Generative modeling

Hastie, Tibshirani, Friedman Ch 4.3 Kevin Murphy Ch. 4.1-4.2

> CS 6140 Machine Learning Professor Olga Vitek

February 16, 2017

Generative vs discriminative models

- Goal: predict Y
 - Bayes rule:

$$p(Y|\mathbf{X}) = \frac{p(Y) \cdot p(\mathbf{X}|Y)}{p(\mathbf{X})}$$

- Generative classifiers
 - Specify prior probability of p(Y)
 - Assume conditional distribution p(X|Y)
 - Use Bayes rule to derive the posterior p(Y|X)
 - Example: Linear discriminant analysis
- Discriminative classifiers
 - Estimate the posterior the posterior p(Y|X)
 - Do not assume the distribution on ${f X}$
 - **Example:** Y binary: logistic regression

Generative modeling

- Priors π_k , $\Sigma_k = 1$.
 - Usually $\hat{\pi}_k = \frac{\text{\# of observations in class } k}{\text{Total \# of observations}}$
- Density $f_k(\mathbf{X})$
- Posterior $\Pr\{Y = k | \mathbf{X}\} = \frac{f_k(\mathbf{X})\pi_k}{\sum\limits_{l=1}^K f_l(\mathbf{X})\pi_l}$
- MAP (maximum a posteriori) decision
 - Based on Bayes rule under 0-1 loss $\widehat{Y}(\mathbf{X}) = \arg\max_k \Pr\{Y = k | \mathbf{X}\} = \arg\max_k f_k(\mathbf{X}) \, \pi_k$
- ullet Specification of $f_k(\mathbf{X})$ defines the classifier
 - $-f_k(\mathbf{X})$ Gaussian, same Σ per class $\longrightarrow \mathsf{LDA}$
 - $f_k(\mathbf{X})$ Gaussian, different $\Sigma_k \longrightarrow \mathsf{LQA}$
 - $-f_k(\mathbf{X})$ mixture of Gaussians \longrightarrow Mixture models
 - $f_k(\mathbf{X}) = \prod_{p=1}^P f_k(X_p) \longrightarrow \text{Na\"ive Bayes}$
 - $-f_k(\mathbf{X})$ nonparametric \longrightarrow Kernel estimates

Linear Discriminant Analysis

One predictor: model

Assume that the observations are from univariate Normal distributions with same variance

$$f_k(x) = \frac{1}{\sqrt{2\pi}\sigma} exp\left\{-\frac{1}{2\sigma^2}(x - \mu_k)^2\right\}$$

James, Witten, Hastie, Tibshirani

An Introduction to Statistical Learning 2013, Sec 4.4

One predictor: decision

• Plug in Normal distribution in $Pr\{Y = k|x\}$

$$-\Pr\{Y=k|x\} = \frac{\frac{1}{\sqrt{2\pi}\sigma}exp\left(-\frac{1}{2\sigma^2}(x-\mu_k)^2\right)\pi_k}{\sum\limits_{l=1}^{K}\frac{1}{\sqrt{2\pi}\sigma}exp\left(-\frac{1}{2\sigma^2}(x-\mu_l)^2\right)\pi_l}$$

Assign Y to class k:

$$\begin{split} \hat{Y}(\mathbf{x}) &= \arg\max_{k} \Pr\{Y = k | x\} \\ &= \arg\max_{k} \log(\Pr\{Y = k | x\}) \\ &= \arg\max_{k} x \cdot \frac{\mu_{k}}{\sigma^{2}} - \frac{\mu_{k}^{2}}{2\sigma^{2}} + \log(\pi_{k}) \\ &= \arg\max_{k} \delta_{k}(x) \end{split}$$

- $\delta_k(x)$ is linear in x
- When $\pi_1 = \pi_2$, the decision boundary is

$$x = \frac{\mu_1^2 - \mu_2^2}{2(\mu_1 - \mu_2)} = \frac{\mu_1 + \mu_2}{2}$$

ullet In practice, estimate π_k , μ_k , σ from data

James, Witten, Hastie, Tibshirani

An Introduction to Statistical Learning 2013, Sec 4.4

Two predictors

Assume that the observations are from a multivariate Normal distributions with same variance-covariance

- Left: (P=2)
 - Contours: 95% of the probability.
 - Dashed lines: true Bayes decision boundaries between pairs of classes
 - Solid lines: true Bayes decision boundaries between all three classes.
- Right: (P=2)
 - 20 observations from each Gaussian distribution, and the fitted LDA decision boundaries.

