268.5 U55 no.89

National Cancer Institute CARCINOGENESIS

Technical Report Series No. 89 1978

BIOASSAY OF o-ANISIDINE HYDROCHLORIDE FOR POSSIBLE CARCINOGENICITY

CAS No. 134-29-0

NCI-CG-TR-89

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Institutes of Health

BIOASSAY OF

o-ANISIDINE HYDROCHLORIDE

FOR POSSIBLE CARCINOGENICITY

Carcinogenesis Testing Program
Division of Cancer Cause and Prevention
National Cancer Institute
National Institutes of Health
Bethesda, Maryland 20014

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE
Public Health Service
National Institutes of Health

DHEW Publication No. (NIH) 78-1339

RC 2685 US5 no.89

z = 1

•

BIOASSAY OF o-ANISIDINE HYDROCHLORIDE FOR POSSIBLE CARCINOGENICITY

Carcinogenesis Testing Program
Division of Cancer Cause and Prevention
National Cancer Institute
National Institutes of Health

FOREWORD: This report presents the results of the bioassay of o-anisidine hydrochloride conducted for the Carcinogenesis Testing Program, Division of Cancer Cause and Prevention, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland. This is one of a series of experiments designed to determine whether selected environmental chemicals have the capacity to produce cancer in animals. results, in which the test animals do not have a greater incidence of cancer than control animals, do not necessarily mean that the test chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of circumstances. Positive results demonstrate that the test chemical is carcinogenic for animals under the conditions of the test and indicate that exposure to the chemical is a potential risk to man. The actual determination of the risk to man from animal carcinogens requires a wider analysis.

CONTRIBUTORS: The bioassay of o-anisidine hydrochloride was conducted by EG&G Mason Research Institute, Worcester, Massachusetts, initially under direct contract to NCI and currently under a subcontract to Tracor Jitco, Inc., prime contractor for the NCI Carcinogenesis Testing Program.

The bioassay was conducted under the supervision of Drs. A. Handler¹ and E. Smith² and Mr. G. Wade³. NCI project officers were Drs. E. Weisburger⁴, T. Cameron⁴, and N. P. Page⁴, ⁵. The program manager was Mr. J. Baker³. Ms. A. Good³ supervised the technicians in charge of animal care, and Ms. E. Zepp³ supervised the preparation of the feed mixtures and collected samples of the diets for analysis. Ms. D. Bouthot³ kept all daily records of the test, and Ms. R. Monson³ prepared a draft of the experimental design based on these records. Histopathologic examinations on rats and mice were performed by Drs. D. S. Wyand³ and A.

Russfield³, and the diagnoses included in this report represent their interpretations.

Animal pathology tables and survival tables were compiled at EG&G Mason Research Institute, Rockville, Maryland⁶. The statistical analyses were performed by Dr. J. R. Joiner⁷, using methods selected for the bioassay program by Dr. J. J. Gart⁸.

Chemicals used in this bioassay were analyzed under the direction of Dr. E. Murrill⁹, and dosed feed mixtures were analyzed by Dr. M. Hagopian³. The results of the analyses were reviewed by Dr. S. S. $0 \sin^7$. The chemical structure was supplied by NCI.

This report was prepared at Tracor Jitco under the direction of NCI. Those responsible for the report at Tracor Jitco were Dr. L. A. Campbell, Director of the Bioassay Program; Dr. S. S. Olin, Deputy Director for Science; Dr. J. F. Robens, toxicologist; Dr. R. L. Schueler, pathologist; Dr. G. L. Miller, Ms. L. A. Waitz, and Mr. W. D. Reichardt, bioscience writers; and Dr. E. W. Gunberg, technical editor, assisted by Ms. Y. E. Presley and Ms. P. J. Graboske.

The following other scientists at NCI were responsible for evaluating the bioassay, interpreting the results, and reporting the findings: Dr. Kenneth C. Chu, Dr. Cipriano Cueto, Jr., Dr. J. Fielding Douglas, Dr. Dawn G. Goodman, Dr. Richard A. Griesemer, Dr. Harry A. Milman, Dr. Thomas W. Orme, Dr. Robert A. Squire 10, Dr. Jerrold M. Ward, and Dr. Carrie E. Whitmire.

¹Now with Abcor, Inc., 850 Main Street, Wilmington, Massachusetts.

²Now with the University of Massachusetts Medical Center, 55 Lake Avenue, Worcester, Massachusetts.

³EG&G Mason Research Institute, 57 Union Street, Worcester, Massachusetts.

- ⁴Carcinogenesis Testing Program, Division of Cancer Cause and Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
- Now with the Environmental Protection Agency, 401 M Street, S.W., Washington, D.C.
- ⁶EG&G Mason Research Institute, 1530 East Jefferson Street, Rockville, Maryland.
- ⁷Tracor Jitco, Inc., 1776 East Jefferson Street, Rockville, Maryland.
- ⁸Mathematical Statistics and Applied Mathematics Section, Biometry Branch, Field Studies and Statistics, Division of Cancer Cause and Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
- ⁹Midwest Research Institute, 425 Volker Boulevard, Kansas City, Missouri.
- Now with the Division of Comparative Medicine, Johns Hopkins University School of Medicine, Traylor Building, Baltimore, Maryland.

SUMMARY

A bioassay of o-anisidine hydrochloride for possible carcinogenicity was conducted by administering the test chemical in feed to Fischer 344 rats and B6C3F1 mice.

Groups of 55 rats of each sex and 55 mice of each sex were administered o-anisidine hydrochloride at one of the following doses, either 5,000 or 10,000 ppm for rats and either 2,500 or 5,000 ppm for mice, for 103 weeks, then observed for 1 or 2 additional weeks. Controls consisted of groups of 55 untreated rats of each sex and 55 untreated mice of each sex. All surviving rats were killed at 103-107 weeks, and all surviving mice at 104 or 105 weeks.

Mean body weights of the dosed male and female rats and mice were lower than those of the corresponding controls throughout the bioassay. Bloody exudates and stained fur in the urogenital area were noted in many dosed animals. Sufficient numbers of animals were at risk in the mice, but not in the rats, for development of late-appearing tumors; however, survival in the rats was 80% or more at week 52.

Transitional-cell carcinomas or papillomas of the urinary bladder occurred at statistically significant incidences (P < 0.001) in the low- and high-dose groups of rats (males: controls 0/51, low-dose 52/54, high-dose 52/52; females: controls 0/49, low-dose 46/49, high-dose 50/51) and in high-dose groups of mice (males: controls 0/48, low-dose 2/55, high-dose 22/53; females: controls 0/50, low-dose 1/51, high-dose 22/50); the incidences also had significant dose-related trends (P < 0.001) in both species. These lesions were observed as early as week 36 in female rats, week 40 in male rats, and week 45 in male mice. Transitionalcell carcinomas of the pelvis of the kidney occurred with a significant dose-related trend (P = 0.005) in the male rats, and the incidence in the high-dose group was significantly higher (P = 0.006) than that in the control group (controls 0/53, lowdose 3/55, high-dose 7/53); all rats having this tumor also had a transitional-cell carcinoma of the urinary bladder. Only one animal in the control groups of rats or mice had any tumor of the urinary system (a transitional-cell papilloma of the pelvis of the kidney in a male mouse).

Follicular-cell tumors of the thyroid (carcinomas, cystadenocarcinomas, adenomas, cystadenomas, and papillary cystadenomas) occurred at statistically significant incidences ($P \le 0.005$) in low- and high-dose groups of male rats (controls 0/53, low-dose 7/40, high-dose 6/40); the incidences also had a dose-related trend (P = 0.009). These tumors did not occur at significant incidences in dosed groups of female rats.

It is concluded that under the conditions of this bioassay, o-anisidine hydrochloride was carcinogenic for Fischer 344 rats and B6C3Fl mice, inducing transitional-cell carcinomas or papillomas of the bladder in both rats and mice and in both sexes of each species, transitional-cell carcinomas of the pelvis of the kidney in male rats, and follicular-cell tumors of the thyroid in male rats.

TABLE OF CONTENTS

			Page
ı.	Intro	duction	1
II.	Mater	ials and Methods	3
	Α.	Chemical	3
	В.	Dietary Preparation	4
	С.	Animals	4
	D •	Animal Maintenance	5
	E.	Subchronic Studies	8
	F.	Chronic Studies	9
	G.	Clinical and Pathologic Examinations	9
	н.	Data Recording and Statistical Analyses	13
III.	Resu	lts - Rats	19
	Α.	Body Weights and Clinical Signs (Rats)	19
	В.	Survival (Rats)	21
	С.	Pathology (Rats)	21
	D.	Statistical Analyses of Results (Rats)	25
IV.	Resu	lts - Mice	29
	Α.	Body Weights and Clinical Signs (Mice)	29
	В.	Survival (Mice)	31
	C.	Pathology (Mice)	31
	D.	Statistical Analyses of Results (Mice)	34
V.	Disc	ussion	37
VI.	Bib1	iography	41
		APPENDIXES	
Appe	ndix A	A Summary of the Incidence of Neoplasms in	
		Rats Fed o-Anisidine Hydrochloride in the Diet	43
Ta	ble A	l Summary of the Incidence of Neoplasms in Male	
		Rats Fed o-Anisidine Hydrochloride in the Diet	45
Ta	ble A	· ·	
		Rats Fed o-Anisidine Hydrochloride in the Diet	50

		Page
Appendix B	Summary of the Incidence of Neoplasms in Mice Fed o-Anisidine Hydrochloride in the Diet	55
Table Bl	Summary of the Incidence of Neoplasms in Male Mice Fed o-Anisidine Hydrochloride in the Diet	57
Table B2	Summary of the Incidence of Neoplasms in Female Mice Fed o-Anisidine Hydrochloride in the Diet	61
Appendix C	Summary of the Incidence of Nonneoplastic Lesions in Rats Fed o-Anisidine Hydrochloride in the Diet	67
Table Cl	Summary of the Incidence of Nonneoplastic Lesions in Male Rats Fed o-Anisidine Hydrochloride in the Diet	69
Table C2	Summary of the Incidence of Nonneoplastic Lesions in Female Rats Fed o-Anisidine Hydrochloride in the Diet	75
Appendix D	Summary of the Incidence of Nonneoplastic Lesions in Mice Fed o-Anisidine Hydrochloride in the Diet	81
Table Dl	Summary of the Incidence of Nonneoplastic Lesions in Male Mice Fed o-Anisidine Hydrochloride in the Diet	83
Table D2	Summary of the Incidence of Nonneoplastic Lesions in Female Mice Fed o-Anisidine Hydrochloride in the Diet	86
Appendix E	Analyses of the Incidence of Primary Tumors in Rats Fed o-Anisidine Hydrochloride in the Diet	91
Table El	Analyses of the Incidence of Primary Tumors in Male Rats Fed o-Anisidine Hydrochloride in the Diet	93
Table E2	Analyses of the Incidence of Primary Tumors in Female Rats Fed o-Anisidine Hydrochloride in the Diet	103
Appendix F	Analyses of the Incidence of Primary Tumors in Mice Fed o-Anisidine Hydrochloride in the Diet	113

		Page
Table Fl	Analyses of the Incidence of Primary Tumors in Male Mice Fed o-Anisidine Hydrochloride in the Diet	115
Table F2	Analyses of the Incidence of Primary Tumors in Female Mice Fed o-Anisidine Hydrochloride in the Diet	120
Appendix G	Analysis of Formulated Diets for o-Anisidine Hydrochloride Concentration	125
	TABLES	
Table l	o-Anisidine Hydrochloride Chronic Feed Studies in Rats	10
Table 2	o-Anisidine Hydrochloride Chronic Feeding Studies in Mice	11
	FIGURES	
Figure l	Growth Curves for Rats Fed o-Anisidine Hydrochloride in the Diet	20
Figure 2	Survival Curves for Rats Fed o-Anisidine Hydrochloride in the Diet	22
Figure 3	Growth Curves for Mice Fed o-Anisidine Hydrochloride in the Diet	30
Figure 4	Survival Curves for Mice Fed o-Anisidine Hydrochloride in the Diet	32

I. INTRODUCTION

Ortho-anisidine (CAS 134-29-0; NCI CO3747) is the common name for 2-methoxyaniline and has been marketed in Germany under the trade name Fast Red BB Base (Society of Dyers and Colourists, 1971).

o-ANISIDINE (HYDROCHLORIDE)

The chemical is used chiefly in the manufacture of dyes, one method being the diazotization of o-anisidine and coupling with other aromatic amines or phenols to yield a large number of the azo dyes (Noller, 1965). Chloro, nitro, alkyl, and aryl derivatives of o-anisidine exist and are used similarly in the synthesis of other azo dyes. o-Anisidine is listed as a possible ingredient in permanent oxidation hair dyes (Wall, 1972) although it is not currently used in any hair dyes in the United States (FDA, 1977). Another use of o-anisidine is as a starting material in the synthesis of guaiacol (o-methoxyphenol) (Stecher, 1968).

o-Anisidine was selected for study in the Carcinogenesis Testing

Program because of its industrial importance, which indicated

that there was long-term exposure to the chemical among many

persons employed in the dye manufacturing industry. The earlier

finding that o-toluidine, an aromatic amine analog of o-anisidine, was carcinogenic in long-term feeding studies (Homburger et al., 1972; Russfield et al., 1973) was a further reason for testing o-anisidine.

II. MATERIALS AND METHODS

A. Chemical

o-Anisidine hydrochloride was obtained from Pfaltz and Bauer, Flushing, New York, in two batches. When the identity and purity of Lot No. M7024-4, which was used during the subchronic studies, and of Lot No. M7270, used during the chronic studies, were analytically determined, both lots showed a single homogeneous peak by vapor-phase chromatography and a trace impurity at the origin in two different solvent systems by thin-layer chromatography. Nonaqueous titration of the amine group with perchloric acid was 99.5% + 0.2% of the theoretical value for Lot No. M7024-4 and 100.1 + 0.3% for Lot No. M7270. By Karl Fischer analysis, 0.23 + 0.01% water was detected in Lot No. M7024-4 and less than 0.5% water in Lot No. M7270. Elemental analyses for both lots were consistent with C7H10NOC1, the molecular formula of o-anisidine hydrochloride. Infrared, ultraviolet, and nuclear magnetic resonance spectra were consistent with expectations based on the structure and spectra in the literature for o-anisidine (Sadtler, 1966, 1970; Ungnade, 1954; Pawlawski, 1967).

The bulk chemical was stored at 4°C in a plastic-lined drum. A small quantity was stored in an amber glass bottle for daily use.

B. Dietary Preparation

Diets were prepared once per week by first mixing a weighed amount of chemical with an aliquot of ground Wayne Lab Blox animal meal (Allied Mills, Inc., Chicago, Ill.) in a mortar. When this premix appeared homogeneous, it was placed in a Patterson-Kelly twin-shell blender with the remaining feed and mixed for 20 minutes. Formulated diets were stored in double plastic bags at 4°C and used within 1 week of preparation.

As a quality control test on the accuracy of preparation of the diets, the concentration of o-anisidine hydrochloride was determined at Midwest Research Institute in selected batches of formulated diets during the chronic studies. The results are summarized in Appendix G. At each dietary concentration, the mean of the analytical concentrations for the checked samples was within 12% of the theoretical concentration, and the coefficient of variation ranged from 9.5% to 24.4%. In temperature-dependent stability studies performed at Midwest, some loss of the test chemical in feed was observed after 2 weeks at 25°C, which may account in part for the unusually large variations.

C. Animals

For the subchronic studies, Fischer 344 rats and B6C3Fl mice of each sex were obtained from Charles River Laboratories, Inc.,

Wilmington, Massachusetts. For the chronic studies, Fischer 344 rats and B6C3F1 mice of each sex were obtained from Frederick Cancer Research Center, Frederick, Maryland. Control rats and mice were received earlier than, and placed on test prior to, animals in the dosed groups. All animals were approximately 28 days of age when received at the laboratory and were quarantined for 2 weeks prior to the start of the bioassay. Animals in a random sample were found to be free of parasites and signs of disease. At the end of the quarantine period, animals were assigned to control or dosed groups in such a way that the mean weights of animals in each cage were approximately the same within a given group.

D. Animal Maintenance

Animal rooms were maintained at temperatures ranging from 23-34°C. Air was filtered through Tri-Dek® 15/40 denier Dacron filters and air flow was maintained at a velocity permitting six changes of room air per hour. Rooms were illuminated by fluorescent lighting for 12 hours per day.

