© I diritti d'autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Nello svolgere gli esercizi fornire passaggi e spiegazioni: non bastano i risultati finali.

Esercizio 1 Sia X_1, \ldots, X_n un campione gaussiano di media incognita μ e varianza nota e pari a 900.

- 1. Costruite un test su μ tale che sia al più pari a 6% la probabilità di commettere l'errore di prima specie di ritenere che μ sia maggiore di 5500 quando effettivamente μ al più vale 5500.
- 2. Se abbiamo 100 osservazioni e la media campionaria \overline{X}_{100} vale 5506.0, qual è il p-value del test costruito al punto 1.? Che decisione prendete?
- 3. Calcolate la probabilità di prendere la corretta decisione in base al test costruito al punto 1. se il "vero" valore di μ è 5505 e n=100.
- 4. Potete raccogliere ulteriori osservazioni. Determinate il numero minimo di osservazioni da raccogliere affinché la potenza del test in $\mu = 5505$ aumenti almeno del 50%.

Soluzione Dobbiamo impostare un opportuno z-test unilatero sulla media μ incognita di un campione casuale X_1, \ldots, X_n estratto da una popolazione di densità $\mathcal{N}(\mu, 900)$.

- 1. Dobbiamo impostare un test di significatività $\alpha=6\%$ per l'ipotesi nulla $H_0:\mu\leq 5500$ contro l'alternativa $H_1:\mu>5500$. Segue che rifiutiamo H_0 a favore di H_1 a livello 6% se $\sqrt{n}(\overline{X}_n-5500)/30\geq z_{94\%}$ o, equivalentemente, se $\overline{X}_n\geq 5500+1.555\times 30/\sqrt{n}$, dal momento che $z_{94\%}\simeq 1.555$.
 - 2. Se n = 100 e $\overline{X}_{100} = 5506.0$ allora il p-value del test costruito al punto 1. è dato da

$$P_{5500}\left(\overline{X}_{100} \ge 5506.0\right) = 1 - \Phi(2) \simeq 1 - 0.9778 = 2.28\%$$

Essendo $\alpha = 6\% > 2.28\%$ rifiutiamo $H_0: \mu \le 5500$ a favore di $H_1: \mu > 5500$.

3. Per il problema di ipotesi $H_0: \mu \leq 5500$ contro $H_1: \mu > 5500$, la probabilità di prendere la corretta decisione se $\mu = 5505$ è data dalla potenza del test in $\mu = 5505$. Se n = 100 allora rifiutiamo $H_0: \mu \leq 5500$ a favore di $H_1: \mu > 5500$ se $\overline{X}_n \geq 5504.665$ e la potenza del test in $\mu = 5505$ è

$$P_{5505}\left(\overline{X}_{100} \ge 5504.665\right) = 1 - \Phi\left(\frac{5504.665 - 5505}{3}\right) = \Phi(0.111667) \simeq \Phi(0.11) = 0.5438$$

4. Aumentando del 50% la potenza del test passiamo da 0.5438 a $0.5438 \times 1.5 = 0.8197$. Stiamo quindi cercando il minimo n tale che

$$P_{5505}\left(\overline{X}_n \ge 5500 + 1.555 \frac{30}{\sqrt{n}}\right) \ge 0.8157$$

cioè tale che

$$1 - \Phi\left(\frac{5500 - 5505}{30/\sqrt{n}} + 1.555\right) \ge 0.8157$$

che ha soluzione $n \ge (6(1.555 + 0.90))^2 = 14.73^2$ (abbiamo usato l'approssimazione $z_{0.8157} \simeq z_{0.8159} = 0.90$). Otteniamo così $n \ge 217$, cioè dobbiamo raccogliere ulteriori 117 osservazioni.

Esercizio 2 Considerate la famiglia di densità

$$f(x; \vartheta) = \begin{cases} \frac{2x}{\vartheta} & \text{se } 0 < x \le \vartheta \\ \frac{2(1-x)}{1-\vartheta} & \text{se } \vartheta < x < 1 \\ 0 & \text{altrove} \end{cases}$$

con $0 < \vartheta < 1$ parametro incognito.

