MACHINE LEARNING Algorithms

Class

Tree Based Models

Topic

Introduction to Classification Trees

Agenda

Decision Tree: Overview

Solve both regression and classification problems

Decision Tree works is based on a branch of computer science known as **Information Theory**

The classic use case of decision trees is analysis of segments in business data

Existing Data of a Bank

Customer	Age	Gender	Marital Status	# cr. Cards	Profitability
1	36	М	М	1	Р
2	32	M	S	3	U
3	38	М	М	2	Р
4	40	М	S	1	U
5	44	М	М	0	Р
6	56	F	М	0	Р
7	58	F	S	1	U
8	30	F	S	2	Р
9	28	F	М	1	U
10	26	F	М	0	U

Profitable

Unprofitable

To build a predictive model classifying customers logistic, Regression

Classifier can be used

Existing Data of a Bank

Customer	Age	Gender	Marital Status	# cr. Cards	Profitability
1	36	М	М	1	Р
2	32	М	S	3	U
3	38	М	М	2	Р
4	40	М	S	1	U
5	44	М	М	0	Р
6	56	F	М	0	Р
7	58	F	S	1	U
8	30	F	S	2	Р
9	28	F	М	1	U
10	26	F	М	0	U

Total Population = 10 Profitable = 5Unprofitable = 5**Profitability rate = 50%**

Total Population = 6 Profitable = 4Unprofitable = 2 **Profitability rate =** 66%

Total Population = 4 Profitable = 1Unprofitable = 3**Profitability rate =** 25%

The segment of data which is >35 has a higher chance of seeing a profitable customer

Decision tree classifier - Recursively subsetting data can reveal interesting patterns

Data needs to be split in such a way so that the subsets of data end up being dominated by one class of the target variable

Decision Tree splits into 2 parts at each node

Most implementations of a decision trees produce binary splits

Binary Tree

How to decide which variable should be used to create splits?

Understand the intuition behind creating splits

The intuition will be formalized by introducing purity metrics

Total Population = 10Profitable = 5Unprofitable = 5 **Profitability rate = 50%**

Profitability rate = 66% Profitability rate = 25%

Total Population = 6

Profitable = 4

Total Population = 4 Profitable = 1Unprofitable = 2 Unprofitable = 3

Total Population = 10 Profitable = 5Unprofitable = 5 **Profitability rate = 50%** Male **Female** Gender

Total Population = 5 Profitable = 3Unprofitable = 2 **Profitability rate = 60%**

Total Population = 5Profitable = 2Unprofitable = 3 **Profitability rate = 40%**

Both splits can be compared to understand which split is better

Which variable produces better splits?

Good split in context of classification problem

Split produced by variable age are better than the splits produced by variable gender

Greater the **class imbalance**, better the split

Class imbalance can be measured by computing Gini or Entropy

$$Gini = 1 - \sum p_i^2$$

$$Entropy = -\sum p_i log_2 p_i$$

$$Gini = 1 - \sum p_i^2$$

Total Population = 10Profitable = 5Unprofitable = 5**Profitability rate = 50%**

Profitable = 4Unprofitable = 2 **Profitability rate = 66%**

Total Population = 6

Total Population = 5
Profitable = 3
Unprofitable = 2
Profitability rate = 60%

$$1 - \left[\left(\frac{3}{5} \right)^2 + \left(\frac{2}{5} \right)^2 \right]$$

0.48

$$1 - \left[\left(\frac{4}{6} \right)^2 + \left(\frac{2}{6} \right)^2 \right]$$

0.44

$$1 - \left[\left(\frac{1}{4} \right)^2 + \left(\frac{3}{4} \right)^2 \right]$$

$$1 - \left[\left(\frac{1}{4} \right)^2 + \left(\frac{3}{4} \right)^2 \right]$$

$$1 - \left[\left(\frac{2}{5} \right)^2 + \left(\frac{3}{5} \right)^2 \right]$$

0.375

0.48

$$Gini = 1 - \sum p_i^2$$

Profitable = 4Unprofitable = 2 **Profitability rate = 66% Profitability rate = 25%**

