Mafi2	# 1	$\underline{\mathrm{Mafi}2}$	# 2
	Definition: Assoziativität, Kommutativität, Idempotenz und Absorption		Vollständige Induktion
Mafi2	# 3	Mafi2	# 4
	Satz vom kleinen Gauss		Definition von $n!$ und $\binom{n}{k}$
Mafi2	# 5	Mafi2	# 6
	Definition Gruppe		Definition: Körper
Mafi2	# 7	Mafi2	# 8
	Definition: Geordnete Menge		${\mathbb R}$ als linear geordneter Körper

- 1. Induktionsanfang: $A(n_0)$ ist richtig.
- 2. Induktionsschritt: Für jede $n \geq n_0$, für das A(n) wahr ist, ist auch A(n+1) wahr.
- # 1 Antwort

 $A \lor (B \lor C) \equiv (A \lor B) \lor C$ (Assoziativität) $A \lor B \equiv B \lor A$ (Kommutativität) $A \lor A \equiv A$ (Idempotenz) $A \land (A \lor B) \equiv A$ (Absorption)

4 Antwo

$$\binom{n}{k}=\frac{n!}{(n-k)!\cdot k!} \text{ für } n\geq k\geq 0$$

$$n!=\prod_{k=1}^n k=1\cdot 2\cdot 3\cdot \ldots\cdot n, \text{ für } n\geq 1, \text{ sowie } 0!=1$$

3 Antwort

Sei $S(n):=1+2+3+\ldots+n,$ dann gilt für alle $n\in\mathbb{N}$: $S(n)=\frac{n\cdot(n+1)}{2}$

#6 Antwort

Auf einer Menge G sind zwei Verknüpfungen + und \cdot mit folgenden Eigenschaften gegeben:

- \bullet (K1) (G,+) ist eine kommutative Gruppe mit neutralem Element 0
- (K2) $(G \setminus \{0\}, \cdot)$ ist eine kommutative Gruppe mit neutralem Element 1.
- (K3) $\forall x,y,z\in G:x\cdot (y+z)=(x\cdot y)+(y\cdot z)$ (Distributivgesetze) dann ist $(G,+,\cdot)$ ein Körper.

5 Antwort

Sei G eine Menge und \circ eine Verknüpfung auf G (d.h. $\forall x,y \in G: x \circ y \in G, x \circ y$ ist eindeutig). (G, \circ) ist eine Gruppe, wenn folgende Eigenschaften erfüllt sind:

- (G1) $\forall x, y, z \in G : (x \circ y) \circ z = x \circ (y \circ z)$ (Assoziativität)
- (G2) Es gibt ein Element $n \in G$ mit der Eigenschaft $\forall x \in G : n \circ x = x \circ n = x$ (Existenz des neutralen Elements)
- (G3) $\forall x \in G \ \exists ! \ \overline{x} \in G : x \circ \overline{x} = \overline{x} \circ x = n$ (Existenz des inversen Elements)

Falls zusätzlich gilt:

• (G4) $\forall x,y \in G: x \circ y = y \circ x$ (Kommutativität) so spricht man von einer kommutativen (oder abelschen) Gruppe

8 Antwort

Es existiert eine lineare Ordnung \leq ("kleiner oder gleich") auf $\mathbb R$, so dass $(\mathbb R, \leq)$ eine linear geordnete Menge mit folgenden Eigenschaften ist:

- 1. $\forall x, y, z \in \mathbb{R} : x \leq y \Rightarrow x + z \leq y + z$
- 2. $\forall x, y, z \in \mathbb{R} : x < y \land 0 < z \Rightarrow xz < yz$

7 Antwort

Sei M eine Menge und \sim eine Relation auf M (d.h. eine Teilmenge von $M \times M$). Für $(x,y) \in \sim$ schreiben wir $x \sim y$. Eine Relation \sim heißt eine Ordnung und (M,\sim) ist eine geordnete Menge, falls folgende Bedingungen erfüllt sind:

- i) $\forall x \in M : x \sim x$ (Reflexivität)
- ii) $\forall x, y \in M : x \sim y \land y \sim x \Rightarrow x = y$ (Antisymmetrie)
- iii) $\forall x, y, z \in M : x \sim y \land y \sim z \Rightarrow x \sim z$ (Transitivität)

Gilt darüber hinaus:

• iv) $\forall x,y \in M: x \sim y \vee y \sim x$, so heißt \sim eine linearte (oder totale) Ordnung und (M,\sim) eine linear (oder total) geordnete Menge.

