Operacijska istraživanja

10. predavanje: Dinamičko programiranje i Markovljevi procesi odlučivanja

Sažetak predavanja

- Dinamičko programiranje
 - Općeniti principi
 - (bes)/konačni horizont
- Determinističko dinamičko programiranje
 - Zagonetke
 - Problem naprtnjače
- Stohastičko dinamičko programiranje
- Računalne poteškoće

Dinamičko programiranje

- Optimizacijski problem se može podijeliti u niz manjih problema
 - Rekurzija sa memoizacijom
- "Jednostavnije" rješavanje problema
- Rješenja manjih problema se mogu koristiti u većim problemima
 - Korištenje memoriziranih rješenja smanjuje vrijeme izračuna
 - Redukcija u složenosti

Općeniti principi

- Elementi dinamičkog programa
 - Faze
 - Stanja
 - Odluke
 - Tranzicije
 - Izravne nagrade
 - Rekurzija za optimalnu funkciju vrijednosti
 - Optimalna strategija
 - Dodatno, ovisno o specifikama
 - Npr. U stohastičkom slučaju, slučajni poremećaji

- Faze
- Stanja čvorovi odluka (kvadratići) i terminalne grane
- Odluke grananja iz stanja
- Tranzicije funkcija koja izračunava koje je sljedeće stanje. Sve između stanja.
- Izravne nagrade realiziraju se sa svakom odlukom i terminalnim stanjme
- Optimalna strategija

 najbolja odluka za
 svako stanje (osim terminalnog)

Općeniti principi I - elementi

- Problem se može podijeliti u faze k=1...N sa odlukama u svakoj fazi
 - Konačni/beskonačni horizonti problema
- 2. Skup stanja S_k vezan uz fazu k
 - Stanje x_k∈S_k– informacija potrebna za svaku optimalnu odluku
 - Iz trenutnog stanja, optimalna odluka za ostatak problema ne ovisi o prošlosti - Markovost
 - Princip optimalnosti

Općeniti principi II - elementi

- 3. Postoji skup C_k mogućih **odluka** vezanih uz svaku fazu k
 - Odluke $U_k \in U_k(x_k) \subset C_k$
 - $U_k(x_k)$ skup dopuštenih odluka u stanju x_k
- **4. Tranzicijska** funkcija f_k definira transformaciju iz trenutnog stanja x_k pod utjecajem trenutne odluke u_k u sljedeće stanje (u narednoj fazi)

•
$$f_k: S_k \times C_k \rightarrow S_{k+1}$$
 (determinističko)

5. Izravna nagrada/trošak dan prema fazama

•
$$g_k:S_k\times C_k\to \mathbb{R}$$
, $k=1,...,N-1$

•
$$g_N:S_N \to \mathbb{R}$$

Ukupni trošak mora biti jednak agregaciji izravnih trošaka

Općeniti principi III - elementi

- 4. Rekurzivna formula koja povezuje trošak tijekom stanja u fazi k sa troškom u fazi k+1
- (deterministički)
- $J_k^*(x_k) = \min_{u_k} \{g_k(x_k, u_k) + J_{k+1}^*(x_{k+1} = f_k(x_k, u_k))\}$
- (stohastički)
- $J_k^*(x_k) = \min_{u_k} \mathbb{E} \left\{ g_k(x_k, u_k, w_k) + J_{k+1}^*(x_{k+1} = f_k(x_k, u_k, w_k)) \right\}$
 - (Bellmanove jednadžbe optimalnosti)
- J_k* se zove optimalna funkcija vrijednosti
 - Pod pretpostavkom da je agregacija suma i optimizacijski kriterij pod neizvjesnosti očekivana vrijednost

Općeniti principi IV - elementi

- 5. optimalna strategija/politika $\pi^* = \{\mu_1^*, \dots, \mu_{N-1}^*\}$ koja je sekvenca funkcija $\mu_k^*: S_k \to C_k$, pravila odluka u svakoj fazi k
- (determinističko)
- $\mu_k^*(x_k) = argmin_{u_k} \{g_k(x_k, u_k) + J_{k+1}^*(x_{k+1} = f_k(x_k, u_k))\}$
- (stohastično)
- $\mu_k^*(x_k) = argmin_{u_k} \mathbb{E} \{g_k(x_k, u_k) + J_{k+1}^*(x_{k+1} = f_k(x_k, u_k, w_k))\}$

Općeniti principi V - elementi

- Problemi sa konačnim horizontom
 - Rješavanje unatražnom indukcijom preko faza(N...1)
- Problemi sa beskonačnim horizontom
 - Valjano definirano za specijalne formulacije
 - Snižene nagrade
 - Prosječne nagrade
 - Procedure za rješavanje:
 - Iterativne procedure
 - LF
 - Iteriranje strategija
 - Iteriranje vrijednosti

Problem I - zagonetke

Pretpostavimo da imamo 30 šibica na stolu.
 Počinjem uzimanjem 1, 2, ili 3 šibice. Zatim moj protivnik mora uzeti 1, 2, ili 3 šibice. Nastavljamo na taj način dok se zadnja šibica ne pokupi. Igrač koji pokupi zadnju šibicu je izgubio igru. Kako mogu ja (prvi igrač) biti siguran da ću pobijediti u igri?

