Планирование эксперимента для дискриминации моделей

Гученко Роман Александрович

Кафедра статистического моделирования Санкт-Петербургский государственный университет Математико-механический факультет

Научный руководитель: д.ф.-м.н., профессор В.Б. Мелас Рецензент: к.ф.-м.н., доцент П.В. Шпилев

Санкт-Петербург 2014г.

План эксперимента — дискретная вероятностная мера:

$$\xi = \begin{bmatrix} x_1 & \dots & x_n \\ \omega_1 & \dots & \omega_n \end{bmatrix}, \quad x_i \in \mathcal{X}, \ \omega_i \ge 0, \ \sum_{i=1}^n \omega_i = 1.$$

Общее уравнение регрессии:

$$y_{i,j} = \eta(x_i, \theta) + \varepsilon_{i,j}, \quad i = 1, \dots, n, \ j = 1, \dots, r_i, \ r_i = N\omega_i,$$

где

- ullet Точки x_i и веса ω_i задаются планом.
- Значения $y_{i,j}$ это результаты наблюдений.
- Функция $\eta(x,\theta)$ называется регрессионной моделью.
- ullet Вектор heta отвечает за неизвестные параметры этой модели.
- $\varepsilon_{i,j} \sim \mathcal{N}(0,\sigma^2)$ независимые случайные ошибки.
- Общее число доступных измерений равно N.

В работе [Atkinson, Fedorov, 1975] было доказано, что мощность F-теста для проверки гипотезы

$$H_0: \eta(x,\theta) = \eta_1(x,\theta_1)$$

против альтернативы

$$H_1: \eta(x,\theta) = \eta_2(x,\theta_2)$$

является монотонно возрастающей функцией от величины

$$\Delta(\xi) = \sum_{i=1}^{n} \omega_i \left[\eta_1(x_i, \theta_1) - \eta_2(x_i, \widehat{\theta}_2) \right]^2;$$

$$\widehat{\theta}_2 = \operatorname*{arg\,inf}_{\theta_2 \in \Theta_2} \sum_{i=1}^n \omega_i \Big[\eta_1(x_i, \theta_1) - \eta_2(x_i, \theta_2) \Big]^2.$$

Пусть $\overline{\theta}_1$ — это некоторая априорная оценка параметров θ_1 .

Определение (Atkinson, Fedorov, 1975)

 Π лан ξ^* называется локальным T-оптимальным планом для дискриминации моделей η_1 и η_2 , если он максимизирует

$$\begin{split} T(\xi) &= \int_{\mathcal{X}} \left[\eta_1(x, \overline{\theta}_1) - \eta_2(x, \widehat{\theta}_2) \right]^2 \xi(dx), \text{ где} \\ \widehat{\theta}_2 &= \operatorname*{arg\,inf}_{\theta_2 \in \Theta_2} \int_{\mathcal{X}} \left[\eta_1(x, \overline{\theta}_1) - \eta_2(x, \theta_2) \right]^2 \xi(dx). \end{split}$$

Определение (Braess, Dette, 2013)

 Π лан ξ^* называется локальным T_p -оптимальным планом для дискриминации моделей $\eta_1, \ldots, \eta_{\nu}$, если он максимизирует

$$\begin{split} T_p(\xi) &= \sum_{i,j=1}^{\nu} p_{i,j} \inf_{\theta_{i,j} \in \Theta_j} \int_{\mathcal{X}} \left[\eta_i(x,\overline{\theta}_i) - \eta_j(x,\widehat{\theta}_{i,j}) \right]^2 \xi(dx), \text{ где} \\ \widehat{\theta}_{i,j} &= \underset{\theta_{i,j} \in \Theta_j}{\arg\inf} \int_{\mathcal{X}} \left[\eta_i(x,\overline{\theta}_i) - \eta_j(x,\theta_{i,j}) \right]^2 \xi(dx), \\ p_{i,i} &= 0, \ p_{i,j} \geq 0, \ i,j = 1, \dots, \nu. \end{split}$$

4/15

Teopeмa (Braess, Dette, 2013)

Введем обозначение:

$$\Psi(x,\xi) = \sum_{i,j=1}^{\nu} p_{i,j} \left[\eta_i(x,\overline{\theta}_i) - \eta_j(x,\widehat{\theta}_{i,j}) \right]^2.$$

