1. (5 bodova)

Toplinska pumpa grije prostor na 20 °C prenošenjem topline iz tla stalne temperature 6 °C u prvom slučaju i 12 °C u drugom slučaju. Izračunati (analizirati idealno kao Carnotov kružni proces):

- a) Faktore preobrazbe za oba slučaja.
- b) Omjer uloženog mehaničkog rada u prvom i drugom slučaju.

Riešenje: a) FP = 20.94; FP' = 36.64; b) W/W' = 1.75

2. (5 bodova)

Geotermalna elektrana sa separiranjem pare (*flash steam*) nakon separatora ima maseni protok pare od 15 kg/s s entalpijom 2700 kJ/kg. Sadržaj pare na ulazu u separator pare iznosi 0,15. Entalpija na izlazu iz turbine iznosi 2300 kJ/kg. Ukupna mehaničko–električna učinkovitost iznosi 0,88 i vlastita potrošnja elektrane iznosi 20% proizvedene električne energije. Potrebno je odrediti:

- a) Električnu snagu na izlazu (pragu) elektrane.
- b) Ukupni maseni protok fluida koji se uzima iz geotermalnog nalazišta.

Rješenje: a) $P_{el} = 5,28 \text{ MW}$; b) $\dot{m} = 100 \text{ kg/s}$

3. (5 bodova)

Za promatranu lokaciju protočne hidroelektrane (HE) vjerojatnosna krivulja trajanja protoka ima oblik $Q_{vjerojatno}(t) = 300-25 \cdot t \text{ [m}^3/\text{s]}$ (t u mjesecima). Istovremeno za promatranu godinu stvarno trajanje protoka opisuje izraz $Q_{stvarno}(t) = 252-21 \cdot t$. Pod pretpostavkom konstantne aktivne visine 20 m i ukupnog stupanja djelovanja 85% potrebno je odrediti za HE:

- a) Snagu uz instalirani protok jednak srednjem vjerojatnom protoku.
- b) Vjerojatnu i stvarnu godišnju proizvodnju električne energije korištenjem instaliranog protoka jednakog srednjem vjerojatnom protoku.
- c) Potrebni instalirani protok da bi faktor opterećenja iznosio 80% za zadanu vjerojatnosnu krivulju trajanja protoka.

Rješenje: a) $W_v = 164.4 \text{ GWh}$; $W_s = 153.9 \text{ GWh}$; b) P = 25.0 MW; c) $Q_i = 120 \text{ m}^3/\text{s}$

4. (5 bodova)

Za PWR nuklearnu elektranu (lakovodni reaktor pod tlakom) s dvije rashladne petlje poznati su sljedeći podaci: porast temperature hladioca u jezgri 37,5 K, gustoća hladioca na ulazu u pumpu 750 kg/m³, volumni protok hladioca kroz pumpu 6,2 m³/s, porast tlaka na pumpi 609 kPa, ekvivalentni specifični toplinski kapacitet primarne vode 5,74 kJ/kgK, entalpija pojne vode parogeneratora 9,4·10⁵ J/kg, entalpija zasićene pare na izlazu parogeneratora 2,78·10⁶ J/kg, termički stupanj djelovanja 33%, porast temperature riječne vode korištene za hlađenje kondenzatora 15 K, specifični toplinski kapacitet riječne vode 4,78 kJ/kgK. Potrebno je izračunati:

- a) Snagu jezgre i snagu koju pumpa predaje hladiocu.
- b) Ukupni maseni protok primarnog rashladnog sredstva i maseni protok riječne vode za hlađenje.
- c) Masu urana obogaćenja 4% potrebnu za pogon reaktora na srednjem neutronskom toku od 3,0·10¹⁷ n/m²s (udarni presjek za fisiju je 582 barna i energija oslobođena po fisiji 200 MeV).

Rješenje: a) $P_J = 2001.8 \text{ MW}; P_{PMP} = 3.76 \text{ MW}; b)$ $\dot{m}_{PK} = 9300 \text{ kg/s}; \dot{m}_{RVR} = 18776 \text{ kg/s}; c) \text{ m}(U) = 34.93 \text{ t}$

5. (5 bodova)

Poznati su sljedeći podaci o dnevnom opterećenju elektroenergetskog sustava: maksimalno opterećenje 1100 MW, minimalno opterećenje traje 4 sata i iznosi 600 MW, faktor opterećenja 0,79167. Dnevna krivulja trajanja opterećenja sustava aproksimirana je s tri pravca uz pretpostavku α = β +0,1. U sustavu su raspoložive sljedeće elektrane:

 HE_1 : $P_{HE1n} = 200 \text{ MW}$; protočna

2. međuispit iz Energijskih tehnologija

17.5.2007.

 HE_2 : $P_{HE2n} = 200 \text{ MW}$; protočna

NE: $P_{NEn} = 200 \text{ MW};$

 $\begin{array}{llll} TE_1: & P_{TE1n} = 350 \ MW; & P_{TE1min} = 50 \ MW; & c_{TE1} = 35 \ lp/kWh \\ TE_2: & P_{TE2n} = 250 \ MW; & P_{TE1min} = 50 \ MW; & c_{TE1} = 30 \ lp/kWh \\ TE_3: & P_{TE2n} = 200 \ MW; & P_{TE1min} = 50 \ MW; & c_{TE1} = 40 \ lp/kWh \end{array}$

- a) Odrediti iznose konstantne energije, varijabilne energije, te ukupne dnevno potrošene energije.
- b) Nacrtati krivulju trajanja opterećenja i docrtati raspored rada elektrana.
- c) Koliko će sati TE₁ raditi na snazi većoj od tehničkog minimuma?

Rješenje:

a)
$$W = 20900$$
 MWh; $W_k = 14400$ MWh; $W_v = 6500$ MWh
b) $\alpha = 0.7$; $\beta = 0.6$; raspored elektrana (vidi sliku)
c) $t = t$ ($P_{TEI} > P_{TEImin}$) = 14 h

