## Akademia Górniczo Hutnicza w Krakowie

# Wydział Informatyki, Elektroniki i Telekomunikacji Elektronika



# Sieci Transmisji Danych Dokumentacja projektu sieci komputerowej dla firmy I

Prowadzący: dr inż. Jacek Stępień

Wykonanie projektu: Filip Kapłunow, Michał Krzyworzeka

## 1. Cel projektu

Celem zadania jest wykonanie projektu sieci dla firmy, która ma dwa oddziały położone w dwóch osobnych budynkach.

## 2. Założenia ogólne

W jednym oddziale sieć lokalna obsługuje co najmniej 200 komputerów, podzielonych na co najmniej 4 sekcje, z których jeden ma być serwerem HTTP.

W drugim oddziale sieć obsługuje co najmniej 300 komputerów podzielonych na przynajmniej 5 sekcji, a dodatkowo grupa 30 pracowników ma możliwość pracy zdalnej.

Adresacja urządzeń w obu oddziałach jest zoptymalizowana pod kątem wykorzystania jak najmniejszej liczby adresów (VLSM), w każdym z oddziałów adresy z innej puli adresów z prywatnej klasy C. Pula adresów sieci połączenia między oddziałami należy do publicznej klasy C.

W obu oddziałach przydział adresów odbywa się w oparciu o DHCP. W oddziale I opowiada za to dedykowany serwer DHCP, natomiast w drugim – router.

Ruter "wyjściowy" z oddziału realizuje translację NAT/PAT.

W oddziale I routing realizuje protokół OSPF, natomiast w II EIGRP.

Ponadto istnieje blokada dostępu oraz dodatkowe zabezpieczenia stosując listy dostępowe ACL:

- Dostęp do serwera FTP wyłącznie z jednej sekcji w każdym oddziale
- Dostęp do serwera HTTP wyłącznie za pomocą protokołu HTTP
- Blokada odbierania (tylko) pingów w wyselekcjonowanych sekcjach w każdym oddziale po jednej w każdym oddziale.

## 3. Struktura sieci



Rys.1 Topologia sieci.

Tab.1 Adresacja oddziału I.

| Podsieć | Liczba potrzebnych hostów | Maks. hostów | Adres sieci   | Maska | Zakres hostów         | Adres rozgłoszeniowy |
|---------|---------------------------|--------------|---------------|-------|-----------------------|----------------------|
| SEKCJA1 | 61                        | 62           | 192.168.2.0   | /26   | 192.168.2.1-62        | 192.168.2.63         |
| SEKCJA2 | 61                        | 62           | 192.168.2.64  | /26   | 192.168.2.65-126      | 192.168.2.127        |
| SEKCJA3 | 61                        | 62           | 192.168.2.128 | /26   | 192.168.1.129-<br>190 | 192.168.2.191        |
| SEKCJA4 | 61                        | 62           | 192.168.2.192 | /26   | 192.168.2.193-<br>254 | 192.168.2.255        |
| SEKCJA5 | 61                        | 62           | 192.168.3.0   | /26   | 192.168.3.1-62        | 192.168.3.63         |
| ZDALNY  | 30                        | 30           | 192.168.3.64  | /27   | 192.168.3.65-94       | 192.168.3.95         |
| SZAFA   | 6                         | 6            | 192.168.3.96  | /29   | 192.168.3.97-102      | 192.168.3.103        |

**Tab.2** Adresacja oddziału II.

| Podsieć | Liczba potrzebnych hostów | Maks. hostów | Adres sieci   | Maska | Zakres hostów         | Adres rozgłoszeniowy |
|---------|---------------------------|--------------|---------------|-------|-----------------------|----------------------|
| SEKCJA1 | 50                        | 62           | 192.168.0.0   | /26   | 192.168.0.1-62        | 192.168.0.63         |
| SEKCJA2 | 50                        | 62           | 192.168.0.64  | /26   | 192.168.0.65-126      | 192.168.0.127        |
| SEKCJA3 | 50                        | 62           | 192.168.0.128 | /26   | 192.168.0.129-<br>190 | 192.168.0.191        |
| SEKCJA4 | 50                        | 62           | 192.168.0.192 | /26   | 192.168.0.193-<br>254 | 192.168.0.255        |
| SZAFA   | 6                         | 6            | 192.168.1.0   | /29   | 192.168.1.1-6         | 192.168.1.7          |

## 4. Proces konfiguracji

## 4.1. DHCP

Dla oddziału I DHCP zostało skonfigurowane na dedykowanym serwerze S1, natomiast dla oddziału II na routerze wyjściowym R5. Ponadto routery w sekcjach zostały skonfigurowane jako *relay agent* w celu dalszego przesyłania pakietów DHCP.



Rys.2 Konfiguracja serwera DHCP oddziału I na S1.



