

1

Aplicação

- Necessidade de obter um valor intermediário que não consta de uma tabela.
- Dados experimentais e de funções complexas são exemplos desta situação.

Exemplo

- Uso em funções complexas.
- Para efeito de exemplo usaremos uma função mais simples.

3

Geogebra - https://geogebra.org/calculator

- Plotar o gráfico da função f(x)=cos x.
- Escolher aleatoriamente 3 pontos na curva.
- Obter um polinômio de grau 2 que interpole os três pontos.
- Obter o valor de f para algum x!

Dado um conjunto de dados {x_i,f(x_i)} tal como na tabela abaixo:

X _i	0	1,5	3,0	4,5	6,0
$f(x_i)$	0,001	0,016	0,028	0,046	0,057

- Como obter o valor de **f(x)** para um valor de **x** que não tenha sido medido, como x=2.0 ?
- Quando se deseja saber o valor de f(x) para um x intermediário entre duas medidas, isto é, x_i<x<x_{i+1}, pode-se usar as técnicas da interpolação.

- A interpolação consiste em determinar uma função, que assume valores conhecidos em certos pontos (nós de interpolação)
- A classe de funções escolhida para a interpolação é a priori arbitrária, e deve ser adequada às características que pretendemos que a função possua.
- Função a ser considerada:
 - □ Polinômios ⇒ Interpolação Polinomial

9

- Métodos de interpolação são utilizados para aproximar uma função f(x), principalmente nas seguintes situações:
 - \square conhece-se valores de f(x) para um conjunto de pontos $x_0, x_1, x_2, ...$ e deseja-se calcular o valor da função em um ponto não tabelado
 - □ **f(x)** é extremamente complicada e de difícil manejo (operações como a diferenciação e a integração são difíceis ou mesmo impossíveis de serem realizadas)

Interpolação Polinomial

Consiste em se obter um polinômio p(x) que passe por todos os pontos do conjunto de (n+1) dados {x_i,f(x_i)}, isto é:

$$p(x_0) = f(x_0)$$

$$p(x_1)=f(x_1)$$

...

$$p(x_n)=f(x_n)$$

11

Interpolação Polinomial

■ Polinômio *p(x)* - **polinômio interpolador**

Teorema: Existe um único polinômio p(x), de grau menor ou igual a n, tal que $p_n(x_k) = f(x_k)$, k = 0, 1, ..., n.

$$p_n(x_0) = a_0 + a_1 \cdot x_0 + a_2 \cdot x_0^2 + \dots + a_n \cdot x_0^n = f(x_0)$$

$$p_n(x_1) = a_0 + a_1 \cdot x_1 + a_2 \cdot x_1^2 + \dots + a_n \cdot x_1^n = f(x_1)$$

$$p_n(x_n) = a_0 + a_1 \cdot x_n + a_2 \cdot x_n^2 + \dots + a_n \cdot x_n^n = f(x_n)$$

- O conjunto de equações corresponde a um sistema linear de *n*+1 equações e *n*+1 variáveis
 - □As variáveis independentes são a_i

13

Interpolação Polinomial

- Formas de obter $p_n(x)$
 - □ Resolução do Sistema Linear
 - □ Forma de Lagrange
 - □ Forma de Newton

Exemplo

Seja a função y = f(x) definida pelos pontos da tabela abaixo. Determinar o valor de f(1).

- $p_2(x) = 1 7/3 x + 2/3 x^2$
- $p_2(1) = -2/3$

15

Problema

- Determinar o polinômio interpolador através da resolução de um sistema linear é caro computacionalmente.
- Outros modos de se obter o polinômio:
 - □ Forma de Lagrange
 - □ Forma de Newton

Forma de Lagrange

Sejam x_0 , x_1 ,..., x_n , (n+1) pontos distintos e $y_i = f(x_i)$, i = 0, ..., n.

