Dynalene Ethylene Glycol Series

Inhibited Ethylene Glycol Heat Transfer Fluids

Process Applications

- HVAC/R
- · Data centers
- Winterization
- · Process cooling & heating
- Solar applications
- Ice & snow melting systems
- Refrigeration systems
- · Line heaters
- Plastic extrusion
- Geothermal energy
- Cooling towers
- Hydro testing

Dynalene EG Series Overview

Dynalene ethylene glycol (EG), also known as monoethylene glycol (MEG) or 1,2-ethanediol, is a naturally colorless, odorless, slightly viscous fluid that is miscible in water. Dynalene ethylene glycol products include both inhibited and uninhibited solutions. Dynalene glycols are blended with specially formulated additive packages depending on your system specifications. Our line of ethylene glycol heat transfer fluids provides users with stable, cost-effective, and efficient products for applications where freeze protection is needed. Microbial growth is not an issue at EG concentrations > 25%, and biocide is available for EG concentrations < 25%. We only use high quality virgin glycol in our products, never recycled material. All raw materials are tested and approved by our quality control department prior to manufacturing.

Properly used and maintained, Dynalene ethylene glycols provide excellent thermophysical properties while protecting your system from corrosion and degradation. Each individual ethylene glycol-based product has its own advantages, and custom blends can be readily made to meet your system's requirements.

Product	Description	Temperature Range
Dynalene EG	Inhibited ethylene glycol	-51°C to 121°C / -60°F to 250°F
Dynalene EG-XT	High-temperature inhibited ethylene glycol	-51°C to 177°C / -60°F to 350°F
Dynalene Raw EG	Uninhibited technical grade ethylene glycol	Contact Dynalene

Corrosion Protection

Dynalene's inhibited ethylene glycol products utilize a unique corrosion inhibitor package that offers superior corrosion protection for most metals, including carbon steel, brass, copper, stainless steel, and cast iron, by creating a corrosion-preventing passive layer on the surface that contacts the Dynalene ethylene glycol, thereby increasing the lifetime of the system components. It also stabilizes the pH of the fluid, keeping it in the range that is suitable for the metals in your system. The corrosion inhibitors are easily topped off, thus decreasing time between the fluid replacements.

Quantity & Availability

Dynalene ethylene glycol products are offered in 1, 2.5, 5, 30, 55, and 265-gallon containers as well as 5,000-gallon tankers. Pricing depends on quantity, and Dynalene, Inc. will work with you to try and fit your budget.

Dynalene's Fluid Care Program

Coupling our Dynalene fluids with a fluid care program can extend the life of your systems significantly. We offer yearly testing of the heat transfer fluid in your system and can track changes in the fluid year to year so adjustments can be made to keep your systems working at its best.

Dynalene recommends using deionized water when blending glycol and water.

Water Ion	Dynalene Spec
Chloride	< 25 ppm
Sulfate	< 25 ppm
Other	< 50 ppm

Benefits of Choosing Dynalene EG

- Pre-mixed solutions
- Custom blends with pH adjusted
- Can be re-inhibited
- Proven performance
- Dye options available: fluorescent green, FD&C colors: yellow, red, blue, and pink
- Biocide is available

- Dynalene LC-EG available for lowconductivity needs*
- Dynalene EG-V1 available for hightemperature aluminum systems
- Available worldwide
- Cost-effective
- Total fluid care option

For health and safety information or to request a Safety Data Sheet, contact our Dynalene sales representatives.

*For applications requiring **low electrical conductivity**, please contact our sales team about Dynalene LC-EG.

