2019 AIME I #12

Tristan Shin

13 Mar 2019

Given $f(z) = z^2 - 19z$, there are complex numbers z with the property that z, f(z), and f(f(z)) are the vertices of a right triangle in the complex plane with a right angle at f(z). There are positive integers m and n such that one such value of z is $m + \sqrt{n} + 11i$. Find m + n.

An equivalent condition is that $\frac{f(f(z))-f(z)}{f(z)-z}$ is imaginary. We have

$$\frac{f(f(z)) - f(z)}{f(z) - z} = \frac{(z^2 - 19z)^2 - 20(z^2 - 19z)}{z^2 - 20z}$$
$$= \frac{(z^2 - 19z)(z^2 - 19z - 20)}{z^2 - 20z}$$
$$= (z - 19)(z + 1)$$
$$= z^2 - 18z - 19.$$

Letting z = a+11i, we get $(a^2 - 18a - 140) + (22a - 198)i$ is imaginary, so $a^2 - 18a - 140 = 0$. This implies $a = 9 \pm \sqrt{221}$, getting the answer $\boxed{230}$ as desired.