ED 012 382 AA DUD 134

A DEFINITION OF CURIOSITY, A FACTOR ANALYSIS STUDY.

BY- MAW, WALLACE H. DELAWARE UNIV., NEWARK REPORT NUMBER CRP-S-109

PUB DATE

67

REPORT NUMBER BR-5-8090

108P. EDRS PRICE MF-\$0.50 HC-\$4.32

DESCRIPTORS - *FACTOR ANALYSIS, *CURIOSITY, *PERSONALITY ASSESSMENT, *ATTITUDE TESTS, CHILDHOOD ATTITUDES, *MEASUREMENT INSTRUMENTS, CALIFORNIA TEST OF PERSONALITY, LORGE THORNDIKE INTELLIGENCE TESTS, NEWARK

AN INVESTIGATION WAS CONDUCTED TO DETERMINE A DEFINITION OF CURIOSITY THAT WOULD HELP IDENTIFY PERSONALITY PATTERNS OF CHILDREN WHO ARE MOST LIKELY TO BE EITHER HIGH OR LOW IN CURIOSITY. DATA COLLECTED IN EARLIER STUDIES WERE FACTOR ANALYZED TO IDENTIFY THE PERSONAL AND SOCIAL VARIABLES THAT DIFFERENTIATE CHILDREN HIGH IN CURIOSITY FROM THOSE LOW IN CURIOSITY. SEVERAL KINDS OF MEASURING INSTRUMENTS WERE USED TO DETERMINE HIGH AND LOW CURIOSITY BOYS AND HIGH AND LOW CURIOSITY GIRLS, AND TO MEASURE VARIABLES THAT SIGNIFICANTLY DIFFERENTIATE AMONG THOSE GROUPS. THESE MEASURES WERE TEACHER JUDGEMENT OF CURIOSITY, PEER JUDGEMENT OF CURIOSITY, "ABOUT MYSELF" FOR SELF-RATING OF CURIOSITY, LORGE-THORNDIKE INTELLIGENCE TESTS, THE CALIFORNIA TEST OF PERSONALITY, A SOCIAL DISTANCE SCALE CALLED "OTHER PEOPLE TEST," THE BEHAVIOR PREFERENCE RECORD, THE CHILDREN'S PERSONALITY QUESTIONNAIRE, THE WORD ASSOCIATION TEST (CREATIVITY), THE CASSEL GROUP LEVEL OF ASPIRATION TEST, PEER JUDGMENT OF SOCIAL BEHAVIOR, THE INSTITUTE OF CHILD STUDY SECURITY TEST, THE INTOLERANCE OF AMBIGUITY SCALE, THE SOCIAL ATTITUDES SCALE, DESCRIPTIVE WORDS (MORALITY), AND THE SITUATIONAL INTERPRETATION EXPERIMENT. FACTORS IDENTIFIED BY THE ANALYSIS WERE DESCRIBED IN RELATION TO EACH OF THE FOUR GROUPS STUDIED. FROM THE RESULTS, THE AUTHOR CONCLUDED THAT THERE ARE PERSONAL AND SOCIAL FACTORS THAT DIFFERENTIATE THESE FOUR GROUPS, AND THAT, ALTHOUGH CURIOSITY AS A TERM HAD NOT BEEN DEFINED, THE BEHAVIOR OF THOSE WHO SHOW DIFFERENT ASPECTS OF CURIOSITY WAS SET FORTH MORE CLEARLY THAN IT HAD BEEN BEFORE. (AL)

A Definition of Curiosity:

A Factor Analysis Study

Cooperative Research Project No. S-109

Wallace H. Maw

University of Delaware

"It is truth very certain that, when it is not in our power to determine what is true, we ought to follow what is most probable!"

Reze' Descartes

A Definition of Curiosity

A Factor Analysis Study

Cooperative Research Project No. S-109

Wallace H. Maw

University of Delaware Newark, Delaware 1 9 6 7

The research reported herein was supported by the Cooperative Research Program of the Office of Education, U. S. Department of Health, Education, and Welfare.

TABLE OF CONTENTS

	Page
The Problem	1
Objectives of Study	3
Related Literature	4
Literature pertaining to theories of curiosity	5
Literature pertaining to variables bearing on curiosity	6
Literature pertaining to studies of the role of curiosity	
in the social context	9
Literature pertaining to the role of the self in curiosity	9
Literature pertaining to attempts to measure or evaluate	
curiosity	10
Procedures	11
A definition of curiosity	13
the sample of the earlier study	13
Instruments used in the present study	15
Measures used in establishing criterion groups	15
Teacher judgment of curiosity	15
reer judgment of curiosity	16
The measurement of intelligence	16
Self-rating of curiosity	17
The California Test of Personality	17
The social distance scale	19
The Benavior Preference Record	20
The Children's Personality Ouestionnaire	21
Word Association Test (Creativity)	23
Cassel Group Level of Aspiration Test	23
reer judgment of social behavior	24
Institute of Child Study Security Test	25
Intolerance of ambiguity	27
Social attitudes	27
pescriptive words (morality)	28
Conceptual systems	28
The procedures used in the present study	30
Criterion analysis	31
The principal-factor method	32
Results	35
Correlation matrices with communality estimates	35 36
Matrices of common factor coefficients	30 37
Selection of significant loadings for factors	
Significant loadings of factors for each curiosity group	37 30
High-curiosity boys	39 30
Low-curiosity boys	39 41
High-curiosity girls	41 44
Low-curiosity girls	44 47
	47

			Page
Interpretation of factors	•	• •	. 48
High-curiosity boys	•	•	
Low-curiosity boys	•	•	. 52
High-curiosity girls	•		. 56
Low-curiosity girls	•	•	. 5 9
Conclusions and Interpretations	•	•	61
A definition of curiosity			
Interpretation of findings			
Bibliography	•	• (. 66
Appendix			. 73
Table A. Correlation matrix with communality estimates for			
high-curiosity boys		s :	. 74
Table B. Correlation matrix with communality estimates for low-curiosity boys			. 79
Table C. Correlation matrix with communality estimates for		•	, 13
high-curiosity girls			. 84
Table D. Correlation matrix with communality estimates for			,
low-curiosity girls			. 89
Table E. Matrix of common factor coefficients for high-			
curiosity boys	•		94
Table F. Matrix of common factor coefficients for low-			
curiosity boys	•	• (. 96
Table G. Matrix of common factor coefficients for high-			
curiosity girls	•	•	, 9 8
Table H. Matrix of common factor coefficients for low-			
curiosity girls	•	• (, 100
List of Other Tables			
Table 1 Eigenvalues for correlation matrices of tests			
administered to high- and low-curiosity boys and high-			
and low-curiosity girls ranked in order from highest			
to lowest	•	•	. 34
Table 2 Mean correlation coefficients, standard error of			
factor coefficients, and significant coefficients at			
.05 and .01 levels for determining which variables to			
include in interpretation of factors for each group	•	•	. 38

The Problem

The term 'curiosity" is understood by almost everyone, yet no two people will agree as to its exact meaning. The reader can easily verify this statement by asking his friends to define curiosity. They will define it in terms of such synonyms as intrusiveness, nosiness, exploring behavior, or probing. However, when pressed for clarification, they may not place equal ethical values on each of the synonyms. They may claim that curiosity is a positive characteristic. On the other hand, they may not exhibit the same assurance when asked about the defining synonyms.

This confusion is just as apparent when theoretical explanations are examined. Many of these statements are based on considerable research conducted under controlled conditions. Among the explanations which have been set forth to account for the results obtained in experiments designed to study arousal phenomena, including curiosity, at least two distinct groups of theories can be identified (72). One group that may be classified as "tedium" theories, holds that the organism will explore something new because it is bored with the present situation (86). The other group of theories that may be considered "titillation" theories, tries to account for the organism's behavior by postulating that it is attracted to novel aspects of the stimuli (3). These latter theories appear to be similar to the popular conceptions held regarding curiosity. None of these theories, however, clearly

describes the nature of curiosity of children living and learning in an elementary school environment.

Since there is confusion regarding the meaning of curiosity, it is appropriate that some effort be made to define it. In order to do this, several directions might have been followed. On the one hand, an analysis might have been made of behavior labelled "curiosity." On the other hand, the personality characteristics of children who were considered to differ in "curiosity" might be examined. In this study, the latter line of investigation was followed.

Differences in manifestations of curiosity which may be attributed to neurophysiology are not considered directly in this study, although such differences might be helpful in formulating a definition. Both Berlyne (3) and Hebb (31) have explored this area.

It is the purpose of this investigation to try to find a definition that will help discriminate with a high degree of probability those children most likely to exhibit a high level of curiosity from those who do not. More specifically, this definition should help to identify personality patterns of children who are most likely to be either high or low in curiosity.

and social variables differentiating children high in curiosity from those low in curiosity (56), the findings did not lend themselves to this type of definition. The number of variables investigated would have made the definition too long and too complex to be meaningful. However, an examination of the variables measured indicated that there

may actually be fewer underlying differences than would at first seem to be the case. In other words, by identifying the factors which are common to many of these variables and which account for most of the variance of behavior considered to be manifestations of curiosity, a definition might be obtained that would be more parsimonious, more objective and, in turn, more useful than one growing out of the earlier study.

Objectives of Study

Therefore, it was the objective of this investigation to obtain data that would make it possible to formulate a definition of curiosity based on the differences in personality shown by children differing in curiosity level. In order to do this, the large amount of data collected in earlier studies in an attempt to identify the personal and social variables differentiating children high in curiosity from those low in curiosity were factor analyzed.

By this statistical technique it was proposed that this study

might identify a limited on which to base a definition

useful in distinguishing between iffering in their levels of

curiosity. More specifically, and were sought for the following

questions:

- 1. What personal and/or social factors, if any, differentiate high-curiosity boys from low-curiosity boys?
- 2. What personal and/or social factors, if any, differentiate high-curiosity girls from low-curiosity girls?

- 3. What personal and/or social factors, if any distinguish among groups of boys and girls who also differ in their curiosity levels?
- 4. If such factors are identified, can they be used to formulate an objective definition of curiosity?

Related Literature

For many years, human beings have written about the nature of curiosity. This large body of literature contains conflicting opinions because, at times, curiosity was condoned, while at other times, it was condemned. At the present time, it is valued by our culture. For example, Roe (84) considers it one for the major characteristics of all scientists.

During the twentieth century, there have been many investigations with lower animals in an effort to determine the underlying bases for curiosity. During the last decade, there has been an increase in interest in the curiosity of human beings. Some of the interest has been directed toward the study of children in classroom situations.

Much of this research has been treated very extensively elsewhere. Berlyne (3), in his comprehensive study directed at laying a foundation for a theory of curiosity, reported most of the pertinent literature in this field, especially the research conducted with lower species. Maw and Maw (48), in a report to the Cooperative Research Branch of the United States Office of Education on the measurement of curiosity, devoted a chapter to the topic. Schwartz (91) reviewed similar literature as part of her doctoral dissertation.

Maw and Maw (53) also reported the procedures used in formulating the working definition of curiosity which they used in earlier studies and which served as the basis for establishing the groups of children participating in the current study. They also wrote a chapter concerned with a sampling of the literature pertaining to the personal and social variables which logically might differentiate high-curiosity elementary school children from low-curiosity elementary school children (56).

Therefore, this review of the literature will be quite abbreviated. Its principal purpose will be to alert the reader to the many efforts that have been made and are being made to study curiosity. A few studies will be reported directly, and the reader will be referred to other sources. In addition, mention will be made of a few investigations of variables other than curiosity in order to show how closely curiosity seems to be interrelated with other aspects of the personality. Some research examining aspects of curiosity theory will be cited and the literature bearing on such variables as anxiety, creativity, intelligence, and prejudice in relation to curiosity will be examined. Some of the efforts to understand the role of curiosity in the social context—especially the effect of pressures on the development of self-concept which seems to be related in some way to curiosity—will also be reported. Finally, a few references will be made regarding efforts to evaluate or measure curiosity with more precision.

Literature Pertaining to Theories of Curiosity

Since 1960, there has been an increase in the number of publications bearing on the curiosity of human beings. Some articles have

described attempts to verify theories of curiosity, especially those postulated by Berlyne (3). A number of these articles have appeared in foreign publications. For example, Hosoda (33) discussed aspects of curiosity theory in Japanese journals.

Some researchers have attempted to subsume the several aspects of Berlyne's theory under a single rubric. One researcher, Minton (66, 67) considers stimulus complexity as being composed of incongruity, surprisingness, relative entropy, and absolute entropy. Others such as Mittman and Terrell (68) tend to support Berlyne's theory more closely.

Literature Pertaining to Variables Bearing on Curiosity

Several studies were designed to examine the relation between curiosity and such variables as security, anxiety, creativity, intellectual functioning, and prejudice. Some studies of these variables not primarily concerned with curiosity also help increase our understanding of their relationship to curiosity.

A number of investigations have been made to examine the relationship between curiosity and security. Medianus and Love (63) studied young children; their findings were inconclusive. The results like those of Maw and Maw (59) suggested a need for better instruments to measure both curiosity and anxiety. Caron (8) found that low nachievement, high-anxiety individuals could maintain maximum efficiency with respect to the retention of facts, but the same individuals were severely disrupted in the grasp of principles where behavior such as curiosity was important.

It is probable that whatever effect anxiety has on curiosity, it

produces its effect, at least in part, through the changes it makes in the child's self-concept. For example, Feldhusen and Thurston (22) showed that highly anxious children have low self-concepts. This self evaluation is reflected in many ways. Sutton-Smith and Rosenberg (93) reported that "game choices of highly anxious boys were not only feminine, they were also immature, and that some of the game choices of highly anxious girls were both masculine and above average in maturity level." Maw and Maw (56) found that low-curiosity boys were also very low in self-concepts. Highly anxious children are too concerned with "dangers" about them and do not reach out to explore their environments. They have a "high tendency to agree" with others and a "slow speed of perceptual judgment" (12). Both of these qualities seem logically to be related to curiosity.

The relationship between curiosity and anxiety is not clear and the results tend to be ambiguous. Some of this problem arises because studies of both curiosity and anxiety are limited by "ambiguities in theoretical formulation, the absence of validated methodologies, and the paucity of previous systematic research" (88). Anxiety may also have a curvilinear relationship with curiosity, as suggested by a study by Reed (83).

The relationship of curiosity and creativity has also been investigated. Getzels and Jackson (25) observed a low relationship among intelligence, creativity, and curiosity. Their sample, however, was composed of gifted children in an especially enriched school environment. Ogden and Olsen (73) tested 3488 fourth grade students in a large suburban school district which was "representative of rural and urban areas

and all socio-economic levels." They found a low but significant relationship between curiosity and creativity.

Many pressures may force the child to restrict his creativity and curiosity. These pressures may, in turn, lead to prejudice which is, in itself, a detriment to the development of creativity (1). They may also cause the child to be intolerant of ambiguity which Muuss (70) claimed indicated a need to structure the world even at the expense of neglecting reality. Fuller (24) would probably point out that this same limitation causes the child to use primarily his preemptive drives because he is constantly recognizing an emergency. He does not use expressive drives needed to increase his effectiveness with his environment. These pressures lower his competence in many areas since competence, according to White (98), is an outcome of visual exploration, activity, and manipulation.

Contrary to the interpretations made regarding the work of Getzels and Jackson (25), the level and functioning of intelligence does seem to play an important role in determining curiosity level. Hoats et al. (32) discovered that high-grade mentally-retarded males showed significantly less "perceptual curiosity" than did combined groups of equal MA and equal CA normal males. Ogden and Olsen (73) found a consistent significant relationship between curiosity and intelligence. When curiosity was studied as an aspect of learning, several interesting results were reported. Paradowski (75) reported finding that curiosity arousal facilitates incidental learning. The relationship between learning and curiosity remains unclear. Sachs (87) showed that a certain level of information increases curiosity while an increased level of information does not.

Other variables which seem to directly or indirectly determine how a child manifests curiosity are his ideas reparding cooperation (79), his value system (63), his maturity (38), and the socio-economic status of his family (4).

Literature Pertaining to Studies of the Role of Curiosity in the Social Context

There is a growing body of evidence that environmental variations may play an influential role in determining curiosity level (16).

Studies of the family and curiosity have indicated that curiosity varies with social contexts.

It is, however, difficult to ascertain the direction of the cause-and-effect relationship or if such a relationship actually exists. Pangroc (74) has examined the relationship of curiosity and the child's perception of his parent's behavior. There is evidence that there is little mental illness in families of eminent persons (26) which may indicate that some environments nurture children in such a way that they feel free from debilitating pressures and are thus more apt to manifest their curiosity.

Literature Pertaining to the Role of the Self in Curiosity

Findings from earlier investigations by the authors (56) indicated that curiosity was intimately tied to the child's self-concept. McNamara et al. (61) reported that the more curious subjects are in more veridical contact with reality and acquire information from the environment more effectively. They hypothesized that curiosity was a

response system as well as a motivational system with attentional properties. The latter was borne out in a study by Maw and Maw (56) with fifth-grade children. The children read a long and involved story about animals. A week later when they were given an unexpected test on the story, high-curiosity children did significantly better than low-curiosity children.

The high-curiosity children appeared to be relatively free of anxiety. The results of the study supported Rogers (85) who claimed that when a child is threatened he will tend to exhibit neurotic behavior which will restrict his contacts with others and his competent interaction with his environment. Rogers further stated that "the more the self is free from threat; the more the individual will exhibit self-affirming behavior and---the more he will exhibit the need for, and the actualization of, participant be avior." Dalton (15) went on to claim that the self is a determiner of being which Numberg (71) tied to curiosity.

Literature Pertaining to Attempts to Measure or Evaluate Curiosity

A number of investigators have tried to measure or evaluate curiosity. Some have used rating scales; others have used tests and records of personal observations.

McReynolds et al. (62) found significant correlations of .45 and .37 between object-curiosity scores and the teacher's rating of psychological adjustment and curiosity, respectively. The objects used were items which the pupil could manipulate while an observer scored his actions. Pielstick (80) also used object manipulation and found

exploratory time during the observation period to be related to the complexity of the objects.

Results of these studies seem to differ somewhat depending upon who is making the rating. An investigation by Poore and Long (81) indicated that there was little relationship among parent-rating, teacher-rating, and children's self-ratings of curiosity. Schwartz (91) attempted to improve teacher rating by developing a scale based on a definition of curiosity formulated by Maw and Maw (48). Penney and McCann (78) also developed a scale to measure children's curiosity. This scale was positively related to originality as measured by a modified Unusual Uses Task.

These findings indicate a need for more study in this area. The relationships among such variables as curiosity, anxiety, creativity, intelligence, learning, socio-economic status, and self-conceptualization are vague, and instruments used to measure and evaluate curiosity are still primitive.

Procedures

It is the purpose of this study to apply factor analytical techniques to data obtained in an earlier investigation and, by this procedure, obtain an improved definition of curiosity. It is essential, therefore, that steps followed in the preceding study be set forth briefly before proceeding with a description of the organization of the present investigation. In a study entitled <u>Personal and Social Variables Differentiating Children with High and Low Curiosity</u> (56), these procedures were followed:

- 1. A definition of curiosity was developed, based on behavior which could be observed and rated.
- 2. A sample of children was obtained from a population broad enough to permit at least limited generalizations from the data obtained. An effort was then made to identify subgroups differing in curiosity level. These groups were controlled for sex and intelligence.
- 3. A large number of commercial, non-commercial and home-made instruments purporting to measure variables which logically seemed to be related to curiosity were administered to these subgroups.
- The data from these administrations were analyzed and several significant differences were found among high-curiosity boys, low-curiosity boys, high-curiosity girls, and low-curiosity girls.

In the present investigation, the variables which brought out significant differences among these groups were analyzed as follows:

- 1. The total sample was separated into four subgroups, i.e., high-curiosity boys, low-curiosity boys, high-curiosity girls, and low-curiosity girls. In this investigation intelligence was not controlled.
- 2. The variables which significantly separated high-curiosity children from low-curiosity children in each of the subgroups were factor analyzed using the principal axis method (29:154-191).
- 3. The factors were studied in order to state what elements should be considered in a definition of curiosity.

