EXPERIMENT 1

Fundamentals of Tensor Operations using PyTorch and NumPy

OBJECTIVE

To understand and implement basic tensor operations using PyTorch and NumPy including creation, manipulation, arithmetic, reshaping, broadcasting, and memory-efficient in-place operations.

THEORY

PyTorch and NumPy are essential libraries for numerical and tensor computations in Python. PyTorch provides GPU-accelerated operations and automatic differentiation, making it suitable for deep learning. NumPy offers highly optimized operations on n-dimensional arrays and is widely used in scientific computing.

Tensors are generalizations of scalars, vectors, and matrices. PyTorch's Tensor and NumPy's ndarray share similar behavior, but PyTorch tensors can utilize GPU acceleration.

Common tensor operations include:

- Creation of 1D, 2D, 3D tensors
- Element-wise arithmetic
- Dot products and matrix multiplications
- Indexing and slicing
- Reshaping with .view(), .reshape(), .unsqueeze(), .squeeze()
- Broadcasting
- In-place and out-of-place operations