Randy es un entrenador de N cobayas, las cuales saltan muy ordenadamente.

Randy logró entrenarlas para que cada cobaya salte de manera constante cada cierto tiempo. La primera salta cada a_1 segundos, la segunda salta cada a_2 segundos, la tercera salta cada a_3 segundos, así hasta la N-ésima cobaya, que salta cada a_N segundos.

Las cobayas son veloces, y no demoran mucho en saltar. Cada cobaya se tarda a lo más 16 segundos en saltar.

Cada año, la OFMI organiza un concurso de cobayas saltarinas, en la que Randy quiere inscribir a sus cobayas. Para poder participar le solicitan a Randy calcular las siguientes Q cantidades:

- La menor cantidad s_1 de segundos que el equipo de N cobayas saltarinas demora en realizar al menos X saltos en total.
- La menor cantidad s_2 de segundos que el equipo de N cobayas saltarinas demora en realizar al menos 2X saltos en total.
- ...
- La menor cantidad s_Q de segundos que el equipo de N cobayas saltarinas demora en realizar al menos QX saltos en total.

Después de calcular los valores de $s_1, s_2, ..., s_Q$, Randy debe reportar la suma de estos bajo el módulo $10^9 + 7$ ($s_1 + s_2 + ... + s_Q$ mód $10^9 + 7$).

En un principio, ninguna cobaya ha saltado. La i-ésima cobaya dará su primer salto en el segundo a_i .

Problema

Ayuda a Randy a calcular los valores $s_1, s_2, ..., s_Q$ y su suma bajo el módulo $10^9 + 7$ para que sus cobayas puedan participar en la OFMI.

Entrada

- $\bullet\,$ En la primera línea un entero N que representa la cantidad de cobayas que tiene Randy.
- En la siguiente línea, N enteros separados por un espacio $a_1, a_2, ..., a_N$, representando el tiempo que tarda cada cobaya en volver a saltar.
- En la siguiente línea dos enteros, Q y X, representando el número de categorias y el número de saltos que se describió, respectivamente.

Salida

Deberas imprimir la suma de $s_1 + s_2 + ... + s_Q$ módulo $10^9 + 7$.

Ejemplo

||examplefile sample ||description En este caso de ejemplo tenemos que Q=3 y X=4. Por tanto, las preguntas a contestar serán: 4, 8 y 12.

Ya que queremos 4 saltos, vemos que con 4 segundos es suficiente, pues con 4 segundos brinca 2 veces la primera cobaya, 1 vez la segunda, y 1 vez la tercera. Por lo que brincan 4 veces. Con 3 segundos, esto ya no es posible.

Ya que queremos 8 saltos, vemos que con 8 segundos es suficiente, pues con 8 segundos brinca 4 veces la primera cobaya, 2 veces la segunda, 2 veces la tercera, y una vez la cuarta. Por lo que brincan 4 + 2 + 2 + 1 = 9 veces. Con 7 segundos, esto ya no es posible.

Ya que queremos 12 saltos, vemos que con 12 segundos es suficiente, pues con 12 segundos brinca 6 veces la primera cobaya, 4 veces la segunda, 3 veces la tercera, 1 vez la cuarta, y 1 vez la quinta. Por lo que brincan 6 + 4 + 3 + 1 + 1 = 15 veces. Con 11 segundos, esto ya no es posible.

Ya que nos piden la suma de las respuestas módulo 10^9+7 , la respuesta será $(4+8+12) \mod (10^9+7)=24$. ||examplefile sample2||end

Límites

- $1 \le N \le 10^5$
- $1 \le Q \le 10^6$
- $1 \le X \le 10^9$
- $1 \le a_i \le 16$ para toda cobaya, esto es, ninguna cobaya pasa más de 16 segundos sin saltar.

Subtareas

- (10 puntos): $N \le 100, Q \le 1,000, X \le 50$
- (20 puntos): X = 1
- (20 puntos): $N \le 100, Q \le 10,000$
- (30 puntos): $Q \le 10,000$
- (20 puntos): No hay consideraciones adicionales.

Consideraciones

Cada subtarea tiene todos sus casos agrupados.

Nota

Se dice que "r es igual a x bajo el módulo y" si "r es el residuo de dividir x entre y".

Figure 1: Dos cobayas de Randy

Las cobayas de Randy.