

Yolo

Détection d'objets

Plan

- 1. Introduction (YoloV1)
- 2. Priors (YoloV2)
- 3. Post-process
- 4. Entraînement
- 5. Evaluation
- 6. Bonus

Introduction

La détection c'est quoi?

&

L'architecture de YoloV1

Rappels sur la classification

Sortie de taille fixe, peu importe l'image d'entrée

Formalisation de la détection

Objectif: trouver des « objets » en donnant leur taille, position et une classe (vecteur de probas)

Formalisation de la détection

Objet #0

$$- x = 30$$

$$- y = 25$$

$$- w = 50$$

$$- h = 50$$

0.95 chat

o.o3 chien

0.02 lapin

Objet #1

$$- x = 120$$

$$- y = 35$$

$$- w = 100$$

$$h = 100$$

0.04 chat

0.92 chien

0.04 lapin

Le nombre de sortie dépend du contenu de l'entrée

Feature extraction

Interprétation de la feature map

Feature map des oreilles

Feature map des yeux

Corrélation spatiale entre l'entrée et les feature maps

Et la détection dans tout ça?

Intuition : on veut garder l'information spatiale

L'architecture de base de Yolo

Intuition: on veut garder l'information spatiale

Interprétation d'une convolution 1x1

Interprétation d'une convolution 1x1

Interprétation d'une convolution 1x1

Interprétation de la detection map

Interprétation de la detection map

Detection Map

Remarques:

- En plus des coordonées et taille de la boîte, on prédit également un score pour la boîte de la cellule
- Niveau dimensions, les boîtes ne sont pas confinées à leur cellule, seulement les coordonées de leur centre le sont.

0.03

Post-process final

En résumé

Feature Maps

Décodage

Detection Map

En résumé

Questions?

Les priors

De YoloV1 a YoloV2

Le problème de YoloV1

Les « objets » ont des formes et tailles variées

Un problème de distribution

Les priors, c'est quoi?

Les priors sont des tailles typiques de boîtes

Une distribution plus sympa

A quoi servent les priors?

Le modèle doit être capable de générer toutes les tailles de boîtes

A quoi ser t

Moins de variance en sortie

⇒ moins d'overfitting et
entraînement plus stable
⇒ meilleure généralisation

MAIS

Mauvais choix des priors

- ⇒ entraînement inefficace Trop de priors
- ⇒ complexité du modèle élevée
 - \Rightarrow redondance des priors
 - ⇒ overfitting

Intersection over Union (IoU)

Simplement le rapport entre l'aire de l'intersection et de l'union entre 2 boîtes

Calcul des priors

On effectue un clustering sur les dimensions (w; h) avec la distance de Jaccard en partant du principe que les boîtes sont centrées entre elles.

Calcul des priors

On effectue un clustering sur les dimensions (w; h) avec la distance de Jaccard en partant du principe que les boîtes sont centrées entre elles.

Calcul des priors

On effectue un clustering sur les dimensions (w; h) avec la distance de Jaccard en partant du principe que les boîtes sont centrées entre elles.

Architecture de YoloV2

Architecture de YoloV2

En pratique

On peut factoriser les convolutions en une seule « grosse » convolution

P Detection Maps

Post-process: même principe

Post-process : même principe

En résumé

Questions?

Décodage des boîtes

Une fonction d'activation pas comme les autres

Récap rapide

Notations

On introduit les constantes suivantes :

- *P* le nombre de priors
- W_{FM} et H_{FM} les dimensions de la feature map
- C le nombre de classes

Les indices utilisés par la suite :

- k le prior considéré
- *i*, *j* la position de la cellule dans la feature map
- c l'indice de la classe considérée

