1 (a) A list of quantities that are either scalars or vectors is shown in Fig. 1.1.

quantity	scalar	vector
distance	1	
energy		
momentum		
power		
time		
weight		

Fig. 1.1

Complete Fig. 1.1 to indicate whether each quantity is a scalar or a vector.

One line has been completed as an example.

[2]

- (b) A girl runs 120 m due north in 15 s. She then runs 80 m due east in 12 s.
 - (i) Sketch a vector diagram to show the path taken by the girl. Draw and label her resultant displacement R.

		average speed = m s ⁻¹ [1]
		2. the magnitude of the average velocity v and its angle with respect to the direction of the initial path.
		magnitude of $v = \dots ms^{-1}$
		angle =° [3]
		[Total: 7]
2	(a)	Describe the effects, one in each case, of systematic errors and random errors when using a micrometer screw gauge to take readings for the diameter of a wire.
		systematic errors:
		random errors:
		[2]
	(b)	Distinguish between precision and accuracy when measuring the diameter of a wire.
		precision:
		accuracy:
		[2]

[Total: 4]

(ii) Calculate, for the girl,

1. the average speed,

3	(a)	Explain what is meant by gravitational potential energy and by kinetic energy.
		gravitational potential energy:
		kinetic energy:
		[2]

(b) A motion sensor is used to measure the velocity of a ball falling vertically towards the ground, as illustrated in Fig. 3.1.

Fig. 3.1

The ball passes through points A and B as it falls. The ball has a mass of 1.5 kg.

The variation with time t of the velocity v of the ball as it falls from A to B is shown in Fig. 3.2.

Fig. 3.2

Fig. 3.2 to calculate, for the ball falling from A to B,

(i) the displacement,

displacement =m [3]

(ii) the acceleration,

acceleration = $m s^{-2}$ [2]

	(iii)	the change in kinetic e	nergy.
		ch	nange in kinetic energy =
(c)		ow that the work done by ual to the change in kine	y the gravitational field on the ball in (b) as it moves from A to B is tic energy.
		-	
			[2]
			[Total: 12]

4 A spring balance is used to weigh a cylinder that is immersed in oil, as shown in Fig. 4.1.

Fig. 4.1

The reading on the spring balance is $4.8\,N$. The length of the cylinder is $5.0\,cm$ and the cross-sectional area of the cylinder is $13\,cm^2$. The weight of the cylinder is $5.3\,N$.

(a)	The cylinder is in equilibrium when it is immersed in the oil. Explain this in terms of the force acting on the cylinder.	s
	[1	1]

(b) Calculate the density of the oil.

density =
$$\ldots$$
 kg m⁻³ [3]

5	(a)	State the law of conservation of mome	ntum.
			[2]
	(b)	Two particles A and B collide elastical	y, as illustrated in Fig. 5.1.
			y-direction
			V _A
		A B x -direction $ -$ at rest	- \(\frac{1}{30}\)\(-\frac{1}{30}\)\(-\frac{1}{30}\)\(-\frac{1}{30}\)\(1
		Journs at rest	В
		before collision	after collision
		perore comploir	anel comsion
			Fig. 5.1
		The initial velocity of A is 500 m s ⁻¹ in t	he x-direction and B is at rest.
		The velocity of A after the collision is collision is $v_{\rm B}$ at 30° to the <i>x</i> -direction.	$v_{\rm A}$ at 60° to the x-direction. The velocity of B after the
		The mass m of each particle is 1.67 \times	10 ^{–27} kg.
		(i) Explain what is meant by the part	cles colliding <i>elastically</i> .
			[1]
		(ii) Calculate the total initial momentu	m of A and B.
			momentum =Ns [1]

(111)	collision	ıne
	1. in the x-direction,	
	2. in the <i>y</i> -direction.	
(iv)	Calculate the magnitudes of the velocities $v_{\rm A}$ and $v_{\rm B}$ after the collision.	[2]

<i>v</i> _A =	 ms ⁻
<i>v</i> _B =	 ms ⁻ [3

[Total: 9]

6 (a) Define the ohm.

.....[1]

(b) A 15V battery with negligible internal resistance is connected to two resistors P and Q, as shown in Fig. 6.1.

Fig. 6.1

The resistors are made of wires of the same material. The wire of P has diameter d and length 2l. The wire of Q has diameter 2d and length l.

The resistance of P is 12Ω .

(i) Show that the resistance of Q is 1.5Ω .

(ii) Calculate the total power dissipated in the resistors P and Q.

power = W [3]

[3]

(111)	Determine the ratio	Determine the ratio						
	average drift speed of the charge carriers in P							
	average drift speed of the charge carriers in Q		<u>J</u> .					

ratio =	 [3]	
	F - 7	

[Total: 10]

7 (a) Apparatus used to produce stationary waves on a stretched string is shown in Fig. 7.1.

Fig. 7.1

The frequency generator is switched on.

(i)	Describe two adjustments that can be made to the apparatus to produce station waves on the string.	ary
	1	
	2	
		[2
(ii)	Describe the features that are seen on the stretched string that indicate stationary wa have been produced.	ves
		. [1

(b) The variation with time *t* of the displacement *x* of a particle caused by a progressive wave R is shown in Fig. 7.2. the same particle, the variation with time *t* of the displacement *x* caused by a second wave S is also shown in Fig. 7.2.

Fig. 7.2

(i)	Determine	the phase	difference	between	wave I	R and	wave	S.	Include	an	appropri	ate
	unit.											

(ii) Calculate the ratio

 $\frac{\text{intensity of wave R}}{\text{intensity of wave S}}.$

[Total: 6]

8	(a)	Dis	tinguish between an α -particle and a β^+ -particle.	
			[3]	
	(b)	ΑII	State the equation that shows the decay of a particle in a nucleus that results in β^+ emission. All particles in the equation should be shown in the notation that is usually used for the representation of nuclides.	
			[2]	
	(c)	(i)	State the quark composition of	
			1. a proton,	
			2. a neutron.	
			[2]	
		(ii)	the quark model to explain the charge on a proton.	
			[1]	
			[Total: 8]	