TRIGONOMETRY Chapter 16

Razones Trigonométricas de un ángulo en posición normal II

DESCARTES, LA MOSCA Y LAS COORDENADAS CARTESIANAS

Debido a la precaria salud que padecía desde niño, René Descartes tenía que pasar

innumerables horas en cama.

Teniendo su vista perdida en el techo de la estancia fue una mosca a cruzarse en su mirada, cosa que hizo que la siguiera con la vista, mientras pensaba y se preguntaba si se podría determinar a cada instante la posición que tendría el insecto, por lo que pensó que si se conociese la distancia a dos superficies perpendiculares, en este caso la pared y el techo, se podría saber.

Mientras le daba vueltas a esto se levanto de la cama y agarrando un trozo de papel dibujó sobre él dos rectas perpendiculares: cualquier punto de la hoja quedaba determinado por su distancia a los dos ejes. A estas distancias las llamó coordenadas del punto: acababan de nacer las Coordenadas Cartesianas, y con ellas, la **Geometría Analítica**

É ÁNGULO EN POSICIÓN NORMAL

Son aquellos ángulos trigonométricos cuyo vértice está en el origen de coordenadas y su lado inicial coincide con el semieje positivo de las abscisas, y su lado final puede ubicarse en cualquier cuadrante o semieje del plano cartesiano.

NOTA:

Tenemos ángulos positivos y negativos. según el sentido de giro

DONDE:

θ: medida del ángulo en posición normal

OBSERVACIÓN

La posición del lado final del ángulo en posición normal determina el cuadrante al que pertenece.

DEFINICIÓN DE LAS R.T PARA UN ÁNGULO EN POSICIÓN NORMAL

DONDE:

x: abscisa del punto P

y: ordenada del punto P

r: radio vector del punto P

NOTA:
$$r = \sqrt{x^2 + y^2}$$
 ; $r > 0$

SE DEFINE:

$$\cot \theta = \frac{\text{abscisa del punto P}}{\text{ordenada del punto P}} = \frac{x}{y}$$

$$\sec\theta = \frac{\text{radio vector del punto P}}{\text{abscisa del punto P}} = \frac{r}{x}$$

$$csc\theta = \frac{\text{radio vector del punto P}}{\text{ordenada del punto P}} = \frac{r}{y}$$

Complete los casilleros en blanco.

Recordar:

$$r = \sqrt{(x)^2 + (y)^2}$$

RESOLUCIÓN:

Calculamos el radio vector:

$$r = \sqrt{(-6)^2 + (8)^2}$$
36 64

$$r = \sqrt{100}$$

$$ightharpoonup r = 10$$

Luego:

$$x = -6$$

$$y = 8$$

$$r = 10$$

Llenamos los espacios en blanco:

$$\cot\theta = \frac{-6}{8} \mid \sec\theta = \frac{10}{-6} \mid \csc\theta =$$

$$\cot\theta = -\frac{3}{4}$$

$$\sec\theta = \frac{10}{-6}$$

$$\sec\theta = -\frac{5}{3}$$

$$csc\theta = \frac{10}{8}$$

$$csc\theta = \frac{5}{4}$$

Del gráfico, calcule $\cot^2\beta$.

$$\cot \beta = \frac{x}{y}$$

RESOLUCIÓN:

Del gráfico:

$$x = \sqrt{2} \qquad y = -1$$

Calculamos: cot²β

$$\Rightarrow \cot \beta = \frac{\sqrt{2}}{-1}$$

$$\cot^2 \beta = \left(\frac{\sqrt{2}}{-1}\right)^2$$

$$\therefore \cot^2 \beta = 2$$

Del gráfico, efectúe

$$N = \csc \beta - \cot \beta$$

Recordar:

$$csc\beta = \frac{r}{y} \qquad cot\beta = \frac{\lambda}{y}$$

RESOLUCIÓN:

Calculamos el radio vector:

$$r = \sqrt{(x)^2 + (y)^2}$$

$$r = \sqrt{9^2 + 12^2}$$
 $r = \sqrt{225}$ $r = 15$

$$x = 9$$
 $y = 12$ $r = 15$

Calculamos: $N = \csc \beta - \cot \beta$

$$N = \frac{15}{12} - \frac{9}{12} \implies N = \frac{6}{12}$$

HELICO | PRACTICE

Si el punto P(-4; -3) pertenece el lado final del ángulo α en posición normal.

Calcule $E = 9\cot\alpha - 16\sec\alpha$

RESOLUCIÓN:

Calculamos el radio vector

$$r = \sqrt{(x)^2 + (y)^2}$$

$$r = \sqrt{(-4)^2 + (-3)^2}$$

$$r = \sqrt{16 + 9}$$

$$r=\sqrt{25}$$

$$r = 5$$

$$x = -4$$
 $y = -3$ $r = 5$

Calculamos: $E = 9\cot\alpha - 16\sec\alpha$

$$= 3 \times \left(\frac{-4}{3}\right) - 16 \times \left(\frac{5}{4}\right)_{1}$$

$$E = 12 + 20$$

 $\therefore E = 32$

Del gráfico, calcule el valor

de "a", si
$$\cot \alpha = -\frac{3}{4}$$

RESOLUCIÓN:

Del gráfico

$$\cot \alpha = \frac{a}{2-a} \dots (1)$$

Del dato

$$\cot \alpha = -\frac{3}{4} \quad ...(II)$$

De (I) y (II)

$$\frac{a}{2-a}=-\frac{3}{4}$$

$$4a = -6 + 3a$$

$$\therefore a = -6$$

La nota del examen mensual de Camila en el curso de trigonometría es A + 6. Para calcularlo deberás resolver lo siguiente: A = 18cotβ

¿Cuál es dicha calificación?

RESOLUCIÓN:

Calculamos las coordenadas del punto M:

$$\begin{cases}
 x = \frac{-10 - 2}{2} = -6 \\
 y = \frac{-8 - 10}{2} = -9
\end{cases}$$

Luego:

$$x = -6 \qquad y = -9$$

Operamos: $A = 18\cot\beta$

$$A = 18 \left(\frac{-6}{-9} \right)_{1}$$

:. Camila tuvo 18 de nota

HELICO | PRACTICE

En el gráfico mostrado OS=8 y RS=ST; además las coordenadas del punto T son (2;-6). A partir de la información brindada determine el valor de verdad de las siguientes preposiciones

RESOLUCIÓN:

I) Las coordenadas del punto R son(-16;6)

Observamos que S es punto medio de RT:

$$x = \frac{x_1 + x_2}{2}$$
 $\rightarrow -8 = \frac{x_1 + 2}{2}$ $\rightarrow x_1 = -18$

$$y = \frac{y_1 + y_2}{2} \quad \Rightarrow \quad 0 = \frac{y_1 + (-6)}{2} \quad \Rightarrow \quad y_1 = 6$$

FALSO

II)
$$\cot \alpha = -3$$

$$x = -18$$
 $y = 6$

∴
$$\cot \alpha = -3$$

VERDADERO

III)
$$6\sqrt{10}$$
. $\cos \alpha = 18$

$$r = \sqrt{(-18)^2 + 6^2}$$

$$r = \sqrt{324 + 36}$$

$$r = \sqrt{360}$$

$$r = 6\sqrt{10}$$

$$6\sqrt{10}.\cos\alpha = 6\sqrt{10}.\left(\frac{-18}{6\sqrt{10}}\right)$$

$$6\sqrt{10}$$
. $\cos\alpha = -18$

FALSO