Задание к лабораторным работам D.5-D.6

D.5 Для простейшего уравнения переноса

$$u_t + \lambda u_x = 0, \quad \lambda = const \neq 0$$
 (1)

 $(dx = \lambda dt - \text{ характеристика уравнения } (1))$, все множество явных линейных схем $u_m^{n+1} = \sum_{\mu,\nu} \alpha_\mu^\nu(\tau,h) u_{m+\mu}^{n+\nu}$ на 5-точечном сеточном шаблоне (t^{n+1},x_m) , (t^n,x_{m-2}) , (t^n,x_{m-1}) , (t^n,x_m) , (t^n,x_{m+1}) , (t^n,x_{m+2}) (рис. 1):

с 5-ю неопределенными коэффициентами $\{\alpha_{-2}^0,\alpha_{-1}^0,\alpha_0^0,\alpha_1^0,\alpha_2^0\}$ имеет вид:

$$u_m^{n+1} = \alpha_{-2}^0 u_{m-2}^n + \alpha_{-1}^0 u_{m-1}^n + \alpha_0^0 u_m^n + \alpha_1^0 u_{m+1}^n + \alpha_2^0 u_{m+2}^n.$$
 (2)

После удовлетворения условий аппроксимации первого порядка:

$$\delta_0 = -1 + \sum_{\mu,\nu} \alpha_{\mu}^{\nu} = 0, \ \delta_1 = \sigma + \sum_{\mu,\nu} (\mu - \sigma \nu) \alpha_{\mu}^{\nu} = 0$$
 (3)

 $(\sigma = \lambda \tau/h -$ число Куранта) три коэффициента, например, α_{-2}^0 , α_0^0 и α_2^0 , остаются свободными, а два других, например, α_{-1}^0 , α_1^0 и, выражаются через эти свободные коэффициенты. Принимая α_{-2}^0 , α_0^0 и α_2^0 за координаты линейного пространства с евклидовой метрикой, в котором каждой точке соответствует некоторая схема 1-го порядка аппроксимации, можно найти все множество устойчивых схем (при $0 < \sigma < 1$ и $\alpha_2^0 = 0$ – область B_1 , B_2 , C, B_3 , B_4 , A_3 , A_4 , A_0 на рис. 2), все монотонные схемы, у которых все коэффициенты $\alpha_\mu^\nu \ge 0$, (при $0 < \sigma < 1$ и $\alpha_2^0 = 0$ – четырехугольник A_0 , A_1 , A_3 , A_4 на рис. 2), двухпараметрическое семейство схем 2-го порядка аппроксимации

$$\delta_2 = -\sigma^2 + \sum_{\mu,\nu} (\mu - \sigma\nu)^2 \alpha_{\mu}^{\nu} = 0 \tag{4}$$

(отрезок $B_1 - B_4$ на рис. 2 – устойчивые при $0 < \sigma < 1$ и $\alpha_2^0 = 0$ схемы с порядком аппроксимации выше первого), однопараметрическое семейство схем 3-го порядка аппроксимации:

$$\delta_3 = \sigma^3 + \sum_{\mu,\nu} (\mu - \sigma \nu)^3 \alpha_{\mu}^{\nu} = 0$$
 (5)

(при $0 < \sigma < 1$ и $\alpha_2^0 = 0$ точка C на рис. 2) и единственную на этом шаблоне схему 4-го порядка:

$$\delta_4 = -\sigma^4 + \sum_{\mu\nu} (\mu - \sigma\nu)^4 \alpha_{\mu}^{\nu} = 0.$$
 (6)

Также можно получать оптимальные в том или ином смысле схемы, например, «наиболее точную из монотонных схем» — точка A_1 , «наименее осциллирующую на разрывных решениях

схему 2-го порядка аппроксимации» — точка B_2 на рис. 2, или монотонные схемы с переменным порядком аппроксимации — вторым или третьим в зависимости от поведения решения и т.д.

