

Algoritmi e Strutture di Dati

Code di priorità
(Heap e HEAP SORT)

m.patrignani

Nota di copyright

- queste slides sono protette dalle leggi sul copyright
- il titolo ed il copyright relativi alle slides (inclusi, ma non limitatamente, immagini, foto, animazioni, video, audio, musica e testo) sono di proprietà degli autori indicati sulla prima pagina
- le slides possono essere riprodotte ed utilizzate liberamente, non a fini di lucro, da università e scuole pubbliche e da istituti pubblici di ricerca
- ogni altro uso o riproduzione è vietata, se non esplicitamente autorizzata per iscritto, a priori, da parte degli autori
- gli autori non si assumono nessuna responsabilità per il contenuto delle slides, che sono comunque soggette a cambiamento
- questa nota di copyright non deve essere mai rimossa e deve essere riportata anche in casi di uso parziale

Sommario

- Il tipo astratto di dato coda di priorità
- La struttura di dati heap
 - procedura MAX HEAPIFY
 - procedura BUILD MAX HEAP
- Coda di priorità realizzata con un heap
- Algoritmo di ordinamento HEAP SORT
 - analisi della sua complessità

Code di priorità

- Una coda di priorità (priority queue) è una collezione di elementi
 - ad ogni elemento è associato un valore di priorità
 - i valori di priorità definiscono un ordinamento
- Operazioni sulle code di priorità
 - l'utente vuole inserire efficientemente nuovi elementi con valori arbitrari di priorità
 - l'utente vuole estrarre efficientemente l'elemento a più alta priorità

Due applicazioni delle code di priorità

- Allocazione ai processi delle risorse condivise
 - gli elementi della coda sono le richieste da parte dei processi di una specifica risorsa
 - per esempio l'accesso all'hard disk o ad una periferica
 - i processi in esecuzione generano nuove richieste con priorità dipendenti dall'utente o dal tipo di operazione richiesta
 - la risorsa è assegnata al processo con più alta priorità
- Simulazione di un sistema complesso guidata dagli eventi
 - gli elementi della coda sono eventi, con associato il tempo in cui si devono verificare
 - gli eventi vengono simulati in ordine temporale
 - la simulazione di un evento può provocare l'inserimento nella coda di altri eventi a distanza di tempo

Coda di priorità di interi

Domini

- il dominio di interesse Q di tutte le code di priorità di interi
- dominio di supporto: l'insieme degli interi Z
- dominio di supporto: l'insieme dei booleani {true, false}

Costanti

- la coda di priorità vuota
 - NEW_QUEUE(): inizializza e ritorna una coda di priorità vuota

Operazioni

```
INSERT(Q,x): inserisce l'elemento x nella coda Q
```

MAXIMUM(Q): restituisce l'elemento di Q con chiave più grande

EXTRACT_MAX(Q): restituisce l'elemento di Q con chiave più grande e lo rimuove da Q

IS_EMPTY(Q): riporta true se la coda Q è vuota, false altrimenti

Realizzazioni inefficienti di code di priorità

- Si potrebbe realizzare una coda di priorità tramite una lista ordinata
 - l'inserimento nella lista di un nuovo elemento avrebbe complessità $\Theta(n)$
 - la rimozione dell'elemento a più alta priorità (il primo della lista) avrebbe complessità $\Theta(1)$
- Si potrebbe realizzare una coda di priorità tramite una lista non ordinata
 - l'inserimento (in testa) di un nuovo elemento avrebbe complessità $\Theta(1)$
 - la ricerca e la rimozione dell'elemento a più alta priorità avrebbe complessità $\Theta(n)$

Sono possibili realizzazioni più efficienti?