- [R1] План $\xi^* T_p$ -оптимальный $\Leftrightarrow \forall x \in \mathcal{X} : \Psi(x, \xi^*) \leq T_p(\xi^*)$, причем в опорных точках ξ^* достигается равенство.
- $[\mathrm{R2}]$ План ξ не T_p -оптимальный $\Rightarrow \exists \dot{x} \in \mathcal{X} : \Psi(\dot{x},\xi) > T_p(\xi^*).$

Алгоритм (Аткинсона-Федорова)

Пусть на шаге s имеется план ξ_s . Тогда

- (1.) Выбираем точку $x_{s+1} = \arg\max_{x} \Psi(x, \xi_s)$.
- (2.) Берем новый план $\xi_{s+1} = [1-\alpha_s]\,\xi_s + \alpha_s\xi(x_{s+1})$, где $\alpha_s \to 0, \; \sum_{s=0}^\infty \alpha_s = \infty, \; \sum_{s=0}^\infty \alpha_s^2 < \infty.$

Алгоритм сходится в том смысле, что $\lim_{s\to\infty}T_p(\xi_s)=\max_{\xi}T_p(\xi)$.

Утверждение

Если план $\xi^* - T_p$ -оптимальный, тогда

$$\int_{\mathcal{X}} \left[\eta_i(x, \overline{\theta}_i) - \eta_j(x, \widehat{\theta}_{i,j}(\xi^*)) \right] \frac{\partial \eta_j(x, \theta_{i,j})}{\partial \theta_{i,j}(q)} \bigg|_{\theta_{i,j} = \widehat{\theta}_{i,j}(\xi^*)} \xi^*(dx) = 0,$$

$$i, j : p_{i,j} \neq 0, \ q = 1, \dots, \dim(\theta_{i,j}).$$

Лишние точки предлагается удалять решая задачу ЛП:

$$\begin{split} &\sum_{i,j=1}^{\nu} p_{i,j} \sum_{k=1}^{n} \omega_k \left[\eta_i(x_k, \overline{\theta}_i) - \eta_j(x_k, \widehat{\theta}_{i,j}(\xi)) \right]^2 \to \max_{\omega}; \\ &\sum_{k=1}^{n} \omega_k \left[\eta_r(x_k, \overline{\theta}_r) - \eta_v(x_k, \widehat{\theta}_{r,v}(\xi)) \right] \frac{\partial \eta_v(x_k, \theta_{r,v})}{\partial \theta_{r,v}} \bigg|_{\theta_{r,v} = \widehat{\theta}_{r,v}(\xi)} = 0; \\ &\sum_{k=1}^{n} \omega_k = 1; \ \omega_k \ge 0, \ k = 1, \dots, n, \ n = \# \mathrm{supp}(\xi); \end{split}$$

где $\theta_{r,v} = \arg\max_{i,j:n_i,j\neq 0} \theta_{i,j}$.

Алгоритм (Идея)

Пусть на шаге s имеется план ξ_s .

- (1.) Добавляем в носитель плана локальные максимумы $\Psi(x,\xi_s)$.
- (2.) Находим ω , максимизирующие $T_p(\rho,\omega)$ при фиксированных ρ . Здесь ρ это опорные точки плана, а ω веса.

 T_p -эффективность:

$$\operatorname{Eff}_{T_p}(\xi, \theta_{\text{fix}}) = \frac{T_p(\xi, \theta_{\text{fix}})}{\sup_{\eta} T_p(\eta, \theta_{\text{fix}})} \in [0, 1].$$

Возможное условие остановки:

$$\underline{\operatorname{Eff}}_{T_p}(\xi,\theta_{\operatorname{fix}}) = \frac{T_p(\xi,\theta_{\operatorname{fix}})}{\max_x \Psi(x,\xi)} > 1 - \delta.$$

Далее во все численных примерах будем полагать, что $\delta = 10^{-3}$.

Модель Вейбулла и экспоненциальная модель:

$$\begin{cases} \eta_1(x,\theta_1) = a_1 - b_1 e^{-\lambda_1 x^{h_1}}; \\ \eta_2(x,\theta_2) = a_2 - b_2 e^{-\lambda_2 x}; \end{cases}$$

Рассмотрим случай $p_{1,1}=p_{2,1}=p_{2,2}=0,\;p_{1,2}=1.$ Оптимальный план не зависит от параметров a_1 и b_1 первой модели. Априорные значения для оставшихся параметров: $\overline{\lambda}_1=0.1$ и $\overline{h}_1=1.5$.

Таблица: Стартовый план: равномерный на $x_{ ext{init}} = (0,1,\dots,9,10)$.

