PROPRIEDADES PERIÓDICAS

PROPRIEDADES PERIÓDICAS

Muitas características dos
elementos químicos se repetem periodicamente,
estas propriedades são denominadas de propriedades
periódicas.

PROPRIEDADES PERIÓDICAS

RAIO ATÔMICO: O TAMANHO DO ÁTOMO

É a distância que vai do núcleo do átomo até o seu elétron mais externo.

Não podemos medir diretamente o raio de um átomo e, esta medida é feita por meio de raios X, medindo-se a distância entre dois núcleos de átomos iguais vizinhos e tomando-se a sua metade

VARIAÇ VARIAÇÃO DO RAIO ATÔMICO EM UM PERÍODO

AUMENTA

U M E N T A

- 1	-				-													ď.				Г	
	- 1																						
				-																			\neg
		\dashv		-	. 77											H				+		\dashv	
					2.7	1	-	-	24	= 1	1.0			:=:									
			Т		Т					Т		Т			Т					Т		П	
		-	+		┿			\dashv		+		₩		\dashv	\dashv	H		\dashv		┿		\dashv	
															-								
										П					П	П						\Box	
			+		┿					+		₩	<u> </u>		\dashv		/a		7.81				
1			_		_					_					_								

É a energia necessária para retirar um elétron de um átomo neutro e isolado no estado gasoso formando um cátion

A remoção do primeiro elétron, que é mais afastado do núcleo, requer uma quantidade de energia denominada de primeira energia de ionização (1ª E.I.)

A remoção do segundo elétron requer uma energia maior que à primeira, e é denominada de segunda energia de ionização (2ª E.I.)

Quanto MENOR for o átomo MAIOR será a ENERGIA DE IONIZAÇÃO A U M E N T A

100	10	-					100										-						-			(10)	= 1
		-			-		-	-												-	-		-				
1																		Г					П	т			\dashv
								1										L									
1																											
																		T						T			
Н					\forall		Ť				\dagger		T				\forall	T					┪	†			
\vdash					\dashv		+				+		₩		\dashv			╄					\dashv	+			
L																										L	
																			76			220			- 10		
	32	. 200	11.	1000	-	1.00	178.7	-	3.00	 262		7.9	10	2.7	12.	500	.5										

$$Mg (g) + 7.6 eV \rightarrow Mg^+ + 1 e^- (1^a EI)$$

$$Mg^{+}(g) + 14,9 \text{ eV} \rightarrow Mg^{2+} + 1 \text{ e-} (2^a \text{ EI})$$

$$Mg^{2+}(g) + 79,7 eV \rightarrow Mg^{3+} + 1 e- (3^a EI)$$

Assim: El1< El2 < El3 <

Elemento	I_1	I_2	I_3	I_4	I_5	I_6	I_7
Na	496	4.560			elétrons dos n	íveis mais inter	nos
Mg	738	1.450	7.730				
Al	578	1.820	2.750	11.600			
Si	786	1.580	3.230	4.360	16.100		
P	1.012	1.900	2.910	4.960	6.270	22.200	
S	1.000	2.250	3.360	4.560	7.010	8.500	27.100
Cl	1.251	2.300	3.820	5.160	6.540	9.460	11.000
Ar	1.521	2.670	3.930	5.770	7.240	8.780	12.000

ELETROAFINIDADE ou AFINIDADE ELETRÔNICA

É a energia liberada pelo átomo, isolado no estado gasoso, quando recebe um elétron formando um ânion

Não definimos AFINIDADE ELETRÔNICA para os GASES NOBRES

energia

A afinidade eletrônica varia nas famílias de baixo para cima e nos períodos da esquerda para a direita

ELETRONEGATIVIDADE

É a tendência que um átomo possui de atrair elétrons para perto de si, quando se encontra ligado a outro átomo de elemento químico diferente numa substância composta

O par de elétrons é mais atraído pelo flúor O flúor é mais ELETRONEGATIVO que o hidrogênio

A eletronegatividade varia nas famílias

Não definimos ELETRONEGATIVIDADE para os GASES NOBRES

da esquerda para a direita

AUMENTA

ELETROPOSITIVIDADE ou CARÁTER METÁLICO

É a tendência que os átomos em cederem elétrons

Sua variação é oposta à eletronegatividade e não é definida para os gases nobres.

