Полное строгое определение локального и глобального Гессиана второго порядка в произвольной нейронной архитектуре

Аноним

Аффилиация anonymous@example.com

June 10, 2025

Abstract

В данной статье представлено исчерпывающее математически строгое определение Гессиана второго порядка для нейронных сетей произвольной архитектуры, заданной направленным ациклическим графом. Существующие подходы к вычислению кривизны функции потерь нейронных сетей часто ограничиваются аппроксимацией Гаусса-Ньютона, учитывающей лишь часть вторых производных. В работе разработан полный формализм, учитывающий все чистые и смешанные вторые производные по входам и параметрам, кроссблоки между разными параметрами, а также механизмы разделения параметров Особое внимание уделено негладким активационным между узлами сети. функциям через использование Clarke-Гессиана. Для тривиального графа из единственного узла без потомков и предков предложенные формулы сводятся к стандартному Гессиану $\nabla^2_{\theta} \mathcal{L}(\theta) \in \mathbb{R}^{p \times p}$. Предложенный формализм предоставляет теоретический фундамент для углубленного анализа геометрических свойств функционала потерь и разработки более эффективных алгоритмов оптимизации нейронных сетей произвольной архитектуры.

1 Введение

Гессиан второго порядка $\nabla^2 \mathcal{L}$ играет фундаментальную роль в анализе кривизны функционала потерь и в разработке методов оптимизации нейронных сетей [Martens, 2014, Pascanu et al., 2013b]. Методы второго порядка, такие как методы Ньютона, trust-region методы и их модификации, требуют точной информации о кривизне функции потерь для эффективной оптимизации [Nocedal and Wright, 2006]. Однако в контексте глубоких нейронных сетей вычисление и хранение полного Гессиана становится вычислительно неприемлемым, что приводит к необходимости использования различных аппроксимаций.

Наиболее распространенный подход — аппроксимация Гаусса-Ньютона, которая учитывает лишь часть всех вторых производных, игнорируя существенные компоненты кривизны [Schraudolph, 2002, Martens, 2010]. В данной работе мы предлагаем полный формализм, закрывающий следующие пробелы в существующей литературе:

- чистые и смешанные вторые производные по *входам* каждого узла нейронной сети;
- чистые вторые производные по параметрам;
- ullet кросс-блоки $\partial^2/\partial\theta_v\,\partial\theta_w$ между параметрами разных узлов;
- смешанные вход-параметрические производные;
- учёт "разделения" (sharing) одного вектора параметров между несколькими узлами;
- обработка негладких активационных функций через методологию Clarke-Гессиана.

Особый случай: Если архитектура нейронной сети вырождается в единственный узел без потомков и предков, все предлагаемые определения естественным образом сводятся к стандартному Гессиану $\nabla^2_{\theta} \mathcal{L}(\theta) \in \mathbb{R}^{p \times p}$.

2 Связанные работы

Изучение геометрии функционала потерь нейронных сетей имеет долгую историю. Классические работы [Amari, 1998, Heskes, 2000] заложили основу для использования геометрической информации в оптимизации нейронных сетей. Особое значение имеет информационная геометрия и натуральный градиентный спуск, предложенный Амари [Amari, 1998].

В контексте вычисления Гессиана нейронных сетей, значительными являются работы [Martens, 2010, Martens and Sutskever, 2012], где представлены эффективные приближения Гессиана для глубоких нейронных сетей. Гаусс-Ньютон аппроксимация, которая игнорирует вторые производные функции потерь, часто применяется в практических алгоритмах из-за вычислительной эффективности и гарантии положительной полуопределенности.

Для негладких функций активации, таких как ReLU, традиционный анализ второго порядка неприменим. В работах [Clarke, 1990, Bolte and Pauwels, 2020] представлен обобщенный подход к недифференцируемым функциям через субдифференциальное исчисление и Clarke-градиенты. В нашей работе мы применяем

эти концепции непосредственно к нейронным сетям, предлагая полный формализм для анализа кривизны функции потерь.

Недавние работы [Ghorbani et al., 2019, Sagun et al., 2017] исследуют спектральные свойства Гессиана функций потерь нейронных сетей и их связь с обобщением. Наше исследование дополняет эти работы, предоставляя точный математический аппарат для вычисления всех компонентов Гессиана в произвольных архитектурах нейронных сетей.

3 Методология

3.1 Таблица обозначений

Для удобства восприятия сложных формул и структур, приведём систематизированную таблицу основных обозначений:

Table 1: Основные обозначения, используемые в работе

Символ	Определение	Размерность
v, w, u	Узлы нейронной сети	_
G = (V, E)	Направленный ациклический граф,	_
	представляющий нейронную сеть	
Pa(v)	Множество родительских узлов узла v	_
Ch(v)	Множество дочерних узлов узла v	_
f_v	Вектор выходов узла v	\mathbb{R}^{d_v}
θ_v	Вектор параметров узла v	\mathbb{R}^{p_v}
$\mathcal L$	Функция потерь	\mathbb{R}
δ_v	Градиент потерь по выходу узла v	\mathbb{R}^{d_v}
$D_{u \leftarrow v}$	Якобиан преобразования от узла v к узлу u	$\mathbb{R}^{d_u imes d_v}$
D_v	Якобиан выхода узла v по его параметрам	$\mathbb{R}^{d_v imes p_v}$
$T_{u;v}$	Тензор вторых производных выхода узла u по	$\mathbb{R}^{d_u \times d_v \times d_v}$
	входу от узла v	
$T_{u;v,w}$	Тензор смешанных вторых производных по	$\mathbb{R}^{d_u \times d_v \times d_w}$
	разным входам	
$T_{v;w,\theta}$	Тензор смешанных производных по входу и	$\mathbb{R}^{d_v \times d_w \times p_v}$
	параметрам	
T_v^{θ}	Тензор вторых производных по параметрам	$\mathbb{R}^{d_v imes p_v imes p_v}$
$H_{v,w}^f$	Блок входного Гессиана между узлами <i>v</i> и <i>w</i>	$\mathbb{R}^{d_v imes d_w}$
	Блок параметрического Гессиана	$\mathbb{R}^{p_v imes p_w}$
$H_{\theta_v,\theta_w} \\ \partial_C^2 f_v$	Clarke-Гессиан узла <i>v</i> (для негладкого случая)	множество
		матриц

Remark 1 (Соглашение об индексах). *В работе приняты следующие соглашения об индексах:*

- ullet i- индекс компоненты выхода узла $(f_v$ или $f_u)$
- \bullet j, k индексы компонент входов узлов
- $k,\ell-6$ контексте параметров, индексы компонент параметра θ_v
- ullet v,w,u- индексы узлов в графе нейронной сети

3.2 Функциональные пространства и аналитические предпосылки

Прежде чем перейти к определению компонентов и структуры Гессиана, необходимо формализовать функциональные пространства, в которых рассматривается задача, и уточнить аналитические предпосылки анализа.

Definition 1 (Функциональные пространства). В рамках данной работы рассматриваются следующие функциональные пространства:

- \mathbb{R}^n с евклидовой нормой $\|\cdot\|_2$ конечномерное гильбертово пространство параметров, активаций и градиентов.
- $C^2(\mathbb{R}^n, \mathbb{R}^m)$ пространство дважды непрерывно дифференцируемых функций из \mathbb{R}^n в \mathbb{R}^m , используемое для гладкого случая.
- $C^{1,1}(\mathbb{R}^n,\mathbb{R}^m)$ пространство непрерывно дифференцируемых функций с липшицевыми производными, используемое для негладкого случая.
- $PC^2(\mathbb{R}^n, \mathbb{R}^m)$ пространство кусочно дважды дифференцируемых функций, где каждый кусок принадлежит C^2 , а границы кусков образуют множество меры нуль.
- $L(\mathbb{R}^n, \mathbb{R}^m)$ пространство линейных операторов (матриц) из \mathbb{R}^n в \mathbb{R}^m с операторной нормой и нормой Фробениуса.

Assumption 1 (Регулярность функций узлов). Для каждого узла $v \in V$ нейронной cemu:

- 1. В гладком случае (Случай А): функция узла $g_v \in C^2(\mathbb{R}^{\sum_{u \in \operatorname{Pa}(v)} d_u}, \mathbb{R}^{d_v}), m.e.$ дважды непрерывно дифференцируема по всем входам и параметрам.
- 2. В негладком случае (Случай В): функция узла $g_v \in PC^2(\mathbb{R}^{\sum_{u \in Pa(v)} d_u}, \mathbb{R}^{d_v})$ и локально липшицева, т.е. является кусочно дважды дифференцируемой с границами кусков, образующими множество меры нуль.

