Jacobian Matrices for Imaging Geometry

Benjamin Ochoa

February 21, 2018

This paper lists analytical expressions of Jacobian matrices for several operations and mappings used in imaging geometry.

Notation

The following notation is used throughout this paper.

- Homogeneous coordinates in 2D are represented as 3-vectors and shown as lowercase letters, e.g., $\mathbf{x} = (x, y, w)^{\top}$. Additionally, normalized coordinates include a hat, e.g., $\hat{\mathbf{x}} = (\hat{x}, \hat{y}, \hat{w})^{\top}$.
- Inhomogeneous coordinates in 2D are represented as 2-vectors and shown as lowercase letters with a tilde, e.g., $\tilde{\mathbf{x}} = (\tilde{x}, \tilde{y})^{\top} = (x/w, y/w)^{\top}$, and may also include normalized coordinates, e.g., $\hat{\tilde{\mathbf{x}}} = (\hat{\tilde{x}}, \hat{\tilde{y}})^{\top} = (\hat{x}/\hat{w}, \hat{y}/\hat{w})^{\top}$.
- Homogeneous coordinates in 3D are represented as 4-vectors and shown as uppercase letters, e.g., $\mathbf{X} = (X, Y, Z, T)^{\top}$.
- Inhomogeneous coordinates in 3D are represented as 3-vectors and shown as uppercase letters with a tilde, e.g., $\widetilde{\mathbf{X}} = (\widetilde{X}, \widetilde{Y}, \widetilde{Z})^{\top} = (X/T, Y/T, Z/T)^{\top}$.
- If an upper case letter is used to denote a matrix, then the vector denoted by the corresponding lower case letter is composed of the entries of the matrix by

$$\mathtt{A} \in \mathbb{R}^{m imes n} \Leftrightarrow \mathtt{A} = egin{bmatrix} \mathbf{a}^{1 op} \ \mathbf{a}^{2 op} \ dots \ \mathbf{a}^{m op} \end{bmatrix}, \ \mathbf{a} = egin{bmatrix} \mathbf{a}^1 \ \mathbf{a}^2 \ dots \ \mathbf{a}^m \end{pmatrix} \in \mathbb{R}^{mn}$$

where $\mathbf{a}^{i\top} \in \mathbb{R}^n$ is the *i*th row of A (i.e., $\mathbf{a} = \text{vec}(\mathbf{A}^{\top})$).

1 Sinc function

The sinc function

$$\operatorname{sinc}(x) = \begin{cases} 1 & \text{if } x = 0\\ \frac{\sin(x)}{x} & \text{otherwise} \end{cases}$$
 (1)

The derivative is given by

$$\frac{\mathrm{d}\operatorname{sinc}(x)}{\mathrm{d}x} = \begin{cases} 0 & \text{if } x = 0\\ \frac{\cos(x)}{x} - \frac{\sin(x)}{x^2} & \text{otherwise} \end{cases}$$
 (2)

2 Parameterization of a homogeneous vector

Let the homogeneous vector $\bar{\mathbf{v}} = (a, \mathbf{b}^{\top})^{\top} \in \mathbb{R}^n$, where $\|\bar{\mathbf{v}}\| = 1$ (i.e., $\bar{\mathbf{v}}$ is a unit vector), be parameterized as

$$\mathbf{v} = \frac{2}{\operatorname{sinc}(\cos^{-1}(a))} \mathbf{b} \in \mathbb{R}^{n-1}$$
(3)

then, if $\|\mathbf{v}\| > \pi$, normalized by

$$\mathbf{v} = \left(1 - \frac{2\pi}{\|\mathbf{v}\|} \left\lceil \frac{\|\mathbf{v}\| - \pi}{2\pi} \right\rceil \right) \mathbf{v} \tag{4}$$