$\underline{\mathrm{Mafi}2}$	# 9	Mafi2	# 10
	Definition des Betrag		Eigenschaften des Betrags
Mafi2	# 11	Mafi2	# 12
	Bernoullische Ungleichung		Definition: Beschränkte Menge
Mafi2	# 13	Mafi2	# 14
	Definition: Supremum und Infimum		Intervall schachtelung
Mafi2	# 15	Mafi2	# 16
	Definition: Konvergente Folge		Definition: divergente Folge

9 Antwort

Für $a, x, \epsilon \in \mathbb{R}$ mit $\epsilon > 0$ gilt:

- 1. $\forall x \in \mathbb{R} : |x| \ge 0 \land (|x| = 0 \Rightarrow x = 0)$
- 2. $\forall x, y \in \mathbb{R} : |x \cdot y| = |x| \cdot |y|$
- 3. $\forall x, y \in \mathbb{R} : |x + y| \le |x| + |y|$
- 4. $|x| < \epsilon \Leftrightarrow x < \epsilon \text{ und } -\epsilon < x \Leftrightarrow -\epsilon < x < \epsilon$
- 5. $|x-a| < \epsilon \Leftrightarrow a \epsilon < x < a + \epsilon$
- 6. die Aussagen 4. und 5. gerlten auch, wenn < durch < ersetzt

 $|x| = \begin{cases} x, & \text{falls } x \ge 0 \\ -x, & \text{falls } x < 0 \end{cases}$

Antwort

der (Absolut-) Betrag von x.

Für $x \in \mathbb{R}$ heisst

12

Antwort

11

Eine Teilmenge $A \subseteq \mathbb{R}$ heißt nach oben (bzw. unten) beschränkt, wenn es eine Konstante $K \in \mathbb{R}$ gibt, so dass $x \leq K$ (bzw. $x \geq K$) für

Man nennt K obere (bzw. untere) Schranke von A.

Die Menge A heißt beschränkt, wenn sie nach oben und nach unten beschränkt ist.

Für alle $x \in \mathbb{R}$ mit $x \ge -1$ und alle $n \in \mathbb{N}_0$ gilt:

 $(1+x)^n \ge 1 + nx$

14

Antwort

Eine Intervallschachtelung ist eine Folge von abgeschlossenen Intervallen I_1, I_2, I_3, \ldots mit folgenden Eigenschaften:

- 1. $I_{n+1} \subset I_n$ für n = 1, 2, 3, ...
- 2. Zu jedem $\epsilon > 0$ gibt es ein Intervall I_n mit $|I_n| < \epsilon$

13

Sei A eine Teilmenge von \mathbb{R} . Eine Zahl $K \in \mathbb{R}$ heißt Supremum (bzw. Infimum) von A, falls K die kleinste obere (bzw größte untere) Schranke von A ist. Dabei heißt K die kleinste obere Schrank, falls

Antwort

- 1. K ist eine obere Schranke
- 2. für jede obere Schranke K' von A gilt $K \leq K'$

(Analog für größte Untere Schranke).

Jede nichtleere Teilmenge A von R hat höchstens ein Supremum und höchstens ein Infimum. D.h. das Supremum (bzw. Inifimum) von A ist, falls vorhanden eindeutig und wird mit sup(A) (bzw. inf(A)) bezeichnet.

16

Antwort

Eine Folge $f = (a_n)_{n \in \mathbb{N}}$ heißt bestiummt divergent gegen ∞ , falls ein $n_0 \in \mathbb{N}$ existiert, so dass für alle $n \geq n_0, \ a_n > 0$ und die Folge $\left(\frac{1}{a_n}\right)_{n\in\mathbb{N}}$ gegen 0 konvergiert. (entsprechend kann man Divergenz gegen $-\infty$ definieren)

15

Antwort

Eine Folge $f = (a_n)_{n \in \mathbb{N}}$ heißt konvergent gegen $a \in \mathbb{R}$, falls gilt:

$$\forall \epsilon > 0 \; \exists \; n_0 \in \mathbb{N} : |a_n - a| < \epsilon \text{ für alle } n \geq n_0$$

Mafi2	# 17	$\underline{\mathrm{Mafi}2}$	# 18
	Beschränkheit und Konvergenz von Folgen		Rechenregeln für Folgen
Mafi2	# 19	Mafi2	# 20
110112	11 10	110112	<i>II </i>
	${ m Teilfolge}$		Konvergenz von Teilfolgen
Mafi2	# 21	Mafi2	# 22
	Divergenzkriterium		${\bf Monotoniek riterium}$
Mafi2	# 23	Mafi2	# 24
	Monotone Teilfogen		Satz von Bolzano-Weierstraß

Seien $f = (a_n)_{n \in \mathbb{N}}$ und $g = (b_n)_{n \in \mathbb{N}}$ zwei Folgen und $c \in \mathbb{R}$, dann lefinieren wir:

- 1. $f + g = (a_n)_{n \in \mathbb{N}} + (b_n)_{n \in \mathbb{N}} = (a_n + b_n)_{n \in \mathbb{N}}$
- 2. $c \cdot f = c \cdot (a_n)_{n \in \mathbb{N}} = (c \cdot a_n)_{n \in \mathbb{N}}$
- 3. $f \cdot g = (a_n)_{n \in \mathbb{N}} \cdot (b_n)_{n \in \mathbb{N}} = (a_n \cdot b_n)_{n \in \mathbb{N}}$
- 4. $\frac{f}{g} = \frac{(a_n)_{n \in \mathbb{N}}}{(b_n)_{n \in \mathbb{N}}} = \left(\frac{a_n}{b_n}\right)_{n \in \mathbb{N}}$, falls $b_n \neq 0$ für alle $n \in \mathbb{N}$

Jede konvergente Folge ist beschränkt.