При $-1 < \sigma < 0$ и $\alpha_{-2}^0 = 0$ аналогичные точкам $A_0 - C$ на рис. 2 разностные схемы (т.е. точки A_0 , $A_1^{'} - A_4^{'}$, $B_1^{'} - B_6^{'}$, C на рис. 2a) получаются заменой σ на $-\sigma$ и коэффициентов α_{μ}^{ν} на $\alpha_{-\mu}^{\nu}$. Например, если для т. A_1 (при $\sigma > 0$) имеем:

$$\alpha_{-2}^0 = \alpha_2^0 = \alpha_1^0 = 0$$
, $\alpha_{-1}^0 = \sigma$, $\alpha_0^0 = 1 - \sigma$,

то для т. $A_1^{'}$ (при $\sigma < 0$):

$$\alpha_{-2}^0 = \alpha_2^0 = \alpha_{-1}^0 = 0, \ \alpha_1^0 = -\sigma, \ \alpha_0^0 = 1 + \sigma.$$

Для построения монотонной схемы со вторым-третьим порядком аппроксимации каждый из коэффициентов α_{μ}^{ν} вектора $\vec{\alpha} = \left\{\alpha_{-2}^{0},...,\alpha_{2}^{0}\right\}$ можно задавать в виде линейной комбинации трех опорных схем – точек в пространстве неопределенных коэффициентов (т.е. одной схемы 3-го порядка т. C-C' и двух схем 2-го порядка аппроксимации т. B_{3} , $B_{5}-B'_{3}$, B'_{5} с ортогональными областями монотонности). Выбор между схемами при этом делать так, чтобы удовлетворялся характеристический критерий монотонности:

$$\begin{cases} u_{m-1}^{n} < u_{m}^{n+1} = u_{*} < u_{m}^{n}, & \text{если } \Delta_{0} = u_{m-1}^{n} - u_{m}^{n} < 0 \\ u_{m-1}^{n} > u_{m}^{n+1} = u_{*} > u_{m}^{n}, & \text{если } \Delta_{0} = u_{m-1}^{n} - u_{m}^{n} > 0 \end{cases}, \quad \sigma > 0$$

$$\begin{cases} u_{m}^{n} < u_{m}^{n+1} = u_{*} < u_{m+1}^{n}, & \text{если } \Delta_{0} = u_{m+1}^{n} - u_{m}^{n} > 0 \\ u_{m}^{n} > u_{m}^{n+1} = u_{*} > u_{m+1}^{n}, & \text{если } \Delta_{0} = u_{m+1}^{n} - u_{m}^{n} < 0 \end{cases}, \quad \sigma < 0$$

$$(7)$$

который может быть записан с учетом условий аппроксимации второго порядка (4) в следующем виде:

$$\begin{cases} \Delta_{0} < \sigma(\Delta_{0} + \Delta_{1})/2 + \sigma^{2}(\Delta_{0} - \Delta_{1})/2 + \alpha_{-2}^{0}(\Delta_{-1} - 2\Delta_{0} + \Delta_{1}) < 0, & \text{если } \Delta_{0} < 0 \\ \Delta_{0} > \sigma(\Delta_{0} + \Delta_{1})/2 + \sigma^{2}(\Delta_{0} - \Delta_{1})/2 + \alpha_{-2}^{0}(\Delta_{-1} - 2\Delta_{0} + \Delta_{1}) > 0, & \text{если } \Delta_{0} > 0 \\ \sigma > 0, & \alpha_{2}^{0} = 0, & \Delta_{-1} = u_{m-2}^{n} - u_{m-1}^{n}, & \Delta_{0} = u_{m-1}^{n} - u_{m}^{n}, & \Delta_{1} = u_{m}^{n} - u_{m+1}^{n} \end{cases}$$

