Hodge Theory, Gelfand Theory, and Clifford Analysis Applied to Tomography

Colin Roberts

Overview

1 Introduction

2 Clifford analysis

3 Hodge theory

4 Tomography

Section 1

Introduction

Motivating problems

■ Electrical Impedance Tomography (EIT) asks whether one can determine the conductivity of a medium from the voltage-to-current map.

Motivating problems

- Electrical Impedance Tomography (EIT) asks whether one can determine the conductivity of a medium from the voltage-to-current map.
- The Calderón problem replaces the medium with a manifold M, conductivity with g, and replaces the voltage-to-current map with the Dirichlet-to-Neumann operator Λ .

■ What topological information can we retrieve from functions on a manifold?

- What topological information can we retrieve from functions on a manifold?
- Do these functions also contain metric data?

- What topological information can we retrieve from functions on a manifold?
- Do these functions also contain metric data?
- Can we access these functions from the boundary?

Subsection 1

Preliminaries

Clifford and geometric algebras

Let V be a vector space over a field K with symmetric bilinear form g.

Clifford and geometric algebras

Let V be a vector space over a field K with symmetric bilinear form g.

Define the tensor algebra

$$\mathcal{T}(V) := \bigoplus_{j=0}^{\infty} V^{\otimes_j} = K \oplus (V \otimes V) \oplus (V \otimes V \otimes V) \oplus \cdots$$

Clifford and geometric algebras

Let V be a vector space over a field K with symmetric bilinear form g.

Define the tensor algebra

$$\mathcal{T}(V) := \bigoplus_{j=0}^{\infty} V^{\otimes_j} = K \oplus (V \otimes V) \oplus (V \otimes V \otimes V) \oplus \cdots$$

■ The associated *Clifford algebra* is the quotient

$$C\ell(V, g) := \mathcal{T}(V)/\langle \mathbf{v} \otimes \mathbf{v} - g(\mathbf{v}, \mathbf{v}) \rangle.$$

Geometric and exterior algebras

 \blacksquare If g is non-degenerate then we have a geometric algebra

$$\mathcal{G} \coloneqq C\ell(V, g).$$

Geometric and exterior algebras

 \blacksquare If g is non-degenerate then we have a geometric algebra

$$\mathcal{G} := C\ell(V, g).$$

lacktriangle The completely degenerate case is the exterior algebra

$$\bigwedge(V) \coloneqq C\ell(V,0).$$

 \mathcal{G} is generated by scalars and vectors given how \otimes acts in the quotient.

 \mathcal{G} is generated by scalars and vectors given how \otimes acts in the quotient.

■ Given vectors $\mathbf{u}, \mathbf{v} \in \mathcal{G}$ we can take the product

$$uv = \underbrace{u \cdot v}_{\text{scalar}} + \underbrace{u \wedge v}_{\text{bivector}}.$$

 \mathcal{G} is generated by scalars and vectors given how \otimes acts in the quotient.

■ Given vectors $\mathbf{u}, \mathbf{v} \in \mathcal{G}$ we can take the product

$$uv = \underbrace{u \cdot v}_{\text{scalar}} + \underbrace{u \wedge v}_{\text{bivector}}.$$

■ The scalar part is symmetric: $\mathbf{u} \cdot \mathbf{v} = g(\mathbf{u}, \mathbf{v})$.

 \mathcal{G} is generated by scalars and vectors given how \otimes acts in the quotient.

 \blacksquare Given vectors $\mathbf{u}, \mathbf{v} \in \mathcal{G}$ we can take the product

$$uv = \underbrace{u \cdot v}_{\text{scalar}} + \underbrace{u \wedge v}_{\text{bivector}}.$$

- The scalar part is symmetric: $\mathbf{u} \cdot \mathbf{v} = g(\mathbf{u}, \mathbf{v})$.
- The bivector part is antisymmetric: $\mathbf{u} \wedge \mathbf{v} = -\mathbf{v} \wedge \mathbf{u}$.

 $\blacksquare \mathcal{G}$ is graded and of dimension 2^n .

- $\blacksquare \mathcal{G}$ is graded and of dimension 2^n .
 - Grade-r elements, \mathcal{G}^r , called r-vectors.

- $\blacksquare \mathcal{G}$ is graded and of dimension 2^n .
 - \blacksquare Grade-r elements, \mathcal{G}^r , called r-vectors.
 - A A C A C C extracts the grade-C part of an arbitrary element A.

