ANOVA table and F tests

1. For the model: $Y = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k + \epsilon$ we can write the ANOVA table as:

Source	$\mathrm{d}\mathrm{f}$	SS	MS
Regression	k	$\hat{\beta}' X' Y - n \bar{y}^2$	SSReg/k
Error	n-k-1	$\sum \hat{\epsilon}_i^2 = \hat{\epsilon}' \hat{\epsilon}$	$SSErr/(n-k-1) = s_{\epsilon}^2$
Total	n-1	$\sum (y_i - \bar{y})^2 = Y'Y - n\bar{y}^2$	

Note that F = MSReg/MSError is a test of H_0 : $\beta_1 = \beta_2 = \cdots = \beta_k = 0 \mid \beta_0$.

2. To focus on the sequential fitting order of parameters, we can write the ANOVA table as, for example:

Source	$\mathrm{d}\mathrm{f}$
$\beta_1 \beta_0$	1
$\beta_2 \beta_0,\beta_1$	1
:	:
$\beta_k \beta_0, \dots, \beta_{k-1}$	1
Error	n-k-1
Total	n-1

- 3. To test H_0 : $C\beta = t$ we use an "additional sum of squares test." The test has three steps.
 - (a) Fit the "full model", which corresponds to the alternative hypothesis: get its SSError and dfError.
 - (b) Fit the "reduced model", which agrees with the *null hypothesis*: get its SSError and dfError.
 - (c) Form the F-statistic and perform an F-test. Let

$$F = \frac{\left(\text{SSError}_{\text{reduced}} - \text{SSError}_{\text{full}}\right) / \left(\text{dfError}_{\text{reduced}} - \text{dfError}_{\text{full}}\right)}{\text{SSError}_{\text{full}} / \text{dfError}_{\text{full}}}$$

The degrees of freedom for the F-test are (dfError_{reduced} – dfError_{full}) in the numerator and dfError_{full} in the denominator.

The quantity

$$(SSError_{reduced} - SSError_{full})$$

in the numerator of the F-test is called the "additional sum of squares." It refers to the change in the error sum of squares when a hypothesis is assumed to be true. The denominator of the F-test could also be called MSError_{full}.

Residuals

There are several different definitions of residual. Here is a summary table of some of these definitions, including their names in R and SAS.

DefinitionTypeRSAS
$$\hat{\epsilon}_i = y_i - \hat{y}_i$$
rawresidualsresiduals $r_i = \frac{\hat{\epsilon}_i}{s_{\epsilon}\sqrt{1-h_{ii}}}$ internally studentizedrstandardstudent $t_i = \frac{\hat{\epsilon}_i}{s_{(i)}\sqrt{1-h_{ii}}}$ externally studentizedrstudentrstudent

- 1. $\operatorname{var}(\hat{\epsilon}_i) = \sigma_{\epsilon}^2 (1 h_{ii})$ where h_{ii} is from the "hat" matrix $H = X(X'X)^{-1}X'$.
- 2. In simple linear regression,

$$h_{ii} = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2}$$

- 3. In the formula for t_i , $s_{(i)}$ is the "leave one out" estimate of σ_{ϵ} based on the regression that is conducted on all the data except the *i*th case.
- 4. t_i can also be calculated as

$$t_i = \frac{\hat{\epsilon}_{(i)}}{\sqrt{\widehat{\text{var}}(\hat{\epsilon}_{(i)})}}$$

where $\hat{\epsilon}_{(i)}$ is the residual corresponding to the *i*th observation, but based on the regression calculated using all data except observation *i*.

In either case, t_i has a T distribution with n-k-2 df. This suggests a formal test for an outlier:

- We identify the *i*th observation as an outlier if $|t_i| > T_{n-k-2,\alpha/2}$ where $T_{n-k-2,\alpha/2}$ satisfies $P(T_{n-k-2} > T_{n-k-2,\alpha/2}) = \alpha/2$.
- It is common in this situation to apply a Bonferroni correction and therefore use $\alpha = 0.05/n$.