Semidefinite Relaxations of Truncated Least-Squares in Robust Rotation Search: Tight or Not

Liangzu Peng, Mahyar Fazlyab, René Vidal

Rotation Search: Problem Setup

Goal:

Find 3D rotation R₀* that best aligns 2 point sets

Case without Outliers (Wahba, 1965 [1]):

- $y_i \approx R_0^* x_i$, i = 1, ..., l
- $R_0^* \in SO(3)$
- Optimization:

Case with Outliers:

- Inliers: $y_i \approx R_0^* x_i$
- Outliers: (x_i, y_i) arbitrary
- Optimization:

Truncated Least-Squares (TLS-R) [1]:

(Huber, 1964 [2])

Truncation Parameter

From (TLS-R) to Semidefinite Relaxations (SDR)

(TLS-R)
$$\stackrel{(1)}{\Leftrightarrow}$$
 (TLS-Q) $\stackrel{(2), (3)}{\Longleftrightarrow}$ (QCQP) $\stackrel{(4) \text{ lifting}}{\Longrightarrow}$ (SDR)

Step (1): 3D rotations $R_0 \iff$ unit quaternions w_0

 $\operatorname{trace}([\boldsymbol{W}]_{00}) = 1$

Tightness of (SDR)

Definition (Tightness):

Let $w \in \mathbb{R}^{4(l+1)}$ be a global minimizer of (QCQP). We say (SDR) is tight if ww^T .

Main Results:

Positive Result

(SDR) is tight for small noise and random outliers.

Negative Result

(SDR) is not tight for "adversarial" outliers.

Remarks:

- Our theorems assume truncation parameters c_i^2 are chosen properly; see paper for details.
- "Adversarial" outliers can be point pairs that are defined by a rotation far from the ground-truth.

Acknowledgement: work supported by grants NSF 1704458, NSF 1934979, ONR MURI 503405-78051.

References

- [1] G. Wahba. A least squares estimate of satellite attitude. SIAM Review, 1965.
- [2] P. J. Huber. Robust estimation of a location parameter. Ann. Math. Stat., 1964.
- [3] H. Yang & L. Carlone. A quaternion-based certifiably optimal solution to the Wahba problem with outliers. ICCV 2019.

