线性代数 A 习题课讲义 02

Caiyou Yuan

March 29, 2021

7.5 等

- 重因式
- 复数域上的不可约多项式只有一次的
- 实数域上的不可约多项式都是一次的,或判别式小于零的二次多项式
- 有理数域上的不可约多项式可以是任意次数的

多项式理论的应用: λ -**矩阵** 即矩阵的每个元素都是多项式环 $K[\lambda]$ 中元素; 矩阵乘法, 加法以及行列式等概念, 和数字矩阵类似

λ -矩阵的初等变换

- (a) 矩阵的两行/列互换位置
- (b) 矩阵的某一行/列乘以非零常数 c
- (c) 矩阵的某一行/列加上另一行/列的 $p(\lambda)$ 倍, 其中 $p(\lambda) \in K[\lambda]$.

如果 $A(\lambda)$ 可以经过一系列行和列的初等变换化为 $B(\lambda)$, 则称 $A(\lambda)$ 和 $B(\lambda)$ 等价.

例题

1. 证明: 设 $A(\lambda)$ 的左上角元素 $a_{11}(\lambda) \neq 0$, 并且 $A(\lambda)$ 中至少有一个元素不能被它除尽,那么一定可以找到 和 $A(\lambda)$ 等价的 $B(\lambda)$, 它的左上角元素也不为零,但是次数小于 $a_{11}(\lambda)$ 的次数

2. 证明: 任意一个非零的 $s \times n$ 的 λ-矩阵 A(λ) 都等价于如下形式的矩阵 (被称为标准形式)

$$\begin{pmatrix} d_1(\lambda) & & & & & \\ & d_2(\lambda) & & & & \\ & & \ddots & & & \\ & & d_r(\lambda) & & & \\ & & & 0 & & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}$$

其中 $r \ge 1$, $d_i(\lambda)$ 是首一的多项式 (被称为不变因子), 且

$$d_i(\lambda) | d_{i+1}(\lambda) \quad i = 1, 2, \dots, r-1.$$

3. 用初等变换化 λ-矩阵

$$A(\lambda) = \begin{bmatrix} 1 - \lambda & 2\lambda - 1 & \lambda \\ \lambda & \lambda^2 & -\lambda \\ 1 + \lambda^2 & \lambda^3 + \lambda - 1 & -\lambda^2 \end{bmatrix}$$

为标准型.

 λ -矩阵标准形式的唯一性 下面来借助行列式因子的概念来说明 λ -矩阵标准形式的唯一性.

- 1. (λ -矩阵的秩) 如果 $A(\lambda)$ 中有一个 $r \ge 1$ 级子式不为零,而所有的 r+1 级子式 (如果有的话) 全为零,则称 $A(\lambda)$ 的秩为 r. 零矩阵的秩记为 0.
- 2. $(\lambda$ -矩阵的行列式因子) 设 $A(\lambda)$ 的秩为 r,对于 $1 \le k \le r$, $A(\lambda)$ 中全部 k 级子式的首一最大公因式 $D_k(\lambda)$ 称为 $A(\lambda)$ 的 k 阶行列式因子.

例题

- 1. 等价的 λ -矩阵具有相同的秩和相同的各阶行列式因子.
- 2. 证明 λ -矩阵的不变因子和行列式因子有如下关系

$$d_1(\lambda) = D_1(\lambda), \quad d_2(\lambda) = \frac{D_2(\lambda)}{D_1(\lambda)}, \quad \dots, \quad d_r = \frac{D_r(\lambda)}{D_{r-1}(\lambda)}$$

3. 说明 λ -矩阵的标准形式是唯一的.