Proposition 1 (Существование и непустота Clarke-субдифференциала). Для локально липшицевой функции $f: \mathbb{R}^n \to \mathbb{R}$, которая дифференцируема почти всюду (в смысле меры Лебега по теореме Радемахера), Clarke-субдифференциал $\partial_C f(x)$ определен и непуст во всех точках $x \in \mathbb{R}^n$. Более того, $\partial_C f(x)$ является выпуклым компактным множеством в метрическом пространстве $(L(\mathbb{R}^n, \mathbb{R}), \|\cdot\|_{op})$, где $\|\cdot\|_{op}$ — операторная норма.

Для векторнозначных функций $F: \mathbb{R}^n \to \mathbb{R}^m$ субдифференциал определяется покомпонентно, и Clarke-Гессиан $\partial_C^2 F(x)$ также существует при соответствующих условиях локальной липшицевости и почти всюду дифференцируемости компонент градиента ∇F_i .

Эти предпосылки гарантируют корректность всех последующих определений и вычислений, связанных с дифференцированием функций узлов нейронной сети как в гладком, так и в негладком случаях.

3.3 Модель нейронной сети и обозначения

Definition 2 (Архитектура нейронной сети). Рассматривается нейронная сеть, архитектура которой представлена в виде направленного ациклического графа (DAG) G = (V, E), где V — множество узлов сети, а E — множество направленных рёбер.

Для каждого узла $v \in V$ определены следующие компоненты:

Входы: $f_{\mathrm{Pa}(v)} \in \prod_{u \in \mathrm{Pa}(v)} \mathbb{R}^{d_u}$, где $\mathrm{Pa}(v)$ — множество родительских узлов для v.

Параметры: $\theta_v \in \mathbb{R}^{p_v}$ — параметры, связанные с узлом v.

Функция узла: $f_v = g_v(f_{\text{Pa}(v)}, \theta_v) \in \mathbb{R}^{d_v}$ — отображение, преобразующее входы и параметры в выход узла v.

Функция потерь: $\mathcal{L}: \mathbb{R}^{d_{out}} \to \mathbb{R}$ — функция потерь, определённая на выходном узле $out \in V$.

В зависимости от гладкости функций узлов, выделяем два принципиально различных случая:

- Случай A (гладкий). Все функции узлов g_v дважды непрерывно дифференцируемы по входам и параметрам, т.е. $g_v \in C^2$.
- Случай В (негладкий). В сети присутствуют негладкие функции активации, такие как ReLU, max-pooling и другие. В этом случае используется концепция Clarke-Гессиана $\partial_C^2 f_v$.

Вычисление всех блоков Гессиана осуществляется в *обратном топологическом порядке* по графу G, начиная с выходного узла out.

3.4 Градиенты первого порядка

Для разработки полного формализма Гессиана второго порядка необходимо сначала определить производные первого порядка, которые служат основой для дальнейших вычислений:

$$\delta_v := \nabla_{f_v} \mathcal{L}$$
 $\in \mathbb{R}^{d_v}$, (градиент потерь по выходу узла v) $\delta_{v,i} := [\delta_v]_i$, $i = 1, \ldots, d_v$, (компоненты градиента) $D_{u \leftarrow v} := \frac{\partial f_u}{\partial f_v}$ $\in \mathbb{R}^{d_u \times d_v}$, (якобиан по входу) $D_v := \frac{\partial f_v}{\partial \theta_v}$ $\in \mathbb{R}^{d_v \times p_v}$. (якобиан по параметрам)

Градиенты δ_v и якобианы $D_{u\leftarrow v}$, D_v являются основой цепного правила первого порядка и используются для вычисления производных функции потерь по параметрам сети.

3.5 Тензоры вторых производных

Для полного учёта всех вторых производных функций узлов вводятся следующие тензорные структуры:

$$[T_{u;v}]_{i,j,k} = \frac{\partial^2(f_u)_i}{\partial(f_v)_j \,\partial(f_v)_k} \in \mathbb{R}^{d_u \times d_v \times d_v}, \qquad v \in \operatorname{Pa}(u),$$

$$[T_{u;v,w}]_{i,j,k} = \frac{\partial^2(f_u)_i}{\partial(f_v)_j \,\partial(f_w)_k} \in \mathbb{R}^{d_u \times d_v \times d_w}, \qquad v, w \in \operatorname{Pa}(u), \quad v \neq w,$$

$$[T_{v;w,\theta}]_{i,j,k} = \frac{\partial^2(f_v)_i}{\partial(f_w)_j \,\partial(\theta_v)_k} \in \mathbb{R}^{d_v \times d_w \times p_v}, \qquad w \in \operatorname{Pa}(v),$$

$$[T_v^{\theta}]_{i,k,\ell} = \frac{\partial^2(f_v)_i}{\partial(\theta_v)_k \,\partial(\theta_v)_\ell} \in \mathbb{R}^{d_v \times p_v \times p_v}.$$

Remark 2 (Тензорная нотация и правила свертки). *В тензорных выражениях выше* и далее приняты следующие соглашения:

- Индекс i всегда относится к компоненте выхода соответствующего узла (f_u или f_v).
- ullet Индексы j u m относятся κ компонентам входов от родительских узлов.
- Индексы α и β (вместо иногда используемых k, ℓ) относятся κ компонентам параметров θ_v .

- Обозначение $[T]_{i,\bullet,\bullet}$ представляет матрицу (срез тензора), полученную фиксацией индекса i.
- При умножении на скаляр $\delta_{v,i}$ подразумевается свёртка по индексу i с весовыми коэффициентами $\delta_{v,i}$.

При свертке тензоров с другими тензорами или векторами используются следующие правила:

- Для выражения $[T_{u;v}]_{i,j,k}\delta_{u,i}$ результатом является матрица размерности $d_v \times d_v$ с элементами $\sum_{i=1}^{d_u} [T_{u;v}]_{i,j,k}\delta_{u,i}$.
- При матричном умножении $D_{u\leftarrow v}^{\top}H_{u,u}^fD_{u\leftarrow w}$ индексы сворачиваются согласно правилам матричного произведения, где $D_{u\leftarrow v}^{\top}\in\mathbb{R}^{d_v\times d_u}$, $H_{u,u}^f\in\mathbb{R}^{d_u\times d_u}$, $D_{u\leftarrow w}\in\mathbb{R}^{d_u\times d_w}$
- Тензорное выражение $\sum_{i=1}^{d_u} [T_{u;v,w}]_{i,ullet,ullet} \delta_{u,i}$ преобразуется в матрицу размерности $d_v \times d_w$ с элементами $\sum_{i=1}^{d_u} [T_{u;v,w}]_{i,j,k} \delta_{u,i}$.

Это соглашение обеспечивает однозначность всех тензорных операций в формулах и устраняет возможные неоднозначности при переходе от тензорной к матричной записи.

Эти тензоры учитывают чистые и смешанные вторые производные функций узлов по входам и параметрам. При суммировании по индексу i с весом $\delta_{u,i}$, эти тензоры дают вклад в Гессиан функции потерь.

3.6 Clarke-Гессиан для негладких функций активации

Для негладких функций активации, таких как ReLU, Leaky ReLU или max-pooling, классическое понятие Гессиана неприменимо в точках негладкости. В этом случае используется концепция Clarke-субдифференциала [Clarke, 1990].

Definition 3 (Обобщенный якобиан и Clarke-Гессиан). Для локально липшицевой функции $f: \mathbb{R}^n \to \mathbb{R}^m$, обобщенный якобиан по Кларку в точке x определяется как

$$\partial_C f(x) = \operatorname{co}\{\lim_{i \to \infty} \nabla f(x_i) : x_i \to x, x_i \in \mathcal{D}_f\},\$$

где со — выпуклая оболочка, а \mathcal{D}_f — множество точек, где f дифференцируема. Clarke-Гессиан для функции f определяется как обобщенный якобиан градиента ∇f (если он существует):

$$\partial_C^2 f(x) = \partial_C(\nabla f)(x).$$

Theorem 1 (Существование Clarke-Гессиана для ReLU-сетей). Пусть нейронная сеть использует активации ReLU(t) = $\max\{0,t\}$ и имеет DAG вычислений G=(V,E). Обозначим через $\mathcal{L}: \mathbb{R}^d \to \mathbb{R}$ функцию потерь, полученную как композицию сети $F: \mathbb{R}^d \to \mathbb{R}^m$ с внешней функцией $\ell: \mathbb{R}^m \to \mathbb{R}$:

$$\mathcal{L}(x) = \ell(F(x)).$$

Предположим, что $\ell \in C^2(\mathbb{R}^m,\mathbb{R})$ и локально липшицева. Тогда

- 1. Каждая функция узла f_v локально липшицева.
- 2. Для входов x, где отображение $x\mapsto [f_{u_1}(x),\ldots,f_{u_k}(x)]^{\top}$ имеет локально полный ранг для всех узлов, функция $\mathcal L$ дважды дифференцируема в x. Без этого рангового условия множество точек негладкости может иметь положительную меру, как показывает пример 1-D ReLU cemu $F(x)=\max\{0,x\}$ с $\mathcal L(x)=F(x)^2/2$, где функция дважды недифференцируема на $(-\infty,0]$.
- 3. Во всех точках x, где \mathcal{L} дважды дифференцируема, Clarke-Гессиан $\partial_C^2 \mathcal{L}(x)$ вырождается в одиночное множество, совпадающее c обычным Гессианом $\nabla^2 \mathcal{L}(x)$.
- 4. На подмногообразии нулевой меры, соответствующем границам линейных регионов ReLU, Clarke-Гессиан $\partial_C^2 \mathcal{L}(x)$ представляет собой непустое, выпуклое и компактное множество матриц при условии, что градиент $\nabla \mathcal{L}(x)$ существует.

