Class 37

Thm: (X, ρ) metric space

Then \exists metric space (X, ρ) \ni

- (1) (X, ρ) complete;
- (2) \exists isometric $f: (X, \rho) \to (X, \rho);$
- (3) f(X) dense in X.

Moreover, if (X, ρ) also satisfies (1), (2) & (3), then (X, ρ) , (X, ρ) isomorphic.

Def. (X, ρ) completion of (X, ρ)

Pf: Let $\{x_n\}$, $\{y_n\}$ be Cauchy sequences in X

$$\{x_n\} \sim \{y_n\}$$
 if $\rho(x_n, y_n) \to 0$ as $n \to \infty$

Then " ~ " equivalence relation

Let \tilde{x} denote the equivealence class containing $\{x_n\}$

Let
$$X = {\tilde{x}}$$

Let
$$\rho(\tilde{x}, \tilde{y}) = \lim_{n \to \infty} \rho(x_n, y_n)$$
 if $\{x_n\} \in \tilde{x} \& \{y_n\} \in \tilde{y}$

Check: (i) limit exists;

- (ii) ρ well-defined;
- (iii) ρ metric;
- (iv) (X, ρ) complete;

Define: $f: X \to X$ by f(x) = the equiv. class containing the Cauchy seq. $\{x, x, x, ...\}$

- (v) f isometric;
- (vi) f(X) dense in X;

Define: $r: X \to X$ by $r(\hat{x}) =$ the equiv. class containing $\{x_n\}$,

where
$$f(x_n) \to \hat{x}$$
 in $\hat{\rho}$ (:: $f(X)$ dense in \hat{X})

Check: (vii) r well-defined; (viii) r isomorphism

Ex.1. (X, ρ) complete metric space $\Rightarrow X = X$.

Ex.2. X = (0,1) with Euclidean metric

Then X = [0,1] with Euclidean metric

Ex.3. $X = \{\text{rational nos}\}\$, Euclidean metric

Then X = R

