### DM865 – Spring 2018 Heuristics and Approximation Algorithms

## Flow Shop and Job Shop

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

## Outline

### 1. Flow Shop

Introduction
Makespan calculation
Johnson's algorithm
Construction heuristics
Iterated Greedy
Efficient Local Search and Tabu Search

2

## Outline

### 1. Flow Shop

Introduction
Makespan calculation
Johnson's algorithm
Construction heuristics
Iterated Greedy
Efficient Local Search and Tabu Search

3

## Flow Shop

### General Shop Scheduling:

- $J = \{1, ..., N\}$  set of jobs;  $M = \{1, 2, ..., m\}$  set of machines
- $J_j = \{O_{ij} \mid i = 1, ..., n_j\}$  set of operations for each job
- p<sub>ij</sub> processing times of operations O<sub>ij</sub>
- $\mu_{ij} \subseteq M$  machine eligibilities for each operation
- precedence constraints among the operations
- one job processed per machine at a time, one machine processing each job at a time
- $C_j$  completion time of job j
- lacktriangle Find feasible schedule that minimize some regular function of  $C_j$

### Flow Shop Scheduling:

- $\mu_{ij} = i$ , i = 1, 2, ..., m
- precedence constraints:  $O_{ij} \rightarrow O_{i+1,j}$ ,  $i=1,2,\ldots,n$  for all jobs

# Example

| jobs        | $j_1$ | $j_2$ | $j_3$ | $j_4$ | $j_5$ |
|-------------|-------|-------|-------|-------|-------|
| $p_{1,j_k}$ | 5     | 5     | 3     | 6     | 3     |
| $p_{2,j_k}$ | 4     | 4     | 2     | 4     | 4     |
| $p_{3,j_k}$ | 4     | 4     | 3     | 4     | 1     |
| $p_{4,j_k}$ | 3     | 6     | 3     | 2     | 5     |

## schedule representation

$$\pi_1, \pi_2, \pi_3, \pi_4$$
:

$$\pi_1: O_{11}, O_{12}, O_{13}, O_{14}$$
 $\pi_2: O_{21}, O_{22}, O_{23}, O_{24}$ 
 $\pi_3: O_{31}, O_{32}, O_{33}, O_{34}$ 
 $\pi_4: O_{41}, O_{42}, O_{43}, O_{44}$ 

#### Gantt chart



- we assume unlimited buffer
- if same job sequence on each machine **→** permutation flow shop

5

# **Directed Graph Representation**

Given a sequence: operation-on-node network, jobs on columns, and machines on rows



В

# **Directed Graph Representation**



Recursion for  $C_{max}$ 

$$C_{i,\pi(1)} = \sum_{l=1}^{j} p_{l,\pi(1)}$$

$$C_{1,\pi(j)} = \sum_{l=1}^{j} p_{l,\pi(l)}$$

$$C_{i,\pi(j)} = \max\{C_{i-1,\pi(j)}, C_{i,\pi(j-1)}\} + p_{i,\pi(j)}$$

Computation cost?

•

# Example

| jobs        | $j_1$ | $j_2$ | $j_3$ | $j_4$ | $j_5$ |
|-------------|-------|-------|-------|-------|-------|
| $p_{1,j_k}$ | 5     | 5     | 3     | 6     | 3     |
| $p_{2,j_k}$ | 4     | 4     | 2     | 4     | 4     |
| $p_{3,j_k}$ | 4     | 4     | 3     | 4     | 1     |
| $p_{4,j_k}$ | 3     | 6     | 3     | 2     | 5     |



## corresponds to longest path





# $Fm \mid \mid C_{max}$

#### Theorem

There always exists an optimum sequence without change in the first two and last two machines.

**Proof:** By contradiction.



#### Corollary

 $F2 \mid \mid C_{max}$  and  $F3 \mid \mid C_{max}$  are permutation flow shop

**Note:**  $F3 \mid C_{max}$  is strongly NP-hard

# $F2 \mid \mid C_{max}$

**Intuition:** give something short to process to 1 such that 2 becomes operative and give something long to process to 2 such that its buffer has time to fill.

Construct a sequence  $T:T(1),\ldots,T(n)$  to process in the same order on both machines by concatenating two sequences:

a left sequence  $L:L(1),\ldots,L(t)$ , and a right sequence  $R:R(t+1),\ldots,R(n)$ , that is,  $T=L\circ R$ 

[Selmer Johnson, 1954, Naval Research Logistic Quarterly]

```
Let J be the set of jobs to process

Let T, L, R = \emptyset
```

Step 1 Find  $(i^*, j^*)$  such that  $p_{i^*, j^*} = \min\{p_{ij} \mid i \in 1, 2, j \in J\}$ 

Step 2 If 
$$i^* = 1$$
 then  $L = L \circ \{i^*\}$  else if  $i^* = 2$  then  $R = \{i^*\} \circ R$ 

Step 3 
$$J := J \setminus \{j^*\}$$

Step 4 If  $J \neq \emptyset$  go to Step 1 else  $T = L \circ R$ 

#### Theorem

The sequence  $T: T(1), \ldots, T(n)$  is optimal.

