

Outline

Planning

Dunia Balok

Ide atau Metode Diagram atau Peta Penyusunan Benda Penyusunan Keuangan

Oxford Advanced Learners

Apa itu Planning

Kemampuan Dunia Balok

Daftar PAD

Dunia Balok (Bloks-Worlds

PREDIKAT UNTUK BALOK KOTAK

- ON (A,B)
- ON TABLE (A)
- CLEAR (A)

PREDIKAT UNTUK LENGAN ROBOT

- HOLDING (A)
- ARMEMPTY

Operator lengan robot

- STACK (A,B)
- UNSTACK (A,B)
- PICKUP (A)
- PUTDOWN (A)

Goal State Planning (GSP)

Goal State Planning (GSP)

Goal State Planning (GSP)

Algortima GSP

- 1. Tempatkan seluruh kondisi *goal-state* pada *slot stack* paling bawah.
- 2. Masukkan setiap kondisi *goal-state* yang belum tercapai ke dalam sebuah *slot stack*.

3. *Loop*

```
Keluarkan kondisi yang sudah dicapai dari dalam stack.
```

Ganti kondisi yang belum dicapai dengan operator yang sesuai.

Pindahkan operator yang bisa diaplikasikan ke dalam rencana penyelesaian.

Cek apakah *current-state* sama dengan *goal-state*

```
If current-state = goal-state Then sukses
```

End

End

Contoh masalah

Contoh masalah

Initial State:

Goal State:

```
\mathsf{ONTABLE}(\mathsf{A}) \land \mathsf{ONTABLE}(\mathsf{D}) \land \mathsf{ON}(\mathsf{B},\mathsf{D}) \land \mathsf{ON}(\mathsf{C},\mathsf{A}) \land \mathsf{ARMEMPTY}
```

- Current State = Initial State
- Stack paling bawah = Goal State

Isi stack Langkah 1

ON (C,A) ON (B,D) ONTABLE (A) ONTABLE (D)

Isi stack Langkah 2

CLEAR (A)
HOLDING (C)
CLEAR (A)^HOLDING (C)
STACK (C,A)
ON (B,D)
ON (C,A)^ON (B,D)^OTAD

ON (B,A)
CLEAR (B)
ARMEMPTY
ON (B,A)^CLEAR (B)^ARMEMPTY
UNSTACK (B,A)
HOLDING (C)
STACK (C,A)
ON (B,D)

Current state Langkah 4

ONTABLE (A)

ONTABLE (C)

ONTABLE (D)

HOLDING (B)

Isi stack Langkah 5

HOLDING (C)
CLEAR (A)^HOLDING (C)
STACK (C,A)
ON (B,D)
ON (C,A)^ON (B,D)^OTAD

Isi stack Langkah 6

ONTABLE (C)
CLEAR (C)
ARMEMPTY
ONTABLE (C)^CLEAR (C)^ARMEMPTY
PICKUP (C)
CLEAR (A)^HOLDING (C)
STACK (C,A)
ON (B,D)
ON (C,A)^ON (B,D)^OTAD

Isi stack Langkah 7

CLEAR (D)
HOLDING (B)
CLEAR (D)^HOLDING (B)
STACK (B,D)
ONTABLE (C)^CLEAR (C)^ARMEMPTY
PICKUP (C)
CLEAR (A)^HOLDING (C)
STACK (C,A)
ON (B,D)
ON (C,A)^ON (B,D)^OTAD

Rencana penyelesaian

UNSTACK (B,A) STACK (B,D) PICKUP (C) STACK (C,A)

Apa itu Constraint Posting?

Fungsi – Fungsi Pemandu Constraint Posting:

Step-addition

Simple - establishment

Promotion

Separation

Declobbering

ON (A,B)

A STACK (A,B)

B ON (B,C)

C STACK(B,C)

CLEAR(B) *HOLDING(A)	CLEAR(C) *HOLDING(B)
STACK(A,B)	STACK(B,C)
ARMEMPTY	ARMEMPTY
ON(A,B)	ON(B,C)
¬CLEAR(B)	¬CLEAR(C)
-HOLDING(A)	-HOLDING(B)

- * Menunjukan kondisi yang belum tercapai agar operator bisa di operasikan.
- Menunjukan kondisi yang dihilangkan setelah operator di aplikasikan.

*CLEAR(A)	*CLEAR(B)
ONTABLE(A)	ONTABLE(B)
*ARMEMPTY	*ARMEMPTY
PICKUP(A)	PICKUP(B)
HOLDING(A)	HOLDING(B)
¬ONTABLE(A)	- ONTABLE (B)
- ARMEMPTY	¬ ARMEMPTY

ARMEMPTY CLEAR(A) CLEAR(B)

 $PICKUP(A) \leftarrow STACK(A,B)$ $PICKUP(B) \leftarrow STACK(B,C)$ $PICKUP(B) \leftarrow STACK(A,B)$

*CLEAR(B), CLEAR(B)

*ARMEMPTY: precondition PICKUP(A) dan PICKUP(B).

*CLEAR(A) : precondition PICKUP(A).

Mencapai *ARMEMPTY pada langkah PICKUP(A) dan PICKUP(B).

 $PICKUP(A) \leftarrow PICKUP(B)$.

 $PICKUP(B) \leftarrow PICKUP(A)$.

 $PICKUP(B) \leftarrow STACK(B,C) \leftarrow PICKUP(A)$.

*CLEAR(A)

*CLEAR(x)

*ON(x,A)

*ARMEMPTY

UNSTACK(x,A)

HOLDING(C)
CLEAR(A)
¬ON(x,A)
¬ARMEMPTY

UNSTACK(X,A) \leftarrow STACK(B,C).

UNSTACK(X,A) \leftarrow STACK(A).

UNSTACK(X,A) \leftarrow STACK(B).

HOLDING(C)

PUTDOWN(C)

ONTABLE(C)
ARMEMPTY
¬HOLDING(C)

UNSTACK(C,A)

PUTDOWN(C)

PICKUP(B)

STACK(B,C)

PICKUP(A)

STACK(A,B)

- Setiap penambahan langkah baru pada CP membutuhakan pengecekan.
- Setiap pegurutan langkah baru pada CP membutuhakan pembandingan.

Pendefinisian setiap variabel dan struktur data di dukung oleh fungsi – fungsi pemandu.

- 1. Inisialisasi S sebagai satu set proposisi (kondisipada goal state).
- 2. Hilangkan beberapa proposisi yang belum tercapai P dari S
- 3. Capai P dengan menggunakan salah satu fungsi pemandu yang ada
- 4. Riview slurung langkah untuk melihat precondition yang belum tercapai tambahan frecondition yang belum tercapai kedalah S
- 5. Jika S kosog, lengkapi rencana penyelesaian dengan mengkonversi urutan sebagian langkah menjadi urutan lengkap
- 6. Jika tidak kosong, kembali ke langkah 2.

Algortima CP [RIC91]

Kesimpulan

- Planning adalah suatu teknik penyelesaian masalah yang hanya bisa digunakan untuk menyelesaikan masalah yang dapat di komposisi.
- GSP adalah metode planning yang paling sederhana yang hanya menggunakan satu stack
- CP adalah metode plannning secara umum bisa menemukan solusi yang lebih efisien dibanding solusi yang dihasilkan oleh gsp

Selesai