$12n_{0273} \ (K12n_{0273})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -5u^7 - 12u^6 + 30u^5 + 104u^4 + 50u^3 - 36u^2 + 4b + 4u + 12, \\ &6u^7 + 15u^6 - 36u^5 - 130u^4 - 62u^3 + 54u^2 + 4a - 4u - 20, \\ &u^8 + 4u^7 - 2u^6 - 30u^5 - 44u^4 - 12u^3 + 8u^2 - 4u - 4 \rangle \\ I_2^u &= \langle -au + b + 2a - u + 2, \ 2a^2 - au + 2a + u + 3, \ u^2 - 2 \rangle \\ I_3^u &= \langle u^2 + 2b + 2a - 4u + 2, \ 4u^2a + 2a^2 - 12au - u^2 + 6a + 7u - 6, \ u^3 - 4u^2 + 4u - 2 \rangle \\ I_4^u &= \langle 2b + 2a + u + 2, \ 2a^2 + 2au + 2a + u + 3, \ u^2 - 2 \rangle \\ I_1^v &= \langle a, \ b^2 - b + 1, \ v + 1 \rangle \\ I_2^v &= \langle a, \ b + v - 1, \ v^2 - v + 1 \rangle \end{split}$$

* 6 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 26 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -5u^7 - 12u^6 + \dots + 4b + 12, 6u^7 + 15u^6 + \dots + 4a - 20, u^8 + 4u^7 + \dots - 4u - 4 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{3}{2}u^{7} - \frac{15}{4}u^{6} + \dots + u + 5 \\ \frac{5}{4}u^{7} + 3u^{6} + \dots - u - 3 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{4}u^{7} - \frac{3}{4}u^{6} + \dots - \frac{9}{2}u^{2} + 2 \\ \frac{5}{4}u^{7} + 3u^{6} + \dots - u - 3 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{9}{4}u^{7} - \frac{23}{4}u^{6} + \dots - \frac{25}{2}u^{2} + 6 \\ \frac{3}{4}u^{7} + 2u^{6} - 4u^{5} - 17u^{4} - \frac{23}{2}u^{3} + 4u^{2} - 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{5}{4}u^{7} + \frac{11}{4}u^{6} + \dots - u - 2 \\ \frac{3}{4}u^{7} + 2u^{6} + \dots - u - 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{7} - 2u^{6} + 6u^{5} + 19u^{4} + 8u^{3} - 9u^{2} + 3 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 3u^{7} + \frac{31}{4}u^{6} + \dots - 2u - 9 \\ -\frac{3}{4}u^{7} - 2u^{6} + \dots + u + 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{2}u^{7} - \frac{5}{4}u^{6} + \dots - \frac{5}{2}u^{2} + 2 \\ \frac{1}{4}u^{7} + u^{6} - u^{5} - 8u^{4} - \frac{13}{2}u^{3} + 2u^{2} - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-2u^7 4u^6 + 13u^5 + 35u^4 + 8u^3 6u^2 + 18u 2$

Crossings	u-Polynomials at each crossing		
c_1	$u^8 - 4u^7 - 142u^6 - 1344u^5 + 923u^4 - 512u^3 + 178u^2 - 36u + 1$		
c_2, c_4, c_{10}	$u^8 - 2u^6 + 40u^5 - 73u^4 + 56u^3 - 18u^2 + 1$		
c_3, c_5, c_9	$u^8 - 6u^5 - u^4 - 6u^3 - 2u^2 - 2u - 1$		
c_6	$u^8 - 6u^7 + 22u^6 - 102u^5 + 297u^4 - 492u^3 + 402u^2 - 108u - 19$		
c_7, c_{11}, c_{12}	$u^8 + 4u^7 - 2u^6 - 30u^5 - 44u^4 - 12u^3 + 8u^2 - 4u - 4$		
c ₈	$u^8 - 16u^7 + 72u^6 - 4u^5 - 371u^4 - 426u^3 + 442u^2 + 68u - 97$		