#### **Proof**

- Assume at one iteration of the algorithm that job k has the min processing time on machine
   Show that in this case job k has to go first on machine 1 than any other job selected later.
- By contradiction, show that if in a schedule S a job j precedes k on machine 1 and has larger processing time on 1, then S is a worse schedule than S'.
   There are three cases to consider.
- Iterate the proof for all jobs in *L*.
- Prove symmetrically for all jobs in R.

# Construction Heuristics (1)

Fm | prmu | C<sub>max</sub>

### Slope heuristic

• schedule in decreasing order of  $A_j = -\sum_{i=1}^{m} (m - (2i - 1))p_{ij}$ 

### Campbell, Dudek and Smith's heuristic (1970)

extension of Johnson's rule to when permutation is not dominant

• recursively create 2 machines 1 and m-1

$$p'_{ij} = \sum_{k=1}^{i} p_{kj}$$
  $p''_{ij} = \sum_{k=m-i+1}^{m} p_{kj}$ 

and use Johnson's rule

- repeat for all m-1 possible pairings
- return the best for the overall *m* machine problem

# Construction Heuristics (2)

*Fm* | *prmu* | *C*<sub>max</sub>

### Nawasz, Enscore, Ham's heuristic (1983)

Step 1: sort in decreasing order of  $\sum_{i=1}^{m} p_{ij}$ 

Step 2: schedule the first 2 jobs at best

Step 3: insert all others in best position

Implementation in  $O(n^2m)$ 

[Framinan, Gupta, Leisten (2004)] examined 177 different arrangements of jobs in Step 1 and concluded that the NEH arrangement is the best one for  $C_{max}$ .

# **Iterated Greedy**

Fm | prmu | C<sub>max</sub>

### Iterated Greedy [Ruiz, Stützle, 2007]

Destruction: remove *d* jobs at random

Construction: reinsert them with NEH heuristic in the order of removal

Local Search: insertion neighborhood

(first improvement, whole evaluation  $O(n^2m)$ )

Acceptance Criterion: random walk, best, SA-like

Performance on up to  $n = 500 \times m = 20$ :

- NEH average gap 3.35% in less than 1 sec.
- IG average gap 0.44% in about 360 sec.

# Efficient local search for Fm | prmu | C<sub>max</sub>

Tabu search (TS) with insert neighborhood.

TS uses best strategy. **→** need to search efficiently!

Neighborhood pruning

[Novicki, Smutnicki, 1994, Grabowski, Wodecki, 2004]



 $C_{max}$  expression through critical path:

critical path: 
$$\vec{u} = (u_1, u_2, \dots, u_m) : C_{max}(\pi) = C(\pi, u)$$

Block  $B_k$  and Internal Block  $B_k^{Int}$ 



#### Theorem (Werner, 1992)

Let  $\pi, \pi' \in \Pi$ , if  $\pi'$  has been obtained from  $\pi$  by a job insert so that  $C_{max}(\pi') < C_{max}(\pi)$  then in  $\pi'$ :

- a) at least one job  $j \in B_k$  precedes job  $\pi(u_{k-1}), k = 1, \ldots, m$ , or
- b) at least one job  $j \in B_k$  succeeds job  $\pi(u_k), k = 1, ..., m$

### Corollary (Elimination Criterion)

If  $\pi'$  is obtained by  $\pi$  by an "internal block insertion" then  $C_{\max}(\pi') \geq C_{\max}(\pi)$ .

Hence we can restrict the search to where the good moves can be:



Further speedup: Use of lower bounds in delta evaluations: Let  $\delta_{x,u_k}^r$  indicate insertion of x after  $u_k$  (move of type  $ZR_k(\pi)$ )

$$\Delta(\delta_{x,u_k}^r) = \begin{cases} p_{\pi(x),k+1} - p_{\pi(u_k),k+1} & x \neq u_{k-1} \\ p_{\pi(x),k+1} - p_{\pi(u_k),k+1} + p_{\pi(u_{k-1}+1),k-1} - p_{\pi(x),k-1} & x = u_{k-1} \end{cases}$$

That is, add and remove from the adjacent blocks It can be shown that:

$$C_{max}(\delta^r_{x,u_k}(\pi)) \geq C_{max}(\pi) + \Delta(\delta^r_{x,u_k})$$

Theorem (Nowicki and Smutnicki, 1996, EJOR)

The neighborhood thus defined is connected.

#### Metaheuristic details:

Prohibition criterion:

an insertion  $\delta_{x,u_k}$  is tabu if it restores the relative order of  $\pi(x)$  and  $\pi(x+1)$ .

Tabu length:  $TL = 6 + \left[\frac{n}{10m}\right]$ 

Perturbation



• perform all *inserts* among all the blocks that have  $\Delta < 0$ 

#### Tabu Search: the final algorithm:

Initialization :  $\pi = \pi_0$ ,  $C^* = C_{max}(\pi)$ , set iteration counter to zero.

Searching : Create  $UR_k$  and  $UL_k$  (set of non tabu moves)

Selection : Find the best move according to lower bound  $\Delta$ .

Apply move. Compute true  $C_{max}(\delta(\pi))$ .

If improving compare with  $C^*$  and in case update.

Else increase number of idle iterations.

Perturbation : Apply perturbation if MaxIdleIter done.

Stop criterion : Exit if MaxIter iterations are done.