James, Witten, Hastie, Tibshirani

An Introduction to Statistical Learning 2013, Sec 4.4

Optimal classification

MVN distribution & equal covariance across classes

$$\rightarrow$$
 linear rule: $\hat{Y}(\mathbf{X}) = \arg \max_{k} \Pr\{Y = k | \mathbf{X}\} =$

Bayes
$$= \arg \max_{k} \frac{f_k(\mathbf{X}) \, \pi_k}{\sum\limits_{l=1}^{K} f_l(\mathbf{X}) \, \pi_l}$$

no den. arg
$$\max_{k} f_k(\mathbf{X}) \pi_k$$

$$\stackrel{\log}{=} \arg \max_{k} \log \left[f_{k}(\mathbf{X}) \, \pi_{k} \right]$$

$$= \arg \max_{k} \left[log f_k(\mathbf{X}) + log \pi_k \right]$$

$$\stackrel{\mathsf{MVN}}{=} \quad \text{arg max } \left[-log(2\pi)^{\frac{P}{2}} |\Sigma|^{\frac{1}{2}} \right. \\ \left. -\frac{1}{2} (\mathbf{X} - \mu_k)' \Sigma^{-1} (\mathbf{X} - \mu_k) + log \pi_k \right]$$

no const.
$$= \max_{k} \left[-\frac{1}{2} (\mathbf{X} - \mu_{k})' \Sigma^{-1} (\mathbf{X} - \mu_{k}) + \log \pi_{k} \right]$$
open
$$= \max_{k} \left[\mathbf{X}' \Sigma^{-1} \mu_{k} - \frac{1}{2} \mu_{k} \Sigma^{-1} \mu_{k} - \frac{1}{2} \mathbf{X}' \Sigma^{-1} \mathbf{X} + \log \pi_{k} \right]$$
with k arg $\max_{k} \left[\mathbf{X}' \Sigma^{-1} \mu_{k} - \frac{1}{2} \mu_{k} \Sigma^{-1} \mu_{k} + \log \pi_{k} \right]$

The expression in brackets is linear in X

Decision boundary

Linear discriminant function

$$\delta_k(\mathbf{X}) = \mathbf{X}' \mathbf{\Sigma}^{-1} \mu_k - \frac{1}{2} \mu_k \mathbf{\Sigma}^{-1} \mu_k + \log \pi_k$$

ullet Decision boundary between classes k and l

$$- \{X : \Pr\{Y = k | X\} = \Pr\{Y = l | X\}\}$$

$$= \{X : \delta_k(X) = \delta_l(X)\}$$

$$= \{X : log \delta_k(X) - log \delta_l(X) = 0\}$$

$$= \{X : log \frac{\pi_k}{\pi_l} - \frac{1}{2}(\mu_k + \mu_l)' \Sigma^{-1}(\mu_k - \mu_l)$$

$$+ X' \Sigma^{-1}(\mu_k - \mu_l) = 0\}$$

- E.g., for
$$K=2$$

$$a_0 = log \frac{\pi_1}{\pi_2} - \frac{1}{2}(\mu_1 + \mu_2)' \Sigma^{-1}(\mu_1 - \mu_2)$$

$$(a_1, a_2, \dots, a_P)' = \Sigma^{-1}(\mu_1 - \mu_2)$$
 Classify to class 1 if $a_0 + \sum_{j=1}^P a_j x_j > 0$

