Simulating compound non-homogeneous Poisson process for cell proliferation process (in this simulation I start with the simple case where there is no non-viable stem cell, i.e  $p_4=0$ . The simulation is similar to what we have done with the differential equation model, with a different way to simulate the event time

Use the package **nhppp** to simulate the event times (non-homogeneous Poisson process) based on the intensity function  $\lambda(t) = rS(t) = r \cdot S_0 \exp\{r \int_0^t [p_1(v) - p_3(v)] dv\}$ .

The package **nhppp** offers 3 different methods to simulate the event: thinning, time inversion and ordered statistics. The time inversion and ordered statistics uses the cumulative intensity function  $\Lambda(t) = \int_0^t \lambda(v) dv$  and its inverse (preimage)  $\Lambda^{-1}(t)$ . However, since our function  $\Lambda(t)$  involves integrals and no closed form for the inverse, I use the thinning algorithm.

The thinning algorithm simulates the target non-homogeneous Poisson process with intensity  $\lambda(t)$  by first drawing events from an easy-to-sample non-homogeneous Poisson process with intensity  $\lambda_1(t) > \lambda(t)$ , then accepts sample i with probability  $\lambda(Z_i)/\lambda_1(Z_i)$ . In this simulation, I choose  $\lambda_1(t) = \exp(a+bt)$ .

- At each of the generated event time, sample a division event (divide into 2 stem cells  $(p_1)$ , divide into 1 stem cell and 1 ependymal cell  $(p_2)$ , and divide into 2 ependymal cell  $(p_3)$ ) based on the proliferation function

$$q(t) = p_2(t) + 2p_3(t) = 2 - \frac{1}{a_0 + a_1 t + a_2 t^2}.$$

The probabilities are determined as follows

$$p_1(t) = \frac{2 - q(t)}{k},$$

$$p_2(t) = \max\left(0, \frac{(k-2) * (2 - q(t))}{k}\right),$$

$$p_3(t) = \max\left(0, \frac{2 - k + (k-1) * q(t)}{k}\right).$$

I tried to run the simulation with the following parameters: starting stem cells  $S_0=200$ , division rate r=0.2, and the proliferation parameter  $a_0=1.2$ ,  $a_1=-0.106$ ,  $a_2=0.005$ . Figure 1 is the intensity function  $\lambda(t)$  with the given parameters. Figure 2 is simulated cell counts of 1 replication and the expected cell counts with the given parameters. I will simulate more replications as well as with different parameter setting.



Figure 1. Intensity function



Figure 2. Simulated cell counts