Лекция 18.

Пусть функция f(X) определена и непрерывна вместе со всеми своими частными производными вплоть до -го порядка включительно в некоторой окрестности $U_{\varepsilon}(X_0)$ точки $X_0(x_{01},\dots,x_{0n})$, точка $X_0+\Delta X\in U_{\varepsilon}(X_0)$, где $\Delta X=(\Delta x_1,\dots,\Delta x_n)$, $\Delta f(X_0)=f(X_0+\Delta X)-f(X_0)$.

Теорема (Тейлора). В вышеприведённых обозначениях

$$\Delta f(X_0) = \frac{df(X_0)}{1!} + \frac{d^2 f(X_0)}{2!} + \dots + \frac{d^{k-1} f(X_0)}{(k-1)!} + \frac{d^k f(X_0 + \theta \Delta X)}{k!} ,$$

для некоторого $\theta \in (0,1)$.

Замечание. Здесь
$$d^k f(X) = (\frac{\partial}{\partial x_1} \Delta x_1 + \dots + \frac{\partial}{\partial x_n} \Delta x_n)^k f(X)$$
.

Доказательство. Рассмотрим функцию $F(t) = f(X_0 + t\Delta X)$ для $t \in [0,1]$, тогда, применив формулу Маклорена к F(t) при $\Delta t = \int_{0}^{t} \int_{0}^{t} f(t) dt$

1 имеем $\Delta f(X_0)=F(1)-F(0)=\sum_{l=0}^{k-1}\frac{F^{(l)}(0)}{l!}+\frac{F^{(k)}(\theta)}{k!}$, где $\theta\in(0,1)$. Вычисление производных функции F(t) даёт следующий результат

$$F^{(l)}(t) = d^l f(X_0 + t\Delta X) = \left(\frac{\partial}{\partial x_1} \Delta x_1 + \dots + \frac{\partial}{\partial x_n} \Delta x_n\right)^k f(X_0 + t\Delta X)$$

(доказывается по индукции), откуда немедленно получаем утверждение теоремы.

Следствие. Для $\kappa = 2$ формула Тейлора имеет вид:

$$\Delta f(X_0) = df(X_0) + \frac{d^2 f(X_0 + \theta \Delta X)}{2!}$$
 (*)

Примеры.

Пусть на области (открытое, связное множество) $G \subseteq \mathbf{R}^n$ задана функция f(X). Точка $X_0 \in G$ называется **точкой локального экстремума** функции f(X), если существует окрестность $U(X_0)$ точки X_0 , такая, что для любой точки $X \in U(X_0)$, выполняется неравенство $f(X) \geq f(X_0)$ для **локального минимума** или $f(X) \leq f(X_0)$ для **локального максимума**.

Теорема. Пусть $X_0 \in G$ точка локального экстремума для f(X). Тогда, если существуют первые частные производные функции в f(X) точке X_0 , то все они равны нулю $\frac{\partial f(X_0)}{\partial x_i} = 0$, $i = 0,1,\ldots,n$.

Доказательство.

Определение. Точка, в которой выполнены условия $\frac{\partial f(X_0)}{\partial x_i} = 0, i = 0, 1, ..., n,$ называется *стационарной точкой* для функции f(X).

Следствие. Если функция f(X) дифференцируема в точке X_0 и имеет локальный экстремум в X_0 , то:

a)
$$d f(X_0) = 0$$
, $\overrightarrow{grad f(X_0)} = 0$;

б)
$$\Delta \, f(X_0) = \frac{d^2 f(X_0 + \theta \Delta X)}{2!} = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \frac{\partial^2 f(X_0 + \theta \Delta X)}{\partial x_i \partial x_j} \Delta x_i \Delta x_j$$
, если $f(X)$ имеет непрерывные вторые частные производные в точке X_0 .

Определение. Точка, в которой выполнены условия $\frac{\partial f(X_0)}{\partial x_i} = 0, i = 0,1,...,n,$ называется *стационарной точкой* для функции f(X).

Достаточные условия экстремума.