- $\blacksquare \mathcal{G}$ is graded and of dimension 2^n .
 - \blacksquare Grade-r elements, \mathcal{G}^r , called r-vectors.
 - $A >_r \in \mathcal{G}^r$ extracts the grade-r part of an arbitrary element A.
 - There are $\binom{n}{r}$ independent r-blades of the form $\mathbf{A_r} = \mathbf{v_1} \wedge \cdots \wedge \mathbf{v_r}$.

- $\blacksquare \mathcal{G}$ is graded and of dimension 2^n .
 - \blacksquare Grade-r elements, \mathcal{G}^r , called r-vectors.
 - $\langle A \rangle_r \in \mathcal{G}^r$ extracts the grade-r part of an arbitrary element A.
 - There are $\binom{n}{r}$ independent r-blades of the form $\mathbf{A_r} = \mathbf{v}_1 \wedge \cdots \wedge \mathbf{v}_r$.
 - \blacksquare Elements of the even grade subalgebra, \mathcal{G}^+ , are called *spinors*.

- $\blacksquare \mathcal{G}$ is graded and of dimension 2^n .
 - \blacksquare Grade-r elements, \mathcal{G}^r , called r-vectors.
 - $\langle A \rangle_r \in \mathcal{G}^r$ extracts the grade-r part of an arbitrary element A.
 - There are $\binom{n}{r}$ independent r-blades of the form $\mathbf{A_r} = \mathbf{v_1} \wedge \cdots \wedge \mathbf{v_r}$.
 - Elements of the even grade subalgebra, \mathcal{G}^+ , are called *spinors*.

■ Since
$$\mathcal{G} = \bigoplus_{r=0}^{\infty} \mathcal{G}^r$$
 a general multivector is $A = \sum_{r=0}^{\infty} \langle A \rangle_r$.

Extend the multiplication from vectors to multivectors.

- Extend the multiplication from vectors to multivectors.
- On homogeneous elements,

$$A_r B_s = \langle A_r B_s \rangle_{|r-s|} + \langle A_r B_s \rangle_{|r-s|+2} + \dots + \langle A_r B_s \rangle_{r+s}$$

- Extend the multiplication from vectors to multivectors.
- On homogeneous elements,

$$A_r B_s = \langle A_r B_s \rangle_{|r-s|} + \langle A_r B_s \rangle_{|r-s|+2} + \dots + \langle A_r B_s \rangle_{r+s}$$

 \blacksquare The most important products for us are

$$A_r \wedge B_s := \langle A_r B_s \rangle_{r+s}$$
$$A_r \, \lrcorner \, B_s := \langle A_r B_s \rangle_{s-r}$$

Reciprocals and reverses

■ Given any vector basis \mathbf{e}_i , define the reciprocal vectors by $\mathbf{e}^i \cdot \mathbf{e}_i = \delta_i^i$.

Reciprocals and reverses

- Given any vector basis \mathbf{e}_i , define the reciprocal vectors by $\mathbf{e}^i \cdot \mathbf{e}_j = \delta^i_j$.
- \blacksquare The reverse † is extended linearly from the action on r-blades

$${m A_r}^\dagger = ({m v}_1 \wedge \cdots \wedge {m v}_r)^\dagger = {m v}_r \wedge \cdots \wedge {m v}_1.$$

Inner product and norm

■ Define the multivector inner product and multivector norm by

$$A * B \coloneqq \left\langle A^{\dagger} B \right\rangle =: |A|^2$$

Inner product and norm

■ Define the *multivector inner product* and *multivector norm* by

$$A * B \coloneqq \left\langle A^{\dagger} B \right\rangle =: |A|^2$$

Reverse † is the adjoint operator

$$(CA) * B = A * (C^{\dagger}B)$$
$$(AC) * B = A * (BC^{\dagger}).$$

Inner product and norm

 \blacksquare Define the $multivector\ inner\ product$ and $multivector\ norm$ by

$$A * B \coloneqq \left\langle A^{\dagger} B \right\rangle =: |A|^2$$

Reverse † is the adjoint operator

$$(CA) * B = A * (C^{\dagger}B)$$
$$(AC) * B = A * (BC^{\dagger}).$$

 $\blacksquare g$ definite $\implies *$ and $|\blacksquare|$ definite.

Blades and subspaces

■ If $|U_r| = \pm 1$, then U_r is a unit blade.

Blades and subspaces

- If $|U_r| = \pm 1$, then U_r is a unit blade.
- Unit r-blades correspond to subspaces $U \subset V$ (points in Gr(r, n)).

Blades and subspaces

- If $|U_r| = \pm 1$, then U_r is a unit blade.
- Unit r-blades correspond to subspaces $U \subset V$ (points in Gr(r, n)).
- The projection of A into a subspace U_r by

$$P_{\mathbf{U_r}}(A) \coloneqq A \sqcup \mathbf{U_r} \mathbf{U_r}^{-1}.$$

 \blacksquare Pseudoscalars are the grade-n elements.

