

第六章 频域测量技术

6.1 概述

6.2 频谱分析仪

6.1 概述

■ 频域和时域的关系

- 频谱分析
- 常用频域测试仪器

6.1.1 频域和时域的关系

时域测量用于研究信号幅度与时间的关系,是对时间特性参数进行测量。

频<mark>域测量</mark>是观测信号幅度或能量与<mark>频率</mark>的关系,是 对频率特性参数进行测量。

第六章 频域测量技术

示波器和频谱仪对比观察相位不同的波形

《电子测量技术》

历由交通大學

第六章 频域测量技术

(a) 用示波器不容易观察波形的失真

(b) 用频谱仪容易观察微小的幅度和相位变化

用示波器和频谱仪观察微小失真的波形

时域测量和频域测量是从不同的方面反映信号特征。

6.1.2 频谱分析

通过傅里叶变换,将信号表示成一个基波分量和许多谐波分量之和的形式,确定信号的频谱。

N次谐波分量的幅值

$$f(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\omega_1 t + \varphi_n)$$

直流分量

n次谐波分量 的角频率 n次谐波分量的 相位

6.1.3 常用频域测试仪器

1. 频率特性测试仪

2. 频谱分析仪

第六章 频域测量技术

西南交通大学

3. 网络分析仪

6.2 频谱分析仪

■ 频谱分析仪的种类

- 外差式频谱分析仪
- 主要性能指标

6. 2. 1 频谱分析仪的种类

1. 模拟式频谱分析仪

用于射频和微波频段。

以模拟滤波器为基础,用滤波器来实现信号中各频率成分的分离,分离出的频率分量经检波器检波成直流后,由显示器显示出来。

(1) 并行滤波式频谱分析仪

并行滤波式频谱分析仪的原理示意图

(2) 顺序滤波式频谱分析仪

顺序滤波式频谱分析仪的原理示意图

(3) 扫描式频谱分析仪

扫描式频谱分析仪的原理示意图

(4) 外差式频谱分析仪

2. 数字式频谱分析仪 用子低频和超低频。

(1) 数字滤波式频谱分析仪

数字滤波式频谱分析仪的原理示意图

(2) 快速傅里叶变换(FFT)频谱分析仪

FFT频谱分析仪的简化原理示意图

模拟数字混合式频谱分析仪

时间压缩式实时分析仪

外差扫频技术 数字技术

高速重放信号。

时间压缩式实时分析仪的原理示意图

(2) 采用数字中频的外差式频谱分析仪

中频部分采用数字技术。

6.2.2 外差式频谱分析仪

1. 工作原理

外差式频谱分析仪的原理示意图

例:一台0~20 MHz的外差式频谱分析仪,其中本 地振荡器工作在40~60 MHz之间,中频放大器的中 心频率为40 MHz。被测信号含有三个频率分量,分 别为 $f_1=5$ MHz、 $f_2=10$ MHz和 $f_3=18$ MHz。

2. 提高性能的措施

(1) 多次变频

(2) 采用锁相频率合成技术

6.2.3 频谱分析仪的主要性能指标

1. 频率分辨力 频率特性

频谱分析仪能够分辨的最小谱线间隔, 表征了能够区分两个频率相邻的信号的能力。

频率分辨力是由频谱分析仪中窄带滤波器的带宽决定的,因此通常把窄带滤波器的3 dB带宽认为是频谱分析仪的频率分辨力。

频率分辨力和本地振荡器的扫频速度有关。

静态分辨力

当扫频速度为零时,窄带滤波器的幅频特性曲线的3 dB带宽。

动态分辨力

当扫频速度不为零时,窄带滤波器的幅频特性曲 线的3 dB带宽。

2. 灵敏度与动态范围 幅度特性

(1) 灵敏度

在给定分辨带宽、显示方式和其他影响因素的条件下,频谱分析仪能测量最小信号电平的能力。

灵敏度主要取决于仪器向部的噪声电平。

决定

系统带宽

玻尔兹曼常数

绝对温度

最小信号电平高于噪声电平10dB

(2) 动态范围

最佳输入电平决定

频谱分析仪能够同时测量的最大信号电平与最小信号电平之差。

《电子测量技术》

西南交通大學

- 3. 扫频宽度、分析时间与扫频速度 扫频特性
 - (1) 扫频宽度

频谱分析仪在一次频谱分析过程中显示的频率范围,即与显示屏水平轴起止点相对 应的频率之差。

(2) 分析时间

完成一次扫频过程所需要的时间,也即 从频谱分析仪显示屏水平轴最左端到最右端 扫频一次所需要的时间。

分析时间主要受分辨带宽滤波器的限制。

(3) 扫频速度

扫频宽度与分析时间之比称为扫频速度。

注意

扫频速度的大小对频谱分析仪的频率分辨力有较大影响。

扫描速度的合理选择:

$$\gamma \leq B_q^2$$

扫频速度

静态分辨力

6.2.4 频谱分析仪实例

MS2711B型频谱分析仪 Anritsu公司(安立公司)

1. 性能指标

频率范围: 100 kHz~3.0 GHz。

频率分辨力: 10 kHz、30 kHz、100 kHz和

1 MHz.

测量范围: +20 dBm ~ - 95 dBm。

动态范围: > 65 dB。

幅度精度: ±3 dB (<500 kHz)。

 ± 2 dB (≥ 500 kHz) .

输入阻抗: 50 Ω。

2. 面板介绍 活动功能框

(1) 功能键

功能键

① 模式键 (MODE)

频谱分析模式、功率监视模式、跟 踪发生器模式、快速调谐跟踪发生 器模式

2. 面板介绍 活动功能框

(1) 功能键

频率/扫频宽度键(FREQ/SPAN)

功能键

设置中心频率、扫频宽度、 起始频率和终止频率等参数。

第六章 频域测量技术

2. 面板介绍 活动功能框

- (1) 功能键
 - ③ 幅度键(AMPLITUDE)

设置参考电平、幅度范围、输入衰减器以及幅度单位等。

2. 面板介绍 _{活动功能框}

- (1) 功能键
 - ④ 带宽/扫频键(BW/SWEEP)

功能键

设置频率分辨力、视频带宽 以及要测试的参数(正、负 峰值或平均值)等。

2. 面板介绍 活动功能框

(2) 键盘硬键

其中12个键: 数字功能 操作功能

功能键

《电子测量技术》

西南交通大學

2. 面板介绍

(3) 软键

软键的功能随其左侧显示屏中活 动功能框显示的菜单不同而变化。

西南交通大学

3. 频谱测试

例:测试一个900 MHz的信号

(1) 打开电源。

- (2) 将 10 dBm、900 MHz 的信号接入仪器的输入端。
- (3) 设置中心频率。
- ① 按下<mark>频率/扫频宽</mark>度功能键 以显示频率菜单。
- ②选择中心频率设置。
- ③ 利用数字键盘键入900, 再从菜单中选择频率单位为 MHz。

设置中心频率后的 900 MHz信号的频谱图

(4) 设置扫频宽度。

- ① 按下频率/扫频宽 度功能键显示出频率 菜单。
- ②选择扫频宽度设置。
- ③ 按下扫频宽度编辑 软键,从键盘键入数 字20,再从已改变的 菜单中选择频率单位 MHz。

扫频宽度为20 MHz时信号的频谱

(5) 设置幅度显示。

- ① 按下<mark>幅度</mark>功能键以显示幅 度菜单。
- ② 在幅度菜单中选择输入衰减器设置。
- ③ 设置输入衰减器为"自动" 并选择幅度单位为dBm。
- ④ 在幅度菜单中选择参考电平设置。
- ⑤ 按下键盘上的 + / 键并输入数字10,将参考电平设置为 10 dBm。
- ⑥ 在幅度菜单中选择幅度的刻度设置,并利用上 / 下箭头键选择为 10 dB/格。

参考电平为 - 10 dBm时信号的频谱图

西南交通大学

第六步:激活标记器。

- ① 按下标记器键调出标记器设置菜单。
- ② 选择M1标记器。
- ③ 设置频谱最高点为M1标记器的跟踪测试点。
- ④ 在频谱分析仪显示屏,读出M1标记器测得的频谱最

高点的幅度和频率值。
RELVL 00 dem RBW 1 MHz VBW 1 MHz V

-9.98 dBm, 899.874 MHz

