Redes de Computadores I

Na aula anterior

Camada física

Na aula de hoje

Camada de acesso ao meio

Relembrando

	Modelo <u>QSI</u>	Tipo	TCP/IP	
4	Aplicação Apresentação			
П	Sessão	Dados	Aplicação	
П	Transporte	Datagramas/Segmentos	Transporte	
	Rede	Pacotes	Rede	
	Enlace	Quadros	Acesso ao	
	Física	Bits	meio	

A camada de acesso ao meio / enlace

A camada de acesso ao meio

A camada de acesso ao meio é chamada dessa maneira pois um dos principais problemas que ela resolve é: como múltiplos agentes podem usar um único meio (um fio, ar, fibra ótica, etc) para se comunicar?

A camada de acesso ao meio

A camada de acesso ao meio é chamada dessa maneira pois um dos principais problemas que ela resolve é: como múltiplos agentes podem usar um único meio (um fio, ar, fibra ótica, etc) para se comunicar?

R: Existem várias abordagens para essa finalidade, sendo cada uma um protocolo diferente

Abordagem 1

A primeira abordagem é simplesmente evitar o problema usando meios distintos. Cada par de hosts usa seu próprio meio de comunicação. Isso é mais fácil de fazer em meios guiados mas é possível fazer até em meios não guiados usando frequências diferentes

Colisão

- Quando múltiplos agentes enviam uma mensagem em um mesmo meio chamamos isso de colisão
- Existem várias abordagens, que podemos chamar de otimistas pois elas pressupõe que na maior parte das vezes não haverá colisão. A ênfase aqui é em detectar quando houver a colisão e enviar de novo a mensagem

Protocolo Aloha

- Tem esse nome pois foram desenvolvidos para uma rede de radiodifusão usada no Havaí.
- Abordagem: Existe um caminho de ida e um único caminho de volta.
- Emissor A transmite e aguarda confirmação do recebimento no caminho de volta.
 Se receber então a mensagem chegou no destino com sucesso. Caso contrário manda novamente.

Protocolo CSMA

- CSMA significa Carrier Sense Multiple Acess.
- A idéia é que antes de transmitir o emissor "ouve" para ver se existe alguém transmitindo. Se ninguém estiver usando o meio ocorre o envio.
- Se dois transmitirem ao mesmo tempo, cada um gera um número aleatório e começa a contar a partir desse número. Quem chegar a zero primeiro transmite.

CSMA/CD

- Variação do CSMA onde CD significa collision detection.
- A idéia é que ao mesmo tempo que se transmite, se escuta o meio então colisões são detectadas instantâneamente
- Se houver colisão o tratamento é semelhante ao CSMA

CSMA/CA

- CA significa collision avoidance
- A idéia é começar operando com o CSMA normal. A partir do momento em que qualquer emissor transmite as estações dividem o meio de acordo com slots de tempo. Se uma estação não quiser transmitir ela passa a vez. Se ninguém quiser transmitir a rede retorna ao CSMA normal

Uso de Token

 Antes de transmitir o emissor tem que estar de posse de algo, chamado de token

Polling

 Um controlador pergunta, um de cada vez, aos participantes da rede se eles querem transmitir.
 Caso queiram são autorizados. Caso não o controlador passa a vez.

Divisão por slot

Cada emissor recebe um slot (pode ser de tempo) e aí pode usar ou não o seu slot para transmitir, se desejar

Outros problemas

- A camada de acesso ao meio/enlace também é responsável por lidar com
 - Multiplexação (quando todos querem transmitir)
 - Controle de fluxo (quando emissor e receptor tem velocidades diferentes)
 - Controle de erros

Controle de fluxo

https://www.youtube.com/watch?v=i8a7ctz-QbI

O mais lento determina a velocidade :\

Controle de erros

- Outro problema importante tratado na camada é o controle de erros
 - Geralmente quando ocorre um erro no envio, e os dados chegaram corrompidos, é necessário enviar de novo. Mas como detectar o erro?
 - Uma das técnicas mais utilizadas é chamada de "controle de paridade" ou simplesmente "paridade"

Controle de paridade

- A idéia é contar quantos bits existem em uma sequência e gerar um bit a partir dessa contagem
- Existem dois padrões
 - Paridade par: o total de bits sempre tem que ser par
 - Paridade ímpar: o total de bits sempre tem que ser ímpar

Exemplo de paridade par

- Sequência original: 0000110
 - 2 dígitos '1'. 2 é par. Não é preciso adicionar nenhum
 1. Logo o bit de paridade é 0.
 - Sequência enviada: 0000110 0
- Sequência original: 1010100
 - 3 dígitos '1'. 3 é par. É preciso adicionar mais um '1' para a quantidade ser par. Bit de paridade → 1
 - Sequência enviada 1010100 1

Exemplo de paridade ímpar

- Sequência original: 1000110
 - 3 dígitos '1'. 3 é ímpar. Não é preciso adicionar nenhum 1. Logo o bit de paridade é 0.
 - Sequência enviada: 1000110 0
- Sequência original: 1011100
 - 4 dígitos '1'. 4 é par. É preciso adicionar mais um '1' para a quantidade ser ímpar. Bit de paridade → 1
 - Sequência enviada 1011100 1

E se o problema de transmissão ocorrer no bit de paridade?

Exemplo: considerando paridade par

Dados: 0011000

Bit de paridade: 0

Enviado: 0011000 0

Recebido: 0011000 1

Como saber se o problema foi no bit de paridade ou nos dados?

E se o problema de transmissão ocorrer no bit de paridade?

Como saber se o problema foi no bit de paridade ou nos dados?

R: Adicionando mais um bit de paridade!
(Poderíamos repetir isso infinitamente mas geralmente um ou dois bits são bons o suficiente.
Com mais erros do que isso deve-se procurar outras soluções)

- Esse mecanismo de gerar um número a partir de outro não é exclusivo da transmissão de dados
- Os dois últimos dígitos do CPF também são calculados! (Só que o algoritmo é um pouco mais complexo)
- Procure no google por "cálculo de dígito do cpf"
 - Desafio: faça um programa que dado os 9 dígitos do cpf calcule os dois últimos dígitos

Referências

Conteúdo

- Amaral et al. Redes de Computadores I Aula 7. Disponível em: https://proedu.rnp.br/handle/123456789/623
- https://pt.wikipedia.org/wiki/Paridade_(telecomunica %C3%A7%C3%B5es)
- Imagens (exceto slides 4 e 18)
 - Amaral et al. Redes de Computadores I Aula 7. Disponível em: https://proedu.rnp.br/handle/123456789/623