

Institute for Operations Research ETH Zurich HG G21-22

Stephan Artmann stephan.artmann@ifor.math.ethz.ch Christoph Glanzer christoph.glanzer@ifor.math.ethz.ch

Mathematical Optimization — Assignment 8

https://moodle-app2.let.ethz.ch/course/view.php?id=3610

Exercise 1: Subgradients

Let $f_1(x,y) = -\sqrt{2-x^2-(y-1)^2}$, $f_2(x,y) = -\sqrt{2-x^2-(y+1)^2}$ be the functions representing the lower half of two balls of radius $\sqrt{2}$ centered in (0,1,0) and (0,-1,0), respectively. We want to consider the function f whose epigraph is the intersection of $\operatorname{epi} f_1$ and $\operatorname{epi} f_2$, i.e. $f = \max\{f_1, f_2\}$ over $\operatorname{dom} f = \operatorname{dom} f_1 \cap \operatorname{dom} f_2$.

Compute the subdifferential $\partial f(x,y)$ of f for every point of its domain: can you already guess where this set will be empty, where it will be a singleton and where it will contain more than one element? Why?

Exercise 2: Separation of Convex Sets

For this exercise, we will need the following two definitions:

- Two convex sets C and D in \mathbb{R}^n are <u>separated</u> if there is a hyperplane H such that $C \subseteq H^-$ and $C \subseteq H^+$ or vice versa, where H^+ and H^- are the closed halfspaces determined by H.
- Two convex sets C and D in \mathbb{R}^n are strongly separated if there is a $y \in \mathbb{R}^n$, $\alpha < \beta \in \mathbb{R}$ such that $C \subseteq \{x \mid y^\top x \le \alpha\}$ and $D \subseteq \{x \mid y^\top x \ge \beta\}$, that is, the set $S := \{x \mid \alpha \le y^\top x \le \beta\}$ 'separates' C and D.
- a) Prove that for two convex sets C and D in \mathbb{R}^n the Minkowski sum C-D is convex and that the following two statements are equivalent:
 - i) C and D are separated, respectively, strongly separated.
 - ii) C D and $\{0\}$ are separated, respectively, strongly separated.
- b) Let $C, D \subseteq \mathbb{R}^n$ be convex, C compact, D closed and $C \cap D = \emptyset$. Prove that C and D are strongly separated. You may use the fact that there exist $p \in C, q \in D$ having minimum distance.

Exercise 3: Equality constrained least-squares

Consider the equality constrained least-squares problem

$$\min \quad ||Ax - b||_2^2$$

$$s.t. \quad Gx = h,$$

where $A \in \mathbb{R}^{m \times n}$ and where $G \in \mathbb{R}^{p \times n}$. Give the KKT conditions.