Logic Synthesis With Design Compiler

ADVISOR: YU-CHENG FAN

PRESENTER: ZHENG-AN YANG

OUTLINE

- Introduction
- Synthesis Object
- Synthesis GUI-Design Vision
- Setting Design Constraints
- Setting Design Environment
- Reports and Save file

INTRODUCTION

Cell-Based Design flow

Cell Library (Logic Gate v.s. Lego)

Logic Synthesis

Behavior code

```
module top(clk,out,a,b,c);
output [15:0] out;
input [7:0] a,b;
input
      [15:0] c;
input
               clk;
       [15:0] mul out;
reg
       [15:0]
reg
              out;
       [15:0] c_d;
reg
always @(posedge clk) mul_out=a*b;
always @(posedge clk) c d=c;
always @(posedge clk) out=mul out/c d;
endmodule
```

Gate level code

Logic Synthesis Overview

Synthesis is Constraint Driven

Logic Synthesizer first translates
 RTL design to an intermediate gate-level design ,
 then optimize according to the area and timing constraint.

Speed

SYNTHESIS OBJECT

Design Objects (1/2)

Design Objects (2/2)

- Design: A circuit that performs one or more logical functions.
- Cell: An instantiation of a design within another design.
- Port: The input or output of a design.
- Pin: The input or output of a cell.
- Net: The wire that connects ports to pints and/or pints to other each other.
- Clock: Waveform applied to a port or pin identified as a clock source.

SYNTHESIS GUI-DESIGN VISION

Environment Setup (1/3)

• Set the environmental files

```
Open Terminal

Key in Key in "ls –a .cs*"

"cp
/home/standard/Environment_Setup_File/cshrc .cshrc"

[t00418099@is1abx2~]$ 1s –a .cs*
```

Key in "source .cshrc"

.cshrc

Environment Setup (2/3)

```
t107368062@islabx5:~/Desktop
                                        ls -a .cs* (*後面有空格)
       編輯(E) 檢視(V) 搜尋(S) 終端機(T)
                                 求助(H)
t107368062@islabx5 ~/Desktop]$ ls -a .cs*
 cshrc
[t107368062@islabx5 ~/Desktop]$ cp /home/standard/Environment_Setup_File/cshrc
cshrc
[t107368062@islabx5 ~/Desktop]$ source .cshrc
-- Now source Cadence NC-Verilog
-- Now source Synopsys Design Compiler
Platform = amd64
                              cp/home/standard/Environment_Setup_File/cshrc.cshrc
-- Now source Synopsys Formality
-- Now source Mentor MBISTArchite(t -Λ空格
                                                                               Λ 空格
-- Now source Synopsys TetraMAX
-- Now source Cadence INNOVUS --
-- Now source Mentor Calibre --
                                      source .cshrc
-- Now source Synopsys PrimeTime --
Platform = amd64
                                            ^ 空格
-- Now source Synopsys Nanosim --
-- Now source Synopsys Verdi --
32BIT is the default mode
    If you want to run 64BIT mode,
    please set the LD_LIBRARY_PATH and SHLIB_PATH
    to path of 64BIT by yourself.
[t107368062@islabx5 ~/Desktop]$
```

代表終端機(Terminal),成功開啟

Environment Setup (3/3)

Create a New Folder for Synthesis

Ex:

- 1. mkdir Synthesis (terminal command)
- 2. cd Synthesis (terminal command)

Copy File for Environment Setting

△ 代表空格

cp∆

/home/standard/Environment_Setup_File/synthesis_setup_for_18/synopsys_dc.s etup_.synopsys_dc.setup

Copy File for Synthesis

Open Design Vision

Environment Setup Check

Ready

Analysis the Design(1/2)

Analysis the Design(2/2)

```
design_vision> sh mkdir CS
 design_vision> define design_lib CS -path ./CS
 design_vision> analyze -library CS -format verilog {/home/t107368062/Desktop/2020_cic_synthesis/2020_summer_test/synthesis/CS.v}
 Running PRESTO HDLC
 Compiling source file /home/t107368062/Desktop/2020_cic_synthesis/2020_summer_test/synthesis/CS.v
 Presto compilation completed successfully.
 Loading db file '/home/cell_lib/CBDK_TSMC018_Arm_v4.0/CIC/SynopsysDC/db/slow.db'
 Loading db file '/home/cell_lib/CBDK_TSMC018_Arm_v4.0/CIC/SynopsysDC/db/fast.db'
 Loading db file '/home/cell_lib/CBDK_TSMC018_Arm_v4.0/CIC/SynopsysDC/db/tpz973qvwc.db'
 Loading db file '/home/cell_lib/CBDK_TSMC018_Arm_v4.0/CIC/SynopsysDC/db/tpz973gvtc.db'
 Loading db file '/home/cell_lib/CBDK_TSMC018_Arm_v4.0/CIC/SynopsysDC/db/tpz973qvbc.db'
 Loading db file '/usr/cad/synopsys/synthesis/cur/libraries/syn/dw_foundation.sldb'
 design_vision>
      History
Log
design vision>
```

