

Modelos de regressão

Em estatística, regressão é uma técnica que permite quantificar e inferir a relação de uma variável dependente (variável de resposta) com variáveis independentes (variáveis explicativas). A análise da regressão pode ser usada como um método descritivo da análise de dados (por exemplo, o ajustamento de curvas).

Modelos de regressão

Há vários métodos de estimação tais como método dos mínimos quadrados, método dos momentos generalizado e logit. A escolha do modelo dependente do comportamento das variáveis e dos dados.

Modelos de regressão

Regressão linear

Conceito

- Regressão linear é um modelo **supervisionado** usado para prever uma variável dependente **contínua** a partir de uma ou mais variáveis independentes.
- **Exemplo**: prever o preço de um imóvel a partir de sua área e número de quartos.

Coeficiente de determinação (R2)

$$R^2 = 1 - rac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - ar{y})^2}$$

Conceito

- Regressão linear é um modelo supervisionado usado para prever uma variável dependente contínua a partir de uma ou mais variáveis independentes.
- Exemplo: prever o preço de um imóvel a partir de sua área e número de quartos.

Modelo Matemático

Equação geral da regressão linear múltipla:

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n$$

- ŷ: valor previsto.
- β₀: intercepto.
- β_i: coeficientes (pesos das variáveis).
- x_i: variáveis independentes.
- Ajuste do modelo (Método dos Mínimos Quadrados)
- Objetivo: minimizar a soma dos erros quadráticos:

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

Hipóteses da regressão linear

- Linearidade entre X e Y.
- Erros independentes.
- Homocedasticidade (variância constante dos erros).
- Normalidade dos resíduos.

Métricas de Avaliação

- R² (Coeficiente de Determinação): medida de explicação da variância.
- MSE (Erro Quadrático Médio): penaliza grandes erros.

Regressão Logística (Classificação Binária)

- Apesar do nome, a regressão logística é usada para classificação binária, não para regressão contínua.
- Objetivo: estimar a **probabilidade** de ocorrência de um evento Y=1.

3.2 Modelo Matemático

Função logística (sigmoide):

$$P(Y=1|X) = rac{1}{1 + e^{-(eta_0 + eta_1 x_1 + \ldots + eta_n x_n)}}$$

Essa função transforma qualquer valor real em um valor entre **0 e 1**, interpretado como **probabilidade**.

Interpretação na Regressão Logística

- Em **regressão linear**, o modelo gera um valor real \hat{y} .
- Em regressão logística, aplicamos a função sigmoide sobre uma combinação linear das variáveis:

$$P(y=1|X) = \sigma(\beta_0 + \beta_1 x_1 + \ldots + \beta_n x_n)$$

• Assim, o modelo fornece a **probabilidade de** Y=1.