Fractales et dimension de Hausdorff

Mechineau Alexandre

25 avril 2016

Résumé
Je vais définir ce qu'est un ensemble auto-similaire puis chercher à caractériser sa dimension dans l'espace.

Table des matières

1	Introduction	2
2	Ensemble auto-similaire et fractales	3
	2.1 Rappel	3
	2.2 Ensemble auto-similaire	4
	2.3 Ensemble auto-similaire et fractale	6
3	Dimension des ensembles auto-similaires	7
	3.1 Dimension de Hausdorff	7
4	Exemple de fractale	8

Introduction

Ensemble auto-similaire et fractales

2.1 Rappel

Dans un premier temps je vais définir ce qu'est un espace métrique. Puis, je rappellerais ce qu'est les notions d'espaces complets et d'espace compact. Enfin, je rappellerai la notion d'application contractante et enoncerai le Théorème du points fixe de Banach(Picard).

Définition 1. On appelle (E, d) un **espace métrique** si E est un ensemble et d une distance sur E.

On appelle distance sur un ensemble E une application :

$$d: E^2 \longrightarrow \mathbb{R}$$

Tel que pour tout $x,y,z \in E$:

- 1. d(x, y) = d(y, x)
- 2. $d(x,y) = 0 \Longrightarrow x = y$
- 3. $d(x,z) \le d(x,y) + d(y,z)$

Définition 2. Un espace métrique (E,d) est dit **complet** si toute suite de Cauchy de E admette une limite dans E.

Définition 3. Un espace métrique (E,d) est dit **précompact** si pour tout $\varepsilon > 0$, on peut peut recouvrir E par un nombre fini de boule ouverte de rayon ε .

Définition 4. Un espace métrique (E, d) est dit **compact**

Proposition 1. Un espace métrique est compact si et seulement si il est complet et précompact.

Définition 5. Soit (E, d) un espace métrique et K un sous-espace de E.

— Un ensemble fini A est appelé **r-recouvrement** de K si et seulement si :

$$\bigcup_{x \in A} \mathcal{B}_r(x) \supseteq K$$

— K est dit **précompact** si et seulement si il existe un r-recouvrement de K pour tout r > 0.

J'ai donc définit ce qu'est un espace métrique et je l'ai décrit. Je peux donc définir ce qu'es une application contractante.

Définition 6. Une application f d'un espace métrique (E, d) est dite **contractante** si:

$$\exists k \in \mathbb{R}^+, k < 1 \mid \forall x, y \in E, d(f(x), f(y)) \leqslant k \times d(x, y) \tag{2.1}$$

Remarque. Une application est contractante par rapport à une distance donnée!

Comme nous le verrons plus tard, cette propriété de contraction est la clé pour pouvoir définir ce que sont les fractales définies par IFS.

Proposition 2. — Les homothéties de rapport inférieur à 1 sont des applications contractantes. — Les similitudes de rapport inférieur à 1 sont des applications contractantes.

Ces deux propriétés sont essentielles par la suite. En effet, l'ensemble des fractales qui seront étudiées sont définies par de telle applications.

Théorème 1 (Théorème du points fixe de Banach(Picard)). Soit (E,d), un espace métrique complet et f une application k-contractante de E dans E. Alors, il existe un unique points fixe x^* de f:

$$x^* \in E \mid x^* = f(x^*)$$

De plus, pour toute suite d'éléments $(x_n)_{n\in\mathbb{N}}$ de E vérifiant la récurrence :

$$x_{n+1} = f(x_n)$$

 $On \ a$

$$d(x_n, x^*) \le \frac{k^n}{1 - k} d(x_0, x_1) \tag{2.2}$$

Donc, la suite (x_n) converge vers x^* . On note aussi, $\forall a \in E, (f^n(a))_{n \geq 0} \longrightarrow x^*$ si x^* est un points fixe.

Démonstration. Soit (X, d) un espace complet.

Soit f une application k-contractante de E dans E.

