Example

The binary data 001101001 are applied to the input of a duo binary system.

- a)Construct the duo binary coder output and corresponding receiver output, without a precoder.
- b) Suppose that due to error during transmission, the level at the receiver input produced by the second digit is reduced to zero. Construct the new receiver output.
- c) Repeat above two cases with use of precoder

without a precoder

0	0	1	1	0	1	0	0	1
-1	-1	+1	+1	-1	+1	-1	-1	+1
	-2	0	2	0	0	0	-2	0
-1	-1	+1	+1	-1	+1	-1	-1	+1
0	0	1	1	0	1	0	0	1
l positior	, c _k 1	eceive	d is 0	inste	ad of	-2V		
	0	0	2	0	0	0	-2	0
-1 b _{k-1}	1	-1	3	-3	+3	+3	1	-1
	1	0	1	0	1	0	1	0
	1	1					1	1
	-1 0 d position	-1 -1 -1 0 0 di position, c _k r	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1 -1 +1 +1 -1 -2 0 2 0 -1 -1 +1 +1 -1 0 0 1 1 0 diposition, c _k received is 0 instead 0 0 2 0 -1 1 -1 3 -3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

With a precoder (start bit 1)

Input Sequence {b _k }		0	0	1	1	0	1	0	0	1
$\frac{\textbf{Precodeed}}{\{\mathbf{a_k}\}} = \underbrace{\mathbf{b_k}}_{\ \oplus} \underbrace{\mathbf{a_{k}}}_{\ 1} 1$	1	1	1	0	1	1	0	0	0	1
Polar Representation	+1	+1	+1	-1	+1	+1	-1	-1	-1	+1
Duobinary coded sequence $c_k = a_k + a_{k-1}$		2	2	0	0	2	0	-2	-2	0
Decision $\frac{b_k}{c_k} > 1$ symbol 0 $c_k < 1$ symbol 1		0	0	1	1	0	1	0	0	1
If error occurs in 2nd position	ı ther	volta	ge leve	l of c _k	= 0 , t	hen				
Received c _k		2	0	0	0	2	0	-2	-2	0
$\begin{aligned} & \textbf{Decision for } \mathbf{b_k} \\ & \mathbf{c_k} \geq 1 \textbf{ symbol } 0 \\ & \mathbf{c_k} \leq 1 \textbf{ symbol } 1 \end{aligned}$		0	1	1	1	0	1	0	0	1

With a precoder (start bit 0)

Input Sequence {b _k }		0	0	1	1	0	1	0	0	1
Precodeed sequence	0	0	0	1	0	0	1	1	1	0
$\{\mathbf{a_k}\} = \mathbf{b_k} \oplus \mathbf{a_{k}} - 1$										
Polar Representation	-1	-1	-1	+1	-1	-1	+1	+1	+1	-1
Duobinary coded sequence		-2	-2	0	0	-2	0	+2	+2	0
$\mathbf{c_k} = \mathbf{a_k} + \mathbf{a_{k-1}}$										
Decision b _k		0	0	1	1	0	1	0	0	1
c _k > 1 symbol 0										
$c_k \le 1$ symbol 1										
If error occurs in 2 nd position	ı ther	ı volta	ge leve	l of c _k	= 0 , t	hen				
Received c _k		-2	0	0	0	-2	0	+2	+2	0
Decision for b _k		0	1	1	1	0	1	0	0	1
$c_k \ge 1$ symbol $\hat{0}$										
c _k < 1 symbol 1			1							

Example : Consider binary sequence $\{b_k\}$ = $\{01101101\}$ applied to input of a precoded modified duobinary filter. Determine receiver output and compare with original $\{b_k\}$.

