Package 'sts'

November 25, 2024

Type Package

Title Estimation of the Structural Topic and Sentiment-Discourse Model for Text Analysis
Version 1.2
Date 2024-11-25
Author Shawn Mankad [aut, cre], Li Chen [aut]
Maintainer Shawn Mankad <smankad@ncsu.edu></smankad@ncsu.edu>
Description The Structural Topic and Sentiment-Discourse (STS) model allows researchers to estimate topic models with document-level metadata that determines both topic prevalence and sentiment-discourse. The sentiment-discourse is modeled as a document-level latent variable for each topic that modulates the word frequency within a topic. These latent topic sentiment-discourse variables are controlled by the document-level metadata. The STS model can be useful for regression analysis with text data in addition to topic modeling's traditional use of descriptive analysis. The method was developed in Chen and Mankad (2024) <doi:10.1287 mnsc.2022.00261="">.</doi:10.1287>
License MIT + file LICENSE
Imports Rcpp, RcppArmadillo, glmnet, matrixStats, slam, foreach, doParallel, parallel, stm, Matrix, mvtnorm, ggplot2
Suggests tm
LinkingTo Rcpp, RcppArmadillo
Encoding UTF-8
RoxygenNote 7.2.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2024-11-25 16:00:02 UTC
Contents
sts-package
1

2 sts-package

sts-	package A	Stru	ctu	ral	Ta	opi	c a	nd	Se	eni	im	en	t-l	Dis	sco	ш	·se	M	00	lei	fe	or	Te.	xt	Αı	ıa	lys	is	
Index																													14
	topicSemanticCoherence	е.			•		•		•		•			•			•	•			•					•			13
	topicExclusivity																												
	sts summary.STS																												
	printTopWords						•																						8
	plotRepresentativeDocs printRegnTables																												
	plot.STS																												
	heldoutLikelihood																												4
	findRepresentativeDocs																												4

Description

This package implements the Structural Topic and Sentiment-Discourse (STS) model, which allows researchers to estimate topic models with document-level metadata that determines both topic prevalence and sentiment-discourse. The sentiment-discourse is modeled as a document-level latent variable for each topic that modulates the word frequency within a topic. These latent topic sentiment-discourse variables are controlled by the document-level metadata. The STS model can be useful for regression analysis with text data in addition to topic modeling's traditional use of descriptive analysis.

Details

Function to fit the model: sts

Functions for Post-Estimation: estimateRegns topicExclusivity topicSemanticCoherence heldoutLikelihoodplotRepresentativeDocs findRepresentativeDocs printTopWords plot.STS

Author(s)

Author: Shawn Mankad and Li Chen

Maintainer: Shawn Mankad <smankad@ncsu.edu>

References

Chen L. and Mankad, S. (forthcoming) "A Structural Topic and Sentiment-Discourse Model for Text Analysis" Management Science.

See Also

sts

estimateRegns 3

estimateRegns

Regression Table Estimation

Description

Estimates regression tables for prevalence and sentiment/discourse.

Usage

```
estimateRegns(object, prevalence_sentiment, corpus)
```

Arguments

object an sts object
prevalence_sentiment

A formula object with no response variable or a design matrix with the covariates. If a formula, the variables must be contained in corpus\$meta.

corpus

The document term matrix to be modeled in a sparse term count matrix with one row per document and one column per term. The object must be a list of with each element corresponding to a document. Each document is represented as an integer matrix with two rows, and columns equal to the number of unique vocabulary words in the document. The first row contains the 1-indexed vocabulary entry and the second row contains the number of times that term appears. This is the same format in the stm package.

