SMALL PACKAGE VOLTAGE REGULATOR

RQ5RW SERIES

APPLICATION MANUAL

NOTICE

- The products and the product specifications described in this application manual are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. This application manual may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this application manual shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, computer equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire-containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this application manual.
- 8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

June 1995

RQ5RW SERIES APPLICATION MANUAL CONTENTS

OUTLINE ·····	
FEATURES ·····	
APPLICATIONS	
BLOCK DIAGRAM·····	
SELECTION GUIDE······	
PIN CONFIGURATION ······	
PIN DESCRIPTION ······	
ABSOLUTE MAXIMUM RATINGS······	
ELECTRICAL CHARACTERISTICS	
ELECTRICAL CHARACTERISTICS BY OUTPUT VOLTAGE	6
ELECTRICAL CHARACTERISTICS BY OUTPUT VOLTAGE	
(common characteristics) ······	7
OPERATION	
TEST CIRCUITS	
TYPICAL CHARACTERISTICS	
1) Output Voltage vs. Output Current ······	9
2) Output Voltage vs. Input Voltage · · · · · · · · · · · · · · · · · · ·	10
3) Dropout Voltage vs. Output Current ······	11
4) Output Voltage vs. Temperature ······	11
5) Supply Current vs. Input Voltage	12
6) Supply Current vs. Temperature ······	13
7) Dropout Voltage vs. Set Output Voltage ······	13
8) Line Transient Response ·····	
9) Load Transient Response ·····	
10) Ripple Rejection ·····	16

TYPICAL APPLICATION ·······	17
PACKAGE DIMENSION ······	17
TAPING SPECIFICATION ····································	18

SMALL PACKAGE VOLTAGE REGULATOR

RQ5RW SERIES

OUTLINE

The RQ5RW Series are voltage regulator ICs with high accuracy output voltage and ultra-low supply current developed by CMOS process. Each of these ICs consists of a voltage reference unit, an error amplifier, resistors for setting output voltage and a current limit circuit.

The output voltage of these ICs is fixed with high accuracy.

Even if Vout is shorted to GND, the included current limit circuit protects the ICs from the destruction.

Furthermore, these ICs have a chip enable function, so that the supply current on standby can be minimized.

Since the package for these ICs are SC-82AB (Super Mini-mold) package, high density mounting of the ICs on boards is possible.

FEATURES

•	Ultra-Low	Supply	Current	TYP 1511A
•	Ullia-LOW	SUDDIV	Current	TIT. LOUA

- Standby CurrentTYP. 0.1µA
- Dropout Voltage-----TYP. 40mV (IOUT=1mA, RQ5RW30A/B)
- Low Temperature-Drift Coefficient of

Output VoltageTYP. ±100ppm/°C

- Excellent Line Regulation-----TYP. 0.05%/V
- High Accuracy Output Voltage----±2.0%
- Ultra-Small Package ······SC-82AB (Super Mini-mold)
- Built-in Current Llimit Circuits

APPLICATIONS

- Power source for battery-powered equipment.
- Power source for cameras, VCRs, camcorders, hand-held audio instruments and hand-held communication equipment.
- Precision voltage references.

BLOCK DIAGRAM

SELECTION GUIDE

The output voltage, the active type, the packing type and the taping type for the ICs can be selected at the user's request. The selection can be made by designating the part number as shown below:

RQ5RW
$$\times \times \times \times - \times \times \leftarrow$$
 Part Number a b c d

Code	Contents
a	Setting Output Voltage (Vout): Stepwise setting with a step of 0.1V in the range of 2.0V to 6.0V is possible.
b	Designation of Chip enable Active Type : A: "L" active type B: "H" active type
с	Designation of Packing Type : A : Taping B : Antistatic bag (for Sample only)
d	Designation of Taping Type : TR (refer to Taping Specifications)

PIN CONFIGURATION

PIN DESCRIPTION

Pin No.	Symbol	Pin Description
1	GND	Ground Pin
2	Vdd	Input Pin
3	Vout	Output Pin
4	CE or CE	Chip Enable Pin

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit
Vin	Input Voltage	9	V
VCE	Input Voltage for CE/CE Pin	-0.3 to Vin +0.3	V
Vout	Output Voltage	-0.3 to Vin +0.3	V
Iout	Output Current	150	mA
PD	Power Dissipation	150	mW
Topt	Operating Temperature	-40 to +85	°C
Tstg	Storage Temperature	-55 to +125	°C

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum ratings are threshold limit values that must not be exceeded even for an instant under any conditions. Moreover, such values for any two items must not be reached simultaneously. Operation above these absolute maximum ratings may cause degradation or permanent damage to the device. These are stress ratings only and do not necessarily imply functional operation below these limits.

