GUIDED CAPSTONE PROJECT PRESENTATION

NAZILA GUNDOGDU

PROBLEM STATEMENT

- With \$1,540,000 cost for an additional chair, we need to strategize to recoup this investment. Two avenues to explore are:
 - Increasing our ticket prices for the season
 - Introducing some changes to cut costs elsewhere

RECOMMENDATION AND KEY FINDINGS

- A price increase of \$1.99 (from current \$81 to \$82.99)
- Adding an additional run
- Increasing the vertical drop by 150 feet

Raw Data sources:

- Resort data provided by Alesha Eisen, our database manager (size: 330 by 27)
- Population data obtained from open source

After Cleaning:

- Dataset I
 - 7 features including state population and area _ later replaced by resort density per 100K capita and 100K square miles
 - Used for comparative cross-state study
- Dataset II
 - Size: 277 resorts with 29 features.
 - Used for modeling

Step I: Comparative Cross-State Study → Inconclusive as no clear pattern emerged

Feature	Montana's Status
State Area	3rd
# of Resorts/State	I 2th
Resort density per 100K capita	4th
Resort density per 100K sq miles	>20th

- Step 2: Custom Dataset → Inconclusive
 - New dataset including resort densities per state, merged with TerrainParks,
 SkiableTerrain_ac, daysOpenLastYear, and NightSkiing_ac from our resort information dataset
 - PCA and dimensionality reduction → same result as Step I with no clear pattern emerging

- Step 3: Back to original dataset + feature engineering → First Direction
 - Added the following 4 features to the data:
 - ratio of resort skiable area to total state skiable area
 - ratio of resort days open to total state days open
 - ratio of resort terrain park count to total state terrain park count, and
 - ratio of resort night skiing area to total state night skiing area
 - Ran a state-wide comparative study
 - Heatmap (next slide) revealed correlation between features

- Step 4: Modeling
 - Baseline Model:
 - Mean → Mean Absolute Error (MAE) = \$19
 - Median \rightarrow MAE = \$9 \rightarrow The winner method!
 - Model I: Linear Regression
 - Showed no improvement on baseline model using median
 - Cross-validation: 8 is optimal number of features; top 4 being vertical_drop, Snow Making_ac, total_chairs and fastQuads
 - Model II: Random Forests → The winner model!
 - Top 4 features: fastQuads, Runs, Snow Making_ac, and vertical_drop
 - MAE= \$1 less than Linear Regression model

- Step 5: Scenarios and Prediction
 - Model prediction: room for increasing the ticket price over \$15 with an error margin of \$10.39
 - 4 scenarios explored
 - Closing runs: showed negative effect
 - Adding Runs, Increasing Vertical Drop by 150 feet and Adding a Chair Lift: supports price increase of \$1.99 → The winner scneraio!
 - Previous option + Adding 2 Acres of Snow Making: no difference from previous option
 - Increasing the Longest Run by .2 miles + adding 4 acres of snow making capability: shows no effect

SUMMARY AND CONCLUSION

What we did

- Cross-state comparison did not show clear patterns in terms of area, population, number of resorts, etc. We could not use this data as is to make price predictions
- State-wide comparison of various resorts, their prices and the services they offer turned out to be more fruitful
- Linear Regression and Random Forests were compared and the latter was picked due to lower MAE
- Following cross-validation, 8 features turned out to be the most relevant to ticket prices
- Using these 8 features and modeling some plausible scenarios, the following is concluded

Conclusion and Recommendation

- A price increase of \$1.99
- I additional run
- Increasing the vertical drop by 150 feet.