Recent progress on the Assouad dimension

Jonathan M. Fraser

The University of Manchester, UK

Joint work with several people!

Consider a bounded set $F \subset \mathbb{R}^d$.

Consider a bounded set $F \subset \mathbb{R}^d$.

For small r > 0, let $N_r(\cdot)$ be the familiar r-covering function.

Consider a bounded set $F \subset \mathbb{R}^d$.

For small r > 0, let $N_r(\cdot)$ be the familiar r-covering function.

The *upper box dimension* can be expressed as

$$\overline{\dim}_{B}F = \inf \left\{ -\alpha : (\exists C) (\forall 0 < r < 1) (\forall x \in F) \right.$$

$$N_{r}(F \cap B(x, 1)) \leqslant C \left(\frac{1}{r}\right)^{\alpha} \right\}.$$

Consider a bounded set $F \subset \mathbb{R}^d$.

For small r > 0, let $N_r(\cdot)$ be the familiar r-covering function.

The upper box dimension can be expressed as

$$\overline{\dim}_{B}F = \inf \left\{ \alpha : (\exists C) (\forall 0 < r < 1) (\forall x \in F) \right.$$

$$N_{r}(F \cap B(x, 1)) \leqslant C \left(\frac{1}{r}\right)^{\alpha} \right\}.$$

which motivates

$$\dim_{A} F = \inf \left\{ \quad \alpha : (\exists C) (\forall 0 < r < R < 1) (\forall x \in F) \right.$$

$$N_{r} (F \cap B(x, R)) \leq C \left(\frac{R}{r}\right)^{\alpha} \right\}.$$

Consider a bounded set $F \subset \mathbb{R}^d$.

For small r > 0, let $N_r(\cdot)$ be the familiar r-covering function.

The upper box dimension can be expressed as

$$\overline{\dim}_{B}F = \inf \left\{ -\alpha : (\exists C) (\forall 0 < r < 1) (\forall x \in F) \right.$$

$$N_{r}(F \cap B(x, 1)) \leqslant C \left(\frac{1}{r}\right)^{\alpha} \right\}.$$

which motivates

$$\dim_{A} F = \inf \left\{ \quad \alpha : (\exists C) (\forall 0 < r < R < 1) (\forall x \in F) \right.$$

$$N_{r}(F \cap B(x, R)) \leq C \left(\frac{R}{r}\right)^{\alpha} \right\}.$$

 $\dim_{\mathrm{H}} F \leqslant \overline{\dim}_{\mathrm{B}} F \leqslant \dim_{\mathrm{A}} F$

• The Assouad dimension was introduced by Patrice Assouad in the 1970s

- The Assouad dimension was introduced by Patrice Assouad in the 1970s
- Important tool in the study of quasi-conformal mappings, embedding problems and PDEs

- The Assouad dimension was introduced by Patrice Assouad in the 1970s
- Important tool in the study of quasi-conformal mappings, embedding problems and PDEs

Robinson: Dimensions, Embeddings, and Attractors

Heinonen: Lectures on Analysis on Metric Spaces.

Consider the standard Mandelbrot percolation on $[0,1]^d$ using an M^d grid and probability $p>M^{-d}$.

Consider the standard Mandelbrot percolation on $[0,1]^d$ using an M^d grid and probability $p>M^{-d}$.

ullet There is a positive probability that the limit set Ω is non-empty.

Consider the standard Mandelbrot percolation on $[0,1]^d$ using an M^d grid and probability $p > M^{-d}$.

- ullet There is a positive probability that the limit set Ω is non-empty.
- Conditioned on non-extinction, $\dim_{\mathrm{H}} \Omega = d + \log p / \log M$ almost surely.

Consider the standard Mandelbrot percolation on $[0,1]^d$ using an M^d grid and probability $p > M^{-d}$.

- ullet There is a positive probability that the limit set Ω is non-empty.
- ullet Conditioned on non-extinction, $\dim_{\mathrm{H}} \Omega = d + \log p / \log M$ almost surely.

Proposition (F.-Miao-Troscheit '14)

Almost surely (conditioned on non-extinction), one cannot embed Ω into \mathbb{R}^{d-1} via a bi-Lipschitz map.

