浙江工业大学 2020/2021 学年 第二学期概率论与数理统计期末考试试卷

学号:		5号:	姓名:					
	班级:		任课教师:					
]		
	题号	_	二	=	总分			
	得分							
分位点数据	:							
$\Phi(1) =$	0.8413,	$\Phi(1.65) =$	$0.9505, \Phi($	1.96) = 0.9750,	$\Phi(2) = 0.9$	9772		
$t_{0.05}(16) = 1.746, t_{0.025}(16) = 2.120, t_{0.05}(15) = 1.753, t_{0.025}(15) = 2.132$								
一、填空题. (每空 2 分, 共 28 分)								
1. 已知事件 A, B 恰有一个发生的概率为 0.3 , 且 $P(A) + P(B) = 0.5$, 则 A, B 至少有一个不发生的概率为								
2. 从编号为 $1 \sim 10$ 的 10 张卡片中不放回地随机抽取 2 次, 两次取到的卡片编号都是偶数的概率为								
3. 设随机变	量 <i>X</i> ~	$P(\lambda)$,并且 P	$\{X=1\} = P\{$	$X=2\}$,则 λ =	=			
4. 设随机变量 X_1, X_2, X_3 相互独立,且 X_1 服从 $(0,6)$ 上的均匀分布, $X_2 \sim N(0,1), X_3$ 服从 参数为 2 的指数分布. 若 $Y = X_1 - X_2 + 2X_3$,则 $EY = ___$, $Var(Y) = ___$.								
	. 已知随机变量 X 的概率密度函数为 $f(x)=A\mathrm{e}^{-(\frac{x+1}{2})^2},-\infty < x < \infty,$ 随机变量 $aX+b\sim N(0,1)(a>0),$ 则常数 $A=__a=__b=__\$							
6. 己知 X_1 ,	$X_2, X_3,$	X ₄ 是来自正	态总体 N(1,2) 的样本, 令 \overline{X}	$=\frac{1}{3}(X_1+X_2)$	2+X3). 统计		

由度是_____, a = _____, b = _____.

量 $Y = a[(X_1 - \overline{X})^2 + (X_2 - \overline{X})^2 + (X_3 - \overline{X})^2] + b(X_4 - \overline{X})^2(a, b \neq 0)$ 服从 χ^2 分布, 则自

7.	设 $\hat{\lambda}_1$ 和 $\hat{\lambda}_2$ 是参数 λ 的两个相互独立的 $c_1 = \underline{\qquad}, c_2 = \underline{\qquad}$ 时, $\hat{\lambda} = c_1\hat{\lambda}_1 + c_2\hat{\lambda}_2$		$\widehat{\lambda}_2$). 当
8.	设 x_1, x_2, \dots, x_9 为来自总体 $N(\mu, 0.81)$ 的管置信水平为 0.95 的双侧置信区间为		参数 μ 的
二、	选择题.(每小题3 分, 共 12 分)		
1.	随机变量的概率密度函数 $f(x)$ 一定满足		()
	$(A) 0 \le f(x) \le 1 \tag{B}$	$\lim_{x \to +\infty} f(x) = 1$	
) 在定义域内单调不减	
2.	设随机变量 X,Y 相互独立,且都服从标准证	E态分布,则	()
	(A) $P{X + Y > 0} = \frac{1}{4}$ (B)	$P\{X - Y > 0\} = \frac{1}{4}$	
	(C) $P\{\max\{X,Y\} > 0\} = \frac{1}{4}$ (D)	$P\{\min\{X,Y\} > 0\} = \frac{1}{4}$	
3.	设随机变量 X 的概率密度函数为 $f(x)=\left\{ ight.$	Ae^{-x} , $x > \lambda$, $(\lambda > 0)$ 则概率 $P\{\lambda \in X \}$	< X <
	$\lambda + a$ } $(a > 0)$ 的值	, <u> </u>	()
	(A) 与 a 无关随 λ 的增大而增大 (B	$b)$ 与 a 无关随 λ 的增大而减少	
	(C) 与 λ 无关随 a 的增大而增大 (D)	(a) 与 (a) 无关随 (a) 的增大而减少	
4.	下列表述不正确的是		()
	(A) 随机变量 X 和 Y 相互独立等价于 $F(x)$	$F(x,y) = F_X(x)F_Y(y)$ 对任意 x,y 都成立	Ĭ.
	(B) 若 $P(A) > 0, P(B) > 0$, 则事件 A 和 B	3 相互独立与互不相容不能同时成立	
	(C) 若随机变量 X, Y 独立, 则 X, Y 一定不		
	(D) 两个正态随机变量相互独立的充要条件	是它们的相关系数 $\rho = 0$	

三. 解答题 (共 60 分)

1. (10 分) 两台车床加工同样的零件, 第一台出现不合格品的概率是 0.03, 第二台出现不合格品的概率是 0.06, 加工出来的零件放在一起, 并且已知第一台加工的零件数比第二台加工的零件数多一倍.

- (1) 求任取一个零件是合格品的概率;
- (2) 如果取出的零件是不合格品, 求它是由第二台车床加工的概率.

2. (10 分)设随机变量 X 与 Y 相互独立, 分布律分别为

试求: (1)(X,Y)的联合分布律; (2)P(X>Y); (3)E(XY).

3. (12 分) 设二维随机变量 (X,Y) 的概率密度函数

$$f(x,y) = \begin{cases} cxe^{-y}, & 0 < x < y < \infty, \\ 0, & \text{ 其他 }, \end{cases}$$

其中 c 为未知常数.试求: (1) 常数 c; (2)判断 X 与 Y 是否相互独立; (3) 求 Z=X+Y 的概率密度函数.

4. (8分)某车间有同型号的机床 200台,在一小时内每台机床约有 70%的时间是工作的. 假定各机床工作是相互独立的,工作时每台机床要消耗电能 15kW. 利用中心极限定理计算至少要多少电能,才可以有 95%的可能性保证此车间正常生产.
5. $(10\ \beta)$ 已知某企业生产的某种电子器件的质量(单位: 克) $X\sim N\left(\mu,\sigma^2\right)$, 现从生产的电子器件中随机抽取了 16 件, 测得样本均值 $\bar{x}=10.1$ 克, 样本标准差 $s=0.12$ 克, 试问是否可以认为该
机器生产的电子器件的均值为 10 克?(显著性水平 $\alpha = 0.05$)

6. (10 分) 总体 X 的概率密度函数为

$$f(x) = \begin{cases} (\theta + 1)x^{\theta}, & 0 < x < 1, \\ 0, & \text{ 其他} \end{cases}$$

其中 $\theta(\theta > -1)$ 为未知参数, x_1, x_2, \cdots, x_n 为来自该总体的简单样本. 求 θ 的矩估计与极大似然估计.