- ■Brief Review of Computational Model of Neural Networks
- Network Performance: Cost Function
- ■Steepest Gradient Method
- Backpropagation
- ■Three Pages to Understand BP
- Only One Page to Understand BP
- ■The BP Algorithm
- Assignment

Computational Model of Neurons

Neuron output

$$y = f\left(\sum_{i=1}^{n} w_i x_i\right)$$

Forward computing

layer l contains n_l neurons.

 a_i^l denotes the output value of the neuron.

 $a_{n_l}^l$

Layer *l*

Component form

$$\begin{cases} a_i^{l+1} = f(z_i^{l+1}) \\ z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l \end{cases}$$

Vector form $\begin{cases} a^{l+1} = f(z^{l+1}) \\ z^{l+1} = w^l a^l \end{cases}$

$$a_i^{l+1} = f\left(\sum_{j=1}^{n_l} w_{ij}^l a_j^l\right)$$

A feedforward neural network is in fact a nonlinear mapping from R^{n_1} space to R^{n_L} space.

$$a^{L} = f(w^{L-1}a^{L-1}) = f\left(w^{L-1}f\left(w^{L-2}f(w^{L-3}\cdots f(w^{1}a^{1}))\right)\right)$$

$$R^{n_{1}}$$

$$f\left(w^{L-1}f\left(w^{L-2}f(w^{L-3}\cdots f(w^{1}a^{1}))\right)\right)$$

$$R^{n_{L}}$$

$$R^{n_{L}}$$
Input
$$R^{n_{L}}$$

$$R^{n_{L}}$$
Output

External inputs:

If neurons in l layer are not connected to any neurons in the l-1 layer, these neurons are called external inputs of l+1 layer.

External inputs can exist in any layer except the last one.

Example: XOR problem

Problem: How to design the NN? Are there any methods to design the connection weights?

Example: Handwritten Digits Recognition

Problem: How to design the NN? Are there any methods to design the connection weights?

- ■Brief Review of Computational Model of Neural Networks
- Network Performance: Cost Function
- ■Steepest Gradient Method
- ■Backpropagation
- ■Three Pages to Understand BP
- Only One Page to Understand BP
- ■The BP Algorithm
- Assignment

Good Performance!

The father knows the correct answer.

Two important factors:

- 1. There must be a measure to measure the correctness between correct answer and the boy's real output. ----Performance function.
- 2. There must be a mechanism to change the knowledge system of the boy. ---- Learning algorithm.

Network Output

$$a^L = \begin{bmatrix} a_1^L \\ \vdots \\ a_{n_L}^L \end{bmatrix}$$

Output

Target Output

$$y^L = \begin{bmatrix} y_1^L \\ \vdots \\ y_{n_L}^L \end{bmatrix}$$

 $J(a^L, y^L)$

Performance function $J(a^L, y^L)$, or cost function, is used to describe the distance between a^L and y^L , $J(a^L, y^L)$ is indeed a function of (w^1, \dots, w^L) , i. e.,

$$J = J(w^1, \cdots, w^L).$$

A cost function J describes the performance of the network. If the I is small, it implies that the network output a^L close to the target output y^L , the network is called in good performance. Since *J* is a function with variables (w^1, \dots, w^L) , good performance means to find suitable (w^1, \dots, w^L) such that J is small. The process of looking for suitable (w^1, \dots, w^L) is called network learning.

Target Output

Network Output

$$y^{L} = \begin{bmatrix} y_{1}^{L} \\ \vdots \\ y_{n_{L}}^{L} \end{bmatrix} \qquad \qquad a^{L} = \begin{bmatrix} a_{1}^{L} \\ \vdots \\ a_{n_{L}}^{L} \end{bmatrix}$$

$$a^L = \begin{bmatrix} a_1^L \\ \vdots \\ a_{n_L}^L \end{bmatrix}$$

There are many ways to construct a cost function. A frequently used cost is as follows:

$$e_j = a_j^L - y_j^L$$

$$J = \frac{1}{2} \sum_{j=1}^{n_L} e_j^2 = J(w^1, \dots, w^L)$$

Clearly, J is a function of w^1, \dots, w^L .

Problem: How to learn?

Learning is a process such that a^L is close to y^L , i.e., the cost function *J* reaches minimum. A cost function $J = J(w^1, \dots, w^{L-1})$ is a function with variables $w^l (l = 1, \dots, L)$, thus the network learning is to looking for some $w^l(l=1,\cdots,L)$ such that $w^l(l=1,\cdots,L)$ is a minimum point of *J*.

Problem: How to find out the minimum points of J?