• L'obiettivo è quello di bilanciare i due costi

La struttura dati heap

Un heap

- è una struttura dati che può essere utilizzata per realizzare una coda di priorità
- è uno speciale array i cui valori sono in rapporto con la loro posizione nell'array
- può essere un max-heap o un min-heap
 - noi vedremo in dettaglio il max-heap

Alberi binari "quasi completi"

- Gli heap rappresentano alberi binari quasi completi
- Un albero binario è *quasi completo* se l'ultimo livello può essere incompleto nella sua parte destra

Un heap codifica un albero

• L'heap consiste di un array h. A che codifica, livello per livello, un albero binario quasi completo

Un heap codifica un albero

- h.A[0] è la radice dell'albero
- Dato il nodo associato alla posizione *i*:
 - i nodi figli si trovano in posizione 2*i*+1 e 2*i*+2
 - il nodo genitore (se $i \neq 0$) si trova in posizione (i-1)/2

Semplificazione dello pseudocodice

• Per rendere più leggibile lo pseudocodice definiamo le seguenti funzioni

```
PARENT(i) /* ritorna l'indice del parent del nodo i */

1. return [(i-1)/2]
```

```
LEFT(i) /* ritorna l'indice del figlio sinistro di i */

1. return 2i + 1
```

```
RIGHT(i) /* ritorna l'indice del figlio destro di i */

1. return 2i + 2
```

Dettagli implementativi

- Per maggiore flessibilità, anche se l'array è lungo h.A.length, supponiamo che solo i valori compresi tra 0 e h.size-1 siano significativi
 - dove ovviamente h.size ≤ h.A.length

Valori contenuti in un max-heap

- In un *max-heap*l'elemento
 memorizzato nel
 nodo *i* ha valore
 maggiore o uguale
 degli elementi
 memorizzati nei
 suoi figli
 - la radice contiene il valore più alto dell'array
 - per j > 0, $h.A[PARENT(j)] \ge h.A[j]$

Min-heap

- Esiste anche il *min-heap* che ha la proprietà simmetrica
 - la radice
 contiene il
 valore
 minore
 dell'array

Proprietà degli heap

• Se h è un heap che codifica un albero quasicompleto con n elementi, gli $\lfloor n/2 \rfloor$ elementi da 0 a $\lfloor n/2 \rfloor$ -1 sono nodi interni

Dimostrazione della proprietà

Dimostriamo per induzione che i nodi interni sono $\lfloor n/2 \rfloor$

- Passo base
 - dimostriamo l'asserto per gli alberi completi
 - un albero completo è un particolare albero quasi completo
- Passo induttivo
 - dimostriamo che se vale per un albero quasi completo con n nodi, vale anche per un albero quasi completo con n-1 nodi
 - distinguiamo due casi: rimozione del figlio destro e rimozione del figlio sinistro

Passo base: albero binario completo

- Sappiamo che un albero binario completo di altezza h ha 2^h foglie e 2^h -1 nodi interni e dunque n= 2^{h+1} -1 nodi totali
- Verifichiamo la formula: nodi interni = $\lfloor n/2 \rfloor = \lfloor (2^{h+1}-1)/2 \rfloor = \lfloor 2^h-1/2 \rfloor = 2^h-1$

Passo induttivo: rimuovo un figlio destro

- Prima della rimozione avevo n nodi e $\lfloor n/2 \rfloor$ nodi interni (con n dispari)
 - dalla disparità di *n* segue che $\lfloor n/2 \rfloor = \lfloor (n-1)/2 \rfloor$
- Dopo la rimozione ho n' = n-1 nodi e il numero dei nodi interni non è cambiato
 - ne segue che i nodi interni sono $\lfloor n/2 \rfloor = \lfloor (n-1)/2 \rfloor = \lfloor n'/2 \rfloor$

Passo induttivo: rimuovo un figlio sinistro

- Prima della rimozione avevo n nodi e $\lfloor n/2 \rfloor$ nodi interni (con n pari)
 - dalla parità di *n* segue che $\lfloor n/2 \rfloor = \lfloor (n-1)/2 \rfloor + 1$
- Dopo la rimozione ho n' = n-1 nodi e i nodi interni sono diminuiti di uno
 - dunque i nodi interni sono $\lfloor (n-1)/2 \rfloor = \lfloor n'/2 \rfloor$

