Fiche méthode : Second degré

I. Différentes formes

Application 1: On donne l'expression algébrique de la fonction f définie sur \mathbb{R} par : $f(x) = -2x^2 - 4x + 6$.

On appelle cette forme : forme développée du polynôme du second degré.

La fonction f est représentée par la courbe C_f dans un repère orthonormé du plan.

1) Démontrer que pour tout réel x,

$$f(x) = -2(x+3)(x-1)$$

$$-2(x+3)(x-1) = -2(x^2 - x + 3x - 3)$$

$$= -2(x^2 + 2x - 3)$$

$$= -2x - 4x + 6$$

$$= f(x)$$

On appelle cette forme : forme factorisée du polynôme du second degré.

2) Démontrer que pour tout réel x,

$$f(x) = -2(x+1)^2 + 8$$

$$-2(x+1)^2 + 8 = -2(x^2 + 2x + 1) + 8$$

$$= -2x^2 - 4x - 2 + 8$$

$$= -2x^2 - 4x + 6$$

$$= f(x)$$

On appelle cette forme : forme canonique du polynôme du second degré.

3) Le point A(2; -10) appartient-il à la courbe C_f ?

f(2) = -2(2+3)(2	Donc $A \in C_f$
- 1)	•
$= -2 \times 5 \times 1$	
$=-10=y_{A}$	

- 4) Utiliser la forme la mieux adaptée pour répondre aux questions suivantes, en justifiant.
 - a) Déterminer les antécédents de 0 par f.

f(x) = 0

$$-2(x+3)(x-1) = 0$$
 (forme factorisée)
 $x+3=0$ ou $x-1=0$
 $x=-3$ ou $x=1$
 -3 et 1 sont les antécédents de 0 par f .

b) Dresser le tableau de variations de f.

On utilise la forme canonique :

$$f(x) = a(x - \alpha)^2 + \beta$$
$$f(x) = -2(x - (-1))^2 + 8$$

Par correspondance : a = -2 < 0 ainsi la fonction sera d'abord croissante puis décroissante.

$$\alpha = -1$$
 et $\beta = 8$

_			
x	$-\infty$	-1	$+\infty$
		. 8	
f(x)			\

c) Donner la nature et la valeur de l'extremum.

On utilise la forme canonique ainsi la fonction f admet comme maximum 8 atteint en x = -1.

Différentes formes d'un polynôme du 2nd degré :

- Forme développée: f(x) = ax² + bx + c
 La parabole coupe l'axe des ordonnées au point M (0; c).
- Forme factorisée :
 - o Si f(x) = 0 admet deux solutions notées x_1 et x_2 alors $f(x) = a(x x_1)(x x_2)$.
 - o Si f(x) = 0 admet une unique solution notée α alors $f(x) = a(x \alpha)^2$.
 - Si f(x) = 0 n'admet aucune solution réelle alors f(x) ne se factorise pas.
- Forme canonique : $f(x) = a(x \alpha)^2 + \beta$

Pour passer d'une forme à l'autre :

(Attention : If ne faut pas commencer par $\underline{f(x)} = \underline{)}$

- <u>De forme factorisée à forme développée</u>: Il suffit de développer en utilisant la double distributivité.
- De forme canonique à forme développée : Il suffit de développer et d'utiliser les identités remarquables :

$$(a + b)^2 = a^2 + 2ab + b^2$$

$$(a - b)^2 = a^2 - 2ab + b^2$$

De la forme canonique à la forme factorisée :
 On utilise l'identité remarquable :

$$a^2 - b^2 = (a - b)(a + b)$$

• <u>De la forme développée à la forme canonique</u> :

Deux méthodes (voir partie II)

- 1) En utilisant le début d'une identité remarquable
- 2) Avec $\alpha = -\frac{b}{2a}$ et $\beta = f(\alpha)$

Courbe et variations :

• Si a > 0

La parabole est « tournée vers le haut »

La fonction f admet un minimum β atteint en $x = \alpha$

• Si a < 0

La parabole est « tournée vers le bas »

