

SİSTEM ANALİZİ VE TASARIMI

Sistem Analizi Tasarım Aşaması

Tasarım

- ✓ Sistem analizi projelerinde tasarım aşaması 3 ana adımdan oluşur.
 - ➤ Mimari tasarımı
 - ➤ Girdi/Çıktı Tasarımı ve İnsan Bilgisayar Etkileşimi
 - ➤ Veri Tabanı Tasarımı

Mimari Tasarım

- ✓ Mimari tasarımı mantıksal olarak hazırlanmış tasarımların fiziksel yapılara döndürülmesini içerir.
 - > Donanim
 - > Yazılım
 - ➤ Ağ

Mimari Tasarım

- ✓ Mimari tasarımı aşamasında dikkat edilmesi gereken unsurlar
 - ➤ Mevcut ERP yazılımı
 - Başlangıç Maliyeti
 - ➢ Ölçeklenebilirlik
 - > Web entegrasyonu
 - > Önceki sistem ile ilgili gereksinimler
 - Veri işleme süreçleri (Çevrimiçi veya yığın)
 - ➤ Güvenlik konuları

Mimari Tasarım

- ✓ Mimarinin planlanması
 - > İstemci
 - □PC evrimi
 - □LAN ve WAN
 - > Sunucu
 - > İstemci / Sunucu Mimarisi

Sunucu İstemci Mimarisi

✓ 2 tier vs 3 tier

E-Ticaret Mimarisi

- ✓ Firma içi çözümler
 - > Tamamen kod yazarak platform tasarımı
- ✓ Paket programlar
 - > Hazır programlar
- ✓ Kurumsal portallar
 - > N11, gittigidiyor
- ✓ Bulut Bilişim
 - > Kiralama

Ağ Mimarisi

- ✓ OSI referans modeli
 - Physical (Fiziksel Katman)
 - Data Link (Veri Bağlantı Katmanı)
 - Network (Ağ Katmanı)
 - ➤ Transport (Taşıma Katmanı)
 - Session (Oturum Katmanı)
 - Presentation (Sunu Katmanı)
 - Application (Uygulama Katmanı)

Ağ Mimarisi

Hiyerarşik

Halka

Bus

Yıldız

Girdi Tasarımı

- ✓ Girdi tasarımı kullanıcılardan veri alınması için gerekli formların ve ekranların tasarlanması sürecidir
 - > Form tasarımı
 - ☐ Yazılı veya bilgisayar ekranında
 - > Ekran Tasarımı
 - □3 tıklama kuralı
 - □3D tasarım
 - ➤ Grafik Arayüz Tasarımı
 - ☐HTML5 ve XML
 - ➤ Web Sayfası Tasarımı
 - □CASE araçları
 - □E-Ticaret

Girdi Tasarımı

- ✓ Girdi Tasarımı Amaçları
 - > Etkinlik
 - > Etkililik
 - > Kolay kullanım
 - > Kararlılık
 - > Sadelik
 - > Çekicilik

Girdi Tasarımı

- ✓ Kritik sorular
 - ➤ Kim kullanacak?
 - ☐ Yetkilendirme ve Güvenlik
 - ➤ Ne amaçla kullanacak?
 - ☐Gereksinim analizi
 - ➤ Ne zaman kullanılacak?
 - ➤ Nerede kullanılacak?
 - ➤ Ne kadar insan kullanacak?
 - □Ölçeklenebilirlik

Çıktı Tasarımı

- ✓ Kullanıcılara hangi çıktılar, hangi araçlar ile sunulmalı
 - ➤ Rapor tasarımı
 - > Ekran tasarımı
 - ➤ Web sitesi tasarımı
 - ➤ Akıllı telefon ve tablet için tasarım

Çıktı Tasarımı

- ✓ Kritik sorular
 - ➤ Kim kullanacak?
 - ☐ Yetkilendirme ve Güvenlik
 - ➤ Ne amaçla kullanacak?
 - ☐Gereksinim analizi
 - ➤ Ne zaman kullanılacak?
 - ➤ Nerede kullanılacak?
 - ➤ Ne kadar insan kullanacak?
 - □Ölçeklenebilirlik
 - Çıktıya ulaşım için gerekli hız nedir?
 - ➤ Ne kadar sıklıkla erişilecek?
 - ➤ Ne kadar süre ile depolanacak?

