

NPN GENERAL PURPOSE TRANSISTOR

VOLTAGE 30V/45V/65V POWER 625 mWatts

FEATURES

- NPN epitaxial silicon, planar design
- Collector current I_c = 100mA
- Complimentary (PNP) device:BC556,BC557,BC558 Series
- Pb free product :99% Sn above can meet RoHS environment substance directive request

MECHANICAL DATA

- Case: TO-92
- Terminals: Solderable per MIL-STD-202, Method 208
- Approx Weight: 0.02grams
- Device Marking:

BC546A=546A	BC546B=546B	-
BC547A=547A	BC547B=547B	BC547C=547C
BC548A=548A	BC548B=548B	BC548C=548C

ABSOLUTE MAXIMUM RATINGS

PARAMETER		Symbol	Value	Units	
Collector - Emitter Voltage	BC546 BC547 BC548	V _{CEO}	65 45 30	V	
Collector - Base Voltage	BC546 BC547 BC548	V _{CBO}	80 50 30	V	
Emitter - Base Voltage	BC546 BC547 BC548	V _{EBO}	6.0 6.0 5.0	V	
Collector Current - Continuous		I _c	100	mA	
Max Power Dissipation		P _{TOT}	625	mW	
Storage Temperature		T _{STG}	-55 to 150	°C	
Junction Temperature		T _J	-55 to 150	°C	

THERMAL CHARACTERISTICS

PARAMETER	Symbol	Value	Units
Thermal Resistance, Junction to Ambient	R _{eJA}	200	°C/W

ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise noted)

PARAMETER		Symbol	MIN.	TYP.	MAX.	Units
Collector - Emitter Breakdown Voltage (I _C =10mA, I _B =0)	BC546A,B BC547A,B,C BC548A,B,C	V _(BR) CEO	65 45 30	-	-	V
Collector - Base Breakdown Voltage $(I_c=10uA,\ I_e=0)$	BC546A,B BC547A,B,C BC548A,B,C	V _(BR) CBO	80 50 30	-	-	V
Emitter - Base Breakdown Voltage $(I_e=10uA, I_c=0)$	BC546A,B BC547A,B,C BC548A,B,C	V _(BR) EBO	6.0 6.0 5.0	-	-	V
Emitter-Base Cutoff Current (V _{EB} =5V)		I _{EBO}	-	-	100	nA
Collector-Base Cutoff Current(V _{CB} =30V,I _E =0)	T _J =150°C	I _{cвo}	-	-	15 5.0	nA uA
DC Current Gain (I _c =10uA, V _{cE} =5V)	BC546A,B BC547A,B,C BC548A,B,C	h _{ee}		90 150 270	- - -	_
(I _C =2.0mA, V _{CE} =5V)	BC546A,B BC547A,B,C BC548A,B,C	· · FE	110 200 420	180 290 520	220 450 800	
ollector - Emitter Saturation Voltage	$(I_c = 10 \text{ mA}, I_B = 0.5 \text{ mA})$ $(I_c = 100 \text{ mA}, I_B = 5.0 \text{ mA})$	V CE(SAT)	-	-	0.25 0.6	V
Base - Emitter Saturation Voltage	$(I_c = 10 \text{ mA}, I_B = 0.5 \text{ mA})$ $(I_c = 100 \text{ mA}, I_B = 5.0 \text{ mA})$	V _{BE(SAT)}	- -	0.7 0.9	- -	V
Base - Emitter Voltage	$(I_c = 2 \text{ mA V}_{cE} = 0.5 \text{ mA})$ $(I_c = 10 \text{ mA}, V_{CE} = 5.0 \text{ mA})$	V _{BE(SAT)}	0.58	0.660	0.70 0.77	V
Collector - Base Capacitance	(V _{CB} -10V,I _E -0,f-1MH _Z)	Ссво	-	-	4.5	pF

LEGAL STATEMENT

Copyright PanJit International, Inc 2005

The information presented in this document is believed to be accurate and reliable. The specifications and information herein are subject to change without notice. Pan Jit makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. Pan Jit products are not authorized for use in life support devices or systems. Pan Jit does not convey any license under its patent rights or rights of others.

ELECTRICAL CHARACTERISTICS CURVE BC546A,BC547A,BC548A ONLY

Fig. 1. Typical I_{CB0} vs.

Fig. 2. Typical h_{FE} vs.

Fig. 3. Typical $V_{\text{BE(ON)}}$ vs.

Fig. 4. Typical $V_{CE(SAT)}$ vs.

Fig. 5. Typical $V_{BE(SAT)}$ vs.

Fig. 6. Typical Capacitances vs.

ELECTRICAL CHARACTERISTICS CURVE BC546B,BC547B,BC548B ONLY

Fig. 1. Typical I_{CB0} vs. Junction Temperature

Fig. 2. Typical h_{FE} vs. Collector Current

Fig. 3. Typical $V_{BE(ON)}$ vs. Collector Current

Fig. 4. Typical $V_{CE(SAT)}$ vs. Collector Current

Fig. 5. Typical $V_{BE(SAT)}$ vs. Collector Current

Fig. 6. Typical Capacitances vs. Reverse Voltage

ELECTRICAL CHARACTERISTICS CURVE BC547C, BC548C ONLY

Fig. 1. Typical I_{CB0} vs. Junction

Fig. 2. Typical h_{FE} vs. Collector

Fig. 3. Typical $V_{BE(ON)}$ vs. Collector Current

Fig. 4. Typical $V_{CE(SAT)}$ vs. Collector

Fig. 5. Typical $V_{BE(SAT)}$ vs. Collector

Fig. 6. Typical Capacitances vs. Reverse