Operacijska istraživanja

1. predavanje: Uvod u optimizaciju. Simpleksna metoda.

Sažetak predavanja

- Razvoj operacijskih istraživanja
- Izrada matematičkog modela
- Algebra simpleksne metode
- Tablična simpleksna metoda
- Simpleksna metoda pplex alatom

Operacijska istraživanja

1. predavanje: Izrada matematičkog modela

Razvoj operacijskih istraživanja

Nastanak operacijskih istraživanja

- Industrijska revolucija
 - Upravljanje ograničenim resursima
 - Frederick Winslow Taylor
- 2. svjetski rat
 - efikasno upravljanje resursima i razvoj novih alata
 - George Dantzig linearno programiranje
- OR poboljšanja i implementacija nakon rata
 - rješavanje problema izvan vojne domene
- Veća dostupnost računala

Što su operacijska istraživanja

- znanstveni pristup donošenju odluka u uvjetima ograničenih resursa
- skup algoritama za rješavanje problema u različitim domenama
- Primjene u:
 - inženjerstvu,
 - poslovanju,
 - javnom sektoru,
 - industriji proizvodnih i uslužnih djelatnosti

Ciljevi operacijskih istraživanja

- smanjenje troškova ili ulaganja,
- povećanje prihoda ili povrata ulaganja,
- povećanje tržišnog udjela,
- upravljanje i smanjenje rizika,
- poboljšanje kvalitete,
- povećanje propusnosti dok se smanjuju kašnjenja,
- postizanje poboljšane upotrebe iz ograničenih resursa,
- pokazati izvedivost i obradivost.

Optimizacija

- Nothing happens in the universe that does not have a sense of either certain maximum or minimum.
 - L. Euler, Swiss Mathematician and Physicist, 1707–1783
- Intelligence is efficient cross-domain optimization
 - MIRI
- Intelligence measures an agent's ability to achieve goals in wide range of environments.
 - Legg and Hutter (2007)

Određivanje modela

Postulati modeliranja

- 1. Jednostavnost!
- 2. Ne prilagođavati problem tehnici rješavanja
- 3. Biti rigorozan
- 4. Validirati
- 5. Granice modela!
- 6. Korist od modeliranja
- 7. Garbage-in-garbage-out (GIGO)
- 8. Model ne nadomješta donositelja odluke

Matematika...

- Problem dizala
- OR tehnike dokazale da je čekanje dizala optimalno kratko, no ljudi su subjektivno "predugo" čekali dizalo jer im je dosadno čekati
- Rješenje problema: postavljanje ogledala ispred dizala!
- Kad ljudi promatraju sebe ili druge u ogledalu, vrijeme brže prolazi.

Operacijska istraživanja

1. predavanje: Izrada matematičkog modela

Izrada matematičkog modela

Optimizacija

Optimizacija

Elementi optimizacijskog modela

- Skup varijabli odluke
 - Opisuju "promjenjive" elemente modela čije bismo vrijednosti trebali mi odrediti procesom optimizacije
 - Njihove postavljene vrijednosti opisuju odluku koju donosimo
- Funkcija cilja (ili više njih!)
 - Opisuje kvalitetu odluke (koristeći varijable odluke) sa aspekta cilja (npr. zarada \$)
 - Omogućava usporedbe odluka i pronalazak najbolje
- Ograničenja
 - Opisuju limite našeg problema koji isključuju neke odluke (besmislene u domeni, praktično neizvedive, zabranjene...)
 - ograničenja jednakosti i nejednakosti nad varijablama odluka
 - Izvori limita: logika, fizika, zakon...

Jezik optimizacijskih modela

• Primjer matematičkog programa (sa skalarnom funkcijom cilja)

$$\max f(x)$$

$$G(x) \leq 0$$

$$H(x)=0$$

$$X \in \mathbb{R}^n$$

•
$$G: \mathbb{R}^n \rightarrow \mathbb{R}^m$$

•
$$H: \mathbb{R}^n \to \mathbb{R}^p$$

Linearni program

• Funkcija cilja i funkcije ograničenja su linearne!

