Bifurcation of free vibrations for completely resonant wave equations

Massimiliano Berti, Philippe Bolle

Abstract: We prove existence of small amplitude, $2\pi/\omega$ -periodic in time solutions of completely resonant nonlinear wave equations with Dirichlet boundary conditions for any frequency ω belonging to a Cantor-like set of positive measure and for a generic set of nonlinearities. The proof relies on a suitable Lyapunov-Schmidt decomposition and a variant of the Nash-Moser Implicit Function Theorem.

Keywords: Nonlinear Wave Equation, Infinite Dimensional Hamiltonian Systems, Periodic Solutions, Variational Methods, Lyapunov-Schmidt reduction, small divisors, Nash-Moser Theorem.¹ 2000AMS subject classification: 35L05, 37K50, 58E05.

1 Introduction and main result

We outline in this note recent results obtained in [4] on the existence of small amplitude, $2\pi/\omega$ -periodic in time solutions of the *completely resonant* nonlinear wave equation

$$\begin{cases} u_{tt} - u_{xx} + f(x, u) = 0 \\ u(t, 0) = u(t, \pi) = 0 \end{cases}$$
 (1)

where the nonlinearity $f(x, u) = a_p(x)u^p + O(u^{p+1})$ with $p \ge 2$ is analytic with respect to u for |u| small. More precisely, we assume

(H) There is $\rho > 0$ such that $\forall (x, u) \in (0, \pi) \times (-\rho, \rho), \ f(x, u) = \sum_{k=p}^{\infty} a_k(x) u^k, \ p \geq 2$, where $a_k \in H^1((0, \pi), \mathbf{R})$ and $\sum_{k=p}^{\infty} ||a_k||_{H^1} r^k < \infty$ for any $r \in (0, \rho)$.

We look for periodic solutions of (1) with frequency ω close to 1 in a set of positive measure.

Equation (1) is an infinite dimensional Hamiltonian system possessing an elliptic equilibrium at u=0 with linear frequencies of small oscillations $\omega_j=j, \ \forall j=1,2,\ldots$ satisfying infinitely many resonance relations. Any solution $v=\sum_{j\geq 1}a_j\cos(jt+\theta_j)\sin(jx)$ of the linearized equation at u=0,

$$\begin{cases} u_{tt} - u_{xx} = 0 \\ u(t, 0) = u(t, \pi) = 0 \end{cases}$$
 (2)

is 2π -periodic in time. For such reason equation (1) is called a *completely resonant* Hamiltonian PDE.

Existence of periodic solutions of *finite* dimensional Hamiltonian systems close to a completely resonant elliptic equilibrium has been proved by Weinstein, Moser and Fadell-Rabinowitz. The proofs are based on the classical Lyapunov-Schmidt decomposition which splits the problem in two equations: the so called *range equation*, solved through the standard Implicit Function Theorem, and the *bifurcation equation* solved via variational arguments.

For proving existence of small amplitude periodic solutions of completely resonant Hamiltonian PDEs like (1) two main difficulties must be overcome:

(i) a "small denominators" problem which arises when solving the range equation;

¹Supported by M.I.U.R. Variational Methods and Nonlinear Differential Equations.

(ii) the presence of an *infinite dimensional* bifurcation equation: which solutions v of the linearized equation (2) can be continued to solutions of the nonlinear equation (1)?

The appearance of the small denominators problem (i) is easily explained: the eigenvalues of the operator $\partial_{tt} - \partial_{xx}$ in the space of functions u(t,x), $2\pi/\omega$ -periodic in time and such that, say, $u(t,.) \in H_0^1(0,\pi)$ for all t, are $-\omega^2 l^2 + j^2$, $l \in \mathbf{Z}$, $j \geq 1$. Therefore, for almost every $\omega \in \mathbf{R}$, the eigenvalues accumulate to 0. As a consequence, for most ω , the inverse operator of $\partial_{tt} - \partial_{xx}$ is unbounded and the standard Implicit Function Theorem is not applicable.

