L1 - 1.1 - Power Functions Lesson MHF4U

Things to Remember About Functions

• A relation is a function if for every *x*-value there is only 1 corresponding *y*-value. The graph of a relation represents a function if it passes the **vertical line test**, that is, if a vertical line drawn anywhere along the graph intersects that graph at no more than one point.

- The <u>DOMAIN</u> of a function is the complete set of all possible values of the independent variable (x)
 - Set of all possible *x*-vales that will output real *y*-values
- The **RANGE** of a function is the complete set of all possible resulting values of the dependent variable (y)
 - \circ Set of all possible *y*-values we get after substituting all possible *x*-values
- For the function $f(x) = (x-1)^2 + 3$

$$\circ$$
 D: $\{X \in \mathbb{R}\}$

$$\circ \quad R: \{Y \in \mathbb{R} | y \ge 3\}$$

• The degree of a function is the highest exponent in the expression

o
$$f(x) = 6x^3 - 3x^2 + 4x - 9$$
 has a degree of 3

• An <u>ASYMPTOTE</u> is a line that a curve approaches more and more closely but never touches.

The function $y = \frac{1}{x+3}$ has two asymptotes:

Vertical Asymptote: Division by zero is undefined. Therefore the expression in the denominator of the function can not be zero. Therefore $x \neq -3$. This is why the vertical line x = -3 is an asymptote for this function.

Horizontal Asymptote: For the range, there can never be a situation where the result of the division is zero. Therefore the line y = 0 is a horizontal asymptote. For all functions where the denominator is a higher degree than the numerator, there will by a horizontal asymptote at y = 0.

Polynomial Functions

A polynomial function has the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x^1 + a_0$$

- *n* Is a whole number
- *x* Is a variable
- the <u>coefficients</u> $a_0, a_1, ..., a_n$ are real numbers
- the <u>degree</u> of the function is n, the exponent of the greatest power of x
- a_n , the coefficient of the greatest power of x, is the <u>leading coefficient</u>
- a_0 , the term without a variable, is the **constant term**
- The domain of a polynomial function is the set of real numbers D: $\{X \in \mathbb{R}\}$
- The range of a polynomial function may be all real numbers, or it may have a lower bound or an upper bound (but not both)
- The graph of polynomial functions do not have horizontal or vertical asymptotes
- The graphs of polynomial functions of degree 0 are **horizontal lines**. The shapes of other graphs depends on the degree of the function. Five typical shapes are shown for various degrees:

A **power function** is the simplest type of polynomial function and has the form:

$$f(x) = ax^n$$

- *a* is a real number
- *x* is a variable
- *n* is a whole number

Example 1: Determine which functions are polynomials. State the degree and the leading coefficient of each polynomial function.

$$\mathbf{a)} \ g(x) = \sin x$$

This is a trigonometric function, not a polynomial function.

b)
$$f(x) = 2x^4$$

This is a polynomial function of degree 4. The leading coefficient is 2

c)
$$y = x^3 - 5x^2 + 6x - 8$$

This is a polynomial function of degree 3. The leading coefficient is 1.

d)
$$g(x) = 3^x$$

This is not a polynomial function but an exponential function, since the base is a number and the exponent is a variable.

Interval Notation

In this course, you will often describe the features of the graphs of a variety of types of functions in relation to real-number values. Sets of real numbers may be described in a variety of ways:

- 1) as an inequality $-3 < x \le 5$
- **2)** interval (or bracket) notation (-3, 5]
- **3)** graphically on a number line

Note:

- Intervals that are infinite are expressed using ∞ (infinity) or $-\infty$ (negative infinity)
- **Square brackets** indicate that the end value is included in the interval
- Round brackets indicate that the end value is NOT included in the interval
- A **round** bracket is always used at infinity and negative infinity

Example 2: Below are the graphs of common power functions. Use the graph to complete the table.

Power Function	Special Name	Graph	Domain	Range	End Behaviour as $x \to -\infty$	End Behaviour as $x \to \infty$
y = x	Linear	2 -4 -2 Ø 2 4 X -2 -4	$(-\infty,\infty)$	$(-\infty,\infty)$	$y \rightarrow -\infty$ Starts in quadrant 3	$y \to \infty$ Ends in quadrant 1
$y = x^2$	Quadratic	8 6 4 2 4 -4 -2 0 2 4 x -2 y	$(-\infty,\infty)$	[0,∞)	$y \to \infty$ Starts in quadrant 2	$y \to \infty$ Ends in quadrant 1
$y = x^3$	Cubic	2 -4 -2 6 2 4 x -2 -4 -4 -2 6 2 4 x	$(-\infty,\infty)$	$(-\infty,\infty)$	$y \to -\infty$ Starts in quadrant 3	$y \to \infty$ Ends in quadrant 1

