Optimization Model for a SCRUM-based Software Development Domain

Prepared for: SCRUM Optimization Modeling

August 11, 2025

Contents

1	1. Sets (Entities)	2
2	2. Indices	3
3	3. Goals	4
4	4. Conditions	6
5	5. DecisionVariables	7

1 1. Sets (Entities)

- \mathcal{P} (Projects) [Index: p]
- \mathcal{T} (Teams) [Index: t]
- \mathcal{W} (Workers) [Index: w]
- \mathcal{F} (Features) [Index: f]
- S (Skills) [Index: s]
- \mathcal{R} (Roles) [Index: r]
- \mathcal{PO} (Product Owners) [Index: po]
- \mathcal{SM} (Scrum Masters) [Index: sm]
- \mathcal{PB} (Product Backlogs) [Index: pb]
- \mathcal{SP} (Sprints) [Index: sp]
- SPP (Sprint Plannings) [Index: spp]
- \mathcal{DS} (Daily Scrums) [Index: ds]
- SR (Sprint Reviews) [Index: sr]
- SRE (Sprint Retrospectives) [Index: sre]
- \mathcal{SBL} (Sprint Backlogs) [Index: sbl]
- SG (Sprint Goals) [Index: sg]
- \mathcal{E} (Epics) [Index: e]
- \mathcal{US} (User Stories) [Index: u]
- TSK (Tasks) [Index: τ]
- \mathcal{DEV} (Development Snapshots) [Index: d]
- \mathcal{BL} (Blockers) [Index: b]
- SH (Stakeholders) [Index: h]
- \mathcal{VEL} (Velocities) [Index: v]
- \mathcal{REP} (Release Plans) [Index: rpl]
- \mathcal{RM} (Roadmaps) [Index: rm]
- \mathcal{SCB} (Scrum Boards) [Index: scb]
- \mathcal{FED} (Feature Documentations) [Index: fd]

Relationship sets (from Relationships.csv). (We denote the relation names as subsets of Cartesian products; the original CSV used "Employee" which we consistently treat as Worker.)

- AssignedTeamProject $\subseteq \mathcal{T} \times \mathcal{P}$ (R1)
- BelongsToTeam $\subseteq W \times \mathcal{T}$ (R2)
- HasSkill $\subseteq \mathcal{W} \times \mathcal{S}$ (R3)
- TakesOnRole $\subseteq \mathcal{W} \times \mathcal{R}$ (R4)
- ManagesBacklog $\subseteq \mathcal{PO} \times \mathcal{PB}$ (R5)
- IsSupportedBy $\subseteq \mathcal{T} \times \mathcal{SM}$ (R6)
- PBcontainsFeature $\subseteq \mathcal{PB} \times \mathcal{F}$ (R7)
- PBcontainsEpic $\subseteq \mathcal{PB} \times \mathcal{E}$ (R8)
- EpicContainsStory $\subseteq \mathcal{E} \times \mathcal{US}$ (R9)
- StoryHasTasks $\subseteq \mathcal{US} \times \mathcal{TSK}$ (R10)
- StoryInSBL $\subseteq \mathcal{US} \times \mathcal{SBL}$ (R11)
- SBLofSprint $\subseteq \mathcal{SBL} \times \mathcal{SP}$ (R12)
- SprintHasGoal $\subseteq \mathcal{SP} \times \mathcal{SG}$ (R13)
- SCBcontainsTask $\subseteq \mathcal{SCB} \times \mathcal{TSK}$ (R14)
- DocumentsFeature $\subseteq \mathcal{FED} \times \mathcal{F}$ (R15)
- TaskBlockedBy $\subseteq \mathcal{TSK} \times \mathcal{BL}$ (R16)
- StakeholderInReview $\subseteq \mathcal{SH} \times \mathcal{SR}$ (R17)
- ModeratesRetro $\subseteq \mathcal{SM} \times \mathcal{SRE}$ (R18)
- VelocityOfTeam $\subseteq \mathcal{VEL} \times \mathcal{T}$ (R19)
- ReleasePlansFeature $\subseteq \mathcal{REP} \times \mathcal{F}$ (R20)
- ReleaseInRoadmap $\subseteq \mathcal{REP} \times \mathcal{RM}$ (R21)
- SprintGeneratesDev $\subseteq \mathcal{SP} \times \mathcal{DEV}$ (R22)

