FISEVIER

Contents lists available at ScienceDirect

# Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb



# A robust core-shell silver soot oxidation catalyst driven by Co<sub>3</sub>O<sub>4</sub>: Effect of tandem oxygen delivery and Co<sub>3</sub>O<sub>4</sub>-CeO<sub>2</sub> synergy



Xin Wang<sup>a,1</sup>, Baofang Jin<sup>b,1</sup>, Ruixue Feng<sup>a</sup>, Wei Liu<sup>a</sup>, Duan Weng<sup>b</sup>, Xiaodong Wu<sup>b,\*</sup>, Shuang Liu<sup>a,\*</sup>

- <sup>a</sup> School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
- b Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

#### ARTICLE INFO

Keywords:  $Co_3O_4$   $Ag/CeO_2$  Soot oxidation NO oxidation Tandem oxygen delivery

#### ABSTRACT

In this work, tandem oxygen delivery systems were built by coating cube-like  $Co_3O_4$  with Ag/CeO $_2$ , which exhibited high soot oxidation activity that overwhelmed the  $Fe_2O_3$ -based catalysts. The results of TPR and activity tests indicated that a large amount of  $Co_3O_4$  lattice oxygen could be transferred into  $O_x^-$  with the assistance of Ag/CeO $_2$ . These active oxygen species accelerated the oxidation of soot and NO at low temperature. Furthermore, the  $Co_3O_4$ -CeO $_2$  synergy facilitated  $Co^{3+} \rightarrow Co^{2+}$  transformation during reactions, resulting in boosted NO conversion and thereby  $NO_2$ -assisted soot combustion at mild and high temperatures. Given the Ag/ $Co_3O_4$ @CeO $_2$ -type catalysts were low-cost, hydrothermally stable and could be fabricated via co-precipitation methods easily, they were highly promising for application in both gasoline and diesel particulate filters.

#### 1. Introduction

Soot, an unwelcome byproduct of mobile engines is commercially eliminated via trap-and-burn technology, i.e. diesel/gasoline particulate filters (DPF/GPFs) [1,2]. In order to regenerate the sooted DPFs mildly, catalyzed filters loaded with platinum (CDPFs) were developed, which could oxidize soot efficiently with the assistance of strong oxidizing  $NO_2$  [3,4]. However, platinum is expensive and ineffective for soot combustion in absence of  $NO_x$  (a typical working condition of CGPFs) [5,6], low-cost substitutes with broader applicability are thereby in demand.

With gaseous  $O_2$  as the oxidant, the key active species for soot combustion are "active oxygen"  $(O_x^-)$ . According to Haber [7,8], these electrophilic reactants may attack the  $\pi$ -bond system of aromatics and cause deep oxidation. Among all catalysts,  $Ag/CeO_2$  was proven one of the best  $O_x^-$  providers, which was able to convert both  $O_2$  and  $CeO_2$  lattice oxygen into  $O_x^-$  rapidly [9–11]. Consequently,  $Ag/CeO_2$  exhibited high soot oxidation activity under simulated GPF environment (no  $NO_x$ , low  $O_2$  concentration) [12,13]. Furthermore, we recently observed that by grafting  $Ag/CeO_2$  polycrystals (the "shell") on the surface of  $Fe_2O_3$  (the "core"), the bulk oxygen inside  $Fe_2O_3$  could be fully utilized to yield  $O_x^-$ , resulting in fast and stable soot combustion with only little gaseous  $O_2$  (1%) involved [14]. However, it is noted that there will be no oxygen inlet for GPFs if the upstream TWC works

under stoichiometric conditions [15]. This means that, excess  $O_2$  is available for the catalysts only through or during fuel cut coast-down conditions, in which situation the inlet temperature of CGPFs will decrease obviously [16]. Therefore, catalysts like Ag/Fe<sub>2</sub>O<sub>3</sub>@CeO<sub>2</sub> which can hardly eliminate soot at temperature below 300 °C may not be practical enough. What is worse, Fe<sub>2</sub>O<sub>3</sub> is a poor NO oxidizer (e.g. maximum NO  $\rightarrow$  NO<sub>2</sub> conversion < 30% [17]), which cannot make full use of NO<sub>x</sub> to combust soot (the "NO<sub>2</sub>-assited" mechanism) [18,19] and thereby shows low practical potential for CDPFs [6]. In this sense, replacing Fe<sub>2</sub>O<sub>3</sub> with more robust oxides is a good way for the sake of practicality.

 $\text{Co}_3\text{O}_4$  can be such a choice. On one hand, with lower effective activation energy,  $\text{Co}_3\text{O}_4$  loses its lattice oxygen much easier than  $\text{Fe}_2\text{O}_3$  does [20], making the former a more effective igniter. For example,  $\text{Co}_3\text{O}_4$  has been long proven the most reactive transition metal oxide for catalytic combustion of soot [21], CO [22], ammonia [23], methane [24] and many other hydrocarbons [7,8]. On the other hand,  $\text{Co}_3\text{O}_4$  shows high  $\text{NO} \to \text{NO}_2$  conversion (higher turnover rate than platinum, maximum conversion > 65%) [25–27], which can be further improved after  $\text{CeO}_2$  loading [28]. In sum,  $\text{Co}_3\text{O}_4$ - $\text{CeO}_2$  mixed oxides can oxidize soot through both the "O<sub>2</sub>-assisted" (using  $\text{O}_x^-$  as a direct active phase) and the "NO<sub>2</sub>-assisted" (using  $\text{NO}_2$  as an indirect active phase) routes [19], making them promising catalysts for both gasoline and diesel soot removal [29,30]. To maximize the catalytic performance, it is worth

<sup>\*</sup> Corresponding authors.

E-mail addresses: wuxiaodong@tsinghua.edu.cn (X. Wu), lius@ouc.edu.cn (S. Liu).

<sup>&</sup>lt;sup>1</sup> These two authors contributed equally to this work.

trying to build Ag/Co<sub>3</sub>O<sub>4</sub>@CeO<sub>2</sub> catalysts with a tandem oxygen delivery route (Co<sub>3</sub>O<sub>4</sub>  $\rightarrow$  CeO<sub>2</sub>  $\rightarrow$  Ag) [14]. In addition, the Co<sub>3</sub>O<sub>4</sub> core should be consisted of nanocube-like Co<sub>3</sub>O<sub>4</sub> monocrystals. This is because, the nanocubic Co<sub>3</sub>O<sub>4</sub> not only selectively exposes the {100} facets that highly reactive for some (e.g. CO and soot) oxidation reactions [31,32], but also is small enough (i.e. < 50 nm in size [24,33], like the nanocubic Fe<sub>2</sub>O<sub>3</sub> in ref. [14]) to enlarge the Co<sub>3</sub>O<sub>4</sub>-CeO<sub>2</sub> interface area and thereby boost the oxygen delivery.

It is worth noting that, although Co<sub>3</sub>O<sub>4</sub>-CeO<sub>2</sub> was an old recipe for soot oxidation catalysts [34], several questions in terms of its reaction mechanism remained unsolved. First, the catalytic effectiveness of large  $Co_3O_4$  particles (e.g. > 20 nm in size) is in ambiguous. In the past, highly dispersed Co<sup>3+</sup> species were recognized as indispensable active phases, while their aggregation caused negative impacts [35-38]. Contrarily, according to Iglesia et al. [25], the intrinsic NO oxidation activity increased with increasing Co<sub>3</sub>O<sub>4</sub> cluster size, indicating large Co<sub>3</sub>O<sub>4</sub> grains may be promising NO<sub>x</sub>-assisted soot oxidizers. Second, ever since the outstanding soot oxidation activity of Co<sub>3</sub>O<sub>4</sub>-CeO<sub>2</sub> (in comparison with Co<sub>3</sub>O<sub>4</sub>-Al<sub>2</sub>O<sub>3</sub>, Co<sub>3</sub>O<sub>4</sub>-SiO<sub>2</sub> and Co<sub>3</sub>O<sub>4</sub>-SnO<sub>2</sub>) was recognized by Harrison et al. at 2003 [34], this unique Co<sub>3</sub>O<sub>4</sub> ↔ CeO<sub>2</sub> synergy was repeatedly reported to be essential for NO and soot oxidation [36-38]. These results, however, did not coincide with the fact that Co<sub>3</sub>O<sub>4</sub>-SiO<sub>2</sub> and even unsupported Co<sub>3</sub>O<sub>4</sub> particles are also highly active NO oxidizers [25-27]. In this sense, the specific roles of Co<sub>3</sub>O<sub>4</sub>, CeO<sub>2</sub> and their interaction in the reactions deserve to be re-evaluated. Finally, the introduction of silver brought in additional complexity. For example, though NO2 was proven an excellent soot igniter [19], there were reports indicated that silver-based catalysts (e.g. Ag/Co<sub>3</sub>O<sub>4</sub>-CeO<sub>2</sub> and Ag/Al<sub>2</sub>O<sub>3</sub>) exhibited worse soot oxidation after involving NO<sub>x</sub> [30,39]. All the above inconsistencies called for further investigation over the Ag/Co<sub>3</sub>O<sub>4</sub>-CeO<sub>2</sub> system.

