

VASILIYEV, F.I.; KUSKOVA, N.K.: PAKHOMOVA, K.J.

[Methods for the chemical analysis of ninerals] Metody khimicheskogo analiza mineral/nogo cyr/ia. Moskva, Nedra, No.9. 1965. 66 p. (MIRA 18:7)

1. Madrow. Vacacyminyy nauchmewlas i byateliskiy institut mineralinago syriya.

S/115/63/000/003/005/010 E194/E455

AUTHORS:

Yefremova, R.I., Kuskova, N.V., Levina, L.N.,

Matizen, E.V.

TITLE:

Temperature measurements with copper-constantan

thermocouples

PERIODICAL: Izmeritel'naya tekhnika, no.3, 1963, 25-28

Although they are less accurate than platinum resistance thermometers, copper-constantan thermocouples are often used in laboratories. A convenient standard calibration table for these thermocouples is not possible because the properties of constantan wire depend on both its origin and its diameter. Seven grades of constantan wire made into couples with copper gave at 100°C differences in thermal emf's of up to 300 to 400 µV, which is equivalent to about 10°. Several coils of constantan of various grades were selected and calibrated so that individual couples made up from these coils should not require calibration. thermocouples were calibrated at reference points of boiling oxygen, sublimation of CO2, melting of ice, and boiling of water, naphthalene and sulphur. The boiling points of hydrogen and Card 1/2

Temperature measurements ...

S/115/63/000/003/005/010 E194/E455

nitrogen were also used. Platinum resistance thermometers were used to check the reference points. Several copper-constantan thermocouples were made up from constantan from each of the various coils and from mean values of thermal emf's at the reference points tables were drawn up of thermal emf as a function of temperature at intervals of 100 μ V and in the temperature range from -260 to -188°C at 5 and 10 µ V intervals. For many purposes this suffices as a calibration of the constantan. Errors in measuring the temperature with these thermocouples without further calibration are tabulated and the mean error between -250 and +400°C does not exceed 0.5% of the value of the temperature measured in °C. At low temperatures this error may be considerable. The properties of one batch of constantan varied considerably over its length. To measure with a better accuracy the couples must be calibrated individually; this is particularly important for temperatures below -180°C. The importance and origin of stray emf's is The influence of plastic tensile strain and twisting discussed. on the thermal emf's of couples is discussed; it is shown that annealing of the constantan wire by passage of current can have considerable influence on the thermal emf. There are 6 figures and 1 table. Card 2/2

APPROVED FOR RELEASE: 03/13/2001 CIA-RDP86-00513R000927910002-1"

KUSKCVA, V. F.

"Characteristics of the Streptococci of the Oral Covity." Sub 18 Dec 51, Central Inst for the Advanced Training of Physicians.

Dissertations presented for science and engineering degrees in Moscow during 1951.

SO: Sum. No. 480, 9 May 55.

RUSKOVA, V.F. Pathogonic properties of streptococci of the oral cavity. Stomatologia no.1:24-27 Ja-7 54. (NLRA 7:1) 1. Iz kafedry mikrobiologii (zaveduyushchiy - professor P.F. Belikov Moskovskogo meditsinskogo stomatologicheskogo instituta (direktor - dotsent G.N.Beletskiy). (Streptococcus) (Houth-Bacteriology)

KUSKOVA, V.F.

Investigating the most effective surgical scrub techniques used in dental polyclinics.1. Bacteriological evaluation of surgical scrub techniques used in polyclinics. Stomatologia no.5:35-37 S-0 155. (MIRA 9:2)

l. Is kafedry mikrobiologii (sav. prof. P.F. Belikov) Moskovskogo
meditsinskogo stomatologicheskogo instituta (dir. dots. G.N. Beletskiy)
(ANTISEPSIS AND ASEPSIS
surg. scrub in dent.)
(DENTISTRY, OPERATIVE
surg. scrub in)

```
KUSKCVA, V.F.

Role of the cerebral cortex in immunogenesis. Biul. eksp. biol. i med. 40 no.12;40-42 D '55 (MLPA 9:3)

1. Is kafedry mikrobiologii (zav.-prof. P.F. Belikov) Moskovskogo meditsinskogo stomutologicheskogo instituta (dir.-dotsent G.N. Beletskiy)

(AGGLUTINATION, eff. of conditioned reflex reactions & sleep)

(REFIRM, CONDITIONED, conditioned immun. reactions)

(SLEEP, effects, on agglut. titer)
```


KUSKOVA, V.F.; MOROZOVA, L.V.

APPENDED IN THE PERSON OF THE

Microbiological investigations following treatment of teeth with ultrasound. Stomatologia 40 no.1:27-29 Ja-F '61. (MIRA 14:5)

1. Iz kafedry mikrobiologii (zav. - prof. P.F.Belikov) i ortopedicheskoy stomatologii (zav. - prof. V.Yu.Kurlyandskiy) Moskavskogo meditsinskogo stomatologicheskogo instituta (dir. - dotsent G.N. Beletskiy).

(TEETH_MICROBIOLOGY)
(ULTRASONIC WAVES_PHYSIOLOGIQAL EFFECT)

EWT(m)/EWP(1) WW/RM L 08793-67 SOURCE_CODE: UR/0191/66/000/009/0010/0011 ACC NR: λP6030843 (A, N)AUTHOR: Gel'fman, Ya. A.; Zemlyanskiy, N. N.; Lauris, I. V.; Syutkina, O. P.; Kuskova, V. P.; Panov, Ye. M. 49 ORG: none TITLE: Stabilization of polyvinylchloride by organotinoxanes SOURCE: Plasticheskiye massy, no. 9, 1966, 10-11 TOPIC TAGS: vinyl chloride, polymer, tin compound, organotin compound, organometallic compound, solid mechanical property, heat resistance ABSTRACT: The effect of organotinoxane-type additives [CH3COO(C4H9)2SnO, $\text{CH}_3\text{COO}[(\text{C}_4\text{H}_9)_2\text{SnO}]_4\text{OCCH}_3$, and $[\text{C}_{11}\text{H}_{23}\text{COO}(\text{C}_4\text{H}_9)_2\text{Sn}]_2\text{O}]$ on the thermal stability of polyvinylchloride was investigated. The aging characteristics of the stabilized PVC was tested according to GOST 10226-62 and the decomposition temperature was tested according to the GOST5960-51 standard. It was found that the PVC stabilized with organotinoxanes had a thermal stability comparable to that of PVC stabilized with conventional R2PbX2 stabilizers. It was also found that the organotinoxane stabilizer based on acetic acid was as effective as that based on lauric acid. Orig. art. has: tables. SUBM DATE: 00/ ORIG REF: 004/ OTH REF: 004 SUB CODE: 11/ 678.743.22:678.048.9 UDC: Card net

Effect of gibberelic acid on belladowns. Fiziel. rast. 10 no.6:716-719 N-D 63.

1. Tomak Medical Institute.

APPROVED FOR RELEASE: 03/13/2001 CIA-RDP86-00513R000927910002-1"

Effect of gibberellin on belladoma, Firiol, rast, 12 no.44631-637 Jl-Ag '65. (MRA 18:12)

1. Kafedra botaniki i farmakomozii Tozakogo zeditninskogo instituta. Subaitted March 9, 1964.

AN ACCESSORY OF THE PROPERTY OF LANGEST AND ACCESSORY OF THE PROPERTY OF THE P

BEREZNEGOVSKAYA, L.N.; KUSKOVA, Z.R.

Amino acid and alkaloid dynamics in belladonna as affected by its development. Nauch. Jokl. vys. shkoly; biol. nauki no.2: 165-169 '65. (MIRA 18:5)

1. Rekomendovana kafedroy botaniki i farmakognozii Tonskogo meditsinskogo instituta.

KUSKCVSKIY, V.S.

Using the water belance of springs in calculating too base flow of rivers of the Gornyy Altei, Izv. Alt. otd. Geor. ob-va SSSR no.5176-77 '65. (MEA 18:12)

1. Sibirskly naucisno-issledovatel akiy institut energetiki.

KUSKULA, Karel; MAYER, Vilem, inz.

Complexometric determination of aluminum in nonmetal materials. Hut listy 18 no.10:735 0 '63.

