

CURRICULUM

for the Academic year 2024 – 2025

COMPUTER SCIENCE AND ENGINEERING

VII & VIII SEMESTER B.E.

RAMAIAH INSTITUTE OF TECHNOLOGY

(Autonomous Institute, Affiliated to VTU) Bangalore – 560054.

About the Institute:

Dr. M. S. Ramaiah a philanthropist, founded 'Gokula Education Foundation' in 1962 with an objective of serving the society. M S Ramaiah Institute of Technology (MSRIT) was established under the aegis of this foundation in the same year, creating a landmark in technical education in India. MSRIT offers 18 UG programs and 13 PG programs. All these programs are approved by AICTE. All eligible UG and PG programs are accredited by National Board of Accreditation (NBA). The institute is accredited with 'A+' grade by NAAC in March 2021 for 5 years. University Grants Commission (UGC) & Visvesvaraya Technological University (VTU) have conferred Autonomous Status to MSRIT for both UG and PG Programs since 2007. The institute has also been conferred autonomous status for Ph.D. program since 2021. The institute is a participant to the Technical Education Quality Improvement Program (TEQIP), an initiative of the Government of India. The institute has 380 competent faculty out of which 70% are doctorates. Some of the distinguished features of MSRIT are: State of the art laboratories, individual computing facility for all faculty members, all research departments active with sponsored funded projects and more than 300 scholars pursuing Ph.D. To promote research culture, the institute has established Centre of Excellence for Imaging Technologies, Centre for Advanced Materials Technology, Centre for Antennas and Radio Frequency Systems (CARFS), Center for Cyber Physical Systems, Schneider Centre of Excellence & Centre for Bio and Energy Materials Innovation. Ramaiah Institute of Technology has obtained All India Rank 182 in "Scimago Institutions Rankings" for the year 2024.

The Entrepreneurship Development Cell (EDC) and Section 8 company "Ramaiah Evolute" have been set up on campus to incubate startups. MSRIT has a strong Placement and Training department with a committed team, a good Mentoring/Proctorial system, a fully equipped Sports department, large air-conditioned library with good collection of book volumes and subscription to International and National Journals. The Digital Library subscribes to online e-journals from Elsevier Science Direct, IEEE, Taylor & Francis, Springer Link, etc. The Institute is a member of DELNET, CMTI and VTU E-Library Consortium. The Institute has a modern auditorium, recording studio, and several hi-tech conference halls with video conferencing facilities. The institute has excellent hostel facilities for boys and girls. MSRIT Alumni have distinguished themselves by occupying high positions in India and abroad and are in touch with the institute through an active Alumni Association.

As per the National Institutional Ranking Framework (NIRF), MoE, Government of India, Ramaiah Institute of Technology has achieved 75th rank among 1463 top Engineering Institutions & 21st Rank for School of Architecture in India among 115 Architecture Institutions, for the year 2024.

About the Department

Year of Establishment	1984
Names of the Programmes offered	UG: B.E. in Computer Science and Engineering PG:
	M.Tech. in Computer Science and Engineering
	PG: M.Tech. in Computer Networks and Engineering
	Ph.D
	M.Sc.(Engg.) by Research

The Department of Computer Science and Engineering (CSE) has eminent emeritus professors, 15 faculties with the doctorate degree and 15 pursuing the doctoral studies. The faculty has been publishing research papers in refereed journals and in conference proceedings. The department also conducts vocational courses and proficiency courses on fundamental and new programming languages and computer science concepts. These courses are conducted beyond college hours'/summer semester by the faculty of the department. Some of the faculty are involved in institutional level activities and actively involved in interdisciplinary research activities. The department has state of the art laboratories like SAP, IBM Centre of Excellence and CUDA learning center. Technical seminars, workshops and hackathons are conducted regularly for UG & PG students. The department encourages the students to conduct and participate in extracurricular/sports activities. The alumni network is very active and regular meeting are conducted by the department. The department is accredited by Nation Board of Accreditation (NBA). The department has MoUs with leading IT Industries like NVIDIA, SAP, IBM and HP. The department conducts subjects with more of hands- on sessions and encourages students to take up MOOC based online courses in NPTEL, IITBombayX, Coursera, Udacity and edX.

VISION OF THE INSTITUTE

To be an Institution of International Eminence, renowned for imparting quality technical education, cutting edge research and innovation to meet global socio-economic needs

MISSION OF THE INSTITUTE

MSRIT shall meet the global socio-economic needs through

- 1. Imparting quality technical education by nurturing a conducive learning environment through continuous improvement and customization
- 2. Establishing research clusters in emerging areas in collaboration with globally reputed organizations
- 3. Establishing innovative skills development, techno-entrepreneurial activities, and consultancy for socio-economic needs

QUALITY POLICY

We at M. S. Ramaiah Institute of Technology strive to deliver comprehensive, continually enhanced, global quality technical and management education through an established Quality Management System complemented by the synergistic interaction of the stake holders concerned

VISION OF THE DEPARTMENT

To build a strong learning and research environment in the field of Computer Science and Engineering that promotes innovation towards betterment of the society

MISSION OF THE DEPARTMENT

- 1. To produce Computer Science graduates who, trained in design and implementation of computational systems through competitive curriculum and research in collaboration with industry and research organizations.
- 2. To educate students in technology competencies by providing professionally committed faculty and staff.
- 3. To inculcate strong ethical values, leadership abilities and research capabilities in the minds of students so as to work towards the progress of the society.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs):

- A B.E (Computer Science & Engineering) graduate of Ramaiah Institute of Technology should, within three to five years of graduation
- **PEO1** Pursue a successful career in the field of Computer Science & Engineering or a related field utilizing his/her education and contribute to the profession as an excellent employee, or as an entrepreneur.
- **PEO2** Be aware of the developments in the field of Computer Science & Engineering; Continuously enhance their knowledge informally or by pursuing graduate studies.
- **PEO3** Be able to work effectively in multidisciplinary and multicultural environments and be responsible members and leaders of their communities.

PROGRAM OUTCOMES (POs):

The Outcomes of the Bachelor of engineering in Computer Science & Engineering Programme are as follows:

Engineering Graduates must be able to:

- **PO1:** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2: Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3:** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4:** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5:** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6:** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7:** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8:** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9:** Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

- **PO10:** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11:** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12:** Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs):

- **PSO1:** Understand the principles, architecture and organization of computers, embedded systems, and computer networks.
- **PSO2:** Apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems that include both hardware and software
- **PSO3:** Apply software design and development practices to develop software applications in emerging areas such as IoT, Data Analytics, Social Networks, Cloud and High-Performance Computing.

Semester-wise Credit Breakdown for B.E Degree Curriculum: Batch 2021-25

Semester Course Category	First	Second	Third	Fourth	Fifth	Sixth	Seventh	Eighth	Total Credits
Basic Sciences (BSC)	08	08	03	03					22
Engineering Sciences (ESC)	09	11							20
Humanities, Social Sciences and Management (HSMC)	02		01	01	03	03			10
Ability Enhancement Course (AEC)	01	01	01	01	01		03		08
Universal Human Values (UHV)			02						02
Professional Core Courses (PCC)			11	12	11	05	04		43
Integrated Professional Core Course (IPCC)			03	03	03		04		13
Professional Elective Courses (PEC)					03	06	03		12
Institutional Open Elective Courses (IOE)						03	03		06
Internship (INT)				02		02		05	09
Mini Project / Project Work (PW)						03		12	15
Non Credit Mandatory Courses (NCMC)			✓		•				
Total Credits	20	20	21	22	21	22	17	17	160

SCHEME OF TEACHING VII SEMESTER

Sl.	Subject	Subject	Teaching	Category		Credits		is .	Total contact
No.	Code		Department		L	T	P	Total	hours /week
1	CS71	Complier Design	CSE	IPCC	3	0	1	4	5
2	CS72	Multicore Architecture and Programming	CSE	PCC	2	1	0	3	4
3	CSE73x	Program Elective Course – 4	CSE	PEC	3	0	0	3	3
4	CSOE0x*	Institutional Open Elective - 2	CSE	IOE	3	0	0	3	3
5	CSL74	Microservices Laboratory	CSE	PCC	0	0	1	1	2
6	CSL75	Skill Enhancement Lab							
		(Data Processing and Visualization with	CSE	PCC	0	1	2	3	6
		PySpark and Tableau)							
		Total			11	2	4	17	23