Total Population = 6

Total Population = 4Profitable = 1Unprofitable = 3

$$(\frac{6}{10}) * 0.44$$
 + $(\frac{4}{10}) * 0.375$

Profitability rate = 60% Profitability rate = 40%
$$(\frac{5}{10}) * 0.48 + (\frac{5}{10}) * 0.48$$
 0.48

Total Population = 5

Profitable = 3

Unprofitable = 2

0.41

Total Population = 5

Profitable = 2

Unprofitable = 3

$$Entropy = -\sum p_i log_2 p_i$$

Total Population = 10Profitable = 5Unprofitable = 5 **Profitability rate = 50%**

Total Population = 6Profitable = 4Unprofitable = 2 **Profitability rate = 66%**

$$-\left[\left(\frac{3}{5}\right) * \log_2\left(\frac{3}{5}\right) + \left(\frac{2}{5}\right) * \log_2\left(\frac{2}{5}\right)\right]$$

$$-\left[\left(\frac{4}{6}\right) * \log_2\left(\frac{4}{6}\right) + \left(\frac{2}{6}\right) * \log_2\left(\frac{2}{6}\right)\right]$$

$$-\left[\left(\frac{4}{6}\right) * \log_2\left(\frac{4}{6}\right) + \left(\frac{2}{6}\right) * \log_2\left(\frac{2}{6}\right)\right] \qquad -\left[\left(\frac{1}{4}\right) * \log_2\left(\frac{1}{4}\right) + \left(\frac{3}{4}\right) * \log_2\left(\frac{3}{4}\right)\right]$$

$$-\left[\left(\frac{2}{5}\right) * \log_2\left(\frac{2}{5}\right) + \left(\frac{3}{5}\right) * \log_2\left(\frac{3}{5}\right)\right]$$

0.91

0.81

0.97

Total Population = 5

Profitable = 3

Unprofitable = 2

0.97

$$Entropy = -\sum p_i log_2 p_i$$

Total Population = 10Profitable = 5Unprofitable = 5 **Profitability rate = 50%**

Total Population = 6Profitable = 4Unprofitable = 2 **Profitability rate = 66% Profitability rate = 25%**

Total Population = 4Profitable = 1Unprofitable = 3

Total Population = 5 Profitable = 3Unprofitable = 2 **Profitability rate = 60% Profitability rate = 40%**

Total Population = 5Profitable = 2Unprofitable = 3

$$\left(\frac{6}{10}\right) * 0.91$$

$$\left(\frac{4}{10}\right) * 0.81$$

$$\left(\frac{5}{10}\right) * 0.97$$
 + $\left(\frac{5}{10}\right) * 0.97$

Decision Tree: Algorithm Overview

For each split the purity metric is computed

Choose the lowest variable which results in lowest value of purity metric

Continue doing these till some **stopping criteria** is met

Decision Tree: Algorithm Overview

Stopping Criteria

Depth of tree

Specifying the levels of the tree

Improvement in purity metric

Specifying the minimum change in purity metric from one split to another

Value in terminal node

Specifying the number of value in the terminal node

Decision Tree: Prediction

Use decision tree classifier as prediction

Available data – 20 year old person

Prediction – 25% Chance of him being profitable

Decision Tree: Performance Metrics

Decision tree classifier output probabilities

ROC curves

Confusion metrics

Performance of the decision tree classifier

Area under ROC curves

For multiclass problems, accuracy is used as a performance measure

Decision Tree: Parameters and Hyperparameters

These parameters are estimated using cross validation

At the model level of decision tree rules are decided for predicting probabilities or classes

