Project Assignment 2 Project Report

First Name: Viswa Nihar Last Name: Nukala UBID: 50414392

First Name: Nithin Sastry Last Name: Tellapuri UBID: 50365532

First Name: Amartya Last Name: Banerjee UBID: 50425019

Introduction:

In this assignment, we must implement a Multilayer Perceptron and evaluate its performance in classifying handwritten digits. Same code must be used to analyze a CelebA dataset. We should also compare the performance with a deep neural network and Convolutional Neural Network, which are implemented using tensor flow.

Pre-Processing:

The first thing which needs to be done to the dataset is to do preprocessing. We do the following things in pre-processing:

- Divide the data set into different data sets to train and the test the Neural Network model we are designing
- Do feature selection

As part of the first point, we divide the dataset train data, test data and validation data which is used to train, test, and validate the model.

As part of the second point, we do feature selection based on the description given in the pdf. It is mentioned that there are many rows which may have the same data, hence this data will not be useful and will just be repetitive and we can ignore this data. After applying the above logic to the dataset, we can see the following are the indices which are distinct and are hence useful:

12	13	14 1	.5 32	33	34	35	36 3	7 38	39	40	41	42 4	3 44	45	46	47	48 49	50	51	58
59	60		2 63	64	65	66		8 69	70	71	72		4 75	76	77	78	79 80		86	87
88	89		1 92	93	94	95		7 98	99	100	101	102	103	104	105	106	107	108	109	110
113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133
134	135	136	137	138	139	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156
157	158	159	160	161	162	163	164	165	166	167	169	170	171	172	173	174	175	176	177	178
179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199
200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241
242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262
263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283
284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304
305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325
326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346
347	348	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367
368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388
389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	409
410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430
431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	450	451
452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472
473	474	475	477	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494
495	496	497	498	499	500	501	502	503	504	505	506	507	508	509	510	511	512	513	514	515
516	517	518	519	520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536
537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557
558	559	561	562	563	564	565	566	567	568	569	570	571	572	573	574	575	576	577	578	579
580	581	582	583	584	585	586	587	588	589	590	591	592	593	594	595	596	597	598	599	600
601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619	620	621
622	623	624	625	626	627	628	629	630	631	632	633	634	635	636	637	638	639	640	641	642
643	646	647	648	649	650	651	652	653	654	655	656	657	658	659	660	661	662	663	664	665
666	667	668	669	670	674	675	676	677	678	679	680	681	682	683	684	685	686	687	688	689
690	691	692	693	694	695	696	697	698	702	703	704	705	706	707	708	709	710	711	712	713
714	715	716	717	718	719	720	721	722	723	724	725	726	731	732	733	734	735	736	737	738
739	740	741	742	743	744	745	746	747	748	749	750	751	752	753	760	761	762	763	764	765
766	767	768	769	770	771	772	773	774	775	776	777	778	779							
Numb	er of	Teatur	es sele	ectea:	717															

We also need to save all there features in the params.pickle so that these can be used to pre-process the data again for the CelebA dataset.

nnObjFunction:

In this function we implement the logic required for to do both the forward propagation and the backward propagation using regularization term too. To complete this we also use the **sigmoid** function which performs sigmoid over the given value (doesn't matter if it is a scalar

value or matrix or a vector). I have also implemented the **sig_derivative** function which computes the sigmoid derivative value. The return value for this function is an obj_value and an obj_grad which is going to be used by the minimize function.

nnPredict:

This function predicts the values based on the model trained and returns a set of labels. These labels will be used to predict the accuracies for test data, train data and validation data.

Choosing Hyper-Parameters:

Hyper-parameters are λ and m. As given in the document we need to choose the best hyper-parameters by testing different values and getting the highest accuracy.

λ is the regularization term which is used to prevent over-fitting. We also change the number of hidden units in a layer to change its effect and increase efficiency.

We change the value of λ from 10-60 with an increment of 10 and for each λ value, we also compute accuracies by changing the value of m from the range of 4-20 with an increment of 4. We also note down the training time taken to train the model to compare it later.

After gathering the data for all the different combinations of we choose the best λ and m value with the highest test accuracy.

