Аналитическая геометрия

1. Задание {{ 1 }} ТЗ № 1

Установите соответствие

Уравнение прямой на плоскости с угловым коэффициентом

Уравнение прямой на плоскости, проходящей через две заданные точки

Уравнение прямой на плоскости в отрезках

Общее уравнение прямой на плоскости

2. Задание {{ 2 }} ТЗ № 2

Установите соответствие

Нормальное уравнение прямой на плоскости

Уравнение прямой на плоскости, проходящей через данную точку в данном направлении Уравнение прямой на плоскости с угловым коэффициентом

Уравнение прямой на плоскости в отрезках

3. Задание {{ 3 }} ТЗ № 3

Установите соответствие

Нормальное уравнение прямой на плоскости

Общее уравнение прямой на плоскости

Уравнение прямой на плоскости в полярных координатах

Уравнение прямой на плоскости, проходящей через две заданные точки

4. Задание {{ 4 }} ТЗ № 6

Установите соответствие

Канонические уравнения прямой в пространстве

Параметрические уравнения прямой в пространстве

Уравнения прямой, проходящей через две данные точки в пространстве

$$y = kx + b$$

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$$

$$\frac{x}{a} + \frac{y}{b} = 1$$

$$Ax + By + C = 0$$

$$x\cos\alpha + y\sin\alpha - p = 0$$

$$y - y_0 = k(x - x_0)$$

$$y = kx + b$$

$$\frac{x}{a} + \frac{y}{b} = 1$$

$$x\cos\alpha + y\sin\alpha - p = 0$$

$$Ax + By + C = 0$$

$$r\cos(\varphi - \alpha) = p$$

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$$

$$\frac{x - x_0}{m} = \frac{y - y_0}{n} = \frac{z - z_0}{p}$$

$$\begin{cases} x = x_0 + mt \\ y = y_0 + nt \\ z = z_0 + pt \end{cases}$$

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$

Общее уравнение прямой в пространстве

$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0, \\ A_2 x + B_2 y + C_2 z + D_2 = 0. \end{cases}$$

5. Задание {{ 5 }} ТЗ № 7

Установите соответствие

Канонические уравнения прямой в пространстве

$$\frac{x - x_0}{m} = \frac{y - y_0}{n} = \frac{z - z_0}{p}$$

Параметрические уравнения прямой в пространстве

$$\begin{cases} x = x_0 + mt \\ y = y_0 + nt \\ z = z_0 + pt \end{cases}$$

Уравнение прямой на плоскости, проходящей через две заданные точки

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$$

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$

Уравнение прямой в пространстве, проходящей через две заданные точки

6. Задание {{ 6 }} ТЗ № 9

Прямая задается уравнением...

$$\Box \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad \Box \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \quad \Box x^2 = 2py \quad \boxed{x} \frac{x}{a} + \frac{y}{b} = 1$$

7. Задание {{ 7 }} ТЗ № 4

На плоскости уравнение прямой, проходящей через две точки, имеет вид...

$$\Box \frac{x - x_0}{m} = \frac{y - y_0}{n} \quad \Box \quad A(x - x_0) + B(y - y_0) = 0$$

8. Задание {{ 8 }} ТЗ № 5

На плоскости уравнение прямой, проходящей через точку с заданным угловым коэффициентом, имеет вид...

$$\Box \frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} \quad \forall \quad y - y_0 = k(x - x_0) \quad \Box \quad A(x - x_0) + B(y - y_0) = 0 \quad \Box \quad \frac{x - x_0}{m} = \frac{y - y_0}{n}$$

9. Задание {{ 9 }} ТЗ № 8

На плоскости уравнение прямой, проходящей через точку с нормальным вектором, имеет вид...

$$\triangle A(x-x_0) + B(y-y_0) = 0$$
 $\Box \frac{x-x_0}{m} = \frac{y-y_0}{n}$

10. Задание {{ 10 }} ТЗ № 10

На плоскости уравнение прямой, проходящей через точку с направляющим вектором, имеет вид...

$$\Box A(x-x_0) + B(y-y_0) = 0 \quad \boxed{x} \frac{x-x_0}{m} = \frac{y-y_0}{n}$$

11. Задание {{ 11 }} ТЗ № 346

Неограниченная кривая 2-го порядка на плоскости, не имеющая асимптот, называется ... *Правильные варианты ответа*: парабол#\$#;

12. Задание {{ 12 }} ТЗ № 347

Множество всех точек плоскости, сумма расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами, есть величина постоянная, называется...

Правильные варианты ответа: эллипс#\$#;

13. Задание {{ 13 }} ТЗ № 348

Множество всех точек плоскости, абсолютная величина разности расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами, есть величина постоянная, называется...

Правильные варианты ответа: гипербол#\$#;

14. Задание {{ 14 }} ТЗ № 349

Фокусы эллипса имеют координаты...

$$\Box F_1(-\sqrt{a^2-b^2};0); F_2(\sqrt{a^2+b^2};0) \quad \boxtimes F_1(-\sqrt{a^2-b^2};0); F_2(\sqrt{a^2-b^2};0)$$

$$\Box F_1(-\sqrt{a^2+b^2};0); F_2(\sqrt{a^2+b^2};0) \quad \Box F_1(-\sqrt{a^2+b^2};0); F_2(\sqrt{a^2-b^2};0)$$

15. Задание {{ 15 }} ТЗ № 350

Фокусы гиперболы имеют координаты...

$$\Box F_1(-\sqrt{a^2-b^2};0); F_2(\sqrt{a^2-b^2};0) \quad \Box F_1(-\sqrt{a^2-b^2};0); F_2(\sqrt{a^2+b^2};0)$$

16. Задание {{ 16 }} ТЗ № 351

Эксцентриситет эллипса вычисляется по формуле и удовлетворяет условию...

$$\square \quad \varepsilon = \frac{\sqrt{a^2 - b^2}}{a}, \varepsilon > 1 \quad \boxtimes \quad \varepsilon = \frac{\sqrt{a^2 - b^2}}{a}, \varepsilon < 1$$

$$\square \quad \varepsilon = \frac{\sqrt{a^2 + b^2}}{a}, \varepsilon > 1 \quad \square \quad \varepsilon = \frac{\sqrt{a^2 + b^2}}{a}, \varepsilon < 1$$

17. Задание {{ 17 }} ТЗ № 352

Эксцентриситет гиперболы вычисляется по формуле и удовлетворяет условию...

$$\square \quad \varepsilon = \frac{\sqrt{a^2 + b^2}}{a}, \varepsilon < 1 \quad \boxtimes \quad \varepsilon = \frac{\sqrt{a^2 + b^2}}{a}, \varepsilon > 1$$

$$\square \quad \varepsilon = \frac{\sqrt{a^2 - b^2}}{a}, \varepsilon < 1 \quad \square \quad \varepsilon = \frac{\sqrt{a^2 - b^2}}{a}, \varepsilon > 1$$

18. Задание {{ 18 }} ТЗ № 353

Эксцентриситет окружности ...

19. Задание {{ 19 }} ТЗ № 354

Уравнение асимптот гиперболы...

$$\Box y = \pm \frac{a}{b}x \quad \boxtimes y = \pm \frac{b}{a}x \quad \Box y = \pm (abx) \quad \Box y = \pm x$$

20. Задание {{ 20 }} ТЗ № 355

Множество всех точек плоскости, каждая из которых одинаково удалена от данной точки, называемой фокусом, и данной прямой, называется...

Правильные варианты ответа: парабол#\$#;

21. Задание {{ 21 }} ТЗ № 202

Введите пропущенное слово

Множество расстояний точек плоскости, сумма которых до двух каждой данных om u_3 точек, постоянная, есть величина называется

Правильные варианты ответа: эллипс; эллипсом; элипс; элипсом;

22. Задание {{ 22 }} ТЗ № 203

Введите пропущенное слово

модуль Множество плоскости, разности точек *до* двух которых данных расстояний omточек, постоянная, есть величина называется

Правильные варианты ответа: гипербола; гиперболой;

23. Задание {{ 23 }} ТЗ № 204

Введите пропущенное слово

Множество точек плоскости, каждая из которых одинаково удалена от данной точки и данной прямой, называется ...

Правильные варианты ответа: параболой; парабола;

24. Задание {{ 24 }} ТЗ № 205

Введите пропущенное слово

Справедливо утверждение: линия, определяемая на плоскости Оху уравнением второго порядка $Ax^2 + Cy^2 + 2Dx + 2Ey + F = 0$, является ..., если выполняется неравенство $A \cdot C > 0$

Правильные варианты ответа: эллипс; эллипсом; элипс; элипсом;

25. Задание {{ 25 }} ТЗ № 206

Введите пропущенное слово

Справедливо утверждение: линия, определяемая на плоскости Оху уравнением второго порядка $Ax^2 + Cy^2 + 2Dx + 2Ey + F = 0$, является ...,

если выполняется неравенство $A \cdot C < 0$

Правильные варианты ответа: гиперболой; гипербола;

26. Задание {{ 26 }} ТЗ № 207

Введите пропущенное слово

Справедливо утверждение: линия, определяемая на плоскости Оху уравнением второго порядка

$$Ax^2 + Cy^2 + 2Dx + 2Ey + F = 0$$
, является ...,

если выполняется равенство $A \cdot C = 0$

Правильные варианты ответа: параболой; парабола;

27. Задание {{ 27 }} ТЗ № 208

Введите пропущенное слово

Справедливо утверждение: линия, определяемая на плоскости Оху уравнением второго порядка

$$Ax^{2} + Cy^{2} + 2Dx + 2Ey + F = 0$$
, является ...,

если выполняется равенство A = C

Правильные варианты ответа: окружностью; окружность;

28. Задание {{ 28 }} ТЗ № 209

Введите пропущенное слово

Поверхность в пространстве, описываемая уравнением

$$A(x-x_0)+B(y-y_0)+C(z-z_0)=0$$
, называется ...

Правильные варианты ответа: плоскостью; плоскость;

29. Задание {{ 29 }} ТЗ № 210

Введите пропущенное слово

Поверхность в пространстве, описываемая уравнением

$$\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \ x_2-x_1 & y_2-y_1 & z_2-z_1 \ x_3-x_1 & y_3-y_1 & z_3-z_1 \ \end{vmatrix}=0,$$
 называется ...

Правильные варианты ответа: плоскость; плоскостью;

30. Задание {{ 30 }} ТЗ № 211

Введите пропущенное слово

Поверхность в пространстве, определяемая уравнением

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
, называется ...

Правильные варианты ответа: плоскость; плоскостью;

31. Задание {{ 31 }} ТЗ № 212

Введите пропущенное слово или словосочетание

Поверхность 2-го порядка в пространстве, определяемая уравнением F(y,z)=0, называется ...

Правильные варианты ответа: цилиндр; цилиндром; цилиндрической поверхностью; цилиндрическая поверхность; цилиндр#\$#;

32. Задание {{ 32 }} ТЗ № 213

Введите пропущенное слово или словосочетание

Поверхность 2-го порядка, образованная движением прямой L, которая, перемещаясь в пространстве, сохраняет постоянное направление пересекается некоторой кривой K u \mathcal{C} (направляющей), называется

Правильные варианты ответа: цилиндр; цилиндрическая поверхность; цилиндром; цилиндрической поверхностью; цилиндр#\$#;

33. Задание {{ 33 }} ТЗ № 214

Введите пропущенное слово или словосочетание

Поверхность 2—го порядка, образованная прямыми линиями, проходящими через данную точку P и пересекащими данную кривую K (направляющую), называется ...

Правильные варианты ответа: конус; конусом; коническая поверхность; конической поверхностью; конич#\$#;

34. Задание {{ 34 }} ТЗ № 215

Введите пропущенное слово или словосочетание

Поверхность 2-го порядка в пространстве, определяемая уравнением $F\left(x,\pm\sqrt{y^2+z^2}\right)=0$, называется ...

Правильные варианты ответа: поверхностью вращения; поверхность вращения; поверхно#\$# вращ#\$#;

35. Задание {{ 35 }} ТЗ № 216

Введите пропущенное слово

Поверхность в пространстве, определяемая уравнением

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
, называется ...

Правильные варианты ответа: эллипсоид; эллипсоидом;

36. Задание {{ 36 }} ТЗ № 217

Введите пропущенное слово или словосочетание

Поверхность в пространстве, определяемая уравнением

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
, называется ...

Правильные варианты ответа: однополостный гиперболоид; однополостным гиперболоидом; однополостной гиперболоид; гиперболоид#\$#; однополос#\$# гипербол#\$#;

37. Задание {{ 37 }} ТЗ № 218

Введите пропущенное слово или словосочетание

пространстве, определяемая уравнением Поверхность в

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$
, называется ...

Правильные варианты ответа: двухполостный гиперболоид; двухполостным гиперболоидом; двуполостный гиперболоид; двуполостным гиперболоидом; гиперболоид#\$#; двуполост#\$# гиперболо#\$#;

38. Задание {{ 38 }} ТЗ № 219

Введите пропущенное слово или словосочетание Поверхность в пространстве, определяемая уравнением

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$$
, называется ...

Правильные варианты ответа: эллиптический параболоид; эллиптическим параболоидом; параболоид#\$#; эллиптич#\$# параболо#\$#;

39. Задание {{ 39 }} ТЗ № 220

Введите пропущенное слово или словосочетание Поверхность в пространстве, определяемая уравнением

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z, \quad \text{называется} \quad \dots$$

Правильные варианты ответа: гиперболический параболоид; гиперболическим параболоидом; параболоид#\$#; гипербол#\$# параболо#\$#;

40. Задание {{ 40 }} ТЗ № 347

Если плоскость Ax+By+Cz+D=0 параллельна оси Оу, то для коэффициентов А, В, С, D выполняется равенство ...

Правильные варианты ответа: B=0; B=0; B=0; B=0;

41. Задание {{ 41 }} ТЗ № 348

Плоскость, заданная уравнением Ах+Ву+Сz=0...

- □ параллельна Оуг □ параллельна Ох
- □ параллельна Оу
 □ параллельна Оz
- ☑ Проходит через начало координат

42. Задание {{ 42 }} ТЗ № 349

Плоскость, заданная уравнением Ах+Ву+D=0...

- □ Проходит через начало координат
 ☑ параллельна Оz
- □ параллельна Оу □ параллельна Ох □ параллельна Оуz

43. Задание {{ 43 }} ТЗ № 350

Плоскость, заданная уравнением Ax+Cz+D=0 □ Проходит через начало координат □ параллельна Оz □ параллельна Оу □ параллельна Ох □ параллельна Оуz
44. Задание {{ 44 }} ТЗ № 351
Плоскость, заданная уравнением By+D=0 параллельна Ох параллельна Оу параллельна Ох параллельна Оух
45. Задание {{ 45 }} ТЗ № 352
Плоскость, заданная уравнением Cz+D=0 □ параллельна Oxz □ параллельна Oxy □ параллельна Oz □ параллельна Oy □ параллельна Ox
46. Задание {{ 46 }} ТЗ № 353
Если для плоскостей
$A_1 x + B_1 y + C_1 z + D_1 = 0$
$A_2 x + B_2 y + C_2 z + D_2 = 0$
справедливо $A_1A_2 + B_1B_2 + C_1C_2 = 0$,
то эти плоскости П параллельны П проходят через начало координат перпендикулярны П совпадают
47. Задание {{ 47 }} ТЗ № 354
Если для плоскостей
$A_1 x + B_1 y + C_1 z + D_1 = 0$
$A_2 x + B_2 y + C_2 z + D_2 = 0$
справедливо $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$,
то эти плоскости П перпендикулярны П параллельны совпадают проходят через начало координат
48. Задание {{ 48 }} ТЗ № 355
Плоскости $Ax+By+Cz=0$ принадлежит точка \square $(A;B;C)$ \square $(-A;-B;-C)$ \boxtimes $(0;0;0)$ \square $(C;B;A)$
49. Задание {{ 49 }} ТЗ № 343
Три произвольные прямые на плоскости могут делить эту плоскость максимум на частей <i>Правильные варианты ответа:</i> 7;
50. 3adanue {{ 50 }} T3 № 344
Если две различные прямые на плоскости, заданные
уравнениями $A_1x + B_1y + C_1 = 0$ и $A_2x + B_2y + C_2 = 0$,
параллельны, то система уравнений
$\begin{cases} A_1 x + B_1 y + C_1 = 0, \\ A_2 x + B_2 y + C_2 = 0 \end{cases}$
$\left(A_2x + B_2y + C_2 = 0\right)$

является ...

