Final Oral Presentation

M1-Economics (international track), Group 13 Fabiani Léo, Pons Alexandre, Coicaud Swann

January 13, 2025

Context & Motivation

Economic Question

What is the impact of pollution policies on firms' Total Factor Productivity (TFP) in China?

Context

- Rapid industrialization in China led to severe pollution
- Stricter environmental policies introduced in recent years
- Firms must balance compliance costs with productivity

Context & Motivation

Economic Question

What is the impact of pollution policies on firms' Total Factor Productivity (TFP) in China?

Motivation

- Pollution from firms: a major environmental, health and economic issue
- ▶ It is possible to keep a sustainable growth with severe measures against pollution ?
- Leads to a trade-off

Literature Review and Contribution

- Muller and Mendelsohn (2009): Efficient pollution regulations aligning costs and damages improved overall welfare and economic efficiency
- Alpay, Kerkvliet, and Buccola (2002): Environmental regulations in food manufacturing positively affected productivity by fostering innovation (Porter Hypothesis)
- ► Leiter, Parolini, and Winner (2011): Stricter environmental regulations led to **increased investments** in cleaner technologies, indirectly **enhancing productivity**
- How does this study contribute ?

Literature Review and Contribution

How does this study contribute?

- ► Regional Differences in China: Analyze how variations in environmental regulation across regions affect TFP
- Industry-Specific approach: Study the overall impact of environmental policies, controlling for industry
- Causal Evidence with DID: Use the difference-in-differences (DID) method to measure the causal effect of regulation on TFP, comparing regions with different levels of regulatory stringency over time

Literature Review and Contribution

China's Unique Context

- Focus on China as a rapidly growing economy balancing industrial growth with environmental goals, offering lessons for other developing countries
- ► The study will be based on policies on atmospheric pollution applied in 2017, such as Hebei Air pollution prevention and control program, aiming to restrain PM2.5 emissions
- ► Hebei pollution program: Non complying firms were sanctionned or shutted down, financial incentives applied...

Dataset Description

The database was found in the study "How air pollution affects corporate total factor productivity?" by Jialiang Yang and Wen Yin

► Data Source mainly derived from:

- The Guotaian CSMAR database
- Macroeconomic data from the China Urban Statistical Yearbook
- Patent data from the State Intellectual Property Office on the technical complexity of cities

▶ Nature of Data: Panel Data (2015-2019)

Dataset Description

Collection Method: Data collected from financial reports of firms and government-published AQI reports

Sample

An observation corresponds to a company listed on the Shanghai and Shenzhen stock exchanges (A-shares) for a given year

- **Before selection:** 13 738 observations and 29 variables (2015-2019)
- **After selection:** 875 observations and 26 variables (2015-2019)
- Variables added by ourselves: "Administrative division", "Treated", "Post" and "ATT"

Main variables Description

- ➤ **Treated:** equal to 1 if the firm is located in **Hebei, Beijing** or **Tianjing**, 0 otherwise (508 control observations, 367 treated observations)
- ▶ Post: equal to 1 after 2017 (introduction of the policy) and 0 for 2015-2016
- Dependent variable: TFP
 - **TFP** determined by the Levinsohn & Petrin (LP) method, it is an **index**
 - In the econometric models of the study, TFP is log transformed

Variables Description

Main variables of interest

- Number of Employees (NumbEmp) → In individuals
- Investment in R&D by listed companies (CRD) → Annual R&D expenses in Chinese yuan (CNY)
- Gross Domestic Product (GDP) → The GDP of the listed company's local city in thousands of Chinese yuan (K CNY)
- Government Concerns (GS) → Total annual government subsidies for listed companies in Chinese yuan (CNY)
- Average treatment effect on treated (ATT) \to 1 if the firm is treated and the year is strictly after 2016, 0 otherwise
- Free Cash Flow (FCF) → Cash flow from operating activities divided by balance sheet total at the end of the financial year

Propensity Score Estimation and Firm Matching

- ▶ **Objective:** Estimate the probability of receiving the treatment (policy) using logit regression
- ► Explanatory variables: Firm characteristics (before policy) such as TFP, R&D expenses, AQI, Size in assets, Free Cash Flow, Cash amount, town GDP, liabilities, Industry...
- ► Matching procedure: Nearest Neighbor Matching with a caliper of 0.2, matching on year pre-treatment, and with replacement (maximum 2)
- Outcome: 875 observations from 180 firms (105 control, 75 treated)

