

ল্যাবরেটরির নিরাপদব্যবস্থা Safe use of Laboratory

গুরুত্বপূর্ণ তথ্যাবলি

যে সমস্ত কার্যকরী মূলক যৌগে বিদ্যমান থেকে বিস্ফোরণ ঘটায়:

নাইট্রোস *ো→R-N = 0

জৈব পারঅক্সাইড*→R-O-O-R

*ধাতব অ্যাসিটাইলাইড →R-C≡C-M [M = Metal]

ডায়াজোনিয়াম লবণ*→R-N≡NX

অ্যাজাইড $* \rightarrow R-N=N=N$

*নাইট্রো \rightarrow R-NO₂

ল্যাবরেটরি ব্যবহার বিধি:

- ল্যাব অ্যাপ্রোনে সিনথেটিক কাপড় ব্যবহার নিষিদ্ধ কেন?→দাহ্য পদার্থ বলে।
- কোন ধরনের পদার্থ চোখের বেশি ক্ষতি করে

 →ক্ষারীয়।
- কোন উদ্বায়ী যৌগটি স্বাস্থ্যের জন্য ক্ষতিকর

 →ন্যাপথালিন।
- সায়ানাইড কীভাবে মৃত্যু ঘটায়→অক্সিজেন পরিবহন বন্ধ করে।

গ্লাস সামগ্রি ব্যাবহারের*নিরাপদ কৌশলঃ

- লিবিগ শিতল পরিক্ষাগারে কোন প্রক্রিয়ায় ব্যাবহার করা হয় →পাতন।
- আংশিক পাতনে কোন যন্ত্রাংশ ব্যাবহ্রিত হয়
 →অংশ পাতনে কলাম।
- পাইরেক্স কাচের বিশেষ বৈশিষ্ট্যের জন্য দায়ী কোন উপাদান → B₂ O₃

• পাইরেক্স কাচের সংকেত কী → $Na_2O.CaO.B_2O_3.nSi_2$ |

*ল্যাবরেটরি যন্ত্রপাতি পরিষ্কারকরণ কৌশলঃ

- টেস্টটিউব পরিষ্কারে ডিটারজেন্ট ব্যবহার করার কারণ কী →খর পানিতে কার্যকরী।
- ল্যাবরেটরিতে সাধারণত কোন ধরনের পরিষ্কারক ব্যবহৃত হয় →তরল ডিটারজেন্ট।
- ব্যুরেট রিন্স করতে ব্যবহৃত হয় → ক্রোমিক এসিড।
- ব্যুরেট রিন্স করতে ক্রোমিক এসিড ব্যবহারের কারণ

 →ক্রোমিক এসিডের শক্তিশালী জারন ধর্ম।
- কাচপাত্র বেশি ময়লাযুক্ত ও তৈলাক্ত হলে কী ব্যবহার করা হয় →ধূমায়িতHNO₃ + গাঢ় H₂SO₄ I
- টেস্টটিউবে থাকা K₂SO₄দূর করার জন্য ব্যবহৃত
 হয় → পাতিত পানি।
- অ্যাসিটোন দ্বারা কি পরিস্কার করা হয়→গ্রিজ।
- গ্রিজ পরিস্কারে অ্যালকোহলের কি ব্যবহৃত হয়→
 সোডিয়াম হাইদ্রক্সাইড |
- কাচের যন্ত্রাংশে থাকা গ্রিজ পরিষ্কারে পরিষ্কারক ব্যবহারের ক্রম কোনটি→→প্রোপানোন<লঘু NaOH<পাতিত পানি।
- কাচের যন্ত্রাংশে থাকা তীব্র সালফিউরিক এসিড পরিষ্কার করতে ব্যবহৃত হয়
 →ট্যাপের পানি।

পিপেট ,ব্যুরেট ,মেজারিং সিলিন্ডার ,ব্যালেন্স* ব্যবহারের ক্ষেত্রঃ

- পল বুঙ্গি ব্যালেন্সের সাহায্যে-0.000 1g ওজন পিরমাপ করা সম্ভব।
- প্রিন্স কর্কযুক্ত ব্যুরেট ক্ষারীয় দ্রবণের ক্ষেত্রে ব্যবহৃত
 হয়।
- আয়তনমিতিক ফ্লাস্ককে স্যান্ডার্ড ফ্লাস্ক বলা হয়।
- পল বুঙ্গি ব্যালেন্সের সাহায্যে সর্বনিয় মাপা-→0.1
 mg l

- লেবেলিং স্ক্রু এর কাজ কি→ নিক্তির সমতা বজায় রাখা।
- তুলাদন্ডে থাকা ক্ষুরধারে আকৃতি কিরূপ →
 প্রিজমাকৃতি।
- সর্বনিম্ন কত আয়তনের মেজরিং সিলিন্দার দেখা
 যায় →2ml |
- ব্যুরেট → সরু কাচনল।

* কনিক্যাল ফ্লাস্ক, ব্যুরেট, পিপেট ব্যবহারের কৌশল:

- ওয়াস বোতলের কোনটিকে 120°কোনে বাঁকানো হয় ?→15cm দীর্ঘ কাচনল।
- ব্যুরেটের সরু মুখের জেট প্রাপ্ত কত উপরে স্টপর্ক
 থাকে? → 5-6 cm |
- ব্যুরেটের তরল স্থানান্তর কালে তরলের গতি কোনটি দ্বারা নিয়ন্ত্রণ করা হয়? →স্টপর্ক দ্বারা।

* স্পিরিট ল্যাম্প দ্বারা তাপ দেওয়ার কৌশল:

- বার্নারের মুখে অগ্নি সংযোগ কোন শিখা জ্বলে?
 →নীলাভ I
- বার্নারের তাপ দেওয়ার ক্ষেত্রে কোনটি বেছে নেওয়া
 হয়? →জারণ শিখা।
- প্যাথলজিক্যাল পরীক্ষার ক্ষেত্রে ব্যবহৃত টেস্টটিউবকে কী দ্বারা পরিস্কার করতে হয়?
 →ক্রোমিক এসিড দ্বারা ধৌত করে।

*বিকার, গোলতলি ফ্লাক্স, পোর্সেলিন বাটি বা ওয়াটার:

- গোলতলি ফ্লাস্কে তরল উপাদান নৌয়া হয় কোনটির সাহায়্যে? →িথসল ফানেল।
- নিম্ন তাপের বিক্রিয়ার ক্ষেত্রে কোনটি ব্যবহৃত হয়?
 →কনিক্যাল ফ্লাস্ক ।

- উচ্চতাপের বিক্রিয়ার ক্ষেত্রে কোনটি ব্যবহৃত হয়?