Rats were housed five per cage in galvanized steel wire mesh cages (Fenco Cage Products, Boston, Mass.), suspended over drop trays lined with newspaper. Cages and racks were sanitized every week and paper in the drop trays was replaced daily. After 48

weeks on study, rats were transferred to suspended solid polycarbonate cages (Lab Products, Inc., Garfield, N. J.), each of which housed five animals per cage. These cages were equipped with disposable nonwoven fiber filter sheets. The polycarbonate cages were sanitized and supplied with fresh bedding two times per week. A hardwood chip bedding (Aspen-bed®, American Excelsior, Sommerville, Mass.) was used in the polycarbonate cages.

Mice were housed five per cage in solid polycarbonate cages fitted with perforated stainless steel lids and disposable filter bonnets. A hardwood chip bedding (Aspen-Bed®, American Excelsior) or a corn cob bedding (Bed-o-Cobs®, Anderson Cob Mills, Inc., Maumee, Ohio) was used in the mouse cages. Cages were sanitized and furnished with fresh bedding two times per week. Cage racks were sanitized every 2 weeks. All equipment that was sanitized was washed with detergents and rinsed at 82°C.

Tap water (0.75-1.0 ppm chlorine) was provided in 250-ml polycar-bonate bottles which were sanitized two times per week and refilled as necessary. Sipper tubes and stoppers were soaked in a disinfectant (Environ, Vestal Laboratories, St. Louis, Mo.) and rinsed before use, once per week. Control animals were fed Wayne® Lab Blox animal meal, and dosed animals were fed the same product which had been mixed with the test chemical. All diets

were available ad libitum 7 days per week in Alpine® aluminum feed cups (Curtin Matheson Scientific, Inc., Woburn, Mass.) for 8 weeks in the mice and for 48 weeks in the rats. Thereafter, feed was placed in stainless steel hoppers (Scientific Cages, Inc., Bryan, Texas). The Alpine® cups were emptied and filled with fresh feed every day. The stainless steel hoppers were changed two times per week and were filled with fresh feed and any that had not been consumed in the earlier part of the week. However, no feed was more than I week old when presented to the animals.

Rats and mice were housed in separate rooms. Control animals matched with o-anisidine hydrochloride animals were in the same room as the respective dosed animals. Rats on study with o-anisidine hydrochloride were housed in the same room with other rats being fed the following chemicals:

Rats

(CAS 615-66-7) 2-chloro-p-phenylenediamine sulfate

(CAS 20265-97-8) p-anisidine hydrochloride

(CAS 126-72-7) tris (2,3-dibromopropyl)phosphate

Mice were housed in a room with other mice being fed the following chemicals:

Mice

(CAS 615-66-7) 2-chloro-p-phenylenediamine sulfate

(CAS 126-72-7) tris (2,3-dibromopropy1)phosphate

(CAS 20265-97-8) p-anisidine hydrochloride

(CAS 2438-88-2) 2,3,5,6-tetrachloro-4-nitroanisole

(CAS 1465-25-4) N-1-naphthylethylenediamine dihydrochloride (CAS 142-04-1) aniline hydrochloride

E. Subchronic Studies

Subchronic feeding studies were conducted with Fischer 344 rats and B6C3F1 mice to estimate the maximum tolerated doses of o-anisidine hydrochloride, on the basis of which two concentrations (hereinafter referred to as "low doses" and "high doses") were determined for use in the chronic studies. subchronic studies, the chemical was administered in feed for 7 weeks at doses of 1,000, 3,000, 10,000, or 30,000 ppm. males and five females of each species were administered each dose, and five males and five females of each species were given basal diets. All animals were killed by inhalation of carbon dioxide and necropsied l week after the end of the administration of the test chemical.

The rats at doses of 1,000 and 3,000 ppm showed weight depressions of less than 10%. At 10,000 ppm, weight depressions were 21% for males and 11% for females; at 30,000 ppm, weight depressions were 52% for males and 27% for females. No deaths occurred among the rats. However, on gross pathology examination, all animals administered 10,000 or 30,000 ppm had moderately enlarged spleens which were black and granular in appearance. Spleens of males administered 1,000 or 3,000 ppm

were granular, whereas in the females administered the chemical at these doses, no effects were noted. Based on these data, the low and high doses for the chronic studies using rats were set at 5,000 and 10,000 ppm.

In the male mice, mean body weights were depressed 6% at 1,000 ppm, 14% at 3,000 ppm, 28% at 10,000, and 40% at 30,000 ppm. In the female mice, mean body weights were depressed 9% at 1,000 ppm, 19% at 3,000 ppm, 23% at 10,000 ppm, and 37% at 30,000 ppm. One female died during the study at 30,000 ppm. Spleens were black and enlarged in both the males and the females administered 10,000 and 30,000 ppm. Based on these data, the low and high doses for the chronic studies using mice were set at 2,500 and 5,000 ppm.

F. Chronic Studies

The test groups, doses administered, and times on study of the chronic feeding studies are shown in tables 1 and 2.

G. Clinical and Pathologic Examinations

Inspections for mortality and morbidity were carried out twice daily. Body weights were recorded every 2 weeks for the first 12 weeks and monthly thereafter. Clinical observations were recorded every month.

Table 1. o-Anisidine Hydrochloride Chronic Feeding Studies in Rats

Sex and	Initial	o-Anisidine Hydrochloride	Time on Study		
Test Group	No. of <u>Animals</u> a	in Diet ^b <u>(ppm)</u>	Dosed (weeks)	Observed (weeks)	
Male					
Control ^c	55	0		106	
Low-Dose	55	5,000	103	1	
High-Dose	55	10,000	88d		
Female					
Control ^c	55	0		107	
Low-Dose	55	5,000	103		
High-Dose	55	10,000	83d		

^aRats were 41 days of age when placed on study.

bDiets were available ad libitum 7 days per week.

 $^{^{\}text{c}}\text{Controls}$ were placed on study 3 weeks earlier than the dosed groups.

dPeriod of administration terminated at time indicated, due to death of all animals.

Table 2. o-Anisidine Hydrochloride Chronic Feeding Studies in Mice

Sex and Test	Initial No. of	o-Anisidine Hydrochloride in Diet ^b	Time on Study Dosed Observed	
Group	<u>Animals</u> ^a	<u>(ppm)</u>	(weeks)	(weeks)
Male				
Control ^c	55	0		105
Low-Dose	55	2,500	103	1-2
High-Dose	55	5,000	103	2 -
Female				
Control ^c	55	0		105
Low-Dose	55	2,500	103	2
High-Dose	55	5,000	103	2

^aMice were 41 days of age when placed on study.

bDiets were available ad libitum 7 days per week.

^CControls were placed on study 3 weeks earlier than the dosed groups.

Moribund animals and animals that survived to the end of the bioassay were killed using CO2 anesthesia and necropsied. Necropsies were also performed on all animals found dead, unless precluded by autolysis or severe cannibalization. The following tissues were examined where possible: tissue masses, abnormal regional lymph nodes, skin, mandibular lymph nodes, mammary gland, salivary gland, thigh muscle, sciatic nerve, bone marrow, costochondral junction (rib), thymus, larynx, trachea, lungs and bronchi, heart, thyroid, parathyroid, esophagus, stomach, duodenum, jejunum, ileum, colon, mesenteric lymph nodes, liver, gall bladder (mice), pancreas, spleen, kidney, adrenal, bladder, seminal vesicles/prostate/testis (males), ovary/uterus (females), nasal cavity, brain, pituitary, eyes, external and middle ear, and spinal cord. Peripheral blood smears were prepared from each animal whenever possible. The different tissues were preserved in 10% buffered formalin, embedded in paraffin, sectioned, stained with hematoxylin and eosin. Special staining techniques were utilized when indicated for more definite diagnosis.

A few tissues from some animals were not examined, particularly from those animals that died early. Also, some animals may have been missing, cannibalized, or judged to be in such an advanced state of autolysis as to preclude histopathologic evaluation. Thus, the number of animals from which particular organs or

tissues were examined microscopically varies, and does not necessarily represent the number of animals that were placed on study in each group.

H. Data Recording and Statistical Analyses

Pertinent data on this experiment have been recorded in an automatic data processing system, the Carcinogenesis Bioassay Data System (Linhart et al., 1974). The data elements include descriptive information on the chemicals, animals, experimental design, clinical observations, survival, body weight, and individual pathologic results, as recommended by the International Union Against Cancer (Berenblum, 1969). Data tables were generated for verification of data transcription and for statistical review.

These data were analyzed using the statistical techniques described in this section. Those analyses of the experimental results that bear on the possibility of carcinogenicity are discussed in the statistical narrative sections.

Probabilities of survival were estimated by the product-limit procedure of Kaplan and Meier (1958) and are presented in this report in the form of graphs. Animals were statistically censored as of the time that they died of other than natural causes or were found to be missing; animals dying from natural causes were not statistically censored. Statistical analyses for

a possible dose-related effect on survival used the method of Cox (1972) for testing two groups for equality and Tarone's (1975) extensions of Cox's methods for testing for a dose-related trend. One-tailed P values have been reported for all tests except the departure from linearity test, which is only reported when its two-tailed P value is less than 0.05.

The incidence of neoplastic or nonneoplastic lesions has been given as the ratio of the number of animals bearing such lesions at a specific anatomic site (numerator) to the number of animals in which that site is examined (denominator). In most instances, the denominators included only those animals for which that site was examined histologically. However, when macroscopic examination was required to detect lesions prior to histologic sampling (e.g., skin or mammary tumors), or when lesions could have appeared at multiple sites (e.g., lymphomas), the denominators consist of the numbers of animals necropsied.

The purpose of the statistical analyses of tumor incidence is to determine whether animals receiving the test chemical developed a significantly higher proportion of tumors than did the control animals. As a part of these analyses, the one-tailed Fisher exact test (Cox, 1970) was used to compare the tumor incidence of a control group with that of a group of dosed animals at each dose level. When results for a number of dosed groups (k) are

compared simultaneously with those for a control group, a correction to ensure an overall significance level of 0.05 may be made. The Bonferroni inequality (Miller, 1966) requires that the P value for any comparison be less than or equal to 0.05/k. In cases where this correction was used, it is discussed in the narrative section. It is not, however, presented in the tables, where the Fisher exact P values are shown.

The Cochran-Armitage test for linear trend in proportions, with continuity correction (Armitage, 1971), was also used. Under the assumption of a linear trend, this test determines if the slope of the dose-response curve is different from zero at the one-tailed 0.05 level of significance. Unless otherwise noted, the direction of the significant trend is a positive dose relation-ship. This method also provides a two-tailed test of departure from linear trend.

A time-adjusted analysis was applied when numerous early deaths resulted from causes that were not associated with the formation of tumors. In this analysis, deaths that occurred before the first tumor was observed were excluded by basing the statistical tests on animals that survived at least 52 weeks, unless a tumor was found at the anatomic site of interest before week 52. When such an early tumor was found, comparisons were based exclusively on animals that survived at least as long as the animal in which

the first tumor was found. Once this reduced set of data was obtained, the standard procedures for analyses of the incidence of tumors (Fisher exact tests, Cochran-Armitage tests, etc.) were followed.

When appropriate, life-table methods were used to analyze the incidence of tumors. Curves of the proportions surviving without an observed tumor were computed as in Saffiotti et al. (1972). The week during which an animal died naturally or was sacrificed was entered as the time point of tumor observation. Cox's methods of comparing these curves were used for two groups; Tarone's extension to testing for linear trend was used for three groups. The statistical tests for the incidence of tumors which used life-table methods were one-tailed and, unless otherwise noted, in the direction of a positive dose relationship. Significant departures from linearity (P < 0.05, two-tailed test) were also noted.

The approximate 95 percent confidence interval for the relative risk of each dosed group compared to its control was calculated from the exact interval on the odds ratio (Gart, 1971). The relative risk is defined as $p_{\rm t}/p_{\rm c}$ where $p_{\rm t}$ is the true binomial probability of the incidence of a specific type of tumor in a dosed group of animals and $p_{\rm c}$ is the true probability of the spontaneous incidence of the same type of tumor in a control

group. The hypothesis of equality between the true proportion of a specific tumor in a dosed group and the proportion in a control group corresponds to a relative risk of unity. Values in excess of unity represent the condition of a larger proportion in the dosed group than in the control.

The lower and upper limits of the confidence interval of the relative risk have been included in the tables of statistical analyses. The interpretation of the limits is that in approximately 95% of a large number of identical experiments, the true ratio of the risk in a dosed group of animals to that in a control group would be within the interval calculated from the When the lower limit of the confidence interval is experiment. greater than one, it can be inferred that a statistically significant result (P < 0.025 one-tailed test when the control incidence is not zero, P < 0.050 when the control incidence is zero) has occurred. When the lower limit is less than unity, but the upper limit is greater than unity, the lower limit indicates the absence of a significant result while the upper limit indicates that there is a theoretical possibility of the induction of tumors by the test chemical, which could not be detected under the conditions of this test.

III. RESULTS - RATS

A. Body Weights and Clinical Signs (Rats)

Mean body weights of dosed male and female rats were lower than those of corresponding controls throughout the bioassay, and the depressions in weight were dose related (figure 1). Fluctuations in the growth curve may be due to mortality; as the size of a group diminishes, the mean body weight may be subject to variation.

Palpable subcutaneous masses were seen in 4 control males, 17 control females, 8 low-dose males, and 7 low-dose females. Cutaneous lesions and/or growths developed in five control males, four control females, five low-dose males, seven low-dose females, and three high-dose females. Discoloration, reddening, and crusting of the eyes was noted in 2 control males, 19 low-dose males, 17 low-dose females, and 1 high-dose male. Rectal prolapses occurred in three control males and one high-dose female. Two control males displayed jaundice and one had a distended scrotal sac. Nine control females had facial alopecia. Emaciation was noted in two control females, two low-dose males, five low-dose females, two high-dose males, and one high-dose female. Abdominal distention occurred in one low-dose male, two low-dose females, and two high-dose males.

Figure 1. Growth Curves For Rats Fed o-Anisidine Hydrochloride In The Diet

Two low-dose males displayed posterior ataxia, and three high-dose males were badly hunched over prior to death.

Blood/exudates in the urogenital area and/or black/brown stained fur in the urogenital region were seen in 45 low-dose males, 18 low-dose females, 5 high-dose males, and 4 high-dose females.

B. Survival (Rats)

The Kaplan and Meier curves estimating the probabilities of survival for male and female rats fed o-anisidine hydrochloride in the diet at the doses of this bioassay, together with those of the controls, are shown in figure 2.

The result of the Tarone test for positive dose-related trend in mortality is significant (P < 0.001) in each sex. A departure from linear trend is observed (P < 0.001), because of the steep decrease in survival in the dosed groups. In the high-dose group of each sex, no animal survived to termination of the study; however, 49/55 (89%) of the high-dose males and 44/55 (80%) of the high-dose females were still alive at week 52. All 55 of the low-dose animals and all 55 of the control animals of each sex lived beyond week 52 on study.

C. Pathology (Rats)

Histopathologic findings on neoplasms in rats are summarized in

Figure 2. Survival Curves For Rats Fed o-Anisidine Hydrochloride In The Diet

Appendix A, tables Al and A2; findings on nonneoplastic lesions are summarized in Appendix C, tables Cl and C2.

Transitional-cell carcinomas of the urinary bladder were found at a high incidence in both males (controls 0/51, low-dose 50/54, high-dose 51/52) and females (controls 0/49, low-dose 41/49, high-dose 50/51). Transitional-cell carcinomas of the bladder had varying morphological patterns. The more well-differentiated tumors consisted of transitional cells growing in solid sheets and serpentine strands two or three cells thick in a fibrous There were scattered foci of necrosis and mitotic stroma. figures were uncommon. The bladder wall was usually extensively invaded and the tumor often nearly filled the lumen. In some tumors, there was a marked desmoplasia and a mucinous degeneration of the stroma. Many tumors were very pleomorphic with spindle cells, tumor giant cells, bizarre hyperchromatic nuclei, and numerous abnormal mitotic figures. Areas of squamous metaplasia were common. In a few tumors, extensive formation of cystic spaces occurred. The tumor appeared to have a multicentric origin in а few instances with transitional-cell carcinomas appearing in the bladder and one or more additional sites such as renal pelvis, prostatic urethra, and kidney. low-dose and one high-dose rat had two types of malignant primary tumors involving the bladder. A transitional-cell carcinoma

filled the bladder lumen and a leiomyosarcoma originated from the muscularis. Although distant metastases were not seen in rats with bladder carcinomas, the bladder was heavily invaded, and in one case, the tumor extended to the serosa of the spleen and prostate. Diffuse and focal transitional-cell hyperplasias were seen in many bladders with carcinomas.

A variety of other neoplasms were observed with approximately equal frequency in the control and dosed animals. There were instances in this bioassay, as noted in the summary tables, where these neoplastic lesions occurred only in dosed animals or with increased frequency when compared with the control group. The nature and incidence of these neoplasms are similar to those known to occur spontaneously in aged Fischer 344 rats. However, follicular-cell tumors of the thyroid in males may be related to administration of the test chemical.