VII Semester List of Courses for Program Elective Course-4

SI.	Course	Course Name			Credit	Contact Hours	
No	Code		L	T	P	Total	
1.	CSE731	Quantum Computing	2	0	1	3	4
2.	CSE732	Distributed System	3	0	0	3	3
3.	CSE733	Optimization Techniques	3	0	0	3	3
4.	CSE734	Storage Area Networks	3	0	0	3	3
5.	CSE735	Object Oriented Modelling and Design	2	0	1	3	4

NOTE: *All electives are 3 credits; The Course Teaching Faculty shall define the split up L:T:P in the Lesson plan

Nomenclature: IPCC: Integrated Professional Core Course, PCC: Professional Core Course, IOE: Institutional Open Elective, AEC – Ability Enhancement Course, PW – Project Work

L –Lecture, T – Tutorial, P- Practical/ Drawing

Note: CSE73x, where x=1,2,3,4,5,

CSOE0x*, where x=6,7,8,9,... continued from previous

Professional Elective Courses: A professional elective (PEC) course is intended to enhance the depth and breadth of educational experience in Engineering and Technology curriculum. Multidisciplinary courses that are added to supplement the latest trend and advanced technology in the selected stream of engineering. Each group provides an option to select one course out of five courses. The minimum student's strength for offering professional electives is 10. However, this conditional shall not be applicable to cases where the admission to the program is less than 10.

Open Elective Courses:

Students belonging to a particular stream of Engineering and Technology are not entitled for the open electives offered by their parent department. However, they can take an elective offered by other departments, provided they satisfy the prerequisite condition, if any. Registration to open electives shall be documented under the guidance of the Proctor.

Selection of an open elective shall not be allowed if,

The candidate has studied the same course during the previous semesters of the program.

The syllabus content of open electives is similar to that of the Departmental core courses or professional electives.

A similar course, under any category, is prescribed in the higher semesters of the program.

The minimum students' strength for offering open electives is 10. However, this conditional shall not be applicable to cases where the admission to the program is less than 10.

AICTE Activity Points to be earned by students admitted to BE program:

Every regular student, who is admitted to the 4-year degree program, is required to earn 100 activity points in addition to the total credits earned for the program. Students entering 4 years Degree Program through lateral entry are required to earn 75 activity points in addition to the total credits earned for the program. The activity points earned by the student shall be reflected on the students VIII Semester grade card. The activities to earn the points can be spread over the duration of the course. However, minimum prescribed duration should be fulfilled. Activity Points (non-credit) have no effect on SGPA/CGPA and shall not be considered for vertical progression. In case student fail to earn the prescribed activity points; VIII semester Grade Card shall be issued only after earning the required activity Points. Students shall be eligible for the award of degree only after the release of the VIII Semester grade card.

SCHEME OF TEACHING VIII SEMESTER

Sl.	Subject	Subject	Teaching	Category		C	Credits		Total contact
No.	Code		Department		L	T	P	Total	hours /week
1	CSP81	Project Work	CSE	PW	0	0	12	12	-
2	INT82	Research / Industrial Internship	CSE	INT	0	0	5	5	-
		Total			0	0	15	17	
3	PE83	Physical Education			All s	tuden	ts have	to regist	er compulsorily for
	YO83	Yoga			any	one o	of the	courses v	with the concerned
	NS83	NSS			coord	dinato	or (Y	oga T	eacher/ Physical
				NCMC	Educ	ation	Directo	or/ NSS (Coordinator) in the
				NCMC	begir	nning	of the	III seme	ster. Attending the
					regis	tered	course	from III	to VIII semesters.
					Qual	ifying	g is mai	ndatory fo	or the award of the
					degre	ee			

Nomenclature: PW: Project Work, INT – Internship, NCMC: Non-credit Mandatory Course

L –Lecture, T – Tutorial, P- Practical/ Drawing

COMPILER DESIGN				
Course Code: CS71	Credits: 3:0:1			
Prerequisite: Finite Automata and Formal Languages Contact Hours: 42L+14P				
Course Coordinator: Dr. Parkavi. A				

Course Contents

Unit I

Introduction: The Structure of Compilers, **Lexical analysis**: The Role of Lexical Analyzer, Input Buffering, Specifications of Tokens, And Recognition of Tokens.

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos
- Lab Component / Practical Topics: Design of lexical analyzers
- Link: https://youtu.be/trocRZqxZFM?si=bRvm1FWe4cdJ-FdX

Unit II

Parsing: Top-down Parsing, Bottom-up Parsing, LR Parsing: SLR parser, Canonical parser, LALR parser.

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos
- Lab Component / Practical Topics: Design of Parsers
- Link: https://youtu.be/1qOMlqE6LhU?si=C0ZgcGqJ2fUr8QOR

Unit III

Syntax-Directed Definitions: Evaluation order for SDDs, Applications of Syntax-directed translation, Syntax-directed translation schemes.

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos
- Lab Component / Practical Topics: Design of SDTs
- Link: https://youtu.be/MO5MGYm4v0o?si=Tpkybs9GGYvxFVwt

Unit IV

Intermediate Code Generation: Variants of syntax trees, Three-address code, Types and declarations, Translation of expressions, Type checking, Control flow, Switch statements, Intermediate code for procedures.

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos
- Lab Component / Practical Topics: Design of SDTs to check types and perform evaluations, ICG generations
- Link: https://youtu.be/EpAzj7zXrbk?si=DNaJSjfOsVZ5RaH

Unit V

Code Generation: Issues in the design of Code Generator, The Target language, Addresses in the target code, Basic blocks and Flow graphs, Optimization of basic blocks, A Simple Code Generator.

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos
- Lab Component / Practical Topics: Basic block generations, design of Optimizers, design of code generators
- Link: https://youtu.be/G1qRCb1RoVc?si=4zfzWrEq8hPUM-5L

Text Books:

1. Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman: Compilers- Principles, Techniques and Tools, 2nd Edition, Pearson education, 2012.

Reference Books:

- 1. Kenneth C Louden: Compiler Construction Principles & Practice, First Edition, Brooks/Cole, CENGAGE learning, 1997.
- 2. Andrew W Appel: Modern Compiler Implementation in C, First Edition, Cambridge University Press, 2010.

Course Outcomes (COs):

At the end of the course students should be able to:

- 1. Construct lexical analyzer to recognize inputs using patterns. (PO1,2,4, PSO-1)
- 2. Devise different types of syntax analyzers using grammars. (PO1,2,4, PSO-1,2)
- 3. Illustrate syntax-directed translation schemes for grammars. (PO1,3,4,9, PSO-1)
- 4. Formulate intermediate code generators for programming statements. (PO1,4, PSO-1)
- 5. Develop assembly language code for the given optimized intermediate codes. (PO1,2,3,4,5, PSO-1,2)

Continuous Internal Evaluation (CIE): 50 Marks						
Assessment Tools	Marks	Course Outcomes (COs) addressed				
Internal Test-I (CIE-I)	30	CO1, CO2 & CO3				
Internal Test-II CIE-II)	30	CO3,CO4 & CO5				
Average of the two CIE will be taken for 3	0 marks					
Other Components						
Literature study & Technical paper	20	CO1, CO2, CO3,CO4 & CO5				
writing/Practical assignment & Report	20	CO1, CO2, CO3, CO4 & CO3				
The Final CIE out of 50 Marks = Average	of two CIE	tests for 30 Marks+ Marks scored in				
Literature study and technical paper writi	ng /coding					
Semester End Examination (SEE)						
Course End Examination (Answer One full	100	CO1, CO2, CO3, CO4 & CO5				
question from each Unit-Internal Choice)	100	CO1, CO2, CO3, CO4 & CO3				

MULTICORE ARCHITECTURE AND PROGRAMMING				
Course Code: CS72	Credits: 2:1:0			
Prerequisite: Computer Organization and Unix System Programming Contact Hours: 28L+14T				
Course Coordinator: Dr. Mallegowda M				

Course Contents Unit I

Introduction to High–Performance Computers, Memory Hierarchy, CPU Design: Reduced Instruction Set Computers, Multiple–Core Processors, Vector Processors, Parallel Semantics, Distributed Memory Programming.

