Algoritmos e Complexidade – 7 de Janeiro de 2016 – Duração: 90 min

Parte A

 Relembre a definição de uma min-heap armazenada num array e a função void bubbledown (int heap[], int N, int i) que recebe um array heap com N elementos e faz o bubble-down do elemento que está no índice i. Considere agora a função que transforma um array arbitrário numa min-heap.

```
void heapify (int v[], int N){
  int i;
  for (i=(N-2)/2; i>=0; i--)
    bubbledown (v,N,i);
}
```

- (a) Diga qual o resultado da função heapify quando invocada com um array v com os seguintes 7 elementos por esta ordem: {50, 20, 42, 13, 2, 12, 36}. Justifique a sua resposta apresentando o estado do array no final de cada iteração do ciclo.
- (b) Note que a função bubbledown só é aplicada a metade dos elementos do array. Além disso,
 - para 1/4 dos elementos (a metade superior dessa metade) a função bubbledown faz no máximo 1 iteração.
 - para 1/8 dos elementos a função bubbledown faz no máximo 2 iterações, e assim sucessivamente.

Com base nestas observações, analise a complexidade da função heapify apresentada.

2. Um grafo G = (V, E) diz-se **bi-partido** sse é possível determinar um sub-conjunto V_1 tal que para cada aresta $(a, b) \in E$, **exactamente uma** das extremidades (a ou b) pertence a V_1 .

Defina uma função int bipartido (Graph g, int V1[]) que testa se um grafo é bipartido. A função deverá retornar 1 se tal acontecer e 0 no outro caso. Em caso afirmativo, a função deverá ainda preencher o array V1 com 1 ou 0 de forma a que o conjunto representado por esse array demonstre que o grafo é bi-partido (V1[i]=1 significará que i pertence ao conjunto representado por V1).

Sugestão: Faça uma ou mais travessias de forma a visitar a totalidade dos vértices. Para cada vértice visitado teste se é possível inclui-lo no conjunto V1.

#define NV 1000
typedef struct edge {
 int dest;
 int cost;
 struct edge *next;
} *Graph [NV];

- 3. Considere que ao executar o algoritmo de Warshall (all-pairs shortest paths) sobre um grafo G com 5 vértices, as matrizes de pesos (p) e caminhos (c) produzidas são as que se apresentam ao lado. Responda, justificando, às seguintes questões sobre o grafo G.
 - (a) Qual o caminho mais curto (i.e., a sequência de vértices) que liga o vértice 0 ao vértice 3?
 - (b) Qual o caminho mais curto (i.e., a sequência de vértices) entre os vértices mais distantes entre si?
 - (c) Será o grafo cíclico?

c =		0	1	2	3	4	
	0	-	4	_	4	_	
	1	_	-	_	_	—	
	2	_	4	_	4	0	
	3	-	-	_	_	—	
	4	-	-	_	1	–	
p =		0	1	2	;	3	4
	0	∞	3	\propto) 4	1	1
	1	∞	$ \infty $	\propto		L	∞
	2	2	5	\propto	0 6	3	3
	3	∞	∞	\propto		8	∞
	_						
	3	∞	$ \infty$	$ \propto$		\circ	∞

Parte B

O problema da partição de um conjunto de inteiros consiste em, dado um conjunto X de números inteiros (positivos e negativos) determinar se existe um sub-conjunto Y de X cuja soma dos elementos seja exactamente metade da soma dos elementos de X.

Este problema é da classe NP. Demostre tal facto descrevendo um algoritmo não determinístico polinomial que o resolva (esta descrição deve indicar (1) como são codificadas as soluções propostas (resultado da fase não determinística) (2) incluir uma definição em C da fase determinística e (3) a argumentação de que cada uma destas componentes é de facto polinomial).