[69]:	"""This function return the matrix multiplication of two given matrix. It takes input from the user to create a matrix.""" #crate a zero matrix first with name Z
	<pre>Z = [[0 for j in range(len(B[0]))] for i in range(len(A))] #Multiplication of two matrices for i in range(len(A)):</pre>
	<pre>r1 = int(input("Rows of matrix A:")) c1 = int(input("Column of matrix A:")) A = [] for i in range(r1): rows = [] for j in range(c1): rows.append(int(input())) A.append(rows) print(A) #Create matrix B print("Matrix B :") r2 = int(input("Rows of matrix B:"))</pre>
	<pre>c2 = int(input("Column of matrix B:")) B = [] for i in range(r2): rows = [] for j in range(c2): rows.append(int(input())) B.append(rows) print(B) #Check the condition for matrix multiplication i.e column of matrix 1 = rows of matrix 2 if c1 != r2: print("A*B = Not Possible")</pre> else:
	<pre>Z = matrix_mul(A,B) print("A*B = ") for row in Z: print(row) Matrix A: Rows of matrix A:2 Column of matrix A:3 2 3 4 5 6 7 [[2, 3, 4], [5, 6, 7]] Matrix B:</pre>
	Rows of matrix B:3 Column of matrix B:3 7 6 5 8 9 4 5 6 7 [[7, 6, 5], [8, 9, 4], [5, 6, 7]] A*B = [58, 63, 50] [118, 126, 98]
[12]:	Q2: Select a number randomly with probability proportional to its magnitude from the given array of n elements consider an experiment, selecting an element from the list A randomly with probability proportional to its magnitude. assume we are doing the same experiment for 100 times with replacement, in each experiment you will print a number that is selected randomly from A. Ex 1: A = [0 5 27 6 13 28 100 45 10 79] let f(x) denote the number of times x getting selected in 100 experiments. f(100) > f(79) > f(45) > f(28) > f(27) > f(13) > f(10) > f(6) > f(5) > f(0)
	<pre>def pick_a_number_from_list(A): sum = 0 cum_sum = [] for i in range(len(A)): sum+=A[i] cum_sum.append(sum) #cumulative sum of the list #print(cum_sum) #print cum_sum rand_num = int(random.uniform(0,sum)) #selecting a random number between 0 and sum print(rand_num) number = 0 for index in range(len(cum_sum)): #Accumulate the values starting from the beginning of the array until you are >= to the random valu if (rand_num >= cum_sum[index] and rand_num < cum_sum[index+1]): return A[index+1] return number def sampling based_on_magnitude(): A = [0, 5, 27, 6, 13, 28, 100, 45, 10, 79] x = dict() for i in range(1,100): number = pick_a_number_from_list(A) #print(number) if number not in x: x_(number] = 1 else: x_(number] += 1 print(x)</pre>
	<pre>sampling_based_on_magnitude() 169 283 113 88 12 191 196 190 104 72 293 105 219</pre>
	245 207 0 17 88 26 293 165 12 111 90 166 112 62
	155 102 18 105 287 150 44 273 218 37 278 279 287 281 143
	295 282 281 120 190 21 74 91 43 74 306 311 47 215
	234 117 200 184 108 84 238 268 99 261 44 155 97 242
	127 15 178 83 97 101 166 106 189 32 280 227 291 97
[]:	179 243 52 242 195 4 286 48 224 164 {100: 36, 79: 25, 27: 7, 45: 14, 28: 5, 5: 2, 13: 5, 6: 2, 10: 3} Q3: Replace the digits in the string with #
[73]:	consider a string that will have digits in that, we need to remove all the not digits and replace the digits with # Ex 1: A = 234