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos
- Lab Component / Practical Topics: OpenMP programs on Processors
- Link: https://archive.nptel.ac.in/courses/106/105/106105033/

Unit II

Programming Shared Address Space Platforms: Thread Basics, Why Threads? The POSIX Thread API, Thread Creation and Termination, Synchronization Primitives in Pthreads, Controlling Thread and Synchronization Attributes, Thread Cancellation, Composite Synchronization Constructs, for Designing Asynchronous Programs, OpenMP: a Standard for Directive Based Parallel Programming.

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos
- Lab Component /Practical Topics: OpenMP programs on Threads
- Link:https://archive.nptel.ac.in/courses/106/102/106102163/

Unit III

Programming using the Message-Passing Paradigm: Principles of Message-Passing Programming, The Building Blocks: Send and Receive Operations, MPI: The Message Passing Interface, Topologies and Embedding, Overlapping Communication with Computation, Collective Communication and Computation Operations, Groups and Communicators.

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos
- Lab Component / Practical Topics: OpenMP programs on Message- Passing
- Link: https://onlinecourses.nptel.ac.in/noc24_cs63/preview

Unit IV

Introduction: GPUs as Parallel Computers, Architecture of a Model GPU, Why More Speed or Parallelism? Parallel Programming Languages and Models, Overarching Goals. History of GPU Computing: Evolution of Graphics Pipelines, GPU Computing. Introduction to CUDA: Data Parallelism, CUDA Program Structure, A Matrix-Matrix Multiplication Example, Device Memories and Data Transfer, Kernel Functions and Threading.

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos
- Lab Component / Practical Topics: CUDA Programming
- Link:https://www.coursera.org/learn/introduction-to-parallel-programming-with-cuda https://onlinecourses.nptel.ac.in/noc20_cs41/preview

Unit V

CUDA Threads: CUDA Thread Organization, Using blockIdx and threadIdx, Synchronization and Transparent Scalability, Thread Assignment, Thread Scheduling and Latency Tolerance. CUDA Memories: Importance of Memory Access Efficiency, CUDA Device Memory Types, A Strategy for Reducing Global Memory Traffic, Memory as a limiting Factor to Parallelism. Performance Considerations: More on Thread Execution, Global Memory Bandwidth, Dynamic Partitioning of SM Resources, Data Perfecting, Instruction Mix, Thread Granularity, Measured Performance and Summary.

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos
- Lab Component / Practical Topics: Programming on CUDA
- Link:https://www.coursera.org/learn/introduction-to-concurrent-programming?specialization=gpu-programming,https://nptel.ac.in/courses/106105220

Text Books:

- 1. Ananth Grama, Anshul Gupta, Vipin kumar, George Karypis Introduction to parallel computing, second edition, Pearson education publishers.
- 2. David B Kirk, Wen-mei W. Hwu, "Programming Massively Parallel Processors A Hands-on Approach", First Edition, Elsevier and nvidia Publishers, 2015.

Reference Books:

- 1. Thomas Rauber and Gudula Runger Parallel Programming for Multicore and cluster systems, Springer International Edition, 2009.
- 2. Rubin H Landau, Oregon State University, http://science.oregonstate.edu/rubin/
- 3. Hennessey and Patterson Computer Architecture: A quantitative Approach, Morgan Kaufman Publishers
- 4. Michael J.Quin "Parallel Programming in C with MPI and Open MP", McGraw Hill.
- 5. Peter S. Pacheco, —An Introduction to Parallel Programming, Morgan- Kauffman/Elsevier, 2011

Course Outcomes (COs):

At the end of the course, students should be able to:

- 1. Explain the technologies and architectures for parallel computing. (PO-1, 8,9,10,11, PSO-2)
- 2. Design and develop parallel programs using OpenMp programming interface. (PO-1,2,3,4,5,8,9,10, PSO-2)
- 3. Discuss the principles and architecture of message-passing programming. (PO-1,2,3,4,5,8,9,10, PSO-2)
- 4. Describe Graphical Processing Units and architecture. (PO-1,2,3,4,5,8,9,10, PSO-2)
- 5. Analyze the features GPUs, their functionalities and also Design parallel applications using CUDA-C. (PO-1,2,3,4,5,8,9,10, PSO-2)

Continuous Internal Evaluation (CIE): 50 Marks							
Assessment Tools	Marks	Course Outcomes addressed					
Internal Test-I (CIE-I)	30	CO1, CO2 & CO3					
Internal Test-II CIE-II)	30	CO4 & CO5					
Average of the two CIE will be taken for 3	0 marks						
Other Components							
Case Study Implementation	20	CO1, CO2, CO3 ,CO4 & CO5					
The Final CIE out of 50 Marks = Average	of two CIE t	ests for 30 Marks + Marks scored					
in Case Study with Implementation							
Semester End Examination (SEE)	Semester End Examination (SEE)						
Course End Examination (Answer One full question from each Unit-Internal Choice)	100	CO1, CO2, CO3 ,CO4 & CO5					

QUANTUM COMPUTING					
Course Code: CSE731 Credits: 2:0:1					
Prerequisite: Linear Algebra, Python Programming Contact Hours: 28L+14L					
Course Coordinator: Dr. Rajarajeswari S					

Course Content Unit I

Fundamental concepts: Introduction and overview, Introduction to quantum mechanics: Linear algebra, the postulates of quantum mechanics, Quantum Computing software: Introduction to Qiskit, Quantum Qudit simulator, QCAD, programming a quantum computer: The IBMQ, coding a quantum computer using a simulator to carry out basic quantum measurement and state analysis

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos.
- Link:https://learning.quantum.ibm.com/course/basics-of-quantum-information/single-systems, https://docs.quantum.ibm.com/start
- Lab Component / Practical Topics: Install Qiskit, Hello world, Build circuits, variational Quantum Eigen solver, demo of other simulator.

Unit II

Quantum correlations: Bell inequalities and entanglement (CHSH, Mermin, and Svetlichny inequalities), Schmidt decomposition, superdense coding, teleportation, density operator, Quantum Computing software: Quack, qasm2circ. Implementation using Qiskit

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos.
- Link: https://learning.quantum.ibm.com/course/basics-of-quantum-information/entanglement-in-action
- Lab Component / Practical Topics: Schmidt decomposition, superdense coding

Unit III

Quantum computation: Quantum Ciruits, Controlled Operations, Measurement, universal Quantum gates, summary, simulation. Quantum Fourier transform and its applications: Quantum fourier transform, phase estimation, Applications. Implementation using Qiskit

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos.
- Link: https://learning.quantum.ibm.com/course/basics-of-quantum-information/quantum-circuits,
- Lab Component / Practical Topics: UQG, Fourier Transformations.

Unit IV

Quantum Search Algorithms: QSA, Solovay-Kitaev theorem, Deutsch-Jozsa algorithm, Bernstein-Vazirani Algorithm, Simon's algorithm, Shor's algorithm, Grover's algorithm, Quantum counting, Quantum walk search algorithm. Implementation using Qiskit.

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos.
- Link: https://learning.quantum.ibm.com/course/fundamentals-of-quantum-algorithms/quantum-algorithmic-foundations,

https://learning.quantum.ibm.com/course/fundamentals-of-quantum-algorithms/quantum-query-algorithms,

https://learning.quantum.ibm.com/course/fundamentals-of-quantum-algorithms/phase-estimation-and-factoring

 $\underline{https://learning.quantum.ibm.com/course/fundamentals-of-quantum-algorithms/grovers-algorithm,}$

• Lab Component / Practical Topics: Quantum Approximate Optimization Algorithm, Implement all Quantum Optimization algorithms.

Unit V

Quantum Information: Quantum noise and Quantum operations, Distance measures, Quantum Error Correction, Quantum cryptography: Private Key Cryptography, Privacy amplification and information reconciliation, QKD, privacy and coherent information, security of Quantum Key distribution. Implementation using Qiskit.

