Universidade Federal de Ouro Preto Cálculo Diferencial e Integral II - MTM 123 Séries Numéricas - Parte 2

Teorema 1 (Teste da Comparação). *Sejam* $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n e \sum_{n=1}^{\infty} c_n$ séries de termos não-negativos tais que:

$$a_n \leqslant b_n \leqslant c_n$$

para todo $n \ge n_0$, então:

- i) Se $\sum_{n=1}^{\infty} c_n$ é convergente, então $\sum_{n=1}^{\infty} b_n$ também é convergente.
- ii) Se $\sum_{n=1}^{\infty} a_n$ é divergente, então $\sum_{n=1}^{\infty} b_n$ também é divergente.

Exemplos:

1) Decida se a série $\sum_{n=3}^{\infty} \frac{1}{\ln n}$ converge ou diverge.

Note que:

$$n \geqslant \ln n \quad \Rightarrow \quad \frac{1}{n} \leqslant \frac{1}{\ln n},$$

para todo $n \geqslant 3$.

Tomando $a_n = \frac{1}{n}$ e $b_n = \frac{1}{\ln n}$ e usando o fato que a série $\sum_{n=3}^{\infty} 1/n$ diverge (pois é uma p-série com p=1) pelo item ii) da teste da comparação, segue que, a série $\sum_{n=3}^{\infty} 1/\ln n$ diverge.

2) Mostre que a série $\sum_{n=3}^{\infty} \frac{\ln n}{n^3}$ converge.

Nesse caso, temos:

$$\frac{\ln n}{n^3} \leqslant \frac{n}{n^3} = \frac{1}{n^2},$$

para todo $n \geqslant 3$.

Fazendo $b_n = \ln n/n^3$ e $c_n = 1/n^2$ e usando o fato que a série $\sum_{n=3}^{\infty} 1/n^2$ é convergente (por quê?), pelo item i) do teste da comparação, a série $\sum_{n=3}^{\infty} \ln n/n^3$ converge.

Para aplicar o teste da comparação precisamos estabelecer uma desigualdade, o que nem sempre é uma tarefa simples ou mesmo possível. O teste da comparação no limite nos permite trocar essa desigualdade pelo cálculo de um limite.

Teorema 2 (Teste da Comparação no Limite). Sejam $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ séries de termos positivos. Se

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = \alpha,$$

onde $\alpha > 0$, então ambas convergem ou divergem.

Exemplos:

3) Mostre que a série $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2(n+1)}}$ é convergente.

Tomando $a_n=\frac{1}{\sqrt{n^2(n+1)}}=\frac{1}{n^{3/2}\sqrt{1+1/n}}$, vemos que quando $n\to+\infty$, $a_n\to\frac{1}{n^{3/2}}$, e assim escolhemos $b_n=\frac{1}{n^{3/2}}$. Como:

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = \lim_{n \to +\infty} \frac{\frac{1}{n^{3/2} \sqrt{1 + 1/n}}}{\frac{1}{n^{3/2}}} = \lim_{n \to +\infty} \frac{1}{\sqrt{1 + 1/n}} = 1,$$

uma vez que a série $\sum_{n=1}^{\infty} 1/n^{3/2}$ converge (por quê?), pelo teste da comparação no limite, a série $\sum_{n=1}^{\infty} 1/\sqrt{n^2(n+1)}$ também converge.

Teorema 3 (Teste da Razão). Seja $\sum_{n=1}^{\infty} a_n$ uma série de termos positivos tal que

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = L.$$

Então:

- i) Se $0 \leqslant L < 1$, a série $\sum_{n=1}^{\infty} a_n$ converge.
- ii) Se L > 1, a série $\sum_{n=1}^{\infty} a_n$ diverge.
- iii) Se L = 1, o teste é inconclusivo.

Exemplos:

4) Decida se a série $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ converge ou diverge.

