Задача А. Площадь многоугольника

Имя входного файла: area.in
Имя выходного файла: area.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

На плоскости заданы координаты вершин многоугольника в порядке их обхода. Многоугольник не обязательно выпуклый, но не содержит самопересечений. Требуется найти его площадь.

Формат входных данных

Сначала записано число N — количество вершин многоугольника ($3 \le N \le 100$), затем N пар вещественных чисел, задающих координаты его вершин.

Формат выходных данных

Выведите площадь многоугольника не меньше, чем с 3 знаками после десятичной точки.

Примеры

area.in	area.out
4	11.0
0 0	
0 2	
4 3.5	
4 0	

Замечание

Если выводить вещественные числа как print(x), то иногда они будут странно отформатированы, например, $10^{-6} = \frac{1}{1000000}$ будет выведено как 1e-6.

Поэтому числа с заданной точностью следует переводить в строку так:

x = 1.34

"{:.6f}".format(x) # строка "1.340000"

Для того, чтобы избежать проблем с погрешностью вашего ответа, если уловие это позволяет, следует выводить числа с максимально возможной точностью, для типа **float** в Питоне это 16 десятичных знаков:

print("{:.16f}".format(x))

Задача В. Внутренние точки

Имя входного файла: points.in Имя выходного файла: points.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

На плоскости заданы координаты вершин многоугольника в порядке их обхода. Вершины имеют целые координаты. Многоугольник не обязательно выпуклый. Требуется найти количество точек с целыми координатами, которые лежат внутри многоугольника (не на его границе).

Формат входных данных

Сначала записано число N — количество вершин многоугольника ($3 \le N \le 100$), затем N пар целых чисел, задающих координаты его вершин. Все координаты не превосходят 10^4 по абсолютному значению.

Формат выходных данных

Выведите количество точек, лежащих внутри этого многоугольника.

points.in	points.out
3	0
0 0	
1 0	
0 3	
4	1
0 2	
2 2	
2 0	
0 0	

Задача С. Пересечение прямоугольников

Имя входного файла: rect.in
Имя выходного файла: rect.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайта

На плоскости задано N прямоугольников с вершинами в точках с целыми координатами и сторонами, параллельными осям координат. Необходимо найти прямоугольник, являющийся их пересечением.

То, что это прямоугольник, докажите самостоятельно.

Формат входных данных

В первой строке входного файла указано число N ($1 \le N \le 1500$). В следующих N строках заданы по 4 целых числа x_1, y_1, x_2, y_2 — сначала координаты левого нижнего угла прямоугольника, потом правого верхнего ($-10^9 \le x_1 \le x_2 \le 10^9, -10^9 \le y_1 \le y_2 \le 10^9$). Обратите внимание, что прямоугольники могут вырождаться в отрезки и даже в точки.

Формат выходных данных

В единственную строку выходного файла поместите описание искомого прямоугольника в том же формате, в котором заданы прямоугольники во входном файле.

Если пересечение заданных прямоугольников пусто, выведите в выходной файл единственное число -1.

rect.in	rect.out
2	1 1 2 2
0 0 2 2	
1 1 3 3	

Задача D. Объединение прямоугольников (версия для Python)

Имя входного файла: union.in Имя выходного файла: union.out Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

На плоскости задано N прямоугольников с вершинами в точках с целыми координатами и сторонами, параллельными осям координат. Необходимо найти площадь их объединения.

Формат входных данных

В первой строке входного файла указано число N ($1 \le N \le 300$). В следующих N строках заданы по 4 целых числа x_1, y_1, x_2, y_2 — сначала координаты левого нижнего угла прямоугольника, потом правого верхнего ($0 \le x_1 \le x_2 \le 10^9, 0 \le y_1 \le y_2 \le 10^9$). Обратите внимание, что прямоугольники могут вырождаться в отрезки и даже в точки.

Формат выходных данных

В выходной файл выведите единственное число — ответ на задачу.

union.in	union.out
3	23
1 1 3 5	
5 2 7 4	
2 4 6 7	

Задача Е. Зеркальный треугольник

Имя входного файла: triangle.in Имя выходного файла: triangle.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Представьте себе равносторонний треугольник, стороны которого зеркальны. Из его вершины выходит луч, и отражается от сторон треугольника, пока не попадает в любую вершину. На рисунке изображен пример для K=11. Кроме нарисованного есть еще один способ вернуться в исходную вершину после 11 отражений: пройти по тому же пути об- ратно, и по два способа попасть в две другие вершины.

Вам нужно для данного K определить, сколько есть способов попасть в какую-нибудь вершину треугольника, сделав ровно K отражений.

Формат входных данных

Одно нечетное число K ($1 \le K \le 10^5$).

Формат выходных данных

Одно число — количество способов попасть в вершину, сделав ровно K отражений.

triangle.in	triangle.out
11	6
5	2

Задача Г. Зеркальный треугольник — 2

Имя входного файла: triangle2.in Имя выходного файла: triangle2.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Представьте себе равносторонний треугольник, стороны которого зеркальны. Из его вершины выходит луч, и отражается от сторон треугольника, пока не попадает в любую вершину. На рисунке изображен пример для K=11. Кроме нарисованного есть еще один способ вернуться в исходную вершину после 11 отражений: пройти по тому же пути об- ратно, и по два способа попасть в две другие вершины.

Вам нужно для данного K определить, сколько есть способов попасть в какую-нибудь вершину треугольника, сделав ровно K отражений.

Формат входных данных

Одно нечетное число K ($1 \le K \le 10^9$).

Формат выходных данных

Одно число — количество способов попасть в вершину, сделав ровно K отражений.

Примеры

triangle2.in	triangle2.out
11	6
5	2

Замечание

Задача аналогична задаче "Зеркальный треугольник но с другими ограничениями