Homework Assignments:

 Reopened Chapter 4 HW and due next Monday, October 1st at11:55 pm

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

19

The Ideal Gas Law

Ideal Gas Law: PV = nRT

R is the universal gas constant and same for all gases

R = 0.08206 L atm mol⁻¹ K⁻¹; used in most gas equations R = 8.314 J mol⁻¹ K⁻¹; used in equations involving energy

Standard Temperature and Pressure (STP) for Gases $\begin{cases} T = 0^{\circ} & \text{C } (273.15 \text{ K}) \\ P = 1 \text{ atm} \end{cases}$

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

20

What is the volume of 1 mol of gas at STP? (Standard molar volume)

$$V = \frac{nRT}{P} = \frac{(1 \text{ mol}) \left(0.08206 \frac{\text{L atm}}{\text{K mol}} \right) (273.15 \text{ K})}{(1 \text{ atm})} = 22.41 \text{ L}$$

Conviolst ©2019 Cennage Learning All Rights Reserved. May not be scanned, copied or dunificated, or nosted to a publicly accessible website, in whole or in part

21

Example Problem

- 3) A sample of $\mathrm{C_2H_6}$ gas has a volume of 575 cm³ at 752 torr and 72° F
 - · What is the mass of ethane in this sample?

$$T = (72 - 32) \times 5/9 = 22$$
°C = 295 K
 $V = 575 \text{ cm}^3 = 575 \text{ mL} = 0.575 \text{ L}$

For P, we will leave the value in torr and choose the corresponding value for R. We could also convert from torr to atm, of course.

$$n = \frac{PV}{RT} = \frac{(752 \; \mathrm{torr}) \, (0.575 \; \mathrm{L})}{(62.37 \; \mathrm{L} \; \mathrm{torr} \; \mathrm{mol}^{-1} \; \mathrm{K}^{-1}) \, (295 \; \mathrm{K})} = 0.0235 \; \mathrm{mol}$$

The gas in our sample is C_2H_6 , with a molar mass of 30.070 g/mol, so

$$0.0235 \; mol \times \frac{30.070 \; g}{mol} = 0.707 \; g \; C_2 H_6$$

Stoichiometric Relationships with Gases

(1) How many liters of N_2 at 1.15 atm and 30.0 ° C are produced by decomposition of 45.0 g NaN₃ (sodium azide)? (Molar mass of NaN₃ = 65.010 g/mol)

$$2 \text{ NaN}_3(s) \longrightarrow 2 \text{ Na}(s) + 3 \text{ N}_2(g)$$

25

Stoichiometric Relationships with Gases

Moles of N₂ produced:

$$\frac{45.0 \text{ g}}{65.010 \text{ g/mol}} \times \frac{3 \text{ mol N}_2}{2 \text{ mol NaN}_3} = 1.04 \text{ mol}$$

Volume of N₂ produced:

$$V = \frac{nRT}{P} = \frac{(1.04 \text{ mol}) \left(0.082 \text{ 06} \frac{\text{L atm}}{\text{K mol}} \right) (303 \text{ K})}{(1.15 \text{ atm})} = 22.5 \text{ L}$$

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.