- \blacksquare *Pseudoscalars* are the grade-n elements.
- For example, the volume element

$$\mu = e_1 \wedge \cdots \wedge e_n$$
.

- \blacksquare *Pseudoscalars* are the grade-*n* elements.
- For example, the volume element

$$\boldsymbol{\mu} = \boldsymbol{e}_1 \wedge \cdots \wedge \boldsymbol{e}_n.$$

■ We define the unit pseudoscalar (which corresponds to $V \subset V$) by

$$I \coloneqq \frac{1}{|\mu|} \mu.$$

■ The dual \perp of a multivector A is

$$A^{\perp} \coloneqq A\mathbf{I}^{-1} \in \mathcal{G}^{n-r}$$
.

 \blacksquare The *dual* \bot of a multivector A is

$$A^{\perp} \coloneqq A\mathbf{I}^{-1} \in \mathcal{G}^{n-r}$$
.

■ The *Hodge star* \star_g of a multivector A is

$$\star_g A = (\boldsymbol{I}^{-1} A)^{\dagger}.$$

 \blacksquare The dual \perp of a multivector A is

$$A^{\perp} \coloneqq AI^{-1} \in \mathcal{G}^{n-r}$$
.

■ The *Hodge star* \star_q of a multivector A is

$$\star_g A = (\mathbf{I}^{-1} A)^{\dagger}.$$

■ Dual exchanges products $(A \, \lrcorner \, B)^{\perp} = A \wedge B^{\perp}$.

■ Define $\mathcal{G}_{p,q}$ by $\mathbf{e}_i^2 = -1$ for i = 1, ..., p and $\mathbf{e}_i^2 = +1$ otherwise.

- Define $\mathcal{G}_{p,q}$ by $\mathbf{e}_i^2 = -1$ for i = 1, ..., p and $\mathbf{e}_i^2 = +1$ otherwise.
- \blacksquare $\mathcal{G}_{1,3}$ is the spacetime algebra.

- Define $\mathcal{G}_{p,q}$ by $\mathbf{e}_i^2 = -1$ for i = 1, ..., p and $\mathbf{e}_i^2 = +1$ otherwise.
- \blacksquare $\mathcal{G}_{1,3}$ is the spacetime algebra.
- $\mathcal{G}_{1,3}^2 \cong \mathfrak{spin}(1,3)$ which is the Lie algebra of the Lorentz group.

- Define $\mathcal{G}_{p,q}$ by $\mathbf{e}_i^2 = -1$ for i = 1, ..., p and $\mathbf{e}_i^2 = +1$ otherwise.
- \blacksquare $\mathcal{G}_{1,3}$ is the spacetime algebra.
- $\mathcal{G}_{1,3}^2 \cong \mathfrak{spin}(1,3)$ which is the Lie algebra of the Lorentz group.
- Quaternion algebra \mathbb{H} is isomorphic to $\mathcal{G}_{0,3}^+$.

- Define $\mathcal{G}_{p,q}$ by $\mathbf{e}_i^2 = -1$ for i = 1, ..., p and $\mathbf{e}_i^2 = +1$ otherwise.
- \blacksquare $\mathcal{G}_{1,3}$ is the spacetime algebra.
- $\mathcal{G}_{1,3}^2 \cong \mathfrak{spin}(1,3)$ which is the Lie algebra of the Lorentz group.
- Quaternion algebra \mathbb{H} is isomorphic to $\mathcal{G}_{0,3}^+$.
- Complex algebra \mathbb{C} is isomorphic to $\mathcal{G}_{0,2}^+$.

- Define $\mathcal{G}_{p,q}$ by $\mathbf{e}_i^2 = -1$ for i = 1, ..., p and $\mathbf{e}_i^2 = +1$ otherwise.
- \blacksquare $\mathcal{G}_{1,3}$ is the spacetime algebra.
- $\mathcal{G}_{1,3}^2 \cong \mathfrak{spin}(1,3)$ which is the Lie algebra of the Lorentz group.
- Quaternion algebra \mathbb{H} is isomorphic to $\mathcal{G}_{0,3}^+$.
- Complex algebra \mathbb{C} is isomorphic to $\mathcal{G}_{0,2}^+$.
 - Standard basis e_1 , e_2 , and $e_{12} := \overline{e_1 e_2}$. Then $e_{12}^2 = -1$.

