# Terro's real estate agency



## Contents

| Prol        | olem Statement (Situation):                                                                                                                                                                                                                                                                                | . 4 |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Data        | a Dictionary:                                                                                                                                                                                                                                                                                              | . 4 |
| 1)<br>Writ  | Generate the summary statistics for each variable in the table. (Use Data analysis tool pack). te down your observation.                                                                                                                                                                                   | . 4 |
| 2)          | Plot a histogram of the AVG_PRICE variable. What do you infer?                                                                                                                                                                                                                                             | .6  |
| 3)          | Compute the covariance matrix. Share your observations                                                                                                                                                                                                                                                     | .7  |
| 4) C        | reate a correlation matrix of all the variables (Use Data analysis tool pack). (5 marks)                                                                                                                                                                                                                   | .8  |
| a) V        | Vhich are the top 3 positively correlated pairs and                                                                                                                                                                                                                                                        | .8  |
| b) V        | Vhich are the top 3 negatively correlated pairs                                                                                                                                                                                                                                                            | .8  |
| 5)<br>as Ir | Build an initial regression model with AVG_PRICE as 'y' (Dependent variable) and LSTAT variable and LSTAT variable. Generate the residual plot                                                                                                                                                             |     |
| a)<br>coet  | What do you infer from the Regression Summary output in terms of variance explained, fficient value, Intercept, and the Residual plot?                                                                                                                                                                     | 10  |
| b)          | LSTAT variable significant for the analysis based on your model?                                                                                                                                                                                                                                           | 10  |
| 6)<br>vari  | Build a new Regression model including LSTAT and AVG_ROOM together as independent ables and AVG_PRICE as dependent variable.                                                                                                                                                                               | 11  |
| com         | Write the Regression equation. If a new house in this locality has 7 rooms (on an average) and a value of 20 for L-STAT, then what will be the value of AVG_PRICE? How does it compare to the spany quoting a value of 30000 USD for this locality? Is te company Overcharging/lercharging?                |     |
| b)<br>Con   | Is the performance of this model better than the previous model you built in Question 5?                                                                                                                                                                                                                   | 12  |
| Rsq         | Build another Regression model with all variables where AVG_PRICE alone be the Dependent able and all the other variables are independent. Interpret the output in terms of adjusted uare, coefficient and Intercept values. Explain the significance of each independent variable with bect to AVG_PRICE. |     |
| _           | Pick out only the significant variables from the previous question. Make another instance of the ression model using only the significant variables you just picked and answer the questions by:                                                                                                           |     |
| a)          | Interpret the output of this model                                                                                                                                                                                                                                                                         | 14  |
| b)<br>whi   | Compare the adjusted R-square value of this model with the model in the previous question, ch model performs better according to the value of adjusted R-square?                                                                                                                                           | 15  |
| c)<br>the   | Sort the values of the Coefficients in ascending order. What will happen to the average price if value of NOX is more in a locality in this town?                                                                                                                                                          |     |
| d)          | Write the regression equation from this model.                                                                                                                                                                                                                                                             | 16  |

## **List of Tables**

| Table 1.Descriptive states               | 4  |
|------------------------------------------|----|
| Table 2.coverience                       | 7  |
| Table 3.correlation                      |    |
| Table 4.AVG_PRICE VS LSTAT               | 9  |
| Table 5. LSTAT and AVG_ROOM vs AVG_PRICE | 11 |
| Table 6. AVG_PRICE vs another variable   | 13 |
| Table 7. coefficients and p value        | 14 |
| Table 8.coefficient                      | 15 |
|                                          |    |
|                                          |    |
| List of Figure                           |    |
| List of Figure                           |    |
| Figure 1.Histogram                       | 6  |
| Figure 2. Residual plot LSTAT            |    |
| •                                        |    |

## Problem Statement (Situation):

"Finding out the most relevant features for pricing of a house" Terro's real-estate is an agency that estimates the pricing of houses in a certain locality. The pricing is concluded based on different features / factors of a property. This also helps them in identifying the business value of a property. To do this activity the company employs an "Auditor", who studies various geographic features of a property like pollution level (NOX), crime rate, education facilities (pupil to teacher ratio), connectivity (distance from highway), etc. This helps in determining the price of a property.

