Lema de bombeo para lenguajes libres de contexto

Clase 18

IIC 2223

Prof. Cristian Riveros

Lema de bombeo para lenguajes libres de contexto

Sea $L \subseteq \Sigma^*$. Si L es **libre de contexto** entonces:

(LB^{CFL}) existe un
$$N > 0$$
 tal que para toda palabra $z \in L$ con $|z| \ge N$ existe una descomposición $z = u v w x y$ con $vx \ne \epsilon$ y $|vwx| \le N$ tal que para todo $i \ge 0$, $u \cdot v^i \cdot w \cdot x^i \cdot y \in L$.

Demostración

(PIZARRA)

Contrapositivo del lema de bombeo para CFL

Sea $L \subseteq \Sigma^*$. Si L es libre de contexto entonces:

(LB^{CFL}) existe un
$$N > 0$$
 tal que para toda palabra $z \in L$ con $|z| \ge N$ existe una descomposición $z = u \ v \ w \ x \ y$ con $vx \ne \epsilon$ y $|vwx| \le N$ tal que para todo $i \ge 0$, $u \cdot v^i \cdot w \cdot x^i \cdot y \in L$.

Sea $L \subseteq \Sigma^*$. Si:

entonces L NO es libre de contexto.

Jugando contra un demonio (versión CFL)

"L NO es CFL"

"L es CFL"

El escoge un N > 0

Uno escoge $z \in L$ con $|z| \ge N$

El escoge $u \vee w \times y = z$ con $v \times x \neq \epsilon$ **y** $|vwx| \leq N$

Uno escoge $i \ge 0$

Uno gana si $u \cdot v^i \cdot w \cdot x^i \cdot y \notin L$ El gana si $u \cdot v^i \cdot w \cdot x^i \cdot y \in L$

Jugando contra un demonio (a^{n^2})

"aⁿ² NO es CFL"

"aⁿ² es CFL"

Escojo N > 0

Yo escojo $a^{N^2} \in L$

Entonces escojo
$$\underbrace{a^j}_{u}\underbrace{a^k}_{v}\underbrace{a^l}_{w}\underbrace{a^m}_{x}\underbrace{a^m}_{y}=a^{N^2}$$

con
$$k + m \neq 0$$
 y $k + l + m \leq N$

Yo escojo i = 2

¿quién gana el juego?

Jugando contra un demonio $(a^n b^n c^n)$

"a"b"c" NO es CFL"

"a"b"c" es CFL"

Escojo N > 0

Yo escojo $a^N b^N c^N \in L$

Entonces escojo $uvwxy = a^N b^N c^N \text{ con } vx \neq \epsilon \text{ } y \text{ } |vwx| \leq N$

Yo escojo i = 2

¿quién gana el juego?

Jugando contra un demonio $(a^nb^nc^n)$

Como $uvwxy = a^N b^N c^N$ con $vx \neq \epsilon$ y $|vwx| \leq N$, entonces:

$$vwx \in \mathcal{L}(a^*b^*)$$
 o $vwx \in \mathcal{L}(b^*c^*)$

¿ por qué?

- Si $vwx \in \mathcal{L}(a^+b^+)$, entonces:
 - $|u v^2 w x^2 y|_{a,b} > 2N$
 - $|uv^2wx^2y|_c = N$

por lo tanto $z' \notin L$.

- Si $vwx \in \mathcal{L}(b^+c^+)$, entonces:
 - $|u v^2 w x^2 y|_{b,c} > 2N$
 - $|uv^2wx^2y|_a = N$

por lo tanto $z' \notin L$.

En ambos casos, $uv^2wx^2y \notin L$

Jugando contra un demonio

entonces L NO es libre de contexto.

Lema de bombeo (version juego)

"Dado un lenguaje $L \subseteq \Sigma^*$, si UNO tiene una estrategia ganadora en el juego ($\neg LB^{CFL}$) para toda estrategia posible del demonio, entonces L NO es libre de contexto."

Consecuencias: unión, intersección y complemento

Proposición

Para todo lenguajes libres de contexto L_1 y L_2 , $L_1 \cup L_2$ es un lenguaje libre de contexto.

Existen lenguajes libres de contexto L, L₁ y L₂:

- **L**₁ \cap L₂ **NO** es un lenguaje libre de contexto.
- L^c **NO** es un lenguaje libre de contexto.

Demostración

$$L_{1} = \left\{ a^{n}b^{n}c^{m} \mid n \geq 0, m \geq 0 \right\}$$

$$L_{2} = \left\{ a^{m}b^{n}c^{n} \mid n \geq 0, m \geq 0 \right\}$$

ξson L_1 y L_2 lenguajes libres de contexto? ξy $L_1 ∩ L_2$?

Ejercicio: demuestre el caso de L^c .