The parameterized homogeneous vector \mathbf{v} is deparameterized as the homogeneous vector

$$\bar{\mathbf{v}} = \left(\cos\left(\frac{\|\mathbf{v}\|}{2}\right), \frac{\operatorname{sinc}\left(\frac{\|\mathbf{v}\|}{2}\right)}{2} \mathbf{v}^{\mathsf{T}}\right)^{\mathsf{T}} \in \mathbb{R}^{n}$$
(5)

$$\bar{\mathbf{v}} = (a, \mathbf{b}^{\top})^{\top}$$
, where $a = \cos\left(\frac{\|\mathbf{v}\|}{2}\right)$ and $\mathbf{b} = \frac{\operatorname{sinc}\left(\frac{\|\mathbf{v}\|}{2}\right)}{2}\mathbf{v}$

where $\|\bar{\mathbf{v}}\| = 1$ and a is nonnegative. For the deparameterization,

$$\frac{\partial \bar{\mathbf{v}}}{\partial \mathbf{v}} = \frac{\partial (a, \mathbf{b}^{\top})}{\partial \mathbf{v}} = \begin{bmatrix} \frac{\mathrm{d}a}{\partial \bar{\mathbf{y}}} \\ \frac{\partial \bar{\mathbf{v}}}{\partial \mathbf{v}} \end{bmatrix} \in \mathbb{R}^{n \times (n-1)}$$
 (6)

where

$$\frac{\mathrm{d}a}{\partial \mathbf{v}} = \begin{cases} \mathbf{0}^{\top} & \text{if } ||\mathbf{v}|| = 0\\ -\frac{1}{2}\mathbf{b}^{\top} & \text{otherwise} \end{cases}$$

and

$$\frac{\partial \mathbf{b}}{\partial \mathbf{v}} = \begin{cases} \frac{1}{2} \mathbf{I} & \text{if } ||\mathbf{v}|| = 0\\ \frac{\sin\left(\frac{||\mathbf{v}||}{2}\right)}{2} \mathbf{I} + \frac{1}{4||\mathbf{v}||} \frac{d \operatorname{sinc}\left(\frac{||\mathbf{v}||}{2}\right)}{d \frac{||\mathbf{v}||}{2}} \mathbf{v} \mathbf{v}^{\top} & \text{otherwise} \end{cases}$$

3 Projection of a point under the camera projection matrix

The homogeneous 3D point \mathbf{X} is projected to the homogeneous 2D point \mathbf{x} under the (homogeneous) camera projection matrix \mathbf{P} by

$$\mathbf{x} = P\mathbf{X} \tag{7}$$

Dehomogenizing the 2D point results in the mapping $X \mapsto \tilde{x}$. For this mapping

$$\frac{\partial \tilde{\mathbf{x}}}{\partial \mathbf{p}} = \frac{1}{w} \begin{bmatrix} \mathbf{X}^{\top} & \mathbf{0}^{\top} & -\tilde{x}\mathbf{X}^{\top} \\ \mathbf{0}^{\top} & \mathbf{X}^{\top} & -\tilde{y}\mathbf{X}^{\top} \end{bmatrix}$$
(8)

and

$$\frac{\partial \tilde{\mathbf{x}}}{\partial \mathbf{X}} = \frac{1}{w} \begin{bmatrix} \mathbf{p}^{1\top} - \tilde{x}\mathbf{p}^{3\top} \\ \mathbf{p}^{2\top} - \tilde{y}\mathbf{p}^{3\top} \end{bmatrix}$$
(9)

where $w = \mathbf{p}^{3\top} \mathbf{X}$ and $\mathbf{p}^{i\top}$ is the *i*th row of P.