- 1. Calcolate media e varianza di $f(x; \vartheta)$ per ogni $\vartheta \in (0, 1)$.
- 2. Dato un campione casuale $X_1, \ldots X_n$ estratto da una popolazione di densità $f(x; \vartheta)$, determinate uno stimatore T_n di ϑ con il metodo dei momenti.
- 3. Verificate se la successione di stimatori $(T_n)_n$ è non distorta e consistente in media quadratica. Inoltre, qual è la distribuzione asintotica della successione $(T_n)_n$? Giustificare adeguatamente le risposte.
- 4. Costruite un intervallo di confidenza asintotico bilatero di livello approssimativamente 90% per ϑ , se n=169 e $\sum_{j=1}^{169} x_j=68.0$.
- 5. Supponete ora di avere un'unica osservazione X_1 . Tracciate il grafico di $\vartheta \mapsto f(x;\vartheta)$ e determinate lo stimatore di massima verosimiglianza di ϑ basato sull'unica osservazione X_1 .

Soluzione

1.

$$\begin{split} & \mathrm{E}(X) = \int_{-\infty}^{+\infty} x f\left(x;\vartheta\right) \ dx = \int_{0}^{\vartheta} x \frac{2x}{\vartheta} dx + \int_{\vartheta}^{1} x \frac{2\left(1-x\right)}{1-\vartheta} \ dx = \frac{\vartheta+1}{3} \\ & \mathrm{E}(X^{2}) = \int_{-\infty}^{+\infty} x^{2} f\left(x;\vartheta\right) \ dx = \int_{0}^{\vartheta} x^{2} \frac{2x}{\vartheta} dx + \int_{\vartheta}^{1} x^{2} \frac{2\left(1-x\right)}{1-\vartheta} \ dx = \frac{\vartheta^{2}+\vartheta+1}{6} \\ & \mathrm{Var}(X) = \mathrm{E}(X^{2}) - (\mathrm{E}(X))^{2} = \frac{\vartheta^{2}+\vartheta+1}{6} - \frac{(\vartheta+1)^{2}}{3^{2}} = \frac{\vartheta^{2}-\vartheta+1}{18} \end{split}$$

- 2. Poiché $E(X) = (\vartheta + 1)/3$ lo stimatore cercato è $T_n = 3\overline{X}_n 1$
- 3. T_n è non distorto per costruzione. È consistente in media quadratica in quanto è non distorto e

$$\operatorname{Var}(T_n) = \operatorname{Var}(3\overline{X}_n - 1) = 9\operatorname{Var}(\overline{X}_n) = \frac{9\operatorname{Var}(X_1)}{n} = \frac{(\vartheta^2 - \vartheta + 1)}{2n} \to 0, \text{ per } n \to \infty.$$

Infine, per il Teorema centrale del limite la funzione di ripartizione asintotica di T_n è gaussiana di media $E(T_n) = \vartheta$ e varianza $Var(T_n) = (\vartheta^2 - \vartheta + 1)/(2n)$.

- 4. La f.d.r. asintotica di $(T_n \vartheta)/\sqrt{(\vartheta^2 \vartheta + 1)/(2n)}$ è $\mathcal{N}(0,1)$. Segue che un IC asintotico bilatero per ϑ di livello approssimativamente 90% ha estremi $T_n \pm 1.645 \times \sqrt{(T_n^2 T_n + 1)}/\sqrt{2n}$. Con i dati forniti, $T_{169} = 3 \times 68/169 \simeq 0.207$ e siamo 90%-confidenti (approssimativamente) che $0.1252 < \vartheta < 0.2888$.
- 5. La funzione $\vartheta \mapsto f\left(x_1;\vartheta\right)$ è la funzione di verosimiglianza corrispondente a un'unica osservazione x_1 ; tale funzione è massima per $\vartheta = x$ e quindi $\widehat{\vartheta}_1 = X_1$ è lo stimatore di massima verosimiglianza di ϑ per un campione di una sola osservazione.

Esercizio 3 È stato condotto uno studio su 200 pazienti affetti da retinopatia diabetica. Un occhio, casualmente scelto fra il destro e il sinistro, è trattato e l'altro è osservato senza trattamento. T_1 rappresenta il tempo che trascorre -a partire da un tempo 0- fino alla cecità dell'occhio trattato e T_2 di quello non trattato. I tempi T_1, T_2 sono entrambi espressi in anni e i dati raggruppati raccolti sono riportati nella seguente tabella:

$T_1 \setminus T_2$	(0, 6]	(6, 7]	$(7,\infty)$	
[0, 6]	20	20	40	
(6,7]	20	20	10	
(7, 10]	15	10	15	
$(10,\infty)$	5	10	15	

- 1. Verificate con un opportuno test se una densità esponenziale si adatta ai dati del tempo T_1 .
- 2. Stimate la probabilità p che la cecità sopraggiunga per l'occhio non trattato prima dei 7 anni e verificate con un test asintotico di significatività approssimativamente $\alpha=10\%$ l'ipotesi nulla $H_0: p=0.55$ contro l'alternativa $H_1: p\neq 0.55$.
- 3. Verificate con un opportuno test di significatività $\alpha = 5\%$ se i tempi T_1, T_2 sono indipendenti.

