# ADVANCED BAYESIAN LEARNING BAYESIAN NONPARAMETRICS Spring 2014

Mattias Villani

Division of Statistics

Department of Computer and Information Science
Linköping University

#### TOPIC OVERVIEW

- ► Reminder: Multinomial data Dirichlet prior
- Bayesian histograms
- Dirichlet process
- Beyond the Dirichlet process: Pitman-Yor and Probit stick-breaking
- ► The Dirichlet process mixtures
- MCMC for Dirichlet process mixtures

### THE DIRICHLET DISTRIBUTION

▶  $\theta \sim \text{Dirichlet}(a_1, ..., a_k)$  with density

$$p(\theta_1, \theta_2, ..., \theta_k) \propto \prod_{j=1}^k \theta_j^{a_j-1}.$$

- ▶ Define  $\alpha = \sum_{i=1}^k a_i$  and  $\pi_0 = a/\alpha$ .
- **Expected value** and **variance** of the *Dirichlet*  $(a_1, ..., a_k)$  distribution

$$\mathrm{E}(\theta_j) = rac{a_j}{lpha} = \pi_{0j}$$
  $\mathrm{V}(\theta_j) = rac{\mathrm{E}(\theta_j)\left[1 - \mathrm{E}(\theta_j)\right]}{1 + lpha}$ 

▶ Note that  $\alpha$  is a **precision** parameter (large  $\alpha$  means low variance).

# CONJUGATE ANALYSIS FOR MULTINOMIAL DATA

- ▶ Data:  $y = (n_1, ..., n_k)$ , where  $n_i = \text{number of items in category } j$ .
- ► Prior

$$\theta \sim \text{Dirichlet}(a_1, ..., a_k)$$

Likelihood

$$p(n_1, n_2, ..., n_k | \theta_1, \theta_2, ..., \theta_k) \propto \prod_{j=1}^k \theta_j^{n_j}$$

Posterior

$$\theta | n_1, ..., n_k \sim \text{Dirichlet}(n_1 + a_1, ..., n_k + a_k)$$

Posterior expected value

$$E(\theta_j|n_1,...,n_k) = \frac{n_j + a_j}{n + \alpha}$$

### **BAYESIAN HISTOGRAMS**

- ▶ Histogram partitions the data space  $\xi_0 < \xi_1 < ... < \xi_k$  and records how many observations end up in each bin  $(B_h)$ . Multinomial data.
- ► Probability model for histograms

$$f(y) = \sum_{h=1}^{k} 1_{\xi_{h-1} < y \le \xi_h} \left( \frac{\pi_h}{\xi_h - \xi_{h-1}} \right)$$

- $ightharpoonup n_h = ext{number of data points in partition (bin)} h: \xi_{h-1} < y \le \xi_h.$
- ▶ Prior on  $\pi = (\pi_1, ..., \pi_k)$

$$\pi \sim \textit{Dirichlet}(a_1, ..., a_k)$$

Posterior

$$\pi | n_1, ..., n_k \sim \text{Dirichlet}(n_1 + a_1, ..., n_k + a_k)$$

# ILLUSTRATION OF BAYESIAN HISTOGRAMS



# BAYESIAN HISTOGRAMS, CONT.

Posterior

$$\pi | n_1, ..., n_k \sim \text{Dirichlet}(n_1 + a_1, ..., n_k + a_k)$$

- ▶ Specify  $a_1,...,a_k$  through  $\pi_0=(\pi_{01},...,\pi_{0k})$  and  $\alpha=\sum_{j=1}^k a_j$ .
- ▶ Specify  $\pi_0$  from a base distribution  $P_0$ . For the hth bin:

$$\pi_{0h} = P_0(B_h) = \Pr(\xi_{h-1} < y \le \xi_h)$$

- ► The Dirichlet prior is a **computational dream**, and it is **easy to specify** the hyperparameters  $\pi_0$  and  $\alpha$ .
- ▶ But, the Dirichlet prior lacks smoothness: all pairs of bins have negative correlations, regardless of how near they are.
- Sensitive to the choice of bins.