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos.
- Link: https://www.quantumblockchains.io/qkd-protocol-simulation-with-qiskit/
- Lab Component / Practical Topics: Quantum cryptography algorithm

Text Books:

- 1. M. A. Nielsen &I.Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2016).
- 2. Eleanor G. Rieffel, and Wolfgang H. Polak, Quantum Computing: A Gentle Introduction, MIT Press, 2014.
- 3. https://qiskit.org/documentation/

Reference Books:

- 1. Chris Bernhardt, Quantum Computing for Everyone, The MIT Press, Cambridge, 2020
- 2. David McMahon, Quantum Computing Explained, Wiley-Interscience, IEEE Computer Society, 2008.
- 3. Phillip Kaye, Raymond Laflamme et. al., An introduction to Quantum Computing, Oxford University Press, 2007.
- 4. Martin Laforest, The Mathematics of Quantum Mechanics, University of Waterloo, Quantum Cryptography School for young students.

Course Outcomes (COs):

At the end of the course, students should be able to:

- 1. Analyze the behavior of basic quantum computation and Simulate basic quantum measurement and state analysis using Qiskit.(PO-1, 2, 3,4, 5, 9,10,12, PSO-2, 3)
- 2. Elaborate on quantum non-locality and simulation of the density operators. (PO-1, 2, 3,4, 5, 9,10,12, PSO-2, 3)
- 3. Prove basic facts about quantum information channels and Implement information channels in the quantum circuit model. .(PO-1, 2, 3,4, 5, 9,10,12, PSO-2, 3)
- 4. Compare, in terms of time complexity, the quantum advantage expected from the quantum algorithms with respect to their classical counterparts. (PO-1, 2, 3,4, 5, 9,10,12, PSO-2, 3)

5. Simulate a simple quantum error-correcting code. (PO-1, 2, 3,4, 5,7,8, 9,10,12, PSO-1, 2, 3)

Continuous Internal Evaluation (CIE): 50 Marks							
Assessment Tools	Marks	Course Outcomes addressed					
Internal Test-I (CIE-I)	30	CO1, CO2 & CO3					
Internal Test-II CIE-II)	30	CO4 & CO5					
Average of the two CIE will be taken for 30 marks							
Other Components							
Case Study Implementation + Report in	20	CO1, CO2, CO3 ,CO4 & CO5					
IEEE Paper format.							
The Final CIE out of 50 Marks = Average	of two CIE t	tests for 30 Marks+ Marks scored in					
Case Study with Implementation							
Semester End Examination (SEE)							
Course End Examination (Answer One full	100	CO1, CO2, CO3 ,CO4 & CO5					
question from each Unit-Internal Choice)							

DISTRIBUTED SYSTEMS					
Course Code: CSE732 Credits: 3:0:0					
Prerequisite: Operating System, Computer Network Contact Hours: 42L					
Course Coordinator: Dr Sangeetha V					

Course Contents Unit I

Introduction: Definition, Relation to computer system components, Motivation, Primitives for distributed communication, Synchronous versus asynchronous executions, Design issues and challenges. **A model of distributed computations**: A distributed program, A model of distributed executions, Models of communication networks, Global state of a distributed system, Cuts of a distributed computation, Past and future cones of an event. **Logical time**: Introduction, A framework for a system of logical clocks, Scalar time, Vector time, efficient implementations of vector clocks, Jard–Jourdan's adaptive technique. Relation to parallel multiprocessor/multicomputer systems, Message-passing systems versus shared memory systems

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos
- Lab Component / Practical Topics: Implement clock synchronization (logical/physical), Implement concurrent day-time client-server application.
- Link: https://onlinecourses.nptel.ac.in/noc21_cs87/

Unit II

Global state and snapshot recording algorithms: Introduction, System model and definitions, Snapshot algorithms for FIFO channels, Variations of the Chandy–Lamport algorithm, Snapshot algorithms for non-FIFO channels, Snapshots in a causal delivery system, Monitoring global state.

Terminal against a lagorithms: Topology shatreetien and everlage. Classifications and basic

Terminology and basic algorithms: Topology abstraction and overlays, Classifications and basic concepts, Synchronizers, Maximal independent set (MIS), Leader election. Complexity measures and metrics, Program structure, Elementary graph algorithms

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos
- Lab Component / Practical Topics: Incrementing a counter in shared memory, Implement non token based algorithm for Mutual Exclusion.
- Link: https://onlinecourses.nptel.ac.in/noc21 cs87/

Unit III

Message ordering and group communication: Message ordering paradigms, Asynchronous execution with synchronous communication, Synchronous program order on an asynchronous system, Group communication, Causal order (CO), Total order, Classification of application-level multicast algorithms. Termination detection: Introduction, System model of a distributed computation, Termination detection using distributed snapshots, Termination detection by weight throwing, a spanning-tree based termination detection algorithm, Termination detection in a very general distributed computing model, Termination detection in the atomic computation model. A nomenclature for multicast, Propagation trees for multicast

• Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos

- Lab Component / Practical Topics: Implement termination detection, Implement an exactly-once RPC protocol on top of an asynchronous network, Implement Leader election algorithm.
- Link: https://onlinecourses.nptel.ac.in/noc21_cs87/

Unit IV

Distributed mutual exclusion algorithms: Introduction, Preliminaries, Lamport's algorithm, Ricart–Agrawala algorithm, Singhal's dynamic information-structure algorithm, Lodha and Kshemkalyani's fair mutual exclusion algorithm, Quorum-based mutual exclusion algorithms, Maekawa's algorithm, Agarwal–El Abbadi quorum-based algorithm, Token-based algorithms, Raymond's tree-based algorithm. **Deadlock detection in distributed systems**: Introduction, System model, Preliminaries, Mitchell and Merritt's algorithm for the single resource model, Chandy–Misra–Haas algorithm for the AND model, Chandy–Misra–Haas algorithm for the OR model, Kshemkalyani–Singhal algorithm for the P-out-of- Q model. Models of deadlocks, Knapp's classification of distributed deadlock detection algorithms

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos
- Lab Component / Practical Topics: Implement Lamport's Logical Clock, Implement edge chasing distributed deadlock detection algorithm.
- Link: https://onlinecourses.nptel.ac.in/noc21_cs87/

Unit V

Global predicate detection: Stable and unstable predicates, Modalities on predicates, Centralized algorithm for relational predicates, Conjunctive predicates, Distributed algorithms for conjunctive predicates. Consensus and agreement algorithms: Problem definition, Overview of results, Agreement in a failure-free system (synchronous or asynchronous), Agreement in (message-passing) synchronous systems with failures, Agreement in asynchronous message-passing systems with failures. Peer-to-peer computing and overlay graphs: Introduction, Data indexing and overlays, Unstructured overlays, Chord distributed hash table. Graph structures of complex networks, Scale-free networks.

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos
- Lab Component / Practical Topics: Implement multi-threaded client/server processes, Demonstrate process/code migration.
- Link: https://onlinecourses.nptel.ac.in/noc21 cs87/

Text Book:

1. Ajay D. Kshemkalyani, and Mukesh Singhal "Distributed Computing: Principles, Algorithms, and Systems", Cambridge University Press, 2008 (Reprint 2013).

Reference Books:

- 1. John F. Buford, Heather Yu, and Eng K. Lua, "P2P Networking and Applications", Morgan Kaufmann, 2009 Elsevier Inc.
- 2. Kai Hwang, Geoffrey C. Fox, and Jack J. Dongarra, "Distributed and Cloud Computing: From Parallel processing to the Internet of Things", Morgan Kaufmann, 2012 Elsevier Inc.