Procedura MAX HEAPIFY

• Se i due sottalberi radicati a LEFT(i) e a RIGHT(i) sono dei max-heap, allora la procedura MAX-HEAPIFY(h,i) trasforma il sottoalbero radicato ad i in un max-heap

```
MAX HEAPIFY (h, i)
1. l = LEFT(i) \triangleright indice del figlio sinistro
2. r = RIGHT(i) \triangleright indice del figlio destro
3. if (1 \le h.size-1 \text{ and } h.A[1] > h.A[i]) massimo = 1
4. else
                                                 massimo = i
5. if (r \le h.size-1 \text{ and } h.A[r] > h.A[massimo] massimo = r
   /* ora massimo è il massimo tra h.A[l], h.A[r] ed h.A[i]
7. if massimo \neq i
8.
       SCAMBIA CASELLE (h.A, i, massimo)
9.
       MAX HEAPIFY (h, massimo)
```

Esecuzione di MAX HEAPIFY sul nodo i

max-heap

radicato ad i è diventato un max-heap

Analisi di MAX HEAPIFY

```
MAX HEAPIFY (h, i)
1. l = LEFT(i) \triangleright indice del figlio sinistro
  r = RIGHT(i) \triangleright indice del figlio destro
   if (1 \le h.size-1 \text{ and } h.A[1] > h.A[i])
                                                 massimo = 1
  else
                                                 massimo = i
5. if (r \le h.size-1 \text{ and } h.A[r] > h.A[massimo] massimo = r
   /* ora massimo è il massimo tra h.A[l], h.A[r] ed h.A[i]
   if massimo ≠ i
       SCAMBIA CASELLE (h.A, i, massimo)
       MAX HEAPIFY (h, massimo)
```

- Il tempo di esecuzione di MAX_HEAPIFY(h,i) si ottiene sommando
 - il tempo di calcolo di massimo (linee 1-8), che è evidentemente $\Theta(1)$
 - il tempo di calcolo MAX_HEAPIFY(h, massimo) dove il sottoalbero radicato a massimo ha dimensione ridotta rispetto a quello radicato ad i

Analisi di MAX HEAPIFY

- Il caso peggiore si presenta quando occorre ricorrere su un sottoalbero di profondità h-1, mentre il sottoalbero radicato al nodo fratello ha profondità h-2
 - ricorda che l'albero è quasi-completo
- In questo caso, se i nodi dell'albero sono n, i nodi del sottoalbero più pesante sono $n \cdot 2/3$

Analisi di MAX HEAPIFY

• Il tempo di calcolo di MAX_HEAPIFY su un sottoalbero con *n* nodi è

$$T(n) \le T(2n/3) + c$$

• Questa disequazione di ricorrenza può essere risolta con il master theorem

$$T(n) = a \cdot T(n/b) + p(n^k)$$

nello speciale caso in cui

$$a=1$$
 $b=3/2$ $k=0$

che per $a = b^k$ si risolve in

$$T(n) = \Theta(n^k \log n) = \Theta(\log n)$$

• Dunque la complessità di MAX_HEAPIFY è $\Theta(\log n)$

Analisi alternativa di MAX HEAPIFY

- Il tempo di calcolo di MAX_HEAPIFY su un sottoalbero con *n* nodi è chiaramente pari a Θ(1) moltiplicato per il numero di lanci ricorsivi di MAX HEAPIFY
 - $-\Theta(1)$ è dovuto alle linee 1-8 dello speudocodice
- Poiché un albero binario quasi-completo ha altezza
 Θ(log n), il numero di lanci ricorsivi nel caso peggiore
 è Θ(log n)
- La complessità di MAX_HEAPIFY nel caso peggiore è dunque:

$$\Theta(1) \cdot \Theta(\log n) = \Theta(\log n)$$

Procedura BUILD MAX HEAP

- BUILD_MAX_HEAP trasforma un array A in un heap
- Se n = h.A.length, gli elementi con indice $\geq \lfloor n/2 \rfloor$ sono tutte foglie
 - ognuna è un heap con un solo elemento
- BUILD_MAX_HEAP esegue MAX_HEAPIFY sui nodi che non sono foglie, dal basso verso l'alto

```
BUILD_MAX_HEAP(h)

1. h.size = h.A.length

2. for i = [h.A.length/2]-1 downto 0 // i nodi interni

3. MAX_HEAPIFY(h,i)
```

Esecuzione di BUILD MAX HEAP (1/2)