Web:

Dynalene, Inc. ■ 5250 W Coplay Rd ■ Whitehall, PA ■ 18052

Dynalene, Inc. is an ISO 9001 certified company

Tel: (610) 262-9686
Toll Free: (877) 244-5525
Fax: (610) 262-7437
E-mail: info@dynalene.com

dynalene.com

General Properties

	Dynalene EG	Dynalene EG-XT	Dynalene Raw EG
рН	8.0 - 9.0	9.0 – 10.0	6.0 - 8.0
Reserve Alkalinity (100%)	>10 mL	> 25 mL	0 mL
Operating Range	-60 to 250°F	-60 to 350°F	Contact Dynalene
Flash Point (100% Concentration)	249°F (120.5°C)	256°F (124.5°C)	246°F (119°C)
Flash Point (Concentration ≤ 85%)	None	None	None
Color	Clear	Clear	Clear
Odor	Little or none	Little or none	Little or none

Properties of Dynalene ethylene glycol solutions:

Vol. %	Wt .%	Freez	e Point	Burst	Point	Boiling Point	Reserve Alkalinity	Specific Gravity
EG	EG	٥F	°C	٥F	°C	⁰F	(mL)	22°C (72°F)
0	0	32	0.0	32	0.0	212	0	1.000
5	5.6	29	-1.7	27	-2.7	213	≥ 0.50	1.008
10	11.2	26	-3.3	23	-4.9	214	≥ 1.00	1.020
15	16.6	22	-5.5	17	-8.6	215	≥ 1.50	1.026
20	22.0	16	-8.5	8	-13.2	216	≥ 2.00	1.033
25	27.3	10	-12.2	-2	-18.8	218	≥ 2.50	1.040
26	28.4	9	-12.8	-4	-20.1	219	≥ 2.60	1.041
27	29.4	8	-13.3	-6	-21.4	219	≥ 2.70	1.042
28	30.5	6	-14.4	-9	-22.7	220	≥ 2.80	1.044
29	31.5	5	-15.0	-11	-24.0	220	≥ 2.90	1.045
30	32.6	4	-15.6	-14	-25.4	220	≥ 3.00	1.047
31	33.6	3	-16.1	-16	-26.8	220	≥ 3.10	1.048
32	34.7	1	-17.2	-20	-28.9	220	≥ 3.20	1.049
33	35.7	0	-17.8	-25	-31.7	221	≥ 3.30	1.050
34	36.7	-2	-18.9	-33	-36.1	221	≥ 3.40	1.052
35	37.7	-3	-19.4	-45	-42.8	221	≥ 3.50	1.053
36	38.8	-5	-20.6	< -60	< -51.1	221	≥ 3.60	1.054
37	39.8	-7	-21.7	< -60	< -51.1	222	≥ 3.70	1.056
38	40.8	-9	-22.8	< -60	< -51.1	222	≥ 3.80	1.057
39	41.9	-11	-23.9	< -60	< -51.1	222	≥ 3.90	1.058
40	42.9	-13	-25.0	< -60	< -51.1	223	≥ 4.00	1.060
41	43.9	-15	-26.1	< -60	< -51.1	223	≥ 4.10	1.061
42	44.9	-17	-27.2	< -60	< -51.1	224	≥ 4.20	1.062
43	46.0	-19	-28.3	< -60	< -51.1	224	≥ 4.30	1.064
44	47.0	-21	-29.4	< -60	< -51.1	224	≥ 4.40	1.065
45	48.0	-24	-31.1	< -60	< -51.1	224	≥ 4.50	1.066
46	49.0	-26	-32.2	< -60	< -51.1	224	≥ 4.60	1.068
47	50.0	-29	-33.9	< -60	< -51.1	225	≥ 4.70	1.069
48	51.0	-31	-35.0	< -60	< -51.1	225	≥ 4.80	1.070
49	52.0	-33	-36.1	< -60	< -51.1	225	≥ 4.90	1.072
50	53.0	-36	-37.8	< -60	< -51.1	226	≥ 5.00	1.073
55	57.9	-50	-45.6	< -60	< -51.1	228	≥ 5.50	1.081
60	62.8	< -60	< -51.1	< -60	< -51.1	232	≥ 6.00	1.086
70	72.4	< -60	< -51.1	< -60	< -51.1	244	≥ 7.00	1.100
75	77.2	< -60	< -51.1	< -60	< -51.1	251	≥ 7.50	1.106
80	81.8	-52	-46.7			263	≥ 8.00	1.110
90	91.0	-20	-28.9			290	≥ 9.00	1.118
100	100	2	-16.7			317	≥ 10.00	1.127

