假设 $sum=$	$\sum_{i=0}^{n-1} a_i$
众数分为两种	中情况:
• 如果 $sum\%n=0$,则所有数都可以修改为 $\frac{sum}{n}$ • 如果 $sum\%n\neq0$,则可知必然可以有 $n-1$ 个数修改为相同的数,因为可以将其中一个数用于与其它数搭配组成一次操作	
α	1 2 6 7 8
	sum=24, sum%n=24%5=4 让 n-1 个数变为 2
1	2 2 6 7 7
	i=0, a[0]=1, 需要 +1; a[4]=9, 一次操作需要 -1
2	2 2 6 7 7
	i=1, a[1]=2, 无需操作
3	2 2 7 11
	i=2, α[2]=6, 变为 2, 需要进行 4 次 -1; 则 α[4] 需要进行 4 次 +1
3	2 2 2 16
	i=3. a[3]=7. 变为 2. 需要讲行 5 次 -1: 则 a[4] 需要讲行 5 次 +1

当将 a[4] 作为搭配数时,可最终使得 4 个数变为众数

现在还存在两个问题:

- Q1: 将哪个数作为配对数?
 - 。 每个数都有可能,枚举每个数作为配对数
- Q2: 将 n-1 个数都转换为哪些数?
 - \circ 转换为 n-1 个数的平均数,能使操作数最少

证明:

假设要转换的数为 target

- 有 lc 个小于 target 的数,这些数的和为 l_sum ,则 $x=lc*target-l_sum$ 是需要 +1 的次数
- 有 rc 个**大于** target 的数,这些数的和为 r_sum ,则 $y=r_sum-rc*target$ 是需要 -1 的次数

最后总的操作数为 Max(x,y),其中 abs(x-y) 次数可以通过配合数进行消除,从而使得 n-1 个数都达到 target。

为了使操作数尽可能的少,则应该让 x 和 y 尽可能的接近,这时候应当 target = average。

- 假设 x_avg 为 小于 target 的数增加到 average 需要的 +1 次数
- 假设 y_avg 为 大于 target 的数减小到 average 需要的 -1 次数

可知 $x_avg = y_avg$, 以上面的例子进行说明:

其中 n-1 个数为 a[0..3], average= (1+2+6+7) /4=4

$$\begin{array}{c|cccc}
1 & 2 & 6 & 7 \\
\uparrow 3 & \uparrow 2 & \downarrow 2 & \downarrow 3
\end{array}$$

- 调整 target < average ,可知大于 target 的数必然需要大于 y_avg 的 -1 的次数才可以到达 target
- 调整 target > average,可知小于 target 的数必然需要大于 x_avg 的 +1 的次数才可以到达 target
- 从上面两种情况,可以得证: \mathbf{i} target = average **时,能使** x **和** y **尽可能的小**

注意:

由于 average 不一定是整数,所以需要考虑 floor(average) 和 ceil(average) 两种情况。