Automaty a Gramatiky

Poznámky z přednášek

Letní semestr 2020/2021

Viktor Soukup, Lukáš Salak

Obsah

1	První přednáška	2
2	Druhá přednáška	4

1 První přednáška

Poznámka (Chomského hierarchie): Automaty a gramatiky - dva způsoby popisu:

Turingovy stroje \leftrightarrow gramatiky Typu 0 lineárně omezené automaty \leftrightarrow kontextové gramatiky, monotónní gramatiky zásobníkové automaty \leftrightarrow bezkontextové gramatiky konečné automaty (DFA,NFA, λ NFA) \leftrightarrow regulární jazyky

Nejjednodušší jsou nejníž, turingův stroj je nejkomplikovanější. Každá gramatika odpovídá nějaké třídě automatů.

Proč to řešíme?

- zpracování přirozeného jazyka,
- překladače (lexikální, syntaktická analýza...),
- návrh, popis, verifikace hardware...
- hledání výskytu slova v textu (grep),
- verifikace systémů s konečně mnoha stavy

Příklad:

1. Návrh a verifikace integrovaných obvodů, např. Konečný automat modelující spínač on/off

2. Lexikální analýza, např. Konečný automat rozpoznávajíci slovo then

Definice (Deterministický konečný automat (DFA)): $A = (Q, \Sigma, \delta, q_0, F)$ sestává z:

- 1. konečné množiny stavů, zpravidla značíme Q
- 2. konečné neprázdné množiny vstupních symbolů (abecedy), znažíme Σ
- 3. **přechodové funkce** zobrazení $Q \times X \to Q$, značíme δ , která bude reprezentovaná hranami grafu
- 4. **počátečného stavu** $q_0 \in Q$, vede do něj šipka 'odnikud'

5. neprázdné **množiny koncových (přijímajících) stavů** (final states) $F \subseteq Q$, označených dvojitým kruhem či šipkou 'ven'.

Poznámka:

Pokud pro některou dvojici stavu a písmene není definovaný přechod, přidáme nový stav fail a přechodovou funkci doplníme na totální přidáním šipek do fail.

Pokud je množina F prázdná, přidáme do ní i Q nový stav final do kterého vedou jen přechody z něj samotného $\forall s \in \Sigma : \delta(final, s) = final$.

Příklad:

Automat A přijímající $L = x01y : x, y \in \{0, 0\} *.$

Automat
$$A = (\{q_0, q_1, q_2\}, 0, 1, \delta, q_0, q_1)$$

Reprezentujeme stavovým diagramem (grafem), pomocí tabulky nebo stavovým stromem

Definice (Abeceda, slova, jazyky): Mějme neprázdnou množinu symbolů Σ .

- Slovo je konečná (i prázdná) posloupnost symbolů $s \in \Sigma$, prázdné slovo se značí λ nebo ϵ
- Množinu všech slov v abecedě Σ značíme Σ^*
- $\bullet\,$ množinu všech neprádzných slov v abecedě značíme Σ^+
- jazyk $L \subseteq \Sigma^*$ je množina slov v abecedě Σ

Definice (Operace na Σ^*):

- 1. **zřetězení slov** u.v nebo uv
- 2. mocnina (počet opakování) $u^n(u^0 = \lambda, u^1 = u, u^{n+1} = u^n.u)$
- 3. délka slova $|u|(|\lambda|=0, |auto|=4)$
- 4. **počet výskytů** $s \in \Sigma$ ve slově u značíme $|u|_s(|zmrzlina|_z = 2)$.

Definice (Rozšířená přechodová funkce): Mějme přechodovou funkci $\delta: Q \times \Sigma \to Q$. Rozšířenou přechodovou funkci $\delta^*: Q \times \Sigma^* \to Q$ (tranzitivní uzávěr δ) definujeme induktivně:

- 1. $\delta^*(q,\lambda) = q$,
- 2. $\delta^*(q, wx) = \delta(\delta^*(q, w)x)$ pro $x \in \Sigma, w \in \Sigma^*$.

