

🥵 혼동 행렬(confusion matrix) 또는 정오분류표

- ▲ 혼동 행렬은 일반적으로 분류 분석 모델의 예측 결과인 분류 범주 평가에 사용됨
 - ◆예측 결과 맞은 것과 틀린 것을 모두 분석하기 위해 혼동 행렬을 이용함
 - > 혼동 행렬은 아래와 같이 일종의 분할표(contingency table)임

		예측 조건(Predi	cted condition)
	전체 모집단 (Total population)	예측 조건 긍정 (Predicted Condition positive)	예측 조건 부정 (Predicted Condition negative)
실제 조건	조건 긍정 (Condition positive)	참 긍정 (True Positive, TP), 검정력(Power)	거짓 부정 (False Negative, FN), 제2종 오류(Type II Error)
(True Condition)	조건 부정 (Condition negative)	거짓 긍정 (False Positive, FP), 제1종 오류(Type I Error)	참 부정 (True Negative, TN)

01 | 혼동 행렬

▲ n개의 계층이 있는 문제의 혼동 행렬은 세로 열에는 예측한 계층, 가로 행에는 실제 계층이 들어가는 n x n 행렬임(Wikipedia, "Confusion matrix" 참조)

◆ 혼동 행렬은 분류자의 결정을 떼어내어 이 계층이 다른 계층과 어떻게 분류되는지를 명확히 보여줌

		예측 조건(Predicted condition)	
	전체 모집단 (Total population)	예측 조건 긍정 (Predicted Condition positive)	예측 조건 부정 (Predicted Condition negative)
실제 조건 (True Condition)	조건 긍정 (Condition positive)	참 긍정 (True Positive, TP), 검정력(Power)	거짓 부정 (False Negative, FN), 제2종 오류(Type II Error)
	조건 부정 (Condition negative)	거짓 긍정 (False Positive, FP), 제1종 오류(Type I Error)	참 부정 (True Negative, TN)

01 | 혼동 행렬

- ▲ 혼동 행렬(confusion matrix)은 예측한 것 중에서 얼마나 잘 맞았는지 검증할 수 있음
 - ◆ 또는 실제 타겟에 대해서 얼마나 잘 맞았는지 다각도로 성능을 검증할 수 있음
 - ◆네 가지 개념(TP, FP, TN, FN)를 기반으로 정밀도(precision), 재현율(recall), F1-점수(f1-score) 등의 평가 점수를 만들 수 있음

		예측 조건(Predi	cted condition)
	전체 모집단 (Total population)	예측 조건 긍정 (Predicted Condition positive)	예측 조건 부정 (Predicted Condition negative)
실제 조건	조건 긍정 (Condition positive)	참 긍정 (True Positive, TP), 검정력(Power)	거짓 부정 (False Negative, FN), 제2종 오류(Type II Error)
(True Condition)	조건 부정 (Condition negative)	거짓 긍정 (False Positive, FP), 제1종 오류(Type I Error)	참 부정 (True Negative, TN)

01 | 혼동 행렬

▲ 혼동 행렬에서 올바른 양성과 음성(진양성과 진음성)이 올바른 판단임

- ◆잘못된 양성과 음성(위양성과 위음성)이 분류자가 잘못 분류한 것임
 - > TP(True Positive): 실제값과 예측값 모두 True인 빈도(올바른 양성, 참양성 또는 진양성)
 - > TN(True Negative): 실제값과 예측값 모두 False 빈도(올바른 음성, 참음성 또는 진음성)
 - > FP(False Positive): 실제값은 False이나 True로 예측한 빈도(잘못된 양성, 거짓양성 또는 위양성)
 - > FN(False Negative): 실제값은 True이나 False로 예측한 빈도(잘못된 음성, 거짓음성 또는 위음성)

		예측 조건(Predi	cted condition)
	전체 모집단 (Total population)	예측 조건 긍정 (Predicted Condition positive)	예측 조건 부정 (Predicted Condition negative)
실제 조건	조건 긍정 (Condition positive)	참 긍정 (True Positive, TP), 검정력(Power)	거짓 부정 (False Negative, FN), 제2종 오류(Type II Error)
(True Condition)	조건 부정 (Condition negative)	거짓 긍정 (False Positive, FP), 제1종 오류(Type I Error)	참 부정 (True Negative, TN)

▲ 다음은 아이리스 데이터셋으로 다중분류의 예임

- ◆ 아이리스 데이터는 다중 분류(multi label classification)과제이기 때문에 4가지 개념(TP, FP, TN, FN)으로 표현할 수가 없음
 - > setosa, versicolor, virginica를 각각 이진분류 과제로 생각하고 3개씩 지표를 만들 것임

전체 모집단		실제값 (True value)			
전세 포함		setosa	versicolor	virginica	
	setosa	실제 setosa이고 setosa로 예측한 경우	실제 versicolor이고 setosa로 예측한 경우	실제 virginica이고 Setosa로 예측한 경우	
예측 값 (Predicted value)	versicolor	실제 setosa이고 versicolor로 예측한 경우	실제 versicolor이고 versicolor 로 예측한 경우	실제 virginica이고 versicolor로 예측한 경우	
	virginica	실제 setosa이고 virginica로 예측한 경우	실제 versicolor이고 virginica로 예측한 경우	실제 virginica이고 virginica로 예측한 경우	

02 | 좋은 평가방법이란?

