TECHNICAL UNIVERSITY

Fundamental Algorithms

Cluj-Napoca, 2.10.19

Agenda

- Administrative stuff
- What is/is NOT this course about
- Computational complexity
 - Basics
 - What and why
 - What NOT and why NOT

Administrative stuff

- Rodica Potolea
 - Professor, Computer Science Department
 - Room C09
 - Rodica.Potolea@cs.utcluj.ro

OF CLUJ-NAPOCA

Structure of the course

- Lectures (every Wednesday, 10-12, room D21)
 - Slides and/or blackboard
 - Pseudocode
 - Discussions
 - Open course with Q&As sessions.
 - Stop me and ask questions whenever you have. If you have a question, most probably other students have the same question!
- Tutorials (every other Tuesday 12 -14 room D12 or Wednesday 14-16 D12)
 - Problem solving analysis and design, evaluation, comparisons
 - pseudocode
- Labs same content, every group a different faculty member or (former) PhD student, graduate/master
 - Problem solving (algorithms implementation, testing and evaluation)
 - C++

Textbook

- Bible:
- Cormen, Leiserson, Rivest, (Stern)
- Introduction to Algorithms, first edition 1990 (second/third edition 2001) MIT Press
- CS Department Library, Baritiu 26-28, Room M04

Compact Science

go immediately to check the library!!!

TECHNICAL UNIVERSITY

OF CLUJ-NAPOCA

Evaluation

• MT

- after 5 lectures (week 7, hour 10-11)
- 1h written examination, problems, open book and notes
- 20% in the Final Grade; CANNOT retake the MT

Hands on evaluation (labs work)

- Stay in your group
- 10 assignments
- Every (other) lab deadline on an assignment (various thresholds; we encourage evolution&knowledge/skills increase)
- Late assignments policy:
 - 1 week late: 80% from the work grade
 - More than 1 week, no grade (0) on the given assignment
 - Plagiarism policy 0 tolerance!!! Don't even try!
- 30% in the Final Grade (need grade of 5 or more to access the FE)

FE

^{10/2/201} h written examination, problems, open books and notes

What is this course about?

- NOT a programming course
- NOT a DS course
- Course on Fundamental Algorithms
 - How to:
 - evaluate algorithms performance
 - compare performance of different algorithms
 - design efficient and optimal algorithms
 - identify a solution to a problem
 - specific efficient algorithms on fundamental problems

Complexity

Parameters to be evaluated

- Time
- Memory
- Other
- **Time** (components)
 - Computation time
 - Communication time (data transfer, partial results transfer, information communication)

Computation time (in parallel execution)

 As the number of processors involved increases, the computation time decreases

Communication time

Quite the opposite!!!

Complexity-cont.

- Denote the efficiency of an algorithm by the time required to solve the problem.
- How to actually evaluate efficiency?
 - Measure time
 - time = f(sec)? Why? Why not?
 - Estimate time t=f(n), n=input data size
- Cases to be considered (as executions do not always behave the same)
 - Best
 - Worst
 - Average
- Cases relate to?
 - the algorithm implementing the given problem (method/strategy TBD) so every algorithm could have a different (distinct from other algorithms) best/worst case
 - the *implementation* of the algorithm (specific structures employed, the way they are manipulated)
- **Efficiency** when discussing about the complexity (of a problem), we evaluate the efficiency of the solution (that is, a particular implementation of a given algorithm)
 - Relative
- 10/2/2019 Absolute

Complexity – cont. (Efficiency)

- Comparison between algorithms (relative comparison)
 - t(n) represent functions expressing execution time
 - Just asymptotic behavior matters (i.e. the term with the fastest growth is considered only)
 - Ex: given $t_1(n) = 3n^2 + 300n + 50$ $t_2(n) = 2n^3 + 10n^2 + 2n + 10$ we count just as $t_1(n) \cong 3n^2$ and $t_2(n) \cong 2n^3$
- Relative complexity evaluation
 - between various algorithms
 - efficiency has degrees of comparison
 - Alg1 is more / less efficient than Alg2

Absolute comparison?

- Is performed by comparing with some **absolute measure** (taken from? ... we'll see soon. It's a reference value)
- Defines a relation between the execution performance (we'll say time, yet, it is not quite time in sec/min/hours/...) and that specific measure
- Provides info about the optimality of an algorithm

Absolute complexity evaluation

- between algorithms and the reference value
- Optimality does NOT have degrees of comparison
- An algorithm is either optimal or NOT optimal

- O notation (big Oh function)
 - Expresses the **upper bound** of a function

$$O(g(n))=\{f(n)|\exists c, n_0>0, 0<=f(n)<=c\cdot g(n), \forall n>=n_0\}$$

- f(n)=O(g(n))
- O specifies the asymptotic upper bound
- It is related to the algorithm (expresses the execution time of the algorithm implementing a problem as a number of execution steps)

- Ω notation
 - Expresses the lower bound of a function

$$\Omega(g(n)) = \{f(n) | \exists c, n_0 > 0, 0 < = c \cdot g(n) < = f(n), \forall n > = n_0 \}$$

- $f(n) = \Omega(g(n))$
- ullet specifies the asymptotic lower bound
- It is related to the **problem** (expresses the theoretical number of steps required by the problem to be solved)

- Optimality is related to the lower bound absolute (Ω)
- Optimality is a superlative
 - Has NO DEGREE OF COMPARISON!!!
 - i.e. an algorithm is either
 - OPTIMAL,
 - or is NOT optimal;
 - there is no MORE/LESS optimal!

- Absolute comparison defines a relation between O and Ω (estimation of the performance of an algorithm solving a given problem in relation to lower bound)
 - So, compare O (big Oh function) with Ω
 - Which O?
 - Worst case. Why?
 - Asymptotic behavior (what happens when execution is the slowest?)
 - O() \leq Ω () in the best or even average case
 - Ex: The sorting problem has its lower bound $\Omega(n \mid gn)$, and many sorting algorithms have O(1) best case and O(n) average case!!!

• **An algorithm is optimal** if the running time of the algorithm to solve the problem in the worst case scenario equals the lower bound of the given problem and uses just constant additional memory:

$$\mathbf{O} = \mathbf{\Omega}$$

- **Generally,** we are interested in
 - EITHER developing algorithms with t(n) such that

$$\Omega <= t(n) <= 0$$

where **O** = running time of the best known algorithm for the given problem

- OR identifying the best known algorithms
- The good news
 - This is what we are doing in this course
- The bad news
 - many of the real-world problems do not have good algorithms
- Even worst
 - No such algorithms will exist (soon? EVER!). NPC problems (TBD ...but ... this is beyond the scope of this class. It's the master course!)

Rules for estimating O (Big Oh function)

- 1. O(c'f(n)) = O(f(n))
- 2. $O(f_1(n)) \cdot f_2(n) = O(f_1(n)) \cdot O(f_2(n))$ in nested loops
- 3. $O(f_1(n)+f_2(n))=O(f_1(n))+O(f_2(n))$ in consecutive loops
- 4. When expressing O, only leading term is considered

leading (lim) f1(n) leads **f2(n)** nn n! n! a>1 a>b an n^b, <u>a</u>n a>1 log_an log_bn,b>a>1 logan a>1

- Vals of Ω () for some problems
 - Searching $\Omega(\log n)$
 - Selection $\Omega(n)$
 - Sorting Ω(n·logn)

The base of the log in CS is 2

- Interpretation O(1): constant time (i.e. regardless the dimension of the input data, the algorithm has always the same running time)
- Asymptotic behavior:
 - For $t1(n) = 3n^2 + 3n + 5 = > O(n^2)$
 - For $t2(n) = 2n^3 + 100n^2 + 25n + 1000 = > O(n^3)$
- For "real" values (i.e. small sizes of data, small n) it could be that the leading term is not leading:

```
100n^2 > 2n^3!
100n^2 = 2n^3:2n^2
100/2=n
So for n< 50, the second term in t2 grows faster!!!
```


- ullet $oldsymbol{\Omega}$ characterizes the **problem**, lower bound
- O characterizes the **algorithm** that solves that problem, upper bound
- if $\Omega = O$ in the worst case + no additional memory is used by the algorithm (sometime, logarithmic space allowed to be discussed later then optimal algorithm)
- If no optimal algorithm is known, what solutions are acceptable?
- Q: How fast the max dim (of the problem that can be solved on a computer) grows in case we increase the speed of the computer?
- How different **classes** of algorithms affect performance?

- What classes are interesting (to be considered)?
- Experiment: let's consider 2 classes of algs:
 - Alg1: polynomial
 - Alg2: exponential
- Assume a new hardware system is built, and its speed increases V times (compared to our former system)
- Q? How does this increase the max dim of the problem to be solved on the new system?
- That is: estimate n₂=f(V,n) given
 - V=increase of speed of the new machine
 - n=max dim on the former (let's call it old) machine

Alg1: **O(n^k)**

Oper. Time M1(old): n^k T M2(new): n^k T/V Vn^k T $(n_2)^k = Vn^k = (v^{1/k} n)^k$ So, $n_2 = v^{1/k} n$

Favorable consequence:

If the **speed** of the machine increases **V times**, Then the max dimension of the problem increases $v^{1/k}$ times.

Notes:

- v^{1/k} is small value
- But the degree of the polynomial (k) is small for most problems
- AND, it is a multiplicative increase

Alg2: **O(2ⁿ)**

Oper.

Time

M1(old): M2(new): **2**n

2n

V2n

T/V

(2) $n_2 = V 2 n = 2 lgV + n$

 $n_2 = n + \lg V$

So

Disadvantageous consequence!

If the speed increases V times,

Then the dimension increases with IgV.

The bad News:

- VERY small increase (Ig)
- Even worst: it is **additive**!!!

