Компьютерные сети

Лекция 1.

Введение в курс

История развития, назначение и классификация компьютерных сетей

Лектор

Елена Болдырева

eaboldyreva@itmo.ru

ΠΛΑΗ:

Раздел 1. Введение в курс

- 1. Правила курса
- 2. Количество лабораторных работ и основные сроки

Раздел 2. Современные вычислительные системы

- 1. Эволюция вычислительных систем
- 2. Вычислительные сети как распределенные системы

Раздел 3. Компьютерные сети

- 1. Основные понятия
- 2. Классификация компьютерных сетей
- 3. Особенности компьютерных сетей
- 4. Клиент-серверное взаимодействие
- 5. Адресация в компьютерных сетях (база)

РАЗДЕЛ 1. ВВЕДЕНИЕ В КУРС

План и правила

План курса

Лекции каждую неделю.

Тест после каждой лекции – 10 баллов

Презентация (работа в группах по 4-5 человек) – 10 баллов

2 рубежных контроля – 20 баллов (по 10 каждый)

4 лабораторных работы (программа минимум) – 40 баллов

+ 1 дополнительная работа (для автомата)

Экзамен – 20 баллов

Ссылка на Телеграм-группу: https://t.me/+jCQ4vx43aSo4OWJi

Сроки курса. Лекционная часть.

Даты	Активности
10, 17 февраля, 3 и 10 марта	Лекции 1-4
17 марта	Рубежный контроль 1
24 и 31 марта, 7	Лекции 5-7
апреля 14 апреля	Рубежный контроль 2 + заполнить форму по презентации (без этого рубежка на засчитывается).
21, 28 апреля, 5, 12, 19, 26 мая	Презентации в группах (по 5 человек) — ~160 человек - макс 40 групп 10-15 минут на группу — 7 групп на пару.

Сроки курса. Практическая часть

Модуль 1 (5 февраля – 31 марта)	Модуль 2 (1 апреля — 31 мая)
Лабораторная 1 — 100%	Лабораторная 1 – 70%
Лабораторная 2 — 100%	Лабораторная 2 — 70%
	Лабораторная 3 — 100%
	Лабораторная 4 — 100%
Рубежный контроль 1 – 100%	Рубежный контроль 1 – 80%
	Рубежный контроль 2 – 100%
Дополнительная ЛР — 100%	Дополнительная ЛР — 100%

После 31 мая любая ЛР – 60% максимум.

Дополнительные активности

Каждый пункт + 3 балла к экзамену, количество баллов не ограничено.

Ачивки курса "Компьютерные Сети"

- посетил все лекции (написал все тесты по лекциям)
- 💶 написал рубежные контроли на максимальный балл
- ___ сдал все лабораторные работы на максимальный балл
- прочел целиком одну из трех рекомендованных книг (готов рассказать, что нового узнал)
- нашел и прошел онлайн-курс по компьютерным сетям
- выполнил дополнительную лабораторную работу
- нашел ошибки в заданиях лабораторных работ
- составил 10 задачек по компьютерным сетям "на подумать" без вариантов ответа.
- предложил свою собственную новую лабораторную работу (с топологией и пояснениями).

РАЗДЕЛ 2. СОВРЕМЕННЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ

Эволюция вычислительных систем

История развития ЭВМ

1950-е — системы пакетной обработки (первые ЭВМ).

Супер-ЭВМ. Mainframe.

Эффективность процессора

1960-е – многотерминальные системы.

Распределенные функции

1970-е – первые локальные сети -> первые глобальные сети.

Мини-ЭВМ

Этапы построения коммунизма

Принципы работы со сложными системами

- 1. Абстракции и уточнения
- 2. Модульная разработка
- 3. Переиспользование

Эти принципы позволяют распределять работы между участвующими в проектах людьми с меньшими затратами на обеспечение их взаимодействия и акцентировать внимание каждого из участников на наиболее существенных для его части работы характеристиках системы.