AUMENTA

PONTO DE FUSÃO E PONTO DE EBULIÇÃO

Corresponde à temperatura em que um elemento passa do estado sólido para o líquido e do líquido para o gasoso, respectivamente

Abaixo são apresentadas as configurações eletrônicas de quatro átomos:

- $X 1s^2 2s^2 2p^5$
- $Y 1s^2 2s^2 2p^6 3s^2$
- $W 1s^2 2s^2 2p^6 3s^2 3p^3$
 - $Z 1s^2 2s^2 2p^6 3s^2 3p^5$

Sobre os átomos apresentados, assinale o que for correto.

- 01. O elemento Y pode adquirir configuração de gás nobre se ganhar dois elétrons.
- 02. Não existe diferença de energia entre os subníveis 3s e 3p no átomo W, pois a diferença entre esses subníveis é de 1 elétron.
- 04. O raio atômico do elemento W é maior do que o raio atômico do elemento Z.
- 08. A energia de ionização do elemento X é maior que a energia de ionização do elemento Y.
- 16. O elemento Z tem a maior afinidade eletrônica entre os átomos apresentados.

A tabela periódica dos elementos permitiu a previsão de elementos até então desconhecidos. Mendeleev chegou a fazer previsões (posteriormente confirmadas) das propriedades físicas e químicas de alguns elementos que vieram a ser descobertos mais tarde. Acerca disso, considere a seguinte tabela:

																Elemento A Elemento B
						*					12					
-	-	-		77		-	100	. 77	100	11.75	1			7.7	200	
N	úm	ero	ate	ôm	ico	(Z))									5 14
Ra	aio	atá	ìmi	СО	(r/p	om)			1					-	+: 7)	83 117
		gia → E	[+ - (g)	de +		io	niz	açã	ão		(I ₁ /	⁄kJ	2	mc	ol ⁻¹)	801 787
EI	etr	one	ega	tivi	dad	de (de	Pa	ulir	ng		-4			2.7	2,04 1,90

Dadas as propriedades dos elementos A e B, na tabela acima, seguindo o raciocínio de Mendeleev, assinale a alternativa correta sobre o elemento de número atômico 13.

- a) A sua eletronegatividade é maior que 2,04.
- b) O seu raio atômico é maior que 117 pm.
- c) A sua energia de ionização é maior que 801 kJ mol⁻¹.
- d) A sua energia de ionização é maior que 787 kJ mol⁻¹, porém menor que 801 kJ mol⁻¹.
- e) O seu raio atômico é maior que 83 pm, porém menor que 117 pm.

FÓRMULAS: MOLECULAR, MÍNIMA, PERCENTUAL

São conhecidas, atualmente, milhões de substâncias químicas.

Imagem: fir0002/GNU Free Documentation License

Qual é a linguagem universal usada para representar uma substância?

Fórmulas

Imagem : Editor at Large/Creative Commons Attribution-Share Alike 2.5 Generic

 $C_{12}H_{22}O_{11}$

H₂O

Fórmula química

Indica os <u>elementos químicos</u> que formam uma <u>substância</u> química e a proporção entre eles.

<u>Tipos de fórmulas</u> nos cálculos estequiométricos

Fórmula percentual

Fórmula mínima

Fórmula molecular

1. FÓRMULA PERCENTUAL

Na Química, acontece fato semelhante. Dizemos, por exemplo, que a composição centesimal do metano (CH₄) é 75% de carbono e 25% de hidrogênio.

Isso significa que, em cada 100g de metano, encontramos 75g de carbono e 25g de hidrogênio.

1. FÓRMULA PERCENTUAL

A <u>fórmula percentual ou centesimal</u> indica a massa de cada elemento químico que existe em 100 partes de massa (100g, 100 Kg) da substância.

1. FÓRMULA PERCENTUAL

Ex.1: Um estudante da rede estadual de Pernambuco realizou uma análise química de 0,40 g de um certo óxido de ferro e revelou que a amostra apresenta 0,28 g de ferro e 0,12 g de oxigênio. Determine a fórmula percentual.

