METODOLOGÍA ARIMAX APLICADO A SERIES DE LA CONTABILIDAD NACIONAL (NO ESTACIONALES)

Profesor: César Pérez López

Alumno: José Manuel Mendoza Gómez

<u>ÍNDICE</u>

<u>INRODUCCIÓN</u> Pág. (3
BASE DE DATOSPág.	4
PREDICCIÓN AUTOMÁTICA EN SPSS VARIABLE CONSUMO FINAL Pág. VARIABLE EXPORTACIONES Pág. VARIABLE IMPORTACIONES Pág. VARIABLE PIB Pág.	10 13
PREDICCIÓN AUTOMÁTICA EN R VARIABLE CONSUMO FINAL Pág. VARIABLE EXPORTACIONES Pág. VARIABLE IMPORTACIONES Pág. VARIABLE PIB Pág. 2	22 25

• INTRODUCCIÓN

En la anterior práctica vimos como elegir el mejor modelo de predicción automática teniendo en cuenta que las series no eran estacionales y también que se realizaba un análisis de la intervención.

En esta ocasión aplicaremos al modelo de predicción automática, la función de transferencia. Esta función devuelve el mejor modelo ARIMA según el valor AIC, AICc o BIC.

La predicción automática con función de transferencia realiza una búsqueda sobre el modelo posible dentro de las restricciones de orden proporcionadas.

• BASE DE DATOS

	Nombre	Tipo	Anchura	Decimales
1	Т	Numérico	5	0
2	GASTO_CONSUMO_FINAL	Numérico	8	0
3	Gasto_en_consumo_final_de_los_hogares	Numérico	8	0
4	Gasto_en_consumo_final_de_las_ISFLSH	Numérico	8	0
5	Gasto_en_consumo_final_de_las_AAPP	Numérico	8	0
6	FORMACION_BRUTA_CAPITAL	Numérico	8	0
7	Formación_bruta_de_capital_fijo	Numérico	8	0
8	Activos_fijos_materiales	Numérico	8	0
9	Viviendas_y_otros_edificios_y_construcciones	Numérico	8	0
10	Maquinariabienes_de_equipo_y_sistemas_de_armamento	Numérico	8	0
11	Recursos_biológicos_cultivados	Numérico	8	0
12	Productos_de_la_propiedad_intelectual	Numérico	8	0
13	Variación_de_existencias	Numérico	8	0
14	Adquisiciones_menos_cesiones_de_objetos_valiosos	Numérico	8	0
15	EXPORTACIONESBS	Numérico	8	0
16	Exportaciones_de_bienes	Numérico	8	0
17	Exportaciones_de_servicios	Numérico	8	0
18	Gasto_de_los_hogares_no_residentes_en_el_territorio_económico	Numérico	8	0
19	IMPORTACIONESBS	Numérico	8	0
20	Importaciones_de_bienes	Numérico	8	0
21	Importaciones_de_servicios	Numérico	8	0
22	Gasto_de_los_hogares_residentes_en_el_resto_del_mundo	Numérico	8	0
23	PRODUCTO_INTERIOR_BRUTO_A_PRECIOS_DE_MERCADO	Numérico	8	0
24	Agricultura_ganadería_silvicultura_y_pesca	Numérico	8	0
25	Industria	Numérico	8	0
26	de_los_cualesindustria_manufacturera	Numérico	8	0
27	Construcción	Numérico	8	0
28	Servicios	Numérico	8	0
29	Comercio_transporte_y_hosteleria	Numérico	8	0
30	Información_y_comunicaciones	Numérico	8	0
31	Actividades_financieras_y_de_seguros	Numérico	8	0
32	Actividades_inmobiliarias	Numérico	8	0
33	Actividades_profesionalescientíficas_y_técnicas_y_otras	Numérico	8	0
34	Administración_públicaeducación_y_sanidad	Numérico	8	0
35	Actividades_artísticasrecreativas_y_otros_servicios	Numérico	8	0
36	Impuestos_menos_subvenciones_sobre_los_productos	Numérico	8	0

La BBDD está formada por 36 variables. Todas ellas aportan información sobre la contabilidad nacional salvo la variable T, que es la variable identificadora que indica la fecha del ciclo contable.

Las principales variables están en mayúscula. Este proyecto servirá para predecir futuros valores a partir de *la predicción automática con función de transferencia (incluyendo intervenciones)*.

