SCC0502 - ALGORITMOS E ESTRUTURAS DE DADOS I

Tipos Abstratos de Dados TAD

Prof.: Leonardo Tórtoro Pereira <u>leonardop@usp.br</u>

Baseado nos slides do Prof. Rudinei Goularte

Objetivos

- → Definir mais profundamente TADs
- → Mostrar exemplos e implementações de TADs
- Apontar algumas técnicas mais avançadas para criar TADs

Algumas definições importantes

Algoritmos, Estruturas de Dados e Programas

- → Algoritmo
 - Pode ser visto como uma sequência de ações executáveis* para a obtenção de uma solução para um determinado tipo de problema (Ziviani, 2003).
- * Como sinônimo de factíveis

Algoritmos, Estruturas de Dados e Programas

- → Estrutura de Dados
 - Organização de dados e operações (algoritmos) que podem ser aplicadas sobre os dados como forma de apoio à solução de problemas (complexos).
- → Programas
 - Formulações concretas de algoritmos abstratos,
 baseados em representações e estruturas específicas
 de dados (Wirth, 1976) algoritmos que podem ser
 executados em computadores

Algoritmos, Estruturas de Dados e Programas

- → Tipo de Dado
 - Caracteriza o conjunto de valores a que uma constante pertence, ou que podem ser assumidos por uma variável ou expressão, ou que podem ser gerados por uma função (Wirth, 1976).
 - Tipos simples: int, float, double, etc.
 - Tipos estruturados: structs

- → Modelo matemático de tipos de dados
- Definido por seu comportamento (semântica) do ponto de vista do usuário dos dados
 - Especificamente em termos de valores possíveis, operações possíveis sobre o dado, e comportamento das operações
- Uma classe de objetos cujo comportamento lógico é definido por um conjunto de valores e operações

- → É usado para encapsular tipos de dados (pensar em termos das operações suportadas e não como são implementadas)
 - Vantagem: organização!

- → Separa o tipo de dado de sua representação
- → Pode ser representado matematicamente por um par (v,o)
 - v = conjunto de valores
 - o = conjunto de operações sobre esses valores
- → Ex: tipo real

- Requer que as operações sejam definidas sem estarem atreladas a uma representação específica dos dados
 - Ocultamento de informação
- Podemos usar listas, filas, pilhas, árvores, grafos, etc. sem precisar se preocupar com a implementação em si
 - ◆ E até mesmo com o tipo interno do valor de cada elemento, dependendo da implementação

- → Não há necessidade de saber a representação interna de um tipo de dado
- → Não se preocupa com a eficiência de tempo e espaço, porque elas são questões de implementação

- → O conceito de TAD é suportado por algumas linguagens de programação procedimentais
 - Ex. Java, C, C++, Python

- → Para definir um TAD
 - O programador descreve o TAD em dois módulos separados
 - Um módulo contém a definição do TAD: representação (declaração) da estrutura de dados e implementação de cada operação suportada.
 - Em C, este módulo é um (ou alguns) arquivo .c

- → Para definir um TAD
 - O outro módulo contém a interface de acesso: apresenta as operações possíveis
 - Em C, este módulo é um arquivo .h
 - Outros programadores podem, por meio da interface de acesso, usar o TAD sem conhecer os detalhes representacionais e sem acessar o módulo de definição

- → Ocultação de informação (information hiding)
 - Os dados armazenados podem ser manipulados apenas pelas operações
 - Ocultamento dos detalhes de representação e implementação, sendo que apenas a funcionalidade é conhecida
 - Só se tem acesso às operações de manipulação dos dados, e não aos dados em si

→ Uma vez definido um TAD e especificadas as operações associadas, ele pode ser implementado em uma linguagem de programação

- → Uma estrutura de dados pode ser vista, então, como uma implementação de TAD
 - Implica na escolha de uma ED para representá-lo, a qual é acessada pelas operações que ele define
 - Uma ED é construída a partir dos tipos básicos (integer, real, char) ou dos tipos estruturados (array, struct) de uma linguagem de programação

→ Podem existir diversas implementações para um mesmo TAD, cada uma com suas vantagens e desvantagens

Vantagens do TAD

Vantagens do TAD

- → Principais vantagens:
 - Reúso
 - Manutenção
 - ◆ Correção
 - Independência de representação

Exemplos

Exemplos

Dado do Mundo Real	Dados de interesse	Estrutura de armazenamento	Possíveis Operações
Pessoa	Idade	Tipo inteiro	→ Nasce (i=0) → Aniversário (i += 1)
Cadastro de Funcionário	Nome, cargo e salário de funcionários	Tipo lista ordenada	 → Entra na lista → Sai da lista → Altera o cargo → Altera o salário
Fila de espera	Nome e posição na fila de cada pessoa	Tipo fila	→ Sai da fila (o primeiro)→ Entra na fila (no fim)
Baralho de cartas	Dados da carta e posição no baralho	Tipo pilha	→ Entra na pilha (topo) → Sai da pilha (topo)

Um TAD de Racionais

TAD Racionais

- → A definição de valor para o TAD Racional,
 - Consiste em 2 inteiros, sendo o segundo deles diferente de zero
 - Dois inteiros que formam um número racional: numerador e denominador
- → A operações do TAD Racional incluem:
 - Operações de criação, adição e multiplicação

TAD Racionais

- Conceito matemático de um número racional
 - Pode ser expresso como o quociente de dois inteiros
 - As operações definidas são:
 - Criação de um número racional a partir de dois inteiros
 - Adição
 - Multiplicação

```
1 /* definição de valor */
2 Inteiro numerador;
3 Inteiro denominador;
4
5 /* definição de comportamentos */
6 Racional criar(Inteiro var1, Inteiro var2)
7 Pré-condição :
     var2 != 0
9 Pós-condição :
10
    numerador = var1
    denominador = var2
11
12
13 Racional adição(Racional var1, Racional var2)
14 Pré-condição :
15
     nenhuma
16 Pós-condição :
     numerador = (var1.numerador * var2.denominador) + (var2.numerador * var1.denominador)
17
18
     denominador = var1.denominador * var2.denominador
19
20 Racional multiplicação(Racional var1, Racional var2)
21 Pré-condição :
     nenhuma
23 Pós-condição :
     numerador = var1.numerador * var2.numerador
24
     denominador = var1.denominador * var2.denominador
```

TAD Racionais

- Implementar significa mapear a estrutura de dados e as operações em uma linguagem de programação (que o computador entenda)
 - Neste curso, a empregada será C

Vamos Programar!

Considerações Finais

- Na implementação de um TAD, a escolha da estrutura de dados empregada tem papel importante
 - Uma escolha mal feita pode resultar em implementações ineficientes ou mesmo não-factíveis

Referências

→ ZIVIANI, N. Projeto de Algoritmos, Thomson, 2a. Edição, 2004.