Temos:

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \lim_{n \to +\infty} \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^n}} = \lim_{n \to +\infty} \frac{\frac{(n+1)n!}{(n+1)(n+1)^n}}{\frac{n!}{n^n}} = \lim_{n \to +\infty} \frac{n^n}{(n+1)^n} = \lim_{n \to +\infty} \left(\frac{n}{n+1}\right)^n = \frac{1}{e} < 1.$$

Pelo teste da razão, a série converge.

5) Mostre que a série $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$ converge.

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \lim_{n \to +\infty} \frac{\frac{[(n+1)!]^2}{[2(n+1)]!}}{\frac{(n!)^2}{(2n)!}} = \lim_{n \to +\infty} \frac{\frac{[(n+1)n!]^2}{(2n+2)!}}{\frac{(n!)^2}{(2n)!}} = \lim_{n \to +\infty} \frac{\frac{(n+1)^2(n!)^2}{(2n)!}}{\frac{(n+1)^2(n+1)(2n)!}{(2n+2)(2n+1)}} = \lim_{n \to +\infty} \frac{(n+1)^2}{(2n+2)(2n+1)} = \frac{1}{4} < 1.$$

Portanto, a série converge pelo teste da razão.

6) Mostre que a série $\sum_{n=1}^{\infty} \frac{(2n)!}{2^n n! n!}$ diverge.

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \lim_{n \to +\infty} \frac{\frac{[2(n+1)]!}{2^{n+1}(n+1)!(n+1)!}}{\frac{(2n)!}{2^n n! n!}} = \lim_{n \to +\infty} \frac{\frac{[2n+2]!}{2^n n! n!}}{\frac{(2n)!}{2^{n+1}(n+1)^2(n!)^2}} \cdot \frac{2^n n! n!}{(2n)!} = \lim_{n \to +\infty} \frac{(2n+2)(2n+1)(2n)!}{2 \cdot 2^n (n+1)^2 (n!)^2} \cdot \frac{2^n n! n!}{(2n)!} = \lim_{n \to +\infty} \frac{(2n+2)(2n+1)}{2(n+1)^2} = \lim_{n \to +\infty} \frac{4n^2(1+1/n)[1+1/(2n)]}{2n^2(1+1/n)^2} = \lim_{n \to +\infty} \frac{2[1+1/(2n)]}{(1+1/n)} = 2 > 1.$$

Logo, a série diverge pelo teste da razão.

Observação 3: Não confunda o teste da comparação no limite com o teste da razão. No primeiro, calculamos o limite da razão entre os termos gerais de séries **DIFERENTES**, enquanto no último, o limite é da razão entre dois termos consecutivos da **MESMA** série.

Observação 4: No caso iii) do teste da razão, a série pode ser tanto convergente quanto divergente. Por exemplo, as séries $\sum_{n=1}^{\infty} 1/n$ e $\sum_{n=1}^{\infty} 1/n^2$ divergem e convergem, respectivamente, mas $\lim_{n \to +\infty} a_{n+1}/a_n = 1$ em ambas as séries.

Teorema 4 (Teste da Raiz). Seja $\sum_{n=1}^{\infty} a_n$ uma série de termos de não-negativos tal que

$$\lim_{n \to +\infty} \sqrt[n]{a_n} = L.$$

Então:

- i) Se $0 \le L < 1$, então a série converge.
- ii) Se L > 1, então a série diverge.
- iii) Se L=1, o teste é inconclusivo.

Exemplos:

7) Mostre que série $\sum_{n=1}^{\infty} e^{2n} \left(\frac{2n-1}{n+13} \right)^n$ diverge.

$$\lim_{n \to +\infty} \sqrt[n]{a_n} = \lim_{n \to +\infty} \sqrt[n]{e^{2n} \left(\frac{2n-1}{n+13}\right)^n} =$$

$$= \lim_{n \to +\infty} \sqrt[n]{e^{2n}} \cdot \sqrt[n]{\left[\frac{n(2-1/n)}{n(1+13/n)}\right]^n} = \lim_{n \to +\infty} e^2 \frac{(2-1/n)}{(1+13/n)} = 2e^2 > 1.$$

Pelo teste da raiz, a série diverge.