РЕКОМЕНДОВАННАЯ ДОП. ЛИТЕРАТУРА:

• Steve McIntosh. TEDxYouth@Dayton. «Programming as a Second Language» https://www.ted.com/talks/steve_mcintosh_programming_as_a_second_language

• Гарвардский курс CS50 на русском. Все серии https://habr.com/ru/company/vertdider/blog/403823/

• Распределенные системы. Паттерны проектирования.

https://habr.com/ru/company/piter/blog/442514/

РАЗДЕЛ З. КОМПЬЮТЕРНЫЕ СЕТИ

Основные понятия

Что такое интернет?

ОСНОВНЫЕ ТЕРМИНЫ:

- Скорость передачи
- Маршрут (path), Протоколы (TCP/IP)
- Пакеты, маршрутизаторы и коммутаторы канального уровня
- Каналы связи и пакетные коммутаторы
- Application Programming Interface (API) https://habr.com/ru/post/464261/

"NUTS-AND-BOLTS VIEW":

- Интернет: "сеть сетей"
 - Взаимосвязь интернетпровайдеров
- *протоколы* контроль взаимодействия
 - TCP, IP, HTTP, Skype, 802.11, ...
- Internet standards
 - –RFC: Request for comments
 - –IETF: Internet Engineering Task Force

"SERVICE VIEW":

- Инфраструктура сервисов:
 - -Web, VoIP, email, games, e-commerce, social nets, ...
- предоставляет программный интерфейс
 - приложение"связывается" с сетью
 - предоставляет варианты обслуживания

Что такое Протокол?

Формализация вариантов общения:

- 1. конкретные сообщения мы посылаем;
- 2. конкретные действия, которые мы предпринимаем в ответ на полученные ответные сообщения или другие события.

ФОРМАТ И ПОРЯДОК СООБЩЕНИЙ, КОТОРЫМИ ОБМЕНИВАЮТСЯ ДВА ИЛИ БОЛЕЕ СООБЩАЮЩИХСЯ ЭЛЕМЕНТА

Структура сети

- «NETWORK EDGE» ГРАНИЦА СЕТИ:
 - хосты: клиенты и серверы
 - серверы часто находятся в центрах обработки данных
- ДОСТУП К СЕТИ, ФИЗИЧЕСКИЕ НОСИТЕЛИ: проводное и беспроводное взаимодействие
- «NETWORK CORE» ЯДРО СЕТИ:
 - взаимосвязанные маршрутизаторы
 - сеть сетей

Типы адресов стека ТСР/ІР

В стеках протоколов используется три типа адресов:

- Локальные (аппаратные) адреса;
- Сетевые адреса (IP-адреса);
- Символьные (доменные)имена;

Все эти типы адресов присваиваются узлами составной сети независимо друг от друга.

Адресация в компьютерных сетях

(основы)

IPv4 - 32 бита

IPv6 - 128 бит

Маска подсети - это 32-или 128-разрядное число, которое сегментирует существующий IP-адрес в сети TCP / IP. Он используется протоколом TCP/IP для определения того, находится ли хост в локальной подсети или в удаленной сети.

255.255.255.0

IP: 101. 102. 103. 5

Subnet Mask: 255. 255. 255. 0

[1] Как понять правильно ІР- адреса и подсети маски?

Двоичная ІР-адресация

IP-адрес представляет собой 32-разрядное двоичное число, записанное в виде четырех октетов, т.е. четырех групп, каждая из которых состоит из восьми двоичных знаков (нулей и единиц).

