# Guangzhou Jiaxiao Material Technology Co., Ltd.

### **Company Profile**



#### **Business lines**

- hardened and tempered & annealed steel strips/coils/sheet
- c67s, c70s, c75s ,c80s,c85s,c90s,c95s high carbon spring steel strip
- c45s,c50s, c55s, c60s medium carbon steel strip
- ♦ 50CrV4, 51CrV4, 60Si2Mn,50CrNiMoV alloy steel strip
- AISI420 stainless steel strip
- ◆ 75Cr1,75Ni8,D6A,X32,M42,68CrNiMo steel strip
- \$35E,\$355MC,16MnCr5,\$550MC steel strip
- Supply capacities around 15000 tons per year
- first-rate crude materials purchase from ISO certificated state-own enterprise to guarantee superior quality
- ◆ Production Specification range(mm) 0.10-5.0\*10-1250mm

### Production procedures

Guangzhou Jiaxiao Material Technology Co., Ltd., is a leading supplier for high carbon steel strip, alloy steel strip and stainless steel strip in heat treatment ways - hardening and tempering conditions and cold rolled annealing conditions. Occupying 25,000 square meters manufacturing area, we own more than 100 staffs, including senior technical staffs, 30 mid-level technical staffs as well as series of facilities including acid washing, cold rolling, annealing, cutting slitting, quenching and tempering, mechanical polishing, flatting machine, edge treatment, etc, to hold very tight thickness & width & flatness tolerances, decambering, deburring and round edging for safety applications. Strips are manufactured to the highest industry standards in a broad range of chemistries, sizes, tempers, and finishes to meet customized request.

Over 20 years experience in this industry, Jiaxiao MTC company has been dedicated itself to expanding target markets and updating sophisticated advanced equipment to improve our products to higher level. With pioneering efforts, Jiaxiao MTC company grew in great success and reputation for supplying excellent quality steel strip to numerous industries. For future, we will always be striving to bring you a higher quality product and a more efficient cost for all of our many products.





hot rolled steel coil

Purchase crude material (hot rolled steel coils) from reputable hot rolling factory to do the acid washing and to remove the oxidation in steel surface before going to cold rolling process



Acid washing

acid to clean and etch the surface

The oxide scale on the top layer of the steel, is not dissolved in water, which thickness is generally 5-20um. By pickling, the oxides on these series of chemical reactions in acid, can be removed to improve the steel surface.

# **Cold Rolling**

Cold rolling to reduce the thickness to improve accuracy

Jiaxiao MTC, using cold rolled facility to reduce the thickness of hot rolled steel coils until the required thickness is reached as well as accurate dimension tolerance.





During cold rolling mill, hot rolled steel coil is fed in between two rollers, which rotate in opposite directions. The gap between the two rolls is less than the thickness of the starting coils.

## 4 high reversing cold rolled mills

This type of cold rolling mill is mainly used for making thinner thickness - 0.08mm to 0.15mm with optimized tolerance.

#### **Benefits**

- Rolling technology for highest quality standards
- Cold rolling smaller thickness
- Satisfying highest requirement regarding process technology, reliability and maintenance
- Deformation-optimized housing geometry









good flat strip surface

# Leveling

Guangzhou Jiaxiao MTC uses Leveller to produce smooth and good flat strip surface. Leveling is to remove any shape defects (curve or twist) in coiled material before any heat treatment. It plays an importance role in delivering the desired material properties and the product standards required by the customer. Our leveling process stretches sheet steel in coil form by pulling it beyond its yield point, top-to-bottom and edge-to-edge. Following this procedure, the material should be perfectly flat and relatively free of internal stresses.

### Cold Rolled Annealed Steel Strip

Annealed steel strips/ coils are produced by the process of annealing wherein to alter its physical and properties such as strength and hardness. Annealing increases the ductility and makes steel softer.

Jiaxiao MTC mainly produce bright annealing steel strips and spherodized steel strips. Bright annealing is to put steel coil into confined space of annealing furnace and heat it to a high temperature. At this point, a suitable temperature is maintained. After this, the steel inside annealing furnace, is cooled slowly and then comes to bright surface, which won't cause decarbonization.

Spheroidization is achieved by holding steel for a prolonged period at temperatures near the lower critical point or by a cyclic heating and subsequent cooling close to these temperatures. The process can be accelerated by prior deformation or hardening. Spheriodized steel strips are used for various application requiring maximum cold forming.

