1.	<u>Item</u>	<u>Usage</u>	<u>Unit Cost</u>	<u>Usage x Unit Cost</u>	Category
	4021	50	\$1,400	\$70,000	A
	9402	300	12	3,600	C
	4066	40	700	28,000	В
	6500	150	20	3,000	C
	9280	10	1,020	10,200	C
	4050	80	140	11,200	C
	6850	2,000	15	30,000	В
	3010	400	20	8,000	C
	4400	7,000	5	35,000	В
	T 1 11				

In descending order:

Item	Usage x Cost	Category
4021	\$70,000	A
4.400	25.000	D
4400	35,000	В
6850	30,000	
4066	28,000	
4050	11,200	C
	,	C
9280	10,200	
3010	8,000	
9402	3,600	
6500	3,000	

5. D = 750 pots/mo. x 12 mo./yr. = 9,000 pots/yr.

Price =
$$2/pot$$
 S = 0 P = 0 H = 0

\$.60/unit/year
a.
$$Q_o = \sqrt{\frac{2DS}{H}} = \sqrt{\frac{2(9,000)20}{.60}} = 774.60 \approx 775$$

$$TC = \frac{774.6}{2} (.60) + \frac{9,000}{774.6} (20)$$

$$TC = 232.35 + 232.36$$

$$=464.71$$

If
$$Q = 1500$$

$$TC = \frac{1,500}{2}(.6) + \frac{9,000}{1,500}(20)$$

$$TC = 450 + 120 = $570$$

Therefore the additional cost of staying with the order size of 1,500 is:

$$$570 - $464.71 = $105.29$$

b. Only about one half of the storage space would be needed.

$$p = 5,000 \text{ hotdogs/day}$$

9.

$$u = 250 \text{ hotdogs/day}$$

300 days per year

 $D= 250/day \times 300 days/yr. = 75,000 hotdogs/yr.$

S = \$22

H = 15/hotdog per yr.

a.
$$Q_o = \sqrt{\frac{2DS}{H}} \sqrt{\frac{p}{p-u}} = \sqrt{\frac{2(75,000)22}{.15}} \sqrt{\frac{5,000}{4,750}} = 4,812.27$$
 [round to 4,812]

- b. $D/Q_o = 75,000/4,812 = 15.59$, or about 16 runs/yr.
- c. run length: $Q_0/p = 4.812/5,000 = .96$ days, or approximately 1 day
- 18. expected demand during LT = 300 units

$$\sigma_{dLT} = 30 \text{ units}$$

a.
$$Z = 2.33$$
, ROP = exp. demand + $Z\sigma_{d\ LT}$

$$300 + 2.33 (30) = 369.9 \rightarrow 370$$
 units

- b. 70 units (from a.)
- c. smaller $Z \rightarrow less ss$

ROP smaller:

19. LT demand = 600 lb.

$$\sigma_{d\ LT} = 52\ lb.$$

$$risk = 4\% \rightarrow Z = 1.75$$

a.
$$ss = Z\sigma_{d LT} = 1.75 (52 lbs.) = 91 lbs.$$

$$ROP = 600 + 91 = 691 \text{ lbs.}$$

27. D =
$$10 \text{ rolls/day x } 360 \text{ days/yr.} = 3,600 \text{ rolls/yr.}$$

b. SL of 96 percent requires z = +1.75

$$\begin{split} ROP &= \ \overline{d} \ (LT) + z \sqrt{ \ LT(\sigma_d)} = 10(3) + 1.75 \qquad (3)(2) = 36.06 \ [round to 36] \\ c. \quad E(n) &= E(z) \ \sigma_{d \ LT} = .016 (\ \ LT \)(\sigma_d) = .016 (\ \ \ 3(2) = .0554/cycle \\ E(N) &= E(n) \ \frac{D}{Q} = .0554 \ \frac{3600}{134} = 1.488 \ or \ about \ 1.5 \ rolls \end{split}$$

d.
$$1 - SL_{annual} = E(z) \frac{\sigma_{dLT}}{Q} = (.016) \frac{3.464}{134.16} = .000413$$

$$SL_{annual} = 1 - .000413 = .9996$$

32.

$$C_s = Rev - Cost = \$4.80 - \$3.20 = \$1.60$$

 $C_e = Cost - Salvage = \$3.20 - \$2.40 = \$.80$

CI _	C_s	\$1.60	1.6
SL =	$C_s + C_e$	\$1.60 + \$.80	$\frac{1}{2.4}$ = .67

Since this falls between the cumulative probabilities of .63(x = 24) and .73(x = 25), this means Don should stock 25 dozen doughnuts.

X		Cum.
Demand	P(x)	P(x)
19	.01	.01
20	.05	.06
21	.12	.18
22	.18	.36
23	.13	.49
24	.14	.63
25	.10	.73
26	.11	.84
27	.10	.94
	•	•
		•

35.
$$C_s = $88,000$$

$$C_e = \$100 + 1.45(\$100) = \$245$$

a.
$$SL = \frac{C_s}{C_s + C_e} = \frac{\$88,000}{\$88,000 + \$245} = .9972$$

Using the Poisson probabilities, the minimum level stocking level that will provide the desired service is nine spares (cumulative probability = .998).

[From Poisson Table with $\mu = 3.2$]

10111 1 01	SSOII TUDIC W
<u>X</u>	Cum. Prob.
0	.041
1	.171
2	.380
3	.603
4	.781
5	.895
6	.955
7	.983
8	.994
9	.998
•	
•	
	_

Solutions (continued)

b.
$$SL = \frac{C_s}{C_s + C_e}$$

$$.041 = \frac{C_{s}}{C_{s} + 245}$$

$$.041(C_s + 245) = C_s$$

$$.041C_s + 10.045 = C_s$$

$$.959C_s = 10.045$$

$$C_s = $10.47$$

Carrying no spare parts is the best strategy if the shortage cost is less than or equal to \$10.47 ($C_s \le 10.47$).