Nonneoplastic lesions which commonly occur in rats of this strain were seen. These were not considered to be compound induced.

Based on the histopathologic examination, there was evidence that under the conditions of this bioassay o-anisidine hydrochloride was carcinogenic when fed to Fischer 344 rats, inducing transitional-cell carcinomas of the urinary system.

D. Statistical Analyses of Results (Rats)

Tables El and E2 in Appendix E contain the statistical analyses of the incidences of those primary tumors that occurred in at least two animals of one group and at an incidence of at least 5% in one or more than one group.

In each sex, the incidence of transitional-cell carcinomas or papillomas of the urinary bladder is high in either dosed group (males: low-dose 52/54 [96%], high-dose 52/52 [100%]; females: low-dose 46/49 [94%], high-dose 50/51 [98%]). These lesions were observed as early as week 36 in female and week 40 in male rats; none were observed in the control groups. The results of the Cochran-Armitage test for positive dose-related trend significant (P < 0.001) in each sex. A departure from linear trend is observed (P < 0.001), because of the steep increase in incidence in the dosed groups. The results of the Fisher exact test comparing the incidence of these tumors in each dosed group with the incidence in the control group are significant (P < 0.001) in each sex. The statistical conclusion is that the incidence of these transitional-cell tumors of the urinary bladder in rats of each sex is dose associated.

In male rats, the results of the Cochran-Armitage test are significant (P = 0.005) for the incidence of transitional-cell

carcinomas of the kidney or kidney pelvis, and the results of the Fisher exact test show that the incidence of this tumor is significantly higher (P = 0.006) in the high-dose group than in the control group. The statistical conclusion is that the occurrence of transitional-cell carcinomas of the kidney or kidney pelvis in the male rats was associated with the administration of o-anisidine hydrochloride. In female rats the incidence of this tumor was 1/54 in the high-dose group and 0/52 in both the low-dose and the control groups.

The results of the Cochran-Armitage test are also significant in the male rats for the incidence of follicular-cell adenomas, cystadenomas, or papillary cystadenomas of the thyroid or thyroid follicle (P = 0.030). The corresponding results of the Fisher exact test show P values of 0.031 for each dosed group; however, these values are not significant when the Bonferroni inequality criterion for multiple comparisons is applied. The results of the Cochran-Armitage test on the combined incidence of all follicular-cell tumors of the thyroid (carcinomas, adenomas, cystadenomas, papillary cystadenomas, or papillary cystadenocarcinomas) show an increased significant trend (P = 0.009), and the Fisher exact comparisons of the combined incidence in each dosed group with that in the control group also show an increased significance (P \leq 0.005). The incidence of follicular-cell tumors in female rats is not significant. The historical controls at this laboratory indicate an incidence of follicular-cell thyroid tumors in male rats of 3/250 (1.2%) and in female rats of 2/249 (0.8%).

In each sex, significant results in the negative direction are observed in incidences of several of the tumors, due to higher incidences in the control groups than in the dosed groups. This negative significance may be caused by the fact that the dosed animals did not live as long as the controls.

In summary, the results of the statistical tests show that the administration of o-anisidine hydrochloride is associated with the occurrence of transitional-cell carcinomas or papillomas of the urinary bladder in both sexes of Fischer 344 rats, and with the occurrence of transitional-cell carcinomas of the kidney or kidney pelvis and follicular-cell tumors of the thyroid in male rats.

IV. RESULTS - MICE

A. Body Weights and Clinical Signs (Mice)

Mean body weights of dosed male and female mice were lower than those of corresponding controls throughout the bioassay, and the depressions in weight were dose related (figure 3). Fluctuations in the growth curve may be due to mortality; as the size of a group diminishes, the mean body weight may be subject to variation.

Subcutaneous palpable masses were recorded in four control males, three control females, and one low-dose female. Urogenital distention, nodules and/or bleeding was seen in three control males and one control female. Cutaneous growths developed in two control males, one low-dose male, and two high-dose females. Swelling of the eyes was seen in two low-dose females, two high-dose males, and two high-dose females. Alopecia, at one time or another during the bioassay, was noted in 42 control males, 54 control females, 49 low-dose males, 34 low-dose females, 25 high-dose males, and 26 high-dose females. One high-dose female had labored breathing. These signs were not considered to be related to administration of the test chemical.

Figure 3. Growth Curves For Mice Fed o-Anisidine Hydrochloride In The Diet

B. Survival (Mice)

The Kaplan and Meier curves estimating the probabilities of survival for male and female mice fed o-anisidine hydrochloride in the diet at the doses of this bioassay, together with those of the controls, are shown in figure 4.

The result of the Tarone test for dose-related trend in mortality is not significant in either sex. In male mice, 43/55 (78%) of the high-dose group, 43/55 (78%) of the low-dose group, and 44/55 (80%) of the controls lived to the end of the bioassay. In females, the proportions which survived to termination of the study were 42/55 (76%) of the high-dose group, 38/55 (69%) of the low-dose group, and 44/55 (80%) of the controls. Sufficient numbers of mice of each sex were at risk for the development of tumors.

C. Pathology (Mice)

Histopathologic findings on neoplasms in mice are summarized in Appendix B, tables Bl and B2; findings on nonneoplastic lesions are summarized in Appendix D, tables Dl and D2.

Transitional-cell papillomas of the urinary bladder were significantly elevated in dosed male mice (controls 0/48, low-dose 2/55, high-dose 7/53). Transitional-cell carcinomas of the bladder

Figure 4. Survival Curves For Mice Fed o-Anisidine Hydrochloride In The Diet

were found to be significantly elevated in both males (high-dose 15/53) and females (high-dose 18/50). No transitional-cell carcinomas were seen in male and female low-dose or control The earliest bladder changes recognized were focal hyperplasias (males: controls 1/48, low-dose 2/55, high-dose 21/53; females: controls 0/50, low-dose 1/51, high-dose 12/50) consisting of a few transitional cells with slight atypia piling up and projecting into the lumen and diffuse mild thickening of the epithelium with occasional piling up of cells and short papillary formations. There was normal cellular polarity and an intact basement membrane. The transitional-cell carcinomas invaded the bladder wall with strands and finger-like sheets of transitional cells. In some tumors, many small cystic spaces were formed, giving a pseudoacinar appearance. Extensive invasion of the bladder wall was often seen. Occasionally, a relatively small transitional-cell carcinoma invaded to the serosa. Some of the invasive tumors had extensive lymphocytic and plasma-cell infiltrates both surrounding and within the tumor. There were no distant metastases.

A variety of other neoplasms were observed with approximately equal frequency in the control and dosed mice. There were instances in this study, as noted in the summary tables, where these neoplastic lesions occurred only in dosed animals or with

increased frequency when compared with the control group. The nature and incidence of these neoplasms are similar to those known to occur spontaneously in aged mice of this strain.

A variety of inflammatory and degenerative lesions which commonly occur in aging B6C3F1 mice were seen. None of these lesions were considered to be compound related.

Based on the histopathologic examination, there was evidence that o-anisidine hydrochloride was carcinogenic when fed to both male and female B6C3F1 mice, inducing transitional-cell carcinomas, under the conditions of this bioassay.

D. Statistical Analyses of Results (Mice)

Tables Fl and F2 in Appendix F contain the statistical analyses of the incidences of those primary tumors that occurred in at least two animals in one group and with an incidence of at least 5% in one or more than one group.

In each sex, transitional-cell carcinomas or papillomas of the urinary bladder occur in significant incidences (P < 0.001) exclusively in the high-dose groups (high-dose males 22/53 [42%] and high-dose females 22/50 [44%]), compared with the controls. These lesions were observed as early as week 45 in male mice. The results of the Cochran-Armitage test are also significant

(P < 0.001) in each sex. A departure from linear trend is observed (P = 0.005) in male mice and P = 0.001 in female mice), because of the steep increase in the incidence of tumors in the high-dose group. The statistical conclusion is that the incidence of transitional-cell carcinomas or papillomas of the urinary bladder in mice is dose associated.

Significant results in the negative direction are observed in several of the incidences of tumors in each sex, where the incidences in the control group exceed those in the dosed groups.

In summary, the statistical conclusion indicates that the incidence of transitional-cell tumors of the urinary bladder in B6C3F1 mice is associated with the administration of o-anisidine hydrochloride.

V. DISCUSSION

The toxicity of o-anisidine hydrochloride for Fischer 344 rats and B6C3F1 mice was shown by consistently lowered mean body weights of all dosed groups when compared with corresponding controls throughout the bioassay; further, the data indicated dose-related effects of the test chemical on the mean body weights. Bloody exudates and stained fur in the urogenital area were noted in many dosed animals.

Survival of the rats at the end of the bioassay was low (males: controls 71%, low-dose 13%, high-dose 0%; females: controls 65%, low-dose 0%, high-dose 0%); however, survival was 80% or greater at week 52, and early development of tumors established the carcinogenicity of the test chemical, as given below. Survival of the mice at the end of the bioassay was high (males 78-80%; females 76-80%), and sufficient numbers of animals were at risk for the development of late-appearing tumors.

Transitional-cell carcinomas or papillomas of the urinary bladder occurred at statistically significant incidences (P < 0.001) in the low- and high-dose groups of rats (males: controls 0/51, low-dose 52/54, high-dose 52/52; females: controls 0/49, low-dose 46/49, high-dose 50/51) and in high-dose groups of mice (males: controls 0/48, low-dose 2/55, high-dose 22/53; females:

controls 0/50, low-dose 1/51, high-dose 22/50); the incidences also had significant dose-related trends (P < 0.001) in both species. These lesions were observed as early as week 36 in female rats, week 40 in male rats, and week 45 in male mice. Transitional-cell carcinomas of the pelvis of the kidney occurred with a significant dose-related trend (P = 0.005) in the male rats, and the incidence in the high-dose group was significantly higher (P = 0.006) than in the control group (controls 0/53, low-dose 3/55, high-dose 7/53); all rats having this tumor also had a transitional-cell carcinoma of the urinary bladder. A transitional-cell carcinoma also occurred in the pelvis of the kidney in one high-dose female rat. Only one animal in the control groups of rats or mice had any tumor of the urinary system (a transitional-cell papilloma of the pelvis of the kidney in a male mouse).

Follicular-cell tumors of the thyroid (carcinomas, cystadenocarcinomas, adenomas, cystadenomas, and papillary cystadenomas) occurred at statistically significant incidences ($P \le 0.005$) in low- and high-dose groups of male rats (controls 0/53, low-dose 7/40, high-dose 6/40); the incidences also had a dose-related trend (P = 0.009). These tumors did not occur at significant incidences in dosed groups of female rats.

In humans, o-anisidine can be absorbed through the skin and is an

irritant and a sensitizer (Stecher, 1968). No previous work has been reported on long-term studies of toxicity or carcinogenicty of o-anisidine.

It is concluded that under the conditions of the bioassay, o-anisidine hydrochloride was carcinogenic for Fischer 344 rats and B6C3Fl mice, inducing transitional-cell carcinomas or papillomas of the bladder in both rats and mice and in both sexes of each species, transitional-cell carcinomas of the pelvis of the kidney in male rats, and follicular-cell tumors of the thyroid in male rats.

VI. BIBLIOGRAPHY

- Armitage, P., Statistical Methods in Medical Research, John Wiley & Sons, Inc., New York, 1971, pp. 362-365.
- Berenblum, I., ed., Carcinogenicity Testing: A Report on the
 Panel on Carcinogenicity of the Cancer Research Commission
 of the UICC, Vol. 2. International Union Against Cancer,
 Geneva, 1969.
- Cox, D. R., Regression models and life tables. J. R. Statist.
 Soc. B 34 (2):187-220, 1972.
- Cox, D. R., Analysis of Binary Data, Methuen & Co., Ltd., London, 1970, pp. 48-52.
- Food and Drug Administration, FDA File of Cosmetic Products.

 Ingredient Statements Registered in Accordance with 21 CFR 720, August 15, 1977.
- Gart, J. J., The comparison of proportions: a review of significance tests, confidence limits and adjustments for stratification. Rev. Int. Statist. Inst. 39:148-169, 1971.
- Homburger, F., Friedell, G. H., Weisburger, E. K., and Weisburger, J. H., Carcinogenicity of simple aromatic amine derivatives in mice and rats. <u>Toxicol</u>. <u>Appl. Pharmacol</u>. 22:280-281, 1972.
- Kaplan, E. L. and Meier, P., Nonparametric estimation from incomplete observations. J. Am. Statist. Assoc. 53:457-481, 1958.
- Linhart, M. S., Cooper, J., Martin, R. L., Page, N., and Peters, J., Carcinogenesis bioassay data system. Comp. and Biomed. Res. 7:230-248, 1974.
- Miller, R. G., Jr., <u>Simultaneous Statistical Inference</u>, McGraw-Hill Book Co., New York, 1966, pp. 6-10.
- Noller, C. R., Chemistry of Organic Compounds, W. B. Saunders Co., Philadelphia, 1965, pp. 561, 564, 565, and 743-744.

- Pawlowski, W., Molar absorptivity of aromatic amines in ultraviolet (Region of Spectrum). Chemia Analityczna 12 (4):893-896, 1967.
- Russfield, A. B., Homburger, F., Weisburger, E. K., and Weisburger, J. H., Further studies on carcinogenicity of environmental chemicals including simple aromatic amines. Toxicol. Appl. Pharmacol. 25: 446-447, 1973.
- Sadtler Standard Spectra, NMR No. 192M and 1235M, Sadtler Research Laboratories, Philadelphia, 1966.
- Sadtler Standard Spectra, IR No. 3696, Sadtler Research Laboratories, Philadelphia, 1970.
- Saffiotti, U., Montesano, R., Sellakumar, A. R., Cefis, F., and Kaufman, D. G., Respiratory tract carcinogenesis in hamsters induced by different numbers of administrations of benzo (a) pyrene and ferric oxide. Cancer Res. 32:1073-1081, 1972.
- Society of Dyers and Colourists, The Colour Index, Vol. 4, Dean House, Yorkshire, England, 1971 pp. 4349 and 4705.
- Stecher, P. G., ed., The Merck Index, Merck Co. Rahway, N. J., 1968, p. 508.

No i

期

- Tarone, R. E., Tests for trend in life table analysis.

 <u>Biometrika 62</u> (3):679-682, 1975.
- Ungnade, H. E., Ultraviolet absorption spectra of acetanilides.

 J. Am. Chem. Soc. 76:5133-5135, 1954.
- Wall, F. E., Bleaches, hair colorings, and dye removers. In:

 <u>Cosmetics Science and Technology, Vol. 2</u>, Balsam, M. S. and
 Sagarm, E., eds., Wiley-Interscience, New York, 1972, pp.
 306-308.

APPENDIX A

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN

RATS FED o-ANISIDINE HYDROCHLORIDE IN THE DIET

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS FED o-ANISIDINE HYDROCHLORIDE IN THE DIET

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	55 54 54	55 55 55	55 53 53
INTEGUMENTARY SYSTEM			
*SKIN SQUAMOUS CELL PAPILLOMA BASAL-CELL TUMOR PIBROMA	(54) 2 (4%) 2 (4%)	(55) 1 (2%)	(53)
*SUBCUT TISSUE FIBROMA	(54) 2 (4%)	(55)	(5 3)
RESPIRATORY SYSTEM			
*NASAL CAVITY UNDIFFEDENTIATED CAPCINOMA	(54)	(55) 2 (4%)	(53)
*LUNG ALVFOLAR/BPONCHIOLAR ADENOMA	(54)	(55) 1 (2%)	(51)
HEMATOPOIETIC SYSTEM			
#BRAIN/MENINGES MALIGNANT LYMPHOMA, NOS	(54)	(53)	(51) 1 (2%)
*MULTIPLE ORGANS MALIGNANT LYMPHOMA, NOS UNDIFTERENTIATED LZJKEMIA LYMPHOCYTIC LEUKEMIA	(54) 1 (2%) 13 (24%) 4 (7%)	(55)	(53)
*BONE MARROW OSTFOSARCOMA, INVASIVE	(52)	(55) 1 (2%)	(47)
#SPLENIC CAPSULE	(54)	(55)	(52) 1 (2%)

[#] NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

TABLE A1. MALE RATS: NEOPLASMS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE	
#MANDIBULAR L. NODE MALIGNANT LYMPHOMA, NOS	(53)	(47) 1 (2%)	(34)	
CIRCULATORY SYSTEM				
NONE				
DIGESTIVE SYSTEM				
#LIVER NEOPLASTIC NODULE HEPATOCELLULAR CARCINOMA	(54)	(55) 2 (4%) 2 (4%)	(52)	
#PANCREAS LEIOMYOSAPCOMA, METASTATIC	(53)	(54)	1 (2%) (51) 1 (2%)	
#STOMACH SQUAMOUS CELL CAPCINOMA LFIOMYOSARCOMA	(53) 2 (4%)	(55)	(52) 1 (2%)	
# DUODFNAL SEPOSA LFIOMYOSAPCOMA, MPTASTATIC	(52)	(53)	(5 1) 1 (2%)	
URINARY SYSTEM				
#KIDNFY TRANSITIONAL-CFLL CARCINOMA	(53)	(55) 1 (2%)	(53) 3 (6%)	
#KIDNFY/PFLVIS TRANSITIONAL-CFLL CARCINOMA	(53)	(55) 2 (4%)	(53) 4 (8%)	
#URINARY BLADDER TRANSITIONAL-CELL PAPILLOMA TPANSITIONAL-CELL CARCINOMA LEIOMYOSARCOMA HEMANGIOMA	(51)	(54) 2 (4%) 50 (93%) 1 (2%)	(52) 1 (2%) 51 (98%) 1 (2%) 1 (2%)	
*PPOSTATIC UPETHDA TRANSITIONAL-CELL_CAPCINOMA	(54)	(55)	(53) 2_(4½)	

[#] NUMBER OF ANIMALS WITH TISSUF EXAMINED MICROSCOPICALLY

lint .

