Logică pentru Informatică - Subiectul 1 (23.11.2018)

Se va completa de către	e student	
Nume, prenume:		
An, grupă:		
÷		

^			
Inceneti rezolvarea	ne această n	agină Numer	otați toate paginile.
incepeți rezorvarea	pe accasia p	agina, riunici	otați toate pagiine.

Se va completa de				
profesorul corector				
Subject	Punctaj			
1				
2				
3				
4				
5				
Total				

Reguli de inferență pentru deducția naturală:

$$\wedge i \frac{\Gamma \vdash \varphi \quad \Gamma \vdash \varphi'}{\Gamma \vdash (\varphi \land \varphi'),} \qquad \wedge e_1 \frac{\Gamma \vdash (\varphi \land \varphi')}{\Gamma \vdash \varphi,} \qquad \wedge e_2 \frac{\Gamma \vdash (\varphi \land \varphi')}{\Gamma \vdash \varphi',} \qquad \rightarrow e \frac{\Gamma \vdash (\varphi \rightarrow \varphi') \quad \Gamma \vdash \varphi}{\Gamma \vdash \varphi',} \qquad \rightarrow i \frac{\Gamma, \varphi \vdash \varphi'}{\Gamma \vdash (\varphi \rightarrow \varphi'),} \qquad \vee i_1 \frac{\Gamma \vdash \varphi_1}{\Gamma \vdash (\varphi_1 \lor \varphi_2),} \qquad \vee i_2 \frac{\Gamma \vdash \varphi_2}{\Gamma \vdash (\varphi_1 \lor \varphi_2),}$$

$$\vee e \frac{\Gamma \vdash (\varphi_1 \lor \varphi_2) \quad \Gamma, \varphi_1 \vdash \varphi'}{\Gamma \vdash \varphi',} \qquad \neg e \frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi}, \qquad \neg e \frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi}, \qquad \Box e \frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi}, \qquad \Box e \frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi}, \qquad \Box e \frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi}. \qquad \Box e \frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi}.$$

Orice altă soluție corectă se punctează integral.

1. (5p). Enunțați teorema de corectitudine pentru rezoluție.

Solutie: în notele de curs.

2. (10p). Scrieți o formulă din LP care modelează următoarea afirmație: dacă învăț atunci câștig bani, dar eu nu câștig bani.

Soluție:

- (4p). Identificarea formulelor atomice: învăț (îi asociem variabila propozițională p), câștig bani (îi asociem variabila propozițională q).
- (6p). "Traducerea" corectă într-o formulă: $((p \rightarrow q) \land \neg q)$.
- 3. (10p). Arătați că, oricum am alege o formulă $\varphi \in LP$, formula φ este validă dacă și numai dacă $\varphi \equiv \varphi \vee \neg \varphi$. Fie φ o formulă arbitrară.
 - (2p). Definiția validității.

Formula φ este validă ddacă, prin definiție, (A) pentru orice atribuire τ , $\hat{\tau}(\varphi) = 1$.

(2p). Definiția echivalenței.

 $\varphi \equiv \varphi \vee \neg \varphi$ ddacă, prin definiție, (B) pentru orice atribuire τ , avem $\hat{\tau}(\varphi) = \hat{\tau}(\varphi) + \overline{\hat{\tau}(\varphi)}$.

(6p). Terminarea demonstrației: (A) decurge din (B) și (B) decurge din (A).

Dar, deoarece $\hat{\tau}(\varphi) + \overline{\hat{\tau}(\varphi)} = 1$, (B) are loc ddacă pentru orice atribuire τ , avem $\hat{\tau}(\varphi) = 1$. Adică (B) are loc ddacă (A) are loc, q.e.d.

4. (10p). Arătați, folosind algoritmul lui Tseitin și metoda rezoluției, că formula $\neg(p_1 \land \neg p_1)$ este validă.

Aplicarea teoremei care exprimă legătura dintre contradicții și tautologii:

Formula $\varphi = \neg(p_1 \land \neg p_1)$ este validă ddacă $\neg \varphi = \neg \neg(p_1 \land \neg p_1)$ este o contradicție.

