Appendix: Material phase prediction for Li-ion Battery Reconstruction using Hierarchical Curriculum Learning

¹ Anika Tabassum, ² Nikhil Muralidhar, ¹ Ramakrishnan Kannan, ¹ Srikanth Allu ¹Oak Ridge National Laboratory ² Department of Computer Science, Stevens Institute of Technology Email: {tabassuma, allus, kannanr}@ornl.gov, nmurali1@stevens.edu

I. EXTENSION TO SEC. IV

TABLE I: LCGAR Architecture.

Layer Type	Specifications				
Convolution layer	Kernel (3×3) , 32 channels, padding 1				
Convolution layer	Kernel (3×3) , 32 channels, padding 1				
Maxpool	Kernel (2×2)				
Convolution layer	Kernel (3×3) , 16 channels, padding 1				
Convolution layer	Kernel (3 \times 3,), 16 channels, padding 1				
Maxpool	Kernel (2×2)				
Convolution layer	Kernel (1×1) , 8 channels				
Convolution layer	Kernel $(1 \times 1,)$, 8 channels				
Concat: Flatten					
+ UGSM logits \mathbf{F}^{j}					
Fully Connected Layer	Size 128, dropout (20%)				
+ dropout	_				
Batch-normalization	Size 128				
Softmax	Number of class (3)				

Table I shows the overview of LCGAR architecture.

II. EXTENSION TO SEC. V

Model Training: Both UGSM and LCGAR are trained with weighted cross-entropy loss due to heavy class imbalance in the ground-truth (on average C: 26%, Ni: 60%, Pore: 14%). In all the experiments, for LCGAR, we normalize input image between [-1, 1] and use activation LeakyReLU, which yields the best results. Our UGSM model is trained on 100 epochs with batch size 20, while HCL-IDK and LCGAR were trained for 15 epochs with batch size 1024.

Data Collection Process: X-Ray Computed Tomography (XCT) and similar techniques do not provide information on carbon binder distribution as it is "transparent" for the X-Ray. It thus becomes indistinguishable from the pores in the electrodes. For collecting the ground-truth labels, to identify all the material constituents, we utilized cross-sectioning with Focused-Ion beam (FIB/SEM) experiments for imaging and Energy Dispersive X-Ray Spectroscopy (EDS) for chemical mapping of electrode cross-sections [1]. The slicing was performed using Hitachi NB500 dual-beam FIB/SEM. The cross-sections were at a distance of every 200nm resulting in a total depth of $26\mu m$ resulting in 133 images.

Pre-processing: In this paper, we construct our data-set \mathcal{D} using the corpus of 133 images collected through cross-sections of an electrode. Each low-contrast image X in the corpus consists of 224×256 pixels. The corresponding ground-truth (GT) Y contains 224×256 material constituents consisting of pores, carbon binder (C), and Nickel (Ni). We leverage a data augmentation technique for efficient training with few data samples. Our technique is: First, for every image X and the corresponding GT, we obtain k different images, removing a row of pixels from the top. Next, we resize each k images into original size, i.e., 224×256 . We choose k = 10, as this is sufficient for training data. Finally, to smooth the resized GT for the corresponding k images, we use existing knowledge provided by domain experts: A pixel with Carbon (C) can not exist surrounding Ni pixels and vice-versa for a pixel with Ni. Using k nearest-neighbor rule, we remove noise from GT, i.e., if most surrounding pixels (nearest neighbors) around a C pixel are Ni, the GT label is changed to Ni.

