NATIONAL UNIVERSITY OF SINGAPORE

SCHOOL OF COMPUTING

MID-TERM TEST ANSWERS AY2021/22 Semester 1

CS1231S — DISCRETE STRUCTURES

Time Allowed: 1 hour 30 minutes

7 October 2021

INSTRUCTIONS

- 1. This assessment paper contains **SIXTEEN (16)** questions in **THREE (3)** parts and comprises **SIX (6)** printed pages.
- 2. This is an **OPEN BOOK** assessment.
- 3. Printed/written materials are allowed. Apart from calculators, electronic devices are not allowed.
- 4. Answer **ALL** questions and write your answers only on the **ANSWER SHEETS**. You may write in pen or pencil.
- 5. The maximum mark of this assessment is 50.
- 6. Do not start writing or flip over this page until you are told to do so.

--- END OF INSTRUCTIONS ---

1 C 2 B 3 C 4 B 5 D 6 C

Part A: Multiple Choice Questions (Total: 12 marks)

Each multiple choice question (MCQ) is worth two marks and has exactly **one** correct answer.

1. Given this statement:

"If Aiken or Dueet can do it, then all CS1231S students can do it."

Suppose the above is true, which of the following is always true?

- A. "Aiken or Dueet are CS1231S students."
- B. "If Aiken can do it, then Dueet can do it."
- C. "If Aiken can do it, then all CS1231S students can do it."
- D. "If all CS1231S students can do it, then Aiken or Dueet can do it."
- E. None of (A), (B), (C), (D) is correct.

Answer: C

$$((p \lor q) \to r) \to (p \to r)$$
 is a tautology.

2. Consider the predicate $P(x, y, z) \equiv "xyz = 1"$ for $x, y, z \in \mathbb{Q}^+$.

Which of the following statements is/are true?

- (I) $\forall x \in \mathbb{Q}^+ \ \forall y \in \mathbb{Q}^+ \ \forall z \in \mathbb{Q}^+ \ P(x, y, z).$
- (II) $\forall x \in \mathbb{Q}^+ \ \forall y \in \mathbb{Q}^+ \ \exists z \in \mathbb{Q}^+ \ P(x, y, z).$
- (III) $\exists x \in \mathbb{Q}^+ \ \forall y \in \mathbb{Q}^+ \ \forall z \in \mathbb{Q}^+ \ P(x, y, z)$.
- A. (I) only.
- B. (II) only.
- C. (III) only.
- D. (II) and (III) only.
- E. None of (A), (B), (C), (D) is correct.

Answer: B

- (I) Counterexample: x = 1, y = 1, z = 2.
- (II) For any $x, y \in \mathbb{R}^+$, let $z = \frac{1}{xy}$, then xyz = 1.
- (III) Counterexample: For any x, let $y = \frac{1}{x}$, z = 2.
- 3. Which of the following statements is/are true?
 - (I) $\mathcal{P}(\{\emptyset\}) = \mathcal{P}(\{\{\emptyset\}\}).$
 - (II) $|\mathcal{P}(\{\emptyset\})| = |\mathcal{P}(\{\{\emptyset\}\})|$.
 - A. Both (I) and (II) are true.
 - B. (I) is true but (II) is not.
 - C. (II) is true but (I) is not.
 - D. Both (I) and (II) are not true.

Answer: C

$$\mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}, \text{ while } \mathcal{P}\big(\big\{\{\emptyset\}\big\}\big) = \Big\{\emptyset, \big\{\{\emptyset\}\big\}\big\}. \text{ So } |\mathcal{P}(\{\emptyset\})| = 2 = \big|\mathcal{P}\big(\big\{\{\emptyset\}\big\}\big)\big|.$$

As $\{\emptyset\} \in \mathcal{P}(\{\emptyset\})$ but $\{\emptyset\} \notin \mathcal{P}(\{\{\emptyset\}\})$, we see that $\mathcal{P}(\{\emptyset\}) \neq \mathcal{P}(\{\{\emptyset\}\})$.

