

Classe: **Bac Maths**

Série: Intégrales et espace

Nom du Prof: Mohamed Hedi **Ghomriani**

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1

(5) 25 min

6 pts

Soit $n \in \mathbb{N}^*$. On pose : $\mathbf{I_n} = \int_0^1 (1 - \mathbf{x}^2)^n d\mathbf{x}$.

- 1) Vérifier que : $I_1 = \frac{2}{3}$ et que $I_2 = \frac{2}{3} \times \frac{4}{5}$.
- 2) Vérifier que : $I_n I_{n+1} = \int_0^1 x^2 (1 x^2)^n dx$.
- 3)
- a) Montrer par intégration par partie que : $\mathbf{I}_{\mathbf{n}+1} = \frac{2\mathbf{n}+2}{2\mathbf{n}+3}\mathbf{I}_{\mathbf{n}}$.
- b) Déduire par récurrence que $n \in \mathbb{N}^*$, $\mathbf{I_n} = \frac{2}{3} \cdot \frac{4}{5} \cdot \frac{6}{7} \cdot \dots \cdot \frac{2\mathbf{n}}{2\mathbf{n}+1}$.
- 4) On considère les deux fonctions F et G définies sur $\mathbb R$ par :

$$\mathbf{F}(\mathbf{x}) = \int_0^{\sin \mathbf{x}} (1 - \mathbf{t}^2)^{\mathbf{n}} d\mathbf{t} \quad \text{et} \quad \mathbf{G}(\mathbf{x}) = \int_0^{\mathbf{x}} \cos^{2\mathbf{n} + 1}(\mathbf{t}) d\mathbf{t}.$$

- a) Montrer que \mathbf{F} et G sont dérivables sur \mathbb{R} puis déterminer $\mathbf{F}'(\mathbf{x})$ et $\mathbf{G}'(\mathbf{x})$.
- b) Déduire que pour tout $x \in \mathbb{R}$, $\mathbf{F}(\mathbf{x}) = \mathbf{G}(\mathbf{x})$.
- c) Montrer alors que : $\boldsymbol{I_n} = \int_0^{\frac{\pi}{2}} cos^{2n+1} \, t \, \, dt$

Exercice 2

(\$ 30 min

4 pts

L'espace est muni d'un repère orthonormé direct $\left(\vec{O,i,j,k}\right)$.

On considère les points A(1,-4,0); B(4,-1,3); C(4,-4,-3) et D(-2,2,-3).

- 1) a) Calculer $\overrightarrow{AB}.\overrightarrow{AC}$.
 - b)Déterminer les composantes du vecteur $\overrightarrow{AB} \wedge \overrightarrow{AC}$

- 2) Calculer l'aire du triangle ABC.
- 3) Montrer que la droite (AD) est perpendiculaire au plan ABC.
- 4) a) Vérifier que le volume du tétraèdre ABCD est égal à 27.
 - b) Calculer l'aire du triangle BCD.
 - c) En déduire la distance du point A au plan (BCD).

Exercice 3

5 pts

L'espace est rapporté à un repère orthonormé direct (A, i, j, k) et ABCDEFGH un parallélépipède tel que : $\overrightarrow{AB} = 2\overrightarrow{i}$; $\overrightarrow{AD} = 4\overrightarrow{j}$ et $\overrightarrow{AE} = 3\overrightarrow{k}$.

- 1) a) Vérifier que $\overrightarrow{AG} = 2\vec{i} + 4\vec{j} + 3\vec{k}$
 - b) Déterminer les composantes des chacun des vecteurs $\stackrel{\longrightarrow}{EB}$, $\stackrel{\longrightarrow}{EG}$ et $\stackrel{\longrightarrow}{EB} \wedge \stackrel{\longrightarrow}{EG}$
 - c) Déterminer une équation cartésienne du plan (EBG).

- a) Vérifier que le point M décrit la droite (AG) privée du point G.
- b) Montrer que M n'appartient pas au plan (EBG).
- 3) Soit v le volume du tétraèdre MEBG .
 - a) Exprimer v en fonction de α .
 - b) Calculer le volume du tétraèdre AEBG.
 - c) Pour quelles valeurs de $\,\alpha$, v est -il égal au volume du parallélépipède ABCDEFGH ?

