```
import pandas as pd
df = pd.read_csv('/content/Iris.csv')
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
df.head()
\overline{2}
         {\tt Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm}\\
                                                                         Species
      0
                       5.1
                                                     1.4
                                      3.5
                                                                   0.2 Iris-setosa
      1
         2
                       4.9
                                      3.0
                                                     1.4
                                                                   0.2 Iris-setosa
      2
                       4.7
         3
                                      3.2
                                                     1.3
                                                                   0.2 Iris-setosa
      3
         4
                       4.6
                                      3.1
                                                     1.5
                                                                   0.2 Iris-setosa
      4
         5
                       5.0
                                                     1.4
                                                                   0.2 Iris-setosa
              Generate code with df
                                      View recommended plots
 Next steps:
df.shape
→ (150, 6)
df.info()
<<rp><class 'pandas.core.frame.DataFrame'>
     RangeIndex: 150 entries, 0 to 149
     Data columns (total 6 columns):
                         Non-Null Count Dtype
     # Column
     0
         Ιd
                         150 non-null
                                          int64
          SepalLengthCm 150 non-null
                                          float64
          SepalWidthCm
                         150 non-null
                                          float64
          PetalLengthCm 150 non-null
                                          float64
          PetalWidthCm 150 non-null
                                          float64
                         150 non-null
                                          object
      5 Species
     dtypes: float64(4), int64(1), object(1)
     memory usage: 7.2+ KB
df.isnull().sum()
<u>→</u> Id
     {\tt SepalLengthCm}
                      0
     SepalWidthCm
                      0
     PetalLengthCm
                      0
     PetalWidthCm
     Species
                      0
     dtype: int64
df[df.duplicated()]
```

Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species

 $\overline{\mathbf{T}}$

import seaborn as sns

sns.boxplot(df['SepalLengthCm'])

sns.boxplot(df['SepalWidthCm'])

q1 = df['SepalWidthCm'].quantile(0.25)
print(q1)

_ 2.8

q3 = df['SepalWidthCm'].quantile(0.75)
q3

→ 3.3

IQR = q3-q1IQR

→ 0.5

lowerBound = q1 -(1.5*IQR)
print(lowerBound)
upperBound = q3 + (1.5*IQR)
print(upperBound)

2.05 4.05 <Axes: ylabel='SepalWidthCm'>

sns.boxplot(df['PetalLengthCm'])

<Axes: ylabel='PetalLengthCm'>

sns.boxplot(df['PetalWidthCm'])


```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['Species']=le.fit_transform(df[['Species']])
sns.boxplot(df['Species'])
```

/usr/local/lib/python3.10/dist-packages/sklearn/preprocessing/_label.py:116: DataConv y = column_or_1d(y, warn=True) <Axes: ylabel='Species'>


```
from sklearn.preprocessing import StandardScaler
Scaler = StandardScaler()
df['Id']=Scaler.fit_transform(df[['Id']])
df['SepalLengthCm']=Scaler.fit_transform(df[['SepalLengthCm']])
df['SepalWidthCm']=Scaler.fit_transform(df[['SepalWidthCm']])
df['PetalLengthCm']=Scaler.fit_transform(df[['PetalLengthCm']])
df['PetalWidthCm']=Scaler.fit_transform(df[['PetalWidthCm']])
```

df.head()

₹		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	
	0	-1.720542	-0.900681	-0.900681	-1.341272	-1.312977	0	ıl.
	1	-1.697448	-1.143017	-1.143017	-1.341272	-1.312977	0	
	2	-1.674353	-1.385353	-1.385353	-1.398138	-1.312977	0	
	3	-1.651258	-1.506521	-1.506521	-1.284407	-1.312977	0	
	4	-1.628164	-1.021849	-1.021849	-1.341272	-1.312977	0	

Next steps: Generate code with df View recommended plots

0.068662

x= df.iloc[:,0:-1]

_		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
	0	-1.720542	-0.900681	-0.900681	-1.341272	-1.312977
	1	-1.697448	-1.143017	-1.143017	-1.341272	-1.312977
	2	-1.674353	-1.385353	-1.385353	-1.398138	-1.312977
	3	-1.651258	-1.506521	-1.506521	-1.284407	-1.312977
	4	-1.628164	-1.021849	-1.021849	-1.341272	-1.312977
	145	1.628164	1.038005	1.038005	0.819624	1.447956
	146	1.651258	0.553333	0.553333	0.705893	0.922064
	147	1.674353	0.795669	0.795669	0.819624	1.053537
	148	1.697448	0.432165	0.432165	0.933356	1.447956

0.068662

0.762759

0.790591

149 1.720542 150 rows × 5 columns

```
Next steps: Generate code with x
                                    View recommended plots
y = df.iloc[:,-1]
У
\overline{\Rightarrow}
    0
            0
     1
            0
     2
            0
            0
     4
            0
     145
            2
     146
     147
     148
     149
     Name: Species, Length: 150, dtype: int64
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.2, random_state=42)
x_train.shape
→ (120, 5)
x_test.shape
→ (30, 5)
from sklearn.tree import DecisionTreeClassifier
dtc=DecisionTreeClassifier(criterion='entropy', max_depth=3)
dtc.fit(x_train,y_train)
     ▶ DecisionTreeClassifier
y_pred = dtc.predict(x_test)
y_pred
\Rightarrow array([1, 0, 2, 1, 1, 0, 1, 2, 1, 1, 2, 0, 0, 0, 0, 1, 2, 1, 1, 2, 0, 2,
            0, 2, 2, 2, 2, 2, 0, 0])
                                                            + Code
                                                                       + Text
dtc.predict([[151,0.5,1,2,1.5]])
🛨 /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but DecisionTreeClase
      warnings.warn(
     array([2])
      1
from sklearn.metrics import accuracy_score
accuracy_score(y_pred,y_test)
→ 1.0
import matplotlib.pyplot as plt
from sklearn import tree
plt.figure(figsize=(10,10))
tree.plot_tree(dtc.fit(x_train,y_train))
plt.show()
```

