The Effect of Sexual Orientation on the Demand for Children Jude Bashto

Framework:

- Family composed of person A and person B
- Person A: \$14/ hour Person B: \$50/hour
- ➤ Minimum \$5,000 to live
- Person A: 357 hours of work to live Person B: 100 hours of work to live
- Person A: Higher opportunity cost
 Person B: Comparative Advantage in producing
 Income

- Research question:
 - What is the impact of sexual orientation on the demand for children?
- Expected answer(s) to research question:
- 1. For every income level, same-sex couples will have a lower quantity demanded for children than opposite-sex couples. why?
 - >This is due to biological constraints as well as additional adoption financial constraints
 - > Children are more 'expensive' to same-sex couples.
- 2. The differentials in number of children between same sex and opposite sex couples will:
 - a) Increase as the income of the higher income spouse increases why?
 - > Assuming children are a normal good, an increase in their income means that both couples can afford more children. However, children are more expensive for same-sex couples. So the marginal increase in children is less for same-sex couples.
 - b) Decrease as the income of the lower income spouse increases

why?

>Assuming that the homemaker has a choice between market income and children, and that opposite sex couples are more efficient in producing children (but not income), differentials decrease as homemakers substitute away from children into income.

Data and Exclusions

• Data Source: American Community Survey (2015-2019) inflation adjusted and pooled.

- Pseudo-random sampling from sample:
 200,000 respondents from opposite sex couples
 All respondents from same-sex couples
- Total sample: 215,144

Same sex: 15,444

Opposite sex: 200,000

• Same-sex over-represented

Percentage of Respondents by Number of Children

Opposite- Sex Couples:

Variable	0bs	Mean	Std. Dev.
logincwage	200,000	7.750707	4.389099

Same- Sex Couples:

Variable	0bs	Mean	Std. Dev.
logincwage	15,144	8.641859	3.733095

Empirical Model

- Maximum likelihood estimation
- Tobit Model

```
why?
```

> Lower bound dependent variable

```
NChildren<sub>i</sub> = \beta_0 + \beta_1 logIncW_i + \beta_2 logIncInv_i + \beta_3 logIncWelf_i + \beta_4 logIncSP_i + \beta_5 SO_i + \beta_6 (SO \times logIncW)_i + \beta_7 (SO \times logIncInv)_i + \beta_8 (SO \times logIncWelf) + \beta_9 (SO \times logIncSP)_i + \beta_k X_i + e_i
```

logIncW: logged respondent income from labour (wage)

logIncInv: logged respondent income from investment

logIncWelf: logged respondent income from welfare

logIncSP: logged spousal income from labour

SO: sexual orientation dummy, =1 if same-sex.

What am i expecting?

- 1. Negative value for β_{50}
- 2. Positive value for β_4
- 3. Value for $\overline{\beta}_9$ such that the predicted censored number of children for SO=0 and SO=1 diverges with increases spousal income.

Number of Children at Each Income Level

4. Value for β_6 such that the predicted censored number of children for SO=0 and SO=1 diverges with increased respondent income.

X: vector of control variables: Age, age squared, spouse age, spouse age squared, years of education, spouse years of education, sample year, marital status, race of respondent, hispanic ethnicity, health insurance, birthplace (state), spouse birthplace (state), state of residence, sex, highest degree attained.

Key Regression Results:

```
NChildren<sub>i</sub> = -8.448 - 0.078 logIncW<sub>i</sub> + 0.021 logIncInv<sub>i</sub> + 0.067 logIncWelf + 0.040 logIncSP - 0.164SO<sub>i</sub> + 0.012(SO × logIncW)<sub>i</sub> - 0.0.098(SO × logIncInv) + 0.012(SO × logIncWelf) - 0.0.051(SO × logIncSP) + <math>\hat{\beta}_k X_i
```

	Marginal Effect of a 1% increase in the variable on Number of		
Variable	Children		
vanable	For Same-Sex Couples	For Opposite-Sex Couples	
Respondent Wage Income *	-0.00066**	-0.00078***	
Income from Investment	-0.00077	0.00021	
Welfare Income	0.00079	0.00067***	
Spouse Wage Income ***	-0.00011***	0.00040***	

p>=0.05,* p<0.05, ** p<0.01, *** p<0.001

X: vector of control variables: Age, age squared, spouse age, spouse age squared, years of education, spouse years of education, sample year, marital status, race of respondent, hispanic ethnicity, health insurance, birthplace (state), spouse birthplace (state), state of residence, sex, highest degree attained.

$$\begin{split} & \text{NChildren}_i = \\ & \beta_0 + \beta_1 logIncW_i + \beta_2 logIncInv_i + \beta_3 logIncWelf_i + \beta_4 logIncSP_i \\ & + \beta_5 SO_i + \beta_6 (SO \times logIncW)_i + \beta_7 (SO \times logIncInv)_i \\ & + \beta_8 (SO \times logIncWelf) + \beta_9 (SO \times logIncSP)_i + \beta_k X_i + e_i \end{split}$$

Figure 10A: Predicted number of children for same sex and opposite sex couples for different levels of logged spouse income.

What am i expecting?

- 1. Negative value for eta_5
- 2. Positive value for β_4
- 3. Value for β_9 such that the predicted censored number of children for SO=0 and SO=1 diverges with increases spousal income.
- 4. Value for β_6 such that the predicted censored number of children for SO=0 and SO=1 diverges with increased respondent income.

Figure 10B: Difference in predicted number of children between same sex and opposite sex couple by logged spouse income from labour.

$$\begin{split} & \text{NChildren}_i = \\ & \beta_0 + \beta_1 \text{logIncW}_i + \beta_2 \text{logIncInv}_i + \beta_3 \text{logIncWelf}_i + \beta_4 \text{logIncSP}_i \\ & + \beta_5 \text{SO}_i + \beta_6 (\text{SO} \times \text{logIncW})_i + \beta_7 (\text{SO} \times \text{logIncInv})_i \\ & + \beta_8 (\text{SO} \times \text{logIncWelf}) + \beta_9 (\text{SO} \times \text{logIncSP})_i + \beta_k \mathbf{X}_i + e_i \end{split}$$

Figure 9A: Predicted number of children for same sex and opposite sex couples.

What am i expecting?

- 1. Negative value for eta_5
- 2. Positive value for eta_4
- 3. Value for β_9 such that the predicted censored number of children for SO=0 and SO=1 diverges with increases spousal income.
- 4. Value for β_6 such that the predicted censored number of children for SO=0 and SO=1 diverges with increased respondent income.

Figure 9B: Difference in predicted number of children between same sex and opposite sex couple by logged respondent income from labour.

Thank you for listening.