[73]:	<pre>#Replace the digits with '#' final_str = re.sub('\d','#',num_str) return(final_str) # modified string which is after replacing the # with digits string = input() replace_digits(string) #2a\$#b%c%561# '####' Q4: Students marks dashboard consider the marks list of class students given two lists</pre>
	Students = ['student1','student2','student3','student4','student5','student6','student7','student8','student9','student10'] Marks = [45, 78, 12, 14, 48, 43, 45, 98, 35, 80] from the above two lists the Student[0] got Marks[0], Student[1] got Marks[1] and so on your task is to print the name of students a. Who got top 5 ranks, in the descending order of marks b. Who got least 5 ranks, in the increasing order of marks d. Who got marks between >25th percentile <75th percentile, in the increasing order of marks Ex 1: Students= ['student1', 'student2', 'student3', 'student4', 'student5', 'student6', 'student7', 'student8', 'student9', 'student9
	<pre>Marks = [45, 78, 12, 14, 48, 43, 47, 98, 35, 80] a. student8 98 student10 80 student2 78 student5 48 student7 47 b. student3 12 student4 14 student9 35</pre>
[50]:	<pre>student6 43 student1 45 c. student9 35 student6 43 student1 45 student7 47 student5 48 def display_dash_board(students, marks): dic = dict(zip(students, marks)) print('Students who got top 5 ranks') first five = (sorted(dic.values())[5:])[::-1]</pre>
	<pre>for m in first_five: print('Name :',list(dic.keys())[list(dic.values()).index(m)]) print('Marks :',m) print('\n') print('Students who got least 5 ranks') last_five = (sorted(dic.values())[:5]) for n in last_five: print('Name :',list(dic.keys())[list(dic.values()).index(n)]) print('Marks :',n)</pre>
	<pre>print('Students who got marks between IQR') for x in sorted(dic.values()): if (x>=25 and x<=75):</pre>
	Name: student8 Marks: 98 Name: student10 Marks: 80 Name: student2 Marks: 78 Name: student5 Marks: 48 Name: student7 Marks: 47 Students who got least 5 ranks Name: student3 Marks: 12
	Marks: 12 Name: student4 Marks: 14 Name: student9 Marks: 35 Name: student6 Marks: 43 Name: student1 Marks: 45 Students who got marks between IQR Name: student9 Marks: 35 Name: student6 Marks: 35 Name: student6 Marks: 43
	Name: student1 Marks: 45 Name: student7 Marks: 47 Name: student5 Marks: 48 Q5: Find the closest points consider you have given n data points in the form of list of tuples like $S=[(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5),,(xn,yn)]$ and a point $P=(p,q)$ your task is to find 5 closest points(based on cosine distance) in S from P cosine distance between two points (x,y) and (p,q) is defind as $cos^{-1}(\frac{(x\cdot p+y\cdot q)}{\sqrt{(x^2+y^2)\cdot\sqrt{(p^2+q^2)}}})$
	Ex: S= [(1,2),(3,4),(-1,1),(6,-7),(0, 6),(-5,-8),(-1,-1)(6,0),(1,-1)] P= (3,-4)
[51]:	<pre>def cosine_distance(p,q): numerator = (p[0]*q[0]) + (p[1]*q[1])</pre>
	<pre>denominator = math.sqrt(p[0]**2+p[1]**2) + math.sqrt(q[0]**2+q[1]**2) return numerator/denominator def closest_points_to_p(S,P): cosineDistances = [cosine_distance(P,q) for q in S] print(cosineDistances) print("\n") point_dist_pairs = list(zip(S,cosineDistances))</pre>
	<pre>print(point_dist_pairs) print("\n") sorted_point_dist_pairs = sorted(point_dist_pairs, reverse=True, key=lambda x:x[1]) print(sorted_point_dist_pairs) print("\n") closest_points_to_p = [point for point,_ in sorted_point_dist_pairs[:5]] return closest_points_to_p S= [(1,2),(3,4),(-1,1),(6,-7),(0,6),(-5,-8),(-1,-1),(6,0),(1,-1)]</pre>