$$\begin{cases} 0 < \sigma(\Delta_{0} + \Delta_{1})/2 + \sigma^{2}(\Delta_{0} - \Delta_{1})/2 + \alpha_{2}^{0}(\Delta_{-1} - 2\Delta_{0} + \Delta_{1}) < \Delta_{0}, & \text{если } \Delta_{0} > 0 \\ 0 > \sigma(\Delta_{0} + \Delta_{1})/2 + \sigma^{2}(\Delta_{0} - \Delta_{1})/2 + \alpha_{2}^{0}(\Delta_{-1} - 2\Delta_{0} + \Delta_{1}) > \Delta_{0}, & \text{если } \Delta_{0} < 0 \\ \sigma < 0, & \alpha_{-2}^{0} = 0, & \Delta_{-1} = u_{m+2}^{n} - u_{m+1}^{n}, & \Delta_{0} = u_{m+1}^{n} - u_{m}^{n}, & \Delta_{1} = u_{m}^{n} - u_{m-1}^{n} \end{cases}$$

Разделив затем оба неравенства на Δ_0 , получаем характеристическое условие монотонности в свернутом виде:

$$\begin{cases}
0 \le \sigma(1+\delta_{1})/2 + \sigma^{2}(1-\delta_{1})/2 + \alpha_{-2}^{0}(\delta_{-1}-2+\delta_{1}) \le 1 \\
\sigma > 0, \quad \alpha_{2}^{0} = 0, \quad \delta_{-1} = \Delta_{-1}/\Delta_{0}, \quad \delta_{1} = \Delta_{1}/\Delta_{0}, \quad \Delta_{0} \ne 0
\end{cases}$$

$$\begin{cases}
0 \le |\sigma|(1+\delta_{1})/2 + \sigma^{2}(1-\delta_{1})/2 + \alpha_{2}^{0}(\delta_{-1}-2+\delta_{1}) \le 1 \\
\sigma < 0, \quad \alpha_{-2}^{0} = 0, \quad \delta_{-1} = \Delta_{-1}/\Delta_{0}, \quad \delta_{1} = \Delta_{1}/\Delta_{0}, \quad \Delta_{0} \ne 0
\end{cases}$$
(9)

Схемы 2-го порядка аппроксимации с ортогональными областями монотонности (точки B_3 , B_5-B_3' , B_5' для демонстрационного шаблона) можно легко найти, подбирая так значения α_{-2}^0 (при $\sigma>0$), α_2^0 (при $\sigma<0$) в неравенствах (9), чтобы в них оставалась зависимость только от одного из параметров δ_{-1} или δ_1 . В нашем случае это легко увидеть, подставив координаты точек $B_3 \to \left\{\alpha_{-2}^0=0\right\}, \quad B_5 \to \left\{\alpha_{-2}^0=\sigma(\sigma-1)/2\right\}$ (при $\sigma>0$) или $B_3' \to \left\{\alpha_2^0=0\right\}, \quad B_5' \to \left\{\alpha_2^0=\left(\sigma^2-|\sigma|\right)/2\right\}$ (при $\sigma<0$) в (9).

2. Решить задачу, заменив приведенный на рис. 1 демонстрационный шаблон на шаблон из рис. 3 в соответствии со своим номером.

Для уравнения (1) всё множество разностных схем $u_m^{n+1} = \sum_{\mu,\nu} \alpha_\mu^\nu(\tau,h) u_{m+\mu}^{n+\nu}$ (в суммирование не входит точка $\mu=0,\ \nu=1$), исследовать на заданном сеточном шаблоне (отмеченном точками на рисунке), для различных значений числа Куранта $\sigma=\lambda \tau/h$, найдя коэффициенты схемы как функции от σ , как это сделано в файле «**Hyperbolic.nb**» для демонстрационного шаблона с рис. 1.

