NOM:

Prénom:

Note:

- $1. \ \mathrm{Soit} \ \mathfrak{p} : \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ (x,y,z) & \longmapsto & (x,-x-y+z,-x-2y+2z) \end{array} \right. \ \mathrm{On \ admet \ que} \ \mathfrak{p} \in \mathcal{L}(\mathbb{R}^3).$
 - (a) Montrer que p est un projecteur.

(b) Donner sans justification des bases de l'image et du noyau de p.

- (c) Déterminer le rang de p.
- 2. Soient $f \in \mathcal{L}(E,F)$ et $g \in \mathcal{L}(F,G)$. Quelles inclusions ou égalités existe-il toujours entre les sous-espaces vectoriels $\mathrm{Im}(g \circ f)$, $\mathrm{Ker}(g \circ f)$, $\mathrm{Im}\,g$, $\mathrm{Ker}\,g$, $\mathrm{Im}\,f$, $\mathrm{Ker}\,f$? On justifiera ses réponses.

3.	Soient f ∈	$\mathcal{L}(E,F)$ et	$t, a \in \mathcal{L}(F, G)$). Montrer	avec soin que	$e a \circ f = 0$) ←	$\operatorname{Im} f \subset \operatorname{Ker} \mathfrak{a}$.

4. On note E l'ensemble des fonctions continues sur [0,1] à valeurs dans \mathbb{R} . Montrer que l'ensemble H des fonctions $f\in E$ telles que $\int_0^1 f(t)\,dt=0$ est un hyperplan de E.

5. Soit $s: \left\{ \begin{array}{ccc} \mathbb{K}[X] & \longrightarrow & \mathbb{K}[X] \\ P & \longmapsto & P(-X) \end{array} \right.$. On admet que s est un endomorphisme de $\mathbb{K}[X]$. Montrer que s est une symétrie. Préciser par rapport à quel sous-espace vectoriel F et parallèlement à quel sous-espace vectoriel G.