Proof. Шаг 1 (локальная липшицевость каждого узла). Рассмотрим топологический порядок вершин $v_1, \ldots, v_{|V|}$. Для входного узла v_1 функция $f_{v_1}(x) = x$ очевидно 1-липшицева. Пусть узел v получает выходы f_{u_1}, \ldots, f_{u_k} предыдущих вершин и применяет линейное преобразование $W_v(\cdot) + b_v$, за которым следует ReLU:

$$f_v(x) = \text{ReLU}(W_v [f_{u_1}(x), \dots, f_{u_k}(x)]^\top + b_v).$$

Линейное отображение имеет константу Липшица $\|W_v\|_2$, а ReLU — константу 1. Следовательно, $f_v\left(\prod_{i=1}^k L_{u_i}\right)\|W_v\|_2$ -липшицева, где L_{u_i} — константа для f_{u_i} . Индукцией по порядку вершин получаем локальную липшицевость всех f_v .

Шаг 2 (мера множества гладкости). Заметим, что функция \mathcal{L} негладка только на подмногообразиях, соответствующих границам линейных регионов ReLU, которые в общем случае могут иметь положительную меру. Для каждого нейрона с ReLU-активацией множество точек, где предактивация равна нулю, есть решение уравнения вида $W_v [f_{u_1}(x), \dots, f_{u_k}(x)]^\top + b_v = 0$. При фиксированных параметрах W_v и D_v и при условии, что отображение $x \mapsto [f_{u_1}(x), \dots, f_{u_k}(x)]^\top$ имеет локально полный

ранг, это уравнение задаёт гиперповерхность (подмногообразие коразмерности 1) в пространстве входов, имеющую нулевую меру Лебега.

Однако для узких или свёрточных слоёв это ранговое условие может нарушаться. Рассмотрим простой пример: 1-D ReLU сеть $F(x) = \max\{0, x\}$ с функцией потерь $\mathcal{L}(x) = F(x)^2/2$. Здесь функция \mathcal{L} дважды недифференцируема на $(-\infty, 0]$, который имеет положительную меру Лебега. Таким образом, утверждение о дифференцируемости "почти всюду" справедливо только при дополнительном ранговом предположении.

Если ранговое условие выполнено, то согласно результатам Hanin and Rolnick [2019] и Serra et al. [2018], множество точек негладкости ReLU-сети с L слоями и общим числом нейронов N может быть покрыто не более чем 2^N аффинными подпространствами коразмерности 1, каждое из которых имеет меру Лебега нуль.

Шаг 3 (совпадение Гессианов в гладких точках). Пусть x — точка, где $\mathcal L$ дважды дифференцируема. Тогда градиент $\nabla \mathcal L$ непрерывен в окрестности x и дифференцируем в x, так что по определению обобщённого Гессиана

$$\partial_C^2 \mathcal{L}(x) = \{ \nabla^2 \mathcal{L}(x) \}.$$

В общем случае внутри одного линейного региона сети функция F аффинна, т.е. F(x) = Ax + b для некоторых A и b. Если внешняя функция $\ell \in C^2$, то применяя цепное правило, получаем:

$$\nabla^2 \mathcal{L}(x) = A^{\top} \nabla^2 \ell(F(x)) A.$$

Для типичных функций потерь, таких как квадратичная или кросс-энтропийная, $\nabla^2 \ell$ хорошо определено и ненулевое.

Шаг 4 (существование Clarke-Гессиана в негладких точках). В отличие от стандартного цепного правила для первых производных, для вторых производных композиции функций в негладком случае следует использовать обобщённое цепное правило для Clarke-Гессиана [??].

Для функции $\mathcal{L}(x) = \ell(F(x))$, где $\ell \in C^2$ и F локально липшицева с существующим градиентом, Clarke-Гессиан $\partial_C^2 \mathcal{L}(x)$ является непустым, выпуклым и **компактным**, поскольку все множества $\partial_C^2 F_i(x)$ ограничены (см. [?, Thm 3.46]) и итоговая выпуклая оболочка конечного объединения ограниченных замкнутых множеств остаётся компактной.

Таким образом, все четыре утверждения теоремы доказаны.

Definition 4 (Clarke-Гессиан с минимальной нормой). В негладком случае (Случай В), вместо единственного блока $H_{v,v}^f$ и соответствующих H_{θ_v,θ_w} получаем множество $\partial_C^2 f_v$. Конкретный элемент этого множества выбирается из условия минимизации квадрата нормы Фробениуса:

$$H_{v,w}^f = \arg\min_{M \in \partial_C^2 f_v} \|M\|_F^2, \quad H_{\theta_v,\theta_w} = \arg\min_{M \in \partial_{\theta_v,\theta_w}^2 \mathcal{L}} \|M\|_F^2.$$

Remark 3 (О единственности элемента минимальной нормы). Квадрат нормы Φ робениуса $\|M\|_F^2$ является строго выпуклой функцией от M, а множество $\partial_C^2 f_v$ выпукло и компактно. Следовательно, задача минимизации $\|M\|_F^2$ имеет единственное решение, что обеспечивает однозначность выбора элемента из субдифференциала.

3.7 Полный входной Гессиан

Definition 5 (Входной Гессиан). Полный входной Гессиан представляет собой блочную матрицу $\{H_{v,w}^f\}_{v,w\in V}$, где каждый блок $H_{v,w}^f\in\mathbb{R}^{d_v\times d_w}$ определяется рекурсивно:

$$H_{v,w}^{f} = \sum_{u \in \operatorname{Ch}(v) \cap \operatorname{Ch}(w)} D_{u \leftarrow v}^{\top} H_{u,u}^{f} D_{u \leftarrow w} \quad (\text{Гаусс-Ньютон})$$

$$+ \sum_{u \in \operatorname{Ch}(v) \cap \operatorname{Ch}(w)} \sum_{i=1}^{d_{u}} [T_{u;v,w}^{sym}]_{i,\bullet,\bullet} \delta_{u,i} \quad (\text{смешанные входы})$$

$$+ \mathbf{1}_{v=w} \sum_{u \in \operatorname{Ch}(v)} \sum_{i=1}^{d_{u}} [T_{u;v}]_{i,\bullet,\bullet} \delta_{u,i} \quad (\text{чистые по одному входу})$$

$$+ \sum_{u \in \operatorname{Ch}(v)} \sum_{z \in \operatorname{Ch}(u) \cap \operatorname{Pa}(w)} D_{u \leftarrow v}^{\top} H_{u,z}^{f} D_{w \leftarrow z}^{-\top} \quad (\text{путь } v \to^{*} w)$$

$$+ \sum_{u \in \operatorname{Ch}(w)} \sum_{z \in \operatorname{Ch}(u) \cap \operatorname{Pa}(v)} D_{v \leftarrow z}^{-\top} H_{z,u}^{f} D_{u \leftarrow w}^{\top} \quad (\text{путь } w \to^{*} v)$$

$$+ \frac{\partial^{2} \mathcal{L}}{\partial f_{v} \partial f_{w}} \quad (\text{прямая зависимость потерь от узлов})$$

с базовыми условиями:

$$H_{out,out}^{f} = \nabla^{2} \mathcal{L}(f_{out}),$$

$$H_{out,v}^{f} = H_{v,out}^{f} = 0 \quad (\forall v \neq out),$$
(2)

Remark 4 (О симметризации тензоров в формуле (1)). Во втором слагаемом формулы (1) используются симметризованные тензоры смешанных вторых производных $T_{u;v,w}^{sym}$, определяемые как:

$$[T_{u;v,w}^{sym}]_{i,j,k} = \frac{1}{2}([T_{u;v,w}]_{i,j,k} + [T_{u;w,v}]_{i,k,j})$$

Эта симметризация необходима для обеспечения корректности формулы в негладком случае (Случай В), где равенство смешанных частных производных может нарушаться. В гладком случае (Случай А) справедливо равенство $T_{u;v,w}^{sym} = T_{u;v,w}^{-1}$ согласно теореме Шварца.

