ESMA 5015: Examen 2

Due on Abril 10, 2025

Damaris Santana

Alejandro Ouslan

Contents

1	Acc	cept-Reject	;
	1.1		
	1.2	$\alpha = \alpha$	
	1.3	Para $a = \lfloor \alpha \rfloor$, encuentre el valor optimo de b	4
2	Imp	plementación del algoritmo	4
	2.1	Describa un algoritmo Accept-Reject para generar una variable aleatoria con distribución	
		Gamma(3/2,1)	2
	2.2	Algoritmo en Python	4
	2.3	Trafique el histograma de la distribución obtenida sobreponiendo la distribución deseada	4
	2.4	Estime $E[X^2]$ y construya la gráfica de la convergencia de los running means	4
3	Imp	portance Sampling	4
	3.1	Estimador importance Sampling	4
		3.1.1 $Cauchy(0,1)$	4
		3.1.2 $Normal(0, \frac{v}{v-2})$	2
		3.1.3 $Exponencial(\lambda = 1)$	2
	3.2	Estimador Monte Carlo	4
		$3.2.1 Cauchy(0,1) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	ţ
		$3.2.2 Normal(0, \frac{v}{v-2}) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	ļ
		3.2.3 $Exponencial(\lambda = 1)$!
	3.3	Implementacion	1
		Craftees	٠

1 Accept-Reject

Suponga que desea general variables aleatorias de una distribución $Gamma(\alpha, \beta)$ donde α no es necesariamente un entero. Decide usar el algoritmo **Accept-Reject** con la función candidata Gamma(a, b).

1.1 Por que es necesario que $a < \alpha$ y $b > \beta$

Esto es para asegurar un buen candidato que se asurque lo mas posible a la función objetivo, esto es con el propósito de hacer el algoritmo mas eficiente.

1.2 Para $a = \lfloor \alpha \rfloor$, demuestre que M ocurre en $x = \frac{\alpha - \lfloor \alpha \rfloor}{\frac{1}{\beta} - \frac{1}{h}}$

$$\begin{split} x &= \sup \frac{f(x)}{g(x)} \\ &= \sup \frac{Gamma(\alpha,\beta)}{Gamma(a,b)} \\ &= \sup \frac{\frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-\frac{x}{\beta}}}{\frac{1}{\Gamma(a)b^{a}}x^{a-1}e^{-\frac{x}{b}}} \\ &= \left(\frac{\frac{1}{\Gamma(\alpha)\beta^{\alpha}}}{\frac{1}{\Gamma(a)b^{a}}} \cdot \frac{x^{\alpha-1}}{x^{a-1}} \cdot \frac{e^{-\frac{x}{\beta}}}{e^{-\frac{x}{b}}}\right) \frac{d}{dx} \\ &= \left(x^{\alpha-a} \cdot e^{\frac{x}{b} - \frac{x}{\beta}}\right) \frac{d}{dx} \\ &= \left(x^{\alpha-1}e^{\frac{x}{b} - \frac{x}{\beta}}\right) \left(\left[\frac{1}{\beta} - \frac{1}{\beta}\right] + (\alpha - a)x^{-1}\right) = 0 \\ &= \left[\frac{1}{\beta} - \frac{1}{\beta}\right] + (\alpha - a)x^{-1} = 0 \\ &= \left[\frac{\alpha - a}{\frac{1}{\beta} - \frac{1}{b}}\right]_{a = \lfloor \alpha \rfloor} \\ &= \frac{\alpha - \lfloor \alpha \rfloor}{\frac{1}{\beta} - \frac{1}{b}} \end{split}$$

1.3 Para $a = |\alpha|$, encuentre el valor optimo de b

2 Implementación del algoritmo

- 2.1 Describa un algoritmo Accept-Reject para generar una variable aleatoria con distribución Gamma(3/2, 1)
- 2.2 Algoritmo en Python
- 2.3 Trafique el histograma de la distribución obtenida sobreponiendo la distribución deseada
- 2.4 Estime $E[X^2]$ y construya la gráfica de la convergencia de los running means.

3 Importance Sampling

```
title

def main(x):
    lst = [x + i for i in range(3)]
    return lst

if __name__ == "__main__":
    main()
```

Usando Importance Sampling estime $E_f\left[\frac{X^5}{1+(X-3)^2}I[X\geq 0]\right]$, donde f es la distribución t con v=12 Utilice las siguientes g:

- 1. Cauchy(0,1)
- 2. $Normal(0, \frac{v}{v-2})$
- 3. $Exponencial(\lambda = 1)$

3.1 Estimador importance Sampling

Para cada una de estas distribuciones presente el estimador que corresponde a la summatoria definida por el metodo de **Importance Sampling** y que converge al valor esperado de interes

- **3.1.1** Cauchy(0,1)
- **3.1.2** $Normal(0, \frac{v}{v-2})$
- **3.1.3** Exponencial($\lambda = 1$)

3.2 Estimador Monte Carlo

Para cada uno presente el estimador que corresponde a la sumatoria definida por el metodo de Integracion Monte Carlos y que converge al valor esperado de interes.

- **3.2.1** Cauchy(0,1)
- **3.2.2** $Normal(0, \frac{v}{v-2})$
- **3.2.3** Exponencial $(\lambda = 1)$

3.3 Implementacion

3.4 Graficas

Construya un asola graica y presente la convergencia de los running menas para los cuatro estimadores. Compare la varianza empirica de los cuatro estimadores