좋은 평가방법이란?

- ▲ 기계학습에 "공짜 점심은 없다" 라는 말이 있음
 - ◆모든 상황에 최적화된 좋은 모델은 없다는 말임
 - > 어떤 데이터에서 좋았던 알고리즘이 다른 데이터에서 성능이 떨어지는 일은 부지기수임
 - > 평가방법 역시 마찬가지임

02 | 좋은 평가방법이란?

- ▲ 정확도(Accuracy)나 F1-점수(f1-score) 처럼 범용적으로 사용되는 수치는 있음
 - ◆ 이 수치가 높았던 모델이 실제 데이터에서 어떤 작용을 할 지는 알 수 없음
 - > 이러한 이유로 많은 수치를 측정해보고 가장 적정한 평가방법을 선택함
 - 또는, 평균적으로 높게 평가되는 모델을 찾아서 하는 것이 좋은 방법이 될 수 있음

🔇 모델 평가

- ▲ 좋은 모델은 어떤 모델이고, 모델 평가를 위한 과적합(overfitting)문제와 모델의 성능은 어떻게 평가해야 할까?
 - ◆데이터 분석가와 그 외 관련자들은 데이터 과학이 애플리케이션의 가치를 올리기 위해서는데이터 마이닝 목적이 무엇인지를 신중히 생각할 필요가 있음
 - > 모든 애플리케이션은 서로 다르기(상이한 특징) 때문에 모델을 평가하는 방법을 한가지로 종합적으로 설명하기는 어려움이 있음

"모델 평가하는 방법을 한가지로 종합적인 설명은 어려움 ["]

- ▲ 분류(Classification), 회귀(Regression) 문제 등 다양한 문제에 대해 모두 잘 작동하는 단 하나의 평가 척도를 제공하기는 거의 불가능함
 - ◆ 그러나, 평가하는 동안 발생하는 문제나 이 문제를 처리하는 기법에는 어느 정도 공통점이 있음

다양한 문제에 모두 잘 동작하는 평가 척도는 없음

- ▲ 모델의 과적합 문제를 해결하기 위해 데이터를 추출하는 방법으로 홀드아웃(hold-out), 교차검증(cross-validation), 붓스트랩(bootstrapping)등의 방법이 있음
 - ◆ 아래의 표는 모델 성능 평가를 위한 고려 사항임

모델 성능 평가를 위한 고려 사항

성능 평가 기준	성능 측정 방법	데이터 추출 방법
일반화의 가능성효율성예측과 분류의 정확성	• 혼동 행렬 (Confusion matrix)	 홀드아웃 (hold-out) 교차검증 (cross-validation) 붓스트랩 (bootstrapping)

- ▲ 모델 평가는 다음과 같이 모델을 비교 분석하는 과정임
 - ◆예측 및 분류를 위해 구축된 모델이 임의의 모델(50%의 확률) 보다 더 우수한 분류 성과를 보이는지
 - ◆ 서로 다른 모델들 중 어느 것이 가장 우수한 예측 및 분류 성과를 보유하고 있는지
 - ◆ 따라서, 데이터 마이닝의 목적 및 데이터의 특성에 따라 가장 적절한 모델을 선택하기 위한 성과 평가의 기준이 필요함
 - > 모델 평가 기준은 다음과 같이 구분함
 - 1 일반화의 가능성
 - 2 효율성
 - ③ 예측과 분류의 정확성

- 1 일반화의 가능성
 - > 같은 모집단내의 다른 데이터에 적용하는 경우에도 안정적인 결과를 제공하는 것을 의미함
 - > 데이터를 확장하여 적용할 수 있는지에 대한 평가기준임
- 2 효율성
 - > 모델이 얼마나 효과적으로 구축되었는지 평가함
 - > 적은 입력변수를 필요로 할수록 효율성이 높다고 할 수 있음
- ③ 예측과 분류의 정확성
 - > 구축된 모델의 정확성 측면에서 평가하는 것으로 안정적이고 효과적인 모델을 구축하였다고 하더라도 실제 문제에 적용했을 때 정확하지 못한 결과만을 양산한다면 그 모델은 의미를 가질 수 없음

