CDMC 2019 Competition Winner Presentation

Masataka Kawai

Data Mining Tasks

Task 1:

SADAVS-Sensor Array Data for Autonomous Vehicle Safety

Task 2:

IoT malware classification

Purpose: Classify vehicle sensor data

Safe sensor data

No-safe sensor data

Test data has two scenarios

Scenario B

Candidate classification algorithms:

RF and XGBoost (choose better one)

Feature extraction method:

Using the sensor data values as sequence data

time	1	2	3	4	•••
1	0.1608	0.1059	0.3608	0.575	

Counting the frequency of each sensor data values

value	0.1608	0.1059	0.3608	0.575	•••
1	107	284	112	136	

All no-safe training data

Evaluation:

Train (70% of the training data)

Test (30% of the training data)

Accuracy (%):

ML algorithm Extraction method	RF	XGBoost
Counting the frequency	74.7	73.6

Summary

- Using the counting frequency feature extraction method
- Trained the machine using Random Forest
- Used all the training data

Purpose: Classify IoT malware

Execute in the sandbox and trace system call

execve ioctl ioctl prctl gettimeofday getpid gettimeofday getpid fork wait4 SIGCHLD exit EXIT fork exit EXIT chdir setuid32 setresuid32 rt_sigaction fork exit EXIT socket fcntl fcntl connect _newselect getsockopt rt_sigaction nanosleep fork exit EXIT close socket fcntl fcntl connect _newselect getsockopt rt_sigaction nanosleep fork exit EXIT close socket fcntl fcntl connect _newselect getsockopt rt_sigaction nanosleep fork exit EXIT

data	1	2	3	4	5
execve ioctl ioctl prctl time getpid time getpid open		11	0	0	0

Correct label is 2.

Combine 13 files into 1 file with the correct label.

Candidate Classification algorithms:

RF and XGBoost (choose better one)

Feature extraction methods:

Counting the frequency of each system call

Accuracy (%):

ML algorithm Extraction method	RF	XGBoost
Counting the frequency of each system call	98.1	97.6

Summary

- Counted and shorten the system call data
- Using the count method for feature extraction
- Trained the machine using Random Forest
- Used all the training data