Zadatak: Za rešetkasti nosač sa slike odrediti:

- a) Vertikalno pomjeranje čvora "2′ "
- b) Obrtanje štapa "1-2" (U_2)
- c) Promjenu rastojanja između čvora "1" i "2' "
- d) Promjenu ugla između štapova " U_2 " i " D_2 "

Usled:

- 1) Zadatog opterećenja sa slike
- 2) Temperaturne promene u osama štapova gornjeg pojasa $t^{\circ} = +25^{\circ}\text{C}$
- 3) Pomeranja oslonca "A" u levo za $c_a = 3cm$.

EF = const.

1) Reakcije i sile u štapovima usled zadatog opterećenja

-Redukovane dužine zbog EF=const su iste kao i stvarne dužine nosača $l''=\frac{F_c}{F}d_s=l.$

a) Vertikalno pomjeranje čvora "2′ "

$$EFv = \sum S \cdot \overline{S} \cdot l$$

$$= 10 \cdot 1 \cdot 6 + 10 \cdot 1 \cdot 3 + 30 \cdot 1 \cdot 3 + (-14,14) \cdot (-1,414) \cdot 4,243 + (-44,72) \cdot (-2,236)$$

$$\cdot 6,708 + (-30) \cdot (-1) \cdot 3 + 42,43 \cdot 1,414 \cdot 4,243 + (-30) \cdot (-2) \cdot 3 = 1460,2$$

b) Obrtanje štapa "1-2" (U_2)

$$\begin{split} EF\varphi &= \sum S \cdot \bar{S} \cdot l \\ &= 10 \cdot 0,333 \cdot 6 + 10 \cdot 0,333 \cdot 3 + 30 \cdot 0,333 \cdot 3 + (-14,14) \cdot (-0,471) \cdot 4,243 \\ &+ (-44,72) \cdot (-0,37) \cdot 6,708 + (-30) \cdot (-0,333) \cdot 3 + 42,43 \cdot 0,471 \cdot 4,243 + (-30) \\ &\cdot (-0,5) \cdot 3 = 359,65 \end{split}$$

c) Promjenu rastojanja između čvora "1" i "2' "

d) Promjenu ugla između štapova " U_2 " i " D_2 "

2) Temperaturna promena u osi štapova gornjeg pojasa rešetke

a)
$$v = \sum_{t} \alpha_t t^{\circ} \cdot \bar{S} \cdot l = 25 \cdot 10^{-5} \cdot 1 \cdot 3 = 75 \cdot 10^{-5}$$

b)
$$\varphi = \sum \alpha_t t^{\circ} \cdot \bar{S} \cdot l = 25 \cdot 10^{-5} \cdot 0.333 \cdot 3 = 25 \cdot 10^{-5}$$

c)
$$\Delta l = \sum \alpha_t t^{\circ} \cdot \bar{S} \cdot l = 25 \cdot 10^{-5} \cdot 0,707 \cdot 3 = 53 \cdot 10^{-5}$$

$$d) \ \Delta \varphi = \sum \alpha_t t^{\circ} \cdot \bar{S} \cdot l = 0$$

3) Pomeranje oslonca A u levo za $c_A = 0$, 03m

a)
$$v = -\sum \bar{C}_i c_i = -[1 \cdot (-0.03)] = 0.03m$$

a)
$$v = -\sum \bar{C}_i c_i = -[1 \cdot (-0.03)] = 0.03m$$

b) $\varphi = -\sum \bar{C}_i c_i = -[0.1666 \cdot (-0.03)] = 0.005 \, rad$

c) d) deformacija je nula jer ne postoji reakcija oslonca "A" usled generalisanih sila!

Dijagram pomeranja punih nosača - Statičko kinematička analogija štapa

Pomeranje tačaka analitički primenjujemo samo u jednostavnijim slučajevima, uglavnom za prav štap konstantnog poprečnog preseka koji je opterećen jednostavnim oblicima opterećenja. U ostalim slučajevima pomeranja određujemo grafički ili numerički, pri čemu koristimo analogiju koja postoji između diferencijalnih jednačina za pomeranja tačaka ose štapa sa jedne strane i uslova ravnoteže elemenata jednog pravog fiktivnog štapa s druge strane.

Odnosno, pomeranje v datog štapa usled datih spoljašnjih uticaja su jednaka momentima M^f a uglovi obrtanja poprečnog preseka $\varphi - \varphi_T$ jednaki transverzalnim silama T^f fiktivnog štapa koji je opterećen sa fiktivnim raspodeljenim silama:

$$p^f = \left(\frac{M}{EI} + \alpha_t \frac{\Delta t}{h}\right) \frac{1}{\cos \alpha}$$

i fiktivnim raspodeljenim momentima:

$$m^f = \left(\frac{N}{EF} + \alpha_t t^\circ\right) \cdot tg\alpha + k\frac{T}{FG}$$

Da bi ovaj uslov bio ispunjen potrebno je da **granični uslovi fiktivnog nosača po silama** budu jednaki graničnim uslovima datog štapa po pomeranjima i obrtanjima.

$$M_{ik}^f = v_i, \qquad M_{ki}^f = v_k, \qquad T_{ik}^f = (\varphi - \varphi_T)_i, \qquad T_{ki}^f = (\varphi - \varphi_T)_k$$

Stvarni nosač

Fiktivni nosač

1.	i	$v_i = 0$ $(\varphi - \varphi_T)_i \neq 0$	i	$M_i^f = 0$ $T_i^f \neq 0$
2.	i	$v_i = 0$ $(\varphi - \varphi_T)_i = 0$	i	$M_i^f = 0$ $T_i^f = 0$
3.	i i	$v_i \neq 0$ $(\varphi - \varphi_T)_i \neq 0$	i	$M_i^f \neq 0$ $T_i^f \neq 0$
4.	i	$v_{i,l} = v_{i,d} \neq 0$ $(\varphi - \varphi_T)_{i,l}$ $= (\varphi - \varphi_T)_{i,d} \neq 0$		$M_{i,l}^f = M_{i,d}^f \neq 0$ $T_{i,l}^f = T_{i,d}^f \neq 0$
5.	i	$v_{i,l} = v_{i,d} \neq 0$ $(\varphi - \varphi_T)_{i,l}$ $\neq (\varphi - \varphi_T)_{i,d} \neq 0$	i	$M_{i,l}^f = M_{i,d}^f \neq 0$ $T_{i,l}^f \neq T_{i,d}^f \neq 0$
6.	i	$v_{i,l} = v_{i,d} = 0$ $(\varphi - \varphi_T)_{i,l}$ $= (\varphi - \varphi_T)_{i,d} \neq 0$		$M_{i,l}^f = M_{i,d}^f = 0$ $T_{i,l}^f = T_{i,d}^f \neq 0$
7.	i	$v_{i,l} = v_{i,d} = 0$ $(\varphi - \varphi_T)_{i,l}$ $\neq (\varphi - \varphi_T)_{i,d} \neq 0$	i	$M_{i,l}^f = M_{i,d}^f = 0$ $T_{i,l}^f \neq T_{i,d}^f \neq 0$

Primeri – Određivanje fiktivnog nosača

Fiktivni nosač je nosač čija je osa normalna na pravac traženog pomeranja, opterećen raspodeljenim fiktivnim opterećenjem p^f i m^f i čiji su granični uslovi po silama jednaki graničnim uslovima datog nosača po pomeranjima.

Postoji mogućnost da fiktivni nosač bude kinematički labilan nosač!