- Define $\mathcal{G}_{p,q}$ by $\mathbf{e}_i^2 = -1$ for i = 1, ..., p and $\mathbf{e}_i^2 = +1$ otherwise.
- $\blacksquare \mathcal{G}_{1,3}$ is the spacetime algebra.
- $\mathcal{G}_{1,3}^2 \cong \mathfrak{spin}(1,3)$ which is the Lie algebra of the Lorentz group.
- Quaternion algebra \mathbb{H} is isomorphic to $\mathcal{G}_{0,3}^+$.
- \blacksquare Complex algebra \mathbb{C} is isomorphic to $\mathcal{G}_{0,2}^+$.
 - Standard basis e_1, e_2 , and $e_{12} := e_1 e_2$. Then $e_{12}^2 = -1$.
 - Right multiplication of vectors by e_{12} rotates counter-clockwise by $\pi/2$.

Section 2

Clifford analysis

 \blacksquare (M,g) is a smooth, compact, connected, oriented n-dimensional Riemannian manifold.

- \blacksquare (M,g) is a smooth, compact, connected, oriented n-dimensional Riemannian manifold.
- <u>Idea</u>: Form the Clifford algebras on tangent spaces.

- \blacksquare (M, g) is a smooth, compact, connected, oriented *n*-dimensional Riemannian manifold.
- <u>Idea:</u> Form the Clifford algebras on tangent spaces.
 - Form the geometric algebra bundle

$$\mathcal{G}M := \bigsqcup_{p \in M} C\ell(T_p M, g_p).$$

- \blacksquare (M,g) is a smooth, compact, connected, oriented *n*-dimensional Riemannian manifold.
- <u>Idea:</u> Form the Clifford algebras on tangent spaces.
 - Form the geometric algebra bundle

$$\mathcal{G}M := \bigsqcup_{p \in M} C\ell(T_pM, g_p).$$

■ The (smooth) multivector fields $\mathfrak{X}(M)$ are the sections of $\mathcal{G}M$.

- \blacksquare (M,g) is a smooth, compact, connected, oriented *n*-dimensional Riemannian manifold.
- <u>Idea</u>: Form the Clifford algebras on tangent spaces.
 - Form the geometric algebra bundle

$$\mathcal{G}M := \bigsqcup_{p \in M} C\ell(T_pM, g_p).$$

- The (smooth) multivector fields $\mathfrak{X}(M)$ are the sections of $\mathcal{G}M$.
- Take same naming scheme and notation: $\mathfrak{X}^r(M)$, $\mathfrak{X}^+(M)$, etc.

M has the Levi-Civita connection ∇ and covariant derivative ∇_u which can be extended to act on multivectors [Schindler: 2018].

M has the Levi-Civita connection ∇ and covariant derivative ∇_u which can be extended to act on multivectors [Schindler: 2018].

■ Define the *Hodge-Dirac operator* locally by

$$oldsymbol{
abla} = \sum_{i=1}^n oldsymbol{e}^i
abla_{oldsymbol{e}_i}$$

M has the Levi-Civita connection ∇ and covariant derivative ∇_u which can be extended to act on multivectors [Schindler: 2018].

lacktriangle Define the $Hodge-Dirac\ operator\ locally\ by$

$$oldsymbol{
abla} = \sum_{i=1}^n oldsymbol{e}^i
abla_{oldsymbol{e}_i}$$

 ∇ acts as a vector in $\mathfrak{X}(M)$ with Leibniz rule $\nabla(AB) = \dot{\nabla}\dot{A}B + \dot{\nabla}A\dot{B}$.

Hodge–Dirac operator

M has the Levi-Civita connection ∇ and covariant derivative ∇_u which can be extended to act on multivectors [Schindler: 2018].

■ Define the *Hodge-Dirac operator* locally by

$$oldsymbol{
abla} = \sum_{i=1}^n oldsymbol{e}^i
abla_{oldsymbol{e}_i}$$

- $lackbox{} \nabla$ acts as a vector in $\mathfrak{X}(M)$ with Leibniz rule $\nabla(AB) = \dot{\nabla}\dot{A}B + \dot{\nabla}A\dot{B}$.
- $\mathbf{\nabla}^{2}$ is the Laplace-Beltrami operator.

Examples

■ For $A_+ \in \mathfrak{X}^+(\mathbb{R}^2)$ if $\nabla A_+ = 0$ then A_+ is a holomorphic function.

