Task 3 (10 marks) - Autonomous Robot navigation:

For the final lab assessment, you will work in <u>pairs</u> to design, implement, and document software for autonomous navigation of a simulated mobile robot towards a target within a map of randomly generated obstacles. Your program will utilise the Python robotics library and basics of python programming covered in previous labs to achieve the following objectives:

- a) Allow user input to initialise the robot's start coordinates, target coordinates, and number of obstacles in the map. In addition to any custom variables required.
- b) Calculate and continue to update both the angle and distance between the robot and a randomly placed target within a 20m by 20m map.
- c) Acquire and process the feedback from a simulated distance sensor to find out the coordinates of nearby randomly placed obstacles within the map.
- d) Define the logic to implement appropriate manoeuvres to prevent collision with the obstacles until the robot reaches its target.
- e) display a map showing the robot, random obstacles, target, and any additional useful outputs, in order to visualise the robot's locomotion towards its target.

The Python code will be submitted <u>online via Moodle by 21/04/22</u> with a link to a personal GitHub repository that contains the code and documentation explaining its operation. The GitHub documentation should cover the following aspects:

- a) Demonstrate collaboration and contribution of team members.
- b) Definition of user inputs required to run the code and expected outputs.
- c) Declare software versions and any dependencies required to run the code.
- d) Explain the functionality of the code and the thought process behind its operating principle. Include a flowchart summarising the operating logic implemented in the code.
- e) Discuss the results with supporting graphics from simulation.
- f) Highlight areas for innovation achieved to improve the performance of autonomous navigation, as well as areas for further improvement.

The following marking scheme will be used to evaluate your submission:

	Task Completion	Code quality	Documentation
	out of 40 %	out of 40 %	out of 20 %
00/ +=	Tasks are not attempted	Unclear structure, missing	Missing or mostly
0% to 40%	or have major technical	function definitions and	incomplete
40%	errors.	comments	documentation
40% to 50%	Dungunga manda with all	A nonnenviete use of	Completed
	Progress made with all	Appropriate use of variables and function	documentation detailing
	tasks, but robot doesn't		functionality
	reach its target or collides	definitions to maintain	+ Correct and clear
to	with obstacles in some	code efficiency and	flowchart summarising
60%	instances.	structure.	code operation

60%	All tasks completed. Robot	+ Clear structure with	+ Clear formatting with
to	reaches target with no	supporting comments to	supporting media for a
70%	collision.	aid readability.	rich documentation
70% to 100%	Demonstrating innovation to handle increased task complexity (e.g. multiple targets or more obstacles)	+ Robust implementation. Task still completed with varying inputs (e.g. starting/target location).	+ Critical discussion highlighting areas for innovation and future work to address limitations

Best wishes