Session de Juin 2021

Examen de Matériaux avancés

(Documents non autorisés)

Exercice nº1:

- a) Indiquez quatre raisons pour lesquelles les fibres de carbone sont utilisées comme renfort
- b) Comment fabrique-t-on les fibres de carbone ?
- c) Pourquoi est-il important que les fibres de carbone soient exemptes de tout défaut de surface ?
- d) Qu'est-ce qui limite l'utilisation des composites à fibres de carbone ?

Exercice nº2:

Un composite à matrice métallique est fait d'une matrice d'alliage d'aluminium (Al) renforcée de fibres longs continues (selon la direction de la charge) de carbure de silicium (SiC). La fraction volumique V_f de fibres est égale à 40% et les propriétés des composants sont données au tableau suivant

	Unités	Al	SiC
Module d'Young E	GPa	70	500
Limite d'élasticité Re	MPa	280	-
Résistance à la traction R _m	MPa	520	2500
Allongement à la rupture A%	%	11,66	-

- a) Etablir l'expression puis calculez le module d'Young E (en GPa) du composite
- b) Calculez l'allongement Ac (en %) du composite à l'instant de sa rupture.
- c) Vérifier par les calculs que le composite présentera une transition élastique-plastique avant sa rupture. Déterminer l'illustration graphique des différentes caractéristiques mécaniques des fibres, de la matrice et du composite
- d) Calculez la limite d'élasticité Rec (en MPa) du composite.
- e) Quelle est la résistance à la traction R_{mc} (en MPa) du composite