Examples

- For $A_+ \in \mathfrak{X}^+(\mathbb{R}^2)$ if $\nabla A_+ = 0$ then A_+ is a holomorphic function.
- For a vector field $\mathbf{v} \in \mathfrak{X}^1(\mathbb{R}^3)$ we have

$$abla v = \underbrace{\nabla \,\lrcorner\, v}_{ ext{divergence}} + \underbrace{\nabla \,\wedge\, v}_{ ext{curl}}.$$

Examples

- For $A_+ \in \mathfrak{X}^+(\mathbb{R}^2)$ if $\nabla A_+ = 0$ then A_+ is a holomorphic function.
- For a vector field $\mathbf{v} \in \mathfrak{X}^1(\mathbb{R}^3)$ we have

$$abla v = \underbrace{\nabla \lrcorner v}_{ ext{divergence}} + \underbrace{\nabla \land v}_{ ext{curl}}.$$

Specifically,

$$\operatorname{curl}(\boldsymbol{v}) = (\boldsymbol{\nabla} \wedge \boldsymbol{v})^{\perp}$$

Differential forms

■ Define the r-dimensional directed measure dX_r by

$$dX_r := \mathbf{e}_{i_1} \wedge \cdots \wedge \mathbf{e}_{i_r} dx^{i_1} \cdots dx^{i_r}.$$

Differential forms

■ Define the r-dimensional directed measure dX_r by

$$dX_r := \mathbf{e}_{i_1} \wedge \cdots \wedge \mathbf{e}_{i_r} dx^{i_1} \cdots dx^{i_r}.$$

Any r-form α_r has a multivector equivalent A_r so $\alpha_r = A_r \, \lrcorner \, dX_r^{\dagger}$.

Differential forms

 \blacksquare Define the r-dimensional directed measure dX_r by

$$dX_r := \mathbf{e}_{i_1} \wedge \cdots \wedge \mathbf{e}_{i_r} dx^{i_1} \cdots dx^{i_r}.$$

- Any r-form α_r has a multivector equivalent A_r so $\alpha_r = A_r \, \lrcorner \, dX_r^{\dagger}$.
- Algebra and calculus descend to multivector equivalent:

$$\alpha_r \wedge \beta_s = (A_r \wedge B_s) \, \lrcorner \, dX_{r+s} \qquad \alpha_r \, \lrcorner \, \beta_s = (A_r \, \lrcorner \, B_s) \, \lrcorner \, dX_{r-s}$$

$$\underline{d\alpha_r = (\nabla \wedge A_r) \, \lrcorner \, dX_{r+1}^{\dagger}}_{\text{exterior derivative}} \qquad \underline{\delta\alpha_r = (-\nabla \, \lrcorner \, A_r) \, \lrcorner \, dX_{r-1}^{\dagger}}_{\text{codifferential}}$$

Fix an r-dimensional submanifold R.

Fix an r-dimensional submanifold R.

■ Define the tangent unit pseudoscalar I_R .

Fix an r-dimensional submanifold R.

- Define the tangent unit pseudoscalar I_R .
- \blacksquare Dual is the *normal blade* $\boldsymbol{\nu}_R = \boldsymbol{I}_R^{\perp}$.

Fix an r-dimensional submanifold R.

- Define the tangent unit pseudoscalar I_R .
- \blacksquare Dual is the *normal blade* $\boldsymbol{\nu}_R = \boldsymbol{I}_R^{\perp}$.
- \blacksquare Define the *volume form* on R by

$$d\mu_R := \boldsymbol{I}_R^{-1} \,\lrcorner\, dX_r$$

Fix an r-dimensional submanifold R.

- Define the tangent unit pseudoscalar I_R .
- lacksquare Dual is the *normal blade* $\boldsymbol{\nu}_R = \boldsymbol{I}_R^{\perp}$.
- \blacksquare Define the *volume form* on R by

$$d\mu_R := \boldsymbol{I}_R^{-1} \,\lrcorner\, dX_r$$

■ For M this yields $d\mu = \sqrt{|g|} dx^1 \cdots dx^n$

Integral products

■ Define the directed integral product on R

$$(A,B)_R := A^{\dagger} \mathbf{I}_R B d\mu_R.$$

Integral products

■ Define the directed integral product on R

$$(A,B)_R := A^{\dagger} \mathbf{I}_R B d\mu_R.$$

 \blacksquare Define the multivector field inner product on R by

$$\langle\!\langle A, B \rangle\!\rangle_R := \int_R A * B d\mu_R$$

Green's formulas

■ From [Hestenes, Sobczyk, 1984] and [Booß- Bavnbek, Wojciechowski, 1993]

$$(\nabla A, B) = (-1)^n (A, \nabla B) + (A, B)_{\partial M}$$

Green's formulas

■ From [Hestenes, Sobczyk, 1984] and [Booß- Bavnbek, Wojciechowski, 1993]

$$(\!(\boldsymbol{\nabla} A,B)\!) = (-1)^n (\!(A,\boldsymbol{\nabla} B)\!) + (\!(A,B)\!)_{\partial M}$$

Following from the above

$$\langle\!\langle \boldsymbol{\nabla} A, B \rangle\!\rangle = -\langle\!\langle A, \boldsymbol{\nabla} B \rangle\!\rangle + \langle\!\langle A, \boldsymbol{\nu} B \rangle\!\rangle.$$

Subsection 1

Monogenic fields

Monogenic fields

■ The monogenic fields $\mathcal{M}(M)$ is the kernel of ∇ .