ELECTRICAL CHARACTERISTICS

• RQ5RW30A Topt=25°C

Symbol	Item	Conditions	MIN.	TYP.	MAX.	Unit
Vout	Output Voltage	V _{IN} =5.0V 10μA≤Iouτ≤10mA	2.940	3.000	3.060	V
Iout	Output Current	VIN=5.0V	50			mA
ΔV OUT ΔI OUT	Load Regulation	V _{IN} =5.0V 1mA≤Iouт≤50mA		40	60	mV
VDIF	Dropout Voltage	Iout=1mA		40	60	mV
Iss	Supply Current	VIN=5.0V		1.5	3.0	μА
Istandby	Standby Current	VIN=5.0V, VCE=5.0V		0.1	1.0	μА
$\frac{\Delta V_{OUT}}{\Delta V_{IN}}$	Line Regulation	Iout=1mA Vout+0.5V≤Vin≤8V	0	0.05	0.20	%/V
Vin	Input Voltage				8.0	V
$\frac{\Delta \text{Vout}}{\Delta \text{Topt}}$	Output Voltage Temperature Coefficient	Iout=10mA -40°C≤Topt≤85°C		±100		ppm/°C
Ilim	Short Current Limit			40		mA
Rpu	Pull up resistance for $\overline{\text{CE}}$ pin		1.5	4.0	12.0	ΜΩ
VCEH	CE Input Voltage "H"		1.5			V
VCEL	CE Input Voltage "L"				0.25	V

RQ5RW

• RQ5RW30B Topt=25°C

Symbol	Item	Conditions	MIN.	TYP.	MAX.	Unit
Vout	Output Voltage	Vin=5.0V 10μA≤Iout≤10mA	2.940	3.000	3.060	V
Iout	Output Current	VIN=5.0V	50			mA
ΔV OUT ΔI OUT	Load Regulation	Vin=5.0V 1mA≤Iout≤50mA		40	60	mV
VDIF	Dropout Voltage	Iout=1mA		40	60	mV
Iss	Supply Current	VIN=5.0V		1.5	3.0	μA
Istandby	Standby Current	VIN=5.0V, VCE=GND		0.1	1.0	μA
$\frac{\Delta V_{\rm OUT}}{\Delta V_{\rm IN}}$	Line Regulation	Iout=1mA Vout+0.5V≤Vin≤8V	0	0.05	0.20	%/V
Vin	Input Voltage				8.0	V
$\frac{\Delta V_{OUT}}{\Delta T_{opt}}$	Output Voltage Temperature Coefficient	Iouт=1mA −40°C≤Topt≤85°C		±100		ppm/°C
Ilim	Short Current Limit			40		mA
Rpd	Pull down resistance for CE pin		1.5	4.0	12.0	ΜΩ
VCEH	CE Input Voltage "H"		1.5			V
VCEL	CE Input Voltage "L"				0.25	V

ELECTRICAL CHARACTERISTICS BY OUTPUT VOLTAGE

Topt=25°C

		Output	Voltage		Ou	tput Cur	rent	Loa	d Regula	ition	Dropout Votage		
Part Number		Vou	т(V)			lout(mA)	∆Vo	υτ/∆Ιουτ	(mV)		V _{DIF} (mV))
	Conditions	MIN.	TYP.	MAX.	Conditions	MIN.	TYP.	Conditions	TYP.	MAX.	Conditions	TYP.	MAX.
RQ5RW20		1.960	2.000	2.040									
RQ5RW21		2.058	2.100	2.142				VIN-				60	90
RQ5RW22		2.156	2.200	2.244				Vout				00	00
RQ5RW23		2.254	2.300	2.346				=2.0V					
RQ5RW24		2.352	2.400	2.448		35			30	45			
RQ5RW25]	2.450	2.500	2.550				1mA≤				50	75
RQ5RW26]	2.548	2.600	2.652				IOUT				00	
RQ5RW27		2.646	2.700	2.754				≤35mA					
RQ5RW28		2.744	2.800	2.856									
RQ5RW29		2.842	2.900	2.958								40	60
RQ5RW30]	2.940	3.000	3.060	1 1						1	10	00
RQ5RW31	1	3.038	3.100	3.162									
RQ5RW32	1	3.136	3.200	3.264				VIN-					
RQ5RW33	1	3.234	3.300	3.366				Vout				35	55
RQ5RW34	1	3.332	3.400	3.468				=2.0V				33	33
RQ5RW35	1	3.430	3.500	3.570		50			40	60			
RQ5RW36	Vin-	3.528	3.600	3.672				1mA≤					
RQ5RW37	Vout	3.626	3.700	3.774				Iout				30	45
RQ5RW38	=2.0V	3.724	3.800	3.876	VIN-			≤50mA				30	4.0
RQ5RW39	1	3.822	3.900	3.978	Vout						Iout		
RQ5RW40	1	3.920	4.000	4.080	=2.0V						=1mA		
RQ5RW41	10μA≤	4.018	4.100	4.182									
RQ5RW42	Iout	4.116	4.200	4.284				Vin-					
RQ5RW43	≤10mA	4.214	4.300	4.386				Vout					
RQ5RW44		4.312	4.400	4.488		65		=2.0V	50	70			
RQ5RW45		4.410	4.500	4.590		00		1mA≤	00	'			
RQ5RW46		4.508	4.600	4.692				IOUT					
RQ5RW47		4.606	4.700	4.794				≤65mA					
RQ5RW48	1	4.704	4.800	4.896									
RQ5RW49		4.802	4.900	4.998									
RQ5RW50		4.900	5.000	5.100	1 1						-	25	40
RQ5RW51		4.998	5.100	5.202									
RQ5RW52	1	5.096	5.200	5.304				Vin-					
RQ5RW53	1	5.194	5.300	5.406				Vout					
RQ5RW54	1	5.292	5.400	5.508				=2.0V					
RQ5RW55	1	5.390	5.500	5.610		80			60	90			
RQ5RW56	1	5.488	5.600	5.712				1mA≤					
RQ5RW57		5.586	5.700	5.814				Iout					
RQ5RW58		5.684	5.800	5.916				≤80mA					
RQ5RW59	†	5.782	5.900	6.018									
RQ5RW60	†	5.880	6.000	6.120									