Details

Estimate Gamma coefficients (along with standard errors, p-values, etc.) to assess how document-level meta-data determine prevalence and sentiment/discourse

Value

a list of tables with regression coefficient estimates. The first <num-topic> elements pertain to prevalence; the latter <num-topic> elements pertain to sentiment-discourse.

```
library("tm"); library("stm"); library("sts")
temp<-textProcessor(documents=gadarian$open.ended.response,
metadata=gadarian, verbose = FALSE)
out <- prepDocuments(temp$documents, temp$vocab, temp$meta, verbose = FALSE)
out$meta$noTreatment <- ifelse(out$meta$treatment == 1, -1, 1)
## low max iteration number just for testing
sts_estimate <- sts(~ treatment*pid_rep, ~ noTreatment, out, K = 3, maxIter = 2)
regns <- estimateRegns(sts_estimate, ~treatment*pid_rep, out)
printRegnTables(x = regns)</pre>
```

4 heldoutLikelihood

findRepresentativeDocs

Function for plotting documents that load heavily on a topic

Description

Extracts documents with the highest prevalence for a given topic

Usage

```
findRepresentativeDocs(object, corpus_text, topic, n = 3)
```

Arguments

object Model output from sts

corpus_text vector of text documents, usually contained in the output of prepDocuments

topic a single topic number

n number of documents to extract

Examples

```
#Examples with the Gadarian Data
library("tm"); library("stm"); library("sts")
temp<-textProcessor(documents=gadarian$open.ended.response,
metadata=gadarian, verbose = FALSE)
out <- prepDocuments(temp$documents, temp$vocab, temp$meta, verbose = FALSE)
out$meta$noTreatment <- ifelse(out$meta$treatment == 1, -1, 1)
## low max iteration number just for testing
sts_estimate <- sts(~ treatment*pid_rep, ~ noTreatment, out, K = 3, maxIter = 2)
docs <- findRepresentativeDocs(sts_estimate, out$meta$open.ended.response, topic = 3, n = 4)
plotRepresentativeDocs(docs, text.cex = 0.7, width = 100)</pre>
```

heldoutLikelihood HeldoutLog-Likelihood

Description

Compute the heldout log-likelihood of the STS model

Usage

```
heldoutLikelihood(object, missing)
```

plot.STS 5

Arguments

object an sts object, typically after applying make.heldout
missing list of which words and documents are in the heldout set

Value

expected.heldout is the average of the held-out log-likelihood values for each document.

Examples

```
library("tm"); library("stm"); library("sts")
temp<-textProcessor(documents=gadarian$open.ended.response,
metadata=gadarian, verbose = FALSE)
out <- prepDocuments(temp$documents, temp$vocab, temp$meta, verbose = FALSE)
out$meta$noTreatment <- ifelse(out$meta$treatment == 1, -1, 1)
out_ho <- make.heldout(out$documents, out$vocab)
out_ho$meta <- out$meta
## low max iteration number just for testing
sts_estimate <- sts(~ treatment*pid_rep, ~ noTreatment, out_ho, K = 3, maxIter = 2, verbose = FALSE)
heldoutLikelihood(sts_estimate, out_ho$missing)$expected.heldout</pre>
```

plot.STS

Function for plotting STS objects

Description

Produces a plot of the most likely words and their probabilities for each topic for different levels of sentiment for an STS object.

Usage

```
## S3 method for class 'STS'
plot(
    x,
    n = 10,
    topics = NULL,
    lowerPercentile = 0.05,
    upperPercentile = 0.95,
    ...
)
```

Arguments

n

x Model output from sts.

Sets the number of words used to label each topic. In perspective plots it approximately sets the total number of words in the plot. n must be greater than or equal to 2

```
topics Vector of topics to display. Defaults to all topics.

lowerPercentile

Percentile to calculate a representative negative sentiment document.

upperPercentile

Percentile to calculate a representative positive sentiment document.

Additional parameters passed to plotting functions.
```

Examples

```
#Examples with the Gadarian Data
library("tm"); library("stm"); library("sts")
temp<-textProcessor(documents=gadarian$open.ended.response,
metadata=gadarian, verbose = FALSE)
out <- prepDocuments(temp$documents, temp$vocab, temp$meta, verbose = FALSE)
out$meta$noTreatment <- ifelse(out$meta$treatment == 1, -1, 1)
## low max iteration number just for testing
sts_estimate <- sts(~ treatment*pid_rep, ~ noTreatment, out, K = 3, maxIter = 2)
plot(sts_estimate)
plot(sts_estimate, n = 10, topic = c(1,2))</pre>
```

plotRepresentativeDocs

Function for plotting documents that load heavily on a topic

Description

Produces a plot of the text of documents that load most heavily on topics for an STS object