A Definition of Curiosity

Since the concept of curiosity is not the same for all readers, the authors found it necessary to define it more precisely for their studies of curiosity. In order to develop a definition that could be used to identify children differing in curiosity on the basis of their behavior, several steps were taken. These were described in detail in Chapter III of an earlier report, and, therefore, are not discussed here (48:25-31). The steps included informal inquiries, formal inquiries, review of dictionary definitions, an examination of the historical development of the meaning of the word, and a survey of the literature.

() the basis of this information, it was concluded that curiosity is demonstrated by an elementary school child when he:

- 1. Reacts positively to new, strange, incongruous, or mysterious elements in his environment by moving toward them, by exploring them, or by manipulating them.
- 2. Exhibits a need or a desire to know more about himself and/or his environment.
- 3. scans his surroundings seeking new experiences.
- 4. Persists in examining and exploring stimuli in order to know more about them.

The Sample of the Earlier Study

The present study is limited to children attending the fifthgrade in selected public schools in New Castle County, Delaware. This grade level was selected in the first investigation of this series to avoid, as far as possible, children with developmental reading problems

and children whose interests were not so highly crystallized as is often the case of junior- and senior-high school pupils. It seemed advisable to continue working with this particular group in order that comparisons might be possible between the findings of both investigations.

New Castle County is a suburban area outside the City of Wilmington. There are some farms, but agriculture is limited. Large industries, especially chemical, employ the majority of the people. Many of them are working in research and development. For the most part, they have come to Delaware from other areas of the United States. The population of the area is quite mobile both as to emigration and immigration.

The State of Delaware provides special classes for the educable and trainable. Therefore, there were no children in the study with IQ's low enough to be admitted to the special classes. The mean IQ of all the children in the study was 112.01.

The sample of 557 children was further delimited to include only children for whom complete data were obtained. This group included 217 girls and 224 boys. The mean IQ of the former was 114.59 and the mean IQ of the latter was 110.12.

From these groups, several smaller groups were selected to control for intelligence which had been shown to have a product-moment correlation of approximately .36 with curiosity. This procedure was not followed in the present study since intelligence was one of the variables that was included.

In general, the children composing the sample were from middleclass families. No children were from predominantly less-chance,

deprived areas. The majority of children of the upper-class families were probably attending private schools since this is traditional in the area, and there are many excellent private schools located nearby.

Since the study was limited to the fifth grade, age and grade were controlled. Therefore, no comparisons among age groups or grade groups were possible.

The Instruments Used in the Present Study

In order to answer the questions raised in both the earlier study and the present investigation, several kinds of measuring instruments were used. Only those instruments measuring variables significantly differentiating among the four groups participating in the present study or those used to determine these groups are reported.

Measures used in establishing criterion groups. In order to determine the personal and social variables differentiating children high in curiosity from children low in curiosity, it was necessary to establish criterion groups. In addition, the analysis of the data indicated that there were sufficient differences between boys and girls on many of the variables to warrant the use of separate groups by sex.

Instruments had been developed to obtain teacher judgment and peer judgment of curiosity. They are discussed in detail in an earlier publication (39). They are described very briefly below.

Teacher judgment of curiosity. -- The teachers of the various classes participating in the study were asked to rank their pupils as to the relative amount of curiosity shown by their behavior. They ranked

the child who showed the most curiosity "first" and the child who showed the least curiosity "last." They continued ranking in this manner until all children were ranked. The ranks were transformed to McCall T scores. The technique had been used by the authors in a previous study in which the retest reliability for the rankings had been found to center around .77. (48:33).

Peer judgment of curiosity. The children in each classroom were asked to write the names of classmates whose behavior most nearly resembled that of the persons described in eight paragraphs. Four of the paragraphs described the behavior of persons who would be thought of as above average in curiosity; four of persons below average. A child's score was a weighted sum of the times his name was listed. These scores were also transformed to McCall T scores. In a previous investigation, peer and teacher judgments had been found to be positively correlated, r = .54 (48:36).

The measurement of intelligence — In earlier studies, intelligence was controlled because it had been shown that there was a positive moderate correlation between intelligence and curiosity as defined. Since no effort was made to control intelligence in the present investigation, this variable was included in the correlation matrix.

Most of the school districts cooperating in earlier investigations used The Lorge-Thorndike Intelligence Tests. It, therefore, seemed appropriate to continue to use Level 3 of these tests.

The Lorge-Thorndike Intelligence Test - Level 3 includes a Verbal Battery and a Nonverbal Battery. Only the Verbal Battery was used. It

includes four tests and is administered in approximately 34 minutes of actual working time.

In order to establish norms, over 136,000 children were tested, using 44 communities in 22 different states (40). This battery correlates between .77 and .84 with other tests purporting to measure intelligence.

Self-rating of curiosity.-- The child's estimate of his own curiosity was obtained by administering a self-rating scale entitled "About Myself." The scale had been developed and used by the presnt investigators in a previous study of the curiosity of school children. At that time an odd-even reliability estimate of .91 had been obtained. The correlations between self-rating and peer judgment and self-rating and teacher judgment were positive but low, .15 in the former case, .11 in the latter (48:36). Therefore, only peer judgment and teacher judgment were used in ascertaining the nature of the criterion groups. However, this scale was kept among the tests and instruments used in the present factor analysis study.

The California Test of Personality. -- One of the major inventories used in the present study, the California Test of Personality (95) is an example of those organized in terms of components based upon logical analysis, expert opinion, and statistical analysis, as opposed to those organized on the basis of factor classifications. It is one of the most thoroughly tested and convincingly validated tests of its type for children.

The California Test of Personality yields scores on 12 aspects

of personal and social adjustment, as well as a personal adjustment score, a social adjustment score, and a total adjustment score. The 12 aspects, described in the words of the authors, are as follows:

Self Reliance. An individual may be said to be selfreliant when his overt actions indicate that he can do things independently of others, depend upon himself in various situations, and direct his own activities. The self-reliant person is also characteristically stable emotionally, and responsible in his behavior.

Sense of Personal Worth. An individual possesses a sense of being worthy when he feels he is well regarded by others, when he feels that others have faith in his future success, and when he believes that he has average or better than average ability. To feel worthy means to feel capable and reasonably attractive.

Sense of Personal Freedom. An individal enjoys a sense of freedom when he is permitted to have a reasonable share in the determination of his conduct and in setting the general policies that shall govern his life. Desirable freedom includes permission to choose one's own friends and to have at least a little spending money.

Feeling of Belonging. An individual feels that he belongs when he enjoys the love of his family, the well-wishes of good friends, and a cordial relationship with people in general. Such a person will as a rule get along well with his teachers or employers and usually feels proud of his school or place of business.

Withdrawing Tendencies. The individual who is said to withdraw is the one who substitutes the joys of a fantasy world for actual successes in real life. Such a person is characteristically sensitive, lonely, and given to self-concern. Normal djustment is characterized by reasonable freedom from these tendencies.

Nervous Symptoms. The individual who is classified as having nervous symptoms is the one who suffers from one or more of a variety of physical symptoms such as loss of appetite, frequent eye strain, inability to sleep, or a tendency to be chronically tired. People of this kind may be exhibiting physical expressions of emotional conflicts.

Social Standards. The individual who recognizes desirable social standards is the one who has come to understand the rights of others and who appreciates the necessity of subordinating certain desires to the needs of the group. Such an individual understands what is regarded as being right or wrong.

Social Skills. An individual may be said to be socially skillful or effective when he shows a liking for people, when he inconveniences himself to be of assistance to them, and when he is diplomatic in his dealings with both friends and strangers. The socially skillful person subordinates his or her egoistic tendencies in favor of interest in the problems and activities of his associates.

Anti-Social Tendencies. An individual would normally be regarded as anti-social when he is given to bullying, frequent quarreling, disobedience, and destructiveness to property. The anti-social person is the one who endeavors to get his satisfactions in ways that are damaging and unfair to others. Normal adjustment is characterized by reasonable freedom from these tendencies.

Family Relations. The individual who exhibits desirable family relationships is the one who feels that he is loved and well-treated at home and who has a sense of security and self-respect in connection with the various members of his family. Superior family relations also include parental control that is neither too strict nor too lenient.

School Relations. The student who is satisfactorily adjusted to his school is the one who feels that his teachers like him, who enjoys being with other students, and who finds the school work adapted to his level of interest and maturity. Good school relations involve the feeling on the part of the student that he counts for something in the life of the institution.

Community Relations. The individual who may be said to be making good adjustments in his community is the one who mingles happily with his neighbors, who takes pride in community improvements, and who is tolerant in dealing with both strangers and foreigners. Satisfactory community relations include as well the disposition to be respectful of laws and of regulations pertaining to the general welfare.

The authors report that there is "a slight tendency, possibly significant in two or three of the components, for the females' responses to average slightly higher than those of the males."

The social distance scale. -- A social distance scale was adapted from the instrument developed by Bogardus (5) for recording social distance. The scale was called "Other People Test" and included varying nationalities, religious groups, political groups, and employment

groups. The names of the various groups were listed and the children were asked to check whether they would accept the members of each group as guests in their homes, as friends in school, as committee members, as schoolmates, or whether they would speak to them, allow them to visit the United States, or bar them from the United States. Scores were obtained by assigning decreasing numbers of points from highest to lowest acceptance, with accepting the people as guests at home receiving the highest number of points.

The Behavior Preference Record .-- Another test published by the California Test Bureau, the Behavior Preference Record (99), was administered to the children participating in this scudy. The Behavior Preference Record yields scores in Cooperation, Friendliness, Integrity, Leadership, Responsibility, and Critical Thinking. Only the scores in Cooperation, Friendliness, Leadership, and Responsibility were used in the factor analysis study since they were the only scores from this record that significantly differentiated high-curiosity children from low-curiosity children. The test consists of a number of paragraphs describing common childhood conflict situations, followed by a number of alternatives for the child to mark. In each case, the first set of alternatives consists of ways of reacting to the situation from among which the child must choose one as being what he would do in that particular situation. The second set of alternatives to be marked consists of reasons for behaving as he has chosen. The child must mark The author reports a sex difference for the test: tend to make median scores as ruch as twenty per cent higher on characteristics than do boys."

The Children's Personality Questionnaire. Another major inventory used in the study was the Children's Personality Questionnaire (82) for children of eight to 12, in which the personality traits measured have been identified by factor analysis. The questionnaire yields scores on 14 dimensions or "factors" of personality of which seven significantly differentiated among the children who had been previously separated into high- and low-curiosity groups. The dimensions are identified by letters of the alphabet and by technical names. The descriptions given by the authors of the subtests used in the current study are as follows:

Factor C Ego Weakness, C-, Emotionally Unstable; Ego Strength, C+, Emotionally Mature

Ego Strength is commonly regarded as a factor expressing the degree of achievement of dynamic integration and emotional control, i.e., the success of emotional learning...The C-child...tends to be easily annoyed by things and people, is more often dissatisfied with his family and his school, has difficulty in keeping quiet and restraining himself, and is discouraged by his inability to meet good standards of behavior. He shows more than average generalized neurotic responses in the form of digestive and sleep disturbances, irrational fears, obsessional behavior, and vague health failures.

Factor D Placidity of Temperament, D-, Phlegmatic; Excitability, D+ Excitable

This dimension...is distinguishable by the excitability's being of an immediate "temperamental" nature, by mindwandering distractibility, by an attention-getting insecurity, and by an irrepressible, positive, assertive tone to the emotionality. The high D child reports that he is a restless sleeper, easily distracted from work by noise or intrinsic difficulty, is hurt and angry if not given important positions or whenever he is restrained or punished, and so on...the high D scoring child, though likeable and affectionate in quieter moods, is apt to be regarded as a considerable nuisance in restrictive situations.

Factor G Super Ego Weakness, G-, Frivolous, Super Ego Strength, G- Persevering

This factor...is indicative of controlled rather than emotional behavior, is characterized most by energy and persistence at its positive pole...this factor best depicts the regard for moral standards, the tendency to drive the ego and to restrain the id... Subjectively, the G+ person views himself as correct in, and a guardian of, manners and morals, persevering, planful, and preferring efficient people to other companions. A number of objective tests have already been found for this factor, and seem to indicate that it involves success in a variety of performances requiring persistence, freedom from oscillation, and good organization of thinking. In ratings of children, the negative or G- pole associates itself with lying, showing off, stealing, destruction of property, and lack of control of temper.

Factor I Harria, I-, Tough Minded; Premsia, I-, Tender Minded

Studies of this factor at various ages have shown associations of Premsia (I+) with fastidious aversion for rough people and rough games, an interest in art, travel, and new experiences, an anxious imaginativeness, a love of dramatics and literature... Girls score at a significantly higher level than boys... The nature-nurture evidence shows that it is not hereditary, but almost wholly environmental and cultural in origin. Thus, I+, is associated with over-protected...homes...I+ children report that they avoid rough and adventurous situations, like to depend on the teacher, are artistic and neat; but they nevertheless are rated anti-social. They are rated as fastidious, interested in school, but tale-telling and demanding of attention, cautious, claiming to feel tired easily, complaining of nightmares, headaches, and stomach upsets, and given to absconding from games and physical exercise.

Factor N Naivete, N-, Simple; Shrewdness, N+, Shrewd

The essence of the Naivete - Shrewdness dimension is reasonably clear, though its cause is not yet to be assigned with certainty. The N- person is a clear thinker with a trained, realistic, but sometimes expedient approach to problems; the N- person is a vague, sentimental, incontinent person, who may get along well with people in a primitive, heart-to-heart understanding, but has little self-discipline in anticipating the usual reactions of others, and is apt to be slow and awkward.

Factor Q₃ Weak Self-Sentiment, Q₃-, Lax; Strong Self-Sentiment, Q₃-, Self controlled

The positively loaded response items show the child high in Q_3 as self-controlled, striving to accept approved ethical standards, ambitious to do well, considerate of others, foresighted, disposed to reduce and control expressions of emotion, and conscientious. Factor Q_3 correlates substantially with the self-sentiment, i.e., the integration of drives in the sentiment directed to maintaining an adequate self-concept. Its negative pole, Q_3 , is essentially an uncontrolled emotionality, excitability, and a rejection of cultural demands... Anxiety research shows that Q_3 — is a leading influence in the second-order anxiety factor.

Factor Q₄ Low Ergic Tension, Q₄-, Composed, Relaxed; High Ergic Tension, Q₄-, Driven Tense

Children and adults scoring high describe themselves as irrationally worried, tense, "driven," irritable, and in turmoil. They feel frustrated, and are aware of being criticized by parents for untidiness, phantasy, and neglect of good goals. Both actual correlations and resemblances in content confirm some association between Q4 (Tension) and low Self-Sentiment (Q3), Ego Weakness (C-), Guilt Proneness (O+), and Excitability (D). This association would be expected from the known grouping together of these factors (in adults) in the second-order anxiety factor.

Word Association Test (Creativity). The Word Association Test was designed by Getzels and Jackson (25:224-25) as a measure of creativity. The test consists of a listing of twenty-five words, each of which has more than one meaning. The examinee is asked to write as many meanings as he can think of for each word. The test appears to require flexibility of the examinee in shifting rapidly from one frame of reference to another. The score on the test is the total number of different meanings given. The authors report an internal consistency reliability coefficient of .87 for the test.

<u>Cassel Group Level of Aspiration Test.--</u> The <u>Cassel Group Level</u>
of <u>Aspiration Test</u> (9) was employed even though its validity as a test

of level of aspiration is questionable. It had brought out significant differences between nigh- and low-curiosity girls.

The Cassel Group Level of Aspiration Test requires eight repetitions of the simple motor task of drawing squares around small circles as rapidly as possible. Before each trial, the examinee makes an estimate of the number of squares he will be able to complete in thirty seconds. At the end of each trial, he counts the number of squares completed and makes an estimate for the next trial. After each trial, he computes his own score which can never exceed his estimate (even if his performance exceeds his estimate) and which is reduced by two points for every point by which his estimate exceeds his performance. His score for the test is the average of his trial scores. A level of aspiration quotient is obtained by dividing the standard score obtained on the trials by the standard score of the examinee's intelligence quotient.

<u>Peer judgment of social behavior.--</u> A Guess-Who device developed by Harris at al. (30) was used in the present study. The children were asked to list the names of three boys and three girls in their classes who were "best fits" for each of four aspects of responsibility: reliability, accountability, loyalty, and doing an effective job. Four untitled descriptions were given to the children:

- 1. This is a person upon whom you can always count; you can depend on him. When he promises that he will do something, you can always count on his doing it. You can count on his word and trust him.
- 2. This person is a square shooter. He doesn't try to take advantage of or cheat others. When he has done something wrong, he will own up to it rather than try to blame someone else.

- 3. This person thinks for the good of others rather than always for his own gain. He is loyal to the group.
- 4. This person is one who gets things done. On a class project, on a committee, or on a work job he gets right to work and can be counted upon to do well and promptly.

Below each paragraph, space was provided for the listing of three boys names and three girls' names. Scores were obtained by totaling the number of times a person's name was listed.

Institute of Child Study Security Test. The Institute of Child Study Security Test (28), "The Story of Jimmy," was developed by Grapko at the University of Toronto's Institute of Child Study. The author reports that the test has yielded retest reliability coefficients ranging from .76 to .95 for various groups of children. Face validity for the test is high and construct validity is reported to be most acceptable for grades four and five. The test consists of a series of paragraphs describing a day in the life of a school-age boy, Jimmy. Following each paragraph are five options of ways that Jimmy might react to the situation described in the paragraph. The options are designed to reveal independent security, mature dependent security, impature dependent security, deputy agent, and insecurity. The terms are summarized by the author as follows:

Security is a dynamic concept implying change, growth, and integration. The ability to complete an activity and the willingness to accept one's own decisions, actions, and consequences in the performance of the activity, is called Independent Security. Thus, the child who climbs on his bicycle and succeeds in maneuvering the bicycle ahead is independently secure in this activity. The child remains independently secure as long as his performance level meets his desired level of achievement.

The willingness to share in the performance of an activity combined with a willingness to mutually accept the consequences of decisions and actions is called Mature Dependent Security. The

child who chooses to make a snow man with another child (or group of children) must be willing to share in accepting whatever success or failure results from their efforts.

To wait for or expect help in completing a task or performing an activity is defined as Immature Dependent Security. The child who waits to be told what to do with his play materials, or who expects the adult to make the kite for him is immaturely dependently secure. This form of security hinges on the willingness of the adult to assume the role of dependent agent, and also on the child's faith, trust, and confidence in the efficacy of the agent.

The avoidance of consequences by means of some psychological shuffle is called a Deputy Agent. This shuffle may be to try to place the blame on someone else for one's own inadequacy, to postpone facing the consequences, to introduce an excuse, adopt a sour grapes attitude, and the like. The child who rationalizes his poor performance at reading by indicting the teacher for her inadequacy, succeeds in escaping from personal fault by means of a deputy agent.

To lack skill in dealing with an activity or significant "event" which gives rise to indecision, hesitation, and anxiety is called Insecurity. The child who cannot do his arithmetic problems and broods over his inability is insecure. To wait in despair without any plan of action is a manifestation of insecurity.

Each of the options following each paragraph is designed to represent one or other of the five security categories described above. The child taking the test is asked to rank the options one to five according to the preference "Jimmy" will show in reacting to the situation.

Two scores are obtained from the test. In the words of the author, the security score "...measures the degree to which the child's rank order of items agrees with the 'ideal' order of rank... The consistency score measures the degree of concordance or uniformity the child shows in giving the same rank to the fifteen statements or items for each of the security categories."

The author reports significant differences between boys' and girls' scores on both security and consistency. He believes that this indicates either that girls develop more quickly than boys in these traits, or that they are in general more secure than boys.