1. Vitkovicke zelezarny Klementa Gottvalda, n.p., Ostrava.

KUZ'MIN, Ye., starshiy dispetcher-tekhnolog; VASIL'YEV, Ye., brigadir gruzchikov; TIMOFEYEV, A., starshiy kranovshchik; KUSLAP, A., starshiy kranovshchik; KHVOSTOVA, D.M., red.; KIRSANOVA, B.A., tekhn.red.

[New equipment in the port of Riga] Novaia tekhnika v Righskom portu. Izd-vo VTsSPS Profizdat, 1958. 54 p. (MIRA 12:3) (Riga--Harbor) (Loading and unloading)

KUSLIK, M. I. Strap and the amartes, Khirurgila, Madrea No. 11, Nov. 50. p. 20-3 1. Of Leningrad Scientific-Research Institute of Prostheses, Loningrad. GEVIL 20, 3, March 1951

KUSLIK, M. I.

Medicine

Precision method of drawing Rose-Nelaton's line., Khirurgita., no. 12, 1951

9. Monthly List of Russian Accessions, Library of Congress, March 1952, Uncl.

Spine - bornities and deformities
"Cooliosis and its sampled dierally."

Marrighta so. 6, 1952.

Menth y List of Mussian Accessions, Library of Communs, Schools 1922. GROLIOS Flab.

- 1. KUSHIK, M. I., Irof.
- 2. (SSR (600)
- 4. Ence Joint Surgery
- 7. A typical resections of the knee joint in guns.ot wounds. Enirurgiia No. 3, 1952.

9. Monthly List of Russian Accessions, Library of Congress, January 1953, Unclassified.

KUSLIK, M. I.

Scaoula

Outcoplastic fixation of the scapula in paralysis of its muscles, Vest. khir., 72, No. 3, 1952.

CONTRACTOR OF THE PROPERTY OF

9. Monthly List of Russian Accessions, Library of Congress, October 1952, Uncl.

KARPENKO, H.P.; KUSLIK, M.I., professor, zavedujushchiy.

Knock knee (gemm valgum). Vest.khir. 73 no.5:12-12 S-0 '53. (MLRA 6:11)

1. Kafedra ortopedii i protezirovaniya Gosudarstvennogo ordena Lenina Leningradskogo instituta usovershenstvovaniya vrachey im. S.M.Kirova (for Kuslik). 2. Ortopedicheskoye otdeleniye TSentral'nogo gosudarstvennogo travmatologicheskogo instituta im. R.R.Vredena. (Leg--Abnormities and deformities)

Hypopoastic arthroses of the hip joint. Ortop.travm.protex.,
Moskva no.1:7-11 Ja-F '55. (MLEA 8:10)

1. Leknfedry ortopedii i protezirovaniya Gomudarstvennogo
instituta usovershenstvovaniya vrachey im. S.M. Kirova i
Loningradskogo nauchno-issledovatel'skogo instituta travmatologii i ortopedii.
(HIP, diseases,
arthrosis deformans)

KUSLIK, M.I., professor, zaslushennyy deyatel' nauki (Leningrad, 100,
Lesnoy pr., d. 61, kv. 198)

Surgery for complications of policayelitis [with summary in English, p.158] Vest.khir. 77 no.9:3-19 S '56. (MEM 9:11)

1. Is knfedry ortopedii i pro esirovaniya (sav. - prof. M.I.Ruslik)
Leningradakogo ordena lenina natituta usovorshenatvovaniya vrachey
in. S.M.Kirova i ortopeicheskogo otdeleniya (sav. prof. Ya.S.Tusevich)
Leningradakogo instituta travmatologii i ortopedii.

(POLICMIELITIS, compl.

surg. corrections)

KUSLIK, Mikhail Issakovich, zasluzhennyy deyatel' nauki, prof.;
ARRAKOV, L.V., red.; KHARASH, G.A., tekhn.red.

[Orthopedic treatment of spastic paralysis] Ortopedicheskoe
lechenie spasticheskikh paralichei. [Leningrad] Gos.izd-vo med.
lit-ry, Leningr. otd-nie, 1957. 117 p. (MIRA 10:12)

(Faralysis, Spastic)

KUSLIK, M.I., zasluzhennyy deyatel' nauki, professor Determination of the extent of hip abduction for functional lengthening of the extremities in ankylouis and contracture of the hip joint. Ortop., travm. i protex. 18 no.1:57-58 Ja-F 157. (HIRA 10:6) 1. Iz kafedry ortopedii i protezirovaniya (zav. - prof. M.I.Kuslik) Gosudarstvennogo instituta usovershenstvovaniya vrachey im. S.M.Kirova (dir. - prof. N.I.Blinov) i ortopedicheskogo otdeleniya (zav. - prof. Ya.S. Yusevich) Leningradskogo nauchno-issledovatel skogo instituta travmatologii i ortopedii (dir. - prof. V.S.Balakina) (HIP, dis. ankylosis & contractures, determ. of angle for surg. correction) (CONTRACTURE hip, determ. of angle for surg. correction)

Closed injuries of the biceps brachii tendons and their trestment [with summary in English]. Thirurgiia 34 no.7:98-101 J1 '58 (MFRA 11:9)

1. Is kafedry ortopedii i protezirovaniya Leningradskogo ordena Lenina instituta usovershenstvovaniya vrachey imeni S.M. Kirova (dir. - prof. N.I. Blinov) i Leningradskogo instituta travmatologii i ortopedii (dir. - prof. V.S. Balakina).

(ARM, muscles and tendons bioeps brachii inj., etiol. & ther. (Rus))

KUSLIK, M. I., (Prof.) -- Leningrad

"Surgical Treatment of Giant Cell Tumors (Osteoblastoclastomas."

Report, submitted for the 27th Congress of Surgeons of the USSR, Moscow, 23-28 May 1760.

KUSLIK, M.I., zasluzhennyy dayatel: nauki; prof.; TARUSHKIN, O.V., starshiy nauchnyy sotrudnik

Electrostimulation of the muscles in spastic paralysis. Ortrop. traym.i protes. 21 no.4:34-37 Ap *60. (MIRA 13:9)

1. Iz ortopedicheskogo otdeleniya i fiziologicheskoy laboratorii Leningradskogo nauchno-issledovatel'skogo instituta travmatologii i ortopedii (dir. - prof. V.S. Balakina) i kafedry ortopedii gosudarstvennogo instituta dlya usovershenstvovaniya vrachey (dir. - dotsent A.Ye. Kiselev).

(PARALYSIS, SPASTIC) (ELECTROTHERAPY)

ARENDT, A.A., prof.; ARKHANGEL'SKIY, V.V., kand. med. nauk; BCGDANCV, F.R., prof.; BONDARCHUK, A.V., prof.; KOPYLOV, M.B., prof.; KORNEV, P.G., zasl. deyatel' nauki RSFSR, prof.; KUSLIK.M.I., prof.; LEYBZON, N.D., doktor med. nauk; MAKAROV, M.I., med. nauk; NIKOL'SKIY, V.A., prof.; PODGORNAYA, A.Ya., doktor med.nauk; RAZDOL'SKIY, I.Ya., prof.[deceased]; ROSTCTSKAYA, V.I., kand. med.nauk; TUMSKOY, V.A., kand. med.nauk; UGRYUMX, V.M., prof.; FISHKIN, V.I., kand. med. nauk; KHRAPOV, V.S., kand. med. nauk; CHIKOVANI, K.P., prof. [deceased]; SHLYKOV, A.A., prof.; PETROVSKIY, B.V., prof. zasl. deyatel' nauki RSFSR prof., red. toma; MIRONOVICH, N.I., doktor med. nauk, zam. red.; PARAKHINA, N.L., tekhn. red.

