STATS 111/202

Lecture 2: One-way and two-way tables

1/8/2025

Ana Maria Kenney

UC Irvine Department of Statistics

One-way tables

1.3

Contingency tables

Characteristic	Male	Female
Believe in it	32%	41%
Do not believe in it	49%	37%
Don't know	18%	22%
Skipped	1%	1%

4x2 contingency table

How to we compare across these different groups?

One-way table

	Believe in it	Do not believe in it
No. of responses	365	436

- Only have 2 outcomes (e.g., believe/don't believe)
- Say we have n observations, call each Y_i , where each one is a yes or no (1/0)
- Take n_0 as the no. of 0's and n_1 as the no. of 1's
 - $n_0 + n_1 = n$
- Then we want to estimate and provide inference on the probability a given trial is a 1 or 0 (e.g., believe in ghosts or not)
 - $p = P(Y_i = 1)$

One-way table: connection to Bernoulli/Binomial

- Note that if Y_i values are 0 or 1, then $n_1 = \sum_{i=1}^n Y_i$
- Recall, we have the sum of n independent Bernoulli random variables, so $n_1 \sim Binomial(n, p)$
- Then to estimate the probability of success p, we take $\hat{p} = \frac{n_1}{n}$

Note: this is the maximum likelihood estimate of p

- Again, from properties of the Binomial, we have
 - $E(\hat{p}) = p$
 - $Var(\hat{p}) = \frac{p(1-p)}{n}$

Note: if we have a constant c and random variable Y then $var(cY) = c^2 var(Y)$

One-way table: confidence intervals

Now that we have a distribution to work off of, we can create **confidence intervals** and conduct **hypothesis tests** around p

• Let SE denote the estimated standard error of p. Then a large-sample $100(1-\alpha)\%$ confidence interval for p follows:

$$\hat{p} \pm z_{\frac{\alpha}{2}}(SE), SE = \sqrt{\hat{p}(1-\hat{p})/n}$$

- Where is the z-multiplier (right-tail probability is equal to $\alpha/2$ under a standard normal distribution)
 - E.g., for a 95% confidence interval: $\alpha = 0.05, z_{\alpha/2} = z_{0.025} = 1.96$

One-way table: confidence intervals

Now that we have a distribution to work off of, we can create **confidence intervals** and conduct **hypothesis tests** around p

• Let SE denote the estimated standard error of p. Then a large-sample $100(1-\alpha)\%$ confidence interval for p follows:

$$\hat{p} \pm z_{\frac{\alpha}{2}}(SE), SE = \sqrt{\hat{p}(1-\hat{p})/n}$$

- Where is the z-multiplier (right-tail probability is equal to $\alpha/2$ under a standard normal distribution)
 - E.g., for a 95% confidence interval: $\alpha=0.05$, $z_{\alpha/2}=z_{0.025}=1.96$

Q: why are we using a standard normal distribution when considering binomial outcomes?

One-way table: confidence intervals

Now that we have a distribution to work off of, we can create **confidence intervals** and conduct **hypothesis tests** around p

• Let SE denote the estimated standard error of p. Then a large-sample $100(1-\alpha)\%$ confidence interval for p follows:

$$\hat{p} \pm z_{\frac{\alpha}{2}}(SE), SE = \sqrt{\hat{p}(1-\hat{p})/n}$$

- Where is the z-multiplier (right-tail probability is equal to $\alpha/2$ under a standard normal distribution)
 - E.g., for a 95% confidence interval: $\alpha=0.05$, $z_{\alpha/2}=z_{0.025}=1.96$

Q: why are we using a standard normal distribution when considering binomial outcomes?

A: As n increases, the distribution of the sample proportion, \hat{p} , is approximately normal (CLT!)

