kd education academy (9582701166)

Time: 6 Hour

STD 11 Science Maths kd 90+ ch-9 straight line basic to jee

[10]

Total Marks: 354

* Match the following.

1.	Part (A)	Part (B)
	1. The angle between the lines $2x-y+3=0$ and $x+2y+3=0$	(a) $-\frac{7}{2}$
	2. The image of point $(4,-13)$ in line $5x+y+6=0$	(b) $(-1, -14)$
	3. Point at equal distance from lines $4x+3y-10-0$, $5x-12y+26=0$ and $7x+24y-50=0$	(c) 90°
	4. If slope of line passing through points $(2,5)$ and $(x,3)$ is 2 , then the value of x is	(d) (0,0)
	5. The slope of line passing through points $(3,-5)$ and $(1,2)$	(e) 1

2.	Part (A)	Part (B)
	1. The slope of line passing through points $(3,-5)$ and $(1,2)$	(a) $x=2$
	2. Equation of line parallel to x -axis and passing through	(b) $-\frac{7}{2}$
	point $(3,-5)$	
	3. Equation of line parallel to x -axis and is at equal distance	(c) u - 2x + 3
	from lines $x=-2$ and $x=6$	(c) $g = 2x + 6$
	4. Equation of line having slope 2 and which cuts y -intercept	(d) $y=-5$
	as 3 .	(a) $y = 0$
	5. Equation of line passing through point $(6,2)$ having slope -3	(e) $3x + y - 20 = 0$

Choose the right answer from the given options. [1 Marks Each]

[78]

3. The distance between the orthocentre and circumcentre of the triangle with vertices (1, 2), (2, 1) and $(\frac{3+\sqrt{3}}{2}, \frac{3+\sqrt{3}}{2})$ is:

(B)
$$\sqrt{2}$$

(C)
$$3 + \sqrt{3}$$

(D) none of these.

4. Find slope of line joining (1, 2) and (4, 11):

(A)
$$\frac{1}{3}$$

(D)
$$\frac{1}{9}$$

5. The reflection of the point (4, -13) about the line 5x + y + 6 = 0 is:

6. The equation of the line passing through (1, 5) and perpendicular to the line 3x -5y + 7 = 0 is:

(A)
$$5x + 3y - 20 = 0$$

(B)
$$3x - 5y + 7 = 0$$

(B)
$$3x - 5y + 7 = 0$$
 (C) $3x - 5y + 6 = 0$

(D)
$$5x + 3y + 7 = 0$$

7. The line segment joining the points (1, 2) and (-2, 1) is divided by the line 3x +4y = 7 in the ratio:

8.	8. If p ₁ and p ₂ are the lengths of the perpendiculars from the origin upon the				
			$\cos 2 heta$ respectively, the		
	(A) $4p_1^2 + p_2^2 = a^2$	(B) $\mathrm{p}_1^2 + 4\mathrm{p}_2^2 = \mathrm{a}^2$	(C) $p_1^2 + 4p_2^2 = a^2$	(D) None of these.	
9.	Choose the correct and The coordinates of the $3x + 4$ is given by		rs from the point (2, 3)	on the line y	
	(A) $\frac{37}{10}, \frac{-1}{10}$	(B) $\frac{-1}{10}, \frac{37}{10}$	(C) $\frac{10}{37}$, -10	(D) $\frac{2}{3}, -\frac{1}{3}$	
10.	Area of the triangle for + 2)) and ((a + 1)(a + 2)		a + 3)(a + 4), a + 3), ((a	+ 2)(a + 3), (a	
	(A) 25a ²	(B) 5a ²	(C) 24a ²	(D) None of these.	
11.	The centroid of the tri	iangle with vertices (2,	6), (-5, 6) and (9,3) is:		
	(A) (2, -3)	(B) (2, 5)	(C) (-2, 3)	(D) (-2, -3)	
12.	A(6, 3), B(-3, 5), C(4, then x is equal to:	-2) and D(x, 3x) are f	four points. If $\triangle DBC$:	$\triangle { m ABC} = 1:2,$	
	(A) $\frac{11}{8}$	(B) $\frac{8}{11}$	(C) 3	(D) None of these	
13.	The ratio in which the $3x + 4y + 5 = 0$ and $3x$	-	ivides the distance bet	ween the line	
	(A) 1:2	(B) 3:7	(C) 2:3	(D) 2:5	
14.	Slope of a line is giver	by if inclination of line	e is α :		
	(A) $\sin \alpha$	(B) $\cos \alpha$	(C) $\tan \alpha$	(D) $\cot \alpha$	
15.	If equation of line is y line:	y = 5x + 10 then find t	he value of x-intercept	made by the	
	(A) 2	(B) $\frac{1}{2}$	(C) $\frac{-1}{2}$	(D) -2	
16.	$\frac{x}{a} + \frac{y}{b} = 1$, then:		ar from the origin		
	(A) $p^2 = a^2 + b^2$	(B) $p^2 = \frac{1}{a^2} + \frac{1}{b^2}$	(C) $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$	(D) None of these.	
17.	Angle made by line wi	th measured anticlocky	wise is called inclination	of the line:	
	(A) Positive x-axis	(B) Negative x-axis	(C) Positive y-axis	(D) Negative y-axis	
18.			sses through the poin s is divided internally b		
	(A) $9x - 20y + 96 = 0$	(B) $9x + 20y = 24$	(C) $20x + 9y + 53 = 0$	(D) none of these.	
19.	If -40°F is equal to -40°	°C and 0°C is equal to 3	32°F then find the value	e of 40°C:	
	(A) 104°F	(B) 112°F	(C) 86°F	(D) 92°F	
20.	Find slope of line if inc	clination made by the li	ne is 60°.		

