Centro Federal de Educação Tecnológica de Minas Gerais

Algoritmos e Estruturas de Dados

Problema da mochila

Gabriel Dutra Dias

orientado por Prof.ª Natália Cosse Batista

Conteúdo

1	Apresentação	2
2	Solução usando tentativa e erro (Backtracking)2.1 Exemplo 12.2 Pseudocódigo2.3 Análise do algoritmo proposto	4
3	Solução usando estratégia gulosa3.1 Pseudocódigo	
4	Resultados 4.1 Análise	7 7 7
5	Conclusão	8

1 Apresentação

O problema da mochila (em inglês, *Knapsack problem*) é um problema de optimização combinatória. O nome dá-se devido ao modelo de uma situação em que é necessário preencher uma mochila com objetos de diferentes pesos e valores. O objetivo é que se preencha a mochila com o maior valor possível, não ultrapassando o peso máximo. [1]

Figura 1: Ilustração - Problema da Mochila (Fonte: Wikipédia)

Neste trabalho apresentarei dois algoritmos para solução do problema da mochila. O primeiro utilizando *Backtracking* e o segundo usando uma estratégia gulosa. Ambos os métodos serão analisados, implementados e testados.

2 Solução usando tentativa e erro (Backtracking)

A solução de tentativa e erro representa uma força bruta, pois percorre todas as soluções possíveis e a partir delas escolhe uma ótima.

2.1 Exemplo 1

Para explicar a solução do problema da mochila usando tentativa e erro, tomarei um exemplo onde a mochila tem peso máximo 16 e a loja possui 4 itens.

Tabela 1: Itens da loja no exemplo 1

Item	Valor	Peso
1	\$40	2
2	\$30	5
3	\$50	10
4	\$10	5

Figura 2: Árvore de possibilidades - Exemplo 1 (Fonte: zakarum.tistory.com)

Para cada item há duas possibilidades de escolhas: levar ou não levar o item. Dessa forma, obtemos a árvore de estados acima. Cada nó representa um estado para o problema da mochila. Esse estado pode ser uma solução possível ou não (na representação acima, as não possíveis estão marcadas com um X). A solução ótima é o estado representado pelo nó destacado. Dessa forma, podemos usar o algoritmo de Backtracking para encontrar a solução ótima no problema da mochila.

2.2 Pseudocódigo

Algoritmo 1: Problema da mochila - Solução usando Backtracking Entrada: w, C (Capacidade da mochila e conjunto de itens na loja) Saída: Itens para se levar na mochila 1 início $solucaoOtima \leftarrow \{\}$ 2 $valorOtimo \leftarrow 0$ 3 $pesoOtimo \leftarrow 0$ 4 Função Backtracking(item: inteiro, acumuladorValor: inteiro, acumuladorPeso: $inteiro, S: Item_n): vazio$ inicio 6 $valorAtual \leftarrow acumuladorValor + C(item)_{valor}$ 7 $pesoAtual \leftarrow acumuladorPeso + C(item)_{peso}$ 8 se $pesoAtual \leq w$ então se valorAtual > valorOtimo então 10 $valorOtimo \leftarrow valorAtual$ 11 $pesoOtimo \leftarrow pesoAtual$ 12 $solucaoOtima \leftarrow S + C(i)$ 13 fim 14 fim **15** se $i + 1 \leq Tamanho(C)$ e acumuladorPeso < w então 16 Backtracking(C(i+1), valorAtual, pesoAtual, S + C(i))17 Backtracking(C(i+1), acumulador Valor, acumulador Peso, S)18 fim 19 fim 20 $Backtracking(C(0), 0, 0, \emptyset)$ $\mathbf{21}$ 22 fim

2.3 Análise do algoritmo proposto

23 retorna solucaoOtima

A solução por *Backtracking* percorre todas as possibilidades de solução para o problema da mochila e as compara para obter uma solução ótima. Desse modo, temos um algoritmo que garantidamente nos dá uma solução ótima.

Para fazer o cálculo da função de complexidade f(n) vamos considerar o número de comparações realizadas. Consideraremos também o pior caso, em que todos os itens podem ser colocados na mochila, dessa forma, a função sempre chama ela mesma duas vezes. Para cada chamada de função há 4 comparações. Desse modo temos a seguinte equação de recorrencia T(n) em que n é o número de itens:

$$\begin{cases} T(n) = 2T(n-1) + 4 \\ T(0) = 0 \end{cases}$$

Ao fazer a expansão da equação de recorrência temos:

$$T(1) = 4$$

$$T(2) = 2 \times 4 + 4 = 12$$

$$T(3) = 2 \times 12 + 4 = 28$$

$$T(4) = 2 \times 26 + 4 = 60$$

$$\vdots$$

$$T(n) = 4(2^{n} - 1) = O(2^{n})$$

3 Solução usando estratégia gulosa

A solução gulosa baseia-se em escolhermos ótimos locais para no final selecionar um ótimo global. No caso do problema da mochila, o *i-ésimo* item escolhido será aquele com o melhor custo-benefício na loja (otimizando valor e peso).

