Math 591 Lecture 15

Thomas Cohn

10/5/20

Thm: (Regular Value Theorem for Manifolds) Let M and N be manifolds, $F: M \to N$ C^{∞} , and $q \in N$ a regular value of F. Then $F^{-1}(q)$ is a regular submanifold of M.

Proof: Let $p \in F^{-1}(q)$. We want to show there are coordinates of M near p which are adapted to the preimage of $F^{-1}(q)$. Because q is a regular value, $F_{*,p}: T_pM \to T_qN$ is onto for any p. By the normal form for submersions, there are coordinates $(U, \phi = (x^1, \ldots, x^m))$ near p and $(V, \psi = (y^1, \ldots, y^n))$ near q, with $U \subseteq F^{-1}(V)$, such that $\tilde{F}(r^1, \ldots, r^m) = (r^1, \ldots, r^n)$.

$$\begin{array}{ccc} U & \stackrel{F}{\longrightarrow} V \\ \downarrow^{\phi} & & \downarrow^{\psi} \\ \phi(U) & \stackrel{\tilde{F}}{\longrightarrow} \psi(V) \end{array}$$

WOLOG assume $\psi(q) = 0$. Split ϕ , with $x' = (x^1, \dots, x^n) : U \to \mathbb{R}^n$ and $x'' = (x^{n+1}, \dots, x^m) : U \to \mathbb{R}^{m-n}$. Then $F^{-1}(q) \cap U$ corresponds to $\tilde{F}^{-1}(0)$ by ϕ , i.e., $F^{-1}(q) \cap U = \{a \in U \mid x'(a) = 0\}$. Thus, (x'', x') are adapted coordinates to $F^{-1}(q) \cap U$. \square

Observe: (Keeping the notation of the proof) $x'': F^{-1}(q) \cap U \to \mathbb{R}^{m-n}$ are coordinates on $F^{-1}(q) \cap U$. So dim $F^{-1}(q) = m - n$. (Recall: $m \ge n$.)

Defn: The codimension of a submanifold is the dimension of the ambient space minus the dimension of the submanifold.

 $\operatorname{codim} F^{-1}(q) = \dim M - \dim F^{-1}(q) = m - (m - n) = n$. This is the dimension of the target space.

Observe: $\forall p \in F^{-1}(q)$ (if q is a regular value), $T_p(F^{-1}(q)) \subseteq T_pM$ as a subspace. In fact, $T_p(F^{-1}(q))$ is the kernel of $F_{*,p}$.

A General Observation on Tangent Spaces of Submanifolds

Let $S \subseteq M$ be a submanifold, and $p \in S$. Then $T_pS \subseteq T_pM$ by: $\forall \gamma : (-\varepsilon, \varepsilon) \to S$ with $\gamma(0) = p$, we have

$$\begin{array}{ccc} \dot{\gamma}_S(0) & \stackrel{\iota_{*,p}}{\longmapsto} \dot{\gamma}_M(0) \\ U & & U \\ T_p S & & T_P M \end{array}$$

by using the differential of the inclusion $\iota: S \hookrightarrow M$. The inclusion in adapted coordinates is $x' \mapsto (x',0)$. If $[f] \in C_p^{\infty}(M)$, $\dot{\gamma}_M(0)[f] = \dot{\gamma}_S(0)[f \circ \iota]$. Observe: $f \circ \iota$ is the restriction of f to S.

Conclusion: Tangent spaces of submanifolds are subspaces of the tangent spaces of the original manifold.

Defn: A map $F: M \to N$ is a <u>submersion</u> iff $\forall p \in M, F_{*,p}$ is onto.

Cor: If F is a submersion, then $\forall q \in N$, q is a regular value, so $F^{-1}(q)$ ("the fiber of f over q") if either empty or a codimension n submanifold of M.

Ex: Let $M = \mathbb{R}^2 \setminus S^1$, $N = \mathbb{R}$, $F: M \to N$ with F(x,y) = x. What are the fibers?

- For $q \in (-\infty, 1) \cup (1, \infty)$, $F^{-1}(q) = \mathbb{R}$.
- For $q \in (-1,1)$, $F^{-1}(q) = (-\infty, -\sqrt{1-q^2}) \cup (-\sqrt{1-q^2}, \sqrt{1-q^2}) \cup (\sqrt{1-q^2}, \infty)$.
- For $q \in \{-1, 1\}, F^{-1}(q) = \mathbb{R} \setminus \{0\}.$

Note that in this example, some of the fibers are different topologically!

Ex: Let $M = S^3$, $F: S^3 \to \mathbb{RP}^1 \cong S^2$ (the Riemann Sphere). Then the fibers are all circles, and the map from S^3 to S^2 is called the Hopf fibration.

Defn: A C^{∞} map $F: M \to N$ is a <u>fibration</u> with fiber Φ , where Φ is a manifold, iff there is an open covering $\{U_{\alpha}\}$ of N (called the <u>base</u>) and diffeomorphic maps $\chi_{\alpha}: F^{-1}(U_{\alpha}) \to U_{\alpha} \times \Phi$ (called <u>trivializations</u>) such that the diagram

$$F^{-1}(U_{\alpha}) \xrightarrow{\chi_{\alpha}} U_{\alpha} \times \Phi$$

$$F|_{F^{-1}(U_{\alpha})} \qquad \qquad \downarrow \pi \text{ projection}$$

$$U_{\alpha}$$

commutes (i.e. all paths are the same). We say that F is a fiber bundle with fiber Φ .

Let's unpack what this means. Commutativity of the diagram means $\forall p \in F^{-1}(U_{\alpha}), \chi_{\alpha}(p) = (F(p), \star)$ where $\star \in \Phi$. So $\forall q \in U_{\alpha}, \chi_{\alpha}$ restricts to the fiber $F^{-1}(q)$, where $\chi_{\alpha}(p) \mapsto \star$.

Ex: The tangent bundle TM is a fiber bundle, with fiber \mathbb{R}^m (with $m = \dim M$).

Note: This has additional structure: $\Phi \cong \mathbb{R}^m$ is a vector space, the fibers are all vector spaces, and there exist trivializations that are linear on the fibers.