Crossings	Riley Polynomials at each crossing		
c_1	$y^8 - 300y^7 + \dots - 940y + 1$		
c_2, c_4, c_{10}	$y^8 - 4y^7 - 142y^6 - 1344y^5 + 923y^4 - 512y^3 + 178y^2 - 36y + 1$		
c_3,c_5,c_9	$y^8 - 2y^6 - 40y^5 - 73y^4 - 56y^3 - 18y^2 + 1$		
<i>C</i> ₆	$y^8 + 8y^7 + \dots - 26940y + 361$		
c_7, c_{11}, c_{12}	$y^8 - 20y^7 + 156y^6 - 612y^5 + 1208y^4 - 1072y^3 + 320y^2 - 80y + 16$		
c_8	$y^8 - 112y^7 + \dots - 90372y + 9409$		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.551137		
a = 0.212410	-0.800674	-12.5950
b = 0.424769		
u = -1.44764 + 0.06689I		
a = -0.812880 - 0.861044I	-4.25535 + 2.66770I	-4.04426 - 2.00132I
b = -0.292648 + 0.756441I		
u = -1.44764 - 0.06689I		
a = -0.812880 + 0.861044I	-4.25535 - 2.66770I	-4.04426 + 2.00132I
b = -0.292648 - 0.756441I		
u = 0.377266 + 0.364501I		
a = 1.01991 - 1.65688I	1.63452 - 1.28115I	0.91619 + 5.71849I
b = 0.110704 + 0.754072I		
u = 0.377266 - 0.364501I		
a = 1.01991 + 1.65688I	1.63452 + 1.28115I	0.91619 - 5.71849I
b = 0.110704 - 0.754072I		
u = -2.04666 + 0.56570I		
a = 0.01556 + 1.77149I	13.6112 + 10.0113I	-6.52481 - 3.89603I
b = 0.98351 - 1.43901I		
u = -2.04666 - 0.56570I		
a = 0.01556 - 1.77149I	13.6112 - 10.0113I	-6.52481 + 3.89603I
b = 0.98351 + 1.43901I		
u = 2.78520		
a = 1.34242	-11.3105	-8.09900
b = -2.02789		

II.
$$I_2^u = \langle -au + b + 2a - u + 2, \ 2a^2 - au + 2a + u + 3, \ u^2 - 2 \rangle$$

a) Art colorings
$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ au - 2a + u - 2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} au - a + u - 2 \\ au - 2a + u - 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -a - \frac{1}{2}u - 2 \\ au - 2a + u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2au - 3a + \frac{3}{2}u - 4 \\ au - 2a + u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} au - a + \frac{3}{2}u + 1 \\ -au + 2a - u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a - u \\ au - 2a + u - 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -8au + 16a 8u + 4

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4 c_9, c_{10}	$(u^2 - u + 1)^2$
c_2, c_5	$(u^2+u+1)^2$
c_6	$u^4 + 2u^3 + 5u^2 + 10u + 7$
c_7, c_{11}, c_{12}	$(u^2-2)^2$
c ₈	$u^4 - 2u^3 + 5u^2 - 10u + 7$

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_4, c_5, c_9 c_{10}	$(y^2+y+1)^2$		
c_{6}, c_{8}	$y^4 + 6y^3 - y^2 - 30y + 49$		
c_7, c_{11}, c_{12}	$(y-2)^4$		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.41421		
a = -0.14645 + 1.47840I	-4.93480 - 4.05977I	-8.00000 + 6.92820I
b = -0.500000 - 0.866025I		
u = 1.41421		
a = -0.14645 - 1.47840I	-4.93480 + 4.05977I	-8.00000 - 6.92820I
b = -0.500000 + 0.866025I		
u = -1.41421		
a = -0.853553 + 0.253653I	-4.93480 - 4.05977I	-8.00000 + 6.92820I
b = -0.500000 - 0.866025I		
u = -1.41421		
a = -0.853553 - 0.253653I	-4.93480 + 4.05977I	-8.00000 - 6.92820I
b = -0.500000 + 0.866025I		

