CHAPTER 11

AN INTRODUCTION TO EXOTIC AND PATH-DEPENDENT OPTIONS

1. A chooser option has the following properties:

At time $T_C < T$, the option gives the holder the right to buy a European call or put option with exercise price E and expiry at time T, for an amount E_C . What is the value of this option when $E_C = 0$?

Hint: Write down the payoff of the option and then use put-call parity to simplify the result.

This chooser option has payoff

$$V(S, T_C) = \max(C_{BS}(S, T_C; E, T), P_{BS}(S, T_C; E, T)).$$

We use put-call parity to substitute for the value of the put option, to find

$$V(S, T_C) = \max (C_{BS}(S, T_C; E, T), C_{BS}(S, T_C; E, T) - S + Ee^{-r(T - T_C)})$$

$$= C_{BS}(S, T_C; E, T) + \max (Ee^{-r(T - T_C)} - S, 0)$$

$$= C_{BS}(S, T_C; E, T) + P_{BS}(S, T_C; Ee^{-r(T - T_C)}, T_C).$$

The chooser payoff can therefore be synthesised as a call option with exercise price E and expiry at time T plus a put option with exercise price $Ee^{-r(T-T_C)}$ and expiry at time T_C . In absence of arbitrage opportunities, we must therefore have

$$V(S, t) = C_{BS}(S, t; E, T) + P_{BS}(S, t; Ee^{-r(T-T_C)}, T_C).$$

2. How would we value the chooser option in the above question if E_C was non-zero?

When E_C is non-zero, the chooser option has payoff

$$V(S, T_C) = \max (C_{BS}(S, T_C; E, T) - E_C, P_{BS}(S, T_C; E, T) - E_C, 0).$$

We have explicit solutions for the values of $C_{BS}(S, T_C; E, T)$ and $P_{BS}(S, T_C; E, T)$, so we know the payoff $V(S, T_C)$ as a function of S. We must then solve

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0,$$

with final data $V(S, T_C)$ and boundary conditions

$$V(0, t) = e^{-r(T_C - t)} \max(E - E_C, 0),$$

as

$$V(0, T_C) = \max(E - E_C, 0),$$

and

$$V(S,t) \sim S \text{ as } S \to \infty.$$

3. Prove put-call parity for European compound options:

$$C_C + P_P - C_P - P_C = S - E_2 e^{-r(T_2 - t)}$$
.

where C_C is a call on a call, C_P is a call on a put, P_C is a put on a call and P_P is a put on a put. The compound options have exercise price E_1 and expiry at time T_1 and the underlying calls and puts have exercise price E_2 and expiry at time T_2 .

Consider the portfolio $\Pi_1 = C_C - P_C$, then

$$\Pi_1(T_1) = C_C(S, T_1) - P_C(S, T_1)$$

$$= \max(C_{BS}(S, T_1; E_2, T_2) - E_1, 0)$$

$$- \max(E_1 - C_{BS}(S, T_1; E_2, T_2), 0)$$

$$= C_{BS}(S, T_1; E_2, T_2) - E_1.$$

In the absence of arbitrage opportunities, we must have

$$\Pi_1(t) = C_C(S, t) - P_C(S, t) = C_{BS}(S, t; E_2, T_2) - E_1 e^{-r(T_1 - t)}.$$

Similarly, consider the portfolio $\Pi_2 = C_P - P_P$, then

$$\Pi_{2}(T_{1}) = C_{P}(S, T_{1}) - P_{P}(S, T_{1})$$

$$= \max(P_{BS}(S, T_{1}; E_{2}, T_{2}) - E_{1}, 0)$$

$$- \max(E_{1} - P_{BS}(S, T_{1}; E_{2}, T_{2}), 0)$$

$$= P_{BS}(S, T_{1}; E_{2}, T_{2}) - E_{1}.$$

In the absence of arbitrage opportunities, we must have

$$\Pi_2(t) = C_P(S, t) - P_P(S, t) = P_{BS}(S, t; E_2, T_2) - E_1 e^{-r(T_1 - t)}.$$

Then

$$C_C + P_P - C_P - P_C = (C_{BS}(S, t; E_2, T_2) - E_1 e^{-r(T_1 - t)})$$
$$- (P_{BS}(S, t; E_2, T_2) - E_1 e^{-r(T_1 - t)})$$
$$= C_{BS}(S, t; E_2, T_2) - P_{BS}(S, t; E_2, T_2)$$
$$= S - E_2^{-r(T_2 - t)},$$

from put-call parity for vanilla call and put options.

Find the value of the power European call option. This is an option with exercise price E, expiry at time T, when it has a payoff:

$$\Lambda(S) = \max(S^2 - E, 0).$$

Hint: Note that if the underlying asset price is assumed to be lognormally distributed then the square of the price is also lognormally distributed.

We must solve

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0,$$

with final data $\max(S^2 - E, 0)$.

If we substitute $R = S^2$, then we find

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 R \left((4R) \frac{\partial^2 V}{\partial R^2} + 2 \frac{\partial V}{\partial R} \right) + 2r R \frac{\partial V}{\partial R} - rV = 0,$$

which gives us

$$\frac{\partial V}{\partial t} + \frac{1}{2}(2\sigma)^2 R^2 \frac{\partial^2 V}{\partial R^2} + (\sigma^2 + 2r) R \frac{\partial V}{\partial R} - rV = 0,$$

with final data max(R - E, 0).

This is just the Black-Scholes equation for a European call option, with a volatility of 2σ , interest rate of r and dividend yield of $-(\sigma^2 + r)$. The value of the power option is therefore

$$C_{BS}(S^2, t; E, T),$$

with the above volatility, interest rate and dividend yield.