### Annealing dimensions

thickness 0.1mm to 5.00mm width 2mm to 1200mm hardness max 180HV surface: polish, bright edge: mill, slit, sheared

## **Application**

Cold rolled annealed steel strips are mainly suitable for product requiring for severe bending and shaping before heat-treatment to very high hardness, such as springs, washers, spacers, clips, pin, inserts, shoe shank, toe cap,auto components, auto clutches, etc.

annealing facility





bright annealed steel strip









### Hardened and Tempered Steel Strip

Hardening and Tempering is a thermal process that strengthens steel strips through a controlled heating and cooling process. The hardening process involves heating the steel strip to above the critical transformation temperature for the given grade and then rapidly cooling. The steel strip in this condition is extremely brittle and requires further treatment in the tempering. Then strips are reheated to a lower temperature and holding it at the given temperature for a given period of time. This process is done in an inert atmosphere to avoid oxidation. This type of steel strip has high degree of toughness and has excellent spring properties.

### Hardened and tempered dimensions

thickness 0.1mm to 5.00mm width 2mm to 500mm hardness 30-55HRC

surface: nature, blue, yellow, white, polish

Round edge

edge: slit,, rounded, square



Slit edge

Application

H+T steel strips are widely used for rolling shutter door springs, band saw blade, scraper, trowel, putty knives, shoe insole, knives, kinds of flat springs etc, which don't require severe bending.

Square edge

# Rolling Shutter Spring Steel Strip

Jiaxiao MTC steel strip for shutter spring is well-know good quality for this application. We understand that the flexibility is the key for shutter spring when the door rolling down and rolling up and strip steel can't be broken when bending. Jiaxiao MTC, every year, exports hundreds of tons of strip steel worldwide for this use and We have great experience, knowing how to solve these problems and to avoid this problems. From first-rate raw material, cold rolling, quenching and tempering process, de-burring edges, etc, each production step, is checked carefully in width, thickness, hardness, edge as flexibility. Spring steel strip (c67s and c75s C80) is most suitable for shutter spring material.



### Average Capacity of the most used springs

| 80 x 1.40mm | 50kg | 55 x 1.20mm | 26kg | 45 x 1.20mm | 18kg |
|-------------|------|-------------|------|-------------|------|
| 60 x 1.40mm | 39kg | 55 x 1.00mm | 18kg | 45 x 1.00mm | 15kg |
| 60 x 1.30mm | 34kg | 50 x 1.40mm | 28kg | 40 x 1.40mm | 19kg |
| 60 x 1.20mm | 29kg | 50 x 1.30mm | 25kg | 40 x 1.20mm | 16kg |
| 60 x 1.10mm | 23kg | 50 x 1.20mm | 21kg | 40 x 1.00mm | 13kg |
| 60 x 1.00mm | 19kg | 50 x 1.00mm | 17kg | 30 x 1.00mm | 10kg |
| 55 x 1.40mm | 33kg | 45 x 1.40mm | 24kg |             |      |
| 55 x 1.30mm | 29kg | 45 x 1.30mm | 21kg |             |      |

| B                  |                      |               |               |
|--------------------|----------------------|---------------|---------------|
| shutter net weight | weight plus friction | spring number | and measures  |
| 20kg               | 24kg                 | 2             | 40x 1.00      |
| 30kg               | 36kg                 | 2             | 45 x 1.20     |
| 40kg               | 48kg                 | 2             | 60 x 1.10     |
| 50kg               | 60kg                 | 2             | 60 x 1.20     |
| 60kg               | 72kg                 | 3             | 60 x 1.10     |
| 70kg               | 84kg                 | 2 60 x 1.20   | )+1 55 x 1.20 |
| 80kg               | 96kg                 | 3             | 60 x 1.20     |
| 90kg               | 108kg                | 2 60 x 1.40   | +1 60 x 1.20  |
| 100kg              | 120kg                | 4             | 60 x 1.20     |
| 110kg              | 132kg                | 4             | 60 x 1.30     |
| 120kg              | 144kg                | 2 60 x 1.40   | +2 60 x 1.30  |
| 130kg              | 156kg                | 4             | 60 x 1.40     |
| 140kg              | 168kg                | 4 60 x 1.30   | +2 40 x 1.20  |
| 150kg              | 180kg                | 4 60 x 1.30   | +2 50 x 1.20  |
| 160kg              | 192kg                | 4 60 x 1.40   | +2 45 x 1.20  |
| 170kg              | 204kg                | 4 60 x 1.40   | +2 60 x 1.10  |
| 180kg              | 216kg                | 4 60 x 1.30   | +2 60 x 1.20  |
| 190kg              | 228kg                | 4 60 x 1.40   | +2 60 x 1.30  |
| 200kg              | 240kg                | 6             | 60 x 1.40     |
|                    |                      |               |               |

