Rekurencyjne sieci neuronowe i systemy rekomendacji

Tradycyjne podejścia

01 Collabora

Collaborative Filtering

02

Content-based Filtering

Collaborative Filtering

Jedynymi danymi są interakcje użytkowników i produktów

Memory based

- Duże macierze rzadkie reprezentujące interakcje użytkownik-produkt
- np. KNN

* Model based

- Ukryty model reprezentujący gusta użytkowników lub cechy produktów
- Model w postacji mniejszej, gęstszej macierzy
- np. faktoryzacja macierzy, FCNN

Nie potrzeba żadnych dodatkowych informacji poza historią interakcji

Problemy z wprowadzaniem nowych użytkowników lub produktów- brak danych o ich interakcjach

Content based

Dane o poprzednich interakcjach + cechy produktów i użytkowników

Dużo mniejszy niż w przypadku collaborative filtering problem z dodawaniem nowych użytkowników lub produktów

Ryzyko zbyt dużej specjalizacji (użytkownikowi nie są nigdy rekomendowane przedmioty spoza danej kategorii)

Gated Recurrent Unit

Gated Recurrent Unit

- Like LSTM, but smoler and faster
- ... ale mniej potężne
- Dwie bramki (gates):
- Update gate kontroluje ile z obecnego stanu ukrytego zostanie przekazane do następnej komórki
- Reset gate kontroluje, które dane z poprzednich kroków chcemy zapomnieć (kontroluje informacje wychodzące z pamięci)

$$\mathbf{R}_t = \sigma(\mathbf{X}_t \mathbf{W}_{xr} + \mathbf{H}_{t-1} \mathbf{W}_{hr} + \mathbf{b}_r),$$

 $\mathbf{Z}_t = \sigma(\mathbf{X}_t \mathbf{W}_{xz} + \mathbf{H}_{t-1} \mathbf{W}_{hz} + \mathbf{b}_z).$

$$\left\{egin{array}{ll} \mathbf{W}_{xr}, \mathbf{W}_{xz} \in \mathbb{R}^{d imes h} \ \mathbf{W}_{hr}, \mathbf{W}_{hz} \in \mathbb{R}^{h imes h} \end{array}
ight\} ext{wagi}$$
 $\left\{f{b}_r, f{b}_z \in \mathbb{R}^{1 imes h}
ight.$ bias

Reset gate

σ

FC layer with activation fuction

Elementwise operator

$$\mathbf{H}_t = anh(\mathbf{X}_t\mathbf{W}_{xh} + \mathbf{H}_{t-1}\mathbf{W}_{hh} + \mathbf{b}_h)$$

Nowy stan ukryty w konwencjonalnej RNN

$$ilde{\mathbf{H}}_t = anh(\mathbf{X}_t\mathbf{W}_{xh} + (\mathbf{R}_t\odot\mathbf{H}_{t-1})\,\mathbf{W}_{hh} + \mathbf{b}_h)$$

Kandydat na nowy stan ukryty (czeka go jeszcze przejście przez update gate)

Update gate

$$\mathbf{H}_t = \mathbf{Z}_t \odot \mathbf{H}_{t-1} + (1 - \mathbf{Z}_t) \odot \tilde{\mathbf{H}}_t$$
 Nowy stan ukryty

Rekomendacje oparte na sesjach

Session-based recommenders użytkownik jest anonimowy

Session-aware recommenders mamy dostęp do poprzednich sesji użytkownika

Architektura sieci

output warstwy użytkownika wyłącznie inicjalizuje warstwę następnej sieci

output warstwy użytkownika jest propagowany do każdego kroku w warstwie sesji

(co skutkuje większą złożonością modelu)

Warianty

Zbiory danych

XING
interakcje z ofertami
pracy

VIDEO
historia oglądania
filmików (podobne do
Youtube)

Modele bazowe

O1 PPOP (Personal POP)

02 Item-KNN

O3 Session based RNN

O4 Session based RNN Concat

Recall@5 (hit-rate metric) proporcja przypadków w których relewantny przedmiot znalazł się w top 5 do wszystkich przypadków

Precision@5

proporcja

prawidłowych

rekomendacji w

top 5

ranking
relewantnego
przedmiotu
(odpowiednia miara
dla systemu w którym
kolejność
rekomendacji jest
istotna)

Wyniki

		XING			VIDEO		
		Recall@5	MRR@5	Precision@5	Recall@5	MRR@5	Precision@5
	Item-KNN	0.0697	0.0406	0.0139	0.4192	0.2916	0.0838
	PPOP	0.1326	0.0939	0.0265	0.3887	0.3031	0.0777
small	RNN	0.1292	0.0799	0.0258	0.4639	0.3366	0.0928
	RNN Concat	0.1358	0.0844	0.0272	0.4682	0.3459	0.0936
	HRNN All	0.1334 [†]	0.0842	0.0267 [†]	0.5272	0.3663	0.1054
	HRNN Init	<u>0.1337</u> [†]	0.0832	<u>0.0267</u> †	0.5421	0.4119	0.1084
	RNN	0.1317	0.0796	0.0263	0.5551	0.3886	0.1110
large	RNN Concat	0.1467	0.0878	0.0293	0.5582	0.4333	0.1116
laı	HRNN All	<u>0.1482</u> †	0.0925	0.0296 [†]	0.5191	0.3877	0.1038
	HRNN Init	0.1473 [†]	<u>0.0901</u>	<u>0.0295</u> †	<u>0.5947</u>	<u>0.4433</u>	<u>0.1189</u>

	VIDEOXXL				
	Recall@5	MRR@5	Precision@5		
RNN	0.3415	0.2314	0.0683		
RNN Concat	0.3459	0.2368	0.0692		
HRNN All	0.3621	0.2658	0.0724		
HRNN Init	0.4362	0.3261	0.0872		

źródła

Personalizing Session-based Recommendations with Hierarchical Recurrent Neural Networks

https://arxiv.org/pdf/1706.04148.pdf

Gated Recurrent Units

https://d2l.ai/chapter_recurrent-modern/gru.html#reset-gates-and-update-gates

Understanding GRU Networks

https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be

Introduction to recommender systems

https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada

