Esercizio 1. [Esame 10/06/2021, Esercizio 2]

Si consideri su \mathbb{R}^3 la base canonica $\mathscr{B} := (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ e la forma quadratica Q definita dal polinomio $x^2 + 2\sqrt{2}xy + 2z^2$. Sia φ la corrispondente forma bilineare.

- 1. Trovare la matrice associata a φ .
- 2. Calcolare la segnatura di φ .
- 3. Trovare una base \mathscr{B}' che diagonalizzi φ e scrivere le matrici di cambiamento di base da \mathscr{B} a \mathscr{B}' e viceversa. Usare la formula di cambiamento base per trovare la matrice associata a φ rispetto a \mathscr{B}' .
- 4. Dire se esiste una base \mathscr{C} , canonica per φ , rispetto cui la matrice associata a φ abbia elementi 1, -1, 4 sulla diagonale. Nel caso, trovare tale base.
- 5. Trovare un sottospazio W di \mathbb{R}^3 rispetto cui la restrizione di φ non sia nè definita positiva nè definita negativa.
- 6. Se possibile, trovare un vettore isotropo in \mathbb{R}^3 che non appartenga al vostro spazio W, ed un vettore isotropo appartenente a W.

Esercizio 2. [Foglio esercizi n.8, esercizio 16]

Si consideri la forma quadratica Q su \mathbb{R}^4 definita da:

$$Q((x_1, x_2, x_3, x_4)) = x_1^2 + 2x_2^2 + x_3^2 + x_4^2 - 2x_1x_2 - 2x_2x_3.$$

- 1. Classificare Q e scriverla in forma normale.
- 2. Scrivere Q in forma canonica e determinare una base di \mathbb{R}^4 rispetto alla quale Q assume tale espressione.

Esercizio 3. [Foglio esercizi n.8, esercizio 4]

Sia V uno spazio vettoriale reale di dimensione 3, riferito alla base $\mathscr{B} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$.

- 1. Trovare la matrice, rispetto alla base \mathcal{B} , del prodotto scalare φ definito in modo opportuno sapendo che $\mathcal{B}' = (\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3, \mathbf{v}_1 + \mathbf{v}_2, -\mathbf{v}_1 + \mathbf{v}_3)$ è una base ortonormale (rispetto a φ).
- 2. Determinare la dimensione e una base per \mathscr{F}^{\perp} complemento ortogonale (rispetto a φ) per piano vettoriale:

$$\mathscr{F} = \{ \mathbf{x} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + x_3 \mathbf{v}_3 \in V \mid x_1 + x_3 = 0 \}.$$

3. Calcolare la norma del vettore $\mathbf{a} = \mathbf{v}_1 + \mathbf{v}_2 - \mathbf{v}_3$ (rispetto a φ).

Esercizio 4. [Foglio esercizi n.8, esercizio 22]

Si consideri la forma quadratica $Q \colon \mathbb{R}^4 \to \mathbb{R}$ definita da:

$$Q(\mathbf{x}) = -x_2^2 + 2x_1x_3 + x_4^2$$

con
$$\mathbf{x} = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4$$
.

- 1. Classificare Q e calcolarne la segnatura.
- 2. Scrivere Q in forma normale e determinare una base di \mathbb{R}^4 rispetto alla quale Q assume tale forma.
- 3. Determinare un vettore isotropo non nullo di Q.
- 4. Determinare le equazioni del sottospazio vettoriale ortogonale a:

$$\mathcal{W} = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid 2x_2 - x_3 = x_1 - 2x_3 = 0\}$$

e scrivere una sua base ortogonale (rispetto alla forma bilineare simmetrica φ associata a Q).