Lecture 9 Model Evaluation Scarcity and Abundance of Data

What is model evaluation about?

- Classification of uncertainties
 - In the model (i.e. model parameters)
 - Resulting uncertainties in predictions
 - Resulting uncertainties in performance measures

Where do the uncertainties come from?

- Data
 - Variance (from small data sets)
 - Bias (often also from small data sets)
 - \circ But, remember the \sqrt{N} law!
- Model
 - Inability to capture the nature of the data (i.e. non-linear data)
- Modeling process
 - E.g. choice of train, test, and validation sets

How to deal with them?

- Cross-validation (dependence of performance on train/test choice)
 - Extreme case: Leave-one-out CV
- Bootstrapping
 - Swiss army knife
- Direct calculation of errors on model parameters (in some cases)
 - E.g. linear regression
- Many models can predict "probabilities"
 - E.g. Logistic regression, decision trees

Scarcity and Abundance of Data

Compute Availability

- Historically, expensive on-premise hardware was required
- High capital expenditure (CAPEX), high operating expenditure (OPEX)
 - Difficult to make a case to invest
- Now: Cloud services available

Instance ⊓name	On-Demand hourly rate	vCPU ▼	Memory ▽	Storage	Network performance
u- 12tb1.112xlarge	\$109.20	448	12288 GiB	EBS Only	100 Gigabit
u- 6tb1.112xlarge	\$54.60	448	6144 GiB	EBS Only	100 Gigabit
u-3tb1.56xlarge	\$27.30	224	3072 GiB	EBS Only	50 Gigabit
u-6tb1.56xlarge	\$46.40391	224	6144 GiB	EBS Only	100 Gigabit

Scarcity of data

- High potential for bias
- Often limited model performance
- High variance
- Makes things like leave-one-out CV feasible

Abundance of Data

- Data engineering and tooling becomes very important
- Cost becomes an issue
 - Training cost of GPT-4: est. 100 MUSD
- Modern frameworks like Spark do much of the heavy lifting
- Common issues
 - Rare cases become more probable to be in a large datasets
 - Irregularities with data (outliers, missing data) becomes more common
 - Outliers harder to identify