^{*} NUMBER OF ANIMALS NECPOPSIED

TABLE A1. MALE RATS: NEOPLASMS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
EN DOCRINE SYSTEM			
*PITUITARY ADENOMA, NOS CHROMOPHOBE ADENOMA ACIDOPHIL ADENOMA	(48) 4 (8%) 1 (2%)	(49) 2 (4系)	(47)
#ADR®NAL CORTICAL ADENOMA PHEOCHROMOCYTOMA PHFOCHROMOCYTOMA, MALIGNANT LEIOMYOSARCOMA, MFTASTATIC	(54) 1 (2%) 12 (22%) 2 (4%)	(55)	(53) 1 (2¾)
*THYROID FOLLICULAR-CELL ADENOMA FOLLICULAR-CELL CARCINOMA C-CELL ADENOMA C-CELL CARCINOMA CYSTADENOMA, NOS	(53)	(40) 3 (8%) 2 (5%) 1 (3%) 2 (5%) 1 (3%)	(40) 1 (3%) 2 (5%)
*THYROID FOLLICLE PAPILLARY CYSTADENOMA, NOS PAPILLARY CYSTADENOCARCINOMA, NOS	(53)	(40) 1 (3%)	(40) 3 (8%)
*PANCREATIC ISLETS ISLET-CELL ADENOMA ISLET-CELL CARCINOMA	(53) 1 (2%) 1 (2%)	(54) 1 (2%)	(51)
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND INTRADUCTAL PAPILLOMA PIBROADENOMA	(54) 1 (2%) 1 (2%)	(55)	(53)
*PREPUTIAL GLAND CARCINOMA, NOS	(54) 1 (2%)	(55) 2 (4%)	(53) 2 (4%)
#PROSTATE TRANSITIONAL-CFIL CARCINOMA	(52)	(52)	(52) 1 (2%)
#TESTIS INTERSTITIAL-CELL_TUMOR	(54) <u>53(98%)</u>	(52) 43_ <u>(83%)</u>	(51) 4_ <u>(8%)</u>

^{*} NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
* NUMBER OF ANIMALS NECROPSIED

TABLE A1. MALE RATS: NEOPLASMS (CONTINUED)

			- -
	CONTROL	LOW DOSE	HIGH DOSE
NER VOUS SYSTEM			
#BPAIN	(54)	(53)	(5 1)
CFRUMINOUS CAPCINOMA, METASTATIC ASTROCYTOMA	1 (2%)	2 (4%)	
SPECIAL SENSE ORGANS			
* <u>F</u> Y R	(54)	(55)	(53)
SQUAMOUS CFLL CARCINOMA	1 (2%)		
*EAR	(54)	(55)	(5 3)
CERUMINOUS CAPCINOMA	1 (2%)		
*EAR CANAL CERUMINOUS CARCINOMA	(54) 1 (2%)	(55)	(53)
MUSCULOSKELETAL SYSTEM			
MUSCULOS RELEGGE SISTEM			
*VERTEBRA OSTFOSARCOMA	(54)	(55) 1 (2%)	(53)
BODY CAVITIES			
*BODY CAVITIES	(54)	(55)	(5 3)
MESOTHELIOMA, NOS MESOTHELIOMA, MALIGNANT	2 (4%)	4 (7%) 2 (4%)	1 (2%)
HESOLUSEIONA, HABIGUANI		2 (47)	
ALL OTHER SYSTEMS			
NO N E			
ANIMAL DISPOSITION SUMMARY			
ANTWALC INTERIALLY IN COURT	55	cc	cc
ANIMALS INITIALLY IN STUDY NATURAL DEATHD	6	55 21	55 37
MORIBUND SACRIFICE	10	27	18
SCHEDULED SACRIFICE			
ACCIDENTALLY KILLED TERMINAL SACRIPICE	39	7	
ANIMAL MISSING	3 7	,	
@ INCLUDES AUTOLYZED ANIMALS			

[#] NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
* NUMBER OF ANIMALS NECROPSIED

Date:

TABLE A1. MALE RATS: NEOPLASMS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS*	5 U	53	53
TOTAL PRIMARY TUMORS	112	132	80
TOTAL ANIMALS WITH BENIGN TUMORS	53	43	8
TOTAL BENIGN TUMORS	83	43 55	10
TOTAL BENIGN TOMORS	0.3	33	10
TOTAL ANIMALS WITH MALIGNANT TUMORS	26	51	53
TOTAL MALIGNANT TUMORS	27	71	69
TOTAL ANIMALS WITH SECONDARY TUMORS#	. 1	1	1
TOTAL SECONDARY TUMORS	1	1	4
	·	,	·
TOTAL ANIMALS WITH TUMORS UNCERTAIN-			
BENIGN OR MALIGNANT	2	6	1
TOTAL UNCERTAIN TUMORS	2	6	1
TOTAL ANIMALS WITH TUMORS UNCERTAIN-			
PRIMARY OR METASTATIC			
TOTAL UNCERTAIN TUMORS			

^{*} PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS

^{*} SECONDARY TUMORS: METASTATIC TUMOPS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

TABLE A2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS FED o-ANISIDINE HYDROCHLORIDE IN THE DIET

		LOW DOSE	
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	5 5 5 4	55 53 53	55 54 54
INTEGUMENTARY SYSTEM			
*SKIN SQUAMOUS CELL PAPILIOMA SQUAMOUS CELL CAPCINOMA	(54) 2 (4%) 2 (4%)	(53)	(54)
*SUBCUT TISSUE SQUAMOUS CFIL CARCINOMA ADENOCARCINOMA, NOS	(54)	(53) 1 (2%)	(54) 1 (2%)
FIBROMA FIBRO ADENOMA	1 (2%)	2 (4%) 1 (2%)	
RESPIRATORY SYSTEM			
*NASAL CAVITY CARCINOMA,NOS	(54)	(53) 1 (2%)	(54)
#IUNG ALVFOLAR/ERONCHIOLAF ADENOMA	(53) 1 (2%)	(53)	(54)
HEMATOPOIRTIC SYSTEM			
*MULTIPLE ORGANS MALIGNANT TYMPHOMA, NOS	(54)	(53) 1 (2%)	(54)
UNDIFFERENTIATED LEUKEMIA	8 (15%) 1 (2%)	(2/0)	
#SPLEFN NEUROFIBROSARCOMA, UNC PRIM OR M	(52) 1 (2%)	(52)	(5 1)
#MEDIASTINAL L.NODE UNDIFFERENTIAMFD CAPCINOMA METAS	(51) 1 (2%)	(46)	(36)
#MESENTERIC L. NODE UNDIFFERENTIATED_CARCINOMA_METAS	(51) 1_(<u>2%)</u>	(46)	(36)

^{*} NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECEOPSIED

Hear ; Hear ; Hear ; Hear ;

TABLE A2. FEMALE RATS: NEOPLASMS (CONTINUED)

	CONTROL	LOW DOSE	
CIPCULATORY SYSTEM			
#HEAPT NEUPOFIBROSARCOMA, UNC PRIM OR M	(53) 1 (2%)	(53)	(5 3)
DIGESTIVE SYSTEM			
#SALIVARY GLAND ADENOMA, NOS	(52) 3 (6%)	(51)	(47)
*LIVER NEOPLASTIC NODULE NEUROFIBROSARCOMA, UNC PRIM OR M	(53) 1 (2%) 1 (2%)	(53)	(53)
#STOMACH SQUAMOUS CELL PAPILLOMA SQUAMOUS CELL CARCINOMA ADENOCAPCINOMA, NOS	(51) 1 (2%) 1 (2%) 1 (2%)	(51)	(49)
UPINARY SYSTEM			
#KIDNEY/PELVIS TRANSITIONAL-CELL CARCINOMA	(52)	(52)	(54) 1 (2%)
#URINARY BLADDER TRANSITIONAL-CELL PAPILLOMA IRANSITIONAL-CELL CARCINOMA PIBROMA LEIOMYOSARCOMA HEMANGIOMA	(49)	(49) 5 (10%) 41 (84%) 1 (2%) 1 (2%) 1 (2%)	(51) 50 (98%) 1 (2%)
ENDOCRINE SYSTEM			
*PITUITARY CARCINOMA, NOS ADENOMA, NOS CHROMOPHOBE ADENOMA CHROMOPHOBE CARCINOMA ACIDOPHIL ADENOMA	(48) 3 (6%) 1 (2%) 15 (31%) 1 (2%) 1 (2%)	(51) 9 (18%)	
#ADRENAL CORTICAL_ADENOMA	(53) 1_(2 <u>%</u>)	(53)	(54)

^{*} NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
* NUMBER OF ANIMALS NECROPSIED

TABLE A2. FEMALE RATS: NEOPLASMS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
PHFOCHROMOCYTOMA	3 (6%)	1 (2%)	1 (2%)
ANGICLIPOM A	1 (2%)	(2%)	1 (2%)
#THYROID	(49)	(45)	(46)
UNDIFFERFNIIATED CARCINOMA	1 (2系)		2 40%
FOLLICULAR-CELL ADFNOMA POLLICULAR-CELL CAPCINOMA		3 (7%)	2 (4%)
C-CELL ADENOMA	1 (2%)	2 (17)	
C-CELL CAPCINOMA	3 (6%)	1 (2%)	
#THYROID FOLLICLE	(49)	(45)	(46)
PAPILLARY CYSTADENOMA, NOS		1 (2%)	1 (2%)
*PANCEFATIC ISLETS	(52)	(50)	(43)
ISLET-CELL ADENOMA	1 (2%)		
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND	(54)	(53)	(54)
ADENOMA, NOS	1 (2%)	` '	
ADENOCARCINOMA, NOS PIBROADENOMA	2 (4%) 16 (30%)	1 (2%)	
- IBRO ADENONA	10 (377)	1 (2%)	
*CLITORAL GLAND	(54)	(53)	(54)
CARCINOMA, NOS	2 (4%)	2 (4%)	1 (2%)
#UTEPUS	(52)	(50)	(50)
ENDOMETRIAL STROMAL POLYP	16 (31%)	5 (12%)	
HEMANGIOMA		1 (2%)	
#OVARY	(53)	(49)	(45)
GRANULOSA-CELL TUMOR TUBULAR ADENOMA	1 (2%) 2 (4%)		
TODOBIA ADDIONI			
NER VOUS SYSTEM			
*OLFACTORY SYSTEM	(54)	(53)	(54)
MENINGIOMA		1 (2%)	
#BRAIN/MENINGES	(52)	(53)	(52)
CARCINOMA, NOS, INVASIVE		1 (2%)	
#BRAIN	(52)	(53)	(52)
CARCINOMA, NOS, METASTATIC			

^{*} NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
* NUMBER OF ANIMALS NECROPSIED

(i)

Jagi 1 R_{BS}(1 1 R_{BS}(1 1 1 EBs(1 1

TABLE A2. FEMALE RATS: NEOPLASMS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
CHROMOPHOBE CARCINOMA, METASTATI ASTROCYTOMA	1 (2%)		1 (2%)
SPECIAL SENSE OPGANS			
*EYE SQUAMOUS CELL CAPCINOMA	(54) 2 (4%)	(53)	(54)
*FAR CANAL CERUMINOUS CARCINOMA	(54) 1 (2¾)	(53)	(54)
MUSCULOSKELETAL SYSTEM			
NONF			
BODY CAVITIES			
NONE			
ALL OTHER SYSTEMS			
*MULTIPLE ORGANS ADENOCAPCINOME, NOS, METASTATIC	(54) 1 (2≸)	(53)	(54)
ANIMAL DISPOSITION SUMMAPY			
ANIMAIS INITIALLY IN STUDY NATURAL DEATHD MORIBUND SACRIFICE	55 6 13	55 24 31	55 41 14
SCHEDULFD SACRIFICE ACCIDENTALLY KILLED TERMINAL SACRIFICE ANIMAL MISSING	36		

^{*} NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

TABLE A2. FEMALE RATS: NEOPLASMS (CONTINUED)

CONTROL LOW DOSE HIGH DOSE TUMOR SUMMARY TOTAL ANIMALS WITH PRIMARY TUMORS* 52 TOTAL PRIMARY TUMORS 81 TOTAL ANIMALS WITH BENIGN TUMORS 45 24 TOTAL BENIGN TUMORS 67 29 TOTAL ANIMALS WITH MALIGNANT TUMOPS 24 44 51 TOTAL MALIGNANT TUMORS 29 52 55 TOTAL ANIMALS WITH SECONDARY TUMORS# 1 TOTAL SECONDARY TUMORS TOTAL ANIMALS WITH TUMORS UNCTRTAIN-BENIGN OR MALIGNANT TOTAL UNCERTAIN TUMOPS TOTAL ANIMALS WITH TUMORS UNCERTAIN-PRIMARY OR METASTATIC TOTAL UNCERTAIN TUMBES

^{*} PRIMARY TUMORS: ALL TUMORS FXCEPT SECONDARY TUMORS

[#] SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

APPENDIX B

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN
MICE FED o-ANISIDINE HYDROCHLORIDE IN THE DIET

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE FED o-ANISIDINE HYDROCHLORIDE IN THE DIET

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY	55	55	55
ANIMALS MISSING ANIMALS NECPOPSIED	5.5	55	1 53
ANIMALS RYAMINED HISTOPATHOLOGICALLY		55	53
INTEGUMENTARY SYSTEM			
*SKIN	(55)	(55)	(53)
SQUAMOUS CELL PAPILLOMA	1 (2%)		, ,
*SUBCUT TISSUE SOUAMOUS CELL PAPILLOMA	(55)	(55)	(53) 1 (2 1)
PIBROMA	2 (4%)		1 (23)
PIBROSARCOMA	1 (2%)	1 (2%)	
RESPIRATORY SYSTEM *NASAL CAVITY SQUAMOUS CELL CARCINOMA	(55)	(55)	(53) 1 (2%)
#LUNG	(54)	(54)	(52)
HEPATOCELLULAR CAFCINOMA, METAST ALVFOLAR/BRONCHIOLAP ADENOMA		1 (2%) 3 (6%)	2 (4%)
ALVFOLAR/BRONCHIOLAR CARCINOMA	6 (11%)	6 (11%)	2 (4%)
HEMATOPOIFTIC SYSTEM			
*MULTIPLE ORGANS	(55)	(55)	(53)
MALIGNANT LYMPHOMA, NOS MALIG.LYMPHOMA, HISTIOCYTIC TYPE	1 (25)	3 (5%)	
MALIGNANT LYMPHOMA, MIXED TYPE	2 (4%)		
UNDIFFERENTIATED LEUKEMIA		1 (2%)	
#SPLEEN	(51)	(55)	(52)
HEMANGIOMA	1 (2%)		
*MESENTERIC L. NODE	(48)	(44)	(47)
HEPATOCELLULAR CARCINOMA, METAST	1_(2%)		

^{*} NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

TABLE B1. MALE MICE: NEOPLASMS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
*PINAL LYMPH NOD? AALIGNAT LYMPHOMA, NOS	(48)	(44)	(47) _1 (2%)
*JEJUNUM MALIGNANT LYMPHOMA, MIXED TYPE	(50) 1 (2%)	(54)	(53)
CIRCULATORY SYSTEM			
NONE			
DIGESTIVE SYSTEM			
*LIVER	(54)	(54)	(52)
HRPATOCELLUIAR ADENOMA HEPATOCELLULAP CARCINOMA FIBRO SARCOMA	4 (7%) 24 (44%)	13 (24%) 1 (2%)	7 (13%)
#PANCPFAS FIBPOSAPCOMA	(49)	(53) 1 (2%)	(53)
#STOMACH FIBROSAPCOMA	(51)	(53) 1 (2%)	(51)
URINARY SYSTEM			
*KIDNEY/PELVIS TRANSITIONAL-CFLL PAPILLOMA	(54) 1 (2%)	(55)	(5 1)
#URINARY BLADDER NZOPLASM, NOS	(48)	(55) 1 (2 %)	(53)
TRANSITIONAL-CELL PAPILLOMA TRANSITIONAL-CELL CARCINOMA		2 (4%)	7 (13%) 15 (28%)
ENDOCRINE SYSTEM			
*ADRENAL CORTICAL ADENOMA	(50) 1 (2%)	(53)	(5 2)
#ADRENAL/CAPSULE ADENOMA_ NOS	(50) 5_(10%)	(53)	(52)

[#] NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY

^{*} NUMBER OF ANIMALS NECEOPSIED

TABLE B1. MALE MICE: NEOPLASMS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
#THYROID FOLLICULAF-CELL ADENOMA FOLLICULAR-CELL CARCINOMA	(48)	(49) 1 (2%) 1 (2%)	(39)
*PANCREATIC ISLETS ISLET-CFLI ADFNOMA	(49) 2 (4%)	(53)	(5 3)
RFPRODUCTIVE SYSTEM			
NONE			
NEPVOUS SYSTEM			
PNON			
SPECIAL SENSE OFGANS			
*HARDERIAN GLAND CYSTADENOMA, NOS	(55) 1 (2%)	(55)	(53) 1 (2%)
MUSCULOSKELETAL SYSTEM			
*SKELFTAL MUSCLE FIBROSARCOMA	(55)	(55) 1 (2%)	(5 3)
BODY CAVITIES			
FNON			
ALI OTHER SYSTEMS		,	
OMENTUM TIBROSARCOMA		1	

^{*} NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY

^{*} NUMBER OF ANIMALS NECROPSIED

TABLE B1. MALE MICE: NEOPLASMS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
NIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY	55	55	55
NATURAL DEATHD	9	4	6
MORIBUND SACRIFICE	2	8	4
SCHEDULED SACRIFICE ACCIDENTALLY KILLED			1
TERMINAL SACRIFICE	цц	43	43
ANIMAL MISSING			1
INCLUDES AUTOLYZED ANIMALS			
CUMOR SUMMARY			
UNOR SUMMARI			
TOTAL ANIMALS WITH PRIMARY TUMORS*	_	27	30
TOTAL PRIMARY TUMORS	59	37	35
TOTAL ANIMALS WITH BENIGN TUMORS	22	5	11
TOTAL BENIGN TUMOPS	24	6	11
TOTAL ANIMALS WITH MALIGNANT TUMORS	29	25	23
TOTAL MALIGNANT TUMORS	35	30	24
TOTAL ANIMALS WITH SECONDARY TUMORS#	4	1	
TOTAL SECONDARY TUMOPS	5	1	
TOTAL ANIMALS WITH TUMORS UNCERTAIN-			
BENIGN OF MALIGNANT		1	
TOTAL UNCERTAIN TUMORS		1	
TOTAL ANIMALS WITH TUMORS UNCERTAIN-			
PRIMARY OR METASTATIC			
TOTAL UNCERTAIN TUMORS			

^{*} PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS

^{*} SECONDARY TUMORS: METASTATIC TUMORS OF TUMORS INVASIVE INTO AN ADJACENT ORGAN

TABLE B2.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE FED 0-ANISIDINE HYDROCHLORIDE IN THE DIET

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS TXAMINED HISTOPATHOLOGICALLY	55 55 55	55 52 52	55 54 54
INTEGUM FNTARY SYSTEM			
*SUBCUT TISSUE CARCINOMA, NOS SQUAMOUS CELL CARCINOMA ADENOCARCINOMA, NOS LEIOM YOSARCOMA HEMANGIOMA HEMANGIONA	(55) 1 (2%)	(52)	(54) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%)
IIDIIANGIOSANCOIN			
RESPIRATORY SYSTEM			
*LUNG ADENOCARCINOMA, NOS, METASTATIC HEPATOCELLULAR CARCINOMA, METAST ALVEOLAR/BRONCHIOLAR ADENOMA	(55) 2 (4%) 3 (5%)	(51) 2 (4系)	(52) 1 (2%) 1 (2%)
ALVEOLAR/BRONCHIOLAR CARCINOMA	1 (2%)		
HEMATOPOIFTIC SYSTEM			
*MULTIPLE ORGANS MALIGNANT LYMPHOMA, NOS MALIG.LYMPHOMA, LYMPHOCYTIC TYPE MALIG.LYMPHOMA, HISTIOCYTIC TYPE MALIGNANT LYMPHOMA, MIXED TYPE LYMPHOCYTIC LEUKEMIA	(55) 1 (2%) 2 (4%) 1 (2%) 6 (11%) 4 (7%)	(52) 9 (17%)	(54) 5 (9%)
*SPLEEN NEOPLASM, NOS HEMANGIOSARCOMA MALIGNANT LYMPHOMA, NOS MALIGNANT LYMPHOMA, MIXED TYPE	(53) 2 (4%) 1 (2%)	(52) 1 (2%) 1 (2%) 1 (2%)	(5 1)
#MANDIBULAR L. NODEADENOCARCINOMA_NOS_METASTATIC	(47)	(45)	(47) 1_(28)

[#] NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY

^{*} NUMBER OF ANIMALS NECPOPSIED

TABLE B2. FEMALE MICE: NEOPLASMS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
*MESENTERIC L. NODE MALIG.LYMPHOMA, HISTIOCYTIC TYPF MALIGNANT LYMPHOMA, MIXED TYPE	(47) 2 (4%)	(45) 1 (2%)	(47)
*LIVER MALIGNANT LYMPHOMA, NOS	(54) 1 (2%)	(52)	(53)
#THYMUS THYMOMA MALIGNANT LYMPHOMA, NOS	(35) 1 (3%)	(31)	(41) 1 (2%)
CIRCULATORY SYSTEM			
#HEART HEMANGIOMA	(55) 1 (2%)	(51)	(51)
DIGESTIVF SYSTEM			
#LIVER HFPATOCELLULAP ADTNOMA NEOPLASTIC NODULE HEPATOCELLULAR CARCINOMA HEMANGIOMA	(54) 4 (7%) 7 (13%) 1 (2%)	(52) 1 (2%)	(53) 4 (8%)
*PANCREAS NEOPLASM, NOS	(49)	(52) 1 (2%)	(52)
*STOMACH NFOPLASM, NOS SQUAMOUS CELL PAPILLOMA	(53) 2 (4%)	(52) 1 (2%)	(53)
*DUODENUM NEOPLASM, NOS	(52)	(52) 1 (2%)	(52)
*ANUS SOUAMOUS CELL PAPILIOMA	(55)	(52)	(54) 1 (2%)
URINARY SYSTEM			
#URINARY BLADDERNEOPLASENOS	(50)	(51)	(50)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
 NUMBER OF ANIMALS NECROPSIED

TABLE B2. FEMALE MICE: NEOPLASMS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
TRANSITIONAL-CELL PAPILLOMA TPANSITIONAL-CELL CARCINOMA		1 (2%)	4 (8%) 18 (36%
NDOCRINE SYSTEM			
*PITUITARY CHROMOPHOBE ADENOMA BASOPHIL ADENOMA	(42) 2 (5%) 1 (2%)	(40)	(4 3)
*ADRENAL PHEOCHROMOCYTOMA	(50) 1 (2%)	(52)	(52)
*THYROID FOLLICULAR-CELL ADENOMA	(48) 1 (2%)	(39) 1 (3系)	(38)
EPPODUCTIV® SYSTEM			
*MAMMARY GLAND ADENOCARCINGMA, NOS ACINAR-CELL CARCINOMA PIBRO ADENOMA	(55) 1 (2%) 1 (2%)	(52) 1 (2%)	(54)
*UTERUS NFOPLASM, NOS, MALIGNANT ENDOMETRIAL STROMAL POLYP	(54) 1 (2%)	(51) 1 (2%)	(50)
#OVARY TEPATOMA, NOS HEMANGIOMA	(50)	(46) 1 (2%) 1 (2%)	(52)
TR VOUS SYSTEM			
NONE			
PECIAL SENSE ORGANS			
*HARDERIAN GLAND ADENOMA, NOS	(55)	(52)	(54) 2 (4%)
*EXTFRNAL FAR FIBROSAFCOMA	(55)	(52) 1 (2%)	(54)
USCULOSKELETAL SYSTEM			

^{*} NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY NUMBER OF ANIMALS NECROPSIED

TABLE B2. FEMALE MICE: NEOPLASMS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
BODY CAVITIFS			
*BODY CAVITIES MESOTHELIOMA, NOS	(55) 1 (2%)	(52)	(54)
ALL OTHER SYSTEMS			
*MULTIPLE ORGANS NFOPLASM, NOS	(55)	(52) 1 (2%)	(54)
CMENTUM NEOPLASM, NOS		1	
ANIMAL DISPOSITION SUMMARY.			
ANIMALS INITIALLY IN STUDY	55	55	55
NATURAL DEATHD	7	12	5
MORIBUND SACRIFICE	4	5	7
SCHEDULED SACPIFICE ACCIDENTALLY KILLED			1
TEPMINAL SACRIFICE	44	38	42
ANIMAL MISSING	• •	•	
@ INCLUDES AUTOLYZED ANIMALS		·	

[•] NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
• NUMBER OF ANIMALS NECTORSIED

TABLE B2. FEMALE MICE: NEOPLASMS (CONTINUED)

(CONTROL	LOW DOSE	HIGH DOSE
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS* TOTAL PRIMARY TUMOPS	3 4 50	20 30	33 41
TOTAL ANIMALS WITH BENIGN TUMORS TOTAL BENIGN TUMORS	15 19	6	7 8
TOTAL ANIMALS WITH MALIGNANT TUMORS TOTAL MALIGNANT TUMORS	27 30	13 15	29 33
TOTAL ANIMALS WITH SECONDARY TUMORS# TOTAL SECONDARY TUMORS	2 2		1 2
TOTAL ANIMALS WITH TUMORS UNCERTAIN- BENIGN OR MALIGNANT TOTAL UNCERTAIN TUMORS	1	4 9	
TOTAL ANIMALS WITH TUMORS UNCERTAIN- PRIMARY OR METASTATIC TOTAL UNCERTAIN TUMORS			

^{*} PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS

^{*} SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

APPENDIX C

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS
IN RATS FED o-ANISIDINE HYDROCHLORIDE IN THE DIET

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS FED o-ANISIDINE HYDROCHLORIDE IN THE DIET

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	55 54 7 54	55 55 55	55 53 53
INTEGUMENTARY SYSTEM			
*SKIN INFLAMMATION, NECPOTIZING	(54)	(55)	(53) 1 (2%)
*SUBCUT TISSUF ABSCESS, NOS	(54)	(55) 1 (2%)	(5 3)
RESPIRATORY SYSTEM			
*TRACHEA INFLAMMATION, CHEONIC METAPLASIA, SQUAMOUS	(51)	(53) 1 (2%) 1 (2%)	(47)
*LUNG/BRONCHUS BRONCHIECTASIS	(54) 1 (2%)	(55)	(5 1)
*LUNG BRONCHOPNEUMONIA, NOS BRONCHOPNEUMONIA, ACUTE	(54) 2 (4%)	(55)	(51) 1 (2%)
PNEUMONIA, CHPONIC MURINE	2 (4%)	2 (4%)	
HEMATOPOIETIC SYSTEM			
#BONE MARROW FIBROSIS, FOCAL HYPERPLASIA, NOS	(52) 1 (2%) 7 (13%)	(55)	(47)
#SPLEEN PIBROSIS, FOCAL MPTAMORPHOSIS FATTY	(54) 1 (2%)	(55)	(52) 1 (2 %)
HEMOSIDEROSIS HEMATOPOIESIS	1 (2%) 1 (2%)		(2%)

^{*} NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

TABLE C1. MALE RATS: NONNEOPLASTIC LESIONS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
ERYTHROPOLESIS		1 (2%)	
#LYMPH NODE HYPERPLASIA, NOS	(53)	(47) 1 (2%)	(34)
*MANDIBULAR L. NODE HYPERPLASIA, NOS HYPERPLASIA, PLASMA CELL	(53)	(47) 1 (2%) 1 (2%)	(34)
#LUMBAR LYMPH NODE HYPERPLASIA, PLASMA CELL	(53)	(47) 1 (2%)	(34)
CIRCULATORY SYSTEM			
*HEART THROMBUS, MURAL	(54) 1 (2%)	(55)	(51)
PERIARTFRITIS NECROSIS, FOCAL CALCIFICATION, NOS	1 (2%)		2 (4%) 3 (6%)
#MYOCARDIUM INFLAMMATION, FOCAL DEGENERATION, NOS	(54) 1 (2%) 16 (30%)	(55)	(51)
#CARDIAC VALVE INFLAMMATION, CHEONIC	(54)	(55) 1 (2%)	(5 1)
*AORTA MEDIAL CALCIFICATION	(54)	(55) 1 (2¾)	(53) 3 (6%)
*COPONARY ARTERY MEDIAL CALCIPICATION	(54)	(55)	(53) 2 (4%)
*CFLIAC ARTERY THROMBOSIS, NOS	(54) 1 (2∛)	(55)	(53)
DIGESTIVE SYSTEM			
#LIVER CHOLANGIOFIPROSIS NFCROSIS, FOCAL	(54) 9 (17%) 1 (2%)	(55)	(52)
NECROSIS, FAT METAMORPHOSIS FATTY	1 (2%)	1 (2%)	

^{*} NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
* NUMBER OF ANIMALS NECEOPSIED

TABLE C1. MALE RATS: NONNEOPLASTIC LESIONS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
BASOPHILIC CYTO CHANGE CLEAR-CELL CHANGF	1 (2%)	2 (4%)	1 (2%
*BILE DUCT INFLAMMATION, NOS	(54) 1 (2%)	(55)	(53)
#PANCREAS DILATATION/DUCTS INPLAMMATION, CHRONIC PIBROSIS	(53) 1 (2%)	(54) 1 (2%) 1 (2%)	(51)
#STOMACH ULCER, NOS EROSION HYPEPPLASIA, BASAI CELL	(53) 2 (4%) 1 (2%) 14 (26%)	(55)	(52)
#GASTRIC MUCOSA ULCFR, NOS CALCIFICATION, NOS CALCIFICATION, FOCAL	(53)	(55) 1 (2克) 1 (2克)	(52) 2 (4% 1 (2%
RINARY SYSTEM			
*KTDNFY HYDRONFPHROSIS PYELONEPHRITIS, NOS PYELONEPHRITIS, ACUTE	(53)	(55) 2 (4%) 1 (2%)	(53) 3 (6% 1 (2%
NEPHROSIS, NOS NEPHROSIS, CHOLEMIC GLOMERULOSCIEROSIS, NOS	26 (49%) 2 (4%)	43 (78%)	5 (9% 2 (4%
FIDNEY/MEDULLA CALCIFICATION, NOS	(53)	(55)	(53) 1 (2%
PPFNAL PAPILLA INFLAMMATION, SUPPUFATIVE NECROSIS, NOS	(53)	(55) 5 (9%)	(53) 1 (2%) 3 (6%)
CALCIFICATION, NOS		1 (2%)	3 (6%
KIDNEY/TUBULE NEPHROSIS, NOS NECROSIS, NOS CALCIPICATION, NOS	(53) 1 (2%)	(55)	(53) 1 (2% 1 (2%
KIDNEY/PELVIS	(53)	2 (4%) (55)	2 (4% (53)

