Macroeconomía Internacional

Francisco Roldán IMF

October 2023

The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.

Cuándo se paga la deuda?

- Defaults soberanos coinciden con
 - · Aumentos de la tasa de interés (riesgo país)
 - · Recesiones
- · Objetivo estudiar la dinámica conjunta de
 - 1. Deuda
 - 2. Tasas de interés
 - Producto
 - Cuenta corriente

Cuándo se paga la deuda?

- · Defaults soberanos coinciden con
 - Aumentos de la tasa de interés (riesgo país)
 - · Recesiones
- · Objetivo estudiar la dinámica conjunta de
 - 1. Deuda
 - 2. Tasas de interés
 - 3. Producto
 - 4. Cuenta corriente

Cuándo se paga la deuda?

- Defaults soberanos coinciden con
 - Aumentos de la tasa de interés (riesgo país)
 - Recesiones
- · Objetivo estudiar la dinámica conjunta de
 - 1. Deuda
 - 2. Tasas de interés
 - 3. Producto
 - 4. Cuenta corriente

Arellano, C. (2008): "Default Risk and Income Fluctuations in Emerging Economics," *American Economic Review*, 98, 690–712.

Por qué estudiar riesgo soberano?

No olvidar: volatilidad del consumo > volatilidad del producto

$$\mathbf{u}'(\mathbf{c}) = \beta(\mathbf{1} + \mathbf{r})\mathbb{E}\left[\mathbf{u}'(\mathbf{c}')\right]$$

- Modelos de default soberano: endogeneizar r con
 - 1. Stock de deuda
 - 2. Capacidad de repago: producto presente y futuro
 - 3. Otros:
 - · Liquidez
 - Multiplicadores fiscales
 - Doom loops entre bancos y gobierno o entre sector privado y gobierno
 - Ciclos de preferencias locales (política) y externas (actitudes frente al riesgo)

Por qué estudiar riesgo soberano?

No olvidar: volatilidad del consumo > volatilidad del producto

$$\mathbf{u}'(\mathbf{c}) = \beta(\mathbf{1} + \mathbf{r})\mathbb{E}\left[\mathbf{u}'(\mathbf{c}')\right]$$

- · Modelos de default soberano: endogeneizar r con
 - 1. Stock de deuda
 - 2. Capacidad de repago: producto presente y futuro
 - 3. Otros:
 - · Liquidez
 - Multiplicadores fiscales
 - Doom loops entre bancos y gobierno o entre sector privado y gobierno
 - · Ciclos de preferencias locales (política) y externas (actitudes frente al riesgo)

VOL. 98 NO. 3 ARELLANO: DEFAULT RISK AND INCOME FLUCTUATIONS IN EMERGING ECONOMIES 699

- 1. Problema de un agente con ingreso aleatorio y mercados incompletos
 - · Solamente un activo (deuda) libre de riesgo
 - Escritura recursiva, ecuación de Bellman
 - Encontrar la función de valor via vfi
 - Distinto de McCall: un control continuo

2. Agregar default

- · Como McCall: hay una elección entre dos opciones en cada período
- · Complicación: ahora el precio de la deuda depende de la probabilidad de default

Reinterpretar

Consumo/ahorro del agente ← Endeudamiento de la economía pequeña y abierta

- 1. Problema de un agente con ingreso aleatorio y mercados incompletos
 - · Solamente un activo (deuda) libre de riesgo
 - · Escritura recursiva, ecuación de Bellman
 - · Encontrar la función de valor via vfi
 - Distinto de McCall: un control continuo

Agregar default

- Como McCall: hay una elección entre dos opciones en cada período
- · Complicación: ahora el precio de la deuda depende de la probabilidad de default
- 3. Reinterpretar
 - Consumo/ahorro del agente ← Endeudamiento de la economía pequeña y abierta

- 1. Problema de un agente con ingreso aleatorio y mercados incompletos
 - · Solamente un activo (deuda) libre de riesgo
 - · Escritura recursiva, ecuación de Bellman
 - · Encontrar la función de valor via vfi
 - · Distinto de McCall: un control continuo

2. Agregar default

- · Como McCall: hay una elección entre dos opciones en cada período
- · Complicación: ahora el precio de la deuda depende de la probabilidad de default

Reinterpretar

Consumo/ahorro del agente ⇔ Endeudamiento de la economía pequeña y abierta

- 1. Problema de un agente con ingreso aleatorio y mercados incompletos
 - · Solamente un activo (deuda) libre de riesgo
 - · Escritura recursiva, ecuación de Bellman
 - · Encontrar la función de valor via vfi
 - Distinto de McCall: un control continuo

2. Agregar default

- · Como McCall: hay una elección entre dos opciones en cada período
- · Complicación: ahora el precio de la deuda depende de la probabilidad de default

