Zadanie 2 Algorytmy ewolucyjne

Kacper Kania

12.03.2024

Treść zadania

Algorytm ewolucyjny jest jednym z podstawowych podejść do optymalizacji bezgradientowej (z ang. gradient-free optimization). Dzięki temu, algorytmy ewolucyjne znajdują szczególnie zastosowanie w zadaniach, gdzie potrzebny jest zbiór wystarczająco dobrych, ale różnych od siebie rozwiązań¹. Wbrew pozorom, takie algorytmy są stosowane często w tandemie z podejściami gradientowymi, np. w niedawnej publikacji dotyczącej generowania obrazów [1] lub w tym tweecie. Twoim zadaniem jest implementacja bazowej formy algorytmu ewolucyjnego, który jest podstawą dla bardziej zaawansowanych podejść ewolucyjny i innych metod optymalizacji bezgradientowej. Przetestujesz implementację na tym samych problemach co w zadaniu 1, biorąc pod uwagę, że to podejście daje podobne, lub często nawet lepsze wyniki niż wcześniej.

Standardowy algorytm ewolucyjny składa się z elementów, których spodziewam się znaleźć później w Państwa implementacjach:

- funkcji dopasowania (z ang. fitness function): $f(\mathbf{x}) : \mathbb{R}^D \to \mathbb{R}$, która dla osobnika \mathbf{x} zwraca wartość dopasowania (dobranie miary zostawiam w Państwa rękach),
- operatora mutacji $\mathbf{m}(\mathbf{x}, \mathbf{p}) : \mathbb{R} \to \mathbb{R}$, które z prawdopodobieństwem $p \in \mathbf{p}$ zmienia wartość odpowiadającej współrzędnej $x \in \mathbf{x}$ (prawdopodobieństwa mogą kodować wiedzę *a priori* na temat, które wartości są mniej lub bardziej prawdopodobne i można to wyznaczać metodami statystycznymi),
- operatora krzyżowania $\mathbf{c}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{p}) : \mathbb{R}^{D \times 2} \mapsto \mathbb{R}^{D \times 2}$, który z prawdopodobieństwami \mathbf{p} wyznacza chromosomy do krzyżowania, oraz prawdopodobieństwa krzyżowania².

Proszę zwrócić uwage, że tutaj zakładam zbiór liczb rzeczywistych \mathbb{R} , natomiast w wielu problemach wartości mogą mieć dowolny typ: całkowite, binarne, tekstowe itp.

¹Podejścia gradientowe zawsze dążą globalnego optimum i zwracają jedno konkretne rozwiązanie dla tego samego punktu początkowego.

 $^{^2}$ Ze względu na potenjalną złożoność $\mathcal{O}(n^2),$ gdzie n to liczba osobników w populacji, można założyć losowanie ze zwracaniem danemu osobnikowi innego osobnika do krzyżowania—wtedy złożoność wynosi2n

Po każdej iteracji następuje selekcja, która wybiera nową populację zgodnie z funkcją dopasowania. Ponownie, można założyć, że selekcja odbywa się z prawdopodobieństwem do wartości funkcji dopasowania, jednak można w tym zadaniu założyć odcięcie z góry określonej liczby najgorszych osobników. Po każdej iteracji, rozmiar populacji powinien wynosić stałą, określoną z góry liczność.

W skrócie algorytm ewolucyjny wygląda następująco:

- 1. Inicjalizacja populacji,
- 2. Obliczenie wartości funkcji dopasowania dla każdego osobnika,
- 3. Powtarzaj aż do spełnienia kryterium stopu (np. określonej liczby kroków):
 - (a) Wybór osobników do krzyżowania,
 - (b) Krzyżowanie wybranych osobników,
 - (c) Mutacja wybranych osobników,
 - (d) Obliczenie wartości funkcji dopasowania dla każdego osobnika,
 - (e) Wybór nowej populacji.

W czasie zajęć będę sprawdzał dokładnie czy dokładnie te elementy są zaimplementowane. Ze względu na wykorzystanie funkcji ciągłych, możecie Państwo wykorzystać bibliotekę numpy do operacji na macierzach.