Correlation to treatment (pre-treatment)

Figure 1: TFP trends: treated vs non-treated

Figure 2: Distribution of key variables with treatment

- Successive T tests on covariates indicated no significant mean differences between groups before treatment
- ▶ Parallel trends assumption seems respected

Regression Specifications

Main regression equation (controlling for year FE):

$$\log(\mathsf{TFP})_{it} = \beta_1 \mathsf{att}_{it} + X_{it}\beta + \sum_{i} \gamma_j \mathbf{1}(\mathsf{year}_i = j) + \varepsilon_{it} \qquad (1)$$

Auxiliary equations:

$$\log(\mathsf{TFP})_{it} = \beta_1 \mathsf{att}_{it} + X_{it}\beta + \mathsf{Industry} \; \mathsf{FE} + \mathsf{Year} \; \mathsf{FE} + \varepsilon_{it} \; \; (2)$$

$$\log(\mathsf{TFP})_{it} = \beta_1 \mathsf{att}_{it} + X_{it}\beta + \mathsf{Firm} \; \mathsf{FE} + \varepsilon_{it} \tag{3}$$

ightharpoonup Where X_{it} contains the control variables

Residuals and heteroscedasticity

Figure 3: Residuals vs. Fitted values

► Light heteroscedasticty suspicion for Firm FE, and strong suspicion for the others

Table 1: Breusch-Pagan Test Results

Model	BP Statistic	p-value
Basic Model	18.033	0.00291
Year FE	20.860	0.00753
Y + IFE	28.284	0.02924
Firm FE	7.8624	0.04894

- ► P-value < 0.05, so we reject homoscedasticty
- We need robust errors to estimate

Regression results

Dependent variable log(TFP)

No Control	Year FE	Industry & Year FE	Firm FE
0.024 08*	0.018 36**	0.021 24***	0.03219*
(0.01191)	(0.00241)	(0.00147)	(0.01391)
0.04982***	0.05154***	0.043 56**	0.037 97**
(0.00741)	(0.00390)	(0.005 97)	(0.01200)
0.01769**	0.01726*	0.020 10**	` - ´
(0.00625)	(0.00549)	(0.00428)	
0.01249	0.013 45	0.003 25	-0.00382
(0.00927)	(0.00738)	(0.00726)	(0.05428)
0.007 55	- '	` <u>-</u>	- 1
(0.00537)			
· -	-	0.00001	-
		(0.00001)	
1.45273***	-	-	-
(0.09890)			
875	875	875	875
0.2881	0.175	0.218	0.760
0.2512	0.166	0.159	0.026
	0.024 08* (0.011 91) 0.049 82*** (0.007 41) 0.017 69** (0.006 25) 0.012 49 (0.009 27) 0.007 55 (0.005 37) - - 1.452 73*** (0.098 90)	0.024 08*	0.024 08* 0.018 36** 0.021 24*** (0.011 91) (0.002 41) (0.001 47) 0.049 82*** 0.051 54*** 0.043 56** (0.007 41) (0.003 90) (0.005 97) 0.017 69** 0.017 26* 0.020 10** (0.006 25) (0.005 49) (0.004 28) 0.012 49 0.013 45 0.003 25 (0.009 27) (0.007 38) (0.007 26) 0.007 55 - - (0.005 37) - 0.000 01 - - 0.000 01 (0.098 90) - - 875 875 875 0.2881 0.175 0.218

Table 2: Regression results with robust errors

Key results

- ▶ Interpretation: The introducing of a policy is associated to a 2.124% increase in TFP on average, when controlling for year and industry FE
- Robustness check:
 - **Subsector control:** ATT(*) = 0.03036
- Main takeaway: The relationship is positive and statistically significant. ATT varies between 1.8% and 3.2%
- Policy implications: Encouraging policies that include pollution in production cost can positively impact firm's efficiency

Key results

 Conclusion: According to these results and in alignement with existing literature, environmental regulation has a positive impact on TFP

Limits and suggestions:

- Having data on previous year to 2015 could have provided more significant matching
- Having a clearer idea of how policies were applied
- Extend the analysis to **other type of policies** targeting other type of pollutions than gas emission (ex: Food and Catering industry)
- Extend the analysis of the **impact of policies on emission quotas** implemented in 2021 in China and in recent years