Intolerance of Ambiguity. -- Muuss (69) combined 12 items which he reports to have been known to him to be reliable into an Intolerance of Ambiguity Scale. The scale consists of 12 items such as the following:

People who seem unsure and uncertain about things make me feel uncomfortable.

Nobody can feel love and hate towards the same person.

The number of agreements is the score on intolerance of ambiguity.

Social Attitudes. -- The Social Attitudes Scale was developed by Harris et al. (30) to provide a measure of social responsibility in children. The scale consists of fifty items such as the following:

It is no use worrying about current events or foreign affairs; I cannot do anything about them anyway.

At school, it is easy to find things to do when the teacher doesn't give us enough work.

The examinee is required to respond to each item by "agree" or "disagree." The scale items were chosen according to their ability to discriminate between two groups of children of greater and lesser responsibility selected on the basis of the nominations of their classmates. Retest reliabilities ranging from .60 to .70 for various groups of children are reported. The author also reports that girls' scores tend to exceed boys' scores on the scale. He says, "In the sense of this test, girls are perhaps better socialized than boys."

Descriptive Words (Morality).-- The Descriptive Words test was designed by Getzels and Jackson (25:246-47) as a test of morality. It consists of twenty sets of three adjectives, each describing one of three personal qualities: a "moral" quality, a "physical" quality, or a "social" quality. The child taking the test is asked to mark for each set the quality that he would most like to have with an "M" and the quality that he would least like to have with an "L." All qualities listed are usually considered desirable. There are separate forms for boys and girls. Where the set for boys lists: honest, strong, popular; the set for girls lists: honest, cute, popular. For each set of adjectives a score of 2, 1, or 0 is possible, depending upon whether the "moral" adjective is placed first, second, or last. A child's total score is the sum of the points he obtains on the twenty sets.

Conceptual Systems. The Situational Interpretation Experiment is a research instrument "for measuring personality variation on the concrete-abstract dimension" as originally described in Harvey, Hunt, and Schroeder, Conceptual Systems and Personality Organization (36).

The Situational Interpretation Experiment as used in the present study is a group administered paper-and-pencil test. In taking the test, a child first completes a name sheet by writing the names of persons who meet specific descriptions. After "Person 1" and "Person 2" on the name sheet the child writes the names of friends of about his own age whom he likes and likes to do things with; after "Person 3" and "Person 4" he writes names of children he does not particularly like, with whom he does not feel comfortable. The child is then confronted with a hypothetical situation in which he receives criticism from each of the

persons listed on his name sheet and is asked how he would interpret the criticism and what he would do about it.

The responses are scored as giving evidence of functioning in one of four systems varying along the concrete-abstract dimension, with system four being most abstract. Judgments are made in accordance with detailed instructions contained in the manual (36:2-11). A System I response may reflect acceptance of structural prerogatives in that the one making the criticism may be said to either "have a right" or "have no right" to his opinion and/or in that it may involve concern with a specific erroneous judgment such as "I'm wrong" or "he's wrong," which can be readily disposed of, thus restoring previous positions on an external standard. A System II response indicates concern with interference or control and/or concern with malevolence and distrust, both of which may result in retaliation. A System III response may indicate denial of the criticism: "He wouldn't say that;" "He's kidding, joking;" "He's in a bad mood;" or it may indicate that the subject sees the criticism as an attempt to affect his feelings either positively or negatively, or again it may indicate that the subject sees the criticism as reflecting some aspect of the affective relationship ("He's jealous."), or as a disruption in the relationship ("He doesn't like me.") A System IV response reflects conce. with information potential ("He may have some ideas which should not be overlooked.") or concern with differing standards ("All people don't do things exactly alike.") In contrast to those of preceding systems, a System IV response may indicate that conflict may be tolerated - no action need be taken to reestablish relationships.

The Procedures Used in the Present Study

Although the data collected for an earlier study were used in this research, they were treated differently. As indicated above, only the information obtained from tests and instruments significantly differentiating high-curiosity children from low-curiosity children was employed. Other tests and instruments had been administered previously, but the results were not utilized because they had not proven to be significant.

In the first study, groups were selected from the sample by combining the evaluations of curiosity made by teachers and peers and controlling for sex and intelligence. The same procedure was followed in the factor analysis study, except for the fact that no effort was made to control intelligence.

Members of each sex were ranked separately from high to low on the basis of a rating composed of judgments made by teachers and peers. The evaluations of each child made by all of the peers in one class had been combined into one score which was used with the ranking of the child made by the teacher.

Each sex group thus Istablished was separated into high-curiosity and low-curiosity subgroups. These subgroups were determined by dividing each sex group at the median. In order to accomplish this division, however, some modifications were necessary. If the number of boys or girls in a given class was uneven, the child with the score falling at the median was eliminated. If there were tied scores at the median, all were eliminated. By this process, four subgroups were obtained

made up as follows: 110 high-curiosity boys, 107 high-curiosity girls, 107 low-curiosity boys, and 100 low-curiosity girls.

The scores made by the members of each subgroup on the tests described above were intercorrelated. Four 38 x 38 matrices were obtained. Thes; matrices were factor analyzed by employing the principal-factor method.

Criterion-analysis. -- The method of analysis used was derived from the hypothetico-deductive method of factor analysis described by Bysenck (17). He had previously determined that a number of tests correlated positively with neuroticism (18). He then took the table of intercorrelations between the n tests for the normal population only, and submitted it to a process of factorization, using either Burt's summation method or Thurstone's centroid method (17).

Immediately, several differences, as well as similarities, are apparent between the methods used by Eysenck and those used in the present investigation. The study is similar to Eysenck's in that a criterion of curiosity was first established and that only tests which significantly correlated with the criterion were factorized. It differs from Eysenck's method in that it hypothesizes a difference in the nature of the continuum in each sex, in that it factorizes tests independently at both ends of the curiosity continuum for each sex, and finally, the principal-factor method was used. Since this method makes it possible to account for all of the variance of the tests by extracting as many factors as there are tests, the last factors are so small as to be meaningless, especially in determining a guide for a future definition

of curiosity. For this reason, an effort was made to account for only approximately 70 per cent of the communiality of each correlation matrix.

The principal-factor method. The Principal-factor solution has a rigorous mathematical basis. It had been explored at the beginning of the century by Karl Pearson (76), but the specific application of these mathematical principles to factor analysis were not worked out until the 1930's by Hotelling (35).

According to Harmon (29:155) "when the point representation of a set of variables is employed, the loci of uniform frequency density are essentially concentric, similar, and similarly situated ellipsoids. The axes of these ellipsoids correspond to the factors in the principal-factor solution. From an algebraic point of view, the selection of these axes is equivalent to choosing a set of factors in decreasing order of their contribution to the total communality."

Since the communalities in the diagonal cells were unknown, the matrix was factored using unities. According to Fruchter (23:104)
"the resulting factors are called "principal components." The number of components extracted according to Hotelling (34) is equal to the number of tests in the battery.

The factors, or components, however, are chosen in decreasing order of their contribution to the total communality. Therefore, only the first few components are meaningful to an understanding of the variable (in this case curiosity) being analyzed. Since meaningfulness decreases rapidly when the eigenvalues are less than 1.00, only the

first ten or eleven factors were considered for interpretation. As will be noted in Table 1, the first ten eigenvalues for high boys were utilized to account for 69 per cent of the communality; the first ten eigenvalues for low boys were utilized to account for 73 per cent of the communality; the first 11 eigenvalues for high girls were utilized to account for 74 per cent of the communality; and the first 11 eigenvalues for low girls were utilized to account for 65 per cent of the communality.

A few words must be said about the use of unities in the principal diagonal, since small negative values do appear in some cases as the final two eigenvalues. This result in all probability is a result of rounding error and does not represent a violation of the requirement of positive semi-definiteness (29:159). Whatever the case may be, they do not affect appreciably the factors or components reported.

The factors obtained from the correlation matrix were not rotated since answers to our questions seem to be forthcoming without such rotation. Harmon (29:187) pointed out that this procedure is quite correct in some principal-factor studies.

Before proceeding to a discussion of the results, the steps of the principal-factor analysis are listed as follows:

- 1. Four correlation matrices were obtained, i.e., one for each group studied.
- 2. Unities were used as communality estimates and placed in the cells of the principal diagonal of the matrices.
- 3. Eigenvalues and eigenvectors were calculated.
- 4. These eigenvalues and eigenvectors were ordered from high to low.

TABLE 1

EIGENVALUES FOR CORRELATION MATRICES OF TEST ADMINISTERED TO HIGH- AND LOW-CURIOSITY BOYS AND HIGH- AND LOWCURIOSITY GIRLS RANKED IN ORDER FROM HIGHEST TO LOWEST

High-Curiosity Boys	Low-Curiosity Boys	High-Curiosity Girls	Low-Curiosity Girls
8.7328	12.2732	12.1955	6.5929
4.1087	2.9620	2.8918	3.8922
3.2148	2.8561	2.2841	2.8097
2.0769	1.8111	2.0867	2.1559
1.8314	1.5123	1.5448	1.7200
1.4940	1.4789	1.4724	1.4380
1.3685	1.2672	1.2881	1.3745
1.3177	1.2263	1.2358	1.3291
1.2139	1.0836	1.1232	1.2761
1.0820	1.0230	1.0949	1.1441
.9715	.9658	1.0309	1.043
.9456	.8483	.8897	.9828
.8255	.8180	.8236	.9217
.7855	.7534	.7824	.8664
.7481	.6740	.7573	.8085
.7233	.6389	.7255	.7597
.6219	.6223	.6131	.7154
.5912	.5198	.5697	.6801
.5648	.4982	.5559	.6539
.5392	.4550	.5075	.5978
.5075	.4202	.4692	.5411
.4812	.3948	.3949	.5159
.4647	.3598	.3829	.4883
.4043	.3205	.3791	.4462
.3907	.2952	.3253	.4300
.3539	.2778	.2736	.4129
.3158	.2701	.2724	.4063
.2724	.2370	.2326	.3664
.2496	.1839	.2256	.3473
.2403	.1685	.1975	.3354
.1975	.1333	.1514	.3214
1563	.1191	.1214	.2951
1446	\8837	.1157	.2749
.1138	.7267	.9729	.2593
.0385	.5848	.0569	.2296
.0041	.0820	.0332	.2130
0191	0634	0383	.1874
0732	0980	1372	.1577

- 5. Eigenvalues and eigenvectors larger than 1.00 were retained.
- 6. The percentage of the communality accounted for by eigenvalues larger than 1.00 was determined for each matrix.
- 7. These eigenvalues were used to reduce the dimension of the factor space.

When this point in the analysis was reached only ten or eleven of the possible 38 factors, or components, are considered meaningful. The first is a general factor; the remaining factors are of primary interest in this study and will be discussed in the next section of this report.

Results

In order to systematically report the results of this investigation, the following steps will be taken:

- 1. The four correlation matrices with communality estimates

 (unities) will be reported. (The reporting of these complete matrices makes replication of this investigation

 possible either by use of the method of principal-axis

 or by other factorization methods.)
- 2. The four matrices of common factors based on the eigenvalues described above will be discussed.
- 3. The significance of the loadings for each of the factors in each of the reduced matrices will be determined.
- 4. The significant loadings of each factor will be listed for each of the curiosity groups.
- 5. The more highly significant factors will be discussed in terms of the original questions of this research.

Correlation Matrices with Communality Estimates

In the Appendix, Tables A, B, C, and D show the correlation matrices with communality estimates respectively for high-curiosity boys, how-curiosity boys, high-curiosity girls, and low-curiosity girls. Little comment is necessary regarding these tables. However, it may be helpful in their interpretation if the variables described earlier are once again identified in terms of their position in the correlation matrices. These variables are as follows:

- 1. Intelligence
- 2. Self-rating of curiosity
- 3. Self reliance
- 4. Sense of personal worth
- 5. Sense of personal freedom
- 6. Feeling of belonging
- 7. Withdrawing tendencies
- 8. Nervous symptoms
- 9. Social standards
- 10. Social skills
- 11. Anti-social tendencies
- 12. Family relations
- 13. School relations
- 14. Community relations
- 15. Social distance
- 16. Cooperation
- 17. Friendliness
- 18. Leadership
- 19. Responsibility
- 20. Ego strength
- 21. Excitability
- 22. Persistence
- 23. Tender minded
- 24. Shrewdness
- 25. Strong Self-Sentiment
- 26. Tenseness
- 27. Creativity
- 28. Level of aspiration
- 29. Reliability
- 30. Accountability
- 31. Loyalty
- 32. Effectiveness
- 33. Security
- 34. Consistency
- 35. Intolerance of ambiguity
- 36. Social attitudes
- 37. Morality
- 38. Conceptual systems

Matrices of Common Factor Coefficients

In the Appendix, Tables E, F, G, and H show the four matrices of common factor coefficients for high-curiosity boys, low-curiosity boys, high-curiosity girls, and low-curiosity girls. These were derived from the eigenvalues described above under the discussion of the principal-axis method.

Table E indicates that ten factors based on the highest ten eigenvalues account for 69 per cent of the communality in the study of high-curiosity boys. Table F indicates that ten factors based on the highest ten eigenvalues account for 73 per cent of the communality in the study of low-curiosity boys. Table G shows that 11 factors based on the highest 11 eigenvalues account for 74 per cent of the communality in the study of high-curiosity girls. Table H reveals that 11 factors based on the highest 11 eigenvalues account for 65 per cent of the communality in the study of low-curiosity girls.

Selection of Significant Loadings from Factors

An examination of any of the reduced matrices shows clearly that some of the loadings are very small. The question then arises as to their significance in describing a factor. Stated differently, it might be pertinent to ask what loadings can be eliminated and still adequately and parsimoniously describe a factor.

In order to determine the significance of a loading, the following procedure was used:

1. The means were calculated for all of the correlation coefficients in each of the correlation matrices.

- 2. The standard error of a factor coefficient was obtained from a table using these means and the N's of each sample.
- 3. The standard error of a factor coefficient was multiplied by 2.58 and 1.96 to obtain factor coefficients significant at the .01 and .05 levels, respectively.
- 4. Coefficients in the matrices of common factor coefficients at the .05 level of significance or better were kept for interpretation, but emphasis was placed on coefficients at the .01 level or better.

The coefficients included from each matrix of common factor coefficients differed for each group in the study. Table 2 shows these cut-off coefficients for each group at both the .01 and the .05 levels.

TABLE 2

MEAN CORRELATION COEFFICIENTS, STANDARD ERROR
OF FACTOR COEFFICIENTS AND SIGNIFICANT
COEFFICIENTS AT .05 AND .01 LEVELS
FOR DETERMINING WHICH VARIABLES
TO INCLUDE IN INTERPRETATION
OF FACTORS FOR EACH GROUP

Group	Mean Correlation	Standard Error	Significa .05	.01
High-curiosity boys	.161	.163	.319	.421
Low-curiosity boys	.290	.128	.251	.330
High-curiosity girls	.270	.136	.267	.351
Low-curiosity girls	.125	.221	.433	.570

Significant Loadings of Factors for Each Curiosity Group

Matrices of common factor coefficients were determined, the coefficients meeting the .05 level of significance were segregated for study. Although coefficients whose significance level lay between .05 and .01 were studied, interpretations were based on loadings significant at the .01 level or less, where it was possible to do so. However, this more rigorous standard could not be employed in all groups and in all factors within groups. Where the addition of loadings significant between the .05 and .01 levels added to the understanding of the factor, they were utilized.

In the lists of factors that follow, loadings where the significance is between the .05 and .01 levels are indicated by parentheses.

All other loadings are significant at the .01 level or less.

High-curiosity Boys

Factor I .498 13 School relations .705 1 Intelligence 3 Self-reliance .457 .511 14 Community relations .487 4 Sense of personal worth .510 16 Gosperation 5 Sense of personal freedom (.387) 17 Friendliness .531 19 Responsibility 6 Feeling of belonging .644 .459 -.537 7 Withdrawing tendencies .568 21 Excitability .445 8 Nervous symptoms .504 22 Persistence Social standards -.482 .480 24 Shrewdness .607 (.404)10 Social skills 25 Strong self-sentiment .738 26 Tenseness -.556 11 Anti-social tendencies 12 Family relations .425 .557 27 Creativity

	Factor I (Continued)			Factor II	
2 9	Level of aspiration	.429	9	Social standards	(.334)
30	Accountability	(.358)	15	Social distance	(.407)
31	Loyalty	.495	16	Cooperation	.525
32	Effectiveness	.456	17	Friendliness	.587
33	Security	.574	19	Responsibility	.45 9
34	Consistency	.554	23	Tender minded	.579
35	Intolerance of ambiguity	574	29	Level of aspiration	708
36	Social attitudes	.740	30	Accountability	630
			31	Loyalty	711
			32	Effectiveness	696
	Factor III			Factor IV	
3	Self-reliance	(333)	1	Intelligence	(.406)
5	Sense of personal worth	(- _° 329)	9	Social standards	(374)
7	Withdrawing tendencies	488	21	Excitability	(.377)
8	Nervous symptoms	(419)	25	Strong self-sentiment	(336)
11	Anti-social tendencies	(330)	27	Creativity	.459
12	Family relations	(349)	28	Level of aspiration	549
15	Social distance	(.359)	34	Consistency	(.325)
16	Cooperation	(.340)			
19	Responsibility	(.402)			
27	Creativity	.443			
29	Reliability	,461			
30	Accountability	.449			
31	Loyalty	.441			
32	Effectiveness	.514			

when the site of the French was

	Factor V			Factor VI	
1	Intelligence	(324)	2	Self-rating of curiosity	.483
14	Community relations	(359)	10	Social skills	(.333)
22	Persistence	.422	20	Ego strength	.541
25	Strong self-sentiment	(.353)	35	Intolerance of ambiguity	.441
26	Tenseness	421	37	Morality	(353)
33	Securi ty	.435			
34	Consistency	.452			
	Factor VII			Factor VIII	
18	Leadership	.627	2	Self-rating of curiosity	(.365)
38	Conceptual systems	646	22	Persistence	(419)
			28	Level of aspiration	.477
			38	Conceptual systems	.497
	Factor IX			Factor X	
5	Sense of personal freedom	(376)	25	Strong self-sentiment	(.376)
14	Community relations	(.398)		Security	(391)
16	Cooperation	(321)	34	Consistency	(378)
37	Morality	.532			
	Lo	w-curios	ity B	о у в	
		Facto	r I		
1	Intelligence	.540	7	Withdrawing tendencies	.673
3	Self-reliance	.531	8	Nervous symptoms	.544
4	Sense of personal worth	.754	9	Social standards	.737
5	Sense of personal freedom	.627	10	Social skills	.815
6	Feeling of belonging	.906	11	Anti-social tendencies	.836

Factor I (Continued)

12	Family relations	.651	25	Strong self-sentiment	.507
13	School relations	.857	26	Tenseness	616
14	Community relations	.763	27	Creativity	472
15	Social distance	(.302)	28	Level of aspiration	(253)
16	Cooperation	.654	29	Reliability	.340
17	Friendliness	.517	30	Accountability	.362
18	Leadership	(.253)	31	Loya1ty	.477
19	Responsibility	.762	32	Effectiveness	.469
20	Ego strength	(.297)	33	Security	.561
21	Excitability	631	34	Consistency	.546
2 2	Persistence	.557	35	Intolerance of ambiguity	564
23	Tender minded	(.290)	36	Social attitudes	.847
24	Shrewdness	589			
		_			
	• •	Factor	II		
1	Intelligence	336	23	Tender minded	(303)
5	Sense of personal worth	.332	26	Tenseness	(323)
6	Feeling of belonging	(.255)	27	Creativity	370
7	Withdrawing tendencies	.397	28	Level of aspiration	(.276)
8	Nervous symptoms	.419	29	Reliability	536
11	Anti-social tendencies	.359	30	Accountability	 586
15	Social distance	(2 97)	31	Loyalty	520
22	Persistence	(.289)	32	Effectiveness	557

