Chains and Antichains in Posets

Thomas Cohn

11/8/18

Defn: A <u>chain</u> in $P = (X, \preceq)$ is a sequence of elements $x_1 \prec x_2 \prec \cdots \prec x_k$.

Defn: An antichain in P is a subset of mutually incomparable elements.

Observe: In a pig boset, we have either a big chain, or a big antichain.

Defn: A chain decomposition of $P = (X, \preceq)$ is a way to write $X = C_1 \sqcup C_2 \sqcup \cdots \sqcup C_k$ where each C_i is a chain. The size of this decomposition is k.

Defn: A <u>antichain decomposition</u> of $P = (X, \preceq)$ is a way to write $X = A_1 \sqcup A_2 \sqcup \cdots \sqcup A_k$, where each A_i is an antichain. The size of this decomposition is k.

What about minimal chain/antichain decompositions?

Defn: The maximum antichain size in P is $\alpha(P)$.

The maximum chain size in P is $\beta(P)$.

The minimum antichain decomposition size in P is $\gamma(P)$.

The minimum chain decomposition size in P is $\delta(P)$.

Thm: (Mirsky) $P = (X, \prec)$ then $\beta(P) = \gamma(P)$.

Proof: Induction on |X|. Base case n=1 is trivial. Assume the theorem holds for all posets on $\leq n$ elements. Consider |X|=n+1.

Observe that $\beta(P) \leq \gamma(P)$ always holds.

Let $m=\beta(P)$ (the longest chain has m elements). Let $X_{\max}=\{x\in X:x \text{ maximal}\}$; observe that X_{\max} is an antichain. Indeed, if $a,b\in X_{\max}$, then $a\not\prec b$ and $b\not\prec a$, so a and b are incomparable. Let $X'=X\setminus X_{\max}$, so $|X'|\leq n$. Let $P'=(X',\preceq)$. We have $\beta(P')=\beta(P)-1=m-1$. The longest chain in P' is the longest chain in P minus one element. We can apply our induction hypothesis to P', so we have $X'=A_1\sqcup A_2\sqcup\cdots\sqcup A_{m-1}$, an antichain decomposition of size m-1 for P'. So we have $X=A_1\sqcup A_2\sqcup\cdots\sqcup A_{m-1}\sqcup X_{\max}$, an antichain decomposition of size $m=\beta(P)$. \square

Thm: (Dilworth) $P = (X, \preceq)$, then $\alpha(P) = \delta(P)$.

Proof $LHS \leq RHS$: $A = \{a_1, \ldots, a_k\}$ antichain, and $X = C_1 \sqcup C_2 \sqcup \cdots \sqcup C_\ell$. Then each chain C_i contains at most one elt from A, so $k \leq \ell$.

The main idea: Let $A = \{a_1, \dots, a_m\}$ be the max antichain in X. Since A is maximal, if $x \notin A$, then $x \prec a_i$ or $x \succ a_j$ (but not both). Let $X^+ = \{x \notin A : x \succ a_i \text{ for some } i\}$ and

 $X^- = \{x \notin A : x \prec a_i \text{ for some } j\}$

 $X = A \sqcup X^+ \sqcup X^-$. Let $X_1 = A \sqcup X^+$, $P_1 = (X_1, \preceq)$ and $X_2 = A \sqcup X^-$, $P_2 = (X_2, \preceq)$. Both P_1 and P_2 have smaller size than X. By induction: $X_1 = C_1 \sqcup C_2 \sqcup \cdots \sqcup C_m$, and $X_2 = C_1' \sqcup C_2' \sqcup \cdots \sqcup C_m'$. So $X = (C_1 \cup C_1') \sqcup (C_2 \cup C_2') \sqcup \cdots \sqcup (C_m \cup C_m')$. \square

Cor: Let $P = (X, \preceq)$ be a poset. Then $\alpha(P) \cdot \beta(P) \ge |X|$. Proof: Let $m = \alpha(P)$. By Dilworth's theorem, $X = C_1 \sqcup C_2 \sqcup \cdots \sqcup C_m$. So $|X| = |C_1| + \cdots + |C_m| = m \cdot \beta(P) = \alpha(P) \cdot \beta(P)$. \square

Thm: Let $r, s \geq 1$. Consider any sequence $S = a_1, a_2, \ldots, a_{rs+1} \in \mathbb{R}$. Then S has an increasing subsequence of r+1 elements or a decreasing subsequence of s+1 elements. Proof: $X = \{1, \ldots, rs+1\}$. Let $i \leq j \leftrightarrow i \leq j \land a_i \leq a_j$. Then $P = (X, \preceq)$ is a poset. Apply the

corollary; then $\alpha(P) \cdot \beta(P) \ge |X| = rs + 1$. So either $\alpha(P) \ge s + 1$ or $\beta(P) \ge r + 1$.

Case 1: $\beta(P) \geq r+1$). Then there is a chain of at least r+1 elements $i_1 \prec i_2 \prec \cdots \prec i_{r+1}$, so $i_1 < i_2 < \cdots < i_{r+1}$ and $a_{i_1} \leq a_{i_2} \leq \cdots \leq a_{i_{r+1}}$. Thus, we have an increasing sequence of length r+1.

Case 2: $\alpha(P) \geq s+1$. Then there is an antichain $A=\{i_1,i_2,\ldots,i_{s+1}\}$. Rearrange so that $i_1 < i_2 < \cdots < i_{s+1}$ (as natural numbers). \square