4 Mapping of a vector under an affine transformation

An affine transformation consists of a linear transformation matrix A and a translation vector \mathbf{t} . The vector \mathbf{v} is transformed to \mathbf{v}' under an affine transformation by

$$\mathbf{v}' = \mathbf{A}\mathbf{v} + \mathbf{t} \tag{10}$$

For this transformation

$$\frac{\partial \mathbf{v}'}{\partial \mathbf{v}} = \mathbf{A} \tag{11}$$

$$\frac{\partial \mathbf{v}'}{\partial \mathbf{a}} = \mathbf{I} \otimes \mathbf{v}^{\mathsf{T}} \tag{12}$$

and

$$\frac{\partial \mathbf{v}'}{\partial \mathbf{t}} = \mathbf{I} \tag{13}$$

5 Vector norm

Given a vector \mathbf{v} , its norm is written as $\|\mathbf{v}\|$. The derivative is given by

$$\frac{\mathrm{d}\|\mathbf{v}\|}{\partial \mathbf{v}} = \frac{1}{\|\mathbf{v}\|} \mathbf{v}^{\top} \tag{14}$$

6 3D Rotation, angle-axis representation

The 3-vector \mathbf{v} is rotated to \mathbf{v}' under the angle-axis representation $\boldsymbol{\omega}$ by

$$\mathbf{v}' = \exp([\boldsymbol{\omega}]_{\times})\mathbf{v} \tag{15}$$

$$\mathbf{v}' = \begin{cases} \mathbf{v} + \boldsymbol{\omega} \times \mathbf{v} & \text{if } \theta \text{ is } 0 \text{ or nearly } 0 \\ \mathbf{v} + \operatorname{sinc}(\theta) \boldsymbol{\omega} \times \mathbf{v} + \frac{1 - \cos(\theta)}{\theta^2} \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{v}) & \text{otherwise} \end{cases}$$
(16)

where $\theta = \|\boldsymbol{\omega}\|$. For this rotation

$$\frac{\partial \mathbf{v}'}{\partial \boldsymbol{\omega}} = \begin{cases}
[-\mathbf{v}]_{\times} & \text{if } \theta \text{ is 0 or nearly 0} \\
\operatorname{sinc}(\theta)[-\mathbf{v}]_{\times} + \boldsymbol{\omega} \times \mathbf{v} \frac{\operatorname{d} \operatorname{sinc}(\theta)}{\operatorname{d} \theta} \frac{\operatorname{d} \theta}{\partial \boldsymbol{\omega}} \\
+ \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{v}) \frac{\operatorname{d} s}{\operatorname{d} \theta} \frac{\operatorname{d} \theta}{\partial \boldsymbol{\omega}} + s([\boldsymbol{\omega}]_{\times}[-\mathbf{v}]_{\times} + [-(\boldsymbol{\omega} \times \mathbf{v})]_{\times})
\end{cases}$$
otherwise

where

$$s = \frac{1 - \cos(\theta)}{\theta^2} \text{ and } \frac{\mathrm{d}s}{\mathrm{d}\theta} = \frac{\theta \sin(\theta) - 2(1 - \cos(\theta))}{\theta^3}$$
$$\frac{\partial \mathbf{v}'}{\partial \mathbf{v}} = \exp([\boldsymbol{\omega}]_{\times}) \tag{18}$$

and

7 Projection of a point under the normalized camera projection matrix

The inhomogeneous 3D point $\tilde{\mathbf{X}}$ is projected to the homogeneous 2D point in normalized coordinates $\tilde{\mathbf{x}}$ under the normalized camera projection matrix $\hat{\mathbf{P}} = [\exp([\boldsymbol{\omega}]_{\times}) \, | \, \mathbf{t}] = [\mathbf{R} \, | \, \mathbf{t}],$ where $\mathbf{R} = \exp([\boldsymbol{\omega}]_{\times})$, by

$$\hat{\mathbf{x}} = \left[\exp([\boldsymbol{\omega}]_{\times}) \mid \mathbf{t}\right] \begin{bmatrix} \tilde{\mathbf{X}} \\ 1 \end{bmatrix}$$
 (19)

$$\hat{\mathbf{x}} = \exp([\boldsymbol{\omega}]_{\times})\tilde{\mathbf{X}} + \mathbf{t} \tag{20}$$