Usage

```
plotRepresentativeDocs(object, text.cex = 1, width = 100)
```

Arguments

```
object Model output from sts.

text.cex Size of the text; Defaults to 1

width Size of the plotting window; Defaults to 100
```

```
#Examples with the Gadarian Data
library("tm"); library("stm"); library("sts")
temp<-textProcessor(documents=gadarian$open.ended.response,
metadata=gadarian, verbose = FALSE)
out <- prepDocuments(temp$documents, temp$vocab, temp$meta, verbose = FALSE)
out$meta$noTreatment <- ifelse(out$meta$treatment == 1, -1, 1)
## low max iteration number just for testing</pre>
```

printRegnTables 7

```
sts\_estimate <- sts(^{\sim} treatment*pid\_rep, ^{\sim} noTreatment, out, K = 3, maxIter = 2) \\ docs <- findRepresentativeDocs(sts\_estimate, out$meta$open.ended.response, topic = 3, n = 1) \\ plotRepresentativeDocs(docs, text.cex = 0.7, width = 100)
```

printRegnTables

Print estimated regression tables

Description

Prints estimated regression tables from estimateRegnTables()

Usage

```
printRegnTables(
    x,
    topics = NULL,
    digits = max(3L, getOption("digits") - 3L),
    signif.stars = getOption("show.signif.stars"),
    ...
)
```

Arguments

X	the estimated regression tables from estimateRegnTables()
topics	Vector of topics to display. Defaults to all topics.
digits	minimum number of significant digits to be used for most numbers.
signif.stars	logical; if TRUE, P-values are additionally encoded visually as 'significance stars' in order to help scanning of long coefficient tables. It defaults to the show.signif.stars slot of options.
	other arguments suitable for stats::printCoefmat()

Value

Prints estimated regression tables from estimateRegnTables() to console

```
library("tm"); library("stm"); library("sts")
temp<-textProcessor(documents=gadarian$open.ended.response,
metadata=gadarian, verbose = FALSE)
out <- prepDocuments(temp$documents, temp$vocab, temp$meta, verbose = FALSE)
out$meta$noTreatment <- ifelse(out$meta$treatment == 1, -1, 1)
## low max iteration number just for testing
sts_estimate <- sts(~ treatment*pid_rep, ~ noTreatment, out, K = 3, maxIter = 2)
regns <- estimateRegns(sts_estimate, ~treatment*pid_rep, out)
printRegnTables(x = regns)</pre>
```

8 sts

printTopWords

Function for printing top words that load heavily on each topic

Description

Prints the top words for each document for low, average, and high levels of sentiment-discourse

Usage

```
printTopWords(object, n = 10, lowerPercentile = 0.05, upperPercentile = 0.95)
```

Arguments

object Model output from sts

n number of words to print to console for each topic

lowerPercentile

Percentile to calculate a representative negative sentiment document.

upperPercentile

Percentile to calculate a representative positive sentiment document.

Examples

```
#Examples with the Gadarian Data
library("tm"); library("stm"); library("sts")
temp<-textProcessor(documents=gadarian$open.ended.response,
metadata=gadarian, verbose = FALSE)
out <- prepDocuments(temp$documents, temp$vocab, temp$meta, verbose = FALSE)
out$meta$noTreatment <- ifelse(out$meta$treatment == 1, -1, 1)
## low max iteration number just for testing
sts_estimate <- sts(~ treatment*pid_rep, ~ noTreatment, out, K = 3, maxIter = 2)
printTopWords(sts_estimate)</pre>
```

sts

Variational EM for the Structural Topic and Sentiment-Discourse (STS) Model

Description

Estimation of the STS Model using variational EM. The function takes sparse representation of a document-term matrix, covariates for each document, and an integer number of topics and returns fitted model parameters. See an overview of functions in the package here: sts-package

9 sts

Usage

```
sts(
  prevalence_sentiment,
  initializationVar,
  corpus,
 Κ,
 maxIter = 100,
  convTol = 1e-05,
  initialization = "anchor",
  kappaEstimation = "adjusted",
  verbose = TRUE,
  parallelize = FALSE,
  stmSeed = NULL
)
```

Arguments

prevalence_sentiment

A formula object with no response variable or a design matrix with the covariates. The variables must be contained in corpus\$meta.

initializationVar

A formula with a single variable for use in the initialization of latent sentiment. This argument is usually the key experimental variable (e.g., review rating binary indicator of experiment/control group).

corpus

The document term matrix to be modeled in a sparse term count matrix with one row per document and one column per term. The object must be a list of with each element corresponding to a document. Each document is represented as an integer matrix with two rows, and columns equal to the number of unique vocabulary words in the document. The first row contains the 1-indexed vocabulary entry and the second row contains the number of times that term appears. This is the same format in the stm package.