Posterior probability

$$\Pr\{Y = k | \mathbf{X}\} = \frac{f_k(\mathbf{X}) \,\pi_k}{\sum\limits_{l=1}^K f_l(\mathbf{X}) \,\pi_l} = \frac{\exp\{-\frac{1}{2} \,\delta_k(\mathbf{X})\}}{\sum\limits_{l=1}^K \exp\{-\frac{1}{2} \,\delta_l(\mathbf{X})\}}$$

Non-linear decision boundaries with LDA

Can obtain non-linear decision boundaries with LDA in an augmented space

- Left: (P=2)
 - Boundaries by linear discriminant analysis
- Right: (P=2)
 - Linear boundaries in five-dimensional space $X_1, X_2, X_1X_2, X_1^2, X_2^2$
 - Linear inequalities in the augmented space are quadratic inequalities in the original space.

Hastie, Tibshirani, Friedman

The Elements of Statistical Learning 2008

Quadratic Discriminant Analysis

- ullet Σ_k are not assumed equal
- The discriminant function is not linear

$$\begin{split} \widehat{Y}(\mathbf{X}) &= \arg\max_k f_k(\mathbf{X}) \, \pi_k = \\ \arg\max_k \left[-log(2\pi)^{\frac{P}{2}} |\Sigma_k|^{\frac{1}{2}} - \frac{1}{2} (\mathbf{X} - \mu_k)' \Sigma_k^{-1} (\mathbf{X} - \mu_k) + log\pi_k \right] \end{split}$$

ullet Decision boundary between classes k and l

$$- \{X : \Pr\{Y = k | X\} = \Pr\{Y = l | X\}\}$$

$$= \{X : \delta_k(X) = \delta_l(X)\}$$

$$= \{X : log\delta_k(X) - log\delta_l(X) = 0\}$$

$$= \{X : log\frac{\pi_k}{\pi_l} - log\frac{|\Sigma_k|}{|\Sigma_l|} - \frac{1}{2}(X - \mu_k)'\Sigma_k^{-1}(X - \mu_k)$$

$$+ \frac{1}{2}(X - \mu_l)'\Sigma_l^{-1}(X - \mu_l) = 0\}$$

The quadratic terms do not cancel

Quadratic Discriminant Analysis

- Left: LDA in augmented five-dimensional space
- Right: QDA.
 - Both LDA and QDA typically perform well
 - Not because most data are Gaussian, or because most covariance matrices are equal
 - More likely, most data support simple decision boundaries, and the estimates via the Gaussian models are stable.
 - This is also a bias vs variance trade-off: estimate the boundary with bias, but less variance

Hastie, Tibshirani, Friedman, *The Elements of Statisti-cal Learning* 2008

Estimation of the decision boundary

- Estimation from the training set:
 - $\hat{\pi}_k = N_k/N$
 - $\hat{\mu}_k = \sum_{i:Y_i=k} \mathbf{X}_i / N_k$

$$- \hat{\Sigma}_{P \times P} = \sum_{k=1}^{K} \sum_{i:Y_i=k} (\mathbf{X}_i - \hat{\mu}_k) (\mathbf{X}_i - \hat{\mu}_k)' / (N - K)$$

- Haw many parameters in LDA?
 - Approx. $(K-1) \times (P+1)$ parameters
 - Only need the differences $\delta_k(\mathbf{X}) \delta_K(\mathbf{X})$, where K is a pre-chosen class (e.g the last)
 - Each difference requires P + 1 parameters
- Haw many parameters in QDA?
 - Estimate separate covariance matrices per class
 - Large increase in parameters when P increases
 - Approx. $(K-1) \times \{P(P+3)/2+1\}$

Nearest Centroids: (diagonal-covariance LDA)