Rys.3 Konfiguracja DHCP oddziału II na routerze R5.

```
interface FastEthernet0/1
ip address 192.168.2.1 255.255.255.192
ip helper-address 192.168.3.97
duplex auto
speed auto
```

Rys.4 Ustawienie routerów w poszczególnych sekcjach jako relay agent.

#### 4.2. Routing

W oddziale I został zaimplementowany protokół routingu OSPF. Natomiast w drugim protokół EIGRP.



Rys.5 Przykład konfiguracji routingu EIGRP oddziale II.



Rys.6 Przykład konfiguracji routingu OSPF w oddziale I.

## 4.3. Redystrybucja routingu

Dla R5 (routing EIGRP) została zaimplementowana redystrybucja routingu OSPF, a dla R6 (OSPF) redystrybucja EIGRP.



Rys.7 Redystrybucja routingu OSPF dla EIGRP.



**Rys.8** Tablica routingu R5.

```
R6_MFK#conf t
Enter configuration commands, one per line. End with CNTL/Z.

R6_MFK(config) #router ospf 1

R6_MFK(config-router) #redistribute eigrp 1
% Only classful networks will be redistributed

R6_MFK(config-router) #
```

Rys.9 Redystrybucja routingu EIGRP dla OSPF.



Rys.10 Tablica routingu R6.

### 4.4. Translacja NAT/PAT

Na routerach wyjściowych została skonfigurowana translacja adresów prywatnych na adresy publiczne przy użyciu NAT/PAT overload na interfejsie wyjściowym oddziału. Translacja statyczna została skonfigurowana dla serwerów HTTP oraz FTP.



Rys.11 Translacja NAT/PAT overload dla R6.

#### 4.5. Listy dostępu ACL

Dostęp do serwera FTP został udostępniony odpowiednio sekcji 4 i sekcji 5 oddziału I i II. W oddziale II dostęp został zablokowany na wejściu routera R5, a w oddziale I na wejściu R7, R8 oraz R9.



**Rys.12** Konfiguracja access listy R5 w celu odblokowania dostępu do serwera FTP sekcji 5 oddziału II.

```
R8_MFK#
R8_MFK#sh acc
Extended IP access list 101
    10 deny tcp 192.168.0.64 0.0.0.63 host 192.168.1.2 eq ftp
    20 permit ip any any (5 match(es))
R8_MFK#

Copy
Paste
```

Rys.13 Access lista blokująca dostęp do serwera FTP wszystkim sekcjom oddziału I prócz 4.

Dostęp do serwera HTTP tylko za pomocą protokołu HTTP został zrealizowany na wejściu R9

```
Extended IP access list 101

10 permit tcp any host 192.168.0.130 eq www
20 deny ip any host 192.168.0.130 (2 match(es))
30 permit ip any any (2817 match(es))

R9_MFK#
```

**Rys.14** Konfiguracja listy dostępu R9 w celu dostępu do serwera HTTP wyłącznie za pomocą tego protokołu.

Blokada odbierania pingów została zrealizowana w sekcjach 1 obu oddziałów na wyjściu ich sieci (R0 oraz R7)

```
Extended IP access list 100

10 deny icmp 192.168.2.0 0.0.0.63 any echo-reply
20 permit ip any any
RO_MFK#
```

Rys.15 Lista dostępu blokująca odbieranie pingów sekcji 1 oraz 2.

## 5. Kosztorys

Tab.3 Kosztorys

| Kosztorys | Model CISCO | Ilość   | Cena za 1 [PLN] | Cena za wszystkie [PLN] |
|-----------|-------------|---------|-----------------|-------------------------|
| Switche   | 2950T-24    | 31      | 162.23          | 5029.13                 |
| Routery   | 1841        | 11      | 261.98          | 2881.78                 |
| Serwery   | UCS C220 M3 | 2       | 949.00          | 1898.00                 |
|           | W sun       | 9808.91 |                 |                         |

## 6. Testy funkcjonalne

#### 6.1. DHCP



Rys.16 Sprawdzenie poprawności działania DHCP obu oddziałów.

6.2. Połączenie między sekcjami oraz blokady dostępu.



Rys.17 Test połączenia między oddziałami.



Rys.18 Test dostępu do serwera FTP (dwa górne zrzuty – oddział II, dwa dolne – oddział I).



Rys.19 Sprawdzenie dostępu do serwera HTTP w obu oddziałach



Rys.20 Test blokowania pingów dochodzących do komputerów sekcji 1 w obu oddziałach.

## 7. Podsumowanie

Testy funkcjonalne sieci wykazały poprawność działania projektu przy spełnionych wszystkich jego założeniach. Analizując wykorzystane urządzenia sieciowe (switche, routery, serwery) i ich kosztorys (tab.3) można wywnioskować, że jest on dość stosunkowo tani. Nie uwzględnia to kwestii konieczności kupienia stosownych szaf rackowych do zamontowania urządzeń, a także potrzebnego okablowania.