On pose $m, n \in \mathbb{N} \mid m > n, a \in E$

$$d(f^{n}(a), f^{m}(a)) \leq d(f^{n}(a), f^{n+1}(a)) + \ldots + d(f^{m-1}(a), f^{m}(a))$$
 (Inégalité triangulaire)
$$\leq (k^{n} + \ldots + k^{m-1})d(a, f(a))$$
 (2.1)
$$\leq \frac{k^{n}}{1 - k}d(a, f(a))$$

La série $(f^n(a))_{n\geq 0}$ est de Cauchy. En effet, elle converge vers x^* quand $n \to \infty$. Or (E,d) est un espace complet donc $x^* \in E$ (Définition 2). On a alors $x^* = f(x^*)$

Unicité du point fixe :

$$f(x) = x \text{ et } f(y) = y$$

$$d(x,y) = d(f(x),f(y)) \le k \times d(x,y)$$

$$d(x,y) \le k \times d(x,y) \qquad \Rightarrow d(x,y) = 0 \Rightarrow x = y \quad \text{(Unicit\'e)}$$

2.2 Ensemble auto-similaire

Théorème 2 (Unicité et existence des ensembles auto-similaires). Soit (E, d) un espace complet. $\forall i \in [\![1,N]\!], f_i : E \longrightarrow E$ est une application contractante, par rapport à la distance d. Il existe, alors un compact $K \subset E$, tel que :

$$K = \bigcup_{i=1}^{N} f_i(K)$$

K est appelé un **ensemble auto-similaire** défini par :

$$\{f_1, \ldots f_N\}$$

Remarque. Le Théorème du point fixe de Banach est un cas particulier de ce théorème avec N=1.

Pour simplifier, on pose:

$$F(A) = \bigcup_{i=1}^{N} f_i(A)$$

De plus, on introduit l'ensemble suivant pour tout (E, d) espace complet :

$$C(E): \{A|A \subseteq E, A \text{ est un compacte non vide de } E\}$$

On va maintenant définir une métrique δ sur $\mathcal{C}(E)$ nommée mesure de Haussdorf sur $\mathcal{C}(E)$.

Proposition 3. Pour $A, B \in C(E)$, et (E, d) un espace métrique

On définit $\delta(A, B) = \inf\{r > 0 \mid U_r(A) \supseteq B, U_r(B) \supseteq A\}$

On pose, pour r > 0 fixé, $U_r(A) = \{x \in E \mid d(x,y) \le r, y \in A\}$

 δ est alors une distance sur C(E).

(E,d) De plus, si (E,d) est complet alors $(C(E),\delta)$ est complet.

Remarque. La mesure δ dépends de la mesure d de l'ensemble E comme nous pouvons le voir dans la définition.

Nous pouvons alors montré que δ est une distance. Pour ce faire nous allons

Démonstration. Soit un compact $A \subseteq X$,

On va montrer que F admet un point fixe.

Pour cela, on pose

Preuve que la mesure de HAUSDORFF est bien une mesure!!!!!!!! □

Théorème 3. Soit (E, d) un espace métrique complet. Soit

$$F: \mathcal{C}(E) \longrightarrow \mathcal{C}(E)$$
$$A \longmapsto F(A) = \bigcup_{i=1}^{N} f_i(A)$$

 $et \ f_i: X \longrightarrow X, i \in [1, N]$

Alors F admet un unique points fixe K. De plus, $\forall A \in \mathcal{C}(E), F^n(A) \longrightarrow K$ quand $n \to \infty$ par rapport à la mesure de Haussdorf.

Lemme 1. $\forall A_1, A_2, B_1, B_2 \in C(E)$, on a :

$$\delta(A_1 \cup A_2, B_1 \cup B_2) < \max(\delta(A_1, B_1), \delta(A_2, B_2)) \tag{2.3}$$

Démonstration. Si r>max($\delta(A_1, B_1), \delta(A_2, B_2)$), alors $U_r(A_1) \supseteq B_1$ et $U_r(A_2) \supseteq B_2$. Par conséquent, $U_r(A_1 \cup A_2) \supseteq B_1 \cup B_2$.

