Machine learning methods applied to the analysis of central exclusive production events in ALICE

Sebastian Ratzenböck¹

¹Stefan Meyer Institut Österreichische Akademie der Wissenschaften

26. April 2018

Outline

- ML: an overview
- Rectangular cuts
 - Decision Trees
 - Example
 - Improvements
- 3 Linear cuts

In general ML represents a contrast to a rule based systems

Rule-based system

System that uses rules to make deductions or choices

- Domain-specific expert system
- Knowledge base: facts & rules (if \rightarrow then statement)
- ullet Rules manually specified (by expert) o expensive, incomplete

In general ML represents a contrast to a *rule based systems*

Rule-based system

System that uses rules to make deductions or choices

- Domain-specific expert system
- ullet Knowledge base: facts & rules (if o then statement)
- ullet Rules manually specified (by expert) o expensive, incomplete

In general ML represents a contrast to a *rule based systems*

Rule-based system

System that uses rules to make deductions or choices

- Domain-specific expert system
- ullet Knowledge base: facts & rules (if o then statement)
- ullet Rules manually specified (by expert) o expensive, incomplete

In general ML represents a contrast to a rule based systems

Machine learning

- Alorithms that learn from data & make predictions on data
- Automatic methods → no human needed
- Human work required for defining problem & assessing the data

In general ML represents a contrast to a rule based systems

Machine learning

- Alorithms that learn from data & make predictions on data
- Automatic methods → no human needed
- Human work required for defining problem & assessing the data

In general ML represents a contrast to a rule based systems

Machine learning

- Alorithms that learn from data & make predictions on data
- Automatic methods → no human needed
- Human work required for defining problem & assessing the data

Types of ML

- Supervised
 - Classification
 - Regression
- Unsupervised

Supervised learning

Types of ML

- Supervised
 - Classification
 - Regression
- Unsupervised

Unsupervised learning

Rectangular cuts

Standard cut in one variable

- Cuts only in lower-dimensional subspaces
- Ignores possible dependencies between the input variables
- Signal might behave like BG in several observables
 - → misclassification

Rectangular cuts

Standard cut in one variable

- Cuts only in lower-dimensional subspaces
- Ignores possible dependencies between the input variables
- Signal might behave like BG in several observables

Rectangular cuts

Standard cut in one variable

- Cuts only in lower-dimensional subspaces
- Ignores possible dependencies between the input variables
- Signal might behave like BG in several observables
 - \rightarrow misclassification

- ullet Tree-like graph o flowchart
- Easy to understand
- Either be manually modelled by experts or learned from training data

Training

Recursively split feature space into sub-spaces at each step

- \rightarrow Measures to evaluate split
 - Error rate
 - Information gain
 - Gini index

- We compute a measure for each possible split in each feature
 → here absolute error rate (AER)
 - y split AER

- We compute a measure for each possible split in each feature
 → here absolute error rate (AER)
 - x-y split AER

- We compute a measure for each possible split in each feature
 → here absolute error rate (AER)
 - x-y split AER Minimum AER

- We compute a measure for each possible split in each feature
 → here absolute error rate (AER)
- 2) Recursively repead step (1) for each subspace until AER ightarrow 0

- We compute a measure for each possible split in each feature
 → here absolute error rate (AER)
- 2) Recursively repead step (1) for each subspace until AER ightarrow 0

- 1) We compute a measure for each possible split in each feature → here absolute error rate (AER)
- 2) Recursively repead step (1) for each subspace until AER ightarrow 0

- 1) We compute a measure for each possible split in each feature → here absolute error rate (AER)
- 2) Recursively repead step (1) for each subspace until AER ightarrow 0

- 1) We compute a measure for each possible split in each feature → here absolute error rate (AER)
- 2) Recursively repead step (1) for each subspace until AER ightarrow 0

- We compute a measure for each possible split in each feature
 → here absolute error rate (AER)
- 2) Recursively repead step (1) for each subspace until AER ightarrow 0

Decision tree classification

3) Classification

- Use more sophisticated split measures
 - ► Information gain ↔ (im-)purity of splitted sub-sets
 - Gini index
- Pruning

Random forest

- Ensemble of DTs
- For each tree use:
 - Random sub-sample (=bootstrapping)
 - ▶ Random number of the original features
 → large number of rather shallow trees
- Classify data by majority voting of individual trees

- Sequential ensemble of evolving DTs
- Output of each tree is given weight relative to accuracy
- → Subsequent predictors learn from the mistakes of the previous predictors

Random forest

- Ensemble of DTs
- For each tree use:
 - Random sub-sample (=bootstrapping)
 - original features

 → large number of rather
- Classify data by majority voting of individual trees

- Sequential ensemble of evolving DTs
- Output of each tree is given weight relative to accuracy
- → Subsequent predictors learn from the mistakes of the previous predictors

Random forest

- Ensemble of DTs
- For each tree use:
 - Random sub-sample (=bootstrapping)
 - original features

 → large number of rather
- Classify data by majority voting of individual trees

- Sequential ensemble of evolving DTs
- Output of each tree is given weight relative to accuracy
- → Subsequent predictors learn from the mistakes of the previous predictors

Random forest

- Ensemble of DTs
- For each tree use:
 - Random sub-sample (=bootstrapping)
 - Random number of the original features
 - \rightarrow large number of rather shallow trees
- Classify data by majority voting of individual trees

- Sequential ensemble of evolving DTs
- Output of each tree is given weight relative to accuracy
- → Subsequent predictors learn from the mistakes of the previous predictors

Random forest

- Ensemble of DTs
- For each tree use:
 - Random sub-sample (=bootstrapping)
 - Random number of the original features
 - \rightarrow large number of rather shallow trees
- Classify data by majority voting of individual trees

- Sequential ensemble of evolving DTs
- Output of each tree is given weight relative to accuracy
- → Subsequent predictors learn from the mistakes of the previous predictors

Random forest

- Ensemble of DTs
- For each tree use:
 - Random sub-sample (=bootstrapping)
 - Random number of the original features
 - \rightarrow large number of rather shallow trees
- Classify data by majority voting of individual trees

- Sequential ensemble of evolving DTs
- Output of each tree is given weight relative to accuracy
- → Subsequent predictors learn from the mistakes of the previous predictors

Random forest

- Ensemble of DTs
- For each tree use:
 - Random sub-sample (=bootstrapping)
 - Random number of the original features
 - \rightarrow large number of rather shallow trees
- Classify data by majority voting of individual trees

- Sequential ensemble of evolving DTs
- Output of each tree is given weight relative to accuracy
- → Subsequent predictors learn from the mistakes of the previous predictors

Random forest

- Ensemble of DTs
- For each tree use:
 - Random sub-sample (=bootstrapping)
 - Random number of the original features
 - \rightarrow large number of rather shallow trees
- Classify data by majority voting of individual trees

- Sequential ensemble of evolving DTs
- Output of each tree is given weight relative to accuracy
- → Subsequent predictors learn from the mistakes of the previous predictors

Linear cuts

More flexible than rectangular cut

- Simple white box methods
- Can become very powerful by using kernel trick

Linear cuts

More flexible than rectangular cut

- Simple white box methods
- Can become very powerful by using kernel trick

