#### 2021년 IoT기반 스마트 솔루션 개발자 양성과정



## Firmware [펌웨어]

#### **4-Serial Transmit**

담당 교수 : 유근택 010-5486-5376

http://cafe.naver.com/cbdsp



### 시리얼 통신

#### ❖ 시리얼 통신이란?

시리얼 통신이란 연속적으로 통신 채널을 거쳐 한 번에 1비트 단위로 데이터를 전송하는 통신을 말한다.

직렬 통신에서 데이터가 계속되어 전송되면, 각 비트를 구별할 방법이 필요하다.

디지털 회로의 입장에서 수신된 데이터의 비트가 시간 적으로 어디서 부터 시작이고 끝인지를 알 필요가 있 다. 이렇게 데이터 비트를 복구하기 위해 데이터의 시 간적 위치를 알리기 위해 동기신호를 보내는 경우와 동기 신호 없이 신호 자체에서 데이터 비트를 복원하 는 방식으로 나눌 수 있다.

#### 동기 방식

- 데이터 신호와는 별도로 동기신호를 함께 보낸다. 비동기 방식
- 데이터 신호만을 보내고 각각의 방식에 따라 데이 터비트를 찾아낸다.



시리얼 통신을 이용하면 오렌지보드에서 컴퓨터로 신호를 보내서 컴퓨터 화면에 표시 할 수 있고, 반대로 컴퓨터에서 오렌지보드로 신호를 보내 오렌지보드에서 확인 할 수 있다.

### 시리얼 통신

#### ❖ 시리얼 통신 관련 함수

#### Serial.begin(통신 속도)

입력한 통신 속도로 시리얼 통신을 시작한다.

#### Serial.available()

시리얼 통신을 통해 보드로 전송된 데이터가 있는지 판단한다.

- " PC에서 전송된 데이터가 있니?"
- → "네!(True, 1)" 또는 "아니요!(False, 0)" 반환

#### Serial.read()

전송된 데이터를 읽어들인다.

#### Serial.print(value)

입력한 값을 시리얼 모니터에 출력(print)한다. print는 줄바꿈 X, println은 줄바꿈 O



## 시리얼 통신

#### ❖ 시리얼 모니터 실행과 결과 확인

```
int pushButton = 2;
void setup()
                               // 시리얼통신속도를9600 bps로초기화
 Serial.begin (9600);
                              // 푸시 버튼 핀을 입력으로 설정
  pinMode (pushButton, INPUT);
void loop()
  int buttonState = digitalRead (pushButton); // 입력 핀 상태 읽음
 Serial.println (buttonState);
                                 // 버튼 상태를 시리얼 모니터 창에 출력
  delay (1);
                                 // 1 ms 지연
```

```
💿 DigitalReadSerial | 아두이노 1.8.12 (Windows Store 1.8.33.0)
파일 편집 스케치 둘 도움말
                                           시리얼 모니터 🔎
                                                            클릭!
12 int pushButton = 2;

    COM6

                                                             푸시 버튼이 눌렸을 때 1 출력
     푸시 버튼이 눌리지 않을 때 0 출력
□ 까동 스크롤 □ 타임스탬프 표시
                                           9600 보드레이트
업로드 완료.
스케치는 프로그램 저장 공간 1942 바이트(6%)를 사용. 최대 32256 바이트.
전역 변수는 동적 메모리 188바이트(9%)를 사용, 1860바이트의 지역변수가 남음. 최
```



### 충북대학교 공동훈련센터

# Serial 통신

- 직렬통신(USART)
  - 동기식: 동기 클록과 데이터를 동시에 전송, (RX, TX, XCK)
  - 비동기식(UART: 데이터를 전송속도에 맞추어 전송 (RX, TX)
- RS232
  - 전기적인 특성, 기계적인 특성(커넥터 사양), 인터페이스 등으로 규정
  - 1:+12V , 0:-12V