Seja $p_n(x)$ o polinômio de grau \leq n que interpola f em $x_0,...,x_n$. Podemos representar $p_n(x)$ na forma $p_n(x) = y_0 L_0(x) + y_1 L_1(x) + ... + y_n L_n(x)$, onde os polinômios $L_k(x)$ são de grau n. Para cada i, queremos que a condição $p_n(x_i) = y_i$ seja satisfeita, ou seja:

$$p_n(x_i) = y_0 L_0(x_i) + y_1 L_1(x_i) + \dots + y_n L_n(x_i) = y_i.$$

A forma mais simples de se satisfazer esta condição é impor:

$$L_{k}(x_{i}) = \begin{cases} 0 \text{ se } k \neq i \\ 1 \text{ se } k = i \end{cases} \text{ e, para isso, definimos } L_{k}(x) \text{ por }$$

17

Forma de Lagrange

$$L_k(x) \ = \ \frac{(x-x_0) \ (x-x_1) \ \dots \ (x-x_{k-1}) \ (x-x_{k+1}) \ \dots \ (x-x_n)}{(x_k-x_0) \ (x_k-x_1) \ \dots \ (x_k-x_{k-1}) \ (x_k-x_{k+1}) \ \dots \ (x_k-x_n)}$$

É fácil verificar que realmente

$$L_k(x_k) = 1 e$$

$$L_k(x_i) = 0 \text{ se } i \neq k.$$

Forma de Lagrange

Como o numerador de L_k(x) é um produto de n fatores da forma:

$$(x-x_i)$$
, $i=0,\ldots,n$, $i\neq k$,

então $L_k(x)$ é um polinômio de grau n e, assim, $p_n(x)$ é um polinômio de grau menor ou igual a n.

Além disso, para $x = x_i$, i = 0, ..., n temos:

$$p_n(x_i) = \sum_{k=0}^{n} \ y_k L_k(x_i) \ = \ y_i L_i(x_i) \ = \ y_i$$

19

Forma de Lagrange

Então, a forma de Lagrange para o polinômio interpolador é:

$$\begin{aligned} p_n(x) &= \sum_{k=0}^n y_k L_k(x) \\ L_k(x) &= \frac{\prod\limits_{\substack{j=0 \\ j\neq k}}^n (x-x_j)}{\prod\limits_{\substack{j=0 \\ j\neq k}}^n (x_k-x_j)} \ . \end{aligned}$$

$$L_k(x) \; = \; \frac{\left(x - x_0\right)\left(x - x_1\right)\;\ldots\;\left(x - x_{k-1}\right)\left(x - x_{k+1}\right)\;\ldots\;\left(x - x_n\right)}{\left(x_k - x_0\right)\left(x_k - x_1\right)\;\ldots\;\left(x_k - x_{k-1}\right)\left(x_k - x_{k+1}\right)\;\ldots\;\left(x_k - x_n\right)}$$

Exemplo - Seja a tabela:

Pela forma de Lagrange, temos que:

$$p_2(x) = y_0 L_0(x) + y_1 L_1(x) + y_2 L_2(x)$$
, onde:

$$L_0(x) \ = \ \frac{(x-x_1) \ (x-x_2)}{(x_0-x_1) \ (x_0-x_2)} \ = \ \frac{(x-0) \ (x-2)}{(-1-0) \ (-1-2)} \ = \ \frac{x^2 \ - \ 2x}{3}$$

$$L_1(x) \, = \, \frac{(x-x_0) \ (x-x_2)}{(x_1-x_0) \ (x_1-x_2)} \, = \frac{(x+1) \ (x-2)}{(0+1) \ (0-2)} \, = \, \frac{x^2-x-2}{-2}$$

$$L_2(x) \, = \, \frac{(x-x_0) \ (x-x_1)}{(x_2-x_0) \ (x_2-x_1)} \, = \frac{(x+1) \ (x-0)}{(2+1) \ (2-0)} \, = \, \frac{x^2 \, + \, x}{6} \, .$$

21

Assim, na forma de Lagrange,

$$\mathsf{p}_2(\mathsf{x}) \ = \ 4\left(\frac{\mathsf{x}^2 \ - \ 2\mathsf{x}}{3}\right) \ + \ 1\left(\frac{\mathsf{x}^2 \ - \ \mathsf{x} \ - \ 2}{-2}\right) \ + \ (-1)\left(\frac{\mathsf{x}^2 \ + \ \mathsf{x}}{6}\right).$$

Agrupando os termos semelhantes, obtemos que $p_2(x) = 1 - \frac{7}{3}x + \frac{2}{3}x^2$

Forma de Newton

A forma de Newton para o polinômio $p_n(x)$ que interpola f(x) em x_0 , x_1 ,..., x_n , (n + 1) pontos distintos é a seguinte:

$$p_n(x) = d_0 + d_1(x - x_0) + d_2(x - x_0)(x - x_1) + \dots + d_n(x - x_0)(x - x_1) \dots (x - x_{n-1}).$$

Os coeficientes d_k acima são diferenças divididas de ordem k entre os pontos $(x_j, f(x_j)), j = 0, 1, ..., k$.

