Coinduction demystified

Valentin Robert

Galois, Inc

Assumptions about the audience

This talk assumes a bit of familiarity with data type declarations.

Assumptions about the audience

This talk assumes a bit of familiarity with data type declarations.

Familiarity with GADTs will help, but is not mandatory!

Assumptions about the audience

This talk assumes a bit of familiarity with data type declarations.

Familiarity with GADTs will help, but is not mandatory!

There will also be inference rules.

When I first tried to learn about coinductive types,

I found many sentences I did not comprehend:

When I first tried to learn about coinductive types,

I found many sentences I did not comprehend:

"like inductive types, but the greatest fixed point"

When I first tried to learn about coinductive types,

I found many sentences I did not comprehend:

- "like inductive types, but the greatest fixed point"
- "like inductive types, but read the rules backward"

When I first tried to learn about coinductive types,

I found many sentences I did not comprehend:

- "like inductive types, but the greatest fixed point"
- "like inductive types, but read the rules backward"
- and the classic: "just the dual!"

When I first tried to learn about coinductive types,

I found many sentences I did not comprehend:

- "like inductive types, but the greatest fixed point"
- "like inductive types, but read the rules backward"
- and the classic: "just the dual!"

Additionally, I was utterly confused by coinduction proof principles.

When I first tried to learn about coinductive types,

I found many sentences I did not comprehend:

- "like inductive types, but the greatest fixed point"
- "like inductive types, but read the rules backward"
- and the classic: "just the dual!"

Additionally, I was utterly confused by coinduction proof principles.

I hope I can make it feel less inscrutable!

Let's talk about induction

$$\forall$$
 (n \in Nat), P n

$$\forall$$
 (n \in Nat), P n

and with it, a proof method along the lines of:

$$\forall$$
 ($n \in Nat$), $P n$

and with it, a proof method along the lines of:

• **Prove** *P* **0**

$$\forall$$
 (n \in Nat), P n

and with it, a proof method along the lines of:

- **Prove** *P* **0**
- Prove that for any number n,

$$\forall$$
 (n \in Nat), P n

and with it, a proof method along the lines of:

- **Prove** *P* **0**
- Prove that for any number n,

$$\forall$$
 ($l \in List T$), $P l$

$$\forall$$
 ($l \in List T$), $P l$

and learned to prove it by induction:

$$\forall$$
 ($l \in List T$), $P l$

and learned to prove it by induction:

• Prove P Nil

$$\forall$$
 ($l \in List T$), $P l$

and learned to prove it by induction:

- Prove P Nil
- Prove that for any head h, and for any tail t,

$$\forall$$
 ($l \in List T$), $P l$

and learned to prove it by induction:

- Prove P Nil
- Prove that for any head h, and for any tail t,

Why is this sane?

Let's put on our proof theory hats!

Let's put on our proof theory hats!

Inductive List T =

 $\cdot \mid x \in \text{List } T$

Inductive List
$$(T : Type) =$$

$$\frac{\cdot \vdash T \in \mathsf{Type}}{\cdot \vdash x \in \mathsf{List}\ T}$$

```
Inductive List (T : Type) ≔
| Nil : List T
```

$$\cdot \vdash T \in \mathsf{Type} \quad \cdot \vdash h \in T \quad \cdot \vdash t \in \mathsf{List} \ T \qquad x \equiv \mathsf{Cons} \ h \ t$$

$$\cdot \vdash x \in \mathsf{List} \ T$$

Given a set of rules, to be read forward,

Given a set of rules, to be read forward,

their values can be thought of as either:

Given a set of rules, to be read forward,

their values can be thought of as either:

1. all values that have *finite* proofs using those rules

Given a set of rules, to be read forward,

their values can be thought of as either:

- 1. all values that have *finite* proofs using those rules
- 2. the *smallest* set closed under those rules

Given a set of rules, to be read forward,

their values can be thought of as either:

- 1. all values that have *finite* proofs using those rules
- 2. the *smallest* set closed under those rules
- 3. the *least* fixed point of the underlying endofunctor

This gives us three perspective on *inductive* types.

Given a set of rules, to be read forward,

their values can be thought of as either:

- 1. all values that have *finite* proofs using those rules
- 2. the *smallest* set closed under those rules
- 3. the *least* fixed point of the underlying endofunctor

I will give you an intuition for all three definitions now.

