Data for Idealized Particle-Resolved Large-Eddy Simulations to Evaluate the Impact of Emissions Spatial Heterogeneity on CCN Activity

Samuel Frederick¹, Matin Mohebalhojeh², Jeffrey Curtis^{1,2}, Matthew West², and Nicole Riemer¹

¹Department of Climate, Meteorology, and Atmospheric Sciences, University of Illinois Urbana–Champaign, 1301 W. Green St., Urbana, IL 61801, USA

²Department of Mechanical Science and Engineering, University of Illinois Urbana–Champaign, 1206 W. Green St., Urbana, IL, 61801,USA

Correspondence: Nicole Riemer (nriemer@illinois.edu)

This dataset contains all material required to produce the figures found within the manuscript submitted to Aerosol Chemistry and Physics entitled "Idealized Particle-Resolved Large-Eddy Simulations to Evaluate the Impact of Emissions Spatial Heterogeneity on CCN Activity". The archived dataset consists of:

- data.zip: WRF-PartMC-MOSIAC-LES simulation data in Section 3
- scripts.zip: Python notebooks for generating figures in Section 2 and 3, and scripts used to compile the normalized spatial heterogeneity metric as described by Mohebalhojeh et al. 2025.

Software requirements/recommendations

All figures in the paper were run with Python 3.9.23. This older version is required due to a dependency of f2py (used to compile Fortran code for the spatial heterogeneity metric calculation into an object which can be imported as a Python module) which has since been deprecated. Users should run the create_env.sh script in scripts.zip to create a conda environment which contains all the necessary packages.

Required packages are as follows with the version used for this manuscript:

```
- numpy (2.0.2)
```

5

15

- scipy (1.13.1)

matplotlib (3.9.2)

- netCDF4 (1.7.2) available at https://unidata.github.io/netcdf4-python/
- pandas (2.3.1)
- ipykernel (6.30.1)

- setuptools (59.8.0)
- **20 –** gfortran (15.1.0)

25

30

Directory structure of archived simulation data for Section 3.1

Upon downloading and untarring partmc_simulations.tar.gz, it may be explored as follows:

- Input data files for conducting the set of three simulations:
 - camp. spec and relevant input files
 - tchem.spec and relevant input files
 - tchem_gpu.spec and relevant input files
- Output data in the out / directory consists of netCDF files per output time:
 - CAMP output: camp 0001 *
 - PartMC-TChem CPU output: tchem_cb05cl_ae5_*
- PartMC-TChem GPU output: tchem_gpu_cb05cl_ae5_*
- simulation notebook.ipynb: Python Jupyter notebook for producing Fig. 5 and analysis of error.

Directory structure of archived numerical experiment data for Section 3.2

Upon downloading and untarring timings.tar.gz, it may be explored as follows:

- data/: directory containing all the timing results. The descriptions of the individual directories are described in Table 1.
- 35 scripts/: directory containing the following scripts:
 - solver plots.ipynb: Python Jupyter notebook for producing Fig. 6, 7.
 - rhs plots.ipynb: Python Jupyter notebook for producing Fig. 8.

Cluster	Experiment	Platform	Path relative to data directory
DeltaAI	RHS	NVIDIA H100 GPU	deltaAI/CB05CL_AE5_w_simpolSOA/CUDA/rhs-no_sacado
DeltaAI	Jacobian	NVIDIA H100 GPU	deltaAI/CB05CL_AE5_w_simpolSOA/CUDA/rhss-no_sacado
DeltaAI	TrBDF2	NVIDIA H100 GPU	deltaAI/CB05CL_AE5_w_simpolSOA/CUDA/trbdf-no_sacado
DeltaAI	Sundials CVODE	NVIDIA H100 GPU	deltaAI/CB05CL_AE5_w_simpolSOA/CUDA/sundials_dense-no_sacado
DeltaAI	Sundials CVODE-GMRES	NVIDIA H100 GPU	deltaAI/CB05CL_AE5_w_simpolSOA/CUDA/sundials_gmres-no_sacado
Frontier	RHS	AMD MI250X GPU	frontier/CB05CL_AE5_w_simpolSOA/HIP/rhs-no_sacado
Frontier	Jacobian	AMD MI250X GPU	frontier/CB05CL_AE5_w_simpolSOA/HIP/jac-no_sacado
Frontier	TrBDF2	AMD MI250X GPU	frontier/CB05CL_AE5_w_simpolSOA/HIP/trbdf-no_sacado
Frontier	Sundials CVODE	AMD MI250X GPU	frontier/CB05CL_AE5_w_simpolSOA/HIP/sundials_dense-no_sacado
Frontier	Sundials CVODE-GMRES	AMD MI250X GPU	frontier/CB05CL_AE5_w_simpolSOA/HIP/sundials_gmres-no_sacado
Perlmutter	RHS	AMD 7763 CPU	perlmutter/CB05CL_AE5_w_simpolSOA/HOST/rhs-no_sacado
Perlmutter	Jacobian	AMD 7763 CPU	perlmutter/CB05CL_AE5_w_simpolSOA/HOST/jac-no_sacado
Perlmutter	TrBDF2	AMD 7763 CPU	perlmutter/CB05CL_AE5_w_simpolSOA/HOST/trbdf-no_sacado
Perlmutter	Sundials CVODE	AMD 7763 CPU	perlmutter/CB05CL_AE5_w_simpolSOA/HOST/sundials_dense-no_sacado
Perlmutter	Sundials CVODE-GMRES	AMD 7763 CPU	perlmutter/CB05CL_AE5_w_simpolSOA/HOST/sundials_gmres-no_sacado

Table 1. Experiment configurations across different clusters and platforms