TAREA 2 - TOPOLOGÍA GENERAL

JUAN PABLO LOPEZ, SEBASTIAN RAMIREZ, KEVIN VELEZ

Problema 1 Ejercicio 2.b)

Sea $X = \mathbb{Z}^+$. Sea $A \subseteq X$, se define la densidad de A como el número

$$\rho(A) = \lim_{n \to \infty} \frac{|A \cap [n]|}{n}$$

donde $[n] = \{1, 2, \dots, n\}$ y |S| denota la cardinalidad de S. Sea

$$\tau = \{ A \subseteq X | 1 \notin A \lor \rho(A) = 1 \}$$

Caracterice los cerrados en la topología τ .

Demostración: Los cerrados de X con la topología τ son

$$\begin{split} \mathscr{C} &= \{ B \subseteq X \mid X - B \in \tau \} \\ \mathscr{C} &= \{ B \subseteq X \mid 1 \notin X - B \lor \rho(X - B) = 1 \} \\ \mathscr{C} &= \{ B \subseteq X \mid 1 \notin X \lor 1 \in B \lor \rho(X - B) = 1 \} \end{split}$$

Pero, $1 \in X$, entonces

$$\mathscr{C} = \{ B \subseteq X \mid 1 \in B \lor \rho(X - B) = 1 \}$$

Ahora, veamos que conjuntos satisfacen la propiedad de $\rho(X - B) = 1$

$$1 = \lim_{n \to \infty} \frac{|[n] - B|}{n}$$
$$1 = \lim_{n \to \infty} \frac{|[n] - (B \cap [n])|}{n}$$

Como $B \cap [n] \subseteq [n]$, entonces

$$\begin{split} 1 &= \lim_{n \to \infty} \frac{|[n]| - |B \cap [n]|}{n} \\ 1 &= \lim_{n \to \infty} \frac{|[n]|}{n} - \lim_{n \to \infty} \frac{|B \cap [n]|}{n} \\ \mathcal{I} &= \mathcal{I} - \lim_{n \to \infty} \frac{|B \cap [n]|}{n} \\ 0 &= \lim_{n \to \infty} \frac{|B \cap [n]|}{n} \\ 0 &= \rho(B) \end{split}$$

Por lo tanto, los cerrados de X con la topología τ son

$$\mathscr{C} = \{ B \subseteq X \mid 1 \in B \lor \rho(B) = 0 \}$$

Universidad del Valle

Problema 2 Ejercicio 4.b)

Sean $m \in \mathbb{R}$ y $B \subseteq \mathbb{R}$. Sean

$$L_B = \{(x, y) \in \mathbb{R}^2 \mid y = mx + b \text{ para algun } b \in B\}$$

у

$$\tau\left\{L_B \mid B \subseteq \mathbb{R}\right\}$$

Demuestre que $B=L_{\{b\}}$ con $b\in\mathbb{R}$ es un base para $\tau.$

Demostración: Teniendo en cuenta que τ es una topología sobre \mathbb{R}^2 , entonces veamos que se cumple la primera condición

$$\forall (x,y) \in \mathbb{R}^2 \,\exists \, L_{\{b\}} \in B \,|\, (x,y) \in L_{\{b\}} \subseteq \mathbb{R}^2$$

sea $m \in \mathbb{R}$ y $(x,y) \in \mathbb{R}^2$, luego esta condición se cumple para b = y - mxAsi $(x,y) \in L_{\{y-mx\}} \in B \subseteq \mathbb{R}^2$, ya que se cumple la definición de $L_{\{b\}}$

$$L_b = \{(x, y) \in \mathbb{R}^2 \mid y = mx + b \text{ para algun } b \in B\}$$

Como $m, y, x \in \mathbb{R}$ y \mathbb{R} es cerrado para la suma (resta) y multiplicación, entonces b = y - mx pertenece a \mathbb{R} y por ende, para todo $(x, y) \in \mathbb{R}^2$ existe un básico que lo contiene.

Ahora veamos que para todo abierto de la topología τ existe una colección de básicos el cual se puede expresar como la union de estos.

