EdX and its Members use cookies and other tracking technologies for performance, analytics, and marketing purposes. By using this website, you accept this use. Learn more about these technologies in the Privacy Policy.

<u>Lecture 6: Introduction to</u> <u>Hypothesis Testing, and Type 1 and</u>

<u>Course</u> > <u>Unit 2 Foundation of Inference</u> > <u>Type 2 Errors</u>

> 13. Type 1 Error of a Statistical Test

Currently enrolled in **Audit Track** (expires December 25, 2019) <u>Upgrade (\$300)</u>

13. Type 1 Error of a Statistical Test Type 1 Error of a Statistical Test

Video

Download video file

Transcripts

<u>Download SubRip (.srt) file</u>

<u>Download Text (.txt) file</u>

An Analogy to the U.S. Justice System: Type 1 and Type 2 Errors

3/3 points (graded)

In a criminal court in the U.S., the goal is to decide between the following null and alternative hypotheses:

 H_0 : The defendant is innocent.

 H_1 : The defendant is guilty.

In the U.S. criminal justice system, the informal principle "innocent until proven guilty" is the status quo, so this is the rationale for the choice of null hypothesis above. While this example is not, strictly speaking, a statistical hypothesis test, it provides some intuition about the meaning of type 1 and type 2 errors.

Suppose we have a defendant X who will be tried by a jury in the U.S. If guilty, X will go to jail, and otherwise is free to go.

In this example, let's say that the jury makes a **type 1 error** if the suspect satisfies H_0 while the jury rules in favor of H_1 . Let's say the jury makes a **type 2 error** if the suspect satisfies H_1 while the jury rules in favor of H_0 .

If the jury commits a type 1 error, the defendant is...

- Innocent in reality, and will walk away free.
 Guilty in reality, and will go to jail.
 Innocent in reality, but still will go to jail.
- Guilty in reality, but will walk away free.

If the jury commits a type 2 error, the defendant is...

- Innocent in reality, and will walk away free.
- Guilty in reality, and will go to jail.

Innocent in reality, but still will go to jail.	

- Guilty in reality, but will walk away free.
- ~

What strategy could the jurors follow if they wanted to never commit a type 2 error?

- Always acquit– *i.e.*, always decide that the defendant is innocent.
- Always convict– i.e., always decide that the defendant is guilty.

Submit

You have used 1 of 2 attempts

✓ Correct (3/3 points)

The Threshold for a Statistical Test

1/1 point (graded)

Continuing from problem on the previous page, let $X_1,\ldots,X_n\stackrel{iid}{\sim} N\left(\mu,1\right)$ where μ is an unknown parameter. You are interested in answering the **question of interest**: "**Does** $\mu=0$?".

To do so, you construct

- the **null hypothesis** $H_0: \mu=0$;
- the alternative hypothesis $H_1: \mu \neq 0$.

Motivated by the central limit theorem, you decide to use a test of the form

$$\psi_C = \mathbf{1}\left(\sqrt{n}\left|\overline{X}_n
ight| > C
ight)$$

where C>0 is a constant known as the **threshold** that you will choose in designing the test. (In the previous problem, C was chosen to be 0.25.) On observing the data set, if $\psi=1$, you will **reject** H_0 . If $\psi=0$, then you will **fail to reject** H_0 .

Suppose that indeed $\mu=0$. Then ${\bf P}$ ($\psi_C=1$), the probability of rejecting H_0 , quantifies how likely we are to make the error of rejecting H_0 even though H_0 holds.

Under the assumption that $H_0: \mu = 0$, for which value of C is $\mathbf{P}(\psi_C = 1)$ likely the largest?

$$\bigcirc$$
 $C=0.1$

$$\bigcirc$$
 $C=0.5$

$$\bigcirc$$
 $C=1.0$

Submit

You have used 1 of 2 attempts

✓ Correct (1/1 point)

Compute the Type 1 Error

0/1 point (graded)

As above, let $X_1, \ldots, X_n \overset{iid}{\sim} N(\mu, 1)$ where μ is an unknown parameter. You are interested in answering the **question of interest**: "**Does** $\mu = \mathbf{0}$?".

To do so, you construct

• the **null hypothesis** $H_0: \mu=0$;

• the alternative hypothesis $H_1: \mu
eq 0$.

Motivated by the central limit theorem, you decide to use a test of the form

$$\psi_C = \mathbf{1}\left(\sqrt{n}\left|\overline{X}_n
ight| > C
ight).$$

Recall from lecture that the **type 1 error** (also known as **type 1 error rate**) of a test ψ is the **function**

$$egin{aligned} lpha_{\psi}:\Theta_0 &
ightarrow [0,1] \ & heta & \mathbf{P}_{ heta}\left(\psi=1
ight) \end{aligned}$$

If you choose the threshold $C=q_{0.05}$, what is the type 1 error α_{ψ} ? (In this case, since H_0 only consists of one point, the function α_{ψ} is defined only at one point, and we loosely use the termininology "type 1 error" to mean the value of α_{ψ} at that point.)

Type 1 Error $lpha_{\psi}$: 0.960122388323255

255 **X Answer:** 0.1

Solution:

If we assume the null hypothesis $H_0: \mu=0$, and since the variance is known to be 1, the CLT gives

$$\sqrt{n}\,\overline{X}_n \sim \mathcal{N}\left(0,1
ight) \qquad ext{for large } n.$$

The probability of a type 1 error is

$$lpha_{\psi}\left(0
ight) \,=\, \mathbf{P}_{0}\left(\psi_{C}=1
ight) \;=\; \mathbf{P}_{0}\left(\sqrt{n}\,|\overline{X}_{n}|>q_{0.05}
ight) \,=\, 0.1.$$

as depicted in the figure below:

If H_0 is true, i.e. $\mu=0$, then $\sqrt{n}\,\overline{X}_n$ is asymptotically normal.

Hence, the total area of the two shaded regions is $\mathbf{P}_0\left(\psi_C=1\right)=\mathbf{P}_0\left(\sqrt{n}\left|\overline{X}_n\right|>q_{0.05}\right)$, the probability that H_0 is rejected even though it is true.

Submit

You have used 3 of 3 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 2 Foundation of Inference:Lecture 6: Introduction to Hypothesis Testing, and Type 1 and Type 2 Errors / 13. Type 1 Error of a Statistical Test

Add a Post

Show all posts ▼	by recent activity ▼
Getting used to the notation Even though I'm able to answer the questions, I'm having a hard time getting used to all the notations!	1
☑ Unsure of my understanding of quantiles	5

Audit Access Expires Dec 24, 2019

You lose all access to this course, including your progress, on Dec 24, 2019.

Upgrade by Nov 4, 2019 to get unlimited access to the course as long as it exists on the site. **Upgrade now**

Learn About Verified Certificates

© All Rights Reserved