Estas variables son:

- Consumo final
- Exportaciones
- Importaciones
- PIB

La BBDD está formada por 25 registros. Cada observación representa un año, por lo tanto, no existe estacionalidad para ninguna observación.

La estacionalidad solo puede darse si el periodo es inferior al año. Si nos hubiesen dado datos por trimestres puede que hubiésemos hallado la estacionalidad.

Una vez que sabemos que las variables no son estacionales, procedemos a ver que modelo nos muestra la PREDICCIÓN AUTOMÁTICA CON FUNCIÓN DE TRANSFERENCIA.

METODOLOGÍA ARIMAX EN SPSS CÓDIGO

VARIABLE CONSUMO FINAL

Descripción del modelo

			Tipo de modelo
ID de modelo	GASTO_CONSUMO_FIN AL	Modelo_1	ARIMA(0,2,1)

SPSS ha elegido como mejor modelo para la variable CONSUMO FINAL el ARIMA(0,2,1).

Antes de todo veremos si los estadísticos son significativos y posteriormente lo compararemos con el modelo que estimamos en la anterior práctica.

Estadísticos del modelo

		Estadísticos de ajuste del modelo Ljung-Box Q(18)			Número de		
Modelo	Número de predictores	R cuadrado	BIC normalizado	Estadísticos	DF	Sig.	valores atípicos
GASTO_CONSUMO_FIN AL-Modelo_1	0	,997	18,717	12,642	17	,760	1

Parámetros del modelo ARIMA

						Estillacion	35	ı.	org.
	STO_CONSUMO_FIN	GASTO_CONSUMO_FIN	Ninguna transformación	Diferencia		2			
AL-I	Modelo_1	AL		MA	Retardo 1	-,579	,199	-2,915	,008

Este modelo tiene un r-cuadrado muy bueno y nos indica que el modelo logra explicar el 99,7% de la variabilidad total.

El estadístico de Ljung-Box, que nos indica la aleatoriedad residual, también es muy bueno ya que supera el nivel de significación alfa igual a 0.05

El valor de la capacidad predictiva del BIC normalizado es de 18,717. Este valor no tiene sentido por si solo y sirve para compararlo con otros modelos. Cuanto más bajo sea, mayor capacidad predictiva tiene el modelo

Valores atípicos

			Estimación	SE	t	Sig.
GASTO_CONSUMO_FIN AL-Modelo_1	15	Cambio de nivel	-38911,757	4748,795	-8,194	,000

Predicción

Modelo		26	27	28	29	30
GASTO_CONSUMO_FIN AL-Modelo_1	Predicción	972983	997225	1021468	1045711	1069953
	UCL	994014	1055408	1126518	1205710	1291956
	LCL	951951	939043	916418	885711	847951

Para cada modelo, las predicciones empiezan después del último valor no perdido en el rango del período de estimación solicitado, y finaliza en el último período para el cual los valores perdidos de todos los predictores están disponibles o al final de la fecha del periodo de predicción solicitado, lo que suceda antes.

Se ha encontrado un cambio de nivel en la observación 15.

Viendo el gráfico de autocorrelación y autocorrelación parcial de los residuos vemos que ningún retardo se sale de las bandas de confianza, luego la aleatoriedad residual es buena.

COMPARACIÓN CON NUESTRO MODELO

En la anterior práctica, de todos los modelos válidos, nos habíamos quedado con el ARIMA (1,1,0) ya que era el que mostraba los mejores valores para los distintos contrastes.

ARIMA (1,1,0)

Estadísticos del modelo

		Estadísticos de ajuste del modelo		Ljur	Número de		
Modelo	Número de predictores	R cuadrado	BIC normalizado	Estadísticos	DF	Sig.	valores atípicos
GASTO_CONSUMO_FIN AL-Modelo_1	0	,996	19,061	18,968	17	,330	1

Parámetros del modelo ARIMA

					Estimación	SE	t	Sig.
GASTO_CONSUMO_FIN	GASTO_CONSUMO_FIN	Ninguna transformación	Const	ante	24993,963	10365,530	2,411	,025
AL-Modelo_1	AL		AR	Retardo 1	,810	,120	6,761	,000
			Difere	ncia	1			

Valores atípicos

			Estimación	SE	t	Sig.
GASTO_CONSUMO_FIN AL-Modelo_1	15	Cambio de nivel	-38059,304	5578,290	-6,823	,000

Comparando ambos modelos, vemos que el modelo de predicción automática sugerida por SPSS supera en todo a nuestro modelo. Tanto en R-cuadrado, como en BIC normalizado, Ljung-Box y significatividad individual.

