Quantitative Economics in Discrete and Continuous Time

Thomas J. Sargent and John Stachurski

May 16, 2020

Contents

Pı	Preface						
C	omm	on Syr	nbols	xii			
1	Introduction						
	1.1	Overv	iew	1			
	1.2	Motiv	ating Examples: Dynamics	2			
		1.2.1	Capital Accumulation with Identical Agents	2			
		1.2.2	Wealth Dynamics	7			
		1.2.3	Inequality	17			
		1.2.4	Heavy Tails	22			
		1.2.5	Modeling a Pandemic	30			
	1.3	Motiv	ating Examples: Optimization	30			
		1.3.1	Shortest Paths	30			
		1.3.2	Job Search	34			
		1.3.3	Optimal Saving	38			
Ι	tions	42					
2	Mathematical Preliminaries						
	2.1 Notation						

CONTENTS	ii
----------	----

	2.2	Real A	Analysis	44
		2.2.1	Order and Topology in One Dimension	45
		2.2.2	Ordinary Euclidean Space	46
		2.2.3	Metric Space	51
		2.2.4	Partial Order	60
	2.3	Optim	ization and Fixed Points	65
		2.3.1	Optimization	66
		2.3.2	Convexity	68
		2.3.3	Fixed Points	70
		2.3.4	Borel Functions	75
	2.4	Probal	bility and Statistics	75
		2.4.1	Distributions	75
		2.4.2	Prediction	78
		2.4.3	Some Useful Inequalities	80
		2.4.4	Orders over Distributions	80
		2.4.5	Heavy Tails	83
		2.4.6	Estimating Distributions	87
	2.5	Applie	ations	89
		2.5.1	Valuing a Consumption Stream	89
		2.5.2	Granular Origins of Aggregate Fluctuations	90
		2.5.3	Production Chains	90
		2.5.4	Coase's Theory of the Firm	91
3	Intr	oducti	on to Dynamics	92
-	3.1		v	92
		3.1.1		92
			<u>.</u>	

CONTENTS	iii
----------	-----

		3.1.2	Stability
		3.1.3	Monotonicity in Discrete Time
		3.1.4	Conjugate Dynamics
	3.2	Some	Continuous Time Results
		3.2.1	Differential Equations
		3.2.2	Monotonicity in Continuous Time
	3.3	Applic	eations
		3.3.1	Valuing Consumption in Continuous Time
4	Mar	kov C	hains 104
	4.1	Consti	ruction and Dynamics
		4.1.1	Definitions and Examples
		4.1.2	Distribution Dynamics
		4.1.3	Conditional Expectations
		4.1.4	An Operator-Theoretic View
		4.1.5	Joint Distributions
	4.2	Stabili	ity and Path Properties
		4.2.1	Stationarity
		4.2.2	Ergodicity
		4.2.3	Global Stability
		4.2.4	Infinite State Spaces
		4.2.5	Power Laws from Markov Chains
	4.3	Applic	eations
		4.3.1	Inventory Dynamics
		4.3.2	Risk Neutral Asset Pricing
		4.3.3	Asset Pricing with Risk Aversion
		4.3.4	Epstein–Zin Preferences
		4.3.5	Firm Dynamics with Entry and Exit

CONTENTS iv

5	Stat	te Spac	ce Models	142
	5.1	Linear	Models	142
		5.1.1	Deterministic Linear Dynamics	142
		5.1.2	Adding Controls	145
		5.1.3	Random Walks and Martingales	148
		5.1.4	Vector Autoregressions	150
		5.1.5	Distributions and Sample Paths	155
		5.1.6	Linear State Space Models	161
	5.2	Nonlin	near Models	165
		5.2.1	Distribution Dynamics	165
		5.2.2	Random Coefficient Models	170
		5.2.3	Stochastic Steady States	176
		5.2.4	Analysis of a Stationary Distribution	179
	5.3	Applic	eations	182
		5.3.1	Filtering and Prediction	182
		5.3.2	Uncertainty Traps	184
		5.3.3	The Evolution of Wealth	186
		5.3.4	Numerical Methods	193
		5.3.5	Speculation and Commodity Prices	201
6	Son	ne Use	ful Optimization Problems	203
	6.1	Optim	nal Search and Stopping Problems	203
		6.1.1	Job Search Revisited	203
		6.1.2	Rearranging the Bellman Equation	208
		6.1.3	Learning the Offer Distribution	214
		6.1.4	Entry an Exit	220

CONTENTS v

		6.1.5	Optimal Harvesting
	6.2	LQ Pr	oblems
		6.2.1	Linear Control Systems
		6.2.2	Finite Horizon Optimality
		6.2.3	Infinite Horizon Problems
		6.2.4	Investment with Adjustment Costs
		6.2.5	Robust Control
	6.3	Discre	te State Decision Problems
		6.3.1	An Inventory Problem
		6.3.2	The General Finite State Case
7	Ont	imal S	aving 246
'	-		
	7.1	Optim	al Saving and Consumption
		7.1.1	An Optimal Saving Model
		7.1.2	Policies and Optimality
		7.1.3	Problems with Analytical Solutions
		7.1.4	CRRA Utility and Stochastic Financial Returns
	7.2	A Moo	lel with Independent Shocks
		7.2.1	Analysis
		7.2.2	The Euler Equation
	7.3	The In	acome Fluctuation Problem
		7.3.1	Adding Non-Financial Income
		7.3.2	Bounded Rewards
		7.3.3	CRRA Preferences
		7.3.4	State Dependence in Returns and Discounting
		7.3.5	The Wealth Distribution Revisited