Course Outcomes (COs):

At the end of the course, the students will be able to:

- 1. Identify the design issues and Challenges in building distributed systems. (PO-1, 3, 4, PSO-1, 3)
- 2. Explore basic distributed graph algorithms, synchronizers, and recording global state of distributed computation. (PO-3, 4, 9, PSO-1)
- 3. Analyze ways to achieve various message ordering schemes for detecting termination of a distributed computation. (PO-1, 3, 4, PSO-1, 3)
- 4. Discuss distributed algorithms to implement Mutual Exclusion and Deadlock detection. (PO-1, 3, 4, 9, PSO-1, 2)
- 5. Identify Consensus and agreement algorithms and P2P overlay problems (PO-3, 9, PSO-1, 2, 3)

Continuous Internal Evaluation (CIE): 50 Marks		
Assessment Tools	Marks	Course Outcomes addressed
Internal Test-I (CIE-I)	30	CO1, CO2 & CO3
Internal Test-II CIE-II)	30	CO4 & CO5
Average of the two CIE will be taken for 30 marks		
Other Components		
Case Study with Implementation	20	CO1, CO2, CO3 ,CO4 & CO5
The Final CIE out of 50 Marks = Average of two CIE tests for 30 Marks+ Marks scored in		
Case Study with Implementation		
Semester End Examination (SEE)		
Course End Examination (Answer One full	100	CO1, CO2, CO3 ,CO4 & CO5
question from each Unit-Internal Choice)		

OPTIMIZATION TECHNIQUES			
Course Code: CSE733 Credits: 3:0:0			
Prerequisite: Engineering Mathematics Contact Hours: 42L			
Course Coordinator: Veena GS			

Course Contents

Unit I

Introduction: Introduction to optimization, engineering applications of optimization, Formulation of structural optimization problems as programming problems. Optimization Techniques: Classical optimization techniques, single variable optimization, multivariable optimization with no constraints, unconstrained minimization techniques and algorithms constrained optimization solutions by penalty function techniques, Lagrange multipliers techniques and feasibility techniques.

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos
- Lab Component / Practical Topics: Nil
- Link: https://onlinecourses.nptel.ac.in/noc21_me10/preview

Unit II

Linear Programming: Linear programming, standard form of linear programming, geometry of linear programming problems, solution of a system of linear simultaneous equations, pivotal production of general systems of equations, simplex algorithms, revised simpler methods, duality in linear programming

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos
- Lab Component / Practical Topics: Nil
- Link:https://onlinecourses.nptel.ac.in/noc21_me10/preview

Unit III

Non-linear programming: Non-linear programming, one dimensional minimization methods, elimination methods, Fibonacci method, golden section method, interpolation methods, quadratic and cubic methods, Unconstrained optimization methods, direct search methods, random search methods, descent methods

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos
- Lab Component / Practical Topics: Nil
- Link: https://onlinecourses.nptel.ac.in/noc21 me10/preview

Unit IV

Constrained optimization techniques such as direct methods, the complex methods, cutting plane method, exterior penalty function methods for structural engineering problems. Formulation and solution of structural optimization problems by different technique

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos
- Lab Component / Practical Topics: Nil
- Link:https://onlinecourses.nptel.ac.in/noc21_me10/preview

Unit V

Geometric programming: Geometric programming, conversion of NLP as a sequence of LP/geometric programming. Dynamic programming: Dynamic programming conversion of NLP as a sequence of LP/Dynamic programming

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos
- Lab Component / Practical Topics: Nil
- Link: https://onlinecourses.nptel.ac.in/noc21_me10/preview

Text Books:

- 1. Spunt, "Optimum Structural Design"- Prentice Hall 2017
- 2. S.S. Rao, "Optimization Theory and Practice"- Wiley Eastern Ltd.
- 3. Uri Krisch, "Optimum Structural Design"- McGraw Hill
- 4. Richard Bronson, "Operation Research"- Schaum's Outline Series
- 5. Bhavikatti S.S.- "Structural optimization using sequential linear programming"- Vikas publishing house

Course Outcomes (COs):

At the end of the course, the student should be able to:

- 1. Apply Analytical Techniques to tackle complex engineering optimization problems. (PO-1, 2, 3,4, 5, 9,10,12, PSO-2, 3)
- 2. Apply their understanding of linear programming principles and techniques to formulate real-world optimization problems. (PO-1, 2, 3,4, 5, 9,10,12, PSO-2, 3)
- 3. Demonstrate the ability to proficiently handle non-linear optimization challenges. (PO-1, 2, 3,4, 5, 9,10,12, PSO-2, 3)
- 4. Demonstrate proficiency in formulating and resolving structural optimization challenge. (PO-1, 2, 3,4, 5, 9,10,12, PSO-2, 3)
- 5. Understands the concept of Dynamic programming to solve complex problems in various domains. (PO-1, 2, 3,4, 5, 9,10,12, PSO-2, 3)

Continuous Internal Evaluation (CIE): 50 Marks		
Assessment Tools	Marks	Course Outcomes addressed
Internal Test-I (CIE-I)	30	CO1, CO2 & CO3
Internal Test-II CIE-II)	30	CO4 & CO5
Average of the two CIE will be taken for 30 marks		
Other Components		
Case Study Implementation	20	CO1, CO2, CO3 ,CO4 & CO5
The Final CIE out of 50 Marks = Average of two CIE tests for 30 Marks +Marks scored in		
Case Study with Implementation		
Semester End Examination (SEE)		
Course End Examination (Answer One full	100	CO1, CO2, CO3 ,CO4 & CO5
question from each Unit-Internal Choice)		

STORAGE AREA NETWORKS		
Course Code: CSE734	Credits: 3:0:0	
Prerequisite: Computer Networks, Computer Organization, Operating Systems	Contact Hours: 42L	
Course Coordinator: Dr. Sangeetha V		

Course Contents Unit I

Introduction to Information Storage: Information Storage, Evolution of Storage Architecture, Data Centre Infrastructure, Virtualization and Cloud Computing. **Data Centre Environment:** Application, Database Management System, Host (Compute), Connectivity, Storage, Disk Drive Components, Disk Drive Performance, Host Access to Data, Direct-Attached Storage, Storage Design Based on Application, Disk Native Command Queuing, Introduction to Flash Drives.

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos
- Lab Component / Practical Topics: Study and Verification of standard Network topologies i.e. Star, Bus, Ring etc.
- Link: https://nptel.ac.in/courses/106108058

Unit II

Data Protection: RAID Implementation Methods, RAID Array Components, RAID Techniques, RAID Levels, RAID Impact on Disk Performance, RAID Comparison, Hot Spares. **Intelligent Storage System**: Components of an Intelligent Storage System, Storage Provisioning, Types of Intelligent Storage Systems.

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos
- Lab Component / Practical Topics: RAID installations and Configurations
- Link: https://nptel.ac.in/courses/106108058

Unit III

Fiber Channel Storage Area Networks: Fiber Channel: Overview, The SAN and Its Evolution, Components of FC SAN, FC Connectivity, Switched Fabric Ports, Fibre Channel Architecture, Fabric Services, Switched Fabric Login Types, Zoning, FC SAN Topologies, Virtualization in SAN. **IP SAN and FCoE:** iSCSI (Small Computer Systems Interface), FCIP (Fibre Channel over IP), FCoE (Fibre Channel Over Ethernet).

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos
- Lab Component / Practical Topics: Implement Switched Fabric Ports and SAN Topologies.
- Link: https://nptel.ac.in/courses/106108058

Unit IV

Network-Attached Storage: Benefits of NAS, Components of NAS, NAS I/O Operation, NAS Implementations, NAS File Sharing Protocols, Factors Affecting NAS Performance, File-Level Virtualization. **Object Based and Unified Storage**: Object Based Storage Devices, Content Addressed Storage, CAS Use Cases, Unified Storage.

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos
- Lab Component / Practical Topics: Implement the NAS and demonstrate file sharing
- Link: https://nptel.ac.in/courses/106108058

Unit V

Introduction to Business Continuity: Information Availability, BC Terminology, BC Planning Lifecycle, Failure Analysis, Business Impact Analysis. Backup and Archive: Backup Purpose, Backup Considerations. Securing the Storage Infrastructure: Information Security Framework, Risk Triad, Storage Security Domains. Managing the Storage Infrastructure: Monitoring the Storage Infrastructure, Storage Infrastructure Management Activities, Storage Infrastructure Management Challenges, Information Lifecycle Management, Storage Tiering.

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos
- Lab Component / Practical Topics: Implement security framework
- Link: https://nptel.ac.in/courses/106108058

Text Books:

1. Somasundaram Gnanasundaram, Alok Shrivastava: "Information Storage and Management", 2nd Edition, EMC Education Series, Wiley, Publishing Inc., 2012.

