```
1/1 WPAT - @Thomson Derwent
Accession Nbr:
 2004-432708 [41]
Sec. Acc. CPI:
 C2004-162197
Title:
  Low wt., low volume oil-in-water emulsion for cosmetic or dermatological use contains a water-soluble polymer and a
  UV light filter and is obtained by spray or freeze drying.
Derwent Classes:
  A96 D21
Patent Assignee:
 (BEIE) BEIERSDORF AG
Inventor(s):
  KOOPMANN S; SCHULZ J
Nbr of Patents:
 3
Nbr of Countries:
  29
Patent Number:
  DE10254335 A1 20040603 DW2004-41 A61K-007/42 28p *
  AP: 2002DE-1054335 20021121
  AWO200445570 A1 20040603 DW2004-41 A61K-007/42 Ger
  AP: 2003WO-EP50831 20031114
  DSNW: JP US
  DSRW: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR
  EP1565156 A1 20050824 DW2005-56 A61K-007/42 Ger
  FD: Based on WO200445570
  AP: 2003EP-0796021 20031114; 2003WO-EP50831 20031114
  DSR: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR
Priority Details:
  2002DE-1054335 20021121
IPCs:
  A61K-007/42 A61K-007/00
Abstract:
  DE10254335 A
 NOVELTY - A spray or freeze drying process yields an oil-in-water (O/W) emulsion comprising a mixture of by wt.
  (a) a lipid phase (20-95%);
  (b) a water- soluble polymer (1-80%);
  (c) a UV light filter; and
  (d) an aqueous phase optionally together with further cosmetic and/or dermatological agents and additives.
  USE - In the production of cosmetics by addition of water.
  ADVANTAGE - The disadvantages of high wt. and high volume associated with prior-art emulsions are overcome and a
  'dry' emulsion is obtained which eases transportation problems. (Dwg.0/0)
Manual Codes:
  CPI: A07-B A10-G01B A11-A03 A12-V04 A12-V04C D08-B09A
Update Basic:
  2004-41
Update Basic (Monthly):
  2004-06
Update Equivalents:
  2004-41; 2005-56
Update Equivalents (Monthly):
```

2004-06; 2005-09

THIS PAGE BLANK (USPTO)

(12)

Offenlegungsschrift

(21) Aktenzeichen: **102 54 335.6** (22) Anmeldetag: **21.11.2002**

(43) Offenlegungstag: 03.06.2004

(51) Int Cl.7: **A61K** 7/42

A61K 7/00

(71) Anmelder:

Beiersdorf AG, 20253 Hamburg, DE

(72) Erfinder:

Koopmann, Sabine, 20253 Hamburg, DE; Schulz, Jens, Dr., 22869 Schenefeld, DE (56) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

DE 696 03 984 T2 US2001/00 22 965 A1 US 62 99 798 B1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Rechercheantrag gemäß § 43 Abs. 1 Satz 1 PatG ist gestellt.

- (54) Bezeichnung: Lichtschutzkonzentrat mit wasserlöslichen Polymeren
- (57) Zusammenfassung: Verfahren zur Herstellung einer O/W-Emulsion, dadurch gekennzeichnet, dass eine O/W-Emulsion, enthaltend
- a) eine Lipidphase in einer Konzentration von 20 bis 95 Gewichts-%.
- b) ein oder mehrere wasserlösliche Polymere in einer Gesamtkonzentration von 1 bis 80 Gewichts-%,
- jeweils bezogen auf das Gesamtgewicht der Zubereitung, sowie
- c) ein oder mehrere UV-Lichtschutzfilter und
- d) eine wässrige Phase,
- neben gegebenenfalls weiteren kosmetischen und/oder dermatologischen Wirk-, Hilfs- und Zusatzstoffen, durch Sprühtrocknung und/oder Gefriertrocknung getrocknet wird.

BNSDOCID: <DE_____10254335A1_I_>

Beschreibung

[0001] Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer O/W-Emulsion, dadurch gekennzeichnet, dass eine O/W-Emulsion enthaltend

- a) eine Lipidphase in einer Konzentration von 20 bis 95 Gewichts-%,
- b) ein oder mehrere wasserlösliche Polymere in einer Gesamtkonzentration von 1 bis 80 Gewichts-%, jeweils bezogen auf das Gesamtgewicht der Zubereitung, sowie
- c) ein oder mehrere UV-Lichtschutzfilter und
- d) eine wässrige Phase,

neben gegebenenfalls weiteren kosmetischen und/oder dermatologischen Wirk-, Hilfsund Zusatzstoffen, durch Sprühtrocknung und/oder Gefriertrocknung getrocknet wird.

[0002] Der Wunsch, schön und attraktiv auszusehen, ist von Natur aus im Menschen verwurzelt. Auch wenn das Schönheitsideal im Laufe der Zeit Wandlungen erfahren hat, so ist das Streben nach einem makellosen Äußeren, immer das Ziel der Menschen gewesen. Einen wesentlichen Anteil an einem schönen und attraktiven Äußeren hat dabei der Zustand und das Aussehen der Haut und der Hautanhangsgebilde, d.h. der Haare und der Nägel.

[0003] Die Haut ist das größte Organ des Menschen. Unter ihren vielen Funktionen (beispielsweise zur Wärmeregulation und als Sinnesorgan) ist die Barrierefunktion, die das Austrocknen der Haut (und damit letztlich des gesamten Organismus) verhindert, die wohl wichtigste. Gleichzeitig wirkt die Haut als Schutzeinrichtung gegen das Eindringen und die Aufnahme von außen kommender Stoffe und der UV-Strahlung. Bewirkt wird diese Barrierefunktion durch die Epidermis, welche als äußerste Schicht die eigentliche Schutzhülle gegenüber der Umwelt bildet. Mit etwa einem Zehntel der Gesamtdicke ist sie gleichzeitig die dünnste Schicht der Haut. [0004] Damit die Haut ihre biologischen Funktionen im vollen Umfang erfüllen kann, bedarf sie der regelmäßigen Reinigung und Pflege. Die Reinigung der Haut dient dabei der Entfernung von Schmutz, Schweiß und Resten abgestorbener Hautpartikel, die einen idealen Nährboden für Krankheitserreger und Parasiten aller Art bilden. Hautpflegeprodukte, in der Regel Cremes, Salben oder Lotionen, dienen meist der Befeuchtung und Rückfettung der Haut. Häufig sind ihnen Wirkstoffe zugesetzt, welche die Haut regenerieren und beispielsweise ihre vorzeitige Alterung (z.B. das Entstehen von Fältchen, Falten) verhindern und vermindern sollen.

[0005] Hautpflegeprodukte bestehen in der Regel aus Emulsionen. Unter Emulsionen versteht man im allgemeinen heterogene Systeme, die aus zwei nicht oder nur begrenzt miteinander mischbaren Flüssigkeiten bestehen, die üblicherweise als Phasen bezeichnet werden und bei denen eine der beiden Flüssigkeiten in Form feinster Tröpfchen in der anderen Flüssigkeit dispergiert ist. Äußerlich und mit bloßem Auge betrachtet erscheinen Emulsionen homogen.

[0006] Sind die beiden Flüssigkeiten Wasser und Öl und liegen Öltröpfchen fein verteilt in Wasser vor, so handelt es sich um eine Öl-in-Wasser-Emulsion (O/W-Emulsion, z. B. Milch). Der Grundcharakter einer O/W-Emulsion ist durch das Wasser geprägt. Bei einer Wasser-in-Öl-Emulsion (W/O-Emulsion, z. B. Butter) handelt es sich um das umgekehrte Prinzip, wobei der Grundcharakter hier durch das Öl bestimmt wird.

[0007] Der Trend weg von der vornehmen Blässe hin zur "gesunden, sportlich braunen Haut" ist seit Jahren ungebrochen. Um diese zu erzielen setzen die Menschen ihre Haut der Sonnenstrahlung aus, da diese eine Pigmentbildung im Sinne einer Melaninbildung hervorruft. Die ultraviolette Strahlung des Sonnenlichtes hat jedoch auch eine schädigende Wirkung auf die Haut. Neben der akuten Schädigung (Sonnenbrand) treten Langzeitschäden wie ein erhöhtes Risiko an Hautkrebs zu erkranken bei übermäßiger Bestrahlung mit Licht aus dem UVB-Bereich (Wellenlänge: 280-320 nm) auf. Die übermäßige Einwirkung der UVB- und UVA-Strahlung (Wellenlänge: 320-400 nm) führt darüber hinaus zu einer Schwächung der elastischen und kollagenen Fasern des Bindegewebes. Dies führt zu zahlreichen phototoxischen und photoallergischen Reaktionen und hat eine vorzeitige Hautalterung zur Folge.

[0008] Zum Schutz der Haut wurden daher eine Reihe von Lichtschutzfiltern entwickelt, die in kosmetischen Zubereitungen eingesetzt werden können. Diese UVA- und UVB-Filter sind in den meisten Industrieländern in Form von Positivlisten wie der Anlage 7 der Kosmetikverordnung zusammengefasst.

Stand der Technik

[0009] Herkömmliche kosmetische und/oder dermatologische Emulsionen, beispielsweise Sonnenschutzcremes oder -lotionen, haben aufgrund Ihres Wassergehaltes eine Reihe von Nachteilen:

- Sie besitzen ein hohes Gewicht, was beim Transport zu höherem Energieverbrauch und höheren Kosten führt.
- Sie besitzen ein größeres Volumen, was beim Transport zu geringeren Transportkapazitäten führt.
- Insbesondere dünnflüssige Emulsionen sind wesentlich aufwendiger zu lagern und transportieren, da die Zubereitungen "auslaufen" können.

– Die Anwendungskonzentrationen der Inhaltsstoffe (z.B. UV-Filterkonzentration und damit UV-Filterleistung) sind dem Verbraucher bereits vorgegeben. Eine individuelle Anpassung an die Gegebenheiten am Anwendungsort sind nicht mehr möglich.

Aufgabenstellung

[0010] Es war daher die Aufgabe der vorliegenden Erfindung, die Nachteile des Standes der Technik zu beseitigen und eine "trockene" Emulsion sowie ein Verfahren zur Herstellung derselben zu entwickeln.

[0011] Überraschend gelöst wird die Aufgabe durch ein Verfahren zur Herstellung einer O/W-Emulsion, dadurch gekennzeichnet, dass eine O/W-Emulsion enthaltend

- a) eine Lipidphase in einer Konzentration von 20 bis 95 Gewichts-%.
- b) ein oder mehrere wasserlösliche Polymere in einer Gesamtkonzentration von 1 bis 80 Gewichts-%, jeweils bezogen auf das Gesamtgewicht der Zubereitung, sowie
- c) ein oder mehrere UV-Lichtschutzfilter und
- d) eine wässrige Phase,

neben gegebenenfalls weiteren kosmetischen und/oder dermatologischen Wirk-, Hilfsund Zusatzstoffen, durch Sprühtrocknung und/oder Gefriertrocknung getrocknet wird.

[0012] Dabei ist es erfindungsgemäß bevorzugt, wenn die Lipidphase in einer Konzentration von 25 bis 90 Gewichts-% und besonders bevorzugt in einer Konzentration von 35 bis 80 Gewichts-%, jeweils bezogen auf das Gesamtgewicht der Zubereitung, in der erfindungsgemäßen Emulsion enthalten ist.

[0013] Es ist des weiteren erfindungsgemäß bevorzugt, wenn ein oder mehrere wasserlösliche Polymere in einer Gesamtkonzentration von 5 bis 70 Gewichts-% und besonders bevorzugt in einer Konzentration von 10 bis 60 Gewichts-%, jeweils bezogen auf das Gesamtgewicht der Emulsion enthalten sind.

[0014] Ferner ist es erfindungsgemäß bevorzugt, wenn der Wassergehalt in der Zubereitung nach der Sprühund/oder Gefriertrocknung weniger als 8 Gewichts-% und besonders bevorzugt weniger als 5 Gewichts-%, jeweils bezogen auf das Gesamtgewicht der getrockneten Emulsion beträgt.

[0015] Auch sind nach einem derartigen Verfahren hergestellte O/W-Emulsionen erfindungsgemäß.

[0016] Überraschend ist insbesondere, dass sich die trockenen Emulsionen durch einfachen Zusatz von Wasser "reemulgieren" lassen, das heißt, dass wieder eine O/W-Emulsion ausgebildet wird, was für gewöhnlich bei "eingetrockneten" Emulsionen nicht der Fall ist.

[0017] Zwar beschreiben Y. Kawashima et al [Int. J. Pharmazeut., 86 (1992) 25-33, Drug Development and Industrial Pharmacy, 18(9), 919-937 (1992) und Chem. Pharm. Bull. 39(6) 1528-1531 (1991)] sowie H.G. Kristensen et al. [Euro. J. Pharmaceutis and Biopharmaceutics 53 (2002) 147-153 und Int. J. Pharmaceutics 212 (2001) 187-194, 195-202] getrocknete, redispergierbare Emulsionen. Auch diese Emulsionen werden mit Hilfe von Hydroxypropylmethylcellulose stabilisiert. Doch sind die dort beschriebenen Emulsionen bei weitem nicht so komplex aufgebaut wie kosmetische und/oder dermatologische Emulsionen. Daher konnten diese Schriften keinen Weg zur vorliegenden Erfindung weisen. Die erfindungsgemäßen Emulsionen weisen gegenüber den bisher bekannten, redispergierbaren Emulsionen ein besonders angenehmes Hautgefühl auf und lassen sich mit einer Vielzahl kosmetischer Wirk-, Hilfs- und Zusatzstoffen kombinieren. So enthalten die erfindungsgemäßen Emulsionen einarbeiten ließen.

[0018] Die Ölphase der erfindungsgemäßen Emulsion, d.h. die lipophilen organischen Bestandteile, werden vorteilhaft gewählt aus der Gruppe der polaren Öle, beispielsweise aus der Gruppe der Lecithine und der Fettsäuretriglyceride, namentlich der Triglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12 bis 18 C-Atomen. Die Fettsäuretriglyceride können beispielsweise vorteilhaft gewählt werden aus der Gruppe der synthetischen, halbsynthetischen und natürlichen Öle, wie z. B. Cocoglycerid, Olivenöl, Sonnenblumenöl, Sojaöl, Erdnußöl, Rapsöl, Mandelöl, Palmöl, Kokosöl, Rizinusöl, Weizenkeimöl, Traubenkernöl, Distelöl, Nachtkerzenöl, Macadamianußöl und dergleichen mehr.

