Следующая пара - лабы, скипнешь - въебу

Идеи А.Н. Колмогорова:

- Энтропия мера сложности объекта
- Сложность объекта по Колмогорову длина алгорита, реализованного машиной Тьюринга, описывающей объект

Энтропия языка

Нулвеое приближение - берём 32 буквы русского алфавита и пробел, поместим их в "ящик" и будем составлять их них текста так - перемешаем быквы, достанем одну, запишем, положим обратно и перемашаем ещё раз. Итог

- что-то вроде этого:

Pasted image 20250326091239.png

Pasted image 20250326091126.png Первое приближение - будем учитывать частоты каждой из букв

Pasted image 20250326091159.png

Второе приближение - учитываем частоты диаграмм Pasted image 20250326091219.png

Третье приближение - учитываем частоты триграмм

Четвёртое приближение - учитываем частоты тетраграмм Pasted image 20250326091300.png

Роль вероятностных параметров слов для измерения содержащейся в тексте информации

Первое приближение - учтены частоты появления слов Pasted image 20250326085256.png

Второе приближение - учитываются частоты сочетаний двух соседних слов Pasted image 20250326085307.png

Свойства энтропии языка

Энтропией можно обозначить меру сложности объекта, в том числе языка

большниства текстов длины k такая вероятность равна 2^{-Hk}

Энтропия русского языка - по Колмогорову 1.33

Первое свойство энтропии языка - Если энтропия языка равна H, то существует примерно 2^{Hk} текстов длиной k,

принадлежащих данному языку

каждый текст языка удлинится в среднем в H раз **Третье свойство** - (Пусть каждому тексту языка соответствует вероятность - вероятность события, что из всех

Энтропия английскиго языка по Шеннону - 0.6-1.33 Pasted image 20250326090029.png

Второе свойство энтропии языка - если энтропия языка равна H, то при оптимальном способе кодирования

мыслимых текстов заданной длины появится именно этот) Если энтропия языка равна H, то для подавляющего

Тексты языка:

Чем меньше корпус допустимых текстов, тем меньше величина энтропии языка

Мы рассматриваем все тексты как потенциальные

Остаточная энтропия

Актуальные - реально существующие к данному моменту времени тексты на данным языке

Пусть каждое предложение иностранного языка можно первести на русский п способами (среднее количество переводов). Текст из 100 предложений можно перевести n^{100} способами

• Потенциальные - все возможные тексты

Остаточная энтропия по Колмогорову

Pasted image 20250326090416.png

остаточная энтропия

Колмогоровская сложность

Рассмотрим два языка - полный русский (энтропия А) и ограниченный русский с энтропией В, Тогда примерные количестве текстов длины k N1 & N2 будут равны Pasted image 20250326090531.png Pasted image 20250326090537.png

Если для заданного текста имеется N переводов длины k, то допустимых переводов этого текста должно быть в $2^{lpha k}$ меньше Чтобы допустимые переводы существовали, должно выполнятся неравенство $N \geq 2^{\alpha k}$ или $h \geq lpha$, где h -

и могут быть использованы при составлении описаний Условная сложность < Абсолютная сложность Удельная сложность - сложность целого текста, поделённая на длину текста (сложность, в среднем приходящаяся на один знак)

Условная сложность - сложность текста, вычисленная при условии, что указанные в тексте данные уже известны

Три подхода к определению понятия "количество информации" • Комбинаторный подход по Колмогорову:

Интересен при кодировании информации Pasted image 20250326091923.png

симметричным образом Колмогоров отмечает один парадокс:

Удельная сложность < Энтропия языка | Для длинных текстов

Энтропия переменного х: $H\left(x\right) = log_{2}N$

• Вероятностный подход по Колмогорову

(х и у - это сообщения)

Колмогоров отмечает - придание переменным характера случайных переменных, обладающих совместным распределением вероятностей, позволяет получить значительно более богатую систему понятий и соотношений Pasted image 20250326092322.png

При вероятностном подходе можно образовать матожидания $MH_w\left(\left.y/x\right.
ight)$ и $MI_w\left(\left.x{:}x\right.
ight)$ Величина $I_w\left(x,y
ight) = MI_w\left(x;y
ight) = MI_w\left(y;x
ight)$ характеризует "тесноту связи" между х и у

