Foundations of Physics B

Dr Douglas Halliday

Epiphany 2018

Contents

L	Condensed Matter Physics	•
	Lecture 2	٠
	describing crystals	•
	symmetry operators	
	three-dimensional lattices	4
	miller indices	4
	Lecture 3	4
	x-ray diffraction	4
	electron density	1
	reciprocal lattice points	Į.
	Lecture 4	
	x-ray diffraction	Į.
	brillouin zones	6
	examples of reciprocal lattices	6
	structure factor	-
	Lecture 5	7
	crystal bonding	,
	·	8
	group velocity	
	long wavelength limit	
	Lecture 7	
	thermal properties of crystals	
	debye model	
	einstein model	
	Lecture 8	
	Lecture 9	
	free electron model	
	periodic boundary conditions	
	free electron wavefunction	
	k-space	
	fermi energy and surface	
	density of states	
	Lecture 10	
	fermi-dirac distribution	
	behaviour of fermi-dirac function	
	free electron heat capacity	
	Lecture 11	
	magnetic properties of free electrons	
	magnetic susceptibility of metals	.(
	hall effect	1
	Lecture 12	7

nearly free electron model	17
bloch theorem	18
consequences of bloch theorem	18
energy band diagrams	18
cture 13	19
nearly free electron energy bands	19
energy bands	19
current carried by energy bands	19
equation of motoin for block electrons	20
effective mass	20
electrons and holes	20

Chapter 1

Condensed Matter Physics

Lecture 2

describing crystals

- regular periodic array of atoms highly defined
- x-rays discovered in 1912
 - diffraction of x-rays key to studying crystals
- crystals classified by certain physical properties
- a perfect crystal is assumed to be a regular array of repeating points
 - we can construct a set of theoretical points in 3D (defined by vectors), called a lattice
- lattice described by unit vectors $\vec{a}_1, \vec{a}_2, \vec{a}_3$, called the lattice constants
- lattice given physical reality by placing atoms at lattic points
 - these atoms are called a basis there can be more than one atom in a basis, e.g. NaCl
- use the relationship, where: \vec{r}, \vec{r}' are points on the lattice; a_i are unit vectors; and n_i are scalar multiples

$$\vec{r}' = \vec{r} + n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$$

- it is called a primitive lattice if this equation cannot be reduced
- think of lattices as 3D constructs for filling space
- crystals have a high degree of symmetry

symmetry operators

- 1. translation
- 2. rotation
- 3. reflection
- 4. inversion
- 5. combinations of above
- a lattice should remain invariant under specific symmetry operations
- point operators in 2D lead to 2D lattices, of which you can get different types -
 - 1. square
 - 2. hexagonal
 - 3. rectangular
 - 4. centred rectangular
 - 5. oblique parallelogram
 - cannot get a five-fold symmetry shape

three-dimensional lattices

- there are seven basic crystal systems
 - 1. triclinic
 - 2. monoclinic
 - 3. orthohombic
 - 4. tetragonal
 - 5. rhombohedral (trigonal)
 - 6. hexagonal
 - 7. cubic
- use parameters to define these -
 - p primitive
 - i interstitial
 - f face-centred
 - c base-centred
- by varying the parameters for each basic type (see table in lecture summary), get 14 Bravais lattices in 3D
 - these are the basic building blocks of all crystals

miller indices

- · key concept for categorising crystals
- describe a particular crystallographic plane or orthogonal direction in crystal
- effectively describes crystals as families of parallel planes
- method for determining the index:
 - 1. find the intercepts of plane on crystal axes the three lattice constants
 - 2. take the reciprocal of these constants
 - 3. reduce to 3 integers with the same ratio
 - 4. this gives the index of the plane, using the notation (hkl), or $(\nu_1\nu_2\nu_3)$ in Kittel
 - 5. if one of the indices is negative, put a bar above the magnitude
- separation between planes:

$$d = \frac{1}{\sqrt{\frac{h^2}{a_1^2} + \frac{k^2}{a_2^2} + \frac{l^2}{a_3^2}}}$$

• For a cubic, this reduces to

$$d_{hkl} = \frac{a}{\sqrt{N}}$$

Lecture 3

x-ray diffraction

- crystal is defined by a set of parallel planes separated by distance d
- waves incident on crystals will be diffracted developed by Bragg and lead to the law of x-ray diffraction
- for each wave will experience specular reflection small reduction in intensity
- path length difference $A \to B \to C = 2d \sin \theta$
- if path length is equal to an integer multiple of the wavelength of wave, get constructive interference
- Bragg Law:

$$2d\sin\theta = n\lambda$$

- typically, $\lambda \approx 0.15 \, nm$ for x-rays
- it is observed that each plane of atoms reflects $10^{-3} 10^{-5}$ of the intensity
- bragg law is a consequence of periodic structure of crystals

fourier analysis is used

electron density

• crystal lattice is defined by translation vector,

$$\underline{T} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$$

- crystal is invariant under T translation
- many physical properties related to electron density, $n(\vec{r})$
- crystal symmetry $\implies n(\vec{r}) = n(\vec{r} + T)$, local electron environment is also invariant under T
- consider electron density in one dimension:

$$n(x) = n_0 + \sum_{p} \left[c_p \cos \left(\frac{2\pi xp}{a} \right) + s_p \sin \left(\frac{2\pi xp}{a} \right) \right]$$

- $p \in \mathbb{N}$; a =the lattice constant; and x =distance
- crystal symmetry also $\implies n(x) = n(x+a)$

reciprocal lattice points

- arguments of sin and cos are called reciprocal lattice points
 - there is a factor of $\frac{2\pi}{a}$ requires functions to have correct periodicity units cos, sin are dimensionless; $\frac{2\pi p}{a}$ is the basis of summation only certain values are allowed by the relationship above

$$n(x) = \sum_{p} n_p e^{\frac{i2\pi px}{a}}$$

- allowed points in sin() and cos() are equivalent to families of planes described by Miller indices (hkl)

$$n(\vec{r}) = \sum_{C} n_{G} e^{\vec{G} \cdot \vec{r}}, G = \text{reciprocal lattice vectors}$$

- G is defined as the family of reciprocal lattice points in 3D each describing a family of crystal planes
- b_1, b_2, b_3 are the reciprocal lattice unit vectors, units of frequency

$$b_1 = 2\pi \frac{\vec{a}_2 \times \vec{a}_3}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} \; ; \; b_2 = 2\pi \frac{\vec{a}_3 \times \vec{a}_1}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} \; ; \; b_3 = 2\pi \frac{\vec{a}_1 \times \vec{a}_2}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)}$$

- a_i are unit vectors of crystal
- $a_i \cdot b_j = 2\pi \delta_{ij}$ delta function

$$\underline{G} = \nu_1 \vec{b}_1 + \nu_2 \vec{b}_2 + \nu_3 \vec{b}_3$$

$$n(\vec{r} + \underline{T}) = \sum_G n_G e^{i\underline{G} \cdot \vec{r}} \underbrace{e^{i\underline{G} \cdot \underline{T}}}_{2\pi \times p}$$

Lecture 4

x-ray diffraction

- incident electromagnetic wave on crystal $\exp[9(\vec{k} \cdot \vec{r})]$
 - $-\vec{k}$ is the wavevector of the x-ray

- elastic process conservation of energy
- assume interaction between electric field of wave and electrons in atom
- electron density $n(\vec{r})$
- scattered wave is described by

$$F = \int n(\vec{r}) \exp \left[i((\vec{k} - \vec{k}') \cdot \vec{r}) \right] dV$$
$$= \int n(\vec{r}) \exp \left[i(\vec{\Delta k} \cdot \vec{r}) \right] dV$$

- $\vec{\Delta k} = \vec{k} \vec{k}'$
- elastic scattering $|\vec{k}| = |\vec{k}'|$
- $\vec{\Delta k}$ scattering vector
 - for Bragg condition $\vec{\Delta k} = \vec{G}$

$$F = \sum_{G} \int n_{G} \exp \left[i(\vec{G} - \vec{\Delta k}) \cdot \vec{r} \right]$$

• alternative formulation of Bragg condition -

$$\vec{k} + \vec{G} = \vec{k}'$$

$$\implies (\vec{k} + \vec{G})^2 = |\vec{k}|^2$$

$$2\vec{k} \cdot \vec{G} + |\vec{G}|^2 = 0$$

$$\implies 2\vec{k} \cdot \vec{G} = |\vec{G}|^2$$

• n.b. $\vec{\Delta k}$ has equivalent positive and negative values

brillouin zones

- analogy to unit cells in reciprocal space
- first brillouin zone is wigner-seitz primitive cell in reciprocal lattice
 - used to describe a wide range of physical properties
- construct brillouin zone:
 - 1. select origin in reciprocal space
 - 2. draw reciprocal lattice vector to all nearest neighbours
 - 3. perpendicular bisectors enclose first brillouin zone

examples of reciprocal lattices

• simple cubic lattice:

$$\vec{a}_1 = a\hat{x}$$
 $\vec{a}_2 = a\hat{y},$ $\vec{a}_3 = a\hat{z}$
 $\vec{b}_1 = \frac{2\pi}{a}\hat{x}$ $\vec{b}_2 = \frac{2\pi}{a}\hat{y}$ $\vec{b}_3 = \hat{z}$

- reciprocal lattice is a simple cube with lattice constant $\frac{2\pi}{a}$
- body centred cubic lattice:

$$\vec{a}_1 = \frac{1}{2}a(-\hat{x} + \hat{y} + \hat{z}) \quad \vec{a}_2 = \frac{1}{2}a(\hat{x} - \hat{y} + \hat{z}) \quad \vec{a}_3 = \frac{1}{2}a(\hat{x} + \hat{y} - \hat{z})$$
$$\vec{b}_1 = \frac{2\pi}{a}(\hat{y} + \hat{z}) \qquad \vec{b}_2 = \frac{2\pi}{a}(\hat{x} + \hat{z}) \qquad \vec{b}_3 = \frac{2\pi}{a}(\hat{x} + \hat{y})$$

- these are primitive lattice vectors of fcc (face centre cubic) lattice
- similarly, reciprocal of fcc lattice is bcc lattice

structure factor

- structure factor describes intensity of Bragg peaks
 - arises because Bragg law considers parallel planes but can also get interference within unit cell
- integral over unit cell describes total scattered intensity

$$F_G = N \int_{cell} n(\vec{r}) \exp\left[-i\vec{G} \cdot \vec{r}\right] = NS_G$$

- N is the total number of cells; S_G is the structure factor for a single cell
- define origin at $\vec{r} = 0$
- consider $n(\vec{r})$ as sum over all unique atoms in unit cell

$$\begin{split} n(\vec{r}) &= \sum_{j=1}^{S} n_j (\vec{r} - \vec{r}_j) \\ S_G &= \sum_{j} \exp\left[-i\vec{G} \cdot \vec{r}\right] \int n_j (\vec{\rho}) \exp\left[-i\vec{G} \cdot \vec{\rho}\right] \\ &= \sum_{j} f_j \exp\left[-i\vec{G} \cdot \vec{r}_j\right] \\ S_G(\nu_1 \nu_2 \nu_3) &= \sum_{j} f_j \exp\left[-i2\pi(\nu_1 x_j + \nu_2 y_j + \nu_3 z_j)\right] \end{split}$$

- $\vec{\rho} = \vec{r} \vec{r_i}$, $\vec{r_i}$ is position of unique atom in unit cell; f_i is atom form factor scattering of one atom
- $\nu_1\nu_2\nu_3 = hkl$ describing Bragg peak; (x_j, y_j, z_j) is position coordinates within unit cell
- for bcc lattice have two unique atoms at coordinates $(000), (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$
- evaluate $S_G \implies S = 0$ when $\nu_1 + \nu_2 + \nu_3 = \text{odd integer}$; S = 2f when $\nu_1 + \nu_2 + \nu_3 = \text{even integer}$ fcc lattice 4 atoms $(0,0,0), (0,\frac{1}{2},\frac{1}{2}), (\frac{1}{2},0,\frac{1}{2}), (\frac{1}{2},\frac{1}{2},0)$
- - -S = 0 when integers mixed
 - -S = 4f when integers all odd or all even

Lecture 5

crystal bonding

- bonding is a stable equilibrium between attractive and repulsive force
- repulsive arises from electrons being fermions
 - no two fermions occupy the same quantum state
 - as electrons from adjacent atoms overlap, increases energy to satisfy Pauli exclusion principle
- different types of bonds have different attractive forces:
- 1. Van Der Waals bonding exists in almost all solid system very weak force, usually only observed at low temperatures in noble gases
 - attraction is between electric dipoles
 - 1. permanent
 - 2. permanent-induced
 - 3. two induced dipoles

- spherically symmetrical atom when brought closer to another atom, electron distribution adjusts because of Coulomb potential
- can consider movement of charge as electric dipole:
 - amount of charge, q, moving distance, L, \rightarrow dipole moment = p = qL
 - electric dipole consists of charge +q and -q separated by L
 - at arbitrary point, electric potential

$$V = \frac{Q}{4\pi\epsilon_0} \left(\frac{1}{r_b} - \frac{1}{r_a} \right)$$

- it can be shown that

$$V(r) = \frac{\vec{p} \cdot \hat{r_1}}{4\pi\epsilon_0 r^2}$$

- where \vec{p} is the electric dipole vector, and \hat{r}_1 is the unit vector along \vec{r}
- show potential energy and force are

$$U(r) = \frac{A}{r^6}$$

$$F(r) = -\frac{dU}{dr} = \frac{A}{r^7}$$

- modelling Pauli repulsion very complex
 - approximate using empirical function
 - experimental data on solid gases shows that the function is of the form $\frac{B}{r^{12}}$ fits data

$$U(r) = 4\epsilon \left[-\left(\frac{\sigma}{r}\right)^6 + \left(\frac{\sigma}{r}\right)^{12} \right]$$

- this is the Lennard Jones 6-12 potential models interatomic potential in Van Der Waals solids
 - $* \ 4\epsilon\sigma^6 \equiv A$
 - * $4\epsilon\sigma^{12} \equiv B$
- 2. other examples of bonding
 - 1. ionic bonding crystals made of postive and negative energy
 - many salts are under this (NaCl, LiF, MgCl)
 - overall energy of ionic crystal ionisation energy, electron affinity
 - energy electrostatic attraction

$$U(r) = -\frac{e^2}{4\pi\epsilon_0 r}$$

- this considers only nearest neighbours
- in ionic crystals, energy must also consider other ions not just nearest neighbours
- interaction of all ions described by modelling constant
 - face centred cube crystal has modelling constant of 1.7475
- 2. covalent crystals sharing of electrons, generally occurs in systems of similar atoms (e.g. silicon semiconductor, diatomic gases)
 - covalent bonding can only be described using QM
 - two electrons, spin = $\frac{1}{2}$
 - $-\uparrow\downarrow\rightarrow S=0$ spin antisymmetric
 - $-\uparrow\uparrow\rightarrow S=1$ spin symmetric
 - when spin is antisymmetric, position (wavefunction) is symmetric or vice versa
 - large electron density between atoms forms a bond

Lecture 6

consider crystals as system of vibrating atoms

- family of excitations in solids, elastic waves phonons
- range of phenomena suggests atoms vibrate
- describe crystal as series of parallel planes denoted by $s, s \pm 1, s \pm 2, \cdots$
- describe position of plane using coordinate $u_s, u_{s\pm 1}, \dots, u_s$ is the displacement from the equilibrium
- longitudinal and transverse waves exist
- physics to describe motion?
 - Hooke's law elestic wave, restoring force, linear function of u_S
- energy of oscillating system:

$$E = \frac{1}{2}kA^2$$

- spring constant $\omega = \sqrt{\frac{k}{m}}$
- elastic energy is a quadratic function of displacement from mean position
- need to know the force exerted on individual planes
- assume only nearest neighbour interactions apply
- forces acring on plane s:

$$F_s = c(u_{s+1} - u_s) + c(u_{s-1} - u_s)$$

• c is a force constant for the nearest neighbour

$$M\frac{d^2u_s}{dt^2} = c(u_{s+1} + u_{s-1} - 2u_s)$$

• Assume SHM:

$$\frac{d^2u_s}{dt^2} = -\omega^2 u_s$$

• Equation relates motion of planes:

$$-M\omega^2 u_s = c(u_{s+1} + u_{s-1} - 2u_s)$$

• by substitution, the general form of equation is:

$$u_{s\pm 1} = U \exp[i(s\pm 1)ka] = U \exp(iska) \exp(\pm ika)$$

• U is the maximum amplitude, k is the wavevector of the elastic wave, and a is the spacing of adjacent planes

$$-\omega^2 M u \exp(iska) = CU \left\{ \exp\left[i(s+1)ka\right] + \exp\left[i(s-1)ka\right] - 2\exp\left[iska\right] \right\}$$

$$\omega^2 M = -C \left[\exp(ika) + \exp(-ika) - 2\right]$$

$$\omega(k)^2 = \left(\frac{2c}{M}\right) (1 - \cos(ka))$$

$$\omega(k)^2 = \frac{4c}{M} \sin^2\left(\frac{1}{2}ka\right)$$

$$\implies \omega(k) = \sqrt{\frac{4c}{M}} \left| \sin\left(\frac{1}{2}ka\right) \right|$$

- angular frequency depends on the wavevector phenomena is known as dispersion
- waves of certain wavelength or wavevector travel at different velocities

group velocity

• consider displacement of planes as a packet of elastic energy propagating through a crystal (phonons)

$$v_g = \frac{\partial \omega}{\partial k}$$

• velocity is related to the gradient of $\omega(k)$ dispersion curve

$$v_g = \sqrt{\frac{Ca^2}{M}} \cos\left(\frac{1}{2}ka\right)$$

· low wavevector waves have higher velocity, waves at boundary of brillouin zone have zero velocity

long wavelength limit

- applies to waves $k \approx 0$, defined by $ka \ll 1$
- this corresponds to sound waves in crystal
- when $ka \ll 1 \to \cos(ka) = 1 \frac{1}{2}(ka)^2$
- dispersion relation (long wavelength):

$$\omega^2 = \left(\frac{c}{M}\right) k^2 a^2$$

$$\omega = \sqrt{\frac{c}{M}} ka$$

• $\omega \propto k$ at long wavelengths

Lecture 7

- consider two atom basis in phonon model e.g. salts (NaCl), semiconductors (GaAs), etc
- use same equation of motion with M_1 and M_2 masses and $U_{s,s\pm 1}...,V_{s,s\pm 1}...$

$$M_1 \frac{d^2 U_s}{dt^2} = c(V_s + V_{s-1} - 2U_s) \; ; \; M_2 \frac{d^2 V_s}{dt^2} = c(U_{s+1} + U_s - 2V_s)$$

- solutions is SHM travelling wave, different amplitudes on adjacent planes u_s, v_s
- we define a as the distance between identical planes $(M_1 \text{ or } M_2)$

$$U_s = U \exp(isKa) \exp(-i\omega t)$$
; $V_s = V \exp(isKa) \exp(-i\omega t)$

• substitute travelling wave into equation of motion

$$-\omega^2 M_1 U = cv[1 + \exp(-iKa)] - 2cu$$
$$-\omega^2 M_2 V = cu[1 + \exp(iKa)] - 2cv$$

• only solution obtained from determinant of matrix equation

$$\begin{vmatrix} 2c - M_1 \omega^2 & -c[1 + \exp(iKa)] \\ -c[1 + \exp(iKa)] & 2c - M_2 \omega^2 \end{vmatrix}$$
$$M_1 M_2 \omega^4 - 2c(M_1 + M_2) \omega^2 + 2c^2(1 - \cos(Ka)) = 0$$
$$\omega^2 = \frac{c(M_1 + M_2)}{M_1 M_2} \pm \frac{C(M_1 + M_2)}{M_1 M_2} \sqrt{1 - 2\frac{M_1 M_2 (1 - \cos(Ka))}{(M_1 + M_2)^2}}$$

- solution gives two branches in phonon dispersion relation
- consider two limits to illustrate general behaviour
 - 1. when $Ka \ll 1$ long wavelength limit
 - 2. $K = \pm \frac{\pi}{a}$ boundary of first brillouin zone
- for small Ka (long wavelength limit), $\cos(Ka) \approx 1 \frac{1}{2}K^2a^2$
- two solutions of dispersion:

$$\omega^2 \approx 2c \left(\frac{1}{M_1} + \frac{1}{M_2}\right)$$

$$\omega^2 \approx \frac{\frac{1}{2}c}{M_1 M_2} K^2 a^2$$

- 1. ω is independent of K in the optical branch
 - two atoms out of phase
- 2. $\omega \propto K$ in the acoustic branch
 - two atoms move in phase

thermal properties of crystals

• phonon heat capacity:

$$C_V = \left(\frac{dU}{dT}\right)_V$$

- C_V used because no work done to change volume
- ullet U is the total internal energy of the vibrating lattice

$$U_{tot} = \sum_{k} \sum_{p} U_{kp} = \sum_{k} \sum_{p} \langle n_{kp} \rangle \hbar \omega_{kp}$$

- where k is the wavevector, and p is the polarisation, and $\langle n_{kp} \rangle$
- $\langle n_{kp} \rangle$ described by Planck distribution function:

$$n = \frac{1}{\exp\left(\frac{\hbar\omega}{k_B T}\right) - 1}$$

• number of vibrational nodes is called the density of states - number of vibrations per unit energy

$$D(\omega) = \frac{dN}{d\omega} = \left(\frac{vK^2}{2\pi^2}\right) \left(\frac{dK}{d\omega}\right)$$

• number of phonon nodes in a given frequency or energy range

debye model

- assumption is that velocity of sound is constant
- Debye model dispersion relation: $\omega = vK$
- density of states goes to

$$D(\omega) = \frac{V\omega^2}{2\pi^2 v^3} \; ; \; D(\omega) \propto \omega^2$$

• maximum frequency range is Debye frequency:

$$\omega_D^3 = 6\pi^2 v^3 \frac{N}{V}$$

• corresponds to Debye wavevector:

$$K_D = \frac{\omega_D}{v} = \left(6\pi^2 \frac{N}{V}\right)^{1/3}$$

einstein model

• assumes all phonons have the same frequency or energy

$$U = N \langle n \rangle \hbar \omega = \frac{N \hbar \omega}{\exp\left(\frac{\hbar \omega}{kT}\right) - 1}$$

 \bullet N is the total number of oscillators

Lecture 8

electrical properties of crystals from classical physics

- assumptions:
 - 1. outer valence electrons are detached free to move through the crystal
 - 2. electric field due to other electrons and nucleus cancel out
- drude model applied kinetic theory of gases to electrons
- 1. specific heat capacity of electrons
 - Mean kinetic energy $E = \frac{3}{2}k_BT$
 - specific heat capacity per electron: $C_V = \frac{dE}{dt} = \frac{3}{2}k_B$
- 2. electrical conductivity
 - begin with Ohm's Law, V = IR
 - rewrite in dimensionless form, $E = \rho J$
 - $J = \sigma E$
- drude model assumes electrons collide with something
- describe using a mean time between collision events au
- equations of motion $\underline{v} = \underline{v}_0 \frac{|e|t\underline{E}}{m_e}$ electron velocity v_0 is random no overall contribution
 - considers only drift velocity in response to \underline{E}
 - electron drift velocity is average of $-\frac{|e|tE}{m_e}$

$$\begin{split} & \underline{\bar{v}} = -\frac{|e|\bar{t}\underline{E}}{m_e}, \ \bar{t} = \tau \\ & \underline{J} = -n|e|\underline{v} = \frac{n|e|^2\tau}{m_e}\underline{E} \\ & \Longrightarrow \sigma = \frac{n|e|^2\tau}{m_e} \end{split}$$

- this is the drude electrical conductivity formula
- 3. thermal conductivity of electrons

- temp gradient $\frac{dT}{dz}$ assume electron is in thermal equilibrium at point of collision
- $\bullet\,$ consider thermal energy carried by the electron
- thermal average is $v_z^2 = \frac{k_B T}{m_c}$

$$\begin{split} Q &= -nv_z c_V v_z \tau \frac{dT}{dx} \\ &= -\kappa \frac{dT}{dz} \\ \kappa &= \frac{3}{2} n \frac{k_B^2 T}{m_e} \tau \end{split}$$

• comparison with ratio of thermal to electrical conductivity

$$\frac{\kappa}{\sigma} = \frac{3}{2} \left(\frac{k}{e}\right)^2 T$$

Lecture 9

free electron model

assumptions: 1. outer valence electrons detach - free to move around crystal 2. effects of ions and electrons cancel - electrons move in region of no potential

- free electron model treats metal as empty box (zero potential) of dimensions (L_x, L_y, L_z)
 - inside the box, zero potential
 - outside the box, infinite potential

periodic boundary conditions

• boundary used in this model - consequence of periodicity of crystals

$$\psi(\vec{r}) = \psi(\vec{r} + \vec{L}), \vec{L} = (L_x, L_y, L_z)$$

- wavefunction is assumed to be periodic with dimensions of sample space, \vec{L}
- this removes any limitation on the value of \vec{r}

$$\psi(x, y, z) = \psi(x + L_x, y, z) + \psi(x, y + L_y, z) + \psi(x, y, z + L_z)$$

free electron wavefunction

• potential inside box is zero, so time-independent schrodinger is

$$-\frac{\hbar^2}{2m_e} \nabla^2 \psi(\vec{r}) + V(\vec{r}) \psi(\vec{r}) = E \psi(\vec{r}) \psi(x, y, z) = A \exp\left[i(k_x x + k_y y + k_z z)\right], k_i = \frac{2\pi (l/m)}{L_i} E = \frac{\hbar^2}{2m_e} \left(k_x^2 + k_y^2 + k_z^2\right)$$

