1 基本概念和例子

1.1 基本概念

1.1.1 随机过程的定义

Definition 1. 设 I 是非空指标集, $(\Omega, \mathcal{F}, \mathbb{P})$ 是概率空间。若 $(X_{\alpha} : \alpha \in I)$ 是一组定义在 $(\Omega, \mathcal{F}, \mathbb{P})$ 上的随机变量(取值为 \mathbb{R}^d),则 称 $(X_{\alpha} : \alpha \in I)$ 为一个随机过程。

Definition 2. 假设 $(X_{\alpha}: \alpha \in I)$ 和 $(Y_{\alpha}: \alpha \in J)$ 是两个随机过程。若对于任何有限序列 $(s_1, \dots, s_n) \subset I, (t_1, \dots, t_m) \subset J$,都有 $(X_{s_1}, \dots, X_{s_n}) \perp (Y_{t_1}, \dots, Y_{t_m})$,则称这两个随机过程独立。

1.1.2 轨道和修正

Definition 3. 设 $(X_{\alpha} : \alpha \in I)$ 为随机过程。固定 $\omega \in \Omega$,称 $t \mapsto X_t(\omega)$ 为 X 的一条轨道。

Definition 4. 称一个随机过程是(左连续//右连续//连续//左极右连//左连右极)的,若它的所有轨道都是(左连续//右连续//连续// 左极右连//左连右极的)。

Definition 5. 设 $(X_t:t\in I)$ 和 $(Y_t:t\in I)$ 是两个随机过程。若 $\forall t\in I$,有 $\mathbb{P}(X_t=Y_t)=1$,则称它们互为修正。若 $\mathbb{P}(\forall t\in I,X_t=Y_t)=1$,则称它们是无区别的。

Theorem 1. 设 $(X_t:t\geq 0)$ 和 $(Y_t:t\geq 0)$ 是两个右连续的随机过程,而 D 是 $(0,\infty)$ 的可数稠密子集。若 $\forall s\in D, \mathbb{P}(X_s=Y_s)=1$,则有 $(X_t:t\geq 0)$ 和 $(Y_t:t\geq 0)$ 是无区别的。

1.1.3 有限维分布族

为了简化记号, 我们用 S(I) 表示 I 的全体有序有限子集。即:

$$S(I) := \{(t_1, \dots, t_n) : n \ge 1, t_i \in I, \forall i = 1, \dots, n\}$$

用 E 表示 \mathbb{R}^d ,用 \mathcal{E} 表示博雷尔代数。

Definition 6. 设 I 是非空指标集。若对于每个 $J \in S(I)$,都对应一个 $(E^{I}J|, \mathcal{E}^{I}J|)$ 上的概率测度 u_{J} ,则称 $(\mu_{J}: I \in S(I))$ 为 E 上的一个有限维分布族,其中每个 μ_{J} 称为一个有限维分布。设 $X = (X_{t}: t \in I)$ 是一个随机过程,用 μ_{J}^{X} 表示 $(X_{t_{1}}, \dots, X_{t_{n}})$ 的分布。称 $\mathcal{D}_{X} := \{\mu_{J}^{X}: J \in S(I)\}$ 为 X 的有限维分布族,称 μ_{J}^{X} 为其中的一个有限维分布。

Definition 7. 给定 (E,\mathcal{E}) 上的有限维分布族 \mathcal{D} ,若存在随机过程 $X=(X_t:t\in I)$ 使得 $\mathcal{D}_X=\mathcal{D}$,则称 X 为 \mathcal{D} 的一个实现。若两个随机过程 X,Y 满足 $\mathcal{D}_X=\mathcal{D}_Y$,则称它们为等价的。两个等价的过程互称实现。显然,两个互为修正的随机过程一定等价,反过来却未必。

1.1.4 左极右连实现

Definition 8. 状态空间 $E = \mathbb{R}^d$ 上的随机过程有左极右连实现 \iff 它有左极右连修正。证明见教材 p5

1.2 随机游动

Definition 9. 设 $\{\xi_n: n \geq 1\}$ 是独立同分布的 d 维随机变量列,而 X_0 是与之独立的一个 d 维随机变量。令 $X_n:=X_0+\sum_{k=1}^n \xi_k$ 。 称 $(X_n: n \geq 0)$ 为 d 维随机游动,并称 $\{\xi_n: n \geq 1\}$ 为其步长列。

