Planification d'actions Heure 1

Philippe Morignot pmorignot@yahoo.fr

Situation dans le cours ROB316

Plan de ce cours pour ROB316

Lundi 8 janvier 2024

- 1. Notions de base
- 2. Algorithmes pour planifier
- 3. Planification et exécution

Lundi 15 janvier 2024

- 4. Fin du cours éventuellement ...
- 5. TP ou début de projet en CPT version 2

Enoncé

- « Planification d'actions » / « planification de tâches » / « synthèse de plan » / « génération de plans d'actions » : activité de construction d'un plan.
- « *Planificateur* » / « *planificateur de tâches* » / « *planificateur d'actions* » : programme informatique qui résout ce problème.
- Différent de « planificateur de chemin » en Robotique.

Un planificateur d'actions

Difficulté: explosion combinatoire

Domaine du grutier :

1 grue, a lieux, b camions, c piles de containeurs, d containeurs.

- Si a = 5, b = 3, c = 3, d = 100, alors $\sim 10^{277}$ états.
- La planification classique est non-déterministe polynomiale (NP).
- On ne peut pas expliciter tous les états.

Hypothèses

- <u>Hyp. 1 :</u> **l'agent est la seule cause de changement dans l'environnement**.
 - Pas d'autre agent, artificiel ou humain.
- <u>Hyp. 2 :</u> *l'environnement est totalement observable, l'agent en a une connaissance parfaite.*
 - L'agent ne raisonne (e.g., planifie) pas sur des choses qu'il ne connaît pas.
- <u>Hyp. 3</u>: *l'environnement est statique*.
 - Même si l'environnement peut avoir des lois de comportements, il ne bouge pas spontanément.
- Hyp. 4 : le nombre d'objets considérés est fini.
 - Logique des propositions.

Planning Domain Definition Language (PDDL) (1 / 2)

- Langage de représentation pour définir :
 - un <u>domaine</u> : opérateurs
 - un <u>problème</u> : état et buts.
- Un opérateur est composé de :
 - <u>Pré-conditions</u>: termes qui doivent être vrai pour que l'action puisse s'exécuter.
 - <u>Effets / post-conditions</u>: termes que l'exécution de l'action change par rapport à l'état entrant (liste d'ajouts ADD-LIST / de retraits DELETE-LIST).
 - Une post-condition peut être positive ou négative.
- Un terme peut être parfois vrai, parfois faux, suivant l'instant où on le considère dans le plan.
 - Connecteur « not ».
 Ex. : (not (SUR SOURIS TAPIS))
 - « Fluent » (littéral).
 Ex. : (SUR SOURIS TAPIS)

PDDL : exemple de domaine Le monde des cubes

- Opérateur : (:action puton puton ?b ?u ?t :parameters (?b ?u ?t - block) (not (on ?b ?u)) (clear ?b) :precondition (and (clear ?b) (clear ?u) (on ?b ?u) (on ?b ?u)) (on ?b ?t) (clear ?t) (clear ?t)) (not (clear ?t) :effect (and (not (on ?b ?u)) (clear ?u) (on ?b ?t) (not (clear ?t)))) puton ?u
- Mais comment représenter des extensions : Et la table ? Et le bras ? Et si plusieurs bras ? Et si les cubes sont colorés ? Ou avec une encoche ? Ou de dimensions variables ?
- Conditionnelles ? Quantification universelle ?

PDDL : exemple de problème Le monde des cubes

```
(define (problem blocks-24-1)
        (:domain blocks)
        (:objects X W V U T S R Q P O N M L K J I H G F E D C A B)
        (:init
                   (CLEAR K) (CLEAR I) (ONTABLE C) (ONTABLE O)
                   (ON K F) (ON F T) (ON T B) (ON B G) (ON G R)
                   (ON R M) (ON M E) (ON E J) (ON J V) (ON V N)
                   (ON N U) (ON U H) (ON H C) (ON I A) (ON A P)
                   (ON P Q) (ON Q D) (ON D W) (ON W X) (ON X S)
                              (ON S L) (ON L O) (HANDEMPTY))
        (:goal (and
                   (ON L C) (ON C P) (ON P Q) (ON Q M) (ON M B)
                   (ON B G) (ON G F) (ON F K) (ON K E) (ON E R)
                   (ON R A) (ON A W) (ON W T) (ON T N) (ON N J)
                   (ON J U) (ON U S) (ON S D) (ON D H) (ON H V)
```

(ON V O) (ON O I) (ON I X))))

X

Q

В

G

K

E

W

PDDL: Représentation (1 / 2)

