EXERCÍCIO 2

Descrição do problema: Considere o escoamento laminar de um fluido incompressível com transferência de calor no interior de um tubo horizontal reto de seção circular (comprimento L=5 mm e diâmetro D=1 mm). O fluido entra no tubo com temperatura uniforme de 30 °C e é submetido a um fluxo de calor constante de 1000 W/m² na superfície do tubo. Sabendo que o fluido deixa o tubo na condição termicamente completamente desenvolvida e que suas propriedades são: densidade $\rho=100~{\rm kg/m^3}$, viscosidade $\mu=0,1$ Pa.s, condutividade térmica k=1 W/m.K e calor específico a pressão constante $c_p=1000~{\rm J/kg.K}$, determine o campo de temperatura do fluido dentro do tubo utilizando o método dos volumes finitos. Nessas condições ($Pr=\mu c_p/k=100$), podese assumir que a camada-limite hidrodinâmica se desenvolve muito mais rápido do que a térmica e a equação que rege o problema é dada por:

$$\frac{\partial}{\partial x}(\rho uT) = \frac{1}{r} \frac{\partial}{\partial r} \left(\frac{k}{c_p} r \frac{\partial T}{\partial r} \right)$$

onde x e r são as coordenadas axial e radial, respectivamente, T é a temperatura e

$$\frac{u(r)}{u_m} = 2\left[1 - \left(\frac{r}{R}\right)^2\right]$$

é a velocidade axial, sendo $u_m = 1$ m/s a velocidade axial média do escoamento e R = D/2 o raio do tubo.

Utilize o método TDMA para resolver o sistema linear e valide o código com soluções analíticas para escoamento termicamente completamente desenvolvido considerando tubos mais longos, em que a região de entrada tem comprimento desprezível.