The rule of sampling proportions sets thresholds of $np \ge 10$ and $n(1-p) \ge 10$

One-way table: hypothesis tests

- Now suppose we want to test a specific proportion p_0 (e.g, "I want to know whether 60% of people believe in ghosts").
- Then we take the null hypothesis H_0 : $p = p_0$ vs the alternative H_a : $p \neq p_0$ (or $p < p_0$, $p > p_0$)
- We consider the test statistic

$$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_o(1 - p_0)}{n}}}$$

One-way table: hypothesis tests in R

- To do these computations in R, we can use the function prop.test $(n_1, n, p_0, alternative)$ where
 - n_1 : total number of 1's or successes (no. of people who believe in ghosts)
 - *n*: total number of samples (no. of people in study)
 - π_0 : the hypothesized proportion ("I think $p_0=0.6$ of the population believes in ghosts")
 - Alternative: type of alternative hypothesis "two.sided" (≠), "less" (<), or "greater" (>)

	Believe in it	Do not believe in it
No. of responses	365	436

•
$$n = 365 + 436 = 801$$

•
$$n_1 = 365$$

• $p_0 = 0.6$ (whatever is being hypothesized)

•
$$\hat{p} = \frac{365}{801} = 0.4556804$$

• $H_0: p = 0.6 \ vs \ H_a: p \neq 0.6$

```
> prop.test(365,801,0.6,alternative="two.sided")

1-sample proportions test with continuity correction

data: 365 out of 801, null probability 0.6

X-squared = 68.914, df = 1, p-value < 2.2e-16

alternative hypothesis: true p is not equal to 0.6

95 percent confidence interval:
    0.4208666 0.4909249

sample estimates:
    p

0.4556804</pre>
```


	Believe in it	Do not believe in it
No. of responses	365	436

•
$$n = 365 + 436 = 801$$

•
$$n_1 = 365$$

• $p_0 = 0.6$ (whatever is being hypothesized)

•
$$\hat{p} = \frac{365}{801} = 0.4556804$$

• $H_0: p = 0.6 \ vs \ H_a: p \neq 0.6$

```
> prop.test(365,801,0.6,alternative="two.sided")

1-sample proportions test with continuity correction

data: 365 out of 801, null probability 0.6

X-squared = 68.914, df = 1, p-value < 2.2e-16

alternative hypothesis: true p is not equal to 0.6

95 percent confidence interval:
    0.4208666 0.4909249

sample estimates:
    p

0.4556804
```

Conclusion: we reject the null that the proportion is equal to 0.6 and have evidence to support the alternative

	Believe in it	Do not believe in it
No. of responses	365	436

•
$$n = 365 + 436 = 801$$

•
$$n_1 = 365$$

• $p_0 = 0.6$ (whatever is being hypothesized)

•
$$\hat{p} = \frac{365}{801} = 0.4556804$$

• H_0 : $p = 0.6 \text{ vs } H_a$: $p \neq 0.6$

```
> prop.test(365,801,0.6,alternative="two.sided")

1-sample proportions test with continuity correction

data: 365 out of 801, null probability 0.6

X-squared = 68.914, df = 1, p-value < 2.2e-16

alternative hypothesis: true p is not equal to 0.6

95 percent confidence interval:
    0.4208666 0.4909249

sample estimates:
    p

0.4556804
```


	Believe in it	Do not believe in it
No. of responses	365	436

•
$$n = 365 + 436 = 801$$

•
$$n_1 = 365$$

• $p_0 = 0.6$ (whatever is being hypothesized)

•
$$\hat{p} = \frac{365}{801} = 0.4556804$$

• H_0 : $p = 0.6 vs H_a$: $p \neq 0.6$

```
> prop.test(365,801,0.6,alternative="two.sided")

1-sample proportions test with continuity correction

data: 365 out of 801, null probability 0.6

X-squared = 68.914, df = 1, p-value < 2.2e-16

alternative hypothesis: true p is not equal to 0.6

95 percent confidence interval:
 0.4208666 0.4909249

sample estimates:
 p
```

Conclusion: we reject the null and have evidence supporting the alternative that less than 60% of people believe in ghosts

0.4556804

One-way table: hypothesis tests in R

If the p-value < significance level α , then reject the null and conclude evidence for the alternative

If the p-value > significance level α , then fail to reject the null and do not conclude evidence for the alternative

	Believe in it	Do not believe in it	Don't know	Skipped
No. of responses	365	436	203	10