8

Правильные варианты ответа: несовмест#\$#;
51. Задание {{ 51 }} ТЗ № 345
Если прямая перпендикулярна оси Ох, то для коэффициентов ее уравнения $Ax+By+C=0$ выполняется равенство Правильные варианты ответа: $B=0$; $B=0$; $B=0$; $B=0$;
52. Задание {{ 52 }} ТЗ № 346
Прямая на плоскости задана уравнением $Ax+By+C=0$. Какое из следующих утверждений верно $\Box \{A,B,C\}$ - нормальный вектор прямой $\Box \{A,B,C\}$ - направляющий вектор прямой $\Box \{A,B\}$ - направляющий вектор прямой
53. Задание {{ 53 }} ТЗ № 347
Уравнение x=0 на плоскости задает □ Ось абсцисс
54. Задание {{ 54 }} ТЗ № 348
Уравнение y=0 задает на плоскости ☑ Ось абсцисс □ Ось ординат □ Ось аппликат □ Начало координат
55. Задание {{ 55 }} ТЗ № 349
Прямая на плоскости задана уравнением
$\frac{\mathbf{x} - \mathbf{x}_0}{\mathbf{m}} = \frac{y - y_0}{n}$
Какое из следующих утверждений верно?
\square {m,n} - нормальный вектор прямой \square {m,n} - направляющий вектор прямой \square {x0,y0} - нормальный вектор прямой \square {x0,y0} - направляющий вектор прямой
56. Задание {{ 56 }} ТЗ № 350
Прямая на плоскости задана уравнением
$\frac{\mathbf{x} \cdot \mathbf{x}_0}{\mathbf{x} \cdot \mathbf{x}_0} = \frac{y - y_0}{\mathbf{x} \cdot \mathbf{x}_0}$
m n
Какое из следующих утверждений верно?
$\square \ \{x_0,y_0\}$ - направляющий вектор прямой $\ \square \ \{x_0,y_0\}$ - нормальный вектор прямой
57. Задание {{ 57 }} ТЗ № 351Прямая на плоскости задана уравнением
$A(x - x_0) + B(y - y_0) = 0$
Какое из следующих утверждений верно?
$\square \ \{x_0, y_0\}$ - нормальный вектор прямой $\ \square \ \{x_0, y_0\}$ - направляющий вектор прямой
$\square \{-x_0, -y_0\}$ - точка, лежащая на прямой. $\square \{x_0, y_0\}$ - точка, лежащая на прямой.
58. Задание {{ 58 }} ТЗ № 352
Укажите точку лежащую на прямой
$\mathbf{x}_{\perp} \mathbf{y}_{\perp}$

$$\frac{\mathbf{x}}{a} + \frac{\mathbf{y}}{b} = 1$$

$$\mathbf{\triangle}(\mathbf{a};0) \quad \Box \quad (0;\mathbf{a}) \quad \Box \quad (\mathbf{b};0) \quad \Box \quad (\mathbf{a};\mathbf{b})$$

59. Задание {{ 59 }} ТЗ № 49

Даны точки A(1; 2; 3) и B(-1; 0; 5). Середина отрезка AB имеет координаты...

 \square (0; 1; 4) \square (0; 2; 8) \square (2; 2; -2) \square (1; 1; -1)

60. Задание {{ 60 }} ТЗ № 50

Пусть точка С - середина отрезка АВ. Если А(-2; 2; 0), С(1; 0; 3), то координаты точки В равны...

70. Задание {{ 70 }} ТЗ № 322

Прямой в пространстве
$\begin{cases} x + 2y - z - 6 = 0 \\ 2x - y + z = -1 \end{cases}$
$\begin{cases} 2x - y + z = -1 \end{cases}$
соответствует направляющий вектор
\square (1;2;-3) \square (1;2;3) \square (1;3;5) \square (1;-3;-5)
78. Задание {{ 78 }} ТЗ № 330
Прямой в пространстве
$\begin{cases} 3x - y + 2z = 7 \\ x + 3y - 2z + 3 = 0 \end{cases}$
$\int x + 3y - 2z + 3 = 0$
соответствует направляющий вектор
\square (-4;8;12) \square (-2;4;5) \square (4;-8;10) \square (12;4;-2)
79. Задание {{ 79 }} ТЗ № 39
Нормальный вектор плоскости $4x+z+4y-9=0$ имеет координаты \square (4; 4; 1) \square (4; 1; 4) \square (4; 4; 9) \square (9; 4; 1)
80. Задание {{ 80 }} ТЗ № 40
Нормальный вектор плоскости x-4y=8z+3 имеет координаты \square (-4; -8; -3) \square (1; -4; -8) \square (1; -4; -3)
81. Задание {{ 81 }} ТЗ № 41
Нормальный вектор плоскости $z+2y+x-15=0$ имеет координаты \square (1; 1; -15) \square (1; 2; 1) \square (2; 1; -15) \square (1; 2; -15)
82. Задание {{ 82 }} ТЗ № 42
Нормальный вектор плоскости $x+z-1=0$ имеет координаты \square (1; 0; 1) \square (1; 1; -1) \square (0; 1; -1) \square (1; 1; 1)
83. Задание {{ 83 }} ТЗ № 43
Нормальный вектор плоскости y+z-5=0 имеет координаты \square (0; 1; 1) \square (1; 1; -5) \square (0; 1; -5) \square (1; 0; 1)
84. Задание {{ 84 }} ТЗ № 44
Уравнение плоскости, которая проходит через точку $M(2; 1; -1)$ и имеет нормальный вектор $n=\{1-2; 3\}$
\boxtimes x-2y+3z+3=0 \square 2x-3y+z-3=0 \square -x+3y+2z+9=0 \square 3x+2y+z=-12
85. Задание {{ 85 }} ТЗ № 45
Уравнение плоскости, которая проходит через точку $A(0;0;2)$ и имеет нормальный вектор $n=\{2;3;1\}$
\square z=0 \square z+2=0 \square 2x-3y+z=2 \square x+y+z=6
86. Задание {{ 86 }} ТЗ № 46
Уравнение плоскости, которая проходит через начало координат и имеет нормальный вектор $n=\{5;0;-3\}$
\square 5x-3z=0 \square 3x-5z=0 \square 5x-2y=1 \square 3y+2z=2
87. 3a∂anue {{ 87 }} T3 № 47
Пусть точка $P(2;-1;-1)$ есть основание перпендикуляра опущенного из начала координат на плоскость. Тогда уравнение этой плоскости $\square 2x+4y-6z=0 \square 2x-y+6z-6=0 \square -2x+y+z+6=0 \square 2x-y+6z-1=0$
88. Задание {{ 88 }} ТЗ № 48
Даны точки A(3; -1; 2), B(4; -2; -1). Тогда, уравнение плоскости, проходящей через точку A перпендикулярно вектору из точки A в точку B $\ \ $

89. Задание {{ 89 }} ТЗ № 310

Уравнение плоскости, проходящей через точку M(-2;2;3) параллельно плоскости Oxy...

90. Задание {{ 90 }} ТЗ № 311

Уравнение плоскости, проходящей через точку (2; -3; 5) параллельно плоскости Оху... \boxtimes z-5=0 \square z+10=0 \square -2x+2y+3z=0 \square z=2(y-x)/3

91. Задание {{ 91 }} ТЗ № 312

Уравнение плоскости, проходящей через точку (1; -2; 4) параллельно плоскости Охг...

92. Задание {{ 92 }} ТЗ № 313

Уравнение плоскости, проходящей через точку (-5; 2; -1) параллельно плоскости Оуг.

 \square x+5=0 \square x-5=0 \square 5x-2y+z=0 \square 5x+2y+z=0

93. Задание {{ 93 }} ТЗ № 314

Уравнение плоскости, проходящей через ось Ох и точку (4; -1; 2)...

 \square 2y+z=0 \square 2z+y=0 \square 2y-z=0 \square 2z-y=0

94. Задание {{ 94 }} ТЗ № 315

Уравнение плоскости, проходящей через ось Оу и точку М2(1; 4; -3)...

 \boxtimes 3x+z=0 \square 3x-z=0 \square 3z+x=0 \square 3z-x=0

95. Задание {{ 95 }} ТЗ № 316

Уравнение плоскости, проходящей через ось Оz и точку (3; -4; 7)...

96. Задание {{ 96 }} ТЗ № 317

Уравнение плоскости, проходящей через точки (7; 2; -3) и (5; 6; -4) параллельно оси Ох...

97. Задание {{ 97 }} ТЗ № 318

Уравнение плоскости, проходящей через точки (2; -1; 1) и (3; 1; 2) параллельно оси Оу...

 \triangledown x-z-1=0 \square x+z+1=0 \square z-x+1=0 \square x-z+1=0

98. Задание {{ 98 }} ТЗ № 319

Уравнение плоскости, проходящей через точки (3; -2; 5) и (2; 3; 1) параллельно оси Ог...

99. Задание {{ 99 }} ТЗ № 322

Уравнение прямой, проходящей через точку M(3;-1;2)

перпендикулярно плоскости x-3y-4z+2=0 имеет вид...

100. Задание {{ 100 }} ТЗ № 323

Уравнение прямой, проходящей через точки А(1;2;3) и В(3;1;2)...

101. Задание {{ 101 }} ТЗ № 324

Уравнение прямой, проходящей через точку (2;4;6) параллельно вектору $\vec{a} = \{6;2;4\}...$

102. Задание {{ 102 }} ТЗ № 325

Параметрические уравнения прямой, проходящей через точку(1;-1;3) параллельно прямой

$$\frac{x-1}{2} = \frac{y+2}{4} = \frac{z-1}{0} \dots$$

$$\boxtimes \begin{cases} x = 2t+1 \\ y = 4t-1 \\ z = -3 \end{cases} \qquad \begin{cases} x = t-2 \\ y = 4-t \\ z = 1 \end{cases} \qquad \begin{cases} x = \frac{t}{4} \\ y = \frac{t}{2} \\ z = (x-y) \end{cases} \qquad \begin{bmatrix} x = \frac{1}{2t} \\ y = \frac{1}{4t} \\ z = 0 \end{cases}$$

103. Задание {{ 103 }} ТЗ № 326

Уравнение прямой, проходящей через точку (2;3;1) перпендикулярно плоскости 3x + y + 2z - 11 = 0...

104. Задание {{ 104 }} ТЗ № 327

Параметрические уравнения прямой, проходящей через точку (2;-2;4) перпендикулярно плоскости x + 2y-z-5 = 0...

105. Задание {{ 105 }} ТЗ № 328

Параметрические уравнения прямой, проходящей через точки A(1;1;1) и B(2;3;5)...

106. Задание {{ 106 }} ТЗ № 311

Острый угол между плоскостями $x + y - 2z + 1 = 0$ u
$2x + 3y + z = 0 paseh \dots$
107. Задание {{ 107 }} ТЗ № 312
Острый угол между двумя плоскостями $5x - 3y + 4z - 4 = 0$, $3x - 4y - 2z + 5 = 0$ равен
108. Задание {{ 108 }} ТЗ № 313
Острый угол между плоскостями х+2y-3z+4=0 и 2х+3y+z+8=0.равен
109. Задание {{ 109 }} ТЗ № 314
Острый угол между плоскостями x-2y+2z+17=0 и x-2y-1=0.paвен
$oxizemarccos\left(\frac{\sqrt{5}}{3}\right) \Box \arccos\left(\frac{2}{5\sqrt{2}}\right) \Box \arccos\left(\frac{5}{\sqrt{6}}\right) \Box \frac{\pi}{6}$
110. Задание {{ 110 }} ТЗ № 315
Острый угол между плоскостями 2x-y+z-5=0 и y+z=0.равен
$\square \frac{\pi}{3} \square \frac{\pi}{6} \boxtimes \frac{\pi}{2} \square \frac{\pi}{4}$
111. Задание {{ 111 }} ТЗ № 316
Острый угол между плоскостями 2x-6y+z=0 и x-z+11=0.paвен
$ extstyle arccos \frac{1}{\sqrt{82}} \Box \arcsin \frac{2}{\sqrt{34}} \Box \arccos \frac{2}{\sqrt{34}} \Box \arcsin \frac{1}{\sqrt{82}}$
112. Задание {{ 112 }} ТЗ № 317
Острый угол между плоскостями y+2z-4=0 и x+y+3z-10=0.paвeн
$\square \ \operatorname{arccos} \frac{3}{\sqrt{15}} \boxtimes \ \operatorname{arccos} \frac{7}{\sqrt{55}} \square \ \operatorname{arcsin} \frac{3}{\sqrt{15}} \square \ \operatorname{arcsin} \frac{7}{\sqrt{55}}$
113. Задание {{ 113 }} ТЗ № 318
Острый угол между плоскостями 6x-4y+2z=0 и 6x+4y+2z=0 равен
\square $\arccos \frac{3}{7}$ \square $\arccos \frac{24}{\sqrt{56}}$ \square $\arccos \frac{4}{\sqrt{56}}$ \square $\arccos \frac{6}{\sqrt{14}}$
114. Задание {{ 114 }} ТЗ № 319
Острый угол между плоскостями 2x+4y+z-2=0 и x+y-2z+1=0.paвeн
\square $\arccos \frac{4}{3\sqrt{14}}$ \square $\arccos \frac{4}{63}$ \square $\arcsin \frac{4}{126}$ \square $\arccos \frac{2}{63}$
115. Задание {{ 115 }} ТЗ № 320

Острый угол между плоскостями х+у+z-3=0 и 2х+у+3z-10=0.равен...

123. Задание {{ 123 }} ТЗ № 313

Через точки M(2;3) и N(-1;4) проходит прямая...

$$\square x + 3y - 11 = 0 \quad \square 3x - y - 11 = 0$$

$$\Box 3x + 3y - 15 = 0 \ \Box x - 3y + 7 = 0$$

124. Задание {{ 124 }} ТЗ № 775

Через точки M(2;1) и N(4;3) проходит прямая...

$$\Box -2x + 2y + 1 = 0 \ \Box x + y - 1 = 0$$

125. Задание {{ 125 }} ТЗ № 776

Через точки M(-2;3) и N(1;1) проходит прямая...

$$\square 2x + 3y - 5 = 0 \quad \square 5x + 2y + 1 = 0$$

$$x + y + 1 = 0$$
 $x - y + 4 = 0$

126. Задание {{ 126 }} ТЗ № 777

Через точки M(5;0) и N(-4;2) проходит прямая...

$$\square 2x + 9y - 10 = 0 \quad \square \quad 3x + 7y + 5 = 0$$

$$\Box 2x - y - 3 = 0 \quad \Box 4x + 2y + 5 = 0$$

127. Задание {{ 127 }} ТЗ № 778

Через точки M(7;2) и N(5;3) проходит прямая..

$$x + y - 5 = 0$$
 $2x + 3y + 4 = 0$

128. Задание {{ 128 }} ТЗ № 779

Через точки M(3;4) и N(4;3) проходит прямая...

$$\Box x - y + 4 = 0 \ \Box x + y - 2 = 0$$

129. Задание {{ 129 }} ТЗ № 780

Через точки M(-2;1) и N(-3;3) проходит прямая...

$$\square 2x + y + 3 = 0 \quad \square \quad x + y - 5 = 0$$

$$\Box x - y + 5 = 0$$
 $\Box 2x + 5y - 1 = 0$

130. Задание {{ 130 }} ТЗ № 781

Через точки M(9;7) и N(4;2) проходит прямая...

$$\Box x + 2y + 3 = 0 \quad \Box x + y + 1 = 0$$

131. Задание {{ 131 }} ТЗ № 782

Через точки M(5;3) и N(4;-1) проходит прямая... 132. Задание {{ 132 }} ТЗ № 783 Через точки M(4;-2) и N(8;-5) проходит прямая... $\square 3x + 4y - 4 = 0 \quad \square \ 4x + 3y + 10 = 0$ $\Box x + 5y - 5 = 0$ $\Box 5x + y + 3 = 0$ 133. Задание {{ 133 }} ТЗ № 54 Расстояние между точками A(1; 2) и B(k; -2) равно 5 при k равном ... \square 4 \square 6 \square 1 \square 10 134. Задание {{ 134 }} ТЗ № 55 Расстояние между точками A(-1; 1) и B(k; -3) равно 5 при k равном ... ☑ 2 □ -1 □ 8 □ 4 135. Задание {{ 135 }} ТЗ № 56 Расстояние между точками A(2; 1) и B(-1; k) равно 5 при k равном ... \square 6 \square 1 \square 17 136. Задание {{ 136 }} ТЗ № 57 Расстояние между точками A(1; 2) и B(k; 5) равно 5 при k равном ... \square 17 \boxtimes 5 \square 1 \square 6 137. Задание {{ 137 }} ТЗ № 58 Расстояние между точками A(10; 2) и B(k; 5) равно 5 при k равном ... \square 6 \square 8 \square 10 \square 12 138. Задание {{ 138 }} ТЗ № 784 Расстояние между точками A(k;1) и B(8;13) равно 13 при k равном... 139. Задание {{ 139 }} ТЗ № 785 Расстояние между точками A(k;5) и B(4;-7) равно 13 при k равном... 140. Задание {{ 140 }} ТЗ № 786 Расстояние между точками A(k;-3) и B(1;9) равно 13 при k равном... 141. Задание {{ 141 }} ТЗ № 787 Расстояние между точками A(k;10) и B(-3;-2) равно 13 при k равном... $M - 8 \quad \Box \quad -4 \quad \Box \quad -2 \quad \Box \quad 5$

142. Задание {{ 142 }} ТЗ № 788

Расстояние между точками $A(k;-4)$ и $B(-2;8)$ равно 13 при k равном
$\square -7 \square \ -11 \square \ 5 \square \ 12$
143. Задание {{ 143 }} ТЗ № 34
Прямая проходит через точки O(0; 0) и B(-2; 1). Тогда ее угловой коэффициент равен \square 2 \square -1/2 \square -2 \square 1/2
144. Задание {{ 144 }} ТЗ № 35
Прямая проходит через точки $O(0;0)$ и $B(-7;14)$. Тогда ее угловой коэффициент равен \square 2 \square 7 \boxtimes -2 \square -7
145. Задание {{ 145 }} ТЗ № 36
Прямая проходит через точки O(0; 0) и B(1; -7). Тогда ее угловой коэффициент равен \square 1/7 \square -7 \square -1/7 \square 7
146. Задание {{ 146 }} ТЗ № 37
Прямая проходит через точки $O(0;0)$ и $B(-4;8)$. Тогда ее угловой коэффициент равен \square -2 \square -4 \square 4
147. Задание {{ 147 }} ТЗ № 38
Прямая проходит через точки $O(0;0)$ и $B(5;-15)$. Тогда ее угловой коэффициент равен \square -5 \square -3 \square 5
148. Задание {{ 148 }} ТЗ № 789
Прямая проходит через точки $A(1;2)$ и $B(3;1)$.
Тогда ее угловой коэффициент равен

149. Задание {{ 149 }} ТЗ № 790

Прямая проходит через точки A(0;3) и B(1;-2) .