# Slitting & Length Cutting to Sheet

After master coils are cold rolled, the coils are slit to narrow width before annealing or hardening & tempering or cut to required length into sheets. Slitting involves passing the coiled strip through a set of rotating knives that continuously shear the wide coil to the exact width required in narrower coils



Strips can be cut into pieces of steel sheets and length is up to end-user's request, such as 1m, 2m, 3m, 4m, 5m etc.





Polishing









polish facility



### Thickness and width tolerance

| Thickness  | Standard        |           | Width tolerance +/- mm |         |         |         |  |  |  |
|------------|-----------------|-----------|------------------------|---------|---------|---------|--|--|--|
| mm         | Tolerance +/-mm | Thickness | <50                    | 50-100  | 100-200 | 200-500 |  |  |  |
| <0.25      | +/-0.015        | mm        |                        |         |         |         |  |  |  |
| 0.25-0.40  | +/-0.020        | <0.30     | +/-0.30                | +/-0.35 | -       | -       |  |  |  |
| 0.40-0.60  | +/-0.025        |           |                        |         |         |         |  |  |  |
| 0.60-0.90  | +/-0.030        | 0.30-0.60 | +/-0.20                | +/-0.30 | +/-0.50 | +/-0.80 |  |  |  |
| 0.90-120   | +/-0.040        | 0.60-1.20 | +/-0.20                | +/-0.25 | +/-0.50 | +/-0.80 |  |  |  |
| 1.20-1.60  | +/-0.050        |           | ,                      | ,       | ,       | ,       |  |  |  |
| 1.60-2.10  | +/-0.055        | 1.20-1.60 | +/-0.20                | +/-0.25 | +/-0.50 | +/-0.80 |  |  |  |
| 2.1.0-2.60 | +/-0.060        |           |                        |         |         |         |  |  |  |
| 2.60-3.20  | +/-0.065        | 1.60-3.20 | +/-0.20                | +/-0.25 | +/-0.50 | +/-0.80 |  |  |  |
| 3.20-5.00  | +/-0.070        |           |                        |         |         |         |  |  |  |

thickness & width, special tolerances can be made according to your request.

