Exercise – Limits

Question - 01

 $\lim_{x\to 2}(x^2-4)$ a)

j) $\lim_{x \to 2} \frac{x-2}{x^2-3x+2}$

s) $\lim_{x \to -2} \frac{x^3 + 3x^2 + 2x}{x^2 - x - 6}$

 $\lim_{x \to 0} \frac{x^3 - 4x}{2x^2 + 3x}$ b)

 $\lim_{x \to 0} \frac{3x + 2x^{-1}}{x + 4x^{-1}}$ k)

t) $\lim_{x \to 1} \frac{x^2 - 2x + 1}{x^3 - x}$

 $\lim_{x\to -1}\frac{x^3}{(x+1)^2}$

1) $\lim_{x \to 2} \frac{x^2 - 3x + 2}{x^2 - 2x}$

u) $\lim_{x \to 4} \frac{x^2 + 7x - 44}{x^2 - 6x + 8}$

 $\lim_{x \to -1} \frac{(x+1)^2(x-1)}{x^3+1}$ d)

m) $\lim_{x \to 1} \left(\frac{1}{1-x} - \frac{3}{1-x^3} \right)$ **v**) $\lim_{x \to 1} \frac{x^2 - 4}{x^2 - 3x + 2}$

 $\lim_{x \to 0} \frac{x^3 - 2x^2 + x}{2x^3 + x^2 - 2x}$

n) $\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 2x}$

w) $\lim_{x \to 1} \frac{x^3 - 5x + 4}{x^3 - 1}$

 $\lim_{x \to 1} \frac{x^2 + 2x + 3}{(x - 1)^2}$ f)

 $\mathbf{0)} \qquad \lim_{x \to 2} \frac{x^2 + 5}{x^2 - 3}$

 $\mathbf{x}) \qquad \lim_{x \to 2} \frac{x^2 - 4}{x - 2}$

 $\lim_{x \to 0} \frac{x^4 - 4x^3 + x^2}{x^3 + x^2 + x}$ g)

 $\mathbf{p}) \qquad \lim_{x \to 1} \frac{3x^4 - 4x^3 + 1}{(x - 1)^2}$

y) $\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 3x + 2}$

 $\lim_{x \to -1} \frac{x^3 + x^2 + x + 1}{x^4 + x^2 + 2}$

q) $\lim_{x \to -2} \frac{3x + 6}{x^3 + 8}$

 $\lim_{x \to 1} \left(\frac{1}{x^2 - 1} - \frac{2}{x^4 - 1} \right)$

 $\lim_{x \to 2} \frac{(x+1)^2}{2-x}$ i)

 $\mathbf{r}) \qquad \lim_{x \to 2} \frac{x+1}{x-1}$

Z) $\lim_{x \to 3} \frac{x-3}{x^2-5x+6}$

Question - 02

$$\lim_{x \to \infty} \frac{x^2 - 1}{2x^2 + 1}$$

$$\lim_{x \to \infty} \frac{x^3 + x^4 - 1}{2x^5 + x - x^2}$$

s)
$$\lim_{x \to \infty} \frac{(x+3)(x+4)(x+5)}{x^4 + x - 11}$$

b)
$$\lim_{x \to -\infty} \frac{x^3 + x^2 - 4}{2x^3 + x + 11}$$

k)
$$\lim_{x \to \infty} \frac{(\sqrt{x^2 + 1} + x)^2}{\sqrt[3]{x^6 + 1}}$$

t)
$$\lim_{x \to \infty} \frac{8x - 2x^5 + x^6}{11x + 5x^3 + 3x^5}$$

c)
$$\lim_{x \to \infty} \frac{3x^2 + 2x - 1}{x^3 - x + 2}$$

1)
$$\lim_{x \to -\infty} \frac{x^6 + 7x^4 - 40}{1 - x - 5x^7}$$

u)
$$\lim_{x \to \infty} \left(\frac{x^3}{2x^2 - 1} - \frac{x^2}{2x + 1} \right)$$

$$\mathbf{d}) \qquad \lim_{x \to \infty} \left(\frac{x^3}{x^2 + 2} - x \right)$$

m)
$$\lim_{x \to \infty} \frac{(x+1)(x-2)}{3x^2 + 6x - 5}$$

$$\mathbf{v}) \qquad \lim_{x \to \infty} \left(x^2 - \frac{x^4 - 1}{x^2 - 2} \right)$$

