Problem Set 10

- 1. Let TS and TS' be two transition systems without terminal states on the same set of atomic propositions AP. Then show that Traces(TS) = Traces(TS') iff TS and TS' satisfy the same set of LT properties.
- 2. Consider a set of atomic propositions AP. Consider the following logic $\mathcal X$ defined as follows:

$$\varphi ::== (a \in AP)|\varphi \wedge \varphi| \neg \varphi|\varphi \Delta \varphi$$

with semantics as follows:

Given a word $w = A_0 A_1 \dots$ over 2^{AP} and a position $i \in \mathbb{N}$, we define

- (a) $w, i \models a \text{ iff } a \in A_i \text{ for } a \in AP$
- (b) $w, i \models \varphi_1 \land \varphi_2$ iff $w, i \models \varphi_1$ and $w, i \models \varphi_2$
- (c) $w, i \models \neg \varphi \text{ iff } w, i \not\models \varphi$
- (d) $w, i \models \varphi \Delta \psi$ iff $\exists j > i, w, j \models \psi$ and $\forall i < k < j, w, k \models \varphi$.

Comment on the equivalence of LTL and \mathcal{X} .

- 3. Exercises 5.1, 5.2, 5.5, 5.6 and 5.7 from Baier-Katoen.
- 4. Consider a ω -automaton $(Q, \Sigma, \delta, q_0, Acc)$, and let $\mathcal{G} \subseteq 2^Q$ be a set of good states. An ω -word α is said to be accepted iff there is a run ρ of α such that $Inf(\rho) \in \mathcal{G}$. $\delta: Q \times \Sigma \to 2^Q$ is the transition function.
 - Construct a deterministic ω -automata with this acceptance condition that captures the language "Finitely many b's".
 - Show that ω -automata with this acceptance condition captures ω -regular languages.
 - How do you complement a deterministic ω -automata with this acceptance condition?