

What do we care?

• Regular Performance of Algorithms

- Accuracy

- Scope

- Efficiency

• Which ones we care?

1. Accuracy

2. Efficiency

? Fitting Accuracy, or
? Prediction Accuracy
3. Scope

3 4 5

The test set method

1. Randomly choose 30% of the data to be in a test set
2. The remainder is a training set
3. Perform your regression on the training set
4. Estimate your future performance with the test set

(Quadratic regression example)

Mean Squared Error = 0.9

6 7

9 10 11

15 16 17

21 22 23

24 25 26

Which kind of Cross Validation		
	Downside	Upside
Test-set	Variance: unreliable estimate of future performance	Cheap
Leave-one- out	Expensive. Has some weird behavior	Doesn't waste data
10-fold	Wastes 10% of the data. 10 times more expensive than test set	Only wastes 10%. Only 10 time more expensive instead of R times.
3-fold	Wastier than 10-fold. Expensivier than test set	Slightly better than test-set

27 28 29

5

Cross-validation for classification • Instead of computing the mean squared errors (MSE) on a test set, you should compute various measurements ... - Error rate (or its dual part Accuracy): • The total number of misclassifications on a test-TULIP.

Evaluation and performance Confusion Matrix Accuracy · Model Comparison TULIP.

33

Evaluation and performance • How well is your classification algorithm? - Focus on the predictive capability of a model, rather than how fast it takes to classify or build models, scalability, etc. Confusion matrix - Detail classification result for each class. Accuracy - How well we can predict for each class TULIP. 34

DEAKIN Worldly Evaluation • Take 'Yes' as the positive class (class of interest) Classified As → B=No A=Yes B=No Predicted class a: TP (true positive) b: FN (false negative) d: TN (true negative TULIP.

34 35

40 41

45 46 47