^{*} NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

TABLE C1. MALE RATS: NONNEOPLASTIC LESIONS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
INFLAMMATION, ACUTE FOCAL HYPEPPLASIA, EPITHELIAL			1 (2%) 2 (4%)
*URINAPY BLADDER HYPEPPLASIA, EPITHFLIAL	(51)	(54) 1 (2%)	(52)
#U.BLADDER/SUBMUCOSA HYPTEPLASIA, NOS	(51)	(54) 1 (2%)	(52)
*PROSTATIC URETHRA INFLAMMATION, SUPPURATIVE	(54)	(55)	(53) 1 (2%)
ENDOCRINE SYSTEM			
*PITUITARY HEMORRHAGE HYPERPLASIA, FOCAL HYPERPLASIA, BASOPHILIC	(48) 1 (2%) 1 (2%) 2 (4%)	(49)	(47)
#ADRENAL CYST, NOS	(54) 1 (2%)	(55)	(5 3)
#ADRENAL CORTEX HYPERPLASIA, NOS HYPERPLASIA, FOCAL	(54) 1 (2%)	(55) 1 (2%)	(53)
#THY POID CYSTIC FOLLICLES FOLLICULAR CYST, NOS CALCIFICATION, FOCAL HYPERPLASIA, FOLLICULAR-CELL	(53)	(40) 10 (25%)	(40) 3 (8%) 3 (8%) 1 (3%) 3 (8%)
#PANCREATIC ISLETS HYPERPLASIA, NOS	(53) 1 (2%)	(54)	(51)
REPRODUCTIVE SYSTEM			
*PREPUTIAL GLAND INFLAMMATION, ACUTE ABSCESS, NOS INFLAMMATION, CHRONIC	(54) 1 (2%) 1 (2%)	(55) 1 (2%)	(53)
*PROSTATE INFLAMMATION, SUPPURATIVE	(52)	(52) 6 (12%)	(5 2) 71 <u>13</u> 9

[#] NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY

^{*} NUMBER OF ANIMALS NECROPSIED

TABLE C1. MALE RATS: NONNEOPLASTIC LESIONS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
INFLAMMATION, ACUTE INFLAMMATION ACUTE AND CYPONIC	1 (2%)		1 (23
ATROPHY, NOS	(54)	(52)	(5 1) 3 (6%
*SCROTUM ULCER, ACUTE	(54)	(55) 1 (2%)	(53)
EF VOUS SYSTEM			
*BRAIN/MENINGES INFLAMMATION, NOS	(5 4)	(53) 1 (2%)	(5 1)
*CEREBRAL VENTRICLE HEMORRHAGE	(54) 1 (2%)	(53)	(51)
#BRAIN HEMORRHAGF	(54) 1 (2%)	(53)	(5 1)
PECIAL SENSE ORGANS			
*EYE HEMORRHAGE	(54) 1 (2%)	(55)	(53)
*EYE/IRIS INFLAMMATION, CHRONIC	(54)	(55) 1 (2%)	(5 3)
*FYF/CRYSTALLINE LFNS CALCIPICATION, NOS	(54)	(55) 1 (2%)	(53)
*FYE/LACRIMAL GLAND INFLAMMATION, NOS	(54) 1 (2%)	(55)	(53)
USCULOSKELETAL SYSTFM			
NONE			
ODY CAVITIES			
*ABDOMINAL CAVITY NECROSIS, FAT	(54) 9_(17%)	(55)	(53)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
NUMBER OF ANIMALS NECROPSIED

TABLE C1. MALE RATS: NONNEOPLASTIC LESIONS (CONTINUED)					
	CONTROL	LOW DOSE	HIGH DOSE		
ALL OTHER SYSTEMS					
SPECIAL MORPHOLOGY SUMMARY					
NO LESION REPORTED AUTOLYSIS/NO NECROPSY	1	1	2		
# NUMBER OF ANTMAIS WITH TISSUE BY	AMINED MICROSCO	DICALIV			

^{*} NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECFORSIED

TABLE C2.

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS
FED o-ANISIDINE HYDROCHLORIDE IN THE DIET

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	55 54 54	55 53 53	55 54 54
INTEGUMENTARY SYSTEM			
*SKIN ULCER, FOCAL	(54)	(53) 1 (2%)	(54)
RESPIRATORY SYSTEM			
#LUNG/BRONCHUS INFLAMMATION, SUPPURATIVE	(53)	(53) 2 (4%)	(54)
*LUNG BRONCHOPNEUMONIA, NOS	(53)	(53) 1 (2%)	(54)
PNEUMONIA, CHRONIC MURINE METAPLASIA, NOS	3 (6%) 1 (2%)	(24)	
#ALVFOLAP WALL CALCIFICATION, NOS	(53)	(53) 1 (2%)	(54) 1 (2%)
HEMATOPOIETIC SYSTEM			
#BONE MAPROW HISTIOCYTOSIS	(53) 1 (2%)	(49)	(51)
#SPLEEN HEMATOPOITSIS	(52) 1 (2¾)	(52)	(51)
ERYTHROPOIFSIS	_ \ \ _	4 (8%)	
*CFRVICAL LYMPH NODF HYPERPLASIA, PIASMA CFLL	(51)	(46) 1 (2%)	(36)
#LTMBAR LYMPH NODE INFLAMMATION, CHPONIC	(51) 1 (2¾)	(46)	(36)
HYPERPLASIA, NOS	(2)	1 (2%)	

^{*} NUMBER OF ANIMALS WITH TISSUF EXAMINED MICROSCOPICALLY

^{*} NUMBER OF ANIMALS NECROPSIED

TABLE C2. FEMALE RATS: NONNEOPLASTIC LESIONS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
#RENAL LYMPH NODE INFLAMMATION, CHRONIC HYPERPLASIA, NOS	(51) 1 (2%)	(46) 1 (2%)	(36)
CIPCULATORY SYSTEM			
#HEART CALCIFICATION, NOS	(53)	(53) 1 (2%)	(53)
#MYOCARDIUM DEGENERATION, NOS	(53) 6 (11%)	(53) 1 (2%)	(53)
*AORTA MEDIAL CALCIFICATION	(54)	(53) 2 (4%)	(54) 1 (2%)
*CORONARY ARTERY MEDIAL CALCIFICATION	(54)	(53) 2 (4兆)	(54)
DIGESTIVE SYSTEM			
#LIVER CHOLANGIOFIBROSIS NECROSIS, NOS METAMORPHOSIS PATTY BASOPHILIC CYTO CHANGE ANGIECTASIS	(53) 2 (4%) 6 (11%) 10 (19%)	(53) 1 (2%) 10 (19%) 1 (2%)	(53)
#PANCREAS ATROPHY, FOCAL	(52) 1 (2%)	(50)	(43)
#STOMACH INFLAMMATION, NOS ULCER, NOS ULCER, ACUTE CALCIFICATION, NOS HYPERPLASIA, BASAL CELL	(51) 1 (2%) 11 (22%)	(51) 1 (2%) 1 (2%) 1 (2%)	(4 9)
#GASTRIC MUCOSA ULCER, POCAL CALCIFICATION, NOS	(51)	(51) 1 (2%) 1 (2%)	(49) 1 (2%)
URINARY SYSTEM			
#KIDNEY	(52)	(52) 1_(2 <u>8</u>)	(54)

[#] NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
* NUMBER OF ANIMALS NECROPSIED

TABLE C2. FEMALE RATS: NONNEOPLASTIC LESIONS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
HYDRONEPHROSIS PYELONEPHFITIS, NOS NEPHROSIS, NOS NEPHROSIS, CHOLEMIC	2 (4系) 1 (2系)	7 (13%) 3 (6%)	14 (26%) 3 (6%)
GLOMERULOSCLEROSIS, NOS CALCIPICATION, NOS CALCIPICATION, POCAL HYPERPLASIA, TUBULAR CELL	1 (2%) 5 (10%)	1 (2%)	1 (2%)
*RFNAL PAPILIA INFLAMMATION, SUPPURATIVE INFLAMMATION, ACUTE NFCROSIS, NOS CALCIFICATION, NOS	(52)	(52) 1 (2%) 6 (12%) 5 (10%)	(54) 1 (2%) 20 (37%) 5 (9%)
#KIDNPY/TUBULE CALCIFICATION, NOS	(52)	(52) 3 (6%)	(54) 2 (4%)
*KIDNFY/PELVIS INFLAMMATION, ACUTE HYPERPLASIA, EPITHELIAL	(52)	(52) 1 (2%) 2 (4%)	(54)
#URINARY BLADDER CALCIFICATION, NOS	(49)	(49) 1 (2%)	(5 1)
ENDOCRINE SYSTEM			
#PITUITARY HYPERPLASIA, NOS ANGIECTASIS	(48) 1 (2%)	(51) 1 (2%)	(45)
#ADRFNAL CORTEX HYPERPLASIA, NOS	(53) 1 (2%)	(53)	(54)
#ADRPNAL MEDULLA NECROSIS, NOS	(53) 1 (2%)	(53)	(54)
*THYPOID CYSTIC FOLLICLES HYPERPLASIA, C-CELL HYPERPLASIA, FOLLICULAR-CELL	(49)	(45) 3 (7%)	(46) 3 (7%) 2 (4%) 2 (4%)
#PARATHYROID HYPERPLASIA_NOS	(15) 1_(7%)	(12)	(17)

^{*} NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
* NUMBER OF ANIMALS NECROPSIED

TABLE C2. FEMALE RATS: NONNEOPLASTIC LESIONS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE	
*PANCREATIC ISLETS HYPERPLASIA, NOS	(52) 1 (23)	(50)	(43)	
REPRODUCTIVE SYSTEM				
*MAMMARY GLAND GALACTOCELE	(54) 6 (11%)	(53)	(54)	
*CLITORAL GLAND INFLAMMATION, ACUTE	(54)	(53) 4 (8%)	(54) 1 (2%)	
#UTERUS HYDROMETRA THROMBOSIS, NOS ABSCESS, NOS	(52) 2 (4%) 1 (2%)	(50)	(50)	
#CTRVIX UTFRI POLYP, INTLAMMATORY	(52) 1 (2%)	(50)	(50)	
#UTERUS/ENDOMETRIUM INFLAMMATION, SUPPUPATIVE INFLAMMATION, ACUTF ABSCESS, NOS HYPERPLASIA, CYSTIC	(52)	(50) 1 (2%) 1 (2%) 1 (2%) 3 (6%)	(50) 1 (2%)	
#OVARY/OVIDUCT INFLAMMATION, SUPPURATIVE ABSCESS, NOS	(52) 1 (2%)	(50)	(50) 1 (2%)	
#OVARY CYST, NOS INFLAMMATION, SUPPURATIVE INFLAMMATION, CHRONIC	(53) 1 (2%)	(49) 1 (2%) 1 (2%)	(45)	
NEP VOUS SYSTEM				
NONE				
SPECIAL SENSE ORGANS				
*EYE/CORNEA INFLAMMATION, ACUTE	(54)	(53) 1_(<u>2%</u>)	(54)	

^{*} NUMBER OF ANIMALS WITH TISSUE FXAMINED MICROSCOPICALLY
* NUMBER OF ANIMALS NECROPSIED

TABLE C2. FEMALE RATS: NONNEOPLASTIC LESIONS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
MUSCULOSKELETAL SYSTEM			
*SKELETAL MUSCLE METAPLASIA, OSSPOUS	(54)	(53)	(54) 1 (2%)
BODY CAVITIES			
*ABDOMINAL CAVITY NFCROSIS, FAT	(54) 6 (11%)	(53)	(54)
ALL OTHER SYSTEMS			
NONF			
SPECIAL MORPHOLOGY SUMMARY			
NO LESION PEPORTED AUTOLYSIS/NO NECEOPSY	1	2	1

^{*} NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECTOPSIED

APPENDIX D

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS
IN MICE FED o-ANISIDINE HYDROCHLORIDE IN THE DIET

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE FED o-ANISIDINE HYDROCHLORIDE IN THE DIET

		LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS MISSING	55	55	55 1
ANIMALS NFCROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	55 55	55 55	53 53
INTEGUMENTARY SYSTEM			
*SKIN EPIDERMAL INCLUSION CYST POLYP, INFLAMMATORY	(55) 1 (2%) 1 (2%)	(55)	(53)
RESPIRATORY SYSTEM			
NONE			
HEMATOPOIETIC SYSTEM			
#SPLEEN HEMATOPOIESIS	(51) 2 (4%)	(55)	(52) 1 (2%)
#MESENTERIC L. NODE CONGESTION, NOS	(48) 6 (13%)	(44)	(47)
HYPERPLASIA, NOS HISTIOCYTOSIS	1 (2%) 1 (2%)	2 (5%)	
HYPERPLASIA, HEMATOPOIETIC		1 (2%)	
CIRCULATORY SYSTEM			
NONE			
DIGESTIVE SYSTEM			
#LIVER NECROSIS, NOS	(54)	(54)	(52)
MET AMORPHOSIS PATTY MEGALOCYTOSIS		1 (2%)	3 (6%) 3 (6%)

^{*} NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

TABLE D1. MALE MICE: NONNEOPLASTIC LESIONS (CONTINUED)

LOW DOSE CONTROL HIGH DOSE 1 (2%) HYPERPLASTIC NODUL® 1 (2%) HYPERPLASIA, NOS 1 (2%) ANGIECTASIS 1 (2%) HEMATOPOIESIS 2 (4%) (49) *PANCPEAS (53) (53)1 (2%) CYSTIC DUCTS ATROPHY, NOS 1 (2%) (51) 1 (2%) #STOMACH (53) (51)INFLAMMATION, ACUTE ATYPIA, NOS 1 (2%) HYPERPLASTIC NODULE 1 (2%) (50) (54) (53) #PEYFRS PATCE HYPERPLASIA, NOS 1 (2%) URINARY SYSTEM (54) 1 (2%) #KIDNEY (55) (51) HYDRONEPHROSIS CYST, NOS 1 (2%) 1 (2%) 1 (2%) PYELONEPHPITIS, ACUTE PYELONEPHRITIS, CHRONIC (54) #KIDNEY/GLOMERULUS (55) (51) 1 (2%) AMYLOIDOSIS (48) 1 (2%) #URINARY BLADDER (55) (53)CALCULUS, NOS 1 (2%) HYPERPLASIA, EPITHELIAL 2 (4%) 21 (40%) ENDOCRINE SYSTEM (49) #PANCREATIC ISLETS (53)(53)12 (24%) HYPERPLASIA, NOS REPRODUCTIVE SYSTEM (55) (55) *PREPUTIAL GLAND (53)1 (2%) CALCULUS, NOS #PROSTATE (53) (5 1) (52)INFLAMMATION. ACUTE 1 (2%)

[#] NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY

^{*} NUMBER OF ANIMALS NECROPSIED

TABLE D1. MALE MICE: NONNEOPLASTIC LESIONS (CONTINUED)

CONTROL	LOW DOSE	HIGH DOSE
(55) 1 (2%) 1 (2%)	(55)	(53)
(55)	(55)	(53) 1 (2%)
(55) 5 (9%)	(55)	(53)
(55)	(55) 1 (2%)	(53)
1		
8	23	6 1
- 1	1	1
	(55) (55) (55) (55) (55) (55)	(55) (55) (55) (55) (55) (55) (55) (55) (1 (2%)

[#] NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECFORSIED

TABLE D2.