ERIC*

	Factor III			Factor IV	
1	Intelligence	356	2	Self-rating of curiosity	.353
5	Sense of personal free	dom (.282)	8	Nervous symptoms	.368
16	Cocretaion	470	15	Social distance	(.295)
17	Friendliness	523	17	Friendliness	342
18	Leadership	372	18	Leadership	(274)
19	Responsibility	498	19	Responsibility	(264)
27	Creativity	(320)	22	Persistence	(268)
28	Level of aspiration	.490	23	Tender minded	(320
29	Reliability	.541	27	Creativity	(.290)
30	Accountability	.503	33	Security	.467
31	Loyalty	.522	34	Consistency	.490
32	Effectiveness	.432	35	Intolerance of ambiguity	(284)
			38	Conceptual Systems	(.298)
	Factor V			Factor VI	
3	Self-reliance	401	2	Self-rating of curiosity	561
24	Shrewdness	(299)	16	Cooperation	(260)
26	Tenseness	(314)	17	Friendliness	390
27	Creativity	(294)	24	Shrewdness	(269)
28	Level of aspiration	.343	25	Strong self-sentiment	.545
33	Security	.472	28	Level of aspiration	(~.254)
34	Consistency	.475	38	Conceptual system	(.252)

- I seems

A state of the sta

	Factor VII			Factor VIII	
3	Self-reliance	(277)	18	Leadership	.356
15	Social distance	427	20	Ego strength	.386
20	Ego strength	428	23	Tender minded	(302)
23	Tender minded	382	37	Morality	669
28	Level of aspiration	330			
37	Morality	(.314)			
38	Conceptual systems	.333			
	Factor IX			Factor X	
2	Self-rating of curiosity	379	2	Self-rating of curiosity	(.275)
27	Creativity	(.251)	5	Sense of personal freedo	m346
37	Morality	(260)	14	Community relations	(.268)
38	Conceptual systems	559	21	Excitability	(.273)
			38	Conceptual systems	386
	н	igh-curios	ity	Girls	
	•	Facto	or I		
1	Intelligence	.701	11	Anti-social tendencies	.676
3	Self-reliance	.532	12	Family relations	.604
4	Sense of personal worth	.875	1.3	School relations	.800
5	Sense of personal freed	om .597	14	Community relations	.572
6	Feeling of belonging	.703	15	Social distance	.386
7	Withdrawing tendencies	.673	10	6 Cooperation	.391
8	3 .:srvous symptoms	.568	1	7 Friendliness	.541
9	9 Social standards	.542	1	9 Responsibility	.541
10	O Social skills	.541	2	0 Ego strength	(.339)

	Factor I (Continued)			Factor II	
21	Excitability	461	1	Intelligence	.409
22	Persistence	.509	3	Self-reliance	(302)
23	Tender minded	.363	5	Sense of personal worth	(313)
24	Shrewdness	430	6	Feeling of belonging	(325)
25	Strong self-sentiment	.445	7	Withdrawing tendencies	(315)
26	Tenseness	510	8	Nervous symptoms	(284)
27	Creativity	.562	10	Social skills	462
29	Reliability	.755	12	Family relations	(307)
30	Accountability	.624	13	School relations	(331)
31	Loyalty	.6 98	14	Community relations	(319)
32	Effec tiveness	.742	18	Leadership	.352
33	Security	.629	19	Responsibility	(.303)
34	Consistency	.582	22	Persistence	4 49
35	Intolerance of ambiguity	 745	26	Tenseness	(.309)
36	Social attitudes	.795	27	Creativity	(.330)
			33	Security	.4 48
			34	Consistency	.372
			37	Morality	(.279)
	Factor III			Factor IV	
8	Nervous symptoms	.487	20	Ego strength	(274)
10	Social skills	(289)	29	Reliability	.574
16	Cooperation	587	30	Accountability	.541
17	Friendliness	568	31	Loyalty	.512
19	Responsibility	531	32	Effectiveness	.504

ERÎC

	Factor III (Continued)			Factor IV (Continued)	
23	Tender minded	(272)	33	Security	(334)
25	Strong self-sentiment	369	34	Consistency	(348)
33	Security	.360	35	Intolerance of ambiguity	(.300)
34	Consistency	.478	38	Conceptual systems	(282)
	Factor V			Factor VI	
2	Self-rating of curiosity	392	2	Self-rating of curiosity	.433
15	Social distance	508	11	Anti-social tendencies	(291)
27	Creativity	378	20	Ego strength	(324)
28	Level of aspiration	.658	21	Excitability	(269)
			2 2	Persistence	(.273)
			23	Tender minded	(303)
			24	Shrewdness	(301)
			28	Level of aspiration	(.309)
			3 6	Social attitudes	(.302)
			37	Morality	(.326)
	Factor VII			Factor VIII	
2	Self-rating of curiosity	.374	9	Social standards	.356
3	Self-reliance	.439	18	Leadership	.649
9	Social standards	(281)	37	Morality	441
24	Shrewdness	.450			
37	Morality	(290)			
38	Conceptual systems	470			

	Factor IX			Factor X	
5	Sense of personal freedom(274)	14	Community relations	(341)
12	Family relations (269)	20	Ego strength	404
18	Leadership	.381	22	Persistence	.358
25	Strong self-sentiment	.559	24	Shrewdness	(.293)
			37	Morality	(302)
			38	Conceptual systems	(.345)
	Factor XI				
12	Family relations	(345)			
38	Conceptual systems	.503			
	Lov	-curiosi	ty G	irls	
		Factor	I		
3	Self-reliance	(.514)	13	School relations	.737
4	Sense of personal worth	.713	22	Persistence	(.518)
5	Sense of personal freedom	.583	24	Shrewdness	(434)
6	Feeling of belonging	.577	25	Strong self-sentiment	(.560)
7	Withdrawing tendencies	(.549)	26	Tenseness	(527)
8	Nervous symptoms	(.555)	35	Intolerance of ambiguity	(483)
11	Anti-social tendencies	.617	36	Social attitudes	(.500)
1.2	Family relations	.631			
		Factor	II		
1	Intelligence	(.459)	29	Reliability	.651
2	Self-rating of curiosity	(.499)	30	Accountability	.610
23	Tender minded	671	31	Loyalty	(.529)
27	Creativity	(.525)	32	Effectiveness	.713

	Factor III			Factor IV	
7	Withdrawing tendencies	(405)	1	Intelligence	(523)
16	Cooperation	(.524)	28	Level of aspiration	.556
17	Friendliness	.652			
19	Responsibility	.581			
	Factor V			Factor VI	
33	Security	.721	21	Excitability	(.445)
34	Consistency	.750	28	Level of aspiration	(462)
			37	Morality	(449)
	Factor VII			Factor VIII	
18	Leadership	(.454)	24	Shrewdness	(475)
20	Ego strength	(434)			
	Factor IX			Factor X	
18	Leadership	(435)	37	Morality	(.452)
	Factor XI				
9	Social standards	(.496)			

Interpretation of Factors

In this section of the report, each factor extracted from the analysis for each curiosity group will be described in such a way that the reader may look upon this investigation as being, in reality, four separate factor analysis studies. The groups will be ordered in the same manner as above, i.e. high-curiosity boys, low-curiosity boys, high-curiosity girls, and low-curiosity girls. Emphasis will be placed on loadings significant at the .01 level or less where possible. Each

factor will be identified with a number corresponding to those used above. The number will be followed with letters to signify from which analysis the factor was extracted. For example, HB will be used for high-curiosity boys, LB for low-curiosity boys, HG for high-curiosity girls, and LG for low-curiosity girls. Thus, Factor III for low curiosity girls is labelled IIILG. Where possible, the factors have also been named.

High-curiosity Boys

Factor IIHB; Self-actualization

Boys who are high in Factor IIHB have an attitude of "right doing" toward others, and are sympathetic and tactful. At the same time, they may show a fastidious aversion for rough people and rough games. They have an interest in art, travel, new experiences, and show an anxious imaginativeness and a love of dramatics and literature. These boys are adaptive, conformative and helpful in dealing with others.

They are dependable, efficient, prompt, self-reliant, controlling of own behavior, patient, and persevering. They are tolerant of others from whom they may differ. Although they appreciate the necessity of subordinating their rights to the needs of the group, they often avoid games and physical exercise. Their behavior is often misunderstood by their peers who tend to rate them anti-social and as being negative in areas where they should be strong, i.e. accountability, effectiveness, and group loyalty. Factor IIHB boys, themselves frequently are not realistic in estimating their own abil

Factor IIIHB; Restrained creativity

Boys high in Factor IIIHB possess some of the same characteristics as found in Factor IIHB, but to a less significant degree. This factor, too, is loaded positively for dependability, efficiency, promptness, self-reliance, patience, perseverance, and the ability to control one's own behavior. The boy is also adaptive, conformative, and helpful in dealing with others. He is also accepting of those from whom he differs. However, high Factor IIIHB indicates a boy who lacks some of the certainty revealed by a boy high on Factor IIHB. He tends to question his own capabilities and is not quite as independent as he would like to be. He may show emotional conflicts and feel insecure with his family. His uncertainty may be exhibited in disobedience. His peers rate him high in group behavior. They consider him to be effective, reliable, accountable, and loyal. He is creative, and in spite of the recognition by his peers of his social contribution, he is sensitive and lonely.

Factor IV:B; Impulsive creativity

Although this factor is highly loaded with creativity, it differs from Factor IIIHB in that it also includes excitability of an immediate temperamental nature, a mind wandering distractibility, an attention-getting insecurity, and an assertative tone to the emotionality. Such emotionality may be uncontrolled and lead to a rejection of cultural demands giving the impression of an unawareness of social standards.

The boy high on this factor is intelligent and is consistent in his thinking, but is unrealistic about his own abilities.

Factor VHB; Persistence

This factor is distinguished by a persistent energized drive free from oscillation. Boys high on Factor VHB are consistent in their thanking and are secure and composed with low ergic tension. They are ambitious, conscientious and have adequate self-concepts. They prefer efficient people to others; this preference may be reflected in their relatively poor community relationships. Factor VHB is negatively loaded with intelligence.

Factor VIHB: Emotional maturity

Factor VIHB is the dimension of emotional maturity and appears to be related to the boys' ideas of their own behavior that can be described as showing curiosity. Boys high on this factor have achieved emotional control. We should, perhaps, see their curiosity and exploratory behavior as a seeking for certainty. Apparently, * . r desire for certainty prohibits them from seeing "gray" areas which, in turn, is reflected in high intolerance of ambiguity.

Boys high in Factor VIHB would rather be accepted for physical and social qualities than for moral qualities.

Factor VIIHB; Leadership

Factor VIIMB has only two significant loadings. The dimension may be described as "ward leadership." It is a leadership based upon a concrete conceptualization system which "keeps the boy close to his peers." In some ways this factor seems similar to Factor IIIHB where being "down-to-earth" and closer to one's colleagues tends to make them see one positively in a social sense.

Factor VIIIHB; Abstraction

Boys high in Factor VIIIHB are curious about abstract matters and probably see their own curiosity as seeking answers which are more abstract than concrete. They are realistic in level of aspiration, but seem to lack persistence in following through.

Factor IXHB; Morality

Boys rating high in this factor prefer the quality of morality to physical and social qualities. They tend to be respectful of laws and regulations to the degree that they may show lack of cooperation with their peers. The superego in the form of parents and parent surrogates may be so involved in this development that the boy shows a feeling of being deprived of his own personal freedom.

Factor XHB; (meaning is ambiguous)

Factor XHB might have something to do with self-sentiment because the boy high in Factor XHB is self-controlled, ethical, ambitious,
considerate, conscientious, foresighted, and disposed to reduce and control expressions of emotion. This factor is also loaded with insecurity
and inconsistency. Since none of the loadings on this factor were significant at the .01 level, it will go unnamed at this time.

Low-curiosity Boys

Factor IILB; Restrained creativity

Factor IILB shows negative loadings for both intelligence and creativity. Boys high on this factor do not show nervous symptoms nor are they apt to substitute the joys of a phantasy would for reality.

They have a positive sense of personal worth and are free from bullying, quarreling, disobedience, and destructive acts toward the property of others. Less significant loadings support the interpretation of the more significant loadings. Low creativity and low intelligence and the apparently good adjustment of these boys seem to be related in such a way as to make their peers rate them as lacking in loyalty, reliability, accountability, and group effectiveness.

Factor IIILB; Self-actualization

Factor IIILB has significant negative loadings for such behavior as adaptations, conformity, and helpfulness toward others, for such attitudes as "right-doing" toward others and for such responses as dependability, efficiency, promptness, self-reliance, patience, and perseverance. Also negatively loaded are control of own behavior and leadership of others. Factor IIILB is loaded negatively for intelligence and creativity. The latter, however, are not significant at the .01 level. Peers' ratings of reliability, accountability, group loyalty, and group effectiveness are loaded positively. Perhaps, the realistic evaluation of these boys of their own ability may have some bearing on the high ratings by peers.

Factor IVLB; Consistency

Boys who are high in Factor IVLB are consistent in their thinking and feel secure. They show few nervous symptoms, rate themselves high in curiosity, and show signs of creativity. They conceptualize more abstractly than concretely and are accepting of others in an abstract manner, while remaining quite unfriendly in face-to-face relationships. Their security and consistency is so strong that they

do not reach out into leadership roles where they must take responsibility. Although they can tolerate ambiguity to some degree, they are unimaginative, and lack interest in art, travel, and new experiences.

Factor VLB; Self-directedness

Although low-curiosity boys tend to show a high level of security and consistency if they are high in this factor, they also must be highly other-directed tecause they are low in self-reliance having a realistic and, probably, a low value of their own ability. They tend to be tense, irrationally worried, often naive, and lacking in creativity.

Factor VILB; Self-control

Factor VILB is loaded highly and positively with strong selfsentiment and highly and negatively in evaluation of one's own level of
curiosity. Since strong self-sentiment involves among other behavioral
patterns an effort to accept approved ethical standards and ambitions to
do well, and since behavior considered to be manifestations of curiosity
are often at odds with accepted behavior, the loadings are not inconsistent as they may seem to be at first glance. The striving for ethical perfection which is characteristic of boys high on this factor may
cause them to show signs of unfriendliness, since they tend to be somewhat unrealistic and naive. They do not cooperate well with others and
seem to conceptualize more in the abstract than in the concrete mode.

Factor VIILB; Self-reliance

Factor VIILB is loaded positively for conceptualization and morality indicating that boys high in this factor tend to conceptualize abstractly and to prefer moral to physical and social qualities. This may, in part, be a cover for their discouragement at their inability to

meet good standards of behavior. The high Factor VIILB boy is easily annoyed by people and things and is not accepting of others, although he must depend on them to do many things because he tends to be low in self-reliance. He tends to be unrealistic in judging his own ability which, in turn, may bring on frustrations which lower ego strength. He lacks interest in art, travel, dramatics, and literature. He is lacking in imagination and does not care especially for new experiences.

Factor VIIILB; Leadership

Factor VIIILB shows positive loadings for leadership and ego strength. Boys high on this factor show interest in physical and social qualities and a high degree of dynamic integration and emotional control. They are not too imaginative but probably gain their leadership by participating actively in games.

Factor IXLB; Concrete creativity

The only positive loading of this factor is creativity which is significant at the .05 level but not at the .01 level. The negative loadings for morality and conceptual systems indicates a concrete moment-to-moment creativity as opposed to an abstract "theory-like" creativity. The boy does not recognize his creativity and is unaware of his own curiosity about things and about himself.

Factor XLB; Abstraction

The only loadings on Factor XLB significant at the .01 level or less are negative. The negative loading for conceptual systems indicates that boys high in Factor XLB conceptualize in the concrete rather than the abstract and they tend to function in terms of immediacy and in a temperamental manner. Boys high in XLB feel restricted in terms of

their own choices of behavior and feel hurt and angry if not given important positions in their community. They tend to feel they have good community relations with their neighbors. Although they feel a sense of restriction and although they conceptualize concretely, they tend to consider themselves to be quite curious.

High-curiosity Girls

Factor IIHG; Leadership

Girls high in this factor show intellectual leadership, a sense of security, and consistency in thinking. However, the leadership is probably "maternalistic." These girls do not subordinate their own egoistic tendencies in favor of interests and activities of their associates.

Factor IIIHG; Enculturation

High-curiosity girls high in Factor IIIHG are, for the most part, secure and consistent in their behavior and relatively free of nervous symptoms. At the same time, there is a tendency for them to become excited and to reject cultural demands even to the extent of exhibiting a limitation of social skills. This latter behavior may cause their peers to see them as uncooperative in group activities, irresponsible, and unfriendly.

Factor IVHG; Security

The negative loadings on this factor found for high-curiosity girls are significant at the .05 level and indicate low level anxiety or an awareness that "everything is not right with the world." Girls

who score at the anxious end of this continuum are rated high in reliability, accountability, loyalty, and group effectiveness by their peers.

Factor VHG; Prejudice

High-curiosity girls high in Factor VHG have a highly realistic opinion of their own potentialities which probably gives them a feeling of not needing others. They show considerable prejudice toward those who differ from themselves in race, color, attitudes, and place of origin. This lack of reaching out for other people is reflected in an insensitivity for things in the environment and a lack of realization of their own curiosity.

Factor VIHG; Adjustment

There was only one loading on Factor VIHG significant at the .01 level or better. Other loadings significant at the .05 level were exactly opposite in sign to the significant loadings on the same factor for low-curiosity girls. High-curiosity girls who are on the positive end of the continuum are not easily distracted, have a realistic view of their own ability, can judge their own curiosity, and tend to seek moral rather than physical and social qualities.

Factor VIIHG; Shrewdness

The girl high in this factor is a clear thinker with a realistic but sometimes expedient approach to problems. She is apt to conceptualize in terms of obvious structure or the concrete rather than to generalize in abstract terms. She is self-reliant and can do most things for herself. She may not appreciate the necessity of subordinating certain desires to the needs of others.

The state of the s

Factor VIIIHG; Companionship

Girls high in Factor VIIIHG are in contrast with those high in Factor IIHG in that the rights of others are considered in the leader-ship qualities shown. A high interest is exhibited in the qualities others desire such as a love of physical and social activities. Therefore, girls high in this factor are more "down to earth" than girls high in Factor IIHG.

Factor IXHG; Self-control

The highest positive loading on Factor IXHG is strong selfsentiment. Girls high in this factor show leadership in a self-controlled
manner. They strive to accept the approved ethical standards, are ambitious and try to control emotions. In attempting to accomplish these
standards, they may feel restricted by social demands and by their
families. This is occasionally reflected in negative family relationships.

Factor XHG; Persistence

A girl with high Factor XHG is persistent and may achieve well in intellectual work. Her ego atrength is low indicating lack of emotional control. She tends to obtain homeostasis by seeking acceptable physical and social qualities rather than moral and by conceptualizing in broad general rubrics rather than in narrow, specific categories. Her lack of ego strength causes her to be easily annoyed and dissatisfied which, in turn, leads to poor community relations.

Factor XIHG; Conceptualization

The single significant positive loading for Factor XIHG in highcuriosity girls indicates that those high in this factor conceptualize

abstractly more than concretely. The only other significant loading indicates a tendency toward poor family relations. The lack of other significant loadings makes further interpretations impossible.

Low-curiosity Girls

Factor IILG; Participation

Factor IILG is high in what Cattell calls tough mindedness. A girl possessing a high level of IILG participates with the majority of her peers in games and physical activities. They, in turn, rate her high in group activities and consider her to be reliable, accountable, and effective. She lacks an interest in art, travel, and new experiences and does not appreciate literature and dramatics.

Factor IIILG; Enculturation

Girls high in Factor IIILG show emotional problems by withdrawing from threatening activities and by substituting phantasy for realistic achievement. They probably accept cultural demands and, therefore, are rated by their peers as being cooperative, friendly, and responsible.

The loadings on this factor for low-curiosity girls are opposite in sign to the loadings for Factor IIIHG for high-curiosity girls.

Factor IVLG; Judgment

Factor IVLG had only one loading significant at the .01 level and one significant between the .05 and .01 levels. No clear statement can be made about this factor. Apparently, girls high in this factor are low in intelligence but can make realistic judgments regarding their own abilities.

