Analysis of the Simulation Data from Saddle-Node Bifurcation

```
clearvars;
addpath(genpath('../'))
```

Generating simulation data

```
rng(1)
%{
lambda 0 = -3;
x \theta = 2.1038;
par.T max = 6;
par.dt = 1e-5;
sigma = 40;
[x out, t_out, lambda_out] = generating
figure;
plot(t_out,x_out)
sample_id = abs(t_out-3.257)<0.02;</pre>
x_out_sample = x_out(sample_id);
t_out_sample = t_out(sample_id);
```

```
figure;
plot(t_out_sample,x_out_sample)
N_cell = length(x_out_sample);
sub_sample_id = 1:2:N cell;
N_cell = length(sub_sample_id);
data = x_out_sample(sub_sample_id )';
true_labs = t_out_sample (sub_sample_id
%save
save('../Data/saddlenode_new.mat','x_outlength
%}
```

Load the Data and Estimate Number of Clusters by EPI

From EPI plot, we intend to seek for the index where peak occurs, which serves

as the candidate for the choice of cluster numbers

```
load saddlenode.mat
out = EstClusterNum(data,[]);
Computed P-values 500 of 2000 datapoint
Computed P-values 1000 of 2000 datapoir
Computed P-values 1500 of 2000 datapoir
Computed P-values 2000 of 2000 datapoir
Mean value of sigma: 0.62417
Minimum value of sigma: 0.54639
Maximum value of sigma: 0.75299
plot(out.ratio(1:30), 'linewidth',2.0)
xlabel('k', 'FontSize', 24);
ylabel('EPI', 'FontSize', 24);
xticks(0:30);
```


Dynamical Analysis and Output

```
tic;
par.choice_distance = 'euclid';
par.K_cluster = 2; %selected based on E
par.trials = 20; % number of random tra
% the main function of MuTrans
Output = DynamicalAnalysis (data, par);
```

Computed P-values 500 of 2000 datapoint Computed P-values 1000 of 2000 datapoint Computed P-values 1500 of 2000 datapoint Computed P-values 2000 of 2000 datapoint

Mean value of sigma: 0.62417

Minimum value of sigma: 0.54639

Maximum value of sigma: 0.75299

 $J_{new} = 2.0186$

J new = 1.9458

J new = 1.7978

J new = 1.2289

J new = 1.2248

J new = 1.2228

J new = 1.2227

J new = 1.2227

J new = 1.2726

J new = 1.2064

J new = 1.2029

J new = 1.2022

J new = 1.2014

J new = 1.2012

J new = 1.2012

J new = 1.2039

J new = 1.2013

J new = 1.2012

- J new = 1.2012
- J new = 1.9314
- $J_{new} = 1.3082$
- J new = 1.2736
- J new = 1.2414
- J new = 1.2271
- J new = 1.2238
- J new = 1.2228
- J new = 1.2227
- J new = 1.2227
- J new = 1.7034
- J new = 1.5456
- J new = 1.3847
- J new = 1.2039
- J new = 1.2013
- J new = 1.2012
- $J_{new} = 1.2012$
- J new = 2.0398
- J new = 1.9975
- $J_{new} = 1.9374$
- J new = 1.8711

- J new = 1.8338
- J new = 1.7806
- $J_{new} = 1.7073$
- $J_{new} = 1.6795$
- J new = 1.6351
- J new = 1.5776
- $J_{new} = 1.4679$
- J new = 1.2018
- J new = 1.2013
- J new = 1.2012
- J new = 1.2012
- J new = 1.7439
- J new = 1.2251
- J new = 1.2064
- J new = 1.2029
- J new = 1.2022
- J new = 1.2014
- J new = 1.2012
- J new = 1.2012
- J new = 1.4074
- J new = 1.2198