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE FED 0-ANISIDINE HYDROCHLORIDE IN THE DIET

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	55 55 55	55 52 52	55 54 54
INTEGUMENTARY SYSTEM NONF			
RESPIRATORY SYSTEM			
#LUNG ATFLECTASIS	(55) 1 (2%)	(51)	(52)
HEMATOPOTETIC SYSTEM			
#BONE MARROW MYTLOFIBROSIS HYPERPLASIA, HEMATOPOIETIC	(52) 31 (60%) 1 (2%)	(51)	(5 1)
#SPLEEN HYPERPLASIA, LYMPHOID HEMATOPOIESIS	(53) 1 (2%)	(52) 1 (2%)	(51) 1 (2%
#MPSFNTERIC L. NODE CONGESTION, NOS HYPERPLASIA, NOS	(47) 1 (2%) 2 (4%)	(45)	(47)
HYPERPLASIA, LYMPHOID			2 (4%
CIRCULATORY SYSTEM	(55)	45.4	47.4
#HFART PFRIARTERITIS	(55) 1 (2%)	(51)	(5 1)
DIGESTIVE SYSTEM			
*LIVER	(54)	(52) 1_(<u>2%</u>)	

^{*} NUMBER OF ANIMALS WITH TISSUE FXAMINED MICROSCOPICALLY

^{*} NUMBER OF ANIMALS NECROPSIED

TABLE D2. FEMALE MICE: NONNEOPLASTIC LESIONS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
MPTAMORPHOSIS FATTY		2 (4%)	
MEGALOCYTOSIS		1 (2%)	
HEMATOPOIESIS		1 (2%)	
PANCRFAS	(49)	(52)	(52)
DILATATION/DUCTS	1 (2%)		
CYSTIC DUCTS	0.44.77		1 (2%)
INPLAMMATION, CHPONIC METAMORPHOSIS FATTY	2 (4%)		1 (2%)
ATROPHY, NOS	1 (2%)		1 (2%)
ATROLITY NOS	. (2%)		
STOMACH	(53)	(52)	(53)
ULCER, NOS	1 (2%)		
EROSION	1 (2%)		
HYPEPPLASIA, EPITHELIAL	2 (4%)		
GASTRIC SEROSA	(53)	(52)	(5 3)
STEATITIS		1 (2%)	
NECROSIS, FAT		1 (2%)	
PFYERS PATCH	(52)	(52)	(52)
HYPEPPLASIA, LYMPHOID	, ,	, ,	1 (2%)
KIDNFY HEMATOMA, ORGANIZED STEATITIS PYELONEPHRITIS, CHPONIC NECROSIS, FAT	(55)	(52) 1 (2%) 1 (2%)	(54) 1 (2%)
HDTNADU DEADODD	<i>(E.O.)</i>	4E 4 \	(50)
URINARY BLADDER INFLAMMATION, ACUTF	(50)	(51) 1 (2%)	(50)
INFLAMMATION, ACUTE/CHRONIC		1 (2%)	
INPLAMMATION, CHRONIC	1 (2%)	, ,	3 (6%)
INFLAMMATION, CHRONIC DIFFUSE		1 (2%)	
HYPERPLASIA, EPITHELIAL		1 (2%)	12 (243
DOCRINE SYSTEM			
	(50)	(52)	(5.2)
	(50)	(52) 1 (2%)	(5 2)
ADRENAL	(50) (48)		(5 2) (3 8)

^{*} NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
* NUMBER OF ANIMALS NECROPSIED

TABLE D2. FEMALE MICE: NONNEOPLASTIC LESIONS (CONTINUED)

=======================================			
	CONTROL	LOW DOSE	HIGH DOSE
#PANCEFATIC ISLETS HYPERPLASIA, NOS	(49) 3 (6%)	(52)	(52)
REPRODUCTIVE SYSTEM			
#UTERUS HYDROMETRA	(54) 3 (6%)	(51)	(50) 1 (2%)
#UTERUS/ENDOMETRIUM HYPERPLASIA, CYSTIC	(54) 15 (28%)	(51) 36 (71%)	(50) 39 (78%)
#OVARY CYST, NOS HEMORRHAGIC CYST INFLAMMATION, ACUTE ABSCESS, NOS	(50) 7 (14%) 1 (2%) 1 (2%)	(46) 6 (13%) 1 (2%)	(52) 5 (10%)
NERVOUS SYSTFM			
*BRAIN/MENINGES INFLAMMATION, NOS PIBROSIS, FOCAL	(55) 1 (2%)	(48)	(5 2) 1 (2%)
#BPAIN HYDROCEPHALUS, NOS	(55) 2 (4%)	(48)	(5 2)
SPECIAL SENSE ORGANS			
11 0 11 12			
MUSCULOSKELETAL SYSTEM NONE			.
BODY CAVITIES			
*ABDOMINAL CAVITY NECROSIS, FAT	(55) 7 (13%)	(52)	(54)
*MESENTERYCYST_NOS	(55) 1_(2%)	(52)	(54)

^{*} NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
* NUMBER OF ANIMALS NECROPSIED

TABLE D2. FEMALE MICE: NONNEOPLASTIC LESIONS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
ALL OTHER SYSTEMS			
*MULTIPLE ORGANS PFRIARTERITIS	(55) 1 (2%)	(52)	(54)
OMENTUM STEATITIS NECROSIS, FAT		† 1	
SPFCIAL MORPHOLOGY SUMMARY			
NO LESION REPORTED AUTO/NECROPSY/HISTO PERF AUTOLYSIS/NO NECROPSY	1	4	1 1 1
AUTO/NECROPSY/HISTO PERF	1	·	1 1 1

^{*} NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
* NUMBER OF ANIMALS NFCROPSIED

APPENDIX E

ANALYSES OF THE INCIDENCE OF PRIMARY TUMORS

IN RATS FED o-ANISIDINE HYDROCHLORIDE IN THE DIET

Analyses of the Incidence of Primary Tumors in Male Rats Fed o-Anisidine Hydrochloride in the Diet^a Table El.

Topography: Morphology	Control	Low Dose	High Dose
Integumentary System: Fibroma ^b	4/54 (7)	0/55 (0)	0/53 (0)
P Values ^{c,d}	P = 0.015(N)	N.S.	N.S.
Relative Risk ^f Lower Limit Upper Limit		0.000 0.000 1.062	0.000 0.000 1.101
Weeks to First Observed Tumor	106	9-5	1
Hematopoietic System: Lymphoma or Leukemia ^b	18/54 (33)	1/55 (2)	1/53 (2)
P Values ^{c,d}	P < 0.001(N)	P < 0.001(N)	P < 0.001(N)
Departure from Linear Trend ^e	P = 0.004		
Relative Risk ^f Lower Limit Upper Limit		0.055 0.001 0.324	0.057 0.001 0.336
Weeks to First Observed Tumor	84	98	40

Analyses of the Incidence of Primary Tumors in Male Rats Fed o-Anisidine Hydrochloride in the Diet^a Table El.

(continued)			
Topography: Morphology	Control	Low	High Dose
Liver: Neoplastic Nodule or Hepatocellular Carcinoma ^b	0/54 (0)	4/55 (7)	0/52 (0)
P Values ^c ,d	N.S.	N.S.	N S
Departure from Linear Trende	P = 0.005	4	
Relative Risk ^f Lower Limit Upper Limit		Infinite 0.908 Infinite	
Weeks to First Observed Tumor	-	85	
Kidney or Kidney Pelvis: Transitional-cell Carcinoma ^b	0/53 (0)	3/55 (5)	7/53 (13)
P Values ^c ,d	P = 0.005	N.S.	P = 0.006
Relative Risk ^f Lower Limit Upper Limit		Infinite 0.578 Infinite	Infinite 1.937 Infinite
Weeks to First Observed Tumor	1	64	51

Analyses of the Incidence of Primary Tumors in Male Rats Fed o-Anisidine Hydrochloride in the ${\rm Diet}^a$ Table El.

Analyses of the Incidence of Primary Tumors in Male Rats Fed o-Anisidine Hydrochloride in the Diet^a Table El.

(continued)			
Topography: Morphology	Control	Low	High Dose
Pituitary: Chromophobe Adenoma ^b	4/48 (8)	(0) 64/0	0/47 (0)
P Values ^{c,d}	P = 0.015(N)	N. S.	N.S.
Relative Risk ^f Lower Limit Upper Limit		0.000 0.000 1.056	0.000 0.000 1.100
Weeks to First Observed Tumor	96	•	-
Pituitary: Adenoma, NOS, or Chromophobe Adenoma ^b	4/48 (8)	2/49 (4)	0/47 (0)
P Values ^{c,d}	P = 0.038(N)	N.S.	N.S.
Relative Risk ^f Lower Limit Upper Limit		0.490 0.046 3.246	0.000 0.000 1.100
Weeks to First Observed Tumor	06	103	1

Analyses of the Incidence of Primary Tumors in Male Rats Fed o-Anisidine Hydrochloride in the ${\rm Diet}^a$ Table El.

(continued)			
Topography: Morphology	Control	Low Dose	High Dose
Adrenal: Pheochromocytoma or Pheochromocytoma, Malignant ^b	14/54 (26)	0/55 (0)	0/53 (0)
P Values ^c ,d	P < 0.001(N)	P < 0.001(N)	P < 0.001(N)
Departure from Linear Trend ^e	P = 0.005		
Relative Risk ^f Lower Limit Upper Limit		0.000 0.000 0.226	0.000 0.000 0.234
Weeks to First Observed Tumor	73		1
Thyroid: C-cell Carcinoma ^b	0/53 (0)	2/40 (5)	(0) 07/0
P Values ^c ,d	N.S.	N.S.	N.S.
Departure from Linear Trend ^e	P = 0.030		
Relative Risk ^f Lower Limit Upper Limit		Infinite 0.392 Infinite	
Weeks to First Observed Tumor	1	87	-

Analyses of the Incidence of Primary Tumors in Male Rats Fed o-Anisidine Hydrochloride in the ${\sf Diet}^a$ Table El.

(continued)			
Topography: Morphology	Control	Low	High Dose
Thyroid: C-cell Adenoma or Carcinoma ^b	3/53 (6)	3/40 (8)	0/40 (0)
P Valuesc,d	N.S.	N.S.	N. S.
Relative Risk ^f Lower Limit Upper Limit		1.325 0.186 9.370	0.000 0.000 2.190
Weeks to First Observed Tumor	106	87	1
Thyroid: Follicular-cell Carcinoma ^b	0/53(0)	2/40 (5)	2/40 (5)
P Valuesc,d	N.S.	N.S.	N.S.
Relative Risk ^f Lower Limit Upper Limit		Infinite 0.392 Infinite	Infinite 0.392 Infinite
Weeks to First Observed Tumor	1 1	104	78

Analyses of the Incidence of Primary Tumors in Male Rats Fed o-Anisidine Hydrochloride in the Diet^a Table El.

(continued)			
		Low	High
Topography: Morphology	Control	Dose	Dose
Thyroid or Thyroid Follicle: Follicular-cell Carcinoma or	(0) 83/0	(8) 07/8	2760 (5)
rapilialy dystauenocaltinoma, NOS-	(0) 66 (0	(0) 01/0	(6) 0+17
P Valuesc,d	N.S.	N.S.	N.S.
Relative Risk ^f Lower Limit Upper Limit		Infinite 0.797 Infinite	Infinite 0.392 Infinite
Weeks to First Observed Tumor		91	78
Thyroid or Thyroid Follicle: Follicular-cell Adenoma, Cystadenoma, or Papillary Cystadenoma, NOS ^b	0/53 (0)	4/40 (10)	4/40 (10)
P Valuesc,d	P = 0.030	P = 0.031	P = 0.031
Relative Risk ^f Lower Limit Upper Limit		Infinite 1.229 Infinite	Infinite 1.229 Infinite
Weeks to First Observed Tumor	1	92	55

Analyses of the Incidence of Primary Tumors in Male Rats Fed o-Anisidine Hydrochloride in the Diet^a Table El.

(continued)			
Topography: Morphology	Control	Low	High
Thyroid: All Follicular-cell Tumors8	0/53 (0)	7/40 (17)	6/40 (15)
P Values ^c ,d	P = 0.009	P = 0.002	P = 0.005
Relative Risk ^f Lower Limit Upper Limit		Infinite 2.574 Infinite	Infinite 2.121 Infinite
Weeks to First Observed Tumor		91	55
Testis: Interstitial-cell Tumorb	53/54 (98)	43/52 (83)	4/51 (8)
P Values ^c ,d	P < 0.001(N)	P = 0.007(N)	P < 0.001(N)
Departure from Linear Trend ^e	P < 0.001		
Relative Risk ^f Lower Limit Upper Limit		0.843 0.809 0.968	0.080 0.060 0.161
Weeks to First Observed Tumor	73	7.1	62

Analyses of the Incidence of Primary Tumors in Male Rats Fed o-Anisidine Hydrochloride in the Diet^a Table E1.

Weeks to First Observed Tumor 87 77 61	// 8/ // Report of the control of th
United to the second se	

aDosed groups received 5,000 or 10,000 ppm in feed.

bNumber of tumor-bearing animals/number of animals examined at site (percent).

CBeneath the incidence of tumors in the control group is the probability level for the Cochranincidence of tumors in a dosed group is the probability level for the Fisher exact test for Armitage test when P < 0.05; otherwise, not significant (N.S.) is indicated. Beneath the the comparison of that dosed group with the control group when P < 0.05; otherwise, not significant (N.S.) is indicated.

Analyses of the Incidence of Primary Tumors in Male Rats Fed o-Anisidine Hydrochloride in the Diet^a Table El.

(continued)

dA negative trend (N) indicates a lower incidence in a dosed group than in a control group.

^eThe probability level for departure from linear trend is given when P < 0.05 for any comparison.

fThe 95% confidence interval of the relative risk between each dosed group and the control group. 8These tumors include follicular-cell adenoma, follicular-cell carcinoma, cystadenoma, NOS, papillary cystadenoma, NOS and papillary cystadenocarcinoma, NOS.

Analyses of the Incidence of Primary Tumors in Female Rats Fed o-Anisidine Hydrochloride in the Diet^a Table E2.

Topography: Morphology	Control	Low	High Dose
Hematopoietic System: Lymphoma or Leukemia ^b	9/54 (17)	1/53 (2)	0/54 (0)
P Valuesc,d	P < 0.001(N)	P = 0.009(N)	P = 0.001(N)
Relative Risk ^f Lo <mark>we</mark> r Limit Upper Limit		0.113 0.003 0.773	0.000 0.000 0.382
Weeks to First Observed Tumor	91	78	1
Salivary Gland: Adenoma, NOSb	3/52 (6)	0/51 (0)	0/47 (0)
P Values C, d	P = 0.043(N)	N.S.	N.S.
Relative Risk ^f Lower Limit Upper Limit		0.000 0.000 1.697	0.000 0.000 1.837
Weeks to First Observed Tumor	107	-	-

Analyses of the Incidence of Primary Tumors in Female Rats Fed o-Anisidine Hydrochloride in the ${\sf Diet}^a$ Table E2.

(continued)			
Topography: Morphology	Control	Low Dose	High Dose
Urinary Bladder: Transitional-cell Papilloma ^b	(0) 67/0	5/49 (10)	0/51 (0)
P Values ^{c,d}	N.S.	P = 0.028	N.S.
Departure from Linear Trend ^e	P = 0.002		
Relative Risk ^f Lower Limit Upper Limit		Infinite 1.262 Infinite	
Weeks to First Observed Tumor	1	74	1
Urinary Bladder: Transitional-cell Carcinoma ^b	(0) 67/0	41/49 (84)	50/51 (98)
P Values ^{c,d}	P < 0.001	P < 0.001	P < 0.001
Departure from Linear Trend ^e	P < 0.001		
Relative Risk ^f Lower Limit Upper Limit		Infinite 14.250 Infinite	Infinite 18.754 Infinite
Weeks to First Observed Tumor		61	36

Analyses of the Incidence of Primary Tumors in Female Rats Fed o-Anisidine Hydrochloride in the ${\rm Diet}^{\rm A}$ Table E2.

(continued)			
Topography: Morphology	Control	Low	High Dose
Urinary Bladder: Transitional-cell Papilloma or Carcinoma ^b	(0) 67/0	(76) 67/97	50/51 (98)
P Values ^C ,d	P < 0.001	P < 0.001	P < 0.001
Departure from Linear Trend ^e	P < 0.001		
Relative Risk ^f Lower Limit Upper Limit		Infinite 16.833 Infinite	Infinite 18.754 Infinite
Weeks to First Observed Tumor	1	61	36
Pituitary: Carcinoma, NOS ^b	3/48 (6)	0/51 (0)	0/45 (0)
P Values ^c ,d	P = 0.039(N)	N. S.	N. S.
Relative Risk ^f Lower Limit Upper Limit		0.000 0.000 1.565	0.000 0.000 1.768
Weeks to First Observed Tumor	68	1	1

Analyses of the Incidence of Primary Tumors in Female Rats Fed o-Anisidine Hydrochloride in the ${\rm Diet}^{\rm a}$ Table E2.

(continued)			
Topography: Morphology	Control	Low	High Dose
Pituitary: Chromophobe Adenoma ^b	15/48 (31)	0/51 (0)	0/45 (0)
P Values ^c ,d	P < 0.001(N)	P < 0.001(N)	P < 0.001(N)
Departure from Linear Trend ^e	P = 0.003		
Relative Risk ^f Lower Limit Upper Limit		0.000 0.000 0.200	0.000 0.000 0.226
Weeks to First Observed Tumor	74	-	1
Pituitary: Chromophobe Carcinoma or Carcinoma, NOS ^b	4/48 (8)	0/51 (0)	0/45 (0)
P Valuesc,d	P = 0.016(N)	N.S.	N.S.
Relative Risk ^f Lower Limit Upper Limit		0.000 0.000 1.016	0.000 0.000 1.147
Weeks to First Observed Tumor	89	1	1

Analyses of the Incidence of Primary Tumors in Female Rats Fed o-Anisidine Hydrochloride in the ${\rm Diet}^a$ Table E2.

(continued)			
Topography: Morphology	Control	Low Dose	High Dose
Pituitary: Adenoma, NOS, Chromophobe Adenoma, or Acidophil Adenoma ^b	17/48 (35)	9/51 (18)	1/45 (2)
P valuesc,d	P < 0.001(N)	P = 0.037(N)	P < 0.001(N)
Relative Risk ^f Lower Limit Upper Limit		0.498 0.219 1.060	0.063 0.002 0.372
Weeks to First Observed Tumor	74	72	99
Adrenal: Pheochromocytoma ^b	3/53 (6)	1/53 (2)	1/54 (2)
P Values ^c ,d	N.S.	N. S.	N.S.
Relative Risk ^f Lower Limit Upper Limit		0.333 0.006 3.993	0.327 0.006 3.921
Weeks to First Observed Tumor	107	97	55

Analyses of the Incidence of Primary Tumors in Female Rats Fed o-Anisidine Hydrochloride in the ${\rm Diet}^a$ Table E2.