The first existence results for small amplitude periodic solutions of (1) have been obtained in [8] for the specific nonlinearity $f(x,u) = u^3$ and periodic boundary conditions in x, and in [1] for $f(x,u) = u^3 + O(u^4)$, imposing a "strongly non-resonance" condition on the frequency ω satisfied in a zero measure set. For such ω 's the spectrum of $\partial_{tt} - \partial_{xx}$ does not accumulate to 0 and so the small divisor problem (i) is bypassed. The bifurcation equation (problem (ii)) is solved proving that, for $f(x,u) = u^3$, the 0^{th} -order bifurcation equation possesses non-degenerate periodic solutions.

In [2]-[3], for the same set of strongly non-resonant frequencies, existence and multiplicity of periodic solutions has been proved for any nonlinearity f(u). The novelty of [2]-[3] was to solve the bifurcation equation via a variational principle at fixed frequency which, jointly with min-max arguments, enables to find solutions of (1) as critical points of the Lagrangian action functional.

Unlike [1]-[2]-[3], a new feature of the results we present in this Note is that the set of frequencies ω for which we prove existence of $2\pi/\omega$ -periodic in time solutions of (1) has positive measure.

Existence of periodic solutions for a positive measure set of frequencies has been proved in [5] in the case of periodic boundary conditions in x and for the specific nonlinearity $f(x,u) = u^3 + \sum_{4 \le j \le d} a_j(x)u^j$ where the $a_j(x)$ are trigonometric cosine polynomials in x. The nonlinear equation $u_{tt} - u_{xx} + u^3 = 0$ with periodic boundary conditions possesses a continuum of small amplitude, analytic and non-degenerate periodic solutions in the form of travelling waves $u(t,x) = \delta p_0(\omega t + x)$. With these properties at hand, the small divisors problem (i) is solved in [5] via a Nash-Moser Implicit function Theorem adapting the estimates of Craig-Wayne [6].

Recently, existence of periodic solutions of (1) for frequencies ω in a positive measure set has been proved in [7] using the Lindstedt series method for odd analytic nonlinearities $f(u) = au^3 + O(u^5)$ with $a \neq 0$. The need for the dominant term au^3 in the nonlinearity f relies, as in [1], in the way the infinite dimensional bifurcation equation is solved. The reason for which f(u) must be odd is that the solutions are obtained as a sine-series in x, see the comments before Theorem 1.1.

In [4] we present a general method to prove existence of periodic solutions of the completely resonant wave equation (1) with Dirichlet boundary conditions, not only for a positive measure set of frequencies ω , but also for a *generic* nonlinearity f(x, u) satisfying (H) (we underline we do not require the oddness assumption f(-x, -u) = -f(x, u)), see Theorem 1.1.

Let's describe accurately our result. Normalizing the period to 2π , we look for solutions u(t, x), 2π -periodic in time, of the equation

$$\begin{cases} \omega^2 u_{tt} - u_{xx} + f(x, u) = 0\\ u(t, 0) = u(t, \pi) = 0 \end{cases}$$
 (3)

in the real Hilbert space (which is actually a Banach algebra for 2s > 1)

$$X_{\sigma,s} := \left\{ u(t,x) = \sum_{l \in \mathbf{Z}} e^{ilt} \ u_l(x) \quad \middle| \quad u_l \in H_0^1((0,\pi), \mathbf{C}), \quad \overline{u_l}(x) = u_{-l}(x) \ \forall l \in \mathbf{Z}, \right.$$

$$\text{and} \quad ||u||_{\sigma,s}^2 := \sum_{l \in \mathbf{Z}} e^{2\sigma|l|} (l^{2s} + 1) ||u_l||_{H^1}^2 < +\infty \right\}.$$

For $\sigma > 0$ the space $X_{\sigma,s}$ is the space of all 2π -periodic in time functions with values in $H_0^1((0,\pi),\mathbf{R})$ which have a bounded analytic extension in the complex strip $|\text{Im }t| < \sigma$ with trace function on $|\text{Im }t| = \sigma$ belonging to $H^s(\mathbf{T}, H_0^1((0,\pi),\mathbf{C}))$