Elaborate the Design

Symbol View

Schematic View

Schematic View

SETTING DESIGN CONSTRAINTS

Define Clock specification

- We need to accurately specify the clock including the clock routing details in the early design stage in order to achieve timing convergence.
- What should be defined?
 - ✓ Period
 - ✓ Waveform
 - ✓ Uncertainty
 - skew
 - ✓ Latency
 - Source latency
 - Network latency
 - ✓ Transition
 - Input transition
 - Clock transition

- Area
- Max fanout

Specify Clock

Command: create_clock -name clk -period 20 -waveform {0 10} [get_ports clk] set_dont_touch_network [get_clocks clk] set_fix_hold [get_clocks clk]

Report Clock

• Design → Report_Clocks

Attributes:

d - dont_touch_network

f - fix_hold

p - propagated_clock

G - generated_clock

q - lib_generated_clock

Clock	Period	Waveform	Attrs	Sources
clk	20.00	{0 10}	d f	{clk}

Current design is 'CS'.

***** End Of Report *****

Clock skew

• The maximum difference between the arrival of clock signals at sequential cells in one clock domain or between domains.

Command: set_clock_uncertainty 0.8 [get_clocks clock]

Arrival(P1)=0.5ns Arrival(P2)=1ns Arrival(P3)=1.2ns Arrival(P4)=1.3ns Uncertainty = 1.3 – 0.5 = 0.8ns clock skew!!

Model Source Latency

• Source latency is the propagation time from the actual clock origin to the clock definition point in the design.

Clock Transition Time

2016/07/06

3 - 73

Design Rule Constraints

- Vendors impose design rules that restrict how many cells are connected to one another based on capacitance, transition and fanout
- You may apply more conservative design rules to:
 - Anticipate the interface environment your block will see
 - Prevent the design from operating cells close to their limits, where performance degrades rapidly

SETTING DESIGN ENVIRONMENT

Real World Environmen

- Beware the defaults are not realistic conditions
 - ✓ Input drive is not infinite
 - ✓ Capacitive loading is usually not zero
 - ✓ Consider process, voltage, temperature (PVT) variation

2016/07/06

Setup Time & Hold Time

Setting Operating Condition

Command: set_operating_conditions -min_library fast -min fast -max_library slow -max slow

Setting Operating Condition

Setting driving Cell and output load

1. Setting input driving strength for clk port

-> set_driving_cell -library slow -lib_cell BUFX4 -pin {Y} [get_ports clk]

2.Setting input driving strength for all input port except clk

-> set_driving_cell -library slow -lib_cell DFFX1 -pin {Q} [remove_from_collection [all_inputs] [get_ports clk]]

3.Setting output load 0.001913

-> set_load 0.001913 [all_outputs]

Input Delay and Output Delay

- Clock cycle > = (DFF clk Q delay) + X + DFF setup
- Input Delay = (DFF clk Q delay) + M
- Output delay = T + DFF setup

design_vision>set_input_delay -clock#dk -max 4 [get_ports in] design_vision>set_output_delay -clock#dk -max 7 [get_ports out]

Setting Input Delay

set_input_delay -clock clk -max 1 [remove_from_collection [all_inputs] [get_clocks clk]] set_input_delay -clock clk -min 0.2 [remove_from_collection [all_inputs] [get_clocks clk]]

Setting Output Delay

Command: set_output_delay -clock clk -max 1 [all_outputs] set_output_delay -clock clk -min 0.1 [all_outputs]

Setting Wire Load Model for Net Delay

Command: set_wire_load_model -name tsmc18_wl10 -library slow

Check & uniquify Design

• You have to check design after setting.

Command:

- ->check_design -multiple_designs
- ->uniquify

REPORTS AND SAVE FILE

Reports Before Compiler

Save Design as .DDC File

Compile Design

Mapping Effort

• Three effort levels, low, medium, high, determine relative amount of CPU time spent during mapping phase of compile.

Low - quicker synthesis, does not do all algorithms.

- <u>Medium</u> default, good, for many design.
- <u>High</u> it does critical path re-synthesis, but it will use more CPU time; in some cases the action of compile will not terminate.

