Problème de soutien Enoncé

DÉCOMPOSITION DE DUNFORD

Dans ce problème, on considère une matrice A de $M_n(\mathbb{C})$ et on note f l'endomorphisme de \mathbb{C}^n canoniquement associé, c'est à dire l'endomorphisme dont la matrice dans la base canonique de \mathbb{C}^n est A. Le polynôme caractéristique de A est noté P et les valeurs propres complexes distinctes de A sont notées $\lambda_1, \lambda_2, \dots, \lambda_r$. Pour tout $i \in [1, r]$, on note:

- α_i est l'ordre de multiplicité de la valeur propre λ_i , c'est à dire l'ordre de multiplicité de la racine λ_i du polynôme P.
- P_i le polynôme défini par $P_i(X) = (X \lambda_i)^{\alpha_i}$.
- F_i le sous espace vectoriel de \mathbb{C}^n défini par $F_i = \operatorname{Ker}((f_i \lambda_i \operatorname{Id}_{\mathbb{C}^n})^{\alpha_i})$.
- f_i l'endomorphisme de F_i obtenu par restriction de f à F_i

Partie I: Diagonalisation simultanée

Soit u et v deux endomorphismes de \mathbb{C}^n . On suppose que u et v sont diagonalisables et ils commutent

- 1. Justifier que les sous-espaces propres de u sont stables par v
- 2. Montrer que chaque sous-espace propre de E_{λ} de u admet une base formée de vecteurs propres de v
- 3. Dénduire que u et v sont digonalisables dans une même base

On dit qu'ils sont simultanément diagonalisables

Partie II: Décomposition de Dunford

4. Justifier que l'espace vectoriel \mathbb{C}^n est somme directe des espaces F_i :

$$\mathbb{C}^n = \bigoplus_{i=1}^r F_i$$

5. En considérant une base de \mathbb{C}^n adaptée à la somme directe précédente , montrer que pour tout $i \in [1, r]$, le polynôme caractéristique de f_i est P_i .

On pourra d'abord établir que P_i est un polynôme annulateur de f_i

6. Montrer qu'il existe une matrice inversible $P \in M_n(\mathbb{C})$ telle que $A' = P^{-1}AP$ soit une matrice définie par bloc de la forme suivante:

$$A' = \begin{pmatrix} \lambda_1 I_{\alpha_1} + N_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_r I_{\alpha_r} + N_r \end{pmatrix}$$

- 7. En déduire que la matrice A s'écrit sous la forme A = D + N où D est une matrice diagonalisable et N est une matrice nilpotente de $M_n(\mathbb{C})$ qui commutent.
- 8. Soient D' une matrice diagonalisable et N' une matrice nilpotente de $M_n(\mathbb{C})$ telles que A = D' + N' et D'N' = N'D'. Montrer que D = D' et N = N'
- 9. Calculer la décomposition de Dunford de $A=\begin{pmatrix} 3 & -1 & 1 \\ 2 & 0 & 1 \\ 1 & -1 & 2 \end{pmatrix}$

Problème de soutien Enoncé

DÉCOMPOSITION DE DUNFORD

Partie III: Commutation et conjugaison

Pour toute matrice B et toute matrice inversible P de $M_n(\mathbb{C})$, on note comm $_B$ et conj $_P$ les endomorphismes de $M_n(\mathbb{C})$ définis par :

$$\forall X \in M_n(\mathbb{C}), \quad \begin{cases} \operatorname{comm}_B(X) = BX - XB \\ \operatorname{conj}_P(X) = PXP^{-1} \end{cases}$$

Le but de cette partie est de démontrer que A est diagonalisable si et seulement si comm_A est diagonalisable.

