School of Mathematical and **Computational Sciences**

Abstract Algebra

Prof. Pablo Rosero & Christian Chávez Problem Set 1

Basic Properties of the Integers

(Lesson 1)

- 1. Determine which of the following binary operations are associative.
 - (a) the operation \star on \mathbb{Z} defined by $a \star b = a b$
 - (b) the operation \star on \mathbb{R} defined by $a \star b = a + b + ab$
 - (c) the operation \star on \mathbb{Q} defined by $a \star b = \frac{a+b}{5}$
 - (d) the operation \star on $\mathbb{Z} \times \mathbb{Z}$ defined by $(a,b) \star (c,d) = (ad + bc,bd)$
 - (e) the operation \star on $\mathbb{Q}\setminus\{0\}$ defined by $a\star b=\frac{a}{b}$
- **2.** Prove that addition of residue classes in $\mathbb{Z}/n\mathbb{Z}$ is associative. (Assume it is well defined.)
- **3.** Determine which of the following sets are groups under addition:
 - (a) the set of rational numbers (including 0 = 0/1) in lowest terms whose denominators are odd
 - (b) the set of rational numbers (including 0 = 0/1) in lowest terms whose denominators are even
 - (c) the set of rational numbers of absolute value < 1
 - (d) the set of rational numbers of absolute value ≥ 1 together with 0
 - (e) the set of rational numbers with denominators equal to 1 or 2
 - (f) the set of rational numbers with denominators equal to 1, 2 or 3
- **4.** Let $G = \{z \in \mathbb{C} \mid z^n = 1 \text{ for some } n \in \mathbb{Z}^+\}.$
 - (a) Prove that G is a group under multiplication (called the group of *roots of unity* in \mathbb{C}).
 - (b) Prove that *G* is not a group under addition.
- **5.** Let $G = \{a + b\sqrt{2} \in \mathbb{R} \mid a, b \in \mathbb{Q}\}.$
 - (a) Prove that *G* is a group under addition.
 - (b) Prove that the nonzero elements of *G* are a group under multiplication. ("Rationalize the denominators" to find multiplicative inverses.)
- **6.** Find the orders of each element of the additive group $\mathbb{Z}/12\mathbb{Z}$.

7. Find the orders of the following elements of the multiplicative group $(\mathbb{Z}/12\mathbb{Z})^{\times}$:

$$\overline{1}$$
, $\overline{-1}$, $\overline{5}$, $\overline{7}$, $\overline{-7}$, $\overline{13}$.

8. Find the orders of the following elements of the additive group $\mathbb{Z}/36\mathbb{Z}$:

$$\overline{1}, \overline{2}, \overline{6}, \overline{9}, \overline{10}, \overline{12}, \overline{-1}, \overline{-10}, \overline{-18}.$$

- **9.** Let *x* be an element of *G*. Prove that $x^2 = 1$ if and only if |x| is either 1 or 2.
- **10.** Let x be an element of G. Prove that if |x| = n for some positive integer n then $x^{-1} = x^{n-1}$.
- **11.** Let x and y be elements of G. Prove that xy = yx if and only if $y^{-1}xy = x$ if and only if $x^{-1}y^{-1}xy = 1$.
- **12.** Let $x \in G$ and let $a, b \in \mathbb{Z}^+$.
 - (a) Prove that $x^{a+b} = x^a x^b$ and $(x^a)^b = x^{ab}$.
 - (b) Prove that $(x^a)^{-1} = x^{-a}$.
 - (c) Establish part (a) for arbitrary integers *a* and *b* (positive, negative or zero).
- **13.** For *x* an element in *G* show that *x* and x^{-1} have the same order.
- **14.** If x and g are elements of the group G, prove that $|x| = |g^{-1}xg|$. Deduce that |ab| = |ba| for all $a, b \in G$.
- **15.** Prove that if $x^2 = 1$ for all $x \in G$, then G is abelian.
- **16.** Assume H is a nonempty subset of (G, \star) which is closed under the binary operation on G and is closed under inverses, i.e., for all h and k elements of H it holds hk, $h^{-1} \in H$. Prove that H is a group under the operation \star restricted to H (such a subset H is called a subgroup of G).
- **17.** Prove that if x is an element of the group G then $\{x^n \mid n \in \mathbb{Z}\}$ is a subgroup (cf. the preceding exercise) of G (called the cyclic subgroup of G generated by x).
- **18.** Compute the order of each of the elements in (a) D_6 , (b) D_8 , and (c) D_{10} .
- **19.** Let σ be the permutation

$$1 \mapsto 3 \quad 2 \mapsto 4 \quad 3 \mapsto 5 \quad 4 \mapsto 2 \quad 5 \mapsto 1$$

and let τ be the permutation

$$1 \mapsto 5 \quad 2 \mapsto 3 \quad 3 \mapsto 2 \quad 4 \mapsto 4 \quad 5 \mapsto 1.$$

Find the cycle decompositions of each of the following permutations: σ , τ , σ^2 , $\sigma\tau$, $\tau\sigma$, and $\tau^2\sigma$.

