

Funciones reales

Introducción al Cálculo - MAT1107

Rodrigo Vargas

¹Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Chile

²LIES Laboratorio Interdisciplinario de Estadística Social, Pontificia Universidad Católica de Chile, Chile

30 de Marzo de 2022

Definición.

Una función $f: A \rightarrow B$ consta de tres partes:

- un conjunto A llamado el dominio de la función (o el conjunto donde la función está definida),
- un conjunto B llamado el recorrido de la función (o el conjunto donde la función toma valores) y
- una regla que permite asociar de modo bien determinado, a cada elemento $x \in A$, un único elemento $f(x) \in B$, llamado el valor que la función asume en x.

En símbolos, $f: A \rightarrow B$ es función si y solo si

$$(\forall x \in A)(\exists! y \in B)(y = f(x)).$$

EJEMPLO 1 Sea P el conjunto de todos los polígonos del plano, \mathbb{R} el conjunto de los números reales y $f:P\to\mathbb{R}$ la función que asocia a cada polígono x su área f(x).

EJEMPLO 2 Sea T el conjunto de todos los triángulos en el plano y \mathbb{R}^+ el conjunto de los números reales positivos. Consideramos la tentativa de definir la función $f:\mathbb{R}^+\to T$ por la siguiente regla: a cada número real x>0 le hacemos corresponder el triángulo f(x) cuya área es x. Evidentemente hay ambigüedad: dado x>0 hay una infinidad de triángulos cuya área es A. La regla no define una función.

Observación

- y = f(x) se llama **imagen** de x por f o variable dependiente.
- x se llama variable de la función o variable independiente.

Definición.

Dos funciones $f: A \to B$ y $g: A' \to B'$ son iguales si y solo si A = A', B = B' y f(x) = g(x) para todo $x \in A$.

O sea que dos funciones son iguales cuando tienen el mismo dominio, el mismo recorrido y la misma regla de asignación.

EJEMPLO 3 Consideremos las funciones f y g definidas por

$$f(x) = \frac{(x-1)(x+2)}{x-1}$$
 y $g(x) = x+2$.

Aunque a primera vista ambas funciones nos parecen iguales, esto no es así. Ya que no poseen el mismo dominio.

Definición.

El gráfico de una función $f: A \to B$ es el subconjunto G(f) del producto cartesiano $A \times B$ formado por los pares ordenados (x, f(x)) donde $x \in A$ es arbitrario. Es decir,

$$G(f) = \{(x, y) \in A \times B \mid y = f(x)\}.$$

Se sigue de la definición de igualdad de funciones que dos funciones son iguales si y solo si poseen el mismo gráfico.

El gráfico es una curva que está contenida en \mathbb{R}^2 .

Observación Una curva en el plano de coordenadas es la gráfica de una función si y sólo si ninguna recta vertical cruza la curva más de una vez.

EJEMPLO 4 Gráfica de curvas que no son funciones

No es la gráfica de una función

Observación Una función puede especificarse dando sólo la ley y = f(x) que permite calcular la imagen de x. Cuando esto suceda, entenderemos que el dominio de la función es el mayor subconjunto de $\mathbb R$ donde la ley es aplicable para calcular f(x), es decir

$$Dom(f) = \{x \in \mathbb{R} \mid y = f(x) \in \mathbb{R}\}.$$

EJEMPLO 5

$$\mathsf{Dom}(f) = \mathbb{R} \setminus \{-1, 1\} =]-\infty, -1[\cup]-1, 1[\cup]1, \infty[\ .$$

② Si
$$f(x) = \sqrt{x}$$
 entonces $Dom(f) = \mathbb{R}^+ \cup \{0\} = [0, +\infty[$.

EJEMPLO 6 Sea $f: A \to \mathbb{R}$ una función definida por

$$f(x) = \sqrt{\frac{2x-3}{x^2-1}}.$$

Encontrar el dominio de la función real f.

Solución Tenemos que

$$x \in \mathsf{Dom}(f) \Longleftrightarrow f(x) \in \mathbb{R} \Longleftrightarrow \frac{2x-3}{x^2-1} \geqslant 0 \land (x^2-1 \neq 0)$$

Note que $x^2-1 \neq 0 \Longleftrightarrow x \neq \pm 1$. Resolviendo la inecuación racional se ve que

$$\frac{2x-3}{x^2-1} \geqslant 0 \Longleftrightarrow x \in]-1,1[\cup[3/2,\infty[$$
.

Por lo tanto, $\mathsf{Dom}(f) =]-1, 1[\cup \left\lceil \frac{3}{2}, \infty \right\rceil.$

Observación Una función puede especificarse dando la ley y = f(x) que permite calcular la imagen de x y su dominio sin especificar el conjunto donde la función toma valores, es decir sin indicar su recorrido. Cuando esto suceda, entenderemos que el recorrido de la función es el menor subconjunto B de $\mathbb R$ en donde se cumpla que para todo $y \in B$ exista $x \in A$ tal que y = f(x). Es decir, asumiremos que

$$\mathsf{Rec}(f) = \{ y \in \mathbb{R} \mid \mathsf{existe} \ x \in \mathsf{Dom}(f) \ \mathsf{tal} \ \mathsf{que} \ y = f(x) \} \ .$$

EJEMPLO 7 Sea $f: [1, \infty[\rightarrow B, f(x) = \sqrt{x-1} + 3]$. Hallar el recorrido de f.

Solución Tenemos que

$$y \in \text{Rec}(f) \iff \text{existe } x \in \text{Dom}(f) \text{ tal que } f(x) = y$$
 $\iff \text{existe } x, \ x \geqslant 1 \text{ tal que } \sqrt{x-1} + 3 = y$

De $\sqrt{x-1}+3=y$ se obtiene que $x=(y-3)^2+1$. Vemos que $x\geqslant 1$, por lo tanto $x\in \mathsf{Dom}(f)$, además este x debe ser tal que f(x)=y.

$$f(x) = f((y-3)^2 + 1) = \sqrt{(y-3)^2 + 1 - 1} + 3 = \sqrt{(y-3)^2 + 3}$$

= $|y-3| + 3$

para que esto resulte igual a y, debe ser necesariamente $y \geqslant 3$. Luego, $\text{Rec}(f) = [3, \infty[$.

EJEMPLO 8 Determine el recorrido de la función $f : \mathbb{R} \to B$ definida por $f(x) = \frac{x}{x^2 + 1}$.

Solución Tenemos que

$$y \in \operatorname{Rec}(f) \iff \operatorname{existe} x \in \mathbb{R} \text{ tal que } y = \frac{x}{x^2 + 1}$$

$$\iff \operatorname{existe} x \in \mathbb{R} \text{ tal que } x = \frac{1 \pm \sqrt{1 - 4y^2}}{2y}$$

$$\iff 1 - 4y^2 \geqslant 0 \land y \neq 0$$

$$\iff -\frac{1}{2} \leqslant y \leqslant \frac{1}{2} \land y \neq 0$$

Notemos que f(0) = 0 por lo tanto $0 \in Rec(f)$, por lo tanto

$$B = \operatorname{\mathsf{Rec}}(f) = \left[-rac{1}{2}, rac{1}{2}
ight] \ .$$