2.
$$gcd(a,b) = 1$$

Bezout theory $\exists q.p \in (N) pa+qb=1$

so. $N = anp + qnb$

for $b \mid n$ So. $ab \mid an$
 $a \mid n$ So. $ab \mid bn$

so. $ab \mid anp+qnb$ So. $ab \mid n$

if $p^k < n$ but $p^{k+1} > n$ n! contains $\lfloor \frac{n}{p} \rfloor$ numbers that are multiples of p^k So the (argestest integer $d = \sum_{i=1}^{n} \lfloor \frac{n}{p^i} \rfloor$ when i > k $p^i > n$ So $\lfloor \frac{n}{p^i} \rfloor = 0$.

So $d = \sum_{i=1}^{\infty} \lfloor \frac{n}{p^i} \rfloor$

4. because $a = b \pmod{n}$ $n \mid b - a$. $for \mid (co + c_1b + c_2b^2 + c_3b^3) - (co + c_1a + c_2a^2 + c_3b^3)$ $= c_1(b-a) + c_2(b-a)(b+a) + c_3(b-a)(b^2 + ab+a^2)$ $= (b-a) \left[c_1 + c_2(a+b) + c_3(b^2 + ab+a^2) \right]$ $= o \pmod{n}$ $so co + c_1b + c_2b^2 + c_3b^3 = c_3b + c_3b^3 = c_3b^3 + c_3b^3 + c_3b^3 = c_3b^3 + c_3b^3 + c_3b^3 + c_3b^3 = c_3b^3 + c_3b$

5. If $u \equiv 0 \pmod{3}$ Let u = 3kthen $9k^2 + 3kv + V^3 \equiv 0 \pmod{3}$ then $9k^2 + 3kv + V^3 \equiv 0 \pmod{3}$ then $0 = 0 \pmod{3}$ then $0 = 0 \pmod{3}$ if $0 = 0 \pmod{3}$ Similarity $0 = 0 \pmod{3}$ of $0 = 0 \pmod{3}$ and $0 = 0 \pmod{3}$

```
situation (SI) V=U=1 (mod3)
      Let v=3k2+1 U=3k1+1
  then u2+ uv+ v2 = 9 ki+ 1 ki2+ 6 ki+ 6 ki+ 6 ki+ 9 kik2+ 3 ki+3 k2+3
          = 9 \xi_1^2 + 9 \xi_2^2 + 9 \xi_1 k_1 + 9 k_2 + 3 = 3 (mod 9)
1 ead to contradiction
  SL. v=U=L(mod3)
  (et u=3-t_1+2 V=3+2+2
 then U2+ NV+V2=9t,2+ 162+ 96,62+18t, +8t2+ 12=3
                     lead to contradiction
   S_3 \quad V = 1 \quad (m \cdot d^3) \quad U = 2 \quad (m \cdot d^3)
     Let U=39,+1 V=392+2
   then U^{2} + uv + v^{2} = 99i + 98i + 99i92 + 129i + 1592 + 7
                       = ( (mod3)
    but u2+nv+v2=0 (mod)) => u2+uv+v2=01mods)
    that lead to contradiction
Similarly when N = | (mad 3) v = 2 (mad 3)
    Summarizing. U=0 (mods) V=0 (mods) v.e. u,velo],
```