

COMPUTER ORGANIZATION

Lecture 1 Course Information

2025 Spring

This PowerPoint is for internal use only at Southern University of Science and Technology. Please do not repost it on other platforms without permission from the instructor.

Course Information

- Course website: Blackboard
- Instructor:
 - Dr. Yuhui BAI (baiyh@sustech.edu.cn)
 - Office: 411 College of Engineering South
 - Office hour: Thursday 14:00-16:00 (by appointment)
- Lecture
 - 10:20-12:10 Mon., 108, Lecture Hall #1
- Lab
 - 14:00 -15:50 Mon., 503, Lecture Hall #3 (BAI Yuhui)
 - 14:00 -15:50 Mon., 502, Lecture Hall #3 (WANG Qing)
 - 14:00 -15:50 Wed., 509, Lecture Hall #3 (WANG Qing)

Grading Policy

- 30% Mid-term examination
 - tentatively scheduled at week 8 weekend
- 30% Final examination
- 30% Lab
 - 5% Attendance and Lab practices
 - 10% Lab assignments OJ
 - 15% Lab Project
 - In groups of 2~3. Please team up as soon as possible.
- 5~10% Homework
- 5~0% Lecture Attendance
- Note:
 - Submit the **commitment letter** on Blackboard system before Monday of week 4, end of day (请务必于第4周前签署承诺书)

Honor policy

- All course work should be completed entirely on your own. You are encouraged to discuss general concepts and ideas in homework or lab assignments.
- Students who commit an act of academic dishonesty may receive a zero on the assignment (first conduct) or in the course (multiple conducts).
- Unless otherwise noted, exams and individual assignments will be pledged that you have neither given nor received unauthorized help.
- If you have questions on what is allowable, ask!

Course Schedule

WEEK	LECTURE	LECTURE TOPIC	LAB CONTENT
1	Lecture #1	Introductions	Environment Setup
2	Lecture #2	RISC-V ISAs: Basics	Assembly Practice 1
3	Lecture #3	RISC-V ISAs: Procedure Call	Assembly Practice 2
4	Lecture #4	RISC-V ISAs: Addressing	Assembly Practice 3
5	Lecture #5	Performance	Assembly Practice 4
6	Lecture #6	Arithmetic	Assembly Practice 5
7	Lecture #7	Floating Point Arithmetic	Assembly Practice 6
8	Lecture #8	The Processor (Midterm in weekend)	Verilog:EDA tools
9	Lecture #9	The Pipeline	CPU Design 1
10	Lecture #10	Instruction-Level Parallelism	CPU Design 2
11	Lecture #11	Memory Hierarchy	CPU Design 3
12	Holiday	/	CPU Design 4
13	Lecture #12	Memory Hierarchy(cont.)	CPU Design 5
14	Lecture #13	Memory Hierarchy(cont.)	CPU Design 6
15	Lecture #14	Parallel Processors	Project Inspection
16	Holiday	/	Project Inspection

Lab Setup

- Labs are a key portion of the class
- Highly recommended to find your partner as soon as possible.

Toolkits used in our Labs

Task	Tool kits
Learn and practice RISC-V (a type of Assemblly language)	➤ Rars (rars_27a7c1f)
Design and implement an CPU	 ➤ Vivado
Test the CPU with program(s) , both of which are based on RISC-V	 ➤ Assembler (Rars) ➤ Uart Tools ➤ Vivado ➤ FPGA based Development Board(EGO1)

Textbooks

- Textbook:
 - Computer Organization & Design, the Hardware/Software Interface, RISC-V edition. D.
 - A. Patterson and J. L. Hennessy
 - The Textbook uses RV64, in class we learn RV32
- Reference book:
 - Computer Architecture a quantitative approach, Hennessy and Patterson, 5th edition