- **2.1.** Для заданного сеточного шаблона получить аналитический вид (2) для двухпараметрического множества положительных по Фридрихсу ($\alpha_{\mu}^{\nu} \ge 0$) схем первого порядка аппроксимации относительно двух выбранных коэффициентов α_{μ}^{ν} (см. рис. 2).
- **2.2.** Для заданного сеточного шаблона получить аналитический вид (2) для однопараметрического множества схем второго порядка аппроксимации относительно выбранного коэффициента α_{μ}^{ν} (см. рис. 2).
- **2.3.** Для заданного сеточного шаблона получить аналитический вид (2) для единственной схемы третьего порядка аппроксимации (аналог точки C для заданного сеточного шаблона).
- **2.4.** Среди положительных по Фридрихсу (монотонных, мажорантных) схем найти аналитический вид (2) для наиболее точной схемы с минимальной «аппроксимационной вязкостью» (аналог точки A_1 на рис. 2 для заданного сеточного шаблона), также как и для остальных вершин двухпараметрического множества монотонности.

- **2.5.** Среди схем второго порядка аппроксимации найти аналитический вид (2) для наиболее близкой к множеству положительных по Фридрихсу схем (аналог точки B_2 на рис. 2 для заланного сеточного шаблона).
- **2.6.** Для заданного сеточного шаблона найти такой диапазон значений числа Куранта $\sigma > 0$, при котором множество положительных по Фридрихсу схем 1-го порядка аппроксимации будет иметь максимальное количество вершин.
- **2.7.** Среди всех устойчивых схем второго порядка аппроксимации найти две схемы 2-го порядка аппроксимации в аналитическом виде (2) с ортогональными областями монотонности (аналоги точек B_3 и B_5 на рис. 2 для заданного сеточного шаблона).
- **2.8.** Для заданного сеточного шаблона получить рисунок аналогичный рис. 2 для выбранного из пункта **2.6** значения числа Куранта: $\sigma > 0$.
- 3. Для заданного сеточного шаблона (рис. 3), пользуясь программой «Hyperbolic.nb», провести расчеты для выбранного в 2.8 значения числа Куранта $\sigma > 0$.
- **3.1.** По всем монотонным схемам с порядком аппроксимации $O(\tau)$, находящимся в углах многоугольника, ограничивающего двухпараметрическое множество положительных по Фридрихсу схем точки A_0, A_1, A_3, A_4 на рис. 2.
- **3.2.** По наименее осциллирующей на разрывных решениях схеме 2-го порядка аппроксимации $O(\tau^2)$ точка B_2 на рис. 2.
 - **3.3.** По схеме 2-го порядка аппроксимации $O\left(\tau^{2}\right)$ точка B_{5} на рис. 2.
 - **3.4.** По схеме 2-го порядка аппроксимации $O(\tau^2)$ точка B_3 на рис. 2.
- **3.5.** По монотонной схеме второго порядка аппроксимации, каждый из коэффициентов α^{ν}_{μ} которой нужно задавать в виде линейной комбинации двух опорных схем схем 2-го порядка аппроксимации, с ортогональными областями монотонности точки B_3 и B_5 на рис. 2.
 - **3.6.** По схеме 3-го порядка аппроксимации $O(\tau^3)$ точка C на рис. 2.
- **3.7.** По монотонной схеме второго-третьего порядка аппроксимации, каждый из коэффициентов α^{ν}_{μ} которой нужно задавать в виде линейной комбинации трех опорных схем одной схемы 3-го порядка аппроксимации точка C и двух схем 2-го порядка аппроксимации, с ортогональными областями монотонности точки B_3 и B_5 на рис. 2.
 - 3.8. Сопоставить и проанализировать результаты расчетов, полученных в пунктах 3.1-3.8.