The space of the solutions of the linear equation $v_{tt} - v_{xx} = 0$ that belong to $X_{\sigma,s}$ is

$$V := \Big\{ v(t,x) = \sum_{l > 1} \Big(e^{ilt} u_l + e^{-ilt} \overline{u_l} \Big) \sin(lx) \ \Big| \ u_l \in \mathbf{C} \text{ and } ||v||^2_{\sigma,s} = \sum_{l \in \mathbf{Z}} e^{2\sigma l} (l^{2s} + 1) l^2 |u_l|^2 < +\infty \Big\}.$$

Let $\varepsilon := \frac{\omega^2 - 1}{2}$. Instead of looking for solutions of (3) in a shrinking neighborhood of 0 it is a convenient devise to perform the rescaling $u \to \delta u$ with $\delta := |\varepsilon|^{1/p-1}$, obtaining

$$\begin{cases} \omega^2 u_{tt} - u_{xx} + \varepsilon g(\delta, x, u) = 0 \\ u(t, 0) = u(t, \pi) = 0 \end{cases}$$

where

$$g(\delta, x, u) := s^* \frac{f(x, \delta u)}{\delta^p} = s^* \Big(a_p(x) u^p + \delta a_{p+1}(x) u^{p+1} + \dots \Big)$$

with $s^* := \text{sign}(\varepsilon)$, namely $s^* = 1$ if $\omega \ge 1$ and $s^* = -1$ if $\omega < 1$. To fix the ideas, we shall consider here periodic solutions of frequency $\omega > 1$, so that $s^* = 1$ and $\omega = \sqrt{2\delta^{p-1} + 1}$.

If we try to implement the usual Lyapunov-Schmidt reduction, i.e. to look for solutions u=v+w with $v\in V$ and $w\in W:=V^{\perp}$, we are led to solve the bifurcation equation (sometimes called the (Q)-equation) and the range equation (sometimes called the (P)-equation)

$$\begin{cases}
-\Delta v = \prod_{V} g(\delta, x, v + w) & (Q) \\
L_{\omega} w = \varepsilon \prod_{W} g(\delta, x, v + w) & (P)
\end{cases}$$

where

$$\Delta v := v_{xx} + v_{tt}, \qquad L_{\omega} := -\omega^2 \partial_{tt} + \partial_{xx}$$

and $\Pi_V: X_{\sigma,s} \to V$, $\Pi_W: X_{\sigma,s} \to W$ denote the projectors respectively on V and W.

Since V is infinite dimensional a difficulty arises in the application of the method of [6] in presence of small divisors: if $v \in V \cap X_{\sigma_0,s}$ then the solution $w(\delta,v)$ of the range equation, obtained with any Nash-Moser iteration scheme will have a lower regularity, e.g. $w(\delta,v) \in X_{\sigma_0/2,s}$. Therefore in solving next the bifurcation equation for $v \in V$, the best estimate we can obtain is $v \in V \cap X_{\sigma_0/2,s+2}$, which makes the scheme incoherent. Moreover we have to ensure that the 0^{th} -order bifurcation equation², i.e. the (Q)-equation for $\delta = 0$,

$$-\Delta v = \Pi_V \left(a_p(x) v^p \right) \tag{5}$$

has solutions $v \in V$ which are analytic, a necessary property to initiate an analytic Nash-Moser scheme (in [6] this problem does not arise since, dealing with nonresonant or partially resonant Hamiltonian PDEs like $u_{tt} - u_{xx} + a_1(x)u = f(x, u)$, the bifurcation equation is finite dimensional).

We overcome this difficulty thanks to a reduction to a *finite dimensional* bifurcation equation (on a subspace of V of dimension N independent of ω). This reduction can be implemented, in spite of the complete resonance of equation (1), thanks to the compactness of the operator $(-\Delta)^{-1}$.

