Data Precision and Quantization

Kang Zhao

zhaokang@bupt.edu.cn

Outline

- Floating-point and fixed-point representations
- Fixed-point in Vitis HLS
- Data quantization in Machine Learning

Binary Number Representation

Unsigned number

• MSB has weight 2ⁿ⁻¹

Signed number

• MSB has weight -2ⁿ⁻¹

Examples: assuming integers here

$$2^3$$
 2^2 2^1 2^0 unsigned 1 0 1 1 = 11

$$-2^3$$
 2^2 2^1 2^0 2^2 2^2 2^3 2^2 2^3

IEEE 754 Floating Point Standard

Fixed-Point Representation

What if we fix the decimal point? → Fixed-point numbers

2 3	2 ²	2 ¹	2 °	2-1	2 ⁻²	unsigned
1	0	1	1	O <u>decimal</u>	1 point	11.25
2 3	2 ²	2 ¹	2 °	2-1	2-2	2′C
1	0	1	1	0	1	?

Fixed-Point Representation

What if we fix the decimal point? → Fixed-point numbers

2 3	2 ²	2 ¹	2 °	2-1	2 ⁻²	unsigned
1	0	1	1	O <u>decima</u>	1 point	11.25
2 3	2 ²	2 ¹	2 °	2-1	2-2	2′C
1	0	1	1	0	1	-4-75 (-8 + 3.25)

Fixed-Point Overflow and Underflow

Overflow: happens at MSB

o When a number is larger than the largest that can be represented

2^5	2^4	2^3	2^2	2^1	2^0	2^{-1}	2^{-2}	2^{-3}	2^{-4}	
0										= 11.25
	0	1	0	1	1	0	1	0	0	= 11.25
		(1)	0	1	1	0	1	0	0	= 11.25
D	rop N	ISB	0	1	1	0	1	0	0	= 11.25 $= 3.25$

Underflow: happens at LSB

 \circ When a number is smaller than the smallest that can be represented

Wrapping and Rounding

- Wrapping is one common (& efficient) way of handling overflow: drop the MSBs of the original number
 - But... may result in a totally wrong number

81	-2^{3}	2^2	2^1	2^0	2^{-1}	2^{-2}	2^{-3}	2^{-4}	two's complement
	1	0	1	1	0	1	0	0	=-4.75
		-2^{2}	2^1	2^{0}	2^{-1}	2^{-2}	2^{-3}	2^{-4}	two's complement
223			, 		 -	-	_		ewo b complement

Wrapping and Rounding

- Rounding: when a number cannot be represented precisely in a given number of fractional bits (also called quantization)
- Rounding down (round to negative infinity): drop the extra fractional bits (LSBs)
 - Result in numbers that are more negative

0b0100.00	= 4.0			0b0100.0	= 4.0
0b0011.11	= 3.75			0b0011.1	= 3.5
0b0011.10	= 3.5			0b0011.1	= 3.5
0b0011.01	= 3.25	Down d to		0b0011.0	= 3.0
0b0011.00	= 3.0	Round to	,	0b0011.0	= 3.0
0b1100.00	= -4.0	\rightarrow Negative	\rightarrow	0b1100.0	= -4.0
0b1011.11	= -4.25	Infinity		0b1011.1	= -4.5
0b1011.10	= -4.5			0b1011.1	= -4.5
0b1011.01	= -4.75			0b1011.0	= -5.0
0b1011.00	= -5.0			0b1011.0	= -5.0

Wrapping and Rounding

- Rounding to nearest even: always picks the nearest representable number
 - Minimizes rounding errors
 - Error tends to cancel out when computing sums unbiased rounding

0b0011.11				0b0100.0 0b0100.0	= 4.0 = 4.0 Goes larger
0b0011.10 0b0011.01 0b0011.00 0b1100.00 0b1011.11	= 3.5 $= 3.25$ $= 3.0$ $= -4.0$ $= -4.25$	$\begin{array}{c} \text{Round to} \\ \rightarrow \text{Nearest} \\ \text{Even} \end{array}$	\rightarrow	0b0011.1	= 3.5 = 3.0 Goes smaller = 3.0 = -4.0 = -4.0
0b1011.10 0b1011.01 0b1011.00	= -4.75			0b1011.1 0b1011.0 0b1011.0	= -5.0

Outline

- Floating-point and fixed-point representations
- Fixed-point in Vitis HLS
- Data quantization in Machine Learning