Recap

- Decision Tree Overview
- Decision Tree Algorithms Gini and Entropy
- Decision Tree Performance Metrics
- Decision Tree Parameter and Hyperparameter

MACHINE LEARNING Algorithms

Class **Tree Based Models**

Topic

Introduction to Regression Tree

Decision Tree can be used to do regression tasks

When the target variable is continuous decision tree regressor can be used

Prediction

Mean value of the target variable

Example

Country	Rim	Tires	Туре	Price
Japan	R14	195/60	Small	11.95
Japan	R15	205/60	Medium	24.76
Germany	R15	205/60	Medium	26.9
Germany	R14	175/60	Compact	18.9
Germany	R14	195/60	Compact	24.65
Germany	R15	225/60	Medium	33.2
USA	R14	185/75	Medium	13.15
USA	R14	205/75	Large	20.225
USA	R14	205/75	Large	16.145
USA	R15	205/70	Medium	23.04

Build a decision tree model to predict price

Price is a continuous variable

Regression tree

Recursively subset the data

Example

Country	Rim	Tires	Туре	Price
Japan	R14	195/60	Small	11.95
Japan	R15	205/60	Medium	24.76
Germany	R15	205/60	Medium	26.9
Germany	R14	175/60	Compact	18.9
Germany	R14	195/60	Compact	24.65
Germany	R15	225/60	Medium	33.2
USA	R14	185/75	Medium	13.15
USA	R14	205/75	Large	20.225
USA	R14	205/75	Large	16.145
USA	R15	205/70	Medium	23.04

Total Population = 10 Average price = 21.9 Yes No

R14

Total Population = 6 Average Price = 17.50

Price
11.95
18.9
24.65
13.15
20.22
16.14

Total Population = 4 Average Price = 26.97

Price
24.76
26.90
33.20
23.04

How does a regression tree algorithm pick up which variable to split on?

Predictions need to be accurate

The prediction is the average value of target variable in decision node

Higher the accuracy of prediction, the better the split is

Mean Squared Error (MSE) or Residual Sum of Square (RSS) as a proxy of accuracy in each node

Country	Rim	Tires	Type	Price
Japan	R14	195/60	Small	11.95
Japan	R15	205/60	Medium	24.76
Germany	R15	205/60	Medium	26.9
Germany	R14	175/60	Compact	18.9
Germany	R14	195/60	Compact	24.65
Germany	R15	225/60	Medium	33.2
USA	R14	185/75	Medium	13.15
USA	R14	205/75	Large	20.225
USA	R14	205/75	Large	16.145
USA	R15	205/70	Medium	23.04

MSE or RSS helps in deciding which variable to choose for a split

Country	Rim	Tires	Type	Price
Japan	R14	195/60	Small	11.95
Japan	R15	205/60	Medium	24.76
Germany	R15	205/60	Medium	26.9
Germany	R14	175/60	Compact	18.9
Germany	R14	195/60	Compact	24.65
Germany	R15	225/60	Medium	33.2
USA	R14	185/75	Medium	13.15
USA	R14	205/75	Large	20.225
USA	R14	205/75	Large	16.145
USA	R15	205/70	Medium	23.04

Country	Rim	Tires	Type	Price
Japan	R14	195/60	Small	11.95
Japan	R15	205/60	Medium	24.76
Germany	R15	205/60	Medium	26.9
Germany	R14	175/60	Compact	18.9
Germany	R14	195/60	Compact	24.65
Germany	R15	225/60	Medium	33.2
USA	R14	185/75	Medium	13.15
USA	R14	205/75	Large	20.225
USA	R14	205/75	Large	16.145
USA	R15	205/70	Medium	23.04

Price	
26.90	
18.90	
26.45	
33.20	

	Price
	11.95
	24.76
\	13.15
	20.22
	16.14
	23.04

Rim or Country?

Which variable helps in creating a more accurate prediction?

