- 1. (4 pkt) Podaj przykład trzech zbiorów $A,B,C\subseteq\{a,b,c\}$ takich, że
 - a) $(A \cap C) \cup B \neq (A \cap B) \cup C$
 - **b)** $A \cap (B \setminus C) \neq (A \cap B) \setminus C$
- 2. (4 pkt) Udowodnij, że dla każdego $n \geq 2$ następująca formuła jest tautologią rachunku zdań:

$$(a_1 \rightarrow a_2) \lor (a_2 \rightarrow a_3) \lor \dots \lor (a_{n-1} \rightarrow a_n) \lor (a_n \rightarrow a_1)$$

- 3. (4 pkt) Zakładając, że S(x) oznacza predykat "x jest szczęśliwy", zaś Z(x): "x jest zakochany" wyraź w języku logiki fakt, że
 - a) Nie każdy, kto jest szczęśliwy jest zakochany.
 - b) Są ludzie zakochani, choć nie są szczęśliwi.
- 4. (4 pkt) Zaneguj następujące formuły wprowadzając znak negacji do wnętrz kwantyfikatorów tak, aby pozbyć się znaków implikacji wyrażając je przez ∨, ∧, ¬:
 - a) $\forall x \in A : (P(x) \rightarrow Q(y)) \rightarrow R(x)$
 - **b)** $\exists x \in A : \forall y \in B \setminus A : (P(x) \land Q(y)) \rightarrow R(x)$

W ramach uzasadnienia podaj reguły z których należało skorzystać.

5. (4 pkt) Niech X będzie zbiorem wszystkich odcinków osi rzeczywistej o końcach całkowitych. Jaka jest moc

- a) zbioru wszystkich tych podzbiorów X, których elementy są rozłączne parami?
- **b)** *X*?
- 6. (4 pkt) Pokaż, że dla każdego $n \geq 0$ zachodzi $\frac{1}{2^2} + \frac{2}{2^3} + \dots + \frac{n}{2^{n+1}} = 1 \frac{n}{2^{n+1}} \frac{1}{2^n}$.
- 7. (4 pkt) Podaj przykład relacji określonej w zbiorze $\{1, 2, 3, 4\}$, która jest
 - a) zwrotna, nieprzechodnia i antysymetryczna
 - b) przechodnia, symetryczna i nie jest zwrotna
- 8. (4 pkt) Pokaż, że nie są relacjami równoważności następujące relacje określone na *IN*
 - a) $x r_1 y \Leftrightarrow |x-y| \leq 3$
 - **b)** $x r_2 y \Leftrightarrow y \neq x + 1$
- 9. (4 pkt) Na ile sposobów można włożyć 9 kul ponumerowanych od 1 do 9 do dwóch urn tak, aby
 - a) w każdej urnie były co najmniej cztery kule,
 - b) w pierwszej urnie suma numerów była większa od sumy numerów w drugiej urnie.
- 10. (4 pkt.) Rzucamy dwa razy wyważoną kostką.
 - a) Jakie jest prawdopodobieństwo, że wyrzucona suma oczek jest podzielna przez 4?
 - b) Jekie jest prawdopodobieństwo tego, że na drugiej kostce wypadnie co najmniej czwórka pod warunkiem, że na pierwszej wypadła liczba złożona?

Uwaqa: Wszystkie odpowiedzi należy krótko uzasadnić, w miare możliwości na tej kartce.