[Manual on surgery] Mnogotomnoe rukovodstvo po khirurgii.
Moskva, Medgis. Vol.4. [Neurosurgery; the sequelae of lesions of the central nervous system. Diseases of the spine, the spinal cord and its membranes. Diseases of the vegetative nervous system] Neirokhirurgiia; posledstviia povrezhdenii tsentral'noi nervnoi sistemy. Zabolevaniia pozvonochnika, spinnogo mozga i ego obolochek. Zabolevaniia vegetativnoi nervnoi sistemy. 1963. 667 p. (MIRA 16:10)

 Deystvitel'nyy chien AMN SSSR (for Petrovskiy, Yegorov, Kornev).
 Chlen-korrespondent AMN SSSR (for Bogdanov). (NERVOUS SYSTEM—SURGERY) (SPINE—SURGERY)

APPROVED FOR RELEASE: 03/13/2001 CIA-RDP86-00513R000927910002-1"

STATE VALUE OF THE OWN IN THE PROPERTY OF THE OWN IN TH

KUSLIK, M.I., prof., zasluzhennyy deyatel' nauki RSFSR

Experience in conservative surgical treatment of giant cell tumors. Khirugiia 40 no.5:107-114 My '64. (MIRA 18:2)

1. Kafedra ortopedii i protezirovaniya Instituta ordena Lenina usovershenstvovani a vrachey imeni Kirova (dir.- dotsent S.N. Polikarpov) i Leningradskogo instituta travmatologii i ortopedii (dir.- prof. V.S. Balakina).

KARPENKO, G.V. [Karpenko, H.V.]; KUSLITSKIY, A.B. [Kuslyts'kyi, A.B.];
BAHEY, Yu.I. [Babei, IU.Y.]

Effect of the density of ShKhl5 steel made with electric slag and vacuum refining on its cyclic strength. Dop. AN URSR no.8:1063-1066 '64. (MIRA 17:8)

1. Institut mashinovedeniya i avtomatiki AN UkrSSR.
2. Chlen-korrespondent AN UkrSSR (for Karpenko).

L 11327-65

ACCESSION NR: AP4043731

Fatigue tests revealed no definite relationship between the presence of individual nonmetallic inclusions in Shkhis steel and its fatigue strength. Ine density—latigue strength test fate who that fatigue strength increases as the steel density inc. whis, and that the inclusions of the density is sore pronounced in steels with lever nonmetallic inclusions. In steels with practically identical amounts of nonmetallic inclusions, fatigue strength increased 23% with an increase in density from 7.7990 to 7.8116 g/cm, or ~0.15%. Hence, for a more complete evaluation of the servicesbility of ball-bearing steel, both the content of nonmetallic inclusions and the steel density should be taken into account. Orig. art. has: 2 figures and 1 table.

ASSOCIATION: Insty*tut mashy*normavetva ta avtomaty*ky* AN URSR (Institute of Machine Science and Automation, AN URSR)

SUBHITTED: 16Dec63

ATD PRESS: 3100

ENGL: 00

SUB CODE: HK.IE

NO REF SCVE 008

OTHER: 003

Card 2/2

EPA(a)-2/EWT(a)/EWP(w)/EWA(d)/EWP(v)/T/EWP(t)/EWP(k)/EPA(bb)-2/ 1 19623-65 ASD(1)-2/AFHDC/AED(m)-3 HJW/JD/WB/EM EWP(b) Pf-4/Pt-10 \$/0129/64/000/010/0028/0031 4 ACCESSION HR: AP4047507 AUTHOR: Karpenko, G. V.; Meyerson, I. L.; Babey, Yu. I.; Tabinskiy. K. P.; Kuslitskiy, A. B. resistance of Kh17N2 Corresion and corresion facigue TITLE . SN3 pteels SOURCE: Hetallovedeniye i termicheskaya obrabotka metallov, no. 10, 1964, 28-31, and bottom half of insert facing p. 40 TOPIC TAGS: stainless steel, steel corrosion, steel corrosion fatique, precipitation hardenable steel, Khi7N2 steel, SN2 steel, steel corrosion resistance, steel corrosion fatigue resistance, anticorrosion coating, 30% varnish ABSTRACT: The corresion and corresion fatigue of Khi7N2 (0.12XC, 17.23X } Gr. 1.84% NE) and SN3(0.09%C, 16.93% Cr. 4.71% NI, 3.31% Ho) steinless steel have been investigated. Steels were heat-treated to a hardness of 38--40 and 40--42 HRG, respectively. The test results showed that the 5H3 steel has a higher corresion resistance than the Kh17H2 steel, e.g., by 2.5 times in 53% sulfuric scid. The SN3 fatigue strength in air 1/2 Card

CONTRACT THE PROPERTY OF THE PARTY OF THE PA L 19623-65 ACCESSION NR: AP4047507 is 10% higher than that of the Khi?NZ steel. In a 3% sodium-chloride solution, the fatigue strength of both steels decreases by about the same factor, compared with that in air (see Fig. 1 of the Enclosure) and at N = 2 . 10 cycles, is about 2 times lover than that in air. This confirms the absence of a direct relation between the corrosion resistance and the corrosion fatigue resistance of the metal. 4 The SN3 steel is preferable to Kh17N2 accel for compressor blades working in aggressive media. Coating with 302 varnish (composition pynidentified) increases by L.S times the corrosion fatigue strength of Khi7N2 and SN3 steels. Orig. art. has: 2 figures. Finiko-makhanicheskiy institut AN UkrssR(Physiomechanical ASSOCIATION Institute AN Ukresk) SUE CODE GŁ ENCLI 00 SUBKITTED: 000 OTHERS 009 HO REF SOVE Card 2/3

APPROVED FOR RELEASE: 03/13/2001 CIA-RDP86-00513R000927910002-1"

L 23446-65 EWT(m)/EWP(w)/EWA(d)/T/EWP(t)/EWP(b) MJW/JD

ACCESSION NR: A14049945

g/2723/64/000/003/0107/0118

AUMIOR: Kuslitskiy, A.B.; Babey, Yu. I.; Serebriyskiy, E.I.; Mizetskiy, V.L.; Borisov, A. Ya.; Kirpenko, G.V. (Corresponding member AN UkrSSR)

TITLE: Effect of the hardening temperature on the fatique strength of ShKh15 steel from electrosing and vacuum refining

SOURCE: AN UkrSSR. Fiziko-mekhanichuskiy institut. Vilyaniye rabochikh sred na svoysta materialov, no. 3, 1964, 107-118

TOPIC TAGS: steel fatigue strength, hardening temperature, electrosisg steel, vacuum smelted steel, steel purity/Shkh 15 steel

ABSTRACT: This study was prompted by the lack of data concerning the physical and mechanical properties of electrosiag steel (see, e.g., B. Ye. Paton, B.I. Medovar, Yu. V. Latash, Stal', no. 11, 1962) and by the inconclusive results concerning such properties of vacuum smelted steels (see, e.g., H.B. Nudelman, J. Sheehan, A study of the effect of melting practice on the fatigue behavior of high-atrength steel. Armour Res. Foundat., Chicago, 1951). The maximum cyclic hardness of ShKh15 steel was tested after a. electrosiag smelting followed by vacuum smelting (very pure ShKh15 -

Cord 1/2

L 23446-65

ACCESSION NR: AT4049945

free from nonmetallic admixtures); b. the same as (a) but less pure (ShKh158); c. electroslag smelting only (ShKh158h); d. ordinary smelting in an open electric oven (ShKh15); e. double vacuum are smelting of pure steel (ShKh15Ch); and f. the same as (e) with an ordinary smelt (ShKh15D). The optimum hardening temperature for the ShKh15S and ShKh15D steel was 850C while all the other steels showed maximum cyclic hardness after hardening at 840C (all samples were annealed at 150C during a 2-hour period). The cyclic hardness of the air-hardened ShKh15 steel from different types of smelts depended on the presence of nonmetallic admixtures as well us on its density. An increase in purity and in density led to a 25-30% increase in fatigue strength. "The degree of contamination of the steel with non-metallic impurities was evaluated by Engineer N.I. Zakhodskaya; Engineer B.F. Ryabcy took part in developing and setting up the system of automatic furnace temperature control." Orig. art. has: 3 figures and 5 tables.

and the state of t

ASSOCIATION: none

SUBMITTED: 00

ENCL: 00

SUB CODE: MM

NO REF SOV: 020

OTHER: 004

Cord 2/2

L 23066-65 EMT(m)/EMA(d)/EMP(t)/EMP(b) MJW/JD

ACCESSION NR: AT1049946

8/2723/64/006/003/0119/0123 nd

AUTHOR: Kuslitskiy, A.B.; Mindyuk, A.K.

