

理賠客戶再購與商品推薦

政大風管碩二 陳奕帆 政大風管四 何恬 台大財金所財工組碩一 周永昱 台大資工二 謝宗儒

大綱

01

研究問題 Research question 02

探索性資料分析 EDA 03

資料預處理 Data pre-processing 04

模型訓練 Model Training 05

系統延伸發想 Future System

研究問題 Research Question

題目:理賠客戶再購與商品推薦

利用理賠內容、客戶屬性、再購商品等資料透 過機器學習的方法來判斷未來理賠客戶是否再 購及傾向再購哪類型的商品,以利未來接觸理 賠客戶時能夠精準推薦商品,提高再購機會。

解讀出特徵影響再購的關聯和特性,透過 結合保險知識和實際數據來做出合理的判 斷和解釋,進而做出解釋性高的機器學習 模型。

探索性資料分析

EDA

- A. 理賠檔EDA
- B. 再購檔EDA
- C. 客戶屬性檔EDA

A. 理賠檔EDA

- 共234428筆資料,13個feature
- 滿期金受益人RK有69%的Missing Value,生故保險金受益人RK有75%的Missing Value。此兩者 應不適合做填補,但可用來產生更多feature,如:是否具滿期金受益人、是否具滿期金受益人、 任一受益人是否為被保人...等。
- 理賠案件型態人數極度失衡,可以注意各類的再購率是否有明顯差異。尤其是當被保人死亡或 重病後,是否影響再購行為(此處須注意再購定義,如以被保人-被保人合併,那死亡件100%不 會有再購行為,可能要結合客戶關係檔,如被保人的一等親作為合併條件)
- 有97.96%的案件被保人等於事故人,其餘可能是家庭保單,因此取一位被保人當代表,而代表人並非事故人,因此產生被保人不等於事故人情況,因此理賠再購合併時應注意此種情況,避免漏掉再購。
- 事故人、要保人、被保人之間關係應仔細考慮,可搭配客戶關係檔做更多Feature Engineering。

B. 再購檔EDA

- 共134472筆資料,11個feature
- 再購檔的資料是Dependent Variable,可視所需來產生對應的Y,例如是否再購、再購什麼...等。
- 產品細項欄位有多項只有一筆資料,是否該刪除此類資料?
- 大多數保單生效日在3~6月,是否有什麼經濟意義?

C. 客戶屬性檔EDA

- 共130487筆資料,28個feature
- 變數有呈現客戶屬性之變數如:現有或曾有哪種類型保單,以及人口統計變數如婚姻狀況、年收入等,亦有綜合各項屬性所組成之變數如忠誠度、客戶分群等。有助於產生更多其他特徵。
- 婚姻狀況及年收入有嚴重缺漏植

資料預處理 Data pre-processing

- A. 理賠檔、再購檔、客戶屬性檔合併
- B. 合併檔案分析
- C. Deal with Miss Value
- **D.** Feature Engineering
- E. Deal with Imbalanced Data
- F. Categorical Variable Encoding
- **G.** Feature Scaling

A. 理賠檔、再購檔、客戶屬性檔合併

- 程式碼: stepl_理賠再購屬性合併.ipynb、stepl-2_理賠再購屬性合併.ipynb
- 資料分別由要保人對要保人、被保人對被保人及其親屬的方式進行合併

■再購檔:其實就是你們可以整理成的Y變數的檔案,如果是再購預測模型就是Y=1 OR Y=0;如果是再購產品預測模型Y="期繳"OR Y="躉繳 OR 其它

■理賠檔&屬性檔:就是你們要整理X變數的檔案,其中屬性檔是包括所有的要/被保人/事故人(除了少數在分析日已經流失的客戶)

■再購定義:之前有提過,你們可以用理賠檔的事故人(被保人)對映再購檔的被保人、要保人、受益人,或者其它定義;而再購時間可以取理賠發生後的4個月/6個月/12個月,只要你們提出一個你們覺得適當的看法

