October 4th, 2022

Introduction to Machine Learning Part #1

Yusen He, PhD - DASIL Data Scientist
Prof. Julia Bauder - Director of DASIL
Martin Pollack - DASIL Post-Bac Fellow

Intro to Machine Learning Part #1 AGENDA

Evaluating Classification: Entropy & Information Gain

Basic Decision Tree

What is Machine Learning?

- A type of Artificial Intelligence that learns from data
- Computer algorithms that improve without being explicitly programmed

What is Machine Learning?

Supervised Learning

• Regression: predict continuous outcome

- Linear regression

Non-linear regression

Supervised Learning

- Classification: predict discrete outcome/predict group data belongs to
 - Binary classification
 - Multi-categorical classification

Classification or Regression?

In Class Question:

- Suppose we want to predict the probability that a person will get approved for a credit card.
- We have data from Visa on everyone who submitted a credit card application in 2021.
- Is this a classification or regression problem?

Intro to Machine Learning Part #1 AGENDA

Machine Learning Basics

Evaluating Classification: Entropy & Information Gain

Basic Decision Tree

Entropy:

- A quantitative measure of randomness or uncertainty
- Usually between 0 and 1
- Higher entropy = higher randomness

• Used to measure the effectiveness of a classification algorithm

Think about a scenario: Ice vs Water

Which one has higher randomness?

A cup of ice

A cup of water

In molecular dynamics:

In molecular dynamics:

How to compute entropy?

$$Entropy = -\sum_{i=1}^{n} P(x_i)\log(P(x_i))$$

How to compute entropy?

The log-transformed probability of a certain class of events (data)

A real-life example:

- Skewed distribution
- Lower entropy (higher certainty)

A real-life example #1:

$$Entropy = -\sum_{i=1}^{n} P(x_i)\log(P(x_i))$$

$$= -0.9 \times \log(0.9) - 0.05 \times \log(0.05)$$
$$-0.05 \times \log(0.05)$$

$$= 0.1705$$

A group of UK people

Another real-life example:

- Uniform distribution
- Higher entropy (higher uncertainty)

A real-life example #2:

$$Entropy = -\sum_{i=1}^{n} P(x_i)\log(P(x_i))$$

= It it your turn.

Intro to Machine Learning Part #1 AGENDA

Machine Learning Basics

Evaluating Classification: Entropy & Information Gain

Basic Decision Tree

"Tree" shape structure

"Tree" shape structure

"Tree" shape structure

"Tree" shape structure

A practical example of decision tree: Brexit Dataset

Predictor variables:

- Country (England, Scotland, Wales)
- Gender (Male, Female)
- Age (Young, Old)

Target:

Leave/Stay

• A practical example of decision tree: Brexit Dataset

ID	Country	Gender	Age	Leave
1	Scotland	Male	Old	No
2	Scotland	Male	Old	No
3	England	Male	Young	Yes
4	Wales	Male	Old	Yes
5	Wales	Female	Old	Yes
6	Wales	Female	Young	No

	Pred	dictor variable	Э	Target
		<u> </u>		
ID	Country	Gender	Age	Leave
1	Scotland	Male	Old	No
2	Scotland	Male	Old	No
3	England	Male	Young	Yes
4	Wales	Male	Old	Yes
5	Wales	Female	Old	Yes
6	Wales	Female	Young	No

Step 1: Entropy at root

Yes: 3 No: 3 In total: 6

Probability(Yes): 0.5 Probability(No): 0.5

$$Entropy(Root) = -\sum_{i=1}^{n} P(x_i)\log(P(x_i))$$
$$= -0.5 \times \log(0.5) - 0.5 \times \log(0.5)$$

=1

	Target	
ID	Leave	
1	No	
2	No	
3	Yes	
4	Yes	
5	Yes	
6	No	

• Step 2: Which predictor for initial split?

