Cavallaro, Jeffery Math 221b Homework #6

1). Show that if $f: \mathbb{C} \to \mathbb{R}$ is a ring homomorphism then f must be trivial.

This is equivalent to saying that $\ker(f)=\mathbb{C}$. Since $\ker(f)$ must be ideal in \mathbb{C} , and since \mathbb{C} is a field, any non-zero element in $\ker(f)$ is a unit and thus would cause $\ker(f)=\mathbb{C}$. Thus, the only two choices for $\ker(f)$ are the zero ideal and \mathbb{C} , where the latter means that the ring homomorphism is trivial. So, we want to eliminate the zero ideal as a possibility.

So ABC that the kernel is trivial. This means that f is injective. Now, let z be a non-zero element of \mathbb{C} :

$$f(z) = f(1z) = f(1)f(z)$$

and since f is injective and f(0)=0, neither f(1) nor f(z) can be 0, and so f(1) is the identity in $\mathbb R$ and so f(1)=1. But $\mathbb C$ and $\mathbb R$ are additive groups so f(-1)=-f(1)=-1.

Now, consider the following:

$$f(i^2) = f(i)f(i) = f(i)^2 = f(-1) = -f(1) = -1$$

Thus, there exists some $x \in \mathbb{R}$ such that $x^2 = -1$, a contradiction.

Therefore, $\ker(f) = \mathbb{C}$ and f is trivial.

- 2). Consider the field $K = \mathbb{Q}(\sqrt[3]{2}, \sqrt{3})$ as an extension of $F = \mathbb{Q}$:
 - a). Show that [K : F] = 6

Consider the following field extensions:

Note that all of these extensions are algebraic.

First, consider $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ and the polynomial $f(x)=x^3-2\in\mathbb{Q}[x]$. By the rational root test, f(x) is irreducible in \mathbb{Q} . Furthermore, $f(\sqrt[3]{2})=0$, and thus $f(x)=m_{\sqrt[3]{2},\mathbb{Q}}(x)$ and $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=3$:

Next, consider $\mathbb{Q}(\sqrt[3]{2},\sqrt{3})/\mathbb{Q}(\sqrt[3]{2})$ and the polynomial $g(x)=x^2-3\in\mathbb{Q}(\sqrt[3]{2})[x]$. Since $g(\sqrt{3})=0,$ $m_{\sqrt{3},\mathbb{Q}(\sqrt[3]{2})}(x)\mid g(x),$ and so $\deg(m_{\sqrt{3},\mathbb{Q}(\sqrt[3]{2})}(x))=1$ or 2.

ABC: $deg(m_{\sqrt{3},\mathbb{O}(\sqrt[3]{2})}(x)) = 1$

This would mean that $\mathbb{Q}(\sqrt[3]{2},\sqrt{3}) = \mathbb{Q}(\sqrt[3]{2})$ and thus $\sqrt{3} \in \mathbb{Q}(\sqrt[3]{2})$.

But that would mean that $Q \subset \mathbb{Q}(\sqrt{3}) \subset \mathbb{Q}(\sqrt[3]{2})$.

So consider $g(x)=x^2-3\in\mathbb{Q}[x]$. By the rational root test, g(x) is irreducible in \mathbb{Q} . Furthermore, $g(\sqrt{3})=0$, and thus $g(x)=m_{\sqrt{3},\mathbb{Q}}(x)$ and $[\mathbb{Q}(\sqrt{3}):\mathbb{Q}]=2$. However, in order for $\mathbb{Q}(\sqrt{3})\subset\mathbb{Q}(\sqrt[3]{2})$ it must be the case that $[\mathbb{Q}(\sqrt{3}):\mathbb{Q}]\mid [\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]$, but $2\nmid 3$ - contradiction.

Thus $\deg(m_{\sqrt{3},\mathbb{Q}(\sqrt[3]{2})}(x))=2$ and so $[\mathbb{Q}(\sqrt[3]{2},\sqrt{3}):\mathbb{Q}(\sqrt[3]{2})]=2$:

Therefore, $[\mathbb{Q}(\sqrt[3]{2},\sqrt{3}):\mathbb{Q}]=[\mathbb{Q}(\sqrt[3]{2},\sqrt{3}):\mathbb{Q}(\sqrt[3]{2})][\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=2\cdot 3=6$

b). Find a primitive element α for K/F.

Let
$$\alpha = \sqrt{3} + \sqrt[3]{2} \in K/F$$
.

