

CI 2 – Cinématique : Modélisation, prévision et vérification du comportement cinématiques des systèmes

Chapitre 5 – Étude graphique des mouvements plans

Système EPAS

Schématisation 3D

Modélisation plane

On s'intéresse au déploiement de l'Échelle Pivotante Automatique à commande Séquentielle. Lors de cette phase, les tourelles sont bloquées. Le mouvement de l'échelle est réalisé grâce à la sortie de la tige du vérin.

Ce mouvement à la particularité d'être "plan". En effet, les liaisons qui constituent le mécanisme ne génèrent que des mouvements dans le plan $(\overrightarrow{x}; \overrightarrow{y})$. Dans ce cas, il est possible d'utiliser des outils graphiques pour déterminer les vitesses de déplacement des solides.

Problématique

Problématique:

- Comment déterminer graphiquement les vitesses des solides dans les systèmes mécaniques ?

voir

SAVOIRS:

 Étudier les mouvements en utilisant l'équiprojectivité, la composition des vitesses, les notions de centre instantané de rotation, de base et de roulante.

1	Ciné	matique plane	. 2
	1.1	Forme du torseur cinématique pour des mouvements plans	. 2
	1.2	Représentation du vecteur vitesse	. 3
	1.3	Champ des vitesses pour un solide en translation	. 3
	1.4	Champ des vitesses pour un solide en rotation	. 4
	1.5	Notion de point appartenant à deux solides	4

Ce document est en évolution permanente. Merci de signaler toutes erreurs ou coquilles.

1 Cinématique plane

Problème plan

Soient deux solides S_1 et S_2 en mouvement l'un par rapport à l'autre auxquels on associe les repères \mathcal{R}_0 et \mathcal{R}_1 . Le problème est dit plan lorsque

$$\forall t \in \mathbb{R}^+, \overrightarrow{z_1} \land \overrightarrow{z_0} = \overrightarrow{0}$$

Le mouvement est alors contenu dans le plan $\mathscr{P}\left(\overrightarrow{x_1}; \overrightarrow{y_1}\right)$.

1.1 Forme du torseur cinématique pour des mouvements plans

Torseur cinématique

Lorsqu'un mouvement a lieu dans le plan $(\overrightarrow{x}; \overrightarrow{y})$, le torseur cinématique associé au mouvement est de la forme :

$$\{\mathcal{V}(S_2/S_1)\} = \left\{ \begin{array}{ccc} \tilde{u}_x & u_x \\ \tilde{u}_y & u_y \\ \omega_z & \tilde{u} \end{array} \right\}_{O,\mathcal{R}}$$

Pécultat

Donner les torseurs associés aux liaisons suivantes dans le plan $(\overrightarrow{x}; \overrightarrow{y})$.

de normale \overrightarrow{x} de normale \overrightarrow{z}

xemple

1.2 Représentation du vecteur vitesse

Le vecteur vitesse est représenté par un glisseur. Ce glisseur est caractérisé par :

- une direction;
- un sens;
- une norme;
- un point d'application.

En cinématique graphique, déterminer le vecteur vitesse revient à déterminer les glisseurs de chacun des points.

Représentation d'un glisseur

Exemple

Résultat

1.3 Champ des vitesses pour un solide en translation

Soit un solide S_2 en translation par rapport à un solide S_1 . Connaissant $\overline{V(A \in S_2/S_1)}$, on a :

$$\forall M \in S_2, \overrightarrow{V(M \in S_2/S_1)} = \overrightarrow{V(A \in S_2/S_1)}$$

Tracer $\overrightarrow{V(B \in 3/4)}$ et $\overrightarrow{V(D \in 4/3)}$.

-xemple

1.4 Champ des vitesses pour un solide en rotation

Soit un solide S_2 en rotation par rapport à un solide S_1 . Soit O le centre de la liaison. On a donc, $\overline{\Omega(S_2/S_1)} = \omega \overrightarrow{z}$, ω étant une vitesse de rotation exprimée en rad/s. Soit un point A appartenant au plan $\mathscr{P}\left(\overrightarrow{x_0}; \overrightarrow{y_0}\right)$ tel que $\overrightarrow{OA} = r\overrightarrow{x_1}$

D'après la relation du champ de moment,

$$\overrightarrow{V(A \in S_2/S_1)} = \overrightarrow{V(O \in S_2/S_1)} + \overrightarrow{AO} \wedge \overrightarrow{\Omega(S_2/S_1)} = r\omega \overrightarrow{y_1}$$

1.5 Notion de point appartenant à deux solides

Soient deux solides S_1 et S_2 . La liaisons entre les deux solides est de centre A et ne permet aucune translation dans \mathcal{P} . Soit S_0 le bâti. On a alors :

$$\overrightarrow{V(A \in S_2/S_0)} = \underbrace{\overrightarrow{V(A \in S_2/S_1)}}_{\overrightarrow{0}} + \overrightarrow{V(A \in S_1/S_0)}$$

Déterminer $\overrightarrow{V(D \in 5/3)}$ et $\overrightarrow{V(D \in 5/2)}$.

