$$y_1 = \alpha_1 y_2 + e_1$$

$$y_2 = \alpha_2 y_1 + \beta_1 x_1 + \beta_2 x_2 + e_2$$

We assume that x_1 and x_2 are exogenous and uncorrelated with the error terms e_1 and e_2 .

a. Solve the two structural equations for the reduced-form equation for y_2 , that is, $y_2 = \pi_1 x_1 + \pi_2 x_2 + v_2$. Express the reduced-form parameters in terms of the **structural parameters** and the reduced-form error in terms of the structural parameters and e_1 and e_2 . Show that y_2 is correlated with e_1 .

$$\begin{aligned} y_{2} &= d_{2} y_{1} + \beta_{1} y_{1} + \beta_{2} y_{2} + e_{2} \\ &= d_{2} \left(d_{1} y_{2} + e_{1} \right) + \beta_{1} y_{1} + \beta_{2} y_{2} + e_{2} \\ &= d_{1} d_{1} y_{2} + d_{2} e_{1} + \beta_{1} y_{1} + \beta_{2} y_{2} + e_{2} \\ &= d_{1} d_{1} y_{2} + d_{2} e_{1} + \beta_{1} y_{1} + \beta_{2} y_{2} + e_{2} \\ &= \left(1 - d_{1} d_{2} \right) y_{2} = \beta_{1} y_{1} + \beta_{2} y_{2} + \left(d_{2} e_{1} + e_{2} \right) \\ &= \frac{\beta_{1}}{1 - d_{1} d_{1}} x_{1} + \frac{\beta_{2}}{1 - d_{1} d_{2}} x_{2} + \frac{d_{2} e_{1} + e_{2}}{1 - d_{1} d_{2}} \\ &= \pi_{1} y_{1} + \pi_{2} y_{2} + f_{2} y_{2} + f_{2}$$

b. Which equation parameters are consistently estimated using OLS? Explain.

Both $y_1 = 0.192 + e_1$ and $y_2 = d_2 y_1 + \beta_1 \pi_1 + \beta_2 \pi_2 + e_2$ are inconsistent.

The reduced form equation (a) parameters are consistenly estimated using ols.

c. Which parameters are "identified," in the simultaneous equations sense? Explain your reasoning.

M=2 at least absent M-1=1 variable

$$y_1 = d_1y_2 + e_1 \text{ (absent } x_1, x_2 \text{ 2 variables) is identified}$$

$$y_2 = d_2 y_1 + \beta_1 x_1 + \beta_2 x_2 + e_2 \text{ (absent o variables) is not identified}$$

d. To estimate the parameters of the reduced-form equation for y_2 using the method of moments (MOM), which was introduced in Section 10.3, the two moment equations are

$$N^{-1} \sum x_{i1} (y_2 - \pi_1 x_{i1} - \pi_2 x_{i2}) = 0$$
$$N^{-1} \sum x_{i2} (y_2 - \pi_1 x_{i1} - \pi_2 x_{i2}) = 0$$

Explain why these two moment conditions are a valid basis for obtaining consistent estimators of the reduced-form parameters.

$$E(X_{11}V_{12}|X) = E(X_{12}V_{12}|X) = 0 (X_{11}X_{21} \text{ are exogenous})$$

$$E(X_{11}k(\frac{d_{1}e_{1}+e_{2}}{1-d_{1}d_{2}})/X) = \frac{d_{2}}{1-d_{1}d_{2}} E(X_{1k}e_{1}|X) + \frac{1}{1-d_{1}d_{2}} E(X_{1k}e_{2}|X) k=1,2$$

$$= 0+0=0$$

e. Are the MOM estimators in part (d) the same as the OLS estimators? Form the sum of squared errors function for $y_2 = \pi_1 x_1 + \pi_2 x_2 + v_2$ and find the first derivatives. Set these to zero and show that they are equivalent to the two equations in part (d).

$$S(\pi_{1}, \pi_{1} \mid y, x) = \frac{1}{|\mathcal{Z}_{1}(y_{12} - \pi_{1}x_{1} - \pi_{2}x_{12})^{2}} \\
\frac{\partial S}{\partial \pi_{1}} = \Sigma 2(y_{1} - \pi_{1}x_{1} - \pi_{1}x_{1}) (-x_{1}) = 0 \quad \Rightarrow \frac{1}{N} \Sigma(y_{1} - \pi_{1}x_{1} - \pi_{1}x_{1}) x_{1} = 0 \\
\frac{\partial S}{\partial \pi_{1}} = \Sigma 2(y_{1} - \pi_{1}x_{1} - \pi_{1}x_{1}) (-x_{2}) = 0 \quad \Rightarrow \frac{1}{N} \Sigma(y_{1} - \pi_{1}x_{1} - \pi_{1}x_{1}) x_{2} = 0$$

f. Using $\sum x_{i1}^2 = 1$, $\sum x_{i2}^2 = 1$, $\sum x_{i1}x_{i2} = 0$, $\sum x_{i1}y_{1i} = 2$, $\sum x_{i1}y_{2i} = 3$, $\sum x_{i2}y_{1i} = 3$, $\sum x_{i2}y_{2i} = 4$, and the two moment conditions in part (d) show that the MOM/OLS estimates of π_1 and π_2 are $\hat{\pi}_1 = 3$ and $\hat{\pi}_2 = 4$.