20. Compute the order of each of the elements in the following in (a) S_3 and (b) S_4 .

- **21.** Find the order of (1 12 8 10 4)(2 13)(5 11 7)(6 9).
- **22.** Write out the cycle decomposition of each element of order 4 in S_4 .
- **23.** (a) Let σ be the 12-cycle (1 2 3 4 5 6 7 8 9 10 11 12). For which positive integers i is σ^i also a 12-cycle?
 - (b) Let τ be the 8-cycle (1 2 3 4 5 6 7 8). For which positive integers i is τ^i also an 8-cycle?
 - (c) Let w be the 14-cycle (1 2 3 4 5 6 7 8 9 10 11 12 13 14). For which positive integers i is ω^i also a 14-cycle?
- **24.** Prove that if σ is the m-cycle $(a_1a_2 \dots a_m)$, then for all $i \in \{1, 2, \dots, m\}$, it holds $\sigma^i(a_k) = a_{k+i}$, where k + i is replaced by its least residue mod m when k + i > m. Deduce that $|\sigma| = m$.
- **25.** Let σ be the m-cycle $(1\ 2\ 3\ \cdots\ m)$. Show that σ^i is also an m-cycle if and only if i is relatively prime to m.
- **26.** Let p be a prime. Show that an element has order p in S_n if and only if its cycle decomposition is a product of commuting p-cycles. Show by an explicit example that this need not be the case if p is not prime.
- **27.** Prove that the order of an element in S_n equals the least common multiple of the lengths of the cycles in its cycle decomposition. (Hint: use problem **24**.)

28.

- **29.** Write out all the elements of GL_2 (F_2) and compute the order of each element.
- **30.** 3. Show that $GL_2(F_2)$ is non-abelian.
- **31.** 4. Show that if *n* is not prime then $\mathbb{Z}/n\mathbb{Z}$ is not a field.
- **32.** 5. Show that $GL_n(F)$ is a finite group if and only if F has a finite number of elements.
- **33.** 6. If |F| = q is finite prove that $|GL_n(F)| < q^{n^2}$.
- **34.** 8. Show that $GL_n(F)$ is non-abelian for any $n \ge 2$ and any F.

The next exercise introduces the Heisenberg group over the field F and develops some of its basic properties. When $F = \mathbb{R}$ this group plays an important role in quantum mechanics and signal theory by giving a group theoretic interpretation (due to H. Weyl) of Heisenberg's Uncertainty Principle. Note also that the Heisenberg group may be defined more generally for example, with entries in \mathbb{Z} .

35. Let
$$H(F) = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \middle| a, b, c \in F \right\}$$
 — called the Heisenberg group over F . Let $X = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$ and $Y = \begin{pmatrix} 1 & d & e \\ 0 & 1 & f \\ 0 & 0 & 1 \end{pmatrix}$ be elements of $H(F)$.

Compute the matrix product XY and deduce that H(F) is closed under matrix multiplication. Exhibit explicit matrices such that $XY \neq YX$ (so that H(F) is always non-abelian).

- **36.** Let *G* and *H* be groups. Let $\varphi : G \to H$ be a homomorphism.
 - (a) Prove that $\varphi(x^n) = \varphi(x)^n$ for all $n \in \mathbb{Z}^+$.
 - (b) Do part (a) for n = -1 and deduce that $\varphi(x^n) = \varphi(x)^n$ for all $n \in \mathbb{Z}$.
- **37.** Let *G* and *H* be groups. If $\varphi : G \to H$ is an isomorphism, prove that $|\varphi(x)| = |x|$ for all $x \in G$. Deduce that any two isomorphic groups have the same number of elements of order n for each $n \in \mathbb{Z}^+$. Is the result true if φ is only assumed to be a homomorphism?
- **38.** Let *G* and *H* be groups. If $\varphi : G \to H$ is an isomorphism, prove that *G* is abelian if and only if *H* is abelian. If $\varphi : G \to H$ is a homomorphism, what additional conditions on φ (if any) are sufficient to ensure that if *G* is abelian, then so is *H*?
- **39.** Prove that D_{24} and S_4 are not isomorphic.
- **40.** Let *A* and *B* be groups. Prove that $A \times B \cong B \times A$.
- **41.** Let *G* and *H* be groups and let $\varphi : G \to H$ be a homomorphism. Prove that the image of φ is a subgroup of *H*. Prove that, if φ is injective, then $G \cong \varphi(G)$.
- **42.** Let *G* and *H* be groups and let $\varphi : G \to H$ be a homomorphism. Define the kernel of φ to be $\{g \in G \mid \varphi(g) = 1_H\}$ (so the kernel is the set of elements in *G* which map to the identity of *H*, i.e., is the *fiber* over the identity of *H*). Prove that the kernel of φ is a subgroup of *G*. Prove that φ is injective if and only if the kernel of φ is the identity subgroup of *G*.
- **43.** Define a map $\pi : \mathbb{R}^2 \to \mathbb{R}$ by $\pi((x,y)) = x$. Prove that π is a homomorphism and find the kernel of π .
- **44.** Let *G* be any group. Prove that the map from *G* to itself defined by $g \mapsto g^{-1}$ is a homomorphism if and only if *G* is abelian.
- **45.** Let *G* be any group. Prove that the map from *G* to itself defined by $g \mapsto g^2$ is a homomorphism if and only if *G* is abelian.
- **46.** Let $G = \{z \in \mathbb{C} \mid z^n = 1 \text{ for some } n \in \mathbb{Z}^+\}$. Prove that for any fixed integer k > 1 the map from G to itself defined by $z \mapsto z^k$ is a surjective homomorphism but is not an isomorphism.
- **47.** Let G be a group and let Aut(G) be the set of all isomorphisms from G onto G. Prove that Aut(G) is a group under function composition (called the *automorphism group* of G and the elements of Aut(G) are called automorphisms of G).
- **48.** In each of (a) (e) below prove that the specified subset is *not* a subgroup of the given group:
 - (a) the set of 2-cycles in S_n for $n \ge 3$,
 - (b) the set of reflections in D_{2n} for $n \ge 3$,

