HSE FCS SE Calculus-1 2023-2024

Lecturer: Ivan Erlikh File edited by: vova kormilitsyn

ver. 1.3.1

Contents

1	Логические операции							
	1.1 Высказывания, предикаты и кванторы							
		1.1.1 Определения						
		1.1.2 Правило обращения кванторов						
	1.2	Метод математической индукции						
	1.3	Неравенство Бернулли						
	1.4	Перестановки, размещения, сочетания						
	1.5	Бином Ньютона						
	110							
2	Определения и свойства числовых последовательностей							
	2.1	Определения						
		2.1.1 Числовая последовательность						
		2.1.2 Ограниченная ч.п						
		2.1.3 Неограниченная ч.п						
		2.1.4 Отделимая от нуля ч.п						
		2.1.5 Эпсилон окрестность						
		2.1.6 Сходящаяся ч.п						
		2.1.8 Бесконечно малая ч.п						
	0.0	2.1.9 Связи числовых последовательностей						
	2.2	Теоремы						
		2.2.1 Теорема о предельном переходе в неравенствах						
		2.2.2 Теорема о зажатой последовательности						
		2.2.3 Теорема о свойстве предела б.м. ч.п						
	2.3	Определение монотонности числовой последовательности						
3								
0		ементы теории множеств						
	3.1	Аксиома непрерывности						
	3.2	Определения ограниченных множеств						
	3.3	Определения граней множества						
	3.4	Теорема о существовании точной грани множества						
4	Тоо	рема Вейерштрасса и число е						
4	4.1	Теорема Вейерштрасса						
	4.2	Число Эйлера						
5	Опт	ределения и свойства подпоследовательности и частичного предела 17						
J		Определение подпоследовательности						
		Частичные пределы и предельная точка						
	0.4							
		5.2.1 Определения						
		5.2.2 Теорема об эквивалентности определений						
	۲.۵	5.2.3 Свойства частичных пределов ч.п						
	5.3	Система вложенных отрезков						
	5.4	Теорема Больцано-Вейерштрасса						
	5.5	Дополнительный материал (вне курса)						
		5.5.1 Стягивающая система вложенных отрезков						

		5.5.2	Теорема об общей точке системы вложенных отрезков
6	Фун	ндамен	итальная ч.п. Критерий сходимости ч.п. по Коши
	6.1	Опред	еление фундаментальной ч.п.
	6.2	Крите	рий сходимости ч.п. по Коши
	6.3	Посто	- янная Эйлера-Маскерони
7	Аси	мптот	
	7.1		еления асимптот
	7.2	Призн	ак наклонной асимптоты
8	Опт	релеле:	ние и свойства функции 26
	8.1		еления
	8.2	_	лы
	8.3	_	ма о зажатой функции
	8.4		ій и второй замечательные пределы
	8.5		ма о пределе сложной функции
	8.6	_	мволика
	8.7		рывность функции
		8.7.1	Непрерывность функции в точке
		8.7.2	Свойства непрерывных функций
		8.7.3	Правило замены переменных в пределе сложной функции
		8.7.4	Непрерывность функции на множестве
		8.7.5	Теорема 1 о функции, непрерывной на отрезке
		8.7.6	Теорема 2 о функции, непрерывной на отрезке
		8.7.7	Определение монотонности функции
		8.7.8	Достаточное условие обратимости
		8.7.9	Критерий обратимости функции
		8.7.10	Свойства обратимой функции
		8.7.11	Обратные тригонометрические функции
		8.7.12	Показательная функция
		8.7.13	Логарифмическая функция
		8.7.14	Следствия из 2 замечательного предела
			Показательная функция с вещественным показателем
	8.8	Произ	водная функции
		8.8.1	Определение производной
		8.8.2	Правила подсчёта производных
		8.8.3	Определения дифференцируемости функции
		8.8.4	Определение дифференциала
		8.8.5	Теорема о непрерывности функции, дифференцируемой в точке
		8.8.6	Теорема о дифференцируемости сложной функции
		8.8.7	Теорема о производной обратной функции
		8.8.8	Пример 1
		8.8.9	Пример 2
		8.8.10	Определение локального минимума
		8.8.11	Определение локального максимума
		8.8.12	Определение точки локального экстремума
		8.8.13	Необходимое условие локального экстремума (теорема Ферма)
		8.8.14	Определения касательной к графику функции
		8.8.15	Теорема Ролля
		8.8.16	Теорема Лагранжа
		8.8.17	Теорема-следствие 1
			Теорема-следствие 2
		8.8.19	Теорема-следствие 3
			Теорема Коши
			Теорема о монотонности непрерывно дифференцируемой функции
		8.8.22	Теорема-следствие

9	Инт	егрир	ование функций	54
		8.9.9	Теорема о функции, имеющей ровно n - 1 ненулевых производных	52
		8.9.8	Определение точки убывания	
		8.9.7	Определение точки возрастания	
		8.9.6	Теорема Тейлора с остаточным членом в формуле Лагранжа	51
		8.9.5	Формула Тейлора для экспоненциальной функции	
		8.9.4	Формула Тейлора для экспоненциальной функции	50
		8.9.3	Формула Тейлора для синуса	50
		8.9.2	Формула Тейлора с остаточным членом в форме Пеано	50
		8.9.1	Многочлен Тейлора	49
	8.9	Форму	ула Тейлора	49
		8.8.26	Правило Лопиталя	45
			Теорема о выпуклости и вогнутости функции на интервале	
			Выпуклость и вогнутость функции	
		8.8.23	Достаточное условие экстремума	44

Логические операции

1.1 Высказывания, предикаты и кванторы

1.1.1 Определения

Definition: Высказывания и n-местные предикаты

Высказывание - это упрощённая модель повествования предложения, такая что каждое высказывание либо истинно, либо ложно, но не одновременно

n-местные предикат (n-арный предикат) - это выражение, которое превращается в высказывание, если в нём заменить $x_1, x_2, ..., x_n$ на подходящие имена, где $x_1, x_2, ..., x_n$ - переменные в предикате

Definition: Логические операции

Отрицание: $\bullet \neg A$ (также обозначают \overline{A}) означает "не A"

Логическое и: • $A \wedge B$ означает "верно A и верно B"

Логическое или: • $A \lor B$ означает "верно A, или верно B, или верны A и B вместе"

Исключающее или: • $A \oplus B$ означает "верно ровно одно из высказываний A, B"

Импликация: $\bullet A \Longrightarrow B$ означает "если верно A, то верно B"

 Θ квивалентность: $\bullet A \iff B$ означает "A верно тогда и только тогда, когда верно B"

Note

Пусть $A \Longrightarrow B$

Если A верно, то B тоже верно, но если A ложно, то B может быть и истинным, и ложным

Пусть $A \iff B$

Если A ложно, то ложно B. Если B верно, то верно A

\mathbf{Note}

Логические операции можно выражать через другие логические операции, например,

 $(A \Longrightarrow B) \Longleftrightarrow (\neg A \lor B)$

Definition: Кванторы

Квантор всеобщности обозначается как \forall и означает "для любого"

Квантор существования обозначается как В и означает "существует"

Квантор едиственности обозначается как! и означает "едиственный, такой что ..."

Example

Всеобщность: • $\forall x \in \mathbb{R} : \phi(x)$ означает

"Для любого х из \mathbb{R} выполняется предикат $\phi(x)$ "

Существование: • $\exists x (x \in \mathbb{Q} \implies \psi(x))$ означает

"Существует x, такой что если x из \mathbb{Q} , то выполняется предикат $\psi(x)$ "

Единственность: • $\forall n \in \mathbb{N} \exists ! k \in \mathbb{N} \cup \{0\} : 2^k \le n < 2^{k+1}$ означает

"Для любого натурального числа существует и едиственно такое

целое неотрицательное число k, что $2^k \le n < 2^{k+1}$ "

Note

На практике квантор едиственности часто используется вместе с квантором существования т.е. часто используют связку ∃!, "существует и единственно"

Note |

Вместо "¬∃" пишут "∄"

1.1.2 Правило обращения кванторов

Claim Правило обращения кванторов

При обращении кванторов квантор существования меняется на квантор всеобщности, квантор всеобщности меняется на квантор существования, а утверждение под кванторами меняется на противоположное

Example

Пусть дано высказывание:

$$\forall n \in \mathbb{N} \exists m_1 \in \mathbb{Z} \exists m_2 > m_1 \, \forall q \in \mathbb{Q} : |m_1| > n \land \neg \psi(q \cdot m_1 \cdot m_2 - n)$$

Тогда отрицание к этому высказыванию будет:

 $\exists n \in \mathbb{N} \ \forall m_1 \in \mathbb{Z} \ \forall m_2 > m_1 \ \exists q \in \mathbb{Q} : |m_1| \le n \lor \psi(q \cdot m_1 \cdot m_2 - n)$

1.2 Метод математической индукции

Claim Метод математической индукции

Пусть есть предикат $\phi(n)$, который выполняется или не выполняется при различных $n \in \mathbb{N}$

Тогда, если $\exists k \in \mathbb{N} : \phi(k)$ и $\forall n \geq k : (\phi(n) \implies \phi(n+1))$, то по методу математической индукции получаем $\forall n \geq k : \phi(n)$

Этапы доказательства:

База индукции: • Проверка истинности $\phi(k)$

Предположение индукции: • Пусть для некоторого $n \in \mathbb{N} \land n \ge k$ верно $\phi(n)$

Шаг индукции: • Докажем, что $\phi(n+1)$, используя предположение индукции

Вывод: • $\forall n \geq k : \phi(n)$

1.3 Неравенство Бернулли

Theorem Неравенство Бернулли

Если $n \in \mathbb{N}$ и $x \ge -1$, то $(1+x)^n \ge 1+xn$

Докажем неравенство при помощи метода математической индукции

1. База индукции:

Пусть
$$n = 1 \implies (1 + x)^n = 1 + x \ge 1 + x$$

2. Предположение индукции:

Пусть для некоторого $n \ge 1$ верно, что $(1+x)^n \ge 1 + xn$

3. Шаг индукции: Рассмотрим неравенство, подставив в него n+1:

$$(1+x)^{n+1} = (1+x)^n \cdot (1+x)$$

$$1 + x \ge 0 \implies (1 + x)^n \cdot (1 + x) \ge (1 + xn) \cdot (1 + x) = 1 + xn + x + n \cdot x^2 \ge 1 + nx + x = 1 + n(x + 1)$$

Следовательно, $(1+x)^{n+1} \ge 1 + n(x+1)$

4. Обозначим доказываемое как предикат $\phi(n)$, тогда получаем:

$$\phi(1) \land \forall n \in \mathbb{N} : (\phi(n) \implies \phi(n+1))$$

Тогда по принципу математической индукции $\forall n \in \mathbb{N} : \phi(n)$

1.4 Перестановки, размещения, сочетания

Definition: Перестановки, размещения и сочетания

Пусть дано множество из *п* элементов

 \bullet Если все элементы попарно различны (т.е. при решении задачи мы считаем, что два любых элемента множества различны), то количество попарно различных перестановок этого множества обозначается как P_n и равно n!

Пусть зафиксировано $k \in \mathbb{N} \cup \{0\}$, такое что $k \le n$, тогда:

- Количество количество способов, которыми мы можем выбрать k-элементное подмножество данного множества, считая, что элементы попарно различны, обозначается как A_n^k и равно $\frac{n!}{(n-k)!}$
- Количество количество способов, которыми мы можем выбрать k-элементное подмножество данного множества, считая, что все элементы попарно равны, обозначается как C_n^k и равно $\frac{n!}{k!(n-k)!}$

\mathbf{Note}

Пусть есть есть конечная последовательность из n натуральных чисел от 1 до n (кортеж из n элементов от 1 до n)

Тогда количество различных перестановок элементов кортежа равно $P_n = n!$

Количество способов выбрать k чисел из кортежа, считая их перестановки различными, равно $A_n^k = \frac{n!}{(n-k)!}$ Количество способов выбрать k чисел из кортежа, считая, что все перестановки одного набора - это один способ, равно $C_n^k = \frac{n!}{k!(n-k)!}$

Пусть $\sigma = (1, 2, 3, 4)$ - данный кортеж, тогда есть $P_4 = 24$ различных перестановок σ :

$$(1, 2, 3, 4), (1, 2, 4, 3), (1, 3, 2, 4), (1, 3, 4, 2), (1, 4, 2, 3), (1, 4, 3, 2)$$

$$(2,1,2,4),(2,1,4,2),(2,3,1,4),(2,3,4,1),(2,4,1,3),(2,4,3,1)$$

$$(3,1,2,4),(3,1,4,2),(3,2,1,4),(3,2,4,1),(3,4,1,2),(3,4,2,1)$$

$$(4,1,2,3), (4,1,3,2), (4,2,1,3), (4,2,3,1), (4,3,1,2), (4,3,2,1)$$

Для k=2 есть $A_4^2=12$ способ выбрать кортеж из 2 элементов:

$$(3,1), (3,2), (3,4), (4,1), (4,2), (4,3)$$

Для k=2 есть $C_4^2=6$ способ выбрать подмножество из 2 элементов (порядок элементов не важен):

1.5 Бином Ньютона

Theorem Бином Ньютона

 $(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$ (формально, перед равенством необходимо написать $\forall a,b \in \mathbb{R} \forall n \in \mathbb{N}$)

Proof:

Докажем это утверждение при помощи метода математической индукции

1. База индукции:
$$n=1 \implies (a+b)^n = a+b = \sum_{k=0}^1 C_n^k a^k b^{n-k}$$

2. Предположение индукции: пусть для некоторого
$$n \ge 1$$
 : $(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$

3. Рассмотрим равенство и докажем, что оно верно при подстановке n+1 :

$$(a+b)^{n+1} = (a+b)(a+b)^{n} = (a+b)\sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n-k} =$$

$$= a\sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n-k} + b\sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n-k} = \sum_{k=0}^{n} C_{n}^{k} a^{k+1} b^{n-k} + \sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n+1-k}$$

$$= \sum_{k=1}^{n+1} C_{n}^{k-1} a^{k} b^{n-(k-1)} + \sum_{k=0}^{n} C_{n}^{k} a^{k} b^{n+1-k} = C_{n}^{n} a^{n+1} b^{0} + \sum_{k=1}^{n} C_{n}^{k-1} a^{k} b^{n+1-k} + C_{n}^{0} a^{0} b^{n+1} \sum_{k=1}^{n} C_{n}^{k} a^{k} b^{n+1-k} =$$

$$= a^{n+1} + b^{n+1} + \sum_{k=1}^{n} (C_{n}^{k-1} + C_{n}^{k}) a^{k} b^{n+1-k} = C_{n+1}^{n+1} a^{n+1} + C_{n+1}^{0} b^{n+1} + \sum_{k=1}^{n} C_{n+1}^{k} a^{k} b^{n+1-k} =$$

$$= \sum_{k=0}^{n+1} C_{n+1}^{k} a^{k} b^{n+1-k}$$

$$= \sum_{k=0}^{n+1} C_{n+1}^{k} a^{k} b^{n+1-k}$$

4. Получили:

Равенство верно при n=1, а из верности равенства для n следует верность равенства для n+1 (при $n \ge 1$), тогда по методу математической индукции получим, что равенство верно $\forall n \in \mathbb{N}$

Определения и свойства числовых последовательностей

2.1 Определения

2.1.1 Числовая последовательность

Definition: Числовая последовательность

Числовая последовательность - это счётно бесконечный проиндексированный набор чисел

2.1.2 Ограниченная ч.п.

Definition: Ограниченная сверху числовая последовательность

Числовая последовательность $\{a_n\}$ называется ограниченной сверху, если $\exists C \in \mathbb{R} \ \forall n \in \mathbb{N}: a_n < C$

Definition: Ограниченная снизу числовая последовательность

Числовая последовательность $\{a_n\}$ называется ограниченной снизу, если $\exists C \in \mathbb{R} \ \forall n \in \mathbb{N}: a_n > -C$

Definition: Ограниченная числовая последовательность

Числовая последовательность $\{a_n\}$ называется ограниченной, если $\exists C>0 \ \forall n\in \mathbb{N}: |a_n|< C$

Note

Числовая последовательность ограничена 👄 она ограничена сверху и ограничена снизу

2.1.3 Неограниченная ч.п.

Definition: Неограниченная числовая последовательность

Числовая последовательность $\{a_n\}$ называется неограниченной, если она не является ограниченной, то есть

 $\forall C > 0 \,\exists n \in \mathbb{N} : |a_n| \ge C$

2.1.4 Отделимая от нуля ч.п.