Тогда ее угловой коэффициент равен...

150. Задание {{ 150 }} ТЗ № 791

Прямая проходит через точки A(2;3) и B(5;1) .

Тогда ее угловой коэффициент равен...

151. Задание {{ 151 }} ТЗ № 792

Прямая проходит через точки A(4;0) и B(2;3) .

Тогда ее угловой коэффициент равен...

152. Задание {{ 152 }} ТЗ № 793

Прямая проходит через точки A(5;2) и B(4;5) .

Тогда ее угловой коэффициент равен...

153. Задание {{ 153 }} ТЗ № 314

Угол между прямыми 3x + 2y - 1 = 0 и 5x - y + 4 = 0 равен...

154. Задание {{ 154 }} ТЗ № 794

Если φ - угол между прямыми x + 2y - 1 = 0 и 2x + y + 4 = 0,

то $\cos \varphi$ равен...

155. Задание {{ 155 }} ТЗ № 795

Если φ - угол между прямыми 3x + y - 8 = 0 и x + 3y + 7 = 0,

то $\cos \varphi$ равен...

$$\mathbb{Z} \frac{3}{5} \quad \Box \quad -\frac{2}{3} \quad \Box \quad 1 \quad \Box \quad 0$$

156. Задание {{ 156 }} ТЗ № 796

Если φ - угол между прямыми 2x - 4y - 3 = 0 и

x+2y+2=0, to $\cos \varphi$ paseh...

$$\square -1 \quad \square \quad \frac{1}{2} \quad \square \quad 0 \quad \square \quad -\frac{1}{4} \quad \boxtimes \quad \frac{3}{5}$$

157. Задание {{ 157 }} ТЗ № 797

Если φ - угол между прямыми -2x+3y+4=0 и

3x+2y-2=0, to $\cos \varphi$ paseh...

158. Задание {{ 158 }} ТЗ № 798

Если φ - угол между прямыми 7x + y - 5 = 0 и x - 7y + 4 = 0, то $\cos \varphi$ равен...

159. Задание {{ 159 }} ТЗ № 799

Если φ - угол между прямыми 5x - 2y + 3 = 0 и

10x - 4y - 3 = 0, to $\cos \varphi$ paseH...

160. Задание {{ 160 }} ТЗ № 800

Если φ - угол между прямыми 3x + 4y - 15 = 0 и

4x + 3y - 2 = 0, to $\cos \varphi$ paseh...

161. Задание {{ 161 }} ТЗ № 801

Если φ - угол между прямыми 3x - 2y + 1 = 0 и

2x-3y+5=0, to $\cos \varphi$ paseh...

162. Задание {{ 162 }} ТЗ № 802

Если φ - угол между прямыми x + 6y - 4 = 0 и

6x + y - 3 = 0, to $\cos \varphi$ paseh...

Векторная алгебра

163. Задание {{ 163 }} ТЗ № 168

Введите пропущенное слово

Число, равное квадратному корню из суммы квадратов проекций вектора на оси координат, называется ... вектора

Правильные варианты ответа: модуль; модулем; длина; длиной;

164. Задание {{ 164 }} ТЗ № 169

Введите пропущенное слово

Два вектора называются ..., если лежат на одной прямой или параллельных прямых Правильные варианты ответа: коллинеарные; коллинеарными; колинеарные; колинеарными;

165. Задание {{ 165 }} ТЗ № 170

Введите пропущенное слово

Если скалярное произведение двух ненулевых векторов равно нулю, то такие векторы являются ... Правильные варианты ответа: перпенди#\$#; перпенди#\$# вектор#\$#; нормальн#\$#; нормальн#\$# вектор#\$#;

166. Задание {{ 166 }} ТЗ № 171

Введите пропущенное слово

Если векторное произведение двух ненулевых векторов равно нулю, то такие векторы являются ... *Правильные варианты ответа:* коллинеарными; коллинеарные; коллин#\$#; коллин#\$#; коллин#\$#;

167. Задание {{ 167 }} ТЗ № 172

Введите пропущенное слово

Число, равное произведению модулей двух векторов на косинус угла между ними, называется ... произведением этих векторов

Правильные варианты ответа: скалярным; скалярное;

168. Задание {{ 168 }} ТЗ № 173

Введите пропущенное слово

Два ненулевых вектора перпендикулярны тогда и только тогда, когда их ... произведение равно нулю

Правильные варианты ответа: скалярное;

169. Задание {{ 169 }} ТЗ № 174

Введите пропущенное слово

Произведение модулей двух векторов на синус угла между ними равно модулю ... произведения этих векторов

Правильные варианты ответа: векторного; векторное;

170. Задание {{ 170 }} ТЗ № 175

Введите пропущенное слово

Скалярное произведение двух векторов равно ... произведений их одноименных координат Правильные варианты ответа: сумме; сумма;

171. Задание {{ 171 }} ТЗ № 176

Введите пропущенное слово

Если смешанное произведение трех ненулевых векторов равно нулю,

то такие векторы являются ...

Правильные варианты ответа: компланарные; компланарными;

172. Задание {{ 172 }} ТЗ № 177

Введите пропущенное слово

Три вектора образуют правую тройку, если их ... произведение больше нуля

Правильные варианты ответа: смешанное; смешан#\$#;

173. Задание {{ 173 }} ТЗ № 178

Введите пропущенное слово

Три вектора образуют левую тройку, если их ... произведение отрицательно

Правильные варианты ответа: смешанное; смешан#\$#;

174. Задание {{ 174 }} ТЗ № 179

Введите пропущенное слово

Площадь треугольника, построенного на двух векторах, можно вычислить при помощи ...

произведения этих векторов

Правильные варианты ответа: векторного; векторное;

175. Задание {{ 175 }} ТЗ № 180

Введите пропущенное слово

Смешанное произведение векторов при перестановке двух любых сомножителей меняет свой ... Правильные варианты ответа: знак;

176. Задание {{ 176 }} ТЗ № 340

Eсли скалярное произведение $\overline{AB} \cdot \overline{AC} < 0$, то угол A

в треугольнике ABC является ...

Правильные варианты ответа: тупым; тупой;

177. Задание {{ 177 }} ТЗ № 341

Eсли векторы AB и CD коллинеaрны, a BC и AD -

не коллинеарны, то четырехугольник АВСО является ...

Правильные варианты ответа: трапеци#\$#;

178. Задание {{ 178 }} ТЗ № 342

Eсли выполняется равенство $\overline{a} \cdot \overline{b} = |\overline{a}| \cdot |\overline{b}|,$

то векторы \overline{a} и \overline{b} являются ...

Правильные варианты ответа: колинеар#\$#; коллинеар#\$#; паралл#\$#;

179. Задание {{ 179 }} ТЗ № 803

Если скалярное произведение $AB \cdot AC > 0$, то угол A

в треугольнике АВС является...

Правильные варианты ответа: острым;

180. Задание {{ 180 }} ТЗ № 804

Если для двух не нулевых векторов \bar{a} и \bar{b} выполняется

равенство $\bar{a} \cdot \bar{b} = 0$, то такие векторы называются...

Правильные варианты ответа: ортогональными; перпендикулярными;

181. Задание {{ 181 }} ТЗ № 805

Тройка векторов $\{\overline{a}, \overline{b}, \overline{a} \times \overline{b}\}$ является...

Правильные варианты ответа: правой;

182. Задание {{ 182 }} ТЗ № 806

Тройка векторов $\{\overline{a} \times \overline{b}, \overline{b}, \overline{a}\}$ является...

Правильные варианты ответа: левой;

183. Задание {{ 183 }} ТЗ № 807

Если смешанное произведение $\bar{a}\bar{b}\bar{c}$ положительно,

то тройка векторов $\left\{\overline{a},\overline{b},\overline{c}\right\}$ является...

Правильные варианты ответа: правой;

184. Задание {{ 184 }} ТЗ № 808

Если смешанное произведение $\bar{a}\bar{b}\bar{c}$ отрицательно,

то тройка векторов $\{\overline{a}, \overline{b}, \overline{c}\}$ является...

Правильные варианты ответа: левой;

185. Задание {{ 185 }} ТЗ № 809

Если вектор \bar{a} умножить векторно на вектор \bar{b} ,

после чего *полученный* вектор $\overline{a} \times \overline{b}$ умножить скалярно на вектор \overline{c} , то такое произведение $(\overline{a} \times \overline{b}) \cdot \overline{c}$ называется...

Правильные варианты ответа: смешанным;

186. Задание {{ 186 }} ТЗ № 317

Объем треугольной пирамиды с вершинами

187. Задание {{ 187 }} ТЗ № 751

Объем треугольной пирамиды с вершинами

188. Задание {{ 188 }} ТЗ № 752

Объем треугольной пирамиды с вершинами

189. Задание {{ 189 }} ТЗ № 753

Объем треугольной пирамиды с вершинами

190. Задание {{ 190 }} ТЗ № 754

Объем треугольной пирамиды с вершинами

191. Задание {{ 191 }} ТЗ № 755

Объем треугольной пирамиды с вершинами

$$A(9;1;3)$$
, $B(7;4;2)$, $C(3;1;5)$, $D(8;1;2)$ равен...

192. Задание {{ 192 }} ТЗ № 756

Объем треугольной пирамиды с вершинами

$$A(5;2;1), B(5;3;1), C(1;3;2), D(3;1;3)$$
 равен... $\varnothing 1 \square 3 \square 0 \square 2$

193. Задание {{ 193 }} ТЗ № 757

Объем треугольной пирамиды с вершинами

$$A(2;2;1)$$
, $B(1;3;2)$, $C(3;3;1)$, $D(4;4;1)$ равен... $\varnothing 0 \square 1 \square 2 \square 3$

194. Задание {{ 194 }} ТЗ № 758

Объем треугольной пирамиды с вершинами

195. Задание {{ 195 }} ТЗ № 759

Объем треугольной пирамиды с вершинами

196. Задание {{ 196 }} ТЗ № 108

Площадь треугольника, построенного на векторах

197. Задание {{ 197 }} ТЗ № 109

Площадь треугольника, построенного на векторах

198. Задание {{ 198 }} ТЗ № 110

Площадь треугольника, построенного на векторах

$$\overline{a}=\overline{i}+\overline{j}-2\overline{k}$$
 и $\overline{b}=3\overline{j}-\overline{k}$, равна... $ot 2\sqrt{35}$ \square $2\sqrt{35}$ \square $\frac{\sqrt{46}}{2}$ \square $\frac{\sqrt{41}}{2}$

199. Задание {{ 199 }} ТЗ № 111

Площадь треугольника, построенного на векторах

200. Задание {{ 200 }} ТЗ № 112

Площадь треугольника, построенного на векторах

$$\overline{a}=\overline{i}+\overline{j}$$
 и $\overline{b}=3\overline{j}-\overline{k}$, равна... $ot 2 \frac{\sqrt{11}}{2}$ \square $\frac{\sqrt{13}}{2}$ \square $\frac{\sqrt{15}}{2}$ \square 2

201. Задание {{ 201 }} ТЗ № 760

Площадь треугольника, построенного на векторах

202. Задание {{ 202 }} ТЗ № 761

Площадь треугольника, построенного на векторах

203. Задание {{ 203 }} ТЗ № 762

Площадь треугольника, построенного на векторах

204. Задание {{ 204 }} ТЗ № 763

Площадь треугольника, построенного на векторах

205. Задание {{ 205 }} ТЗ № 764

Площадь треугольника, построенного на векторах

206. Задание {{ 206 }} ТЗ № 32

Векторы $\bar{a}(-8;k;10)$ и $\bar{b}(k;-2;5)$ коллинеарны, если k равно...

207. Задание {{ 207 }} ТЗ № 35

$$E$$
сли $\overline{a} \cdot \overline{b} = 4\sqrt{2}$, $|\overline{a}| = 16$ u $|\overline{b}| = 0,5$,

тогда косинус угла между векторами \overline{a} и \overline{b} равен...

$$\square \sqrt{2} \boxtimes \frac{\sqrt{2}}{2} \square 2\sqrt{2} \square \frac{1}{2}$$

208. Задание {{ 208 }} ТЗ № 38

$$E$$
сли $\overline{a} \cdot \overline{b} = 2\sqrt{2}$, $|\overline{a}| = 0.5$ u $|\overline{b}| = 8$,

тогда косинус угла между векторами \overline{a} и \overline{b} равен...

209. Задание {{ 209 }} ТЗ № 106

Векторы $\overline{a}(1;2;k)$ и $\overline{b}(0;-2;2)$ перпендикулярны,

если к равно...

$$\square$$
 -1 \square -2 \square 1 \square 2

210. Задание {{ 210 }} ТЗ № 107

Векторы $\overline{a}(k;2;3)$ и $\overline{b}(1;-2;2)$ перпендикулярны,

если к равно...

$$\square$$
 -1 \square -2 \square 1 \square 2

211. Задание {{ 211 }} ТЗ № 765

Векторы $\bar{a}(3;1;k)$ и $\bar{b}(4;1;3)$ перпендикулярны,

если k равно...

212. Задание {{ 212 }} ТЗ № 766

Векторы $\bar{a}(0;-8;2k)$ и $\bar{b}(1;1;2)$ перпендикулярны,

если k равно...

213. Задание {{ 213 }} ТЗ № 767

Векторы $\bar{a}(1;2;k)$ и $\bar{b}(8;16;32)$ коллинеарны, если k равно...

214. Задание {{ 214 }} ТЗ № 768

Векторы \bar{a} (-2;-1;k) и \bar{b} (-6;-3;15) коллинеарны, если k равно...

Ø 5 □ 7 □ 9 □ 3 215. 3adahue {{ 215 }} T3 № 769

Если
$$\overline{a} \cdot \overline{b} = 5\sqrt{3}$$
, $|\overline{a}| = 5$ и $|\overline{b}| = 2\sqrt{3}$,

тогда косинус угла между векторами \bar{a} и \bar{b} равен...

216. Задание {{ 216 }} ТЗ № 315

Единичный вектор, перпендикулярный каждому из векторов

$$\vec{a}(3;-1;2)$$
 и $\vec{b}(-1;3;-1)$, равен...

$$\Box \pm \frac{1}{\sqrt{74}} (-8;3;1) \quad \Box \pm \frac{1}{\sqrt{20}} (-2;-4;0)$$

217. Задание {{ 217 }} ТЗ № 733

Единичный вектор, перпендикулярный каждому

из векторов $\mathbf{a}(1;2;1)$ и $\mathbf{b}(-1;1;2)$, равен...

218. Задание {{ 218 }} ТЗ № 734

Единичный вектор, перпендикулярный каждому из векторов

$$\mathbf{a}(2;1;1)$$
 и $\mathbf{b}(1;1;-2)$, равен...

219. Задание {{ 219 }} ТЗ № 735

Единичный вектор, перпендикулярный каждому из векторов

$$\mathbf{a}(1;1;2)$$
 и $\mathbf{b}(2;1;-1)$, равен...

220. Задание {{ 220 }} ТЗ № 736

Единичный вектор, перпендикулярный каждому из векторов

$$\mathbf{a}(2;0;4)$$
 и $\mathbf{b}(3;1;-1)$, равен...

221. Задание {{ 221 }} ТЗ № 737

Единичный вектор, перпендикулярный каждому из векторов $\mathbf{a}(0;2;4)$ и $\mathbf{b}(-1;3;1)$, равен...

222. Задание {{ 222 }} ТЗ № 738

Единичный вектор, перпендикулярный каждому из векторов

$$\mathbf{a}(2;1;3)$$
 и $\mathbf{b}(1;1;1)$, равен...

223. Задание {{ 223 }} ТЗ № 739

Единичный вектор, перпендикулярный каждому из векторов

$$a(5;1;3)$$
 и $b(-2;1;1)$, равен...

224. Задание {{ 224 }} ТЗ № 740

Единичный вектор, перпендикулярный каждому из векторов

$$\mathbf{a}(1;0;1)$$
 и $\mathbf{b}(2;2;1)$, равен...