And the second s

Factor VLG; Security

Factor VLG accounts for a small amount of the communality. In the present analysis, the only significant loadings are for security and consistency. Both of these loadings are very high.

Factor VILG; Adjustment

Low-curiosity girls possessing Factor VILG show the regative characteristics of VIHG. They are easily distracted, lack reality in judging own ability, and seek physical and social qualities rather than moral. They tend to function on a "the-spur-of-the-moment" basis.

Factor VIILG; (unnamed)

The evidence for this factor is not clear. There are only two loadings, both significant between the .05 and the .01 levels. They logically seem to conflict with each other. Therefore, no effort was made to name or describe this factor.

Factor VIIILG; Shrewdness

The analysis for low-curiosity girls revealed only one loading significant at the .05 level on the factor called "Shrewdness." The sign of this factor coefficient is opposite to the sign for the coefficient for the same variable in Factor VIIHG (Shrewdness) for high-curiosity girls. This negative loading may indicate that girls high on this factor are vague, sentimental people who may get along well with people in a primitive heart-to-heart understanding, but have little skill in anticipating the usual reactions of others, and are apt to be slow and awkward (82).

Factor IXLG; Leadership

Factor IXLG identified in the study of low-curiosity girls has only one significant loading. This negative loading on leadership might indicate that this factor is at the extreme negative end of either Factor IIHG, Factor VIIIHG, or Factor IXHG identified in the study of high-curiosity girls. However, the data are not clear.

Factor XLG; (unnamed)

Only one loading, morality, significant at the .05 level was identified. Its meaning is not clear. Therefore, no effort was made to name this factor.

Factor XILG; (unnamed)

Only one loading, social standards, significant at the .05 level was identified. Its meaning is not clear. Therefore, no effort was made to name this factor.

Conclusions and Interpretations

Summary of results. -- A summary of the results indicates that there are several factors in common among the four curiosity groups. The review also reveals that there are factors specific to a single group. The following list shows some of these relationships: (A plus sign indicates that this factor is high for the group, a minus sign means the opposite is true. An X is used to show that no factor of this name was identified for the particular group.)

						I overnitosity Cirls	
High-curiosity Boys		Low-curiosity Boys		High-curiosity Girls			
Self-actualization	+	Self-actualization		Adjustment	+	Adjustment	
Restrained Creativity	#\$-	Restrained Creativity	,	×		×	
Impulsive Creativity	•;-	Concrete Creativity	-}-	×		×	
Emotional Maturity X	+	Self-directedness Self-reliance		××		××	
Abstraction	+	Abstraction	•	×		×	
Leadership	+	Leadership	4-	Leadership	+	Leadership	•
×		Consistency	+	Security		Security	+
Morality	+	×		X		×	
×		Self-concrol	-}-	Self-control	+	×	
×		×		Prejudice	+	Social Participation	+
×		×		Shrewdness	+	Shrewdness	1
Persistence	+	×		Persistence	-}-	×	
×		×		Ħ		Judgment	+
×		×		Enculturation	1	Enculturation	+
×		×		Companionship	+	×	
×		X		Conceptualization	+	×	

From this list, it is clear that some of the questions raised at the beginning of this investigation are answered as follows:

- 1. There are personal and/or social factors that differentiate high-curiosity boys from low-curiosity boys.
- 2. There are personal and/or social factors that differentiate high-curiosity girls from low-curiosity girls.
- 3. There are personal and/or social factors that distinguish among boys and girls who also differ in their curiosity levels.
- 4. Finally, these factors may be used to formulate a description than of children differing in curiosity. This description may be utilized to define or identify groups of children with a high probability of being different from each other in curiosity level.

A definition of curiosity. -- It is possible to describe high-curiosity boys as boys who are self-actualized, creative--both in terms of finding unique immediate solutions and in seeking long range, well-considered answers to problems, emotionally mature, capable of abstract thinking and considerable leadership, while being persistent and desirous of having ideal or moral qualities.

On the other hand, low-curiosity boys are less self-actualized, limited in creativity, lacking in self-reliance and self-direction, unable to do abstract thinking, but are able to show leadership on a concrete, face-to-face basis, while tending to exhibit considerable consistency, security, and self-control.

The data obtained for girls are not as complete as those for boys. Therefore, the definition of curiosity for girls is not quite as adequate as the one for boys.

High-curiosity girls show considerable leadership, often reject cultural demands, sometimes feel insecure, and are frequently prejudiced. They tend to be well adjusted in most situations and are quite shrewd, showing a high level of self-control and a desire for companionship.

These girls are persistent and are able to conceptualize abstractly.

Their low-curiosity counterparts participate in activities of their peers, are highly enculturated, are realistic in their judgments, show a very strong feeling of security, but are lacking to some degree in adjustment. They are very naive and are unwilling or unable to be leaders.

Interpretation of findings. -- It is obvious that curiosity as a term is not defined. However, the behavior of those who show different aspects of curiosity is set forth more clearly than it has been. The probability is very high that a child having certain characteristics or behaving in a certain way as defined by the factors will show the level of curiosity indicated. Certainly all children showing the behavior will not also be at the indicated level of curiosity. There will also be children differing in curiosity levels who will show factors not tapped by this study. It is, therefore, essential that additional studies similar to the present investigation be conducted using other tests and measuring instruments.

The data obtained from this investigation may be utilized in the development of instruments to identify high- and low-curiosity boys and girls. The results suggest that there are some common areas that might be considered when measuring boys and girls together. However, it appears from the data that separate instruments must be devised for each sex.

Perhaps, the most significant task of the researcher will be to search for reasons for some of the differences. Why should creativity be such a significant factor in the identification of high-curiosity boys and be absent in the identification of high-curiosity girls? Why do both low-curiosity boys and low-curiosity girls show at least one factor heavily loaded with consistency and security, but neither group shows a factor loaded with persistence?

Finally, this research has probably raised more questions than it has answered. It is still necessary to determine what influences in the environment modify these factors. Each factor will have to be studied individually to find what educators can do to modify behavior called curiosity. Perhaps, by obtaining some evidence concerning children differing in curiosity level a beginning has been made.

ERIC

BIBLIOGRAPHY

- 1. Barron, F. Creativity and psychological health: origins of personal vitality and creative freedom. Princeton: D. Von Nostrand Company, 1963.
- 2. Berlyne, D. E. Complexity and incongruity variables as determinants of exploratory choice and evaluative ratings. Canadian journal of psychology, 17, 1963, 274-290.
- 3. <u>Conflict, arousal, and curiosity</u>. New York: McGraw-Hill Book Company, 1960.
- 4. Bochm, L. and Nass, M. L. Social class differences in conscience development. Child development, 33, 1962, 565-574.
- 5. Bogardus, E. S. The new social research. Los Angeles: Jesse Ray Miller, 1926, 212-213.
- 6. Bruner, J. S. The conditions of creativity, 1-30. In Gruber, H. E. et al. (eds.) Contemporary approaches to creative thinking.

 New York: Atherton Press, 1962.
- 7. Cantor, Joan H. and Cantor, G. H. Observing behavior in children as a function of stimulus novelty. Child development, 35, 1964. 851-856.
- 8. Caron, A. J. Curiosity, achievement, and avoidant motivation as determinants of epistemic behavior. <u>Journal of abnormal and social psychology</u>, 67, 1963, 535-549.
- 9. Cassell, R. N. The Cassell Group Level of Aspiration Test.
 Beverly Hills, California: Western Psychological Services, 1957.
- 10. Cattell R. B. Factor analysis: an introduction and manual for the psychologist and social scientist. New York: Harper and Brothers, 1952.
- 11. _____ The nature and measurement of anxiety. Scientific American, 208, March, 1963, 96-104.
- and Scheier, I. H. The meaning and measurement of neuroticism and anxiety. New York: Ronald Press, 1961.
- 13. Cox, F. N. and Leaper, Patricia M. Assessing some aspects of the parent-child relationship. <u>Child development</u>, 32, 1961, 637-649.

- 14. Crandall, V. J. et al. Maternal reactions and the development of independence and achievement behavior in young children.

 Child development, 31, 1960, 243-251.
- 15. Dalton, R. H. Personality and social interaction. Boston: D. C. Heath and Company, 1961.
- 16. Dentler, R. A. and Mockler, B. Originality: some social and personal determinants. Behavioral science, 9, 1964, 1-7.
- 17. Eysench, H. J. Criterion analysis: an application of the hypothetico-deductive method to factor analysis. <u>Psychological</u> review, 57, 1950, 38-53.
- 18. <u>Dimensions of personality</u>. London: Kegan Paul,
- Routledge and Kegan Paul, 1952. London:
- Methuen and Company, 1953.

 The structure of human personality. London:
- and Prell, D. B. A note on the differentiation of normal and neurotic children by means of objective tests.

 Journal of clinical psychology, 8, 1952, 202-204.
- 22. Feldhusen, J. F. and Thurston, J. R. Personality adjustment of high- and low-anxious children. Journal of educational research, 57, 1964, 263-267.
- 23. Fruchter, B. Introduction to factor analysis. New York: D. Von Nostrand Company, 1954.
- 24. Fuller, J. L. Motivation: a biological perspective. New York:
 Random House, 1962.
- 25. Getzels, J. W. and Jackson, P. W. <u>Creativity and intelligence</u>: explorations with gifted students. New York: John Wiley and Sons, 1962.
- 26. Goertzel, V. and Goertzel, Mildred. Cradles of eminence. Boston: Little, Brown and Company, 1962.
- 27. Gough, H. G. et al. The problem of creativity. A talk given at the Second Financial Management Seminar, University of California, Berkeley, January 29, 1962.
- 28. Gropko, M. <u>Institute of Child Study Security Test</u>. Toronto: University of Toronto Institute of Child Study, 1957.
- 29. Harman, H. H. Modern factor analysis. Chicago: The University of Chicago Press, 1960.

- 30. Harris, D. B. et al. A scale for measuring attitudes of social responsibility in children. <u>Journal of abnormal and social psychology</u>, 1957, 54, 322-326.
- 31. Hebb, D. O. Drives and the c. n. s. (conceptual nervous system).

 Psychological review, 62, 1955, 243-254.
- 32. Hoats, D. L. et al. Experiments on perceptual curiosity in mental retardates and normals. American journal of mental deficiency, 68, 1963, 386-395.
- 33. Hosoda, K. Curiosity and spontaneous alternation. <u>Japanese journal</u> of psychology, 35(3), 1964, 126-132.
- 34. Hotelling, H. Analysis of a complex of statistical variables into principal components. Baltimore: Warwick and York, 1933.
- 35. Simplified calculation of principal components.

 Psychology, 1, 1936, 27-35.
- 36. Hunt, D. E. Manual for judging free responses from situational interpretation experiment. Unpublished material of author, 1961.
- 37. Ianni, F. A. J. and Josephs, Lois. Meeded a way to save curiosity. School life, 46, November 1963, 23-24.
- 38. Johnson, R. C. A study of children's moral judgment. Child development, 33, 1962, 327-354.
- 39. Lintz, L. M. et al. Curiosity reward in children. <u>Psychological</u> reports, 16, 1954, 1222.
- 40. Lorge, I. and Thorndike, R. L. Examiner's Manual: The Lorge-Thorndike Intelligence Tests. Boston: Haughton Mifflin Co., 1957.
- 41. Lubin, A. A note on "criterion analysis." <u>Psychological review</u>, 57, 1950, 38-53.
- 42. MacKinnon, D. W. The nature and nurture of creative talent.

 The American psychologist, 17, 1962, 484-495.
- 43. Maw, Ethel W. An experiment in teaching critical thinking in the intermediate grades. Unpublished dissertation submitted for the Ph. D. degree, University of Pennsylvania, 1959.
- pp. 75-87. In Stauffer, R. G. (ed.) <u>Dimensions of critical</u> thinking. Newark, Delaware: The University of Delaware, 1964.
- 45. Maw, W. H. Curiosity, cats, censors, pp. 119-133. In Stauffer, R. G. (ed.) <u>Dimensions of critical thinking</u>. Newark, Delaware:

 The University of Delaware, 1964.

- 59. The measurement of curiosity in elementary school children: a summary. Moravia, N. Y.: Chronicle Guidance Publications, 1964.
- 60. _____. The relationship between curiosity and scores on a test of general information. ARGR journal, 2, 1960, 27-33.
- 61. McNamara, H. J. et al. Curiosity and reality contact: a preliminary report. Perceptual and motor skills, 18, 1964, 976.
- 62. McReynolds, P. et al. Relation of object curiosity to psychological adjustment of children. Child development, 32, 1961, 393-400.
- 63. Medinnus, G. R. Objective responsibility in children: a comparison with the Piaget data. <u>Journal of genetic psychology</u>, 101, 1962, 127-133.
- and Love, J. M. The relation between curiosity and security of preschool children. <u>Journal of genetic psychology</u>, 107, 1965, 91-98.
- 65. Mendel, Gisela. Children's preferences for differing degrees of novelty. Child development, 36, 1965, 453-465.
- 66. Minton, H. L. A replication of perceptual curiosity as a function of stimulus complexity. <u>Journal of experimental psychology</u>, 66, 1963, 522-524.
- complexity and cognitive complexity. Unpublished dissertation submitted for the Ph. D. degree, Pennsylvania State University, 1963.
- 68. Mittman, L. R. and Terrell, G. An experimental study of curiosity in children. Child development, 35, 1964, 851-855.
- 69. Muuss, R. E. A comparison of "high causally" and "low causally" oriented sixth grade children on personality variables indicative of mental health. The Iowa Academy of Science, 1959, 66, 388-394.
- 70. A comparison of "high causually" and "low causally" oriented sixth grade children in respect to a perceptual "intolerance of ambiguity test." Child development, 31, 1960, 521-536.
- 71. Numberg, E. <u>Curiosity</u>. New York: International Universities Press, 1961.
- 72. O'Connell, R. H. Trials with tedium and titillation. <u>Psychological bulletin</u>, 63, 1965, 170-179.

The second of th

- 73. Ogden, J. A. and Olson, W. A. The interrelationships of creativity, curiosity, intelligence, achievement, and emotional maturity.

 Unpublished report of the findings in a research project submitted for the Ed. D. degree, Colorado State College, 1961.
- 74. Pangrac, I. E. The relationship of curiosity in children to the child's perception of selected dimensions of parental behavior. Unpublished dissertation submitted for the Ph. D. degree, Purdue University, 1963.
- 75. Paradowski, W. The effect of curiosity on incidental learning.
 Unpublished dissertation submitted for the Ph. D. degree,
 Columbia University, 1964.
- 76. Pearson, K. On lines and planes of closest fit to systems of points in space. Philosophical magazine, 6, 1901, 551--572.
- 77. Penney, R. K. Reactive curlosity and manifest anxiety in children.

 <u>Child development</u>, 36, 1965, 697-702.
- and McCann, B. The children's reactive curiosity scale. <u>Psychological reports</u>, 15, 1964, 323-324.
- 79. Perrodin, A. F. Factors affecting the development of cooperation in children. <u>Journal of educational research</u>, 53, 1960, 285-287.
- 80. Pielstick, N. L. and Woodruff, A. B. Exploratory behavior and curiosity in two age and ability groups of children.

 Psychological reports, 14, 1964, 831-838.
- 81. Poore, Patricia J. and Lang, G. Curiosity in elementary school children: a comparison of parent, teacher and children's self ratings. Paper presented at the Annual Meeting of the American Psychological Association, Philadelphia, August, 1963.
- 82. Porter, R. B. and Cattell, R. B. <u>Children's personality questionnaire</u>. Champaign, Illinois: The Institute for Personality and Ability Testing, 1960.
- 83. Reed, H. B. jr. Anxiety: the ambivalent variable. Harvard educational review, 30, Spring 1960, 141-153.
- 84. Roe, Anne. The psychology of the scientist. Science, 134, 1961, 456-458.
- 85. Rogers, C. R. Two divergent trends, pp. 85-93. In May, R. (ed.) Existential psychology. New York: Random House, 1961.
- 86. Rothkopf, E. Z. and Zeaman, D. Some stimulus controls of alternation behavior. <u>Journal of psychology</u>, 34, 1952, 235-255.

- 87. Sachs, B. D. et al. Human curiosity as a function of information input. Paper read at Annual Meeting of the American Psychological Association, New York City, September, 1961.
- 88. Sarason, S. B. et al. Anxiety in elementary school children:

 a report of research. New York: John Wiley and Sons, 1960.
- 89. Schaefer, E. S. and Bayley, Nancy. Maternal behavior, child behavior, and their intercorrelations from infancy through adclescence. Monograph of the Society for Research in Child Development, 28, 1963.
- 90. Schwartz, Lita Linzer. Anxiety, curiosity, and reading achievement. In Stauffer, R. G. (ed.) <u>Dimensions of critical</u> thinking. Newark, Delaware: The University of Delaware, 1964.
- Relationship among curiosity, anxiety and risk taking in fifth-grade children. Unpublished dissertation submitted for the Ph. D. degree, Bryn Mawr College, 1964.
- 92. Smock, C. D. and Holt, Bess G. Children's reactions to novelty: an experimental study of "curiosity motivation." Child development, 33, 1962, 631-642.
- 93. Sutton-Smith B. and Rosenberg B. G. Manifest anxiety and game preference. Child development, 31, 1960, 307-311.
- 94. Taylor, C. W. (ed.) <u>Creativity: progress and potential</u>. New York: McGraw-Hill Book Company, 1964.
- 95. Thorpe, L. P. et al. <u>California Test of Personality</u>. Elementary form AA, Revised. Monterey, California: California Test Bureau, 1953.
- 96. Torrance, E. P. Guiding creative talent. Englewood Cliffs, N. J.: Prentice-Hall, 1962.
- et al. Assessing the creative abilities of children. Minneapolis: University of Minnesota Bureau of Educational Research, 1960.
- 98. White, R. W. Motivation reconsidered: the concept of competence.

 <u>Psychological review</u>, 1959, 66, 297-333.
- 99. Wood, H. B. Behavior preference record. Los Angeles: California Test Bureau, 1953.

