Using network models for analyzing microbiome data

Outline:

- Brief introduction to metagenomics
- Case study: Phyllosphere fungal networks, and Bare Patch Disease of Wheat
- Hands-on example

By
Ravin Poudel
Ricardo I. Alcala-Briseño
Garrett Lab
ICPP, Boston, MA

Brief introduction to metagenomics

Genomics: Study of structure, function, evolution, and mapping of genomes.

Metagenomics (**Environmental Genomics** or **Community Genomics**) is the study of genomes recovered from environmental samples without the need for culturing them.

Culture-independent analysis

- ❖ 16S ribosomal RNA (rRNA) sequencing
- Whole genome sequencing
- ***** Metagenomics: No need for culturing/ use samples directly from environment

Example: 16S ribosomal RNA (rRNA) sequencing

Case study- metagenomics and network models

- OTU/ taxon is represented as a node
- Links defines the relationship between two OTUs
- Various methods can be used to define the links
 - Presence or absence of association (co-occurrence)
 - Statistical approach to define the association
 - Such as correlation, proportionality

- SparCC, SpiecEasi..... and so on...
- Mostly, to reduce compositional bias associated with data type.

Analytical and Theoretical Plant Pathology

Microbiome Networks: A Systems Framework for Identifying Candidate Microbial Assemblages for Disease Management

R. Poudel, A. Jumpponen, D. C. Schlatter, T. C. Paulitz, B. B. McSpadden Gardener, L. L. Kinkel, and K. A. Garrett

General framework

Microbiome Networks: A Systems Framework for Identifying Candidate Microbial Assemblages for Disease Management

Goal: To select potential candidate taxa based on – interactions and network attributes

Host response variable

- Fungal phyllosphere data (Jumpponen et. al., 2010)
- Node = Fungal taxon
- Links = association calculated using SparCC

Research

Data Source:

Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments

Host-focused analysis

Blocking→ Negatively Linked Nodes

First degree neighbors
Second degree neighbors
Third degree neighbors
Mixed Association

Goal → Biofertilizers

First degree neighbors
Second degree neighbors
Third degree neighbors
Mixed Association

Pathogen-focused analysis

Goal → Biocontrols

First degree neighbors
Second degree neighbors
Third degree neighbors
Mixed Association

Disease-focused analysis

Data source:

Role of Bacterial Communities in the Natural Suppression of Rhizoctonia solani Bare Patch Disease of Wheat (Triticum aestivum L.)

Chuntao Yin, a Scot H. Hulbert, Kurtis L. Schroeder, Qlga Mavrodi, Dmitri Mavrodi, Amit Dhingra, William F. Schillinger, C Timothy C. Paulitz^d Applied and Environmental Microbiology, 2013

Years monoculture wheat

11 TRENDS in Plant Science

Disease-focused analysis

- Blue link = positive association with *Rhizoctonia solani*
- Red link = negative association with *Rhizoctonia solani*
- Node size= Abundance
- Node associated with disease
- Node associated with healthy state

Poster Number: 431-P

Do grafting and rootstock genotype affect the rhizobiome? A study of tomato systems

Hands-on experience on building network models with microbiome date

Let's switch to RStudio

Loading required packages

library(igraph)

library(Hmisc)

library(Matrix)

```
# Load the data with the OTU table: otudata.csv
otu.table<-read.csv(file.choose(), header=T, row.names = 1)</pre>
```

Read taxonomy file associated with OTU table into new object: otu_taxonomy.csv tax<-read.csv(file.choose(),header=T, row.names = 1)

Check how many OTUs we have dim(otu.table)

Check for the decrease in the number of OTUs dim(otu.table.filter)

Keep the OTUs with more than 10 counts otu.table.filter<-otu.table[,colSums(otu.table)>10]

Calculate pairwise correlation between OTUs otu.cor<-rcorr(as.matrix(otu.table.filter), type="spearman")

Get p-value matrix

otu.pval <- forceSymmetric(otu.cor\$P) # Self-correlation as NA

Select only the taxa for the filtered OTUs by using rownames of otu.pval sel.tax <-tax[rownames(otu.pval),,drop=FALSE]

Sanity check

all.equal(rownames(sel.tax), rownames(otu.pval))

Filter the association based on p-values and level of correlations p.yes<-otu.pval<0.001

Select the r values for p.yes

r.val=otu.cor\$r # select all the correlation values
p.yes.r<-r.val*p.yes # only select correlation values based on p-value criterion

Select OTUs by level of correlation

p.yes.r<-abs(p.yes.r)>0.75 # output is logical vector p.yes.rr<-p.yes.r*r.val # use logical vector for subscripting.

Create an adjacency matrix adjm<-as.matrix(p.yes.rr)

Add taxonomic information associated with adjacency matrix colnames(adjm)<-as.vector(sel.tax\$Family) rownames(adjm)<-as.vector(sel.tax\$Family)

Create an adjacency matrix in igraph format net.grph=graph.adjacency(adjm,mode="undirected",weighted=TRUE, diag=FALSE) # Calculate edge weight == level of correlation edgew<-E(net.grph)\$weight

Identify isolated nodes

bad.vs<-V(net.grph)[degree(net.grph) == 0]</pre>

Remove isolated nodes

net.grph <-delete.vertices(net.grph, bad.vs)</pre>

Plot the graph object

```
plot(net.grph,
     vertex.size=4,
     vertex.frame.color="black",
     edge.curved=F,
     edge.width=1.5,
     layout=layout.fruchterman.reingold,
     edge.color=ifelse(edgew<0,"red","blue"),
     vertex.label=NA,
     vertex.label.color="black",
     vertex.label.family="Times New Roman",
     vertex.label.font=2)
```


Summaries of network traits V(net.grph)

E(net.grph)

vcount(net.grph)

ecount(net.grph)

plot(degree(net.grph))

max(degree(net.grph))

min(degree(net.grph))

http://igraph.org/r/