KOSPI 방향 예측에 대한 랜덤포레스트의 군집화 변수중요도 분석

서강대학교 조정효

연구동기 및 연구목표

- 최근 금융 분야에서 인공지능 활용에 대한 관심도가 높아지며, 주가지수를 예측하는 기계학습 모형 개발 연구가 많이 진행되고 있음. 예측 정확도를 높이는 모형 개발 및 변수 설정이 연구의 주를 이 룬 반면 **예측변수를 해석하는 방법에 대한 연구**는 비교적 적게 이루어짐.
- 기존의 전통적 통계 모형과 비교해 기계학습 모형에 대해 'black box' 문제가 제기되어 왔으나, 변수중요도에 대한 연구 등 설명가능한 AI에 대한 관심이 증가함. 변수중요도는 기계학습 모형의 훈련과 예측 과정에 예측변수들이 얼마나 기여했는지를 측정하는 방법.
- 금융시장 예측의 변수중요도 연구는 많이 이루어지지 않았으며, 특히 변수 간 상관관계가 있을 때 중요도가 하향 편향되는 등 기존의 변수중요도 기법의 한계점을 고려하지 않은 방법론을 사용한 것이 대부분임.
- 본 연구는 변수중요도 측정 방법 중 랜덤 포레스트(Breiman, 2001)를 이용한 순열중요도 (permutation importance) 기법을 기반으로 한 "군집화 순열 중요도"(De Prado, 2020)를 통해 KOSPI 방향 예측에 대한 변수중요도를 도출하고자 함.
- 예측변수로는 과거 가격 추세, 변동성, 거래량, 환율, 상품가격 등을 사용하여 서로 다른 기간의 주가지수 방향에 대한 변수 중요도를 비교하고, 이를 통해 과거 시장 정보를 이용하여 향후 주가 지수의 움직임을 예측할 수 있는지, 그리고 어떤 변수가 예측에 기여를 많이 하며, 또한 예측 기간에 따라 변수의 중요도가 어떻게 달라지는지를 알아보고자 함.

선행 연구

- 과거 가격 및 시장정보를 통해 금융시장 예측
 - 효율적 시장 가설(Efficient Market Hypothesis, EMH) (Fama, 1970)에 따르면 과거 가격 및 시장 정보로 주가를 예측하는 것이 불가능하지만, 21세기 이후 EMH를 반박하는 연구들이 다수등장. Jegadeesh and Titman (1993)은 과거 승자였던 주식이 패자의 주식보다 앞으로 6개월-12개월 동안 더 좋은 성과를 보이는 가격의 "momentum" 현상을 언급, Moskowitz et al. (2012)은 주가지수의 과거 가격이 지속성을 보이는 것을 이용해 **과거 시장 정보를 통해 금융시장을 예측할 수 있음**을 보임.
 - 과거 시장 정보를 담은 **기술적 분석 지표**(technical analysis indicator)를 예측변수로 하여 **기계 학습**(machine learning)을 통해 금융 시장을 예측하려는 연구들이 최근 증가하고 있으며, 국내 주가지수를 예측하는 연구들 또한 진행 되어 옴(Kim, 2003; Chong et al., 2017; 이우식, 2017).
 - 특히 Ballings *et al.* (2015), Patel et al. (2015)은 앙상블(ensemble) 방법인 **랜덤포레스트** (Random Forest, 이하 RF)의 성능이 SVM, ANN 등의 다른 기법보다 뛰어남을 보임.

선행 연구

- 기계학습 중요도를 이용한 금융 예측 변수 분석
 - Nti et al (2019): RF 기반 feature selection을 통해 주가예측에 대한 거시경제 변수의 중요도 측정
 - Haq et al. (2021): RF의 순열 중요도(permutation importance)를 이용한 Feature-Ranking 방법으로 주가 추세 예측 (LR, SVM의 feature-selection과 비교)
 - 이재응, 한지형 (2021). Layer-wise Relevance Propagation (LRP)를 이용하여 KOSPI 증감에 대한 기술적 지표 및 거시경제 지표 영향 분석
- 상관관계가 있는 변수에 대한 순열중요도 연구
 - 선형 또는 비선형의 상관관계가 있는 변수의 경우 해당 변수의 순열 중요도가 낮게 편향되어 있음을 밝힘(Strobl et al., 2007; Nicodemus et al., 2010; Gregorutti et al., 2017)
 - 이를 해결하기 위해 조건부 순열 중요도 (Strobl et al., 2008; Debeer and Strobl, 2020), Max MDA (신승범 조형준, 2021), **군집화 피쳐 중요도(Clustered-feature importance)** (De Prado, 2020) 등이 제안됨.

