

Basic Electrical Technology

CLASS 11 - 01 DECEMBER 2021

Charging of a Capacitor through a Resistor

Applying KVL,

$$V - Ri - v_c = 0$$

where,
$$oldsymbol{i} = oldsymbol{C} rac{dv_c}{dt}$$

Initial Conditions,

$$At t = 0 sec, V_c = 0 V$$

Final current & voltage equation,

$$v_c = V \Big(1 - e^{-\frac{1}{RC}t} \Big)$$

$$i_c = \left(\frac{V}{R}\right) e^{-\left(\frac{1}{RC}\right)t}$$

Time Constant (\tau): Time taken by the voltage of the capacitor to reach its final steady state value, had the initial rate of rise been maintained constant

$$\tau = RC$$

Discharging of a Capacitor through a Resistor

- ightharpoonupCapacitor is initially charged to a voltage V
- ightharpoonup At t=0, switch is moved from position a to b

Applying KVL,

$$v_c - Ri = 0$$

Where,
$$i = -C \frac{dv_c}{dt}$$

Using initial conditions and then solving

$$v_c = V e^{-(\frac{1}{RC})t}$$

$$i_c = -I e^{-(\frac{1}{RC})t}$$

Discharging of a Capacitor through a Resistor

Illustration 1

An 8 μ F capacitor is connected in series with a 0.5 M Ω resistor, across a 200 V dc supply through a switch. At t=0 sec, the switch is turned on. Calculate

- Time constant of the circuit
- ii. Initial charging current.
- iii. Time taken for the potential difference across the capacitor to grow to 160 V.
- iv. Current & potential difference across the capacitor 4.0 seconds after the switch is turned on.

Ans: (i) 4 seconds, (ii) 400 μ A , (iii) 6.44 seconds (iv) 126.42 V & 147.15 μ A

Illustration 2

A 15 μ F uncharged capacitor is connected in series with a 47 $k\Omega$ resistor across a 120 V, d.c. supply.

- a) Determine the capacitor voltage at a time equal to one time constant after being connected to the supply and also two seconds after being connected to the supply.
- b)Find the time for the capacitor voltage to reach one half of its steady state value. Draw the capacitor voltage waveform.

Ans: a) 75.84 V, 112.97 V b) 0.49 s.

Illustration 3

In the network shown below, the switch is closed to position 1 at t=0 & is moved to position 2 at t=0.4 sec. Determine the voltage across the capacitor $v_c(t)$ & sketch it for $0 \le t \le 1$ sec

Also find the value of 't' for which $v_c(t) = 0$

Ans: At t = 0.6 sec, $v_c = 0$ V

$$v_c = 20(1 - e^{-t/0.2})$$

At $t = 0.4$ sec, $v_c = 17.29$ V

After 0.4 second, the switch is in postion 2
$$v_c = -10 + 27.29e^{-(t-0.4)/0.2}$$
 At $t=1$ sec, $v_c=-8.64$ V

Solution

In the circuit shown below, both the switches, $S_1 \& S_2$ are open initially. At t = 0 sec, S_1 is closed (& S_2 remains open). At t = 4 ms S_2 is closed. Sketch the inductor current i(t) for $0 \le t \le 25$ ms.

Solution

For the circuit shown in figure below, the switch **S** has been closed for a long time and then o

Find,

$$i. v_{ab}(0^-)$$

ii.
$$i_x(0^-)$$

$$iii.i_L(0^-)$$

iv.
$$i_{x}(0^{+})$$

$$v_{ab}(0^+)$$

$$vi.i_x(t=\infty)$$

$$vii.v_{ab}(t=\infty)$$

Answers:

i.
$$= 0 \text{ V}$$

ii.
$$= 4 A$$

iii.
$$= 6 A$$

iv.
$$= 6 A$$

$$v. = -10 V$$

vi.
$$= 4 A$$

vii.
$$= 0 \text{ V}$$

viii.
$$20 - 5 i_x - \frac{di_x}{dt} = 0 \Rightarrow$$

 $i_x(t) = 4 + 2e^{-5t}$
Initial condition: At t = 0, $i_x = 6$ A

For the circuit shown in figure below, the switch **S** has been kept open for a long time and then it is closed

Find,

i.
$$v_c(0^-)$$

ii.
$$v_c(0^+)$$

$$iii.i_c(0^-)$$

iv.
$$i_c(0^+)$$

$$V. \frac{dv_c}{dt}\Big|_{t=0^+}$$

$$vi.v_c(t=\infty)$$

Answers:

i.
$$= 40 \text{ V}$$

ii.
$$= 40 \text{ V}$$

iii.
$$= 0 A$$

iv.
$$=\frac{20}{3}$$
 A

$$v. = \frac{5}{3}V/s$$

vi.
$$= 15 \text{ V}$$

vii. $\tau_1 = 40$ s, $\tau_2 = 15$ s (To find τ_2 find the Thevenin's equivalent resistance)

In the network shown below, the switch is closed to position 1 at t = 0 & is moved to position 2 at t = 0.4 sec. Determine the voltage across the capacitor $v_c(t)$ & sketch it for $0 \le t \le 1$ sec

Also find the value of 't' for which $v_c(t) = 0$

Solution

$$v_c = 20(1 - e^{-t/0.2})$$

At $t = 0.4$ sec, $v_c = 17.29$ V

After 0.4 second, the switch is in postion 2 $v_c = -10 + 27.29e^{-(t-0.4)/0.2}$

At $t = 1 \sec_{0} v_{c} = -8.64 V$ Ans: At $t = 0.6 \sec_{0} v_{c} = 0 V$

