data wrangling and plots

Maggie Slein

4/2/21

Plots

Question: How does response vary with study covariates?

Hypothesis: SMD between constant and fluctuating environments is most affected by temperature parameters (range and mean) but is also likely affected by demographic parameters (age, size, organization level)

Initial conclusions: Flux_range and mean temperature appear to be the most important contributers to variation in yi, though organization also contributes.

```
##
## Multivariate Meta-Analysis Model (k = 140; method: REML)
##
## Variance Components:
##
##
              estim
                        sqrt nlvls fixed
                                                                        factor
## sigma^2.1 0.0000 0.0002
                                  2
                                                                 experiment id
                                        no
                                                        experiment id/study id
## sigma^2.2 0.4801
                     0.6929
                                 19
                                        no
## sigma^2.3
             0.3679
                      0.6065
                                 54
                                           experiment_id/study_id/response_id
                                        no
##
## Test for Residual Heterogeneity:
## QE(df = 133) = 4966.2128, p-val < .0001
## Test of Moderators (coefficients 2:7):
## QM(df = 6) = 188.5784, p-val < .0001
##
## Model Results:
##
##
                                                               pval
                                                                       ci.lb
                                  estimate
                                                se
                                                       zval
## intrcpt
                                    1.4408 0.8785
                                                     1.6400
                                                             0.1010
                                                                     -0.2811
## flux_range
                                    0.2718 0.0488
                                                     5.5653
                                                             <.0001
                                                                      0.1761
## mean_temp_constant
                                    0.0170 0.0184
                                                     0.9255
                                                             0.3547
                                                                     -0.0190
                                   -0.5708 0.3985
                                                   -1.4323
                                                             0.1520 -1.3519
## exp age
                                   -0.3056 0.2850 -1.0725 0.2835 -0.8641
## size
```

```
## org level
                                 -0.0136 0.0020 -6.7104 <.0001 -0.0176
## flux_range:mean_temp_constant
                                 ci.ub
                                 3.1626
## intrcpt
## flux_range
                                 0.3675
## mean_temp_constant
                                 0.0530
## exp age
                                 0.2103
## size
                                 0.2529
## org_level
                                -0.0053
## flux_range:mean_temp_constant -0.0096 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#without interaction term
full_rf_model2<-rma.mv(yi, vi, data=dat_MA_ES, mods = ~flux_range + mean_temp_constant +
                      exp_age + size + org_level,
              random = ~1 | experiment_id/ study_id/ response_id,
                method="REML")
full_rf_model2
##
## Multivariate Meta-Analysis Model (k = 140; method: REML)
## Variance Components:
##
              estim
                      sqrt nlvls fixed
                                                                    factor
## sigma^2.1 0.0000 0.0002
                               2
                                                             experiment id
                                     nο
## sigma^2.2 0.5921 0.7694
                              19
                                    no
                                                     experiment_id/study_id
## sigma^2.3 0.3692 0.6076
                              54
                                     no experiment_id/study_id/response_id
##
## Test for Residual Heterogeneity:
## QE(df = 134) = 5082.0033, p-val < .0001
## Test of Moderators (coefficients 2:6):
## QM(df = 5) = 143.6740, p-val < .0001
## Model Results:
##
##
                     estimate
                                  se
                                          zval
                                                  pval
                                                        ci.lb
                                                                 ci.ub
                                        4.6492 <.0001 2.2822
## intrcpt
                      3.9455 0.8486
                                                                 5.6088
                      -0.0468 0.0115
                                      -4.0635 <.0001 -0.0694 -0.0242
## flux_range
## mean_temp_constant -0.0931 0.0083 -11.2776 <.0001 -0.1093 -0.0769
                      -0.5211 0.4305
## exp age
                                       -1.2104 0.2261 -1.3649
                                                                0.3227
## size
                      -0.2607 0.3052
                                      -0.8542 0.3930 -0.8589
                                                                 0.3375
## org_level
                      -0.5649 0.3434
                                       -1.6453 0.0999 -1.2379
                                                                 0.1080
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#full model split out by stocks/rates
full_rf_stocks<-rma.mv(yi, vi, data=dat_MA_ES, mods = ~flux_range + mean_temp_constant +
                      exp_age + size + org_level + resp_type,
```

```
random = ~1 | experiment_id/ study_id/ response_id,
                method="REML")
full_rf_stocks
##
## Multivariate Meta-Analysis Model (k = 140; method: REML)
## Variance Components:
##
##
                       sqrt nlvls fixed
                                                                     factor
              estim
## sigma^2.1 0.0000 0.0002
                               2
                                                               experiment_id
                                      no
                               19
## sigma^2.2 0.6413 0.8008
                                                      experiment_id/study_id
                                      no
                               no experiment_id/study_id/response_id
## sigma^2.3 0.3492 0.5910
##
## Test for Residual Heterogeneity:
## QE(df = 133) = 5044.3409, p-val < .0001
##
## Test of Moderators (coefficients 2:7):
## QM(df = 6) = 145.7976, p-val < .0001
##
## Model Results:
##
##
                      estimate
                                           zval
                                                   pval ci.lb
                                                                  ci.ub
                                   se
                                                                  5.3188 ***
                                         3.7746 0.0002 1.6831
## intrcpt
                      3.5009 0.9275
## flux_range
                     -0.0463 0.0115 -4.0198 <.0001 -0.0689 -0.0237
## mean_temp_constant -0.0934 0.0083 -11.3076 <.0001 -0.1096 -0.0772
## exp_age
                      -0.5082 0.4413
                                       -1.1516 0.2495 -1.3730
                                                                 0.3567
                      -0.2895 0.3117
                                       -0.9287 0.3530 -0.9004
                                                                  0.3214
## size
## org_level
                      -0.5581 0.3381
                                        -1.6505 0.0988 -1.2209
                                                                  0.1046
                      0.5324 0.3899
## resp_typetrait
                                        1.3654 0.1721 -0.2318
                                                                  1.2965
##
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
#full model split out by life history outcomes
full_rf_thermal<-rma.mv(yi, vi, data=dat_MA_ES, mods = ~flux_range + mean_temp_constant +
                       exp_age + size + org_level + stressful ,
              random = ~1 | experiment_id/ study_id/ response_id,
                method="REML")
## Warning in rma.mv(yi, vi, data = dat_MA_ES, mods = ~flux_range +
## mean_temp_constant + : Rows with NAs omitted from model fitting.
full_rf_thermal
##
## Multivariate Meta-Analysis Model (k = 132; method: REML)
## Variance Components:
##
##
                                                                     factor
              estim
                       sqrt nlvls fixed
## sigma^2.1 0.0000 0.0002
                                                              experiment_id
```

```
## sigma^2.2 0.6271 0.7919
                                 18
                                                         experiment_id/study_id
                                        no
## sigma^2.3 0.3784 0.6151
                                 53
                                            experiment_id/study_id/response_id
                                        no
##
## Test for Residual Heterogeneity:
## QE(df = 125) = 2792.3174, p-val < .0001
##
## Test of Moderators (coefficients 2:7):
## QM(df = 6) = 12.8046, p-val = 0.0462
##
## Model Results:
##
##
                                                             ci.lb
                       estimate
                                     se
                                             zval
                                                     pval
                                                                      ci.ub
                                                                     2.1668
## intrcpt
                        -0.1022
                                 1.1577
                                         -0.0883 0.9297
                                                           -2.3711
## flux_range
                                                           -0.0461
                                                                     0.0198
                        -0.0132
                                 0.0168
                                         -0.7831
                                                   0.4336
## mean_temp_constant
                         0.0843
                                 0.0330
                                                  0.0106
                                                            0.0196
                                                                     0.1489
                                          2.5559
## exp_age
                        -0.1052
                                 0.4536
                                         -0.2319
                                                   0.8166
                                                           -0.9941
                                                                     0.7838
                                                           -1.5562
                                                                    -0.2362
## size
                        -0.8962
                                 0.3367
                                         -2.6615
                                                   0.0078
## org_level
                        -0.5430
                                 0.3507
                                         -1.5483
                                                   0.1216
                                                           -1.2304
                                                                     0.1444
## stressfuly
                        -0.0232 0.0851
                                         -0.2729
                                                  0.7849
                                                           -0.1901
                                                                     0.1437
## ---
## Signif. codes:
                   0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

Relevant plots

SMD across flux_range

Figure 1. Data visualization supports model findings that there is a differene between shorter fluctuation

ranges and longer fluctuation ranges.

SMD across fluctuation ranges colored by organization level and fit with linear model

Figure 2. We can also see that there a difference in effect size in organization level responses across fluctuation range. Population level reponses trended positively across fluctuation ranges, while organism level responses trended negatively across fluctuation ranges.

Figure 3. When broken out by study, we can see that there is disagreement in the effect of fluctuation range on effect size.

SMD across fluctuation ranges colored by whether or mean temperature was thermally stressful stressful n y

Figure 4. When we consider where the temperatures in the fluctuation range reach thermally stressful levels, there is a small difference between responses to stressful temperatures (negative) and non-stressful temperatures (positive).

flux_range

Figure 5.

Question: How does response compare across studies and experiments?

Hypothesis: There should be differences across studies because of differences in experimental designs and study organism that would mean different magnitudes of response.

Initial conclusions: The studies overall are different in their responses but not owing to study_id or experiment. However, the mixed effects model does suggest some differences when you include study _id as a mod.

