

Fake News Detection

Presented by:

Name: Prerna Maheshbhai Patil

PRN: 20240804063

Ms.Asha Ayakar
Project Guide

Dr. Swapnil Waghmare **Project Coordinator**

Dr. Maheshwari Biradar HOD, BCA&MCA

Introduction

- Fake news spreads quickly through social media and websites, creating confusion and misinformation.
- Manual detection is slow and not reliable for large-scale news data.
- This project uses Machine Learning and Natural Language Processing to detect fake news automatically.
- The goal is to help users get trustworthy news by identifying and filtering out fake content.

Problem Statement:

- Manual fake news detection is slow and unreliable.
- Need for a fast, scalable, and accurate system to detect fake news in real-time.

Objective:

- Build an ML-based fake news detection system.
- Preprocess text data using cleaning, tokenization, and lemmatization.
- Use models like Logistic Regression, Naive Bayes, Decision Tree, and Random Forest.
- Convert text to numerical form using TF-IDF.
- Evaluate models using accuracy, precision, recall, and F1-score.

Proposed Methodology

Project Workflow Overview:

- Collected and explored news dataset containing real and fake articles.
- Cleaned the text data by removing punctuation, stopwords, and special characters.
- Handled missing values and removed irrelevant columns.
- Applied TF-IDF vectorization to convert text into numerical format.
- Built and trained machine learning models:
 - Logistic Regression, Random Forest, Naive Bayes, SVM, XGBoost
- Combined top-performing models using a Voting Classifier (ensemble method).
- Evaluated models using **Accuracy**, **Precision**, **Recall**, and **F1-Score**.
- Selected the best-performing model based on evaluation metrics.
- Deployed the model using Streamlit for real-time fake news detection.

Tools & Technologies Used:

Category	Tools/Technologies Used
Programming	Python
Libraries	Pandas, NumPy, Scikit-learn, XGBoost, NLTK
Text Processing	Stopwords removal, TF-IDF Vectorization, Stemming (NLTK)
Visualization	Matplotlib, Seaborn
Explainability	LIME (Local Interpretable Model-agnostic Explanations)
Deployment	Streamlit
Data Source	Public Fake News Dataset (e.g., Kaggle / open-source dataset)

System Design

Data Flow Diagrams:

Level 0 DFD

Level 1 DFD

Flowchart:

Activity Diagram:

Use Case Diagram

Text Length Distribution Insights

Most Common Words in Fake News

Most Common Words in Real News

Most Common Words in True News

Natural Language Processing (NLP) Techniques

1. Text Preprocessing:

- Lowercasing: Converted all text to lowercase for consistency.
- Noise Removal: Removed URLs, HTML tags, special characters, numbers, and extra spaces.
- Punctuation Cleaning: Used re.sub and string.punctuation to remove all punctuations.
- Stopword Removal: Used NLTK's predefined English stopword list to remove common filler words.
- **Lemmatization:** Applied WordNetLemmatizer to reduce words to their root form (e.g., "running" → "run").

2. Feature Extraction:

- Word Count & Character Count: Calculated total number of words and characters to measure text length.
- Sentiment Score: Extracted sentiment polarity to detect possible bias in news tone.
- Readability Scores: Measured how easy the news content is to read and understand.

3. Text Vectorization & Data Preparation:

- **TF-IDF Vectorizer**: Transformed cleaned text into numerical features based on term frequency and inverse document frequency.
- Train-Test Split: Divided the dataset into training and testing sets to evaluate model generalization.

Model Building

Models Implemented:

- PassiveAggressive Classifier:
 - Fast linear model suitable for large-scale text classification.
- Naïve Bayes:
 - Simple, fast probabilistic model ideal for text data.
- Logistic Regression:
 - Linear model to estimate probability of fake vs real news.
- Decision Tree:
 - Rule-based model that splits data into interpretable branches.
- Random Forest:
 - Ensemble of decision trees that boosts accuracy and reduces overfitting.
- Voting Classifier:
 - Combines top models for more stable and accurate predictions.