# BAYESIAN HISTOGRAM EXAMPLE



# BAYESIAN HISTOGRAM EXAMPLE



# HISTOGRAMS ARE SENSITIVE TO THE CHOICE OF BINS



### THE DIRICHLET PROCESS

- ▶ Let  $B_1, B_2, ..., B_k$  be a partition of the outcome space  $\Omega$ .
- ▶ Let  $P(B_1), ..., P(B_k)$  denote the distribution over the partition.
- ▶ Dirichlet distribution is a distribution over a space of distributions:

$$(P(B_1), ..., P(B_k)) \sim Dirichlet(\alpha P_0(B_1), ..., \alpha P_0(B_k))$$

where  $P_0$  is a fixed probability measure (e.g. the N(0,1) density).

- ▶ Dirichlet distribution is closed under summation or splitting of bins.
- ► Can be used to define a **stochastic process** in a consistent way. Compare with GPs.
- ▶ A random probability measure P follows a **Dirichlet process**  $P \sim DP(\alpha \cdot P_0)$  with base measure  $P_0$  and precision parameter  $\alpha$  iff

$$(P(B_1), ..., P(B_k)) \sim Dirichlet(\alpha P_0(B_1), ..., \alpha P_0(B_k))$$

for any finite (measureable) partition  $B_1, ..., B_k$ .

#### THE DIRICHLET PROCESS - PROPERTIES

▶ If  $P \sim DP(\alpha P_0)$  then

$$P(B)\sim \mathrm{Beta}\left[lpha P_0(B),lpha\left(1-P_0(B)
ight)
ight]$$
, for any  $B\in\mathcal{B}$  
$$E\left[P(B)
ight]=P_0(B)$$
  $\mathrm{Var}\left[P(B)
ight]=P_0(B)\left[1-P_0(B)
ight]/(1+lpha)$ 

Model

$$y_i|P \stackrel{iid}{\sim} P$$
, for  $i = 1, ..., n$ 

▶ Prior

$$P \sim DP(\alpha P_0)$$

▶ Posterior for a finite partition,  $P(B_1), ..., P(B_k)|y$  is

$$Dir\left(\alpha P_0(B_1) + \sum_{i=1}^n 1_{y_i \in B_1}, ..., \alpha P_0(B_k) + \sum_{i=1}^n 1_{y_i \in B_k}\right)$$

#### THE DIRICHLET PROCESS - PROPERTIES

▶ **Posterior** for the unknown probability distribution *P* 

$$P|y_1,...,y_n \sim DP\left(\alpha P_0 + \sum_{i=1}^n \delta_{y_i}\right)$$

Since

$$P(B) \sim Beta\left(\alpha P_0(B) + \sum_{i=1}^{n} 1_{y_i \in B}, \alpha(1 - P_0(B)) + \sum_{i=1}^{n} 1_{y_i \in B^c}\right)$$

so

$$E(P(B)|y_1,...,y_n) = \left(\frac{\alpha}{\alpha+n}\right)P_0(B) + \left(\frac{n}{\alpha+n}\right)\sum_{i=1}^n \frac{1}{n}1_{y_i \in B^c}$$

### ESTIMATING A D.F. WITH A DP PRIOR

▶ If  $B = (-\infty, y]$  then

$$E(F(y)|y_1,...,y_n) = \left(\frac{\alpha}{\alpha+n}\right)F_0(y) + \left(\frac{n}{\alpha+n}\right)F_n(y)$$

- where
  - $\triangleright$  F(y) is the unknown d.f.
  - $ightharpoonup F_0(y)$  is the d.f. from  $P_0$
  - $F_n(y) = \frac{1}{n} \sum 1_{v_i < y}$  is the empirical d.f.
- Note: under the DP posterior,  $F(\cdot)$  is discrete with probability one. Not great for continuous data ...
- ► This is true in general: realisations from a DP are discrete with probability one.

