

Grelha de respostas certas

Versão A

Grupo		1				2				3			4	4	
	a)	b)	c)	a)	b)	c)	d)	e)	a)	b)i.	b)ii	. a) ł	o)	c)
	D	В	С	F	F	Α	D	Α	С	Α	D	A		A	D
Grupo					5				6			7			
Grupo	a)	b)	c)	d)i.	5 d)	ii.	e)i.	e)ii.	+ -	a)	b)	7 c)	d)	e)	

Versão B

Grupo		1				2				3			4	
	a)	b)	c)	a)	b)	c)	d)	e)	a)	b)i.	b)ii.	a)	b)	c)
	В	A	A	F	V	D	В	С	D	В	D	С	С	A
Grupo					5				6			7		
	a)	b)	c)	d)i.	d)	ii.	e)i.	e)ii.		a)	b)	c)	d)	e)
	Λ	D	D	R	/	١	\overline{C}	Δ	В	С	\overline{C}	D	Λ	A

Resolução abreviada do Exame de Recurso

1.
$$P(A) > 0$$
, $P(B) > 0$, $P(A) + P(B) = x$, $P(A \cap B) = y$, $x > y$

(a)
$$P(\overline{A} \cap \overline{B}) = P(\overline{A \cup B}) = 1 - P(A \cup B) = 1 - [P(A) + P(B) - P(A \cap B)] = 1 - x + y$$

(b)
$$P(A \cap \overline{B}) + P(\overline{A} \cap B) + P(\overline{A} \cap \overline{B}) = P(A) - P(A \cap B) + P(B) - P(A \cap B) + P(A) + 1 - x + y = x - 2y + 1 - x + y = 1 - y$$

(c) Se A e B são acontecimentos independentes então $P(A \cap B) = P(A)P(B) = P(A)[x - P(A)]$

$$y = P(A) [x - P(A)] \Leftrightarrow [P(A)]^2 - xP(A) + y = 0 \Leftrightarrow P(A) = \frac{x \pm \sqrt{x^2 - 4y}}{2}$$
$$P(A) = \frac{0.6 \pm \sqrt{0.36 - 4 \times 0.0275}}{2} = \frac{0.6 \pm 0.5}{2} = 0.3 \pm 0.25$$

Logo
$$P(A) = 0.05 \text{ e } P(B) = 0.6 - 0.05 = 0.55$$

$2. \quad (a)$

$$\sum_{x=0}^{2} \sum_{y=0}^{2} P(X=x; Y=y) = 1 \quad \text{Condição verdadeira } \forall \, a \in \mathbb{R}$$

$$P(X = x; Y = y) \ge 0, \ x, y \in \{0, 1, 2\} \Rightarrow 0.3 - a \ge 0, \ e \ a \ge 0 \Rightarrow a \in [0, 0.3]$$

$$P(X = x) \ge 0, \ x \in \{0, 1, 2\} \Rightarrow 0.4 - a \ge 0, \ e \ a \ge 0 \Rightarrow a \in [0, 0.4]$$

Então $a \in [0, 0.3]$

Para a=0.2

$X \setminus Y$	0	1	2	
0	0.1	0.1	0	0.2
1	0	0.2	0.4	$0.2 \\ 0.6 \\ 0.2$
2	0	0.1 0.2 0.2	0	0.2
	0.1	0.5	0.4	1

(b) As v.a.'s
$$X$$
 e Y serão independentes se e só se $P\left(X=x;Y=y\right)=P\left(X=x\right)P\left(Y=y\right),\;x,y\in\{0,1,2\}$

$$P\left(X=0;Y=2\right)=0$$
 e $P\left(X=0\right)P\left(Y=2\right)=0.08$, logo X e Y não são v.a.'s independentes

(c)
$$E(Y) = \sum_{y=0}^{2} y P(Y = y) = 1.3$$
 $V(Y) = 2.1 - 1.3^{2} = 0.41$

$$V(-2Y + 1) = (-2)^2 V(Y) = 1.64$$

(d)
$$E(X) = \sum_{x=0}^{2} x P(X = x) = 1$$
, $cov(X, Y) = E(XY) - E(X)E(Y) = 1.4 - 1 \times 1.3 = 0.1$

$$\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{V(X)V(Y)}} = \frac{0.1}{\sqrt{0.4 \times 0.41}} = 0.246932399$$

