Main Title

Prof. Dr. John Doe

Departamento de Automática

Date

Main Title

Prof. Dr. John Doe

Departamento de Automática

Date

Outline

- I. Introduction
- 2. Section 1
- 3. Section 2
- 4. Section 3
- 5. Content
- 6. Figures
- 7. Chart
- 8. Some LTEX Examples
 - Tables
 - Source code
 - Mathematics

Introduction

- Your introduction goes here!
- Use itemize to organize your main points.
 - up to 3 text levels with itemize
 - Indents increase level by level, font size decreases
 - Should you require more levels, use description instead of itemize.
 - Note: Please try not to write too much copy onto your slides.
- Regular bold italics courier bold italics.
- Description:

Word This is a nice description

Another word This is another nice description

- Enumeration:
 - T. This is an alert
 - 2. This is another alert

Section Header 1

Version - white background

Section Header 2

Version - backgroundcolour gold

Section Header 3

Version - backgroundcolour grey

Title and Content - Black

- Especially for pictures like x-ray
- Enter explanation text e.g. what can be seen in the picture

Title, subtitle and content

Enter subtitle here

Enter text, charts, pictures, ... here

Title, subtitle and content

Enter subtitle here

Enter text, charts, pictures, ... here

Figures

- You can upload a figure (JPEG, PNG or PDF) using the files menu.
- To include it in your document, use the includegraphics command (see the comment below in the source code).

Figura 1: Caption goes here.

Sample Chart

Insert charts as images

Section 2 Section 3 Content Figures Chart Some WIJX Example

Two Columns

- Left column for content
 - Can contain text, charts, pictures, ...
- Right column for content
 - Can contain text, charts, pictures, ...

roduction Section 1 Section 2 Section 3 Content Figures **Chart** Some WIJX Examples

Comparison

Headline for left column

- Left column for content
 - Can contain text, charts, pictures, ...

Headline for right column

- Right column for content
 - $\bullet \;\;$ Can contain text, charts, pictures, ...

Blocks

Block

Some examples of commonly used commands and features are included, to help you get started.

Example Block

Some examples of commonly used commands and features are included, to help you get started.

Alert Block

Some examples of commonly used commands and features are included, to help you get started.

oduction Section 1 Section 2 Section 3 Content Figures Chart **Some IUI**N Examples

Tables

Item	Quantity
Widgets	42
Gadgets	13

Cuadro 1: An example table.

Source code

Python

```
#!/usr/bin/python
print("Hello, world!")
# This is a nice loop
for i in range(5):
    print(str(i) + ": Hi there")
```

```
#include <stdio.h>
int main()
{
    /* Hi */
    // Hi again
    printf("Hello, world!\n");
}
```

Some MTpX Examples

Readable Mathematics

Let X_1, X_2, \ldots, X_n be a sequence of independent and identically distributed random variables with $E[X_i] = \mu$ and $Var[X_i] = \sigma^2 < \infty$, and let

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

denote their mean. Then as n approaches infinity, the random variables $\sqrt{n}(S_n - \mu)$ converge in distribution to a normal $\mathcal{N}(0, \sigma^2)$.

