

何松柏电子工程学院

电子电路基础

UESTC

学生自学检测提问

●有哪些常用半导体器件,这些器件有哪些应用?

非线性电路基本分析方法

●与线性电阻电路分析方法关系?

华导体电路及基本分析

问题引入

华导体电路及基本分析

- ●基本半导体器件
- ●含非线性元件电路分析方法
- ●晶体管开关特性

二极管的基本特性

半导体二极管是用半导体材料制成的电子元器件中的一个大类。 用半导体材料制成PN结,引出两个电极并加以封装,就构成了二极管。 根据所用的半导体,有Si管、Ge管和其它材料的二极管。

阳极 阴极

什么是半导体? 什么是PN结?

小功率 二极管 大功率 二极管 稳压 二极管 发光 二极管

半导体二极管最主要的特性是: 单向导电

· 半导体二极管的伏安特性(V-I)

电阻性元件的电流与端电压间的关系称为伏安特性。 l = g(u)我们以1N4001型Si半导体二极管为例,测试研究其伏安特性。

正向特性测试电路

正向特性测试数据

u_{D}	$i_{ m D}$
0.000V	0.000μΑ
0.100V	0.189μΑ
0.200V	1.496µA
0.300V	10.527μΑ
0.400V	72.940µA
0.500V	504.126μΑ
0.535V	1.000mA
0.571V	2.000mA
0.592V	3.000mA
0.600V	3.476mA
0.700V	23.625mA
0.800V	147.375mA
0.900V	663.944mA
1.000V	1.796A

正向特性曲线

 U_{ON} 称为开启电压

• 半导体二极管的伏安特性

二极管

电阻性元件的电流与端电压间的关系称为伏安特性。 t=g(u)我们以1N4001型Si半导体二极管为例,测试研究其伏安特性。

反向特性测试电路

D为被测二极管 R为限流电阻

反向特性测试数据

u_{D}	$i_{ m D}$
0.000V	0.000μΑ
-0.0625V	-0.022μΑ
-0.125V	-0.029μA
-0.250V	-0.032μΑ
-0.500V	-0.032μΑ
-1.000V	-0.033μA
-2.000V	-0.034μA
-4.000V	-0.036μΑ
-8.000V	-0.040μΑ
-16.000V	-0.048μA
-32.000V	-0.064μA
-50.000V	-0.082μA
-52.907V	-1.000μA
-53.027V	-100.000μA
-53.147V	-10.000mA

反向特性曲线

 $I_{\rm S}$ 称为反向饱和电流 $U_{({
m BR})}$ 称为击穿电压

●二极管电路符号

●二极管V-I特性

$$i_D = I_s(e^{v_D/V_{TH}} - 1).$$

(4.1)

MOSFET

- 〇大规模集成电路主要工艺
- 〇半导体器件更低的能耗

MOSFET

场效应管的出现----1926年

Julius E. Lilienfeld

专利草图

图 12-2 Julius E. Lilienfeld 和他的专利

shhe@uestc.edu.cn

FET在今天的应用

MOSFET

图6.32 (P203) 制造芯片中的N-MOSFET 俯视图

MOSFET

图6.34 (P203) N型MOSFET

图6.35 (P203)

图6.36 (P203)

MOSFET

●MOSFET电路特性

图7.7 (P224) 测量MOSFET特性的电路

图7.12 (P226) MOSFET特性曲线

- ullet 截止区 $\mathbf{v}_{GS} < \mathbf{v}_T \quad \mathbf{i}_{DS} = \mathbf{0}$
- ●饱和区域

$$\nu_{GS} \geq V_T$$

$$v_{DS} \ge v_{GS} - V_T$$
.

$$i_{DS} = \frac{K(\nu_{GS} - V_T)^2}{2}$$

●SR模型(电阻区) $v_{DS} < v_{GS} - V_T$ and $v_{GS} \ge V_T$. $\frac{v_{DS}}{i_{DS}} = R_{ON}$.