	(A) $\frac{1}{2}$	(B) $\frac{1}{\sqrt{3}}$	(C) $\sqrt{3}$	(D) 1
21.	·	ne parallel to $4x + y = 2$ (B) $4x + y + 13 = 0$	2 and pass through (2, $(C) 4x - y - 13 = 0$	5): (D) 4x - y + 13 = 0
22	-	-	-	•
22.	(A) $x - y = 0$	(B) x + y = 1	dinate are always equal (C) $x + y + 1 = 0$	(D) None of the above
23.	The equation of a line	that passes through t	he points (1, 5) and (2,	3) is:
	(A) $2x + y - 7 = 0$	(B) $2x - y - 7 = 0$	(C) $x + 2y - 7 = 0$	(D) $2x + y + 7 = 0$
24.	If a line with slope m	makes x-intercept d. Th	nen equation of the line	e is:
	(A) $y = m(d - x)$	(B) $y = m(x - d)$	(C) $y = m(x + d)$	(D) $y = mx + d$
25.	If the area of the tria then the value of x is:	ingle with vertices (x, (0), (1, 1) and (0, 2) is 4	4 square unit,
	(A) -2	(B) -4	(C) -6	(D) 8
26.	If the two lines are pe	rpendicular then differ	ence of their inclination	n angle is:
	(A) 45°	(B) 60°	(C) 90°	(D) 180°
27.	The medians AD and liperpendicular to each	7	ertices A(0, b), B(0, 0) a	nd C(a, 0) are
	(A) $a = \frac{b}{2}$	(B) $b = \frac{a}{2}$	(C) $ab = 1$	(D) $\mathrm{a}=\pm\sqrt{2}\mathrm{b}$
28.	In what ratio does the	e line $y - x + 2 = 0$ cut th	ie line joining (3, -1) and	d (8, 9)?
	(A) 2:3	(B) 3:2	(C) 3:-2	(D) 1:2
29.	Slope of a line is giver	by if inclination of line	e is α :	
	(A) $\sin \alpha$	(B) $\cos \alpha$	(C) $\tan \alpha$	(D) $\cot \alpha$
30.	If (-4, 5) is one vertex equation of second di		onediagonal of a squ	are, then the
	(A) $x + 3y = 21$	(B) $2x - 3y = 7$	(C) $x + 7y = 31$	(D) $2x + 3y = 21$
31.	A line passes through intercept is:	n (2, 2) and is perpen	dicular to the line 3x	+ y = 3. Its y-
	(A) $\frac{1}{3}$	(B) $\frac{2}{3}$	(C) 1	(D) $\frac{4}{3}$
32.	If P (1, 2), Q (3, 5), F through P:	R (7, 9) form a triangle	e then find the equati	on of median
	(A) $5x - 4y + 3 = 0$	(B) $5x + 4y + 3 = 0$	(C) $5x - 4y - 3 = 0$	(D) $5x + 4y - 3 = 0$
33.	If the two lines with relation:	slope m ₁ and m ₂ are	perpendicular then the	eir slopes has

(A) $m_1 + m_2 = 1$ (B) $m_1 \times m_2 = 1$ (C) $m_1 \times m_2 = -1$ (D) $m_1 + m_2 = -1$

