8-input multiplexer

74HC/HCT151

FEATURES

· True and complement outputs

· Multifunction capability

· Permits multiplexing from n lines to 1 line

· Non-inverting data path

• See the "251" for the 3-state version

· Output capability: standard

I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT151 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns

SYMBOL	PARAMETER	CONDITIONS	TYP	LINIT		
STWIBUL	PARAMETER	CONDITIONS	нс	нст	UNIT	
t _{PHL} / t _{PLH}	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$				
	I_n to Y, \overline{Y}		17	19	ns	
	S_n to Y, \overline{Y}		19	20	ns	
	Ē to Y		12	13	ns	
	Ē to ₹		14	18	ns	
Cı	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per package	notes 1 and 2	40	40	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

fo = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

 C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

8-input multiplexer

74HC/HCT151

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
4, 3, 2, 1, 15, 14, 13, 12	I ₀ to I ₇	multiplexer inputs
5	Υ	multiplexer output
6	Ϋ́	complementary multiplexer output
7	Ē	enable input (active LOW)
8	GND	ground (0 V)
11, 10, 9	S ₀ , S ₁ , S ₂	select inputs
16	V _{CC}	positive supply voltage

8-input multiplexer

74HC/HCT151

FUNCTION TABLE

INPUTS							OUTPUTS						
Ē	S ₂	S ₁	S ₀	I ₀	l ₁	l ₂	l ₃	I ₄	I ₅	I ₆	I ₇	Y	Y
Н	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Н	L
L	L	L	L	L	Х	Х	Х	Х	Х	Х	Х	Н	L
L	L	L	L	Н	X	Х	Х	Х	X	Х	Х	L	Н
L	L	L	Н	Χ	L	Х	Х	Х	Х	Х	Х	Н	L
L	L	L	Н	Х	Н	Х	Х	Х	Х	Х	Х	L	Н
L	L	Н	L	Х	Х	L	Х	Х	Х	Х	Х	Н	L
L	L	Н	L	Χ	X	Н	Х	Х	Х	Х	Х	L	H
L	L	Н	Н	Χ	X	Х	L	Х	X	Х	Х	Н	L
L	L	Н	Н	Х	Х	Х	Н	Х	Х	Х	Х	L	Н
L	Н	L	L	Х	Х	Х	Х	L	Х	Х	Х	Н	L
L	Н	L	L	Х	X	Х	Х	Н	Х	Х	Х	L	H
L	Н	L	Н	Χ	X	Х	Х	Х	L	Х	Х	Н	L
L	Н	L	Н	Х	Х	Х	Х	Х	Н	Х	Х	L	Н
L	Н	Н	L	Х	Х	Х	Х	Х	Х	L	Х	Н	L
L	Н	Н	L	Х	X	Х	X	Х	X	Н	Х	L	Н
L	Н	Н	Н	Х	Х	Х	Х	Х	X	Х	L	Н	L
L	Н	Н	Н	Х	Х	Х	Х	Х	Х	Х	Н	L	Н

Notes

- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care.