In this study, core-shell catalysts with tandem oxygen delivery routes (Ag/Co $_3$ O $_4$ @CeO $_2$ ) were built based on highly reactive Co $_3$ O $_4$  nanocubes. As expected, these catalysts oxidized soot efficiently under both the simulated DPF and GPF environment, whose structure-activity relationship was further explored detailedly based on various characterizations.

#### 2. Experimental section

#### 2.1. Catalyst synthesis

AgNO<sub>3</sub>, Ce(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O, Co(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O, CoCl<sub>2</sub>·6H<sub>2</sub>O, ethanol, Fe (NO)<sub>3</sub>·9H<sub>2</sub>O, hexamethylenetetramine (HMT), KClO<sub>3</sub>, KOH, *N,N*-dimethylformamide (DMF), polyvinylpyrrolidone (PVP, Mw = 58,000) and Pt(NO<sub>3</sub>)<sub>2</sub> solution (18.02%) were purchased from Aladdin. All the chemicals were used as received without further purification.

Both the nanocube-like  $Co_3O_4$  (denoted as "Co") and  $Fe_2O_3$  (denoted as "Fe") were obtained through hydrothermal methods [14,33]. For the synthesis of Co, an aqueous KOH (1.12 g) + KClO<sub>3</sub> (0.613 g) solution (20 ml) was added dropwise into an aqueous solution (30 ml) dissolving 2.38 g of  $CoCl_2\cdot GH_2O$  and 5.55 g of PVP. The mixture was stirred for 30 min, transferred into a Teflon-lined stainless-steel autoclave (100 ml) and heated at 120 °C for 20 h. For the synthesis of Fe, 0.289 g of  $Fe(NO_3)_3\cdot 9H_2O$  and 0.628 g of PVP were dissolved in 25.7 ml of DMF, which was kept at 180 °C for 30 h in a Teflon-lined stainless steel autoclave (50 ml). Both the  $Co_3O_4$  and  $Fe_2O_3$  products were collected by centrifugation at 8500 rpm for 30 min, followed by washing at least 3 times with water and ethanol.

CeO<sub>2</sub> grafting was achieved by a chemical precipitation method [14]. Typically, 0.05 g of Co or Fe powders were dispersed in a waterethanol (50%-50%) mixture (40 ml). After ultrasonic treatment for 15 min, certain amounts of Ce(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O (0.081 g for Co and 1.3 g for Fe) and HMT (keeping the pH at 7.35) were added. This suspension was heated to 70 °C in flowing N<sub>2</sub> and maintained at this temperature under reflux and vigorous stirring for 2 h. The products were collected by

centrifugation, washed and dried at 110 °C. Finally, Co@Ce and Fe@Ce catalysts were obtained after calcinations at 500 °C in static air for 2 h. The Ag (5 wt.%) containing catalysts (Ag/Co@Ce and Ag/Fe@Ce) were prepared by incipient wetness impregnation of the above Co@Ce or Fe@Ce with aqueous AgNO<sub>3</sub> solution. Each impregnation process was followed by drying (110 °C) and calcinations (500 °C).

In order to make comprehensive comparison,  $CeO_2$  (denoted as "CoCe") and  $Co_3O_4$ - $CeO_2$  (denoted as "CoCe") catalysts were prepared via precipitation methods. Generally, KOH solution was added dropwise into an aqueous solution (100 ml) dissolving certain amount of Ce  $(NO_3)_3$  and  $Co(NO_3)_2$ . As soon as the pH came up to 9, the precipitate was allowed to settle for 4 h, collected by filtration and washed. After calcinations at 500 °C for 2 h, Ce and CoCe samples were thus obtained. Notably, CoCe and Co@Ce shared the identical Co:Ce atomic ratio (5:1, measured by ICP-AES using an Agilent 725). In addition, Ag/CoCe (silver content: 5 wt.%) was obtained by impregnating aqueous AgNO<sub>3</sub> solution on CoCe and calcinations.

To evaluate the catalysts' practicality, platinum catalysts (Pt/Al $_2$ O $_3$  with platinum content of 1 wt.%) were synthesized via incipient wetness impregnation. Detailed processes can be found in ref. [13]. The platinum catalysts were pre-reduced in H $_2$  before catalytic tests.

#### 2.2. General characterizations

The solid properties of the catalysts were explored with a X–ray diffractometer (D8 ADVANCE, Bruker, Germany), a transmission electron microscopy (JEOL 2100, JEOL Ltd., Japan) with a point resolution of 0.19 nm and  $\rm N_2$  adsorption/desorption isotherms at  $-196\,^{\circ}\mathrm{C}$  (JW–BK122 F, Beijing JWGB, China). Chemical states of the catalysts were measured by X–ray photoelectron spectra (ESCALAB 250 Xi, ThermoFisher Scientific, USA) with a monochromatic Al  $\rm K_{\alpha}$  (1486.6 eV) X–ray source. Raman spectra were obtained through a LabRAM HR 800 (HORIBA Jobin Yvon, France) with a detective laser of 532 nm.

## 2.3. Specific characterizations

The catalysts' reducibility was evaluated by hydrogen temperature-programmed reduction ( $H_2$ -TPR, -20 °C'450 °C) tests, in which a Micromeritics AutoChem II 2920 was used to monitor the  $H_2$  consumption as TCD signals.

In order to detect the dynamic change (generation  $\rightarrow$  consumption  $\rightarrow$  generation...) of ceria surface oxygen, cycled TPR tests were performed according to the procedure shown in Scheme 1. At the beginning of the tests, the catalyst (50 mg) was pre-oxidized in 1% O<sub>2</sub>/He (50 ml/min) at 300 °C for 10 min. After being cooled down to -20 °C, flushed by He for 10 min, it experienced a H<sub>2</sub>-TPR test (denoted as "O<sub>2</sub>-1st"). The second H<sub>2</sub>-TPR test (O<sub>2</sub>-2nd) was performed subsequently after a similar pre-oxidation process. Both TPR tests were terminated at 350 °C. At this temperate, all the ceria surface oxygen could be consumed without changing catalysts' structural properties [11,12].

#### 2.4. Soot oxidation activity measurements

Printex–U (Degussa) was used as the model soot. For each test, the "tight" (grinding in an agate mortar for 5 min) or "loose" (mixing with a spatula for 2 min) catalyst (100 mg) & soot (10 mg) mixtures were diluted with  $SiO_2$  pellets (300 mg), sandwiched by quartz wool and then placed in a vertical fixed–bed quartz reactor. A gas mixture of  $1\% \ O_2/\ N_2$  (500 ml/min, GHSV =  $100,000\ h^{-1}$ ) was used to mimic the CGPF working conditions. It is worth noting that, without extra air injection downstream the TWC, a continuous stream of  $1\% \ O_2$  cannot be maintained inside a real GPF [15]. Therefore, this widely accepted reaction condition [40–42] can only be regarded as quantitative simulation of the oxygen-lacking environment of the catalysts in CGPF. Meanwhile, a gas flow containing 500 ppm NO and  $5\% \ O_2$  balanced by  $N_2$  (500 ml/min, GHSV =  $100,000\ h^{-1}$ ) was applied to simulate the CDPF working



Scheme 1. Scheme of the experimental procedure for cycled H<sub>2</sub>-TPR tests.

conditions. The influence of  $\mathrm{H}_2\mathrm{O}$  was measured by adding 5% water vapor into each atmosphere.

The catalytic oxidation of soot was mainly performed in a temperate-programmed way (soot-TPO, 5 °C/min) with downstream gases monitored by an infrared spectrometer (Thermo Nicolet iS10). Specifically, for reactions in  $1\% \ O_2/N_2$  and "tight" contact, extra isothermal reactions were performed at relatively temperatures and thereby low soot conversions (< 10%).

#### 2.5. NO oxidation activity measurements

NO temperature-programmed oxidation (NO-TPO) tests were performed in the same apparatus that used in soot-TPO. In a typical test, catalysts (100 mg) diluted by  $\rm SiO_2$  pellets (300 mg) were heated from room temperature to 600 °C (5 °C/min) in 500 ppm NO/5%  $\rm O_2/N_2$  (500 ml/min). Additionally, isothermal NO oxidation tests were performed at 220 °C to fully evaluate the catalysts' NO oxidation performance. During the isothermal reaction, the inlet atmosphere (500 ml/min) was switched from 500 ppm NO/5%  $\rm O_2/N_2$  to 500 ppm NO/N<sub>2</sub> (denoted as "O<sub>2</sub> cut off").