We introduce a decomposition $V = V_1 \oplus V_2$ where

$$\begin{cases} V_1 := \left\{ v \in V \mid v(t, x) = \sum_{l=1}^{N} \left(e^{ilt} u_l + e^{-ilt} \overline{u_l} \right) \sin(lx), \ u_l \in \mathbf{C} \right\} \\ V_2 := \left\{ v \in V \mid v(t, x) = \sum_{l \geq N+1} \left(e^{ilt} u_l + e^{-ilt} \overline{u_l} \right) \sin(lx), \ u_l \in \mathbf{C} \right\} \end{cases}$$

Setting $v := v_1 + v_2$, with $v_1 \in V_1, v_2 \in V_2$, (4) is equivalent to

$$\begin{cases}
-\Delta v_1 = \Pi_{V_1} g(\delta, x, v_1 + v_2 + w) & (Q_1) \\
-\Delta v_2 = \Pi_{V_2} g(\delta, x, v_1 + v_2 + w) & (Q_2) \\
L_{\omega} w = \varepsilon \Pi_W g(\delta, x, v_1 + v_2 + w) & (P)
\end{cases}$$
(6)

²We assume for simplicity of exposition that the right hand side $\Pi_V(a_p(x)v^p)$ is not identically equal to 0 in V. If not verified, the 0^{th} -order non-trivial bifurcation equation will involve the higher order terms of the nonlinearity, see [2].

where $\Pi_{V_i}: X_{\sigma,s} \to V_i \ (i=1,2)$, denote the orthogonal projectors on $V_i \ (i=1,2)$.

Our strategy to find solutions of system (6) is the following. We solve first (Step 1) the (Q_2) -equation obtaining $v_2 = v_2(\delta, v_1, w) \in V_2 \cap X_{\sigma,s}$ by a standard Implicit Function Theorem provided we have chosen N large enough and σ small enough -depending on the nonlinearity f but independent of δ .

Next $(Step\ 2)$ we solve the (P)-equation obtaining $w=w(\delta,v_1)\in W\cap X_{\sigma/2,s}$ by means of a Nash-Moser Implicit Function Theorem for (δ,v_1) belonging to some Cantor-like set of parameters. A major role is played by the inversion of the *linearized operators*. Our approach -outlined in the next section-is much simpler than the ones usually employed and allows to deal nonlinearities which do NOT satisfy the oddness assumption f(-x,-u)=-f(x,u). For this we develop $u(t,\cdot)\in H^1_0(0,\pi)$ in time-Fourier expansion only. Let us remark that $H^1_0(0,\pi)$ is the natural phase space to deal with Dirichlet boundary conditions instead of the usually employed spaces $\{u(x)=\sum_{j\geq 1}u_j\sin(jx)\mid \sum_j e^{2aj}j^{2\rho}|u_j|^2<+\infty\}$, which force the nonlinearity f to be odd. We hope that the applicability of this technique can go far beyond the present results.

Finally (Step 3) we solve the finite dimensional (Q_1) -equation for a generic set of nonlinearities obtaining $v_1 = v_1(\delta) \in V_1$ for a set of δ 's of positive measure.

In conclusion we prove:

Theorem 1.1 ([4]) Consider the completely resonant nonlinear wave equation (1) where the nonlinearity $f(x,u) = a_p(x)u^p + O(u^{p+1})$ satisfies assumption (H).

There exists an open and dense set A_p in $H^1((0,\pi), \mathbf{R})$ such that, for all $a_p \in A_p$, there is $\sigma > 0$ and a C^{∞} -curve $[0, \delta_0) \ni \delta \to u(\delta) \in X_{\sigma,s}$ with the following properties:

• (i) There exists $s^* \in \{-1,1\}$ and a Cantor set $C_{a_p} \subset [0,\delta_0)$ satisfying

$$\lim_{\eta \to 0^+} \frac{\operatorname{meas}(\mathcal{C}_{a_p} \cap (0, \eta))}{\eta} = 1 \tag{7}$$

such that, for all $\delta \in \mathcal{C}_{a_n}$, $u(\delta)$ is a $2\pi/\omega$ -periodic in time solution of (1) with $\omega = \sqrt{2s^*\delta^{p-1} + 1}$;

• (ii) $||\widetilde{u}(\delta) - \delta u_0||_{\sigma,s} = O(\delta^2)$ for some $u_0 \in V \setminus \{0\} \cap X_{\sigma,s}$ where $\widetilde{u}(\delta)(t,x) = u(\delta)(t/\omega,x)$.