■檔案合併: 對於要用要保人或被保人合併,沒有定見,主要還是看你們就再購的定義,如果是要保人出發就用要保人合併,如果是被保人出發就用被保人合併

B. 合併檔案分析

不同理賠案件型態的再購情形

理賠案件型態	筆數	佔比	120內再購	180內再購	360內再購
身故給付	3841	1.64%	7.37%	7.86%	9.19%
完全失能	224	0.10%	7.59%	8.48%	9.82%
部分失能	160	0.07%	17.50%	19.38%	20.63%
重大疾病	6483	2.77%	3.44%	4.52%	7.11%
疾病醫療	132549	56.54%	4.30%	5.76%	9.67%
意外醫療	91171	38.89%	5.27%	7.22%	12.61%
	234428	100%			

B. 合併檔案分析

利用Scheffé法事後比較:

不同理賠案件型態的再購比例是否有顯著差異

- 不同理賠案件型態120天內的再購情形:
 部分失能 > 完全失能 = 身故給付 > 意外醫療 > 疾病醫療 = 重大疾病
- 不同理賠案件型態在180天內的再購情形:
 部分失能 > 完全失能 = 身故給付 = 意外醫療 > 疾病醫療 > 重大疾病
- 不同理賠案件型態在360天內的再購情形:
 部分失能 = 意外醫療 > 完全失能 = 疾病醫療 = 身故給付 > 重大疾病

B. 合併檔案分析

理賠客戶中不同的疾病類別的再購比例及其再購商品之比例

	再購AHa	再購Ahb	再購Ahc	再購Ahd	再購ILP
01.傳染病和寄生蟲病	35.2%	14.3%	36.8%	7.8%	6.0%
02.腫瘤	27.7%	12.1%	34.9%	9.8%	15.5%
03.血液相關及免疫系統的疾患	15.3%	8.7%	47.3%	20.7%	8.0%
04.內分泌營養和代謝疾病	44.4%	7.2%	35.0%	3.9%	9.4%
05.精神和行為疾患	33.0%	18.2%	30.7%	8.0%	10.2%
06.神經系統疾病	38.7%	6.3%	27.0%	10.8%	17.1%
07.眼和附器疾病	24.1%	8.8%	37.4%	14.7%	15.0%
08.耳和乳突疾病	26.5%	15.0%	39.5%	10.2%	8.8%
09.循環系統疾病	23.4%	9.2%	40.9%	13.7%	12.8%
10.呼吸系統疾病	37.0%	14.9%	35.1%	7.8%	5.2%
11.消化系統疾病	27.7%	8.6%	36.6%	12.6%	14.5%
12.皮膚和皮下組織疾病	34.0%	9.8%	41.6%	7.3%	7.3%
13.肌肉骨骼系統和結締組織疾	27.9%	7.5%	41.5%	11.2%	12.0%
14.泌尿生殖系統疾病	31.6%	12.6%	33.5%	12.7%	9.6%
15.妊娠、分娩和產褥期	35.5%	23.7%	33.1%	3.8%	3.9%
17.先天畸形變形和染色體異常	52.4%	9.5%	23.8%	14.3%	0.0%
18.症狀異常所見,不可歸類	28.2%	15.5%	39.5%	8.5%	8.3%
19.損傷中毒和外因的某些其他	19.6%	7.1%	67.9%	3.6%	1.8%
20.疾病和死亡的外因	25.0%	9.5%	43.8%	12.1%	9.6%
21.影響健康狀態與保健機構接	24.9%	12.9%	47.7%	8.4%	6.1%
99.不知道不想猜	25.5%	10.9%	43.3%	10.7%	9.6%

欄位依序為:住院醫療、重疾癌症、意外傷害、長期照顧、投資型

	再購REG	再購SIN
01.傳染病和寄生蟲病	70.9%	29.1%
02.腫瘤	51.9%	48.1%
03.血液相關及免疫系統的疾患	66.3%	33.7%
04.內分泌營養和代謝疾病	78.8%	21.2%
05.精神和行為疾患	45.7%	54.3%
06.神經系統疾病	65.6%	34.4%
07.眼和附器疾病	61.7%	38.3%
08.耳和乳突疾病	73.1%	26.9%
09.循環系統疾病	57.6%	42.4%
10.呼吸系統疾病	69.4%	30.6%
11.消化系統疾病	66.1%	33.9%
12.皮膚和皮下組織疾病	67.9%	32.1%
13.肌肉骨骼系統和結締組織疾	62.7%	37.3%
14.泌尿生殖系統疾病	68.3%	31.7%
15.妊娠、分娩和產褥期	69.9%	30.1%
17.先天畸形變形和染色體異常	72.7%	27.3%
18.症狀異常所見,不可歸類	63.5%	36.5%
19.損傷中毒和外因的某些其他	67.9%	32.1%
20.疾病和死亡的外因	71.8%	28.2%
21.影響健康狀態與保健機構接觸	75.1%	24.9%
99.不知道不想猜	71.9%	28.1%