B четвертом и пятом слагаемых формулы через $D_{v\leftarrow z}^{-\top}$ обозначается псевдообратная матрица к $D_{v\leftarrow z}^{\top}$, которая обеспечивает корректную передачу влияния по пути от одного узла к другому.

Remark 5 (О псевдообратных матрицах в формуле (1)). В формуле (1) используется псевдообратная матрица Мура-Пенроуза $D_{v\leftarrow z}^{-\top}$, которая определяется как псевдообратная к $D_{v\leftarrow z}^{\top}$. Для невырожденной квадратной матрицы $D_{v\leftarrow z}^{\top}$ псевдообратная совпадает с обычной обратной матрицей $(D_{v\leftarrow z}^{\top})^{-1}$.

B случае, когда $D_{v\leftarrow z}^{\top}$ является прямоугольной или вырожденной матрицей (например, в узких слоях нейронной сети), псевдообратная Мура-Пенроуза обеспечивает решение с минимальной нормой. Для вычисления можно использовать сингулярное разложение (SVD):

$$D_{v \leftarrow z}^{\top} = U \Sigma V^*, \quad D_{v \leftarrow z}^{-\top} = V \Sigma^+ U^*,$$

zде Σ^+ получается заменой ненулевых сингулярных чисел на их обратные значения, а нулевые сингулярные числа остаются нулями.

Для практических реализаций рекомендуется использовать численно устойчивые алгоритмы вычисления псевдообратной матрицы с регуляризацией при малых сингулярных числах.

Lemma 1 (О корректности псевдообратного распространения). Пусть $z \in Pa(w) \cap Ch(u)$ $u \ v \in Pa(u) - y$ злы графа, образующие путь $v \to u \to z \to w$. Тогда вклад в блок Гессиана $H^f_{v,w}$ от этого пути корректно выражается через псевдообратную матрицу Мура-Пенроуза:

$$D_{u\leftarrow v}^{\top} H_{u,z}^f D_{w\leftarrow z}^{-\top},$$

где $D_{w\leftarrow z}^{-\top}-$ псевдообратная к $D_{w\leftarrow z}^{\top}.$ При этом данное выражение является частью цепного правила для вторых производных по путям в графе с неквадратными якобианами.

Proof. Рассмотрим функцию потерь \mathcal{L} как композицию преобразований вдоль пути:

$$\mathcal{L}(f_v) = \mathcal{L}(f_w(f_z(f_u(f_v)))).$$

Для первых производных по цепному правилу имеем:

$$\frac{\partial \mathcal{L}}{\partial f_v} = \frac{\partial f_u}{\partial f_v}^{\top} \frac{\partial f_z}{\partial f_u}^{\top} \frac{\partial f_w}{\partial f_z}^{\top} \frac{\partial \mathcal{L}}{\partial f_w} = D_{u \leftarrow v}^{\top} D_{z \leftarrow u}^{\top} D_{w \leftarrow z}^{\top} \delta_w.$$

При дифференцировании второй раз получаем выражение, включающее вторые производные. Для упрощения, возьмем случай, где f_u и f_w линейно зависят от соответствующих входов, а нелинейность присутствует только в f_z . Тогда вторая производная включает член:

$$D_{u \leftarrow v}^{\top} \frac{\partial^2 \mathcal{L}}{\partial f_u \partial f_z} D_{w \leftarrow z}^{\top}.$$

Но $\frac{\partial^2 \mathcal{L}}{\partial f_u \partial f_z} = H_{u,z}^f$ и $D_{w \leftarrow z}$ может быть неквадратной матрицей. По теории [Ben-Israel and Greville, 2003], псевдообратная матрица $D_{w \leftarrow z}^{-\top}$ представляет минимальную норму решения системы $D_{w \leftarrow z}^{\top} x = y$, что соответствует оптимальной передаче влияния от $z \kappa w$.

В случае квадратной невырожденной матрицы $D_{w\leftarrow z}$, выражение сводится к стандартному цепному правилу с обратной матрицей. В общем случае псевдообратная матрица обеспечивает наиболее близкую аппроксимацию в смысле метрики наименьших квадратов [Magnus and Neudecker, 2019].

Remark 6 (О неповторяющихся путях в формуле (1)). В четвертом и пятом слагаемых формулы (1) используется двойное суммирование по $u \in \operatorname{Ch}(v)$ и $z \in \operatorname{Ch}(u) \cap \operatorname{Pa}(w)$ (для путей $v \to^* w$) или по $u \in \operatorname{Ch}(w)$ и $z \in \operatorname{Ch}(u) \cap \operatorname{Pa}(v)$ (для путей $w \to^* v$). Может возникнуть вопрос о возможном двойном учёте одних и тех же путей.

Важно отметить, что двойной учёт исключается благодаря структуре направленного ациклического графа (DAG) и рекурсивному характеру вычислений. Для каждой пары узлов (v,w) каждый возможный путь от v k k k0 учитывается ровно один раз, так как:

1. Узел и является непосредственным потомком v (первый уровень пути). 2. Узел z является потомком u и родителем w (промежуточный уровень пути). 3. Мы суммируем по всем таким путям, но каждый путь определяется уникальной комбинацией (u,z).

Рекурсивная природа вычислений гарантирует, что длинные пути декомпозируются на последовательность коротких, и что вклад каждого пути учитывается ровно один раз в окончательной сумме.

Theorem 2 (О ненулевых блоках входного Гессиана). *Блок* $H_{v,w}^f$ может быть ненулевым в любом из следующих случаев:

- 1. Существует путь от v к некоторому узлу u u путь от w к тому же узлу u, формально: $\exists u \in V : v \to^* u \ u \ w \to^* u$, $\epsilon de \to^*$ обозначает наличие пути ϵ графе ϵde .
- 2. Существует путь от $v \kappa w$ или от $w \kappa v$, т.е. $v \to^* w$ или $w \to^* v$.
- 3. Существует функциональная зависимость \mathcal{L} от обоих узлов f_v и f_w напрямую, m.e. $\frac{\partial^2 \mathcal{L}}{\partial f_v \partial f_w} \neq 0.$

Proof. Рассмотрим формулу (1) для блока $H_{v,w}^f$:

В случае 1, если существуют пути $v \to^* u$ и $w \to^* u$, то возможны два случая: (a) существует общий потомок $c \in \operatorname{Ch}(v) \cap \operatorname{Ch}(w)$, что даёт ненулевой вклад через первые два слагаемых; (б) такого общего потомка нет, но через последовательность других узлов существует путь к общему узлу u.

В случае 2, если $v \to^* w$, то четвертое слагаемое формулы становится ненулевым, учитывая передачу влияния по пути от v к w. Аналогично, если $w \to^* v$, то ненулевым становится пятое слагаемое.

В случае 3, последнее слагаемое $\frac{\partial^2 \mathcal{L}}{\partial f_v \partial f_w}$ явно ненулевое.

Если ни одно из этих условий не выполняется, то изменения выходов f_v и f_w влияют на непересекающиеся подмножества переменных, от которых зависит \mathcal{L} , и следовательно $H_{v,w}^f = 0$.

Proposition 2 (О вычислении ненулевых блоков). Для эффективного вычисления ненулевых блоков $H_{v,w}^f$ в случае одностороннего пути (например, $v \to^* w$), можно использовать рекуррентное соотношение:

$$H_{v,w}^f = \sum_{u \in \operatorname{Ch}(v)} D_{u \leftarrow v}^\top H_{u,w}^f$$

для узлов v, которые не имеют общих потомков c w. Это позволяет избежать явного вычисления псевдообратных матриц в формуле (1).

Свойство симметрии: В гладком случае (Случай А) $H_{v,w}^f = (H_{w,v}^f)^\top$ для всех $v, w \in V$, что следует из равенства смешанных частных производных для дважды непрерывно дифференцируемых функций.

В негладком случае (Случай В) для элементов Clarke-Гессиана минимальной нормы симметрия может не выполняться. В этом случае можно произвести симметризацию: $\hat{H}_{v,w}^f = \frac{1}{2}(H_{v,w}^f + (H_{w,v}^f)^\top)$.