	Итогов	ый план	Время				
x_1	x_2	x_3	x_4		1	2a	2b
ω_1	ω_2	ω_3	ω_4				20
0.000	1.466	5.896	10.000	21.28	8.58	0.05	0.09
0.213	0.380	0.287	0.120				

Четыре dose-response модели $(p_{i,j}=1$ при i>j):

$$\begin{cases} \eta_1(x,\theta_1) = \theta_{1,1} + \theta_{1,2}x; \\ \eta_2(x,\theta_2) = \theta_{2,1} + \theta_{2,2}x(\theta_{2,3} - x); \\ \eta_3(x,\theta_3) = \theta_{3,1} + \theta_{3,2}x/(\theta_{3,3} + x); \\ \eta_4(x,\theta_4) = \theta_{4,1} + \theta_{4,2}/(1 + \exp(\theta_{4,3} - x)/\theta_{4,4}). \end{cases}$$

Априорные значения параметров:

$$\begin{aligned} \overline{\theta}_1 &= (60, 0.56); & \overline{\theta}_2 &= (60, 7/2250, 600); \\ \overline{\theta}_3 &= (60, 294, 25); & \overline{\theta}_4 &= (49.62, 290.51, 150, 45.51). \end{aligned}$$

Таблица: Стартовый план: равномерный на $x_{\text{init}} = (0, 50, \dots, 450, 500)$.

	Итого	Время					
x_1	x_2	x_3	x_4	- 0	1	2a	2b
ω_1	ω_2	ω_3	ω_4		_	24	25
0.000	79.171	240.870	500.000	30.23	11.17	0.18	0.65
0.255	0.213	0.357	0.175	30.23			

Рис.: Иллюстрация к теореме эквивалентности. Непрерывная линия — это график функции $\Psi(x,\xi')$, пунктирная линия — это значение функционала $T(\xi')$, а кругами обозначены положения опорных точек итогового плана ξ' .

Рассмотрим следующие модели ($x \in [-1,1]$):

$$\begin{cases} \eta_1 = \sum_{i=0}^m \theta_{1,i} x^i + \frac{\theta_{1,m+1}}{\theta_{1,m+2} x^2 - 1}; \\ \eta_2 = \sum_{i=0}^m \theta_{2,i} x^i; \end{cases} \begin{cases} \eta_1 = \sum_{i=0}^m \theta_{1,i} x^i + \frac{\theta_{1,m+1} x}{\theta_{1,m+2} x^2 - 1}; \\ \eta_2 = \sum_{i=0}^m \theta_{2,i} x^i; \end{cases}$$

Теорема

T-оптимальные планы для представленных моделей сосредоточены в (m+2)-х точках. Если m — нечетное, то опорные точки из (-1,1) плана для левой пары моделей совпадают с корнями полиномов

$$\Psi_1(x) = U_m(x) - 2\alpha^2 U_{m-2}(x) + \alpha^4 U_{m-4}(x);$$

$$\Psi_2(x) = 2x \left[\alpha^4 - 1\right] T_{m-1}(x) +$$

$$+ \left[\alpha^4 + 2\alpha^2 + 1 - 2x^2 \left\{\alpha^4 + 1\right\}\right] U_{m-2}(x)$$

а если m — четное, то это верно для правой пары. Точки ± 1 принадлежат носителю оптимального плана. Тут $\alpha=a-\sqrt{a^2-1};$ $a=1/\theta_{1,m+2};$ $T_k(x)$ и $U_k(x)$ — полиномы Чебышева.

• m=2 (Правая пара)

$$x_1 = -1$$
 $x_2 = -\frac{1}{2}(\alpha^2 + 1)$ $x_3 = \frac{1}{2}(\alpha^2 + 1)$ $x_4 = 1$

• m = 3 (Левая пара)

$$x_1 = -1$$
 $x_2 = -\sqrt{\frac{\alpha^2 + 1}{2}}$ $x_3 = 0$ $x_4 = \sqrt{\frac{\alpha^2 + 1}{2}}$ $t_5 = 1$

m = 4 (Правая пара)

$$x_1 = -1 x_2 = -\frac{\sqrt{4\alpha^2 + 5} + 1}{4} x_3 = -\frac{\sqrt{4\alpha^2 + 5} - 1}{4}$$
$$x_4 = \frac{\sqrt{4\alpha^2 + 5} - 1}{4} x_5 = \frac{\sqrt{4\alpha^2 + 5} + 1}{4} x_6 = 1$$

