Polar Plot (Nyquist Plot)

The polar plot of a sinusoidal transfer function G(jw) is a plot of the magnitude of G(jw) Vs phase angle of G(jw) on polar coordinates as w is varied from 0 to ∞ . The polar plot is also called as Nyquist plot.

To sketch the polar plot of $G(j\omega)$ for the entire range of frequency ω , i.e., from 0 to infinity, there are four key points that usually need to be known:

- 1) The start of plot where $\omega = 0$,
- 2) The end of plot where $\omega = \infty$,
- 3) Where the plot crosses the real axis, i.e., $Im(G(j\omega)) = 0$, and
- 4) Where the plot crosses the imaginary axis, i.e., $Re(G(j\omega))$ = 0.

Polar Plot of first order system:
$$G(j\omega) = \frac{1}{1 + j\omega T}$$

Magnitude and phase of G(jw) are:

$$M = |G(j\omega)| = \left| \frac{1}{1 + j\omega T} \right| = \frac{1}{\sqrt{1 + \omega^2 T^2}}$$
$$\varphi = -\tan^{-1}(\omega T)$$

	$ G(j\omega) $	$oldsymbol{arphi}$
$\omega = 0$	0	0
$\omega = \frac{1}{T}$	$\frac{1}{\sqrt{2}}$	-45 ⁰
$\omega = \infty$	0	-90^{0}

Polar Plot

Polar Plot of second order system $G(j\omega) = \frac{1}{(1+j\omega T_1)(1+j\omega T_1)}$

Magnetude and phase of G(jw) are:

$$|G(j\omega)| = \frac{1}{\sqrt{1 + \omega^2 T_1^2} \sqrt{1 + \omega^2 T_2^2}}$$

$$\angle G(j\omega) = -\arctan(\omega T_1) - \arctan(\omega T_2)$$

The start of plot where $\omega = 0$

$$|G(j\omega)| = \frac{1}{\sqrt{1+0}\sqrt{1+0}} = 1$$

$$\angle G(j\omega) = -\tan^{-1}(0) - \tan^{-1}(0) = 0^{\circ}$$

	$ G(j\omega) $	$\angle G(j\omega)$
$\omega = 0$	1	0
$\omega = \rightarrow \infty$	0	-180°

Polar Plot of third order system:
$$G(j\omega) = \frac{500}{(1+j\omega)(3+j\omega)(10+j\omega)}$$

Compact form:
$$G(j\omega) = 500 \frac{(-14\omega^2 + 30) - j(43\omega - \omega^3)}{(-14\omega^2 + 30)^2 + (43\omega - \omega^3)^2}$$

Magnitude response:

$$|G(j\omega)H(j\omega)| = \sqrt{\text{Re}^2 + \text{Im}^2} = \frac{500}{\sqrt{(-14\omega^2 + 30)^2 + (43\omega - \omega^3)^2}}$$

Phase response:

$$\angle G(j\omega)H(j\omega) = \tan^{-1}\left(\frac{\operatorname{Im}}{\operatorname{Re}}\right) = \tan^{-1}\left(\frac{-\left(43\omega - \omega^3\right)}{-14\omega^2 + 30}\right)$$

Point 1: The start of plot where $\omega = 0$

$$|G(0)H(0)| = \frac{500}{\sqrt{(30)^2}} = 16.67$$
 $\angle G(0)H(0) = \tan^{-1}\frac{0}{30} = 0^{\circ}$

Point 2: The end of plot where $\omega = \infty$

$$|G(\infty)H(\infty)| = \frac{500}{\sqrt{\infty}} = 0$$

$$|G(\infty)H(\infty)| = \frac{500}{\sqrt{\infty}} = 0$$
 $\angle G(\infty)H(\infty) = \tan^{-1}\frac{\infty^3}{30} = -3 \times 90^\circ = -270^\circ$

Point 3: Where the plot crosses the real axis, i.e., $Im(G(j\omega)) = 0$

Take the imaginary part of equation (a), and put equal to zero, to get the value of frequency ω at the interception of real axis.

$$\frac{-(43\omega - \omega^3)}{(-14\omega^2 + 30)^2 + (43\omega - \omega^3)^2} = 0 \Rightarrow \begin{cases} 43\omega - \omega^3 = 0 & \Rightarrow \omega = 0 \text{ and } \omega = 6.56 \text{ rad/s} \\ \omega = \infty \end{cases}$$

Point 4: Where the plot crosses the imaginary axis, $Re(G(j\omega)) = 0$

Take the real part of equation (a), and put equal to zero, to get the value of frequency ω at the interception of imaginary axis.

$$\frac{-14\omega^2 + 30}{\left(-14\omega^2 + 30\right)^2 + \left(43\omega - \omega^3\right)^2} = 0 \Rightarrow \begin{cases} -14\omega^2 + 30 = 0 & \Rightarrow \quad \omega = 1.46 \text{ rad/s} \\ \omega = \infty \end{cases}$$

Key Points of the polar plot:

	GH	$\angle GH$
$\omega = 0$	16.67	0
$\omega = \infty$	0	-270°
Cross Re:		
$\omega = 0$		
$\omega = \infty$	See above	See above
$\omega = 6.56 \text{ rad/s}$	0.874	-180°
Cross Re:		
$\omega = 0$		
$\omega = \infty$	See above	See above
$\omega = 1.46 \text{ rad/s}$	8.36	-90°