APPENDIX

		Page
Ta ble A	Correlation Matrix with Communality Estimates for High-curiosity Boys	74
Table B	Correlation Matrix with Communality Estimates for Low-curiosity Boys	79
Table C	Correlation Matrix with Communality Estimates for High-curiosity Girls	84
Table D	Correlation Matrix with Communality Estimates for Low-curiosity Girls	89
Table E	Matrix of Common Factor Coefficients for High- curiosity Boys	94
Table F	Matrix of Common Factor Coefficients for Low- curiosity Boys	96
Table G	Matrix of Common Factor Coefficients for High- curiosity Girls	98
Table H	Matrix of Common Factor Coefficients for Low- curiosity Girls	100

ERIC Full Text Provided by ERIC

TABLE A

CORRELATION MATRIX WITH COMMUNALITY ESTIMATES
FOR HIGH-CURIOSITY BOYS

	1	2	3	4	5	6	7	8
1.	1.000	029	.205	.346	.180	.355	,136	.121
2.	029	1.000	.023	.158	026	.052	.031	.065
3.	.205	.023	1.000	.386	.280	.393	.399	.333
4.	.346	.158	.386	1.000	.307	.430	.430	.332
5.	.180	026	.280	.307	1.000	.406	.412	.221
6.	.355	.052	.393	.430	.406	1.000	.483	.442
7.	.136	.031	.399	.430	.412	.483	1.000	.615
8.	.121	.065	.333	.332	.221	.442	.615	1.000
9.	.173	099	.168	.063	.185	.208	.064	.179
10.	.217	020	.455	.245	.134	.397	.289	.296
11.	.246	149	.396	.381	.3 39	.508	.641	.462
12.	.244	076	.256	.29 9	.413	.531	.437	.354
13.	.247	003	.394	.410	.327	.559	.519	.418
14.	.270	.017	.219	.230	.154	.333	.229	.290
15.	.240	029	06 9	.008	125	.087	.067	071
16.	.286	041	.097	.149	.191	.142	011	.054
17.	.257	083	.146	.107	.083	.183	050	.020
18.	.076	013	.055	011	.026	.015	014	058
19.	.224	177	.117	.031	010	.045	111	052
20.	.180	.240	.171	.217	.058	.227	.106	.086
21.	050	.197	356	169	262	321	2 98	356
22.	.153	.055	.282	.204	.078	.152	.382	.350
23.	.095	188	.049	031	.002	091	134	274
24.	103	037	258	182	1 79	313	304	196
25.	.033	086	.274	.124	.059	.109	.184	.201
26.	175	014	359	238	190	236	396	361
27.	.668	038	.101	.273	.046	.163	.0 94	.086
28.	294	008	183	134	.045	068	110	024
29.	.235	.185	.080	.241	.139	.320	.214	.181
30.	.158	.070	.041	.112	.112	.252	.147	.141
31.	.231	.179	.130	.208	.132	.33 9	.212	.219
32.	.410	.239	.168	.296	.102	.319	.214	.125
33.	.318	029	.178	.212	.019	.224	.163	.159
34.	.288	.004	.159	.228	.029	.199	.190	.225
35.	235	.062	197	244	273	370	424	219
36.	.297	022	.260	.253	.166	.358	.284	.246
37.	.218	.029	019	.036	.002	.068	.004	.015
38.	.035	016	 025	.341	116	036	064	080

- 75 TABLE A
(Continued)

9	10	11	12	13	14	15	16
1173	.217	.246	.244	.247	.270	.240	206
2099	020	149	076	003	.017	029	.286
3. .168	.455	.396	.256	.394	.219	069	041
4063	.245	.381	.299	.410	.219	.009	.097
5185	.134	.339	.413	.327	.154	125	.149 .191
6208	.397	.508	.531	.550	.333	.087	.142
7064	.289	.641	.437	.519	.229	0 67	011
8179	.296	.462	.354	.418	.290	071	
9. 1.000	.556	.398	.329	.280	.311	.126	.054
10556	1.000	.500	.367	.393	.382	.062	.323
11398	.500	1.000	.555	.648	.397	.181	.239
12329	.367	.555	1.000	.463	.346	052	.220
13280	.393	.648	.463	1.000	.396	.058	.178
14311	.382	.397	.346	.396	1.000	.008	.220
15126	.062	.181	052	.058	.008	1.000	.056
16323	.239	.220	.178	.220	.056	.372	.372
17432	.409	.301	.157	.242	.206	.426	1.000 .851
18212	.177	.098	.045	.214	.207	.050	
19419	.360	.236	.159	.149	.155	.432	.333 .691
20144	.274	.147	.095	.197	.175	020	.193
21379	487	481	330	268	301	070	160
22127	.164	.236	.105	.194	.096	021	.082
23269	.190	.133	.076	.109	.015	 267	.259
24263	354	.307	268	3 60	198	043	-,204
25206	.231	307	.164	.250	.097	.038	.111
26168	421	336	197	360	131	004	253
27093	.163	.170	.137	.178	.138	.318	.380
28017	017	111	037	144	162	185	018
29038	.095	.186	.093	.182	.113	058	.027
30021	.019	.126	.107	.123	.072	030	.007
31103	.087	.199	.120	.234	.100	G 40	022
32026	.065	.110	.010	.186	.116	.000	009
33161	.244	.310	.207	.314	.105	.331	.379
34194	.194	.295	.120	.350	.095	.288	.381
35144	063	508	269	513	236	304	375
36371	.453	.458	.388	.491	.266	.167	.372
37225	.044	.142	.067	.198	.113	.187	.184
38176	.143	.046	014	105	021	.054	.081

- 76 TABLE A
(Continued)

	17	18	19	20	21	22	23	24
1.	.257	.076	.224	.180	.050	.153	.095	132
2.	083	013	177	.240	.197	.055	188	037
3.	.146	.055	.117	.171	356	.282	.049	258
4.	.107	.011	.031	.217	169	.204	031	182
5.	.083	.026	010	.058	262	.076	.002	1 79
6.	.183	.015	.045	.227	321	.152	091	313
7.	050	014	111	.106	2 98	.382	013	304
8.	.020	058	052	.0 86	-,356	.350	274	196
9.	.432	.212	.419	.144	379	.127	.269	263
10.	.409	.177	.360	.274	487	.164	.190	354
11.	.301	.098	.236	.147	481	.236	.133	307
12.	.157	.045	.159	.095	330	.105	.076	268
13.	.242	.214	.149	.197	268	.194	.109	360
14.	.206	.207	.155	.175	301	.096	.015	198
15.	.426	.050	.432	.070	020	021	.267	043
16.	.851	.333	.691	.193	160	.082	.239	204
17.	1.000	.295	.767	.133	293	.167	.43 8	237
18.	.295	1.000	.382	.137	 076	.001	.246	110
19.	.767	.382	1.000	.138	258	.180	.403	135
20.	.133	.137	.138	1.000	159	.138	020	137
21.	293	076	25 8	159	1.000	226	074	.205
22.	.167	.001	.180	.138	226	1.000	· . 0 85	185
23.	.438	.246	.403	020	074	085	1.000	030
24.	237	- ,110	135	137	.205	185	030	1.000
25.	.180	.034	.152	.122	336	.252	.145	307
26.	319	003	210	210	.332	43 8	025	.360
27.	.284	.006	.255	.086	.021	.158	.043	083
28.	.013	.066	006	.101	015	071	044	069
29.	.030	.120	.073	.185	124	.273	2 39	004
30.	.014	.069	.065	.107	170	.172	187	.018
31.	.001	.022	.049	.130	188	.205	170	080
32.		.053	.034	.143	041	.365	206	073
33.		.125	.335	.136	197	.248	.143	333
34.		.144	.291	.119	166	.258	.088	262
35 .		173	236	04 8	.242	129	101	.315
36.		.140	.427	.192	410	.435	.193	386
37.		.134	.230	.009	165	.130	.110	224
38.		149	.007	.071	106	184	.137	.110

TABLE A (Continued)

- 77 -

-	25	26	27	28	29	30	31	32
1.	.033	175	.668	294	.235	.158	.231	.410
2.	086	014	0 38	008	.185	.070	.179	.239
3.	.274	35 9	.101	183	.080	.041	.130	.168
4.	.124	23 8	.273	134	.241	.112	.208	.290
5.	.059	190	.046	.045	.139	.112	.132	.102
6.	.109	23 6	.163	 068	.320	.252	.339	.3 19
7.	.184	396	.094	110	.214	.147	.21.2	.214
8.	.201	361	.086	024	.181	.141	.219	.125
9.	.206	1 68	.093	.017	.038	.021	.103	026
10.	.231	421	.163	017	.0 95	.019	.087	.065
11.	.307	 336	.170	111	.186	.126	.199	.110
12.	.164	1 97	.137	037	.093	.107	.120	.010
13.	.250	360	.178	144	.182	.123	.234	.186
14.	.097	131	.188	162	.113	.072	.100	.116
15.	.038	004	.318	185	058	030	040	0.000
16.	.111	 253	.380	018	.027	.007	022	009
17.	.180	319	.284	.013	.030	.014	.001	011
18.	034	003	.006	.066	.120	.069	.022	.053
19.	.152	210	.255	006	.073	.065	.049	.034
20.	.122	210	.086	.101	.185	.107	.130	.143
21.	336	.332	.021	015	124	170	188	041
22.	.252	43 8	.158	071	.273	.172	.205	.365
23.	.145	025	.043	044	239	1 87	170	206
24,	 307	.360	083	069	0 04	.018	079	073
25.	1.000	355	080	.104	.171	.146	.210	.173
26.	 355	1.000	110	052	114	094	036	150
27.	080	110	1.000	313	.274	.178	.271	.416
28.	.104	052	313	1.000	007	.024	.004	114
29.	.171	114	.274	007	1.000	.845	1.003	.954
30.	.146	094	.178	.024	.845	1.000	.923	.782
31.	.210	0 36	.271	.004	1.003	.923	1.000	.947
32.	.173	150	,416	114	.954	.782	.947	1.000
33.	.166	358	.346	035	.104	.127	.128	.223
34.	.166	310	.320	084	.118	.131	.118	.217
35.	- 。308	.290	23 8	.062	093	108	125	114
36.	.313	477	.300	.010	.252	.261	.346	.310
37.	.225	042	.114	124	.081	.841	.092	.190
38.	.076	.013	.045	.230	055	030	.028	036

TABLE A (Continued)

	33	34	35	36	37	38	
1.		.288	235	.297	.218	.035	
2.	029	.004	.062	022	.029	016	
3.		.159	197	.260	~.0 1 9	025	
4.	.212	.228	= .244	.253	.036	.041	
5.	.019	.029	273	.166	.002	116	
6.	.224	.199	370	.359	.068	036	
7.	.163	.190	- .424	.284	.004	064	
8.	.159	.225	21 9	.246	.015	080	
9.	.161	.194	144	.371	.225	.176	
10.	.244	.194	063	.453	.044	.143	
11.	.310	.295	50 8	.458	.142	.046	
12.	.207	.120	 269	.3 88	.067	014	
13.	.314	.350	513	.491	.198	105	
14.	.105	.095	 236	.265	.113	021	
15,	.331	.288	 304	.167	.187	.054	
16.	.379	.381	- .375	.372	.184	.081	
17.	.370	.325	 257	.456	.174	.071	
18.	.125	.144	1 73	.140	.134	149	
19.	.335	.291	 236	.427	.230	.007	
20.	.136	.119	04 8	.192	.009	.071	
21.	197	166	.242	410	1 65	106	
22.	.248	.258	1 29	.435	.130	184	
23.	.143	.088	101	.193	.110	.137	
24.	333	262	.315	386	224	.110	
25.	.166	.166	308	.313	. 225	.076	
26.	358	310	.290	477	042	.01 8	
27.	.346	.320	238	.300	.114	.045	
28. 20	035	084	.062	.010	124	.230	
29.	.104	.118	093	.252	.081	055	
30.	.127	.131	108	.261	.084	030	
31.	.128	.118	125	.346	.092	.028	
32.	.223	.217	114	.310	.190	036	
33.	1.000	.965	342	.507	.241	006	
34.	.965	1.000	396	.454	.242	064	
3 5 .	342	396	1.000	402	336	046	
36.	.507	.454	402	1.000	.301	032	
37.	.241	.242	336	.301	1.000	.080	
38.	006	064	046	.032	.080	1.000	

CORRELATION MATRIX WITH COMMUNALITY ESTIMATES FOR LOW-CURIOSITY BOYS

						·		
	1	2	3	4	5	6	7	8
1.	1.000	.045	.239	.286	.230	.308	.236	.215
2.	045	1.000	.088	.045	.070	.027	087	.103
3.	.239	.088	1.000	.480	.412	.502	.293	. 356
4.	.286	.045	.480	1.000	.604	.873	.567	.479
5.	.230	.070	.412	.604	1.000	.706	.620	.440
ő.	.308	.027	.502	.873	.706	1.000	.821	.533
7.	.236	087	.293	.567	.620	.821	1.000	.626
8.	.215	.103	.356	.479	.440	.533	.626	1.000
9.	.388	049	.463	.511	.314	.613	.363	.411
10.	. 344	.106	.471	.644	.439	.731	.501	.413
11.	.336	.001	.467	.732	.634	.861	.777	.597
12.	.211	.035	.392	.508	.665	.648	.527	.449
13.	.414	066	.444	.633	.492	.871	.6 59	.496
14.	.322	.038	.405	.641	.381	.765	.483	.342
15 .	.261	.111	.222	.091	.184	.184	.016	.144
16.	.434	.072	.263	.361	.267	.516	.318	.237
17.	.333	.039	.164	.204	.252	.364	.172	.045
18.	.155	.025	.104	.098	-1.000	.122	.067	.103
19.	.611	019	.294	.457	.334	.571	.347	.202
20.	.149	023	.121	.214	.121	.148	.176	.156
21.	222	.136	 389	453	464	617	352	265
22.	.258	054	.253	.491	.425	.611	.417	.354
23.	.229	140	.154	.058	.105	.066	006	076
24.	271	.122	225	351	308	516	395	264
25.	.234	200	.213	.333	.200	.399	.235	.234
26.	170	.133	172	540	457	.580	467	497
27.	.6 85	.060	.299	.230	.127	.279	.124	.247
28.	555	034	150	.019	.088	054	.002	092
29.	.171	.012	.105	.276	.186	.284	.1 95	.038
30.	.168	.023	.178	.280	.110	.325	.195	.007
31.	.197	056	.216	.334	.285	.419	.202	.031
32.	。323	096	.232	.316	.239	.373	.230	.090
33.	.403	.053	.157	.328	.321	.432	.308	.317
34.	.349	.093	.195	.307	.268	.440	.315	.335
35.	324	032	287	359	298	382	385	411
36.	.505	.010	.398	.560	.399	.647	.46 8	.333
37.	.093	.028	004	.137	.140	.179	.068	.016
38.	.147	.063	.001	005	.041	.082	.126	. 154

- 80 TABLE B
(Continued)

								
	9	10	11	12	13	14	15	16
1.	.388	.344	.336	.211	.414	.322	.261	.434
2.	- : 04 9	.106	.001	.035	066	.038	.111	.072
3.	.463	.471	.467	.392	.444	.405	.222	.263
4.	.511	.644	.732	.508	.633	.641	.091	.361
5.	.314	.439	.634	.665	.492	.381	.184	.267
6.	.613	.731	.861	.648	.871	.765	.184	.516
7.	.363	.501	.777	.527	.659	.483	.016	.318
8.	.411	.413	.597	.449	.496	.342	.144	.237
9.	1.000	.649	.712	.439	.647	.624	.201	.479
10.	.649	1.000	.732	.464	.669	.750	.155	.463
11.	.712	.732	1.000	.618	.771	.702	.248	.445
12.	.439	.464	.618	1.000	.572	.444	.193	.327
13.	.647	.669	.771	₅ 572	1.000	.609	.169	.558
14.	.624	.749	.702	.444	.609	1.000	.279	.393
15.	.201	.155	.248	.193	.169	.279	1.000	.049
16.	.479	.463	.445	.327	.558	.393	.049	1.000
17.	.480	.428	.295	.205	.353	.311	.092	.784
18.	.205	.223	.030	008	.164	.128	.031	.323
19.	.638	.613	.562	.366	.607	.574	.226	.824
20.	.219	.129	.247	. ° 13	.269	.222	.046	.205
21.	377	 573	491	445	473	414	259	397
22.	.432	.434	.456	.397	.566	.329	.012	.348
23.	.297	.187	.197	.182	.235	.243	.148	.161
24.	417	439	384	246	590	429	102	390
25.	.444	.411	.431	.370	.532	.364	.223	.206
26.	425	443	 537	47 9	586	486	018	- .355
27.	.327	.319	.198	.189	.331	.311	.352	.398
28.	302	25 9	148	.C 18	237	042	057	280
29.	.173	.264	.119	.200	.181	.259	.175	.057
30.	.142	.347	.133	.196	.178	.256	.215	.093
31.	.242	.431	.199	.323	.280	.369	.311	.158
32 .	.282	.375	.227	.273	.308	.288	.227	.200
33.	.283	,308	.329	.302	.441	.331	.270	.432
34.	.308	.335	.327	.286	.405	.396	.222	.403
35.	328	459	486	331	456	354	154	413
36.	.563	.711	.630	.436	.670	.726	.311	.594
37.	.195	.117	.169	.136	.136	.115	011	.134
38.	.049	.134	.225	.011	.167	062	.106	.146
	-	· ·= •	·			.002	. 100	. 140

- 81 TABLE B
(Continued)

	17	18	19	20	21	22	23	24
1.	.333	.155	.611	.149	222	.258	.229	271
2.	.039	.025	019	023	.136	054	140	.122
3.	.164	.104	.294	.121	389	.253	.154	225
4.	.204	.098	.457	.214	453	.491	.058	351
5.	.252	-1.000	.334	.121	464	.425	.105	308
6.	.364	.122	.571	.148	617	.611	.066	
7.	.172	.067	.347	.176	352	.417	006	516
8.	.045	.103	.202	.156	265	.354	 076	395
9.	.480	.205	.638	.219	377	.432	.297	2 64
10.	.428	.223	.613	.129	 573	.434	.187	417
11.	.295	.030	.562	.247	491	.456		439
12.	.205	008	.366	.113	 445	.397	.197	384
13.	.353	.164	.607	.269	 473		.182	246
14.	.311	.128	.574	.222	414	.566	.235	 590
15.	.092	.031	.226	.046	25 9	.329	.243	429
16.	.784	.323	.824	.205	 397	• 012	.148	102
17.	1.000	.409	.974	.146	271	.348	.161	390
18.	.409	1.000	.462	· 0 59	172	.222	.262	229
19.	.974	.462	1.000	.323	3 98	.206 .422	.138	129
20.	.146	.059	.323	1.000	121		.332	398
21.	271	172	398	121	1.000	.119	.136	290
22.	.222	.206	.423	.119	441	441	137	.3 79
23.	.262	.138	.332	.136		1.000	.143	322
24.	229	129	398	290	137	.143	1.000	· .138
25.	.130	.149	.288	.206	.379	322	138	1.000
26.	182	160	373	270	287	.318	.272	398
27.	.281	.193	.458	.179	.378	٠.463 م	0 95	.408
28.	254	170	310	 262	260	.218	.166	- .159
29.	.052	.107	.092	046	.192	074	022	.105
30.	.079	.089	.122	020	1 94	.087	.137	156
31.	.191	.065	.299	.029	202	.036	.218	255
32.	.138	.039	.242		 366	.197	.248	 295
33.	.263	.110	.360	.058	323	.024	.177	240
34.	.232	.106	.339	.128	334	.156	.159	345
35.	317	154	470	.159	265	.115	.131	400
36.	.472	.327	.694	 360	.224	.133	- 192	.333
37.	.169	093	.067	.304	 552	.362	.303	510
38.	.012	034		124	0 89	.13.3	.190	200
~ ~ .	· ~ T&	- • • • • •	.053	.076	101	.101	940	121

- 82 TABLE B
(Continued)

	25	26	27	28	29	30	31	32
1.	.234	170	.685	55 5	.171	.168	.197	.323
2.	200	.133	.060	034	.012	.023	056	096
3.	.213	172	.299	150	.105	.178	.216	.232
4.	.333	540	.230	.019	.276	.280	.334	.316
5.	.200	457	.127	.088	.186	.110	.285	.239
6.	.399	580	.279	054	.284	.325	.419	.273
7.	.235	467	.124	.002	.195	.195	.202	.230
8.	.234	- .407	.247	092	.038	.007	.031	.090
9.	.444	4 25	. 327	302	.173	.142	.242	.282
10.	.411	443	.319	259	.264	.347	.431	.375
11.	.431	537	.198	14 8	.119	.133	.199	.227
12.	.370	- .479	.189	.018	.200	.196	.323	.273
13.	.532	 586	.331	237	.181	.178	.280	.308
14.	. 364	4 86	.311	042	.259	.256	.369	.288
15.	.223	018	.352	057	.175	.215	.311	.227
16.	.206	3 55	.398	280	.057	.093	.158	.200
17.	.130	182	.281	254	.052	.0 79	.191	.138
18.	. 149	160	.193	170	.107	.089	.065	.039
19.	.288	373	.458	310	.092	.122	.299	.242
20.	.206	270	.179	026	046	020	.029	.058
21.	287	.378	260	.192	194	202	366	323
22.	.318	463	.218	074	.087	.036	.197	.024
23.	.272	0 95	.166	022	.137	.218	.248	.177
24.	398	.408	159	.105	156	255	295	240
25.	1.000	368	.224	171	.121	.179	.220	.240
26.	 368	1.000	094	.065	105	039	172	~.122
27.	.224	0 94	1.000	457	.195	.166	.189	.282
28.	171	.065	 457	1.000	.010	099	.092	089
29.	.121	105	.195	.010	1.000	.684	.670	.429
30.	.179	039	.166	099	.684	1.000	.697	.674
31.	.220	172	.189	.092	.670	.697	1.000	.711
32.	.240	122	.282	089	.649	.674	.711	1.000
33.	.197	363	.327	163	.241	.174	.241	.332
34.	.152	374	.299	169	.212	.216	.241	.310
35.	190	.337	317	.153	037	106	010	191
36.	.441	484	.469	301	.355	.377	.473	.450
37.	.217	181	.061	046	.164	.162	.141	.087
38.	.081	.010	.092	185	072	.092	024	.033

