Linear algebra

Matrices

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

Vectors

```
\begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix}
```

 $\begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$

a sequence of numbers

vector multiplication

vector addition

vector product

inner product outer product tensor product

inner product

$$a = [2, 3]$$

 $b = [3, 0]$

algebraic: $a \cdot b = 2x3 + 3x0$

geometric: $a \cdot b = |a||b|\cos(\theta)$

How to measure informational similarity between a and b?

- $cosine(\theta)$
- a-b distance

inner product

$$a \cdot b = 4x3x\cos(\pi/2)$$

$$a \cdot b = 4x3xcos(0)$$

correlation

-1≤r≤1

correlation = cosine

$$a \cdot b = |a||b|\cos(\theta)$$

 $\rightarrow \cos(\theta) = a \cdot b / |a||b|$

inner product signal vectors

a = [0, 0.85, 1, 0.85, 0, -0.85, -1, -0.85, 0]

0°

b = [0, 0.85, 1, 0.85, 0, -0.85, -1, -0.85, 0]

$$a \cdot b = ?$$

inner product signal vectors

$$a = [0, 0.85, 1, 0.85, 0, -0.85, -1, -0.85, 0]$$

$$b = [1, 0.85, 0, -0.85, -1, -0.85, 0, 0.85, 1]$$

$$a \cdot b = ?$$

inner product signal vectors