20

Antwort

Jede Teilfolge $(a'_{n_k})_{k\in\mathbb{N}}$ einer konvergenten Folge $(a_n)_{n\in\mathbb{N}}$ ist konvergent und es gilt

$$\lim_{k \to \infty} \left(a'_{n_k} \right) = \lim_{k \to \infty} \left(a'_n \right) = a$$

19 Antwort

Sei (a_{n_k}) eine Folge und $n_1 < n_2 < \dots$ eine aufsteigende unendliche Folge natürlicher Zahlen, dann heißt $(a_{n_k})_{k \in \mathbb{N}} = a_{n_1}, a_{n_2}, \dots$ eine Teilfolge der Folge $(a_n)_{n \in \mathbb{N}}$

11.00

Antwort

Jede beschränktê monotone Folge ist konvergent. Genauer: Ist $f=(a_n)_{n\in\mathbb{N}}$ monoton wachsend und nach oben beschränkt, so ist f konvergent und es gilt:

$$\lim_{n\to\infty} (a_n) = \sup \{a_n | n \in \mathbb{N}\}\$$

21

Antwort

Besitzt eine Folge $(a_n)_{n\in\mathbb{N}}$

- ullet eine divergente Teilfolge oder
- zwei konvergente Teilfolgen $(a'_{n_k})_{k\in\mathbb{N}}$ und $(a''_{n_l})_{l\in\mathbb{N}}$ mit $\lim_{k\to\infty}(a'_{n_k})\neq \lim_{l\to\infty}(a''_{n_l})$

so ist die Folge divergent.

24

Antwort

#~23

Antwort

Jede beschränkte Folge besitzt eine konvergente Teilfolge.

Jede Folge enthält eine monotone Teilfolge.

Mafi2	# 25	Mafi2	# 26
	$H\ddot{a}$ ufungspunkt		Cauchy-Folge
N. CO	// 25	N. CO	// 2 0
Mafi2	# 27	Mafi2	# 28
	Eigenschaften von Cauchy-Folgen		Konvergenz der Wurzelberechnung
$\frac{\mathrm{Mafi}2}{}$	# 29	$\frac{\mathrm{Mafi}2}{}$	# 30
	Definition: Reihe		Leibniz-Kriterium
	Definition. Teme		Beloinz-Kilvertuin
Mafi2	# 31	$rac{ m Mafi2}{}$	#~32
	Konvergenz absolut konvergenter Reihen		${\it Majorantenkriterium}$

Für eine Folge $f=(a_n)_{n\in\mathbb{N}}$ heißt a ein Häufungspunkit, wenn es eine Teilfolge von f gibt, die gegen a konvergiert.

Antwort

 $\forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : |a_n - a_{n_0}| < \epsilon$

$$\forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : |a_n - a_{n_0}| < \epsilon$$

Eine Folge $f = (a_n)_{n \in \mathbb{N}}$ heißt Cauchy-Folge, wenn gilt

28

Antwort

Seien a > 0 und $x_1 > 0$ reele Zahlen. Sei $(x_n)_{n \in \mathbb{N}}$ definiert als

$$x_{n+1} = \left(x_n + \frac{a}{x_n}\right)$$

Dann konvergiert $(x_n)_{n\in\mathbb{N}}$ gegen \sqrt{a} (d.h. $x^2=a$)

27

25

Antwort

- Jede konvergente Folge ist eine Cauchy-Folge.
- Jede Cauchy-Folge ist beschränkt.
- Besitzt eine Cauchy-Fole eine konvergente Teilfolge, so ist sie selbst konvergent.
- Jede Cauchy-Folge ist kovergent.
- Eine Folge $(a_n)_{n\in\mathbb{N}}$ ist genau dann konvergent, wenn sie eine Cauchy-Folge ist.

30

Antwort

Sei $(a_n)_{n\in\mathbb{N}}$ eine monoton fallende Folge nichtnegativer Zahlen, mit

$$\lim_{k \to \infty} (a_k) = 0$$

Dann konvergiert die alternierende Reihe

$$\sum_{k=1}^{\infty} (-1)^k \cdot a_k$$

29

Antwort

Man nennt den formalen Ausdruck

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \dots$$

mit $a_k \in \mathbb{R}$ eine unendliche Reihe und $s_n = \sum_{k=1}^n a_k$ die n-te Teilsumme. Wenn die Folge der Teilsummen konvergiert, so heißt die Reihe konvergent. Eine nicht konvergente Reihe heisst divergent. Konvergiert sogar $\sum_{k=1}^{\infty} |a_k|$, so nennt man die Reihe absolut konvergent.