- 83 -

TABLE B (Continued)

	33	34	35	36	37	38	
1.	.403	.349	324	.505	.093	.147	
2.	.053	.093	032	.010	.028	.063	
3.	.157	.195	287	.398	004	.001	
4.	.328	.307	 359	.560	.137	005	
5.	.321	.268	298	.399	.140	.041	
6.	.432	.440	382	.647	.179	.082	
7.	.308	.315	385	.468	.068	.126	
8.	.317	.3 35	411	.333	.016	.154	
9.	.283	.308	328	.563	.195	.049	
10.	.308	.335	459	.711	.117	.134	
11.	.329	.327	486	.630	.169	.225	
12.	.302	.286	331	.436	.136	.011	
13.	.441	.405	456	.670	.136	.167	
14.	.331	.396	354	.726	.115	062	
15.	.270	.2 22	154	.311	011	.106	
16.	.432	.403	413	.594	.134	.146	
17.	.263	.232	317	.472	.169	.012	
18.	.110	.106	154	.327	093	034	
19.	.360	.339	- ,470	.694	.067	.053	
20.	.128	.159	360	.304	124	.076	
21.	334	265	.224	552	089	101	
22.	.156	.115	133	.362	.113	.101	
23.	.159	.131	- , 192	.303	.190	040	
24.	345	400	. 333	510	200	121	
25.	.197	.152	·· "190	.441	.217	.081	
26.	363	374	.337	484	181	.010	
27.	.327	.299	··.317	.469	.061	.092	
28.	163	1 69	.153	301	046	185	
29.	.241	.212	.037	.355	.164	072	
30.	.174	.216	106	.377	.162	.092	
31.	.241	.241	~ .0 99	.473	.141	024	
32.	.332	.310	- .191	.450	.087	.033	
33.	1.000	.849	·· . 454	.501	.127	.052	
34.	.849	1.000	430	.438	.097	.090	
35.	454	430	1.000	537	054	104	
36.	₄ 501	.438	··· .537	1.000	.189	.187	
37.	.127	.097	 054	.189	1.000	016	
38.	.052	.090	104	.187	016	1.000	

		2	3	4	5	6	7	8
	1					······································		
	- 000	005	216	.489	.360	.333	.403	.365
1.	1.000	095	.316	045	060	.052	067	.031
2.	095	1.000	.110	.561	.280	.382	.531	.500
3.	.316	.110	1.000	1.000	.601	.794	.7 3 3	.524
4.	.489	045	.561	.601	1.000	.525	.488	.519
5.	.360	060	.280		.525	1.000	.596	.536
6.	.333	.052	.382	.794	.488	.596	1.000	.629
7.	.403	 067	.531	.733	.519	.536	.629	1.000
8.	.365	.031	.500	.524	.212	.258	.327	.162
9.	.421	063	.242	.393	.401	.502	.395	.331
10.	.182	.126	.467	.486	.421	.398	.582	.458
11.	.417	091	.478	.598	.421	.433	.418	.433
12.	.309	.104	.306	.502		.694	.693	.515
13.	.400	089	.415	.786	.593	.445	.395	.387
14.	.292	.035	.228	.544	.429	.234	.184	.102
15.	.388	.100	.175	.245	.041	.171	.140	044
16.	.268	134	.144	.336	.110	.217	.264	.064
17.	.353	064	.227	.432	.224	.119	.100	.032
18.	.284	090	.044	.056	 035	.211	.260	.075
19.	.452	175	.263	.438	.179	.303	.220	.154
20.	.224	019	.219	.260	.094		189	154
21.	259	.542	188	331	234	257	.380	.283
22.	.213	.148	.372	.523	.389	.452	.190	.027
23.	.316	162	.151	.312	.196	.108	246	154
24.	2 61	.059	0 78	315	242	328	.200	.041
25.	.061	.015	.372	.515	.103	.303	298	248
26.		066	330	45 2	384	352		.324
27.		.065	.227	.391	.276	.305	.254	060
28.		.005	067	039	.096	.055	04 8	.373
29.		053	.240	.609	.392	.483	.388	.286
30.		128	.199	.488	.308	.335	.273	
31.		102	.201	.546	.283	.379	.349	.348
32.		099	.259	.598	.413	.449	.388	.306
33.		081	.256	.460	.333	.338	.287	.401
34		013	.229	.409	.333	.387	.302	.415
35		.104	379	570	420	466	472	469
36		009	.381	.695	.322	.569	.426	.240
37		127	.039	.257	.062	.106	.164	.188
		.039	100	.087	.154	.081	.047	.050
3 8		. 557						

- 85 TABLE C
(Continued)

	9	10	11	12	12	1 /	4.5	•
			11	12	13	14	15	16
1.	.421	.182	.417	.309	.400	.2 92	.38 8	.268
2.	063	.126	091	.104	089	.035	.100	134
3.	.242	.467	.478	.306	.415	.228	.175	.144
4,	.393	.486	.598	.502	.786	.544	.245	.336
5.	.212	.401	.421	.401	.593	.429	.041	.110
6.	.258	.502	.398	.433	.694	.445	.234	.171
7.	.327	.3 95	.582	.418	.693	.395	.184	.140
8.	.162	.331	.458	.433	.515	.387	.102	044
9.	1.000	.392	.530	.371	.478	.419	.146	.227
10.	.392	1.000	.439	.514	.523	.490	.147	.290
11.	.530	.439	1.000	.481	.633	.359	.126	.318
12.	.371	.514	.481	1.000	.547	.498	.099	.171
13.	.478	.523	.633	.547	1.000	.562	.233	.236
14.	.419	.490	.359	.498	.562	1.000	.208	.116
15.	.146	.147	.126	.0 99	.233	.208	1.000	.217
16.	.227	.290	.318	.171	.236	.116	.217	1.000
17.	.306	.376	.374	.186	.346	.204	.311	.634
18.	.219	.028	.158	034	.085	.058	002	.014
19.	.358	.384	.384	.224	.305	.204	.294	.514
20.	.089	.237	.173	.112	.256	.227	.163	.147
21.	270	273	2 57	229	347	282	101	229
22.	.299	.387	.375	.313	.527	.343	.137	.016
23.	.350	.118	.3 26	.156	.234	.177	.141	.300
24.	2 69	218	1 87	3 27	419	289	125	146
25.	.224	.216	.304	.212	.3 54	.235	.164	.249
26.	228	348	343	372	442	3 96	156	1 53
27.	.315	.149	.222	.343	.290	.312	.390	.138
28.	155	.074	063	084	 075	039	225	05 9
29.	.255	.228	.344	.397	.500	.328	.3 78	.253
30.	.264	.214	.275	.288	.386	.297	.173	.256
31.	.313	.200	.343	.442	.490	.343	.161	.260
32.	.286	.257	.383	.467	.525	.347	.247	.263
33.	.218	.099	.340	.252	.288	.198	.231	.182
34.	.222	.087	.308	.251	.323	.179	.154	.079
35.	381	221	527	 376	532	247	333	2 42
36.	.442	.402	.453	.404	.575	.313	.537	.308
37.	.152	0 78	.153	.033	.237	.148	.242	.199
38.	.073	.047	.104	045	.109	.101	.066	.110

MIA OT 172 (7)

- 86 -

TABLE C (Continued)

	17	18	19	20	21	22	23	24
1.	.353	.284	.452	.224	259	.213	.316	261
2.	064	 090	175	01 9	.054	.148	162	.059
3.	.227	.044	.263	.219	188	.372	.151	0.078
4.	.432	.056	.438	.260	331	.523	.312	315
5.	.224	035	.179	.094	234	. 3 89	.196	2 42
6.	.217	.119	.211	.303	 257	.452	.108	328
7.	.264	.100	.260	.220	189	.380	.190	246
8.	.064	.032	.075	.154	154	.283	. 027	154
9.	.306	.219	.358	.089	270	.299	.350	269
10.	.376	.028	.384	.237	273	.387	.118	218
11.	.374	.158	.384	.173	257	.375	.326	187
12.	.186	034	.224	.112	229	.313	.156	327
13.	.346	.085	.305	.256	347	.527	.234	419
14.	.204	.058	.204	.227	282	.343	.177	2 89
15.	.311	002	.294	.163	101	.137	.141	125
16.	.634	.014	.514	.147	229	.016	.300	146
17.	1.000	.103	.757	.184	337	.107	.299	243
18.	.103	1.000	.308	.216	131	091	.084	025
19.	.757	.308	1.000	.250	264	.002	.309	227
20.	.184	.216	.250	1.000	139	.104	.094	264
21.	337	131	264	139	1.000	3 16	078	.302
22 .	.107	091	.002	.104	316	1.000	.101	244
23.	.299	.084	.309	.094	078	.101	1.000	111
24.	243	245	227	264	.302	244	111	1.000
25.	.302	.148	.357	.111	7د2	.219	.225	271
26.	243	005	239	145	.361	453	108	.279
27.	.248	.242	.308	.133	251	.110	.212	132
28.	.001	046	020	.078	056	021	127	019
29.	.353	.209	.286	.155	407	.357	.138	248
30.	.346	.210	.238	.135	277	.219	.187	115
31.	.297	.155	.293	.112	341	.267	.193	241
32.	.402	.202	.336	.173	325	.296	.233	288
33.	.353	.266	.386	.297	222	.128	.218	237
34.	.234	.202	.234	.263	164	.185	.196	210
35 .	288	218	406	326	.205	269	311	.311
36.	.488	.115	.469	.264	407	.564	.327	
37.	.142	.003	.142	.116	101			
38.	.069	.085	.045	.053	159		.015	137

- 87 TABLE C
(Continued)

	25	26	27	28	2 9	30	31	32
1.	.061	235	.697	338	.517	.489	.463	.517
2.	.015	066	.065	.005	055	128	102	099
3.	.372	330	.227	067	.240	.199	.201	.259
4.	.515	452	.391	039	.609	.488	.546	.598
5.	.103	384	.276	.096	.392	.308	.283	.413
6.	.303	352	.305	.055	.483	.335	.379	.449
7.	.200	298	.254	048	.388	.273	.349	.38 8
8.	.041	248	.324	060	.373	.286	.348	.306
9.	.224	~.228	.315	-,155	.255	.264	.313	.286
10.	.216	348	.149	.074	.228	.214	.200	.257
11.	.304	343	.222	~. 063	.344	.275	.343	.383
12.	.212	372	.343	084	.397	.2 88	.442	.467
13.	.354	442	.290	075	.500	.386	.490	.525
14.	.235	396	.312	039	.328	.2 97	.343	.347
15.	.164	156	.390	225	.378	. 173	.161	.247
16.	.249	153	.138	059	.253	.256	.260	.263
17.	.302	243	.24 8	.001	.353	.346	.297	.402
1.8.	.148	005	.242	046	.209	.210	.155	.202
19.	.357	239	.308	020	.286	.238	.293	.336
20.	.111	145	.133	.078	.155	. 335	.112	.173
21.	257	.361	251	0 56	407	·· . 277	341	3 25
22.	.219	453	.110	021	.357	.219	.267	.296
23.	.225	108	.212	127	.138	.187	.193	.233
24 (- 。271	.279	132	019	248	115	241	288
25	1.000	310	.167	103	.287	.270	.289	.284
26.	310	1.000	194	.067	312	235	325	 375
27.	.167	194	1.000	251	.467	.390	.345	.405
28.	103	.067	251	1.000	120	153	134	1 42
29.	.287	312	. <i>l</i> .67	120	1.000	.858	.939	.928
30.	.270	 235	.390	153	.858	1.000	.787	.773
31.	.289	325	.345	134	.93 9	.787	1.000	.824
32.	.284	-,375	.405	142	.928	.773	.824	1.000
33.	.154	175	.424	.025	.434	. 344	.415	.418
34.	.082	106	.394	042	.354	.305	.412	.372
35.	294	.228	519	.078	484	 375	501	405
36 .	.458	404	.442	060	.<10	.434	.464	.586
37.	.155	011	.263	148	.096	082	.186	.066
38.	.107	061	.202	076	.244	.120	.157	.169

TABLE C (Continued)

	33	34	35	36	37	38	
1.	.633	.557	662	.561	.269	.221	
2.	081	013	.104	009	127	.039	
3.	.256	.229	379	.381	.392	100	
4.	.460	.409	570	.695	.257	.087	
5.	.333	.333	420	.322	.062	.154	
6.	.338	.387	466	.569	.106	.081	
7.	.287	.302	472	.426	.164	.047	
8.	.401	.415	469	.240	.188	.050	
9.	.218	.222	381	.442	.152	.073	
10.	.099	.087	221	.402	078	.047	
11.	.340	.308	•527	.453	.153	.104	
12.	.251	.251	.376	.404	.033	045	
13 .	.288	.323	532	.575	.237	.109	
14.	.198	.179	247	.313	.148	101	
15.	.231	.154	333	.537	.242	.u66	
16.	.182	•079	242	.308	.199	.110	
17.	.353	.234	288	.488	.142	.069	
18.	.26 6	.202	218	.115	.003	.085	
19.	.386	.234	406	.469	.142	.045	
20.	.297	.263	326	.264	.116	.053	
21.	222	164	.205	407	101	159	
22.	.128	.185	269	.564	015	.267	
23.	.218	.196	311	.327	.150	.015	
24.	 237	210	.311	370	150	137	
25.	.154	.082	294	.458	.155	.107	
26.	175	106	.228	404	011	061	
27.	.424	.394	519	.442	.263	.202	
28.	.025	042	.078	060	148	076	
29.	.434	.354	484	.610	.096	.244	
30.	.344	.305	375	.434	.082	.120	
31.	.415	.412	501	.464	.186	.157	
32.	.418	.372	- .405	.586	.066	.169	
33 .		.109	 738	.532	.266	.101	
34.	1.093	1.000	714	.490	.301	.051	
35.	 738	714	1.000	636	326	135	
36.		.490	636	1.000	.154	.179	
37.	.266	.301	326	.154	1.000	.001	
38.	.101	.514	135	.179	.001	1.000	

TABLE D

CORRELATION MATRIX WITH COMMUNALITY
ESTIMATES FOR LOW-CURIOSITY GIRLS

	1	2	3	4	5	6	7	8
1.	1.000	.045	.318	.222	.009	.113	.133	.274
2.	.045	1.000	005	161	215	082	.031	005
3.	.318	005	1.000	.377	.235	.216	.351	.335
4.	.222	161	.377	1.000	.465	.524	.397	.380
5.	.009	215	.235	.465	1.000	.419	.313	.351
6.	.113	0 82	.216	.524	.419	1.000	.358	.364
7.	.133	.031	.351.	.397	。313	.358	1.000	.488
8.	.274	005	.335	.380	.351	. 364	.488	1.000
9.	.158	15 9	.096	.031	.171	,006	.025	.026
10.	049	13 8	.142	.316	.162	.261	.082	.068
11.	.015	220	.258	.482	.367	.385	.467	.476
12.	- .055	183	.291	.4 45	.496	.493	.373	.296
13.	.088	1 65	.284	.555	.464	.419	.378	.321
14.	.015	161	.081	.244	.225	.208	.144	.227
15.	.107	.032	.015	.10 0	.059	.001	003	011
16.	.008	047	008	.102	.087	.043	136	037
17.	.037	042	.010	.066	.060	024	083	039
18.	031	05 8	051	.048	.0 89	018	052	15 9
19.	.114	102	.041	.166	.086	.070	.045	074
20.	.111	 037	.208	.091	.032	.179	.209	.021
21.	099	.327	110	285	142	229	036	009
22.	.156	.010	.271	.376	.264	.293	.329	.289
23.	047	330	015	.087	.049	.010	150	072
24.	035	023	184	259	262	223	181	182
25.	.130	085	.300	.240	.262	.206	.230	.228
26.	.040	.252	180	- .407	 355	204	= .340	294
27.	.578	.078	.309	.161	.083	.154	.159	.210
28.	566	.133	018	071	.087	145	074	088
29.	.263	.236	.150	.150	.056	.047	.128	.109
30.	.243	.268	.157	.195	.123	.039	.080	.178
31.	.281	.2 36	.189	.244	.116	.073	.097	.110
32.	.340	.265	.231	.195	.136	.115	.139	.130
33.	.208	.016	.120	.140	.071	.030	.105	.169
34.	.155	013	.075	.112	.070	014	.015	.070
35.	423	113			215	240	271	- ,409
36.	.278	035	.260	.278	.144	.169	.154	.113
37.	.233		.085	002	.006		.043	
38.	.069	034		.059	.016	.106	.063	.105

- 90 -

TABLE D (Continued)

	9	10	11	12	13	1,4	15	16
1	150	010						
1.	.158	049	.015	0 55	.088	.015	.107	.008
2.	1 59	138	220	183	165	161	.032	047
3.	.096	.142	.258	.291	.284	.081	.015	008
4.	.031	.316	.482	.445	.555	.244	.100	.102
5.	.171	.162	.367	.496	.464	.225	.059	.087
6.	.006	.261	.385	.493	.419	.208	.001	.043
7.	.025	.082	.467	.373	.3 78	.144	003	136
8.	.026	.068	.476	.296	.321	.228	011	037
9.	1.000	.096	.160	.130	.151	.199	.119	.144
10.	.096	1.000	.276	.307	.329	.268	.132	.160
11.	.160	.276	1.000	.518	.512	.301	008	033
12.	.130	•307	.518	1.000	.515	.356	.064	.060
13.	.151	.329	.512	.515	1.000	.237	.187	.171
14.	.199	.268	.301	.356	.237	1.000	.007	.025
15.	.119	.132	008	.054	.187	.007	1.000	.125
16.	.144	.160	··.033	.060	.171	.025	.125	1.000
17.	.169	.197	.041	.063	.135	026	.180	.547
18.	124	.032	130	.130	.016	112	033	.034
19.	.135	.236	.039	.163	.272	.006	.220	.434
20.	.022	.083	.093	.094	.068	.153	037	122
21.	222	333	224	323	288	159	006	
22.	.054	.120	.301	.283	.356	.090	060	2 92
23.	.239	.242	.105	.092	.140	.072	.289	.078
24.	086	129	163	193	260	.022	078	.096
25.	.155	.232	.248	.299	.416	.260	.131	168 .134
26.	086	 273	363	311	525	152	100	
27.	.061	~.0 94	021	.090	.096	.021	.126	183
28.	082	.051	022	009	085	073	123	044
29.	063	015	.037	.015	.084	011	123 153	108
30.	.014	.019	.029	.034	.148	.082	152	.082
31.	.011	.037	001	~.002	.198	.017	068	.077
32 .	003	.005	.044	.039	.089	.008	060	.067
33.	.144	.161	.087	.102	.062	038	.075	.038
34.	.184	.088	.060	.054	.102	005		.054
35.	138	043	255	173	259	121	.031 085	.069
36.	.124	.200	.214	.228	.361	.106		015
37.	.021	057	0.7	049	.097	.206	.127	.088
38.	012	.051	.109	.040	030	.009	.130	019
		- -		•070	030	•009	053	005

TABLE D (Continued)