Binary sequence $\{ \boldsymbol{b}_k \}$			0	1	1	0	1	1	0	1
Precoded sequence	1	1	1	0	0	0	1	1	1	0
$\mathbf{a_k} = \mathbf{b_k} \oplus \mathbf{a_{k-2}}$	(a _{k-2})	(a _{k-1})	,							
Polar Representation	+1	+1	+1	-1	-1	-1	+1	+1	+1	-1
Transmitted output			0	-2	-2	0	+2	+2	0	-2
$c_{\mathbf{k}} = \mathbf{a}_{\mathbf{k}} - \mathbf{a}_{\mathbf{k}-2}$										
Received Sequence			0	-2	-2	0	2	2	0	-2
$ \mathbf{decision} \mathbf{C}_k \le 1\mathbf{V} \rightarrow 0$										
$\left \mathbf{C}_{k}\right \geq \mathbf{1V} \rightarrow 1$										
Decoded bk			0	1	1	0	1	1	0	1

Consider binary sequence

{bk}={01101101}

Binary sequence {b _k }			0	1	1	0	1	1	0	1
Precoded sequence	0	0	0	1	1	1	0	0	0	1
$\mathbf{a_k} = \mathbf{b_k} \oplus \mathbf{a_{k-2}}$	(a _{k-2})	(a _{k-1})								
Polar Representation	-1	-1	-1	+1	+1	+1	-1	-1	-1	+1
Transmitted output			0	+2	2	0	-2	-2	0	2
$c_{\mathbf{k}} = \mathbf{a}_{\mathbf{k}} - \mathbf{a}_{\mathbf{k}-2}$										
Received Sequence			0	+2	2	0	-2	-2	0	2
$ \mathbf{decision} \mathbf{C}_k \leq 1\mathbf{V} \rightarrow 0$										
$\left \mathbf{C}_{k}\right \geq 1\mathbf{V} \rightarrow 1$										
Decoded bk			0	1	1	0	1	1	0	1

Example

The binary data 011100101 are applied to the input of a modified duo binary system.

- a) Construct the modified duobinary coder output and corresponding receiver output, without a precoder.
- b) Suppose that due to error during transmission, the level at the receiver input produced by the third digit is reduced to zero. Construct the new receiver output.
- c) Repeat above two cases with use of precoder

Modified duobinary coder output and corresponding receiver output, without a precoder

Binary sequence {b _k }			0	1	1	1	0	0	1	0	1
Polar Representation	+1	+1	-1	+1	+1	+1	-1	-1	+1	-1	+1
$\frac{Transmitted}{c_k = b_k - b_{k-2}}$			-2	0	+2	0	-2	-2	2	0	0
Received Sequence			-2	0	+2	0	-2	-2	2	0	0
Decision b _k = c _k + b _{k-2}	+1	+1	-1	+1	+1	+1	-1	-1	+1	-1	+1
Decoded bk̂			0	1	1	1	0	0	1	0	1

If error occurs in 3^{rd} position then voltage level of $c_k = 0$, then												
Received c _k			-2	0	0	0	-2	-2	2	0	0	
Decision for $b_k \land b_k$ $b_k = c_k + b_{k-2}$	+1	+1	-1	+1	-1	+1	-3	-1	-1	-1	-1	
Decoded			0	1	0	1	0	0	0	0	0	

Binary sequence {b _k }			0	1	1	1	0	0	1	0	1
Precoded sequence $a_k = b_k \oplus a_{k-2}$	1 (a _{k-2})	1 (a _{k-1})	1	0	0	1	0	1	1	1	0
Polar Representation	+1	+1	+1	-1	-1	+1	-1	+1	+1	+1	-1
$\frac{Transmitted}{c_k = a_k - a_{k-2}}$ output			0	-2	-2	2	0	0	2	0	0
$ \begin{array}{c c} \underline{\textit{Received}} \text{ Sequence} \\ \text{decision} \boxed{\textbf{C}_k} < 1 \text{V} \rightarrow 0 \\ \boxed{\textbf{C}_k} > 1 \text{V} \rightarrow 1 \end{array} $			0	-2	-2	2	0	0	2	0	0
Decoded			0	1	1	1	0	0	1	0	1

Modified duo binary coder output and corresponding receiver output, with a precoder

If error occurs in $3^{\rm rd}$ position then voltage level of $c_{\rm k} = 0$, then											
Received c _k	0	-2	0	2	0	0	2	0	0		
$\begin{aligned} & \textbf{Decision for } b_k \\ & c_k \geq 1 \text{ symbol } 0 \\ & c_k \leq 1 \text{ symbol } 1 \end{aligned}$	0	1	0	1	0	0	1	0	1		