Κ

A positive integer (of size 2 or greater) representing the desired number of top-

maxIter

A positive integer representing the max number of VEM iterations allowed.

convTol

Convergence tolerance for the variational EM estimation algorithm; Default value = 1e-5.

initialization Character argument that allows the user to specify an initialization method. The default choice, "anchor" to initialize prevalence according to anchor words and the key experimental covariate identified in argument initializationVar. One can also use "stm", which uses a fitted STM model (Roberts et al. 2014, 2016) to initialize coefficients related to prevalence and sentiment-discourse.

kappaEstimation

A character input specifying how kappa should be estimated. "lasso" allows for penalties on the L1 norm. We estimate a regularization path and then select the optimal shrinkage parameter using AIC. "adjusted" (default) utilizes the lasso penalty with an adjusted aggregated Poisson regression. All options 10 sts

use an approximation framework developed in Taddy (2013) called Distributed Multinomial Regression which utilizes a factorized poisson approximation to the multinomial. See Li and Mankad (forthcoming) on the implementation here.

verbose A logical flag indicating whether information should be printed to the screen.

parallelize A logical flag indicating whether to parallelize the estimation using all but one

CPU cores on your local machine.

stmSeed A prefit STM model object to initialize the STS model. Note this is ignored

unless initialization = "stm"

Details

This is the main function for estimating the Structural Topic and Sentiment-Discourse (STS) Model. Users provide a corpus of documents and a number of topics. Each word in a document comes from exactly one topic and each document is represented by the proportion of its words that come from each of the topics. The document-specific content covariates affect how much (prevalence) and the way in which a topic is discussed (sentiment-discourse).

Value

An object of class sts

alpha Estimated prevalence and sentiment-discourse values for each document and

topic

gamma Estimated regression coefficients that determine prevalence and sentiment/discourse

for each topic

kappa Estimated kappa coefficients that determine sentiment-discourse and the topic-

word distributions

sigma_inv Inverse of the covariance matrix for the alpha parameters

sigma Covariance matrix for the alpha parameters

elbo the ELBO at each iteration of the estimation algorithm

mv the baseline log-transformed occurrence rate of each word in the corpus

runtime Time elapsed in seconds vocab Vocabulary vector used

mu Mean (fitted) values for alpha based on document-level variables * estimated

Gamma for each document

References

Roberts, M., Stewart, B., Tingley, D., and Airoldi, E. (2013) "The structural topic model and applied social science." In Advances in Neural Information Processing Systems Workshop on Topic Models: Computation, Application, and Evaluation.

Roberts M., Stewart, B. and Airoldi, E. (2016) "A model of text for experimentation in the social sciences" Journal of the American Statistical Association.

Chen L. and Mankad, S. (forthcoming) "A Structural Topic and Sentiment-Discourse Model for Text Analysis" Management Science.

summary.STS 11

See Also

```
estimateRegns
```

Examples

```
#An example using the Gadarian data from the stm package. From Raw text to
# fitted model using textProcessor() which leverages the tm Package
library("tm"); library("stm"); library("sts")
temp<-textProcessor(documents=gadarian$open.ended.response,
metadata=gadarian, verbose = FALSE)
out <- prepDocuments(temp$documents, temp$vocab, temp$meta, verbose = FALSE)
out$meta$noTreatment <- ifelse(out$meta$treatment == 1, -1, 1)
## low max iteration number just for testing
sts_estimate <- sts(~ treatment*pid_rep, ~ noTreatment, out, K = 3, maxIter = 1, verbose = FALSE)</pre>
```

summary.STS

Summary Function for the STS objects

Description

Function to report on the contents of STS objects

Usage

```
## S3 method for class 'STS'
summary(object, ...)
```

Arguments

object An STS object.

