Đa thức nội suy

Và phương pháp bình phương bé nhất— Chương 4

1) Đa thức nội suy Lagrange:

Ví dụ 1: Cho bảng giá trị của hàm số y = f(x):

X	321	(\mathbf{x}_0)	322.8	(\mathbf{x}_1)	324.2	(\mathbf{x}_2)	325	(x_3)
У	2.50651	(y_0)	2.50893	(y ₁)	2.51081	(y ₂)	2.51188	(y ₃)

Tính gần đúng f(323.5) bằng đa thức nội suy Lagrange.

Giải:

Có 4 nút nội suy $(n = 3) \Rightarrow Da$ thức nội suy Lagrange của hàm f(x) là:

$$L_{3}(x) = \frac{(x - x_{1})(x - x_{2})(x - x_{3})}{(x_{0} - x_{1})(x_{0} - x_{2})(x_{0} - x_{3})} y_{0} + \frac{(x - x_{0})(x - x_{2})(x - x_{3})}{(x_{1} - x_{0})(x_{1} - x_{2})(x_{1} - x_{3})} y_{1}$$

$$+ \frac{(x - x_{0})(x - x_{1})(x - x_{3})}{(x_{2} - x_{0})(x_{2} - x_{1})(x_{2} - x_{3})} y_{2} + \frac{(x - x_{0})(x - x_{1})(x - x_{2})}{(x_{3} - x_{0})(x_{3} - x_{1})(x_{3} - x_{2})} y_{3}$$

$$= \frac{(x - 322.8)(x - 324.2)(x - 325)}{(321 - 322.8)(321 - 324.2)(321 - 325)} 2.50651$$

$$+ \frac{(x - 321)(x - 324.2)(x - 325)}{(322.8 - 321)(322.8 - 324.2)(322.8 - 325)} 2.50893$$

$$+ \frac{(x - 321)(x - 322.8)(x - 325)}{(324.2 - 321)(324.2 - 322.8)(324.2 - 325)} 2.51081$$

$$+ \frac{(x - 321)(x - 322.8)(x - 324.2)}{(325 - 321)(325 - 322.8)(325 - 324.2)} 2.51188$$

$$\approx -0.10879(x - 322.8)(x - 324.2)(x - 325)$$

$$+0.45255(x - 321)(x - 324.2)(x - 325)$$

$$-0.70056(x - 321)(x - 322.8)(x - 325)$$

$$+0.35680(x - 321)(x - 322.8)(x - 324.2)$$

$$f(323.5) \approx L_3(323.5) \approx -0.10879(323.5 - 322.8)(323.5 - 324.2)(323.5 - 325)$$

$$+0.45255(323.5 - 321)(323.5 - 324.2)(323.5 - 325)$$

$$-0.70056(323.5 - 321)(323.5 - 322.8)(323.5 - 325)$$

$$+0.35680(323.5 - 321)(323.5 - 322.8)(323.5 - 324.2)$$

$$\approx -0.07996 + 1.18794 + 1.83897 - 0.43708$$

$$\approx 2.50987$$

2) Đa thức nội suy Newton – không cách đều:

Ví dụ 2: Cho bảng giá trị của hàm số y = f(x) như sau:

X	-1	0	3	6	7
У	3	-6	39	822	1611

- a) Xây dựng đa thức nội suy Newton từ nút $x_0 = -1$.
- b) Tính gần đúng f(-0.25) bằng đa thức nội suy tìm được ở trên.

Giải:

a) Có 5 nút nội suy, ta có:

$$\begin{split} P_4(x) &= y_0 + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x_0, x_1, x_2] \\ \\ &+ (x - x_0) (x - x_1) (x - x_2) f[x_0, x_1, x_2, x_3] \\ \\ &+ (x - x_0) (x - x_1) (x - x_2) (x - x_3) f[x_0, x_1, x_2, x_3, x_4] \end{split}$$

Ta lập bảng:

i	Xi	y _i	Tỷ hiệu cấp 1	Tỷ hiệu cấp 2	Tỷ hiệu cấp 3	Tỷ hiệu cấp 4
0	-1	3				
			$\frac{-6 - (3)}{0 - (-1)} = -9$			
1	0	-6		$\frac{15 - (-9)}{3 - (-1)} = 6$		
			15		$\frac{41-6}{6-(-1)} = 5$	
2	3	39		41		$\frac{13-5}{7-(-1)}=1$
			261		13	
3	6	822		132		
			789			
4	7	1611				