Antwort

31

Antwort

Sei $\sum_{k=1}^{\infty} c_k$ eine konvergente Reihe mit ausschliesslich nicht negativen Gliedern und $(a_n)_{n\in\mathbb{N}}$ eine Folge mit $a_k \leq c_k$ für alle $k \in \mathbb{N}$, dann konvergiert die Reihe $\sum_{k=1}^{\infty} a_k$ absolut.

Wenn die Reihe $\sum_{k=1}^{\infty} a_k$ absolut konvergiert, so konvergiert sie auch im gewöhnlichen Sinne.

Mafi2	# 33	Mafi2	# 34
	${\bf Wurzelkriterium}$		${\bf Quotientenkriterium}$
Mafi2	# 35	Mafi2	# 36
	Umordnung in einer Reihe		
Mafi2	# 37	Mafi2	# 38
	Cauchy-Produkt		Konvergenz von Potenzreihen
Mafi2	# 39	<u>Mafi2</u>	# 40
	Konvergenz von $\sum_{k=1}^{\infty} q^k$		Definition: injektiv, surjektiv und bijektiv

Sei $\sum_{k=1}^{\infty} a_k$ eine Reihe mit $a_k \neq 0$ für alle $k \geq n_0$. Es gebe eine reelle Zahl $q \in \mathbb{R}$ mit 0 < q < 1, so dass $|\frac{a_{k+1}}{a_k}| \leq q \ \forall k \geq n_0$, dann ist die Reihe absolut konvergent.

Es muss gelte:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$$

Sei $\sum_{k=1}^{\infty}a_k$ eine Reihe. Gibt es ein $c\in\mathbb{R}$ und ein $q\in\mathbb{R}$ mit $0\leq q<1$, so dass $|a_k|\leq cq^k$ $\forall k\in\mathbb{N}$, dann ist die Reihge absolut konvergent.

Also muss gelten:

$$\lim_{n \to \infty} \sqrt[n]{a_n} < 1$$

36

Antwort

Antwort

Für jedes $x \in \mathbb{R}$ ist die Exponentialreihe

$$exp(x) = \sum_{k=1}^{\infty} \frac{x^k}{k!}$$

absolut konvergent.

Sei $\sum_{k=1}^{\infty} a_k$ eine absolut konvergente Reihe. Dann konvergiert jede Umordnung der Glieder der Reihe gegen denselben Grenzwert.

38

Antwort

Konvergiert eine Potenzreihe P in einem Punkt $x_0 \neq 0$, so konvergiert sie in jede, Punkt $|x| < |x_0|$ absolut.

Seien Sei $\sum_{k=1}^{\infty}a_k$ und $\sum_{k=1}^{\infty}b_k$ absolut konvergente Reihen. Für $n \in \mathbb{N}$ sei $c_n = \sum_{k=1}^{\infty} a_k \cdot b_{n-k} = a_0 \cdot b_n + a_1 \cdot b_{n-1} + \ldots + a_n \cdot b_0$ Dann ist die Reihe

$$\sum_{n=1}^{\infty} c_n = \left(\sum_{k=1}^{\infty} a_k\right) \cdot \left(\sum_{l=1}^{\infty} b_l\right)$$

absolut konvergent.

40

Antwort

Eine Funktion $f: A \to B$ heißt

- $\bullet\,$ injektiv, wenn zu jedem $y\in B$ höchstens ein $x\in A$ mit f(x)=ygehört (d.h. $x_1 neq x_2 \Rightarrow f(x_1) \neq f(x_2)$)
- surjektiv, wenn jedes $y \in B$ als Abbild eines $x \in A$ auftaucht (d.h. $\forall y \in B \ \exists x \in A : f(x) = y$)
- bijektiv, wenn sie injektiv und surjektiv ist.

Die Reihe $\sum_{k=1}^{\infty} q^k$ ist:

- konvergent, falls |q| < 1
- divergent, falls q = -1
- divergent für |q| > 1

$\underline{\text{Mafi}2}$	# 41	<u>Mafi2</u>	# 42
	${\rm Umkehrfunktion}$		Komposition von Funktionen
$\frac{\mathrm{Mafi}2}{}$	# 43	<u>Mafi2</u>	# 44
	Beschränkte Funktion		Kompakte Intervalle
Mafi2	# 45	${ m Mafi}2$	# 46
	Monotone Funktionen		Injektive Funktion
Mafi2	# 47	Mafi2	# 48
	Berührungspunkt		Grenzwerte von Funktionen
	0.1		

41

Antwort

Seien $f:A\to\mathbb{R}$ und $g:B\to\mathbb{R}$ und $f(x)\in B$ für alle $x\in A$. Dann ist die Funktion $f\circ g:A\to\mathbb{R}$ definiert durch

 $(g \circ f)(x) = g(f(x))$

Für eine bijektive Funktion $f:A\to B$ definieren wird die Umkehrfunktion $f^{-1}:B\to A$ als $f^{-1}(y)=x$ genau dann, wenn f(x)=y

44

Antwort

43

Antwort

Unter einem kompakten Intervall versteht man ein abgeschlossenes und beschränktes Intervall $[a,b]\subset\mathbb{R}$.