The conclusions of the theorem hold true for any nonlinearity $f(x, u) = a_3 u^3 + \sum_{k \geq 4} a_k(x) u^k$, $a_3 \neq 0$, with $s^* = \text{sign}(a_3)$.

2 Sketch of the proof

Step 1: solution of the (Q_2) -equation. The 0^{th} -order bifurcation equation (5) is the Euler-Lagrange equation of the functional $\Phi_0: V \to \mathbf{R}$

$$\Phi_0(v) = \frac{||v||_{H_1}^2}{2} - \int_{\Omega} a_p(x) \frac{v^{p+1}}{p+1} dx dt, \qquad \Omega = (0, 2\pi) \times (0, \pi).$$
 (8)

Assume for definiteness there is $v \in V$ such that $\int_{\Omega} a_p(x) \frac{v^{p+1}}{p+1} > 0$ (if the integral is < 0 for some v, we can take $s^* = -1$ and substitute $-a_p$ to a_p). Then Φ_0 possesses by the Mountain-pass Theorem a non-trivial critical set $K_0 := \{v \in V \mid \Phi_0'(v) = 0, \Phi_0(v) = c\}$ which is compact for the H_1 -topology, see [2]. By a direct bootstrap argument any solution $v \in K_0$ of (5) belongs to $H^k(V)$, $\forall k \geq 0$ and therefore is C^{∞} . In particular the Mountain-Pass solutions of (5) satisfy the a-priori estimate $\sup_{v \in K_0} ||v||_{0,s+1} < R$ for some $0 < R < +\infty$.

Solutions of the (Q_2) -equation are the fixed points of the nonlinear operator $\mathcal{N}(\delta, v_1, w, \cdot): V_2 \cap X_{\sigma,s} \to V_2 \cap X_{\sigma,s}$ defined by $\mathcal{N}(\delta, v_1, w, v_2) := (-\Delta)^{-1} \Pi_{V_2} g(\delta, x, v_1 + w + v_2)$. Using the regularizing property of $(-\Delta)^{-1} \Pi_2$ we can prove that \mathcal{N} is a contraction and then solve the (Q_2) -equation in the space $V_2 \cap X_{\sigma,s}$ for N large enough and for $0 < \sigma < \overline{\sigma}$ (N and $\overline{\sigma}$ depend on N but not on N).

Lemma 2.1 (Solution of the (Q_2) -equation) There exist $\overline{\sigma} > 0, N \in \mathbb{N}_+, \delta_0 > 0$ such that, $\forall 0 < \sigma < \overline{\sigma}, \forall ||v_1||_{0,s+1} \leq 2R, \forall ||w||_{\sigma,s} \leq 1, \forall |\delta| \leq \delta_0$, there exists a unique $v_2 = v_2(\delta, w, v_1) \in X_{\sigma,s}$ with $||v_2(\delta, w, v_1)||_{\sigma,s} \leq 1$ which solves the (Q_2) -equation. Moreover $v_2(\delta, w, v_1) \in X_{\sigma,s+2}$.

Lemma 2.1 implies, in particular, that any solution $v \in K_0$ of equation (5) is not only C^{∞} but actually belongs to $X_{\sigma,s}$ and therefore is analytic in t (and hence in x).

Step 2: solution of the (P)-equation. By the previous step we are reduced to solve the (P)-equation with $v_2 = v_2(\delta, v_1, w)$, namely

$$L_{\omega}w = \varepsilon \Pi_W \Gamma(\delta, v_1, w) \tag{9}$$

where $\Gamma(\delta, v_1, w)(t, x) := g(\delta, x, v_1(t, x) + w(t, x) + v_2(\delta, v_1, w)(t, x)).$

The solution $w = w(\delta, v_1)$ of the (P)-equation (9) is obtained by means of a Nash-Moser Implicit Function Theorem for (δ, v_1) belonging to a Cantor-like set of parameters.