Definition: Отделимая от нуля числовая последовательность

Числовая последовательность $\{a_n\}$ называется отделимой от нуля, если $\exists \varepsilon > 0 \, \forall n \in \mathbb{N}: |a_n| > \varepsilon$

2.1.5 Эпсилон окрестность

Definition: Эпсилон окрестность

Эпсилон окрестностью вещественного числа x_0 (элемента поля вещественных чисел) называется множество $(x_0-\varepsilon;x_0+\varepsilon)$ и обозначается $U_\varepsilon(x_0)$. Обычно говорят "Эпсилон окрестность точки x_0 "

Example

$$U_1(\pi) = (\pi - 1; \pi + 1)$$

 $U_e(e) = (0; 2e)$

Definition: Проколотая эпсилон окрестность

Проколотой эпсилон окрестностью вещественного числа x_0 (элемента поля вещественных чисел) называется множество $(x_0 - \varepsilon; x_0 + \varepsilon) \setminus \{x_0\}$ и обозначается $\dot{U}_{\varepsilon}(x_0)$.

Обычно говорят "Проколотая эпсилон окрестность точки x_0 "

Example

$$\dot{U}_1(e) = (e-1; e+1) \setminus \{e\} = (e-1; e) \cup (e; e+1)$$

2.1.6 Сходящаяся ч.п.

Definition: Сходящаяся числовая последовательность

Числовая последовательность называется сходящейся, если она имеет конечный предел при $n \to +\infty$, т.е. ч.п. $\{a_n\}$ называется сходящейся, если $\exists \lim_{n \to +\infty} a_n = A \in \mathbb{R}$, то есть по определению

$$\exists A \in \mathbb{R} \, \forall \varepsilon > 0 \, \exists N = N(\varepsilon) \forall n > N : |a_n - A| < \varepsilon$$

 \mathbf{Note}

Сходящаяся ч.п. является ограниченной

Note

Неравенство $|a_n - A|$ < ε равносильно тому, что a_n ∈ $U_ε(A)$

2.1.7 Бесконечно большая ч.п.

Definition: Бесконечно большая числовая последовательность

Числовая последовательность $\{a_n\}$ называется бесконечно большой, если она стремится к $+\infty$, к $-\infty$ или к ∞ при $n \to +\infty$, т.е.

- $\lim_{n \to +\infty} a_n = +\infty \iff \forall M > 0 \,\exists N = N(M) \forall n > N : a_n > M$
- $\lim_{n \to +\infty} a_n = -\infty \iff \forall M > 0 \,\exists N = N(M) \forall n > N : a_n < -M$
- $\bullet \ \lim_{n \to +\infty} a_n = \infty \iff \forall M > 0 \, \exists N = N(M) \forall n > N : |a_n| > M$

2.1.8Бесконечно малая ч.п.

Definition: Бесконечно малая числовая последовательность

Числовая последовательность $\{a_n\}$ называется бесконечно малой, если она стремится к 0 при $n \to \infty$

 $\forall \varepsilon > 0 \exists N = N(\varepsilon) \forall n > N : |a_n| < \varepsilon$

2.1.9Связи числовых последовательностей

Note

Связи числовых последовательностей:

- $\frac{1}{6.6.} = 6.M.$ $\frac{1}{6.M.} = 6.6.$ $\frac{1}{\text{ограниченная}} = \text{отделимая от нуля}$
- $\frac{1}{\text{отделимая от нуля}} = \text{ограниченная}$

Note

Если ч.п. сходится или является б.б., то предел единственный

Proposition Докажите по определению, что

(ограниченная ч.п.) + (ограниченная ч.п.) = ограниченная ч.п.

б.м + б.м. = б.м.

б.м. \cdot (ограниченная ч.п.) = б.м. $\frac{\text{отделимая от нуля ч.п.}}{\text{ограниченная ч.п.}}$ = ограничена ч.п.

Proposition Приведите пример, когда

(отделимая от нуля ч.п.) + (отделимая от нуля ч.п.) = (отделимая от нуля ч.п.)

(отделимая от нуля ч.п.) + (отделимая от нуля ч.п.) = б.м.

6.6 + 6.6 = 6.6.

6.6 + 6.6 = 6.M.

6.6 + 6.6 = (ограниченная ч.п.)

6.6 + 6.6 = (отделимая от нуля ч.п.)

2.2Теоремы

2.2.1Теорема о предельном переходе в неравенствах

Theorem Teopema: свойство предельного перехода в неравенствах

$$(\exists N \in \mathbb{N} \, \forall n \geq N : c_n > A) \wedge (\lim_{n \to \infty} c_n = C) \implies C \geq A$$

1. Распишем, что дано, по определению:

$$\forall \varepsilon > 0 \exists N_1(\varepsilon) \forall n > N_1(\varepsilon) : |c_n - C| < \varepsilon$$

Это равносильно
$$\forall \varepsilon > 0 \exists N_1(\varepsilon) \forall n > N_1(\varepsilon) : C - \varepsilon < c_n < C + \varepsilon$$

$$\exists N \in \mathbb{N} \, \forall n \geq N : c_n > A$$

2. Для любого ε рассмотрим $M(\varepsilon) = \max(N_1(\varepsilon), N) + 1$

Тогда
$$\forall \varepsilon > 0 \exists M(\varepsilon) = \max(N_1(\varepsilon), N) + 1 \, \forall n > M : (C - \varepsilon < c_n < C + \varepsilon \wedge c_n > A)$$

Следовательно,
$$\forall \varepsilon > 0 \exists M(\varepsilon) \forall n > M : C + \varepsilon > A$$

Выражение под кванторами не зависит от M и $n \implies \forall \varepsilon > 0 : C + \varepsilon > A$

3. Предположим от противного, что C < A

Положим
$$\varepsilon := \frac{A-C}{2} > 0 \implies C+\varepsilon = C+\frac{A-C}{2} = \frac{A+C}{2} < A$$

Получили, что $\exists \varepsilon > 0: C + \varepsilon < A \implies \widehat{\mathbb{W}} \implies$ предположение, что C < A, неверно $\implies C \geq A$

2.2.2 Теорема о зажатой последовательности

Theorem Теорема о зажатой последовательности (о 2 миллиционерах / 2 полицейских / гамбургерах)

$$a_n,b_n,c_n$$
 - числовые последовательности $\lim_{n\to\infty}a_n=X$ $\lim_{n\to\infty}b_n=X$ $\exists N\in\mathbb{N}\ \forall n\geq N: a_n\leq c_n\leq b_n$ $\Longrightarrow\lim_{n\to\infty}c_n=X$

Proof:

Докажем для случая, когда $X \in \mathbb{R}$. При $X \in \overline{\mathbb{R}} \setminus \mathbb{R}$ доказательство проводится аналогично

1. Распишем по определению пределы.

$$\forall \varepsilon > 0 \,\exists N_1(\varepsilon) \,\forall n > N_1(\varepsilon) : X - \varepsilon < a_n < X + \varepsilon$$

$$\forall \varepsilon > 0 \,\exists N_2(\varepsilon) \,\forall n > N_2(\varepsilon) : X - \varepsilon < b_n < X + \varepsilon$$

Рассмотрим $N_3(\varepsilon) = \max(N_1(\varepsilon), N_2(\varepsilon), N)$, тогда

$$\forall \varepsilon > 0 \,\exists N_3(\varepsilon) \,\forall n > N_3(\varepsilon) : X - \varepsilon < a_n \le c_n \le b_n < X + \varepsilon$$

$$\implies \forall \varepsilon > 0 \,\exists N_3(\varepsilon) \,\forall n > N_3(\varepsilon) : X - \varepsilon < c_n < X + \varepsilon$$

2.2.3 Теорема о свойстве предела б.м. ч.п.

Theorem Теорема о свойстве предела б.м. ч.п.

если $a \in \mathbb{R}$, то

$$\lim_{n\to\infty} a_n = a \iff a_n = a + \alpha_n$$
, где α_n - б.м. ч.п.

$$"\Longrightarrow"$$

Распишем по определению, что дано:

$$\lim_{n \to \infty} a_n = a \iff \forall \varepsilon > 0 \, \exists N(\varepsilon) \, \forall n > N(\varepsilon) : |a_n - a| < \varepsilon$$

Обозначим ч.п. $\alpha_n = a_n - a$, тогда $a_n = a + \alpha_n$

Тогда:
$$\forall \varepsilon > 0 \,\exists N(\varepsilon) \,\forall n > N(\varepsilon) : |\alpha_n| < \varepsilon$$

Доказали, что
$$a_n = a + \alpha_n$$
, где α_n - б.м. ч.п.

Распишем то, что α_n - б.м., по определению:

$$\lim_{n \to \infty} a_n = a \iff \forall \varepsilon > 0 \, \exists N(\varepsilon) \, \forall n > N(\varepsilon) : |\alpha_n| < \varepsilon$$

По условию $a_n = a + \alpha_n$, тогда $a_n - a = \alpha_n$, подставим в выражение под кванторами:

$$\forall \varepsilon > 0 \,\exists N(\varepsilon) \,\forall n > N(\varepsilon) : |a_n - a| < \varepsilon$$

Доказали по определению, что $\lim_{n\to\infty}a_n=a$

2.3 Определение монотонности числовой последовательности

Definition: Монотонность ч.п.

- Ч.п. $\{a_n\}$ называется строго возрастающей, если $\forall n \in \mathbb{N}: a_{n+1} > a_n$
- Ч.п. $\{a_n\}$ называется строго убывающей, если $\forall n \in \mathbb{N}: a_{n+1} < a_n$
- Ч.п. $\{a_n\}$ называется неубывающей, если $\forall n \in \mathbb{N} : a_{n+1} \geq a_n$
- Ч.п. $\{a_n\}$ называется невозрастающей, если $\forall n \in \mathbb{N} : a_{n+1} \leq a_n$

Элементы теории множеств

3.1 Аксиома непрерывности

Claim Аксиома непрерывности действительных чисел (принцип полноты)

$$\begin{array}{l} A\subseteq\mathbb{R} \\ A\neq\varnothing \\ B\subseteq\mathbb{R} \\ B\neq\varnothing \\ \forall a\in A\ \forall b\in B: a\leq b \end{array} \right\} \implies \exists c\in\mathbb{R}\ \forall a\in A\ \forall b\in B: a\leq c\leq b$$

3.2 Определения ограниченных множеств

Definition: Ограниченное сверху множество

Подможество $A \subseteq \mathbb{R}$ называется ограниченным свеху, если $\exists C \in \mathbb{R} \ \forall a \in A : a \leq C$

Definition: Ограниченное снизу множество

Подможество $A \subseteq \mathbb{R}$ называется ограниченным снизу, если $\exists C \in \mathbb{R} \ \forall a \in A : a \geq C$

Definition: Ограниченное множество

Подможество $A \subseteq \mathbb{R}$ называется ограниченным, если $\exists C > 0 \, \forall a \in A : |a| \leq C$

3.3 Определения граней множества

Definition: Определение верхней грани множества

Пусть дано множество $A \subset \mathbb{R} \land A \neq \emptyset$. Тогда верхней гранью множества A называют число $c \in \mathbb{R}$, такое что $\forall a \in A : a \leq c$

Definition: Определение нижней грани множества

Пусть дано множество $A \subset \mathbb{R} \land A \neq \emptyset$. Тогда нижней гранью множества A называют число $c \in \mathbb{R}$, такое что $\forall a \in A : a \geq c$

Definition: Определение точной верхней грани множества

Пусть дано множество $A \subset \mathbb{R} \land A \neq \emptyset$. Тогда точной верхней гранью множества A называют наименьший элемента множества всех верхних граней множества A и обозначают $\sup A$

Definition: Определение точной нижней грани множества

Пусть дано множество $A \subset \mathbb{R} \land A \neq \emptyset$. Тогда точной нижней гранью множества A называют наибольший элемента множества всех нижней граней множества A и обозначают inf A

\mathbf{Note}

Вообще говоря, наименьшый и наибольший элементы множества не всегда существуют. Например, у множества (0;1) нет ни наименьшего, ни наибольшего элементов, при этом $\sup(0;1)=1 \notin (0;1)$, $\inf(0;1)=0 \notin (0;1)$

3.4 Теорема о существовании точной грани множества

Theorem Теорема о существовании точной грани множества

Если множество $A \subset \mathbb{R}$, $A \neq \emptyset$ ограничено сверху, то $\exists \sup A$ Если множество $A \subset \mathbb{R}$, $A \neq \emptyset$ ограничено снизу, то $\exists \inf A$

Proof: Докажем для верхней грани, для нижней грани доказательство аналогично

$$A \subseteq \mathbb{R} \land A \neq \emptyset \land (\exists C > 0 \, \forall a \in A \implies a < C) \implies \exists \sup A$$

- 1. Обозначим $S_A = \{c \in \mathbb{R} | \forall a \in A \implies a \leq c\} \neq \emptyset$ множество верхних граней Это множество не пусто, т.к. A ограничено по условию, т.е. $\exists c > 0 \ \forall a \in A \implies a \leq c$
- 2. По построению множества A и S_A удовлетворяют аксиоме непрерывности действительных чисел, тогда $\exists b \in \mathbb{R} \ \forall a \in A \ \forall c \in S_A \implies a \leq b \leq c$ Но из $b \leq c \implies b \in S_A$, при этом ($\forall c \in S_A \implies b \leq c$), следовательно, b является наименьшим элементом множества верхних граней множества A, тогда по определению точной верхней грани $b = \sup A$

Теорема Вейерштрасса и число е

4.1 Теорема Вейерштрасса

```
Theorem Теорема Вейерштрасса (о существовании предела ч.п.)
Если ч.п. \{a_n\} неубывает и ограничена сверху, то она сходится
Если ч.п. \{a_n\} невозрастает и ограничена снизу, то она сходится
Proof: Докажем для неубывающей ч.п., для невозрастающей ч.п. доказательство аналогично
1. Обозначим множество значений ч.п. A = \{a_n\}
T.к. a_n - числовая последовательность, то множество A счётно или конечно
(т.е. существует инъекция между A и \mathbb{N}, A \lesssim \mathbb{N})
Также A \neq \emptyset и множество A ограничено сверху \implies по теореме о существовании
точной верхней грани \exists \sup A = a
2. Докажем, что \lim_{n\to+\infty} a_n = a, т.е. \forall \varepsilon \exists N = N(\varepsilon) \forall n > N(\varepsilon) : |a_n - a| < \varepsilon
a_n неубывает и ограничена сверху a \implies |a_n - a| = a - a_n, тогда
|a_n - a| < \varepsilon \iff a - a_n < \varepsilon \iff a_n > a - \varepsilon
{
m T. k.} последовательность a_n неубывает, то следующие 2 высказывания равносильны:
\forall \varepsilon \, \exists N = N(\varepsilon) \, \forall n > N(\varepsilon) : a_n > a - \varepsilon \, (\#)
\forall \varepsilon \exists N = N(\varepsilon) : a_N > a - \varepsilon  (*)
3. Докажем второе высказывание (*) методом от противного.
Предположим, что \exists \varepsilon_0 \forall n \in \mathbb{N} : a_n \leq a - \varepsilon_0
Тогда число a - \varepsilon_0 - верхняя грань множества A, но a само является точной
верхней гранью, но a - \varepsilon_0 < a \implies \bot \implies неверно предположение, что
высказывание (*) неверно \implies высказывание (#) верно
```

4.2 Число Эйлера

Definition: Число е

Рассмотрим ч.п. $a_n = (1 + \frac{1}{n})^n$ Докажем, что у ч.п. есть конечный предел и обозначим его e

Proof: 1. Докажем, что a_n ограничена сверху числом 3

$$a_{n} = \sum_{k=0}^{n} C_{n}^{k} \left(\frac{1}{n}\right)^{k} = 1 + C_{n}^{1} \cdot \frac{1}{n} + C_{n}^{2} \cdot \frac{1}{n^{2}} + \dots + C_{n}^{n} \frac{1}{n^{n}} =$$

$$= 1 + \frac{n}{1!} \frac{1}{n} + \frac{n(n-1)}{2!} \frac{1}{n^{2}} + \frac{n(n-1)(n-2)}{3!} \frac{1}{n^{3}} + \dots + \frac{n(n-1)(n-2) \cdot \dots \cdot 2 \cdot 1}{1 \cdot 2 \cdot \dots \cdot (n-1)n} \frac{1}{n^{n}} =$$

$$= 1 + \frac{1}{1!} + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdot \dots \cdot \left(1 - \frac{n-1}{n}\right) \le$$

$$\leq 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \le 1 + \frac{1}{1!} + \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1) \cdot n} =$$

$$= 2 + \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n-1} - \frac{1}{n} = 2 + \frac{1}{1} - \frac{1}{n} = 3 - \frac{1}{n} < 3$$

2. Докажем, что a_n - возрастающая ч.п.