D.6 Для нелинейной одномерной системы гиперболического типа
$$\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial x} = 0$$

Воспользуемся известным нам пятиточечным сеточным шаблоном, представленным на рис.1 – (t^{n+1},x_m) , (t^n,x_{m-1}) , (t^n,x_m) , (t^n,x_{m+1}) , (t^n,x_{m+2}) и запишем двухпараметрическое семейство всех возможных схем первого порядка аппроксимации $O(\tau,h)$ на этом шаблоне в следующем виде:

$$\begin{cases}
\tilde{U}_{m} = U_{m}^{n} - \frac{\tau}{h} (F_{m+1/2} - F_{m-1/2}) \\
U_{m}^{n+1} = \tilde{U}_{m} + (\Omega^{-1}B\Omega)_{m+1/2}^{n+1/2} (U_{m+1}^{n} - U_{m}^{n}) - (\Omega^{-1}B\Omega)_{m-1/2}^{n+1/2} (U_{m}^{n} - U_{m-1}^{n}) + \\
+ (\Omega^{-1}C\Omega)_{m+1/2}^{n+1/2} (\tilde{U}_{m+1} - \tilde{U}_{m}) - (\Omega^{-1}C\Omega)_{m-1/2}^{n+1/2} (\tilde{U}_{m} - \tilde{U}_{m-1})
\end{cases} (10)$$

В выражении (10), $\Omega = [\omega_i]$ — матрица, строками которой являются левые собственные векторы матрицы Якоби $A = \partial F/\partial U$, с точностью до их длины, определяемые из однородных систем уравнений $\omega_i(A-\lambda_i E)=0,\ i=1,2,...,I$, I — размерность системы, $B=diag\left[b_i\right]$ и $C=diag\left[c_i\right]$ — матрицы, на диагоналях которых находятся произвольные коэффициенты b_i и c_i , i=1,...,I. Выбор предиктора в схеме (10) не является принципиальным, в случае разрывов большой интенсивности он может быть взят, например, из схемы Годунова [3] (для уравнений газовой динамики), или это может быть консервативный вариант сеточнохарактеристического метода [2].

Полученное семейство схем (10) будет иметь первый порядок аппроксимации $O(\tau,h)$ при любых значениях коэффициентов b_i и c_i , i=1,...,I, если же диагональные матрицы B и C связать следующим соотношением: $B=\left(\frac{\tau^2}{2h^2}\Lambda^2-\frac{\tau}{2h}|\Lambda|\right)-C$, то (10) станет однопараметрическим семейством схем второго порядка аппроксимации $O(\tau^2,h^2)$ аналогичным (9) в линейном случае.

При выборе свободных параметров $b_i=c_i=0$, (10) станет наиболее точной среди монотонных схем 1-го порядка аппроксимации — соответствующей точке A_1 . При выборе $b_i=\sigma_i^2/2+(3-8|\sigma_i|)/10$ и $c_i=3(|\sigma_i|-1)/10$ получим наименее осциллирующую на разрывных решениях схему 2-го порядка аппроксимации — соответствующую точке B_2 . При выборе $b_i=\left(\sigma_i^2-|\sigma_i|\right)/2$ и $c_i=0$ получим также схему 2-го порядка, соответствующую точке B_3 . При выборе $b_i=(1-|\sigma|)^2/2$ и $c_i=(|\sigma_i|-1)/2$ получим схему 2-го порядка, соответствующую точке B_5 . При выборе $b_i=(1-|\sigma|)^2/2$ и $c_i=(|\sigma_i|-1)/6$ и $c_i=(|\sigma_i^2-1)/6$ получим единственную схему 3-го порядка аппроксимации $O(\tau^3,h^3)$, соответствующую точке C.

Таким образом, для каждого из нелинейных уравнений исходной системы существует свое уравнение типа (1), разностный аналог которого (10) может быть исследован на монотонность в точке (t^{n+1}, x_m) с помощью характеристического критерия (7) - (9), после чего те коэффициенты C_i , которые дают монотонное поведение решения, подставляются в схему (10). Данный подход не ограничивается в использовании выбранным нами сеточным шаблоном $(t^n, x_{m-2}), (t^n, x_{m-1}), (t^n, x_m), (t^n, x_{m+1}), (t^n, x_{m+2})$ и может быть легко перенесен на другие заданные сеточные шаблоны.

