Απαριθμητές

Απαριθμητές

Στην ψηφιακή σχεδίαση με τον όρο απαριθμητής (counter) εννοούμε ακολουθιακά κυκλώματα που αποθηκεύουν και εμφανίζουν πόσες φορές έχει συμβεί ένα γεγονός, συνήθως σε σχέση με ένα σήμα ωρολογίου. Οι απαριθμητές κατασκευάζονται με flip-flop και λογικές πύλες.

Application for counter

- Frequency counters
- Digital clock
- Time measurement
- A to D converter
- Frequency divider circuits

Σύγχρονοι και ασύγχρονοι απαριθμητές

Ανάλογα με τον τρόπο που εφαρμόζονται οι παλμοί στις εισόδους ωρολογίου των φλιπ-φλοπ που τους αποτελούν οι απαριθμητές διακρίνονται σε *ασύγχρονους* και *σύγχρονους*.

Κατηγορίες απαριθμητών

Οι απαριθμητές διακρίνονται σε κατηγορίες ανάλογα με τον αριθμό των καταστάσεων και τον κώδικα που χρησιμοποιείται για την αναπαράσταση των εξόδων τους. Ορισμένες από αυτές αναφέρονται στην συνέχεια.

Απαριθμητές $mod-2^n$. Οι απαριθμητές αυτοί αποτελούνται από n φλιπ-φλοπ και έχουν 2^n καταστάσεις.

Δεκαδικοί απαριθμητές. Οι απαριθμητές αυτοί έχουν δέκα καταστάσεις και η έξοδός τους κωδικοποιείται σε κάποιον δεκαδικό κώδικα (BCD, Excess-3).

Απαριθμητές κώδικα Gray. Οι απαριθμητές αυτοί έχουν 2ⁿ καταστάσεις οι οποίες κωδικοποιούνται ώστε οι διαδοχικές καταστάσεις να διαφέρουν κατά ένα ψηφίο (κώδικας Gray).

Ασύγχρονοι Απαριθμητές

Ασύγχρονος αύξων απαριθμητής των 2 bit (mod 4)

Q_1	Q_0
0	0
0	1
1	0
1	1
0	0
0	1
1	0
•	-
•	-

Έξοδος του Τ φλιπ-φλοπ αρνητικής ακμής πυροδότησης για Τ=1

Σχεδίαση αύξοντα ασύγχρονου απαριθμητή των 2 bit με T flipflop αρνητικής ακμής πυροδότησης

Ασύγχρονος αύξων απαριθμητής των 3 bit

Q_2	Q_1	Q_0
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1
0	0	0
0	0	1
0	1	0
-	-	

Ασύγχρονος αύξων απαριθμητής των 3 bit

Σχεδίαση αύξοντα ασύγχρονου απαριθμητή των 3 bit (mod 8) με Τ flip-flop αρνητικής ακμής πυροδότησης

Σχεδίαση αύξοντα ασύγχρονου απαριθμητή των 3 bit (mod 8) με Τ flip-flop θετικής ακμής πυροδότησης

Ασύγχρονος φθίνων απαριθμητής των 2 bit (mod 4)

```
Q<sub>1</sub> Q<sub>0</sub>
0 0
1 1
1 0
0 1
0 1
1 1
1 0
.
```

Σχεδίαση φθίνων ασύγχρονου απαριθμητή των 2 bit με T flip-flop αρνητικής ακμής πυροδότησης

Φθίνων ασύγχρονος απαριθμητής των 2 bit με T flip-flop αρνητικής ακμής πυροδότησης

Ασύγχρονος φθίνων απαριθμητής των 3 bit

Q_2	Q_1	Q_0
0	0	0
1	1	1
1	1	0
1	0	1
1	0	0
0	1	1
0	1	0
0	0	1
0	0	0
1	1	1
1	1	0
•	•	•

Ασύγχρονος φθίνων απαριθμητής των 3 bit

Σχεδίαση ασύγχρονου φθίνοντα απαριθμητή των 3 bit με T φλιπφλοπ αρνητικής ακμής πυροδότησης

Σχεδίαση φθίνοντα ασύγχρονου απαριθμητή των 2 bit με T flip-flop θετικής ακμής πυροδότησης

Σύγχρονοι Απαριθμητές

Σχεδίαση με Τ flip-flop αρνητικής ακμής πυροδότησης αύξοντα σύγχρονου δυαδικού απαριθμητή των 2 bit (mod 4).

