ANT 6973: DATA VISUALIZATION AND EXPLORATION

VISUALIZING RELATIONSHIPS AND CHANGE OVER TIME

TODAY'S TOPICS

- Visualizing relationships between variables
- Visualizing change over time
- Activity:
 - Baby names

NEW SKILLS

- More practice filtering: multiple and nested logical tests
- Annotations, including positioning and justifying text and other marks
- Extend the axes with expand_limits()
- Axis scales: breaks and labels

VISUALIZING RELATIONSHIPS BETWEEN TWO VARIABLES

VISUALIZING RELATIONSHIPS BETWEEN TWO VARIABLES

 Scatterplots are the first step for examining relationships between two numerical variables.

We have already practiced making scatterplots.

```
ggplot(storms, aes(x = pressure, y = wind)) +
  geom_point()
```


• Third *categorical* variable can be represented using color or shape.

The options for point shapes:

0	1	2	3	4
	0	\triangle	+	X
5	6	7	8	9
\Diamond	\bigvee		*	\bigoplus
10	11	12	13	14
\oplus			\boxtimes	
15	16	17	18	19
			•	
20	21	22	23	24
•			\rightarrow	

Hollow shapes (use 'color')

	0	1	2	3	4
		0	\triangle	+	X
	5	6	7	8	9
<	\Diamond	\bigvee		*	\bigoplus
	10	11	12	13	14
Ā	\oplus	\bigotimes	\blacksquare	\boxtimes	

ggplot2

Solid shapes (use 'color')

20

ggplot2

Outlined shapes (use 'color' for outline, 'fill' for interior)

Shape 21 is really useful (it's the only one I remember)

0	1	2	3	4
	0	\triangle	1	X
5	6	7	8	9
\Diamond	\bigvee		*	\bigoplus
10	11	12	13	14
\oplus			\boxtimes	
15	16	17	18	19
			•	
20	21	22	23	24
			•	

- Guidelines for shapes:
 - 1. The main reason to use shapes is when colors can't be used for some reason.
 - 2. Using shape alone to encode a variable is usually a bad decision—shapes are hard for people to distinguish.
 - 3. If using different shapes, use no more than 6.
 - 4. Redundant encoding can be useful (e.g., map both color and shape to the same variable)

BUBBLE CHARTS

BUBBLE CHARTS

 Third (and fourth) numerical variable can be shown by color or size.

ggplot2

- Create a new folder for the week and a new R markdown file.
- Create a new R chunk and load the tidyverse package.
- Install the packages gapminder and scales
- Load the packages tidyverse, gapminder, and scales
- Look at the gapminder data set

country	continent	year	lifeExp	рор	gdpPercap
Afghanistan	Asia	1952	28.801	8425333	779.4453
Afghanistan	Asia	1957	30.332	9240934	820.8530
Afghanistan	Asia	1962	31.997	10267083	853.1007
Afghanistan	Asia	1967	34.020	11537966	836.1971
Afghanistan	Asia	1972	36.088	13079460	739.9811
Afghanistan	Asia	1977	38.438	14880372	786.1134
Afghanistan	Asia	1982	39.854	12881816	978.0114
Afghanistan	Asia	1987	40.822	13867957	852.3959
Afghanistan	Asia	1992	41.674	16317921	649.3414
Afghanistan	Asia	1997	41.763	22227415	635.3414

- Plot data lifeExp (y) vs. gdpPerCap (x) for 2007 only
- Divide pop by 1 million and encode as point size; color points by continent
- Use log 10 for x axis

Convenient labelling functions provided by scales package


```
ggplot(filter(gapminder, year == 2007),
                  aes(x = gdpPercap, y = lifeExp,
                       size = pop / 1e6, color = continent)) +
            geom_point(alpha = 0.6) +
            scale_x_log10(labels = label_dollar()) +
            scale_size_area(max_size = 20, labels = label_comma(),
                                name = "Pop((millions)")
                                                              Pop (millions)
                                                                    250
Scale function to control
                                                                    500
appearance of area aesthetic
                                                                    750
                                                                    1,000
                                                                    1,250
Larger max size for areas
                                                              continent
                                                                Africa
                                                                Americas
                                                                Asia
                                                                Europe
                        40
                                                                Oceania
                          $300.00
                                 $1,000.00
                                       $3,000.00
                                              $10,000.00 $30,000.00
                                        gdpPercap
```

WHAT IF YOU HAVE TOO MANY OVERLAPPING POINTS TO DISPLAY?