- 10. Soit P une matrice inversible de $M_n(\mathbb{C})$. Calculer $\operatorname{conj}_{P^{-1}} \circ \operatorname{comm}_A \circ \operatorname{conj}_P$. Pour tous $i,j \in [\![1,n]\!]$, on note $E_{i,j}$ la matrice de $M_n(\mathbb{C})$ dont tous les coefficients sont nuls, sauf celui situé à l'intersection de la i-ème ligne et de la j-ème colonne qui vaut 1.
- 11. Si A est une matrice diagonale, montrer que pour tous $i, j \in [1, n]$, comm $_A$ admet $E_{i,j}$ comme vecteur propre. Déterminer l'ensemble des valeurs propres de comm $_A$.
- 12. En déduire que si A est diagonalisable, comm $_A$ l'est aussi.
- 13. Montrer que si A est nilpotente, comm $_A$ l'est également, c'est-à-dire qu'il existe un entier k > 0 pour lequel $(\text{comm}_A)^k$ est l'endomorphisme nul de $M_n(\mathbb{C})$.
- 14. Montrer que si A est nilpotente, et si comm_A est l'endomorphisme nul, alors A est la matrice nulle. D'après la partie I, l'endomorphisme comm_A admet une décomposition de Dunford de la forme $\operatorname{comm}_A = d + n$, où les endomorphismes diagonalisable d et nilpotent n commutent: dn = nd.
- 15. Déterminer la décomposition de Dunford de $comm_A$ à l'aide de celle de A et conclure.

DÉCOMPOSITION DE DUNFORD

Partie I: Diagonalisation simultanée

- 1. u et v commutent, alors les sous-espaces propres de l'un sont stables par l'autre
- 2. L'endomorphisme induit d'un endomorphisme diagonalisable est diagonalisable
- 3. Posons Sp $(u) = \{\lambda_1, \dots, \lambda_p\}$, m_i l'ordre de multiplicité de λ_i , $E_i = \operatorname{Ker}(u \lambda_i \operatorname{Id}_E)$, \mathcal{B}_i base de E_i et $\mathcal{B} = \bigcup_{i=1}^p \mathcal{B}_i$ base adaptée à la décomposition $E = \bigoplus_{i=1}^p E_i$. Alors

$$\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} \boxed{\lambda_1 I_{m_1}} & & & & & & \\ & \boxed{\lambda_2 I_{m_2}} & & & & \\ & & & \ddots & & \\ & & & \boxed{\lambda_p I_{m_p}} \end{pmatrix}$$

Or pour tout $i \in [1, p]$, l'endomorphisme v_{λ_i} est diagonalisable, donc il existe une base C_i de E_i pour laquelle $D_i = \operatorname{Mat}_{C_i}(v_{\lambda_i})$ est diagonale. Soit finalement $C = \bigcup_{i=1}^p C_i$, alors $\operatorname{Mat}_{C}(u) = \operatorname{Mat}_{\mathcal{B}}(u)$ et

$$\operatorname{Mat}_{\mathcal{C}}(v) = \begin{pmatrix} \boxed{D_1} & & & & (0) \\ & \boxed{D_2} & & & \\ & & \ddots & & \\ & & & \boxed{D_p} \end{pmatrix}$$

ce qui montre que \mathcal{C} est une base de diagonalisation de u et v.

Partie II: Décomposition de Dunford

4. Comme polynôme de $\mathbb{C}[X]$, le polynôme P est scindé, donc s'écrit par définition de l'ordre de multiplicité des racines d'un polynôme : $P = \prod_{i=1}^r (\lambda_i - X)^{\alpha_i}$. Le polynôme caractéristique de f est P celui de A, matrice de f dans la base canonique de \mathbb{C}^n . Donc d'après le théorème de Cayley-Hamilton, P est un polynôme annulateur de f et donc, via le lemme des noyaux, comme les polynômes $(\lambda_i - X)^{\alpha_i}$ sont deux à deux premiers entre-eux, on a

$$\mathbb{C}^n = \operatorname{Ker} P(f) = \bigoplus_{i=1}^r \operatorname{Ker} \left(f - \lambda_i \operatorname{id}_{\mathbb{C}^n} \right)^{\alpha_i} = \bigoplus_{i=1}^r F_i$$

5. Pour tout i de 1 à r, comme f et $P_i(f)$ commutent, le noyau F_i de $P_i(f)$ reste stable par l'endomorphisme f et on peut bien considérer l'endomorphisme f_i induit par f sur F_i , ainsi $P_i(f_i)$ est l'endomorphisme induit par $P_i(f)$ sur $F_i = \text{Ker}P_i(f)$ donc $P_i(f_i)$ est l'endomorphisme nul i.e. P_i est un polynôme annulateur de f_i . Toute valeur propre complexe de f_i est donc racine de P_i ainsi la seule valeur propre possible de f_i est λ_i , or les racines complexes du polynôme caractéristique χ_{f_i} de f_i sont exactement les valeurs propres complexes de f_i . Ainsi le polynôme caractéristique de f_i est du type $\chi_{f_i} = (X - \lambda_i)^{\nu_i}$.