Consider the orthogonal splitting $W=W^{(p)}\oplus W^{(p)\perp}$ where $W^{(p)}=\{w\in W\mid w=\sum_{l=0}^{L_p}e^{ilt}\ w_l(x)\},$ $W^{(p)\perp}=\{w\in W\mid w=\sum_{l>L_p}e^{ilt}\ w_l(x)\}$ and $L_p=L_02^p$ for some large $L_0\in \mathbf{N}$. We denote by $P_p:W\to W^{(p)},\ P_p^\perp:W\to W^{(p)\perp}$ the orthogonal projectors onto $W^{(p)},\ W^{(p)\perp}$. Define $\sigma_0:=\overline{\sigma}$, the "loss of analyticity at step p" $\gamma_p:=\gamma_0/(p^2+1)$ and $\sigma_{p+1}=\sigma_p-\gamma_p,\ \forall\ p\geq 0$, with $\gamma_0>0$ small enough, such that the "total loss of analyticity" $\sum_{p\geq 0}\gamma_p=\gamma_0\sum_{p\geq 0}1/(p^2+1)\leq \overline{\sigma}/2$.

Proposition 2.1 (Nash-Moser iteration scheme) Let $w_0 = 0$ and $A_0 := \{(\delta, v_1) \mid |\delta| < \delta_0, ||v_1||_{0,s+1} \le 2R\}$. There exist $\varepsilon_0, L_0 > 0$ such that $\forall |\varepsilon| < \varepsilon_0$, there exists a sequence $\{w_p\}_{p \ge 0}$, $w_p = w_p(\delta, v_1) \in W^{(p)}$, of solutions of

$$(P_p) L_{\omega} w_p - \varepsilon P_p \Pi_W \Gamma(\delta, v_1, w_p) = 0,$$

defined for $(\delta, v_1) \in A_p \subseteq A_{p-1} \subseteq \ldots \subseteq A_1 \subseteq A_0$. For $(\delta, v_1) \in A_{\infty} := \cap_{p \geq 0} A_p$, $w_p(\delta, v_1)$ totally converges in $X_{\overline{\sigma}/2}$ to a solution $w(\delta, v_1)$ of the (P)-equation (9) with $||w(\delta, v_1)||_{\overline{\sigma}/2, s} = O(\varepsilon)$.

Moreover it is possible to define $w(\delta, v_1)$ in a smooth way on the whole A_0 : there exists a function $\widetilde{w}(\delta, v_1) \in C^{\infty}(A_0, W)$ and a Cantor-like set $B_{\infty} \subset A_{\infty}$ such that, if $(\delta, v_1) \in B_{\infty} \subset A_{\infty}$ then $\widetilde{w}(\delta, v_1)$ solves the (P)-equation (9).

Of course, the above proposition does not mean very much if we do not specify A_{∞} or B_{∞} . We refer to (12) for the definition of A_{ν} and just say that the set B_{∞} is sufficiently large for our purpose.

The real core of the Nash-Moser convergence proof -and where the analysis of the small divisors enters into play- is the proof of the invertibility of the linearized operator

$$\mathcal{L}_{p}(\delta, v_{1}, w)[h] := L_{\omega}h - \varepsilon P_{p}\Pi_{W}D_{w}\Gamma(\delta, v_{1}, w)[h]$$

$$= L_{\omega}h - \varepsilon P_{p}\Pi_{W}\Big(\partial_{u}g(\delta, x, v_{1} + w + v_{2}(\delta, v_{1}, w))\Big[h + \partial_{w}v_{2}(\delta, v_{1}, w)[h]\Big]\Big),$$

where w is the approximate solution obtained at a given stage of the Nash-Moser iteration. We do not follow the approach of [6] which is based on the Fröhlich-Spencer techniques.