23

Diferenças divididas

Seja f(x) uma função tabelada em n + 1 pontos distintos: $x_0, x_1, ..., x_n$.

Definimos o operador diferenças divididas por:

$$f[x0]=f(x0)$$

Ordem 0

$$f[x 0,x 1] = \frac{f[x 1] - f[x 0]}{x 1 - x 0} = \frac{f(x 1) - f(x 0)}{x 1 - x 0}$$

Ordem 1

$$f[x 0,x 1,x 2] = \frac{f[x 1,x 2] - f[x 0,x 1]}{x 2 - x 0}$$

Ordem 2

$$f[x0,x1,x2,x3] = \frac{f[x1,x2,x3] - f[x0,x1,x2]}{x3 - x0}$$

Ordem 3

•••

Diferenças divididas

$$f[x_0\,,\,x_1\,,\,x_2\,,\,\ldots\,,\,x_n] = \frac{f[x_1\,,\,x_2\,,\,\ldots\,,\,x_n] - f[x_0\,,\,x_1\,,\,x_2\,,\,\ldots\,,\,x_{n-1}]}{x_n\,-\,x_0} \eqno(Ordem\ n)$$

Dizemos que $f[x_0, x_1, ..., x_k]$ é a diferença dividida de ordem k da função f(x) sobre os k+1 pontos: $x_0, x_1, ..., x_k$.

25

Dada uma função f(x) e conhecidos os valores que f(x) assume nos pontos distintos $x_0, x_1, ..., x_n$, podemos construir a tabela:

0 1 1 11 1			
Ordem 0	Ordem 1	Ordem 2	
f[x0]	f[x 0, x 1]		
f[x1]		f[x0,x1,x2]	
f[x2]	f[x1,x2]	f[x1,x2,x3]	
) [·· -]	f[x2,x3]	$f[x_1, x_2, x_3]$	
f[x3]			
f[xn]			
<i>7</i> . .			

Exemplo

Calcule a tabela de diferenças divididas para os seguintes valores:

27

H

■ No polinômio, os valores de d_k são:

$$d0 = f(x0)$$

$$d1 = f[x0,x1]$$

$$d2 = f[x0,x1,x2]$$
...
$$dn = f[x0,x1,...xn]$$

$$p(x) = f(x0) + f[x0,x1](x-x0) + f[x0,x1,x2](x-x1)(x-x0) + ... + f[x0,x1,...xn](x-xn-1)(x-xn-2)...(x-x0)$$

29

Exemplo

Obtenha o polinômio que interpola os pontos da tabela:

x	Ordem 0	Ordem 1	Ordem 2
-1	4		
		-3	
0	1		$\left(\frac{2}{3}\right)$
		-1	
2	-1		

$$p_2(x) = 4 + (x + 1)(-3) + (x + 1)(x - 0) \frac{2}{3}$$

$$p_2(x) = \frac{2}{3}x^2 - \frac{7}{3}x + 1$$

31

 $f[x_0,\,x_1,\,...,\,x_k] \text{ \'e sim\'etrica nos argumentos, ou seja, } f[x_0,\,x_1,\!...,\,x_k] = f[x_{j_0},\,x_{j_1},\!...,\,x_{j_k}]$ onde $j_0,\,j_1,\,...,\,j_k$ \'e qualquer permutação de 0, 1, ..., k.

Por exemplo,

$$f[x_0\,,x_1]\,=\,\frac{f[x_1]\,-\,f[x_0]}{x_1\,-\,x_0}\,=\,\frac{f[x_0]\,-\,f[x_1]}{x_0\,-\,x_1}\,=\,f[x_1\,,x_0]\,.$$

Para k = 2 teremos

$$f[x_0,\,x_1,\,x_2]=f[x_0,\,x_2,\,x_1]=f[x_1,\,x_0,\,x_2]=f[x_1,\,x_2,\,x_0]=f[x_2,\,x_0,\,x_1]=f[x_2,\,x_1,\,x_0].$$

FORMA DE NEWTON PARA O POLINÔMIO INTERPOLADOR

Seja f(x) contínua e com tantas derivadas contínuas quantas necessárias num intervalo [a, b].

Sejam
$$a = x_0 < x_1 < x_2 < ... < x_n = b, (n + 1)$$
 pontos.

