

A Synthetic Data Generation Pipeline for Point-Cloud-Based Rebar Segmentation

Tao Sun¹, Yingtong Luo², Yi Shao¹

Parametric rebar asset modelling

Zero manual labeling expenses

High-fidelity data generation

AIS Construction Lab

¹Department of Civil Engineering, McGill University, Canada ²Department of Mechanical Engineering, McGill University, Canada

Motivation

Rebar recognition drives automation in reinforcement work

Quality Control

Robotic Manipulation

Segmenting rebars from 3D point clouds vs. 2D images:

Better leverages 3D priors (more robust to occlusions and perspective variations)

Scales to large scenes (more efficient detection)

Deployment bottleneck: Scarce high-quality 3D dataset

Can we learn rebar segmentation from point cloud using synthetic data?

Experiment & Results

Domain	Segmentation mAP
Synthetic	99.4
Real	95.4

Method

Extension

Highlights

Our pipeline can be easily generalized to other rebar recognition tasks [1]

Decoder

Oneformer3D

Flexible

Pooling

[1] Sun, Tao, et al. "Rebar grasp detection using a synthetic model generator and domain randomization." Automation in Construction 176 (2025): 106252.