CONTENTS vi

II	\mathbf{G}	enera	d Theory	277
8	Dyr	namic l	Programming: Theory	278
	8.1	Plann	ing Problems: Definitions and Concepts	. 278
		8.1.1	Recursive Decision Problems	. 278
		8.1.2	Policy Functions and Values	. 281
		8.1.3	Definitions	. 283
		8.1.4	Bellman's Principle of Optimality	. 285
	8.2	Metho	ods	. 287
		8.2.1	Operators	. 287
		8.2.2	A Fixed Point Result	. 288
		8.2.3	Globally Stable Operators	. 289
		8.2.4	Algorithms	. 293
		8.2.5	Optimality of Stationary Markov Policies	. 293
	8.3	Exam	ples and Extensions	. 293
		8.3.1	Markov Decision Processes	. 294
		8.3.2	Optimal Stopping and Search	. 297
		8.3.3	Monoticity and Concavity	. 297
		8.3.4	Unbounded Rewards	. 298
		8.3.5	Recursive Utility	. 298
		8.3.6	Shortest Paths	. 298
		8.3.7	Plan Factorizations	. 298
9	Mea		Theory and Functional Analysis	299
	9.1	Norme	ed Vector Spaces	
		9.1.1	Abstract Vector Spaces	. 299
		9.1.2	Norms on Vector Space	. 302

CONTENTS	vii

		9.1.3	Linear Operators	303
		9.1.4	Finite Dimensional Vector Space	305
		9.1.5	Ordered Vector Space	306
	9.2	Inner I	Product Space	308
		9.2.1	Inner Products	309
		9.2.2	Orthogonal Projection	310
		9.2.3	Overdetermined Systems	312
	9.3	Tools f	From Integration Theory	315
		9.3.1	Measure Theory	316
		9.3.2	Integration	320
		9.3.3	Information and Conditioning	325
		9.3.4	L_p Spaces	325
	9.4	Applica	ations	327
		9.4.1	Asset Pricing Revisited	327
		9.4.2	Job Search with Correlated Wage Draws	327
10	Nun	nerical	Methods	333
	10.1	Numer	rical Methods for Fixed Point Problems	333
		10.1.1	The Curse of Dimensionality	333
		10.1.2	Approximation and Projection	334
		10.1.3	Contractions and Approximation	337
	10.2		rical Methods for Savings Problems	
			Time Iteration	
			The Endogenous Grid Method	
			-	

CONTENTS	viii

11	Gen	eral St	tate Markov Chains	344
	11.1	Stocha	astic Processes in Discrete Time	344
		11.1.1	Dynamics and Joint Distributions	344
		11.1.2	Ionescu–Tulcea's Theorem	346
		11.1.3	Stationarity and Ergodicity	346
	11.2	Marko	ov Chains on Measurable Spaces	349
		11.2.1	Markov Kernels	349
		11.2.2	Distribution Dynamics	350
		11.2.3	Stationary Distributions	350
	11.3	Stabili	ity	351
		11.3.1	Average Contractions	352
		11.3.2	Harris Chains	354
		11.3.3	Sample Path Properties	356
	11.4	Monot	tonicity	356
			Monotone Transitions	
		11.4.2	Monotone Mixing	357
		11.4.3	Stability and Ergodicity	358
		11.4.4	Parametric Monotonicity	358
12	Mar	kov Ju	ump Chains	359
			able State Jump Chains	359
			ol of Jump Chains	359
			al State Jump Chains	359
13		usions		360
	13.1	Brown	nian Motion and Weiner Measure	360
	13.2	Stocha	astic Integration	360
	13.3	Diffusi	ion Processes	360
	13.4	Contro	ol Theory	360

CONTENTS	ix
----------	----

III	R	Recursive Equilibria	361
14	Indu	astry and Firm Dynamics	362
	14.1	The Hopenhayn Entry-Exit Model	362
	14.2	The Melitz Model	362
	14.3	The Carvalho–Grassi Model	362
	14.4	Markov Perfect Industry Dynamics	362
15	Gen	eral Equilibrium Models	363
	15.1	Bewley–Huggett–Aiyagari Models	363
	15.2	An Example with CARA Utility	363
	15.3	An Example with CRRA Utility	363
	15.4	A Model with Default	363
IV	. A	appendices	364
16	\mathbf{App}	endix I: Analysis and Probability	365
	16.1	Topological Spaces	365
	16.2	Metrics on Probability Space	368
	16.3	Testing Compactness	368
17	App	endix II: Additional Proofs	371
	17.1	Proofs from Chapter 4	371
		17.1.1 Coupling	371
	17.2	Proofs from Chapter 11	375
18	App	pendix III: Solutions	380