

Paging System

◎ 이름	^{희범} 양희범
■ 날짜	@2023년 9월 5일

Paging System

- 개념
 - 。 페이지: 프로세스의 Block
 - 페이지 프레임: 메모리 분할 영역, 페이지와 크기 같음
 - \circ V = (p, d)
 - 프로그램이 756일 때, 페이지의 크기는 150이다. 그러면 페이지는 몇 개고, 크기는 각각 어떻게 되는가?
 - 150이 5대, 마지막 하나는 6
 - There is no external fragmentation in paging but internal fragmentation exists
 - simple and efficient

Mapping

- Page Map Table(PMT)
- Direct Mapping
 - 。 프로세스의 PMT가 저장되어 있는 주소 b에 접근
 - 。 해당 PMT에서 page p에 대한 entry 찾음
 - 。 찾아진 entry의 존재 비트 검사
 - 1. Residence bit = 0 page fault swap device에서 해당 page를 메모리로 적 π 후 p'확인
 - 2. Residence bit = 1 page frame 번호 p'확인

Paging System 1

- 。 p'와 가상 주소의 변위 d를 사용하여 실제주소 r 확인
- 。 r로 접근

Direct Mapping

- 문제점
 - 메모리 접근 횟수가 2배 → 성능 저하
 - 。 PMT를 위한 메모리 공간 필요
- 해결 방안
 - TLB를 이용한 연관사상(Associative Mapping)
 - 。 PMT를 위한 전용 기억 장치 사용 → 캐시 메모리

Paging System 2