Is the Inner City Boom Over?

Steven Craig and Annie Hsu

Indiana University Bloomington O'Neill School of Public and Environmental Affairs

February 13, 2025

- Introduction
- 2 Empirical Strategy
- 3 Results
- 4 Alternative Specification
- **5** Conclusions
- 6 Appendix

Indiana University Bloomington O'Neill School of Public and Environmental Affairs

- 1 Introduction
- 2 Empirical Strategy
- 3 Results
- 4 Alternative Specification
- 6 Conclusions
- 6 Appendix

Suburbanization Trend

- Commuting zone (CZ): the geographic unit determining a local labor market (Tolbert and Sizer, 1996)
- Highly Populated CZs defined by the Census population level in 1990
 - Highly Populated CZs are the top quartile CZs (around 82 % of national population)

- Economic environment in highly populated areas:
 - Central city government: declining economic bases, concentrated employment
 - Suburban governments: growing population

- Economic environment in highly populated areas:
 - Central city government: declining economic bases, concentrated employment
 - Suburban governments: growing population
- Research questions:
 - How do changes in the local economic environment affect the provision of public goods by local governments?
 - Does the impact and the response differ between the central city and the surrounding suburban local governments?

Indiana University Bloomington O'Neill School of Public and Environmental Affairs

Economic environment in highly populated areas:

- Central city government: declining economic bases, concentrated employment
- Suburban governments: growing population

Research questions:

- How do changes in the local economic environment affect the provision of public goods by local governments?
- Does the impact and the response differ between the central city and the surrounding suburban local governments?

Contributions:

- The impacts and responses to the economic shocks vary among local governments in the central city and the suburban governments in highly populated areas
- Explore alternative approach: local employment shocks

Background

Public policy and economic environment:

- Local tax revenues, expenditures and savings respond to fiscal stress Literature Review
 - Long run effects: cut infrastructure expenditure (Aschauer, 1989)
 - Short run effects: finance from cash&security (Gramlich, 1994)

Economic shocks: China joined WTO

- Regions in the United States experiencing decreased labor demand and income levels as a result of rising import competition from China (Autor et al., 2013)
- Local governments received less revenue and cut expenditure when China joined WTO (Feler and Senses, 2017)

Results

- Introduction
- 2 Empirical Strategy

- 6 Appendix

Data

- Fiscal Data: U.S. Census Bureau's Annual Survey of State and Local Government Finances
- Population Data: U.S. Census Bureau's Population and Housing Unit Estimates Dataset

Results

- Employment Data: Census Bureau's County Business Pattern
- Trade Data: United Nations Commodity Trade Statistics Database
- Demographic variables: US Census Bureau's USA Counties database

China Import Shocks: Autor et al. (2013)

Empirical Strategy

China import shocks: commuting zone level (or county level)

•
$$\Delta IS_{i,T}^{US} = \sum_{j} \frac{\Delta M_{j,T}^{US} \frac{Emp_{i,j,T}}{Emp_{i,T}}}{Emp_{i,T}}$$

- i: commuting zones (or county level)
- *j*: industry sectors
- T: time interval, 1990-2000, 2000-2007
- $\Delta IS_{i,T}^{US}$: China import exposure variable over time interval **T**
- $\Delta M_{i,T}^{US}$: the change of China import to US in industry **j** over time interval T
- $\frac{Emp_{i,j,T}}{Emp_{i,T}}$: the share of local industrial employment over national industrial employment in industry i at start-of-period in time interval **T**

- China import shock: changes in imports per worker in US\$1,000
- Highly populated CZs defined by the Census population level in 1990
- The legend indicates values for bottom four quintiles and top two deciles

$$\Delta Y_{i,T}^{City} = \gamma_T + \alpha_1 \Delta I S_{i,T}^{US} + \mathbf{X}_{i,T}^{\prime} \alpha_2 + \epsilon_{iT}$$
 (1)

$$\Delta Y_{i,T}^{Sub} = \gamma_T + \frac{\beta_1}{\Delta} I S_{i,T}^{US} + \mathbf{X}_{i,T}' \beta_2 + \varepsilon_{iT}$$
 (2)

- $\Delta Y_{i,T}$: Δ Local fiscal variables in CZ **i** over time interval **T**
- $\Delta IS_{i,T}^{US}$: Δ China imports values to US in CZ i over time T
- X_{i,T}: regional control variables, start-of-period demographic characteristics in CZ i
- γ_T: time fixed effects
- T: time interval, 1990-2000 and 2000-2007

