	Ngày . No
Homework 1	
$\int_{-\infty}^{\infty} f(x) dx$ $\int_{-\infty}^{\infty} f(x) dx$	Still of if $x = 1$ $\frac{1}{2}$ of $\frac{1}{2}$
$= \frac{23}{19} + 119 = -1$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \int_{0.20} (x) = 0.20 \text{if } x = 0 $ $ \int_{0.30} (x) = 0.10 \text{if } x = 1 $ $ \int_{0.10} (x) = 0.30 \text{if } x = 2 $ $ \int_{0.10} (x) = 0.30 \text{if } x = 2 $ $ \int_{0.10} (x) = 0.30 \text{if } x = 2 $ $ \int_{0.10} (x) = 0.30 \text{if } x = 2 $ $ \int_{0.15} (x) = 0.30 \text{if } x = 6 $
$F_{A}(x) = \begin{cases} 0 & \text{if } x < 1 \\ 0.31 & \text{if } 1 < x < 2 \\ 0.69 & \text{if } 2 < x < 3 \\ 0.79 & \text{if } 3 < x < 4 \\ 0.80 & \text{if } 4 < x < 5 \\ 0.89 & \text{if } 5 < x < 6 \end{cases}$	F _B (a)= 0.20 if 06x(s) 0.30 if 16x62 0.60 if 26x63 0.70 if 36x64 0.80 if 46x65 0.85 if 56x66
1 if a > 6	15 KOKUYO 20

1 if or >6

Thứ Ngày

Bles

2.2) A: 1st line B: 2nd line C: 3rd line H: defective P(H)- P(A) P(HIA) + P(B). P(H(B) + P(O). P(H(C)) = 2.45% P (A1H) - P(HIA) P(A) - 24.49% PCH) P (BIH) - P(HIB) P(B) - 55.1% (H)9 P (((H) _ P(HIC) P(C) - 20.41% P(H) (Ex4) $F(x)=(1-e^{-6x})U(x-c)$ 1(x) = a e - xx ((x-c) + (1-e - xx) + 8(x-c) (EXS) 4 4 5 2 7/3 11/6 7/2)

 $Cov = \frac{1}{n-1} \begin{cases} 6 \\ (Di-D)(Di-D)^T \\ i=1 \end{cases}$

Ngày

6.1) Put $z = \frac{X-n}{\sigma}$

=>
$$P_k = P(-k < \frac{1}{2} < k) = \frac{1}{2} (k) - \frac{1}{2} (-k)$$

= $2 \frac{1}{2} (k) - 1$

 $\rho_{1} = 0.6826$ $\rho_{2} = 0.9544$ $\rho_{3} = 0.9974$

62)
$$p=0.9 \implies \overline{Q} = 0.95 \implies k=1.65$$

$$p=0.99 \implies \overline{I} = 0.995 \implies k=2.575$$

$$p=0.999 \implies \overline{I} = 0.999 \implies k=305$$

$$\frac{(x+1)}{f(x+10)^{2}(1)} = \frac{7}{f(x)} \times \frac{$$

15 KOKUYO

10

Thứ Ngày ·

No.

P(x)(43) = P(z)(3) = 1 - D(3)(2) = 6.68%

(Exg) $\times \sim N(0,1)$ $\Rightarrow \frac{2-\times}{2} \sim N(0,1)$

Ø P (1(x 52)= P (1 ≤ 2(1) = 0.15

 $\Theta P \left\{ 1 \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{P(1 \left(\frac{1}{2} \right) - P(\frac{1}{2} \left(\frac{1}{2} \right))}{P(X) + 1} - \frac{P(\frac{1}{2} \left(\frac{1}{2} \right))}{1 + P(\frac{1}{2} \left(\frac{1}{2} \right))} \right\}$

 $(E_{X}10)$ $X \sim N(1000,20)$ $= \frac{X-1000}{20} \sim N(0,1)$

P(X < 1024) = P(Z < 12) = 0.885 P(X > 961) = 1 - P(Z < -1.95) = 0.975 $P(X < 1024) \times 5961) = P(961(X < 1024)) = 0.882$ P(X > 961)

F) P (314 (5 (32)) = P(961(X < 1024)) = P(-1.95 (7 (1.2)) = 0.8593

EX17): X: grade of student ~ N(74,72)

=> 2- X-74 ~ N(0,1)

P(X), a) = 42% (=) P(z), a-4)=0.12 (=) P(=(a-74 j= 0.88 $a - \frac{74}{2} = 1.175$ (=) a= 82.22S Lowest A: 83 Highest B: 82 Ex12): P(M - 30 (x(M +30) = D(3) - D(-3) = 0.9974 $\frac{30}{24} \left(\frac{1}{4}\right)^{\frac{1}{2}} \left(\frac{3}{24}\right)^{\frac{1}{2}} = 0.1193$ (EX17) as P (-4 (XC20) -P(8-3.4(X(8+3.4)), 4-1-15((hebysev Theorem)
P (1X-8126)=1-P(1X-8/46) L 1-(1-1/2)-1/2 $M = \int x f(sc) ds = \int 6x^2(1-x) ds = \int \frac{1}{3}$ $\sigma^2 = E(x^2) - E(x) = \int (x^3(1-x^2)) dx - \frac{1}{4} = \frac{1}{20}$ (M-20 < X (M+20)= 0.9839 Chelyper Theorem: P(M-20 (X/M+20)

20

20

20

20

20

NO.