Soluzione Riportiamo la tabella dei dati arricchita delle numerosità marginali di T_1, T_2 :

$T_1 \setminus T_2$	(0, 6]	(6,7]	$(7,\infty)$	
(0, 6]	20	20	40	80
(6,7]	20	20	10	50
(7,10]	15	10	15	40
$(10,\infty)$	5	10	15	30
	60	60	80	200

1. Impostiamo un test χ^2 di buon adattamento per H_0 : " T_1 ha densità esponenziale" contro l'alternativa H_1 : " T_1 non ha densità esponenziale". Uno stimatore per θ ottenuto con il metodo dei momenti applicato ai dati raggruppati di T_1 è dato da $\hat{\theta} = (3 \times 80 + 6.5 \times 50 + 8.5 \times 40 + 10 \times 30)/200 = 1155/200 = 6.025$, dove 3, 6.5, 8.5, 10 sono i valori centrali e 80, 50, 40, 30 le numerosità delle rispettive classi. Sotto H_0 le probabilità stimate che T_1 appartenga ad ognuna delle 4 classi sono

$$\hat{p}_{01} = P_{H_0}(T_1 \le 6) = 1 - e^{-6/6.025} \simeq 0.6306, \ \hat{p}_{02} = P_{H_0}(6 < T_1 \le 7) = e^{-6/6.025} - e^{-7/6.025} \simeq 0.0565,$$

$$\hat{p}_{03} = P_{H_0}(7 < T_1 \le 10) = e^{-7/6.025} - e^{-10/6.025} \simeq 0.1227, \ \hat{p}_{04} = 1 - (0.6306 + 0.0565 + 0.1227) = 0.1902,$$

e la statistica di Pearson è

$$Q_1 = \sum_{i=1}^4 \frac{\left(N_i - n\hat{p}_{0i}\right)^2}{n\hat{p}_{0i}} = \sum_{i=1}^4 \frac{N_i^2}{200\hat{p}_{0i}} - 200 = \frac{1}{200} \left(\frac{80^2}{0.6306} + \frac{50^2}{0.0565} + \frac{40^2}{00.1227} + \frac{30^2}{0.1902}\right) - 200 \simeq 160.843$$

(non vi è bisogno di raggruppare ulteriormente i dati in quanto $0.0565 \times 200 = 11.3 > 5$). Il *p*-value del test vale $1 - F_{\chi^2_{4-1-1}}(160.843) = \mathrm{e}^{-160.843/2} \simeq 0$. Quindi vi è una fortissima evidenza empirica contro l'ipotesi nulla di dati esponenziali.

- 2. $p = P(T_2 \le 7)$ e $\hat{p} = (\# \text{ di pazienti con } T_2 \le 7)/200 = (60 + 60)/200 = 0.6$. Avendo tante osservazioni (200), ed essendo $200 \times 0.55 = 110 > 5$, allora un test bilatero asintotico di livello $\alpha = 10\%$ per $H_0: p = 0.55$ contro $H_1: p \ne 0.55$ prevede di rifiutare H_0 se $\sqrt{200}|\hat{p} 0.55|/\sqrt{0.55 \times 0.45} \ge z_{1-0.1/2} \simeq 1.645$. Nel nostro caso, $\sqrt{200}|0.6 0.55|/\sqrt{0.55 \times 0.45} \simeq 1.42$. Perciò accettiamo H_0 .
 - 3. Effettuiamo un test χ^2 di indipendenza fra $T_1,T_2.$ La statistica test è

$$Q_2 = 200 \sum_{i=1}^{4} \sum_{j=1}^{3} \frac{N_{ij}^2}{N_{i.}N_{.j}} - 200 = 200 \left(\frac{20^2}{80 \times 60} + \frac{20^2}{80 \times 60} + \frac{40^2}{80 \times 80} + \dots + \frac{15^2}{30 \times 80} \right) - 200 \simeq 15.451$$

e, a livello 5% rifiutiamo l'ipotesi di indipendenza se $Q_2 > \chi^2_{(4-1)(3-1)}(95\%)$. Poiché $\chi^2_6 = 12.592$ e 15.451 > 12.592, allora rifiutiamo l'ipotesi di indipendenza fra T_1, T_2 .