- Data x_{ij}
 - Observations i = 1, ..., N and features j = 1, ..., P
- Training set centroid for feature j: in class k : $\bar{x}_{jk} = \sum_{i:i \in C_k} x_{ij}/N_k$ and overall $\bar{x}_j = \sum_{j=1}^P x_{ij}/N$
- Test set prediction
 - For P >> N, covariance estimation is unstable.
 - A simple solution: assume independent features (i.e. a diagonal Σ)
 - The discriminant score is

$$\delta_k(\mathbf{x}_i) = -\sum_{j=1}^{P} \frac{(x_{ij} - \bar{x}_{jk})^2}{s_j^2} + 2\log \pi_k$$

- The diagonal-covariance LDA classifier is equivalent to a nearest centroid classifier after standardization, correcting for class prior probability
- $\hat{Y}(\mathbf{x}_i) = \arg \max_{k} \delta_k(\mathbf{x}_i)$

Connection to dimension reduction

Overview

Ringnér, Nature Biotechnology, 2008

Singular value decomposition

- Each sample as an observation in a G-dimensional space
 - Use the 'traditional' representation of the data (rows=observations; columns=variables)
 - X is the $I \times G$ matrix of centered feature expressions

 Goal: find at most I linear combinations of features that best characterize the total between-sample variation

Singular value decomposition of X

 Each matrix can be represented with a Singular Value Decomposition

$$X = U \wedge V'$$

- U is a $N \times P$ orthonormal matrix (i.e. $U'U = I_P$) Columns of U are called left singular vectors
- V is a $P \times P$ orthonormal matrix (i.e. $V'V = I_P$) Columns of U are called right singular vectors
- Λ is a $P \times P$ diagonal matrix) The diagonal elements $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_P \geq 0$ At most N λ_i are non-zero
- \bullet Right-multiply both sides by V:

$$X V = U \Lambda$$

— The left side is the projection of the observations to unit vectors defined by columns of ${\cal V}$

Singular value decomposition of X

Scores

- coordinates of the observations on the dimensions defined by columns of ${\cal V}$
- E.g. the coordinate of observation i in direction j is $\sum_{k=1}^{P} (x_{ik} \bar{x}_{\cdot k}) \cdot v_{kj}$

Used to represent the observations in PCA plot

Loadings

- weight v_{kj} of feature k in the direction j
- sometimes used to characterize the 'relative importance' of the feature in defining the direction
- loadings are unique up to a sign flip (different software may return loadings with different sign)
- Scores and loadings cannot be used as "measures of statistical significance"

Principle component analysis of X

- ullet Calculate the sample variance-covariance of matrix of features $\Sigma_{P \times P}$
 - The element (j,k) of the matrix is

$$\hat{\sigma}_{jk}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_{ij} - \bar{x}_{\cdot j}) (x_{ik} - \bar{x}_{\cdot k})$$

ullet Singular Value Decomposition of Σ :

$$(N-1)\Sigma = X' X = V \wedge U' U \wedge V' \stackrel{U \text{ orthonorm}}{=} V \wedge^2 V'$$

- Can obtain same left singular vectors V
- The eigenvalues of covariance matrix = $\frac{1}{I-1}\lambda_j^2$
- SVD on the covariance matrix is referred to as Principle Component Analysis

Comments on PCA

- ullet Estimation of the covariance of features is unstable, and SVD of X is preferred
- ullet Decomposition of Σ helps interpretation

$$\sum_{j=1}^{P} \text{sample variance of columns of } X =$$

$$\sum_{j=1}^{P} \frac{1}{N-1} \sum_{i=1}^{N} (x_{ij} - \bar{x}_{\cdot j})^2 = \frac{1}{N-1} tr(X'X) =$$

$$\frac{1}{N-1}tr(V \wedge^2 V') = [property of trace]$$

$$\frac{1}{N-1}tr(\Lambda^2 \ V' \ V) = \frac{1}{N-1}tr\Lambda^2 = \frac{1}{N-1}\sum_{j=1}^P \lambda_j^2$$

- The proportion of total variance explained by the principle component j is $\frac{\lambda_j^2}{\sum_k \lambda_k^2}$
- Select a subset of principle components that explain most variance of features between samples

