Lecture 2 Basic Laws & Circuit Analysis

Outline

- Concepts: Branches, Nodes, and Loops
- Basic Laws
 - Ohm's Law
 - Kirchhoff's Laws -- KCL,KVL
- Circuit Analysis
 - Nodal Analysis
 - Mesh Analysis

Concepts: Branch, Node, and Loop

- Branch: represents a single element;
- Node: a point of connection between two or more branches;
- Loop: any closed path in a circuit.

Example

- *b* number of branches
- n number of nodes
- *l* number of loops

Outline

- Concepts: Branches, Nodes, and Loops
- Basic Laws
 - Ohm's Law
 - Kirchhoff's Laws -- KCL,KVL
- Circuit Analysis
 - Nodal Analysis
 - Mesh Analysis

Ohm's Law

 The current flowing in the resistor is proportional to the voltage across the resistor:

$$V = I*R$$
 (Ohm's Law)

Conductance is the reciprocal of resistance

$$G = \frac{1}{R} = \frac{I}{V}$$

Kirchhoff's Laws

- Kirchhoff's Current Law (KCL):
 - The algebraic sum of all the currents entering any node in a circuit equals zero.
 - Why?

Gustav Robert Kirchhoff 1824-1887

KCL

 KCL tells us that all of the elements that are connected in series carry the same current.

Current entering node = Current leaving node

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Generalization of KCL

- The sum of currents entering/leaving a closed surface is zero.
 - Circuit branches can be inside this surface, i.e. the surface can enclose more than one node!

This could be a big chunk of a circuit, e.g. a "black box"

Generalized KCL Examples

Kirchhoff's Voltage Law (KVL)

- The algebraic sum of all the voltages around any loop in a circuit equals zero.
- · Why?

KVL

- KVL tells us that any set of elements which are connected at both ends carry the same voltage.
- We say these elements are connected in parallel.

KVL Example

Three closed paths:

Path 1:

Path 2:

Path 3:

Series Resistors

Voltage Division

Three-terminal rheostat

Parallel Resistors

Current Division

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Summary-1

KCL and KVL

$$\sum_{n=1}^{N} i_n = 0$$

$$\sum_{m=1}^{M} v_m = 0$$

Summary-2

$$G_1 \underset{\cdot}{ } G_2 \underset{\cdot}{ } G_N \underset{\cdot}{ } \Leftrightarrow \underset{\cdot}{ } G_1 + G_2 \cdots + G_N \underset{\cdot}{ }$$

Example

Practice

Delta-wye conversion

$$R_{12}(Y) = R_1 + R_3$$
 (2.46)
 $R_{12}(\Delta) = R_b \| (R_a + R_c)$

Setting $R_{12}(Y) = R_{12}(\Delta)$ gives

$$R_{12} = R_1 + R_3 = \frac{R_b(R_a + R_c)}{R_a + R_b + R_c}$$
 (2.47a)

Similarly,

$$R_{13} = R_1 + R_2 = \frac{R_c(R_a + R_b)}{R_a + R_b + R_c}$$
 (2.47b)

$$R_{34} = R_2 + R_3 = \frac{R_a(R_b + R_c)}{R_a + R_b + R_c}$$
 (2.47c)

Subtracting Eq. (2.47c) from Eq. (2.47a), we get

$$R_1 - R_2 = \frac{R_c(R_b - R_a)}{R_a + R_b + R_c}$$
 (2.48)

Adding Eqs. (2.47b) and (2.48) gives

$$R_1 = \frac{R_b R_c}{R_a + R_b + R_c}$$
 (2.49)

$$R_2 = \frac{R_c R_a}{R_a + R_b + R_c}$$
 $R_3 = \frac{R_a R_b}{R_a + R_b + R_c}$

Wye-delta conversion

$$R_a = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1}$$

$$R_b = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$$

$$R_c = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_3}$$

The Y and Δ networks are said to be *balanced* when

$$R_1 = R_2 = R_3 = R_Y, \qquad R_a = R_b = R_c = R_\Delta$$
 (2.56)

Under these conditions, conversion formulas become

$$R_{\rm Y} = \frac{R_{\Delta}}{3}$$
 or $R_{\Delta} = 3R_{\rm Y}$ (2.57)