Bayesian Methods for Incomplete Data

Source: Chapter 5, Handbook of Missing Data Methodology

Authors: Michael J. Daniels, Joseph W. Hogan

Presentor: Suchit Mehrotra (smehrot@ncsu.edu)

April 24, 2015

Quick Overview of Bayesian Inference

- $oldsymbol{ heta}$ In Bayesian inference, the parameter $oldsymbol{ heta}$ is considered a random variable.
- This means that it can be described via a distribution.
- The primary method for inference in the Bayesian paradigm is the posterior distribution of θ conditioned on the data z.
- $p(\theta)$ is the prior distribution of parameter.
 - This represents the information about the parameter we bring into the problem.
- The full posterior distribution, using Bayes rule, is written as:

$$p(\boldsymbol{\theta}|\boldsymbol{z}) = rac{p(\boldsymbol{z}|\boldsymbol{\theta}) p(\boldsymbol{\theta})}{p(\boldsymbol{z})}$$

Notation

- Let Z_i : i = 1, ..., N be a univariate response.
- Suppose that only a subset of the N responses is observed.
- Let R_i be a random variable which denotes whether or not the i^{th} response is observed.
 - $R_i = 1$ when Z_i is observed and $R_i = 0$ when it is not.
- Then the full data are (Z, R).
- ullet Denote the observed part of $oldsymbol{Z}$ as $oldsymbol{z}_{(r)}$ and the unobserved as $oldsymbol{z}_{(ar{r})}$

An Example - Set Up

- Let $Z_i|R_i=r\sim N(\mu_r,\sigma^2)$
- Let $E(Z) = \mu$ which can be written as:

$$\mu = \mu_0 \,\theta + \mu_1 \,(1 - \theta)$$

Where:

$$\mu_0 = E(Z|R = 0)$$

$$\mu_1 = E(Z|R = 1)$$

$$\theta = P(R = 0)$$

An Example - Importance of Priors

• Let the priors for μ_0 and μ_1 be:

$$p(\mu_0) \sim \mathcal{N}(\mathsf{a}_0, au_0) \ p(\mu_1) \sim \mathcal{N}(\mathsf{a}_1, au_1)$$

• Then the posterior of μ is:

$$p(\mu|\mathbf{z}_{(r)},\mathbf{r}) = \theta a_0 + (1-\theta)(B\bar{z}_1 + (1-B)a_1)$$

Where:

$$ar{z}_1 = N_1^{-1} \sum_{i:R_i=1} z_i$$
 $B = rac{ au_1}{ au_1 + \sigma^2/N_1}$
 $N_1 = \sum_{i=1}^N R_i$

An Example - Importance of Priors

$$p(\mu|\mathbf{z}_{(r)},\mathbf{r}) = \theta a_0 + (1-\theta)(B\bar{z}_1 + (1-B)a_1)$$

- As $N \to \infty$, the impact of $p(\mu_1) \to 0$ but $p(\mu_0)$ has a non-zero weight $\theta = P(R = 0) > 0$.
- Additionally:

$$Var(\mu|\mathbf{z}_{(r)},\mathbf{r}) = \theta^2 \tau_0 + (1-\theta)^2 \left(\frac{1}{\tau_1} + \frac{N_1}{\sigma^2}\right)^{-1}$$

• Therefore, as $N o \infty$, $Var(\mu|\pmb{z_{(r)}},\pmb{r}) o \theta^2 \tau_0$.

An Example - Importance of Priors

$$Var(\mu|\mathbf{z}_{(r)},\mathbf{r}) = \theta^2 \tau_0 + (1-\theta)^2 \left(\frac{1}{\tau_1} + \frac{N_1}{\sigma^2}\right)^{-1}$$

- This means that there is a lower bound on the standard deviation of μ , $\theta\sqrt{\tau_0}$
- The MAR assumption is equivalent to the prior:

$$p(\mu_0|\mu_1) = I\{\mu_0 = \mu_1\}$$

 Therefore, strong prior information is required for inference with missing data.

