识别注释的DFA

习题3.1:

设某程序设计语言规定,其程序中的注释是由"/*"和"*/"括起来的字符串,注释中不能出现"*/",除非它们出现在双引号中(假设双引号必须配对使用),请给出识别该语言注释结构的**DFA D**。

Wensheng L

解答:

n 识别形如/*.....*/...*/的注释的DFA

Wensheng Li

- n 自动机 M 的状态转换矩阵如下所示,其中初态是S,终态是C。
 - (1) 画出相应的状态转换图;
 - (2) 写出与之等价的右线性文法。

n 解答:

S?aA I bS A?aC I bB B?aB I bC C?aC I bC I ?

- n 自动机 M 的状态转换图如下所示。
 - (1) 该自动机识别的语言是什么?
 - (2) 给出与之等价的右线性文法。

解答:

- (1) 根据自动机知其产生的语言是: L={a^mbⁿcⁱl m, n, i [2] 1}
- (2) 与之等价的右线性文法是:

S→aA A→aA I bB B→bB I cF

F→cF I ε

或者:S→aA

A→aA I bB

B→bBIcFIc

F→cF I c

```
n 已知正则表达式: (a<sup>*</sup>lb)<sup>*</sup> <sub>K内(+ C</sub> (cld),判断下面哪几个正则表达式与其等价,请简述理由。
(1) a<sup>*</sup>(cld)lb(cld)
```

- (2) a*(cld)*I b(cld)*
- (3) a*(cld)lb*(cld) 可有 ンて C
- (4) (alb)*cl(alb)*d
- (5) (a*lb)*cl(a*lb)*d

n 解答:

- (1)、(2)、(3)与所给正则表达式不等价;
- (4)和(5)与所给正则表达式等价。

n 有限自动机**M**:

 $M=(\{a,b\},\{S_0,S_1,S_2,S_3,S_4,S_5\},\,S_0,\,\{S_1,S_4,S_5\},\,\delta)$

δ由如右的状态转移矩阵给出。

(1) 试画出该自动机的状态转换图;

(2) 试找出一个长度最小的输入串,

使得在识别此输入串的过程中,

每一状态至少经历一次;

(3) 试找出一个长度最小的输入串,

使得每一状态转换至少经历一次。

	а	D
So	S_2	S_1
S_1	S_3	S_1
S_2	S_0	S 4
S_3	S_0	S ₃

h

S₄

S5

S4

BUPT

6

课堂练习4参考答案

baaaba

aaabbaaab<mark>bbabab</mark>

练习4.1

有如下文法:

bexpr?bexpr or bterm | bterm

bterm?bterm and bfactor | bfactor

bfactor?not bfactor | (bexpr) | true | false

请构造一个可以用来分析该文法所产生的句子的递归调用分析程序。

Wensheng Li

Step 1: 消除左递归

```
bexpr?bterm E?
E? ?or bterm E? | ?
bterm?bfactor T?
T? ?and bfactor T? | ?
bfactor?not bfactor | (bexpr) | true | false
```

Step 2: 文法 G 的预测分析程序状态转换图

Step 3: 化简后的预测分析程序状态转换图

Wensheng Li

Step4:根据状态转换图进行程序设计

```
n bexpr的函数
n bterm的过程
```

n bfactor的过程

```
void proc_expr(void) {
   proc_term();
   if (char==?or?) {
      forward pointer;
      proc_expr();
   }
   or
   bexpr: 并始 0 bterm 3 & 6
```

```
void proc_term(void) {
    proc_factor();
    if (char==?and?) {
        forward pointer;
        proc_term();
    }
}
```

```
void proc_factor(void) {
  if (char==?not?){
    forward pointer;
    proc factor();
  else if (char==?(?)) {
    forward pointer;
    proc expr();
    if (char==?)?)
      forward pointer;
    else error();
  else if
(char==?true?)||(char==?false?)
         forward pointer;
  else error();
                          bexpr
                         true / false
```

sheng Li Bl

练习:判断下面的文法是否为LL(1)文法?若不是,可否改写为LL(1)文法?若可以,请构造其LL(1)分析表。S?(L) I aL?L,SIS

解答:

- n 文法含有左递归,故不是LL(1)文法
- n 改写文法: 消除左递归

S?(L) I a

L ?SL?

L? ?,SL? I?

FIRST((L)) ∩FIRST(a) = ?	

FIRST(,SL?) ∩FOLLOW(L?) = ?

	FIRST	FOLLOW
S	(a	\$,)
L	(a)
L?	, ?)

	а	()	,	\$
S	S?a	S?(L)			
L	L?SL?	L?SL?			
L?			L ??	L ??,	

练习:

- 1) S?aAcBe
- 2) A?b
- 3) A?Ab
- 4) **B**?d

构造LL(1)分析表,分析 abbcde。

解答:

S?aAcBe A?bA' A' ?bA' I ? B?d

	First	follow
S	а	\$
Α	b	С
A'	b , ?	С
В	d	е

	а	b	С	d	е	\$
S	S?aAcBe					
Α		A?bA'				
A'		A'?bA'	A '??			
В				B?d		

有如下文法:

E?E?T I T

T?T?F I F

F??FI(E)ItIf

- (1) 该文法是LL(1)文法吗? 说明理由。
 - 若是,做(3),若不是,做(2)
- (2) 请改写该文法为LL(1)文法,继续做(3)。
- (3) 构造每个非终结符号的FIRST和FOLLOW函数,继续做(4)

(4) 构造LL(1)分析表。

E?E?T I T T?T?FIF F??F | (E) | t | f

- (1) 由于该文法存在左递归,所以不是LL(1)文法。
- (2) 改写文法。消除其中的左递归,得到文法G':

E?TE'

E'??TE' | ?