- 91 -

	17	18	19	20	21	22	23	24
1.	.037	031	.114	.110	099	.156	047	035
2.	042	058	102	037	.327	.010	330	023
3.	.010	051	.041	.208	110	.271	015	134
4.	.066	.048	.166	.091	285	.376	.087	259
5.	.060	.089	.086	.032	142	.264	.049	262
6.	024	018	.070	.179	229	.293	.010	223
7.	083	052	.045	.209	036	.329	150	18)
8.	 039	1 59	074	.021	009	.289	072	182
9.	.16 9	124	.135	.022	222	.054	.239	086
10.	.197	.032	,236	.083	333	.120	.242	129
11.	.041	130	.0 39	.903	224	.301	.105	163
12.	.063	.130	.163	.094	323	.283	.092	193
13.	.135	.016	.272	.068	288	.356	.140	260
14.	026	112	.006	.153	159	.090	.072	.022
15.	.180	033	.220	037	006	060	.289	078
16.	.547	.034	.434	122	292	.078	.096	168
17.	1.000	.091	.642	059	288	.001	.311	327
18.	.091	1.000	.240	109	220	.110	.054	075
19.	.642	.240	1.000	.029	266	.077	.310	209
20.	05 9	109	.029	1.000	.049	.181	151	118
21.	288	220	266	.049	1.000	221	370	.140
22.	.001	.110	.077	.181	·.221	1.000	034	263
23.	.311	.054	.310	151	370	034	1.000	133
24.	327	075	209	118	.140	263	133	1.000
25.	.152	028	.157	.292	332	.313	.234	431
26.	219	 055	269	018	.309	293	281	.217
27.	 035	048	017	.315	.043	.073	235	011
28.	 050	.090	090	035	.301	094	.011	.028
29.	.061	.003	.026	.132	.062	.053	396	•.102
30.	.165	.028	.099	.084	.065	.073	245	182
31.	.071	.071	.073	.044	081	.144	182	1 02
32.	.030	017	.039	.165	.113	.196	428	120
33.	.096	015	.075	036	128	.109	.172	110
34.	.040	.012	.028	045	099	.120	.121	 110
35.	118	038	122	100	.017	173	.049	.156
36.	.116	.041	.191	.114	274	.241	.251	215
37.	.071	0 56	.141	.070	014	154	.201	.027
38.	007	118	045			• 177	• -	.04/

- 92 TABLE D
(Continued)

	25	26	27	28	29	30	31	32
1.	.130	.040	.578	566	.263	.243	.281	.340
2.	085	.252	.078	.133	.236	.268	.236	.265
3.	.300	-,180	.309	018	.156	.157	.189	.231
4.	.240	407	.161	071	.150	.195	.244	.195
5.	.262	355	.083	.087	.056	.123	.116	.136
6.	.206	204	.154	145	.047	.039	.073	.115
7.	.230	340	.159	074	.128	.080	.097	.139
8.	.228	294	.210	088	.109	.178	.110	.130
9.	.155	086	.061	082	063	.014	.011	003
10.	.232	273	094	.051	015	.019	.037	.005
11.	.248	363	021	022	.037	.029	001	.044
12.	.299	311	.090	009	.015	.034	002	.039
13.	.416	525	.096	085	.084	.148	.198	.089
14.	.260	152	.021	073	011	.082	.017	.008
15.	.131	100	.126	123	153	152	068	- .060
16.	.134	183	044	108	.082	.077	.067	.038
17.	.152	219	035	050	.061	.165	.071	.030
18.	028	055	 048	.090	.003	.028	.071	017
19.	.157	269	017	090	.026	.099	.073	.039
20.	.292	018	.315	·· .035	.132	.084	.044	.165
21.	332	.309	.043	.301	.062	.065	081	.113
22.	.313	293	.073	094	.053	.073	.144	.196
23.	.234	281	235	.011	- .396	245	182	428
24.	431	.217	011	.028	102	182	091	120
25.	₽.000	280	.142	122	.047	.134	.118	.088
26.	280	1.000	.120	121	.064	.028	056	.099
27.	.142	.120	1.000	30 9	.234	.226	.246	.350
28.	122	121	3 09	1.000	063	.010	096	060
29.	.047	.064	.234	063	1.000	.621	.496	.600
30.	.134	.028	.226	.010	.621	1.000	.577	.640
31.	.118	056	.246	096	.496	.577	1.000	.541
32 .	.988	.099	.350	060	.600	.640	.541	1.000
33.	.060	138	.059	084	.021	.111	.064	.001
34.	.015	130	.030	074	.047	.098	.080	.016
35 .	124	.013	400	.251	218	274	206	281
36.	.327	180	.161	131	.096	.162	.181	.158
37.	.239	138	.157	176	.006	.198	.064	.096
38.	.030	042	011	148	.002	.037	100	.058

TABLE D (Continued)

	33	34	35	36	37	38	
1.		.155	423	.278	.233	.069	
2.		013	113	035	061	034	
3.		.075	171	.260	.085	001	
4.	.140	.112	305	.278	002	.059	
5.	.071	.070	215	.144	.006	.016	
6.	.030	014	240	.169	130	.106	
7.	.105	.015	271	.154	.043	.063	
8.	.169	.070	409	.113	.108	.105	
9.	.144	.184	138	.124	.021	012	
10.	. 161	.088	043	.200	057		
11.	.087	.060	255	.214	017	.051	
12.	.102	.054	173	.228	049	.109	
13.	.062	.102	259	.361	.097	.040	
14.	038	005	121	.106	.066	030	
15.	.075	.031	085	.127	.130	.009	
16.	.054	.060	015	.088		 053	
17 。	.096	.040	118	.116	019	005	
L8.	015	.012	038	.041	.071	007	
L9.	.075	.028	122		 056	118	
20.	036	045	100	.191	.141	045	
21.	128	099	.017	.114	.070	.165	
22.	.109	.120	173	274	014	044	
23.	.172	.121		.241	154	.081	
4.	110	022	.049	.251	.201	067	
5.	.060	.015	.156	215	.027	010	
6.	138	130	124	.327	.239	.030	
7.	.059	.030	.013	180	138	042	
8.	084		400	.161	.157	011	
9.	.021	 074	.251	131	176	148	
Ó.	.111	.047	218	.096	.006	.002	
1.	.064	.098	274	.162	.198	.037	
2.		.080	206	.181	.064	100	
2. 3.	.001	.016	281	.158	.096	.058	
3. 4.	1.000	.628	191	.212	.042	.201	
4. 5.	.628	1.000	162	.195	043	.139	
	191	162	1.000	30 9	108	.066	
6.	.212	.195	309	1.000	.156	028	
7.	.042	043	108	.156	1.000	032	
B .	.201	.139	.066	028	032	1.000	

TABLE E

MATRIX OF COMMON FACTOR COEFFICIENTS
FOR HIGH CURIOSITY BOYS

(1)	1	2	3	4	5
1.	.498	020	.295	.406	201
2.	004	295	.091	.076	324
3.	.511	067	333	.024	.087
4.	.510	210	159	.277	019
5.	.387	131	3 29	.018	132
6.	.644	235	241	.102	240
7.	.568	304	4 88	.188	238
8.	.504	263	419	.080	.085
9.	.480	.334	044	374	.127
ĵŌ.	.608	.206	219	 290	= .230
11.	.738	.049	330	.013	167
12.	.557	013	34 9	004	125
13.	.705	020	264	.132	282
14.	.457	.011	186	.000	062
15.	.232	.407	.395	.266	3 59
16.	.487	.525	.340	.200 .001	035
17.	.531	.587	.311	172	063
18.	.227	.248	.197	204	078
19.	.459	.550	.402		156
20.	.311	037	.034	223	821
21.	537	080	.256	149	025
22.	.445	177	.001	.377	002
23.	.135	.579	.137	.003	.422
24.	482	 119	.192	143	174
25.	.404	.013	090	.029	274
26.	556	057	.183	336	.353
27.	.425	007	.443	.007	421
28.	120	.025	.070	.459	244
29.	.429	 708	.461	 549	.261
30.	.358	630	. 4 49	 240	783
31.	.450	711		285	032
32.	.456	 696	.441	273	083
33.	.574	.225	.514	037	011
34.	.554	.188	.273	.284	.435
35.	574	133	.259	.325	.452
36.	.740	.104	.032	221	112
37.	.301	.142	.115	112	.199
38.	003	.129	.235	.027	.131
		• 147	.052	25 8	148

TABLE E (Continued)

	6	7	8	9	10
1.	.123	200	031	.015	.044
2.	.483	.204	.365	.316	.188
3.	.250	098	202	011	.248
4.	.224	068	.191	082	.200
5.	142	.255	.141	376	.173
6.	013	. 058	.195	059	076
7.	093	" ()33	.013	119	.074
8.	.057	- ,()44	068	070	184
9.	.009	- , 102	 057	.187	184
10.	.333	- , 179	118	.130	- .175
11.	223	-,075	.010	011	039
12.	15 6	,048	.069	087	179
13.	135	.204	.084	.145	.028
14.	.056	.071	104	.398	202
15.	105	139	.106	003	.088
16.	.112	.184	.135	321	.130
17.	.135	, 080	043	212	.097
18.	.020	.627	046	.175	051
19.	.052	.110	177	131	.052
20.	.541	.063	.315	.150	.066
21.	.107	,205	.167	.016	.099
22.	.201	019	419	045	.151
23.	128	- "051	065	.026	.237
24.	011	166	123	220	038
25.	197	- ,232	020	.138	.376
26.	 253	.081	.106	.174	138
27.	.120	-,228	077	112	041
28.	.025	.097	.477	2 69	172
29.	032	.069	02 9	 053	172 -009
30.	179	.039	03 0	101	080
31.	130	-,029	.012	013	
32.	.010	030	049	.044	 020
33.	002	•··.044	.121	012	.070
34.	025	.015	.109	.012	391
35.	.441	······································	283	013	378
36.	028	012	 283		234
37.	353	043	.089	.037	059
38.	.005	646 646	.497	.532	.192
- -	. 303	~ .070	· + 7/	.001	.010

TABLE F

MATRIX OF COMMON FACTOR COEFFICIENTS
FOR LOW-CURIOSITY BOYS

	1	2	3	4	5
1.	.540	 336	 355	.236	187
2.	005	.002	051	.354	211
3.	.531	.080	.067	.065	401
4.	.754	.249	.244	040	 073
5.	.627	, 332	.282	.073	025
6.	.906	.255	.222	 038	 047
7.	.673	.397	.215	.102	.052
8.	.544	.419	.042	.368	100
9.	.737	.032	1 59	191	1 56
10.	.815	.004	.035	103	192
11.	.836	.359	.060	.024	139
12.	.651	.238	.245	.006	050
13.	.857	.191	035	038	.007
14.	.763	.040	.090	 098	024
15 .	.302	 297	.071	.295	23 6
16.	.654	 097	47 0	102	.144
17.	.517	2 26	523	342	.103
18.	.254	210	372	274	.022
19.	.762	176	4 98	264	.032
20.	.297	.095	215	.041	.242
21.	631	007	094	.096	.121
22.	•557	.289	-,023	26 8	141
23.	.290	303	 075	320	.118
24.	589	004	009	.0 59	299
25.	.507	001	.033	~.207	0 38
26.	616	323	040	.097	314
27.	.472	370	320	.290	294
28.	2 53	.276	.490	201	.343
29.	.340	536	.541	026	.026
	362	586	.503	019	046
31.	.477	520	.522	1 57	.022
32.	.469	- .557	.432	.0 59	.011
33.	.561	178	064	.467	.472
34.	.546	156	051	.490	.475
35.	564	040	,223	284	247
36.	.847	216	082	008	.023
37.	.203	089	.108	.179	.159
38.	.135	.023	127	.298	201

TABLE F (Continued)

	6	7	8	9	10
1	.188	.094	103	.218	073
1.	561	038	165	 379	.275
2.	094	277	015	.075	.991
3. 4.	135	011	.055	.053	.144
5 .	183	054	202	.082	346
	128	.161	.016	.030	003
6. 7.	040	.173	.161	.011	079
8.	.008	.038	.085	.069	.138
	.098	083	110	061	.210
9.	093	.029	.087	157	.181
10.	.049	054	055	1 75	012
11.	059	104	215	.091	020
12.		.074	.037	019	.025
13.	.165 .067	236	007	067	.269
14.	.072	427	178	0 05	210
15.	260	.178	012	065	- .156
16.	390	.048	096	102	201
17.	211	.054	.356	.184	.223
18.	211 218	063	.027	018	148
19.	.219	.42 8	.386	203	040
20.	031	072	046	188	.273
21.	.064	.224	.004	.204	109
22.		382	302	105	103
23.	.230	123	134	.154	061
24.	269 .545	 079	078	046	.155
25.	135	078	008	150	125
26.	.114	052	065	.251	.023
27. 28.	254	330	.020	088	175
	107	.134	.093	.068	.109
29.	019	.134	.158	184	.064
30.	085	029	.083	011	135
31.	.024	.047	.147	.036	072
32 .	042	.045	160	.185	016
33.	057	.040	093	.098	.084
34.	.011	.226	099	.160	036
35.		037	.090	117	.048
36.	.038	.314	669	 260	.186
37.	.131	.333	.200	 559	 386
38.	.252	, 555	•		

TABLE G

MATRIX OF COMMON FACTOR COEFFICIENTS
FOR HIGH-CURIOSITY GIRLS

	1	2	3	4	5	
1.	.701	.409	.167	098	231	
2.	058	- .2 5 8	.108	.032	392	
3.	.532	 30?	007	 245	117	
4.	.875	220	017	 038	.042	
5.	.597	313	.208	 026	.181	
6.	.703	325	.152	047	.088	
7.	.673	315	.142	188	.022	
8.	.568	284	.487	15 9	.009	
9.	.542	016	234	111	178	
10.	.541	462	2 89	0 95	.027	
11.	.676	182	113	2 18	.022	
12.	.604	307	.045	.064	062	
13.	.800	331	- 008	028	.015	
14.	.572	319	023	.042	104	
15.	.386	.240	121	044	051	
16.	.391	.231	5 87	055	.087	
17.	.541	.238	- .568	091	.140	
18.	.216	.352	001	051	.174	
19.	.541	.303	5 31	231	.135	
20.	.339	.046	024	274	.195	
21.	461	.029	.210	1 92	127	
22.	.509	449	.054	.146	166	
23.	.363	.199	 272	186	0 84	
24.	430	.080	.116	.033	 097	
25.	.445	042	 369	.056	069	
26.	510	.309	.141	150	.074	
27.	.562	.330	.180	002	378	
28.	125	234	030	129	.658	
29.	.755	.210	.135	.574	.079	
30.	.624	.258	.081	.541	.132	
31.	.6 98	.215	. 128	. 514	.151	
32.	.742	.173	.056	.504	.132	
33.	.629	.448	.360	334	.223	
34.	.582	.372	.478	345	.174	
35.	745	259	 237	.300	004	
36.	.795	.090	128	002	124	
37.	.266	.279	.068	282	195	
38.	.188	.098	.020	.239	134	
50.	. 200	••••				

TABLE G (Continued)

		7	8	9	10	11
1.	060	054	.173	150	.050	.099
2.	.433	.374	.159	158	.033	187
3.	082	.439	.018	.264	.140	.001
4.	061	.059	195	.132	.028	.072
5.	087	147	053	274	.157	.155
6.	.131	.068	090	.085	123	.162
7.	237	.060	059	.120	013	.258
8.	192	.118	016	064	068	.171
9.	220	281	.356	006	.038	 225
10.	.038	.180	.227	235	066	.043
11.	291	 045	.125	.066	.220	.011
12.	148	.017	.104	269	176	345
13.	111	174	0 80	.073	092	.079
14.	043	201	.149	177	341	037
15.	.256	.198	243	088	171	.173
16.	0 83	.065	209	229	.059	.153
17.	.055	.171	087	251	.066	.080
18	008	.045	.€49	.381	154	.124
Ĺy.	010	.159	.115	092	035	.069
20.	.324	.050	.125	.169	404	.205
21.	269	.211	099	.007	.016	.080
22.	.273	 165	031	.126	.358	014
23.	303	180	028	.033	.262	172
24.	301	. 450	.081	014	.293	.178
25.	.116	.050	140	.559	.016	184
26.	1 59	.044	010	023	018	.193
27.	.031	.023	.200	167	110	.064
28.	.309	.046	043	139	.051	.001
29.	.018	.127	067	.015	028	.061
30.	167	3.57	.001	.028	033	.016
31.	- ,135	.038	082	.033	061	128
32.	073	.100	024	014	030	
3 3.	.209	.045	012	082	.144	= .041 201
34.	.177	.008	037	067	.145	251
35.	040	.040	.045	071	092	.051
36.	.302	.027	10 9	.093	.166	092
37.	113	290	441	.093	302	.043
38.	.326	406	.180	026	.345	.503
				-	1473	.505

FOR LOW-CURIOSITY GIRLS

على يونك						
	1	2	3	4	5	
1.	.367	.459	.313	523	068	
2.	158	.499	.074	.204	.135	
3.	.514	.189	107	0 95	051	
4.	.731	022	161	.093	.051	
5.	.583	113	240	.185	.018	
6.	.577	037	326	.039	057	
7.	.549	.127	 405	- .034	.001	
8.	.555	.168	3 35	1 59	.088	
9.	.248	174	.206	23 5	.054	
10.	.410	320	.054	.149	.069	
11.	.617	1 75	 387	00 8	.058	
12.	.631	232	2 84	.119	024	
13.	.737	176	078	.121	079	
14.	.356	127	211	072	190	
15.	.142	206	.273	23 5	179	
16.	.210	210	.524	.265	014	
17.	.254	252	.652	.261	061	
18.	.033	113	.192	.311	.040	
19.	.329	270	.581	.211	148	
20.	.232	.213	152	123	286	
21.	431	.412	266	.033	.014	
22.	.518	.031	160	.092	.132	
23.	.154	671	.316	210	009	
24.	434	.061	153	234	.029	
25.	.560	112	.084	042	279	
26.	527	.392	.050	161	082	
27.	.302	.525	.101	 385	252	
28.	21	151	 265	.556	.173	
29.	.238	.651	.164	.327	.052	
30.	.320	.610	.267	.334	.085	
31.	.322	.529	.257	.279	.047	
32.	.309	.713	.146	.251	022	
33.	.269	017	.219	300	.721	
34.	.210	009	.206	254	.750	
35.	483	334	107	.228	030	
36.	.500	001	.236	149	.028	
37.	.136	.074	.265	289	330	
38.	.088	.027	098	1 85	.289	

- 101 TABLE H
(Continued)

	6	7	8	9	10	11
1.	.159	.154	023	007	.083	.024
2.	248	.105	.230	.155	24 8	081
3.	126	.010	.181	176	 043	.068
4.	.083	.151	088	002	.031	177
5.	064	.126	152	.051	041	.130
6.	.294	.109	.033	.161	130	150
7.	134	.144	.163	.113	.160	013
8.	203	.13 8	 057	.279	.242	.129
9.	064	252	246	.092	328	.496
10.	.066	 257	0 89	056	259	412
11.	054	066	151	.149	.074	.037
12.	.119	.041	116	016	173	0 89
13.	099	.0 89	 092	012	.014	 073
14.	.015	388	420	.013	187	020
15.	305	.229	.081	.222	 326	3 35
16.	.187	 067	009	.389	.025	.108
17.	026	040	.092	.354	.048	.0/.4
18.	.282	.454	.051	435	.030	 097
19.	.026	.099	.0 88	.172	.049	181
20.	.060	434	.428	128	174	164
21.	445	.072	.096	.244	119	096
22.	.215	.083	.358	134	.010	.237
2 3.	228	,013	03 6	1 88	001	.003
24.	.118	.002	4 75	070	.048	311
25.	157	2 89	.291	223	003	.182
26.	.221	024	032	.033	 359	.053
27.	.092	.136	.056	.004	176	065
28.	462	054	.039	137	187	03 3
29.	.067	153	13 6	.002	.064	028
30.	142	210	192	 058	.105	010
31.	.004	014	2 08	- .222	.044	.008
32.	.027	1 26	067	009	= .035	048
33.	125	050	.083	042	019	104
34.	056	064	026	112	 903	012
35.	.063	307	.126	161	.171	057
36.	104	.024	.069	 358	1 58	037
37.	449	091	140	175	.4 52	154
38.	.254	426	.277	.258	.291	270