### ESTIMATING A D.F. WITH A DP PRIOR



### STICK-BREAKING CHARACTERIZATION OF THE DP

 $ightharpoonup P \sim DP(\alpha P_0)$  is equivalent to an infinite mixture of point masses

$$P(\cdot) = \sum_{h=1}^{\infty} \pi_h \delta_{\theta_i}$$
 $\pi_h = V_h \prod_{\ell < h} (1 - V_\ell)$ 
 $V_h \stackrel{iid}{\sim} Beta(1, \alpha)$ 
 $\theta_h \stackrel{iid}{\sim} P_0$ 

- ► Stick picture
- ▶ Alternative notation for  $P \sim DP(\alpha P_0)$ :

$$\pi = (\pi_1, \pi_2, ...) \sim \operatorname{Stick}(\alpha)$$
 and  $\theta_h \sim P_0$ 









### BEYOND DP - PITMAN-YOR AND PROBIT STICKS

▶ Pitman-Yor process with parameters  $P_0$ ,  $0 \le a < 1$  and b > -a:

$$P(\cdot) = \sum_{h=1}^{\infty} \pi_h \delta_{ heta_i} \quad heta_h \stackrel{iid}{\sim} P_0$$
  $\pi_h = V_h \prod_{\ell < h} (1 - V_\ell)$   $V_h \stackrel{iid}{\sim} Beta(1 - a, b + ha)$ 

**Probit stick-breaking** with parameters  $\mu$  and  $\sigma$ :

$$egin{aligned} P(\cdot) &= \sum_{h=1}^{\infty} \pi_h \delta_{ heta_i} & heta_h \stackrel{iid}{\sim} P_0 \ \pi_h &= V_h \prod_{\ell < h} (1 - V_\ell) \ V_h &= \Phi(x_h), & ext{where } x_h \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2) \end{aligned}$$

#### FINITE MIXTURE MODELS

Mixture of normals

$$p(y) = \sum_{j=1}^{k} \pi_j \cdot \phi(y; \mu_j, \sigma_j^2)$$

- ▶ Use allocation variables:  $I_i = j$  if  $y_i$  comes from  $\phi(y; \mu_j, \sigma_i^2)$ .
- ▶ Let  $I = (I_1, ..., I_n)'$  and  $n_j = \sum_{i=1}^n (I_i = j)$ .
- ► Gibbs sampling algorithm:
  - $\bullet$   $\pi_1, ..., \pi_k \mid I, y \sim Dirichlet(a_1 + n_1, a_2 + n_2, ..., a_k + n_k)$
  - $ightharpoonup \sigma_{j}^{2} \mid I$ ,  $y \sim Inv-\chi^{2}$  and  $\mu_{j} \mid I$ ,  $\sigma_{j}^{2}$ ,  $y \sim N$  for j=1,...,k.
  - ▶  $I_i \mid \pi, \mu, \sigma^2, y \sim Multinomial(\omega_{i,1}, ..., \omega_{i,k}), i = 1, ..., n$ , where

$$\omega_{i,j} = \frac{\pi_j \cdot \phi(y_i; \mu_j, \sigma_j^2)}{\sum_{q=1}^k \pi_q \cdot \phi(y_i; \mu_q, \sigma_q^2)}.$$

### INFINITE MIXTURE MODELS - DP MIXTURES

► General mixture formulation

$$f(y|P) = \int \mathcal{K}(y|\theta) dP(\theta)$$

where  $\mathcal{K}(y|\theta)$  is a kernel and  $P(\theta)$  is a **mixing measure**.

- ► Example 1: **Student**-t,  $t_{\nu}(\mu, \sigma^2)$ .  $\mathcal{K}(y|\theta) = \phi(y|\mu, \lambda)$  where  $\mu$  is fixed,  $\theta = \lambda$  and  $P(\theta)$  is the  $Inv \chi^2(\nu, \sigma^2)$  distribution.
- Example 2: Finite mixture of normals.  $\phi(y|\mu,\sigma^2)$ ,  $\theta=(\mu,\sigma^2)$ .  $P(\theta)$  is a discrete distr. with  $\Pr\left[\theta=(\mu_j,\sigma_j^2)\right]=\pi_j$ , for j=1,...,k.
- Example 3:  $P \sim DP(\alpha P_0)$  yields the infinite mixture

$$f(y) = \sum_{h=1}^{\infty} \pi_h \mathcal{K}(y|\theta_h^*), \qquad \pi \sim \text{Stick}(\alpha).$$