TITLE: Corrosion stability of ShKh15 stool from electrosiag and vacuum smelts

SOURCE: AN UkrSSN. Fiziko-mekhanichesily institut. Vilyaniye, abechikh sred na svoyntva materialov, no. 3, 1964, 119-123

TOPIC TACS: steel corrosion, electrosiag inelling, vacuum melting, bal; bearing steel, steel impurity/steel ShKh15

ABSTRACT: Ball hearing steel ShKhis from different types of smelts was investigated for corrosion resistance. The samples were ShKhis steel smelted in the ordinary way, steel smelted by electrosiag melting with subsequent vacuum smelting and containing some nonmetallic admixtures (ShKhiss); the same steel as ShKhiss except with a lower content of nonmetallic impurities (ShKhiss); and steel smelted once by electroscorification (ShKhissh). The results (see Fig. 1 of the Enclosure) show that the corrosion stability of hardened steel ShKhis prepared by the ordinary, electrosiag or vacuum smelting exhibits a 20-30% larger corrosion stability than steel annealed over the same period of time (3 hours). Contamination by nonmetallic admixtures affects the corrosion stability significantly. The corrosion stability of closure ShKhissh and ShKhish steels exceeds

 L 23066-65

ACCESSION NR: AT4049946

the corrogion stability of less pure ShKh15 and ShKh158 smelts by 25-30%. Among various nonmetalife components left after the above-mentioned types of smelting, exides and silicates reduced the corrosion stability of the ball bearing steel more significantly. Globular and spot impurities and sulfides caused less marker, ill-effects. Orig. art. has: 1 figure and 4 tables.

ASSCICIATION: none

SUPMITTED: 20Jun63

ENCL: 01

BUB CODE: MM

NO REF 80V: 002

OTHER: 000

Cord 2/1

APPROVED FOR RELEASE: 03/13/2001

CIA-RDP86-00513R000927910002-1"

1. 23067-45 EWT(m)/WP(w)/EWA(d)/T/EWP(t)/EWP(b) HJW/JD/WE

ACCESSION NR: AT4049048

生产的复数用格成为 知用图 制度的跨角 医心

8/2723/64/000/003/0130/0134

AUTHOR: Kuslitskiy, A.B.; Babey, Yu. I.; Serebriyakiy, E.I.; Mizetskiy, V.L.; Borisov, A. Ya.

TITLE: Corrosion resistance and fatigue strength of annealed ShKh15 steel from electrosisg and vacuum sinelts

SOURCE: AN UKrSSR. Fiziko-mekhanicheskiy irstitut. Vliyaniye rabochikli sred na svoystva materialov, no. 3, 1964, 130-134

TOPIC TAGS: steel corrosion, steel fatigue strongth, steel annealing, saline corrosion, electrosiag melting, vacuum melting, steel impurity/steel ShKh15

ABSTITACT: While the physical and mechanical properties of annealed ShKh15 steel are known to a considerable extent, the resistance to fatigue had not yet been sufficiently investigated. Since the work described earlier by the same authors (AN UltrSSR. Fiziko-mekhanicheskiy institut. Vilyaniye rabochikh and na svoystva materialov. No. 3, 1964, mekhanicheskiy institut. Vilyaniye rabochikh and na svoystva materialov. No. 3, 1964, mekhanicheskiy institut. Vilyaniye rabochikh and na svoystva materialov. No. 3, 1964, mekhanicheskiy institut. Vilyaniye rabochikh and na svoystva materialov. No. 3, 1964, mekhanicheskiy institut. Vilyaniye rabochikh and na svoystva materialov. No. 3, 1964, mekhanicheskiy institut. Vilyaniye rabochikh and na svoystva materialov. No. 3, 1964, mekhanicheskiy institut. Vilyaniye rabochikh and na svoystva materialov. No. 3, 1964, mekhanicheskiy institut. Vilyaniye rabochikh and na svoystva materialov. No. 3, 1964, mekhanicheskiy institut. Vilyaniye rabochikh and na svoystva materialov. No. 3, 1964, mekhanicheskiy institut. Vilyaniye rabochikh and na svoystva materialov. No. 3, 1964, mekhanicheskiy institut. Vilyaniye rabochikh and na svoystva materialov. No. 3, 1964, mekhanicheskiy institut. Vilyaniye rabochikh and na svoystva materialov. No. 3, 1964, mekhanicheskiy institut. Vilyaniye rabochikh and na svoystva materialov. No. 3, 1964, mekhanicheskiy institut. Vilyaniye rabochikh and na svoystva materialov. No. 3, 1964, mekhanicheskiy institut. Vilyaniye rabochikh and na svoystva materialov. No. 3, 1964, mekhanicheskiy institut. Vilyaniye rabochikh and na svoystva materialov. No. 3, 1964, mekhanicheskiy institut. Vilyaniye rabochikh and na svoystva materialov. No. 3, 1964, mekhanicheskiy institut. Vilyaniye rabochikh and na svoystva materialov. No. 3, 1964, mekhanicheskiy institut. Vilyaniye rabochikh and na svoystva materialov. No. 3, 1964, mekhanicheskiy institut. Vilyaniye rabochikh and na svoystva materialov. No. 3, 1964, mekhanicheskiy institut. Vilyaniye rabochikh and na svoystva mater

L 23067-65 ACCESSION NR: AT	10491148			ole acust
ordinary, electrosiag	; and vacuum smelts in atigue strength in air;	the innealed state 2. In a corresive n	have approximate viedium, double v	acum-
static hardness and its smelted steel and pur	atigue strength in air; co somples from single w this best fatigue prop	electrosing smelts ertion (see Fig. 1.0	f the Enclosure)	drig.
vacuum ismelting snov art. has: 2 figures a				
ASSOCIATION: none	그를 회사를 받았습니까지 한 시간 사람이 되었다.			
SUBMITTED: 00	ENCLi 01	C SUB CC	DE: MM	
NO REF SOV: 007	OTHERI 000		and an international field in the property and an international property and the second field and the second	The control of the co
110 11-11		•		
· ·			· -	

	. 1h39-66 EWT(m)/EPF(c)/EWP(w)/EWA(d)/T/EWP(t)/EWP(z)/EWP(b)/ETC(m) MJW/JD/WW/W2	
	1139-66 EWT(m)/EFF(8)/EWF(W)/EMA(3)/15000/004/0477/0480 CCESSION NR: AP5022405 (6) UR/0369/65/000/004/0477/0480	
	CCESSION NR: AP5022405	
	UTHOR: Yefimenko, Yu. M.; Kualitakiy, A. B.; Chaban, D. V.; Karpenko, G. V.;	
	ICYCHOILA NY 111 A	
	TITLE: Effect of the electron beam smelting on properties of the ShKh15 ball	
	pearing steel (1965 477-480	
ŝ	OURCE: Fiziko-khimicheskaya mekhanika materialov, no. 4, 1965, 477-480	
1	COPIC TAGS: electron beam, ball bearing) amelting furnace	
	- Inlant on mechanical properties of the	
	Shkhis ball bearing steel was studied in and also smelting techniques of The	
•	technique with the effectiveness of the value unit under 5.10 -5.10 3 mm Hg.	
	As a result of this smelting treatment the oxygen to 0.000044. Si02	
	0.0007%, hitrogen from 0.007 to 0.0001%,	
	from 0.0008 to 0.0004%, \$\langle 11203 from 0.0270 to 0.0018%, red liberary resistance and CaO from 0.0005 to 0.0001%. Electron beam smelted steel improved: resistance and CaO from 0.0005 to 0.0001%, electron beam smelted steel improved: resistance and CaO from 0.0005 to 0.0001%, electron beam smelted steel improved: resistance and CaO from 0.0005 to 0.0001%, electron beam smelted steel improved: resistance and CaO from 0.0005 to 0.0001%, electron beam smelted steel improved: resistance and CaO from 0.0005 to 0.0001%, electron beam smelted steel improved: resistance and CaO from 0.0005 to 0.0001%, electron beam smelted steel improved: resistance and CaO from 0.0005 to 0.0001%, electron beam smelted steel improved: resistance and CaO from 0.0005 to 0.0001%, electron beam smelted steel improved: resistance and CaO from 0.0005 to 0.0001%, electron beam smelted steel improved: resistance and caO from 0.0005 to 0.0001%, electron beam smelted steel improved: resistance and caO from 0.0005 to 0.0001%, electron beam smelted steel improved: resistance and caO from 0.0005 to 0.0001%, electron beam smelted steel improved: resistance and caO from 0.0005 to 0.0001%, electron beam smelted steel improved: resistance and caO from 0.0005 to 0.0001%, electron beam smelted steel improved: resistance and caO from 0.0005 to 0.0001%, electron beam smelted steel improved: resistance and caO from 0.0005 to 0.0001%, electron beam smelted steel improved: resistance and caO from 0.0005 to 0.0001%, electron beam smelted steel improved: resistance and caO from 0.0005 to 0.0001%, electron beam smelted steel improved: resistance and caO from 0.0005 to 0.0001%, electron beam smelted steel improved: resistance and caO from 0.0005 to 0.0001%, electron beam smelted steel improved: resistance and caO from 0.0005 to 0.0001%, electron beam smelted steel improved	
	to cyclic deformation, corresion issued	
	Card 1/4	

L 1139-66

ACCESSION NR: AP5022405

The mechanical strength of ShKh15 steel (σ in kg/mm²) as a function of frequency of cyclic deformation (in millions of cycles) N, is shown in fig. 1 of the Enclosure. The corrosion resistance of ShKhl5 steel in 53% H2SO4 solution is shown in fig. 2 of the Enclosure. Orig. art. has: 3 figures, 5 tables.