IV Strategy

- Endogeneity problem
- IV strategy: contemporaneous change in other high-income country imports of Chinese goods to capture the exogenous variation (Autor et al., 2013)
 - First stage: $\Delta IS_{i,T}^{US} = \tau_T + \gamma \Delta IS_{i,T}^{NUS} + \eta_{iT}$
 - $\Delta IS_{i,T}^{NUS} = \sum_{i} \frac{\Delta M_{j,T}^{NUS} \frac{Emp_{i,j,T-1}}{Emp_{j,T-1}}}{Emp_{i,T-1}}$
 - $\Delta M_{i.T}^{NUS}$: the change of China imports to high-income countries per worker in industry i in time interval T

Indiana University Bloomington O'Neill School of Public and Environmental Affairs

- Introduction
- 3 Results
- 4 Alternative Specification
- 6 Appendix

Government Variables

- Expenditure categories:
 - Infrastructure: transportation, utility (Timilsina et al., 2024)
 - Transfer: health, hospital, public welfare, housing&community
 - Consumption: police, library, etc.

Summary Statistics: Highly Populated Central Cities vs Suburbs

	Highly Populated CZs					
	C	entral Ci	ty		Suburbs	
	1990	2000	2007	1990	2000	2007
Total Revenue	\$1,699	\$1,903	\$2,333	\$972	\$1,122	\$1,265
Total tax revenue	\$505	\$597	\$714	\$284	\$371	\$453
Property tax revenue	\$275	\$307	\$365	\$171	\$211	\$249
Total Expenditure	\$1,695	\$1,957	\$2,193	\$978	\$1,120	\$1,234
Consumption	\$873	\$1,104	\$1,255	\$505	\$636	\$742
	55.8%	56.4%	61%	52.9%	56.8%	60.6%
Infrastructure	\$513	\$506	\$582	\$353	\$356	\$373
	26.8%	25.9%	24%	34.8%	31.8%	30.1%
Total Debt Outstanding	\$2,116	\$2,269	\$2,633	\$906	\$925	\$1,076
Total Cash&Security	\$2,027	\$2,622	\$3,077	\$795	\$920	\$1,072

Summary statistics: in real term per capita (base year: 2000) or percentage %

Regression Results: Effect of Import Shocks on Local Fiscal Variables

Table 1A: Highly Populated Central Cities vs Suburbs

	(1)	(2)	(3)	(4)	(5)	(6)	
	Total	Property	Consumption	Infrastructure	Debt	Cash &	
	revenue	tax	expenditure	expenditure	Outstanding	Security	
Highly Populated Central Cities: value changes (per capita)							
Δ import values	-329.67**	-44.35**	20.89	-63.68***	-87.18	-179.58	
	(139.27)	(17.51)	(36.62)	(19.86)	(126.48)	(171.17)	
Highly Populate	d Suburbs:	value cha	nges (per capi	ta)			
Δ import values	-57.79**	-7.49	-9.29	-27.21	-72.40*	-76.74**	
	(28.86)	(7.69)	(12.65)	(18.78)	(37.68)	(37.00)	
Observations	370	370	370	370	370	370	
T-Test: $\alpha_1 = \beta_1$	Reject	Reject	Not Reject	Reject	Not Reject	Not Reject	
P value	0.028	0.0276	0.218	0.092	0.456	0.279	

Robust standard errors are in parentheses, clustering at the commuting zone level.

- Central city governments might hamper the relative competitiveness within an area in the long run. First Stage
 - Central cities: infrastructure expenditure ↓
 - Suburbs: cash&security ↓

Is the Inner City Boom Over?

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Highly populated CZs: top quartile CZs

Regression Results: Effect of Import Shocks on Local Fiscal Variables

Table 1B: Highly Populated Central Cities vs Suburbs with county level shock

	(1)	(2)	(3)	(4)	(5)	(6)
	Total	Property	Consumption	Infrastructure	Debt	Cash &
	revenue	tax	expenditure	expenditure	Outstanding	Security
Highly Populate	d Central Ci	ities: value	changes (per o	capita)		
∆ import values	-121.312**	-16.564**	0.673	-22.932***	-32.851	-121.340*
	(53.03)	(6.98)	(18.702)	(7.75)	(55.743)	(65.733)
Highly Populate	d Suburbs:	value chang	es (per capita)		
∆ import values	-14.964*	-3.88	-12.090**	-3.75	-17.428	-29.922*
	(8.433)	(2.79)	(5.73)	(4.56)	(14.894)	(16.085)
Observations	370	370	370	370	370	370
T-Test: $\alpha_1 = \beta_1$	Reject	Reject	Not Reject	Reject	Not Reject	Reject
P value	0.024	0.046	0.257	0.016	0.394	0.0088

Robust standard errors are in parentheses, clustering at the commuting zone level.