Construiremos o polinômio $p_n(x)$ que interpola f(x) em x_0 , x_1 ,..., x_n . Iniciaremos a construção obtendo $p_0(x)$ que interpola f(x) em $x = x_0$. E assim, sucessivamente, construiremos $p_k(x)$ que interpola f(x) em x_0 , x_1 ,..., x_k , k = 0, 1,..., n.

Seja $p_0(x)$ o polinômio de grau 0 que interpola f(x) em $x = x_0$. Então, $p_0(x) = f(x_0) = f[x_0]$.

33

Temos que, para todo $x \in [a, b], x \neq x_0$

$$f[x_0\,,\,x]\,=\,\frac{f[x]\,-\,f[x_0]}{x\,-\,x_0}\,=\,\frac{f(x)\,-\,f(x_0)}{x\,-\,x_0}\,\Rightarrow\,$$

$$\Rightarrow$$
 $(x - x_0)f[x_0, x] = f(x) - f(x_0) \Rightarrow$

$$\Rightarrow f(x) = \underbrace{f(x_0)}_{p_0(x)} + \underbrace{(x - x_0) \ f[x_0, x]}_{E_0(x)}$$

$$\Rightarrow E_0(x) = f(x) - p_0(x) = (x - x_0)f[x_0, x].$$

 $E_0(x) = f(x) - p_0(x)$ é o erro cometido ao se aproximar f(x) por $p_0(x)$.

Seja agora construir $p_1(x)$, o polinômio de grau ≤ 1 que interpola f(x) em x_0 e x_1 . Temos que

$$\begin{split} f[x_0\,,x_1\,,x] &= f[x_1\,,x_0\,,x] = \frac{f[x_0\,,x] - f[x_1\,,x_0]}{x\,-\,x_1} = \\ &= \frac{\frac{f(x)\,-\,f(x_0)}{x\,-\,x_0} - f[x_1\,,x_0]}{(x\,-\,x_1)} = \frac{f(x)\,-\,f(x_0)\,-\,(x\,-\,x_0)f[x_1\,,x_0]}{(x\,-\,x_1)\,\,(x\,-\,x_0)} \\ \Rightarrow f[x_0\,,x_1\,,x] &= \frac{f(x)\,-\,f(x_0)\,-\,(x\,-\,x_0)\,\,f[x_1\,,x_0]}{(x\,-\,x_0)\,\,(x\,-\,x_1)} \Rightarrow \\ \Rightarrow f(x) &= \underbrace{f(x_0)\,+\,(x\,-\,x_0)\,\,f[x_1\,,x_0]}_{p_1(x)} + \underbrace{(x\,-\,x_0)\,\,(x\,-\,x_1)\,\,f[x_0\,,x_1\,,x]}_{E_1(x)} \,. \end{split}$$

35

Assim,

$$p_1(x) = \underbrace{f(x_0) + (x - x_0) f[x_0, x_1]}_{p_0(x)} e$$

$$E_1(x) = (x - x_0) (x - x_1) f[x_0, x_1, x].$$

Verificação:

 $p_1(x)$ interpola f(x) em x_0 e em x_1 ?

$$p_1(x_0) = f(x_0)$$

$$p_1(x_1) = f(x_0) + (x_1 - x_0) \frac{f(x_1) - f(x_0)}{x_1 - x_0} = f(x_1).$$

Ŋ.

Seja agora construir $p_2(x)$, o polinômio de grau ≤ 2 que interpola f(x) em x_0 , x_1 , x_2 . Temos que:

$$f[x_0,\,x_1,\,x_2,\,x]=f[x_2,\,x_1,\,x_0,\,x]=\frac{f[x_1\,,\,x_0\,,\,x]\,-\,f[x_2\,,\,x_1\,,\,x_0]}{x\,-\,x_2}=$$

$$=\frac{\frac{f[x_0,x]-f[x_1,x_0]}{x-x_1}-f[x_2,x_1,x_0]}{x-x_2}=$$

$$= \frac{\frac{f(x) - f(x_0)}{(x - x_0)} - f[x_1, x_0]}{\frac{(x - x_1)}{(x - x_2)}} - f[x_2, x_1, x_0] =$$

$$=\frac{f(x)\ -\ f(x_0)\ -\ (x\ -\ x_0)f[x_1\ ,x_0]\ -\ (x\ -\ x_0)\,(x\ -\ x_1)f[x_2\ ,x_1\ ,x_0]}{(x\ -\ x_0)\ (x\ -\ x_1)\ (x\ -\ x_2)}\Rightarrow$$

$$\Rightarrow f(x) = f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + (x - x_0)(x - x_1)(x - x_2)f[x_0, x_1, x_2, x].$$