3. Reinterpretar

· Consumo/ahorro del agente ⇔ Endeudamiento de la economía pequeña y abierta

Cuando te creen

Problema de fluctuación de ingresos

Situación

- · Un agente tiene una dotación aleatoria y_t distribuida F(y'|y)
- Preferencias: utilidad u, descuento β
- Puede comprar y vender un activo libre de riesgo b
- · Límite de deuda b

$$egin{aligned} V_0 &= \max_{c_t, b_t} \quad \mathbb{E}_0 \left[\sum_{t=0}^\infty eta^t u(c_t)
ight] \ & ext{sujeto a} \ c_t &= y_t + rac{1}{1+r} b_t - b_{t-1} \ & ext{} b_t &\leq \underline{b} \end{aligned}$$

Problema de fluctuación de ingresos

Situación

- · Un agente tiene una dotación aleatoria y_t distribuida F(y'|y)
- Preferencias: utilidad u, descuento β
- · Puede comprar y vender un activo libre de riesgo b
- · Límite de deuda b

$$egin{aligned} V_0 &= \max_{c_t, b_t} \quad \mathbb{E}_0 \left[\sum_{t=0}^\infty eta^t u(c_t)
ight] \ & ext{sujeto a } c_t = y_t + rac{1}{1+r} b_t - b_{t-1} \ & ext{} b_t \leq \underline{b} \end{aligned}$$

Ec. de Bellman

$$egin{aligned} & \mathsf{v}(b, \mathsf{y}) = \max_{c, b'} \mathsf{u}(c) + eta \mathbb{E}\left[\mathsf{v}(b', \mathsf{y}')|\mathsf{y}
ight] \ & \mathsf{sujeto} \ \mathsf{a} \quad c + b = \mathsf{y} + rac{1}{1+r}b' \ & b' \leq \underline{b} \ & \mathsf{y}' \sim \mathsf{F}(\cdot|\mathsf{y}) \end{aligned}$$

Restricción de presupuesto

$$c + b = y + \frac{1}{1+r}b'$$

$$b = y - c + \frac{1}{1+r}b'$$

$$b = y - c + \frac{1}{1+r}\left(y' - c' + \frac{1}{1+r}b''\right)$$

$$b = y - c + \frac{1}{1+r}\left(y' - c'\right) + \frac{1}{(1+r)^2}b'$$

$$b = \sum_{i=0}^{\infty} \frac{y^{(i)} - c^{(i)}}{(1+r)^i}$$

Restricción de presupuesto

$$c + b = y + \frac{1}{1+r}b'$$

$$b = y - c + \frac{1}{1+r}b'$$

$$b = y - c + \frac{1}{1+r}\left(y' - c' + \frac{1}{1+r}b''\right)$$

$$b = y - c + \frac{1}{1+r}\left(y' - c'\right) + \frac{1}{(1+r)^2}b'$$

$$b = \sum_{i=0}^{\infty} \frac{y^{(i)} - c^{(i)}}{(1+r)^i}$$

Restricción de presupuesto

$$c + b = y + \frac{1}{1+r}b'$$

$$b = y - c + \frac{1}{1+r}b'$$

$$b = y - c + \frac{1}{1+r}\left(y' - c' + \frac{1}{1+r}b''\right)$$

$$b = y - c + \frac{1}{1+r}\left(y' - c'\right) + \frac{1}{(1+r)^2}b'$$

$$b = \sum_{i=0}^{\infty} \frac{y^{(i)} - c^{(i)}}{(1+r)^i}$$

Restricción de presupuesto

$$c + b = y + \frac{1}{1+r}b'$$

$$b = y - c + \frac{1}{1+r}b'$$

$$b = y - c + \frac{1}{1+r}\left(y' - c' + \frac{1}{1+r}b''\right)$$

$$b = y - c + \frac{1}{1+r}\left(y' - c'\right) + \frac{1}{(1+r)^2}b''$$

$$b = \sum_{i=0}^{\infty} \frac{y^{(i)} - c^{(i)}}{(1+r)^i}$$

Restricción de presupuesto

$$c + b = y + \frac{1}{1+r}b'$$

$$b = y - c + \frac{1}{1+r}b'$$

$$b = y - c + \frac{1}{1+r}\left(y' - c' + \frac{1}{1+r}b''\right)$$

$$b = y - c + \frac{1}{1+r}\left(y' - c'\right) + \frac{1}{(1+r)^2}b''$$

$$b = \sum_{i=0}^{\infty} \frac{y^{(i)} - c^{(i)}}{(1+r)^i}$$

Deuda libre de riesgo

Cuando no te creen (y hacen bien)

