Drug Action Modifiers & Adverse Drug Reactions

PHC 721

Winter 2022

Agnieszka Z. Balkowiec

Drug Action Modifiers

The common causes of variation among individuals in response to the same dose of a drug:

- I. Pharmacokinetic differences: varying drug concentrations in the plasma/target site.
- II. Pharmacodynamic differences: number/state of receptors & signal transduction components.
- III. Secondary Factors (e.g., Patient Noncompliance, Neurogenic/Hormonal Tone, etc).
- 1. Body weight and composition (Vd dependent on body mass; obese vs. muscular)
- 2. Age:
- Children often require <u>larger</u> (per body weight) drug doses
 - \uparrow elimination rates \Rightarrow drug dose adjustment on the basis of body surface area
- Geriatric patients show changes in responsiveness to drugs: hyper- or hypo-reactivity
 - \downarrow renal & hepatic function \Rightarrow use lower drug doses
 - \downarrow plasma albumin $\Rightarrow \downarrow$ plasma protein binding of drugs $\Rightarrow \uparrow$ free drug
 - ↓ motility and blood flow to intestines ⇒ slower drug absorption
 - changes in receptor responsiveness (e.g., \downarrow sensitivity of beta-adrenergic)
- 3. Sex & Pregnancy:
 - - ↑ risk of drug- induced cardiac arrhythmias;
 - **Pregnancy:** ↑ drug metabolism;
 - ↑ renal excretion (↑cardiac output & GFR);
 - ↓ binding to albumin
- 4. Race: Differences in EC₅₀ of drugs (e.g., \uparrow EC₅₀ of atropine and beta-blockers in blacks).
- <u>5. Genetics:</u> Drug metabolizing enzyme isoforms; SNPs in structure of enzymes/receptors.

Drug Action Modifiers (Cont'd)

6. Pathological & Psychological States:

- **A. GI Diseases:** ↓ absorption of orally-administered drugs (e.g., achlorhydria, diarrhea, coeliac disease).
- B. Liver Dysfunction (specific hepatic disease, infection, reduced blood flow to the liver, etc):
 - i) \downarrow hepatocellular function \Rightarrow \uparrow bioavailability of drugs with high first-pass metabolism,
 - ii) \downarrow serum albumin $\Rightarrow \downarrow$ protein binding of drugs (e.g., Diclofenac, Warfarin) $\Rightarrow \uparrow$ drug in free form,
 - iii) \downarrow drug metabolism and elimination (e.g., Lidocaine, Morphine) $\Rightarrow \uparrow$ plasma drug concentration & \uparrow duration of drug action ($\Rightarrow \uparrow$ drug half-life),
 - iv) Prodrugs with hepatic metabolism for activation (e.g., Bacampicillin) may become less effective,
 - v) \downarrow biliary excretion of drugs
 - vi) Insidious effects of drugs that are potentially toxic to their primary organs of elimination (e.g., Acetaminophen accumulation⇒ hepatic necrosis⇒ further impairment of drug metabolism)

C. Kidney Disease:

- i) \downarrow clearance of drugs that are primarily excreted unchanged $\Rightarrow\uparrow$ drug half-life ($\Rightarrow\uparrow$ dosage interval),
- ii) \downarrow serum albumin $\Rightarrow \downarrow$ protein binding of acidic drugs $\Rightarrow \uparrow$ drug in free form,
- iii) \downarrow excretion of inactive metabolites \Rightarrow \uparrow risk of untoward reactions,
- iv) renal failure \Rightarrow \uparrow permeability of blood-brain barrier \Rightarrow \uparrow effectiveness of centrally-acting drugs (e.g. opiates, barbiturates, benzodiazepines); GFR $\downarrow \downarrow \downarrow \Rightarrow$ loop and thiazide diuretics ineffective.

D. Congestive Heart Failure:

- i) mucosal edema, vasoconstriction $\Rightarrow \downarrow$ drug absorption from the GI tract,
- ii) \downarrow perfusion $\Rightarrow \downarrow$ Vd (but \uparrow Vd for some drugs due to \uparrow extracellular fluid),
- iii) \downarrow liver perfusion, \downarrow GFR/ \uparrow tubular reabsorption $\Rightarrow \downarrow$ drug elimination $\Rightarrow \uparrow$ drug half-life
- **E. Thyroid Disease (non-pharmacokinetic effects):** Hypothyroidism $\Rightarrow \uparrow$ sensitivity to CNS depressants; Hyperthyroidism $\Rightarrow \uparrow$ systemic effects of Epinephrine; \downarrow potency of morphine
- **F. Anxiety:** ↑ requirement for general anesthetics

Drug Action Modifiers (Cont'd)

7. Drug Factors:

- Variables in Drug Administration the only factors that are totally under the control of the clinician
 - Dose, Drug Formulation, Route of Administration
 - Timing of Administration
 - Avoidance of disturbing side effects if a sedative agent can be given shortly before sleep (e.g., the vestibular component of nausea associated with opioid analgesics);
 - Scheduling of doses with (\downarrow gastrointestinal upset) or between (\uparrow absorption) meals
- **Drug Tolerance:** A state of decreased responsiveness $\Rightarrow \uparrow$ drug dose to produce a given response.
- A. Natural: Individual is inherently less sensitive to the drug (e.g., blacks are tolerant to mydriatics),
- B. Acquired: Loss of therapeutic efficacy after prolonged/intensive use of a drug
- Pharmacokinetic: the effective drug concentration is diminished; e.g. metabolic enzyme induction
- Pharmacodynamic: the reaction to a given drug concentration is reduced (e.g., ↓ receptors)
- Immune: antibodies bind to the drug
- C. Cross-Tolerance: The development of tolerance to pharmacologically related drugs (e.g. alcoholics are tolerant to barbiturates and general anesthetics).
- D. Tachyphylaxis: rapid development of tolerance when doses of a drug are repeated quickly

Drug Interactions

For patients taking 2 drugs, the risk of a toxic drug interaction is approximately 15%. This risk increases to 40% and 80% (!!!) when the patient takes 5 and 7(+) drugs, respectively....