WHAT IF YOU HAVE TOO MANY OVERLAPPING POINTS TO DISPLAY?

REASONABLE # OF POINTS


```
ggplot(penguins, aes(x = flipper_length_mm, y = bill_length_mm)) +
  geom_point() +
  coord_fixed(ratio = 1)
```

TOO MANY POINTS


```
ggplot(penguins_rep, aes(x = flipper_length_mm, y = bill_length_mm)) +
  geom_point() +
  coord_fixed(ratio = 1)
```

TRANSPARENCY


```
ggplot(penguins_rep, aes(x = flipper_length_mm, y = bill_length_mm)) +
  geom_point(alpha = 0.1) +
  coord_fixed(ratio = 1)
```

2-D HISTOGRAM


```
ggplot(penguins_rep, aes(x = flipper_length_mm, y = bill_length_mm)) +
   geom_bin2d(color = "white") +
   scale_fill_viridis_c() +
   coord_fixed(ratio = 1)
```

HEXAGONAL BINS


```
ggplot(penguins_rep, aes(x = flipper_length_mm, y = bill_length_mm)) +
    geom_hex() +
    scale_fill_viridis_c() +
    coord_fixed(ratio = 1)
```

CONTOUR LINES


```
ggplot(penguins_rep, aes(x = flipper_length_mm, y = bill_length_mm)) +
   geom_density2d() +
   coord_fixed(ratio = 1)
```

CONTOUR BANDS


```
ggplot(penguins_rep, aes(x = flipper_length_mm, y = bill_length_mm)) +
    geom_density2d_filled() +
    scale_fill_viridis_d() +
    coord_fixed(ratio = 1)
```

VISUALIZING DIFFERENCES IN PAIRED DATA

VISUALIZING DIFFERENCES IN PAIRED DATA

EXAMPLE: GENDER PAY GAP

• The data show median mid-career annual salary (in thousands) for men and women who graduated from various elite universities.

ggplot2

• Task: visualize the gender pay gap for each school.

School	Gap Gender	Pay
Berkeley	17 Men	88
Berkeley	17 Women	71
Brown	20 Men	92
Brown	20 Women	72
Chicago	40 Men	118
Chicago	40 Women	78
Columbia	33 Men	119
Columbia	33 Women	86
Cornell	27 Men	107
Cornell	27 Women	80

SLOPEGRAPH (BASICS)

SLOPEGRAPH

DUMBELL PLOT


```
ggplot(earnings,
  aes(x = Pay, y = fct_reorder(School, Pay, .fun = "min"))) +
  geom_line(size = 1.5, color = "gray70") +
  geom_point(aes(color = Gender), size = 4)
```

DUMBELL PLOT

SLOPEGRAPH (BASICS)


```
ggplot(earnings_wide, aes(x = Women, y = Men)) +
  geom_abline(aes(slope = 1, intercept = 0)) +
  geom_point(aes(size = Gap, color = Gap)) +
  geom_text_repel(aes(color = Gap, label = School)) +
  coord_fixed(ratio = 1) +
  expand_limits(x = 0, y = 0)
```

PAIRED SCATTERPLOT

VISUALIZING CHANGE OVER TIME

VISUALIZING CHANGE OVER TIME

LINE GRAPHS

- Typically used when the x-axis represents date/time and the y-axis represents some other numerical variable.
- This is called a *time series*.
- The line between points implies that they are connected through some defined order.
- Line graphs should not be used when there is not a natural sequential ordering to the data!

LINE GRAPHS

ggplot2

- Geometric object is geom_line()
- One numeric variable to mapped to x
- Another numeric variable to mapped to y

YOUR TURN

- Go to this week's assignments on the course website.
- Install the babynames package.
- Follow the instructions in the babynames.Rmd file, and answer the questions about trends in baby names.