Reference Books:

- 1. Ulf Troppens, Rainer Erkens and Wolfgang Muller: "Storage Networks Explained', 2nd Edition, John Wiley & Sons Inc, 2009.
- 2. Robert Spalding: "Storage Networks, the Complete Reference", 1stEdition, Tata McGraw Hill, 2017.

Course Outcomes (COs):

At the end of the course, the student should be able to:

- 1. Identify the need for storage centric network and its benefits of its adoption. (PO-1,2,3, 5 PSO-1,2)
- 2. Design a storage solution for an application depending on the IOPS and RAID requirements. (PO-1,2,3,5, 12, PSO-1,2)
- 3. Examine the working of Fiber Channel Storage Area Networks and IP-SAN. (PO-1,2,3,5,11 PSO-1,2)
- 4. Select the appropriate Network-Attached Storage and object oriented storage infrastructure to balance between cost and performance. (PO-1,2,3,6, PSO-1,2)
- 5. Outline the business continuity plan and Secure Management of storage. (PO-1,2,3,12, PSO-1,2)

Continuous Internal Evaluation (CIE): 50 Marks		
Assessment Tools	Marks	Course Outcomes addressed
Internal Test-I (CIE-I)	30	CO1, CO2 & CO3
Internal Test-II CIE-II)	30	CO4 & CO5
Average of the two CIE will be taken for 30 marks		
Other Components		
Case Study Implementation	20	CO1, CO2, CO3 ,CO4 & CO5
The Final CIE out of 50 Marks = Average of two CIE tests for 30 Marks+ Marks scored in		
Case study		
Semester End Examination (SEE)		
Course End Examination (Answer One full question from each Unit-Internal Choice)	100	CO1, CO2, CO3 ,CO4 & CO5

OBJECT ORIENTED MODELING AND DESIGN	
Course Code: CSE735	Credits: 2:0:1
Prerequisite: Object Oriented Programming, Software Engineering Contact Hours: 28L+14P	
Course Coordinator: Dr. Rajarajeswari S	

Course Contents

Unit I

Introduction: object oriented development-modeling concepts, object oriented methodology, models, object oriented themes, Object Modeling, links and associations, advanced links and association concepts, generalization and inheritance, grouping constructs, a sample object model. Advanced Object Modeling: aggregation, abstract classes, generalization as extension and restriction, multiple inheritance, metadata, candidate keys, constraints.

- Pedagogy /Course delivery tools: Chalk and talk, Power point presentation, Videos.
- Link: https://www.ibm.com/support/pages/ibm-rational-rose-enterprise-7004-ifix002, https://www.ibm.com/docs/en/rsm/7.5.0?topic=tours-create-diagrams-using-rational-uml-modeling-tools, https://www.ibm.com/docs/en/rational-soft-arch/9.6.1?topic=diagrams-use-case
- Lab Component / Practical Topics: Create Problem stmt for the case study, using rational rose suite, identify use cases and classes for it.

Unit II

Dynamic modeling: Events and states, Operations Nested state diagrams, Concurrency – Advanced dynamic modeling concepts, A sample dynamic model, Relationship of Object and Dynamic models.

Dynamic Diagrams – UML interaction diagrams, System sequence diagram, Collaboration diagram – When to use Communication Diagrams, State machine diagram and Modeling –When to use State Diagrams, Activity diagram, Implementation Diagrams, UML package diagram.

- Pedagogy /Course delivery tools Chalk and talk, Power point presentation, Videos
- Link: https://www.ibm.com/docs/en/rational-soft-arch/9.7.0?topic=samples-uml-models
- Lab Component /Practical Topics Given case study- UML diagrams implementation using IBM rational Rose suite.

Unit III

Analysis: Analysis in object modeling, dynamic modeling and functional modeling, adding operations, Iterating the analysis. System Design: Breaking system into subsystems, identifying concurrency, allocating subsystems to processors and tasks, managing of data stores. Handling of global resources-handling boundary conditions, Common Architectural Frameworks.

- Pedagogy / Course delivery tools: Chalk and talk, Power point presentation, Videos
- Link: https://www.ibm.com/docs/en/docs/en/rational-soft-arch/9.7.0?topic=designing-modeling https://www.ibm.com/docs/en/dma?topic=models-using-architecture-frameworks-uml
- Lab Component / Practical Topics: Creating UPIA models, DoDAF model, Integrating UML application design with deployment planning in topologies using rational rose suite.

Unit IV

Object Design: Overview of Object design, Combining the three models, Designing algorithms, Design optimization, Implementation of control, Adjustment of inheritance, Design of association, Object representation, Physical packaging, Documenting design decisions, Comparison of methodologies.

- Pedagogy /Course delivery tools: Chalk and talk, Power point presentation, Videos.
- Link: https://www.ibm.com/docs/en/rational-soft-arch/9.7.0?topic=samples-uml-models
- Lab Component /Practical Topics: IBM rational Rose suite framework for optimizing the Object design.

Unit V

DESIGN PATTERNS – 1: What is a pattern and what makes a pattern? Pattern categories, Relationships between patterns, Pattern description. Communication Patterns: Forwarder-Receiver, Client-Dispatcher-Server, Publisher Subscriber.

DESIGN PATTERNS – 2, IDIOMS: Management Patterns: Command processor, View handler. Idioms: Introduction, what can idioms provide? Idioms and style; Where to find idioms, Counted Pointer example.

- Pedagogy /Course delivery tools: Chalk and talk, Power point presentation, Videos.
- Links: https://www.geeksforgeeks.org/software-design-patterns/
- Lab Component /Practical Topics: Case study solving in java, python/dream weaver

Text Books:

- 1. Ali Bahrami, Object Oriented Systems Development, Irwin McGraw Hill, 2nd edition, 2004.
- 2. Grady Booch, Object Oriented Analysis and Design with Applications^{||}, Pearson Education, 3rd Edition, 2009.
- 3. Michael Blaha, James Rumbaugh: Object-Oriented Modeling and Design with UML, 2nd Edition, Pearson Education, 2005.
- 4. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal: Pattern-Oriented Software Architecture, A System of Patterns, Volume 1, John Wiley and Sons, 2007.

Course Outcomes (COs):

At the end of the course, the student will be able to:

- 1. Describe the concepts involved in Object-Oriented modelling and their benefits. (PO1,2,3,4,5,9,10, PSO2)
- 2. Demonstrate concept of use-case model, sequence model and state chart model for a given problem. (PO1,2,3,4,5,9,10, PSO2)
- 3. Analyze the concept of systems design, modeling and a functional design. (PO1,2,3,4,5,9,10, PSO2)
- 4. Design class and object diagrams that represent static aspects of a software system. (PO1,2,3,4,5,9,10, PSO2)
- 5. Apply appropriate design patterns and idioms. (PO1,2,3,4,5,9,10, PSO2)

Continuous Internal Evaluation (CIE): 50 Marks		
Assessment Tools	Marks	Course Outcomes addressed
Internal Test-I (CIE-I)	30	CO1, CO2 & CO3
Internal Test-II CIE-II)	30	CO4 & CO5
Average of the two CIE will be taken for 30 marks		
Other Components		
Case Study Implementation and report	20	CO1, CO2, CO3 ,CO4 & CO5
documentation.		
The Final CIE out of 50 Marks = Average	of two CIE t	tests for 30 Marks+ Marks scored in
Case Study with Implementation		
Semester End Examination (SEE)		
Course End Examination (Answer One full	100	CO1, CO2, CO3 ,CO4 & CO5
question from each Unit-Internal Choice)		

MICRO SERVICES LABORATORY			
Course Code: CSL74 Credits: 0:0:1			
Prerequisite: Java Programming	Contact Hours: 14P		
Course Coordinator: Dr. Geetha J			

Course Contents

- Overview of Microservices
- Microservice Architecture
- Preparing the Environment
- Introduction to Spring Boot for Microservices
- Getting started with Hello World Microservice
- Building microservices with Spring Boot
- Testing microservices
- Communication between 2 or more microservices through REST services (setting up Eureka service and two or three services)
- Distributed log tracing by using zepkln and spring cloud sleuth. (i.e. tracing a request from multiple microservice)
- Mocking and Testing service by using Mocikto and Junit
- Connecting spring microservices with a data base.
- Setting up Swagger ui for a microservice.
- Creating custom annotations (at method level and class level)
- Deploying microservices using Docker/Kubernetes

Reference Books:

- 1. Chris Richardson: Microservices Patterns with Examples in Java, Manning Publications Co., First Edition, 2019.
- 2. Moises Macero: Learn Microservices with Spring Boot: A Practical Approach to RESTful Services using RabbitMQ, Eureka, Ribbon, Zuul and Cucumber, A Press, First Edition, 2017.
- 3. Sourabh Sharma: Mastering Microservices with Java 9, Packt Publishing Ltd, Second Edition, 2017.