54.	If the points A (1, 2), i	3 (2, 4) and C (3, a) are	commear, what is the i	ength BC?
	(A) 2 unit	(B) 3 unit	(C) 5 unit	(D) 5 unit
35.	Find slope of line pass	sing through origin an	d (3, 6):	
	(A) 2	(B) 3	(C) $\frac{1}{3}$	(D) $\frac{1}{2}$
36.	Choose the correct ar The tangent of angle and b, -a, respectively	between the lines wh	nose intercepts on the	axes are a, -b
	(A) $\frac{a^2-b^2}{ab}$	(B) $\frac{b^2-a^2}{2}$	(C) $\frac{b^2-a^2}{2ab}$	(D) None of these.
37.	If slope of a line is $\frac{2}{3}$ t	hen find the slope of l	ine perpendicular to it	:
	(A) $\frac{-3}{2}$	(B) $\frac{3}{2}$	(C) $\frac{2}{3}$	(D) $\frac{-2}{3}$
38.	Three vertices of a pa fourth vertex is:	rallelogram taken in o		and (7, 2). The
	(A) (1, 4)	(B) (4, 1)	(C) (1, 1)	(D) (4, 4)
39.	Find the equation of l	•		
	(A) $4x + y - 13 = 0$	(B) $4x + y + 13 = 0$	(C) $4x - y - 13 = 0$	(D) $4x - y + 13 = 0$
40.	Two lines are said to l	7		e is equal to:
	(A) -1	(B) 0	(C) 1	(D) $\frac{1}{2}$
41.	L is a variable line such 1), (2, 0) and (0, 2) for through: a. (1, 1) b. (2, 1) c. (1, 2) d. none of these	rom the line is equal	um of the distances of to zero. The line L w	
42.	The equation of line p	assing through origin	$(0,0)$ and point $(a\cos\theta,$	$a\sin\theta)$ is:
	(A) $y = x \cos \theta$	(B) $y = x \tan \theta$	(C) $y = x \sin \theta$	(D) $y = x \cot \theta$
43.	Equation of line parallel by : $ \text{(A) } 3x - 4y = 1 \\ \text{(C) } 4x - 3y = 1 $	llel to $3x-4y=7$ and	passing through origin $ \hbox{(B) } 3x - 4y = 0 $ $ \hbox{(D) } 3y - 4x = 0 $	າ $(0,0)$ is given
44.	The length of perpervalue of p is:	ndicular drawn from	origin on line $x+\sqrt{3y}$	$\overline{j}=1$ is $p.$ The
	(A) $\frac{1}{4}$	(B) $\frac{1}{2}$	(C) $\frac{\sqrt{3}}{2}$	(D) 1
45.	If lines $y = mx + 5$ and is:	3x+5y=8 are mutua	illy perpendicular then	the value of $\it m$

	(A) $\frac{5}{3}$	(B) $-\frac{5}{3}$	(C) $-\frac{3}{5}$	(D) $\frac{3}{5}$
46.	Equation of line per through point $(1,-2)$ i		nt line $3x-4y$ $+7=0$	and passing
	(A) $4x + 3y - 2 = 0$		(B) $4x + 3y + 2 = 0$	
	(C) $4x - 3y + 2 = 0$		(D) $4x - 3y - 2 = 0$	
47.	The distance between	lines $4x - 3y + 8 = 0$ ar	nd $3y - 4x - 6 = 0$ is give	en by :
	(A) 14	(B) 2	(C) $\frac{14}{5}$	(D) $\frac{2}{5}$
48.	Point at lines $3y + x - 1$	10=0 and $2x-5y+13$	= 0 is:	5
	(A) (0,0)	(B) (6,5)	(C) (4,2)	(D) $(1,3)$
49.	If lines $y = mx + c$ and is :	x=my+c are mutual	lly perpendicular then t	the value of $\it m$
	(A) 1		(B) -1	
	(C) 0		(D) Cannot be determine	ined
50.	Line $x=3,y=4$ and $4a$	x-3y+a=0 are coinc	idence, then the value	of a is :
	(A) 12	(B) -12	(C) 0	(D) -7
51.	If lines $a_1x-b_1y+c_1=$	0 and $a_2x+b_2y+c_2=0$	0 are mutually perpend	dicular then :
	(A) $a_1b_2 + a_2b_1 = 0$		(B) $a_1a_2 + b_1b_2 = 0$	
	(C) $a_1b_2 - a_2b_1 = 0$		(D) $a_1a_2 - b_1b_2 = 0$	
52.	The image of point (3,	8) in line $x + 2y - 7 = 0$	is given by:	
	(A) $(-1, -4)$	(B) $(-3, -8)$	(C) $(1,-4)$	(D) $(3,8)$
53.	If line passing through $y=2x+3$, then k equals	als to :	(2,k) is perpendicular	r to the line
	(A) 2	(B) 3	(C) 4	(D) 5
54.	through $\left(\frac{1}{2},0\right)$ and per the lines L,L' and y - a	rpendicular to $L.$ Therxis, is	nd $(2,0)$ and another 0 in the area of the triang	gle formed by
	(A) $\frac{15}{8}$	(B) $\frac{25}{4}$	(C) $\frac{25}{8}$	(D) $\frac{25}{16}$
55.			teral are $x+2y=3,x=0$ en diagonals AC and E	
	(A) 45	(B) 60	(C) 90	(D) 30
56.	centroid of the ΔABC	is a straight line paral	x+7y+4=0 , then the llel to the straight line i	S
	(A) $7x - 9y + 4 = 0$	(B) $9x - 7y - 4 = 0$	(C) $9x + 7y + 4 = 0$	(D) $7 + 9y + 4 = 0$
57.			from the point $(3,-2)$ $= 13$. The equation of th	