 $max c^Tx$

Ax≤d

Bx=e

 $x \in \mathbb{R}^n$

• c,A,B,d,e su konstante tj. parametri modela

Primjer: problem proizvodnje

- U nekom poduzeću proizvod 1 zahtijeva proizvodne kapacitete u postrojenjima 1 i 3, a proizvod 2 treba postrojenja 2 i 3.
- Odjel marketinga je zaključio da poduzeće može prodati što više oba proizvoda koji bi se mogli proizvesti u postrojenjima.
- Međutim, oba proizvoda natječu se za isti proizvodni kapacitet u postrojenju 3, pa nije jasno koja će kombinacija dva proizvoda biti najprofitabilnija.
- Formirana je OR ekipa da prouči ovo pitanje.

OR analiza

- x_1 , broj proizvoda 1 proizvedenih tjedno
- x_2 , broj proizvoda 2 proizvedenih tjedno

- z, ukupna dobit tjedno od proizvodnje tih dvaju proizvoda
- Cilj je odabrati vrijednosti x_1 i x_2 kako bi se maksimizirala $z = 3x_1 + 5x_2$, s obzirom na ograničenja proizvodnih kapaciteta u tri postrojenja.
- Svaki proizvod 1 tjedno koristi 1 sat u postrojenju 1, dok je samo 4 sata tjedno dostupno. To se ograničenje izražava matematički prema nejednakosti $x_1 \le 4$.
- Slično tome, postrojenje 2 nameće ograničenje $2x_2 \le 12$.
- Broj potrebnih sati tjedno u postrojenju 3 za nove proizvode bio bi $3x_1 + 2x_2$, odnosno postrojenje 3 nameće ograničenje $3x_1 + 2x_2 <= 18$.

^{4.} listopada 2021.

Formulacija problema linearnog programiranja

• Problem se svodi na odabir vrijednosti x_1 i x_2 kako bi se maksimiziralo:

$$z = 3x_1 + 5x_2$$
 funkcija cilja (engl. objective function)

uz **ograničenja** (engl. constraints):

- $1x_1 + 0x_2 \le 4$
- $0x_1 + 2x_2 \le 12$
- $3x_1 + 2x_2 \le 18$
- x₁, x₂, varijable odlučivanja (engl. decision variables)
- x_1 , $x_2 \ge 0$, zahtjev nenegativnosti (engl. non-negativity restriction)

Grafičko rješenje problema

Vršne vrijednosti

Točka	X koordinata (X1)	Y koordinata (X2)	Funkcija cilja (Z)
0	0	0	0
Α	4	0	12
В	4	6	42
С	4	3	27
D	0	6	30
E	2	6	36
F	0	9	45
G	6	0	18

Model u LP formatu

```
Maximize
```

 $Z: 3 \times 1 + 5 \times 2$

Subject To

$$x1 <= 4$$

$$3 \times 1 + 2 \times 2 <= 18$$

Bounds

$$x1 >= 0$$

$$x2 >= 0$$

End

Rješenje Gurobi alatom

gurobi_cl ResultFile=prozori.sol Prozori.lp

```
Read LP format model from file Prozori.lp
Reading time = 0.00 seconds
Z: 3 rows, 2 columns, 4 nonzeros
Optimize a model with 3 rows, 2 columns and 4 nonzeros
Coefficient statistics:
 Matrix range
                  [1e+00, 3e+00]
 Objective range [3e+00, 5e+00]
 Bounds range
                  [0e+00, 0e+00]
 RHS range
                  [4e+00, 2e+01]
Presolve removed 2 rows and 0 columns
Presolve time: 0.00s
Presolved: 1 rows, 2 columns, 2 nonzeros
Iteration
            Objective
                            Primal Inf.
                                           Dual Inf.
                                                          Time
           4.5000000e+01 1.500000e+00
                                          0.000000e+00
                                                            0s
           3.6000000e+01
                           0.000000e+00
                                          0.000000e+00
Solved in 1 iterations and 0.00 seconds
Optimal objective 3.600000000e+01
Wrote result file 'prozori.sol'
```

4. listopada 2021.