 →গোলতলি ফ্লাস্ক।
- কনিক্যাল ফ্লাক্স ওয়াটার বাধের কোথায় রাখা হয়?
 → 3-5 ইঞ্চি নিচে।
- দীর্ঘ সময় দ্রবন উত্তপ্ত করার জন্য ব্যবহৃত হয় কোনটি? →পোর্সেলিন বাটি।
- স্পিরিট ল্যাম্পের কনটেইনারে মধ্যে কোনটি নেওয়া
 হয়? →মিথিলেটেড স্পিরিট |
- কত সালে বুনসেন বার্নার উদ্ভাবন হয়? →১৮৫৫.
 কোনটি তুকে শোষিত হয়ৢ→আর্সেনিক।
- জারণ শিখা প্রধানত কত মন্ডলে বিভক্ত? →িতন
 মন্ডলে।

*রিয়েজেন্ট বোতলের ব্যবহার কৌশল:

- রিয়েজেন্ট থেকে সৃষ্ট উৎপাদ প্রকৃতিতে কী হিসেবে থাকে? →বর্জ।
- আলোকে সক্রিয় রিয়েজেন্ট রাখা হয় → বাদামি বর্ণের বোতলে।
- সেমিমাইক্রো বোতল সাধারনত আয়তনে

 →30ml-60ml |
- 250 mL হতে 500 mL আয়তনের রিয়েজেন্ট বোতলকে বলে – ম্যাক্রো।
- কাজের ধরন অনুযায়ী বিয়েজেন্টগুলােকে কয় ভাগে বিভক্ত করা যায়? →দুই ভাগে।
- মূল্যবান ও অপেক্ষাকৃত কম স্থিতিশীল
 রিয়েজেন্টগুলোকে কত আয়তনের রিয়েজেন্ট
 বোতলে রাখা হয়?

 30 mL |

রাসায়নিক দ্রব্য সংরক্ষন ও ব্যবহার সতর্কতাঃ*

- ল্যবরেটরি কতটা ব্যবহারের উপযোগী সেটা কয়টি
 বিষয়কে গুরুত্ব দিয়ে মেনে চলা
 প্রয়োজন?→তিনটি।
- বিপজ্জনক রাসায়নিক দ্রব্যের জন্য প্রতিক ব্যাবহার করাকে কি বলে ?→হ্যাজার্ড সিম্বল।

- ল্যবরেটরিতে কোন অ্যানালাইটিক্যাল পদ্ধতি ব্যাবহ্রিত হয় ?—সেমিমাইক্রো।
- উদ্বায়ী ও গন্ধযুক্ত রাসায়নিক উপাদান কেবিনেটের কোথায় রাখা হয় ?→হুডের নীচে।
- পারক্লোরিক এসিডের বোতল কিসের মধ্যে রাখতে
 হয়?→ সিরামিকের ট্রেতে।
- অ্যায়সিটাইলিনফাইমিনিক এসিড ইত্যাদি কার ,
 সম্পর্শ ভয়ানক→মারকারি।
- ইথার অক্সিজেনের সাথে আলোর উপস্থিতিতে কি
 তৈরি হয় ? → পারঅক্সাইড- ।

ব্যাবহ্রিত রাসায়নিক দ্রব্যের নিরাপদ সংরক্ষণ ও* পরিত্যাগঃ

- কনটেইনার ব্যাবস্থাপনায় বর্জ্য রাসায়নিক পদার্থ দ্বারা
 কনটেইনারের অপূর্ণ রাখা উচিত?→10% |
- অব্যাবহ্রিত ও অখোলা রাসায়নিক দ্রব্র্য আলাদা
 কন্টেইনারে কতদিন সংরক্ষণ করতে হয়?→30
 দিন।
- তীব্র ঝুকিপূর্ণ বর্জ্যপদার্থের কনটেইনারের গায়ে কি লেখা থাকবে?→Acutely hazardous
 Wasts.
- হ্যালোজেনমুক্ত ধারণকারী ক্যানকে কী দ্বারা চিহ্নিত করা হয়?→হলুদ টেপ।
- সবুজ টেপ দ্বারা কোন দ্রব্যকে চিহ্নিত করা হয়?→হ্যালোজেন যুক্ত ।
- LiAIH₄কে ধ্বংস করার জন্য কোনটি ব্যবহৃত হয় ?
 →MgSO₄ I
- Na₂SO₄ দ্রবণ ব্যাবহার করা হয় কোনটি ধ্বংস করার জন্য ?→LiAIH₄.

*পরিবেশে রাসায়নিক দ্রব্যের প্রভাবঃ

- নাইট্রেট লবণ শুষ্ক পরীক্ষণের সময় কোন গ্যাস নির্গত হয়? →NO₃.
- NO₂ একটি → বিষাক্ত গ্যাস।

- অজৈব লবণের ধারাবাহিক বিশ্লেষণে ব্যবহৃত হয়

 → H₂S.
- H₂S যেমন দুর্গন্ধ যুক্ত তেমনি →িবষাক্ত।
- পটাসিয়াম হেক্সাসায়ানোফেরেট এর বর্ণ → লাল।
- কোন পদার্থকে উত্তপ্ত করলে কার্বন মনােক্সাইড
 তৈরি হয়? → কয়লা।
- SO₃ও চুনের পানির বিক্রিয়ায় উৎপন্ন পদার্থ দিয়ে
 কী করা হয়? →প্লাস্টার।অব প্যারিস তৈরি করা
 হয়।
- রক্তের pH বৃদ্ধি করে কোনটি? ightarrowNH2OH .

*সেমি মাইক্রো ও অ্যানালাইটিক্যাল পদ্ধতিঃ

- সেমি-মাইক্রো এনালাইসিসে ফিল্টার পেপারের বদলে ব্যবহৃত হয় → 3 imLসেন্ট্রিফিউজ টিউব।
- ল্যাবে HS এর পরিবর্তে কী ব্যবহৃত হয়? →থায়ো

 অ্যাসিটামাইড।
- সেমি-মাইক্রো অ্যানালাইসিসে কত রকমের টেস্টটিউব ব্যবহৃত হয়? → দৃই।
- মাইক্রো অ্যানালাইসিস নিয়ে গবেষণার জন্য নোবেল পান → ফ্রিটজ রিগেল।
- ফ্রিটজ নাগরিক ছিলেন → স্নোভেনিয়ার।
 ক্রোমাটোগ্রাফিতে ব্যবহৃত হয় → মাইক্রো
 অ্যানালাইসিস।
- NMR এর পূর্ণ রূপ হলো→ Nuclear Magnetic Resonance.
- HPLC এর পূর্ণ রূপ → High Performance
 Liquid Chromatography.
- GPC হলো → Gel Permeation Chromatography.

