APM 2013

The Advanced Process Modelling Forum

17-18 April 2013, London

Whole-chain system modelling for CCS

Accelerating deployment and managing risk

Alfredo Ramos - Head of CCS & Power Business

Introduction to systems modelling - overview

- Objectives of this presentation
- CCS System Modelling Tool-kit project
- gCCS overview & demonstration
 - Model libraries
 - Physical properties
 - Interfaces

Objectives

- Provide an introduction to the ETI's CCS System Modelling Tool-kit (SMTK) project
 - Context:
 - Key role played by model-based approaches in reducing technological and financial risk
 - Why is it necessary to adopt a system-wide approach covering the whole CCS chain?
 - Requirements & timelines
- Demonstrate gCCS's capabilities
 - Tool-kit's approach to whole- and partial chain modelling
 - Current functionality (available models, interfaces, etc.)
 - Examples for pulverised-coal power plants, compression, transmission & injection

CCS system modelling tool-kit project

Energy Technologies Institute (ETI)

- Public-private partnership between global industries and the UK Government set up with the objectives of
- energy technologies institute
- ensuring clean, secure and affordable energy supplies are available to power everyday living and business
- reducing greenhouse gas emissions to tackle the effects of climate change

The ETI is not a grant-giving body, but makes targeted investments in key technologies that will help the UK meet its' legally binding 2050 targets

The CCS landscape – stakeholders

System-wide modelling key enabling technology for CCS: benefits

- Explore complex decision space rapidly based on high-fidelity, technically realistic models
 - resolve own technical and economic issues
 - take into account upstream & downstream behaviour
- Manage interaction and trade-offs
- Evaluate technology existing and next-generation
 - judge relative merits of emerging technologies
 - support consistent, future-proof choices
- Integrating platform for
 - working with other stakeholders in chain
 - collaborative R&D, working with academia
- Manage complexity and risk at a multi-scale, network-wide level

System-wide modelling: Key enabling technology for CCS

energy technologies institute

- CCS System Modelling Tool-kit Project
 - Energy Technologies Institute (ETI)
 £3m project
 - E.ON, EDF, Rolls-Royce,Petrofac/CO2DeepStore, PSE, E4tech
- → Create a commercially available product
 - built on PSE's gPROMS platform
 - High-fidelity system-wide CCS modelling
 - Toolbox and ecosystem

technology & expertise

Goal

- A tool that goes a long way towards addressing the challenges in the commercialisation of CCS
- High-quality, validated first-principles models
 - common model basis consistency and quality
 - steady state and dynamics within same framework
 - consistent, accurate physical properties for near-pure CO₂ mixtures and amine-based solvents
- A 'common language' for industry and academic stakeholders
 - reduces duplication in modelling work (both industry & academia)
 - provides a custom modelling language for additional components
 - incorporate 3rd-party models

Model libraries

Model libraries

- Power generation
- Solvent-based CO₂ capture
- Compression & Liquefaction
- Transportation
- Injection in sub-sea storage
- Physical properties
 - Tailored to each sub-system in the CCS chain
- Interfaces to 3rd party modelling packages
- Detailed documentation of all tool-kit components

Timelines

Core model development

Testing & validation on case studies **APM** 2013

Tool-kit components / functionality

Model libraries
Physical properties
Interfaces

Model libraries – Overview

Model libraries – Overview

Power generation

- Conventional (coal-fired, CCGT) and non-conventional (oxy-fuel, IGCC)
- Solvent-based CO₂ capture
 - both chemical and physical processes
- Compression & Liquefaction
 - multi-stage, multi-section compressors, surge control valves, drives, etc.
- Transportation
 - on- and off-shore pipelines
- Injection in sub-sea storage
 - distribution headers, well connections, reservoir, etc.

Model libraries – Power plant

Complex flowsheet with > 10 recycles & a closed loop:

→ Component-specific initialisation procedures ensure convergence without SVS

Model libraries – Power plant

Model libraries – Power plant

Model libraries – Power plant

Calibration vs. performance mode

Model libraries – Power plant

Combined Cycle Gas Turbine flowsheet

Model libraries – CO₂ Capture (chemical and physical absorption)

Model libraries – CO₂ Capture

High-fidelity component models

AML: GLC

- Non-equilibrium models
- Models distributed in axial direction and in the direction of the liquid and vapour films
- Energy balance and V/L equilibrium at the interface
- Phase behaviour and chemical equilibrium <u>currently</u> calculated by OLI thermodynamic package
 - to be replaced by gSAFT
- Transport properties
 - Obtained from correlations and Multiflash