Imagem: C John/Public Domain

Resolução:

Para o "Fe"

0,40 g de óxido ---- 100 % 0,28 de Fe ---- x

X = 70 % de Fe

• Para o "O"

0,40 g de óxido ----- 100 % 0,12 g de O ----- y

Portanto, a fórmula percentual da amostra é Fe70%O30%.

2. FÓRMULA MÍNIMA OU EMPÍRICA

Nos seres humanos, o metabolismo da glicose é a principal forma de suprimento energético. A partir da glicose, uma série de intermediários metabólicos pode ser suprida, como esqueletos carbônicos de aminoácidos, nucleotídeos, ácidos graxos etc.

Molécula da glicose:

Fórmula molecular: C₆H₁₂O₆

Proporção entre os átomos:

6:12:6

Menor proporção entre os átomos:

1:2:1

Fórmula mínima:

CH₂O

A <u>fórmula mínima ou empírica</u> indica a proporção mínima, em números inteiros, dos átomos de cada elemento químico em uma molécula da substância.

Tabela 1		mula mínima de algumas âncias
Nome da substância	Fórmula molecular	Fórmula mínima
Água	H ₂ O	H ₂ O
Peróxido de hidrogênio	H2O2	HO
Glicose	C6H12O6	CH ₂ O
Ácido sulfúrico	H2SO4	H2SO4
Sacarose	C12H22O11	C12H22O11

Determinação da Fórmula mínima:

- 1 cálculo do número de mols;
- 2 dividir todos os números de mols de 1 pelo menor deles calculados;
- 3 se ainda o resultado der fração, multiplicar todos os números de 2 por um número menor que os tornem em números inteiros.

Ex.7: Calcular a fórmula mínima de um composto que apresenta 43,4% de sódio, 11,3% de carbono e 45,3% de oxigênio (massas atômicas: Na = 23, C = 12, O = 16).

Resolução:

Dados	Divisão das porcentagens pelas massas atômicas	Divisão pelo menor dos valores encontrados	Fórmula mínima
43,4% Na	<u>43,4</u> = 1,88 23	<u>1,88</u> = 2 0,94	
11,3% C	<u>11,3</u> = 0,94 12	<u>0,94</u> = 1 0,94	Na2CO3
45,3% O	<u>45,3</u> = 2,82 16	<u>2,82</u> = 3 0,94	

Ex.9: (UFV-MG) Sabe-se que, quando uma pessoa fuma um cigarro, pode inalar de 0,1 até 0,2 miligramas de nicotina. Descobriu-se em laboratório que cada miligrama de nicotina contém 74,00% de carbono, 8,65% de hidrogênio e 17,30% de nitrogênio. Calcule a fórmula mínima da nicotina. (Massas atômicas: C = 12, H = 1, N = 14)

Resolução:

Dados	Divisão das porcentagens pelas massas atômicas	Divisão pelo menor dos valores encontrados	Fórmula mínima
74,0% C	<u>74,0</u> = 6,17 12	<u>6,17</u> = 5 1,24	
8,65% H	<u>8,65</u> = 8,65 1	8,65 = 7 1,24	C5H7N
17,3% N	<u>17,3</u> = 1,24 14	1,24 = 1 1,24	

A tabela abaixo mostra os porcentuais em massa, obtidos da análise elementar do ácido ascórbico.

Elemento químico	Porcentagem (%)
Carbono	40,91
Hidrogênio	4,58
Oxigênio	54,51

Dado: MM (ácido ascórbico) = 176,12 g.mol⁻¹ Logo, a fórmula mínima desse composto é

- a) CHO
- b) $C_2H_2O_2$
- c) $C_3H_4O_3$
- d) $C_6H_8O_6$

A análise de uma substância desconhecida revelou a seguinte composição centesimal: 62,1% de carbono, 10,3% de hidrogênio e 27,5% de oxigênio. Pela determinação experimental de sua massa molar, obteve-se o valor 58,0 g/mol.(Massas atômicas: H = 1 u; C = 12 u; O = 16 u)

É correto concluir que se trata de um composto orgânico de fórmula molecular:

- a) $C_3H_6O_2$
- b) CH_6O_2
- c) $C_2H_2O_2$
- d) $C_2H_4O_2$
- e) C_3H_6O