4.1. Для одномерных нелинейных уравнений газовой динамики:

$$\begin{cases} U_t + F_x = 0 \\ V = \{\rho, u, \varepsilon\}^T \end{cases}$$

$$U = U(V) = \{\rho, \rho u, e\}^T$$

$$F = F(V) = \{\rho u, \rho u^2 + p, u(e+p)\}^T$$

ho- плотность, u- скорость вдоль оси x, $\varepsilon-$ удельная внутренняя энергия, $e=\rho\varepsilon+\frac{1}{2}\rho u^2-$ полная энергия единицы объёма, $p=\rho(\gamma-1)\varepsilon-$ давление, $\gamma=1.4-$ показатель адиабаты, в области: $0 \le t \le T, \ 0 \le x \le 1$. С начальными условиями:

$$V(0,x) = \begin{cases} V_L = \left\{ \rho_L, u_L, \varepsilon_L \right\}^T, & 0 \le x \le 0.5 \\ V_R = \left\{ \rho_R, u_R, \varepsilon_R \right\}^T, & 0.5 < x \le 1 \end{cases}$$

и граничными условиями: $\partial V(t,x=0)/\partial t=0$, $\partial V(t,x=1)/\partial t=0$. Шаг по оси x задается равномерным: h=1/(M-1), M- число сеточных узлов на оси, шаг по t на каждом временном слое $t^n=$ constant, выбирается из условия устойчивости Куранта: $\tau \max_{m}\{\max_{i}(\lambda_i)_m^n\}/h\leq 1$.

Используя анализ на фазовой плоскости состояний (u,p), при заданных начальных значениях переменных $\{\rho_L,u_L,\varepsilon_L\}^T$ слева от точки разрыва для вашего номера в Таблице 1, найти такие значения $\{\rho_R,u_R,\varepsilon_R\}^T$ справа от точки разрыва, чтобы получились следующие конфигурации распада произвольного разрыва:

- а) только контактный разрыв (КР).
- **b)** ударная волна, контактный разрыв, ударная волна (УВ, КР, УВ);
- с) волна разрежения, контактный разрыв, волна разрежения (ВР, КР, ВР);
- **d)** ударная волна, контактный разрыв, волна разрежения (УВ, КР, ВР);
- е) волна разрежения, контактный разрыв, ударная волна (ВР, КР, УВ);
- **4.2.** Для заданного вам номера сеточного шаблона (рис. 3), выбранного в п. 2.8 значения числа Куранта $\sigma > 0$ и заданных начальных значений переменных, обеспечивающих существование ступеньки из двух контактных разрывов в центре области интегрирования (см. образец выполнения работы), пользуясь программой «**Hyperbolic.nb**», выполнить тестовый расчет автомодельной задачи Римана [4] для двух вариантов разностных сеток: M = 100 и M = 1000, на время $T \simeq 1$.
 - по наиболее точной монотонной схеме 1-го порядка аппроксимации, соответствующей точке A_1 на рис. 2;
 - по наименее осциллирующей схеме 2-го порядка аппроксимации, соответствующей точке B_2 на рис. 2;
 - по схеме 2-го порядка, соответствующей точке B_3 на рис. 2;
 - по схеме 2-го порядка, соответствующей точке B_5 на рис. 2;
 - по схеме 3-го порядка, соответствующей точке $\,C\,$ на рис. 2;
 - (в случае неустойчивости какой либо из схем B_2 , B_3 , B_5 , C разрешается использовать её в комбинации с любой другой схемой!)

- по монотонной схеме 2-го порядка аппроксимации, заданной в виде линейной комбинации двух схем 2-го порядка аппроксимации, с ортогональными областями монотонности, соответствующим точкам B_3 и B_5 на рис. 2;
- по монотонной схеме 2–3-го порядка аппроксимации, заданной в виде линейной комбинации трех опорных схем одной схемы 3-го порядка аппроксимации, соответствующей точке C и двух схем 2-го порядка аппроксимации, с ортогональными областями монотонности, соответствующим точкам B_3 и B_5 на рис. 2.

