3. Bölüm

özelliklerinin geçerli olduğu hemen görülebilir. Ayrıca, bu dört özelliği sağlayan yığınların bir Abel topluluğu oluşturduğunu da biliyoruz. öyleyse aşağıdaki teoremi verebiliriz.

TEOREM 1. C(d,a) daki $\{\varepsilon\}$ yığını \oplus işlemi altında bir Abel topluluğu oluşturur.

Bir topluluğun, öbür öğelerini bulmak için gerekli en az sayıdaki öğeye, topluluğun üreteçleri diyeceğiz: llerdeki altbölümlerde, ağaç kavramını ve t-çevre tanımını verdikten sonra $\{\varepsilon\}$ topluluğunun üreteçleri kendiliğinden ortaya çıkacaktır.

Teorem 2. Y_1 ve Y_2 , Ç(d,a) da d_i ve d_j düğümleri arasındaki iki yol ise $Y_1 + Y_2$ bir Euler çizgisidir

Tanit

 $a_0,\,d_i$ ve d_j düğümleri arasına eklenen bir ayrıt olsun. a_0 ayrıtının eklenmesiyle oluşan çizgeyi,

$$C_0 = C \cup a_0$$

olarak gösterelim.Öyleyse

$$Y_1 \cup a_0$$
 ve $Y_2 \cup a_0$