Probabilidad y Estadística

El propósito de este laboratorio es familiarizarse con conceptos fundamentales de probabilidad y estadística, a través de problemas prácticos relacionados con los subtemas estudiados.

tendencia central

Nombre	Edad (años)	Área de trabajo
Ana	25	Ventas
Luis	30	Administración
Marta	40	Producción
Carlos	35	Ventas
Elena	28	Recursos Humanos
Juan	50	Producción
Sofía	45	Administración
Pedro	38	Ventas
Daniel	33	Producción
Laura	27	Recursos Humanos

1. Clasifique las variables en cualitativas o cuantitativas.

Las variables cualitativas son el Nombre y el Área de trabajo.

Las variable cuantitativa es la Edad.

2. Determine la media, mediana y moda de la variable "Edad".

La media es
$$\bar{x} = \frac{25+30+40+35+28+50+45+38+33+27}{10} = \frac{25+30+40+35+28+50+45+38+33+27}{10}$$

La mediana es $\tilde{x} = 34$, ya que esta entre 33 y

El conjunto de datos es amodal, es decir, la moda es todo el conjunto ya que ningun dato se repite.

3. Interprete los resultados obtenidos.

Los resultados de la media y mediana son cercanos, lo que nos indica que la distribucion de los datos no se ve afectada por valores extremos en la edad.

2. Medidas de dispersión

$$X = \{70, 85, 90, 95, 88, 92, 75, 80\}$$

1. Calcule la varianza desviación estándar de los datos.

$$\sigma^2 = \frac{1}{10} \sum_{i=1}^{10} (x_i - 35.1)^2 = 66.23$$

$$\sigma = \sqrt{66.23} = 8.13$$

2. Interprete la dispersión de los datos.

Los datos tienen una dispersión moderada alrededor de la media, por lo que la mayoría de los datos están cerca del promedio.

Tipos de datos y Medidas de 3. Probabilidades y Teorema de Bayes

Si se elige un empleado al azar y se sabe que tiene conocimientos de IA, ¿cuál es la probabilidad de que sea programador?

La probabilidad es
$$P(P|IA) = \frac{P(IA|P)*P(P)}{P(IA)} = \frac{0.7*0.6}{(0.6)(0.7)+(0.4)(0.3)} = \frac{0.42}{0.54} = 77.78\%$$

4. Distribuciones de probabilidad

1. Calcule la probabilidad de que un lote tenga exactamente 2 defectos.

La probabilidad es
$$P(2) = \frac{e^{-3}3^2}{2!} = 22.41\%$$

2. Calcule la probabilidad de que un lote tenga al menos 1 defecto.

La probabilidad es
$$P(x \ge 1) = 1 - P(x = 0) = 1 - \frac{e^{-3}3^0}{0!} = 1 - e^{-3} = 95.02\%$$

Funciones de densidad y distribución acumulativa

1. Determine la probabilidad de que X tome un valor menor que 45.

La probabilidad es de un 30.85%

2. Determine la probabilidad de que X esté entre 40 y 60.

La probabilidad es de un 68.26%

3. Use la función de distribución acumulativa para verificar sus respuestas.

(a)
$$P(X < 45\%)$$

 $P(X < 45) = P(Z < \frac{45-50}{10}) = P(Z < -0.5)$
 $= P(Z > 0.5) = 0.3085$

(b)
$$P(40\% < X < 60\%)$$

 $P(40 < X < 60) = P(\frac{40-60}{10} < Z < \frac{60-50}{10})$
 $= P(-1 < Z < 1) = 1 - 2*P(Z > 1) = 1 - 2(0.1587) = 1 - 0.3174 = 0.6826$

6. Probabilidad condicional

1. ¿Cuál es la probabilidad de obtener un número par en el segundo lanzamiento, dado que en el primero salió un número impar?

La probabilidad es
$$P(P \setminus I) = \frac{P(P \cap I)}{P(I)} = \frac{P(P)P(I)}{P(I)} = P(P) = 50\%$$

2. Interprete los resultados obtenidos.

El primer lanzamiento no afecto la probabilidad de que se obtenga un par en el segundo lanzamiento, debido a que estos dos eventos son independientes.

7. Distribución binomial

- 1. ¿Cuál es la probabilidad de que el estudiante acierte exactamente 3 respuestas? La probabilidad es $P(x=3)=\binom{5}{3}(\frac{1}{4})^3(\frac{3}{4})^{5-3}=\frac{5!}{3!2!}\frac{3^2}{4^5}=\frac{90}{1024}=8.79\%$
- 2. ¿Cuál es la probabilidad de que acierte al menos una respuesta?

La probabilidad es
$$P(x \ge 1) = 1 - P(x = 0) = 1 - \binom{5}{0} (\frac{1}{4})^0 (\frac{3}{4})^{5-0} = 1 - \frac{5!}{5!0!} \frac{3^5}{4^5} = 1 - \frac{243}{1024} = 76.27\%$$

8. Regla de Laplace

1. Determine la probabilidad de que la bola extraída sea roja.

La probabilidad es de $\frac{5}{12} = 41.67\%$

2. Si se extraen dos bolas sin reemplazo, ¿cuál es la probabilidad de que ambas sean azules?

La probabilidad es de $(\frac{7}{12})(\frac{6}{11})=\frac{7}{22}=31.82\%$

9. Esperanza matemática

1. Calcule la esperanza matemática de la ganancia del jugador.

La esperanza matemática de la ganancia es E(x) = (1000 - 10)(0.01) + (0 - 10)(0.99) = (990)(0.01) - 9.9 = 9.9 - 9.9 = 0.

2. Interprete el resultado obtenido.

El producto de la ganancia neta por su probabilidad (990*0.01) y el producto de la perdidad neta por su probabilidad (10*.99) es lo mismo, lo que nos dice que estas posibilidades se contrarrestan y el jugador no gana ni pierde dinero a largo plazo.

10. Ley de los grandes números

1. ¿Cuál es el valor esperado de la frecuencia relativa de obtener cara?

El valor esperado es $\frac{1}{2} = 0.5$

2. ¿Cómo se relaciona esto con la Ley de los Grandes Números?

Debido a que se lanza la moneda justa 1000 veces, podemos esperar que la frecuencia en la que se obtuvo cara se acerque bastante al valor esperado de 0.5