The agency has provided a dataset of 506 houses in Boston. Following are the details of the dataset:

## Data Dictionary:

| Attribute  | Description                                                            |
|------------|------------------------------------------------------------------------|
| CRIME RATE | per capita crime rate by town                                          |
| INDUSTRY   | proportion of non-retail business acres per town (in percentage terms) |
| NOX        | nitric oxides concentration (parts per 10 million)                     |
| AVG_ROOM   | average number of rooms per house                                      |
| AGE        | proportion of houses built prior to 1940 (in percentage terms)         |
| DISTANCE   | distance from highway (in miles)                                       |
| TAX        | full-value property-tax rate per \$10,000                              |
| PTRATIO    | pupil-teacher ratio by town                                            |
| LSTAT      | % lower status of the population                                       |
| AVG_PRICE  | Average value of houses in \$1000's                                    |

## Objective:

To analyse the magnitude of each variable to which it can affect the price of a house in a particular locality.

1) Generate the summary statistics for each variable in the table. (Use Data analysis tool pack). Write down your observation.

|                    |            |         |         | DESCRIE  | TIVE ST  | ATISTICS |         |          |         |           |
|--------------------|------------|---------|---------|----------|----------|----------|---------|----------|---------|-----------|
|                    |            |         |         |          |          |          |         |          |         |           |
| STATISTICS         | CRIME_RATE | AGE     | INDUS   | NOX      | DISTANCE | TAX      | PTRATIO | AVG_ROOM | LSTAT   | AVG_PRICE |
| Mean               | 4.87       | 68.57   | 11.14   | 0.55     | 9.55     | 408.24   | 18.46   | 6.28     | 12.65   | 22.53     |
| Standard Error     | 0.13       | 1.25    | 0.30    | 0.01     | 0.39     | 7.49     | 0.10    | 0.03     | 0.32    | 0.41      |
| Median             | 4.82       | 77.5    | 9.69    | 0.538    | 5        | 330      | 19.05   | 6.2085   | 11.36   | 21.2      |
| Mode               | 3.43       | 100     | 18.1    | 0.538    | 24       | 666      | 20.2    | 5.713    | 8.05    | 50        |
| Standard Deviation | 2.92       | 28.15   | 6.86    | 0.12     | 8.71     | 168.54   | 2.16    | 0.70     | 7.14    | 9.20      |
| Sample Variance    | 8.53       | 792.36  | 47.06   | 0.01     | 75.82    | 28404.76 | 4.69    | 0.49     | 50.99   | 84.59     |
| Kurtosis           | -1.19      | -0.97   | -1.23   | -0.06    | -0.87    | -1.14    | -0.29   | 1.89     | 0.49    | 1.50      |
| Skewness           | 0.02       | -0.60   | 0.30    | 0.73     | 1.00     | 0.67     | -0.80   | 0.40     | 0.91    | 1.11      |
| Range              | 9.95       | 97.1    | 27.28   | 0.486    | 23       | 524      | 9.4     | 5.219    | 36.24   | 45        |
| Minimum            | 0.04       | 2.9     | 0.46    | 0.385    | 1        | 187      | 12.6    | 3.561    | 1.73    | 5         |
| Maximum            | 9.99       | 100     | 27.74   | 0.871    | 24       | 711      | 22      | 8.78     | 37.97   | 50        |
| Sum                | 2465.22    | 34698.9 | 5635.21 | 280.6757 | 4832     | 206568   | 9338.5  | 3180.025 | 6402.45 | 11401.6   |
| Count              | 506        | 506     | 506     | 506      | 506      | 506      | 506     | 506      | 506     | 506       |

Table 1.Descriptive states

By using data analyst tool pack we will be create a summery in statistics, we will be able to create a descriptive statistics for each variable, which tell us mean, standard error, median, mode, standard deviation, sample variance, kurtosis, skewness, range, minimum, maximum, sum, count.

