FIESC SENAI A FORÇA DA INDÚSTRIA CATARINENSE

Banco de Dados

06 - Normalização de Banco de Dados

Prof. André Ulisses andre.ulisses@edu.sc.senai.br

DQL: Linguagem de Consulta de Dados – Principais comandos.

Select – Consultando dados

- Simples
- Junções Internas
 - INNER JOIN
- Junções Externas
 - LEFT OUTER JOIN
 - RIGHT OUTER JOIN
 - FULL OUTER JOIN

- Junções Cruzadas
 - CROSS JOIN
- Junções Naturais
 - NATURAL JOIN
- Auto Junção

Consultas Joins

Nos Bancos de Dados relacionais a relação entre tabelas é o ponto fundamental da sua existência. Por isso muitas informações são acessadas através de junções entre tabelas.

Os relacionamentos são organizados através das chaves estrangeiras (FK).

Atenção: Tem-se sempre a preferencia ao juntar duas tabelas à partir dos campos utilizados na foreing key existente entre as tabelas.

Junções

As Junções propriamente ditas já se caracterizam por trazerem somente as informações verdadeiras. Tendo como ponto fundamental para isso a condição de junção, que é a condição na cláusula WHERE ou na cláusula ON, que representa efetivamente a junção entre as duas tabelas. Esta condição de junção é sempre baseada em chaves estrangeiras.

B

SQL JOINS

SELECT <select_list>
FROM TableA A
LEFT JOIN TableB B
ON A.Key = B.Key

SELECT <select_list>
FROM TableA A

LEFT JOIN TableB B

WHERE B.Key IS NULL

ON A.Key = B.Key

SELECT <select_list>
FROM TableA A
INNER JOIN TableB B
ON A.Key = B.Key

A

SELECT <select_list> FROM TableA A RIGHT JOIN TableB B ON A.Key = B.Key WHERE A.Key IS NULL

SELECT <select_list>
FROM TableA A
FULL OUTER JOIN TableB B
ON A.Key = B.Key

SELECT <select_list>
FROM TableA A
FULL OUTER JOIN TableB B
ON A.Key = B.Key
WHERE A.Key IS NULL
OR B.Key IS NULL

@CI Moffett 2009

B

Consultas Joins

Quando precisamos acessar as informações entre duas tabelas, o SQL nos fornece uma recurso para acesso simultâneo a tabelas que encontram-se relacionadas. Esse recurso é identificado como junção (Join) ou produto cartesiano.

Uma junção de tabelas cria uma pseudo-tabela derivada de duas ou mais tabelas de acordo com as regras especificadas, e que são parecidas com as regras da teoria dos conjuntos

Atenção: Tem-se preferencia ao juntar duas tabelas à partir dos campos utilizados na **foreing key** existente entre as tabelas.

SQL - CONSULTA DE DADOS FIESCESENAI

- SQL - CONSULTA DE DADOS FIESC SENAI


```
CREATE TABLE DEPARTAMENTO (
      IDDEPARTAMENTO INT NOT NULL PRIMARY KEY,
      NOME VARCHAR (100)
);
CREATE TABLE FUNCIONARIO (
      IDFUNCIONARIO INT NOT NULL PRIMARY KEY,
       IDDEPARTAMENTO INT NOT NULL,
      NOME VARCHAR (100),
       FOREIGN KEY (IDDEPARTAMENTO)
             REFERENCES DEPARTAMENTO (IDDEPARTAMENTO)
);
```

SQL - CONSULTA DE DADOS FIESCESENAI

Consultas Joins

Exemplo:

Tabela **Departamento**

IDDEPARTAMENTO	NOME
1	Administração
2	Marketing
3	Financeiro
4	Cobrança
5	Logística
6	manutenção

Tabela Funcionário

IDFUNCIONARIO	NOME	IDDEPARTAMENTO
1	João	1
2	Maria	2
3	Marcia	2
4	Ana	3
5	Lucas	3
6	Antonio	5
7	Karina	
8	Carlos	

Inner Join

As junções INNER JOIN se caracterizam por uma seleção que retorna apenas os dados que atendem a condição de junção

