

## 04 – Étude des Systèmes Électriques – Analyser, Modéliser, Résoudre, Réaliser

Chapitre 1 – Dipôles, Sources et Circuits électriques

ompétence

## Résoudre:

Rés – C1.1 :

## Girouette – anémomètre de voilier

On s'intéresse à l'ensemble girouette-anémomètre d'une centrale de navigation monté en tête de mât d'un voilier et plus en particulier à la girouette permettant de connaître l'orientation du vent.

**Objectifs** 

L'objectif est de modéliser le circuit électrique du système afin de pouvoir connaître l'orientation du vent en fonction de la position du potentiomètre rotatif.











On donne le diagramme de bloc interne associé au système de mesure de la direction du vent ainsi que le le schéma électrique du potentiomètre rotatif.





Schématisation du potentiomètre rotatif

On suppose que l'angle du potentiomètre varie de  $-\pi$  à  $\pi$ . On note  $R_0 = 10 \ k\Omega$  la résistance totale entre A et C et R' la résistance de la piste comprise entre A et B.

**Question 1** Déterminer l'expression de R' en fonction de  $\alpha$  et  $R_0$ .

Pour faciliter l'étude de ce capteur, on se ramène au schéma électrique équivalent ci-dessous.





Modélisation du potentiomètre rotatif

**Question 2** Quelles doivent être les expressions de  $R_1$  et de  $R_2$  en fonction de R, R' et  $R_0$  et les valeurs de  $E_1$  et de  $E_2$  pour qu'il en soit ainsi?

On note  $E_{Th}$  et  $R_{Th}$  les éléments du générateur de Thévenin vus entre le point B et la masse.

**Question 3** Exprimer  $E_{th}$  en fonction de  $E_1$ ,  $E_2$ ,  $R_1$  et  $R_2$ , puis en fonction de R,  $R_0$  et  $\alpha$ . Exprimer  $R_{Th}$  en fonction de  $R_1$  et  $R_2$  puis en fonction de R,  $R_0$  et  $\alpha$ .

**Question 4** Calculer la valeur des résistances R pour que la tension  $V_s$  à vide varie entre -4 V et +4 V.

**Question 5** Tracer les caractéristiques  $E_{Th} = f(\alpha)$  et  $R_{Th} = g(\alpha)$ . Préciser les valeurs minimales et maximales.

**Question 6** Conclure sur le fonctionnement d'un capteur potentiométrique.