Econometrics May 4, 2023

Topic 14: Regularization Methods in Thresholded Parameter Space

by Sai Zhang

Key points: The connections and differences of all regularization methods and some interesting phase transition phenomena.

Disclaimer: The note is built on Prof. Jinchi Lv's lectures of the course at USC, DSO 607, High-Dimensional Statistics and Big Data Problems.

14.1 Model Setup

Now, consider a generalized linear model (GLM) linking a p-dimensional predictor \mathbf{x} to a scalar response Y. With canonical link, the conditional distribution of Y given \mathbf{x} has density

$$f(y; \theta, \phi) = \exp \left[y\theta - b(\theta) + c(y, \phi) \right]$$

where $\theta = \mathbf{x}'\boldsymbol{\beta}$ with $\boldsymbol{\beta}$ a p-dimensional regression coefficient vector, $b(\dot{j})$ and $c(\cdot, \cdot)$ are know functions and ϕ is dispersion parameter. Again, $\boldsymbol{\beta} = (\beta_{0,1}, \cdots, \beta_{0,p})'$ is sparse with many zero components, and $\log p = O(n^a)$ for some 0 < a < 1.

The penalized negative log-likelihood is

$$Q_n(\boldsymbol{\beta}) = -n^{-1} \left[\mathbf{y}' \mathbf{X} \boldsymbol{\beta} - \mathbf{1}' \mathbf{b} (\mathbf{X} \boldsymbol{\beta}) \right] + \| p_{\lambda}(\boldsymbol{\beta}) \|_1$$

where

- $\mathbf{y} = (y_1, \dots, y_n)', \mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)', \text{ each column of } \mathbf{X} \text{ is rescaled to have } L_2\text{-norm } \sqrt{n}$
- $\mathbf{b}(\boldsymbol{\theta}) = (b(\theta_1), \dots, b(\theta_n))'$ with $\boldsymbol{\theta} = (\theta_1, \dots, \theta_n)'$
- $||p_{\lambda}(\boldsymbol{\beta})||_1 = \sum_{j=1}^p p_{\lambda}(|\beta_j|)$