Esssentials of Applied Data Analysis IPSA-USP Summer School 2018

The Basics of Set Theory

Leonardo Sangali Barone leonardo.barone@usp.br

jan/18

Set Theory

Basic notions and notation of set theory.

First concepts and notation

- Sets are a list or collection of objects.
- These objects are elements.
- \emptyset is the empty set (or null set).
- $p \in A$: is p is an element in the set A.
- $A \subseteq B$: A is a subset of B
- $A \subset B$: A is a proper subset of B and B has at least one element that A does not

Common Sets

Notation	Meaning	Examples	How it relate to other sets
\mathbb{N}	Natural numbers	(0, 1, 2,)	
${\mathbb Z}$	Integers	(, -2, -1, 0, 1, 2,)	all \mathbb{N} are \mathbb{Z}
\mathbb{Z}^-	Negative Integers	(, -2, -1)	\mathbb{Z}^+ is a subset of \mathbb{Z}
\mathbb{Q}	Rational numbers	$(, \frac{-42}{13}, -1, \frac{-1}{2}, 0, \frac{1}{2}, \frac{17}{13}, 100,)$	all \mathbb{Z} are \mathbb{Q}
\mathbb{R}	Real numbers	$(,\frac{-42}{13},-1,0,\sqrt{2},\pi,100,)$	all \mathbb{Q} are \mathbb{R}
$\mathbb C$	Complex numbers	$(1+2i, 42-3i)$, where $i=\sqrt{-1}$	

Properties of Sets

Property	Definition	Examples
Finite	sets with finite number of elements	$\{S, M, G\}; (1,, 10)$
Infinite	sets with number of elements	$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R} \text{ and } \mathbb{C}$
Countable	number of elements can be counted	\mathbb{N} , \mathbb{Z} and \mathbb{Q}
Uncountable	not countable	\mathbb{R} and \mathbb{C}
Bounded	finite size or shape (even if infinite)	$\mathbf{x} \in \mathbb{R} : 0 \le x \le 1$
Unbounded	infinite size	$\mathbf{x} \in \mathbb{R} : x \ge 42$
Ordered	$a,b,c \neq b,a,c$	
Unordered	a, b, c = b, a, c	

Set Theory - operations

- $A \cup B$: union of A and B.
 - $-p \in (A \cup B)$: p is an element of A **OR** B.
- $A \cap B$: intersection of A an B.
 - $-p \in (A \cap B)$: p is an element of A **AND** B.
- If $A \cap B$ is equal to \emptyset , then A and B are **disjoint** sets.
- A^c (A', \tilde{A} or simply not A) is the set of all elements that does not belong to A. A^c is the complement of A.
- $A \setminus B$ is the set of all elements of set A that does not belong to B (difference).

Venn Diagramas

We can represent sets with diagrams. These are called "Venn Diagrams". See Figure 1 and locate the following sets as a quick exercise:

```
13) ((A \cap B) \cap C)^c
               5) (A \cup B) \cup C
                                       9) A^c
1) A \cup B
               6) (A \cap B) \cap C
                                       10) (A \cap B)^c
                                                                   14) ((A \cup B) \cap C)^c
2) A \cap B
3) A \cup C
               7) (A \cup B) \cap C
                                                                   15) A \setminus B
                                       11) (A \cup C)^c
               8) (A \cap B) \cup C
                                       12) ((A \cup B) \cup C)^c
                                                                   15) A \setminus C
4) A \cap C
```


Figure 1: Venn Diagrams