Arbitrary-Precision Integer in HLS

- C/C++ only provides a limited set of native integer types
 - char (8b), short (16b), int (32b), long (?), long long (64b)
- Arbitrary precision integer in HLS
 - Signed: ap_int; Unsigned ap_uint
 - Templatized class ap_int<W> or ap_uint<W>
 - W is the user-specified bitwidth

```
#include "ap_int.h"
...
ap_int<9> x; // 9-bit
ap_uint<17> y; // 17-bit unsigned
ap_uint<512> z; // 512-bit unsigned
```

Arbitrary-Precision Fixed-Point in Vitis HLS

- Signed: ap_fixed; Unsigned ap_ufixed
 - Templatized class ap_fixed<W, I, Q, O>
 - Q: quantization mode; O: overflow mode

Example: Fixed-Point Modeling

ap_ufixed<11, 8, AP_TRN, AP_WRAP> x;

- 11 is the total number of bits in the type
- 8 bits is the integer bitwidth
- AP_TRN defines truncation behavior for quantization
- AP_WRAP defines wrapping behavior for overflow

Quantization and Overflow Modes

AP_RND	Round to plus infinity
AP_RND_ZERO	Round to zero
AP_RND_MIN_INF	Round to minus infinity
AP_RND_INF	Round to infinity
AP_RND_CONV	Convergent rounding
AP_TRN	Truncation to minus infinity (default)
AP_TRN_ZERO	Truncation to zero

Quantization and Overflow Modes

AP_SAT ¹	Saturation
AP_SAT_ZERO ¹	Saturation to zero
AP_SAT_SYM ¹	Symmetrical saturation
AP_WRAP	Wrap around (default)
AP_WRAP_SM	Sign magnitude wrap around

*AP_SAT Requires extra complex logic

```
ap_fixed<4, 4, AP_RND, AP_SAT> UAPFixed4 = 19.0; // Yields: 7.0
ap_fixed<4, 4, AP_RND, AP_SAT> UAPFixed4 = -19.0; // Yields: -8.0
ap_ufixed<4, 4, AP_RND, AP_SAT> UAPFixed4 = 19.0; // Yields: 15.0
ap_ufixed<4, 4, AP_RND, AP_SAT> UAPFixed4 = -19.0; // Yields: 0.0
```

Pros and Cons of Fixed Point

Pros

Low memory, low resource (DSP, peripheral logic), low latency

Cons

Uncertain accuracy

Vitis HLS can also synthesize floating point

- \circ Requires significant amount of computation \to a large amount of resource usage and many cycles of latency
- Floating point numbers should be avoided unless absolutely necessary

Backup

Outline

- Floating-point and fixed-point representations
- Fixed-point in Vitis HLS
- Data quantization in Machine Learning

Quantization for Machine Learning

- Why do we care?
 - Faster, smaller, easier!
- Why does it work?
- Quantization Methods
 - Fixed-point
 - Integer

Why Does Quantization Work for ML?

- DNNs are known to be robust to noise and small perturbations once trained
 - o 80% chance to be a cat? 75% chance to be a cat? Still a cat!

Why Does Quantization Work for ML?

- DNNs are known to be robust to noise and small perturbations once trained
 - 80% chance to be a cat? 75% chance to be a cat? Still a cat!
- Weights and activations often tend to lie in a small range
 - Can be estimated beforehand

Quantization Method 1 – Fixed Point

 Using fixed-point instead of floating point is a convenient and common approach on FPGA

```
#include "ap fixed.h"
Typedef ap_fixed<9, 3, AP_TRN, AP_WRAP> my_fixed_type;
my_fixed_type weights[dim1][dim2];
my_fixed_type bias[dim1];
weights[0][0] = (my_fixed_type) weights floating[0][0];
```

Quantization Method 1 – Fixed Point

- Using fixed-point instead of floating point is a convenient and common approach on FPGA
 - Need to determine (sometimes trial-and-error) the W and I
 - W: total number of bits
 - I: number of integer bits
- Drawback: doesn't work well for low bit-width, e.g., 8-bit
 - o The range of the represented number is strictly limited by W and I

Quantization Method 2 – Integer

With a scaling and a bias (shift), can represent a much larger range

- f: original floating-point value
- q: quantized integer
- scale and bias: can be floating or fixed point

-257.8 -117.2 -6.3 o 18.4 25.3 66.9 77.3 128	145.6
--	-------

3-bit: $2^3 = 8$

0	1	2	3	4	5	6	7

-257.8	-117.2	-6.3	0	18.4	25.3	66.9	77-3	128.1	145.6

$$\frac{145.6 - (-257.8)}{2^3 - 1} = 57.63$$
 Scaling factor

Next is to shift

Zeros are very common in ML but are tampered