Measure of Success:

- F1-score: Our goal is to measure the overall prediction for each class c, i.e., pore, carbon (C), and nickel (Ni) for the unseen datasets.
- Pixel accuracy (ACC): Fraction of the number of pixels that are predicted correctly among total pixels (in %). To measure smooth predictions [2]. We aim to evaluate pixel accuracy for k best performing and worst performing predictions to evaluate smoothness of material phase predictions.
- Mean intersection over union (mIU): We intend to quantify predictions from standard practice of image segmentation models [3], [4]. Suppose, t_c be the total number of pixels labeled as class c, n_{jc} be the number of pixels of class cpredicted as class j, and |C| are the total number of classes. $mIU = \frac{1}{|C|} \sum_{c} \frac{n_{cc}}{t_c + \sum_{j \neq c} n_{jc}}$
- Frequency weighted intersection over union (fIU): To quantify predictions in presence of class imbalance, we incorporate fIU from the standard practice for image segmentation models [3]. If t be the total number of pixels, fIU = $\frac{\frac{1}{t}\sum_{c}\frac{t_{c}*n_{cc}}{t_{c}+\sum_{j\neq c}n_{jc}}}{\text{Table II shows MatPhase performance compared with base-}}$

lines.

REFERENCES

[1] S. Vierrath et al., "Morphology of nanoporous carbon-binder domains in li-ion batteries—a fib-sem study," Electrochemistry Communications,

TABLE II: Performance of MatPhase comparing with the baselines in terms of F1-score per class, accuracy (%) on top 5 best performing, and lowest performing test sets, mIU, and fIU. For all metrics, high score yields the better result. MatPhase outperforms all the models (best values in bold).

Model		F1		ACC(%)	ACC(%)	mIU	fIU
	Pore	C	Ni	Best 5	Lowest 5		
DeepLabV3 [5]	0.85	0.86	0.87	90± 3.85	89± 1.87	0.76	0.83
MANet [6]	0.81	0.79	0.93	90.7± 3.15	85.6± .0002	0.74	0.82
FCN [3]	0.66	0.17	0.88	80± 0.2	75.8 ± 1.2	0.45	0.64
SegNet [4]	0.81	0.78	0.94	91.7 ± 0.1	85.6± 1.6	0.74	0.83
U-Net [7]	0.85	0.82	0.94	91.2± .09	90.03± 1	0.77	0.84
<i>U-Net++</i> [8]	0.76	0.53	0.78	72.4 ± 1.46	67.8 ± 3.09	0.54	0.59
MCD-U-Net [9]	0.86	0.82	0.94	91.5 ± 0.09	90.5 ± 0.6	0.78	0.84
Local-U-Net	0.86	0.82	0.94	91.5 ± 0.04	90.5 ± 0.5	0.78	0.84
ResNet-18	0.86	0.83	0.95	92.7	90.6	0.79	0.86
[10]				$\pm .03$	± 0.02		
Adapted-	0.85	0.84	0.95	93	91.8	0.79	0.86
LCGAR				± 0.02	± 1.2		
MatPhase	0.86	0.85	0.95	93.2	91.9	0.80	0.87
				± 0.02	± 1.3		

- vol. 60, pp. 176-179, 2015.
- [2] S. Sinha et al., "Curriculum by smoothing," Proc. of NeurIPS, 2020.
- [3] J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," in *Proceedings of the IEEE CVPR*, 2015, pp. 3431–3440.
- [4] V. Badrinarayanan et al., "Segnet: A deep convolutional encoder-decoder architecture for image segmentation," *IEEE transactions on pattern* analysis and machine intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.
- [5] L.-C. Florian and S. H. Adam, "Rethinking atrous convolution for semantic image segmentation," in *Conference on CVPR. IEEE/CVF*, vol. 6, 2017.
- [6] T. Fan et al., "Ma-net: A multi-scale attention network for liver and tumor segmentation," IEEE Access, vol. 8, pp. 179 656–179 665, 2020.
- [7] O. Ronneberger et al., "U-net: Convolutional networks for biomedical image segmentation," in Medical Image Computing and Computer-Assisted Intervention, ser. LNCS, vol. 9351. Springer, 2015, pp. 234– 241.
- [8] Z. Zhou et al., "Unet++: A nested u-net architecture for medical image segmentation," in Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, 2018, pp. 3–11.
- [9] T. DeVries and G. W. Taylor, "Leveraging uncertainty estimates for predicting segmentation quality," arXiv preprint arXiv:1807.00502, 2018.
- [10] K. He et al., "Deep residual learning for image recognition," in Proceedings of the IEEE CVPR, 2016, pp. 770–778.