- ✓ Metrik Yönetim Raporları
 - > İşletme performansının belli metrikler ile takip edildiği raporlar
 - □İç Metrik → Anahtar Performans Göstergeleri
 - □Dış Metrik → Hizmet Seviyesi Taahütü
- √ Gösterge Paneli Tipi Raporlar
 - ➤ Tek bir sayfada birden fazla performans göstergesinin gösterildiği görsel raporlar
- ✓ Dengeli Skor Kartları Tipinde Raporlar
 - Finansal, müşteri, işletme süreçleri ve öğrenme eğrisi göstergelerini içeren özel raporlar

- ✓ Amaçlar karşısında gösterilen performansın temel ölçütleri Anahtar Performans Göstergeleri (APG) olarak adlandırılır.
- ✓ Ayırt edici özellikleri
 - > Strateji
 - ☐ Bir stratejik amacı bünyesinde barındırır
 - > Hedefler
 - ☐ Belirli hedeflere kıyasla performansı ölçer
 - > Aralıklar
 - ☐ Hedefler performans aralıklarına sahiptir
 - > Kodlama
 - □ Bu aralıklar bir yazılım ortamında bilgisayarın anlayabileceği şekilde kodlanır (Sarı-Turuncu- Kırmızı / Yüzdeler)
 - Zaman Çerçeveleri
 - ☐ Hedefler ilgili zaman çerçevelerine atanır
 - > Kopyalamak
 - ☐ Hedefler bir kıyaslama temeline ya da ölçüye göre ölçülür (Geçmiş veri veya Endüstri standardı)

Anahtar Performans Göstergeleri (APG)

Çıktı anahtar performans göstergeleri Gelirler

Sürücü anahtar performans göstergeleri

Satışı artıran unsurlar

Sürücü APG (Operasyonel APG) Alanları

- ✓ Müşteri performansı
 - müşteri tatmin oranı, sorunları çözme hızı ve doğruluğu, müşteri elde tutma oranı
- ✓ Hizmet performansı
 - çağrı merkezi sorun giderme oranı, hizmet yenileme oranı, hizmet düzeyi anlaşmaları, teslim performansı, geri dönüş oranları
- ✓ Satış operasyonları
 - güvence altına alınmış satış toplantıları, sorgulamaları satışa dönüştürme oranı, ortalama temrin süresi
- √ Satış plan/tahmini
 - Fiyat-satınalma doğruluğu ölçütleri, tahmin-plan oranı, bitirilmiş toplam kontrat sayısı, kazanılan miktar

- ✓ Genelde İşletme Performans Yönetimi (İPY) ve İş Zekası yazılım paketleri içerisinde yer alırlar
- ✓ Temelde amaç çok sayıda ama kilit öneme sahip bilgileri tek bir ekranda olabildiğince anlaşılır görsellerle sunmak

Bir gösterge panelinden neler beklenir!!!