Eine Funktion $f:A\to\mathbb{R}$ heißt beschränkt, wenn $|f(x)|\le K$ für alle $x\in A$ und ein $K\in\mathbb{R}$.

11. 44

Antwort

45

Antwort

Sei $A \subset \mathbb{R}$ und $f: A \to \mathbb{R}$ eine Funktion. Ist f streng monoton, so ist f injektiv und die Umkehrfunktion $f^{-1}: f(A) \to A$ ist ebenfalls monoton (im gleichen Sinne).

Sei $A\subset \mathbb{R}$ und $f:A\to \mathbb{R}$ eine Funktion.

$$\text{f heisst} \left\{ \begin{array}{l} \text{monoton wachsend} \\ \text{streng monoton wachsend} \\ \text{monoton fallend} \\ \text{streng monoton fallend} \end{array} \right\}, \\ \text{falls} \left\{ \begin{array}{l} f(x) \leq f(x') \\ f(x) < f(x') \\ f(x) \geq f(x') \\ f(x) > f(x') \end{array} \right\}$$

für $x, x' \in A$ mit x < x'

48

Antwort

47

Antwort

Sei $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$ und $a \in \mathbb{R}$ ein Berührungspunkt von A. Man definiert dann $\lim_{x \to a} f(x) = c$, falls für jede Folge $(x_n)_{n \in \mathbb{N}}, x_n \in A$ mit $\lim_{n \to \infty} x_n = a, \lim_{n \to \infty} f(x_n) = c$ gilt.

Sei $A \subset \mathbb{R}$ und $a \in \mathbb{R}$

- a heißt Berührungspunkt von A, falls in jeder ϵ -Umgebung von a (d.h. $U_{\epsilon}(a) = (a \epsilon, a + \epsilon), \epsilon > 0$) mindestens ein Punkt von A liegt.
- a heißt Häufungspunkt, falls in jeder ϵ Umgebung von a unendlich viele Punkte von A liegen.

Mafi2	# 49	Mafi2	# 50
	Stetigkeit		Operationen auf stetigen Funktionen
Mafi2	# 51	Mafi2	# 52
	Stetigkeit und rationale Funktionen		Kompoistion von stetigen Funktionen
Mafi2	# 53	Mafi2	# 54
	${ m Zwischenwertsatz}$		Generalisierung des Zwischenwertsatzes
Mafi2	# 55	Mafi2	# 56
	Generalisierung auf Intervalle		Stetige Funktionen auf kompakten Intervallen

Für 2 stetige Funktionen, $f:A\to\mathbb{R}$ und $g:A\to\mathbb{R}$, die in $a\in A$ stetig sind, Dann sind auch die Funktionen die aus Verknüpfung von f und g mit $+,\cdot$ möglich sind stetig. Ist $g(a)\neq 0$, so ist auch die Funktion $\left(\frac{f}{g}\right)$ in a stetig.

49 Antwort

Sei $f:A\to\mathbb{R}$ eine Funktion und $a\in A.$ Die Funktion f heißt stetig in a, falls

$$\lim_{x \to a} f(x) = f(a)$$

. f heißt stetig (in A), falls f in jedem Punkt von A stetig ist.

52 Antwort

Seien $f:A\to\mathbb{R}$ und $g:B\to\mathbb{R}$ Funktionen mit $f(A)\subset B$. Die funktion f sei in $a\in A$ und Funktion g sein in b=f(a) stetig. Dann ist die Funktion

$$g\circ f:A\to\mathbb{R}$$

in a stetig.

51 Antwort

Jede rationale Funktion ist stetig in ihrem Definitionsbereich.

54 Antwort

Sei $f: [a,b] \to \mathbb{R}$ eine stetige Funktion, $y \in \mathbb{R}$ mit f(a) < y und f(b) > y (bzw. f(a) > y und f(b) < y). Dann existiert ein $c \in (a,b)$ mit f(c) = y.

53 Antwort

Sei $f:[a,b]\to\mathbb{R}$ eine stetige Funktion mit f(a)<0 und f(b)>0 (bzw. f(a)>0 und f(b)<0). Dann existiert einb $c\in(a,b)$ mit f(c)=0.

56

Antwort

55

Antwort

Jede in einem kompakten Intervall stetige Funktion $f:[a,b]\to \mathbb{R}$ ist beschränkt und nimmt ihr Minimum und Maximum an. D.h. es existiert ein $c\in[a,b]$, so dass $f(c)=\sup\{f(x)|x\in[a,b]\}$ und ein Punkt $d\in[a,b]$, so dass $f(d)=\inf\{f(x)|x\in[a,b]\}$

Sei $I\subset\mathbb{R}$ ein Intervall und $f:I\to\mathbb{R}$ eine stetige Funktion. Dann ist auch $I'=f(I)\subset\mathbb{R}$ ein Intervall.

