Karnaugh Maps (K-maps) - "Car-no"

Karnaugh maps were first applied to circuits in a 1953 paper

"The Map Method for Synthesis of Combinational Logic Circuits" by Maurice Karnaugh.

K-maps give us a graphical technique for the representation and simplification of a Boolean expression.

A Karnaugh map is made up of 2ⁿ boxes, representing the 2ⁿ entries of a truth table, arranged in a rectangular array (actually a torus would be more accurate). The correct positioning of the boxes is critical to the use of a Karnaugh map. Each box represents a binary sequence. Any two boxes which are adjacent horizontally or vertically must correspond to binary sequences differing in only one bit.

Example: 2 Variable K-map

В	A 0	1
0	$\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$	$A\overline{B}$
1	ĀB	AB

Note: Each box represents a minterm. Each row $\,$ a single term. Each column a single term.

 $Row \ 1: represents \ \overline{B} \hspace{1cm} Row \ 2: represents \ B$

Column 1 : represents A Column 2 : represents A

But the real power comes when we look at blocks of 2ⁿ entries.

The horizontal oval represents if B=0 it doesn't matter what A is, we get a 1. This two-cell block is \overline{B} .

Likewise, the vertical oval represents if A=1 it doesn't matter what B is, we get a 1. This two-cell block is A.

Using this reasoning,

$$F = A + \overline{B}$$

Note: This could have been done using Algebra

$$F = \overline{A} \overline{B} + A\overline{B} + AB$$

$$= (\overline{A} + A)\overline{B} + AB$$

$$= \overline{B} + AB \quad \text{recall } (X + \overline{X}Y = X + Y)$$

$$= \overline{B} + A$$

Consider the circuit:

The corresponding truth table:

A	В	\overline{A}	$F = \overline{\overline{AB}}$
0	0	1	1
0	1	1	0
1	0	0	1
1	1	0	1

Then we use the Karnaugh map by putting a 1 in a square which corresponds to 1 in the truth table.

We can now show F as a sum of minterms:

$$F = \overline{AB} + A\overline{B} + AB$$

Indeed we can even easily represent F as a negation of a sum of minterms:

$$F = \overline{F} = \overline{A} \overline{B} + A\overline{B} + A\overline{B} = \overline{AB}$$

The 3-variable K-map:

Individual cells represent minterms.

Blocks of two cells represent represent 2 term Products

Some examples:

The oval represents $\overline{A}\,\overline{B}$

The oval above represents $B\overline{C}$

A	В			
	00	01	11	10
0	ĀBĒ	ĀBC	ABC	$\boxed{A\overline{B}\overline{C}}$
1	ĀĒC	ĀBC	ABC	ABC

The two corners represent $\overline{B} \overline{C}$

Lets use a Karnaugh map to help simplify

$$F = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C + A\overline{B}C + \overline{A}B\overline{C}$$

A	В			
c \	00	01	11	10
0	ĀBĒ	ĀBC	ABŪ	ABC
1	ĀBC	ĀBC	ABC	ABC

We put ones in the corresponding positions:

Notice the vertical oval is not adding any new information. Adding its corresponding term will be redundant so we will omit it.

$$F = \overline{AC} + \overline{BC}$$

Blocks of 4 cells represent individual variables (or their complements)

The 4 cells above represent \overline{A}

The 4 cells above represent \overline{B}

For our last 3 variable example, consider reducing the function:

$$F = \overline{A} \, \overline{B} \, \overline{C} + \overline{A} \, B \, C + A \, \overline{B} \, C$$

$$C \qquad 00 \qquad 01 \qquad 11 \qquad 10$$

$$0 \qquad \overline{A} \, \overline{B} \, \overline{C} \qquad \overline{A} \overline{B} \, \overline{C} \qquad A \overline{B} \, \overline{C}$$

$$1 \qquad \overline{A} \, \overline{B} \, C \qquad \overline{A} \overline{B} \, C \qquad A \overline{B} \, C$$

Putting the 1's in

, Al	В			
	00	01	11	10
0	$\frac{1}{\overline{A}\overline{B}\overline{C}}$	ĀBĒ	ABC	$A\overline{B}\overline{C}$
1		1		1
	ĀBC	ĀBC	ABC	$A\overline{B}C$

Notice there are not adjacent cells. This particular function can not be reduced.

4 variable K-Map

CD\^	AB 00	01	11	10
00	ĀBCD	ĀBĒ D	ABCD	ΑBCD
01	ĀBĒD	ĀBCD	ABCD	ABCD
11	ĀBCD	ĀBCD	ABCD	ABCD
10	ĀBC D	ĀBCD	ABCD	$A\overline{B}C\overline{D}$

Individual cells represent minterms. 2 cell blocks represent 3 variable terms. 4 cell blocks represent 2 variable terms. 8 cell blocks represent 1 variable terms. (We only group 2^k terms at a time)

Example: Use a K-map to simplify $F = AB + \overline{A}B\overline{C}D + \overline{A}BCD + A\overline{B}\overline{C}\overline{D}$

We will start by identifying the appropriate cells -

CD\ ^A	AB 00	0.1	11	10
1		01	11	10
00	ABCD	ĀBĒD	ABCD	ABCD
01	ĀĒĒD	$\overline{\overline{A}B\overline{C}D}$	ABŪD	ABCD
11	ĀBCD	ĀBCD	ABCD	ABCD
10	ĀBCD	ĀBCD	ABCD	ABCD
		· · · · ·		

RULE OF THUMB: To achieve minimization include the smallest number of blocks having each having the largest possible number of cells.

 $F = A \overline{C} \overline{D} + A B + B D$