# Material grades

| International Equivalent Grades |       |      |            |              | Chemical Compositions (%) |               |               |        |          |               |               |               |
|---------------------------------|-------|------|------------|--------------|---------------------------|---------------|---------------|--------|----------|---------------|---------------|---------------|
| DIN                             | гост  | AISI | BS         | JIS          | EN                        | С             | Mn            | P max  | S<br>max | Si            | Cr            | Ni            |
| CK50                            | 50    | 1050 | CS50       | S50C         | C50                       | 0.46-<br>0.54 | 0.50-<br>0.80 | ≤0.035 | ≤0.035   | 0.17-<br>0.37 | -             | -             |
| CK55                            | 55    | 1055 | -          | S55C         | C55                       | 0.52-<br>0.60 | 0.60-<br>0.90 | ≤0.035 | ≤0.035   | 0.17-<br>0.37 | -             | -             |
| CK60                            | 60    | 1060 | CS60       | S58C         | C60                       | 0.57-<br>0.66 | 0.60-<br>0.90 | ≤0.035 | ≤0.035   | 0.17-<br>0.37 | -             | -             |
| CK67                            | 65Г   | 1065 | CS65       | -            | C65                       | 0.64-<br>0.68 | 0.60-<br>1.10 | ≤0.035 | ≤0.035   | 0.17-<br>0.37 | -             | -             |
| СК70                            | -     | 1070 | CS70       | -            | C70                       | 0.64-<br>0.72 | 0.50-<br>0.80 | ≤0.035 | ≤0.035   | 0.17-<br>0.37 | -             | -             |
| СК75                            | -     | 1074 | CS75       | -            | C75                       | 0.72-<br>0.80 | 0.50-<br>0.80 | ≤0.035 | ≤0.035   | 0.17-<br>0.37 | -             | -             |
| CK80                            | -     | 1080 | CS80       | -            | C80                       | 0.75-<br>0.82 | ≤0.40         | ≤0.035 | ≤0.035   | 0.17-<br>0.37 | -             | -             |
| СК95                            | -     | 1095 | CS95       | -            | C95                       | 0.95-<br>1.20 | ≤0.040        | ≤0.035 | ≤0.035   | 0.17-<br>0.37 | -             | -             |
| 50CrV4                          | 50ХФА | 6150 | 735A<br>30 | SUP10        | 50CrV4                    | 0.47-<br>0.55 | 0.70-<br>1.10 | ≤0.035 | ≤0.035   | 0.15-<br>0.40 | -             | -             |
| 60Si2Mn                         | 60C2  | 9260 | 250A<br>58 | SUP7         | -                         | 0.52-<br>0.65 | 0.60-<br>0.90 | ≤0.035 | ≤0.035   | 1.50-<br>2.00 | -             | -             |
| 3Cr13                           | -     | 420  | -          | SUS420<br>J2 | -                         | 0.25-<br>0.35 | ≤1.50         | ≤0.035 | ≤0.035   | ≤1.00         | 12.0-<br>14.0 | -             |
| 75Cr1                           | -     | -    | -          | -            | -                         | 0.70-<br>0.80 | 0.60-<br>0.80 | ≤0.025 | ≤0.025   | 0.25-<br>0.50 | 0.30-<br>0.40 | -             |
| D6A                             | -     | -    | -          | -            | -                         | 0.44-<br>0.48 | 0.60-<br>0.90 | ≤0.025 | ≤0.025   | 0.10-<br>0.35 | 0.85-<br>1.20 | -             |
| 75Ni8                           | -     | -    | -          | -            | -                         | 0.72-<br>0.78 | 0.30-<br>0.50 | ≤0.025 | ≤0.025   | 0.10-<br>0.35 | <0.15         | 1.80-<br>2.10 |
| 16MnCr5                         | -     | -    | -          | -            | -                         | 0.14-<br>0.19 | 1.00-<br>1.30 | ≤0.025 | ≤0.025   | 0.10-<br>0.40 | 0.80-<br>1.10 | -             |
| X32                             | -     | -    | -          | -            | -                         | 0.29-<br>0.33 | 0.80-<br>1.10 | ≤0.025 | ≤0.025   | 0.20-<br>0.35 | 3.50-<br>4.20 | 0.20-<br>0.80 |
| S550MC                          | -     | -    | -          | -            | -                         | ≤0.12         | ≤1.80         | ≤0.025 | ≤0.015   | ≤0.50         | -             | -             |