· ⊢ Cons 0 Nil ∈ List Nat

• ⊢ Nat ∈ Type

· ⊢ Cons 0 Nil ∈ List Nat

· ⊢ Cons 0 Nil ∈ List Nat

```
    - ⊢ Nat ∈ Type
    - ⊢ Nat ∈ Type
    - ⊢ Nat ∈ Type
    - ⊢ O ∈ Nat
    - ⊢ Nil ∈ List Nat
    - ⊢ Cons O Nil ∈ List Nat
```

```
Let's try to compute List Nat starting with \{\}, assuming \cdot \vdash \text{Nat} \in \text{Type} and Nat = \{0, 1, 2, ...\}
```

List Nat =
$$\{Nil\}$$

• \vdash $T \in \mathsf{Type}$
• \vdash $h \in T$
• \vdash $t \in \mathsf{List}\ T$

List Nat =
$$\{Nil\}$$

• \vdash Nat \in Type

• \vdash h \in Nat
• \vdash t \in List Nat
• \vdash Cons h t \in List Nat

List Nat = {Nil}
$$\cdot \vdash \mathsf{Nat} \in \mathsf{Type} \qquad \cdot \vdash \mathsf{0} \in \mathsf{Nat} \qquad \cdot \vdash t \in \mathsf{List} \; \mathsf{Nat}$$

$$\cdot \vdash \mathsf{Cons} \; \mathsf{0} \; t \in \mathsf{List} \; \mathsf{Nat}$$

```
List Nat = {Nil, Cons 0 Nil}

· ⊢ Nat ∈ Type · ⊢ 0 ∈ Nat · ⊢ Nil ∈ List Nat

· ⊢ Cons 0 Nil ∈ List Nat
```

```
List Nat = { Nil
```

```
List Nat = { Nil , Cons 0 Nil
```

```
List Nat = { Nil
    , Cons 0 Nil
    , Cons 1 Nil
```

```
List Nat = { Nil
    , Cons 0 Nil
    , Cons 1 Nil
    , ...
```

```
List Nat = { Nil
, Cons 0 Nil
, Cons 1 Nil
, Cons 0 (Cons 0 Nil)
```

```
List Nat = { Nil
, Cons 0 Nil
, Cons 1 Nil
, ...
, Cons 0 (Cons 0 Nil)
, Cons 1 (Cons 0 Nil)
```

```
List Nat = { Nil
           , Cons 0 Nil
           , Cons 1 Nil
           , Cons 0 (Cons 0 Nil)
           , Cons 1 (Cons 0 Nil)
```

Now that's a pretty big *smallest* set...

Now that's a pretty big *smallest* set...

We will shortly see in what sense it could be larger!

FS =

$$F S = S \cup \{x \mid x \equiv Nil\}$$

$$F S = S \cup \{x \mid x \equiv Nil\}$$

$$\cup \{x \mid h \in T$$

$$F S = S \cup \{x \mid x \equiv Nil\}$$

$$\cup \{x \mid h \in T$$

$$, t \in List T$$

```
F S = S \cup \{x \mid x \equiv Nil\}
\cup \{x \mid h \in T
, t \in List T
, x \equiv Cons h t
```

The <i>induction</i> proof method can therefore be abstracted as such:

The *induction* proof method can therefore be abstracted as such:

In order to prove $\forall x$, $(x \in T) \Rightarrow (x \in P)$

The *induction* proof method can therefore be abstracted as such:

In order to prove $\forall x$, $(x \in T) \Rightarrow (x \in P)$ by *induction* on T,

The *induction* proof method can therefore be abstracted as such:

In order to prove $\forall x$, $(x \in T) \Rightarrow (x \in P)$ by *induction* on T, it suffices to prove that P is closed under T's rules!

Proof-theoretic argument

The structure of the term guides the structure of a proof!

Proof-theoretic argument

The structure of the term guides the structure of a proof!

```
      · ⊢ Nat ∈ Type
      · ⊢ Nat ∈ Type

      · ⊢ Nat ∈ Type
      · ⊢ Nil ∈ List Nat
```

· ⊢ Cons 0 Nil ∈ List Nat

Proof-theoretic argument

The structure of the term guides the structure of a proof!

```
    - F Nat ∈ Type
    - F Nat ∈ Type
```

Set-theoretic argument Because T is the *smallest* set closed under its rules, $T \subseteq P$ and therefore T = P

Let's now consider *coinduction*

"Coinductive types model infinite structures unfolded on demand, like politicians' excuses: for each attack, there is a defence but no likelihood of resolution."