[0019] Erfindungsgemäß vorteilhaft sind ferner z. B. natürliche Wachse tierischen und pflanzlichen Ursprungs, wie beispielsweise Bienenwachs und andere Insektenwachse sowie Beerenwachs, Sheabutter und/oder Lanolin (Wollwachs).

[0020] Weitere vorteilhafte polare Ölkomponenten können im Sinne der vorliegenden Erfindung ferner gewählt werden aus der Gruppe der Ester aus gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkancarbonsäuren einer Kettenlänge von 3 bis 30 C-Atomen und gesättigten und/oder unverzweigten Alkoholen einer Kettenlänge von 3 bis 30 C-Atomen sowie aus der Gruppe der Ester aus aromatischen Carbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 3 bis 30 C-Atomen. Solche Esteröle können dann vorteilhaft gewählt werden aus der Gruppe Octylpalmitat, Octylcocoat, Octylisostearat, Octyldodeceylmyristat, Octyldodekanol, Cetearylisononanoat, Isopropylmyristat, Isopropylpalmitat, Isopropylstearat, Isopropyloleat,

n-Butylstearat, n-Hexyllaurat, n-Decyloleat, Isooctylstearat, Isononylstearat, Isononylisononanoat, 2-Ethylhexylpalmitat, 2-Ethylhexyllaurat, 2-Hexyldecylstearat, 2-Octyldodecylpalmitat, Stearylheptanoat, Oleyloleat, Oleylerucat, Erucyloleat, Erucyloleat, Tridecylstearat, Tridecyltrimellitat, sowie synthetische, halbsynthetische und natürliche Gemische solcher Ester, wie z. B. Jojobaöl.

[0021] Ferner kann die Ölphase vorteilhaft gewählt werden aus der Gruppe der Dialkylether und Dialkylcarbonate, vorteilhaft sind z. B. Dicaprylylether (Cetiol OE) und/oder Dicaprylylcarbonat, beispielsweise das unter der Handelsbezeichnung Cetiol CC bei der Fa. Cognis erhältliche.

[0022] Es ist ferner bevorzugt, das oder die Ölkomponenten aus der Gruppe Isoeikosan, Neopentylglykoldiheptanoat, Propylenglykoldicaprylat/dicaprat, Caprylic/Capric/Diglycerylsuccinat, Butylenglykol Dicaprylat/Dicaprat, Cocoglyceride (z. B. Myritol® 331 von Henkel), C₁₂₋₁₃-Alkyllactat, Di-C₁₂₋₁₃-Alkyltartrat, Trüsostearin, Dipentaerythrityl Hexacaprylat/Hexacaprat, Propylenglykolmonoisostearat, Tricaprylin, Dimethylisosorbid. Es ist insbesondere vorteilhaft, wenn die Ölphase der erfindungsgemäßen Formulierungen einen Gehalt an C₁₂₋₁₅-Alkylbenzoat aufweist oder vollständig aus diesem besteht.

[0023] Vorteilhafte Ölkomponenten sind ferner z. B. Butyloctylsalicylat (beispielsweise das unter der Handelsbezeichnung Hallbrite BHB bei der Fa. CP Hall erhältliche), Hexadecylbenzoat und Butyloctylbenzoat und Gemische davon (Hallstar AB) und/oder Diethylhexylnaphthalat (Corapan®TQ von Haarmann & Reimer).

[0024] Auch beliebige Abmischungen solcher Öl- und Wachskomponenten sind vorteilhaft im Sinne der vorliegenden Erfindung einzusetzen.

[0025] Die Lipidphase kann die polaren Ölkomponenten endungsgemäß in einer Konzentration von bis zu 80 Gewichts-% bezogen auf das Gesamtgewicht der Lipidphase enthalten. Die Gewichtsangabe bezieht sich dabei auf die Zusammensetzung der Zubereitung vor der Trocknung mittels Gefrier- und/oder Sprühtrocknung. [0026] Ferner kann die Ölphase ebenfalls vorteilhaft auch unpolare Öle enthalten, beispielsweise solche, welche gewählt werden aus der Gruppe der verzweigten und unverzweigten Kohlenwasserstoffe und -wachse

che gewählt werden aus der Gruppe der verzweigten und unverzweigten Kohlenwasserstoffe und -wachse, insbesondere Mineralöl, Vaseline (Petrolatum), Paraffinöl, Squalan und Squalen, Polyolefine, hydrogenierte Polyisobutene und Isohexadecan. Unter den Polyolefinen sind Polydecene und hydrierte Polyisobutene die bevorzugten Substanzen.

[0027] Die unpolaren Ölkomponenten können vorteilhaft in einer Konzentration von bis zu 80 Gewichts-% bezogen auf das Gesamtgewicht der Lipidphase in den erfindungsgemäßen Emulsionen enthalten sein. Die Gewichtsangabe bezieht sich dabei auf die Zusammensetzung der Zubereitung vor der Trocknung mittels Gefrierund/oder Sprühtrocknung.

[0028] Vorteilhaft kann die Ölphase ferner einen Gehalt an cyclischen oder linearen Silikonölen aufweisen oder vollständig aus solchen Ölen bestehen, wobei allerdings bevorzugt wird, außer dem Silikonül oder den Silikonölen einen zusätzlichen Gehalt an anderen Ölphasenkomponenten zu verwenden.

[0029] Silikonöle sind hochmolekulare synthetische polymere Verbindungen, in denen Silicium-Atome über Sauerstoff-Atome ketten- und/oder netzartig verknüpft und die restlichen Valenzen des Siliciums durch Kohlenwasserstoff-Reste (meist Methyl-, seltener Ethyl-, Propyl-, Phenyl-Gruppen u. a.) abgesättigt sind. Systematisch werden die Silikonöle als Polyorganosiloxane bezeichnet. Die methylsubstituierten Polyorganosiloxane, welche die mengenmäßig bedeutendsten Verbindungen dieser Gruppe darstellen und sich durch die folgende Strukturformel auszeichnen

$$\begin{array}{c|c} CH_{3} & CH_{3} \\ I & CH_{3} \\ I & CH_{3} \\ CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \\ \end{array}$$

werden auch als Polydimethylsiloxan bzw. Dimethicon (INCI) bezeichnet. Dimethicone gibt es in verschiedenen Kettenlängen bzw. mit verschiedenen Molekulargewichten.

[0030] Besonders vorteilhafte Polyorganosiloxane im Sinne der vorliegenden Erfindung sind beispielsweise Dimethylpolysiloxane [Poly(dimethylsiloxan)], welche beispielsweise unter den Handelsbezeichnungen Abil 10 bis 10 000 bei Th. Goldschmidt erhältlich sind. Ferner vorteilhaft sind Phenylmethylpolysiloxane (INCI: Phenyl Dimethicone, Phenyl Trimethicone), cyclische Silikone (Octamethylcyclotetrasiloxan bzw. Decamethylcyclopentasiloxan), welche nach INCI auch als Cyclomethicone bezeichnet werden, aminomodifizierte Silikone (INCI: Amodimethicone) und Silikonwachse, z. B. Polysiloxan-Polyalkylen-Copolymere (INCI: Stearyl Dimethicone und Cetyl Dimethicone) und Dialkoxydimethylpolysiloxane (Stearoxy Dimethicone und Behenoxy Stearyl Dimethicone), welche als verschiedene Abil-Wax-Typen bei Th. Goldschmidt erhältlich sind. Aber auch andere Silikonöle sind vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden, beispielsweise Cetyldimethicon, Hexamethylcyclotrisiloxan, Polydimethylsiloxan, Poly(methylphenylsiloxan).

[0031] Erfindungsgemäß besonders bevorzugte Silikone sind Dimethicon und Cyclomethicon.

[0032] Der Silikonölanteil der Lipidphase kann vorteilhaft 20 bis 100 Gewichts-% und besonders bevorzugt von 30 bis 60 Gewichts-%, jeweils bezogen auf das Gesamtgewicht der Lipidphase betragen.

[0033] Erfindungsgemäß vorteilhafte wasserlösliche Polymere können erfindungsgemäß vorteilhaft aus der Gruppe der wasserlöslichen bzw. dispergierbaren Filmbildner (z. B.

[0034] Polyurethane, Dimethicone Copolyol Polyacrylate, Polyvinylpyrrolidon-Vinylacetate PVPNA, Polyvinylpyrrolidone (PVP), siehe unten) und aus der Gruppe der Hydrokolloide (z.B. Agar-Agar, Carrageen, Tragant, Gummi arabicum, Alginate, Pektine, Polyosen, Guar-Mehl, Johannisbrotbaumkernmehl, Stärke, Dextrine, Polysaccharid-Nalkylurethane, Inulincarbamate, Gelatine, Casein, Celluloseether, Hydroxyethyl- und – propyl-cellulosederivate, Polysaccharide, Polyacryl- und Polymethacryl-Verbindungen, Ammoniumacryloyldimethyltaurate/Vinylpyrrolidoncopolymere und Ammoniumpolyacryldimethyltauramide, Vinylpolymere, Polycarbonsäuren, Polyether, Polyimine, Polyamide, Polykieselsäuren, Tonmineralien, Zeolithe, Kieselsäuren, siehe unten) gewählt werden.

[0035] Erfindungsgemäß bevorzugte Hydrokolloide sind beispielsweise Methylcellulosen, als welche die Methylether der Cellulose bezeichnet werden. Sie zeichnen sich durch die folgende Strukturformel aus

in der R ein Wasserstoff oder eine Methylgruppe darstellen kann.

[0036] Insbesondere vorteilhaft im Sinne der vorliegenden Erfindung sind die im allgemeinen ebenfalls als Methylcellulosen bezeichneten Cellulosemischether, die neben einem dominierenden Gehalt an Methyl- zusätzlich 2-Hydxoxyethyl-, 2-Hydroxypropyl- oder 2-Hydroxybutyl-Gruppen enthalten. Besonders bevorzugte Hydroxypropylmethylcellulosen (HPMC) weisen eine mittlere Molmasse $M_m < 50000g\ mol^{-1}$ auf und sind beispielsweise unter der Bezeichnung Pharmacoat 603, Pharmacoat 606 und Pharmacoat 645 oder unter der Bezeichnung Metolose 65 SH 50 bzw. Metolose 60 SH 50 bei der FA Shin Etsu erhältlich.

[0037] Des weiteren bevorzugt sind (Hydroxypropyl)methylcellulosen, beispielsweise die unter der Handelsbezeichnung Methocel E4M bei der Dow Chemical Comp. erhältlichen.

[0038] Erfindungsgemäß ferner vorteilhaft ist Natriumcarboxymethylcellulose, das Natrium-Salz des Glykolsäureethers der Cellulose, für welches R in Strukturformel I ein Wasserstoff und/oder CH2-COONa darstellen kann. Besonders bevorzugt ist die unter der Handelsbezeichnung Natrosol Plus 330 CS bei Aqualon erhältliche, auch als Cellulose Gum bezeichnete Natriumcarboxymethylcellulose.

[0039] Ferner ist es erfindungsgemäß, wenn eine derartige erfindungsgemäße O/W-Emulsion wasserlösliche kosmetische und/oder dermatologische Wirk-, Hilfs- und/oder Zusatzstoffe enthält.

[0040] Erfindungsgemäß ist das Verfahren zur Herstellung einer erfindungsgemäßen O/W-Emulsion, welches dadurch gekennzeichnet ist, dass eine durch Sprühtrocknung und/oder Gefriertrocknung getrocknete erfindungsgemäße O/W-Emulsion in einer Mischungsvorrichtung mit wasserlöslichen und/oder leichflüchtigen Wirk-, Hilfs- und/oder Zusatzstoffen vermischt wird.

[0041] Dabei bedeutet "leichtflüchtig" erfindungsgemäß, dass diese Verbindungen einen Siedepunkt von höchstens 30°C aufweisen.

[0042] Auch eine O/W-Emulsion, die nach einem solchen Verfahren hergestellt wird, ist erfindungsgemäß.

[0043] Die erfindungsgemäße Emulsion kann damit erfindungsgemäß wasserlösliche und/oder wasserdispergierbare Inhaltsstoffe enthalten. Diese werden der erfindungsgemäßen Zubereitung dabei vorteilhaft nach der Gefrier- bzw. Sprühtrocknung zugesetzt.

[0044] Die erfindungsgemäße Emulsion kann erfindungsgemäß wasserlösliche Inhaltsstoffe enthalten, beispielsweise Alkohole, Diole oder Polyole niedriger C-Zahl, sowie deren Ether, vorzugsweise Ethanol, Isopropanol, Propylenglykol, Ethylenglykolmonoethyl- oder -monobutylether, Propylenglykolmonomethyl, -monoethyl- oder -monobutylether, Diethylenglykolmonomethyl- oder -monoethylether und analoge Produkte.

[0045] Die Emulsionen können ein oder mehrere Polyole gewählt aus der Gruppe Sorbitol, Propylen Glycol sowie Butylen Glycol, enthalten.

[0046] Die erfindungsgemäß besonders bevorzugten Polyole sind Sorbitol und Mannitol.

[0047] Es ist vorteilhaft im Sinne der vorliegenden Erfindung, wenn die erfindungsgemäße kosmetische und/oder dermatologische Emulsion eine Gesamtmenge an Polyolen von 5,0 bis 40,0 Gewichts-%, bevorzugt von 7,5 bis 35,0 Gewichts-% und ganz besonders bevorzugt von 10,0 bis 25,0 Gewichts-%, jeweils bezogen auf das Gesamtgewicht der Zubereitung, enthält. Die Gewichtsangaben beziehen sich dabei auf die Zusammensetzung der Zubereitung vor der Trocknung mittels Gefrier- und/oder Sprühtrocknung.