Funkcje do przetestowania

Te same co w zadaniu 1. (poza zakresami), czyli:

• funkcja Rastrigina w zakresie $\mathbf{x} \in [-5.12, 5.12]^2, \mathbf{x} \in \mathbb{R}^2$,

$$g(\mathbf{x}) = 10d + \sum_{i=1}^{d} (x_i^2 - 10\cos(2\pi x_i)),$$

• funkcja Griewanka w zakresie $\mathbf{x} \in [-50, 50]^2, \mathbf{x} \in \mathbb{R}^2,$

$$g(\mathbf{x}) = \sum_{i=1}^{d} \frac{x_i^2}{4000} - \prod_{i=1}^{d} \cos\left(\frac{x_i}{\sqrt{i}}\right) + 1,$$

dla d=2. W czasie zajęć będę sprawdzał, jak implementacja działa na funkcji typu Drop-Wave:

$$g(\mathbf{x}) = \frac{1 + \cos\left(12\sqrt{x_1^2 + x_2^2}\right)}{0.5(x_1^2 + x_2^2) + 2}, \mathbf{x} \in [-5.12, 5.12]^2.$$

Więcej informacji na jej temat można znaleźć tu.

Uwaga: Nie ograniczam Państwa do tych funkcji. Jeśli ktoś z Was ma ochotę przetestować implementację na innych funkcjach, lub bardziej skomplikowanych problemach (np. z wartościami binarnymi), to jestem otwarty na to. Sam algorytm ewolucyjny jest bardzo elastyczny i jeżeli operatory działają na wyżej wymienionych problemach, to powinny też działać na innych (napisanie generalnej implementacji dla dowolnych wartości sprzyja ćwiczeniu dobrych praktyk implementacyjnych oraz wzorców projektowych.).

W sprawozdaniu

Należy przetestować:

- Wpływ prawdopodobieństwa mutacji danego parametru na wyniki. Można założyć, że mutacja odbywa się poprzez dodanie losowej perturbacji do wartości chromosomu (współrzędnej) z rozkładu normalnego, tzn. $x^{(t+1)} = x^{(t)} + \mathcal{N}(0, \sigma^2)$ dla wybranej wartości σ ,
- Wpływ prawdopodobieństwa krzyżowania dwóch osobników populacji na wyniki. Można założyć że krzyżywanie dla dwóch osobników $\{\{x_1,y_1\},\{x_2,y_2\}\}$ może wystąpić z jednostajnym prawdopodobieństwem jako $\{\{x_2,y_1\},\{x_1,y_2\}\}\vee\{\{y_2,y_1\},\{x_1,x_2\}\}\dots$ itd.,
- Wpływ rozmiaru populacji na wyniki,
- Wpływ liczby iteracji na wyniki.

Sprawozdanie powinno zawierać:

- Wykres zależności wartości funkcji dopasowania od liczby iteracji, prawdopodobieństwa mutacji, prawdopodobieństwa krzyżywania oraz rozmiaru populacji,
- Tabelę z wynikami dla tych parametrów. Proszę nie przeprowadzać walidacji krzyżowej—można założyć określone wartości parametrów przy badaniu pozostałego, odizolowanego parametru,
- Podsumowanie wyników.
- Kilka wybranych wizualizacji porównujących jak np. w zależności od dobranego
 parametru wygląda populacja końcowa (np. dla prawdopodobieństwa mutacji 0.1,
 0.5, 0.9, zestawione jedna obok drugiej). Proszę nie bać się zmniejszać margines w
 Wordzie/Latexie w celu poprawy czytelności (raporty/publikacje zazwyczaj mają
 małe marginesy),
- Wnioski.

Do pomiaru dokładności algorytmu można użyć miary odległości absolutnej lub błąd średniokwadratowy.

Literatura

[1] Zhengcong Fei, Mingyuan Fan, and Junshi Huang. Gradient-free textual inversion, 2023. URL: https://dl.acm.org/doi/10.1145/3581783.3612599.