計測システム工学 第三回課題

Ec5 24 番 平田 蓮

1. 角度の測定結果が $\theta + \Delta\theta[\mathrm{rad}]$ であるとき、 $\cos\theta$ の誤差の式を求めよ。

$$\Delta\cos\theta = \frac{\partial}{\partial\theta}\cos\theta\Delta\theta = -\sin\theta\Delta\theta$$

2. 測定値が $x + \Delta x$ であるとき、 $q = e^x$ の誤差の式を求めよ。

$$\Delta q = \frac{\partial q}{\partial x} \Delta x = e^x \Delta x$$

3. $q=x^2$ の総合誤差率は、 $\frac{\Delta q}{q}=2\frac{\Delta x}{x}$ と考えるべきか、 $q=x\cdot x$ であることから $\frac{\Delta q}{q}=\sqrt{\left(\frac{\Delta x}{x}\right)^2+\left(\frac{\Delta x}{x}\right)^2}=\sqrt{2}\frac{\Delta x}{x}$ と考えるべきか。

x は単一の量であるので、 $x^2 = x \cdot x$ とは考えずに計算を行う。

$$\therefore \frac{\Delta q}{q} = 2\frac{\Delta x}{x}$$

4. 単振り子の周期から重力加速度を求めたい。測定の結果、振り子の長さが $l\pm\varepsilon_l$ 、周期が $T\pm\varepsilon_T$ であったとき、重力加速度 g を求めよ。

単振り子の周期は
$$T=2\pi\sqrt{\frac{l}{g}}$$
 であるので、 $g=\frac{4\pi^2 l}{T^2}$ よって、 g の総合誤差を ε_g とすると、 $g=\frac{4\pi^2 l}{T^2}\pm\varepsilon_g$ ここで、 $\varepsilon_g=\frac{4\pi^2 l}{T^2}\sqrt{1^2\left(\frac{\varepsilon_l}{l}\right)^2+(-2)^2\left(\frac{\varepsilon_T}{T}\right)^2}=\frac{4\pi^2 l}{T^2}\sqrt{\left(\frac{\varepsilon_l}{l}\right)^2+4\left(\frac{\varepsilon_T}{T}\right)^2}$ であるので、
$$g=\frac{4\pi^2 l}{T^2}\left(1\pm\sqrt{\left(\frac{\varepsilon_l}{l}\right)^2+4\left(\frac{\varepsilon_T}{T}\right)^2}\right)$$