Definição 1. Uma série alternada é uma série em que os seus termos são alternadamente positivos e negativos, ou seja, é uma série da forma:

$$\sum_{n=1}^{\infty} (-1)^{n+1} b_n = b_1 - b_2 + b_3 - b_4 + \dots + (-1)^{n+1} b_n + \dots,$$

onde $b_n > 0$ para todo $n \geqslant 1$.

Exemplos:

8) As séries abaixo são alternadas:

i)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}, \quad \text{(S\'erie Harmônica Alternada)}$$

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\ln n}{n}$$

iii)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{3n^2 + 1}{7 + 5n^2}$$

9) A série $\sum_{n=1}^{\infty} \frac{\sin n}{n^2} = \sin 1 + (\sin 2)/4 + (\sin 3)/9 + (\sin 4)/16 + \cdots$, não é uma série alternada, pois os sinais de seus termos não são alternadamente positivos e negativos.

As séries alternadas possuem um resultado exclusivo para testar a sua convergência.

Teorema 5 (Teste da Série Alternada). Se $\sum_{n=1}^{\infty} (-1)^{n+1} b_n$ é uma série alternada tal que:

- i) $\{b_n\}$ é uma sequência decrescente, ou seja, $b_{n+1} \leqslant b_n$ para todo $n \geqslant n_0$,
- $ii) \lim_{n \to +\infty} b_n = 0.$

Então, a série alternada converge.

Exemplos:

10) Pelo teste da série alternada, as séries i) e ii) do exemplo 18) acima são convergentes, enquanto a série iii) é divergente.

Agora, vamos introduzir uma terminologia para distinguir os tipos de convergência.

Definição 2. Uma série $\sum_{n=1}^{\infty} a_n$ é dita absolutamente convergente, se a sua série dos módulos associada $\sum_{n=1}^{\infty} |a_n|$ for convergente.

Definição 3. Uma série $\sum_{n=1}^{\infty} a_n$ é denominada condicionalmente convergente, se ela for uma série convergente mas a série dos módulos associada $\sum_{n=1}^{\infty} |a_n|$ for divergente.

Exemplos:

- 11) A série $\sum_{n=1}^{\infty} (-1)^{n+1} 1/n^2$ converge absolutamente, pois a série dos módulos é $\sum_{n=1}^{\infty} |(-1)^{n+1} 1/n^2| = \sum_{n=1}^{\infty} 1/n^2$ que já mostramos que converge.
- 12) A série $\sum_{n=1}^{\infty} (-1)^{n+1} 1/n$ converge condicionalmente, nesse caso a série dos módulos é a série harmônica que conforme vimos é divergente, enquanto a série original é convergente pelo teste da série alternada.

Um resultado muito útil para mostrar a convergência de séries em geral é o seguinte:

Teorema 6 (Teste da Convergência Absoluta). *Se a série dos módulos associada* $\sum_{n=1}^{\infty} |a_n|$ *converge, então a série original* $\sum_{n=1}^{\infty} a_n$ *também converge.*

Observação 5: O teste da convergência absoluta nos permite trocar a determinação da convergência da série original pelo convergência da série dos módulos. Uma vez que a série dos módulos é sempre uma série de termos não negativos, podemos aplicar qualquer um dos testes que vimos anteriormente: integral, comparação, razão ou raiz.

Exemplo:

13) Mostre que a série $\sum_{n=1}^{\infty} \frac{\operatorname{sen} n}{n^2}$ é convergente.

A série dos módulos, nesse caso, é $\sum_{n=1}^{\infty} \frac{|\sin n|}{n^2}$. Como

$$\frac{|\operatorname{sen} n|}{n^2} \leqslant \frac{1}{n^2},$$

para todo $n \ge 1$, a série dos módulos converge pelo teste da comparação pois a série $\sum_{n=1}^{\infty} 1/n^2$ converge. Portanto, a série $\sum_{n=1}^{\infty} (\operatorname{sen} n)/n^2$ também converge pelo teste da convergência absoluta.