Monogenic fields

- The monogenic fields $\mathcal{M}(M)$ is the kernel of ∇ .
- Ex. $f = u + v\mathbf{e}_{12} \in \mathfrak{X}^+(\mathbb{R}^2)$ then $\nabla f = 0$ is holomorphic

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

ADD A PICTURE:

Monogenic fields

- The monogenic fields $\mathcal{M}(M)$ is the kernel of ∇ .
- Ex. $f = u + v\mathbf{e}_{12} \in \mathfrak{X}^+(\mathbb{R}^2)$ then $\nabla f = 0$ is holomorphic

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

ADD A PICTURE:

Cauchy integral

There is a map from boundary values $\operatorname{tr}\mathfrak{X}(M)$ to monogenic fields $\mathcal{M}(M)$ [Calderbank, 1995].

Cauchy integral

There is a map from boundary values $\operatorname{tr}\mathfrak{X}(M)$ to monogenic fields $\mathcal{M}(M)$ [Calderbank, 1995].

■ There exists a vector-valued Cauchy kernel G_x where $\nabla G_x = \delta_x$.

Cauchy integral

There is a map from boundary values $\operatorname{tr}\mathfrak{X}(M)$ to monogenic fields $\mathcal{M}(M)$ [Calderbank, 1995].

- There exists a vector-valued Cauchy kernel G_x where $\nabla G_x = \delta_x$.
- Given $A \in \mathcal{M}(M)$, the Cauchy integral is

$$A(x) = (-1)^{n-1} (A, G_x)_{\partial M}^{\perp}.$$

Example

Consider fields on a region $M \subset \mathbb{R}^n$:

Example

Consider fields on a region $M \subset \mathbb{R}^n$:

■ Define $G(x) := \frac{1}{S_n} \frac{x}{|x|^n}$ then the Cauchy integral is

$$A(\mathbf{x}) = \frac{1}{S_n} \int_{\partial M} \frac{\mathbf{x}' - \mathbf{x}}{|\mathbf{x}' - \mathbf{x}|^n} \boldsymbol{\nu}(\mathbf{x}') A(\mathbf{x}') d\mu_{\partial M}(\mathbf{x}').$$

Example

Consider fields on a region $M \subset \mathbb{R}^n$:

■ Define $G(x) := \frac{1}{S_n} \frac{x}{|x|^n}$ then the Cauchy integral is

$$A(\mathbf{x}) = \frac{1}{S_n} \int_{\partial M} \frac{\mathbf{x}' - \mathbf{x}}{|\mathbf{x}' - \mathbf{x}|^n} \boldsymbol{\nu}(\mathbf{x}') A(\mathbf{x}') d\mu_{\partial M}(\mathbf{x}').$$

■ Scalar part of the above is the double layer potential.

Boundary values

From [Calderbank, 1995]:

Boundary values

From [Calderbank, 1995]:

■ Theorem. $tr\mathfrak{X}(M) = tr\mathcal{M}(M) \oplus \nu tr\mathcal{M}(M)$

Boundary values

From [Calderbank, 1995]:

- Theorem. $tr\mathfrak{X}(M) = tr\mathcal{M}(M) \oplus \nu tr\mathcal{M}(M)$
- Cauchy integral is evaluation and an isomorphism from $\operatorname{tr} \mathcal{M}(M)$.

Inversion

 \blacksquare [Calderbank, 1995] Can solve the equation $\nabla A = B$ by

$$A(x) = (-1)^{n-1} (B, G_x)^{\perp}.$$

Inversion

 \blacksquare [Calderbank, 1995] Can solve the equation $\nabla A = B$ by

$$A(x) = (-1)^{n-1} (B, G_x)^{\perp}.$$

■ In a region $M \subset \mathbb{R}^3$ take a vector field J,

$$\mathrm{BS}(\boldsymbol{J})(\boldsymbol{x}) = \left\langle (\boldsymbol{J}, G_{\boldsymbol{x}})^{\perp} \right\rangle_2 = \frac{1}{4\pi} \int_{N^3} \boldsymbol{J}(\boldsymbol{y}) \wedge \frac{\boldsymbol{x}' - \boldsymbol{x}}{|\boldsymbol{x}' - \boldsymbol{x}|^3} d\mu_{N^3}(\boldsymbol{x}').$$

