Shukai Du Curriculum Vitae

Visiting Assistant Professor Email: shukaidu@udel.edu
Department of Mathematics Website: https://shukaidu.github.io

University of Wisconsin-Madison

RESEARCH INTERESTS

- Finite element and discontinuous Galerkin methods
- Numerical simulation of atmospheric dynamics and radiative transfer
- Elastic/viscoelastic and electromagnetic waves
- Inverse and ill-posed problems

EDUCATION

University of Delaware

• Ph.D in Applied Mathematics

May 2020

Advisor: Dr. Francisco-Javier Sayas

Thesis: Generalized projection-based error analysis of hybridizable discontinuous Galerkin methods

Wuhan University

• M.S. in Computational Mathematics

2015

• B.S. in Pure Mathematics

2012

PUBLICATIONS

Submitted

- 1. B. Cockburn, **S. Du**, M. A. Sánchez. Combining finite element space-discretization with symplectic time-marching schemes for linear hamiltonian systems.
- 2. B. Cockburn, **S. Du**, M. A. Sánchez. A priori error analysis of new semidiscrete, Hamiltonian HDG methods for the time-dependent Maxwell's equations.
- 3. **S. Du**, and S. N. Stechmann. A universal predictor-corrector approach for minimizing artifacts due to mesh refinement.

Peer-reviewed articles

- 1. **S. Du**, and S. N. Stechmann. Fast, low-memory numerical methods for radiative transfer via hp-adaptive mesh refinement. *J. Comput. Phys.* (2023), accepted.
- 2. M. A. Sánchez, **S. Du**, B. Cockburn, N.-C. Nguyen, J. Peraire. Symplectic Hamiltonian finite element methods for electromagnetics. *Comput. Methods Appl. Mech. Engrg.* 396 (2022).

DOI: 10.1016/j.cma.2022.114969

3. B. Cockburn, M. A. Sánchez, **S. Du**. Discontinuous Galerkin methods with time-operators in their numerical traces for time-dependent electromagnetics. *Comput. Meth. Appl. Math.* (2022).

DOI: 10.1515/cmam-2021-0215

4. **S. Du**, and F.-J. Sayas. A note on devising HDG+ projections on polyhedral elements. *Math. Comp. 90 (2021), 65-79*.

DOI: 10.1090/mcom/3573

5. **S. Du**. HDG methods for Stokes equation based on strong symmetric stress formulations. *J. Sci. Comput. 85*, 8 (2020).

DOI: 10.1007/s10915-020-01309-7

6. **S. Du**, and F.-J. Sayas. A unified error analysis of hybridizable discontinuous Galerkin methods for the static Maxwell equations. *SIAM J. Numer. Anal.* 58 (2020), no. 2, 1367–1391.

DOI: 10.1137/19M1290966

7. **S. Du**, and F.-J. Sayas. New analytical tools for HDG in elasticity, with applications to elastodynamics. *Math. Comp. 89* (2020), 1745-1782.

DOI: 10.1090/mcom/3499

8. **S. Du**, and N. Du. A factorization of least-squares projection schemes for ill-posed problems. *Comput. Meth. Appl. Math. 20 (2020), no. 4, 783-798.*

DOI: 10.1515/cmam-2019-0173

9. T.S. Brown, **S. Du**, H. Eruslu, and F.-J. Sayas. Analysis of models for viscoelastic wave propagation. *Appl. Math. Nonlin. Sci. 3* (2018), no. 1, 55-96.

DOI: 10.21042/AMNS.2018.1.00006

Books

1. **S. Du**, and F.-J. Sayas. An invitation to the theory of the Hybridizable Discontinuous Galerkin Method. *SpringerBriefs in Mathematics* (2019).