### DP MIXTURE IS LIKE A FINITE MIXTURE WITH LARGE k

▶ In infinite mixtures every observation has its own parameter  $\theta_i$ 

$$y_i \sim \mathcal{K}(\theta_i)$$

- ▶ DP is almost surely discrete  $\Rightarrow$  ties: some of the  $\theta_i$  will have exactly the same values. **DP leads to clustering** of the  $\theta_i$ .
- ▶ Each observation has **potentially** its own parameter  $\theta_i$ , but that **parameter may be shared by other observations**.
- ▶ In finite mixture models each observation also has its "own" parameter

$$y_i | I_i \sim \mathcal{K}(\theta_{I_i})$$
 $I_i | \pi \sim \textit{Multinomial}(\pi_1, ..., \pi_k)$ 
 $\theta_i \sim P_0$ 
 $\pi \sim \textit{Dirichlet}(\alpha/k, ...., \alpha/k)$ 

Neal (2000) shows that this finite mixture model approaches the DP mixture when  $k \to \infty$ .

### MARGINALIZING OUT P FROM A DP - POLYA SCHEME

► Hierarchical representation of DP mixtures

$$y_i \sim \mathcal{K}(\theta_i), \qquad \theta_i \sim P \qquad P \sim DP(\alpha P_0)$$

▶ We can actually marginalize out P to obtain the Polya scheme

$$\rho(\theta_i|\theta_1,...,\theta_{i-1}) \sim \left(\frac{\alpha}{\alpha+i-1}\right) P_0(\theta_i) + \left(\frac{1}{\alpha+i-1}\right) \sum_{j=1}^{i-1} \delta_{\theta_j}$$

- ▶ So  $p(\theta_i|\theta_1,...,\theta_{i-1})$  is a mixture of the base measure  $P_0$  and point masses at the previously "drawn"  $\theta$ -values.
- Way to think about the scary 'Marginalizing out P': integrate out  $\pi$  in the finite mixture model and let  $k \to \infty$ . [Neal, 2000].

### DPS AND THE CHINESE RESTAURANT PROCESS

► The so called **Polya scheme**:

$$p(\theta_i|\theta_1,...,\theta_{i-1}) \sim \left(\frac{\alpha}{\alpha+i-1}\right) P_0(\theta_i) + \left(\frac{1}{\alpha+i-1}\right) \sum_{j=1}^{i-1} \delta_{\theta_j}$$

- ► Chinese restaurant process:
  - first customer sits at empty table and obtains the dish  $\theta_1^*$  from  $P_0$ .
  - second customer
    - $\blacktriangleright$  sits at first customer's table with probability  $\frac{1}{1+lpha}$  and has dish  $heta_1^*$  or
    - sits at a new table with probability  $\frac{\alpha}{1+\alpha}$  and has dish  $\theta_2^* \sim P_0$ .
  - •
  - the ith customer
    - rightharpoonup sits at table with dish  $\theta_j^*$  with a probability proportional to  $n_j$ , the number of customers sitting at table j or
    - $\triangleright$  sits at a new table with probability proportional to  $\alpha$ .

# GIBBS SAMPLING DP MIXTURES - MARGINALIZING P

- ► Similar to Gibbs sampling for finite mixtures. Data augmentation with mixture component indicators *l<sub>i</sub>*.
- 1. Update component allocation for ith observation  $y_i$  by sampling from multinomial

$$\Pr(I_i = j | \cdot) \propto \begin{cases} n_j^{(-i)} \mathcal{K}(y_i | \theta_j^*) & \text{for } j = 1, ..., k^{(-i)} \\ \alpha \int \mathcal{K}(y_i | \theta) dP_0(\theta) & \text{for } j = k^{(-i)} + 1 \end{cases}.$$

2. Update the unique parameter values  $\theta^*$  by sampling from

$$p(\theta_j^*|\cdot) \propto P_0(\theta_c^*) \prod_{i:l_i=i} \mathcal{K}(y_i|\theta_j^*)$$

Note that, unlike finite mixtures, the  $I_i$  are not independent conditional on  $\theta^*$ . This because we have marginalized out P. They have to be sampled sequentially.

