Machine Learning 4771

Instructor: Itsik Pe'er

Reminder: Decision Trees, k-Nearest Neighbors

Today: Ensembles

How to turn weak classifiers into a strong one?

Framework

- lacktright Probability distribution P over $X \times \{\pm 1\}$
- Samples $S = \{(x_i, y_i)\}_{i=1}^N$ from P
- Goal:

```
Learn classifier f: X \to \{\pm 1\} s.t.

err(f) = P(f(X) \neq Y) = 0
```

Framework

- lacktright Probability distribution P over $X \times \{\pm 1\}$
- \bullet Samples $S = \{(x_i, y_i)\}_{i=1}^N$ from P
- Goal: w/prob ≥ 1 − δ (over choice of S)
 Learn classifier $f: X \to \{\pm 1\}$ s.t.
 $err(f) = P(f(X) \neq Y) \leq \epsilon$

Framework

- lacktright Probability distribution P over $X \times \{\pm 1\}$
- Samples $S = \{(x_i, y_i)\}_{i=1}^N$ from P
- Goal: w/prob ≥ 1 − δ (over choice of S)
 Learn classifier $f: X \to \{\pm 1\}$ s.t.
 $err(f) = P(f(X) \neq Y) \leq \epsilon$
- **Easier goal: learn non-trivial classifier** (better than chance) $err(f) \le \frac{1}{2} \gamma$

Boosting

- For t = 1, 2, ... T:
 - Train "weak learner" f_t on samples S_t : $f_t \leftarrow WL(S_t)$

Return ensemble_classifier $(f_1, f_2, ..., f_T)$

Boosting

- For t = 1, 2, ... T:
 - $S_t \leftarrow$ random subset of samples $S_t \subseteq S$
 - Train "weak learner" f_t on samples S_t : $f_t \leftarrow WL(S_t)$

Return ensemble_classifier $(f_1, f_2, ..., f_T)$

- For t = 1, 2, ... T:
 - $S_t \leftarrow \text{rand. multiset from } S \text{ w/ replacement } |S_t| = |S|$
 - Train "weak learner" f_t on samples S_t : $f_t \leftarrow WL(S_t)$

• Return ensemble_classifier($f_1, f_2, ..., f_T$)

History

- ◆1984 Is boosting possible? [Valiant, Kearns]
- ◆1989 1st boosting algorithm [Schapire]

History

- ◆1984 Is boosting possible? [Valiant, Kearns]
- ◆1989 1st boosting algorithm [Schapire]
- 1990 Boost-by-majority: optimal! [Freund]
- ◆1995 AdaBoost [Freund & Schapire]

- For t = 1, 2, ... T:
 - $S_t \leftarrow \text{rand. multiset from } S \text{ w/ replacement } |S_t| = |S|$
 - Train "weak learner" f_t on samples S_t : $f_t \leftarrow WL(S_t)$

• Return ensemble_classifier($f_1, f_2, ..., f_T$)

 $D_t(i) \leftarrow \#\text{copies of } (x_i, y_i) \text{ in } S_t$

- For t = 1, 2, ... T:
 - $S_t \leftarrow \text{rand. multiset from } S \text{ w/ replacement } |S_t| = |S|$
 - Train "weak learner" f_t on samples S_t : $f_t \leftarrow WL(S_t)$

• Return ensemble_classifier($f_1, f_2, ..., f_T$)

- For t = 1, 2, ... T:
 - $\forall i$: $D_t(i) \leftarrow$ random integer representing resampling
 - Train "weak learner" f_t on D_t -weighted samples $f_t \leftarrow WL(D_t, S)$

lacktriangle Return ensemble_classifier $(f_1, f_2, ..., f_T)$

Adaptive Boosting

- $\blacktriangleleft \forall i: D_t(i) \leftarrow \frac{1}{N}$
- For t = 1, 2, ... T:
 - Train f_t on D_t -weighted samples $f_t \leftarrow WL(D_t, S)$
 - Reevaluate weights: compute D_{t+1}

• Return ensemble $(f_1, f_2, ..., f_T)$

 D_1

Weak learner:
Axis-parallel
classifiers
(decision stump)

D_2

Quality of a weighted classifier

• Suppose $(X,Y) \sim D_t$; $P(f(X) = Y) = \frac{1}{2} + \gamma_t$

Quality of a weighted classifier

- Suppose $(X,Y) \sim D_t$; $P(f(X) = Y) = \frac{1}{2} + \gamma_t$
- - $z_t = 0$: random guessing w.r.t. D_t
 - $z_t > 0$: f_t better than random
 - $z_t < 0 : -f_t$ better than random

AdaBoosting

- $\Leftrightarrow \forall i : D_t(i) \leftarrow \frac{1}{N}$
- For t = 1, 2, ... T:
 - Train f_t on D_t -weighted samples $f_t \leftarrow WL(D_t, S)$
 - Reevaluate weights: compute D_{t+1}
 - Quality of $f_t: z_t \leftarrow \sum_{i=1}^N D_t(i) y_i f_t(x_i) \in (-1, +1)$

lacktriangleq Return ensemble $(f_1, f_2, ..., f_T)$

AdaBoosting

- $\Leftrightarrow \forall i : D_t(i) \leftarrow \frac{1}{N}$
- For t = 1, 2, ... T:
 - Train f_t on D_t -weighted samples $f_t \leftarrow WL(D_t, S)$
 - Reevaluate weights: compute D_{t+1}
 - Quality of $f_t: z_t \leftarrow \sum_{i=1}^N D_t(i) y_i f_t(x_i) \in (-1, +1)$
 - Up-weight wrong samples: $D_t(i) *= \sqrt{\frac{1+z_t}{1-z_t}}$
 - Down-weight right samples: $D_t(i)/=\sqrt{\frac{1+z_t}{1-z_t}}$
- Return ensemble $(f_1, f_2, ..., f_T)$

AdaBoosting

- $\forall i: D_t(i) \leftarrow \frac{1}{N}$
- For t = 1, 2, ... T:
 - Train f_t on D_t -weighted samples $f_t \leftarrow WL(D_t, S)$
 - Reevaluate weights: compute D_{t+1}
 - Quality of $f_t: z_t \leftarrow \sum_{i=1}^N D_t(i)y_i f_t(x_i) \in (-1,+1)$
 - Weight of $f_t: \alpha_t \leftarrow \frac{1}{2} \ln \frac{1+z_t}{1-z_t} \in \mathbf{R}$
 - Up-/down-weight samples $D_{t+1}(i) \leftarrow D_t(i) \exp(-\alpha_t y_i f_t(x_i))$

AdaBoost

$$\Rightarrow \forall i : D_t(i) \leftarrow \frac{1}{N}$$

- For t = 1, 2, ... T:
 - Train f_t on D_t -weighted samples $f_t \leftarrow WL(D_t, S)$
 - Reevaluate weights: compute D_{t+1}
 - Quality of $f_t: z_t \leftarrow \sum_{i=1}^N D_t(i)y_i f_t(x_i) \in (-1,+1)$
 - Weight of $f_t: \alpha_t \leftarrow \frac{1}{2} \ln \frac{1+z_t}{1-z_t} \in \mathbf{R}$
 - Up-/down-weight samples $D_{t+1}(i) \leftarrow D_t(i) \exp(-\alpha_t y_i f_t(x_i))$
 - Normalize: $Z_t = \sum_{i=1}^{N} D_{t+1}(i)$; $D_{t+1}(i) \leftarrow \frac{D_{t+1}(i)}{Z_t}$

 $\hat{f}(x) = sign(.42f_1(x) + .65f_2(x) + .92f_3(x))$

Performance of Classifier

 \bullet Complexity: $T \times \text{Complexity(WL)}$

- lacktriangle Accuracy (decision stumps in \mathbb{R}^d)
 - Partially prove at home:

$$err(\hat{f}) \le \exp(-2\bar{\gamma}^2 T) + O\left(\sqrt{\frac{T\log d}{N}}\right)$$

Boosting Margins

$$\bullet margin((x,y)) = yg(x) \in [-1,+1]$$

- ◆Thm (SFBL '98):
 - ↑margins ⇒ ↓overfitting
 - AdaBoost tends to increase training margins
- Even if train error=0, more iterations help!

AdaBoost as Linear Classifier

Weak classifiers as features: Family of classifiers $\mathbf{F} = \{f\}$ implies feature vector

$$\phi: X \to \{-1, +1\}^F$$

AdaBoost as Linear Classifier

• Weak classifiers as features: Family of classifiers $\mathbf{F} = \{f\}$ implies feature vector

$$\phi: X \to \{-1, +1\}^F$$

$$\hat{f} = sign\left(\sum_{t=1}^{T} \frac{\alpha_t}{\sum_{\tau=1}^{T} |\alpha_{\tau}|} f_t(x)\right) = sign(\langle w, \phi(x) \rangle)$$

$$w_f = \begin{cases} \frac{\alpha_t}{\sum_{\tau=1}^T |\alpha_{\tau}|} & f = f_t \\ 0 & otherwise \end{cases}$$

AdaBoost as Coordinate Descent

At each point choose one dimension to improve

Use exponential loss

$$\min_{w \in \mathbb{R}^F} \frac{1}{N} \sum_{i=1}^{N} exp(-y_i \langle w, \phi(x_i) \rangle)$$

Summary

Ensembles of weak classifiers are strong

Resampling/reweighting samples:

AdaBoost as a flexible framework