REPRESENTATIVE-BASED CLUSTERING

Given the dataset with m points in a d-dimensional space, $D = \{x_i\}_{i=1}^m$, and given the number of desired clusters k, the goal of representative-based clustering is to partition the dataset into k groups or clusters, which is called a clustering and is denoted as $C = \{C_1, C_2, ..., C_k\}$. In addition for each cluster C_i there exist a representative point that summarizes the cluster, a common choice being the mean (also called the centroid) μ_i of all points in the cluster, that is:

$$\mu_i = \frac{1}{m_i} \sum_{x_i = C_i} x_j$$

where $m_i = |C_i|$ is the number of points in cluster C_i .

In this class we describe one approach for representative-based clustering, namely the K-means algorithm.

K-MEANS CLUSTERING ALGORITHM

Given a clustering $C = \{C_1, C_2, ..., C_k\}$ we need some scoring function that evaluates its quality or goodness. The sum of squared errors scoring function is defined as:

$$SSE(C) = \sum_{i=1}^{k} \sum_{x_j \in C_i} ||x_j - \mu_i||^2$$

The goal is to find a clustering that minimizes the SSE score:

$$C^* = argmin_c(SSE)$$

- K-means initializes the cluster means by randomly generating k points in the data space. This is done by generating a value uniformly at random within the range for each dimension.
- Each iteration of K-Means consists of two steps:
 - Cluster assignment
 - Centroid update

Given the k cluster mean, in the cluster assignment step, each point $x_i \in D$ is assigned to the closest mean, which induces a clustering, with each cluster C_i comprising points that are closer to μ_i than any other cluster mean.

This means each point x_i is assigned to cluster C_{j^*} , where

$$J^* = argmin_{i=1}^{k} \{ \|x_j - \mu_i\|^2 \}$$

Given a set of cluster C_i , i = 1, ..., k, in the centroid update step, new mean values are computed for each cluster from the points in C_i . The

The cluster assignment and centroid update steps are carried out iteratively until we reach a fixed point or local minima. Though practically speaking, one can assume that K-means has converged if the centroids do not change from one iteration to the next.

K-MEANS CLUSTERING ALGORITHM PSEUDO CODE

t = 0

Randomly initialize k centroids: $\mu_1^t, \mu_2^t, \dots, \mu_k^t \in \mathbb{R}^d$

Repeat:

$$t \leftarrow t+1$$

$$C_{j} \leftarrow \emptyset \text{ for all } j = 1, ..., k$$
// Cluster Assignment Step

foreach $x_{j} \in D$ do
$$j^{*} \leftarrow argmin_{i} \left\{ \left\| x_{j} - \mu_{i}^{t} \right\|^{2} \right\} / / \text{ Assign } x_{j} \text{ to the closest centroid}$$

$$C_{j^{*}} \leftarrow C_{j^{*}} \cup \left\{ x_{j} \right\}$$
// Centroid Update Step

foreach $i = 1$ to k do
$$\mu_{i}^{t} \leftarrow \frac{1}{|C_{i}|} \sum_{x_{j} \in C_{i}} x_{j}$$

Until $\sum_{i=1}^{k} \left\| \mu_i^t - \mu_i^{t-1} \right\|^2 \le \varepsilon$

ALTERNATIVE CHOICES FOR PROXIMITY, CENTROID AND OBJECTIVE FUNCTION FOR KMEANS ALGORITHM

There are a number of choices for the proximity function, centroid and objective function that can be adopted for basic K-Means algorithm to guarantee convergence (See the table below).

Proximity Functions	Centroid	Objective Function
Manhattan (L1)	median	Minimize sum of the L1 distance of an object to its cluster centroid
Squared Euclidean(L_2^2)	mean	Minimize sum of the squared L_2 distance of an object to its cluster centroid
Cosine	mean	Maximize sum of the cosine similarity of an object to its cluster centroid
Bregman divergence	mean	Minimize sum of the Bregman divergence of an object to its cluster centroid

ISSUES WITH K-MEANS ALGORITHM

- The random initialization approach of centroids can return poor results. So what is the solution?
- We have to specify the number of clusters, *K*. Alternatively use the *Elbow method* to find the optimal value of K.
- Empty cluster can be obtained if no points are allocated to a cluster during assignment step
- Outliers can unduly influence the clusters that are found when a squared error criterion is used.
- We have to specify the number of clusters, K

READING ASSIGNMENT: K-MEANS ++ ALGORITHM?

REFERENCE TEXTBOOOK

Tan, P., Steinbach, M., Karpatne, A. & Kumar, V., 2019. *Introduction to Data Mining*. 2nd ed. New York: Pearson Education.

Zaki, M. J. & Wagner, M., 2014. *Data Mining and Analysis: Fundamental Concepts and Algorithms*. New York: Cambridge University Press.