### 3. Results

#### 3.1. Solid properties

The XRD patterns of the catalysts are shown in Fig. 1. Clearly, Fe and Co exhibited typical phases of  $\alpha\text{-Fe}_2\text{O}_3$  and  $\text{Co}_3\text{O}_4$  with high



Fig. 1. XRD patterns of the catalysts.

crystallinity, respectively [14]. After CeO<sub>2</sub> coating, the cubic fluorite phase of ceria was observed over both Fe@Ce and Co@Ce. The crystallinities obtained by using Scherrer equation (Table 1) suggested that the polycrystalline ceria was consisted of small CeO<sub>2</sub> grains (5.5~6.5 nm in size). Co@Ce and the stantard ceria shared a similar CeO<sub>2</sub> lattice constant (0.5411 nm), which was different from that of Fe@Ce (0.5397 nm). This implied that the interfacial ceria-based solid solutions formed in Fe@Ce but not in Co@Ce [14]. Moreover, besides the unconspicuous Ag° diffraction peaks at  $2\theta = 38.2^\circ$  and  $44.3^\circ$ , silver loading caused little change in the catalysts' structure. No trace of Ag<sub>2</sub>O, FeCeO<sub>2</sub>, CoCeO<sub>3</sub> were detected on any of the samples.

The morphologies of the catalysts are shown in Fig. 2. Both Fe and Co were consisted of uniform cube-like monocrystals selectively exposing their  $\{012\}$  and  $\{100\}$  facets, respectively [14,33]. The  $Co_3O_4$  cubes were smaller than the  $Fe_2O_3$  ones  $(36 \, \mathrm{nm} \, \mathrm{v.s.} \, 45 \, \mathrm{nm})$ . Both Fe@Ce and Co@Ce were covered with polycrystalline  $CeO_2$  layers  $(6^{\sim}10 \, \mathrm{nm} \, \mathrm{thick})$ . These loosely arranged  $CeO_2$  grains conferred interval for gas exchanging with the inner cores, resulting in higher external surface areas of Fe@Ce and Co@Ce than  $Fe_2O_3$  and  $Co_3O_4$ , respectively  $(Table \, 1)$ . Impregnation of silver onto the  $CeO_2$  layers gave rise to well dispersed Ag nanoparticles  $(1.5-3 \, \mathrm{nm})$ . No  $AgO_x$  was observed. Since the crystallite size data obtained from XRD and TEM agreed well with each other  $(Table \, 1)$ , it was suggested that the designed  $Ag/Co_3O_4@CeO_2$  core-shell structure was built successfully.

#### 3.2. Chemical states

Information about the chemical states of surface elements was obtained by XPS. As shown in Fig. 3a and Table 1, there was less  $Ce^{3+}$  on Co@Ce than on Fe@Ce, which was almost unaltered after silver loading. Notably, the  $Ce^{3+}/Ce^{4+}$  value of Ag/Co@Ce (0.27) was significantly lower than that of traditional polycrystalline  $Ag/CeO_2$  samples (0.37 $^{-}0.52$ ) [13]. Similar phenomenon was observed over  $Fe_2O_3@CeO_2$  earlier and ascribed to the  $Fe_2O_3 \rightarrow CeO_2$  oxygen transfer during catalyst synthesis [14,43]. Given the effective activation energy of  $Co_3O_4$  is lower than  $Fe_2O_3$  [20], such oxygen transfer may work more easily at the  $Co_3O_4$ - $CeO_2$  interface, resulting in lattice oxygen enrichment in the as-received  $CeO_2$  grains around  $Co_3O_4$ .

Different from Ce, the quantification of  $\mathrm{Co}^{3+}$  and  $\mathrm{Co}^{2+}$  was not straightforward due to their close binding energy [32]. Based on the results of Biesinger and Kang et al. [44,45], the intense satellite peaks of  $\mathrm{Co}^{2+}$  (785–792 eV and 800–808 eV) made it distinguishable from  $\mathrm{Co}^{3+}$ . Clearly, all the samples in Fig. 3b exhibited typical Co 2p spectra of  $\mathrm{Co_3O_4}$  [44], while the content of  $\mathrm{Co}^{2+}$  decreased after  $\mathrm{CeO_2}$  coating. This should be attributed to the buffer-like  $\mathrm{Co_3O_4}$ - $\mathrm{CeO_2}$  interaction, which was caused by redox equilibrium ( $\mathrm{Ce^{4+}/Ce^{3+}} \leftrightarrow \mathrm{Co^{3+}/Co^{2+}}$ ) and observed widely over  $\mathrm{CoO_x}$ - $\mathrm{CeO_2}$  and  $\mathrm{CuO_x}$ - $\mathrm{CeO_2}$  systems [29,45–47]. During catalyst synthesis (e.g. calcinations at 500 °C in air),

**Table 1**Summary of structural data of the catalysts.

| Catalyst | $S_{\text{Ext}}$ $(m^2/g)^a$ | CeO <sub>2</sub> crystallite size (nm) <sup>b</sup> | Lattice constant of CeO <sub>2</sub> (nm) | Surface<br>Ce <sup>3+</sup> /Ce <sup>4+c</sup> | $\text{Co}_3\text{O}_4$ or $\text{Fe}_2\text{O}_3$ crystallite size (nm) <sup>b</sup> | Ag crystallite<br>size (nm) <sup>b</sup> |
|----------|------------------------------|-----------------------------------------------------|-------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------|
| Co       | 31.7                         | _                                                   | _                                         | _                                              | 37.0                                                                                  | _                                        |
| Co@Ce    | 38.5                         | 5.7                                                 | 0.5411                                    | 0.27                                           | 34.5                                                                                  | _                                        |
| Ag/Co@Ce | 37.1                         | 6.0                                                 | 0.5410                                    | 0.27                                           | 35.7                                                                                  | < 3                                      |
| Fe       | 25.7                         | -                                                   | -                                         | _                                              | 43.3                                                                                  | _                                        |
| Fe@Ce    | 29.4                         | 6.2                                                 | 0.5397                                    | 0.38                                           | 46.1                                                                                  | _                                        |
| Ag/Fe@Ce | 27.1                         | 6.4                                                 | 0.5395                                    | 0.38                                           | 43.4                                                                                  | < 3                                      |

- <sup>a</sup> External surface area obtained from N₂ physisorption tests at −196 °C.
- <sup>b</sup> Obtained from both the TEM and XRD (Scherrer equation) data.
- <sup>c</sup> Obtained from the XPS data.

once  $\text{Co}_3\text{O}_4$  delivered its lattice oxygen to  $\text{CeO}_2$ , the as-formed oxygen vacancies (V<sub>O</sub>) were refilled by gaseous O<sub>2</sub> through the interval of  $\text{CeO}_2$  grains. This re-oxidation process went faster than the formation of V<sub>O</sub> [48] and was further accelerated by the presence of ceria [47]. As a result, both  $\text{CeO}_2$  and  $\text{Co}_3\text{O}_4$  in the as-received  $\text{Co}_0$ Ce and  $\text{Ag/Co}_0$ Ce catalysts were enriched with lattice oxygen. In addition, as shown in Fig. 3b, the catalytic oxidation of both soot and NO led to slight increase in the  $\text{Co}_2^{2+}$  content of  $\text{Co}_0$ Ce, indicating the reduction of cobalt during these reactions.

For both Ag/Co@Ce and Ag/Fe@Ce, the silver species exhibited Ag  $3d_{5/2}$  binding energies at ~368.1 eV and a splitting of 6 eV (Fig. 3c), indicating they existed in the form of metallic Ag°. This was in accordance with the results in XRD and TEM, which was attributed to the accelerated decomposition of AgO<sub>x</sub> and Ag<sup>+</sup>-Ce<sup>3+</sup> electron transfer during catalyst synthesis [12].