Poznámka: Pokud se v textu objeví δ aplikované na slova, míní se tím δ^* .

Definice (Jazyk rozpoznávaný (přijímaný, akceptovaný) konečným automatem): Jazykem rozpoznávaným konečným automatem $A = (Q, \Sigma, \delta, q_0, F)$ nazveme jazyk $L(A) = \{w : w \in \Sigma^* \& \delta^*(q_0, w) \in F\}$.

- Slovo w je *přijímáno* automatem A, právě když $w \in L(A)$.
- Jazyk L je rozpoznatelný konečným automatem, jestliže existuje konečný automat A takový, že L = L(A).
- \bullet Třídu jazyků rozpoznatelných konečnými automaty označíme \mathcal{F} , nazveme **regulární jazyky**.

Věta (Iterační (pumping) lemma pro regulární jazyky): Mějme regulární jazyk L. Pak existuje konstanta $n \in \mathbb{N}$ (závislá na L) tak, že každé $w \in L; |w| \geq n$ můžeme rozdělit na tři části, w = xyz, že:

- 1. $y \neq \lambda$
- $2. |xy| \leq n$
- 3. $\forall k \in \mathbb{N}_0$, slovo $xy^k z$ je také v L.

Důkaz:

- Mějme regulární jazyk L, pak existuje DFA A s n stavy, že L = L(A).
- Vezměme libovolné slovo $a_1a_2a_3...a_m = w \in L$ délky $m \geq n, a_i \in \Sigma$.
- Definujeme: $\forall i p_i = \delta^*(q_0, a_1 a_2 \dots a_i)$. Platí $p_0 = q_0$.
- Máme $n+1p_i$ a n stavů, některý se opakuje, vezměme první takový, t. j. $(\exists i, j: 0 \leq i < jq leqn \& p_i = p_j)$.
- Definition $x = a_1 a_2 \dots a_i, y = a_{i+1} a_{i+2} \dots a_j, z = a_{j+1} a_{j+2} \dots a_m, t.j. \ w = xyz, y \neq \lambda, |xy| \leq n.$
- pak y^k můžeme opakovat libovolněkrát a vstup je také akceptovaný.

Příklad (Aplikace pumping lemmatu): TODO

2 Druhá přednáška

Definice (Kongruence): Mějme konečnou abecedu Σ a relaci ekvivalnece \sim na Σ^* (reflexivní, symetrická, tranzitivní). Potom:

- 1. ~ je pravá kongruence, jestliže $(\forall u, v, w \in \Sigma^*)$ $u \sim v \implies uw \sim vw$.
- 2. je konečného indexu, jestliže rozklad Σ^*/\sim má konečný počet tříd.
- 3. Třídu kongruence \sim obsahujíci slovo u značíme $[u]_{\sim}$, resp. [u].

Věta (Myhill-Nerodova Věta): Nechť L je jazyk nad konečnou abecedou Σ . Potom následujíci tvrzení jsou ekvivalentní:

- 1. L je rozpoznatelný konečným automatem,
- 2. \exists pravá kongruence \sim konečného indexu nad Σ^* tak, že L je sjednocením jistých tříd rozkladu Σ^*/\sim .

Důkaz:

- 1. \implies 2.; t.j. automat \implies pravá kongruence konečného indexu
 - definujeme $u \sim v \equiv \delta^*(q_0, u) = \delta^*(q_0, v)$.