To invert $\mathcal{L}_p(\delta, v_1, w)$, we distinguish a "diagonal part" D. Let

$$\begin{cases} a(t,x) := \partial_u g(\delta, x, v_1(t,x) + w(t,x) + v_2(v_1, w)(t,x)) \\ a_0(x) := (1/2\pi) \int_0^{2\pi} a(t,x) dt \\ \overline{a}(t,x) := a(t,x) - a_0(x). \end{cases}$$

We can write

$$\mathcal{L}_{n}(\delta, v_1, w)[h] = Dh - M_1h - M_2h,$$

where $D, M_1, M_2: W^{(p)} \to W^{(p)}$ are the linear operators

$$\begin{cases} Dh := L_{\omega}h - \varepsilon P_{p}\Pi_{W}(a_{0} \ h) \\ M_{1}h := \varepsilon P_{p}\Pi_{W}(\overline{a} \ h) \\ M_{2}h := \varepsilon P_{p}\Pi_{W}(a \ \partial_{w}v_{2}[h]). \end{cases}$$

$$(10)$$

We next diagonalize the operator D using Sturm-Liouville spectral theory. We find out that the eigenvalues of D are $\omega^2 k^2 - \lambda_{k,j}$, $\forall |k| \leq L_p$, $j \geq 1$, $j \neq k$, and $\lambda_{k,j}$ satisfies the asymptotic expansion

$$\lambda_{k,j} = \lambda_{k,j}(\delta, v_1, w) = j^2 + \varepsilon M(\delta, v_1, w) + O\left(\frac{\varepsilon ||a_0||_{H^1}}{j}\right) \quad \text{as} \quad j \to +\infty,$$
 (11)

where $M(\delta, v_1, w) := (1/\pi) \int_0^{\pi} a_0(x) dx$.

Assuming, for some $\gamma > 0$ and $1 < \tau < 2$, the Diophantine condition (first order Melnikov condition)

$$(\delta, v_1) \in A_p := \left\{ (\delta, v_1) \in A_{p-1} \mid |\omega k - j| \ge \frac{\gamma}{(k+j)^{\tau}}, \mid \omega k - j - \varepsilon \frac{M(\delta, v_1, w)}{2j} \mid \ge \frac{\gamma}{(k+j)^{\tau}}, \right.$$

$$\forall k \in \mathbf{N}, \ j \ge 1 \text{ s.t. } k \ne j, \ \frac{1}{3|\varepsilon|} < k, \ j \le L_p \right\} \subset A_{p-1},$$

$$(12)$$

all the eigenvalues of D are polynomially bounded away from 0, since $\alpha_k := \min_{j \neq k, j \geq 1} |\omega^2 k^2 - \lambda_{k,j}| \geq \gamma/k^{\tau-1}$, $\forall k$. Therefore D is invertible and D^{-1} has sufficiently good estimates for the convergence of the Nash-Moser iteration.

It remains to prove that the perturbative operators M_1 , M_2 are small enough to get the invertibility of the whole \mathcal{L}_p . The smallness of M_2 is just a consequence of the regularizing property of $v_2: X_{\sigma,s} \to X_{\sigma,s+2}$ stated in Lemma 2.1. The smallness of M_1 requires, on the contrary, an analysis of the "small divisors" α_k . For our method it is sufficient to prove that

$$\alpha_k \alpha_l \ge c \gamma^2 |\varepsilon|^{\tau - 1} > 0, \quad \forall k \ne l \text{ with } |k - l| \le [\max\{k, l\}]^{2 - \tau / \tau}.$$

We underline again that this approach works perfectly well for NOT odd nonlinearities f.