Explore The Schematic View

Report Area & Timing

Reports Area (μm^2): Total Area

Gate Count Gate Count: Total cell area / 10

Save Design as .DDC File

Write SDF File for Pre-Sim

• The file includes information of delay of Gate-Level circuit.

Command:

- -> write_sdf -version 1.0 -context verilog chip_syn.sdf
- -> write_sdc -version 1.7 CHIP.sdc

Save Design as .V File : Netlist

Pre-Layout Simulation

· 以剛剛產生出的Netlist檔進行 Gate-Level Simulation也常稱作Pre-Sim用以驗證確認我們合成出來的邏輯電器是否符合System Spec.所要求的功能。

檔案(F)	編輯(E)	檢視(V)	搜尋(S)	終端機(T)	求助(H)		
*Verdi3	snapsho * Loadin *: Enab source /	Simuĺat initial t workli g libsso le Paral	nnect: I tcheck ion tim simula b test: core_ius	tion snap: v 122. so ping.	1ps shot: wo	224 20 orklib. test: v Done Ls/inca/files/nc	simrc
				uccessful			
./testf:	Simulation complete via \$finish(1) at time 1055 NS + 0 /testfixture.v:114						

Command (Terminal, not Design Compiler): ncverilog testfixture.v CS_compile.v -v tsmc18.v +access+r

LAB2 PROCEDURE

- Environment setup
- Environment setup check
- Analysis the design, Elaborate the design
- Constraints(Reference command)
- Compile design
- Reports and Save file
- Gate-Level simulation

Environment Setup (for control.v)

Create a New Folder for Synthesis

Ex:

- 1. mkdir Synthesis (terminal command)
- 2. cd Synthesis (terminal command)

Copy File for Environment Setting

△ 代表空格

ср∆

/home/standard/Environment_Setup_File/synthesis_setup_for_18/synopsys_dc.s etup_.synopsys_dc.setup

Copy File for Synthesis

Reference command_1

• Command:

```
create_clock -name clk -period 20 -waveform {0 10} [get_ports clk]
set_dont_touch_network [get_clocks clk]
set_fix_hold [get_clocks clk]
set_clock_uncertainty 0.8 [get_clocks clk]
set_clock_latency -source 0 [get_clocks clk]
set_clock_latency 1 [get_clocks clk]
set_input_transition 0.5 [all_inputs]
set_clock_transition 0.5 [all_clocks]
set_max_area 0
set_max_fanout 6 [all_inputs]
set_max_transition 0.3 [all_inputs]
```


Reference command_2

Command:

```
set_driving_cell -library slow -lib_cell BUFX4 -pin {Y} [get_ports clk]
set_driving_cell -library slow -lib_cell DFFX1 -pin {Q} [remove_from_collection [all_inputs] [get_ports clk]]
set_load 0.001913 [all_outputs]
set_input_delay -clock clk -max 1 [remove_from_collection [all_inputs] [get_clocks clk]]
set_input_delay -clock clk -min 0.2 [remove_from_collection [all_inputs] [get_clocks clk]]
```

```
set_output_delay -clock clk -max 1 [all_outputs] set_output_delay -clock clk -min 0.1 [all_outputs]
```

set_wire_load_model -name tsmc18_wl10 -library slow

check_design -multiple_designs
uniquify

Gate-Level simulation

```
ALWays DLOCKS.
                Initial blocks:
                Pseudo assignments:
                Timing checks:
                                                  19
                                         112
                Interconnect:
                                         100
                Delayed tcheck signals:
                                          37
                                                   2
                Simulation timescale:
                                         1ps
        Writing initial simulation snapshot: worklib.controller_test:v
Loading snapshot worklib.controller_test:v .................. Done
*Verdi* Loading libsscore_ius152.so
ncsim> source /usr/cad/cadence/INCISIV/cur/tools/inca/files/ncsimrc
ncsim> run
FSDB Dumper for IUS, Release Verdi_Q-2020.03, Linux, 02/09/2020
(C) 1996 - 2020 by Synopsys, Inc.
*Verdi* FSDB WARNING: The FSDB file already exists. Overwriting the FSDB file ma
y crash the programs that are using this file.
*Verdi* : Create FSDB file 'controller fsdb'
*Verdi* : Begin traversing the scopes, layer (0).
*Verdi* : End of traversing.
*** REACHED END OF TEST VECTORS ***
There were O errors detected!
Simulation complete via $finish(1) at time 1278 NS + 0
                          $finish; // This prevents simulation beyond end of tes
/control_test.v:73
t patterns
ncsim> exit
```

Command (Terminal, not Design Compiler):

ncverilog control_test_syn.v control_syn.v –v tsmc18.v +access+r +define+SDF