Course Outcomes (COs):

At the end of the course, the student should be able to:

- 1. Illustrate the importance of Microservices as an Architecture Implementation. (PO-1,2,3, PSO-2)
- 2. Develop an application on Java with MongoDB and convert over monolithic structure to Micro services. (PO- 1, 2,3, PSO-3)
- 3. Deploy application on docker and Access the Kubernetes. (PO- 1,2,3,5, PSO-3)

Continuous Internal Evaluation (CIE): 50 Marks		
Assessment Tools	Marks	Course Outcomes addressed
Internal Test-I (CIE-I)	20	CO1, CO2, CO3
Regularity/ Continuous assessment	10	CO1, CO2, CO3
Other Components		
Microservice Implementation	20	CO1, CO2, CO3
The Final CIE out of 50 Marks = CIE TEST+ Continuous assessment +Project		
Implementation		
Semester End Examination (SEE)		
Course End Examination	50	CO1, CO2, CO3

SKILL ENHANCEMENT LAB		
Course Code: CSL75	Credits: 0:1:2	
Prerequisite: Java Programming	Contact Hours: 14T+28P	
Course Coordinator: Dr. Geetha J		

Course Contents

- Introduction to Big Data and Analytics
- Introduction to PySpark
- PySpark Basics
- Advanced PySpark Techniques
- PySpark Machine Learning
- Introduction to Tableau
- Advanced Tableau Techniques
- Integrating PySpark with Tableau
- Creating Visualizations from PySpark Data and Building Dashboards using PySpark Data)
- Case Studies and Real-World Examples and Practical Applications and Projects
- Capstone Project.

Course Outcomes (COs):

At the end of the course, the student should be able to:

- 1. Understand the capabilities of PySpark for handling and processing large datasets. (PO-1,2,3, PSO-2)
- 2. Design a variety of visualizations and interactive dashboards using Tableau. (PO- 1, 2,3, PSO- 3)
- 3. Implement an end-to-end data visualization application by Using PySpark to efficiently handle, clean, and transform large datasets (PO- 1,2,3,5-PSO-3)

Continuous Internal Evaluation (CIE): 50 Marks		
Assessment Tools	Marks	Course Outcomes addressed
Internal Test-I (CIE-I)	20	CO1, CO2, CO3
Regularity/ Continuous assessment	10	CO1, CO2, CO3
Average of the two CIE will be taken for 30 marks		
Other Components		
Project Implementation	20	CO1, CO2, CO3
The Final CIE out of 50 Marks = CIE TEST+ Continuous assessment +Project Implementation		
Semester End Examination (SEE)		
Course End Examination	50	CO1, CO2, CO3

PROJECT WORK		
Course Code: CSP81	Credits: 0:0:12	
Prerequisite: NIL	Contact Hours:	
Course Coordinator: Dr. S. Rajarajeswari		

Course Contents

As a part of project, all the eligible final year students must carry out the following activities:

- 1. Students should form a group to carry out their project. The minimum group size is 2 and maximum group size is 4.
- 2. The groups will be attached to one Internal Guide (and Co-guide if necessary) by the Department.
- 3. Students can carry out their project in-house or in a reputed organization (to be approved by Internal Guide and HOD).
- 4. Identify the problem statement based on the current state of Art and trends in the area of interest.
- 5. Based on the survey, identify the project requirements and do feasibility study.
- 6. Identify and draw a system level architecture by showing subsystems and their input/output need.
- 7. Implement the programs using step by step for each module.
- 8. Integrate and examine the implementation and test the project scope and the requirements.
- 9. Prepare Project document and the demonstrating their work.
- 10. Publish the Project work in a Scopus indexed Conference/Journal with quartile ranking (Q1, Q2, Q3)
- 11. The Continuous Internal Evaluation is based on a presentation and report for 100 marks scaled down to 50 marks.
 - The evaluation will be done by the internal guide and a co- examiner twice during the semester.
 - Weekly report to the Guide (10 marks)
 - Mid-semester evaluation: Students must do a group presentation and produce documents of system requirements, and system design (during 6th week) (40 marks)
 - Final Evaluation: At the End of the semester students must do a group presentation, demonstrate the project work and submit the complete report. (during 13th week) (50 marks)
- 12. The SEE Project Viva Voce will be conducted for 50 marks with an Internal and External Examiner.

Evaluation:

The rubrics for project evaluation are provided as per the below tables.

Criteria for Evaluation	Level A (10) 90-100	Level B (8) 75-90	Level C (6) 50-75	Level D (5) Up to 50
Data	Has investigated		Has investigated	Has not investigated
	new trends in			
Elicitation	their area of interest,	Has investigated	new trends in their	much on new trends
Phase	Review	new trends in their	area of interest.	in their area of
	the challenges in	area of		interest
	that area. Data	interest,		
	elicitation should	Review some		
	include new concepts.	challenges in		
		that area		
Problem	Has investigated	Problem	Moderately	Minimal awareness
Definition	problem domain	domain well	awareness of	of problem domain,
	extensively	understood,	problem domain,	Vague description,
		clear and	clear description,	little idea about
		specific	broad idea about	relevance to current
		description of problem,	relevance to current technical and social	Technical and social context
		relevance well	context	Context
		identified	Context	
Planning	Precise Schedule	Precise	Schedule and	Inappropriate
1 failining	and Effort	Schedule and	Effort Estimation.	Schedule and Effort
	Estimation using	Effort	Effort Estimation.	Estimation.
	tools.	Estimation		
		Manually.		
Project	Has taken	Has monitored	Has completed all	Has not completed
management	leadership role in the	the progress of the	the tasks assigned to	all the tasks assigned
	project and monitored	project and	him.	to him.
	progress of the	completed all		
	project. In	tasks assigned		
	addition, has	to him.		
	completed all			
	tasks assigned to			
	him.			
Literature	Has read more	Has read more than	Has read more	Minimal, mostly
Survey	than 10 papers	7 papers from	Than	from general
	from reputed	reputed journals or	5 papers from	sources, without
	journals or 15 papers from conference and	12 papers from conference and 2	reputed journals or	focused study.
	3 books in the	books in the area of	8 papers from	
	area of the	the project.	conference and 1	
	project.	the project.	books in the area	
Paguiramenta	Complete	Partial	of the project. In-Complete	Fow parrow and
Requirements Specification	functional, Non-	functional,	functional, Non-	Few, narrow and incomplete
Specification	functional,	Non-functional,	functional,	requirements
	Performance,	Performance,	Performance,	requirements
	Security related,	Security	Security related,	
	Clear and	related, Clear and	Clear and	
		Measurable (in	Measurable (in	
	Measurable (in	Wieasurable (III	Micasurable (III	
	Measurable (in terms of SMART	terms of Smart	terms of SMART	