Consider the standard Mandelbrot percolation on $[0,1]^d$ using an M^d grid and probability $p>M^{-d}$.

- ullet There is a positive probability that the limit set Ω is non-empty.
- ullet Conditioned on non-extinction, $\dim_{\mathrm{H}} \Omega = d + \log p / \log M$ almost surely.

Proposition (F.-Miao-Troscheit '14)

Almost surely (conditioned on non-extinction), one cannot embed Ω into \mathbb{R}^{d-1} via a bi-Lipschitz map.

Proof.

Independent of p, conditioned on non-extinction, $\dim_{\mathrm{A}}\Omega=d$ almost surely.

Consider the standard Mandelbrot percolation on $[0,1]^d$ using an M^d grid and probability $p>M^{-d}$.

- ullet There is a positive probability that the limit set Ω is non-empty.
- Conditioned on non-extinction, $\dim_{\mathrm{H}} \Omega = d + \log p / \log M$ almost surely.

Proposition (F.-Miao-Troscheit '14)

Almost surely (conditioned on non-extinction), one cannot embed Ω into \mathbb{R}^{d-1} via a bi-Lipschitz map.

Proof.

Independent of p, conditioned on non-extinction, $\dim_{\mathrm{A}}\Omega=d$ almost surely.

We recently learned that the Assouad dimension result follows from earlier work of Berlinkov-Jarvenpää.

Let $F\subseteq [0,1]^d$ be the attractor of a finite IFS of contracting similarities $\{S_i\}_{i\in\mathcal{I}}.$

Let $F\subseteq [0,1]^d$ be the attractor of a finite IFS of contracting similarities $\{S_i\}_{i\in\mathcal{I}}$.

Let $c_i \in (0,1)$ be the contraction ratio of S_i .

Let $F \subseteq [0,1]^d$ be the attractor of a finite IFS of contracting similarities $\{S_i\}_{i\in\mathcal{I}}$.

Let $c_i \in (0,1)$ be the contraction ratio of S_i .

There is a unique $s \geqslant 0$ satisfying

$$\sum_{i\in\mathcal{I}}c_i^s=1.$$

Let $F \subseteq [0,1]^d$ be the attractor of a finite IFS of contracting similarities $\{S_i\}_{i\in\mathcal{I}}$.

Let $c_i \in (0,1)$ be the contraction ratio of S_i .

There is a unique $s \geqslant 0$ satisfying

$$\sum_{i\in\mathcal{I}}c_i^s=1.$$

If one can find an open set $\mathcal{O} \subset [0,1]^d$ such that

- $S_i(\mathcal{O}) \subset \mathcal{O}$ for all $i \in \mathcal{I}$
- $S_i(\mathcal{O}) \cap S_j(\mathcal{O}) = \emptyset$ for all $i \neq j \in \mathcal{I}$

then we say the open set condition is satisfied for this IFS.

If the OSC is satisfied, then

- $\dim_{\mathrm{H}} F = \overline{\dim}_{\mathrm{B}} F = \dim_{\mathrm{A}} F = s$
- $0 < \mathcal{H}^s(F) < \infty$

If the OSC is satisfied, then

- $\dim_{\mathrm{H}} F = \overline{\dim}_{\mathrm{B}} F = \dim_{\mathrm{A}} F = s$
- $0 < \mathcal{H}^s(F) < \infty$

If the OSC is not satisfied, then

- $\dim_{\mathrm{H}} F = \overline{\dim}_{\mathrm{B}} F \leqslant s$
- $0 \leqslant \mathcal{H}^{\dim_{\mathrm{H}} F}(F) < \infty$

If the OSC is satisfied, then

- $\dim_{\mathrm{H}} F = \overline{\dim}_{\mathrm{B}} F = \dim_{\mathrm{A}} F = s$
- $0 < \mathcal{H}^s(F) < \infty$

If the OSC is not satisfied, then

- $\dim_{\mathrm{H}} F = \overline{\dim}_{\mathrm{B}} F \leqslant s$
- $0 \leqslant \mathcal{H}^{\dim_{\mathrm{H}} F}(F) < \infty$

Proposition (F. '14)

For any $\varepsilon \in (0,1)$, there exists a self-similar set $F \subseteq [0,1]$ with $\dim_H F \leqslant \varepsilon < 1 = \dim_A F$.