Soit \mathcal{B} une base de \mathbb{C}^n , adaptée à la décomposition de \mathbb{C}^n en la somme directe de la question 4, Comme f laisse stable chacun des F_i , la matrice de f dans la base \mathcal{B} , concaténation des bases \mathcal{B}_i de F_i , est diagonale par blocs avec

$$M_{\mathcal{B}}(f) = \begin{pmatrix} M_{\mathcal{B}_1}(f_1) & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & M_{\mathcal{B}_r}(f_r) \end{pmatrix}$$

Ainsi son polynôme caractéristique vaut $\prod_{i=1}^r \chi_{f_i} = \prod_{i=1}^r (X - \lambda_i)^{\nu_i}$ et aussi $P = \prod_{i=1}^r (X - \lambda_i)^{\alpha_i}$ par hypothèse; donc par unicité d'une décomposition en éléments irréductibles, on obtient $\alpha_i = \nu_i$ pour tout i. Ainsi pour tout i, le polynôme caractéristique de f_i est $(X - \lambda_i)^{\alpha_i} = P_i$.

DÉCOMPOSITION DE DUNFORD

6. Soit P la matrice de passage de la base canonique à une base \mathcal{B} fixée de \mathbb{C}^n , adaptée à la décomposition $\mathbb{C}^n = \bigoplus_{i=1}^r F_i$; la matrice P est bien une matrice inversible de $M_n(\mathbb{C})$. Comme A est la matrice de l'endomorphimse f dans la base canonique de \mathbb{C}^n , la formule de changements de bases assure que $A' = P^{-1}AP$ est la matrice de

Avec les notations de la question 5, pour tout i, notons N_i la matrice de $f_i - \lambda_i \mathrm{id}_{F_i}$ dans la base \mathcal{B}_i de F_i . Toujours d'après la question 5, le polynôme $P_i = (X - \lambda_i)^{\alpha_i}$ est annulateur de f_i donc $(f_i - \lambda_i \mathrm{id}_{F_i})^{\alpha_i}$ est l'endomorphisme nul donc sa matrice dans la base \mathcal{B}_i , vaut $0 = N_i^{\alpha_i}$ et N_i est bien nilpotente. Finalement, on a bien (cf question 5),

$$M_{\mathcal{B}}(f) = A' = P^{-1}AP = \begin{pmatrix} M_{\mathcal{B}_1}(f_1) & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & M_{\mathcal{B}_r}(f_r) \end{pmatrix}$$

$$= \begin{pmatrix} \lambda_1 I_{\alpha_1} + N_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_r I_{\alpha_r} + N_r \end{pmatrix}$$

7. Soit D' et N' les matrices diagonales par blocs suivantes

$$D' = \begin{pmatrix} \lambda_1 I_{\alpha_1} & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_r I_{\alpha_r} \end{pmatrix} \quad \text{et} \quad N' = \begin{pmatrix} N_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & N_r \end{pmatrix}$$

Les matrices D' et N' commutent (via un produit par blocs), la matrice N' est nilpotente puisque $N'^{\alpha} = 0$ avec $\alpha = \max(\alpha_i \mid i = 1 \dots r)$, et A' = D' + N'. Ainsi, on obtient par définition de $A' = P^{-1}AP$, A = D + N avec:

- $D = P^{-1}D'P$ diagonalisable car semblable à D' diagonale,
- $N = P^{-1}N'P$ nilpotente car

f dans la base \mathcal{B} .

$$N^{\alpha} = (P^{-1}N'P)^{\alpha} = P^{-1}N'P \cdots P^{-1}N'P = P^{-1}(N')^{\alpha}P = 0$$

• N et D commutent puisque comme N' et D' commutent, on a:

$$ND = P^{-1}N'PP^{-1}D'P = P^{-1}N'D'P = P^{-1}D'N'P = P^{-1}D'PP^{-1}N'P = DN$$

Remarque : on a traduit dans la base canonique, les propriétés observées sur f dans une base adaptée.

