Instituto Superior de Engenharia de Lisboa LEIC, LEIRT e LEIM

Segurança Informática

Época de Recurso, Semestre de Inverno, 2023/24-23 de janeiro de 2024

Duração: 2 horas

- Respostas às questões 4 a 9 em grupos de folhas diferentes, como indicado no enunciado
- Todas as respostas às perguntas de desenvolvimento têm de ser justificadas. Valoriza-se a objetividade das respostas.
- Nas questões 1, 2 e 3, indique V, F, ou deixe a caixa em branco se não tiver a certeza que a afirmação é verdadeira ou falsa. A indicação errada desconta 50% da cotação atribuída à afirmação.

Número: _	Nome:
1. (2) Consid	ere os 4 esquemas criptográficos abordados:
meno	Considerando os usos modernos típicos, as chaves simétricas têm uma quantidade de bits r do que as chaves assimétricas.
mens	Os esquemas de MAC e de assinatura digital produzem marcas cuja dimensão depende da agem a autenticar.
paddi	Na cifra simétrica quando se usa um modo de operação em bloco é preciso um algoritmo de ng .
assina	Os esquemas de assinatura digital não garantem o não-repúdio de uma mensagem previamente ada.
2. (2) No cor	atexto dos certificados X.509 e da biblioteca JCA:
semp	Dois certificados A e B, se tiverem o mesmo nome de sujeito (ex: CN=www.isel.pt) têm re a mesma assinatura.
onde	A classe Mac, que implementa o esquema MAC, recebe como parâmetro um certificado de obtém a chave pública para gerar a marca.
na au	A classe <i>TrustStore</i> é utilizada para armazenar certificados de raiz, que podem ser utilizados tenticação do servidor numa ligação TLS.
R par	Tendo o certificado R emitido o certificado F, isso significa que foi usada a chave pública de ra cifrar alguma parte do certificado F.
	texto dos modelos de controlo de acessos e dos protocolos O Auth 2 e OpenID Connect no fluxo $tion\ Code\ Grant$:
do pa	O protocolo OpendID Connect tem semelhanças com o OAuth2, nomeadamente nos objetivos râmetro $scope$ e do $access\ token$.
OAut	O parâmetro <i>scope</i> deve, no mínimo, incluir o valor <i>oauth2</i> quando se esteja a usar o protocolo h2.
intera	Na aplicação web desenvolvida no segundo trabalho, o controlo de acessos é feito antes da ação com o fornecedor de identidade.
perm	Uma vantagem do uso de Access Control List é que simplifica o processo de listagem das issões associadas a um objeto.

- 4. (2) No RFC 7516, parcialmente implementado no primeiro trabalho, o texto em claro é cifrado com um algoritmo simétrico e modo de operação *Galois Counter Mode* (GCM). Este sistema criptográfico deve ser complementado com um esquema que garanta autenticidade, como é o caso do MAC? Se sim, porquê, se não, de que forma a autenticidade é garantida?
- 5. (2) Considere o protocolo Transport Layer Security (TLS) e HTTP sobre TLS (HTTPS). Um browser liga-se a uma aplicação web através de HTTPS. Considerando os dois sub-protocolos do TLS, explique qual deles é responsável pela confidencialidade e autenticidade dos cookies nos pedidos e respostas HTTP.

Grupo 2_

- 6. (2) Considere a implementação de um sistema informático que permite aos utilizadores assinar digitalmente contratos em formato PDF. O sistema é composto por um programa chamado assinante que recebe como entrada o contrato e gera a assinatura do utilizador posteriormente, ambos, contrato e assinatura, são colocados num ficheiro PDF. Há outro programa, chamado verificador, que realiza a verificação dos contratos assinados pelo primeiro.
 - 6.1. Identifique uma das primitivas criptográficas utilizadas pelo sistema como parte da implementação da assinatura digital e explique o seu objetivo.
 - 6.2. Qual ou quais chaves são utilizadas pelo assinante e qual ou quais são usadas pelo verificador?
 - 6.3. Discuta a afirmação: "Os objetivos deste sistema poderiam ser igualmente atingidos se o método empregado fosse um MAC, ao invés de uma assinatura digital."
- 7. (3) Considere novamente o sistema descrito na questão anterior. Um desafio na sua implementação é a distribuição segura de chaves em particular, como o programa verificador obtém a chave correta para verificar as assinaturas geradas pelo programa assinante. Assuma que o sistema em questão utiliza uma solução baseada em Infraestrutura de Chave Pública com certificados X.509, na qual uma CA raiz CA_A certifica uma CA intermédia CA_{int} que, finalmente, emite os certificados folha.
 - 7.1. Para os propósitos do sistema, devem ser emitidos certificados folha para cada um dos utilizadores, para o programa verificador ou para o programa assinante?
 - 7.2. Seria seguro que o programa assinante anexasse também ao PDF gerado o certificado associado à chave utilizada para geração da assinatura?
 - 7.3. Qual ou quais certificados o programa verificador deve possuir no seu repositório de confiança?

Grupo 3___

- 8. (2) Considere a seguinte política definida sobre o modelo $RBAC_1$:
 - $U = \{u_1, u_2, u_3\}, R = \{r_0, r_1, r_2, r_3, r_4\}, P = \{p_1, p_2, p_3, p_4, p_5\}$
 - $RH = \{r_0 \leq r_1, r_0 \leq r_2, r_1 \leq r_3, r_1 \leq r_4\}$
 - $UA = \{(u_1, r_1), (u_2, r_3), (u_3, r_4)\}$
 - $PA = \{(r_1, p_1), (r_2, p_2), (r_3, p_3), (r_3, p_5), (r_4, p_4)\}$

Indique o conjunto de permissões que podem existir numa sessão associada a cada utilizador (u_1, u_2, u_3) .

- 9. (3) Considere os protocolos OAuth2 e OpenID Connect no fluxo Authorization Code Grant:
 - 9.1. Sobre o parâmetro *state*, existente em ambos os protocolos: Qual é o objetivo deste parâmetro? Que preocupações deve ter a aplicação cliente para que seja usado de forma segura?
 - 9.2. Explique sucintamente as ações realizadas pela aplicação cliente para conseguir aceder ao *UserInfo Endpoint*.

v1 2/2