

Quantum Technologies

C-DAC Patna

Outline of the Presentation

- Quantum Mechanics
- Quantum Computation
- Path entangled QRNG
- Post Quantum Cryptography

Quantum Mechanics

"Quantum" - Smallest possible quantity of some physical thing.

- Waves behave like particles
- Electrons(particles) behave like waves
- Wave-particle duality
- Black Body radiation
- Photoelectric effect

$$h\nu = E_2 - E_1$$

Energy is discrete

Quantum Mechanics

The discovery of Quantum Mechanics in the 20th Century opened a new paradigm of Technological developments.

Phenomena in Quantum Physics:

- Superposition
- Entanglement
- Interference
- Heisenberg Uncertainty Principle

Bra-Ket notation

- It uses angle brackets and vertical lines for representation
- Bra-Ket notation or Dirac notation is used to denote quantum states
- Bra–ket notation is a notation for linear algebra and linear operators on complex vector spaces
- It is specifically designed to ease the types of calculations that frequently come up in quantum mechanics

$$\overrightarrow{v} = |v\rangle = egin{bmatrix} x \ y \ z \end{bmatrix}$$

$$|\psi
angle$$
 Ket $|\psi
angle$ Dual of Ket - Bra $|\phi
angle\psi
angle$ Inner Product $|\phi
angle\psi
angle$ Tensor product

Quantum Mechanics Phenomena

Superposition analogous to a spinning coin

Superposition

The principle of quantum superposition states that if a physical system may be in one of many configurations—arrangements of particles or fields—then the most general state is a combination of all of these possibilities, where the amount in each configuration is specified by a complex number.

Quantum Mechanics Phenomena

Entanglement

It is a physical phenomenon in which quantum states of two systems cannot be independent of each other. They essentially act as a single system.

Ball-Box analogy to explain entanglement

Quantum Mechanics Phenomena

• Heisenberg's Uncertainty Principle

Two non-commuting variables cannot be measured simultaneously with exact precision.

Quantum Computation

What is Quantum Computing?

It refers to computation utilising the principles of quantum physics. The common principles applied in the computing system are the superposition, entanglement, and quantum interference.

A Quantum Computer is expected to perform well beyond the computational capability of a classical computer.

Qubits

Qubits

Quantum bits are analogous to bits in a classical computer

Bloch Sphere

The Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit)

Qubits versus Classical Bits

HOW A QUANTUM COMPUTER WORKS

Principle of superposition allows parallelism in the calculations

Quantum Gates

Gate	Equation	Matrix	Transform	Notation
Identity (I)	$I = 0\rangle\langle 0 + 1\rangle\langle 1 $	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$I \mid 0 \rangle = \mid 0 \rangle$ $I \mid 1 \rangle = \mid 1 \rangle$	<u> </u>
Pauli-X (X or NOT)	$X = 0\rangle\langle 1 + 1\rangle\langle 0 $	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	$X \mid 0 \rangle = \mid 1 \rangle$ $X \mid 1 \rangle = \mid 0 \rangle$	<u> </u>
Hadamard (<i>H</i>)	$\boldsymbol{H} = \frac{ 0\rangle + 1\rangle}{\sqrt{2}} \langle 0 + \frac{ 0\rangle - 1\rangle}{\sqrt{2}} \langle 1 $	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$	$H \mid 0 \rangle = \frac{1}{\sqrt{2}} (\mid 0 \rangle + \mid 1 \rangle)$ $H \mid 1 \rangle = \frac{1}{\sqrt{2}} (\mid 0 \rangle - \mid 1 \rangle)$	—H—
Controlled- NOT (CNOT)	$\mathbf{CNOT} = 0 \rangle \langle 0 \otimes \mathbf{I} + 1 \rangle \langle 1 \otimes \mathbf{X}$	$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$	$CNOT 00\rangle = 00\rangle$ $CNOT 01\rangle = 01\rangle$ $CNOT 10\rangle = 11\rangle$ $CNOT 11\rangle = 10\rangle$	- -
Toffoli (T or CCNOT)	$\mathbf{T} = 0\rangle\langle 0 \otimes \mathbf{I} \otimes \mathbf{I} \\ + 1\rangle\langle 1 \otimes \mathbf{CNOT}$	$ \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{pmatrix} $	$T 000\rangle = 000\rangle, T 001\rangle = 001\rangle$ $T 010\rangle = 010\rangle, T 011\rangle = 011\rangle$ $T 100\rangle = 100\rangle, T 101\rangle = 101\rangle$ $T 110\rangle = 111\rangle, T 111\rangle = 110\rangle$	

- Basic circuits which operate on a few qubits
- Building blocks for Quantum Circuits, analogous to Logic gates in classical computers
- Reversible, unitary operators, described as unitary matrices relative to some basis (generally, Computational Basis)

Quantum Advantage

- A quantum computer can perform computations which no classical computer can perform at all also referred to as *quantum supremacy*.
- Utilising Quantum Superposition through Qubits can potentially achieve Quantum Supremacy
- The essence of quantum parallelism is the Hadamard transform, which can place a collection of qubits into a superposition of quantum states. In particular, k qubits can be placed into 2^k quantum states.

Superconducting Qubit Computers

- Using Superconducting Electronic Circuits, Quantum Computers are implemented
- SQUIDS Superconducting Quantum Interference Devices
- Cryogenic Cooling is used to remove thermal noise
- Josephson Junction is the device at the heart of such chips

Superconducting Qubit Computer Schematic

Annealing Based Quantum Computers

- Quantum Annealing is an optimization process.
- It finds the *global minimum* of a given function over a given set of candidate solutions (candidate states) by a process using quantum fluctuations.
- System starts with superposition of all candidate states with equal weights.
- Following the time-dependent Schrödinger equation, a natural quantum-mechanical evolution of physical systems, system evolves to the solution state.

Path Entangled QRNG

Post Quantum Cryptography (PQC)

Post Quantum Cryptography (PQC)

• Shor's Algorithm

- Peter Shor (1994)
- Solves the Integer Factorization & Discrete log problem in polynomial time using Quantum Computers
- Direct impact on public key cryptosystem such as RSA and Diffie-Hellman
- A 2048-bit RSA would take a traditional computer about 6.4 quadrillion years
- A Quantum computer with perfectly stable 4096 qubits will break RSA 2048 in 10 seconds.
- Current State-of-the-Art: IBM Eagle 127 qubit Quantum Computer

Post Quantum Cryptography (PQC)

Grover's Algorithm

- Quantum Computers give √n speed up on search problems
- Halves the time complexity of search from O(n) to $O(\sqrt{n})$
- Can be applied for brute force search of cryptographic keys
- The complexity of AES-128 key search reduces from 2¹28 to 2⁶4

Challenges

To achieve Quantum Supremacy

- Translation of qubits to arbitrary values
- Readable qubit for public use
- Creating a scalable physical system that can support qubit number
- Developing quantum gates that operate faster than the decoherence time
- Creating spare parts that can handle the job

Thank You