

Kits de développement logiciel quantique

PennyLane

- Développé en Python par Xanadu
- Interface directement avec MonarQ

Snowflurry

- Développé en Julia par Anyon Systems
- Interface directement avec MonarQ

Qiskit

- Développé en Python par IBM
- Plugin Qiskit-calculquebec en développement

Écrire des circuits et beaucoup plus!

Circuits quantiques

```
dev = qml.device('default.qubit', wires = 2)
@gml.gnode(dev) # gnode decorator
                                           PENNYLANE
def quantum function(x, y):
   qml.RZ(x, wires=0)
   qml.CNOT(wires=[0,1])
   qml.RY(y, wires=1)
   return qml.state()
                                           RZ
                                                              RY
```


Circuits quantiques

Les ordinateurs classiques utilisent également des circuits, mais nous n'y pensons généralement pas de manière explicite.

• Circuit booléen **classique** pour l'addition

• Circuit **quantique** pour l'addition

Éléments clés d'un circuit quantique

Chaque qubit est initialisé à l' état 0 par défaut

Éléments clés d'un circuit quantique

Éléments clés d'un circuit quantique

Pause programmation

Notebook 2 : Les bases de PennyLane

Notebook 2 : Aide-mémoire

PENNYLANE

Un circuit quantique est composé de portes

Gate	Circuit Element	Matrix Representation	Action on Basis States
Hadamard Gate H	—[H]—	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$	$H 0\rangle = \frac{1}{\sqrt{2}}(0\rangle + 1\rangle)$ $H 1\rangle = \frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$
Pauli-X Gate X	— <u>X</u> —	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	$X 0\rangle = 1\rangle$ $X 1\rangle = 0\rangle$
Pauli-Y Gate Y	<u> </u>	$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$	$Y 0\rangle = i 1\rangle$ $Y 1\rangle = -i 0\rangle$
Pauli-Z Gate Z	- <u>Z</u> -	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$Z 0\rangle = 0\rangle$ $Z 1\rangle = - 1\rangle$
CNOT Gate	—	$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$	$CNOT 00\rangle = 00\rangle$ $CNOT 01\rangle = 01\rangle$ $CNOT 10\rangle = 11\rangle$ $CNOT 11\rangle = 10\rangle$

Un circuit quantique doit retourner une mesure

(qml.state, qml.expval, qml.probs, qml.counts)

Circuit et 'device' sont liés avec un 'Qnode'

La profondeur du circuit est 3.

Quelle est la profondeur de ce circuit ?

La profondeur du circuit est 4.

Plan pour l'après-midi

- Exécuter des circuits sur MonarQ
 - MonarQ, transpilation et mitigation d'erreurs
 - Notebook 3 : État GHZ sur MonarQ
- Pause
- Calcul hybride
 - Circuits variationnels et apprentissage machine quantique
 - Notebook 4 : Circuits variationnels
- Questions