Speed of the new computer in terms of the old one: $V_2=V \cdot V_1$

Alg1: $O(n^k)$: $n_2 = v^{1/k} \cdot n$

Alg2: $O(2^n)$: $n_2 = n + lgV$

CL: For exp algs, no matters how many times we increase the speed of the system, the dim increases with an additive constant!!!

Sol:

- avoid designing exponential solutions! NEVER EVER write exponential algorithms!!!
- are there any problems with unknown polynomial sols?
- P=NP? 1 million USD problem (since 1971, Stephen Cook)

• Evaluating the complexity for Divide et Impera algorithms divide_et_impera(n, I, O)

```
if n<=n0
then direct_solution(n, I, O)
else divide(n, I1,I2,...,Ia)
divide_et_impera(n/b,I1,O1) //a rec. calls
divide_et_impera(n/b,I2,O2)
...
divide_et_impera(n/b,Ia,Oa)
combine(O1,O2,...,Oa,O)
```


- Assumption f(n) = time (complexity) of the alq sequence except for the recursive calls (div&comb)
- f(n)= n^c

$$f(t_0)$$
 if $n < n_0$

This is something to remember:

$$t(n)=at(n/b)+n^c$$
 a = number of recursive calls
b= division factor of the input
c = degree of the polynomial describing the
run time of the sequence outside the recursive calls


```
Calling tree
                              n^{c} => n^{c}
... (n/b)^{c} => a (n/b)^{c}
... (n/b^{2})^{c} ... => a^{2}(n/b^{2})^{c}
(n/b)^c (n/b)^c
   ... (n/b^2)^c (n/b^2)^c ... (n/b^2)^c ...
Nb of levels?
log<sub>h</sub>n
t(n) = n^c + a (n/b)^c + a^2(n/b^2)^c + ...
                   n^{c}[1+a/b^{c}+(a/b^{c})^{2}+...(a/b^{c})^{\log_{h}^{n-1}}]
Geometric progression:
   first term=1
   ratio=a/bc
   number of terms=log<sub>h</sub>n
```


$$t(n)=n^{c}[1+a/b^{c}+(a/b^{c})^{2}+...(a/b^{c})^{\log_{b}^{n-1}}]$$

Cases:

```
1. q<1; a<b^c => O(n^c)

2. q=1; a=b^c => O(n^c \cdot \log_b n)

3. q>1; a>b^c => O(?)

t=first\_term\cdot(q^n-1)/q-1

t(n)=n^c[(a/b^c)^{\log_b n}-1]/[a/b^c-1]
```

Take the asymptotic term: n^c (a/b^c)^{log}_bⁿ

Complexity—cont.

```
t(n) = n^{c}[(a/b^{c})^{\log_{h} n} -1]/[a/b^{c}-1] \text{ case } 3 (q>1) a>b^{c}
the asymptotic term n<sup>c</sup> (a/b<sup>c</sup>)<sup>log</sup><sub>b</sub><sup>n</sup>
Q?:
                      O(n^c (a/b^c)^{\log_h n}) = O(n^\alpha)
                      if yes, \alpha = ?
                                  =n<sup>c</sup> (a/b<sup>c</sup>)\log_hn
                                                                   divide by n<sup>c</sup>
           \mathbf{n}^{\alpha}
                                =(a/b^c)^{\log_h n} apply \log_h
           n^{\alpha-c}
           (\alpha-c) \log_b n = \log_b n \cdot \log_b (a/b^c) \text{ divide by } \log_b n
                         = \log_b a-c add c
           (\alpha-c)
                            Co = log<sub>h</sub> a ler Science
           \alpha
```



```
Cl: if f(n) = n^c
1. \quad a < b^c = > O(n^c)
2. a=b^c => O(n^c \cdot \log_b n)
3. a>b^c => O(n^{\log_h a})!! Independent of c
Obs: b should be scaler (b>1)
       composition should comply the partition rule!
       In most cases, either divide, or combine is some
    (almost) default operation (or it takes just O(1))
Ex: quick sort combine is default (sort insitu)
    merge sort divide is almost default - computes the
    middle index O(1)
```


Complexity—cont.

Particular cases:

1.
$$c=1 \Rightarrow f(n)=n$$

 $O(n)$ if $a < b$
 $t(n) = \begin{cases} O(n \cdot \log_b n) & \text{if } a = b \end{cases}$
 $O(n^{\log_b a})$ if $a > b$

Ex: qsort $a=b=2=>O(n \cdot \log_2 n)=O(n \cdot \log n)$

IS qsort optimal? Justify!

Particular cases:

2.
$$c=0$$
 => $f(n)=ct$
Q? Exists such de algs?
 $f(n)=f(n)=ct$
 $f(n)=f(n)=ct$

Ex: a=1, b=2 search in BST => O(logn) a=2, b=2 tree traversal=> O(n)

Sorting algorithms

- What is all about?
- Direct strategies tutorial
- Advanced strategies course

OF CLUJ-NAPOCA