분석 자료

- 샘플기간
 - 훈련기간(2012년-2018년) 1665개, 테스트기간(2019년-2021년) 721개, 일별 데이터
- 목표변수(y)
 - KOSPI 일별 수정종가 기준으로 h 거래일 후 대비 증감 여부로 하며, 증가하였으면 1, 같거나 감소하였으면 0으로 하는 이중-클래스 라벨(binary-class label)로 설정.
 - 이 때 h에 대해 각각 h = 1,5,20일 때의 결과를 도출하여 서로 다른 기간의 가격 방향에 대한 예측력과 변수중요도를 비교

•
$$y_t = \begin{cases} 1, & \text{if } X_{t+h} - X_t > 0 \\ 0, & \text{if } X_{t+h} - X_t \le 0 \end{cases}$$
 $h = 1, 5, 20$

분석 자료

- 예측변수(X) (총 28개)
 - 기술적 분석 지표 (18개): 과거 가격(시가, 저가, 고가, 종가), 거래량을 이용
 - 기술적 지표는 차트 분석가들이 주로 이용하는 지표로 과거 모멘텀 및 추세, 거래량, 변동성 등의 정보를 담고 있음 (단, 거래량지표의 경우 거래량 자체보다는 추세를 나타냄)
 - 각 기술적 지표의 계산 과정의 과거 기간(look-back window)은 이전 연구에서 주로 쓰이는 것을 사용하며, 그것의 두배 기간으로 계산한 지표를 추가하여 각 기술적 지표를 두 개씩으로 함 (10개x2)
 - 투자주체별 수급 (3개)
 - KOSPI 종목의 개인, 기관, 외국인의 순매수량
 - 이상 값을 filtering하기 위해 5일 이동 평균값 사용
 - 환율 및 상품가격 (7개)
 - 환율(원 대비 달러, 유로, 엔, 위안), 상품가격(원유(WTI), 금, 천연가스 선물)
 - 추세를 제거하기 위해 변화율 사용
 - 모든 변수는 ADF 검정을 통해 시계열의 안정성(stationarity)이 확보된 변수
 - 훈련데이터의 분포를 이용해 변수의 크기를 표준화 스케일링("standard scaling") 하여 모형이 효과적으로 학습하도록 함

분석 자료

• 예측변수(X)

[표 2] 예측 모형에 사용되는 예측 변수

구 분	기술적지표-추세	기술적 지표- 거래량	기술적 지표- 변동성	주체별 순매수량	환율	상품가 격
변 수	RSI (14), RSI (28), WR (14), WR (28), DPO (20), DPO (40), MACD (26,12), MACD (52,24), MACD Diff (26,12,9), MACD Diff (52,24,18)	FI(13), FI(26), MFI(14), MFI(28)	ATR(14), ATR(28), STD (20), STD(40)		USD/KRW, EUR/KRW, JPY/KRW, CNY/KRW	gold, crude oil, natural gas

주: 주체별 순매수량은 5일 이동평균을, 환율과 상품가격은 일일변화율을 이용했다.

분석 모형 - 랜덤 포레스트

- Random Forest Classifier (Breiman, 2001)
 - RF는 다수의 훈련된 의사결정나무(decision tree)를 사용하는 앙상블(ensemble) 모형으로 부트 스트랩(bootstrap)을 통해 무작위로 샘플을 여러 번 추출해 결과를 집계하고, 다수결로 예측치 를 도출하는 모형. 개별 의사결정나무 모형의 불안정성 및 과적합(overfitting) 문제를 보완하며, OOS의 예측 성능을 높임.
- 모형 최적화 진행
 - 훈련 기간에 대해 GridSearch(hyperparameter 후보군을 설정 한 뒤 정확도를 가장 높이는 parameter 조합을 찾는 알고리즘)를 통한 hyperparmeter tuning 진행
 - 각 목표값(1일, 5일 20일 KOSPI방향)에 따라 최적의 hyperparameter 도출