prozori.sol

```
# Objective value = 36
x1 2
x2 6
```

Rješenje CBC alatom

cbc Prozori.lp solve -solu prozori.sol

```
command line - cbc Prozori.lp solve -solu prozori.sol (default strategy 1)

CoinLpIO::readLp(): Maximization problem reformulated as minimization

Presolve 1 (-2) rows, 2 (0) columns and 2 (-2) elements

0 Obj 0 Dual inf 10.499998 (2)

1 Obj -36

Optimal - objective value -36

After Postsolve, objective -36, infeasibilities - dual 0 (0), primal 0 (0)

Optimal objective -36 - 1 iterations time 0.002, Presolve 0.00

Total time (CPU seconds): 0.00 (Wallclock seconds): 0.00
```

prozori.sol

```
Optimal - objective value -36.00000000
0 x1 2 0
1 x2 6 0
```

2. primjer: Problem izrezivanja

- engl. Cutting Stock Problem
- Poduzeće mora proizvesti različite veličine proizvoda iz "beskonačno" dugog svitka (engl. raw roll) prema narudžbi potrošača.

Izrezivanje na 4 komada

- Izrezivanje na 4 različite veličine uzorka: trebamo uzorke od 9", 8", 7" i 6" iz 20"-širokog "beskonačnog" svitka, odnosno duljina svitka nije važna nego samo širina - jednodimenzionalno rezanje po širini
- Zadatak: Izrezati 511 uzoraka 9", 301 uzorak 8", 263 uzorka 7", te 383 uzoraka 6" tako da se minimiziraju gubici.
- 1. korak: definirati što je gubitak, npr. rezanje 2 x 9" daje gubitak od 2", ili 2 x 8" daje gubitak od 4".
- Potrebno je odrediti sve moguće uzorke rezanja odnosno gubitaka.

Uzorci [9" 8" 7" 6"]

- uzorak 1: [2 0 0 0], gubitak 2"
- uzorak 2: [0 2 0 0], gubitak 4"
- uzorak 3: [0 0 2 1], gubitak 0"
- uzorak 4: [0 0 0 3], gubitak 2"
- uzorak 5: [1 1 0 0], gubitak 3"

uzorak 6: [1 0 1 0], gubitak 4"

uzorak 7: [1 0 0 1], gubitak 5"

uzorak 8: [0 1 1 0], gubitak 5"

uzorak 9: [0 1 0 2], gubitak 0"

uzorak 10: [0 0 1 2], gubitak 1"

Formulacija problema

- 2. korak: definirati koliko je kojih uzoraka potrebno
- X_i, broj potrebnih uzoraka j

•
$$2X_1 + X_5 + X_6 + X_7 >= 511$$

•
$$2X_2 + X_5 + X_8 + X_9 >= 301$$

•
$$2X_3 + X_6 + X_8 + X_{10} >= 263$$

•
$$X_3 + 3X_4 + X_7 + 2X_9 + 2X_{10} >= 383$$

•
$$X_i >= 0$$

Formulacija funkcije cilja

- Ako uzmemo 1. uzorak, gubitak je 2. Ako uzmemo uzorak 2, gubitak je 4, itd.
- Dakle, cilj je minimizirati:

$$2X_1 + 4X_2 + 2X_4 + 3X_5 + 4X_6 + 5X_7 + 5X_8 + X_{10}$$

- Varijable odlučivanja ovise o tome na koji način definiramo uzorke.
- Broj varijabli odlučivanja nije fiksan, tj. za drukčiji problem je drukčiji broj mogućih uzoraka.

Terminologija linearnog programiranja (LP)

- varijable odlučivanja (engl. decision variables, i.e. things we control)
- funkcija cilja (engl. objective function): mjera performansi
- zahtjev nenegativnosti (engl. non-negativity restriction)
- ograničenja (engl. functional constraints, constraint boundaries)
- parametri (engl. parameters): konstante koje koristimo u funkciji cilja i definicijama ograničenja
- rješenje (engl. solution): bilo koji izbor vrijednosti varijabli odlučivanja
- izvedivo rješenje (engl. feasible solution): rješenje koje zadovoljava sva zadana ograničenja
- optimalno rješenje (engl. optimal solution): najbolje izvedivo rješenje