*প্রাথমিক চিকিৎসা ও ফাস্ট এইড বক্স ব্যবহারবিধি:

শরীরের সবচেয়ে স্পর্শকাতর অঙ্গ কোনটি?
 →চোখ।

- মুখে রাসায়নিক গেলে →অতি লঘু HCIদ্রবণ দ্বারা কুলকুচি করা উচিত।
- বেকিং সোডা ব্যবহার করা হয় → শরীরে এসিড পড়লে।
- শরীরে অশ্লীয় পদার্থ পড়লে ব্যবহৃত হয় → লঘু
 সোডিয়াম হাইড্রোজেন কার্বনেট দ্রবণ।
- শরীরে ক্ষার পড়লে কী করতে হবে?→প্রচুর পানি দিয়ে ধুতে হবে।
- শরীরে ক্ষার পড়লে কোন রাসায়নিককের লঘুদ্রবণ ব্যবহার করা হয়? →বোরিক এসিড |
- শরীরের পুড়ে যাওয়া স্থান ঠান্ডা করার জন্য ব্যবহৃত
 হয় →কুলিং জেল।
- দৃষ্টি নির্ভর পরীক্ষণে ব্যবহৃত হয় → পেন লাইট।
- প্রদাহ সৃজন বিরোধী ব্যথানাশকরুপে ব্যবহার হয়
 → ন্যাপরক্সেন।
- পরীক্ষাগারে বমি প্রতিরোধে ব্যবহৃত হয় কোনটি?
 → ইপিকাক সিরাপ।
- এন্টিসেপটিক মলম হিসেবে ব্যবহৃত হয় কোনটি?
 → নিওমাইসিন।
- পোড়ার কারণে সৃষ্ট চর্মরােগে ব্যবহৃত হয় কোনটি? → অ্যালোভেরা পেস্ট।
- CPR-এর পূর্ণ রূপ → Cardio Pulmonary Resuscition.
- SHS এর পূর্ণ রূপ → Student Health Services.

*বিবিধ:

- টেস্ট টিউব তৈরিতে কোন কাচ ব্যবহার করা
 হয়?→ফ্লিন্ট কাচ।
- ল্যাবরেটরীতে কাজ করার সময় চোখে এসিড
 পড়লে 4% NaHCO₃ব্যবহার করা হয় কেন? →
 NaHCO₃এর লঘু দ্রবণ এসিডের ক্রিয়াকে প্রশমিত
 করে।
- চার ডিজিট ব্যালেন্স দিয়ে সর্বনিম্ন কত মি.গ্রা. ভর নেওয়া যায়? → 0.1

- নীল কাচের মধ্যে দিয়ে Na এর শিখা কোন বর্ণ ধারণ করে? → বর্ণহীন।
- ightharpoonup HF এর স্ফুটনাঙ্ক কত? ightharpoonup 19.5°C.
- পঁচা ডিমের ন্যায় গন্ধ কীসের? \rightarrow H₂S.
- $Ca(OH)_2$ এর সাথে অধিক পরিমাণে C_2 যোগ করলে কোনটি উৎপন্ন হবে? → $Ca(HCO_3)_2$.
- দাহ্য পদার্থগুলোর রং কেমন? → লাল।
- কোনটি খুবই বিষাক্ত? \rightarrow SO₂.
- 'MSDS' এর পূর্ণরুপ কোনটি? → Material Safety & Data Sheets.
- কোন ধরনের পদার্থে আগুন লাগলে সহজে
 নিভানো যায় না? →ৈজৈব দ্রাবক।
- সেজরিং সিলিন্ডার কী পরিমাপ করতে ব্যবহার করা হয়? → আয়তন।
- Roaring blue fiameএর তাপমাত্রা কত?
 →700°C.
- কোন এসিড ক্ষতের সৃষ্টি করে? → HF.
- pH মিটার কেন ব্যবহার করা হয়?→pHপরিমাপ করার জন্য।

গুরুত্বপূর্ণতথ্যাবলি*ঃ

পরমাণুরমূলকণিকা (Fundamental Particles):

অতিসূক্ষ্মকণিকাযামূলউপাদানহিসেবেসবপরমাণুতেইউপস্থিতঅ র্থাৎযাদ্বারাপরমাণুগঠিততাদেরকেমূলকণিকাবলে | এটিগ্রপ্রকার |

ক্রমি ক	মূলকণিকারধরন	উদাহরণ
01.	স্থায়ীমূলকণিকা.	(i) ইলেক্ট্রন, (ii) প্রোটন, (iii) নিউট্রন
02	অস্থায়ীমূলকণিকা	(i) পাইওন, (ii) মিউওন, (iii) নিউট্রিনো,(iv) অ্যান্টি- নিউট্রিনো,(v) মেসন, (vi)পজিট্রনপ্রভৃতি
03.	কম্পোজিটকণি কা	(i) ডিউটেরনকণা,(ii)আলফাকণিকা

*পারমাণবিকসংখ্যা (Atomic Number):

কোনো

মৌলেরএকটিপরমাণুরনিউক্লিয়াসেযতসংখ্যকপ্রোটনঅবস্থানক রে, প্রোটনের ঐ সর্বমোট সংখ্যাকে ঐ মৌলের পারমাণবিক সংখ্যা বলে। একে 'Z' দ্বারা প্রকাশ করা হয়। অর্থাৎ Z=p

*পারমাণবিক ভর সংখ্যা (Atomic Mass Number):

কোনো মৌলের পরমাণুতে বর্তমান প্রোটন ও নিউট্রনের সংখ্যার সমষ্টিকে ঐ মৌলের ভর সংখ্যা বলে | একে নিউক্লিয়ন সংখ্যাও বলে | অর্থাৎ A=(p+n) |

*আইসোটোপ (Isotope):

যেসব পরমাণুর প্রোটন সংখ্যা একই কিন্তু ভর সংখ্যা ভিন্ন তাদেরকে | পরস্পরের আইসোটোপ বলে |

*আইসোবার (Isobar):

যেসব পরমাণুর নিউক্লিয়াসের পারমাণবিক সংখ্যা ভিন্ন কিন্তু ভর সংখ্যা অভিন্ন বা একই তাদেরকে পরস্পরের আইসোবার বলে।

*আইসোটোন (Isotone):

যেসব পরমাণুর নিউট্রন সংখ্যা সমান থাকে কিন্তু প্রোটন সংখ্যা ও ভর সংখ্যা উভয়ই ভিন্ন, তাদেরকে পরস্পরের আইসোটোন বলে ।

*আইসোমার (Isomer):

যেসব পরমাণুর নিউক্লিয়াসের পারমাণবিক সংখ্যা ও ভরসংখ্যা পরস্পর সমান | কিন্তু তাদের অভ্যন্তরীণ গঠন ও তেজব্রুিয় ধর্মের মধ্যে বৈসাদৃশ্য রয়েছে | তাদেরকে পরস্পরের আইসোমার বলে | পরমাণুর যেকোনো শক্তিস্তরে বা উপশক্তি স্তরের একটি ইলেকট্রনের অবস্থান | সম্পূর্ণভাবে প্রকাশের জন্য চারটি কোয়ান্টাম সংখ্যার প্রয়োজন |

- 1. প্রধান কোয়ান্টাম সংখ্যা (Principal Quantum Number)
- 2. সহকারী কোয়ান্টাম সংখ্যা (Subsidiary Quantum Number)
- 3. চৌম্বকীয় কোয়ান্টাম সংখ্যা (Magnetic Quantum Number)
- 4. স্পিন কোয়ান্টাম সংখ্যা (Spin Quantum Number)