期繳保單、躉繳保單

C. Deal with Missing Value

- 刪除具Missing Value的Feature刪除,如年收入、婚姻狀況和總資產等。
- 將客戶屬性欄位為空值的列刪除。

BundleSubtype2	illness code	DiagnosisCode_DESC	claim settle dt	REIMBURSED YR 1
DunaleSubtypez	illiless_code	Diagnosiscode_DESC	ciaiiii_settie_ut	KEIMIDOKSED_TK_

46987	2015-03-25	02.腫瘤	C18	5.N疾病醫療	0
7087	2015-08-15	02.腫瘤	C18	5.N疾病醫療	1
30712	2015-08-15	02.腫瘤	C18	5.N疾病醫療	2
7087	2015-08-15	02.腫瘤	C18	5.N疾病醫療	3
7087	2015-08-15	02.腫瘤	C18	5.N疾病醫療	4
1050	2017-10-15	99.不知道不想猜	Y99.8	6.N意外醫療	210784
813	2017-02-19	20.疾病和死亡的外因	V23	6.N意外醫療	210785
1627	2017-08-23	99.不知道不想猜	Y99.8	6.N意外醫療	210786
546	2017-08-11	02.腫瘤	D36	5.N疾病醫療	210787
16825	2017-04-29	09.循環系統疾病	I25.1	4.C重大疾病	210788

整理後匯入資料如右圖→

D. Feature Engineering

```
df['被保人是否為事故人'] = np.where(df['INJURED_RK']==df.index.get_level_values(0), 1, 0)
df['結案月份'] = list(map(lambda x:str(x)[5:7],df['claim_settle_dt']))
df['計數'] = 1
df['累積理賠金額'] = df.groupby('Policy_RK')['REIMBURSED_YR_TW'].transform('cumsum')
df['初次理賠時間'] = df.groupby('Policy_RK')['claim_settle_dt'].transform(min)
df['累積理賠次數'] = df.groupby('Policy_RK')['計數'].transform('cumsum')
df = df.drop(columns=['計數'])
```

df['被保人年收'] = np.where(df['CLIENT INCOME']>=df['CLIENT INCOME'].median(), 1, 0) #好像有直接分幾等份的method

df['被保人總資產'] = np.where(df['TOTAL AUM']>=df['TOTAL AUM'].median(), 1, 0)

df['具滿期金受益人'] = np.where(df['MATURITY_BENEFICIARY_RK'].isna(), 0, 1) df['具生故保險金受益人'] = np.where(df['DEATH_BENEFICIARY_RK'].isna(), 0, 1)

E. Deal with Imbalanced Data

- 問題:在合併後的data set 中positive的比例約占5%
- 處理:採用Over sampling 的 SMOTE ,讓 positive 和 negative 比例大約調整到1:1。
- 回饋: 南山Mentor建議Under sampling 的方式來抽樣,減少特徵在模型裡被放大失真的可能性。

處理資料不平衡

不平衡資料的二元分類 2:利用抽樣改善模型品質

Oversampling: SMOTE for binary and categorical data in Python

```
[11]: cate = [0,1,2,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27] # 這些是類別資料,使用smotenc前要先標出來
```

```
[12]: sm = SMOTENC(categorical_features = cate,random_state=0)

X = X.drop(columns=['claim_settle_dt','INSURED_DOB']) # 找不到處理timestamp的資料,決定删除
X_res, y_res = sm.fit_resample(X, y)
```

```
[13]: df1 = X_res
df1['y'] = y_res
```