225. Задание {{ 225 }} ТЗ № 741

Единичный вектор, перпендикулярный каждому из векторов

$$\mathbf{a}(4;1;1)$$
 и $\mathbf{b}(2;1;2)$, равен...

$$\Box \pm \frac{1}{\sqrt{6}} (2;-1;1) \ \Box \pm \frac{1}{\sqrt{27}} (1;5;1)$$

226. Задание {{ 226 }} ТЗ № 316

Векторы $\vec{a}(1;1;\lambda)$, $\vec{b}(0;1;0)$ и $\vec{c}(3;0;1)$ компланарны, если параметр λ равен...

227. Задание {{ 227 }} ТЗ № 742

Векторы $\mathbf{a}(2;2;1)$, $\mathbf{b}(1;\lambda;3)$ и $\mathbf{c}(4;0;0)$ компланарны, если параметр λ равен...

228. Задание {{ 228 }} ТЗ № 743

Векторы $\mathbf{a}(0;2;0)$, $\mathbf{b}(3;4;1)$ и $\mathbf{c}(\lambda;7;5)$ компланарны, если параметр λ равен...

$$\square$$
 15 \square $\frac{3}{4}$ \square 7 \square $\frac{3}{5}$

229. Задание {{ 229 }} ТЗ № 744

Векторы $\mathbf{a}(4;8;\lambda)$, $\mathbf{b}(0;3;0)$ и $\mathbf{c}(5;1;2)$ компланарны, если параметр λ равен...

230. Задание {{ 230 }} ТЗ № 745

Векторы $\mathbf{a}(1;2;\lambda)$, $\mathbf{b}(0;1;0)$ и $\mathbf{c}(4;3;2)$ компланарны, если параметр λ равен...

231. Задание {{ 231 }} ТЗ № 746

Векторы $\mathbf{a}(\lambda;2;1)$, $\mathbf{b}(0;8;0)$ и $\mathbf{c}(4;1;2)$ компланарны, если параметр λ равен...

232. Задание {{ 232 }} ТЗ № 747 Векторы $\mathbf{a}(4;1;\lambda)$, $\mathbf{b}(0;2;0)$ и $\mathbf{c}(8;3;24)$ компланарны, если параметр λ равен... 233. Задание {{ 233 }} ТЗ № 748 Векторы $\mathbf{a}(2;3;10)$, $\mathbf{b}(5;1;\lambda)$ и $\mathbf{c}(0;3;0)$ компланарны, если параметр λ равен... 234. Задание {{ 234 }} ТЗ № 749 Векторы $\mathbf{a}(3;3;6)$, $\mathbf{b}(\lambda;4;8)$ и $\mathbf{c}(0;16;0)$ компланарны, если параметр λ равен... 235. Задание {{ 235 }} ТЗ № 750 Векторы $\mathbf{a}(0;16;0)$, $\mathbf{b}(15;3;5)$ и $\mathbf{c}(9;5;\lambda)$ компланарны, если параметр λ равен...

Комплексные числа

236. Задание {{ 236 }} ТЗ № 183

Введите пропущенное слово

 \mathcal{A} ва комплексных числа $z_1 = x + iy$ и $z_2 = x - iy$

называют ...

Правильные варианты ответа: сопряж*н#\$#; комплексно сопряж*н#\$#; комплексно-сопряж*н#\$#; сопряженными;

237. Задание {{ 237 }} ТЗ № 184

Введите пропущенное слово

Выражение $z = r(\cos \varphi + i \sin \varphi)$ называют ... формой записи комплексного числа

Правильные варианты ответа: тригономет#\$#; тригонометрической;

238. Задание {{ 238 }} ТЗ № 185

Введите пропущенное слово

Bыражение $z=re^{i\varphi}$ называют ... формой записи

комплексного числа

Правильные варианты ответа: показательной; показательная;

239. Задание {{ 239 }} ТЗ № 186

Введите пропущенное слово

Выражение $\sqrt{x^2 + y^2}$ представляет собой ...

комплексного числа z = x + iy

Правильные варианты ответа: модуль;

240. Задание {{ 240 }} ТЗ № 187

Введите пропущенное слово

Bыражение $\arctan \frac{y}{x}$ представляет собой ...

комплексного числа z = x + iy

Правильные варианты ответа: аргумент;

241. Задание {{ 241 }} ТЗ № 188

Введите пропущенное слово

Формула для вычисления n – ной степени комплексного числа носит название формулы ...

Правильные варианты ответа: Муавра; Муавр; муавра; муавр;

242. Задание {{ 242 }} ТЗ № 189

Введите пропущенное слово

При делении комплексных чисел их аргументы ...

Правильные варианты ответа: вычита#\$#;

243. Задание {{ 243 }} ТЗ № 190

Введите пропущенное слово

При умножении комплексных чисел их аргументы ...

Правильные варианты ответа: склады#\$#; сум#\$#;

244. Задание {{ 244 }} ТЗ № 786

Наберите пропущенное слово

Для комплексного числа z = x + iy

величина у

называется ... частью этого числа

Правильные варианты ответа: мнимой; мнимая;

245. Задание {{ 245 }} ТЗ № 787

Наберите пропущенное слово

При вычислении п-ной степени

комплексного числа

на n - ную степень

умножается....этого числа

Правильные варианты ответа: аргумент; арг;

246. Задание {{ 246 }} kad1

Отметьте правильный ответ

Даны комплексные числа $z_1 = 2 + i$ и $z_2 = 4 - 4i$.

Tогда $z_1 \cdot z_2$ равно...

☑ 12-4i □ 8-4i □ 4 □ 8+4i

247. Задание {{ 247 }} kad2

Отметьте правильный ответ

Даны комплексные числа $z_1 = 2 + 3i$ и $z_2 = 4 - 4i$.

Tогда $2z_1 + z_2$ равно...

☑ 8+2i □ 2+8i □ 6-i □ 6+i

248. Задание {{ 248 }} kad3

Отметьте правильный ответ

Даны комплексные числа $z_1 = 2 + 3i$ и $z_2 = 5 + i$.

Тогда $z_1 \cdot z_2$ равно...

☑ 7+17i □ 10+3i □ 3+17i □ 1+4i

249. Задание {{ 249 }} kad4

Отметьте правильный ответ

Даны комплексные числа $z_1 = 2 + 2i$ и $z_2 = 1 - i$.

Tогда $\frac{z_1}{z_2}$ равно...

☑ 2i □ 2-2i □ 1+i □ 1-2i

250. Задание {{ 250 }} kad5

Отметьте правильный ответ

Даны комплексные числа $z_1 = 4 + 2i$ и $z_2 = 1 + i$.

Tогда $\frac{z_1}{z_2}$ равно...

☑ 3-i □ 3+i □ 1+i □ 1-i

251. Задание {{ 251 }} kad6

Отметьте правильный ответ

Даны комплексные числа $z_1 = 2 + 3i$ и $z_2 = 4 - 4i$.

Tогда $3z_1 - 2z_2$ равно...

☑ -2+17i □ 17-2i □ 17+17i □ -2-2i

252. Задание {{ 252 }} kad7

Отметьте правильный ответ

Даны комплексные числа $z_1 = 2 + 3i$ и $z_2 = 4 - 3i$.

Тогда $z_1 \cdot z_2$ равно...

 \Box 9+3i \Box 7+17i \boxtimes 17+6i \Box 6+17i

253. Задание {{ 253 }} kad8

Отметьте правильный ответ

Даны комплексные числа $z_1 = 3 + 2i$ и $z_2 = 3 - 4i$.

Tогда $z_1 \cdot z_2$ равно...

□ 17+6i □ 17+17i □ 6-6i ☑ 17-6i

254. Задание {{ 254 }} kad9

Отметьте правильный ответ

Даны комплексные числа $z_1 = 1 + 2i$ и $z_2 = 2 + i$.

Tогда $\frac{z_1}{z_2}$ равно...

 \square 0.8+0.8i \boxtimes 0.8+0.6i \square 0.6+0.6i \square 0.6+0.8i

255. Задание {{ 255 }} kad10

Отметьте правильный ответ

Даны комплексные числа $z_1 = 3 + 2i$ и $z_2 = 1 + 2i$.

Tогда $\frac{z_1}{z_2}$ равно...

 \Box 1.4+1.4i \Box 0.2+0.2i \Box 0.2+1.4i \blacksquare 1.4-0.8i

256. Задание {{ 256 }} kfo1

Отметьте правильный ответ

Комплексное число $z = -1 + i\sqrt{3}$

в тригонометрической форме

имеет вид...

257. Задание {{ 257 }} kfo2

Отметьте правильный ответ

Комплексное число $z = -1 + i\sqrt{3}$

в показательной форме

имеет вид...

258. Задание {{ 258 }} kfo3

Отметьте правильный ответ

Комплексное число $z = -\sqrt{3} + i$

в тригонометрической форме

имеет вид...

259. Задание {{ 259 }} kfo4

Отметьте правильный ответ

Комплексное число $z = -\sqrt{3} + i$

в показательной форме

имеет вид...

260. Задание {{ 260 }} kfo5

Отметьте правильный ответ

Kомплексное число z = -1 + i

в тригонометрической форме

имеет вид...

261. Задание {{ 261 }} kfo6

Отметьте правильный ответ

Kомплексное число z = -1 + i

в показательной форме

имеет вид...

$$\Box \sqrt{2}e^{\frac{\pi}{4}i} \boxtimes \sqrt{2}e^{\frac{3\pi}{4}i} \Box \sqrt{2}e^{\frac{5\pi}{4}i} \Box \sqrt{2}e^{\frac{7\pi}{4}i}$$

262. Задание {{ 262 }} kfo7

Отметьте правильный ответ

Комплексное число z = 3 + 4i

в тригонометрической форме

имеет вид...

263. Задание {{ 263 }} kfo8

Отметьте правильный ответ

Kомплексное число z=3+4i

в показательной форме

имеет вид...

$$| \frac{iarctg}{5} \frac{4}{3} | \frac{iarctg}{5} \frac{3}{4} | \frac{iarctg}{5} \frac{3}{4} | \frac{iarctg}{5} \frac{4}{3} |$$

264. Задание {{ 264 }} kfo9

Отметьте правильный ответ

Комплексное число z = 4 + 3i

в тригонометрической форме

имеет вид...

$$\Box \sqrt{5} \left(\cos \left(\frac{4}{3} \right) + i \sin \left(\frac{4}{3} \right) \right)$$

$$\Box \sqrt{5} \left(\cos \left(\frac{3}{4} \right) + i \sin \left(\frac{3}{4} \right) \right)$$

$$\Box 5 \left(\cos \left(\frac{3}{4} \right) + i \sin \left(\frac{3}{4} \right) \right)$$

$$\Box 5 \left(\cos \left(\frac{3}{4} \right) + i \sin \left(\frac{3}{4} \right) \right)$$

$$\Box 5 \left(\cos \left(\frac{4}{3} \right) + i \sin \left(\frac{3}{4} \right) \right)$$

265. Задание {{ 265 }} kfo10

Отметьте правильный ответ

Комплексное число z = 4 + 3i

в показательной форме

имеет вид...

$$_{\square} \sqrt{5}e^{iarctg} \frac{4}{3} \underset{\square}{|} \sqrt{5}e^{iarctg} \frac{3}{4} \underset{\boxtimes}{|} iarctg \frac{3}{4} \underset{\square}{|} iarctg \frac{4}{3}$$

Линейная алгебра

266. Задание {{ 266 }} matr5

Отметьте правильный ответ

Единичной является матрица

267. Задание {{ 267 }} matr1

Отметьте правильный ответ

Диагональной является матрица ...

$$\Box \begin{pmatrix} 0 & 0 & 3 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{pmatrix} \boxtimes \begin{pmatrix} -2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix} \Box \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Box \begin{pmatrix} 1 & 7 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$$

268. Задание {{ 268 }} matr2

Отметьте правильный ответ

Матрица называется диагональной, если ...

- $\hfill \square$ она квадратная и все элементы на главной диагонали равны нулю
- □ все элементы на обеих диагоналях равны нулю
- ☑ она квадратная и все элементы вне главной диагонали равны нулю
- □ она прямоугольная и все элементы вне главной диагонали равны нулю

269. Задание {{ 269 }} matr3

Отметьте правильный ответ

Матрица называется единичной, если

- □ она квадратная и содержит только единицы
- □ она квадратная и содержит единицы на главной диагонали
- ☑ она диагональная и содержит единицы на главной диагонали
- □ она произвольная и содержит только единицы

270. Задание {{ 270 }} matr4

Отметьте правильный ответ

Матрица называется нулевой, если

- □ она квадратная и содержит нули на главной диагонали
- □ она содержит нули вне главной диагонали
- □ она квадратная и содержит нули вне главной диагонали
- ☑ она состоит только из нулей

271. Задание {{ 271 }} matr6

Наберите пропущенное слово

Две матрицы ... размерности равны, если равны их соответствующие элементы

Правильные варианты ответа: одинаковой; одной; равной;

272. Задание {{ 272 }} matr7

Наберите пропущенное слово

Перемножать можно такие матрицы, у которых число столбцов первой матрицы равно числу ...второй матрицы

Правильные варианты ответа: строк;

273. Задание {{ 273 }} matr8

Наберите пропущенное слово

Размерность матрицы произведения определяется числом строк первой матрицы и

числом ... второй матрицы

Правильные варианты ответа: столбцов;

274. Задание {{ 274 }} matr10

Наберите пропущенное слово

Матрица называется присоединённой по отношению к исходной матрице, если она составлена из алгебраических дополнений ... матрицы

Правильные варианты ответа: транспонированной; транспонированная;

275. Задание {{ 275 }} opr1

Наберите правильный ответ

Общее количество миноров элементов квадратной матрицы 3-го порядка равно ...

Правильные варианты ответа: 9;

276. Задание {{ 276 }} орг2

Наберите правильный ответ

Максимальный ранг матрицы размером 3 строки на 5 столбцов может равняться ...

Правильные варианты ответа: 3; три; трем;

277. Задание {{ 277 }} орг3

Наберите правильный ответ

Определитель 2-го порядка заполняется числами 3 и -3 произвольным способом. Максимальное значение такого определителя ...

Правильные варианты ответа: 18;

278. Задание {{ 278 }} орг5

Отметьте правильный ответ

Определитель равен нулю, если...

\checkmark	он имеет две одинаковые строки
	он имеет две одинаковые диагонали
	он имеет два одинаковых элемента
	он имеет два одинаковых минора

279. Задание {{ 279 }} оргб

Отметьте правильный ответ

Определитель равен нулю, если...

	p p j ,
\checkmark	он имеет две пропорциональные строки
	он имеет две пропорциональные диагонали
	он имеет два пропорциональных элемента
	он имеет пропорциональные строку и столбец

280. Задание {{ 280 }} opr9

Отметьте правильный ответ

Сумма произведений элементов какой-то строки на алгебраические дополнения элементов...

☑ другой строки равна нулю

□ главной диагонали равна нулю□ другого столбца равна нулю□ той же строки равна нулю
281. Задание {{ 281 }} орт10
Отметьте правильный ответ
Определитель 2-го порядка вычисляется как
 □ разность произведений элементов главной и побочной диагонали □ разность произведений про
\square разность произведений элементов побочной и главной диагонали \square разность элементов главной и побочной диагонали
 □ разность элементов главной и пооочной диагонали □ разность произведений элементов двух любых строк
282. Задание {{ 282 }} ТЗ № 191
Введите пропущенное слово
Квадратная матрица, у которой все элементы,
кроме элементов главной диагонали, равны нулю,
называется
Правильные варианты ответа: диагональной; диагональная;
283. Задание {{ 283 }} ТЗ № 192
Введите пропущенное слово
Квадратная матрица называется, если все элементы,
расположенные по одну сторону от главной диагонали, равны нулю
Правильные варианты ответа: треугольной; треугольная;
284. Задание {{ 284 }} ТЗ № 193
Введите пропущенное слово
Если каждую строку матрицы заменить соответствующим
столбцом той же матрицы, то получается матрица
Правильные варианты ответа: транспонированная;
285. Задание {{ 285 }} ТЗ № 194
Введите пропущенное слово
Две матрицы A и B называются, если одна из них
получается из другой с помощью элементарных преобразований
Правильные варианты ответа: эквивалентными; эквивалентные; эквивалент#\$#;
286. Задание {{ 286 }} ТЗ № 195
Введите пропущенное слово
Определитель, полученный из исходного вычеркиванием
i – \ddot{u} строки и j – го столбца,
называется элемента a_{ij} определителя
Правильные варианты ответа: минором; минор;

287. Задание {{ 287 }} ТЗ № 196 Введите пропущенное слово

Произведение минора элемента a_{ii} определителя

на число $\left(-1\right)^{i+j}$ называется ... дополнением элемента a_{ij}

Правильные варианты ответа: алгебраическим; алгебраическое;

288. Задание {{ 288 }} ТЗ № 197

Введите пропущенное слово

Квадратная матрица называется ...,

если ее определитель равен нулю

Правильные варианты ответа: вырожденной; вырожденная; вырожд#\$#; особ#\$#;

289. Задание {{ 289 }} ТЗ № 198

Введите пропущенное слово

Справедливо утверждение:

всякая ... матрица имеет обратную

Правильные варианты ответа: невырожденная; не вырожденная; не особая; неособая;

290. Задание {{ 290 }} ТЗ № 199

Введите пропущенное слово

Наибольший из порядков миноров матрицы,

отличных от нуля, называется ... матрицы

Правильные варианты ответа: рангом; ранг;

291. Задание {{ 291 }} ТЗ № 200

Введите пропущенное слово

Система линейных уравнений называется ..., если имеет

хотя бы одно решение

Правильные варианты ответа: совместной; совместная; совмес#\$#;

292. Задание {{ 292 }} ТЗ № 201

Введите пропущенное слово

Справедливо утверждение: система линейных

алгебраических уравнений совместна тогда и только

тогда, когда ранг ... матрицы равен рангу

основной матрицы системы

Правильные варианты ответа: расширен#\$#; расширенной;

293. Задание {{ 293 }} systema1

Наберите правильный ответ

Если совокупность (2; 4; 8) является решением системы линейных уравнений,

а (-2; -4; -8) - не является, то такая система является ...

