Отчет о выполнении лабораторной работы Определение C_p/C_v по скорости звука в газе

Лепарский Роман

15 марта 2021 г.

1 Аннотация

Цель работы: 1) измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу; 2) определение показателя адиабаты с помощью уравнения состояния идеального газа.

2 Теоретические сведения

Скорость распространения звуковой волны в газах зависит от показателя адиабаты γ и вычисляется по формуле:

$$c = \sqrt{\gamma \frac{RT}{\mu}} \tag{1}$$

Отсюда:

$$\gamma = \frac{\mu}{RT}c^2\tag{2}$$

Таким образом, для определения показателя адиабаты достаточно измерить температуру газа и скорость распространения звука

Звуковые колебания в трубе являются наложением всех отраженных волн. Однако, если в трубку укладывается целое число полуволн, амплитуда колебаний резко повышается – наступает резонанс.

Скорость звука с связана с его частотой f и длиной волны λ соотношением:

$$c = \lambda f \tag{3}$$

Подбор условий, при которых возникает резонанс, можно производить двояко:

1. При неизменной частоте f звукового генератора можно изменять длину трубы L. Для этого применяется раздвижная труба. Длина раздвижной трубы постепенно увеличивается, и наблюдается ряд последовательных резонансов. Для каждого из них имеем:

$$L_k = (n+k)\frac{\lambda}{2} \tag{4}$$

Таким образом, можно найти $\frac{\lambda}{2}$ как угловой коэффициент зависимости длинны трубы от номера резонанса.

2. При постоянной длине трубы можно изменять частоту звуковых колебаний, а следовательно, и длину звуковой волны λ . Для последовательных резонансов получим:

$$L = \frac{\lambda_k}{2}(n+k) \tag{5}$$

Из (3) и (5) получим:

$$f_{k+1} = f_1 + \frac{c}{2L}k\tag{6}$$

Скорость звука, деленная на 2L, определяется, таким образом, по угловому коэффициенту графика зависимости частоты от номера резонанса.

Методика измерений

при помощи раздвижной трубы

Рис. 2. Установка для изучения зависимости скорости звука от температуры

В обеих установках звуковые колебания в трубе возбуждаются телефоном Т и улавливаются микрофоном М. Они присоединены к установке через тонкие резиновые трубки. Такая связь достаточна для возбуждения и обнаружения звуковых колебаний в трубе и в то же время мало возмущает эти колебания.

Первая установка (рис. 1) содержит раздвижную трубу с миллиметровой шкалой. Через патрубок (на рисунке не показан) труба может наполняться воздухом или углекислым газом из газгольдера. На этой установке производятся измерения γ для воздуха и для CO_2 .

Вторая установка (рис. 2) содержит теплоизолированную трубу постоянной длины. Воздух в трубе нагревается водой из термостата. Температура газа принимается равной температуре омывающей трубу воды. На этой установке измеряется зависимость скорости звука от температуры.

3 Приборы и материалы

В работе используются:

- Звуковой генератор;
- Электронный осциллограф;
- Микрофон;
- Телефон;
- Раздвижная труба;
- Теплоизолированная труба, обогреваемая водой из термостата;
- Баллон со сжатым углекислым газом;
- Газгольдер.

4 Обработка результатов

4.1 Эксперимент 1

Обработаем значения, полученные для воздуха. Погрешность измерения длины трубки $\Delta L=0.5 {\rm mm},$ частоты $\Delta f=0.05 {\rm k}\Gamma {\rm q}$

Таблица 1: Измерения для воздуха при различных частотах

	f = 2kHz	f = 3 kHz	f = 4 kHz	f = 5 kHz
N	L, mm	L, mm	L, mm	L, mm
1	34.5	7.5	36.5	21.0
2	120.5	66.0	79.0	56.0
3	208.0	123.0	121.5	90.5
4		180.5	164.5	125.0
5			207.0	160.0
6				194.5