#### 3.3. Active species on the catalysts

The surface electrophilic  ${\rm O_x}^-$  species were proven important active phases for soot catalytic combustion [9–13]. Raman spectroscopy and H<sub>2</sub>-TPR were applied to make their qualitative and quantitative analysis, respectively. As shown in Fig. 4a, Co@Ce exhibited more intensive Raman bands at 800°980 cm<sup>-1</sup> than Fe@Ce, indicating there was more peroxide ( ${\rm O_2}^{2-}$  or  ${\rm O^-}$ ) on the former sample [49]. Silver loading gave remarkable rise to both  ${\rm O^-}$  (825°883 & 951°964 cm<sup>-1</sup>) and  ${\rm O_2^-}$  (1158°1126 cm<sup>-1</sup>) species on Ag/Co@Ce and Ag/Fe@Ce, which could

be rationalized along two lines. On one hand, metals with low work function (like silver) may induce long-range charge transfer (metal  $\rightarrow$  CeO<sub>2</sub>) and thereby induce oxygen back spillover under the electric field (the Cabrera–Mott theory) [13,50]. The "pumped out" ceria lattice oxygen could then transfer into  $O_x^-$  through surface equilibria ( $O^{2-} \leftrightarrow O^- \leftrightarrow O_2^- \leftrightarrow O$ ) [7,8]. On the other hand, as a traditional epoxidation catalyst, silver could chemisorb and activate gaseous  $O_2$  through Ag +  $O_2 \rightarrow$  Ag +  $O_2$  [12,51]. Thanks to the oxygen from both ceria lattice and gaseous  $O_2$ , there came out to be more  $O_x$  on Ag/Co@Ce and Ag/Fe@Ce than on the silver-free catalysts [11,14].

Quantitative information about active species was obtained by the H<sub>2</sub>-TPR tests. As shown in Fig. 4b, hydrogen could reduce both Co<sub>3</sub>O<sub>4</sub>  $(Co_3O_4 \rightarrow CoO \rightarrow Co)$  [31,32] and  $Fe_2O_3$   $(Fe_2O_3 \rightarrow Fe_3O_4)$  [14] at temperatures below 350 °C. However, due to the weaker reducing ability of soot/NO in comparison with H2, both Co and Fe remained stable during the soot/NO oxidation tests (Fig. 3b and Figure S1) [14]. Therefore, it was meaningless to correlate the catalysts' activities with the reduction of Co<sub>3</sub>O<sub>4</sub> or Fe<sub>2</sub>O<sub>3</sub>. Instead, the low-temperature H<sub>2</sub> consumption caused by  $O_x^{\,-}$  was an appropriate reactivity descriptor [13]. As indicated by Fig. 4c, the amounts of  $O_x$  species on Co and Fe were low, while each modification (i.e. CeO2 coating and silver loading) resulted in drastic enhancement of Ox . Specifically, Ag/Co@Ce exhibited the largest content of O<sub>2</sub> among the samples, which agreed well with the Raman data. In addition, given there was no AgO<sub>x</sub> on the as-received catalysts (Fig. 3c), the contribution of AgO<sub>x</sub> to H<sub>2</sub> consumption was not considered.



**Fig. 2.** Typical HRTEM images of (a) Fe, (b) Fe@Ce (c) Ag/Fe@Ce-F, (d) Co, (e) Co@Ce and (f) Ag/Co@Ce. Silver nano-particles were marked with red circles. Fe<sub>2</sub>O<sub>3</sub>, Co<sub>3</sub>O<sub>4</sub>, CeO<sub>2</sub> and Ag were represented by blue, green, yellow and red polyhedrons in the schematic models, respectively (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).



Fig. 3. XPS spectra of the catalysts in (a) Ce 3d, (b) Co 2p and (c) Ag 3d core level regions. Co@Ce-soot, Co@Ce-NO and Co-NO refer to catalysts that experienced isothermal soot oxidation (1% O<sub>2</sub>, tight contact) or NO oxidation (500 ppm NO/5% O<sub>2</sub>/N<sub>2</sub>) tests at 225 °C for 30 min.

#### 3.4. Consumption and regeneration of active species

The Raman and H2-TPR results demonstrated that Co, Co@Ce and Ag/Co@Ce exhibited progressively higher O<sub>x</sub> generation ability. Since NO/soot oxidation proceeds through Mars-van Krevelen cycles on reducible metal oxides [13], the regeneration of consumed active species can be as important as their initial presence. As shown in Fig. 5a and Table 2, after being reduced by H<sub>2</sub> and re-oxidized by O<sub>2</sub> at 300 °C, Co<sub>3</sub>O<sub>4</sub> consumed 14% less H<sub>2</sub> in the O<sub>2</sub>-2nd test than in O<sub>2</sub>-1st. This demonstrated that Co<sub>3</sub>O<sub>4</sub> itself regained only partial of its initial lattice oxygen after one given reduction-oxidation cycle. In contrast, the cobalt species in Ag/Co@Ce were not only fully regenerated after one redox cycle (Table 2), but also became more reducible. As demonstrated by the O<sub>2</sub>-2nd data in Fig. 5c, the Co<sub>3</sub>O<sub>4</sub>-drived H<sub>2</sub> consumption of Ag/ Co@Ce completed at temperatures < 250 °C, at which the Co catalyst just started to consume H<sub>2</sub> (Fig. 5a). These results indicated that the ceria-based outer layers could amplify the reducibility of Co<sub>3</sub>O<sub>4</sub>, which was in accordance with the results of XPS (Fig. 3b) and earlier studies [28,29,45,46].

The amount of surface  $O_x^{n-}$  (x=1 or 2) was quantified by the low-temperature  $H_2$  consumption of Co@Ce and Ag/Co@Ce [13]. As shown

in Fig. 5b, the oxidation pretreatment of Co@Ce gave rise to extra electrophilic  $O_{x^-}$  (the  $O_2$ -1st data) that got regenerated easily once consumed (the  $O_2$ -2nd data in Table 2). Meanwhile, cobalt species in Co@Ce consumed  $H_2$  at similar temperatures (> 150 °C) during the  $O_2$ -1st and  $O_2$ -2nd tests. In this sense, Co@Ce exhibited high redox stability. The presence of silver further increased the amount of  $O_x^{n-}$ . Interestingly, after reduction and re-oxidation with gaseous  $O_2$  at 300 °C, 182%  $O_x^{n-}$  species got regenerated on Ag/Co@Ce (the  $O_2$ -2nd data in Table 2). This superior oxygen regeneration ability could accelerate the Mars-van Krevelen cycle of Ag/Co@Ce.

### 3.5. Activity of catalysts in O2

Generally, catalysts' performance for Mars-van Krevelen-like reactions (e.g. soot ignition) depends crucially on their redox ability, especially when little gaseous  $O_2$  is involved [8]. This point was reconfirmed by the soot-TPO results shown in Fig. 6a,b and Table 3. In a simulated CGPF working condition (1%  $O_2/N_2$ ), lattice oxygen from the highly reducible Ag/Co@Ce filled the demand for "active oxygen" well, resulting in its low soot ignition temperature. Under both the "tight" and "loose" contact modes, the  $T_{50}$  (temperature at which 50% soot was



Fig. 4. (a) Visible Raman spectra, (b)  $H_2$ -TPR curves and (c) enlarged low-temperature  $H_2$ -TPR results. The shadowed and filled areas indicate the presence of  $O^-$  and  $O_2^-$ , respectively.



Fig. 5. Cycled  $H_2$ -TPR results of the  $Co_3O_4$ -based catalysts. The shadowed and filled areas refer to  $H_2$  consumed by  $Co_3O_4$  and  $O_x^{n-}$  on  $CeO_2$  surface, respectively.

converted into  $\mathrm{CO}_x$ ) of Ag/Co@Ce was at least 30 °C lower than that of any other catalysts. Besides, Ag/Fe@Ce and Co@Ce with more  $\mathrm{O}_x^-$  (Fig. 4) and faster active oxygen supply rate [14] exhibited obviously higher soot oxidation activity than Fe@Ce. All the catalysts exhibited high selectivity to  $\mathrm{CO}_2$  ( $\mathrm{CO}_2/\mathrm{CO}_x > 99\%$ ) during the tests. Notably,  $\mathrm{Co}_3\mathrm{O}_4$  and  $\mathrm{Fe}_2\mathrm{O}_3$  were worse soot oxidizers than mixed oxides [14,28,38], while they were also inaccessible for soot particles (> 25 nm) after being coated by  $\mathrm{CeO}_2$ . Therefore, the soot oxidation activities of Co and Fe themselves were not explored directly in this study.

Previously, it was evidenced that the activity of ceria-based catalysts for soot-TPO was actually appearance of the catalysts' activation and/or deactivation behavior during the reactions [11,12]. Therefore, it was important to evaluate the time-on-stream soot oxidation behavior of catalysts. As shown in Fig. 6c-1, by setting the reaction temperature at 200 °C, Co@Ce lost 66% of its initial activity after time-on-stream reaction for 800 s. In contrast, Ag/Co@Ce was not only twice active but also more stable than Co@Ce. Given the deactivation of ceria-based soot oxidation catalysts came mainly from insufficient O<sub>x</sub><sup>-</sup> (especially O<sub>2</sub><sup>-</sup>) supplement [11], the reaction stability of Ag/Co@Ce should be attributed to its high redox stability (Table 2). Being initially more active and catalytically stable, Ag/Co@Ce ignited soot at lower temperature in comparison with Co@Ce (Fig. 6a). At 225 °C, Co@Ce was warm enough to produce O<sub>x</sub> rapidly and thereby became stable during the reactions (Fig. 6c-2). Fe@Ce got activated at ≥ 250 °C, with activity 15 times lower than that of Co@Ce (Fig. 6c-3).