- Central city governments might hamper the relative competitiveness within an area in the long run. First Stage
 - Central cities: infrastructure expenditure ↓
 - Suburbs: cash&security ↓

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Highly populated CZs: top quartile CZs

Regression Results: Effect of Import Shocks on Local Fiscal Variables

Table 2: Highly Populated CZs vs Less Populated CZs

(1)	(2)	(3)	(4)	(5)	(6)		
Total	Property	Consumption	Infrastructure	Debt	Cash &		
revenue	tax	expenditure	expenditure	Outstanding	Security		
Highly Populated Central Cities: value changes (per capita)							
-329.67**	-44.35**	20.89	-63.68***	-87.18	-179.58		
(139.27)	(17.51)	(36.62)	(19.86)	(126.48)	(171.17)		
370	370	370	370	370	370		
Central Cit	ies: value	changes (per o	capita)				
-22.84	-5.90	-33.37*	-12.47**	-204.39	-242.27		
(59.86)	(3.76)	(18.59)	(14.03)	(209.13)	(216.29)		
1,048	1,048	1,048	1,048	1,048	1,048		
Reject	Reject	Reject	Reject	Not Reject	Not Reject		
	Total revenue d Central (-329.67** (139.27) 370 Central Cit -22.84 (59.86) 1,048	Total property revenue tax d d Central Cities: value -329.67** -44.35** (139.27) (17.51) 370 Central Cities: value -22.84 -5.90 (59.86) (3.76) 1,048 1,048	Total revenue Property tax Consumption expenditure tax d Central Cities: value changes (per 329,67** -44,35** 20,89 (139,27) (17.51) (36.62) 370 370 370 Central Cities: value changes (per c-22.84 -5.90 -33.37* (59.86) (3.76) (18.59) 1,048 1,048 1,048	Total revenue Property tax Consumption expenditure Infrastructure expenditure d Central Cities: value changes (per capita) -329.67** -44.35** 20.89 -63.68*** -63.68*** (139.27) (17.51) (36.62) (19.86) 370 370 370 370 370 Central Cities: value changes (per capita) -22.84 -5.90 -33.37* -12.47** -12.47** (59.86) (3.76) (18.59) (14.03) 1,048 1,048 1,048 1,048	Total revenue Property tax Consumption expenditure Infrastructure vexpenditure Debt Outstanding outstanding d Central Cities: value changes (per capita) -87.18 -329.67** -44.35** 20.89 -63.68** -87.18 (139.27) (17.51) (36.62) (19.86) (126.48) 370 370 370 370 370 Central Cities: value changes (per capita) -22.84 -5.90 -33.37* -12.47** -204.39 (59.86) (3.76) (18.59) (14.03) (209.13) 1,048 1,048 1,048 1,048 1,048		

Robust standard errors are in parentheses, clustering at the commuting zone level.

Highly populated CZs: top quartile CZs

- Highly populated CZs central cities: infra expense \$\perp\$
- Less populated CZs central cities: consumption and infra expense \downarrow
- Tiebout competition in highly populated CZs: not cutting consumption expense

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Regression Results: Effect of Import Shocks on Local Fiscal Variables

Table 3: Highly Populated Special and School Districts

		0 ,						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
	Total	Intergovt.	Total	Property	Total	Consumption	Infrastructure	
	revenue	transfer aid	taxes	taxes	expenditure	expenditure	expenditure	
Highly Populated Special Districts: value changes (per capita)								
Δ import values	-1.24	-11.61	-4.49	-2.83	-17.84	-18.53	-2.32	
	(21.07)	(10.97)	(5.23)	(2.46)	(19.41)	(15.06)	(8.35)	
Highly Populate	d School	Districts: va	lue chang	ges (per ca	apita)			
Δ import values	12.90	8.60	5.74	6.38	1.53	1.61	-	
	(22.74)	(15.52)	(13.14)	(12.83)	(19.54)	(20.52)	-	
Observations	370	370	370	370	370	370	370	
	510	510	5.0	570	510	510	510	