2 2. Indices

- $p \in \mathcal{P}, t \in \mathcal{T}, w \in \mathcal{W}, f \in \mathcal{F}, s \in \mathcal{S}, r \in \mathcal{R}, po \in \mathcal{PO}, sm \in \mathcal{SM}$
- $pb \in \mathcal{PB}$, $sp \in \mathcal{SP}$, $spp \in \mathcal{SPP}$, $ds \in \mathcal{DS}$, $sr \in \mathcal{SR}$, $sre \in \mathcal{SRE}$, $sbl \in \mathcal{SBL}$, $sg \in \mathcal{SG}$
- $e \in \mathcal{E}$, $u \in \mathcal{US}$, $\tau \in \mathcal{TSK}$, $d \in \mathcal{DEV}$, $b \in \mathcal{BL}$, $h \in \mathcal{SH}$
- $v \in \mathcal{VEL}$, $rpl \in \mathcal{REP}$, $rm \in \mathcal{RM}$, $scb \in \mathcal{SCB}$, $fd \in \mathcal{FED}$

Parameters (from entity attributes). We reference entity attributes as parameters (read from data):

 $\mathrm{budget}(p),\ \mathrm{estimatedEffort}(f),\ \mathrm{severity}(b),\ \mathrm{attendees}(sr),\ \mathrm{teamSat}(sre),\ \mathrm{entries}(pb),\ \mathrm{avgSP}(v),\\ \mathrm{benefit}(sg),\ \mathrm{effortEpic}(e),\ \mathrm{avail}(w),\ \mathrm{achieve}(sp),\ \mathrm{etc}.$

We also use binary status indicators such as $\operatorname{ready}(f)$, $\operatorname{openSprint}(sp)$, $\operatorname{activePB}(pb)$, $\operatorname{deployable}(rpl)$, $\operatorname{docPresent}(d)$, $\operatorname{moderationSet}(sre)$, $\operatorname{planningDoc}(spp)$, $\operatorname{activeWorker}(w)$, $\operatorname{relevant}(h)$, and $\operatorname{certified}(s)$.

3 3. Goals

We use a weighted scalarization of individual goal terms ϕ_g consistent with Goals.csv. For a goal with GoalType = max we add + Weight $\cdot \phi_g$; for min we add - Weight $\cdot \phi_g$.

Objective

$$\max \left(1.0 \cdot \phi_{G0} - 1.0 \cdot \phi_{G1} - 0.9 \cdot \phi_{G2} - 1.0 \cdot \phi_{G3} + 0.8 \cdot \phi_{G4} + 0.6 \cdot \phi_{G5} - 0.5 \cdot \phi_{G6} + 0.4 \cdot \phi_{G7} + 0.5 \cdot \phi_{G8} - 0.8 \cdot \phi_{G9} + 0.5 \cdot \phi_{G10} - 0.7 \cdot \phi_{G10} + 0.8 \cdot \phi_{G10} + 0.$$

Decision variables (used below).