Q_1	Q_0
0	0
0	1
1	0
1	1
0	0
0	1
1	0
_	

Η έξοδος Q_0 αλλάζει σε κάθε αρνητική ακμή των παλμών του ωρολογίου (CLK). Η έξοδος Q_1 αλλάζει στις αρνητικές ακμές των παλμών του ωρολογίου όταν Q_0 =1, ενώ δεν αλλάζει όταν Q_0 =0.

$$T_0 = 1$$
$$T_1 = Q_0$$

Σχεδίαση με Τ flip-flop αρνητικής ακμής πυροδότησης αύξοντα σύγχρονου δυαδικού απαριθμητή των 2 bit (mod 4).

Σχεδίαση χρησιμοποιώντας Τ flip-flop αρνητικής ακμής πυροδότησης αύξοντα σύγχρονου δυαδικού απαριθμητή των 3 bit (mod 8)

Q_2	Q_1	Q_0
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1
0	0	0
0	0	1
0	1	0
-	-	-

Κυματομορφές εξόδου

Η έξοδος Q_0 αλλάζει σε κάθε αρνητική ακμή των παλμών του ωρολογίου (CLK). Η έξοδος Q_1 αλλάζει στις αρνητικές ακμές των παλμών του ωρολογίου όταν Q_0 =1. Η Q_2 στις αρνητικές ακμές των παλμών του ωρολογίου όταν Q_1 = Q_0 =1. Δηλαδή,

Σχεδίαση φθίνοντα σύγχρονου δυαδικού απαριθμητή των 3 bit (mod 8) με T flip-flop αρνητικής ακμής πυροδότησης.

Q_2	Q_1	Q_0
0	0	0
1	1	1
1	1	0
1	0	1
1	0	0
0	1	1
0	1	0
0	0	1
0	0	0
1	1	1
1	1	0
1	0	1
-	•	•

$$T_0 = 1$$

$$T_1 = \overline{Q}_0$$

$$T_2 = \overline{Q}_1 \overline{Q}_0$$

Σχεδίαση φθίνοντα σύγχρονου δυαδικού απαριθμητή των 3 bit (mod 8) με T flip-flop αρνητικής ακμής πυροδότησης

Λογικό σύμβολο απαριθμητή mod-m με εισόδο CNT και έξοδο TC

Απαριθμητής mod m^k με σύνδεση k απαριθμητών mod m

Απαριθμητής mod 16 με παράλληλη φόρτωση και είσοδο μηδενισμού

ΑΣΚΗΣΕΙΣ

8.1B Να σχεδιασθεί χρησιμοποιώντας Τ flip-flop αρνητικής ακμής πυροδότησης ένας αύξων ασύγχρονος δυαδικός απαριθμητής των 4 bit (mod 16).

8.2B. Να σχεδιασθεί χρησιμοποιώντας JK flip-flop αρνητικής ακμής πυροδότησης ένας αύξων ασύγχρονος δυαδικός απαριθμητής των 2 bit (mod 8).

8.3B. Να σχεδιασθεί χρησιμοποιώντας JK flip-flop αρνητικής ακμής πυροδότησης ένας αύξων ασύγχρονος δυαδικός απαριθμητής των 3 bit (mod 8).

8.4B Να σχεδιασθεί χρησιμοποιώντας Τ flip-flop αρνητικής ακμής πυροδότησης ένας αύξων σύγχρονος δυαδικός απαριθμητής των 4 bit (mod 16).

8.5B Να σχεδιασθεί χρησιμοποιώντας JK flip-flop αρνητικής ακμής πυροδότησης ένας αύξων σύγχρονος δυαδικός απαριθμητής των 2 bit (mod 8).

8.6B Να σχεδιασθεί χρησιμοποιώντας JK flip-flop αρνητικής ακμής πυροδότησης ένας αύξων σύγχρονος δυαδικός απαριθμητής των 3 bit (mod 16).

8.7B Να σχεδιασθεί ένα κύκλωμα διαίρεσης της συχνότητας της παλμοσειράς που παράγει ένα ψηφιακό ωρολόγιο με το 2 χρησιμοποιώντας T flip-flop.

8.8B Να σχεδιασθεί ένα κύκλωμα διαίρεσης της συχνότητας της παλμοσειράς που παράγει ένα ψηφιακό ωρολόγιο με το 2 χρησιμοποιώντας D flip-flop.

8.9B Να σχεδιασθεί ένα κύκλωμα διαίρεσης της συχνότητας της παλμοσειράς που παράγει ένα ψηφιακό ωρολόγιο με το 4 χρησιμοποιώντας D flip-flop.

10. Να σχεδιασθεί με JK φλιπ-φλοπ ένα σύγχρονος αυξων δυαδικός απαριθμητής των 3 bit.