Lab #2: Backtracking

Students implemented the following problems using "Backtracking" technique.

1. The n-Queens problem: The n-Queens is the problem of placing n chess queens on an n x n chessboard so that no two queens attack each other.

Input	Output
	1^{st} line: positive integer k represent number of
Content of the "input_1.txt" file:	possible outcomes.
positive integer n represent length	- Next k lines: each line is a sequence of position
and width of the square chessboard.	of queens separated by "," represent a possible
	outcome.
Example	2
(This is a presentation example,	(0,0),(1,1),(2,2)
not an answer)	(0, 1), (0, 2), (0, 3)

2. The Knight's tour problem: A knight is placed on the first cell $\langle r_0, c_0 \rangle$ of an empty board of the size n x nand, moving according to the rules of chess, must visit each cell exactly once.

Input	Output
	1^{st} line: positive integer k represent number of
Content of the "input_2.txt" file:	possible outcomes.
positive integer n represent length	- Next k lines: each line is a sequence of position
and width of the square chessboard.	of the knight's tour separated by "," represent a
	possible outcome.
Example	1
(This is a presentation example,	(0, 0), $(1, 1)$, $(2, 2)$, $(0, 1)$, $(0, 2)$, $(1, 2)$,
not an answer)	(1, 0), $(2, 0)$, $(2, 2)$

3. Sum of Subsets Problem: Find a subset of a given set $W = \{w_1, w_2, ..., w_n\}$ of n positive integers whose sum is equal to a given positive integer t.

Requirement: Implement using 2 type of approach

Input	Output
Content of the "input_3.txt" file:	
1^{st} line: positive integer k represent size of	
set W.	List of required elements from set W that has
2^{nd} line: n positive integer represent elements	total equal to t.
of set W, separated by a single space " ".	
3^{rd} line: positive integer t	
Example	
4	123
1 2 3 10	1 2 9
6	

• FILE SUBMISSION REGULATION

- Only submit files with .cpp extensions: 1.cpp, 2-1.cpp, 2-2.cpp Project submission is illegal.
- .cpp files must be located in MSSV folder, then be compressed into MSSV.zip(.rar).
- Source code must receive input and return output as specified for each problem. Submissions with wrong regulation will result in a "0" (zero).
- Plagiarism and Cheating will result in a "0" (zero) for the entire course.
- Contact: bhthong@fit.hcmus.edu.vn for more information.