Vol. 63 No. 1 JUCHE106(2017).

나노류체 탄소나노관-물의 안정성과 열전도도에 대한 연구

신 충 혁

경애하는 최고령도자 김정은동지께서는 다음과 같이 말씀하시였다.

《정보기술, 나노기술, 생물공학을 비롯한 핵심기초기술과 새 재료기술, 새 에네르기기술, 우주기술, 핵기술과 같은 중심적이고 견인력이 강한 과학기술분야를 주라격방향으로 정하고 힘을 집중하여야 합니다.》(《조선로동당 제7차대회에서 한 중앙위원회사업총화보고》단행본 39폐지)

열교환기들에서 일반적으로 리용되는 열매인 물이나 에틸렌글리콜과 같은 류체들은 열전도도가 낮은것으로 하여 열교환기의 효률과 크기에 직접적인 영향을 미치며 따라서 열매의 열전도도를 개선하는것은 매우 중요하다. 이로부터 일반류체에 나노립자를 첨가하 여 훨씬 더 높은 열전도도를 가지는 나노류체를 제조하는 방법들이 제기되고 그것의 물 림새에 대한 많은 연구들이 진행되였지만 아직까지 그 리론적해석이 정립되지 않고 구체 적인 방법들에 대한 소개자료도 부족하다.

론문에서는 분산안정된 나노류체 다층탄소나노관-물의 제조방법과 나노류체의 열전 도도를 연구하였다.

1. 나노류체 탄소나노관-물의 제조

탄소나노관의 열전도도는 3 000W/(m·K)정도로서 금속 및 산화물나노립자들중에서 가장 높다. 나노류체의 열전달특성이 강한것은 나노립자들이 높은 열전도도를 가지고있기 때문이다.[1-4] 이로부터 열전도도가 높은 나노류체를 제조하기 위하여 탄소나노관-물을 선택하였다.

탄소나노관의 SEM사진은 그림 1과 같다.

그림 1. 탄소나노관의 SEM사진

그림 1에서 보는바와 같이 탄소나노관의 평균직 경은 36.6nm이다.

먼저 탄소나노관을 0.1~0.5질량%의 비로 물과 혼합하여 5가지 농도의 탄소나노관-물혼합액을 만 들었다. 여기에 분산제(SDS)를 5질량%정도 넣고 잘 교반해준다. 분산제를 넣지 않았을 때에는 5min도 못 되여 나노립자들이 침전되었으나 분산제를 넣었을 때에는 6h 지나야 완전히 침전되였다.

침전시간이 늘어난것은 분산제가 나노립자들사 이의 반발힘을 증가시키는 역할을 하기때문이며 침

전의 원인은 나노립자들의 물꺼림성과 응집때문이다.

나노류체 탄소나노관-물의 분산안정성을 보장하기 위해 초음파분산처리를 하였다. 초음파분산은 세 단계로 나누어 진행되였다.

처음 500W 출력에서 2min, 다음 300W에서 2min, 100W에서 10min동안 하였다. 이렇게 처리된 나노류체는 한달이 지나도 침전이 일어나지 않았다.

2. 나노류체의 열전도도측정

우리는 비정상열선법을 리용하여 나노류체의 열전도도를 측정하였다.

비정상열선법은 일반적으로 액체의 열전도도를 측정하기 위하여 비정상상태에서 시 간에 따르는 온도의 변화로 류체의 열전도도를 측정하는 방법이다.

비저항열선법을 리용한 나노류체의 열전도도측정회로를 그림 2에 보여주었다.

그림 2에서 보는바와 같이 측정용기에 나노류 체를 담고 그안에 열선으로 매우 얇은 백금선(직경 28 μ m)이 잠겨있다.

백금열선의 시간에 따르는 저항변화값을 계산 하여 나노류체의 열전도도를 계산하였다.

백금열선의 저항은 다음과 같다.

$$G = V \left(\frac{R_w}{R_w + R_3} - \frac{R_2}{R_1 + R_2} \right)$$

여기서 V는 회로의 입구전압, G는 출구전압, R_w 는

그림 2. 나노류체의 열전도도 측정회로도

백금열선의 저항이다. 이때 구해진 저항값의 변화는 백금선의 저항-온도관계에 의해 온 도로 화산되다.

$$R_w = R_0(1 + \alpha T)$$

여기서 α 는 0.003~352~4를 리용[5]하였다. 이렇게 얻어진 온도는 푸리에방정식으로부터 유도되는 다음의 방정식에 의하여 류체의 열전도도로 넘어간다.

$$k = \frac{q}{4\pi(T_2 - T_1)} \ln(t_2 / t_1)$$

여기서 k는 류체의 열전도도, q는 열선의 단위길이당 열흐름밀도이다.

실험은 약 5s동안 진행하였다.

기구의 교정을 위하여 물의 열전도도를 측정하여 방안온도에서 선행연구[5]의 경우와 비교하였다.

물의 열전도도측정에서 시간에 따르는 온도변화는 그림 3과 같다.

이때 측정편차는 0.66%이다. 매 열전도도값은 8번의 측정으로부터 얻은 평균값들이다.

탄소나노관의 질량농도에 따르는 열전도도변화를 그림 4에 보여주었다.

그림 4에서 보는바와 같이 탄소나노관의 농도에 따라 열전도도는 거의 선형으로 증가하며 물의 경우에 비하여 탄소나노관의 농도가 0.5질량%에서는 열전도도가 약 22% 증가하였다. 탄소나노관의 농도에 따라 열전도도가 증가하는 원인은 나노립자들이 액체속에서 열전도를 강화하는 열다리와 같은 역할을 하기때문이다. 그러므로 탄소나노관의 농도가 증가할수록 열전도도는 선형으로 증가한다. 반대로 탄소나노관의 농도가 1%이상부터

는 나노류체의 분산안정성을 실현하는것이 어려워진다.

78 -

맺 는 말

분산제(SDS)와 초음파분산을 리용하여 분산안정화된 나노류체 탄소나노관-물을 제조하였다. 0.5질량%의 탄소나노관과 분산제 5질량%를 포함한 물에서 열전도도가 약 22% 증가하였다. 나노류체 탄소나노관-물의 열전도도는 탄소나노관의 농도증가에 따라 거의 선형으로 증가하다.

참 고 문 헌

- [1] Sayantan Mukherjee et al.; IOSR Journal of Mechanical and Civil Engineering, 9, 63, 2013.
- [2] E. V. Timofeeva et al.; Nanoscale Research Letters, 6, 182, 2011.
- [3] C. Codreanu et al.; Rom. J. Inf. Sci. Tech., 10, 3, 215, 2007.
- [4] S. R. Babu et al.; Inter. J. Eng. Res. Appl., 3, 2136, 2013.
- [5] Raghu Gowda et al.; Advances in Mechanical Engineering, 10, 807610, 2010.

주체105(2016)년 9월 5일 원고접수

Stability and Thermal Conductivity of Carbon Nanotube-Water based Nanofluids

Sin Chung Hyok

We found that nanofluids with added SDS surfactant exhibit better stability than nanofluids without surfactant. About 22.2% thermal conductivity improvement was observed for water containing 0.5wt% of CNT and 5wt% of SDS surfactant. The thermal conductivity also increased linearly with increase of the CNT's weight fraction.

Key words: carbon nanotube, stability, thermal conductivity, nanofluid