32 бита = 4 байт						
Октет (8 бит) Октет (8 бит) Октет (8 бит) Октет (8 бит)						
2 ⁷ 2 ⁶ 2 ⁵ 2 ⁴ 2 ³ 2 ² 2 ¹ 2 ⁰	2 ⁷ 2 ⁶ 2 ⁵ 2 ⁴ 2 ³ 2 ² 2 ¹ 2 ⁰	2 ⁷ 2 ⁶ 2 ⁵ 2 ⁴ 2 ³ 2 ² 2 ¹ 2 ⁰	2 ⁷ 2 ⁶ 2 ⁵ 2 ⁴ 2 ³ 2 ² 2 ¹ 2 ⁰			
10101100	00010000	01111010	11001100			
Десятичный эквивалент						
172	16	122	204			

Эквиваленты комбинаций битов в октете в десятичном и двоичном представлении

128 2 ⁷	64 2 ⁶	32 2 ⁵	16 2 ⁴	8 2 ³	4 2 ²	2 2¹	1 2 ⁰	Десятичное значение
1	0	0	0	0	0	0	0	128
1	1	0	0	0	0	0	0	192
1	1	1	0	0	0	0	0	224
1	1	1	1	0	0	0	0	240
1	1	1	1	1	0	0	0	248
1	1	1	1	1	1	0	0	252
1	1	1	1	1	1	1	0	254
1	1	1	1	1	1	1	1	255
128	+ 64	+ 32	+ 16	+ 8	+ 4	+ 2	+ 1	255

Особые ІР адреса

Номера сетей и номера узлов *не могут состоять из одних двоичных нулей или единиц*. Отсюда следует, что максимальное количество узлов, для сетей каждого класса, должно **быть уменьшено на 2.**

Поле сети	Поле узла	Интерпретация
Все биты равны 0	Все биты равны 0	Данное устройство
Все биты равны 0	Номер узла	Устройство в данной
		IP-сети
Все биты равны 1	Все биты равны 1	Все устройство в данной ІР-сети
		(ограниченное широковещательное
		сообщение (limited broadcast))
Номер сети	Все биты равны 0	Данная IP-сеть
Номер сети	Все биты равны 1	Все устройства в указанной IP-сети
		(широковещательное сообщение
		(broadcast))
127		Возвратный адрес (loopback)

Базовые маски подсети

Маска — это число, применяемое в паре с IP-адресом, причем двоичная запись маски содержит непрерывную последовательность единиц в тех разрядах, которые должны в IP-адресе интерпретироваться как номер сети.

(ИСПОЛЬЗУЕТСЯ СЕТЕВЫМИ УСТРОЙСТВАМИ)

Базовые маски подсети						
Класс сети Маска подсети Двоичный эквивалент						
Α	255.0.0.0	1111111 0000000 0000000 0000000				
В	255.255.0.0	1111111 1111111 0000000 00000000				
С	255.255.255.0	1111111 1111111 1111111 0000000				

Адрес сети определяется путем логического умножения ІР -адреса и маски подсети

Бесклассовая адресация CIDR

До CIDR: Граница сети заканчивалась на 8-, 16, 24- бите CIDR: Граница сети может закончится на любом бите IP Address: 12.4.0.0 IP Mask: 255.254.0.0 00001100 00000100 00000000 000000000 Адрес Маска 11111111 1111110 00000000 000000000 Префикс сети Network Prefix обычно пишется как 12.4.0.0/15, или "суперсеть" © Masich G.F.

Классы адресов ІР

Адреса IP делятся на 5 классов в зависимости от размера сети, которую они обслуживают.

	Перв	вый октет	Второй октет	Третий октет	Четвертый октет	Наименьший номер сети	Наибольший номер сети	Максимальное число узлов в сети
					Класс А			
Количество битов	1	7		24			126.0.0.0	
первые биты	0	Номер сети		Номер хоста		1.0.0.0 (0 - не используется)	(127.0.0.0 -	2^24-2=16777214, поле 3 байта
Класс А		Сеть	Узел	Узел	Узел	использустся)	зарезервирован)	поле з баита
								•
					Класс В			
Количество битов	1	1	14	16		4.00.00.00	101 277 0 0	2^16 -2 =65534,
первые биты	1	0	Номер сети	Номе	р хоста	128.0.0.0	191.255.0.0	поле 2 байта
Класс В		Сеть	Сеть	Узел	Узел			
					Класс С			
Количество битов	1	1	1	21	8			2^8-2=254,
первые биты	1	1	0	Номер сети	Номер хоста	192.0.0.0	223.255.255.0	поле 1 байт
Класс С		Сеть	Сеть	Сеть	Узел			
					TC D			
первые биты			1110)	Класс D	224.0.0.0	239.255.255.255	Групповые адреса
nopublic on the			1110	,		<i>22</i> 寸.0.0.0	257.255.255.255	трупповые адреса
					Класс Е			
первые биты			1111	0		240.0.0.0	247.255.255.255	Зарезервировано

