SMO - Vorrunde

Zürich, Lausanne, Lugano - 12. Januar 2013

Zeit: 3 Stunden

Jede Aufgabe ist 7 Punkte wert.

- 1. Eine Gruppe von 2013 Leuten setzt sich gleichmässig verteilt an einen runden Tisch. Nachdem sie sich hingesetzt haben, bemerken sie, dass an jedem Platz ein Namensschild steht und dass sich niemand an den Platz mit seinem Namen gesetzt hat. Zeige, dass sie den Tisch so drehen können, dass mindestens zwei Personen das richtige Namensschild vor sich haben.
- 2. Seien M_1 und M_2 die Mittelpunkte der Kreise k_1 resp. k_2 , welche sich im Punkt P senkrecht schneiden. Ferner schneide k_1 die Strecke M_1M_2 in Q. Zeige, dass sich die Senkrechte zur Strecke M_1M_2 durch den Punkt M_2 und die Gerade PQ auf k_2 schneiden.
- 3. Wir nennen eine natürliche Zahl sympathisch, falls die Ziffern ihrer Dezimaldarstellung die folgenden beiden Bedingungen erfüllen:
 - a) Jede der Ziffern $0, 1, \dots, 9$ kommt höchstens einmal vor.
 - b) Ist A eine gerade und B eine ungerade Ziffer, so liegen genau $\frac{A+B-1}{2}$ andere Ziffern zwischen A und B.

Bestimme die Anzahl sympathischer Zahlen.

4. Finde alle Paare (m, n) natürlicher Zahlen, für die gilt:

$$(m+1)! + (n+1)! = m^2n^2$$

5. Bestimme die kleinste natürliche Zahl n, sodass jede n-elementige Teilmenge S von $\{1, 2, \ldots, 100\}$ mindestens eine Zahl enthält, welche sich als Summe von drei anderen, verschiedenen Elementen aus S schreiben lässt.