Target Output

Network Output

$$y^L = \begin{bmatrix} y_1^L \\ \vdots \\ y_{n_L}^L \end{bmatrix}$$

$$a^L = \begin{bmatrix} a_1^L \\ \vdots \\ a_{n_L}^L \end{bmatrix}$$

A frequently used cost function:

$$J = \frac{1}{2} \sum_{j=1}^{n_L} e_j^2 = J(w^1, \dots, w^L)$$

J is a function of w^1, \dots, w^L .

- ■Brief Review of Neural Networks Structure
- Network Performance: Cost Function
- ■Steepest Gradient Method
- Backpropagation
- ■Three Pages to Understand BP
- Only One Page to Understand BP
- ■The BP Algorithm
- Assignment

Minimum Points

General Nonlinear function $F(x), x \in \mathbb{R}^n$ x^* is a minimum point if $F(x^*) \le F(x)$ for any x that very close to x^* .

$$F(x) = (x_2 - x_1)^4 + 8x_1x_2 - x_1 + x_2 + 3$$

$$F(x) = (x_1^2 - 1.5x_1x_2 + 2x_2^2)x_1^2$$
Minimum points

Contour

Problem:

How to find the minimum points?

Iteration Method

Finding a minimum point step by step

$$x^{k+1} = x^k + \alpha_k \cdot p_k$$

To begin the iteration, you must need a given starting point x_0 .

 p_k is called searching direction

 α_k is learning rate at step k.

Problem: How to get the searching direction p_k ?

Steepest Descent Method

Slowest changing direction

Fastest increasing direction

Gradient:

$$g_{k} = \nabla F(x) \Big|_{x^{k}} = \frac{\partial F}{\partial x} \Big|_{x^{k}} = \begin{pmatrix} \frac{\partial F}{\partial x_{1}} \\ \vdots \\ \frac{\partial F}{\partial x_{n}} \end{pmatrix} \Big|_{x^{k}}$$

Steepest Descent Algorithm:

$$p_k = -g_k$$
$$x^{k+1} = x^k - \alpha_k \cdot g_k$$

or

$$x^{k+1} = x^k - \alpha_k \cdot \frac{\partial F}{\partial x} \Big|_{x^k}$$

Steepest descent direction

Steepest Descent Method

Steepest Descent Method

Target Output

Network Output

$$y^L = \begin{bmatrix} y_1^L \\ \vdots \\ y_{n_L}^L \end{bmatrix}$$

$$y^{L} = \begin{bmatrix} y_{1}^{L} \\ \vdots \\ y_{n_{L}}^{L} \end{bmatrix} \qquad a^{L} = \begin{bmatrix} a_{1}^{L} \\ \vdots \\ a_{n_{L}}^{L} \end{bmatrix}$$

Steepest Descent Method

$$J = \frac{1}{2} \sum_{j=1}^{n_L} e_j^2 = \frac{1}{2} \sum_{j=1}^{n_L} (a_j^L - y_j^L)^2$$

1. Computing

$$\frac{\partial J}{\partial w_{ji}^l}$$

2. Iterating

$$w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ii}^l}$$

$$a^{L} = f(w^{L-1}a^{L-1}) = f\left(w^{L-1}f\left(w^{L-2}f\left(w^{L-3}\cdots f(w^{1}a^{1})\right)\right)\right)$$

Problem: How to compute $\frac{\partial J}{\partial w_{ii}^l}$?

Answer:

Using the well-known BP method.

- ■Brief Review of Neural Networks Structure
- Network Performance: Cost Function
- ■Steepest Gradient Method
- ■Backpropagation
- ■Three Pages to Understand BP
- ■Only One Page to Understand BP
- ■The BP Algorithm
- Assignment

Backpropagation

Backpropagation is a efficient way to calculate $\frac{\partial J}{\partial J}$

Cost function:

$$J = \frac{1}{2} \sum_{j=1}^{n_L} e_j^2 = \frac{1}{2} \sum_{j=1}^{n_L} (a_j^L - y_j^L)^2$$

Problem: What's the relation between
$$\delta_i^l$$
 and $\frac{\partial J}{\partial w_{ji}^l}$?

$$w_{ji}^{l} = f(z_{j}^{l+1})$$

$$\delta_{j}^{l+1} = \frac{\partial J}{\partial z_{j}^{l+1}}$$

Relation between
$$\delta_i^l$$
 and $\frac{\partial J}{\partial w_{ji}^l}$

$$\frac{\partial J}{\partial w_{ji}^l} = \delta_j^{l+1} \cdot a_i^l$$
Why?
$$\frac{\partial J}{\partial w_{ii}^l} = \frac{\partial J}{\partial z_i^{l+1}} \cdot \frac{\partial z_j^{l+1}}{\partial w_{ii}^l} = \delta_j^{l+1} \cdot a_i^l$$