point is

(A)
$$13x^2 + 13y^2 - 83x + 64y + 182 = 0$$

(B)
$$x^2 + y^2 - 11x + 16y + 26 = 0$$

(C)
$$x^2 + y^2 - 11x + 16y = 0$$

(D) None of these

58. The equation to the sides of a triangle are x-3y=0, 4x+3y=5 and 3x+y=0. The line 3x - 4y = 0 passes through

(A) The incentre

(B) The centroid

(C) The circumcentre

(D) The orthocentre of the triangle

59. The vertex of an equilateral triangle is (2,-1) and the equation of its base in x + 2y = 1. The length of its sides is

(A)
$$4/\sqrt{15}$$

(B)
$$2/\sqrt{15}$$

(C)
$$4/3\sqrt{3}$$

(D)
$$1/\sqrt{5}$$

60. A(-1,1), B(5,3) are opposite vertices of a square in xy-plane. The equation of the other diagonal (not passing through (A, B) of the square is given by

(A)
$$x - 3y + 4 = 0$$

(B)
$$2x - y + 3 = 0$$

(B)
$$2x - y + 3 = 0$$
 (C) $y + 3x - 8 = 0$ (D) $x + 2y - 1 = 0$

(D)
$$x + 2y - 1 = 0$$

61. The opposite angular points of a square are (3, 4) and (1, -1). Then the coordinates of other two points are

(A)
$$D\left(\frac{1}{2}, \frac{9}{2}\right), B\left(-\frac{1}{2}, \frac{5}{2}\right)$$

(B)
$$D\left(\frac{1}{2}, \frac{9}{2}\right), B\left(\frac{1}{2}, \frac{5}{2}\right)$$

(C)
$$D\left(\frac{9}{2}, \frac{1}{2}\right), B\left(-\frac{1}{2}, \frac{5}{2}\right)$$

(D) None of these

62. If the coordinates of the points A, B, C be (-1,5), (0,0) and (2,2) respectively and D be the middle point of BC, then the equation of the perpendicular drawn from B to the line AD is

(A)
$$x + 2y = 0$$

(B)
$$2x + y = 0$$

(B)
$$2x + y = 0$$
 (C) $x - 2y = 0$ (D) $2x - y = 0$

(D)
$$2x - y = 0$$

63. A straight line passes through a fixed point (h,k). The locus of the foot of perpendicular on it drawn from the origin is

(A)
$$x^2 + y^2 - hx - ky = 0$$

(B)
$$x^2 + y^2 + hx + ky = 0$$

(A)
$$x^2+y^2-hx-ky=0$$
 (B) $x^2+y^2+hx+ky=0$ (C) $3x^2+3y^2+hx-ky=0$ (D) None of these

64. If (-2,6) is the image of the point (4,2) with respect to line L=0, then L=

(A)
$$3x - 2y + 5$$
 (B) $3x - 2y + 10$ (C) $2x + 3y - 5$ (D) $6x - 4y - 7$

(B)
$$3x - 2y + 10$$

(C)
$$2x + 3y - 5$$

(D)
$$6x - 4y - 7$$

65. The image of a point A(3, 8) in the line x + 3y - 7 = 0, is

(A)
$$(-1,-4)$$
 (B) $(-3, -8)$ (C) $(1,-4)$

(B)
$$(-3. -8)$$

$$(C) (1, -4)$$

(D)
$$(3, 8)$$

66. The coordinates of the foot of the perpendicular from (x_1,y_1) to the line ax + by + c = 0 are

(A)
$$\left(rac{b^2x_1-aby_1-ac}{a^2+b^2},\ rac{a^2y_1-abx_1-bc}{a^2+b^2}
ight)$$