Правильные варианты ответа: неоднород#\$#; не однород#\$#; неоднородной;

294. Задание {{ 294 }} systema2

Наберите правильный ответ

Совместная система линейных уравнений, содержащая 3 уравнения для 5 неизвестных, называется

Правильные варианты ответа: неопределен#\$#; не определен#\$#; неопределенной; неопределённой;

295. Задание {{ 295 }} systema4

Наберите пропущенное слово

Главный определитель системы уравнений состоит из коэффициентов перед ...

Правильные варианты ответа: неизвестными; неизвестных;

296. Задание {{ 296 }} systema5

Наберите пропущенное слово

Система уравнений не имеет решения, если ... матриц, составленной из коэффициентов перед неизвестными, и расширенной не равны *Правильные варианты ответа*: ранг; ранги;

297. Задание {{ 297 }} systema6

Наберите пропущенное слово

Система уравнений является, если ранги матриц, составленной из коэффициентов перед неизвестными, и расширенной матрицы равны *Правильные варианты ответа*: совместной; совместная;

298. Задание {{ 298 }} systema10

Отметьте правильный ответ

Решение системы матричным способом ищется по формуле...

$$\boxtimes X = A^{-1} \times B \quad \square \quad X = A \times B \quad \square \quad X = \tilde{A} \times B \quad \square \quad X = \overline{A} \times B$$

299. Задание {{ 299 }} ТЗ № 66

$$E$$
сли $A = \begin{pmatrix} -1 & 2 \\ 4 & -5 \end{pmatrix}$ u $B = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}$.

то матрица C = A + 2B имеет вид...

300. Задание {{ 300 }} ТЗ № 67

$$E$$
сли $A = \begin{pmatrix} 2 & -5 \\ 0 & -4 \end{pmatrix}$ u $B = \begin{pmatrix} 3 & 2 \\ 4 & -1 \end{pmatrix}$,

то матрица C = A + 3B имеет вид...

$$\square\begin{pmatrix}11&1\\12&-1\end{pmatrix}\ \square\begin{pmatrix}5&-3\\12&-7\end{pmatrix}\ \square\begin{pmatrix}11&1\\4&-5\end{pmatrix}\ \boxtimes\begin{pmatrix}11&1\\12&-7\end{pmatrix}$$

301. Задание {{ 301 }} ТЗ № 68

$$E$$
сли $A = \begin{pmatrix} 2 & -5 \\ 0 & -4 \end{pmatrix}$ u $B = \begin{pmatrix} 3 & 2 \\ 4 & -1 \end{pmatrix}$,

то матрица C = -3A + B имеет вид...

$$\square \begin{pmatrix} -3 & 17 \\ 4 & -13 \end{pmatrix} \square \begin{pmatrix} -3 & 17 \\ 4 & -5 \end{pmatrix} \boxtimes \begin{pmatrix} -3 & 17 \\ 4 & 11 \end{pmatrix} \square \begin{pmatrix} 5 & -3 \\ 4 & 11 \end{pmatrix}$$

302. Задание {{ 302 }} ТЗ № 70

Дана матрица

$$A = \begin{pmatrix} 7 & -3 & 1 \\ 4 & -4 & 0 \\ -2 & 6 & 2 \end{pmatrix}.$$

Тогда сумма элементов, расположенных

на главной диагонали этой матрицы, равна...

$$\square$$
 13 \square -5 \square 5 \square -7

303. Задание {{ 303 }} ТЗ № 87

Дана матрица

$$A = \begin{pmatrix} 1 & -4 & 8 \\ 3 & -2 & 4 \\ 4 & -6 & 12 \end{pmatrix}.$$

Tогда сумма элементов $a_{13} + a_{22} + a_{31}$

этой матрицы, равна...

304. Задание {{ 304 }} ТЗ № 284

Дана матрица

$$A = \begin{pmatrix} 1 & -4 & 8 \\ 3 & -2 & 4 \\ 4 & -6 & 12 \end{pmatrix}.$$

Tогда сумма элементов $a_{23} + a_{12} + a_{31}$

этой матрицы, равна...

305. Задание {{ 305 }} ТЗ № 285

Mатрице $\begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$ соответствует обратная матрица ...

306. Задание {{ 306 }} ТЗ № 286

Матрице $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ соответствует обратная матрица ...

$$\square\begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} \square \begin{pmatrix} 2 & 1 \\ \frac{3}{2} & \frac{1}{2} \end{pmatrix} \boxtimes \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix} \square \begin{pmatrix} -4 & 2 \\ 3 & -1 \end{pmatrix}$$

307. Задание {{ 307 }} ТЗ № 287

Mатрице $\begin{pmatrix} 3 & 4 \\ 5 & 7 \end{pmatrix}$ соответствует обратная матрица ...

$$\square \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} \boxtimes \begin{pmatrix} 7 & -4 \\ -5 & 3 \end{pmatrix} \square \begin{pmatrix} 7 & 4 \\ 5 & 3 \end{pmatrix} \square \begin{pmatrix} -3 & 4 \\ 5 & -7 \end{pmatrix}$$

308. Задание {{ 308 }} ТЗ № 288

Mатрице $\begin{pmatrix} 2 & 3 \\ 1 & -1 \end{pmatrix}$ соответствует обратная матрица ...

$$\square \begin{pmatrix} -\frac{1}{5} & -\frac{3}{5} \\ -\frac{1}{5} & \frac{2}{5} \end{pmatrix} \square \begin{pmatrix} -1 & -3 \\ -1 & 2 \end{pmatrix} \square \begin{pmatrix} -1 & 3 \\ 1 & 2 \end{pmatrix} \bowtie \begin{pmatrix} \frac{1}{5} & \frac{3}{5} \\ \frac{1}{5} & -\frac{2}{5} \end{pmatrix}$$

309. Задание {{ 309 }} ТЗ № 289

Mатрице $\begin{pmatrix} 6 & 1 \\ 2 & 1 \end{pmatrix}$ соответствует обратная матрица ...

$$\square \begin{pmatrix} -\frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & -\frac{3}{2} \end{pmatrix} \boxtimes \begin{pmatrix} \frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{2} & \frac{3}{2} \end{pmatrix} \square \begin{pmatrix} 1 & -1 \\ -2 & 6 \end{pmatrix} \square \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{3}{2} \end{pmatrix}$$

310. Задание {{ 310 }} ТЗ № 72

Определитель
$$\begin{vmatrix} 2 & 1 \\ 6 & 2\alpha - 3 \end{vmatrix}$$
 равен 0 при $\alpha = \dots$

312. Задание {{ 312 }} ТЗ № 74

Определитель
$$\begin{vmatrix} 4 & 5+3\alpha \\ 1 & 2 \end{vmatrix}$$
 равен 0 при $\alpha = \dots$

313. Задание {{ 313 }} ТЗ № 75

313. Задание
$$\{\{313\}\}$$
 ТЗ N_2 75

Определитель $\begin{vmatrix} 1 & 5 \\ 2 & 3\alpha + 4 \end{vmatrix}$ равен 0 при $\alpha = ...$

314. Задание {{ 314 }} ТЗ № 76

$$O$$
пределитель $\begin{vmatrix} 2\alpha - 1 & 5 \\ 2 & 10 \end{vmatrix}$ равен 0 при $\alpha = ...$

$$\square -10 \square 3 \square 0 \square 1$$

315. Задание {{ 315 }} ТЗ № 270

Правильные варианты ответа: 1;

316. Задание {{ 316 }} ТЗ № 271

Правильные варианты ответа: 1;

317. Задание {{ 317 }} ТЗ № 272

Правильные варианты ответа: 4;

318. Задание {{ 318 }} ТЗ № 273

Правильные варианты ответа: 0;

319. Задание {{ 319 }} ТЗ № 274

Правильные варианты ответа: -14;

320. Задание {{ 320 }} ТЗ № 290

$$P$$
анг матрицы $egin{pmatrix} 1 & 2 & -1 & 1 & -3 \ 3 & -1 & 1 & 6 & 11 \ 1 & -1 & -1 & 4 & -3 \end{pmatrix}$ равен ...

Правильные варианты ответа: 3;

321. Задание {{ 321 }} ТЗ № 291

$$P$$
анг матрицы $egin{pmatrix} 1 & 1 & 3 & -7 & 1 \ 2 & -1 & 1 & 6 & -4 \ -1 & 2 & -1 & -10 & 5 \end{pmatrix}$ равен ...

Правильные варианты ответа: 3;

322. Задание {{ 322 }} ТЗ № 292

$$P$$
анг матрицы $\begin{pmatrix} 1 & -3 & 1 & -14 & 22 \\ -2 & 1 & 3 & 3 & -9 \\ -4 & -3 & 11 & -19 & 17 \end{pmatrix}$ равен ...

Правильные варианты ответа: 2;

323. Задание {{ 323 }} ТЗ № 293

$$P$$
анг матрицы $egin{pmatrix} 1 & 3 & -1 & 6 \ 7 & 1 & -3 & 10 \ 17 & 1 & -7 & 22 \end{pmatrix}$ равен ...

Правильные варианты ответа: 2;

324. Задание {{ 324 }} ТЗ № 294

$$P$$
анг матрицы $\begin{pmatrix} -1 & 3 & 3 & -4 \\ 4 & -7 & -2 & 1 \\ -3 & 5 & 1 & 0 \end{pmatrix}$ равен ...

Правильные варианты ответа: 2;

325. Задание {{ 325 }} ТЗ № 64

Даны матрицы
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$$
 $u \quad B = \begin{pmatrix} -2 & 3 \\ 4 & 0 \end{pmatrix}$.

Tогда $A \cdot B$ равно...

326. Задание {{ 326 }} ТЗ № 65

Даны матрицы
$$A = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$$
 $u \quad B = \begin{pmatrix} -1 & 2 \\ 3 & 0 \end{pmatrix}$.

Тогда $A \cdot B$ равно...

$$\square \begin{pmatrix} -3 & 9 \\ 6 & 0 \end{pmatrix} \square \begin{pmatrix} 3 & 0 \\ 6 & 0 \end{pmatrix} \square \begin{pmatrix} -3 & 0 \\ 0 & 0 \end{pmatrix} \boxtimes \begin{pmatrix} -3 & 6 \\ 6 & 0 \end{pmatrix}$$

327. Задание {{ 327 }} ТЗ № 69

Даны матрицы
$$A = \begin{pmatrix} 3 & 0 \\ 0 & 5 \end{pmatrix}$$
 $u \quad B = \begin{pmatrix} -2 & 4 \\ 1 & 0 \end{pmatrix}$.

Tогда $A \cdot B$ равно...

328. Задание {{ 328 }} ТЗ № 280

Пусть
$$A = \begin{pmatrix} 1 & -2 & 3 & 0 \end{pmatrix}, B = \begin{pmatrix} 5 \\ -3 \\ -4 \\ 1 \end{pmatrix}$$
. Тогда $A \cdot B$ равно ...

□ не существует

329. Задание {{ 329 }} ТЗ № 281

Пусть
$$A = \begin{pmatrix} 5 \\ -3 \\ -4 \\ 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -2 & 3 & 0 \end{pmatrix}$. Тогда $A \cdot B$ равно ...

330. Задание {{ 330 }} ТЗ № 282

Пусть
$$A = \begin{pmatrix} 2 & 0 & 3 \\ -1 & 2 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} -4 \\ -3 \\ 5 \end{pmatrix}$.

Тогда $A \cdot B$ равно ...

331. Задание {{ 331 }} ТЗ № 283

Пусть
$$A = \begin{pmatrix} -4 \\ -3 \\ 5 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 0 & 3 \\ -1 & 2 & 1 \end{pmatrix}$.

Tогда $A \cdot B$ равно ...

332. Задание {{ 332 }} ТЗ № 77

 $Ecлu\ \left(x_{0},y_{0}\right)-$ решение системы линейных уравнений $\begin{cases} x+2\,y=-3 \\ 3x+2\,y=5 \end{cases}$

333. Задание {{ 333 }} ТЗ № 78

 $Ecлu\ (x_0,y_0)$ — решение системы линейных уравнений $\begin{cases} x-2y=5 \\ 3x+4y=1 \end{cases}$

mo x_0 paвнo...

334. Задание {{ 334 }} ТЗ № 79

Eсли (x_0, y_0) – pешение системы линейных уравнений

$$\begin{cases} 2x - y = 13 \\ 2x - 3y = 9 \end{cases}$$

тогда $x_0 \cdot y_0$ равно...

□ -5,5 □ 15 □ 5,5 □ 9,5

335. Задание {{ 335 }} ТЗ № 80

 $Ecлu\ \left(x_{0},y_{0}\right)-$ решение системы линейных уравнений $\begin{cases} 2x-3y=9\\ 2x-y=13 \end{cases},$

336. Задание {{ 336 }} ТЗ № 81

Ecnu (x_0, y_0) – решение системы линейных уравнений $\begin{cases} x + 2y = 4 \\ 5x - 6y = 3 \end{cases}$

то y_0 может определяться по формуле...

337. Задание {{ 337 }} ТЗ № 82

 $Ecлu\ (x_0,y_0)$ – решение системы линейных уравнений (3x-2y=11)

$$\begin{cases} 3x - 2y = 11 \\ 5x - 2y = 15 \end{cases}$$

тогда $x_0 \cdot y_0$ равно...

338. Задание {{ 338 }} ТЗ № 83

Eсли (x_0,y_0) – решение системы линейных уравнений

$$\begin{cases} 2x - y = 0 \\ 2x - 3y = 10 \end{cases}$$

тогда $x_0 - y_0$ равно... □ -7,5 □ -2,5 □ 7,5 ☑ 2,5

Начала анализа

Введите пропущенное слово

Mножество, состоящее из элементов, каждый из которых принадлежит хотя бы одному из множеств A и B, называется ... множеств A и B

Правильные варианты ответа: сумма; суммой; объединение; объединением; объедин#\$#; сум#\$#; **340. 3адание {{ 340 }} ТЗ № 222**

Введите пропущенное слово

Mножество, состоящее из элементов, каждый из которых принадлежит и множеству A, и множеству B, называется ... множеств A и B

Правильные варианты ответа: пересечение; пересечением; произведение; произведением;

341. Задание {{ 341 }} ТЗ № 223

Введите пропущенное слово

Функция y = f(x), определенная на множестве D, называется ..., если $\forall x \in D$ выполняются условия $-x \in D$ и f(-x) = -f(x)

Правильные варианты ответа: нечетная; нечетной; неч#\$#;

342. Задание {{ 342 }} ТЗ № 224

Введите пропущенное слово

Функция y = f(x), определенная на множестве D, называется ..., если $\forall x \in D$ выполняются условия $-x \in D$ и f(-x) = f(x)

Правильные варианты ответа: четная; четной; ч*тн#\$#;

343. Задание {{ 343 }} ТЗ № 225

Введите пропущенное слово

Функция y = f(x), определенная на множестве D, называется ... на этом множестве,

если $\forall x_1, x_2 \in D, x_1 < x_2$ выполняется $f(x_1) < f(x_2)$

Правильные варианты ответа: возрастающая; возрастающей; возраста#\$#;

344. Задание {{ 344 }} ТЗ № 226

Введите пропущенное слово

Функция y = f(x), определенная на множестве D, называется ... на этом множестве, если $\forall x_1, x_2 \in D$, $x_1 < x_2$ выполняется $f(x_1) > f(x_2)$

Правильные варианты ответа: убывающая; убывающей; убывающ#\$#;

345. Задание {{ 345 }} ТЗ № 227

Введите пропущенное слово

 Φ ункцию y = f(x), определенную на множестве D,

называют ... на этом множестве,

если
$$\exists M > 0$$
: $\forall x \in D \implies |f(x)| \le M$

Правильные варианты ответа: ограничен#\$#;

346. Задание {{ 346 }} ТЗ № 228

Введите пропущенное слово

 Φ ункция y = f(x), определенная на множестве D,

называется ... на этом множестве,

если
$$\exists T > 0$$
: $\forall x \in D \implies f(x+T) = f(x)$

Правильные варианты ответа: периодич#\$#;

347. Задание {{ 347 }} ТЗ № 229

Введите пропущенное слово

Число A называется ... последовательности $\{x_n\}$,

если
$$\forall \varepsilon > 0$$
 $\exists N: \forall n > N \Rightarrow |x_n - A| < \varepsilon$

Правильные варианты ответа: предел; пределом;

348. Задание {{ 348 }} ТЗ № 230

Введите пропущенное слово

Eсли выполняется равенство $\lim_{n\to\infty}x_n=A$, то говорят, что

последовательность $\{x_n\}$... κ числу A

Правильные варианты ответа: сходится; сходиться; сходит#\$#; стремит#\$#;

349. Задание {{ 349 }} cfop1

Наберите пропущенное слово

Произведение двух четных функций является ... функцией

Правильные варианты ответа: четн#\$#; чётной; четной;

350. Задание {{ 350 }} cfop2

Наберите пропущенное слово

Основная элементарная функция f(x)=... является чётной и ограниченной

Правильные варианты ответа: косинус; $\cos(x)$;

351. Задание {{ 351 }} сfop3

Наберите пропущенное слово

 Φ ункция f(x) называется взаимно...,

если
$$\forall x_1, x_2 \in X$$
 при $x_1 \neq x_2$ выполняется условие: $f(x_1) \neq f(x_2)$

Правильные варианты ответа: однозначной; однозначная;

352. Задание {{ 352 }} cfop4

Наберите пропущенное слово

Основная элементарная функция f(x) = ...