Model linearnog programiranja

• Ako su $x_1, x_2, x_3, ..., x_n$ varijable odlučivanja, maksimizirati linearnu funkciju:

$$Z = C_1 X_1 + C_2 X_2 + C_3 X_3 + ... + C_n X_n$$

s obzirom na ograničenja:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + ... + a_{1n}x_n \le b_1$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + ... + a_{2n}x_n \le b_2$
...
 $a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + ... + a_{mn}x_n \le b_m$

gdje sua_{ij}, b_i, c_jzadanekonstante, te $x_j \ge 0$

Kompaktniji prikaz LP modela

maksimizirati:

$$Z = \sum_{j=1}^{n} c_j x_j$$

s obzirom na ograničenja:

- $\sum_{j=1}^{n} a_{ij} x_j \le b_i, i \in [1, m]$
- $x_j \ge 0$, $\forall j$
- n nenegativnih strukturnih varijabli
- m nejednadžbi tipa ≤

Definicije

- **Konveksni skup** skup $S \subset \mathbb{R}^n$ ako za svaki x,y ϵ S i svaki λ ϵ [0,1] imamo da $\lambda x + (1 \lambda)y \epsilon S$.
- Konveksna funcija funkcija čiji je epigraf (skup točaka na grafu funkcije ili iznad njega) konveksan skup.
- Konveksna optimizacija minimiziranje konveksnih funkcija na konveksnim skupovima
- Poliedar skup točaka koji može biti opisan u obliku {x∈Rⁿ | Ax≥b}, gdje je A m×n matrica i gdje je b vektor u R^m
 - svaki poliedar je konveksan skup
 - n-dimenzionalni poliedar naziva se politop

Operacijska istraživanja 1. predavanje: Simpleksna metoda

Algebra simpleksne metode

Primjer proizvodnje

- poduzeće uvodi u proizvodnju dva nova proizvoda
 - proizvod 1
 - jedinična zarada po komadu je \$3
 - proizvod 2
 - jedinična zarada po komadu je \$5

Vrijeme proizvodnje potrebno po jedinici proizvoda				
postrojenje	proizvod 1	Proizvod 2	raspoloživost	
1	1h	0h	4h	
2	0h	2h	12h	
3	3h	2h	18h	

Formulacija problema linearnog programiranja

• Problem se svodi na odabir vrijednosti x_1 i x_2 kako bi se maksimiziralo:

$$Z = 3x_1 + 5x_2$$
 funkcija cilja

s obzirom na ograničenja:

•
$$1x_1 + 0x_2 \le 4$$

•
$$0x_1 + 2x_2 \le 12$$

•
$$3x_1 + 2x_2 \le 18$$

- x₁, x₂, varijable odlučivanja
- $x_1, x_2 \ge 0$, zahtjev nenegativnosti

Grafičko rješavanje

- područje izvedivosti (engl. feasible region)
- vršna rješenja (engl. Corner-Point solutions
- izvediva vršna rješenja (engl. Corner-Point Feasible (CPF) solutions)
- susjedna rješenja (engl. adjacent CPF solutions)
- bridovi izvedivog područja (engl. edges of the feasible region)

Definicije

- Aktivno ograničenje ako vektor x zadovoljava a_i^Tx=b_i za neko
 ograničenje (jednakosti ili nejednakosti) onda je to ograničenje aktivno u x
- Bazično rješenje U kontekstu poliedra P, definiranog jednakostima i nejednakostima. Vektor x∈Rⁿ je bazično rješenje ako:
 - Sva ograničenja jednakosti su aktivna
 - Među svim ograničenjima aktivnima u \mathbf{x} , ima njih n linearno nezavisnih
- Izvedivo bazično rješenje bazično rješenje koje zadovoljava sva ograničenja
- Vršno rješenje
 ⇔ bazično rješenje
- Izvedivo vršno rješenje (CPF)

 izvedivo bazično rješenje

Simpleksna metoda

- algebarska metoda
- geometrijska interpretacija
- test optimalnosti simpleksa:

Ako od trenutno izvedivog vršnog rješenja (engl. CPF solution) nema boljeg susjednog rješenja, onda ono mora biti optimalno rješenje.

