

ЦЕЛЬ И ЗАДАЧИ

Цель работы: на основе верифицированной модели с помощью компьютерного моделирования оптимизировать компоновки (расстановку ламп) облучателей или показать, что это невозможно.

Задачи:

- 1) Измерить распределение интенсивности УФИ вокруг реальных облучателей.
- 2) Определить важные для составления модели аспекты.
- 3) Составить расчётную модель и верифицировать её.
- 4) На основе результатов компьютерного моделирования выбрать оптимальные компоновки облучателей.

РАСПРЕДЕЛЕНИЕ УФИ ДЛЯ СУЩЕСТВУЮЩИХ ПРИБОРОВ

РАСПРЕДЕЛЕНИЕ УФИ ДЛЯ СУЩЕСТВУЮЩИХ ПРИБОРОВ

Распределение светового потока от 6-ламповой установки

Распределение светового потока от 8-ламповой установки

В обоих случаях можно наблюдать локальные минимумы, которые более чем в 2 раза отличаются от локальных максимумов

ЦИФРОВАЯ МОДЕЛЬ ЛАМПЫ

- 1) Лампа имеет конечную геометрию
- 2) Окружности упрощаются до пяти точек
- 3) Каждая точка является источником излучения
- 4) Каждая лампа является препятствие для света от других таких же ламп

ПОТОК СВЕТА ОТ ЛАМПЫ

источник уфи

В результате анализа данных, полученных в этом эксперименте были определены мощности каждой из пяти точек модели лампы.

ПОТОК СВЕТА ОТ ЛАМПЫ

Зависимость интенсивности от расстояния до середины лампы

Для точки А выбрана доля мощности лампы, равная 40%, а для точек A_1 , A_2 , A_3 , A_4 , расположенных на периферии — 15%. Такое решение наилучшим образом согласуется с

Такое решение наилучшим образом согласуется полученной зависимостью по площади под графиком.

КОЭФФИЦИЕНТ ПРОПУСКАНИЯ ЛАМПЫ

СКОЛЬКО УФИ СМОЖЕТ ПРОЙТИ ЛАМПУ НАСКВОЗЬ?

Главное новшество в методике расчёта распределения интенсивности от системы ламп в пространстве — это введение коэффициента пропускания лампы.

Другими словами, в расчётной модели лампа не считается абсолютно прозрачной для света на длине волны 254нм.

КОЭФФИЦИЕНТ ПРОПУСКАНИЯ ЛАМПЫ

Измеренный коэффициент пропускания газоразрядной лампы низкого давления – 15±3%.

ВАРИАНТЫ КОМПОНОВОК

ВЕРИФИКАЦИЯ РАСЧЁТНОЙ МОДЕЛИ

- В работу были взяты варианты с 3, 4, 6 и 8 лампами, чтобы имитировать уже существующие излучатели.
- Экспериментальный стенд позволяет закреплять лампы в любой точке пространства внутри своих габаритов.

ВЕРИФИКАЦИЯ РАСЧЁТНОЙ МОДЕЛИ

ПРИМЕРЫ РАСПОЛОЖЕНИЯ ЛАМП

ВЕРИФИКАЦИЯ РАСЧЁТНОЙ МОДЕЛИ

Распределение светового потока от 6-ламповой установки (экспериментальное)

Распределение светового потока от 6-ламповой установки (расчётное)

ВЕРИФИКАЦИЯ РАСЧЁТНОЙ МОДЕЛИ

Зависимость нормированной интенсивности от изменения радиуса расположения ламп в 3-ламповой компоновке

Обе компоновки показали положительный отклик к увеличению расстояния между лампами. Однако действительно важный эффект был замечен в 3-ламповой компоновке — в данном случае разница между минимумом и максимумом составила 0.2.

За счёт подбора правильной компоновки в абсолютных величинах в 3-ламповой компоновке эффективную мощность можно было бы повысить в 1.5 раза, а в 4-ламповой — в 1.2 раза.

ВЕРИФИКАЦИЯ МОДЕЛИ

Зависимость нормированной интенсивности от изменения радиуса расположения ламп в 6-ламповой компоновке

Зависимость нормированной интенсивности от изменения радиуса расположения ламп в 8-ламповой компоновке

В отличие от компоновок с меньшим количеством ламп, 6- и 8-ламповые компоновки откликаются на увеличение радиуса размещения ламп гораздо слабее. Разница между минимумом и максимумом для 6 ламповой компоновки составила 0.1.

Оптимизируя размещение ламп эффективную мощность 6-ламповой компоновки можно увеличить в 1.3 раза, а 8-ламповой — в 1.1 раза.

ВЫВОДЫ

И РЕКОМЕНДАЦИИ

ОСНОВНЫЕ ВЫВОДЫ ПО ПРОДЕЛАННОЙ РАБОТЕ

- Введённые модели лампы и методика расчёта позволяют определять тренды в поведении реальных объектов.
- Существующие компоновки не обеспечивают оптимальность распределения УФИ.
- Есть потенциал к повышению эффективности.

РЕКОМЕНДАЦИИ ПО ПРОЕКТИРОВАНИЮ ИЗЛУЧАТЕЛЕЙ

- Как согласованно показали практика и расчёты, компоновки из трёх и шести ламп более перспективны.
- Радиус, на котором располагаются лампы, необходимо делать как можно больше в границах конструкции.
- Следует проводить анализ компоновки до её утверждения с целью проверки минимального значения интенсивности по направлениям.

ПЕРСПЕКТИВЫ

направления исследований

НОВЫЙ КОНСТРУКТИВ

Одним из вариантов может служить расположение ламп по образующим однополостного гиперболоида. В эксперименте достигался минимум в 80% от максимально возможной мощности. В то время, как классическая компоновка обеспечивает не более 55%.

