Instructor: Ann Clifton Name: _____

Answer the following questions. You must show your work to receive full credit. Be sure to make reasonable simplifications. Give exact answers unless otherwise specified. Indicate your final answer with a box.

- 1. State the formula for the amount of money, A(t), after t years if P dollars is invested at a rate of r compounded n times per year.
- 2. For a function to have an inverse, it must be ______.
- 3. Let f(x) be a function and assume it has an inverse, $f^{-1}(x)$. Then $f(f^{-1}(x)) = f^{-1}(f(x)) = \underline{\qquad}$, the $\underline{\qquad}$ function.
- 4. Find $f^{-1}(x)$ if $f(x) = \ln x 4$. Check to make sure your answer is correct.

5. Solve for x: $\log_x 8 + \log_x 2 + 1 = 3$

7. Let
$$f(x) = -3x^2 + 6x + 9$$
.

(a) Write the function in Standard Form by completing the square. Using the basic function $y = x^2$, what transformations (horizontal, vertical, etc.) give the function $f(x) = -3x^2 + 6x + 9$?

- (b) What is the vertex of the parabola?
- (c) Does the function have a maximum or a minimum value? What is the maximum/minimum value?

(d) Calculate the discriminant. How many x-intercepts does the function have?

(e) Find the x- and y-intercepts. If there are none, write NONE.

x-intercepts:______y-intercept:______

(f) Using parts (a)-(e), sketch a graph of the function. Be sure to label the vertex and intercept(s).

8. **Bonus** (+5 points) Blake has 1800 feet of fencing with which she wants to fence off a rectangular field that borders a straight river. She does not need a fence along the river (see the figure).

What are the dimensions of the largest area she can fence? What is the largest area that can be fenced?

9. Bonus (+5 points) What was my costume for Halloween?