 $J(w^1,\cdots,w^{L-1})$

Next problem:

What's the relation between δ_i^l and δ_i^{l+1} ?

$$\delta_{i}^{l} = \frac{\partial J}{\partial z_{i}^{l}} = \sum_{j=1}^{n_{l+1}} \frac{\partial J}{\partial z_{j}^{l+1}} \cdot \frac{\partial z_{j}^{l+1}}{\partial z_{i}^{l}} = \sum_{j=1}^{n_{l+1}} \delta_{j}^{l+1} \cdot \frac{\partial z_{j}^{l+1}}{\partial z_{i}^{l}} = \sum_{j=1}^{n_{l+1}} \delta_{j}^{l+1} \cdot w_{ji}^{l} \dot{f}(z_{i}^{l}) = \dot{f}(z_{i}^{l}) \cdot \left(\sum_{j=1}^{n_{l+1}} \delta_{j}^{l+1} \cdot w_{ji}^{l}\right)$$

Relation between δ_i^l and δ_i^{l+1}

$$\delta_i^l = \dot{f}(z_i^l) \cdot \left(\sum_{j=1}^{n_{l+1}} \delta_j^{l+1} \cdot w_{ji}^l\right)$$

$$\delta_i^L = \frac{\partial J}{\partial z_i^L}$$

$$J = \frac{1}{2} \sum_{j=1}^{n_L} (a_j^L - y_j^L)^2$$
 公式3

then,

- ■Brief Review of Neural Networks Structure
- Network Performance: Cost Function
- ■Steepest Gradient Method
- **■**Backpropagation
- ■Three Pages to Understand BP
- ■Only One Page to Understand BP
- ■The BP Algorithm
- Assignment

Three Pages to Understand BP: The first page

Cost function: $J(w^1, \dots, w^L)$

Updating rule: $w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ji}^l}$ 最终更新方法,公式**7**

Relationship: $\frac{\partial J}{\partial w_{ii}^l} = \delta_j^{l+1} \cdot a_i^l$ \triangle **1**

l layer

Three Pages to Understand BP: The second page

Three Pages to Understand BP: The third page

- ■Brief Review of Neural Networks Structure
- Network Performance: Cost Function
- ■Steepest Gradient Method
- Backpropagation
- ■Three Pages to Understand BP
- ■Only One Page to Understand BP
- ■The BP Algorithm
- Assignment

Only One Pages to Understand BP

Cost function: $J(w^1, \dots, w^L)$

Updating rule: $w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ji}^l}$

Relationship: $\frac{\partial J}{\partial w_{ii}^l} = \delta_j^{l+1} \cdot a_i^l$

l layer ith neuron

- ■Brief Review of Neural Networks Structure
- Network Performance: Cost Function
- ■Steepest Gradient Method
- Backpropagation
- ■Three Pages to Understand BP
- ■Only One Page to Understand BP
- ■The BP Algorithm
- Assignment

function
$$fc(W^l, a^l)$$

 $for i = 1: n_{l+1}$

$$z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l$$

$$a_i^{l+1} = f(z_i^{l+1})$$
end

The training data set $D = \{(x, y) | m \text{ samples} \}$

x: input sample y: target output

There are two ways to train the network.

1. Online training: For each sample $(x, y) \in D$, define a cost function, for example, as

$$J(x,y) = \frac{1}{2} \sum_{j=1}^{n_L} (a_j^L - y_j^L)^2$$

2. Batch training: Define cost function as

$$J = \frac{1}{m} \sum_{(x,y) \in D} J(x,y)$$

Online BP Algorithm:

```
Step 1. Input the training data set D = \{(x, y)\}
```

Step 2. Initial each w_{ij}^l , and choose a learning rate α .