Đa thức cần tìm là:

$$P_4(x) = 3$$

$$+[x-(-1)]\times(-9)$$

$$+ [x - (-1)] \times (x - 0) \times 6$$

$$+ [x - (-1)] \times (x - 0) \times (x - 3) \times 5$$

$$+ [x - (-1)] \times (x - 0) \times (x - 3) \times (x - 6) \times 1$$

$$= 3 - 9(x + 1) + 6x(x + 1) + 5x(x + 1)(x - 3) + x(x + 1)(x - 3)(x - 6)$$

b) Ta có $f(-0.25) \approx P_4(-0.25)$

$$\approx 3 - 9(-0.25 + 1) + 6(-0.25)(-0.25 + 1) + 5(-0.25)(-0.25 + 1)(-0.25 - 3)$$

$$+(-0.25)(-0.25+1)(-0.25-3)(-0.25-6)$$

≈ -5.6367

Ví dụ 3: Sử dụng đa thức nội suy Newton, tìm số liệu còn thiếu trong bảng sau:

X	0	1	2	3	4
у	1	3	9	???	81

3) Đa thức nội suy Newton – có cách đều:

Ví dụ 4: Cho bảng giá trị của hàm y = f(x) như sau:

X	5	5.2	5.4	5.6
У	0.85	2.41	4.77	7.32

- a) Tìm đa thức nội suy Newton của hàm y = f(x) ứng với bảng trên.
- b) Tính gần đúng f(5.1)

Giải:

a) Có 4 nút nội suy, ta có:

$$P_3(x) = P_3(x = x_0 + ht) = y_0 + t\Delta_{y_0} + \frac{t(t-1)}{2!}\Delta_{y_0}^2 + \frac{t(t-1)(t-2)}{3!}\Delta_{y_0}^3$$

Với
$$x_0 = 5$$
 và $h = 0.2$

Ta lập bảng:

i	Xi	y i	Hiệu hữu hạn	Hiệu hữu	Hiệu hữu
			cấp 1	hạn cấp 2	hạn cấp 3
0	5	0.85			
			2.41-0.85		
			=1.56		
1	5.2	2.41		2.36-1.56	
				=0.8	
			2.36		0.19-0.8
					=-0.61
2	5.4	4.77		0.19	
			2.55		
3	5.6	2.55			

Đa thức cần tìm là:

$$P_3(x = 5 + 0.2t) = 0.85 + 1.56t + \frac{t(t-1)}{2!}0.8 + \frac{t(t-1)(t-2)}{3!}(-0.61)$$

b) Ta có
$$f(5.1) = f(5.1 = 5 + 0.2t)$$

Từ đó suy ra
$$t = \frac{x - x_0}{h} = \frac{5.1 - 5}{0.2} = 0.5$$

Thay t=0.5 vào đa thức tìm được ở câu a) ta được:

$$f(5.1) \approx P_3(x = 5.1) = P_3(t = 0.5)$$

$$\approx 0.85 + 1.56 \times 0.5 + \frac{0.5(0.5-1)}{2!} \cdot 0.8 - \frac{0.5(0.5-1)(0.5-2)}{3!} \cdot 0.61$$

≈ 1.49188

Ví dụ 5: Cho bảng giá trị của hàm số y = f(x) tại 5 nút cách đều nhau như sau:

X	0.5	1	1.5	2	2.5
у	0.5	3	8	17	31.5

- a) Tìm đa thức nội suy Newton xuất phát từ nút $x_0 = 0.5$ của hàm f(x) tại các nút đã cho trong bảng trên.
- b) Tính gần đúng giá trị của hàm f(x) tại điểm x = 0.75.

4) Phương pháp bình phương bé nhất:

Ví dụ 6: Cho bảng giá trị:

X	2	4	6	8	10	12
У	7.32	8.24	9.2	10.19	11.01	12.05

- a) Tìm đường thẳng y = a + bx gần với hàm y = f(x) theo phương pháp bình phương bé nhất.
- b) Từ đó tính gần đúng giá trị của y tại x = 5.

