My solutions to Deep Learning: Foundations and Concepts

Dario Miro Konopatzki

12 Transformers

12.2

For any
$$x_k, x_l \in \mathbb{R}^D$$
, $x_k^\top x_l \in \mathbb{R}$ and thus $e^{x_k^\top x_l} > 0$. Hence $a_{nm} = \frac{e^{\sum_{k=1}^{N} x_m}}{\sum_{m'=1}^{N} e^{\sum_{k=1}^{N} x_{m'}}} > 0$.

$$\sum_{m=1}^{N} a_{nm} = \sum_{m=1}^{N} \frac{e^{x_n^{\top} x_m}}{\sum_{m'=1}^{N} e^{x_n^{\top} x_{m'}}}$$

$$= \frac{\sum_{m=1}^{N} e^{x_n^{\top} x_m}}{\sum_{m'=1}^{N} e^{x_n^{\top} x_{m'}}}$$
- 1

12.4

$$\mathbb{E}\left[\left(a^{\top}b\right)^{2}\right] = \mathbb{E}\left[\left(\sum_{d=1}^{D}a_{d}b_{d}\right)^{2}\right]$$

$$= \mathbb{E}\left[\sum_{d=1}^{D}\left(a_{d}b_{d}\right)^{2} + \sum_{d=1}^{D}\sum_{\substack{d'=1\\d'\neq d}}^{D}a_{d}b_{d}a_{d'}b_{d'}\right]$$

$$= \sum_{d=1}^{D}\left(\mathbb{E}\left[a_{d}^{2}b_{d}^{2}\right] + \sum_{\substack{d'=1\\d'\neq d}}^{D}\mathbb{E}\left[a_{d}b_{d}a_{d'}b_{d'}\right]\right)$$

$$\stackrel{\star}{=} \sum_{d=1}^{D} \left(\mathbb{E} \left[a_d^2 \right] \mathbb{E} \left[b_d^2 \right] + \sum_{\substack{d'=1\\d' \neq d}}^{D} \mathbb{E} \left[a_d \right] \mathbb{E} \left[b_d \right] \mathbb{E} \left[a_{d'} \right] \mathbb{E} \left[b_{d'} \right] \right)$$

$$\stackrel{\dagger}{=} \sum_{d=1}^{D} \left(1 \cdot 1 + \sum_{\substack{d'=1\\d' \neq d}}^{D} 0 \cdot 0 \cdot 0 \cdot 0 \right)$$

$$= D$$

- * By assumption $a, b \sim \mathcal{N}(0, \mathbb{I})$. Diagonal covariance implies components of a (resp. b) independent. Taken together with a, b independent this gives $a_1, \ldots, a_D, b_1, \ldots, b_D$ independent.
- † By assumption $a \sim \mathcal{N}(0, \mathbb{I})$, so $\mathbb{E}[a_d] = 0$ and $\mathbb{E}[a_d^2] = \mathbb{E}\left[aa^{\top}\right]_{dd} = \mathbb{I}_{dd} = 1$ for all d. The analogous result holds for b.