DOI: 10.1007/978-3-030-27230-2

FEM Circus, U of Delaware

PRESENTATIONS

Talks

iaiks		
1.	Three-dimensional radiative transfer: fast, low-memory numerical method	ods
	Collective Madison Meeting, USA	Aug 2022
2.	Unified analysis of HDG methods for the static Maxwell equations	
	CILAMCE-PANACM 2021, Brazil	Nov 2021
3.	Generalized projection-based error analysis of hybridizable discontinuous Galeri	
	(HDG) methods	
	CEDYA2021, Spain	June 2021
4.	Projection-based analysis of hybridizable discontinuous Galerkin (HDG)	methods
	Wenbo Li Prize Talk, U of Delaware	Feb 2020
5.	Unified analysis of HDG methods for the static Maxwell equations	
	SIAM CSE2021, Virtual Meeting	Mar 2021
6.	New analysis techniques of HDG+ method	
	SIAM Sectional Meeting, Iowa State U	Oct 2019
7.	Uniform-in-time optimal convergent HDG method for	
	transient elastic waves with strong symmetric stress formulation	
	WAVES2019, TU Wien, Vienna	Aug 2019
8.	Hybridizable Discontinuous Galerkin schemes for elastic waves	
	ICIAM2019, Valencia	July 2019
9.	HDG for transient elastic waves	
	WONAPDE2019, U of Concepcion	Jan 2019
10.	Projection-based analysis of HDG methods with reduced stabilization	
	DelMar Num Day 2019, U of Maryland	May 2019

11. Projection-based error analysis of HDG methods for transient elastic waves

Nov 2018

12. Devising a tailored projection for a new HDG method in linear elasticity FEM Circus, U of Tennessee Mar 2018 13. A new HDG projection and its applications Mid-Atlantic Numerical Analysis Day, Temple U Nov 2017

Poster presentation

1. Fast, low-memory numerical methods for radiative transfer: forward and inverse problems New Trends in Computational and Data Sciences, Caltech Dec 2022 2. Hybridizable Discontinuous Galerkin methods in transient elastodynamics FACM2018, New Jersey Institute of Technology Aug 2018 3. Building a computational code for 3D viscoelastic wave simulation Mid-Atlantic Numerical Analysis Day, Temple U

Nov 2016

REFERRED JOURNAL

Journal of Scientific Computing • SIAM Multiscale Modelling and Simulation • Frontiers in **Applied Mathematics and Statistics**

AWARDS AND HONORS

Wenbo Li Prize	2020
University Doctoral Fellowship Award at the University of Delaware	2019
ICIAM2019 travel grant	2019
Graduate Enrichment Fellowship at the University of Delaware	2018
GEMS project fund at the University of Delaware	Summer 2016
National Scholarship for Graduate Students of China	2013
People's Scholarship of Wuhan University	2011

TEACHING

Lecturer

• Linear Algebra and Differential Equations (Math320) Spring 2023

Teaching Assistant

• Review of Advanced Mathematical Problems (summer courses offered to incoming graduate students) 2018 Fall • Analytic Geometry and Calculus C (Math243) 2016&2017 Fall • Analytic Geometry and Calculus B (Math242) 2017 Spring • Calculus I (Math221) 2018 Spring

International Teaching Assistant (ITA) training program

• Graduated with the highest category of scores (category I) Summer 2015

Graduate mentor

• GEMS summer research project Fall 2016

CODING PROJECTS

Fast, low-memory methods for radiative transfer 2020 - current

• Build a cell-based structured adaptive mesh refinement (AMR) data structure

• Implement discontinuous Galerkin (DG) methods with *hp*-adaptivity for the full radiative transfer equation

Hybridizable Discontinuous Galerkin (HDG) methods (based on HDG3D library)

2016 - 2020

- Build Matlab codes of high order HDG methods on computing cluster for transient elastic/viscoelastic waves and Maxwell equations
- Write documentations with detailed implementation procedures for HDG methods for Maxwell equations

Finite Element Method (FEM)

2016

(based on Team Pancho FEM library)

• Build Matlab codes of high order FEM methods on computing cluster for simulation of viscoelastic waves.

Multiscale modeling

2013 - 2015

• Implement algorithms to calculate Cauchy stress tensor based on micro-scale molecular dynamics information

COMPUTER SKILLS

Theory

Data Structures • Algorithm • Object Oriented Programming

Languages & Software

 $\mathsf{Matlab} \bullet \mathsf{Python} \bullet \mathsf{C} \bullet \mathsf{C} + + \bullet \mathsf{Fortran} \bullet \mathsf{openMPI} \bullet \mathsf{LISP} \bullet \mathsf{Linux} \mathsf{Shell}$

Last update: February 15, 2023