$$\hat{\mathbf{x}} = \tilde{\mathbf{X}}_{\text{rotated}} + \mathbf{t} \tag{21}$$

where $\tilde{\mathbf{X}}_{\text{rotated}} = \exp([\boldsymbol{\omega}]_{\times})\tilde{\mathbf{X}} = \mathbb{R}\tilde{\mathbf{X}}$. Dehomogenizing the 2D point results in the mapping $\tilde{\mathbf{X}} \mapsto \hat{\tilde{\mathbf{x}}}$. For this mapping

$$\frac{\partial \hat{\tilde{\mathbf{x}}}}{\partial \boldsymbol{\omega}} = \frac{\partial \hat{\tilde{\mathbf{x}}}}{\partial \tilde{\mathbf{X}}_{\text{rotated}}} \frac{\partial \tilde{\mathbf{X}}_{\text{rotated}}}{\partial \boldsymbol{\omega}}$$
(22)

$$\frac{\partial \hat{\tilde{\mathbf{x}}}}{\partial \mathbf{X}} = \frac{\partial \hat{\tilde{\mathbf{x}}}}{\partial \tilde{\mathbf{X}}_{\text{rotated}}} \frac{\partial \tilde{\mathbf{X}}_{\text{rotated}}}{\partial \tilde{\mathbf{X}}}$$
(23)

where

$$\frac{\partial \hat{\tilde{\mathbf{x}}}}{\partial \tilde{\mathbf{X}}_{\mathrm{rotated}}} = \begin{bmatrix} 1/\hat{w} & 0 & -\hat{\tilde{x}}/\hat{w} \\ 0 & 1/\hat{w} & -\hat{\tilde{y}}/\hat{w} \end{bmatrix}$$

where $\hat{w} = \tilde{Z}_{\text{rotated}} + t_3$, $\frac{\partial \tilde{\mathbf{X}}_{\text{rotated}}}{\partial \boldsymbol{\omega}}$ is calculated using (17), and $\frac{\partial \tilde{\mathbf{X}}_{\text{rotated}}}{\partial \tilde{\mathbf{X}}} = \exp([\boldsymbol{\omega}]_{\times}) = \mathbb{R}$, and

$$\frac{\partial \hat{\tilde{\mathbf{x}}}}{\partial \mathbf{t}} = \begin{bmatrix} 1/\hat{w} & 0 & -\hat{\tilde{x}}/\hat{w} \\ 0 & 1/\hat{w} & -\hat{\tilde{y}}/\hat{w} \end{bmatrix}$$
(24)

where $\hat{w} = \mathbf{r}^{3\top} \tilde{\mathbf{X}} + t_3$.

8 Mapping of a point under a 2D projective transformation

The homogeneous 2D point \mathbf{x} is mapped to the homogeneous 2D point \mathbf{x}' under the (homogeneous) 2D projective transformation matrix \mathbf{H} by

$$\mathbf{x}' = \mathbf{H}\mathbf{x} \tag{25}$$

Dehomogenizing \mathbf{x}' results in the mapping $\mathbf{x} \mapsto \tilde{\mathbf{x}}'.$ For this mapping

$$\frac{\partial \tilde{\mathbf{x}}'}{\partial \mathbf{h}} = \frac{1}{w'} \begin{bmatrix} \mathbf{x}^{\top} & \mathbf{0}^{\top} & -\tilde{x}'\mathbf{x}^{\top} \\ \mathbf{0}^{\top} & \mathbf{x}^{\top} & -\tilde{y}'\mathbf{x}^{\top} \end{bmatrix}$$
(26)

and

$$\frac{\partial \tilde{\mathbf{x}}'}{\partial \mathbf{x}} = \frac{1}{w'} \begin{bmatrix} \mathbf{h}^{1\top} - \tilde{x}' \mathbf{h}^{3\top} \\ \mathbf{h}^{2\top} - \tilde{y}' \mathbf{h}^{3\top} \end{bmatrix}$$
(27)

where $w' = \mathbf{h}^{3\top} \mathbf{x}$ and $\mathbf{h}^{i\top}$ is the *i*th row of H.