(e) Suporte de M: $S_M = \{0, 1, 2\}$

$$P(M = 0) = P(X = 0; Y = 0) = 0.1$$

 $P(M = 1) = P(X = 0; Y = 1) + P(X = 1; Y = 0) + P(X = 1; Y = 1) = 0.3$

$$M \left\{ \begin{array}{cccc} 0 & 1 & 2 \\ 0.1 & 0.3 & 0.6 \end{array} \right.$$

3. (a) •
$$f(x) > 0, \forall x \in \mathbb{R} \Rightarrow c > 0$$

•
$$\int_{-\infty}^{+\infty} f(x) dx = 1 \Leftrightarrow c \int_{0}^{\theta} \frac{x}{\theta^{2}} dx = 1 \Leftrightarrow \frac{c}{\theta^{2}} \left[\frac{x^{2}}{2} \right]_{0}^{\theta} = 1 \Leftrightarrow \frac{c}{2} = 1 \Leftrightarrow c = 2$$

(b) i.
$$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx = \int_0^2 \frac{x^2}{2} dx = \left[\frac{x^3}{6}\right]_0^2 = \frac{8}{6} = \frac{4}{3}$$

$$E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} f_{X}(x) dx = \int_{0}^{2} \frac{x^{3}}{2} dx = \left[\frac{x^{4}}{8}\right]_{0}^{2} = \frac{16}{8} = 2$$

$$V(X) = E(X^{2}) - E^{2}(X) = 2 - \frac{16}{9} = \frac{2}{9}$$

$$V\left(3X+1\right) = 9V\left(X\right) = 2$$

ii.
$$F_X(x) = \begin{cases} 0, & x < 0 \\ x^2/4, & 0 \le x < 2 \\ 1, & x \ge 2 \end{cases}$$

•
$$P(|X| > a) = P(X > a) = 1 - F_X(a)$$

- $F_X(a) = \frac{1}{4} \Leftrightarrow \frac{a^2}{4} = \frac{1}{4} \Leftrightarrow a = 1$

4. X-tempo de uma viagem (em minutos)

(a)
$$P(X \le 10) = 0.8413 \Leftrightarrow P\left(\frac{X-\mu}{4} \le \frac{10-\mu}{4}\right) = 0.8413 \Leftrightarrow P\left(Z \le \frac{10-\mu}{4}\right) = 0.8413 \Leftrightarrow \frac{10-\mu}{4} = \Phi^{-1}(0.8413) \Leftrightarrow \frac{10-\mu}{4} = 1 \Leftrightarrow \mu = 6$$

(b) Seja $T = \sum_{i=1}^{4} X_i$, sendo X_i o tempo da *i*-ésima viagem (em minutos). X_1, \ldots, X_4 são v.a.'s i.i.d. com distribuição N (10, 16). Então $T \sim N$ (4 × 10, 4 × 16) $\equiv N$ (40, 64)

$$P(T > 50) = 1 - P\left(\frac{T - 40}{8} \le \frac{50 - 40}{8}\right) = 1 - P(Z \le 1.25) = 1 - 0.8944 = 0.1056$$

(c) Seja Y- n.º de viagens com duração inferior a c minutos, de entre n=40 viagens $Y\sim B\left(40,0.1\right)$ Como n = 40 > 30 e $np = 40 \times 0.1 < 5$, então $Y \stackrel{a}{\sim} P(40 \times 0.1) \equiv P(4)$

5.
$$X \sim N(\mu, \sigma^2)$$

(a) Informação populacional: $\sigma = 10$ Informação amostral: n = 16, $\bar{x} = 194$

•
$$Z = \sqrt{16} \frac{\overline{X} - \mu}{10} \sim N(0, 1)$$

• $1 - \alpha = 0.92, \quad z_{0.04} = 1.73$

•
$$1 - \alpha = 0.92$$
 $z_{0.04} = 1.75$

•
$$-1.75 \le 4\frac{\overline{X} - \mu}{10} \le 1.75 \Leftrightarrow \overline{X} - 1.75\frac{10}{4} \le \mu \le \overline{X} + 1.75\frac{10}{4}$$