- 8. Supposons l'existence d'un autre couple (D', N') répondant au problème. On a alors D' D = N N'. Comme D' commute avec N', il commute avec A, donc avec tout polynôme en A. En particulier D' commute avec D. Ainsi D et D' sont codiagonalisables et donc D' D est diagonalisable. De même N commute avec N'. Il en découle que N N' est nilpotent. Le seul endomorphisme diagonalisable et nilpotent étant 0 on a D = D' et D = D'.
- 9. Calculons le polynôme caractéristique de A. Via les combinaisons $C_1 \leftarrow C_1 + C_2$ et $L_2 \leftarrow L_2 L_1$:

$$P = \begin{vmatrix} X-1 & 1 & -1 \\ -2 & X & -1 \\ -1 & 1 & X-2 \end{vmatrix} = \begin{vmatrix} X-2 & 1 & -1 \\ X-2 & X & -1 \\ 0 & 1 & X-2 \end{vmatrix}$$
$$= \begin{vmatrix} X-2 & 1 & -1 \\ 0 & X-1 & 0 \\ 0 & 1 & X-2 \end{vmatrix} = (X-2)^2(X-1)$$

Ainsi, dans cet exemple, on a r=2, avec $\lambda_1=1$, $\alpha_1=1$, $\lambda_2=2$ et $\alpha_2=2$.

DÉCOMPOSITION DE DUNFORD

En notant $(e_1; e_2; e_3)$ la base canonique de \mathbb{C}^3 , on observe $A(e_2 + e_3) = e_2 + e_3$ i.e. $b_1 = e_2 + e_3$ est un vecteur propre de f pour la valeur propre simple 1 (car 1 est racine simple de P) donc b_1 est une base de F_1 . On a aussi $A(e_1 + e_2) = 2(e_1 + e_2)$ donc $b_2 = e_1 + e_2$ est un vecteur propre de f pour la valeur propre 2. Cherchons b_3 tel que $(b_2; b_3)$ est une base de $F_2 = \text{Ker}(f - 2\text{id})^2$: nous avons

$$A - 2I = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -2 & 1 \\ 1 & -1 & 0 \end{pmatrix} \text{ donc } (A - 2I)^2 = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 1 & 0 \end{pmatrix}$$

Donc on observe que b_2 et $b_3 = e_3$ sont bien dans le noyau de $(A - 2I)^2$ et que $(b_2; b_3)$ est une famille libre, donc via la question **1**, la famille $(b_2; b_3)$ est une base de F_2 car via la question **1**, on a $F_1 \bigoplus F_2 = \mathbb{C}^3$ donc dim $F_2 = 3 - \dim F_1 = 3 - 1 = 2$. Ainsi avec les notations précédentes, en prenant $\mathcal{B} = (b_1; b_2; b_3)$, comme $e_3 = b_3, e_2 = b_1 - b_3$ et $e_1 = b_2 - b_1 + b_3$, nous avons

$$P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \ P^{-1} = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix} \text{ et } D' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix},$$

Ainsi :
$$D = P^{-1}D'P = \begin{pmatrix} -1 & 2 & 0 \\ 1 & 0 & 0 \\ 1 & -2 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 2 \end{pmatrix}$$

Donc par construction (cf question précédente), nous avons

$$D = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 2 \end{pmatrix} \text{ et } N = A - D = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Partie III: Commutation et conjugaison

10. Pour tout X de $M_n(\mathbb{C})$, on a :

$$\begin{array}{lll} (\mathrm{conj}_{P^{-1}} \circ \mathrm{comm}_A \circ \mathrm{conj}_P)(X) & = & P^{-1} \left(\mathrm{comm}_A (PXP^{-1}) \right) P \\ & = & P^{-1} (A(PXP^{-1}) - (PXP^{-1})A)P \\ & = & P^{-1}APXP^{-1}P - P^{-1}PXP^{-1}AP \\ & = & P^{-1}APX - XP^{-1}AP \end{array}$$

Ainsi $\operatorname{conj}_{P^{-1}} \circ \operatorname{comm}_A \circ \operatorname{conj}_P = \operatorname{comm}_{P^{-1}AP} = \operatorname{comm}_{\operatorname{conj}_{P^{-1}}(A)}$.

11. Soit $a_1, \ldots a_n$ les coefficients diagonaux de A, alors pour tout i et j dans $\{1, \ldots, n\}$: comm_A $(E_{i,j}) = AE_{i,j} - E_{i,j}A = a_i E_{i,j} - a_j E_{i,j} = (a_i - a_j) E_{i,j}$

Comme $E_{i,j}$ est non nul, on conclut que pour tout i et j de $\{1,\ldots,n\}$,

la matrice $E_{i,j}$ est vecteur propre de comm_A associé à la valeur propre $a_i - a_j$.