- ▲ 정확도(accuracy)의 함정
 - ◆ 정확도 만으로는 모델을 올바르게 평가할 수 없는 한계가 있음
 - > 만약, 테스트셋에 48개의 setosa와 1개의 versicolor 와 1개의 virginica가 있다고 가정
 - 이 테스트셋을 이용해 평가할 경우 정확도가 96%가 되는 문제가 있음
 - 하지만, 이 모델이 성능이 좋아서라고는 결코 말할 수 없을 것임

$$Accuracy = \frac{setosa}{setosa + versicolor + virginica} = \frac{48}{48 + 1 + 1} = \frac{48}{50} = 0.96$$

- ▲ 단순히 분류 정확도를 척도로 사용하는데 있어 문제점은 위양성(FP)와 위음성(FN) 오류를 구분하지 않는다는 점임
 - ◆ FP: 실제값은 False이나 True로 예측한 빈도(잘못된 양성, 거짓양성 또는 위양성)
 - ◆ FN : 실제값은 True이나 False로 예측한 빈도(잘못된 음성, 거짓음성 또는 위음성)
 - ◆ 단지 오류 횟수만 계산함으로써 두 에러가 똑같다고 생각함
 - > 실제 모델을 적용할 때 분류 결과가 미치는 심각성이 서로 다르기 때문에 이런 오류에 따른 비용은 차이가 많이 나는 것이 보통임

		예측 조건(Predi	cted condition)
	전체 모집단 (Total population)	예측 조건 긍정 (Predicted Condition positive)	예측 조건 부정 (Predicted Condition negative)
실제 조건	조건 긍정 (Condition positive)	참 긍정 (True Positive, TP), 검정력(Power)	거짓 부정 (False Negative, FN), 제2종 오류(Type II Error)
(True Condition)	조건 부정 (Condition negative)	거짓 긍정 (False Positive, FP), 제1종 오류(Type I Error)	참 부정 (True Negative, TN)

- ▲ 예를 들어 의료진단 분야에서 실제로 암에 걸리지 않은 환자에게 암에 걸렸다고 오진하는 경우(FP(위양성) 오류)를 생각해 보자.
 - ◆ 결과적으로 환자는 검진을 더 받아서 초기에 나온 암 진단이 오류가 있음을 밝혀낼 것임
 - ◆ 반대로, 암에 걸린 환자가 암에 걸리지 않았다고 진단하는 경우(FN(위음성) 오류)를 생각해 보자.
 - > 암에 걸린 환자는 암을 조기에 발견할 기회를 놓쳐 훨씬 더 심각한 결과를 초래함

		예측 조건(Predi	cted condition)
	전체 모집단 (Total population)	예측 조건 긍정 (Predicted Condition positive)	예측 조건 부정 (Predicted Condition negative)
실제 조건	조건 긍정 (Condition positive)	참 긍정 (True Positive, TP), 검정력(Power)	거짓 부정 (False Negative, FN), 제2종 오류(Type II Error)
(True Condition)	조건 부정 (Condition negative)	거짓 긍정 (False Positive, FP), 제1종 오류(Type I Error)	참 부정 (True Negative, TN)

- ▲ 정확도(Accuracy)
 - ◆정확도는 정분류율(recognition rate)이라고도 부름
 - > 전체 관측치 중 실제값과 예측치가 일치한 정도를 나타냄
 - 범주의 분포가 균형을 이룰 때 효과적인 평가지표임
 - 비율이 높을수록 좋은 모형임

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

			예측 조건(Predi	cted condition)
		전체 모집단 (Total population)	예측 조건 긍정 (Predicted Condition positive)	예측 조건 부정 (Predicted Condition negative)
실제 조건 (True Condition)		조건 긍정 (Condition positive)	참 긍정 (True Positive, TP), 검정력(Power)	거짓 부정 (False Negative, FN), 제2종 오류(Type II Error)
	조건 부정 (Condition negative)	거짓 긍정 (False Positive, FP), 제1종 오류(Type I Error)	참 부정 (True Negative, TN)	

- ▲ 1-정확도(Accuracy)
 - ◆1 정확도는 오분류율(error rate, misclassification rate)이라고도 부름
 - > 제대로 예측하지 못한 관측치를 평가하는 지표임
 - 전체 관측치 중 실제값과 예측치가 다른 정도를 나타냄

$$Error\,rate = \frac{FP + FN}{TP + FP + FN + TN}$$

		예측 조건(Predicted condition)	
	전체 모집단 (Total population)	예측 조건 긍정 (Predicted Condition positive)	예측 조건 부정 (Predicted Condition negative)
실제 조건 (True Condition)	조건 긍정 (Condition positive)	참 긍정 (True Positive, TP), 검정력(Power)	거짓 부정 (False Negative, FN), 제2종 오류(Type II Error)
	조건 부정 (Condition negative)	거짓 긍정 (False Positive, FP), 제1종 오류(Type I Error)	참 부정 (True Negative, TN)