является нечётной и ограниченной

Правильные варианты ответа: cuhyc; sin(x); sin;

353. Задание {{ 353 }} cfop5

Наберите пропущенное слово

Произведение чётной функции на нечётную функцию является ... функцией

Правильные варианты ответа: нечётной; нечетной; нечётная; нечетная; нечет; нечёт;

354. Задание {{ 354 }} сfop6

Наберите пропущенное слово

Произведение двух нечетных функций является ... функцией

Правильные варианты ответа: четной; чётной; четная; чётная; чёт; чет;

355. Задание {{ 355 }} cfop7

Наберите пропущенное слово

Для функции f(x) = Ln(x+1) интервал $x \in (-1, \infty)$ является областью ... функции.

Правильные варианты ответа: определения; определений;

356. Задание {{ 356 }} cfop8

Наберите пропущенное слово

Для функции f(x) = sin(2x+1) отрезок $x \in [-1,+1]$ является областью ... функции.

Правильные варианты ответа: значения; значений;

357. Задание {{ 357 }} сбор9

Наберите пропущенное слово

Функцией или ... множества X на множество Y называется соответствие , при котором каждому значению $x \in X$

соответствует одно и вполне определённое значение у ∈ Ү.

Правильные варианты ответа: отображением; отображение;

358. Задание {{ 358 }} cfop10

Наберите пропущенное слово

Если функция непрерывна на отрезке и на концах этого отрезка принимает различные по знаку значения, то внутри отрезка найдётся хотя бы одна точка, в которой функция равна ...

Правильные варианты ответа: 0; нуль; ноль; нулю;

359. Задание {{ 359 }} ТЗ № 324

Область определения функции
$$f(x) = \frac{1}{\ln x}$$

360. Задание {{ 360 }} ТЗ № 757

Областью определения функции $y = \sqrt{x^2 - 4x + 3}$ является

$$\Box$$
 (1;3) \Box $x>1$ \Box $x<3$ \boxtimes (-\infty;1]\[\bigcup[3;+\infty]

361. Задание {{ 361 }} ТЗ № 758

Областью определения функции $y = \frac{x}{\sqrt{x^2 - 3x + 2}}$ является

$$\square x < 1 \square x > 2 \boxtimes (-\infty;1) \cup (2;+\infty) \square (1;2)$$

362. Задание {{ 362 }} ТЗ № 759

Областью определения функции $y = \arcsin \frac{x}{4}$ является

$$\square x < 4 \square x > 4 \square x > -4 \boxtimes \lceil -4;4 \rceil$$

363. Задание {{ 363 }} ТЗ № 760

Областью определения функции $y = \arccos(1-2x)$ является

$$\square x > 0 \square x < 1 \square x > 1 \boxtimes [0;1]$$

364. Задание {{ 364 }} ТЗ № 761

Областью определения функции $y = \arccos\left(\frac{1-2x}{4}\right)$ является

$$\Box \left\{-1;0;1;2\right\} \Box x < -\frac{3}{2} \Box x < \frac{5}{2} \boxtimes \left[-\frac{3}{2};\frac{5}{2}\right]$$

365. Задание {{ 365 }} ТЗ № 762

Областью определения функции $y = \arcsin \sqrt{2x}$ является

$$\square x \ge 0 \square x \le \frac{1}{2} \square x > \frac{1}{2} \boxtimes \left[0; \frac{1}{2}\right]$$

366. Задание {{ 366 }} ТЗ № 763

Областью определения функции $y = \sqrt{1 - |x|}$ является

$$\square x \le -1$$

□ Областью определения функции $y = \sqrt{1 - |x|}$ является

□ Областью определения функции $y = \sqrt{1 - |x|}$ является

$$\square$$
 $\left[-1;1\right]$

367. Задание {{ 367 }} ТЗ № 764

Областью определения функции $y = \frac{1}{\sqrt{ x -x}}$ является
$\square x > 0 \boxtimes (-\infty;0) \square -1 < x < 1 \square -1 < x < 0$
368. Задание {{ 368 }} ТЗ № 765
Областью определения функции $y = \sqrt{\lg \frac{5x - x^2}{4}}$ являет
$\square x \ge 1 \ \square \ x \le 4 \ \boxtimes \lceil 1;4 \rceil \ \square \ (0;3)$
369. Задание {{ 369 }} ТЗ № 766 Областью определения функции $y = lgsin x$ является: $\square \left[0; 2\pi \right] \square \left[\pi; 2\pi \right] \square \left(2k-1 \right) \pi \le x \le 2\pi k, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
370. Задание {{ 370 }} ТЗ № 14 На числовой прямой задана точка $x = 7,3$.
Тогда ее "ε-окрестностью" может являться интервал
\square (6,9; 7,3) \boxtimes (7,1; 7,5) \square (7,3; 7,7) \square (7,1; 7,8) 371. Задание {{ 371 }} ТЗ № 15 На числовой прямой задана точка $x = 5,1$.
Тогда ее "ε-окрестностью" может являться интервал
Тогда ее "ε-окрестностью" может являться интервал
Тогда ее "ε-окрестностью" может являться интервал
Тогда ее "є-окрестностью" может являться интервал
\square (-2,3; 1,3) \square (-1,3; 1,3) \square (-1,6; -1) \square (-1,6; -1,3) 375, 3adanue {{ 375 }} T3 No 747

 δ -окрестностью точки x_0 =5 является множество точек, удовлетворяющих условию $\square |x-5| \le \delta \square |x-5| < \delta \square (-5+8 < x < 5+8) \square x \in (-5,5) \cup \{5\}$ 376. Задание {{ 376 }} ТЗ № 748 δ -окрестностью точки $x_0 = -3$ является множество точек, удовлетворяющих условию $\Box |x+3| \le \delta \qquad \Box x \in (-5+\delta, 1-\delta)$ 377. Задание {{ 377 }} ТЗ № 749 ε -окрестностью точки $x_0 = 2$ является множество точек, удовлетворяющих условию ε -окрестностью точки $x_0 = 2$ является множество точек, удовлетворяющих условию $\boxtimes x \in (1-\delta, 2-\delta) \cup [2-\delta, 3+\delta) \quad \Box \quad x \in [2-\delta, 2+\delta]$ $\Box x \in (1,2.5)$ 378. Задание {{ 378 }} ТЗ № 750 ε -окрестностью точки $x_0 = 3$ является множество точек, удовлетворяющих условию $\Box x \in (3-\delta,3+\delta] \quad \Box \quad x \in [3-\delta,3+\delta)$ $\boxtimes x \in (3-\delta,3+\delta) \quad \Box \quad x \in (1,4)$ 379. Задание {{ 379 }} ТЗ № 751 Окрестностью точки $x_0 = 1$ не может быть множество точек, удовлетворяющих условию

380. Задание {{ 380 }} ТЗ № 19

Образом отрезка $\lceil 0;1 \rceil$ при отображении

$$f(x)=3x+2$$
 является...

$$\square$$
 [0; 3] \square [2; 3] \square (2; 5) \boxtimes [2; 5]

381. Задание {{ 381 }} ТЗ № 20

Образом отрезка [-4;4] при отображении f(x)=10x-1 является... 382. Задание {{ 382 }} ТЗ № 21 Образом отрезка [1;3] при отображении f(x)=3x+4 является... \square [7; 13] \square [3; 13] \square [3, 9] \square [7, 9] 383. Задание {{ 383 }} ТЗ № 22 Образом отрезка [1;4] при отображении f(x)=5x+3 является... \square [8; 23] \square [5; 23] \square [8; 20] \square [5; 20] 384. Задание {{ 384 }} ТЗ № 23 Образом отрезка $\lceil -1; 1 \rceil$ при отображении f(x)=3x-2 является... \square [-5; 1] \square (-5; 1) \square [1; 5] \square [-3; 2] 385. Задание {{ 385 }} ТЗ № 738 Областью значений функции $y = 6x^2 + x + 1$ npu x ∈ [0,5] является... $\square \mid 0, \frac{1}{3} \mid \square \mid 0, \frac{2}{3} \mid \square \mid \frac{1}{3}, \frac{7}{3} \mid \square \mid 0, \frac{1}{3} \mid$ 386. Задание {{ 386 }} ТЗ № 739

Областью значений функции $y = 3x^2 + 5x$ при $x \in [0,3]$ является...

$$\square \left[0,3\right] \ \boxtimes \left[0,42\right] \ \square \left(0,3\right) \ \square \left[0,8\right]$$

387. Задание {{ 387 }} ТЗ № 740

Областью значений функции $y = \frac{3}{x^2}$

 $npu \ x ∈ [1,2]$ является...

$$\square \left[1,3\right] \ \square \left[0.75,2\right] \ \boxtimes \left[0.75,3\right] \ \square \left(0.75,3\right)$$

388. Задание {{ 388 }} ТЗ № 741

Областью значений функции $y = \frac{6}{100}$ $npu \ x \in [0,2]$ является... 389. Задание {{ 389 }} ТЗ № 323 Выберите все верные варианты Kчетным функциям относятся... $\Box f(x) = xe^x \quad \boxtimes f(x) = \cos(10x)$ 390. Задание {{ 390 }} ТЗ № 742 Функция $y = x + \sin 3x$ является □ четной 🗹 нечетной 🗆 периодической \Box не имеет ни одного из свойств a), δ), ϵ) 391. Задание {{ 391 }} ТЗ № 743 Φ ункция $y = x^2 + \cos x$ является **№** четной □ нечетной \Box периодической \Box не имеет ни одного из свойств a),b),b) 392. Задание {{ 392 }} ТЗ № 744 Функция $y = \left(x^2 + 1\right) t g x$ является □ четной 🗵 нечетной \Box периодической \Box не имеет ни одного из свойств a),b),b) 393. Задание {{ 393 }} ТЗ № 745 Φ ункция $y = x + \cos 2x$ является □ четной □ нечетной □ периодической □ не имеет ни одного из свойств a),b),b) 394. Задание {{ 394 }} ТЗ № 746 Φ ункция $y = 2x\sin x$ является 🗹 четной 🗆 Нечетной \Box периодической \Box не имет ни одного из свойств a), δ), ϵ) 395. Задание {{ 395 }} ТЗ № 39 Число 2,5 принадлежит множеству...

$$\Box B = \{b | b \in \mathbb{Z}, -2 \le b < 3\} \boxtimes C = \{c | c \in \mathbb{R}, -3 < c \le 2, 6\}$$

$$\Box D = \{d \mid d \in Q, d < 2\} \Box A = \{a \mid a \in N, 1 \le a < 10\}$$

396. Задание {{ 396 }} ТЗ № 40

Число 1,2 принадлежит множеству...

$$\Box C = \{c | c \in \mathbb{N}, 1 \le c \le 3\} \Box D = \{d | d \in \mathbb{Q}, d < 1\}$$

397. Задание {{ 397 }} ТЗ № 43

Число 2,8 принадлежит множетсву...

$$\Box C = \{c | c \in Q, c < 2\} \Box B = \{b | b \in N, 1 \le b \le 7\}$$

398. Задание {{ 398 }} ТЗ № 150

Выберите все верные варианты

Число –2 является элементом множеств...

$$\Box C = \{c \mid c \in R, -2 < c < 3\} \boxtimes D = \{d \mid d \in R, -3 \le d < 3\}$$

399. Задание {{ 399 }} ТЗ № 151

Выберите все верные варианты

Число 0 является элементом множеств...

$$\Box A = \{a \mid a \in \mathbb{N}, a < 3\} \boxtimes B = \{b \mid b \in \mathbb{Z}, -3 \le b < 3\}$$

400. Задание {{ 400 }} ТЗ № 152

Выберите все верные варианты

Число 1,5 является элементом множеств...

$$\Box A = \{a \mid a \in \mathbb{N}, a < 3\} \Box B = \{b \mid b \in \mathbb{Z}, -3 \le b < 3\}$$

401. Задание {{ 401 }} ТЗ № 752

Пропущенное простое число из множества

простых чисел {...,29,31,-,41,43} равно...

402. Задание {{ 402 }} ТЗ № 753

Пересечением множеств $A = \{1,2,3,4\}$ и $B = \{3,4,5,6\}$

является множество...

$$\square$$
 {1,2,3,4,5,6} \square {3,4} \square {5,6} \square {2,2,2,2}

403. Задание {{ 403 }} ТЗ № 754

Объединением множеств $A = \{3,4,5,6\}$ и $B = \{4,5,6,7,8\}$

является множество...

404. Задание {{ 404 }} ТЗ № 755

Разностью множеств $A = \{1,2,3,4\}$ и $B = \{3,4,5,6\}$

является множество...

$$\varnothing \{1,2\} \square \{3,4\} \square \{2,2,2,2\} \square \{-2,-2,-2,-2\}$$

405. Задание {{ 405 }} ТЗ № 756

Пропущенное число из множества квадратов

натуральных чисел {...,625,676,-,784,841} равно...

Неопределенный интеграл

406. Задание {{ 406 }} ТЗ № 260

Введите пропущенное слово

Функция F(x) называется ... функции f(x) на интервале (a;b), если $\forall x \in (a;b)$ выполняется равенство F'(x) = f(x)

Правильные варианты ответа: первообразная; первообразной; первобраз#\$#;

407. Задание {{ 407 }} ТЗ № 261

Введите пропущенное слово или словосочетание

Mножество всех первообразных функции f(x)

называется ... от этой функции

Правильные варианты ответа: неопределенный интеграл; неопределенным интегралом; интеграл#\$#;

408. Задание {{ 408 }} ТЗ № 262

Введите пропущенное слово или словосочетание

$$P$$
авенство $\int u dv = uv - \int v du$ называют формулой ...

Правильные варианты ответа: интегрирования по частям; интегрирования по час#\$#; интегриров#\$# по час#\$#;

409. Задание {{ 409 }} ТЗ № 263

Введите пропущенное слово

Неопределенный интеграл называют неберущимся, если он не выражается через ... функции

Правильные варианты ответа: элементарные;

410. Задание {{ 410 }} ТЗ № 264

Введите пропущенное слово или словосочетание

Равенство
$$\int f(x)dx = \int f(\varphi(t)) \cdot \varphi'(t)dt$$
 называют формулой ...

Правильные варианты ответа: интегрирования подстановкой; замены переменных; интегрирование подстановкой; замена переменных; замена перемен#\$#;

411. Задание {{ 411 }} ТЗ № 255

Укажите соответствие между интегралами и их значениями

$$\int x^a dx$$

$$\int \frac{dx}{x}$$

$$\int a^x dx$$

$$\int e^x dx$$

412. Задание {{ 412 }} ТЗ № 256

Укажите соответствие между интегралами и их значениями

$$\int \sin x dx$$
$$\int \cos x dx$$
$$\int \tan x dx$$
$$\int \cot x dx$$

413. Задание {{ 413 }} ТЗ № 257

Укажите соответствие между интегралами и их значениями

$$\int \frac{dx}{\cos^2 x}$$

$$\int \frac{dx}{\sin^2 x}$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}}$$

$$\int \frac{dx}{\sqrt{x^2 + a^2}}$$

414. Задание {{ 414 }} ТЗ № 258

Укажите соответствие между интегралами и их значениями

$$\int \frac{dx}{a^2 + x^2}$$

$$\int \frac{dx}{a^2 - x^2}$$

$$\int \frac{dx}{\sqrt{x^2 + a^2}}$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}}$$

415. Задание {{ 415 }} ТЗ № 259

Укажите соответствие между интегралами и их значениями

$$\int \operatorname{tg} x dx$$

$$\int \operatorname{ctg} x dx$$

$$\int \frac{dx}{\cos^2 x}$$

$$\int \frac{dx}{\sin^2 x}$$

416. Задание {{ 416 }} ТЗ № 120

Неопределенный интеграл $\int x \sin x dx$ равен...

$$\boxtimes \sin x - x \cos x + C \square \cos x - x \sin x + C$$

$$\Box \sin x + x \cos x + C \Box \cos x + x \sin x + C$$

417. Задание {{ 417 }} ТЗ № 121

Неопределенный интеграл $\int x \cos x dx$ равен...

$$\triangle \cos x + x \sin x + C \square \sin x + x \cos x + C$$

$$\Box \cos x - x \sin x + C \Box \sin x - x \cos x + C$$

418. Задание {{ 418 }} ТЗ № 122

Неопределенный интеграл $\int x \ln x dx$ равен...

$$\Box x^2 - \ln x + C \Box x^2 - x \ln x + C$$

419. Задание {{ 419 }} ТЗ № 123

Неопределенный интеграл $\int xe^x dx$ равен...