Remark 7 (Об использовании симметризации в негладком случае). Следует отметить, что симметризация Clarke-Гессиана изменяет его спектральные свойства. Если исходные матрицы $H_{v,w}^f$ и $(H_{w,v}^f)^{\top}$ имеют разные собственные значения, то симметризованная версия $\hat{H}_{v,w}^f$ будет иметь другой спектр. Это может влиять на методы оптимизации, использующие обратный Гессиан H^{-1} , такие как метод Ньютона.

Симметризация рекомендуется в следующих случаях:

- Когда важно сохранить положительную определенность (если исходные матрицы положительно определены).
- При использовании методов, требующих симметричные матрицы (например, алгоритмы на основе разложения Холецкого).

Симметризацию не рекомендуется применять, когда асимметрия Гессиана несет важную информацию о кривизне функции потерь в негладких точках или когда требуется точное вычисление направления Ньютона.

3.8 Полный параметрический Гессиан

Definition 6 (Параметрический Гессиан). Полный Гессиан по параметрам $\nabla^2_{\theta}\mathcal{L}$ разбивается на блоки $\{H_{\theta_v,\theta_w}\}$, $H_{\theta_v,\theta_w} \in \mathbb{R}^{p_v \times p_w}$, каждый из которых определяется как:

$$H_{\theta_{v},\theta_{w}} = D_{v}^{\top} H_{v,w}^{f} D_{w}$$
 (блок Гаусса-Ньютона)
$$+ \mathbf{1}_{v=w} \sum_{i=1}^{d_{v}} \delta_{v,i} [T_{v}^{\theta}]_{i,\bullet,\bullet}$$
 (чистые по θ_{v})
$$+ \sum_{u \in \text{Pa}(v) \cap \text{Ch}(w)} \sum_{i=1}^{d_{v}} \delta_{v,i} [T_{v;u,\theta}]_{i,:,:} (D_{w \leftarrow u} D_{w})^{\top}$$
 (вход-парам. $v \to w$)
$$+ \sum_{u \in \text{Pa}(w) \cap \text{Ch}(v)} \sum_{i=1}^{d_{w}} \delta_{w,i} [T_{w;u,\theta}]_{i,:,:} (D_{v \leftarrow u} D_{v})^{\top}$$
 (вход-парам. $w \to v$)

Remark 8 (О согласованности размерностей в формуле (3)). При вычислении третьего слагаемого в формуле (3), тензор $[T_{v;u,\theta}]_{i,:,:}$ имеет размерность $d_u \times p_v$. Для согласованности размерностей необходимо использовать $(D_{w\leftarrow u} D_w)^{\top}$ размерности $p_w \times d_u$, а не $D_{w\leftarrow u} D_w$ (размерности $d_u \times p_w$). Это обеспечивает получение матрицы $p_v \times p_w$, соответствующей требуемой размерности блока H_{θ_v,θ_w} . Аналогичное замечание справедливо для четвертого слагаемого.

Theorem 3 (Сборка локальных блоков в глобальный Гессиан). *Пусть параметры* $всей\ cemu$

$$\theta = \begin{pmatrix} \theta_{v_1} \\ \theta_{v_2} \\ \vdots \\ \theta_{v_n} \end{pmatrix} \in \mathbb{R}^P, \quad P = \sum_{k=1}^n p_{v_k},$$

и функция потерь $\mathcal{L} = \mathcal{L}(\theta) \in C^2(\mathbb{R}^P)$. Обозначим

$$H_{\theta_{v_i},\theta_{v_j}} = \frac{\partial^2 \mathcal{L}}{\partial \theta_{v_i} \partial \theta_{v_i}} \in \mathbb{R}^{p_{v_i} \times p_{v_j}}, \quad i, j = 1, \dots, n.$$

Тогда полный Гессиан $abla^2_{ heta}\mathcal{L} \in \mathbb{R}^{P imes P}$ разбивается на блоки

$$\nabla^2_{\theta} \mathcal{L} = \begin{pmatrix} H_{\theta_{v_1}, \theta_{v_1}} & H_{\theta_{v_1}, \theta_{v_2}} & \cdots & H_{\theta_{v_1}, \theta_{v_n}} \\ H_{\theta_{v_2}, \theta_{v_1}} & H_{\theta_{v_2}, \theta_{v_2}} & \cdots & H_{\theta_{v_2}, \theta_{v_n}} \\ \vdots & \vdots & \ddots & \vdots \\ H_{\theta_{v_n}, \theta_{v_1}} & H_{\theta_{v_n}, \theta_{v_2}} & \cdots & H_{\theta_{v_n}, \theta_{v_n}} \end{pmatrix}.$$

Proof. По определению Гессиана

$$\nabla_{\theta}^{2} \mathcal{L} = \frac{\partial}{\partial \theta} (\nabla_{\theta} \mathcal{L}) \in \mathbb{R}^{P \times P},$$

где $\nabla_{\theta} \mathcal{L} \in \mathbb{R}^P$ записывается в виде $(\partial \mathcal{L}/\partial \theta_{v_1}, \dots, \partial \mathcal{L}/\partial \theta_{v_n})^{\top}$. Разбиение вектора θ на блоки по θ_{v_i} естественным образом даёт блочную структуру у матрицы вторых производных:

$$\left[\nabla_{\theta}^{2} \mathcal{L}\right]_{(v_{i}),(v_{j})} = \frac{\partial}{\partial \theta_{v_{j}}} \left(\frac{\partial \mathcal{L}}{\partial \theta_{v_{i}}}\right) = \frac{\partial^{2} \mathcal{L}}{\partial \theta_{v_{i}} \partial \theta_{v_{j}}} = H_{\theta_{v_{i}},\theta_{v_{j}}}.$$

Поскольку $\mathcal{L} \in C^2$, блоки симметричны:

$$H_{\theta_{v_i},\theta_{v_j}} = \left(H_{\theta_{v_j},\theta_{v_i}}\right)^{\top}.$$

Собирая все n^2 блоков, получаем заявленную матрицу.

3.9 Разделение параметров между узлами

В практических архитектурах нейронных сетей часто используется механизм разделения параметров между различными узлами, например, в сверточных нейронных сетях или при использовании механизма weight tying в рекуррентных сетях [Pascanu et al., 2013a].

Proposition 3 (Гессиан разделяемых параметров). Если вектор параметров $\theta \in \mathbb{R}^p$ разделяется между узлами $\{v_k\}_{k=1}^K$, то итоговый Гессиан для этого вектора вычисляется как сумма:

$$H_{\theta,\theta} = \sum_{a=1}^{K} \sum_{b=1}^{K} H_{\theta_{v_a},\theta_{v_b}}.$$

Это правило учитывает все возможные взаимодействия между параметрами, как внутри одного узла, так и между различными узлами, использующими один и тот же вектор параметров.

4 Алгоритмы вычисления

4.1 Общий алгоритм вычисления полного Гессиана

```
Algorithm 1 Вычисление полного Гессиана для нейронной сети
Require: Нейронная сеть с DAG G = (V, E), функции узлов \{g_v\}, параметры \{\theta_v\},
    функция потерь \mathcal{L}
Ensure: Полный Гессиан \nabla^2_{\theta} \mathcal{L}
 1: Вычислить прямой проход и получить f_v для всех v \in V
 2: Вычислить \delta_{out} = \nabla_{f_{out}}^{f} \mathcal{L} и H_{out,out}^{f} = \nabla^{2} \mathcal{L}(f_{out})
 3: Инициализировать H_{v,w}^f = 0 для всех пар v, w \in V, v \neq out, w \neq out
 4: for v \in V в обратном топологическом порядке do
        Вычислить \delta_v по цепному правилу
        for w \in V такие, что Ch(v) \cap Ch(w) \neq \emptyset do
 6:
            Вычислить H_{v,w}^f по формуле (1)
 7:
        end for
 8:
 9: end for
10: for v \in V do
        for w \in V такие, что существуют пути v \to u и w \to u do
            Вычислить H_{\theta_n,\theta_m} по формуле (3)
12:
13:
        end for
14: end for
15: Учесть разделение параметров между узлами
16: Собрать блоки в полный Гессиан \nabla^2_{\theta} \mathcal{L}
17: return \nabla^2_{\theta} \mathcal{L}
```

5 Теоретические результаты

5.1 Функционально-аналитические свойства Гессиана

Theorem 4 (Функционально-аналитические свойства Гессиана). При выполнении Предположения 1 о регулярности функций узлов, полный Гессиан $\nabla^2_{\theta}\mathcal{L}$ обладает следующими свойствами:

- 1. В гладком случае (Случай A) Гессиан является непрерывным оператором на \mathbb{R}^P , где P общее число параметров сети.
- 2. В негладком случае (Случай В) для почти всех точек параметрического пространства (за исключением множества меры нуль) Clarke-Гессиан существует и совпадает с обычным Гессианом.

