Session 3

Neural Networks and Backpropagation

Deep Learning course - SKEMA 2025 - Mastère Spécialisé® Chef de Projet Intelligence Artificielle - Salem Lahlou

Some figures adapted from 3Blue1Brown (YouTube)

Mathematical Representation of Neural Networks

What about the equation of multiple neurons in the hidden layers?

Single hidden layer network architecture:

- Input layer: $\mathbf{x} \in \mathbb{R}^{n_x}$
- Hidden layer: $\mathbf{a}^{[1]} \in \mathbb{R}^{n_h}$
- Output layer: $\mathbf{a}^{[2]} \in \mathbb{R}^{n_y}$
- Parameters: $\mathbf{W}^{[1]} \in \mathbb{R}^{n_h \times n_x}$, $\mathbf{b}^{[1]} \in \mathbb{R}^{n_h}$, $\mathbf{W}^{[2]} \in \mathbb{R}^{n_y \times n_h}$, $\mathbf{b}^{[2]} \in \mathbb{R}^{n_y}$

Plain vanilla

(aka "multilayer perceptron")

Forward Propagation: Single Example (Scalar Form)

For a single training example:

Hidden layer computation:

• For each hidden unit j:

$$egin{array}{ll} \circ & z_j^{[1]} = \sum_{i=1}^{n_x} w_{ji}^{[1]} x_i + b_j^{[1]} \ \circ & a_j^{[1]} = g^{[1]}(z_j^{[1]}) \end{array}$$

Output layer computation:

• For each output unit *k*:

$$egin{array}{ll} \circ & z_k^{[2]} = \sum_{j=1}^{n_h} w_{kj}^{[2]} a_j^{[1]} + b_k^{[2]} \ \circ & a_k^{[2]} = g^{[2]}(z_k^{[2]}) \end{array}$$

Where $g^{[1]}$ and $g^{[2]}$ are activation functions for the respective layers.

Forward Propagation: Single Example (Vector Form)

For a single training example:

Hidden layer computation:

- $\mathbf{z}^{[1]} = \mathbf{W}^{[1]}\mathbf{x} + \mathbf{b}^{[1]}$
- $ullet \ \mathbf{a}^{[1]} = g^{[1]}(\mathbf{z}^{[1]})$

Output layer computation:

- $\mathbf{z}^{[2]} = \mathbf{W}^{[2]} \mathbf{a}^{[1]} + \mathbf{b}^{[2]}$
- $ullet \ \mathbf{a}^{[2]} = g^{[2]}(\mathbf{z}^{[2]})$

Dimensions check:

- $\mathbf{z}^{[1]}, \mathbf{a}^{[1]} \in \mathbb{R}^{n_h}$
- \bullet $\mathbf{z}^{[2]}, \mathbf{a}^{[2]} \in \mathbb{R}^{n_y}$

Forward Propagation: Batch Processing (Matrix Form)

For a batch of m examples:

Input: $\mathbf{X} \in \mathbb{R}^{n_x \times m}$ (each column is one example)

Hidden layer computation:

- $\mathbf{Z}^{[1]} = \mathbf{W}^{[1]}\mathbf{X} + \mathbf{b}^{[1]}$
- $\mathbf{A}^{[1]} = g^{[1]}(\mathbf{Z}^{[1]})$

Remember that: $\mathbf{W}^{[1]} \in \mathbb{R}^{n_h \times n_x}$, $\mathbf{b}^{[1]} \in \mathbb{R}^{n_h}$,

Output layer computation:

- $\mathbf{Z}^{[2]} = \mathbf{W}^{[2]} \mathbf{A}^{[1]} + \mathbf{b}^{[2]}$
- $ullet \ {f A}^{[2]} = g^{[2]}({f Z}^{[2]})$

Remember that $\mathbf{W}^{[2]} \in \mathbb{R}^{n_y imes n_h}$, $\mathbf{b}^{[2]} \in \mathbb{R}^{n_y}$

Dimensions check:

- $\mathbf{Z}^{[1]}, \mathbf{A}^{[1]} \in \mathbb{R}^{n_h \times m}$
- \bullet $\mathbf{Z}^{[2]}, \mathbf{A}^{[2]} \in \mathbb{R}^{n_y \times m}$
- $\mathbf{b}^{[1]}$ is broadcast to match dimensions

Broadcasting in Neural Network Computations

Broadcasting: Automatically expanding dimensions to enable operations

Example in forward propagation:

- $oldsymbol{b}^{[1]} \in \mathbb{R}^{n_h imes 1}$ but we need to add it to $\mathbf{W}^{[1]}\mathbf{X} \in \mathbb{R}^{n_h imes m}$
- Broadcasting: $\mathbf{Z}^{[1]} = \mathbf{W}^{[1]}\mathbf{X} + \mathbf{b}^{[1]}$
- ullet Effectively: $\mathbf{b}^{[1]}$ is copied m times to become $\mathbb{R}^{n_h imes m}$

```
W^[1]X : [n_h × m]
b^[1] : [n_h × 1] -> [n_h × m] (broadcast)
Z^[1] : [n_h × m]
```

Quiz time

Salem Lahlou - SKEMA 2025

Go to the course homepage: https://la7.lu/sk25

Click on "Quiz 3"

Don't worry. It's anonymous!

Remember the gradient descent algorithm?

Pseudocode for Gradient Descent:

- 1. Initialize parameters θ randomly
- 2. Repeat until convergence:
 - \circ Compute cost $J(\theta)$
 - \circ Compute gradient $abla_{ heta}J(heta)$
 - \circ Update parameters: $heta = heta lpha
 abla_{ heta} J(heta)$

For neural networks:

- ullet heta includes all weights $W^{[l]}$ and biases $b^{[l]}$
- Updates for each layer *l*:

$$\circ \; W^{[l]} = W^{[l]} - lpha rac{\partial J}{\partial W^{[l]}}$$

$$egin{array}{l} \circ \ b^{[l]} = b^{[l]} - lpha rac{\partial J}{\partial b^{[l]}} \end{array}$$

For that, we need gradients

Common Activation Functions and Their Derivatives

ReLU (Rectified Linear Unit):

• ReLU(z) = max(0, z)

$$ullet$$
 ReLU'(z) = $egin{cases} 0 & ext{if } z < 0 \ 1 & ext{if } z > 0 \ ext{undefined} & ext{if } z = 0 \end{cases}$

• (In practice, we often set $\operatorname{ReLU}'(0) = 0$ or $\operatorname{ReLU}'(0) = 1$)

Sigmoid:

•
$$\sigma(z) = \frac{1}{1+e^{-z}}$$

•
$$\sigma'(z) = \sigma(z)(1 - \sigma(z))$$

Tanh:

•
$$\tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

•
$$\tanh'(z) = 1 - \tanh^2(z)$$

Loss Functions for Neural Networks

Binary Cross-Entropy (for binary classification):

- $\mathcal{L}(y, \hat{y}) = -[y \log(\hat{y}) + (1 y) \log(1 \hat{y})]$
- ullet For m examples: $J=rac{1}{m}\sum_{i=1}^m \mathcal{L}(y^{(i)},\hat{y}^{(i)})$

Categorical Cross-Entropy (for multi-class classification):

- $\mathcal{L}(y, \hat{y}) = -\sum_{j=1}^{C} y_j \log(\hat{y}_j)$
- ullet For m examples: $J=rac{1}{m}\sum_{i=1}^m \mathcal{L}(y^{(i)},\hat{y}^{(i)})$

Mean Squared Error (for regression):

- $\mathcal{L}(y, \hat{y}) = \frac{1}{2}(y \hat{y})^2$
- ullet For m examples: $J=rac{1}{m}\sum_{i=1}^m \mathcal{L}(y^{(i)},\hat{y}^{(i)})$

Gradient Descent Recap

Objective: Find parameters θ that minimize cost function $J(\theta)$

Update rule:

$$\theta = \theta - \alpha \nabla_{\theta} J(\theta)$$

For neural networks:

- ullet heta includes all weights W and biases b
- $abla_{ heta}J(heta)$ includes $rac{\partial J}{\partial W^{[l]}}$ and $rac{\partial J}{\partial b^{[l]}}$ for all layers l
- Need an efficient way to compute these gradients → backpropagation

The Chain Rule: Foundation of Backpropagation

Chain Rule in Calculus:

If
$$z=f(y)$$
 and $y=g(x)$, then: $\frac{dz}{dx}=\frac{dz}{dy}\cdot\frac{dy}{dx}$

Extended to multiple variables:

If
$$z=f(y_1,y_2,\ldots,y_n)$$
 and each $y_i=g_i(x)$, then: $rac{dz}{dx}=\sum_{i=1}^nrac{\partial z}{\partial y_i}\cdotrac{dy_i}{dx}$

You have seen this in high school:

- $(f \circ g)'(x) = f'(g(x))g'(x)$
- Example: $(e^{x^2})' = 2xe^{x^2}$

Backpropagation: The Big Picture

Key insight: Efficiently compute gradients by working backwards

The process:

- 1. Perform forward propagation to compute all activations
- 2. Compute the output error (derivative of loss with respect to output)
- 3. Propagate error backwards through the network
- 4. Compute gradients for all parameters

Why it's efficient:

- Avoids redundant calculations
- Reuses intermediate results
- Computational complexity proportional to network size

Backpropagation: Mathematical Derivation (Part 1)

Starting from the cost function for a single example:

$$\mathcal{L}(y,a^{[2]})$$

We want to compute:

$$ullet \ rac{\partial \mathcal{L}}{\partial W^{[2]}}, \ rac{\partial \mathcal{L}}{\partial b^{[2]}}$$

$$ullet \ rac{\partial \mathcal{L}}{\partial W^{[1]}}, \ rac{\partial \mathcal{L}}{\partial b^{[1]}}$$

Defining intermediate derivatives:

$$ullet$$
 $\delta^{[2]}=rac{\partial \mathcal{L}}{\partial z^{[2]}}$

$$ullet$$
 $\delta^{[1]}=rac{\partial \mathcal{L}}{\partial z^{[1]}}$

These represent the error at each layer

Backpropagation: Mathematical Derivation (Part 2)

For the output layer:

$$\delta^{[2]} = rac{\partial \mathcal{L}}{\partial z^{[2]}} = rac{\partial \mathcal{L}}{\partial a^{[2]}} \cdot rac{\partial a^{[2]}}{\partial z^{[2]}} = rac{\partial \mathcal{L}}{\partial a^{[2]}} \cdot g^{[2]'}(z^{[2]})$$

For hidden layers:

$$\delta^{[1]} = rac{\partial \mathcal{L}}{\partial z^{[1]}} = rac{\partial \mathcal{L}}{\partial a^{[1]}} \cdot rac{\partial a^{[1]}}{\partial z^{[1]}}$$

But $\frac{\partial \mathcal{L}}{\partial a^{[1]}}$ requires more calculation:

$$rac{\partial \mathcal{L}}{\partial a^{[1]}} = rac{\partial \mathcal{L}}{\partial z^{[2]}} \cdot rac{\partial z^{[2]}}{\partial a^{[1]}} = \delta^{[2]} \cdot W^{[2]}$$

Therefore:

$$\delta^{[1]} = (W^{[2]})^T \delta^{[2]} \odot g^{[1]'}(z^{[1]})$$

Where \odot denotes element-wise multiplication.

Backpropagation: Mathematical Derivation (Part 3)

Computing gradients using the errors:

For weights:

$$ullet rac{\partial \mathcal{L}}{\partial W^{[2]}} = \delta^{[2]} (a^{[1]})^T$$

$$ullet rac{\partial \mathcal{L}}{\partial W^{[1]}} = \delta^{[1]} x^T$$

For biases:

$$ullet rac{\partial \mathcal{L}}{\partial b^{[2]}} = \delta^{[2]}$$

$$ullet rac{\partial \mathcal{L}}{\partial b^{[1]}} = \delta^{[1]}$$

For a batch of m examples:

$$ullet$$
 $\frac{\partial J}{\partial W^{[l]}} = rac{1}{m} \sum_{i=1}^m rac{\partial \mathcal{L}^{(i)}}{\partial W^{[l]}}$

$$ullet$$
 $\frac{\partial J}{\partial b^{[l]}} = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial \mathcal{L}^{(i)}}{\partial b^{[l]}}$

Backpropagation: Vector/Matrix Form for Mini-batches

Output layer error:

$$\delta^{[2]} = rac{\partial \mathcal{L}}{\partial Z^{[2]}} = rac{\partial \mathcal{L}}{\partial A^{[2]}} \odot g^{[2]'}(Z^{[2]})$$

For binary cross-entropy with sigmoid:

$$\delta^{[2]} = A^{[2]} - Y$$
 (simplified form)

Hidden layer error:

$$\delta^{[1]} = (W^{[2]})^T \delta^{[2]} \odot g^{[1]'}(Z^{[1]})$$

Gradients for weights and biases:

- ullet $rac{\partial J}{\partial W^{[2]}}=rac{1}{m}\delta^{[2]}(A^{[1]})^T$
- \bullet $\frac{\partial J}{\partial b^{[2]}} = \frac{1}{m} \sum_{i=1}^m \delta^{[2](i)}$
- $\frac{\partial J}{\partial W^{[1]}} = \frac{1}{m} \delta^{[1]} X^T$
- ullet $\frac{\partial J}{\partial b^{[1]}} = \frac{1}{m} \sum_{i=1}^m \delta^{[1](i)}$

