

Resource Management - Mesos and YARN

Amir H. Payberah payberah@kth.se 2020-09-30

https://id2221kth.github.io

https://tinyurl.com/y4qph82u

Where Are We?

Motivation

- ► Rapid innovation in cloud computing.
- ▶ No single framework optimal for all applications.
- ▶ Running each framework on its dedicated cluster:
 - Expensive
 - Hard to share data

Proposed Solution

- ▶ Running multiple frameworks on a single cluster.
- ▶ Maximize utilization and share data between frameworks.
- ► Two resource management systems:
 - Mesos
 - YARN

Mesos

▶ Mesos is a common resource sharing layer, over which diverse frameworks can run.

Computation Model

- ► A framework (e.g., Hadoop, Spark) manages and runs one or more jobs.
- A job consists of one or more tasks.
- ► A task (e.g., map, reduce) consists of one or more processes running on same machine.

Mesos Design Elements

- ► Fine-grained sharing
- ► Resource offers

Fine-Grained Sharing

- Allocation at the level of tasks within a job.
- ▶ Improves utilization, latency, and data locality.

Coarse-grained sharing

Fine-grained sharing

- ▶ Offer available resources to frameworks, let them pick which resources to use and which tasks to launch.
- ▶ Keeps Mesos simple, lets it support future frameworks.

Question?

How to schedule resource offering among frameworks?

- ► Global scheduler
- ► Distributed scheduler

Global Scheduler (1/2)

► Job requirements

- Response time
- Throughput
- Availability

► Job execution plan

- Task DAG
- Inputs/outputs

Estimates

- Task duration
- Input sizes
- Transfer sizes

- Advantages
 - Can achieve optimal schedule.
- Disadvantages
 - Complexity: hard to scale and ensure resilience.
 - Hard to anticipate future frameworks requirements.
 - Need to refactor existing frameworks.

Distributed Scheduler (1/3)

Distributed Scheduler (2/3)

- Master sends resource offers to frameworks.
- ► Frameworks select which offers to accept and which tasks to run.
- ► Unit of allocation: resource offer
 - Vector of available resources on a node
 - For example, node1: (1CPU, 1GB), node2: (4CPU, 16GB)

Distributed Scheduler (3/3)

- ► Advantages
 - Simple: easier to scale and make resilient.
 - Easy to port existing frameworks, support new ones.
- Disadvantages
 - Distributed scheduling decision: not optimal.

Mesos Architecture (1/4)

► Slaves continuously send status updates about resources to the Master.

Mesos Architecture (2/4)

▶ Pluggable scheduler picks framework to send an offer to.

Mesos Architecture (3/4)

► Framework scheduler selects resources and provides tasks.

Mesos Architecture (4/4)

► Framework executors launch tasks.

Question?

How to allocate resources of different types?

Single Resource: Fair Sharing

- ▶ n users want to share a resource, e.g., CPU.
 - Solution: allocate each $\frac{1}{n}$ of the shared resource.

- ► Generalized by max-min fairness.
 - Handles if a user wants less than its fair share.
 - E.g., user 1 wants no more than 20%.

- ► Generalized by weighted max-min fairness.
 - Give weights to users according to importance.
 - E.g., user 1 gets weight 1, user 2 weight 2.

Max-Min Fairness - Example

- ▶ 1 resource: CPU
- ► Total resources: 20 CPU
- ► User 1 has x tasks and wants ⟨1CPU⟩ per task
- ▶ User 2 has y tasks and wants ⟨2CPU⟩ per task

```
\begin{array}{l} \max(x,y) \; (\text{maximize allocation}) \\ \text{subject to} \\ x+2y \leq 20 \; (\text{CPU constraint}) \\ x=2y \\ \text{so} \\ x=10 \\ y=5 \end{array}
```


Properties of Max-Min Fairness

- ► Share guarantee
 - Each user can get at least $\frac{1}{n}$ of the resource.
 - But will get less if her demand is less.
- Strategy proof
 - Users are not better off by asking for more than they need.
 - Users have no reason to lie.
- ► Max-Min fairness is the only reasonable mechanism with these two properties.
- ▶ Widely used: OS, networking, datacenters, ...

Question?

When is Max-Min Fairness NOT Enough?

Need to schedule multiple, heterogeneous resources, e.g., CPU, memory, etc.

Problem

- ► Single resource example
 - 1 resource: CPU
 - User 1 wants $\langle 1 CPU \rangle$ per task
 - User 2 wants (2CPU) per task

- ► Multi-resource example
 - 2 resources: CPUs and mem
 - User 1 wants (1CPU, 4GB) per task
 - User 2 wants $\langle \text{2CPU}, \text{1GB} \rangle$ per task
 - What is a fair allocation?