Robust standard errors are in parentheses, clustering at the commuting zone level,

Single-purpose local governments: not respond to import shocks

^{*} p < 0.10. ** p < 0.05. *** p < 0.01Highly populated CZs: top quartile CZs

- Introduction

- 4 Alternative Specification
- 6 Appendix

Decline in Manufacturing Industries in Highly Populated CZs

- Local labor markets experienced a relative decline in employment and earnings when China joined WTO (Autor et al. 2013)
- The legend indicates values for bottom four quintiles and top two deciles
- Employment shock: changes in %

Alternative Empirical Strategy Using Bartik IV

$$\Delta Y_{i,T}^{City} = \gamma_T + \alpha_1 \Delta Manuf_{i,T} + \mathbf{X}'_{i,T} \alpha_2 + \epsilon_{iT}$$
 (3)

$$\Delta Y_{i,T}^{Sub} = \gamma_t + \frac{\beta_1}{\Delta} \Delta Manuf_{i,T} + \mathbf{X}'_{i,T}\beta_2 + \varepsilon_{iT}$$
 (4)

- $\Delta Y_{i,T}$: Δ Local fiscal variables in CZ **i** over time interval **T**
- $\Delta Manuf_{i,T}$: weighted manuf. employment growth in CZ i over time T
- $X_{i,T}$: regional control variables, start-of-period demographic characteristics in CZ i
- γ_T: time fixed effects
- T: time interval, 1990-2000 and 2000-2007

Bartik IV strategy

- Endogeneity problem
- Bartik IV: local industry shares and national industry growth rates (Goldsmith-Pinkham, 2020)
 - First stage: $\Delta Manuf_{i,T} = \tau_T + \gamma \Delta B_{i,T} + \eta_{iT}$
 - Bartik IV: $\Delta B_{i,T} = \sum_{i} g_{i,T} \frac{Emp_{i,j,T-1}}{Emp_{i,T}}$
 - g_{i,T}: national industry j growth rate over time interval T
 - $\frac{Emp_{i,j,T-1}}{Emp_{i,T-1}}$: local industry **j** employment share in CZ **i**, start-of-period in time interval T-1
 - T: time interval, 1990-2000 and 2000-2007

Results: Effect of Employment Shocks on Local Fiscal Variables

Table 4A: Highly Populated Central Cities vs Suburbs							
	(1)	(2)	(3)	(4)	(5)		
	Property	Consumption	Infrastructure	Debt	Cash &		
	tax	expenditure	expenditure	Outstanding	Security		
Highly Populate	ed Central (Cities: value c	hanges (per ca	pita)			
Δ manuf.	28.78***	53.93	30.49***	85.67	168.80		
employment	(9.32)	(43.31)	(9.69)	(100.35)	(113.41)		
Highly Populate	ed Suburbs:	value change	es (per capita)				
Δ manuf.	11.004**	17.19**	11.18**	50.99*	64.57***		
employment	(4.88)	(7.89)	(5.02)	(26.46)	(25.18)		
Observations	370	370	370	370	370		
T-Test: $\alpha_1 = \beta_1$	Reject	Not Reject	Reject	Not Reject	Reject		

Robust standard errors are in parentheses, clustering at the commuting zone level.

- - Central cities: infra expense ↓
 - Suburbs: infra expense \(\tag{cash&security} \\ \)

^{*} p < 0.10, ** p < 0.05, *** p < 0.01Highly populated CZs: top quartile CZs

Results: Effect of Employment Shocks on Local Fiscal Variables

Table 4B: Highly Populated Central Cities vs Suburbs with county level shock

	(1)	(2)	(3)	(4)	(5)			
	Property	Consumption	Infrastructure	Debt	Cash &			
	tax	expenditure	expenditure	Outstanding	Security			
Highly Populated Central Cities: value changes (per capita)								
Δ manuf.	18.234***	45.715*	20.809***	28.665	135.647*			
employment	(27.86)	(27.659)	(7.370)	(60.226)	(77.775)			
Highly Populate	Highly Populated Suburbs: value changes (per capita)							
Δ manuf.	6.319***	11.018***	6.743***	24.271***	33.416***			
employment	(1.54)	(2.721)	(1.985)	(9.392)	(10.067)			
Observations	370	370	370	370	370			
T-Test: $\alpha_1 = \beta_1$	Reject	Not Reject	Reject	Not Reject	Reject			

Robust standard errors are in parentheses, clustering at the commuting zone level.

