CSE 691 Machine Intelligence w. Deep Learning

Objectives

- Understand the basic training and inference techniques and performance criteria of a neural network
- Explain the structure and neuron functions in a deep convolutional neural
- Implement the basic training and inference of a simple neural network in
- Implement a deep convolutional neural network in Intel Neon framework
- Explain the fundamentals of the GPU acceleration
- Understand the recent advances in deep learning and machine
- Get familiar with other types of neural networks such as LSTM, RBM, etc. (if time allows.)

General Information

Instructor

- Professor Qinru Qiu, Room CST 4-133,
- Tel: (315)443-1836, email: qiqiu@syr.edu
 Office Hours: Wednesday 10:00 am- 12:00 pm Thursday 2:00 ~ 3:30 pm

Class Location and Times

- CST 1-019
- Tuesday & Thursday 12:30 pm ~ 1:50 pm

- Ziyi Zhao
- Office hours: TBD
- Location: TBD

Acknowledgement

This course is supported by Google Cloud Education Grant and Intel

Topics

- 1. Introductions
- Classification problem, basic machine learning models
- 3. Training and inference techniques
- Image classification problem
- 5. Python implementation of training and inference
- 6. Structure of deep convolutional neural networks (DCNN)
- 7. Neon
- 8. Using GPU to accelerate learning and inference
- 9. Other deep learning models beyond DCNN
- 10. Other interesting applications

Prerequisites

- Python, or C/C++ programming
- College calculus, linear algebra, comfortable with derivatives, matrix vector operations and notations
- Basic probability and statistics

Homework Assignments

- 5-6 homework assignments
 - Some of them will be team work, read the instruction carefully
- 1 final project
 - Research, coding, presentation....
- Only 1 exam
- Grading policy
 - Quizzes: 20%Final Project: 20%
 - Homework: 25%Midterm Exam: 30%
 - Others 5%

Adapted from 1 Raheay "Digital Integrated Circuits: a Design Perspective" Converget 2003 Prentice Hall/Pearson

Policies

- Homework
 - Submit the correct file/design
 - Submit assignment in time
 - Late submission will have penalty
 - 10 points for each day of delay
- Pop up quizzes
 - By default open book/notes
 - Prepare a binder to keep all your notes and bring them with you to class
 - Discussion and exchange of notes are not allowed
 - A form of attendance check, 60 points for just writing down your name
- Exams
 - By default close book

Academic Honesty

- Cheating in any form is not tolerated, nor is assisting another person to cheat.
- The submission of any work by a student is taken as a guarantee that the thoughts and expressions in it are the students own except when properly credited to another.
- Violations of this principle will result in a failing grade "F" and a letter of reprimand in your department student file.

dapted from J. Rabeay, "Digital Integrated Circuits: a Design Perspective". Copyright 2003 Prentice Hall/Pearson

Customs officers use new facial recognition technology to bust a man trying to enter the US illegally on someone else's French passport

Facial recognition technology spots wanted man in crowd of 60,000 Chinese concertgoers

DeepDream

Why Machine Learning

- Cognition, easy for human brain, hard for computers
 - Hard to program because we don't know how it works
 - Even if we do, the program will be very complicated
 - Need to consider all kinds of input, application environment, for a new task a new program must be written
- Human brain relies on memory and pattern matching
 - Learn from past experiences
 - Adapt to new environment and new tasks
- The machine learning approach
 - We collect a lot of examples that specify the correct output for a given input
 - A machine learning algorithm learns from these examples and produces a program (model) that does the job
 - If the learning is right, the program also works for new inputs that are not in the training set but share some similarity
 - For a new task, a new set of training data is needed and a new model will be learned

Machine Learning is Good At...

- Recognizing patterns
 - Objects in real scenes
 - Facial identifies or facial expressions
 - Spoken words
- Recognizing anomalies
 - Unusual sequences of credit card transactions
 - Unusual patterns of sensor readings in a nuclear power plant
- Prediction
 - Future stock prices or currency exchange rates
 - Which movies will a person like?

What Enables Machine Learning

- Fast computers
 - GPU, TPU, <u>BrainWave</u>, ...
 - NVIDIA Volta 640 TensorCores, 100 TFLOPS
 - NVIDIA Titan X Pascal 3840 Cuda core, 12 TFLOPS
 - Google TPU 2 256x256 8-bit MAC unit at 45 TFLOPS
- Abundant training data
 - ImageNet
 - Over ten million URLs of images have been hand-annotated to indicate objects; at least one million of the images, bounding boxes are also provided.
 - MS Coco
 - 328K Images of everyday scenes containing 91 types of common objects labeled using per-instance segmentations. With a total of 2.5 million labeled instances.
 - Flikr, Pascal VOC, etc.
- Better model and training techniques

- A two layer network with a single winner in the top layer is equivalent to having a rigid template for each shape.
- The winner is the template that has the biggest overlap with the ink.
- This simple 2 layer template based system may not capture all possible variations of hand written digits
 - To capture all the allowable variations of a digit we need to learn the features that it is composed of.