AiATrack: Attention in Attention for Transformer Visual Tracking

Shenyuan Gao

sygao@connect.ust.hk

06/08/2022

Code

Background: Single Object Tracking

• Objective:

Given a target with bounding box annotation in the initial frame, localize the target in successive frames.

• Keywords:

- Single-object
- Model-free
- One-shot
- Real-time

Background: Typical Transformer Tracker

• Self-attention blocks:

Aggregate and enhance the extracted features.

Cross-attention blocks:

Propagate the information for target prediction.

Background: Attention Mechanism

• Conventional attention mechanism:

ConvenAttn(
$$\mathbf{Q}, \mathbf{K}, \mathbf{V}$$
) = (Softmax $\left(\frac{\bar{\mathbf{Q}}\bar{\mathbf{K}^T}}{\sqrt{C}}\right)\bar{\mathbf{V}}$) $\mathbf{W}_{\mathbf{Q}}$

- Limitation:
 - The correlation of each key-query pair is computed independently, which ignores the correlations of other query-key pairs.
 - Result in noisy and ambiguous attention weights, which may inhibit the potential of Transformer trackers.

Our Insight

• If a key has a high correlation with a query, its neighboring keys should also have relatively high correlations with that query.

• Seek consensus among raw correlations with a global receptive field.

Methods: Attention in Attention (AiA)

• Generate the residual correlation map using another attention module:

 $AttninAttn(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = (Softmax(\mathbf{M} + InnerAttn(\mathbf{M}))\bar{\mathbf{V}})\mathbf{W_o}$

- Unified design:
 - Can be readily applied to both self-attention and cross-attention blocks.
- Performance gain:
 - A margin of 2.5% on LaSOT.
- Complexity increase:
 - A margin of 0.8% in Params.

Methods: Framework (AiATrack)

- A streamlined framework to utilize multiple references:
- More efficient:
 - Encoded feature reuse.
- More discriminative:
 - Target-background embeddings.
- More accurate:
 - IoU-guided update.
- More robust:
 - Two-branch design.

Results: Effectiveness of AiA

query (20x20)

key (20x20)

Modification		LaSOT	ı	$LaSOT_{Ext}$				
Modification	AUC	$\mathrm{P}_{\mathrm{Norm}}$	P	AUC	$\mathrm{P}_{\mathrm{Norm}}$	P		
w/o AiA [†]	67.0	77.0	71.3	44.7	52.7	51.5		
AiA in self-attn	68.6	78.7	72.9	46.2	54.4	53.4		
AiA in cross-attn	67.5	77.9	71.8	46.2	54.2	53.3		
w/o pos in both				I				
AiA in both [‡]	68.7	79.3	73.7	46.8	54.4	54.2		

Self-attention

correlation vector (1x400) at ■

Cross-attention

correlation vector (1x400) at ■

Results: Superiority of AiA

Modification	Correlation	LaSOT			$LaSOT_{Ext}$			
	Refinement	AUC	$\mathrm{P}_{\mathrm{Norm}}$	P	AUC	$\mathrm{P}_{\mathrm{Norm}}$	P	
w/o AiA [†]	Х		77.0					
w/o AiA cascade	^	67.1	77.0	71.7	44.6	52.9	51.6	
conv in both	/	67.9	78.2	72.8	46.0	53.4	52.8	
AiA in both [‡]		68.7	79.3	73.7	46.8	54.4	54.2	

- Simply increasing the number of attention blocks in our framework does not help much.
- Inserting a convolutional bottleneck can also bring positive effects, which suggests the necessity of correlation refinement.
- The proposed AiA can boost much more performance than the convolutional substitute.

Results: Overall Performance

Tracker	Source	LaSOT [17]			TrackingNet [45]			GOT-10k [25]		
		AUC	P_{Norm}	Р	AUC	$\mathrm{P}_{\mathrm{Norm}}$	Р	AO	$\mathrm{SR}_{0.75}$	$\mathrm{SR}_{0.5}$
AiATrack	Ours	69.0	79.4	73.8	82.7	87.8	80.4	69.6	63.2	80.0
STARK-ST50 [58]	ICCV2021	66.4	76.3	71.2	81.3	86.1	78.1	68.0	62.3	77.7
KeepTrack [41]	ICCV2021	67.1	77.2	70.2	_	-	-	-	-	-
DTT [61]	ICCV2021	60.1	-	-	79.6	85.0	78.9	63.4	51.4	74.9
TransT [8]	CVPR2021	64.9	73.8	69.0	81.4	86.7	80.3	67.1	60.9	76.8
TrDiMP [53]	CVPR2021	63.9	-	61.4	78.4	83.3	73.1	67.1	58.3	77.7
TrSiam [53]	CVPR2021	62.4	-	60.0	78.1	82.9	72.7	66.0	57.1	76.6
KYS [4]	ECCV2020	55.4	63.3	-	74.0	80.0	68.8	63.6	51.5	75.1
Ocean-online [67]	ECCV2020	56.0	65.1	56.6	_	-	-	61.1	47.3	72.1
Ocean-offline [67]	ECCV2020	52.6	-	52.6	_	-	-	59.2	-	69.5
PrDiMP50 [12]	CVPR2020	59.8	68.8	60.8	75.8	81.6	70.4	63.4	54.3	73.8
SiamAttn [62]	CVPR2020	56.0	64.8	-	75.2	81.7	-	-	-	-
DiMP50 [3]	ICCV2019	56.9	65.0	56.7	74.0	80.1	68.7	61.1	49.2	71.7
SiamRPN++ [34]	CVPR2019	49.6	56.9	49.1	73.3	80.0	69.4	51.7	32.5	61.6

Concluding Remarks

• We propose a novel attention in attention module to enhance appropriate correlations and suppress unreliable ones by seeking consensus among all correlation vectors, which further unveils the potential of the Transformer tracker.

• We propose a concise and efficient framework to utilize multiple references, which we believe would shed light on future works.

• We hope that the proposed methods could serve as possible solutions for future contributions in related tasks, such as video object segmentation, video object detection, and multi-object tracking.

Thanks!

