COMP 5704: Parallel Algorithms and Applications in Data Science Fall 2021

Project on

Newton-ADMM: A Distributed GPU-Accelerated Optimizer for Non-Convex Problems

Chih-Hao Fang et al

Presented by

Kuntal Ghosh

Agendas

- Background
- ❖ Alternating Direction Method of Multipliers (ADMM) Framework
- Inexact Newton-CG Solver
- GPU-accelerated Newton-type Method
- Proposed Modification
- Discussion
- * References
- Vote of Thanks

Optimization: It is a technique of maximizing or minimizing a real function by methodically choosing input values from within an allowed set and computing the value of the function. For example, Gradient Decent or Stochastic Gradient Decent (SGD)

$$\min_{\mathbf{x} \in \mathbb{R}^d} F(\mathbf{x}) \triangleq \sum_{i=1}^n f_i(\mathbf{x}) + g(\mathbf{x})$$

Fig 1 (10)

Key challenges in optimization for machine learning problems.

- huge numbers of iterations having related communication costs in distributed environments.
- It is not easy to gather the whole training set at a single node and process the entire data serially due to the lack of proper resources.
- Privacy of the data

Strategies of Existing Distributed Optimization Solvers

- Executing each operation in conventional solvers (e.g., SGD or (quasi) Newton) in a distributed environment.
- Executing local optimization methods which operate on their own data together having a coordinating method which synchronizes the models over iterations.

It is a well-known technique in distributed optimization for solving consensus problems.

Let \mathcal{N} denote the number of nodes (computing elements) in the distributed environment. Assume that the input dataset \mathcal{D} is split among the \mathcal{N} nodes such that

$$\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2 \dots \cup \mathcal{D}_{\mathcal{N}}$$

$$\min \sum_{i=1}^{\mathcal{N}} \sum_{j \in \mathcal{D}_i} f_j(\mathbf{x}_i) + g(\mathbf{z})$$

s.t.
$$\mathbf{x}_i - \mathbf{z} = 0, \quad i = 1, \dots, \mathcal{N}_i$$


```
Algorithm 1: ADMM method (outer solver)
```

```
Input : \mathbf{x}^{(0)} (initial iterate), \mathcal{N} (no. of nodes)

Parameters: \beta, \lambda and \theta < 1

1 Initialize \mathbf{z}^0 to 0

2 Initialize \mathbf{y}_i^0 to 0 on all nodes.

3 foreach k = 0, 1, 2, \dots do

4 Perform Algorithm 2 with, \mathbf{x}_i^k, \mathbf{y}_i^k, and \mathbf{z}^k on all nodes

5 Collect all local \mathbf{x}_i^{k+1}

6 Evaluate \mathbf{z}^{k+1} and \mathbf{y}_i^{k+1}

8 Distribute \mathbf{z}^{k+1} and \mathbf{y}_i^{k+1} to all nodes.

9 Locally, on each node, compute spectral step sizes and penalty parameters
```


10 end

$$\mathbf{x}_i^{k+1} = \operatorname*{arg\,min}_{\mathbf{x}_i} f_i(\mathbf{x}_i) + \frac{\rho_i^k}{2} ||\mathbf{z}^k - \mathbf{x}_i + \frac{\mathbf{y}_i^k}{\rho_i^k}||_2^2,$$

$$\mathbf{z}^{k+1} = \arg\min_{\mathbf{z}} g(\mathbf{z}) + \sum_{i=1}^{\mathcal{N}} \frac{\rho_i^k}{2} ||\mathbf{z} - \mathbf{x}_i^{k+1} + \frac{\mathbf{y}_i^k}{\rho_i^k}||_{2}^2$$

$$\mathbf{y}_{i}^{k+1} = \mathbf{y}_{i}^{k} + \rho_{i}^{k} (\mathbf{z}^{k+1} - \mathbf{x}_{i}^{k+1}).$$

$$g(\mathbf{x}) = \lambda \|\mathbf{x}\|^2 / 2$$

$$\mathbf{z}^{k+1}(\lambda + \sum_{i=1}^{\mathcal{N}} \rho_i^k) = \sum_{i=1}^{\mathcal{N}} \left[\rho_i^k \mathbf{x}_i^{k+1} - \mathbf{y}_i^k \right]$$