Mafi2	# 57	$\underline{\text{Mafi}2}$	# 58
	$\epsilon-\delta$ —Definition von Stetigkeit		Stetigkeit und Werte $\neq 0$
Mafi2	# 59	Mafi2	# 60
	Stetigkeit und bijektive Abbildungen		Gleichmäßige Stetigkeit
Mafi2	# 61	Mafi2	# 62
	Stetigkeit auf kompakten Intervallen		Eigenschaften des Logarithmus
Mafi2	# 63	Mafi2	# 64
	Defintion der Sinus und Cosinus Funktionen		Eigenschaften von Sinus und Cosinus

57

Sei $f:A\to\mathbb{R}$ stetig im Punkt $a\in A$ und $f(a)\neq 0$. Dann ist $f(x)\neq 0$ für alle x in einer Umgebung von a, d.h. es existiert ein $\delta>0$, so dass $f(x)\neq 0$ für alle $x\in A$ mit $|x-a|<\delta$.

Sei $A\subset\mathbb{R}$ und $f:A\to\mathbb{R}$ eine stetige Funktion f ist genau dann im Punkt $a\in A$ stetig, wenn gilt:

Antwort

Zu jedem $\epsilon > 0$ existiert ein $\delta > 0$, sodass $|f(x) - f(a)| < \epsilon$ für alle $|x - a| < \delta$.

60 Antwort # 59 Antwort

Eine Funktion $f:A\to\mathbb{R}$ heißt in A gleichmässig stetig, wenn gilt: Zu jedem $\epsilon>0$ existiert ein $\delta>0$, so dass $|f(x)-f(x')|<\epsilon$ für alle $x,x'\in A$ mit $|x-x'|<\delta$

Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ stetig und streng monoton (wachsend oder fallend). Sei J = f(I), dann bildet f I bijektiv auf J ab und die Umkehrfunktion $f^{-1}: J \to \mathbb{R}$ ist stetig.

62 Antwort

61

Antwort

 $\ln(e^x) = e^{\ln(x)} = x$ $\ln(1) = 0 \text{ und } \ln(e) = 1$ $\ln(xy) = \ln(x) + \ln(y)$ $\ln(\frac{1}{x}) = -\ln(x)$

Jede auf einem kompakten Intervall stetige Funktion $f:[a,b]\to\mathbb{R}$ ist dort gleichmäßig stetig.

04

Antwort

63

Antwort

 $\bullet \sin^{[}2]x + \cos^2 = 1$

1....

• cos(-x) = cos(x) und sin(-x) = -sin(x)

• $\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$ und $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$

• $cos(x + 2\pi) = cos(x)$ und $sin(x + 2\pi) = sin(x)$

• $\cos(x) = 0 \Leftrightarrow x \in \left\{\frac{\pi}{2} + k\pi | k \in \mathbb{Z}\right\}$ und $\sin(x) = 0 \Leftrightarrow x \in \{k\pi | k \in \mathbb{Z}\}$

Für alle $x\in\mathbb{R}$ sind die Funktionen $\cos:\mathbb{R}\to\mathbb{R}$ und $\sin:\mathbb{R}\to\mathbb{R}$ definiert als:

 $\cos(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$

 und

 $\sin(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$

Mafi2	# 65	Mafi2	# 66
	${\bf Differenzier barke it}$		Differenzierbarkeit einer Funktion
Mafi2	# 67	Mafi2	# 68
	Differenzierbarkeit und Stetigkeit		${\bf Produktregel}$
Mafi2	# 69	Mafi2	# 70
	${\rm Quotienten regel}$		Linearität von Ableitungen
Mafi2	# 71	Mafi2	# 72
	Ableitung der Umkehrfunktion		${ m Kettenregel}$

Eine Funktion $f:A\to\mathbb{R}$ $(A\subseteq\mathbb{R})$ ist in einem Häufungspunkt $a \in A$ differenzierbar, wenn es eine Konstante $c \in \mathbb{R}$ gibt, so dass

$$f(x) = f(a) + c \cdot (x - a) + r(x) \ (x \in A),$$

wobei r(x) eine Funktion mit der Eigenschaft

$$\lim_{x \to a} = \frac{r(x)}{x - a} = 0$$
$$x \neq a$$

. Es gilt in diesem Fall c = f'(a).

$$f'(a) = \lim_{\substack{x \to a \\ x \in A \setminus \{a\}}} \frac{f(x) - f(a)}{x - a}$$

Sei $a \in A \subseteq \mathbb{R}$ und sei $f: A \to \mathbb{R}$ eine Funktion f heißt differenzier-

existiert.

bar, falls der Grenzwert

68

Seien f und g differenzierbare Funktionen. Dann ist $(f \cdot g)'(a) =$ $f'(a) \cdot g(a) + f(a) \cdot g'(a)$