1 cP= 0.001 Pa·s Viscosity

			Dy	nalene Ethyl	ene Glycol S	eries, Viscos	ity, cP		
					Volume				
Temp, F	20%	25%	30%	35%	40%	45%	50%	55%	60%
-30									89.7
-20							40.4	50.5	60.5
-10							27.3	34.7	42.1
0					13.8	16.6	19.3	24.7	30.1
10			6.83	8.47	10.1	12.2	14.3	18.2	22.1
20	3.90	4.64	5.38	6.56	7.74	9.32	10.9	13.8	16.6
30	3.14	3.74	4.33	5.21	6.09	7.29	8.48	10.6	12.7
40	2.59	3.07	3.54	4.23	4.91	5.84	6.77	8.34	9.90
50	2.18	2.57	2.95	3.50	4.04	4.77	5.50	6.68	7.85
60	1.86	2.18	2.49	2.94	3.38	3.97	4.55	5.44	6.33
70	1.61	1.87	2.13	2.50	2.87	3.34	3.81	4.49	5.17
80	1.41	1.63	1.84	2.15	2.46	2.85	3.23	3.76	4.28
90	1.24	1.42	1.60	1.87	2.13	2.45	2.76	3.17	3.58
100	1.11	1.26	1.41	1.64	1.87	2.13	2.39	2.71	3.03
120	0.90	1.01	1.11	1.29	1.46	1.64	1.82	2.03	2.23
140	0.74	0.82	0.90	1.04	1.17	1.30	1.43	1.56	1.69
160	0.63	0.69	0.75	0.85	0.95	1.05	1.15	1.24	1.32
180	0.54	0.59	0.63	0.71	0.79	0.87	0.94	1.00	1.06
200	0.47	0.51	0.54	0.61	0.67	0.73	0.78	0.82	0.86
220	0.41	0.44	0.46	0.52	0.57	0.62	0.66	0.69	0.72

1 Btu/hr-ft-°F = 1.73 W/mK

Thermal Conductivity

			Dynalene Eth	vlene Glycol	Sarias Thor	mal Conducti	vity Rtu/br-ft	.°F			
Dynalene Ethylene Glycol Series, Thermal Conductivity, Btu/hr-ft-°F Volume											
Temp, °F	20%	25%	30%	35%	40%	45%	50%	55%	60%		
-30									0.178		
-20							0.193	0.187	0.181		
-10							0.197	0.191	0.184		
0					0.216	0.208	0.200	0.193	0.186		
10			0.238	0.229	0.220	0.212	0.204	0.197	0.189		
20	0.264	0.254	0.243	0.234	0.224	0.216	0.207	0.199	0.191		
30	0.269	0.258	0.247	0.237	0.227	0.219	0.210	0.202	0.194		
40	0.274	0.263	0.251	0.241	0.231	0.222	0.212	0.204	0.196		
50	0.279	0.267	0.255	0.245	0.234	0.225	0.215	0.207	0.198		
60	0.284	0.272	0.259	0.248	0.237	0.228	0.218	0.209	0.200		
70	0.288	0.276	0.263	0.252	0.240	0.230	0.220	0.211	0.202		
80	0.292	0.279	0.266	0.255	0.243	0.233	0.223	0.214	0.204		
90	0.296	0.283	0.269	0.258	0.246	0.236	0.225	0.216	0.206		
100	0.299	0.286	0.272	0.260	0.248	0.238	0.227	0.218	0.208		
120	0.305	0.291	0.277	0.265	0.253	0.242	0.230	0.220	0.210		
140	0.311	0.297	0.282	0.269	0.256	0.245	0.233	0.223	0.213		
160	0.315	0.300	0.285	0.272	0.259	0.248	0.236	0.226	0.215		
180	0.318	0.303	0.288	0.275	0.262	0.250	0.238	0.228	0.217		
200	0.320	0.305	0.290	0.277	0.263	0.252	0.240	0.229	0.218		
220	0.321	0.306	0.291	0.278	0.265	0.253	0.240	0.230	0.219		

