Evaluation of extending Proxy External Control Association Test (ProxECAT) to Poisson Regression

Makayla Cowles

May 3, 2022

UNIVERSITY OF COLORADO DENVER

Alleles: base pairs that differ

- Variants: location of the alleles
 - » Common Variants: MAF > 0.05
 - » Rare Variants: MAF < 0.01</p>

Minor Allele Frequency (MAF) =

total # alternate alleles in the observed variant total # of alternate alleles in a population

https://isogg.org/wiki/Single-nucleotide_polymorphism

Rare Variants

Functional: alter a gene's function

 Non-Functional (Synonymous): have no effect on the gene's function

Genome Wide Association Study (GWAS)

TA Manolio et al. Nature 461, 747-753 (2009) doi:10.1038/nature08494

External Controls for Rare Variant Association Test

- 10K to 100K sample sizes needed for adequate power
- Use external controls to increase power
- Public databases contain genetic summary data to be used as external controls
- Case control tests using external controls can be biased due to sequencing differences between cases and controls

https://gnomad.broadinstitute.org/news/2017-02-the-genome-aggregation-database/

Proxy External Controls Association Test (ProxECAT)

Can use very rare variants

Optimal when no or limited controls exist

Utilizes both functional and synonymous variants

Singletons and Doubletons

Only requires external controls

 synonymous variants are used as a "proxy" for how well rare variants are sequenced within a gene region

ProxECAT Limitations

 Does not enable internal controls to be analyzed with external controls

 Cannot adjust for covariates such as sex, ancestry, or proportion of alternate variant reads or depth of coverage

* Extend ProxECAT to a Poisson Regression

Why?

- Regression can control for covariates
- Both internal and external controls can be evaluated together
- Rare allele counts are approximately distributed as a Poisson distribution

How?

Compare results from Poisson regression to ProxECAT and logistic regression

Observational Units

Unit about which information is collected

In case control studies individuals is often the observational unit

Individual level data is hard to access

ProxECAT

Alternate alleles are used as the observational unit

 Alternate allele counts are modeled as a random sample of four independent Poisson distributions

$$X_1^f \sim Poisson(\lambda_1^f)$$
, $X_0^f \sim Poisson(\lambda_0^f)$, $X_1^p \sim Poisson(\lambda_1^p)$, and $X_0^p \sim Poisson(\lambda_1^p)$

ProxECAT Data Notation

		Predicted Functional Impact		
		Functional	Not Functional (Proxy)	Total
Cases (Internal)	Y = 1	x_1^f	x_1^p	x_1
Controls (External)	Y = 0	x_0^f	x_0^p	x_0
Total		χ^f	χ^p	N

x – number of alternate alleles

N – total number of alternate alleles in gene region

ProxECAT

$$H_0: \frac{\lambda_{FUN,g^*,case}}{\lambda_{SYN,g^*,case}} = \frac{\lambda_{FUN,g^*,control}}{\lambda_{SYN,g^*,control}}$$

 g^* -gene of interest

 λ – rate of rare alternate alleles per N cases or controls

Controls for genetic bias in cases and controls

- Orange stars rare, functional variants
- Dark circles rare, synonymous variants

Generalized Linear Models (GLM)

Assumptions

- 1. the observations are independent
- 2. the response variables follow a distribution from the exponential family
- 3. there exists a linear relationship between a transformation of the response variable and the predictor variables through a "link" function

$$g(\mu_i) = \beta_0 + \beta_1 x_{1i} + \dots + \beta_p x_{pi}$$

 μ_i : mean response for observation i

 $g(\mu_i)$: link function

 $x_{1i} \dots x_{pi}$: p predictor variables for observation i

 β_0 : y-intercept

 β_1, \dots, β_p : regression estimates for each predictor variable p

Logistic Regression

- Data notation for ProxECAT can be observed as 2x2 Chi-square contingency table
- A 2x2 Chi-square contingency analysis is a specific case of logistic regression

ProxECAT Implementation of a Logistic Regression

Alternate alleles are used as the observational unit

Assume

- There does not exist a high correlation between the predictor variables
- 2. The distribution of the alternate alleles is binomial
- 3. Logit link function

Implementation of a Logistic Regression

$$logit(y_i) = \beta_0 + \beta_1 x_i^{case} + \beta_2 x_i^{group}$$

- y_i functional status of alternate allele; 1 is a functional allele and 0 is synonymous alleles
- x_i^{case} case status for the carrier of alternate allele
- x_i^{group} group status for the carrier of the alternate allele; internal or external
- β_1 regression estimate for the association between genetic region and case status
- β_2 covariate regression estimate

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 \neq 0$$

Logistic Regression & Limitations of ProxECAT

 Can analyze both internal and external control data sets within the same test

 Can adjust for covariates e.g., internal/external, depth of coverage

Poisson Regression

 counts of rare alleles at a genetic variant are approximately distributed as a Poisson distribution

ProxECAT implementation of a Poisson Regression

Genetic variants are used as the observational unit

Assume

- 1. Allele counts follow a Poisson distribution
- 2. log link function

Implementation of Poisson Regression for functional (left) and non-functional (right) variants