Si tuviéramos que elegir entre alguno de los dos, nos quedaríamos con el modelo sugerido por la predicción automática. El ARIMA(1,1,0).

VARIABLE EXPORTACIONES

Descripción del modelo

			Tipo de modelo
ID de modelo	EXPORTACIONESBS	Modelo_1	ARIMA(0,1,0)

SPSS ha elegido como mejor modelo para la variable EXPORTACIONES el ARIMA(0,1,0).

Antes de todo veremos si los estadísticos son significativos y posteriormente lo compararemos con el modelo que estimamos en la anterior práctica.

Estadísticos del modelo

		Estadísticos de ajuste del modelo Ljung-Box Q(18)				Número de		
Modelo	Número de predictores	R cuadrado	BIC normalizado	Estadísticos	DF	Sig.	valores atípicos	
EXPORTACIONESBS- Modelo_1	0	,994	18,352	20,395	18	,311	1	

Parámetros del modelo ARIMA

				Estimación	SE	t	Sig.
EXPORTACIONESBS-	EXPORTACIONESBS	Ninguna transformación	Constante	13914,437	1617,310	8,603	,000
Modelo_1			Diferencia	1			

Este modelo tiene un r-cuadrado muy bueno y nos indica que el modelo logra explicar el 99,4% de la variabilidad total.

El estadístico de Ljung-Box, que nos indica la aleatoriedad residual, también es muy bueno ya que supera el nivel de significación alfa igual a 0.05

El valor de la capacidad predictiva del BIC normalizado es de 18,352. Este valor no tiene sentido por si solo y sirve para compararlo con otros modelos. Cuanto más bajo sea, mayor capacidad predictiva tiene el modelo

Valores atípicos

				Estimación	SE	t	Sig.
EXPORTACIONESBS-	15	Transitorio	Magnitud	-50037,355	7413,141	-6,750	,000
Modelo_1			Factor de decrecimiento	,557	.154	3,626	.002

Predicción

Modelo		26	27	28	29	30
EXPORTACIONESBS-	Predicción	448314	462264	476198	490123	504044
Modelo_1	UCL	464790	485565	504736	523076	540886
	LCL	431838	438963	447660	457171	467202

Para cada modelo, las predicciones empiezan después del último valor no perdido en el rango del período de estimación solicitado, y finaliza en el último período para el cual los valores perdidos de todos los predictores están disponibles o al final de la fecha del periodo de predicción solicitado, lo que suceda antes.

Se ha encontrado un cambio transitorio en la observación 15.

Viendo el gráfico de autocorrelación y autocorrelación parcial de los residuos vemos que ningún retardo se sale de las bandas de confianza, luego la aleatoriedad residual es buena.

COMPARACIÓN CON NUESTRO MODELO

En la anterior práctica, también habíamos estimado el ARIMA (0,1,0) como el mejor modelo. Por lo tanto, la predicción automática coincide con nuestro resultado.

VARIABLE IMPORTACIONES

Descripción del modelo

Tipo de modelo

ID de modelo IMPORTACIONESBS Modelo_1 ARIMA(2,1,0)

SPSS ha elegido como mejor modelo para la variable IMPORTACIONES el ARIMA(2,1,0).

Antes de todo veremos si los estadísticos son significativos y posteriormente lo compararemos con el modelo que estimamos en la anterior práctica.

Estadísticos del modelo

		Estadísticos (de ajuste del delo	Ljur	ıg-Box Q(18)		Número de	
Modelo	Número de predictores	R cuadrado	BIC normalizado	Estadísticos	DF	Sig.	valores atípicos	
IMPORTACIONESBS- Modelo_1	0	,978	19,252	15,434	17	,564	1	

Parámetros del modelo ARIMA

					Estimación	SE	t	Sig.
IMPORTACIONESBS-	IMPORTACIONESBS	Ninguna transformación	Const	ante	15926,660	1873,153	8,503	,000
Modelo_1			AR	Retardo 2	-,445	,199	-2,231	,037
			Difere	ncia	1			

Este modelo tiene un r-cuadrado muy bueno y nos indica que el modelo logra explicar el 97,8% de la variabilidad total.