# HARDNESS TABLE SHEET

| Vickers           | Brinn el | R    | lock e | we11 (H | IR)  | Rock ew | ell Supe | r tical | Shore | T     | /S      | Vickers |
|-------------------|----------|------|--------|---------|------|---------|----------|---------|-------|-------|---------|---------|
| 维氏硬度              | 布氏硬度     |      | 洛氏     | :硬度     |      |         | 洛氏硬度     | :       | 肖氏硬度  | 抗拉    | 硬度      | 维氏硬度    |
| (H <sub>V</sub> ) | (Hb)     | HrA  | HrB    | HrC     | HrD  | 15-N    | 30-N     | (HS)    | 45-N  | N/mm2 | kgf/mm2 | (HV)    |
|                   |          |      |        |         |      |         |          |         |       |       |         |         |
| 670               |          | 80.6 |        | 58.8    | 69.8 | 89.7    | 76.4     | 65.3    |       |       |         | 670     |
| 660               |          | 80.3 |        | 58.3    | 69.5 | 89.5    | 75.9     | 64.7    | 79    |       |         | 660     |
| 650               |          | 80   |        | 57.8    | 69   | 89.2    | 75.5     | 64.1    |       |       |         | 650     |
| 640               |          | 79.8 |        | 57.3    | 68.7 | 89      | 75.1     | 63.5    | 77    |       |         | 640     |
| 630               |          | 79.5 |        | 56.8    | 68.3 | 88.8    | 74.6     | 63      |       |       |         | 630     |
| 620               |          | 79.2 |        | 56.3    | 67.9 | 88.5    | 74.2     | 62.4    | 75    |       |         | 620     |
| 610               |          | 78.9 |        | 55.7    | 67.5 | 88.2    | 73.6     | 61.7    |       |       |         | 610     |
| 600               |          | 78.6 |        | 55.2    | 67   | 88      | 73.2     | 61.2    | 74    |       |         | 600     |
| 590               |          | 78.4 |        | 54.7    | 66.7 | 87.8    | 72.7     | 60.5    |       | 2095  | 210     | 590     |
| 580               |          | 78   |        | 54.1    | 66.2 | 87.5    | 72.1     | 59.9    | 72    | 2020  | 206     | 580     |
| 570               |          | 77.8 |        | 53.6    | 65.8 | 87.2    | 71.7     | 59.3    |       | 1981  | 202     | 570     |
| 560               |          | 77.4 |        | 53      | 65.4 | 86.9    | 71.2     | 58.6    | 71    | 1952  | 199     | 560     |
| 550               | 505      | 77   |        | 52.3    | 64.8 | 86.6    | 70.5     | 57.8    |       | 1912  | 195     | 550     |
| 540               | 496      | 76.7 |        | 51.7    | 64.4 | 86.3    | 70       | 57      | 69    | 1863  | 190     | 540     |
| 530               | 488      | 76.4 |        | 51.1    | 63.9 | 86      | 69.5     | 56.2    |       | 1824  | 186     | 530     |
| 520               | 480      | 76.1 |        | 50.5    | 63.5 | 85.7    | 69       | 55.6    | 67    | 1795  | 183     | 520     |
| 510               | 473      | 75.7 |        | 49.8    | 62.9 | 85.4    | 68.3     | 54.7    |       | 1755  | 179     | 510     |
| 500               | 465      | 75.3 |        | 49.1    | 62.2 | 85      | 67.7     | 53.9    | 66    | 1706  | 174     | 500     |
| 490               | 456      | 74.9 |        | 48.4    | 61.6 | 84.7    | 67.1     | 53.1    |       | 1957  | 169     | 490     |
| 480               | 448      | 74.5 |        | 47.7    | 61.3 | 83.3    | 66.4     | 52.2    | 64    | 1618  | 165     | 480     |
| 470               | 441      | 74.1 |        | 46.9    | 60.7 | 83.9    | 65.7     | 51.3    |       | 1569  | 160     | 470     |
| 460               | 433      | 73.6 |        | 46.1    | 60.1 | 83.6    | 64.9     | 50.4    | 62    | 1530  | 156     | 460     |
| 450               | 425      | 73.3 |        | 45.3    | 59.4 | 73.2    | 64.3     | 49.4    |       | 1500  | 153     | 450     |
| 440               | 415      | 72.8 |        | 44.5    | 58.8 | 82.8    | 63.5     | 48.4    | 59    | 1461  | 149     | 440     |
| 430               | 405      | 72.3 |        | 43.6    | 58.2 | 82.3    | 62.7     | 47.4    |       | 1412  | 144     | 430     |
| 420               | 397      | 71.8 |        | 42.7    | 57.7 | 81.8    | 61.9     | 46.4    | 57    | 1373  | 140     | 420     |
| 410               | 288      | 71.4 |        | 41.8    | 56.8 | 81.4    | 31.1     | 45.3    |       | 1334  | 136     | 410     |
| 400               | 379      | 70.8 |        | 40.8    | 56   | 81      | 60.2     | 44.1    | 55    | 1285  | 131     | 400     |
| 390               | 369      | 70.3 |        | 39.8    | 55.2 | 80.3    | 59.3     | 42.9    |       | 1245  | 127     | 390     |
| 380               | 360      | 69.8 | 110    | 38.8    | 54.4 | 79.8    | 58.4     | 41.7    | 52    | 1206  | 123     | 380     |
| 370               | 350      | 69.2 |        | 37.7    | 53.6 | 79.2    | 57.4     | 40.4    |       | 1177  | 120     | 370     |
| 360               | 341      | 68.7 | 109    | 36.6    | 52.8 | 78.6    | 56.4     | 39.1    | 50    | 1128  | 115     | 360     |
| 350               | 331      | 68.1 |        | 35.5    | 51.9 | 78      | 55.4     | 37.8    |       | 1098  | 112     | 350     |