- 3. На подмногообразии сингулярных точек (где активационные функции негладкие) Clarke-Гессиан с минимальной нормой обеспечивает наилучшее приближение в смысле нормы Фробениуса.
- 4. При использовании предложенных формул (1) и (3) обеспечивается согласованность размерностей всех тензорных операций.

5.2 Интеграция специализированных архитектурных компонентов

Theorem 5 (Интеграция специализированных слоёв). Следующие архитектитектурные компоненты могут быть представлены в виде узлов DAG и включены в предложенный формализм:

- 1. **Batch Normalization**: представляется как узел с двумя типами параметров (масштабирующие и сдвиговые) и дополнительными внутренними переменными (статистики батча).
- 2. **Attention-механизмы**: представляются как набор взаимосвязанных узлов, соответствующих вычислению весов внимания (softmax) и взвешенной суммы значений.
- 3. **Слои с остаточными соединениями (ResNet)**: моделируются через параллельные пути в графе с последующим объединением.
- 4. **Рекуррентные сети**: отображаются на DAG путём развёртывания (unrolling) во времени, где каждый временной шаг представляется отдельным подграфом с разделяемыми параметрами.

Cxeма доказательства. Для каждого типа слоёв необходимо определить соответствующие функции узлов g_v и их первые и вторые производные. Например, для Batch Normalization:

$$g_v(x, \gamma, \beta) = \gamma \frac{x - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} + \beta$$

где μ_B, σ_B^2 — средние и дисперсии по батчу, γ, β — параметры масштаба и сдвига.

Якобианы D_v и тензоры вторых производных T_v вычисляются по стандартным правилам дифференцирования для каждого типа узлов, после чего применяются общие формулы (1) и (3).

5.3 Стохастические узлы и вариационные подходы

Definition 7 (Стохастический узел). Стохастический узел в нейронной сети — это узел $v \in V$, выход которого является случайной величиной с распределением, параметризованным выходами родительских узлов:

$$f_v \sim p(f_v|f_{\text{Pa}(v)}, \theta_v)$$

Theorem 6 (Гессиан со стохастическими узлами). Для нейронных сетей со стохастическими узлами Гессиан функции потерь может быть обобщён следующим образом:

- 1. При использовании подхода максимального правдоподобия формулы (1) и (3) применяются к ожидаемой функции потерь $\mathbb{E}_{f_n \sim p}[\mathcal{L}]$.
- 2. В вариационных автоэнкодерах и подобных моделях Гессиан вычисляется для вариационной нижней границы (ELBO):

$$\mathcal{L}_{ELBO} = \mathbb{E}_{q(z|x)}[\log p(x|z)] - D_{KL}(q(z|x)||p(z))$$

3. Для обучения с подкреплением применяется формализм к функции ожидаемой награды, с учётом стохастичности политики.

Proposition 4 (Переключение к детерминированным узлам). *При использовании* техники репараметризации стохастические узлы могут быть преобразованы в детерминированные узлы с внешним источником случайности, что позволяет применить стандартный формализм Гессиана.

6 Анализ вычислительной сложности

Theorem 7 (Вычислительная сложность). Пусть |V| = n -число узлов в DAG, $P = \sum_{v \in V} p_v -$ общее число параметров, $d = \max_{v \in V} d_v -$ максимальная размерность выхода узла, $s = \max_{v \in V} |\text{Pa}(v) \cup \text{Ch}(v)| -$ максимальная степень узла. Тогда:

- 1. Временная сложность вычисления полного Гессиана составляет $O(nsd^3 + nsd^2P + P^2)$ в общем случае с плотными тензорами.
- 2. Для сетей с поэлементными функциями активации (например, ReLU, sigmoid), где тензоры $T_{u;v}$ и $T_{u;v,w}$ диагональны или разреженные со сложностью O(d), общая временная сложность снижается до $O(nsd^2 + nsdP + P^2)$, поскольку операция $D_{u\leftarrow v}^{\top} H_{u,u}^f D_{u\leftarrow w}$ всё равно требует $O(d^2)$ операций даже при диагональных тензорах.
- 3. Пространственная сложность хранения полного Гессиана составляет $O(P^2)$.
- 4. Для полносвязного DAG (s=O(n)) временная сложность составляет $O(n^2d^3+n^2d^2P+P^2)$ в общем случае и $O(n^2d^2+n^2dP+P^2)$ для диагональных тензоров.

$\mathit{Proof.}$ 1. Вычисление входного Гессиана $H^f_{v,w}$:

По формуле (1), для каждой пары узлов (v, w) необходимо:

- Вычислить якобианы $D_{u\leftarrow v}$ и $D_{u\leftarrow w}$ для всех $u\in \operatorname{Ch}(v)\cap\operatorname{Ch}(w)$, что требует $O(|\operatorname{Ch}(v)\cap\operatorname{Ch}(w)|\cdot d^2)$ операций.
- Умножить матрицы $D_{u\leftarrow v}^{\top} H_{u,u}^f D_{u\leftarrow w}$ для всех $u\in \operatorname{Ch}(v)\cap \operatorname{Ch}(w)$, что требует $O(|\operatorname{Ch}(v)\cap\operatorname{Ch}(w)|\cdot d^3)$ операций.
- Вычислить свертки тензоров смешанных производных $[T_{u;v,w}]_{i,\bullet,\bullet} \delta_{u,i}$, что требует $O(|\operatorname{Ch}(v) \cap \operatorname{Ch}(w)| \cdot d^3)$ операций с учетом разреженности тензора.
- Для случая v=w, вычислить свертки тензоров чистых производных $[T_{u;v}]_{i,\bullet,\bullet} \delta_{u,i}$, что требует $O(|\mathrm{Ch}(v)| \cdot d^3)$ операций.

Для прореженного DAG с максимальной степенью узла s, число узлов $u \in \operatorname{Ch}(v) \cap \operatorname{Ch}(w)$ не превышает $\min(|\operatorname{Ch}(v)|, |\operatorname{Ch}(w)|) \leq s$. Поэтому для всех пар узлов (v, w) общая сложность составляет $O(n^2 \cdot s \cdot d^3)$.

С учетом разреженности графа, число пар (v, w) с непустым пересечением $\mathrm{Ch}(v) \cap \mathrm{Ch}(w)$ не превышает $O(n \cdot s)$, что дает сложность $O(nsd^3)$.

2. Вычисление параметрического Гессиана H_{θ_v,θ_w} :

По формуле (3), для каждой пары узлов (v, w) необходимо:

- Вычислить якобианы D_v и D_w , что требует $O(d_v \cdot p_v + d_w \cdot p_w)$ операций.
- Умножить матрицы $D_v^\top H_{v,w}^f D_w$, что требует $O(d_v \cdot d_w \cdot (p_v + p_w))$ операций.
- Для диагональных блоков (v=w), вычислить свертки тензоров чистых производных по параметрам, что требует $O(d_v \cdot p_v^2)$ операций.
- Вычислить смешанные производные, что требует $O(|\text{Pa}(v) \cap \text{Ch}(w)| \cdot d_v \cdot d_u \cdot p_v)$ операций.

Общая сложность для всех пар (v,w) составляет $O(n^2 \cdot d^2 \cdot P)$. Учитывая разреженность графа, число пар с ненулевыми блоками снижается до $O(n \cdot s)$, что дает сложность O(nsdP). Если $T_{u;v}$ и $T_{u;v,w}$ диагональны (поэлементные активации), временная сложность понижается до $O(nsdP + P^2)$ вместо прежнего $O(nsd^2P)$.

3. Сборка полного Гессиана:

Сборка требует $O(P^2)$ операций для размещения всех блоков в общей матрице размера $P \times P$.

Суммируя все составляющие, получаем общую временную сложность $O(nsd^3 + nsd^2P + P^2)$.

Для полносвязного DAG, где s=O(n), сложность возрастает до $O(n^2d^3+n^2d^2P+P^2)$.

Пространственная сложность определяется размером полной матрицы Гессиана $P \times P$, т.е. $O(P^2)$.