- ✓ Görseller yardımıyla, özellikle istisnalar odaklanarak, veriler vurgulanmalı
- ✓ Kullanıcı için minimal eğitim gereksinimi olmalı, yani sadece profesyoneller için değil herkes için olmalı
- ✓ Farklı kaynaklardan tek bir ekrana özetlenmiş veri aktarımı
- ✓ Detaylardan özetlere, özetlerden detaylara geçiş sağlayan interaktif yapıda olmalı
- ✓ Gerçek zamanlı ve dinamik verileri sunmalı
- ✓ Uygulamak, yaymak veya sürdürmek için mümkün olan en az kodlamaya ihtiyaç duymalı

- ✓ Endüstri standartlarından anahtar performans göstergelerini kopyalama
- √ Gösterge paneli ölçütlerini metadatarla bağlama
 - ➤ Nerde geldi, ne zaman geldi, ne kadarı geldi ???
- ✓ Kullanılabilirlik uzmanları ile tasarım geçerliliğini kontrol etme
- ✓ Gösterge panelinde görülecek uyarılar ve istisnaları önceliklendirme
- ✓ İşletme kullanıcı komutları ile gösterge panellerini zenginleştirme
- ✓ Her bir bilgi türü için en uygun grafik türünü kullanma
- ✓ Analitik desteği sağlama

Çıktı Tasarımı – Dengeli Skor Kartları

- ✓ BSC ler temelde performansı oluşturan unsurları ölçmek için kullanılır
- ✓ Ana hatları ile bakılacak olursa balanced scorecard bir organizasyonun *finansal performans, müşteri memnuniyeti performansı, iç süreçlerin performansı, öğrenme ve gelişme* amaçlarına ilişkin performans boyutlarından oluşur.
- ✓ Finansal odaklı performans ölçüm sistemlerinin sınırlılıklarını aşmak için geliştirilmiş bir yöntemdir.

Çıktı Tasarımı – Dengeli Skor Kartları

Çıktı Tasarımı – Dengeli Skor Kartları

	Strateji haritası: Bağlantılı hedefler	Dengeli skor kartı: Ölçüler ve hedefler		Stratejik girişimler: Eylem planları
Finansal	Net geliri arttırmak	Net gelir büyümesi	%25 Artma	
Müşteri	Müşteri bağlılığını arttırma	Elde tutma oranının sürdürülmesi	%15 Artma	Lisanslama ve sürdürme sözleşmelerini değiştirme
İş süreçleri	Çağrı merkezi performansını iyileştirme	Sorun geri dönüş süresi	%30 Gelişme	Çağrı merkezi iş süreçlerini standartlaştırma
Öğrenme ve büyüme	Çalışan kaybını azaltma	İstemli kayıp oranı	%25 Azalma	Maaş ve ikramiye artışı

Çıktı Tasarımı – Ekran Tasarımı

- √ Sade ve anlaşılır
- ✓ Etkin ve etkili
- ✓ Kararlı
- ✓ Renk Kullanımı
- √ Hazır paket programlar
- √ Yeni teknolojiler
 - > HTML5, XML, HTTPS vb.
- ✓ İnteraktif
- ✓ Yerleşim

Çıktı Tasarımı – Web Site

- ✓ Profesyonel Araçlar
 - > CASE, Dreamveawer vb.
- ✓ Hazır şablon kullanımı
- ✓ Hizmet Satınalma
- ✓ Web 2.0, Web 3.0

Çıktı Tasarımı – Telefon ve Tablet

- ✓ HTML5
- ✓ Android vs IOS vs W10??

İnsan Bilgisayar Etkileşimi

- ✓ Arayüz Tasarımı
- ✓ Diyalog Tasarımı
- ✓ Geri Besleme ve Yardım
- ✓ Sorgular

HCI – Arayüz Tasarımı

- ✓ Arayüz Tipleri
 - Doğal Dil Arayüzleri
 - **□**Google
 - **□**Siri
 - ➤ Soru-Cevap Arayüzleri
 - > Menüler
 - > Form doldurma arayüzleri
 - ☐Google Form
 - > Komut Arayüzleri
 - **□**VB
 - ➤ Grafik Arayüzler
 - > Web (Portal) Arayüzleri

