STA 35C: Statistical Data Science III

Lecture 9: Logistic Regression (cont'd) & Classification Errors

Dogyoon Song

Spring 2025, UC Davis

Agenda

Last time: Simple logistic regression (p = 1, K = 2)

Today:

- Extensions of logistic regression
 - Multiple logistic regression (p > 1)
 - Multinomial logistic regression (K > 2)
- Assessing a classification method
 - Error rate & the Bayes classifier
 - Confusion matrix & false positives/negatives

Recap: Simple logistic regression (p = 1, K = 2)

Model:

$$\Pr(Y = 1 \mid X = x) = \sigma(\beta_0 + \beta_1 x) = \frac{\exp(\beta_0 + \beta_1 x)}{1 + \exp(\beta_0 + \beta_1 x)}$$

Where did it come from?

- We want to predict $p(X) = \Pr[Y = 1 \mid X] \in [0, 1]$... using a linear model of X
- We need a monotone increasing function $p(X) \in [0,1] o f \circ p(X) \in \mathbb{R}$
- We model/assume the *log-odds* (*logit*) is linear in X:

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X$$

Interpreting coefficients:

- β_0 : log-odds at x = 0
- β_1 : a 1-unit increase in x multiplies the *odds* by e^{β_1}

Recap: Coefficient estimation & prediction

Maximum likelihood estimation (MLE):

- Given data $(x_i, y_i) \in \{0, 1\}, p_i = \Pr(Y_i = 1) = \sigma(\beta_0 + \beta_1 x_i)$
- The likelihood function of (β_0, β_1) is

$$L(\beta_0, \beta_1) = \Pr\left(\underbrace{(x_i, y_i)_{i=1}^n}_{\text{data at hand logistic model}}; \underbrace{\beta_0, \beta_1}_{\text{logistic model}}\right) = \prod_{i=1}^n p_i^{y_i} (1 - p_i)^{(1 - y_i)}$$

• Choose $\hat{\beta}_0,\hat{\beta}_1$ that maximizes $L(\beta_0,\beta_1)$, typically by numerical methods

Making predictions: Once we have $\hat{\beta}_0, \hat{\beta}_1$,

- $\hat{p}(x) = \sigma(\hat{\beta}_0 + \hat{\beta}_1 x)$
- Typically predict Y = 1 if $\hat{p}(x) \ge 0.5$; Y = 0 otherwise
- ullet Threshold 0.5 can be changed for a different value $p^* \in [0,1]$

Multiple logistic regression (p > 1)

Model:

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

• The logit (=log-odds) is linear in X_1, \ldots, X_p

Interpretation of coefficients:

- β_i : the effect of X_i on log-odds of Y = 1, holding other predictors fixed
 - a 1-unit increase in X_i multiplies the odds by e^{β_i} , when other predictors are controlled

Decision boundary:

- The hyperplane $\{\mathbf{x} \mid \beta_0 + \sum_{i=1}^p \beta_i x_i = 0\}$; a point if p = 1, a line if p = 2
- Linear boundary in (x_1, \ldots, x_p)

Pop-up quiz: Logistic regression boundary in 2D

Scenario: Recall the decision boundary of a binary logistic regression model (with $p^* = 0.5$) is given by

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 = 0$$

Question 1: Consider two separate changes to the coefficients:

- β_1, β_2 changes from (1,1) to (2,1). Will the boundary rotate clockwise or counterclockwise?
- β_0 changes from 0 to -2. Will the boundary move upward or downward?
- A) Rotate clockwise, boundary moves up
- B) Rotate clockwise, boundary moves down
- C) Rotate counterclockwise, boundary moves up
- D) Rotate counterclockwise, boundary moves down

Question 2: How does the boundary change if we reduce p^* from 0.5 to 0.1?

Example: The **Default** data set mystery

	Coefficient	Std. error	z-statistic	<i>p</i> -value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

	Coefficient	Std. error	z-statistic	p-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

	Coefficient	Std. error	z-statistic	p-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

Figure: In the <u>Default</u> dataset, simple logistic regression shows a significantly *positive* association between student and default, whereas multiple logistic regression yields a significantly *negative* association [JWHT21, Tables 4.1 - 4.3].

Explanation: Confounding by balance

Figure: Confounding in the <u>Default</u> dataset. **Left:** default rates for students (<u>orange</u>) vs. non-students (<u>blue</u>). **Right:** boxplots of balance distribution [JWHT21, Tables 4.1 - 4.3].

