Lecture8-Homework

1. Let 2n (equally spaced) points on a circle be chosen. Show that the number of ways to join these points in pairs, so that the resulting n line segments do not intersect, equals the nth Catalan number Cn.

Answer:Label the points 1, 2, ..., 2n clockwise around the circle. Let M = Mn denote the set of matchings of the 2n points. For a matching in M let t denote the point matched to point k (t is odd). Note that t is even. We can let point 2k-1 marked by t-1, let point t2t2t3t4.

Point i		Marked as Pi		
i= 2k-1	(k belongs to [1,2,3,,n])	Pi=+1		
i=2k	(k belongs to [1,2,3,,n])	Pi=-1		

These points in pairs(odd point precedes even point) that satisfy the requirement can form a sequence: P_{t1} , P_{t2} , P_{t3} ,..., $P_{t,2n}$ (1)

The partial sums of the sequence (1) are always positive:

$$P_{t1}+P_{t2}+...+P_{tk}>=0$$
 (k=1,2,...,2n)

According to the definition of Catalan number Cn, the number of ways to join these points in pairs, so that the resulting n line segments do not intersect, equals the nth Catalan number Cn.

7. The general term hn of a sequence is a polynomial in n of degree 3. If the first four entries of the Oth row of its difference table are 1, -1, 3, 10, determine hn and a formula for

$$\sum_{k=0}^{n} h_k$$

Answer: The difference table is

1		-1		3		10	
	-2		4		7	•••	
		6		3			
			-3				
				0			

From the diagonal sequence 3, 1, 4, 0, . . . we see that:

$$h_n = {n \choose 0} - 2{n \choose 1} + 6{n \choose 2} - 3{n \choose 3}$$
 $n = 0, 1, 2, ...$

Therefore:

$$\frac{1}{k=0}h_{k} = \binom{n+1}{1} - 2\binom{n+1}{2} + 6\binom{n+1}{3} - 3\binom{n+1}{4}, n=0,1,2,...$$

25. Let t1, t2, ..., tm be distinct positive integers, and let

$$q_n = q_n(t_1, t_2, \dots, t_m)$$

equal the number of partitions of n in which all parts are taken from t1, t2,...,tm.Define $q_0 = 1$.

$$\prod_{k=1}^{m} (1 - x^{t_k})^{-1}.$$

Show that the generating function for $q_0,\,q_1,\,...$, $q_n,\,...$ is

Answer:

25. We show:
$$\prod_{k=1}^{m} (1-x^{tk})^{-1} = \sum_{n=0}^{\infty} q_n x^n$$
Note that for $n \ge 0$, q_n is equal to the number of nonnegative integral solutions $n_1, n_2, ..., n_m$ to
$$n_1 t_1 + n_2 t_2 + ... + n_m t_m = n.$$
Recall that for $1 \le k \le m$:
$$(1-x^{tk})^{-1} = 1 + x^{tk} + x^{2tk} + ...$$
Therefore:
$$\prod_{k=1}^{m} (1-x^{tk})^{-1} = \prod_{k=1}^{m} (1+x^{tk} + x^{2tk} + ...)$$

$$= \left(\sum_{n=0}^{\infty} x^{n_1 t_1}\right) \left(\sum_{n=0}^{\infty} x^{n_2 t_2}\right) ... \left(\sum_{n=0}^{\infty} x^{n_2 t_2}\right) ... \left(\sum_{n=0}^{\infty} x^{n_2 t_2}\right) x^{n_2 t_2}$$

$$= \sum_{n=0}^{\infty} q_n x^n$$

$$= \sum_{n=0}^{\infty} q_n x^n$$