```
##
## Multivariate Meta-Analysis Model (k = 140; method: REML)
##
## Variance Components:
##
               estim
                        sqrt nlvls
                                     fixed
                                                             factor
## sigma^2.1 0.0000 0.0002
                                  2
                                                      experiment_id
                                        no
## sigma^2.2 0.5980 0.7733
                                 19
                                        no experiment_id/study_id
##
## Test for Heterogeneity:
## Q(df = 139) = 5373.4640, p-val < .0001
##
## Model Results:
##
## estimate
                 se
                       zval
                               pval
                                       ci.lb
                                               ci.ub
```

```
## 0.1261 0.1808 0.6976 0.4854 -0.2282 0.4804
##
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

Relevant Plots

Figure 6. When we look at experiment and study, we can see across the 15 studies included in this meta-analysis there are differences across and within experiments.

Figure 7. I kind of like this figure better than the boxplot in Figure 5 as an overall figure?

SMD across studies with the same temperature fluctuation range (10 C) study_id delava2016 garcaruiz2011 glass2019 kern_2015phys pendlebury2004 qu2014

reorder(study_id, -yi)

Figure 8.

.<u>Z</u>

Figure 9.

Figure 10. Well, from what I can gather, a majority of the effect sizes from our meta-analysis have a

Residual Value

non-signficant effect size value. However, there is a population of a couple influential effect sizes that are significantly important.

Supplementary Plots/Code

```
## Warning in rma.mv(yi, vi, data = common_range, random = ~1 | experiment_id/
## study_id, : Single-level factor(s) found in 'random' argument. Corresponding
## 'sigma2' value(s) fixed to 0.
```