Comments on PCA

- Problems with this approach
 - Does not distinguish useful (i.e. between-group)
 and nuisance (i.e. within-group) variation
 - Principle components can be driven by features with large nuisance variation
 - Cannot use scores as evidence of the ability of the features to predict the labels of the observations

A typical modification

- In addition to centering features, standardize them
- $-\Sigma$ becomes the sample correlation matrix
- Problem: standardization can remove useful variation of a feature between observations

Conclusion

PCA performs best when all features have similar nuisance variation

Example: 2 features

• Sample correlation matrix of 2 features:

$$\Sigma = \left(\begin{array}{cc} 1 & r \\ r & 1 \end{array}\right)$$

• Find the eigenvalues: Solve

$$det(\Sigma - \lambda I) = 0 \longrightarrow (1 - \lambda)^2 - r^2 = 0$$

 $\lambda_1 = 1 + r$, $\lambda_2 = 1 - r$; note that $\lambda_1 + \lambda_2 = 2 = tr(\Sigma)$

Find the first eigenvector: Solve

$$\left(\begin{array}{cc} 1 & r \\ r & 1 \end{array}\right) \left(\begin{array}{c} v_{11} \\ v_{21} \end{array}\right) = \lambda_1 \left(\begin{array}{c} v_{11} \\ v_{21} \end{array}\right)$$

The equations are

$$v_{11} + rv_{21} = (1+r)v_{11}$$
 and $rv_{11} + v_{21} = (1+r)v_{21}$
 $\longrightarrow v_{11} = v_{21}$

The orthonormality constraint

$$v_1'v_1 = v_{11}^2 + v_{21}^2 = 1$$

 $\longrightarrow v_{11} = v_{21} = \frac{1}{\sqrt{2}}$

Example: 2 features

- Similarly find the second eigenvector
- This results in

$$V = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$$

Coordinate of obs. i in 1rst direction

$$\sum_{k=1}^{2} \frac{x_{ik} - \bar{x}_{\cdot k}}{s_{\cdot k}} \cdot v_{kj} = \sum_{k=1}^{2} x'_{ik} \cdot v_{kj} = x'_{i1} \cdot \frac{1}{\sqrt{2}} + x'_{i2} \cdot \frac{1}{\sqrt{2}}$$

- Comments:
 - Coefficients (columns of V) independent of r
 - The variance in the new direction:

$$Var\{\frac{1}{\sqrt{2}}(x'_{i1} + x'_{i2})\} = \frac{1}{2}Var\{x'_{i1} + x'_{i2}\} = \frac{1}{2}(Var\{x'_{i1}\} + Var\{x'_{i2}\} + 2Cov\{x'_{i1}, x'_{i2}\} = 1 + r$$

- The larger r, the more proportion of the variance is accounted for by the **first** component
- The larger r, the less proportion of the variance is accounted for by the **second** component

Summary: SVD vs PCA (vs MDS)

• SVD: Singular Value Decomposition

$$X_{N\times P} = U_{N\times P} \wedge_{P\times P} V'_{P\times P}$$

- Decomposition of the original data matrix
- Numerically stable, used for computation
- PCA: Principle Component Analysis

$$X'X_{P\times P} = V \wedge U'U \wedge V' = V_{P\times P} \wedge_{P\times P}^2 V'_{P\times P}$$

- Numerically unstable, not used for computation
- Useful to relate λ_j to % of explained variation
- MDS: Multidimensional Scaling

$$XX'_{N\times N} = U\Lambda V'V\Lambda U' = U_{N\times P} \Lambda^2_{P\times P} U'_{P\times N}$$

 Used when raw data are in form of pairwise (dis-)similarities between observations

Inversion of Σ^{-1} in $\delta_k(\mathbf{X})$

For LDA, the discriminant function is

$$\delta_k(\mathbf{X}) = -\frac{1}{2}\log|\mathbf{\Sigma}| - \frac{1}{2}(\mathbf{X} - \mu_k)'\mathbf{\Sigma}^{-1}(\mathbf{X} - \mu_k) + \log\pi_k$$