| Vickers | Brinn el | R    | lock ew | re11 (H | R)   | Rock ew | ell Supe | r tical | Shore | Т     | /S      | Vickers    |
|---------|----------|------|---------|---------|------|---------|----------|---------|-------|-------|---------|------------|
| 维氏硬度    | 布氏硬度     |      |         | 硬度      | ,    |         | 洛氏硬度     |         | 肖氏硬度  |       | .硬度     | 维氏硬度       |
| 1270000 |          |      |         | .,,,,,, |      |         |          |         |       | 7,54  |         | , Live see |
| (Hv)    | (Hb)     | HrA  | HrB     | HrC     | HrD  | 15-N    | 30-N     | (HS)    | 45-N  | N/mm2 | kgf/mm2 | (HV)       |
|         |          |      |         |         |      |         |          |         |       |       |         |            |
| 340     | 340      | 67.6 | 108     | 34.4    | 51.1 | 77.4    | 54.4     | 36.5    | 47    | 1069  | 109     | 340        |
| 330     | 330      | 67   |         | 33.3    | 50.2 | 76.8    | 53.6     | 35.2    |       | 1030  | 105     | 330        |
| 320     | 320      | 66.4 | 107     | 32.2    | 49.4 | 76.2    | 52.3     | 33.9    | 45    | 1010  | 103     | 320        |
| 310     | 310      | 65.8 |         | 31      | 48.4 | 75.6    | 51.3     | 32.5    |       | 981   | 100     | 310        |
| 300     | 300      | 65.2 | 105     | 29.8    | 47.5 | 74.9    | 50.2     | 31.1    | 42    | 951   | 97      | 300        |
| 295     | 295      | 64.8 |         | 29.2    | 47.1 | 74.6    | 49.7     | 30.4    |       | 941   | 96      | 295        |
| 290     | 290      | 64.5 | 104.5   | 28.5    | 46.5 | 74.2    | 49       | 29.5    | 41    | 922   | 94      | 290        |
| 285     | 285      | 64.2 |         | 27.8    | 46   | 73.8    | 48.4     | 28.7    |       | 902   | 92      | 285        |
| 280     | 280      | 63.8 | 103.5   | 27.1    | 45.3 | 73.4    | 47.8     | 27.9    | 40    | 892   | 91      | 280        |
| 275     | 275      | 63.5 |         | 26.4    | 44.9 | 73      | 47.2     | 27.1    |       | 873   | 89      | 275        |
| 270     | 270      | 63.1 | 102     | 25.6    | 44.4 | 72.6    | 46.4     | 26.2    | 38    | 853   | 87      | 270        |
| 265     | 265      | 62.7 |         | 24.8    | 43.7 | 72.1    | 45.7     | 25.2    |       | 843   | 86      | 265        |
| 260     | 260      | 62.4 | 101     | 24      | 43.1 | 71.6    | 45       | 24.3    | 37    | 824   | 84      | 260        |
| 255     | 255      | 62   |         | 23.1    | 42.2 | 71.1    | 44.2     | 23.2    |       | 804   | 82      | 255        |
| 250     | 250      | 61.6 | 99.5    | 22.2    | 41.7 | 70.6    | 43.4     | 22.2    | 36    | 794   | 81      | 250        |
| 245     | 245      | 61.2 |         | 21.3    | 41.1 | 70.1    | 42.5     | 21.2    |       | 775   | 79      | 245        |
| 240     | 240      | 60.7 | 98.1    | 20.3    | 40.3 | 69.6    | 41.7     | 19.9    | 34    | 765   | 78      | 240        |
| 230     | 230      |      | 96.7    | 18      |      |         |          |         | 33    | 736   | 75      | 230        |
| 220     | 220      |      | 95      | 15.7    |      |         |          |         | 32    | 696   | 71      | 220        |
| 210     | 210      |      | 93.4    | 13.4    |      |         |          |         | 30    | 667   | 68      | 210        |
| 200     | 200      |      | 91.5    | 11      |      |         |          |         | 29    | 637   | 65      | 200        |
| 190     | 190      |      | 89.5    | 8.5     |      |         |          |         | 28    | 608   | 62      | 190        |
| 180     | 180      |      | 87.1    | 6.3     |      |         |          |         | 26    | 579   | 59      | 180        |
| 170     | 170      |      | 85      | 3.0     |      |         |          |         | 25    | 549   | 56      | 170        |
| 160     | 160      |      | 81.7    | 0.0     |      |         |          |         | 24    | 520   | 53      | 160        |
| 150     | 150      |      | 78.7    |         |      |         |          |         | 22    | 490   | 50      | 150        |
| 140     | 140      |      | 75      |         |      |         |          |         | 21    | 451   | 46      | 140        |
| 130     | 130      |      | 71.2    |         |      |         |          |         | 20    | 431   | 44      | 130        |
| 120     | 120      |      | 66.7    |         |      |         |          |         |       | 392   | 40      | 120        |
| 110     | 110      |      | 62.3    |         |      |         |          |         |       |       |         | 110        |
| 100     | 100      |      | 56.2    |         |      |         |          |         |       |       |         | 100        |
| 95      | 95       |      | 52      |         |      |         |          |         |       |       |         | 95         |
|         |          |      |         |         |      |         |          |         |       |       |         |            |