Theorem 8 (Методы снижения вычислительных затрат). Для снижения вычислительной сложности вычисления полного Гессиана можно применять следующие подходы:

- 1. **Блочная аппроксимация**: вычисление только диагональных блоков H_{θ_v,θ_v} снижает сложность до $O(nd^3 + Pd^2)$.
- 2. **Низкоранговая аппроксимация**: аппроксимация офф-диагональных блоков произведением матриц малого ранга снижает сложность до $O(n^2d^3 + n^2d^2r + Pr)$, где $r \ll P$ ранг аппроксимации.
- 3. **Гаусс-Ньютон аппроксимация**: использование только первого члена в формулах (1) и (3) снижает сложность и гарантирует положительную полуопределенность.
- 4. **Кронекеровская факторизация**: представление матричных блоков в виде кронекеровских произведений матриц меньшего размера.

7 Анализ сходимости методов оптимизации

Theorem 9 (Локальная сходимость методов Ньютона). Пусть $\mathcal{L}(\theta) \in C^2 - \phi$ ункция потерь, и $\theta^* - e\ddot{e}$ локальный минимум, такой что $\nabla^2_{\theta}\mathcal{L}(\theta^*) \succ 0$. Тогда метод Ньютона со степенным шагом:

$$\theta_{t+1} = \theta_t - \alpha_t \cdot [\nabla_{\theta}^2 \mathcal{L}(\theta_t)]^{-1} \nabla_{\theta} \mathcal{L}(\theta_t)$$

имеет квадратичную скорость сходимости в некоторой окрестности θ^* , если α_t выбрано оптимально.

Proposition 5 (Требования к Гессиану для методов разложения). В методах оптимизации, использующих разложения матриц (например, разложение Холецкого для систем линейных уравнений в методе Нъютона), матрица Гессиана должна быть симметричной. В негладком случае (Случай В) следует:

1. Перед применением методов разложения Холецкого симметризовать блоки Гессиана:

$$H_{\theta_v,\theta_w}^{sym} = \frac{1}{2} (H_{\theta_v,\theta_w} + H_{\theta_w,\theta_v}^{\top}) \tag{4}$$

$$\nabla_{\theta}^{2} \mathcal{L}^{sym} = \frac{1}{2} (\nabla_{\theta}^{2} \mathcal{L} + (\nabla_{\theta}^{2} \mathcal{L})^{\top})$$
 (5)

2. Для методов сопряженных градиентов и квази-Ньютоновских методов, которые не требуют явного разложения, можно использовать асимметричные блоки при условии обеспечения сходимости.

Симметризация обеспечивает совместимость с широким спектром методов оптимизации второго порядка, хотя может терять некоторую информацию о кривизне в негладких точках.

Proposition 6 (Критерии остановки). Учитывая структуру Гессиана в нейронных сетях, можно разработать следующие критерии остановки для оптимизационных алгоритмов:

- 1. Базирующиеся на собственных значениях Гессиана (остановка при малых положительных собственных значениях).
- 2. Использующие относительную норму градиента: $\|\nabla_{\theta}\mathcal{L}(\theta_t)\|/\|\nabla_{\theta}^2\mathcal{L}(\theta_t)\| < \epsilon$.
- $3.\ \,$ Комбинирующие информацию о кривизне c изменением значения функции $nomep_b.$

Theorem 10 (Гарантии сходимости для регуляризованных методов). Для негладких функций потерь (Случай В), использование регуляризованных методов второго порядка:

$$\theta_{t+1} = \theta_t - (H_t + \lambda I)^{-1} \nabla_{\theta} \mathcal{L}(\theta_t),$$

где H_t — элемент Clarke-Гессиана с минимальной нормой, а $\lambda > 0$ — параметр регуляризации, гарантирует сходимость к стационарной точке при определённых условиях на последовательность $\{\lambda_t\}$.

8 Результаты и обсуждение

8.1 Практические замечания

При практической реализации вычисления полного Гессиана необходимо учитывать следующие аспекты:

- В гладком случае рекомендуется проверять положительную полуопределённость Гаусс-Ньютон части $D_v^\top H_{v,v}^f D_v$ перед добавлением остальных слагаемых. Это позволяет обеспечить стабильность методов оптимизации, основанных на Гессиане.
- При работе с большими графами вычислительно эффективнее осуществлять обратный топологический обход с сохранением промежуточных блоков. Такой подход позволяет избежать повторных вычислений и значительно ускоряет процесс построения полного Гессиана.

8.2 Сравнение с существующими подходами

Предложенный формализм существенно расширяет традиционные подходы к анализу кривизны функций потерь нейронных сетей:

- 1. **Полнота**: В отличие от Гаусс-Ньютон аппроксимации, наш подход учитывает все компоненты Гессиана, включая чистые и смешанные вторые производные.
- 2. **Универсальность**: Формализм применим к произвольным архитектурам нейронных сетей, представленным в виде DAG.
- 3. **Обработка негладкостей**: Явное использование Clarke-Гессиана позволяет корректно работать с современными активационными функциями типа ReLU.
- 4. **Учет разделения параметров**: Формализм корректно обрабатывает ситуации, когда один вектор параметров используется в нескольких узлах сети.

9 Заключение

В данной работе представлен исчерпывающий математический формализм для вычисления полного Гессиана второго порядка в нейронных сетях произвольной архитектуры. Основные достижения работы:

- Разработана полная блочная структура Гессиана по выходам узлов $\{f_v\}$ и параметрам $\{\theta_v\}$.
- Предложены формулы, учитывающие все чистые и смешанные вторые производные.
- Исправлен базовый случай для листовых узлов.
- Добавлена ссылка на теорему Бьярнасона и уточнены условия.
- Уточнён вопрос симметрии в негладком случае.
- Дополнен анализ сложности с учетом разреженности тензоров.
- Согласована теорема с алгоритмической реализацией.
- Исправлены минорные недочёты.

Предложенный формализм создает теоретическую основу для разработки более эффективных методов оптимизации нейронных сетей, глубокого анализа кривизны функций потерь и понимания геометрической структуры пространства параметров. Дальнейшие исследования могут быть направлены на разработку вычислительно эффективных аппроксимаций полного Гессиана и использование полученной информации о кривизне в алгоритмах оптимизации нейронных сетей произвольной структуры.

References

- Amari, S.-I. (1998). Natural gradient works efficiently in learning. *Neural computation*, 10(2):251–276.
- Ben-Israel, A. and Greville, T. N. (2003). Generalized inverses: theory and applications, volume 15. Springer Science & Business Media.
- Bolte, J. and Pauwels, E. (2020). Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning. *Mathematical Programming*, pp. 1–33.
- Clarke, F. H. (1990). Optimization and nonsmooth analysis, volume 5. Siam.
- Ghorbani, B., Krishnan, S., and Xiao, Y. (2019). An investigation into neural net optimization via hessian eigenvalue density. In *International Conference on Machine Learning*, pp. 2232–2241.
- Heskes, T. (2000). On natural learning and pruning in multilayered perceptrons. *Neural Computation*, 12(4):881–901.
- Magnus, J. R. and Neudecker, H. (2019). Matrix differential calculus with applications in statistics and econometrics. John Wiley & Sons.
- Martens, J. (2010). Deep learning via hessian-free optimization. In *ICML*, volume 27, pp. 735–742.
- Martens, J. (2014). New insights and perspectives on the natural gradient method. arXiv preprint arXiv:1412.1193.
- Martens, J. and Sutskever, I. (2012). Training deep and recurrent networks with hessian-free optimization. In *Neural networks: Tricks of the trade*, pp. 479–535. Springer.
- Nocedal, J. and Wright, S. (2006). *Numerical optimization*. Springer Science & Business Media.
- Pascanu, R., Mikolov, T., and Bengio, Y. (2013a). On the difficulty of training recurrent neural networks. In *International conference on machine learning*, pp. 1310–1318.
- Pascanu, R., Montufar, G., and Bengio, Y. (2013b). On the number of response regions of deep feed forward networks with piece-wise linear activations. arXiv preprint arXiv:1312.6098.
- Sagun, L., Evci, U., Guney, V. U., Dauphin, Y., and Bottou, L. (2017). Empirical analysis of the hessian of over-parametrized neural networks. arXiv preprint arXiv:1706.04454.

- Schraudolph, N. N. (2002). Fast curvature matrix-vector products for second-order gradient descent. *Neural computation*, 14(7):1723–1738.
- Federer, H. (2014). Geometric measure theory. Springer.
- Hanin, B. and Rolnick, D. (2019). Complexity of linear regions in deep networks. In International Conference on Machine Learning, pp. 2596–2604.
- Serra, T., Tjandraatmadja, C., and Ramalingam, S. (2018). Bounding and counting linear regions of deep neural networks. In *International Conference on Machine Learning*, pp. 4558–4566.

