12 NOVEMBRE 2013 DURÉE: 1H30

DÉPARTEMENT DE MATHÉMATIQUES

Concours d'accès à l'Ecole doctorale Modèles stochastiques, Statistique et Applications 1^{ere} Epreuve: Statistique Para.-NonPara. Sujet 1

Exercice 1. (1) Soient deux populations gaussiennes P_1 et P_2 . On suppose que $m_1 = m_2 = m$ et $\sigma_1 = \sigma_2 = \sigma$. On extrait de chaque population un échantillon de taille n_1 et n_2 respectivement. Montrer que

$$\frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{(n_1 - 1)S_1^{'2}(n_2 - 1)S_2^{'2}}{n_1 + n_2 - 2}\sqrt{\frac{1}{n_1} + \frac{1}{n_1}}}$$

suit une loi de Student à $n_1 + n_2 - 2$ degrés de liberté.

Comme K est d'intégrale qui vaut 1, on a:

Exercice 2. Soit $X_1, X_2, ... X_n$ un n-échantillon de X de fonction de répartition F et de densité f et soit $x \in \mathbb{R}$ tel que F(x) < 1. Admettant que que la fonction de hasard $\lambda(x) = \frac{f(x)}{1 - F(x)}$ est un paramètre fonctionnel.

- (1) Déduire un estimateur $\lambda_n(x)$ pour $\lambda(x)$ par la méthode du noyau.
- (2) Montrer que

$$\lambda_n(x) - \lambda(x) = \frac{f_n(x) - f(x)}{1 - f_n(x)} + (F_n(x) - F(x)) \frac{\lambda(x)}{1 - F_n(x)}$$

(3) En utilisant la convergence presque complète de $F_n(x)$ vers F(x) montrer qu'il existe $\delta > 0$ tel que:

$$\sum_{n} \mathbb{P}\left[(1 - F_n(x)) < \delta \right] < \infty$$

(4) Etudier la convergence presque complète de l'estimateur $\lambda_n(x)$.