# Tensile strength to Hardness

| Brinell      | Brinell        | Vicker     | Rockwell        | Equivalent       |  |
|--------------|----------------|------------|-----------------|------------------|--|
| Diameter of  | Harness        | Hardness   | C Scale         | Tensile strength |  |
| impression   | Number         | Number     | hardness Number | Rm               |  |
| •            |                |            |                 |                  |  |
| mm           | HB             | HV         | HRC             | N/mm2            |  |
| 2.50<br>2.55 | (601)<br>(578) | 640<br>615 | 57<br>56        | -                |  |
| 2.60         | (555)          | 591        | 55              | 2075             |  |
| 2.65         | (534)          | 569        | 54              | 2015             |  |
| 2.70         | (514)          | 547        | 53              | 1950             |  |
| 2.75         | (495)          | 528        | 52              | 1880             |  |
| 2.80         | (477)          | 508        | 51              | 1820             |  |
| 2.85         | (461)          | 491        | 50              | 1760             |  |
| 2.90<br>2.95 | 444<br>429     | 474<br>455 | 49<br>48        | 1695<br>1635     |  |
| 3.00         | 415            | 440        | 47              | 1580             |  |
| 3.05         | 401            | 425        | 46              | 1530             |  |
| 3.10         | 388            | 410        | 45              | 1480             |  |
| 3.15         | 375            | 296        | 44              | 1435             |  |
| 3.20         | 363            | 383        | 43              | 1385             |  |
| 3.25         | 352            | 372        | 42              | 1340             |  |
| 3.30<br>3.35 | 341<br>331     | 360<br>350 | 41<br>40        | 1295<br>1250     |  |
| 3.40         | 321            | 339        | 39              | 1215             |  |
| 3.45         | 311            | 328 38     |                 | 1180             |  |
| 3.50         | 302            | 319        | 37              | 1160             |  |
| 3.55         | 293            | 309        | 36              | 1115             |  |
| 3.60         | 285            | 301        | 35              | 1080             |  |
| 3.65         | 277<br>269     | 292        | 34              | 1055             |  |
| 3.70<br>3.75 | 262            | 284<br>276 | 33<br>32        | 1025<br>1000     |  |
| 3.80         | 255            | 269        | 31              | 980              |  |
| 3.85         | 248            | 261        | 30              | 950              |  |
| 3.90         | 241            | 253        | 29              | 930              |  |
| 3.95         | 235            | 247        | 28              | 910              |  |
| 4.00         | 229            | 241        | 27              | 880              |  |
| 4.05<br>4.10 | 223<br>217     | 235<br>228 | 26<br>25        | 860<br>840       |  |
| 4.15         | 217            | 223        |                 | 825              |  |
| 4.20         | 207            | 218        | 24              | 0_0              |  |
| 4.30         | 197            | 208        | 23              | 805              |  |
| 4.40         | 187            | 197        | 22              |                  |  |
| 4.50         | 179            | 189        | 21              | 785              |  |
| 4.60<br>4.70 | 170<br>163     | 179<br>172 | 20              | 770              |  |
| 4.80         | 156            | 165        |                 | 730              |  |
| 4.90         | 149            | 157        | 18              | , 30             |  |
| 5.00         | 143            | 150        | 16              | 705              |  |
| 5.10         | 137            | 144        | 14              | 675              |  |
| 5.20         | 131            | 138        | 12              | 650              |  |
| 5.30         | 126            | 133        | 12              |                  |  |
| 5.40<br>5.50 | 121<br>116     | 127<br>122 |                 |                  |  |
| 5.60         | 111            | 117        |                 |                  |  |
| 5.70         | 107            | 113        |                 |                  |  |
| 5.80         | 103            | 108        |                 |                  |  |