- x_{ijk}^{off} et y_{ijk}^{off} : position du centre de la boîte par rapport a la **cellule**
- w_{ijk}^{off} et h_{ijk}^{off} : taille de boîte relative au prior k
- L_{ijk}^{obj} : probabilité que la boîte contienne un objet (logit)
- L_{ijk}^c : probabilité conditionelle que la boîte contienne c (logit)

$$x_{ijk} = i + \sigma(x_{ijk}^{off})$$
 $w_{ijk} = w_k^p \times \exp(w_{ijk}^{off})$ $y_{ijk} = j + \sigma(y_{ijk}^{off})$ $h_{ijk} = h_k^p \times \exp(h_{ijk}^{off})$

$$P_{ijk}^{obj} = \sigma \Big(L_{ijk}^{off} \Big)$$

$$C_{ijk}^c = \operatorname{softmax}[L_{ijk}^c]$$

$$P_{ijk}^c = P_{ijk}^{obj} \times C_{ijk}^c$$

- x_{ijk} et y_{ijk} : position du centre de la boîte par rapport a la **feature map**
- w_{ijk} et h_{ijk} : taille de la boîte par rapport a la **feature map**
- P_{ijk}^{obj} : probabilité que la boîte contienne un objet
- C_{ijk}^c : probabilité conditionelle que la boîte contienne c

Filtrage des boîtes

« Flatten »

Tenseur de boîtes

 $P \times W_{FM} \times H_{FM}$ boîtes

Filtrage

Par rapport

à
$$P_{ijk}^{obj}$$

On conserve les boîtes ssi.

$$P_{ijk}^{obj} > \alpha$$

Non-Maximum Suppression (NMS)

Plusieurs boîtes peuvent être prédite pour un même « objet »

On considère que 2 boîtes b_1 et b_2 sont superposées si :

$$C_1 = C_2$$

$$IoU(b_1; b_2) > \beta$$

On garde uniquement la boîte avec le score le plus élevé

Dernière étape!

M boîtes

Scaling des boîtes

Coordonées relatives a la feature map

Coordonées relative a l'image

Le facteur de scaling depend de la taille de la feature map, et donc du feature extractor utilisé

Objet #0

$$- x = 30$$

$$- y = 25$$

$$- w = 50$$

$$- h = 50$$

0.95 chat

o.oa chien

0.02

Gros récap

Questions?

Entraînement

Tenseur de GT & Loss

Qu'est qu'on entraîne dans tout ça?

Objectif : entraîner ce truc par descente de gradient

Génération du tenseur de ground truth

Pour chaque boîte de notre train set, on construit un vecteur de GT

- \hat{x} et \hat{y} : position du centre de la boîte par rapport a la **feature map**
- \widehat{w} et \widehat{h} : taille de la boîte par rapport a la **feature map**
- $oldsymbol{\hat{1}}$: probabilité que la boîte contienne un objet, donc toujours 1
- \hat{C}^c : la classe de l'objet, sous la forme d'un vecteur one-hot

Génération du tenseur de ground truth

On initialise un tenseur de taille $W_{FM} \times H_{FM} \times P \times (5 + C)$ avec des 0. Pour chaque boîte :

- On trouve le meilleur prior k avec la distance de Jaccard.
- On place le vecteur dans la cellule (i; j) du volume du prior k.

Intuition sur la loss function

Cas 1 : la cellule contient effectivement une boîte : regression sur la boîte

Cas 2 : la cellule ne contient pas de boîte : regression sur l'objectness

Loss

$$\mathcal{L} = \lambda_{1} \sum_{i=1}^{W_{FM}} \sum_{j=1}^{H_{FM}} \sum_{k=1}^{P} \widehat{\mathbf{1}}_{ijk} \left[\left(x_{ijk} - \widehat{x}_{ijk} \right)^{2} + \left(y_{ijk} - \widehat{y}_{ijk} \right)^{2} \right]$$

$$+ \lambda_{1} \sum_{i=1}^{W_{FM}} \sum_{j=1}^{H_{FM}} \sum_{k=1}^{P} \widehat{\mathbf{1}}_{ijk} \left[\left(\sqrt{w_{ijk}} - \sqrt{\widehat{w}_{ijk}} \right)^{2} + \left(\sqrt{h_{ijk}} - \sqrt{\widehat{h}_{ijk}} \right)^{2} \right]$$

$$+ \lambda_{2} \sum_{i=1}^{W_{FM}} \sum_{j=1}^{H_{FM}} \sum_{k=1}^{P} \widehat{\mathbf{1}}_{ijk} \left(P_{ijk}^{obj} - \text{IoU}(b_{ijk}; \widehat{b}_{ijk}) \right)^{2}$$

$$+ \lambda_{3} \sum_{i=1}^{W_{FM}} \sum_{j=1}^{H_{FM}} \sum_{k=1}^{P} \left(1 - \widehat{\mathbf{1}}_{ijk} \right) \left(P_{ijk}^{obj} - 0 \right)^{2}$$

$$+ \lambda_{4} \sum_{i=1}^{W_{FM}} \sum_{j=1}^{H_{FM}} \sum_{k=1}^{P} \widehat{\mathbf{1}}_{ijk} \sum_{c=1}^{C} \left(C_{ijk}^{c} - \widehat{C}_{ijk}^{c} \right)^{2}$$
wtf?

Loss

$$\mathcal{L} = \lambda_{1} \sum_{i=1}^{W_{FM}} \sum_{j=1}^{H_{FM}} \sum_{k=1}^{P} \widehat{\mathbf{1}}_{ijk} \left[\left(x_{ijk} - \widehat{x}_{ijk} \right)^{2} + \left(y_{ijk} - \widehat{y}_{ijk} \right)^{2} \right]$$

$$+ \lambda_{1} \sum_{i=1}^{W_{FM}} \sum_{j=1}^{H_{FM}} \sum_{k=1}^{P} \widehat{\mathbf{1}}_{ijk} \left[\left(\sqrt{w_{ijk}} - \sqrt{\widehat{w}_{ijk}} \right)^{2} + \left(\sqrt{h_{ijk}} - \sqrt{\widehat{h}_{ijk}} \right)^{2} \right]$$

$$+ \lambda_{2} \sum_{i=1}^{W_{FM}} \sum_{j=1}^{H_{FM}} \sum_{k=1}^{P} \widehat{\mathbf{1}}_{ijk} \left(P_{ijk}^{obj} - \text{IoU}(b_{ijk}; \widehat{b}_{ijk}) \right)^{2}$$

$$+ \lambda_{3} \sum_{i=1}^{W_{FM}} \sum_{j=1}^{H_{FM}} \sum_{k=1}^{P} \left(1 - \widehat{\mathbf{1}}_{ijk} \right) \left(P_{ijk}^{obj} - 0 \right)^{2}$$

$$+ \lambda_{4} \sum_{i=1}^{W_{FM}} \sum_{j=1}^{H_{FM}} \sum_{k=1}^{P} \widehat{\mathbf{1}}_{ijk} \sum_{c=1}^{C} \left(C_{ijk}^{c} - \widehat{C}_{ijk}^{c} \right)^{2}$$

$$+ \lambda_{4} \sum_{i=1}^{W_{FM}} \sum_{j=1}^{H_{FM}} \sum_{k=1}^{P} \widehat{\mathbf{1}}_{ijk} \sum_{c=1}^{C} \left(C_{ijk}^{c} - \widehat{C}_{ijk}^{c} \right)^{2}$$

$$+ \lambda_{1} \sum_{i=1}^{W_{FM}} \sum_{j=1}^{H_{FM}} \sum_{k=1}^{P} \widehat{\mathbf{1}}_{ijk} \sum_{c=1}^{C} \left(C_{ijk}^{c} - \widehat{C}_{ijk}^{c} \right)^{2}$$

$$+ \lambda_{2} \sum_{i=1}^{W_{FM}} \sum_{j=1}^{H_{FM}} \sum_{k=1}^{P} \widehat{\mathbf{1}}_{ijk} \sum_{c=1}^{C} \left(C_{ijk}^{c} - \widehat{C}_{ijk}^{c} \right)^{2}$$

