From Randomness to Probability

Chapter 12

Jason Bryer epsy530.bryer.org

Red Light, Green Light

Each day you drive through an intersection and check if the light is red, green, or yellow.

Day 1: red

· Day 2: green

· Day 3: red

Before you begin, you know:

- · The possible outcomes
- · An outcome will occur.

After you finish, you know:

The outcomes that occurred

```
flips <- sample(c(0,1,0), 100, replace=TRUE)
df <- data.frame(day=1:100,
    PercentGreen=cumsum(flips) / 1:100)
ggplot(df, aes(x=day, y=PercentGreen)) +
    geom_path() + ylim(c(0,1))</pre>
```


Random Phenomena Vocabulary

- · Trial: Each occasion which we observe a random phenomena
- Outcome: The value of the trial for the random phenomena
- Event: The combination of the trial's outcomes
- Sample Space: The collection of all possible outcomes

For example, flipping two coins:

- Trial: The flipping of the two coins
- Outcome: Heads or tails for each flip
- Event: HT, for example
- Sample Space: S = {HH, HT, TH, TT}

The Law of Large Numbers

- If you flip a coin once, you will either get 100% heads or 0% heads.
- If you flip a coin 1000 times, you will probably get close to 50% heads.

The Law of Large Numbers states that for many trials, the proportion of times an event occurs settles down to one number.

This number is called the empirical probability.

Requirements:

- · Identical Probabilities: The probabilities for each event must remain the same for each trial.
- · Independence: The outcome of a trial is not influenced by the outcomes of the previous trials.

Empirical probability:
$$P(A) = \frac{num \quad times \quad A \quad occurs}{num \quad of \quad trials}$$
 (in the long run)

Red Light, Green Light: The Law of Large Numbers

- · After many days, the proportion of green lights encountered is approximately 0.34.
- P(green) = 0.34.
- If we recorded more days, the probability would still be about 0.34.

The Nonexistent Law of Averages

Wrong

- If you flip a coin 5 times and get five tails, then you are due for a head on the next flip.
- You put 10 quarters in the slot machine and lose each time. You are just a bad luck person, so you have a smaller chance of winning on the 11th try.
- There is no such thing as the Law of Averages for short runs.

Theoretical Probability

American Roulette

- · 18 Red, 18 Black, 2 Green
- If you bet on Red, what is the probability of winning?

Theoretical Probability

$$P(A) = \frac{num \quad times \quad A \quad occurs}{num \quad of \quad trials}$$

$$P(red) = \frac{18}{38}$$

Heads or Tails

Flip 2 coins. Find P(HH)

- List the sample space:S = {HH, HT, TH, TT}
- $P(HH) = \frac{1}{4}$

Flip 100 coins. Find the probability of all heads. The sample space would involve 1,267,650,600,228,229,401,496,703,205,376 different outcomes. Later, we will see a better way.

Equally Likely?

What's wrong with this logic?

- · Randomly pick two people.
- Find the probability that both are left-handed.
- Sample SpaceS = {LL, LR, RL, RR}
- $P(LL) = \frac{1}{4}$

Since left-handed and right-handed are not equally likely, this method does not work.

Personal Probability

What's your chance of getting an A in statistics?

- You cannot base this on your long-run experience.
- · There is no sample space of events with equal probabilities to list.
- You can only base your answer on personal experience and guesswork.
- Probabilities based on personal experience rather than long-run relative frequencies or equally likely events are called personal probabilities.

Rules 1 and 2

Rule 1:
$$0 \le P(A) \le 1$$

- You can't have a -25% chance of winning.
- · A 120% chance also makes no sense.
- Note: Probabilities are (generally) written in decimals.
 - 45% chance → P(A) = 0.45

Rule 2:
$$P(S) = 1$$

- The set of all possible outcomes has probability 1.
- There is a 100% chance that you will get a head or a tail.

Rule 3: The Complement Rule

Complements

- Define A^C as the complement of A.
- A^C is the event of A not happening.
- If A is the event of rolling a 5 on a six sided die, then AC is the event of not rolling a 5: {1, 2, 3, 4, 6}
- P(A) = 1/6; $P(A^C) = ?$
- $P(A^C) = 5/6 = 1 1/6$

The Rule of Complements: $P(A^C) = 1 - P(A)$

Red Light Green Light and Complements

We know that P(green) = 0.34. Find P(not green):

- · Not green is the complement of green.
- Use the rule of complements:

```
P(notgreen) = P(green^C)

P(not green) = 1 - P(green)

P(not green) = 1 - 0.34

P(not green) = 0.66
```

The probability of the light not being green is 0.66.