ELECTRICAL CHARACTERISTICS BY OUTPUT VOLTAGE (common characteristics)

Topt=25°C

Symbol	ltem	Conditions	MIN.	TYP.	MAX.	Unit
Iss	Supply Current	VIN=setVout+2.0V		1.5	3.0	μA
Istandby	Standby Current	VIN=setVout+2.0V VCE=VIN(RQ5RW×XA), VCE=GND(RQ5RW×XB)		0.1	1.0	μА
$\frac{\Delta V_{OUT}}{\Delta V_{IN}}$	Line Regulation	Iout=1mA setVout+0.5V≤Vin≤8V	0	0.05	0.20	%/V
Vin	Input Voltage				8.0	V
$\frac{\Delta V_{OUT}}{\Delta Topt}$	Output Voltage Temperature Coefficient	Io∪T=10mA -40°C≤Topt≤85°C		±100		ppm/°C
Ilim	Short Current Limit			40		mA
RPU/RPD	CE Pull-up / CE Pull-down Resistance		1.5	4.0	12.0	ΜΩ
VCEH	CE/CE Input Voltage "H"		1.5			V
VCEL	CE/CE Input Voltage "L"				0.25	V

OPERATION

In these ICs, Output Voltage Vout is detected by Feed-back Registers R1, R2, and the detected Output Voltage is compare with a reference voltage by Error Amplifier, so that a constant voltage is output.

A current limit circuit working for Short Protect and a chip enable circuit are included.

TEST CIRCUITS

Standard Test Circuit

Test Circuit for Supply Current

Test Circuit for Load Transient Response

TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current

2) Output Voltage vs. Input Voltage

3) Dropout Voltage vs. Output Current

4) Output Voltage vs. Temperature

RQ5RW

5) Supply Current vs. Input Voltage

6) Supply Current vs. Temperature

7) Dropout Voltage vs. Set Output Voltage RQ5RW \times B

8) Line Transient Response

9) Load Transient Response

10) Ripple Rejection

TYPICAL APPLICATION

In RQ5RW Series, a constant voltage can be obtained without using Capacitor C1 and C2. However, when the wire connected VIN is long, use Capacitor C1. Output noise can be reduced by using Capacitor 2.

Insert Capacitors C1 and C2 with the capacitance of $0.1\mu F$ to $0.2\mu F$ between Input/Output Pins and GND Pin with minimum wiring.

PACKAGE DIMENSION (Unit:mm)

• SC-82AB

TAPING SPECIFICATION (Unit:mm)

• SC82AB

RICOH COMPANY, LTD. ELECTRONIC DEVICES DIVISION

HEADQUARTERS

HEADQUARTERS

13-1, Himemuro-cho, Ikeda City, Osaka 563-8501, JAPAN
Phone 81-727-53-1111 Fax 81-727-53-6011

YOKOHAMA OFFICE (International Sales)
3-2-3, Shin-Yokohama, Kohoku-ku, Yokohama City, Kanagawa 222-8530, JAPAN
Phone 81-45-477-1697 Fax 81-45-477-1694 • 1695

http://www.ricoh.co.jp/LSI/english/

RICOH CORPORATION ELECTRONIC DEVICES DIVISION

SAN JOSE OFFICE

3001 Orchard Parkway, San Jose, CA 95134-2088, U.S.A. Phone 1-408-432-8800 Fax 1-408-432-8375