Rješ.: onaj tko se nađe na izboru sa 1 preostalom šibicom je izgubio. Unatražno, 1. igrač uvijek može isforsirati da jedan "ciklus" potroši **4 šibice**, što znači da 1.igrač želi ostavljati 2. igraču neki broj 1+4*k, što kulminira sa 29. Dakle, igrač 1 počinje sa uzimanjem jedne šibice i ima zajamčenu pobjedu forsirajući cikluse od 4 šibice od tad nadalje.

- Ograničeni resursi (budžet) alocirani preko nekoliko aktivnosti (ulaganja, prilike)
 - LP pretpostavke
 - 1. Alokacije su ne-negativni brojevi
 - 2. Ostvarena korist iz aktivnosti je **proporcionalna** dodijeljenim resursima
 - 3. Ukupna korisnost iz aktivnosti je suma korisnosti individualnih aktivnosti
 - DP pretpostavke
 - 1. Alokacije aktivnostima su članovi konačnih skupova
 - 2. Ukupna korisnost aktivnosti je **agregacija** korisnosti iz individualnih aktivnosti

Finco ima \$6,000 za investiranje, itri investicije za odabir. Ako je s
j dolara (u tisućama) investirano u investicije j, tada je ostvaren netto povrat (u tisućama) r
j(s
j), gdje su r
j(s
j) sljedeći:

LP

- Cjelobrojne alokacije
- Proporcionalnost

$$r_1(s_1) = 7s_1 + 2, (s_1 > 0)$$

$$r_2(s_2) = 3s_2 + 7, (s_2 > 0)$$

$$r_3(s_3) = 4s_3 + 5$$
, $(s_3 > 0)$

•
$$r_1(0) = r_2(0) = r_3(0) = 0$$

MILP

Proporcionalnost

 Količina uložena u svako ulaganje mora biti u cjelobrojnim tisućama \$. Kako Finco treba alocirati \$6,000 da ostvari najveći netto povrat?

$$\max\{r_1(s_1) + r_2(s_2) + r_3(s_3)\}$$

s.t.
$$s_1 + s_2 + s_3 = 6$$

 s_i ne-negativni integer (j = 1, 2, 3)

Faze k − Alokacija u investicije 1,2,3: k∈{1,2,3}

Stanja x_k - Dostupan novac za investicije (u \$1000-ama) $\forall k, x_k \in \{0,1,2,3,4,5,6\}$

Odluke u_k- Alokacije u investicije k, sa ostatkom za ostala ulaganja

Transition function f_k : $x_{k+1} = f_k(x_k, u_k) = x_k - u_k$

Izravna nagrada $g_k(x_k, u_k) = r_k(u_k)$

Rekurzija za optimalnu funkciju vrijednosti

$$J_k^*(x_k) = \max_{u_k} \{r_t(u_k) + J_{k+1}^* (x_{k+1} = f_k(x_k, u_k))\}, \forall k$$
$$J_4(x) = 0$$

Optimalna funkcija vrijednosti **u ovom slučaju** može biti pohranjena u $|S_k| \times |\{1,2,3\}|$ tablicu

Stanje x _k	J ₃ *(x ₃); μ ₃ *(x ₃)	r ₂ (U ₂)	$J_2^*(x_2);$ $\mu_2^*(x_2)$
0	0; (0)	0	
1	9; (1)	10	
2	13; (2)	13	
3	17; (3)	16	
4	21; (4)	19	
5	25; (5)	22	
6	29; (6)	25	

$$J_2^*(x_2) = \max_{u_2} \{r_2(u_2) + J_3^*(x_3 = x_2 - u_2)\}$$

Koristimo samo zadnja dva stupca r_2 i J_3^* za izračun novog stupca!

Stanje x _k	J ₃ *(x ₃); μ ₃ *(x ₃)	r ₂ (U ₂)	$J_2^*(x_2);$ $\mu_2^*(x_2)$
0	0; (0)	0	0; (0)
1	9; (1)	10	10; (1)
2	13; (2)	13	19; (1)
3	17; (3)	16	23; (1)
4	21; (4)	19	27; (1)
5	25; (5)	22	31; (1)
6	29; (6)	25	

$$J_2^*(x_2) = \max_{u_2} \{ r_2(u_2) + J_3^*(x_3 = x_2 - u_2) \}$$

$$J_2^*(x_2 = 6) = \max_{u_2 \mid u_2 + x_3 = 6} \{ r_2(u_2) + J_3^*(x_3 = 6 - u_2) \}$$