Total Population = 10
Average price = 21.9

Yes

R14

Total Population = 6
Average Price = 17.50

Total Population = 4
Average Price = 26.97

Use Mean Squared Error (MSE) or Residual Sum of Square (RSS)

$$MSE = \frac{1}{n} \sum (y_i - \mu)^2$$

MSE is just the average of RSS

Nothing but variance in the values of target in variable in a node

Total Population = 10 Average price = 21.9

Yes Country - Germany

Total Population = 6 Average Price = 17.50

Price	Pred.
11.95	17.50
18.9	17.50
24.65	17.50
13.15	17.50
20.22	17.50
16.14	17.50

Total Population = 4 Average Price = 26.97

Price	Pred.
24.76	26.97
26.90	2697
33.20	26.97
23.04	26.97

Total Population = 4 Average Price = 25.91

Price	Pred.
26.90	25.91
18.90	25.91
26.45	25.91
33.20	25.91

MSE tries to find out how accurate a prediction is in each node

Total Population = 6 Average Price = 18.21

No

Price	Pred.
11.95	18.21
24.76	18.21
13.15	18.21
20.22	18.21
16.14	18.21
23.04	18.21

Total Population = 10 Average price = 21.9

$$MSE = \frac{1}{n} \sum (y_i - \mu)^2$$

Total Population = 10 Average price = 21.9

Country -

Germany

Yes No R14

Yes

No

Total Population = 6 Average Price = 17.50

Total	l Populat	ion = 4
Avera	ge Price	= 26.97

Total Population = 4 Average Price = 25.91 Total Population = 6 Average Price = 18.21

Price	Pred.
11.95	17.50
18.9	17.50
24.65	17.50
13.15	17.50
20.22	17.50

16.14

Price	Pred.
24.76	26.97
26.90	2697
33.20	26.97
23.04	26.97

 $\frac{1}{4}(24.76-26.97)^2+(26.90-26.97)^2+..+(23.04-26.97)^2$

Price	Pred.
26.90	25.91
18.90	25.91
26.45	25.91
33.20	25.91

Price	Pred.
11.95	18.21
24.76	18.21
13.15	18.21
20.22	18.21
16.14	18.21
23.04	18.21

17.50

 $[\]frac{1}{6}(11.95 - 17.50)^2 + (18.90 - 17.50)^2 + ... + (16.14 - 17.50)^2$

Total Population = 10 Average price = 21.9

$$MSE = \frac{1}{n} \sum (y_i - \mu)^2$$

Total Population = 10 Average price = 21.9

Yes

R14

No

Total Population = 6

Average Price = 17.50

MSE - 18.67

$$\frac{6}{10} * 18.67 + \frac{4}{10} * 14.78 = 17.114$$

Total Population = 4

Average Price = 26.97

MSE - 14.78

Total Population = 4 Average Price = 25.91

Yes

$$\frac{4}{10}$$
 * 26.21 + $\frac{6}{10}$ * 23.22 = 24.416

No **Country** -Germany

> Total Population = 6Average Price = 18.21

> > MSE - 23.22

Rim is better than country at producing more accurate predictions

Hyperparameters

Regression Tree

Number of observations in terminal node

Grid search procedure to compute the appropriate values of these hyperparameters

Computed as the total reduction of purity measure brought out by a feature

Proportion of classes are **more disproportionate** in Feature B than in Feature A

In Variable Importance both the sequence of the split and the purity of a node should be considered

Feature A precedes
Feature B

Feature B creates greater node purity

Importance of A: Decrease in Gini * Proportion of data

Decrease in Gini

Ability of a variable to create class imbalance compared to preceding split

Proportion of data

Sequence in which variable causes the split

More observations will pass through the node caused by an early split

Weigh the decrease in Mean Squared Error and Residual Sum Square appropriately

Recap

- 1. Decision tree Regression
- 2. Purity Metric
- 3. Hyperparameters
- 4. Feature Importance

MACHINE LEARNING Algorithms

