WHAT IS CLAIMED IS:

1. A compound of formula (I):

$$R^{3}$$
 X
 NH_{2}
 NH_{2}
 NH_{2}
 NH_{2}
 NH_{2}
 NH_{3}
 NH_{2}
 NH_{3}
 NH_{4}
 NH_{5}
 NH_{5}

5 wherein:

X is O or NH;

Y is CH or N;

R¹ is

10

15

(2) heterocyclyl selected from the group consisting of piperazinyl, piperidinyl, pyrrolidinyl, pyrazinyl, dihydropyrazinyl, pyrazolyl, dihydropyrazolyl, pyridazinyl, pyridyl, dihydropyridinyl, pyrimidinyl, dihydropyrimidinyl, pyrrolyl, dihydropyrrolyl,

(1) aryl selected from the group consisting of phenyl and napthyl, or

tetrazolyl, dihydrotetrazolyl, furanyl, dihydrofuranyl, tetrahydrofuranyl, imidazolyl, dihydroimidazolyl, triazinyl, pyranyl, tetrahydropyranyl, thiazolyl, thienyl, dihydrothienyl, thiophenyl, triazolyl, dihydrotriazolyl, morpholinyl, thiomorpholinyl, dihydrothiadiazolyl, tetrahydrothienyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl,

20

25

wherein said aryl or heterocyclyl is unsubstituted or substituted with one or more

- (a) halo,
- (b) -C₁₋₆alkyl,
- (c) -C₂₋₆ alkenyl,
- (d) -C2-6 alkynyl,
- (e) -OH,
- (f) -CN, or
- (g) -O-C₁₋₆alkyl;

R² is selected from the group consisting of:

- (1) R^4 -S(O)₂N(R^7)-, wherein R^4 is C₁₋₆alkyl, wherein said alkyl is unsubstituted or substituted with one or more
 - (a) halo,
- 5 (b) -C₁₋₆alkyl,
 - (c) -OH,
 - (d) -CN, or
 - (e) -O-C₁₋₆alkyl; and

R7 is selected from the group consisting of

.10

- (a) hydrogen, and
- (b) -C1-6alkyl,

wherein said alkyl is unsubstituted or substituted with one or more

- (i) halo,
- (ii) -C1-6alkyl,
- 15 (iii) -OH,
 - (iv) -CN, or
 - (v) -O-C₁₋₆alkyl;

(2)

20 (3)

R³ is selected from the group consisting of:

(a)
$$R^{6b}$$
 R^{6a}
 R^{5}
 R^{10}
 R^{10}

wherein R5 is C1-6alkyl, C2-6 alkenyl or C2-6 alkynyl;

R6a, R6b, and R6c are independently selected from the group consisting of:

- 5 (1) hydrogen,
 - (2) halo,
 - (3) -C₁-6alkyl,
 - (4) -C2-6 alkenyl,
 - (5) -C₂₋₆ alkynyl,
- 10 (6)-OH,
 - (7) -CN, and
 - (8) -O-C₁₋₆alkyl;

R9 and R10 are independently selected from the group consisting of:

- (1) hydrogen, and
- 15 (2) C₁₋₆alkyl,

20

- (3) -C2-6 alkenyl, and
- (4) -C₂₋₆ alkynyl,

or R9 and R10 are joined together with the nitrogen atom to which they are attached to form a pyrrolidine ring, which is optionally substituted with

- (a) C₁₋₆alkyl,
- (b) -C2-6 alkenyl,
- (c) -C2-6 alkynyl,
- (d) (CH2)n-phenyl, and
- (e) (CH₂)_n-furanyl;
- wherein said alkyl, phenyl and furanyl are unsubstituted or substituted with one or more i) halo,

- ii) -C₁₋₆alkyl,
- iii) -OH,
- iv) -CN, or
- v) -O-C1-6alkyl; and
- 5 R11 is selected from the group consisting of
 - (1) CH-,
 - (2) -O-, and
 - (3) -NH-,

provided that when R¹¹ is -CH- the dotted line forms a bond and when R¹¹ is -O- or -NH- the dotted line is absent;

R12 is hydrogen, C1-6 alkyl, C2-6 alkenyl or C2-6 alkynyl;

m is 1 or 2;

15 n is 0, 1, 2, 3 or 4;

p is 1, 2, 3 or 4;

and pharmaceutically acceptable salts thereof.