The Most Dangerous Drug Combinations Relevant to Dentistry:

Epinephrine in Local Anesthetics with:

Propranolol (non-selective beta-adrenergic antagonist)

NSAIDs with:

Diuretics and Renin-Angiotensin-Aldosterone System inhibitors (triple therapy)

Lithium (mood stabilizer-Bipolar Disorder)

Warfarin (anticoagulant) with:

Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)

Metronidazole and Fluconazole

Sulfonamides, Macrolide and Quinolone antibiotics

Mechanisms:

- A competition leading to pharmacologic interaction resulting in a detrimental response
 - Cytochrome P450 enzyme system polymorphisms, enzyme inhibition or induction;
- A medication prescribed in excessive amounts;
- Untoward consequences despite being correctly prescribed
 - Absorption and Metabolism variability:

Age, Genetic variation, pH in the GI tract, other health conditions, etc.

Adverse Drug Effects Definition

Any undesirable consequence of drug administration.

<u>ALL</u> drugs are capable of producing adverse effects. The risk increases with **increasing the dose, multiple drug therapy** & **in the elderly**.

"It is the dose which distinguishes a remedy from a poison"

Paracelsus (1493-1541)

Adverse drug effects can be minimized by:

- 1. Using appropriate dose, route and frequency of drug administration based on patient's parameters;
- 2. Adopting correct drug administration techniques (e.g., NSAIDs not to be given on empty stomach);
- 3. Considering patient's past history of drug reactions and allergic diseases ($\Rightarrow\uparrow$ risk of drug allergies);
- 4. Eliminating the possibility of drug interactions when the patient takes other medication;
- 5. Carrying out laboratory monitoring (e.g., prothrombin time/INR with Warfarin).

Adverse Drug Effects

Major Categories

Side Effects, Secondary Effects, Toxicity/Poisoning/Extension Effects, Intolerance, Idiosyncrasy, Allergy, Photosensitivity, Dependence & Withdrawal Reactions, Terato-/Carcino-/Muta-genicity, Drug-Induced Diseases (latrogenic)

Selected Categories

1. Side Effects

- Can be predicted from the pharmacological profile of a drug, occur at therapeutic doses and reduction in dose usually ameliorates the symptoms (dose-dependent).
- May be based on the same action as the therapeutic effect (e.g., *Xerostomia* by **Atropine**; *qastric mucosal damage* by **NSAIDs**; *cardiac depression* by **Lidocaine**).
- May also be based on a different facet of action (e.g., sedative effect of **Promethazine**, unrelated to its anti-allergic action).
- An effect may be therapeutic in another context (e.g., Xerostomia induced by Atropine in control of salivation; Constipation by Codeine in traveler's diarrhea).

2. Toxicity / Poisoning/ Extension Effects

- Excessive pharmacological action of the drug due to over-dosage or prolonged use.
- Absolute over-dosage: accidental, homicidal, suicidal (analgesics, antidepressants, alcohol).
- Relative over-dosage: usual dose, but decreased elimination (e.g., renal failure).
- May result from extension of the therapeutic effect (e.g., Insulin hypoglycemia;
 Warfarin, Heparin spontaneous bleeding; Furosemide hypovolemia)

Adverse Drug Effects Selected Categories (Cont'd)

3. Drug Allergy

- <u>Immunologically-mediated</u> reaction producing stereotype symptoms (similar to food/protein allergy, allergic diseases) which are <u>unrelated</u> to pharmacodynamic effects of the drug.
- Allergic reactions can occur with very small doses (dose-independent; 'drug hypersensitivity').
- Allergic reactions cannot be produced in not sensitive individuals at any dose.
- <u>Prior sensitization is necessary</u>; a latent period (>1-2 weeks) after the first exposure.
- Drugs of importance to dentistry and commonly implicated in allergic reactions: **Penicillins, Sulfonamides, Cephalosporins, Tetracyclines, Local Anesthetics, Salicylates**

4. Teratogenicity

- The capacity of a drug to cause fetal abnormalities when administered to the pregnant woman.
- No drug can be declared to be absolutely safe during pregnancy all drugs should be avoided unless there are compelling reasons for their use.
- In contrast to adults, drug effects on embryo are often irreversible:
- Failure of pregnancy (0-20 days);
- Deformities (21 days-the end of the First Trimester-the most vulnerable period-Organogenesis)
 - ⇒ Emergency Dental Tx only; Avoid Benzodiazepine Sedatives- known human teratogens)
- Developmental & Functional Abnormalities (56 days -)
- (e.g., discolored/deformed teeth and retarded bone growth by **Tetracyclines**; cleft lip/palate by **Phenytoin** and **anticancer drugs (Methotrexate)**; premature closure of ductus arteriosus by **NSAID**s)