语音关键词最新技术架构和在腾讯 的应用实践

姓名:袁有根

公司:腾讯

时间:2021年10月16日

01 背景简介

12 QBE技术与应用

Hybrid语音关键词检测

[]// End2end语音关键词检测

115 总结与展望

背景简介 QBE技术与应用 Hybrid语音关键词检测 End2end语音关键词检测 总结与展望

语音关键词检测技术目标

• 检测预定义的关键词

语音关键词检测应用场景

• 语音设备控制

• 海量语音文档快速检索

语音关键词检测主流方法

	KWS	WUW	QBE
技术路线	以文搜音	命令词唤醒	以音搜音
主流方法	基于语音识别	填充模型,端到端模型	模板匹配
优势	针对大量关键词,有时间位置信息, 能重复检索	针对少数预定义关键词, 检测速度极快	针对部分关键词, 常用语低资源场景
劣势	速度慢	灵活性不强	效果差,依赖模板质量

语音关键词检测基线系统

- 定点化特征提取
 - ✓ 比Kaldi快1倍
- tdnn声学模型
 - ✓ 比DNN效果更好
 - ✓ 三倍跳帧,推理速度更快
- 自定义词典

- 基于WFST的解码器
 - ✓ 无语言模型重打分,搜索速度更快
 - ✓ 得分归一化

背景简介 QBE技术与应用 Hybrid语音关键词检测 End2end语音关键词检测 总结与展望

> 基于帧级声学特征的QBE

- 帧级声学特征提取
 - ✓ posteriorgram features [1]
 - ✓ Autoencoder features [2]
 - ✓ Bottleneck features [2]
- 声学模板匹配
 - ✓ DTW

- [1] Hazen T J, Query-by-example spoken term detection using phonetic posteriorgram templates[C]. ASRU. 2009: 421-426.
- [2] Yougen Yuan, et al. Pairwise learning using multi-lingual bottleneck features for low-resource query-by-example spoken term detection [C]. ICASSP. 2017: 56455-55649

▶ 基于词级声学特征的QBE

- 词级声学特征提取
 - ✓ Siamese CNN [1]
 - ✓ Tripelt RNN [2]
 - ✓ Multi-view BLSTM [2]
- 声学模板匹配
 - ✓ DTW

- [1] Kamper H. Deep convolutional acoustic word embeddings using word-pair side information[C]. ICASSP, 2016: 4950-4954.
- [2] Settle S. Discriminative acoustic word embeddings: Tecurrent neural network-based approaches[C]. SLT, 2016: 503-510.
- [3] He W. Multi-view recurrent neural acoustic word embeddings[J]. arXiv preprint arXiv:1611.04496, 2016.

> 技术对比

	基于帧级声学特征的QBE	基于词级声学特征的QBE
优势	有/无监督场景都适用	速度快,整词信息
劣势	速度慢 , 效果差	依赖词语边界

应用思考

- QBE方法主要适用于低资源场景,效果较差
- QBE技术很难直接应用,要想落地必须结合特定的任务

QBE技术与应用

关键词检测技术短板

基线系统无法对特定关键词进行优化

方案制定

增加关键词黑名单机制

增加语音验证模块

技术对比

▶ QBE语音验证 vs 语音关键词检测基线

- 充分利用真实场景的Case, "变废为宝"
- 整词建模,对词语的区分能力更强[1]

> 系统流程

[1] Yougen Yuan, et al. Learning acoustic word embeddings with temporal context for query-by-example speech search[C]. INTERSPEECH. 2018: 97-101.

Acoustic Embeddings 学习

在Triplet中将虚警case作为负样例

负样例选择

Bidirectional LSTM → Bidirectional GRU

Acoustic Embeddings 学习

• 三体损失

$$TL(x_a, x_p, x_n) = \max\{0, d_+ - d_- + \delta_1\}$$

• 反向三体损失

$$RTL(x_a, x_p, x_n) = \max\{0, d_- - d_+ - \delta_2\}$$

• 铰链损失

$$HL(x_a, x_p, x_n) = \max\{0, -\theta + d_+\} + \max\{0, \theta - d_-\}$$

> 模板匹配

- Embeddings 提取
 - ✓ 模板Embeddings预提取
 - ✓ 特征复用
- 相似度计算

Similary(x, y) =
$$\frac{1 - \cos(f(x), f(y))}{2}$$

• 得分融合

Score
$$= (1 - a)Score_{stage1} + (a)Score_{stage2}$$

> 离线效果

- 在离线测试集[1]中,QBE语音验证中每个优化方法在相同准确率下的覆盖都有一点提升
- · 相比baseline,最终的QBE语音验证模型在相同准确率下的Recall从0.635提升到0.693

方法	Precision	Recall
QBE语音验证	0.95	0.60
+虚警做负样例	0.95	0.62
+BGRU	0.95	0.64
+ 损失函数改进	0.95	0.67
+ 得分融合	0.95	0.69