Stanje x _k	J ₃ *(x ₃); μ ₃ *(x ₃)	r ₂ (U ₂)	$J_{2}^{*}(x_{2});$ $\mu_{2}^{*}(x_{2})$
0	0; (0)	0	0; (0)
1	9; (1)	10	10; (1)
2	13; (2)	13	19; (1)
3	17; (3)	16	23; (1)
4	21; (4)	19	27; (1)
5	25; (5)	22	31; (1)
6	29; (6)	25	35; (1)

$$J_2^*(x_2=6) = \max \begin{cases} r_2(u_2=0) + J_3^*(x_3=6), \\ r_2(u_2=1) + J_3^*(x_3=5), \\ r_2(u_2=2) + J_3^*(x_3=4), \\ r_2(u_2=3) + J_3^*(x_3=3), \\ r_2(u_2=4) + J_3^*(x_3=2), \\ r_2(u_2=5) + J_3^*(x_3=1), \\ r_2(u_2=6) + J_3^*(x_3=0) \end{cases}$$
 Najbolje kombinacija 10+25=35, za u₂=1

Stanje x _k	J ₃ *(x ₃); μ ₃ *(x ₃)	r ₂ (U ₂)	$J_{2}^{*}(x_{2});$ $\mu_{2}^{*}(x_{2})$	r ₁ (υ ₁)	J ₁ * (x ₁); μ ₁ *(x ₁)
0	0; (0)	0	0; (0)	0	
1	9; (1)	10	10; (1)	9	
2	13; (2)	13	19; (1)	16	
3	17; (3)	16	23; (1)	23	
4	21; (4)	19	27; (1)	30	
5	25; (5)	22	31; (1)	37	
6	29; (6)	25	35; (1)	44	

$$J_1^*(x_1) = \max_{u_1} \{r_1(u_1) + J_2^*(x_2 = x_1 - u_1)\}$$

Koristimo samo zadnja dva stupca r_1 i J_2^* za izračun novog stupca!

Stanje x _k	J ₃ *(x ₃); μ ₃ *(x ₃)	r ₂ (U ₂)	$J_2^*(x_2);$ $\mu_2^*(x_2)$	r ₁ (υ ₁)	$J_1^*(x_1);$ $\mu_1^*(x_1)$
0	0; (0)	0	0; (0)	0	0; (0)
1	9; (1)	10	10; (1)	9	10; (0)
2	13; (2)	13	19; (1)	16	19; (0)
3	17; (3)	16	23; (1)	23	28; (1)
4	21; (4)	19	27; (1)	30	35; (2)
5	25; (5)	22	31; (1)	37	42; (3)
6	29; (6)	25	35; (1)	44	49; (4)

$$J_1^*(x_1) = \max_{u_1} \{r_1(u_1) + J_2^*(x_2 = x_1 - u_1)\}$$

Stanje x _k	J ₃ *(x ₃); μ ₃ *(x ₃)	r ₂ (U ₂)	$J_{2}^{*}(x_{2});$ $\mu_{2}^{*}(x_{2})$	r ₁ (υ ₁)	J ₁ * (x ₁); μ ₁ *(x ₁)
0	0; (0)	0	0; (0)	0	0; (0)
1	9; (1)	10	10; (1)	9	10; (0)
2	13; (2)	$x_3 = x_2 - U_2$	19; (1)	16	19; (0)
3	17; (3)	16	23; (1)	23	28; (1)
4	21; (4)	19	27; (1)	30	35; (2)
5	25; (5)	22	31; (1)	37	42; (3)
6	29; (6)	25	35; (1)	44	49; (4)

- Vrijednost optimalnog rješenja je \$49,000 za uloženih \$6,000
- Optimalna alokacija jest $u_1=4, u_2=1, u_3=1$ (vrijednosti u zagradama u tablici)

Stohastičko dinamičko programiranje

- Pristup za rješavanje Markovljevih procesa odlučivanja (MDP)
 - Kontrola stohastičkih procesa u diskretnom vremenu
 - Stohastička tranzicija između stanja
- Konačni horizont
 - Unatražna indukcija unatražno DP
- Beskonačni horizont
 - LP
 - Iteriranje vrijednosti
 - Iteriranje strategija

Stohastičko dinamičko programiranje

$$J_k^*(x_k) = \min_{u_k} \mathbb{E} \left\{ g_k(x_k, u_k, w_k) + J_{k+1}^*(x_{k+1} = f_k(x_k, u_k, w_k)) \right\}$$

- Konačni horizont unatražna indukcija
 - Stablo odlučivanja
 - Čvorovi odluke ⇔ stanja
 - Bridovi iz čvorova događaja u odluke ⇔ stohastičke tranzicije
 - Očekivana vrijednost se računa u čvorovima događaja
 - Minimizacija se računa u čvorovima odluka

Računalne poteškoće

$$J_k^*(\mathbf{x_k}) = \min_{u_k} \mathbb{E} \left\{ g_k(\mathbf{x_k}, u_k, w_k) + J_{k+1}^*(\mathbf{x_{k+1}} = f_k(\mathbf{x_k}, u_k, w_k)) \right\}$$

- Sve egzaktne procedure DP-a pate od 3 prokletstva dimenzionalnosti:
- 1. U prostoru odluka
 - Funkcija vrijednosti izračun i pohrana za sva stanja
- 2. U prostoru odluka
 - Optimizacija preko svih odluka
- 3. U prostoru slučajnih poremećaja
 - Izračun očekivane vrijednosti
- Realistični problemi imaju velike dimenzionalnosti sva tri prostora