Algorithm Design

EE, IITBSSP

Tanmay Joshi Mentors: Aravind, Millen 12/06/2021

Overview

Project Aim:

To extract Star centroids from an image taken in outer space.

Details:

- Language used: Python
- Sequential algorithm used

Constraint

Can only travel through the image once

Weekly Progress

Prepared a flowchart, learnt basics of python

Week 1

Learnt about terms like:

•	Sequential	algorithms
---	------------	------------

•	Images as arrays
---	------------------

- 4-connectedness
- Centroids

Week 2:

Made a flowchart.

Started implementing the algorithm.

Flowchart

Week 3:

Implemented the algorithm on python

Testing and debugging!!!

Code with outputs

Code

The algorithm, explained

- Will add a 1-pixel wide padding to the image.
- Will travel through the image in a neighbour-to-neighbour pixel sequence, i.e without abrupt jumps.
- Sequence used: Left to right in alternative rows, next row when an extreme reached.

The algorithm, explained

- For each pixel with a non-zero value, check 4-connected neighbours which have been travelled through.
- Labelling the groups of pixels.
- Extract data into separate arrays.

The algorithm, explained

- Clashing of tags/labels!
- A simple example:

 Solution: Maintain linked arrays with labels which clash and use them to make suitable changes in the extracted data.

Expected output:

- Number of pixels of each star
- Net intensity of each star
- Sum of x-coordinates and y-coordinates of pixels, of each star

Additional output generated:
Plotted the original image and the centroids extracted by the code.

Obstacles encountered

Fault in logic!

Spotted a logical error in the clashing-elimination part of the flowchart.

Problem: Was missing certain indirect clashings.

Solution:

Maintained another 2D array each row of which will have all clashed identities corresponding to one star

Array 1: [1 2 1 3 4] Array 2: [3 5 6 7 8]

Example

The result

Testcase: Testcase

The original image:

Output:

Final remarks

The project

1. As we have extracted the relevant data, centroids have also been determined.

I have plotted them for a visual output.

2. The problem statement asked for an algorithm for an input image with only binary values

I have made it general, not just for binary values

3. This algorithm considers 4-connectedness only.

Personal Gains

- 1. Learnt about star centroid extraction process, a few things about algorithms
- 2. Learnt python basics and implemented the code in an new language.
- 3. Had fun while coding and stress while debugging:)

Feedback

- 1. The mini-project has overall been an amazing learning experience. Met new people, got to learn some things, and had fun.
- 2. Besides the actual project, the presentations in general meetings; and subsystem meetings also were a new thing.
- 3. Thanks to my mentor Aravind for clearing my doubts and going over my code and helping me throughout the mini-project. Also thanks to Millen for providing guidance while debugging.
- 4. Hope I get to do more of such work for SSP.

Thank you