Backpropagation for a 1-HL FNN: Algorithm Summary

Forward propagation:

1.
$$Z^{[1]} = W^{[1]}X + b^{[1]}, A^{[1]} = g^{[1]}(Z^{[1]})$$

$$2.\,Z^{[2]}=W^{[2]}A^{[1]}+b^{[2]},\,A^{[2]}=g^{[2]}(Z^{[2]})$$

3. Compute cost J

Backward propagation:

1.
$$\delta^{[2]} = A^{[2]} - Y$$
 (for binary classification)

2.
$$dW^{[2]} = \frac{1}{m} \delta^{[2]} A^{[1]T}$$

3.
$$db^{[2]} = \frac{1}{m} \sum_{i=1}^{m} \delta^{[2](i)}$$

4.
$$\delta^{[1]} = W^{[2]T} \delta^{[2]} \odot g^{[1]'}(Z^{[1]})$$

5.
$$dW^{[1]} = \frac{1}{m} \delta^{[1]} X^T$$

6.
$$db^{[1]} = \frac{1}{m} \sum_{i=1}^{m} \delta^{[1](i)}$$

Update parameters:

1.
$$W^{[2]} = W^{[2]} - \alpha dW^{[2]}$$

2.
$$b^{[2]} = b^{[2]} - \alpha db^{[2]}$$

3.
$$W^{[1]} = W^{[1]} - \alpha dW^{[1]}$$

4.
$$b^{[1]} = b^{[1]} - \alpha db^{[1]}$$

Extending to Deep Networks

The general backpropagation algorithm for L layers:

Forward propagation (for $l=1,2,\ldots,L$):

1.
$$Z^{[l]} = W^{[l]}A^{[l-1]} + b^{[l]}$$
 (with $A^{[0]} = X$)

2.
$$A^{[l]}=g^{[l]}(Z^{[l]})$$

Backward propagation:

1.
$$\delta^{[L]} =
abla_{A^{[L]}} \mathcal{L} \odot g^{[L]'}(Z^{[L]})$$
 (output layer error)

2. For
$$l=L-1, L-2, \ldots, 1$$
: $\delta^{[l]}=W^{[l+1]T}\delta^{[l+1]}\odot g^{[l]'}(Z^{[l]})$

3. Compute gradients:

$$dW^{[l]} = rac{1}{m} \delta^{[l]} A^{[l-1]T} \ db^{[l]} = rac{1}{m} \sum_{i=1}^m \delta^{[l](i)}$$

Important Note: Automatic Differentiation

While understanding backpropagation is crucial...

- It helps build intuition
- It's essential for debugging complex models
- It's foundational knowledge

...you rarely implement it manually!

- Modern deep learning frameworks (PyTorch, TensorFlow, JAX) use Automatic Differentiation (Autodiff).
- They automatically compute the necessary gradients using the chain rule during the backward pass.

Focus shifts from manual derivation to defining the forward pass correctly.

• We will see this practical automation in the Jupyter Notebook session.

Improving Gradient Descent: Batch Variants

Batch Gradient Descent (BGD):

- Uses the entire dataset to compute gradient
- $\theta = \theta \alpha \nabla_{\theta} J(\theta)$
- Advantages: Stable, guaranteed convergence to local minimum
- Disadvantages: Slow, memory-intensive for large datasets

Stochastic Gradient Descent (SGD):

- Updates parameters using a single random example
- $\theta = \theta \alpha \nabla_{\theta} J_i(\theta)$
- Advantages: Fast, can escape local minima, works with streaming data
- Disadvantages: High variance, noisy updates, may never converge exactly

Mini-batch Gradient Descent:

- Updates parameters using a small batch of examples
- $\theta = \theta \alpha \nabla_{\theta} J_B(\theta)$ where B is mini-batch
- Advantages: Good balance of stability and speed, vectorization benefits
- Disadvantages: Requires tuning batch size

Batching: Training on Multiple Examples at Once

Benefits of mini-batch training:

- Parallelization on modern hardware (GPUs)
- More stable gradient estimates than SGD
- Faster convergence than full-batch GD
- Better generalization through noise

Implementation for a mini-batch:

- X contains multiple examples (columns)
- Forward and backward propagation operate on matrices
- Each column of activation matrices corresponds to one example
- Gradients are averaged over the mini-batch

Batch sizes:

- Too small: Noisy updates, poor hardware utilization
- Too large: Poor generalization, memory issues
- Common values: 32, 64, 128, 256