$$+ \lambda_{2} \sum_{i=1}^{W_{FM}} \sum_{j=1}^{H_{FM}} \sum_{k=1}^{P} \widehat{\mathbf{1}}_{ijk} \sum_{c=1}^{C} \left(C_{ijk}^{c} - \widehat{C}_{ijk}^{c} \right)^{2}$$

$$+ \lambda_{3} \sum_{i=1}^{W_{FM}} \sum_{j=1}^{H_{FM}} \sum_{k=1}^{P} \widehat{\mathbf{1}}_{ijk} \sum_{c=1}^{C} \left(C_{ijk}^{c} - \widehat{C}_{ijk}^{c} \right)^{2}$$

$$+ \lambda_{4} \sum_{i=1}^{W_{FM}} \sum_{j=1}^{H_{FM}} \sum_{k=1}^{P} \widehat{\mathbf{1}}_{ijk} \sum_{c=1}^{C} \left(C_{ijk}^{c} - \widehat{C}_{ijk}^{c} \right)^{2}$$

$$+ \lambda_{2} \sum_{i=1}^{W_{FM}} \sum_{j=1}^{H_{FM}} \sum_{k=1}^{P} \widehat{\mathbf{1}}_{ijk} \sum_{c=1}^{C} \left(C_{ijk}^{c} - \widehat{C}_{ijk}^{c} \right)^{2}$$

Loss sur la position et la taille

Loss: position et taille des boîtes

Pénalisation sur la position : écarts au carré

$$E_{ijk}^{xy} = \widehat{\mathbf{1}}_{ijk} \left[\left(x_{ijk} - \widehat{x}_{ijk} \right)^2 + \left(y_{ijk} - \widehat{y}_{ijk} \right)^2 \right]$$

Pénalisation sur la taile : écarts au carré des racines carrées

$$E_{ijk}^{hw} = \widehat{\mathbf{1}}_{ijk} \left[\left(\sqrt{w_{ijk}} - \sqrt{\widehat{w}_{ijk}} \right)^2 + \left(\sqrt{h_{ijk}} - \sqrt{\widehat{h}_{ijk}} \right)^2 \right]$$

Loss: position et taille des boîtes

Pén ion

Racines carrées

 \Leftrightarrow

pénalisation plus forte pour les petites boîtes carts au carré

$$\hat{x}_{ijk}\big)^2 + \big(y_{ijk} - \hat{y}_{ijk}\big)^2\big]$$

carts au carré des racines carrées

$$E_{ijk}^{hw} = \widehat{\mathbf{1}}_{ijk} \left[\left(\sqrt{w_{ijk}} - \sqrt{\widehat{w}_{ijk}} \right)^2 + \left(\sqrt{h_{ijk}} - \sqrt{\widehat{h}_{ijk}} \right)^2 \right]$$

Loss: objectness

Pénalisation positive: écarts au carré entre l'objectness et IoU

$$E_{ijk}^{obj} = \widehat{\mathbf{1}}_{ijk} \left(P_{ijk}^{obj} - IoU(b_{ijk}; \widehat{b}_{ijk}) \right)^2$$

Pénalisation négative: minimisation de l'objectness

$$\overline{E_{ijk}^{obj}} = \left(1 - \widehat{\mathbf{1}}_{ijk}\right) \times \left(P_{ijk}^{obj} - 0\right)^2$$

Loss: objectness

Pénalisation positive: écarts au carré entre l'objectness et IoU

$$E_{ijk}^{obj} = \widehat{\mathbf{1}}_{ijk} \left(P_{ijk}^{obj} - IoU(b_{ijk}; \widehat{b}_{ijk}) \right)^{2}$$

Pénalisation négative: minimisation de l'

$$\overline{E_{ijk}^{obj}} = \left(1 - \widehat{\mathbf{1}}_{ijk}\right) \times$$

L'objectness quantifie la qualité de la boîte prédite

Loss: classification

Pénalisation de classification: une simple MSE

$$E_{ijk}^{clf} = \frac{\hat{\mathbf{1}}_{ijk}}{C} \sum_{c=1}^{C} \left(C_{ijk}^c - \hat{C}_{ijk}^c \right)^2$$