РАЗДЕЛ 4. ПРИНЦИПЫ ОРГАНИЗАЦИИ СЕТЕЙ

Классификация сетей

Классификация по уровню однородности:

1. Одноранговые

- 2. «Клиент-сервер»
 - Клиент объект (компьютер или программа), запрашивающий некоторые услуги.
 - Сервер объект (компьютер или программа), предоставляющий некоторые услуги.
- 3. Гибридные.

Классификация сетей

LAN – Local Area Network (ЛВС) – Локальные вычислительные сети: Ethernet, FastEthernet, ARCnet, TokenRing, LokalTalk (Apple), WLAN, FDDI*.

WAN – Wide Area Network (PBC) – Региональные и глобальные вычислительные сети: FDDI*, ATM, FrameRelay.

MAN – Metropolian Area Network (TBC) – Городские (территориальные) вычислительные сети.. Это понятие в настоящее время уже не используется. Оно вытеснено понятием WAN.

GAN – Global Area Network (ГВС) – Глобальные вычислительные сети. Это понятие в настоящее время уже не используется. Оно вытеснено понятием WAN.

LAN - локальные сети

LOCAL AREA NETWORK (LAN) TECHNOLOGIES (ЛОКАЛЬНЫЕ СЕТИ):

1) Ethernet technology

- typically used in companies, universities, etc.
- 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates
- today, end systems typically connect into Ethernet switch
- 3) Wireless LAN based on WiFi technology

(IEEE 802.11), 3G, 4G: LTE

- shared wireless access network connects end system to router
- via base station "access point"

У меня вынули телефон из кармана, пока я слушала музыку по Bluetoothнаушникам. Преследовала вора под мой любимый альбом и даже смогла принять входящий звонок. Технологии.

Основные компоненты сетей

Основные компоненты сети: конечные устройства (end devices), промежуточные устройства (intermediary devices), среды передачи данных (media) и программные средства, такие как сервисы (services) и процессы (processes).

Конечные устройства: сервера, домашние компьютеры, телефоны и т.п.

Промежуточные устройства: маршрутизаторы (routers), коммутаторы (switches), беспроводные точки доступа (Wireless Access Point), некоторые модемы (modems).

Среды передачи данных: металл, стекло, пластик, радио волны и излучения.

Сервисы: веб-сервер, mail-сервер, ftp-сервер.

Процессы: специальные служебные сетевые процессы, работающие на сетевом оборудовании.

Все устройства и медиа (среды передачи данных) – это физические, аппаратные или как еще называют – железные (hardware) компоненты сети.

Сервисы (сетевые услуги) и процессы — это программные компоненты сети (software), работающие явно и не явно, то есть отвечающие на наши запросы (явно) и обрабатывающие переданные сетевые сообщения, такие как пакеты и фреймы.

[1] Основные компонеты сетей

Линии связей

В зависимости от среды передачи данных выделяются следующие линии связи:

- 1. проводные (воздушные);
- 2. кабельные:
 - медные:
 - коаксиальные (Coaxial);
 - «витая пара» (Twisted Pair, TP);
 - волоконно-оптические (Fiber)
- 3. радиоканалы:
 - 1. наземная радиосвязь;
 - 2. спутниковой радиосвязь.

Топология сетей

Полносвязная

Шина

Кольцо

АРХИТЕКТУРА КЛИЕНТ-СЕРВЕР

SERVER:

- всегда включенный хост
- постоянный ІР-адрес
- центры обработки данных для масштабирования

CLIENTS:

- держит связь с сервером
- может быть подключен только периодически
- могут иметь динамические IP-адреса
- не общайтесь напрямую друг с другом

Р2Р архитектура

- нет постоянно включенного сервера
- произвольные конечные узлы взаимодействуют напрямую
- одноранговые узлы запрашивают услуги у других одноранговых узлов, предоставляют услуги взамен другим одноранговым узлам
 - самомасштабируемость новые одноранговые узлы приносят новые сервисные возможности, а также новые требования к сервису
- одноранговые узлы периодически подключаются и меняют IP-адреса
 - комплексное управление

Дополнительная литература по разделу 3

- 1. Видеокурс из 10 уроков: IP сети шаг за шагом. https://proglib.io/p/ip-networks/.
- 2. Основы компьютерных сетей. Тема №1. Основные сетевые термины и сетевые модели. https://habr.com/ru/post/307252/
- 3. Ф. Брукс. Мифический человеко-месяц или как создаются программные системы. https://nsu.ru/xmlui/bitstream/handle/nsu/8870/Frederick Brooks.pdf

ДОП РАЗДЕЛ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ. РАСЧЕТЫ ПОДСЕТЕЙ

Работа с подсетями

Сети каждого класса (А, В и С), могут быть разделены на подсети.

Сеть IP необходимо разбивать на подсети в случае, если несколько отдельных сетей соединяются посредством маршрутизаторов. Такое разделение следует производить при условии, что у вас имеется крупная сеть с множеством узлов и существует опасность ее перегрузки.

Создание подсетей в сети класса А

> Комбинация битов для адресов узлов

3 октета (24 бита) доступны для адресов узлов 2^{24} -2=16777214

Формирование подсети

Для формирования подсети придется забрать некоторое количество битов из октетов определяющих адреса узлов, и пустить их на подсети.

Расчет требуемого количества подсетей

Расчет диапазона ІР-адресов в подсети

Диапазоны IP - адресов для первых 10 подсетей из 30						
Номер подсети	Начальный адрес	Конечный адрес				
1	10.8.0.1	10.15.255.254				
2	10.16.0.1	10.23.255.254				
3	10.24.0.1	10.31.255.254				
4	10.32.0.1	10.39.255.254				
5	10.40.0.1	10.47.255.254				
6	10.48.0.1	10.55.255.254				
7	10.56.0.1	10.63.255.254				
8	10.64.0.1	10.71.255.254				
9	10.72.0.1	10.79.255.254				
10	10.80.0.1	10.87.255.254				

Расчет доступных адресов узлов

Число возможных в подсети адресов узлов легко рассчитать, В сети класса А изначально для адресов узлов связи доступно 24 бита. На 30 подсетей из второго октета взято 5 бит. Это означает, что теперь для IP-адресов осталось 19 бит. Чтобы узнать, сколькими адресами узлов связи располагает подсеть, возведите число 2 в степень 19, а затем вычтите 2.

2^19 - 2 = 524286

В результате для подсети получится 524286 адресов IP. Очевидно, что сеть класса А поддерживает огромное количество адресов узлов связи, поэтому ситуация, когда их окажется недостаточно для всех сетевых устройств, практически нереальна.

Однако при работе с сетями класса В и С число доступных адресов в каждой подсети придется тщательно просчитывать.

- Почему конечный адрес каждой подсети завершается цифрами 254? Вспомните, что часть адреса IP, соответствующая адресу узла (в данном случае третий и четвертый октеты), не должна состоять только из единиц (то есть иметь десятичное представление 255. Поэтому в третьем октете допустимы только единицы (255), но четвертый октет в десятичной форме может иметь максимальное значение 254.
- При делении сети на подсети количество адресов IP, доступных в качестве адресов узлов, уменьшается. Например, сеть класса A (без разбиения на подсети) поддерживает 16777214 узлов связи. На при создании в ней 30 подсетей, в каждой ив которых окажется 524286 доступных адресов IP, получится 524286 х 30 = 15728580 адресов. Следовательно, при делении на подсети потерялось 1048634 адресов узлов.

