

Christopher Maxey
BAE Systems – FAST Labs

The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

09-19-2018

Why use a MATRICs RF-FPGA?

- Analogous to Digital FPGA:
 - Save time and money (vs. custom RF ASIC) in low-volume applications
 - Rapid prototyping
 - In-field upgrades
 - On-the-fly response to environment

MATRICs RF-FPGA IC progress

MATRICs V1

Tape-out: May 2013
Demo Full Chip

- 1st-generation RF-FPGA
 - · 10 functional blocks
 - Microwave switch fabric
 - LO distribution
- Coarse-grained reconfigurability
- DC-to-20 GHz operation
- > 80 dB RF isolation
- Tile-able layout

MATRICs V2

Tape-out: July 2014
Demo Full Chip

- 2nd-generation RF-FPGA
 - · Improved architecture
 - T/R switch
- Lower Phase-noise CFG
- Higher-linearity RF/BB
- Full-functioned MW block
 - Up/down-conversion
 - "MIXORAMP" reconfigurable mixer/amplifier/4-way active switch
- Phase-coherent Fractional-N CFG

MATRICs V3

Tape-out: Jan 2016
Full Chip

- 3rd-generation RF-FPGA
 - · More configurability
 - Improved Performance
- Lower Noise Figure RF/BB
- Reconfigurable Microwave Block
 - Tunable Gain
 - · Tunable BW
 - Tunable Dynamic Range
- Improved CFG with lockdetect and calibration circuit
 - VCO overlaps optimized
 - New on-chip VCO calibration algorithm

MATRICs V4

Tape-out: Summer 2018
Full Chip

- 4th-generation RF-FPGA
 - 40 GHz
 - 4 CFGs
 - Improved Performance in new process (SCB13S4B)
- Wider IBW RF/BB Block
 - 4GHz IBW
 - Stretch goal of 10GHz operating frequency
- mmW Microwave Block
 - Extended to 40GHz
- Improved CFGs
 - Extended to 40GHz Support
 - Improved phase noise from new process

MATRICs V3 architecture

RF/Baseband (RF/BB):

Microwave (MW):

Configurable Frequency Generator (CFG):

Distribution Statement "A" Approved for Public Release, Distribution Unlimit

DC to 6 GHz

0.5 GHz to 20 GHz

10 MHz to 20 GHz

please contact the Public Release Center.

Highly-reconfigurable two-tier hybrid architecture

- Coarse-grained outer switch fabric/ fine-grained switching internal to blocks
 - Reconfigurable architecture:
 - Direct Conversion Rx
 - Superheterodyne Rx
 - I/Q upconverter
 - RF Transceiver
 - Microwave MUX/ DEMUX
 - Reconfigurable blocks:
 - IBW: 10MHz to 2 GHz
 - Gain: 0 to 40dB/ block
 - Linearity vs. DC power
 - Center frequency: 10 MHz to 20 GHz
 - Integer-N and Fractional-N PLL with on-chip programmable loop filter
- Distributed SPI & State Memory (~1kbits) for dynamic reconfiguration in ns

RF/Baseband Block (RF/BB): DC-to-6 GHz

RF/Baseband Block (RF/BB): DC-to-6 GHz

4- and 8-path direct-conversion Rx

I/Q upconverter

Front-end	IB IIP3	OOB IIP3	NF
LNA-1st	> +5 dBm	> +12 dBm	< 10 dB
Mixer-1st	> +15 dBm	> +30 dBm	< 14 dB

BAE SYSTEMS
INSPIRED WORK

Microwave Block (MW): 0.5 to 20 GHz

Microwave block usage

Microwave (Out)

MICTOWAVE Block

RF (Out)

- Amplification
- Frequency conversion
- Signal routing

RF: DC to 6 GHz

MW: 0.5 to 20 GHz

RF (In)

Configurable Frequency Generator (CFG)

MATRICs V3 Configurable Frequency Generator (CFG)

- Integer-N and ΣΔ fractional-N modes
- Octave-BW PLL (10 to 20 GHz) followed by binary divider
- Quad SiGe VCOs, each with 16 coarse-tuning sub-bands

2-channel DC-to-6 GHz direct conversion Rx

2-channel 0.5-to-20 GHz super-heterodyne Rx

2-channel 0.5-to-20 GHz super-heterodyne Rx

with increased gain and filtering

2:1 microwave MUX/ amplifier / down-/up-converter

Microwave amplifier / down-/up-converter / 1:2 router

Dual I/Q up-converters

DC-to-6 GHz RF transceiver

1:12 DC-to-6 GHz RF signal router

8:1 DC-to-6 GHz RF MUX

MATRICs Evaluation Board (top view)

GUIs for μW , RF/BB, & CFG Configuration

- High-isolation socket holds MATRICs IC on LCP substrate
- On-board broadband baluns

Ettus X310 / NI USRP-294x SDR compatibility

Leverage NI/Ettus SDR hardware (ADCs, DACs, FPGAs, and power supplies) and open-source software

MATRICs RF-FPGA Summary

- Save time and \$\$ vs. custom RF ASIC development
- Enables rapid reconfiguration and on-the-fly adaptation
 - Rapid prototyping
 - In-field upgrades
 - Dynamic frequency planning
 - Performance on demand
- Ettus-compatible evaluation board available

The Hedgehog Module

Two transcendent RF SoCs

Ultrascale+ RFSoC

World's first mm-wave multi-function monolithic transceiver

Arbitrarily switchable fabric made possible by 130 nm BiCMOS-on-SOI

World's first integrated multi-processor, multi-converter FPGA

Eliminates JESD204B/C analog interface, dramatically saving power and latency

82% component count reduction compared to discrete implementations

High channel density for scalable, integrated array applications

Integrated software/firmware for rapid development of custom radios

Hedgehog Block Diagram

Alpha Hedgehog Module (RF Side)

241 mm

Personality Connector 94117ASSY85381Ø6-97117 85381**97**-1 BURNER BURNER BER **DRAM Firefly Connectors** Xilinx Zu29DR RFSoC

Programming on Hedgehog

Demonstration Walkthrough

Demo Part 1

Demo Part 2

INSPIRED

Demo Part 3

© 2018 BAE Systems

Acknowledgments

- Tom Rondeau, Janet Liu, David Kirkwood, and the rest of the government team under DARPA/MTO Hedgehog Program, Contract No. FA8650-17-C-7709
- Steve Hary & Brandon Mathieu, AFRL
- Mike Scott, Dave Howard, Ed Priesler, Jazz Semiconductor
- Manuel Uhm, Doug Johnson, Dan Baker NI/Ettus Research