Указывая на определённое значение, энтропия снимается сообщением информации: $I = log_2 N$

- Величина $I\left({x;y} \right)$ при комбинаторном подходе всегда неотрицательна (что естественно), величина же $I_w\left(x{:}y
 ight)$ может быть и отрицательной Подлинной мерой "количества информации" теперь становится усредненная величина $I_w\left(x,y
 ight)$ • Алгоритмический подход по Колмогорову
- Pasted image 20250326092926.png Относительная сложность объекта у при заданном х - минимальная длина І(р) программы р получения у из х Метод программирования $\phi\left(p,x\right)=y$, где функцию $\phi\left(p,x\right)$ считаем частично рекурсивной
- Существует такая частично рекурсивная функци А(р,х), что для любой другой частично рекурсивной функции $\phi\left(p,x
 ight)$ выполняется: $K_{A}\left(y|x
 ight) \leq K_{\phi}\left(y|x
 ight) + C_{\phi}$, где C_{ϕ} не зависит от х и у

Если не существует p, удовлетворяющее $\phi\left(p,x\right)=y$, то $K_{\phi}\left(y/x\right)=\infty$

Для любой такой функции полагаем $K_{\phi}\left(y/x
ight) = minI\left(p
ight)$

сложность K(x), близкую к log 2N. Элементы $x \in M$ этой сложности и рассматриваются как случайные элементы множества М

Основная теорема Колмогорова

Pasted image 20250326093549.png Pasted image 20250326093555.png

Теорема о симметрии взаимной информации

Соотношение H(x:y)=H(y:x) сохраняется при замене H на K и знака равенства на знак "приблизительно равно"

Для любых двух слов а и b существует программа р, которая преобразует а в b, при этом имеет минимальную возможную длину (то есть ее длина равна К(b|a)) и при этом р имеет очень малую сложность относительно b. Другими словами, можно вычислить некоторое «хэш-значение» b длины K(b|a), которого достаточно для

 $K(x:y) = K(y:x) + O(logmax(|\nu_1|,...,|\nu_n|))$, где $\nu_1,...,\nu_n$ суть компоненты кортежей х и у.

Если конечное множество М из очень большого числа элементов N допускает определение при помощи программы длины, пренебрежимо малой по сравнению с log2N, то почти все элементы множества М имеют

восстановления b при заданном слове а Практичексое использование колмогоровской сложности

колмогоровская сложность

но неудовлетворяющее условию 3.

Метрика схожести

Расстояние d должно удовлетворять трем условиям:

Теорема об относительном описании

• Расстояние не меняется от перестановки текстов d(S, T) = d(T, S)• Для любых трех текстов S, N, T выполняется неравенство треугольника $d(S, T) \le d(S, N) + d(N, T)$

исходный текст. Минимальное количество информации, необходимое для восстановления текста -

Сжатый файл - набор инструкций для разжимающей программы, который позволяет без потерь восстановить

Математически близость текстов S и T характеризуется неотрицательным числом - расстоянием

Колмогоровская сложность текста Т - К(Т) Чтобы определить сложность S относительно T, нужно "подклеить" S к концу T и посмотреть, насколько хорошо

• Расстояние неотрицательно $d(S, T) \ge 0$, если d(S, T) = 0 → S = T

эта добавка сжимается Pasted image 20250326094417.png

Относительная сложность не может служить метрикой, поскольку нарушаются условия 2 и 3: Условие 2 часто

нарушается, если взять текст S маленькой длины и текст T большой: Pasted image 20250326094555.png

Относительная сложность применима в классификации текстов по автору. Метрика расстояния тогда имеет вид: Pasted image 20250326094655.png

Колмогоровская сложность невычислима для конечных объектов, но её можно заменить длиной сжатых через

Если для тех же текстов взять среднее арифметическое или геометрическое, то получится нечто симметричное,

gzip/GenCompress объектов Эта идея получила развитие в статье "The Similarity Metric" Идеи из статьи выше нашли развитие в поисковой машине Google. Пример:

• Общее количество проиндексированных страниц - 8'058'044'651 horse - 46'700'000 ссылок rider - 12'200'000 ссылок

- horse rider 2'630'000 ссылок • Нормированное семантическое расстояние NGD(horse, rider) = 0.443
- Pasted image 20250326095105.png
- NCD будем искать на лабах

Pasted image 20250326095117.png