(A)
$$\begin{pmatrix} \frac{b^2x_1 - aby_1 - ac}{a^2 + b^2}, \\ \frac{a^2y_1 - abx_1 - bc}{a^2 + b^2} \end{pmatrix}$$
 (B) $\begin{pmatrix} \frac{b^2x_1 + aby_1 + ac}{a^2 + b^2}, \\ \frac{a^2y_1 + abx_1 + bc}{a^2 + b^2} \end{pmatrix}$ (C) $\begin{pmatrix} \frac{ax_1 + by_1 + ab}{a + b}, \\ \frac{ax_1 - by_1 - ab}{a + b} \end{pmatrix}$

(C)
$$\left(rac{ax_1+by_1+ab}{a+b}, rac{ax_1-by_1-ab}{a+b},
ight.$$

(D) None of these

	y=3x+4 are given by	/		
	(A) $\left(\frac{37}{10}, -\frac{1}{10}\right)$	(B) $\left(-\frac{1}{10}, \frac{37}{10}\right)$	(C) $\left(\frac{10}{37}, -10\right)$	(D) $\left(\frac{2}{3}, -\frac{1}{3}\right)$
68.	If the lines $ax + 2y + 1$ a, b, c are in	=0,bx+3y+1=0 and	I $cx+4y+1=0$ are cor	ncurrent, then
	(A) A.P.	(B) <i>G.P</i>	(C) <i>H.P.</i>	(D) None of these
69.	If a and b are	two arbitrary cor	stants, then the	straight line
	(a-2b)x + (a+3b)y + 3a	a+4b=0 will pass thre	ough	
	(A) $(-1, -2)$	(B) (1,2)	(C) $(-2, -3)$	(D) $(2,3)$
70.		between the lines $-x$ lines $4x - 3y = 5$ and $6y$	x+y=2 and $x-y=2$, $y-8x=1$, then	and eta be the
	(A) $20\sqrt{2}eta=11lpha$	(B) $20\sqrt{2}lpha=11eta$	(C) $11\sqrt{2}eta=20lpha$	(D) None of these
71.	$(\sin heta, \cos heta)$ and $(3, 2)$ between	lies on the same sid	le of the line $x+y=1$	1, then $ heta$ lies
	(A) $(0, \pi/2)$	(B) $(0, \pi)$	(C) $(\pi/4,\pi/2)$	(D) $(0,~\pi/4)$
72.	The ratio in which	the line $3x + 4y + 2 =$	= 0 divides the dista	nce between
	$3x+4y+5=0 \ \text{and} \ 3x$	+4y-5=0 , is		
	(A) 7:3	(B) 3:7	(C) 2:3	(D) None of these
73.	If straight lines $\alpha^2 x + \alpha$ is	lpha y = 9 and $3x + 2y = 5$	are perpendicular, the	n the value of
	(A) $-2/3$	(B) 0	(C) $-3/2$	(D) $2/3$
74.	•	+5y-9=0 and having	of intersection of the g infinite slope and at	-
	(A) $x=2$	(B) $3x + y - 1 = 0$	(C) $y = 1$	(D) None of these
75.		on the straight line $3x - y = 5$, then the equa	x+2y=13 and the pointion of line PQ is	nt $Q\left(b,a ight)$ lies
	(A) $x - y = 5$	(B) $x + y = 5$	(C) $x + y = -5$	(D) $x - y = -5$
76.			the point $(-4,3)$ and t ded internally in the rat	•
	(A) $9x + 20y + 96 = 0$	(B) $20x + 9y + 96 = 0$	(C) $9x - 20y + 96 = 0$	(D) None of these
77.	The equations of the from the origin, are (A) $\sqrt{3}x+y-\sqrt{3}=0$,		the point $(1,0)$ and at	a distance $\frac{\sqrt{3}}{2}$

67. The coordinates of the foot of the perpendicular from the point (2,3) on the line

- (B) $\sqrt{3}x + y + \sqrt{3} = 0$, $\sqrt{3}x y + \sqrt{3} = 0$
- (C) $x + \sqrt{3}y \sqrt{3} = 0$, $x \sqrt{3}y \sqrt{3} = 0$
- (D) None of these
- 78. A line passes through the point (3,4) and cuts off intercepts from the coordinates axes such that their sum is 14. The equation of the line is
 - (A) 4x 3y = 24
- (B) 4x + 3y = 24
- (C) 3x 4y = 24
- (D) 3x + 4y = 24
- 79. If the transversal $y=m_r\,x;\,r=1,\,2,\,3\,$ cut off equal intercepts on the transversal $x+y=1,\,$ then $1+m_1,\,1+m_2,\,1+m_3\,$ are in
 - (A) A.P.
- (B) G.P.
- (C) H.P.
- (D) None of these
- 80. If the coordinates of the points A and B be (3,3) and (7,6), then the length of the portion of the line AB intercepted between the axes is
 - (A) $\frac{5}{4}$

(B) $\frac{\sqrt{10}}{4}$

(C) $\frac{\sqrt{13}}{3}$

(D) None of these

* Given section consists of questions of 2 marks each.