La fonction f admet un maximum β atteint en $x = \alpha$

II. Forme canonique

Application 2 : Déterminer, par deux méthodes, la forme canonique des trinômes définies par :

$$A(x) = x^2 + 4x - 1$$

 $a = 1$; $b = 4$ et $c = -1$

 $\begin{array}{l} \frac{\mathbf{1}^{\text{ère}} \, \text{m\'ethode} :}{A(x) = a(x-\alpha)^2 + \beta} \\ A\text{vec } a = 1 \, ; \\ \alpha = -\frac{b}{2a} = -\frac{4}{2} = -2 \, \text{et} \\ \beta = A(-2) \\ = (-2)^2 + 4(-2) - 1 \\ = 4 - 8 - 1 \\ = -5 \end{array}$

$$A(x) = (x+2)^2 - 5$$

Avec a = 2;

 $\alpha = -\frac{b}{2a} = \frac{4}{4} = 1$ et $\beta = B(1) = 2 - 4 + 6 = 4$

 $B(x) = 2(x-1)^2 + 4$

2ème méthode : avec un début de développement

Etape 1 : On factorise par a les deux 1^{ers} termes :

$$\overline{A(x)} = (x^2 + 4x) - 1$$

<u>Etape 2 : On cherche le début d'une identité remarquable :</u>

 $x^2 + 4x$ est le début de l'identité remarquable $(x+2)^2$

$$(x+2)^2 = x^2 + 4x + 4$$

 $x^2 + 4x = (x+2)^2 - 4$

$$A(x) = ((x+2)^2 - 4) - 1$$

$$A(x) = (x+2)^2 - 4 - 1$$

$$A(x) = (x+2)^2 - 5$$

$$B(x) = 2x^2 - 4x + 6$$

 $a = 2$: $b = -4$ et $c = 6$

<u>1ère méthode</u>: avec α et β <u>2ème méthode</u>: avec un début de développement $B(x) = \alpha(x - \alpha)^2 + \beta$

Etape 1: On factorise par a les deux 1^{èrs} termes : $B(x) = 2(x^2 - 2x) + 6$

<u>Etape 2 : On cherche le début d'une identité</u> remarquable :

 $\frac{x^2 - 2x}{(x - 1)^2}$ est le début de l'identité remarquable $(x - 1)^2$

$$(x-1)^{2} = x^{2} - 2x + 1$$
$$x^{2} - 2x = (x-1)^{2} - 1$$

$$B(x) = 2((x-1)^2 - 1) + 6$$

Etape 3 : On développe par a la grande parenthèse :

$$B(x) = 2(x-1)^2 - 2 + 6$$

$$B(x) = 2(x-1)^2 + 4$$

Application 3: Extremums

Déterminer l'extremum des fonctions suivantes en en précisant la nature et en déduire leur forme canonique :

a)
$$f(x) = x^2 - 4x + 3$$

 $a = 1$; $b = -4$ et $c = 3$
 $\alpha = -\frac{b}{2a} = \frac{4}{2} = 2$
 $\beta = f(2) = 2^2 - 4 \times 2 + 3 = 4 - 8 + 3 = -1$

a > 0 ainsi la fonction f admet comme minimum -1 atteint en x = 2.

$$f(x) = a(x - \alpha)^2 + \beta$$

= $(x - 2)^2 - 1$

b)
$$g(x) = -2x^2 - x + 1$$

 $a = -2$; $b = -1$ et $c = 1$
 $\alpha = -\frac{b}{2a} = \frac{1}{-4} = -\frac{1}{4}$
 $\beta = g\left(-\frac{1}{4}\right) = -2 \times \left(-\frac{1}{4}\right)^2 + \frac{1}{4} + 1 = -\frac{1}{8} + \frac{2}{8} + \frac{8}{8} = \frac{9}{8}$

a < 0 ainsi la fonction f admet comme maximum $\frac{9}{8}$ atteint en $x = -\frac{1}{7}$.

