

Filter banks

3/30

Roland Badeau, roland.badeau@telecom-paris.fr

TSIA201

Part I

Two-channel filter banks

Une école de l'IMT

Filter banks

Ideal filter bank

- $ightharpoonup H_0$ and F_0 are ideal low-pass half-band filters
- \blacktriangleright H_1 and F_1 are ideal high-pass half-band filters

Example with aliasing

- $ightharpoonup H_0$, F_0 , H_1 and F_1 are all-pass filters
- ▶ But perfect reconstruction at output

Une école de l'IMT

Filter banks

General case of 2-channel filter bank

► Input-output relationship :

$$\widehat{X}(z) = T(z)X(z) + A(z)X(-z)$$
where
$$\begin{cases} T(z) = \frac{1}{2}(H_0(z)F_0(z) + H_1(z)F_1(z)) \\ A(z) = \frac{1}{2}(H_0(-z)F_0(z) + H_1(-z)F_1(z)) \end{cases}$$

- ▶ Aliasing cancellation : A(z) = 0
- ▶ Perfect reconstruction : $T(z) = cz^{-n_0}$

Perfect reconstruction (PR)

Exact solution:
$$\begin{bmatrix} H_0(z) & H_1(z) \\ H_0(-z) & H_1(-z) \end{bmatrix} \begin{bmatrix} F_0(z) \\ F_1(z) \end{bmatrix} = \begin{bmatrix} 2cz^{-n_0} \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{cases} F_0(z) = \frac{2cz^{-n_0}}{D(z)}H_1(-z) \\ F_1(z) = -\frac{2cz^{-n_0}}{D(z)}H_0(-z) \end{cases}$$
where $D(z) = H_0(z)H_1(-z) - H_0(-z)H_1(z)$

- ▶ Solution with FIR filters H_k and F_k :
 - AC condition : $\begin{cases} F_0(z) = H_1(-z) \\ F_1(z) = -H_0(-z) \end{cases}$
 - ▶ PR condition : $T(z) = \frac{1}{2}D(z) = cz^{-n_0}$

Une école de l'IMT

Filter banks

Filter banks

Half-band filters

Une école de l'IMT

Part II

Half-band filters

► Ideal low-pass half-band filter :

$$G_R(v) = \left\{ egin{array}{ll} 1 & ext{for } 0 \leq |v| < 0.25 \\ 0 & ext{for } 0.25 \leq |v| < 0.5 \end{array}
ight.$$

- General definition : $G_R(v) + G_R(v + \frac{1}{2}) = 2c$ with c > 0
- \triangleright Synthesis of a type I half-band filter g(n)
 - ▶ The length of g(n) is 2N-1, where N is necessarily even
 - Since g(n) is causal, $G(e^{2i\pi v}) = G_R(v)e^{-2i\pi v(N-1)}$ with $G_R(v) \in \mathbb{R}$
 - ▶ The half-band condition implies that $\exists V(z)$ such that

$$G(z) = c(V(z^2) + z^{-(N-1)})$$

- \triangleright v(n) is a type II filter of length N
- $V(e^{2i\pi v})$ is nearly all-pass, but cuts frequency 1/2

7/30

Filter banks

Ø IP PARIS 8/30

Une école de l'IMT

Filter banks

D IP PARIS

Half-band filters

 \triangleright Synthesis of V(z) by the Remez method

Part III

Conjugate Quadrature Filters

30 Une école de l'IMT

Filter banks

№ IP PARIS 10/30

Une école de l'IMT

Filter banks

PARIS

CQF filters

- ► Aliasing cancellation : $\begin{cases} F_0(z) = H_1(-z) \\ F_1(z) = -H_0(-z) \end{cases}$
- ► CQF constraint : N even, $H_1(z) = -z^{-(N-1)} \tilde{H}_0(-z)$ (analysis filters are *conjugate quadrature filters*), where $\tilde{H}_0(z) = H_0^*(\frac{1}{z})$
 - ► Analysis and synthesis filters are *paraconjugate* : $\forall k \in \{0,1\}, F_k(z) = z^{-(N-1)}\widetilde{H}_k(z)$