1 Btu/lb_m·°F = 4,186 J/kg°C

			Dynalene	Ethylene Gl	ycol Series, S	Specific Heat,	Btu/lb-°F				
Volume											
Temp, °F	20%	25%	30%	35%	40%	45%	50%	55%	60%		
-30									0.669		
-20							0.730	0.702	0.674		
-10							0.735	0.708	0.680		
0					0.792	0.766	0.740	0.713	0.686		
10			0.845	0.821	0.796	0.771	0.745	0.719	0.692		
20	0.894	0.871	0.848	0.825	0.801	0.776	0.751	0.725	0.698		
30	0.897	0.875	0.852	0.829	0.805	0.781	0.756	0.730	0.704		
40	0.900	0.878	0.856	0.833	0.810	0.786	0.761	0.736	0.710		
50	0.903	0.882	0.860	0.837	0.814	0.790	0.766	0.741	0.716		
60	0.907	0.886	0.864	0.842	0.819	0.796	0.772	0.747	0.722		
70	0.910	0.889	0.868	0.846	0.824	0.801	0.777	0.753	0.728		
80	0.913	0.892	0.871	0.850	0.828	0.805	0.782	0.758	0.734		
90	0.916	0.896	0.875	0.854	0.833	0.807	0.781	0.761	0.740		
100	0.919	0.899	0.879	0.858	0.837	0.815	0.793	0.770	0.746		
120	0.925	0.906	0.887	0.867	0.846	0.825	0.803	0.780	0.757		
140	0.931	0.913	0.895	0.875	0.855	0.835	0.814	0.792	0.769		
160	0.938	0.920	0.902	0.884	0.865	0.845	0.824	0.803	0.781		
180	0.944	0.927	0.910	0.892	0.874	0.855	0.835	0.814	0.793		
200	0.950	0.934	0.918	0.901	0.883	0.864	0.845	0.825	0.805		
220	0.956	0.941	0.925	0.909	0.892	0.874	0.856	0.837	0.817		

1 lb_m/ft³= 16 kg/m³

			Dyn	alene Ethyler	ne Glycol Ser	ies, Density,	lb/ft ³		
Volume									
Temp, °F	20%	25%	30%	35%	40%	45%	50%	55%	60%
-30									70.40
-20							69.26	69.76	70.26
-10							69.12	69.61	70.10
0					67.93	68.45	68.97	69.46	69.94
10			66.68	67.24	67.79	68.31	68.82	69.30	69.78
20	65.36	65.96	66.55	67.10	67.64	68.15	68.66	69.13	69.60
30	65.23	65.82	66.41	66.95	67.49	67.99	68.49	68.96	69.43
40	65.10	65.69	66.27	66.80	67.33	67.83	68.32	68.78	69.24
50	64.97	65.54	66.11	66.64	67.17	67.66	68.14	68.61	69.08
60	64.83	65.40	65.96	66.48	66.99	67.48	67.96	68.41	68.86
70	64.68	65.24	65.79	66.31	66.82	67.30	67.77	68.22	68.66
80	64.52	65.07	65.62	66.13	66.63	67.11	67.58	68.02	68.46
90	64.36	64.91	65.45	65.95	66.44	66.91	67.38	67.82	68.25
100	64.20	64.74	65.27	65.76	66.25	66.71	67.17	67.60	68.03
120	63.85	64.37	64.88	65.36	65.84	66.29	66.74	67.16	67.58
140	63.47	63.98	64.48	64.95	65.41	65.85	66.28	66.69	67.10
160	63.07	63.56	64.05	64.50	64.95	65.38	65.80	66.21	66.61
180	62.65	63.12	63.59	64.03	64.47	64.89	65.30	65.70	66.09
200	62.20	62.66	63.11	63.54	63.97	64.38	64.78	65.16	65.54
220	61.72	62.17	62.61	63.03	63.44	63.84	64.23	64.61	64.98

