Санкт-Петербургский Политехнический Университет Высшая школа прикладной математики и вычислительной физики, ФизМех 01.03.02 Прикладная математика и информатика

Отчет по лабораторной работе № 12
"Решение задачи Коши для ОДУ 1 порядка методами Рунге-Кутты"

Метод Рунге-Кутты-Мерсона дисциплина "Численные методы"

Выполнил студент гр. 5030102/20003 Преподаватель

Жохов О. Д. Козлов К.Н.

Содержание

1	Формулировка задачи и её формализация	3
	1.1 Формализация	3
	1.2 Поставленная задача	
2	Алгоритм метода и условия его применимости	3
	2.1 Алгоритм	3
	2.2 Условия применимости	
3	Тестовый пример	3
4	Модульная структура прграммы и контрольные тесты	5
	4.1 Контрольные тесты	5
	4.2 Модульная структура	5
5	Численный анализ	7
	5.1 Графики	7
	5.2 Анализ графиков	11
6	Выводы	11

1 Формулировка задачи и её формализация

1.1 Формализация

Дано ОДУ 1-го порядка:

$$y' = f(x, y); \quad a \le x \le b$$

Для данной задачи Коши обеспечивается существование и единственность решения на отрезке $[a,b],\ y(x_0)=y_0$. Необходимо найти общее решение $y=(x,C),\$ чтобы выделить из него интегральную кривую $y=y(x),\$ проходящую через заданную точку $(x_0,y_0).$

1.2 Поставленная задача

Необходимо решить задачу Коши методом Кутты-Мерсона:

$$\begin{cases} y' = \frac{y^2(\ln(x) + 2)\ln(x)}{x}, & 1 \le x \le 3\\ y(1) = 1 \end{cases}$$

2 Алгоритм метода и условия его применимости

2.1 Алгоритм

$$h = \frac{b-a}{n}$$

$$k_1 = f(x_i, y_i)$$

$$k_2 = f\left(x_i + \frac{h}{3}, y_i + \frac{h}{3}k_1\right)$$

$$k_3 = f\left(x_i + \frac{h}{3}, y_i + \frac{h}{6}k_1 + \frac{h}{6}k_2\right)$$

$$k_4 = f\left(x_i + \frac{h}{2}, y_i + \frac{h}{8}k_1 + \frac{3h}{8}k_3\right)$$

$$k_5 = f\left(x_i + h, y_i + \frac{h}{2}k_1 - \frac{3h}{2}k_3 + 2hk_4\right)$$

$$y_{i+1} = y_k + \frac{h}{6}(k_1 + 4k_4 + k_5)$$

$$R = |2k_1 - 9k_3 + 8k_4 - k_5| \frac{h}{6}$$

Если $R > \epsilon$, то h/=2Если $32R < \epsilon$, то $h^*=2$

2.2 Условия применимости

f(x,y) и $f'_y(x,y)$ непрерывны на отрезке [a,b]. То есть выполняются теоремы о существовании и единственности задачи Коши.

3 Тестовый пример

Рис. 1: Ручной расчёт, часть 1

Рис. 2: Ручной расчёт, часть 2

4 Модульная структура прграммы и контрольные тесты

4.1 Контрольные тесты

Для исследования метода средних прямоугольников для функции на отрезке [1;3] будем рассматривать точность вычисления от 10^{-13} до 10^{-3} порядков.

4.2 Модульная структура

- метод $PKM\ c$ заданной изначальной точностью delta и возвращающий структуру current void data()
- функция со всеми необходимыми расчётами, записывающая результаты в файлы output 1.txt, output 2.txt, output 3.txt, output 4.txt.

5 Численный анализ

5.1 Графики

Рис. 3: Графики точного решения, решений с фиксированными шагами 0.1 и 0.2

Рис. 4: Графики ошибки решения с фиксированным шагом

Рис. 5: График величины шага от x при $\epsilon=10^{-7}$

Рис. 6: График ошибки от заданной точности

5.2 Анализ графиков

- 1. На рисунке 3 видно, что решение с меньшим шагом более близко к точному, чем с большим. Это подтверждается данными с рисунка 4, где видно, что у метода с применением большего шага ошибка больше или равна при любом взятом х.
- 2. На рисунке 5 видно, что длина шага изменяется под действием заданной точности, причём нет чёткого тренда к понижению/повышению длины шага.
- 3. На рисунке 6 видно, что метод всегда позволяет добиться заданной точности.

6 Выводы

- 1. Метод прост в реализации и позволяет добиться решения с заданной точностью.
- 2. Чем точнее решение мы хотим получить, тем больше итераций надо произвести.