Скорость звука рассчитаем по формуле (3), а погрешность следующим образом:

$$\sigma_c^2 = (f\sigma_\lambda)^2 + (\lambda\sigma_f)^2$$

f, kHz	$c, \mathrm{m/s}$	$\sigma_c, \mathrm{m/s}$
2	347	9
3	346	6
4	341	4
5	347	3

Итого $c=345\pm6\mathrm{m/s}$. Комнатную температуру примем 295K, и посчитаем коэффициент адиабаты.

$$\gamma = \frac{\mu}{RT}c^2 = 1.41$$

$$\sigma_{\gamma} = \frac{2\mu}{RT}c \cdot \sigma_c = 0.04$$

Приступим к обработке измерений для CO_2

Таблица 2: Измерения для ${\rm CO_2}$ при различных частотах

	f = 2kHz	f = 2.5 kHz	f = 3 kHz	f = 3.5 kHz
N	L, mm	L, mm	L, mm	L, mm
1	44.5	32.5	18.0	18.0
2	114.0	90.0	64.0	57.5
3	184.5	146.5	111.5	96.5
4		202.0	156.5	136.5
5			204.5	175.5
6				213.5

 $f=2\mathrm{kHz},\,\lambda/2=70{,}00\pm0.17\mathrm{mm}$

 $f=2.5\mathrm{kHz},\,\lambda/2=56.5\pm0.2\mathrm{mm}$

 $f=3\mathrm{kHz},\,\lambda/2=46.55\pm0.18\mathrm{mm}$

 $f=3.5\mathrm{kHz},\,\lambda/2=39.19\pm0.11\mathrm{mm}$

Аналогично рассчитаем скорость звука

f, kHz	$c, \mathrm{m/s}$	σ_c , m/s
2	280	7
2.5	282	6
3	279	5
3.5	274	4

Усреднив значения, получим $c = 278 \pm 6 \mathrm{m/s}, \, \gamma = 1.39 \pm 0.06$

4.2 Эксперимент 2

Длинна трубки $L_0 = 700 \pm 1 \mathrm{mm}$. Внесем результаты эксперимента в таблицу.

Таблица 3: Зависимость частоты от порядка резонанса

	$t = 25^{\circ}C$	$t = 35^{\circ}C$	$t = 45^{\circ}C$
N	f, Hz	f, Hz	f, Hz
1	742.5	508.5	772.5
2	997.5	749.5	1027.5
3	1241.5	994.0	1274.0
4	1480.0	1264.0	1530.0
5	1731.5	1510.5	1782.5
6	1959.5	1756.0	2045.5

Рис. 1: Измерения при ${\rm t} = 25^{\circ} C, \, k = 244 \pm 2 {\rm Hz}$

Рис. 2: Измерения при
t $=35^{\circ}C,\,k=251\pm2\mathrm{Hz}$

Рис. 3: Измерения при
t $=45^{\circ}C,\,k=254\pm1{\rm Hz}$

Посчитаем скорость звука по формуле $c=k\!\cdot\!2L_0,$ а та же показатель адиабаты и погрешности.

t, °C	c, m/s	σ_c , m/s	γ	σ_{γ}
25	341	3	1.36	0.03
35	351	3	1.40	0.03
45	355	2	1.38	0.03

Усредняя значения получим $\gamma=1.38\pm0.03$

5 Вывод

Как итог проведения двух экспериментов были получены скорости звука в воздухе ($345\pm6\text{m/s}$) и в CO_2 ($278\pm6\text{m/s}$), а так же вычислен показатель адиабаты для CO_2 $\gamma=1.38\pm0.03$ и для воздуха $\gamma=1.41\pm0.04$. Из работы можно видеть, что оба метода одинаково точно оценивают эти величины и получившиеся значения находятся ,близко к табличным: для воздуха $c=335\text{m/s},\ \gamma=1.40,\ для\ \text{CO}_2$ $c=260\text{m/s},\ \gamma=1.30$. Расхождение данных полученных для CO_2 может быть связано с тем, что в трубе находилась примесь воздуха с предыдущего эксперимента