AI and Machine Learning for Detecting Myocardial Infarction

Xiantong Xiang

Background

Method

Discussion

AI and Machine Learning for Detecting Myocardial Infarction

Xiantong Xiang

Shandong University

Tuesday, November 5th, 2024

Contents

AI and Machine Learning for Detecting Myocardial Infarction

2 Method

Background

Background

AI and Machine Learning for Detecting Myocardial Infarction

Xiantong

Background

Method

- High misdiagnosis rates for early diagnosis of cardiovascular disease and detection of potential patients
- Deep learning and the application of artificial intelligence
- Data and privacy issues
- Popularity of portable and wearable devices
- Electrocardiogram (ECG) is the most common, low-cost and convenient tool for diagnosing cardiovascular disease

AI and
Machine
Learning for
Detecting
Myocardial
Infarction
Xiantong

Background

Method

- Background: the majority of methods concentrate solely on time domain information, overlooking the information originating from additional modalities or perspectives.
- Method: a novel bimodal masked autoencoder framework (BMIRC)
- Innovation Point:
 - a novel bimodal masked autoencoder framework for time-frequency joint modeling
 - internal representation connections (IRC) from the encoder to the decoder

AI and
Machine
Learning for
Detecting
Myocardial
Infarction
Xiantong

D - -l-----

Баскугоинс

Method

- $\bullet \ ECG(Time) \stackrel{DFT}{\longrightarrow} ECG(Frequency)$
- $\bullet \ ECG(T\&F) \Rightarrow Encoder(T\&F) \Rightarrow Encoder(Shared) \Rightarrow Decoder \Leftarrow IRC$

Detecting Myocardial Infarction

AI and Machine Learning for

Dackgroui

Method

Discussion

• The tokens of T and F can be expressed as

$$Z_t = [z_t^1, z_t^2, \dots, z_t^{\frac{L}{S}}] \in \mathbb{R}^{\frac{L}{S} \times D}$$

$$Z_f = [z_f^1, z_f^2, \dots, z_f^{\frac{L}{2S}}] \in \mathbb{R}^{\frac{L}{2S} \times D}$$

 \bullet learnable position embeddings $\text{PE} \in \mathbb{R}^{N \times D}$ are integrated into the patch embeddings

$$\begin{split} \tilde{I}_m &= Z_m + \mathrm{PE}_m \\ I_m &= \mathrm{Concat}(z_g^m, \tilde{I}_m) \end{split}$$

• a random masking strategy, meaning that each token has the same probability of being masked.

Infarction

AI and Machine

Learning for

Detecting

Mvocardial

Method

• the global tokens of time and frequency modalities are added and inserted at the

first position of the sequence, with the other tokens concatenated sequentially. $\tilde{O}_m = LN(O_m) = [\tilde{o}_q^m, \tilde{o}_1^m, \tilde{o}_2^m, \dots, \tilde{o}_n^m]$

$$\begin{split} \tilde{O}_m &= LN(O_m) = [\tilde{o}_g^m, \tilde{o}_1^m, \tilde{o}_2^m, \dots, \tilde{o}_n^m] \\ O_0^s &= [o_g^t + \tilde{o}_g^f, \tilde{o}_1^t, \tilde{o}_2^t, \dots, \tilde{o}_n^t, \tilde{o}_1^f, \tilde{o}_2^f, \dots, \tilde{o}_n^f] \\ O_s &= \Theta(O_0) \end{split}$$

Learning for Detecting Myocardial Infarction

Xiantong Xiang

Background

Method

AI and

Machine

• gated representation mixer called GRM

gated representation maker cannot gate
$$\hat{V}_h = P_h(V_h)$$

$$w_h = \sigma(G_h(\hat{V}_h, U_h^m))$$

$$C_h^m = w_h * \hat{V}_h + (1-w_h) * U_h^m$$

$$U_{h+1}^m = \Lambda_{h+1}(C_h^m)$$

Discussion

AI and
Machine
Learning for
Detecting
Myocardial
Infarction

Xianton Xiang

Background

Method

- Multimodal Data
- Missing
- Data Leakage
- DWT
- \bullet Matrices or Images