	P= (3,-4) points = closest_points_to_p(S,P) for point in points: print(point) [-0.6909830056250525, -0.7, -1.0913263071038406, 3.234984083924547, -2.1818181818181817, 1.1777762382025354, 15590375815769153, 1.63636363636365, 1.0913263071038406] [((1, 2), -0.6909830056250525), ((3, 4), -0.7), ((-1, 1), -1.0913263071038406), ((6, -7), 3.234984083924547) ((0, 6), -2.1818181818181817), ((-5, -8), 1.1777762382025354), ((-1, -1), 0.15590375815769153), ((6, 0), 1.66363636365), ((1, -1), 1.0913263071038406)]
[26]:	[((6, -7), 3.234984083924547), ((6, 0), 1.63636363636365), ((-5, -8), 1.1777762382025354), ((1, -1), 1.091 3071038406), ((-1, -1), 0.15590375815769153), ((1, 2), -0.6909830056250525), ((3, 4), -0.7), ((-1, 1), -1.09 63071038406), ((0, 6), -2.1818181818181817)] (6, -7) ((6, 0) ((-5, -8) (1, -1) ((-1, -1)) ((-1, -1)) ((-1, -1)) ((-1, -1)) ((-1, -1)) ((-1, -1)) ((-1, -1)) ((-1, -1)) ((-1, -1)) ((-1, -1)) ((-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1), (-1, -1)) ((-1, -1), (-1, -1),
	<pre>distance = {} def close_points(point,point_list): for i in range(len(point_list)): d = math.acos(((point_list[i][0]*point[0])+(point_list[i][1]*point[1]))</pre>
	{(1, 2): 2.0344439357957027, (3, 4): 1.8545904360032246, (-1, 1): 2.9996955989856287, (6, -7): 0.06512516333509, (0, 6): 2.498091544796509, (-5, -8): 1.2021004241368467, (-1, -1): 1.4288992721907328, (6, 0): 0.9272950016123, (1, -1): 0.14189705460416438} [0.06512516333438509, 0.14189705460416438, 0.9272952180016123, 1.2021004241368467, 1.4288992721907328] Closes point from P: Distance from P(3,4) point to the (6, -7) Distance from P(3,4) point to the (1, -1) Distance from P(3,4) point to the (6, 0) Distance from P(3,4) point to the (-5, -8) Distance from P(3,4) point to the (-1, -1)
	Q6: Find Which line separates oranges and apples consider you have given two set of data points in the form of list of tuples like Red =[(R11,R12),(R21,R22),(R31,R32),(R41,R42),(R51,R52),,(Rn1,Rn2)] Blue=[(B11,B12),(B21,B22),(B31,B32),(B41,B42),(B51,B52),,(Bm1,Bm2)] and set of line equations(in the string formate, i.e list of strings) Lines = [a1x+b1y+c1,a2x+b2y+c2,a3x+b3y+c3,a4x+b4y+c4,,K lines] Note: you need to string parsing here and get the coefficients of x,y and intercept
	your task is to for each line that is given print "YES"/"NO", you will print yes, if all the red points are one side of the line and blue points are other side of the line, otherwise no Ex: Red= [(1,1),(2,1),(4,2),(2,4), (-1,4)] Blue= [(-2,-1),(-1,-2),(-3,-2),(-3,-1),(1,-3)] Lines=["1x+1y+0","1x-1y+0","1x+0y-3","0x+1y-0.5"]
	3 3 2 0.0 2 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
[27]:	Output: YES NO NO YES import math # write your python code here # you can take the above example as sample input for your program to test # it should work for any general input try not to hard code for only given input strings # https://stackoverflow.com/questions/57188227/to-find-whether-a-given-line-equation-is-able-to-separate-th