HCI – Arayüz Tasarımı

✓ Veri Girişlerinin Yapılandırılması

Girdi	Çevrim içi erişilebilen veya hesaplama ile bulunabilecek veriyi talep etme Örn: Doğum Yılı var ise yaş sorma
Varsayılan	Uygun olan her yerde varsayılan değer tercih et
Birim	Veri girilecek alan için gerekli veri yapısını ve birimini açıkça ifade et
Değişim	Gerek gördüğünde karakter değişimini öner
Başlık (Açıklama)	Her bir alan için açıklayıcı ve sade başlıklar kullan
Format	Karışıklığa neden olabilecek alanlar için biçim örneği ver Örn: İşe başlama tarihi AA/YYYY
Doğrulama	Verilerin doğrulanması mümkün olan her yerde doğrulama prosedürlerini kullan
Yardım	Uygun yerlerde yardım metinleri ekle

HCI – Diyalog Tasarımı

✓ Diyaloglar sistem ile kullanıcı arasında etkileşimli bir şekilde iletişimin sağlandığı ekranlardır.

HCI - Diyalog Tasarımı

✓ Diyalog tasarımında hiyerarşik bir yapıda gerekli diyalogları gösteren diyalog diyagramları kullanılır

HCI - Geri Besleme

- ✓ Geri Besleme Türleri
 - ➤ Girdinin kabul edildiğinin anlaşılması
 - ☐ Anketiniz kaydedilmiştir
 - Girilen girdinin doğruluğunun gösterilmesi (*)
 - □Güçlü bir şifre girdiniz
 - Girilen girdinin yanlışlığının gösterilmesi (*)
 - ☐Şifrenizde en az bir adet harf olmalı
 - Gecikmeyi açıklayan ifadeler
 - ☐ Sorunuzu cevabı 21 saniye içerisinde verilecek
 - > Detaylı geri besleme içeren mesajlar

HCI – Sorgu Tasarımı

- ✓ Kullanıcılara sorgulama zamanlarında tasarruf sunar
- ✓ Otomatik sorgu araçları
 - > ACCESS, DBMS arayüzleri

QBE (Query by Example)

Structural Query Language (SQL)

- ✓ Veri Tabanı:
 - > Herhangi bir konuda, birbiri ile ilgili verilerin sistematik şekilde saklandığı modellerdir
- ✓ Veri Tabanı Yönetim Sistemi:
 - ➤ Veritabanı oluşturmak, tablo oluşturmak, veri girişi yapmak, verileri aramak, verilerden bilgi (veya yeni veri) elde etmek, verileri güncellemek, verileri silmek, yetkilendirme, güvenlik, bakım gibi işlemlerin yapılabildiği yazılımlardır.
 - **□**Access
 - **□**SQL
 - **□**MySQL
 - □DB2
 - **□**Oracle

- √ VTYS Avantajları
 - ➤ Veri tekrarı önlenir (maliyet de azalma)
 - Veriler üzerinde işlemler kolayca yapılabilir (SQL)
 - > Veri aynı anda birçok yerde güncellenebilir (tutarlılık)
 - > İşlemler dosya sistemine göre daha hızlıdır
 - Standartlaşma sağlanır
 - Uygulama programlarından bağımsız olarak veri tabanı oluşturulabilir
 - ➤ Dil zorunluluğu/Erişim
 - ➤ Güvenlik
 - > Yedekleme/Bakım
 - İzin/Yetki (paylaşım aynı anda erişim)

Dr. H. İbrahim CEBECİ 38/68

- ✓ Hiyerarşik:
 - ➤ 1960'larda büyük miktardaki verileri yönetebilmek için geliştirilmiştir.
 - > 1969'da aya inen Apollo uzay mekiğinde kullanılmıştır.
 - Veriler ağaç yapısı şeklinde organize edilir.