- Conor McBride

Given a set of rules, to be read backward,

Given a set of rules, to be read backward,

their values can be thought of as either:

Given a set of rules, to be read backward,

their values can be thought of as either:

1. all values that have *finite or infinite* proofs using those rules

Given a set of rules, to be read backward,

their values can be thought of as either:

- 1. all values that have *finite or infinite* proofs using those rules
- 2. the *largest* set closed under those rules

Given a set of rules, to be read backward,

their values can be thought of as either:

- 1. all values that have *finite or infinite* proofs using those rules
- 2. the *largest* set closed under those rules
- 3. the *greatest* fixed point of the underlying endofunctor

Read backward!?

$$x \equiv \text{CoZero}$$
 $\cdot \vdash n \in \text{CoNat}$ $x \equiv \text{CoSucc } n$
 $\cdot \vdash x \in \text{CoNat}$

Coinductive lists

$$\cdot$$
 ⊢ T ∈ Type \cdot ⊢ h ∈ T \cdot ⊢ t ∈ CoList T x ≡ CoCons h t \cdot ⊢ x ∈ CoList T

Coinductive streams

$$\cdot$$
 ⊢ T ∈ Type \cdot ⊢ h ∈ T \cdot ⊢ t ∈ CoList T x ≡ CoCons h t \cdot ⊢ x ∈ CoList T

The <i>coinduction</i> proof method can therefore be abstracted as such:

In order to prove $\forall x$, $(x \in P) \Rightarrow (x \in T)$

In order to prove $\forall x$, $(x \in P) \Rightarrow (x \in T)$ by *coinduction* on T,

In order to prove $\forall x$, $(x \in P) \Rightarrow (x \in T)$ by *coinduction* on T, it suffices to prove that P is closed under T's rules!

In order to prove $\forall x$, $(x \in P) \Rightarrow (x \in T)$ by *coinduction* on T, it suffices to prove that P is closed under T's rules! (again, read *backward*)

When doing a proof by *induction*, you might have had to strengthen your *inductive* hypothesis.

When doing a proof by *induction*, you might have had to strengthen your *inductive* hypothesis.

$$\forall x, (x \in T) \Rightarrow (x \in P)$$

When doing a proof by *induction*, you might have had to strengthen your *inductive* hypothesis.

$$\forall x, (x \in T) \Rightarrow (x \in P)$$

P was not closed under the *constructors* of *T* .

When doing a proof by *induction*, you might have had to strengthen your *inductive* hypothesis.

$$\forall x, (x \in T) \Rightarrow (x \in P)$$

P was not closed under the *constructors* of T.

Intuitively, your property was undershooting the type.

When doing a proof by *coinduction*, you might have had to strengthen your *coinductive* hypothesis.

When doing a proof by *coinduction*, you might have had to strengthen your *coinductive* hypothesis.

$$\forall x, (x \in P) \Rightarrow (x \in T)$$

When doing a proof by *coinduction*, you might have had to strengthen your *coinductive* hypothesis.

$$\forall x, (x \in P) \Rightarrow (x \in T)$$

P was not closed under the **destructors** of T.

When doing a proof by *coinduction*, you might have had to strengthen your *coinductive* hypothesis.

$$\forall x, (x \in P) \Rightarrow (x \in T)$$

P was not closed under the **destructors** of T.

Intuitively, your property was overshooting the type.

The lack of power of equality

stands for "definitional equality".It is the smallest congruence that typically includes:

- stands for "definitional equality".It is the smallest congruence that typically includes:
- a: safe renaming of bound variables

- **■** stands for "definitional equality".
- It is the smallest congruence that typically includes:
- α : safe renaming of bound variables
- β : reduction of applied λ -terms

- stands for "definitional equality".
- It is the smallest congruence that typically includes:
- α : safe renaming of bound variables
- β : reduction of applied λ -terms
- δ : unfolding of definitions

- stands for "definitional equality".
- It is the smallest congruence that typically includes:
- α : safe renaming of bound variables
- β : reduction of applied λ -terms
- δ : unfolding of definitions
- ζ : reduction of let-bindings

- **■** stands for "definitional equality".
- It is the smallest congruence that typically includes:
- α : safe renaming of bound variables
- β : reduction of applied λ -terms
- δ : unfolding of definitions
- ζ : reduction of let-bindings
- η : $f \equiv \lambda x \cdot f x$

■ stands for "definitional equality".