#### Tolerance on flatness

The unflatness across the strip (also called cross camber and cross bow) is expressed as a percentage of the strip width. The unflatness along the strip, sometimes called coil-set, is also expressed as a percentage. Unless otherwise agreed upon the measuring length = the strip width for flatness measurements along and across the strip. Influence of possible residual stresses from slitting shall be excluded.

| Tolerance | Maximum permitted deviation class     |  |  |  |  |  |  |
|-----------|---------------------------------------|--|--|--|--|--|--|
|           | (% of nominal strip width)            |  |  |  |  |  |  |
| P0        | -                                     |  |  |  |  |  |  |
| P1        | 0.4                                   |  |  |  |  |  |  |
| P2        | 0.3                                   |  |  |  |  |  |  |
| P3        | 0.2                                   |  |  |  |  |  |  |
| P4        | 0.1                                   |  |  |  |  |  |  |
| P5        | As per customer's special requirement |  |  |  |  |  |  |

|                 | Strip Width                                 |                                       |              |      |               |      |     |      |  |  |  |
|-----------------|---------------------------------------------|---------------------------------------|--------------|------|---------------|------|-----|------|--|--|--|
|                 | 8 - (20) mm                                 |                                       | 20 - (50) mm |      | 50 - (125) mm |      | 125 | 5mm~ |  |  |  |
| Tolerance class |                                             | Measuring length                      |              |      |               |      |     |      |  |  |  |
|                 | 1m                                          | 3m                                    | 1m           | 3m   | 1m            | 3m   | 1m  | 3m   |  |  |  |
|                 | Maximum allowed straightness deviation (mm) |                                       |              |      |               |      |     |      |  |  |  |
| R1              | 5                                           | 45                                    | 3.5          | 31.5 | 2.5           | 22.5 | 2   | 18   |  |  |  |
| R2              | 2                                           | 18                                    | 1.5          | 13.5 | 1.25          | 11.3 | 1   | 9    |  |  |  |
| R3              | 1.5                                         | 13.5                                  | 1            | 9    | 0.8           | 7.2  | 0.5 | 4.5  |  |  |  |
| R4              | 1                                           | 9                                     | 0.7          | 6.3  | 0.5           | 4.5  | 0.3 | 2.7  |  |  |  |
| R9              |                                             | As per customer`s special requirement |              |      |               |      |     |      |  |  |  |

### **Tolerance on Straightness**

Straightness deviation is specified in millimeters and defined as lateral deviation of the edge from a straight line as shown in the graphic.

The straightness deviation is stated as edge camber(bow) and measured over a strip length of 1 or 3 meters. Straightness tolerance depends on the strip width and is given as one of five straightness classification groups (R).



#### Remarks

To covert straightness deviation from one measuring length to another the following formula can be used:

$$R1 = R2(\frac{L1}{L2})^2$$

R1= straightness deviation measured on length L1. R2=straightness deviation measured on length L2.

# Application

#### Construction tool



Bricklayer trowel



Plaster trowel



Putty knives



scraper

Saw Blades



Band saw blade



Hack saw blade



Circular Saw Blades



**Gang Saw Blade** 

**Blades** 



Power trowel blade



Lawn trowel blade



Reaper blade



Kinfe blade





Shoe insole



Shoe shank



Shoe shank



Toe Cap







Flat spring, rolling shutter spring, toy spring, spring baskets









Kinds of spring

Washer, eyelet, metal clips, appliance /door spare parts, and furniture/ accessories, etc.









Auto components and others

clutch discs/washer, Wiper blade, ,seat belt spring.etc,

# Facility



# Certification



## **Laboratory Equipment**

Strips are inspected strictly in material composition, size, hardness, tensile strength, etc to meet customers` request.



Material strength testing



Metallurgical structure inspection



Strength of the sample making



Chemical composition analysis



Hardness testing (rockwell, Brinell, Vivtorinox)



Flatness testing

# **Packing**

Each coil is light oiled and then wrapped in plastic film and anti-rust paper and put into 20ft container for standard sea worthy