- 4. Consider the congruence-mod-5 relation as an equivalence relation on \mathbb{Z} . Of which of the following sets is 1231 an element?
 - A. [0].
 - B. [1].
 - C. [2].
 - D. [3].
 - E. [4].

Answer: B

Note that $1231 = 5 \times 246 + 1$.

5. Define $f: \mathbb{Z} \to \mathbb{Z}_{\geqslant 0}$ and $g: \mathbb{Q} \to \mathbb{Q}_{\geqslant 0}$ by setting, for all $a \in \mathbb{Z}$ and all $x \in \mathbb{Q}$,

$$f(a) = \{a^2n^2 : n \in \mathbb{Z}\}$$
 and $g(x) = x^2\sqrt{2}$.

Which of the following is true?

- A. f and g are both well defined.
- B. f is well defined but g is not.
- C. g is well defined but f is not.
- D. f and g are both not well defined.

Answer: D

$$f(0) = \{0^2 n^2 : n \in \mathbb{Z}\} = \{0\} \notin \mathbb{Z}_{\geq 0}.$$

$$g(1) = 1^2 \sqrt{2} = \sqrt{2} \notin \mathbb{Q}_{\geq 0}.$$

6. Consider the equivalence relation \sim on \mathbb{Z} satisfying, for all $x, y \in \mathbb{Z}$,

$$x \sim y \iff x = y \text{ or } x = -y.$$

Define two functions $f, g: \mathbb{Z}/\sim \to \mathbb{Z}/\sim$ by setting, for all $x \in \mathbb{Z}$,

$$f([x]) = [3x + 1]$$
 and $g([x]) = [x^4]$.

Which of the following is true?

- A. *f* and *g* are both well defined.
- B. f is well defined but g is not.
- C. *g* is well defined but *f* is not.
- D. f and g are both not well defined.

Answer: C

[1] = [-1] but $[3 \times 1 + 1] = [4] \neq [-2] = [3 \times (-1) + 1]$ as $4 \nsim -2$. So f is not well defined. Let us show that g is well defined.

- 1. Let $x, y \in \mathbb{Z}$ such that [x] = [y].
- 2. Then $x \sim y$ by Lemma 6.4.4.
- 3. So x = y or x = -y by the definition of \sim .
- 4. If x = y, then $[x^4] = [y^4]$.
- 5. If x = -y, then $[x^4] = [(-y)^4] = [y^4]$ too.
- 6. So $[x^4] = [y^4]$ in all cases.

Part B: Multiple Response Questions [Total: 21 marks]

Each multiple response question (MRQ) is worth <u>three marks</u> and may have one answer or multiple answers. Write out **all** correct answers. For example, if you think that A, B, C are the correct answers, write A, B, C. Only if you get all the answers correct will you be awarded three marks. **No partial credit will be given for partially correct answers.**

- 7. The floor and the ceiling of a real number x, denoted as $\lfloor x \rfloor$ and $\lceil x \rceil$ respectively, are defined as follows:
 - |x| = the largest integer n such that $n \le x$.
 - [x] = the smallest integer n such that $n \ge x$.

Which of the following statements is/are true?

- A. $\forall x \in \mathbb{R}, \lceil |x| \rceil = |x|$.
- B. $\forall x \in \mathbb{R}, [x] = [x] + 1$.
- C. $\forall x \in \mathbb{R}, [2x] = 2[x].$
- D. $\forall x \in \mathbb{R}, x 1 < |x| \le [x] < x + 1$.
- E. $\forall x, y \in \mathbb{R}, [x + y] = [x] + [y].$