Types of Missingness Patterns

Missing Completely at Random (MCAR):

$$pr(\mathbf{R} = \mathbf{r}|\mathbf{Z}) = pr(\mathbf{R} = \mathbf{r}) \iff \mathbf{R} \perp \mathbf{Z}$$

 $pr(\mathbf{R} = \mathbf{r}) = \pi(\mathbf{r}) \text{ is a constant.}$

Missing at Random (MAR):

$$\begin{split} pr(R=r|Z) &= pr(R=r|Z_{(r)}) = \pi(Z_{(r)},r) \\ \pi(Z_{(r)},r) \text{ depends only on the observed data.} \end{split}$$

Missing Not at Random (MNAR):

$$pr(\mathbf{R} = \mathbf{r}|\mathbf{Z}) = \text{depends on unobserved data}.$$

These assumptions are not verifiable from the data.

Naive Methods

- Complete Cases
 - Drop all of the observations where all of the variables have not been observed.
- Available Cases
 - In longitudanal settings, keep patients with some missing values and include only those points in the model.
- Last Observation Carry Forward (LOCF)
 - Assume that the last observed point is the next observed point and continue this until real data is observed.
- Single Imputation
 - Plug in the missing values one time using regressions of variables with missing data onto observed variables.

Full Data Joint Densities

- ullet The ideal full data are (\pmb{R},\pmb{Z}) , where $\pmb{Z}=(\pmb{Z}_{(r)},\pmb{Z}_{(ar{r})})$
- The joint density of these two variables can be factored in multiple ways:
 - Selection Model Factorization:

$$p(\mathbf{r},\mathbf{z})=p(\mathbf{r}|\mathbf{z})\,p(\mathbf{z})$$

Pattern Mixture Factorization:

$$p(\mathbf{r},\mathbf{z})=p(\mathbf{z}|\mathbf{r})\,p(\mathbf{r})$$

Extrapolation Factorization:

$$p(\mathbf{r},\mathbf{z}) = p(\mathbf{z}_{(r)},\mathbf{r}) \, p(\mathbf{z}_{(\bar{r})}|\mathbf{z}_{(r)},\mathbf{r})$$

Bayesian Ignorability

• Using parameters θ , the selection model factorization is:

$$p(r,z|x,\theta) = p(r|z,x,\psi(\theta)) p(z|x,\gamma(\theta))$$

- In the Bayesian paradigm, ignorability holds under three conditions:
 - When data are MAR.
 - ullet The parameters in γ and ψ are distinct.
 - A priori independence: $p(\theta) = p(\gamma, \psi) = p(\gamma) p(\psi)$.
- ullet If ignorability holds, the posterior distribution of $oldsymbol{ heta}$ is:

$$p(\boldsymbol{\theta}|\mathbf{z}_{(r)},\mathbf{r},\mathbf{x}) = p(\boldsymbol{\gamma}|\mathbf{z}_{(r)},\mathbf{x}) p(\boldsymbol{\psi}|\mathbf{z}_{(r)},\mathbf{r},\mathbf{x})$$

ullet This means that the posterior distribution of γ only depends on the observed data.

$$p(\gamma|\mathbf{z}_{(r)},\mathbf{x}) \propto p(\mathbf{z}_{(r)}|\gamma,\mathbf{x}) p(\gamma)$$

Justification for Multiple Imputation

• Under ignorability, the extrapolation distribution, $p(\mathbf{z}_{(\bar{r})}|\mathbf{z}_{(r)},\mathbf{x},\mathbf{r})$ simplifies to:

$$p(\boldsymbol{z}_{(\bar{r})}|\boldsymbol{z}_{(r)},\boldsymbol{x})$$

- This means that the missing data can be imputed from the extrapolation distribution, and a full data analysis can be conducted.
- The classical way to impute the data set is via Bayesian proper imputation (Rubin, 1987).
- Another method that is frequently used is Multiple Imputation via Chained Equations.