We need to show that $\mathbb{Q}(\sqrt[3]{2},\sqrt{3})=\mathbb{Q}(\sqrt{3}+\sqrt[3]{2}).$ Consider the factors:

$$a_1(x) = [x - (\sqrt{3} + \sqrt[3]{2})]$$

$$a_2(x) = [x - (-\sqrt{3} + \sqrt[3]{2})]$$

$$a_3(x) = [x - (\sqrt{3} + \omega\sqrt[3]{2})]$$

$$a_4(x) = [x - (-\sqrt{3} + \omega\sqrt[3]{2})]$$

$$a_5(x) = [x - (\sqrt{3} + \omega^2\sqrt[3]{2})]$$

$$a_6(x) = [x - (-\sqrt{3} + \omega^2\sqrt[3]{2})]$$

All of these factors need to be applied in order to obtain a polynomial with coefficients in \mathbb{Q} :

$$f(x) = a_1(x)a_2(x)a_3(x)a_4(x)a_5(x)a_6(x) = x^6 - 9x^4 - 4x^3 + 27x^2 - 36x - 23$$

But $\mathbb{Q}(\sqrt{3}+\sqrt[3]{2})$ is a UFD, and so f(x) is irreducible in \mathbb{Q} . Also, $f(\sqrt{3}+\sqrt[3]{2})=0$, and so $f(x)=m_{\sqrt{3}+\sqrt[3]{2},\mathbb{Q}}(x)$, and thus $[\mathbb{Q}(\sqrt{3}+\sqrt[3]{2}):\mathbb{Q}]=6$. But $\sqrt{3}+\sqrt[3]{2}\in\mathbb{Q}(\sqrt[3]{2},\sqrt{3})$, so $\mathbb{Q}\subset\mathbb{Q}(\sqrt{3}+\sqrt[3]{2})\subset\mathbb{Q}(\sqrt[3]{2},\sqrt{3})$

Therefore $\mathbb{Q}(\sqrt{3} + \sqrt[3]{2}) = \mathbb{Q}(\sqrt[3]{2}, \sqrt{3}).$

3). Suppose K/F is an algebraic extension of fields. Prove that if R is a ring with $F \subseteq R \subseteq K$ then R must also be a field.

It suffices to show that R^* is closed under multiplicative inverses.

Assume $\alpha \in R^*$

Since K/F is an algebraic extension and $\alpha \in K$, α is algebraic over F. Thus, there is guaranteed to be an algebraic extension $F(\alpha)/F$ such that $F \subseteq F(\alpha) \subseteq R \subseteq K$. But $F(\alpha)$ is a field and so $\alpha^{-1} \in F(\alpha) \in R$.

4). Let K/F be a field extension and supposed $\alpha \in K$ is algebraic over F. Show that if $\deg(m_{\alpha,F}(x))$ is odd then $F(\alpha^2) = F(\alpha)$.

If $\alpha \in F$ then done, so AWLOG: $\alpha \notin F$.

Assume $\deg(m_{\alpha,F}(x))$ is odd, and thus $[F(\alpha):F]$ is odd.

ABC: $F(\alpha^2) \neq F(\alpha)$.

This means that $\alpha \notin F(\alpha^2)$, but $F(\alpha)$ is a ring so $\alpha^2 \in F(\alpha)$. So consider the following extensions:

Since α is a root of $x^2 - \alpha^2$, this means that $[F(\alpha) : F(\alpha^2)] \le 2$. But since $\alpha \notin F(\alpha^2)$ this means that $[F(\alpha) : F(\alpha^2)] \ge 2$. Thus $[F(\alpha) : F(\alpha^2)] = 2$:

Thus, $[F(\alpha):F]$ has a power of 2 in it and must be even - contradiction. Therefore, $F(\alpha^2)=F(\alpha)$.

5). Find the splitting field $K \subseteq \mathbb{C}$ for $x^3 - 2$ over \mathbb{Q} and determine all subfields of K.

First, find all roots of $x^3 - 2$ in \mathbb{C} :

$$x^{3} = 2 = 2e^{i2\pi n}$$

$$x = \sqrt[3]{2}e^{i\frac{2\pi}{3}n}$$

$$x = \sqrt[3]{2}, \sqrt[3]{2}\omega, \sqrt[3]{2}\omega^{2}$$

And therefore x^3-2 splits in $Q(\sqrt[3]{2},\omega)$.

We have already showed that $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=3$, so consider the field extensions:

Since x^3-2 has 3 roots in $Q(\sqrt[3]{2},\omega)$ we know that $[Q(\sqrt[3]{2},\omega):\mathbb{Q}]\leq 3!=6$. But clearly $\omega\notin\mathbb{Q}(\sqrt[3]{2})$ and so $\mathbb{Q}(\sqrt[3]{2})$ is properly contained in $Q(\sqrt[3]{2},\omega)$. Since $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=3$ must divide $[Q(\sqrt[3]{2},\omega):\mathbb{Q}]$, which can only be 4, 5, or 6, this forces $[Q(\sqrt[3]{2},\omega):\mathbb{Q}]=6$.

The subfields are derived from the roots. Guard against duplicates:

$$\sqrt[3]{2}, \sqrt[3]{4}$$

$$\omega, \omega^2$$

$$\omega\sqrt[3]{2}, \omega^2\sqrt[3]{4}$$

$$\omega^2\sqrt[3]{2}, \omega\sqrt[3]{4}$$

