Title	RFID Data - GS1 - DATA - ENCODING - DECODING Procedure
Prepared By	K.Mohamed illyas
Version	V1.0
Date	19-10-2022

Decathlon Garment RFID data GS1 Standard data - Decoding Procedure

Garment Tag (GTIN14): (01) 03608449916578(21) 001455109327

Corresponding Hex when scanned this tag using rfid reader :34003039606303C86A4056BB34CF

Decoding Procedure:

Filter first 4 digit (PC + CR)

Hex value to be converted: 3039606303C86A4056BB34CF

Header ==== 0011 0000 - 8bit

filter ==== 001 - 3 bit

partition === 110 - 3 bit

GS1 comapny ==== 0101 1000 0001 1000 1100 - 20 bit === Binary to decimal----> 360844 --- 6digit

Item ===== 0000 1111 0010 0001 1010 1001 - 24 bit ==== Binary to decimal -----> 991657 - A zero to be added infront for 7 digit ---0991657

Now concatenate values as below:

360844.0991657.1455109327

Then 360844.0991657.1455109327

0360844991657.1455109327

Now need to find the check sum for GTIN 14

	0	3	6	0	8	4	4	9	9	1	6	5	7
Step1: Multiply	x	x	х	x	x	x	х	х	x	x	x	x	x
	3	1	3	1	3	1	3	1	3	1	3	1	3
Step 2	0	3	18	0	24	4	12	9	27	1	18	5	21

Total sum = 142

Step 3 : Subtract the sum from nearest equal or higher multiple of ten = 150 - 142 = 8

Check sum = 8

Add (01) – GS1 application identifier for GTIN 14 ;;;; (21) - GS1 application identifier for serial number

Finally Tag will (01) 03608449916578(21) 001455109327.

<u>Decathlon Component</u> RFID data GS1 Standard data – Encoding Procedure

Component Tag Formation by GS1 – GTIN14 Standard: Ex: (01)02112345670003(21)00000000001

GS1 application identifier for GTIN 14 - (01) - Default

EAN13 Prefix - 021 - Default

Component Item code – 1234567

Complettion status – 000

check sum -3

GS1 application identifier for serial number - (21) - Default

Serial Number - 00000000001

Check digit calculation:

		0	2	1	1	2	3	4	5	6	7	0	0	0
St	tep1 :	х	х	х	х	х	х	х	х	х	x	х	х	х
		3	1	3	1	3	1	3	1	3	1	3	1	3
St	tep 2	0	2	3	1	6	3	12	5	18	7	0	0	0

Total sum = 57

Step 3 : Subtract the sum from nearest equal or higher multiple of ten = 60 - 57 = 3

Check sum = 3

Step 1: Parse data for EPC Pure Identity URI Generation

Parse the Data as Below for GS1 Element string to EPC Pure Identity URI Generation :

(01)02112345670003(21)000000000001

Step 2 : EPC Pure Identity URI Generation format

EPC storage bit = 96 - Default

Filter value = 3 (reserved)

EPC Pure Identity URI Generation format: Epcbit .filter.GS1 comapny prefix.Item ref indicator.Serial

Now align the above data as in EPC URI: 96:3: 211234.0567000.1

Step 3: EPC Tag URI TO EPC Binary Encoding format

Important Point to Note:

```
Header ==== 8bit

filter ==== 3 bit

partition === 3 bit

GS1 comapny ==== 20 bit - 6 digit

Item ===== 24 bit - 7 digit

Serial no ===== 38 bit - 12 digit
```

Header	Filt	partition	GS1 Company prefix (20 bit)	Item / indicator (24 bit)	Serial (38bit)
	er				
	3		211234	567000	1
'00110000'	'011	'101'	'00110011100100100010'	'000010001010011011011000'	'00000000000000000000000000000000000000
	'				

Step 3: EPC Binary data concatenation:

Generate EPC Binary by concatenate all the values :

This binary data has to be converted into hex and to be written in the RFID tag.

Step 4: Read the RFID tag in device :

While we scan the tag in RFID reader value shown will be " 3074CE488229B6000000001"

This value is based On Converting the above binary value to Hex:

3074 CE488229B6000000001

Hex to ASCII Text String Converter

Enter hex bytes with any prefix / postfix / delimiter and press the $\it Convert$ button (e.g. 45 78 61 6d 70 6C 65 21):

Value will be encoded and Ascii value can't be found .

Check sum calculation procedure:

The fellowing table sives an eventale to illustrate

The following table gives an example to illustrate how a GTIN-13 Check Digit is calculated:

