Neighborhood Social Processes Descriptives

Gabriela Suarez

11 March, 2023

- Install & Load Packages
- · Load Data
- · Demographics
 - · Read Value Labels
 - Define Missing Values
 - Descriptives
 - Twin Age: Histogram
 - Twin Race: Pie Chart
- · Neighborhood Disadvantage
- · Michigan Census tract data
 - Load Data
 - Prep Data
 - o Overlaid Density Plots
 - Overlaid Histograms
 - o Overlaid Histogram & Density Plot

Install & Load Packages

```
library(readr)
library(foreign)
library(plyr)
library(tidyverse)
library(psych)
library(labelled)
library(ggplot2)
library(plotly)
```

Load Data

mtwins = read.spss(file = 'mtwins_ecv_faces_amy.sav', header = F, to.data.frame=TRUE, use.value.labels = F) nis = read.spss(file = 'Suarez NIS data 05172021.sav', header = T, to.data.frame=TRUE, use.value.labels = F)

Demographics

Read Value Labels

as.data.frame(attr(mtwins\$twin_sex, 'value.labels'))

	attr(mtwins\$twin_sex, "value.labels") <dbl></dbl>
Female	1
Male	0
2 rows	

as.data.frame(attr(mtwins\$pc_yrace, 'value.labels'))

	attr(mtwins\$pc_yrace, "value.labels") <dbl></dbl>
88 Missing	88
77 Refused	77
6 Other	6
5 Biracial	5
4 Asian/Pacific Islander	4
3 Native American/Native Alaskan	3
2 Black/African American	2
1 Hispanic/Latino	1

	attr(mtwins\$pc_yrace, "value.labels") <dbl></dbl>
0 White/Caucasian	0
-99 N/A	-99
1-10 of 10 rows	

as.data.frame(attr(mtwins\$pc_education, 'value.labels'))

```
8 Graduate professional training, graduate degree
7 Standard college or university graduation (4 years)
6 Junior college/associates degree (2 years)
5 Partial college (at least one year) or specialized training
4 High school graduate/GED
3 Partial high school (at least one year)
2 Junior high/middle school completed
1 7th grade or pcless
0 No formal schooling
9 rows | 1-1 of 2 columns
```

```
as.data.frame(attr(mtwins$pc_annincome, 'value.labels'))
```

	attr(mtwins\$pc_annincome, "value.labels") <dbl></dbl>
12 \$90000 or more	12
11 \$80000-\$89000	11
10 \$70000-\$79999	10
9 \$60000-\$69999	9
8 \$50000-\$59999	8
7 \$40000-\$49999	7
6 \$30000-\$39999	6
5 \$25000-29999	5
4 \$20000-\$24999	4
3 \$15000-\$19000	3
1-10 of 13 rows	Previous 1 2 Next

Define Missing Values

```
mtwins[mtwins == 77] = NA
mtwins[mtwins == 88] = NA
mtwins[mtwins == -99] = NA
```

Descriptives

describe(demos)

```
table(mtwins$twin sex)
    0
## 386 322
demos = select(mtwins, twin_age_yr, pc_yrace, pc_education, pc_annincome)
```

	vars <int></int>	n <dbl></dbl>	mean <dbl></dbl>	sd <dbl></dbl>	median <dbl></dbl>	trimmed <dbl></dbl>	mad <dbl></dbl>		max <dbl></dbl>
twin_age_yr	1	708	14.1412429	2.238242	14	14.3098592	1.4826	7	19
pc_yrace	2	708	0.7853107	1.604170	0	0.3485915	0.0000	0	6
pc_education	3	706	6.2917847	1.301332	7	6.3745583	1.4826	1	8
pc_annincome	4	694	9.3227666	3.012169	10	9.7931655	2.9652	0	12
4 rows 1-10 of 14 co	lumns								

```
apply((demos), 2, table)
```

```
## $twin_age_yr
##
##
         9 10 11 12 13 14 15 16 17 18 19
      4 12 38 36 58 62 146 150 96
                                  80 18
##
## $pc_yrace
##
##
      1 2 3 4 5 6
## 538 10 84
                4 58 10
##
## $pc_education
##
##
   1 3 4 5 6 7 8
   2 8 52 156 122 232 134
##
##
## $pc_annincome
##
   0 1 2 3 4 5 6 7 8 9 10 11 12
   4 6 18 16 18 14 52 66 38 70 46 82 264
```

Twin Age: Histogram

```
mtwins %>%
 ggplot(aes(x = twin_age_yr)) +
  geom_histogram(bins = 12, fill = 'white', col = 'black') +
 labs(title = "Histogram of Twin Age",
      x = "Twin Age (in years)", y = "Count") +
  theme_classic() + theme(axis.title.x = element_text(size = 12, family = "Times"),
                          axis.title.y = element_text(size = 12, family = "Times"),
                          title = element_text(size = 12, face = 'bold', family = 'Times'))
```


Twin Race: Pie Chart

```
race = data.frame(
  group = c("White","Hispanic","Black","Native American/Native Alaskan","Asian/Pacific Islander","Biracial","Othe
  value = c(538, 10, 84, 4, 4, 58, 10)
# Create plotly interactive pie chart
fig = plot_ly(race,
              labels = ~group,
               values = ~value,
               type = 'pie',
               textfont=list(size=18))
fig = fig %>% layout(title = list(text='Twin Race/Ethnicity', font=list(size=24)),
         xaxis = list(showgrid = FALSE, zeroline = FALSE, showticklabels = FALSE, font=list(size=18)),
         yaxis = list(showgrid = FALSE, zeroline = FALSE, showticklabels = FALSE, font=list(size=18)),
         showlegend=TRUE, legend=list(font=list(size=20)))
m = list(1 = 50, r = 50, b = 100, t = 100, pad = 4)
fig = fig %>% layout(autosize = F, width = 750, height = 500, margin=m)
fiq
```