Association without bias:

small p-value

high p-value

$$\log(w_i) = \gamma_0 + \gamma_1 x_i^{case}$$

$$\log(z_i) = \alpha_0 + \alpha_1 x_i^{case}$$

$$H_0$$
: $\gamma_1 = 0$

$$H_0$$
: $\alpha_1 = 0$

$$H_1: \gamma_1 \neq 0$$

$$H_1: \alpha_1 \neq 0$$

- w_i positive integer of functional allele counts per gene
- z_i positive integer of non-functional allele counts per gene
- x_i^{case} case status for the carrier of the rare variant
- γ_i , α_i regression estimates between genetic region and case status

Implementation of Poisson Regression for Functional (left) and Non-Functional (right) Variants

Association with bias:

small p-value

low p-value

$$\log(w_i) = \gamma_0 + \gamma_1 x_i^{case}$$

$$\log(z_i) = \alpha_0 + \alpha_1 x_i^{case}$$

$$H_0$$
: $\gamma_1 = 0$

$$H_0$$
: $\alpha_1 = 0$

$$H_1: \gamma_1 \neq 0$$

$$H_1: \alpha_1 \neq 0$$

- w_i positive integer of functional allele counts per gene
- z_i positive integer of non-functional allele counts per gene
- x_i^{case} case status for the carrier of the rare variant
- γ_i , α_i regression estimates between genetic region and case status

Implementation of Poisson Regression with Functional Status and Case Status

$$\log(p_i) = \omega_0 + \omega_1 x_i^{fun} + \omega_2 x_i^{case} \qquad H_0: \omega_1 = 0, \omega_2 = 0$$
$$H_1: \omega_1 = 0, \omega_2 \neq 0$$

- p_i total allele count for each rare variant per gene
- x_i^{fun} functional status of the rare variant
- x_i^{case} case status for the carrier of the rare variant
- $\omega_1, \omega_2, \omega_3$ regression estimates

Implementation of Poisson Regression with Interaction

$$\log(p_i) = \omega_0 + \omega_1 x_i^{fun} + \omega_2 x_i^{case} + \omega_3 x_i^{int} \qquad H_0: \omega_3 = 0$$

$$H_1: \omega_3 \neq 0$$

- p_i total allele count for each rare variant per gene
- x_i^{fun} functional status of the rare variant
- x_i^{case} case status for the carrier of the rare variant
- x_i^{int} interaction between functional status and case status
- $\omega_1, \omega_2, \omega_3$ regression estimates

Poisson Regression & Limitations of ProxECAT

 Can analyze both internal and external control data sets within the same test

Can adjust for covariates e.g., internal/external

Data

Simulations by Jessica Murphy

RARESim (Null, 2022) & Hapgen2

Non-Finnish European haplotypes from 1000 Genome Phase 3

Chromosome 19

12 genes

Simulated under the null hypothesis of no association

Dataset

Simulation Replicates	100
Genes	12
Total Sample Size	22,000
Internal Case Sample Size	1,000
Internal Control Sample Size	1,000
External Control Sample Size	10,000 ; 10,000
Rare Variants	MAF < 0.01

Type I Error Rate Comparisons

ProxECAT, Logistic, Poisson

3 main implementations of Poisson

- Functional variant model and non-functional variant model
- Model with functional status and case status
- Interaction model

Sample sizes

- Balanced (1,000 cases vs 1,000 controls)
- Unbalanced (1,000 cases vs 11,000 controls)

Type I Error rates for Poisson and Logistic (1,000 cases vs 11,000 controls)

	ProxECAT	Logistic
ADGRE 2	0.02	0.06
ADGRE 3	0.10	0.06
ADGRE 5	0.03	0.04
CLEC17A	0.03	0.01
DDX39A	0.09	0.02
DNAJB1	0.03	0.02
GIPC1	0.02	0.02
NDUFB7	0.04	0.01
PKN1	0.06	0.08
PTGER1	0.07	0.01
TECR	0.05	0.00
ZNF333	0.06	0.03
Average	0.050	0.030

Type I Error Rates for Poisson for Functional and Non-Functional Rare Variants (1,000 cases vs 11,000 controls)

	Functional Rare Variant Model	Non-Functional Rare Variant Model
ADGRE 2	1.00	1.00
ADGRE 3	1.00	1.00
ADGRE 5	1.00	1.00
CLEC17A	0.99	0.72
DDX39A	0.96	0.97
DNAJB1	1.00	1.00
GIPC1	1.00	0.99
NDUFB7	1.00	0.84
PKN1	1.00	1.00
PTGER1	0.98	0.92
TECR	0.90	0.99
ZNF333	1.00	0.99
Average	0.986	0.952

Type I Error Rates for Poisson for Functional and Non-Functional Rare Variants (1,000 cases vs 1,000 controls)