[14]: df1.to_excel('理賠再購屬性合併balanced_before_encoding.xlsx')

F. Categorical Variable Encoding

- 問題:模型無法直接處理 Categorical Variable
- 處理:匯入資料後,切割出訓練/測試集,再將文字、類別型的資料透過 target encoding 轉為數值, 且在許多Feature中有太多類,無法使用one-hot-encoding

encoding

```
[16]: ## 要先分訓練設測試,才能target encoding
X_train, X_test, y_train, y_test = train_test_split(X_res, y_res, test_size=0.33, random_state=42)
enc = TargetEncoder(cols=['BundleSubtype2', 'illness_code', 'DiagnosisCode_DESC','WEALTH_LEVEL','stick_level2', 'cust_group2'])
training_numeric_dataset = enc.fit_transform(X_train, y_train)
testing_numeric_dataset = enc.transform(X_test)
```

G. Feature Scaling

- 問題:特徵的range差異太大。
- 處理:採用Min_Max的方法做Feature Scaling。
- 回饋:智星老師說可能會受outlier影響,建議使用Z-score normalization。

min_max

```
[17]: scaler = MinMaxScaler() scaler.fit(training_numeric_dataset[['REIMBURSED_YR_TW', '累積理賠金額', '累積理賠次數', 'ternure_m', 'recency_m','AGE']]) training_numeric_dataset[['REIMBURSED_YR_TW', '累積理賠金額', '累積理賠次數', 'ternure_m', 'recency_m','AGE']] = scaler.transform(training_numeric_dataset[['REIMBURSED_YR_TW', '累積理賠金額', '累積理賠次數', 'ternure_m', 'recency_m','AGE']] = scaler.transform(testing_numeric_dataset[['REIMBURSED_YR_TW', '累積理賠金額', '累積理賠次數', 'ternure_m', 'recency_m','AGE']] = scaler.transform(testing_numeric_dataset[['REIMBURSED_YR_TW', '累積理賠金額', '累積理賠次數', '累積理賠次數', 'Ternure_m', 'Tecency_m', 'AGE']] = scaler.transform(testing_numeric_dataset[['REIMBURSED_YR_TW', '累積理賠金額', '累積理賠次數', 'Tecency_m', 'AGE']] = scaler.transform(testing_numeric_dataset[['REIMBURSED_YR_TW', '累積理賠金額', '累積理賠公額', '累積理賠次數', 'Tecency_m', 'AGE']] = scaler.transform(testing_numeric_dataset[['REIMBURSED_YR_TW', '累積理賠金額', '累積理賠公額', '累積理賠次數', 'Tecency_m', 'AGE']] = scaler.transform(testing_numeric_dataset[['REIMBURSED_YR_TW', '累積理賠金額', '累積理賠公額', '累積理賠公額', 'Tecency_m', 'AGE']] = scaler.transform(testing_numeric_dataset[['REIMBURSED_YR_TW', '累積理賠金額', '累積理賠公額', 'Tecency_m', 'AGE']] = scaler.transform(testing_numeric_dataset[['REIMBURSED_YR_TW', 'Tecency_m', 'Tecency_m', 'Tecency_m',
```


04

模型訓練 Model Training

- A. Baseline
- **B.** DecisionTreeClassifier Training
- C. Result
- D. Visualization

Model Training Research Question EDA Data pre-processing Future System

A. Baseline

- Data:僅做oversampling及target_encoding、未進行特徵工程
- Model: DecisionTree、僅調整max_depth
- 程式碼: step3_Training-baseline.ipynb

stick level20.252 +/- 0.001 recency_m0.231 +/- 0.001 DiagnosisCode DESC0.229 +/- 0.001 illness desc0.222 +/- 0.001 cust group20.220 +/- 0.001 BundleSubtype20.161 +/- 0.001 REIMBURSED_YR_TW0.094 +/- 0.001 WEALTH LEVEL0.058 +/- 0.001 ternure m0.056 +/- 0.001 REG his 0.026 +/- 0.000 GENDER 0.024 +/- 0.000 REG 0.022 +/- 0.000 AHb his 0.016 +/- 0.000 SIN his 0.015 +/- 0.000 DIGI FLG0.011 +/- 0.000 ILP 0.011 +/- 0.000 ILP_his 0.009 +/- 0.000 AHb 0.009 +/- 0.000 0.008 +/- 0.000 AHa 0.008 +/- 0.000 AHd AHc 0.006 +/- 0.000 0.004 +/- 0.000 SIN AHd his 0.003 +/- 0.000 VIP CLASS0.003 +/- 0.000 TOPCARD 0.001 +/- 0.000 AHc his 0.001 +/- 0.000 AHa his 0.000 +/- 0.000 VIP 0.000 +/- 0.000

