

TE Mini Project Skin Disease Detection

Group no. 5

Bhavya B Gada TEIT-1 Roll no. 18 Shivangkumar Gandhi TEIT-1 Roll no. 19 Pruthvi Rathod TEIT-2 Roll no. 60

> Guide: Prof. Pranoti Nage Date of presentation: May 21, 2021

Atharva College of Engineering

Department of Information Technology

Index

- Introduction
- Domain Knowledge
- Problem definition
- Review of literature
- Existing System and Proposed system
- Feasibility Study and Scope of project
- Methodology
 - Dataset
 - Algorithm/Flowchart/Block Diagram
- Results and Discussion
- Conclusions
- References
- Future Scope

Introduction

Skin cancer is one of the **most common cancer** in the United States and worldwide.

- 1 in 5 Americans will develop skin cancer by the age of 70.
- More than 2 people die of skin cancer in the U.S. every hour.
- Having **5 or more sunburns** doubles your risk for melanoma.
- When detected early, the 5-year survival rate for melanoma is 99 percent
- → Skin diseases common than other diseases caused by a fungal infection, bacteria, allergy, or viruses, etc.
- → Skin diseases are chronic, infectious, and sometimes may develop into skin cancer.
- → If early diagnosed, can reduce their development and spread.

Domain Knowledge

- Deep learning
- ANNs
- CNN
- Transfer Learning
- ResNets

Problem definition

- Skin diseases have become a more common problem in human life. Most of these diseases are dangerous and harmful, particularly if not treated at an initial stage.
- The main risk of the disease can lead to skin cancer.
 Detecting the disease at an early stage can rescue the patients from Cancer
- The system would allow users to determine the skin diseases to provide treatments or advice to the patient by making use of images of skin infected with the disease and by obtaining information from the patient.

Review of literature

Sr no	Title of the paper	Methodologies used	Dataset with Performance measures	Drawbacks/Conclusion
1	Disease Classification based on Dermoscopic Skin Images Using Convolutional Neural Network in Teledermatology System IEEE Xplore 2020	Inception V3, MobileNet	MNIST HAM10000 - CNN -72% MobileNet- 58%	The model results from the learning process will be applied to a web classifier. The comparison of predictive accuracy shows that the web-classifier using the CNN Inception V3 model has an accuracy value of 72% while the web-classifier that uses the MobileNet v1 model has an accuracy value of 58%.
2	Automatic diagnosis of skin diseases using convolution neural network ELSEVIER 2020	AlexNet	Dermnet -72.1%	One of the key features of the proposed technique is the vast features generated by the convolutional layer of the network which is used by the final layers of the network for classification. This work can be extended to classify skin diseases into more classes.
3	Detection of Melanoma using Deep Learning Techniques IEEE Xplore 2020	Data Augmentation, Data Segmentation (UNET), Classification using Deep Network	ISBI 2017 dataset 84.2%	A two-stage model has been built for the classification of a skin lesion into melanoma and non-melanoma type. Results obtained for the segmentation stage using UNET are good enough for the targeted application. Good accuracy was obtained from the FCRN classification stage, but since the targeted application is for medical diagnosis of false negatives needed to be less. Therefore, increasing the recall factor had to be given more priority than increasing the overall accuracy.

Review of literature

4	Deep Learning in Skin	VGGNet,	HAM10000	Few data may cause insufficier.
	Disease Image	Inception,	dataset- 80% to	feature extraction, which will affect
	Recognition: A Review	DenseNet	89%	the diagnosis and recognition of
	IEEE Access 2020			lesions. Oneof the significant
				problems in skin disease image
				recognition is the difficulty in
				obtaining a large number of data sets
				due to the complications in medical
				image collection and the rare
				occurrence of individual diseases
5.	Discriminative Feature	ResNet152,	Wuhan Union	Fine-tune all layers of ResNet152
	Learning for Skin	InceptionResNet-	Hospital searched	and InceptionResNetV2 to address
	Disease Classification	V2	images and unified	the problem of facial skin disease
	Using Deep		these images of 14	images. The performance of the
	Convolutional Neural		Classes.	proposed method can be improved
	Network			by designing a dataset with the help
				of a dermatologist to visually
	IEEE Access 2020			organize the taxonomy.
6	Skin Lesion	CNN MODEL	ISIC Archives-	When the dimensionality is very
	Classification using	WITH NOVEL	86.35%	high and the number of instances is
	Convolutional Neural	REGULARIZER		very low, the use of these
	Network with Novel			regularizations is pointless.
	Regularizer			Likewise, regularization algorithms
	Some financial field			also have several limitations:
	IEEE Access 2017			1) It cannot be used for feature
				selection or feature reduction. 2)
				Choosing a suitable value of λ is
				difficult, as it is a continuous value
				and attempting a million times to
				select a single suitable value is
				computationally expensive and
				time-intensive.

Existing System

- The Existing systems consist of Image Classification systems which use machine learning models which do not provide great accuracy.
- The systems have also used CNN algorithms but are unable to give great accuracy.
- About the test case here, the existing system classify Malignant and Benign data but have less accuracy.

