Mobile Manipulation Calibration

Adam Heins

August 21, 2022

1 Introduction

The frames of interest are listed in Table 1.

Table 1: Coordinate frames.

Name	Subscript
World	\overline{w}
Mobile base	b
Base of arm	a
End effector	e
Tool	t

The pose T_{wt} of an arbitrary tool attached to the end effector can be computed using the sequence of transforms

$$T_{wt} = T_{wb}(q_b)T_{ba}T_{ae}(q_a)T_{et}, \qquad (1)$$

where T_{wb} depends on the base configuration $q_b = [x_b, y_b, \theta_b]^T$ and T_{ae} depends on the arm configuration q_a .

2 Base Calibration

We need to calibration the Vicon measured base poses \hat{q}_b so that the origin of T_{wb} is correct. We have

$$T_{wb}(q_b) = \begin{bmatrix} C_z(\theta_b) & r_b \\ \mathbf{0}^T & 1 \end{bmatrix}, \tag{2}$$

where $C_z(\theta) \in SO(3)$ is a rotation about the z-axis and $r_b = [x_b, y_b, z_b]^T$ with z_b a constant. Our goal in this section is to calibrate the origin (x_b, y_b) so that it is located at the point of rotation of θ_b .

Given a starting configuration $q_{b,0}$, we will move the base to a sequence of desired configurations $q_{b,i}^d$ and obtain the corresponding measured configurations $\hat{q}_{b,i}^{d}$. We would like to find an offset Δq_b such that

$$\mathbf{q}_{b,i}^d = \hat{\mathbf{q}}_{b,i} + \Delta \mathbf{q}_b \tag{3}$$

is satisfied as closely as possible for each i. We will do so by solving the least squares problem

$$\underset{\Delta \mathbf{q}_b}{\operatorname{argmin}} \frac{1}{2} \sum_{i} \| \mathbf{q}_{b,i}^d - \hat{\mathbf{q}}_{b,i} - \Delta \mathbf{q}_b \|^2. \tag{4}$$

3 Arm-End Effector-Tool Calibration

¹In practice, we need only use desired configurations that differ in rotation; the position is arbitrary and can remain fixed.