TP1 de méthodes numériques

- Résolution d'équations non linéaires -

Soit à résoudre l'équation

$$f(x) = 0 (1)$$

avec f une fonction non linéaire.

Exercice 1 : Méthode de dichotomie

Écrire une fonction qui permette de calculer une racine approchée de l'équation (1), par la méthode de dichotomie (ou bissection). Votre programme devra comporter :

- en paramètres d'entrée : la fonction f, la précision ϵ souhaitée, les bornes a et b d'un intervalle qui contient la racine recherchée.
- en sortie : la valeur de la racine recherchée, le nombre d'itérations effectué.

Exercice 2 : Méthode de Newton

$$\begin{cases} x_0 \text{ donn\'e} \\ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \end{cases}$$

- 1. La convergence de la méthode de Newton dépend à la fois de la fonction f et du point de départ x_0 .
- 2. L'ordre de convergence de la méthode de Newton est :
 - 2 au moins pour les racines simples
 - 1 pour les racines multiples

Écrire une fonction qui permette de calculer une racine approchée de l'équation (1), par la méthode de Newton. Votre programme devra comporter :

- en paramètres d'entrée : les fonctions f et f', la valeur de départ x_0 , la précision ϵ souhaitée, le nombre maximal d'itérations autorisé N_{max} ;
- en sortie : la valeur de la racine recherchée ou un message d'erreur si le nombre maximal d'itérations est atteint, le nombre d'itérations effectué.

Exercice 3 : Méthode de la sécante

$$\begin{cases} x_0, x_1 \text{ donnés} \\ x_{n+1} = \frac{x_{n-1}f(x_n) - x_n f(x_{n-1})}{f(x_n) - f(x_{n-1})} \end{cases}$$

- 1. La racine recherchée, l, est isolée dans $[x_0, x_1]$;
- 2. lorsque $f(l) \neq 0$ et $f'(l) \neq 0$, l'ordre de convergence de la méthode de la sécante est $\frac{1+\sqrt{5}}{2} \approx 1.62.$

Écrire une fonction qui permette de calculer une racine approchée de l'équation (1), par la méthode de la sécante. Votre programme devra comporter :

— en paramètres d'entrée : la fonction f, les bornes x_0 et x_1 d'un intervalle qui contient la racine recherchée, la précision ϵ souhaitée, le nombre maximal d'itérations autorisé N_{max}

— en sortie : la valeur de la racine recherchée ou un message d'erreur si le nombre maximal d'itérations est atteint, le nombre d'itérations effectué.

Exercice 4 : Application

On souhaite trouver une approximation de $\sqrt{3}$ en calculant le zéro de la fonction définie par

$$f(x) = x^2 - 3$$

1. Exécuter la méthode de Newton en partant de $x_0=2$ et les méthodes de dichotomie et de la sécante en partant de $x_0=1$ et $x_1=2$, puis remplir le tableau ci-dessous :

n	Newton	Sécante	Dichotomie
0	2	2	2
1		1	1
2			
3			
4			
5			
6			
7			
8			
9			
10			

- 2. Déterminer le nombre d'itérations nécessaire pour obtenir une précision de 10^{-10} avec chacune des trois méthodes.
- 3. Déterminer le nombre d'itérations nécessaires pour avoir une précision de 10^{-10} avec la méthode de Newton, en partant de valeurs très grandes comme 10^2 , 10^4 et 10^6 .