•
$$IC_{92\%}(\mu) \equiv \left[\overline{X} - 1.75\frac{10}{4}, \overline{X} + 1.75\frac{10}{4}\right]$$

•
$$IC_{92\%}(\mu) = \left[194 - 1.75\frac{10}{4}, 194 + 1.28\frac{10}{4}\right] = [189.625, 198.375]$$

(b) Informação amostral: $n=16, s^2=98$

•
$$W = (16-1)\frac{S^2}{\sigma^2} \sim \chi_{16-1}^2$$
, ou seja $W = 15\frac{S^2}{\sigma^2} \sim \chi_{15}^2$
• $P(a \le W \le b) = 0.95$ e $P(W \le a) = P(W > b) = 0.025$

•
$$P(a \le W \le b) = 0.95$$
 e $P(W \le a) = P(W > b) = 0.025$

$$a = \chi^2_{15.0.975} = 6.26$$
 e $b = \chi^2_{15.0.025} = 27.5$

$$a = \chi^{2}_{15:0.975} = 6.26 \quad \text{e} \quad b = \chi^{2}_{15:0.025} = 27.5$$
• $6.26 \le 15 \frac{S^{2}}{\sigma^{2}} \le 27.5 \Leftrightarrow \frac{15S^{2}}{27.5} \le \sigma^{2} \le \frac{15S^{2}}{6.26}$

•
$$IC_{95\%}\left(\sigma^2\right) \equiv \left[\frac{15S^2}{27.5}, \frac{15S^2}{6.26}\right]$$

• Para $s^2 = 98$, a estimativa de σ^2 por IC a 95% de confiança é: $IC_{95\%}\left(\sigma^2\right) = [53.45454545,\ 234.8242812]$

(c)
$$H_0: \mu \ge 210 \ vs \ H_1: \mu < 210$$

(d)
$$H_0: \mu \ge 200 \ vs \ H_1: \mu < 200$$

i.
$$T = \sqrt{16} \frac{\overline{X} - 200}{S} \sim_{\mu = 200} t_{16-1}$$
, ou seja $T = 4 \frac{\overline{X} - 200}{S} \sim_{\mu = 200} t_{15}$

ii.
$$Z = \frac{\sqrt{n}}{10} \left(\overline{X} - 200 \right) \underset{\mu=200}{\sim} N\left(0, 1\right)$$

$$R_{0.2} =]-\infty, z_{1-0.2}[=]-\infty, -z_{0.2}[=]-\infty, -0.84[$$

(e) Informação amostral:
$$n=36,\,\hat{p}=\frac{27}{36}=0.75$$

i. •
$$W = \sqrt{36} \frac{\hat{P} - 0.8}{\sqrt{0.8 (1 - 0.8)}} \stackrel{a}{\underset{p=0.8}{\sim}} N(0, 1)$$
 ou seja $W = 15 \left(\hat{P} - 0.8\right) \stackrel{a}{\underset{p=0.8}{\sim}} N(0, 1)$

•
$$w_{obs} = 15(0.75 - 0.8) = -0.75$$

ii. •
$$W = 15 \left(\hat{P} - 0.8 \right) \overset{a}{\underset{p=0.8}{\sim}} N(0, 1)$$

$$\bullet \ \ w_{obs} = -0.82 \qquad \ \ R_{obs} = \left] -\infty, w_{obs} \right[= \left] -\infty, -0.82 \right[$$

$$p-value = P\left(W \in R_{obs}\right) = P\left(W \le -0.82\right) \approx P\left(Z \le -0.82\right) = 1 - P\left(Z \le 0.82\right) = 1 - 0.7939 = 0.2061$$

6.
$$W \equiv 9\left(\hat{\Lambda} - \lambda\right) \sim E\left(0, 1\right)$$

•
$$W \equiv 9 \hat{\Lambda} \underset{\lambda=0}{\sim} E(0,1)$$

•
$$P ext{ (erro de tipo I)} = P ext{ (Rejeitar } H_0 | H_0 ext{ verdadeira}) = P ext{ } \left(\left| \hat{\Lambda} \right| > 0.1 | \lambda = 0 \right) = P (|W| > 0.9) = P (|W| > 0.9) = 0.406569659$$