Inexact Newton-CG Solver

Algorithm 2: Inexact Newton-type Method

```
Input : \mathbf{x}^{(0)}
Parameters: 0 < \beta, \theta < 1
I foreach k = 0, 1, 2, \dots do

Form \mathbf{g}(\mathbf{x}^{(k)}) and \mathbf{H}(\mathbf{x}^{(k)})

if \|\mathbf{g}(\mathbf{x}^{(k)})\| < \epsilon then

STOP

end

Update \mathbf{x}^{(k+1)}

rend
```

Inexact Newton-CG Solver

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{p}_k$$

$$\|\mathbf{H}(\mathbf{x}^{(k)})\mathbf{p}_k + \mathbf{g}(\mathbf{x}^{(k)})\| \le \theta \|\mathbf{g}(\mathbf{x}^{(k)})\|$$

Inexact Newton-CG Solver

$$\mathbf{g}(\mathbf{x}) \triangleq \sum_{j \in \mathcal{D}} \nabla \hat{f}_j(\mathbf{x})$$

$$\mathbf{H}(\mathbf{x}) \triangleq \sum_{j \in \mathcal{D}} \nabla^2 \hat{f}_j(\mathbf{x})$$

GPU-accelerated Newton-type Method

- A Hessian-free Newton-type method to solve the ADMM subproblem
- That is to compute the Hessian-vector product **Hv** without explicitly forming the Hessian **H**.
- The Hessianvector product, Hv, can be efficiently computed using GEneral Matrix to Matrix Multiplication (GEMM) operations.
- Pytorch's Basic Linear Algebra Subprograms(BLAS) interface to the GPUs is used for GEMM.

Proposed Modification

- Inexact Newton-CG solver can fail if there is no positive definite Hessian
- Introduction of non-convex solver Newton-MR for non-convex problems generated from deep neural networks.
- Newton-MR's iterations can be written as follwos

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$$
, with $\mathbf{p}_k = -\left[\nabla^2 f(\mathbf{x}_k)\right] \nabla f(\mathbf{x}_k)$

1

Experimental Setup and Data

- Hardware: two different hardware platforms were used by the authors: a) first one is Intel Xeon Platinum 8168 processors and 8 Tesla P100 GPU cards b) second one is is a CentOS 7 cluster with 15 nodes with 100 Gbps Infiniband interconnect node has 96GB RAM, two 12-Core Intel Xeon Gold processors, and 3 Tesla P100 GPU cards.
- Data: HIGGS, MNIST, CIFAR-10, E18 data sets were used to compare Newton-ADMM with state-of-the-art first-order and second-order optimizers

Classes	Dataset	Train Size	Test Size	Dims
2	HIGGS	10,000,000	1,000,000	28
10	MNIST	60,000	10,000	784
10	CIFAR-10	50,000	10,000	3,072
20	E18	1,300,128	6,000	279,998

	S1				I	S2			
MNIST	CPU Time	GPU Time	Comm. Time	Train. Obj.	MNIST	CPU Time	GPU Time	Comm. Time	Train. Obj.
Newton-ADMM	3676.00	66.90	0.081	0.22	Newton-ADMM	1462.36	36.54	0.28	0.23
SGD	461.62	1034.63	18.97	0.24	SGD	229.16	530.92	23.84	0.23
CIFAR-10					CIFAR-10				
Newton-ADMM	11419.11	176.64	0.59	1.63	Newton-ADMM	5321.67	99.28	0.85	1.63
SGD	883.16	1280.91	43.76	1.67	SGD	443.71	663.99	54.28	1.65
HIGGS					HIGGS				
Newton-ADMM	23098.02	2159.53	0.08	0.64	Newton-ADMM	12356.39	1107.97	0.24	0.64
SGD	36791.37	125935.64	1739.15	0.65	SGD	18305.36	61597.04	1237.57	0.65
	S4					S8			
MNIST	CPU Time	GPU Time	Comm. Time	Train. Obj.	MNIST	CPU Time	GPU Time	Comm. Time	Train. Obj.
Newton-ADMM	787.38	26.29	0.39	0.24	Newton-ADMM	260.71	18.19	0.72	0.24
SGD	115.88	26751	39.31	0.26	SGD	61.63	138.30	28.82	0.28
CIFAR-10					CIFAR-10				
Newton-ADMM	2482.32	48.48	1.480	1.66	Newton-ADMM	1227.98	33.20	2.67	1.68
SGD	217.714	331.17	88.62	1.65	SGD	109.68	168.61	60.80	1.67
HIGGS					HIGGS				
Newton-ADMM	3784.05	443.10	0.22	0.64	Newton-ADMM	1581.05	215.86	0.12	0.64
SGD	9018.30	29904.36	1523.00	0.65	SGD	4629.18	16157.91	666.69	0.65