Рассмотрим a_{n+1}

$$\begin{split} a_{n+1} &= 1 + \frac{1}{1!} + \frac{1}{2!} \left(1 - \frac{1}{n+1} \right) + \frac{1}{3!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) + \dots \\ &+ \frac{1}{n!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \cdot \dots \cdot \left(1 - \frac{n-1}{n+1} \right) + \\ &+ \frac{1}{(n+1)!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \cdot \dots \cdot \left(1 - \frac{n-1}{n+1} \right) \cdot \left(1 - \frac{n}{n+1} \right) \\ \text{T.K. } \forall m \in \{1, \dots, n\} \ 1 - \frac{m}{n} < 1 - \frac{m}{n+1}, \text{ TO} \\ a_{n+1} \geq a_n + \frac{1}{(n+1)!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \cdot \dots \cdot \left(1 - \frac{n-1}{n+1} \right) \cdot \left(1 - \frac{n}{n+1} \right) > a_n \end{split}$$

3. $\{a_n\}$ ограничена сверху и возрастает $\implies \exists \lim_{n \to \infty} a_n \in \mathbb{R}$

Определения и свойства подпоследовательности и частичного предела

5.1 Определение подпоследовательности

Definition: Подпоследовательность

Пусть дана ч.п. $\{a_n\}$, тогда подпоследовательностью называется ч.п., полученная последовательным выбором некоторых членов исходной ч.п. и обозначается $\{a_{n_k}\}$

Note 🛉

Если $\{a_{n_k}\}$ - подпоследовательность ч.п. $\{a_n\}$, то $\forall k \in \mathbb{N}: n_k \geq k$

5.2 Частичные пределы и предельная точка

5.2.1 Определения

Definition: Частичный предел

Частичный предел ч.п. $\{a_n\}$ - число, являющееся пределом какой-либо сходящейся подпоследовательности данной последовательности $\{a_n\}$

Definition: Верхний предел ч.п.

Верхним пределом ч.п. $\{a_n\}$ называется предел

$$\overline{\lim}_{n\to+\infty}a_n=\lim_{k\to+\infty}\sup\{a_n\}_{n\geq k}$$

Definition: Нижний предел ч.п.

Нижним пределом ч.п. $\{a_n\}$ называется предел

$$\underline{\lim}_{n\to+\infty}a_n=\lim_{k\to+\infty}\inf\{a_n\}_{n\geq k}$$

Definition: Предельная точка ч.п.

Предельной точкой ч.п. $\{a_n\}$ называется число a, такое что в любой окрестности точки a находится бесконечно много членов ч.п. $\{a_n\}$

5.2.2 Теорема об эквивалентности определений

Theorem Определение предельной точки ч.п. эквивалентно определению частичного предела ч.п.

Proof:

1. a - частичный предел $\Longrightarrow a$ - предельная точка $\{a_n\}$ $\forall \varepsilon>0 \exists N=N(k) \forall k>N: |a_{n_k}-a|<\varepsilon$ \Longleftrightarrow

 $\forall \varepsilon > 0 \exists N = N(k) \forall k > N : a_{n_k} \in U_\varepsilon(a)$

Следовательно, $\forall \varepsilon$ в $U_{\varepsilon}(a)$ попадает бесконечно много членов $\{a_n\}$

2. a - предельная точка $\{a_n\} \implies a$ - ч.п. $\{a_n\}$

По определению предельной точки $\forall \varepsilon$ в $U_{\varepsilon}(a)$ попадает бесконечно много членов $\{a_n\}$

Предъявим ч.п. $\{a_{n_k}\}\subseteq\{a_n\}$, такую что $\exists\lim_{k\to\infty}a_{n_k}=a$

Обозначим $\varepsilon_k = \frac{1}{k}$

Рассмотрим ε_1 , в $U_{\varepsilon_1}(a)$ попадает бесконечно много членов $\{a_n\}$, выберем какой-то член a_{n_1}

Рассмотрим ε_2 , в $U_{\varepsilon_2}(a)$ попадает бесконечно много членов $\{a_n\}$, поэтому $\exists n_2 > n_1 : a_{n_2} \in U_{\varepsilon_2}(a)$

Рассмотрим ε_k , в $U_{\varepsilon_k}(a)$ попадает бесконечно много членов $\{a_n\}$, поэтому $\exists n_k > n_{k-1} : a_{n_k} \in U_{\varepsilon_k}(a)$

Таким образом, построена ч.п. $\{a_{n_k}\}$, такая что $\forall k \in \mathbb{N}: a-\frac{1}{k} < a_{n_k} < a+\frac{1}{k} \Longrightarrow$

 \Longrightarrow по теореме о зажатой последовательности $\lim_{k \to \infty} a_{n_k} = a$

5.2.3 Свойства частичных пределов ч.п.

Note

Свойства частичных пределов ч.п. $\underbrace{\{a_n\}}_{\text{lim}_{n \to +\infty}} \operatorname{cxoдитcs} \iff \overline{\lim}_{n \to +\infty} a_n = \underline{\lim}_{n \to +\infty} a_n \\ \overline{\lim}_{n \to +\infty} a_n = \sup \{ \text{множества предельных точек } \{a_n\} \} \\ \underline{\underline{\lim}}_{n \to +\infty} a_n = \inf \{ \text{множества предельных точек } \{a_n\} \} \\ \overline{\lim}_{n \to +\infty} a_n \text{ и } \underline{\lim}_{n \to +\infty} a_n - \text{частичные пределы}$

5.3 Система вложенных отрезков

Definition: Система вложенных отрезков

Системой вложенных отрезков называют счётно бесконечное множество отрезков, каждый из которых содержит следующий отрезок как подмножество

Обозначение: $\{I_k\}_{k\in\mathbb{N}}$, где $\forall k\in\mathbb{N}:I_{k+1}\subseteq I_k$

Example

Рассмотрим $S = \{[1 - \frac{1}{k}; 2 + \frac{1}{k}]\}_{k \in \mathbb{N}}$, тогда $S = \{[0; 3], [0.5; 2.5], [\frac{2}{3}; 2\frac{1}{3}], ...\}$

Рассмотрим $S = \{[\pi; \pi - \frac{1}{k^k}]\}_{k \in \mathbb{N}}$, тогда

 $S = \{ [\pi; \pi - 1], [\pi; \pi - \frac{1}{4}], [\pi; \pi - \frac{1}{27}], \ldots \}$

5.4 Теорема Больцано-Вейерштрасса

Theorem Теорема Больцано-Вейерштрасса

Из любой ограниченной ч.п. можно выделить сходящуюся подпоследовательность

Proof:

По определению ограниченной ч.п. $\exists C \forall n \in \mathbb{N} |a_n| < C$

Построим искому подпоследовательность при помощи системы вложенных отрезков

 $I_1 = [-c; c], \forall n \in \mathbb{N} a_n \in I_1$, выберем какой-то член ч.п. $a_{n_1} \in I_1$

Т.к. $\{a_n\}$ - ч.п., то в какой-то половине точно есть бесконечно много членов $\{a_n\}$

Выберем эту половину и обозначим I_2 , выберем в нём какой-то член ч.п. $a_{n_2} \in I_2$, такой что $n_2 > n_1$ (если это нельзя сделать, т.е. $\forall m \ (a_m \in I_2 \implies m \le n_1)$, то в I_2 лишь конечное число членов

ч.п.
$$\{a_n\} \implies (\mathbb{W}) \implies \exists n_2 > n_1 : a_{n_2} \in I_2)$$

Пусть построен I_k и a_{n_k} . Делим I_k пополам и выбираем половину,

в которой бесконечно много членов $\{a_n\}$, обозначим эту половину как I_{k+1}

и выберем $a_{n_{k+1}}:n_{k+1}>n_k$ (если это нельзя сделать, т.е. $\forall m\,(a_m\in I_{k+1}\implies m\le n_k),$

тогда в I_{k+1} лишь конечное число членов ч.п. $\{a_n\} \implies (\mathbb{W}) \implies \exists n_{k+1} > n_k : a_{n_{k+1}} \in I_{k+1})$

Построили последовательность $\{I_k\}_{k\in\mathbb{N}}$, где $I_k=[b_k;d_k]$

 $\forall k \in \mathbb{N} : I_{k+1} \subset I_k \implies \{b_k\}$ неубывает и ограничена сверху C

$$\implies \exists \lim_{n \to +\infty} b_k = b, b \ge b_k$$

 $\forall k \in \mathbb{N} : I_{k+1} \subset I_k \implies \{d_k\}$ невозрастает и ограничена снизу — C

$$\implies \exists \lim_{n \to +\infty} d_k = d, d \le d_k$$

При этом
$$|d_k - b_k| = \frac{2 \cdot C}{2^{k-1}} \underset{k \to +\infty}{\longrightarrow} 0$$

 $ADDPROOF[d \ge b]$ (пока что см. консультацию 2)

$$d - b \le d_k - b_k \xrightarrow[k \to +\infty]{} 0 \implies d \le b \implies d = b$$

Получили: $\lim_{n \to +\infty} b_k = b = d = \lim_{n \to +\infty} d_k$

 b_k и d_k - границы отрезка $I_k \implies \forall k \in \mathbb{N} : b_k \leq a_k \leq d_k \implies$

 \Longrightarrow по теореме о пределе зажатой последовательности $\lim_{n \to +\infty} a_k = b = d$

5.5 Дополнительный материал (вне курса)

5.5.1 Стягивающая система вложенных отрезков

Definition: Стягивающая система вложенных отрезков

Пусть I - система вложенных отрезков, тогда если

 $\forall \varepsilon > 0 \exists n \in \mathbb{N} : ([a_n;b_n] \in I \land b_n - a_n < \varepsilon),$ то такая система вложенных отрезков

называется стягивающейся системой вложенных отрезков

5.5.2 Теорема об общей точке системы вложенных отрезков

Theorem Теорема об общей точке системы вложенных отрезков

Для любой системы вложенных отрезков существует хотя бы одна точка, принадлежащая всем отрезкам данной системы.

Если система вложенных отрезков является стягивающейся, то такая точка единствена

Proof:

1. Множество $A = \{a_n\}_{n \in \mathbb{N}} \neq \emptyset$ ограничено сверху, например, числом $b_1 \implies \exists \sup A = \alpha$ по теореме о существовании точной грани множества

аналогично $\exists \sup B = \beta, B = \{a_n\}_{n \in \mathbb{N}}$

$$(\forall n \in \mathbb{N} : a_n < b_n) \implies (\alpha \leq \beta \wedge \forall n \in \mathbb{N} : [\alpha; \beta] \subseteq [a_n; b_n])$$

2. Тогда положим $\gamma:=\frac{\alpha+\beta}{2} \implies \forall n\in\mathbb{N}: \gamma\in[a_n;b_n]$

3. Для стягивающейся системы вложенных отрезков:

Предположим от противного, что точка не одна, т.е.

$$\exists \gamma_1 < \gamma_2 : \forall n \in \mathbb{N} : (\gamma_1 \in [a_n; b_n] \land \gamma_2 \in [a_n; b_n])$$

 $a_1 \le a_2 \le \dots \le a_n \le \dots \le \gamma_1 < \gamma_2 \le \dots \le b_n \le \dots \le b_2 \le b_1$

Положим
$$\varepsilon:=\frac{\gamma_2-\gamma_1}{2},$$
 тогда $\forall n\in\mathbb{N}:b_n-a_n\geq\varepsilon\implies \widehat{\mathbb{W}})$

 \implies изначальное предположение неверно \implies точка не более, чем одна, а существование хотя бы одной показано в пунктах 1, 2

Фундаментальная ч.п. Критерий сходимости ч.п. по Коши

6.1 Определение фундаментальной ч.п.

Definition: Фундаментальная ч.п.

Ч.п. $\{a_n\}$ называется фундаментальной, если

$$\forall \varepsilon > 0 \, \exists N(\varepsilon) \forall n,m > N(\varepsilon) : |a_n - a_m| < \varepsilon$$

6.2 Критерий сходимости ч.п. по Коши

Theorem Критерий сходимости ч.п. по Коши

Ч.п. $\{a_n\}$ сходится \iff $\{a_n\}$ - Фундаментальная ч.п.

Рооf:

" ⇒ "

Распинем, что дано:
$$\exists A \in \mathbb{R} \ \forall \varepsilon > 0 \ \exists N_1(\varepsilon) \ \forall n > N_1 : |a_n - A| < \varepsilon$$

Хотим доказать: $\forall \varepsilon > 0 \ \exists N_2(\varepsilon) \ \forall n, m > N_2 : |a_n - a_m| < \varepsilon$
 $|a_n - a_m| < \varepsilon \iff |a_n - a + a - a_m| < \varepsilon \iff |a_n - a| + |a - a_m| < \varepsilon \iff |a_n - a| + |a_m - a| < \varepsilon$

Положим $N_2(\varepsilon) := N_1\left(\frac{\varepsilon}{2}\right) \Longrightarrow$
 $\forall \varepsilon > 0 \ \exists N_2(\varepsilon) \ \forall n, m > N_2 : |a_n - a| + |a_m - a| < \varepsilon \Longrightarrow$
 $\forall \varepsilon > 0 \ \exists N_2(\varepsilon) \ \forall n, m > N_2 : |a_n - a_m| < \varepsilon$

" ⇔ "

Pachumem, что дано: $\forall \varepsilon > 0 \ \exists N_2(\varepsilon) \ \forall n, m > N_2(\varepsilon) : |a_n - a_m| < \varepsilon$

Покажем, что $\{a_n\}$ ограничена: положим $\varepsilon = 1 \Longrightarrow$
 $\exists N_2(1) \ \forall n, m > N_2 : |a_n - a_m| < 1 \Longrightarrow$
 $\exists N_2(1) \ \forall n, m > N_2 : |a_n - a_{m|} < 1 \Longrightarrow$
 $\exists N_2(1) \ \forall n > N_2 : |a_n - a_{N_2(1)+1} = 1 \Longrightarrow$
 $\exists N_2(1) \ \forall n > N_2 : |a_n - a_{N_2(1)+1} = 1 \Longrightarrow$
 $\exists N_2(1) \ \forall n > N_2 : |a_n - a_{N_2(1)+1} = 1 \Longrightarrow$
 $\exists N_2(1) \ \forall n > N_2 : |a_n - a_{N_2(1)+1} = 1 \Longrightarrow$
 $\forall n \in \mathbb{N} : |a_n| \le C$

Тогда по теореме Больцано-Вейерштрасса
 $\exists a \in \mathbb{R} \ \exists \{a_{n_k}\} : \lim_{n \to +\infty} a_{n_k} = a \Longrightarrow$
Докажем, что $\lim_{n \to +\infty} a_n = a$

Перепишем, что дано:

 $\forall \varepsilon > 0 \ \exists N_2(\varepsilon) \ \forall n, m > N_2(\varepsilon) : |a_n - a_m| < \varepsilon$
 $\forall \varepsilon > 0 \ \exists N_2(\varepsilon) \ \forall n, m > N_2(\varepsilon) : |a_n - a_m| < \varepsilon$

Распишем, что хотим доказать:

 $\forall \varepsilon > 0 \ \exists N_1(\varepsilon) \ \forall n > N_1(\varepsilon) : |a_n - a| < \varepsilon \Longrightarrow$
 $|a_n - a| < \varepsilon \iff |a_n - a_{n_k} + a_{n_k} - a| < \varepsilon \Longrightarrow$
 $|a_n - a| < \varepsilon \iff |a_n - a_{n_k} + a_{n_k} - a| < \varepsilon \Longrightarrow$
 $|a_n - a| < \varepsilon \iff |a_n - a_{n_k} + a_{n_k} - a| < \varepsilon \Longrightarrow$
 $|a_n - a| < \varepsilon \iff |a_n - a_{n_k} + a_{n_k} - a| < \varepsilon \Longrightarrow$
 $|a_n - a| < \varepsilon \iff |a_n - a_{n_k} + a_{n_k} - a| < \varepsilon \Longrightarrow$
 $|a_n - a| < \varepsilon \iff |a_n - a_{n_k} + a_{n_k} - a| < \varepsilon \Longrightarrow$
 $|a_n - a| < \varepsilon \iff |a_n - a_{n_k} + a_{n_k} - a| < \varepsilon \Longrightarrow$
 $|a_n - a| < \varepsilon \iff |a_n - a_{n_k} + a_{n_k} - a| < \varepsilon \Longrightarrow$
 $|a_n - a| < \varepsilon \iff |a_n - a_{n_k} + a_{n_k} - a| < \varepsilon \iff |a_n - a_{n_k} + a_{n_k} - a| < \varepsilon \Longrightarrow$
 $|a_n - a| < \varepsilon \iff |a_n - a_{n_k} + a_{n_k} - a| < \varepsilon \iff |a_n - a_{n_k} + a_{n_k} - a| < \varepsilon \Longrightarrow$
 $|a_n - a| < \varepsilon \iff |a_n - a_{n_k} + a_{n_k} - a| < \varepsilon \iff |a_n - a_{n_k} + a_{n_k} - a| < \varepsilon \Longrightarrow$
 $|a_n - a| < \varepsilon \iff |a_n - a_{n_k} + a_{n_k} - a| < \varepsilon \iff |a_n - a_{n_k} + a_{n_k} - a| < \varepsilon \iff |a_n - a_{n_k}$

 $\forall \varepsilon > 0 \,\exists N_1(\varepsilon) \,\forall n > N_1(\varepsilon) : |a_n - a| < \varepsilon$

 $\forall \varepsilon > 0 \, \exists N_1(\varepsilon) \, \forall n > N_1(\varepsilon) : |a_n - a_{n_k}| + |a_{n_k} - a| < \varepsilon \implies$

6.3 Постоянная Эйлера-Маскерони

Definition: Постоянная Эйлера-Маскерони

Рассмотрим ч.п. $\gamma_n=1+\frac{1}{2}+\ldots+\frac{1}{n}-\ln n$ Докажем, что у ч.п. есть конечный предел и обозначим его γ

 $= -\ln 1 + \ln(n+1) - \ln n = \ln \frac{n+1}{n} > \ln 1 = 0$

Proof:

$$\begin{split} &\gamma_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n} - \ln n \\ &\exists \lim_{n \to +\infty} \gamma_n = \gamma \\ &\gamma_n \text{ убывает} \\ &\gamma_{n+1} - \gamma_n = \frac{1}{n+1} - \ln(n+1) + \ln n = \frac{1}{n+1} - \ln\left(1 + \frac{1}{n}\right) = \frac{1}{n+1}\left(1 - (n+1)\ln\left(1 + \frac{1}{n}\right)\right) = \\ &= \frac{1}{n+1}\left(1 - \ln\left(\left(1 + \frac{1}{n}\right)^{n+1}\right)\right) \\ &b_n = \left(1 + \frac{1}{n}\right)^{n+1} \quad \text{сходится к } e \text{ и убывает. Докажем убываниe} \\ &\frac{b_n}{b_{n+1}} = \frac{\left(1 + \frac{1}{n}\right)^{n+1}}{\left(1 + \frac{1}{n+1}\right)^{n+2}} = \left(\frac{(n+1)^2}{n(n+2)}\right)^{n+1} \cdot \left(\frac{n+1}{n+2}\right) = \left(1 + \frac{1}{n^2+2n}\right)^{n+1} \left(\frac{n+1}{n+2}\right) \\ &\geq \left(1 + \frac{n+1}{n^2+2n}\right) \left(\frac{n+1}{n+2}\right) = \frac{(n+1)(n^2+3n+1)}{n^3+4n^2+4n} = \frac{n^3+4n^2+4n+1}{n^3+4n^2+4n} > 1 \\ &\gamma_{n+1} - \gamma_n = \frac{1}{n+1}(1 - \ln b_n) \\ &b_n \text{ убывает к } e \implies b_n > e \implies \ln b_n > 1 \implies \gamma_{n+1} - \gamma_n < 0 \\ &\Box_{\text{Окажем ограниченность } \gamma_n \\ &\left(1 + \frac{1}{n}\right)^n < e \implies n \ln\left(1 + \frac{1}{n}\right) < 1 \implies \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n} \implies \frac{1}{n} > \ln\left(\frac{n+1}{n}\right) \\ &\gamma_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n} - \ln n > \ln\frac{2}{1} + \ln\frac{3}{2} + \ln\frac{4}{3} + \ldots + \ln\frac{n+1}{n} - \ln n = \\ &= \ln 2 - \ln 1 + \ln 3 - \ln 2 + \ln 4 - \ln 3 + \ldots + \ln(n+1) - \ln n - \ln n = \end{split}$$

Асимптоты

7.1 Определения асимптот

Definition: Асимптоты

Вертикальная асимптота: • Прямая x=a называется вертикальной асимптотой

для графика функции y=f(x), если $\lim_{x\to a-}f(x)=\pm\infty$ $\vee \lim_{x\to a+}f(x)=\pm\infty$

Горизонтальная асимптота: • Прямая y = b называется горизонтальной асимптотой для

графика функции y = f(x) на $\pm \infty$, если

 $\lim_{x \to \pm \infty} f(x) = b$

Вообще говоря, горизонтальные асимптоты на $+\infty$ и $-\infty$

могут быть разными

Наклонная асимптота: • Прямая y = kx + b называется наклонной асимптотой для

графика функции y = f(x) при $x \to \pm \infty$, если

 $\lim_{x \to \pm \infty} f(x) - (kx + b) = 0$

Вообще говоря, наклонные асимптоты на +∞ и −∞

могут быть разными

7.2 Признак наклонной асимптоты

Theorem Признак наклонной асимптоты

Прямая y=kx+b - наклонная асимптота графика функции y=f(x) при $x\to +\infty$

$$\begin{cases} \lim_{x \to +\infty} \frac{f(x)}{x} = k \\ \lim_{x \to +\infty} f(x) - kx = b \end{cases}$$

$$" \implies "$$

1. Распишем определение наклонной асимптоты: $\lim_{x\to +\infty} (f(x)-(kx+b))=0$

Вынесем b из предела: $\lim_{x \to +\infty} f(x) - kx = b$

$$f(x) - kx - b$$
 - б.м. при $x \to +\infty$

Т.к. $x \to +\infty$, то можно поделить на x :

$$\frac{f(x)}{x} - k = \frac{b}{x} + \frac{6 \cdot M}{x}$$

$$\frac{\frac{b}{x}}{x \xrightarrow{x \to +\infty}} 0$$

$$\frac{6 \cdot M}{x} \xrightarrow{x \to +\infty} 0$$

$$\xrightarrow{x \to +\infty} 0$$

T.K.
$$\lim_{x\to +\infty} f(x) - kx = b$$
, to $\lim_{x\to +\infty} (f(x) - (kx+b)) = 0$

Определение и свойства функции

8.1 Определения

Definition: Определение функции

Множество пар $\{(x,y)\in\mathbb{R}^2|x\in D_f\wedge y\in E_f\}$ называется функцией f с областью определения D_f и областью значения E_f , если $\forall x\in D_f$ $\exists !y\in E_f:(x,y)\in f$ (для удобства $(x,y)\in f$ обозначают как f(x)=y)

Обозначение функции: $f: X \to Y$

В данном обозначении подразумевают, что $D_f = X, E_f \subseteq Y$

Example

```
f: \mathbb{N} \cup \{0\} \to \mathbb{R} \forall n \in \mathbb{N} \cup \{0\}: f(n) = (-1)^{n+1} \cdot \left\lceil \frac{n}{2} \right\rceil, в данном случае D_f = \mathbb{N} \cup \{0\}, E_f = \mathbb{Z} \subset \mathbb{R} Т.к. несложно установить, что E_f = \mathbb{Z}, то можно написать f: \mathbb{N} \cup \{0\} \to \mathbb{Z}
```

Definition: Определение инъективной функции

Функция f называется инъективной, если $\forall y \in E_f \exists ! x \in D_f : f(x) = y$ Это эквивалентно тому, что $\forall x_1, x_2 \in D_f : (x_1 \neq x_2 \implies f(x_1) \neq f(x_2))$ (говорят, что f - инъекция)

Example

```
\forall n \in \mathbb{N} функция f(x) = x^{2n-1} является инъективной \forall n \in \mathbb{N} функция f(x) = x^{2n} не является инъективной
```

Definition: Определение сюръективной функции

Функция $f: X \to Y$ называется сюръективной для множества Y, если $E_f = Y$ (говорят, что f - сюръекция)

Когда говорят, что f сюръективна, не уточняя множество, то подразумевают, что f сюръективна для Y

Example

Функция $\sin : \mathbb{R} \to \mathbb{R}$ не сюръективна для \mathbb{R} , но сюръективна для [-1;1]

Definition: Определение биективной функции

Функция $f: X \to Y$ называется биективной, если она инъективна и сюръективна (говорят, что f - биекция)

Example

Функция $f: \mathbb{N} \cup \{0\} \to \mathbb{Z}$, такая что

 $\forall n \in \mathbb{N} \cup \{0\}: f(n) = (-1)^{n+1} \cdot \left\lceil \frac{n}{2} \right\rceil$ - биекция между $\mathbb{N} \cup \{0\}$ и \mathbb{Z}

(как следствие, показали, что $\tilde{\mathbb{N}} \cup \{0\} \sim \mathbb{Z}$, т.е. множества равномощны)

Definition: Определение обратной функции

Функция $y = f^{-1}(x)$ называется обратной функцией к функции y = f(x), если множество пар фукнции f^{-1} является симметрией множества пар f

Note

Функция обратима 👄 она инъективна

8.2 Пределы

Definition: Определение предела функции по Коши

$$\lim_{x\to x_0} f(x) = A \iff \forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) \,\forall x \in \dot{U}_\delta(x_0) : f(x) \in U_\varepsilon(A)$$

Note

При этом $\dot{U}_{\delta}(+\infty) = (\delta; +\infty)$, $\dot{U}_{\delta}(-\infty) = (-\infty; \delta)$, $\dot{U}_{\delta}(\infty) = (-\infty; \delta) \cup (\delta; +\infty)$

Definition: Определение предела функции по Гейне

$$\lim_{x\to x_0} f(x) = A \iff \forall \{x_n\} : (x_n \neq x_0 \land \lim_{n\to +\infty} x_n = x_0 \implies \lim_{n\to +\infty} f(x_n) = A)$$

Definition: Односторонний предел функции

Левосторонним пределом функции называют предел функции по Коши f при $x \to x_0$ слева, то есть

$$\lim_{x \to x_0 -} f(x) = A \iff \forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) \forall x \in (x_0 - \delta; x_0) : f(x) \in U_{\varepsilon}(A)$$

Правосторонним пределом функции называют предел функции по Коши f при $x \to x_0$ справа, то есть

$$\lim_{x \to x_0 +} f(x) = A \iff \forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) \forall x \in (x_0; x_0 + \delta) : f(x) \in U_\varepsilon(A)$$

Theorem Свойство предела функции при $x \to x_0, x_0 \in \mathbb{R}$

$$\lim_{x \to x_0} f(x) = A \iff \lim_{x \to x_0+} f(x) = \lim_{x \to x_0-} f(x) = A$$
, где $A \in \overline{\mathbb{R}}$

 $" \implies "$ Дано: $\forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) > 0 \,\forall x \in \dot{U}_{\delta}(x_0) : f(x) \in U_{\varepsilon}(A)$ Тогда: $\forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) > 0 \,\forall x \in (x_0; x_0 + \delta) : f(x) \in U_{\varepsilon}(A)$ $\forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) > 0 \,\forall x \in (x_0 - \delta; x_0) : f(x) \in U_{\varepsilon}(A)$ " ← " Дано: $\forall \varepsilon > 0 \,\exists \delta_1 = \delta_1(\varepsilon) > 0 \,\forall x \in (x_0; x_0 + \delta_1) : f(x) \in U_{\varepsilon}(A)$ $\forall \varepsilon > 0 \,\exists \delta_2 = \delta_2(\varepsilon) > 0 \,\forall x \in (x_0 - \delta_2; x_0) : f(x) \in U_{\varepsilon}(A)$ Положим $\delta(\varepsilon) = \min(\delta_1(\varepsilon), \delta_2(\varepsilon))$, тогда: $\forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) > 0 \,\forall x \in \dot{\mathcal{U}}_{\delta}(x_0) \subseteq (x_0 - \delta_2; x_0) \cup (x_0; x_0 + \delta_1) : f(x) \in \mathcal{U}_{\varepsilon}(A)$

Definition: Бесконечные пределы

- $\lim_{x \to x_0} f(x) = +\infty \iff \forall M > 0 \,\exists \delta(M) > 0 \,\forall x \in \dot{\mathcal{U}}_{\delta}(x_0) : f(x) > M$
- $\lim_{x \to x_0} f(x) = -\infty \iff \forall M > 0 \,\exists \delta(M) > 0 \,\forall x \in \dot{\mathcal{U}}_{\delta}(x_0) : f(x) < -M$
- $\lim_{x \to x_0} f(x) = \infty \iff \forall M > 0 \exists \delta(M) > 0 \forall x \in \dot{U}_{\delta}(x_0) : |f(x)| > M$

Definition: Бесконечно малая функция

Функция называется б.м. при $x \to x_0$, если $\lim_{x \to x_0} f(x) = 0$, при этом $x_0 \in \mathbb{R}$

Функция называется б.м. при $x \to +\infty$, если $\lim_{x \to +\infty} f(x) = 0$

Функция называется б.м. при $x \to -\infty$, если $\lim_{x \to -\infty} f(x) = 0$

Definition: Бесконечно большая функция

Функция называется б.б. при $x \to x_0$, если $\lim_{x \to x_0} f(x) = \infty$, при этом $x_0 \in \mathbb{R}$

Функция называется б.б. при $x \to +\infty$, если $\lim_{x \to +\infty} f(x) = \infty$

Функция называется б.б. при $x \to -\infty$, если $\lim_{x \to -\infty} f(x) = \infty$

Definition: Ограниченная функция

Функция называется ограниченной при $x \to x_0$, если $\exists \delta > 0 \exists C > 0 \, \forall x \in \dot{U}_{\delta}(x_0) : |f(x)| < C$

Definition: Отделимая от нуля функция

Функция называется отделимой от нуля при $x \to x_0$, если $\exists \delta > 0 \, \exists \varepsilon_0 > 0 \, \forall x \in \dot{\mathcal{U}}_\delta(x_0) : |f(x)| > \varepsilon_0$

Note

Связь функций при $x \to x_0$, где x - аргумент обоих функций, x_0 - число, к которому стремится аргумент обоих функций:

- $\bullet \ \frac{1}{6.6.} = 6. \text{ M}.$
- $\frac{6.5}{6.m.} = 6.6.$ $\frac{1}{6.m.} = 6.6$ ограниченная = отделимая от нуля
- $\frac{1}{\text{отделимая от нуля}} = \text{ограниченная}$

8.3 Теорема о зажатой функции

Theorem Теорема о зажатой функции

$$\begin{array}{l} f(x): \mathbb{R} \to \mathbb{R}, g(x): \mathbb{R} \to \mathbb{R}, h(x): \mathbb{R} \to \mathbb{R} \\ \lim_{x \to x_0} f(x) = A \\ \lim_{x \to x_0} h(x) = A \\ \exists \delta > 0 \, \forall x \in \dot{U}_\delta(x_0): f(x) \leq g(x) \leq h(x) \end{array} \right\} \quad \lim_{x \to x_0} g(x) = A$$

8.4 Первый и второй замечательные пределы

Definition: Первый замечательный предел

$$\lim_{x \to +\infty} \frac{\sin x}{x} = 1$$

Definition: Второй замечательный предел

$$\lim_{x\to +\infty} \left(1+\frac{1}{x}\right)^x = e$$

8.5 Теорема о пределе сложной функции

Theorem Теорема о пределе сложной функции

$$\lim_{x\to x_0} f(x) = y_0$$

$$\lim_{y\to y_0} g(y) = g(y_0)$$

$$\implies \lim_{x\to x_0} g(f(x)) = g(y_0)$$

Proof:

Распишем, что дано, по определению:

$$\forall \varepsilon > 0 \,\exists \delta_1(\varepsilon) \,\forall x \in \dot{U}_{\delta_1(\varepsilon)}(x_0) : |f(x) - y_0| < \varepsilon \, (1)$$

$$\forall \lambda > 0 \,\exists \delta_2(\lambda) \,\forall y \in \dot{\mathcal{U}}_{\delta_2(\lambda)}(y_0) : |g(y) - g(y_0)| < \lambda \,(2)$$

