

Alparking

NullStorm: Gonzalo Cáceres - Jonay Temiño - Manuel Abos - Jordi Ortega Keepcoding - IA Full Stack 2 - 2024/2025

Definición del problema

- Elevados costos en contratación de personal o sistemas complejos.
- Pérdida de información relevante.

Objetivos del proyecto

- Automatizar el acceso de vehículos.
- Reducir los costos operativos.
- Análisis de los datos para futuras mejoras.

Claves del proyecto

- Preprocesamiento de las imágenes.
- Uso de modelos de detección de objetos y de OCR.
- Almacenar eficientemente los datos.
- Poder acceder a ellos de manera rápida y sencilla.

BigQuery

Almacenamos la información obtenida en el paso 1. Explotación y Análilsis de datos mediante SQL.

EDW

1 Computer Vision

2

3

LLM

Yolo + OCR

Detección de objetos con Yolo y extracción del texto de las matrículas con OCR convirtiendo la conversión de contenido visual en datos editables.

OpenAl

Aplicamos **Prompt Enginering** para ejecutar consultas en castellano.

Definición del Reto.

Control de accesos automatizado y analítica para parkings.

Recolección de Datos.

Imágenes cedidas por empresas del sector y fotografías propias.

Preprocesamiento de

Datos. Funciones de tratamiento de imágenes y limpieza.

Análisis Exploratorio.

Inspección visual de imágenes, tamaños y colores.

Selección del Modelo.

YOLO (You Only Look Once) basado en redes neuronales convolucionales. GPT-3.5-Turbo basado en transformers.

Reconoclmiento de

Caracteres. EasyOCR como biblioteca especializada.

Evaluación del Modelo.

Métricas de evaluación: Precisión, Recall y F1-Score.

Optimización y Ajuste.

Funciones de limpieza y ejercicios de Prompt Engineering.

J

K

Producción.

Despliegue de una aplicación web integrada con BBDD desplegada en el entorno cloud de Google.

igQuery

Quasar

Monitoreo y Mantenimiento.

[wip] Monitoreo de precisión y monitoreo de desempeño en producción. Se levanta log de errores.

Documentación.

"1. Fundamentos Teóricos y Exploración de los Datos.ipynb"

https://github.com/nullstorm4/Project

https://drive.google.com/file/d/1vAe2Shmngu3WBLG jtSS-Qw-u5ky8X2Fh/view?usp=sharing

Producción

Desarrollo

1

Computer Vision

- YOLOv5s
 Modelo de Ultralytics
 especializado en detección de
 objetos.
- YOLOv5m-license-plate
 Versión 'medium' de v5
 entrenada para detectar placas de vehículos.
- Easyocr Librería OCR para reconocimiento de caracteres.

- Escala de grises: reducción de la cantidad de información, enfocando el modelo en las formas.
- Reducción de ruido con desenfoque Gaussiano: suaviza la imagen para eliminar información irrelevante.
- Detección de bordes: ayuda a identificar los contornos de matrículas y vehículos.
- Mejora de contraste: resalta diferencias entre fondo y objeto.

Preprocesamiento aplicado	Precisión (%)		
Sin preprocesamiento	40.40%		
Escala de grises + Ruido	34.69%		
Escala de grises + Bordes	2.04%		
Escala de grises + Contraste	45.45%		

1

Computer Vision

- Formatos de las placas.
- Filtrar el texto para evitar caracteres no admitidos.
- Filtrar el texto basado en el tamaño de la región.
- Corregir errores comunes.

2 EDW

- Mapa de entidades
 Se define la estructura del edw operacional, los esquemas de las entidades y la relación entre ellas.
- Entorno Google Cloud
 Creamos el proyecto, habilitamos la
 API de BigQuery y configuramos
 credenciales.
- Proceso Proyecto BigQuery Importamos el módulo bigquery de la librería google.cloud para interactuar con gbq con SQL.

Large Language Model

3 LLM

- gpt-3.5-turbo Importamos el módulo openai de la librería openai y trabajamos con la versión optimizada de gpt-3 para tareas de lenguaje natural.
- Prompt Template
 Entregamos una instrucción clara, definimos un contexto, damos ejemplos clarificadores y planteamos parámetros configurables con el objetivo de interactuar en español con la base de datos.