37

Então,

$$p_2(x) = \underbrace{f(x_0) + (x - x_0)f[x_0, x_1]}_{p_1(x)} + \underbrace{(x - x_0)(x - x_1)f[x_0, x_1, x_2]}_{q_2(x)} e$$

$$E_2(x) = (x - x_0) (x - x_1) (x - x_2) f[x_0, x_1, x_2, x].$$

Observamos que, assim como para $p_1(x)$ e $p_2(x)$, $p_k(x) = p_{k-1}(x) + q_k(x)$, onde $q_k(x)$ é um polinômio de grau k.

Aplicando sucessivamente o mesmo raciocínio para

$$x_0, x_1, x_2, x_3;$$

 $x_0, x_1, x_2, ..., x_n,$

teremos a forma de Newton para o polinômio de grau \leq n que interpola f(x) em $x_0,...,x_n$:

$$\begin{split} p_n(x) &= f(x_0) + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x_0, x_1, x_2] + \dots \\ &+ \dots + (x - x_0) (x - x_1) \dots (x - x_{n-1}) f[x_0, x_1, \dots, x_n] \end{split}$$

e o erro é dado por

$$E_n(x) = (x - x_0) (x - x_1) ... (x - x_n) f[x_0, x_1, ..., x_n, x]$$

De fato, $p_n(x)$ interpola f(x) em x_0 , x_1 ,..., x_n , pois sendo $f(x) = p_n(x) + E_n(x)$, então, para todo nó x_k , k = 0,..., n, temos

$$\mathbf{f}(\mathbf{x}_k) \ = \ \mathbf{p}_{\mathbf{n}}(\mathbf{x}_k) \ + \underbrace{\mathbf{E}_{\mathbf{n}}(\mathbf{x}_k)}_{=\ \mathbf{0}} \ = \ \mathbf{p}_{\mathbf{n}}(\mathbf{x}_k).$$

39

Erro na Interpolação

Ao se aproximar uma função f(x) por um polinômio interpolador de grau menor ou igual a n comete-se um erro.

$$\mathsf{E}_\mathsf{n}(\mathsf{x}) = \mathsf{f}(\mathsf{x}) - \mathsf{p}_\mathsf{n}(\mathsf{x})$$

para todo x no intervalo $[x_0, x_n]$.

Exemplo – A figura abaixo ilustra o erro cometido no caso da interpolação linear. O mesmo polinômio interpola f_1 e f_2 nos pontos x_0 e x_1 .

41

Neste caso, o erro cometido é maior em f₁. Observa-se que o erro depende da concavidade das curvas.

O erro cometido ao se aproximar f(x) por um polinômio de interpolação de grau menor ou igual a n, está relacionado com a derivada de ordem (n+1) de f(x).

43

Teorema

Sejam $x_0 < x_1 < x_2 < ... < x_n$, (n + 1) pontos.

Seja f(x) com derivadas até ordem (n+1) para todo x pertencente ao intervalo $[x_0, x_n]$.

Seja $p_n(x)$ o polinômio interpolador de f(x) nos pontos $x_0, x_1, ..., x_n$.

Então, em qualquer ponto x pertencente ao intervalo $[x_0, x_n]$, o erro é dado por

$$E_n(x) = f(x) - p_n(x) = (x - x_0)(x - x_1)(x - x_2) \dots (x - x_n) \frac{f^{(n+1)}(\xi_x)}{(n+1)!}$$

onde $\xi_x \in (x_0, x_n)$.

Teorema

$$f[x_0^{},x_1^{},\ldots,x_n^{},x]=\frac{f^{(n+1)}(\xi_x^{})}{(n+1)!}\,,\ x\in (x_0^{},x_n^{})\ e\ \xi_x^{}\in (x_0^{},x_n^{}).$$

Na forma de Newton

$$p_n(x) = f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + ... + (x - x_0)(x - x_1)...(x - x_{n-1})f[x_0, x_1, ..., x_n]$$

e o erro é dado por

$$E_n(x) = (x - x_0) (x - x_1) ... (x - x_n) f[x_0, x_1, ..., x_n, x]$$

45

Limitante para o erro

A fórmula para o erro dada no teorema tem uso limitado na prática pois raramente se conhece $f^{n+1}(x)$ e o ponto ξ_x nunca é conhecido.