[표 3] 하이퍼파라미터 튜닝 결과

	Hyperparameters	
	Number of trees	Maximum depth
	[20, 50, 100]	[3, 9, 15]
y_1	100	3
y_5	100	3
$\boldsymbol{y_{20}}$	50	15

분석 모형 - 군집화 순열 중요도

- 순열 중요도(Permutation importance)
 - 학습된 기계학습 모형을 통해 중요도를 구하는 방법으로 특정한 변수 값(j)을 무작위로 재배열하여 정보를 제거 한 후 테스트 데이터에 대한 예측성능(s_j)이 재배열 전(s)에 비해 얼만큼 감소하는지를 측정. 이 때 기준의 되는 성능은 정확도, F1, AUC 등 분류기 모형의 성능을 나타내는 어느 지표라도 사용 가능하며, 순열(permutation)을 여러 번(K) 반복해 평균을 구하여 해당 변수의 중요도를 측정.
 - $PI_j = s \frac{1}{K} \sum_{k=1}^{K} s_{k,j}$
 - vs. MDI(Mean decrease impurity)
 - MDI는 RF 관련 논문에서 주로 쓰이는 중요도 측정 방식으로 학습과정에서 중요도를 계산하기 때문에 인-샘플 편향(in-sample bias)이 존재하며, 변수의 cardinality가 중요도에 영향을 미치는 한계점이존재.

분석 모형 - 군집화 순열 중요도

- 군집화 순열 중요도 (Clustered permutation importance)
 - 변수 간의 선형 및 비선형 상관관계가 존재할 경우 해당 변수의 중요도가 낮게 나오는 문제점 (Strobl, 2007) 존재. 이를 해결하기 위한 방안으로 Clustered-feature importance(De Prado, 2020)를 이용.
 - Clustered-feature importance란 예측변수를 미리 군집화(cluster)하여 중요도를 계산하는 방법으로 학습된 모형이 해당 변수 군집(feature cluster)에 대해 무작위 재배열하여 예측한 결과를 바탕으로 변수군집에 대한 중요도를 계산하여 예측변수 간의 상관관계를 사전에 차단할 수 있음.
- 계층적 군집화(Hierarchical Clustering)
 - 예측변수의 군집화 방법으로 계층적 군집화 사용. 계층적 군집화는 변수 간의 거리가 가장 가까운 두 변수를 선택한 후 하나의 군집으로 묶고, 또 거리가 가까운 두 군집을 하나로 합치며 군집 개수를 줄여 가는 방법.
 - 본 연구에서는 변수 혹은 군집 간 거리를 Spearman 상관계수로 계산하며, 거리 행렬(distance matrix)을 이용해 군집하는 연결 기준(linkage criterion)으로 분산을 최소화하는 "Wald's criterion"을 사용함.
 - 최종 군집을 결정하는 임계점으로는 1.0을 선택 (임계점을 달리하여 원하는 군집 개수를 조정할 수 있음.)

분석 결과 - 예측성능 비교

- 이진 분류 성능 측도
 - 정확도(accuracy), F1-점수, ROC-AUC 점수 세 가지를 이용하여 성능을 측정. 모두 0과 1사이의 값으로 1에 가까울수록 예측력이 높음을 의미.

		Actual	
		Positive	Negative
Predicted	Positive	TP	FP
	Negative	FN	TN

•
$$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

•
$$F1 - score = 2 \cdot \frac{precision \cdot recall}{precision + recall} (precision = \frac{TP}{TP + FP}, recall = \frac{TP}{TP + FN})$$

- ROC AUC score = ROC(Receiver operating characteristic) 곡선의 아래 면적
 - ROC 곡선은 $TPR(\frac{TP}{TP+FN})$ 와 $FPR(\frac{FP}{FP+TN})$ 의 관계를 그린 곡선으로, AUC score 가 높으면 효과적으로 모형이 학습되었다고 할 수 있으며, 0.5에 가까울 수록 분류 결과가 운에 의한 것으로 해석.

분석 결과 - 예측성능 비교

- RF의 성능을 다른 분류기 방법인 로지스틱 회귀모형(Logistic Regression)과 비교
 - LR(logistic regression)
 - LR은 일반적인 회귀모형과 마찬가지로 종속변수와 독립변수 간의 관계를 구체적인 함수로 나타내어 예측에 사용하며, 이진(binary) 종속변수에 대해 독립변수의 선형 결합을 이용하는 확률적 모형. 예측 값을 [0, 1]로 하는 분류기 모형으로 고려하여 그 결과를 RF와 비교함.

[표 6] 예측 성능 결과 비교

Label	Model	Accuracy	F1 score	ROC-AUC score
<i>y</i> ₁	LR	0.5520	0.5664	0.5588
	RF	0.5964	0.6861	0.6107
<i>y</i> ₅	LR	0.4938	0.5074	0.4998
	RF	0.6297	0.7474	0.6096
y ₂₀	LR	0.4521	0.4476	0.4481
	RF	0.6976	0.7666	0.7850

주: Label(목표변수)의 y_1, y_5, y_{20} 은 각각 1일, 5일, 20일 후의 KOSPI 등락을 의미한다.

분석 결과 - 예측성능 비교

[그림 3] 예측 성능 결과 비교

- 1. 모든 목표변수에 대해 세 가지 성능이 모두 RF가 LR보다 뛰어남 → 예측력이 높은 RF 모형을 기반으로 중요도를 구하는 것은 의미 있음
- 20일, 5일, 1일 순으로 점수가 높음 (즉 예측하는 KOSPI 방향의 기간이 길수록 예측력이 높음)

분석 결과 - 변수 군집화

• 예측변수의 계층적 군집화 (훈련 데이터 이용)

[그림 2] 예측변수 간 유사도를 나타낸 계층적 군집 덴도그램(Dendogram)

주: y 축은 유사도를 나타내며 본 연구에서는 유사도가 1.0 이하에서 생성된 군집을 최종 변수군집으로 설정했다.

분석 결과 - 변수 군집화

• 예측변수의 계층적 군집화 (훈련 데이터 이용)

[표 4] 예측변수에 대한 계층적 군집화 결과

	구성 변수	특징
군집 1	$DPO(20)$, $MACD\ Diff\ (26,12,9)$, $RSI(14)$, $WR(14)$, $WR(28)$, $FI(13)$, $FI(26)$, individuals	시장 추세(단기)
군집 2	DPO(40), MACD (26,12), MACD (52,24), MACD Diff (52,24,18), RSI(28), MFI(14), MFI(28) institutions, foreigners	시장 추세(장기)
군집 3	ATR(14), ATR(28), STD(20), STD(40)	변동성
군집 4	USD/KRW, EUR/KRW, JPY/KRW, CNY/KRW	환율
군집 5	crude oil, gold, natural gas	상품가격

분석 결과 - 변수 군집 중요도

[그림 4] 1 일 KOSPI 방향에 대한 변수 군집 중요도

• 군집4(**환율**)의 중요도가 **높음**

분석 결과 - 변수 군집 중요도

[그림 5] 5일 KOSPI 방향에 대한 변수 군집 중요도

• 군집2(장기 시장 추세)와 군집3(변동성 지표)의 중요도가 높음

분석 결과 - 변수 군집 중요도

[그림 6] 20 일 KOSPI 방향에 대한 변수 군집 중요도

- 5일 방향과 마찬가지로 군집2(장기 시장 추세)와 군집3(변동성 지표)의 중요도가 높음
- 반면 군집1(단기 시장 추세)의 중요도는 낮음

결론

- 주식시장 예측을 위한 기계학습 모형의 활용을 넘어 예측에 사용되는 변수들의 중요도를 측정하는 방법을 연구하여 설명가능한 기계학습 모형을 구축함.
- 기존의 국내 주식시장에 대한 기계학습 모형 예측에 대한 연구는 주로 예측력에 초점을 맞추어 이루어져, 변수에 대한 분석은 활발히 진행되지 않음. 특히 변수간 상관관계가 있음에도 이를 고려하지 않은 채 중요도를 도출. 본 연구는 이러한 점을 보완한 방법인 군집화 변수중요도를 이용하여 변수에 대해 분석한다는 점에서 의의가 있음.
- 실증분석을 통해 랜덤포레스트를 사용한 KOSPI 방향 예측이 가능함을 보임. 특히 기간이 길수록 예측 성능이 높아지는 것을 확인함. 해당 예측모형을 사용해 변수중요도를 구하는 것은 의미 있음을 보임.
- 변수군집에 대한 중요도 분석 결과, 1일 KOSPI 방향에 대해서는 환율 변수가 큰 중요도를 보였으며, 5일, 20일 KOSPI 방향에 대해서는 장기적 시장 추세와 시장 변동성 변수가 큰 중요도를 보임. 특히 예측모형의 성능이 좋았던 5일, 20일 KOSPI 방향 예측에 하는 데 있어서 거시 변수보다 과거 시장 정보가 더 많은 기여를 함을 확인함.

참고문헌

- 김수경, 변영태. (2011). 외국인 및 기관투자자의 순매수강도와 주식수익률 간의 관계. 경영과 정보연구, 30(4), 23-44.
- 박석진, 정재식. (2019). 고빈도 자료를 이용한 머신러닝 모형의 예측력 비교 · 분석: KOSPI200 선물시장을 중심으로. 금융연구, 33(4), 31-60.
- 박재연, 유재필, 신현준 (2016) 기술적 지표와 기계학습을 이용한 KOSPI 주가지수 예측, 정보화연구, 13:2, 331-340
- 신승범, & 조형준. (2021). 랜덤포레스트를 위한 상관예측변수 중요도. 응용통계연구, 34(2), 177-190.
- 이우식. (2017). 딥러닝분석과 기술적 분석 지표를 이용한 한국 코스피주가지수 방향성 예측. 한국데이터정보과 학회지, 28(2), 287-295.
- 이재응, 한지형. (2021). 설명 가능한 KOSPI 증감 예측 딥러닝 모델을 위한 Layer-wise Relevance Propagation (LRP) 기반 기술적 지표 및 거시경제 지표 영향 분석. 정보과학회논문지, 48(12), 1289-1297.
- 정재위. (2002). 기관투자가의 거래가 증권시장에 미치는 경향에 관한 연구. 세무회계연구, 11(0), 237-249.
- 정현철, 정영우. (2011). 외국인 순투자가 주가에 미치는 영향. 국제경영연구, 22(1), 1-28.
- 하대우, 김영민, 안재준.(2019).XGBoost 모형을 활용한 코스피 200 주가지수 등락 예측에 관한 연구. 한국데이터 정보과학회지,30(3),655-669.
- Ballings, M., Van den Poel, D., Hespeels, N., & Gryp, R. (2015). Evaluating multiple classifiers for stock price direction prediction. Expert systems with Applications, 42(20), 7046-7056.

참고문헌

- de Prado, M. M. L. (2020). Machine learning for asset managers. Cambridge University Press.
- Debeer, D., & Strobl, C. (2020). Conditional permutation importance revisited. BMC bioinformatics, 21(1), 1-30.
- Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25(2), 383-417.
- Gregorutti, B., Michel, B., & Saint-Pierre, P. (2017). Correlation and variable importance in random forests.
 Statistics and Computing, 27(3), 659-678.
- Haq, A. U., Zeb, A., Lei, Z., & Zhang, D. (2021). Forecasting daily stock trend using multi-filter feature selection and deep learning. Expert Systems with Applications, 168, 114444.
- Jegadeesh, N., & Titman, S. (1993). Returns to buying winners and selling losers: Implications for stock market efficiency. The Journal of finance, 48(1), 65-91.
- Kim, K. J. (2003). Financial time series forecasting using support vector machines. Neurocomputing, 55(1-2), 307-319.
- Moskowitz, T. J., Ooi, Y. H., & Pedersen, L. H. (2012). Time series momentum. Journal of financial economics, 104(2), 228-250.
- Nicodemus, K. K., Malley, J. D., Strobl, C., & Ziegler, A. (2010). The behaviour of random forest permutation-based variable importance measures under predictor correlation. BMC bioinformatics, 11(1), 1-13.

참고문헌

- Nti, K. O., Adekoya, A., & Weyori, B. (2019). Random forest-based feature selection of macroeconomic variables for stock market prediction. American Journal of Applied Sciences, 16(7), 200-212.
- Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques. Expert systems with applications, 42(1), 259-268.
- Strobl, C., Boulesteix, A. L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC bioinformatics, 8(1), 1-21.
- Strobl, C., Boulesteix, A. L., Kneib, T., Augustin, T., & Zeileis, A. (2008). Conditional variable importance for random forests. BMC bioinformatics, 9(1), 1-11.