- ✓ Ağ (Karmaşık):
 - ➤ Veritabanı performansını artırmak üzere daha karmaşık ilişkilere izin verilir
 - ➤ Hiyerarşik modelden farklı olarak kayıtların birden fazla ebeveyn (parent) kayıtları olabilir

- ✓ İlişkisel:
 - > Veriler, satır ve sütun olmak üzere iki boyutlu tablolarda saklanır
 - ➤ Tablolar arasındaki bağlantı, tablolar arasındaki ilişkiler ile sağlanır
 - Tasarlamak ve yazılımlardan erişmek daha kolaydır

- ✓ Nesne Yönelimli:
 - ➤ Nesne yönelimli programlama paradigmasından esinlenerek geliştirilen modeldir.
 - Varlık (entity) bu modelde nesne olarak adlandırılır.
 - Nesne hakkındaki bilgi niteliklere karşılık gelir.
 - > Varlık kümesi sınıf olarak adlandırılır.
 - > Sınıflar üye fonksiyonlara da sahiptirler.

- √ VTYS tasarımında dikkat edilmesi gereken noktalar
 - ➤ İleride çıkabilecek sorunlar dikkate alınmalıdır
 - Değişik yerlerde kullanılabilme esnekliği olmalıdır
 - > Fazladan tablolar, alanlar tanımlanabilir
 - > Standartlaşma sağlanmalıdır
 - > Verilerden elde edilen veriler olabilir

- ✓ Kavramsal Tasarım: İş kurallarından, donanımdan ve yazılımdan bağımsız olarak model tasarımı
 - ➤ Hangi Varlıklar kullanılacak?
 - □Varlık: Hakkında bilgi tutulan nesne
 - > 0 varlıkların Nitelikler nelerdir?
 - □Varlığı tekil olarak belirleyen nitelikler
 - ➤ Varlıklar arasındaki ilişkiler nelerdir?
 - □Varlıklar birbiri ile nasıl etkileşiyor?
- ✓ Mantıksal Tasarım: Kavramsal modelin VTYS'ye uygulanacak şekilde düzenlenmesidir. Normalizasyon bu aşamada gerçekleştirilir. Yazılım bağımlı
- ✓ Fiziksel Tasarım: Mantıksal modelin veri tabanlarına, tablolara, sütunlara dönüştürüldüğü tasarım aşamasıdır. Donanım ve Yazılım bağımlı

Kavramsal Mantıksal Fiziksel

Özellik	Kavramsal	Mantıksal	Fiziksel
Varlık Adı	✓	✓	
Varlık İlişkisi	✓	✓	
Nitelikler		✓	
Birincil Anahtar		✓	✓
Yabancı Anahtar		✓	✓
Tablo İsimleri			✓
Sütun İsimleri			✓
Sütun Veri Tipleri			✓

- ✓ Veri tabanı tasarımında kullanılan temel araç Varlık İlişki Diyagramı (Entity-Relationship Diagram - ERD) dır.
 - > Varlık
 - > Nitelik
 - ▶ İlişki

CROW's FOOT

- ✓ ERD direkt olarak veri sözlüklerinden veya iş kurallarından türetilir
- ✓ Genel olarak iş kurallarındaki isimler varlık, fiiller ise varlıklar arasındaki ilişki olma adayıdır.
- ✓ Hakkında bilgi bulunan isim ya da isim tamlamaları varlık adayı iken, bilgi bulunmayanlar varlığa ait nitelik adayıdır.
 - ➤ Bir **müşteri** çok sayıda fatura **üretir**.

✓ ER Sembolleri

- ✓ Varlık (Entity):
 - ➤ Hakkında veri toplanan ve saklanan her şey (öğrenci, ders, personel vb.).
 - Gerçek dünyadaki nesneleri ifade eder.
 - > Var olan ve benzerlerinden ayırt edilen her şey.
- ✓ Nitelik (Attribute):
 - Varlığın sahip olduğu özellikler.

