CLAIMS

1	1.	A method of fabricating a semiconductor device comprising the steps of:
2		depositing multiple layers of semiconductor material
3	on a supporting substrate to form the semiconductor device; and	
4		depositing at least one layer of the multiple layers in the presence of a surfactant.
1	2.	The method of claim 1 wherein the surfactant is chosen from the group consisting
2	of antimony, i	ndium, bismuth and thallium.
1	3.	The method of claim 1 wherein the surfactant and semiconductor material is in a
2	flux ratio in a range of approximately from 0.0001 to 0.1.	
1	4.	The method of claim 1 wherein the semiconductor material includes aluminum
		The method of claim 1 wherein the semiconductor material metades aranmam
2	and gallium.	
1	5.	The method of claim 4 wherein the surfactant includes antimony.
1	6.	The method of claim 5 wherein the at least one layer is grown with the supporting
2	substrate at a temperature in a range from approximately 400 °C to 800 °C.	
1	7.	The method of claim 6 wherein the flux ratio is in a range of approximately
2	0.0001 to 0.1.	
4	8.	The method of claim 1 wherein the semiconductor device includes at least one of
1		
2	a high electron mobility transistor, a vertical cavity surface emitting laser, an edge emitting laser,	
3	a heterostruct	ure bipolar transistor, a resonant tunneling diode, and the like.
1	9.	A method of fabricating a semiconductor laser comprising the steps of:
2		depositing a plurality of layers of semiconductor material including at least one
3	active area with opposed major surfaces and a cladding layer adjacent each opposed major	
4	surface; and	
5		at least one of the active area and the cladding layers being deposited in the
6	presence of a surfactant.	

1131231 10

10. The method of claim 9 wherein the surfactant is chosen from the group consisting 1 of antimony, indium, bismuth and thallium. 2 The method of claim 9 wherein the surfactant and semiconductor material is in a 11. 1 flux ratio in a range of approximately from 0.0001 to 0.1. 2 The method of claim 9 wherein the semiconductor material includes aluminum 12. 1 and gallium. 2 The method of claim 12 wherein the surfactant includes antimony. 13. 1 14. The method of claim 13 wherein the at least one layer is grown with the 1 supporting substrate at a temperature in a range from approximately 400 °C to 800 °C. 2 The method of claim 14 wherein the flux ratio is in a range of approximately 15. 1 2 0.0001 to 0.1. A semiconductor device comprising: 16. 1 a plurality of layers of semiconductor material epitaxially grown one on another; 2 3 and at least one of the semiconductor layers including a surfactant with the 4 5 semiconductor material. A semiconductor device as claimed in claim 16 wherein the surfactant is chosen 1 17. from the group consisting of antimony, indium, bismuth and thallium. 2 A semiconductor device as claimed in claim 17 wherein the surfactant and 1 18. semiconductor material are in a flux ratio in a range of approximately from 0.0001 to 0.1. 2 A semiconductor device as claimed in claim 16 wherein the semiconductor 19. 1 2 material includes one of aluminum and gallium.

A semiconductor device as claimed in claim 19 wherein the surfactant includes

. 1131231

20.

antimony.

1

2

- 1 21. A semiconductor device as claimed in claim 20 wherein the flux ratio is in a range 2 of approximately 0.0001 to 0.1.
- 1 22. A semiconductor device as claimed in claim 16 wherein the semiconductor device
- 2 includes at least one of a high electron mobility transistor, a vertical cavity surface emitting laser,
- an edge emitting laser, a heterostructure bipolar transistor, a resonant tunneling diode, and the
- 4 like.

1131231 12