AI534 — Written Homework 4

This assignment covers ensemble methods and clustering.

- 1. **Boosting.(8 pts)** Please show that in iteration l of Adaboost, the weighted error of h_l on the updated weights D_{l+1} is exactly 50%. In other words, $\sum_{i=1}^{N} D_{l+1}(i)I(h_l(X_i) \neq y_i) = 50\%$, where $I(\cdot)$ is the indicator function that takes value 1 if the argument is true. (Hint: given that the weighted error of h_l is ϵ_l , after the update what is the total weights of incorrectly classified examples? What is the total weights of the correctly classified examples?)
- 2. **HAC** (8pts). Create by hand the clustering dendrogram for the following samples of ten points in one dimension.

$$Sample = (-2.2, -2.0, -0.3, 0.1, 0.2, 0.4, 1.6, 1.7, 1.9, 2.0)$$

- a. (4 pts) Using single link.
- b. (4 pts) Using complete link
- 3. **Kmeans with** L_1 **norm (10 pts)**. Consider replacing the distance function used for Kmeans with L_1 norm, which gives us the following objective:

$$\min_{\mu_1,...,\mu_K,C_1,...,C_K} \sum_{i=1}^K \sum_{\mathbf{x} \in C_i} |\mathbf{x} - \mu_i|$$

- (a) (5 pts) Show that given fixed cluster assignments $C_1, ..., C_K$, the prototype μ_i that optimizes the above objective can be obtained by taking the median of each dimension for cluster i (Hint: use the fact that the derivative of the function f(x) = |a x| is 1 if x > a and -1 if x < a.)
- (b) (3 pts) Modify the kmeans algorithm for this L_1 based objective.
- (c) (2 pts) Comparing this algorithm with the regular K-means algorithm, which one is more robust to outliers? Why?
- 4. Picking k for Kmeans with J? (6 pts). Prove that the minimum of the kmeans objective J is a decreasing function of k (the number of clusters) for k = 1, ..., n, where n is the number of points in the dataset. Explain why it is a bad idea to choose the number of clusters by minimizing J.
- 5. Gaussian Mixture Models in 1-d (8 pts). Let our data be generated from a mixture of two 1-d Gaussian distributions, where $f(x|\theta_1)$ is a Gaussian with mean $\mu_1 = 0$ and $\sigma^2 = 1$, and $f(x|\theta_2)$ is a Gaussian with mean $\mu_2 = 0$ and $\sigma^2 = 0.5$. The only unknown parameter is the mixing parameter α (which specifies the prior probability of θ_1 .). Now we observe a single sample x_1 , please write out the likelihood function of x_1 as a function of α , and determine the maximum likelihood estimation of α .
- 6. Expectation Maximization for Mixture of Categorical distributions (bonus 10 pts) Consider a categorical random variable x with M possible values $1, \dots, M$. We now represent x as a vector \mathbf{x} such that for $j = 1, \dots, M$, $\mathbf{x}(j) = 1$ iff x = j. The distribution of \mathbf{x} is described by a mixture of K discrete categorical distributions such that:

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k p(\mathbf{x}|\mu_k)$$

and

$$p(\mathbf{x}|\mu_k) = \prod_{j=1}^{M} \mu_k(j)^{\mathbf{x}(j)}$$

where π_k denotes the prior probability of cluster k, and μ_k specifies the distribution of the k-th cluster. Specifically, $\mu_k(j)$ represents the probabilities $p(\mathbf{x}(j) = 1 | z = k)$, and satisfies that $\sum_j \mu_k(j) = 1$.

Given an observed data set $\{\mathbf{x}_i\}$, $i=1,\dots,N$, Please write out the E step and M step for the EM algorithm for learning the mixture of categorical distributions.