Sistemas Electrónicos

Capítulo 3: Amplificadores operacionais

e aplicações

Parte 2

Sistemas Electrónicos - 2020/2021

Sumário

- Resistência de entrada e de saída de amplificadores;
- Resistências de entrada e saída das configurações inversora e nãoinversora;
- Configuração inversora com circuito em T;
- Outras configurações do OpAmp
 - Seguidor de tensão;
 - Somador;
 - Amplificador diferença.

Resistências de entrada e de saída de amplificadores

E. Martins, DETI Universidade de Aveiro

3.2-3

Sistemas Electrónicos - 2020/2021

Fonte de sinal, amplificador e carga

- Numa cadeia de amplificação como esta interessa sempre maximizar a eficiência com que o sinal é transferido...
 - > ... da fonte de sinal para a entrada do amplificador, e
 - ... da saída do amplificador para a carga.

Cadeia de amplificação: equivalente de Thévenin

• Substituindo cada um dos elementos da cadeia anterior pelo seu modelo, obtemos:

E. Martins, DETI Universidade de Aveiro

3.2-5

Sistemas Electrónicos - 2020/2021

Máxima eficiência...

- A máxima eficiência será conseguida se todo o sinal produzido pela fonte de sinal aparecer na entrada do amplificador. Ou seja se $v_i = v_s$
- ... e se todo o sinal produzido pelo amplificador aparecer na resistência de carga. Ou seja se $v_o = Gv_i$

Eficiência da entrada do amplificador

... mas não é isso que acontece!

• A tensão que aparece efectivamente entre os terminais de entrada do amplificador é:

$$v_i = \frac{R_i}{R_i + R_S} v_S$$
 Se $R_S = 100\Omega$ e $R_i = 500\Omega$, então:
$$v_i = 0.83v_S$$

E. Martins, DETI Universidade de Aveiro

3.2-7

Sistemas Electrónicos – 2020/2021

Eficiência da entrada do amplificador

• Para termos $v_i \approx v_s$, como é pretendido, precisamos de ter R_i muito elevado.

Em concreto deveremos ter $R_i >> R_S$:

$$v_{i} = \frac{1}{1 + \frac{R_{S}}{R_{i}}} v_{S} \quad se \quad R_{i} >> R_{S}, \quad ent\tilde{a}o \quad v_{i} \approx v_{S}$$

3.2-8

Eficiência da saída do amplificador

O raciocínio que fazemos relativamente à saída do amplificador é idêntico:

• A tensão v_o que aparece efectivamente na resistência de carga, R_L , é:

$$v_o = \frac{R_L}{R_L + R_o} G v_i$$

ightharpoonup Se $R_o = 10\Omega$ e $R_L = 1\Omega$, então:

$$v_o = 0.09Gv_i$$

 \triangleright Estamos pois muito longe de ter $v_o = Gv_i$

E. Martins, DETI Universidade de Aveiro

3.2-9

Sistemas Electrónicos - 2020/2021

Eficiência da saída do amplificador

• Para termos $v_o \approx Gv_i$, como pretendido, precisamos de ter R_o muito baixo.

Em concreto deveremos ter $R_o \ll R_L$:

$$v_{o} = \frac{1}{1 + \frac{R_{o}}{R_{L}}}Gv_{i} \quad se \quad R_{o} << R_{L}, \quad ent\tilde{a}o \quad v_{o} \approx Gv_{i}$$

Conclusão: Máxima eficiência do amplificador

• Para maximizar a eficiência do acoplamento de sinal na entrada e na saída, um amplificador de tensão deve apresentar:

$$R_i >> R_S$$
 e $R_o << R_L$

E. Martins, DETI Universidade de Aveiro

3.2-11

Sistemas Electrónicos - 2020/2021

Resistências de entrada (R_i) e de saída (R_o) das configurações inversora e não-inversora

Configuração inversora em T

R_i e R_o na configuração não-inversora

E. Martins, DETI Universidade de Aveiro

3.2 - 13

Sistemas Electrónicos - 2020/2021

R_i e R_o na configuração inversora

mas como
$$i_1=\frac{v_i-v_d}{R_1}=\frac{v_i}{R_1}$$
 então $R_i=\frac{v_i}{i_1}=R_1$

R_i e ganho elevados na configuração inversora

$$R_i = R_1$$

$$G \equiv \frac{v_{out}}{v_i} = -\frac{R_2}{R_1}$$

• O que acontece se quisermos ter uma configuração inversora com R_i elevado e, simultaneamente, G elevado?

Exemplo: Para
$$R_i = 1M\Omega$$
 e $G = -100$, teremos de ter $R_1 = 1M\Omega$ e $R_2 = 100M\Omega$

Mas um valor tão grande para R_2 é impraticável!

E. Martins, DETI Universidade de Aveiro

3.2-15

Sistemas Electrónicos – 2020/2021

Configuração inversora com circuito em T

- Tem a vantagem de ter um ganho independente da resistência de entrada;
- Ideal para casos em que queremos ter simultaneamente R_i e G elevados.

Configuração inversora com circuito em T

E. Martins, DETI Universidade de Aveiro

3.2-17

Sistemas Electrónicos - 2020/2021

Configuração inversora com circuito em T

• Efectuando substituições...

Configuração inversora com circuito em T

• Se quisermos um amplificador com $R_i = 1M\Omega$ e G = -100, então $R_1 = 1M\Omega$.