- ako je moguće, uzeti ishodište za inicijalno CPF rješenje
- uvijek se kretati prema susjednim rješenjima

Iterativna procedura

Postupak rješavanja primjera

- inicijalno CPF rješenje
- test optimalnosti
- ako rješenje nije optimalno, prijeći na sljedeće bolje CPF rješenje:
 - uzeti u obzir bridove koji proizlaze iz trenutnog CPF
 - kretati se bridom koji najviše povećava Z
 - zaustaviti se na prvom ograničenju
 - riješiti presjecište novih ograničenja
 - ponoviti test optimalnosti

Pretpostavke metode

- sva ograničenja (engl. constraints) su oblika ≤
- sve vrijednosti desne strane (engl. right-hand-side values), b_j, j=1, ...,m su pozitivne
- kasnije ćemo razmotriti i druge moguće oblike ograničenja

Standardna forma poliedara

- Simpleksna metoda koristi ovu formu za efikasne izračune
- Poliedar u standardnoj formi $P\{x \in \mathbb{R}^n \mid Ax = b, x \ge 0\}$
 - A je matrica m×n
 - osim ako je posebno naznačeno, pretpostavlja se rang(A)=m, tj. m≤n
- Bazično rješenje u standarnoj formi
 - Bazično rješenje x mora imati n aktivnih ograničenja:
 - m ograničenja jednakosti i (n-m) ograničenja nejednakosti
 - m indeksa B(1),....,B(m) čine skup bazičnih indeksa
 - Stupci $A_{B(1)}$,..., $A_{B(m)}$ linearno nezavisni -> mxm invertibilna podmatrica
 - $-x_{B(1)},...,x_{B(m)}$ se nazivaju bazične varijable odluke
 - Ako i nije iz $\{B(1),...,B(m)\}$, onda je $x_i=0$
 - -Te se varijable nazivaju nebazične varijable odluke

Prošireni oblik modela

Najprije se nejednakosti ograničenja preobliče u jednakosti dodavanjem, tzv. dopunskih varijabli (engl. slack variables).

Originalni oblik

max.
$$3x_1 + 5x_2$$

s obzirom na

$$x_1 <= 4$$

$$2x_2 \le 12$$

$$3x_1 + 2x_2 \le 18$$

$$x_1, x_2 >= 0$$

Prošireni oblik

max.
$$3x_1 + 5x_2$$

s obzirom na:

$$x_1 + s_1 = 4$$

 $2x_2 + s_2 = 12$
 $3x_1 + 2x_2 + s_3 = 18$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

Bazična i bazična izvediva rješenja (0,9,4,-6,0)(0,6,4,0,6)(2,6,2,0,0)(4,6,0,0,-6)(2,3,2,6,6)(4,3,0,6,0)(0,2,4,8,14)(4,0,0,12,6)(6,0,-2,12,0)(0,0,4,12,18)4. listopada 2021.

- prošireno rješenje (engl. augmented solution)
- bazično neizvedivo rješenje (engl. basic infeasible solution)
- bazično izvedivo rješenje (engl. basic feasible solution, BFS)
- nebazično izvedivo rješenje (engl. nonbasic feasible solution)

X

Bazična i nebazična rješenja i baza

- u LP problemima, uobičajeno imamo broj varijabli > broj jednadžbi
- razlika su, tzv. "stupnjevi slobode" (engl. degrees of freedom, df)
- df varijabli postavlja se na "proizvoljnu vrijednost" (0 za simpleksnu metodu)
- Varijable s vrijednošću 0 zovu se nebazičnima (engl. nonbasic variables), a ostale, koje se računaju, zovu se bazičnima (engl. basic variables).
- Baza (bazičnog rješenja) je skup bazičnih varijabli (engl. set of basic variables).
- Ako su sve bazične varijable ≥ 0, rješenje je bazično izvedivo (BFS).
- Za dva bazična rješnja, ako im se baze razlikuju samo u jednoj varijabli, kažemo da su susjedna (engl. adjacent).

Primjer baze

max.
$$Z = 3x_1 + 5x_2$$

S obzirom na x_1 +s₁ = 4
 $2x_2$ +s₂ = 12
 $3x_1 + 2x_2$ +s₃ = 18
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

- Da je baza (x₁,x₂,s₁), (x₁,x₂,s₂) ili (s₁,s₂,s₃), koja su BFS rješenja?
- Koji parovi rješenja su susjedni?