El estadístico de Ljung-Box, que nos indica la aleatoriedad residual, también es muy bueno ya que supera el nivel de significación alfa igual a 0.05

El valor de la capacidad predictiva del BIC normalizado es de 19,252. Este valor no tiene sentido por si solo y sirve para compararlo con otros modelos. Cuanto más bajo sea, mayor capacidad predictiva tiene el modelo

Valores atípicos

			Estimación	SE	t	Sig.
IMPORTACIONESBS- Modelo_1	15	Cambio de nivel	-89024,031	11971,175	-7,437	,000

Predicción

Modelo		26	27	28	29	30
IMPORTACIONESBS-	Predicción	409212	429381	446905	460944	476160
Modelo_1	UCL	434994	465841	486073	502646	522160
	LCL	383431	392921	407736	419242	430161

Para cada modelo, las predicciones empiezan después del último valor no perdido en el rango del período de estimación solicitado, y finaliza en el último período para el cual los valores perdidos de todos los predictores están disponibles o al final de la fecha del periodo de predicción solicitado, lo que suceda antes.

Se ha detectado un cambio de nivel en la observación 15.

Viendo el gráfico de autocorrelación y autocorrelación parcial de los residuos vemos que ningún retardo se sale de las bandas de confianza, luego la aleatoriedad residual es buena.

COMPARACIÓN CON NUESTRO MODELO

En la anterior práctica, de todos los modelos válidos, nos habíamos quedado con el ARIMA (0,1,0) ya que era el que mostraba los mejores valores para los distintos contrastes.

ARIMA (0,1,0)

Estadísticos del modelo

		Estadísticos mod		Ljun	ig-Box Q(18)		Número de	
Modelo	Número de predictores	R cuadrado	BIC normalizado	Estadísticos	DF Sig.		valores atípicos	
IMPORTACIONESBS- Modelo_1	0	,972	19,301	19,430	18	,366	1	

Parámetros del modelo ARIMA

				Estimación	SE	t	Sig.	
IMPORTACIONESBS-	IMPORTACIONESBS	Ninguna transformación	Constante	16178,477	2835,994	5,705	,000	
Modelo_1			Diferencia	1				

Valores atípicos

			Estimación	SE	t	Sig.
IMPORTACIONESBS- Modelo_1	15	Cambio de nivel	-97105,466	13893,477	-6,989	,000

Comparando ambos modelos, vemos que el modelo de predicción automática sugerido por SPSS supera en todo a nuestro modelo. Tanto en R-cuadrado, como en BIC normalizado, Ljung-Box y significatividad individual.

Si tuviéramos que elegir entre alguno de los dos, nos quedaríamos con el modelo sugerido por la predicción automática. El ARIMA(2,1,0).

VARIABLE PIB

Descripción del modelo

			Tipo de modelo
ID de modelo	PRODUCTO_INTERIOR_ BRUTO_A_PRECIOS_DE _MERCADO	Modelo_1	ARIMA(0,2,0)

SPSS ha elegido como mejor modelo para la variable PIB el ARIMA(0,2,0).

Antes de todo veremos si los estadísticos son significativos y posteriormente lo compararemos con el modelo que estimamos en la anterior práctica.

Estadísticos del modelo

		Estadísticos (Ljun	g-Box Q(18)		Número de
Modelo	Número de predictores	R cuadrado	BIC normalizado	Estadísticos	DF	Sig.	valores atípicos
PRODUCTO_INTERIOR_ BRUTO_A_PRECIOS_DE _MERCADO-Modelo_1	0	,994	19,523	15,232	18	,646	1

Parámetros del modelo ARIMA

				Esumacion
PRODUCTO_INTERIOR_ BRUTO_A_PRECIOS_DE _MERCADO-Modelo_1	PRODUCTO_INTERIOR_ BRUTO_A_PRECIOS_DE _MERCADO	Logaritmo natural	Diferencia	2

Este modelo tiene un r-cuadrado muy bueno y nos indica que el modelo logra explicar el 99,4% de la variabilidad total.

El estadístico de Ljung-Box, que nos indica la aleatoriedad residual, también es muy bueno ya que supera el nivel de significación alfa igual a 0.05

El valor de la capacidad predictiva del BIC normalizado es de 19,523. Este valor no tiene sentido por si solo y sirve para compararlo con otros modelos. Cuanto más bajo sea, mayor capacidad predictiva tiene el modelo

En cuanto a la significatividad individual vemos que, para el ARIMA(0,2,0), no se puede contrastar ninguna significatividad individual ya que no tenemos parte AR ni parte MA.

