DASC521 HW#3

In this homework, we were asked to implement naïve Bayes' classifier. I chose MATLAB as my coding platform. I have converted the given data labels format (A, B, C...) to (1,2,3...) as it is easier to work with integers when an equation is involved. I have estimated my prior class densities and class prior probabilities by implementing the equations given below:

$$\hat{P}(C_i) = \frac{\sum_t r_i^t}{N}$$

$$\hat{p}_{ij} = \frac{\sum_t x_j^t r_i^t}{\sum_t r_i^t}$$

Then I have reshaped my estimated \hat{p}_{ij} vector to 20 by 16 before printing them on a canvas as shown in the figure below:

Figure 1 Estimated \hat{p}_{ij} 's

Using these values, I have evaluated my discriminant function for each data point – class combination then, to predict the class, I pick the highest-valued class for a single data point. Discriminant function is given below:

$$g_i(x) = \log p(x|C_i) + \log P(C_i)$$

= $\sum_{j} [x_j \log p_{ij} + (1 - x_j) \log(1 - p_{ij})] + \log P(C_i)$

I calculated score values for both the training test and the testing set. Confusion matrices resulted as shown below:

Trainin	Testing	Testing_data_ConfusionMatrix =							
25	0	0	0	0	10	1	0	3	0
0	24	0	1	0	0	11	0	3	0
0	1	24	0	0	0	2	8	3	1
0	0	0	25	0	0	2	0	12	0
0	1	0	0	24	0	2	0	0	12

I have commented my codes to make it more readable.