e)
$$\lim_{x \to \infty} \frac{x^2 + 3x - 4}{3x^2 - 2x + 5}$$

$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{x}$$

$$\mathbf{w}) \qquad \lim_{x \to \infty} \frac{(x-1)^{100} (6x+1)^{200}}{(3x+5)^{300}}$$

f)
$$\lim_{x \to \infty} \frac{x(x-1)(x-2)}{x^2 + 6x - 9}$$

$$\mathbf{o)} \qquad \lim_{x \to \infty} \left(\frac{3x^2 + 2x + 1}{x^2 - 3x + 2} \right)^4$$

$$\mathbf{x}) \qquad \lim_{x \to \infty} \frac{\sqrt[4]{x^5} + \sqrt[5]{x^3} + \sqrt[6]{x^8}}{\sqrt[3]{x^4 + 2}}$$

$$\mathbf{g}) \qquad \lim_{x \to \infty} \frac{\sqrt{x^2 + 9}}{x + 3}$$

$$\mathbf{p}) \qquad \lim_{x \to -\infty} \frac{5x^3 - x^2 + x}{1 - x - 3x^2}$$

y)
$$\lim_{x \to -\infty} \frac{x^2 (2x+1)(3x-2)}{2x^2 (5x-8)(x+6)}$$

h)
$$\lim_{x \to \infty} \left(\frac{x^2 + x - 1}{2x^2 - x + 1} \right)^3$$

q)
$$\lim_{x \to \infty} \frac{1 + x - 3x^3}{1 + x^2 + 3x^3}$$

$$\sum_{x \to \infty} \left[\frac{2x^8 + 8x^6 + 6x^4}{4x^8 - x^6 + 12x^4} \right]^5$$

$$i) \qquad \lim_{x \to \infty} \frac{x^2 + 2x + 1}{5x}$$

$$\lim_{x \to -\infty} \left(\frac{x^3 - 8}{x^4 + 16} \right)^{10}$$

Z)
$$\lim_{x \to -\infty} \frac{(2x-3)^{20}(3x+2)^{30}}{(2x+1)^{50}}$$

Question - 03

$$\mathbf{a)} \qquad \lim_{x \to 0} \frac{\sqrt{1+2x}-1}{3x}$$

$$\mathbf{j}) \qquad \lim_{x \to \infty} (\sqrt{x-2} - \sqrt{x})$$

$$\lim_{x \to \infty} (\sqrt{x-2} - \sqrt{x}) \qquad s) \qquad \lim_{x \to \infty} \frac{\sqrt{x+2} - \sqrt{2}}{x}$$

$$\mathbf{b}) \qquad \lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$

$$\mathbf{k}) \qquad \lim_{x \to \infty} (\sqrt{x^2 + x} - x)$$

$$\lim_{x \to \infty} (\sqrt{x^2 + x} - x) \qquad \qquad \mathbf{t}) \qquad \lim_{x \to \infty} \frac{\sqrt{x + 5} - \sqrt{5}}{\sqrt{x} - 5}$$

$$\mathbf{c}) \qquad \lim_{x \to 0} \frac{x - \sqrt{x}}{\sqrt{x}}$$

$$\lim_{x \to \infty} (\sqrt{x^2 + x} - x)$$

1)
$$\lim_{x \to \infty} (\sqrt{x^2 + x} - x)$$
 u)
$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 9} - \sqrt{x^2 - 9}}{6x}$$

d)
$$\lim_{x \to 5} \frac{\sqrt{x-1}-2}{x^2-25}$$

$$\mathbf{m}) \qquad \lim_{x \to \infty} (\sqrt{x-3} - \sqrt{x})$$

$$\mathbf{v}) \qquad \lim_{x \to \infty} \frac{\sqrt{x-1} - 2x}{x-7}$$

e)
$$\lim_{x \to 3} \frac{\sqrt{x+6} - 3}{x^3 - 5x^2 + 3x + 9}$$

$$\mathbf{n}) \qquad \lim_{x \to \infty} \sqrt{x} \left(\sqrt{x - 3} - \sqrt{x} \right) \quad \mathbf{w} \qquad \lim_{x \to \infty} \frac{\sqrt{x} - 6x}{3x + 1}$$

