Khôlles de Mathématiques $\mathbb{H}\mathbb{X}\mathbb{I}$ $Espace\ Vectoriel$

N. CLOAREC

Du 20-02-17 au 04-03-17

Exercice 1 Soient $f, g \in \mathcal{L}(E)$ tels que

$$q \circ f \circ q = q$$
 et $f \circ q \circ f = f$

- a) Montrer que $\operatorname{Im} f$ et $\ker g$ sont supplémentaires dans E.
- b) Justifier que $f(\operatorname{Im} g) = \operatorname{Im} f$.

Exercice 2 Soit E un \mathbb{K} -espace vectoriel et $f, g \in \mathcal{L}(E)$ telles que $f \circ g = Id$. Montrer que $g \circ f$ est une projection et donner son noyau et son image.

Exercice 3 Soient u un endomorphisme d'un \mathbb{K} -espace vectoriel E et F un sous-espace vectoriel de E.

- a) Exprimer $u^{-1}(u(F))$ en fonction de F et de ker u.
- b) Exprimer $u(u^{-1}(F))$ en fonction de F et de $\operatorname{Im} u$.
- c) À quelle condition a-t-on $u(u^{-1}(F)) = u^{-1}(u(F))$?

Exercice 4 Soient E, F deux \mathbb{K} -espaces vectoriels, V et W deux sous-espaces de E et $f \in \mathcal{L}(E, F)$. Montrer que

$$f(V) \subset f(W)$$
 si et seulement si $V + \operatorname{Ker}(f) \subset W + \operatorname{Ker}(f)$

Exercice 5 Soit $(p_n)_{n\in\mathbb{N}^*}$ la suite strictement croissante des nombres premiers. Montrer que la famille $(\ln p_n)_{n\in\mathbb{N}^*}$ est une famille libre du \mathbb{Q} -espace vectoriel \mathbb{R} .

Exercice 6 Soient p une projection dans un \mathbb{K} -espace vectoriel et $\lambda \in \mathbb{K}$. Trouver une CNS sur λ pour que $p - \lambda Id$ soit un isomorphisme.

Exercice 7 Soit $f: \mathbb{R}\left[X\right] \longrightarrow \mathbb{R}\left[X\right]$ l'application définie par

$$f(P) = P + P'$$

Démontrer que f est une application linéaire inversible.

Exercice 8 Soit E un \mathbb{K} -espace vectoriel et p, q deux projections dans E avec $\mathrm{Im}(p) = \mathrm{Im}(q)$. Montrer que pour tout λ de \mathbb{K} , $\lambda p + (1 - \lambda)q$ est une projection de même image que p et q.

Exercice 9 Soit E un \mathbb{K} -espace vectoriel. Soit a et b deux symétries de $\mathcal{L}(E)$. Etablir l'égalité

$$\operatorname{Im}(a \circ b - b \circ a) = \operatorname{Im}(a - b) \cap \operatorname{Im}(a + b)$$

Exercice 10 Soient E un \mathbb{K} -espace vectoriel et p un projecteur de E. On pose $q=\operatorname{Id} -p$ et on considère :

$$L = \{ f \in \mathcal{L}(E) \mid \exists u \in \mathcal{L}(E), f = u \circ p \}$$
 et $M = \{ g \in \mathcal{L}(E) \mid \exists v \in \mathcal{L}(E), g = v \circ q \}$

Montrer que L et M sont des sous-espaces vectoriels supplémentaires de $\mathcal{L}(E)$.

Exercice 11 Soit E un \mathbb{K} -espace vectoriel et E_1 , E_2 des sous espaces de E isomorphes tels que $E = E_1 \bigoplus E_2$. Montrer que E_1 et E_2 ont un supplémentaire en commun dans E.

Indication: On pourra introduire $\varphi: E_1 \longrightarrow E_2$ isomorphisme.

Exercice 12 Soit E un \mathbb{K} -espace vectoriel et p, q deux projections dans E avec $\mathrm{Im}(p) \subset \mathrm{Ker}(q)$ et $r = p + q - p \circ q$. Montrer que r est une projection et trouver son image et son noyau.

Indication: On pourra d'abord montrer que Im(p) et Im(q) sont en somme directe.

Exercice 13 Soit E un espace vectoriel sur un corps \mathbb{K} infini. Montrer que E n'est pas la réunion d'un nombre fini de ses sous-espaces différents de E et de $\{0\}$.

Indication : On pourra considérer une suite d'éléments du type $w_n = v_1 + \lambda_n v_2$ avec $v_1 \in E_1 \setminus \bigcup_{i \neq 1} E_i$ et $v_2 \in E_2 \setminus \bigcup_{i \neq 2} E_i$.