Разбиение на подсети ІР-адресов класса А

Требуемое количество подсетей	Число битов для ID подсети	Маска подсети	Число хостов в подсети
1-2	1	255.128.0.0, или/9	8 388 606
3-4	2	255.192.0.0, или/10	4 194 302
5-8	3	255.224.0.0, или/11	2 097 150
9-16	4	255.240.0.0, или/12	1 048 574
17-32	5	255.248.0.0, или/13	524 286
33-64	6	255.252.0.0, или /14	262 142
65-128	7	255.254.0.0, или/15	131 070
129-256	8	255.255.0.0, или/16	65 534
257-512	9	255.255.128.0, или/17	32 766
513-1024	10	255.255.192.0, или/18	16 382
1 025-2 048	11	255.255.224.0, или /19	8190
2 049-4 096	12	255.255.240.0, или /20	4 094
4 097-8 192	13	255.255.248.0, или/21	2 046
8 193-16 384	14	255.255.252.0, или /22	1022
16 385-32 768	15	255.255.254.0, или /23	510
32 769-65 536	16	255.255.255.0, или /24	254
65 537-131072	17	255.255.255.128, или/25	126
131 073-262 144	18	255.255.255.192, или/26	62
262 145-524 288	19	255.255.255.224, или /27	30
524 289-1048 576	20	255.255.255,240, или /28	14
1 048 577-2 097 152	21	255.255.255.248, или /29	6
2 097 153-4 194 304	22	255.255.255.252, или /30	2

Подсети для сети класса В

Расчет маски подсети для сети В

Диапазоны адресов для сети класса В

• •	Начальный	
Номер подсети	адрес	Конечный адрес
1	180.10.32.1	180.10.63.254
2	180.10.64.1	180.10.95.254
3	180.10.96.1	180.10.127.254
4	180.10.128.1	180.10.159.254
5	180.10.160.1	180.10.191.254
6	180.10.192.1	180.10.223.254

Новая маска подсети 255.255.224.0

Разбиение на подсети при использовании IP-адресов класса В

Требуемое количество подсетей	Число битов для ID подсети	Маска подсети	Число хостов в подсети
1-2	1	255.255.128.0, или/17	32 766
3-4	2	255.255.192.0, или/18	16 382
5-8	3	255.255.224.0, или /19	8 190
9-16	4	255.255.240.0, или /20	4 094
17-32	5	255.255.248.0, или/21	2 046
33-64	6	255.255.252.0, или /22	1022
65-128	7	255.255.254.0, или /23	510
129-256	8	255.255.255.0, или /24	254
257-512	9	255.255.255.128, или/25	126
513-1 024	10	255.255.255.192, или/26	62
1025-2 048	11	255.255.255.224, или /27	30
2 049-4 096	12	255.255.255.240, или /28	14
4 097-8 192	13	255.255.255.248, или /29	6
8 193-16 384	14	255.255.255.252, или /30	2

Расчет диапазонов адресов и маски подсети

для сети класса С

Расчет маски подсети для сети С

Номер	Адрес	Начальный	Конечный	Широковщательн
подсети	подсети	адрес	адрес	ый адрес
1	200.10.44.64	200.10.44.65	200.10.44.126	200.10.44.127
2	200.10.44.128	200.10.44.129	200.10.44.190	200.10.44.191

Разбиение на подсети при использовании IP-адресов класса С

Требуемое количество подсетей	Число битов для ID подсети	Маска подсети	Число хостов в подсети
1-2	1	255.255.255.128, или/25	126
3-4	2	255.255.255.192, или/26	62
5-8	3	255.255.255.224, или /27	30
9-16	4	255.255.255.240, или /28	14
17-32	5	255.255.255.248, или /29	6
33-64	6	255.255.255.252, или /30	2