Results

Q & A

References

- [1] Fred Roosta, Yang Liu, Peng Xu, and Michael W Mahoney. "Newton-MR: Newton's Method Without Smoothness or Convexity". In: arXiv preprint arXiv:1810.00303 (2018).
- [2] Albert S Berahas, Raghu Bollapragada, and Jorge Nocedal. "An Investigation of Newton-Sketch and Subsampled Newton Methods". In: arXiv preprint arXiv:1705.06211 (2017).
- [3] L. Angelani, R. Di Leonardo, G. Ruocco, A. Scala, and F. Sciortino. Saddles in the Energy Landscape Probed by Supercooled Liquids. Physical review letters, 85(25):5356, 2000.
- [4] S'ebastien Bubeck et al. "Convex optimization: Algorithms and complexity". In: Foundations and Trends® in Machine Learning 8.3-4 (2015), pp. 231–357.
- [5] Y. Arjevani, O. Shamir, and R. Shi. Oracle Complexity of Second-Order Methods for Smooth Convex Optimization. Mathematical Programming, pages 1{34, 2017.
- [6] Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. "Revisiting distributed synchronous SGD". In: arXiv preprint arXiv:1604.00981 (2016).
- [7]Y. Bengio et al. Learning deep architectures for AI. Foundations and trends R in Machine Learning, 2(1):1{127, 2009.
- [8] S. Bellavia, C. Cartis, N. I. M. Gould, B. Morini, and Ph. L. Toint. Convergence of a regularized Euclidean residual algorithm for nonlinear least-squares. SIAM Journal on Numerical Analysis, 48(1):1{29, 2010.
- [9] Groueix, T., Fisher, M., Kim, V., Russell, B., Aubry, M.: Atlasnet: A papier-m^ache approach to learning 3d surface generation. In: CVPR 2018 (2018)

References

- [10] Rixon Crane and Fred Roosta. "DINGO: Distributed Newton-Type Method for Gradient-Norm Optimization". In: Proceedings of the Advances in Neural Information Processing Systems. Accepted. 2019.
- [11] Hadi Daneshmand, Aurelien Lucchi, and Thomas Hofmann. "DynaNewton-Accelerating Newton's Method for Machine Learning". In: arXiv preprint arXiv:1605.06561 (2016).
- [12] D. Calvetti, B. Lewis, and L. Reichel. L-curve for the MINRES method. In Advanced Signal Processing Algorithms, Architectures, and Implementations X, volume 4116, pages 385{396. International Society for Optics and Photonics, 2000.
- [13] Priya Goyal, Piotr Doll'ar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. "Accurate, large minibatch SGD: training imagenet in 1 hour". In: arXiv preprint arXiv:1706.02677 (2017).
- [14] K. v. d. Doel and U. Ascher. Adaptive and stochastic algorithms for EIT and DC resistivity problems with piecewise constant solutions and many measurements. SIAM J. Scient. Comput., 34:DOI: 10.1137/110826692 2012
- [15]Sashank J Reddi, Jakub Kone cn'y, Peter Richt arik, Barnab as P'ocz os, and Alex Smola. "AIDE: Fast and communication efficient distributed optimization". In: arXiv preprint arXiv:1608.06879 (2016).
- [16] . B. Kylasa, F. Roosta-Khorasani, M. W. Mahoney, and A. Grama. GPU Accelerated Sub-Sampled Newton's Method. arXiv preprint arXiv:1802.09113. Accepted for publication in the Proceedings of SIAM SDM 2019.
- [17] Peng Xu, Farbod Roosta-Khorasani, and Michael W. Mahoney. "Second-Order Optimization for Non-Convex Machine Learning: An Empirical Study". In: arXiv preprint arXiv:1708.07827 (2017).
- [18] H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-gradient methods under the Polyak- Lojasiewicz condition. Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 795{811, 2016.

Thanks a googol!