উপস্তর	/এর	m এরমান	অর	সর্বাধিক	বিন্যস
	মান		বি	ইলেকট্র	
			টা	নসংখ্যা	
			সং		
			খ্যা		
			=2		
			/+		
			1		
S	0	0	1	2 x 1 =	S ₂
				2 টি	
P	1	+1, 0, -1	3	3 x 2 =	p_6
				6 টি	
D	2	+2, +1, 0, -	5	5 x 2 =	d_{10}
		1, - 2		10 টি	
F	3	+3, +2, +1,	7	7 x 2	f ₁₄
		0, 1, 2, -3		=14 🕏	
<u> </u>	L		l		

অরিবিটালসমূহের* মধ্যে কোন কোনটি সম্ভব এবং অসম্ভবঃ

শক্তিস্তর(n)	সম্ভব	অসম্ভব/সম্ভবনয়
১ম	1s	1p, 1d, 1f
২য়	2s, 2p	2d, 2f
৩ য়	3s, 3p, 3d	3f
৪র্থ	4s, 4p, 4d, 4f,	-
৫ম	5s, 5p, 5d, 5f	-
৬ষ্ঠ	6s, 6p, 6d, 6f	-

* আউফবাউ নীতি (Aufbau Principle):

পরমাণুতে বিদ্যমান ইলেকট্রনগুলো প্রথমে নিম্নতম শক্তিস্তরের অরবিটাল পূর্ণ করবে এবং পরে ক্রমান্বয়ে উচ্চতর শক্তিস্তরে অরবিটাল পূর্ণ করতে থাকবে |

*(n + l) এরনিয়মঃ

 $i.\ (n+1)$ এর মান কম মানে শক্তি কম আর বেশি মানে শক্তি বেশি I কমটাতে আগে I প্রবেশ করবে I

4s: n + 1 = 4 + 0 = 4.

4s < 3d

3d: 3 + 2 = 5.

ii. (n+l) এর মান সমান হলে যার n এর মান কম তাতে e আগে যাবে |

যেমন

*হুন্ডেরনীতি (Hunds Principle):

সমশক্তি সম্পন্ন অরবিটালগুলোতে ইলেকট্রনের প্রবেশের সময় যতক্ষণ পর্যন্ত | অরবিটাল খালি থাকবে ততক্ষণ পর্যন্ত ইলেকট্রন গুলো অযুগ্নভাবে অরবিটালে প্রবেশ করবে এবং এ অযুগ্ম ইলেকট্রনগুলোর স্পিন একমুখী হবে |

*পলির বর্জন নীতি (Pauli's Exclusion Principle):

একই পরমাণুতে যেকোনো দুটি ইলেকট্রনের জন্য চারটি কোয়ান্টাম সংখ্যার মান কখনও একই হতে পারে না | অর্থাৎ যদি দৃটি ইলেকট্রনের যেকোনো ;

তিনটি কোয়ান্টাম সংখ্যা একই হয় তবে চতুর্থ কোয়ান্টাম সংখ্যা অবশ্যই ভিন্ন = ইহতে হবে|

*হাইড্রোজেনবর্ণালীতে বিভিন্ন রেখার উৎপত্তি:

 বর্ণালীর বিভিন্ন সিরিজের লাইনসমূহের তরঙ্গদৈর্ঘ্যের সাধারণ সমীকরণ:

$$\frac{1}{\gamma} \, \overline{\mathcal{V}} \, (\text{cm}^{\text{-}1}) \!\!=\!\! R_{\text{H}} \, (\text{cm}^{\text{-}1}) \! \left(\! \frac{1}{n_1^2} - \frac{1}{n_2^2} \! \right)$$

- তরঙ্গদৈর্ঘ্য সবচেয়ে কম কিন্তু বিকিরণ সবচেয়ে
 বেশি→মহাজাগতিক রশ্মির |
- তরঙ্গদৈর্ঘ্য সবচেয়ে বেশি কিন্তু বিকিরণ সবচেয়ে
 কম→রেডিও ও টেলিভিশনের Ⅰ
- তরঙ্গদৈর্ঘ্য সবচেয়ে কম কিন্তু বিকিরণ সবচেয়ে
 বেশি→বেগুনি রঙের |
- তরঙ্গদৈর্ঘ্য সবচেয়ে বেশি কিন্তু বিকিরণ সবচেয়ে
 কম→লাল রঙের |

*পানিতে দ্রবণীয় লবণ:

	লবণ	মন্তব্য	
۵.	কার্বনের ও বাইকার্বোনেট	ক্ষারধাতুর কার্বনেট ও Ca, Mg, Ba এবং Fe এর	
		বাইকার্বনেটগুলো পানিতে দ্রবণীয়	
\(\lambda .	ক্লোরাইড ও ব্রোমাইড	CuC IওCuBr এবং HgCIছাড়া অন্যান্য ক্লোরাইড লবণ পানিতে দ্রবণীয়া	
೨.	সালফেট	Ag,Ca,Ba এবং Pb ধাতু ছাড়া অন্যান্য ধাতুর সালফেট লবণ পানিতে দ্রবণীয়া	
8.	নাইট্রেট	বিভিন্ন ধাতুর নাইট্রেট লবণ পানিতে	
		দ্ৰবণীয়	

পানিতে অদ্রবণীয় লবণ সমূহ: CaCO₃, ZnCO₃, CuCO₃, BaSO₄, PbSO₄, Ag,SO₄ ইত্যাদি |

*জারন শিখার পরিক্ষাঃ

লবণ	পর্যবেক্ষণ শিখার বর্ণ		
	খালি চোখে বৰ্ণ	নীল কাচে বৰ্ণ	
Na লবণ	সোনালী, হলুদ	বৰ্ণহীন	
K লবণ	বেগুনী (violet)	গোলাপি লাল	
		(crimoson)	
Ca লবণ	ইটের ন্যায় লাল	হালকা সবুজ	
	(Brick-red)	(light green)	
Cu লবণ	নীলাভ সবুজ	-	

*MRI ম্যাগনেটিক রেজোনেন্স ইমেজিং (Magnetic Resonance Imaging):

ম্যাগনেটিক রেজোনেন্স ইমেজিং (MRI) বা নিউক্লিয়ার ম্যাগনেটিক রেজোনেন্স ইমেজিং (NMRI) হচ্ছে রেডিওলজিতে ব্যবহৃত একচিত্রায়ণ পদ্ধতি যার মাধ্যমে দেহের

অভ্যন্তরীণ কাঠামোর চিত্রায়ণ করা হয় |

দ্রাব্যতাগুণফল (Solubility product): নির্দিষ্ট তাপমাত্রায় কোনো স্বল্পদ্রবণীয় লবণের সম্পৃক্ত দ্রবণে তার উপাদান আয়নসমূহের ঘনমাত্রার সর্বোচ্চ গুণফলকে লবণটির দ্রাব্যতা গুণফল বলে।

দ্রাব্যতা ও দ্রাব্যতা গুণফলের সম্পর্কঃ মনে কর একটি সাধারণ স্বল্পদ্রাব্য লবণ AxBy পানিতে স্বল্পদ্রবণীয় | $AxBy = xA^{+y} + yB^{-x}$

 $m{:}$ দাব্যতার গুণফল, $\mathbf{K}\mathbf{sp} = [\mathbf{A}^{+\mathbf{y}}]^{*}.[\mathbf{B}^{-\mathbf{x}}]^{\mathbf{y}}$

*পাতন (Distillation):

তাপপ্রয়োগে তরল পদার্থকে বাষ্পে রূপান্তর এবং শেষে শীতল করে পুনরায় একই তরলে রূপান্তর করাকে পাতন বলে | এক্ষেত্রে বাষ্পীভবন ও পরে ঘনীভবন প্রক্রিয়া ঘটে |

*আংশিক পাতন (Fractional Distillation):

যেকানো তরল উপাদানের মিশ্রণ থেকে এক এক করে উপাদানগুলোকে অংশ অংশ করে পৃথক করার পদ্ধতিকে আংশিক পাতন বলা হয়।

*বাষ্প পাতন বা স্টিম পাতন (Steam Distillation):

যেসব কঠিন ও তরল জৈব যৌগ পানিতে অদ্রবণীয়: কিন্তু স্টিমে উদ্বায়ী হয়: যে সব যৌগকে স্টিম প্রবাহের মাধ্যমে পাতিত করার প্রক্রিয়াকে স্টিম পাতন বলে |

*উর্ধবপাতন (Sublimation):

যেসব কঠিন পদার্থের গলনাঙ্কের চেয়ে কম তাপমাত্রায় এদের বাষ্পচাপ বায়ুমণ্ডল চাপের চেয়ে বেশি হয় এবং ঐ বাষ্পকে শীতল করলে কঠিন পদার্থ পাওয়া যায় | এ প্রক্রিয়াকে উর্ধ্বপাতন বলে |

উর্ধ্বপাতিত পদার্থকে উৎক্ষেপ, (Sublimate) বলে। উর্ধ্বপাতিত পদার্থের মধ্যে কপূর, আয়োডিন, ন্যাফথালিন, নিশাদল (NH₄C1) বেনজোয়িক এসিড ইত্যাদি বিশেষভাবে উল্লেখযোগ্য I

* দ্রাবকনিষ্কাশন (Solvent Extraction):

উদ্ভিদের ফুলের পাপড়ি, পাতা, মূল ও বীজের মধ্যে থাকা জৈব যৌগকে জৈবদ্রাবকে শোষণ করে পৃথক করা কে দ্রাবক

নিষ্কাশন বলে I

ক্রোমাটোগ্রাফি* (Chromatography):

উদ্ভিদের রঙিন বস্তুকে একটি স্থির মাধ্যমে শোষণ করে অপর সচল মাধ্যমে বা দ্রবীভূত হওয়ার প্রবণতা বা বন্টন সহগভিত্তিক

প্থক করার প্রক্রিয়াকে ক্রোমাটোগ্রাফি বলা হয় ।

কেলাসের শ্রেণী বিভাগ

কেলাসেরশ্রে গী	অক্ষদূ রত্ব	অক্ষের কৌণি কদূরত্ব	উদাহরণ
1.কিউবিকবা ঘনক বা আইসমেট্রিক	a = b = c	α=β =γ=9 0°	NaCl,ডায়মন্ড, ধাতুসমূহ যেমন, Cu,Ag.
2.টেট্রাগোনা ল	a=b≠ c	α=β =γ=9 0°	শ্বেতটিন(SnO ₂),TiOn Cl _{2.}
3.অর্থোরম্বিক	a≠b ≠c	α=β =γ=9 0°	KNO3, রম্বিকসালফার, BaSO4.
4.মনোক্লিনি ক	a≠b ≠c	α = γ=90 °,β≠ 90°	Na ₂ SO ₄ 10H ₂ O, জিপসাম,মনোক্লিনিক (S ₈), FeSO ₄ .7H ₂ O.
5. ট্রাইক্লিনিক	a≠b ≠c	α≠β ≠γ≠9 0°	K ₂ Cr ₂ O ₇ , H ₃ BO ₃ , CuSO ₄ ,5H ₂ O.
6.রম্বোহেড্রা ল	a = b $= c$	α=β =γ≠9 0°	ক্যালসাইট (CaCO3), NaNO3, বরফ।
7.হেক্সাগোনা ল	a=b≠ c	α=12 0°,β= γ=90 °	গ্রাফাইট, ধাতুসমূহ, কোয়ার্টজ

টেকনিক: ইক উচ্চারণ থাকলে $a \neq b \neq c$

গোনাল উচ্চারণ থাকলে $a=b\neq c$ এবংবাকীগুলো a=b - cনিউক্লিয়ার বিক্রিয়া (Neuclear Reaction)

🖊 ফিশন বিক্রিয়া:

নিউক্লিয়ার ফিশন বিক্রিয়া বলে |

🝁 ফিউশান বিক্রিয়া:

যে নিউক্লিয়ার বিক্রিয়ায় উচ্চশক্তির প্রভাবে দুটি নিউক্লিয়াস যুক্ত হয়ে একটি বৃহদাকার নিউক্লিয়াস গঠন এবং সেই সাথে বিপুল পরিমাণ শক্তি বিস্ফোরণসহ নির্গত হয় তাকে ফিউশান বিক্রিয়া বলে |

চিকিৎসা বিজ্ঞানে আইসটোপের ব্যাবহার

আইসোটোপের সংকেত	আইসোটোপের ব্যাবহার
13 ₅₃ I	টিউমারের অবস্থান ও
	আয়তন এবং থাইরয়েড
	গ্রন্থির বৃদ্ধিজনিত চিকিৎসা ,
	পানির লাইনের ছিদ্র খুজে
	বের করা যায়।
⁴⁴ ₂₂ T i	রক্তস্রোতে মিশ্রিত করে
	শরিরে রক্তের পরিমাণ নির্ণয়।
⁶⁰ ₂₇ Co	ক্যান্সার আক্রান্ত কোষ ধ্বংস
	করে।
35 ₁₅ P	রক্তস্বল্পতা রোগের চিকিৎসা।
P-32 & C-14	DNA ও RNA এর গঠন
	পর্যালোচনা।
U-238	পাথরের বয়স নির্ণয়।
Fe-59 & Fe-55	আয়রন পরিশোধন গবেষণা
	(অস্ত্রে)
Na-24	রক্ত সঞ্চালন গবেষণা।
Tc-99	মস্তিস্কের টিউমারের স্থান
	নির্ধারণ।
Ra-226	ক্যান্সার নির্ধারণ।
Cs-137	মৃত্তিকা বিনষ্ট ও ধ্বংসের
	উৎস নির্ধারণ।
Ni-63	ক্যামেরা ও প্লাজমা
	প্রদর্শনীতে ''লাইট সেন্সর''
	হিসাবে ব্যাবহ্রত হয়৷

