EE210: Microelectronics-I

Lecture-28: Differential Amplifiers_1

Instructor - Y. S. Chauhan

Slides - B. Mazhari Dept. of EE, IIT Kanpur

How do we bias without using coupling capacitors?

Making large capacitors (μ F) on chip is impossible!

$$C = \frac{\varepsilon_{ox}}{t_{ox}} \times Area$$

$$\varepsilon_{ox} = 3.9 \times 8.85 \times 10^{-14} F/cm$$
; $t_{ox} = 20nm$

Area = $57 cm^2$!! for 10μ F capacitor

One can only make capacitors of the order of a few Picofarads on chip

This would lead to an unacceptably large lower cutoff frequency

Cannot simply remove C_B!

 $V_{BE} = 0$ so that BJT is in Cutoff Mode

dc coupled input with use of negative power supply

Good bias point stability against variations in β

Without C_F, voltage gain is too low!

$$A_V \cong -\frac{R_C}{R_E}$$

$$I_{CQ} = \frac{-0.7 - V_{EE}}{R_E}$$

$$I_{CQ} = \frac{V_{CC} - V_{CQ}}{R_C}$$

$$|A_V| \approx \frac{V_{CC} - V_{CQ}}{-0.7 - V_{EE}}$$

$$< \frac{V_{CC}}{-0.7 - V_{EE}} = \frac{12}{11.3}$$

Key Problem: How do we get rid of C_E ?

Want an element with very low small-signal resistance

$$r_{\chi} << R_E, R_C$$

Want an element with very low small-signal resistance

Possible Solution

Small Signal Gain

$$A_V \cong -\frac{g_{m1}}{1 + g_{m1}/g_{m2}} R_C = -0.5 g_m R_C$$

What about bias point?

$$I_{EE} = \frac{-0.7 - V_{EE}}{R_E}$$

$$I_{CQ1} = I_{CQ2} = 0.5I_{EE}$$

Example

dc amplifier

Can make the circuit more useful by making it symmetrical

Differential Amplifier

-An amplifier that is sensitive to difference in input voltages and insensitive to what is common.

Differential input Single-ended Output

Differential input Differential Output

$$v_{id} = v_{in1} - v_{in2}$$
$$v_{ic} = \frac{v_{in1} + v_{in2}}{2}$$

$$v_o = A_d v_{id} + A_{cm} v_{ic}$$

 A_d : Differential mode gain

 A_{cm} : Common mode gain

$$A_d \gg A_{cm}$$

Common Mode Rejection Ratio:
$$CMRR = \frac{A_d}{A_{cm}}$$

$$A_d = 100; \quad A_{cm} = 0.01$$

$$v_{i1} = 1V + 5mV \times Sin(\omega t)$$
; $v_{i2} = 1V - 5mV \times Sin(\omega t)$

$$v_{id} = v_{in1} - v_{in2} = 10mV \times Sin(\omega t)$$
$$v_{ic} = \frac{v_{in1} + v_{in2}}{2} = 1V$$

$$v_o = A_d v_{id} + A_{cm} v_{ic}$$
$$= 1V \times Sin(\omega t) + 10mV$$

Whatever is common is rejected and whatever is different is amplified!

Applications?

Differential Pair

Both outputs sensitive to only difference of input voltages

Advantages: Unwanted signal rejection

Noisy input

CE amplifier: Output is noisy as well

Differential Amplifier

Noisy input

Output: Noise Free

Amplifying small signal immersed in a large signal

$$V_x \cong 0.5V_{CC} + 0.5V_{CC} \times \frac{\Delta R}{R_O}$$

$$V_{CC} = 5V; \frac{\Delta R}{R_O} = 1\%$$

$$V_{\chi} \cong 2.5V + 25mV$$

How do we detect the small signal?

Amplifier with single ended input won't work!

$$V_{in} \cong 2.5V + 25mV$$

Differential amplifier is a natural solution

One can detect and amplify the desired input signal

Differential output signal is even better!

Differential pairs

Transistors are matched