Inicijalizacija simpleksne metode

max.
$$Z = 3x_1 + 5x_2$$

S obzirom na x_1 $+s_1$ $= 4$
 $2x_2$ $+s_2$ $= 12$
 $3x_1 + 2x_2$ $+s_3 = 18$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

- pronaći inicijalno BFS rješenje (engl. initial basic feasible solution)
- poći od ključnog koncepta:
 "Ako je moguće, uzeti ishodište kao inicijalno CPF rješenje."
- što je ekvivalentno sljedećem: Izabrati originalne (strukturne) varijable kao nebazične (x_i=0, i=1, ..., n), a dopunske varijable (engl. slack variables) kao bazične (s_j=b_j, j=1, ..., m).

Test optimalnosti

max.
$$Z = 3x_1 + 5x_2$$

S obzirom na x_1 +s₁ = 4
 $2x_2$ +s₂ = 12
 $3x_1 + 2x_2$ +s₃ = 18
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

- Je li neko susjedno BFS rješenje bolje od trenutnog?
- napisati Z pomoću nebazičnih varijabli i istražiti mogućnost povećanja Z
- odrediti tekuće nebazične varijable i pripadajuću Z
- optimalno?

Smjer pomicanja

max.
$$Z = 3x_1 + 5x_2$$

S obzirom na x_1 +s₁ = 4
 $2x_2$ +s₂ = 12
 $3x_1 + 2x_2$ +s₃ = 18
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

- odabir ulazne varijable (engl. entering variable) u bazu
- npr. odabir smjera najstrmijeg uspona (engl. steepest ascent)
 - $-x_1$: brzina porasta Z=3
 - $-x_2$: brzina porasta Z = 5
- ulazna bazična varijabla = x₂

1. korak: koliko daleko otići, tj. gdje stati

max.
$$Z = 3x_1 + 5x_2$$

S obzirom na
$$x_1$$
 +s₁ = 4
 $2x_2$ +s₂ = 12
 $3x_1 + 2x_2$ +s₃ = 18

$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

- izabrati izlaznu variablu (engl. leaving variable) koja napušta bazu
- povećanje vrijednosti x_2 smanjuje vrijednosti bazičnih varijabli

test minimalnog porasta

- ograničenje (1): $s_1 = 4 x_1$ → max. $x_2 = 4/0 = \infty$
- ograničenje (2): $s_2 = 12 2x_2$ → max. $x_2 = 6$
- ograničenje (3): s₃ = 18 3x₁ 2x₂ → max. x₂ = 9
- izlazna bazična varijabla = s₂

2. korak

$$s_1 = 4 - x_1$$

 $x_2 = \frac{1}{2}(12 - s_2) = 6 - \frac{1}{2}s_2$
 $s_3 = 18 - 3x_1 - 2x_2 = 18 - 3x_1 - 2(6 - \frac{1}{2}s_2) = 6 - 3x_1 + s_2$
 $Z = 3x_1 + 5x_2 = 3x_1 + 5(6 - \frac{1}{2}s_2) = 30 + 3x_1 - \frac{5}{2}s_2$

- max. Z je trenutno 30, a može se povećati porastom x₁
- dakle, u bazu ulazi x₁
- test minimalnog porasta
 - ograničenje (1): s₁ = 4 x₁ → max. x₁ = 4
 - ograničenje (2): x₂ = 6 1/2s₂ → max. x₁ = 6/0 = ∞
 - ograničenje (3): $s_3 = 6 3x_1 + s_2$ → max. $x_1 = 2$
- izlazna bazična varijabla = s₃

3. korak

$$x_1 = 1/3 (6 + s_2 - s_3) = 2 + 1/3s_2 - 1/3s_3$$

 $x_2 = 6 - 1/2 s_2$
 $s_1 = 4 - (2 + 1/3s_2 - 1/3s_3) = 2 - 1/3s_2 + 1/3s_3$
 $Z = 3x_1 + 5x_2 = 3(2 + 1/3s_2 - 1/3s_3) + 5(6 - 1/2 s_2) = 36 - 3/2s_2 - s_3$

