Week 1

Introduction to Data Design

Matthew Bebis

UNIVERSITY of GUELPH

Chewbacca

Class Expectations

- 1. Ask questions if you are confused
- 2. Try not to distract your classmates
- 3. During lessons, use technology only for legitimate class activities (note-taking, assigned tasks)
- 4. Participate when asked

Instructor Expectations

What do you expect from me?

This Week

- Introduction to Data Design
- Lab 1 (5%)

The Need for Data Design

- To understand what and why we want to create software
 - o To build a movie website, information above movies should be defined first
- By defining data and its format needed first, we structure information and gain the ability to make future decisions about how to build/design our software

416-439-0000

Data
Raw values
4164390000

↓
Information
Data with context
416-439-0000

↓
Knowledge
Ability to make decisions

What is Data?

- Data is a collection of information
- An individual piece of information is a 'datum'
 - Datum is the singular form of data
- Every application utilizes data in some way and that data usually needs to be stored somewhere
- Databases are the solution for storing data

What is a Database?

- A database is a structured way to store data
- Databases are systems used to access, manage, and update data
- There are many types of databases, each structuring data in specific formats
- One of the most common is the relational database
 - o Relational DBs (databases) are also the main focus of this course

Relational Databases

- Relational databases hold tables
- Tables store data in rows and columns (Just like a spreadsheet!)
- Tables within a database may hold related data, hence why these databases are relational

Tables

- Tables should represent an object, subject, or concept
- Each column represents an individual data property of the object
 - Ex: a student table would have a student ID and a name

Students	
Student_ID First Name Last Name	

- Each row represents an individual instance of that represented object
 - Ex: an individual student would have an id "n12345678" and name "George Springer"

Student_ID	First Name	Last Name
n12345678	George Springer	
n09876543	Auston	Matthews
n00000000	Natalie	Spooner
n99999999	Lorenzo	Insigne

Relational Databases Example

Student_ID	First Name	Last Name
n12345678	George	Springer
n09876543	Auston	Matthews
n00000000	Natalie	Spooner
n99999999	Lorenzo	Insigne

Course_ID	Name	Instructor
HTTP5126	Database Design & Development	Matthew Bebis
HTTP5122	Front End Web Development	Sean Doyle

Grade	Title	Student_ID	Course_ID
99%	Lab 1	n12345678	HTTP5126
66%	Lab 1	n09876543	HTTP5126
88%	Lab 1	n00000000	HTTP5126
77%	Lab 1	n99999999	HTTP5126
100%	Quiz 1	n12345678	HTTP5126
60%	Quiz 1	n09876543	HTTP5126
80%	Quiz 1	n00000000	HTTP5126
90%	Quiz 1	n99999999	HTTP5126

Relational Databases Summary

- Databases hold Tables
- Tables hold pieces of Data about a single subject
- Relational Databases allow Tables to connect (relate) to each other to each other

Designing Databases (Ex. Social Media)

- What data do we need to show the user?
- How can we organize the data?
- What data relates to a single object, subject, or context?
- What data is connected?

Week 1 Terminology

- **Data:** a collection of information for reference or analysis
- Datum: An individual data value
 - Datum is the singular form of data
- **Database (DB):** Organized collection of structured information (data)
 - o **DB** is an acronym from the original "data base", this acronym is common in com-sci field
- Relational Database: Organized collection data of one or more tables.
 Tables are related through shared fields.
- **Tables:** Data stored in columns and rows. Spreadsheets are an example of a table, but a spreadsheet is NOT a database.
 - Tables should represent a single subject that may have multiple properties
 - Columns: 1 property of the subject stored in a table
 - Rows: 1 instance of the subject stored in a table

Next Week

- Introduction to SQL
- Accessing Data
- Lab 2 (5%)