

Centro de Enseñanza Técnica Industrial

Desarrollo de Software

Actividad 1 - Clase 1

Jesús Alberto Aréchiga Carrillo 22310439 6N

Profesor

Alma Nayeli Rodríguez Vázquez

Febrero 2025

Guadalajara, Jalisco

Introducción

La combinatoria es una rama de las matemáticas que se encarga de estudiar las formas de contar, organizar y combinar elementos de un conjunto según ciertas reglas. Entre los conceptos básicos se encuentran:

- Principio multiplicativo: Si se tienen varias decisiones independientes, el número total de resultados es el producto del número de opciones para cada decisión.
- **Permutaciones:** Se refieren a los arreglos de un conjunto de elementos en un orden específico. Cuando no hay elementos repetidos, el número de permutaciones de n elementos es n! (factorial de n).
- **Combinaciones:** Se utilizan cuando el orden de los elementos no importa. El número de formas de elegir k elementos de un conjunto de n es $\binom{n}{k}$.
- Funciones binarias: Cuando se definen funciones que asignan a cada elemento de un conjunto uno de dos valores (por ejemplo, 0 o 1), se usa el principio multiplicativo para contar el número total de funciones, ya que cada punto tiene 2 posibilidades.

Estos conceptos nos permiten abordar problemas prácticos como la formación de subcomités, el diseño de matrículas y la asignación de valores en funciones.

Ejercicios:

Ejercicio 1: Un comité de planificación universitaria está formado por 3 estudiantes de primer año, 4 de segundo año, 5 de tercer año y 2 personas mayores. Se elegirá un subcomité de 4, compuesto por 1 persona de cada clase.

¿Cuántos subcomités diferentes son posibles?

$$3 * 4 * 5 * 2 = 120$$
 subcomités

Ejercicio 2: ¿Cuántas matrículas diferentes de 7 plazas son posibles si se van a ocupar las 3 primeras plazas por letras y los 4 finales por números?

- Son 3 plazas para letras, es decir, 26 * 26 * 26, o 26³. Las siguientes plazas son para números, es decir, 10 * 10 * 10, o 10³.

$$26^3 * 10^3 = 175,760,000 \ matriculas$$

Ejercicio 3: ¿Cuántas funciones definidas en n puntos son posibles si cada valor funcional es 0 o 1?

Por principio multiplicative, 2ⁿ

Ejercicio 4: En el ejercicio 2, ¿cuántas matrículas serían posibles si la repetición entre letras o los números estaban prohibidos?

Primero se sabe que son 3 plazas para las letras, suponiendo que hay 26 letras, sería 26 * 25 * 24, ya que, al usar una letra, en la siguiente plaza se puede utilizar una letra menos. Para las siguientes 4 plazas, sería 10 * 9 * 8 * 7, mismo caso de las letras, pero para 4 plazas.

$$26 * 25 * 24 * 10 * 9 * 8 * 7 = 78,624,000$$
 matrículas

Ejercicio 5: Una clase de teoría de la probabilidad consta de 6 hombres y 4 mujeres. Hacen un examen y los estudiantes son clasificados según su desempeño. Supongamos que no hay dos estudiantes que obtienen la misma puntuación.

- (a) ¿Cuántas clasificaciones diferentes son posibles?
- Permutación de 10 elementos 10! = 3,628,800 *clasificaciones*

Conclusiones:

La combinatoria es una herramienta esencial en matemáticas que nos permite abordar de manera sistemática y precisa problemas relacionados con el conteo, la organización y la selección de elementos. A través de conceptos clave como el principio multiplicativo, las permutaciones y las combinaciones, podemos descomponer problemas complejos en partes más manejables y calcular el número de configuraciones posibles en situaciones diversas, desde la formación de subcomités hasta la generación de matrículas y la definición de funciones binarias. Este enfoque no solo facilita la resolución de problemas teóricos, sino que también tiene aplicaciones prácticas en campos tan variados como la estadística, la informática y la toma de decisiones en entornos reales. En definitiva, la comprensión y aplicación de los principios combinatorios es fundamental para desarrollar habilidades analíticas y resolver desafíos de manera eficiente y efectiva.