#### CRIME\_RATE:

- 1- Mean of CRIME\_RATE is approximately 4.87 and SD is 2.92 that means spread of the values are around the mean.
- 2 Average CRIME\_RATE in the town is 4.82
- 3 Distribution of the CRIME\_RATE right skewed
- 4 Kurtosis is negative (-1.19) that indicates distribution is flatter

#### AGE:

- 1- Average AGE of the house is 68.57
- 2- The maximum AGE of the houses is 100 and mode is also 100 which says that most of the houses has age of 100.
- 3- AGE of the skewed is negative (left tail) that indicates the most of the properties are old
- 4- Kurtosis is negative (-0.97) that indicates distribution is flatter
- 5- Most of the house age is around (86,99) years

#### **INDUS:**

- 1- Mean of the Indus is 11.14
- 2- Distribution of the Indus is right skewed(positive)
- 3- Kurtosis is negative (-1.23) that indicates the peak is flatter compared normal distribution

#### NOX:

- 1- Mean of the NOX is 0.55
- 2- Skewed of the NOX is 0.73 that indicates distributions is slightly towards right tail
- 3- Kurtosis is -0.06 it is close to Zero that indicates the distribution is relatively normal

#### **DISTANCE:**

- 1- Mean of the distance is 9.55
- 2- Mode of the distance and maximum distance are 24 that means most of the houses are away from the highway
- 3- Skewness of the distance is 1 that indicates distribution is right tail
- 4- Kurtosis is negative (-0.87) that means distribution is flat

#### TAX:

- 1- Average tax paid is 408.24
- 2- Bar graph indicates the most of the houses paid tax between (261,335)
- 3- Skewed of the tax is 0.67 that means positive skew distribution towards the right side
- 4- kurtosis of the tax is (-1.14) that means distribution is relatively flatter

#### PTRATIO:

1- Mean of the pupil teacher ratio is 18.46

- 2- mode of the pupil teacher is 20.20 and maximum pupil teacher is 22 that difference is small it's indicated the more school with higher pupil teacher
- 3- skewed of the pupil teacher is -0.80 that means negative so distribution is slightly left side
- 4- kurtosis is negative (-0.29) means distribution is relatively flatter

#### AVG\_ROOM:

- 1- Average room of the houses is around 6
- 2- Kurtosis of the AVG\_ROOM is 1.89 indicates the data is sharper peak compared to normal distribution
- 3- Given graph more houses are higher number of rooms
- 4- distribution of the AVG\_ROOM is positive and we can see an outlier in the data

#### LSTAT:

- 1- The mean of LSTAT is 12.65
- 2- Distribution of the LSTAT is positive and we can see an outlier in the data
- 3- positive skewed indicates lower population in general
- 4- kurtosis is 0.49 indicate the distribution has relatively moderate peak

## **AVG\_PRICE:**

- 1- Average price of the houses is 22.53
- 2- Mode of the AVG\_PRICE and max of the AVG\_PRICE is 50 that means most of the house's price is 50
- 3- positive skewed indicates the more houses is lower price
- 4- There are some outliers in the data indicates the few houses with higher price

## 2) Plot a histogram of the AVG\_PRICE variable. What do you infer?



Figure 16. Histogram

From the above histogram we were able to observe that

- 1- Most of the house's price are range between (\$21000, \$25000)
- 2- we can see here some of the houses are with higher price followed by (\$49000, \$53000)
- 3- There are a greater number of houses are lower price and a smaller number of houses are higher price
- 4- Data is positive skewed (right tail)

## 3) Compute the covariance matrix. Share your observations.

covariance matrix is helps to understand whether two variables are directly proportional (positive covariance) or inversely proportional (negative covariance). positive value indicate directly proportional, and negative value indicates inversely proportional.

By observing the covariance matrix is

- 1- we can see tax is high covariance values with each other feature that means tax is a very good variability with other features
- 2- As per above data (age, tax), (Indus, tax), (distance, tax) have more covariance that direct relationship to each other one is increase other is also increase

| CRIME_RATE | AGE      | INDUS   | NOX    | DISTANCE | TAX       | PTRATIO | AVG_ROOM | LSTAT   | AVG_PRICE |
|------------|----------|---------|--------|----------|-----------|---------|----------|---------|-----------|
| 8.516      |          |         |        |          |           |         |          |         |           |
| 0.563      | 790.792  |         |        |          |           |         |          |         |           |
| -0.110     | 124.268  | 46.971  |        |          |           |         |          |         |           |
| 0.001      | 2.381    | 0.606   | 0.013  |          |           |         |          |         |           |
| -0.230     | 111.550  | 35.480  | 0.616  | 75.667   |           |         |          |         |           |
| -8.229     | 2397.942 | 831.713 | 13.021 | 1333.117 | 28348.624 |         |          |         |           |
| 0.068      | 15.905   | 5.681   | 0.047  | 8.743    | 167.821   | 4.678   |          |         |           |
| 0.056      | -4.743   | -1.884  | -0.025 | -1.281   | -34.515   | -0.540  | 0.493    |         |           |
| -0.883     | 120.838  | 29.522  | 0.488  | 30.325   | 653.421   | 5.771   | -3.074   | 50.894  |           |
| 1.162      | -97.396  | -30.461 | -0.455 | -30.501  | -724.820  | -10.091 | 4.485    | -48.352 | 84.420    |