CQF filters

- Transfer function: $T(z) = \frac{z^{-(N-1)}}{2} \left(\tilde{H}_0(z) H_0(z) + \tilde{H}_0(-z) H_0(-z) \right)$
- Symmetric power constraint : $\widetilde{H}_0(z)H_0(z) + \widetilde{H}_0(-z)H_0(-z) = 2c$
- \Rightarrow Perfect reconstruction : $T(z) = c z^{-(N-1)}$
- ▶ Method : factorization of a half-band filter
 - ▶ Let G(z) be a half-band filter of length 2N-1
 - Function $G_R(v) = G(e^{2i\pi v})e^{2i\pi v(N-1)}$ is such that $G_R(v) + G_R(v + \frac{1}{2}) = 2c$

1/30 Une école de l'IMT

Filter banks

№ IP PARIS 12/30

Une école de l'IMT

Filter banks

Raising of the half-band filter

 \blacktriangleright Let $G_P^+(v) = G_R(v) + \varepsilon$ $\Rightarrow g^+(n) = g(n) + \varepsilon \, \delta_0(n - (N-1))$ is still a half-band filter

Factorization of the half-band filter

▶ The 2N-2 roots of $G^+(z)$ form pairs :

- The equation $G_R^+(v) = \widetilde{H}_0(e^{2\imath\pi v})H_0(e^{2\imath\pi v})$ admits several solutions H_0
- ► We choose the one with minimal phase : $H_0(z)$ is the N sample-long filter whose roots are the N-1 roots of $G^+(z)$ located inside the unit circle
- ⇒ Perfect reconstruction

Une école de l'IMT

Filter banks

Une école de l'IMT

Filter banks

Bi-orthogonal filters

► Reminder : input-output relationship $\widehat{X}(z) = T(z)X(z) + A(z)X(-z)$ where $\begin{cases} T(z) = \frac{1}{2}(H_0(z)F_0(z) + H_1(z)F_1(z)) \\ A(z) = \frac{1}{2}(H_0(-z)F_0(z) + H_1(-z)F_1(z)) \end{cases}$

- ► Let $G(z) = H_0(z) F_0(z)$; PR $\Rightarrow G(z) G(-z) = 2cz^{-n_0}$
 - General solution : $G(z) = c(V(z^2) + z^{-n_0})$
- Synthesis in 2 steps :
 - ▶ Synthesis of G(z), factorization as $H_0(z)F_0(z)$

Application: transmultiplexer

▶ Purpose : transmit several signals in a single channel

▶ Problem posed : channel equalization

Pyramidal structure

Part IV

Filter banks: from 2 channels to M channels

Une école de l'IMT

Filter banks

№ IP PARIS 18/30

Une école de l'IMT

Filter banks

D IP PARIS

M-channel filter banks

General implementation of an M-channel filter bank

M-channel filter banks

Input-output relationship:

$$\widehat{X}(z) = T(z)X(z) + \sum_{l=1}^{M-1} A_l(z)X(zW_M^l)$$
where $W_M^l = e^{-2i\pi\frac{l}{M}}$ and
$$\begin{cases} T(z) = \frac{1}{M} \sum_{k=0}^{M-1} H_k(z)F_k(z) \\ A_l(z) = \frac{1}{M} \sum_{k=0}^{M-1} H_k(zW_M^l)F_k(z) \end{cases}$$

- ▶ Aliasing cancellation : $\forall I$, $A_I(z) = 0$
- ▶ Perfect reconstruction : $T(z) = cz^{-n_0}$