Step 3. Choose a sample
$$(x, y) \in D$$
, define $J(x, y)$, set $a^1 = x$ for $l = 1$: L

 $fc(w^l, a^l);$ end

$$\delta^L = \frac{\partial J(x,y)}{\partial z^L};$$

for
$$l = L - 1:1$$

$$bc(w^l, \delta^{l+1});$$

end

Step 4. Updating

$$\frac{\partial J}{\partial w_{ji}^l} = \delta_j^{l+1} \cdot a_i^l;$$

$$w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J(x, y)}{\partial w_{ii}^l};$$

Step 5. Return to Step 3 until each w^l converge.

function
$$fc(w^l, a^l)$$

 $for i = 1: n_{l+1}$
 $z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l$
 $a_i^{l+1} = f(z_i^{l+1})$
 end

Relationship:
$$\frac{\partial J}{\partial w_{ji}^l} = \delta_j^{l+1} \cdot a_i^l$$

function
$$bc(w^l, \delta^{l+1})$$
 $for \ i=1:n_l$

$$\delta_i^l=\dot{f}(z_i^l)\cdot\left(\sum_{j=1}^{n_{l+1}}w_{ji}^l\delta_j^{l+1}\right)$$
 end

Batch BP Algorithm:

Step 1. Input the training data set $D = \{(x, y)\}$

Step 2. Initial each w_{ij}^l , and choose a learning rate α .

Step 3. For each sample
$$(x, y) \in D$$
, set $a^1 = x$

for
$$l = 1$$
: L

$$fc(w^{l}, a^{l});$$
end
$$\delta^{L} = \frac{\partial J}{\partial z^{L}};$$

for
$$l = L - 1:1$$

 $bc(w^{l}, \delta^{l+1});$

end

$$\frac{\partial J}{\partial w_{ii}^l} \leftarrow \frac{\partial J}{\partial w_{ii}^l} + \delta_j^{l+1} \cdot a_i^l;$$

Step 4. Updating

$$w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ji}^l};$$

Step 5. Return to Step 3 until each w^l converge.

function
$$fc(w^l, a^l)$$

 $for i = 1: n_{l+1}$
 $z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l$
 $a_i^{l+1} = f(z_i^{l+1})$
 end

$$\frac{\partial J}{\partial w_{ji}^l} = \delta_j^{l+1} \cdot a_i^l$$

function
$$bc(w^l, \delta^{l+1})$$
 $for \ i = 1: n_l$

$$\delta_i^l = \dot{f}(z_i^l) \cdot \left(\sum_{j=1}^{n_{l+1}} w_{ji}^l \delta_j^{l+1}\right)$$
 end

- ■Brief Review of Neural Networks Structure
- Network Performance: Cost Function
- ■Steepest Gradient Method
- Backpropagation
- ■Three Pages to Understand BP
- Only One Page to Understand BP
- ■The BP Algorithm
- Assignment

Assignment

Assignment: BP algorithms by MATLAB.

Batch BP Algorithm:

Step 1. Input the training data set $D = \{(x, y)\}$

Step 2. Initial each w_{ij}^l , and choose a learning rate α .

Step 3. For each sample
$$(x, y) \in D$$
, set $a^1 = x$

for
$$l = 1: L$$

$$fc(w^{l}, a^{l});$$
end
$$\delta^{L} = \frac{\partial J}{\partial z^{L}};$$

$$\partial z^{L},$$
for $l = L - 1$: 1

$$bc(w^l, \delta^{l+1});$$

end

$$\frac{\partial J}{\partial w_{ii}^l} \leftarrow \frac{\partial J}{\partial w_{ii}^l} + \delta_j^{l+1} \cdot a_i^l;$$

Step 4. Updating

$$w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ii}^l};$$

Step 5. Return to Step 3 until each w^l converge.

function
$$fc(w^l, a^l)$$

 $for i = 1: n_{l+1}$

$$z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l$$

$$a_i^{l+1} = f(z_i^{l+1})$$
end

function
$$bc(w^l, \delta^{l+1})$$
 $for \ i = 1: n_l$

$$\delta_i^l = \dot{f}(z_i^l) \cdot \left(\sum_{j=1}^{n_{l+1}} w_{ji}^l \delta_j^{l+1}\right)$$
 end

Online BP Algorithm:

Step 1. Input the training data set $D = \{(x, y)\}$

Step 2. Initial each w_{ij}^l , and choose a learning rate α .

Step 3. Choose a sample $(x, y) \in D$, define J(x, y), set $a^1 = x$

for
$$l = 1$$
: L

$$fc(w^{l}, a^{l});$$
end
$$\delta^{L} = \frac{\partial J(x, y)}{\partial z^{L}};$$
for $l = L - 1$: 1

$$bc(w^{l}, \delta^{l+1});$$
end

Step 4. Updating

$$\frac{\partial J}{\partial w_{ji}^{l}} = \delta_{j}^{l+1} \cdot a_{i}^{l};$$

$$w_{ji}^{l} \leftarrow w_{ji}^{l} - \alpha \cdot \frac{\partial J(x, y)}{\partial w_{ji}^{l}};$$

Step 5. Return to Step 3 until each w^l converge.

Thanks