Will the customers we contact accept a Credit Card offer?

CLASSIFICATION MODEL

% of Total Cou

5,93%

Yes

3,43%

Yes

을

50%

7,67%

Yes

ŝ

50%

Value

10,63%

Yes

4,54%

Yes

ž

S

1,96%

Yes

을

Accept.

No

% of Total Count of Accept

Yes

Mailer / Acc..

Letter Postc.

92,10%

7,90%

3,39%

No No Yes

Protection / ..

Yes

No

96,61%

100%

50%

120%

SEEMINGLY NOT SIGNIFICANT TRAITS

Protection / ..

POTENTIALLY SIGNIFICANT TRAITS


```
data['LiveAlone'] = np.where(data['HHSize'] == 1, 1, 0)
```

OTHER TRAITS THAT COULD BE IMPORTANT

```
data['LowBalance'] = np.where(data['AvgBal'] <= 500, 1, 0)
data['HighBalance'] = np.where(data['AvgBal'] >= 1000, 1, 0)
```


DATASET

Accept Air	Miles	Points	Letter	Income	Rating	LiveAlone	LowBalance	AvgBal
0	0	1	0	1	3	0	0	1175
0	0	1	1	2	1	0	0	811
0	0	0	1	3	3	0	0	1754
0	1	0	0	3	3	0	0	689
0	0	0	1	1	1	0	0	1018
0	0	0	0	2	3	0	0	1130
0	1	0	0	1	1	1	0	877
1	1	0	1	2	1	0	0	769
0	0	0	0	2	1	0	0	709
0	0	1	0	3	2	1	0	690
0	0	1	1	2	3	0	0	863
0	0	0	0	1	1	0	0	733
0	0	1	0	1	3	0	0	771
0	1	0	0	1	2	0	0	659
0	1	0	1	2	1	0	0	1258

MAIN ISSUE: DATA IMBALANCE

94.3200

YES

NORMAL MODEL WILL BE BIASED TOWARDS
PREDICTING NO FOR ALL OBSERVATIONS

TREATING DATA IMBALANCE NORMAL MODEL WILL BE BIASED TOWARDS PREDICTING NO FOR ALL OBSERVATIONS

OUR JOB IS TO MAKE A MODEL THAT FOCUSES ON PREDICTING YESES AS ACCURATELY AS POSSIBLE.

EVALUATING IMBALANCED MODEL

OUR MODEL COULD BE IMBALANCED: PREDICTS
NOS BY DEFAULT. WE WANT TO KNOW HOW OUR
MODEL REDUCES FN AND ENSURE YES IS
PREDICTED AS YES.

SENSITIVITY: TP/(TP+FN)

1.A LOGISTIC MODEL WITH COMPLETE DATASET

```
# This is the model for the complete dataset, dfl.
   for sam in [1, 0.9, 0.8, 0.66, 0.5, 0.4, 0.33, 0.25, 0.2]:
       for test in [0.2, 0.25, 0.3]:
           undersample = RandomUnderSampler(sampling_strategy=sam)
           X und, y und = undersample.fit resample(X1, y1)
           X_train, X_test, y_train, y_test = train_test_split(X_und, y_und, test_size=test, random_state=42)
           classifier = LogisticRegression(solver='liblinear', class_weight='balanced')
           classifier.fit(X train, y train)
           y_pred = classifier.predict(X_test)
10
11
           pre = classification_report(y_test, y_pred, output_dict=True)['1']['precision']*100
            acc = classification_report(y_test, y_pred, output_dict=True)['1']['recall']*100
12
13
           print(f'Log model with a {sam:.2f} ratio, test size of {test:.2f}: {acc:.2f}% of sensitivity and a
Log model with a 1.00 ratio, test size of 0.20: 73.50% of sensitivity and a 63.64% of precision.
Log model with a 1.00 ratio, test size of 0.25: 75.21% of sensitivity and a 67.66% of precision.
Log model with a 1.00 ratio, test size of 0.30: 75.51% of sensitivity and a 70.70% of precision.
Log model with a 0.90 ratio, test size of 0.20: 64.79% of sensitivity and a 66.99% of precision.
Log model with a 0.90 ratio, test size of 0.25: 66.54% of sensitivity and a 64.29% of precision.
Log model with a 0.90 ratio, test size of 0.30: 67.54% of sensitivity and a 67.54% of precision.
```

