Tutorial 2

Vectors and Polar coordinates

9 August 2024

- **Problem 1.** A particle moves in the x y plane with a constant radial velocity of 4 m/s starting at t=0 from the origin. It is also undergoing rotation with a constant angular velocity of 2 rad/s. Assume that its initial angular position is zero. Note the radial coordinate of the particle is labelled by r and its angular coordinate is labelled by θ , which is the angle that its position vector makes with the positive direction of the x- axis.
 - (1.1) Write down the values of the following quantities from the description in the problem statement.
 - (a) r(t=0), $(b)\dot{r}(t=0)$, $(c)\theta(t=0)$, $(d)\dot{\theta}(t=0)$
 - (1.2) At time $t = t_1$ the particle is at r = 3 m. Determine
 - (a) The value of the time t_1 .
 - (b) The polar coordinates r and θ at time t_1 .
 - (c) The x and y coordinates of the particle at $t = t_1$.
 - (d) The Cartesian components of the velocity vector, viz v_x and v_y at time t_1 .
 - (e) The radial and tangential velocities v_r and v_θ at time t_1 .
 - (f) The Cartesian components of the particle's acceleration viz. a_x and a_y at time t_1 .
 - (g) The radial and angular components of the acceleration a_r and a_θ at time t_1 .
 - (1.3) If the mass of the particle is 100 gm, determine (at time t_1)
 - (a) The Cartesian components of the Force \overrightarrow{F} and the Torque $\overrightarrow{\tau}$.
 - (b) The polar components of the Force \overrightarrow{F} and the Torque $\overrightarrow{\tau}$.
- **Problem 2.** Consider a particle moving in the x-y plane with a constant velocity $v_0\hat{i}$ along the line y=a. Let its radial and angular coordinates be r and θ . The particle is at x=0, y=a at time t=0. Determine as a function of time
 - (2.1) r = r(t) and $\theta = \theta(t)$
 - (2.2) The Cartesian and Polar components of the velocity vector $\vec{\boldsymbol{v}}$ of the particle.
 - (2.3) The Cartesian and the Polar components of the acceleration vector \vec{a}
 - (2.4) Substitute for \hat{r} and for $\hat{\theta}$ in terms of \hat{i} and \hat{j} , and show explicitly that \vec{v} is indeed a constant in both coordinate systems. Thus a constant vector in any one coordinate system is also constant in any other coordinate system whose origin and whose axes are stationary (i.e. not moving).