- ✓ İlişki (Relationship):
 - ➤ Varlıklar arasındaki bağıntıyı ifade eder
 - **1**-1
 - **□**1-M
 - $\square M-N$

✓ Anahtar Türleri:

- ✓ Varlık İlişki Diyagramı için izlenecek videolar
- ✓ https://www.youtube.com/watch?v=QpdhBUYk7Kk
- ✓ https://www.youtube.com/watch?v=-cuY5ADwn24&t=538s

- ✓ Normalizasyonun iki temel amacı vardır.
 - ➤ Veri tabanında veri tekrarlarını ortadan kaldırmak
 - ➤ Veri tutarlılığını (doğruluğunu) artırmak.
- ✓ Normalizasyon, veri tabanlarına seviyelerle (normal formlar) uygulanır.
- ✓ Bir veri tabanının bu normal formlardan herhangi birine uygun olduğunu söyleyebilmek için, söz konusu normal formun tüm kriterlerini eksiksiz yerine getiriyor olması şarttır.

- ✓ Normalizasyon doğru uygulanırsa;
 - > Veri Tabanı hızı artar
 - ➤ Veri Tabanının diskteki boyutu azalır
 - > Veri tekrarları engellenir
 - ➤ Güncelleme ve silme sonucundaki olası sorunları minimize eder
- ✓ Normal Formlar
 - Normalizasyon seviyeleridir
 - □1NF (Birinci Normal Form)
 - □2NF (İkinci Normal Form)
 - □3NF (Üçüncü Normal Form)

1NF

- ✓ Bir veri tabanının 1NF olabilmesi için aşağıdaki özellikleri karşılayabilmesi gerekir:
 - > Aynı tablo içinde tekrarlayan kolonlar bulunamaz
 - > Her kolonda yalnızca bir değer bulunabilir
 - ➤ Her satır bir eşsiz anahtarla tanımlanmalıdır (Unique Key Primary Key)

Calisan	Soyad	Sofor	Arac	Semi	
Orçun	Yılmaz	Ahmet	Toyota	Levent, Etiler, Ulus	
Metin	Seyyar	Mehmet	Honda	Bakırköy, Ataköy, Yeşilköy	
Metin	Seyyar	Tolga	Ford	Kandilli, Beylerbeyi, Kuzguncuk	

Calisan	Soyad	Sofor	Arac	Semt 1	Semt 2	Semt 3
Orçun	Yılmaz	Ahmet	Toyota	Levent	Etiler	Ulus
Metin	Seyyar	Mehmet	Honda	Bakırköy	Ataköy	Yeşilköy
Metin	Seyyar	Tolga	Ford	Kandilli	Beylerbeyi	Kuzguncuk

Calisan	Soyad	Sofor	Arac	Semt
Orçun	Yılmaz	Ahmet	Toyota	Levent
Orçun	Yılmaz	Ahmet	Toyota	Etiler
Orçun	Yılmaz	Ahmet	Toyota	Ulus
Metin	Seyyar	Mehmet	Honda	Bakırköy
Metin	Seyyar	Mehmet	Honda	Ataköy
Metin	Seyyar	Mehmet	Honda	Yeşilköy
Metin	Seyyar	Tolga	Ford	Kandilli
Metin	Seyyar	Tolga	Ford	Beylerbeyi
Metin	Seyyar	Tolga	Ford	Kuzguncuk

Id	Calisan	Soyad	Sofor	Arac	Semt
1	Orçun	Yılmaz	Ahmet	Toyota	Levent
2	Orçun	Yılmaz	Ahmet	Toyota	Etiler
3	Orçun	Yılmaz	Ahmet	Toyota	Ulus
4	Metin	Seyyar	Mehmet	Honda	Bakırköy
5	Metin	Seyyar	Mehmet	Honda	Ataköy
6	Metin	Seyyar	Mehmet	Honda	Yeşilköy
7	Metin	Seyyar	Tolga	Ford	Kandilli
8	Metin	Seyyar	Tolga	Ford	Beylerbeyi
9	Metin	Seyyar	Tolga	Ford	Kuzguncuk