T?FT'

T'??FT' | ?

F??F | (E) | t | f

- (3) 每个非终结符号的FIRST和 FOLLOW集合如右:
- (4) 文法的LL(1)分析表如下:

	FIRST	FOLLOW
E	¬, (, t, f	\$,)
E'	ν, ε	\$,)
Т	¬, (, t, f	v, \$,)
T'	Λ, ε	v, \$,)
F	¬, (, t, f	^, v, \$,)

		^	V	t	f	()	\$
E	E→TE'			E→TE'	E→TE'	E→TE'		
E'			E'→∨TE'				Ε'→ε	Ε'→ε
T	T→FT'			T→FT'	T→FT'	T→FT'		
T'		T'→ ∧ FT'	Τ'→ε				Τ'→ε	Τ'→ε
F	$F \rightarrow \neg F$			F→t	F→f	F→(E)		

证明下面的文法是LL(1)的,但不是SLR(1)的。

S?(**X** | **E**] | **F**)

X?E) | F]

E?A

F?A

A??

Wensheng Li

解答:证明该文法是LL(1)文法

n 该文法每个非终结符号的FIRST集 和FOLLOW集合如下:

	FIRST	FOLLOW
S	(,],)	\$
X],)	\$
E	3],)
F	3],)
A	3],)

n 该文法的 LL(1) 分析表数	叫石:
--------------------------	-----

	()]	\$
S	S→(X	S→F)	S→E]	
X		X→E)	X→F]	
E		E→A	E→A	
F		F→A	F→A	
A		Α→ ε	Α→ ε	

SP(X I E] I F)

XPE) I F]

E?A

F?A

A??

n 结论: LL(1)分析表中不含有多重定义的入口, 所以该文法是LL(1)文法

n 也可以分析产生式,根据候选式的first集合互不相交来说明。

证明该文法不是SLR(1)文法

n 构造该文法的LR(0)项目集规范族及识别所有活前缀的DFA

说明下面的文法是LR(1)文法,但不是SLR(1)文法。 X?Ma I bMc I dc I bda M?d

Wensheng Li

集合I4和I7中既有移进项目又有归约项目,但是归约符号和移进符号不同,所以也没有冲突。结论:是LR(1) 然后,构造文法的LR(0)项目集规范族及识别其所有活前缀的DFA。

FOLLOW(S)={ \$ }

FOLLOW(X)={ \$ } 这种冲突用SLR(1)方法无法解决, 所以该文法不是SLR(1)文法。 FOLLOW(M)={ a, c }

 I_4 、 I_7 中存在移进-归约冲突, FOLLOW(M)={ a, c }

已知文法G[A]为:

A→aABela

B→**B**bld

(1) 试给出与G[A]等价的LL(1)文法G'[A]

- (2) 构造G'[A]的预测分析表
- (3) 给出输入串aade的分析过程。

	а	b	d	е	\$
Α	A→aA'				
A'	A'→ABe		A' →?		A' → ?
В			B→dB'		

A→aA' A'→ABe I ? B→dB' B'→bB' I ?	

	First	Follow	
Α	a	\$, d	
A'	a, ?	\$, d	
В	d	е	
B'	b , ?	е	

aade的分析过程

	a	b	d	e	\$
A	A→aA'				
A'	A'→ABe		Α'→ε		A'→ε
В			B→dB'		
B'		B'→bB'		Β'→ε	

步骤	栈	输入	分析动作
(1)	\$A	aade\$	A?aA'
(2)	\$A'a	aade\$	
(3)	\$A'	ade\$	A'?ABe
(4)	\$eBA	ade\$	A?aA'
(5)	\$eBA'a	ade\$	
(6)	\$eBA'	de\$	A'??
(7)	\$eB	de\$	B?dB'
(8)	\$eB'd	de\$	
(9)	\$eB'	e\$	B'??
(10)	\$e	e\$	
(11)	\$	\$	分析成功

Wensheng Li

有如下文法G[A]:

A?BAIa

B?aBIb

(1) 判断该文法是以下哪些类型的文法,要求给出判断过程。

LL(1), LR(0), SLR(1)

- (2) 构造该文法的LR(1)项目集规范族及识别其所有活前缀的DFA。
- (3) 构造该文法的LR(1)分析表
- (4) 给出对输入符号串abb的分析过程。

Wensheng L

Li BUPT

参考答案(续)

LR(1)项目集规范族及识别其所有活前缀的DFA:

文法的LR(1)分析表

状态	Action			goto		
	a	b	\$	A	В	
0	S3	S4		1	2	
1			ACC			
2	S3	S4		5	2	
3	S7	S4			6	
4	R4	R4				
5			R1			
6	R3	R3				
7	S7	S4			6	

Wensheng Li

abb的分析过程

步骤	栈	输入	分析动作
(1)	0	abb\$	S3
(2)	0 3 - A	bb\$	S4
(3)	0 3 4 - a b	b\$	R4 B?lb
(4)	0 3 6 - a B	b\$	R3 B?aB
(5)	0 2 - B	b\$	S4
(6)	0 2 4 - B b	\$	error 弹出栈顶状态4
(7)	0 2 - B	\$	goto(2, A)=5 将状态5压入栈顶
(8)	0 2 5 - B A	\$	R1 A?BA
(9)	0 1 - A	\$	accept