Glass Bead Transformation of Chlamydomonas

Josh Timmons

Abstract

A short and relatively cheap method for non-homologous nuclear transformation of Chlamydomonas reinhardtii. Works best with linearized DNA. Requires 500 micron glass beads for DNA transformation.

Citation: Josh Timmons Glass Bead Transformation of Chlamydomonas. protocols.io

dx.doi.org/10.17504/protocols.io.dtn6md

Published: 14 Sep 2015

Protocol

Prep

Step 1.

Grow cell culture to an OD750 of 0.15 to 0.4

Prep

Step 2.

Centrifuge at 400g for 5 minutes at room temperature

© DURATION

00:05:00

Prep

Step 3.

Resuspend in 1/100th the original volume of TAP

Prep

Step 4.

Add the following:

8000PEG to 5% final conc.

3 ug of DNA

0.3g of 500micron glass

beads

0.4mL Chlamy cell

suspension

Prep

Step 5.

Mix with a pipette

Vortex

Step 6.

Vortex at max speed for 15 seconds

© DURATION

00:00:15

Plating & Selection

Step 7.

Take 25uL of the cell suspension and add to 100uL of TAP with an appropriate antibiotic

Plating & Selection

Step 8.

Spread on a TAP or YA plate, with an appropriate antibiotic, using large glass beads

Plating & Selection

Step 9.

Allow the liquid to dry while avoiding light

Plating & Selection

Step 10.

Seal the plates with parafilm

Plating & Selection

Step 11.

Allow the colonies to grow (colonies will appear in 1-3 weeks)

Plating & Selection

Step 12.

Transfer the remaining cell/vortex culture to a 125mL flask with 20mL of TAP (w/o antibiotic

Plating & Selection

Step 13.

Incubate for 6 hours on an orbital shaker at 70rpm

O DURATION

06:00:00

Plating & Selection

Step 14.

Add antibiotic to an appropriate concentration

Plating & Selection

Step 15.

Take 50uL of the cell suspension and spread on a TAP or YA plate with an appropriate antibiotic with large glass beads

Plating & Selection

Step 16.