[0048] Die erfindungsgemäße Emulsion wird vorteilhaft als Sonnenschutzmittel eingesetzt. Es ist auch vor-

teilhaft im Sinne der vorliegenden Erfindung, kosmetische und dermatologische Zubereitungen zu erstellen, deren hauptsächlicher Zweck nicht der Schutz vor Sonnenlicht ist, die aber dennoch einen Gehalt an UV-Schutzsubstanzen enthalten. So werden z. B. in Tagescremes oder Makeup-Produkten gewöhnlich UV-Abzw. UV-B-Filtersubstanzen eingearbeitet. Auch stellen UV-Schutzsubstanzen, ebenso wie Antioxidantien und, gewünschtenfalls, Konservierungsstoffe, einen wirksamen Schutz der Zubereitungen selbst gegen Verderb dar. Günstig sind ferner kosmetische und dermatologische Zubereitungen, die in der Form eines Sonnenschutzmittels vorliegen.

[0049] Dementsprechend enthalten die Zubereitungen im Sinne der vorliegenden Erfindung vorzugsweise mindestens eine UV-A- und/oder UV-B-Filtersubstanz. Die Formulierungen können, obgleich nicht notwendig, gegebenenfalls auch ein oder mehrere organische und/oder anorganische Pigmente als UV-Filtersubstanzen enthalten.

[0050] Bevorzugte anorganische Pigmente sind Metalloxide und/oder andere in Wasser schwerlösliche oder unlösliche Metallverbindungen, insbesondere Oxide des Titans (TiO₂), Zinks (ZnO), Eisens (z. B. Fe₂O₃), Zirkoniums (ZrO₂), Siliciums (SiO₂), Mangans (z. B. MnO), Aluminiums (Al₂O₃), Cers (z. B. Ce₂O₃), Mischoxide der entsprechenden Metalle sowie Abmischungen aus solchen Oxiden, sowie das Sulfat des Bariums (BaSO₄). [0051] Die Titandioxid-Pigmente können sowohl in der Kristallmodifikation Rutil als auch Anatas vorliegen und können im Sinne der vorliegenden Erfindung vorteilhaft oberflächlich behandelt ("gecoatet") sein, wobei beispielsweise ein hydrophiler, amphiphiler oder hydrophober Charakter gebildet werden bzw. erhalten bleiben soll. Diese Oberflächenbehandlung kann darin bestehen, daß die Pigmente nach an sich bekannten Verfahren mit einer dünnen hydrophilen und/oder hydrophoben anorganischen und/oder organischen Schicht versehen werden. Die verschiedenen Oberflächenbeschichtung können im Sinne der vorliegenden Erfindung auch Wasser enthalten.

[0052] Beschriebene beschichtete und unbeschichtete Titandioxide können im Sinne vorliegender Erfindung auch in Form kommerziell erhältlicher öliger oder wäßriger Vordispersionen zur Anwendung kommen. Diesen Vordispersionen können vorteilhaft Dispergierhilfmittel und/oder Solubilisationsvermittler zugesetzt sein. [0053] Die erfindungsgemäßen Titandioxide zeichnen sich durch eine Primärpartikelgröße zwischen 10 nm bis 150 nm aus.

Handelsname	Coating	zusätzliche Bestand- teile der Vordispersion	Hersteller
MT-100TV	Aluminiumhydroxid	-	Tayca Corporation
	Stearinsäure		
MT-100Z	Aluminiumhydroxid	-	Tayca Corporation
•	Stearinsäure		
MT-100F	Stearinsäure	-	Tayca Corporation
	Eisenoxid		

MT-500SAS	Alumina, Silica	-	Tayca Corporation
	Silikon		
MT-100AQ	Silica	-	Tayca Corporation
	Aluminiumhydroxid		
	Alginsäure		
Eusolex T-2000	Alumina	-	Merck KgaA
	Simethicone		
Eosolex TS	Alumina, Stearinsäure	-	Merck KgaA
Titandioxid P25	None	-	Degussa
Titandioxid T805	Octyltrimethylsilan	-	Degussa
(Uvinul TiO ₂)			
UV-Titan X170	Alumina	-	Kemira
	Dimethicone		
UV-Titan X161	Alumina, Silica	-	Kemira
	Stearinsäure	·	
Tioveil AQ 10PG	Alumina	Wasser	Solaveil
	Silica	Propylenglycol	Uniquema
Mirasun TiW 60	Alumina	Wasser	Rhone-Poulenc
	Silica		

[0054] Im Sinne der vorliegenden Erfindung sind besonders bevorzugte Titandioxide das MT-100 Z und MT-100 TV von Tayca Corporation, Eusolex T-2000 und Eusolex TS von Merck und das Titandioxid T 805 von Degussa.

[0055] Zinkoxide können im Sinne der vorliegenden Erfindung auch in Form kommerziell erhältlicher öliger oder wäßriger Vordispersionen zur Anwendung kommen. Erfindungsgemäß geeignete Zinkoxidpartikel und Vordispersionen von Zinkoxidpartikeln zeichnen sich durch eine Primärpartikelgröße von < 300 nm aus und sind unter folgenden Handelsbezeichnungen bei den aufgeführten Firmen erhältlich:

Handelsname	Coating	Hersteller
Z- Cote HP1	2% Dimethicone	BASF
Z- Cote	/	BASF
ZnO NDM	5% Dimethicone	H&R
MZ 707M	7% Dimethicone	M. Tayca Corp.
Nanox 500	/	Elementis
ZnO Neutral	/	H&R

[0056] Besonderes bevorzugte Zinkoxide im Sinne der Erfindung sind das Z-Cote HP1 von der Firma BASF und das Zinkoxid NDM von der Firma Haarmann & Reimer.

[0057] Die Gesamtmenge an einem oder mehreren anorganischen Pigmenten in der fertigen kosmetischen Zubereitung wird vorteilhaft aus dem Bereich 0,1 Gew.-% bis 25 Gew.-% gewählt, vorzugsweise 0,5 Gew.-% bis 18 Gew.-%.

[0058] Vorteilhaftes organisches Pigment im Sinne der vorliegenden Erfindung ist das 2,2'-Methylen-bis-(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol) [INCI: Bisoctyltriazol], welches unter der Handelsbezeichnung Tinosorb® M bei der CIBA-Chemikalien GmbH erhältlich ist.

[0059] Vorteilhafte UV-A-Filtersubstanzen im Sinne der vorliegenden Erfindung sind Dibenzoylmethanderivate, insbesondere das 4-(tert.-Butyl)-4'-methoxydibenzoylmethan (CAS-Nr. 70356-09-1), welches von Givaudan unter der Marke Parsol® 1789 und von Merck unter der Handelsbezeichnung Eusolex® 9020 verkauft wird. [0060] Weitere vorteilhafte UV-A-Filtersubstanzen sind die Phenylen-1,4-bis-(2-benzimidazyl)-3,3'-5,5'-tetrasulfonsäure und ihre Salze, besonders die entsprechenden Natrium-, Kalium- oder Triethanolammonium-Salze, insbesondere das Phenylen-1,4-bis-(2-benzimidazyl)-3,3'-5,5'-tetrasulfonsäure-bis-natriumsalz mit der IN-CI-Bezeichnung Bisimidazylate, welches beispielsweise unter der Handelsbezeichnung Neo Heliopan AP bei Haarmann & Reimer erhältlich ist.

[0061] Ferner vorteilhaft sind das 1,4-di(2-oxo-10-Sulfo-3-bornylidenmethyl)-Benzol und dessen Salze (besonders die entprechenden 10-Sulfato-verbindungen, insbesondere das entsprechende Natrium-, Kalium-oder Triethanolammonium-Salz), das auch als Benzol-1,4-di(2-oxo-3-bornylidenmethyl-10-sulfonsäure) bezeichnet wird.

[0062] Weitere vorteilhafte UV-A-Filtersubstanzen sind Hydroxybenzophenone, die sich durch die folgende Strukturformel auszeichnen:

worin

 $-R^1$ und R^2 unabhängig voneinander Wasserstoff, C_1-C_{20} -Alkyl, C_3-C_{10} -Cycloalkyl oder C_3-C_{10} -Cycloalkenyl bedeuten, wobei die Substituenten R^1 und R^2 gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen 5- oder 6-Ring bilden können und

R³ einen C₁-C₂₀-Alkyl Rest bedeutet.

[0063] Ein besonders vorteilhaftes Hydroxybenzophenon im Sinne der vorliegenden Erfindung ist der 2-(4'-Diethylamino-2'-hydoxybenzoyl)-benzoesäurehexylester (auch: Aminobenzophenon), welcher sich durch folgende Struktur auszeichnet:

und unter dem Handelsnamen Uvinul A Plus bei der Fa. BASF erhältlich ist.

[0064] Vorteilhafte UV-Filtersubstanzen im Sinne der vorliegenden Erfindung sind ferner sogenannte Breitbandfilter, d.h. Filtersubstanzen, die sowohl UV-A- als auch UV-B-Strahlung absorbieren.

[0065] Vorteilhafte Breitbandfilter oder UV-B-Filtersubstanzen sind beispielsweise Bis-Resorcinyltriazinderivate mit der folgenden Struktur:

$$R^2$$
 OH NON OH $O-R^3$

wobei R¹, R² und R³ unabhängig voneinander gewählt werden aus der Gruppe der verzweigten und unverzweigten Alkylgruppen mit 1 bis 10 Kohlenstoffatomen bzw. ein einzelnes Wasserstoffatom darstellen. Insbesondere bevorzugt sind das 2,4-Bis-{[4-(2-Ethylhexyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin (INCl: Aniso Triazin), welches unter der Handelsbezeichnung Tinosorb® S bei der CIBA-Chemikalien GmbH erhältlich ist.

[0066] Besonders vorteilhafte Zubereitungen im Sinne der vorliegenden Erfindung, die sich durch einen hohen bzw. sehr hohen UV-A-Schutz auszeichnen, enthalten bevorzugt mehrere UV-A- und/oder Breitbandfilter, insbesondere Dibenzoylmethanderivate [beispielsweise das 4-(tert.-Butyl)-4'-methoxydibenzoylmethan], Benzotriazolderivate [beispielsweise das 2,2'-Methylen-bis-(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol)], Phenylen-1,4-bis-(2-benzimidazyl)-3,3'-5,5'-tetrasulfonsäure und/oder ihre Salze, das 1,4-di(2-oxo-10-Sulfo-3-bornylidenmethyl)-Benzol und/oder dessen Salze und/oder das 2,4-Bis-{[4-(2-Ethyl-hexyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin, jeweils einzeln oder in beliebigen Kombinationen miteinander.

[0067] Auch andere UV-Filtersubstanzen, welche das Strukturmotiv

$$\begin{array}{c|c}
R_1 & R_2 \\
N & N \\
R_3 - N
\end{array}$$

aufweisen, sind vorteilhafte UV-Filtersubstanzen im Sinne der vorliegenden Erfindung, beispielsweise die in der Europäischen Offenlegungsschrift EP 570 838 A1 beschriebenen s-Triazinderivate, deren chemische

Struktur durch die generische Formel

wiedergegeben wird, wobei

R einen verzweigten oder unverzweigten C_1 - C_{18} -Alkylrest, einen C_5 - C_{12} -Cycloalkylrest, gegebenenfalls substituiert mit einer oder mehreren C_1 - C_4 -Alkylgruppen, darstellt,

X ein Sauerstoffatom oder eine NH-Gruppe darstellt,

 R_1 einen verzweigten oder unverzweigten C_1 - C_{18} -Alkylrest, einen C_5 - C_{12} -Cycloalkylrest, gegebenenfalls substituiert mit einer oder mehreren C_1 - C_4 -Alkylgruppen, oder ein Wasserstoffatom, ein Alkalimetallatom, eine Ammoniumgruppe oder eine Gruppe der Formel

$$A = O - CH_2 - CH - R_3$$

bedeutet, in welcher

A einen verzweigten oder unverzweigten C₁-C₁₈-Alkylrest, einen C₅-C₁₂-Cycloalkyl- oder Arylrest darstellt, gegebenenfalls substituiert mit einer oder mehreren C₁-C₄-Alkylgruppen,

R₃ ein Wasserstoffatom oder eine Methylgruppe darstellt,

n eine Zahl von 1 bis 10 darstellt,

 R_2 einen verzweigten oder unverzweigten C_1 - C_{18} -Alkylrest, einen C_5 - C_{12} -Cycloalkylrest, gegebenenfalls substituiert mit einer oder mehreren C_1 - C_4 -Alkylgruppen, darstellt, wenn X die NH-Gruppe darstellt, und einen verzweigten oder unverzweigten C_1 - C_{18} -Alkylrest, einen C_5 - C_{12} -Cycloalkylrest, gegebenenfalls substituiert mit einer oder mehreren C_1 - C_4 -Alkylgruppen, oder ein Wasserstoffatom, ein Alkalimetallatom, eine Ammoniumgruppe oder eine

bedeutet, in welcher

A einen verzweigten oder unverzweigten C_1 - C_{18} -Alkylrest, einen C_5 - C_{12} -Cycloalkyl- oder Arylrest darstellt, gegebenenfalls substituiert mit einer oder mehreren C_1 - C_4 -Alkylgruppen,

R₃ ein Wasserstoffatom oder eine Methylgruppe darstellt,

n eine Zahl von 1 bis 10 darstellt,

wenn X ein Sauerstoffatom darstellt.

[0068] Besonders bevorzugte UV-Filtersubstanz im Sinne der vorliegenden Erfindung ist ferner ein unsymmetrisch substituiertes s-Triazin, dessen chemische Struktur durch die Formel

10/28

wiedergegeben wird, welches im Folgenden auch als Dioctylbutylamidotriazon (INCI: Dioctylbutamidotriazone) bezeichnet wird und unter der Handelsbezeichnung UVASORB HEB bei Sigma 3V erhältlich ist.