- Simple logistic: student seems positively related to default due to higher overall default rate
- Once balance is accounted for, students are less likely to default
- Contradiction arises from confounding by balance; students tend to carry higher balance

Multinomial logistic regression (K > 2)

Idea: Use class K as baseline, and model

$$\log\left(\frac{p_{k}(x)}{p_{K}(x)}\right) = \beta_{k,0} + \beta_{k,1}X_{1} + \dots + \beta_{k,p}X_{p} \quad \text{for } k = 1,\dots,K-1$$

$$\Rightarrow \quad \Pr(Y = k \mid X = x) = \begin{cases} \frac{\exp(\beta_{k,0} + \beta_{k,1}X_{1} + \dots + \beta_{k,p}X_{p})}{1 + \sum_{k'=1}^{K-1} \exp(\beta_{k',0} + \beta_{k',1}X_{1} + \dots + \beta_{k',p}X_{p})}, & \text{if } k = 1,\dots,K-1, \\ \frac{1}{1 + \sum_{k'=1}^{K-1} \exp(\beta_{k',0} + \beta_{k',1}X_{1} + \dots + \beta_{k',p}X_{p})}, & \text{if } k = K \end{cases}$$

- Each class probability arises from exponentiating its own linear form
- Changing the baseline only alters coefficient representation & its interpretation, not the predicted probabilities

Alternatively, an equivalent *softmax* formulation treats all *K* classes symmetrically:

$$\Pr(Y = k \mid X = x) = \frac{\exp(\beta_{k,0} + \beta_{k,1}X_1 + \dots + \beta_{k,p}X_p)}{1 + \sum_{k'=1}^{K} \exp(\beta_{k',0} + \beta_{k',1}X_1 + \dots + \beta_{k',p}X_p)}$$

Error rate

Definition: Fraction of observations that are misclassified

Error rate =
$$\frac{1}{n} \sum_{i=1}^{n} I(\hat{y}_i \neq y_i)$$

Bayes classifier:

$$X \mapsto \arg\max_{k} \ \Pr(Y = k \mid X)$$

- Optimal classifier that minimizes error rate in theory
- Usually impossible to compute in practice, since Pr(Y | X) is unknown
- Question: Even if we could, is the error rate always the best measure?
 - Some classification errors could be costlier than others
 - e.g., missing a cancer is worse than a false alarm

Confusion matrix: Binary classification

Let's consider **binary** classification (Y = 0 or 1)

		True default status		
		No	Yes	Total
Predicted	No	9432	138	9570
$default\ status$	Yes	235	195	430
	Total	9667	333	10000

Figure: An example confusion matrix for the Default dataset [JWHT21, Table 4.5].

Four possible outcomes:

- True positive (TP): predicted $\hat{Y} = 1$ when Y = 1 is true
- False negative (FN): predicted $\hat{Y}=0$ when Y=1 is true
- ullet False positive (FP): predicted $\hat{Y}=1$ when Y=0 is true
- True negative (TN): predicted $\hat{Y}=0$ when Y=0 is true

Minimizing total error rate can be suboptimal if FP and FN have different costs

More on error metrics

		True class		
		– or Null	+ or Non-null	Total
Predicted	– or Null	True Neg. (TN)	False Neg. (FN)	N^*
class	+ or Non-null	False Pos. (FP)	True Pos. (TP)	P^*
	Total	N	P	
NT	D - C - :4: -		C	

\mathbf{Name}	Definition	Synonyms
False Pos. rate	FP/N	Type I error, 1—Specificity
True Pos. rate	TP/P	1—Type II error, power, sensitivity, recall
Pos. Pred. value	TP/P^*	Precision, 1—false discovery proportion
Neg. Pred. value	TN/N^*	

Figure: **Top:** Possible classification outcomes in a population. **Bottom:** Important measures for classification, derived from the confusion matrix [JWHT21, Tables 4.6 & 4.7].

Pop-up quiz #2: Error metrics

Question: In a binary classification with many more negatives than positives, why might we prefer measures like precision (TP/P^*) and sensitivity (TP/P) over overall error rate?

- A) Because error rate is always 50% in such cases, regardless of the classifier.
- B) Because false positives and false negatives are equally bad in all scenarios.
- C) Because error rate can be misleading when one class is rare, while precision/recall better capture performance on the minority class.
- D) Because if we have more negatives, the classifier rarely needs to predict Y=1.

Threshold selection

Many classifiers (e.g. logistic regression) produce $\hat{p}(x) = \Pr(Y = 1 \mid x)$

- If $\hat{p}(x) \ge p^*$, predict Y = 1, else 0
- Changing p^* alters false positives and false negatives

Figure: False positive (orange dotted) and false negative (blue dashed) error rates as a function of the threshold value p^* for the Default dataset [JWHT21, Figure 4.7].

Receiver operating characteristic (ROC) curve

Figure: An example ROC curve, with AUC [JWHT21, Figure 4.8].

ROC curve

- Plot TPR vs. FPR as p* moves from 0 to 1
- Summarize the performance via area under curve (AUC)

Area under curve (AUC)

- Reflects overall discriminative power across thresholds
 - Perfect classifier: AUC = 1
 - Random guess: AUC = 0.5

Wrap-up

Logistic regression:

- Extension to multiple predictors (p > 1)
 - Interpretation of coefficients
 - Linear decision boundary
- Extension to K > 2 classes (multinomial logistic)
 - Coefficients may differ if baseline class is changed, but predictions remain the same

Assessing classification:

- Error rate & the Bayes classifier
- Confusion matrix, FP/FN & threshold selection
- ROC curve, AUC

Next lecture: Generative models for classification (LDA, Naive Bayes)

References

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.

An Introduction to Statistical Learning: with Applications in R, volume 112 of Springer Texts in Statistics.

Springer, New York, NY, 2nd edition, 2021.