

Chiffrement et Codes Correcteurs

Nasko Karamanov

1 Cryptography and elliptic curves

Learning Outcomes

- Use the algorithms of a given cryptosystem scheme
- Use an attack algorithm to decrypt cipher message.
- Identify algorithms that are susceptible to be not quantum resistant
- Explain some standard techniques of perturbation/secure of standard cryptosystems.

Question 1-1 Let $E: y^2 = x^3 + 2x + 3$ over \mathbb{F}_7 and P = (2, 1).

- a) Is the point (3,4) on the curve?
- b) Check that *P* is on the curve.
- c) What are the coordinates of -P?
- d) Give a formula for the inverse of $Q(x_O, y_O)$ as an element of $E(\mathbb{F}_7)$.
- e) Calculate 2P.
- f) List all the points on the curve.
- g) Check that the number of points is in the interval given by Hasse's theorem.
- h) Give the table for the addition.
- i) Show that *P* is a generator of $E(\mathbb{F}_7)$.
- j) If Q = (3,1) what is $\log_P(Q)$?

Training session

- k) Same questions for $E: y^2 = x^3 + x + 2$ over \mathbb{F}_5 and P = (1,2)
- 1) Same questions for $E: y^2 = x^3 + 2x + 5$ over \mathbb{F}_{11} and P = (0,4)

Question 1-2

- a) Explain how one can adapt the square and multiply algorithm for fast calculation of nP.
- b) Let $E: y^2 = x^3 + 3x + 2$ over $E(\mathbb{F}_{23})$ and P = (0,5). Calculate 13*P*.

Question 1-3 The Menezes-Vanstone cryptosystem is a variant of ElGamal for elliptic curves. The schema is given in the following table.

Alice	Bob
KeyGen	
Choose p prime, E elliptic curve and a generator $G \in E(\mathbb{F}_p)$	
	Choose $b < \operatorname{Card}E(\mathbb{F}_p), K_b = bG$
	Bob's private key : $sk = b$
Public key : $\mathbf{pk} = (p, g, K_b)$	
Encryption	
Choose $a < p$	
Choose a pair of messages $\mathbf{m} = (\mathbf{m}_1, \mathbf{m}_2) \in (\mathbb{Z}/p\mathbb{Z})^2$	
$K_a = aG, K_1 = a(K_b) = (x_1, y_1)$	
$c_1 \equiv x_1 m_1 \mod p$	
$\boldsymbol{c}_2 \equiv y_1 \boldsymbol{m}_2 \mod p$	
$\boldsymbol{c} = \operatorname{Enc}(\boldsymbol{m}, \operatorname{pk}) = (K_a, \boldsymbol{c}_1, \boldsymbol{c}_2)$	
Decryption	
	$K_2 = bK_a = (x_2, y_2)$
	$\boldsymbol{m}_1' \equiv x_2^{-1} \boldsymbol{c}_1 \mod p$
	$m_2' \equiv y_2^{-1} c_2 \mod p$
	$\mathrm{Dec}(\boldsymbol{c},\mathbf{sk}) = (\boldsymbol{m}_1',\boldsymbol{m}_2')$

- a) Discribe the space of messages $\mathcal M$ and ciphers $\mathscr C$.
- b) Check that $K_1 = K_2$
- c) Check the validity of this cryptosystem.
- d) Alice and Bob use this cryptosystem with $E: y^2 = x^3 + 2x + 1$ over \mathbb{F}_{23} and G = (2,6) of order 30. Bob's private key is $\mathbf{sk} = 4$. Bob received the message : $\mathbf{c} = ((18,21),16,6)$. What is the message Alice sent?
- e) Is this cryptosystem quantum resistant?

Question 1-4 The Digital Signature ECDSA (Elliptic curve digital signature algorithm) has the following scheme (in general it is applied to h(m) where h is an hashing function).

Alice	Bob
KeyGen	
Choose <i>p</i> prime, <i>E</i> elliptic curve and a generator $G \in E(\mathbb{F}_p)$ of order <i>n</i>	
Choose $a < n, K_a = aG$	
Alice's private key : $sk = a$	
Public key : $\mathbf{pk} = (p, n, G, E, K_a)$	
Sign	
Choose $k < n$	
Choose a message $\mathbf{m} = \in (\mathbb{Z}/n\mathbb{Z})$	
$M = kG = (x_M, y_M)$ and $r = x_M \mod n$	
$\mathbf{c} = (\mathbf{m} + ar)k^{-1} \mod n$	
If $r = 0$ or $c = 0$ start again	
$\sigma = (r, c)$	
Verify	
	$B = \mathbf{c}^{-1}(\mathbf{m}G + rK_a) = (x_B, y_B)$
	If $r \equiv x_B \mod n$ retourne 1

Validity: $c^{-1}(mG + rK_a) = k(m + ar)^{-1}(mG + raG) = k(m + ar)^{-1}(m + ar)G = kG$ and we are checking the equality of the first coordinate.

- a) Alice uses this signature with $E: y^2 = x^3 + 2x + 2$, G = (5,1) and n = 19. She chooses a = 7, calculates $K_a = aG = (0,6)$ and publishes her public key. Bob received the message 26 signed with $\sigma = (7,17)$. Was the message sent by Alice?
- b) Is this signature scheme quantum resistant?

Question 1-5 Let $E: y^2 = x^3 + 2x + 6$ over \mathbb{F}_7 , P = (1,3) a generator of $E(\mathbb{F}_7)$ and Q = (4,6).

- a) Give a lower and upper bound for $\log_P Q$.
- b) Calculate $\log_P Q$

Training session

c) Same questions with $E: y^2 = x^3 + 2x + 2$ over F_{13} , P = (3,3) and Q = (6,3).