[0069] Vorteilhaft im Sinne der vorliegenden Erfindung ist auch ein symmetrisch substituiertes s-Triazin, das 4,4',4"-(1,3,5-Triazin-2,4,6-triyltrümino)-tris-benzoesäure-tris(2-ethylhexylester), synonym: 2,4,6-Tris-[anilino-(p-carbo-2'-ethyl-1'-hexyloxy)]-1,3,5-triazin (INCI: Octyl Triazone), welches von der BASF Aktiengesellschaft unter der Warenbezeichnung UVINUL® T 150 vertrieben wird.

[0070] Auch in der Europäischen Offenlegungsschrift 775 698 werden bevorzugt einzusetzende Bis-Resorcingtriazinderivate beschrieben, deren chemische Struktur durch die generische Formel

$$R_1$$
OH
 N
OH
 O
 O
 O
 O
 O
 O

wiedergegeben wird, wobei R₁, R₂ und A₁ verschiedenste organische Reste repräsentieren.

[0071] Vorteilhaft im Sinne der vorliegenden Erfindung sind ferner das 2,4-Bis-{[4-(3-sulfonato)-2-hydroxy-propyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin Natriumsalz, das 2,4-Bis-{[4-(3-(2-Propyloxy)-2-hydroxy-propyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin, das 2,4-Bis-{[4-(2-ethyl-hexyloxy)-2-hydroxy]-phenyl}-6-[4-(2-methoxyethyl-carboxyl)-phenylamino]-1,3,5-triazin, das 2,4-Bis-{[4-(3-(2-propyloxy)-2-hydroxy]-phenyl}-6-[4-(2-ethyl-carboxyl)-phenylamino]-1,3,5-triazin, das 2,4-Bis-{[4-(2-ethyl-hexyloxy)-2-hydroxy]-phenyl}-6-(1-methyl-pyrrol-2-yl)-1,3,5-triazin, das 2,4-Bis-{[4-tris(trimethylsiloxy-silylpropyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin und das 2,4-Bis-{[4-(1',1',1',3',5',5',5'-Heptamethylsiloxy-2"-methylpropyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin

[0072] Ein vorteilhafter Breitbandfilter im Sinne der vorliegenden Erfindung ist das 2,2'-Methylen-bis-(6-(2N-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol), welches unter der Handelsbezeichnung Tinosorb® M bei der CIBA-Chemikalien GmbH erhältlich ist.

[0073] Vorteilhafter Breitbandfilter im Sinne der vorliegenden Erfindung ist ferner das 2-(2Hbenzotriazol-2-yl)-4-methyl-6-[2-methyl-3-[1,3,3,3-tetramethyl-1-[(trimethylsilyl)oxy]disiloxanyl]propliphenol (CAS-Nr.: 155633-54-8) mit der INCI-Bezeichnung Drometrizole Trisiloxane.

[0074] Die UV-B- und/oder Breitband-Filter können öllöslich oder wasserlöslich sein. Vorteilhafte öllösliche UV-B- und/oder Breitband-Filtersubstanzen sind z. B.:

- 3-Benzylidencampher-Derivate, vorzugsweise 3-(4-Methylbenzyliden)campher, 3-Benzylidencampher;
- 4-Aminobenzoesäure-Derivate, vorzugsweise 4-(Dimethylamino)-benzoesäure(2-ethylhexyl)ester, 4-(Di-

methylamino)benzoesäureamylester;

- 2,4,6-Trianilino-(p-carbo-2'-ethyl-1'-hexyloxy)-1,3,5-triazin;
- Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzalmalonsäuredi(2-ethylhexyl)ester;
- Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure(2-ethylhexyl)ester, 4-Methoxyzimtsäureisopentylester;
- Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-methoxybenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon
- sowie an Polymere gebundene UV-Filter.

[0075] Vorteilhafte wasserlösliche UV-B- und/oder Breitband-Filtersubstanzen sind z. B.:

- Salze der 2-Phenylbenzimidazol-5-sulfonsäure, wie ihr Natrium-, Kalium- oder ihr Triethanolammonium-Salz, sowie die Sulfonsäure selbst;
- Sulfonsäure-Derivate des 3-Benzylidencamphers, wie z. B. 4-(2-Oxo-3-bornylidenmethyl)benzolsulfonsäure, 2-Methyl-5-(2-oxo-3-bornylidenmethyl)sulfonsäure und deren Salze.

[0076] Besonders vorteilhafte bei Raumtemperatur flüssige UV-Filtersubstanzen im Sinne der vorliegenden Erfindung sind Homomenthylsalicylat (INCI: Homosalate), 2-Ethylhexyl-2-hydroxybenzoat (2-Ethylhexylsalicylat, Octylsalicylat, INCI: Octyl Salicylate), 4-Isopropylbenzylsalicylat und Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure(2-ethylhexyl)ester (2-Ethylhexyl-4-methoxycinnamat, INCI: Octyl Methoxycinnamate) und 4-Methoxyzimtsäureisopentylester (Isopentyl-4-methoxycinnamat, INCI: Isoamyl p-Methoxycinnamate), 3-(4-(2,2-bis Ethoxycarbonylvinyl)-phenoxy)propenyl)-methoxysiloxan/ Dimethylsiloxan – Copolymer (INCI: Dimethicodiethylbenzalmalonat) welches beispielsweise unter der Handelsbezeichnung Parsol® SLX bei Hoffmann La Roche erhältlich ist.

[0077] Eine weiterere erfindungsgemäß vorteilhaft zu verwendende Lichtschutzfiltersubstanz ist das Ethylhe-xyl-2-cyano-3,3-diphenylacrylat (Octocrylen), welches von BASF unter der Bezeichnung Uvinul® N 539 erhältlich ist.

[0078] Ein erfindungsgemäß besonders bevorzugtes Benzoxazol-Derivat ist das 2,4-bis-[5-1(dimethylpropyl)benzoxazol-2-yl-(4-phenyl)-imino]-6-(2-ethylhexyl)-imino-1,3,5-triazin mit der CAS Nr. 288254-16-0, welches sich durch die Strukturformel

auszeichnet und bei 3V Sigma unter der Handelsbezeichnung Uvasorb® K2A erhältlich ist.

[0079] Es kann auch von erheblichem Vorteil sein, polymergebundene oder polymere UV-Filtersubstanzen in Zubereitungen gemäß der vorliegenden Erfindung zu verwenden, insbesondere solche, wie sie in der WO-A-92/20690 beschrieben werden.

[0080] Die Liste der genannten UV-Filter, die im Sinne der vorliegenden Erfindung eingesetzt werden können, soll selbstverständlich nicht limitierend sein.

[0081] Vorteilhaft enthalten die erfindungsgemäßen Zubereitungen die Substanzen, die UV-Strahlung im UV-A- und/oder UV-B-Bereich absorbieren, in einer Gesamtmenge von z. B. 0,1 Gew.-% bis 80 Gew.-%, vorzugsweise 0,5 bis 70 Gew.-%, insbesondere 1,0 bis 60 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Zubereitungen, um kosmetische Zubereitungen zur Verfügung zu stellen, die das Haar bzw. die Haut vor dem gesamten Bereich der ultravioletten Strahlung schützen. Sie können auch als Sonnenschutzmittel fürs Haar oder die Haut dienen.

[0082] Die Gewichtsangaben beziehen sich dabei auf die Zusammensetzung der Zubereitung vor der Trocknung mittels Gefrier- und/oder Sprühtrocknung. Die Gewichtsangaben beziehen sich dabei auf die Zusammensetzung der Zubereitung vor der Trocknung mittels Gefrier- und/oder Sprühtrocknung.

[0083] Besonders bevorzugte Ausführungsformen der vorliegenden Erfindung enthalten als UV-Filter ein

oder mehrere Triazin-Derivate, Dibenzoylmethanderivate, bei Raumtemperatur flüssige UV-Filter und/oder anorganische Pigmente, insbesondere Titandioxid.

[0084] Ferner kann es gegebenenfalls von Vorteil sein, Filmbildner in die erfindungsgemäße Emulsion einzuarbeiten, beispielsweise um die Wasserfestigkeit der Zubereitungen zu verbessern oder die UV-Schutzleistung zu erhöhen (UV-A- und/oder UV-B-Boosting). Geeignet sind sowohl wasserlösliche bzw. dispergierbare als auch fettlösliche Filmbildner, jeweils einzeln oder in Kombination miteinander.

[0085] Erfindungsgemäß vorteilhafte wasserlöslich bzw. dispergierbare Filmbildner, welche auch als erfindungsgemäße wasserlösliche Polymere eingesetzt werden können, sind z. B. Polyurethane (z. B. die Avalure®-Typen von Goodrich), Dimethicone Copolyol Polyacnlate (Silsoft Surface® von der Witco Organo Silicones Group), PVP/VA (VA = Vinylacetat) Copolymer (Luviscol VA 64 Powder der BASF) etc.

[0086] Vorteilhafte wasserlösliche Filmbildner sind z. B., die Filmbildner aus der Gruppe der Polymere auf Basis von Polyvinylpyrrolidon (PVP)

[0087] Besonders bevorzugt sind Copolymere des Polyvinylpyrrolidons, beispielsweise das PVP Hexadecen Copolymer und das PVP Eicosen Copolymer, welche unter den Handelsbezeichnungen Antaron V216 und Antaron V220 bei der GAF Chemicals Cooperation erhältlich sind, sowie das Tricontayl PVP und dergleichen mehr.

[0088] Erfindungsgemäß können in der Emulsion die üblichen Antioxidantien eingesetzt werden.

[0089] Vorteilhaft werden die Antioxidantien gewählt aus der Gruppe bestehend aus Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tnptophan) und deren Derivate, Imidazole (z.B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L-Carnosin und deren Derivate (z.B. Anserin), Carotinoide, Carotine (z.B. α-Carotin, β-Carotin, Lycopin) und deren Derivate, Aurothioglucose, Propylthiouracil und andere Thiole (z.B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, y-Linoleyl-, Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie (Metall)-Chelatoren (z.B. α-Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), α-Hydroxysäuren (z.B. Citronensäure, Milchsäure, Apfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. y-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Alanindiessigsäure, Flavonoide, Polyphenole, Catechine, Vitamin C und Derivate (z.B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z.B. Vitamin-E-acetat), sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, Ferulasäure und deren Derivate, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroquajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophenon, Harnsäure und deren Derivate, Mannose und deren Derivate, Zink und dessen Derivate (z.B. ZnO, ZnSO₄) Selen und dessen Derivate (z.B. Selenmethionin), Stilbene und deren Derivate (z.B. Stilbenoxid, Trans-Stilbenoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe.

[0090] Die Menge der Antioxidantien (eine oder mehrere Verbindungen) in den Zubereitungen beträgt vorzugsweise 0,001 bis 30 Gew.-%, besonders bevorzugt 0,025-6.0 Gew.-%, insbesondere 0.05-3.0 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung. Die Gewichtsangaben beziehen sich dabei auf die Zusammensetzung der Zubereitung vor der Trocknung mittels Gefrier- und/oder Sprühtrocknung.

[0091] Sofern Vitamin A bzw. Vitamin-A-Derivate, bzw. Carotine bzw. deren Derivate das oder die Antioxidantien darstellen, ist es vorteilhaft, deren jeweilige Konzentrationen aus dem Bereich von 0,001 bis 30 Gew.-%, bezogen auf das Gesamtgewicht der Formulierung, zu wählen. Die Gewichtsangaben beziehen sich dabei auf die Zusammensetzung der Zubereitung vor der Trocknung mittels Gefrier- und/oder Sprühtrocknung.

[0092] Sofern Vitamin E und/oder dessen Derivate das oder die Antioxidantien darstellen, ist es vorteilhaft, deren jeweilige Konzentrationen aus dem Bereich von 0,001 bis 30 Gew.-%, bezogen auf das Gesamtgewicht der Formulierung, zu wählen. Die Gewichtsangaben beziehen sich dabei auf die Zusammensetzung der Zubereitung vor der Trocknung mittels Gefrier- und/oder Sprühtrocknung.

[0093] Weitere vorteilhafte Wirkstoffe im Sinne der vorliegenden Erfindung sind natürliche Wirkstoffe und/oder deren Derivate, wie z. B. alpha-Liponsäure, Phytoen, D-Biotin, Coenzym Q10, alpha-Glucosylrutin, Carnitin, Carnosin, natürliche und/oder synthetische Isoflavonoide, Kreativ, Fumarsäureester, Ectoin und dessen Derivate, Taurin, und/oder β-Alanin. Diese Wirkstoffe können in einer Konzentration von 0,001 bis 30 Gewichts-%, bezogen auf das Gesamtgewicht der Emulsion, in dieser enthalten sein. Die Gewichtsangaben be-

ziehen sich dabei auf die Zusammensetzung der Zubereitung vor der Trocknung mittels Gefrier- und/oder Sprühtrocknung.

[0094] Erfindungsgemäße Rezepturen, welche z. B. bekannte Antifaltenwirkstoffe wie Flavonglycoside (insbesondere α-Glycosylrutin), Coenzym Q10, Vitamin E und/oder Derivate und dergleichen enthalten, eignen sich insbesondere vorteilhaft zur Prophylaxe und Behandlung kosmetischer oder dermatologischer Hautveränderungen, wie sie z. B. bei der Hautalterung auftreten (wie beispielsweise Trockenheit, Rauhigkeit und Ausbildung von Trockenheitsfältchen, Juckreiz, verminderte Rückfettung (z. B. nach dem Waschen), sichtbare Gefäßerweiterungen (Teleangiektasien, Cuperosis), Schlaffheit und Ausbildung von Falten und Fältchen, lokale Hyper-, Hypo- und Fehlpigmentierungen (z. B. Altersflecken), vergrößerte Anfälligkeit gegenüber mechanischem Stress (z. B. Rissigkeit) und dergleichen). Weiterhin vorteilhaft eignen sie sich gegen das Erscheinungsbild der trockenen bzw. rauhen Haut.

