Lehrstuhl für STEUERUNGS-UND REGELUNGSTECHNIK

Technische Universität München Prof. Dr.-Ing./Univ. Tokio Martin Buss

OPTIMIERUNGSVERFAHREN IN DER AUTOMATISIERUNGSTECHNIK

Übung 7: Optimale Steuerung

1. Aufgabe

Betrachten Sie das folgende Problem als Optimalsteuerungsproblem. Der Wagen soll von $x(t_0)$ nach $x(t_e)$ optimal beschleunigt werden und möglichst bei $x(t_e)$ zum Stehen kommen.

Die Vorgangsdauer sei endlich ($t_e=10$) und der Endzustand \underline{x}^e frei. Der Vorgang wird durch die Differentialgleichung $\ddot{x}=u$ beschrieben. Desweiteren ist der Initialwert ($t_0=0$) gegeben:

$$\left(\begin{array}{c} x(t_0) \\ \dot{x}(t_0) \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right) .$$

Das Gütefunktional dazu lautet:

$$J(x, \dot{x}, u) = (x(t_e) - 100)^2 + (\dot{x}(t_e) - 0)^2 + \frac{1}{2} \int_{0}^{t_e} u^2 dt.$$

- 1.1 Interpretieren Sie das Gütefunktional.
- 1.2 Ermitteln Sie das optimale Steuergesetz aus den notwendigen Bedingungen 1. Ordnung.
- 1.3 Skizzieren Sie die optimalen Verläufe $u^*(t)$, $x_1^*(t)$ und $x_2^*(t)$.
- 1.4 Wie groß ist der Wert der Kostenfunktion J, ausgewertet an den optimalen Trajektorien x^* , u^* ?