• Se escolhermos $R_2 = 1M\Omega$ e $R_4 = 100K\Omega$, ficamos com

$$\frac{v_{out}}{v_i} = -\frac{1M}{1M} \left(1 + \frac{100K}{1M} + \frac{100K}{R_3} \right) = -100$$

E. Martins, DETI Universidade de Aveiro

3.2-19

Sistemas Electrónicos - 2020/2021

Configuração inversora com circuito em T

• De onde se tira $R_3 = 1K\Omega$

Ou seja, conseguimos ter $R_i = 1M\Omega$ e G = -100, sem que nenhuma das resistências tenha de ter uma valor astronómico.

Outras configurações do OpAmp

E. Martins, DETI Universidade de Aveiro

3.2-21

Sistemas Electrónicos - 2020/2021

Seguidor de tensão ou buffer

$$V_{out} = V_i$$

• Saída segue a entrada!

• Na realidade, este circuito é um caso particular da configuração não-inversora.

$$G \equiv \frac{v_{out}}{v_i} = 1 + \frac{R_2}{R_1}$$

• Se $R_1 = \infty$ e $R_2 = 0$...

$$G \equiv \frac{v_{out}}{v_i} = 1$$

Seguidor de tensão

• Mas que utilidade poderá ter um circuito com ganho = 1?

• Tal como a configuração não-inversora, este circuito também apresenta $R_i = \infty$ e $R_o = 0$, sendo útil quando queremos ligar um circuito com resistência de saída elevada a outro com resistência de entrada baixa.

E. Martins, DETI Universidade de Aveiro

3.2 - 23

Sistemas Electrónicos – 2020/2021

Utilidade do seguidor de tensão

- Suponhamos uma fonte de sinal ligada a uma carga;
- Para conseguimos maximizar a eficiência do acoplamento entre a fonte e a carga (de forma a ter $v_o \approx v_i$), é necessário que:

$$R_L >> R_S$$

o que não é o caso.

$$v_o = \frac{1K}{1K + 100K} v_I \approx 0.01 v_I$$

 v_o vai ser apenas uma pequena fracção de v_i !

Utilidade do seguidor de tensão

• Problema resolve-se com um *buffer* entre a fonte de sinal e a carga:

E. Martins, DETI Universidade de Aveiro

3.2-25

Sistemas Electrónicos - 2020/2021

Amplificador somador

$$v_{out} = K_1 v_1 + K_2 v_2 + ... + K_n v_n$$

Saída é uma soma ponderada das tensões de entrada.

Amplificador somador

E. Martins, DETI Universidade de Aveiro

3.2 - 27

Sistemas Electrónicos - 2020/2021

Amplificador somador

Conjugando as expressões anteriores obtemos

$$v_{out} = -\left(\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2 + \dots + \frac{R_f}{R_n}v_n\right)$$

- Saída é portanto a soma ponderada dos sinais de entrada;
- Coeficientes de cada entrada podem ser ajustados individualmente.

Amplificador diferença

• Tem duas entradas. Responde à diferença entre os dois sinais de entrada: $v_2 - v_I$.

• Idealmente o amplificador não responde a variações de tensão comuns às duas entradas.

E. Martins, DETI Universidade de Aveiro

3.2 - 29

Sistemas Electrónicos - 2020/2021

Amplificador diferença

• Este amplificador diferença combina as configurações inversora e não inversora.

Para calcular A_d vamos usar o Princípio da
 Sobreposição que nos permite calcular separadamente os ganhos:

$$G_I \equiv \frac{v_{out1}}{v_1}$$

$$G_{NI} \equiv \frac{v_{out2}}{v_2}$$

Amplificador diferença

1) Consideremos primeiro só a configuração inversora (entrada v_1) para obter

$$G_I \equiv \frac{v_{out1}}{v_1}$$

• Começamos por desactivar a fonte ligada a v_2 , curto-circuitando-a.

$$G_I \equiv \frac{v_{out1}}{v_1} = -\frac{R_2}{R_1}$$

$$v_{out1} = -\frac{R_2}{R_1}v_1$$

E. Martins, DETI Universidade de Aveiro

3.2-31

Sistemas Electrónicos - 2020/2021

Amplificador diferença

2) Consideremos agora a configuração não-inversora (entrada v_2), curto-circuitando desta vez v_1 :

$$v_{out2} = \left(1 + \frac{R_2}{R_1}\right)v_+$$

$$= \left(1 + \frac{R_2}{R_1}\right)\frac{R_4}{R_3 + R_4}v_2$$

$$G_{NI} \equiv \frac{v_{out2}}{v_2} = \left(1 + \frac{R_2}{R_1}\right) \frac{R_4}{R_3 + R_4}$$

$$v_{out2} = \left(1 + \frac{R_2}{R_1}\right) \frac{R_4}{R_3 + R_4} v_2$$

Amplificador diferença

3) Finalmente obtemos v_{out} somando os dois contributos:

$$v_{out} = v_{out1} + v_{out2} = -\frac{R_2}{R_1}v_1 + \left(1 + \frac{R_2}{R_1}\right)\frac{R_4}{R_3 + R_4}v_2$$

• Se escolhermos $R_3 = R_1$ e $R_4 = R_2$

obtemos
$$v_{out} = -\frac{R_2}{R_1}v_1 + \left(1 + \frac{R_2}{R_1}\right)\frac{R_2}{R_1 + R_2}v_2$$

$$v_{out} = \frac{R_2}{R_1}(v_2 - v_1) \qquad \qquad A_d = \frac{R_2}{R_1}$$

Ou seja, o amplificador é mesmo sensível só à diferença v2 - v1.

3.2-33