Answer: A, D

- A. True. Suppose $x \in \mathbb{R}$. $[x] \in \mathbb{Z}$ (by definition of floor function).
 - \therefore [[x]] = [x] (by definition of ceiling, $[a] = a, \forall a \in \mathbb{Z}$).
- B. False. Counterexample: x = 0. RHS = $|0| + 1 = 1 \neq 0 = [0]$ = LHS.
- C. False. Counterexample: x = 0.5. LHS = $|2 \times 0.5| = 1 \neq 0 = 2|0.5|$ = RHS.
- D. True.
 - 1. Suppose $x \in \mathbb{R}$.
 - 2. Case 1: $x \in \mathbb{Z}$.
 - 2.1 Then [x] = [x] = x (by definitions of the ceiling and the floor).
 - 2.2 Note that x 1 < x < x + 1 (by basic algebra).
 - 2.3 Then $x 1 < \lfloor x \rfloor = \lceil x \rceil < x + 1$.
 - 3. Case 2: $x \notin \mathbb{Z}$.
 - 3.1 Then n < x < n + 1 for some integer n.
 - 3.2 Then $\lfloor x \rfloor = n$ and $\lceil x \rceil = n+1$ (by definitions of the ceiling and the floor).
 - 3.3 Note that n + 1 < x + 1 and x 1 < n (by step 3.1).
 - 3.4 Then x 1 < |x| = n < n + 1 = [x] < x + 1.
 - 4. In both cases, $x 1 < |x| \le [x] < x + 1$.
- E. False. Counterexample: x = y = 0.3. LHS = $[0.3 + 0.3] = 1 \neq 2 = [0.3] + [0.3] = RHS$.

- 8. Which of the following statements is/are equivalent to $(p \land q) \rightarrow q$?
 - A. $p \rightarrow p$
 - B. $(p \land q) \rightarrow p$
 - C. $(p \lor q) \rightarrow q$
 - D. $p \rightarrow (p \lor q)$
 - E. $p \rightarrow (p \land q)$

Answer: A, B, D (Given statement is a tautology)

- 9. To prove the statement $\forall x \in D (P(x) \to Q(x))$, it is enough to prove that
 - A. $\exists x \in D (P(x) \land \sim Q(x)) \rightarrow \exists y \in D (P(y) \land \sim P(y))$
 - B. $\forall x \in D \left(\sim Q(x) \rightarrow \sim P(x) \right)$
 - C. $\forall x \in D \left(\left(P(x) \land \sim Q(x) \right) \rightarrow \left(P(x) \land \sim P(x) \right) \right)$
 - D. $\exists x \in D (\sim Q(x) \rightarrow \sim P(x))$

Answer: A,B,C

A: Proof by contradiction

$$\exists x \in D (P(x) \land \sim Q(x)) \to \exists y \in D (P(y) \land \sim P(y))$$

$$\exists x \in D (P(x) \land \sim Q(x)) \to F :: P(y) \land \sim P(y) \text{ is a contradiction}$$

$$\sim (\exists x \in D (P(x) \land \sim Q(x)))$$

$$\forall x \in D \sim P(x) \lor Q(x)$$

$$\forall x \in D P(x) \to Q(x)$$

- B: $\forall x \in D \left(\sim Q(x) \rightarrow \sim P(x) \right)$ Proof by contraposition
- $\begin{aligned} \mathbf{C} : \forall \ x \in D \ \left(\left(P(x) \land \sim Q(x) \right) \to \left(P(x) \land \sim P(x) \right) \right) \\ \forall \ x \in D \ \left(P(x) \land \sim Q(x) \right) \to F & :: P(x) \land \sim P(x) \ is \ a \ contradiction \\ \forall \ x \in D \ \sim \left(P(x) \land \sim Q(x) \right) \lor F \\ \forall \ x \in D \ \sim P(x) \lor Q(x) \\ \forall \ x \in D \ P(x) \to Q(x) \end{aligned}$
- 10. Let $A = \{x \in \mathbb{Q} : 0 \le x \le 1\}$ and $B = \{x \in \mathbb{Q} : 1 \le x \le 2\}$ and $C = \{x \in \mathbb{Q} : 2 \le x \le 3\}$. Which of the following is a partition (or are partitions) of \mathbb{Q} ?
 - A. $\{B, \mathbb{Q} \setminus B\}$.
 - B. $\{A \cap C, \mathbb{Q} \setminus (A \cap C)\}.$
 - C. $\{A, \mathbb{Q} \setminus A, B, \mathbb{Q} \setminus B\}$.
 - D. $\{A, C, (\mathbb{Q} \setminus A) \cap (\mathbb{Q} \setminus C)\}.$
 - E. $\{A, B, C\}$.