A

Evaluación

Métricas - 2.242 imágenes

- Precisión 87%
- Recall 79%
- F1-Score 81%

Errores más comunes

Lectura	#
1	20
0	20
Н	18
6	17
1	16
	1 0 H

A	U		v	L
Nombre del archivo	Placa	Placa detectada	Errores	Similaridad
E1,CAM1,250211093523443,5361KNT,9962.jpg	5361KNT	5361LNT	['K->L']	85,71%
E1,CAM1,250211100504491,6822HXW,9999.jpg	6822HXW	6822HXH	['W->H']	85,71%
E1,CAM1,250211111823386,7715KLT,9996.jpg	7715KLT	7715KLH	['T->H']	85,71%
E1,CAM1,250211102223608,6598HSH,9730.jpg	6598HSH	6590HSH	['8->0']	85,71%
E1,CAM1,250211113127033,9958GVD,9737.jpg	9958GVD	9958GVB	['D->B']	85,71%
E1,CAM1,250211084626206,5767GXJ,9998.jpg	5767GXJ	6767GXJ	['5->6']	85,71%
E1,CAM1,250211101308215,3773CXY,10000.jpg	3773CXY	8773CXY	['3->8']	85,71%
E1,CAM1,250211083428634,4980CBL,9957.jpg	4980CBL	2980CBL	['4->2']	85,71%
\$1,CAM2,250210090620585,5017LKP,9991.jpg	5017LKP	5017LKP	[]	100%
S1,CAM2,250210084922545,6662HTL,9948.jpg	6662HTL	6662HTL	[]	100%
S1,CAM2,250210090236785,6968MLH,9999.jpg	6968MLH	6968MLH	[]	100%
S1,CAM2,250210084635210,5839GXB,9993.jpg	5839GXB	5839GXB	[]	100%
S1,CAM2,250210084557009,8485MSR,9978.jpg	8485MSR	8485MSR	[]	100%
S1,CAM2,250210085639741,0228MSZ,9960.jpg	0228MSZ	0228MSZ	[]	100%
S1,CAM2,250210090700662,8123KTG,9999.jpg	8123KTG	8123KTG	[]	100%
S1,CAM2,250210075314986,3133DRL,9974.jpg	3133DRL	3133DRL	[]	100%
S1,CAM2,250210063809315,3802GVZ,9910.jpg	3802GVZ	3802GVZ	[]	100%
S1,CAM2,250210072412936,7983FPC,10000.jpg	7983FPC	7983FPC	[]	100%

B Despliegue

Arquitectura General y Tecnologías Utilizadas

Aquí se muestra la visión global del sistema, destacando la separación entre el front-end (responsable de la interacción con el usuario) y el back-end (donde se realiza el procesamiento de imágenes y se gestionan los endpoints).

Seleccione estas tecnologías por los siguientes motivos:

- Interfaz de usuario moderna: Se ha empleado Vue.js junto a Quasar para desarrollar interfaces dinámicas y responsive, ofreciendo una experiencia de usuario fluida y de alta calidad.
- Despliegue eficiente de modelos: Los modelos se han desplegado con FastAPI, una herramienta ideal para integrar y exponer modelos de forma eficiente, aprovechando también rutas estáticas para alojar la web en el mismo servicio.
- Comunicación robusta: La librería Axios se utiliza para gestionar la comunicación entre el frontend y el backend, garantizando un intercambio de datos fiable y sencillo.

Computer Vision

- Levantar procesos de monitoreo para asegurar la precisión y la eficiencia en el desempeño.
- Identificar otros componentes de las fotografías: marca, modelo y color.
- Añadir más formatos de placa de otros países.

- La POC se ha centrado en la tabla 'accesos' y el proceso debería alimentar la estructura operacional definida.
- Desnormalizar los datos para mejorar el rendimiento de consultas analíticas.
- Orquestación de los flujos de datos con otros sistemas del cliente.

- Levantar procesos de monitoreo para asegurar la precisión y la eficiencia en el desempeño.
- Utilizar un modelo LLM que consuma menos recursos
- Añadir memoria al modelo para recordar consultas pasadas.

- Mejorar diseño de interfaz como por ejemplo mostrar un acumulado del resto de pruebas.
- Convertir en un archivo ejecutable para poder desplegarlo más fácilmente.
- Añadir la opción de subir un video y poder procesarlo con los modelos.

