L. Lancia, G. Salillari Cloud Computing Master Degree in Data Science Sapienza Università di Roma

Facebook Tao

Distributed Data Store for the Social Graph

L. Lancia & G. Salillari 1/1

Table of Contents

L. Lancia & G. Salillari 2/1

Introduction

What is TAO?

TAO is a geographically distribute store

- deployed at Facebook
- · with efficient and timely access to social graph
- using a fixed set of query
- · replacing memcache
- running on thousands of machines
- provide access to many PB of data
- process a billion reads ad millions of writes each second!

L. Lancia & G. Salillari 3 / 1

The social graph

Facebook has more than 1 billion active user

- · recording relationships,
- sharing interests,
- · uploading pictures and ...

The user experience of Fb comes from rapid, efficient and scalable access to the social graph

L. Lancia & G. Salillari 4 / 1

What's behind an entry in yours Fb page?

A single Fb page aggregate and filter hundreds of items from the social graph.

L. Lancia & G. Salillari 5/1

L. Lancia & G. Salillari 6/1

Before Tao

- Facebook was storing the social graph to MySql
 - · Quering it from PHP
 - · Storing result in memcache

Over time Fb deprecated direct access to MySQL in favor of a graph (associations, nodes) abstraction

L. Lancia & G. Salillari 7/1

Limits

- Operations on lists are inefficient in memcache (update whole list)
- Complexity on clients managing cache
- · Hard to offer read-after-write consistency

Also they want to access social graph from non-PHP services

L. Lancia & G. Salillari 8 / 1

- · Efficiency at Scale
- Low read latency
- Timeliness of writes
- High read availability

L. Lancia & G. Salillari 9 / 1

- · Efficiency at Scale
- Low read latency
- Timeliness of writes
- · High read availability

L. Lancia & G. Salillari 9/1

- · Efficiency at Scale
- Low read latency
- · Timeliness of writes
- High read availability

L. Lancia & G. Salillari 9/1

- · Efficiency at Scale
- Low read latency
- · Timeliness of writes
- · High read availability

L. Lancia & G. Salillari 9 / 1

Tao Data Model

T.A.O. stands for "The Associations and Objects"

L. Lancia & G. Salillari 10 / 1

Objects

- Typed nodes (type is denoted by otype)
- Identified by 64-bit integers (unique)
- Contains data in the form of key-value pairs
- Models users and repeatable actions (e.g. comments)

API for objects:

- Allocate new object
- retrieve
- update
- delete

L. Lancia & G. Salillari 11 / 1

Objects

- Typed nodes (type is denoted by otype)
- Identified by 64-bit integers (unique)
- Contains data in the form of key-value pairs
- Models users and repeatable actions (e.g. comments)

API for objects:

- Allocate new object
- retrieve
- update
- delete

L. Lancia & G. Salillari 11 / 1

Associations

- Typed directed edges between objects (type is denoted by atype)
- Identified by source object id1, atype and destination object id2
- Contains data in the form of key-value pairs.
- Contains a 32-bit time field.
- Models actions that happen at most once or records state transition (e.g. like)
- Often inverse association is also meaningful (eg like and liked by).

L. Lancia & G. Salillari 12 / 1

Associations API

- Add new
- Delete
- Change type

Also inverse association is created or modified automatically

L. Lancia & G. Salillari 13 / 1

Querying TAO

TAO's associations queries are organized around associations list

```
• assoc_get(id1,atype, id2set, high?, low?)
```

- assoc_count(id1,atype)
- assoc_range(id1, atype, pos, limit)
- assoc_time_range(id1,atype, high, low, limit)

Query results are bounded to 6000 results

L. Lancia & G. Salillari 14 / 1

Architecture

Before Tao

After Tac

L. Lancia & G. Salillari 15 / 1

Architecture

Before Tao

After Tao

L. Lancia & G. Salillari 15 / 1

Storage Layer

- Object and Associations are stored in MySql (before & with TAO)
- TAO API is mapped to a small set of SQL queries
- A single MySql server can't handle TAO volumes of data
 - · We divide data into logical shards
 - shards are mapped to db
 - different servers are responsible for multiple shards
 - mapping is adjusted for load balancing
- Object are bounded to a shard for their entire lifetime
- Associations are stored in the shard of its id1

L. Lancia & G. Salillari 16 / 1

Cache Layer

TAO cache

- · contains: Objects, Associations, Associations counts
- implement the complete API for clients
- handles all the communication with storage layer
- it's filled on demand end evict the least recently used items
- Understand the semantic of their contents

It consists of multiple servers forming a tier

- Request are forwarded to correct server by a sharding scheme as dbs
- For cache miss and write request, the server contacts other caches or db

L. Lancia & G. Salillari 17 / 1

Yet Another caching layer

Problem: A single caching layer divided into a *tier* is susceptible to *hot spot*

Solution: Split the caching layer in two levels

- A Leader tier
- Multiple Followers tiers

L. Lancia & G. Salillari 18 / 1

Yet Another caching layer

Problem: A single caching layer divided into a *tier* is susceptible to *hot spot*

Solution: Split the caching layer in two levels

- A Leader tier
- · Multiple Followers tiers

L. Lancia & G. Salillari 18 / 1

L. Lancia & G. Salillari 19 / 1

- Followers forward all writes and read cache misses to the leader tier
- Leader sends async cache maintenance messages to follower tier
 - Eventually Consistent
- If a follower issues a write, the follower's cache is updated synchronously
- Each update message has a version number
- Leader serializes writes