Sketch the polar plot

$$G(s) = \frac{10}{s(s+1)(s+5)}$$

$$G(j\omega) = \frac{-60\omega^{2} - j10\omega(5 - \omega^{2})}{36\omega^{4} - (5\omega - \omega^{3})^{2}}$$

Point 1: The start of plot where $\omega = 0$

$$G(j\omega)\Big|_{\omega=0} = \frac{10}{5j\omega}\Big|_{\omega=0} = \frac{2}{j\omega}\Big|_{\omega=0} = \infty$$

$$\angle G(j\omega)\big|_{\omega=0} = \lim_{\omega \to 0} \angle \frac{2}{j\omega} = -90^{\circ}$$

Point 2: The end of plot where $\omega = \infty$

$$G(j\omega)\big|_{\omega=0} = \frac{10}{5j\omega}\bigg|_{\omega=0} = \frac{2}{j\omega}\bigg|_{\omega=0} = \infty$$

$$|G(j\omega)\big|_{\omega\to\infty} = \lim_{\omega\to\infty} \left|\frac{10}{(j\omega^3)}\right| = \lim_{\omega\to\infty} \frac{10}{\omega^3} = 0$$

$$\angle G(j\omega)\big|_{\omega=0} = \lim_{\omega\to0} \angle \frac{2}{j\omega} = -90^{\circ}$$

$$\angle G(j\omega)\big|_{\omega\to\infty} = \angle \lim_{\omega\to\infty} \left[\frac{10}{(j\omega)^3}\right] = -270^{\circ}$$

$$\angle G(j\omega)|_{\omega\to\infty} = \angle \lim_{\omega\to\infty} \left[\frac{10}{(j\omega)^3} \right] = -270^\circ$$

Point 3: Where the plot crosses the real axis, i.e., $Im(G(j\omega)) = 0$

Take the imaginary part of equation (a), and put equal to zero, to get the value of frequency ω at the interception of real axis.

$$\Rightarrow \frac{10\omega(5-\omega^2)}{36\omega^4 + (5\omega - \omega^3)^2} = 0$$

$$\Rightarrow 10(5-\omega^2) = 0$$

$$\Rightarrow \omega^2 = 5$$

$$\Rightarrow \omega = \sqrt{5}$$

Therefore, the intersection point between the polar plot and the real axis, when is located at;

$$G(j\omega)|_{\omega=\sqrt{5}} = -\frac{1}{3}$$

Point 4: Where the plot crosses the imaginary axis, $Re(G(j\omega)) = 0$

Take the real part of equation (a), and put equal to zero, to get the value of frequency ω at the interception of imaginary axis.

$$\Rightarrow -\frac{60\omega^2}{36\omega^4 + (5\omega - \omega^3)^2} = 0$$
$$\Rightarrow \omega = \infty$$

Therefore, the intersection point between the polar plot and the imaginary axis is when is located at;

$$G(j\infty)=0$$

	G(jω)	∠G(jω)
ω = 0	∞	-90°
ω = ∞	0	-270°

The Concept of Mapping

• If we take a complex number s = x+jy on the s-plane and substitute it into a function, F(s), another complex number results. This process is called mapping.

OR

• The term mapping is defined as the substitution of a complex number into a function, F(s), to get another complex number.

• **For example**, substituting s = 4 + j3 into the function $F(s) = (s^2 + 2s + 1)$ yields **16+j30**. We say that 4 + j3 maps into 16+j30 through the function $s^2 + 2s + 1$.

Mapping

Example:
$$G(s) = \frac{1}{s-2}$$

Points	G(s)	G(s)	$\angle G(s)$
S=a=1+j1	$\frac{1}{-1+j1}$	$\frac{1}{\sqrt{2}}$	-135^{0}
S=b=2+j1	$\frac{1}{j1}$	1	-90^{0}
S=c=3+j1	$\frac{1}{1+j1}$	$\frac{1}{\sqrt{2}}$	-45^{0}
S=d=3+j0	1	1	00
S=e=3-j1	$\frac{1}{1-j1}$	$\frac{1}{\sqrt{2}}$	45 ⁰
S=f=2-j1	$\frac{1}{-j1}$	1	90^{0}
S=g=1-j1	$\frac{1}{-1-j1}$	$\frac{1}{\sqrt{2}}$	135 ⁰
S=h=1+jo	$\frac{1}{-1}$	1	180°

one but opposite in direction (ACW)

Example: G(s) = s - 2

Mapping

Points	G(s)	G(s)	$\angle G(s)$
S=a=1+j1	-1 + j1	$\sqrt{2}$	135 ⁰
S=b=2+j1	<i>j</i> 1	1	90 ⁰
S=c=3+j1	1 + <i>j</i> 1	$\sqrt{2}$	45 ⁰
S=d=3+j0	1	1	0^0
S=e=3-j1	1 – <i>j</i> 1	$\sqrt{2}$	-45^{0}
S=f=2-j1	-j1	1	-90^{0}
S=g=1-j1	-1 - <i>j</i> 1	$\sqrt{2}$	-135^{0}
S=h=1+jo	-1	1	-180^{0}

direction (CW)

Examples of Contour Mapping

The **contour B** maps in a counter clockwise direction if F(s) has just poles that are encircled by the contour, Also, you should verify that, if the pole or zero of F(s) is enclosed by **contour A**, the mapping encircles the origin .