• m = 5 (Левая пара)

$$x_1 = -1$$
 $x_2 = -\frac{\sqrt{\alpha^2 + 3}}{2}$ $x_3 = -\frac{\sqrt{\alpha^2 + 1}}{2}$ $x_4 = 0$ $x_5 = \frac{\sqrt{\alpha^2 + 1}}{2}$ $x_6 = \frac{\sqrt{\alpha^2 + 3}}{2}$

Модели $\eta_k(t, heta_k)$ удовлетворяет дифференциальным уравнениям:

$$\eta'(t) = \mu_k(t)\eta(t),$$

где

$$\begin{split} \mu_1(t) &= \theta_{1,1} \left[1 + \frac{\theta_{1,2}}{S(t)} \right]^{-1}; \\ \mu_2(t) &= \theta_{2,1} \left[1 + \frac{\theta_{2,2}}{S(t)} \left\{ 1 + \frac{I(t)}{\theta_{2,3}} \right\} \right]^{-1}; \\ \mu_3(t) &= \theta_{3,1} \left[1 + \frac{\theta_{3,2}}{S(t)} \right]^{-1} \left[1 + \frac{I(t)}{\theta_{3,3}} \right]^{-1}; \\ \mu_4(t) &= \theta_{4,1} \left[1 + \frac{\theta_{4,2}}{S(t)} + \frac{I(t)}{\theta_{4,3}} \right]^{-1}; \end{split}$$

Связь между $S(t),\;I(t)$ и $\eta(t)$ задается соотношениями:

$$S(t) - S_0 = \frac{\eta_0 - \eta(t)}{\theta_S}; \ I(t) - I_0 = \frac{\eta_0 - \eta(t)}{\theta_I};$$

при этом $\eta_0=\eta(0)>0,\ S_0=S(0)>0,\ I_0=I(0)>0,\ I(t)>0,$ и все параметры в θ_k положительны для $k=1,\dots,4$

Лемма

Введем обозначения: $a = S_0 \theta_S + \eta_0$; $b = I_0 \theta_I + \eta_0$. Модели типа Моно неявно получаются из уравнений:

$$\begin{split} t &= K_1 \left[A_1 \log \frac{\eta(t)}{\eta_0} - B_1 \log \frac{a - \eta(t)}{a - \eta_0} \right]; \ K_1 = 1/\theta_{1,1}; \\ A_1 &= 1 + \theta_{1,2}\theta_S/a; \ B_1 = \theta_{1,2}\theta_S/a. \\ t &= K_2 \left[A_2 \log \frac{\eta(t)}{\eta_0} - B_2 \log \frac{a - \eta(t)}{a - \eta_0} \right]; \ K_2 = 1/\theta_{2,1}\theta_{2,3}\theta_I; \\ A_2 &= R + \theta_{2,3}\theta_I; \ B_2 = R - \theta_{2,2}\theta_S; \ R = b\theta_{2,2}\theta_S + \theta_{2,2}\theta_{2,3}\theta_S\theta_I/a. \\ t &= K_3 \left[A_3 \log \frac{\eta(t)}{\eta_0} - B_3 \log \frac{a - \eta(t)}{a - \eta_0} + \eta_0 - \eta(t) \right]; K_3 = 1/\theta_{3,1}\theta_{3,3}\theta_I; \\ A_3 &= (b + \theta_{3,3}\theta_I)(a + \theta_{3,2}\theta_S)/a; \ B_3 = \theta_{3,2}\theta_S(b + \theta_{3,3}\theta_I - a)/a. \\ t &= K_4 \left[A_4 \log \frac{\eta(t)}{\eta_0} - B_4 \log \frac{a - \eta(t)}{a - \eta_0} + \eta_0 - \eta(t) \right]; K_4 = 1/\theta_{4,1}\theta_{4,3}\theta_I; \\ A_4 &= b + \theta_{4,3}\theta_I + \theta_{4,2}\theta_{4,3}\theta_S\theta_I/a; \ B_4 = \theta_{4,2}\theta_{4,3}\theta_S\theta_I/a. \end{split}$$

В дипломной работе сделано следующее:

- Предложены новые численные процедуры для построения T и T_p -оптимальных планов эксперимента для случая произвольного числа конкурирующих регрессионных моделей, которые оказались весьма эффективными.
- ② Для нескольких пар дробно-рациональных моделей сформулированы и доказаны теоремы, позволяющие аналитически находить опорные точки для T-оптимальных планов.
- Для моделей типа Моно установлено, что сама постановка задачи дискриминации возможна не для всех комбинаций моделей из класса. В возможных случаях планы дискриминации были найдены численно.