8.1

- 域
- 域 F 上的线性空间的定义
- 基
- 维数
- 过渡矩阵

例题

- 1. (a) 把域 F 看成是 F 上的线性空间, 求它的一个基和维数;
 - (b) 把复数域 C 看成是实数域 R 上的线性空间, 求它的一个基和维数;
- 2. (a) 把实数域 R 看成是有理数域 Q 上的线性空间,证明:对于任意大于 1 的正整数,

1.
$$\sqrt[n]{3}$$
, $\sqrt[n]{3^2}$, ..., $\sqrt[n]{3^{n-1}}$

是线性无关的. (提示: 已知 $g(x) = x^n - 3$ 是 Q 上的不可约多项式)

- (b) 证明: 实数域 R 作为有理数域 Q 上的线性空间是无穷维的.
- 3. 设 V 是域 F 上的 n 维线性空间, 域 F 包含域 E,F 可看作域 E 上的 m 维线性空间
 - (a) 求证: V 可以成为域 E 上的线性空间
 - (b) 证明: 求 V 作为域 E 上线性空间的维数
- 4. (Complexification of real vector space) 设 V 是数域 R 上的 n 维线性空间,设 $V_C = \{(u,v), u, v \in V\}$, 定义 V_C 上的加法

$$(u_1, v_1) + (u_2, v_2) = (u_1 + u_2, v_1 + v_2)$$

以及C上的数乘

$$(a+bi)(u,v) = (au - bv, av + bu)$$

- (a) 求证: V_C 是一个复线性空间
- (b) 计算 V_C 的维数
- 5. (对偶空间) 设 V 是数域 K 上的 n 维线性空间,考虑复数域 C 上的线性空间 $C^V(M$ V 到 R 的函数全体)中具有下述性质的函数组成的子集 W:

$$f(\alpha + \beta) = f(\alpha) + f(\beta), \quad \forall \alpha, \beta \in V,$$

$$f(k\alpha) = kf(\alpha), \quad \forall \alpha \in V, k \in K.$$

- (a) 求证: W 是一个复线性空间
- (b) 求 W 的一个基和维数; 设 $f \in W$, 求 f 在这个基下的坐标
- 6. (零化多项式和最小多项式) 设 A 是数域 K 上的一个非零 n 阶矩阵,说明 K[A] 是 K 上的一个线性空间. K[A] 至多多少维? ¹
- 7. 设递推方程

$$u_n = au_{n-1} + bu_{n-2}, \quad n \ge 2,$$

其中 a,b 都是非零复数. 若 N 上的一个复值数列 u_n 满足上述递推关系,则称为上述递推方程的解. 一元 多项式 $f(x) = x^2 - ax - b$ 称为上述递推方程的特征多项式. 求证

- (a) 上述递推方程的解集 W 是一个复线性空间
- (b) 设 α 是一个非零复数,则 $\alpha^n \in W$ 当且仅当 $f(\alpha) = 0$
- (c) 设 α 是一个非零复数,则 $n\alpha^n \in W$ 当且仅当 $f(\alpha) = 0, f'(\alpha) = 0$.
- (d) 若 f(x) 有两不同的根 α_1, α_2 , 则任意 $u_n \in W$, 可以表示为

$$u_n = C_1 \alpha_1^n + C_2 \alpha_2^n$$

其中 C_1, C_2 是常数;

(e) 若 f(x) 有二重根 α , 则任意 $u_n \in W$, 可以表示为

$$u_n = C_1 \alpha^n + C_2 n \alpha^n$$

其中 C_1, C_2 是常数;

 $^{^1}$ Hamilton-Cayley 定理告诉我们,K[A] 至多 n 维.

8.2

- 子空间
- 子空间的维数定理

$$\dim V_1 + \dim V_2 = \dim(V_1 + V_2) + \dim(V_1 \cap V_2)$$

直和

例题

- 1. 设 V_1, V_2, V_3 都是域 F 上的有限维线性空间 V 的子空间
 - (a) 求证:

$$V_3 \cap V_1 + V_3 \cap V_2 \subset V_3 \cap (V_1 + V_2)$$

- (b) 如果 $V_3 \subset V_1 + V_2$, 试问 $(V_3 \cap V_1) + (V_3 \cap V_2) = V_3$ 是否总成立? 如果再加上条件 $V_1 \subset V_3$ 呢?
- (c) 求证,

