0.1 Algebras

Definition 0.1.1: Algebra

F-algebra *A* or linear algebra A/F is an *F*-v.s. with a product structvue $A \times A \to A$ which has ass., dis., comm. where multiplication is not necesserily comm. If *A* has an element $1_A \in A$ s.t. $\forall \alpha \in A \ (1_A \cdot \alpha = \alpha \cdot 1_A = \alpha)$ then we say *A* is an *F*-algebra with 1.

Example 0.1.1

- (i) F[x]: finite polynomial with coeff. in F is F-algebra with unity 1.
- (ii) F[[x]]: formal power series in x with coeff. in $F: \sum_{i=1}^{\infty} a_i x^i$ form is F-algebra with unity 1.
 - (iii) Suppose $n \ge 1$ with field F. $M_{n \times n}(F)$: F-algebra with unity $1_A = I_n$
 - (iv) V: F-v.s. A = L(V, V) is F-algebra with unity $1_A = Id_V$ with + and \circ .

0.2 The Algebra of Polynomials

Note:-

 $f,g \in F[x]$. $f := \sum a_i x_i$, $g := \sum b_j x_j$ We say $f = g \iff \forall i = j \ (a_i = b_j)$. But this is not equiv. to say that $\forall \alpha \in F \ (f(\alpha) = g(\alpha))$.

Example 0.2.1

 $F = \mathbb{Z}/p$. Then Fermat's Little Theorem says $\forall \alpha \in F \ (\alpha^p \equiv \alpha)$. Consider $f = 1 + x^p$ and g = 1 + x. Then $f \neq g$ but $f(\alpha) = g(\alpha)$.

Definition 0.2.1: Degree of Polynomials

Suppose $f \in F[x]\setminus\{0\}$. Degree of f is defined to be n if $f = a_0 + \cdots + a_n x^n$ with $a_n \in F\setminus\{0\}$. Note that we don't define degree of 0.

Definition 0.2.2: Monic

 $f \in F[x] \setminus \{0\}$ is monic if the coeff. of highest deg. is 1.

Exercise 0.2.1

 $f,g \in F[x]\setminus\{0\}$. Then $fg \in F[x]\setminus\{0\}$ where $\deg(fg) = \deg(f) + \deg(g)$ and if f,g is monic, fg either.

Definition 0.2.3: Evaluation

A is an *F*-algebra and $f(x) \in F[x]$ where $f = \sum_{i=0}^{n} a_i x^i$. Let $\alpha \in A$ be a fixed element. Define $f(\alpha) = \sum_{i=0}^{n} a_i \alpha^i$ and we call it the evaluation of α in f(x). $ev_{\alpha} : F[x] \to A : f(x) \mapsto f(\alpha)$. $f_1 + f_2$, $f_1 f_2$, cf_1 are all respected.

Definition 0.2.4: Homomorphism

Let A_1 and A_2 be both F-algebras. A function $\varphi: A_1 \to A_2$ is called a homomorphism of F-algebra if:

- 1. It is an *F*-lin. trans.
- 2. $\varphi(\alpha_1\alpha_2) = \varphi(\alpha_1)\varphi(\alpha_2)$

Theorem 0.2.1 Euclidean Algorithm on F[x]

 $f,g \in F[x]$ for nonzero g with property $\deg(f) \ge \deg(g)$. $\exists q \in F[x]$ (r = f - qg). we have either r = 0 or $r \ne 0$ for $\deg(r) < \deg(g)$.

Note:-

In modern algebra, a ring with this property is called an Euclidean domain.

Definition 0.2.5: Divisibility

If r = 0, f = qg. Then we denote this situation as $g \mid f$.

Lemma 0.2.1

 $f(x) \in F[x] \setminus \{0\}, (x-c) \in F[x] \text{ for } c \in F. \text{ Then } (x-c) \mid f(x) \iff f(c) = 0.$

Proof. f = qg + r = q(x - c) + r. Then f(c) = r, so $(x - c)|f \iff r = 0$. These are called a zero, solution, or root of f.

Exercise 0.2.2

 $f(x) \in F[x]$, $\deg(f) = n \ge 1$. Then f has at most n roots.

0.3 Lagrange Interpolation

This Chapter is Intentionally Skipped at Lectures

0.4 Polynomial Ideals

Definition 0.4.1: Ideals

F: field. F[x]: polynomial ring over F. An ideal $M \subset F[x]$ is an F-subspace s.t. if $f \in F[x]$ and $g \in M$, then $f g \in M$.