A Natural Policy (1/2)

- ▶ Asset fairness: give weights to resources (e.g., 1 CPU = 1 GB) and equalize total value given to each user.
- ► Total resources: 28 CPU and 56GB RAM (e.g., 1 CPU = 2 GB)
 - User 1 has x tasks and wants (1CPU, 2GB) per task
 - User 2 has y tasks and wants $\langle \text{1CPU}, \text{4GB} \rangle$ per task
- Asset fairness yields:

```
\max(x, y)

x + y \le 28

2x + 4y \le 56

2x = 3y
```

User 1: x = 12: $\langle 43\%$ CPU, 43%GB \rangle ($\sum = 86\%$) User 2: y = 8: $\langle 28\%$ CPU, 57%GB \rangle ($\sum = 86\%$)

A Natural Policy (2/2)

- ► Problem: violates share grantee.
- ▶ User 1 gets less than 50% of both CPU and RAM.
- ▶ Better off in a separate cluster with half the resources.

KTH Challenge

- ► Can we find a fair sharing policy that provides:
 - Share guarantee
 - Strategy-proofness
- ► Can we generalize max-min fairness to multiple resources?

Dominant Resource Fairness (DRF)

Dominant Resource Fairness (DRF) (1/2)

- ▶ Dominant resource of a user: the resource that user has the biggest share of.
 - Total resources: (8CPU, 5GB)
 - User 1 allocation: $\langle 2\text{CPU}, 1\text{GB} \rangle$: $\frac{2}{8} = 25\%$ CPU and $\frac{1}{5} = 20\%$ RAM
 - Dominant resource of User 1 is CPU (25% > 20%)
- ▶ Dominant share of a user: the fraction of the dominant resource she is allocated.
 - User 1 dominant share is 25%.

Dominant Resource Fairness (DRF) (2/2)

- ▶ Apply max-min fairness to dominant shares: give every user an equal share of her dominant resource.
- ► Equalize the dominant share of the users.
 - Total resources: (9CPU, 18GB)
 - User 1 wants (1CPU, 4GB); Dominant resource: RAM $(\frac{1}{9} < \frac{4}{18})$
 - User 2 wants $\langle 3CPU, 1GB \rangle$; Dominant resource: CPU $(\frac{3}{9} > \frac{18}{18})$

```
► \max(x, y)

x + 3y \le 9

4x + y \le 18

\frac{4x}{18} = \frac{3y}{9}

User 1: x = 3: \langle 33\%CPU, 66%GB\rangle

User 2: y = 2: \langle 66\%CPU, 16%GB\rangle
```


YARN

YARN Architecture

- ► Resource Manager (RM)
- ► Application Master (AM)
- ► Node Manager (NM)

YARN Architecture - Resource Manager (1/2)

- One per cluster
 - Central: global view
- ▶ Job requests are submitted to RM.
 - To start a job, RM finds a container to spawn AM.
- ► Container: logical bundle of resources (CPU/memory)

YARN Architecture - Resource Manager (2/2)

- Only handles an overall resource profile for each job.
 - Local optimization is up to the job.
- Preemption
 - Request resources back from an job.
 - Checkpoint jobs

YARN Architecture - Application Manager

- ► The head of a job.
- Runs as a container.
- ▶ Request resources from RM (num. of containers/resource per container/locality ...)

YARN Architecture - Node Manager (1/2)

- ▶ The worker daemon.
- ► Registers with RM.
- One per node.
- ▶ Report resources to RM: memory, CPU, ...

YARN Architecture - Node Manager (2/2)

- ► Configure the environment for task execution.
- Garbage collection.
- Auxiliary services.
 - A process may produce data that persist beyond the life of the container.
 - Output intermediate data between map and reduce tasks.

YARN Framework (1/2)

- ► Containers are described by a Container Launch Context (CLC).
 - The command necessary to create the process
 - Environment variables
 - Security tokens
 - ...
- ► Submitting the job: passing a CLC for the AM to the RM.
- ▶ When RM starts the AM, it should register with the RM.
 - Periodically advertise its liveness and requirements over the heartbeat protocol.

- Once the RM allocates a container, AM can construct a CLC to launch the container on the corresponding NM.
 - It monitors the status of the running container and stop it when the resource should be reclaimed.
- ▶ Once the AM is done with its work, it should unregister from the RM and exit cleanly.

Summary

Summary

- Mesos
 - Offered-based
 - Max-Min fairness: DRF
- ► YARN
 - Request-based
 - RM, AM, NM

- ▶ B. Hindman et al., "Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center", NSDI 2011
- ▶ V. Vavilapalli et al., "Apache hadoop yarn: Yet another resource negotiator", ACM Cloud Computing 2013

Questions?

Acknowledgements

Some slides were derived from Ion Stoica and Ali Ghodsi slides (Berkeley University), and Wei-Chiu Chuang slides (Purdue University).