$$g(x) = a(x - \alpha)^2 + \beta$$

= $-2\left(x + \frac{1}{4}\right)^2 + \frac{1}{6}$

III. Equations et inéquations

Application 4: Equations sans discriminant

Dans chacun des cas, résoudre l'équation f(x) = 0.

a)
$$f(x) = 2x^2 - 8x$$

 $f(x) = 0$
 $2x(x - 4) = 0$
(On factorise par $2x$)
 $x = 0$ ou $x - 4 = 0$
 $x = 0$ ou $x = 4$
 $x = 0$ ou $x = 4$

requation
$$f(x) = 0$$
.
c) $f(x) = 25 - 4x^2$
 $f(x) = 0$
 $f(x) = 5^2 - (2x)^2$
 $(5 - 2x)(5 + 2x) = 0$
(Identité remarquable)
 $5 - 2x = 0$ ou $5 + 2x = 0$
 $x = \frac{5}{2}$ ou $x = -\frac{5}{2}$
 $S = \left\{-\frac{5}{2}; \frac{5}{2}\right\}$

b)
$$f(x) = (x+1)(2x+1)$$

 $f(x) = 0$
 $(x+1)(2x+3) = 0$
 $x = -1$ ou $x = -\frac{3}{2}$.
 $S = \left\{-\frac{3}{2}; -1\right\}$

b)
$$f(x) = (x+1)(2x+3)$$

 $f(x) = 0$
 $(x+1)(2x+3) = 0$
 $x = -1$ ou $x = -\frac{3}{2}$.
 $S = \left\{-\frac{3}{2}; -1\right\}$
d) $f(x) = (x-2)^2 - 49$
 $(x-2)^2 - 49 = 0$
 $(x-2)^2 = 49$
 $x-2 = -7$ ou $x-2 = 7$
 $x = -5$ ou $x = 9$
 $x = (-5; 9)$

Application 5 : Inéquations du 2nd degré

Résoudre les inéquations dans $\mathbb R$ suivantes :

a)
$$-2x^2 + 5x + 7 < 0$$

On note
$$f(x) = -2x^2 + 5x + 7$$

1ère étape :

On cherche les racines de f(x) en résolvant

l'équation du second degré
$$f(x) = 0$$
.

$$a = -2$$
; $b = 5$ et $c = 7$
 $\Delta = b^2 - 4ac$
 $= 5^2 - 4 \times (-2) \times 7$
 $= 25 + 56$

$$= 81 > 0$$

Et $\sqrt{\Delta} = \sqrt{81} = 9$

Ainsi l'équation admet deux solutions réelles :

$$x_{1} = \frac{-b - \sqrt{\Delta}}{2a}$$

$$x_{1} = \frac{-5 - 9}{2 \times (-2)}$$

$$x_{1} = \frac{-14}{-4}$$

$$x_{1} = \frac{7}{2}$$

$$x_{2} = \frac{-b + \sqrt{\Delta}}{2a}$$

$$x_{2} = \frac{-5 + 9}{2 \times (-2)}$$

$$x_{2} = \frac{4}{-4}$$

$$x_{2} = -1$$

2ème étape :

On fait le tableau de signes en utilisant le signe de a (à l'extérieur des racines).

a < 0 ainsi la parabole est tournée vers le bas.

x	$-\infty$	-1		7/2	+∞
f(x)	-	Ą	+	Ą	-

3^{ème} étape :

On résout l'inéquation demandée :

$$-2x^{2} + 5x + 7 < 0 \text{ pour } x \in]-\infty; -1[U]\frac{7}{2}; +\infty[$$

$$S =]-\infty; -1[U]\frac{7}{2}; +\infty[$$

Racine d'un polynôme :

Soit P un polynôme et r un réel. On appelle racine (solution) d'un polynôme, le nombre r tel que P(r) = 0. Graphiquement les racines d'un polynôme sont les abscisses des points d'intersection de la parabole avec l'axe des abscisses.