Multiple Imputation

- Suppose the full data is $(R, Z_{(r)})$ and a we have posited a likelihood for the full data, p(z).
- Donald Rubin outlines multiple imputation as three basic "tasks":
 - Each missing value, is filled in (imputed) M times to create M different data sets.
 - Analyze each data set as if all the observations were observed.
 - The results for the M different analyses are combined into a single analysis by taking into account the variation in imputation.
- The imputations are conducted by first drawing $\theta^{(m)}$ from $p(\theta|\mathbf{r},\mathbf{z}_{(r)})$.
- Then draw the missing part of the data from the posterior predictive distribution given the parameter previously drawn, $p(\mathbf{z}_{(\bar{r})}|\mathbf{z}_{(r)},\mathbf{x},\theta^{(m)})$
- The estimator for θ is: $\hat{\theta}^* = M^{-1} \sum_{m=1}^M \hat{\theta}^{(m)}$

Multiple Imputation by Chained Equations

- One of the ways that missing data are imputed in practice is to assume that everything is normal, and impute based on that.
- An alternative approach is multiple imputation by chained equations (van Buuren, 2007). Let the data set be $Z = Y_1, \dots, Y_k$.
 - Initialize the algorithm by randomly sampling from the observed data to fill in missing data. If Y_{ik} is missing, impute it with a randomly sampled \mathbf{Y}_k from the observed data.
 - Pick any variable with missing values, say Y_1 , and regress on all other variables using only the observations where Y_1 is observed.
 - Then regress Y_2 , on all other values including Y_1 .
 - Cycling through all variables is considered one cycle, and repeat for 10-20 cycles to get a single imputed data set.
 - \bullet Repeat this procedure M times to create M imputed data sets.
- It should be noted that order in which the variables are imputed is important.

Software for Multiple Imputation

- Packages and procedures exist in both R and SAS to conduct these types of analyses.
- Refer to the examples on Dr. Marie Davidian's webpage for ST 790 for both SAS and R. They are extremely clear and easy to follow.
- proc mi and proc mianalyze in SAS can conduct these analyses relatively quickly.
- van Buuren (2011) in the Journal of Statistical Software outlines the mice package in R to do multiple imputation by chained equations.
- mice allows the option to use a variety of regression methods for imputation such as regression trees, random forests, LDA, etc.

Bayesian Non-Ignorability

- If ignorability does not hold, then we have *non-ignorable* missingness.
- In this situation, instead of using $p(\mathbf{z}_{(r)}|\gamma,\mathbf{x})$, the full data model, $p(\mathbf{z},\mathbf{r}|\boldsymbol{\theta})$ has to be specified.
- The extrapolation distribution, $p(z_{(\bar{r})}|z_{(r)},x)$ is unidentifiable without strong assumptions:
 - Assumptions about the missingness that cannot be verified.
 - Modelling assumptions.
 - Informative priors on the parameters of the extrapolation distribution, $oldsymbol{ heta}_E.$

Mixture Models

 Under the pattern mixture factorization the joint distribution of the full data can be factorized as:

$$p(\boldsymbol{z},\boldsymbol{r}) = p(\boldsymbol{z}_{(r)},\boldsymbol{z}_{(\bar{r})}|\boldsymbol{r})\,p(\boldsymbol{r}) = p(\boldsymbol{z}_{(\bar{r})}|\boldsymbol{z}_{(r)},\boldsymbol{r})\,p(\boldsymbol{z}_{(r)}|\boldsymbol{r})\,p(\boldsymbol{r})$$

- $p(\mathbf{z}_{(r)}|\mathbf{r}) p(\mathbf{r})$ is identified from the data.
- Assumptions have to be made about $p(\mathbf{z}_{(\bar{r})}|\mathbf{z}_{(r)},\mathbf{r})$.
- A possible assumption made is of complete case missing values.
 - The density for the missing part of Z is the same as the density for the observed data.
- Other assumptions are available case and neighboring case missing values.
- Unfortunately, none of the assumptions that are made are verifiable from the data.

Summary

- Missing data cannot be ignored in an analysis.
- Strong, unverifiable, assumptions are required to conduct analysis with missing data.
- Priors clearly incorporate these assumptions as part of the model.
- If ignorability can be assumed, the analysis can be done with only the observed data.
- Multiple Imputation methods can be used to fill in the data, but they
 must be properly analyzed by taking into account the variance
 between the estimates.
- Different methods for dealing with missing data can lead to different conclusions.