Welcome To My Presentation

My Presentation Topics is

Flip Flops & The Practical use Cases

Presented By

Tushar Sarkar

Student ID: 18CSE035

Second Year Second Semester

Department of CSE, BSMRSTU.

Content

- □ What is Flip flop?
- □ Types Of Flip Flop
- □ SR Flip Flop
- □ D Flip Flop
- □ JK Flip Flop
- □ T Flip Flop
- ☐ The Practical Uses of Flip Flop

What is Flip Flop?

- ▶ A flip flop is an electronic circuit with two stable states that can be used to store binary data, bit 1 or bit 0.
- ▶ The stored data can be changed by applying varying inputs.
- ► The designing of the flip flop circuit can be done by using <u>logic gates</u> such as two NAND and NOR gates.
- ► Each flip flop consists of two inputs and two outputs, namely set and reset, Q and Q'.
- ▶ This kind of flip flop is stated to as an SR flip flop.

Types of Flip Flop

► Flip flop circuits are classified into four types based on its use, Namley-

- SR-Flip Flop
- D Flip Flop
- JK Flip Flop
- T Flip Flop

SR Flip Flop

- ▶ The SR-flip flop is built with two AND gates and a basic NOR flip flop.
- ► The o/ps of the two AND gates remain at 0 as long as the CLK pulse is 0, irrespective of the S and R i/p values.
- ▶ When the CLK pulse is 1, information from the S and R inputs permits through the basic FF.
- ▶ When S=R=1, the clock pulse occurrence roots both the o/ps go to 0.
- ▶ When the CLK pulse is detached, the state of the FF is unstated.

SR Flip Flop

NAND Gate SR Flip-flop:

NOR Gate SR Flip-flop

JK Flip Flop

- ▶ A JK-FF is a simplification of the SR-flip flop. The inputs of the J and K flip flops behave like the inputs S & R.
- ▶ When input 1 is applied to both the inputs J and K, then the FF switches to its complement state. The designing of the JK FF can be done in such a way that the o/p Q is ANDed with P and.
- ▶ This procedure is made so that the FF is cleared during a CLK pulse only if the output was previously 1. In the same way, the output is ANDed with J & CP so that the FF is cleared during a CLK pulse only is Q' was previously 1.

JK Flip Flop

JK flip Flop Logic Diagram:

Truth Table for JK Flip Flop:

Input			Output		
Clk	J	K	Q	Q'	Status
1	0	0	Q	Q'	No Change
1	0	1	1	0	Reset
1	1	0	0	1	Set
1	1	1	Q'	Q	Toggle

D Flip Flop

- ▶ D Flip Flop also known as Data Filp Flop
- ▶ The D-input is sampled throughout the existence of a CLK pulse.
- ▶ If it is 1, then the FF is switched to the set state.
- ▶ If it is 0, then the FF switches to a clear state.
- ▶ The D flip flop will act as a storage element for a single binary digit (Bit)

D Flip Flop

Inp	out	Output		
Clk	D	Q	Q'	
↓>>0	0	0	1	
↑ >> 1	0	0	1	
$\downarrow >> 0$	1	0	1	
↑>> 1	1	1	0	

T Flip Flop

- ▶ The T-flip flop or toggle flip flop is a single i/p version of the JK-flip flop.
- ▶ The working of this FF is as follows: When the input of the T is '0' such that the 'T' will make the next state that is similar to the current state.
- ► That means when the input of the T-FF is 0 then the present state and the next state will be 0.
- However, if the i/p of the T is 1 then the present state is inverse to the next state. That means, when T=1, then the present state =0 and next state =1).

T Flip Flop

T flip Flop Logic Diagram:

Truth Table for T Flip Flop:

Input		Output			
T	Clk	Q	Q'	Status	
0	1	Q	Q'	Hold	
1	1	Q'	Q	Togol	

The Practical Uses of Flip Flop

► Counters-

Asynchronous counter

Modulo - n - counter

Synchronous counter

2 – Bit synchronous counter

Applications of Counters

- ► Registers.
- ▶ Frequency Division.
- ▶ Data Transfer.

Thank You