Answer: A, D

- B: $A \cap C = \emptyset$.
- C: $A \cap B \neq \emptyset$.
- D: Note that $(\mathbb{Q} \setminus A) \cap (\mathbb{Q} \setminus C) = \mathbb{Q} \setminus (A \cup C)$, where $A \cap C = \emptyset$.
- E: $1231 \in \mathbb{Q}$ but $1231 \notin A \cup B \cup C$.

- 11. Let $A = \{3,4,5,6,7,8\}$. Which of the following is/are equal to A/\sim for some equivalence relation \sim on A?
 - A. {{1,2,3}, {4,5,6}}.
 - B. $\{\{3,4,5\},\{6,7,8\}\}.$
 - c. $\{\{3,4\},\{5\}\},\{6,7,8\}\}$.
 - D. {{3,4,5}, {6}, {7,8}}.
 - E. {3,4,5,6,7,8}.

Answer: B, D

In view of Theorem 6.4.9 and Tutorial 4 Question 7, this is equivalent to checking whether the given set is a partition of A.

- A: $\{1,2,3\} \nsubseteq A$.
- C: $\{\{3,4\},\{5\}\} \nsubseteq A \text{ as } \{3,4\} \in \{\{3,4\},\{5\}\} \text{ but } \{3,4\} \notin A.$
- E: $3 \in \{3,4,5,6,7,8\}$ but $3 \nsubseteq A$.
- 12. Let $A = \{3,4,5,6,7,8\}$. Partially order A by the divisibility relation, i.e., consider the partial order \leq on A defined by setting, for all $a, b \in A$,

$$a \le b \iff \exists k \in \mathbb{Z} \ (b = ka).$$

Which of the following is/are equal to the set of all minimal elements in this partially ordered set?

- A. $\{x \in A : \exists k \in \mathbb{Z} \ (x = 2k + 1)\}.$
- B. {3}.
- C. $A \setminus \{x + x : x \in A\}$.
- D. $\{x \in \mathbb{Z} : \exists k \in \mathbb{Z} \ (420 = kx)\}.$
- E. $\{x \in A : x + x \in A\}$.

Answer: C

The set of all minimal elements is $\{3,4,5,7\}$, as one can see from the Hasse diagram below.

- A: This set is $\{3,5,7\}$, which does not contain the minimal element 4.
- B: The set {3} does not contain the minimal element 4.
- C: This set is $A \setminus \{6,8\} = \{3,4,5,7\}$.
- D: As $420 = 2 \times 210$, this set contains 2, but 2 is not an element of A.
- E: This set is $\{6,8\}$, which does not contain the minimal element 4.

13. Which of the following is a Hasse diagram (or are Hasse diagrams) for a partial order of which the usual non-strict order \leq on $\{1,2,3,4,5\}$ is a linearization?

D.

5 4 3 | | | C.

3 2 5 | | 4

Answer: A, B, C

D: 5 is below 3 in the Hasse diagram, but $\sim (5 \le 3)$.

E: 2 is below 1 in the Hasse diagram, but $\sim (2 \leq 1)$.