[0095] In die erfindungsgemäßen Zubereitungen können aber auch andere pharmazeutisch oder dermatologisch wirkende Substanzen wie beispielsweise die Haut beruhigende und pflegende Substanzen eingearbeitet sein. Hierzu zählen beispielsweise Panthenol, Allantoin, Tannin, Antihistaminika (z.B. Loratadin, Cetirizin, Dimetionden, Clemastin, Capsaicin, H₁-Antagonisten, Gerbstoffpräparate), Lokalanästhetika, Opiatantagonisten (z.B. Naltrexon, Naloxon), Antiphlogistika, Glucocorticoide (z.B. Hydrocortison, Tacrolimus, Ciclosporin A) sowie Pflanzenwirkstoffe wie Azulen und Bisabolol, Glycyrrhizin, Hamamelin und Pflanzenextrakte wie Kamille, aloe vera, Hamazelis, Süßholzwurzel. Auch die Vitamin D₃-analoga Tacalcitol, Calcipotriol, Tacalcitol, Colecalciferol sowie Calcitrol (Vitamin D₃) und/oder Fumarsäureester können erfolgreich in die Zubereitungen eingearbeitet werden.

[0096] Diese Wirkstoffe können in einer Konzentration von 0,001 bis 30 Gewichts-%, bezogen auf das Gesamtgewicht der Emulsion, in dieser enthalten sein. Die Gewichtsangaben beziehen sich dabei auf die Zusammensetzung der Zubereitung vor der Trocknung mittels Gefrier- und/oder Sprühtrocknung.

[0097] Vorteilhafte anfeuchtende bzw. feuchthaltende Mittel (sogenannte Moisturizer) im Sinne der vorliegenden Erfindung sind beispielsweise Glycerin, Milchsäure und/oder Lactate, insbesondere Natriumlactat, Butylenglykol, Propylenglykol, Biosaccaride Gum-1, Glycine Soja, Ethylhexyloxyglycerin, Pyrrolidoncarbonsäure und Harnstoff. Ferner ist es insbesondere von Vorteil, polymere Moisturizer aus der Gruppe der wasserlöslichen und/oder in Wasser quellbaren und/oder mit Hilfe von Wasser gelierbaren Polysaccharide zu verwenden. Insbesondere vorteilhaft sind beispielsweise Hyaluronsäure, Chitosan und/oder ein fucosereiches Polysaccharid, welches in den Chemical Abstracts unter der Registraturnummer 178463-23-5 abgelegt und z. B. unter der Bezeichnung Fucogel®1000 von der Gesellschaft SOLABIA S.A. erhältlich ist.

[0098] Vorteilhaft können die erfindungsgemäßen Zubereitungen Feststoffträger in Form von mikrofeinen Feststoffteilchen enthalten. Diese können erfindungsgemäß vorteilhaft oberflächlich wasserabwiesend behandelt ("gecoatet") sein, wobei ein amphiphiler Charakter dieser Feststoffteilchen gebildet werden bzw. erhalten bleiben soll. Die Oberflächenbehandlung kann darin bestehen, daß die Feststoffteilchen nach an sich bekannten Verfahren mit einer dünnen hydrophoben bzw. hydrophilen Schicht versehen werden.

[0099] Der mittlere Partikeldurchmesser der als Stabilisator verwendeten mikrofeinen Feststoffträger wird vorzugsweise kleiner als 100 µm, besonders vorteilhaft kleiner als 50 µm gewählt. Dabei ist es im wesentlichen unerheblich, in welcher Form (Plättchen, Stäbchen, Kügelchen etc.) bzw. Modifikation die verwendeten Feststoffteilchen vorliegen.

[0100] Vorzugsweise werden die mikrofeinen Feststoffträger aus der Gruppe der amphiphilen Metalloxidpigmente gewählt. Vorteilhaft sind insbesondere:

- Titandioxide (gecoatet und ungecoatet): z. B. Eusolex T-2000 von der Fa. Merck, Titandioxid MT-100 Z
 von der Fa. Tayca Corporation
- Zinkoxide z. B. Z-Cote und Z-Cote HP1 von der BASF AG, MZ-300, MZ-500 und MZ-505M von der Fa.
 Tayca Corporation
- Eisenoxide

[0101] Des weiteren ist es vorteilhaft, wenn die mikrofeinen Feststoffträger aus der folgenden Gruppe gewählt werden: Bornitride, Stärkederivate (Tapioca Starch, Sodium Corn Starch Octynylsuccinat etc.), Talkum, Latexpartikel.

[0102] Die mikrofeinen Feststoffteilchen werden erfindungsgemäß vorteilhaft in einer Konzentration von 0,5 bis 60 Gewichts-%, bevorzugt in einer Konzentration von 1 bis 50 Gewichts-% und besonders bevorzugt in einer Konzentration von 3 bis 30 Gewichts-%, jeweils bezogen auf das Gesamtgewicht der Zubereitung eingesetzt. Die Gewichtsangaben beziehen sich dabei auf die Zusammensetzung der Zubereitung vor der Trocknung mittels Gefrier- und/oder Sprühtrocknung.

[0103] Die erfindungsgemäßen kosmetischen oder dermatologischen Zubereitungen können ferner vorteilhaft, wenngleich nicht zwingend, Füllstoffe enthalten, welche z. B. die sensorischen und kosmetischen Eigenschaften der Formulierungen weiter verbessern und beispielsweise ein samtiges oder seidiges Hautgefühl hervorrufen oder verstärken. Vorteilhafte Füllstoffe im Sinne der vorliegenden Erfindung sind Stärke und Stärke-

derivate (wie z. B. Tapiocastärke, Distärkephosphat, Aluminium- bzw. Natrium-Stärke Octenylsuccinat und dergleichen), Pigmente, die weder hauptsächlich UV-Filter- noch färbende Wirkung haben (wie z. B. Bornitrid etc.) und/oder Aerosile® (CAS-Nr. 7631-86-9).

[0104] Die Zusammensetzungen enthalten gemäß der Erfindung außer den vorgenannten Substanzen gegebenenfalls die in der Kosmetik üblichen Zusatzstoffe, beispielsweise Parfüm, Farbstoffe, antimikrobielle Stoffe, rückfettende Agentien, Komplexierungs- und Sequestrierungsagentien, Perlglanzagentien, Pflanzenextrakte, Vitamine, Wirkstoffe, Konservierungsmittel, Bakterizide, Repellentien, Selbstbräuner (z.B. DHA), Depigmentiermittel (z.B. 8-Hexadecen-1,16-dicarbonsäure (Dioic acid, CAS-Nummer 20701-68-2; vorläufige INCI-Bezeichnung Octadecendioic acid)), Pigmente, die eine färbende Wirkung haben, weichmachende, anfeuchtende und/oder feuchthaltende Substanzen, oder andere übliche Bestandteile einer kosmetischen oder dermatologischen Formulierung wie Emulgatoren, Polymere, Schaumstabilisatoren, Peeling-Stoffe (Abrasiva, z.B. Polymerkügelchen oder -pulver aus Polyethylen, Polypropylen etc. anorganischen Oxiden, Silikaten usw.), Antitranspirant-Salze (z.B. saure Aluminium- und/oder Aluminium/Zirkoniumsalze wie Aluminiumchlorhydrat und/oder Aluminium/Zirkoniumchlorhydrat) und Elektrolyte.

[0105] Erfindungsgemäß bevorzugt sind die im folgenden aufgelisteten Repellent-Wirkstoffe:

Chemische	Handels-	Struktur	Wirksamkeit
Bezeichnung	name		(Literatur und Her-
			stellerangaben)
Butopyronoxyl	Indalone	O II	beißende
		H ₃ C CH ₃	Insekten ¹
0.045 his (0.	MGK-	Ö	Schaben und
2,3;4,5-bis-(2-			beißende
Butylen)-tetra-	Repellent 11	O CHO	Insekten ¹
hydro-2-			Insekten
furaldehyd			
N,N-Capryl-	Repellent 790	H ₃ C N CH ₃	Schaben, Stech-
säurediethyl-		O CH ₃	mücken, Stuben-
amid			fliege, Bremsen,
			Ameisen,
			Spinnentiere
o-Chlor-N,N-	Kik-Repellent	CI O II CH2-CH3	Stechmücken,
diethyl-		C-N: CH ₂ -CH ₃	Bremsen, Flöhe,
benzamid in			Wanzen, Zecken,
Mischung mit		O IICH ₂ -CH ₃	Fliegen, Läuse
N,N-Diethyl-		CH ₂ -CH ₃	
benzamid			·
Dimethylcarbat	Dimalone	0	Stechmücken,
		C O CH ₃	insbesondere
		CO CH3	Aedes-Arten ¹
		O CH ₃	

name		14.4
		(Literatur und Her-
		stellerangaben)
MGK-	O II	Hausfliege,
Repellent 326	H ₃ C C	Buschfliege ¹
	CH3	
D. 4 640	0	
Rutgers 612	I OH	Stechmücken,
	ОН	Bremsen, Fliegen,
		Flöhe, Milben ¹
MGK 264	0	Synergist ²
Insecticide-	SH SH SH SH	
synergist	N-CH ₂ -CH-C ₄ H ₉	
	Ö `CH₃	
PBO	C ₃ H ₇	Synergist ²
	H ₂ C' CH ₂ -(CC ₂ H ₄) ₂ -OC ₄ H ₉	
	Repellent 326 Rutgers 612 MGK 264 nsecticide- synergist	Repellent 326 H ₃ C CH ₃ Rutgers 612 OH OH MGK 264 nsecticide- synergist PBO H ₂ C CH ₂ N-CH ₂ -CH-C ₄ H ₅ CH ₃ PBO C3H ₇

vorwiegend in Mischung bzw. Kombination mit anderen Repellents

[0106] Besonders vorteilhafte Repellent-Wirkstoffe im Sinne der vorliegenden Erfindung sind die obengenannten Wirkstoffe N,N-Diethyl-3-methylbenzamid, 3-(N-n-Butyl-N-acetyl-amino)propionsäureethylester und Dimethylphthalat. Ganz besonders bevorzugt ist das Repellent 3-(N-n-Butyl-N-acetyl-amino)propionsäureethylester.

[0107] Erfindungsgemäß vorteilhafte Ausführungsformen der erfindungsgemäßen Emulsion enthalten ein oder mehrere Repellent-Wirkstoffe in einer Konzentration von 1-50 Gewichts-%, bezogen auf das Gesamtgewicht der Formulierung. Die Gewichtsangaben beziehen sich dabei auf die Zusammensetzung der Zubereitung vor der Trocknung mittels Gefrier- und/oder Sprühtrocknung.

[0108] Als Selbstbräuner können erfindungsgemäß vorteilhaft unter anderem eingesetzt werden:

Glycerolaldehyd, Hydroxymethylglyoxal, γ-Dialdehyd, Erythrulose, 6-Aldo-D-Fructose, Ninhydrin, 5-Hydroxy-1,4-naphtochinon (Juglon), 2-Hydroxy-1,4-naphtochinon (Lawson) und besonders bevorzugt 1,3-Dihydroxyaceton.

[0109] Erfindungsgemäß vorteilhafte Ausführungsformen mit mindestens einer Selbstbräunungssubstanz, enthalten diese in einer Gesamtkonzentration von 0,1 bis 30 Gewichts-%, bezogen auf das Gesamtgewicht der Emulsion. Die Gewichtsangaben beziehen sich dabei auf die Zusammensetzung der Zubereitung vor der Trocknung mittels Gefrier- und/oder Sprühtrocknung.

[0110] Die erfindungsgemäße Emulsion kann erfindungsgemäß vorteilhaft ein oder mehrere Konservierungsstoffe enthalten. Vorteilhafte Konservierungsstoffe im Sinne der vorliegenden Erfindung sind beispielsweise Formaldehydabspalter (wie z. B. DMDM Hydantoin, welches beispielsweise unter der Handelsbezeichnung GlydantTM von der Fa. Lonza erhältlich ist), lodopropylbutylcarbamate (z. B. die unter den Handelsbezeichnungen Glycacil-L, Glycacil-S von der Fa. Lonza erhältlichen und/oder Dekaben LMB von Jan Dekker), Parabene (d. h. p-Hydroxybenzoesäurealkylester, wie Methyl-, Ethyl-, Propyl- und/oder Butylparaben), Phenoxyethanol, Ethanol, Benzoesäure und dergleichen mehr. Üblicherweise umfaßt das Konservierungssystem erfindungsgemäß ferner vorteilhaft auch Konservierungshelfer, wie beispielsweise Octoxyglycerin, Glycine Soja etc. Die nachfolgende Tabelle gibt einen Überblick über einige erfindungsgemäß vorteilhafte Konservierungsstoffe:

² wirkt als Synergist bei verschiedenen Repellents

E 200	Sorbinsäure	E 227	Calciumhydrogensulfit
E 201	Natriumsorbat	E 228	Kaliumhydrogensulfit)
E 202	Kaliumsorbat	E 230	Biphenyl (Diphenyl)
E 203	Calciumsorbat	E 231	Orthophenylphenol
E 210	Benzoesäure	E 232	Natriumorthophenylphenolat.
E 211	Natriumbenzoat	E 233	Thiabendazol
E 212	Kaliumbenzoat	E 235	Natamycin
E 213	Calciumbenzoat	E 236	Ameisensäure
E 214	p-Hydroxybenzoesäureethylester	E 237	Natriumformiat
E 215	p-Hydroxybenzoesäureethylester-Na-Salz	E 238	Calciumformiat
E 216	p-Hydroxybenzoesäure-n-propylester	E 239	Hexamethylentetramin
E 217	p-Hydroxybenzoesäure-n-propylester-Na-Salz	E 249	Kaliumnitrit
E 218	p-Hydroxybenzoesäuremethylester	E 250	Natriumnitrit
E 219	p-Hydroxybenzoesäuremethylester-Na-Salz	E 251	Natriumnitrat
E 220	Schwefeldioxid	E 252	Kaliumnitrat
E 221	Natriumsulfit	E 280	Propionsäure

E 222	Natriumyhdrogensulfit	E 281	Natriumpropionat
E 223	Natriumdisulfit	E 282	Calciumpropionat
E 224	Kaliumdisulfit	E 283	Kaliumpropionat
E 226	Calciumsulfit	E 290	Kohlendioxid

[0111] Ferner vorteilhaft sind in der Kosmetik gebräuchliche Konservierungsmittel oder Konservierungshilfsstoffe, wie Dibromdicyanobutan (2-Brom-2-brommethylglutarodinitril), Phenoxyethanol, 3-1od-2-propinylbutylcarbamat, 2-Brom-2-nitro-propan-1,3-diol, Imidazolidinylharnstoff, 5-Chlor-2-methyl-4-isothiazolin-3-on, 2-Chloracetamid, Benzalkoniumchlorid, Benzylalkohol, Salicylsäure und Salicylate.