7. Informação populacional:
$$X \sim U\left(2,\theta\right), \; \theta \in \left]2,+\infty\right[$$
 $E\left(X\right) = \frac{2+\theta}{2}$ $V\left(X\right) = \frac{\left(\theta-2\right)^2}{12}$

(a)
$$E(X) = \overline{X} \Leftrightarrow \frac{2+\theta}{2} = \overline{X} \Leftrightarrow \theta = 2(\overline{X} - 1)$$

O estimador dos momentos para o parâmetro θ tem expressão $2(\overline{X}-1)$

$$\text{(b)} \ \ E\left(\hat{\theta}\right) = \frac{n\theta + 2}{n+1} \neq \theta \qquad \ \ \hat{\theta} \text{ \'e n\~ao centrado} \quad \ bias\left(\hat{\theta}\right) = E\left(\hat{\theta}\right) - \theta = \frac{n\theta + 2 - n\theta - \theta}{n+1} = \frac{2-\theta}{n+1}$$

(c)
$$V(\theta^*) = V(2\overline{X} - 2) = 4V(\overline{X}) = 4\frac{V(X)}{n} = \frac{(\theta - 2)^2}{3n}$$

$$\frac{V\left(\theta^{*}\right)}{V\left(\ddot{\theta}\right)} = \frac{\frac{(\theta-2)^{2}}{3n}}{\frac{(\theta-2)^{2}}{n\left(n+2\right)}} = \frac{n+2}{3} \ge 1 \qquad \ddot{\theta} \text{ \'e o mais eficiente}$$

$$\text{(d)} \ \frac{\overline{X} - E\left(\overline{X}\right)}{\sqrt{V\left(\overline{X}\right)}} \overset{a}{\sim} N\left(0, 1\right) \qquad E\left(\tilde{\theta}\right) = \theta \qquad V\left(\tilde{\theta}\right) = \frac{\left(\theta - 2\right)^2}{3n}$$

Como $\widetilde{\theta}=2\left(\overline{X}-1\right)$ é uma combinação linear de $\overline{X},$ então

$$\frac{\tilde{\theta} - E\left(\tilde{\theta}\right)}{\sqrt{V\left(\tilde{\theta}\right)}} = \frac{\tilde{\theta} - \theta}{\frac{\theta - 2}{\sqrt{3n}}} = \sqrt{3n}\frac{\tilde{\theta} - \theta}{\theta - 2} \stackrel{a}{\sim} N\left(0, 1\right)$$

(e)
$$\bullet W = \sqrt{3n} \frac{\tilde{\theta} - \theta}{\tilde{\theta} - 2} \stackrel{a}{\sim} N(0, 1)$$

•
$$P(-a \le W \le a) \approx 1 - \alpha \Rightarrow a = z_{\alpha/2}$$

•
$$-z_{\alpha/2} \le \sqrt{3n} \frac{\tilde{\theta} - \theta}{\tilde{\theta} - 2} \le z_{\alpha/2} \Leftrightarrow -\frac{z_{\alpha/2}}{\sqrt{3n}} \left(\tilde{\theta} - 2 \right) \le \tilde{\theta} - \theta \le \frac{z_{\alpha/2}}{\sqrt{3n}} \left(\tilde{\theta} - 2 \right) \Leftrightarrow \tilde{\theta} - \frac{z_{\alpha/2}}{\sqrt{3n}} \left(\tilde{\theta} - 2 \right) \le \theta \le \tilde{\theta} + \frac{z_{\alpha/2}}{\sqrt{3n}} \left(\tilde{\theta} - 2 \right)$$

•
$$IC_{(1-\alpha)\times 100\%}(\theta) = \left[\tilde{\theta} - \frac{z_{\alpha/2}}{\sqrt{3n}} \left(\tilde{\theta} - 2\right), \ \tilde{\theta} + \frac{z_{\alpha/2}}{\sqrt{3n}} \left(\tilde{\theta} - 2\right)\right]$$