	<pre># you can free to change all these codes/structure def i_am_the_one(red,blue,line): # your code for i in red: eq=line.replace('x','*'+str(i[0])) eq=eq.replace('y','*'+str(i[1])) answer=eval(eq) if answer>0: pass else: return "NO"</pre>
	<pre># Code for Blue for j in blue: eq1=line.replace('x','*'+str(j[0])) eq1=eq1.replace('y','*'+str(j[1])) answer1=eval(eq1) if answer1<0: pass else: return "NO" return "Yes" Red= [(1,1),(2,1),(4,2),(2,4), (-1,4)] Blue= [(-2,-1),(-1,-2),(-3,-2),(-3,-1),(1,-3)] Lines=["lx+ly+0","lx-ly+0","lx+0y-3","0x+ly-0.5"]</pre>
	for i in Lines: yes_or_no = i_am_the_one(Red, Blue, i) print(yes_or_no) Yes NO NO Yes Q7: Filling the missing values in the specified formate You will be given a string with digits and '_'(missing value) symbols you have to replace the '_' symbols as explained
	Ex 1:,, _24 ==> 24/4, 24/4, 24/4, 24/4 i.e we. have distributed the 24 equally to all 4 places Ex 2: 40,,, _60 ==> (60+40)/5, (60+40)/5, (60+40)/5, (60+40)/5, (60+40)/5 ==> 20, 20, 20, 20, 20 i.e. the sum of (60+40) is distributed qually to all 5 places Ex 3: 80,, _, _ ==> 80/5, 80/5, 80/5, 80/5, 80/5 ==> 16, 16, 16, 16 i.e. the 80 is distributed qually to all 5 missing values that are right to it Ex 4:, _, 30,, _, _, 50, _, _ ==> we will fill the missing values from left to right a. first we will distribute the 30 to left two missing values (10, 10, 10, _, _, _, 50, _, _) b. now distribute the sum (10+50) missing values in between (10, 10, 12, 12, 12, 12, 12, 12, _, _) c. now we will distribute 12 to right side missing values (10, 10, 12, 12, 12, 12, 12, 12, _, _, _) for a given string with comma seprate values, which will have both missing values numbers like ex: ", x, _, _, "you need fill the missing values Q: your program reads a string like ex: "_, _, x, _, _, " and returns the filled sequence Ex: Input1: "_,_,,24" Output2: "40,_,,_,60" Output2: "40,_,,_,60" Output3: "80,_,,,,, " Output3: "80,_,,,,, " Output3: 16,16,16,16,16
[15]:	<pre>Input4: "_,_,30,_,_,50,_," Output4: 10,10,12,12,12,12,4,4,4 # write your python code here # you can take the above example as sample input for your program to test # it should work for any general input try not to hard code for only given input strings # you can free to change all these codes/structure def curve_smoothing(string): index_of_non_empty_cells_list = [] split_string = string.split(',') for i in range(len(split_string)): if split_string[i] != '_':</pre>
	<pre>if split_string[i] != '_': index_of_non_empty_cells_list.append(i) # add the length of the original list to index_of_non_empty_cells_list index_of_non_empty_cells_list.append(len(split_string) - 1) #print(index_of_non_empty_cells_list) # Loop over the index_of_non_empty_cells_list to modify the original list by filling up empty slots start = 0 for ele in index_of_non_empty_cells_list: # Whenever there is a missing value, add the proceeding value and the immediately next available value and divide it by the number of missing values.</pre>