Valores atípicos

			Estimación	SE	t	Sig.
PRODUCTO_INTERIOR_ BRUTO_A_PRECIOS_DE _MERCADO-Modelo_1	15	Cambio de nivel	-,054	,011	-4,949	,000

Predicción

Modelo		26	27	28	29	30
PRODUCTO_INTERIOR_ BRUTO_A_PRECIOS_DE _MERCADO-Modelo_1	Predicción	1286821	1330766	1377034	1426102	1478505
	UCL	1328562	1428759	1549840	1693616	1862831
	LCL	1246093	1238016	1219414	1192274	1158164

Para cada modelo, las predicciones empiezan después del último valor no perdido en el rango del período de estimación solicitado, y finaliza en el último período para el cual los valores perdidos de todos los predictores están disponibles o al final de la fecha del periodo de predicción solicitado, lo que suceda antes.

Se ha detectado un cambio de nivel en la observación 15.

Viendo el gráfico de autocorrelación y autocorrelación parcial de los residuos vemos que ningún retardo se sale de las bandas de confianza, luego la aleatoriedad residual es buena.

COMPARACIÓN CON NUESTRO MODELO

En la anterior práctica, de todos los modelos válidos, nos habíamos quedado con el ARIMA (1,1,0) ya que era el que mostraba los mejores valores para los distintos contrastes.

ARIMA (1,1,0)

Estadísticos del modelo Estadísticos de ajuste del Liung-Box Q(18) modelo Número de BIC R cuadrado normalizado Estadísticos predictores atípicos PRODUCTO_INTERIOR ,996 19,704 10,454 ,884 BRUTO_A_PRECIOS_DE _MERCADO-Modelo_1

Parámetros del modelo ARIMA SE Sig. PRODUCTO_INTERIOR PRODUCTO INTERIOR 42017,419 10420,177 Ninguna transformación Constante 4.032 .001 BRUTO_A_PRECIOS_DE _MERCADO-Modelo_1 BRUTO_A_PRECIOS_DE _MERCADO AR Retardo 1 ,705 6,758 ,000 ,104

Valores atípicos								
				Estimación	SE	t	Sig.	
	PRODUCTO_INTERIOR_ BRUTO_A_PRECIOS_DE _MERCADO-Modelo_1	15	Innovador	-76582,994	15713,130	-4,874	,000	

Comparando ambos modelos, vemos que el modelo de predicción automática sugerido por SPSS solo logra superar a nuestro modelo en el BIC normalizado. Es decir, nuestro modelo estimado es mejor Tanto en R-cuadrado, como en Ljung-Box y significatividad individual.

Si tuviéramos que elegir entre alguno de los dos, nos quedaríamos con nuestro modelo estimado. El ARIMA(1,1,0).

MÉTODOLOGIA ARIMAX EN R

En esta ocasión analizaremos la predicción automática con función de transferencia en el software R. A diferencia de SPSS, no hemos encontrado una función de predicción automática que tome en cuenta las intervenciones en la serie.

VARIABLE CONSUMO FINAL

```
#CONSUMO FINAL
y=ts(GASTO_CONSUMO_FINAL, frequency=1)
```

Transformamos la variable GASTO CONSUMO FINAL a formato series temporales antes de realizar la predicción automática. Ponemos de argumento frecuencia 1 porque la serie ya la hemos analizado anteriormente y concluimos que no era estacional.

```
auto.arima(y)
coeftest(auto.arima(y))
checkresiduals(auto.arima(y))
```

Modelo propuesto

```
> auto.arima(y)
Series: y
ARIMA(1.1.0) with drift
Coefficients:
                 drift
        ar1
     0.6687 24026.301
s.e. 0.1403
             8637.606
sigma^2 estimated as 250316985: log likelihood=-265.37
AIC=536.73 AICc=537.93
                         BIC=540.26
> coeftest(auto.arima(y))
z test of coefficients:
       Estimate Std. Error z value Pr(>|z|)
ar1 6.6869e-01 1.4029e-01 4.7663 1.876e-06 ***
drift 2.4026e+04 8.6376e+03 2.7816 0.005409 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

El modelo que nos aconseja la predicción automática es el ARIMA(1,1,0).

El valor de la capacidad predictiva del BIC normalizado es de 540,26 y el AIC es de 536,73. Estos valores no tienen sentido por sí solos y sirven para compararlo con otros modelos. Cuanto más bajo sean estos valores, mayor capacidad predictiva tiene el modelo.

En cuanto a la significatividad individual no hay problema ya que todos los parámetros son significativos.

Análisis de los residuos

> checkresiduals(auto.arima(y))