L. Lancia & G. Salillari 20 / 1

L. Lancia & G. Salillari 21/1

L. Lancia & G. Salillari 21/1

Scaling Geographically

Problem: Network latencies are not low in a multi Data Centers environment

Considering that read misses are more common than writes in the follower tier

Solution: Handles read cache miss locally

L. Lancia & G. Salillari 22 /

Scaling Geographically

Problem: Network latencies are not low in a multi Data Centers environment

Considering that read misses are more common than writes in the follower tier

Solution: Handles read cache miss locally

L. Lancia & G. Salillari 22 / 1

Scaling Geographically

Problem: Network latencies are not low in a multi Data Centers environment

Considering that read misses are more common than writes in the follower tier

Solution: Handles read cache miss locally

L. Lancia & G. Salillari 22 / 1

Master & Slave Regions

Fb cluster together DC in regions (with low intra region latency)

- Each region have a full copy of the social graph
- Region are defined master or slave for each shard
- Followers send read misses and write requests to the local leader
- Local leaders service read misses locally
- Slave leaders forward writes to the master shard
- The slave leader will update it's cache ahead of the async updates to the persistent store

L. Lancia & G. Salillari 23 / 1

Overall Architecture

L. Lancia & G. Salillari 24 / 1

Implementation

To achieve performance and storage efficiency Fb have implemented some optimizations to servers and DBMS's.

L. Lancia & G. Salillari 25 / 1

Caching Servers

- · Memory is partitioned into arenas by association type
 - This mitigates the issues of poorly behaved association types
 - They can also change the lifetime for important associations
- Small items with fixed size have a lot of pointer overhead
 - They use a directly mapped 8-way LRU cache
 - Used for association counts

L. Lancia & G. Salillari 26 / 1

MySql Mapping

We divided the space of objects and associations into *shards*. Each *shard*:

- is assigned to a logical DB
- there is a table for objects and a table for associations
- all field of object are serialized in a single data column
- object of different size can be stored in the same column

Exceptions:

- Some object can benefit from being stored in a different table
- · Associations counts are stored in a separate table

L. Lancia & G. Salillari 27 / 1

Cache Sharding

Shards are mapped to chache server using consistent hashing (like dynamo)

This can lead to *imbalances*, so TAO use shard cloning to rebalance the load

There are also *popular object* that can be queried a lot more often than others.

TAO says to the clients to cache them these objects

L. Lancia & G. Salillari 28 / 1

High-Degree Objects

Some object have a lot of associations (remember there were a limit of 6000?)

- TAO can't cache all associations list
- Requests will always end to Db

SO

- For assoc_count, the edge direction is chosen using the lower degree between source and destination object
- For assoc_get query, only associations whose time > object's creation time

L. Lancia & G. Salillari 29 /

Consistency

Under normal operation, TAO is eventually consistent

Replication lag usually < 1"

Race conditions are resolved by using version numbers

In special "critical" situation a read can be forwarded to database to ensure to read from a consistent source of truth. (Useful for auth procedures)

Read after write consistency cannot be ensured during fails for a short time

L. Lancia & G. Salillari 30 / 1

Detecting Failures

Each TAO server stores per-destination time-outs

- if several time-outs occurs, hosts are marked as down
- subsequent requests are aborted
- Tao reacts trying to route around failures (favouring availability over consistency)
- Down hosts are actively probed to check if recover

L. Lancia & G. Salillari 31 / 1

Handling Failures

Database Fail Db can crash or be off-line for maintenance.

- If master db is down, a slave is promoted to new master
- If a slave db is down, cache miss are redirected to TAO leaders in master region

Leader Fail Followers re-route requests around it

- Read miss goes directly to db
- Write are routed to a random member of the leader tier

L. Lancia & G. Salillari 32 / 1

Handling Failures (2)

Invalidation Fail Leader can't contact a follower during a cache invalidation message

- Leader queues message
- If Leader also crash message are lost so new leader send bulk invalidation

Follower Fail Followers in others tiers share the responsibility of it's shard

Tao client have a primary tier and a backup tier

L. Lancia & G. Salillari 33 / 1

Workload

read requests	99.8 %	write requests	0.2 %
assoc_get	15.7 %	assoc_add	52.5 %
assoc_range	40.9 %	assoc_del	8.3 %
assoc_time_range	2.8 %	assoc_change_type	0.9 %
assoc_count	11.7 %	obj_add	16.5 %
obj_get	28.9 %	obj_update	20.7 %
		obj_delete	2.0 %

Frequencies for client request

L. Lancia & G. Salillari 34 / 1

Availability

Under real workload, over a period of 90 days, the **fraction of failed TAO queries** is:

$$4.9 \times 10^{-6}$$

L. Lancia & G. Salillari 35 / 1

Followers Capacity

L. Lancia & G. Salillari 36 / 1

Hit Rates and latency

	hit lat. (msec)		miss lat. (msec)			
operation	50%	avg	99%	50%	avg	99%
assoc_count	1.1	2.5	28.9	5.0	26.2	186.8
assoc_get	1.0	2.4	25.9	5.8	14.5	143.1
assoc_range	1.1	2.3	24.8	5.4	11.2	93.6
assoc_time_range	1.3	3.2	32.8	5.8	11.9	47.2
obj_get	1.0	2.4	27.0	8.2	75.3	186.4

.. Lancia & G. Salillari 37 / 1

Write Latency

L. Lancia & G. Salillari 38 / 1

Summarizing

Read latency

- Separate cache from database
- Graph aware cache

Efficiency at scale

Subdividing Data Centers

Write timeliness

- · Write trough cache
- Async replication

Read availability

· Multiple data sources

L. Lancia & G. Salillari 39 / 1

Thank You