$$\begin{array}{lll} x_{u,sp} \in \{0,1\} & \text{(assign_user_story_to_sprint)} \\ y_{f,rpl} \in \{0,1\} & \text{(select_feature_for_release)} \\ a_{w,\tau} \in \{0,1\} & \text{(allocate_worker_to_task)} \\ z_e \in \{0,1\} & \text{(choose_epic_for_planning)} \\ h_{\tau} \in [0,1000] & \text{(set_task_effort)} \\ \text{pr}_u \in \{1,2,3,4,5\} & \text{(prioritize_user_story)} \\ gTarget_{sp} \in [0,100] & \text{(set_sprint_goal_target)} \\ b_{pb} \in \{0,1\} & \text{(enable_backlog_item)} \\ n_t^{\text{team}} \in \{3,4,\ldots,12\} & \text{(staff_team_size)} \\ n_{sbl}^{\text{tasks}} \in \{0,1,\ldots,500\} & \text{(plan_number_of_tasks)} \\ b_t^{\text{sm}} \in \{0,1\} & \text{(assign_scrum_master)} \\ \iota_{h,sr} \in \{0,1\} & \text{(select_stakeholder_for_review)} \\ \ell_s^{\text{skill}} \in \{1,2,3,4,5\} & \text{(set_skill_level_target)} \\ \end{array}$$

Per-goal definitions

• G0 maximize velocity points:

$$\phi_{G0} = \sum_{v \in \mathcal{VEL}} \operatorname{avgSP}(v)$$

• G1 minimize project budget:

$$\phi_{G1} = \sum_{p \in \mathcal{P}} \text{budget}(p)$$

• G2 minimize_feature_effort:

$$\phi_{G2} = \sum_{f \in \mathcal{F}} \text{estimatedEffort}(f) \cdot \left(\sum_{rpl \in \mathcal{REP}} y_{f,rpl}\right)$$

• G3 minimize_task_effort:

$$\phi_{G3} = \sum_{\tau \in \mathcal{TSK}} h_{\tau}$$

• G4 maximize sprint goal achievement:

$$\phi_{\mathrm{G4}} = \sum_{sp \in \mathcal{SP}} \mathrm{achieve}(sp)$$

• G5 maximize team satisfaction:

$$\phi_{G5} = \sum_{sre \in \mathcal{SRE}} teamSat(sre)$$

• G6 minimize_backlog_size:

$$\phi_{\text{G6}} = \sum_{pb \in \mathcal{PB}} \text{entries}(pb) \cdot b_{pb}$$

• G7 maximize review attendance:

$$\phi_{G7} = \sum_{sr \in \mathcal{SR}} \text{attendees}(sr) + \sum_{sr \in \mathcal{SR}} \sum_{h \in \mathcal{SH}} \iota_{h,sr}$$

• G8 maximize skill levels:

$$\phi_{\mathrm{G8}} = \sum_{s \in \mathcal{S}} \ell_s^{\mathrm{skill}}$$

• G9 minimize blocker severity:

$$\phi_{\mathrm{G9}} = \sum_{b \in \mathcal{BL}} \mathrm{severity}(b)$$

• G10 maximize sprint benefit:

$$\phi_{G10} = \sum_{sg \in \mathcal{SG}} benefit(sg)$$

• G11 minimize_epic_effort:

$$\phi_{\text{G11}} = \sum_{e \in \mathcal{E}} \text{effortEpic}(e) \cdot z_e$$

• G12 maximize worker availability:

$$\phi_{G12} = \sum_{w \in \mathcal{W}} \operatorname{avail}(w)$$

5

4 4. Conditions

Each condition is stated with its ID, snake_case name, and a logical/mathematical constraint consistent with Conditions.csv.

• C0 team size within bounds (IsSum=False, GoalType=min):

$$3 \le n_t^{\text{team}} \le 12 \quad \forall t \in \mathcal{T}.$$

• C1 only_active_workers_assigned:

$$a_{w,\tau} \leq \text{activeWorker}(w) \quad \forall (w,\tau) \in \mathcal{W} \times \mathcal{TSK}.$$

• C2 user story priority allowed:

$$\operatorname{pr}_{u} \in \{1, 2, 3, 4, 5\}_{\text{allowed}} \quad \forall u \in \mathcal{US}.$$

(Implementable via binaries or bounds depending on policy.)