Rule 4: The Addition Rule

Suppose

P(sophomore) = 0.2 and P(junior) = 0.3

Find P(sophomore OR junior)

Solution: 0.2 + 0.3 = 0.5

This works because sophomore and junior are disjoint events. They have no outcomes in common.

The Addition Rule

· If A and B are disjoint events, then

$$P(A \quad OR \quad B) = P(A) + P(B)$$

Red Light, Green Light, Yellow Light

Given that P(green) = 0.35 and P(yellow) = 0.04

· Find P(red).

Solution: Use the Rule of Complements and the Addition Rule.

$$P(red) = 1 - P(red^{C})$$

$$P(red) = 1 - P(greenORyellow)$$

$$P(red) = 1 - [P(green) + P(yellow)]$$

$$P(red) = 1 - [0.35 + 0.04]$$

$$P(red) = 1 - 0.39$$

$$P(red) = 0.61$$

The Sum of Probabilities

The sum of all the probabilities of every disjoint event must equal 1.

What's wrong with the following statement?

- Probabilities for freshmen, sophomore, junior, senior are: 0.25, 0.23, 0.22, 0.20.
 0.25 + 0.23 + 0.22 + 0.20 = 0.90
- · Since they do not add to 1, something is wrong.

How about the following?

- P(owning a smartphone) = 0.5 and
- P(owning a computer) = 0.9
- · This is fine, since they are not disjoint.

Rule 5: The Multiplication Rule

The probability that an Atlanta to Houston flight is on time is 0.85.

• If you have to fly every Monday, find the probability that your first two Monday flights will be on time.

Multiplication Rule: For independent events A and B:

$$P(A \quad AND \quad B) = P(A) \times P(B)$$

 $P(1st on time AND 2nd on time) = P(1st on time) \times P(2nd on time)$

P(1st on time AND 2nd on time) = 0.85×0.85

P(1st on time AND 2nd on time) = 0.7225

Red Light AND Green Light AND Yellow Light

Find the probability that the light will be red on Monday, green on Tuesday, and yellow on Wednesday.

- The multiplication rule works for more than 2 events.
- P(red Mon. AND green Tues. AND yellow Wed.) =
 P(red Mon.) × P(green Tues.) × P(yellow Wed.) =
 0.61 × 0.35 × 0.04 =
 0.00854

At Least One Red Light

Find the probability that the light will be red at least one time during the week.

Use the Complement Rule

```
P(at least 1 red) = 1 - P(\text{no reds})
= 1 - (0.39 \times 0.39 \times 0.39 \times 0.39 \times 0.39 \times 0.39 \times 0.39)
\approx 0.9986
```

M&Ms: 38% Pink, 36% Teal, 16% Purple

- First notice that $0.38 + 0.36 + 0.16 = 0.9 \neq 1$
- · There must be other colors.

Question: Find the probability that a Japanese survey respondent will want either pink or teal. P(pink OR teal)

- Pink and teal are disjoint.
- Apply the Addition Rule.

Question: P(1st purple AND 2nd purple)
Find the probability that two Japanese survey respondents will want purple.

- The choice made by the first respondent does not affect the choice of the other. The events are independent.
- · Use the Multiplication Rule.

M&Ms: 38% Pink, 36% Teal, 16% Purple

Question: P(pink OR teal)

Mechanics:

P(pink OR teal) = P(pink) + P(teal)
 P(pink OR teal) = 0.38 + 0.36
 P(pink OR teal) = 0.74

Conclusion: The probability that the respondent chose pink or teal is 0.74.

Question: P(1st purple AND 2nd purple)

Mechanics:

P(1st purple AND 2nd purple) = P(1st purple) \times P(2nd purple)
P(1st purple AND 2nd purple) = 0.16 \times 0.16
P(1st purple AND 2nd purple) = 0.0256

Conclusion: The probability that both choose purple is 0.0256.