(continued)			
Topography: Morphology	Control	Low Dose	High Dose
Thyroid. C-coll Carcinomab	(9) 67/8	1/45 (2)	(0) 97/0
ווין וינותי יינוד כמוכוווטוומ	(2) (2)	(7) (1)	
P Values ^{c,d}	N.S.	N.S.	N.S.
Relative Risk ^f Lower Limit		0.363	0.000
Upper Limit		4•321	1.70/
Weeks to First Observed Tumor	107	95	-
Thyroid C-cell Adenoma			
or Carcinoma ^b	(8) 67/7	1/45 (2)	(0) 97/0
P Values ^{c,d}	P = 0.031(N)	N.S.	N.S.
Relative Risk ^f		0.272	00000
Lower Limit Upper Limit		0.006 2.615	1.146
Weeks to First Observed Tumor	107	95	-

Analyses of the Incidence of Primary Tumors in Female Rats Fed o-Anisidine Hydrochloride in the Diet^a Table E2.

(continued)			
		Low	High
Topography: Morphology	Control	Dose	Dose
Thyroid: Follicular-cell Carcinoma ^b	(0) 67/0	3/45 (7)	(0) 97/0
P Valuesc,d	N.S.	N.S.	N.S.
Departure from Linear Trend ^e	P = 0.011		
Relative Risk ^f		Infinite	!
Lower Limit Upper Limit		0.656 Infinite	
Weeks to First Observed Tumor	-	79	-
Thyroid: All Follicular-cell Tumors8	1/49 (2)	4/45 (9)	3/46 (7)
P Valuesc,d	N.S.	N. S.	N.S.
Relative Risk ^f		4.356	3.196
Lower Limit		0.453	0.268
Upper Limit		209.417	164.012
Weeks to First Observed Tumor	7.7	79	57

Analyses of the Incidence of Primary Tumors in Female Rats Fed o-Anisidine Hydrochloride in the ${\sf Diet}^a$ Table E2.

(continued)			
Topography: Morphology	Control	Low	High Dose
Subcutaneous Tissue or Mammary Gland: Fibroadenoma ^b	16/54 (30)	2/53 (4)	0/54 (0)
P Valuesc,d	P < 0.001(N)	P < 0.001(N)	P < 0.001(N)
Departure from Linear Trend ^e	P = 0.033		
Relative Risk ^f Lower Limit Upper Limit		0.127 0.015 0.505	0.000 0.000 0.198
Weeks to First Observed Tumor	66	06	1
Uterus: Endometrial Stromal Polyp ^b	16/52 (31)	6/50 (12)	0/20 (0)
P Valuesc, d	P < 0.001(N)	P = 0.019(N)	P < 0.001(N)
Relative Risk ^f Lower Limit Upper Limit		0.390 0.136 0.955	0.000 0.000 0.206
Weeks to First Observed Tumor	89	99	1

Analyses of the Incidence of Primary Tumors in Female Rats Fed o-Anisidine Hydrochloride in the Dieta Table E2.

(continued)

a Dosed groups received 5,000 or 10,000 ppm in feed.

^bNumber of tumor-bearing animals/number of animals examined at site (percent).

CBeneath the incidence of tumors in the control group is the probability level for the Cochranincidence of tumors in a dosed group is the probability level for the Fisher exact test for Armitage test when P < 0.05; otherwise, not significant (N.S.) is indicated. Beneath the the comparison of that dosed group with the control group when P < 0.05; otherwise, not significant (N.S.) is indicated.

dA negative trend (N) indicates a lower incidence in a dosed group than in a control group.

^eThe probability level for departure from linear trend is given when P < 0.05 for any comparison.

 $^{
m f}$ The 95% confidence interval of the relative risk between each dosed group and the control

8These tumors include undifferentiated carcinoma, follicular-cell adenoma, follicular-cell carcinoma or papillary cystadenoma, NOS.

APPENDIX F

ANALYSES OF THE INCIDENCE OF PRIMARY TUMORS

IN MICE FED o-ANISIDINE HYDROCHLORIDE IN THE DIET

Analyses of the Incidence of Primary Tumors in Male Mice Fed o-Anisidine Hydrochloride in the ${\rm Diet}^a$ Table F1.

Topography: Morphology	Control	Low Dose	High Dose
Lung: Alveolar/Bronchiolar Carcinoma ^b	6/54 (11)	6/54 (11)	0/52 (0)
P Values ^c ,d	P = 0.024(N)	N . S .	P = 0.015(N)
Relative Risk ^f Lower Limit Upper Limit		1.000 0.285 3.508	0.000 0.000 0.650
Weeks to First Observed Tumor	105	104	-
Lung: Alveolar/Bronchiolar Adenoma or Carcinoma ^b	12/54 (22)	9/54 (17)	2/52 (4)
P Valuesc,d	P = 0.006(N)	N.S.	P = 0.005(N)
Relative Risk ^f Lower Limit Upper Limit		0.750 0.304 1.774	0.173 0.020 0.727
Weeks to First Observed Tumor	79	104	105

Analyses of the Incidence of Primary Tumors in Male Mice Fed o-Anisidine Hydrochloride in the Diet $^{\rm a}$ Table F1.

(continued)			
Topography: Morphology	Control	Low	High Dose
Hematopoietic System: Lymphoma or Leukemia ^b	4/55 (7)	4/55 (7)	1/53 (2)
P Values ^c ,d	N.S.	N.S.	N.S.
Relative Risk ^f Lower Limit Upper Limit		1.000 0.196 5.110	0.259 0.005 2.510
Weeks to First Observed Tumor	105	71	88
Liver: Hepatocellular Carcinoma ^b	24/54 (44)	13/54 (24)	7/52 (13)
P Values ^c ,d	P < 0.001(N)	P = 0.021(N)	P < 0.001(N)
Relative Risk ^f Lower Limit Upper Limit		0.542 0.288 0.980	0.303 0.122 0.651
Weeks to First Observed Tumor	53	88	83

Analyses of the Incidence of Primary Tumors in Male Mice Fed o-Anisidine Hydrochloride in the ${\sf Diet}^a$ Table F1.

(continued)			
Toronthire Mornhologic	000+401	Low	High
Topography:	COULTION	ason	nose.
Liver: Hepatocellular Adenoma or Carcinoma ^b	28/54 (52)	13/54 (24)	7/52 (13)
P Valuesc,d	P < 0.001(N)	P = 0.003(N)	P < 0.001(N)
Relative Risk ^f Lower Limit Upper Limit		0.464 0.254 0.815	0.260 0.108 0.543
Weeks to First Observed Tumor	53	88	83
Urinary Bladder: Transitional-cell Carcinoma ^b	0/48 (0)	0/55 (0)	15/53 (28)
P Valuesc,d	P < 0.001	N.S.	P < 0.001
Departure from Linear Trende	P = 0.004		
Relative Risk ^f		1	Infinite
Lower Limit		1	4.267
Upper Limit		1	Infinite
Weeks to First Observed Tumor	-	-	45

Analyses of the Incidence of Primary Tumors in Male Mice Fed o-Anisidine Hydrochloride in the ${\sf Diet}^a$ Table F1.

(continued)			
Topography: Morphology	Control	Low	High Dose
Urinary Bladder: Transitional-cell Papilloma or Carcinoma ^b	(0) 87/0	2/55 (4)	22/53 (42)
P Valuesc,d	P < 0.001	N.S.	P < 0.001
Departure from Linear Trend ^e	P = 0.005		
Relative Risk ^f Lower Limit Upper Limit		Infinite 0.258 Infinite	Infinite 6.486 Infinite
Weeks to First Observed Tumor		104	45
Adrenal/Capsule: Adenoma, NOS ^b	5/50 (10)	0/53 (0)	0/52 (0)
P Valuesc,d	P = 0.006(N)	P = 0.024(N)	P = 0.025(N)
Relative Risk ^f Lower Limit Upper Limit		0.000 0.000 0.749	0.000 0.000 0.763
Weeks to First Observed Tumor	105		1

(continued)

aDosed groups received 2,500 or 5,000 ppm in feed.

^bNumber of tumor-bearing animals/number of animals examined at site (percent).

CBeneath the incidence of tumors in the control group is the probability level for the Cochranincidence of tumors in a dosed group is the probability level for the Fisher exact test for Armitage test when P < 0.05; otherwise, not significant (N.S.) is indicated. Beneath the the comparison of that dosed group with the control group when P < 0.05; otherwise, not significant (N.S.) is indicated.

dA negative trend (N) indicates a lower incidence in a dosed group than in a control group.

^eThe probability level for departure from linear trend is given when P < 0.05 for any comparison.

fThe 95% confidence interval of the relative risk between each dosed group and the control group.

Analyses of the Incidence of Primary Tumors in Female Mice Fed o-Anisidine Hydrochloride in the Diet^a Table F2.

Topography: Morphology	Control	Low Dose	High Dose
Lung: Alveolar/Bronchiolar Adenoma or Carcinoma ^b	4/55 (7)	2/51 (4)	1/52 (2)
P Values ^c ,d	N.S.	N.S.	N.S.
Relative Risk ^f Lower Limit Upper Limit		0.539 0.050 3.586	0.264 0.005 2.557
Weeks to First Observed Tumor	105	105	105
Hematopoietic System: Lymphoma or Leukemia ^b	18/55 (33)	12/52 (23)	6/54 (11)
P Values ^c ,d	P = 0.005(N)	N.S.	P = 0.006(N)
Relative Risk ^f Lower Limit Upper Limit		0.705 0.345 1.385	0.340 0.120 0.815
Weeks to First Observed Tumor	86	78	34

Analyses of the Incidence of Primary Tumors in Female Mice Fed o-Anisidine Hydrochloride in the ${\rm Diet}^a$ Table F2.

(continued)			
		Low	High
Topography: Morphology	Control	Dose	Dose
Liver: Hepatocellular Carcinoma ^b	7/54 (13)	0/52 (0)	4/53 (8)
P Valuesc,d	N. S.	P = 0.007(N)	N. S.
Departure from Linear Trend ^e	P = 0.017		
Relative Risk ^f Lower Limit Upper Limit		0.000 0.000 0.536	0.582 0.132 2.148
Weeks to First Observed Tumor	101		81
Liver: Hepatocellular Adenoma, Carcinoma, or Neoplastic Nodule ^b	11/54 (20)	1/52 (2)	4/53 (8)
P Valuesc,d	P = 0.020(N)	P = 0.002(N)	N. S.
Departure from Linear Trend ^e	P = 0.018		
Relative Risk ^f Lower Limit Upper Limit		0.094 0.002 0.613	0.370 0.091 1.161
Weeks to First Observed Tumor	59	105	81

Analyses of the Incidence of Primary Tumors in Female Mice Fed o-Anisidine Hydrochloride in the Diet^a Table F2.

(continued)			
Topography: Morphology	Control	Low	High Dose
Urinary Bladder: Transitional-cell Carcinoma ^b	(0) 05/0	0/51 (0)	18/50 (36)
P Valuesc,d	P < 0.001	N. S.	P < 0.001
Departure from Linear Trend ^e	P = 0.001		
Relative Risk ^{f.} Lower Limit Upper Limit			Infinite 5.758 Infinite
Weeks to First Observed Tumor		-	81
Urinary Bladder: Transitional-cell Papilloma or Carcinoma ^b	(0) 05/0	1/51 (2)	22/50 (44)
P Values ^c ,d	P < 0.001	N. S.	P < 0.001
Departure from Linear Trend ^e	P = 0.001		
Relative Risk ^f Lower Limit Upper Limit		Infinite 0.053 Infinite	Infinite 7.163 Infinite
Weeks to First Observed Tumor	!	105	81

Analyses of the Incidence of Primary Tumors in Female Mice Fed o-Anisidine Hydrochloride in the Dieta Table F2.

(continued)			
		Low	High
Topography: Morphology	Control	Dose	Dose
Pituitary: Chromophobe Adenoma ^b	2/42 (5)	(0) 07/0	0/43 (0)
P Values C, d	N.S.	N · S ·	N.S.
Relative Risk ^f Lower Limit Upper Limit		0.000 0.000 3.526	0.000 0.000 3.287
Weeks to First Observed Tumor	105	-	1

^aTreated groups received doses of 2,500 or 5,000 ppm in feed.

^bNumber of tumor-bearing animals/number of animals examined at site (percent).

^CBeneath the incidence of tumors in the control group is the probability level for the Cochranincidence of tumors in a treated group is the probability level for the Fisher exact test for Armitage test when P < 0.05; otherwise, not significant (N.S.) is indicated. Beneath the the comparison of that treated group with the control group when P < 0.05; otherwise, not significant (N.S.) is indicated.

dA negative trend (N) indicates a lower incidence in a treated group than in a control group.

eThe probability level for departure from linear trend is given when P < 0.05 for any comparison.

fThe 95% confidence interval of the relative risk between each treated group and the control group.

APPENDIX G

ANALYSIS OF FORMULATED DIETS FOR

O-ANISIDINE HYDROCHLORIDE CONCENTRATION

APPENDIX G

Analysis of Formulated Diets for o-Anisidine Hydrochloride Concentration

Duplicate 2-g samples of the diet mixtures were each shaken with 50 ml of 95% ethanol for 15 minutes. The mixture was allowed to settle overnight, and the absorbance of the supernatant, after appropriate dilution, was measured at 270 nm against a "blank" extracted from 2 g of the same feed used to prepare the diet mixtures. Concentrations were determined by comparison with standard solutions. Recoveries were determined from duplicate spiked feed samples worked up simultaneously with each set of diet samples. The average recovery from the 0.5% spiked feed samples was 80%.

Theoretical Concentrations In Diet (% in Feed)	No. of Samples	Sample Analytical Mean (% in Feed)	Coefficient of Variation (%)	Range (% in feed)
0.25	6	0.26	24.4	0.16-0.33
0.5	6	0.44	11.8	0.36-0.51
1.0	5	0.97	9.5	0.86-1.11

Review of the Bioassay of o-Anisidine Hydrochloride*
for Carcinogenicity
by the Data Evaluation/Risk Assessment Subgroup of the
Clearinghouse on Environmental Carcinogens

April 26, 1978

The Clearinghouse on Environmental Carcinogens was established in May, 1976, in compliance with DHEW Committee Regulations and the Provisions of the Federal Advisory Committee Act. The purpose of the Clearinghouse is to advise the Director of the National Cancer Institute (NCI) on its bioassay program to identify and to evaluate chemical carcinogens in the environment to which humans may be The members of the Clearinghouse have been drawn from academia, industry, organized labor, public interest groups, State health officials, and quasi-public health and research organizations. Members have been selected on the basis of their experience in carcinogenesis or related fields and, collectively, provide expertise in chemistry, biochemistry, biostatistics, toxicology, pathology, and epidemiology. Representatives of various Governmental agencies participate as ad hoc members. The Data Evaluation/ Risk Assessment Subgroup of the Clearinghouse is charged with the responsibility of providing a peer review of reports prepared on NCI-sponsored bioassays of chemicals studied for carcinogenicity. It is in this context that the below critique is given on the bioassay of o-Anisidine Hydrochloride for carcinogenicity.

The primary reviewer said that the compound was carcinogenic in both the treated rats and mice, under the conditions of test. Although a different batch of the test chemical was used for the subchronic and chronic phases, each was reported to be more than 99% pure. Transitional-cell carcinomas and papillomas of the urinary bladder were induced, in a dose-related fashion, in both species. Transitional-cell carcinomas of the renal pelvis and follicular-cell tumors of the thyroid also were induced in treated male rats. Although there were a number of experimental shortcomings, including poor survival, the primary reviewer said that the conclusion on the carcinogenicity of o-Anisidine Hydrochloride was still valid.

The secondary reviewer also agreed that o-Anisidine Hydrochloride was carcinogenic under the conditions of test. He added that the chemical may pose a carcinogenic risk to humans, especially in occupational situations.

It was moved that the report on the bioassay of o-Anisidine Hydrochloride be accepted as written. The motion was seconded and approved unanimously.

Members present were:

Michael Shimkin (Acting Chairman), University of California at San Diego Joseph Highland, Environmental Defense Fund George Roush, Jr., Monsanto Company Louise Strong, University of Texas Health Sciences Center John Weisburger, American Health Foundation

^{*} Subsequent to this review, changes may have been made in the bioassay report either as a result of the review or other reasons. Thus, certain comments and criticisms reflected in the review may no longer be appropriate.

	DATE DUE			
		·		
NH	y			
Amazing Research. Amazing Heip. http://nihlibrary.nih.gov				
10 Center Drive Bethesda, MD 20892-1150 301-496-1080				
	GAYLORD			FRINTED IN U.S.A.

NIH LIBRARY 4 0129 3087

