Apache Pig for Data Science

Casey Stella

May 12, 2014

Table of Contents

Preliminaries

Apache Pig

Pig in the Data Science Toolbag Understanding Your Data Machine Learning with Pig Applying Models with Pig

Unstructured Data Analysis with Pig

Questions & Bibliography

Introduction

- I'm a Principal Architect at Hortonworks
- I work primarily doing Data Science in the Hadoop Ecosystem
- Prior to this, I've spent my time and had a lot of fun
 - Doing data mining on medical data at Explorys using the Hadoop ecosystem
 - Doing signal processing on seismic data at Ion Geophysical using MapReduce
 - Being a graduate student in the Math department at Texas A&M in algorithmic complexity theory
- I'm going to talk about Apache Pig's role for doing scalable data science.

Pig is a high level scripting language for operating on large datasets inside Hadoop

Transforms high level data operations into MapReduce/Tez jobs

- Transforms high level data operations into MapReduce/Tez jobs
- Optimizes such that the minimal number of MapReduce/Tez jobs need be run

- Transforms high level data operations into MapReduce/Tez jobs
- Optimizes such that the minimal number of MapReduce/Tez jobs need be run
- Familiar relational primitives available

- Transforms high level data operations into MapReduce/Tez jobs
- Optimizes such that the minimal number of MapReduce/Tez jobs need be run
- Familiar relational primitives available
- Extensible via User Defined Functions and Loaders for customized data processing and formats

Apache Pig: An Familiar Example

Understanding Data

"80% of the work in any data project is in cleaning the data."

— D.J. Patel in *Data Jujitsu*

Understanding Data

A core pre-requisite to analyzing data is understanding data's shape and distribution. This requires (among other things):

- · Computing distribution statistics on data
- Sampling data

An Apache Incubating project called datafu¹ provides some of these tooling in the form of Pig UDFs:

• Computing quantiles of data

¹http://datafu.incubator.apache.org/

- Computing quantiles of data
- Sampling
 - Bernoulli sampling by probability (built into pig)

¹http://datafu.incubator.apache.org/

- Computing quantiles of data
- Sampling
 - Bernoulli sampling by probability (built into pig)
 - Simple Random Sample

¹http://datafu.incubator.apache.org/

- Computing quantiles of data
- Sampling
 - Bernoulli sampling by probability (built into pig)
 - Simple Random Sample
 - Reservoir sampling

¹http://datafu.incubator.apache.org/

- Computing quantiles of data
- Sampling
 - Bernoulli sampling by probability (built into pig)
 - Simple Random Sample
 - Reservoir sampling
 - Weighted sampling without replacement

¹http://datafu.incubator.apache.org/

- Computing quantiles of data
- Sampling
 - Bernoulli sampling by probability (built into pig)
 - Simple Random Sample
 - Reservoir sampling
 - Weighted sampling without replacement
 - Random Sample with replacement

¹http://datafu.incubator.apache.org/

What is Machine Learning?

Machine learning is the study of systems that can learn from data. The general tasks fall into one of two categories:

What is Machine Learning?

Machine learning is the study of systems that can learn from data. The general tasks fall into one of two categories:

- Unsupervised Learning
 - Clustering
 - Outlier detection
 - Market Basket Analysis

What is Machine Learning?

Machine learning is the study of systems that can learn from data. The general tasks fall into one of two categories:

- Unsupervised Learning
 - Clustering
 - Outlier detection
 - Market Basket Analysis
- Supervised Learning
 - Classification
 - Regression
 - Recommendation

Building Machine Learning Models with Pig

Machine Learning at scale in Hadoop generally falls into two categories:

- Build one large model on all (or almost all) of the data
- Sample the large dataset and build the model based on that sample

Building Machine Learning Models with Pig

Machine Learning at scale in Hadoop generally falls into two categories:

- Build one large model on all (or almost all) of the data
- Sample the large dataset and build the model based on that sample

Pig can assist in intelligently sampling down the large data into a training set. You can then use your favorite ML algorithm (which can be run on the JVM) to generate a machine learning model.

Applying Models with Pig

Pig shines at batch application of an existing ML model. This generally is of the form:

Train a model out-of-band

Applying Models with Pig

Pig shines at batch application of an existing ML model. This generally is of the form:

- Train a model out-of-band
- Write a UDF in Java or another JVM language which can apply the model to a data point

Applying Models with Pig

Pig shines at batch application of an existing ML model. This generally is of the form:

- Train a model out-of-band
- Write a UDF in Java or another JVM language which can apply the model to a data point
- Call the UDF from a pig script to distribute the application of the model across your data in parallel

What is Natural Language Processing?

- Natural language processing is the field of Computer Science, Linguistics & Math that covers computer understanding and manipulation of human language.
 - Historically, linguists hand-coded rules to accomplish much analysis
 - Most modern approaches involves using Machine Learning

What is Natural Language Processing?

- Natural language processing is the field of Computer Science, Linguistics & Math that covers computer understanding and manipulation of human language.
 - Historically, linguists hand-coded rules to accomplish much analysis
 - Most modern approaches involves using Machine Learning
- Mature field with many useful libraries on the JVM
 - Apache OpenNLP
 - Stanford CoreNLP
 - MALLET

Natural Language Processing with Large Data

- Generally low-volume, complex analysis
 - Big companies often don't have a ton of natural language data
 - Dropped previously because they were unable to analyze

Natural Language Processing with Large Data

- Generally low-volume, complex analysis
 - Big companies often don't have a ton of natural language data
 - o Dropped previously because they were unable to analyze
- Sometimes high-volume, complex analysis
 - Search Engines
 - Social media content analysis

Natural Language Processing with Large Data

- Generally low-volume, complex analysis
 - Big companies often don't have a ton of natural language data
 - Dropped previously because they were unable to analyze
- Sometimes high-volume, complex analysis
 - Search Engines
 - Social media content analysis
- Typically many small-data problems in parallel
 - Often requires only the context of a single document
 - Ideal for encapsulating as Pig UDFs

Natural Language Processing: Demo

- Stanford CoreNLP integrated the work of Richard Socher, et al [2] using recursive deep neural networks to predict sentiment of movie reviews.
- There is a large set of IMDB movie reviews used to analyze sentiment analysis [1].
- Let's look at how to encapsulate this into a Pig UDF and run on some movie review data.

Results

- Executing on a sample of size 1022 Positive and Negative documents.
- Overall Accuracy of 77.2%

Actual	
ACLUA	

Predicted

	Positive	Negative
Positive	367	114
Negative	119	422
Total	486	536

481 541

Total

Questions

Thanks for your attention! Questions?

- Code & scripts for this talk available on my github presentation page.²
- Find me at http://caseystella.com
- Twitter handle: @casey_stella
- Email address: cstella@hortonworks.com

²http://github.com/cestella/presentations/

Bibliography

- [1] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. Learning word vectors for sentiment analysis. In *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies*, pages 142–150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics.
- [2] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In *Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing*, pages 1631–1642, Stroudsburg, PA, October 2013. Association for Computational Linguistics.