	<pre># Calculate the cumulative_sum of available non-empty cells. cumulative_sum_prev_and_next_value = int(split_string[ele]) if split_string[ele] != '_' else 0 cumulative_sum_prev_and_next_value += int(split_string[start]) if split_string[start] != '_' and st # print(cumulative_sum_prev_and_next_value) # Divide the cumulative_sum of prev and next value by the number of missing values integer_to_replace = cumulative_sum_prev_and_next_value // (ele - start + 1) split_string = [integer_to_replace if start <= x <= ele else split_string[x] for x in range(len(spl start = ele return split_string#list of values # S = ", 30,, 50," # smoothed_values = curve_smoothing(S) # print(smoothed_values) # Test cases tests = ["_, 24", "40,, 60", "80,, 50,"] for i in tests: print (curve_smoothing(i)) [6, 6, 6, 6] [20, 20, 20, 20, 20]</pre>
[12]:	[16, 16, 16, 16, 16] [10, 10, 12, 12, 12, 12, 4, 4, 4] string = "_,_,30,_,_,_50,_," split_string = string.split(',') print(split_string) print(len(split_string)) ['_', '_', '30', '_', '_', '_', '50', '_', '_'] Q8: Filling the missing values in the specified formate You will be given a list of lists, each sublist will be of length 2 i.e. [[x,y],[p,q],[l,m][r,s]] consider its like a martrix of n rows and two columns
	 the first column F will contain only 5 uniques values (F1, F2, F3, F4, F5) the second column S will contain only 3 uniques values (S1, S2, S3) your task is to find Probability of P(F=F1 S==S1), P(F=F1 S==S2), P(F=F1 S==S3) Probability of P(F=F2 S=S1), P(F=F2 S=S2), P(F=F2 S=S3) Probability of P(F=F3 S=S1), P(F=F3 S=S2), P(F=F3 S=S3) Probability of P(F=F4 S=S1), P(F=F4 S=S2), P(F=F4 S=S3) Probability of P(F=F5 S=S1), P(F=F5 S=S2), P(F=F5 S=S3) Ex: [F1,S1],[F2,S2],[F3,S3],[F1,S2],[F2,S3],[F3,S2],[F2,S1],[F4,S1],[F4,S3],[F5,S1]] P(F=F1 S==S1)=1/4, P(F=F1 S==S2)=1/3, P(F=F1 S==S3)=0/3
[2]:	<pre>a. P(F=F1 S==S1)=1/4, P(F=F1 S==S2)=1/3, P(F=F1 S==S3)=0/3 b. P(F=F2 S==S1)=1/4, P(F=F2 S==S2)=1/3, P(F=F2 S==S3)=1/3 c. P(F=F3 S==S1)=0/4, P(F=F3 S==S2)=1/3, P(F=F3 S==S3)=1/3 d. P(F=F4 S==S1)=1/4, P(F=F4 S==S2)=0/3, P(F=F4 S==S3)=1/3 e. P(F=F5 S==S1)=1/4, P(F=F5 S==S2)=0/3, P(F=F5 S==S3)=0/3</pre> # write your python code here # you can take the above example as sample input for your program to test # it should work for any general input try not to hard code for only given input strings # you can free to change all these codes/structure def compute_conditional_probabilites(F,S): # your gode
	<pre>for i in ['F1', 'F2', 'F3', 'F4', 'F5']: for j in ['S1', 'S2', 'S3']: compute_conditional_probabilites(i, j) P(F = F1 S == S1) = 1/4 P(F = F1 S == S2) = 1/3 P(F = F1 S == S3) = 0/3 P(F = F2 S == S1) = 1/4 P(F = F2 S == S2) = 1/3 P(F = F2 S == S3) = 1/3 P(F = F3 S == S1) = 0/4 P(F = F3 S == S2) = 1/3 P(F = F3 S == S3) = 1/3 P(F = F4 S == S1) = 1/4</pre>
	P(F = F4 S == S1) = 1/4 P(F = F4 S == S2) = 0/3 P(F = F4 S == S3) = 1/3 P(F = F4 S == S3) = 1/4 P(F = F5 S == S1) = 1/4 P(F = F5 S == S2) = 0/3 P(F = F5 S == S2) = 0/3 P(F = F5 S == S3) = 0/3 Q9: Given two sentances S1, S2 You will be given two sentances S1, S2 your task is to find a. Number of common words between S1, S2 b. Words in S1 but not in S2
	<pre>c. Words in S2 but not in S1 Ex: S1= "the first column F will contain only 5 uniques values" S2= "the second column S will contain only 3 uniques values" Output: a. 7 b. ['first','F','5'] c. ['second','S','3'] def string_features(S1, S2): """This function return:</pre>