Распишем, что хотим доказать:

$$\forall \eta > 0 \, \exists \delta_3 = \delta(\eta) \forall x \in \dot{U}_{\delta_3(\eta)}(x_0) : |g(f(x)) - g(y_0)| < \eta$$

Положим $\delta_3(\eta) = \delta_1(\delta_2(\eta))$, тогда:

$$x \in \dot{\mathcal{U}}_{\delta_3(\eta)}(x_0) \iff x \in \dot{\mathcal{U}}_{\delta_1(\delta_2(\eta))}(x_0) \implies \text{ no } (1) |f(x) - y_0| < \delta_2(\eta)$$

$$|f(x) - y_0| < \delta_2(\eta) \iff f(x) \in U_{\delta_2(\eta)}(y_0)$$

По (2) знаем, что если $f(x) \in \dot{U}_{\delta_2(\eta)}(y_0)$, то $|g(f(x)) - g(y_0)| < \eta$

Если $f(x) = y_0$, то $|g(f(x)) - g(y_0)| = 0 < \eta$

Иначе, если $f(x) \neq y_0 \iff f(x) \in \dot{U}_{\delta_2(\eta)}(y_0)$, то $|g(f(x)) - g(y_0)| = 0 < \eta$

Получили: $\forall \eta > 0 \,\exists \delta_3 = \delta_1(\delta_2(\eta)) \,\forall x \in \dot{\mathcal{U}}_{\delta_3(\eta)}(x_0) : |g(f(x)) - g(y_0)| < \eta$

8.6 О - символика

Definition: О - символика

о-малое: $\bullet f(x) = \overline{o}(g(x))$ при $x \to x_0 \in \overline{\mathbb{R}}$, если $\frac{f(x)}{g(x)}$ - б.м. при $x \to x_0$ О-большое: $\bullet f(x) = \underline{O}(g(x))$ при $x \to x_0 \in \overline{\mathbb{R}}$, если $\frac{f(x)}{g(x)}$ - ограниченная при $x \to x_0$

8.7 Непрерывность функции

8.7.1 Непрерывность функции в точке

Definition: Непрерывность функции в точке

Функция называется непрерывной в точке x_0 , если

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Clarification

Если x_0 - граница области определения, то рассматривается односторонний предел

8.7.2 Свойства непрерывных функций

Note

Свойства непрерывных функций:

- Сумма, произведение и частное непрерывных функций непрерывные функции (по арифметике пределов функции)
- Композиция непрерывных функций непрерывная функция (по теореме о пределе сложной функции)

$$\lim_{x \to x_0} g(x) = g(x_0) = y_0 \\ \lim_{y \to y_0} f(y) = f(y_0)$$
 $\implies \lim_{x \to x_0} f(g(x)) = f(g(x_0))$

8.7.3Правило замены переменных в пределе сложной функции

Claim Правило замены переменных в пределе

Пусть дана сложная функция f(g(x)), тогда, если для некоторой точки $x_0:\lim_{x\to x_0}g(x)=g(x_0)=y_0$ и $\lim_{y\to y_0} f(y) = A \in \mathbb{R}$, то $\lim_{x\to x_0} f(g(x)) = f(g(x_0))$

Example (Пример использования правила замены переменной в пределе)

Пусть надо найти
$$\lim_{x\to 0} \frac{\sin(\pi x)}{x}$$

Преобразуем выражение:
$$\frac{\sin(\pi x)}{x} = \frac{\sin(\pi x)}{\pi x} \cdot \pi$$

В данном случае в обозначения из утверждения выше:

$$f(y) = \frac{\sin(y)}{y}$$

$$g(x) = \pi x$$

$$g(x)$$
 непрерывна в точке $x_0=0, y_0=g(x_0)=0,\;$ и при этом $\lim_{y \to y_0} f(y)=1=A$

Тогда по правилу замены переменной в пределе:

$$\lim_{x\to 0}\frac{\sin(\pi x)}{\pi x}\cdot\pi=\lim_{x\to 0}A\cdot\pi=\lim_{x\to 0}1\cdot\pi=\pi$$

8.7.4 Непрерывность функции на множестве

Definition: Непрерывность функции на множестве

 Φ ункция называется непрерывной на множестве E,если она непрерывна в каждой точке множества E

/* Когда говорят, что функция непрерывна, имеют ввиду, что она непрерывна на D_f */

Note

В частность, функция непрерывна на отрезке [a;b], если она непрерывна в каждой точке отрезка [a;b] При этом, в точках a и b рассматриваются односторонние пределы

8.7.5 Теорема 1 о функции, непрерывной на отрезке

Theorem Теорема о функции, непрерывной на отрезке (иногда называют теоремой Вейерштрасса)

 Φ ункция, непрерывная на отрезке, ограничена на этом отрезке и достигает наибольшее и наименьшее значения на этом отрезке

Докажем, что функция ограничена сверху и достигает наибольшее значение. Для второго случая доказательство проводится аналогично

1. E_f — мно-во значений f(x) на [a;b]

Обозначим
$$M = \sup E_f = \sup_{x \in [a;b]} f(x) \in \overline{\mathbb{R}}$$

Построим некоторую строго возрастающую ч.п. $a_n \underset{n \to +\infty}{\longrightarrow} M$

2. Докажем, что $\forall n \in \mathbb{N} \exists x_n \in [a;b] : a_n < f(x_n)$

Предположим от противного, то есть $\exists n_0 \, \forall x \in [a;b] : a_{n_0} \geq f(x)$

Тогда a_{n_0} - верхняя грань множества E_f

Однако, т.к. a_n - возрастающая ч.п. и $\lim_{n \to +\infty} a_n = a$, то $\forall n \in \mathbb{N} : a_n < M$

В частности, $a_{n_0} < M$, т.е. a_{n_0} - верхняя грань, которая меньше точной верхней грани \implies

$$\Longrightarrow (\widehat{\mathbb{W}}) \Longrightarrow \forall n \in \mathbb{N} \, \exists x_n \in [a;b] : a_n < f(x_n)$$

3. По построению $\forall x \in [a;b]: f(x) \leq M$

Тогда $\forall n \in \mathbb{N} \exists x_n \in [a;b] : a_n < f(x_n) \leq M$

Следовательно, по теореме о зажатой последовательности $\lim_{n\to +\infty} f(x_n) = M$

4. Докажем, что $M = f(x_0)$

T.к. x_n - ограниченная ч.п., то по теореме Больцано-Вейерштрасса из неё можно выделить сходящуюся подпоследовательность $\{x_{n_k}\}$ такую, что $x_{n_k} \xrightarrow[k \to +\infty]{} x_0 \in [a;b]$

Т.к. f непрерывна в на отрезке, то она непрерывна в x_0 , следовательно $\lim_{k \to +\infty} f(x_{n_k}) = f(x_0)$

$$\lim_{k\to+\infty} f(x_{n_k}) - f(x_0)$$

$$\left(\lim_{n\to+\infty}f(x_n)=M\right)\wedge\left(\lim_{k\to+\infty}f(x_{n_k})=f(x_0)\right)\implies M=f(x_0)<\infty$$

Таким образом, на отрезке [a;b] функция f ограничена сверху числом $M = f(x_0)$

8.7.6 Теорема 2 о функции, непрерывной на отрезке

Theorem Теорема (2) о функции, непрерывной на отрезке

Непрерывная на отрезке [a;b] принимает все промежуточные значения

Пусть f(x) непрерывна на [a;b], $f(x_1) = A$, $f(x_2) = B$, $x_1 < x_2$, БОО A < B, тогда

 $\forall c \in (A; B) \exists x_0 \in (x_1; x_2) : f(x_0) = c$

1. Построим последовательность вложенных отрезков:

/* Если Вам так будет удобнее, то докажем существование x_0 бинпоиском по ответу */

$$[a_1;b_1] := [x_1;x_2]$$

$$x_3 := \frac{a_1 + b_1}{2}$$
, рассмотрим $f(x_3)$

$$1) f(x_3) = c \implies q.e.d.$$

$$(2) f(x_3) < c \implies [a_2; b_2] := [x_3; b_1]$$

$$3) f(x_3) > c \implies [a_2; b_2] := [a_1; x_3]$$

Применяя это правило, продолжим строить последовательность отрезков

Если ни на какой итерации не произойдёт случай 1), то получим счётно бесконечную последовательность отрезков $\{[a_n;b_n]\}_{n\in\mathbb{N}}$

По построению ч.п. $\{a_n\}$ неубывает и ограничена сверху $b \implies \exists \lim_{n \to +\infty} a_n \le b$

По построению ч.п. $\{b_n\}$ невозрастает и ограничена снизу $a \implies \exists \lim_{n \to +\infty} b_n \ge a$

$$b_n - a_n = \frac{b - a}{2^{n-1}} \longrightarrow_{n \to +\infty} 0 \implies \lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = x_0$$

$$x_0 \in [a;b] \implies f(x)$$
 непрерывна в $x_0 \implies \lim_{x \to x_0} f(x) = f(x_0) \implies$

 \implies по определению по Гейне $\lim_{n \to +\infty} f(a_n) = \lim_{n \to +\infty} f(b_n) = f(x_0)$

По построению $f(a_n) < c \land f(b_n) > c \implies c \le f(x_0) \le c \implies f(x_0) = c$

Следствие 1

Corollary Следствие

$$f(x)$$
 непрерывна на $[a;b] \implies E_f = [\inf E_f; \sup E_f]$

Следствие 2

Corollary Следствие

$$f(x)=x^2$$
 непрерывна на $D_f=[0;2]\implies (E_f=[0;4]\land\exists x_0\in\mathbb{R}:x_0^2=2)$

То есть доказано существование числа $\sqrt{2}$

Следствие 3

Corollary Следствие

$$f(x)$$
 непрерывна на $[a;b] \wedge f(a) < 0 \wedge f(b) > 0 \implies \exists c \in (a;b): f(c) = 0$

8.7.7 Определение монотонности функции

Definition: Определение монотонности функции

- f(x) называется строго возрастающей на $E \subseteq \mathbb{R}$, если $\forall x_1, x_2 \in E: x_1 < x_2 \implies f(x_1) < f(x_2)$
- f(x) называется неубывающей на $E \subseteq \mathbb{R}$, если $\forall x_1, x_2 \in E: x_1 < x_2 \implies f(x_1) \leq f(x_2)$
- f(x) называется строго убывающей на $E \subseteq \mathbb{R}$, если $\forall x_1, x_2 \in E: x_1 < x_2 \implies f(x_1) > f(x_2)$
- f(x) называется невозрастающей на $E \subseteq \mathbb{R}$, если $\forall x_1, x_2 \in E: x_1 < x_2 \implies f(x_1) \ge f(x_2)$

8.7.8 Достаточное условие обратимости

Definition: Достаточное условие обратимости

Если функция f(x) строго монотонна на X, то f(x) обратима на X

Proof:

Предположим от противного, что f(x) не инъективна, то есть

$$\exists x_1, x_2 \in X : x_1 \neq x_2 \land f(x_1) = f(x_2)$$

 $x_1 \neq x_2 \implies \min(x_1, x_2) < \max(x_1, x_2) \implies (\mathbb{W})$ с определением строгой монотонности

8.7.9 Критерий обратимости функции

Definition: Критерий обратимости функции

Пусть функция f(x) непрерывна на [a;b]. Тогда f(x) обратима $\iff f(x)$ строго монотонна

Proof:

" ⇐ "Смотри достаточное условие обратимости

 $" \implies "$

Докажем для случая, когда f(x) строго монотонно возрастает, для убывания аналогично Предположим от противного, тогда БОО

$$\exists x_1 < x_2 < x_3 \in [a;b]: f(x_1) < f(x_2) \ge f(x_3)$$

Если $f(x_2) = f(x_3)$, то f не инъективна $\implies f$ не обратима $\implies (\mathbb{W})$

Иначе, положим $c := \frac{\max(f(x_1), f(x_3)) + f(x_2)}{2} \implies f(x_1) < c < f(x_2) \land f(x_3) < c < f(x_2)$

f непрерывна на $[a;b] \implies f$ непрерывна на $[x_1;x_2]$ и $[x_2;x_3]$

f непрерывна на $[x_1; x_2] \implies \exists x_0' \in (x_1; x_2) : f(x_0') = c$

f непрерывна на $[x_2; x_3] \implies \exists x_0'' \in (x_2; x_3) : f(x_0'') = c$

Получили: $\exists x_0' < x_0'' \in [a;b]: f(x_0') = f(x_0'') \implies f$ не инъективна $\implies f$ не обратима $\implies \mathbb{W}$

8.7.10 Свойства обратимой функции

Theorem

Если функция f(x) непрерывна и строго монотонна на [a;b], то функция $f^{-1}(y)$:

- 1) определена на $E_f = [\min(f(a), f(b)); \max(f(a), f(b))]$
- ullet 2) мотонотонна (и имеет ту же монотонность) на E_f
- 3) непрерывна на E_f

Proof:

- 1. Доказано по критерию обратимости функции
- 2. БОО f возрастает на [a;b]

Предположим от противного

$$f^{-1}(y)$$
 не возрастает на $[a;b] \implies \exists y_1 < y_2 \in [f(a);f(b)]: f^{-1}(y_1) \geq f^{-1}(y_2)$

По определению обратной функции $f^{-1}(y_1), f^{-1}(y_2) \in [a;b]$, обозначим $x_1 = f^{-1}(y_1), x_2 = f^{-1}(y_2)$

$$x_1 \ge x_2 \implies f(x_1) \ge f(x_2)$$
. При этом, $f(x_1) = y_1 \land f(x_2) = y_2$

$$x_1 \ge x_2 \implies y_1 \ge y_2 \implies \mathbb{W}$$

3. Докажем непрерывность по определению

Дано: $x = f^{-1}(y)$ - определённая монотонная на [a;b] функция

Докажем, что f^{-1} непрерывна в любой точке $y_0 \in (f(a); f(b))$

Для $y_0 \in \{f(a), f(b)\}$ доказательство аналогично (нужно рассмотреть односторонние пределы)

По определению непрерывности в точке $\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall y \in \dot{\mathcal{U}}_{\delta}(y_0) : |f^{-1}(y) - f^{-1}(y_0)| < \varepsilon$

Обозначим $f^{-1}(y_0) = x_0$

БОО докажем для таких ε , что $U_{\varepsilon}(x_0) \subset (a;b)$. Для больших ε неравество также будет выполняться $a < x_0 - \varepsilon < x_0 + \varepsilon < b$

Обозначим $y_1 = f(x_0 - \varepsilon), y_2 = f(x_0 + \varepsilon),$ тогда $y_1 < y_0 < y_2$

Положим $\delta := \min(y_2 - y_0, y_0 - y_1)$, тогда $U_{\delta}(y_0) \in (y_1; y_2)$

Докажем, что при выбранном δ выполняется неравенство под знаками кванторов:

$$y \in U_{\delta}(y_0) \implies y \in (y_1; y_2) \implies f^{-1}(y_1) < f^{-1}(y) < f^{-1}(y_2) \implies x_0 - \varepsilon < f^{-1}(y) < x_0 + \varepsilon \implies f^{-1}(y_1) < f^{-1}(y_2) \implies f^{-1}(y_2) < f^{-1}$$

 $\implies |f^{-1}(y)-x_0|<arepsilon \implies$ неравенство под кванторами верно и определение выполняется

Следствие 1

Corollary Следствие (без доказательства)

Если функция f(x) непрерывна и строго монотонна на (a;b), $a,b\in \overline{\mathbb{R}}$, то функция $f^{-1}(y)$:

- 1) определена на (m; M), где $m = \min(f(a), f(b)), M = \max(f(a), f(b))$
- 2) мотонотонна (и имеет ту же монотонность) [m; M]
- 3) непрерывна на (*m*; *M*)

Идея доказательства: рассмотреть $[c;d]\subset (a;b)$, для него верна теорема выше, а далее перейти к пределу при границах, стремящихся к a и b

Следствие 2

Corollary

```
Т.к. f(x) = x^n непрерывна и строго монотонно возрастает на D_f = n \div 2?[0; +\infty) : \mathbb{R}, то
g(x)=\sqrt[n]{x} непрерывна и строго монотонно возрастает на D_g=E_f=n\div 2\,?\,[0;+\infty)\,:\,\mathbb{R}
```