- (c) for n a composite integer > 1 and G a group containing an element of order n, the set $\{x \in G : |x| = n\} \cup \{1\}$,
- (d) the set of (positive and negative) odd integers in \mathbb{Z} together with 0, and
- (e) the set of real numbers whose square is a rational number (under addition).
- **49.** Show that the following subsets of the dihedral group D_8 are actually subgroups: (a) $\{1, r^2, s, sr^2\}$, (b) $\{1, r^2, sr, sr^3\}$.
- **50.** Give an explicit example of a group *G* and an infinite subset *H* of *G* that is closed under the group operation but is not a subgroup of *G*.
- **51.** Prove that *G* cannot have a subgroup *H* with |H| = n 1, where n = |G| > 2.
- **52.** Let *G* be an abelian group. Prove that $\{g \in G : |g| < \infty\}$ is a subgroup of *G* (called the *torsion subgroup* of *G*). Give an explicit example where this set is not a subgroup when *G* is non-abelian.
- **53.** Fix some $n \in \mathbb{Z}$ with n > 1. Find the torsion subgroup (cf. the previous exercise) of $\mathbb{Z} \times (\mathbb{Z}/n\mathbb{Z})$. Show that the set of elements of infinite order together with the identity is *not* a subgroup of this direct product.
- **54.** Let H and K be subgroups of G. Prove that $H \cup K$ is a subgroup if and only if either $H \subseteq K$ or $K \subseteq H$.
- **55.** Let $G = GL_n(F)$, where F is any field. Define

$$SL_n(F) = \{ A \in GL_n(F) \mid \det(A) = 1 \}$$

(called the *special linear group*). Prove that $SL_n(F) \leq GL_n(F)$.

- **56.** (a) Prove that if H and K are subgroups of G then so is their intersection $H \cap K$.
 - (b) Prove that the intersection of an arbitrary nonempty collection of subgroups of *G* is again a subgroup of *G* (do not assume the collection is countable).
- **57.** Let *A* and *B* be groups. Prove that the following sets are subgroups of the direct product $A \times B$:
 - (a) $\{(a,1) \mid a \in A\}$,
 - (b) $\{(1, b) \mid b \in B\}$, and
 - (c) $\{(a, a) \mid a \in A\}$, where we asume A = B.
- **58.** Let $H_1 \leq H_2 \leq \cdots$ be an ascending chain of subgroups of G. Prove that $\bigcup_{i=1}^{\infty} H_i$ is a subgroup of G.
- **59.** Let $n \in \mathbb{Z}^+$ and let F be a field. Prove that the set $\{(a_{ij}) \in GL_n(F) \mid a_{ij} = 0 \text{ for all } i > j\}$ is a subgroup of $GL_n(F)$ (called the *group of upper triangular marices*).
- **60.** Prove that $C_G(A) = \{ g \in G \mid g^{-1}ag = a \text{ for all } a \in A \}.$

- **61.** Prove that $C_G(Z(G)) = G$ and deduce that $N_G(Z(G)) = G$.
- **62.** In each of parts (a) to (c) show that for the specified group G and subgroup A of G, $C_G(A) = A$ and $N_G(A) = G$.

(a)
$$G = S_3$$
 and $A = \{1, (123), (132)\}$

(b)
$$G = D_8$$
 and $A = \{1, s, r^2, sr^2\}$

(c)
$$G = D_{10}$$
 and $A = \{1, r, r^2, r^3, r^4\}$

- **63.** Let H be a subgroup of the group G.
 - (a) Show that $H \leq N_G(H)$. Give an example to show that this is not necessarily true if H is not a subgroup.
 - (b) Show that $H \leq C_G(H)$ if and only if H is abelian.
- **64.** Prove that $Z(G) \leq N_G(A)$ for any subset A of G.