Recall from PCA:

$$\Sigma_{P\times P} = V_{P\times P} \Lambda_{P\times P} U'_{P\times N} U'_{N\times P} \Lambda V'_{P\times P} = V_{P\times P} \Lambda^2_{P\times P} V'_{P\times P}$$

Therefore

$$(\mathbf{X} - \mu_k)' \mathbf{\Sigma}^{-1} (\mathbf{X} - \mu_k) = (\mathbf{X} - \mu_k)' (V \mathbf{\Lambda}^2 V')^{-1} (\mathbf{X} - \mu_k)$$
$$= \left[\mathbf{\Lambda}^{-1} V' (\mathbf{X} - \mu_k)' \right]' \left[\mathbf{\Lambda}^{-1} V' (\mathbf{X} - \mu_k)' \right]$$

- Equivalent to
 - Transform data: $\Lambda^{-1}V'\mathbf{X} \to X^*$, $\Lambda^{-1}V'\mu_k \to \mu^*$
 - The data are spheres on the new scale
 - On the new scale, classify \mathbf{X}^* to the closest class centroid
- If the priors π_k are not equal
 - The decision boundary will shift
 - Will remain perpendicular to the line connecting the means in the transformed space

Fisher's approach

Goal:

 Project high-dimensional data onto a lower-dimensional space to best separate class labels, i.e.

$$\max \frac{\text{between-group variance}}{\text{within-group variance}} = \max_{a} \frac{a' \mathbf{B} a}{a' \mathbf{\Sigma} a}$$

Steps:

- Transform the system of coordinates such that $a'\Sigma a=1$ (with SVD/PCA)
- Maximize $a'\mathbf{B}a$ in the transformed system of coordinates (with SVD/PCA)
- Option: choose a subset of the transformed coordinates

Decision for a new observation:

Assign the class with the closest center in the original variables

$$= \arg \min_{k} (\mathbf{X} - \mu_k)' \Sigma^{-1} (\mathbf{X} - \mu_k)$$
$$= \arg \max_{k} - (\mathbf{X} - \mu_k)' \Sigma^{-1} (\mathbf{X} - \mu_k)$$

– Can show that maximizing this is equivalent to maximizing $\delta_k(\mathbf{x}_i)$

Optimal classification

- Left: Original coordinates
 - The line joining the centroids defines the direction of greatest centroid spread
 - The projected data overlap because of the covariance
- Right: Transformed coordinates
 - The discriminant direction minimizes this overlap for Gaussian data (right panel)

Hastie, Tibshirani, Friedman
The Elements of Statistical Learning 2008

Statistical regularization

Regularized LDA

 Shrink the separate covariances of QDA toward a common covariance as in LDA

$$\hat{\Sigma}_k(\alpha) = \alpha \hat{\Sigma}_k + (1 - \alpha)\hat{\Sigma}$$

 Shrink the common covariance in LDA toward a scalar covariance

$$\hat{\Sigma}(\alpha) = \alpha \hat{\Sigma} + (1 - \alpha)\sigma^2 \mathbf{I}$$

ullet Again choose lpha by cross-validation

Nearest regular centroids

- Notation
 - x_{ij} : features $i = 1, \ldots, P$ in obs. $j = 1, \ldots, n$
 - each observation belongs to a class $k = 1, 2, \dots, K$
 - C_k : indices of observations in class k
- Training set centroid for feature i in class k $\bar{x}_{ik} = \sum_{j \in C_k} x_{ij}/N_k$ and overall $\bar{x}_i = \sum_{j=1}^n x_{ij}/N_k$
- Standardization for feature *i*:

$$d_{ik} = \frac{\bar{x}_{ik} - \bar{x}_i}{m_k \cdot s_i}$$

$$s_i^2 = \frac{1}{n-K} \sum_{k=1}^K \sum_{j \in C_k} (x_{ij} - \bar{x}_{ik})^2$$
 and $m_k = \sqrt{1/n_k - 1/n}$

(the denumerator is the SE of the numerator)

