1.	$2Ca(NO_3)_2 \rightarrow 2CaO + 4NO_2 + O_2$	1
<u></u>	correct state symbols: (s), (s), (g), (g)	1
	brown gas / fumes / vapour	1
	white solid / residue (stays the same)	1
	solubility decreases (down the group)	1
	ΔH_{latt} and ΔH_{hyd} decrease / both become less exothermic / less negative	1
	Δ <i>H</i> _{latt} decreases / becomes less exothermic by a smaller extent ora	1
	,	_
2.	$\Delta H_{\rm Sol}$ becomes less exothermic / less negative ora M1: increases down the group] 1 3
	M2: radius / size of cation / M ²⁺ increases OR charge density of cation / M ²⁺ decreases	
	M3: less polarisation / less distortion of anion / NO ₃ ion OR less weakening of NO bond	
	$Pb(NO_3)_2 \rightarrow PbO + 2NO_2 + \frac{1}{2}O_2$	1
	lead nitrate / Pb(NO ₃) ₂ would decompose more / easier AND as Pb ²⁺ is smaller / Pb ²⁺ has larger charge density (so more polarising)	1
	$BaC_2O_4 \rightarrow BaO + CO_2 + CO$ OR $BaC_2O_4 \rightarrow BaO + 2CO + \frac{1}{2}O_2$	1
	M1: [a] initial moles $MnO_4^- = 0.0200 \times 0.050 = 1.00 \times 10^{-3}$ [b] moles $Fe^{2^+} = 0.050 \times 0.0304 = 1.52 \times 10^{-3}$	4
	M2: [a] moles MnO_4^- unreacted = $1.52 \times 10^{-3} / 5 = 3.04 \times 10^{-4}$ [b] moles MnO_4^- reacted = $1.00 \times 10^{-3} - 3.04 \times 10^{-4} = 6.96 \times 10^{-4}$	
	M3: moles $C_2O_4^{2-}$ reacted = $6.96 \times 10^{-4} \times 5/2 = 1.74 \times 10^{-3}$	
	M4: mass of BaC ₂ O ₄ = 225.3 \times 1.74 \times 10 ⁻³ = 0.392 g % Purity of BaC ₂ O ₄ = 100 \times 0.392/0.50 = 78.4	
	M1: $[OH^{-}] = 2 \times 0.12 = 0.24 \text{ (mol dm}^{-3})$ $[H^{+}] = 1 \times 10^{-14}/0.24 = 4.17 \times 10^{-14} \text{ / pOH} = -\log(0.24)$ OR 0.62	2
3.	M2: pH = $-\log[H^+]$ = 13.4 OR pH = 14 $-$ 0.6 = 13.4 simple molecular/simple covalent	 1
	weak London forces / id-id forces / VDW forces or London forces / id-id forces / VDW forces AND small amount of energy to break	1
	$\begin{array}{c} SiCl_4 + 2H_2O \rightarrow SiO_2 + 4HCl \\ or SiCl_4 + 4H_2O \rightarrow Si(OH)_4 + 4HCl \end{array}$	1
	white solid	1
	steamy fumes / white fumes / misty fumes	1
	moles of SiC l ₄ = 0.8505 / 170.1 = 0.005	1
	conc of H^+ (0.005) × 4 / 0.8 = 0.025	1
	pH = -log(0.025) = 1.6	1
	-225.7 = 239.0 - (18.7 + 2x)	1
	x = +223	1
	decrease in number of moles of gas /more moles of gas on left / reactants (ora)	1
	use of $\Delta G = \Delta H - T\Delta S$ with $\Delta G = 0/\Delta G > 0$ or $T = \Delta H/\Delta S$ or $T = (640000/225.7)$	1
	2836 / 2840 (2835.6)	1

4.	M1: correct use of stoichiometry	2
4.		
	M2 : answer + 189	
	M1: States or uses correct form of Gibbs equation $\Delta G = \Delta H - T\Delta S$	3
	M2: appreciates / includes $\Delta G = 0$ at temperature required	
	M3: uses 1000 correctly and answer +624(.339)	
	Award 3 marks for correct answer	
5.	negative and decrease in number / amount of gas molecules M1 ΔH_{latt} and ΔH_{hyd} decrease / both become less exothermic / less negative	1 3
	M2 ΔH_{latt} decreases / changes less/becomes less exothermic by a smaller extent OR ΔH_{hyd} decreases / changes more / dominant factor	
	M3 ΔH_{sol} becomes less exothermic / less negative OR ΔH_{sol} becomes (more) endothermic / (more) positive OR $\Delta H_{sol} = \Delta H_{hyd} - \Delta H_{latt}$ expression AND reaction becomes less exothermic	
	Mg: fizzing Ba: (fizzing and) white solid/ppt forms	1
	M1 solubility of BaSO ₄ = $\sqrt{1.08 \times 10^{-10}}$ = 1.04 × 10 ⁻⁵ (mol dm ⁻³)	2
	$M2 = 1.04 \times 10^{-5} \times 233.4 / 10 = 2.43 \times 10^{-4}$ (g per 100 cm ³ of solution) min 2sf	
	$-1473 = 180 + 503 + 965 + \Delta H^{e_{f}} - 2469$	3
	$\Delta H^{e_{f}}$ of SO ₄ ²⁻ (g) = -652 kJ mol ⁻¹	
	M1 correct five values used [1] M2 only correct five values used [1] M3 correct signs and evaluation [1]	
	 BaSO₄ is more negative/bigger as Ba²⁺ is smaller OR Ba²⁺ has a larger charge stronger force of attraction between the ions 	2
	One mark for two correct Two marks for all three correct	
	M1 $\Delta G^{\circ} = 0$ so T = $\Delta H_{i}^{\circ} / \Delta S^{\circ}$	2
	M2 T = 132 / 0.616 = 214.3 K T = -58.7 °C min 2sf	
	M1 $\Delta S^{\circ} = (203 + (70 \times 8) + (2 \times 192)) - (427 - (2 \times 95)) = +530 \text{ J K}^{-1} \text{ mol}^{-1}$	3
	$\mathbf{M2} \ \Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	
	M3 $\Delta G^{\circ} = 133 - (298 \times 0.530) = -24.9 \text{ kJ mol}^{-1} \text{ ecf 1dp min}$	

6.

