Week4

Qi'ao Chen 21210160025

March 23, 2022

Exercise 1. Find a set *A* and a relation $R \subseteq A \times A$ s.t.

$$\exists^{\infty}x\in A\exists^{\infty}y\in A:(x,y)\in R$$

$$\neg\exists^{\infty}y\in A\exists^{\infty}x\in A:(x,y)\in R$$

Proof. Let $A=\mathbb{N}$ and R be < on \mathbb{N} . Then there is infinitely many $r\in\mathbb{N}$ with infinitely many elements of \mathbb{N} greater than it. But there is only finitely many elements which is smaller than it.

Exercise 2. Consider the structure $(\mathbb{R},+,-,\cdot,0,1,\leq)$. Let $\varphi(x,y)$ be the formula $y-1\leq x\wedge x\leq y+1$. Show that $\varphi(x,y)$ has the order property (in a monster model $\mathbb{M}\succeq\mathbb{R}$)

Proof. Let $b_0=2$, $b_i=\frac{1}{i}$ for i=1,2,... Let $a_0=0$, $a_i=\frac{1}{i+1}-1$ for i=1,2,... Then $a_i+1=b_{i+1}$ and hence $b_j\in [a_i-1,a_i+1]$ for any i< j. And for $i\geq j, b_j>a_i+1$.

Exercise 3. Let $\mathbb M$ be a monster model of DLO. Let $\tau \in S_1(\mathbb M)$ be the type at $+\infty$. Consider the Morley product $\tau \otimes \tau(x,y) \in S_2(\mathbb M)$. Show that $(\tau \otimes \tau)(x,y)$ is the unique completion of $\tau(x) \cup \tau(y) \cup \{x < y\}$

Proof. Let $\Sigma(x,y):=\tau(x)\cup\tau(y)\cup\{x< y\}$. First we show that Σ has unique extension. Otherwise, take two $p_1,p_2\in S_2(\mathbb{M})$ containing Σ and suppose p_1,p_2 is realized by x_1y_1,x_2y_2 in $\mathbb{N}\succeq\mathbb{M}$ respectively. Then we have $\mathbb{M}< x_1< y_1$ and $\mathbb{M}< x_2< y_2$. Let $f=\mathrm{id}_{\mathbb{M}}\cup\{(x_1,x_2),(y_1,y_2)\}$. Then f is an order-preserving bijection from $\mathbb{M}\cup\{x_1,y_1\}$ to $\mathbb{M}\cup\{x_2,y_2\}$. By quantifier elimination of DLO, f is a partial elementary map and hence $p_1=\mathrm{tp}(x_1y_1/\mathbb{M})=\mathrm{tp}(x_2y_2/\mathbb{M})=p_2$, a contradiction.

Then we show that $\tau \otimes \tau(x,y) \supseteq \Sigma(x,y)$.

First we prove that $\tau(x)$ is \emptyset -invariant. Let $\Gamma(x) = \{x > a : a \in \mathbb{M}\}$, then for any $\sigma \in \operatorname{Aut}(\mathbb{M})$, $\sigma(\Gamma(x)) = \Gamma(x)$. Then $\sigma(\tau) \supseteq \sigma(\Gamma) = \Gamma$ and by previous exercise, $\tau = \sigma(\tau)$. Then we show that $\tau \otimes \tau(x,y)$ is consistent with $\tau(x) \cup \tau(y) \cup \{x < y\}$. For any finite parameter set $A \subseteq \mathbb{M}$, $a, b \models \tau \otimes \tau(x,y) \upharpoonright_A$ iff $a \models \tau(x) \upharpoonright_A$ and $b \models \tau(y) \upharpoonright_{Aa}$ iff $a, b \models (\tau(x) \cup \tau(y) \cup \{x < y\}) \upharpoonright_A$. Thus $\tau \otimes \tau(x,y) \cup \tau(x) \cup \tau(y) \cup \{x < y\}$ is consistent and hence $\tau \otimes \tau(x,y) \vdash \tau(x) \cup \tau(y) \cup \{x < y\}$ since $\tau \otimes \tau(x,y)$ is complete

Exercise 4. Let $\mathbb M$ be a monster model of a complete theory T. Suppose $\mathbb M$ is an expansion of a linear order. Let $p \in S_1(\mathbb M)$ be a global A-invariant 1-type. Suppose that p commutes with itself. Show that $p = \operatorname{tp}(c/\mathbb M)$ for some $c \in \mathbb M$

Proof. For any $a,b \vDash (p \otimes p(x,y)) \upharpoonright_A$, $a \vDash p \upharpoonright_A$ and $b \vDash p \upharpoonright_{Aa}$. Since p commutes with itself, $a \vDash p \upharpoonright Ab$. Since (\mathbb{M}, \leq) is a linear order, $x < m \lor x = m \lor x > m \in p(x)$ for any $m \in \mathbb{M}$. If a = b, then $x = a \in p(x)$ and p is realized by a. Otherwise, if a < b, then $a < x \in p(x)$ as $b \vDash p \upharpoonright_{Aa}$ and x < b as $a \vDash p \upharpoonright_{Ab}$. Hence either $a < x \land x < b \in p(x)$ or $b < x \land x < a \in p(x)$.

I don't know how to continue:(□