67

Antwort

Ist die Funktion $f: A \to \mathbb{R} \ (A \subseteq \mathbb{R})$ in $a \in A$ differenzierbar, so ist sie in a auch stetig

Sei $f: A \to \mathbb{R}$ und $g: A \to \mathbb{R}$ $(A \subseteq \mathbb{R})$ in $a \in A$ diffbar und $c \in \mathbb{R}$. Es gilt:

$$(f+g)'(a) = f'(a) + g'(a)$$
$$(c \cdot f)'(a) = c \cdot f'(a)$$

Sei $\frac{f}{g}:A\to\mathbb{R}$ mit $g(y)\neq 0\;\forall y\in A$ differenzierbar und es gilt:

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a) \cdot g(a) - f(a) \cdot g'(a)}{g^2(a)}$$

72

Antwort

Seien $f: A \to \mathbb{R}$ und $g: B \to \mathbb{R}$ $(A, B \subseteq \mathbb{R}, f(A) \subseteq B)$ Funktionen f sei in $x \in A$ differenzierbar und g sei in y = f(x) differenzierbar. Dann ist die zusammengesetzte Funktion $g \circ f : A \to \mathbb{R}$ im Punkt x differenzierbar und es gilt:

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$

71

Antwort

Sei $I \subseteq \mathbb{R}$ ein Intervall, das aus mehr als einem Punkt besteht und sei $f: I \to \mathbb{R}$ eine stetige, streng monotone Funktion und $g = f^{-1}$: $J \to \mathbb{R}$ mit J=f(I) deren Umkehrfunktion. Ist f in $x \in I$ differenzierbar und es gilt $f'(x) \neq 0$, so ist g in y = F(x) differenzierbar und es gilt:

$$g'(x) = \frac{1}{f'(x)} = \frac{1}{f'(g(y))}$$

Ableitungen höherer Ordnung	Operationen auf höheren Ableitungen
Ableitungen höherer Ordnung	Operationen auf höheren Ableitungen
Mafi2 # 75	Mafi2 # 76
Lokales Extrema	Notwendige Bedingung für Extrema
Mafi2 # 77	Mafi2 # 78
Satz von Rolle	${\it Mittelwerts atz}$
Mafi2 # 79	Mafi2 # 80
Wachstum einer Funktion	Monotonie von Funktionen

Sei $k \in \mathbb{N}, c \in \mathbb{R}, A \subseteq \mathbb{R}$ und seien die Funktionen $f: A \to \mathbb{R}$ und $g: a \to \mathbb{R}$ in A k-mal differenzierbar. Es gilt:

- $(f+g)^{(k)} = f^{(k)} + g^{(k)}$ und $(f-g)^{(k)} = f^{(k)} g^{(k)}$
- $\bullet \ (c \cdot f)^{(k)} = c \cdot f^{(k)}$
- $(f \cdot g)^{(k)} = \sum_{i=0}^{k} {k \choose i} f^{(i)} \cdot g^{(k-i)}$
- $\bullet \ \left(\frac{f}{g}\right)^{(k)} = \frac{f^{(k)} \sum_{i=0}^{k-1} \left(\frac{f}{g}\right)^{(i)} \cdot g^{(k-i)}}{g}$

Ist ferne $f(A) \subseteq B \subseteq \mathbb{R}$ und $g: B \to \mathbb{R}$ in B k-mal differenzierbar, so ist es auch $g \circ f$ k-mal differenzierbar.

Sei $f:A\to\mathbb{R}$ $(A\subseteq\mathbb{R})$ eine Funktion. Dann ist die k-te Ableitung (bzw. ABleitung k-ter Ordnung) von f definitert als $f^{(k)}$ für $k\in\mathbb{N}$ mit

- $f^{(0)} = f$
- $f^{(k+1)} = (f^{(k)})' : A \to \mathbb{R}$ falls die Ableitung von $f^{(k)}$ in jedem $a \in A$ existiert.

76

Antwort

Die Funktion $f:(a,b)\to\mathbb{R}$ besitze im Punkt $x\in(a,b)$ ein lokales Extremum und sei in x differenzierbar. Dann ist f'(x)=0

75 Antwort

Sei $f:(a,b)\to\mathbb{R}$ eine Funktion f hat in $x\in(a,b)$ ein lokales Maximum (Minimum), wenn ein $\epsilon>0$ exiswtiert, so dass

$$f(x) \ge f(y)$$
 bzw. $f(x) \le f(y)$

für alle y mit $|x-y|<\epsilon$, so spricht man von einem strikten lokalen Maximum (bzw. Minimum).

78

Antwort

Sei a < b und $f: [a,b] \to \mathbb{R}$ eine stetige Funktion, die in (a,n) differenzierbar ist. Dann existiert ein $c \in (a,b)$, sodass

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

77 Antwort

Sei a < b und $f : [a, b] \to \mathbb{R}$ eine stetige Funktion mit f(a) = f(b). f sein in (a, b) differenzierbar. Dann existiert ein $c \in (a, b)$ mit f'(c) = 0.