- TTL
  - 1: +5V , 0: 0V

- USB
  - DP, DM 차동



## **Data Flow**



## **Arduino Serial**

- Arduino Library
  - Software Serial 가능





## Serial.begin/available

- Serial.begin(baud rate) //전송 속도를 설정
  - Baud rate : 초당 전송 비트수
  - 9600, 14400, 19200, 28800, 38400, 57600, 115200
  - EX) Serial.begin(115200);
- Serial.available() //수신 버퍼의 바이트 수
  - EX) int k=Serial.available();

## Serial.print/print n

- Serial.print(value) // value값을 문자로 변환하여 전송
  - EX) Serial.print(123); // "123" 전송
  - EX) Serial.print("Batt="); //"Batt=" 전송
- Serial.printIn(value) //value값을 문자로 변환 후 개행 문자와 함께 전송
  - 개행 문자 : "₩r₩n" , 0x0d 0x0a
  - ₩r: ASCII(13) Return, ₩n: ASCII(10) Line Feed

# **ASCII Code**

| 10 | HEX  | 문자   | 10 | HEX  | 문자  | 10 | HEX  | 문자 | 10 | HEX  | 문자 | 10  | HEX  | 문자 | 10   | HEX  | 문자  |
|----|------|------|----|------|-----|----|------|----|----|------|----|-----|------|----|------|------|-----|
| 0  | 0x00 | NULL | 22 | 0x16 | STN | 44 | 0x2C |    | 66 | 0x42 | В  | 88  | 0x58 | ×  | 110  | 0x6E | n   |
| 1  | 0x01 | SOH  | 23 | 0x17 | ETB | 45 | 0x2D | _  | 67 | 0x43 | С  | 89  | 0x59 | Y  | 111  | 0x6F | 0   |
| 2  | 0x02 | STX  | 24 | 0x18 | CAN | 46 | 0x2E |    | 68 | 0x44 | D  | 90  | 0x5A | Z  | 112  | 0x70 | р   |
| 3  | 0x03 | ETX  | 25 | 0x19 | EM  | 47 | 0x2F | /  | 69 | 0x45 | E  | 91  | 0x5B | [  | 113  | 0x71 | q   |
| 4  | 0x04 | EOT  | 26 | 0x1A | SUB | 48 | 0x30 | 0  | 70 | 0x46 | F  | 92  | 0x5C | ₩  | 114  | 0x72 | r   |
| 5  | 0x05 | ENQ  | 27 | 0x1B | ESC | 49 | 0x31 | 1  | 71 | 0x47 | G  | 93  | 0x5D | ]  | 115  | 0x73 | S   |
| 6  | 0x06 | ACK  | 28 | 0x1C | FS  | 50 | 0x32 | 2  | 72 | 0x48 | Н  | 94  | 0x5E | ^  | 116  | 0x74 | t   |
| 7  | 0x07 | BEL  | 29 | 0x1D | GS  | 51 | 0x33 | 3  | 73 | 0x49 | 1  | 95  | 0x5F | _  | 117  | 0x75 | u   |
| 8  | 0x08 | BS   | 30 | 0x1E | RS  | 52 | 0x34 | 4  | 74 | 0x4A | J  | 96  | 0x60 |    | 118  | 0x76 | V   |
| 9  | 0x09 | HT   | 31 | 0x1F | US  | 53 | 0x35 | 5  | 75 | 0x4B | K  | 97  | 0x61 | а  | 119  | 0x77 | w   |
| 10 | 0x0A | LF   | 32 | 0x20 | SP  | 54 | 0x36 | 6  | 76 | 0x4C | L  | 98  | 0x62 | b  | 120  | 0x78 | ×   |
| 11 | 0x0B | VT   | 33 | 0x21 | !   | 55 | 0x37 | 7  | 77 | 0x4D | M  | 99  | 0x63 | С  | 121  | 0x79 | У   |
| 12 | 0x0C | FF   | 34 | 0x22 |     | 56 | 0x38 | 8  | 78 | 0x4E | N  | 100 | 0x64 | d  | 1222 | 0x7A | Z   |
| 13 | 0x0D | CR   | 35 | 0x23 | #   | 57 | 0x39 | 9  | 79 | 0x4F | 0  | 101 | 0x65 | е  | 123  | 0x7B | {   |
| 14 | 0x0E | SO   | 36 | 0x24 | \$  | 58 | ОхЗА | :  | 80 | 0x50 | P  | 102 | 0x66 | f  | 124  | 0x7C |     |
| 15 | 0x0F | SI   | 37 | 0x25 | %   | 59 | 0x3B | ;  | 81 | 0x51 | Q  | 103 | 0x67 | g  | 125  | 0x7D | }   |
| 16 | 0x10 | DEL  | 38 | 0x26 | &   | 60 | 0x3C | <  | 82 | 0x52 | R  | 104 | 0x68 | h  | 126  | 0x7E | ~   |
| 17 | 0x11 | DC1  | 39 | 0x27 |     | 61 | 0x3D | =  | 83 | 0x53 | S  | 105 | 0x69 | i  | 127  | 0x7F | DEL |
| 18 | 0x12 | DC2  | 40 | 0x28 | (   | 62 | 0x3E | >  | 84 | 0x54 | Т  | 106 | 0x6A | j  |      |      |     |
| 19 | 0x13 | DC3  | 41 | 0x29 | )   | 63 | 0x3F | ?  | 85 | 0x55 | U  | 107 | 0x6B | k  |      |      |     |
| 20 | 0x14 | DC4  | 42 | 0x2A | *   | 64 | 0x40 | @  | 86 | 0x56 | V  | 108 | 0x6C | 1  |      |      |     |
| 21 | 0x15 | NAK  | 43 | 0x2B | +   | 65 | 0x41 | Α  | 87 | 0x57 | W  | 109 | 0x6D | m  |      |      |     |