Comme $M_n(\mathbb{C})$ est de dimension n^2 , l'endomorphisme comm_A admet au plus n^2 vecteurs propres formant une famille libre; ici, on a trouvé n^2 vecteurs propres libres, les $E_{i,j}$, on en déduit que

le spectre de comm_A est l'ensemble des $a_i - a_j$ avec i, j décrivant $1 \dots n$.

- 12. Si A est diagonalisable, il existe P dans $GL_n(\mathbb{C})$ tel que $A' = P^{-1}AP$ est diagonale. D'après la question 11, la base canonique de $M_n(\mathbb{C})$ formée par les $E_{i,j}$ est alors une base de vecteurs propres de $\operatorname{comm}_{A'}$. Ainsi $\operatorname{comm}_{A'}$ est diagonalisable car de matrice dans la base canonique de $M_n(\mathbb{C})$ diagonale. Or d'après la question 10, $\operatorname{conj}_{P^{-1}} \circ \operatorname{comm}_A \circ \operatorname{conj}_P = \operatorname{comm}_{P^{-1}AP}$, donc conj_P et $\operatorname{conj}_{P^{-1}}$ étant inverses l'un de l'autre, on a $\operatorname{comm}_{A'} = (\operatorname{conj}_P)^{-1} \circ \operatorname{comm}_A \circ \operatorname{conj}_P$. On vient donc de prouver, en notant Q la matrice conj_P dans la base canonique C de $M_n(\mathbb{R})$ la relation $\operatorname{Mat}_C(\operatorname{comm}_{A'}) = Q^{-1}\operatorname{Mat}_C(\operatorname{comm}_A)Q$. Ainsi $\operatorname{Mat}_C(\operatorname{comm}_{A'})$ et $\operatorname{Mat}_C(\operatorname{comm}_A)$ sont semblables et $\operatorname{comm} \operatorname{Mat}_C(\operatorname{comm}_{A'})$ est diagonale, l'endomorphisme comm_A est diagonalisable.
- 13. Soit A fixé dans $M_n(\mathbb{C})$, calculons pour tout X de $M_n(\mathbb{C})$: $(\text{comm}_A)^2(X) = A(\text{comm}_A(X)) (\text{comm}_A(X))A$

$$(\text{comm}_{A})^{2}(X) = A(\text{comm}_{A}(X)) - (\text{comm}_{A}(X))A$$

$$= A(AX - XA) - (AX - XA)A = A^{2}X - 2AXA + XA^{2}$$

$$(\text{comm}_{A})^{3}(X) = A(A^{2}X - 2AXA + XA^{2}) - (A^{2}X - 2AXA + XA^{2})A$$

$$= A^{3}X - 2A^{2}XA + AXA^{2}) - A^{2}XA + 2AXA^{2} - XA^{3}$$

$$= A^{3}X - 3A^{2}XA + 3AXA^{2} - XA^{3}$$

DÉCOMPOSITION DE DUNFORD

Soit l'hypothèse de récurrence au rang $k: \forall X \in M_n(\mathbb{C}), (\mathrm{comm}_A)^k(X) = \sum_{s=0}^k \binom{k}{s} (-1)^s A^{k-s} X A^s$

On vient de prouver cette relation pour k=2 et k=3, et elle est vraie par définition pour k=1. Prouvons son caractère héréditaire en la supposant vraie à un rang k, alors pour tout $X \in M_n(\mathbb{C})$,

$$(\text{comm}_{A})^{k+1}(X) = A\left(\sum_{s=0}^{k} \binom{k}{s}(-1)^{s}A^{k-s}XA^{s}\right) - \left(\sum_{s=0}^{k} \binom{k}{s}(-1)^{s}A^{k-s}XA^{s}\right)A$$

$$= \sum_{s=0}^{k} \binom{k}{s}(-1)^{s}A^{k+1-s}XA^{s} + \sum_{s=0}^{k} \binom{k}{s}(-1)^{s+1}A^{k-s}XA^{s+1}$$

$$= \sum_{s=0}^{k} \binom{k}{s}(-1)^{s}A^{k+1-s}XA^{s} + \sum_{s=1}^{k+1} \binom{k}{s-1}(-1)^{s}A^{k+1-s}XA^{s}$$

$$= A^{k+1}X + \sum_{s=1}^{k} \binom{k}{s} + \binom{k}{s-1}(-1)^{s}A^{k+1-s}XA^{s} + (-1)^{k+1}XA^{k+1}$$

$$= A^{k+1}X + \sum_{s=1}^{k} \binom{k+1}{s}(-1)^{s}A^{k+1-s}XA^{s} + (-1)^{k+1}XA^{k+1}$$
via la formule du triangle de Pascal
$$= \sum_{s=0}^{k+1} \binom{k+1}{s}(-1)^{s}A^{k+1-s}XA^{s}$$