Dos cambios

Para agregar default,

· Especificar qué pasa cuando el agente decide no pagar la deuda

$$y^d = h(y) = \min \{ y, \ 0.969 \mathbb{E}[y] \}$$

Exclusión de mercados de capital *por un tiempo* $\rightarrow a$

· Especificar el precio de la deuda

$$q(b',y) = rac{1}{1+r} \mathbb{E}\left[1 - d(b',y')|y
ight]$$

Dos cambios

Para agregar default,

· Especificar qué pasa cuando el agente decide no pagar la deuda

$$y^d = h(y) = \min \{y, \ 0.969\mathbb{E}[y]\}$$

Exclusión de mercados de capital por un tiempo $\to \psi$

· Especificar el precio de la deuda

$$q(b',y) = rac{1}{1+r} \mathbb{E}\left[1 - d(b',y')|y
ight]$$

Dos cambios

Para agregar default,

· Especificar qué pasa cuando el agente decide no pagar la deuda

$$y^d = h(y) = \min \{y, \ 0.969\mathbb{E}[y]\}$$

Exclusión de mercados de capital por un tiempo $\rightarrow \psi$

· Especificar el precio de la deuda

$$q(b',y) = \frac{1}{1+r} \mathbb{E} [1 - d(b',y')|y]$$

Bellmans

Elegir default o repago

$$\mathcal{V}(b,y) = \max\left\{v^{\mathsf{R}}(b,y),v^{\mathsf{D}}(y)
ight\}$$

En repago, elegir emisión

$$egin{aligned} \mathbf{v}^{ extsf{R}}(b, \mathbf{y}) &= \max_{c, b'} \mathbf{u}(c) + eta \mathbb{E}\left[\mathcal{V}(b', \mathbf{y}') | \mathbf{y}
ight] \ \end{aligned}$$
sujeto a $c + b = \mathbf{y} + q(b', \mathbf{y}) b'$

· En default, nada que elegir

$$v^{D}(y) = u(h(y)) + \beta \mathbb{E} \left[\psi \mathcal{V}(0, y') + (1 - \psi) v^{D}(y') | y \right]$$

Bellmans

· Elegir default o repago

$$\mathcal{V}(b,y) = \max \left\{ v^{\mathsf{R}}(b,y), v^{\mathsf{D}}(y) \right\}$$

En repago, elegir emisión

$$v^{R}(b,y) = \max_{c,b'} u(c) + \beta \mathbb{E} \left[\mathcal{V}(b',y') | y \right]$$

sujeto a $c+b=y+q(b',y)b'$

En default, nada que elegir

$$v^{D}(y) = u(h(y)) + \beta \mathbb{E}\left[\psi \mathcal{V}(0, y') + (1 - \psi)v^{D}(y')|y\right]$$

Bellmans

· Elegir default o repago

$$\mathcal{V}(b,y) = \max \left\{ v^{\mathsf{R}}(b,y), v^{\mathsf{D}}(y) \right\}$$

En repago, elegir emisión

$$\mathbf{v}^{R}(b, \mathbf{y}) = \max_{c, b'} u(c) + \beta \mathbb{E} \left[\mathcal{V}(b', \mathbf{y}') | \mathbf{y}
ight]$$

sujeto a $c + b = \mathbf{y} + q(b', \mathbf{y})b'$

· En default, nada que elegir

$$v^{\mathsf{D}}(y) = \mathsf{u}(\mathsf{h}(y)) + \beta \mathbb{E}\left[\psi \mathcal{V}(\mathsf{0}, \mathsf{y}') + (\mathbf{1} - \psi) v^{\mathsf{D}}(\mathsf{y}') | \mathsf{y}\right]$$

Envolventes!

Opción 1

$$\mathcal{V}(b,y) = \max\left\{v^{\mathsf{R}}(b,y),v^{\mathsf{D}}(y)
ight\}$$

 \cdot Opción 2 (si los ϵ_i tienen distribución valor extremo tipo 1

$$egin{aligned} \mathcal{V}(b, \mathbf{y}) &= \max \left\{ \mathbf{v}^{\mathrm{R}}(b, \mathbf{y}) + \epsilon_{\mathrm{R}}, \mathbf{v}^{\mathrm{D}}(\mathbf{y}) + \epsilon_{\mathrm{D}}
ight\} \ \mathcal{P}(b, \mathbf{y}) &= rac{\exp(\mathbf{v}^{\mathrm{D}}(\mathbf{y})/\chi)}{\exp(\mathbf{v}^{\mathrm{R}}(b, \mathbf{y})/\chi) + \exp(\mathbf{v}^{\mathrm{D}}(\mathbf{y})/\chi)} \end{aligned}$$

• Opción 1 = Opción 2 con $\chi=0$ y por lo tanto $\mathcal{P}(b,\mathsf{y})=1_{\mathsf{v}^\mathsf{D}(\mathsf{y})>\mathsf{v}^\mathsf{R}(b,\mathsf{y})}$

Envolventes!

