

NCERT Solutions For Class 10 Chapter 6 Triangles Exercise 6.2

1. In figure (i) and (ii), DE \parallel BC. Find EC in (i) and AD in (ii).

Ans. (i) Since DE || BC,

$$\frac{AD}{DB} = \frac{AE}{EC}$$

$$\Rightarrow \frac{1.5}{3} = \frac{1}{EC}$$

$$\Rightarrow EC = \frac{3}{1.5}$$

$$\Rightarrow EC = 2 \text{ cm}$$

(ii)Since DE || BC,

$$\frac{AD}{DB} = \frac{AE}{EC}$$

$$\Rightarrow \frac{AD}{7.2} = \frac{1.8}{5.4}$$

$$\Rightarrow AD = \frac{1.8 \times 7.2}{5.4}$$

$$\Rightarrow EC = 2.4 \text{ cm}$$

- 2. E and F are points on the sides PQ and PR respectively of a $^{\Delta}$ PQR. For each of the following cases, state whether EF \parallel QR:
- (i) PE = 3.9 cm, EQ = 4 cm, PF = 3.6 cm and FR = 2.4 cm
- (ii) PE = 4 cm, QE = 4.5 cm, PF = 8 cm and RF = 9 cm
- (iii) PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm and PF = 0.36 cm

Ans. (i) Given: PE = 3.9 cm, EQ = 4 cm, PF = 3.6 cm and FR = 2.4 cm

Now,
$$\frac{PE}{EQ} = \frac{3.9}{4} = 0.97 \text{ cm}$$

And
$$\frac{PF}{FR} = \frac{3.6}{2.4} = 1.2 \text{ cm}$$

$$\therefore \frac{PE}{EQ} \neq \frac{PF}{FR}$$

Therefore, EF does not divide the sides PQ and PR of Δ PQR in the same ratio.

.. EF is not parallel to QR.

(ii) Given: PE = 4 cm, QE = 4.5 cm, PF = 8 cm and RF = 9 cm

Now,
$$\frac{PE}{EQ} = \frac{4}{4.5} = \frac{8}{9}$$
 cm

And
$$\frac{PF}{FR} = \frac{8}{9}$$
 cm

$$\because \frac{PE}{EQ} = \frac{PF}{FR}$$

Therefore, EF divides the sides PQ and PR of \triangle PQR in the same ratio.

EF is parallel to QR.

(iii) Given: PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm and PF = 0.36 cm

$$\Rightarrow$$
 EQ = PQ - PE = 1.28 - 0.18 = 1.10 cm

And
$$ER = PR - PF = 2.56 - 0.36 = 2.20$$
 cm

Now,
$$\frac{PE}{EQ} = \frac{0.18}{1.10} = \frac{18}{110} = \frac{9}{55}$$
 cm

And
$$\frac{PF}{FR} = \frac{0.36}{2.20} = \frac{36}{220} = \frac{9}{55}$$
 cm

$$\frac{PE}{EQ} = \frac{PF}{FR}$$

Therefore, EF divides the sides PQ and PR of Δ PQR in the same ratio.

: EF is parallel to QR.

3. In figure, if LM \parallel CB and LN \parallel CD, prove that $\frac{AM}{AB} = \frac{AN}{AD}.$

Ans. In △ABC, LM || CB

$$\frac{AM}{AB} = \frac{AL}{AC} [Basic Proportionality theorem]$$
.....(i)

And in ACD, LN || CD

From eq. (i) and (ii), we have

$$\frac{AM}{AB} = \frac{AN}{AD}$$

4. In figure, DE \parallel AC and DF \parallel AE. Prove that $\frac{BF}{FE} = \frac{BE}{FC}.$

Ans. In \triangle BCA, DE \parallel AC

$$\frac{BE}{EC} = \frac{BD}{DA} \text{ [Basic Proportionality theorem]} \dots$$
(i)

And in \triangle BEA, DF \parallel AE

From eq. (i) and (ii), we have

$$\frac{BF}{FE} = \frac{BE}{EC}$$

5. In figure, DE \parallel OQ and DF \parallel OR. Show that EF \parallel QR.

Ans. In \triangle PQO, DE \parallel OQ

And in \triangle POR, DF \parallel OR

From eq. (i) and (ii), we have

$$\frac{PE}{EQ} = \frac{PF}{FR}$$

 \therefore EF \parallel QR [By the converse of BPT]

******** END *******