It is the smallest congruence that typically includes:

- α : safe renaming of bound variables
- β : reduction of applied λ -terms
- δ : unfolding of definitions
- ζ : reduction of let-bindings
- η : $f \equiv \lambda x \cdot f x$
- 1: reduction of:

■ stands for "definitional equality".

It is the smallest congruence that typically includes:

- α: safe renaming of bound variables
- β : reduction of applied λ -terms
- δ : unfolding of definitions
- ζ : reduction of let-bindings
- η : $f \equiv \lambda x \cdot f x$
- 1: reduction of:
 - pattern-matching over known constructs

■ stands for "definitional equality".

It is the smallest congruence that typically includes:

- α : safe renaming of bound variables
- β : reduction of applied λ -terms
- δ : unfolding of definitions
- ζ : reduction of let-bindings
- η : $f \equiv \lambda x \cdot f x$
- 1: reduction of:
 - pattern-matching over known constructs
 - fixpoints over known producers

- **■** stands for "definitional equality".
- It is the smallest congruence that typically includes:
- α : safe renaming of bound variables
- β : reduction of applied λ -terms
- δ : unfolding of definitions
- ζ : reduction of let-bindings
- $\eta: f \equiv \lambda x \cdot f x$
- 1: reduction of:
 - pattern-matching over known constructs
 - fixpoints over known producers
 - cofixpoints under known consumers

$$1 + n \neq n + 1$$

$$1 + n \neq n + 1$$

Solution: propositional equality

$$1 + n \neq n + 1$$

Solution: propositional equality

$$\frac{T \in \mathsf{Type} \qquad x \in T}{x = x}$$

$$1 + n \neq n + 1$$

Solution: propositional equality

$$\frac{T \in \mathsf{Type} \qquad x \in T}{x = x}$$

Huh!?

$$\forall (n \in Nat), 1 + n = n + 1$$

by *induction* on Nat

$$\forall (n \in Nat), 1 + n = n + 1$$

by *induction* on Nat

$$1 + 0 = 0 + 1$$

$$\forall (n \in Nat), 1 + n = n + 1$$

by *induction* on Nat

$$\frac{1 = 1}{1 + 0 = 0 + 1}$$

$$\forall (n \in Nat), 1 + n = n + 1$$

by *induction* on Nat

$$\begin{array}{c}
1 &\equiv 1 \\
1 &= 1 \\
1 &+ 0 &= 0 &+ 1
\end{array}$$

$$\forall (n \in Nat), 1 + n = n + 1$$

by *induction* on Nat

$$\begin{array}{c}
1 &\equiv 1 \\
1 &= 1 \\
1 &+ 0 &= 0 &+ 1
\end{array}$$

$$1 + n = n + 1 \Rightarrow 1 + S n = S n + 1$$

$$\forall (n \in Nat), 1 + n = n + 1$$

by *induction* on Nat

$$\begin{array}{c}
1 &\equiv 1 \\
1 &= 1 \\
1 &+ 0 &= 0 &+ 1
\end{array}$$

$$\frac{1 + n = n + 1 \Rightarrow S (S n) = S (n + 1)}{1 + n = n + 1 \Rightarrow 1 + S n = S n + 1}$$

