

Cantidades Escalares:

Cantidades Vectoriales:

- **≻**longitud
- ≽área
- **≻**volumen
- **≻**temperatura

- > aceleración
 - > velocidad
 - > fuerza

• Vector = Segmento de recta dirigido (Tiene Punto Inicial y Punto Final)

• Un vector queda determinado por su magnitud y dirección

 $P(p_1, p_2)$

Instituto de Matemática

Universidad Austral de Chile

Vectores equivalentes:

tienen la misma magnitud y la misma dirección

- Dado un vector hay infinitos vectores equivalentes a él.
- <u>Pero</u> sólo uno tiene punto inicial en el origen.

Ejemplo:

• <u>Así</u>: cada vector determina un único par ordenado de números reales y queda identificado por un punto del plano.

• Se tiene la correspondencia:

 $\{ \text{ Puntos del plano } \} \leftrightarrow \{ \text{ Vectores en el plano } \} \leftrightarrow \mathbb{R}^2$

Vector de Posición del punto $A(a_1, a_2)$

es
$$\vec{a} = (a_1, a_2)$$

 a_1, a_2 son las **componentes** del vector \vec{a}

Módulo de un vector

$$\|\vec{a}\| = \sqrt{a_1^2 + a_2^2}$$

Propiedades del Módulo

$$\|\vec{a}\| \ge 0$$

$$\|\vec{a}\| = 0 \Leftrightarrow \vec{a} = \vec{0}$$

Operaciones con vectores:

Adición: $\vec{a} + \vec{b} = (a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$

Aplicación a Suma de Fuerzas

Multiplicación por escalar: $c\bar{a} = c(a_1, a_2) = (ca_1, ca_2)$

$$c\vec{a} = c(a_1, a_2) = (ca_1, ca_2)$$

Propiedades de las operaciones:

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

$$c(\vec{a} + \vec{b}) = c\vec{a} + c\vec{b}$$

$$||c|\vec{a}|| = |c|||\vec{a}||$$

$$\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$$

$$(c+d)\vec{a} = c\vec{a} + d\vec{a}$$

$$c(d\vec{a}) = (cd)\vec{a}$$

$$\vec{a} + (-\vec{a}) = \vec{0}$$

 $\vec{a} + \vec{0} = \vec{a}$

$$1 \cdot \vec{a} = \vec{a}$$

$$\left\| \vec{a} + \vec{b} \right\| \leq \left\| \vec{a} \right\| + \left\| \vec{b} \right\|$$

Instituto de Matemática

Universidad Austral de Chile

Sustracción de Vectores

$$\vec{a} - \vec{b} = \vec{a} + (-\vec{b}) = (a_1 - b_1, a_2 - b_2)$$

Vectores Unitarios Básicos

$$\vec{i} = (1,0) \; ; \; \vec{j} = (0,1)$$

Así los vectores en el plano se pueden expresar de dos formas:

$$\vec{a} = (a_1, a_2) = a_1 \cdot \vec{i} + a_2 \cdot \vec{j}$$

Componentes de un vector

$$\vec{a} = (a_1, a_2)$$
 $a_1 = ||\vec{a}|| \cos \theta; \quad a_2 = ||\vec{a}|| \sin \theta$

Producto Punto (o Producto Escalar)

$$\vec{a} \cdot \vec{b} = (a_1, a_2) \cdot (b_1, b_2) = a_1 b_1 + a_2 b_2$$
 Se lee: "a punto b"

Propiedades del Producto Punto

$$\vec{a} \cdot \vec{a} = \|\vec{a}\|^2$$

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$$

$$(\alpha \vec{a}) \cdot \vec{b} = \alpha (\vec{a} \cdot \vec{b})$$

$$\vec{0} \cdot \vec{a} = 0$$

Ángulo entre Vectores

El ángulo entre los vectores \vec{a} y \vec{b} es el ángulo $\theta = \angle AOB$ ($0 \le \theta \le \pi$)

Vectores Paralelos. Vectores Ortogonales

$$\vec{a}$$
 y \vec{b} son paralelos si $\theta = 0 \lor \theta = \pi$

$$\vec{a}$$
 y \vec{b} son ortogonales si $\theta = \frac{\pi}{2}$

Teorema sobre Producto Escalar

$$\vec{a} \cdot \vec{b} = \|\vec{a}\| \|\vec{b}\| \cdot \cos\theta$$

Vectores en el

Plano Aplicación del producto Punto: TRABAJO

El Trabajo W efectuado por una fuerza constante \vec{a}

a medida que su punto de aplicación se mueve a lo largo de un vector \vec{b}

Cálculo del Ángulo entre Vectores

$$\theta = \cos^{-1} \left(\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|} \right)$$

Ejemplo:

Calcular el ángulo que forman los vectores $\vec{a} = (4,-3)$ y $\vec{b} = (1,2)$

Resolución:

$$\theta = \cos^{-1} \left(\frac{(4,-3)\cdot(1,2)}{\| (4,3) \| \| (1,2) \|} \right) = \frac{-2\sqrt{5}}{25} \approx 100,3^{\circ}$$

Ortogonalidad de Vectores

 \vec{a} y \vec{b} son ortogonales si y sólo si $\vec{a} \cdot \vec{b} = 0$

Proyección de un vector sobre otro

La proyección escalar del vector \vec{a} sobre el vector \vec{b}

(o la componente del vector \vec{a} según el vector \vec{b}) es

$$\operatorname{proy}_{\vec{b}} \vec{a} = \frac{\vec{a} \cdot \vec{b}}{\|\vec{b}\|}$$

La proyección vectorial del vector \vec{a} sobre el vector \vec{b} es

$$\overrightarrow{\text{proy}}_{\vec{b}} \vec{a} = \left(\frac{\vec{a} \cdot \vec{b}}{\|\vec{b}\|} \right) \frac{\vec{b}}{\|\vec{b}\|}$$

Proyección de \vec{a} sobre \vec{b} (con ángulo agudo)

 $\|\boldsymbol{a}\|\cos\theta > 0$

Proyección de \vec{a} sobre \vec{b} (con ángulo obtuso)