- [62]
- 81. Find the value of x for which the points (x, -1)(2, 1) and (4, 5) are collinear.
- 82. Find the equation of the line which satisfy the given conditions: Passing through $(2,2\sqrt{3})$ and inclined with the x-axis at an angle of 75°.
- 83. Find the equation of the line which satisfy the given condition: The line passing through the points (-1, 1) and (2, -4).
- 84. Find the equation of the line which satisfy the given condition:

 Perpendicular distance from the origin is 5 units and the angle made by the perpendicular with the positive X-axis is 30°.
- 85. Find the distance between parallel lines. I(x + y) + p = 0 and I(x + y) r = 0
- 86. Find the equation of the line perpendicular to the line x 7y + 5 = 0 and having x intercept 3.
- 87. Find the angles between the lines $\sqrt{3}x + y = 1$ and $x + \sqrt{3}y = 1$
- 88. The line through the points (h, 3) and (4, 1) intersects the line 7x 9y 19 = 0 at right angle. Find the value of h.
- 89. Prove that the line through the point (x_1, y_1) and parallel to the line Ax + By + C = 0 is $A(x x_1) + B(y y_1) = 0$.
- 90. Find the values of θ and p, if the equation $x\cos\theta+y\sin\theta=p$ is the normal form of the line $\sqrt{3}x+y+2=0$
- 91. What are the points on the y-axis whose distance from the line $\frac{x}{3} + \frac{y}{4} = 1$ is 4 units.

- 92. Find the value of p so that three lines 3x + y 2 = 0, px + 2y 3 = 0 and 2x y 3 = 0 may intersect at one point.
- 93. Find the equation of the line, which makes intercepts –3 and 2 on the x- and y-axes respectively.
- 94. Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with positive direction of x-axis is 15°.
- 95. The Fahrenheit temperature F and absolute temperature K satisfy a linear equation. Given that K = 273 when F = 32 and that K = 373 when F = 212. Express K in terms of F and find the value of F, when K = 0
- 96. Reduce the equation $\sqrt{3}x+y-8=0$ into normal form. Find the values of p and ω
- 97. Find the angle between the lines $y \sqrt{3}x 5 = 0$ and $\sqrt{3}y x + 6 = 0$.
- 98. Find the equation of a line perpendicular to the line x 2y + 3 = 0 and passing through the point (1, -2).
- 99. If the lines 2x + y 3 = 0, 5x + ky 3 = 0, 3x y 2 = 0 are concurrent, find the value of k.
- 100. By using the concept of slope, show that the points (-2, -1), (4, 0), (3, 3) and (-3, 2) are the vertices of a parallelogram.
- 101. Find the equation of the line on which the length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.
- 102. Reduce the equation $\sqrt{3}x + y + 2 = 0$ to: Intercept form and find intercept on the axes;
- 103. State whether the two lines in the following are parallel, perpendicular or neither.

Through (5, 6) and (2, 3); through (9, -2) and (6, -5)

- 104. Reduce the equation $\sqrt{3}x + y + 2 = 0$ to: slope-intercept form and find slope and y-intercept;
- 105. Without using Pythagoras theorem, show that the points A(0, 4), B(1, 2) and C(3, 3) are the vertices of a right angled triangle.
- 106. Draw the lines x = -3, x = 2, y = -2, y = 3 and write the coordinates of the vertices of the square so formed.
- 107. A straight line passes through the point (α, β) and this point bisects the portion of the line intercepted between the axes. Show that the equation of the straight line is $\frac{x}{2\alpha} + \frac{y}{2\beta} = 1$.

- 108. The equation of the line that passes through P (x₁, y₁) and makes an angle of θ with the x-axis is $\frac{x-x_1}{\cos \theta} = \frac{y-y_1}{\sin \theta}$.
- 109. If the straight line through the point P (3, 4) makes an angle $\frac{\pi}{6}$ with the x-axis and meets the line 12x + 5y + 10 = 0 at Q, find the length PQ.
- 110. Prove that the points (-4, -1), (-2, -4), (4, 0) and (2, 3) are the vertices of a rectangle.
- 111. Find the equation of a line for which: $p=8, \alpha=300^\circ$

* Given section consists of questions of 3 marks each.

