Minimum Palindromic Cut

Strategy

	α.	۱ ط	C_{2}	C 3	6 4	C ₅
a	0	ત્ન	م	2	7	2
6	7	0	1	1	0	2
C 2	d	4	Q	G	٦	1
c 3	٧	ø	X	σ	7	0
Ьч	d	Q	d	8	0	1
c _s	X	8	4	4	4	0


```
for(int d=0; d < dp.length;d++) {</pre>
    for(int i=0,j = d; j < dp[0].length;i++,j++) {
       if(d == 0) {
           dp[i][j] = 0;
        else if(d == 1) {
            dp[i][j] = (s.charAt(i) == s.charAt(j)) ? 0 : 1;
       else if(s.charAt(i) == s.charAt(j) && dp[i+1][j-1] == 0) {
           dp[i][j] = 0;
        else {
            int min = Integer.MAX_VALUE;
            for(int k = i; k < j;k++) {
               int lans = dp[i][k];
               int rans = dp[k+1][j];
               if(lans + rans < min) {
                   min = lans + rans;
            dp[i][j] = min + 1;
```

optimisation

0(n2)

	a _o	b,	C ₁	c ³	64	c s
مره	T	t	t	ك	હ	4
b١	٦	+	t	F	7	F
cı	۵	4	7	+	F	t
C ₃	۶	α	8	1	4	+
by	7	Q	4	8	T	F
Cg	X	4	X	8	4	+


```
C_1
                  b,
         \sigma^{\circ}
                                 F
 مره
                                                  P
  bı
                                                 F
                                F
                                         T
                                         F
                        T
                                +
 \mathsf{c}_{\mathsf{3}}
                                         F
                                                 +
                                \mathbf{T}
                α
                                         T
C<sub>s</sub>
                                        4
```

```
int[]dp = new int[s.length()];
boolean[][]pal = longestPalSubstring(s);
//dp[i] \rightarrow i to end
dp[dp.length-1] = 0;
for(int i = dp.length-2; i >= 0;i--) {
    if(pal[i][s.length()-1] == true) {
        dp[i] = 0;
        continue;
    int min = Integer.MAX_VALUE;
    //to select a valid prefix
    for(int k = i; k < dp.length-1;k++) {</pre>
        if(pal[i][k] == true) {
             min = Math.min(min,dp[k+1]);
    dp[i] = min + 1;
return dp[0];
```

i-) i to end ss ans

Matrix Chain Multiplication

A:
$$10 \times 20$$
 $m_1 = 16 \times 20 \times 56 = 101$ AB: 10×30 $m_2 = 10^2 30 \times 50 = 101$ CD: 30×50

X

10

20 B

30

40

50

A

 C_2

 $\mathfrak{D}_{\mathfrak{Z}}$

0

4

o

X

0

X

o

0

K = 0

1521

K = 2

int lans = dp[i][k];

Lans

0

6 K

1810

Boolean Parenthesization

```
Input: N = 7
S = T|T&F^T
Output: 4
Explaination: The expression evaluates
to true in 4 ways ((T|T)&(F^T)),
(T|(T&(F^T))), (((T|T)&F)^T) and (T|((T&F)^T)).
```