Ainsi la propriété est héréditaire, vraie au rang 1 donc par le principe de récurrence, on obtient

$$\forall X \in M_n(\mathbb{C}), \forall k \in \mathbb{N}^*, \ (\text{comm}_A)^k(X) = \sum_{s=0}^k \binom{k}{s} (-1)^s A^{k-s} X A^s$$

Ainsi si A est nilpotente, il existe un entier α avec $A^{\alpha}=0$ donc $A^{s}=0$ pour tout $s\geqslant\alpha$. Or pour tout entier s, soit $s\geqslant\alpha$ soit $s\leqslant\alpha$ et $2\alpha-s\geqslant\alpha$, donc via la formule précédente $(\mathrm{comm}_{A})^{2\alpha}=0$ et donc s is s est nilpotente alors s commanda aussi.

- 14. Si comm_A = 0 alors pour tout i, on a $AE_{i,1} = E_{i,1}A$. En notant $a_{i,j}$ le coefficient en ligne i et colonne j de A, cette relation se traduit par (en regardant la première colonne): $\forall k = 1, \ldots, n, \quad a_{k,i} = \delta_{i,k}a_{1,1}$ donc $a_{i,i} = a_{1,1}$ pour tout i et $a_{k,i} = 0$ pour $i \neq k$. Ainsi A est une matrice diagonale donc du type aI_n . Si on suppose de plus A nilpotente, il existe un entier α avec $A^{\alpha} = 0$ soit ici $a^{\alpha}I_n = 0$ d'où a = 0 et A = 0.
- 15. Soit D et N les matrices respectivement diagonalisable et nilpotente correspondant à la décomposition de Dunford de la matrice A. Alors via les questions 12 et 13, les endomorphismes comm_D et comm_N de $M_n(\mathbb{C})$ sont respectivement diagonalisable et nilpotent. Par linéarité du produit matriciel par une matrixe fixée, $\operatorname{comm}_A = \operatorname{comm}_{D+N} = \operatorname{comm}_D + \operatorname{comm}_N$. Ainsi, si comm_D et comm_N commutent alors par unicité de la décomposition de Dunford, on aura que

la décomposition de Dunford de $comm_A$ est obtenue avec les matrices $comm_D$ et $comm_N$.

Pour tout X de $M_n(\mathbb{C})$, calculons

 $\begin{array}{l} (\operatorname{comm}_D \circ \operatorname{comm}_N - \operatorname{comm}_N \circ \operatorname{comm}_D)(X) \\ &= D(NX - XN) - (NX - XN)D - (N(DX - XD) - (DX - XD)N) \\ &= DNX - DXN - NXD + XND - NDX + NXD + DXN - XDN \\ &= (DN - ND)X + X(ND - DN) = O_nX + XO_n = 0 \quad \operatorname{car} N \ \operatorname{et} D \ \operatorname{commutent} \\ \operatorname{Ainsi} \ \operatorname{comm}_D \ \operatorname{et} \ \operatorname{comm}_N \ \operatorname{commutent}, \ \operatorname{ce} \ \operatorname{qui} \ \operatorname{permet} \ \operatorname{d'obtenir} \ \operatorname{la} \ \operatorname{d\'ecomposition} \ \operatorname{voulue}. \\ \end{array}$

La question 12 assure que si A est diagonalisable alors comm_A aussi. Réciproquement supposons que comm_A est diagonalisable, alors avec les notations précédentes, comm_D et comm_N correspondantent à la décomposition de $\operatorname{Dunford}$ de comm_A , mais comm_A et O_n aussi (ces endomorphismes commutent, le premier est diagonalisable et le second nilpotent) donc par unicité d'une telle décomposition, on obtient $\operatorname{comm}_D = \operatorname{comm}_A$ et $\operatorname{comm}_N = 0$. Ainsi comme N est nilpotente, la question 14 assure N = 0 donc A = D et A est diagonalisable.

DÉCOMPOSITION DE DUNFORD

Finalement, A est diagonalisable si et seulement $comm_A$ l'est.