Desse modo teremos uma solução aproximada para o problema, já que a solução não necessariamente será a ótima global.

3.1 Pseudocódigo

```
Algoritmo 2: Problema da mochila - Solução Gulosa
   Entrada: w, C (Capacidade da mochila e conjunto de itens na loja)
   Saída: Itens para se levar na mochila
 1 início
       S \leftarrow \{\}
 2
       pesoTotal \leftarrow 0
 3
       repita
 4
           maisValioso \leftarrow \varnothing
 5
           custoBeneficioMV \leftarrow 0
 6
           para cada item \in C faça
 7
               custoBeneficio \leftarrow \frac{item_{valor}}{item_{peso}}
 8
               se custoBeneficio > custoBeneficioMV e pesoTotal + item_{peso} < w então
 9
                   maisValioso \leftarrow item
10
                    custoBeneficioMV \leftarrow custoBeneficio
11
               fim
12
           _{\rm fim}
13
           S \leftarrow S + maisValioso
14
           C \leftarrow C - maisValioso
15
           pesoTotal \leftarrow pesoTotal + maisValioso_{peso}
16
       até maisValioso = \emptyset;
17
18 fim
19 retorna S
```

3.2 Análise do algoritmo proposto

Para fazer a análise do algoritmo tomarei como base o número de comparações realizadas. A única comparação feita está na linha 9, ela ocorre Tamanho(C) vezes para cada seleção local e o tamanho de C diminui em 1 para cada uma dessas escolhas. Iremos considerar n como o número inicial de itens e todas as informações do algoritmo acima. O pior caso será quando todos os itens da loja puderem ser colocados na mochila, ou seja, $\sum_{i=1}^n C(i)_{peso} < w$. A análise de custo do algoritmo no pior caso pode ser representada pela seguinte função de custo:

$$f(n) = \sum_{i=1}^{n} \sum_{j=1}^{n-i} 1 = \frac{n^2 - n}{2} = O(n^2)$$
 (1)

Resultados 4

Ambos os algoritmos propostos foram implementados em C (https://github.com/gabrieldutra/ ProblemaDaMochila) e um Dataset foi gerado com script desenvolvido em Shell Script para esse fim.

Resultados foram recolhidos variando N com 10, 20, 30, 100, 300 e 500 e a razão $\frac{Capacidade}{Peso_{total}}$ variando com 50, 25 e 12,5%. O valor dos itens foi gerado aleatoriamente entre \$10 e \$200. O tempo e a diferença apontada no valor total entre os dois algoritmos foram anotados.

N	%	Tempo Guloso	Tempo Backtracking	Diferença n
	50	<1 ms	<1 ms	\$2
10	~~		4	Φ.

1.4	/0	Tempo Guioso	Tempo Dacktracking	Dherença no resultado
	50	<1 ms	<1 ms	\$28
10	25	<1 ms	<1 ms	\$45
	12,5	<1 ms	<1 ms	\$14
	50	<1 ms	365 ms	\$35
20	25	<1 ms	23 ms	\$39
	12,5	<1 ms	$2 \mathrm{\ ms}$	\$11
	50	<1 ms	**	**
30	25	<1 ms	**	**
	12,5	<1 ms	$35~\mathrm{ms}$	\$69
	50	<1 ms	**	**
100	25	<1 ms	**	**
	12,5	<1 ms	**	**
	50	<1 ms	**	**
300	25	<1 ms	**	**
	12,5	<1 ms	**	**
	50	1.5 ms	**	**
500	25	1.5 ms	**	**
	12,5	1.5 ms	**	**

Análise 4.1

A maioria dos resultados para valores de N grande não puderam ser computados já que excediam o limite da máquina utilizada nos testes.

É possível notar o crescimento rápido do tempo de execução do algoritmo de Backtracking em comparação com o Guloso, que se mantém quase que constante durante os testes.

A maior diferença em valor computada foi \$69, e no banco de testes utilizado o algoritmo Guloso não obteve a solução ótima nenhuma vez.

4.2 Tempo de entrada e saída

Os tempos de entrada e saída também foram anotados, o maior tempo de entrada foi 15 ms para N=500.

5 Conclusão

É possível concluir que o algoritmo guloso mesmo não dando uma solução ótima, nos dá uma solução com uma diferença em valor não muito grande, o que pode ser suficiente dependendo do problema que estamos lidando.

Desse modo, antes de aplicar uma solução a um problema é necessário fazer uma análise de custo em cima do contexto do problema. Muitos dos casos de teste não tiveram resultado com o algoritmo de Backtracking, pois ele possui complexidade exponencial de tempo.

Referências

[1] Mitsuo Ge Xinjie Yu. Introduction to Evolutionary Algorithms, p.270-271. 2003.