Algorithmique et Complexité Arbres et graphes TD9 Chemin et existence de chemin

LAURIER Alexis

Exercice 1:

1°) Effectuer l'algorithme de graphe en profondeur modifié permettant de donner le chemin entre La rivière et Saint Joseph #projet

Sommet courant	Sommet en	Sommets	Liste de résultat
	attente de fin de	marqués comme	
	traitement	visité	
La Rivière	La Rivière	La Rivière	
Saint Louis	La Rivière, Saint	La Rivière, Saint	
	Louis	Louis	
Saint Pierre	La Rivière, Saint	La Rivière, Saint	
	Louis, Saint Pierre	Louis, Saint Pierre	
Le Tampon	La Rivière, Saint	La Rivière, Saint	
	Louis, Saint	Louis, Saint	
	Pierre, Le	Pierre, Le	
	Tampon	Tampon	
Petite Ile	La Rivière, Saint	La Rivière, Saint	
	Louis, Saint	Louis, Saint	
	Pierre, Le	Pierre, Le	
	Tampon, Petite	Tampon, Petite	
	Ile	Ile	
Saint Joseph	La Rivière, Saint	La Rivière, Saint	
	Louis, Saint	Louis, Saint	
	Pierre, Le	Pierre, Le	
	Tampon, Petite	Tampon, Petite	
	Ile	Ile	
Petite Ile	La Rivière, Saint	La Rivière, Saint	Petite Ile
	Louis, Saint	Louis, Saint	
	Pierre, Le	Pierre, Le	
	Tampon	Tampon, Petite	
		Ile	

Le Tampon	La Rivière, Saint Louis, Saint Pierre	La Rivière, Saint Louis, Saint Pierre, Le Tampon, Petite Ile	Petite Ile, Le Tampon
Saint Pierre	La Rivière, Saint Louis	La Rivière, Saint Louis, Saint Pierre, Le Tampon, Petite Ile	Petite Ile, Le Tampon, Saint Pierre
Saint Louis	La Rivière	La Rivière, Saint Louis, Saint Pierre, Le Tampon, Petite Ile	Petite Ile, Le Tampon, Saint Pierre, Saint Louis
La Rivière		La Rivière, Saint Louis, Saint Pierre, Le Tampon, Petite Ile	Petite Ile, Le Tampon, Saint Pierre, Saint Louis, La Rivière

Exercice 2:

On travaillera à l'aide du graphe représenté par la matrice d'adjacence suivante

0	1	0	0	0	0	0
0	0	0	1	1	1	0
1	1	0	0	0	0	0
0	0	1	0	0	0	1
0	0	0	1	0	1	1
1	0	0	0	0	1	1
1	0	0	0	1	1	0

1°) Par le calcul, indiquer s'il existe un chemin du $2^{\grave{e}^{me}}$ au $6^{\grave{e}^{me}}$ sommet de ce graphe

M^2 :	=					
0	0	0	1	1	1	0
1	0	1	1	0	2	3
0	1	0	1	1	1	0
2	1	0	0	1	1	0
2	0	1	0	1	2	2
2	1	0	0	1	2	1
1	1	0	1	0	2	2

Il existe donc un chemin à 2 arrêtes qui permet du 2^{ème} au 6^{ème} sommet.

- 2°) Implémenter ce graphe à l'aide de sa matrice d'adjacence #projet
- 3°) Mettre un œuvre l'algorithme de parcours en profondeur pour déterminer si un chemin existe entre le $2^{\grave{e}me}$ et $6^{\grave{e}me}$ sommet et donner, en cas de réponse favorable, un chemin. #projet

