```
library ieee;
use ieee.std_logic_1164.all;
entity Mensaje is port(
        clk, clr: in std_logic;
        display : out std_logic_vector(6 downto 0);
       sel: inout std_logic_vector(2 downto 0)
       );
end Mensaje;
architecture aMensaje of Mensaje is
signal q0, q1, d0, d1: std_logic;
CONSTANT L1: std_logic_vector(6 downto 0) := "1000010"; --d
CONSTANT L2: std_logic_vector(6 downto 0) := "1001111"; --i
CONSTANT L3: std_logic_vector(6 downto 0) := "0000001"; --O
begin
--decodificador
        process(sel)
               begin
                       case sel is
                       when "110" =>
                               display <= L1;
                       when "101" =>
                               display <= L2;
                       when "011" =>
                               display <= L3;
                       when others => display <= "0000000";
```

```
end case;
         end process;
--anillo
         process(clk, clr)
                  begin
                           if(clr = '1') then
                                    sel <= "110";
                           elsif(rising_edge(clk)) then
                                    sel <= to_stdlogicvector(to_bitvector(sel) rol 1);</pre>
                           end if;
         end process;
-- flip flops
         process(clk, clr)
                  begin
                           if(clr = '1') then
                                    q0 <= '0';
                                    q1 <= '0';
                    elsif(rising_edge(clk)) then
                                    d1 <= q0;
                                    d0 \le (q1 \text{ and } not(q0)) \text{ or } (not(q1) \text{ and } q0);
                            end if;
         end process;
end architecture;
```


1. ¿Cuántos dispositivos PLD 22V10 son necesarios para el desarrollo de esta práctica?

Solo 1

2. ¿Cuántos dispositivos de la serie 74xx (TTL) ó 40xx (CMOS) hubieras necesitado para el desarrollo de esta práctica?

12

3. ¿Cuántos pines de entrada/salida de los PLD 22V10 se usan en el diseño?

2 de entrada

7 de salida

3 de entrada/salida

4. ¿Cuántos términos producto ocupan las ecuaciones para cada señal de salida y que porcentaje se usa en total de los PLD 22V10?

12, se utiliza el 9% del PLD

5. ¿A partir de que frecuencia se observa el mensaje nítido y sin parpadeo?

En teoría alrededor de 60 Hertz.

6. ¿Cuántos FF's se ocupan en el PLD para implementar la máquina Moore?

Nosotros utilizamos solo 2 FF tipo D.

7. ¿Cuántas terminales de salida se usan en PLD2?

Solo utilizamos un PLD

8. ¿Qué puedes concluir de esta práctica?

Fue una práctica muy importante ya que tuvimos que aprender a utilizar los recursos que ofrece la GAL, reduciendo columnas en nuestra tabla, o utilizando un código para nuestros estados en la maquina de moore similar a nuestra parte combinatoria para de esta manera economizar recursos y poder utilizar solo un PLD para la realización de esta práctica.