- Can extend this approach beyond two categories
- Now each Y_i (e.g., individual surveyed about ghosts) can select one of k > 2 choices
- Then instead of just one (true population) proportion p, we have k, p_1 , p_2 , ..., p_k
- Now we can actually test different proportions for each one!
 - E.g., "I think 40% believe, 20% don't, 10% don't know, and 30% ignored the ghost question"
- Null H_0 : $p_1 = p_{0_1}$, $p_2 = p_{0_2}$, ..., $p_k = p_{0_k}$
- Alternative is trickier, any option that is no the null. So at least one category where $p_i \neq p_{0_i}$

One-way table: more than two categories (k > 2)

Now we consider a new test statistic

$$\chi^2 = \sum_{j=1}^k \frac{\left(O_j - E_j\right)^2}{E_j}$$

- Where we have
 - O_j : no. of observations/samples in category j
 - E_j : expected no. of observations in category j under the null, more specifically this is computed taking $E_j = np_{0j}$ (n is the sample size, p_{0j} is the hypothesized proportion for the jth category)
- This follows (approximately) a chi-square distribution with k-1 degrees of freedom (d.f.)

Now we consider a new test statistic

$$\chi^2 = \sum_{j=1}^k \frac{\left(O_j - E_j\right)^2}{E_j}$$

- Where we have
 - O_j : no. of observations/samples in category j
 - E_j : expected no. of observations in category j under the null, more specifically this is computed taking $E_j = np_{0j}$ (n is the sample size, p_{0j} is the hypothesized proportion for the jth category)
- This follows (approximately) a chi-square distribution with k-1 degrees of freedom (d.f.)

E.g., $O_{Believe} = 365$, $E_{Believe} = 1014 \times 0.4$ (if we think 40% believe)

	Believe in it	Do not believe in it	Don't know	Skipped
No. of responses	365	436	203	10

- In R, we use chisq.test(x,p) where
 - x is a vector of counts for each category (the above table)
 - p is a vector of the p_{0i} hypothesized proportions we want to test against
- Let's say we want to test whether the true proportion of believers is 40%, do not believe
 50%, don't know is 8%, and skipped is 2%
 - $H_0: p_{Believer} = 0.4, p_{don't\ believe} = 0.5, p_{don't\ know} = 0.08, p_{skip} = 0.02$
 - Equivalent to H_0 : $p_{Believer} = 0.4$, $p_{don't\ believe} = 0.5$, $p_{don't\ know} = 0.08$
 - H_a : at least one category is not equal to its hypothesized proportion

	Believe in it	Do not believe in it	Don't know	Skipped
No. of responses	365	436	203	10

> chisq.test(x=c(365,436,203,10),p=c(0.4,0.5,0.08,0.02))

Chi-squared test for given probabilities

data: c(365, 436, 203, 10) X-squared = 202.34, df = 3, p-value < 2.2e-16

Conclusion: at a 0.05 significance level, we can reject the null and have evidence to support the alternative that at least one proportion is not equal to the hypothesized value

	Believe in it	Do not believe in it
Male	100	372
Female	138	309

- Now we can add a possible explanatory variable to account for a single categorical variable (with $k \ge 2$ categories).
- The goal is to investigate whether a statistically signification relationship exists between the response and categorical response variable.

General example

	Y=1	Y=0	Total
X=1	n_{11}	n_{12}	$n_{1+} = n_{11} + n_{12}$
X=0	n_{21}	n_{22}	$n_{2+} = n_{21} + n_{22}$
Total	$n_{+1} = n_{11} + n_{21}$	$n_{+2} = n_{12} + n_{22}$	n

Consider the scenario where a fixed number of subjects with X=0 and X=1 are sampled, and then we observe to see if they result in a Y=0 or Y=1

- Here n_{1+} and n_{2+} are fixed
- Take $p_0 = P(Y = 1|X = 0)$ and $p_1 = P(Y = 1|X = 1)$
- Then $n_{11} \sim Binomial(n_{1+}, p_1)$ and $n_{21} \sim Binomial(n_{2+}, p_0)$
- We compare p_0 to p_1

Other important quantities:

- Risk difference $RD = p_1 p_0$
- Relative risk (risk ratio): $RR = \frac{p_1}{p_0}$
- Odds ratio OR= $\frac{p_1/(1-p_1)}{p_0/(1-p_0)}$
- Odds is the probability of an event divided by the probability of no event