Haplotype Assembly

BY PATRICK TAN

Background and Motivation

- •We want to read the haplotypes from a part of the genome
 - Haplotypes can be used for association studies, investigating diseases
- •We take multiple reads of parts of the haplotype
 - Only read short parts at a time (cheaper)

Example Read

- Only need to keep heterozygous SNPs
- •We can represent these SNPs as binary strings of 0s and 1s

The Problem

- •However, there are two haplotypes per chromosome and each reads can only be taken on one haplotype
- •We don't know which reads correspond to which haplotypes
- •We want to tile the reads together to recreate the two haplotypes

Computational Problem

- •Input: Given n reads for m SNPs (n x m matrix), where each row is a read from one of the two haplotypes
- •Output: Two complementary haplotypes of lengths m SNPs that match the reads given in the input.
- Benchmarks
 - Time: Speed of algorithm
 - Expect O(n*2^m) for brute force and O(n) for greedy
 - Accuracy: Errors are counted by the number of switches made between the solution haplotypes and the original haplotypes
 - Since we have no sequencing errors, errors will be very uncommon

Haplotype Example Read Matrix (Input)

Haplotypel	0	0	1	1	0	1	0	0	1
Haplotype2	1	1	0	1	0	1	0	0	1

reads	0	1	2	3	4	5	6	7	8
read1	0	0	-	-	-	-	-	-	-
read2	1	1	-	-	-	-	-	-	-
read3	-	0	1	1	-	-	-	-	-
read4	-	-	0	0	1	-	-	-	-
read5	-	-	-	1	0	-	-	-	-
read6	-	-	-	-	0	1	0	-	-
read7	-	-	-	-	1	0	-	-	-
read8	-	-	-	-	-	1	0	0	-
read9	-	-	-	-	-	-	1	1	0
read10	-	-	-	-	-	-	-	0	1

Haplotype Example Read Matrix (Input)

Haplotype1	0	0	1	1	0	1	0	0	1
Haplotype2	1	1	0	1	0	1	0	0	1

reads	0	1	2	3	4	5	6	7	8
read1	0	0	-	-	-	-	-	-	-
read2	1	1	-	-	-	-	-	-	-
read3	-	0	1	1	-	-	-	-	-
read4	-	-	0	0	1	-	-	-	-
read5	-	-	-	1	0	-	-	-	-
read6	-	-	-	-	0	1	0	-	-
read7	-	-	-	-	1	0	-	-	-
read8	-	-	-	-	-	1	0	0	-
read9	-	-	-	-	-	-	1	1	0
read10	-	-	-	-	-	-	-	0	1

Creating the Read Matrix (Simulation)

- •We first generate a haplotype with simulated random distances between each SNP
 - We set a probability that each SNP will be heterozygous, and run geometric distributions for the number of homogenous SNPs until the heterozygous SNP.
 - For each heterozygous SNP, we then randomly assign 0 or 1.
- •Then, we create the complement haplotype by switching 0s and 1s (keep the same location distances)

- •Reads are taken by choosing random locations in the SNP and reading SNPs within a given read length.
- •These reads are stored into the read matrix (read matrix does not need to store location anymore, just needs to store what number SNP it is)

•For example, a read from 60 to 160 would return either:

Baseline Solution: Brute Force (Exhaustive)

- Try every possible combination of 0s and 1s of length n SNPs
 - We do not take into account sequencing errors, so it is almost always possible to get 0 errors
 - Therefore, just stop once a combination is found that satisfies all reads.
- •Given that: n is the number of reads and m is the number of SNPs
 - There are 2^m possible combinations
 - Each combination can be tested against up to all n reads
 - Time Complexity is therefore O(n*2^m)

My Solution: Greedy

- •Loop from first SNP read to last SNP read (must sort the SNPs in order)
- •First read can be assigned to either haplotype
- •From there, if the read overlaps with known haplotype, assign each read to its corresponding haplotype (match overlaps)
- •If unknown (no overlaps), guess
 - This is the only cause of error since we do not have read errors
 - Generally, this only occurs when a distance between reads is longer than the read length
 - Note: it can also occur if we simply do not take enough reads

Example Run

Haplot	type1	3	?	3	?	3	3	3
Haplot	type2	;	?	?	;	?	?	;
	reads	0	1	2	3	4	5	6
	read1	0	0	-	-	-	-	-
	read2	-	0	1	1	-	-	-
	read3	-	-	0	0	1	-	-

Haplot Haplot		0 1	0 1	; ;	; ;	; ;	; ;	; ;
	reads	0	1	2	3	4	5	6
	read1	0	0	-	-	-	-	-
	read2	-	0	1	1	-	-	-
	read3	-	-	0	0	1	-	-
	read4	-	-	-	-	0	1	0

Haplot Haplot		0 1	0 1	1 0	1 0	?	; ;	?
	reads	0	1	2	3	4	5	6
	read1	0	0	-	-	-	-	-
	read2	-	0	1	1	-	-	-
	read3	-	-	0	0	1	-	-
	read4	-	-	-	-	0	1	0

Haplotype1 Haplotype2		0 1	1 0	1 0	0 1	; ;	; ;
reads	0	1	2	3	4	5	6
read1	0	0	-	-	-	-	-
read2	-	0	1	1	-	-	-
read3	-	-	0	0	1	-	-
read4	-	-	-	-	0	1	0

Haplot Haplot		0 1	0 1	1 0	1 0	0 1	1 0	0 1
	reads	0	1	2	3	4	5	6
	read1	0	0	-	-	-	-	-
	read2	-	0	1	1	-	-	-
	read3	-	-	0	0	1	-	-
	read4	-	-	_	_	0	1	0

Errors

Haplotype1	0	?	?	?	?	?	?
Haplotype2	0	?	?	;	;	?	?

reads	0	1	2	3	4	5	6
read1	0	-	-	-	-	-	-
read2	-	0	1	1	-	-	-
read3	-	-	0	0	1	-	-
read4	-	-	-	-	0	1	0

Errors

Haplotype1	0	?	?	?	?	?	?
Haplotype2	0	?	?	?	?	?	?

reads	0	1	2	3	4	5	6
read1	0	-	-	-	-	-	-
read2	-	0	1	1	-	-	-
read3	-	-	0	0	1	-	-
read4	-	-	-	-	0	1	0

Performance

For 20 SNPs, 5% chance of heterozygous, read length of 100 (3 trials each)

Error Performance

•For 20 SNPs, 5% chance of heterozygous, read length of 100 (3 trials each)

Error Performance

•For 20 SNPs, 5% chance of heterozygous, 15 reads (3 trials each)

Results and Observations

- Both solutions have the same problems with errors (SNPs with no overlaps)
- •However, the greedy solution speed scales much better as the number of reads increases
 - O(n) vs O(n*2^m)
 - Our greedy solution takes < 1 second up to approximately 750,000 reads
- Accuracy depends on number of reads, read length (and heterozygous chance)
 - If the distance between SNPs is small enough (high chance of any SNP being heterozygous), there will be no errors since all heterozygous SNPs will likely have some overlap
- •If any distance between two SNPs is larger than our read length, we will not have overlap at the SNP. Then, we have a 50% chance of guessing the incorrect haplotype, causing a switch error

Questions