$$\dim V_1 + \dim V_2 + \dim V_3 \ge \dim(V_1 + V_2 + V_3)$$

$$+ \dim(V_1 \cap V_2) + \dim(V_1 \cap V_3) + \dim(V_2 \cap V_3)$$

$$- \dim(V_1 \cap V_2 \cap V_3)$$

- 2. 设 V_1, \cdots, V_s 都是域 F 上线性空间 V 的子空间, 证明 $V_1 + V_2 + \cdots + V_s$ 是直和
 - (a) 当且仅当,

$$V_i \cap \left(\sum_{j \neq i} V_j\right) = 0, \quad i = 1, 2, \dots, s$$

(b) 当且仅当,V 中有一向量 α 可以唯一表示为

$$\alpha = \sum_{i=1}^{s} \alpha_i, \quad \alpha_i \in V_i$$

(c) 当且仅当,

$$\dim(V_1 + V_2 + \dots + V_s) = \dim V_1 + \dots \dim V_s$$

3. 设 A 是数域 K 上的一个 n 阶矩阵, $\lambda_1, \lambda_2, \cdots, \lambda_s$ 是 A 的全部不同的特征值,用 V_{λ_i} 表示 A 的属于 λ_i 的特征子空间. 证明:A 可以对角化的充分必要条件是

$$K^n = V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_s}$$

4. 在数域 K 上的线性空间 $K^{M_n(K)}$ 中,如果 f 满足,对于任意的 $A = (\alpha_1, \alpha_2, \dots, \alpha_n)$,任意的 n 维列向量 α ,以及任意 $k \in K, j \in \{1, 2, \dots, n\}$,有

$$f(\alpha_1, \cdots, \alpha_{j-1}, \alpha_j + \alpha, \alpha_{j+1}, \cdots, \alpha_n) = f(\alpha_1, \cdots, \alpha_{j-1}, \alpha_j, \alpha_{j+1}, \cdots, \alpha_n) + f(\alpha_1, \cdots, \alpha_{j-1}, \alpha, \alpha_{j+1}, \cdots, \alpha_n)$$

$$f(\alpha_1, \dots, \alpha_{j-1}, k\alpha_j, \alpha_{j+1}, \dots, \alpha_n) = kf(\alpha_1, \dots, \alpha_{j-1}, \alpha_j, \alpha_{j+1}, \dots, \alpha_n)$$

那么称 $f \in M_n(K)$ 上的列线性函数. 同理如果 $g(A^T)$ 是列线性函数,则称 g(A) 是行线性函数。记所有的列/行线性函数组成的集合分别记为 V_1 和 V_2 .

- (a) 证明: V_1, V_2 都是 $K^{M_n(K)}$ 的子空间
- (b) 分别求 V_1, V_2 的一个基和维数
- (c) 分别求 $V_1 \cap V_2$, $V_1 + V_2$ 的一个基和维数

8.3

- 线性空间的同构
- 有限维线性空间同构的充要条件

例题

1. 令

$$H = \left\{ \begin{bmatrix} z_1 & z_2 \\ -z_2 & z_1 \end{bmatrix}, z_1, z_2 \in C \right\}$$

- (a) H 对于矩阵的加法,以及实数和矩阵的乘法构成一个实线性空间
- (b) 给出 H 的一个基和维数
- (c) 证明: H 与 R^4 同构, 并写出 H 到 R^4 的一个同构映射

- - (a) 证明 $AM_n(K)$ 是数域 K 上线性空间 $M_n(K)$ 的子空间
 - (b) 设 A 的列向量组 α_1,\cdots,α_n 的一个极大线性无关组为 $\alpha_{j_1},\cdots,\alpha_{j_r}$, 证明 $AM_n(K)$ 和 $M_{r\times n}(K)$ 同 构,并写出一个同构映射.
 - (c) 证明: $\dim[AM_n(K)] = \operatorname{rank}(A)n$.