Пусть f(X) имеет непрерывные вторые частные производные в стационарной точке X_0 , тогда

$$\Delta f(X_0) = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \frac{\partial^2 f(X_0 + \theta \Delta X)}{\partial x_i \partial x_j} \Delta x_i \Delta x_j = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \left(\frac{\partial^2 f(X_0)}{\partial x_i \partial x_j} + \varepsilon_{ij} \right) \Delta x_i \Delta x_j = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \frac{\partial^2 f(X_0)}{\partial x_i \partial x_j} \Delta x_i \Delta x_j + \frac{\rho^2}{2} \sum_{i=1}^n \sum_{j=1}^n \varepsilon_{ij} \frac{\Delta x_i}{\rho} \frac{\Delta x_j}{\rho} = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \frac{\partial^2 f(X_0)}{\partial x_i \partial x_j} \Delta x_i \Delta x_j + \frac{\rho^2}{2} \alpha(\Delta X),$$

где
$$\alpha(\Delta X) \leq \varepsilon n^2 \to 0$$
 при $\rho = |\Delta X| = \sqrt{\Delta x_1^2 + \dots + \Delta x_n^2} \to 0$, $\varepsilon = \max \varepsilon_{ij}$.

Теорема.

- а) Если квадратичная форма $\sum_{i=1}^n \sum_{j=1}^n a_{ij} \, \Delta x_i \Delta x_j$ строго **положительно определена**, т.е. её значение строго >0 для всех $\Delta X \neq \vec{0}$, то точка X_0 локальный минимум;
- б) Если квадратичная форма $\sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}\,\Delta x_i\Delta x_j$ строго **отрицательно определена**, т.е. её значение строго <0 для всех $\Delta X\neq \vec{0}$, то точка X_0 локальный максимум;
- в) Если квадратичная форма $\sum_{i=1}^n \sum_{j=1}^n a_{ij} \, \Delta x_i \Delta x_j$ положительно полуопределена, т.е. её значение ≥ 0 для всех $\Delta X \neq \vec{0}$, или отрицательно полуопределена, т.е. её значение ≤ 0 для всех $\Delta X \neq \vec{0}$, то вопрос о локальном экстремуме остаётся открытым и требуется дополнительное исследование;
- г) если форма $\it неопределена$ по знаку, т.е. принимает как положительные, так и отрицательные значения, то локальный экстремум в точке $\it X_0$ отсутствует.

Доказательство.

Вопрос о знаке квадратичной формы решается при помощи известного **критерия Сильвестера**.

Примеры.

Лекция 19.

Теорема (о неявной функции). Пусть уравнение

$$f(x_1, ..., x_n, y) = 0,$$
 (*)

для которого точка $(X_0, y_0) \in \mathbf{R}^{n+1}$ является решением, обладает следующими свойствами:

а) функция $f(x_1, ..., x_n, y)$ непрерывна вместе со **всеми** своими частными производными первого порядка в некоторой окрестности $U(X_0, y_0) \subset \mathbf{R}^{n+1}$ точки (X_0, y_0) ;

6)
$$\frac{\partial f(X_0, y_0)}{\partial y} \neq 0$$
.

Пусть, кроме того, М \subset R^{n+1} - множество точек, удовлетворяющих уравнению (*), тогда для любого $\varepsilon>0$ существует параллелепипед $\varDelta=\{|x_k-x_{0k}|<\delta, k=1,2,\ldots,n;|y-y_0|< b<\varepsilon\}$, такой, что множество М \cap \varDelta описывается непрерывно дифференцируемой функцией

$$y=arphi(x_1,\dots,x_n)$$
, при $|x_k-x_{0k}|<\delta$, $k=1,2,\dots,n$, причём $rac{\partial arphi}{\partial x_k}=-rac{rac{\partial f}{\partial x_k}}{rac{\partial f}{\partial y}}$.

Доказательство.

Примеры.

Следствие. Пусть гиперповерхность $S \subset \pmb{R}^n$ задана уравнением $F(x_1, ..., x_n) = 0$, точка $X_0(x_{01}, ..., x_{0n}) \in S$ и не все частные производные $\frac{\partial F(X_0)}{\partial x_k}$ равны нулю одновременно, тогда в точке X_0 существует касательная гиперплоскость к поверхности S, задаваемая уравнением

$$\frac{\partial F(X_0)}{\partial x_1}(x_1 - x_{01}) + \dots + \frac{\partial F(X_0)}{\partial x_n}(x_n - x_{0n}) = 0.$$