Tutorial 5 Quiz solution

COMP2120B Computer organization

Kevin Lam (yklam2)

Q1a

• Complete the following truth table for a 1-to-4 demultiplexer.

D	I 1	10	Y3	Y2	Y 1	Y0
D	0	0	0	0	0	D
D	0	1	0	0	D	0
D	1	0	0	D	0	0
D	1	1	D	0	0	0

Q1b

• Draw a logic circuit for the 1-to-4 demultiplexer in (a).

Q1c

• Illustrate how we can use 4-to-16 decoder to construct 4K-byte memory using sixteen 256 x 8 bit RAM chips.

Q1d

Illustrate how we can use 4-to-16 decoder to construct a 64 bit

Q2a

• Write down the Truth Table of a clocked D Flip-Flop.

D	Q_{n+1}
0	0
1	1

Q2b

• Draw a diagram to illustrate how to use clocked D Flip-Flops to realise 4-bit Parallel Register.

Q2c

• Draw a diagram to illustrate how to use clocked D Flip-Flops to realise 4-bit Shift Register.

Q2d

• Explain the operation differences between the two registers presented in (b) and (c).

	Parallel Register	Serial Register
Transfer of Data Bits	Parallel	Serial/sequential
Clock Cycles to Fetch/Store Bytes	1	Equals to number of bits of the register
Tolerance to interference	More Cross Talk	Less Cross Talk
Transmission Distance	Shorter	Longer