

Logistic Regression - Day 1

Agenda

Logistic Regression - Day 1

In this session, you will be learning:

Classification Problems

Predict if a machine will fail in the next 14 days.

VibrationX_14day	VibrationY_14day	VibrationZ_14day	Failed
			Yes
			No

Classification Problems

The HR department of a company wants to understand which employees are at risk of resigning.

# promotions	Current salary	Market Salary	Resigned
			Yes
			No

Classification Problems

Can we predict which patients are at risk of re-admission?

Patient ID	Age	Gender	
001	23	M	
Patient ID	Age	Gender	

Classification Problems: Class Exercise

Take five minutes and discuss two scenarios in which the prediction problem is a classification problem. Also, discuss what kind of data you will need to collect.

- Customer Churn Prediction: Demographics, Past association with a product, and Number of times complaints registered
- Predicting Fraud: Demographics, Financial History, and Circumstances of transaction

Feature 1 (Age_Normalized)	Feature 2 (Income_Normalized)	Response (Good/Bad)	Feature 1 (Age_Normalized)
		Good = 1	
		Bad = 0	

Fit a model of the form, Response=b0+b1Feature1

We fit a straight line to the data, where the response is binary in nature $y \in \{0,1\}$.

Notice the predictions in red color

- 1. Predictions < 0 or Predictions > 1
- 2. 0 < Predictions < 1

We are trying to fit:

$$\hat{y} = \beta 0 + \beta 1X1 + \beta 2X2 + \epsilon = f(X1, X2)$$

The problem with the fitting linear model is:

$$f(X1,X2) \in (-\infty,+\infty)$$
$$y \in \{0,1\}$$

Age		Target
20	1	
20	0	
21	1	
21	0	

Instead of estimating $y \in \{0,1\}$ we can try to estimate the Prob(y=1) = \hat{p}

$$\hat{p} \in (0,1)$$

These estimates make sense now.

We are trying to fit:

$$\hat{p} = \beta 0 + \beta 1X1 + \beta 2X2 + \varepsilon = f(X1,X2)$$

The problem still is:

$$f(X1,X2) \in (-\infty,+\infty)$$

$$\hat{p} \in (0,1)$$

Age	Target			
20	1			
20	1		Age	Age Pr (1)
20	1		20	20 0.75
20	0		21	21 0.50
21	1			
21	0			

Age	Target
20	1
20	1
20	1
20	0
21	1
21	0

	Age	Pr (1)	Pr/1-Pr
•	20	0.75	3
	21	0.50	0.5

Maximum and Minimum value Pr/(1-Pr)?

Minimum value of Pr(1)?

Pr(1) = 0

Maximum value of Pr(1)?

Pr(1) = 1

Min Pr(1) = 0, Pr/(1-Pr) = ?

Pr/(1-Pr) = 0

Max Pr(1) = 1, Pr/(1-Pr) = ?

Pr/(1-Pr) = Infinity

$$0 \le Pr/(1-Pr) \le Infinity$$

Instead of estimating $y \in \{0,1\}$ we can try to estimate the $\hat{p}/(1-\hat{p})$

$$\hat{p}/(1-\hat{p}) \in (0,+\infty)$$

These estimates make sense now.

We are trying to fit:

$$\hat{p}/(1-\hat{p}) = \beta 0 + \beta 1X1 + \beta 2X2 + \epsilon = f(X1,X2)$$

The problem still is:

$$f(X1,X2)\in(-\infty,+\infty)$$

$$\hat{p}/(1-\hat{p})\in(0,+\infty)$$

Age	Target
20	1
20	1
20	1
20	0
21	1
21	0

	Age	Pr (1)	Pr/1-Pr	log(Pr/(1-Pr))
•	20	0.75	3	1.09
	21	0.50	0.5	-0.70

$$0 \leftarrow Pr/(1-Pr) \leftarrow Infinity$$

Instead of estimating $y \in \{0,1\}$ we can try to estimate the $\log(\hat{p}/(1-\hat{p}))$

$$\log \hat{p} / (1 - \hat{p}) \in (-\infty, +\infty)$$

All these estimates make sense now.

We are trying to fit:

$$\log \hat{p} / (1 - \hat{p}) = \beta 0 + \beta 1 X 1 + \beta 2 X 2 + \epsilon = f(X 1, X 2)$$

$$f(X1,X2) \in (-\infty,+\infty) \log \hat{p}/(1-\hat{p}) \in (-\infty,+\infty)$$

$$\log \frac{\hat{p}}{1 - \hat{p}} = \beta 0 + \beta 1X1 + \beta 2X2 + \epsilon$$

$$\hat{p} = \frac{e^{\beta 0 + \beta 1X1 + \beta 2X2 + \epsilon}}{1 + e^{\beta 0 + \beta 1X1 + \beta 2X2 + \epsilon}}$$

Logistic Function

Classification Problems: Class Exercise

Imagine that there are 125 customers of age 25 years. Of them, 25 have subscribed to a premium subscription of an OTT platform. Find out the odds ratio.

$$p = \frac{25}{125}$$
, $1 - p = \frac{100}{125}$, so odds ratio $= \frac{p}{1 - p} = \frac{25}{125} * \frac{125}{100} = \frac{1}{4}$

Interpreting Coefficients of a Logistic Model

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X_1$$

$$\log(p/(1-p)) = 2.1+0.08Age$$

Age	Churned
28	Yes
32	Yes
40	No

Predicting churn based on a person's age

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X_1$$

$$\log(p/(1-p)) = 2.1+0.08Age$$

Changing Age by 1 unit will change the log odds of someone churning by 0.08 units.