2NF

- ✓ Bir veri tabanının 2NF olabilmesi için aşağıdaki özellikleri karşılayabilmesi gerekir:
 - ➤ Tablo 1NF olmalıdır,
 - Anahtar olmayan değerler ile birincil anahtarlar arasında kısmi bağımlılık durumu oluşmamalıdır. Kısmi bağımlılık durumu, anahtar olmayan herhangi bir değer birincil bir anahtarın yalnızca bir kısmına bağlı ise oluşur.
 - ➤ Herhangi bir veri alt kümesi birden çok satırda tekrarlanmamalıdır. Bu tür veri alt kümeleri için yeni tablolar oluşturulmalıdır.
 - Ana tablo ile yeni tablolar arasında, dış anahtarlar (foreign key) kullanılarak ilişkiler tanımlanmalıdır.

2NF

- ✓ Örneği incelerden çalışan bilgisi ile şöfor, araç ve semt bilgisi arasında tam bağımlılık söz konusu değil.
- ✓ Bu durumda iki ayrı tablo oluşturulmalı

d	Calisan	Soyad	Sofor	Arac	Semt
	Orçun	Yılmaz	Ahmet	Toyota	Levent
	Orçun	Yılmaz	Ahmet	Toyota	Etiler
	Orçun	Yılmaz	Ahmet	Toyota	Ulus
	Metin	Seyyar	Mehmet	Honda	Bakırköy
	Metin	Seyyar	Mehmet	Honda	Ataköy
	Metin	Seyyar	Mehmet	Honda	Yeşilköy
	Metin	Seyyar	Tolga	Ford	Kandilli
	Metin	Seyyar	Tolga	Ford	Beylerbeyi
	Metin	Seyyar	Tolga	Ford	Kuzguncuk

2NF

Ana Tablo

Id	Calisan	Soyad
1	Orçun	Yılmaz
2	Metin	Seyyar

Servis Tablosu

	Cid	Sofor	Arac	Semt
	1	Ahmet	Toyota	Levent
	1	Ahmet	Toyota	Etiler
i ir	1	Ahmet	Toyota	Ulus
1	2	Mehmet	Honda	Bakırköy
	2	Mehmet	Honda	Ataköy
	2	Mehmet	Honda	Yeşilköy
	2	Tolga	Ford	Kandilli
	2	Tolga	Ford	Beylerbeyi
	2	Tolga	Ford	Kuzguncuk

Yabancı Anahtar

3NF

- ✓ Bir veri tabanının 3NF olabilmesi için aşağıdaki özellikleri karşılayabilmesi gerekir:
 - Veri tabanı 2NF olmalıdır,
 - Anahtar olmayan hiç bir kolon bir diğerine (anahtar olmayan başka bir kolona) bağıl olmamalı, Başka bir deyişle her kolon eşsiz anahtara tam bağımlı olmak zorundadır.
- ✓ Veri tabanımızı 3NF şartlarına uydurabilmek için anahtar olmayan ve eşsiz anahtara tam bağımlı olmayan tüm kolonları kaldırmalıyız.
- ✓ Dikkat ederseniz bizim tablomuzda "Araç" kolonu eşsiz anahtarımıza değil "Şoför" kolonuna bağımlı. Birbirine bağlı olan bu iki kolonu (Şoför - Araç) ayrı bir tabloya ayırmamız ve tablomuzla aralarında bir ilişki yaratmamız gerekiyor.

3NF

Ana Tablo Id Calisan Soyad 1 Orçun Yılmaz 2 Metin Seyyar

Servis Tablosu

Cid	Sid	Semt
1	1	Levent
1	1	Etiler
1	1	Ulus
2	2	Bakırköy
2	2	Ataköy
2	2	Yeşilköy
2	3	Kandilli
2	3	Beylerbeyi
2	3	Kuzguncuk

Şoför Tablosu

Sid	Sofor	Arac
1	Ahmet	Toyota
2	Mehmet	Honda
3	Tolga	Ford