g. The fitted value $\hat{y}_2 = \hat{\pi}_1 x_1 + \hat{\pi}_2 x_2$. Explain why we can use the moment condition $\sum \hat{y}_{i2} (y_{i1} - \alpha_1 y_{i2}) = 0$ as a valid basis for consistently estimating α_1 . Obtain the IV estimate of α_1 .

$$E(y_{2}e_{1}|x) = E(T_{1}x_{1} + T_{1}x_{2})e_{1}|x) = E(T_{1}x_{1} + T_{1}x_{2})(y_{1} - d_{1}y_{1})|x) = 0$$

$$\hat{\pi}_{1} = \frac{\Sigma(\hat{\pi}_{1}x_{1} + \hat{\pi}_{2}x_{2})(y_{1} - d_{1}y_{12})}{\Sigma(\hat{\pi}_{1}x_{1} + \hat{\pi}_{2}x_{12})y_{11}} = \frac{\Sigma(\hat{\pi}_{1}x_{1} + \hat{\pi}_{2}x_{12})y_{11}}{\Sigma(\hat{\pi}_{1}x_{1} + \hat{\pi}_{2}x_{12})y_{12}} = \frac{3\times2+4\times3}{2\times3+4\times4} = \frac{18}{25}$$

h. Find the 2SLS estimate of α_1 by applying OLS to $y_1 = \alpha_1 \hat{y}_2 + e_1^*$. Compare your answer to that in part (g).

$$\frac{\partial_{1,1415}}{\nabla \hat{y}_{12}^{2}} = \frac{\nabla \hat{y}_{12}^{2} \hat{y}_{11}}{\nabla \hat{y}_{12}^{2} \hat{y}_{12}^{2}} = (g)$$

$$\frac{\nabla \hat{y}_{12}^{2} \hat{y}_{12}^{2}}{\nabla \hat{y}_{12}^{2}} = \frac{\nabla \hat{y}_{12}^{2} \hat{y}_{12}^{2}}{\nabla \hat{y}_{12}^{2}} = (g)$$

$$\frac{\nabla \hat{y}_{12}^{2} \hat{y}_{12}^{2}}{\nabla \hat{y}_{12}^{2}} = \frac{\nabla \hat{y}_{12}^{2} \hat{y}_{12}^{2}}{\nabla \hat{y}_{12}^{2}} = (g)$$

$$\frac{\nabla \hat{y}_{12}^{2} \hat{y}_{12}^{2}}{\nabla \hat{y}_{12}^{2}} = \frac{\nabla \hat{y}_{12}^{2} \hat{y}_{12}^{2}}{\nabla \hat{y}_{12}^{2}} = (g)$$

$$\frac{\nabla \hat{y}_{12}^{2} \hat{y}_{12}^{2}}{\nabla \hat{y}_{12}^{2}} = \frac{\nabla \hat{y}_{12}^{2} \hat{y}_{12}^{2}}{\nabla \hat{y}_{12}^{2}} = (g)$$

Demand:
$$Q_i = \alpha_1 + \alpha_2 P_i + e_{di}$$
, Supply: $Q_i = \beta_1 + \beta_2 P_i + \beta_3 W_i + e_{si}$

where Q is the quantity, P is the price, and W is the wage rate, which is assumed exogenous. Data on these variables are in Table 11.7.

TABLE 11.7		Data for Exercise 11.16		
Q	P	W		
4	2	2		
6	4	3		
9	3	1		
3	5	1		
8	8	3		

a. Derive the algebraic form of the reduced-form equations, $Q = \theta_1 + \theta_2 W + v_2$ and $P = \pi_1 + \pi_2 W + v_1$, expressing the reduced-form parameters in terms of the structural parameters.

$$Q = \alpha_{1} + \alpha_{2} P + e_{d} = \beta_{1} + \beta_{2} P + \beta_{3} W + e_{s}$$

$$(d_{1} - \beta_{2})P = (\beta_{1} - \alpha_{1}) + \beta_{3} W + e_{s} - e_{d}$$

$$P = \frac{\beta_{1} - \alpha_{1}}{\alpha_{2} - \beta_{2}} + \frac{\beta_{3}}{\alpha_{2} - \beta_{2}} W + \frac{e_{s} - e_{d}}{\alpha_{2} - \beta_{2}}$$

$$= \pi_{1} + \pi_{2} W + \gamma_{1}, \quad \pi_{1} = \frac{\beta_{1} - \alpha_{1}}{\alpha_{2} - \beta_{2}}, \quad \pi_{1} = \frac{\beta_{3}}{\alpha_{2} - \beta_{2}}, \quad \gamma_{1} = \frac{e_{s} - e_{d}}{\alpha_{2} - \beta_{2}}$$

$$Q = \alpha_{1} + \alpha_{2} (\pi_{1} + \pi_{2} W + \gamma_{1}) + e_{d} = (\alpha_{1} + \alpha_{2} \pi_{1}) + \alpha_{2} \pi_{2} W + (\alpha_{2} V + e_{d})$$

$$= (\alpha_{1} + \alpha_{2} \cdot \frac{\beta_{1} - \alpha_{1}}{\alpha_{2} - \beta_{2}}) + \alpha_{2} \cdot \frac{\beta_{3}}{\alpha_{2} - \beta_{2}} W + (\alpha_{2} \cdot \frac{e_{s} - e_{d}}{\alpha_{2} - \beta_{2}} + e_{d})$$

$$= (\alpha_{1} + \alpha_{2} \cdot \frac{\beta_{1} - \alpha_{1}}{\alpha_{2} - \beta_{2}}) + \alpha_{2} \cdot \frac{\beta_{3}}{\alpha_{2} - \beta_{2}} W + \alpha_{2} \cdot \frac{e_{s} - e_{d}}{\alpha_{2} - \beta_{2}} + e_{d})$$

$$= (\alpha_{1} + \alpha_{2} \cdot \frac{\beta_{1} - \alpha_{1}}{\alpha_{2} - \beta_{2}}) + \alpha_{2} \cdot \frac{\beta_{3}}{\alpha_{2} - \beta_{2}} W + \alpha_{2} \cdot \frac{e_{s} - e_{d}}{\alpha_{2} - \beta_{2}} + e_{d})$$

$$= (\alpha_{1} + \alpha_{2} \cdot \frac{\beta_{1} - \alpha_{1}}{\alpha_{2} - \beta_{2}}) + \alpha_{2} \cdot \frac{\beta_{3}}{\alpha_{2} - \beta_{2}} W + \alpha_{2} \cdot \frac{e_{s} - e_{d}}{\alpha_{2} - \beta_{2}} + e_{d})$$

$$= (\alpha_{1} + \alpha_{2} \cdot \frac{\beta_{1} - \alpha_{1}}{\alpha_{2} - \beta_{2}}) + \alpha_{2} \cdot \frac{\beta_{3}}{\alpha_{2} - \beta_{2}} W + \alpha_{3} \cdot \frac{e_{s} - e_{d}}{\alpha_{2} - \beta_{2}} + e_{d})$$

$$= (\alpha_{1} + \alpha_{2} \cdot \frac{\beta_{1} - \alpha_{1}}{\alpha_{2} - \beta_{2}}) + \alpha_{2} \cdot \frac{\beta_{3}}{\alpha_{2} - \beta_{2}} W + \alpha_{3} \cdot \frac{e_{s} - e_{d}}{\alpha_{2} - \beta_{2}} + e_{d})$$

$$= (\alpha_{1} + \alpha_{2} \cdot \frac{\beta_{1} - \alpha_{1}}{\alpha_{2} - \beta_{2}}) + \alpha_{3} \cdot \frac{\beta_{3}}{\alpha_{2} - \beta_{2}} W + \alpha_{3} \cdot \frac{\beta_{3}}{\alpha_{2} - \beta_{2}} + e_{d})$$

$$= (\alpha_{1} + \alpha_{2} \cdot \frac{\beta_{1} - \alpha_{1}}{\alpha_{2} - \beta_{2}}) + \alpha_{3} \cdot \frac{\beta_{3}}{\alpha_{2} - \beta_{2}} W + \alpha_{3} \cdot \frac{\beta_{3$$

b. Which structural parameters can you solve for from the results in part (a)? Which equation is "identified"?

$$O_1 = d_1 t d_2 \pi_1$$
 \Rightarrow can solve α_1, d_2
 $O_2 = d_2 \pi_2$
 $M = 2$ absent at least 1 variable
 $O: Q = d_1 t d_2 p + p_3 w + p_4$ (absent w , 1 variable) \Rightarrow identified
 $O: Q = p_1 t p_2 p + p_3 w + p_4$ (absent o variable) \Rightarrow not identified.

c. The estimated reduced-form equations are $\hat{Q} = 5 + 0.5W$ and $\hat{P} = 2.4 + 1W$. Solve for the identified structural parameters. This is the method of **indirect least squares**.

$$\hat{\theta}_1 = 5$$
 $\hat{\theta}_2 = 0.5$
 $\hat{\chi}_1 + \hat{\chi}_2 \cdot 1 = 5$
 $\hat{\chi}_2 \cdot 1 = 0.5$
 $\hat{\chi}_3 = 0.5$
 $\hat{\chi}_4 = 5$
 $\hat{\chi}_5 = 0.5$
 $\hat{\chi}_5 = 0.5$
 $\hat{\chi}_5 = 0.5$

d. Obtain the fitted values from the reduced-form equation for *P*, and apply 2SLS to obtain estimates of the demand equation.

