§ 8 APXÝ KIBUTIGHÉVOV SIDETNYHÁTOV

ATT: H [dn]_n ÉÍVAI DO ÉÍVAI DE SUÉS XAI DE VA PRAYHÉNY DIÓ BA ($dn \leq B_n \leq B_n$, then)

April April $dn = \frac{1}{2} \times \frac{1}{2}$

89 AVAJPOMIKÉS AKOLOUDIES KAI EÚZKÁTGY

Αναλυτικό παράδειγμα: Ε΄ Ε΄ Ε΄ Ε΄ (αη) η τ.ω. $α_1 = 0$ και $α_{n+1} = \frac{3α_n^2 + 1}{2α_n + 2}$ $t_n π_1$, $δ_0 = 0$. (i) $0 \le α_n \le 1$, $t_n \in \mathbb{N}$

(ii) H (an)n Eival aufoved

Liss) dn -> 1

(ii) E6TW $n \in \mathbb{N}$, $t = \frac{3\alpha_n^2 + 1}{2\alpha_n + 2}$ $\iff 2\alpha_n^2 + 2\alpha_n \notin 3\alpha_n^2 + 1 \iff \alpha_n^2 - 2\alpha_n + 1$, $\neq 0$ $= (\alpha_n - 1)^2$ $= (\alpha_n - 1)^2$ $= (\alpha_n - 1)^2$

$$2x^{2}+2x=3x^{2}+1 \implies x^{2}-2x+1=0 \implies x=1.$$

 $A \Sigma K$: Έδτω (dn), ακολουθία τ.ω. $α_1 = 1$, $α_{n+1} = \sqrt{1+α_n}$, $\forall_n \ge 1$ $E \frac{3}{2} ε 1 α 61 α την (du)_n ως προς τη δύγκλιδη και βρείτε το δριό της$

- (i) DEIXVOURE REWTH DTI η | dn | EVHI CPAYMEVY KOI MODETOVRE EVERTA $1 \le dn \le 2$, $\forall n = 1$. He endywyh for n. Fid n = 1 16xuer. Ynotherovre Everta

 on yw Kanolo $n \ge 1$ Exovre $1 \le dn \le 2$. Tote, Evertal of $1 \le dn + 1 = \sqrt{1 + dn} \le \sqrt{3} \le 2$.
- (ii) DEIXVOURE ÓTI η [dn]n EÍVAI α $\tilde{\zeta}$ δ v $\delta \lambda$. ME ENXXWYY δ \tilde{c} δ v . Fix v = 1 16 $\tilde{\zeta}$ \tilde{c} $\tilde{$
- (iii) Anó 70 (i) Kul To (ii) suprepairoupe ou η (λ_n), supression open $\lambda \in [1,2]$. Ehindéou, éxoupe

$$d = \lim_{n \to \infty} d_{1} + \lim_{n \to \infty} \sqrt{1 + d_{1}} = \sqrt{1 + d_{2}} \Rightarrow d^{2} - d - 1 = 0$$

$$\Rightarrow d = \frac{1 \pm \sqrt{5}}{2} \text{ if } d = \frac{1 + \sqrt{5}}{2} \text{ in } \text{ if } d \geq 1$$

KEG 3 = ZWAPTÝ645

& 1 Bablués ÉVVOIES

ο " bp": ΙΕστω $X_1 Y$ μη κενά σύνολο. Μία συνάρτηση f από το X στο Yείναι μία " αντιστοίχιση" που δε κάθε στοιχείο του X (f χε X)
αντιστοιχεί ενα μοναδικό στοιχείο του Y, το οποίο το συμβολί συμε με f(x).

- * Storytez Statetaypévou Jévyous: $(X \mid y) = (X' \mid y') \Leftrightarrow X = X' \text{ Kat } y = y'$ Ev Yéver $(X \mid y) \neq (y \mid X)$ · Mádieta $(X \mid y) = |y \mid X) \Leftrightarrow X = y$.
- ο Αυδτηρός ορισμός συλρτησης: Έστω $X_1 Y$ μη κενά σύνολα. Μία συλρτηση f από το X στο Y (χράιβουριε $f = X \rightarrow Y$) είναι ένα υποσύνολο f του $X \times Y$ τ.ω. i) $4x \in X$ $\frac{1}{3}y \in Y$ τ.ω. $(X_1Y_1) \in f$ (δηλιδή $f \subseteq X_1 \times Y_2$)
- $\forall x \in X$, to possible $y \in Y$ t.w. $(x_1y) \in f$, to supposition $\mu \in f(x)$ Dyl y = f(x) $\forall x \in X$, to $\mu \circ \lambda \circ f(x)$

To
$$X$$
 kelátai nelío opiópóv this f kai to Y kallátai nelío tipuáv this f . To 6600 do tipuáv this f opiletai ws
$$f(X) = \int f(x) : x \in X \ \mathcal{J} = \int g \in Y : \exists x \in X \ \tau.w. \ g = f(x) \ \mathcal{J}$$

" Mapa
$$f_{1}(y) = C$$
, $f_{1}(x) = C$, $f_{2}(x) = C$, $f_{3}(x) = C$, $f_{4}(x) = C$, $f_{4}(x) = C$, $f_{5}(x) = C$, $f_{7}(x) = C$, f_{7}

6)
$$f_6 = 1R \rightarrow 1R$$
 HE $f(x) = \begin{cases} 1 & 1 & x \in R \\ 0 & x \notin R \end{cases}$

7)
$$f_7 = IR \rightarrow IR$$
 μ_E $f_7(x) = \begin{cases} \frac{1}{9} & \text{av } x \in Q \text{ kall } x \neq 0, x = \frac{p}{9} & \text{se avalywyn } \mu_{9} \neq 0 \\ 0 & \text{addiws} \end{cases}$ $[p \in \mathbb{Z}, q \in IN, g \in d(p_1q) = 1]$

	nésio opiquos	MESTO TIMEN	Σύνολο τιμών
Ja.	IR	IR	263
fa F2	IR	iR	iR
f_3	A	IR	A
f4 f5 f6	iR	IR	A = gxEIR = x > 03
15	A	IR	A
76	iR	ir	2011 3
17	R	IR	403 U f 1/2 = n € IN 3

- napatigenen: Av X, Y, Y' my $K \& X \& \& K \& A & K \& A & F = X \rightarrow Y & K & f(X) \subseteq Y'$ Tota $f = X \rightarrow Y'$
- of: 'E67W $X_1X_1'Y$ my news 65 wold me $X' \subseteq X$ and $f = X \rightarrow Y$.

 Opijorme tor repropersor the form X' we $f = X \rightarrow Y$. $\forall x \in X'$, $f|_{X'}(x) = f(x)$.
- € OP: 'E6TW XIY py KEVÁ EÉVODA KAI f= X → Y.
 - i) H f Kadeirai eni on f(X) = Y, $\xi_N \lambda$ ty ξ_Y , $\xi_X \in X$ $\tau_- \omega_- f(x) = y$.
 - ii) H f Kadérai 1-1 dv + x1, x2 EX pre x1 + X2 ÉXOUPE f(x1) + f(x2) -

[160 JUNAPID = AV 16 XVEI f(X1) = f(X2) YIN X11 X2 EX, TOTE EXOUPE X1 = X2]-

Je f = X \rightarrow Z DETOVERS Jof(X) = g(f(X)), $\forall x \in X$.

- · Op = 1E8TW f= X-> Y
 - i) Fix kate $A \subseteq X$ opijoups tyv sixova tou A piew the f we $f(A) = \begin{cases} y \in Y : \exists x \in A \ \tau \omega . \ f(x) = y = \begin{cases} f(x) : x \in A \end{cases} \end{cases}$.
 - II) Fix $\kappa \hat{a} = B \subseteq Y$ of Jouhe the dirtherporty encount too B piece the following form $f^{-1}(B) = \int_{X} \times f(X) = f(X) \in \mathbb{R}$.

- 6 Babines idiotytes EINÓVAS XXI ANTÍCTPO PMS EINÓVAS.

 'ECTIV $f = X \rightarrow Y$. Tôte 16xúour to diódov θZ .
 - i) AV $A_1 \subseteq A_2 \subseteq X$, tota $f(A_1) \subseteq f(A_2)$
- \widetilde{u}) Av $A_1, A_2 \subseteq X$, to $T_E = f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$
- iii) AV A1, $A_2 \subseteq X$, Tota $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$
- [0 Equalarations purposed via serval graphies: $n \cdot \chi \cdot f = 1R \rightarrow 1R$ me $f(x) = x^2$, $\forall x \in 1R$.

 Av $A_1 = [-1,0]$ kar $A_2 = [0,1]$. The $f \circ y = f(f \circ y) = f(A_1 \cap A_2)$ kar $f(A_1) \cap f(A_2) = [0,1]$. Av $\eta \in E(x)$ $f(A_1) \cap f(A_2) = f(A_1) \cap f(A_2)$.
- iv) Av $B_1 \subseteq B_2 \subseteq Y$, tors $f^{-1}(B_1) \subseteq f^{-1}(B_2)$. Entry $\begin{cases} f^{-1}(Y) = X & \text{for } \\ f^{-1}(\phi) = \phi \end{cases}$.
- M) AV B = Y, TOTE f-1 (Y 1B) = X > f-1(B)
- ASII) AV $A \subseteq X$, TOTE $A \subseteq f^{-1}(fA)$.
- [O Eykherepo's phroper vol ervol griferos. $N_{-}X_{-}$ $f = IR_{-}$ IR_{-} IR_{-} I
- [O EXXAERGNÉS pROPÉR VA ÉRVAI PRÝEIOS. $\Pi \cdot X \cdot f = [O_1 + \infty) \rightarrow IR$ pre f(X) = VX, f(X) = V