

Mecânica e Campo Eletromagnético

Aula 1

• Apresentação da UC

Isabel Malaquias imalaquias@ua.pt Gab. 13.3.16

On White II, Wassily Kandinsky 1923

MCE_IM_2024-2025

Equipa Docente

- **Isabel Malaquias** (T1) - coordenadora imalaquias@ua.pt, <u>Gabinete: 13.3.16</u>

- **Armando Lourenço** (T2, TP3, PL3, PL4, PL5, PL6) *alourenco@ua.pt*, <u>Gabinete: 13.2.14</u>

- António Cunha (TP1, TP2) antonio.cunha@ua.pt, Gabinete: 13.2.8

- Sandra Correia (PL1, PL2) sandracorreia@ua.pt, Sala atendimento Física, Complexo Pedagógico

MCE_IM_2024-2025

Tipologia de aulas

G.1 Aulas Teóricas: T T – 2ª e 3ª feiras

G.2 Aulas Práticas: TP e PL TP - 5ª feira e PL - 5ª e 6ª feiras

<u>Aulas Práticas</u>: T1.1 – Movimento de Projéteis; T2.1 – Bobinas de Helmholtz <u>TP</u>- Aulas teórico-práticas: resolução dos problemas TP designados por P1-P6

Aviso - Semana 16 a 20 setembro

As aulas de quinta e sexta feira desta semana decorrerão no laboratório 13.2.23, situado no Departamento de Física

MCE_IM_2024-2025

3

Capítulo 1. Fundamentos de Mecânica Clássica

1.1 Cinemática da partícula

Posição e trajetória. Deslocamento e distância. Velocidade instantânea e média. Aceleração instantânea e média. Aplicações 1-D: queda livre. Aplicações 2-D: projétil e movimento circular. Aplicações 3-D: movimento curvilíneo geral.

1.2 Dinâmica da partícula

Conceito de força. Leis de Newton. Forças de contacto e ligação. Tensões e outras ligações. Força de atrito. Força elástica.

Conceito de força. Leis de Newton. Forças de contacto e ligação. Tensões e outras ligações. Força de atrito. Força elástica.

1.3. Trabalho e Energia

Trabalho realizado por uma força constante e variável. Energia cinética e teorema do trabalho. Potência. Forças conservativas e forças não conservativas. Energia potencial. Conservação da energia.

1.4 Dinâmica de um sistema de partículas

Momento linear do sistema. Conservação do Momento linear. Centro de massa. Colisões. Cinemática e energia cinética de rotação. Momento de inércia. Momento de uma força. Dinâmica de rotação. Momento angular.

Capítulo 2: Sistemas oscilatórios

Oscilador harmónico simples. Oscilador harmónico amortecido. Oscilador harmónico forçado: Ressonância. Oscilações acopladas.

MCE_IM_2024-2025

4

Capítulo 3: Campos elétrico e magnético

3.1 Campo elétrico

Propriedades das cargas elétricas. Isoladores e condutores. Lei de Coulomb. Campo elétrico.

3.2 Lei de Gauss

Lei de Gauss. Aplicações da Lei de Gauss. Condutores em equilíbrio eletrostático.

3.3 Potencial elétrico

Diferença de potencial. Potencial elétrico. Energia potencial. Cálculo do campo elétrico, a partir do potencial elétrico.

3.4 Corrente elétrica e resistência

Corrente elétrica. Resistência e a Lei de Ohm. Energia e potência elétricas. Combinação de resistências. Leis de Kirchhoff.

3.5 Capacidade e condensadores

Capacidade de um condensador. Combinação de condensadores. Energia armazenada num condensador.

3.6 Campo magnético

Campo magnético. Força magnética. Lei de Biot-Savart. Lei de Ampère.

3.7 Indução eletromagnética

Lei de Faraday. Lei de Lenz. Auto-indutância. Indutância mútua.

3.8 Equações de Maxwell

Conceitos gerais sobre as equações de Maxwell.

MCE_IM_2024-2025

5

C.2 – COMPONENTE PRÁTICA

Prática laboratorial (PL) Trabalhos práticos:

Série 1. Mecânica (3 aulas)

1.1. Movimento de projéteis

Série 2. Campo eletromagnético (4 aulas)

2.1. Lei da indução de Faraday

C.3 – BIBLIOGRAFIA

- Dossier pedagógico da Unidade Curricular.
- Apontamentos on-line da Unidade Curricular (http://elearning.ua.pt/) e referências incluídas.
- R.A. Serway, *Physics for Scientists and Engineers with Modern Physics*, Saunders Golden Sunburst Series.
- P.A. Tipler e G. Mosca, *Física*, Vol. I, 5ª ed, Livros técnicos e Científicos Editora, S.A, Rio de Janeiro, 2006.
- Alonso & Finn, *Física um curso universitário*, Vol. I e II, Edgard Bluecher.
- C. Kittel et al., Curso de Física de Berkeley: Mecânica, Vol. 1, Edgard Bluecher.
- H.J. Pain, The Physics of Vibrations and Waves, Ed. Wiley.
- R. Resnick e D. Halliday, *Física*, 4ª ed, Livros Técnicos e Científicos Editora.
- R. Kip, Fundamentals of Electricity and Magnetism, McGraw Hill.

MCE_IM_2024-2025

6

E. AVALIAÇÃO

N_{FINAL} = 30% Nota PL +70% Nota TP

A avaliação pré-definida é a AVALIAÇÃO CONTÍNUA

E.1 – COMPONENTE TEÓRICA/TEÓRICO-PRÁTICA (T/TP)

ACT1+ ACT2+ ACT3 - três momentos de avaliação individual - duração de 15 min e peso relativo total de 30%, (3×10%) – 7 | 8 out; 28 | 29 out; 25 | 26 nov _ AulaTeórica

Teste Final (70%), a realizar no período de exames, no dia do Exame Final – 6 janeiro 2025, 10h

EXAME DE RECURSO - 22 janeiro 2025, 10h

E.2 – COMPONENTE PRÁTICA LABORATORIAL (PL)

Se for por AVALIAÇÃO FINAL (peso de 100%) <u>deverão</u> inscrever-se até ao dia

30 setembro 2024

Exame Final
- 6 jan25, 10h
Exame de Recurso
- 22 jan25, 10h

Parâmetros de avaliação	Valoração (%)
preparação do trabalho	25
desempenho laboratorial	25
relatório sumário/	50
apresentação oral*	

*Trabalho 2.1

MCE_IM_2024-2025

-

QUADRO – RESUMO

Avaliação pré-definida - Avaliação Contínua NFINAL = 30% Nota PL +70% Nota T

- o Componente Teórica / Teórico-Prática (T/TP) _ 70%
 - 3 momentos de avaliação (ACT1, ACT2 e ACT3) _ 30% (3x10%)
 - Teste Final (TF) _ 70%
- o Componente prática-laboratorial (PL) _ 30%
 - Trabalho 1.1 (T1.1) _40%
 - Trabalho 2.1 + apresentação oral (T2.1) _60%

Cálculo N_{FINAL} = 0,30 (0,40 T1.1 + 0,60 T2.1) + 0,70 (0,30 ACTi + 0,70TF)

MCE_IM_2024-2025