Paying attention to Attention

Piotr Mazurek

April 15, 2020

Agenda

- Introduction to Attention
- 2 Introduction to Neural Networks
- 3 Basics of the Attention mechanism
- Oeep dive into Attention
- Attention applications

Summary

Introduction to Attention Basic intuition

that has a known grid-like topology. Examples include time-series data, which can be thought of as a 2-D grid of pixels. Convolutional networks have been tremendously successful in practical applications. The name "convolutional neural network" indicates that the network employs a mathematical operation called convolution. Convolution is a specialized kind of linear operation. Convolutional networks are simply neural networks that use convolution in place of general matrix multiplication in at least one of their layers.

In this chapter, we first describe what convolution is. Next, we explain the motivation behind using convolution in a neural network. We then describe an operation called **pooling**, which almost all convolutional networks employ. Usually, the operation used in a convolutional neural network does not correspond precisely to the definition of convolution as used in other fields, such as engineering or pure mathematics. We describe several variants on the convolution function that

Figure: We teach a neural network to focus on some part of the data¹

¹https://www.youtube.com/watch?v=W2rWgXJBZhU&t=180s

Introduction to Attention Who, where and when?

NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau Jacobs University Bremen, Germany

KyungHyun Cho Yoshua Bengio* Université de Montréal

Figure: Idea of the Attention first time mentioned (three times in the two consecutive lines, but still counts), Sept. 2014[1]

Introduction to Attention

Who, where and when?

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Figure: Attention is all You need paper, Dec. 2017[3]

Introduction to Attention Boom in Attention papers

Figure: Attention - a hot research topic

Introduction to Attention Better start paying attention now

Not All Attention Is Needed: Gated Attention Network for Sequence Data

Lanqing Xue, ¹ Xiaopeng Li, ^{2*} Nevin L. Zhang ^{1,3}

¹The Hong Kong University of Science and Technology, Hong Kong

² Amazon Web Services, WA, USA

³ HKUST-Xiaoi Joint Lab, Hong Kong

lxueaa@cse.ust.hk,xiaopel@amazon.com,lzhang@cse.ust.hk

Figure: Not All Attention Is Needed, Dec. 2019

[12]

Neural Networks - basic introduction

Figure: Not trained neural network²

²https://www.fromthegenesis.com/artificial-neural-network-part-5/ → (=) (=) (> 0) (> 8/3

Neural Networks Linear Algebra

Figure: How matrices are used to compute values in neurons ³

Neural Networks

Algebraic intuition

Figure: Linear Transformation ⁴

Mathematical Formalization Oversimplified

Neural network in general

$$f(x,\theta) = \hat{y} \tag{1}$$

where:

x: input data

Θ: model parameters

 \hat{y} : distribution of probability over set of classes

Mathematical Formalization Oversimplified

Neural network in general

$$f(x,\theta) = \hat{y} \tag{1}$$

where:

x: input data

Θ: model parameters

 \hat{y} : distribution of probability over set of classes

Example

$$f(x, w, b) = \sigma(x^T w + b)$$
 (2)

Loss Function

How to find θ

How to find
$$\theta$$

$$\min_{\theta} \operatorname{minimize} J(\theta) \tag{3}$$
 For example we can use SGD optimizer

Loss Function

How to find θ

How to find θ

$$\underset{\theta}{\mathsf{minimize}} J(\theta) \tag{3}$$

For example we can use SGD optimizer

Example loss function

$$J(\theta) = \frac{1}{2} \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \hat{\rho}_{\text{data}}} ||\mathbf{y} - f(\mathbf{x}; \boldsymbol{\theta})||^2$$
 (4)

Latent space

Auto-encoder

Figure: Example auto-encoder⁵

⁵https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

Latent space The big picture

- Used to find the hidden representation of data
- By training model on a particular set of data we create some kind of general knowledge

Figure: Finding information in chaos

Recurrent Neural Networks (RNNs)

Oversimplified

Used for sequential data.
 E.g for text analysis, video recognition etc.

Recurrent Neural Networks (RNNs)

Oversimplified

- Used for sequential data.
 E.g for text analysis, video recognition etc.
- Have so-called "local memory" or "state memory"

Recurrent Neural Networks (RNNs)

Oversimplified

- Used for sequential data.
 E.g for text analysis, video recognition etc.
- Have so-called "local memory" or "state memory"
- Computationally expensive to train

Recurrent Neural Networks (RNNs)

Oversimplified

- Used for sequential data.
 E.g for text analysis, video recognition etc.
- Have so-called "local memory" or "state memory"
- Computationally expensive to train
- Problems with vanishing gradient

Recurrent Neural Networks (RNNs) Oversimplified

o refemilipinios

- Used for sequential data.
 E.g for text analysis, video recognition etc.
- Have so-called "local memory" or "state memory"
- Computationally expensive to train
- Problems with vanishing gradient

Figure: Sequence of frames^a

 $[^]a \verb|https://awesomeopensource.com/project/HHTseng/video-classification | com/project/HHTseng/video-classification | com/project/HHTseng/video-classific$

Recurrent Neural Networks (RNNs) Oversimplified

An unrolled recurrent neural network.

Figure: Folded and unfolder RNN ⁶

Types of RNN

Vector to sequence model

Figure: From an image (vector) generate a caption(sequence) ⁷

Types of RNN

Sequence to vector model

Figure: Take a review (sequence) and predict whether it is positive or negative (vector)⁷

Types of RNN

Sequence to sequence (seq2seq) model

Figure: Translate a sentence in Spanish (sequence) into a sentence in English (sequence)⁷

Attention basic concept - recap

that has a known grid-like topology. Examples include time-series data, which can be thought of as a 2-D grid of pixels. Convolutional networks have been tremendously successful in practical applications. The name "convolutional neural network" indicates that the network employs a mathematical operation called convolution. Convolution is a specialized kind of linear operation. Convolutional networks are simply neural networks that use convolution in place of general matrix multiplication in at least one of their layers.

In this chapter, we first describe what convolution is. Next, we explain the motivation behind using convolution in a neural network. We then describe an operation called **pooling**, which almost all convolutional networks employ. Usually, the operation used in a convolutional neural network does not correspond precisely to the definition of convolution as used in other fields, such as engineering or pure mathematics. We describe several variants on the convolution function that

Figure: We teach a neural network to focus on the part of the data¹

Attention basic framework EEAP

Embed

Attention basic framework EEAP

- Embed
- 2 Encode

Attention basic framework EEAP

- Embed
- 2 Encode
- Attend

Attention basic framework EEAP

- Embed
- 2 Encode
- Attend
- Predict

Pet problem to work with Encoder

Figure: Our encoder model⁸

⁸https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html = + = + 9 9 0 22/38

Pet problem to work with

- We calculate attention weights based on decoder input and a hidden state
- We multiply it with encoder outputs to create a weighted combination
- It will help the decoder to "find out" which part of encoder output is "responsible" for which part of decoder output

Figure: Way of computing attention⁸

Pet problem to work with Decoder

Figure: Our attention-decoder model⁸

Time to code

Now we will do a little bit of live coding

Where can You find the code?

https:

//github.com/tugot17/paying-attention-to-attention

Attention applications Automatic image captioning

- Nearly the same solution as previously
- Instead of encoder output, latent space from a pre-trained state-of-the-art network (e.g Inception V3)
- Attention method similar as before (e.g Bahdanau Attention)

Figure: Show, Attend and Tell: Neural Image Caption Generation with Visual Attention[6]

Attention applications Attention UNet

- State-of-the-art image segmentation solution
- Improving model sensitivity and accuracy by attaching attention gates on top of the standard U-Net

Figure: Segmentation for medical images with U-Net[7]

Attention applications

Latex code generation

- Seq2seq very similar to the Image Captioning
- Uses attention based RNN to generate Latex Code
- Real world application: https: //mathpix.com/

Figure: What You Get Is What You See:A Visual Markup Decompiler[8]

Attention applications

- Bert[5], RoBerta[9], AlBert[10], *Bert*
- GPT 2[2]
- Transformer Attention is all You need[3]

- Residual Attention Network for Image Classification[4]
- TreeGen: A Tree-Based Transformer Architecture for Code Generation[11]
- and many others ...

Introduction to attention Introduction to Neural Networks ntroduction to attention mechanism Deep dive into attention Attention applications Summary

Summary

Many others, mainly some kind of seq2seq models

 Attention = teach Your NN to on what part of data should it be focused on Introduction to attention Introduction to Neural Networks Introduction to attention mechanism Deep dive into attention Attention applications Summary

Summary

- Attention = teach Your NN to on what part of data should it be focused on
- Attention is all You need we can solve a wide variety of problems using attention

Introduction to attention Introduction to Neural Networks Introduction to attention mechanism Deep dive into attention Attention applications Summary

Summary

- Attention = teach Your NN to on what part of data should it be focused on
- Attention is all You need we can solve a wide variety of problems using attention
- We can use nearly same solution for many problems

Summary

Many others, mainly some kind of seq2seq models

- Attention = teach Your NN to on what part of data should it be focused on
- Attention is all You need we can solve a wide variety of problems using attention
- We can use nearly same solution for many problems

 Embed, Encode, Attend, Predict Framework

Summary

- Attention = teach Your NN to on what part of data should it be focused on
- Attention is all You need we can solve a wide variety of problems using attention
- We can use nearly same solution for many problems

- Embed, Encode, Attend, Predict Framework
- Hot research topic It's hard to stay up to date but it is relatively easy to publish

Summary

- Attention = teach Your NN to on what part of data should it be focused on
- Attention is all You need we can solve a wide variety of problems using attention
- We can use nearly same solution for many problems

- Embed, Encode, Attend, Predict Framework
- Hot research topic It's hard to stay up to date but it is relatively easy to publish
- There are several methods for calculating attention (e.g Bahdanau Attention, Luong attention, etc.)

References I

- Y. Bengio D. Bahdanau, K. Cho.
 Neural machine translation by jointly learning to align and translate.
- [2] A. Radford et al. Language models are unsupervised multitask learners. 2019.
- [3] A. Vaswani et al.
 Attention is all you need.
 2017.

References II

- [4] F. Wang et al. Residual attention network for image classification. 2019.
- [5] J. Devlin et al. Bert: Pre-training of deep bidirectional transformers for language understanding. 2018.
- [6] K. Xu et al. Show, attend and tell: Neural image captiongeneration with visual attention. 2016.

References III

- [7] O. Oktay et al. Attention u-net: Learning where to look for the pancreas. 2018.
- [8] Y. Deng et al. What you get is what you see:a visual markup decompiler. 2016.
- [9] Y. Llu et al. Roberta: A robustly optimized bert pretraining approach. 2019.

References IV

[10] Z. Lan et al. Albert: A lite bert for self-supervised learning of language representations.
2019.

- [11] Z. Sun et al. Treegen: A tree-based transformer architecture for code generation.
 2019.
- [12] N. L. Zhang L. Xue, X. Li. Not all attention is needed: Gated attention network. 2019.

Introduction to attention Introduction to Neural Networks Introduction to attention mechanism Deep dive into attention Attention applications Summary

Thank You for Your attention