1.B LOGISTIC MODEL WITH REDUCED DATASET

```
# This is the model for the reduced dataset, df2.
    for sam in [1, 0.9, 0.8, 0.66, 0.5, 0.4, 0.33, 0.25, 0.2]:
        for test in [0.2, 0.25, 0.3]:
            undersample = RandomUnderSampler(sampling_strategy=sam)
            X_und, y_und = undersample.fit_resample(X2, y2)
            X_train, X_test, y_train, y_test = train_test_split(X_und, y_und, test_size=test, random_state=42)
            classifier = LogisticRegression(solver='liblinear', class_weight='balanced')
            classifier.fit(X_train, y_train)
            y_pred = classifier.predict(X_test)
10
            pre = classification_report(y_test, y_pred, output_dict=True)['1']['precision']*100
11
12
            acc = classification_report(y_test, y_pred, output_dict=True)['1']['recall']*100
            print(f'Log model with a {sam:.2f} ratio, test size of {test:.2f}: {acc:.2f}% of sensitivity and a
13
Log model with a 1.00 ratio, test size of 0.20: 74.50% of sensitivity and a 69.63% of precision.
Log model with a 1.00 ratio, test size of 0.25: 81.40% of sensitivity and a 68.17% of precision.
Log model with a 1.00 ratio, test size of 0.30: 76.19% of sensitivity and a 66.87% of precision.
Log model with a 0.90 ratio, test size of 0.20: 66.67% of sensitivity and a 68.27% of precision.
Log model with a 0.90 ratio, test size of 0.25: 67.32% of sensitivity and a 64.07% of precision.
Log model with a 0.90 ratio, test size of 0.30: 71.15% of sensitivity and a 63.82% of precision.
Log model with a 0.80 ratio, test size of 0.20: 74.26% of sensitivity and a 64.38% of precision.
```

2. K-NEAREST NEIGHBOURS MODEL

```
# This is the model for the reduced dataset, df2.
    for sam in [1, 0.9, 0.8]:
        for test in [0.2, 0.25, 0.3]:
            for k in [3, 5, 7, 9]:
                undersample = RandomUnderSampler(sampling_strategy=sam)
                X_und, y_und = undersample.fit_resample(X2, y2)
                X_train, X_test, y_train, y_test = train_test_split(X_und, y_und, test_size=test, random_state=42)
                nbrs = NearestNeighbors(n_neighbors=k)
10
                nbrs.fit(X_train, y_train)
11
                y_pred = classifier.predict(X_test)
                pre = classification_report(y_test, y_pred, output_dict=True)['1']['precision']*100
12
                acc = classification_report(y_test, y_pred, output_dict=True)['1']['recall']*100
13
                print(f'Log model with a {sam:.2f} ratio, test size of {test:.2f}, K = {k:.0f}: {acc:.2f}% of sens.
14
Log model with a 1.00 ratio, test size of 0.20, K = 3: 72.50% of sensitivity and a 68.08% of precision.
Log model with a 1.00 ratio, test size of 0.20, K = 5: 72.50% of sensitivity and a 68.72% of precision.
Log model with a 1.00 ratio, test size of 0.20, K = 7: 72.50% of sensitivity and a 68.72% of precision.
Log model with a 1.00 ratio, test size of 0.20, K = 9: 72.50% of sensitivity and a 70.73% of precision.
```

3. SUPPORT VECTOR MACHINE (SVM)

```
# This is the model for the reduced dataset, df2.
    for sam in [1, 0.9, 0.8]:
        for test in [0.2, 0.25, 0.3]:
            undersample = RandomUnderSampler(sampling_strategy=sam)
            X_und, y_und = undersample.fit_resample(X2, y2)
            X_train, X_test, y_train, y_test = train_test_split(X_und, y_und, test_size=test, random_state=42)
            clas = svm.SVC()
            clas.fit(X_train, y_train)
            y_pred = classifier.predict(X_test)
10
            pre = classification_report(y_test, y_pred, output_dict=True)['1']['precision']*100
12
            acc = classification_report(y_test, y_pred, output_dict=True)['1']['recall']*100
            print(f'Log model with a {sam:.2f} ratio, test size of {test:.2f}, K = {k:.0f}: {acc:.2f}% of sens:
13
Log model with a 1.00 ratio, test size of 0.20, K = 9: 72.50% of sensitivity and a 65.91% of precision.
Log model with a 1.00 ratio, test size of 0.25, K = 9: 73.55% of sensitivity and a 70.08% of precision.
Log model with a 1.00 ratio, test size of 0.30, K = 9: 74.49% of sensitivity and a 68.87% of precision.
Log model with a 0.90 ratio, test size of 0.20, K = 9: 64.79% of sensitivity and a 68.32% of precision.
```

