1 Summary

Properties of holomorphic functions:

• Invariance of line integrals: for $f: U \to \mathbb{R}$ holomorphic, with $\gamma_1 \ \gamma_2$ in U closed (i.e. γ_1 can be deformed continuously to γ_2 in U; also called homotopy equivalence) then $\oint_{\gamma_1} f(z)dz = \oint_{\gamma_2} f(z)dz$. Proof: Link $\Gamma = \gamma_1 - \gamma_2$ to form a closed loop. Then show that f has an antiderivative F for some region containing all of Γ , and

$$\oint_{\Gamma} f(z)dz = \oint_{\Gamma} F'(z)dz = 0.$$

• Cauchy integral formula: for f holomorphic over $\overline{D(a,r)}$, then

$$f(z) = \frac{1}{2\pi i} \oint_{|w-a|=r} \frac{f(w)}{w-z} dw$$

for all $z \in D(a, r)$.

Proof: deform the curve |w-a|=r to $|w-z|=\epsilon$, and show that

$$\lim_{\epsilon \to 0} \frac{1}{2\pi i} \oint_{|w-z|=\epsilon} \frac{f(w)}{w-z} dw = f(z).$$

• Corollary: for f holomorphic over U,

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_{|w-a|=r} \frac{f(w)}{(w-z)^n} dw,$$

which leads to the power series expansion:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - a)^n$$

when $z \in D(a,r)$ and $\overline{D(a,r)} \subset U$.

Proof:

$$\frac{1}{w-z} = \frac{1}{w-a} \frac{1}{1 - \frac{z-a}{w-a}}$$

where

$$\left|\frac{z-a}{w-a}\right| < 1 - 0^+.$$

For functions f holomorphic on $\overline{D(a,r)}$ and $z \in D(a,r)$,

$$\left| f^{(n)}(z) \right| \le \frac{n!r}{(r - |z - a|)^n} M$$

where $M = \sup_{|z-a|=r} |f(z)|$.

Liouville Thm: No non-constant bounded entire function. Remark: "entire" refers to a function $f: \mathbb{R} \to \mathbb{R}$ holomorphic.

• Corollary: Power series expansions are unique. Restatement: if

$$f(z) = \sum_{n=0}^{\infty} a_n (z - \alpha)^n = \sum_{n=0}^{\infty} b_n (z - \alpha)^n$$

on some $D(\alpha, r)$ with r > 0, then $a_n = b_n \forall n$.

Proof: $f^{(n)}(\alpha) = n!a_n$ for all n.

To show this, note that $f(z) = \sum_{n=0}^{\infty} a_n (z - \alpha)^n$. Then, differentiating termwise (due to uniform convergence),

$$f^{(k)}(z) = \sum_{n=k}^{\infty} \frac{n!}{(n-k)!} a_n (z-\alpha)^{n-k}.$$

Thus substituting $z = \alpha$,

$$f^{(k)}(\alpha) = \frac{k!}{(k-k)!} a_k = k! a_k \iff a_k = \frac{f^{(k)}(\alpha)}{k!}$$

2 Uniform limits of holomorphic functions

Note that in general, sequences of differentiable (i.e. C^1) functions can have uniform limits that are only continuous, not differentiable.

Theorem 1. Let $f_n: U \to \mathbb{R}$ be a sequence of holomorphic functions. Suppose that for any compact $E \subset U$, $f_n|_E$ converges uniformly to a function on E. Then there is a holomorphic function $f: U \to \mathbb{R}$ such that $f_n \to f$ uniformly on every compact subset $E \subset U$. Furthermore, the same convergence holds for $f_n^{(k)} \to f^{(k)}$ for any nonnegative integer k.

Proof. By assumption, for any $z \in U$, we can view $\{z\} \subset U$ as a compact set. Then $f_n(z)$ converges. Define $f(z) = \lim_{n \to \infty} f_n(z)$ (i.e. take f to be the pointwise limit of the f_n).

Now choose some r > 0 such that $\overline{D(a,r)} \subset U$ (because U is open). Then for each n,

$$f_n(z) = \frac{1}{2\pi i} \oint_{|w-a|=r} \frac{f_n(w)}{w-z} dw.$$

Note that the Cauchy integral determines not only the function at its values on a circle, it also determines its derivatives.