- electron energy eigenstates are stationary (independent of time)
- amplitude A is constant, uncertainty in position coordinate, all energy states overlap

k-space

- reciprocal space
- can describe electrons using k-coordinate
- each electron has coordinate (k_x,k_y,k_z) in k-space, separated by $\frac{2\pi}{l}$ in each dimension allowed points form mesh in k-space each within a volume $\left(\frac{2\pi}{L}\right)^3$
- - "exclusion zone"
 - no other allowed k-states within the volume
- each k-state has 2 electron spin degeneracy Pauli exclusion principle
- allowing for spin, we have

$$2 \div \left(\frac{2\pi}{L}\right)^3 = \frac{L^3}{4\pi^3}$$

fermi energy and surface

- maximum energy of system
- define fermi energy as highest occupied energy level when system is in ground state (0 Kelvin)

$$E = \frac{\hbar^2 k^2}{2m_*}$$

- surface of constant energy is constant, k^2
- fermi surface is a sphere of radius k_F
- $\frac{L^3}{4\pi^3}$ electron states per unit volume, so volume of sphere is $V = \frac{4}{3}\pi k_F^3$ total nnumber of electrons:

$$N = \left(\frac{4}{3}\pi k_F\right)^3 \left(\frac{L^3}{4\pi^3}\right) k_F = \left(\frac{3N\pi^2}{L^3}\right)^{1/3} = (3\pi^2 n)^{1/3}, n = \text{ electron density} \\ E_F = \frac{\hbar^2}{2m_e} k_F^2 = \frac{\hbar^2}{2m_e} (3\pi^2 n)^{2/3} = (3\pi^2 n)^{1/3}, n = \text{ electron density} \\ E_F = \frac{\hbar^2}{2m_e} k_F^2 = \frac{\hbar^2}{2m_e} (3\pi^2 n)^{2/3} = (3\pi^2 n)^{1/3}, n = \text{ electron density} \\ E_F = \frac{\hbar^2}{2m_e} k_F^2 = \frac{\hbar^2}{2m_e} (3\pi^2 n)^{2/3} = (3\pi^2 n)^{1/3}, n = \frac{\hbar^2}{2m_e} k_F^2 = \frac{\hbar^2}{2m_e} k_F^2 = \frac{\hbar^2}{2m_e} (3\pi^2 n)^{2/3} = (3\pi^2 n)^{1/3}, n = \frac{\hbar^2}{2m_e} k_F^2 = \frac{\hbar^2}$$

density of states

- number of electron energy states oer unit energy range
- consider volume of k-space between k and $k + \delta k$:
 - volume is surface area $\times \delta k = 4\pi k^2 \delta^2$
- number of states between k and $k + \delta k \rightarrow$

$$n(k)\delta k - \frac{L^3}{4\pi^3} 4\pi k^2 \delta k$$

· express energy:

$$n(E)\delta E = \frac{L^3}{\pi^2}k^2\delta k \implies n(E) = \sqrt{2}\frac{L^3}{\pi^2}\frac{n_e^{3/2}}{k^3}\sqrt{E}$$

Lecture 10

fermi-dirac distribution

• fermi energy is energy of highest occupied state at 0 Kelvin (overall ground state)

- fermi function describes occupation of energy levels
- at 0 Kelvin, states above E_F are empty f=0, states below E_F are occupied f=1
- define an occupation number:

$$f(E) = \begin{cases} 1 & 0 < E \le E_F \\ 0 & E > E_F \end{cases}$$

• can be considered a continuous distribution function

$$N = \int_0^{E_F} n(E)dE = \int_0^i nfty f(E)n(E)dE$$

- consider how function varies with temperature energy range covering transition from f=1 to f=0is broadened out at finite temperatures
- this is described by the Fermi-Dirac distribution function derived by consdiering 3 constraints:
 - 1. Conservation of Energy
 - 2. Conservation of Particle Number
 - 3. Subject to Pauli Exclusion principle

$$f(E) = \frac{1}{1 + \exp\left[\frac{(E - E_F)}{k_B T}\right]}$$

- this is a normalised statistical distribution function
- describes the probability of energy state E being occupied by an electron

behaviour of fermi-dirac function

- at low temperatures, $k_BT \ll E_F$

- 1. when $E < E_F \to \frac{E E_F}{k_B T} \to \text{large}$ and negative 2. when $E > E_F \to \frac{E E_F}{K_B T} \to \text{large}$ and positive, $f(E) \approx 0$ 3. when $E \approx E_F$, transition from $f(E) = 1 \to f(E) = 0$ occurs over narrow neergy range around E_F width is about k_BT on each side of E_F
- in systems with low densities of electrons, $f(E) \ll 1$
 - approximation, when $E_F \ll k_B T$:

$$f(E) \approx \exp\left[-\left(\frac{E-E_F}{k_BT}\right)\right] \approx \exp\left(-\frac{E}{k_BT}\right)$$

- this behaves like the classical system, very low E_F

free electron heat capacity

- can determine the electronic specific heat capacity using free electron model
- what happens when temperature is increased?
- only small proportions of electrons will increase their energy those that are within k_BT of E_F
- we require am empty electron state for the excited electron to move to
- electrons within region k_BT of E_F will absorb thermal energy
- assume number of electrons with energy close to E_F is given by $n(E_F)k_BT$
- extra energy acquired by electron is k_BT

$$U(T) - U(0) = n(E_F)(k_B T)^2$$
 – only for electrons

• $n(E_F)$ is the density of states at Fermi energy

$$C_V = \frac{dU}{dT} \approx 2n(E_F)k_B^2 T$$

• note that this assumes $n(E_F)$ is constant over energy range

$$\begin{split} n &= \frac{(E_F 2m_e)^{3/2}}{3\pi^2 \hbar^3} \\ N &= n(E_F) E_F V \\ n(E_F) &= \frac{3}{2} \frac{N}{E_F} \\ C_V &\approx \frac{3}{2} k_B T \left(\frac{2k_B T}{E_F}\right) \end{split}$$