Definition 10. 若 X_0 , ξ_1 均取值与 \mathbb{Z}^d ,则该随机游动状态空间可以取为 \mathbb{Z}^d 。特别地,若还有 $\mathbb{P}(|\xi_1|=1)=1$,则称其为简单随机游动。进一步地,若对于 \mathbb{Z}^d 中的任一单位向量 v,均有 $\mathbb{P}(\xi_1=v)=\frac{1}{2d}$,则称其为对称简单随机游动。

1.2.1 轨道的无界性

方便起见, 考虑 \mathbb{Z} 上的简单随机游动 S_n , 设其步长列为 $\xi_n: n \geq 1$ 。设 $\mathbb{P}(\xi_n = 1) = p$, $\mathbb{P}(\xi_n = -1) = q$, 其中 $p, q \in (0, 1), p + q = 1$ 。

Theorem 2. $(S_n : n \ge 1)$ 的轨道是几乎必然无界的。即:

$$\mathbb{P}(\sup_{n\geq 0}|S_n|=\infty)=1. \tag{1}$$

证明见教材 p9

1.2.2 首达时分布

Definition 11. $i \in \mathbb{P}_i(\cdot) = \mathbb{P}(\cdot \mid S_0 = i)$.

Definition 12. 定义 $(S_n : n \ge 0)$ 到达 $x \in \mathbb{Z}$ 的首达时 $\tau_x := \inf\{n \ge 0 : S_n = x\}$ 。

Theorem 3. 当 $p = q = \frac{1}{2}$ 时,对于 $a < b, i \in [a, b], a, b, i \in \mathbb{Z}$,有

$$\mathbb{P}_i(\tau_b < \tau_a) = \frac{i-a}{b-a}, \mathbb{P}_i(\tau_a < \tau_b) = \frac{b-i}{b-a}$$
(2)

当 $p \neq q$ 时,有

$$\mathbb{P}_{i}(\tau_{b} < \tau_{a}) = \frac{1 - (\frac{q}{p})^{i-a}}{1 - (\frac{q}{p})^{b-a}}, \mathbb{P}_{i}(\tau_{a} < \tau_{b}) = \frac{(\frac{q}{p})^{i-a} - (\frac{q}{p})^{b-a}}{1 - (\frac{q}{p})^{b-a}}$$
(3)

证明见教材 p10

Theorem 4. 当 $p \ge q$, 对 $a \le i \le b \in \mathbb{Z}$, 有

$$\mathbb{P}_i(\tau_a < \infty) = (\frac{q}{p})^{i-a}, \mathbb{P}_i(\tau_b < \infty) = 1 \tag{4}$$

当 $p \leq q$,有

$$\mathbb{P}_i(\tau_a < \infty) = 1, \mathbb{P}_i(\tau_b < \infty) = (\frac{p}{a})^{b-i} \tag{5}$$

证明见教材 p11

1.3 布朗运动

1.3.1 背景和定义

Definition 13. 假定 $\sigma^2 > 0$,具有连续轨道的实值过程 $(B_t: t > 0)$ 满足:

1.
$$\forall 0 \le s \le t$$
, $B_t - B_s \sim N(0, \sigma^2(t-s))$;

2.
$$\forall 0 \leq t_0 \leq \cdots \leq t_n$$
, $B_0, B_1 - B_0, \cdots, B_{t_n} - B_{t_{n-1}}$ 独立,

 $\Phi(B_t:t\geq 0)$ 是以 σ^2 为参数的布朗运动。特别的, 当 $\sigma^2=1$, $(B_t:t\geq 0)$ 为标准布朗运动。

Definition 14. 有限维分布为正态分布的随机过程称为正态过程。

1.3.2 布朗运动的构造

Theorem 5. 布朗运动是有连续实现的。证明见教材 p13.

1.3.3 布朗运动的性质

Theorem 6. 从原点出发的零均值高斯过程 $(B_t: t \geq 0)$ 是标准布朗运动 $\iff \forall s,t \geq 0$, $\mathbb{E}(B_tB_s) = t \wedge s$ 。证明 p17.

Theorem 7. 布朗运动轨道几乎处处不可导。证明 p17-18.