$$III. \\ I_3^u = \langle u^2 + 2b + 2a - 4u + 2, \ 4u^2a + 2a^2 - 12au - u^2 + 6a + 7u - 6, \ u^3 - 4u^2 + 4u - 2 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -4u^{2} + 5u - 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -10u^{2} + 14u - 8 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{2}u^{2} - a + 2u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{2}u^{2} + 2u - 1 \\ -\frac{1}{2}u^{2} - a + 2u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} au + u^{2} - a - 2u + 2 \\ -u^{2}a + 2au - \frac{3}{2}u^{2} - a + 3u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{3}{2}u^{2}a - 3au + u^{2} + a + \frac{1}{2}u + 1 \\ -2u^{2}a + 4au - \frac{5}{2}u^{2} - 3a + 4u - 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -4u^{2}a + 8au + 5u^{2} - 4a - 10u + 7 \\ -10u^{2} + 14u - 8 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 2u^{2}a - 5au + \frac{3}{2}u^{2} + 4a - u - 1 \\ -2u^{2}a + 4au - \frac{3}{2}u^{2} - 3a + 2u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{3}{2}u^{2}a + au - u^{2} - a + \frac{5}{2}u \\ u^{2}a - \frac{7}{2}u^{2} - a + 7u - 4 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $u^2 4u 4$

Crossings	u-Polynomials at each crossing		
c_1	$u^6 + 43u^5 + 630u^4 + 2111u^3 + 5110u^2 + 5291u + 2401$		
c_2, c_4, c_{10}	$u^6 + u^5 + 22u^4 - 19u^3 + 54u^2 + u + 49$		
c_3,c_5,c_9	$u^6 + 3u^5 + 4u^4 - u^3 - u + 7$		
c_6	$u^6 + 8u^5 + 37u^4 + 56u^3 + 31u^2 + 8u + 47$		
c_7, c_{11}, c_{12}	$(u^3 - 4u^2 + 4u - 2)^2$		
<i>C</i> ₈	$u^6 + 16u^5 + 75u^4 - 40u^3 - 49u^2 + 12u + 149$		

Crossings	Riley Polynomials at each crossing		
c_1	$y^6 - 589y^5 + \dots - 3456461y + 5764801$		
c_2, c_4, c_{10}	$y^6 + 43y^5 + 630y^4 + 2111y^3 + 5110y^2 + 5291y + 2401$		
c_3,c_5,c_9	$y^6 - y^5 + 22y^4 + 19y^3 + 54y^2 - y + 49$		
<i>C</i> ₆	$y^6 + 10y^5 + 535y^4 - 876y^3 + 3543y^2 + 2850y + 2209$		
c_7, c_{11}, c_{12}	$(y^3 - 8y^2 - 4)^2$		
c ₈	$y^6 - 106y^5 + 6807y^4 - 9036y^3 + 25711y^2 - 14746y + 22201$		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.580357 + 0.606291I		
a = 0.967369 + 0.278463I	-0.96847 + 3.17729I	-6.35220 - 1.72143I
b = -0.791268 + 0.582254I		
u = 0.580357 + 0.606291I		
a = -0.42368 + 1.95182I	-0.96847 + 3.17729I	-6.35220 - 1.72143I
b = 0.599780 - 1.091110I		
u = 0.580357 - 0.606291I		
a = 0.967369 - 0.278463I	-0.96847 - 3.17729I	-6.35220 + 1.72143I
b = -0.791268 - 0.582254I		
u = 0.580357 - 0.606291I		
a = -0.42368 - 1.95182I	-0.96847 - 3.17729I	-6.35220 + 1.72143I
b = 0.599780 + 1.091110I		
u = 2.83929		
a = -1.04369 + 1.34813I	11.8065	-7.29560
b = 1.69149 - 1.34813I		
u = 2.83929		
a = -1.04369 - 1.34813I	11.8065	-7.29560
b = 1.69149 + 1.34813I		

$$\text{IV. } I_4^u = \langle 2b + 2a + u + 2, \ 2a^2 + 2au + 2a + u + 3, \ u^2 - 2 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -a \\ -a - \frac{1}{2}u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{2}u - 1 \\ -a - \frac{1}{2}u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -au - a - u \\ a + \frac{1}{2}u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{2}au - a - u - \frac{5}{2} \\ -a - \frac{1}{2}u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} au + 2a + \frac{3}{2}u + 1 \\ -a - \frac{1}{2}u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{2}au + a + u + \frac{5}{2} \\ a + \frac{1}{2}u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -8

