

Issue 86-14

Sean Roshan

BACKGROUND

Compare effect of 14% CR insertion on following parameters

Power lev	rel	J(<u></u>)′	Т	D	\bigcirc	N	JF	ζ.
	CI	 •		1		ヽノ	1	•	_

- Void coefficient

 DONE
- Peaking factors
- □ (~1.6 radial/2.5 volume) DONE
- Axial power shape DONE
- Core pressure dropDONE
- Dynamics of the core
 - Temperature perturbation DONE
 - Pressure perturbation
 DONE
 - Flow perturbationDONE
- Partial scram effect
 NOT DONE

Test Matrix

RELAP5 Nodalization

Steady state results

	O-3 fuel cycle 24			O-3 fuel cycle 31					
Value	ВС	OC	EC	OC	ВС	OC	EOC		
	CR withdrawal 100 %	CR withdrawal 86 %	CR withdrawal 100 %	CR withdrawal 86 %	CR withdrawal 100 %	CR withdrawal 86 %	CR withdrawal 100 %	CR withdrawal 86 %	
TPC (1/MWt)	-9.9	-9.53	-9.3	-9.03	-9.93	-10.2	-9.53	-13.5	
Core void (%)	0.454	0.418	0.409	0.377	0.488	0.435	0.567	0.500	
Total flow (kg/s)	12186.	12250.	14468.	14524.	12130.	12246.	14067.	14268.	
Volumetric Peak. Fact.	2.73	2.98	2.58	2.78	3.71	3.40	5.57	4.41	
Pressure (MPa)	7.019	7.024	7.019	7.019	7.024	7.024	7.019	7.018	
Vessel ∆P (MPa)	0.231	0.229	0.275	0.272	0.233	0.229	0.292	0.283	

Case 1: FW Temperature Pertubation

Feedwater temp. -10 Celsius FW temperature perturbation Dynamic Behavior of the Core

FW TEMP. PERTUBATION Feedwater temp. reduction with 10°C

POWER PERTUBATION CYCLE 24 eq and 31

FEEDWATER PERTUBATION CYCLE 24 eq

FEEDWATER PERTUBATION CYCLE 31

FEEDWATER PERTUBATION CYCLE 31

FW TEMP. PERTUBATION Feedwater temp. reduction with 10°C

FW TEMP. PERTUBATION Feedwater temp. reduction with 10°C

FEEDWATER PERTUBATION CYCLE 24 eg. & 31

Time (s)

Case 2: Pressure Perturbation

PRESSURE PERTUBATION Drain valve opening delay at TT with 0.15s

DRAIN VALVE DELAY PERTUBATION CYCLE 24 eq. & 31

DRAIN VALVE DELAY PERTUBATION CYCLE 24 eq.

DRAIN VALVE DELAY PERTUBATION CYCLE 24 eq.

DRAIN VALVE DELAY PERTUBATION CYCLE 31

PRESSURE PERTUBATION Drain valve opening delay at TT with 0.15s

DRAIN VALVE DELAY PERTUBATION CYCLE 31

DRAIN VALVE DELAY PERTUBATION CYCLE 24 eq.

DRAIN VALVE DELAY PERTUBATION CYCLE 24 eq.

DRAIN VALVE DELAY PERTUBATION CYCLE 31

PRESSURE PERTUBATION Drain valve opening delay at TT with 0.15s

DRAIN VALVE DELAY PERTUBATION CYCLE 24 eq. & 31

DRAIN VALVE DELAY PERTUBATION CYCLE 24 eq. & 31

CONCLUSION

- •TPC was go ted more negative that fore, possibly due to very kewed axial power
- •Core pressure eases effect on the core stability should in
- •Dynamic of the core was core cycle effect (c24 vs. c31), CR position effect (BOC vs. EOC). Was found between the c24 core with our c31 with 86% CR out. The difference clearly during the cycle effect (c24 vs. c96%) and burnup effect was found between c31 with 86% CR out. The difference clearly during the cycle effect (c24 vs. c96%) and burnup effect was found between c31 with 86% CR out. The difference clearly during the cycle effect (c24 vs. c96%) and burnup effect was found between c31 with 86% CR out.
- ONTROL R PATERN DOES NOT MIFICANTLY EFFET THE REACTOR DYNAMIC BEHAVIOR

Steady state results C24 eq. BOC C24 eq. EOC 350 햠 300 300 250 250 -- C24,eoc,CR-100 5 ₂₀₀ C24,eoc,CR-86 - c24,boc,CR-100 150 150 c24,boc,CR-86 bottom 50 50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 0.80 1.00 1.20 1.40 1.60 1.80 0.20 0.40 0.60 400 K-z K-z **C31 BOC** ф C31 EOC 350 300 300 250 250 - C31,eoc,CR-100 C31,eoc,CR-86 -C31,boc,CR-100 200 200 ᇊ C31,boc,CR-86 150 150 100 bottom 50 0

Axial Power profile is too bottom-skewed, causing large Peaking Factors

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

0.00

0.50

1.00

1.50

2.00

2.50

3.00