Supplementary Material: Current environments and evolutionary history shape forest temporal assembly

Deirdre Loughnan¹ and E M Wolkovich¹ October 16, 2024

Table S1: Summary output from a phylogenetic Bayesian model in which species are partially pooled and phylogeny is included on the intercept. See the Statistical Analysis section of the methods for more detail.

	mean	sd	5%	95%	n_eff	Rhat
α_{sp_i}	12.51	3.14	7.40	17.60	3183.32	1.00
λ	0.79	0.12	0.60	0.90	2156.20	1.00
$eta_{forcing}$	-9.55	0.74	-10.70	-8.30	1391.78	1.00
$eta_{photoperiod}$	-3.62	0.41	-4.30	-3.00	3089.29	1.00
$eta_{chilling}$	-15.21	1.25	-17.30	-13.20	2142.42	1.00
$eta_{ManningPark}$	2.09	0.36	1.50	2.70	4061.13	1.00
$\beta_{HarvardForest}$	-6.04	1.03	-7.80	-4.40	486.95	1.01
$eta_{St.Hippolyte}$	-8.71	0.97	-10.30	-7.10	485.37	1.01
$\beta_{forcing \times photoperiod}$	0.23	0.71	-1.00	1.40	3698.87	1.00
$eta_{forcing imes chilling}$	9.06	0.90	7.60	10.50	3005.09	1.00
$\beta_{photoperiod \times chilling}$	-0.67	0.90	-2.20	0.80	2690.36	1.00
$\beta_{forcing \times Manning Park}$	-1.76	0.77	-3.00	-0.50	3836.43	1.00
$\beta_{photoperiod \times ManningPark}$	0.58	0.79	-0.70	1.90	3375.92	1.00
$\beta_{chilling \times Manning Park}$	-0.36	1.60	-3.00	2.20	1714.08	1.00
$\beta_{forcing \times HarvardForest}$	3.81	1.22	1.80	5.80	1752.75	1.00
$\beta_{photoperiod \times HarvardForest}$	-1.96	0.86	-3.30	-0.60	2877.96	1.00
$\beta_{chilling \times HarvardForest}$	9.97	2.03	6.60	13.40	911.46	1.01
$\beta_{forcing \times St. Hippolyte}$	5.25	1.19	3.20	7.20	1659.45	1.00
$\beta_{photoperiod \times St. Hippolyte}$	-2.13	0.84	-3.50	-0.70	2606.20	1.00
$eta_{chilling imes St. Hippolyte}$	8.65	1.70	5.90	11.50	1021.36	1.01

Table S2: Approximate chill units from our two western sites, E.C. Manning Park and Smithers B.C., Canada, and our two eastern sites, Harvard Forest, USA and St. Hippolyte, Canada. Weather data was obtained from the Hope Slide weather station for our E.C. Manning Park estimates and the Smithers airport weather station for our Smithers communities. For our eastern communities, weather data was obtained from weather stations at Harvard Forest and in St. Hippolyte.

sections at their tard to obstant in St. Improfyte.						
Site	Chilling treatment	Chill hours	Utah model	Chill portions		
Harvard forest	Field chilling	892	814.50	56.62		
Harvard forest	Field chilling $+$ 30 d at 4° C	2140	2062.50	94.06		
St. Hippoltye	Field chilling	682	599.50	44.63		
St. Hippoltye	Field chilling $+$ 30 d at 4° C	1930	1847.50	82.06		
Smithers	Field chilling $+$ 30 d at 4° C	1317	1368.00	54.95		
Smithers	Field chilling $+$ 70 d at 4° C	1965	2016.00	74.67		
Manning Park	Field chilling $+$ 30 d at 4° C	1213	1377.00	55.09		
Manning Park	Field chilling $+$ 70 d at 4° C	1861	2025.00	75.33		

Figure S1: Estimated day of budburst in response to **a**, forcing across sites under low chilling and short photoperiods, **b**, chilling across sites under low forcing and short photoperiods, and **c**, across photoperiods under low forcing and chilling for species sampled from our four sites. The thin error bars represent the 90% uncertainty interval, while the thicker error bars represent the 50% uncertainty interval, and symbols the mean.

Figure S2: Comparisons of posterior distributions for cues estimates between shrub and tree species. Circles represent the mean cues, while the thinner black line the 90% quantile interval.