Méthode : Equation du second degré :

- Soient a, b et c trois nombres réels avec $a \neq 0$. L'équation $ax^2 + bx + c = 0$ est une équation du second degré.
- Pour résoudre une équation du second degré : On regarde si on ne peut pas utiliser une méthode vue au collège ou en seconde :
 - Factorisation par x (voir a))
 - Produit nul (voir b))
 - o 3^{ème} identité remarquable (voir c)):

$$a^2 - b^2 = (a - b)(a + b)$$

 \circ (expression)²= k (voir d))

expression = $-\sqrt{k}$ ou expression = \sqrt{k}

- Si aucune de ces méthodes ne fonctionne on calcule le discriminant :
 - Le **discriminant** du trinôme $ax^2 + bx + c$ est: $\Delta = b^2 - 4ac$

Signe d'un polynôme du second degré :

Soient a, b et c trois nombres réels avec $a \neq 0$ et $\Delta = b^2 - 4ac$.

Soit $f(x) = ax^2 + bx + c$ un polynôme du second degré.

Si Λ > 0

L'équation $ax^2 + bx + c = 0$ admet deux solutions réelles :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

Forme factorisée du polynôme lorsque $\Delta > 0$:

$$f(x) = a(x - x_1)(x - x_2)$$

La parabole coupe deux fois l'axe des abscisses:

Tableau de signes

x	-∞ ⊃	c_1 λ	£ ₂ +∞
f(x)	signe de a	signe de $-a$	signe de a

b)
$$2x^2 - 20x + 50 > 0$$

On note
$$f(x) = 2x^2 - 20x + 50$$

1ère étape :

On cherche les racines de f(x) en résolvant l'équation du second degré f(x) = 0.

$$a = 2$$
; $b = -20$ et $c = 50$
 $\Delta = b^2 - 4ac$
 $= (-20)^2 - 4 \times 2 \times 50$
 $= 400 - 400$

Ainsi l'équation admet une seule solution :

$$\alpha = -\frac{b}{2a}$$

$$\alpha = \frac{20}{2 \times 2}$$

$$\alpha = \frac{20}{4}$$

$$\alpha = 5$$

2ème étape : On fait le tableau de signes en utilisant le signe de a.

a > 0 ainsi la parabole est tournée vers le haut.

x	$-\infty$	5	$+\infty$
f(x)	+	þ	+

3ème étape : On résout l'inéquation demandée :

$$2x^2 - 20x + 50 > 0 \text{ pour } x \in \mathbb{R} \setminus \{5\}$$

$$S = \mathbb{R} \setminus \{5\} =] - \infty ; 5[U]5; + \infty[$$

c) $5x^2 + x + 4 > 0$

On note
$$f(x) = 5x^2 + x + 4$$

 $1^{\text{ère}}$ étape : On cherche les racines de f(x) en résolvant l'équation du second degré f(x) = 0.

$$a = 5$$
; $b = 1$ et $c = 4$
 $\Delta = b^2 - 4ac$
 $= 1^2 - 4 \times 5 \times 4$
 $= 1 - 80$
 $= -79 < 0$

Ainsi l'équation n'admet pas de solution réelle.

2ème étape : On fait le tableau de signes en utilisant le signe de a.

a>0 ainsi la parabole est tournée vers le haut.

x	$-\infty$	+∞
f(x)	Т	-

<u>3ème étape</u>: On résout l'inéquation demandée :

$$5x^2 + x + 4 \ge 0$$
 pour $x \in \mathbb{R}$
 $S = \mathbb{R}$

• Si $\Delta = 0$

L'équation $ax^2 + bx + c = 0$ admet une seule solution double réelle :

$$\alpha=-\frac{b}{2a}$$

Forme factorisée du polynôme lorsque $\Delta = 0$:

$$P(x) = a(x - \alpha)^2$$

La parabole coupe une seule fois l'axe des abscisses en $x = \alpha$:

Tableau de signes :

Si Δ < 0

L'équation $ax^2 + bx + c = 0$ n'admet aucune solution réelle

Forme factorisée du polynôme lorsque $\Delta < 0$: On ne peut pas factoriser f(x).

La parabole ne coupe pas l'axe des abscisses.

Tableau de signes :

