Automatic covariates selection in dynamic regression models with application to COVID-19 evolution

Ana X. Ezquerro¹, Germán Aneiros², and Manuel Oviedo de la Fuente³

¹ University of A Coruña, ana.ezquerro@udc.es

- ² Grupo MODES, Departamento de Matemáticas, University of A Coruña, CITIC german.aneiros@udc.es
- ³ Grupo MODES, Departamento de Matemáticas, University of A Coruña, CITIC manuel.oviedo@udc.es

Abstract

This work introduces a new approach in time-series analysis field for automatic covariates selection in dynamic regression models. Based on [2] and [5] previous study, a forward-selection method is proposed for adding new significant covariates from a given set. This algorithm has been implemented and optimized in R as a package, and it has been applied to multiple simulations to validate its performance. Finally, the obtained results from the IRAS database of Catalonia are presented to analyze the COVID-19 evolution.

Contents

1	Introduction]
2	Methodology	2
3	Simulation results	3
4	COVID-19 application	3

1 Introduction

In time-series analysis, the well-known dynamic regression models allow formally modelling the dependence between a set of covariates and a dependent variable considering the intrinsic temporal component of all participant variables. Thus, this type of regression models are of widespread application in diverse scenarios where it is required to analyze the effect of recollected data in a time series of interest.

Formally, dynamic linear regression models define the linear dependence between a stochastic process Y_t (the dependent variable) and a set of processes $\mathcal{X} = \{X_t^{(1)}, X_t^{(2)}, ..., X_t^{(m)}\}$ (candidates for regressor variables) in times non-greater than t:

$$Y_t = \beta_0 + \beta_1 X_{t-r_1}^{(1)} + \beta_2 X_{t-r_2}^{(2)} + \dots + \beta_m X_{t-r_m}^{(m)} + \eta_t$$
 (1)

where $r_i \geq 0$, for i = 1, ..., m, and $\eta_t \sim ARMA(p,q)$.

In this work we formally introduce a new algorithm to select covariates which significantly influence the behavior of a dependent variable. Due to the impact of COVID-19 around the world, we use this method to formalize and study the relation of the COVID-19 evolution in Catalonia (Spain) with the flu syndrome, COVID-19 vaccination and other recollected variables from the IRAS database.

2 Methodology

Following the definition in (1), [2] proposed a method named *prewhitening* for removing spurious correlation (false linear correlation) between two processes X_t and Y_t (where one of them is not white noise and/or the other is not stationary) by analyzing the cross correlation function

$$\rho_k(\ddot{X}_t, \ddot{Y}_t) = \frac{\operatorname{Cov}(\ddot{X}_t, \ddot{Y}_{t-k})}{\sigma_{\ddot{X}_t}\sigma_{\ddot{Y}_t}}$$
(2)

where σ_{Z_t} denotes the standard deviation of a stochastic process Z_t and \ddot{X}_t and \ddot{Y}_t are obtained via some linear filter application to X_t and Y_t ensuring one of them is white noise and the other is a stationary process. Specifically, [2] proposes a real linear correlation between X_t and Y_t if exists some k where $\rho_k(X_t, Y_t)$ is statistically significant. This method is applied to obtain the optimal lags of each regressor in (1), considering the condition of k being less or equal than 0.

Our approach iteratively adds dependent processes to a model by checking if a significant correlation (analyzing (2) as in [2]) exists between a new process (candidate for regressor variable) and the residuals η_t of a simpler model.

Let Y_t be the stochastic dependent process and \mathcal{X} be the set of processes that might act as regressor variables in the model (candidates), and an information criterion (IC) for model evaluation. Our method proceeds as follows:

1. Initialization. Consider the process $\tilde{Y}_t = Y_t$ that will be used to check the existence of linear correlation between Y_t and each $X_t \in \mathcal{X}$ with [2] methods, $\nu = \infty$ the value of the IC corresponding to the best model with (1) form, $\mathcal{X}^{(r,s)}$ the set of selected covariates paired with their respective optimal lags and $\mathcal{X}^{(s)}$ the set of selected covariates (with no lag information). Let $\mathcal{M}(\mathcal{Z})$ be the fitted dynamic regression model regarding Y_t where \mathcal{Z} is the set of covariates paired with their optimal lags:

$$\mathcal{M}(\mathcal{Z}) := Y_t = \beta_0 + \sum_{(Z_t, r) \in \mathcal{Z}} \beta^{(Z_t, r)} Z_{t-r} + \eta_t$$

where $\beta^{(Z_t,r)}$ is obtained via some estimation.