• C3 task status permitted:

$$\sum_{w \in \mathcal{W}} a_{w,\tau} \le M \cdot \text{permittedTask}(\tau) \quad \forall \tau \in \mathcal{TSK}.$$

• C4 feature status ready only:

$$y_{f,rpl} \leq \text{ready}(f) \quad \forall (f,rpl) \in \mathcal{F} \times \mathcal{REP}.$$

• C5 sprint status open only:

$$x_{u,sp} \leq \text{openSprint}(sp) \quad \forall (u,sp) \in \mathcal{US} \times \mathcal{SP}.$$

• C6 backlog status active:

$$b_{pb} \leq \text{activePB}(pb) \quad \forall pb \in \mathcal{PB}.$$

• C7 stakeholder relevance required:

$$\iota_{h.sr} \leq \text{relevant}(h) \quad \forall (h, sr) \in \mathcal{SH} \times \mathcal{SR}.$$

• C8 skill certified when required:

$$\ell_s^{\text{skill}} \ge \text{reqLevel}(s), \quad \text{certified}(s) \ge \text{reqCert}(s) \quad \forall s \in \mathcal{S}.$$

• C9 release status permitted:

$$\sum_{f \in \mathcal{F}} y_{f,rpl} \leq M \cdot \text{deployable}(rpl) \quad \forall rpl \in \mathcal{REP}.$$

• C10 documentation present for snapshot:

$$docPresent(d) = 1 \quad \forall d \in \mathcal{DEV} \text{ generated (via R22)}.$$

• C11 retrospective moderation set:

$$moderationSet(sre) = 1 \quad \forall sre \in SRE.$$

• C12 planning outcome documented:

$$planningDoc(spp) = 1 \quad \forall spp \in \mathcal{SPP}.$$

Canonical linking constraints (examples).

(Stories in an SBL must belong to its sprint)
$$\sum_{sbl:(sbl,sp)\in \text{SBLofSprint}} \mathbf{1}\{(u,sbl)\in \text{StoryInSBL}\} = x_{u,sp} \quad \forall u\in \mathcal{U}$$
(Tasks planned per SBL)
$$\sum_{\tau:(u,\tau)\in \text{StoryHasTasks}} 1 = n_{sbl}^{\text{tasks}} \qquad \forall u\in \mathcal{U}$$

5 5. DecisionVariables

- DV0 assign_user_story_to_sprint: $x_{u,sp} \in \{0,1\}$ (domain $\{0,1\}$, min 0, max 1)
- DV1 select_feature_for_release: $y_{f,rpl} \in \{0,1\}$ (domain $\{0,1\}$, min 0, max 1)
- DV2 allocate worker to task: $a_{w,\tau} \in \{0,1\}$ (domain $\{0,1\}$, min 0, max 1)
- DV3 choose_epic_for_planning: $z_e \in \{0,1\}$ (domain $\{0,1\}$, min 0, max 1)
- DV4 set task effort: $h_{\tau} \in [0, 1000]$ (real, min 0, max 1000)
- DV5 prioritize_user_story: $pr_u \in \{1, 2, 3, 4, 5\}$ (integer, min 1, max 5)
- DV6 set sprint goal target: $gTarget_{sp} \in [0, 100]$ (real, min 0, max 100)
- DV7 enable backlog item: $b_{pb} \in \{0,1\}$ (binary, min 0, max 1)
- DV8 staff team size: $n_t^{\text{team}} \in \{3, 4, \dots, 12\}$ (integer, min 3, max 12)
- DV9 plan number of tasks: $n_{sbl}^{tasks} \in \{0, 1, ..., 500\}$ (integer, min 0, max 500)
- DV10 assign scrum master: $b_t^{\text{sm}} \in \{0, 1\}$ (binary, min 0, max 1)
- DV11 select stakeholder for review: $\iota_{h,sr} \in \{0,1\}$ (binary, min 0, max 1)
- DV12 set skill level target: $\ell_s^{\text{skill}} \in \{1, 2, 3, 4, 5\}$ (integer, min 1, max 5)