Movie Recommender Systems

Sohaib Jawad and Victor Samsonov

College of Computing
Illinois Institute of Technology

December 2, 2022

Presentation Structure

- Introduction and Motivation
- MovieLens Dataset EDA
- Content-based Filtering
- Collaborative Filtering
- DLRM Deep Learning Recommendation Model

Motivation and Problem Description

Definition 1.1

Recommendation System:"is an Al algorithm, usually associated with machine learning, that uses Big Data to suggest or recommend additional products to consumers" (Nvidia).

We seek to implement a movie-oriented Recommendation System such that it can make adequate suggestions based on the interests of a user.

Recommendation systems are very present in our daily lives (Online shopping, restaurants, video apps, etc.). These ML algorithms use data based on past user behavior in order to make recommendations

Modern Recommendation Systems

Modern Recommendation Systems are very sophisticated and a lot of resources are being invested by large tech companies to improve these models.

Types of recommendation systems:

- Content-Based Filtering (item features to provide recommendations)
- Collaborative Filtering (similarities between users and items to provide recommendations)
- Hybird Filtering

MovieLens EDA

The MovieLens 1M dataset contains over 1 million movie ratings and tagging activities since the 1995.

Structure:

- tag.csv
- movie.csv
- rating.csv
- link.csv

MovieLens EDA

After preprocessing the genres and representing our genres into a vectorized form, we can visualize the count for each genre.


```
movies.genres
out - []
for genre in movies.genres:
   out.append(genre.split('|'))
from sklearn.preprocessing import MultiLabelBinarizer
binarizer = MultiLabelBinarizer()
binarized genres - binarizer.fit transform(np.array(out))
GENRES - binarizer.classes
binarized genres
array([[0, 0, 1, ..., 0, 0, 0],
      [0, 0, 1, ..., 0, 0, 0],
      [0, 0, 0, ..., 0, 0, 0],
      [0, 0, 0, ..., 0, 0, 0],
       [1, 0, 0, ..., 0, 0, 0],
       [0, 1, 1, ..., 0, 0, 0]])
movies[GENRES] - binarized_genres
movies.drop(columns='genres', inplace=True)
```

MovieLens

Ratings

The mean rating is: 3.533854451353085 The mode rating is: 4.0

sns.countplot(data-ratings, x-'rating', palette-'mako')
print(f"The mean rating is: {ratings.rating.mean()}")
print(f"The mode rating is: {ratings.rating.mode()[0]}")

Naive Content Based Filtering Intuition

- Uses item features to recommend other items similar to what the user likes.
- Explicit and Implicit
- Choose a similarity metrics like Cosine similarity or dot product
- Set up a system to score each candidate

Collaborative Filtering Intuition

- Addresses limitations of content-based approach.
- Also checks similar user profiles
- 'Cold start' problem
- Don't need to set up a scoring system

Collaborative Filtering Intuition

Collaborative Filtering Intuition

Collaborative Filtering implementation

Naive implementation:

Code overview:

- Find users that like the same movies and use this information to find movies above a rating threshold.
- Obtain percentage of users that liked each movie and filter based on a relevant threshold value
- Calculate a recommendation score based on "similar" users and all the users (we are interested in higher scores).

K-Nearest Neighbors

KNN is a supervised learning algorithm that can be used for both regression and classification. Classes are predicted by calculating the distance between the test and training points and then select K number of points that are closest to our test

Name: title, dtype: object

KNN Implementation

Introduction and Motivation

```
from sklearn.neighbors import NearestNeighbors
model = NearestNeighbors(metric='cosine', n_neighbors=20)
model.fit(taste space sparse)
```

```
def recommender(movie name, data, n):
    # Allows us to match strings
    idx = process.extractOne(movie_name, movies['title'])[2]
    print(movies['title'][idx])
    distance, indices - model.kneighbors(data[idx], n_neighbors-n)
    print(movies['title'][indices[0]])
recommender('jurassic park', taste_space_sparse, 6)
Jurassic Park (1993)
                    Jurassic Park (1993)
507
       Terminator 2: Judgment Day (1991)
314
                     Forrest Gump (1994)
97
                       Braveheart (1995)
398
                    Fugitive, The (1993)
                            Speed (1994)
```

DLRM - Structure

DLRM architecture

Model: "DL Recommender"

Layer (type)	Output Shape	Param #	Connected to
userId (InputLayer)	[(None, 1)]	0	
movieId (InputLayer)	[(None, 1)]	θ	
userId_Embedding (Embedding)	(None, 1, 5)	3055	userId[0][0]
movieId_Embedding (Embedding)	(None, 1, 5)	968050	movieId[0][0]
concatenate_3 (Concatenate) ng[0][0] ing[0][0]	(None, 1, 10)	0	userId_Embedd:
relu1 (Dense) [0][0]	(None, 1, 32)	352	concatenate_3
relu2 (Dense)	(None, 1, 16)	528	relu1[0][0]
output (Dense)	(None, 1, 1)	17	relu2[0][0]

Total params: 972,002 Trainable params: 972,002 Non-trainable params: 0

Training

We split data into training and testing (20

Training parameters:

- Adam as optimizer
- Ir of 0.0001
- MSE loss
- MAE metric

Training

Loss and MAE,

Figure 1: loss:.6207, val loss: 1.0882

Figure 2: MAE:.5962, val MAE: 0.8289

Afterwards, we train the model on the entire training set for only 4 epochs and we obtain a **MAE of 0.681 on the test set**.

Thank you!