- J new = 1.2118
- J new = 1.2047
- $J_{new} = 1.2022$
- J new = 1.2012
- J new = 1.2012
- J new = 1.2566
- J new = 1.2138
- J new = 1.2031
- J new = 1.2022
- J new = 1.2014
- J new = 1.2012
- J new = 1.2012
- J new = 1.9787
- J new = 1.9039
- J new = 1.8986
- J new = 1.8913
- $J_{new} = 1.8793$
- J new = 1.8363
- J new = 1.6907
- J new = 1.6654
- J new = 1.6276

- J new = 1.5695
- J new = 1.4416
- $J_{new} = 1.2014$
- J new = 1.2012
- J new = 1.2012
- J new = 1.4496
- $J_{new} = 1.2050$
- J new = 1.2024
- J new = 1.2016
- J new = 1.2012
- J new = 1.2012
- J new = 1.9824
- J new = 1.9375
- J new = 1.9336
- J new = 1.9305
- J new = 1.9276
- J new = 1.9196
- J new = 1.9075
- J new = 1.8997
- J new = 1.8934
- J new = 1.8835

- J new = 1.8584
- J new = 1.6937
- $J_{new} = 1.6728$
- J new = 1.6341
- J new = 1.5790
- J new = 1.4702
- J new = 1.2014
- J new = 1.2012
- J new = 1.2012
- J new = 1.6831
- J new = 1.2031
- J new = 1.2022
- J new = 1.2014
- J new = 1.2012
- J new = 1.2012
- J new = 1.2270
- J new = 1.2235
- J new = 1.2227
- J new = 1.2227
- J new = 1.7183
- J new = 1.2072

- J new = 1.2031
- J new = 1.2022
- $J_{new} = 1.2014$
- J new = 1.2012
- J new = 1.2012
- J new = 1.2220
- $J_{new} = 1.2057$
- J new = 1.2024
- J new = 1.2016
- J new = 1.2012
- J new = 1.2012
- J new = 1.9753
- J new = 1.9521
- J new = 1.9035
- J new = 1.8986
- J new = 1.8833
- $J_{new} = 1.8606$
- J new = 1.8512
- J new = 1.8470
- J new = 1.8458
- J new = 1.8448

- J new = 1.8441
- J new = 1.8414
- $J_{new} = 1.8297$
- J new = 1.7931
- J new = 1.6386
- J new = 1.2334
- $J_{new} = 1.2262$
- J new = 1.2235
- J new = 1.2227
- J new = 1.2227
- J new = 1.7555
- J new = 1.2307
- J new = 1.2275
- J new = 1.2241
- J new = 1.2234
- J new = 1.2209
- J new = 1.2157
- J new = 1.2083
- J new = 1.2039
- J new = 1.2013
- J new = 1.2012

 $J_{new} = 1.2012$ J new = 1.2070J new = 1.2026 $J_{new} = 1.2021$ J new = 1.2014J new = 1.2012J new = 1.2012J new = 1.2866J new = 1.2247J new = 1.2232J new = 1.2227J new = 1.2227J new = 1.2227 $E_best = 0.0375$

Iteration	Func-count	f(x)
0	1	1.20181
1	11	1.17728
2	13	1.17708
3	14	1.17143
4	15	1.16935

5	16	1.16811
6	17	1.16574
7	18	1.16484
8	19	1.16393
9	20	1.16347
10	21	1.16293
11	22	1.16238
12	23	1.16147
13	24	1.16084
14	25	1.16049
15	26	1.16029
16	27	1.15977
17	28	1.15947
18	29	1.1593
19	31	1.15915
Iteration	Func-count	f(x)
20	32	1.15903
21	33	1.15891
22	34	1.15881
23	35	1.15873

24	36	1.15864
25	38	1.15857
26	39	1.15848
27	41	1.15832
28	42	1.15818
29	43	1.15804
30	44	1.15792
31	45	1.15782
32	46	1.15773
33	47	1.15767
34	48	1.15757
35	49	1.15751
36	50	1.15743
37	51	1.15735
38	52	1.15729
39	53	1.15722
Iteration	Func-count	f(x)
40	54	1.15718
41	55	1.1571
42	56	1.15704

