Interrupt Controller (8259 Programming Examples & Intro to DMA)

Dr A Sahu

Dept of Comp Sc & Engg.

IIT Guwahati

Outline

- 8259 Control and Operation word
- 8259 programming and interrupts
- Nested Interrupts
- DMA controller
- DMA Architecture
- Introduction to Programming DMA (Next class)
- Next class will be in Room 1201

Block Diagram of 8259

Block Diagram Architecture of 8259

Internal Bus

Interrupt Vector Table

03FF	IP High Byte	
03FE	CS Low Byte	int type 255
03FD	IP High Byte	7,1
03FC	IP Low byte	
	_	
	ID III ale De te	
0007	IP High Byte	
0006	CS Low Byte	
0005	IP High Byte	Int type 0
0004	IP Low byte	7.
0003	IP High Byte	
0002	CS Low Byte	Int type 1
0001	IP High Byte	
0000	IP Low byte	
		1

Memory in Hex

Priority Modes

- Fully Nested Modes
 - IR are arranged in IRO-IR7 and Any IR can be assigned Highest or lowest priority IR4=0 (high), IR3=7 (low)
- Automatics Rotation Mode
 - A device after being served, receive the lowest priority with value 7
 01234567 → 12345670 → 23456701
- Specific Rotation Mode
 - User can select any IR for lowest priority 06734512→67345120→73451206
- EOI: End of interrupt
 - Specific EOI Command
 - Automatic EOI: no command necessary
 - Non-Specific EOI: it reset the ISR bit

Control Word (initialization)

CS	A0	Initialization
0	0	ICW1
0	1	ICW2,ICW3,ICW4
1	X	Not Address

ICW1 & ICW2

AD0	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	LTIM	0	SGNL	IC4
	C) for x86	5		1 for Level Trigger 0 for Edge Trigger		1=single 0=Cascade	

AD0	D7	D6	D5	D4	D3	D2	D1	D0
1	T7	Т6	T5	T4	T3	T2	T1	T0
	T7:	=T0 is t	he assig	gn to IR	0, Vecto	or addre	ess for I	SR

Masking and Prioritization

OCW (operation command word)

CS	A0	Operation Command Word
0	0	OCW1
0	1	OCW2,OCW3,OCW4
1	X	Not Address

Programming OCWs: OCW1, OCW2

AD0	D7	D6	D5	D4	D3	D2	D1	D0
1	M7	M6	M5	M4	M3	M2	M1	M0
	In	terrupt	Masks:	1= Ma	sk Set,	0 =Ma	sk rese	et

AD0	D7	D6	D5	D4	D3	D2	D1	D0	
0	R	SL	EOI	0	0	L2	L1	LO	
	Rote ate	Speci fic	EOI				IR Level to acted Upon (

Example: Setting of control word

AD0	D7	D6	D5	D4	D3	D2	D1	D0
1	M7=	M6=	M5=	M4=	M3=	M2=	M1=	M0=
	0	1	1	1	1	1	1	1
	In	terrupt	Masks:	1= Ma	sk Set,	0 =Ma	sk rese	et

Printer

OCW1=7F

Initialization words (ICW1 & ICW2)

AD0	D7	D6	D5	D4	D3			D2) 1	D0	
0	0	1	1	1	0			1			1	0	
	Lowe	7, A6,A! r addres ctor Add	ss bit		O for Ed Trigge	_		Call ddress erval =			ingle iscade		76H
	AD0	D7	D6	D5	D4		D3	D2	D	01	D0		
	1	T7	T6	75	T4	•	T3	T2	Т	Γ1	T0		
		0	0	1	0		0	0		0	0		20H
		Т7	'=T0 is		ign to I er Byte	_			ress	for I	SR		
		r Addre 2064		100/00	000 0	1	1		000	00			

Program to initialize

```
DI
          A, 76H
                     ;move ICW1 byte to ACC
MVI
                     ; initialize 8259A ICW1
OUT
          80H
                     ; mov ICW2 byte to ACC
          A, 20H
MVI
                     ; Initialize 8259A ICW2
OUT
          81H
          A, 7FH
                     ; Put the OCW1
MVI
          80H
OUT
```