BJT

FIGURE 7.47 A bipolar junction transistor.

图7.48 (P248) BJT特性曲线

●如何认识半导体器件的线性和非线性特性?

- 其它晶体管如GaAs FET, GaN FET等是否类似 V-I特性?
- 理解晶体管工作状态(V-I特性)与所加信号幅度大小有关

GaN FET

CGH40010 GaN HEMT 输出特性曲线

www.cree.com/rf

含非线性化导体器件电路基本分析

$$i_D = I_s(e^{\nu_D/V_{TH}} - 1).$$

FIGURE 4.6 A circuit containing the nonlinear device.

参见教材P129,例4.2

●自学检测提问:如何求解?有哪些方法?

非线性电路分析方法

- 直接分析
- 图形分析(图解法)
- 分段线性法
- 增量小信号分析

雅残性电路分析-直接法

图4.12(P131)

$$i_D = \begin{cases} K v_D^2 & \text{for } v_D > 0 \\ 0 & \text{for } v_D \le 0. \end{cases}$$

雅残性电路分析-直接法

戴维南等效

雅线性电路分析-直接法

$$V_{TH} = V \frac{R_2}{R_1 + R_2} - I_0 R_3.$$

$$R_{TH} = (R_1||R_2) + R_3.$$

非线性电路分析-直接法

列写方程

$$\frac{\nu_D - E}{R} + i_D = 0$$

$$i_D = \begin{cases} K v_D^2 & \text{for } v_D > 0\\ 0 & \text{for } v_D \le 0. \end{cases}$$

问题: 该方程组负解如何处理?

$$RK\nu_D^2 + \nu_D - E = 0.$$

$$v_D = \frac{-1 + \sqrt{1 + 4RKE}}{2RK}.$$

非残性电路分析-图解法

问题引出---指数函数非线性(超越方程如何求解)

$$\frac{v_D - E}{R} + i_D = 0$$

$$i_D = I_s(e^{v_D/V_{TH}} - 1).$$

$$\frac{v_D - E}{R} + I_s(e^{v_D/V_{TH}} - 1) = 0.$$

雅残性电路分析-图解法

负载线(Load line)

电路如图所示,通过查阅资料,给出漏源端口输出负载线(示意图)

图解法-负载线

MOSFET基本放大器负载线

雅残性电路分析-分段线性

实际二极管特性

注意单位刻度-与误差相关

雅残性电路分析-分段线性

理想二极管特性

Diode ON (short circuit): $v_D = 0$

Diode OFF (open circuit): $i_D = 0$

for all positive i_D .

for all negative v_D .

雅残性电路分析-分段线性

含理想二极管电路分析

雅残性电路分析-增量分析

怎么求解?

$$i_D = I_s \left(e^{(0.7 \text{ V} + 0.001 \text{ V} \sin(\omega t))/V_{TH}} - 1 \right)$$

给出该方程求解的过程

$$i_D = I_s \left(e^{(0.7 \text{ V} + 0.001 \text{ V} \sin(\omega t))/V_{TH}} - 1 \right)$$

雅残性电路分析-增量分析

回忆泰勒级数

$$i_D = f(v_D) = f(V_D) + \left. \frac{df}{dv_D} \right|_{V_D} (v_D - V_D) + \left. \frac{1}{2!} \frac{d^2 f}{dv_D^2} \right|_{V_D} (v_D - V_D)^2 + \cdots$$

$$i_D = I_s \left(e^{V_D/V_{TH}} - 1 \right) + \left(I_s e^{V_D/V_{TH}} \right) \left[\frac{1}{V_{TH}} \Delta v_D + \frac{1}{2} \left(\frac{1}{V_{TH}} \right)^2 (\Delta v_D)^2 + \cdots \right].$$

