SMAI Assignment-2 Report Submitted by: Ayush Kumar Dwivedi (2008802002)

Q-1: K Nearest Neighbors:

	Command to run the script:		
	python q-1.py		
Part-1	ĽΝ	iter the	dataset: 1: Robot1, 2: Robot2, 3: Iris
rait-1			
	1.	Robot1:	
			Self made kNN model
			Accuracy: 0.72
			Recall: 0.7243589743589745
			Precision: 0.7333333333333334
			F1 Score: 0.7181964573268922
			Scikit-Learn kNN model for verification
			Accuracy_sk: 0.72
			Recall_sk: 0.72
			Precision_sk: 0.7461538461538462
			F1 Score_sk: 0.7227053140096619
	2.	Robot2:	
			Self made kNN model
			Accuracy: 0.92
			Recall: 0.9198717948717949
			Precision: 0.9198717948717949
			F1 Score: 0.9198717948717949
			Scikit-Learn kNN model for verification
			Accuracy_sk: 0.92
			Recall_sk: 0.92
			Precision_sk: 0.92
			F1 Score_sk: 0.92
	3.	Iris:	
			Self made kNN model
			Accuracy: 0.9629629629629
			Recall: 0.9583333333333334
			Precision: 0.96969696969697

F1 Score: 0.9619047619047619

-----Scikit-Learn kNN model for verification-----

Accuracy_sk: 0.9629629629629629
Recall_sk: 0.9629629629629
Precision_sk: 0.9675925925925926
F1 Score_sk: 0.9633156966490299

Part-2 : Accuracy vs K for all three dataset Robot1:

Robot2:

Iris:

Q-2: Naïve Bayes Classifier

Validation Accuracy: 0.895555555555555

Q-3: Naïve Bayes Classifier

Part 2:

Validation MAE: 0.045025178666509735 Validation MSE: 0.0035022166040901007 Validation MPE: -0.02325964891178607

Since MSE is used as the cost function, it has the least error.

Part 3:

For good model check that the residue are randomly scattered around zero for the entire range of fitted values. When the residuals center on zero, they indicate that the model's predictions are correct on average rather than systematically too high or low. Regression also assumes that the residuals follow a normal distribution and that the degree of scattering is the same for all fitted values.