Table 2.coverience

- 4) Create a correlation matrix of all the variables (Use Data analysis tool pack). (5 marks)
- a) Which are the top 3 positively correlated pairs and
- b) Which are the top 3 negatively correlated pairs.

|            | CRIME_RATE   | AGE          | INDUS        | NOX          | DISTANCE     | TAX          | PTRATIO      | AVG_ROOM     | LSTAT        | AVG_PRICE |
|------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------|
| CRIME_RATE | 1            |              |              |              |              |              |              |              |              |           |
| AGE        | 0.006859463  | 1            |              |              |              |              |              |              |              |           |
| INDUS      | -0.005510651 | 0.644778511  | 1            |              |              |              |              |              |              |           |
| NOX        | 0.001850982  | 0.731470104  | 0.763651447  | 1            |              |              |              |              |              |           |
| DISTANCE   | -0.009055049 | 0.456022452  | 0.595129275  | 0.611440563  | 1            |              |              |              |              |           |
| TAX        | -0.016748522 | 0.506455594  | 0.72076018   | 0.6680232    | 0.910228189  | 1            |              |              |              |           |
| PTRATIO    | 0.010800586  | 0.261515012  | 0.383247556  | 0.188932677  | 0.464741179  | 0.460853035  | 1            |              |              |           |
| AVG_ROOM   | 0.02739616   | -0.240264931 | -0.391675853 | -0.302188188 | -0.209846668 | -0.292047833 | -0.355501495 | 1            |              |           |
| LSTAT      | -0.042398321 | 0.602338529  | 0.603799716  | 0.590878921  | 0.488676335  | 0.543993412  | 0.374044317  | -0.613808272 | 1            |           |
| AVG_PRICE  | 0.043337871  | -0.376954565 | -0.48372516  | -0.427320772 | -0.381626231 | -0.468535934 | -0.507786686 | 0.695359947  | -0.737662726 | 1         |

Table 3.correlation

#### **Top 3 positively correlated pairs**

1- Distance – Tax 0.910228189 2- NOX – Indus 0.763651447 3- NOX – Age 0.731470104

#### Top 3 negatively correlated pairs

1.Avg\_Price - LSTAT - 0.737662726 2.LSTAT - AVG\_ROOM -0.613808272 3.Avg\_Price - PTRATIO -0.507786686 5) Build an initial regression model with AVG\_PRICE as 'y' (Dependent variable) and LSTAT variable as Independent Variable. Generate the residual plot.