ASSOCIATION: Institut electrosyarki im. Ye. O. Patona, AN UkrSSR, Kiev (Institute of Electric Welding, AN UkrSSR) Fiziko-mekhanicheskiy institut, AN UkrSSR, L'vov (Physico-Muchanical Institute, AN UkrSSR)

SUBMITTED: 24Mar65

ENCL: 02

SUB CODE:

NO REF SOV: 004

OTHER: COO

APPROVED FOR RELEASE: 03/13/2001 CIA-RDP86-00513R000927910002-1"

NIM/JU/HB ENT (a)/EMP(w)/EPF(c)/EMA(d)/T/EMP(t)/EMP(z)/EMP(b) 8/0369/65/001/001/0027/0031 L 40906-65 ACCESSION NR: API009218 AUTHOR: Euslitskiy, A.B.; Mindyuk, A.K.; Rudenko, V.P.; Ryabov, B.F. TITLE: Conrosion resistance and conrosion-fatigue strength of hardened ShKh 15 steel SOURCE: Fiziko-khimicheskaya mekhanika materialov, v. 1, no. 1, 1965, 27-31 TOPIC TAGS: steel corrosion, steel fatigue strength, hardened steel, corrosion resistance, electros ag melting, electroslag refining, vacuum melting/shkh 15 steel ABSTRACT: Comparative corrosion-resistance and corrosion-fatigue strength tests were made on samples of ball-bearing steel with different degrees of contamination by nonmetallic impurities and different densities. Six types of ShKh 15 steel (made by six different technological variants) were thus tested. A 3% NaCl solution was used as the corresive medium. The corresion resistance of electroslag and vacuum steels was found to be virtually the same and somewhat greater than that of the ordinary variety made in an open are furnace. The 3% NaCl corresive medium sharply decreased the cyclic strength of hardened steel. Steels subjected to electrosiag remeiting were found to be somewhat better in this regard. Fatigue tests on the six types of steel showed that the more aggressive the corrosive medium or more severe the testing conditions (preliminary Card 1/2

	ur e	-	1		;
the difference Orig. art. ha	in the properties s: 3 figures.	s of these types	i, f.6.		
					٠.
0 8	ub codi: MM				
000					
			j.		
29			· · · · · · · · · · · · · · · · · · ·		а,
1			, *-	at you to me	
			•		24
	name of the state	the second second second in the second secon	in and a second second second		
	0 8	0 SUR CODII: MM	0 SUB CODE: MM	8UR CODI: MM	0 SUR CODI: MM

L 60255-65 EPF(a)/EPF(E)-2/EWP(E)/EWP(E)/EWP(b)/T/EWA(d)/EWP(W)/EWP(t) UR/0369/65/001/002/0214/0217 4/0 Pu-4 .. IJP(a) : KJV/JD/JG/WB ACCESSION HR: AP50126115 AUTHOR: Il'ina, G. V.; Kuslitskiy, A. B.; Starovoytov, Yu. A. TITLE: The effect which composite alloying with manganesel tungsten and molybdenum has on corrosion fatigue strength and corrosion resistance of ShKh 15 steel SOURCE: Fiziko-khimicheskaya mekhanika materialov, v. 1, no. 2, 1965, 214-217 corrosion resistance, steel corrosion, fatigue strength, alloy steel TOPIC TAGS: ABSTRACT: Previous tests show that reducing non-metallic inclusions does not affect the hardenability and heat resistance of ShKh 15 steel. This work considers the effects of composite alloying with molybdenum (0.4-0.6%), tungsten (1.0-1.2%) and manganese (0.9-1.2) on certain properties of ShKh steel. The alloy was designated ShKh 15VKG. The steel was produced by two-arc vacuum melting. Purity tests show that ShKh I5VHG malted by this method is only a little less pure than ShKh I5 steel. Optimum melting conditions are described. Tests showed that alloying with manganese, tungsten and molybdenum improves the maximum hardness of the steel and greatly increases creep resistance. Tables are given comparing the mechanical properties and toughness of the steels. Fatigue test results are given and compared Card 1/2

ith ShKh 15 s as found that solybdenum and	AP5012655 iteel fatigue composite al i 0.3-1.25 mm t resistance a ial rise in co igue endurance	ganese, s	omewhat i	ncreases i	ts harder ease in (yclic str	ength in
tables.	FHI AN UKESI			•			# 1 mm
SUBHITTED: 2			ENCL: 0	0		SUB CODE	e and comme
NO REF SOV:			OTHER:	000		• 4	
	***			=	7		
. :	•		•	•			F.,1
	<u>-</u> .	٠.	•	•	4	*	
	tal angler nermen.		· · · · · · · · · · · · · · · · · · ·				

KUSLITSKIY, A.B.; HYABOV, B.F.

Chamber for fatigue tests of rotating specimens in an atmosphere of vapors or heated air. Fiz.-khim. mekh. mat. 1 no.2:227-248 '65.

1. Fiziko-mekhanicheskiy institut AN UkrSSR, I'vov.

EWT(m)/EWA(d)/EWP(t)/EWP(z)/EWP(b)12183-66 ACC NR: AP5028376 SOURCE CODE: UR/0369/65/001/005/0583/0587 14.55 AUTHOR: Kuslitskiy, A. B.; Kachmat, 2. F.; Yefimenko, Yu. M.; Chaban, D. ORG: Physics-engineering Institut AN UkrSSR, L'vov (Fiziko-mekhanicheskiy institut AN UkrSSR); Electric Welcing Institute im. Ye. O. Paton, AN UkrSSR, Kiev (Institut elektrosvarki AN UkrSSR) TITLE: The effect of nonmetallic inclusions on the strength of hardened ShKh15 steel during hydrogenation SOURCE: Fiziko-khimicheskaya mekhanika materialov, v. 1, no. 5, 1965, 583-587 TOPIC TAGS: steel property, hydrogenation, metal strength, nonmetallic inclusion, martensite steel, ball bearing steel, SOLID MECHANICAL PROPERTY ABSTRACT: The authors determined the effect of impurities in martensite (HRC = 61-63) ball bearing steel on its mechanical properties during hydrogenation. The hydrogenation process sharply reduces the strength of steel of all methods of preparation, depending on the impurity content in the steel. An increase in the quantity of nonmetallic inclusions decreases the strength of the steel. The existing methods of qualitative and quantitative analyses of the content of nonmetallic inclusions (metallographic and electrolytic separation) do not provide Card. 1/2

L 12183-66 ACC NR: AP5028376

sufficient reliability in the investigation of the higher grazes of steel made by vacuum, molten slag electric process, and the electron-beam remelting methods. The most unfavorable nonmetallic inclusions are brittle particles, such as minute titanium inclusions and silica particles, which are not detectable by metallic graphic analysis. The most effective method of removing the nonmetallic inclusions and gases from the steel is the electron-beam remelting process. Orig. art. has: 2 figures and 3 tables.