Nested mode

- By Default 8259 work in Nested modes
 - Unless we put a different OCW
- Suppose IR2 has highest priority and IR6
- IR6 is being serviced
- IR2 can be nested iff IR6 IRS issue an El command
- Address of IR2=2068, IR2=2074

Nested Interrupt process

Maskable Interrupt

- Those interrupt service can be temporarily disable to let the higher priority interrupt ISR to be executed un-interruptly
- I want IR7 to be Non Maskable

AD0	D7	D6	D5	D4	D3	D2	D1	D0		
1	M7=	M6=	M5=	M4=	M3=	M2=	M1=	M0=		
	0	1								
	In	terrupt	Masks:	1= Ma	sk Set,	0 =Ma	sk rese	et		

OCW1=7F

<u>DMA</u>

- Direct memory access
- DMA Controller
- DMA mode of I/O
- Programmed mode I/O vs DMA mode I/O

Data Transfer DMA mode

Data Transfer

- Programmed I/O
 - Done by busy-waiting
 - This process is called polling
- Example
 - Reading a key from the keyboard involves
 - Waiting for status bit to go low
 - Indicates that a key is pressed
 - Reading the key scan code
 - Translating it to the ASCII value
 - Waiting until the key is released

Data Transfer: DMA

- Problems with programmed I/O
 - Processor wastes time polling
 - Lets take example of Key board
 - Waiting for a key to be pressed,
 - Waiting for it to be released
 - May not satisfy timing constraints associated with some devices: Disk read or write
- DMA
 - Frees the processor of the data transfer responsibility

DMA Controller

DMA Controller

- DMA is implemented using a DMA controller
- DMA controller
 - Acts as slave to processor
 - Receives instructions from processor
 - Example: Reading from an I/O device
 - Processor gives details to the DMA controller
 - I/O device number
 - Main memory buffer address
 - Number of bytes to transfer
 - Direction of transfer (memory → I/O device, or vice versa)

DMA: HOLD and HOLDA

- HOLD: DMA to CPU
 - DMA Send HOLD High to CPU
 - I (DMA) want BUS Cycles
- HOLDA
 - CPU send HOLDA
 - BUS is granted to DMA to do the transfer
 - DMA is from Slaves to Master mode
- HOLD Low to CPU
 - I (DMA) finished the transfer
- Cycle Stealing if One BUS
- Other wise Separate process independent of processing

Steps in a DMA operation

- Processor initiates the DMA controller
 - Gives device number, memory buffer pointer, ...
 Called *channel initialization*
 - Once initialized, it is ready for data transfer
- When ready, I/O device informs the DMA controller
 - DMA controller starts the data transfer process
 - » Obtains bus by going through bus arbitration
 - » Places memory address and appropriate control signals
 - » Completes transfer and releases the bus
 - » Updates memory address and count value
 - » If more to read, loops back to repeat the process
- Notify the processor when done
 - Typically uses an interrupt

8237 DMA Controller

8237 supports four DMA channels

- 8237 supports four DMA channels
- It has the following internal registers
 - Current address register
 - One 16-bit register for each channel
 - Holds address for the current DMA transfer
 - Current word register
 - Keeps the byte count
 - Generates terminal count (TC) signal when the count goes from zero to FFFFH
 - Command register
 - Used to program 8257 (type of priority, ...)

DMA Registers

- Mode register
 - Each channel can be programmed to
 - Read or write
 - Auto increment or auto decrement the address
 - Auto initialize the channel
- Request register
 - For software-initiated DMA
- Mask register
 - Used to disable a specific channel
- Status register
- Temporary register
 - Used for memory-to-memory transfers

Type of Data Transfer using 8237

DMA

- Single cycle transfer
 - Only single transfer takes place
 - Useful for slow devices
- Block transfer mode
 - Transfers data until TC is generated or external EOP^b signal is received
- Demand transfer mode
 - Similar to the block transfer mode
 - In addition to TC and EOP, transfer can be terminated by deactivating DREQ signal
- Cascade mode
 - Useful to expand the number channels beyond four

Programming DMA

Next Class...

Next class will be in Room 1201 7 Sept 2010 onwards

Reference

 R S Gaonkar, "Microprocessor Architecture", Chapter 15

Thanks