420. Задание {{ 420 }} ТЗ № 124

Неопределенный интеграл $\int x \sinh x dx$ равен...

$$\boxtimes x \operatorname{ch} x - \operatorname{sh} x + C \square x \operatorname{ch} x + \operatorname{sh} x + C$$

$$\Box x \operatorname{sh} x - \operatorname{ch} x + C \Box x \operatorname{sh} x + \operatorname{ch} x + C$$

421. Задание {{ 421 }} ТЗ № 125

Heonpeделенный интеграл $\int \sin^3 x \cos x dx$ равен...

422. Задание {{ 422 }} ТЗ № 126

Неопределенный интеграл $\int e^{x^3} x^2 dx$ равен...

$$\square \frac{1}{3}e^{x^3} + C \square 3e^{x^3} + C \square \frac{1}{3}x^3e^{x^3} + C \square 3x^3e^{x^3} + C$$

423. Задание {{ 423 }} ТЗ № 127

Heonpeделенный интеграл $\int \frac{\ln^5 x dx}{x}$ равен...

$$\square \frac{\ln^6 x}{6} + C \square \frac{\ln^4 x}{4} + C \square \frac{\ln^6 x}{x} + C \square \frac{\ln^6 x}{6x} + C$$

424. Задание {{ 424 }} ТЗ № 128

 $Heonpe деленный интеграл <math>\int \frac{\sin x dx}{\cos x + 1}$ равен...

$$\square - \ln(\cos x + 1) + C \square - \ln(\sin x) + C$$

$$\Box \ln(\cos x + 1) + C \Box \ln(\sin x) + C$$

425. Задание {{ 425 }} ТЗ № 129

 $Heonpe деленный интеграл <math>\int \frac{x^2 dx}{x^3 + 1}$ равен...

426. Задание {{ 426 }} ТЗ № 2

Mножество первообразных функции $f(x) = \sin(2x+5)$ имеет вид.

$$\Box \frac{1}{2}\cos(2x+5) + C \Box 2\cos(2x+5) + C$$

427. Задание {{ 427 }} ТЗ № 3

Mножество первообразных функции $f(x) = \cos(6x+5)$ имеет вид...

$$\Box 6\sin(6x+5) + C \boxtimes \frac{1}{6}\sin(6x+5) + C$$

$$\Box -\frac{1}{6}\sin(6x+5) + C \Box \sin(6x+5) + C$$

428. Задание {{ 428 }} ТЗ № 4

Множество первообразных функции $f(x) = e^{3-3x}$ имеет вид...

$$\Box \frac{1}{3}e^{3-3x} + C \boxtimes -\frac{1}{3}e^{3-3x} + C \Box -3e^{3x} + C \Box 3e^{3-3x} + C$$

429. Задание {{ 429 }} ТЗ № 118

Множество первообразных функции $f(x) = (3x+2)^4$ имеет вид...

$$\square \frac{(3x+2)^5}{15} + C \square \frac{(3x+2)^3}{3} + C$$

$$\Box \frac{(3x+2)^5}{5} + C \Box 5(3x+2)^5 + C$$

430. Задание {{ 430 }} ТЗ № 119

Множество первообразных функции $f(x) = 3^{2x+4}$ имеет вид...

Определенный интеграл

431. Задание {{ 431 }} ТЗ № 265

Введите пропущенное слово

Справедливо утверждение: определенный интеграл $\int_{a}^{b} f(x)dx$

численно равен ... криволинейной трапеции, образованной графиком функции f(x), осью координат Ox и прямыми x=a, x=b

Правильные варианты ответа: площадь; площади;

432. Задание {{ 432 }} ТЗ № 266

Введите пропущенное слово или словосочетание

Равенство
$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$
 называют формулой ...

Правильные варианты ответа: ньютона лейбница; ньютона-лейбница; формул#\$# ньютона лейбница; формул#\$# ньютона-лейбница;

433. Задание {{ 433 }} ТЗ № 267

Введите пропущенное слово или словосочетание

$$P$$
авенство $\int_{a}^{b} u dv = uv \Big|_{a}^{b} - \int_{a}^{b} v du$ называют формулой ...

для определенного интеграла

Правильные варианты ответа: интегрирования по частям; интегрирование по частям; формулой интегрирования по частям; формула интегрирования по частям;

434. Задание {{ 434 }} ТЗ № 268

Введите пропущенное слово или словосочетание

При помощи выражения
$$\int_a^b \sqrt{1+\big(f'(x)\big)^2} dx$$
 можно вычислить ... графика функции $f(x)$ между точками а и b

Правильные варианты ответа: длину; длина; длина кривой; длину кривой; длина дуги; длину дуги; длин#\$#;

435. Задание {{ 435 }} ТЗ № 269

Введите пропущенное слово

При помощи формулы $\frac{1}{2}\int_{\alpha}^{\beta}r^{2}(\varphi)d\varphi$ можно вычислить площадь криволинейного сектора, ограниченного графиком функции $r=r(\varphi)$ и лучами $\varphi=\alpha$, $\varphi=\beta$ в ... координатах

Правильные варианты ответа: полярных; полярные;

436. Задание {{ 436 }} ТЗ № 734

Введите пропущенное слово или словосочетание

При помощи выражения
$$\int_{\alpha}^{\beta} \sqrt{r^2(\phi) + (r'(\phi))^2} d\phi$$
 можно вычислить ... графика функции, заданной уравнением в полярных координатах $r = r(\phi)$, между лучами $\phi = \alpha, \ \phi = \beta$

Правильные варианты ответа: длин#\$#; длин#\$# дуги;

437. Задание {{ 437 }} ТЗ № 735

Введите пропущенное слово

$$\Pi$$
ри помощи формулы $\pi\int\limits_a^b(f(x))^2dx$ можно вычислить ...

тела вращения

Правильные варианты ответа: объем; объём; объемы; объёмы;

438. Задание {{ 438 }} ТЗ № 736

Введите пропущенное слово или словосочетание

Равенство
$$\int_{a}^{b} f(x)dx = (b-a)f(c)$$
, где $a < c < b$ и

функция f(x) непрерывна, называют теоремой o ...

Правильные варианты ответа: средн#\$#; средн#\$# значен#\$#;

439. Задание {{ 439 }} ТЗ № 737

Введите пропущенное слово

Величину f(c) в равенстве $\int_{a}^{b} f(x)dx = (b-a)\cdot f(c)$ называют

 \dots значением функции на промежутке [a,b]

Правильные варианты ответа: средн#\$#;

440. Задание {{ 440 }} ТЗ № 356

Наибольшее значение имеет интеграл...

$$\Box \int_{1/2}^{1} \sin x dx \ \Box \int_{1/2}^{1} \lg x dx \ \Box \int_{1/2}^{1} x dx \ \Box \int_{1/2}^{1} x^{2} dx$$

441. Задание {{ 441 }} ТЗ № 739

Наибольшее значение имеет интеграл ...

$$\Box \int_{-1}^{0} x^{2} dx \ \Box \int_{-1}^{0} dx \ \Box \int_{-1}^{0} (-x) dx \ \Box \int_{-1}^{0} x^{3} dx$$

442. Задание {{ 442 }} ТЗ № 740

Наибольшее значение имеет интеграл ...

443. Задание {{ 443 }} ТЗ № 741

Наибольшее значение имеет интеграл ...

444. Задание {{ 444 }} ТЗ № 742

Определенный интеграл $\int_{1}^{2} \frac{2x^2+1}{x} dx$ равен ...

$$\Box \int_{1}^{2} (2x^2 + 1) dx \cdot \int_{1}^{2} \frac{1}{x} dx$$

445. Задание {{ 445 }} ТЗ № 743

Определенный интеграл
$$\int_{-1}^{-1/2} \left(\frac{7x}{x^2+1}-2\right) dx \quad paseн \quad \dots$$

$$= 7 \int_{-1}^{-1/2} \frac{x}{x^2+1} dx - 2 \int_{-1}^{-1/2} dx \quad \Box \quad 7 \int_{-1}^{-1/2} \frac{x}{x^2} dx + \int_{-1}^{-1/2} x dx - 2 \int_{-1}^{-1/2} dx$$

$$= \frac{7 \int_{-1}^{-1/2} x dx}{\int_{-1}^{-1/2} x^2 dx + \int_{-1}^{-1/2} x dx} - 2 \int_{-1}^{-1/2} dx \quad \Box \quad 7 \int_{-1}^{-1/2} x dx \cdot \int_{-1}^{-1/2} \frac{1}{x^2+1} dx - 2 \int_{-1}^{-1/2} dx$$

446. Задание {{ 446 }} ТЗ № 744

447. Задание {{ 447 }} ТЗ № 745

Если f(2) = 4 — среднее значение непрерывной функции f(x) на промежутке [-1;3], то определенный интеграл $\int_{-1}^{3} f(x) dx$ равен ...

448. Задание {{ 448 }} ТЗ № 746

Если f(-4)=3 — среднее значение непрерывной функции f(x) на промежутке [-5;-1], то определенный интеграл $\int_{-5}^{-1} f(x) dx$ равен ...

449. Задание {{ 449 }} ТЗ № 747

$$E$$
сли $f\left(\frac{1}{2}\right) = -2$ среднее значение непрерывной функции

$$f(x)$$
 на промежутке $[-1;3]$, то определенный интеграл

$$\int_{-1}^{3} f(x)dx \quad pавен \quad \dots$$
 \square -8 \square -4 \square 2 \square 1

450. Задание {{ 450 }} ТЗ № 135

Площадь плоской фигуры, ограниченной параболой

$$y = x^2$$
 и прямыми $x = 1$, $x = 2$, $y = 0$, равна... $Z = \frac{7}{3} + \frac{5}{3} + \frac{7}{5} + \frac{9}{7}$

451. Задание {{ 451 }} ТЗ № 136

Площадь плоской фигуры, ограниченной кривой

452. Задание {{ 452 }} ТЗ № 137

Площадь плоской фигуры, ограниченной гиперболой

$$y = \frac{1}{x}$$
 и прямыми $x = 1$, $x = 2$, $y = 0$, равна... $\not \equiv \ln 2 \ \Box \ 2 \ \Box \ \ln 3 \ \Box \ 3$

453. Задание {{ 453 }} ТЗ № 138

Площадь плоской фигуры, ограниченной кривой

$$y = \frac{1}{x^2}$$
 и прямыми $x = 1$, $x = 2$, $y = 0$, равна...

 $\Box 1 \Box \frac{1}{4} \boxtimes \frac{1}{2} \Box \frac{1}{3}$

454. Задание {{ 454 }} ТЗ № 139

Площадь плоской фигуры, ограниченной кривой $y = x^4$ и прямыми x = 1, x = 2, y = 0, равна...

455. Задание {{ 455 }} М12

Вычислить площадь фигуры, ограниченной линиями $y^2 = 9x$, y = 3x

- $2 \boxtimes 0.5 \square 1.5$

456. Задание {{ 456 }} М14

Вычислить площадь фигуры, ограниченной линиями $y = -x^2 + 5$ и $y = x^2 + 3$

- $\square \quad \frac{7}{3} \qquad \qquad \square \qquad 3\square \quad \frac{5}{2} \qquad \qquad \square \quad \frac{8}{3}$

457. Задание {{ 457 }} M15

Вычислить площадь фигуры, ограниченной кривой $y=\ln x$, осью OX и прямой $x=e^3$

 $3e^3$ П

- $3e^3 + 2 \bowtie 2e^3 + 1$

458. Задание {{ 458 }} М21

Определенный интеграл $\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1 + \cos^{2} x} dx$ равен.....

П

- \square π \square $\frac{\pi}{2}$ \square

459. Задание {{ 459 }} M23

Определенный интеграл $\int_{0}^{4} \frac{dx}{1+\sqrt{2x+1}}$ равен.....

 $2+2\ln 2$ $\boxtimes 2-\ln 2\square 3$

□ 2

460. Задание {{ 460 }} М24

Определенный интеграл $\int \cos \sqrt{x} dx$ равен.....

- \Box 3 \Box
- 1 \Box -2

461. Задание {{ 461 }} M25

Определенный интеграл $\int_{0}^{1} x \sqrt{x-1} \ dx$ равен.....

$$\Box$$
 $\frac{273}{16}$

$$\frac{273}{16}$$
 \boxtimes $\frac{272}{15}$ \Box $\frac{275}{14}$ \Box $\frac{270}{13}$

$$\Box \frac{270}{13}$$

462. Задание {{ 462 }} М26

Определенный интеграл $\int_{1}^{1} \frac{dx}{e^x + 1}$ равен (замена x=-lnt)

$$\Box$$
 $\ln \frac{1}{3}$

463. Задание {{ 463 }} М27

Определенный интеграл $\int_{2}^{\frac{6}{5}} \frac{dx}{\sqrt{5x-2}}$ равен.....

464. Задание {{ 464 }} М28

Определенный интеграл $\int_{0}^{\frac{\pi}{2}} \frac{dx}{1+\sin x + \cos x}$ (замена t=tg(x/2)) равен.....

$$\Box$$
 1

$$\Box$$
 ln 3 \Box ln 3

$$\ln 2 \qquad \Box - \ln 4$$

465. Задание {{ 465 }} М29

Определенный интеграл $\int_{2}^{3} \frac{dx}{x^{2} + 4x + 29}$ равен.....

 \Box 1 \Box $-\frac{\pi}{10}\Box$ $\frac{\pi}{5}$ \boxtimes $\frac{\pi}{20}$

466. Задание {{ 466 }} ТЗ № 334

Значение несобственного интеграла $\int_{0}^{\infty} xe^{-x^2}dx$...

467. Задание {{ 467 }} М31

Значение несобственного интеграла $\int_{0}^{\infty} \frac{x dx}{16x^4 + 1}$ равно.....

 \square не существует \square $\frac{\pi}{16}$ \square 1

468. Задание {{ 468 }} М32

Значение несобственного интеграла $\int_{0}^{\frac{1}{2}} \frac{dx}{\sqrt[3]{2-4x}}$ равно.....

 \square не существует \square $\frac{3\sqrt[3]{2}}{2}$ \square $\frac{\sqrt[3]{2}}{2}$ \square \square $\frac{3\sqrt[3]{2}}{2}$

469. Задание {{ 469 }} М33

Значение несобственного интеграла $\int_{0}^{1} \frac{x dx}{1 - x^4}$ равно.....

470. Задание {{ 470 }} M34

Значение несобственного интеграла $\int\limits_0^\infty e^{-x}dx$ равно.....

$\frac{1}{2}$
\square не существует \square 0
471. Задание {{ 471 }} М35
$\frac{1}{2}$ $\frac{1}{2}$ $\frac{dx}{(2x-1)^2}$ равно
$ \frac{1}{2} $
\square 1 \square не существует \square 2 \square -1
472. Задание {{ 472 }} M36
Значение несобственного интеграла $\int\limits_0^1 \frac{dx}{\sqrt{x}}$ равно
\square не существует \square 1 \square 2 \square -2
473. Задание {{ 473 }} М37
Значение несобственного интеграла $\int_{\frac{3}{4}}^{1} \frac{dx}{\sqrt[5]{3-4x}}$ равно
\square не существует \square -4 \square 4 \square -5/16
474. Задание {{ 474 }} M38
Значение несобственного интеграла $\int\limits_2^\infty \frac{dx}{x \ln x}$ равно
\square $\ln 2$ \square -1 \square 2 \blacksquare не существует
475. Задание {{ 475 }} М38
Значение несобственного интеграла $\int\limits_{-1/2}^{1} \frac{dx}{\sqrt{1-x^2}}$ равно
\square не существует \square $\frac{2\pi}{3}$ \square $\frac{\pi}{2}$ \square 0

Пределы

f(a+0) = конечен и $f(a-0) \neq f(a+0)$, то точка а.....

Точка устранимого разрыва 🗖 Точка непрерывности Точка неустранимого разрыва 1 — ого рода Точка неустранимого разрыва 2 — ого рода 485. Задание {{ 485 }} ТЗ № 42 Если $\lim_{x\to a-0} f(x) = f(a-0) = (\infty, -\infty, +\infty)$ или $\lim_{x\to a+0} f(x) =$ $f(a+0) = (\infty, -\infty, +\infty)$ то точка а..... 486. Задание {{ 486 }} ТЗ № 145 Значение предела $\lim_{x\to 0} \frac{\sin^2 2x}{\sin^2 x}$ равно... $\square 0 \square \infty \square 2 \square 4$ 487. Задание {{ 487 }} ТЗ № 146 Значение предела $\lim_{x\to 0} \frac{6x}{\sin^2 2x}$ равно... $\square 3 \square 1 \square 0 \square \infty$ 488. Задание {{ 488 }} ТЗ № 147 предела $\lim_{x\to 0} \frac{\sin(x-\pi)}{x-\pi}$ равно... Значение 489. Задание {{ 489 }} ТЗ № 148 Значение предела $\lim_{x\to 0} \frac{\operatorname{tg} 2x}{\sin 3x}$ равно... $\square 0 \square \frac{2}{3} \square 1 \square \infty$ 490. Задание {{ 490 }} ТЗ № 149 Значение предела $\lim_{x\to 1} \frac{\sin^2(x-1)}{x-1}$ равно...