De meme,
$$U_r(B_1) \supseteq A_1$$
 et $U_r(B_2) \supseteq A_2 \Longrightarrow U_r(B_1 \cup B_2) \supseteq A_1 \cup A_2$.

On a donc
$$r \ge \max(\delta(A_1, B_1), \delta(A_2, B_2))$$
 (2.3)

Lemme 2. Si f est une application k-contractante défini de C(E) dans C(E), alors :

$$\delta(f(A), f(B)) \le k \times \delta(A, B), \forall A, B \in \mathcal{C}(E)$$
(2.4)

Démonstration. On sait qu'il existe $s > \delta(A, B)$ tel que :

$$U_s(A) \supseteq B \text{ et } U_s(B) \supseteq A, U_{sk}(f(A)) \supseteq f(U_s(A)) \supseteq f(B)$$

$$U_s(B) \supseteq A \text{ et } U_s(A) \supseteq B, U_{sk}(f(B)) \supseteq f(U_s(B)) \supseteq f(A)$$

On a donc montré que $\delta(f(A), f(B)) \le k * s \le k * \delta(A, B)$

Preuve du théorème. On applique le Lemme 1, on obtient alors :

$$\delta(F(A), F(B)) = \delta(\bigcup_{i=1}^{N} f_i(A), \bigcup_{i=1}^{N} f_i(B))$$

$$\leq \max_{1 \leq i \leq N} \{\delta(f_i(A), f_i(B))\}$$

D'après le lemme 2 on a :

$$\delta(f_i(A), f_i(B)) \le r_i \times \delta(A, B)$$

On a alors,

$$\delta(F(A), F(B)) \le \max_{1 \le i \le N} \{r_i \times \delta(A, B)\}$$
$$\le \left(\max_{1 \le i \le N} \{r_i\}\right) \times \delta(A, B)$$

F est donc une application contractante par rapport à la distance de Hausdorff. D'après la proposition 3, on sait que $\mathcal{C}(E)$ est complet donc d'après Le Théorème du point fixe, F admet un point fixe. \square

2.3 Ensemble auto-similaire et fractale

Un ensemble auto-similaire est la traduction du mot anglais "self-similarity". Ce mot représente le fait qu'un objet présente des similarités peu importe l'échelle à laquelle il est regardée. On va étudier les fractales définies par un système de fonction contractante, on sera donc dans le cas des ensembles auto-similaires. On choisit $E = \mathbb{R}^2$ et on lui associe la distance usuelle. L'espace métrique défini est complet. On pourra donc utiliser l'ensemble des théorèmes et propositions précédente. Les fonctions qui définirons notre fractale seront des similitudes contractante. Nous munirons notre fractale d'un sous-compact de $E = \mathbb{R}^2$ qui sera le plus adapté à la fractale même si comme nous pourrons le voir cela n'a pas d'importance sur le papier.

Définition 7. Une similitude est une application de E dans E qui multiplie les distances par un rapport k constant.

Remarque. On peut représenter une similitude comme la composée d'une homothétie, d'une rotation(ou symétrie) et d'une translation.

Proposition 4. Soit S une similitude, soit k son rapport, θ son angle de rotation et T un vecteur de translation. On peut écrire S sous la forme suivante :

$$S(X) = k \times M(\theta) \times X + T$$

On pose M étant une rotation directe ou indirecte :

$$M(\theta) \in \left\{ \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}, \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix} \right\}$$

Définition 8. Une fractale défini par un ensemble de similitude contractante est appelé **IFS** (Iterated function system).

On remarque qu'une fractale défini par IFS est un ensemble auto-similaire. On sait alors grâce au théorème

Dimension des ensembles auto-similaires

3.1 Dimension de Hausdorff

Exemple de fractale