[0112] Es ist dabei erfindungsgemäß besonders bevorzugt, wenn als Konservierungsstoffe Iodopropylbutyl-carbamate, Parabene (Methyl-, Ethyl-, Propyl- und/oder Butylparaben) und/oder Phenoxyethanol eingesetzt werden.

[0113] Erfindungsgemäß vorteilhaft sind ein oder mehrere Konservierungsstoffe in einer Konzentration von 2 Gewichts-% oder kleiner 2 Gewichts-%, bevorzugt 1,5 Gewichts-% oder kleiner 1,5 Gewichts-% und besonders bevorzugt 1 Gewichts-% oder kleiner 1 Gewichts-%, jeweils bezogen auf das Gesamtgewicht der Zubereitung enthalten. Die Gewichtsangaben beziehen sich dabei auf die Zusammensetzung der Zubereitung vor der Trocknung mittels Gefrier- und/oder Sprühtrocknung.

[0114] Die erfindungsgemäße Emulsion enthält vorteilhafter Weise einen oder mehrere Konditionieren. Erfindungsgemäß bevorzugte Konditionieren sind beispielsweise alle Verbindungen, welche im International Cosmetic Ingredient Dictionary and Handbook (Volume 4, Herausgeber: R. C. Pepe, J.A. Wenninger, G. N. McEwen, The Cosmetic, Toiletry, and Fragrance Association, 9. Auflage, 2002) unter Section 4 unter den Stichworten Hair Conditioning Agents, Humectants, Skin-Conditioning Agents, Skin-Conditioning Agents-Emollient, Skin-Conditioning Agents-Humactant, Skin-Conditioning Agents-Miscellaneous, Skin-Conditioning Agents-Occlusive und Skin Protectans aufgeführt sind sowie alle in der EP 0934956 (S.11-13) unter water soluble conditioning agent und oil soluble conditioning agent aufgeführten Verbindungen. Ein Teil dieser Verbindungen wird unter den Bestandteilen der wässrigen Phase und der Ölphase namentlich aufgeführt. Weitere erfindungsgemäß vorteilhafte Konditionierer stellen beispielsweise die nach der internationalen Nomenklatur für kosmetische Inhaltsstoffe (INCI) als Polyquaternium benannten Verbindungen dar (insbesondere Polyquaternium-1 bis Polyquaternium-56).

[0115] Erfindungsgemäß vorteilhaft kann die erfindungsgemäße Emulsion Glittersoffe und/oder andere Effektstoffe enthalten.

[0116] Als erfindungsgemäß vorteilhafte Hydrokolloide, die als erfindungsgemäße wasserfösliche Polymere eingesetzt werden können, werden Agar-Agar, Carrageen, Tragant, Gummi arabicum, Alginate, Pektine, Polyosen, Guar-Mehl, Johannisbrotbaumkernmehl, Stärke, Dextrine, Polysaccharid-N-alkylurethane, Inulincarbamate, Gelatine, Casein, Celluloseether, Hydroxyethyl- und -propyl-cellufosederivate, Polysaccharide, Polyacryl- und Polymethacni-Verbindungen, Ammoniumacnloyldimethyltaurate/Vinylpyrrolidoncopolymere und Ammoniumpolyacnl-dimethyltauramide, Vinylpolymere, Polycarbonsäuren, Polyether, Polyimine, Polyamide, Polykieselsäuren, Tonmineralien, Zeolithe, Kieselsäuren eingesetzt.

[0117] Ein vorteilhaftes Hydrokolloid im Sinne der vorliegenden Erfindung ist ferner Xanthan (CAS-Nr.

11138-66-2), auch Xanthan Gummi genannt, welches ein anionisches Heteropolysaccharid ist, das in der Regel durch Fermentation aus Maiszucker gebildet und als Kaliumsalz isoliert wird.

[0118] Ein vorteilhaftes Hydrokolloid im Sinne der vorliegenden Erfindung ist ferner Carrageen, ein gelbildender und ähnlich wie Agar aufgebauter Extrakt aus nordatlant., zu den Fforideen zählenden Rotalgen (Chondrus crispus u. Gigarfina stellata).

[0119] Polyacrylate sind ebenfalls vorteilhaft im sinne der vorliegenden Erfindung zu verwendende Hydrokolloide. Erfindungsgemäß vorteilhafte Polyacnlate sind Acrylat-Alkylacrylat-Copolymere, insbesondere solche, die aus der Gruppe der sogenannten Carbomere oder Carbopole (Carbopol[®] ist eigentlich eine eingetragene Marke der NOVEON Inc.) gewählt werden. Insbesondere zeichnen sich das oder die erfindungsgemäß vorteilhaften Acrylat-Alkylacrylat-Copolymere durch die folgende Struktur aus:

$$\begin{bmatrix}
CH_{2} - CH & CH_{2} - C & CH_{3} \\
C=0 & C=0 & C=0 \\
OH & X & CH_{2} - C & C=0
\end{bmatrix}$$

[0120] Darin stellen R' einen langkettigen Alkylrest und x und y Zahlen dar, welche den jewieligen stöchiometrischen Anteil der jeweiligen Comonomere symbolisieren.

[0121] Erfindungsgemäß bevorzugt sind Acnlat-Copolymere und/oder Acrylat-Alkylacrylat-Copolymere, welche unter den Handelbezeichnungen Carbopol® 1382, Carbopol® 981 und Carbopol® 5984, Aqua SF-1 von der NOVEON Inc. bzw. als Aculyn® 33 von International Specialty Products Corp. erhältlich sind. Weiterhin bevorzugt sind die Carbomere Carbopol EDT 2001, ETD 2020 und ETD 2050.

[0122] Ferner vorteilhaft sind Copolymere aus C10-30-Alkylacnlaten und einem oder mehreren Monomeren der Acrylsäure, der Methacrylsäure oder deren Ester, die kreuzvernetzt sind mit einem Allylether der Saccharose oder einem Allylether des Pentaerythrit.

[0123] Vorteilhaft sind Verbindungen, die die INCI-Bezeichnung "Acrylates/C 10-30 Alkyl Acrylate Grosspolymer" tragen. Insbesondere vorteilhaft sind die unter den Handelsbezeichnungen Pemulen TR1 und Pemulen TR2 bei der NOVEON Inc. erhältlichen.

[0124] Vorteilhaft sind Verbindungen, die die INCI-Acrylates/Vinyl Isodecanoate Crosspolymer" tragen. Insbesondere vorteilhaft sind die unter den Handelsbezeichnungen Stabylen 30 von 3V Sigma erhältlichen.

[0125] Vorteilhaft sind ferner Verbindungen, die die INCI-Bezeichnung "acrylates/C12-24 pareth-25 acrylate copolymer" (unter der Handelsbezeichnungen Synthalen® W2000 bei der 3V Inc. erhältlich), die die INCI-Bezeichnung "acrylates/steareth-20 methacrylate copolymer" (unter der Handelsbezeichnungen Aculyn® 22 bei der International Specialty Products Corp. erhältlich), die die INCI-Bezeichnung "acrylates/steareth-20 itaconate copolymer" (unter der Handelsbezeichnungen Structure 2001® bei der National Starch erhältlich), die die INCI-Bezeichnung "acrylates/aminoacrylates/C10-30 alkyl PEG-20 itaconate copolymer" (unter der Handelsbezeichnungen Structure Plus® bei der National Starch erhältlich) und ähnliche Polymere.

[0126] Erfindungsgemäß bevorzugt ist es insbesondere, neutralisierte oder teilneutralisierte Polyacrylate (z.B. Carbopole der Firma Noveon) einzusetzen.

[0127] Die erfindungsgemäßen kosmetischen und/oder dermatologischen Emulsionen können eine Reihe von Pigmenten enthalten.

[0128] Die Farbstoffe und -pigmente können aus der entsprechenden Positivliste der Kosmetikverordnung bzw. der EG-Liste kosmetischer Färbemittel ausgewählt werden. In den meisten Fällen sind sie mit den für Lebensmittel zugelassenen Farbstoffen identisch. Vorteilhafte Farbpigmente sind beispielsweise Titandioxid, Glimmer, Eisenoxide (z. B. Fe₂O₃, Fe₃O₄, FeO(OH)) und/oder Zinnoxid. Vorteilhafte Farbstoffe sind beispielsweise Carmin, Berliner Blau, Chromoxidgrün, Ultramarinblau und/oder Manganviolett. Es ist in sbesondere vorteilhaft, die Farbstoffe und/oder Farbpigmente aus der folgenden Liste zu wählen. Die Colour Index Nummern (CIN) sind dem Rowe Colour Index, 3. Auflage, Society of Dyers and Colourists, Bradford, England, 1971 entnommen.

Chemische oder sonstige Bezeichnung	CIN	Farbe
Pigment Green	10006	Grün
Acid Green 1	10020	Grün
2,4-Dinitrohydroxynaphthalin-7-sulfosäure	10316	Gelb
Pigment Yellow 1	11680	Gelb
Pigment Yellow 3	11710	Gelb
Pigment Orange 1	11725	Orange
2,4-Dihydroxyazobenzol	11920	Orange
Solvent Red 3	12010	Rot
1-(2'-Chlor-4'-nitro-1'-phenylazo)-2-hydroxynaphthalin	12085	Rot ·
Pigment Red 3	12120	Rot
Ceresrot; Sudanrot; Fettrot G	12150	Rot
Pigment Red 112	12370	Rot
Pigment Red 7	12420	Rot
Pigment Brown 1	12480	Braun
4-(2'-Methoxy-5'-sulfosäurediethylamid-1'-phenylazo)-3-hy-	12490	Rot
droxy-5"-chloro-2",4"-dimethoxy-2-naphthoesäureanilid		
Disperse Yellow 16	12700	Gelb
1-(4-Sulfo-1-phenylazo)-4-amino-benzol-5-sulfosäure	13015	Gelb
2,4-Dihydroxy-azobenzol-4'-sulfosäure	14270	Orange
2-(2,4-Dimethylphenylazo-5-sulfosäure)-1-hydroxynaphthalin-	14700	Rot
4-sulfosäure		
2-(4-Sulfo-1-naphthylazo)-1-naphthol-4-sulfosäure	14720	Rot
2-(6-Sulfo-2,4-xylylazo)-1-naphthol-5-sulfosäure	14815	Rot
1-(4'-Sulfophenylazo)-2-hydroxynaphthalin	15510	Orange

Chemische oder sonstige Bezeichnung	CIN	Farbe
1-(2-Sulfosäure-4-chlor-5-carbonsäure-1-phenylazo)-2-	15525	Rot
hydroxynaphthalin		
1-(3-Methyl-phenylazo-4-sulfosäure)-2-hydroxynaphthalin	15580	Rot
1-(4',(8')-Sulfosäurenaphthylazo)-2-hydroxynaphthalin	15620	Rot
2-Hydroxy-1,2'-azonaphthalin-1'-sulfosäure	15630	Rot
3-Hydroxy-4-phenylazo-2-naphthylcarbonsäure	15800	Rot
1-(2-Sulfo-4-methyl-1-phenylazo)-2-naphthylcarbonsäure	15850	Rot
1-(2-Sulfo-4-methyl-5-chlor-1-phenylazo)-2-hydroxy-	15865	Rot
naphthalin-3-carbonsäure	45000	0-4
1-(2-Sulfo-1-naphthylazo)-2-hydroxynaphthalin-3-carbonsäure	15880	Rot
1-(3-Sulfo-1-phenylazo)-2-naphthol-6-sulfosäure	15980	Orange
1-(4-Sulfo-1-phenylazo)-2-naphthol-6-sulfosäure	15985	Gelb
Allura Red	16035	Rot
1-(4-Sulfo-1-naphthylazo)-2-naphthol-3,6-disulfosäure	16185	Rot
Acid Orange 10	16230	Orange
1-(4-Sulfo-1-naphthylazo)-2-naphthol-6,8-disulfosäure	16255	Rot
1-(4-Sulfo-1-naphthylazo)-2-naphthol-3,6,8-trisulfosäure	16290	Rot
8-Amino-2 phenylazo- 1 naphthol-3,6-disulfosäure	17200	Rot
Acid Red 1	18050	Rot
Acid Red 155	18130	Rot Gelb
Acid Yellow 121	18690 18736	Rot
Acid Red 180	18820	Gelb
Acid Yellow 11	18965	Gelb
Acid Yellow 17	19140	Gelb
4-(4-Sulfo-1-phenylazo)-1-(4-sulfophenyl)-5-hydroxy-	19140	Geib
pyrazolon-3-carbonsäure	20040	Gelb
Pigment Yellow 16	20170	Orange
2,6-(4'-Sulfo-2", 4"-dimethyl)-bis-phenylazo)1,3-dihydroxy-	20170	Orange
benzol Acid Black 1	20470	Schwar
All Black I		z
Pigment Yellow 13	21100	Gelb
Pigment Yellow 83	21108	Gelb
Solvent Yellow	21230	Gelb
Acid Red 163	24790	Rot
Acid Red 73	27290	Rot
2-[4'-(4"-Sulfo-1"-phenylazo)-7'-sulfo-1'-naphthylazo]-1-	27755	Schwarz
hydroxy-7-aminonaphthalin-3,6-disulfosäure		
4'-[(4"-Sulfo-1"-phenylazo)-7'-sulfo-1'-naphthylazo]-1-hydroxy-	28440	Schwarz
8-acetyl-aminonaphthalin-3,5-disulfosäure		
Direct Orange 34, 39, 44, 46, 60	40215	Orange
Food Yellow	40800	Orange
trans-ß-Apo-8'-Carotinaldehyd (C ₃₀)	40820	Orange
trans-Apo-8'-Carotinsäure (C ₃₀)-ethylester	40825	Orange
Canthaxanthin	40850	Orange
Acid Blue 1	42045	Blau
2,4-Disulfo-5-hydroxy-4'-4"-bis-(diethylamino)triphenyl-	42051	Blau
carbinol		
4-[(-4-N-Ethyl-p-sulfobenzylamino)-phenyl-(4-hydroxy-2-sulfo-	42053	Grün
phenyl)-(methylen)-1-(N-ethylN-p-sulfobenzyl)-2,5-		