• Introduced by Zerner (1996) and Lau-Ngai (1999).

• Introduced by Zerner (1996) and Lau-Ngai (1999).

Define

$$\mathcal{E} = \left\{ S_{\mathbf{i}}^{-1} \circ S_{\mathbf{j}} : \mathbf{i} \neq \mathbf{j} \in \mathcal{I}^* \right\}$$

• Introduced by Zerner (1996) and Lau-Ngai (1999).

Define

$$\mathcal{E} = \left\{ S_{\mathbf{i}}^{-1} \circ S_{\mathbf{j}} : \mathbf{i} \neq \mathbf{j} \in \mathcal{I}^* \right\}$$

An IFS satisfies the weak separation property if

$$\mathsf{Id} \; \notin \; \overline{\mathcal{E} \setminus \{\mathsf{Id}\}}$$

• Introduced by Zerner (1996) and Lau-Ngai (1999).

Define

$$\mathcal{E} = \left\{ S_{\mathbf{i}}^{-1} \circ S_{\mathbf{j}} : \mathbf{i} \neq \mathbf{j} \in \mathcal{I}^* \right\}$$

An IFS satisfies the weak separation property if

$$\mathsf{Id} \; \notin \; \overline{\mathcal{E} \setminus \{\mathsf{Id}\}}$$

ullet Zerner proved: F in general position and satisfies WSP $\Rightarrow \mathcal{H}^{\dim_H F}(F) > 0$

• Introduced by Zerner (1996) and Lau-Ngai (1999).

Define

$$\mathcal{E} = \left\{ S_{\mathbf{i}}^{-1} \circ S_{\mathbf{j}} : \mathbf{i} \neq \mathbf{j} \in \mathcal{I}^* \right\}$$

An IFS satisfies the weak separation property if

$$\mathsf{Id} \; \notin \; \overline{\mathcal{E} \setminus \{\mathsf{Id}\}}$$

ullet Zerner proved: F in general position and satisfies WSP $\Rightarrow \mathcal{H}^{\dim_H F}(F) > 0$

Theorem (F.-Henderson-Olson-Robinson '15)

Let F be a self-similar subset of [0,1].

- If the WSP is satisfied, then $\dim_A F = \dim_H F$.
- If the WSP is not satisfied, then $\dim_A F = 1$.

Theorem (Farkas-F. '15)

Let F be a (graph-directed) self-similar subset of $[0,1]^d$ with $\dim_H F = t$.

• If $\mathcal{H}^{t}(F) > 0$, then F is Ahlfors regular

Theorem (Farkas-F. '15)

Let F be a (graph-directed) self-similar subset of $[0,1]^d$ with $\dim_H F = t$.

• If $\mathcal{H}^t(F) > 0$, then F is Ahlfors regular $(\mathcal{H}^t(B(x,r)) \asymp r^t)$.

Theorem (Farkas-F. '15)

Let F be a (graph-directed) self-similar subset of $[0,1]^d$ with $\dim_H F = t$.

• If $\mathcal{H}^t(F) > 0$, then F is Ahlfors regular $(\mathcal{H}^t(B(x,r)) \times r^t)$.

The proof uses the fact that the t-dimensional Hausdorff content and Hausdorff measure coincide for (graph-directed) self-similar sets.

Theorem (Farkas-F. '15)

Let F be a (graph-directed) self-similar subset of $[0,1]^d$ with $\dim_H F = t$.

• If $\mathcal{H}^t(F) > 0$, then F is Ahlfors regular $(\mathcal{H}^t(B(x,r)) \times r^t)$.

The proof uses the fact that the t-dimensional Hausdorff content and Hausdorff measure coincide for (graph-directed) self-similar sets.

Corollary (Farkas-F. '15)

Let F be a self-similar subset of [0,1] with $\dim_H F = t < 1$.

- $\mathcal{H}^t(F) > 0 \Rightarrow \dim_A F = t$.
- $\mathcal{H}^t(F) = 0 \Rightarrow \dim_A F = 1$.

A classical problem in geometric measure theory is to understand how dimension behaves under orthogonal projection.