It is worth noting that, in comparison with the easily deactivated Ag/CeO $_2$  catalysts reported earlier [12,13], Ag/Co@Ce and Ag/Fe@Ce were both catalytically stable during isothermal soot oxidation tests. This reconfirmed the effectiveness of using tandem oxygen delivery routes (MO $_x$   $\rightarrow$  CeO $_2$   $\rightarrow$  Ag) to provide active species for soot

combustion, especially when the regeneration of lattice oxygen from gaseous oxygen was rate-determining (e.g. under 1% O<sub>2</sub>) [14].

#### 3.6. Activity of catalysts in NO + $O_2$

As mentioned before, catalysts in CDPFs may act as NO oxidizers to combust non-contact soot particles with the assistance of gaseous NO2 [19]. Under a simulated CDPF condition (500 ppm NO/5%  $O_2/N_2$ ), the combustion of loosely contacted soot went more easily over Ag/Co@Ce and Co@Ce than over the Fe<sub>2</sub>O<sub>3</sub>-based catalysts (Fig. 7a and Table 3). This could be attributed to the superior NO oxidation activity of the Co<sub>3</sub>O<sub>4</sub> inner cores [25-28], which were accessible for NO even after being coated by CeO<sub>2</sub>. As shown in Fig. 7b, Co<sub>3</sub>O<sub>4</sub> oxidized NO much more efficiently (65% maximal conversion at 280 °C) than Fe<sub>2</sub>O<sub>3</sub> (21% maximal conversion at 360 °C) did. Interestingly, the loading of the least reactive CeO2 (20% maximal conversion at 380 °C) and relatively inactive Ag [39] improved the activity of both Co<sub>3</sub>O<sub>4</sub> and Fe<sub>2</sub>O<sub>3</sub> obviously. In any case, the Co<sub>3</sub>O<sub>4</sub>-based samples were far better NO oxidizers than the Fe<sub>2</sub>O<sub>3</sub> ones. The strong oxidizing NO<sub>2</sub> ignited soot at low temperatures and generated surface oxygen complexes (SOCs) that could be further decomposed into CO<sub>x</sub> [4,52]. Consequently, Ag/ Co@Ce with the highest NO2 production (83% maximal conversion at 255 °C) combusted 10% soot at temperature as low as 298 °C.

To gain insight into the promotion effects of silver and ceria on NO oxidation, the reaction was performed isothermally at 220 °C with a cut-off of gaseous oxygen supply. As shown in Fig. 7c, the steady-state activity of catalysts followed a sequence identical to that in NO-TPO: Ag/Co@Ce > Co@Ce > Co. Interestingly,  $Co_3O_4$  was deactivated drastically once the supply of  $O_2$  was cut off, while the activity of Co@Ce and Ag/Co@Ce decreased much slowly. After reacting with NO anaerobically for minutes, all the catalysts tended to exhibit quasi-

**Table 2**Quantitative analyses of H<sub>2</sub> consumption during the cycled H<sub>2</sub>-TPR tests.

| Test                 | $ m H_2$ consumed<br>by $ m Co_3O_4$ in<br>$ m Co~(mmol/g_{cat.})$ | $H_2$ consumed by $CeO_2$ surface $O_x^{n-}$ in $Co@Ce$ (µmol/ $g_{cat.}$ ) | $H_2$ consumed by $CeO_2$ surface $O_x^{n-}$ in $Ag/Co@Ce$ ( $\mu mol/g_{cat.}$ ) | $ m H_2$ consumed<br>by $ m Co_3O_4$ in<br>$ m Ag/Co@Ce~(mmol/g_{cat.})$ |
|----------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| H <sub>2</sub> -TPR  | 11.4                                                               | 224.0                                                                       | 290.4                                                                             | 7.6                                                                      |
| O <sub>2</sub> -1 st | 11.5                                                               | 199.3                                                                       | 280.0                                                                             | 7.2                                                                      |
| O <sub>2</sub> -2nd  | 9.9                                                                | 196.2                                                                       | 510.8                                                                             | 7.2                                                                      |



Fig. 6. Soot conversion during soot-TPO tests under the (a) "tight" and (b) "loose" contact mode and  $CO_x$  production during isothermal soot oxidation under the "tight" contact mode. Reaction conditions: atmosphere =  $1\% O_2/N_2$ , catalyst/soot = 10/1, TPO heating rate = 5% C/min.

**Table 3**The activities of the catalysts during TPO reactions.

| Catalyst | $T_{50}$ in soot-<br>TPO<br>in 1% O <sub>2</sub> /N <sub>2</sub> ,<br>"tight" mode<br>(°C) | $T_{50}$ in soot-<br>TPO<br>in 1% O <sub>2</sub> /N <sub>2</sub> ,<br>"loose" mode<br>(°C) | $T_{50}$ in soot-TPO in 500 ppm NO/5% $O_2/N_2$ , "loose" mode (°C) | $T_{10}$ in NO-TPO (°C) |
|----------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------|
| Co@Ce    | 310                                                                                        | 511                                                                                        | 419                                                                 | 192                     |
| Ag/Co@Ce | 277                                                                                        | 462                                                                                        | 395                                                                 | 171                     |
| Fe@Ce    | 351                                                                                        | 530                                                                                        | 449                                                                 | 273                     |
| Ag/Fe@Ce | 308                                                                                        | 492                                                                                        | 444                                                                 | 290                     |

constant low NO<sub>2</sub> production (Ag/Co@Ce > Co@Ce > Co) instead of being inert. These results indicated two facts: (1) the lattice oxygen in  $\text{Co}_3\text{O}_4$  and/or  $\text{CeO}_2$  could maintain only a low NO  $\rightarrow$  NO<sub>2</sub> conversion, (2) the shadowed area in Fig. 7c should be caused by O<sub>2</sub>-derived unstable active species but not lattice oxygen. Given the surface  $\text{O}_x^-$  was an important reactivity descriptor for NO oxidation [13], whose concentration followed the sequence of Ag/Co@Ce > Co@Ce > Co (Figs. 4 and 5), it was likely that the residual  $\text{O}_{x^-}$  on CeO<sub>2</sub> contributed to NO<sub>2</sub> formation and retarded the activity loss of Ag/Co@Ce and Co@Ce.

# 3.7. Evaluation of catalysts' practical potential

The above results evidenced the high soot combustion activity of

Ag/Co@Ce, whose potential application was further evaluated in the presence of water vapor—a common component in vehicle exhausts [2]. As shown in Fig. 8a and Figure S2, soot ignition was facilitated over both the silver-containing catalysts by introducing water, which could be attributed to the oxidation of soot by the additional hydroxyl species [13]. Specifically, for Ag/Co@Ce with high NO<sub>2</sub> production (Fig. 7b), the formation of HNO<sub>3</sub> (3NO<sub>2</sub> +  $H_2O \rightarrow 2HNO_3 + NO$ ) and its catalytic performance caused a significant  $T_{50}$  decrease (395 °C  $\rightarrow$  370 °C) [4]. Such a high activity of Ag/Co@Ce overwhelmed that of platinum. Actually, even after a hydrothermal ageing in 10%  $H_2O$ /air at 800 °C for 10 h, Ag/Co@Ce still oxidized soot easier than 1%  $Pt/Al_2O_3$  (pre-reduced) did (Fig. 8b). Since platinum was among the most active commercial catalysts for NO and soot oxidation [2–4], the practical potential of Ag/Co@Ce was considerably high.

Besides being active and stable, practical catalysts should also be easily fabricated. Gratifyingly, it was observed that a simple precipitation method led to formation of the  $CeO_2$ -on- $Co_3O_4$  morphology. As shown in Fig. 9a-1, a-2 and Figure S3, similar to the results obtained by Guo et al. [45], the co-precipitated CoCe catalyst (Co:Ce = 5:1) was consisted of  $CeO_2$  grains scattering on large  $Co_3O_4$  particles. There were also a few isolated  $CeO_2$  aggregations (Fig. 9a-3 and a-4). In this sense, CoCe could be regarded as the degraded version of Co@Ce which contained incomplete  $Co_3O_4@CeO_2$  core-shell structure.

