Lecture 1 Note - Outline and Intro

Summary: Know sig figs, slugs, FBDs, units in calcs, engineer notation, unit rules.

- Course info:
 - Prof recommends summarizing each lecture into 1 page.
 - Do the lessons and HW at home; ask about the tricky stuff during lecture time.
 - Course lasts for 6 weeks, 12 lectures (2 per week!)

Statics:

- A branch of mechanics: The study of forces acting upon static (non-moving), rigid (non-deforming, non-fluid) bodies.
- There are four fundamental physical quantities in Statics: Length (the size and location of a body), Mass (the quantity of matter kilograms or **slugs**), Time, and Force.
- There are two unit systems, imperial and SI. **Note that kgs measure mass, while lbs measure force**. Conversion between units isn't expected: Use what you get.

Name	Length	Time	Mass	Force
International	meter	second	kilogram	newton*
System of Units SI	m	s	kg	$\binom{N}{\frac{kg\cdot m}{s^2}}$
U.S. Customary FPS	foot	second	$[slug*]$ $(lb \cdot s^2)$	pound
	ft	s	$\left(\frac{10^{4}\text{s}}{\text{ft}}\right)$	Ib

- Models and idealizations (assumptions) that are common in Statics:
 - Particle: A substance with mass that's assumed to have negligible size
 - Rigid body: A group of particles assumed to stay fixed together under load.
 - Concentrated force: A force on a rigid body assumed to act on 1 point
- Significant figures and calculations (review):
 - Only round off your final answer! Round trailing 5s to the nearest even digit.
 - Use 4 sig figs in calculations, round to 3 in answers by default.
 - Keep units visible in calculations and answers. Note how some units cancel out: Eg. $V_f = V_i + at \rightarrow m/s = m/s + m/s^2 x s$
- Unit rules (already-known rules excluded):
 - Separate units with dot meter*second = m•s, not ms (millisecond)
 - All symbols are lowercase except <u>N</u>ewtons, <u>P</u>ascals, <u>M</u>egas and <u>G</u>igas.