CS 70 Discrete Mathematics and Probability Theory Spring 2015 Vazirani Discussion 6W

1. CRT Decomposition

In this problem we use the Chinese Remainder Theorem to compute 3³⁰² mod 385.

- (a) Write 385 as a product of prime numbers in the form $385 = p_1 \times p_2 \times p_3$.
- (b) Use Fermat's Little Theorem to find $3^{302} \mod p_1$, $3^{302} \mod p_2$, and $3^{302} \mod p_3$.
- (c) Let $x = 3^{302}$. Use part (b) to express the problem as a system of congruences. Argue that there is a unique solution mod 385, and find it. What is the final answer 3^{302} mod 385?

2. Roots

Let's make sure you're comfortable with roots of polynomials in the familiar real numbers \mathbb{R} . Recall that a polynomial of degree d has at most d roots. In this problem, assume we are working with polynomials over \mathbb{R} .

- (a) Suppose p(x) and q(x) are two different nonzero polynomials with degrees d_1 and d_2 respectively. What can you say about the number of solutions of p(x) = q(x)? How about $p(x) \cdot q(x) = 0$?
- (b) Consider the degree 2 polynomial $f(x) = x^2 + ax + b$. Show that, if f has exactly one root, then $a^2 = 4b$.

	(c) What is the $minimal$ number of real roots that a nonzero polynomial of degree d can have? How does the answer depend on d ?
3.	Roots: The Next Generations Which of the facts from Problem 2 stay true when \mathbb{R} is replaced by $GF(p)$ (i.e., if you are working modulo a prime number p)? Which change, and how?
4.	Interpolation Practice (a) Find a linear polynomial $p(x)$ over \mathbb{R} such that $p(1) = 1$ and $p(3) = 4$.
	(b) Find a linear polynomial $q(x)$ over $GF(5)$ such that $q(1) \equiv 1 \pmod 5$ and $q(3) \equiv 4 \pmod 5$.