Fast Parallel Algorithms for Graph Matching Problems

Marek Karpinski

Department of Computer Science University of Bonn

and

Wojciech Rytter

Department of Computer Science, University of Warsaw and Department of Computer Science, University of Liverpool

CLARENDON PRESS • OXFORD 1998

Contents

1	Intr	oduction	1
	1.1	Matchings in graphs: terminology, examples	1
	1.2	The model of parallel computations: PRAM	4
	1.3	The complexity classes NC and RNC	6
	1.4	Bibliographic notes	7
2	Combinatorial tools		
	2.1	Augmenting paths	8
	2.2	Deficiencies and witness sets	11
	2.3	Bipartite graphs and their witness sets	13
	2.4	Tutte's theorem and witness sets in general graphs	15
	2.5	Odd-set covers	19
	2.6	Good-edges lemma	20
	2.7	Bibliographic notes	21
3	Three sequential algorithms		
	3.1	Hopcroft-Karp algorithm	23
	3.2	Edmonds algorithm and blossoms	26
	3.3	Structural algorithm (no blossoms)	32
	3.4	Bibliographic notes	40
4	Probabilistic tools		41
	4.1	Probabilistic tools	41
	4.2	The isolating theorem	42
	4.3	The redundancy theorem	45
	4.4	Randomized handshaking	48
	4.5	Estimating the probability of nonzero sums	50
	4.6	Removing a large proportion of elements	51
	4.7	Derandomization	52
	4.8	Bibliographic notes	54
5	Algebraic tools		
	5.1	Determinants versus permanents	55
	5.2	Symbolic polynomials of set families	57
	5.3	Nonzero test and partial interpolation of polynomials	60
	5.4	Sparse polynomials	63
	5.5	Randomized computation of the smallest degree	65
	5.6	Ranks of matrices	67

x Contents

	5.7 NC-computation of determinants5.8 Bibliographic notes	68 72
6	Maximum cardinality matchings 6.1 Constructing black-box polynomials 6.2 Bimatchings and Pfaffians 6.3 Applying partial interpolation 6.4 Graphs with a small number of perfect matchings 6.5 From Monte Carlo to Las Vegas 6.6 The shrinking algorithm 6.7 Application of the smallest-degree algorithm 6.8 Bibliographic notes	73 73 79 83 85 86 88 90
7	 Inclusion maximal matchings 7.1 Deterministic algorithm for maximal matchings 7.2 An application of randomized handshaking 7.3 Bibliographic notes 	94 94 101 103
8	Maximal independent sets 8.1 Two algorithms of Luby 8.2 Deterministic algorithm for maximal independent sets 8.3 Maximal independent sets in hypergraphs 8.4 Maximal k-dependent sets 8.5 Bibliographic notes	104 104 107 111 112 115
9	Four easy subclasses of graphs 9.1 Trees 9.2 Dense graphs 9.3 Regular bipartite graphs 9.4 Claw-free graphs and pseudo-matchings 9.5 Bibliographic notes	116 116 117 120 124 130
10	Families of intervals 10.1 The greedy sequential algorithm 10.2 Left-justification of set families 10.3 The parallel algorithm for the general case 10.4 Bibliographic notes	131 132 133 136 138
11	Parallel algorithms for f-matchings 11.1 RNC-algorithm for maximum f-matchings 11.2 Simple RNC-algorithm for maximal f-matchings 11.3 Deterministic NC-algorithm for maximal f-matchings 11.4 Bibliographic notes	139 140 141 144 150
12	Parallelization of sequential algorithms 12.1 Parallelizing the Hopcroft-Karp algorithm 12.2 Parallel implementation of BFS and Disjoint_Paths 12.3 NC-approximation of maximum matching	151 151 152 156

			Contents	^1
	12.4	Bipartite expander graphs		158
		Applying the planar separator theorem		159
		Parallel version of the Edmonds algorithm		162
		Bibliographic notes		163
13	Pfaf	fians, counting the number of matchings, and pla-		
nai	r graj	phs		164
	13.1	Pfaffians of graphs		164
	13.2	Skew-symmetric determinants and Pfaffians		165
	13.3	Pfaffians and counting the number of perfect matchings		166
	13.4	Bibliographic notes		170
14	Basi	c applications of parallel matching		171
	14.1	The subtree isomorphism problem		171
	14.2	Maximum flows and disjoint paths		175
	14.3	Parallel construction of DFS-trees		180
	14.4	Bibliographic notes		186
15	More applications			187
	15.1	Unary Chinese postman problem		187
	15.2	Two-processor scheduling		188
	15.3	Cycle covers and shortest superstrings		190
	15.4	The $\frac{3}{2}$ -approximation of the metric TSP		192
	15.5	The bandwidth problem		193
	15.6	Spanning 3-hypertrees and approximating Steiner tree		195
	15.7	Bibliographic notes		197
Bibliography				198

207

Index