aPlonK: Aggregated PlonK from

Multi-Polynomial Commitment Schemes

Miguel Ambrona, Marc Beunardeau, Anne-Laure Schmitt, Raphaël R. Toledo

nomadic labs

ts Tezos

Blockchain scalability

SNARKs
$$\exists w : R(x, w) = 1$$

Validity rollups (layer 2 solutions)

Challenges

- Verifying the proof faster than verifying transactions
- **Prover complexity** is O(n log n)

Possible solutions

- **Recursion** (a transition is valid from a state for which a similar proof exists)
- IVC and PCD (move parts of the SNARK verifier outside of the circuit)

Cycles of elliptic curves

Non-native eperations

Proof aggregation for PlonK (following SnarkPack GMN21)

PlonK

Polynomial Commitments

z

Proof: f inside \longrightarrow evaluates to v on z

PlonK

PlonK [AC:KZG10]

$$\sum_{i=1}^{k} r^{i} = \mathbb{G}_{1}^{\sum_{i=1}^{k} r^{i} \mathbf{A}_{i}}$$

$$\mathbf{W}(\boldsymbol{\xi}) = \sum_{i=1}^{k} r^{i} \mathbf{A}_{i}(\boldsymbol{\xi}) + r^{k+i} \mathbf{B}_{i}(\boldsymbol{\xi}) + r^{2k+i} \mathbf{C}_{i}(\boldsymbol{\xi})$$

PlonK (aggregation)

[AC:BMMTV21]

[FC:GMN21]

$$e([\tau]_2) \cdots e([\tau^k]_2) \cdot e([\tau^{k+1}]_2) \cdots e([\tau^{3k}]_2)$$

$$e([\tau]_2) \cdots e([\tau^{3k}]_2) \cdot e([\tau^{3k}]_2) \cdots e([\tau^{3k}]_2)$$

PlonK (aggregation)

nomadic labs

Hiding public inputs

Experiments

Experiments

Conclusion

• **Proof aggregation** for PlonK

Thank you!

- Notion of **Multi-Polynomial Commitment** Schemes
- Meta-verification (hiding public inputs)
- Involve committed data in PlonK statements efficiently
- Implementation: https://gitlab.com/nomadic-labs/cryptography/aplonk

Team: https://research-development.nomadic-labs.com/files/cryptography.html