SOLID STATE PHYSICS FYSC23: Powder X-ray Diffraction Lab

Andrea Grespi, Auden Ti Yun Division of Synchrotron Radiation Research, Fysicum e-mail: andrea.grespi@sljus.lu.se, auden.ti yun@sljus.lu.se

THE ELECTROMAGNETIC SPECTRUM

LASER THROUGH DOUBLE SLIT

Figure 4.13: Interference pattern with green light

Figure 4.14: Computer modelling (green light)

λ (visible light) ≈ a (slits gap)

shutterstock.com · 208234840

λ (X-ray) ≈ a (lattice parameter)

DISCOVERY OF X-RAYS DIFFRACTION

1895 Wilhelm Conrad Röntgen discovers X-rays

The state of the s

1912 Max Theodor Felix von Laue invents X-ray diffraction

1912 Sir William Henry Bragg William Lawrence Bragg determine the crystal structure of NaCl, ZnS, and diamond; Bragg's law is derived

NOBEL PRIZES

Year	Prize	Awardee	Topic
1901	Physics	W. C. Röntgen	Discovery of X-rays
1914	Physics	M. Von Laue	Discovery of XRD
1915	Physics	W. H. Bragg W. L. Bragg	Analysis of crystal structure using XRD
1962	Chemistry	J. C. Kendrew M. F. Perutz	Structural determination of globular proteins (myoglobin and hemoglobin)
1964	Chemistry	D. C. Hodgkin	Structure determinations of important biochemical molecules
1962	Medicine	F. H. Crick J. D. Watson M. H. Wilkins	Structure of DNA
1988	Chemistry	J. Deisenhofer R. Huber H. Michel	Structure of photosynthetic reaction center

BASIC INTERACTION PROCESSES

Transmission

INTERFERENCE PATTERN

Constructive interference (increase of amplitude)

Destructive interference (decrease of amplitude)

BRAGG'S LAW

$$n\lambda = PD = 2s = 2d \sin \Theta$$

LASER THROUGH GRATING

The more slits you have, the sharper the spots.

RECIPROCAL LATTICE

The reciprocal lattice is the fourier transform of the real space lattice and described as

$$\mathbf{G} = q_1 \mathbf{b}_1 + q_2 \mathbf{b}_2 + q_3 \mathbf{b}_3$$

where q_i are integers

$$\mathbf{a}_{i} \cdot \mathbf{b}_{j} = \delta_{ij} \, 2\pi$$

The dimension of a reciprocal space vector is 1/length or momentum - momentum space

In 2 dimensions the reciprocal lattice has the same shape as the Real lattice, but rotated 90°. Note that a longer real space vector corresponds to a shorter reciprocal space vector

CRYSTAL LATTICE

Auguste Bravais

A *crystal lattice* is an array of lattice points.

The *unit cell* is unit of the translationally repeating pattern.

NOTATION OF PLANES

Miller indices describe the orientation of a plane or set of planes within a lattice in relation to the unit cell.

Miller indices are the reciprocals of intersection distances.

SEPARATION OF PLANES

$$\frac{1}{d^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$$

For cubic cell:

$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2} \quad \text{or} \quad d = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

TYPES OF X-RAY DIFFRACTION PATTERNS

angle θ .

http://ap.polyu.edu.hk/apakhwon/

In powder sample we will have all possible orientations of crystallites and some of them will be orientated in a proper way to give rise to diffracted intensity at the glancing

 Θ -2 Θ scan

The crystallites with this glancing angle will lie at all possible angles around the incoming beam (azimuthal angles), so the diffracted beams lie on a cone around the incident beam of half-angle 2θ .

Θ - 2Θ SCAN

For structural characterization of crystalline compounds.

A diffraction peak is observed in a certain direction from a sample if there are crystal planes which can reflect X-rays in that direction, and if the reflected X-rays interfere constructively.

When X-ray beam hits a sample and is diffracted we can measure the distances between the planes of the atoms that constitute the sample

$$n\lambda = 2d\sin\theta$$

POWDER X-RAY DIFFRACTOMETER

AT CHEMISTRY CENTRE

DATA ANALYSIS

 Calculation of d and/or a for particular planes

$$n\lambda = 2dsin\theta$$

2. <u>Calculation of relative concentration of components in case of multicomponent sample</u>

Measuring relative intensity of strong non-overlapping maxima belonging to different species.

3. <u>Calculation of size of crystallites</u>

$$t = \frac{k\lambda}{\beta \cos \theta}$$
 - Scherrer's formula

t -mean size of ordered domains(crystallites), k - shape factor(=0.94 for our case), β -FWHM(full width at the half of maximum) in radians.

Different lattice types

Body centered

$$\begin{split} \sum_n e^{i\mathbf{Q}\cdot\mathbf{r}_n} &= e^{i\mathbf{Q}\cdot\mathbf{0}} + e^{i\mathbf{Q}\cdot(\frac{1}{2}\mathbf{a}_1 + \frac{1}{2}\mathbf{a}_2 + \frac{1}{2}\mathbf{a}_3)} = 1 + e^{i(h\mathbf{b}_1 + k\mathbf{b}_2 + l\mathbf{b}_3)\cdot(\frac{1}{2}\mathbf{a}_1 + \frac{1}{2}\mathbf{a}_2 + \frac{1}{2}\mathbf{a}_3)} \\ &= 1 + e^{i2\pi\frac{1}{2}(h+k+l)} = \left\{ \begin{array}{c} \text{Solve this yourself!} \end{array} \right. \end{split}$$

Face centered

$$\begin{split} \sum_{n} e^{i\mathbf{Q}\cdot\mathbf{r}_{n}} &= e^{i\mathbf{Q}\cdot\mathbf{0}} + e^{i\mathbf{Q}\cdot(\frac{1}{2}\mathbf{a}_{1} + \frac{1}{2}\mathbf{a}_{2})} + e^{i\mathbf{Q}\cdot(\frac{1}{2}\mathbf{a}_{1} + \frac{1}{2}\mathbf{a}_{3})} + e^{i\mathbf{Q}\cdot(\frac{1}{2}\mathbf{a}_{2} + \frac{1}{2}\mathbf{a}_{3})} \\ &= 1 + e^{i2\pi\frac{1}{2}(h+k)} + e^{i2\pi\frac{1}{2}(h+l)} + e^{i2\pi\frac{1}{2}(k+l)} \\ &= \left\{ \begin{array}{c} \text{Solve this yourself!} \end{array} \right. \end{split}$$

The order of peaks is by values obtained by: $\sqrt{(h)^2 + (k)^2 + (l)^2}$

The order of peaks is by values obtained by: $\sqrt{(h)^2 + (k)^2 + (l)^2}$

INTEGRATION AND CALIBRATION

HOT PIXELS