Giải:

a) Ta có a và b là nghiệm của hệ:
$$\begin{cases} na + b \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i \\ a \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} x_i y_i \end{cases}$$

Trong đó:

n = 6

$$\sum_{i=1}^{n} x_i = 42; \sum_{i=1}^{n} y_i = 58.01; \sum_{i=1}^{n} x_i^2 = 364; \sum_{i=1}^{n} x_i y_i = 439.02$$

Hệ trở thành:
$$\begin{cases} 6a + 42b = 58.01 \\ 42a + 364b = 439.02 \end{cases} \leftrightarrow \begin{cases} a = 6.37333 \\ b = 0.47071 \end{cases}$$

$$\rightarrow y = 6.37333 + 0.47071x$$

Bấm máy:

- $X \acute{o}a b \acute{o}$ $nh\acute{o}$ $m\acute{a}y$ tính: Shift 9 3 = =
- Chuyển sang chế độ thống kê: MODE 3
- Chọn 2(A + BX)
- Nhập dữ liệu:

	X	Y
1	2	7.32
2	4	8.24

- Bấm AC để lưu dữ liệu.
- Lấy các giá trị của tổng: Shift 1 3 ...
- Lấy hệ số a và b: Shift 15 ...
- b) y tại x = 5 có giá trị gần đúng là:

$$y \approx 6.37333 + 0.47071 \times 5$$

≈ 8.73

Ví dụ 7: Cho bảng giá trị:

X	0.78	1.56	2.34	3.12	3.81
У	2.50	1.20	1.12	2.25	4.28

Bảng phương pháp bình phương bé nhất, tìm hàm $y = a + bx + cx^2$.

Giải:

Ta có a, b, c là nghiệm của hệ:
$$\begin{cases} na + b \sum_{i=1}^{n} x_i + c \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} y_i \\ a \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} x_i^2 + c \sum_{i=1}^{n} x_i^3 = \sum_{i=1}^{n} x_i y_i \\ a \sum_{i=1}^{n} x_i^2 + b \sum_{i=1}^{n} x_i^3 + c \sum_{i=1}^{n} x_i^4 = \sum_{i=1}^{n} x_i^2 y_i \end{cases}$$

Trong đó:

n = 5;

$$\sum_{i=1}^{n} x_i = 11.61; \sum_{i=1}^{n} x_i^2 = 32.7681; \sum_{i=1}^{n} y_i = 11.35; \sum_{i=1}^{n} x_i^3 = 102.7615;$$

$$\sum_{i=1}^{n} x_i y_i = 29.7696; \sum_{i=1}^{n} x_i^4 = 341.7505; \sum_{i=1}^{n} x_i^2 y_i = 94.6053$$

Hệ trở thành:
$$\begin{cases} 5a + 11.61b + 32.7681c = 11.35 \\ 11.61a + 32.7681b + 102.76c = 29.7696 \\ 32.7681a + 102.76b + 341.7505c = 94.6053 \end{cases}$$

$$\Leftrightarrow \begin{cases}
 a = 5.0221 \\
 b = -4.0143 \\
 c = 1.0023
\end{cases}$$

Vậy, ta có công thức nghiệm cần tìm là: $y = 5.0221 - 4.0143x + 1.0023x^2$.

Bấm máy:

- *Xóa bộ nhớ: Shift 9 3 = =*
- Chuyển sang chế độ thống kê: MODE 3 (STAT)
- Chọn $3(- + cX^2)$
- Nhập dữ liệu:

	X	Y
1	0.78	2.5
2	1.56	1.2

- Bấm AC để lưu dữ liệu.
- Lấy các giá trị của tổng: Shift 13
- Lấy các giá trị hệ số a, b và c: Shift 15

Ví dụ 8: Cho bảng giá trị tương ứng giữa x và y như sau:

X	2	2.3	2.6	2.9	3.2	3.5
У	14	11.27	10.91	8.25	7.86	6.05

- a) Bằng phương pháp bình phương bé nhất, tìm hàm y = a + bx gần với bảng giá trị trên.
- b) Tính gần đúng đạo hàm $y'_x(3.2)$.

Ví dụ 9: Theo dõi ảnh hưởng tiêu cực của chất độc X trong nước uống (đơn vị: mg/dm³) đến tuổi thọ Y của một loài động vật (đơn vị: tháng) cho bởi bảng sau:

X	1	2	3	4	5
(mg/dm ³)					
Y (tháng)	36	31	26	20	13

- a) Bằng phương pháp bình phương bé nhất, tìm công thức nghiệm của Y có dạng $y = a + bx + cx^2$.
- b) Từ câu a) nếu lượng chất độc $X=6~\text{mg/dm}^3$ thì tuổi thọ Y của động vật này là bao nhiêu?

Ví dụ 10: Cho bảng giá trị của hàm số y = f(x) như sau:

X	0	2	2.5	3	4
У	0	10	???	42	118

- a) Tìm đa thức nội suy Lagrange của hàm f(x) tại các nút cho bởi bảng trên.
- b) Tìm giá trị y còn thiếu trong bảng trên.