8.7.11 Обратные тригонометрические функции

Definition: Обратные тригонометрические функции

```
y = \sin x непрерывна и возрастает на D_f = \left[-\frac{\pi}{2}; \frac{\pi}{2}\right] \Longrightarrow
\implies \exists \arcsin := \sin^{-1} : y = \arcsin x непрерывна и возрастает на E_f = \left[-\frac{\pi}{2}; \frac{\pi}{2}\right], область значений -
D_f = [-1; 1]
Аналогично
     • y = \arccos x непрерывна и убывает на E_f = [0; \pi], область значений - D_f = [-1; 1]
```

- $y = \arctan x$ непрерывна и возрастает на $E_f = (-\frac{\pi}{2}; \frac{\pi}{2})$, область значений $D_f = \mathbb{R}$
- $y = \operatorname{arcctg} x$ непрерывна и убывает на $E_f = (0; \pi)$, область значений $D_f = \mathbb{R}$

8.7.12Показательная функция

Definition: Показательная функция

(теорема без доказательства) функция $y = a^x$, a > 0

- 1) определена на $D_f = \mathbb{R}, E_f = (0; +\infty)$
- 2) возрастает при a > 1 и убывает при 0 < a < 1
- 3) непрерывна на \mathbb{R}
- \bullet 4) $a^x \cdot a^y = a^{x+y}$ /* Следствие: $\phi(x)=a^x$ является изоморфизмом между (\mathbb{R} , +) и (\mathbb{R}_+ , *) */ $(a^x)^y = a^{xy}$

8.7.13 Логарифмическая функция

Definition: Логарифмическая функция

Функция, обратная к $y = a^x$, $a \in (0, 1) \cup (1, +\infty)$ обозначается $y = \log_a x$

- 1) определена на $D_f = (0; +\infty), E_f = \mathbb{R}$
- 2) возрастает при a > 1 и убывает при 0 < a < 1
- 3) непрерывна на $(0; +\infty)$
- 4) $\log_a x + \log_a y = \log_a xy$ /* Следствие: $\psi(x) = \log_a x$ является изоморфизмом между (\mathbb{R}_+ ,*) и (\mathbb{R}_+ +)*/ $\log_a x^{\alpha} = \alpha \log_a x$

8.7.14 Следствия из 2 замечательного предела

```
Corollary Следствия из 2 замечательного предела
\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e<br/>\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1
```

$$\frac{\ln(x+1)}{x} = \frac{1}{x}\ln(x+1) = \ln(x+1)^{\frac{1}{x}}$$

 Φ ункция $\ln x$ непрерывна, тогда по теореме о пределе сложной функции

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = \lim_{x \to 0} \ln(x+1)^{\frac{1}{x}} = 1$$

$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$

Proof:

$$t = e^{x} - 1 \implies x = \ln(t+1)$$

$$x \to 0 \implies t \to \infty$$

$$\lim_{x \to 0} \frac{e^{x} - 1}{x} = \lim_{t \to 0} \frac{t}{\ln(t+1)} = 1$$

8.7.15 Показательная функция с вещественным показателем

Corollary Показательная функция с вещественным показателем

$$y=x^{\alpha}, \alpha \in \mathbb{R}, D_f=(0;+\infty)$$

$$y = e^{\alpha \ln x}$$

 $\ln x$ непрерывна и возрастает на $(0; +\infty)$

 $\alpha \ln x$ непрерывна и возрастает при $\alpha > 0$ и убывает при $\alpha < 0$

 $e^{\alpha \ln x}$ непрерывна и возрастает при $\alpha > 0$ и убывает при $\alpha < 0$

Следствие

Corollary

 $\lim_{x\to +\infty} a(x) = a \wedge \lim_{x\to +\infty} b(x) = b \implies \lim_{x\to +\infty} a(x)^{b(x)} = \lim_{x\to +\infty} e^{b(x)\ln a(x)} = e^{b\ln a} = a^b$ Для ч.п. $\{a_n\}$ и $\{b_n\}$ построим кусочно-линейные функции a(x) и b(x), такие что $\forall n\in\mathbb{N}: a(n)=a_n\wedge b(n)=b_n$

Тогда $\lim_{n \to +\infty} a_n = a \wedge \lim_{n \to +\infty} b_n = b \implies \lim_{n \to +\infty} a_n^{b_n} = a^b$

8.8 Производная функции

8.8.1 Определение производной

Definition: Определение производной

Производная функции f в точке x_0 - это предел

$$\lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

Note

 $\forall x \in \mathbb{R} : (\sin x)' = \cos x$

$$\lim_{x\to x_0}\frac{\sin x-\sin x_0}{x-x_0}=\lim_{x\to x_0}\frac{2\sin\left(\frac{x-x_0}{2}\right)\cos\left(\frac{x+x_0}{2}\right)}{x-x_0}=\lim_{x\to x_0}\cos\left(\frac{x+x_0}{2}\right)=\cos x_0$$

Note

 $\forall x \in \mathbb{R} \ \forall n \in \mathbb{N} : (x^n)' = nx^{n-1}$

Proof:

$$\lim_{x \to x_0} \frac{x^n - x_0^n}{x - x_0} = \lim_{x \to x_0} \frac{(x - x_0) \sum_{k=0}^{n-1} x^{n-1-k} x_0^k}{x - x_0} = \lim_{x \to x_0} \sum_{k=0}^{n-1} x^{n-1-k} x_0^k = n x_0^{n-1}$$

Note

 $(a^x)' = a^x \ln a$

Proof:

$$\lim_{x \to x_0} \frac{a^x - a^{x_0}}{x - x_0} = a^{x_0} \lim_{x \to x_0} \frac{a^{x - x_0} - 1}{x - x_0} = a^{x_0} \lim_{t \to 0} \frac{a^t - 1}{t} =$$

$$= a^{x_0} \lim_{t \to 0} \frac{e^{t \ln a} - 1}{t} = a^{x_0} \lim_{t \to 0} \frac{e^s - 1}{t} \cdot \ln a = a^{x_0} \ln a$$

 $= a^{x_0} \lim_{t \to 0} \frac{e^{t \ln a} - 1}{t} = a^{x_0} \lim_{s \to 0} \frac{e^s - 1}{s} \cdot \ln a = a^{x_0} \ln a$

Note $(e^x)' = e^x$

8.8.2 Правила подсчёта производных

Claim Правила подсчёта производных

Если $\exists f'(x), \exists g'(x), \alpha \in \mathbb{R}, \beta \in \mathbb{R}$, то

- $(\alpha f(x) + \beta g(x))' = \alpha f'(x) + \beta g'(x)$ $(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$ $g(x) \neq 0 \implies \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) f(x)g'(x)}{g^2(x)}$

8.8.3 Определения дифференцируемости функции

Definition: Дифференцируемость функции в точке

Функция f(x) называется дифференцируемой в точке x_0 , если

$$\exists A \in \mathbb{R} : f(x) = f(x_0) + A \cdot (x - x_0) + \overline{o}(x - x_0)$$

Definition: Признак дифференцируемости функции в точке

Theorem

Функция f(x) дифференцируема в точке $x_0 \iff \exists f'(x_0) (\in \mathbb{R})$

$$" \implies$$

По определению дифференцируемости в точке

$$\exists A \in \mathbb{R}: \, f(x) = f(x_0) + A \cdot (x - x_0) + \overline{o}(x - x_0) \implies \frac{f(x) - f(x_0)}{x - x_0} = A + \overline{o}(1) \implies$$

$$\lim_{\substack{x \to x_0 \\ \text{"}}} \frac{f(x) - f(x_0)}{x - x_0} = A \in \mathbb{R} \implies \exists f'(x_0) = A \in \mathbb{R}$$

По определению производной:

$$\exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \in \mathbb{R} \implies \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) + \overline{o}(1) \implies$$

$$\implies f(x) - f(x_0) = f'(x_0) \cdot (x - x_0) + \overline{o}(x - x_0)$$

$$\implies f(x) = f(x_0) + A \cdot (x - x_0) + \overline{o}(x - x_0), A = f'(x_0) \in \mathbb{R}$$

8.8.4 Определение дифференциала

Definition: Определение дифференциала

Дифференциал функции f(x) в точке x_0 - это линейная функция $df(x) = A \cdot (x - x_0)$ такая, что $f(x) = f(x_0) + df(x) + \overline{o}(x - x_0)$

8.8.5 Теорема о непрерывности функции, дифференцируемой в точке

Theorem

Дифференцируемая в точке x_0 функция непрерывна в ней

Proof:

По определению дифференцируемости в точке x_0 :

$$\begin{split} f(x) &= f(x_0) + f'(x_0) \cdot (x - x_0) + \overline{o}(x - x_0) \\ f'(x_0) &\in \mathbb{R} \implies \lim_{x \to x_0} f'(x_0) \cdot (x - x_0) = 0 \\ \lim_{x \to x_0} \overline{o}(x - x_0) &= 0 \end{split} \right\} \implies \lim_{x \to x_0} f(x) = x_0$$

8.8.6 Теорема о дифференцируемости сложной функции

Theorem

Если g(x) дифференцируема в точке x_0 и функция f(y) дифференцируема в точке $y_0 = g(x_0)$, то f(g(x)) дифференцируема в точке x_0 и $(f(g(x)))'|_{x=x_0} = f'(g(x_0)) \cdot g'(x_0)$

$$g(x) = g(x_0) + g'(x_0)(x - x_0) + \overline{o}(x - x_0)$$

$$f(y) = f(y_0) + f'(y_0)(y - y_0) + \overline{o}(y - y_0) \Longrightarrow$$

$$f(g(x)) = f(g(x_0)) + f'(g(x_0))(g'(x_0)(x - x_0) + \overline{o}(x - x_0)) + \overline{o}(g'(x_0)(x - x_0) + \overline{o}(x - x_0))$$

$$f(g(x)) = f(g(x_0)) + f'(g(x_0))g'(x_0)(x - x_0) + f'(g(x_0)) \cdot \overline{o}(x - x_0) + \overline{o}(g'(x_0)(x - x_0) + \overline{o}(x - x_0)) =$$

$$= f(g(x_0)) + f'(g(x_0))g'(x_0)(x - x_0) + \overline{o}(x - x_0) + (x - x_0)\overline{o}(g'(x_0) + \overline{o}(x)(1)) =$$

$$= f(g(x_0)) + f'(g(x_0))g'(x_0)(x - x_0) + \overline{o}(x - x_0) \Longrightarrow (f(g(x)))'|_{x = x_0} = f'(g(x_0)) \cdot g'(x_0)$$

8.8.7 Теорема о производной обратной функции

Theorem

Если f(x) непрерывна и обратима на $[a;b], x_0 \in (a;b), \exists f'(x_0) \neq 0,$ тогда $\exists (f^{-1}(y))'|_{y=f(x_0)=y_0} = \frac{1}{f'(x_0)}$

Proof:

$$\lim_{y \to y_0} \frac{f'(y) - f'(y_0)}{y - y_0} = |\text{замена } y = f(x)| = \lim_{x \to x_0} \frac{f^{-1}(f(x)) - f^{-1}(f(x_0))}{f(x) - f(x_0)} = \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{f'(x_0)}$$

8.8.8 Пример 1

Example

Пример:
$$f(x) = e^x$$
, $f'(x) = e^x$, $f^{-1}(y) = \ln y$ $(f^{-1}(y))'|_{y=y_0} = \frac{1}{f'(f^{-1}(y_0))} = \frac{1}{e^{f^{-1}(y_0)}} = \frac{1}{e^{\ln y_0}} = \frac{1}{y_0}$

8.8.9 Пример 2

Example

Пример:
$$y = x^{\alpha}$$
, $\alpha \in \mathbb{R}$, $D_f = (0; +\infty)$
 $y = e^{\alpha \ln x} \implies y' = e^{\alpha \ln x} (\alpha \ln x)' = e^{\alpha \ln x} \cdot \frac{\alpha}{x} = \alpha x^{\alpha - 1}$

8.8.10 Определение локального минимума

Definition: Определение локального минимума (точка минимума)

 x_0 - точка локального минимума функции f(x), если $\exists \delta_0 > 0 \ \forall x \in U_{\delta_0}(x_0) : f(x_0) \le f(x)$ x_0 - точка строгого локального минимума функции f(x), если $\exists \delta_0 > 0 \ \forall x \in \dot{U}_{\delta_0}(x_0) : f(x_0) < f(x)$

8.8.11 Определение локального максимума

Definition: Определение локального максимума (точка максимума)

 x_0 - точка локального максимума функции f(x), если $\exists \delta_0 > 0 \ \forall x \in U_{\delta_0}(x_0) : f(x_0) \ge f(x)$ x_0 - точка строгого локального максимума функции f(x), если $\exists \delta_0 > 0 \ \forall x \in \dot{U}_{\delta_0}(x_0) : f(x_0) > f(x)$

8.8.12 Определение точки локального экстремума

Definition: Точка локального экстремума

Точками локального экстремума называются точки минимума и точки максимума

8.8.13 Необходимое условие локального экстремума (теорема Ферма)

Theorem Необходимое условие локального экстремума (теорема Ферма)

Если x_0 - точка локального экстремума, то $\exists f'(x_0) \Longrightarrow f'(x_0) = 0$

Proof:

Пусть $\exists f'(x_0)$

Докажем для случая, когда x_0 - локальный минимум, для локального максимума доказательство аналогично.

Предел при $x \to x_0$ существует \implies существуют односторонние пределы и они совпадают с $f'(x_0)$

В некоторой δ окрестности $f(x_0) \leq f(x)$

8.8.14 Определения касательной к графику функции

Definition: Касательная к графику функции

Касательной к графику функции f(x) называется прямая $y = f'(x_0)(x - x_0) + f(x_0)$

8.8.15 Теорема Ролля

Theorem Теорема Ролля

Если функция f(x) удовлетворяет условиям:

- Непрерывна на [a; b]
- Дифференцируема на (a; b)
- $\bullet \ f(a) = f(b)$

To $\exists \xi \in (a; b) : f'(\xi) = 0$

Proof:

- 1. Обозначим $M:=\sup_{x\in[a;b]}f(x)$, $m:=\inf_{x\in[a;b]}f(x)$ достигаются, т.к. функция непрерывна на отрезке
- 2. Если $m=M \implies f(x)=const \implies \forall x\in (a;b): f'(x)=0$
- 3. Иначе, если m < M, тогда хотя бы одна из этих точек достигается в $\xi \in (a;b)$ (т.к. f(a) = f(b)) БОО $f(\xi) = M \implies \xi$ точка loc max

f дифференцируема на $(a;b) \implies \exists f'(\xi) \implies f'(\xi) = 0$ (по теореме Ферма)

8.8.16 Теорема Лагранжа

Theorem Теорема Лагранжа

Если функция f(x) удовлетворяет условиям:

- Непрерывна на [a; b]
- \bullet Дифференцируема на (a;b)

To
$$\exists \xi \in (a;b) : \frac{f(b)-f(a)}{b-a} = f'(\xi)$$

Proof:

1. Рассмотрим $F(x) = f(x) - \frac{f(b) - f(a)}{b - a}x$, эта функция также, как и функция f,

непрерывна на $\left[a;b\right]$ и дифференцируема на $\left(a;b\right)$

 $F(a) = F(b) \implies$ для F выполняются требования теоремы Ролля $\implies \exists \xi \in (a;b) : F'(\xi) = 0 \implies$

$$\implies \exists \xi \in (a;b): f'(\xi) - \frac{f(b) - f(a)}{b - a} = 0 \implies \exists \xi \in (a;b): \frac{f(b) - f(a)}{b - a} = f'(\xi)$$

8.8.17 Теорема-следствие 1

Corollary Теорема-следствие 1

Если функция f(x) удовлетворяет условиям:

- \bullet Непрерывна на [a;b]
- ullet Дифференцируема на (a;b)
- f'(x) = 0 на (a; b)

To f(x) = const Ha [a;b]

Proof:

 $\forall x_1, x_2 \in [a;b] f(x)$ удовлетворяет требованиям теоремы Лагранжа на $[x_1;x_2] \Longrightarrow \exists \xi \in (x_1;x_1): f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1) = 0 \cdot (x_2 - x_1)$ Получили: $\forall x_1, x_2 \in [a;b]: f(x_2) - f(x_1) = 0$

8.8.18 Теорема-следствие 2

Corollary Теорема-следствие 2

Если функции f(x) и g(x) удовлетворяют условиям:

- Непрерывность на [a;b]
- \bullet Дифференцируемость на (a;b)
- $\forall x \in (a;b) : f'(x) = g'(x)$

To $\forall x \in [a;b]: f(x) - g(x) = const$

Proof:

Рассмотрим h(x) = f(x) - g(x)

h(x) удовлетворяет требованиям предыдущей теоремы-следствия 1 \implies

$$\implies \forall x \in [a;b]: f(x) - g(x) = const$$

8.8.19 Теорема-следствие 3

Corollary Теорема-следствие 3

Если $\phi(x)$ непрерывна на [a;b] и $\phi'(x)$ определена везде на (a;b), кроме, быть может, x_0 , и $\exists \lim_{x\to x_0} \phi'(x) = A \in \mathbb{R}$

То $\exists \phi'(x_0) = A$, т.е. у производной непрерывной функции нет точек устранимого разрыва

Proof:

По определению производной и по теореме Лагранжа:

$$\phi'(x_0) = \lim_{x \to x_0} \frac{\phi(x) - \phi(x_0)}{x - x_0} = \lim_{x \to x_0} \phi'(\xi(x)), \xi(x) \in (x_0; x), \text{ т.к. на } (x_0; x)$$

 $\phi(x)$ удовлетворяет требованиям т. Лагранжа

 $\lim_{x \to x_0} \xi(x) = x_0 \implies \phi'(x_0) = \lim_{x \to x_0} \phi'(\xi(x)) = A$ (по теореме о пределе сложной функции)

8.8.20 Теорема Коши

Theorem Теорема Коши

Если функции f(x) и g(x) удовлетворяют условиям:

- \bullet Непрерывность на [a;b]
- Дифференцируемость на (a;b)

A также $g'(x) \neq 0$ на (a;b) и $g(a) \neq g(b)$

To
$$\exists \xi \in (a; b) : \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

Proof:

1. Рассмотрим $F(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)}g(x)$, эта функция также

непрерывна на [a;b] и дифференцируема на (a;b)

 $F(a) = F(b) \implies$ для F выполняются требования теоремы Ролля $\implies \exists \xi \in (a;b) : F'(\xi) = 0 \implies$

$$\implies \exists \xi \in (a;b) : f'(\xi) - \frac{f(b) - f(a)}{g(b) - g(a)} g'(\xi) = 0 \implies \exists \xi \in (a;b) : \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

8.8.21 Теорема о монотонности непрерывно дифференцируемой функции

Theorem

Если функция f(x) удовлетворяет условиям:

- Непрерывна на [a; b]
- \bullet Дифференцируема на (a;b)

To:

 $\forall x \in (a;b): f'(x) \ge 0 \iff f(x)$ неубывает на [a;b]

 $\forall x \in (a;b): f'(x) > 0 \implies f(x)$ возрастает на [a;b]

(Для 2 высказывания импликация в обратную сторону не верна, например, для $f(x) = x^3$ в т. x = 0)

"
$$\Leftarrow$$
 "
$$\forall x_0 \in (a;b): f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$f(x) - \text{ неубывающая функция } \Longrightarrow \forall x \neq x_0: \frac{f(x) - f(x_0)}{x - x_0} \geq 0$$

$$\Longrightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \geq 0$$
" \Longrightarrow "
$$\forall x_1 < x_2 \in [a;b]: f(x) \text{ удовлетворяет т. Лагранжа на } [x_1; x_2] \Longrightarrow \exists \xi \in (x_1; x_2): f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1)$$

$$f'(\xi) \geq 0 \Longrightarrow f(x_2) \geq f(x_1)$$

$$f'(\xi) > 0 \Longrightarrow f(x_2) > f(x_1)$$

8.8.22 Теорема-следствие

Corollary

Если f(x) непрерывна на [a;b] и дифференцируема на (a;b), кроме конечного числа точек (дифференцируемость), и $f'(x) \ge 0$, то f(x) неубывает на [a;b]

8.8.23 Достаточное условие экстремума

Theorem Достаточное условие экстремума

Если $\exists \delta > 0$: $(\forall x \in (x_0 - \delta; x_0) : f'(x) \geq 0) \, \wedge \,$ $\land (\forall x \in (x_0; x_0 + \delta) : f'(x) \le 0) \land$ $\wedge (f(x))$ непрерывна в точке x_0) , то x_0 - точка loc max (нестрогого)

8.8.24 Выпуклость и вогнутость функции

Definition: Выпуклость и вогнутость функций

Функция называется выпуклой вверх на отрезке [a;b], если

 $\forall x_1 < x_2 \in [a;b]$ верно:

график функции y = f(x) лежит выше хорды, соединяющей точки $(x_1; f(x_1))$ и $(x_2; f(x_2))$, т.е.

 $l(x) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} x + \frac{x_2 f(x_1) - x_1 f(x_2)}{x_2 - x_1}$ - уравнение хорды l $\forall x \in [x_1; x_2]: f(x) \geq l(x)$ - нестрогая выпуклость

 $\forall x \in (x_1; x_2) : f(x) > l(x)$ - строгая выпуклость

В определении функции, выпуклой вниз, знаки неравенств $f(x) \ge l(x)$ и f(x) > l(x) меняются на противоположные

8.8.25 Теорема о выпуклости и вогнутости функции на интервале

Theorem

Если f(x) непрерывна на [a;b] и на $(a;b)\exists f''(x)$, то

 $\forall x \in (a;b): f''(x) \ge 0 \implies f(x)$ выпукла вниз

 $\forall x \in (a;b): f''(x) \leq 0 \implies f(x)$ выпукла вверх

Proof:

Докажем выпуклость вниз, выпуклость вверх доказывается аналогично

Пусть $x_1 < x_2 \in [a;b]$, тогда для доказательства по определению необходимо доказать верность неравенства:

$$\forall x \in (x_1; x_2) : l(x) - f(x) \ge 0$$
, где

$$l(x) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} x + \frac{x_2 f(x_1) - x_1 f(x_2)}{x_2 - x_1}$$
- уравнение хорды l

$$f(x_2) - f(x_1) \qquad x_2 f(x_1) - x_1 f(x_2) \qquad x_2 - x + \frac{1}{2} f(x_1) - \frac{1}{2} f(x_2) \qquad x_3 - x + \frac{1}{2} f(x_1) - \frac{1}{2} f(x_2) \qquad x_3 - x + \frac{1}{2} f(x_1) - \frac{1}{2} f(x_2) \qquad x_3 - x + \frac{1}{2} f(x_1) - \frac{1}{2} f(x_2) \qquad x_3 - x + \frac{1}{2} f(x_1) - \frac{1}{2} f(x_2) \qquad x_3 - x + \frac{1}{2} f(x_1) - \frac{1}{2} f(x_2) - \frac{1}{2} f(x_2) - \frac{1}{2} f(x_1) - \frac{1}{2} f(x_2) -$$

$$l(x) - f(x) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} x + \frac{x_2 f(x_1) - x_1 f(x_2)}{x_2 - x_1} - f(x) \frac{x_2 - x + x - x_1}{x_2 - x_1} =$$

$$= \frac{f(x_1)(x_2 - x) + f(x_2)(x - x_1)}{x_2 - x_1} - \frac{f(x)(x_2 - x) + f(x)(x - x_1)}{x_2 - x_1} =$$

$$= \frac{f(x_1)(x_2 - x) + f(x_2)(x - x_1) - f(x)(x_2 - x) - f(x)(x - x_1)}{x_2 - x_1} =$$

$$=\frac{f(x_1)(x_2-x)+f(x_2)(x-x_1)-f(x)(x_2-x)-f(x)(x-x_1)}{x_1-x_2}=\frac{f(x_1)(x_2-x)+f(x_2)(x-x_1)-f(x)(x_2-x)-f(x)(x-x_1)}{x_1-x_1}=\frac{f(x_1)(x_2-x)+f(x_2)(x-x_1)-f(x)(x_2-x)-f(x)(x-x_1)}{x_1-x_1}=\frac{f(x_1)(x_2-x)+f(x_2)(x-x_1)-f(x)(x_2-x)-f(x)(x-x_1)}{x_1-x_1}=\frac{f(x_1)(x_2-x)+f(x_2)(x-x_1)-f(x)(x_2-x)-f(x)(x-x_1)}{x_1-x_1}=\frac{f(x_1)(x_2-x)+f(x_2)(x-x_1)-f(x)(x_2-x)-f(x)(x-x_1)}{x_1-x_1}=\frac{f(x_1)(x_2-x)+f(x_2)(x-x_1)-f(x)(x_2-x)-f(x)(x-x_1)}{x_1-x_1}=\frac{f(x_1)(x_2-x)-f(x)(x_2-x)-f(x)(x-x_1)}{x_1-x_1}=\frac{f(x_1)(x_2-x)-f(x)(x_2-x)-f(x)(x-x_1)}{x_1-x_1}=\frac{f(x_1)(x_2-x)-f(x)(x_2-x)-f(x)(x-x_1)}{x_1-x_1}=\frac{f(x_1)(x_2-x)-f(x)(x_2-x)-f(x)(x-x_1)}{x_1-x_1}=\frac{f(x_1)(x_2-x)-f(x)(x_2-x)-f(x)(x-x_1)}{x_1-x_1}=\frac{f(x_1)(x_2-x)-f(x)(x_2-x)-f(x)(x-x_1)}{x_1-x_1}=\frac{f(x_1)(x_2-x)-f(x)(x_2-x)-f(x)}{x_1-x_1}=\frac{f(x_1)(x_1-x)-f(x)(x_1-x)-f(x)}{x_1-x_1}=\frac{f(x_1)(x_1-x)-f(x)}{x_1-x_1}=$$

$$=\frac{(f(x_1)-f(x))(x_2-x)+(f(x_2)-f(x))(x-x_1)}{x_2-x_1}=$$

на $(x_1;x)$ и $(x;x_2)$ выполняется т. Лагранжа, $\xi \in (x;x_2), \eta \in (x_1;x)$

$$=\frac{(x-x_1)(x_2-x)(f'(\xi)-f'(\eta))}{x_2-x_1} \textcircled{\equiv}, \text{ т.к. для функции } f' \text{ на } (\eta;\xi) \text{ выполняется т. Лагранжа}$$

$$\textcircled{\equiv} \frac{(x-x_1)(x_2-x)f''(\zeta)(\xi-\eta)}{x_2-x_1} \geq 0, \zeta \in (\eta;\xi) \subset (a;b)$$

$$\underbrace{ \left(= \right)} \frac{(x-x_1)(x_2-x)f''(\zeta)(\xi-\eta)}{x_2-x_1} \geq 0, \zeta \in (\eta;\xi) \subset (a;b)$$

8.8.26 Правило Лопиталя

Theorem Правило Лопиталя (неопределённость вида $\frac{0}{0}$)

Докажем теорему для случая, когда рассматривается левосторонний предел при $a \in \mathbb{R}$, т.е. предел

$$\lim_{x \to a-} \frac{f(x)}{g(x)}$$

для $a \in \mathbb{R}$ и функций f(x) и g(x), таких что:

- $\exists \delta_1 > 0 : f$ и g дифференцируемы на $(a \delta_1; a)$
- $\bullet \exists \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{-}} g(x) = 0$
- $\forall x \in (a \delta_1; a) : g'(x) \neq 0$ $\exists \lim_{x \to a \frac{f'(x)}{g'(x)}} = A \in \overline{\mathbb{R}}$

Тогда: $\exists \lim_{x \to a^-} \frac{f(x)}{g(x)} = A \in \overline{\mathbb{R}}$

- 1. БОО рассмотрим случай, когда $A \in \mathbb{R}$. Иначе рассмотрим предел частного $\frac{f(x)}{g(x)}$
- 2. Доопределим f(x) и g(x) в точке a: f(a) = g(a) = 0, чтобы функции были непрерывны в точке a. Это не влияет на искомый предел по определению предела функции при $x \to a$ Тогда $\forall x \in (a \delta_1; a)$ на [x; a] выполнено условие т. Коши

Тогда по т. Коши
$$\exists \xi \in (x;a): \frac{f(x)-f(a)}{g(x)-g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

 ξ зависит от x по построению $\implies \xi(x) \underset{x \to a^-}{\longrightarrow} a$

Тогда $\frac{f'(\xi)}{g'(\xi)} = F(\xi(x)) \underset{x \to a^-}{\longrightarrow} A$ по теореме о пределе сложной функции $F(\xi(x))$

Для случая $x \to a$, $a \in \mathbb{R}$ и $x \to a+$, $a \in \mathbb{R}$ доказательство аналогично Докажем теорему для случая, когда рассматривается предел при $a \in +\infty$, т.е. предел

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)}$$

Proof:

1. БОО рассмотрим случай, когда $A \in \mathbb{R}$. Иначе рассмотрим предел частного $\frac{f(x)}{g(x)}$

$$\lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = \left| x = \frac{1}{t} \right| = \lim_{t \to 0+} \frac{f'\left(\frac{1}{t}\right)}{g'\left(\frac{1}{t}\right)} = A$$

2. Рассмотрим функции:

$$a(t) = f(\frac{1}{t})$$

$$b(t) = g(\frac{1}{t})$$

Тогда:

$$a'(t) = f'\left(\frac{1}{t}\right)\left(\frac{-1}{t^2}\right)$$

$$b'(t) = g'\left(\frac{1}{t}\right)\left(\frac{-1}{t^2}\right)$$

$$\frac{f'\left(\frac{1}{t}\right)}{g'\left(\frac{1}{t}\right)} = \frac{a'(t)}{b'(t)} \implies \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = \lim_{t \to 0+} \frac{a'(t)}{b'(t)} = A$$

По построению a(t) и b(t) - композиция дифференцируемых функций, также для них выполнены пункты 2, 3, 4 теоремы, тогда

$$\lim_{t\to 0+}\frac{a(t)}{b(t)}=\lim_{t\to 0+}\frac{a'(t)}{b'(t)}=A\implies \lim_{x\to +\infty}\frac{f(x)}{g(x)}=A$$

Theorem Правило Лопиталя (неопределённость вида $\frac{\infty}{\infty 0}$)

Докажем теорему для случая, когда рассматривается левосторонний предел при $a \in \mathbb{R}$, т.е. предел

$$\lim_{x \to a-} \frac{f(x)}{g(x)}$$

для $a \in \mathbb{R}$ и функций f(x) и g(x), таких что:

- $\exists \delta_1 > 0 : f$ и g дифференцируемы на $(a \delta_1; a)$

• $\exists \log_{x \to a^{-}} f(x) = \lim_{x \to a^{-}} g(x) = \infty$ • $\forall x \in (a - \delta_{1}; a) : g'(x) \neq 0$ • $\exists \lim_{x \to a^{-}} \frac{f'(x)}{g'(x)} = A \in \overline{\mathbb{R}}$ Тогда: $\exists \lim_{x \to a^{-}} \frac{f(x)}{g(x)} = A \in \overline{\mathbb{R}}$

1. БОО рассмотрим случай, когда $A \in \mathbb{R}$. Иначе рассмотрим предел частного $\frac{f(x)}{g(x)}$

2. По определению предела:

$$\forall \varepsilon_1 > 0 \, \exists \delta_2 > 0 \, \forall x \in (a - \delta_2; a) : \left| \frac{f'(x)}{g'(x)} - A \right| < \varepsilon_1$$

Рассмотрим такие ε_1 , что $\varepsilon_1 < \frac{1}{2}$

Зафиксируем $x_0 \in (a - \min\{\delta_1; \delta_2\}; a)$

T.K.
$$f(x) \underset{x \to a^{-}}{\longrightarrow} \infty$$
, to $\exists \delta_3 > 0 \ \forall x \in (a - \delta_3; a) : |f(x)| \ge \frac{|f(x_0)|}{\varepsilon_1}$

To есть
$$\exists \delta_3 > 0 \, \forall x \in (a - \delta_3; a) : \epsilon_1 \ge \left| \frac{f(x_0)}{f(x)} \right|$$

Аналогично
$$\exists \delta_4: \forall x \in (a-\delta_4;a): \varepsilon_1 \geq \left| \frac{g(x_0)}{g(x)} \right|$$

Обозначим $x_0 = a - \min\{\delta_1; \delta_2; \delta_3; \delta_4\}$ и рассмотрим $x \in (x_0; a)$