কার্বন $-{}^{14}_{6}\mathcal{C}$	পৃথিবীর বয়স নির্ধারণ করা
	হয়।

00

গাণিতিক সমস্যা সমাধানের প্রয়োজনীয় সূত্রাবলী

ক্রমিক	বিষয়	গাণিতিক রুপ/ সম্পর্ক
নং		
01	আলোর গতির	$c = v \times \lambda$
	সমীকরণ	
02	তরঙ্গ সংখ্যার	$\bar{v}=\frac{1}{\lambda}$
	সমীকরণ	χ
03	ডি- ব্রগলির সমীকরণ	$\lambda = \frac{h}{\text{mv}}$
04	প্লাস্কের সমীকরণ	E = hv
05	রিডবার্গের সমীকরণ	$\frac{1}{\lambda} = R_{\rm H} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$
		$R_{\rm H} = 10.97 \times 10^6 \text{m}^{-1}$
06	স্রোডিঞ্জারের তরঙ্গ	$\frac{\delta^2 \psi}{\delta x^2} + \frac{\delta^2 \psi}{\delta y^2}$
	সমীকরণ	
		$+\frac{\delta^2\psi}{\delta z^2}$
		δZ^2
		$+\frac{8\pi^2m}{h^2}(E$
		$-V)\psi = 0$
07	মৌলের একটি	W =
	পরমাণুর গড় ভর	$\left(\frac{aM_1+bM_2+cM_3}{100}\right)a.m$
08	মৌলের প্রকৃত ভর	$W = W \times \frac{1}{12} \times W_{c-12}$
09	বোঁর পরমাণুর মডেল অনুযায়ী	i. $mvr = \frac{nh}{2\pi}$
	બન ુવાલા	ii. $V = \frac{2\pi z e^2}{nh}$
		iii. $r = \frac{n^2 h^2}{4\pi^2 aze^2}$
		iv. $\Delta E =$
		$\frac{2\pi me^2}{h^2} \left[\frac{1}{n_1^2} - \right]$
		$\left[\frac{1}{n_2^2}\right]$
10	আয়নিকরন বিভব	$S = \frac{100 \times m}{M - m}$
11	দ্রাব্যতা	
12	কেলাস উৎপাদনের	$r = \frac{w_2 \times 100}{w_1} \%$

হার	

*মৌলসমূহের পর্যায়ভিত্তিক ধারণাঃ

প র্যা য়	পর্যায় আরম্ভ	পর্যায় শেষ	পর্যায়ের নাম	মৌ লের সং খ্যা	মন্তব্য
1	₁ H	₂ He	অতিসং ক্ষিপ্ত	2	
2	$_3Li$	₁₀ Ne	সংক্ষিপ্ত	8	আদর্শ পর্যায়।
3	₁₁ Na	₁₈ Ar	সংক্ষিপ্ত	8	আদর্শ পর্যায়।
4	₁₉ K	₃₆ Kr	দীর্ঘ পর্যায়।	18	
5	₃₇ Rb	₅₄ Xe	দীর্ঘ পর্যায়।	18	
6	₅₅ Cs	₅₄ Rn	অতিদীর্ঘ পর্যায়।	32	রাক্ষুসে পর্যায়৷
7	₈₇ Fr	₁₁₆ Lv	অসম্পূর্ণ পর্যায়।	28	তেজস্ক্রিয় পর্যায়

*ইলেকট্রন বিন্যাস অনুযায়ী মৌলসমূহের শ্রেণীবিভাগঃ

*d – ব্লক মৌল ও অবস্থান্তর মৌল সম্পর্কিত তথ্যাবলিঃ

s-ব্লক	р-ব্লক	d-ব্লক	f-ব্লক মৌল
মৌল	, মৌল	মৌল	6
s- অরবিটালে	p- অৱবিটালে	d- অরবি	f-অরবিটালে
		টালে	
ns ^{1वा} ns ²	ns ² np ¹⁻⁶	(n- 1)d ¹⁻ 10 ns ¹⁻	(n-2)f ¹⁻ 14(n-1)d ¹⁻ 10ns ²
14	30	40	27
গ্ৰুপ IA,IIA এবং He	IIIA,IVA ,VA,VIA ,VIIAএবং O গ্রুপ He ব্যতীত	উপ শ্রে ণীর এবং গ্রুপ VIII	ল্যান্থানাইড সিরিজএবং অ্যাকটিনাইই
	মৌল s- ভারবিটালে ns ^{1বা} ns ² 14 গ্রুপ- IA,IIA	মৌল s- অরবিটালে p- অরবিটালে ns¹বা ns² ns² np¹-6 14 30 গ্রুপ- IA,IIA এবং He IIIA,IVA ,VA,VIA ,VIIA,এবং O গ্রুপ He	মৌল মৌল s- অরবিটালে p- অরবিটালে d- অরবি আরবি টালে ns¹¹ ns² ns² np¹-6 (n- 1)d¹- 10 ns¹- 2 14 30 40 গ্রুপ- IA,IIA এবং He IIIA,IVA ,VA,VIA সীর এবং O গ্রুপ He উপশ্রেশ গীর এবং গ্রুপ- গ্রুপ- গ্রুপ- উপ্রা

*গ্রুপসমূহের ইলেক্ট্রন বিন্যাস

d-ব্লক মৌল	অবস্থান মৌল
d অরবিটলে ক্রমান্বয়ে	অবস্থান্তর মৌলের d অরবিটাল
ইলেকট্রন প্রবেশ করতে	ইলেক্ট্রন দ্বারা আংশিক পূর্ণ
থাকে।	থাকে।
সাধারণ ইলেক্ট্রন বিন্যাস-	সাধারণ ইলেক্ট্রন বিন্যাস –(n-
$(n-1)d^{1-10}(n-1)^{s1-2}$	1)d ¹⁻⁹ (n-1)s ¹⁻²
প্যারা চুম্বকীয় ধর্ম নেই।	প্যারা চুম্বকীয় ধর্ম বিদ্যমান।

যদি n = পর্যায় সংখ্যা হয় তবে,

IA	ns ¹	IIIB	$(n-1)d^1 ns^2$
IIA	ns ²	IVA	$(n-1)d^1 ns^2$
IIIA	ns ² mp ¹	VB	$(n-1)d^3 ns^2$
IVA	ns ² mp ²	VIB	$(n-1)d^4 ns^2$
VA	ns ² mp ³	VIIB	$(n-1)d^5 ns^2$
VIA	ns ² mp ⁴	VIII	$(n-1)d^6 ns^2$
VIIA	ns ² mp ⁵	VIII	$(n-1)d^7ns^2$
0/VIIA	ns ² mp ⁶	VIII	$(n-1)d^8 ns^2$