Predictor variable

Yes: 3 No: 3
Entropy (Root) = 1

	'		'
ID	Country	Gender	Age
1	Scotland	Male	Old
2	Scotland	Male	Old
3	England	Male	Young
4	Wales	Male	Old
5	Wales	Female	Old
6	Wales	Female	Young

Step 2: Which predictor for initial split?

Country

ID	Country	Leave
1	Scotland	No
2	Scotland	No
3	England	Yes
4	Wales	Yes
5	Wales	Yes
6	Wales	No

Step 2: Which predictor for initial split?

Country

$$Entropy(Scotland) = -0 \times \log_2 0 - 1 \times \log_2 1 = 0$$

$$Entropy(Wales) = -\frac{2}{3} \times \log_2 \frac{2}{3} - \frac{1}{3} \times \log_2 \frac{1}{3} = 0.9183$$

$$Entropy(Wales) = -\frac{2}{3} \times \log_2 \frac{2}{3} - \frac{1}{3} \times \log_2 \frac{1}{3} = 0.9183$$

England

Scotland

Wales

$$Entropy(Country) = \frac{1}{6} \times 0 + \frac{2}{6} \times 0 + \frac{3}{6} \times 0.9183 = 0.4591$$

GRINNELL COLLEGE

- Step 2: Which predictor for initial split?
 - Gender

ID	Male	Leave
1	Male	No
2	Male	No
3	Male	Yes
4	Female	Yes
5	Female	Yes
6	Male	No

GRINNELL COLLEGE

- Step 2: Which predictor for initial split?
 - Gender

$$Entropy(Male) = -\frac{1}{4} \times \log_2 \frac{1}{4} - \frac{3}{4} \times \log_2 \frac{3}{4} = 0.8113$$

$$Entropy(Female) = -1 \times \log_2 1 - 0 \times \log_2 0 = 0$$

$$Entropy(Gender) = \frac{4}{6} \times 0.8113 + \frac{2}{6} \times 0 = 0.5409$$

GRINNELL COLLEGE 😻

• Step 2: Which predictor for initial split?

- Age

ID	Age	Leave
1	Old	No
2	Old	No
3	Young	Yes
4	Old	Yes
5	Old	Yes
6	Young	No

GRINNELL COLLEGE >

• It is your turn!

- Age Yes: 3 No: 3 Entropy (Root) = 1Young Old Yes: 1 No: 1 Yes: 2 No: 2 Total: 2 Total: 4

Entropy(Young) = ?

Entropy(Old) = ?

Entropy(Age) = ?

Step 3: Now let's compare

Total: 1

Country

- Gender

Age

Yes: 3 No: 3 Total: 6 Entropy (Root) = 1

Total: 3

Entropy(Root) = 1

Entropy(Country) = 0.4591

Entropy(Gender) = 0.5409

Entropy(Age) = 1

Entropy (Country) = 0.4591

Total: 2

• Step 4: Further split

GRINNELL COLLEGE

- Step 4: Further split
 - Gender?

$$Entropy(Male) = -\frac{1}{1} \times \log_2 1 - 0 \times \log_2 0 = 0$$

$$Entropy(Female) = -\frac{1}{2} \times \log_2 \frac{1}{2} - \frac{1}{2} \times \log_2 \frac{1}{2} = 1$$

$$Entropy(Gen) = \frac{1}{3} \times 0 + \frac{2}{3} \times 1 = 0.667$$

- Step 4: Further split
 - Age?

Entropy(Young) = Your turn

Entropy(Old) = Your turn

Entropy(Age) = Your turn

GRINNELL COLLEGE >

Parameters vs. Hyperparameters

- Parameters are estimated from data
 - e.g. Intercept/slope in linear regression
- Hyperparameters determine what kind of model to fit
- Chosen before you fit the model with data
- Do not depend on the data

Decision Tree Hyperparameters

- Maximum tree depth
- Minimum decrease in entropy needed for a split
- Number of features to consider at each split

Summary:

Non-linear model for classification & regression

