Cálculo de Predicados

Noción de predicados

- Muchas proposiciones lógicas involucran sujetos u objetos y que afectan el valor de verdad de la proposición.
- Ejemplo:

Ana y Maria son hermanas : V

Pedro y Juan son hermanos : F

- Llamamos *predicado* a la propiedad que se está considerando, e.g.
 - Ser hermanos
 - Ser número primo
- A los sujetos u objetos los llamamos *términos*.

Cuantificadores

El cálculo de predicados permite también el uso de cuantificadores para referirse a colecciones de objetos. Son 2 cuantificadores:

Universal

Todos los gatos tienen cola

Existencial

Existen números primos

Elementos sintácticos del cálculo de predicados

- Incluye todos los del cálculo de proposiciones: Constantes, Variable proposicionales, Conectores lógicos
- Además tiene los términos, predicados y cuantificadores.
- El *Universo del Discurso* o *Dominio* es el conjunto de individuos considerados bajo un cierto contexto.
- A cada individuo se le identifica por una constante única.

Ejemplos de predicados

Predicado	Dominio
Es de color azul	Objetos
Es número par	Los números enteros
Es buen estudiante	Estudiantes del grupo
Tiene sabor a menta	Alimentos
Es cuadrúpedo	Animales
Es número primo	Los números naturales

Predicados

Un predicado como por ejemplo

María es la madre de Juan

se puede escribir

M(m,j)

donde el símbolo M es el predicado "es madre de". Las constantes m,j representan los individuos considerados.

Observar que el orden de los argumentos es importante.

Predicados

- El número de argumentos se denomina la *aridad* del predicado.
- Los valores de verdad de predicados binarios se pueden dar en una tabla: filas son el 1^{er} argumento y columnas el 2º.

Ejemplo:

El predicado mayor que '>'

Fórmulas atómicas y compuestas

 Un predicado seguido por su lista de argumentos es una fórmula atómica. E.g.

madre(María, Juana)

• Las fórmulas se pueden combinar mediante conectores lógicos. *E.g.*

madre(María, Juana) → ¬madre(Juana, María) gato(Scratchy) → tieneCola(Scratchy)

Variables y Particularizaciones

 Muchas veces es deseable no particularizar el individuo. En ese caso se puede indicar mediante una variable, e.g. x, y, z.

Ejemplos:

```
gato(x) \rightarrow tieneCola(x)
madre(x, y) \rightarrow ¬madre(y,x)
```

 Asi mismo, podemos dar un nombre a la expresión, e.g.

$$A = gato(x) \rightarrow tieneCola(x)$$

Particularización

- Las variables pueden sustituirse por elementos del universo de discurso.
- Para indicar que la variable x se reemplaza por 'Scratchy' se utiliza la siguiente notación

$$S_{Scratchy}^{x}A$$

lo cual produce

gato(Scratchy) \rightarrow tieneCola(Scratchy)

Ejemplo: Particularizaciones

 Solo se reemplazan las ocurrencias (no ligadas) de la variable particularizada

$$S_a^x \left(P(a) \to Q(x) \right) = P(a) \to Q(a)$$

$$S_a^y P(x) = P(x)$$

Cuantificador Universal

- Con frecuencia se tienen predicados que aplican a todos los individuos de un dominio.
- Esto se indica mediante el cuantificador universal

$\forall x A$

∀ se lee "para todo"

A se denomina el ámbito o alcance

La variable **x** está ligada por el cuantificador (una variable no ligada está libre).

Ejemplos: Cuantificador universal

La suma de los ángulos de un triángulo es 180 grados

$$\forall x (SumaAngulosInternos(x) = 180)$$

 Si la sintaxis del programa es correcta, el programa compila

$$\forall p \left(SintaxisCorrecta(p) \rightarrow Compila(p) \right)$$

Cuantificador Existencial

- Nos permite indicar que el predicado es verdadero para al menos un elemento del dominio.
- Esto se indica así

 $\exists XA$

y se lee "Existe al menos un x tal que A"

Ejemplos: Cuantificador existencial

Algunos gatos no comen ratones

$$\exists g \neg ComeRatones(g)$$

Existen programas que compilan pero no son correctos

$$\exists p \left(Compila(p) \land \neg Correcto(p) \right)$$

Algunos ejercicios

- Nadie es perfecto
- Toda persona tiene una madre
- Para todo persona existe alguien que es su madre
- Todos los perros son mamíferos
- Perro que ladra no muerde
- Camarón que se duerme se lo lleva la corriente

Más ejemplos

- Un natural n es primo si no es divisible por naturales distintos a sí mismo y a la unidad.
- Fermat: Para n>2 no existen x,y,z naturales tales que $x^n+y^n=z^n$.
- Goldbach: Todo n>2 par se puede escribir como la suma de dos primos: n=p+q.

Expresiones

Definición de primos

$$P(n) \leftrightarrow \neg \exists x \, (x
eq 1 \land x
eq n \land D(n,x))$$

Teorema de Fermat

$$orall n \left(n > 2
ightarrow
eg \exists x \exists y \exists z \left(x^n + y^n = z^n
ight)
ight)$$

Variables libres y ligadas

Consideremos el siguiente ejemplo:

$$\forall x (P(x) \to Q(y)) \land \exists y R(y)$$

la variable y es libre en el ámbito del "para todo", pero está ligada en el ámbito del "existe".