Chemische oder sonstige Bezeichnung	CIN	Farbe
cyclohexadienimin)		
Acid Blue 7	42080	Blau
(N-Ethyl-p-sulfobenzyl-amino)-phenyl-(2-sulfophenyl)-	42090	Blau
methylen-(N-ethyl-N-p-sulfo-benzyl)Δ ^{2,5} -cyclohexadienimin		
Acid Green 9	42100	Grün
Diethyl-di-sulfobenzyl-di-4-amino-2-chlor-di-2-methyl-	42170	Grün
fuchsonimmonium		
Basic Violet 14	42510	Violett
Basic Violet 2	42520	Violett
2'-Methyl-4'-(N-ethyl-N-m-sulfobenzyl)-amino-4"-(N-diethyl)-	42735	Blau
amino-2-methyl-N-ethylN-m-sulfobenzyl-fuchsonimmonium		
4'-(N-Dimethyl)-amino-4"-(N-phenyl)-aminonaphtho-N-	44045	Blau
dimethyl-fuchsonimmonium		
2-Hydroxy-3,6-disulfo-4,4'-bis-dimethylamino-	44090	Grün
naphthofuchsonimmonium		
Acid Red 52	45100	Rot
3-(2'-Methylphenylamino)-6-(2'-methyl-4'-sulfophenylamino)-	45190	Violett
9-(2"-carboxyphenyl)-xantheniumsalz		
Acid Red 50	45220	Rot
Phenyl-2-oxyfluoron-2-carbonsäure	45350	Gelb
4,5-Dibromfluorescein	45370	Orange
2,4,5,7-Tetrabromfluorescein	45380	Rot
Solvent Dye	45396	Orange
Acid Red 98	45405	Rot
3',4',5',6'-Tetrachlor-2,4,5,7-tetrabromfluorescein	45410	Rot
4,5-Diiodfluorescein	45425	Rot
2,4,5,7-Tetraiodfluorescein	45430	Rot
Chinophthalon	47000	Gelb
Chinophthalon-disulfosäure	47005	Gelb

[0129] Es kann ferner günstig sein, als Farbstoff eine oder mehrer Substanzen aus der folgenden Gruppe zu wählen: 2,4-Dihydroxyazobenzol, 1-(2'-Chlor-4'-nitro-1'phenylazo)-2-hydroxynaphthalin, Ceresrot, 2-(4-Sulfo-1-naphthylazo)-1-naphthol-4-sulfosäure, Calciumsalz der 2-Hydroxy-1,2"azonaphthalin-1'-'ulfosäure, Calcium- und Bariumsalze der 1-(2-Sulfo-4-methyl-1-phenylazo)-2-naphthylcarbonsäure, Calciumsalz der 1-(2-Sulfo-1-naphthylazo)-2-hydroxynaphthalin-3-carbonsäure, Aluminiumsalz der 1-(4-Sulfo-1-phenylazo)-2-naphthol-3,6-disulfosäure, Aluminiumsalz der 1-(4-Sulfo-1-naphthylazo)-2-naphthol-3,6-disulfosäure, Aluminiumsalz der 8-Amino-2-phenylazo-1-naphthol-3,6-disulfosäure, 4'-[(4"-Sulfo-1"-phenylazo)-7'-sulfo-1"-phenylazo)-1-(4-sulfophenyl)-5-hydroxy-pyrazolon-3-carbonsäure, 4'-[(4"-Sulfo-1"-phenylazo)-7'-sulfo-1'-naphthylazo]-1-hydroxy-8-acetylaminonaphthalin-3,5-disulfosäure, Aluminium- und Zirkoniumsalze von 4,5,7-Tetrabromfluorescein, Aluminium- und Zirkoniumsalze von 2,4,5,7-Tetrabromfluorescein, aluminiumsalze von 2,4,5,7-Tetrabromfluorescein, Aluminiumsalze von 2,4,5,7-Tetrabromfluorescein, Aluminiumsalze der Indigo-disulfosäure, 4,4'-Di'ethyl-6,6'-di'hlorthioindigo, Komplexsalz (Na, Al, Ca) der Karminsäure, rotes und schwarzes Eisenoxid (CIN: 77 491 (rot) und 77 499 (schwarz)), Eisenoxidhydrat (CIN: 77 492), Manganammoniumdiphosphat (CIN: 77745), Ultramarin (CIN: 77007) und Titandioxid.

[0130] Erfindungsgemäße Emulsionen können Titandioxide enthalten, die sowohl in der Kristallmodifikation Rutil als auch Anatas vorliegen können und im Sinne der vorliegenden Erfindung vorteilhaft oberflächlich behandelt ("gecoatet") ist, wobei beispielsweise ein hydrophiler, amphiphiler oder hydrophober Charakter gebildet werden bzw. erhalten bleiben soll. Diese Oberflächenbehandlung kann darin bestehen, daß die Pigmente nach an sich bekannten Verfahren mit einer dünnen hydrophilen und/oder hydrophoben anorganischen und/oder organischen Schicht versehen werden. Die verschiedenen Oberflächenbeschichtungen können im Sinne der vorliegenden Erfindung auch Wasser enthalten.

[0131] Anorganische Oberflächenbeschichtungen im Sinne der vorliegenden Erfindung können bestehen aus Aluminiumoxid (Al₂O₃), Aluminiumhydroxid Al(OH)₃, bzw. Aluminiumoxidhydrat (auch: Alumina, CAS-Nr.: 1333-84-2), Natriumhexametaphosphat (NaPO₃)₆, Natriummetaphosphat (NaPO₃)_n, Siliciumdioxid (SiO₂) (auch: Silica, CAS-Nr.: 7631-86-9), Zirkoniumoxid (ZrO₂) oder Eisenoxid (Fe₂O₃). Diese anorganischen Oberflächenbeschichtungen können allein, in Kombination und/oder in Kombination mit organischen Beschichtungsmaterialien vorkommen.

[0132] Hierzu werden Oxide, Oxidhydrate oder Phosphate beispielsweise der Elemente Al, Si, Zr in dichten Schichten auf die Pigmentoberfläche aufgefällt.

[0133] Die anorganische Nachbehandlung geschieht im allgemeinen in einer wässrigen Suspension des Pigmentes durch Zugabe löslicher Nachbehandlungschemikalien, wie z.B. Aluminiumsulfat, und anschließende Ausfällung des im neutralen Bereich schwerlöslichen Hydroxides durch gezielte Einstellung des pH-Wertes mit Natronlauge. Nach der anorganischen Nachbehandlung werden die gecoateten Pigmente durch Filtration aus der Suspension abgetrennt und sorgfältig gewaschen, um die gelösten Salze zu entfernen, anschließend werden die isolierten Pigmente getrocknet.

[0134] Besonders bevorzugt im Sinne dieser Erfindung sind Titandioxide, auf die Aluminiumhydroxid auf die Oberfläche aufgebracht worden ist, wie z.B. die von Sun Chemical erhältlichen Titandioxid Typen C47-051 und C47-5175. Weiterhin bevorzugte Pigmente sind Titandioxide, die mit Aluminium- und/oder Siliziumoxiden gecoated sind, wie z.B. von der Firma Krosnos Titan: Kronos 1071 und 1075 oder von der Firma Kingfisher: A310.03 Tudor Aspen.

[0135] Organische Oberflächenbeschichtungen im Sinne der vorliegenden Erfindung können bestehen aus pflanzlichem oder tierischem Aluminiumstearat, pflanzlicher oder tierischer Stearinsäure, Laurinsäure, Dimethylpolysiloxan (auch: Dimethicone), Methylpolysiloxan (Methicone), Simethicone (einem Gemisch aus Dimethylpolysiloxan mit einer durchschnittlichen Kettenlänge von 200 bis 350 Dimethylsiloxan-Einheiten und Silicagel) oder Alginsäure. Diese organischen Oberflächenbeschichtungen können allein, in Kombination und/oder in Kombination mit anorganischen Beschichtungsmaterialien vorkommen.

[0136] Ferner kann es erfindungsgemäß vorteilhaft sein Perlglanzpigmente einzusetzen. Dazu zählen natürliche Perlglanzpigmente, wie z. B.

- "Fischsilber" (Guanin/Hypoxanthin-Mischkristalle aus Fischschuppen) und
- "Perlmutt" (vermahlene Muschelschalen),

monokristalline Perlglanzpigmente wie z. B. Bismuthoxychlorid (BiOCI), Schicht-Substrat Pigmente: z. B. Glimmer/Metalloxid

[0137] Basis für Perlglanzpigmente sind beispielsweise pulverförmige Pigmente oder Ricinusöldispersionen von Bismutoxychlorid und/oder Titandioxid sowie Bismutoxychlorid und/oder Titandioxid auf Glimmer. Insbesondere vorteihaft ist z. B. das unter der CIN 77163 aufgelistete Glanzpigment.

[0138] Vorteilhaft sind ferner beispielsweise die folgenden Perlglanzpigmentarten auf Basis von Glimmer/Metalloxid:

1.1.1.1 Gruppe	Belegung Schichtdicke	/ Farbe
Silberweiße Perlglanzpigmente	TiO ₂ : 40 – 60 nm	silber
Interferenzpigmente	TiO ₂ : 60 – 80 nm	gelb

	TiO ₂ : 80 – 100 nm	rot
	TiO ₂ : 100 – 140 nm	blau
	TiO ₂ : 120 – 160 nm	grün
Farbglanzpigmente	Fe ₂ O ₃	bronze
	Fe₂O₃	kupfer
	Fe₂O₃	rot
	Fe₂O₃	rotviolett
	Fe₂O₃	rotgrün
	Fe ₂ O ₃	schwarz
Kombinationspigmente	TiO ₂ / Fe ₂ O ₃	Goldtön
Kombinationspigmente	110 ₂ 7 Fe ₂ O ₃	е
	TiO ₂ / Cr ₂ O ₃	grün
	TiO ₂ / Berliner Blau	tiefblau
	TiO ₂ / Carmin	rot

[0139] Besonders bevorzugt sind die von der Firma Merck unter den Handelsnamen Timiron, Colorona oder Dichrona erhältlichen Perlglanzpigmente.

[0140] Die Liste der genannten Perlglanzpigmente soll selbstverständlich nicht limitierend sein. Im Sinne der vorliegenden Erfindung vorteilhafte Perlglanzpigmente sind auf zahlreichen, an sich bekannten Wegen erhältlich. Beispielsweise lassen sich auch andere Substrate außer Glimmer mit weiteren Metalloxiden beschichten, wie z. B. Silica und dergleichen mehr. Vorteilhaft sind z. B. mit TiO₂ und Fe₂O₃ beschichtete SiO₂-Partikel ("Ronaspheren"), die von der Firma Merck vertrieben werden.

[0141] Es kann darüber hinaus von Vorteil sein, gänzlich auf ein Substrat wie Glimmer zu verzichten. Besonders bevorzugt sind Perlglanzpigmente, welche unter der Verwendung von SiO₂ hergestellt werden. Solche Pigmente, die auch zusätzlich gonichromatische Effekte haben können, sind z. B. unter dem Handelsnamen Sicopearl Fantastico bei der Firma BASF erhältlich.

[0142] Weiterhin vorteilhaft können Pigmente der Firma Engelhard/Mearl auf Basis von Calcium Natrium Borosilikat, die mit Titandioxid beschichtet sind, eingesetzt werden. Diese sind unter dem Namen Reflecks erhältlich. Sie weisen durch ihrer Partikelgröße von 40 – 180 µm zusätzlich zu der Farbe einen Glitzereffekt auf.

[0143] Die Farbstoffe und Pigmente können sowohl einzeln als auch im Gemisch vorliegen sowie gegenseitig miteinander beschichtet sein, wobei durch unterschiedliche Beschichtungsdicken im allgemeinen verschiedene Farbeffekte hervorgerufen werden. Die Gesamtmenge der Farbstoffe und farbgebenden Pigmente wird vorteilhaft aus dem Bereich von z. B. 0,1 Gew.-% bis 30 Gew.-%, vorzugsweise von 0,5 bis 15 Gew.-%, insbesondere von 1,0 bis 10 Gew.-% gewählt, jeweils bezogen auf das Gesamtgewicht der Zubereitungen. Die Gewichtsangaben beziehen sich dabei auf die Zusammensetzung der Zubereitung vor der Trocknung mittels Gefrier- und/oder Sprühtrocknung.

[0144] Vorteilhaft im Sinne der vorliegenden Erfindung enthält die erfindungsgemäße O/W-Emulsion einen oder mehrere Tablettenhilfsstoffe. Diese können erfindungsgemäß vorteilhaft in einer Konzentration von 0,1 bis 60 Gewichts-%, bevorzugt in einer Konzentration von 1 bis 50 Gewichts-% und ganz besonders bevorzugt in einer Konzentration von 3 bis 35 Gewichts-%, jeweils bezogen auf das Gesamtgewicht der Zubereitung eingesetzt werden. Die Gewichtsangaben beziehen sich dabei auf die Zusammensetzung der Zubereitung wobei als Zubereitung die Emulsion nach der Gefrier- und/oder Sprühtrocknung zusammen mit evtl. weiteren wasserlöslichen und/oder leichtflüchtigen Verbindungen und Tablettierstoffen (inkl. Hydrogencarbonaten und bei Raumtemperatur festen Säuren) angesehen wird.

[0145] Als Tablettenhilfsstoffe können beispielsweise Füll- und Kopaktierhilfsstoffe (z.B. Stärke--und/oder Cellulosederivate), Fließmittel (z.B. hochdisperse Siliziumdioxide), Fließreguliermittel, Schmiermittel, Formtrennmittel eingesetzt werden.