Sea $L_B \in \tau$ con $B \subseteq \mathbb{R}$, entonces veamos que

$$L_B = \bigcup_{b \in B} L_b$$

Sea $m \in \mathbb{R}$, tomando m como una pendiente fija, los elementos de L_B son de la forma (x,y)=(x,mx+b) para algún $b \in B$, es decir, rectas paralelas con diferentes intersecciones con el eje y como se ilustra en la siguiente figura

Ahora si tomamos $l_{\alpha} \in L_B$

$$l_{\alpha} = \left\{ (x, y) \in \mathbb{R}^2 \,|\, y = mx + \alpha \right\}$$

luego, existe $\alpha \in B$ tal que $(x,y) \in L_{\{\alpha\}} \subseteq \bigcup_{b \in B} L_{\{b\}}$

Asi
$$L_B \subseteq \bigcup_{b \in B} l_{\{b\}}$$

Ahora observemos la otra inclusion. Sea $(x,y)\in\bigcup_{b\in B}L_{\{b\}}$ entonces existe $j\in B$ tal que $(x,y)\in L_{\{j\}}$ y se cumple y=mx+j con $j\in B\subseteq \mathbb{R}$. Pero esta es precisamente la definición de L_B ya que $L_B=\{(x,y)\in \mathbb{R}^2\,|\,y=mx+b$ para algún $b\in B$ } Asi

$$\bigcup_{b \in B} L_{\{b\}} \subseteq L_B$$

y por lo tanto $L_B = \bigcup_{b \in B} L_{\{b\}}$

Asi queda demostrado que todo abierto en la topología τ se puede generar mediante la unión de una colección de básicos $L_{\{b\}} \in B$

Universidad del Valle

Por ultimo se demuestra la condición si $(x,y) \in L_{\{b_1\}}$ y $(x,y) \in L_{\{b_2\}}$ entonces existe un básico $L_{\{b_3\}}$ tal que $(x,y) \in L_{\{b_3\}} \subseteq L_{\{b_1\}} \cap L_{\{b_2\}}$

Pero esto solo sucede si

$$L_{\{b_1\}} = L_{\{b_2\}} \iff b_1 = b_2$$

ya que son rectas paralelas, de otro modo, su intersección sería vacío, el cual también es un abierto de la topología τ .

Problema 3 Ejercicio 11.b)

Siendo $X = [0,1] \times [0,1]$, con la topologia del orden lexicografico hallar la clausura de $B = \{(1 - \frac{1}{n}, \frac{1}{2} : n \in \mathbb{Z}^+\}.$

Demostración: Como X tiene elemento maximo (1,1) y minimo (0,0), una base para la topologia son los intervalos cerrados a ambos lados. Por el teorema 17.6 en Munkres se tiene $\overline{B}=B\cup B'$, donde B' son los puntos de acumulación de B. Vamos a probar que $B'=\emptyset$, para ello tomemos un elemento (a,b) con $0 < a \le 1$ y veamos que no puede ser un punto de acumulación de B. Supongamos que $a \ne \frac{1}{n}$ para todo $n \in \mathbb{Z}^+$, por propiedad Arquimediana existe un natural n tal que $\frac{1}{n+1} < a < \frac{1}{n}$ (es posible ya que a > 0) y con ello vemos que el intervalo $[(a-\delta,b),(a+\delta,b)]$ con $\delta=\frac{1}{2}\min\{|a-\frac{1}{n+1}|,|a-\frac{1}{n}|\}$ es abierto y contiene a (a,b) pero no intercepta a $B-\{(a,b)\}=B$ debido a su misma construcción, es decir, (a,b) no es un punto de acumulación. Por otro lado, si $a=\frac{1}{n}$ para algún natural n, ahora tomamos el intervalo [(a,0),(a,1)] si $b=\frac{1}{2}$ ya que solo contiene elementos de la forma $(\frac{1}{n},x)$ con $x\in[0,1]$ con un n fijo y por lo tanto no intercepta a $B-\{(a,b)\}$. Si $b\neq\frac{1}{2}$ podemos asumir sin perdida de generalidad que $b<\frac{1}{2}$ y hacer $\delta=\frac{1}{2}(\frac{1}{2}-b)$, tendría que el intervalo $[(a,b),(a,b+\delta)]$ contiene a (a,b) pero no contiene a ningún elemento de B ya que los elementos de B tienen segunda coordenada igual a $\frac{1}{2}$.

Ahora veamos que pasa con a = 0, vemos que el intervalo [(0,0),(0,1)] contiene a (a,b) pero no tienen a ningún elemento de B ya que son mayores a (0,x) con $x \in [0,1]$.

Finalmente, se concluye que B no tiene puntos limite y por lo tanto $\overline{B} = B \cup B' = B$, es decir, B es cerrado.

П