2 Résolution des problèmes graphiques en utilisant l'équiprojectivité

Equiprojectivité

Soit un solide S_1 en mouvement par rapport à un repère fixe \mathcal{R}_0 . Soient deux points A et B appartenant au solide S_1 . On démontre qu'à chaque instant t:

$$\overrightarrow{V(A \in S_1/\mathscr{R}_0)} \cdot \overrightarrow{AB} = \overrightarrow{V(B \in S_1/\mathscr{R}_0)} \cdot \overrightarrow{AB}$$

Démonstration

D'après la relation du champ de moment,

$$\overrightarrow{V(B \in S_1/\mathscr{R}_0)} = \overrightarrow{V(A \in S_1/\mathscr{R}_0)} + \overrightarrow{BA} \wedge \overrightarrow{\Omega(S_1/\mathscr{R}_0)}$$

$$\iff \overrightarrow{V(B \in S_1/\mathscr{R}_0)} \cdot \overrightarrow{AB} = \overrightarrow{V(A \in S_1/\mathscr{R}_0)} \cdot \overrightarrow{AB} + \underbrace{\left(\overrightarrow{AB} \wedge \overrightarrow{\Omega(S_1/\mathscr{R}_0)}\right) \cdot \overrightarrow{BA}}_{=\left(\overrightarrow{AB} \wedge \overrightarrow{BA}\right) \cdot \overrightarrow{\Omega(S_1/\mathscr{R}_0)} = \overrightarrow{0}}$$

CQFD

- 1. Identifier les données connues :
 - fréquence de rotation des moteurs;
 - vitesse de déplacement des vérins ...
- 2. Tracer les vecteurs vitesses connus en respectant l'échelle
- 3. Identifier la direction du vecteur vitesse aux points caractéristiques du mécanisme
- 4. Utiliser la décomposition du vecteur vitesse si besoin
- 5. Tracer le vecteur vitesse final en utilisant l'équiprojectivité
- 6. Mesurer la norme du vecteur vitesse et comparer avec le cahier des charges.

3 Résolution des problèmes graphiques en utilisant les centres instantanés de rotation

Glisseur

Soit le torseur suivant :

$$\{\mathscr{V}(S_2/S_1)\} = \left\{ \begin{array}{c} \overrightarrow{\Omega(S_2/S_1)} \\ \overrightarrow{V(A \in S_2/S_1)} \end{array} \right\}_A$$

 $\{\mathcal{V}\}$ est un glisseur si et seulement si :

- $-\overrightarrow{\Omega(S_2/S_1)}\neq\overrightarrow{0}$;
- il existe un point A tel que $\overrightarrow{V(A \in S_2/S_1)} \neq \overrightarrow{0}$;
- $-\overrightarrow{\Omega(S_2/S_1)}\cdot\overrightarrow{V(A\in S_2/S_1)}=\overrightarrow{0}.$

Centre instantané de rotation - CIR

En conséquence, en cinématique plane, le torseur cinématique est un glisseur. Il existe donc un point I tel $V(I \in S_2/S_1) = \overrightarrow{0}$.

 I_{21} est appelé le centre instantané de rotation du solide 1 par rapport au solide 2.

Sécultat

Construction du CIR

 $\overline{V(A \in S_2/S_1)}$ et $\overline{V(B \in S_2/S_1)}$ étant connu, I_{12} est à l'intersection des perpendiculaires aux vecteurs vitesses en A et en B.

Interprétation graphique

xemple

Remarque

- Pour un solide en translation, le CIR n'existe pas.
- Pour un solide en rotation autour d'un point fixe, le CIR est au centre de la liaison.
- Le CIR change à chaque instant.

éfinition

Base et roulante

Soit un solide S_1 en mouvement dans un solide \mathcal{R}_0 . On appelle base la trajectoire du CIR par rapport à \mathcal{R} . On appelle roulante la trajectoire du CIR par rapport à S_1 .

Théorème

Soient 3 solides S_1 , S_2 et S_3 en mouvement plan. I_{12} , I_{23} et I_{13} sont alignés

Résultat

L'alignement des CIR peut permettre de déterminer la direction d'un vecteur vitesse.

Agitateur médical

Système à double excentrique (transformation d'un mouvement de rotation continue en rotation discontinue). Les solides S_1 et S_3 sont en liaison pivot avec le bâti S_0 . La bielle S_2 est en liaison pivot avec S_1 et S_3 .

Mouvement de 1/0 rotation autour de l'axe $(O_1, \overrightarrow{z_0})$: CIR $I_{1/0} = O_1$. Liaison 2/1 pivot d'axe $(A, \overrightarrow{z_0})$: CIR $I_{2/1} = A$: CIR $I_{2/0}$ est sur l'axe (O_1A) .

Mouvement de 3/0 rotation autour de l'axe $(O_3, \overrightarrow{z_0})$: CIR $I_{3/0} = O_3$. Liaison 3/2 pivot d'axe $(B, \overrightarrow{z_0})$: CIR $I_{3/2} = B$: CIR $I_{2/0}$ est sur l'axe (O_3B) .

On en déduit $I_{2/0}$ intersection entre les droites $(O_3 B)$ et $(O_1 A)$.

On connaît le CIR $I_{1/0} = O_1$ et le CIR $I_{3/0} = O_3$ par conséquent le CIR $I_{3/1}$ est sur l'axe (O_1O_3) .

On connaît le CIR $I_{3/2} = A$ et le CIR $I_{2/1} = B$ par conséquent le CIR $I_{3/1}$ est sur l'axe (AB).

On en déduit $I_{3/1}$ intersection entre les droites (O_1O_3) et (AB).

8