Example 0.4.1

M = (x): poly. divisible by x.

Definition 0.4.2: Principal Ideal

An ideal of the form $M = (g_0)$: poly. divisible by g_0 is called a principal ideal.

Theorem 0.4.1

F: field. $M \subset F[x]$: a nonzero ideal. Then M is a principal ideal given by a monic.

Proof. Since $M \neq 0$, M does contain nonzero poly. So, the set of deg. of nonzero poly. in \mathbb{N}_0 is nonempty. Let $g_0 \in M$ hs the minimal possible deg. If $g_0 = a_d x^d + \cdots + a_1 x + a_0$, then $\frac{1}{a_d} g_0 = x^d + \cdots$ with the same deg. So using this instead, call it g_0 , the g_0 is monic.

Claim 0.4.1

$$M=(g_0).$$

Proof. $g_0 \subset M$ is obvious.

 $(M \subset g_0)$: N.T.S. $\forall f \in M \ (f = qg_0)$. By the Euclidean algorithm, $\exists q, r \in F[x] \ (f = g_0q + r)$. Suppose $r \neq 0$. Then $f = qg_0 + r$ with $\deg(r) < \deg(g_0)$. But $r = f - qg_0$ where $f, g_0 \in M$, $r \in M$. This is contradiction to minimality of g. Thus r = 0, which means f is multiple of g_0 .

Note:-

By putting g_0 monic, g_0 is also unique.

Corollary 0.4.1

 $p_1, p_2, \dots, p_n \in F[x]$ not all zero. Then $\exists !$ monic $g_0 \in F[x]$ s.t.

- i) $p_1F[x] + \cdots + p_nF[x] = (g_0)$
- ii) $\forall i (g_0 | p_i)$
- iii) if $f | p_i$ for all i, then $f | g_0$. Such g_0 is called G.C.D. of p_i .

Proof. Check $p_1F[x] + \cdots + p_nF[x]$ is an ideal. By this, $M \neq 0 \Rightarrow \exists !g_0 \ ((g_0) = M)$. Also, $(p_i) \subset M = (g_0) \Rightarrow p_{\in}(g_0) \Rightarrow g_0 \mid p_i$. Also, $f \mid p_i \Rightarrow p_i = fh_i$ thus $g_0 = fh_1F[x] + \cdots + fh_nF[x] \Rightarrow f \mid g_0$.

Definition 0.4.3: Coprime (Relatively Prime)

 p_i are coprime of relatively prime if $gcd(p_1, ..., p_n) = (1)$.

0.5 The Prime Factorization of a Polynomial

Definition 0.5.1: Reducible

F: field. $f \in F[x] \setminus \{0\}$. We say f is reducible if f = gh for some $g, h \in F[x]$ where $\deg(g), \deg(h) \ge 1$. If we can't, we say it is irreducible.

Definition 0.5.2: Prime Element

We say f is a prime element if it has property that whenever $f \mid gh$, either $f \mid g$ or $f \mid h$.

Example 0.5.1

F: field. f: poly. of deg. 1 in F[x] is irreducible.

Example 0.5.2

 $F: \mathbb{R}. \ f(x) = x^2 + ax + b. \ f$ is irreducible $\iff f$ has a root in $\mathbb{R} \iff D \ge 0$.

Example 0.5.3

 $F: \mathbb{F}_p = \mathbb{Z}/p$. Then there are many irreducible poly. of deg. d.

Theorem 0.5.1

Let $p(x) \in F[x] \setminus \{0\}$. Then it is irreducible \iff it is prime.

Proof. (\Leftarrow): Suppose it is reducible. p = gh for some $g, h \in F[x]$ with deg. ≥ 1 . Since p is prime, $p \mid g$ or $p \mid h$. But then, $\deg(p) \le \deg(g)$ or $\deg(p) \le \deg(h)$. But this is impossible since $\deg(g), \deg(h) < \deg(p)$.

(⇒): $gcd(p,g) = (d) \Rightarrow d \mid p \Rightarrow p$ is irreducible, so d = 1 or d = p. If d = p, $d \mid g$ leads $p \mid g$. If d = 1, $\exists p_0, g_0 \ (pp_0 + gg_0 = 1)$. Thus $php_0 + ghg_0 = h$ leads $p \mid h$.