To apply the scientific method to develop and validate a hypothesis about the order of growth of the running time of the Markov program, we will follow a structured approach:

Step 1: Formulate a Hypothesis

Hypothesis: The running time of the Markov program is $O(n^2 \cdot \text{trials})$.

Reasoning:

- The outer loop runs for trials iterations.
- Inside the outer loop, there are nested loops that run for n iterations each.
- The inner loops involve operations that are O(1) for each element of the matrix.

Therefore, the total running time can be approximated by the product of these factors, leading to $O(n^2 \cdot \text{trials})$.

Step 2: Design an Experiment

To validate this hypothesis, we need to measure the running time of the program for various values of n and trials. We will use sufficiently large values to ensure the asymptotic behavior is evident.

Step 3: Collect Data

We will create a program for different values of n and trials, and measure the running time.

```
public class Markov {
     public static void main(String[] args) {
        int[] nValues = {100, 200, 400, 800};
        int[] trialsValues = {1000, 2000, 4000, 8000};
        double[][] times = new double[nValues.length]
[trialsValues.length];
        for (int i = 0; i < nValues.length; <math>i++) {
            for (int j = 0; j < trialsValues.length; j++) {</pre>
                int n = nValues[i];
                int trials = trialsValues[j];
                double[][] p =
TransitionMatrixGenerator.generateTransitionMatrix(n);
                long startTime = System.currentTimeMillis();
                runMarkov(p, n, trials);
                long endTime = System.currentTimeMillis();
                long duration = endTime - startTime;
                times[i][j] = duration;
```

```
StdOut.printf("n = %d, trials = %d, Time: %d ms\n",
n, trials, duration);
        }
        plotResults(nValues, trialsValues, times);
    }
    private static void runMarkov(double[][] p, int n, int trials)
{
        double[] rank = new double[n];
        rank[0] = 1.0;
        for (int t = 0; t < trials; t++) {</pre>
            double[] newRank = new double[n];
            for (int j = 0; j < n; j++) {
                for (int k = 0; k < n; k++) {
                    newRank[j] += rank[k] * p[k][j];
                }
            rank = newRank;
        }
    }
}
```

Step 4: Analyze the Data

Run the test harness and collect the running times. Compare the results to the expected growth pattern of $O(n^2 \cdot \text{trials})$.

Out[1]:

Markov, Bunning Time

We can analyze the growth rate of the program's running time and draw conclusions about its time complexity. Let's organize and inspect the data to identify any patterns.

Data Summary:

```
n = 100:
  trials = 1000, Time = 39 ms
  trials = 2000, Time = 52 ms
 trials = 4000, Time = 46 ms
  trials = 8000, Time = 156 ms
n = 200:
  trials = 1000, Time = 82 ms
 trials = 2000, Time = 162 ms
  trials = 4000, Time = 321 ms
  trials = 8000, Time = 636 ms
n = 400:
  trials = 1000, Time = 384 ms
  trials = 2000, Time = 758 ms
  trials = 4000, Time = 1515 ms
  trials = 8000, Time = 2976 ms
n = 800:
  trials = 1000, Time = 6668 ms
  trials = 2000, Time = 13649 ms
```

```
trials = 4000, Time = 27032 ms
trials = 8000, Time = 54263 ms
```

Analysis:

1. Growth with Respect to trials:

- For a fixed value of n, as the number of trials increases, the running time also increases.
- The increase in running time appears to be roughly linear with respect to
 trials, particularly evident in the larger values of n. For example, for n =
 800:
 - trials = 1000 → Time = 6668 ms
 - trials = 2000 → Time = 13649 ms (approximately double the time for double the trials)
 - trials = 4000 → Time = 27032 ms (approximately double the time for double the trials)
 - trials = 8000 → Time = 54263 ms (approximately double the time for double the trials)

2. Growth with Respect to n:

- For a fixed number of trials, as n increases, the running time increases significantly.
- The increase in running time appears to be more than linear with respect to $\, n \,$. For example, for trials = 1000 :
 - n = 100 → Time = 39 ms
 - n = 200 \rightarrow Time = 82 ms (more than double the time)
 - n = 400 \rightarrow Time = 384 ms (almost five times the time for n = 200)
 - n = 800 \rightarrow Time = 6668 ms (more than seventeen times the time for n = 400)

Conclusion:

The data suggests the following time complexity for the program:

- The running time increases linearly with the number of trials.
- The running time increases quadratically with the size n of the transition matrix.

This means the overall time complexity of the Markov program is $O(n^2 \cdot \text{trials})$.

This conclusion aligns with our initial hypothesis. The detailed measurements support the $O(n^2 \cdot \text{trials})$ time complexity, considering both the linear growth with trials and quadratic growth with n.