Note furthermore that $f_n(w) \to f(w)$ along the boundary $\partial D(a,r)$. Then

$$f(z) = \lim_{n \to \infty} f_n(z) = \lim_{n \to \infty} \frac{1}{2\pi i} \oint_{|w-a|=r} \frac{f_n(w)}{w-z} dw.$$

Because $f_n \to f$ uniformly on $\partial D(a, r)$,

$$f(z) = \frac{1}{2\pi i} \oint_{|w-a|=r} \frac{f(w)}{w-z} dw$$

(Note: be more rigorous about this in homework.) Then because any integral of this form is holomorphic, f is holomorphic.

3 Zeros of a Holomorphic Function

Another thing we want to study is the local behavior of holomorphic functions.

Take $f: U \to \mathbb{R}$ holomorphic, $\alpha \in U$, and some $D(\alpha, r) \subset U$. Then

$$f(z) = \sum_{n=0}^{\infty} a_n (z - \alpha)^n.$$

In particular,

$$f(z) - f(\alpha) = a_1(z - \alpha) + a_2(z - \alpha)^2 + \dots + a_n(z - \alpha)^n + \dots$$

Case 1: $a_j = 0 \forall j = 1, 2, \dots$ Then f(z) is a constant, and is equal to $f(\alpha)$.

Case 2: At least one of the a_j nonzero for some j; WLOG assume $a_1 = \cdots = a_{n-1} = 0$, $a_n \neq 0$ (where n could be 1). Then

$$f(z) - f(\alpha) = a_n(z - \alpha)^n + a_{n+1}(z - \alpha)^{n+1} + \dots = (z - \alpha)^n(a_n + a_{n+1}(z - \alpha) + \dots).$$

The inside is now a power series, and it can be shown that this series converges on $D(\alpha, r)$. Then, say

$$(z-\alpha)^n(a_n+a_{n+1}(z-\alpha)+\cdots)=(z-\alpha)^ng(z).$$

I.e. define

$$g(z) = a_n + a_{n+1}(z - \alpha) + \cdots$$

and g(z) will be holomorphic on $D(\alpha, r)$, and $g(\alpha) = a_n \neq 0$.

This is the (local) factorization property. Either $f(z) = f(\alpha)$ near $z = \alpha$, or $f(z) - f(\alpha) = (z - \alpha)^n g(z)$, where $g(\alpha) \neq 0 \iff f^{(n)}(\alpha) \neq 0$.

Theorem 2. Let $U \subset \mathbb{R}$ be open, connected. Take $z_n \to z_0 \in U$, $z_n \neq z_0$. Suppose $f: U \to \mathbb{R}$ is holomorphic and $f(z_n) = 0$ for all n. Then f(z) = 0 for $z \in U$. (i.e. the zeros of a holomorphic function cannot accumulate at a point.)

Proof. First, we show that there is a $D(z_0,r) \subset U$ such that

$$f|_{D(z_0,r)} = 0$$

Suppose for contradiction this is not true. Note in particular that $f(z_0) = \lim_{n\to\infty} f(z_n) = 0$, since f is continuous. Then

$$f(z) - f(z_0) = (z - \alpha)^n g(z)$$

for some holomorphic function g(z) on $D(z_0, r)$, where $g(z_0) \neq 0$ But then

$$f(z_i) = (z_i - z_0)^n g(z_i) = 0$$

for each i. But $z_i - z_0 \neq 0$, so $g(z_i) = 0$ for all i. Then $g(z_0) = \lim_{i \to \infty} g(z_i) = 0$, which is a contradiction. Thus $f^{(k)}(z_0) = 0 \forall k$. Now we let

$$\Sigma = \{ p \in U : f^{(k)}(p) = 0 \forall k \}.$$

If $\Sigma = U$ we are done.

Claims:

- Σ is closed in U.
- Σ is open in U.

Note that Σ is closed, because it is the intersection of sets $E_k = \{z \in U : f^{(k)}(z) = 0\}$, each of which is closed

 Σ is open because of the previous property? (Not fully fleshed out, will cover next class?)