Step 3: solution of the (Q_1) -equation. Finally we have to solve the equation

$$(Q_1) -\Delta v_1 = \Pi_{V_1} \mathcal{G}(\delta, v_1)$$

where $\mathcal{G}(\delta, v_1)(t, x) := g(\delta, x, v_1(t, x) + \widetilde{w}(\delta, v_1)(t, x) + v_2(\delta, v_1, \widetilde{w}(\delta, v_1))(t, x))$ and to ensure that there are solutions $(\delta, v_1) \in B_{\infty}$ for δ in a set of positive measure (recall that if $(\delta, v_1) \in B_{\infty} \subset A_{\infty}$, then $\widetilde{w}(\delta, v_1)$ solves the (P)-equation (9)). Note that if $\omega = (1 + 2\delta^{p-1})^{1/2}$ belongs to the zero measure set of "strongly non-resonant" frequencies used in [2]-[3] then $(\delta, v_1) \in B_{\infty}$, $\forall v_1 \in V_1$ small enough.

The finite dimensional 0^{th} -order bifurcation equation, i.e. the (Q_1) -equation for $\delta = 0$,

$$-\Delta v_1 = \Pi_{V_1} \mathcal{G}(0, v_1) = \Pi_{V_1} \left(a_p(x) (v_1 + v_2(0, v_1, 0))^p \right)$$

is the Euler-Lagrange equation of the functional $\widetilde{\Phi}_0: V_1 \to \mathbf{R}$ where $\widetilde{\Phi}_0:=\Phi_0(v_1+v_2(0,v_1,0))$ and $\Phi_0: V \to \mathbf{R}$ is the functional defined in (8).

It can be proved that if a_p belongs to an *open* and *dense* subset \mathcal{A}_p of $H^1((0,\pi),\mathbf{R})$, then $\widetilde{\Phi}_0:V_1\to\mathbf{R}$ (or the functional that one obtains when substituting $-a_p$ to a_p) possesses a non-trivial *non-degenerate* critical point $\overline{v}_1 \in V_1$ and so, by the Implicit function Theorem, there exists a C^{∞} -curve $v_1(\cdot):[0,\delta_0)\to V_1$ of solutions of the (Q_1) -equation with $v_1(0)=\overline{v}_1$.

The smoothness of $\delta \to v_1(\delta)$ then implies that $\{(\delta, v_1(\delta)); \delta > 0\}$ intersects B_{∞} in a set whose projection on the δ coordinate is the Cantor set C_{a_p} of Theorem 1.1-(i), satisfying the measure estimate (7). Finally $u(\delta) = \delta u_0 + O(\delta^2)$ where $u_0 := \overline{v}_1 + v_2(0, \overline{v}_1, 0) \in V$ is a (non-degenerate, up to time translations) solution of the infinite dimensional bifurcation equation (5).

References

 D. Bambusi, S. Paleari, Families of periodic solutions of resonant PDEs, J. Nonlinear Sci. 11 (2001), 69-87.

- [2] M. Berti, P. Bolle, *Periodic solutions of nonlinear wave equations with general nonlinearities*, Comm. Math. Phys. 243 (2003), 315-328.
- [3] M. Berti, P. Bolle, Multiplicity of periodic solutions of nonlinear wave equations, Nonlinear Analysis 56 (2004), 1011-1046.
- [4] M. Berti, P. Bolle, Cantor families of periodic solutions for completely resonant nonlinear wave equations, preprint Sissa, 2004.
- [5] J. Bourgain, *Periodic solutions of nonlinear wave equations*, Harmonic analysis and partial differential equations, 69–97, Chicago Lectures in Math., Univ. Chicago Press, 1999.
- [6] W. Craig, C.E. Wayne, Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math 46 (1993), 1409-1498.
- [7] G. Gentile, V. Mastropietro, M. Procesi, *Periodic solutions for completely resonant nonlinear wave equations*, preprint 2004.
- [8] B. V. Lidskij, E.I. Shulman, Periodic solutions of the equation $u_{tt} u_{xx} + u^3 = 0$, Funct. Anal. Appl. 22 (1988), 332–333.

Massimiliano Berti, SISSA, Via Beirut 2-4, 34014, Trieste, Italy, berti@sissa.it.

Philippe Bolle, Département de mathématiques, Université d'Avignon, 33, rue Louis Pasteur, 84000 Avignon, France, philippe.bolle@univ-avignon.fr.