# GIBBS SAMPLING FOR TRUNCATED DP MIXTURES

- ▶ Set upper bound *N* for the number of components. Approximate DP mixture with  $\pi_h = 0$  for h = N + 1, ...
- ► Posterior samping for infinite mixtures is now very similar to finite mixture. The *I<sub>i</sub>* can be sampled independently.
- 1. Update component allocation for ith observation  $y_i$  by sampling from multinomial

$$\Pr(I_i = j|\cdot) \propto \pi_j \mathcal{K}(y_i|\theta_i^*)$$
 for  $j = 1, 2, ..., N$ .

2. Update the stick-breaking weights [recall:  $\pi_h = V_h \prod_{\ell < h} (1 - V_\ell)$ ]

$$|V_j| \cdot \sim \textit{Beta}\left(1 + n_j, lpha + \sum_{q=j+1}^{N} n_q
ight) \qquad ext{for } j = 1, ..., N-1.$$

3. Update the unique parameter values  $\theta_1^*$ , ... $\theta_N^*$  by sampling just like in the finite mixture model. Sample  $\theta^*$  from prior  $P_0(\theta)$  for empty clusters.

### MCMC FOR DP MIXTURES

► Let's look at the updating step:

$$\Pr(I_i = j | \cdot) \propto \begin{cases} n_j^{(-i)} \mathcal{K}(y_i | \theta_c^*) & \text{for } j = 1, ..., k^{(-i)} \\ \alpha \int \mathcal{K}(y_i | \theta) dP_0(\theta) & \text{for } j = k^{(-i)} + 1 \end{cases}.$$

- ► A customer chooses table based on:
  - the number of existing customers at the tables (with imaginary  $\alpha$  customers at a new table)
  - how compatible the taste of the customer  $(y_i)$  is to the different dishes served at occupied tables  $(\theta_c^*)$
  - how compatible the taste of the customer  $(y_i)$  is to the different dishes that may be served at a new table.
  - A  $P_0(\theta)$  with large variance is equivalent to an very experimental cook. You never know what you get ...
- ▶ Hyperparameter  $\alpha$  clearly matters for the number of clusters (tables), but so does  $P_0$ .
- $\triangleright$  Hyperparameter  $\alpha$  can be learned from data. Just add updating step.
- $ightharpoonup P_0$  may contain hyperparameters (e.g.  $P_0 = N(\mu, \sigma^2)$ ). Just add

### MIXTURE OF MULTIVARIATE REGRESSIONS - MODEL

- ▶ The response vector  $\mathbf{y}$  is p-dim. Covariates  $\mathbf{x}$  is q-dim.
- ▶ The model is of the form

$$p(\mathbf{y}|\mathbf{x}) = \sum_{j=1}^{\infty} \pi_j \cdot N(\mathbf{y}_i|\mathbf{B}_j\mathbf{x}_i, \Sigma_j)$$

► Each component in the mixture is a Gaussian multivariate regression with its own regression coefficient and covariance matrix:

$$\mathbf{y}_{i} = \mathbf{B}_{j} \mathbf{x}_{i} + \underset{p \times q}{\varepsilon_{i}}, \ \varepsilon_{i} \overset{\textit{iid}}{\sim} N\left(0, \Sigma_{j}\right)$$

▶ The mixture weights follow a DP stick prior  $\pi \sim Stick(\alpha)$ .

# MIXTURE OF MULTIVARIATE REGRESSIONS - DATA



# MIXTURE OF MULTIVARIATE REGRESSIONS - DPM



# MIXTURE OF MULTIVARIATE REGRESSIONS - DPM

