Deep Learning

Andrew Ng

Thanks to Adam Coates, Kai Yu, Tong Zhang, Sameep Tandon, Swati Dube, Brody Huval, Tao Wang,

Virtuous circle of Al

Data and machine learning

Virtuous circle of Al

Deep Learning

Adam Coates, Yoshua Bengio, Tom Dean, Jeff Dean, Nando de Freitas, Jeff Hawkins, Geoff Hinton, Quoc Le, Yann LeCun, Honglak Lee, Tommy Poggio, Ruslan Salakhutdinov, Yoram Singer, Josh Tenenbaum, Kai Yu, Tong Zhang,

Things we want to do with data

Images Label image **Audio** Speech recognition The New Hork Eimes **Text** Web search

STanford Al Robot (STAIR)

Computer vision: Identify coffee mug

Computer vision: Identify coffee mug

Why is computer vision hard?

The camera sees :											
194	210	201	212	199	213	215	195	178	158	182	209
180	189	190	221	209	205	191	167	147	115	129	163
114	126	140	188	176	165	152	140	170	106	78	88
87	103	115	154	143	142	149	153	173	101	57	57
102	112	106	131	122	138	152	147	128	84	58	66
94	95	79	104	105	124	129	113	107	87	69	67
68	71	69	98	89	92	98	95	89	88	76	67
41	56	68	99	63	45	60	82	58	76	7.5	65
20	43	69	75	56	41	51	73	55	70	63	44
50	50	57	69	75	75	73	74	53	68	59	37
72	59	53	66	84	92	84	74	57	72	63	42
67	61	58	65	75	78	76	73	59	75	69	50

Computer vision

Learning algorithm

Computer vision

Features for vision

Features for machine learning

Why is speech recognition hard?

Microphone recording:

Features for audio

Spectrogram

MFCC

Flux

Features for text

```
S SEM (<PAST SEES1> ev1 (NAME j1 "Jill") (THE d1: (DOG1 d1)))
 VAR ev1
NP SEM (NAME j1 "Jill")
   VAR il
        VP SEM (\lambda \propto (\langle PAST | SEES1 \rangle ev1 \propto (THE d1 : (DOG1 d1)))
                                   NP SEM (THE d1: (DOG1 d1))
                                      VAR d1
NAME SEM "Jill"
                                              CNP SEM DOG1
      VAR j1
             V SEM <PAST SEES1>
                                                 N SEM DOG1
               VAR ev1
                               DET SEM THE
                                                   VAR d1
                                    VAR t1
```

```
<DOCID> wsj94 008.0212 </DOCID>
<DOCNO> 940413-0062. 
        Who's News:
  Burns Fry Ltd. </HL>
<DD> 04/13/94 </DD>
     WALL STREET JOURNAL (J), PAGE B10 </SO>
        MER </CO>
<IN> SECURITIES (SCR) </IN>
<TXT>
BURNS FRY Ltd.
                    (Toronto) --
named executive vice president and director of
brokerage firm. Mr. Wright resigned as presiden
Canada Inc., a unit of Merrill Lynch & Co., to
Kassirer, 48, who left Burns Fry last month. A
spokeswoman said it hasn't named a successor to
expected to begin his new position by the end o
</TXT>
</DOC>
```


Parser

Named entity

Stemming

The idea:

Most perception (input processing) in the brain may be due to one learning algorithm.

The idea:

Build learning algorithms that mimic the brain.

Most of human intelligence may be due to one learning algorithm.

The "one learning algorithm" hypothesis

The "one learning algorithm" hypothesis

Neurons in the brain

Neural Network (Deep Learning)

Deep Learning trends

Now

0-2 years Tagged data 3-5 years
Tagged & untagged data

Learning from tagged data (supervised)

Coffee mug

Coffee mug

Coffee mug

Coffee mug

Coffee mug

Coffee mug

Testing: What is this?

Bigger is better

Google Brain

Al as a computer systems problem

10 million connections

1 billion connections

Speech recognition, and more....

[with Vincent Vanhoucke]

Deep Learning applications

Speech recognition

Image Search

Ads; Web search

Tagged vs. untagged data

Coffee mug

Coffee mug

Coffee mug

Coffee mug

Coffee mug

Coffee mug

Untagged data (unsupervised learning)

Unknown

How does the brain process images?

Visual cortex looks for lines/edges.

Neuron #1 of visual cortex (model)

Neuron #2 of visual cortex (model)

Start with Image patches

152	147	128	84
129	113	107	87
98	95	89	88
60	82	58	76
51	73	55	70

Sparse Coding

Input: Images patches $x^{(1)}$, $x^{(2)}$, ... (each in $R^{14 \times 14}$)

Learn: Set of matrices $\phi_1, \phi_2, ..., \phi_{64}$ (also R^{14 x 14}), so that each input x can be approximately written as a weighted sum of the ϕ_j 's:

$$x \approx \sum_{j=1}^{64} a_j \phi_j$$

s.t. a_j's are mostly zero ("sparse")

Sparse Coding

Comparing to Biology

Brain (visual cortex)

Learning algorithm

Comparing to Biology

Comparing to Biology

Learning from YouTube videos

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Face neuron

[Le et al., 2012]

Cat neuron

[Le et al., 2012]

Deep Learning

16,000 CPUs is expensive

GPUs (Graphics Processor Unit)

[Adam Coates, Bryan Catanzaro, et al.]

Building huge neural networks

10 million connections

1 billion connections

10 billion connections

Learning from tagged data

Highway perception

Deep Learning trends

0-2 years
Tagged data

3-5 years
Tagged & untagged data

Untagged data and AI (unsupervised learning)

Computer vision (~6 years)

Deep Learning

Speech recognition (next 2-3 years?)

Deep Learning

Al will transform the internet

Speech recognition

Baidu Cool Box

Image queries

Clothing

Bags

Fruits & Vegetables

Baidu Eye

"Smart glasses" designs

Extending human perception

Extending human perception

Comparison to "smart glasses" designs

From Control to Perception

Stanford's PR-1 robot

Al will transform the internet

Technology areas with potential for paradigm shift:

- Computer vision
- Speech recognition & speech synthesis
- Language understanding: Machine translation;
 Web search; Dialog systems;
- Advertising
- Personalization/recommendation systems
- Robotics

All this is hard: scalability, algorithms.

Virtuous circle of Al

The Al mission

Thank you.

Thanks to Adam Coates, Yu Kai, Zhang Tong, Sameep Tandon, Swati Dube, Brody Huval, Tao Wang,

Tutorial: deeplearning.stanford.edu

END END END

Discussion: Engineering vs. Data

Discussion: Engineering vs. Data

Correctly found mug

Correctly found mug

