Lebensstil der Pilze

Teil 2: Die pilzliche Kolonie

Von der Hyphe zum Myzel: Kolonien von filamentösen Pilzen

Phycomyces blakesleeanus

Verzweigungen, Autotropismus und Fusion von Hyphen

Bildung von Verzweigungen (Branches)

Hickey and Read, 2003

Verzweigungsmuster

Harris 2008

Regulation des Verzweigungsmusters

Neurospora crassa

Regulation des Verzweigungsmusters

+ Holzblöcke (Nahrung)

+ Collembolen (Springschwänze)

Fricker et al 2017

Negativer Autotropismus

Positiver Autotropismus und Anastomose

Neurospora crassa Moore Fig. 4.17 Moore Fig. 4.3 Moore Fig. 5.12

Pseudohyphen und Dimorphismus

TRENDS in Genetics

Pseudohyphen und Dimorphismus

Saccharomyces cerevisiae

В

Polarität während Hefewachstum

Sprosshefe (Saccharomyces cerevisiae)

Pilze mit Hefestadien

Ascomycota

Basidiomycota

Pilze mit Hefestadien

Anzahl proteinkodierender Gene

S.cer:Saccharomyces cerevisiae C.alb:Candida albicans P.pas:Pichia pastoris S.pom:Saccharomyces pombe C.neo:Cryptococcus neoformans U.may:Ustilago maydis

Lebensstil der Pilze

Teil 3: Ernährungsweise der Pilze

Lokalisierung von Enzymsekretion, Nahrungsaufnahme und Abwehr von Nahrungskonkurrenten

Induktion von Nahrungs-Abbauenzymen und/oder -Transportern

Minimale pilzliche Nahrungskomponenten

Table 6.1 A chemically defined liquid culture medium for fungi.

Chemical	Quantity
NaNO ₃ or NH ₄ NO ₃ or L-asparagine at equivalent nitrogen content	2 g
KH_2PO_4 (alone or in a buffered mixture with K_2HPO_4)	1 g
MgSO ₄	0.5 g
KCI	0.5 g
CaCl ₂	0.5 g
FeSO ₄ , ZnSO ₄ , CuSO ₄	0.005–0.01 g each
Sucrose or glucose	20 g
Distilled water	1 liter

Note: Common supplements required by fungi include the vitamins biotin (10 μ g) or thiamine (100 μ g).

Pilzliche C-Quellen: Präferenzen und Komplexität

Frische 'Pferdeäpfel'

Pilzliche C-Quellen: Präferenzen und Komplexität

Grad der Assimilierbarkeit und Persistenz	Substrat	Hauptquelle	Pilze, die zum Abbau befähigt befähigt sind
Schnell assimilierbar, nicht persistent	Glukose, Fruktose, Mannose (andere Hexosen), Xylose	lebende oder tote Pflanzen, Tiere oder Bakterien	alle Pilze ausser einigen Oomyceten
	Succrose, Maltose, etc.	lebende oder tote Pflanzen, Tiere oder Bakterien	wahrscheinlich die meisten Pilze mit einigen Ausnahmen (Chytridiomyceten, Zygomyceten und einige Ascomyceten)
	Organische Säuren	lebende oder tote Pflanzen, Tiere oder Bakterien	einige Pilze, aber spezifisch
relativ gut assimilierbar, mittlere Persistenz	Stärke, Inulin	Pflanzliches Gewebe	die meisten Pilze
	Glykogen	tierische Gewebe, mikrobielle Zellen	wahrscheinlich die meisten Pilze
	Hemicellulose	pflanzliche Zellwand, hauptsächlich höhere Algen	viele Pilze, wahrscheinlich marine Ascomyceten
	Pektine	pflanzliche Zellwand	viele Pilze
	Lipide (Fette und Oele)	tierisches und pflanzliches Gewebe, tierische Sekrete	einige Pilze
	Proteine	lebende oder tote Pflanzen, Tiere oder Bakterien	viele Pilze

Lebensstil der Pilze

Pilzliche C-Quellen I

Grad der Assimilierbarkeit und Persistenz	Substrat	Hauptquelle	Pilze, die zum Abbau befähigt sind
langsam oder sehr langsam assimilierbar, mittlere bis grosse Persistenz	Cellulose	pflanzliche Zellwände	viele Pilze, jedoch wenige Zygomyceten
	Kutin	pflanzliche Kutikula	wenig bekannt, Kutinasen wahrscheinlich häufig bei Ascomyceten
	Lignin	pflanzliche Zellwand	viele Basidiomyceten, einige Ascomyceten (Xylariaceae)
	Chitin	Exoskelett von Arthropoden, pilzliche Zellwand	viele Bodenpilze, Ascomyceten, welche lebende Arthropoden besiedeln
	Keratin	Haar, Fell, Federn, Horn, Huf	viele Ascomyceten
	Wachse	pflanzliche Kutikula	viele Pilze, welche Blattoberflächen besiedeln

