

Computational Linguistics LT3233

Jixing Li

Lecture 7: Logistic Regression

Lecture plan

- Naive Bayes and Laplace smoothing review
- Logistic regression
 - feature representation
 - classification function: sigmoid
 - loss function: cross-entropy loss
 - optimization algorithm: gradient descent
- Short break (15 mins)
- Hands-on exercises

Logistic regression

The task of text classification

- Input:
 - a document x
 - a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$
- Output: a predicted class $\hat{y} \in C$

Naive Bayes: Compare P (male|卓琳) P (female|卓琳)

→ generative classifier

Logistic regression: P (male|卓琳)

→ discriminative classifier

Components of logistic regression

1. feature representation of the input. For each input observation $x^{(i)}$, a vector of features $[x_1, x_2, ..., x_n]$.

```
x^{(i)} = [卓,琳]
= [卓,琳, Cheuk, Lam, LLA]
```

- **2.** classification function that computes \hat{y} , the estimated class: sigmoid functions
- 3. objective function for learning: cross-entropy loss
- 4. algorithm for optimizing the objective function: gradient descent

Features in logistic regression

Input vector: $x = [x_1, x_2, ..., x_n]$ [卓, 琳, Cheuk, Lam, LLA] Probability of these features in female names: $\rightarrow x = [0.5, 0.7, 0.5, 0.6, 0.8]$

Weights: one per feature: $w = [w_1, w_2, ..., w_n]$ $\rightarrow w = [0.1, 0.8, -0.1, 0.2, 0.7]$

Prediction: $z = w \cdot x + b$

$$z = w_1^*x_1 + w_2^*x_2 + w_3^*x_3 + w_4^*x_4 + w_5^*x_5 + b$$

= 0.05 + 0.56 + (-0.05) + 0.12 + 0.56 + 0.3
= 1.54

Transform prediction into probability

$$z = w \cdot x + b$$

z is a number, But we We'd like a classifier that gives us a probability, just like Naive Bayes did

Solution: use a function of z that goes from 0 to 1

$$y = \sigma(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + \exp(-z)}$$
 \rightarrow the sigmoid function

The sigmoid function

$$\hat{y} = \begin{cases} 1 & \text{if } w \cdot x + b > 0 \\ 0 & \text{if } w \cdot x + b \le 0 \end{cases}$$

Example

```
[卓,琳, Cheuk, Lam, LLA]
x = [0.5, 0.7, 0.5, 0.6, 0.8]
w = [0.1, 0.8, -0.1, 0.2, 0.7]
z = w \cdot x + b
  = w_1^*x_1 + w_2^*x_2 + w_3^*x_3 + w_4^*x_4 + w_5^*x_5 + b
  = 0.05 + 0.56 + (-0.05) + 0.12 + 0.56 + 0.3
  = 1.54
\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + e^{-1.74}} = 0.82 > 0.5 \rightarrow \text{female}
```

How to calculate weights?

Supervised classification:

We know the correct label y (either 0 or 1) for each x. But what the system produces is an estimate, \hat{y}

We want to know how far is the classifier output:

$$\hat{y} = \sigma(w \cdot x + b)$$

from the true output:

$$y = either 0 or 1$$

We'll call this difference the loss:

 $L(\hat{y}, y) = \text{how much } \hat{y} \text{ differs from the true } y$

Binary cross-entropy loss

Goal: maximize the probability of the correct label p(y|x)

Since there are only 2 outcomes (0 or 1), we can express the probability p(y|x) from our classifier as:

$$p(y|x) = \hat{y}^y (1-\hat{y})^{1-y}$$
 if y=1, this simplifies to \hat{y} if y=0, this simplifies to 1- \hat{y}

Now take the log of both sides:

$$\log p(y|x) = \log \left[\hat{y}^y (1-\hat{y})^{1-y}\right]$$
$$= y\log \hat{y} + (1-y)\log(1-\hat{y})$$