(5p). Aplicarea algoritmului lui Tseitin.

Alocarea a câte o variabilă propozițională nouă fiecărei subformule neatomice:

- (a) $q_1 \equiv \neg q_2$;
- (b) $q_2 \equiv \neg q_3$;

(c) $q_3 \equiv p_1 \wedge q_4$;

(d) $q_4 \equiv \neg p_1$;

Găsirea clauzelor:

(a) $q_1 \leftrightarrow \neg q_2 \equiv (q_1 \lor q_2) \land (\neg q_1 \lor \neg q_2);$

(b)
$$q_2 \leftrightarrow \neg q_3 \equiv (q_2 \lor q_3) \land (\neg q_2 \lor \neg q_3);$$

$$\text{(c)} \ \ q_3 \leftrightarrow p_1 \land q_4 \equiv \left(\neg q_3 \lor p_1 \right) \land \left(\neg q_3 \lor q_4 \right) \land \left(\neg p_1 \lor \neg q_4 \lor q_3 \right);$$

(d)
$$q_4 \leftrightarrow \neg p_1 \equiv (q_4 \vee p_1) \wedge (\neg q_4 \vee \neg p_1)$$
.

Identificarea formulei în FNC echisatisfiabilă cu $\neg \varphi$.

Formula $\varphi' = q_1 \wedge (q_1 \vee q_2) \wedge (\neg q_1 \vee \neg q_2) \wedge (q_2 \vee q_3) \wedge$

$$(\neg q_2 \vee \neg q_3) \wedge (\neg q_3 \vee p_1) \wedge (\neg q_3 \vee q_4) \wedge (\neg p_1 \vee \neg q_4 \vee q_3) \wedge \\$$

 $(q_4 \vee p_1) \wedge (\neg q_4 \vee \neg p_1)$ este, prin construcție, în FNC și echisatisfiabilă cu $\neg \varphi$.

(5p) Găsirea unei demonstrații prin rezoluție a clauzei vide.

Formula $\neg \varphi$ este nesatisfiabilă ddacă φ' este nesatisfiabilă, ddacă există o derivare prin rezoluție a clauzei vide pornind de la clauzele lui φ' :

(a) q_1 ;	(ipoteză)
(b) $\neg q_1 \lor \neg q_2$;	(ipoteză)
(c) $\neg q_2$;	$(r.b., a, b, q_1)$
(d) $q_2 \vee q_3$;	(ipoteză)
(e) q ₃ ;	$(\mathrm{r.b.},\mathrm{d},\mathrm{c},q_2)$
(f) $\neg q_3 \lor p_1$;	(ipoteză)
(g) p ₁ ;	$(r.b., e, f, q_3)$
(h) $\neg q_3 \lor q_4$;	(ipoteză)
(i) $\neg q_4 \lor \neg p_1$;	(ipoteză)
(j) q ₄ ;	$(r.b., e, h, q_3)$
$(k) \neg q_4;$	$(\mathrm{r.b.},\mathrm{g},\mathrm{i},p_1)$
(1) □.	$(r.b., j, k, q_4)$

Deci φ' este nesatisfiabilă, $\neg \varphi$ nesatisfiabilă și φ validă.

5. (10p). Dați o demonstrație formală pentru secvența $p \rightarrow q$, $\neg q \vdash \neg p$, folosind deducția naturală, fără a folosi regula modus tollens.

Demonstrație corectă: 10p.

(a)
$$p \rightarrow q$$
, $\neg q$, $p \vdash p \rightarrow q$; (ipoteză)
(b) $p \rightarrow q$, $\neg q$, $p \vdash p$; (ipoteză)
(c) $p \rightarrow q$, $\neg q$, $p \vdash q$; ($\rightarrow e$, a, b)
(d) $p \rightarrow q$, $\neg q$, $p \vdash \neg q$; (ipoteză)
(e) $p \rightarrow q$, $\neg q$, $p \vdash \bot$; ($\neg e$, c, d)
(f) $p \rightarrow q$, $\neg q \vdash \neg p$.