4. DECISION TREE MODEL

```
# This is the model for the reduced dataset, df2.
    for sam in [1, 0.9, 0.8]:
        for test in [0.2, 0.25, 0.3]:
            undersample = RandomUnderSampler(sampling_strategy=sam)
            X und, y und = undersample.fit resample(X2, y2)
            X_train, X_test, y_train, y_test = train_test_split(X_und, y_und, test_size=test, random_state=42)
 8
            clas = tree.DecisionTreeClassifier()
            clas.fit(X train, y train)
10
            y_pred = classifier.predict(X_test)
11
            pre = classification_report(y_test, y_pred, output_dict=True)['1']['precision']*100
12
            acc = classification_report(y_test, y_pred, output_dict=True)['1']['recall']*100
            print(f'Log model with a {sam:.2f} ratio, test size of {test:.2f}, K = {k:.0f}: {acc:.2f}% of sensi
13
Log model with a 1.00 ratio, test size of 0.20, K = 9: 72.50% of sensitivity and a 73.98% of precision.
Log model with a 1.00 ratio, test size of 0.25, K = 9: 73.55% of sensitivity and a 66.92% of precision.
Log model with a 1.00 ratio, test size of 0.30, K = 9: 74.49% of sensitivity and a 67.18% of precision.
Log model with a 0.90 ratio, test size of 0.20, K = 9: 64.79% of sensitivity and a 67.65% of precision.
```

5. RANDOM FOREST MODEL

```
# This is the model for the reduced dataset, df2.
    for sam in [1, 0.9, 0.8]:
        for test in [0.2, 0.25, 0.3]:
           undersample = RandomUnderSampler(sampling_strategy=sam)
           X und, y und = undersample.fit resample(X2, y2)
           X_train, X_test, y_train, y_test = train_test_split(X_und, y_und, test_size=test, random_state=42)
           clasRF = RandomForestClassifier(max depth=5, random state=42, n estimators = 100)
           clasRF.fit(X_train, y_train)
10
           y pred = classifier.predict(X test)
11
           pre = classification_report(y_test, y_pred, output_dict=True)['1']['precision']*100
12
            acc = classification_report(y_test, y_pred, output_dict=True)['1']['recall']*100
13
            print(f'Log model with a {sam:.2f} ratio, test size of {test:.2f}, K = {k:.0f}: {acc:.2f}% of sensi
Log model with a 1.00 ratio, test size of 0.20, K = 9: 72.50% of sensitivity and a 69.05% of precision.
Log model with a 1.00 ratio, test size of 0.25, K = 9: 73.55% of sensitivity and a 69.80% of precision.
Log model with a 1.00 ratio, test size of 0.30, K = 9: 74.49% of sensitivity and a 72.04% of precision.
Log model with a 0.90 ratio, test size of 0.20, K = 9: 64.79% of sensitivity and a 62.73% of precision.
     1 1 1 1 0 00 1 1 1 1 1 6 0 0 5 77 0 66 0 20 6 11 1 1 66 0 20 6
```

CHOSEN MODEL STATISTICS

```
undersample = RandomUnderSampler(sampling_strategy=1.0)
 2 X und, y und = undersample.fit resample(X2, y2)
 3 X_train, X_test, y_train, y_test = train_test_split(X_und, y_und, test_size=0.25, random_state=42)
   classifier = LogisticRegression(solver='liblinear', class_weight='balanced')
 5 classifier.fit(X_train, y_train)
  y pred = classifier.predict(X test)
   print(classification_report(y_test, y_pred, output_dict=False))
             precision
                       recall f1-score
                                           support
                 0.79 0.64 0.70
                                              269
                 0.67
                          0.81
                                    0.73
                                              242
                                    0.72
                                              511
   accuracy
                 0.73
                          0.72
                                    0.72
                                              511
  macro avg
                           0.72
weighted avg
                 0.73
                                    0.72
                                              511
```

OTHER IMPORTANT ASPECTS TO NOTE

'AVGBAL', 'HIGHBALANCE', 'LOWBALANCE' COULD POTENTIALLY LEAD TO MULTICOLLINEARITY (SORT OF SAME INFO). I DROPPED 'AVGBAL' AND RERUN THE MODELS, AND FOUND NO STATISTICALLY SIGNIFICANT DIFFERENCES BUT A SLIGHT REDUCTION IN SENSITIVITY.