Al hacer una sustitución, debe tenerse cuidado de no afectar variables ligadas y prevenir colisiones de nombres, por ejemplo

$$S_z^y (\forall x (P(x) \to Q(y)) \land \exists y R(y))$$

 $\forall x (P(x) \to Q(z)) \land \exists y R(y)$

Interpretación y Validez

Para poder determinar la verdad o falsedad de una expresión en cálculo de predicados es necesario tener:

- El universo del discurso claramente definido,
- una constante única asignada a cada término del universo del discurso,
- un término del universo del discurso asignado a cada variable libre, y
- El valor de verdad definido para cada predicado en la expresión.

Interpretación de los cuantificadores

• Dado un universo de discurso $\{a_1,...,a_n\}$ y un predicado P(x), la interpretación de $\forall x P(x)$ es

$$\forall x P(x) \equiv P(a_1) \land P(a_2) \land \ldots \land P(a_n)$$

 De forma similar, el cuantificador existencial se interpreta de la siguiente forma

$$\exists x P(x) \equiv P(a_1) \vee P(a_2) \vee \ldots \vee P(a_n)$$

Ejemplos

• Comprobar que:

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

Determinar el valor de verdad de una expresión. Ejemplo:

 Escribir la expresión: "Existe alguien que admira a todo el mundo". Utilicé Q(x,y) para indicar el predicado "x admira a y". El universo del discurso son a,b,c; y el valor del predicado Q(x,y) está dado por

Q(x,y)	a	b	С
a	F	V	V
b	V	F	F
С	F	V	V

$$\exists x \forall y Q(x,y)$$

Ejemplo

 Para el predicado Q(x,y) indicar en palabras las expresiones:

$$\forall y \exists x Q(x, y)$$
$$\forall x \forall y Q(x, y)$$
$$\exists x \exists y Q(x, y)$$

• Calcular el valor de verdad de cada expresión

Predicados libres

- Sea el predicado R="Tiene frío" y el universo del discurso son los individuos {Juan, María, Pedro, Laura}.
- Como se interpretan las expresiones:

$$\forall x R(y) \\ \exists x R(z)$$

Interpretación de una expresión lógica

- Cuando en una expresión lógica aparecen variables libres, normalmente no es posible determinar su valor de verdad sino se particularizan estas variables.
- Una asignación particular de las variables libres en una expresión se llama una interpretación.
- Una expresión sin variables libres tiene una única interpretación. Cuando hay variables libres existen múltiples interpretaciones.

Ejemplos

 Referido al predicado Q(x,y) del slide 23 y su correspondiente universo, determinar las interpretaciones de:

$$\forall z Q(z,x)$$

 $\exists w \neg Q(x,y)$

Validez

- Una expresión es válida si es verdadera en todas las interpretaciones.
- Si A es una expresión válida, esto se indica de la siguiente forma

$$\models A$$

- Una interpretación de A que haga A verdadera, se llama un *modelo*.
- Si no existe ningún modelo de A, se dice que A es contradictoria.

Implicación y Equivalencia

- Sean A y B dos expresiones.
- A es equivalente a B si A↔B es válida.
 Expresiones equivalentes se representan A≡B.
- A implica a B si A→B es válida. La implicación lógica se representa A⇒B

Derivaciones

- Igual que con el cálculo proposicional, las equivalencias e implicaciones nos permiten manipular expresiones para construir argumentos correctos.
- Para indicar una implicación lógica, se usa la misma notación introducida en el cálculo de proposiciones:

$$A_1, A_2, \ldots, A_n \models C$$

Ejemplo

Verificar la siguiente ley

$$\forall x (P \to Q(x)) \equiv P \to \forall x Q(x)$$

Solución

Considerando el sentido
$$\forall x(P \rightarrow Q(x)) \rightarrow (P \rightarrow \forall x Q(x))$$
 :

- 1) P Supuesto para TD
- $2) \quad \forall x (P \to Q(x)) \equiv \forall x (V \to Q(x)) \equiv \forall x Q(x) \quad \text{Utilizando equiv. del condicional y ley de identidad}$
- 3) P o orall x Q(x) TD entre 1 y 2

Ejercicio: Considerar el sentido (P o orall x Q(x)) o orall x (P o Q(x))

Sustituciones, Variables libres y ligadas

 Es posible sustituir un esquema por otro, siempre y cuando este no contenga la variable ligada y no afecte su validez.

Ejemplos:

 La siguiente es una sustitución válida en la expresión del slide anterior

$$\forall x ((P \land Q) \rightarrow H(x)) \equiv (P \land Q) \rightarrow \forall x H(x)$$

La siguiente sustitución no es válida

$$\forall x(S(x) \to F(x)) \not\equiv S(x) \to \forall x F(x)$$

Validez de expresiones lógicas de 1er orden

No existe un algoritmo general para determinar la validez de expresiones lógicas de 1er orden: Es un problema *indecidible*.

Diferencias en notación

	[GT96]	Otros autores
Condicional	\Rightarrow	\rightarrow
Bicondicional	\Leftrightarrow	\leftrightarrow
Implicación lógica	\Rightarrow	\Rightarrow
Equivalencia lógica	\equiv	\Leftrightarrow

Referencias

- Grassman y Tremblay. Cap 2
- Grimaldi. Secciones 2.4 2.5
- Stein et al. Sección 3.2