Ohm's Law

 Ohm's law states that, in an electrical circuit, the current passing through most materials is directly proportional to the potential difference applied across them.

3-1—3-3: Ohm's Law Formulas

- There are three forms of Ohm's Law:
 - I = V/R
 - *V* = *IR*
 - R = V/I
- where:
 - /= Current
 - V = Voltage
 - R = Resistance

Fig. 3-4: A circle diagram to help in memorizing the Ohm's Law formulas V = IR, I = V/R, and R = V/I. The V is always at the top.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3-1: The Current I = V/R

- I = V/R
- In practical units, this law may be stated as:
 - amperes = volts / ohms

Fig. 3-1: Increasing the applied voltage *V* produces more current *I* to light the bulb with more intensity.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3-4: Practical Units

- The three forms of Ohm's law can be used to define the practical units of current, voltage, and resistance:
 - 1 ampere = 1 volt / 1 ohm
 - 1 volt = 1 ampere × 1 ohm
 - 1 ohm = 1 volt / 1 ampere

3-4: Practical Units

Applying Ohm's Law

$$\begin{array}{c|c} & & & & \\ \hline & & & \\ \hline & & & \\ \hline \end{array} \begin{array}{c} & & & \\ \end{array} \begin{array}{c} & & & \\ \hline \end{array} \begin{array}{c} & & & \\ \end{array} \begin{array}{c} & & & \\$$

Problem

- Solve for the resistance, R, when V and I are known
 - a. V = 14 V, I = 2 A, R = ?
 - b. V = 25 V, I = 5 A, R = ?
 - c. V = 6 V, I = 1.5 A, R = ?
 - d. V = 24 V, I = 4 A, R = ?

3-5: Multiple and Submultiple Units

- Units of Voltage
 - The basic unit of voltage is the volt (V).
 - Multiple units of voltage are:
 - kilovolt (kV)
 1 thousand volts or 10³ V
 - megavolt (MV)
 1 million volts or 10⁶ V
 - Submultiple units of voltage are:
 - millivolt (mV)
 1-thousandth of a volt or 10⁻³ V
 - microvolt (μV)
 1-millionth of a volt or 10-6 V

3-5: Multiple and Submultiple Units

Units of Current

- The basic unit of current is the ampere (A).
- Submultiple units of current are:
 - milliampere (mA)
 1-thousandth of an ampere or 10⁻³ A
 - microampere (μA)
 1-millionth of an ampere or 10⁻⁶ A

3-5: Multiple and Submultiple Units

- Units of Resistance
 - The basic unit of resistance is the **Ohm** (Ω).
 - Multiple units of resistance are:
 - kilohm (kΩ)
 1 thousand ohms or 10³ Ω
 - Megohm (MΩ)
 1 million ohms or 10⁶ Ω

Problem

How much is the current, I, in a 470-kΩ resistor if its voltage is 23.5 V?

 How much voltage will be dropped across a 40 kΩ resistance whose current is 250 μA?