

Negação

Prof. Ph.D. Marco Simões

Revisitando a Operação de Negação

- Significa a negação de uma proposição
- Transforma seu valor lógico no seu oposto
- Negar uma proposição verdadeira, a torna falsa
- Negar uma proposição falsa, a torna verdadeira
- A proposição pode ser simples ou composta
- A negação é representada pelo símbolo ~

Revisitando a Operação de Negação

Em lógica proposicional

р	~ p
V	F
F	V

Em Teoria dos conjuntos

Considerando A o conjunto dos valores verdadeiros e tudo que está em U (fora de A) os valores falsos

Negação de operações relacionais

Operação	Símbolo	Negação	Símbolo
Igual	==	Diferente	!=
Diferente	!=	Igual	==
Maior	>	Menor ou Igual	<=
Menor	<	Maior ou Igual	>=
Maior ou Igual	>=	Menor	<
Menor ou Igual	<=	Maior	>

Exemplos:

 $^{\sim}(X == 10) \equiv X != 10$ $^{\sim}(X > 10) \equiv X <= 10$

Negação de proposições compostas

Operação	Proposição Composta	Negação
Conjunção	pΛq	~p V ~ q
Disjunção inclusiva	pV q	~p
Disjunção exclusiva	p <u>V</u> q	$p \leftrightarrow q$
Condicional	$p \rightarrow q$	p ∧ ~ q
Bicondicional	$p \leftrightarrow q$	p <u>V</u> q

р	q	~ p	~q	p∧q	~p V ~q
V	V				
V	F				
F	V				
F	F				

р	q	~ p	~q	p∧q	~p V ~q
V	V				
V	F				
F	V				
F	F				

р	q	р <u>V</u> q	$p \leftrightarrow q$
V	V		
V	F		
F	V		
F	F		

р	q	~q	p → q	p
V	V			
V	F			
F	V			
F	F			

р	q	~ p	~q	p∧q	~p V ~q
V	V	F	F	V	F
V	F	F	V	F	V
F	V	V	F	F	V
F	F	V	V	F	V

р	q	~ p	~q	p∧q	~p V ~q
V	V				
V	F				
F	V				
F	F				

р	q	р <u>V</u> q	$p \leftrightarrow q$
V	V		
V	F		
F	V		
F	F		

р	q	~q	p →q	p
V	V			
V	F			
F	V			
F	F			

р	q	~ p	~q	p∧q	~p V ~q
V	V	F	F	V	F
V	F	F	V	F	V
F	V	V	F	F	V
F	F	V	V	F	V

р	q	~ p	~q <mark> </mark>	рVq	~p /\ ~q
V	V	F	F	V	F
V	F	F	V	V	F
F	V	V	F	V	F
F	F	V	V	F	V

р	q	р <u>V</u> q	$p \leftrightarrow q$
V	V		
V	F		
F	V		
F	F		

	р	q	~ q	p → q	p
	V	V			
	V	F			
	F	V			
UNIVE CATÓLICA	F	F			

р	q	~ p	~q	p∧q	~p V ~q
V	V	F	F	V	F
V	F	F	V	F	V
F	V	V	F	F	V
F	F	V	V	F	V

р	q	~ p	~q	р∧q	~p V ~q
V	V	F	F	V	F
V	F	F	V	F	V
F	V	V	F	F	V
F	F	V	V	F	V

р	q	р <u>V</u> q	p⇔q
V	V	F	V
V	F	I V	F
F	V	V	F
F	F	F	V

р	q	~q	p →q	p
V	V			
V	F			
F	V			
F	F			

р	q	~ p	~q	p∧q	~p V ~q
V	V	F	F	V	F
V	F	F	V	F	V
F	V	V	F	F	V
F	F	V	V	F	V

р	q	~ p	~q	р∧q	~p V ~q
V	V	F	F	V	F
V	F	F	V	F	V
F	V	V	F	F	V
F	F	V	V	F	V

р	q	р <u>V</u> q	$p \leftrightarrow q$
V	V	F	V
V	F	V	F
F	V	V	F
F	F	F	V

р	q	~q	ſ	p →q	p ∧ ~q
V	V	F		V	F
V	F	V		F	V
F	V	F		V	F
F	F	V		V	F

Teoremas de De Morgan

- Augustus De Morgan
 - 1806 a 1871, nascido na India, naturalizado britânico
 - Matemático e lógico
- Os teoremas de De Morgan propõem usar a negação para fazer conversão de conjunção em disjunção e vice-versa, visando simplificar expressões lógicas

Operação	Operação	Negação
Conjunção	p∧q	~p V ~ q
Disjunção inclusiva	p V q	~p ∧ ~ q

Hora de Praticar!

(Fiscal Trabalho/98) A negação da afirmação condicional

"se estiver chovendo, eu levo o guarda-chuva"

é:

- a) se não estiver chovendo, eu levo o guarda-chuva
- b) não está chovendo e eu levo o guarda-chuva
- c) não está chovendo e eu não levo o guarda-chuva
- d) se estiver chovendo, eu não levo o guarda-chuva
- e) está chovendo e eu não levo o guarda-chuva

02. Considerando a frase

"João comprou um notebook e não comprou um celular",

a negação da mesma, de acordo com o raciocínio lógico proposicional é:

- a) João não comprou um notebook e comprou um celular
- João não comprou um notebook ou comprou um celular
- c) João comprou um notebook ou comprou um celular
- d) João não comprou um notebook e não comprou um celular
- e) Se João não comprou um notebook, então não comprou um celular

03. De acordo com a equivalência lógica, a negação da frase

"Ana é dentista ou não fez universidade"

é:

- a) Ana não é dentista ou fez universidade
- b) Ana não é dentista e não fez universidade
- Ana não é dentista e fez universidade
- d) Ana é dentista ou fez universidade
- e) Se Ana é dentista, então não fez universidade

04. A frase

"O atleta venceu a corrida ou a prova foi cancelada"

de acordo com a lógica proposicional é equivalente à frase:

- a) Se o atleta não venceu a corrida, então a prova foi cancelada
- b) Se o atleta venceu a corrida, então a prova foi cancelada
- c) Se o atleta venceu a corrida, então a prova não foi cancelada
- d) Se o atleta não venceu a corrida, então a prova não foi cancelada
- Se a prova não foi cancelada, então o atleta não venceu a corrida

O5. Avalie a frase abaixo

Se a gasolina acabou ou apareceu um defeito, então o motor apagou.

Uma afirmação equivalente a esta é

- a) a gasolina acabou ou apareceu um defeito e o motor apagou.
- a gasolina não acabou e não apareceu um defeito ou o motor apagou
- apareceu um defeito e a gasolina acabou e o motor não apagou.
- d) a gasolina acabou e não apareceu um defeito e o motor apagou.
- 🌒 a gasolina não acabou e apareceu um defeito e o motor apagou.