- specific heat capacity is modified from classical value by bracketed factor
- electronic specific heat capacity is proportional to temperature

Lecture 11

magnetic properties of free electrons

- Free electron model can predict magnetic properties
- how does metal respond when placed in magnetic field?

magnetic susceptibility of metals

- metals develop an induced magnetic moment in magnetic fields
- interactions between B-feild and electron spin
- it is known all materials show a weak paramagnetism which is independent of temperature
 - this is parallel to applied field
- use free electron model to demonstrate this observed effect
- electrons have a magnetic moment due to spin:

$$\mu_B = \frac{e\hbar}{2m_e} = 9.27 \times 10^{-24} \, J \, T^{-1}$$

- energy of electron will change in field by $\pm \mu_B$ depending on spin
- assume equal numbers of \pm spin for electons
 - parallel
 - anti-parallel
- when B field applied:
 - half of electrons increase energy by:

$$+\frac{e\hbar}{2m_e}B$$
 - antiparallel

- half of electrons reduce energy by:

$$-\frac{e\hbar}{2m_e}B - \text{parallel}$$

- total energy of system can be reduced if some electrons reverse spins
- a proportion of electrons with antiparallel spins can reverse spins to reduce overall energy
- how many electrons reverse spin?
 - need to have the same Fermi energy for spin up and spin down electrons
- density of states function evaluated at E_F multiplied by change in energy gives number of electrons
- number of electrons within $\mu_B B$ of the original Fermi energy: $ne = \frac{1}{2}n(E_F)\mu_B B$
- difference in population: $n(E_F)\mu_B B$ number of electrons with spin up increased by this amount
- net magnetic moment: $n(E_F)\mu_B^2 B$ produces net magnetic moment per unit volume

$$M = \frac{\mu_B^2 Bn(E_F)}{V}$$

• paramagnetic susceptibility, a measure of how easy it is to magnetise system:

$$\chi = \frac{\partial M}{\partial H}, H = \frac{M}{\mu_0} \chi = \mu_0 \mu_B^2 \frac{n(E_F)}{V}$$

- this is called the Pauli Paramagnetism it is independent of temperature
- at finite temperatures, temperature dependence of Fermi distribution will lead to a small temperature dependence

hall effect

- observed in 1879
- consider current density, j, flowing along bar in x direction:
- apply perpendicular magnetic field, B
- electrons experience Lorentz force $F = e(v \times B + E)$
- electrons are pushed to one side of metal bar by this force
- electric field will compensate for motion due to Lorentz force $eE_y = -F \implies E_y = -v \times B$
- current density, j = nev

$$E_y = -\frac{1}{ne}j \times B, \frac{1}{ne} = R_H$$

- R_H is the Hall coefficient
- the sign of the Hall coefficient shows the charge on the carriers
 - some metals, however, have positive Hall coefficient

Lecture 12

nearly free electron model

- free electron model ignored some interactions:
 - 1. electron-atoms free electron approximation
 - 2. electron-electron independent electron approximation
- nearly free electron model includes electron-atom interactions
- failures of free electron model:
 - temperature dependence of conductivity
 - some metals have a positive Hall coefficient

- interaction between electrons and crystal lattices?
 - lattice $\underline{R} = n_1\underline{a}_1 + n_2\underline{a}_2 + n_3\underline{a}_3$, where $\underline{a}_1, \underline{a}_2, \underline{a}_3$ are lattice vectors

bloch theorem

- this is a consequence of periodic properties of crystals
 - provides insights into behaviour of electrons in periodic potnetial Bloch states
 - describes electrons moving in periodic potential
- consider a 10 crystal (line of atoms). $\psi(x)$ is solution satisfying time-independent Schrodinger equation
 - Schrodinger equation has periodic potential V(x) representing atoms
 - energy eigenvalues, σ
- schrodinger equation evaluated at (x+R) must give same solution as as (x)
 - local electronic environment at x and x + R are identical
 - have second solution $\phi(x)$ which also satisfies the Schrodinger equation with energy E
 - Assume ψ and ϕ are unique solutions, can write $\phi(x) = \psi(x+R)$
 - -R is lattice vector = na
 - $-\psi(x+R)=c(R)\psi(x)$ where c(R) is a constant equal to 1
- using series of lattice translations, $c(R_1 + R_2) = c(R_1)c(R_2)$
 - therefore $c(nR) = [c(R)]^n, n \in \mathbb{N}$
- wavefunction must satisfy boundary conditions (periodic over M lattice translation where Ma = l, the length of 10 crystals)
- bloch theorem brings together two requirements to satisfy both periodic bonding conditions and lattice translation by n_1a_1 where n_1 is an integer
- from this we have $\psi(x + Ma) = \psi(x) \implies [c(a)]^M = 1$
 - a functions that satisfies replacement for $c(a) = \exp[ika]$, where $ka = \frac{2\pi l}{M}$ $(l \in \mathbb{Z})$
- for any lattice translation, $\underline{R} = m\underline{a}$ $(m \in \mathbb{Z}, \underline{a} \text{ is lattice constant})$ $c(R) = [c(a)]^M \equiv \exp[iMka] = \exp[ikR], R = \frac{2\pi l}{L} l \in \mathbb{Z}, L$ is the total dimensino of sample these statments set oit bloch's theorem they explain the difference between free electron and nearly free electron models
- free electron model $\psi(x) = C \exp[ikx]$ plane wave with constant energy E, k is the electron wavevector
- nearly free electron model $\psi(x+R) = C \exp[ik(x+R)] = C \exp[ikR]\psi(x) = Cu_k(R)\psi(x), \ u_k(R)$ is the bloch function
- the bloch theorem tells us that nearly free electron wavefunctions (weak periodic potential) are composed of two parts:
 - 1. plane wave free electron behaviour, $C \exp[ikx]$
 - 2. modulated in intensity by bloch function, $u_k(R)$, has periodicity of lattice
 - fundamental nature of ψ is still free electron behaviour, but with a modification