Model libraries – CO₂ Capture

$$H_2O \Leftrightarrow H(+) + OH(-)$$

 $HCO_3(-) + OH(-) \Leftrightarrow CO_3(-) + H2O$
 $CO_2 + OH(-) \Leftrightarrow HCO_3(-)$
 $CO_2 + MEXH \Leftrightarrow MEXCO_2(-) + H(+)$
 $MEXH + H2O \Leftrightarrow MEXH_2(+) + OH(-)$

Transversal and axial profiles for the reaction rate of carbamate formation

Carbamate formation, kinetically controlled reaction

Model libraries – CO₂ Capture

Different level of fidelity for systems modelling

High-level Amine-based Capture
 Plant

Model libraries – CO₂ Capture (pre-combustion)

- Different level of fidelity for systems modelling
 - High-level Air Separation Unit

Model acts as Source of O₂ and N₂ and calculates power demand

Model libraries – CO₂ Compression & Liquefaction

Model libraries – CO₂ Compression & Liquefaction

- Operational studies control: Surge avoidance
 - Increase volumetric flowrate in the compressor
 - Recycle compressed flow to the inlet through a recycle loop

Fig. 4 – Cooled recycle loop used in surge control.

Fig. 5 – Non-cooled recycle loop used in surge control.

Detailed reports

System dynamics

Simulating line-packing operation: Sudden valve closure

- Assumed constant inlet flowrate at CO2Source (275tonnes CO₂ per day)
- Gas phase injection with discharge pressure in CO2 sink
 21bara
- Total pipeline length 132.2km
- Pipeline is located offshore (in water)

Model libraries – CO₂ Transmission and Injection/Storage

- System dynamics
 - Simulating line-packing operation: Sudden valve closure

Model libraries – CO₂ Transmission and Injection/Storage

Model verification: e.g. Kingsnorth FEED pipeline design

Figure 3-3 Assumed Onshore Pipeline Profile HOLD 9

	Kingsnorth pipeline ΔP (bar)	gCCS pipeline ΔP	% Error
Dense phase	7.6	7.18	5.59
Gas phase	5.6	5.31	5.18

	temperature at	gCCS fluid temperature at top of riser (K)	Absolute error in T (K) at top of riser
Dense phase	3.6	4.47	0.87
Gas phase	3.0	3.27	0.27

Interface | Specification | Topology | gPROMS language | Properties

Physical properties

- Different material/species within the same sub-system
 - e.g. in power plant: coal, water, flue gas
- Different materials/species in different sub-systems
 - e.g. MEA in CO₂ capture plant
- Need different thermodynamic models for different materials, e.g.
 - cubic EoS (PR 78) for flue gas in power plant
 - Corresponding States (Steam Tables) for pure water

gPROMS Properties (Multiflash®)

- SAFT for amine-containing streams in CO₂ capture
- SAFT for near-pure post-capture CO₂ streams

- Transport properties obtained from gPROMS Properties
 - models/ correlations

Why gSAFT?

Accurate physical property predictions for CO₂ absorption

Ternary mixture of diethanolamine (DEA) + H₂O+ CO₂

Why gSAFT?

Accurate physical property predictions for CO₂ absorption

Ternary mixture of 2-amino-2-methyl-1-propanol (AMP) + H₂O+ CO₂

Why gSAFT?

Accurate prediction of phase envelope for near-pure CO₂ mixtures

Interfaces to 3rd party modelling tools

- Direct interfacing / co-simulation based on gPROMS's
 Foreign Object (FO) interface
 - Steady-state modelling and simulation packages (E.ON's PROATES)
 - Equipment design tools
 (Rolls-Royce's CompPerform/CompSelect)
- Model fitting
 - Incorporate reduced-order models of high-fidelity equipment models

Summary

What is gCCS?

- A system-wide gPROMS-based modelling platform for "full" CCS chains
 - Build and validate models
 - Simulate CCS systems from source to sink within a single environment
 - Optimise entire CCS chains or parts thereof
- ... with pre-installed components for
 - Conventional (coal-fired, CCGT) and non-conventional (oxy-fuel, IGCC) power generation
 - Solvent-based CO₂ capture (both chemical and physical processes)
 - Compression & Liquefaction
 - Transportation (on- and off-shore pipelines)
 - Injection in sub-sea storage
 - State-of-the-art physical properties models for the mixtures along the CCS chain
- ... considering various levels of complexity

When?

Now

- Conventional power (PC, CCGT), capture (chemical absorption), compression & transportation/injection models
- Full chain simulation demonstrated
- gCCS v1.0 alpha available for evaluation to selected
 - universities & research consortia
 - lead users among industrial partners
- Interfaces to 3rd-party models
- Soon (3-6 month timescale)
 - IGCC, oxyfuel power generation
 - Capture physical absorption
 - Integration with advanced physical properties engine (SAFT-γ Mie)
- To follow (9 month 1-year timescale)
 - Costing
 - Project-ready environment

PSE products

Thank you!

APM 2013

The Advanced Process Modelling Forum