

Simple Web Request

Response

The Request

- How do we tell the web server what we want?
- How do we even find the web server?
- How do the web server and browser talk to each other?

HTTP Request

How do we find the server?

- Every computer on the Internet has an Internet address.
- Called an IP address (Internet Protocol)
- An IP address is 4 numbers separated by dots.

markusproject.org = 69.164.221.145

Domain Name Servers

This is getting complicated!

Now what?

- Okay, we have the address.
- What do we do with it?
- Let's look at how two computers communicate.
- HTTP is a high-level protocol
- HTTP is specific to the web.
- Computers communicate for many reasons.
 - Network needs to support many different protocols

TCP/IP

- Transmission Control Protocol.
- Tells us how to package up the data.

source address		dest. address
bytes	ack	port
data		

Addresses and Ports

- A socket pair is the two endpoints of the connection.
- An endpoint is identified by an IP address and a port.
- IPv4 addresses are 4 8-bit numbers:
 - -128.100.31.200 = wolf
- Ports
 - because multiple processes can communicate with a single machine we need another identifier.

Think of a port like a room number in a building

More on Ports www.iana.org

• Well-known ports: 0-1023

-80 = http -21 = ftp

-22 = ssh -25 = smtp (mail)

-23 = telnet -194 = irc

Registered ports: 1024-49151

- 666 = Doom (first online first-person shooter)
- -26000 = quake
- 19132 = minecraft: bedrock edition (unofficial)
- Dynamic (private) ports: 49152-65535

Network byte order?

Big-endian

Little-endian

- Intel is little-endian, and Sparc is big-endian
- Many modern chips are bi-endian, but are most commonly used as little-endian.

Packaging up the data

make packets

TCP

01100111001001 00100010001111

- •Each TCP packet is given a header
 - -sequence number
 - -checksum

 put in an
 IP envelope
 with another
 header

To To 207.99.53.46 207.99.53.46

To 207.99.53.46

To 207.99.53.46

ΙP

The Big Picture

- Client-Server model: a client process wants to talk to a server process
- Client must find server DNS lookup
- Client must find process on server ports
- Finally establish a connection so two processes can talk

7 cities, 5 states/prov, 2 countries

Putting it together

HTTPS (TLS) Transport Layer Security

Protocol layer on top of TCP to negotiate encryption protocols and keys

Means all data for TCP connection is encrypted

Take aways

- The web today is made up of complex layers of software
- No one person, organization, or company could have created it in isolation
- We can understand it because we can study one layer at a time
- We can create new things by building on top of existing layers