| SUMMARY OUTPUT    |                     |                |              |             |                |              |             |             |
|-------------------|---------------------|----------------|--------------|-------------|----------------|--------------|-------------|-------------|
| Regression        | on Statistics       |                |              |             |                |              |             |             |
| Multiple R        | 0.737662726         |                |              |             |                |              |             |             |
| R Square          | 0.544146298         |                |              |             |                |              |             |             |
| Adjusted R Square | 0.543241826         |                |              |             |                |              |             |             |
| Standard Error    | 6.215760405         |                |              |             |                |              |             |             |
| Observations      | 506                 |                |              |             |                |              |             |             |
| ANOVA             |                     |                |              |             |                |              |             |             |
|                   | df                  | SS             | MS           | F           | Significance F |              |             |             |
| Regression        | 1                   | 23243.914      | 23243.914    | 601.6178711 | 5.0811E-88     |              |             |             |
| Residual          | 504                 | 19472.38142    | 38.63567742  |             |                |              |             |             |
| Total             | 505                 | 42716.29542    |              |             |                |              |             |             |
|                   | Coefficients        | Standard Error | t Stat       | P-value     | Lower 95%      | Upper 95%    | Lower 95.0% | Upper 95.0% |
| Intercept         | 34.55384088         | 0.562627355    | 61.41514552  | 3.7431E-236 | 33.44845704    | 35.65922472  | 33.44845704 | 35.6592247  |
| LSTAT             | -0.950049354        | 0.038733416    | -24.52789985 | 5.0811E-88  | -1.0261482     | -0.873950508 | -1.0261482  | -0.87395050 |
| RESIDUAL OUTPUT   |                     |                |              |             |                |              |             |             |
| Observation       | Predicted AVG PRICE | Residuals      |              |             |                |              |             |             |
| 1                 |                     | -5.822595098   |              |             |                |              |             |             |
| 2                 | 25.87038979         | -4.270389786   |              |             |                |              |             |             |
| 3                 | 30.72514198         | 3.974858016    |              |             |                |              |             |             |
| 4                 | 31.76069578         | 1.639304221    |              |             |                |              |             |             |
| 5                 | 29.49007782         | 6.709922176    |              |             |                |              |             |             |
| 6                 | 29.60408375         | -0.904083746   |              |             |                |              |             |             |
| 7                 | 22.74472741         | 0.155272588    |              |             |                |              |             |             |
| 8                 | 16.36039575         | 10.73960425    |              |             |                |              |             |             |

Table 4.AVG\_PRICE VS LSTAT



Figure 2. Residual plot LSTAT

a) What do you infer from the Regression Summary output in terms of variance explained, coefficient value, Intercept, and the Residual plot?

#### Variance:

1- From this model 54% of the variation in the average price is explained by the LSTAT

#### Coefficient:

- 1- The coefficient of LSTAT for the model is -0.950049354.
- 2- LSTAT increase by 0.9 times then average price of house decreases 0.9 times

#### Intercept:

1- Intercept of LSTAT for the model is 34.55384088.

#### residual plot:

1- most of the plots are on upper side of the x axis

b) LSTAT variable significant for the analysis based on your model?

P value > Alpha = (is significant)

P value < Alpha = (not a significant)

P value is 0.05

p-value (5.08E-88) of this model is less than 0.05.

we can say that LSTAT is a significant variable according to this model.

6) Build a new Regression model including LSTAT and AVG\_ROOM together as independent variables and AVG\_PRICE as dependent variable.

| SUMMARY OUTPUT    |                     |                |              |             |                |              |              |              |
|-------------------|---------------------|----------------|--------------|-------------|----------------|--------------|--------------|--------------|
| Pagei-            | on Statistics       |                |              |             |                |              |              |              |
|                   | 0.799100498         |                |              |             |                |              |              |              |
| Multiple R        |                     |                |              |             |                |              |              |              |
| R Square          | 0.638561606         |                |              |             |                |              |              |              |
| Adjusted R Square | 0.637124475         |                |              |             |                |              |              |              |
| Standard Error    | 5.540257367         |                |              |             |                |              |              |              |
| Observations      | 506                 |                |              |             |                |              |              |              |
| ANOVA             |                     |                |              |             |                |              |              |              |
|                   | df                  | SS             | MS           | F           | Significance F |              |              |              |
| Regression        | 2                   | 27276.98621    | 13638.49311  | 444.3308922 | 7.0085E-112    |              |              |              |
| Residual          | 503                 | 15439.3092     | 30.69445169  |             |                |              |              |              |
| Total             | 505                 | 42716.29542    |              |             |                |              |              |              |
|                   | Coefficients        | Standard Error | t Stat       | P-value     | Lower 95%      | Upper 95%    | Lower 95.0%  | Upper 95.0%  |
| Intercept         | -1.358272812        | 3.17282778     | -0.428095348 | 0.668764941 | -7.591900282   | 4.875354658  | -7.591900282 | 4.875354658  |
| AVG_ROOM          | 5.094787984         | 0.4444655      | 11.46272991  | 3.47226E-27 | 4.221550436    | 5.968025533  | 4.221550436  | 5.968025533  |
| LSTAT             | -0.642358334        | 0.043731465    | -14.68869925 | 6.66937E-41 | -0.728277167   | -0.556439501 | -0.728277167 | -0.556439503 |
|                   |                     |                |              |             |                |              |              |              |
| RESIDUAL OUTPUT   |                     |                |              |             |                |              |              |              |
| Observation       | Predicted AVG_PRICE | Residuals      |              |             |                |              |              |              |
| 1                 | 28.94101368         | -4.941013681   |              |             |                |              |              |              |
| 2                 | 25.48420566         | -3.884205661   |              |             |                |              |              |              |
| 3                 | 32.65907477         | 2.040925231    |              |             |                |              |              |              |
| 4                 | 32,40652            | 0.99348        |              |             |                |              |              |              |