雅残性电路分析-增量分析

忽略高次项

$$i_D = I_s \left(e^{V_D/V_{TH}} - 1 \right) + \left(I_s e^{V_D/V_{TH}} \right) \left[\frac{1}{V_{TH}} \Delta \nu_D \right].$$

$$I_D + \Delta i_D = I_s \left(e^{V_D/V_{TH}} - 1 \right) + \left(I_s e^{V_D/V_{TH}} \right) \left[\frac{1}{V_{TH}} \Delta v_D \right]$$

雅残性电路分析-增量分析

结论:

●二极管上流过的电流包含DC和小的扰△iD

$$I_{D} = I_{s} \left(e^{V_{D}/V_{TH}} - 1 \right)$$
 等效电导
$$\frac{\Delta i_{D}}{\Delta \nu_{D}} = g_{d} = \frac{1}{V_{TH}} I_{D}$$

$$r_{d} = \frac{1}{\frac{df}{d\nu_{D}}|_{\nu_{D}} = V_{D}}$$

$$r_{d} = \frac{V_{TH}}{I_{D}}$$

雅残性电路分析-增量分析

 $\Delta v_I = 0.001 \text{ V } \sin(\omega t) \left(\begin{array}{c} + \\ - \end{array} \right)$

如果ID=1.45A(室温下)

$$\Delta i_D = \frac{\Delta v_D}{r_d} = 0.059 \text{ A } \sin(\omega t).$$

方法小结 P146

课堂交流讨论

●不同分析方法适用范围及特点?

下图左所示的太阳能电池单元输出V-I特性,电路连接如右图,输出连接3欧姆电阻,分析电阻上电压电流。

稳压器:减小输出电压纹波。分析输出电压Vo纹波系数 (R=1000欧姆)

The current i_D is 0 for $v_O \le 0$. Assume $K = 1 \text{ mA/V}^2$.

进一步讨论:如何选择电路,使输出电压纹波更小?

稳压器分析

输出直流分析

$$-V_I + I_D R + V_O = 0$$
$$I_D = K V_O^2.$$

$$V_{\rm O} = 1.8 \text{ V}$$

$$I_D = 3.24 \text{ mA}.$$

稳压器分析

输出增量小信号分析

$$i_d = \left. \frac{d(Kv_{\rm O}^2)}{dv_{\rm O}} \right|_{v_{\rm O} = V_{\rm O}} v_{\rm o}$$

$$r_d = \frac{1}{\frac{d(Kv_O^2)}{dv_O}\Big|_{v_O = V_O}}.$$

稳压器分析

$$v_0 = v_i \frac{r_d}{R + r_d}$$

= $50 \times 10^{-3} \frac{278}{1000 + 278} = 10.9 \text{ mV}.$

$$i_d = \frac{v_o}{r_d} = \frac{0.0109}{278} = 0.039 \text{ mA}.$$

fractional ripple =
$$\frac{50 \times 10^{-3}}{5} = 10^{-2}$$

fractional ripple =
$$\frac{10.9 \times 10^{-3}}{1.8} \simeq 0.6 \times 10^{-2},$$

如图所示电路。 (1) 分析V1和V2; (2) 求 $\Delta v_1/\Delta v_2$?

$$i_D = I_S e^{(v_D/25mV)}$$
 where $I_S = 1mA/e^{25}$

牵章向容总结

关键词: 非线性元器件, 图解法,

线性化,增量小信号分析

含半导体器件的电路分析

●半导体开关电路原理及仿真设计

 $V_T = 2V$. Assume that $V_S = 5V$ and $R_L = 10k$.

给出开关输入输出电压关系曲线

 $V_T = 2V$. Assume that $V_S = 5V$ and $R_L = 10k$.

内容拓展

●假设MOSFET导通状态电阻为零,给出输入输出曲线

进一步探讨, 开关电路与放大电路在电路参数选择时需要注意什么?

奉章习题

●练习7.5, 7.6 (P261)

●练习4.4,(P152) 4.3 ,4.7

●问题4.4,4.11 (P155)

何松档电子工程学院

谢谢!