Тогда на $[x_0;x]$ выполнены условия теоремы Коши для фунций f и $g \implies$

$$\implies \left| \frac{f(x) - f(x_0)}{g(x) - g(x_0)} - A \right| = \left| \frac{f'(\xi(x))}{g'(\xi(x))} - A \right| < \varepsilon_1, \text{ t.k. } \xi(x) \in (x_0; x) \subset (a - \delta_2; a)$$

$$3. \left| \frac{f(x)}{g(x)} - A \right| \le \left| \frac{f(x)}{g(x)} - \frac{f(x) - f(x_0)}{g(x) - g(x_0)} \right| + \left| \frac{f(x) - f(x_0)}{g(x) - g(x_0)} - A \right| <$$

$$< \left| \frac{f(x)}{g(x)} - \frac{f(x) - f(x_0)}{g(x) - g(x_0)} \right| + \varepsilon_1 =$$

$$= \left| \frac{f(x) - f(x_0)}{g(x) - g(x_0)} \right| \left| \frac{1 - \frac{g(x_0)}{g(x)}}{1 - \frac{f(x_0)}{f(x)}} - 1 \right| + \varepsilon_1 <$$

$$<(|A| + \varepsilon_1) \left| \frac{1 - \frac{g(x_0)}{g(x)}}{1 - \frac{f(x_0)}{f(x)}} - 1 \right| + \varepsilon_1 =$$

$$=(|A|+\varepsilon_1)\left|\frac{\frac{f(x_0)}{f(x)}-\frac{g(x_0)}{g(x)}}{1-\frac{f(x_0)}{f(x)}}\right|+\varepsilon_1\leq$$

$$\leq (|A| + \varepsilon_1) \frac{\left| \frac{f(x_0)}{f(x)} \right| + \left| \frac{g(x_0)}{g(x)} \right|}{1 - \left| \frac{f(x_0)}{f(x)} \right|} + \varepsilon_1 \leq$$

$$\leq (|A| + \varepsilon_1) \frac{2\varepsilon_1}{1 - \varepsilon_1} + \varepsilon_1 < \left(|A| + \frac{1}{2}\right) \frac{2\varepsilon_1}{1 - \frac{1}{2}} + \varepsilon_1 = \varepsilon_1(3 + 4|A|)$$

4. Тогда:

 $\forall \varepsilon > 0 \ \text{построим} \ \varepsilon_1 = \min\{\frac{\varepsilon}{3+4|A|}, \frac{1}{2}\}, \ \text{по} \ \varepsilon_1 \ \text{построим} \ \delta_1, \delta_2, \delta_3, \delta_4$

Положим
$$\delta := \min\{\delta_1; \delta_2; \delta_3; \delta_4\}$$
, тогда $\left|\frac{f(x)}{g(x)} - A\right| < \varepsilon_1(3+4|A|) = \varepsilon$

Example (Пример использования правила Лопиталя)

1.
Пусть
$$\alpha > 0, \beta > 0$$

$$\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{\alpha x^{\alpha - 1}} = \lim_{x \to +\infty} \frac{1}{\alpha x^{\alpha}} = 0 \implies$$

$$\implies \lim_{x \to +\infty} \frac{\ln^{\alpha} x}{x^{\beta}} = \lim_{x \to +\infty} \left(\frac{\ln x}{x^{\frac{\beta}{\alpha}}}\right)^{\alpha} = 0, \text{ т.к. } x^{\alpha} \text{ непрерывна на всей области определения}$$
2. Пусть $\alpha > 0, a > 1$

$$\lim_{x \to +\infty} \frac{x}{a^{x}} = \lim_{x \to +\infty} \frac{1}{a^{x} \ln a} = 0 \implies$$

$$\implies \lim_{x \to +\infty} \frac{x^{\alpha}}{a^{x}} = \lim_{x \to +\infty} \left(\frac{x}{(\sqrt[4]a)^{x}}\right)^{\alpha} = 0$$

$$(8.1)$$

8.9 Формула Тейлора

8.9.1 Многочлен Тейлора

Definition: Многочлен Тейлора

Пусть дана функция f, дифференцируемая n раз в точке x_0 , тогда в точке x_0 многочленом Тейлора называется многочлен:

называется многочлен:
$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Note

При $x_0 = 0$ $T_n(x)$ называется рядом Маклорена

Claim Свойство многочлена Тейлора

$$\forall k \in \mathbb{N} : (0 \le k \le n \implies T_n^{(k)}(x_0) = f^{(k)}(x_0))$$

Proof:

$$T_{n}^{(m)}(x) = \left(\sum_{k=0}^{n} \frac{f^{(k)}(x_{0})}{k!}(x - x_{0})^{k}\right)^{(m)} =$$

$$= \left(\sum_{k=0}^{m-1} \frac{f^{(k)}(x_{0})}{k!}(x - x_{0})^{k}\right)^{(m)} + \left(\frac{f^{(m)}(x_{0})}{m!}(x - x_{0})^{m}\right)^{(m)} + \left(\sum_{k=m+1}^{n-1} \frac{f^{(k)}(x_{0})}{k!}(x - x_{0})^{k}\right)^{(m)} + \left(\frac{f^{(m)}(x_{0})}{m!}m!(x - x_{0})^{0}\right) + \left(\sum_{k=m+1}^{n-1} \frac{f^{(k)}(x_{0})}{k!}(x - x_{0})^{k}\right)^{(m)} =$$

$$= \left(\sum_{k=0}^{m-1} \frac{f^{(k)}(x_{0})}{k!}(x - x_{0})^{k}\right)^{(m)} + \left(f^{(m)}(x_{0})\right) + \left(\sum_{k=m+1}^{n-1} \frac{f^{(k)}(x_{0})}{k!}(x - x_{0})^{k}\right)^{(m)} \Longrightarrow$$

$$T_{n}^{(m)}(x_{0}) = \left(\sum_{k=0}^{m-1} \frac{f^{(k)}(x_{0})}{k!}0\right) + \left(f^{(m)}(x_{0})\right) + \left(\sum_{k=m+1}^{n-1} \frac{f^{(k)}(x_{0})}{k!}0\right) = f^{(m)}(x_{0})$$

8.9.2 Формула Тейлора с остаточным членом в форме Пеано

Theorem Формула Тейлора с остаточным членом в форме Пеано

Если $\exists f^{(n)}(x_0)$, т.е. существует n-ая производная в точке x_0 (следовательно, функция n-1 раз дифференцируема в некоторой окрестности точки x_0), то $R_n(x) = f(x) - T_n(x) = \overline{o}((x-x_0)^n)$

Proof:

1. По правилу Лопиталя:

$$\lim_{x \to x_0} \frac{R_n(x)}{(x - x_0)^n} = \lim_{x \to x_0} \frac{f(x) - T_n(x)}{(x - x_0)^n} = \lim_{x \to x_0} \frac{f'(x) - T'_n(x)}{n(x - x_0)^{n-1}} =$$

$$= \lim_{x \to x_0} \frac{f''(x) - T''_n(x)}{n(n-1)(x - x_0)^{n-2}} = \dots = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - T_n^{(n-1)}(x)}{n!(x - x_0)}$$

Для полученного выражения нельзя применить правило Лопиталя, т.к. $f^{(n-1)}$ может быть не дифференцируема в некоторой окрестности точки x_0

(из условия следует, только то, что $f^{(n-1)}$ дифференцируема в точке x_0)

2. Для
$$f^{(n-1)} - T_n^{(n-1)}$$
 существует производная в точке $x_0 \Longrightarrow f^{(n-1)}(x) = f^{(n-1)}(x_0) + f^{(n)}(x_0)(x - x_0) + \overline{o}(x - x_0)$

$$T_n^{(n-1)}(x) = T_n^{(n-1)}(x_0) + T_n^{(n)}(x_0)(x - x_0) + \overline{o}(x - x_0)$$

$$f^{(n-1)}(x_0) = T_n^{(n-1)}(x_0) \wedge f^{(n)} = T_n^{(n)}(x_0) \Longrightarrow$$

$$\Longrightarrow f^{(n-1)}(x) - T_n^{(n-1)}(x) = \overline{o}(x - x_0) - \overline{o}(x - x_0) = \overline{o}(x - x_0) \Longrightarrow$$

$$\Longrightarrow \lim_{x \to x_0} \frac{f(x) - T_n(x)}{(x - x_0)^n} = \lim_{x \to x_0} \frac{\overline{o}(x - x_0)}{n!(x - x_0)} = 0$$

8.9.3 Формула Тейлора для синуса

Example (Формула Тейлора для синуса)
$$f(x) = \sin x, x_0 = 0, \text{ тогда } f^{(k)}(x) = \sin \left(x + \frac{\pi k}{2}\right)$$

$$f^{(k)}(0) = \begin{cases} 0, k \equiv 0 \mod 2 \\ (-1)^{\frac{k+1}{2}}, \text{ otherwise} \end{cases}$$

$$\sin(x) = \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} x^{2k+1} + \overline{o}(x^{2n+1})$$

8.9.4 Формула Тейлора для экспоненциальной функции

Example (Формула Тейлора для косинуса)
$$f(x) = \cos x, x_0 = 0, \text{ тогда } f^{(k)}(x) = \cos\left(x + \frac{\pi k}{2}\right)$$

$$f^{(k)}(0) = \begin{cases} 0, k \equiv 1 \mod 2 \\ (-1)^{\frac{k}{2}}, \text{ otherwise} \end{cases}$$

$$\cos(x) = \sum_{k=0}^{n} \frac{(-1)^k}{(2k)!} x^{2k} + \overline{o}(x^{2n})$$

8.9.5 Формула Тейлора для экспоненциальной функции

Example (Формула Тейлора для экспоненциальной функции)

 $f(x) = e^x$, $x_0 = 0$, тогда $f^{(k)}(0) = 1$

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + \overline{o}(x^{n})$$

Example (Пример использования формулы Тейлора для подсчёта предела)

$$\lim_{x \to 0} \frac{x - \sin x}{e^x - 1 - x - \frac{x^2}{2}} = \lim_{x \to 0} \frac{x - \left(x - \frac{x^3}{6} + \overline{o}(x^3)\right)}{1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \overline{o}(x^3) - 1 - x - \frac{x^2}{2}} = \lim_{x \to 0} \frac{\frac{x^3}{6} + \overline{o}(x^3)}{\frac{x^3}{6} + \overline{o}(x^3)} = 1$$
(8.2)

8.9.6 Теорема Тейлора с остаточным членом в формуле Лагранжа

Theorem Теорема Тейлора с остаточным членом в формуле Лагранжа

Если функция f(x) дифференцируема n+1 раз на интервале (a;b), $a \in \overline{\mathbb{R}}$, $b \in \overline{\mathbb{R}}$ и $a < x_0, x < b$, то $\exists c = c(x) \in (\min(x_0; x); \max(x_0; x))$:

$$\exists c = c(x) \in (\min(x_0; x); \max(x_0; x)) : R_n(x) = f(x) - T_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

Proof.

1. Рассмотрим функцию
$$\gamma(t) = f(x) - T_n(t;x) - \frac{(x-t)^{n+1}R_n(x)}{(x-x_0)^{n+1}}$$
, где $T_n(t;x) = \sum_{k=0}^n \frac{f^{(k)}(t)}{k!}(x-t)^k$

 $\gamma(t)$ дифференцируема по t на $(\min(x_0; x); \max(x_0, x))$, также

$$\gamma(x_0) = f(x) - T_n(x_0; x) - R_n(x) = f(x) - f(x) = 0$$

$$\gamma(x) = f(x) - T_n(x; x) = f(x) - f(x) = 0$$

Тогда по т. Ролля $\exists c \in (\min(x_0; x); \max(x_0, x)) : \gamma'(c) = 0$

$$\gamma'(t) = -f'(t) - \sum_{k=1}^{n} \left(\frac{f^{(k+1)}(t)}{k!} (x-t)^k - \frac{f^{(k)}(t)}{(k-1)!} (x-t)^{k-1} \right) + \frac{(n+1)(x-t)^n R_n(x)}{(x-x_0)^{n+1}} =$$

$$= -f'(t) - \frac{f^{(n+1)}(t)}{n!} (x-t)^n + f'(t) + \frac{(n+1)(x-t)^n R_n(x)}{(x-x_0)^{n+1}} = \frac{(n+1)(x-t)^n R_n(x)}{(x-x_0)^{n+1}} - \frac{f^{(n+1)}(t)}{n!} (x-t)^n$$

2.
$$\gamma'(c) = 0$$

$$\implies \frac{(n+1)(x-c)^n R_n(x)}{(x-x_0)^{n+1}} - \frac{f^{(n+1)}(c)}{n!} (x-c)^n = 0 \implies$$

$$\implies R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

Example (Пример для функции синус)

$$\forall x \in \mathbb{R}: \left| \sin x - \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} x^{2k+1} \right| \le \frac{1}{(2n+2)!} x^{2n+2} \underset{n \to +\infty}{\longrightarrow} 0$$

Example (Пример для экспоненты)

$$f(x) = e^x$$
, $T_n(x) = \sum_{k=0}^{n} \frac{x^k}{k!}$

$$\forall x \in \mathbb{R}: |T_n(x) - e^x| = |R_n(x)| = \frac{e^c}{(n+1)!} |x|^{n+1} \le \frac{e^{|x|}}{(n+1)!} |x|^{n+1} \underset{n \to +\infty}{\longrightarrow} 0, \text{ t.k. } c = c(x; x_0) \in (x_0; x) = (0; x)$$

8.9.7Определение точки возрастания

Definition: Точка возрастания

 x_0 - точка возрастания, если:

 $\exists \delta > 0 \, \forall x \in U_{\delta}(x_0)$:

 $(x_0 < x \implies f(x_0) < f(x)) \land (x < x_0 \implies f(x) < f(x_0))$

8.9.8Определение точки убывания

Definition: Точка убывания

 x_0 - точка убывания, если:

 $\exists \delta > 0 \, \forall x \in U_{\delta}(x_0)$:

 $(x_0 < x \implies f(x_0) > f(x)) \land (x < x_0 \implies f(x) > f(x_0))$

8.9.9 Теорема о функции, имеющей ровно n - 1 ненулевых производных

Theorem

Если функция f(x) n раз дифференцируема в точке x_0 и выполнено:

 $\forall i \in \{1, 2, ..., n-1\} : f^{(i)}(x_0) = 0$

 $f^{(n)}(x_0) \neq 0$, To

 $\bullet n = 2k$: Если $f^{(2k)}(x_0) > 0$, то x_0 - точка min

Eсли $f^{(2k)}(x_0) < 0$, то x_0 - точка max $\bullet n = 2k+1$: Если $f^{(2k+1)}(x_0) > 0$, то x_0 - точка возрастания

Если $f^{(2k+1)}(x_0) < 0$, то x_0 - точка убывания

1. По формуле Тейлора с остаточным членом в форме Пеано:

$$f(x) = f(x_0) + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \overline{o}((x - x_0)^n)$$
$$f(x) - f(x_0) = \left(\frac{f^{(n)}(x_0)}{n!} + \overline{o}(1)\right) (x - x_0)^n$$

2. Для случая, когда n=2k, докажем при $f^{(n)}(x_0)>0$, для второго случая аналогично:

Т.к.
$$\overline{o}(1)$$
 - б.м. при $x \to x_0$, то

$$\exists \delta > 0 \, \forall x \in U_\delta(x_0) : \left(\frac{f^{(n)}(x_0)}{n!} + \overline{o}(1)\right) > 0$$

Тогда
$$\forall x \in \dot{U}_{\delta}(x_0): f(x) - f(x_0) = \left(\frac{f^{(n)}(x_0)}{n!} + \overline{o}(1)\right)(x - x_0)^{2k} > 0$$

3. Для случая, когда n=2k+1, докажем при $f^{(n)}(x_0)>0$, для второго случая аналогично:

Аналогично пункту 2
$$\exists \delta > 0 \ \forall x \in U_\delta(x_0) : \left(\frac{f^{(n)}(x_0)}{n!} + \overline{o}(1)\right) > 0$$

При
$$x \in (x_0; x_0 + \delta) : (x - x_0)^{2k+1} > 0$$

При
$$x \in (x_0 - \delta; x_0) : (x - x_0)^{2k+1} < 0$$

Тогда при
$$x \in (x_0; x_0 + \delta) : f(x) - f(x_0) > 0$$

Тогда при
$$x \in (x_0 - \delta; x_0) : f(x) - f(x_0) < 0$$

Chapter 9

Интегрирование функций

При нахождении опечаток просьба написать https://t.me/i8088_t, на момент компиляции ник в тг: vova kormilitsyn