UNIVERSITY OF TORONTO Faculty of Arts and Science

APRIL 2011 - Final Examination

MAT244 H1S - ODEs

PLEASE HAND IN

Duration - 3 hours

Instructors: P. Milman, B. Fontaine & V. Ivrii

No Aids Allowed

T and Marsa	Time A Norma	In	
Last Name	First Name	ID	

#	Mark	#	Mark	#	Mark
1 [10 points]	· · · · · · · · · · · · · · · · · · ·	4 [20 points]		5c [10 points]	
2 [20 points]		5a [4 points]		5d [10 points]	
3 [20 points]		5b [6 points]		TOTAL	
TERM		FINAL			

Student Name:	Student Number:	

 ${\bf 1}$ ($10~{\rm pts})$ Find the general solution of the differential equation

$$xy' = y - xy'$$

and solve the initial value problem y(1) = -2 .

Student Name:	Student Number:	

 ${f 2}$ (20 pts) Find the general solution of the equation

$$t^2y'' - 6y = 10t^{-2} - 6 , t > 0 .$$

Student Name:	Student Number:

 ${\bf 3}$ (20 pts) Find the general solution of the differential equation $y^{(4)} - y = 3t + \cos t \ .$

Student Name:	Student Number:

4 (20 pts) Solve the system of differential equations

$$\begin{cases} x' = 2x + y + 2z, \\ y' = 2y + 2z, \\ z' = 4y. \end{cases}$$

Student Name: Student Number:	
-------------------------------	--

5 (30 pts) Equation

$$x'' = -4x^3 + 4x$$

- (a) (4 pts) Reduce to the first order system in variables (t, x, y) with y = x';
- (b) (6 pts) Find solution in the form H(x,y) = C;
- (c) (10 pts) Find critical points and classify them (i.e. specify whether they are nodes, saddles, etc. and stability);
- (d) (10 pts) On (x, y)-plane sketch the phase portrait.