- · Z se više ne može povećavati pa je postignut optimum.
- optimalna točka je (2, 6, 2, 0, 0), Z = 36

Operacijska istraživanja 2. predavanje: Simpleksna metoda

Tablična simpleksna metoda

Simpleksna metoda u tabličnom obliku

- koristi se radi lakšeg obavljanja potrebnih proračuna
- zapisuju se samo osnovni podaci sustava jednadžbi u tablicu:
 - koeficijenti varijabli
 - konstante na desnoj strani
 - bazične varijable koje odgovaraju jednadžbama

Primjer

$$Z - 3x_1 - 5x_2 = 0$$
 (0)
 $x_1 + s_1 = 4$ (1)
 $2x_2 + s_2 = 12$ (2)
 $3x_1 + 2x_2 + s_3 = 18$ (3)

• učitati koeficijente u inicijalnu tablicu

Z	x ₁	X ₂	s ₁	S ₂	S ₃	rhs	basic	ratio
1	-3	-5	0	0	0	0	z = 0	
0	1	0	1	0	0	4	$s_1 = 4$	
0	0	2	0	Ī	0	12	$s_2 = 12$	
0	3	2	0	0	1	18	$s_3 = 18$	

1. iteracija: ratio test

Z	X ₁	X ₂	s ₁	s ₂	S ₃	rhs	basic	ratio
1	-3	-5	0	0	0	0	z = 0	
0	1	0	1	0	0	4	$s_1 = 4$	4/0
0	0	2	0	1	0	12	s ₂ = 12	12/2=6
0	3	2	0	0	1	18	s ₃ = 18	18/2=9

- test optimalnosti
- ulazna varijabla (engl. steepest ascent) pivot stupac: x₂
- izlazna varijabla (engl. minimum ratio test) pivot redak: s₂

1. iteracija: Gauss - Jordanove transformacije

Z	x ₁	X ₂	s ₁	S ₂	S ₃	rhs	basic	ratio	
1	-3	-5	0	0	0	0	z = 0		$\cdot 5x_2 + z$
0	1	0	1	0	0	4	$s_1 = 4$	4/0	
0	0	2	0	1	0	12	x ₂ = 12	12/2=6	· 1/2
0	3	2	0	0	1	18	s ₃ = 18	18/2=9	$(-2)x_2 + s_3$

- pivot redak podijeli se pivot elementom: množenje s 1/2
- ostali reci se transformiraju tako da iznad i ispod pivot elementa budu nule

Nakon 1. iteracije

Z	x ₁	X ₂	s ₁	S ₂	S ₃	rhs	basic	ratio
1	-3	0	0	5/2	0	30	z = 30	
0	1	0	1	0	0	4	$s_1 = 4$	4/1
0	0	1	0	1/2	0	6	x ₂ = 6	
0	3	0	0	-1	1	6	s ₃ = 6	6/3

- test optimalnosti i ratio test
- ulazna varijabla: x₁
- izlazna varijabla: s₃

2. iteracija

Z	x ₁	X ₂	s ₁	s ₂	S ₃	rhs	basic	ratio	
1	-3	0	0	5/2	0	30	z = 30		$\cdot 3x_1 + z$
0	1	0	1	0	0	4	s ₁ = 4		$\cdot (-\mathbf{x}_1) + \mathbf{s}_1$
0	0	1	0	1/2	0	6	$x_2 = 6$		
0	3	0	0	-1	1	6	$x_1 = 6$		· 1/3

Gauss - Jordanove transformacije

Optimum

Z	x ₁	X ₂	s ₁	S ₂	S ₃	rhs	basic
1	0	0	0	3/2	1	36	z = 36
0	0	0	Ī	1/3	-1/3	2	$s_1 = 2$
0	0	1	0	1/2	0	6	x ₂ = 6
0	1	0	0	-1/3	1/3	2	$x_1 = 2$

postignut optimum

Operacijska istraživanja 2. predavanje: Simpleksna metoda

Simpleksna metoda pplex alatom

pplex alat

- pedagoška implementacija simpleksne metode
- http://andern.github.com/pplex
- Bauer, J., Bezem, M., Halle, A. "An introduction to pplex and the Simplex Method", University of Bergen, Department of Informatics, Norway, 2012.