- Central cities: infra expense ↓
- Suburbs: infra expense \downarrow cash&security \downarrow

^{*} p < 0.10. ** p < 0.05. *** p < 0.01

Highly populated CZs: top quartile CZs

Results: Effect of Employment Shocks on Local Fiscal Variables

Table 5: Highly Populated Central Cities vs Suburbs (1990-2012)

	(1)	(2)	(3)	(4)	(5)
	Property	Consumption	Infrastructure	Debt	Cash &
	tax	expenditure	expenditure	Outstanding	Security
Highly Populate	d Central C	lities: value ch	anges (per cap	ita)	
Δ manuf.	19.193***	18.222	29.038***	75.066	14.919
employment	(6.476)	(21.754)	(10.430)	(56.753)	(45.442)
Highly Populate	ed Suburbs:	value changes	(per capita)		
Δ manuf.	3.842**	2.804	4.684	48.716**	41.915**
employment	(1.554)	(3.572)	(3.319)	(19.819)	(17.746)
Observations	370	370	370	370	370
T-Test: $\alpha_1 = \beta_1$	Reject	Not Reject	Reject	Not Reject	Reject

Robust standard errors are in parentheses, clustering at the commuting zone level.

- Similar results as the import shocks specification: Import Shock
 - Central cities: infra expense ↓
 - Suburbs: cash&security ↓

^{*} p < 0.10. ** p < 0.05. *** p < 0.01

Highly populated CZs: top quartile CZs

Indiana University Bloomington O'Neill School of Public and Environmental Affairs

•0

- 4 Alternative Specification
- 6 Conclusions
- 6 Appendix

- Central city and suburban local governments in highly populated CZs respond to economic shocks differently.
 - Central city governments:
 - cut infrastructure expenditure as if permanent impacts
 - planning to decline
 - Suburban governments:
 - finance with cash&security as if temporary impacts
 - recover from shocks after few years
 - **Contribution:** central cities' behavior hampers their relative competitiveness within the region in the long run
- Local governments in highly populated CZs respond to economic shocks differently than those in less populated CZs.
 - Highly populated central cities: not cutting consumption expense (Tiebout competition)

- Introduction

- 4 Alternative Specification
- 6 Appendix

Literature Review

- Urban decline and suburban growth
 - Jackson (1985); Glaeser & Gyourko (2005)
 - Baum-Snow (2007): Did highways cause suburbanization?
 - Jamie Peck (2012): Austerity urbanism: American cities under extreme economy
- Fiscal responses to shocks
 - Revenues or expenditures: Ladd & Yinger (1989); Craig & Hoang (2011); Skidmore & Scorsone (2011); Ross et al. (2015); Chernick et al. (2017); Feler & Senses (2017); Buschman & Sjoquist (2017)
 - Saving or rainy day funds: Rosengren (2018); Bautista et al. (2022)
 - Umemployment insurance: Craig & Hoang (2011); Craig et al. (2016)

First Stage Regression Results

First Stage:

Introduction

Import shock approach:

$$\Delta IS_{i,T}^{US} = \tau_T + \gamma \Delta IS_{i,T}^{NUS} + \eta_{iT}$$
• Employment shock approach:

 Employment shock approach: $\Delta Manuf_{i,T} = \tau_T + \gamma \Delta B_{i,T} + \eta_{iT}$

	(1)	(2)	(3)	(4)	(5)	(6)
	Highly populated	Less populated	Highly populated (MC)	Highly populated (NMC)	Highly populated	Less populated
	$\Delta IS_{i,T}^{US}$	$\Delta IS_{i,T}^{US}$	$\Delta IS_{c,T}^{US}$	$\Delta IS_{c,T}^{US}$	$\Delta Manuf_{i,T}$	$\Delta Manuf_{i,T}$
$\Delta IS_{i,T}^{NUS}$	0.61***	0.61***	0.42***	0.68***		
.,.	(0.12)	(0.14)	(0.11)	(0.13)		
$\Delta B_{i,T}$					0.78***	0.81***
					(0.14)	(0.12)
Observations	370	1048	370	370	370	1048
F statistic	44.32	43.20	39.98	46.07	30.47	36.28

Robust standard errors are in parentheses, clustering at the commuting zone level.

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Highly populated CZs: top quartile CZs