- je to ekvivalnece (reflexivní, symetrická, tranzitivní)
- je to pravá kongruence (z definice δ^*)
- má konečný index (konečně mnoho stavů)

$$L = \{w | \delta^*(q_0, w) \in F\} = \bigcup_{q \in F} \{w | \delta^*(q_0, w) = q\} = \bigcup_{q \in F} [w | \delta^*(q_0, w) = q]_{\sim}.$$

- 2. \implies 1.; t.j. pravá kongruence konečného indexu \implies automat
 - \bullet abeceda automatu nazveme Σ
 - za stavy Q volíme třídy rozkladu Σ^*/\sim
 - počáteční stav $q_0 \equiv [\lambda]_{\sim}$
 - koncové stavy $F = \{c_1, \dots, c_n\}$, kde $L = \bigcup_{i=[1,n]} c_i$
 - přechodová funkce $\delta([u], x) = [ux]$ (je korektní z def. pravé kongruence).
 - L(A) = L

$$w \in L \Leftrightarrow w \in \bigcup_{i=[1,n]} c_i \Leftrightarrow w \in c_1 \vee \dots w \in c_n \Leftrightarrow [w] = c_1 \vee \dots [w] = c_n \Leftrightarrow [w] \in F \Leftrightarrow w \in L(A)$$

Příklad: Sestrojte automat přijímající jazyk

 $L=\{w|w\in a,b^*\&|w|_a=3k+2\},$ t. j. obsahuje 3k+2 symbolů a.

- 1. $|u|_x$ značí počet symblů x ve slově u
- 2. definujeme $u \sim v \equiv (|u|_a mod 3 = |v|_a mod 3)$
- 3. třídy ekvivalence 0, 1, 2
- 4. L odpovídá třídě 2
- 5. a přechody do následujíci třídy
- 6. b přechody zachovávajíci třídu

28. slide, doplniť obrázok

Příklad (Neregulární pumpovatelný jazyk): Ne-regulární jazyk, který lze pumpovat

Jazyk $L = \{u|u = a^+b^ic^i \lor u = b^ic^j\}$ není regulární (Myhill-Nerodova věta), ale vždy lze pumpovat první písmeno.

- 1. Předpokládejme, že L je regulární
- 2. \implies pak \exists pravá kongruence \sim_L konečného indexu m,L je sjednocení některých tříd Σ^*/\sim_L
- 3. vezmeme množinu slov $S = \{ab, abb, abbb, \dots, ab^{m+1}\}$
- 4. existují dvě slova $i \neq j$, která padnou do stejné třídy

$$i \neq j$$
 $ab^i \sim ab^j$ přidáme c^i $ab^ic^i \sim ab^jc^i$ \sim je kongruence spor $ab^ic^i \in L\&ab^jc^i \notin L$ s' L je sjednocení některých tříd Σ^*/\sim_L .

Definice (Dosažitelný stav): Mějme DFA $A = (Q, \Sigma, \delta, q_0, F)$ a $q \in Q$. Řekneme, že stav je dosažitelný, jestliže $\exists w \in \Sigma^* : \delta^*(q_0, w) = q$.

Příklad: Algoritmus na hledání dosažitelných stavů : DFS (důkaz asi není nutný)

Definice (Automatový homomorfismus): Nechť A_1, A_2 jsou DFA. Řekneme, že zobrazení $h: Q_1 \to Q_2, Q_1$ na Q_2 je (automatovým) homomorfismem, jestliže:

$$h(q_{0_1}) = q_{0_2}$$
 'stejné' počáteční stavy $h(\delta_1(q,x)) = \delta_2(h(q),x)$ 'stejné' přechodové funkce $q \in F_1 \Leftrightarrow h(q) \in F_2$ 'stejné' koncové stavy.

Homomorfismus prostý a na nazývame isomorfismus.

Definice (Ekvivalence automatů): Dva konečné automaty A, B nad stejnou abecedou Σ jsou ekvivalentní, jestliže rozpoznávají stejný jazyk, t. j. L(A) = L(B).

Věta (Věta o ekvivalenci automatů): Existuje-li homomorfismus konečných automatů A_1 do A_2 , pak jsou A_1 a A_2 ekvivalentní.