[69]

- 112. If p and q are the length of perpendiculars from the origin to the lines $x\cos\theta y\sin\theta = k\cos2\theta$ and $x\sec\theta + y\cos\sec\theta = k$ respectively, prove that p² + 4q² = k².
- 113. Find the perpendicular distance from the origin of the line joining the points $(\cos \theta, \sin \theta)$ and $(\cos \phi, \sin \phi)$.
- 114. Find the equation of a line drawn perpendicular to the line $\frac{x}{4} + \frac{y}{6} = 1$ through the point where it meets the Y-axis.
- 115. The hypotenuse of a right-angled triangle has its ends at the points (1, 3) and (-4, 1). Find the equation of the legs (perpendicular sides) of the triangle.
- 116. A ray of light passing through the point (1, 2) reflects on the x-axis at point A and the reflected ray passes through the point (5, 3). Find the coordinates of A.
- 117. Prove that the product of the lengths of the perpendiculars drawn from the points $(\sqrt{a^2-b^2},0)$ and $(-\sqrt{a^2-b^2},0)$ to the line $\frac{x}{a}\cos\theta+\frac{y}{b}\sin\theta=1$ is b².
- 118. Find the distance of the line 4x y = 0 from the point P (4, 1) measured along the line making an angle of 135° with the positive x-axis.
- 119. Assuming that straight lines work as the plane mirror for a point, find the image of the point (1, 2) in the line x 3y + 4 = 0
- 120. Show that the area of the triangle formed by the lines $y=m_1 x+c_1$, $y=m_2 x+c_2$ and x=0 is $\frac{(c_1-c_2)^2}{2|m_1-m_2|}$
- 121. Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are $(a\cos\alpha, a\sin\alpha)$ and $(a\cos\beta, a\sin\beta)$.
- 122. Find the equation of the straight line which passes through the point (-3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.
- 123. Point R (h, k) divides a line segment between the axes in the ratio 1 : 2. Find the equation of the line.

- 124. Find the equation of the straight line on which the length of the perpendicular from the origin makes an angle of 30° with x-axis and which forms a triangle of area $\frac{50}{\sqrt{3}}$ with the axes.
- 125. Find the equation of the straight line at a distance of 3 units from the origin such that the perpendicular from the origin to the line makes an angle $\tan^{-1}\left(\frac{5}{12}\right)$ with the positive direction of x-axis.
- 126. Find the value of θ and p, if the equation $x\cos\theta+y\sin\theta=p$ is the normal form of the line $\sqrt{3}x+y+2=0$.
- 127. Find the equation of the straight line which makes a triangle of area $96\sqrt{3}$ with the axes and perpendicular from the origin to it makes an angle of 30° with Y-axis.
- 128. Show that the tangent of an angle between the lines $\frac{x}{a} + \frac{y}{b} = 1$ and $\frac{x}{a} \frac{y}{b} = 1$ is $\frac{2ab}{a^2 b^2}$.
- ¹²⁹. If p is the length of perpendicular from the origin on the line $\frac{x}{a} + \frac{y}{b} = 1$ and a^2 , p^2 , b^2 are in A.P, then show that $a^4 + b^4 = 0$.
- 130. For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x 3y + 6 = 0 on the axes.
- 131. Find the equation of the lines which passes through the point (3, 4) and cuts off intercepts from the coordinate axes such that their sum is 14.
- 132. Match the questions given under Column C_1 with their appropriate answers given under the Column C_2 :

Column C ₁		Column C ₂
(The coordinates of the points P and Q on the line x + 5y a = 13 which are at a distance of 2 units from the line 12x) - 5y + 26 = 0 are	11 1	(3,1), (-7,11)
The coordinates of the point on the line $x + y = 4$, which are at a unit distance from the line $4x + 3y - 10 = 0$ are	i)	$\left[-\frac{1}{3}, \frac{11}{3}, \frac{4}{3}, \frac{7}{3}\right]$
The coordinates of the point on the line joining A (-2, 5) and B (3, 1) such that AP = PQ = QB are	(i ii)	$1, \frac{12}{5}, -3, \frac{16}{5}$

- 133. Find the equation of lines passing through point (0,a) on which the perpendicular drawn from the point (2a,2a) is of length a.
- 134. Find the image of point (2,3) w.r.t. line x-2y+1=0.

* Given section consists of questions of 5 marks each.

