

การจัดองค์การคอมพิวเตอร์

Boolean function synthesis

31110321 Computer Organization สำหรับนักศึกษาชั้นปีที่ 3 สาขาวิชาวิศวกรรมคอมพิวเตอร์

> ทรงฤทธิ์ กิติศรีวรพันธุ์ songrit@npu.ac.th สาขาวิชาวิศวกรรมคอมพิวเตอร์ มหาวิทยาลัยนครพนม

Lecture plan

- 1.1 Boolean Logic
- 1.2 Boolean Functions Synthesis
- 1.3 Logic Gates
- 1.4 Hardware Description Language
- 1.5 Hardware Simulation
- 1.6 Multi-Bit Buses
- 1.7 Project Overview

Boolean expression \rightarrow truth table

• f(x,y,z) = (x And y) Or (Not(x) And z)

x	у	z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Boolean expression \leftarrow truth table

• f(x,y,z) = (x And y) Or (Not(x) And z)

x	у	Z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Truth table to a Boolean expression

x	у	z	f
0	0	0	1 1
0	0	1	0 0
0	1	0	1 0
0	1	1	0 0
1	0	0	1 0
1	0	1	0 0
1	1	0	0 0
1	1	1	0 0

(Not(x) And Not(y) And Not(z))

x	у	z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

(Not(x) And Not(y) And Not(z))

x	у	z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

(Not(x) And Not(y) And Not(z))

x	у	z	f
0	0	0	1 1
0	0	1	0
0	1	0	1 1
0	1	1	0
1	0	0	11-
1	0	1	0
1	1	0	0
1	1	1	0

(Not(x) And Not(y) And Not(z))

Or

(Not(x) And y And Not(z))

Or

(x And Not(y) And Not(z))

(Not(x) And Not(y) And Not(z)) Or (Not(x) And y And Not (z)) Or (x And Not(y) And Not(z)) =

```
(Not(x) And Not(y) And Not(z)) Or
(Not(x) And y And Not (z)) Or
(x And Not(y) And Not(z)) =
```

```
(Not(x) And Not(z)) Or (x And Not(y) And Not(z)) = (Not(x) And Not(z)) Or (Not(y) And Not(z)) = Not(z) And (Not(x) Or Not(y))
```

ทฤษฎีบท

- Lemma : : **ทุกบูลีนฟังก์ชั้น** เขียนได้ด้วย **And**, **Or** และ **Not**
- พิสูจน์ : ใช้ตาราง Truth table แปลงเป็น บูลลีนฟังก์ชั่น
- •Lemma : **ทุกบูลีนฟังก์ชั้น** สามารถเขียนสมการ ประกอบด้วย **And**, Or และ **Not**
- พิสูจน์ : (x Or y) = Not(Not(x) And Not(y))

Nand

x	у	Nand
0	0	1
0	1	1
1	0	1
1	1	0

(x Nand y) = Not(x And y)

ทฤษฎีบท (revisited)

- Lemma : ทุกบูลีนฟังก์ชั่น เขียนได้ด้วย And, Or และ Not
- พิสูจน์ :

```
(x Or y) = Not(Not(x) And Not(y))
```

- •Lemma : **ทุกบูลีนฟังก์ชั่น** สามารถเขียนสมการ ประกอบด้วย **Nand**
- พิสูจน์ :

```
(x \text{ And } y) = \text{Not}(x \text{ Nand } y)

\text{Not}(x) = (x \text{ Nand } x)
```