SAMPLE SPACES

A list or diagram showing all possible outcomes in a probability experiment is called a **sample space**.

Then
$$Pr(E) = \frac{\text{number of ways E can occur}}{\text{number of outcomes in the sample space}} = \frac{n(E)}{n(S)}$$

• For tossing a single die the sample space is 1, 2, 3, 4, 5, 6 and $Pr(1) = Pr(2) = Pr(3) = Pr(4) = Pr(5) = Pr(6) = \frac{1}{6}$

• For this spinner, which has 4 equal sectors, the sample space is Red, Green, Yellow, Blue And $Pr(R) = Pr(G) = Pr(Y) = Pr(B) = \frac{1}{4}$

NB: The sum of the probabilities of the distinct outcomes within a sample space is 1.

Tree diagrams

A tree diagram can be used to find the sample space.

For example, if two coins are tossed there are four possible outcomes:

If E is the event 'at least one head' then $Pr(E) = Pr(HH \text{ or } HT \text{ or } TH) = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}$

The sample space for a three child family is shown below:

If E is the event 'first child a girl' then $Pr(E) = \frac{4}{8} = \frac{1}{2}$

Other sample spaces and diagrams

Sample Space for Choosing a Card from a Deck

If a single card is drawn from the deck and

- (a) D is the event 'the card is a diamond' then $Pr(D) = \frac{13}{52} = \frac{1}{4}$
- (b) E is the event 'the card is a diamond (D) or an ace (A)' then Pr(E) = Pr(D or A)= $Pr(D \cup A)$

$$= Pr(D) + Pr(A) - Pr(D \cap A)$$

$$= \frac{13}{52} + \frac{4}{52} - \frac{1}{52}$$

$$= \frac{16}{52}$$

$$= \frac{4}{13}$$

Tables and Venn diagrams can also be used to organise information that makes finding probabilities easier

The diagram shows the number of people in a survey of 256 who regularly ate Kit Kats, Mars Bars or Rocky Road

From the diagram we can see

$$\Pr(K) = \frac{26+46+30+38}{256} = \frac{140}{256} = \frac{35}{64}$$

$$Pr(M \cap R) = \frac{78}{256} = \frac{39}{128}$$

Pr(KitKat and MarsBar but not Rocky Road) = $\frac{30}{256} = \frac{15}{128}$

Pr(at least one of these things) =
$$1 - \frac{20}{256} = \frac{236}{256} = \frac{59}{64}$$

[using complementary events]

	Lung Cancer yes	Lung Cancer	Total	
Smokers yes	30	70	100	
Non-smokers no	10	90	100	
	40	160	200	

The table shows the results of a study that looked at the association between smoking (S) and lung cancer (C).

From the table we can see

$$\Pr(S) = \frac{100}{200} = \frac{1}{2}$$

$$\Pr(C') = \frac{160}{200} = \frac{4}{5}$$

$$\Pr(S \cap C) = \frac{30}{200} = \frac{3}{20}$$

Exercise

- Use a tree diagram to find the sample space for a two child family. Hence find 1.
 - (a) The probability that both children are girls
 - (b) The probability that the oldest child is a girl
 - (c) The probability that at least one child is a girl
- 2. The diagram shows the sample space for tossing a single die twice.

		Second throw						
		1	2	3	4	5	6	
	1	(1, 1)	(1, 2)	(1,3)	(1, 4)	(1,5)	(1,6)	
	2		(2, 2)					
First	3	(3, 1)	(3, 2)	(3,3)	(3,4)	(3,5)	(3,6)	
throw	4	(4,1)	(4, 2)	(4,3)	(4,4)	(4,5)	(4,6)	
	5	(5,1)	(5, 2)	(5,3)	(5,4)	(5,5)	(5, 6)	
	6	(6,1)	(6, 2)	(6, 3)	(6,4)	(6,5)	(6, 6)	

Find the probability that

- (a) the first toss is a 4
- (b) the sum of the two tosses is 5
- (c) at least one toss is a 6
- (d) neither toss is a 6
- 3. In a classroom of 20 Yr 12 VCE students 10 study Maths Methods, 7 study Specialist maths and 5 study both. Organise the information in a Venn diagram and find the probability that a student chosen at random
 - (a) Studies neither of these maths subjects
 - (b) Studies Maths Methods but not Specialist Maths
- 4. Find the probability that a card drawn at random from a pack is
 - (a) A red card
 - (b) Lower than a 5 (ace low)

- 1. $(a) \frac{1}{4}$ $(b) \frac{1}{2}$ $(c) \frac{3}{4}$ 2. $(a) \frac{1}{6}$ $(b) \frac{1}{9}$ $(c) \frac{11}{36}$ $(d) \frac{25}{36}$ 3. $(a) \frac{2}{5}$ $(b) \frac{1}{4}$ 4. $(a) \frac{1}{2}$ $(b) \frac{4}{13}$