[44]:	"""This function return: 1.Number of common words between two provided Strings. 2.Words in String1 but not in String2. 3.Words in String2 but not in String1.""" #convert the string into a list
[44]:	<pre>lst1 = S1.split() print(lst1) lst2 = S2.split() print(lst2) print("\n") #Number of common words btw both strings using forloop common_ele = 0 for ele in lst1: if ele in lst2:</pre>
[44]:	<pre>print(lst1) lst2 = S2.split() print(lst2) print("\n") #Number of common words btw both strings using forloop common_ele = 0 for ele in lst1:</pre>

	<pre>for word in words_S1: if word in S2: a+=1 set_S1 = set(S1.split()) set_S2 = set(S2.split()) b = set_S1 - set_S2 print(b) c = set_S2 - set_S1 print(c) return a,b,c</pre> S1= "the first column F will contain only 5 uniques values" S2= "the second column S will contain only 3 uniques values"
[<pre>string_features(S1,S2) print(a) print(b) print(c) 'f', 'only', 'the', 'column', '5', 'contain', 'values', 'will', 'uniques', 'first'] 'F', '5', 'first'} 'S', '3', 'second'} 'F', '5', 'first'} 'S', '3', 'second'} ER THE BOUNDARY CASE FOR WORDS UPPER AND LOWER CASE #IF WE CONSIDER THE BOUNDARY CASE FOR WORDS UPPER AND LOWER CASE def string_features(S1, S2): """This function return:</pre>
	1. Number of common words between two provided Strings. 2. Words in String1 but not in String2. 3. Words in String2 but not in String1.""" #convert the string into a list lst1 = S1.lower().split() print(lst1) lst2 = S2.lower().split() print(lst2) print("\n") #Number of common words btw both strings using forloop common_ele = 0 for ele in lst1: if ele in lst2: common_ele+=1 print("Number of common words between S1, S2: ",common_ele)
	<pre>#Words in S1 but not in S2 a = [] for ele in lst1: if ele in lst2: a = list(set(lst1) - set(lst2)) print("Words in S1 but not in S2 : ",a) b = [] for ele in lst2: if ele in lst1: b = list(set(lst2) - set(lst1)) print("Words in S2 but not in S1 : ",b) S1= "The first column F will contain only 5 uniques values" S2= "the second Column S will contain only 3 uniques values"</pre>
[[[N W W W W A C]	'the', 'first', 'column', 'f', 'will', 'contain', 'only', '5', 'uniques', 'values'] 'the', 'second', 'column', 's', 'will', 'contain', 'only', '3', 'uniques', 'values'] (umber of common words between S1, S2: 7 (ords in S1 but not in S2: ['5', 'first', 'f'] (ords in S2 but not in S1: ['second', 's', '3'] (210: Given two sentances S1, S2 ou will be given a list of lists, each sublist will be of length 2 i.e. [[x,y],[p,q],[l,m][r,s]] consider its like a martrix of n rows and two column Y will contain interger values
b. Yc nu	the second column Y_{score} will be having float values our task is to find the value of $f(Y,Y_{score}) = -1*\frac{1}{n}\Sigma_{foreachY,Y_{score}pair}(Ylog10(Y_{score}) + (1-Y)log10(1-Y_{score}))$ here n is the umber of rows in the matrix
	<pre>def compute_log_loss(A): """This function return the loss of a given matrix A.""" #Initializing value for log log_val = 0 for item in A: y,y_score = item #Using formula given above calculating loss log_val += (y * math.log10(y_score)) + ((1-y) * math.log10(1-y_score)) loss = (-1/len(A)) * log_val return loss A = [[1, 0.4], [0, 0.5], [0, 0.9], [0, 0.3], [0, 0.6], [1, 0.1], [1, 0.9], [1, 0.8]] loss = compute_log_loss(A) print("%.7f"%loss)</pre>
	.4243099