19/30

M-channel filter banks

Polyphase implementation

Type I polyphase components

Exact solution:
$$\mathbf{f}(z) = (\mathbf{H}_{M}^{\top}(z))^{-1} \mathbf{t}(z)$$

$$\begin{bmatrix}
H_{0}(z) & \dots & H_{M-1}(z) \\
H_{0}(zW_{M}^{1}) & \dots & H_{M-1}(zW_{M}^{1}) \\
\vdots & \dots & \vdots \\
H_{0}(zW_{M}^{M-1}) & \dots & H_{M-1}(zW_{M}^{M-1})
\end{bmatrix}
\begin{bmatrix}
F_{0}(z) \\
F_{1}(z) \\
\vdots \\
F_{M-1}(z)
\end{bmatrix} = \begin{bmatrix}
Mcz^{-n_{0}} \\
0 \\
\vdots \\
0
\end{bmatrix}$$

$$\mathbf{t}(z)$$

- \triangleright A solution with FIR filters H_k and F_k :
 - AC condition : $\mathbf{f}(z) = \mathrm{Adj}(\mathbf{H}_M(z))\mathbf{e}_1$
 - ▶ PR condition $T(z) = \frac{1}{M} \det(\mathbf{H}_M(z)) = cz^{-n_0}$

23/30

Une école de l'IMT

Filter banks

TELECOM Paris 三選問

Une école de l'IMT

Polyphase resolution

Type II polyphase components

Polyphase implementation

Transfer function: $T(z) = \frac{1}{M} \mathbf{f}(z)^{\top} \mathbf{h}(z) = \frac{1}{M} \widetilde{e}(z)^{\top} \underbrace{\mathbf{R}(z^{M}) \mathbf{E}(z^{M})}_{\mathbf{P}(z^{M})} e(z)$

Polyphase implementation

Transfer function:

$$T(z) = \frac{1}{M} \mathbf{f}(z)^{\top} \mathbf{h}(z) = \frac{1}{M} \widetilde{e}(z)^{\top} \underbrace{\mathbf{R}(z^M) \mathbf{E}(z^M)}_{\mathbf{P}(z^M)} e(z)$$

Polyphase implementation

Transfer function:

$$T(z) = \frac{1}{M} \mathbf{f}(z)^{\top} \mathbf{h}(z) = \frac{1}{M} \widetilde{e}(z)^{\top} \mathbf{P}(z^{M}) e(z)$$

 \Rightarrow if $\mathbf{P}(z) = cz^{-n'_0}\mathbf{I}_M$, then $T(z) = cz^{-n_0}$ with $n_0 = Mn'_0 + M - 1$

Une école de l'IMT

№ IP PARIS 26/30

三選動

Une école de l'IMT

Filter bank

Paraunitary filter banks

- ▶ Para-conjugation : $\widetilde{\mathbf{E}}(z) = \mathbf{E}^H(z^{-1})$
- Paraunitary matrix : $\mathbf{E}(z)\widetilde{\mathbf{E}}(z) = c \mathbf{I}_M$
 - Let $\mathbf{R}(z) = z^{-\left(\frac{N}{M}-1\right)}\widetilde{\mathbf{E}}(z) \Rightarrow T(z) = cz^{-(N-1)}$
 - Consequence (CQF): $F_k(z) = z^{-(N-1)}\widetilde{H}_k(z)$ $T(z) = \frac{1}{M}z^{-(N-1)}\sum_{k=0}^{M-1}H_k(z)\widetilde{H}_k(z)$
- ► Synthesis of the analysis filters
 - Synthesis of a low-pass M-th band filter G(z)
 - Factorization as $G_R^+(zW_M^k) = H_k(z)\widetilde{H}_k(z)$

Example: DFT filter bank

- Let $\mathbf{E}(z) = \mathbf{W}^H$ (with \mathbf{W} the DFT matrix) and $\mathbf{R}(z) = \widetilde{\mathbf{E}}(z) = \mathbf{W} \Rightarrow \mathbf{P}(z) = M\mathbf{I}_M$
- ► Rectangular window STFT

27/30

► General case : $H_k(z) = H_0(zW_N^k)$

▶ If the $E_k(z)$ are not constant, perfect reconstruction is not feasible