工作小结

• 项目背景:特定关键词漏过较多

• 技术方法:QBE语音验证

• 创新点:更强的embddings模型+更快的模板匹配

背景简介 QBE技术与应用 Hybrid语音关键词检测 End2end语音关键词检测 总结与展望

Hybrid语音关键词检测

项目背景

• 复杂声学场景下的关键词漏过偏多

技术现状

• 基线系统的抗干扰能力较差

方案制定

- 增大建模单元的颗粒度
- 探索更强的声学模型
- 降低模型的计算复杂度

广 方案制定

- 使用Syllable替代Phone作为建模单元
 - 上下文信息更多,对同音字也能恢复

训练集			Syllable
微小的信息 wei1 xiao3 de0 xin4 xi1			
这 是 我 家 zhe4 shi4 wo3 jia1			jia1 wo3
		关键词检测系统	wei1 xin4
测试集 加 我 微 信			Alli-
jia1 wo3 wei1 xin4	<u> </u>		

建模单元	关键词
Phone	g aa1 g aa1
Character	加家
Syllable	jia1 jia1

Hybrid语音关键词检测

方案制定

• 使用LF-MMI替代CE指导声学模型训练

方案制定

• 在TDNN网络中插入SVD[1]加速推理

> 离线效果

- 每个优化方法在相同准确率下的覆盖都有提升
- 相比baseline,基于音节的LFMMI模型在相同准确率下的Recall从0.483提升到0.668

方法	Precision	Recall
Baseline	0.934	0.535
+ 数据增广	0.934	0.585
+ NN帧对齐	0.934	0.608
+ 多发音序列	0.934	0.646
+改用TDNN-F	0.934	0.651
+模型finetune	0.934	0.668

工作小结

- 项目背景:复杂场景下关键词漏过较多
- 技术方法:基于Syllable的LFMMI模型
- 创新点:Syllable建模(提升覆盖)+LFMMI(提升准确)+TDNN-F(加速推理)

背景简介 QBE技术与应用 Hybrid语音关键词检测 End2end语音关键词检测 总结与展望

项目背景

• 关键词检测的覆盖依然不够高

技术现状

- Hybrid模型的性能接近天花板,优化提升非常有限
- 端到端模型在学术研究中不断取得突破

广 方案制定

• 使用端到端模型替代Hybrid模型

语音关键词检测	Hybrid模型	端到端模型
方法	需要声学、词典和模型	用单个模型直接从特征到文本序列
优点	鲁棒性强	效果好
缺点	效果有局限、优化空间少	灵活性较差

> 系统流程

> Conformer声学模型

> 离线效果

相比baseline,基于Syllable的端到端模型在相同准确率下的Recall从0.581提升到0.765

大大短板

· 端到端模型计算量较大,88%的推理时间用在Conformer Block网络前向计算上

推理加速

• 问题: Attention机制导致conformer模型的计算量增大

• 分析: Query和Key就是用来计算注意力权重的,每一层的权重值变化很小

• 方法:注意力权重复用

推理加速

• 问题:深层模型效果比浅层好,但是推理速度明显变慢

• 思考:寻找一个方法既能保证效果,又能加速推理

• 方法:构建层次网络,浅层保覆盖,深层保准确

注:浅层模型主要指3层的conformer模型;深层模型主要指12层的conformer模型

> 离线效果

- 相比浅层模型,层次网络在相同准确率下Recall从0.674提升到0.749,但是推理速度变化不大
- · 加上SVD和注意力权重后,CPU实时率还能加快17%

系统	CPU实时率	
深层Conformer模型	0.01172	
浅层Conformer模型	0.00610	
层次网络	0.00625	
注意力权重复用 + 层次网络	0.00550(†12%)	

工作小结

- 项目背景:关键词检测覆盖依然不够高
- 技术方法:基于层次Conformer的end2end模型
- 创新点:系统升级+推理加速

背景简介 QBE技术与应用 Hybrid语音关键词检测 End2end语音关键词检测 总结与展望

▶ QBE技术与应用

- · 在声学特征层面,探索了更好的QBE方法
- · 改进了QBE用作语音验证,使得特定关键词的漏过变少

> Hybrid语音关键词检测

- 在声学建模层面,全面提升系统鲁棒性
- 使用了基于Syllable的LFMMI模型,使得复杂场景下的关键词漏过变少

> End2end语音关键词检测

- 优化了关键词检测的系统架构
- 使用了基于层次Conformer的end2end模型,使得系统效率明显提升

- > VKW Hybrid关键词检测系统已经开源
 - https://github.com/VKW2021/kaldi-baseline

- > VKW End2end关键词检测系统正在开源到wenet上
 - pull request: https://github.com/wenet-e2e/wenet/pull/676

希望更多的技术开源工作,共同促进技术发展

更高效的语音关键词检测系统

- 系统性能层面
- 计算资源,推理速度层面

更灵活的技术框架和路线

- 声学建模层面
- 系统模块化

更广阔的技术落地场景

- 多语种
- 流式

Thanks