Internet Protocols EBU5403

Module organiser: Richard Clegg (r.clegg@qmul.ac.uk) Michael Chai (michael.chai@qmul.ac.uk) Cunhua Pan(c.pan@qmul.ac.uk)

	Part I	Part 2	Part 3	Part 4
Ecommerce + Telecoms I	Richard Clegg		Cunhua Pan	
Telecoma 2	Michael Chai			

Aims

- To introduce communication networks in general
- To provide knowledge of Internet Protocols
 - insight into functionality and inter-relationship.
- To enable design of basic intranet and internet architectures, including both bridged and routed networks.
- To provide in-depth knowledge of Transport Control Protocols
 - insight into features built on underlying network.

Key learning outcomes of EBU5403

- Explain the protocols that provide the Internet infrastructure, their role, how they operate and a number of implementation details.
- Design simple network architectures.
- Perform basic configuration and fault diagnosis in an Interior Gateway Routed environment using IOS-like scripts and utilities such as TCPDump, Ping and TraceRoute

Assessments

- Exam 75%
- Coursework 25%
 - Lab assessment (15%) in December.
 - 2 class tests (10%) half way through module and at the module end – closed book tests
- Structure of module. Prerecorded lectures telling you about the material.
- Interactive tutorials. You must watch the lectures before doing these tutorials. (If you have not watched the lecture you will find the tutorial hard to understand).

Course information

- QMPlus
 - All teaching materials (lecture slides and tutorial questions)
 - Lab information
- Check your QM email account regularly and you can email us by using your QM email address only.
 - Include your name in Pinyin (Not Chinese.)
- Module Representations
 - 2 students to volunteer.
 - Quick feedback meeting after class during the week.
- Course structure
 - Divided into four parts (used to be four weeks)
 - Call these parts A, B, C, D
- How to follow this course:
 - Watch online lectures before class.
 - Class will reinforce the points from these lectures.
 - If you haven't watched lectures you won't be able to follow the class

Part A Introduction

Many of these slides (and the theme) come from the course text book by Jim Kurose and Keith Ross

The original slides are freely available to download online.

Computer Networking: A Top Down Approach

7th edition
Jim Kurose, Keith Ross
Pearson/Addison Wesley
April 2016

Structure of course

- Part A
 - Introduction to IP Networks
 - The Transport layer (part 1)
- Part B
 - The Transport layer (part II)
 - The Network layer (part I)
 - Class test on part A and part B material
- Part C
 - The Network layer (part II)
 - The Data link layer (part I)
 - Router lab tutorial (assessed lab work after this week)
- Part D
 - The Data link layer (part II)
 - Network management and security
 - Class test on part C and part D material

Part A: IP networks introduction

our goal:

- get "feel" and terminology
- more depth, detail later in course
- approach:
 - use Internet as example

overview:

- what's the Internet?
- what's a protocol?
- network edge; hosts, access net, physical media
- network core: packet/circuit switching, Internet structure
- performance: loss, delay, throughput
- protocol layers, service models
- history

Introduction to IP: roadmap

- I.I what is the Internet?
- 1.2 network edge
 - end systems, access networks, links
- 1.3 network core
 - network structure
- 1.4 delay, loss, throughput in networks
- 1.5 protocol layers, service models
- 1.6 history

Lecture 1

Lecture 2

Introduction to IP: roadmap

- I.I what is the Internet?
- 1.2 network edge
 - end systems, access networks, links
- 1.3 network core
 - network structure
- 1.4 delay, loss, throughput in networks
- 1.5 protocol layers, service models
- 1.6 history

What's the Internet: "nuts and bolts" view

- billions of connected computing devices:
 - hosts = end systems
 - running network apps

communication links

- fiber, copper, radio, satellite
- transmission rate: bandwidth

- packet switches: forward packets (chunks of data)
 - routers and switches

ISP (Internet Service Provider)

What's the Internet: "nuts and bolts" view

- Internet: "network of networks"
 - Interconnected Internet Service Providers (ISPs)
- protocols control sending, receiving of messages
 - TCP (Transmission Control Protocol)
 - IP (Internet Protocol)
 - HTTP (HyperText Transfer Protocol)
 - 802.11 (WiFi standard)
 - Many many more
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

What's the Internet: a service view

- infrastructure that provides services to applications:
 - Web, VoIP (Voice over IP), email, games, e-commerce, social nets, ...
- provides programming interface to apps
 - hooks that allow sending and receiving app programs to "connect" to Internet
 - provides service options, analogous to postal service

What's a protocol?

human protocols:

- "what's the time?"
- "I have a question"
- introductions
- ... specific messages sent
- ... specific actions taken when messages received, or other events

network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of messages sent and received among network entities, and actions taken on message transmission, receipt

What's a protocol?

a human protocol and a computer network protocol:

Q: other human protocols?

Introduction to IP: roadmap

- I.I what is the Internet?
- 1.2 network edge
 - end systems, access networks, links
- 1.3 network core
 - network structure
- 1.4 delay, loss, throughput in networks
- 1.5 protocol layers, service models
- 1.6 history

A closer look at network structure:

network edge:

- hosts: clients and servers
- servers often in data centers
- part of the network with the users and computers
- access networks, physical media: wired, wireless communication links
 - part of network connecting edge to rest of network

network core:

- the "middle" of the network
- interconnected routers
- network of networks

Access networks and physical media

Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks

keep in mind:

- bandwidth (bits per second) of access network?
- shared or dedicated?

Access networks:

 These networks connect end users to the rest of the internet.

Network basics bits and bytes

- A bit is a "binary digit" a single 0 or 1.
- A byte is a group of eight bits can be thought of as a number from 0 to 255 (or -128 to 127) or as two digits of "hexadecimal" (eg A0, FF, 10).
- Amounts of data are usually specified in bytes.
 - IKB = I kilobyte = 1000 bytes = 8000bits
 - IMB = I megabyte = I million bytes = 8 million bits
 - IGB = I gigabyte = 1000 million bytes = 8000 million bits
- BUT speeds are usually in bits per second (not bytes)
 - Ib/s (or bps) = I bit per second
 - IKb/s = 1000 bits per second
 - IMb/s = I million bits per second
 - IGb/s = 1000 million bits per second

Network basics – packets

- Imagine we want to transmit I0GB of data.
- This may take several hours to send.
- It is useful to split the data down into smaller units (known as packets).
- This "packet" of data can be sent relatively quickly.
- The packet can be, for example, checked for errors.
- The packet could be retransmitted if a problem was detected.

Host: sends packets of data

host sending function:

- takes application message
- breaks into smaller chunks, known as packets, of length L bits
- transmits packet into access network at transmission rate R
 - link transmission rate, aka link capacity, aka link bandwidth

transmission delay time needed to transmit
$$L$$
-bit packet into link $= \frac{L \text{ (bits)}}{R \text{ (bits/sec)}}$

Physical media

 Physical media represent the actual hardware that carries the data. Think about physical wires or radio transmissions (wireless).

Example of bandwidth

- A packet of I500B is transmitted by a network which has a bandwidth of IMb/s. How long does it take?
- Formula L (length, bits)/ R(rate, bits/second)
- 1500B = 1500x8 bits = 12,000 bits
- IMb/s= 1,000,000 bits per second.
- Time = 12,000/1,000,000 sec
- = 0.012 sec
- = 12 ms

What have we learned?

- Internet
 - A network of networks. Inter = in between.
 - Protocols govern how systems connect.
 - Later lectures will explain these protocols in detail.
- Bandwidth: Measure of how much data we can send
- Packet: a basic unit of data