Model Training Research Question EDA Data pre-processing Future System

B. DecisionTreeClassifier Training

建立Pipeline模型並自動調參數

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
pipeline = Pipeline([('clf',DecisionTreeClassifier())])
```

Ref:管道模型Pipeline《Python機器學習》

原文網址: https://kknews.cc/code/6bnvre3.html 21

B. DecisionTreeClassifier Training

```
## 需要調參數的部位
parameters = {'clf_criterion':('entropy','gini'),
             'clf max depth': (10,20,30,40,50),
             'clf min samples split':(20,100,500),
             'clf__min_samples_leaf':(2,3,4)}
grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=1, scoring='f1')
from sklearn.model selection import cross val score
# grid search.fit(X train, y train)
score = cross_val_score(grid_search, X_train, y_train, cv=5)
score.mean()
0.9207439528125739
grid search.fit(X train, y train)
```


B. DecisionTreeClassifier Training

```
## 回傳設好的參數
best_parameters = grid_search.best_estimator_.get_params()
for param_name in sorted(parameters.keys()):
    print('{}:{}'.format(param_name,best_parameters[param_name]))

clf__criterion:gini
clf__max_depth:30
clf__min_samples_leaf:2
clf__min_samples_split:20
```

C. Result

https://www.libinx.com/2018/understanding-sklearn-classification-report/

```
from sklearn.metrics import classification_report
predictions = grid_search.predict(X_test)
print(classification_report(y_test, predictions))
```

	precision	recall	f1-score	support		р	recision	recall	f1-score	support
0	0.92	0.93	0.93	69432		0	0.85	0.91	0.88	69432
1	0.93	0.92	0.92	68920		1	0.91	0.84	0.87	68920
accuracy			0.92	138352	accurac	у			0.88	138352
macro avg	0.92	0.92	0.92	138352	macro av	/g	0.88	0.88	0.88	138352
weighted avg	0.92	0.92	0.92	138352	weighted av	/g	0.88	0.88	0.88	138352

Our model baseline

C. Result

Research Ouestion

stick_level20.196 +/- 0.001 recency m0.180 +/- 0.001 cust group20.170 +/- 0.001 DiagnosisCode DESC0.116 +/- 0.001 illness_desc0.102 +/- 0.001 BundleSubtype20.093 +/- 0.001 累積理賠金額 0.063 +/- 0.001 REIMBURSED YR TW0.054 +/- 0.000 WEALTH_LEVEL0.047 +/- 0.000 被保人年收 0.036 +/- 0.001 ternure m0.023 +/- 0.000 REG his 0.017 +/- 0.000 累積理賠次數 0.010 +/- 0.000 0.010 +/- 0.000 0.009 +/- 0.000 REG GENDER 0.008 +/- 0.000 DIGI FLG0.008 +/- 0.000 結案月份 0.008 +/- 0.000 被保人總資產 0.008 +/- 0.000 具生故保險金受益人0.007 +/- 0.000 0.007 +/- 0.000 ILP_his 0.006 +/- 0.000 0.006 +/- 0.000 SIN his 0.006 +/- 0.000 具滿期金受益人 0.005 +/- 0.000 0.004 +/- 0.000 AHc 0.004 +/- 0.000 0.004 +/- 0.000 AHb his 0.003 +/- 0.000 VIP CLASS0.002 +/- 0.000 被保人是否為事故人0.002 +/- 0.000 AHc his 0.001 +/- 0.000 AHd his 0.001 +/- 0.000 TOPCARD 0.000 +/- 0.000 0.000 +/- 0.000 AHa his 0.000 +/- 0.000

Our model

stick level20.252 +/- 0.001 recency m0.231 +/- 0.001 DiagnosisCode_DESC0.229 +/- 0.001 illness_desc0.222 +/- 0.001 cust group20.220 +/- 0.001 BundleSubtype20.161 +/- 0.001 REIMBURSED YR TW0.094 +/- 0.001 WEALTH LEVEL0.058 +/- 0.001 ternure_m0.056 +/- 0.001 REG his 0.026 +/- 0.000 GENDER 0.024 +/- 0.000 REG 0.022 +/- 0.000 AHb his 0.016 +/- 0.000 SIN_his 0.015 +/- 0.000 DIGI FLG0.011 +/- 0.000 0.011 +/- 0.000 ILP ILP his 0.009 +/- 0.000 0.009 +/- 0.000 AHb AHa 0.008 +/- 0.000 0.008 +/- 0.000 AHd AHc 0.006 +/- 0.000 SIN 0.004 +/- 0.000 AHd his 0.003 +/- 0.000 VIP_CLASS0.003 +/- 0.000 TOPCARD 0.001 +/- 0.000 AHc his 0.001 +/- 0.000 AHa his 0.000 +/- 0.000 0.000 +/- 0.000 VIP

baseline

D. Visualization

視覺化