7.

	$K_{sp} = [Ag^{+}]^{2}[S^{2-}]$					1	
	 [S²⁻] = 1.16 × 10⁻¹⁷ [Ag⁺] = 2.32 × 10⁻¹⁷ 					2	
• $K_{sp} = 6.2(4) \times 10^{-51}$ minimum 2 sig. fig.							
correct answer scores 2 marks Award 1 mark for two points, award 2 marks for three points							
M1 : moles Ag ₂ S = 1 / 247.9 = 0.00403 moles [1] 2sf min						2	
	M2 : $1.16 \times 10^{-17} = 0.0040 / V$ so $V = 3.5 \times 10^{14} (dm^3)$ [1] 2s						
correct answer scores 2 marks							
M1 : $[H^+] = \sqrt{2.0 \times 10^{-9} \times 0.20}$ $[H^+] = 2.0 \times 10^{-5} (1.9976 \times 10^{-5})$						2	
M2: pH = 4.7 (4.699) minimum 2 sig. fig. min							
	correct answer scores 2 marks						
	M1: Both equilibria correctly stated moles KOH = $0.005 \times 0.2 = 1 \times 10^{-3}$ moles HOBr(initial) = $0.020 \times 0.2 = 4 \times 10^{-3}$ moles HOBr(eqm) = $4 \times 10^{-3} - 1 \times 10^{-3} = 3 \times 10^{-3}$ moles BrO (eqm) = 1×10^{-3}					2	
M2 : ratio [OBr-]/[HOBr] = 1/3 [H ⁺] = $3 \times 2.0 \times 10^{-9}$ = 6×10^{-9} pH = 8.2(2)							
	correct answer scores 2 marks	1			1	1	
I	energy change alway positiv		always negative	either negative or positive		•	
	bond energy ✓						
	enthalpy of formation			✓			
	both ticks correct						
	(energy change) when 1 mole of gaseous atoms are formed (from an element in its standard state)					3	
	$Br_2(I)$ $\xrightarrow{2 \Delta H_{at}}$ $2Br(g)$	$2\Delta H_{at}$ 2Br(a)					
	1						
	ΔH _{vap} Bond energy (Br-Br)						
	Br ₂ (g)						
	M1: correct cycle: formulae and state symbols						
	M2 : use of 1 \times 193 and 2 \times (112)						
M3: for the correct sum and answer ecf from M2							
ΔH^{o}_{vap} (= (2 × 112) – (193)) = +31 kJ mol ⁻¹ [scores M2 and M3]						1	
	more endothermic and greater Van der Waals / London / induced dipole-dipole forces both (energy change) when 1 mole of gaseous ions is dissolved in (an excess of) water						
M1: Br has a smaller ionic radii						2	
M2: stronger (ion-dipole) attractions with water molecules							
						l	

	Cambridge Assessment International Education [Alpha Testing] QP Generator Written by	Justi
8.	a measure / degree of disorder / randomness of a system	1
	M1: negative – molecules have less energy in the system	3
	M2: positive – solid being converted into an aqueous solution	
	M3: negative – gaseous ions being converted into a solid	
	(standard) Gibbs free energy <u>change</u>	1
	M1: $(\Delta)G = \Delta H - T\Delta S$	2
9.	M2: description of calculating the minimum value of T for which ΔG is zero / becomes negative OR T = ΔH / ΔS [1] M1: Mg – white flame and Sr – red flame	2
	M2: white solid product once	
		2
	M2: all state symbols	
	neutralises acid / raises pH	1
	M1: ΔH_{lat} and ΔH_{hyd} decrease down group	3
	M2: ∆H _{lat} decreases / changes more	
	M3: ΔH _{sol} becomes more exo / more –ve / less endo / less +ve	
	no change (for hydroxide) / colourless solution white (for sulfate)	2
	white (for sulfate)precipitate (for sulfate)	
	Award 1 mark for two points, award 2 marks for all three points	
	M1: stability increases / higher T needed for decompose	3
	M2: larger ionic radius	
10	M3: harder to distort / polarise anion / carbonate ion or harder to polarise / weaken C–O or C=O bond. M1 solubility increases down the group	4
	M2 ΔH_{latt} and ΔH_{hyd} both become less exothermic / less negative	
	M3 ΔH_{latt} changes more (than ΔH_{hyd} as OH ⁻ being smaller than M ²⁺)	
	M4 $\Delta H_{\rm sol}$ becomes more exothermic / more negative	
	M1 Mg(OH) ₂ AND Mg ²⁺ has a smaller ionic radii/ Mg ²⁺ has a higher charge density	2
	M2 OH ⁻ ion is polarised/distorted more	

Answer	Marks
000 + 041+ + 04 > 011 0 + 0110	