Power Function	Special Name	Graph	Domain	Range	End Behaviour as $x \to -\infty$	End Behaviour as $x \to \infty$
$y = x^4$	Quartic	160 128 96 64 32 -4 -2 0 2 4*	$(-\infty,\infty)$	[0,∞)	$y \rightarrow \infty$ Starts in quadrant 2	$y \to \infty$ Ends in quadrant 1
$y = x^5$	Quintic	96 64 32 -4 -2 0 2 4 x -32 -64	$(-\infty,\infty)$	$[-\infty,\infty)$	$y \to -\infty$ Starts in quadrant 3	$y \to \infty$ Ends in quadrant 1
$y = x^6$	Sextic	128 96 64 32 -4 -2 0 2 4x	$(-\infty,\infty)$	[0,∞)	$y \rightarrow \infty$ Starts in quadrant 2	$y \to \infty$ Ends in quadrant 1

Key Features of EVEN Degree Power Functions

When the leading	ng coefficient (a) is positive	When the leading coefficient (a) is negative		
End behaviour	as $x \to -\infty$, $y \to \infty$ and as $x \to \infty$, $y \to \infty$ Q2 to Q1	End behaviour	as $x \to -\infty$, $y \to -\infty$ and as $x \to \infty$, $y \to -\infty$ Q3 to Q4	
Domain	$(-\infty,\infty)$	Domain	$(-\infty,\infty)$	
Range	[0,∞)	Range	$[0,-\infty)$	
Example: $f(x) = 2x$	2.5	Example: $f(x) =$	$x - 3x^2$	

Line Symmetry

A graph has line symmetry if there is a vertical line x = a that divides the graph into two parts such that each part is a reflection of the other.

Note: The graphs of even degree power functions have line symmetry about the vertical line x = 0 (the y-axis).

Key Features of ODD Degree Power Functions

When the leading	ng coefficient (a) is positive	When the leading coefficient (a) is negative		
End behaviour	as $x \to -\infty$, $y \to -\infty$ and as $x \to \infty$, $y \to \infty$ Q3 to Q1	End behaviour	as $x \to -\infty$, $y \to \infty$ and as $x \to \infty$, $y \to -\infty$ Q2 to Q4	
Domain $(-\infty, \infty)$		Domain $(-\infty, \infty)$		
Range	Range $(-\infty, \infty)$		$(-\infty,\infty)$	
Example: $f(x) = 3x$	x 5	Example: $f(x) =$	$x - 2x^3$	

Point Symmetry

A graph has point point symmetry about a point (a, b) if each part of the graph on one side of (a, b) can be rotated 180° to coincide with part of the graph on the other side of (a, b).

Note: The graph of odd degree power functions have point symmetry about the origin (0, 0).

Example 3: Write each function in the appropriate row of the second column of the table. Give reasons for your choices.

$$y = 2x$$
 $y = 5x^{6}$ $y = -3x^{2}$ $y = x^{7}$ $y = -\frac{2}{5}x^{9}$ $y = -4x^{5}$ $y = x^{10}$ $y = -0.5x^{8}$

End Behaviour	Functions	Reasons
	y = 2x	Odd exponent
Q3 to Q1	$y = x^7$	Positive leading coefficient
	$y = -\frac{2}{5}x^9$	Odd exponent
Q2 to Q4	$y = 5^{x}$ $y = -4x^{5}$	Negative leading coefficient
	$y = 5x^6$	Even exponent
Q2 to Q1	$y = x^{10}$	Positive leading coefficient
	$y = -3x^2$	Even exponent
Q3 to Q4	$y = -0.5x^8$	Negative leading coefficient

Example 4: For each of the following functions

- i) State the domain and range
- ii) Describe the end behavior
- iii) Identify any symmetry

a)

i) Domain: $(-\infty, \infty)$

Range: $(-\infty, \infty)$

- ii) As $x \to -\infty$, $y \to \infty$ and as $x \to \infty$, $y \to -\infty$ The graph extends from quadrant 2 to 4
- **iii)** Point symmetry about the origin (0, 0)

b)

i) Domain: $(-\infty, \infty)$

Range: [0, ∞)

- ii) As $x \to -\infty$, $y \to \infty$ and as $x \to \infty$, $y \to \infty$ The graph extends from quadrant 2 to 1
- **iii)** Line symmetry about the line x = 0 (the y-axis)

c)

i) Domain: $(-\infty, \infty)$

Range: $(-\infty, \infty)$

- ii) As $x \to -\infty$, $y \to -\infty$ and as $x \to \infty$, $y \to \infty$ The graph extends from quadrant 3 to 1
- iii) Point symmetry about the origin (0,0)