PH 203 – Classical Mechanics Lecturer: Dr. M. K. Nandy B.Tech. Engineering Physics, 3rd Sem, Aug-Nov 2023 Home Work Exercises-2.

- 1. A rod of mass M and length ℓ is rotating with angular velocity $\vec{\omega}$ about an axis passing normally through its center-of-mass.
 - (a) Find its angular momentum \vec{L} from $\vec{L} = \sum_i \vec{r_i} \times \vec{p_i}$.
 - (b) Hence find its moment of inertia about the rotation axis.
- 2. A hollow sphere of mass M and radius R is rotating with angular velocity $\vec{\omega}$ about an axis passing through its center.
 - (a) Find its angular momentum \vec{L} from $\vec{L} = \sum_i \vec{r_i} \times \vec{p_i}$.
 - (b) Hence find its moment of inertia about the rotation axis.
- 3. Take a solid sphere and answer the same questions.
- 4. Take a disk and answer the same questions if the axis of rotation is along its symmetry axis.
- 5. Take a disk and answer the same questions if the axis of rotation is along a diameter.
- 6. A dumbbell having equal masses m each at the two ends of a massless rod of length ℓ is rotating with angular velocity $\vec{\omega}$ about an axis passing through its center-of-mass making a constant acute angle θ with the rod.
 - (a) Find its angular momentum \vec{L} from $\vec{L} = \sum_i \vec{r_i} \times \vec{p_i}$.
 - (b) Is \vec{L} parallel to $\vec{\omega}$?.
 - (c) Is a torque needed?