As shown in Fig. 9b and Figure S4, with low concentration of  $O_2$  (1%) as the only oxidant, Ag/CoCe and CoCe combusted 50% soot at temperatures 20 °C and 23 °C higher than those of Ag/Co@Ce and



Fig. 7. (a) Soot conversion during soot-TPO tests under the "loose" contact mode, NO<sub>2</sub> production during (b) NO-TPO and (c) isothermal NO oxidation at 220 °C. Reaction conditions: atmosphere =  $500 \text{ ppm NO}/5\% \text{ O}_2/\text{N}_2$ , catalyst/soot in soot-TPO = 10/1, TPO heating rate = 5 °C/min.



Fig. 8. Soot oxidation behavior of the catalysts under (a)  $1\% O_2/N_2$  or 500 ppm NO/5%  $O_2/N_2$ , with or without 5%  $H_2O$  and (b) 500 ppm NO/5%  $O_2/5\% H_2O/N_2$ . Reaction conditions: catalyst/soot = 10/1 ("loose" contact mode), TPO heating rate = 5 °C/min.

Co@Ce, respectively. The activity gaps between core-shell catalysts and their componential copies became smaller when  $NO_x$  was involved. These results indicated that the combustion of soot in  $O_2/N_2$  was affected strongly by the oxygen supply from  $Co_3O_4$ , which could be accelerated remarkably with integrated  $CeO_2$  and  $Ag/CeO_2$  coating [14]. In contrast, the " $NO_2$ -assisted" soot combustion relied heavily on  $NO \rightarrow NO_2$  conversion [4,19], in which  $Co_3O_4$  itself played a crucial role [25–28]. Therefore, it was not surprising that catalysts with similar cobalt contents oxidized the loosely contacted soot similarly with  $NO_x$ .

In any case, the easily-fabricated Ag/CoCe and CoCe ignited soot at lower temperatures than the highly active  $Pt/Al_2O_3$ , suggesting the superior practicability of the  $Co_3O_4$ -driven catalytic system in this study.



Fig. 9. (a) TEM images of CoCe, (b) oxidation behavior of the  $Co_3O_4$ - $CeO_2$ -based catalysts under  $1\% O_2/5\% H_2O/N_2$  or  $500 \text{ ppm NO}/5\% O_2/5\% H_2O/N_2$ . Reaction conditions: catalyst/soot = 10/1 ("loose" contact mode), TPO heating rate = 5 °C/min.

#### 4. Discussion

#### 4.1. Soot oxidation in O2

As is well known, soot was oxidized by ceria via a Mars-van Krevelen-like mechanism. During reactions in presence of O<sub>2</sub>, the active species— $O_x^-$  on  $CeO_2$  surface—was repeatedly consumed by soot and regenerated by lattice and gaseous oxygen [9-14]. Although the oxygen vacancies (Ce<sup>3+</sup>-V<sub>O</sub>) played important roles in converting O<sub>2</sub> into O<sub>x</sub>  $(Ce^{3+}-V_0 + 0.5xO_2 \rightarrow Ce^{4+}-O_x^-)$ , their presence and dynamic change brought about uncertainty in catalysts' performance [53]. Moreover, the insufficient supply of gaseous  $O_2$  in GPF made the  $O_2 \rightarrow O_r$  regeneration route unreliable [54]. Therefore, deep utilization of catalyst lattice (bulk) oxygen could be an alternative way out. Based on this assumption, core-shell catalysts with oxides (e.g. Co<sub>3</sub>O<sub>4</sub> and Fe<sub>2</sub>O<sub>3</sub>) coated by Ag/CeO2 were designed, which could transfer bulk oxygen of catalyst onto soot efficiently through a tandem delivery route (i.e. MO<sub>x</sub>  $\rightarrow$  CeO<sub>2</sub>  $\rightarrow$  Ag) [14]. Specifically, the Ag/Co@Ce catalyst studied in this work was extremely active for soot oxidation in O2, whose superiority came mainly from three aspects.

First, as the inner core and the main component of Ag/Co@Ce,  $Co_3O_4$  nanocubes contained a large amount of readily reducible lattice oxygen. As evidenced by  $H_2$ -TPR,  $Co_3O_4$  itself contributed much more oxygen at  $100^\circ 350$  °C than any other samples (Fig. 4b). This could be attributed to its low metal-oxygen bond energy and broad range of the bulk non-stoichiometry [22,23,55]. More importantly, in comparison with  $Fe_2O_3$ , the smaller effective activation energy and lower Tammann temperature of  $Co_3O_4$  conferred higher mobility to its surface/subsurface lattice oxygen [20,55]. As a result,  $Co_3O_4$  was able to deliver its lattice oxygen to reductants (e.g.  $H_2$  or soot) at much lower temperatures than  $Fe_2O_3$  did (Figure S5).

Second,  $CeO_2$  coating amplified the utilization of oxygen in  $Co_3O_4$ . Due to the narrow non-stoichiometry range of  $CeO_2$ , it was less reducible than  $Co_3O_4$  [28,29]. However, the easy  $Ce^{3+} \leftrightarrow Ce^{4+}$  shuffling conferred  $CeO_2$  high oxygen release/storage speed, making  $CeO_2$  qualified as an "oxygen gateway" to pump out the bulk oxygen of  $Co_3O_4$  [56]. The higher reduction potential of  $Co^{3+}/Co^{2+}$  (1.92 V) than  $Ce^{4+}/Ce^{3+}$  (1.62 V) also facilitated this oxygen transfer. Consequently, a large amount of  $Co_3O_4$  bulk oxygen migrated to  $CeO_2$ , resulting in the abundant ceria lattice oxygen of Co@Ce ( $Ce^{3+}/Ce^{4+} = 0.27$ , Table 1). By utilizing these lattice oxygen species, Co@Ce produced plentiful  $O_x^-$  ( $Ce^{4+}-O^{2-} \leftrightarrow O^- \leftrightarrow O_2^-$ ) either with (Fig. 5b) or without (Fig. 4c) the assistance of gaseous  $O_2$  [7,8]. These  $O_x^-$  ignited the soot particles on  $CeO_2$  surface easily [9], resulting in the lower soot combustion temperature of Co@Ce in comparison with Co (Fig. 6).

It is worth noting that, the core-shell structure conferred Co@Ce not only high initial activity but also good stability. As shown in Fig. 3b, Co@Ce exhibited slightly higher Co²+ content after reacting with soot at 225 °C, indicating its inner oxygen delivery (Co₃O₄  $\rightarrow$  CeO₂). Thanks to this continuous bulk oxygen supply, the Ce³+ content in CeO₂ was almost intact after the reactions (Figure S6). These results demonstrated that, Co@Ce avoided the continuous generation of the soot-derived Ce³+-V₀ to a large extent [53]. Therefore, instead of being affected by the V₀-induced O₂ $^-\rightarrow$ O $^-\rightarrow$ O²- transformation [11], Co@Ce regenerated O $_x$  $^-$  stably in redox cycles. This was in accordance with the cycled TPR results (Fig. 5b), which explained the high stability of Co@Ce during the isothermal reaction at 225 °C (Fig. 6c-2).

Finally, the Ag nano-particles on  $CeO_2$  surface completed the "tandem oxygen delivery route" of Ag/Co@Ce. According to the generalized Cabrera–Mott theory, silver with low work function could "pump out" the lattice oxygen of ceria via back spillover effect [13,50]. When soot was oxidized on catalyst surface, the oxygen gradient actuated the tandem oxygen delivery  $(Co_3O_4 \rightarrow CeO_2 \rightarrow Ag)$  that provided lattice oxygen continuously. Moreover, gaseous  $O_2$  could be adsorbed and activated by silver, resulting in the formation of  $O_x$   $(Ag + O_2 \rightarrow Ag^+ + O_2^-)$  [51]. Consequently, Ag/Co@Ce exhibited far

better  $O_x^-$  generation (Fig. 4c) and regeneration (Fig. 5c and Table 2) ability in comparison with Co@Ce. This explained why Ag/Co@Ce was both reactive and stable at a temperature as low as 200 °C (Fig. 6c), which led to further decreased soot ignition temperature in the soot-TPO tests (Table 3).

#### 4.2. Soot oxidation in NO + $O_2$

When  $NO_x$  was involved in the reaction,  $NO_2$  became the leading soot igniter [19]. As shown in Figure S7, for the cobalt-based catalysts, the " $O_2$ -assisted" soot oxidation route was totally overwhelmed by the " $NO_2$ -assisted" one at low temperatures. The benefit of  $NO_2$  could be further amplified with the assistance of  $H_2O$  (Fig. 8). Therefore, in order to reveal the mechanism behind Ag/Co@Ce's superior soot oxidation activity in presence of  $NO_x$ , close attention should be paid to its  $NO \rightarrow NO_2$  conversion behavior.