Pilzliche C-Quellen II

Abbau von Stärke

Enzym	Aktivität	Produkt
	Hydrolysierte Bindung	
α-Amylase	Endo	α-D-Glukose, Maltose,
(α-1,4-D-Glukan Glukanhydrolase)	α-1,4-Bindungen	Maltotriose, Dextrin
,	5	0 D Obdon
Amyloglucosidase (α-1,4-D-Glukan Glukohydrolase)	Exo α-1,4-Bindungen, auch α- 1,6-Bindungen	β-D-Glukose
a-Glukosidase	Exo α-1,4-Bindungen	α-D-Glukose
Isoamylase	Endo α-1,6-Bindungen	α-1,4-Glukane unterschiedlicher Kettenlänge
Phosphorylase	Exo	Glukose-1-Phosphat
(α-1,4-D-	α-1,4-Bindungen	•
Glukan:Orthophosphat α-D-	_	
Glukosyltransferase)		

D-Glucose A CH2OH CH2OH CH2OH CH2OH CH2OH CH2OH H OH H OH H OH H OH OH H OH OH

Schematischer Aufbau der Pflanzenzellwand

Abbau von Pektin

D-Galacturonsäure

Enzym	Substrat	Reaktion oder hydrolysierte Bindung
Pektinesterase (PE)	Pektin	Hydrolyse des Methylesters
(Pektinmethylesterase)		
Polymethylgalakturonase (PMG) Endo PMG Exo PMG	Pektin	Hydrolyse der α-1-4-Bindung
Polymethylgalakturonatlyase (PMGL) Endo PMGL Exo PMGL	Pektin	Spaltung der α-1-4-Bindung durch Transelimination
Polygalakturonase (PG) Endo PG Exo PG1 Exo PG2	Pektinsäure	Hydrolyse der α-1-4-Bindung
Polygalakturonatlyase (PGL) Endo PGL Exo PGL	Pektinsäure	Spaltung der α-1-4-Bindung durch Transelimination

Struktur von Cellulose

D-Glucose

Enzyme des Cellulose-Abbaus

Enzym	Substrat	Reaktion oder hydrolysierte Bindung
Endocellulase	Cellulose	Interne Hydrolyse von β1-4- Bindungen
Exocellulase (Cellobiohydrolase)	Cellulose	Hydrolyse terminale β1-4- Bindungen, Freisetzung von Cellobiose
β-Glukosidase	Cellulo-oligosaccharide inklusive Cellobiose	Entfernt Glukose vom nicht- reduzierenden Ende
Glukan β1-4 Glukosidase	β1-4-D-Glukan	Entfernt Glukose Einheiten

Mechanismus des Cellulose-Abbaus

Oxidation von Cellulose durch Lytische Polysaccharide MonoOxigenasen (LPMOs)

Klassischer vs. oxidativer Abbau von Cellulose

Evolution der Basidiomycota: Abbau von Cellulose

Secondary loss of Ligninases/Cellulases in Mycorrhiza

Struktur von Lignin

Weissfäule

Braunfäule

Abbau von Lignin

Spurenelemente

Pilzliche Siderophore

Membran-Transportsysteme der Hefe Saccharomyces cerevisiae

Membran-Transportsysteme und -Rezeptoren in Pilzen

Stofftransport im Myzel

Coenozytisches Myzel

Stofftransport im Myzel

Neurospora crassa

Stofftransport im Myzel

b

Take home messages

- Die Netzwerke (Myzelien) von filamentösen Pilzen entstehen durch Verzweigung und Fusion (Anastomose) der Hyphen.
- Viele pathogene Pilze sind dimorph d.h. haben eine hefeartige und eine filamentöse Wachstumsphase.
- Die hauptsächliche C-Quelle von Pilzen ist die pflanzliche Zellwand d.h. Cellulose. Basidiomycota haben sich auf den Abbau von Lignocellulose (Holz) spezialisiert.
- Niedermolekulare Nahrung wird durch Transporter in die pilzliche Zelle aufgenommen und durch zytoplasmatischen Fluss im Myzel verteilt.
- Pilze besitzen Sensoren in der Plasmamembran, um ihren Metabolismus dem Nahrungsangebot anzupassen.

Further literature

Available online at www.sciencedirect.com

Lignocellulose degradation mechanisms across the Simon M Cragg , A Daniel I Dietals David Duncas Simon M Cragg, Gregg I Becknam, Neil Dupree,
Timothy DH Bugg, Daniel L Distels, Paul Dupree,
American Etychol Born, e Goodell Indiv. In Amaia Green Etxabe circon Maccinent Amaia E Maccinent Amala Green Etxabe, Daily J McQueen-Mason,
John E McGeehan, EM Mottel and Martin 7im I E IVIC DEBLIAIT, SITTION OF TWO Watts and Martin Zim

The Mycelium as a Network

MARK D. FRICKER,1 LUKE L. M. HEATON,1.2 NICK S. JONES,² and LYNNE BODDY³

nent of Plant Sciences, University of Oxford, Oxford, OX1 3RB, United Kingdom; Department, Imperial College, Queen's Gate, London SW7 2AZ, United Kingdom; iff School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom

Nutrient Sensing at the Plasma Membrane of Fungal Cells

PATRICK VAN DIJCK,12 NEIL ANDREW BROWN,3 GUSTAVO H. GOLDMAN,4 JULIAN RUTHERFORD,5 CHAOYANG XUE,6 and GRIET VAN ZEEBROECK1.2

skielogy KULL given. Flanders, Belgium; ²Laboratory of Molecular Cell Biology, 2011 January Relevium: 3Plant Biology and Crop Science,