Introduction to Calculus

What Do You Think?

 What things could be considered the greatest achievements of the human mind?

It's the Greatest!

- Consider that all these things emerged because of technological advances
- Those advances relied on CALCULUS!
- Calculus has made it possible to:
 - Build giant bridges
 - Travel to the moon
 - Predict patterns of population change

FIRST DAY OF CLASS

True or False?

- TF Unless you actually enjoy wearing a pocket protector, you've got no business taking calculus.
- TF Studying calculus is hazardous to your health.
- T F Calculus is totally irrelevant.

The Genius of Calculus is Simple

- It relies on only two ideas
 - The Derivative
 - The Integral
- Both come from a common sense analysis of motion
 - Motion is change in position over time
 - All you have to do is drop your pencil to see it happen

What Is Calculus

- It is the mathematics of change
- It is the mathematics of
 - tangent lines
 - slopes
 - areas
 - volumes
- It enables us to model real life situations
- It is dynamic
 - In contrast to algebra/precalc which is static

What Is Calculus

- One answer is to say it is a "limit machine"
- Involves three stages
 - 1. Precalculus/algebra mathematics process
 - Building blocks to produce calculus techniques
 - 2. Limit process
 - The stepping stone to calculus
 - 3. Calculus
 - Derivatives, integrals

Contrasting Algebra & Calculus

Without Calculus With Differential Calculus

- Use f(x) to find the height of the curve at x= c
- Find the limit of f(x) as x approaches c

Contrasting Algebra & Calculus

Without Calculus With Differential Calculus

- Find the average rate of change between
 t = a and t = b
- Find the instantaneous
 rate of change at t = c

Contrasting Algebra & Calculus

Without Calculus With Differential Calculus

Area of a rectangle

Area between two curves

Tangent Line Problem

- Approximate slope of tangent to a line
 - Start with slope of secant line

Tangent Line Problem

Now allow the Δx to get smaller

The Area Problem

We seek the area under a curve, the graph f(x)

- We approximate that area with a number of rectangles
- Sum = 31.9
- Actual = 33.33

The Area Problem

 The approximation is improved by increasing the number of rectangles

- Number of rectangles = 10
- Sum = 32.92
- Actual = 33.33

The Area Problem

 The approximation is improved by increasing the number of rectangles

- Number of rectangles = 25
- Sum = 33.19
- Actual = 33.33

Thank you

- Questions?
- What have you learned?
- What we will see tomorrow?
- Homework