ICAC Lógica Fuzzy Laboratório

Prof. Danilo Perico

Aula de Hoje

- Construindo um sistema de controle baseado em Lógica Fuzzy.
- Usando o Toolkit Fuzzy do Matlab.

Lógica Fuzzy no Matlab

- Toolkit Fuzzy têm 5 ferramentas básicas de construção de sistemas Fuzzy:
 - Editor do sistema de inferência (FIS)
 - Editor das Funções de Pertinência
 - Editor de Regras
 - Visualizador da superfície de decisão
 - Visualizador de Regras

FIS Editor

- Fuzzy Inference System (FIS) Editor:
 - Módulo principal do sistema
 - Gerencia assuntos de alto nível:
 - nome das variáveis
 - quantidade de variáveis de entrada e saída
- Junta tudo

Membership Function Editor

- Editor das Funções de Pertinência
 - Permite definir o formato de todas as funções de pertinência associadas com cada variável

Rule Editor

- Editor das Regras:
 - Permite editar a lista de regras que define o comportamento do sistema.

Surface Viewer

- Visualizador da superfície de decisão:
 - Permite visualizar graficamente como ficou a superfície de decisão.
 - Ferramenta read-only.
 - Usada para diagnóstico.

Rule Viewer

- Visualizador das Regras:
 - Permite visualizar graficamente como ficaram as regras.
 - Ferramenta read-only.
 - Usada para diagnóstico.

Funcionamento das ferramentas

- Iniciadas se digitando "fuzzy nome" no prompt do matlab.
- Podem carregar e salvar informações no workspace ou no disco.
- Podem estar abertos simultaneamente.

Exemplo: Controlador de Gorjeta

Exemplo da Gorjeta

- Seguiremos os passos para construção de um sistema fuzzy:
 - Inicie o sistema digitando "fuzzy"
 - Controlador com 2 entradas e 1 saída:
 - Entradas?
 - Qualidade do Serviço
 - Qualidade da Comida
 - Saídas?
 - Gorjeta

Entradas e saídas no Matlab

- Matlab inicia com 1 entrada e 1 saída:
 - Mudar no Edit Add Input: aparecem 2 entradas
- Mude os nomes das variáveis de entrada e saída:
 - Clique na caixa uma vez (fica vermelha)
 - Mude o nome no campo de texto a esquerda.

Definindo as funções de pertinência

- Clique: Edit add MFs
 - Adiciona as funções de pertinência de cada variável
 - Define número de funções e tipo
- Range: muda os valores possíveis.

Funções de pertinência

- Adicione as funções de pertinência dos 3 conjuntos:
- Serviço:
 - Range de 0 a 10, 3 funções e tipo *gaussmf*
- Comida:
 - Range de 0 a 10, 2 funções e tipo trapmf
- Gorjeta:
 - Range de 0 a 30, 3 funções e tipo trimf

Nomes

- Acerte os nomes dos conjuntos:
 - Serviço:
 - pobre, bom e excelente
 - Comida:
 - Ruim e Deliciosa
 - Gorjeta:
 - pouca, média e generosa
- Mude os triângulos da gorjeta para não se sobreporem e ficarem só de 0 a 30.

Regras

- Clique: Edit Rules
- Adicione as 3 regras:
 - Se "o serviço é pobre" ou "a comida é ruim" então "dar pouca gorjeta".
 - Se "o serviço é bom"
 então "dar gorjeta média".
 - Se "o serviço é excelente" ou "a comida é ótima" então "dar muita gorjeta".
- Ver menu de opções!

Testando o sistema

- Clique: View View Rules
 - Permite testar o sistema
 - Modifique as entradas e ele calcula automaticamente a saída
- Clique: View View Surface
 - Permite verificar a superfície de decisão gerada.
 - Use o mouse para girar figura.

Finalizando

- Salve para o disco, para poder ser usado novamente.
- Extensão: .fis

Usando o controlador

- Para carregar um controlador pronto:
 - a = readfis('gorjeta.fis')
- Para mostrar as características de um controlador:
 - showfis (a)
- Para display:
 - plotfis(a)
 - plotmf(a, 'input',1)

Para usar o Controlador

 Parecido com uma rede neural, existe uma função para calcular a saída a partir de uma entrada:

- evalfis([1 2], a)
- Retorna o resultado do controle para as entradas 1 e 2.

Exercício 1: Controle da Velocidade de um Motor

- Um determinado motor precisa rotacionar sempre na velocidade correta (RPM).
 - O motor deve manter 7272 RPM
- Controlamos a velocidade do motor alterando a tensão de entrada.

- A entrada do problema é a velocidade do motor em RPM
- Em palavras, o motor pode estar:
 - o muito lento
 - velocidade correta
 - muito rápido

- A saída do Fuzzy é a tensão (de 0 a 12V)
- Em palavras:
 - menos tensão
 - sem alteração
 - mais tensão

- As regras básicas:
 - Se o motor girar de forma muito lenta, então deve-se aumentar a tensão
 - Se o motor estiver girando na velocidade correta, nenhuma alteração deve ser feita
 - Se o motor estiver rápido demais, então é necessário diminuir a tensão

No Simulink:

No Simulink:

- 5V mantém o motor na velocidade correta!
- Desde que o motor esteja sem carga (torque 0)

No Simulink:

O valor do torque pode ser alterado de
 -5e-4 (carga) até 5e-4 (rotaciona mais)

No Simulink, com o controlador Fuzzy:

