Seminar 6. Walrasian Equilibrium in a Barter Economy

Xiaoguang Ling xiaoguang.ling@econ.uio.no

October 5, 2020

1 Jehle & Reny 5.4 - Excess demand function and GE

Derive the excess demand function z(p) for the economy in Example 5.1. Verify that it satisfies Walras' law.

Suppose we have a good-exchange economy,

- *I* is the set of all the individuals (consumers) in the economy,
- The prices of all *n* commodities is expressed by a vector $p = (p_1, p_2, ..., p_n)$,
- Every consumer has some endowments in the form of commodities expressed by a vector $e^i = (e_1^i, e_2^i, \dots, e_n^i)$,
- $p \cdot e^i$ is the income of consumer i,

Assume (Assumption 5.1 on pp.203) that every consumer has a utility function u^i , which is continuous, strongly increasing, and strictly quasiconcave on \mathbb{R}^n_+ .

• By solving consumer i's' utility maximization problem, consumer i's Marshallian demand function is $x^i(p,p\cdot e^i)=(x_1^i,x_2^i,\ldots,x_n^i)$

General Equilibrium: When demand equal to supply in **every market** (market for every commodity), we would say that the system of markets is in General Equilibrium.

We use **Excess Demand** to describe "demand equal to supply".

DEFINITION 5.4 Aggregate Excess Demand (Jehle & Reny pp.204)

The aggregate excess demand function for good *k* is the real-valued function,

$$z_k(p) \equiv \sum_{i \in I} x_k^i(p, p \cdot e^i) - \sum_{i \in I} e_k^i$$

Where,

- $\Sigma_{i \in I} x_k^i(p, p \cdot e^i)$ is the summation of all consumers' Marshallian demand for commodity k,
- $\Sigma_{i \in I} e_k^i$ is the total amount of commodity k in this economy.

When $z_k(p) > 0$, the aggregate demand for good k exceeds the aggregate endowment of good k and so there is excess demand for good k. When $z_k(p) < 0$, there is excess supply of good k. That's why $z_k(p)$ is called "Excess Demand" for k.

The aggregate excess demand function is a vector-valued function,

$$z_(p) \equiv [z_1(p), z_2(p), \dots, z_n(p)]$$

When $\exists \ p^* \in \mathbb{R}^n_{++}$ s.t. $z(p^*) = 0$, we say Walrasian Equilibrium (WE) exists. A WE in a barter economy includes a price vector p^* and an allocation (e.g. Marshallian demand) vector $x(p^*, p^* \cdot e)$.

THEOREM 5.2 Properties of Aggregate Excess Demand Functions (pp.204) If for each consumer i, u^i satisfies Assumption 5.1, then for all $p \gg 0$,

- 1. Continuity: z(.) is continuous at p.
- 2. Homogeneity: $z(\lambda p) = z(p) \ \forall \lambda > 0$.
- 3. Walras' law: $p \cdot z(p) = 0$.

2 Jehle & Reny 5.5 - WEA and Edgeworth box

In Example 5.1, calculate the consumers' Walrasian equilibrium allocations and illustrate in an Edgeworth box. Sketch in the contract curve and identify the core.

2.1 WEA

2.2 Edgeworth box

Contract curve The curve that links the two consumers' indifference curves' tangent point.

Core Given some endowment e, the core of the economy is the set of all feasible allocations that are not against ("blocked") by any consumers (a formal definition is on pp.200-201).

3 Jehle & Reny 5.11 - Pareto-efficient allocations and WEA

Consider a two-consumer, two-good exchange economy. Utility functions and endowments are

$$u^{1}(x_{1}, x_{2}) = (x_{1}x_{2})^{2}$$
 and $e^{1} = (18, 4)$
 $u^{2}(x_{1}, x_{2}) = ln(x_{1}) + 2ln(x_{2})$ and $e^{2} = (3, 6)$

- 1. Characterise the set of Pareto-efficient allocations as completely as possible.
- 2. Characterise the core of this economy.
- 3. Find a Walrasian equilibrium and compute the WEA.
- 4. Verify that the WEA you found in part (c) is in the core.

3.1 Pareto-efficient allocations

Pareto-efficient allocations

- **3.2** Core
- **3.3** WEA
- 3.4 WEA is in the core