	IB	$(n-1)d^{10} ns^2$
	IIB	$(n-1)d^{10} ns^2$

*কতিপয় পরমাণুর ইলেকট্রন বিন্যাস

Al (13)	\rightarrow	$1s^22s^22p^63s^23p^1$
Al ³⁺ (13)	\rightarrow	1s ² 2s ² 2p ⁶
P(15)	\rightarrow	$1s^22s^22p^63s^23p^3$
P ³ -(15)	\rightarrow	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶
S(16)	\rightarrow	$1s^22s^22p^63s^23p^4$
S ² -(16)	\rightarrow	$1s^22s^22p^63s^23p^6$
Cl(17)	\rightarrow	$1s^22s^22p^63s^23p^5$
Cl-(17)	\rightarrow	$1s^22s^22p^63s^23p^6$
K(19)	\rightarrow	$1s^22s^22p^63s^23p^63d^04a^1$
K ⁺ (19)	\rightarrow	$1s^22s^22p^63s^23p^6$
Ca(20)	\rightarrow	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^0 4a^2$
Ca ²⁺ (20)	\rightarrow	1s22s22p63s23p6
I(53)	\rightarrow	$\frac{1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}4f^0s^2}{5p^5}$
I ⁻ (53)	\rightarrow	$\frac{1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}4f^0s^2}{5p^6}$
Sc(21)	\rightarrow	$1s^22s^22p^63s^23p^63d^{10}4s^2$
*Cr(24)	\rightarrow	$1s^22s^22p^63s^23p^63d^{10}4s^2$
*Cr ³⁺ (2	\rightarrow	$1s^22s^22p^63s^23p^63d^{10}4s^2$
4)		
*Fe(26)	\rightarrow	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ 4s ²
*Fe ²⁺ (2	\rightarrow	$1s^22s^22p^63s^23p^63d^6$
6)		
*Fe ³⁺ (2	\rightarrow	$1s^22s^22p^63s^23p^63d^5$
6)		
Cu(29)	\rightarrow	$1s^22s^22p^63s^23p^63d^{10}4s^1$
Cu ²⁺ (29	\rightarrow	$1s^22s^22p^63s^23p^63d^9$

)			0
Zn(30)	\rightarrow	$1s^22s^22p^63s^23p^63d^{10}4s^2$	1
Zn ²⁺ (30)	\rightarrow	$1s^22s^22p^63s^23p^63d^{10}$	

*গলনাঙ্ক ও ফুটনাঙ্ক (Melting and boiling points):

গ্রুপ-IA মৌলগুলোর গলনাঙ্ক, স্ফুটনাঙ্ক ও ঘনত্ব:

মৌল	Li	Na	K	Rb	Cs
গলনাঙ্ক °C	180.5	97.7	63.7	39	28.6
ফুটনাঙ্ক °C	1336	882. 9	757.5	700	670
ঘনত্ব g/mL	0.534	0.97	0.859	1.53	1.90

VIIA শ্রেণির হ্যালোজেন মৌলগুলোর গলনাঙ্ক ও স্ফুটনাংক:

মৌল	F	CI	Br	I
গলনাঙ্গ	-233	-103	-7.2	113.5
°C				
স্ফুটনাঙ্ক	-188	-	58.78	184.35
°C		34.6		

তৃতীয় পর্যায়ের মৌলগুলোর গলনাঙ্ক, ফুটনাঙ্ক, গলন এনথালপি ও ঘনত্ব:

মৌল	N	M	Al	Si	P	S	CI	Ar
	a	g						
গলনা	9	65	66	14	44	11	-	-
ফ্ল °C	8	0	0	10		9	10	189
							3	
স্ফুটনা	8	10	23	23	28	44	34	-
ফ্ব °C	8	90	55	55	0.	6	.6	186
	3				5		1	
গলন	2	9.	10	46	0.	1.		
এনথা	•	0	.7	.5	63	42		

লপি,	6				
AH					
mori					
3.2					
3.2 					

* গ্রুপ IA শ্রেণির মৌলগুলোর পারমাণবিক ব্যাসার্ধ (mg) ও পারমাণবিক আকার:

মৌ	পারমা	ইলেকট্রন	পারমাণবিক	পারমাণবিক
ল	নবিক	বিন্যাস	ব্যাসার্ধ (nm)	আকার
	সংখ্যা			
Li	33	2.1	0.123	
Na	11	2.8.1	0.156	
K	19	2.8.8.1	0.203	
Rb	37	2.8.18.8.1	0.216	
Cs	55	2.8.18.8.8.1	0.235	

*আয়নিক ব্যাসার্ধ (lonic radius):

একই পর্যায়ভুক্ত আয়নগুলোর ব্যাসার্ধের পরিবর্তন:

৩য়	Na ⁺	Mg^{2+}	A1 ³⁺
পর্যায়ভুক্ত			
আয়ন			
ইলেকট্রন	10	10	10
সংখ্যা			
আয়নিক	0.095	0.065	0.050
ব্যাসার্ধ (nm)			
আকার			

*গ্রুপ IA এর আয়নগুলোর ব্যাসার্ধের পরিবর্তন:

শ্রেণি	আয়ন	আয়নের ব্যাসার্ধ	আয়নের আকার
IA	Li ⁺	0.060	
	Na ⁺	0.095	
	K ⁺	0.133	

Rb^+	0.148	
Cs ⁺	0.162	1

* গ্রুপ VIIA এর আয়নগুলোর ব্যাসার্ধের পরিবর্তন:

VIIA	F-	0.136	
	Cl ⁻	C1 ⁻	
	Br ⁻	0.095	
	I-	0.216	

*আয়নিকরণ শক্তি (lonisation energy):

- একই পর্যায়ে বাম থেকে ডানে গেলে আয়নিকরণ শক্তি বৃদ্ধি পায়।
- একই শ্রেণীতে উপর থেকে নিচে আয়নিকরণ শক্তি ব্রাস পায়।
- IA এর মৌলসমূহের আয়নিকরণ শক্তি সবচেয়ে কয়।
- নিষ্ক্রিয় গ্যাসসমূহের আয়নিকরণ শক্তি সবচেয়ে

 বেশি
- বোরনের (B) আয়নিকরণ শক্তি বেরিলিয়াম (Be)
 অপেক্ষা কম।
- অক্সিজেনের আয়নিকরণ শক্তি নাইট্রোজেন অপেক্ষা কম৷ কারণ, নাইট্রোজেনের 'P' অরবিটাল অর্ধপূর্ণ অবস্থায় বিদ্যমান৷

*২য় পর্যায়ের মৌলসমূহের আয়নিকরণ শক্তি:

ঽয়		Li	Be	В	С	N	О	F	N
পর্যা									e
য়ের									
মৌল									
আয়	Е	520	90	8	1	1	1	1	2
নিকর	1		0	0	0	4	3	6	0
ণ				0	8	0	1	8	8
শক্তি					6	3	4	0	0
	Е	729	17	2	2	2	3	3	3
	2	7	57	4	3	8	3	3	9
				2	5	5	8	7	6
				6	2	5	8	5	3

Е	111	14,	3	4	4	5	6	6
3	,81	84	6	7	5 7	2 9	0	1
	0	5	5	1	7	9	4	3
			9	4	6	6	5	0

E, | (KJ mol) E 6 7 [[| ଓ

*ইলেকট্রন আসক্তি (Electron affinity):

অসীম দূরত্ব থেকে একমোল ইলেকট্রনকে কোন মৌলের একমোল বিচ্ছিন্ন গ্যাসীয় পরমাণুতে যোগ করে তাকে একমোল একক আধান বিশিষ্ট ঋণাত্মক আয়নে পরিণত । করতে যে পরিমাণ শক্তি নির্গত হয় তাকে ঐ মৌলের ইলেকট্রন আসক্তি বলে।

- নিঞ্জিয় গ্যাসসমূহের ইলেকট্রন আসক্তির পরিমাণ প্রায় শূন্য।
- হ্যালোজেনের ইলেকট্রন আসক্তির ক্রম হলো
 Cl> F > Br>I