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4 c_9, c_{10}	$(u^2 - u + 1)^2$
c_2, c_5	$(u^2+u+1)^2$
c_6	$u^4 - 4u^3 + 8u^2 - 8u + 7$
c_7, c_{11}, c_{12}	$(u^2-2)^2$
c ₈	$u^4 + 4u^3 + 8u^2 + 8u + 7$

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_4, c_5, c_9 c_{10}	$(y^2+y+1)^2$		
c_6, c_8	$y^4 + 14y^2 + 48y + 49$		
c_7, c_{11}, c_{12}	$(y-2)^4$		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.41421		
a = -1.20711 + 0.86603I	-4.93480	-8.00000
b = -0.500000 - 0.866025I		
u = 1.41421		
a = -1.20711 - 0.86603I	-4.93480	-8.00000
b = -0.500000 + 0.866025I		
u = -1.41421		
a = 0.207107 + 0.866025I	-4.93480	-8.00000
b = -0.500000 - 0.866025I		
u = -1.41421		
a = 0.207107 - 0.866025I	-4.93480	-8.00000
b = -0.500000 + 0.866025I		

V.
$$I_1^v = \langle a, b^2 - b + 1, v + 1 \rangle$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_3 = \begin{pmatrix} b \\ b \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -b \\ -b+1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} b \\ b-1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ -b+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -b \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 8b 4

Crossings	u-Polynomials at each crossing
c_1, c_4, c_5 c_{10}	$u^2 - u + 1$
c_2, c_3, c_6 c_8, c_9	$u^2 + u + 1$
c_7, c_{11}, c_{12}	u^2

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_8, c_9, c_{10}	$y^2 + y + 1$
c_7, c_{11}, c_{12}	y^2

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000 $a = 0$	-4.05977I	0.+6.92820I
b = 0.500000 + 0.866025I	- 4.059111	0. + 0.920201
v = -1.00000		
a = 0	4.05977I	06.92820I
b = 0.500000 - 0.866025I		

VI.
$$I_2^v = \langle a, \ b+v-1, \ v^2-v+1 \rangle$$

$$a_7 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ -v+1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -v+1 \\ -v+1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -v+1 \\ -v+1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ -v+1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ -v+1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -v+1 \\ -v \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} v \\ -v+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -v + 2 \\ -v \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -6

Crossings	u-Polynomials at each crossing
c_1, c_4, c_5 c_{10}	$u^2 - u + 1$
c_2, c_3, c_9	$u^2 + u + 1$
c_{6}, c_{8}	$(u-1)^2$
c_7, c_{11}, c_{12}	u^2

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_3 \\ c_4, c_5, c_9 \\ c_{10}$	$y^2 + y + 1$
c_{6}, c_{8}	$(y-1)^2$
c_7, c_{11}, c_{12}	y^2

	Solutions to I_2^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v =	0.500000 + 0.866025I		
a =	0	0	-6.00000
b =	0.500000 - 0.866025I		
v =	0.500000 - 0.866025I		
a =	0	0	-6.00000
b =	0.500000 + 0.866025I		