Inner Join

As junções INNER JOIN se caracterizam por uma seleção que retorna apenas os dados que atendem a **condição de junção**

$$A = \{2, 4, 6\}$$

 $B = \{4, 6, 8\}$

$$A*B = \{ (2,4), (2,6), (2,8), (4,4), (4,6), (4,8), (6,4), (6,6), (6,8) \}$$

A INNER JOIN B =
$$\{ (4,4), (6,6) \}$$

SQL - CONSULTA DE DADOS FIESCESENAI

Inner Joins

Exemplo:

Tabela **Departamento**

Iddepartamento	nome
1	Administração
2	Marketing
3	Financeiro
4	Cobrança
5	Logística
6	manutenção

Tabela Funcionário

Idfuncionario	Nome	iddepartamento
1	João	1
2	Maria	2
3	Marcia	2
4	Ana	3
5	Lucas	3
6	Antonio	5
7	Karina	
8	Carlos	

Consultas Joins – Inner Join

SELECT

DEPARTAMETO. IDDEPARTAMENTO

- , DEPARTAMENTO.NOME
- . FUNCIONARIO.IDFUNCIONARIO
- , FUNCIONARIO.NOME

FROM

DEPARTAMENTO

INNER JOIN FUNCIONARIO ON

DEPARTAMENTO.IDDEPARTAMENTO = FUNCIONARIO.IDDEPARTAMENTO;

Iddepartamento	Nome	Idfuncionario	nome
1	Administração	1	João
2	Marketing	2	Maria
2	Marketing	3	Marcia
3	Financeiro	4	Ana
3	Financeiro	5	Lucas
5	Logística	6	Antonio


```
CREATE TABLE DEPARTAMENTO (
  IDDEPARTAMENTO INT NOT NULL PRIMARY KEY,
  NOME VARCHAR (100)
);
CREATE TABLE FUNCIONARIO (
  IDFUNCIONARIO INT NOT NULL PRIMARY KEY.
  IDDEPARTAMENTO INT NOT NULL,
  NOME VARCHAR (100).
  FOREIGN KEY (IDDEPARTAMENTO) REFERENCES DEPARTAMENTO (IDDEPARTAMENTO)
);
SELECT
  DEPARTAMETO. IDDEPARTAMENTO
  . DEPARTAMENTO NOME
  , FUNCIONARIO.IDFUNCIONARIO
  . FUNCIONARIO.NOME
FROM
  DEPARTAMENTO
  INNER JOIN FUNCIONARIO ON
  DEPARTAMENTO.IDDEPARTAMENTO = FUNCIONARIO.IDDEPARTAMENTO
```


Left Join

As junções externas LEFT JOIN se caracterizam por uma seleção que retorna todos os dados da tabela da ESQUERDA (left) e apenas os dados que atendem a **condição de junção** da tabela da DIREITA.

SELECT < select_list>
FROM TableA A
LEFT JOIN TableB B
ON A.Key = B.Key

Left Join

As junções externas LEFT OUTER JOIN se caracterizam por uma seleção que retorna todos os dados da tabela da ESQUERDA (left) e apenas os dados que atendem a condição de junção da tabela da DIREITA.

$$A = \{2, 4, 6\}$$

 $B = \{4, 6, 8\}$

$$A*B = \{ (2,4), (2,6), (2,8), (4,4), (4,6), (4,8), (6,4), (6,6), (6,8) \}$$

A LEFT OUTER JOIN $B = \{ (2, null), (4,4), (6,6) \}$

Left Joins

Exemplo:

Tabela **Departamento**

Iddepartamento	nome
1	Administração
2	Marketing
3	Financeiro
4	Cobrança
5	Logística
6	manutenção

Tabela Funcionário

Idfuncionario	Nome	iddepartamento
1	João	1
2	Maria	2
3	Marcia	2
4	Ana	3
5	Lucas	3
6	Antonio	5
7	Karina	
8	Carlos	

Consultas Joins – Left Join

SELECT DEPARTAMENTO.IDDEPARTAMENTO, DEPARTAMENTO.NOME
, FUNCIONARIO.IDFUNCIONARIO, FUNCIONARIO.NOME
FROM <u>DEPARTAMENTO LEFT JOIN</u> FUNCIONARIO ON
DEPARTAMENTO.IDDEPARTAMENTO = FUNCIONARIO.IDDEPARTAMENTO;