- 135. Find the equation of the line passing through the point of intersection of the lines 4x + 7y 3 = 0 and 2x 3y + 1 = 0 that has equal intercepts on the axis.
- 136. Show that the equation of the line passing through the origin and making an angle θ with the line y = mx + c is $\frac{y}{x} = \frac{m \pm \tan \theta}{1 \mp m \tan \theta}$.
- 137. Find equation of the line through the point (0, 2) making an angle $\frac{2\pi}{3}$ with the positive x-axis. Also, find the equation of line parallel to it an crossing the y-axis at a distance of 2 units below the origin.
- 138. In the triangle ABC with vertices A(2, 3), B (4, -1) and C (1, 2) find the equation and length of altitude from the vertex A.
- 139. The equation of the base of an equilateral triangle is x + y = 2 and its vertex is (2, -1). Find the length and equations of its sides.
- 140. Find the equations to the sides of an isosceles right angled triangle the equation of whose hypotenues is 3x + 4y = 4 and the opposite vertex is the point (2, 2).
- 141. Find the image of the point (3, 8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.
- 142. Find the equations of two straight lines passing through (1, 2) and making an angle of 60° with the line x + y = 0. Find also the area of the triangle formed by the three lines.
- 143. Prove that the following sets of three lines are concurrent: $\frac{x}{a} + \frac{y}{b} = 1, \frac{x}{b} + \frac{y}{a} = 1$ and y = x.
- 144. If the image of the point (2, 1) with respect to the line mirror be (5, 2), find the equation of the mirror.
- 145. Find the projection of the point (1, 0) on the line joining the points (-1, 2) and (5, 4).
- 146. Show that the area of the triangle formed by the lines $y=m_1x$, $y=m_2x$ and y=c is equal to $\frac{c^2}{4}(\sqrt{33}+\sqrt{11})$, , where m_1 , m_2 are the roots of the equation $x^2+(\sqrt{3}+2)x+\sqrt{3}-1=0$.
- 147. Prove that the family of lines represented by $x(1+\lambda) = y(2-\lambda) + 5 = 0$, λ being arbitrary, pass through a fixed point. Also, find that point.
- 148. If a, b, c are in A.P., prove that the straight lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent.
- 149. The line through (h, 3) and (4, 1) intersects the line 7x 9y 19 = 0 at right angle. Find the value of h.
- 150. Find the equation of the bisector of angle A of the triangle whose vertices are A (4, 3), B(0, 0) and C (2, 3).

151. Find the angles between the following pairs of straight lines:

$$(m^2 - mn)y = (mn + n^2)x + n^3$$
 and $(mn + m^2)y = (mn - n^2)x + m^3$.

152. Find the equation of the straight lines passing through the following pair of points:

$$\left(\mathrm{at}_1, \frac{\mathrm{a}}{\mathrm{t}_1}\right)$$
 and $\left(\mathrm{at}_2, \frac{\mathrm{a}}{\mathrm{t}_2}\right)$

- 153. Prove that the perpendicular drawn from the point (4, 1) on the join of (2, -1) and (6, 5) divides it in the ratio 5:8.
- 154. If the length of the perpendicular from the point (1, 1) to the line ax by + c = 0 be unity, show that $\frac{1}{c} + \frac{1}{a} \frac{1}{b} = \frac{c}{2ab}$.
- 155. The perpendicular distance of a line from the origin is 5 units and its slope is -1. Find the equation of the line.
- 156. Find the equation of a line which is perpendicular to the line $\sqrt{3}x y + 5 = 0$ and which cuts off an intercept of 4 units with the negative direction of y-axis.
- 157. Find the equations of the two straight lines through (1, 2) forming two sides of a square of which 4x + 7y = 12 is one diagonal.
- 158. Find the values of α so that the point $p(\alpha^2, \alpha)$ lies inside or on the triangle formed by the lines x 5y + 6 = 0, x 3y + 2 = 0 and x 2y 3 = 0.
- 159. In what direction should a line be drawn through the point (1, 2) so that its point of intersection with the line x + y = 4 is at a distance $\frac{\sqrt{6}}{3}$ from the given point.
- 160. Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2).
- 161. P_1 , P_2 are points on either of the two lines $y-\sqrt{3}|x|=2$ at a distance of 5 units from their point of intersection. Find the coordinates of the foot of perpendiculars drawn from P1 , P2 on the bisector of the angle between the given lines.

[**Hint:** Lines are $y=\sqrt{3}x+2$ and $y=-\sqrt{3}x+2$ according as $x\geq 0$ or x<0. y-axis is the bisector of the angles between the lines. P_1 , P_2 are the points on these lines at a distance of 5 units from the point of intersection of these lines which have a point on y-axis as common foot of perpendiculars from these points. The y-coordinate of the foot of the perpendicular is given by $2+5\cos 30^\circ$.]

---- the journey of thousands miles begins with a single step -----