VII. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{2} - u + 1)^{6}$ $\cdot (u^{6} + 43u^{5} + 630u^{4} + 2111u^{3} + 5110u^{2} + 5291u + 2401)$ $\cdot (u^{8} - 4u^{7} - 142u^{6} - 1344u^{5} + 923u^{4} - 512u^{3} + 178u^{2} - 36u + 1)$
c_2	$(u^{2} + u + 1)^{6}(u^{6} + u^{5} + 22u^{4} - 19u^{3} + 54u^{2} + u + 49)$ $\cdot (u^{8} - 2u^{6} + 40u^{5} - 73u^{4} + 56u^{3} - 18u^{2} + 1)$
c_3, c_9	$(u^{2} - u + 1)^{4}(u^{2} + u + 1)^{2}(u^{6} + 3u^{5} + 4u^{4} - u^{3} - u + 7)$ $\cdot (u^{8} - 6u^{5} - u^{4} - 6u^{3} - 2u^{2} - 2u - 1)$
c_4, c_{10}	$(u^{2} - u + 1)^{6}(u^{6} + u^{5} + 22u^{4} - 19u^{3} + 54u^{2} + u + 49)$ $\cdot (u^{8} - 2u^{6} + 40u^{5} - 73u^{4} + 56u^{3} - 18u^{2} + 1)$
c_5	$(u^{2} - u + 1)^{2}(u^{2} + u + 1)^{4}(u^{6} + 3u^{5} + 4u^{4} - u^{3} - u + 7)$ $\cdot (u^{8} - 6u^{5} - u^{4} - 6u^{3} - 2u^{2} - 2u - 1)$
c_6	$((u-1)^{2})(u^{2}+u+1)(u^{4}-4u^{3}+\cdots-8u+7)(u^{4}+2u^{3}+\cdots+10u+7)$ $\cdot (u^{6}+8u^{5}+37u^{4}+56u^{3}+31u^{2}+8u+47)$ $\cdot (u^{8}-6u^{7}+22u^{6}-102u^{5}+297u^{4}-492u^{3}+402u^{2}-108u-19)$
c_7, c_{11}, c_{12}	$u^{4}(u^{2}-2)^{4}(u^{3}-4u^{2}+4u-2)^{2}$ $\cdot (u^{8}+4u^{7}-2u^{6}-30u^{5}-44u^{4}-12u^{3}+8u^{2}-4u-4)$
c_8	$((u-1)^2)(u^2+u+1)(u^4-2u^3+\cdots-10u+7)(u^4+4u^3+\cdots+8u+7)$ $\cdot (u^6+16u^5+75u^4-40u^3-49u^2+12u+149)$ $\cdot (u^8-16u^7+72u^6-4u^5-371u^4-426u^3+442u^2+68u-97)$

VIII. Riley Polynomials

Crossings	Riley Polynomials at each crossing	
c_1	$((y^2 + y + 1)^6)(y^6 - 589y^5 + \dots - 3456461y + 5764801)$ $\cdot (y^8 - 300y^7 + \dots - 940y + 1)$	
c_2, c_4, c_{10}	$(y^{2} + y + 1)^{6}$ $\cdot (y^{6} + 43y^{5} + 630y^{4} + 2111y^{3} + 5110y^{2} + 5291y + 2401)$ $\cdot (y^{8} - 4y^{7} - 142y^{6} - 1344y^{5} + 923y^{4} - 512y^{3} + 178y^{2} - 36y + 1)$	
c_3,c_5,c_9	$(y^{2} + y + 1)^{6}(y^{6} - y^{5} + 22y^{4} + 19y^{3} + 54y^{2} - y + 49)$ $\cdot (y^{8} - 2y^{6} - 40y^{5} - 73y^{4} - 56y^{3} - 18y^{2} + 1)$	
	$((y-1)^2)(y^2+y+1)(y^4+14y^2+48y+49)(y^4+6y^3+\cdots-30y+49)$ $\cdot (y^6+10y^5+535y^4-876y^3+3543y^2+2850y+2209)$ $\cdot (y^8+8y^7+\cdots-26940y+361)$	
c_7, c_{11}, c_{12}	$y^{4}(y-2)^{8}(y^{3}-8y^{2}-4)^{2}$ $\cdot (y^{8}-20y^{7}+156y^{6}-612y^{5}+1208y^{4}-1072y^{3}+320y^{2}-80y+16)$	
c_8	$((y-1)^2)(y^2+y+1)(y^4+14y^2+48y+49)(y^4+6y^3+\cdots-30y+49)$ $\cdot (y^6-106y^5+6807y^4-9036y^3+25711y^2-14746y+22201)$ $\cdot (y^8-112y^7+\cdots-90372y+9409)$	