### A4-1: USB Serial Tx

- USB Port를 이용하여 매 1초마다 Data 송신
- Data는 0~ 9 까지의 1 Byte 숫자



# A4-1: Program

```
int Count=0;
void setup() {
 Serial.begin(9600);
void loop() {
 if (++Count>9) Count=0;
 Serial.print(Count);
 delay(1000);
```

## **Serial Monitor**





### 충북대학교 공동훈련센터

### **Serial Monitor Window**



### A4-1: USB Serial Tx

- USB Port를 이용하여 매 1초마다 Data 송신
- Data는 0~ 9 까지의 1 Byte 숫자
- Count = 0, 1, 2, 3



# A4-2: Program

```
int Count=0;
void setup() {
 Serial.begin(9600);
void loop() {
 if (++Count>9) Count=0;
 Serial.print("Count = ");
 Serial.println(Count);
 delay(1000);
```

```
COM7 (Arduino/Genuino Uno)
                                                                               Count = 5
Count = 6
Count = 7
Count = 8
Count = 9
Count = 0
Count = 1
Count = 2
Count = 3
Count = 4
Count = 5
Count = 6
Count = 7
☑ 자동 스크롤
                                    Both NL & CR
                                                       9600 보드레이트
                                                                               Clear output
```

## Serial.write()

#### Syntax

```
Serial.write(val)
Serial.write(str)
Serial.write(buf, len)
```

#### Parameters

```
val : byte형 Data
str : String형 문자열
buf : byte형 문자배열
```

len: 배열의 길이

#### Exam

```
Serial.write(45); // send a byte with the value 45 'A'
Serial.write("hello"); //send the string "hello" and return the length of the string.
```

# A4-3: Seial.write()

```
const unsigned char temp[5] = {'1', '2', '3', '4', '5'};
void setup( ){
  Serial.begin(9600);
                                                                                                                                  COM7 (Arduino/Genuino Uno)
                                                                                                                                     전송
                                                                             -11aa123412345
void loop( ){
                                                                             -11aa123412345
                                                                             -11aa123412345
  Serial.write(1);
                           // write( )함수로 1 전송
                                                                             -11aa123412345
                                                                             -11aa123412345
                           // print( )함수로 1 전송
 Serial.print(1);
                                                                             -11aa123412345
                                                                             -11aa123412345
                           // write()함수로 49 전송
  Serial.write(49);
                                                                             -11aa123412345
                                                                             -11aa123412345
                                                                             -11aa123412345
                                                                             -11aa123412345
                          // write( )함수로 'a' 전송
  Serial.write(0x61);
                                                                             r11aa123412345
                                                                             -11aa123412345
                          // write( )함수로 'a' 전송
  Serial.write('a');
                                                                             -11a
                                                                                                     Both NL & CR V 9600 보드레이트
                                                                             ☑ 자동 스크롤
                                                                                                                                  Clear output
  Serial.write(temp, 4); // write()함수로 temp배열을 4만큼 전송
  Serial.write("12345"); // write()함수로 string값 전송
                         // 줄바꿈
  Serial.write('\n');
 delay(500);
```

