

FIRST SEMESTER 2016-2017

Course Handout (Part II)

Date: 02 Aug., 2016

In addition to Part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No : CHEM F312

Course Title : Physical Chemistry IV
Instructor-in-charge : S.C SIVASUBRAMANIAN
Instructor(s) : S. C. Sivasubramanian

1. Course Description:

Weak forces; surface chemistry: interphase region, thermodynamics, surface films on liquids, adsorption of gases on solids, colloids, micelles, and reverse micellar structures; transport processes: kinetics, thermal conductivity, viscosity, diffusion, sedimentation; electrical conductivity in metals and in solutions; reaction kinetics, measurement of rates; integrated rate laws; rate laws and equilibrium constants for elementary reactions; reaction mechanisms; temperature dependence of rate constants; rate constants and equilibrium constants; rate law in non ideal systems; uni, bi and tri molecular reactions, chain reactions, free-radical polymerizations; fast reactions; reactions in solutions; heterogeneous and enzyme catalysis; introduction to statistical mechanics; theories of reaction rates; molecular reaction dynamics.

2. Scope and Objective of the course:

This is the last one of the four Physical Chemistry courses named for M.Sc. (Hons.) Chemistry Programme. The course mainly covers chemical changes in terms of chemical kinetics, surface and interfacial phenomena, and the associated theories. The objective is to understand the chemical changes and also to be able to connect these changes to structure and equilibrium properties learnt in the previous courses.

3. Text Book:

T1. Levine Ira N., *Physical Chemistry*, 6th ed., Tata McGraw-Hill, New Delhi, 2011.

Reference Book :

R1: Peter Atkins and Julio de Paula, *Atkins' Physical Chemistry*, 9th Ed., Oxford University Press, Oxford, 2010.

4. Course Plan: [Topics in () correspond to computer applications; depending on time available a tutorial introduction followed by take home problems from these topics will be assigned for computer solving.]

Lecture No.	Topic	Learning Objectives	Ref. to Text Book/Ref. book				
1-4	Statistical Mechanics	Partition function, thermodynamic information from canonical partition function.					
5-7	и	Molecular partition function, equilibrium constants	T1 : 21.6 – 21.8				
8-10	Rates of chemical reactions; Integrated rate laws; Finding of rate law.	Definition of rate, derivation of concentration time relationship for simple reactions, determination of rate law, half-life of reactions, reactions approaching equilibrium, Exptl. Procedures to obtain rate laws.	T1 : 16.1 - 16.4 (16.7)				

11-13	Elementary reactions, Mechanisms	Elementary reactions, composite reactions, steady-state approximation, rate determining step, rate constants and equilibrium constants; rate laws for non-ideal systems.	T1 : 16.5 - 16.6, 16.9-16.10
14	Temperature effects on rates	Concept of activation energy	T1 : 16.8
15-16	Unimolecular and Trimolecular reactions	Lindemann-Hinshelwood mechanism	T1 : 16.11 - 16.12
17-18	Chain reactions	Polymerization kinetics, free-radical polymerization reactions	T1 : 16.13
19-21	Fast reactions and reactions in solutions	Concepts of relaxation, diffusion controlled reactions	T1 : 16.14 - 16.15
22-23	Homogeneous catalysis	Enzyme catalysis, Michaelis-Menton equation	T1 : 16.16 - 16.17
24-25	Adsorption of gases on solids	Extent of adsorption, Physisorption and chemisorptions, Adsorption isotherms	T1 : 16.18
26-27	Heterogeneous catalysis	Rates of surface processes	T1 : 16.19
28	Theories of reaction rates	Collision Theory	T1 : 22.1,
29-30	u .	Reaction trajectory; Molecular reaction Dynamics	T1 : 22.2-22.3
31-32	u	Transition State Theory	T1: 22.4, 22.6-22.7
33	Reactions in solution	Extending the gas phase theories to the solution phase	T1 : 22.8
34	Weak forces	Electric dipole moment, Polarization, Interaction between dipoles, Interaction between induced dipoles, Hydrogen bonding, Total attractive and repulsive interactions	R1 :17.5 - 17.6 T1 : 13.14, 21.10
35-36	Surface Chemistry	Molecular interactions in gases, Liquid-vapour interface, surface films, Thermodynamics of surface layers	T1 : 7.6 - 7.8 R1 : 17.9 – 17.10
37-38	Colloids, micelles, and reverse micellar structures	Classification, Preparation, Structure & stability of colloids, Micelle formation, Reverse micellar structures, bilayers, Determination of size & shape	R1 : 18.6 – 18.9 (b) T1 : 7.9
39-40	Transport processes	Kinetics, viscosity, diffusion, sedimentation, electrical conductivity of solids and electrolyte solutions	T1 : 15.1 - 15.7

5. Evaluation Scheme:

Components	Duration	Marks	Date & Time	Venue	Remarks		
Mid-Sem-Test	1½ hrs	60	4/10 10:00 - 11:30 AM	To be	-		
Tutorials	20 mts	60	Continuous	announced	@		
Comprehensive	3 hrs.	80	3/12 FN		Partly OB		
Examination							

- @ Tutorials: The tutorial hour will be used for a quick review of the highlights of the material covered in the lectures, clarification of doubts and problem solving. Further, a set of problems will be assigned periodically, of which the Instructor will specify one to be solved by the students in the tutorial hour of the following week. Students must bring the tutorial problem sheets to the subsequent tutorial session without fail; they should not write anything on those sheets except their name and Id no. Some problem sets may require usage of computer software during solving; evaluation of such problems will be done differently (by viva voce for example). The second method of evaluation in tutorial will be of a short quiz based on the lectures covered recently. Totally there will be six such tutorial evaluations out of which the best five will be accounted. Each tutorial evaluation will be for 12 marks.
- **6. Chamber Consultation Hour:** Friday 9th Hour (4-4:50pm) at 3165(CAHU).
- **7. Makeup Policy:** See Part I for details. However, it may be noted that there will be no make up for tutorials since the best five out of six evaluations are only taken into account.
- **8. Notices:** Notices, if any, concerning the course will be displayed on the notice board of Chemistry Department only.

Instructor-in-Charge (CHEM F312)