```
Ljung-Box test
```

data: Residuals from ARIMA(1,1,0) with drift $Q^* = 4.6356$, df = 3, p-value = 0.2005

Model df: 2. Total lags used: 5

El estadístico de Ljung-Box, lo hemos visto con la función checkresiduals() de la librería FORECAST. Este estadístico nos indica la aleatoriedad residual. Su valor es muy bueno ya que supera el nivel de significación alfa igual a 0.05.

Además, viendo la gráfica de autocorrelaciones residuales, ningún retardo se sale de las bandas de confianza, luego los residuos son muy aleatorios.

En este modelo, los residuos no consiguen distribuirse normalmente.

Comparación con nuestro modelo

Nosotros habíamos propuesto también como mejor modelo el ARIMA(1,1,0), pero al parecer, la predicción automática de R ha incluido el parámetro drift.

Nuestro modelo:

En conclusión, hemos coincidido con el modelo de la predicción automática pero las significatividades individuales son distintas ya que ha incluido el parámetro drift.

VARIABLE EXPORTACIONES

```
#EXPORTACIONES
y=ts(EXPORTACIONESBS, frequency=1)

auto.arima(y)
coeftest(auto.arima(y))
checkresiduals(auto.arima(y))
```

Transformamos la variable EXPORTACIONES a formato series temporales antes de realizar la predicción automática. Ponemos de argumento frecuencia 1 porque la serie ya la hemos analizado anteriormente y concluimos que no era estacional.

Modelo propuesto

El modelo que nos aconseja la predicción automática es el ARIMA(0,1,0).

El valor de la capacidad predictiva del BIC normalizado es de 531,83 y el AIC es de 529,48. Estos valores no tienen sentido por sí solos y sirven para compararlo con otros modelos. Cuanto más bajo sean estos valores, mayor capacidad predictiva tiene el modelo.

Análisis de los residuos

> checkresiduals(auto.arima(y))

```
Ljung-Box test data: Residuals from ARIMA(0,1,0) with drift Q^* = 7.8114, df = 4, p-value = 0.09874 Model df: 1. Total lags used: 5
```


El estadístico de Ljung-Box, lo hemos visto con la función checkresiduals() de la librería FORECAST. Este estadístico nos indica la aleatoriedad residual. Su valor es muy bueno ya que supera el nivel de significación alfa igual a 0.05.

Además, viendo la gráfica de autocorrelaciones residuales, ningún retardo se sale de las bandas de confianza, luego los residuos son muy aleatorios.

En este modelo, los residuos no consiguen distribuirse normalmente.

Comparación con nuestro modelo

Nosotros habíamos propuesto también como mejor modelo el ARIMA(0,1,0) ya que era el único modelo que podíamos estimar.

Nuestro modelo:

```
> estimacion=arima(x,order=c(0,1,0))
> estimacion

Call:
arima(x = x, order = c(0, 1, 0))

sigma^2 estimated as 382383861: log likelihood = -271.2, aic = 544.4
> coeftest(estimacion)
Error in dimnames(x) <- dn :
    la longitud de 'dimnames' [2] no es igual a la extensión del arreglo</pre>
```

No pudimos realizar el contraste de significatividad individual, pero al parecer, la predicción automática de R ha incluido el parámetro drift por lo que si ha podido.

En conclusión, hemos coincidido con el modelo de la predicción automática pero las significatividades individuales son distintas ya que ha incluido el parámetro drift.

VARIABLE IMPORTACIONES

```
#IMPORTACIONES
y=ts(IMPORTACIONESBS, frequency=1)
```

Transformamos la variable IMPORTACIONES a formato series temporales antes de realizar la predicción automática. Ponemos de argumento frecuencia 1 porque la serie ya la hemos analizado anteriormente y concluimos que no era estacional.