1.4 普瓦松过程

Definition 15. $(N_t: t \ge 0)$ 是非负整数不降随机过程, $\alpha \ge 0$ 满足:

1.
$$\forall s,t\geq 0$$
, $N_{s+t}-N_s\sim P(\alpha t)$, $\text{Pp}:\ \mathbb{P}(N_{s+t}-N_s=k)=\frac{\alpha^kt^k}{k!}\mathrm{e}^{-\alpha t}$;

$$2. \ \forall 0 \leq t_0 < \dots < t_n, \ N_0, N_{t_1} - N_{t_0}, \dots, N_{t_n} - N_{t_{n-1}}$$
 相互独立。

称 $(N_t: t \ge 0)$ 是普瓦松过程,参数为 α 。

1.4.1 跳跃间隔时间

 $(N_t: t \ge 0)$ 以 α 为参数的普瓦松过程, $S_0 = 0, n \ge 1$, $S_n = \inf\{t \ge 0: N_t - N_0 \ge 0\}$, $\eta_n = S_n - S_{n-1}$ 。 S_n 是 $(N_t: t \ge 0)$ 第 n 次跳跃等待时间, η_n 第 n-1 次跳跃到第 n 次跳跃的间隔时间。

Theorem 8. $\{\eta_n: n \geq 1\}$ 独立同分布,服从 $Exp(\alpha)$ 。 $S_n, n \geq 1$,服从 $\Gamma(1, \alpha)$ 。 证明见 P19.

1.4.2 轨道重构

Theorem 9. $\{\eta_n : n \geq 1\}$ 独立同分布,服从 $Exp(\alpha), \gamma > 0$ 。 $S_0 = 0, S_n = \sum_{k=1}^n \eta_k$,则:

$$N_t = \sum_{n=1}^{\infty} \mathbb{1}_{S_n \le t} = \sup\{n \ge 0 : S_n \le t\}.$$

则随机过程 $(N_t:t>0)$ 是以参数为 α 的普瓦松过程。

1.4.3 长时间极限行为

 $(N_t: t \geq 0)$ 以 α 为参数的普瓦松过程。

Theorem 10 (普瓦松过程的强大数定律). $\lim_{t\to\infty} \frac{N_t}{t} \stackrel{a.s.}{=} \alpha$ 见 p23.

Theorem 11 (普瓦松过程的中心极限定理). $\lim_{t\to\infty} \mathbb{P}(\frac{N_t-\alpha t}{\sqrt{\alpha t}} \leq x) = \frac{1}{\sqrt{2\pi}} \int_{\infty}^x e^{-\frac{y^2}{2}} dy$ 。见 p23.

Corollary 1. s, x > 0, $\lim_{\lambda \to \infty} e^{-\lambda s} \sum_{k < \lambda x} \frac{(\lambda s)^k}{k!} = \mathbb{1}_{0 < s < t} + \frac{1}{2} \mathbb{1}_{\{s = x\}}$. \mathbb{R} p24.

Theorem 12 (拉普拉斯变换的反演公式). ξ 是非负随机变量, L 为其拉普拉斯变换, 则 $\forall x > 0$,

$$\lim_{\lambda \to \infty} \sum_{k \le \lambda x} \frac{(-\lambda)^k}{k!} \frac{\mathrm{d}^k}{\mathrm{d}\lambda^k} L(\lambda) = \mathbb{P}(\xi < x) + \frac{1}{2} \mathbb{P}(\xi = x)$$

见 p24.

1.4.4 复合普瓦松过程

Definition 16. μ 是 \mathbb{R} 上概率 $\mu(\{0\}) = 0$ 。 $(N_t : t \ge 0)$ 以 $\alpha \ge 0$ 为参数的零初值普瓦松过程, $\{\xi_n : n \ge 1\}$ 与 N_t 独立,具有相同分布 μ , X_0 与 (N_t) , $\{\xi_n\}$ 独立。令: $X_t = X_0 + \sum_{n=1}^{N_t} \xi_n$, $t \ge 0$,则 $(X_t : t \ge 0)$ 是以 α 为跳跃速度, μ 为跳跃分布的复合普瓦松过程。

Theorem 13 (复合普瓦松过程的性质). $(X_t:t\geq 0)$ 为如上定义的复合普瓦松过程,则复合普瓦松过程的性质如下:

1. $\forall s, t \geq 0, \theta \in \mathbb{R}$,

$$\mathbb{E}e^{i\theta(X_{s+t}-X_s)} = \exp(\alpha t \int_{\mathbb{R}} (e^{i\theta x} - 1)\mu(dx))$$

,

 $2. \ \forall 0 \leq t_0 < \dots < t_n, X_{t_0}, X_{t_1} - X_{t_0}, \dots, X_{t_n} - X_{t_{n-1}}$ 相互独立。

1.5 普瓦松随机测度

1.5.1 定义和存在性

 (E,\mathcal{E}) 为可测空间, μ 为 (E,\mathcal{E}) 上的 σ 有限测度。

Definition 17. $\{X(B): B \in \mathcal{E}\}$ 为取非负整数值随机过程,满足:

1. $\forall B \in \mathcal{E} : \mu(B) < \infty$, $\mathbb{M} \mathbb{E}(X(B)) = \mu(B)$.