SUB CODE: 11 / SUBM DATE: 11Apr65 / ORIG REF: 009 / OTH REF: 004

Cord 2/2)

EWP(z)/EWT(m)/EWP(b)/T/EWA(d)/EWP(w)/EWI(t) L 14415-66 MJW/JD/WB ACC NR: AP6002126 SOURCE CODE: UR/0369/55/001/006/0732/0733 AUTHOR: Tkachev, V. I.; Kripyakevich, R. I.; Kuslitskiy, A. B.; Kreymerman, G. I. ORG: Physicomechanical Institute AN UkrSSR, L'vov (Fiziko-mekhanicheskiy institut TITLE: Effect of the purity of steel and corrosion medium on low-cycle fatigue 44, 18 44,55 14 SOURCE: Fiziko-khimicheskaya mekhanika materialov, v. 1, no. 6, 1965, 732-733 TOPIC TAGS: steel, corrosion, durability, hydrogen embrittlement, sulfuric acid, sodium chloride, stress concentration ABSTRACT: The effect of the content of nonmetallic inclusions on the low-cycle fatigue of annealed ShKh15 steel produced by various processes was studied in air and in corrosive media (3% NaCl solution; 0.1 N H2SO4 solution; 0.1 N H2SO4 solution with cathodic polarization at current density $D_{\rm C} = 10~{\rm A/dm^2}$ corresponding to hydrogen absorption). Tests in air showed a marked divergence in the values of the durability of the purest and most contaminated steel. In the neutral medium, the durability drops by 15-25% while the effect of purity diminishes. In the acid medium, the durability drops even more (by 25-30%). Under hydrogen/absorption conditions, the durability is at its minimum (about 60% of the value in air),

"APPROVED FOR RELEASE: 03/13/2001

CIA-RDP86-00513R000927910002-1

L 14415-66 ACC NR: AP6002126

and its dependence on the purity is slight; this is because the formation of brittle cracks causes a decrease in durability. As the corrosiveness of the medium increases, the influence of steel purity of low-cycle fatigue levels off, ium increases, the influence of steel purity of low-cycle fatigue levels off, probably because additional stress concentrators which are more effective than the nonmetallic inclusions are formed. During hydrogen absorption, the inclusions act as sources of cracks. Orig. art. has: 2 figures.

SUB CODE: 11 / SUEM DATE: 17Jun65 / ORIG REF: 003

Card 2/2-10

21923-66 EWA(h)/EWT(m)/T/EWA(ACC NR: AP6014622	SOURCE CODE: UR/0133/65/000/002/0151/0153
MUTHOR: Kuslitskiy, A. B.; Babey, Mizetskiy, V. L.; Borisov, A. Ya.	Yu. I.; Karpenko, G. V.; Serebriyskiy, E. I.;
ORG: none FITLE: Influence of nonmetallic in of electroslag and vacuum remelted SOURCE: Stal, no. 2, 1965, 151-15	4
TORIC TAGS: nonmetallic inclusion.	bearing steel, steel, electroslag melting, costructure, fatigue strength, annealing/ShKhl5
ballbearing steel for manufacturing can only be satisfied by special to electroslag remelting (VAR and ESR is not the same for different method the authors of this paper investigated density to fatigue strength of methods: I and II—ESR+VAR (steel STV—conventional melting in an open	have been set forth as to the purity of ShKhl5; precision instrument bearings. These requirements bearings, these requirements ochnology, e.g., by means of vacuum-arc and). The degree of purity as to nonmetallic inclusions ods of remelting. The metal also differs in density. At the relationship of both nonmetallic inclusions ShKhl5 steel which was processed by six different ShKhl5P and ShKhl5S); III-ESR (steel ShKhl5Sh); arc furnace (ShKhl5); Vdouble VAR of a steel; and VIdouble VAR of ordinary billets. As to
Card 1/2	UDC: 669.15

L 21923-66

ACC NR: AP6014622

chemical composition, the steel of all the melting methods conformed to GOST 801-60. Nonmetallic inclusions content was measured according to the scale of ChMTU 236-60, Density was measured by hydrostatic weighing of 20 samples from each of three melts (after quenching and low tempering). The samples were fatigue tested by the rotating beam method using an NU machine at 50 cps. Samples for fatigue testing were turned from 18-20 mm annealed rods which were then heated to 840-850 C, oil quenched, and tempered at 150°C for 2 hours. The method used for evaluating contamination of the steels did not make it possible to establish a definite relationship between the content of individual forms of nonmetallic inclusions melted by the different methods and their fatigue limit, but, in general, the fatigue strength was lower for those steels which had a higher inclusion content. Of all the methods used it was found that electroslag remelting yields a denser microstructure and, consequently, a higher fatigue strength. Therefore, density of ballbearing steel should be considered as one of the most important factors of its quality and be rigidly controlled in the production of highly reliable bearings. Orig. art. has: 3 figures and 1 table. [JPRS]

SUB CODE: 11, 13, 20 / SUBM DATE: none / ORIG REF: 010 / OTH REF: 006

Card 2/2 nat

SOURCE CODE: UR/0369/66/002/003/0336/0339 ACC NR: AP6023448 AUTHOR: Kuslitskiy, A. B.; Kreymerman, G. I.; Kokotaylo, I. V.; Starovoytov, Yu. A.; Karpenko, G. V.; Tkachev, V. I. ORG: Physicomechanical Institute, AN UkrSSR, L'vov(Fiziko-mekhanicheskiy institut AN UKESSRY TITLE: Effect of metallurgical factors on the low-cycle fatigue in various media SOURCE: Fiziko-khimicheskaya mekhanika materialov, v. 2, no. 3, 1966, 336-339 TOPIC TAGS: steel, low alloy steel, nickel containing steel, vacuum doguscou oteel, low cycle fatigue, atael fatigue atrenath steel fatigue life/12KhN3A steel

ABSTRACT: Low-allow 12KhN3A structural steel, conventionally cast or vacuum degassed, was hot-rolled into 40 mm plates or 3 mm sheets, hardened and tempered to a tensile strength of 100 dan/mm², and tested for fatigue strength in the air, in a 3% NaCl aqueous solution, and in the same solution with applied cathodic polarization, the latter to promote a hydrogen absorption. A constant-amplitude, symmetrical bending at a frequency of 0.8 cps was used in the tests. The test results showed that vacuum-degassed steel had a longer fatigue life in all the investigated media than the conventionally cast steel, especially in the tests in the NaCl solution with cathodic polarization. The embrittling effect of hydrogen and, correspondingly, the difference in the fatigue life increased with increasing amplitude. Longitudinal

ACC NR: AP6023448

specimens had a longer fatigue life than that of transverse specimens. With increasing amplitude, the difference in the fatigue life of longitudinal and transverse specimens increased substantially in tests in the air, and less so in tests verse specimens increased substantially in tests in the ACL with cathodic polarization. in NaCl solution, but noticeably decreased in the NaCl with cathodic polarization. Sheet specimens had a slightly higher fatigue life than that of plate specimens in the air and in NaCl solution, but lower in NaCl with cathodic polarization. [MS] art. has: 1 figure.

SUB CODE: 11/ SUBM DATE: 05Feb66/ ORIG REF: 002/ ATD PRESS: 5047

Card 2/2/11/2 P

AND THE PERSON OF THE PERSON O ENT(m)/ENP(w)/T/ENP(t)/EII IJP(c) JD/MB SOURCE CODE: UR/0369/66/002/002/0192/0194 ACC NRI AP6020916 44 AUTHORS: Tkachov, V. I.; Kripyakevich, R. I.; Kuslitskiy, A. B. ORG: Physico-Mechanical Institute, All UkrSSR, L'vov (Fiziko-mekhanicheskiy institut AN UkrSSR) 6 TITLE: Influence of preliminary hydrogenation and corrosion on the low-cycle fatigue of stool SOURCE: Fiziko-khimicheskaya mekhanika materialov, v. 2, no. 2, 1966, 192-194 CORROSION RATE, HYDROSENATION, LOW CARGON STEEL, CARGON STEEL, TOPIC TAGS: stool, alloy steel, hydrogen embrittlement, metal aging / O8kp low carbon steel, ShKhl5 carbon steel ADETRACT: The low-cycle (plastic) fatigue of annealed low-carbon steel OSkp and of high-carbon steel ShKhl5 was studied. The study extends the results of an earlier investigation by B. I. Tkachov and R. I. Kripyakevich (Fizikokhimicheskaya mekhanika materialov, 1965, No. 6). The experimental procedure followed is described by V. I. Tkachev and Yu. I. Babey (Fiziko-khimicheskaya mekhanika materialov, 1966, No. 2). The hydrogenation and corresion of 2.5 x 5 mm specimens was carried out in 3% NaCl at a current density of 3 amp/dm2. The experimental results are presented graphically (see Fig. 1). It was found that the deofcase of plastic strength due to corrosion and hydrogenation beams a different character: corrosion loads to irreversible changes, whereas changes brought about Cord 1/2

L 42319-66

ACC NR: AR6020916

Fig. 1. Influence of the period, \mathcal{C} , of preliminary corresion and hydrogenation on the number of cycles N for complete destruction of steel specimens 68kp (a) and ShKhl5 (b) respectively. 1 - preliminary hydrogenation; 2 - same, but followed by two hours of aging at 1000: 3 - preliminary corresion.

by hydrogenation may be reversed by hydrogen desorption. The rate and degree of strength recovery depend on the composition of the steel; carbon and alloying elements decrease the tendency towards recovery. It is suggested that plastic fatigue experiments constitute a more constitute method for determining hydrogen than the rupture experiments. Orig. art. has: 2 graphs.

SUB CODE: 11/ SUBM DATE: 19Jan66/ ORIG REF: 004

cord 2/2 -11/

L 049h1-67 EVT(d)/EVT(m)/EVT(t)/EVT (t)/FTT TUT(c) EM/UP ACC NR. AP6029688 SOURCE CODE: UR/0369/66/002/004/0464/0467

AUTHOR: Tkachev, V. I.; Kripyakevich, R. I.; Kuslitskiy, A. B.; Kreymerman, G. I.

(RG: Physics-Engineering Institute, AN UkrSSR, L'vov (Fiziko-mekhanicheskiy institut AN UkrSSR)

TITLE: Effect of stress concentration on low-cycle fatigue in media

SOURCE: Fiziko-khimicheskaya mekhanika materialov, v. 2, no. 4, 1966, 464-467

TOPIC TAGS: stress concentration, material deformation, corrosive strength, hydrogenation, cyclic strength, fatigue strength

ABSTRACT: The effect of the amplitude of total deformation, ε , and of stress frequency, v, on the low-cycle fatigue of specimens was studied with concentrators of stress, represented by 1 mm holes in the flat samples. The latter were tested in air and in corrosive and in hydrogenating environments. Concentration of stress resulted in a marked decrease of service life under low-cycle fatigue as compared with conditions of uniform stress distribution. The value N(ε), N being the number of cycles, showed the same basic dependence upon conditions as under uniform stress. The value of critical deformation decreased at a concentration of

Card 1/2

	_ f	o doto minini	iclent of stress con ed by the ratio of the ectively. Orig. ar	centration on deformation te environment factors for t. has: 3 figures.	
			ORIG REF: 001/		
kh					

"APPROVED FOR RELEASE: 03/13/2001

CIA-RDP86-00513R000927910002-1

USSR/Chemistry - Priedel-Crafts Reaction Sep 48
Chemistry - Estones, Synthesis

"Synthesis of Aliphatio-Arcmatic Ketones by
Priedel-Crafts Reaction," M. S. Malinovskiy, F. F.
Kuslova, Stud, Lab Org Chem, Gor'kiy State U, 2pp

"Zhur Obshoh Khimii" Vol XVIII, No 9

Using acids instead of their anhydrides or acyl
chlorides in reactions with toluene, 27-366
yields of p-tolyl alkyl ketones were obtained in
presence of aluminum chloride. Acids included
acetic, butyrio, isobutyrio, and isovaleric.
Submitted 9 May 47.

KUSLYAKOV, '.A. KUSLYAKOV, B.A. COMMONWEACHER COMMON THE THE TANK THE TANK THE Modification of conditioned vestibulo-motor reflexes following labyrinthectomy in dogs. Fiziol.zhur. 43 no.3:271-278 Mr '57. (MIRA 10:8) 1. Laboratoriya interotseptivnykh uslovnykh refleksov Instituta fiziologii im. I.P.Pavlova AN SSSE, Leningrad (LABYRIWTH, effect of excision, on vestibulo-motor conditioned reflexes in dogs (Rus)) (REFLEX, COMDITIONED, vestibulo-motor, eff. of labyrinthectomy (Rus)) (VESTIBULAR APPARATUS, physiology, vestibulo-motor conditioned reflexes in labyrinthectomized animals (Rus))

"APPROVED FOR RELEASE: 03/13/2001

CIA-RDP86-00513R000927910002-1

L 23614-66 EWT(d)/EWP(v)/EWP(k)/EWP(h)/EWP(1)

ACC NRI AP6009554

SOURCE CODE: UR/0413/66/000/005/0109/0110

AUTHOR: Raykhman, Ya. A.; Kusman, Ye. A.; Kuz'michev, G. P.

ORG: none

1/

TITLE: A micromanipulator. Class 49, No. 179586

17

SOURCE: Izobreteniýa, promyshlennyye obraztsy, tovarnyye znaki, no. 5, 1966, 109-110

TOPIC TAGS: micromanipulator, microdissection, microinjection, electromagnet

ABSTRACT: This Author's Certificate introduces: 1. A micromanipulator for moving a tool in three dimensions by a control lever hinged to the framework with a drive connected to a two-coordinate table which supports the tool and a handwheel which moves in the horizontal plane on a plate in the framework. The device is designed for fast preliminary motion and exact adjustment of the tool by making the drive from the control lever to the two-coordinate table in the form of a system of two separately connected electromagnets: one for coarse and one for fine motion. The first electromagnet is connected through a hinge to the control lever and the second is connected to a pantograph. One of the hinges on the pantograph is connected to the electromagnet for coarse adjustment and the other is connected to the framework. 2. A modification of this micromanipulator in which the two-coordinate table may be fixed in a definite

UDC: 621.86.076

Card 1/3

L 23614-66					
ACC NR: AP600955	4				0
form of a working cam in the framewowheel. 4. A modifi	tool is moved stage. This ork with a pu fication of t table is pr	in the ver stage is sulley which his microman eset by char	tical plane by a spec upported by a roller is connected by a cab nipulator in which th nging the lever arms.	on of this micromanipulation made in on a specially shaped de to the control hande scale of motion for In the framework is	the
SUB CODE: 13/	SUBM DATE:	19Aug63/	ORIG REF: 000/	OTH REF: 000	
	•		·	•	
			•		
		•		•	
Cord 3/3 FV					
	-		-		

KUSMARTSEV, V. S.

Kusmartsev, V. S. "It is time to produce high-quality textbooks on general technical disciplines", Vestnik vyssh. shkoly, 1949, No. 5, p. 14-17.

SO: U-4630, 16 Sept. 53, (Letopis 'Zhurnal 'nykh Statey, No. 23, 1949).

"APPROVED FOR RELEASE: 03/13/2001

CIA-RDP86-00513R000927910002-1

AUTHOR 2

Kusmartsev, V. S., Dotsent

3-5-10/38

TITLE:

Questions of Instruction Relating to the Course "Machine Parts"

(Voprosy prepodavaniya kursa "Detali mashir")

PERIODICAL:

Vestnik vysshey shkoly, Nr 5, 1957, p 32-33 (USSR)

APSTRACT:

The existing textbooks and school aids for the Machine Parts course were prepared for machine building vuzes and tekhnikums, and, therefore,

do not meet the program requirements of other vuzes and tekhnikums

giving the above mentioned course. For this reason Professor

N. A. Spitsyn's recommendation to prepare special textbooks designed to fulfill the program requirements of separate schools is justified.

ASSOCIATION: The Stalingrad Engineering Institute of Urban Economy (Stalingradskiy

institut inzhenerov gorodskogo khozyaystva)

AVAILABLE:

Library of Congress

Card 1/1

PHASE I BOOK EXPLOITATION

SOV/5306

Kusmartsev, Vasiliy Sergeyevich

- Avtomatika proizvodstvennykh protsessov (Automation of Industrial Processes) [Rostov-na-Donu] Rostovskoye knizhnoye izd-vo, 1960.
- Reviewers: V. A. Obraztsov and A. F. Rakov; Ed.: I. V. Zherebkov;
- PURPOSE: This booklet is intended for personnel working in branches of industry which use automatic devices. It may also be useful to students of technical institutions of higher education and
- COVERAGE: The booklet deals briefly with the theory and design of hydraulic, pneumatic, electric, and combined automatic regulators and their components. The various fields of application of automatic devices are also considered. No personalities are mentioned. There are 9 references, all Soviet.