```
auto.arima(y)
coeftest(auto.arima(y))
checkresiduals(auto.arima(y))
```

Modelo propuesto

El modelo que nos aconseja la predicción automática es el ARIMA(0,1,0).

El valor de la capacidad predictiva del BIC normalizado es de 555,52 y el AIC es de 554,95. Estos valores no tienen sentido por sí solos y sirven para compararlo con otros modelos. Cuanto más bajo sean estos valores, mayor capacidad predictiva tiene el modelo.

Análisis de los residuos

> checkresiduals(auto.arima(y))

Model df: 1. Total lags used: 5

```
Ljung-Box test data: Residuals from ARIMA(0,1,0) with drift Q* = 3.8958, df = 4, p-value = 0.4203
```


El estadístico de Ljung-Box, lo hemos visto con la función checkresiduals() de la librería FORECAST. Este estadístico nos indica la aleatoriedad residual. Su valor es muy bueno ya que supera el nivel de significación alfa igual a 0.05.

Además, viendo la gráfica de autocorrelaciones residuales, ningún retardo se sale de las bandas de confianza, luego los residuos son muy aleatorios.

En este modelo, los residuos no consiguen distribuirse normalmente.

Comparación con nuestro modelo

Nosotros habíamos propuesto también como mejor modelo el ARIMA(0,1,0) ya que era el único modelo que podíamos estimar.

Nuestro modelo:

```
call:
arima(x = x, order = c(0, 1, 0))

sigma^2 estimated as 693290031: log likelihood = -278.34, aic = 558.68
> coeftest(estimacion)
Error in dimnames(x) <- dn :
    la longitud de 'dimnames' [2] no es igual a la extensión del arreglo</pre>
```

No pudimos realizar el contraste de significatividad individual, pero al parecer, la predicción automática de R ha incluido el parámetro drift por lo que si ha podido.

En conclusión, hemos coincidido con el modelo de la predicción automática pero las significatividades individuales son distintas ya que ha incluido el parámetro drift.

VARIABLE PIB

```
#PRODUCTO INTERIOR BRUTO
y=ts(PRODUCTO_INTERIOR_BRUTO_A_PRECIOS_DE_MERCADO, frequency=1)
```

Transformamos la variable PIB a formato series temporales antes de realizar la predicción automática. Ponemos de argumento frecuencia 1 porque la serie ya la hemos analizado anteriormente y concluimos que no era estacional.

```
auto.arima(y)
coeftest(auto.arima(y))
checkresiduals(auto.arima(y))
```

Modelo propuesto

```
> auto.arima(y)
Series: y
ARIMA(1,1,0) with drift
Coefficients:
                 drift
        ar1
      0.6905 32971.86
s.e. 0.1357 12775.52
sigma^2 estimated as 485384949: log likelihood=-273.34
AIC=552.68 AICc=553.88
                            BIC=556.21
> coeftest(auto.arima(y))
z test of coefficients:
        Estimate Std. Error z value Pr(>|z|)
ar1 6.9050e-01 1.3565e-01 5.0902 3.577e-07 ***
drift 3.2972e+04 1.2776e+04 2.5809 0.009855 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

El modelo que nos aconseja la predicción automática es el ARIMA(1,1,0).

El valor de la capacidad predictiva del BIC normalizado es de 556,21 y el AIC es de 552,68. Estos valores no tienen sentido por sí solos y sirven para compararlo con otros modelos. Cuanto más bajo sean estos valores, mayor capacidad predictiva tiene el modelo.

Análisis de los residuos

> checkresiduals(auto.arima(y))

```
Ljung-Box test
```

data: Residuals from ARIMA(1,1,0) with drift Q* = 1.3775, df = 3, p-value = 0.7108

Model df: 2. Total lags used: 5

El estadístico de Ljung-Box, lo hemos visto con la función checkresiduals() de la librería FORECAST. Este estadístico nos indica la aleatoriedad residual. Su valor es muy bueno ya que supera el nivel de significación alfa igual a 0.05.

Además, viendo la gráfica de autocorrelaciones residuales, ningún retardo se sale de las bandas de confianza, luego los residuos son muy aleatorios.

En este modelo, los residuos no consiguen distribuirse normalmente.

Comparación con nuestro modelo

Nosotros habíamos propuesto también como mejor modelo el ARIMA(1,1,0), pero al parecer, la predicción automática de R ha incluido el parámetro drift.

Nuestro modelo:

En conclusión, hemos coincidido con el modelo de la predicción automática pero las significatividades individuales son distintas ya que ha incluido el parámetro drift.