A classical problem in geometric measure theory is to understand how dimension behaves under orthogonal projection.

For $\theta \in [0, 2\pi)$, let π_{θ} denote projection onto a line in direction θ .

Theorem (Marstrand's Projection Theorem, 1954)

Let F be an analytic subset of the plane with Hausdorff dimension $s \in [0,2]$. Then for almost all $\theta \in [0,2\pi)$

$$\dim_H \pi_\theta F = \min\{1, s\}.$$

A classical problem in geometric measure theory is to understand how dimension behaves under orthogonal projection.

For $\theta \in [0, 2\pi)$, let π_{θ} denote projection onto a line in direction θ .

Theorem (Marstrand's Projection Theorem, 1954)

Let F be an analytic subset of the plane with Hausdorff dimension $s \in [0,2]$. Then for almost all $\theta \in [0,2\pi)$

$$\dim_H \pi_\theta F = \min\{1, s\}.$$

The theorem (and its many variations) has inspired an enormous amount of work in fractal geometry and geometric measure theory.

A classical problem in geometric measure theory is to understand how dimension behaves under orthogonal projection.

For $\theta \in [0, 2\pi)$, let π_{θ} denote projection onto a line in direction θ .

Theorem (Marstrand's Projection Theorem, 1954)

Let F be an analytic subset of the plane with Hausdorff dimension $s \in [0,2]$. Then for almost all $\theta \in [0,2\pi)$

$$\dim_H \pi_\theta F = \min\{1, s\}.$$

The theorem (and its many variations) has inspired an enormous amount of work in fractal geometry and geometric measure theory.

Theorem (Jarvenpää '94, Falconer-Howroyd '97, Howroyd '01)

Let F be an analytic subset of the plane. Then the packing and upper and lower box dimensions of π_{θ} F are all almost surely constant.

A classical problem in geometric measure theory is to understand how dimension behaves under orthogonal projection.

For $\theta \in [0, 2\pi)$, let π_{θ} denote projection onto a line in direction θ .

Theorem (Marstrand's Projection Theorem, 1954)

Let F be an analytic subset of the plane with Hausdorff dimension $s \in [0,2]$. Then for almost all $\theta \in [0,2\pi)$

$$\dim_H \pi_\theta F = \min\{1, s\}.$$

The theorem (and its many variations) has inspired an enormous amount of work in fractal geometry and geometric measure theory.

Theorem (Jarvenpää '94, Falconer-Howroyd '97, Howroyd '01)

Let F be an analytic subset of the plane. Then the packing and upper and lower box dimensions of π_{θ} F are all almost surely constant.

Note: the almost sure value can be strictly less than $\min\{1, s\}$.

What can one say about the Assouad dimension?

What can one say about the Assouad dimension?

Theorem (F.-Orponen '15)

Let F be a subset of the plane with Assouad dimension $s \in [0,2]$. Then for almost all $\theta \in [0,2\pi)$

$$\dim_A \pi_\theta F \geqslant \min\{1, s\}.$$

What can one say about the Assouad dimension?

Theorem (F.-Orponen '15)

Let F be a subset of the plane with Assouad dimension $s \in [0,2]$. Then for almost all $\theta \in [0,2\pi)$

$$\dim_A \pi_\theta F \geqslant \min\{1, s\}.$$

• This is a partial Marstrand Theorem for Assouad dimension.

What can one say about the Assouad dimension?

Theorem (F.-Orponen '15)

Let F be a subset of the plane with Assouad dimension $s \in [0,2]$. Then for almost all $\theta \in [0,2\pi)$

$$\dim_A \pi_\theta F \geqslant \min\{1, s\}.$$

- This is a partial Marstrand Theorem for Assouad dimension.
- We can use self-similar sets to show that a full Marstrand Theorem for Assouad dimension does not exist!

Consider the following example of Peres, Simon and Solomyak from 2000:

The contraction ratio is $c \in (1/5, 1/3)$, and the Hausdorff dimension is $s = -\log 3/\log c$.