- <u>Problème de la qualification</u>: en pratique, on ne peut pas lister toutes les pré-conditions dans un opérateur.
- Problème de la ramification : en pratique, on ne peut pas lister toutes les post-conditions dans un opérateur.
- Exemple : opérateur « Démarrer une voiture »
 - Pré-conditions : clé-dans-le-barillet ET clé-tournée
 - Post-conditions : moteur-tourne

PDDL: Représentation (2 / 2)

- <u>Résolution du problème du cadre</u>: lors de l'exécution d'un opérateur, ce qui n'est pas explicitement changé par une post-condition est considéré comme inchangé.
- <u>Hypothèse du monde clos</u>: dans un état, un terme qui n'est pas mentionné est considéré comme étant faux.
 - Par opposition à l'hypothèse du monde ouvert (ontologies) : dans un état, ce qui n'est pas mentionné est considéré comme étant inconnu.

Expressivité: STRIPS et ADL

STRIPS = Stanford Research Institute Problem Solver

ADL = Action Description Language

Littéraux positifs seulement dans les états : Riche ∧ Célèbre	Littéraux positifs et négatifs dans les états : ¬ Riche ∧ ¬ Célèbre
Hypothèse du monde fermé	Hypothèse du monde ouvert.
Effet P ∧ ¬ Q signifie ajoute P et détruit Q	Effet P ∧ ¬ Q signifie ajoute P et ¬ Q et détruit ¬ P et Q
Propositions seulement dans les buts	Variables quantifiées dans les buts :
Riche ∧ Célèbre	$\exists x$, AT(Avion1, x) \land AT(Avion2, x)
Les buts sont des conjonctions : Riche ∧ Célèbre	Les buts sont des conjonctions et disjonctions : ¬ Pauvre ∧ (Riche ∨ intelligent)
Les effets sont des conjonctions	Effets conditionnels : QUAND P : E
Pas d'égalité	Egalité (x = y) prédéfinie
Pas de types	Les variables peuvent etre typees

L'anomalie de Gerald Jay Sussman (1/16)

L'anomalie de Gerald Jay Sussman (2/16)

L'anomalie de Gerald Jay Sussman (2/16)

L'anomalie de Gerald Jay Sussman (3/16)

L'anomalie de Gerald Jay Sussman (4/16)

L'anomalie de Gerald Jay Sussman (5/16)

L'anomalie de Gerald Jay Sussman (6/16)

L'anomalie de Gerald Jay Sussman (7/16)

L'anomalie de Gerald Jay Sussman (8/16)

L'anomalie de Gerald Jay Sussman (9/16)

L'anomalie de Gerald Jay Sussman (10/16)

L'anomalie de Gerald Jay Sussman (11/16)

L'anomalie de Gerald Jay Sussman (12/16)

L'anomalie de Gerald Jay Sussman (13/16)

L'anomalie de Gerald Jay Sussman (14/16)

L'anomalie de Gerald Jay Sussman (15/16)

L'anomalie de Gerald Jay Sussman (16/16)

L'anomalie de Gerald Jay Sussman : solution

Références

- [Weld 94] Daniel Weld, An Introduction to Least Commitment Planning, A. I. Magazine, 15(4), pages 27-61, Winter 1994.
- [Russel 2010] Stuart Russell, Peter Norvig. *Artificial Intelligence: A Modern Approach*. Prentice Hall, 2010, 3rd edition. Chapitre 11.
- [Ghallab et al. 04] Malik Ghallab, Dana Nau, Paolo Traverso. *Automated Planning: Theory and Practice*. Morgan Kaufmann, San Mateo, CA, May 04, 635 pages.
- PDDL 3.1. http://ipc.informatik.uni-freiburg.de/PddlExtension
- Conférences :
 - International Conference on Automated Planning and Scheduling (ICAPS).
 http://www.icaps.org
 - International Joint Conference on A.I. (IJCAI). http://www.ijcai.org
 - European Conference on A.I. (ECAI). http://www.ecai.org
 - National Conference on A.I. (AAAI). http://www.aaai.org

Journaux :

- A. I. Journal (AIJ).
 http://www.elsevier.com/wps/find/journaldescription.cws home/505601/description#description
- Journal of A.I. Research (JAIR). http://www.jair.org/

Conclusion

- La planification d'actions consiste à trouver une séquence d'opérateurs instantiés (un plan) menant un état initial à des buts.
 - Difficile parce que explosion combinatoire dûe à l'interaction entre sous buts.
- Les opérateurs peuvent être exprimés en STRIPS / ADL / PDDL.