As indicated by Weiss et al., due to the high electrochemical redox potential of  $\text{Co}^{3+}/\text{Co}^{2+}$ ,  $\text{Co}_3\text{O}_4$  could activate  $\text{O}_2$  easily and thereby was a robust NO oxidizer. They also highlighted the faster NO oxidation turnover on larger  $\text{Co}_3\text{O}_4$  clusters, which was attributed to their easier  $\text{O}_2$  activation [25]. In this sense, a high dispersion of  $\text{Co}_3\text{O}_4$  (e.g. < 10 nm in size) was not indispensable for achieving satisfying NO conversion. This agreed with the high NO oxidation activity of the 20–40 nm  $\text{Co}_3\text{O}_4$  grains [57]. Therefore, it was not surprising that the cube-like  $\text{Co}_3\text{O}_4$  inner cores (36 nm) provided  $\text{Co}_2\text{Ce}$  and  $\text{Ag}/\text{Co}_2\text{Ce}$  high basic  $\text{NO}_2$  production rates (Fig. 7b). Interestingly, after coating  $\text{Co}_3\text{O}_4$  with weaker NO oxidizers like  $\text{CeO}_2$  and silver [39], its  $\text{NO}_2$  production was amplified (Fig. 7b). This could be explained from two aspects.

On one hand, the  $O_x^-$  species provided by the Ag/CeO<sub>2</sub> shell promoted low-temperature NO oxidation. NO was oxidized by ceria through a nitrate-meditated Mars-van Krevelen mechanism reportedly, which could be accelerated by the participation of active oxygen (O<sup>#</sup> =  $O_x^-$ ) [13]:

$$NO + Ce^{3+} - O^{\#} \rightarrow Ce^{4+} - NO_2^{-}$$
 (1)

$$Ce^{4+}-NO_2^- + O^\# \to Ce^{4+}-NO_3^-$$
 (2)

$$Ce^{4+}-NO_3^- \to Ce^{3+}-O^{\#}+NO_2$$
 (3)

Thanks to the large amounts of  $O_x^-$  on Co@Ce and Ag/Co@Ce in comparison with Co (Fig. 5), the above  $O_x^-$ -assisted route facilitated the NO<sub>2</sub> production over the ceria-coated samples. Importantly, even when gaseous O<sub>2</sub> was cut off,  $O_x^-$  might still get replenished from ceria lattice oxygen (e.g. form the  $Co_3O_4 \rightarrow CeO_2$  inner oxygen delivery) [11–14]. Similar to the results obtained by Zhang et al. [58], these  $O_x^-$  species reacted with NO and retarded the activity loss of Co@Ce and especially Ag/Co@Ce in the anaerobic reaction (Fig. 7c). It is worth noting that, the contribution of  $O_x^-$  to NO  $\rightarrow$  NO<sub>2</sub> conversion outstood only at low temperatures. As shown in Fig. 10, the superiority of the  $O_x^-$ -rich Ag/Co@Ce peaked at around 200 °C and then decreased as the temperature increased further. This indicated that at higher temperatures (e.g. > 225 °C), the  $Co_3O_4$  inner cores themselves were activated and involved essentially in the reactions, making the role of  $O_x^-$  relatively less important.

On the other hand, the synergy between  $\text{Co}_3\text{O}_4$  and  $\text{CeO}_2$  facilitated the oxidation of NO at mild and high temperatures. The nanocubic  $\text{Co}_3\text{O}_4$  inner cores were the main active phase herein, which were far more active than  $\text{CeO}_2$  and silver for NO oxidation (Fig. 7b). Different from  $\text{CeO}_2$ , NO was reportedly oxidized by  $\text{CoO}_x$  through an ER surface process, involving kinetically relevant  $\text{O}_2$  binding at unoccupied sites (\*) on the cluster surfaces that were almost saturated with chemisorbed oxygen atoms (O\*) [25,59,60]:

$$O_2 + 2^* \to 20^*$$
 (4)

$$NO + O^* \rightarrow NO_2 + * \tag{5}$$



**Fig. 10.** Ratios of NO<sub>2</sub> production over the catalysts as a function of temperature during the NO-TPO tests in Fig. 7b.



Fig. 11. Temperature of  $\text{Co}_3\text{O}_4$  initial reduction in the catalysts during the TPR tests derived from Fig. 5.

Such a difference in reaction mechanisms was supported by the low participation of Co<sub>3</sub>O<sub>4</sub> lattice oxygen-derived active species in the anaerobic reaction (Fig. 7c). For reaction (4), the availability of the oneelectron oxidation-reduction cycle ( $Co^{3+} \rightarrow Co^{2+}$ ) was crucial [25], which was also responsible for the Co<sup>2+</sup> increase of Co@Ce after isothermal NO oxidation (Fig. 3b). As shown in Fig. 11, H2 reduced Co3O4 more easily over Co@Ce and Ag/Co@Ce than over Co, especially during the cycled reactions (the O2-1st and O2-2nd results). Given the first step of  $Co_3O_4$  reduction was  $Co^{3+} \rightarrow Co^{2+}$  [31,32], it was reasonable to suggest that the  ${\rm CeO_2}$  and  ${\rm Ag/CeO_2}$  coating facilitated the  $\text{Co}^{3+} \rightarrow \text{Co}^{2+}$  transformation during NO oxidation reactions. Similar promotion effect was reported previously by Bera et al., who indicated that Cu species in a Cu/CeO2 matrix required less energy to be reduced and oxidized than in the case of pure CuO [47]. In this sense, with accelerated turnover of NO oxidation on Co<sub>3</sub>O<sub>4</sub>, Co@Ce and Ag/Co@Ce exhibited higher NO2 production and thereby easier (NO2-assisted) soot combustion than Co did.

#### 5. Conclusions

In this study, by building core-shell tandem oxygen delivery (MO $_x$   $\rightarrow$  CeO $_2$   $\rightarrow$  Ag) systems with nanocubic Co $_3$ O $_4$  as the inner cores, robust Ag/Co $_3$ O $_4$ @CeO $_2$  catalysts with superior soot combustion activity were obtained. Based on the exploration of catalysts' structure and catalytic

behavior in different conditions, several conclusions can be drawn as:

- Due to the easy oxygen release and high NO oxidation activity of Co<sub>3</sub>O<sub>4</sub>, it was a more effective component for soot oxidation catalysts in comparison with Fe<sub>2</sub>O<sub>3</sub>.
- (2) With O<sub>2</sub> as the main oxidant, the O<sub>x</sub><sup>-</sup> species generated by tandem oxygen delivery (Co<sub>3</sub>O<sub>4</sub> → CeO<sub>2</sub> → Ag) dominated the catalytic oxidation of soot.
- (3) With  $NO_x$  involving in the reactions, the  $CeO_2$  and  $Ag/CeO_2$  coatings boosted both the production of  $O_x^-$  and the NO conversion over  $Co_3O_4$ , resulting in soot ignition at relatively low temperatures via the " $NO_2$ -assisted" route.

What is more important, the  $Ag/Co_3O_4$ @ $CeO_2$  catalysts with high cost-efficiency and hydrothermal stability could be fabricated via a simple co-precipitation method with only minor activity degradation. This indicated that the ternary system was highly practical for application in catalyzed gasoline and diesel particulate filters (CGPFs and CDPFs).

#### Acknowledgements

The authors would like to acknowledge the National Key R&D Program of China (Project 2017YFC0211202), the National Natural Science Foundation of China (Grant No. 51702304), the Natural Science Foundation of Shandong Province (Grant No. ZR2017BEM006), the Young Elite Scientists Sponsorship Program by CAST (2018QNRC001), the Postdoctoral Science Foundation of Shandong Province (Grant No. 201601009), Qingdao City Programs for Science and Technology Plan Projects (18-2-2-2-jch) and the Fundamental Research Funds for the Central Universities (201861050).

#### Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.apcatb.2019.03.019.