2. Iterative selection. For each $X_t \in \mathcal{X} - \mathcal{X}^{(s)}$, obtain the optimal lag where the maximum linear cross correlation between X_t and \tilde{Y}_t occurs in (via [2] method). Consider the process $X_t^{\text{best}} \in \mathcal{X} - \mathcal{X}^{(s)}$ that minimizes and improves ν value, based on the selected IC, by including it in the model with its optimal lag $(r_{X^{\text{best}}})$:

$$X_{t}^{\text{best}} = \underset{X_{t} \in \mathcal{X} - \mathcal{X}^{(s)}}{\operatorname{arg min}} \left\{ \operatorname{criteria} \left(\mathcal{M} \left(\mathcal{X}^{(s,r)} \cup \left\{ (X_{t}, r_{X_{t}}) \right\} \right) \right) \right\} \right\}$$

$$\operatorname{conditioned to criteria}(\cdot) < \nu^{1}. \text{ If } X_{t}^{\text{best}} \text{ exists, consider } \mathcal{X}^{(s,r)} = \mathcal{X}^{(s)} \cup \left\{ (X_{t}^{\text{best}}, r_{X_{t}^{\text{best}}}) \right\},$$

$$\tilde{Y}_{t} = \eta_{t} \text{ and } \nu = \operatorname{criteria}(\mathcal{X}^{(s)})^{2}.$$

$$\operatorname{Conditioned to criteria}(\mathcal{X}^{(s)})^{2}.$$

$$\operatorname{Conditioned to criteria}(\mathcal{X}^{(s)})^{2}.$$

$$\operatorname{Conditioned to criteria}(\mathcal{X}^{(s)})^{2}.$$

$$\operatorname{Conditioned to criteria}(\mathcal{X}^{(s)})^{2}.$$

Repeat this step until no process $X_t \in \mathcal{X} - \mathcal{X}^{(s)}$ can be added to the model, i.e. X_t^{best} does not exist.

¹ for simplicity, we denote the expression in criteria() in (3) as ·

²once X_t^{best} has been added to the model

Figure 1: Point predictions at forecast horizon h = 10 for COVID19 evolution

3. Finalization. If the errors η_t of $\mathcal{M}(\mathcal{X}^{(s,r)})$ are not stationary and no model with $\eta_t \sim \text{ARMA}(p,q)$ and $\mathcal{X}(s,r)$ covariates can be adjusted, consider the regular differentiation of all data (dependent variable and regressor candidates) and return to (1). Otherwise, it is proven that $\mathcal{M}(\mathcal{X}^{(s,r)})$ with stationary errors defines the significant correlation between the set of $\mathcal{X}^{(s)}$ regressor variables and the dependent process Y_t .

This algorithm was implemented in R programming language. The step 2 was optimized by parallelizing the fit of independent models of each candidate in \mathcal{X} . [3] test is used for checking processes stationary and [4, 8, 6, 1, 7] tests to check the independence, normality and zero mean of ARIMA residuals.

3 Simulation results

In order to validate the performance of our selection method, we simulate multiple scenarios where a time series Y_t was artificially constructed with other variables (introduced with their respective coefficients and lags as in (1)), which were added to a set of candidates along with more variables which do not influence in the construction of Y_t . The algorithm was tested when the residuals of the model η_t were stationary and non-stationary.

4 COVID-19 application

Our approach was tested in the IRAS (acute respiratory infections) database of Catalonia (Spain) in order to analyze the evolution of COVID-19 and the impact of other variables, such as the vaccination progress and influenza confirmed cases. In addition, individual data was

Table 1: Information about the dynamic regression model constructed via selection of multiple vaccination variables to model COVID19 evolution

Covariate	Lag	IC achieved	Coefficient estimation (s.e)
vac1218	-6	902.564	-0.0707 (<mark>0.0491</mark>)
vac4565	-3	883.685	$0.0511 \ (0.0046)$
vac6580	-2	877.400	$-0.0750 \ (0.0095)$
vac1845	-6	869.236	-0.0559 (0.0211)
vac80	Not included in the model		

aggregated by age ranges and Health Areas to study the correlation between groups and their influence in the global evolution.

Figure (4) shows puntual predictions based on a fitted dynamic regression model where the COVID19 evolution is linearly defined by the vaccination of different age groups. Table (4)³ resumes the algorithm trace and the order of covariates addition to the model.

References

- [1] G. E. P. Box and David A. Pierce. Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. *Journal of the American Statistical Association*, 65(332):1509–1526, 1970.
- [2] Jonathan D Cryer and Kung-Sik Chan. *Time series analysis: with applications in R*, chapter 11. 2, 2008.
- [3] David A Dickey and Wayne A Fuller. Distribution of the estimators for autoregressive time series with a unit root. *Journal of the American statistical association*, 74(366a):427–431, 1979.
- [4] Winston Haynes. Student's t-Test, pages 2023–2025. Springer New York, New York, NY, 2013.
- [5] Rob J Hyndman and George Athanasopoulos. Forecasting: principles and practice, chapter 9. OTexts, 2018.
- [6] Carlos M. Jarque. Jarque-Bera Test, pages 701–702. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.
- [7] G. M. Ljung and G. E. P. Box. On a measure of lack of fit in time series models. *Biometrika*, 65(2):297–303, 08 1978.
- [8] Samuel Sanford Shapiro and Martin B Wilk. An analysis of variance test for normality (complete samples). *Biometrika*, 52(3/4):591–611, 1965.

³where vac1218, vac1845, vac4565, vac6580 denote the vaccination in population from 12, 18, 45 and 65 up to 18, 45, 65 and 80 years (exclusive), respectively, and vac80 denotes the vaccination in population from 80 years.