Analiza niepewności

laboratorium 2

Zadanie 1

Na podstawie danych w tabeli dotyczących pomiaru wysokości walca (w mm) oraz jego średnicy (w mm), dokonaj oceny niepewności objętości walca. Pomiarów dokonano suwmiarką o dokładności równej 0.05mm.

Lp	Wysokość	Średnica
1	67.85	16.00
2	67.90	15.90
3	67.90	15.95
4	67.85	15.90
5	67.95	15.95
6	67.90	16.00
7	67.90	15.95
8	67.95	15.90
9	67.90	15.95

Wszelkie obliczenia oraz wyniki umieść w Rmarkdown, wg kolejności:

- 1. wzór na objetość,
- 2. wzór na niepewność standardową pomiaru pośredniego wraz z wyliczonymi pochodnymi,
- 3. obliczenia średnich wartości składowych h i d,
- 4. obliczenia niepewności standardowych typu A u_A dla obu składowych,
- 5. obliczenia niepewności standardowych typu B u_B dla obu składowych,
- 6. niepewności standardowe złożone u dla obu składowych,
- 7. niepewnośc standardowa u_C pomiaru pośredniego dla V,
- 8. niepewność rozszerzoną U pomiaru pośredniego dla V,
- 9. wynik pomiaru wg standardu zapisu przyjętego w normie.

Zadanie 2

Przyspieszenie ziemskie g może być mierzone za pomocą wahadła matematycznego. Załóżmy, że analizowane wahadło ma długość $l=(0.9295\pm0.0010)m$. Natomiast podczas pomiaru okresu drgań wahadła otrzymano następujący rezultat: $T=(1.936\pm0.004)s$. Dodatkowo zakładamy, iż przy podaniu przytoczonych wyżej wyników uwzględniono poziom ufności $1-\alpha=0.95$. Na podstawie powyższych danych obliczy wartość przyspieszenia ziemskiego w analogicznych warunkach geograficznych.

Dodatkowo wiemy, że okres drgań wahadła matematycznego jest wyrażone wzorem:

$$T = 2\pi \sqrt{\frac{l}{g}}.$$

Raport przedstaw w podobnej postaci jak w zadaniu pierwszym, pomijając zbedne elementy.