Dimensions in Mini-batch Processing

For a neural network with n_x inputs, n_h hidden units, n_y outputs, and batch size m:

Variable	Dimensions	Description
X	(n_x,m)	Input data, m examples
$W^{[1]}$	(n_h,n_x)	Weights connecting input to hidden
$b^{[1]}$	$(n_h,1)$	Hidden layer biases
$Z^{[1]}$	(n_h, m)	Pre-activation at hidden layer
$A^{[1]}$	(n_h,m)	Activation at hidden layer
$W^{[2]}$	(n_y,n_h)	Weights connecting hidden to output
$b^{[2]}$	$(n_y, 1)$	Output layer biases
$Z^{[2]}$	(n_y,m)	Pre-activation at output layer
$A^{[2]}$	(n_y,m)	Output predictions
Y	(n_y,m)	Target values

Computation Efficiency with Vectorization

Vectorized operations vs. loops:

Loop implementation (slow):

```
for i in range(m):
    z[i] = np.dot(w, x[i]) + b
    a[i] = sigmoid(z[i])
```

Vectorized implementation (fast):

```
z = np.dot(w, x) + b

a = sigmoid(z)
```

Benefits of vectorization:

- Orders of magnitude faster
- Better utilizes hardware (CPU/GPU)
- Cleaner code
- Essential for large datasets

The Importance of Learning Rate

Learning rate controls step size in gradient descent:

- Too small: Slow convergence, may get stuck
- Too large: Overshooting, divergence, instability

Source: Jeremy Jordan

Mathematical explanation:

- Gradient gives direction
- Learning rate gives step size

$$ullet W^{[l]} = W^{[l]} - lpha rac{\partial J}{\partial W^{[l]}}$$

Learning rate scheduling:

- Start with larger learning rate
- Gradually decrease over time
- Allows both fast progress and fine convergence

Evolution from SGD to Advanced Optimizers

Problem with basic SGD:

- Fixed learning rate for all parameters
- Equal updates in all directions
- No memory of previous gradients
- Easily stuck in saddle points

SGD with Momentum:

- Adds "memory" of previous updates
- $v_t = \gamma v_{t-1} + \alpha \nabla_{\theta} J(\theta)$
- $\theta = \theta v_t$
- Accelerates in consistent directions, dampens oscillations

AdaGrad:

- Adapts learning rate per parameter based on historical gradients
- $heta_t = heta_{t-1} rac{lpha}{\sqrt{G_t + \epsilon}}
 abla_{ heta} J(heta_{t-1})$
- Where G_t accumulates squared gradients
- Problem: Learning rate decreases too much over time

Advanced Optimization Algorithms

RMSProp:

- Addresses AdaGrad's diminishing learning rates
- Uses exponential moving average of squared gradients
- $G_t = \gamma G_{t-1} + (1-\gamma)(\nabla_{\theta}J(\theta))^2$
- $heta_t = heta_{t-1} rac{lpha}{\sqrt{G_t + \epsilon}}
 abla_{ heta} J(heta_{t-1})$

Adam (Adaptive Moment Estimation):

- Combines momentum and RMSProp
- Maintains both first moment (mean) and second moment (variance)
- First moment: $m_t = eta_1 m_{t-1} + (1-eta_1)
 abla_{ heta} J(heta)$
- Second moment: $v_t = eta_2 v_{t-1} + (1-eta_2)(
 abla_{ heta} J(heta))^2$
- ullet Bias correction: $\hat{m}_t = rac{m_t}{1-eta_1^t}$, $\hat{v}_t = rac{v_t}{1-eta_2^t}$
- Update: $heta_t = heta_{t-1} lpha rac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}$

Learning Rate Scheduling Techniques

Constant learning rate:

- $\alpha_t = \alpha$
- Simple but often suboptimal

Step decay:

- Reduce learning rate by a factor after fixed number of epochs
- ullet $lpha_t = lpha_0 imes \gamma^{\lfloor t/s
 floor}$
- Where γ is decay factor, s is step size

Exponential decay:

- Continuous decay at exponential rate
- $\alpha_t = \alpha_0 \times e^{-kt}$

Cosine annealing:

- Cyclical learning rate that follows cosine function
- $\alpha_t = \alpha_{min} + \frac{1}{2}(\alpha_{max} \alpha_{min})(1 + \cos(\frac{t\pi}{T}))$
- Where T is cycle length

Quiz time

Salem Lahlou - SKEMA 2025

Go to the course homepage: https://la7.lu/sk25

Click on "Quiz 4"

Don't worry. It's anonymous!