... ou n'importe quelle loss de classification

$$E_{ijk}^{clf} = \widehat{\mathbf{1}}_{ijk} \times \mathcal{L}_{cross-entropy}(C_{ijk}; \widehat{C}_{ijk})$$

Loss

En sommant pour tout i, j et k, on obtient alors

$$\mathcal{L} = \sum_{i=1}^{W_{FM}} \sum_{j=1}^{H_{FM}} \sum_{k=1}^{P} \lambda_1 \left(E_{ijk}^{xy} + E_{ijk}^{hw} \right) + \lambda_2 E_{ijk}^{obj} + \lambda_3 \overline{E_{ijk}^{obj}} + \lambda_4 E_{ijk}^{clf}$$

Questions?

Evaluation

Une métrique un peu particulière et discussion sur les hyperparamètres

VP, FP, FN et ... VN?

VP, FP, FN et ... VN?

VP, FP, FN et ... VN?

Précision et rappel

Précision: mesure de l'exactitude des détections

$$precision = \frac{VP}{VP + FP}$$

Rappel : mesure de l'exhaustivité des détections

$$recall = \frac{VP}{VP + FN} = \frac{VP}{N_{boîtes}}$$

Pour tracer la courbe d'AP

- On ordonne les boîtes par score décroissant
- Pour $n \in [0; N_{boîtes}]$, on calcule

$$P_n = \frac{VP_n}{VP_n + FP_n}$$

$$R_n = \frac{VP_n}{VP_n + FN_n} = \frac{VP_n}{N_{boîtes}}$$

Pour tracer la courbe d'AP

- On ordonne les boîtes par score décroissant
- Pour $n \in [0; N_{boîtes}]$, on calcule

$$P_{n} = \frac{VP_{n}}{VP_{n} + FP_{n}}$$

$$R_{n} = \frac{VP_{n}}{VP_{n} + FN_{n}} = \frac{VP_{n}}{N_{boîtes}}$$

Pour $\alpha = 1$, on pose

$$P = \frac{VP}{VP + FP} = 1$$

$$R = \frac{VP}{VP + FN} = 0$$

Si on ajoute une boîte légitime, alors $VP \nearrow$ et $FN \searrow$

$$P = \frac{VP}{VP + FP} \nearrow$$

$$R = \frac{VP}{VP + FN} \nearrow$$

Si on ajoute une mauvaise boîte, alors *FP* ↗

$$P = \frac{VP}{VP + FP} \searrow$$

$$R = \frac{VP}{VP + FN} \to$$

Mean Average Precision (mAP)

La métrique finale est obtenue en faisant la moyenne de l'AP de chaque classe :

$$mAP(\beta) = \frac{1}{C} \sum_{c=1}^{C} AP_c(\beta)$$

$$mAP = \frac{1}{\#B} \sum_{\beta \in B} mAP(\beta) = \frac{1}{C \times \#B} \sum_{\beta \in B} \sum_{c=1}^{C} AP_c(\beta)$$

$$B_{COCO} = \{ \beta = 0.5 + 0.05k, \forall k \ge 0 / \beta < 1 \}$$

Mean Average Precision (mAP)

La métrique finale est obtenue en faisant la moyenne de l'AP de

chaque classe:

Ordre de grandeur

 $mAP \simeq 0.4 \Rightarrow \text{modèle pas mal}$

 $mAP \simeq 0.5 \Rightarrow$ très bon modèle

$$mAP = \frac{1}{\#B} \sum_{\beta \in B} mAP(\beta) = \frac{1}{C \times \#B} \sum_{\beta \in B} \sum_{c=1}^{C} AP_c(\beta)$$

$$B_{COCO} = \{ \beta = 0.5 + 0.05k, \forall k \ge 0 / \beta < 1 \}$$

Questions?

Bonus

CNN pur

Conséquences du CNN pur