## randomSeed()

Syntax randomSeed(seed)

Parameter

seed : 난수 발생 지점

Exam

randomSeed( analogRead(5) ); //analogRead(5)으로 부터 seed형성

## random()

Syntax
 random(max)
 ranodm(min, max)

Parameter

max : 최대값 min : 최소값

Exam

```
int randomX=random(300); //0\sim299 int randomX=random(10,20); //10\sim19
```

## A4-4 : random()

```
int randNumber;
void setup( ){
 Serial.begin(9600);
 randomSeed(analogRead(5));
void loop( ){
 randNumber = random(300);
 Serial.println(randNumber);
 delay(50);
```

## A4-4: Serial Plotter





# A4-5: Sin Graph

- $Y = \sin\theta$
- X: 위상 0~360'
- rad을 degree로 변환 , degree=180'/Φ radian => Y = sin θ \* ( 180' / Φ )



# A4-5: Program

```
void setup() {
 Serial.begin(9600);
void loop() {
 for (int k = 0; k < 360; k++) {
  Serial.println(sin(k * (PI / 180)));
```

## A4-5: Serial Monitor/Plotter



# 능력 향상



### Arduino에서 컴퓨터로 데이터 전송하기

- Arduino에서 컴퓨터로 변수와 문자열 전송하기
  - 1. Arduino에서 문자열과 데이터를 시리얼 통신을 이용하여 컴퓨터로 전송한다.
  - 2. 전송할 데이터는 0부터 1초 간격으로 1씩 증가하는 숫자와 'sec'라는 문자열이다.
  - 3. Arduino IDE의 시리얼 모니터에서 이를 확인해 본다.

### Commands

#### • Serial.begin(전송속도)

시리얼 통신 포트를 컴퓨터와 연결한다. 전송속도는 bps(bits per sec)로 일반적으로 9600으로 설정한다. 19200, 57600, 115200 등의 값을 설정할 수 있다.

#### • Serial.print(전송내용)

괄호 안의 내용을 시리얼 통신으로 전송한다. 따옴표로 구분된 부분은 텍스트를 직접 전송하고 따옴표 없이 변수를 써주면 변수의 값이 전송된다.

#### Serial.println(전송내용)

- 'Serial.print'와 같으나 전송 뒤 줄 바꿈을 한다.

#### • delay(지연시간)

지연시간에는 잠시 동작을 지연시키기 위한 값을 넣는다. 1/1000초 단위로 넣는다.
 즉 1초를 지연시키기 위해선 1000의 값을 입력시킨다.

### 🔰 충북대학교 공동훈련센터



### ♥ 충북대학교 공동훈련센터

- 변수 유형별 Arduino에서 컴퓨터로 전송하기
  - 1. Arduino에서 컴퓨터로 데이터를 전송할 때 변수 유형별로 출력한다.
  - 2. char로 선언된 변수, int로 선언된 변수, float로 선언된 변수를 'Serial.print' 명령어를 이용하여 PC로 전송하자.
  - 3. 'Serial.print' 명령어의 출력 옵션을 변경하여 전송해 보자.
  - 4. 문자열 변수를 사용해 보자.
  - 5. 각 변수 유형별 출력되는 차이를 비교해 보자.

### Commands

- Serial.write(char 변수);
  - char변수에 해당하는 ASCII 코드값의 문자를 출력한다.
- Serial.print(변수,BIN);
  - 변수를 2진수(Binary)로 표시한다.
- Serial.print(변수,DEC);
  - 변수를 10진수(Binary)로 표시한다.
- Serial.print(변수,HEX);
  - 정해진 변수를 16진수(Hexadecimal)로 표시한다.

## Result





충북대학교 공동훈련센터