consequences of bloch theorem

- adding multiples of $\frac{2\pi}{a}$ to bloch wavevectors does not alter solution ψ only k values in $\frac{2\pi}{a}$ range are physically distinct all other values can be mapped into unique range
- convention is to define this as $-\frac{\pi}{a} \to \frac{\pi}{a}$
 - this corresponds to the first brillouin zone

energy band diagrams

- shows electron behaviour in terms of energy and wavevector free electron model $E = \frac{\hbar^2 k^2}{2m_e}$
- branches of E(k) curve are moved into first brillouin zone

Lecture 13

nearly free electron energy bands

- physical origin of energy gaps and energy bands:
 - 1. bragg reflection electronw aves can scatter from planes of atoms. Weak periodic potentiation Schrodinger equation. Gives corresponding values for energy gaps at $k = \frac{n\pi}{a}$
 - 2. interference at certain wavelengths, get interference between electron waves and atoms

energy bands

- describe relationship between eenrgy and wavevector
- electrons of different 'k' propagate at different velocities dispersion
- travelling wave group velocity:

$$v_g = \frac{d\omega}{dk}$$

• For electron:

$$v_g = \frac{1}{\hbar} \frac{dE(k)}{dk}$$

• velocity of Block electrons (know $E = \frac{\hbar^2 k^2}{2m_e}$). This gives:

$$v_g = \frac{1}{\hbar} \frac{d}{dk} \left(\frac{\hbar^2 k^2}{2m_e} \right) = \frac{\hbar k}{m_e} = \frac{p}{m} = vk$$

 $\hbar k$ is the crystal momentum

• crystal momentum is the momentum an electron has as a result of interacting with periodic potential exhibits different physical parameters

current carried by energy bands

• we know that the current density is $j = ne\langle v \rangle$, where $n \equiv$ electron density, $\langle v \rangle \equiv$ average velocity

$$\langle v \rangle = \frac{1}{\hbar} \int_{k=-\frac{\pi}{a}}^{k=\frac{\pi}{a}} \frac{dE}{dk} dk \, \frac{a}{2\pi}$$

• consider $k=\frac{\pi}{a}$ nd $k=-\frac{\pi}{a}$ these are physically equivalent states (from Block theorem) – tells us that $E\left(\frac{\pi}{a}\right)=0=E\left(-\frac{\pi}{a}\right)$

$$\langle v \rangle = \frac{a}{2\pi\hbar} \left[E\left(\frac{\pi}{a}\right) - E\left(-\frac{\pi}{a}\right) \right] = 0$$

- above implies average velocity of fulled energy band is zero, as is current density
- completely filled energy band carries no electrical current (insulators)
- current carried by partially filled bands (metals or semiconductors)

equation of motoin for block electrons

- consider force F applied to electron - Fv_g = rate of work being done

$$Fv_g = \frac{dE}{dt} = \frac{dE}{dk} \times \frac{dk}{dt}$$
$$v_g = \frac{1}{\hbar} \frac{dE}{dk}$$
$$\Longrightarrow F = \hbar \frac{dk}{dt}$$

• can predict how electron will respond in electric field

effective mass

- electrons in bloch states move as though the mass of electron is different form free electron masses
- consider E(k) relationship near band edge at $k = k_0$ where $\frac{dE}{dk} = 0$ (i.e. zero group velocity)
- general form given by $E = E(k_0) + \frac{1}{2}A(k-k_0)^2$ group velocity: $v_g(k) = \frac{A(k-k_0)}{\hbar}$ - compare with free electrons, where we have $v_{free} = \frac{p}{m_e} = \frac{\hbar k}{m_e}$
- electrons behave as though they have an effective mass of $m_{eff} = \frac{\hbar^2}{A}$
- from taylor's theorem, we can show that $A = \frac{d^2 E}{dk^2}\Big|_{k=k_0}$

$$m_{eff} = \hbar^2 \left[\frac{d^2 E}{dk^2} \right]_{k=k_0}^{-1}$$

• second derivative is curvature - when $E \propto k^2$ then m_{eff} is constant some regions of m_{eff} are positive, some regions are negative negative mass \implies electrons slow down in electric field, force is in opposite direction

electrons and holes

- an energy band which is nearly filled has some vacant energy states near top of energy band consider vacant states of holes charge of +e equivalent to negative effective mass hole wavevector $k_h = -k_e$, energy $E(k_h) = -E(k_e)$, $v_h = v_e$
- 1. if energy band is full there is no current
- 2. if energy band is partially full then electrons with \$m_{eff_{}} describe electrical response
- 3. if energy band is almost completely filled, then holes with negative m_{eff} , positive charge