Esecuzione di BUILD MAX HEAP (2/2)

Analisi di BUILD MAX HEAP

BUILD_MAX_HEAP(h) 1. h.size = h.A.length 2. for i = [h.A.length/2]-1 downto 0 // i nodi interni 3. MAX_HEAPIFY(h,i)

- BUILD_MAX_HEAP lancia MAX_HEAPIFY un numero $\Theta(n)$ di volte
 - il tempo di esecuzione di MAX_HEAPIFY nel caso peggiore è $\Theta(\log n')$
 - dove n'è il numero dei nodi del sottoalbero radicato al nodo sul quale è lanciato MAX HEAPIFY
- Siccome $\Theta(\log n') \subseteq O(\log n)$ possiamo dire che la complesità di BUILD MAX HEAP nel caso peggiore è $O(n \log n)$
 - O($n \log n$) non è un limite asintoticamente stretto
 - con un'analisi più rigorosa dimostreremo che la complessità di BUILD_MAX_HEAP nel caso peggiore è $\Theta(n)$

- La complessità di BUILD MAX HEAP coincide con la somma delle altezze di tutti i sottoalberi radicati ai nodi dell'albero
- Dimostriamo che tale somma sia $\Theta(n)$ per un albero completo con *n* nodi
- Sia S(n) la somma delle altezze di tutti i sottoalberi di un albero binario completo con *n* nodi
 - ricorda che la sua altezza è $h = \log_2(n+1) 1$
- Dimostriamo per induzione che

$$S(n) = n - h - 1 = n - \log_2(n+1) \in \Theta(n)$$

- Caso base
 - per un albero con la sola radice abbiamo

$$n = 1 \qquad \updownarrow \quad h = 0$$

$$S(n) = n - h - 1$$

$$S(1) = 1 - 0 - 1 = 0$$

 infatti un albero con la sola radice ha un solo sottoalbero (l'albero stesso) che ha altezza zero

Caso induttivo

 supponiamo che la formula sia vera per tutti gli alberi con un numero di nodi minore di n

formula già dimostrata

Caso induttivo

$$S(n) = 2S\left(\frac{n-1}{2}\right) + h =$$

$$= 2\left(\frac{n-1}{2} - (h-1) - 1\right) + h =$$

$$= 2\left(\frac{n-1}{2} - h + 1 - 1\right) + h =$$

$$= n - 1 - 2h + h$$

$$= n - h - 1$$

Realizzazione di una coda di priorità

 Le code di priorità possono essere gestite tramite un heap

```
NEW_QUEUE()
1. /* h è un nuovo oggetto con i campi size (intero) ed A
2. (array di 100 interi) */
3. h.size = 0
4. return h
```

- Supponiamo di gestire le dimensioni dell'array h.A tramite una crescita telescopica
- La complessità di questa funzione è costante $\Theta(1)$

Realizzazione di una coda di priorità

```
IS_EMPTY(h)
1. return h.size == 0
```

```
MAXIMUM(h)

1. return h.A[0]
```

 Le due funzioni qui sopra hanno evidentemente una complessità costante Θ(1)

Procedura EXTRACT MAX

```
EXTRACT_MAX(h)

1. if IS_EMPTY(h)

2. error("heap underflow")

3. max = h.A[0]

4. h.A[0] = h.A[h.size - 1]

5. h.size = h.size - 1

6. MAX_HEAPIFY(h,0)

7. return max
```

- Viene eliminato il primo elemento dalla coda
- L'ultimo elemento viene messo al suo posto
- Viene decrementato h.size
- La complessità totale è quella di MAX_HEAPIFY, cioè Θ(log n)
 nel caso peggiore

Procedura INSERT

```
INSERT (h, key)
  if h.size == h.A.length
2.
      error("overflow")
  h.size = h.size + 1
  i = h.size - 1
  while i>0 and h.A[PARENT(i)] < key
6.
   h.A[i] = h.A[PARENT(i)]
6.
    /* il genitore di i è stato spostato in basso */
    i = PARENT(i)
9. h.A[i] = key
```

- h.size viene incrementato di 1
- Il nuovo elemento viene "spinto in alto" fino a trovare la posizione giusta
- La complessità nel caso peggiore è data dall'altezza dell'albero, cioè $\Theta(\log n)$