Following is the top 5 data frame for which the test accuracy was the highest:

λ	m	Train_Accuracy	Validation_Accuracy	Test_Accuracy	Training_Time
30	20	93.492	93.06	93.26	24.107
40	16	93.194	93.11	93.15	23.7246
0	20	93.48	92.88	93.13	25.1082
60	20	92.724	92.61	92.92	23.9794
0	16	93.434	93.13	92.92	24.3978

So, from this table we can see that $\lambda=30$ and m=20 gives us the highest test accuracy which is **93.26**%

Following is the data with $\lambda=30$ and varying the m as 4,8,12,16,20:

λ	m	Train_Accuracy	Validation_Accuracy	Test_Accuracy	Training_Time
30	4	63.486	63.53	62.71	15.811
30	8	84.858	84.36	85.01	18.1268
30	12	91.088	90.9	91.14	20.9677
30	16	92.362	92.1	92.01	23.913
30	20	93.492	93.06	93.26	24.107

We also need to plot the values of λ (with m=20) vs accuracy which shows the variation of test accuracy, train accuracy and validation accuracy.

Figure (1) shows the above variation discussed. From the figure we can say that initially the data was underfit and as we increase the λ value the model continues to underfit until it starts fitting the data properly and hence the accuracy increases. After the optimal point λ =30, the

model starts overfitting again. After some point it starts to underfit again.

Figure (2) shows the relationship between the accuracies and the value of hidden nodes (m) by keeping λ constant at 30.

We can infer from the graph that as the number of hidden nodes are increased, the accuracy also increases as it reaches the local optimum. We can also see that all the three accuracies almost the same for the fixed λ .

We can see that m=20 gives us the best value.

Figure (3) depicts the training time vs the number of hidden units.

We can infer from the graph that the time take increases as the number of hidden units are increased. This is expected as there are more hidden units, there can be more values which needs to be calculated and that too twice as both forward and backward propagation needs to be done.

Hence, care needs to be taken when choosing hidden units as even though accuracy may increase, the time taken to train increases.

Accuracy with the best hyper-parameters for handwritten digits:

Following data is observed when the hyper-parameters are

Train Accuracy = 93.482

Validation Accuracy = 93.06

Validation Accuracy = 93.26

Accuracy of classification on CelebA dataset:

I have copied the functions, sigmoid(), nnObjFunction() and nnPredict() and run the facennScript.py with $\lambda=10$.

Following are the results we get from running facennScript.py:

Training set Accuracy:84.70142180094786%

Validation set Accuracy:83.15196998123827%

Test set Accuracy:84.93565480696442%

Accuracy from Deep Neural Networks (DNN) using TensorFlow:

Single Layer facennScript.py is run on my local machine and deepnnScript.py with different layers is run on timberlake, hence the large difference in the value of training times.

Number of Layers	Model	Training Time (s)	Accuracy (%)
1	Neural Network	85.402	85.54
3	Deep Neural Network	662.352	78.43
5	Deep Neural Network	750.535	75.78
7	Deep Neural Network	972.507	74.53

We can infer from the table that as we increase the number of layers, the training time also increases. Accuracy also decreases as we increase the number of layers. One of the reasons why this happens is due to overfitting.

Running Convolutional Neural Networks using TensorFlow:

cnnScript.py contains code to run Convolutional Neural Networks using TensorFlow.

We run the CNN by increasing the number of iterations and check how the accuracy and training time varies.

Number of Iterations	Training Time (s)	Accuracy (%)		
0	-	9.7		
1	0	10.7		
100	7	71.0		
1000	62	93.6		
10000	614	98.7		

From the above table, we can say that as we increase the number of iterations, the accuracy also increases. Training also takes a lot of time as we are increasing the number of iterations.

Following is the confusion matrix obtained from the running the CNN for 10000 iterations:

Confusion Matrix:										
]]	972	0	0	0	0	1	2	1	4	0]
[0	1128	2	0	0	0	0	0	5	0]
[0	2	1015	0	1	0	0	3	11	0]
[0	0	1	1003	0	1	0	2	3	0]
[0	0	0	0	975	0	1	2	3	1]
[2	0	0	7	0	872	3	0	6	2]
[4	3	0	0	2	3	941	0	5	0]
[0	2	7	1	0	0	0	1015	3	0]
[3	0	1	1	0	0	1	1	966	1]
[1	4	0	3	7	1	1	2	7	983]]

Following is the plot of the confusion matrix:

