1. For the values of v_2 , the corresponding values of C(v) and S(v) are

\overline{v}	C(v)	S(v)
1.4	0.5431	0.7135
1.0	0.7799	0.4383
-1.0	-0.7799	-0.4383

Then using the formula from in-class, the unnormalized U_p are given by

$$U_p = \frac{1}{1+i} \left[C(v_2) + iS(v_2) + \frac{1}{2} + \frac{1}{2}i \right]$$

For each v_2 ,

$$U_p(1.4) = 1.1283 + 0.0852i$$
$$U_p(1.0) = 1.1091 - 0.1708i$$
$$U_p(-1.0) = -0.1091 + 0.1708i$$

2. The beam waist diameter is $3.0 \, \mathrm{mm}$, so $w_0 = 1.5 \, \mathrm{mm}$. So projected on the wall, the light will have a radius of

$$w(100 \,\mathrm{m}) = w_0 \left[1 + \left(\frac{\lambda z}{\pi w_0^2} \right)^2 \right]^{1/2}$$

$$= (1.5 \,\mathrm{mm}) \left[1 + \left(\frac{632.8 \,\mathrm{nm} \times 100 \,\mathrm{m}}{\pi \,(1.5 \,\mathrm{mm})^2} \right)^2 \right]^{1/2}$$

$$= 13.51 \,\mathrm{mm}$$