Figure S3: Comparisons of the estimated changes in species ranked budburst order, \mathbf{a} & \mathbf{d} between species level effects (species intercept) and under high cues, species level effects and under low cues, \mathbf{b} & \mathbf{e} , and under low versus high cues, \mathbf{c} & \mathbf{f} , for our eastern species (in red, \mathbf{a} - \mathbf{c}) and western species (in blue, \mathbf{d} - \mathbf{f}). For the three species that occur in both transect (shown in yellow) *Alnus incana* exhibited the greatest rank change with a difference of three, while *Betula papyrifera* had a rank difference of two and *Populus tremuloides* a rank difference of one.

Figure S4: Estimated mean responses in budburst timing of the first bud to varying forcing, chilling, and photoperiod cues across 47 deciduous woody species across North America S1. Points represent mean posterior estimates, while bars depict the 90% uncertainty interval. Negative responses represent advances in budburst, while positive values represent delaying effects.

Figure S5: Species differences were accounted for by including phylogenetic effects on the species intercept in a model estimating days to budburst after the start of forcing treatments. We pruned to our species subset an existing phylogeny for flowering plants developed by Smith and Brown (2018).

Table S3: Mean budburst dates across all treatments from raw observation data of 47 species at our two western sites, E.C. Manning Park and Smithers B.C., Canada, and

our two eastern sites, Harvard Forest, USA and St. Hippolyte, Canada.

Species	Harvard Forest	St. Hippoltye	Manning Park	Smither
Acer glabrum			36	3
Acer pensylvanicum	16	18		
Acer rubrum	22	25		
Acer saccharum	45	36		
Alnus incana			28	3
Alnus incana	33	25		
Alnus viridis			44	4
Amelanchier alnifolia			19	1
Aronia melanocarpa	14			
Betula alleghaniensis	20	21		
Betula lenta	30			
Betula papyrifera				3
Betula papyrifera	17	18		
Corylus cornuta	25	19		
Cornus stolonifera			15	1
Fagus grandifolia	42	43		
Fraxinus nigra	38	38		
Hamamelis virginiana	44			
$Tlex\ mucronata$	16	15		
Kalmia angustifolia	30	32		
Lonicera canadensis	17	16		
$Lonicera\ involucrata$			22	2
Lyonia ligustrina	31			
Menziesia ferruginea	-		43	4
Nyssa sylvatica	32			
Populus balsamifera	<u> </u>		30	3
Populus grandidentata	33	31		
Populus tremuloides			46	3
Prunus pensylvanica	18	16	10	
Quercus alba	45	10		
Quercus rubra	36	34		
Quercus velutina	52	01		
Rhamnus frangula	32			
Rhododendron albiflorum	32		19	
Rhododendron prinophyllum	29		13	
Ribes lacustre	29		29	2
Rubus parviflorus			28	2
Sambucus racemosa			33	٠
Shepherdia canadensis			25	2
			25 21	1
Sorbus scopulina	10	20	21	1
Spiraea alba	18	20	0.4	1
Spiraea betulifolia			24	1
Spiraea pyramidata			26	2
Symphoricarpos albus			27	3
Vaccinium membranaceum	4.0	4 =	22	2
Vaccinium myrtilloides	13	17		
Viburnum cassinoides	15	18		
$Viburnum\ edule$			19	
$Viburnum\ lantanoides$	31	28		

Table S4: Proportion of surviving samples per species for which budburst was observed in our western controlled enviornment study. See Flynn and Wolkovich (2018) for survival in our eastern study.

Species name	Proportion budburst	Plant type
Acer glabrum	0.83	tree
$Alnus\ incana$	1.00	shrub
$Alnus\ viridis$	0.92	shrub
$Am elan chier\ alnifolia$	0.99	shrub
Betula papyrifera	1.00	tree
$Cornus\ stolonifera$	0.99	shrub
$Lonicera\ involucrata$	0.87	shrub
$Menziesia\ ferruginea$	0.80	shrub
$Populus\ balsamifera$	0.98	tree
$Populus\ tremuloides$	0.90	tree
$Rhododendron\ albiflorum$	1.00	shrub
$Ribes\ lacustre$	0.82	shrub
Rubus parviflorus	0.94	shrub
$Sambucus\ racemosa$	0.95	shrub
$Shepherdia\ canadensis$	1.00	shrub
$Sorbus\ scopulina$	0.99	shrub
$Spiraea\ betulifolia$	0.94	shrub
$Spiraea\ pyramidata$	0.92	shrub
$Symphoricar pos\ albus$	0.84	shrub
$Vaccinium\ membranaceum$	0.90	shrub
$Viburnum\ edule$	1.00	shrub