Iddepartamento	Nome	Idfuncionario	nome
1	Administração	1	João
2	Marketing	2	Maria
2	Marketing	3	Marcia
3	Financeiro	4	Ana
3	Financeiro	5	Lucas
4	Cobrança		
5	Logística	6	Antonio
6	Manutenção		


```
CREATE TABLE DEPARTAMENTO (
  IDDEPARTAMENTO INT NOT NULL PRIMARY KEY,
  NOME VARCHAR (100)
);
CREATE TABLE FUNCIONARIO (
  IDFUNCIONARIO INT NOT NULL PRIMARY KEY.
  IDDEPARTAMENTO INT NOT NULL,
  NOME VARCHAR (100).
  FOREIGN KEY (IDDEPARTAMENTO) REFERENCES DEPARTAMENTO (IDDEPARTAMENTO)
);
SELECT
  DEPARTAMETO. IDDEPARTAMENTO
  . DEPARTAMENTO NOME
  , FUNCIONARIO. IDFUNCIONARIO
  . FUNCIONARIO.NOME
FROM
  DEPARTAMENTO
  LEFT JOIN FUNCIONARIO ON
  DEPARTAMENTO.IDDEPARTAMENTO = FUNCIONARIO.IDDEPARTAMENTO
```


Right Join

As junções externas RIGHT OUTER JOIN se caracterizam por uma seleção que retorna todos os dados da tabela da DIREITA (right) e apenas os dados que atendem a **condição de junção** da tabela da ESQUERDA.

Right Join

As junções externas RIGHT JOIN se caracterizam por uma seleção que retorna todos os dados da tabela da DIREITA (right) e apenas os dados que atendem a **condição de junção** da tabela da ESQUERDA.

$$A = \{2, 4, 6\}$$

 $B = \{4, 6, 8\}$

$$A*B = \{ (2,4), (2,6), (2,8), (4,4), (4,6), (4,8), (6,4), (6,6), (6,8) \}$$

A RIGHT OUTER JOIN B = $\{ (4,4), (6,6), (null,8) \}$

Right Joins

Exemplo:

Tabela **Departamento**

Iddepartamento	nome
1	Administração
2	Marketing
3	Financeiro
4	Cobrança
5	Logística
6	manutenção

Tabela Funcionário

Idfuncionario	Nome	iddepartamento
1	João	1
2	Maria	2
3	Marcia	2
4	Ana	3
5	Lucas	3
6	Antonio	5
7	Karina	
8	Carlos	

Consultas Joins – Right Join

SELECT DEPARTAMENTO.IDDEPARTAMENTO, DEPARTAMENTO.NOME, FUNCIONARIO.IDFUNCIONARIO, FUNCIONARIO.NOME FROM <u>DEPARTAMENTO RIGHT JOIN FUNCIONARIO</u> ON DEPARTAMENTO.IDDEPARTAMENTO = FUNCIONARIO.IDDEPARTAMENTO;

Iddepartamento	Nome	Idfuncionario	nome
1	Administração	1	João
2	Marketing	2	Maria
2	Marketing	3	Marcia
3	Financeiro	4	Ana
3	Financeiro	5	Lucas
4	Logística	6	Antonio
		7	Karina
		8	Carlos


```
CREATE TABLE DEPARTAMENTO (
  IDDEPARTAMENTO INT NOT NULL PRIMARY KEY,
  NOME VARCHAR (100)
);
CREATE TABLE FUNCIONARIO (
  IDFUNCIONARIO INT NOT NULL PRIMARY KEY.
  IDDEPARTAMENTO INT NOT NULL,
  NOME VARCHAR (100).
  FOREIGN KEY (IDDEPARTAMENTO) REFERENCES DEPARTAMENTO (IDDEPARTAMENTO)
);
SELECT
  DEPARTAMETO. IDDEPARTAMENTO
  . DEPARTAMENTO NOME
  , FUNCIONARIO.IDFUNCIONARIO
  . FUNCIONARIO.NOME
FROM
  DEPARTAMENTO
  RIGHT JOIN FUNCIONARIO ON
  DEPARTAMENTO.IDDEPARTAMENTO = FUNCIONARIO.IDDEPARTAMENTO
```