PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS Campus Escola Politécnica e de Artes Disciplina: Inteligência Artificial Data: 31/03/2025 Professor(a): Clarimar J. Coelho Aluno: Matrícula: Curso: CMP1110 Semestre: 1 Regressão linear Orientações gerais:

- 1- Sua avaliação consta de 1 questões, somando 3 pontos.
- 2- A confecção do trabalho é individual.
- 3- O ambiente Python deve ser usado.

Questão:	1	Total
Valor:	3	3
Pontuação:		

1 Objetivos

- 1. Desenvolver um modelo de regressão linear para o conjunto de dados de cerveja (beer_consumption.csv) para a predição do consumo em função do aumento da temperatura.
 - Utilizar técnicas de preparação de dados necessárias para a regressão linear;
 - Utilizar técnicas de visualização de dados para inspeção do conjunto de dados;
 - O cálculo dos coeficientes devem ser feitos usando o métodos dos mínimos quadrados e o método do gradiente descendente;
 - Não é permitido usar funções prontas de bibliotecas Python. O cálculo dos coeficientes devem ser implementadas usando os conhecimentos adquiridos em aula;
 - O aluno deve apresentar no relatório, a resposta para cada uma das questões a seguir.

2 Questões

- 1. (3 pontos) Para cada questão mostre os resultados obtidos e comente o resultado.
 - (a) Importar bibliotecas necessárias para a implementar os modelos;
 - (b) Leia o arquivo de dados de cerveja: beer consumption.csv;
 - (c) Primeiras observações do arquivo do beer_consumption.csv; Resultado esperado

©Clarimar Coelho Pag. 1 de 6

(d) Últimas observações do arquivo do beer_consumption.csv; Resultado esperado

(e) Ver a dimensão da base de dados: são 365 observações e 7 variáveis; Resultado esperados

```
In [4]: cerveja.shape
Out[4]: (365, 7)
```

(f) Verificar se existe valores faltantes na base de dados Resultado esperado

```
In [5]: cerveja.isna().sum()
Out[5]:
Data 0
Temperatura Media (C) 0
Temperatura Minima (C) 0
Temperatura Maxima (C) 0
Precipitacao (mm) 0
Final de Semana 0
Consumo de cerveja (litros) 0
dtype: int64
```

(g) Verificar o tipo das variáveis Resultado esperado

```
In [6]: cerveja.dtypes
Out[6]:
Data object
Temperatura Media (C) float64
Temperatura Minima (C) float64
Temperatura Maxima (C) float64
Precipitacao (mm) float64
Final de Semana int64
Consumo de cerveja (litros) float64
dtype: object
```

(h) Correlação entre as variáveis Resultado esperado

	Temperatura Media (C)	Temperatura Minima (C)	Temperatura Maxima (C)	Precipitacao (mm)	Final de Semana	Consumo de cerveja (litros)
Temperatura Media (C)	1.000000	0.862752	0.922513	0.024416	-0.050803	0.574615
Temperatura Minima (C)	0.882752	1.000000	0.872929	0.098825	-0.059534	0.392509
Temperatura Maxima (C)	0.922513	0.872929	1.000000	-0.049305	-0.040258	0.642672
Precipitacao (mm)	0.024416	0.098825	-0.049305	1.000000	0.001587	-0.193784
Final de Semana	-0.050803	-0.059534	-0.040258	0.001587	1.000000	0.505981
Consumo de cerveja (litros)	0.574615	0.392509	0.642672	-0.193784	0.505981	1.000000

(i) Tabela descritiva das variáveis (discribe) Resultado esperado

©Clarimar J. Coelho Pag. 2 de 6

(j) A maioria dos dias não são finais de semana (produzir um gráfico de barras com final de semana). Produza um gráfico para a variável Final de Semana.

Resultados esperado

(k) Gráfico das temperaturas média, mínima e máxima em graus Celsius. Produza um gráfico para as variáveis.

Resultado esperado

(l) Gráfico da precipitação diária

©Clarimar J. Coelho Pag. 3 de 6

Produzir um gráfico com a variável de precipitação.

Resultado esperado

(m) Gráfico do consumo de cerveja Produzir o gráfico da variável consumo de cerveja. Resultado esperado

(n) Gráfico de correlograma com a correlação de Pearson Resultado esperado

(o) Correlograma com a correlação de Spearman Resultado esperado

©Clarimar J. Coelho Pag. 4 de 6

(p) Boxplots: verificar se não há presença de valores extremos (outliers) Resultado esperado

(q) Histograma das variáveis. Produzir o histograma para as variáveis Temperatura Media, Temperatura Minima, Temperatura Maxima, Preciptacao e Consumo.

Resultado esperado

(r) Gráfico de dispersão entre as variáveis. Consumo de cerveja em relação as demais variáveis. Resultado esperado

©Clarimar J. Coelho
Pag. 5 de 6

- (s) Construir um modelo de regressão linear em Python
 - (a) Usando MMQ
 - (b) Gradiente descendente
 - (c) Comparar os resultados.
- (t) Calcular as métricas \mathbb{R}^2 , $\mathbb{R}^2 ajustado$, MSE, RMSE, MAE, MAPE, RMSLE.