

TP conception de récépteur

Othmane Elhour

Deuxième année Département Sciences du Numérique Option Télécommunications et Réseaux 2023--2024

${\bf Contents}$

1	Etu	de en boucle ouverte	:
2	Etu 2.1	de en boucle fermée Acquisition	4
	2.2	Gigue en fonction de BlT	
	2.3	Gigue en fonction de Eb/No	(
L	ist	of Figures	
	1	Shéma equivalent boucle ouverte	;
	2	la caractéristique du détecteur (courbe en S)	;
	3	Shéma equivalent boucle fermée	
	4	la réponse à un saut de phase de 10° pour Eb/No=100 dB	
	5	la réponse à un saut de phase de 10° pour Eb/No=7 dB	
	6	la réponse à un saut de fréquence de df/Rs=1% pour Eb/No=100 dB	
	7	la réponse à un saut de fréquence de df/Rs=1% pour Eb/No=7 dB	
	8	gigue en fonction de BlT	
	9	gique en fonction de Eb/No	

1 Etude en boucle ouverte

Dans un premier temps, nous analysons une boucle ouverte de phase avec le shéma équivalent ci-dessous.

Figure 1: Shéma equivalent boucle ouverte

Nous utilisons une modulation QPSK, l' expression de détecteur d'erreur de phase porteuse est donnée par: $u\left(k\right)=-Im\left\{\left(p\left(k,\widehat{\tau}\right)e^{-j\widetilde{\theta}}\right)\right\}$.

Cette expression devient : $u(k) = 4g^2(0)\sin(4(\theta - \widetilde{\theta}))$. Ce qui nous permet de tracer la caractéristique du détecteur, sur une plage d'erreur de phase [-180:180], pour une valeur de Eb/N0 = 7, on obtient :

Figure 2: la caractéristique du détecteur (courbe en S)

On peut voir que la phase de la porteuse est récupérée avec une ambiguïté de $k\pi/2$, ce qui va perturber le démodulation. Pour résoudre ce problème on peut utiliser un codage differentiel.

2 Etude en boucle fermée

Dans cette partie, nous étudions la boucle de phase fermée:

Figure 3: Shéma equivalent boucle fermée

2.1 Acquisition

On trace la réponse à un saut de phase de 10° pour Eb/No=100 dB et Eb/No=7 dB:

Figure 4: la réponse à un saut de phase de 10° pour Eb/No=100 dB

Figure 5: la réponse à un saut de phase de 10° pour Eb/No=7 dB

On trace la réponse à un saut de fréquence de df/Rs=1% pour Eb/No=100 dB et Eb/No=7 dB:

Figure 6: la réponse à un saut de fréquence de df/Rs=1% pour Eb/No=100 dB

Figure 7: la réponse à un saut de fréquence de df/Rs=1% pour Eb/No=7 dB

2.2 Gigue en fonction de BlT

Le tracé de la gigue de phase en fonction de BIT donne :

Figure 8: gigue en fonction de BlT

On peut bien vérifier que la gigue est proportionnelle à BIT.

2.3 Gigue en fonction de Eb/No

Le tracé de la gigue de phase en fonction de Eb/No donne :

Figure 9: gigue en fonction de Eb/No

On peut bien vérifier que la gigue est inversement proportionnelle à Eb/No.