Постановка задачи частичного обучения

Дано:

множество объектов X, множество классов Y; $X^{\ell} = \left\{x_1, \dots, x_{\ell}\right\}$ — размеченная выборка (labeled data); $\left\{y_1, \dots, y_{\ell}\right\}$ $X^k = \left\{x_{\ell+1}, \dots, x_{\ell+k}\right\}$ — неразмеченная выборка (unlabeled data).

Два варианта постановки задачи:

- Частичное обучение (semi-supervised learning): построить алгоритм классификации $a\colon X \to Y$.
- Трансдуктивное обучение (transductive learning): зная все $\{x_{\ell+1},\ldots,x_{\ell+k}\}$, получить метки $\{y_{\ell+1},\ldots,y_{\ell+k}\}$.

Типичные приложения:

классификация и каталогизация текстов, изображений, и т.п.

SSL не сводится к классификации

Пример 1. плотности классов, восстановленные:

по полным данным $X^{\ell+k}$

SSL не сводится к классификации

Пример 2. Методы классификации не учитывают кластерную структуру неразмеченных данных

Однако и к кластеризации SSL также не сводится

Пример 3. Методы кластеризации не учитывают приоритетность разметки.

Meтод self-training (1965-1970)

Пусть $\mu\colon X^\ell\to a$ — произвольный метод обучения; классификаторы имеют вид $a(x)=\arg\max_{y\in Y} \Gamma_y(x);$

Псевдоотступ — степень уверенности классификации $a_i = a(x_i)$:

$$M_i(a) = \Gamma_{a_i}(x_i) - \max_{y \in Y \setminus a_i} \Gamma_y(x_i).$$

Алгоритм self-training — обёртка (wrapper) над методом μ :

- 1: $Z := X^{\ell}$;
- 2: пока $|Z| < \ell + k$
- 3: $a := \mu(Z)$;
- 4: $\Delta := \{x_i \in X^k \setminus Z \mid M_i(a) \geqslant M_0\};$
- 5: $y_i := a(x_i)$ для всех $x_i \in \Delta$;
- 6: $Z := Z \cup \Delta$;

 M_0 можно определять, например, из условия $|\Delta|=0.05\,k$

Метод co-training (Blum, Mitchell, 1998)

```
Пусть \mu_1: X^{\ell} \to a_1, \ \mu_2: X^{\ell} \to a_2 — два существенно
различных метода обучения, использующих
— либо разные наборы признаков;
— либо разные парадигмы обучения (inductive bias);
— либо разные источники данных X_1^{\ell_1}, X_2^{\ell_2}.
 1: Z_1 := X_1^{\ell_1}; Z_2 := X_2^{\ell_2};
 2: пока |Z_1 \cup Z_2| < \ell + k
       a_1 := \mu_1(Z_1); \ \Delta_1 := \{x_i \in X^k \setminus Z_1 \setminus Z_2 \mid M_i(a_1) \geqslant M_{01}\};
 3:
 4: y_i := a(x_i) для всех x_i \in \Delta_1;
 5: Z_2 := Z_2 \cup \Delta_1;
      a_2 := \mu_2(Z_2); \ \Delta_2 := \{x_i \in X^k \setminus Z_1 \setminus Z_2 \mid M_i(a_2) \geqslant M_{02}\};
 6:
 7: v_i := a(x_i) для всех x_i \in \Delta_2:
 8: Z_1 := Z_1 \cup \Delta_2:
```

Метод co-learning (deSa, 1993)

Пусть $\mu_t\colon X^\ell o a_t$ — разные методы обучения, $t=1,\ldots,T$.

Алгоритм co-learning — это self-training для композиции — простого голосования базовых алгоритмов a_1, \ldots, a_T :

$$a(x) = \arg \max_{y \in Y} \Gamma_y(x), \quad \Gamma_y(x_i) = \sum_{t=1}^T [a_t(x_i) = y].$$

тогда $M_i(a)$ — степень уверенности классификации $a(x_i)$.

- 1: $Z := X^{\ell}$;
- 2: пока $|Z| < \ell + k$
- 3: $a := \mu(Z)$;
- 4: $\Delta := \{x_i \in X^k \setminus Z \mid M_i(a) \geqslant M_0\};$
- 5: $y_i := a(x_i)$ для всех $x_i \in \Delta$;
- 6: $Z := Z \cup \Delta$;

Резюме

- Задача SSL занимает промежуточное положение между классификацией и кластеризацией, но не сводится к ним.
- Простые методы-обёртки требуют многократного обучения, что вычислительно неэффективно.
- *Методы кластеризации* легко адаптируются к SSL путём введения ограничений (constrained clustering), но, как правило, вычислительно трудоёмки.
- *Методы классификации* адаптируются сложнее, но приводят к более эффективному частичному обучению.