Inversion

 \blacksquare [Calderbank, 1995] Can solve the equation $\nabla A = B$ by

$$A(x) = (-1)^{n-1} (B, G_x)^{\perp}.$$

■ In a region $M \subset \mathbb{R}^3$ take a vector field J,

$$BS(\boldsymbol{J})(\boldsymbol{x}) = \left\langle (\boldsymbol{J}, G_{\boldsymbol{x}})^{\perp} \right\rangle_{2} = \frac{1}{4\pi} \int_{N^{3}} \boldsymbol{J}(\boldsymbol{y}) \wedge \frac{\boldsymbol{x}' - \boldsymbol{x}}{|\boldsymbol{x}' - \boldsymbol{x}|^{3}} d\mu_{N^{3}}(\boldsymbol{x}').$$

■ This is the Biot-Savart formula which recovers magnetic field from current.

Section 3

Hodge theory

Idea

Hodge theory relates analysis to topology. $\,$

Idea

Hodge theory relates analysis to topology.

■ Theorem (Hodge Isomorphisms).

$$H^r(M) \cong \mathcal{M}_N^r(M)$$
 $H^r(M, \partial M) \cong \mathcal{M}^r(M, \partial M).$

Idea

Hodge theory relates analysis to topology.

■ Theorem (Hodge Isomorphisms).

$$H^r(M) \cong \mathcal{M}_N^r(M)$$
 $H^r(M, \partial M) \cong \mathcal{M}^r(M, \partial M).$

Put some pictures I've already made such as solid torus.

Product on cohomologies

Proposition

The contraction $\ \ \, \lrcorner \,$ is a product on cohomologies by:

- \blacksquare $\lrcorner: H^r(M) \times H^s(M) \to H^{s-r}(M);$
- $\blacksquare \ \ \lrcorner : H^r(M, \partial M) \times H^s(M, \partial M) \to H^{s-r}(M, \partial M);$
- $\blacksquare H^r(M) \,\lrcorner\, H^s(M,\partial M)$ is trivial;
- $\blacksquare H^r(M, \partial M) \, \lrcorner \, H^s(M)$ is trivial;

Product on cohomologies

Proposition

The contraction $\ \ \,$ is a product on cohomologies by:

- \blacksquare $\lrcorner: H^r(M) \times H^s(M) \to H^{s-r}(M);$
- $\blacksquare \ \ \lrcorner: H^r(M,\partial M) \times H^s(M,\partial M) \to H^{s-r}(M,\partial M);$
- $\blacksquare H^r(M) \, \lrcorner \, H^s(M, \partial M)$ is trivial;
- $\blacksquare H^r(M, \partial M) \, \lrcorner \, H^s(M)$ is trivial;

■ This product is equivalent to the mixed cup product in [Shonkwiler, 2009].

Hodge, Morrey, Friedrichs found decompositions of the space of forms.

Hodge, Morrey, Friedrichs found decompositions of the space of forms.

■ Theorem [Hodge–Morrey]. $\mathfrak{X}^r(M) = \mathcal{E}_D^r(M) \oplus \mathcal{C}_N^r(M) \oplus \mathcal{M}^r(M)$.

Hodge, Morrey, Friedrichs found decompositions of the space of forms.

- Theorem [Hodge–Morrey]. $\mathfrak{X}^r(M) = \mathcal{E}_D^r(M) \oplus \mathcal{C}_N^r(M) \oplus \mathcal{M}^r(M)$.
- Theorem [Hodge–Morrey–Friedrichs].

$$\mathcal{M}^r(M) = \mathcal{M}^r_D(M) \oplus \mathcal{M}^r_{\mathbf{co}}$$
 or $\mathcal{M}^r(M) = \mathcal{M}^r_N(M) \oplus \mathcal{M}^r_{\mathbf{ex}}$

Hodge, Morrey, Friedrichs found decompositions of the space of forms.

- Theorem [Hodge–Morrey]. $\mathfrak{X}^r(M) = \mathcal{E}^r_D(M) \oplus \mathcal{C}^r_N(M) \oplus \mathcal{M}^r(M)$.
- Theorem [Hodge–Morrey–Friedrichs].

$$\mathcal{M}^r(M) = \mathcal{M}^r_D(M) \oplus \mathcal{M}^r_{\mathbf{co}}$$
 or $\mathcal{M}^r(M) = \mathcal{M}^r_N(M) \oplus \mathcal{M}^r_{\mathbf{ex}}$

■ But, $\mathcal{M}(M) \neq \bigoplus_{j=1}^n \mathcal{M}^j(M)$.