	Functional Rare Variant Model	Non-Functional Rare Variant Model
ADGRE 2	0.04	0.02
ADGRE 3	0.03	0.04
ADGRE 5	0.02	0.00
CLEC17A	0.03	0.00
DDX39A	0.01	0.00
DNAJB1	0.07	0.03
GIPC1	0.01	0.04
NDUFB7	0.04	0.03
PKN1	0.04	0.03
PTGER1	0.03	0.00
TECR	0.00	0.03
ZNF333	0.04	0.03
Average	0.030	0.021

Type I Error Rates for Poisson with Functional and Case Status (1,000 cases vs 11,000 controls)

	Functional Status	Case Status
ADGRE 2	0.72	1.00
ADGRE 3	0.66	1.00
ADGRE 5	0.75	1.00
CLEC17A	0.19	1.00
DDX39A	0.73	1.00
DNAJB1	0.84	1.00
GIPC1	0.67	1.00
NDUFB7	0.69	1.00
PKN1	0.87	1.00
PTGER1	0.55	1.00
TECR	0.84	1.00
ZNF333	0.68	1.00
Average	0.682	1.00

Type I Error Rates for Poisson with Functional and Case Status (1,000 cases vs 1,000 controls)

	Functional Status	Case Status
ADGRE 2	0.40	0.03
ADGRE 3	0.37	0.02
ADGRE 5	0.42	0.04
CLEC17A	0.02	0.01
DDX39A	0.26	0.03
DNAJB1	0.58	0.05
GIPC1	0.34	0.04
NDUFB7	0.53	0.04
PKN1	0.71	0.03
PTGER1	0.22	0.03
TECR	0.47	0.03
ZNF333	0.39	0.07
Average	0.392	0.035

Type I Error Rates for Poisson with Interaction (1,000 cases vs 11,000 controls)

	Interaction between Functional and Case Status
ADGRE 2	0.02
ADGRE 3	0.06
ADGRE 5	0.02
CLEC17A	0.00
DDX39A	0.02
DNAJB1	0.03
GIPC1	0.01
NDUFB7	0.00
PKN1	0.05
PTGER1	0.03
TECR	0.01
ZNF333	0.02
Average	0.022

- ProxECAT and logistic regression both perform appropriately
- Poisson without interaction cannot account for the imbalance in cases and controls
- Interaction between functional allele status and case status shows the last Poisson model could be explored more

Discussion

Moving Forward

Standardize population to 1,000 or 10,000

Of case and control samples

Incorporate ratio of functional to synonymous alleles

Additional distributions

Logistic regression

Questions

Acknowledgments

Audrey Hendricks, PhD

Megan Null, PhD

Jessica Murphy

Erin Austin, PhD

References

- *Deoxyribonucleic Acid (DNA) Fact Sheet.* (2020, August 24). Retrieved from National Human Genome Research Institution. https://www.genome.gov/about-genomics/fact-sheets/Deoxyribonucleic-Acid-Fact-Sheet.
- Gonzalez, M. W., & Kann, M. G. (2012). Chapter 4: Protein interactions and disease. *PLoS computational biology*, 8(12), e1002819. https://doi.org/10.1371/journal.pcbi.1002819.
- "Single-Nucleotide Polymorphism." Single-Nucleotide Polymorphism ISOGG Wiki, 31 Jan. 2020, https://isogg.org/wiki/Single-nucleotide polymorphism.
- Manolio, T., Collins, F., Cox, N. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009). https://doi.org/10.1038/nature08494
- Karczewski, Konrad, and Laurent Francioli. "The Genome Aggregation Database (GnomAD)." The Genome Aggregation Database (GnomAD) / GnomAD News, 27 Feb. 2017, https://gnomad.broadinstitute.org/news/2017-02-the-genome-aggregation-database/.
- Zuk O, Schaffner SF, Samocha K, Do R, Hechter E, Kathiresan S, et al. Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci U S A. 2014;111(4):E455–64. Epub 2014/01/17. pmid:24443550; PubMed Central PMCID: PMCPMC3910587. https://doi.org/10.1073/pnas.1322563111.
- Barrett, J.C., Buxbaum, J.D., Cutler, D.J., Daly, M.J., Devlin, B., Gratten, J., Hurles, M.E., Kosmicki, J.A., Lander, E.S., MacArthur, D.G., Neale, B.M., Roeder, K., Visscher, P.M., & Wray, N.R. (2017). New mutations, old statistical challenges. bioRxiv.2. https://www.biorxiv.org/content/10.1101/115964v3.
- Dunn, P. K., & Smyth, G. K. (2018). Generalized Linear Models With Examples in R. New York: Springer Science+Business Media, LLC.
- Newsom, J. T. (1999-2007). *Lecture 21: Logistic Regression*. Retrieved from newsomj. http://web.pdx.edu/~newsomj/pa551/lectur21.htm.
- Null, M., Dupuis, J., Sheinidashtegol, P., Layer, R. M., Gignoux, C. R., & Hendricks, A. E. (2022). RAREsim: A simulation method for very rare genetic variants. *American journal of human genetics*, 109(4), 680–691. https://doi.org/10.1016/j.ajhg.2022.02.009
- Murphy, J. (2021, June 3). Common Controls Simulations.