#### References

- [1] T. Johnson, SAE Technical Series Paper 2014-01-1491, (2014).
- [2] B.A.A.L. van Setten, M. Makkee, J.A. Moulijn, Catal. Rev. 43 (2001) 489–564.
- [3] D. Fino, V. Specchia, Powder Technol. 180 (2008) 64-73.
- [4] S. Liu, X. Wu, H. Luo, D. Weng, R. Ran, J. Phys. Chem. C 119 (2015) 17218–17227.
- [5] J.M. Richter, R. Klingmann, S. Spiess, K. Wong, SAE Technical Series Paper 2012-01-1244, (2012).
- [6] S. Liu, X. Wu, D. Weng, R. Ran, J. Rare Earth. 33 (2015) 567-590.
- [7] J. Haber, B.K. Warren, S.T. Oyama (Eds.), Heterogeneous Hydrocarbon Oxidation, vol. 638, ACS Symp. Series, 1996, p. 20.
- [8] J. Haber, Fundamentals of Hydrocarbon Oxidation, Handbook of Heterogeneous Catalysis: Online, (2008), p. 3359.
- [9] M. Machida, Y. Murata, K. Kishikawa, D. Zhang, K. Ikeue, Chem. Mater. 20 (2008) 4489–4494.
- [10] K. Shimizu, H. Kawachi, A. Satsuma, Appl. Catal. B 96 (2010) 169-175.
- [11] S. Liu, X. Wu, W. Liu, W. Chen, R. Ran, M. Li, D. Weng, J. Catal. 337 (2016) 188–198.
- [12] Y. Gao, A. Duan, S. Liu, X. Wu, W. Liu, M. Li, S. Chen, X. Wang, D. Weng, Appl. Catal. B 203 (2017) 116–126.
- [13] H. Wang, S. Luo, M. Zhang, W. Liu, X. Wu, S. Liu, J. Catal. 368 (2018) 365-378.
- [14] H. Wang, B. Jin, H. Wang, N. Ma, W. Liu, D. Weng, X. Wu, S. Liu, Appl. Catal. B 237 (2018) 251–262.
- [15] J.C. Martínez-Munuera, M. Zoccoli, J. Giménez-Mañogil, A. García-García, Appl. Catal. B 245 (2019) 706–720.
- [16] D. Rathod, M. Hoffman, S. Onori, Z. Filipi, Experimental investigation of soot accumulation and regeneration in a catalyzed gasoline particulate filter utilizing particulate quantification and gas speciation measurements, ASME International Combustion Engine Fall Technical Conference (2019).
- [17] X. Mou, B. Zhang, Y. Li, L. Yao, X. Wei, D. Su, W. Shen, Angew. Chem. Int. Ed. 51 (2012) 2989–2993.
- [18] D. Reichert, T. Finke, N. Atanassova, H. Bockhorn, S. Kureti, Appl. Catal. B 84 (2008) 803–812.
- [19] A. Bueno-López, Appl. Catal. B 146 (2014) 1–11.
- [20] G. Jian, L. Zhou, N.W. Piekiel, M.R. Zachariah, ChemPhysChem 15 (2014) 1666–1672.
- [21] J.M. Christensen, J. Grunwaldt, A.D. Jensen, Appl. Catal. B 188 (2016) 235-244.

- [22] Y. Yu, T. Takei, H. Ohashi, H. He, X. Zhang, M. Haruta, J. Catal. 267 (2009) 121–128.
- [23] V.A. Sadykov, L.A. Isupova, I.A. Zolotarskii, L.N. Bobrova, A.S. Noskov, V.N. Parmon, E.A. Brushtein, T.V. Telyatnikova, V.I. Chernyshev, V.V. Lunin, Appl. Catal. A Gen. 204 (2000) 59–87.
- [24] L. Hu, Q. Peng, Y. Li, J. Am. Chem. Soc. 130 (2008) 16136–16137.
- [25] B.M. Weiss, N. Artioli, E. Lglesia, ChemCatChem 4 (2012) 1397-1404.
- [26] M.M. Yung, E.M. Holmgreen, U.S. Ozkan, J. Catal. 247 (2007) 356-367.
- [27] M.F. Irfan, J.H. Goo, S.D. Kim, Appl. Catal. B 78 (2008) 267-274.
- [28] J. Xu, G. Lu, Y. Guo, Y. Guo, X. Gong, Appl. Catal. A Gen. 535 (2017) 1-8.
- [29] G. Zou, Y. Xu, S. Wang, M. Chen, W. Shang, Catal. Sci. Technol. 5 (2015) 1084–1092.
- [30] G. Zou, Z. Fan, X. Yao, Y. Zhang, Z. Zhang, M. Chen, W. Shang, Chin. J. Catal. 38 (2017) 564–573.
- [31] G. Zhai, J. Wang, Z. Chen, W. An, Y. Men, Chem. Eng. J. 337 (2018) 488-498.
- [32] M. Khasu, T. Nyathi, D.J. Morgan, G.J. Hutchings, M. Claeys, N. Fischer, Catal. Sci. Technol. 7 (2017) 4806–4817.
- [33] Y. Teng, Y. Kusano, M. Azuma, M. Haruta, Y. Shimakawa, Catal. Sci. Technol. 1 (2011) 920–922.
- [34] E.E. Miró, F. Ravelli, M.A. Ulla, L.M. Cornaglia, C.A. Querini, Catal. Today 53 (1999) 631–638.
- [35] P.G. Harrison, I.K. Ball, W. Daniell, P. Lukinskas, M. Céspedes, E.E. Miró, M.A. Ulla, Chem. Eng. J. 95 (2003) 47–55.
- [36] S.K. Megarajan, S. Rayalu, Y. Teraoka, N. Labhsetwar, J. Mol. Catal. A Chem. 385 (2014) 112–118.
- [37] M.Á. Stegmayer, V.G. Milt, N. Navascues, E. Gamez, S. Irusta, E.E. Miró, Mol. Catal. (2018), https://doi.org/10.1016/j.mcat.2018.07.011.
- [38] J. Liu, Z. Zhao, J. Wang, C. Xu, A. Duan, G. Jiang, Q. Yang, Appl. Catal. B 84 (2008) 185–195
- [39] H. Wang, S. Luo, X. Li, W. Liu, X. Wu, D. Weng, S. Liu, Catal. Today (2018), https://doi.org/10.1016/j.cattod.2018.06.027.

- [40] A. Serve, A. Boréave, B. Cartoixa, K. Pajot, P. Vernoux, Appl. Catal. B 242 (2019) 140–149.
- [41] W.Y. Hernández, D. Lopez-Gonzalez, S. Ntais, C. Zhao, A. Boréave, P. Vernoux, Appl. Catal. B 226 (2018) 202–212.
- [42] W. Yang, S. Wang, K. Li, S. Liu, L. Gan, Y. Peng, J. Li, Chem. Eng. J. 364 (2019) 448–451.
- [43] M. Machida, T. Kawada, H. Fujii, S. Hinokuma, J. Phys. Chem. C 119 (2015) 24932–24941.
- [44] M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 257 (2011) 2717–2730.
- [45] Q. Guo, Y. Liu, Appl. Catal. B 82 (2008) 19-26.
- [46] D.M. Gómez, V.V. Galvita, J.M. Gatica, H. Vidal, G.B. Marin, Phys. Chem. Chem. Phys. 16 (2014) 11447–11455.
- [47] P. Bera, S. Mitra, S. Sampath, M.S. Hegde, Chem. Commun. (2001) 927-928.
- [48] I.I. Soykal, H. Sohn, J.T. Miller, U.S. Ozkan, Top. Catal. 57 (2014) 785-795.
- [49] V.V. Pushkarev, V.I. Kovalchuk, J.L. d'Itri, J. Phys. Chem. B 108 (2004) 5341-5348.
- [50] Q. Fu, T. Wagner, Surf. Sci. Rep. 62 (2007) 431-498.
- [51] M. Schmidt, A. Masson, C. Bréchignac, Phys. Rev. Lett. 91 (2003) 243401.
- [52] A. Setiabudi, M. Makkee, J.A. Moulijn, Appl. Catal. B 50 (2004) 185-194.
- [53] H. Wang, S. Liu, Z. Zhao, X. Zou, M. Liu, W. Liu, X. Wu, D. Weng, Catal. Sci. Technol. 7 (2017) 2129–2139.
- [54] E. Aneggi, Cd. Leitenburg, A. Trovarelli, Catal. Today 181 (2012) 108-115.
- [55] C. Doornkamp, M. Clement, V. Ponec, J. Catal. 182 (1999) 390–399.
- [56] M. Machida, T. Kawada, H. Fujii, S. Hinokuma, J. Phys. Chem. C 119 (2015) 24932–24941.
- [57] Z. Ren, Y. Guo, Z. Zhang, C. Liu, P. Gao, J. Mater. Chem. A 1 (2013) 9897-9906.
- [58] Z. Zhang, D. Han, S. Wei, Y. Zhang, J. Catal. 276 (2010) 16-23.
- [59] R. Aslam, M.R. Usman, M.F. Irfan, J. Environ. Chem. Eng. 4 (2016) 2871–2877.
- [60] M.W. Penninger, C.H. Kim, L.T. Thompson, W.F. Schneider, J. Phys. Chem. C 119 (2015) 20488–20494.