Opción 1

$$\mathcal{V}(b,y) = \max\left\{v^{\mathsf{R}}(b,y),v^{\mathsf{D}}(y)
ight\}$$

· Opción 2 (si los ϵ_i tienen distribución valor extremo tipo 1)

$$\mathcal{V}(b, y) = \max \left\{ v^{R}(b, y) + \epsilon_{R}, v^{D}(y) + \epsilon_{D} \right\}$$

$$\mathcal{P}(b, y) = \frac{\exp(v^{D}(y)/\chi)}{\exp(v^{R}(b, y)/\chi) + \exp(v^{D}(y)/\chi)}$$

 $\,\cdot\,\,$ Opción 1 = Opción 2 con $\chi=0$ y por lo tanto $\mathcal{P}(b,\mathsf{y})=1_{\mathsf{v}^\mathsf{D}(\mathsf{y})>\mathsf{v}^\mathsf{R}(b,\mathsf{y})}$

Opción 1

$$\mathcal{V}(b,y) = \max\left\{v^{\mathsf{R}}(b,y),v^{\mathsf{D}}(y)
ight\}$$

· Opción 2 (si los ϵ_i tienen distribución valor extremo tipo 1)

$$\mathcal{V}(b, y) = \max \left\{ v^{R}(b, y) + \epsilon_{R}, v^{D}(y) + \epsilon_{D} \right\}$$

$$\mathcal{P}(b, y) = \frac{\exp(v^{D}(y)/\chi)}{\exp(v^{R}(b, y)/\chi) + \exp(v^{D}(y)/\chi)}$$

• Opción 1 = Opción 2 con $\chi=0$ y por lo tanto $\mathcal{P}(b,y)=1_{v^{\mathsf{D}}(y)>v^{\mathsf{R}}(b,y)}$

Estrategias de resolución

$$\mathcal{V}(b, y) = \chi \log \left(\exp(v^{D}(y)/\chi) + \exp(v^{R}(b, y)/\chi) \right)$$
$$q(b', y) = \frac{1}{1+r} \mathbb{E} \left[(1 - d(b', y')) \mid y \right]$$

Estilo equilibrio genera

- · Dada una función q(b', y), iterar sobre la función de valor hasta que converja v
- Actualizar q usando las políticas de default
- · Iterar hasta que converja q

Estilo teoría de juegos

- · Inicializar v, q en un período T lejano
- Encontrar q consistentes con la politica implicita en v (una vez!)
- Actualizar v dado q (una vez!)
- 🕟 lterar 'hacia el pasado' hasta convergencia (de todo junto)
- ... Equilibrio recursivo (perfecto de Markov) con estrategias indexadas por (b, y, d)

Estrategias de resolución

$$\mathcal{V}(b, y) = \chi \log \left(\exp(v^{D}(y)/\chi) + \exp(v^{R}(b, y)/\chi) \right)$$
$$q(b', y) = \frac{1}{1+r} \mathbb{E} \left[(1 - d(b', y')) \mid y \right]$$

Estilo equilibrio general

- Dada una función $q(b^\prime,y)$, iterar sobre la función de valor hasta que converja v
- · Actualizar q usando las políticas de default
- · Iterar hasta que converja q

· Estilo teoría de juegos

- · Inicializar v, q en un período T lejano
- \cdot Encontrar q consistentes con la política implícita en v (una vez!)
- Actualizar v dado q (una vez!)
- · Iterar 'hacia el pasado' hasta convergencia (de todo junto)
- \dots Equilibrio recursivo (perfecto de Markov) con estrategias indexadas por (b,y,d)

Deuda con riesgo

— y=0.885 — y=0.926 — y=0.97 — y=1.02 — y=1.06 — y=1.11

y=1.17

Cierre

Cierre

Vimos

- · Problema de fluctuación de ingresos
 - · Interpolar la función de valor
 - Un control continuo
- Agregar default
 - Costos de default
 - · Precio de la deuda
 - Envolventes

La vez que viene / en códigos

- Deuda de largo plazo
 - Cupones geométricos
 - Haircuts parciales
- Simulado
 - Distribuciones ergódicas
 - · Ratios de deuda en equilibrio
 - Frecuencia de default

Cierre

Vimos

- · Problema de fluctuación de ingresos
 - · Interpolar la función de valor
 - Un control continuo
- Agregar default
 - Costos de default
 - · Precio de la deuda
 - Envolventes

La vez que viene / en códigos

- · Deuda de largo plazo
 - Cupones geométricos
 - Haircuts parciales
- Simulador
 - Distribuciones ergódicas
 - · Ratios de deuda en equilibrio
 - · Frecuencia de default