Table 5. LSTAT and AVG\_ROOM vs AVG\_PRICE

a) Write the Regression equation. If a new house in this locality has 7 rooms (on an average) and has a value of 20 for L-STAT, then what will be the value of AVG\_PRICE? How does it compare to the company quoting a value of 30000 USD for this locality? Is the company Overcharging/ Undercharging?

Regression equation:

$$Y = MX + C$$

Where,

Y - dependent variable

X - independent variable

M - slope (coefficient of X)

C - constant (intercept)

here we can use multi linear regression as per summery output our equation is:

Y = M0X0 + M1X1 + C

Y = AVG\_PRICE

 $X0 = AVG_ROOM$  M0 = 5.09

X1 = LSTAT M1 = -0.642

Above given Que-a X0 =7 and X1 = 20

So, put value in above equation

Y = (5.09) X0 + (-0.642) X1 + (-1.358)

Y = 21.44

Multiply by 1000

So, the price for the new house is \$21440

\$21440 is lesser then the \$30000 we can say that company is Overcharging

b) Is the performance of this model better than the previous model you built in Question 5? Compare in terms of adjusted R-square and explain.

Comparing the R-square

R- square of previous model(Q-5) = 0.54

R- square of this model = 0.63

We can say that this model is better than the previous model

7) Build another Regression model with all variables where AVG\_PRICE alone be the Dependent Variable and all the other variables are independent. Interpret the output in terms of adjusted Rsquare, coefficient and Intercept values. Explain the significance of each independent variable with respect to AVG\_PRICE.

| Regression        | Statistics   |                |              |             |                |              |              |              |
|-------------------|--------------|----------------|--------------|-------------|----------------|--------------|--------------|--------------|
| Multiple R        | 0.832978824  |                |              |             |                |              |              |              |
| R Square          | 0.69385372   |                |              |             |                |              |              |              |
| Adjusted R Square | 0.688298647  |                |              |             |                |              |              |              |
| Standard Error    | 5.1347635    |                |              |             |                |              |              |              |
| Observations      | 506          |                |              |             |                |              |              |              |
| ANOVA             |              |                |              |             |                |              |              |              |
|                   | df           | SS             | MS           | F           | Significance F |              |              |              |
| Regression        | 9            | 29638.8605     | 3293.206722  | 124.9045049 | 1.9328E-121    |              |              |              |
| Residual          | 496          | 13077.43492    | 26.3657962   |             |                |              |              |              |
| Total             | 505          | 42716.29542    |              |             |                |              |              |              |
|                   | Coefficients | Standard Error | t Stat       | P-value     | Lower 95%      | Upper 95%    | Lower 95.0%  | Upper 95.0%  |
| Intercept         | 29.24131526  | 4.817125596    | 6.070282926  | 2.53978E-09 | 19.77682784    | 38.70580267  | 19.77682784  | 38.70580267  |
| CRIME_RATE        | 0.048725141  | 0.078418647    | 0.621346369  | 0.534657201 | -0.105348544   | 0.202798827  | -0.105348544 | 0.202798827  |
| AGE               | 0.032770689  | 0.013097814    | 2.501996817  | 0.012670437 | 0.00703665     | 0.058504728  | 0.00703665   | 0.058504728  |
| INDUS             | 0.130551399  | 0.063117334    | 2.068392165  | 0.03912086  | 0.006541094    | 0.254561704  | 0.006541094  | 0.254561704  |
| NOX               | -10.3211828  | 3.894036256    | -2.650510195 | 0.008293859 | -17.97202279   | -2.670342809 | -17.97202279 | -2.670342809 |
| DISTANCE          | 0.261093575  | 0.067947067    | 3.842602576  | 0.000137546 | 0.127594012    | 0.394593138  | 0.127594012  | 0.394593138  |
| TAX               | -0.01440119  | 0.003905158    | -3.687736063 | 0.000251247 | -0.022073881   | -0.0067285   | -0.022073881 | -0.0067285   |
| PTRATIO           | -1.074305348 | 0.133601722    | -8.041104061 | 6.58642E-15 | -1.336800438   | -0.811810259 | -1.336800438 | -0.811810259 |
| AVG_ROOM          | 4.125409152  | 0.442758999    | 9.317504929  | 3.89287E-19 | 3.255494742    | 4.995323561  | 3.255494742  | 4.995323561  |
| LSTAT             | -0.603486589 | 0.053081161    | -11.36912937 | 8.91071E-27 | -0.70777824    | -0.499194938 | -0.70777824  | -0.499194938 |