Card 1/4 -

KUSMARTSEVA, L.V.

Surgical setting of an old dislocation of the basilar phalamx of the second finger of the right hand. Zdravookhranenie 4 no. 1:53-55 Ja-F '61. (MIRA 14:2)

1. Iz kafedry obshehey khirurgii (zav. - prof. N.L. Gladyrevskiy) Kishinevskogo meditsinskogo instituta. (FINGERS-DISLOCATION)

KUSMIRTSEVA, L. V.

"Ischemic Disorders in Intra-artorial Blood Transfusion"

report submitted at the Society of Surgeons of the moldavian SSSR, 1960

So: Zdravookhraneniye, Kishinev, No. 2, March-April 1961, pages 61-64

VELIKORETSKIY, D.A.; LORIYE, K.M.; FINKEL', I.I.; GRIGORCHUK, Yu.F.;

BERGER, L.Kh.; 'UTROBINA, V.V.; KHARCHENKO, V.P.; MESHCHERYKOV, A.V.,

student V kursa; OBERENCHENKO, Ya.V., kand.med.nauk; NIKIIIN, A.V.;

MUKHOYEDOVA, S.N.; KUEMAKTSEVA, L.V., assistent; KUZMETSOV, V.A.,

dotsent; KUKHTINOVA, R.A., assistent; BOHDARENKO, Ya.D. (g. Fastov);

KUMTASOVA, L.V. (g. Fastov); PEVCHIKH, V.V.; CHURAKOVA, A.Ye.;

BABICH, M.M.; KUZMIN, K.P.; PAVLOV, S.S.; SHEVLYAKOV, L.V., kand.

med.nauk; IGNAT'YEVA, O.M.; ZEYGERMAKHER, G.A.; GUTKIN, A.A.;

POLYKOVSKIY, T.S.

Regumos. Sov.med. 25 no.11:147-152 N 161.

(MIRA 15:5)

1. Iz Instituta grudnoy khirurgii AMI SSSR (for Velikoretskiy, Loriye, Finkel'). 2. Iz bol'nitsy No.3 Gorlovki Stalinskoy oblasti (for Grigorehuk). 3. Iz Tyumenskoy oblastnoy bol'nitsy (for Berger, Utrobina). A. Iz Karatasskoy rayonnoy bol'nitsy Yuzhno-Kazakhstanskoy oblasti (for Kharchenko). 5. Iz Gospital'noy khirurgicheskoy kliniki I Moskovskogo ordena Lenina meditainskogo instituta imeni Sechenova (for Meshcheryakov). 6. Iz kliniki propodevticheskoy terapii Stalinskogo meditsinskogo instituta na baze oblastnoy klinicheskoy bol'nitsy imeni Kalinina (for Oberemchenko). 7. Iz kliniki gospital'noy terapii Voronezhskogo meditsinskogo instituta (for Mikitin, Mukhoyedova).
8. Iz kafedry obshchey khirurgii kishinveskogo meditsinskogo instituta (for Kusmartseva).

EUDAGYAN, I.A., ingh.; KUSMAUL', K.V., ingh.

Kaluga Synthetic Perfuse Combine, Masl.-zhir, prom. 23 no.12:11-13
(MIRA 11:2)

(Kaluga-Pyrfumes, Synthetic)

KUSMAUL', Konstantin Vasil'yevich; MOISEYKNKO, A., red.; GALITSKIY, B., tekhn.red.

[Synthetic Odorous Substances Combine is an enterprise of collective efficiency promotion] Kombinet SDV - predpriatic kollektivnoi ratsionalizatsii. Kaluya, Kaluzhakoe knizhnoe izd-vo, 1958. 62 p.

(Odorous substances)

(MIRA 12:9)

KUSMAUL', K.v., inzh.; SOSMOVSKIY, N.Kh.

Barrel tilter. Masl.-zhir.prom. 28 no.4:42-43 Ap '62.
(MIRA 15:5)

1. Kaluzhskiy kombinat sinteticheskikh dushistykh veshchestv.
(Material handling--Equipment and supplies)

KUS'MANKO, K.N.; PLUZHNIKOV, V.Kh.

Lunar occultations of stars observed at the Kharkov Observatory in 1959. Autron.tsir. no.208;29-30 Ja '60. (MIRA 13:11) (Occultations)

APPROVED FOR RELEASE: 03/13/2001 CIA-RDP86-00513R000927910002-1"

AME KUZ MICHEV K.V.

10(2)

PHASE I BOOK EXPLOITATION SOV/1308

Kirillov. Ivan Ivanovich, Rakhmiyel Mordukhovich Yablonik, Lev Vasil yevich Kartsev, Ivan Grigor yevich Gogolev, Ryurik Vladimirovich Kuz michev. Gennadiy Ivanovich Khutskiy, Rostislav Ivanovich D'yakonov, Viktor Dmitriyevich Pshenichnyy, and Aleksandr Aleksandrovich Tereshkov

Aerodinamika protochnoy chasti parovykh i gazovykh turbin (Aerodynamics of Steam and Gas Turbine Flow-Passage Areas) Moscow, Mashgiz, 1958. 246 p. 4,500 copies printed.

Ed.: Kirillov, I.I., Professor, Bryansk Institut of Transport Machine Building; Reviewer: Shubenko, L.A., Corresponding Member, USSR Academy of Sciences; Tech. Ed.: Gerasimova, D.S.; Managing Ed. for Literature on General Technical and Transport Machine Building (Mashgiz): Ponomareva, K.A., Engineer.

PURPOSE: This book was written for engineers working on the design, Card 1/6

Aerodynamics of Steam and Gas Turbine Flow-Passage Areas SOV/1308 manufacture and operation of steam and gas turbines. It may also be useful to students of special courses.

COVERAGE: The authors analyze physical phenomena connected with flow through the stages of impulse steam and gas turbines. They give the results of experimental investigation of stages with full and partial supply of the working medium. The basic results obtained are for high - and medium-powered turbines.

Results of the investigation of a new low-powered turbine are also given. Practical recommendations for the design of the flow passage area of steam and gas turbines are given, based on the investigation of effect of various design measures on the efficiency coefficient of stages. The investigation was made in the BITM (Bryansk Institute of Transport Machinery Building). The following sections were written by members of the Chair of Turbine Construction of the BITM: Professor I.I. Kirillov, Docent, Candidate of Technical Sciences, paragraphs 1, 2, 13, 16; Docent

Card 2/6

Acrodynamics of Steam and Gas Turbine Flow-Passage Areas 30V/1304

R.M. Yablonik, Cardidate of Technical Sciences, paragraph 9; I.I. Kirillov and R.M. Yablonik, paragraphs 3,4,5; L.V. Kartsev, Good date of Technical Sciences, paragraphs 6,7,19; L.V. Gogclev, Candidate of Technical Sciences, paragraphs 10, 11; R.V. Kuzimichev, Candidate of Technical Sciences, paragraph 8; G.I. Khutskiy, dandidate of Technical Science, paragraph 8; G.I. Khutskiy, dandidate of Technical Science, paragraphs 12, 14, 15; R.I. D'yakonov, paragraph 17; V.D. Pshenichnyy, Engineer of the Kirov Plant, paragraph 18; A.A. Tereshkov, Engineer of BITM, paragraph 18: A.A. Tereshkov, Engineer of BITM, Endush 18: A.A. Tereshkov, Plant contributed to the development of experimental work and Surbines for BITM. The bibliography addats of 23 references, A. of which are Soviet, and 1 is German.

PABLE OF CONTENTS:

Pintale

Card 3/6

3

	22.
••	
Aerodynamics of Steam and Gas Turbine Flow-Passage Areas 30V/13 Frindipal Symbols	157
	5
Cn. I. Experimental Stands and Testing Methods 1. Problems of experimental testing of the flow-passage area 2. A Lymbine	9
6. air breathing expendented them.	•)
3. Method of investigating rotating models of turbine stages	12
On. II. Stages With a Full Supply of the Working Medium 4. The degree of reaction and the escape of steam in stages	32
D. Effect of special design features of the section is	39
6. Structure of energy	Pot-
6. Structure of the flow in open axial clearances in a grage of an impulse turbine	
7. Suracture of the flow with steem industrian at the	84
of an impulse stage	37
Caro 4/6	P
	8