 $2. \ \forall \{B_n : n \ge 1\} \in \mathcal{E}$ 两两不交,则 $X(\bigcup_{k=1}^{\infty} B_k) = \sum_{k=1}^{\infty} X(B_k)$ 。

Definition 18. $\{X(B): B \in \mathcal{E}\}$ 为整数值随机测度,满足:

- 1. $\forall B \in \mathcal{E} : \mu(B) < \infty$, 则 $X(B) \sim P(\mu(B))$, 即: $\mathbb{P}(X(B) = k) = \frac{\mu(B)^k}{k!} \mathrm{e}^{-\mu(B)}, k = 0, \cdots, n, \cdots$
- $2. \ \forall \{B_n : n \geq 1\} \in \mathcal{E}$ 两两不交,则 $\{X(B_k) : k \in \mathbb{N}^+\}$ 相互独立。

称 $\{X(B): B \in \mathcal{E}\}$ 为以 α 为强度的普瓦松随机测度。

Theorem 14 (普瓦松随机测度的充要条件). $X \to (E, \mathcal{E})$ 上以 μ 为强度的整数值随机测度,则 X 为普瓦松随机测度的充要条件是 $\forall n \in \mathbb{N}^+, \xi_k \in \mathbb{R}, B_k \in \mathcal{E}, k = 1, \cdots, n, B_i \cap B_i = \emptyset, i \neq j,$ 当 $\mu(B_k) < \infty, k = 1, \cdots, n,$ 则

$$\mathbb{E}\exp(i\sum_{k=1}^{n}\theta_k X(B_k)) = \exp(\sum_{k=1}^{n}(e^{i\theta_k} - 1)\mu(B_k))$$

见 p28.

Theorem 15 (普瓦松随机测度的存在性). μ 为非零有限测度, $\eta \sim P(\mu(E))$, $\{\xi_k : k \in \mathbb{N}^+\}$ *i.i.d.* 服从 $\mu(E)^{-1}\mu$ 。 $\eta, \xi_1, \cdots, \xi_n, \cdots$ 相互独立。令 $X = \sum_{i=1}^{\eta} \delta_{\xi_i}$,则 X 为以 μ 为强度的普瓦松随机测度。见 p29.

Theorem 16. μ 为 σ 有限测度, $\{E_k: k \in \mathbb{N}^+\} \subset \mathcal{E}, \mu(E_k) < \infty, k \in \mathbb{N}^+, E = \bigcup_{k \in \mathbb{N}^+} E_k, E_i \cap E_j = \emptyset, i \neq j$ 。则存在 X_k 为 E_k 上的普瓦松随机测度强度为 $\mu_k := \mu|_{E_k}, k \in \mathbb{N}^+$ 。令 $X = \sum_{i=1}^{\infty} X_i$,则 X 为以 μ 为强度的普瓦松随机测度。见 p29.

1.5.2 积分与补偿的测度

Theorem 17 (普瓦松随机测度的充要条件 2). X 为 (E,\mathcal{E}) 上以 μ 为强度的整数值随机测度,则 X 为普瓦松随机测度的充要条件 是 $\forall f \in \mathbb{R}^{\mathbb{R}} : \mu(f) < \infty$,,则

$$\mathbb{E}\exp(\mathrm{i}X(f)) = \exp(\int_E (\mathrm{e}^{\mathrm{i}f(x)} - 1)\mu(dx))$$

见 p28.

标准布朗运动,	•
步长列, 2	
布朗运动,3	

等价, **2** 对称简单随机游动, **2**

轨道, 1

简单随机游动,2

连续, 1

 $\mathbb{P}_i, 2$

实现, **2** 首达时, **2**

S(I), 1

随机过程,1

随机过程独立, 1

随机游动,2

无区别, **1**

修正, 1

右连续, **1** 有限维分布, **1** 有限维分布族, **1**

正态过程, **3** 左极右连, **1**, 2 左连续, **1**

左连右极,1