```
[17]: from sklearn import tree
      tree.export_graphviz(clf2,out_file="tree.dot",feature_names=X_train.columns,class_names=['neg','pos'])
[18]:
      import pydot
      (graph, ) = pydot.graph_from_dot_file('tree.dot')
      graph.write_png('tree.png')
[19]:
 []: # export_graphviz(clf, out_file="adspy_temp.dot", feature_names=feature_names, class_names=class_names, filled = True, impurity = False)
      from sklearn.tree import export_graphviz
      import graphviz
      with open("tree.dot") as f:
          dot graph = f.read()
      graphviz.Source(dot_graph)
      # Alternate method using pydotplus, if installed.
      import pydotplus
      import os
      os.environ["PATH"] += os.pathsep + 'C:/Program Files (x86)/Graphviz2.38/bin/'
      graph = pydotplus.graphviz.graph_from_dot_data(dot_graph)
      graph.create_png()
```

D. Visualization

系統延伸發想

Future System

A. 延伸發想

A. 延伸發想

若顯示保戶再購可能 高,則建議業務員依 該客戶傾向之商品做 客製化的介紹和推薦

A. 延伸發想

若結果顯示為再購可 能低,則建議業務員 加強提升用戶理賠滿 意度、忠誠度,提高 未來再購機會

附錄 Appendix

- A. 分工
- B. 備註
- C. EDA result

- 周永昱:EDA、資料預處理、機器學習、簡報製作
- 謝宗儒:學習了機器學習相關:KNN、回歸演算法、決策樹、隨機森林、降維 演算法、貝葉斯演算法、編碼方式;保險知識、資料前處理:醫療保險、意外 險、壽險等保單種類跟概況
- 何恬:理賠再購資料合併分析、資料特徵解讀及選擇、新增延伸特徵、特徵類型轉換、簡報製作
- 陳奕帆:客戶屬性變數分析、合併檔資料分析、再購情形事後比較、不同疾病的再購比例分析、尋找可增加特徵

B. 備註

• Github: https://github.com/teemoteemo0318/nanshan

	理賠檔(CLAIN	M_ACC	CT_FIN)欄位說明
	欄位	類型	名稱
1	INJURED_RK	字元	事故人RK
2	Claim_RK	字元	理賠案號
3	Policy_RK	字元	保單號碼
4	BundleSubtype2	字元	理賠案件型態
5	illness_code	字元	疾病代碼
6	illness_desc	字元	疾病名稱
7	DiagnosisCode_DESC	字元	疾病分類名稱
8	claim_settle_dt	日期	理賠結案日期
9	REIMBURSED_YR_TW	數值	理賠金額(歸至該結案年度)
10	INSURED_RK	字元	被保人RK
11	POLICY_HOLDER_RK	字元	要保人RK
12	MATURITY_BENEFICIARY_RK	字元	滿期金受益人RK
13	DEATH_BENEFICIARY_RK	字元	生故保險金受益人RK

1. 欄位說明

:	INJURED_RK	0
	Claim_RK	0
	Policy_RK	0
	BundleSubtype2	0
	illness_code	0
	illness_desc	0
	DiagnosisCode_DESC	0
	claim_settle_dt	0
	REIMBURSED_YR_TW	0
	INSURED_RK	0
	POLICY_HOLDER_RK	0
	MATURITY_BENEFICIARY_RK	162475
	DEATH_BENEFICIARY_RK	175195
	dtype: int64	

2. Missing Value

3. 理賠案件型態人數分配

W18	26959
Y99.8	22910
V23	15598
C50	9080
Y93.7	8174
592.0	
S92.0 S71	 1 1
	_
571	1

事故人被保人要保人重疊情形