Table 6. AVG\_PRICE vs another variable

Adjusted R-square value is 0.668

Adjusted R-square closer to zero indicates that model data is fit

P value > Alpha = (is significant)

P value < Alpha = (not a significant)

Level of significance can be denoted by alpha

Alpha = 1- confidence level

= 1-0.95

= 0.05

P value is greater than alpha is not significant less then alpha is significant

From the above model we can say that crime rate is not a significant variable for average price of a house as p-value is greater than 0.5.

NOX, TAX, PTRATIO and LSTAT have negative coefficients which says that increase in these features will result decrease in price of the house and vice-versa

- 8) Pick out only the significant variables from the previous question. Make another instance of the Regression model using only the significant variables you just picked and answer the questions below:
- a) Interpret the output of this model.

|            | Coefficients | P-value     |
|------------|--------------|-------------|
| Intercept  | 29.24131526  | 2.53978E-09 |
| CRIME_RATE | 0.048725141  | 0.534657201 |
| AGE        | 0.032770689  | 0.012670437 |
| INDUS      | 0.130551399  | 0.03912086  |
| NOX        | -10.3211828  | 0.008293859 |
| DISTANCE   | 0.261093575  | 0.000137546 |
| TAX        | -0.01440119  | 0.000251247 |
| PTRATIO    | -1.074305348 | 6.58642E-15 |
| AVG_ROOM   | 4.125409152  | 3.89287E-19 |
| LSTAT      | -0.603486589 | 8.91071E-27 |

Table 7. coefficients and p value

b) Compare the adjusted R-square value of this model with the model in the previous question, which model performs better according to the value of adjusted R-square?

Regression states from the previous model

| Regression Statistics  |            |  |  |  |  |  |  |
|------------------------|------------|--|--|--|--|--|--|
| Multiple R 0.832978824 |            |  |  |  |  |  |  |
| R Square               | 0.69385372 |  |  |  |  |  |  |

Regression states for this model

Multiple R = 0.832835773

R square = 0.693615426

By comparing Multiple R and R square values for both the models we can conclude that both models perform well.

c) Sort the values of the Coefficients in ascending order. What will happen to the average price if the value of NOX is more in a locality in this town?

|            | ~ | Coefficients 🚽 |
|------------|---|----------------|
| NOX        |   | -10.3211828    |
| PTRATIO    |   | -1.074305348   |
| LSTAT      |   | -0.603486589   |
| TAX        |   | -0.01440119    |
| AGE        |   | 0.032770689    |
| CRIME_RATE |   | 0.048725141    |
| INDUS      |   | 0.130551399    |
| DISTANCE   |   | 0.261093575    |
| AVG_ROOM   |   | 4.125409152    |
| Intercept  |   | 29.24131526    |

Table 8.coefficient

The coefficient of NOX is negative that means inversely proportional

NOX increase price is decrease

# d) Write the regression equation from this model.

Y= 0.0327706 X0 + 0.1305513 X1 -10.27270508 X2 +0.261506423 X3 - 0.014452345 X4 -1.071702473 X5 + 4.125468959 X6 -0.605159282 X7 +29.42847349

Where Y = AVG\_PRICE

X0 = Age

X1 = Indus

X2 = NOX

X3 = Distance

X4 = TAX

X5 = PTRATIO

X6 = AVG\_ROOM

X7 = LSTAT

#### Summary:

From this Analysis, we can conclude that the average price of the house excluding crime rate

Negative coefficients which say that increase rate in those features will decrease the average price of the house like NOX, PTRATIO, TAX and LSTAT.