[0146] Erfindungsgemäß vorteilhaft können alle Stoffe eingesetzt werden, die im H.P. Fiedler, Lexikon der Hilfsstoffe für Pharmazie, Kosmetik und angrenzenden Gebiete, 5. Auflage, Editio Cantor Verlag, Aulendorf, 2002, unter den Stichworten Tabletten-Bindemittel, Tabletten-Füllstoffe, Tabletten-Gleitmittel, Tabletten-Hilfsstoffe, Tabletten-Sprengmittel, Tabletten-Überzüge aufgelistetet sind.

[0147] In einer erfindungsgemäß besonders bevorzugten Ausführungsform enthält die erfindungsgemäße Zubereitung eine Kombination aus Carbonaten und/oder Hydrogencarbonaten sowie bei Raumtemperatur festen Säuren (z.B. Zitronensäure, Ascorbinsäure, Milchsäure, Weinsäure, etc). Auch stark quellende Polymere wie beispielsweise vernetztes Polyvinylpyrrolidon kann erfindungsgemäß vorteilhaft eingesetzt werden.

[0148] Erfindungsgemäß vorteilhaft werden ein oder mehrere Hydrogencarbonate (z.B. Natriumhydrogencarbonat, Kaliumhydrogencarbonat) in einer Menge von 0,1 bis 30 Gewichts-%, bevorzugt in einer Menge von 0,5 bis 20 Gewichts-% und besonders bevorzugt in einer Menge von 0,5 bis 15 Gewichts-%, jeweils bezogen auf das Gesamtgewicht der Zubereitung eingesetzt, wobei als Zubereitung die Emulsion nach der Gefrierund/oder Sprühtrocknung zusammen mit evl. weiteren wasserlöslichen und/oder und/oder leichtflüchtigen Verbindungen und Tablettierstoffen (inkl. Hydrogencarbonaten und bei Raumtemperatur festen Säuren) angesehen wird.

[0149] Erfindungsgemäß vorteilhaft werden ein oder mehrere bei Raumtemperatur feste Säuren (besonders bevorzugt Zitronensäure) in einer Menge von 0,1 bis 30 Gewichts-%, bevorzugt in einer Menge von 0,5 bis 20 Gewichts-% und besonders bevorzugt in einer Menge von 0,5 bis 15 Gewichts-%, jeweils bezogen auf das Gesamtgewicht der Zubereitung eingesetzt, wobei als Zubereitung die Emulsion nach der Gefrier- und/oder Sprühtrocknung zusammen mit evtl. weiteren wasserlöslichen und/oder leichtflüchtigen Verbindungen und Tablettierstoffen (inkl. Hydrogencarbonaten und bei Raumtemperatur festen Säuren) angesehen wird.

[0150] Eine derartige Ausführungsform ist insbesondere dann vorteilhaft im Sinne der vorliegenden Erfindung, wenn die erfindungsgemäße Emulsion in Form einer Tablette (z.B. einer Brausetablette) vorliegt, da sich die erfindungsgemäße Emulsion in dieser Ausführungsform besonders leicht durch Zusatz von Wasser reemulgieren läßt.

[0151] Erfindungsgemäß ist auch das Verfahren zur Herstellung einer derartigen Zubereitung, welches dadurch gekennzeichnet ist, dass die erfindungsgemäße O/W-Emulsion mit einem oder mehreren Tablettenhilfstoffen in einer Mischungsvorrichtung vermischt werden.

[0152] Erfindungsgemäß sind auch Zubereitungen, die nach diesem erfindungsgemäßen Verfahren hergestellt werden.

[0153] Erfindungsgemäß ist ferner ein Verfahren zur Herstellung von Tabletten und/oder Granulaten, welches dadurch gekennzeichnet ist, dass eine erfindungsgemäße Zubereitung in einer Presse zu einer oder mehreren Tabletten gepresst oder granuliert wird, sowie Zubereitungen, die nach diesem Verfahren hergestellt werden. [0154] Erfindungsgemäß ist nicht zuletzt das Verfahren zur Herstellung eines Kosmetikums, welches dadurch gekennzeichnet ist, dass eine erfindungsgemäße Zubereitung (eine durch Sprühtrocknung und/oder Gefriertrocknung getrocknete O/W-Emulsion, die gegebenenfalls mit wasserlöslichen und/oder leichtflüchtigen Wirk-, Hilfs- Zusatzstoffen und/oder Tablettenhilfsstoffen versetzt sowie gegebenenfalls tabletiert bzw. granuliert wurde) mit Wasser versetzt bzw. in Wasser emulgiert wird. Erfindungsgemäß sind auch Kosmetika, die nach diesem Verfahren hergestellt werden.

[0155] Ein derartiges erfindungsgemäßes Kosmetikum liegt dann in Form einer Salbe, Creme, Lotion oder eines Emulsionsschaumes (franz. Mousse) oder einer sprühbaren Form vor. Es kann erfindungsgemäß vorteilhaft zur Behandlung und Pflege der Haut, Haare und Nägel eingesetzt werden. Erfindungsgemäß bevorzugt ist dabei die Verwendung als Sonnenschutzmittel.

Ausführungsbeispiel

[0156] Die nachfolgenden Beispiele sollen die vorliegende Erfindung verdeutlichen, ohne sie einzuschränken. Alle Mengenangaben, Anteile und Prozentanteile sind, soweit nicht anders angegeben, auf das Gewicht und die Gesamtmenge bzw. auf das Gesamtgewicht der Zubereitungen bezogen.

[0157] Die Beispiele aus Tabelle 1 (Emulsions- Zubereitungen nach Sprühtrocknung) werden erfindungsgemäß mit Stoffmischungen der wasserlöslichen/-dipergierbaren Zusätze (Tabelle 2) homogen vermischt.

[0158] Optional können die Stoffmischungen (Tabelle 1+2) mit Tablettier- und Granulierhilfsstoffen (Tabelle 3) vermischt und erfindungsgemäße Granulate und/oder Tabletten nach geeigneten Verfahren hergestellt werden.

Beispiele:

Tabelle 1: Emulsionszubereitung nach Sprüh-1 bzw. Gefriertrocknung

	1	2	3	4	5
Hydroxypropylmethylcellulose	37,5	17	26		5
Polyvinylpyrrolidon		1		20	10
Hydroxyethylcellulose			1	4	2
Xanthan Gummi		2			
Carbomer (Carbopol 981)	0,5			1	
C ₁₀₋₃₀ Alkyl Acrylat Crosspolymer (Pemulen TR1)		0,3			
Dimethicon / Polysilicone-11			2		
Hydroxypropyl Methylcellulose		3			1
Methylhydroxyethylcellulose	0,1				
Polyquaternium 37			1		
Polyacrylat			10	0,5	
Titandioxid (Eusolex T2000)			3		5
Zinkoxid		10	5	3	
Titandioxid (Titandioxid T805)				3	
Silica (Aerosil R972)	3	4			2
Talkum (Talkum Micron)	0		1		1
Bornitrid			2		0,5
Natrium Maisstärke n-Octenylsuccinat				2	
Di Stärkephosphat		1,5	1		
Tapiokastärke	4			3	
Polyamid-6				4	
Nylon-12		3			
C _{20 - 40} Alkylstearat (Kesterwachs K82)			2		3
Hydrogenierte Coco Glyceride	3	1		1	
C _{16 – 38} Alkylhydroxystearoyl-stearat (Kesterwachs K80P)		0,5			
Behenoxy Dimethicon (Abil Wax 2440)			2		
Cetyl Dimethicon (Abil Wax 9840)		1,5			
Polyisobuten (Rewopal PIB 1000)			1,5		
Caprylic/Capric Triglycerid			5	12	15
Octyldodecanol	6	10	3.	8	
Mineralöl	3,65			4	8
Butylen Glycol Caprylat/Caprat	5	. 3			
C ₁₂₋₁₅ Alkyl Benzoat	6	10	5		15
PVP/ Hecadecene Copolymer	0,5	0,5			1
Acetylated Glycol Stearate + Tristearin			3		
Stearyl Alcohol	1,5	1,5	1	1	
Dimethicon			2		
Cyclomethicon	3	2		3	
Tocopheryl Acetat	1,5	1,5	2		

Ubiquinon				0,03	
PEG-40 Hydrogenated Castor Oil	1,5				2
PPG-15 Stearyl Ether		3			
Starch Hydroxypropyltrimonium Chlorid (Sensomer CI 50)			1		
Dicaprylyl Ether (Cetiol OE)		3,5			
Hydriertes Polyisobuten (Polysynlan)					
UVASorb® K2A	3		4		
Butyl Methoxydibenzoylmethan				3	5
Uvinul ® A Plus		3			
Bis-Ethylhexyloxyphenol Methoxyphenyl		4			2
Triazin					
Ethylhexyl Triazon	4			4	4,5
Diethylhexyl Butamido Triazon		5			
Ethylhexyl Methoxycinnamat	5	5		7	10
Octocrylen		5,00	5	7,50	
Methylen Bis-Benztriazolyl	3		1,5		
Tetramethylbutylphenol					
Homosalat		4			
Ethylhexylsalicylat			3		
Dihydroxyaceton				4	
Diethylhexyl Butamido Triazon (UVASORB HEB)		2		2	
Konservierung	2	0,5		1	0,3
Polysorbat 20		2			
Polysorbat 60			2		
Polysorbat 80					4
Glyceryl- Stearate				3	
fettlöslicher Farbstoff					0,4
Parfum	1,5	1	0,5		1
Wasser	ad 100				

Tabelle 2: wasserlösliche/-dispergierbare Zusätze

	1	2	3	4	5
Natrium Maisstärke n-Octenylsuccinat	2				1
Di Stärkephosphat				1,5	
Tapiokastärke		5			4
Phenyl Dibenzimidazol Tetrasulfonsäure	2				
Phenylbenzimidazol Sulfonsäure	2		2		
Konservierung		0,5		1	
Glycerin					5
Panthenol		5		1	0,1
Sorbitol	15		7		
Mannitol		4		10	
Biosaccharid Gel (Fucogel 1000)			0,5		

		0.5		
		0,5		
0,5				
			1	
	1			
1				
0,6				
	0,9			
0,5			1	
	0,3			
		2		
	0,1			
1	0,5			2
	3		2	
0,1				
	0,5	1		
2				1
			0,5	
2		0,7		
		0,3		
0,5		0,3		
	0,6	1 1 0,6 0,9 0,5 0,3 0,1 0,5 2 2 2	1 1 0,6 0,9 0,5 0,3 2 2 0,1 1 0,5 3 0,1 0,5 1 2 0,7 0,3 0,3	0,5 1 1 1 0,6 0,9 0,5 1 0,3 2 0,1 2 0,1 2 0,1 2 0,1 0 0,5 1 2 0,5 2 0,7 0,3 0,3

Tabelle 3: Zusätze zur Granulierung/Tablettierung der Mischungen aus 1 & 2

·	1	2	3	4	5
Mikrokristalline Cellulose (Avicel PH 102)	15				12
Quervernetzte Natrium- Carboxymethylcellulose (Ac-Di-Sol)	2			2	2
Quervernetztes Polyvinylpyrrolidon			5		2
Natriumhydrogencarbonat		2		1	
Zitronensäure		4,6		2,3	
Milchzucker	3	5	4		3
Saccharose		6		4	
Gelatine			1,5		
Stärke		1			
Glycerin		3			
Sorbitol	2		3		2
Stärke					
Aerosil 200			1,5	1	
Stearinsäure	1,5		1		0,5
Magnesiumstearate		2		1	1,5
Talkum	1		2		
Alkohol		20	15	10	

Patentansprüche

- 1. Verfahren zur Herstellung einer O/W-Emulsion, dadurch gekennzeichnet, dass eine O/W-Emulsion enthaltend
- a) eine Lipidphase in einer Konzentration von 20 bis 95 Gewichts-%,
- b) ein oder mehrere wasserlösliche Polymere in einer Gesamtkonzentration von 1 bis 80 Gewichts-%, jeweils

bezogen auf das Gesamtgewicht der Zubereitung, sowie c) ein oder mehrere UV-Lichtschutzfilter und

- d) eine wässrige Phase,
- neben gegebenenfalls weiteren kosmetischen und/oder dermatologischen Wirk-, Hilfs- und Zusatzstoffen, durch Sprühtrocknung und/oder Gefriertrocknung getrocknet wird.
 - 2. O/W-Emulsion hergestellt nach einem Verfahren nach Anspruch 1.
- 3. Verfahren zur Herstellung einer O/W-Emulsion, dadurch gekennzeichnet, dass eine O/W-Emulsion nach einem der Ansprüche 1 oder 2 in einer Mischungsvorrichtung mit wasserlöslichen und/oder leichtflüchtigen Wirk-. Hilfs- und/oder Zusatzstoffen vermischt wird.
 - 4. O/W-Emulsion hergestellt nach einem Verfahren nach Anspruch 3.
- 5. Zubereitung enthaltend eine O/W-Emulsion nach einem der Ansprüche 2 oder 4 sowie einen oder mehrere Granulier- und/oder Tablettenhilfsstoffe.
- 6. Verfahren zur Herstellung einer Zubereitung nach Anspruch 5, dadurch gekennzeichnet, dass eine O/W-Emulsion nach einem der Ansprüche 2 oder 4 mit einem oder mehreren Tablettenhilfsstoffen in einer Mischungsvorrichtung vermischt werden.
 - 7. Zubereitung hergestellt nach einem Verfahren nach Anspruch 6.
- 8. Verfahren zur Herstellung von Tabletten und/oder Granulaten, dadurch gekennzeichnet, dass eine Zubereitung nach Anspruch 7 in einer Presse zu einer oder mehreren Tabletten gepresst oder mittels geeigneter Granuliervorrichtungen granuliert werden.
 - 9. Zubereitung hergestellt nach einem Verfahren nach Anspruch B.
- 10. Verfahren zur Herstellung eines Kosmetikums dadurch gekennzeichnet, dass eine Zubereitung nach einem der Ansprüche 2, 4, 5, 7 und/oder 9 mit Wasser versetzt werden.
 - 11. Kosmetikum hergestellt nach einem Verfahren nach Anspruch 10.

Es folgt kein Blatt Zeichnungen

28/28