Dynalene Ethylene Glycol Series, Vapor Pressure, psia										
					Volume					
Temp, °F	20%	25%	30%	35%	40%	45%	50%	55%	60%	
100	0.9	0.9	0.8							
110	1.2	1.2	1.1	1.1	1.0					
120	1.6	1.6	1.5	1.5	1.4	1.4	1.3	1.2	1.1	
130	2.0	2.0	2.0	1.9	1.8	1.8	1.7	1.6	1.5	
140	2.7	2.6	2.5	2.5	2.4	2.3	2.2	2.1	2.0	
150	3.5	3.4	3.3	3.2	3.1	3.1	2.8	2.6	2.6	
160	4.4	4.3	4.2	4.1	3.9	3.8	3.6	3.5	3.3	
170	5.6	5.5	5.3	5.2	5.0	4.8	4.6	4.4	4.2	
180	7.0	6.6	6.2	6.3	6.3	6.1	5.8	5.6	5.3	
190	8.7	8.5	8.3	8.1	7.8	7.5	7.2	6.9	6.6	
200	10.8	10.6	10.3	10.0	9.7	9.7	9.0	8.2	8.2	
210	13.2	12.9	12.6	12.2	11.8	11.4	11.0	10.5	10.0	
220	16.4	15.9	15.3	14.9	14.4	13.9	13.4	12.9	12.3	
230	19.4	19.0	18.5	18.0	17.5	16.9	16.2	15.6	14.9	
240	23.3	22.8	22.3	21.7	21.0	20.3	19.5	18.7	17.9	
250	27.9	26.6	26.6	25.9	25.1	25.1	23.3	21.4	21.4	
260	33.1	32.4	31.6	30.7	29.8	28.8	27.7	26.6	25.4	
270	39.1	38.2	37.3	36.3	35.2	34.0	32.8	31.5	30.1	
280	46.0	45.0	43.9	42.7	41.4	40.0	38.5	36.9	35.3	
290	53.8	52.6	51.3	49.9	48.4	46.7	45.0	43.2	41.3	
300	62.6	61.2	59.7	58.0	56.3	56.3	52.4	48.1	48.1	
310	72.6	70.9	69.2	67.2	65.2	63.0	60.7	60.7	55.7	
320	83.7	81.8	79.8	77.5	75.2	72.6	69.9	67.1	64.3	
330	96.2	94.0	91.7	89.1	86.4	83.4	80.3	77.1	73.8	
340	110.2	107.6	105.0	102.0	98.9	95.4	91.8	88.1	84.4	
350	125.7	122.7	119.7	116.2	112.7	108.7	104.6	100.4	96.2	

Product Disclaimer

The information contained in this entire publication is presented in good faith at "no charge" and is believed to be correct as of the date indicated. No representations or warranties are made as to its completeness or accuracy. The information listed is supplied upon the condition that the persons receiving it will make their own determination as to its suitability for their purposes prior to use. In no event will the seller be responsible for damages of any nature whatsoever resulting from the use of, or reliance upon, this information or the product to which this information refers. Nothing contained on this page is to be construed as a recommendation to use the product, process, equipment or formulation in conflict with any patent. No representation or warranty, expressed or implied, is made that the use of this product will not infringe any patent.

No representations or warranties, either expressed or implies, of merchantability, fitness for a particular purpose or for any other nature are made with respect to the information, or the product to which the information refers.

Contact Information

Corporate Headquarters

Dynalene, Inc.

5250 West Coplay Road

Whitehall, Pennsylvania 18052

Phone: 610-262-9686 / 1-877-244-5525

Fax: 610-262-7437

Email: info@dynalene.com Website: www.dynalene.com

Midwest Location

248 Beinoris Dr Wood Dale, IL 60191

Phone: 1-855-216-7639

Email: centralsales@dynalene.com

West Location

1701 S 5350 W

Salt Lake City, UT 84104 Phone: 1-877-244-5525

Email: westsales@dynalene.com

Published May 2020