	TAB	BLE 11.7	Data for Exercise 11.16			
	Q	P	W	Pi	Pi-P	Qj-Q
	4	2	2	44	0	-2
	6	4	3	5.4	1	D
	9	3	1	3.4	-1	3
	3	5	1	3.4	-1	-3
	8	8	3	5.4		2
q =	-6		- - =	414	•	

11.17 Example 11.3 introduces Klein's Model I.

a. Do we have an adequate number of IVs to estimate each equation? Check the necessary condition for the identification of each equation. The necessary condition for identification is that in a system of M equations at least M-1 variables must be omitted from each equation.

```
M=8 \quad \text{at least absent } 8-|=7 \quad \text{variables}.
\# \quad \text{of variables} = 8 \quad \text{exodogenesy to endogenous} = 16
\Re \quad CN_t = \alpha_1 + \alpha_2(W_{1t} + W_{2t}) + \alpha_3P_t + \alpha_4P_{t-1} + e_{1t} \quad (11.17) \quad \text{(absent } 1b-b=10\text{)}
\Re \quad I_t = \beta_1 + \beta_2P_t + \beta_3P_{t-1} + \beta_4K_{t-1} + e_{2t} \quad (11.18) \quad \text{(absent } 1b-5=11\text{)}
\Re \quad W_{1t} = \gamma_1 + \gamma_2E_t + \gamma_1E_{t-1} + \gamma_2TIME_t + e_{3t} \quad (11.19) \quad \text{(absent } 1b-5=11\text{)}
\Im \quad W_{1t} = \varphi_1 + \varphi_2E_t + \varphi_1E_{t-1} + \varphi_2TIME_t + e_{3t} \quad (11.19) \quad \text{(absent } 1b-5=11\text{)}
\Im \quad W_{1t} = \varphi_1 + \varphi_2E_t + \varphi_1E_{t-1} + \varphi_2TIME_t + e_{3t} \quad (11.19) \quad \text{(absent } 1b-5=11\text{)}
\Im \quad W_{1t} = \varphi_1 + \varphi_2E_t + \varphi_1E_{t-1} + \varphi_2TIME_t + e_{3t} \quad (11.19) \quad \text{(absent } 1b-5=11\text{)}
\Im \quad W_{1t} = \varphi_1 + \varphi_2E_t + \varphi_1E_{t-1} + \varphi_2TIME_t + e_{3t} \quad (11.19) \quad \text{(absent } 1b-5=11\text{)}
\Im \quad W_{1t} = \varphi_1 + \varphi_2E_t + \varphi_1E_{t-1} + \varphi_2TIME_t + e_{3t} \quad (11.19) \quad \text{(absent } 1b-5=11\text{)}
\Im \quad W_{1t} = \varphi_1 + \varphi_2E_t + \varphi_1E_{t-1} + \varphi_2TIME_t + e_{3t} \quad (11.19) \quad \text{(absent } 1b-5=11\text{)}
```

b. An equivalent identification condition is that the number of excluded exogenous variables from the equation must be at least as large as the number of included right-hand side endogenous variables.

Check that this condition is satisfied for each equation

Check that this condition is satisfied for each equation.

(11,17): I endo = 2 endogenous + 3 exogenous
$$F$$
-3= F 72 satisfied

(W1, F +2)

(|1,18) | endo = 1 endogenous + 3 exogenous F -3= F 7| satisfied

(|1,19) | endo = 1 endogenous + 3 exogenous F -3= F 7| satisfied

c. Write down in econometric notation the first-stage equation, the reduced form, for W_{1t} , wages of workers earned in the private sector. Call the parameters $\pi_1, \pi_2,...$

d. Describe the two regression steps of 2SLS estimation of the consumption function. This is not a question about a computer software command.

```
Step 1: Obtain fitted value Wit, Pt (endogenous) from the estimated reduced form equation using all exogenous variables.

Create Wt = With Wet

2: Regress CNE on Wt. Pt., Pt., and constant by OLS
```

e. Does following the steps in part (d) produce regression results that are identical to the 2SLS estimates provided by software specifically designed for 2SLS estimation? In particular, will the *t*-values be the same?

The coefficient estimates will be the same.

The t-values will not be the same, the standard error will be underestimated because manual 2515 does not account for the uncertainty in the first-stage prediction.