```
[15]: # 事故人=被保人 數量 df[(df['INSURED_RK']==df['POLICY_HOLDER_RK']) & (df['INJURED_RK']==df['POLICY_HOLDER_RK'])]['Policy_RK'].count()

[15]: 167860

[16]: # 被保人=要保人 df[(df['INSURED_RK']==df['POLICY_HOLDER_RK'])]['Policy_RK'].count()

[16]: 172115

[17]: # 事故人=要保人 df[(df['INJURED_RK']==df['POLICY_HOLDER_RK'])]['Policy_RK'].count()

[17]: 168112

[18]: # 事故人=被保人 df[(df['INJURED_RK']==df['INSURED_RK'])]['Policy_RK'].count()

[18]: 229636
```

4. 各項疾病人數

5. 事故人、被保人、要保人重複情況

6. 各月份理賠案件數

C. EDA result(再購明細檔)

	再購明細檔(COV_ACCT_FIN)欄位說明							
	欄位	類型	名稱	說明				
1	INSURED_RK	字元	被保人RK					
2	Policy_RK	字元	保單號碼					
3	RRKER_CD	數值	主附約註記	1=主約,0=附約				
4	payment_period	字元	保費繳法					
5	EFFECTIVE_DT	數值	保單生效日					
6	SHORT_NAME	字元	產品細項					
	prod_detail2	字元	產品類型	REG=期繳商品,SIN=躉繳商品,ILP=投資型商品,				
7				AHa=住院手術商品,AHb=重疾癌症,,AHc=意外				
				保障,AHd=長期照顧				
8	POLICY_HOLDER_RK	字元	要保人RK					
9	AFYP_NT	數值	保單保費					
10	MATURITY_BENEFICIARY_RK	字元	滿期金受益人RK					
11	DEATH_BENEFICIARY_RK	字元	生故保險金受益人RK					

1.欄位說明

C. EDA result(再購明細檔)


```
INSURED_RK 0
Policy_RK 0
RIDER_CD 0
payment_period 0
EFFECTIVE_DT 0
SHORT_NAME 0
prod_detail2 0
POLICY_HOLDER_RK 0
AFYP_NT 0
MATURITY_BENEFICIARY_RK 41498
DEATH_BENEFICIARY_RK 30049
```

```
df['RIDER_CD'].value_counts(dropna=False)
# 主約:1 附約:0
```

1 67804

0 66668

Name: RIDER_CD, dtype: int64

2. Missing Value

3.主、附約數量

C. EDA result(再購明細檔)

4. 保費繳法

5.各月份再購案件數

C. EDA result(客戶屬性檔)

分析客戶與公司契約關係時長,一般來說 若戶齡越大且最近生效日距今越小者,屬 於較忠誠之客戶。但單獨看其中一個變數 並無法確定其與忠誠度間的關係,例如戶 齡與最近生效日距今數值同樣大表示此客 戶僅買過一次公司保單。

可用來分析客戶黏著度及忠誠度及判斷未來是否有其他險種需求。

理論上應與客戶年收入、總資產兩變數有 高度相關,但客戶年收入之遺漏值相當多 總資產雖然也有許多遺漏值但相較客戶年 收入還算少大致能夠看出與財富等級高度 相關。

遺漏值非常多

可能單純為客戶使用或接觸公司之方式, 因沒有顯著與VIP或是財富等變數相關