Now flip sign to turn this into a loss: Something to minimize

$$L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y\log \hat{y} + (1-y)\log(1-\hat{y})]$$

cross-entropy loss: negative log likelihood loss

Example

```
「卓,琳,Cheuk, Lam, LLA]
x = [0.5, 0.7, 0.5, 0.6, 0.8]
w = [0.1, 0.8, -0.1, 0.2, 0.7]
b = 0.5
\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x} + \mathbf{b}) = 0.82
if 卓琳 is female: y = 1:
L_{CE}(\hat{y}, y) = -(y \log \hat{y} + (1-y) \log(1-\hat{y})) = -\log(0.82) = 0.2
if 卓琳 is male: y = 0:
L_{CE}(\hat{y}, y) = -(y \log \hat{y} + (1-y) \log(1-\hat{y})) = -\log(1-0.82) = 1.7
```

→ The loss is greater when the prediction is wrong

Minimize the loss

Let's make explicit that the loss function is parameterized by weights $\theta = (w,b)$

And we'll represent \hat{y} as $f(x;\theta)$ to make the dependence on θ more obvious

We want the weights that minimize the loss, averaged over all examples:

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} L_{CE}(f(x^{(i)}; \theta), y^{(i)})$$

Gradient descent

How do I get to the bottom of this river canyon?

Look around me 360° Find the direction of steepest slope down Go that way

Gradient descent for a single scaler

Minimize loss: Given the current w, Move w in the reverse direction from the slope of the function

The **gradient** of a function of many variables is a vector pointing in the direction of the greatest increase in a function.

Gradient descent: Find the gradient of the loss function at the current point and move in the opposite direction.

Gradient descent

The new weight w^{t+1} is the old weight w^t minus the value of the gradient weighted by a learning rate η

$$w^{t+1} = w^t - \frac{1}{dw} L(f(x; w), y)$$

learning rate: Higher learning rate means move w faster

→ a hyperparameter not learned by algorithm from supervision, but are chosen by algorithm designer.

gradient (a vector of the
derivatives with respect
to the weight w)

Gradient in N-dimensional space

The gradient expresses the directional components of the sharpest slope along each of the N dimensions. For each dimension w_i , we express the slope as a partial derivative ∂ of the loss ∂w_i

The derivative of

$$L_{\text{CE}}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]$$
 is:

$$\frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_j} = [\sigma(w \cdot x + b) - y]x_j$$

Example

[卓, 琳, Cheuk, Lam, LLA] x = [0.5, 0.7, 0.5, 0.6, 0.8]

- 1. initialize w and b, set η w = [0, 0, 0, 0, 0], b = 0, η = 0.1
- 2. compute \hat{y} $\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x} + \mathbf{b}) = 0.5$
- 3. compute the gradients for w and b Gw = (0.5-y)x = -0.5x = [-0.25, -0.35, -0.25, -0.3, -0.4] Gb = 0.5-y = -0.5
- 4. update w and b $w_{t+1} = w_t \eta^* Gw = [0, 0, 0, 0, 0] 0.1^* [-0.25, -0.35, -0.25, -0.3, -0.4] = [0.025, 0.035, 0.205, 0.03, 0.04]$ $b_{t+1} = b_t \eta^* Gb = 0 0.1^* (-0.5) = 0.05$

Calculate gradient descent over all examples

[卓, 琳, Cheuk, Lam, LLA] x₁ = [0.5, 0.7, 0.5, 0.6, 0.8] 「承, 璋, Shing Cheung, LLA x₂ = [-0.6, -0.8, -0.1, -0.6, 0.8]

- 1. initialize w and b, set n $w = [0, 0, 0, 0, 0], b = 0, \eta = 0.1$
- 2. compute \hat{y} $\hat{y}_1 = \sigma(w \cdot x + b) = 0.5, \hat{y}_2 = \sigma(w \cdot x + b) = 0.5$
- 3. compute the gradients for w and b

3. compute the gradients for w and b
$$Gw = \frac{1}{2}((0.5-y)x_1 + (0.5-y)x_2) = \frac{1}{2}(-0.5x_1 - 0.5x_2) = [0.025, 0.025, -0.1, 0, -0.2]$$

$$Gb = \frac{1}{2}((0.5-y_1) + (0.5-y_2)) = 0$$

4. update w and b

 $W_{t+1} = W_t - \eta^* GW = [0, 0, 0, 0, 0] - 0.1^* [0.025, 0.025, -0.1, 0, -0.2] = [-0.0025, -0.0025, -0.0025]$ [0.01, 0, 0.02], $b_{t+1} = b_t - \eta^*Gb = 0$

To do

• Optional reading: **SLP** Ch5