491. Задание {{ 491 }} ТЗ № 767

492. Задание {{ 492 }} ТЗ № 768

$$\lim_{x \to 0} \frac{1 - \cos^2 x}{x \sin 2x} pase + \dots$$

$$\square \frac{1}{4} \boxtimes \frac{1}{2} \square \ 2 \square \ 1$$

493. Задание {{ 493 }} ТЗ № 769

$$\lim_{x \to 0} \frac{1}{x} \left(\frac{1}{\sin x} - \frac{1}{tgx} \right) paвен \dots$$

$$\square 2 \square 1 \boxtimes \frac{1}{2} \square \frac{1}{4}$$

494. Задание {{ 494 }} ТЗ № 770

$$\lim_{x \to 0} \frac{\sin 7x}{\sin 5x}$$
 равен ...

$$\square 0 \square \infty \square \frac{5}{7} \square \frac{7}{5}$$

495. Задание {{ 495 }} ТЗ № 771

$$\lim_{x \to 0} \frac{tg2x}{\sin 5x}$$
 равен ...

496. Задание {{ 496 }} ТЗ № 325

Значение предела
$$\lim_{x\to\infty} \left(\frac{5-x}{6-x}\right)^{x+2}$$
 равно...

497. Задание {{ 497 }} ТЗ № 140

Значение предела
$$\lim_{x\to 3} \frac{x^2-2x-3}{x^2-4x+3}$$
 равно...

Правильные варианты ответа: 2;

498. Задание {{ 498 }} ТЗ № 141

Значение предела
$$\lim_{x\to 1} \frac{x^2 + 4x - 5}{x^2 - 4x + 3}$$
 равно...

Правильные варианты ответа: -3;

499. Задание {{ 499 }} ТЗ № 142

Значение предела
$$\lim_{x\to 7} \frac{x^2 - 6x - 7}{x^2 - 10x + 21}$$
 равно...

Правильные варианты ответа: 2;

500. Задание {{ 500 }} ТЗ № 143

Значение предела
$$\lim_{x\to 5} \frac{x^2 + 2x - 35}{x^2 - 6x + 5}$$
 равно...

Правильные варианты ответа: 3;

501. Задание {{ 501 }} ТЗ № 144

Значение предела
$$\lim_{x\to 2} \frac{x^2 + 8x - 20}{x - x^2 + 2}$$
 равно...

Правильные варианты ответа: -4;

502. Задание {{ 502 }} ТЗ № 772

503. Задание {{ 503 }} ТЗ № 773

$$\lim_{x \to 0} \frac{\sqrt{1+x}-1}{x^2} p a в e н \dots$$

$$\square \ 0 \boxtimes \infty \square \ 2 \square \ \frac{1}{2}$$

504. Задание {{ 504 }} ТЗ № 774

$$\lim_{x \to 0} \frac{\sqrt{x^2 + 1} - 1}{\sqrt{x^2 + 16} - 4}$$
 paseh ...
$$\Box 0 \Box \frac{1}{2} \boxtimes 4 \Box 2$$

505. Задание {{ 505 }} ТЗ № 775

$$\lim_{x \to 5} \frac{\sqrt{x-1}-2}{x-5} paseh \dots$$

$$\square 4 \square 2 \square \frac{1}{2} \boxtimes \frac{1}{4}$$

506. Задание {{ 506 }} ТЗ № 776

$$\lim_{x \to 1} \frac{x^2 - \sqrt{x}}{\sqrt{x} - 1}$$
 равен ...

507. Задание {{ 507 }} ТЗ № 326

Значение предела
$$\lim_{x\to\infty} \left(\frac{x^3}{x^2-3}-x\right)$$
 равно...

508. Задание {{ 508 }} ТЗ № 24

Значение предела
$$\lim_{x\to\infty} \frac{3x^2+2x-1}{x^2+x+1}$$
 равно...

$$\Box 1 \boxtimes 3 \Box \infty \Box 0$$

509. Задание {{ 509 }} ТЗ № 25

Значение предела
$$\lim_{x\to\infty} \frac{2x^2-x-1}{2x+x^2-5}$$
 равно...

$$\square 0 \square \infty \square 1 \square 2$$

510. Задание {{ 510 }} ТЗ № 26

Значение предела
$$\lim_{x\to\infty} \frac{6x^2+2x-1}{3-2x^2+x^3}$$
 равно...

$$\square$$
 2 \boxtimes 0 \square 3 \square 6

511. Задание {{ 511 }} ТЗ № 27

Значение предела
$$\lim_{x\to\infty} \frac{3x+2x^3-1}{10x^2+x+1}$$
 равно...

$$\square \frac{1}{5} \square \frac{1}{3} \boxtimes \infty \square 3$$

512. Задание {{ 512 }} ТЗ № 28

Значение предела
$$\lim_{x \to \infty} \frac{4 - x^4}{4 + 8x + x^4}$$
 равно...

513. Задание {{ 513 }} ТЗ № 777

514. Задание {{ 514 }} ТЗ № 778

$$\lim_{x \to \infty} \frac{1 - x - x^2}{x^3 + 3} pase + \dots$$

$$\Box \lim_{x \to \infty} \frac{1 - x - x^2}{x^3 + 3} paseh ... \Box 0 \Box -3 \Box -\frac{1}{3}$$

515. Задание {{ 515 }} ТЗ № 779

516. Задание {{ 516 }} ТЗ № 780

517. Задание {{ 517 }} ТЗ № 781

Производные

518. Задание {{ 518 }} ТЗ № 48

Производная есть _____ изменения функции в точке х *Правильные варианты ответа*: скорость;

519. Задание {{ 519 }} ТЗ № 49

Отыскание производной называется функции *Правильные варианты ответа*: дифференцированием; диф#\$#;

520	Задание	ſ	5 520	??	T ?	No	50
J∠U.	эиоиние	5	{ J4U	77	1)	J¥⊻	JU

Геометрически производная представляет собой угловой_____ касательной к графику функции *Правильные варианты ответа:* коэффициент; коэфициент;

521. Задание {{ 521 }} ТЗ № 52

Уравнение _____ к кривой
$$y=f(x)$$
 в точке $M_0(x_0,y_0)$ имеет вид: $y-y_0={y'}_0(x-x_0)$

Правильные варианты ответа: касательной;

522. Задание {{ 522 }} ТЗ № 53

Уравнение _____ к кривой
$$y=f(x)$$
 в точке $M_0(x_0,y_0)$ имеет вид: $y-y_0=-rac{1}{y_0'}(x-x_0)$

Правильные варианты ответа: нормали;

523. Задание {{ 523 }} ТЗ № 54

Угол, образуемый с осью абсцисс касательной к кривой $oldsymbol{y} = f(x)$ равен

$$\Box$$
 $\arcsin f'(x)$ \Box $\arctan f'(x)$ \Box $\arctan f'(x)$ \Box $\arctan f'(x)$

524. Задание {{ 524 }} ТЗ № 55

Угол, образуемый с осью абсцисс нормалью к кривой $oldsymbol{y} = oldsymbol{f}(oldsymbol{x})$ равен

525. Задание {{ 525 }} ТЗ № 56

Дифференциал первого порядка функции $\mathbf{y} = \mathbf{f}(\mathbf{x})$ равен

526. Задание {{ 526 }} ТЗ № 57

Дифференциал второго порядка функции $\mathbf{y} = \mathbf{f}(\mathbf{x})$ равен

527. Задание {{ 527 }} ТЗ № 58

Дифференциал третьего порядка функции $\mathbf{y} = \mathbf{f}(\mathbf{x})$ равен

528. Задание {{ 528 }} ТЗ № 59

Укажите соответствие между функциями и их производными

$$(sh x)' ch x$$

$$(arctg x)' \frac{1}{1+x^2}$$

1	x	1	,
C	ı	J	

$$a^x lna$$

$$\frac{1}{\cos^2 x}$$

529. Задание {{ 529 }} ТЗ № 60

$$(x^m)'$$

$$m x^{m-1}$$

$$(\sqrt{x})'$$

$$\frac{1}{2\sqrt{x}}$$

$$(\log_a x)'$$

530. Задание {{ 530 }} ТЗ № 61

Укажите соответствие между функциями и их производными

(-1-..)/

sh x

$$-\frac{1}{\sin^2 x}$$

$$-\frac{1}{r^2}$$

531. Задание {{ 531 }} ТЗ № 62

Укажите соответствие между функциями и их производными

 $\frac{1}{ch^2x}$ $(cth x)' \qquad \qquad -\frac{1}{sh^2x}$ $(tg x)' \qquad \qquad 1$

$$(\operatorname{ctg} x)' \qquad \qquad -\frac{1}{\sin}$$

532. Задание {{ 532 }} ТЗ № 63

Укажите соответствие между функциями и их производными

 $(\ln x)'$ $\frac{1}{x}$

 $\left(\frac{1}{x}\right)'$ $-\frac{1}{x}$

 $(\sqrt{x})'$ $\frac{1}{2\sqrt{x}}$

 $(\cos x)'$ $-\sin x$

533. Задание {{ 533 }} ТЗ № 2

Наибольшее значение функции $f(x) = \frac{1}{9}x^3 + \frac{1}{4}x^2 + 3$ на отрезке [0,3] равно

534. Задание {{ 534 }} ТЗ № 3

Наибольшее значение функции $f(x)=rac{1}{9}x^3-rac{1}{4}x^2+3$ на отрезке [0,3] равно

535. Задание {{ 535 }} ТЗ № 5

Наибольшее значение функции $f(x) = -\frac{1}{9}x^3 - \frac{1}{4}x^2 - 3$ на отрезке [0,3] равно

$$\sqcap^{-5}$$
 \sqcap^{-2} \sqcap^{-4} \bowtie^{-3}

536. Задание {{ 536 }} ТЗ № 6

Наибольшее значение функции $f(x) = \frac{1}{9}x^3 - \frac{1}{4}x^2 - 3$ на отрезке [0,3] равно

$$\boxed{ -\frac{9}{4} \quad -\frac{3}{16} \quad -\frac{1}{16} \quad } \quad 1$$

537. Задание {{ 537 }} ТЗ № 7

Наибольшее значение функции $f(x)=-rac{1}{9}x^3+rac{1}{4}x^2+3$ на отрезке [0,3] равно

538. Задание {{ 538 }} ТЗ № 9

По формуле приближенных вычислений

$$f(x) = f(x_0) + f'(x)(x - x_0)$$

Приближенное значение arctg 1,05 равно

539. Задание {{ 539 }} ТЗ № 10

По формуле приближенных вычислений

$$f(x) = f(x_0) + f'(x)(x - x_0)$$

Приближенное значение tg46° равно

$$_{\square}$$
 1,235 $_{\square}$ 1,135 $_{\boxtimes}$ 1,035 $_{\square}$ 0,935

540. Задание {{ 540 }} ТЗ № 11

По формуле приближенных вычислений

$$f(x) = f(x_0) + f'(x)(x - x_0)$$

Приближенное значение $\ln tg47^{\circ}15'$ равно

541. Задание {{ 541 }} ТЗ № 12

По формуле приближенных вычислений

$$f(x) = f(x_0) + f'(x)(x - x_0)$$

Приближенное значение $\sqrt[4]{15,8}$ равно

$$_{\sqcap}$$
 1,9958 $_{\sqcap}$ 1,9948 $_{\blacktriangleleft}$ 1,9938 $_{\sqcap}$ 1,9928

542. Задание {{ 542 }} ТЗ № 13

Производная неявно заданной функции $x \sin y + y \sin x = 0$ равна

$$y' = -(y\cos x + \sin y)/(x\cos y + \sin x) \qquad y' = (y\cos x + \sin y)/(x\cos y + \sin x)$$
$$y' = -(x\cos y + \sin x)/(y\cos x + \sin y) \qquad y' = (x\cos y + \sin x)/(y\cos x + \sin y)$$

543. Задание {{ 543 }} ТЗ № 14

Производная неявно заданной функции $x^y - y^x = 0$ равна

$$\Box \xrightarrow{y-x\ln y} y(y-x\ln y)/x(x-y\ln x) \qquad \Box \xrightarrow{y} \frac{y-x\ln y}{(x-y\ln x)} \qquad \Box$$

544. Задание {{ 544 }} ТЗ № 15

Производная неявно заданной функции $\,x^2+y^2=4\,$ равна

545. Задание {{ 545 }} ТЗ № 16

Производная неявно заданной функции $\,x^3+y^3-3xy=0\,$ равна

546. Задание {{ 546 }} ТЗ № 17

Производная неявно заданной функции $\frac{y}{x}+e^{\frac{y}{x}}-\sqrt[3]{\frac{y}{x}}=\mathbf{0}$ равна

$$\frac{y}{x}$$
 $\frac{x}{y}$ $-\frac{y}{x}$ $-\frac{x}{y}$

547. Задание {{ 547 }} ТЗ № 18

Производная от частного двух функций $y=rac{1}{e^x+1}$ равна

$$\Box \stackrel{1}{(e^x+1)^2} \quad \boxed{-e^x/(e^x+1)^2} \quad \boxed{e^x/(e^x+1)^2} \quad \boxed{e^x}$$

548. Задание {{ 548 }} ТЗ № 19

Производная от частного двух функций $y=rac{7}{x^3}$ равна

$$-\frac{21}{x^4}$$
 $\frac{21}{x^4}$ $-\frac{21}{x^2}$ $\frac{21}{x^2}$

549. Задание {{ 549 }} ТЗ № 20

. Производная от частного двух функций $y=rac{\ln x}{x^5}+rac{1}{5x^5}$ равна

$$\frac{\ln x}{x^6} \qquad -\frac{5}{x^6} \ln x \qquad \frac{5}{x^6} \ln x \qquad -\frac{\ln x}{x^6}$$

550. Задание {{ 550 }} ТЗ № 22

Производная от частного двух функций $y=rac{x+1}{x}-e^{-lnrac{x}{x+1}}$ равна

551. 3a∂anue {{ 551 }} T3 № 23
Производная функции $f(x)=\sqrt{1-3x^2}$ равна
552. Задание {{ 552 }} ТЗ № 24
Производная функции $f(x) = \ln \sqrt{rac{1+\sin x}{1-\sin x}}$ равна
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
553. Задание {{ 553 }} ТЗ № 25
. Производная функции $f(x)=(\sin\frac{x}{2}-\cos\frac{x}{2})^2$ равна
\Box $-\sin x$ \Box $tg x$ \Box $-\cos x$ \Box $\cos x$
554. Задание {{ 554 }} ТЗ № 27
Производная функции $f(x) = \ln(2x^3 + 3x^2)$ равна
$(x+1)/(2x^2+3x)$ $6(x+1)/(2x^2+3x)$
$(x+1)(2x^3+3x^2)$ $(2x^3+3x^2)$
555. Задание {{ 555 }} ТЗ № 28
Производная функции $f(x) = \ln(\frac{x^5}{x^5+2})$ равна
\square 10/(x(x ⁵ + 2)) \square 5/(x(x ⁵ + 2)) \square 10/x ⁵ + 2 \square 5/x ⁵ + 2
556. Задание {{ 556 }} ТЗ № 29
Производная функции $f(x) = \operatorname{arctg} \frac{x}{\sqrt{a^2 - x^2}}$ равна
557. Задание {{ 557 }} ТЗ № 30

Производная функции $f(x) = \arctan \sqrt{\frac{1-x}{1+x}}$ равна

558. Задание {{ 558 }} ТЗ № 31

Производная функции $f(x) = \ln (3x^2 + \sqrt{9x^4 + 1})$ равна

$$\Box \sqrt{9x^4 + 1}/6x \quad \Box = -6x/\sqrt{9x^4 + 1} \quad \Box = -\sqrt{9x^4 + 1}/6x \quad \boxed{ } = 6x/\sqrt{9x^4 + 1}$$

559. Задание {{ 559 }} ТЗ № 33

Производная $y^{(2)}$ функции $f(x) = \frac{1}{4} x^2 (2 \ln x - 3)$ равна

$$\Box$$
 $-\ln x$ \Box $\ln x$ \Box $2\ln x$ \Box $-2\ln x$

560. Задание {{ 560 }} ТЗ № 34

Производная $y^{(2)}$ функции $f(x)=rac{-22}{x+5}$ равна

$$\square$$
 22/(x+5)³ \square -22/(x+5)³ \square 44/(x+5)³ \square -44/(x+5)³

561. Задание {{ 561 }} ТЗ № 35

Производная $y^{(2)}$ функции $f(x)=-rac{1}{9}x\sin 3x-rac{2}{27}\cos 3x$ равна

562. Задание {{ 562 }} ТЗ № 36

Производная $y^{(2)}$ функции $f(x)=5-3\ cos^2 x$ равна

$$\Box 6 \sin 2x \qquad -6 \cos 2x \qquad -6 \sin 2x \qquad 6 \cos 2x$$