*তড়িৎ ঋণাত্মকতা বা ইলেকট্রোনেগেটিভিটি (Electronegativity):

কোন অণুতে উপস্থিত দুটি পরমাণুর মধ্যে শেয়ারকৃত ইলেকট্রন যুগলকে একটি পরমাণুর নিজের দিকে আকর্ষণ করার ক্ষমতাকে ঐ পরমাণুর বা মৌলের

ইলেকট্রোনেগেটিভিটি বা তড়িৎ ঋণাত্মকতা বলে |

- একই পর্যায়ে বাম থেকে ডান দিকে
 ইলেকট্রোনেগেটিভিটি বাড়তে থাকে |
- একই শ্রেণীতে উপর থেকে নিচের দিকে
 ইলেকট্রোনেগেটিভিটি কমতে থাকে |
- পর্যায় সারণীর সর্ব ডানে এবং উপরে স্থান হওয়ায়
 ফুরিণ সবচেয়ে বেশি তড়িৎ ঋণাত্মক মৌল।
- Fr (ফ্রানসিয়াম) এর তড়িৎ ঋণাত্মকতা সবচেয়ে কম।

* রাসায়নিক বন্ধনের প্রকারভেদ:

01. রাসায়নিক বন্ধন প্রধানত তিন প্রকার:

(i) তড়িৎযোজী বন্ধন, (ii) সমযোজী বন্ধন, (iii) সন্নিবেশ বন্ধন।

- 02. রাসায়নিক বন্ধন গঠন প্রকৃতি অনুসারে চার প্রকার:
- (i) তড়িৎযোজী বন্ধন|
- (i) সমযোজী বন্ধন। (iii) সন্নিবেশ বন্ধন
- (iv) ধাতব বন্ধন
- 03. রাসায়নিক বন্ধন এছাড়াও কয়েক প্রকার:
- (i) তড়িৎযোজী,
- (ii) সমযোজী বন্ধন,
- (iii) সন্নিবেশ বন্ধন
- (iv) ধাতব বন্ধন
- (v) হাইড্রোজেন বন্ধন
- (vi) সিগমা ও পাই বন্ধন
- (vii) সংকর বা হাইব্রিড় বন্ধন।
- * আয়নিক বন্ধন:
- 01. ধাতু ও অধাতুর মধ্যে হবে (ধাতু-ধাতু, অধাতু-অধাতু এর ক্ষেত্রে নয়)
- 02. ইলেকট্রনের স্থানান্তর ঘটে।
- 03. তড়িৎ ঋণাত্মকতার পার্থক্য খুব বেশী হলে এ বন্ধন গঠিত হয়।
- 04. বন্ধন খুব শক্তিশালী হবে।
- * সমযোজী বন্ধন:
- 01. সমযোজী বন্ধনের শর্ত: (i) ইলেকট্রনের শেয়ার ঘটে (ii) তড়িৎ ঋণাত্মকতার পার্থক্য খুব নগণ্য হলে সমযোজী বন্ধন গঠিত হয়।
- * আয়নিক যৌগের সমযোজী বৈশিষ্ট্য:

ফাযানের নীতি:

ছন্দে ছন্দে	বাক্যে বাক্যে
ক্যাটা মিয়া ছোট হলে অ্যানা	01. ক্যাটায়নের আকার যত
মিয়া বড়, অ্যানা ও ক্যাটার।	ক্ষুদ্র হবে
বাড়লে চার্জ d ও f কে ধরো।	02. অ্যানায়ন যত বৃহদাকার
	হবে৷
	03. ক্যাটায়ন ও অ্যানায়নের
	চাৰ্জ যত বেশী হবে।
	04. d ও f অর্বিটালে

ইলেকট্ৰন থাকলে
পোলারায়নের মাত্রা তত বেশী
হবে এবং বন্ধনের সমযোজী
বৈশিষ্ট্য তত অধিক হবে

*সিগমা বন্ধন ও পাই বন্ধন: সিগমা ও পাই বন্ধনের মধ্যে পার্থক্য

সিগমা বন্ধন	পাই বন্ধন
১. সিগমা বন্ধন গঠনে	1. পাই বন্ধন গঠনে
অরবিটালদ্বয় একই সরল	অরবিটালদ্বয় সমান্তরাল
রেখায় থাকে	অবস্থায় থাকে
২. অরবিটাল দ্বারা মুখোমুখি	২. অরবিটালদ্বয়ে আংশিক
সৰ্বোচ্চ অভিলেপন বা	পাৰ্শ্ব অভিলেপন বা
অধিক্রমনে সিগমা বন্ধন	অধিক্রমনে সৃষ্ট T! বন্ধন দুর্বল
	থাকে। দৃঢ় হয়।
৩. সকল একক বন্ধন সিগমা	৩. সিগমা বন্ধন সৃষ্টির পর
বন্ধনের দ্বারা গঠিত ।	সম্ভব হলে একটি ও দুটি পাই
141644 \$141 41001	বন্ধন সৃষ্টির মাধ্যমে দ্বিবন্ধন ও
	ত্ৰিবন্ধন হয়।
৪. সিগমা বন্ধন যুক্ত	৪. পাই বন্ধন সৃষ্টির ফলে
পরমাণুদ্বয় তাদের অক্ষ	পরমাণুদ্বয় অক্ষবরাবর ঘুরতে
বরাবর ঘুরতে পারে	পারে না।
৫. সংকর অরবিটাল ও বিশুদ্ধ	না। ৫. s অরবিটাল ও সংকর
অরবিটাল উভয় ক্ষেত্রে	অরবিটাল দ্বারা অন্য
সিগমা বন্ধন হতে পারে।	অরবিটালে পাই বন্ধন ঘটতে
	পারে
৬. সিগমা বন্ধন তুলনামূলক	৬. পাই বন্ধন তুলনামূলক
কম সক্রিয়।	বেশি সক্ৰিয়।

*এক নজরে সংকরণসমূহ:

সংকরণ	বন্ধন কোণ -	আকৃতি	টেকনিক
Sp ³	109°28'	চতু স্তলকীয়	চারে-চ
Sp ²	120°	সমতলীয়	তিনে-ত্রি

		নিজ্জোক্তি	-	
		<u> বিভুজাকৃতি</u>		d
Sp	180°	সরলরৈখিক	-	_

*জটিল যৌগের নামকরণ: অবস্থান্তর ধাতুর আয়ন:

		,
lon	Systematic name	Common name
Cr ²⁺	ক্রোমিয়াম (II) আয়ন	ক্রোমাস আয়ন
Cr ³⁺	ক্রোমিয়াম (III) আয়ন	ক্রোমিক আয়ন
Fe ²⁺	আয়রন (II) আয়ন।	ফেরাস আয়ন
Fe ³⁺	আয়রন (III) আয়ন	ফেরিক আয়ন
Cu ⁺	কপার (1) আয়ন	কিউপ্রাস আয়ন।
Cu ²⁺	কপার (II) আয়ন	কিউপ্রিক আয়ন