The exact and coexact fields satisfy certain boundary constraints. Combining

them...

The exact and coexact fields satisfy certain boundary constraints. Combining them...

■ Define the *Dirac fields* $\nabla \mathfrak{X}(M)$ as

$$\nabla \mathfrak{X}(M) := {\nabla A \mid A \in \mathfrak{X}(M) \text{ and } A|_{\partial M} = 0};$$

Theorem: Clifford–Hodge Decomposition

The space of multivector fields $\mathfrak{X}(M)$ has the orthogonal decomposition

$$\mathfrak{X}(M)=\mathcal{M}(M)\oplusoldsymbol{
abla}\mathfrak{X}(M).$$

Comparing to Hodge–Morrey

■ From Hodge–Morrey

$$\mathfrak{X}(M) = \sum_{r=0}^{\kappa} \underbrace{\mathcal{E}_D^r(M)}_{\operatorname{Im}(\nabla \wedge)} \oplus \underbrace{\mathcal{C}_N^r(M)}_{\operatorname{Im}(\nabla \cdot)} \oplus \underbrace{\mathcal{H}^r(M)}_{\operatorname{Ker}(\nabla)}.$$

Comparing to Hodge–Morrey

■ From Hodge–Morrey

$$\mathfrak{X}(M) = \sum_{r=0}^{n} \underbrace{\mathcal{E}_{D}^{r}(M)}_{\operatorname{Im}(\nabla \wedge)} \oplus \underbrace{\mathcal{C}_{N}^{r}(M)}_{\operatorname{Im}(\nabla \cdot)} \oplus \underbrace{\mathcal{H}^{r}(M)}_{\operatorname{Ker}(\nabla)}.$$

■ But the Clifford-Hodge-Morrey is not filtered by grades

$$\mathfrak{X}(M) = \mathcal{M}(M) \oplus \nabla \mathfrak{X}(M).$$

Section 4

Tomography

■ Let M be an Ohmic region of \mathbb{R}^3 and σ a conductivity.

- Let M be an Ohmic region of \mathbb{R}^3 and σ a conductivity.
- Ohm's law: $-\sigma \nabla \wedge u = J$ and conservation $\nabla J = 0$

- Let M be an Ohmic region of \mathbb{R}^3 and σ a conductivity.
- Ohm's law: $-\sigma \nabla \wedge u = J$ and conservation $\nabla J = 0$
- \blacksquare Suppose M free of charges, then the forward problem

$$\begin{cases} \nabla \, \lrcorner \, (\sigma \nabla \wedge u) = 0 & \text{in } M \\ u = \phi & \text{on } \partial M \end{cases}$$

- Let M be an Ohmic region of \mathbb{R}^3 and σ a conductivity.
- Ohm's law: $-\sigma \nabla \wedge u = J$ and conservation $\nabla J = 0$
- \blacksquare Suppose M free of charges, then the forward problem

$$\begin{cases} \nabla \, \lrcorner \, (\sigma \nabla \wedge u) = 0 & \text{in } M \\ u = \phi & \text{on } \partial M \end{cases}$$

■ Define the *voltage-to-current map* by $\Lambda \phi = \nu \, \lrcorner \, (\sigma \nabla \wedge u)$.

- Let M be an Ohmic region of \mathbb{R}^3 and σ a conductivity.
- Ohm's law: $-\sigma \nabla \wedge u = J$ and conservation $\nabla J = 0$
- \blacksquare Suppose M free of charges, then the forward problem

$$\begin{cases} \nabla \, \lrcorner \, (\sigma \nabla \wedge u) = 0 & \text{in } M \\ u = \phi & \text{on } \partial M \end{cases}$$

- Define the *voltage-to-current map* by $\Lambda \phi = \nu \, \lrcorner \, (\sigma \nabla \wedge u)$.
- **Question:** Can we determine (M, σ) from Λ ?

Geometric generalization

Geometric generalization.

■ The problem has been solved in dimension n = 2 [Belishev: 2003].

Geometric generalization

- The problem has been solved in dimension n = 2 [Belishev: 2003].
- Solved in dimensions $n \geq 3$ when M is an analytic manifold [Lassas, Taylor, Uhlmann: 2003].

Geometric generalization

- The problem has been solved in dimension n = 2 [Belishev: 2003].
- Solved in dimensions $n \geq 3$ when M is an analytic manifold [Lassas, Taylor, Uhlmann: 2003].
- The smooth cases is still unsolved.

