MÉTODOS NUMÉRICOS Curso 2020–2021

Problemas

Hoja 2. Complementos de álgebra matricial

1 Demostrar que si $x = (x_1, x_2, \dots, x_n)^T \in \mathcal{M}_{n \times 1}$ y

$$B = \begin{pmatrix} b_1^{\mathrm{T}} \\ b_2^{\mathrm{T}} \\ \vdots \\ b_m^{\mathrm{T}} \end{pmatrix} \in \mathcal{M}_{m \times n} \text{ entonces } Bx = \begin{pmatrix} b_1^{\mathrm{T}} x \\ b_2^{\mathrm{T}} x \\ \vdots \\ b_m^{\mathrm{T}} x \end{pmatrix}.$$

2 Mostrar que si

$$B = (b_1, b_2, \dots, b_n) \in \mathcal{M}_{m \times n} \text{ y } x = (x_1, x_2, \dots, x_n)^{\mathrm{T}} \in \mathcal{M}_{n \times 1}$$

entonces

$$Bx = \sum_{i=1}^{n} x_i b_i = x_1 b_1 + x_2 b_2 + \dots + x_n b_n.$$

3 Si $A \in \mathcal{M}_{m \times n}$ y

$$B = (b_1, b_2, \dots, b_p) \in \mathcal{M}_{n \times p}$$

probar que

$$AB = (Ab_1, Ab_2, \dots, Ab_p).$$

4 Utilizar los Problemas 2 y 3 para demostrar que si $A \in \mathcal{M}_{m \times n}$, $B \in \mathcal{M}_{n \times p}$ y $x \in \mathcal{M}_{p \times 1}$ entonces

$$A(Bx) = (AB)x.$$

5 Usar los Problemas 3 y 4 para mostrar que si $A \in \mathcal{M}_{m \times n}$, $B \in \mathcal{M}_{n \times p}$ y $C \in \mathcal{M}_{p \times q}$ entonces

$$A(BC) = (AB)C.$$

6 Si $v, w \in \mathbf{V}$, determinar la forma de vw^* .

7 Sean $A, D \in \mathcal{M}_n$ con $D = \text{diag } (d_{11}, d_{22}, \dots, d_{nn})$. Encontrar las expresiones de DA y AD.

8 Sean D y E matrices diagonales y λ un escalar. Demostrar que λD , D+E y DE son matrices diagonales y determinants

9 Sean A y B matrices triangulares superiores (resp. inferiores) y λ un escalar. Demostrar que λA , A+B y AB son matrices triangulares superiores (resp. inferiores) y determinar sus elementos diagonales.

10 Inversas de matrices diagonales y triangulares

- a) Demostrar que si D es una matriz diagonal e inversible, su inversa es también diagonal. Determinar D^{-1} .
- b) Mostrar que si A es una matriz triangular superior (respectivamente inferior) e inversible, su inversa es también triangular superior (respectivamente inferior). Determinar los elementos diagonales de A^{-1} .
- 11 Demostrar que si $A \in \mathcal{M}_n$ es una matriz triangular y normal entonces A es diagonal.
- 12 Sean $A, B \in \mathcal{M}_n$. Probar los siguientes resultados:

a)
$$\operatorname{sp}(AB) = \operatorname{sp}(BA)$$
. b) $\rho(A^k) = (\rho(A))^k$, $k \in \mathbb{N}$.

13 Sea $A \in \mathcal{M}_n$ y $\alpha \in \mathbb{K} \setminus \{0\}$. Probar que

$$\lambda \in \operatorname{sp}(A) \Leftrightarrow \alpha \lambda \in \operatorname{sp}(\alpha A).$$

14 Demostrar que si A es triangular por bloques entonces

$$\operatorname{sp}(A) = \bigcup_{i=1}^{p} \operatorname{sp}(A_{ii}).$$

siendo A_{ii} , i = 1, ..., p los bloques de la diagonal de A. Deducir que el determinante de una matriz triangular por bloques es el producto de los determinantes de los bloques de su diagonal.

- 15 Generalizar los resultados del Problema 10 para matrices diagonales, triangulares superiores e inferiores, por bloques.
- 16 Demostrar que si $A \in \mathcal{M}_n$ es una matriz hermítica definida positiva y se descompone en bloques, los bloques diagonales son matrices hermíticas y definidas positivas. En particular, deducir que los elementos diagonales de A son números positivos así como sus menores principales.
- 17 Sea $A \in \mathcal{M}_n$ una matriz hermítica (resp. simétrica) definida positiva.
- a) Probar que existe $B \in \mathcal{M}_n$ hermítica (resp. simétrica) definida positiva tal que $A = B^2$.
- b) Demostrar que si $\operatorname{cond}_2(A) > 1$ entonces $\operatorname{cond}_2(B) < \operatorname{cond}_2(A)$.