- 2. The compound of Claim 1, wherein m is 1 and R¹ is phenyl unsubstituted or substituted 20 with one or more chloro or fluoro.
 - 3. The compound of Claim 1, wherein m is 2 and R¹ is phenyl unsubstituted or substituted with one or more chloro or fluoro.
- 25 4. The compound of Claim 1, wherein m is 1 and R¹ is thiophenyl.
 - 5. The compound of Claim 1, wherein R^2 is (R^4) - $S(O)_2N(R^7)$ and R^7 is C_{1-6} alkyl.
 - 6. The compound of Claim 5 wherein R⁴ and R⁷ are each methyl.
- The compound of Claim 1, wherein R² is

8. The compound of Claim 1 wherein \mathbb{R}^3 is

5

- 9. The compound of Claim 8 wherein R⁵ is methyl.
- 10. The compound of Claim 9 wherein R6a and R6c are hydrogen and R6b is fluoro.

10 11. The compound of Claim 10, wherein R³ is

12. The compound of Claim 1 wherein R³ is

and R⁹ and R¹⁰ are joined together with the nitrogen atom to which they are attached to form a

pyrrolidine ring which is unsubstituted or substituted with

- (a) C₁₋₆alkyl,
- (b) (CH₂)_n-phenyl, or
- (c) (CH2)_n-furanyl.

- 13. The compound of Claim 12 wherein R^9 and R^{10} are joined together with the nitrogen atom to which they are attached to form a pyrrolidine ring which is substituted with $-(CH_2)_n$ -furanyl wherein n is 0.
 - 14. The compound of claim 13, wherein R³ is

15. The compound of Claim 1 wherein R³ is

16. The compound of Claim 1 of formula II:

$$\begin{array}{c|c}
R^{6c} \\
R^{6b} \\
\hline
R^{6a}
\end{array}$$
 $\begin{array}{c}
R^{2} \\
NH_{2} \\
NH_{2}
\end{array}$
 $\begin{array}{c}
NH_{2} \\
R^{1}
\end{array}$
 $\begin{array}{c}
NH_{2} \\
R^{1}
\end{array}$
 $\begin{array}{c}
NH_{2} \\
R^{1}
\end{array}$

10

5

wherein X, Y, R¹, R², R⁵, R^{6a}, R^{6b}, R^{6c} and m are as defined in Claim 1.

17. The compound of Claim 1 of formula (III):

$$R^{10}$$
 NH_2
 NH_2
 NH_2
 R^1
 R^1
 R^1

wherein X, Y, R^1 , R^2 , R^9 , R^{10} and m are as defined in Claim 1.

18. The compound of Claim 1 of formula (IV):

$$R^{12}$$
 R^{11}
 NH_2
 R^1
 NH_2
 R^1
 R^1
 R^2
 R^1
 R^2
 R^1
 R^2
 $R^$

wherein X, Y, \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^{11} , \mathbb{R}^{12} and m are as defined in Claim 1.

19. The compound of Claim 1 which is selected from the group consisting of:

10

5

5

$$MeO_2S$$
 O
 NH_2
 OH
 OH

- 5 and pharmaceutically acceptable salts thereof.
 - 20. The compound of Claim 19 which is selected from the group consisting of

$$\begin{array}{c|c} & & & & \\ & &$$

$$N^{-SO_2Me}$$
 N^{-SO_2Me}
 N^{-

$$\begin{array}{c|c} & & & & \\ & &$$

and pharmaceutically acceptable salts thereof.

5

- 21. A pharmaceutical composition comprising an effective amount of a compound of Claim 1 and a pharmaceutically acceptable carrier.
- A method for inhibition of β-secretase activity in a mammal in need thereof which
 comprises administering to the mammal a therapeutically effective amount of a compound of Claim 1.
 - 23. A method for treating Alzheimer's disease in a patient in need thereof comprising administering to the patient an effective amount of a compound of Claim 1.

24. A method for treating Alzheimer's disease in a patient in need thereof comprising administering to the patient an effective amount of a compound of Claim 1.