Predicting churn based on a person's age

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X_1$$

$$\log[f_0](p/(1-p)) = 2.1 + 0.08 Age$$

Changing Age by 1 unit will change the log odds of someone churning by 0.08 units.

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X_1$$

$$log(p/(1-p)) = 2.1+0.08 * 20$$

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X_1$$

$$\log(p/(1-p)) = 2.1 + 1.6$$

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X_1$$

$$\log(p/(1-p)) = 3.7$$

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X_1$$

$$\log[f_0](p/(1-p)) = e^{3.7}$$

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X_1$$

$$\log[f_0](p/(1-p)) = 2.71^{3.7}$$

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X_1$$

$$\log[f_0](p/(1-p)) = 39.99$$

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X_1$$

$$P = 0.97$$

Class Exercise

• Imagine you were trying to model the propensity of customers to churn, and you were able to build the following logistic regression model:

$$\log \frac{p}{1-p} = 1.95 - 2.5Age + 1.68Income$$

- Can we conclude that as age increases, the propensity for a customer to churn decreases, keeping all else constant?
- What would be the churn probability for a person aged 25 with an income of 15000?

Class Exercise

 Imagine you were trying to model the propensity of customers to churn, and you were able to build the following logistic regression model:

$$\log \frac{p}{1-p} = 0.0001 - 0.005Age + 0.008Income$$

- Can we conclude that as age increases, the propensity for a customer to churn decreases, keeping all else constant? (Yes, negative sign on the coefficient of Age.)
- What would be the probability of churn for a person with age 25 and income 150?($p = \frac{E}{1+E}$, where E = $e^{0.0001-0.005*25+0.008*150}$, p = 0.75)

Age	Good_Bad (Good =1)	Prediction
20	1	
21	1	
24	0	
25	0	
29	0	
30	1	
38	1	

$$\log_{\frac{\hat{p}}{1-\hat{p}}} = \beta 0 + \beta 1 A g e$$

$$\hat{p} = \frac{e^{\beta 0 + \beta 1 A g e}}{1 + e^{\beta 0 + \beta 1 A g e}}$$

$$\beta 0 = 0.7$$
 $\beta_1 = 1.7$

$$\hat{p} = \frac{e^{0.7 + 1.7Age}}{1 + e^{0.7 + 1.7Age}}$$

Age	Good_Bad (Good =1)	Prediction
20	1	
21	1	
24	0	
25	0	
29	0	
30	1	
38	1	

$$\beta 0 = 0.7$$
 $\beta_1 = 1.7$

$$\log_{\frac{\hat{p}}{1-\hat{p}}} = \beta 0 + \beta 1 A g e$$

$$\hat{p} = \frac{e^{\beta 0 + \beta 1 A g e}}{1 + e^{\beta 0 + \beta 1 A g e}}$$

Age	Good_Bad (Good =1)	Prediction
20	1	
21	1	
24	0	
25	0	
29	0	
30	1	
38	1	

$$\beta 0 = 0.3$$

 $\beta_1 = 2.2$

Age	Good_Bad (Good =1)	Prediction
20	1	
21	1	
24	0	
25	0	
29	0	
30	1	
38	1	

$$\beta 0 = 0.7$$
 $\beta_1 = 1.7$

$$\log_{\frac{\hat{p}}{1-\hat{p}}} = \beta 0 + \beta 1 A g e$$

$$\hat{p} = \frac{e^{\beta 0 + \beta 1 A g e}}{1 + e^{\beta 0 + \beta 1 A g e}}$$

Age	Good_Bad (Good =1)	Prediction
20	1	0.70
21	1	0.60
24	0	0.50
25	0	0.45
29	0	0.70
30	1	0.62
38	1	0.40

$$\beta 0 = 0.3$$

 $\beta_1 = 2.2$

Age	Good_Bad (Good =1)	Prediction
20	1	
21	1	
24	0	
25	0	
29	0	
30	1	
38	1	

$$\beta 0 = 0.7$$
 $\beta_1 = 1.7$

Clearly $\beta 0 = 0.7$ and $\beta 1 = 1.7$ is a better choice

$$\log_{\frac{\hat{p}}{1-\hat{p}}} = \beta 0 + \beta 1 A g e$$

$$\hat{p} = \frac{e^{\beta 0 + \beta 1 A g e}}{1 + e^{\beta 0 + \beta 1 A g e}}$$

Age	Good_Bad (Good =1)	Prediction
20	1	0.70
21	1	0.60
24	0	0.50
25	0	0.45
29	0	0.70
30	1	0.62
38	1	0.40

$$\beta 0 = 0.3$$

 $\beta_1 = 2.2$

- One would like to choose the model coefficients so that the model gives a high score to events and a low score to nonevents.
- But how will we measure a model's ability to assign a high score to events and a low to non-events? Cost Function.
 See the excel sheet logistic_cost.xlsx

Thank You!

Copyright © HeroX Private Limited, 2023. All rights reserved.