Důkaz:

1. Pro libovolné slovo $w \in \Sigma^*$ konečnou iterací

$$h(\delta_1^*(q,w)) = \delta_2^*(h(q),w)$$

2. dále

$$w \in L(A_1) \Leftrightarrow \delta_1^*(q_{0_1}, w) \in F_1$$

$$\Leftrightarrow h(\delta_1^*(q_{0_1}, w)) \in F_2$$

$$\Leftrightarrow \delta_2^*(h(q_{0_1}, w)) \in F_2$$

$$\Leftrightarrow \delta_2^*(q_{0_2}, w) \in F_2$$

$$\Leftrightarrow w \in L(A_2)$$

Definice (Ekvivalence stavů): Říkáme, že stavy $p,q\in Q$ konečného automatu A jsou ekvivalentní, pokud:

1. Pro všechna vstupní slova $w: \delta^*(p, w) \in F \Leftrightarrow \delta^*(q, w) \in F$.

Pokud dva stavy nejsou ekvivalentní, říkáme že jsou rozlišitelné.

Příklad: Ten example je na slide 36, najlepšie s tým obrázkom

Definice (Algoritmus hledání rozpoznatelných stavů v DFA): Následujíci algoritmus nalezne rozlišitelné stavy:

- 1. Základ: Pokud $p \in F$ (přijímajíci) a $q \notin F$, pak je dvojice $\{p,q\}$ rozlišitelná.
- 2. Indukce: Nechť $p,q \in Q, a \in \Sigma$ a o dvojici $r,s: r = \delta(p,a), s = \delta(q,a)$ víme, že jsou rozlišitelné. Pak i $\{p,q\}$ jsou rozlišitelné.
- 3. opakuj dokud \exists nová trojice $p, q \in Q, a \in \Sigma$.

Doplniť obrázky zo slidov, 37/38

Věta: Pokud dva stavy nejsou odlišeny předchodzím algoritmem, pak jsou tyto stavy ekvivalentní.

Důkaz: Korektnost algoritmu

- 1. Uvažujme špatné páry stavů, které jsou rozlišitelné a algoritmus je nerozlišil.
- 2. Vezměme z nich pár p, q rozlišitelný nejkratším slovem $w = a_1 \dots a_n$.
- 3. Stavy $r = \delta(p, a_1), s = \delta(q, a_1)$ jsou rozlišitelné kratším slovem $a_2 \dots a_n$, takže pár není mezi špatnými.
- 4. Tedy jsou 'vyškrtnuté' algoritmem.
- 5. Tedy v příštim kroku algoritmus rozliší i p, q.

Čas výpočtu je poylnomiální vzhledem k počtu stavů.

- 1. V jednom kole uvažujeme všechny páry, t.j. $O(n^2)$.
- 2. Kol je maximálně $O(n^2)$, protože pokud nepřidáme křížek, končíme.
- 3. Dohromady $O(n^4)$.

Algoritmus lze zrychlit na $O(n^2)$ pamatováním stavů, které závisí na páru $\{r,s\}$ a sledovaním těchto seznamů 'zpátky'.

Definice (Redukovaný DFA): Deterministický konečný automat je redukovaný, pokud

- 1. nemá dosažitelné stavy,
- 2. žádne dva stavy nejsou ekvivalentní.

Definice (Redukt): Konečný automat B je reduktem automatu A, jestliže:

- 1. B je redukovaný,
- 2. A a B jsou ekvivalentní

ADD PICS PLS (don't shout pls)

Věta (Algoritmus na nalezení reduktu DFA A):

- 1. Ze vstupního DFA A eliminujeme stavy nedosažitelné z počátečního stavu.
- 2. Najdeme rozklad zbylých stavů na třídy ekvivalence.
- 3. Konstruujeme DFA B na třídách ekvivalence jakožto stavech. Přechodová funkce B γ , mějme $S \in Q_B$. Pro libovolné $q \in S$ označíme T třídu ekvivalence $\delta(q, a)$ a definujeme $\gamma(S, a) = T$. Tato třída musí být stejná pro všechna $q \in S$.
- 4. Počáteční stav B je třída obsahujíci počáteční stav A.
- 5. Množina přijímajícich stavů B jsou bloky odpovídajíci přijímacím stavům A.

The End