Part C: There are 3 questions in this part [Total: 17 marks]

14. Theorem 2.1.1 is given as follows:

1	Commutative laws	$p \wedge q \equiv q \wedge p$	$p \lor q \equiv q \lor p$
2	Associative laws	$p \wedge q \wedge r$ $\equiv (p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	$p \lor q \lor r$ $\equiv (p \lor q) \lor r \equiv p \lor (q \lor r)$
3	Distributive laws	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	$p\vee(q\wedge r)\equiv(p\vee q)\wedge(p\vee r)$
4	Identity laws	$p \wedge true \equiv p$	$p \vee false \equiv p$
5	Negation laws	$p \lor {}^{\sim}p \equiv true$	$p \wedge {}^{\sim}p \equiv false$
6	Double negative law	~(~p) ≡ p	
7	Idempotent laws	$p \wedge p \equiv p$	$p \lor p \equiv p$
8	Universal bound laws	$p \vee true \equiv true$	$p \land false \equiv false$
9	De Morgan's laws	$\sim (p \wedge q) \equiv \sim p \vee \sim q$	$\sim (p \lor q) \equiv \sim p \land \sim q$
10	Absorption laws	$p \lor (p \land q) \equiv p$	$p \wedge (p \vee q) \equiv p$
11	Negation of true and false	~true ≡ false	~false ≡ true

Simplify the following expression using the laws above, justifying every step. You may combine consecutive steps using the same law in one step. [3 marks]

$$(p \land q) \lor (q \land r) \lor (\sim p \land r)$$

Answer:

$$(p \land q) \lor (q \land r) \lor (\sim p \land r)$$

$$\equiv (p \land q) \lor ((q \land r) \land \text{true}) \lor (\sim p \land r)$$

$$\equiv (p \land q) \lor ((q \land r) \land (p \lor \sim p)) \lor (\sim p \land r)$$

$$\equiv (p \land q) \lor ((q \land r) \land p) \lor ((q \land r) \land \sim p)) \lor (\sim p \land r)$$

$$\Rightarrow (p \land q) \lor ((p \land (q \land r)) \lor (\sim p \land (r \land q))) \lor (\sim p \land r)$$

$$\Rightarrow (p \land q) \lor ((p \land (q \land r)) \lor (\sim p \land (r \land q))) \lor (\sim p \land r)$$

$$\Rightarrow (p \land q) \lor ((p \land q) \land r)) \lor (((\sim p \land r) \land q) \lor (\sim p \land r))$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q) \lor (\sim p \land r))$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \lor ((\sim p \land r) \land q))$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \lor ((\sim p \land r) \land q))$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \lor ((\sim p \land r) \land q))$$

$$\Rightarrow (p \land q) \lor (\sim p \land r) \lor ((\sim p \land r) \land q))$$

$$\Rightarrow (p \land q) \lor (\sim p \land r) \lor ((\sim p \land r) \land q))$$

$$\Rightarrow (p \land q) \lor (\sim p \land r) \lor ((\sim p \land r) \land q))$$

$$\Rightarrow (p \land q) \lor (\sim p \land r) \lor ((\sim p \land r) \land q))$$

$$\Rightarrow (p \land q) \lor (\sim p \land r) \lor ((\sim p \land r) \land q))$$

$$\Rightarrow (p \land q) \lor (\sim p \land r) \lor ((\sim p \land r) \land q))$$

$$\Rightarrow (p \land q) \lor (\sim p \land r) \lor ((\sim p \land r) \land q))$$

$$\Rightarrow (p \land q) \lor (\sim p \land r) \lor ((\sim p \land r) \land q))$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \lor ((\sim p \land r) \land q))$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \lor ((\sim p \land r) \land q))$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \lor ((\sim p \land r) \land q))$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q))$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q) \lor (\sim p \land r))$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q) \lor ((\sim p \land r) \land q)$$

$$\Rightarrow (p \land q$$

Alternative answer:

$$(p \land q) \lor (q \land r) \lor (\sim p \land r)$$

$$\equiv ((p \land q) \lor (q \land r) \lor (\sim p \land r)) \lor false$$
 by identity law
$$\equiv ((p \land q) \lor (q \land r) \lor (\sim p \land r)) \lor (p \land \sim p)$$
 by negation law
$$\equiv ((q \land p) \lor (q \land r) \lor (\sim p \land r)) \lor (\sim p \land p)$$
 by commutative law (2 times)
$$\equiv ((q \land p) \lor (q \land r)) \lor ((\sim p \land r) \lor (\sim p \land p))$$
 by associative law (3 times)
$$\equiv (q \land (p \lor r)) \lor (\sim p \land (r \lor p))$$
 by distributive law (2 times)
$$\equiv ((p \lor r) \land q) \lor ((p \lor r) \land \sim p)$$
 by commutative law (3 times)
$$\equiv (p \lor r) \land (q \lor \sim p)$$
 by distributive law

15. Prove that $(n^3 - n^2)$ is even for any positive integer n. [4 marks] (You may quote the claim without proof that an integer is either odd or even but not both.)

Proof:

- 1. Take any positive integer n.
- 2. Case 1: *n* is even.
 - 2.1. Then n = 2k for some integer k. (by definition of an even integer)
 - 2.2. Hence $n^3 n^2 = (2k)^3 (2k)^2 = 8k^3 4k^2 = 2(4k^3 2k^2) = 2m$, where $m = 4k^3 2k^2$. (by basic algebra)
 - 2.3. Since $m \in \mathbb{Z}$ (by closure of integers under \times and +), $n^3 n^2$ is even. (by definition of an even integer)
- 3. Case 2: *n* is odd.
 - 3.1. Then n = 2k + 1 for some integer k. (by definition of an odd integer)
 - 3.2. Hence $n^3 n^2 = (2k+1)^3 (2k+1)^2 = (8k^3 + 12k^2 + 6k + 1) (4k^2 + 4k + 1) = 8k^3 + 8k^2 + 2k = 2(4k^3 + 4k^2 + k) = 2p$, where $p = 4k^3 + 4k^2 + k$. (by basic algebra)
 - 3.3. Since $p \in \mathbb{Z}$ (by closure of integers under \times and +), $n^3 n^2$ is even. (by definition of an even integer)
- 4. In all cases, $n^3 n^2$ is even.

16. Let $A = \{1,2,3,4,5,6\}^2$. Define a relation R on A by setting, for all $(a_1, a_2), (b_1, b_2) \in A$,

$$(a_1, a_2) R (b_1, b_2) \Leftrightarrow |\{(i, j) \in \{1, 2\}^2 : a_i \leqslant b_j\}| \geqslant 2.$$

(Hint: the number 2 on the right-hand side of the inequality above is equal to $|\{1,2\}^2|/2$.)

- (a) Is R reflexive? [3 marks]
- (b) Is *R* symmetric? [2 marks]
- (c) Is R antisymmetric? [2 marks]
- (d) Is *R* transitive? [3 marks]

For each part, if your answer is yes, then give a proof; if your answer is no, then give a counterexample.

Answer

- (a) Yes, as shown below.
 - 1. Take any $(a_1, a_2) \in A$.
 - 2. As $a_1 \leqslant a_1$ and $a_2 \leqslant a_2$, we know (1,1) and (2,2) are 2 distinct elements of $\{(i,j) \in \{1,2\}^2 : a_i \leqslant a_j\}$.
 - 3. So $(a_1, a_2) R (a_1, a_2)$.
- (b) No. One counterexample: (1,2) R (3,4) but $\sim ((3,4) R (1,2))$.
- (c) No. One counterexample: (1,2) R (2,1) and (2,1) R (1,2), but $(1,2) \neq (2,1)$.
- (d) No. One counterexample: (2,6) R (3,4) and (3,4) R (1,5), but \sim ((2,6) R (1,5)).

Generalizations: search for "intransitive dice"

=== END OF PAPER ===