Mathematik I für Studierende der Informatik (Diskrete Mathematik)

Steven Köhler

- 1. Entscheide für die folgenden Abbildungen, ob sie injektiv, surjektiv oder bijektiv sind. Gib in jedem Fall eine (kurze) Begründung.
 - a) $\mathbb{Z} \to \mathbb{Z}$, $f(n) = (n-2)^2$
 - b) $\mathbb{Z} \to \mathbb{Z}$, g(n) = 42n 23
 - c) $\mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$, $h(n) = ((n-2)^2, n^2)$
 - d) $\mathbb{N} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$, u(a,b) = (ab, 2a+1)
 - e) $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, v(n,m) = 5n m
 - f) $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$, $f(x,y) = (xy^2, xy^2 + 5y 1, (y^2 2)x)$
- **2.** Es sei $M = \{a, b\}$. Welche der folgenden Aussagen sind wahr? Welche sind falsch?
 - (i) $a \in \mathcal{P}(M)$
 - (ii) $b \subseteq \mathcal{P}(M)$
 - (iii) $\{a, b\} \in \mathcal{P}(M)$
 - (iv) $\{a, b\} \subseteq \mathcal{P}(M)$
 - (v) $\{a, \{a\}\} \in \mathcal{P}(M)$
 - (vi) $\{\{a\}, \{b\}\} \in \mathcal{P}(M)$
 - (vii) $\{\{a\},\{b\}\}\subseteq \mathcal{P}(M)$
- 3. Beweise durch vollständige Induktion!
 - a) Für alle $n \in \mathbb{N}$ gilt: $47 \mid (7^{2n} 2^n)$.
 - b) Für alle $n \in \mathbb{N}$ gilt: $\sum_{i=1}^{n} (4i 1) = 3 + 7 + 11 + \ldots = 2n^2 + n$.
 - c) Für alle $n \in \mathbb{N}$ gilt: $\sum_{i=0}^{n} 2^i = 2^{n+1} 1$.
 - d) Für alle $n \in \mathbb{N}$ mit $n \ge 3$ gilt: $n^2 2n 1 > 0$.
 - e) Für alle $n \in \mathbb{N}$ gilt: $\sum_{i=0}^{n} {n \choose i} = 2^n$.
- 4. Wahr oder falsch? Gib jeweils eine kurze Begründung.
 - a) $17 \equiv 47 \pmod{15}$
 - b) $23 \equiv 42 \pmod{7}$
 - c) $101 \equiv 202 \pmod{47}$
 - $d) -21 \equiv 312 \pmod{3}$
 - e) $29 \equiv 57 \pmod{23}$
- 5. Beweise oder widerlege.
 - a) Die Zahlen 177 und 557 sind teilerfremd.
 - b) Die Zahlen 247 und 299 sind teilerfremd.

- **6.** Es seien A und B Mengen mit |A| = 5 und |B| = 7.
 - a) Wie viele Abbildungen $A \to B$ gibt es?
 - b) Wie viele dieser Abbildungen sind injektiv?
 - c) Wie viele dieser Abbildungen sind surjektiv?
 - d) Wie viele dieser Abbildungen sind injektiv, wenn zusätzlich $f(a_1) \neq f(a_2)$ gelten soll (mit $a_1, a_2 \in A$)?
 - e) Wie viele dieser Abbildungen sind injektiv, wenn zusätzlich $f(a_1) \neq f(a_2)$ sowie $f(a_1) \neq f(a_3)$ gelten soll (mit $a_1, a_2, a_3 \in A$)?
 - f) Wie viele Abbildungen gibt es, für die $f(a_1) \neq f(a_2)$ sowie $f(a_1) \neq f(a_3)$ gelten soll (mit $a_1, a_2, a_3 \in A$)?
- **7.** a) In einer Urne befinden sich 10 unterscheidbare Kugeln. Es wird 5 mal gezogen. Wie viele mögliche Ergebnisse gibt es, wenn
 - (i) die Reihenfolge der gezogenen Kugeln berücksichtigt wird?
 - (ii) die Reihenfolge der gezogenen Kugeln egal ist?
 - b) Wie viele Möglichkeiten gibt es, im Lotto exakt 5 richtige Gewinnzahlen anzukreuzen?
 - c) Wie viele Möglichkeiten gibt es, im Lotto mindestens 5 richtige Gewinnzahlen anzukreuzen?
 - d) Wie viele sinnvolle oder sinnlose Wörter lassen sich aus den Buchstaben des Wortes MASSACHU-SETTS bilden?
 - e) Für $k, n \in \mathbb{N}$, $n \ge 2k$: Wie viele Möglichkeiten gibt es, insgesamt n Bonbons auf k Kinder derart zu verteilen, dass jedes Kind mindestens zwei Bonbons erhält?
 - f) Welchen Koeffizienten besitzt $x^2yz^4w^3$ in $(x+y+z+w)^{10}$?