Model Training Process:

- Split data into training (80%) and testing (20%) sets.
- Preprocessed text using cleaning, stopword removal, and lemmatization.
- Applied TF-IDF vectorization for feature extraction.
- Trained multiple ML models and evaluated performance.
- Selected top 4 models based on evaluation scores for ensemble learning.
- Used Voting Classifier for final prediction and LIME for explanation.

Model Performance Metrics

Model Name	Accuracy	Precision	Recall	F1-Score	AUC Score	Reason
XGBoost	99.78%	100%	100%	100%	100%	Efficient with large datasets, handles imbalance well
Random Forest	98.86%	99%	99%	99%	99.9%	Ensemble model, reduces overfitting, high accuracy
Passive Aggressive	99.56%	100%	99%	100%	100%	Great for text classification and large-scale data
Naive Bayes	93.19%	93%	93%	93%	97.9%	Simple, fast, and performs well on text-based tasks
Logistic Regression	98.56%	99%	99%	99%	99.8%	Baseline model, interpretable and effective
Decision Tree	99.62%	100%	100%	100%	99.6%	Easy to interpret, handles non-linear patterns well
Gradient Boosting	99.46%	99%	100%	99%	99.9%	Boosts weak learners, gives robust performance

Ensemble Learning – Voting Classifier

• Why Use Ensemble?

- Combines strengths of multiple classifiers to improve robustness and generalization.
- Helps manage class imbalance and enhances model performance on diverse news patterns.
- Boosts precision and recall for identifying fake news effectively.

Models Used in Ensemble :

Model	Reason for Inclusion
Random Forest	High accuracy and handles non- linearity well
Logistic Regression	Fast, interpretable, and performs well on text-based features
Naive Bayes	Excellent baseline for text classification
Decision Tree	Easy to understand, works well with categorical data

Performance :

- Train Accuracy: 99.69%
- Test Accuracy: 98.82%
- AUC Score: 0.988 → Indicates strong ability to distinguish between fake and real news.

Confusion Matrix :

[[5806 32] [100 5282]]

Model Deployment

To make the fake news detection system accessible and usable, the final model was deployed using **Streamlit**, a powerful and **lightweight** Python **web framework**.

App Features

- News Prediction: Enter news text or URL and get real-time prediction (Fake or Real).
- LIME Explanation: Understand which words influenced the model's decision.
- WordClouds: Visual representation of common words in fake and real news.
- Fact Check Link: Provides reliable fact-checking sources when fake news is detected.
- User Feedback: Allows users to submit feedback to help improve prediction quality.

Tech Stack

- Frontend: Streamlit (Python)
- · Backend:
 - Voting Classifier (Ensemble of Logistic Regression, Naïve Bayes, Random Forest)
 - Model Serialization: joblib used to save and load models
 - ensemble_model.joblib
 - fake_news_pipeline.joblib
 - lime_config.joblib
 - tfidf_vectorizer.joblib
 - Preprocessing: Text Cleaning, Lemmatization, Stopword Removal, TF-IDF
- Core Libraries: Scikit-learn, Pandas, NumPy, NLTK, TextBlob, WordCloud, LIME

Predictions & Results

Fake News Detection Model:

Results(Word Cloud, Confidence Score, Text Analysis):

LIME Explanation:

LIME Explanation How this explanation works: The LIME model highlights words that most influenced the prediction:

- Green words support the 'Real News' classification
- Red words would support 'Fake News' if present

Longer bars indicate stronger influence on the prediction.

Fact News Checking:

User Feedback:

Conclusion & Future Scope

Conclusion

- Developed an end-to-end Fake News Detection system using machine learning techniques.
- Achieved accurate classification of news articles as fake or real using models like Random Forest, Logistic Regression, and ensemble methods.
- Implemented explainability features (like LIME) to provide transparency in predictions.
- Created a user-friendly interface for real-time news analysis and incorporated user feedback to improve system reliability.

Future Scope

- Integrate **Deep Learning models** (e.g., LSTM, BERT) for enhanced semantic understanding and better fake news detection.
- Develop automated feedback-based model retraining to continuously improve accuracy.
- Expand fact-checking integration by linking to multiple trusted sources for real-time verification.
- Add multilingual support to detect fake news in various languages.