Для заданного сеточного шаблона (рис. 3) и выбранного в 2.8 значения числа Куранта $\sigma > 0$, пользуясь программой «Hyperbolic.nb», на основе сравнительного анализа результатов расчетов, полученных для разных схем в 5.2., выполнить:

- **4.3.** Расчет автомодельной задачи Римана [4] при заданных начальных значениях переменных **5.1-b)** (УВ, КР, УВ) по одной из схем B_2 , B_3 , B_5 , C которая будет наиболее оптимальной (наименее осциллирующей) для данной конфигурации начальных данных, для двух вариантов разностных сеток: M=100 и M=1000.
- **4.4.** Расчет автомодельной задачи Римана [4] при заданных начальных значениях переменных **5.1-с**) (ВР, КР, ВР) по одной из схем B_2 , B_3 , B_5 , C которая будет наиболее оптимальной (наименее осциллирующей) для данной конфигурации начальных данных, для двух вариантов разностных сеток: M=100 и M=1000.
- **4.5.** Расчет автомодельной задачи Римана [4] при заданных начальных значениях переменных **5.1-d)** (УВ, КР, ВР) по одной из схем B_2 , B_3 , B_5 , C которая будет наиболее оптимальной (наименее осциллирующей) для данной конфигурации начальных данных, для двух вариантов разностных сеток: M = 100 и M = 1000.
- **4.6.** Расчет автомодельной задачи Римана [4] при заданных начальных значениях переменных **5.1-е)** (ВР, КР, УВ) по одной из схем B_2 , B_3 , B_5 , C которая будет наиболее оптимальной (наименее осциллирующей) для данной конфигурации начальных данных, для двух вариантов разностных сеток: M=100 и M=1000.

В расчетах 4.3 – 4.6 каждая из схем – B_2 , B_3 , B_5 , C должна использоваться не более одного раза, в случае неустойчивости какой либо из схем - разрешается использовать её в комбинации с любой другой схемой!

Литература

- [1] К.М. Магомедов, А.С. Холодов. Сеточно-характеристические численные методы. М., Наука, 1988, главы 3,4.
- [2] Холодов А.С., Холодов Я.А. О критериях монотонности разностных схем для уравнений гиперболического типа. // Журнал выч. математики и мат. физики, 2006, т. 46, № 9, 1560-1588.
- [3] Годунов С.К. Разностный метод численного расчета разрывных решений уравнений гидродинамики. // Мат. сб., 1959, т. 47(89), № 3, 271-306.
- [4] Самарский А.А., Попов Ю.П. Разностные методы решения задач газовой динамики. // М., Наука, 1994, глава 1.

Рис.3

Nº	1	2	3	4	5	6	7	8
$\{ ho_{\scriptscriptstyle L},u_{\scriptscriptstyle L},arepsilon_{\scriptscriptstyle L}\}$	{1,1,1}	{1,1,2}	{2,1,1}	{2,0.5,2}	{1,0.5,2}	{1,-0.5,2}	$\{1,-1,1\}$	{1,-1,2}
No	9	10	11	12	13	14	15	16
$\{ ho_{\scriptscriptstyle L},u_{\scriptscriptstyle L},arepsilon_{\scriptscriptstyle L}\}$	{2,-1,0.5}	{0.5,1,2}	{2,-0.5,1}	{0.5, 0.5, 4}	{4,0.5,1}	{1,0.5,4}	{4,-0.5,1}	{1,-0.5,4}
No	17	18	19	20				
$\{ ho_{\!\scriptscriptstyle L},\!u_{\!\scriptscriptstyle L},\!arepsilon_{\!\scriptscriptstyle L}\}$	{2,-1.5,1}	{1.5,1,2}	{2,-0.5,2}	{0.5,-1,4}				

Таблица