80

Antwort

- f ist genau dann in [a, b] monoton wachsend, wenn $f'(x) \ge 0$ für alle $x \in (a, b)$
- f ist genau dann in [a,b] monoton fallend, wenn $f'(x) \leq 0$ für alle $x \in (a,b)$
- Gilt f'(x) > 0 für alle $x \in (a, b)$, so ist f streng monoton wachsend und folglich injektiv.
- Gilt f'(x) < 0 für alle $x \in (a, b)$, so ist f streng monoton folgend und folglich injektiv.

79

Antwort

Sei $f:[a,b]\to\mathbb{R}$ eine stetige und in (a,b) differenzierbare Funktion. Für die Ableitung $K^-\leq f'(x)\leq K^\circ+$ für alle $x\in(a,b)$ mit $K^\circ-,K^+\in\mathbb{R}$.

Für alle $c, d \in [a, b]$ mit $c \le d$ gilt:

$$K^{-}(d-c) \le f(d) - f(c) \le K^{+}(d-c)$$

Mafi2	# 81	Mafi2	# 82
	Strenges lokales Maximum		Zweiter Mittelwertsatz
Mafi2	# 83	<u>M</u> afi2	# 84
	Regel von l'Hospital (0\0)		Regel von l'Hospital $(\infty \backslash \infty)$
Mafi2	# 85	Mafi2	# 86
	Schritte der Kurvendiskussion		Taylorsche Formel
Mafi2	# 87		
	Taylor-Reihe		

Seien $f:[a,b]\to\mathbb{R}$ und $g:[a,b]\to\mathbb{R}$ zwei Funktionen, die auf [a,b]

stetig und auf (a,b) differenzierbar sind. Sei ferne $g'(x) \neq 0$ für alle $x \in (a,b)$, dann ist $g(a) \neq g(b)$ und es existiert ein $c \in (a,b)$ mit

Antwort

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

81 Antwort

Sei $f:(a,b)\to\mathbb{R}$ eine differenzierbare Funktion, die im Punkt $x\in(a,b)$ zweimal differenzierbar ist. Falls f'(x)=0 und f''(x)>0 (bzw. f''(x)<0), dann besitzt f in x ein streng lokales Minimum (bzw. Maximum).

84

Antwort

Seien $f:[a,b]\to\mathbb{R}$ und $g:[a,b]\to\mathbb{R}$ zwei Funktionen, die auf [a,b] stetig und auf (a,b) differenzierbar sind. Sei $c\in[a,b]$ und $g'(x)\neq 0$ für $x\in(a,b)\setminus\{c\}$.

Gilt $\lim_{x\to c} f(x) = \infty$ und $\lim_{x\to c} g(x) = \infty$ und existiert $\lim_{x\to c} \frac{f'(x)}{g'(x)} \in \mathbb{R}$, so existiert auch $\lim_{x\to c} \frac{f(x)}{g(x)}$ und es gilt:

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(c)}{g'(c)}$$

83

Antwort

Seien $f:[a,b]\to\mathbb{R}$ und $g:[a,b]\to\mathbb{R}$ zwei Funktionen, die auf [a,b] stetig und auf (a,b) differenzierbar sind. Sei $c\in[a,b]$ und $g'(x)\neq 0$ für $x\in(a,b)\setminus\{c\}$.

Gilt $\lim_{x\to c} f(x) = 0$ und $\lim_{x\to c} g(x) = 0$ und existiert $\lim_{x\to c} \frac{f'(x)}{g'(x)} \in \mathbb{R}$, so existiert auch $\lim_{x\to c} \frac{f(x)}{g(x)}$ und es gilt:

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(c)}{g'(c)}$$

86

Antwort

Sei $f: A \ to\mathbb{R}$ eine in A n+1 mal stetig differenzierbare Funktion und ainA Dann gilt für $x\in A$:

$$f(x) = f(a) + \sum_{k=1}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} + R_{n}(x)$$

wobei es zu jedem $x \in A$ (mindestens) ein $y \in (\min(x, a), \max(x, a))$ mit

 $R_n(y) = \frac{f^{n+1}(y)}{(n+1)!} (x-a)^{n+1}$

gibt. Gilt

$$\lim_{n \to \infty} R_n(y) = 0$$

und konvergiert die Taylor-Formel für $n \to \infty$ so stellt die Taylor-Formel in y die Funktion f dar.

85

Antwort

- 1. Symmetrie
- 2. Verhalten am Rand des Definitionsbereich
- 3. Nullstellen
- 4. Extrempunkte
- 5. Wendepunkte
- 6. Funktionsgraph

87

Antwort

Sei $f:a\to\mathbb{R}$ eine in $a\in A$ beliebig oft differenzierbare Funktion. Dann heisst

$$T[f, a](x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k}$$

die Taylor Reihe von f im Entwicklungspunkt a.