. . . Additional arguments affecting the summary

Details

Summary prints a short statement about the model and then runs printTopWords.

12 topicExclusivity

topicExclusivity	Exclusivity
COPICENCIACITIES	Diccion vivy

Description

Calculate an exclusivity metric for an STS model.

Usage

```
topicExclusivity(object, M = 10, frexw = 0.7)
```

Arguments

object Model output from sts

M the number of top words to consider per topic

frexw the frex weight

Details

Roberts et al 2014 proposed an exclusivity measure to help with topic model selection.

The exclusivity measure includes some information on word frequency as well. It is based on the FREX labeling metric (see Roberts et al. 2014) with the weight set to .7 in favor of exclusivity by default.

Value

a numeric vector containing exclusivity for each topic

References

Mimno, D., Wallach, H. M., Talley, E., Leenders, M., and McCallum, A. (2011, July). "Optimizing semantic coherence in topic models." In Proceedings of the Conference on Empirical Methods in Natural Language Processing (pp. 262-272). Association for Computational Linguistics. Chicago

Bischof and Airoldi (2012) "Summarizing topical content with word frequency and exclusivity" In Proceedings of the International Conference on Machine Learning.

Roberts, M., Stewart, B., Tingley, D., Lucas, C., Leder-Luis, J., Gadarian, S., Albertson, B., et al. (2014). "Structural topic models for open ended survey responses." American Journal of Political Science, 58(4), 1064-1082.

```
#An example using the Gadarian data from the stm package.
# From Raw text to fitted model using textProcessor() which leverages the
# tm Package
library("tm"); library("stm"); library("sts")
temp<-textProcessor(documents=gadarian$open.ended.response,
metadata=gadarian, verbose = FALSE)</pre>
```

```
out <- prepDocuments(temp$documents, temp$vocab, temp$meta, verbose = FALSE)
out$meta$noTreatment <- ifelse(out$meta$treatment == 1, -1, 1)
## low max iteration number just for testing
sts_estimate <- sts(~ treatment*pid_rep, ~ noTreatment, out, K = 3, maxIter = 2)
topicExclusivity(sts_estimate)</pre>
```

topicSemanticCoherence

Semantic Coherence

Description

Calculates semantic coherence for an STS model.

Usage

```
topicSemanticCoherence(object, corpus, M = 10)
```

Arguments

object Model output from sts

corpus The document term matrix to be modeled in a sparse term count matrix with

one row per document and one column per term. The object must be a list of with each element corresponding to a document. Each document is represented as an integer matrix with two rows, and columns equal to the number of unique vocabulary words in the document. The first row contains the 1-indexed vocabulary entry and the second row contains the number of times that term appears.

This is the same format in the stm package.

M the number of top words to consider per topic

Value

a numeric vector containing semantic coherence for each topic

```
#An example using the Gadarian data from the stm package. From Raw text to
# fitted model using textProcessor() which leverages the tm Package
library("tm"); library("stm"); library("sts")
temp<-textProcessor(documents=gadarian$open.ended.response,
metadata=gadarian, verbose = FALSE)
out <- prepDocuments(temp$documents, temp$vocab, temp$meta, verbose = FALSE)
out$meta$noTreatment <- ifelse(out$meta$treatment == 1, -1, 1)
## low max iteration number just for testing
sts_estimate <- sts(~ treatment*pid_rep, ~ noTreatment, out, K = 3, maxIter = 2, verbose = FALSE)
topicSemanticCoherence(sts_estimate, out)</pre>
```

Index

```
* package
    sts-package, 2
estimateRegns, 2, 3, 11
findRepresentativeDocs, 2, 4
heldoutLikelihood, 2, 4
{\tt make.heldout, \it 5}
plot.STS, 2, 5
{\tt plotRepresentativeDocs}, 2, 6
print.STS (summary.STS), 11
printRegnTables, 7
printTopWords, 2, 8, 11
stm, 3, 9, 13
sts, 2, 8
sts-package, 2
summary.STS, 11
topicExclusivity, 2, 12
topicSemanticCoherence, 2, 13
```