Sua importância é teórica uma vez que é utilizada na obtenção de estimativas do erro.

COROLÁRIO 1

Sob as hipóteses do Teorema, se $f^{(n+1)}(x)$ for contínua em $I = [x_0, x_n]$, podemos escrever a seguinte relação:

$$|E_n(x)| = |f(x) - p_n(x)| \le |(x - x_0)(x - x_1)...(x - x_n)| \frac{M_{n+1}}{(n+1)!}$$

onde
$$M_{n+1} = \max_{x \in I} |f^{(n+1)}(x)|$$
.

Se a função f(x) é dada na forma de tabela, o valor absoluto do erro só pode ser estimado.

47

Construindo a tabela de diferenças divididas até ordem n+1, pode-se usar o maior valor (em módulo) destas diferenças como uma aproximação para $\frac{M_{n+1}}{(n+1)!}$

no intervalo $[x_0, x_n]$. E neste caso,

 $\mid E_{n}(x)\mid \approx \mid (x-x_{0})\;(x-x_{1})\;.\;.\;.\;(x-x_{n})\mid (\text{m\'ax}\mid \text{diferenças divididas de ordem }n+1\mid).$

Exemplo

Seja f(x) dada na forma:

x	0.2	0.34	0.4	0.52	0.6	0.72
f(x)	0.16	0.22	0.27	0.29	0.32	0.37

- a) Obter f(0.47) usando um polinômio de grau 2.
- b) Dar uma estimativa para o erro.

49

ABELA DE D	IFERENÇAS			
x	Ordem 0	Ordem 1	Ordem 2	Ordem 3
0.2	0.16			
		0.4286		
0.34	0.22		2.0235	
		0.8333		-17.8963
$x_0 = 0.4$	0.27		-3.7033	_
		0.1667		18.2494)
$x_1 = 0.52$	0.29		1.0415	
		0.375		-2.6031
$x_2 = 0.6$	0.32		0.2085	
		0.4167		
0.72	0.37			

Deve-se escolher três pontos de interpolação. Como $0.47 \in (0.4, 0.52)$, dois pontos deverão ser 0.4 e 0.52. O outro tanto pode ser 0.34 como 0.6. Escolheremos $\mathbf{x}_0 = 0.4$, $\mathbf{x}_1 = 0.52$ e $\mathbf{x}_2 = 0.6$.

$$p_2(x) = f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1) f[x_0, x_1, x_2]$$

= 0.27 + (x - 0.4)0.1667 + (x-0.4) (x - 0.52) (1.0415).

- a) $p_2(0.47) = 0.2780 \approx f(0.47)$
- b) $|E(0.47)| \approx |(0.47 0.4)(0.47 0.52)(0.47 0.6)| |18.2492|$ $\approx 8.303 \times 10^{-3}$.

51

Escolha do grau do polinômio interpolador

Construindo a tabela de diferenças divididas e observando as diferenças divididas da função na vizinhança do ponto de interesse, as diferenças divididas de ordem k praticamente constantes ou as diferenças divididas de ordem k+1 variando em torno de zero, indicam que um polinômio interpolador de grau k será o que melhor aproximará a função na região considerada na tabela.

Exemplo

Considere f(x) tabelada abaixo.

x	1	1.01	1.02	1.03	1.04	1.05
$f(x) = \sqrt{x}$	1	1.005	1.01	1.0149	1.0198	1.0247

53

	Ordem 1	Ordem 2
1		
	0.5	
1.005		0
	0.5	
1.01		-0.5
	0.49	
1.0149		0
	0.49	
1.0198		0
	0.49	
1.0247	1	
	1.005 1.01 1.0149 1.0198	0.5 1.005 0.5 1.01 0.49 1.0149 0.49 1.0198

Alguns comentários sobre Interpolação

1) Ao interpolarmos um polinômio de grau n por um polinômio de grau maior ou igual a n obteremos o polinômio original.

55

2) Se formos usar k+1 pontos de interpolação (polinômio de grau menor ou igual a k) e se tivermos possibilidade de escolha destes pontos, dados "x", devemos escolher x₀, x₁, ..., x_k de tal forma que "x" fique o mais central possível no intervalo [x₀, x_n].