Twin Race/Ethnicity

Neighborhood Disadvantage

Neighborhood disadvantage is defined using geocoding of family addresses to assess the proportion of neighborhood residents living below the poverty line (10.5% was the average at the time of data collection) between 2011 and 2015 in each family's census tract.

```
describe(mtwins$pov1115)
```

	vars <dbl></dbl>	n <dbl></dbl>	mean <dbl></dbl>	sd <dbl></dbl>	median <dbl></dbl>	trimmed <dbl></dbl>	mad <dbl></dbl>	min <dbl></dbl>	max <dbl></dbl>
X1	1	708	0.1962339	0.1600671	0.1515	0.1733725	0.1245384	0	0.77
1 row 1-10 of 14 columns									

```
# How many families are living in neighborhoods where more than 10.5% of families in the neighborhood are living
below the poverty line?
mtwins$belowPovLine <- ifelse(mtwins$pov1115 > .105, '>10.5% living below pov line', '<10.5% living below pov lin
e')
table(mtwins$belowPovLine)
```

```
## <10.5% living below pov line >10.5% living below pov line
##
                            254
```

```
prop.table(table(mtwins$belowPovLine))
```

```
## <10.5% living below pov line >10.5% living below pov line
##
                      0.3587571
```

Michigan Census tract data

Load Data

michigan = read_csv("/Users/gabrielasuarez/Dropbox (University of Michigan)/MiND_Lab/Research_Projects/nhood_soci al processes/Analysis/ACS allCTs 2008-2012 families.csv")

Prep Data

```
# Rename the pov_2015 variable to pov1115
michigan$pov1115 = michigan$DP03 0119PE
michigan pov1115 = michigan pov1115/100
```

```
# Create two new dataframes only with the data that I need
michigan_dat = dplyr::select(michigan, pov1115)
mtwins_dat = dplyr::select(mtwins, pov1115)
# Make a new column in each dataframe that will be a variable to identify where they came from later
mtwins_dat$Group = 'MTwiNS Sample'
michigan dat$Group = 'State of Michigan'
# Combine into new dataframe "nhood_pov"
nhoodPov = rbind(mtwins_dat, michigan_dat)
# Calculate the mean in each group
mu = ddply(nhoodPov, "Group", summarise, grp.mean=mean(pov1115, na.rm=T))
```

Overlaid Density Plots

```
ggplot(nhoodPov, aes(pov1115, fill = Group)) +
 geom density(alpha = 0.4, position = 'identity') +
  geom_vline(data=mu, aes(xintercept=grp.mean, color = Group), linetype="dashed", size= 1) +
 scale color brewer(palette="Set1") +
  scale_fill_brewer(palette="Set1") +
 labs(title = "American Community Survey (ACS) 5-Year Average",
      x = "Neighborhood Poverty (2011-2015)", y = "Density")+
  theme_light() + theme(axis.title.x = element_text(size = 12, family = 'Times'),
                        axis.title.y = element_text(size = 12, family = 'Times'),
                        title = element_text(size = 12, face = 'bold', family = 'Times'))
```


Overlaid Histograms

```
palette1 = c("#009966","#56B4E9")
plot = ggplot(nhoodPov, aes(x = pov1115, fill = Group, color = Group)) +
     geom_histogram(binwidth = 0.05, alpha = 0.3, position = 'identity') +
     geom_vline(data=mu, aes(xintercept=grp.mean, color = Group), linetype="dashed", size=1) +
     theme(legend.position="bottom") +
    scale color manual(values=palette1) +
     scale_fill_manual(values=palette1) +
     scale\_x\_continuous (name="Percentage of families whose income is below the poverty level", breaks = seq(0, 1, 0.0) and the sequence of the s
1)) +
     scale_y_continuous(name="Count", breaks = seq(0, 800, 100)) +
    coord_cartesian(xlim=c(0, 1), ylim=c(0, 800)) +
     #labs(title = "American Community Survey (ACS) 5-Year Average")+
     theme_light() + theme(axis.title.x = element_text(size = 12, face = "bold", family="Times"),
                                                              axis.title.y = element_text(size = 12, face = "bold", family="Times"),
                                                              legend.position = "top",
                                                             legend.title = element_text(size = 12, face = "plain", family="Times"),
                                                              axis.text.x = element_text(size = 12),
                                                              axis.text.y = element_text(size = 12),
                                                              legend.text = element text(size = 12, face = "bold", family="Times"))
plot
```



```
#ggsave("neighborhood_dist.png", plot=plot, width = 30, height = 20, unit = "cm", dpi=600)
```

Overlaid Histogram & Density Plot

```
ggplot(nhoodPov, aes(x = pov1115, fill = Group, color = Group))+
 geom_histogram(binwidth = 0.05, alpha = 0.6, aes(y = ..density..), position = 'identity')+
 geom_vline(data=mu, aes(xintercept=grp.mean, color = Group), linetype="dashed")+
 geom_density(alpha=0.1)+
  scale_color_brewer(palette="Set1")+
 scale_fill_brewer(palette="Set1")+
 labs(title = "American Community Survey (ACS) 5-Year Average",
      x = "Neighborhood Poverty Rates (2011-2015)", y = "Density/Count")+
  theme_light() + theme(axis.title.x = element_text(size = 12, family = 'Times'),
                       axis.title.y = element_text(size = 12, family = 'Times'),
                        title = element_text(size = 12, face = 'bold', family = 'Times'))
```

American Community Survey (ACS) 5-Year Average

