Funzioni

Def. Doti due insiemi A e B il laro produto centesiano e

AxB=?(a,b) | QeA, beBy

Una relazione bunaria e un sottoinsieme di AXB

Una funcione $f:A \rightarrow B$ e' una relazione binaria $f \in A \times B$ tale che $\forall a \in A = \exists ! b \in B + c$. $\forall a,b > \in f$ Se e' $\cos i$, scriviamo $f:A \rightarrow B$ $a \mapsto f(a)$

Oato $f: A \rightarrow B$, e iniettivo se, dati $Q_1, Q_2 \in A$, se $f(Q_1) = f(Q_2) \Longrightarrow Q_1 = Q_2$

f: A=B e- survettiva se, YbEB JaEA t.c. f(a)=b

f: A > B e iniettiva se iniettiva + suriettiva

TRUCCO: se A ha un solo elemento, f e iniettiva

Esempio

· f: N = N, n - identite

· f: IN > M n -> { n-1 se n>0

e surjettive

non iniettiva f(1)=0

· f: M - M

N -> N+1

iniettiva me non suriettiva

non apportione a $Im(f) \Rightarrow no suriou$.

Esercizio Le seguenti funzioni sono iniettive? Sono suriettive?

•
$$f: Q \rightarrow R$$

 $\times I \rightarrow \times^2 - \times + I$ NO INTETTIVA (porabola)
NO SURJETTIVA (SOTTS il vertical
Iniettive?
Presi a, be a se $a \neq b \Rightarrow f(a) \neq f(b)$ $\not\exists f$)
Se $a = 0$ e $b = 1$

Surjective? prends
$$y = -1 \in \mathbb{R}$$

 $\exists x \in \mathbb{Q} + c. x^2 - x + 1 = -1$?
 $x^2 - x + 2 = 0$
 $\Delta = b^2 - u_0 c = 1 - u_0 2 \leq 0$
 $\Rightarrow \exists x$
NO SURJETTIVE

PROMEMORIA:
$$|z|=$$
 $\left(-z \text{ Se } \frac{z}{2}\right)0$

f(a)=1=f(b) => NO INCETIVA

$$f(\sigma) = 1 \qquad f(\phi) = -(-1) = 1$$

$$|\alpha| \in \pi / \Lambda \Rightarrow 0$$

SURIETTIVA?
$$\forall b \in \mathbb{N}$$
, vogio che $\forall a \in \mathbb{Z}$, $f(a) = b$
Prendo $a = b \Rightarrow f(a) = f(b) = |b| = b$
 $\Rightarrow SURIETTIVA$

INIETTIVA?
$$\exists a_1, a_2 \in P + c. \ a_1 \neq a_2$$

=> eta di $a_1 = eta$ di a_2
AUITINI CM

SURIETIVA? <u>NO</u> perche non esiste (ad esempio)
nessuna persona che ha 200 anni

•
$$f: \mathbb{N} \times \mathbb{Z} \longrightarrow \mathbb{Z}$$

$$\langle n, m \rangle \longmapsto n \cdot m$$

INIETTIVA? Se prendo
$$(0,1) = 0$$
 $f(0,3) = 0$

$$\frac{NO INIETTIVA}{}$$

SURIETTIJA?
$$\forall b \in \mathbb{Z}$$
 cerco $< n, m > t.c.$

$$f(n,m) = b$$

$$Doto b, sulgo < 1, b > e ottengo$$

$$f(1,b) = b$$

$$=> SURIETTIVA$$

Esercizio tratto da eseme

Le seguenti funzioni sono iniettive? Sono suriettive?

•
$$f: \mathbb{R} \to \mathbb{R}$$

$$\times \longmapsto 3x + 4$$

Vedo the $f(x) = 3x + l_1 e^-$ und retta in $\mathbb{R} \times \mathbb{R}$ dipendenta m=3 => SIA INIETTIVA CHE SURIETTIVA

Altro made: prendo
$$a,b$$
. Assumo $f(a) = f(b)$

$$\implies a = b$$

$$f(a) = 3a + 4 = 3b + 4 = f(b)$$

$$3a = 3b \implies a = b \xrightarrow{ok \ inie\pi}$$

Sia dato bEIR.

Carco
$$x \in \{0, c, f(x) = b\}$$

Sie $x = \frac{b-u}{3} = \frac{b}{3} + (x) = f(\frac{b-u}{3}) = b$
OK SURIETT.

•
$$f: \mathbb{Q} \rightarrow \mathbb{R}$$

$$x \mapsto 3x + c_1$$

$$f(x_1) = 3x_1 + u = 3x_2 + u = f(x_2)$$
<=> $x_1 = x_2$
<=> $x_1 = x_2$

SURIETIVA? DOTO
$$X \in \mathbb{Q} \implies f(X) \in \mathbb{Q}$$

 $\Longrightarrow Z b \in \mathbb{R} \setminus \mathbb{Q} + .c. f(X) = b$
(es. $b = \sqrt{2}$) NO

INIETTIVA? No perché se
$$a=1$$
 e $b=-1$ $f(a)=f(b)=2$

INIETTIVA? No perché se
$$a=1$$
 e $b=-\Lambda$ $f(a)=f(b)=2$

SURIETIVA? SI Prendo
$$b \in \mathbb{R}_{>0}$$
 $x = \frac{b}{2}$ $f(x) = f(\frac{b}{2}) = 2 \cdot \frac{b}{2} = b$

Esercizio Sia $IN^{\leq m}$ I' insieme delle sequente finite di mmeri naturali (es. $20,1,2,2,3,0>\in IN^{IN}$)

• Shift

r: M = > M < M

CKO, KI, ..., Kn-1 > + > < 0, Ko, KI, ..., Kn-1 >

prende une sequente e "Shifte" di 1

gli elementi

es: 7 1 2 3

INIETTIVA? Se $\langle 0, k_0, k_1, ..., k_{n-1} \rangle = \langle 0, \ell_1, ..., \ell_{n-1} \rangle$ alwa $k_0 = \ell_0, ..., k_{n-1} = \ell_{n-1}$ SI

SURIETTIVA? <u>NO</u> se volessi ottenere <1,2,3> sa rebbe impossibile perche posso avere solo stringhe che iniziano per 0.

• S: N^(N) → N^(N) < KO,..., KN-1> → < K1, K2, ..., Kn-1> (& dx)

1N1ETTIVA? NO perché prese (1,5) e (2,5) s(1,5) = (5) = s(2,5)

SURIETTIVA? SI perché dota $\langle K_0, K_1, ..., K_{n-1} \rangle$ trovo ad esempio $\langle 6, K_0, K_1, ..., K_{n-1} \rangle$ $S(6, K_0, K_1, ..., K_{n-1}) = \langle K_0, K_1, ..., K_{n-1} \rangle$