43	57	1.15698
44	58	1.15688
45	59	1.1568
46	60	1.15674
47	61	1.15666
48	62	1.1566
49	63	1.15657
50	64	1.15655
51	65	1.15654
52	66	1.15652
53	67	1.15652
54	68	1.15651
55	69	1.15651
56	70	1.1565
57	71	1.1565
58	72	1.1565
59	73	1.1565
Iteration	Func-count	f(x)
60	74	1.15649
61	75	1.15649

62	76	1.15649
63	77	1.15649
64	78	1.15649
65	79	1.15648
66	80	1.15648
67	81	1.15648
68	82	1.15648
69	83	1.15648
70	84	1.15648
71	85	1.15648
72	86	1.15647
73	87	1.15647
74	88	1.15647
75	89	1.15647
76	90	1.15647
77	91	1.15647
78	92	1.15647
79	93	1.15647
Iteration	Func-count	f(x)
80	94	1.15647

81	95	1.15647
82	96	1.15647
83	97	1.15647
84	98	1.15647
85	99	1.15647
86	100	1.15647
87	101	1.15646
88	102	1.15646
89	103	1.15646
90	104	1.15646
91	105	1.15646
92	106	1.15646
93	107	1.15646
94	108	1.15646
95	109	1.15646
96	110	1.15646
97	111	1.15646
98	112	1.15646
99	113	1.15646

Iteration Func-count f(x)

100	114	1.15646
101	11 5	1.15646
102	116	1.15646
103	117	1.15646
104	118	1.15646
105	11 9	1.15646
106	120	1.15646
107	121	1.15646
108	122	1.15646
109	123	1.15646
110	124	1.15645
111	125	1.15645
112	126	1.15645
113	127	1.15645
114	128	1.15645
115	129	1.15645

Optimization completed: The first-order than options.OptimalityTolerance = 1.00

Elapsed time is 77.902009 seconds.

toc;

Elapsed time is 77.917476 seconds.

```
class_order = Output.class_order;
rho class = Output.rho class;
perm_class = Output.perm_class;
P_perm = Output.P_perm;
P_hat = Output.P_hat;
P appr_perm = Output.P_appr_perm;
P_rho = Output.P_rho;
labs_perm = Output.labs_perm;
data perm = Output.data perm;
mu hat = Output.mu hat;
k = Output.k;
H = Output.H;
```

Plot the Cell-Cell Scale rwTPM

```
max_P = 0.2* max(max(P_rho));
c_lim = [0 max_P];
cmp = 'ylgn';
```

```
figure('rend','painters','pos',[10 10 5]
colormap(brewermap([],cmp))
imagesc(P_perm);
axis off
set(gca,'xtick',[],'ytick',[]);
caxis(c_lim)
```



```
%colorbar;
```

Plot the Cluster-Cluster Scale rwTPM

```
figure('rend','painters','pos',[10 10
colormap(brewermap([],cmp))
imagesc(P_appr_perm);
axis off
set(gca,'xtick',[],'ytick',[]);
caxis(c_lim)
```



```
%colorbar;
```

Plot the Cell-Cluster Scale rwTPM

```
figure('rend','painters','pos',[10 10 5]
colormap(brewermap([],cmp))
imagesc(P_rho);
axis off
set(gca,'xtick',[],'ytick',[]);
caxis(c_lim)
%colorbar;
box off
```


Plot Transition Cell Score (TCS)

```
figure;
plot(labs_perm, rho_class(:,1),'LineWid
xlabel('Time', 'FontSize', 24);
ylabel('TCS', 'FontSize', 24);
```


Plot Actual Simulation Trajectory (Gene Expression)

```
figure;
plot(labs_perm, data_perm, 'LineWidth',2
```

```
xlabel('Time', 'FontSize', 24);
ylabel('Gene Expression', 'FontSize',
```

