un año en que se espera una demanda final $DF^t = [260 \ 390]$.
- 10. Sea $A = \begin{bmatrix} \frac{1}{3} & \frac{1}{2} \\ \frac{1}{6} & \frac{1}{4} \end{bmatrix}$ la matriz de coeficientes técnicos que corresponde a una economía dividida en dos sectores S_1 y S_2 .
 - (a) Hallar la matriz de Leontief y la matriz de requerimientos directos e indirectos.
 - (b) Construir la tabla de insumo producto para un año en que se espera una demanda final de 40 para el sector S_1 y una demanda final de 65 para el sector S_2 .
- 11. Dada la matriz de Leontief correspondiente a una economía dividida en dos sectores S_1 y S_2

$$I - A = \begin{bmatrix} \frac{3}{5} & -\frac{3}{5} \\ -\frac{2}{5} & \frac{4}{5} \end{bmatrix}$$

- (a) Determinar la matriz de coeficientes técnicos A y la matriz de requerimientos directos e indirectos $(I-A)^{-1}$.
- (b) Completar la tabla de insumo producto si en el próximo año se espera una demanda final de $Y^t = [60 \ 120]$.
- (c) Si se espera para el próximo período que el valor bruto de producción sea $X^t = \begin{bmatrix} 250 & 200 \end{bmatrix}$, hallar la matriz columna Y de demanda final y completar la correspondiente tabla de insumo producto.