Theorem (Peres-Simon-Solomyak '00)

There is a non-empty open interval of projections $J \subseteq \{\theta : \pi_{\theta} \text{ not injective}\}$ such that for almost all $\theta \in J$ we have

$$\mathcal{H}^s(\pi_\theta F)=0.$$

Since c < 1/3, we can find an open interval I where the projection is self-similar and satisfies the OSC, in particular, for all $\theta \in I$ we have

$$\mathcal{H}^{s}(\pi_{\theta}F) > 0.$$

In summary:

In summary:

There are disjoint non-empty intervals $I, J \subseteq [0, 2\pi)$ such that:

• For all $\theta \in I$, $\mathcal{H}^s(\pi_{\theta}F) > 0$

In summary:

There are disjoint non-empty intervals $I, J \subseteq [0, 2\pi)$ such that:

ullet For all $heta \in I$, $\mathcal{H}^s(\pi_ heta F) > 0 \Rightarrow \dim_A \pi_ heta F = s < 1$

In summary:

There are disjoint non-empty intervals $I, J \subseteq [0, 2\pi)$ such that:

- ullet For all $heta \in I$, $\mathcal{H}^s(\pi_ heta F) > 0 \Rightarrow \dim_A \pi_ heta F = s < 1$
- For almost all $\theta \in J$, $\mathcal{H}^s(\pi_{\theta}F) = 0$

In summary:

There are disjoint non-empty intervals $I, J \subseteq [0, 2\pi)$ such that:

- ullet For all $heta\in I$, $\mathcal{H}^s(\pi_ heta F)>0\Rightarrow \dim_A\pi_ heta F\ =\ s\ <1$
- ullet For almost all $heta\in J$, $\mathcal{H}^s(\pi_ heta F)=0\Rightarrow \dim_A\pi_ heta F=1$

In summary:

There are disjoint non-empty intervals $I, J \subseteq [0, 2\pi)$ such that:

- ullet For all $heta\in I$, $\mathcal{H}^s(\pi_ heta F)>0\Rightarrow \dim_A\pi_ heta F\ =\ s\ <1$
- ullet For almost all $heta\in J$, $\mathcal{H}^s(\pi_ heta F)=0\Rightarrow \dim_A\pi_ heta F=1$

The Assouad dimension of $\pi_{\theta}F$ is not almost surely constant!

Projections of self-similar sets

Theorem (F.-Orponen '15)

Let F be a non-trivial planar self-similar set.

If all rotations are rational, then, for a given $\theta \in [0, 2\pi)$, we have:

- **1** If $\mathcal{H}^{\dim_H \pi_{\theta} F}(\pi_{\theta} F) > 0$, then $\dim_A \pi_{\theta} F = \dim_H \pi_{\theta} F$
- 2 If $\mathcal{H}^{\dim_H \pi_{\theta} F}(\pi_{\theta} F) = 0$, then $\dim_A \pi_{\theta} F = 1$.

If one of the rotations is irrational, then

$$\dim_A \pi_\theta F = 1$$

for all $\theta \in [0, 2\pi)$.

Open questions

Let F be a subset of the plane.

Open questions

Let F be a subset of the plane.

Question

How many distinct values can $\dim_A \pi_\theta F$ take with positive measure?

Open questions

Let F be a subset of the plane.

Question

How many distinct values can $\dim_A \pi_\theta F$ take with positive measure?

Question

If only two values are possible, are they always dim_A F and 1?

Merci de votre attention!

Porquerolles Island, 2011

Some references - all on the ArXiv

- Á. Farkas and J. M. Fraser. On the equality of Hausdorff measure and Hausdorff content, *J. Fract. Geom.*, **2**, (2015), 403–429.
- J. M. Fraser. Assouad type dimensions and homogeneity of fractals, *Trans. Amer. Math. Soc.*, **366**, (2014), 6687–6733.
- J. M. Fraser, A. M. Henderson, E. J. Olson and J. C. Robinson. On the Assouad dimension of self-similar sets with overlaps, *Adv. Math.*, **273**, (2015), 188–214.
- J. M. Fraser, J. J. Miao and S. Troscheit. The Assouad dimension of randomly generated fractals, *preprint*, (2014), arXiv:1410.6949.
- J. M. Fraser and T. Orponen. The Assouad dimensions of projections of planar sets, *preprint*, (2015), arXiv:1509.01128.