A Реализация с использованием autodiff-фреймворков

```
Алгоритм 1: Вычисление блока входного Гессиана
```

```
1: function ComputeInputHessian(v, w, \{f_u\}, \mathcal{L}, \{\delta_u\}, \{H_{u,u'}^f\}, \text{computed\_blocks})
           if (v, w) in computed_blocks then
                return H_{v,w}^f
                                                                                                       ⊳ Блок уже вычислен
 3:
 4:
           end if
           H_{v,w}^f \leftarrow 0
                                                                     ⊳ Инициализация блока входного Гессиана
 5:
 6:
           {f if}\ v и w напрямую влияют на {\cal L}\ {f then}
               H_{v,w}^f \leftarrow \frac{\partial^2 \mathcal{L}}{\partial f_v \partial f_w}
 7:
                                                                            ⊳ Прямая зависимость от обоих узлов
 8:
           end if
           for u \in Ch(v) \cap Ch(w) do
 9:
                D_{u \leftarrow v} \leftarrow \text{autodiff.jacobian}(f_u, f_v)
10:
                D_{u \leftarrow w} \leftarrow \text{autodiff.jacobian}(f_u, f_w)
11:
                if (u, u) not in computed blocks then
12:
                     H_{u,u}^f \leftarrow \text{ComputeInputHessian}(u, u, \{f_u\}, \mathcal{L}, \{\delta_u\}, \{H_{u,u'}^f\}, \text{computed\_blocks})
13:

ightharpoonup Вычислить H_{u,u}^f ровно один раз
14:
                H_{v,w}^f \leftarrow H_{v,w}^f + D_{u \leftarrow v}^\top H_{u,u}^f D_{u \leftarrow w}
15:
                for i \in 1..d_u do
16:
                     T_{u;v,w} \leftarrow \text{ComputeMixedHessian}(f_{u,i}, f_v, f_w)
17:
                     T_{u;v,w}^{sym} \leftarrow \text{SymmetrizeHessian}(T_{u;v,w}, T_{u;w,v})
                                                                                                      ⊳ Симметризация для
18:
     негладкого случая
                     H_{v,w}^f \leftarrow H_{v,w}^f + T_{u;v,w}^{sym} \cdot \delta_{u,i}
19:
20:
                end for
21:
                if v = w then
                     for i \in 1..d_u do
22.
                          T_{u;v} \leftarrow \text{autodiff.hessian}(f_{u,i}, f_v) 
H_{v,v}^f \leftarrow H_{v,v}^f + T_{u;v} \cdot \delta_{u,i}
23:
24:
                     end for
25:
                end if
26:
27:
           end for
                                                                     \triangleright Обработка одностороннего пути от v к w
28:
           for u \in Ch(v) \setminus Ch(w) do
29:
                if (u, w) not in computed blocks then
                      H_{u,w}^f \leftarrow \text{ComputeInputHessian}(u, w, \{f_u\}, \mathcal{L}, \{\delta_u\}, \{H_{u,u'}^f\}, \text{computed\_blocks})
30:
31:
                D_{u \leftarrow v} \leftarrow \text{autodiff.jacobian}(f_u, f_v)
32:
                H_{v,w}^f \leftarrow H_{v,w}^f + D_{u \leftarrow v}^\top H_{u,w}^f
33:
           end for
34:
                                                                     \triangleright Обработка одностороннего пути от w к v
           for u \in Ch(w) \setminus Ch(v) do
35:
                if (v, u) not in computed blocks then
36:
                     H_{v,u}^f \leftarrow \text{ComputeInputHessian}(v, u, \{f_u\}, \mathcal{L}, \{\delta_u\}, \{H_{u,u'}^f\}, \text{computed\_blocks})
37:
38:
                \begin{aligned} &D_{u \leftarrow w} \leftarrow \text{autodiff.jacobian}(f_u, f_w) \\ &H^f_{v,w} \leftarrow H^f_{v,w} + H^f_{v,u} D_{u \leftarrow w} \end{aligned}
39:
40:
41:
           computed blocks \leftarrow computed blocks \cup \{(v,w)\} \triangleright Отметить как вычисленный
42:
     блок
           return H_{v,w}^f
43:
44: end function
```

Алгоритм 2: Вычисление блока параметрического Гессиана

```
1: function ComputeParameterHessian(v, w, {f_u}, {\theta_u}, {\{H_{u,u'}^f}, {\{\delta_u\}})
             D_v \leftarrow \text{autodiff.jacobian}(f_v, \theta_v)
             D_w \leftarrow \text{autodiff.jacobian}(f_w, \theta_w)
  3:
            H_{\theta_v,\theta_w} \leftarrow D_v^{\top} H_{v,w}^f D_w if v = w then
  4:
  5:
                   for i \in 1..d_v do
  6:
                        T_v^{\theta} \leftarrow \text{autodiff.hessian}(f_{v,i}, \theta_v) 
 H_{\theta_v, \theta_v} \leftarrow H_{\theta_v, \theta_v} + T_v^{\theta} \cdot \delta_{v,i}
  7:
  8:
                  end for
  9:
            end if
10:
            for u \in Pa(v) \cap Ch(w) do
11:
                  for i \in 1..d_v do
12:
                         for j \in 1..d_u do
13:
                               for \alpha \in 1..p_v do
14:
                                     T_{v;u,\theta} \leftarrow \text{ComputeMixedDerivative}(f_{v,i}, f_{u,j}, \theta_{v,\alpha})
15:
16:
                                     D_{w \leftarrow u} \leftarrow \text{autodiff.jacobian}(f_w, f_u)
17:
                                     H_{\theta_v,\theta_w} \leftarrow H_{\theta_v,\theta_w} + T_{v;u,\theta} \cdot D_{w \leftarrow u} \cdot \delta_{v,i}
18:
19:
                         end for
20:
                  end for
21:
            end for
            return H_{\theta_v,\theta_w}
22:
23: end function
```

Алгоритм 3: Полное вычисление Гессиана

```
1: function FullHessianComputation(G, \{f_v\}, \{\theta_v\}, \mathcal{L})
          \delta_{out} \leftarrow \text{autodiff.gradient}(\mathcal{L}, f_{out})
 2:
          \begin{aligned} & H^f_{out,out} \leftarrow \text{autodiff.hessian}(\mathcal{L}, f_{out}) \\ & \text{topo\_order} \leftarrow \text{TopologicalSort}(G).\text{reverse}() \end{aligned}
 3:
 4:
          Initialize \{\delta_v\}, \{H_{v,w}^f\} as zero matrices
 5:
          computed \quad blocks \leftarrow \emptyset
                                                                          ⊳ Отслеживание вычисленных блоков
 6:
          input\_dep\_nodes \leftarrow FindNodesDirectlyInfluencingLoss(\mathcal{L})
 7:
          for v \in \text{input} dep nodes do
 8:
 9:
               H_{v,v}^f \leftarrow \text{autodiff.hessian}(\mathcal{L}, f_v)
               \texttt{computed\_blocks} \leftarrow \texttt{computed\_blocks} \cup \{(v, v)\}
10:
                                                                                                            ⊳ Отметить как
     вычисленный
          end for
11:
          \mathbf{for}\ v, w \in \mathrm{input\_dep\_nodes}, v \neq w\ \mathbf{do}
12:
               H_{v,w}^f \leftarrow \text{autodiff.mixed\_hessian}(\mathcal{L}, f_v, f_w)
13:
               \texttt{computed\_blocks} \leftarrow \texttt{computed\_blocks} \cup \{(v, w)\}
                                                                                                            ⊳ Отметить как
14:
     вычисленный
15:
          end for
16:
          for v \in \text{topo} order do
17:
               BackpropagateGradients(v)
18:
               for w \in V do
                    if \mathrm{Ch}(v) \cap \mathrm{Ch}(w) \neq \emptyset OR (v,w) напрямую влияют на \mathcal L then
19:
                         H_{v,w}^f \leftarrow \text{ComputeInputHessian}(v, w, \{f_u\}, \mathcal{L}, \{\delta_u\}, \{H_{u,u'}^f\}, \text{computed\_blocks})
20:
21.
               end for
22:
          end for
23:
          Initialize full Hessian matrix H of size P \times P
24:
25:
          for v, w \in V do
               if \exists u : v \to^* u и w \to^* u OR (v, w) напрямую влияют на \mathcal{L} then
26:
                    H_{\theta_v,\theta_w} \leftarrow \text{ComputeParameterHessian}(v, w, \{f_u\}, \{\theta_u\}, \{H_{u,u'}^f\}, \{\delta_u\})
27:
                    Update corresponding blocks in H
28:
               end if
29:
          end for
30:
          return H
31:
32: end function
```