$$\forall (n \in Nat), 1 + n = n + 1$$

by *induction* on Nat

$$\begin{array}{c}
1 &\equiv 1 \\
1 &= 1 \\
1 &+ 0 &= 0 &+ 1
\end{array}$$

$$\forall (n \in Nat), 1 + n = n + 1$$

by *induction* on Nat

$$\begin{array}{c}
1 &\equiv 1 \\
1 &= 1 \\
1 &+ 0 &= 0 &+ 1
\end{array}$$

$$1 + n = n + 1 \Rightarrow S (S n) = S (S n)$$

$$1 + n = n + 1 \Rightarrow S (S n) = S (1 + n)$$

$$1 + n = n + 1 \Rightarrow S (S n) = S (n + 1)$$

$$1 + n = n + 1 \Rightarrow 1 + S n = S n + 1$$

$$\forall$$
 $(n \in Nat), 1 + n = n + 1$
by *induction* on Nat

$$\begin{array}{c}
1 &\equiv 1 \\
1 &= 1 \\
1 &+ 0 &= 0 &+ 1
\end{array}$$

$$\begin{array}{c}
 1 + n = n + 1 \Rightarrow S (S n) \equiv S (S n) \\
 1 + n = n + 1 \Rightarrow S (S n) = S (S n) \\
 1 + n = n + 1 \Rightarrow S (S n) = S (1 + n) \\
 1 + n = n + 1 \Rightarrow S (S n) = S (n + 1) \\
 1 + n = n + 1 \Rightarrow 1 + S n = S n + 1
 \end{array}$$

Co-fixpoints are not judgmentally equal either! :-(

```
comap (+ 1) zeroes ≠ ones
comap (+ 1) zeroes ≠ ones
```

Co-fixpoints are not judgmentally equal either! :-(

```
comap (+ 1) zeroes ≠ ones
comap (+ 1) zeroes ≠ ones
```

Solutions

Co-fixpoints are not judgmentally equal either! :-(

```
comap (+ 1) zeroes ≠ ones
comap (+ 1) zeroes ≠ ones
```

Solutions

• Build an inductive argument for finite observations

Co-fixpoints are not judgmentally equal either! :-(

```
comap (+ 1) zeroes # ones
comap (+ 1) zeroes # ones
```

Solutions

- Build an inductive argument for finite observations
- Build a coinductive argument for infinite observations

Stream "equality"

$$h_1 \equiv h_2 \qquad t_1 \approx t_2$$

$$\boxed{\text{CoCons } h_1 \ t_1 \approx \text{CoCons } h_2 \ t_2}$$

In practice, the coinduction principle I presented earlier is rarely what we are interested in.

Many proofs on *coinductive* data types are instead relational.

In practice, the coinduction principle I presented earlier is rarely what we are interested in.

Many proofs on *coinductive* data types are instead relational.

Bisimulation techniques demonstrate how some binary relations are closed under the *destructors* of a type.

In practice, the coinduction principle I presented earlier is rarely what we are interested in.

Many proofs on *coinductive* data types are instead relational.

Bisimulation techniques demonstrate how some binary relations are closed under the *destructors* of a type.

There is a dual proof technique, *congruence*, capturing binary relations closed under the *constructors* of a type.

Finally, because this is a Galois talk:

Finally, because this is a Galois talk:

There is yet another, categorical, interpretation of

inductive and coinductive types.

$$T A \longrightarrow A$$

$$T \land \longrightarrow A$$

$$T \land \longrightarrow A$$

$$\uparrow \chi = 1 + \chi$$
 (natural numbers)

$$T \land \longrightarrow A$$

$$T X = 1 + X$$
 (natural numbers)

$$T X = 1 + T \times X$$
 (lists of Ts)

$$A \longrightarrow T A$$

$$A \longrightarrow T A$$

$$A \longrightarrow T A$$

of functors like:

$$T X = 1 + X$$

(predecessor function)

$$A \longrightarrow T A$$

$$\uparrow \chi = 1 + \chi$$
 (predecessor function)

$$T X = 1 + T \times X$$
 (possibly-finite streams of Ts)

 Gives a great intuition for the constructor / destructor roles

$$T \land \longrightarrow A \qquad A \longrightarrow T \land A$$

- Gives a great intuition for the constructor / destructor roles
- The duality story is very crisp

$$T \land \longrightarrow A \qquad A \longrightarrow T \land A$$

- Gives a great intuition for the constructor / destructor roles
- The duality story is very crisp
- Justifies case analysis by the existence of a homomorphism

$$T \land \longrightarrow A \qquad A \longrightarrow T \land A$$

- Gives a great intuition for the constructor / destructor roles
- The duality story is very crisp
- Justifies case analysis by the existence of a homomorphism
- Justifies induction and coinduction
 by the uniqueness of said homomorphism

Learn more!

Jacobs, B. and Rutten, J., 1997.

A tutorial on (co) algebras and (co) induction.

Bulletin-European Association for Theoretical Computer Science, 62, pp.222-259.