Esecuzione di INSERT (1)

Esecuzione di INSERT (2)

Conclusioni sulle strutture di dati heap

- Consentono di realizzare delle code di priorità in cui
 - la creazione della coda di priorità ha complessità $\Theta(n)$
 - procedura BUILD_MAX_HEAP(h)
 - l'inserimento di un elemento con priorità arbitraria ha complessità Θ(log n)
 - procedura INSERT(h,key)
 - l'estrazione dell'elemento con chiave maggiore ha complessità Θ(log n)
 - procedura EXTRACT_MAX(h)

Esercizi sugli heap

1. Illustra le operazioni di INSERT(h,10) sullo heap

$$h.A = <15, 13, 9, 5, 12, 8, 7, 4, 0, 6, 2, 1>$$

2. Illustra le operazioni di EXTRACT_MAX(h) sullo heap

$$h.A = <15, 13, 9, 5, 12, 8, 7, 4, 0, 6, 2, 1>$$

Procedura HEAP SORT

```
HEAP_SORT(A)

1. h.A = A /* h è un nuovo heap */

2. h.size = A.length

3. BUILD_MAX_HEAP(h)

4. for i = h.A.length-1 downto 1

5. SCAMBIA_CASELLE(A,0,i)

6. h.size = h.size - 1

7. MAX_HEAPIFY(h,0)
```

- A viene trasformato in un heap $(\Theta(n))$
- Per i che va da 0 ad A. length-1 (cioè $\Theta(n)$ volte)
 - viene estratto il primo elemento di A e viene posto in coda all'array $(\Theta(1))$
 - viene lanciato MAX_HEAPIFY per ripristinare le proprietà dell'heap (tempo $\Theta(\log n)$ se gli elementi sono tutti distinti)

Esecuzione di HEAP_SORT (1/5)

Esecuzione di HEAP SORT (2/5)

Esecuzione di HEAP SORT (3/5)

Esecuzione di HEAP SORT (4/5)

Esecuzione di HEAP SORT (5/5)

HEAP SORT non è stabile

• Lo dimostriamo con un controesempio

• Ora la posizione dei due elementi è invertita

Algoritmi di ordinamento visti finora

	caso migliore	caso medio	caso peggiore	in loco	stabile
SELECTION_SORT	$\Theta(n^2)$			si	si
INSERTION_SORT	$\Theta(n)$	$\Theta(n^2)$	$\Theta(n^2)$	si	si
MERGE_SORT	$\Theta(n \log n)$			no	si
HEAP_SORT	$\Theta(n \log n)$			si	no

Nota: nel caso migliore HEAP SORT ha complessità $\Theta(n \log n)$ se gli elementi sono tutti distinti e complessità $\Theta(n)$ se gli elementi sono tutti uguali

130-heap-11

Domande sugli heap

- 3. Quali sono il numero minimo ed il numero massimo di elementi in uno heap di altezza *h*?
- 4. In un max-heap, dove potrebbe risiedere l'elemento più piccolo, assumendo che siano tutti distinti?
- 5. Un heap in cui l'array è ordinato in ordine inverso è un max-heap?
- 6. La sequenza <23, 17, 14, 6, 13, 10, 1, 5, 7, 12> è un max-heap?
- 7. Qual è l'effetto di MAX_HEAPIFY(h,i) se l'elemento h.A[i] è più grande dei suoi figli?
- 8. Qual è l'effetto di MAX_HEAPIFY(h,i) se i > h.size/2-1 ?

Esercizi sulle code di priorità

9. Illustra le operazioni di MAX_HEAPIFY(h,2) sullo heap

$$h.A = \langle 27, 17, 3, 16, 13, 10, 1, 5, 7, 12, 4, 8, 9, 0 \rangle$$

10. Illustra le operazioni di BUILD_MAX_HEAP(h) sullo heap

$$h.A = <5, 3, 17, 10, 84, 19, 6, 22, 9>$$

11. Illustra le operazioni di HEAP_SORT sull'array A = <5, 13, 2, 25, 7, 17, 20, 8, 4>