- higher weight to features with low variance within obs. of the same class
- Test set prediction
 - the class with the closest centroid

Nearest shrunken centroids

- Start with Nearest Centroids
 - d_{ik} is a t-statistic for feature i
 - compares class k to the average class
- Can re-write the standardized version as

$$\bar{x}_{ik} = \bar{x}_i + m_k \cdot s_i \cdot d_{ik}$$

ullet Propose to shrink d_{ik} towards 0

$$\bar{x}'_{ik} = \bar{x}_i + m_k \cdot s_i \cdot d'_{ik}$$

Solution: soft thresholding

$$dt_{ik} = sign(d_{ik})(|d_{ik}| - \Delta)_{+}$$

- where $t_+ = t$ if t > 0 and 0 otherwise
- Δ chosen by cross-validation
- Since many \bar{x}_{ik} are noisy, soft thresholding produces more reliable estimates of the true means (Donoho and Johnstone, 1994)

Soft threshold function

Example

Centroids: Average Expression Centered at Overall Centroid

Training set of 144 patients with 14 different types of cancer, and a test set of 54 patients

Hastie, Tibshirani, Friedman, *The Elements of Statistical Learning* 2008

Example

Number of Genes

Training set of 144 patients with 14 different types of cancer, and a test set of 54 patients

Hastie, Tibshirani, Friedman, *The Elements of Statistical Learning* 2008

Comments

• Choice of Δ

- Choose max Δ (i.e. min features) for a same accuracy. Here $\Delta=0.463$ yields 3,666 genes.
- Different features are selected for a Δ at different folds of cross-validation.

Properties of the classifier

- $-\ d_{ik}$ accounts for the size of the class n_k in the denominator
 - * Effectively applies a larger threshold to a smaller (higher variance) class
- Some classes may be farther away than others from the overall centroid & easier to distinguish.
 - * Many of the nonzero genes for that class may not be needed for accurate classification.
 - * Adaptive class-specific thresholds improve the overall error rate (bottom panel).

Soft versus hard thresholding

- An alternative: hard thresholding
 - Keep all differences exceeding Δ in absolute value; discard the others
 - $d'_{ik} = d_{ik} \cdot I(|d_{ik}| > \Delta)$
 - I.e., differences $> \Delta$ are unchanged
- Not as advantageous
 - "jumpy" by nature: as Δ is increased, a gene with a full contribution d_{ik} is set to zero.
 - In simulations, soft thresholding yielded lower test error at its minimum

Class probabilities and discriminant functions

- Goals
 - Class probabilities in addition to classification
 - Adjust for class representation
- Notation
 - A test sample: $x^* = (x_1^*, x_2^*, \dots, x_p^*)$
- Define the discriminant score for class k:

$$\delta_k(x^*) = \sum_{i=1}^{P} \frac{(x_i^* - \bar{x}_{ik}')^2}{s_i^2} - 2log\pi_k$$

- $\delta_k(x^*)$ is the standardized squared distance of x^* to the kth shrunken centroid
- $2log\pi_k$ is the correction based on the class prior probability π_k , $\sum_{k=1}^K \pi_k = 1$
- π_k is the proportion of class k in the population
- π_k gives preference to larger classes
- $-\hat{\pi}_k = N_k/N$ (alternative: uniform or other priors)

Class probabilities and discriminant functions

The classification rule:

$$C(x^*) = l$$
 if $\delta_l(x^*) = min_k \delta_k(x^*)$

- The prior plays an important role when multiple centroids are similarly close
- Class probabilities:

$$\widehat{p}_k(x^*) = \frac{exp\{-\frac{1}{2}\delta_k(x^*)\}}{\sum_{l=1}^k exp\{-\frac{1}{2}\delta_l(x^*)\}}$$

- Analogy to Gaussian linear discriminant analysis
- ullet Can use log-likelihood instead of cross-validation error rate to select Δ
 - With small # of samples & many classes, crossvalidation curve can have discrete jumps and high variability
 - Mean cross-validated log-likelihood is typically smoother