$$\mathbf{w}) \qquad \lim_{x \to \infty} \frac{\sqrt{x - 6x}}{3x + 1}$$

$$\mathbf{f}) \qquad \lim_{x \to 9} \frac{3 - \sqrt{x}}{27 - \sqrt{x^3}}$$

$$\mathbf{o}) \qquad \lim_{x \to \infty} x(\sqrt{x^2 + 1} - x)$$

$$\mathbf{x}) \qquad \lim_{x \to \infty} \frac{\sqrt{x^2 + 1} + \sqrt{x}}{\sqrt[4]{x^3 + x} - x}$$

$$\mathbf{g}) \qquad \lim_{x \to 0} \frac{\sqrt[3]{1+x} - \sqrt[3]{1-x}}{x}$$

$$\mathbf{p}) \qquad \lim_{x \to \infty} x(\sqrt{x^2 + 1} - x)$$

$$\lim_{x \to \infty} x(\sqrt{x^2 + 1} - x) \qquad \mathbf{y}) \qquad \lim_{x \to \infty} \frac{\sqrt{x^2 + 1} + \sqrt{x}}{\sqrt[4]{x^2 + 1} - x}$$

h)
$$\lim_{x \to 1} \frac{x^{2/3} - 1}{x^{3/5} - 1}$$

$$\mathbf{q}) \qquad \lim_{x \to \infty} (\sqrt{x^2 + 1} - x)$$

$$\mathbf{z}) \qquad \lim_{x \to \infty} \frac{\sqrt[3]{x} - 2\sqrt{x^3}}{\sqrt[4]{x^5} + x\sqrt{x}}$$

$$\mathbf{i}) \qquad \lim_{x \to 1} \frac{1 - \sqrt[n]{x}}{1 - \sqrt[m]{x}}$$

$$\mathbf{r}) \qquad \lim_{x \to -\infty} (\sqrt{x^2 + 1} - x)$$

$$\lim_{x \to -\infty} (\sqrt{x^2 + 1} - x) \qquad \qquad \mathbf{Z}) \qquad \lim_{x \to -\infty} \frac{\sqrt{x^2 + 1} - \sqrt[3]{x^2 + 1}}{2\sqrt[4]{x^4 + 1} - \sqrt[5]{x^4 + 1}}$$

Answers

Question - 01

a) 0

j) 1

s) $-\frac{2}{5}$

b) $-\frac{4}{3}$

 $\mathbf{k}) \qquad \frac{1}{2}$

t) 0

c) Ø

1) $\frac{1}{2}$

u) $\frac{15}{2}$

d) 0

m) -1

v) Ø

e) $-\frac{1}{2}$

n) $\frac{3}{2}$

w) $-\frac{2}{3}$

f) Ø

o) 9

x) 4

g) 0

p) 6

y) 4

h) $-\frac{1}{3}$

 $\mathbf{q}) \qquad \frac{1}{4}$

 \mathbf{z}) $\frac{1}{2}$

i) Ø

r) 3

Z) 1

Question-02

a) $\frac{1}{2}$

j) 0

s) 0

b) $\frac{1}{2}$

k) 4

t) - ∝

c) 0

I) 0

 $\mathbf{u}) \qquad \frac{1}{4}$

d) 0

m) $\frac{1}{3}$

 \mathbf{v}) -2

e) $\frac{1}{3}$

n) 1

 $\mathbf{w)} \qquad \frac{6^{200}}{3^{300}} = \left(\frac{4}{3}\right)^{100}$

f) ∞

o) 81

x) 1

g) 1

p) ∞

 \mathbf{y}) $\frac{3}{5}$

h) $\frac{1}{8}$

q) -1

 $\mathbf{z}) \qquad \frac{1}{32}$

i) ∞

r) 0

 \mathbf{z}_{1} $\left(\frac{3}{2}\right)^{3}$

Question – 03

a) $\frac{1}{3}$

j) 0

s) 0

b) 1

 $\mathbf{k}) \qquad \frac{1}{2}$

t) 1

c) -1

l) ∞

u) 0

d) $\frac{1}{40}$

m) 0

v) -2

e) Ø

n) $-\frac{3}{2}$

w) -2

f) $\frac{1}{27}$

o) $\frac{1}{2}$

x) -1

 $\mathbf{g}) \qquad \frac{2}{3}$

p) – ∞

y) -1

h) $\frac{10}{9}$

q) 0

z) – 2

 $\frac{m}{n}$

r) ∞

 \mathbf{Z}) $\frac{1}{2}$