Proposed System

- In the proposed system we have developed a model using ResNet50.
- ResNet50 is a lightweight architecture.
- The ResNet50 model 5 stages each with a convolution and Identity block.
- The system provides early skin disease detection solution by detecting the provided image as malignant or benign
- Resnet50 uses weights of ImageNet so it's easier to train. (transferred learning logic)

Feasibility Study & Scope of project

Technical Feasibility:

OS-Windows 7 or more

8GB or more RAM

Processor: i5 5th Gen or more

Programming Language: Python 3.8

Space: 5GB or more

Scope:

The system determines skin disease when provided a test image.

A GUI is used to take input image and display the results

Methodology

Dataset:

Data consist of images in 2 folders of train and test each having Malignant and Benign folders

Train:

Malignant: 1440

Benign: 1197

Test:

Malignant: 300

Benign: 360

- test
 - benign
 - malignant
- ▼ □ train
 - benign
 - malignant

Methodology

- Data Preprocessing: Data preprocessing is the method to convert raw data into a well structured data which will be more useful for the model. In this project we have used image resizing.
- Data Augmentation: to increase the size of inputs and to prevent overfitting.
- ResNet Architecture: The ResNet-50 model consists of 5 stages each with a convolution and Identity block. Each convolution block has 3 convolution layers and each identity block also has 3 convolution layers. The ResNet-50 has over 23 million trainable parameters.

Flowchart:

Block Diagram:

Result and Discussion

Comparison of Accuracy: Resnet50:

Fig 4.2

DenseNet

Fig 4.3

Fig 4.5

Comparison of Losses:

Fig 4.7

DenseNet:

ResNet50 Confusion Matrix and AUC-ROC curve

Confusion Metrix for Skin Cancer

150

100

Fig 4.8

Inception V3:

Fig 4.4

MobileNet:

InceptionV3:

ResNet50:

Fig 4.9

MobileNet:

Fig 4.10

malignant Predicted label

0.6

ROC curve

NasNet:

NasNet:

Fig 4.11

27

ACE- IT department

Skin Disease Detection

Comparison of Various Models on Data

Pre Trained Model	Accuracy	Precision	Recall	F1 Score	ROC-AUC
ResNet50	0.923	0.915	0.926	0.916	0.915
InceptionV3	0.901	0.891	0.908	0.893	0.897
MobileNet	0.897	0.894	0.892	0.891	0.894
DenseNet	0.905	0.901	0.891	0.904	0.899
NasNet	0.579	0.643	0.599	0.548	0.593

GUI with Results

Conclusions

- This Disease is detected Using ResNet base model Architecture and at early stages and help for better remediation. Preventing humans from getting prone to skin diseases
- The proposed architecture is evaluated on the malignant and benign images dataset which consist of fine images of areas of infection
- The overall accuracy of model is high and our aim is to build a multi-class classifier.

Future Scope

- Making of multiclass classifiers. (more than 5 disease classes specificity)
- Parallel Network Model with Patient Stat. Data
- The frontend using latest cutting edge technological advancements like material design and trending design patterns which will help the dermatologists, skin clinics or appointed authority to easily maneuver the website.
- Check for details of patients who are suffering from the skin disease.
- Patient end, Doctor end separate GUI.

References

- 1. K. E. Purnama et al., "Disease Classification based on Dermoscopic Skin Images Using Convolutional Neural Network in Teledermatology System," 2019 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM), Surabaya, Indonesia, 2019, pp. 1-5, doi: 10.1109/CENIM48368.2019.8973303.
- 2. T. Shanthi, R.S. Sabeenian, R. Anand, Automatic diagnosis of skin diseases using convolution neural network, Microprocessors and Microsystems, Volume 76, 2020,103074, ISSN 0141-9331, https://doi.org/10.1016/j.micpro.2020.103074.
- 3. V. B.N., P. J. Shah, V. Shekar, H. R. Vanamala and V. Krishna A., "Detection of Melanoma using Deep Learning Techniques," 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM), Dubai, United Arab Emirates, 2020, pp. 391-394, doi: 10.1109/ICCAKM46823.2020.9051495.
- 4. L. -F. Li, X. Wang, W. -J. Hu, N. N. Xiong, Y. -X. Du and B. -S. Li, "Deep Learning in Skin Disease Image Recognition: A Review," in IEEE Access, vol. 8, pp. 208264-208280, 2020, doi: 10.1109/ACCESS.2020.3037258.
- 5. B. Ahmad, M. Usama, C. Huang, K. Hwang, M. S. Hossain and G. Muhammad, "Discriminative Feature Learning for Skin Disease Classification Using Deep Convolutional Neural Network," in IEEE Access, vol. 8, pp. 39025-39033, 2020, doi: 10.1109/ACCESS.2020.2975198.
- 6. M. A. Al Bahar, "Skin Lesion Classification Using Convolutional Neural Network With Novel Regularizer," in IEEE Access, vol. 7, pp. 38306-38313, 2019, doi: 10.1109/ACCESS.2019.2906241.

Thank You!