System	The team has to	The team has to	The team has to	The team has to
Design	play a role of	play the role of	play the role of	play the role of
3	main Architect in	main Architect	main Architect in	main Architect in
	the project,	in the project,	the project,	the project,
	Designed all the	Designed 90%	Designed 75% of	Designed 50% of
	components of	of the	the components of	the components of
	the project	components of	the project	the project
		the project		
Implementati	Has decided the	Has coded all	Has coded all the	Has not coded all
on	relevant tools	the components	Components	the components
	and platforms	designed by	designed by him	designed by him by
	required for the project by	him by following the	by not following the standard	not following the standard coding
	evaluating	Standard	coding guidelines.	guidelines.
	alternatives.	coding	coding guidennes.	guidennes.
	coded all the	guidelines.		
	components	8		
	designed by him			
	by following the			
	standard coding			
	guidelines.			
Testing and	Meets all the	Barely meets	Barely meets all	Haphazard
Results	requirements,	all the	the requirements,	testing, barely meets
	Optimized	requirements,	Not Optimized	requirements, unable to infer
	Solution, Proper Test Plan, Has	Not Optimized Solution, Poor	Solution, Poor Test Plan, Has not	results.
	performed	Test Plan, Has	Performed	resuits.
	Integration	not performed	Integration	
	Testing,	Integration	Testing,	
	Performance	Testing,	Performance	
	Testing	Performance	Testing	
		Testing		
Report	Excellent	Good	Average	Poor Clarity in
Writing	Organization,	Organization,	Organization, No	technical contents
		No technical or	technical or	and organization,
		Grammar	Grammar errors,	error in grammar,
		errors, Concise	Concise and Precise,	not done in Latex
		and Precise, Incomplete	Incomplete	
		documentation,	documentation,	
		done on Latex	Not done on Latex	
Presentation	Excellent	Good	Average	Poor Technical
and Viva-	Professional and	Professional	Professional and	communication, Not
voce	Technical	and Technical	Technical	an Effective
	communication,	communication	communication,	Presentations,
	Effective	, Effective	Effective	Unable to analyze
	Presentations,	Presentations.	Presentations,	technically and
	able to analyze		Unable to analyze	clarify views in
	technically and		technically and	viva-voce
	clarify views in		Clarify views in	7174 7000
	•		•	
	viva-voce		viva-voce	

	Rubrics for Final year Project Paper (IEEE Format)				
Criteria and	Poor	Adequate	Good		
Qualities	(1-4)	(5-7)	(8-10)		
	A	bstract (1)			
	The abstract does not cover	The abstract covers most	The abstract covers all		
Content &	each section of the paper;	sections of the paper	sections of the paper and		
Length	conclusion do not match	The abstract is an	coveys the key findings		
	study findings	appropriate length	from the study in a clear		
	The abstract exceeds the		way		
	word limit (250words)		The abstract is an		
			appropriatelength		
	Intr	oduction (3)			
		Literature reviewed	Literature reviewed relates		
	Literature reviewed has	relatesto the study topic.	to themain topic and sets		
	weak or no connection to	All major sections of the	up the rationale for the		
	the topic under study. A	pertinent literature are	study aim/ purpose by		
Literature	clear rationale for the study	included, but may not be	clearly identifying a gap in		
Review	aim/ purpose (the gap in the	covered in depth or a few	the literature.		
	literature) is notidentified.	areas of pertinent	Introduction covers		
	Major sections of pertinent	literature are not covered.	relevant and current articles		
	literature are omitted or	Most articles/ sources	in detail. Only scholarly		
	literature reviewed is not	reviewed are from	articles are used to build		
	from scholarly sources	scholarly sources but a	the argument for the need		
		few are not.	for the study.		
	Neither implicit nor explicit	Readers are aware of the	The aim clearly flows from		
tudy Aim/	reference is made to the	overall problem or aim of	the groundwork laid/		
Purpose	study aim or purpose or the	the study but the aim is	literature reviewed and a		
	study aim appears unrelated	not clear or the study aim	clear case is made for the		
	to theliterature reviewed.	is not clearly linked to a	need for the study aims		
		gap in the literature	based on a gap in the		
			literature.		
	Critical details necessary to	Study methods are	The study design is		
	understandhow the study	generally described but	described indetail. If		
	was conducted are lacking.	information regarding	quantitative data were		
I ethod	Sections such as study	nuances of how the study	collected, psychometric		
	design, procedures,	was conducted is more	properties of instruments		
	measures/ instruments,	limited.	are provided (e.g. validity		
	analytic approach are		and reliability) are		
	missing.		provided. The sampling		
			strategy (inclusion/		
			exclusion criteria), study		
			settingand data collection		
			procedures are described in		
			detail. The approach used		
			for data analyses are		
			described.		

Results (2)			
Presentation of	Results are poorly	Results are adequately	Results/products/outcomes
Data/ Findings	Described and/or do not	described and aligned	are described in detail and
	align withdescription of	withdescription of study	align withdescription of
	study methods. The Results	methods. Analyses of	study methods.
	section includes	dataare completed	Analyses of data are
	"conclusions"instead of	correctly.	sophisticated and precise
	simply presenting the data		
	and/ or analyses.		
Tables and	Tables/Figures are missing	Tables/Figures are present	Tables/Figures are present
Figures	and/or unlabeled. If present,	in the paper and are	and are labeled. Tables and
	they do not clearly present	labeled. Tables/ Figures	Figuresprovide critical
	the study findings/data and/	adequately present data/	information and are
	or are redundant with one	findings but may be	organized in such a way as
	another.	redundant with data	toenhance understanding
		presented in the text	of the study results.

Course Outcomes (COs):

At the end of the course, the students should be able to:

- 1. Review the current state of Art and trends in their area of interest and identify a suitable problem in their chosen subject domain with justification. (PO-1,2,6, 7, 9, 10, 11, PSO-2,3)
- 2. Survey the available research literature/documents for the tools and techniques to be used. (PO-1, 2, 5, 8, 9, 10, 11, 12, PSO-2,3)
- 3. Examine the functional, non-functional, and performance requirements of their chosen problem definition. (PO-1,2,4, 9, 10, 11, 12, PSO-2,3)
- 4. Design system architecture and different components and develop all the system components using appropriate tools and techniques. (PO-1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, PSO-2,3)
- 5. Work effectively in a team and use good project management practices and defend the project work as a team (PO-5, 8, 9, 10, 11, 12, PSO-2,3)

RESEARCH / INDUSTRIAL INTERNSHIP			
Course Code: INT82	Credits: 0:0:5		
Prerequisite: NIL	Contact Hours:		
Course Coordinator: Dr. S. Rajarajeswari			

Course Contents

Guidelines:

- The student can do the Internship during the summer vacation after the 2nd,4th,6th semester and in 8th semester
- The student should take prior permission from the department committee before carrying out the internship. The offer letter should be submitted to the Dept. coordinator.
- The duration of the Internship is 3-4-6 weeks after each semester (total Six months).
- The Internship assessment form assessed by the company mentor, report of the Internship, Internship completion certificate, needs to be submitted to the department coordinator after completion of the Internship.
- The department will constitute a committee for the evaluation of Internship of student and based on the following rubrics, the student will be evaluated.

<u>Internship Assessment – Rubrics</u>

Each supervisor must fill a rubric for each student:

Tools and	Basic	Good	Very Good (10 Pts)	Total
new	(0-4 Pts)	(5-7 Pts)	Multiple sources of	
Technology	Few sources	Multiple	high quality, well	
Learnt	at the	sources of	researched and	
	Industry,	high quality,	analyzed, continuous	
	aware of	good	efforts at acquiring	
	quality of	judgment of	Information.	
	resources and	the	Identification of the	
	relevance to	information,	application of the	
	tools and	identification	tools and Technology	
	Techniques	of gaps in	learnt to the present	
	at hand	knowledge at	market.	
		the Industry		
		and Academics.		
Relevance of	Fairly	Moderately	Highly Relevant	
the topic	Relevant	Relevant		
chosen to				
the				
current				
market				

Rubrics for the Report Writing, Demo and Presentation are maintained in a separate workbook

Course Outcomes (COs):

At the end of the course, students will be able to

- 1. Schedule milestones of deliverables and formulate the requirements of the proposed work. (PO-2,9,11, PSO-1,2)
- 2. Apply the engineering knowledge to develop software in an industry setting. (PO-1,2,3,5, PSO-1,2)
- 3. Develop the inter-personal skills required to work in a professional team. (PO-9, 10, 11, PSO-2, 3)
- 4. Engage in independent study of technology required for development of software. (PO-12, PSO-2, 3)
- 5. Demonstrate the project and appraise its effectiveness. (PO-10, PSO-3)