- ▲ 정밀도(Precision)
 - ◆정밀도(Precision)는 예측한 클래스 중에 실제로 맞은 비율임
 - > 즉, 정밀도는 긍정으로 예측한 것 중 실제로 긍정이 얼마나 되는지를 보여주는 지표로써 얼마나 정밀한 지표 측정인지를 나타낼 수 있음

$$Precision = \frac{TP}{TP + FP}$$

		예측 조건(Predi	cted condition)
	전체 모집단 (Total population)	예측 조건 긍정 (Predicted Condition positive)	예측 조건 부정 (Predicted Condition negative)
실제 조건 (True Condition)	조건 긍정 (Condition positive)	참 긍정 (True Positive, TP), 검정력(Power)	거짓 부정 (False Negative, FN), 제2종 오류(Type II Error)
	조건 부정 (Condition negative)	거짓 긍정 (False Positive, FP), 제1종 오류(Type I Error)	참 부정 (True Negative, TN)

- ♣ 민감도(Sensitivity) 또는 재현율(Recall)
 - ◆ 민감도는 진양성율(TP Rate)이라고도 부름
 - > 실제로 양성 객체에 대해 제대로 판단한 경우의 비율임
 - 실제값이 True인 관측치 중 예측치가 True인 정도
 - TPR(True Positive Rate)는 AUC(Area Under the Curve)를 구할 때 사용되는 척도임

$$TP \ Rate = \frac{TP}{TP + FN}$$

		예측 조건(Predi	cted condition)
	전체 모집단 (Total population)	예측 조건 긍정 (Predicted Condition positive)	예측 조건 부정 (Predicted Condition negative)
실제 조건 (True Condition)	조건 긍정 (Condition positive)	참 긍정 (True Positive, TP), 검정력(Power)	거짓 부정 (False Negative, FN), 제2종 오류(Type II Error)
	조건 부정 (Condition negative)	거짓 긍정 (False Positive, FP), 제1종 오류(Type I Error)	참 부정 (True Negative, TN)

- ▲馬0I도(Specificity)
 - ◆특이도는 진음성율(TN Rate) 이라고도 부름
 - > 실제로 음성 객체에 대해 제대로 판단한 경우의 비율임
 - 실제값이 False인 관측치 중 예측치가 False인 정도

$$TN Rate = \frac{TN}{FP + TN}$$

		예측 조건(Predi	cted condition)
	전체 모집단 (Total population)	예측 조건 긍정 (Predicted Condition positive)	예측 조건 부정 (Predicted Condition negative)
실제 조건	조건 긍정 (Condition positive)	참 긍정 (True Positive, TP), 검정력(Power)	거짓 부정 (False Negative, FN), 제2종 오류(Type II Error)
(True Condition)	조건 부정 (Condition negative)	거짓 긍정 (False Positive, FP), 제1종 오류(Type I Error)	참 부정 (True Negative, TN)

▲1-특0I도(Specificity)

- ◆1 특이도는 위양성율(FP Rate) 이라고도 부름
 - > 실제로 음성 객체에 대해 잘못 판단한 경우의 비율임
 - 실제값이 False인 관측치 중 예측치가 True인 정도
 - 제1종 오류(Type I Error)

$$FP Rate = \frac{FP}{FP + TN}$$

			예측 조건(Predicted condition)	
		전체 모집단 (Total population)	예측 조건 긍정 (Predicted Condition positive)	예측 조건 부정 (Predicted Condition negative)
	실제 조건 (True Condition)	조건 긍정 (Condition positive)	참 긍정 (True Positive, TP), 검정력(Power)	거짓 부정 (False Negative, FN), 제2종 오류(Type II Error)
		조건 부정 (Condition negative)	거짓 긍정 (False Positive, FP), 제1종 오류(Type I Error)	참 부정 (True Negative, TN)

▲ 위음성율(FN Rate)

- ◆ 실제로 양성 객체에 대해 잘못 판단한 경우의 비율임
 - > 실제값이 True인 관측치 중 예측치가 False인 정도
 - 제2종 오류(Type II Error)

$$FN Rate = \frac{FN}{TP + FN}$$

		예측 조건(Predicted condition)	
	전체 모집단 (Total population)	예측 조건 긍정 (Predicted Condition positive)	예측 조건 부정 (Predicted Condition negative)
실제 조건	조건 긍정 (Condition positive)	참 긍정 (True Positive, TP), 검정력(Power)	거짓 부정 (False Negative, FN), 제2종 오류(Type II Error)
(True Condition)	조건 부정 (Condition negative)	거짓 긍정 (False Positive, FP), 제1종 오류(Type I Error)	참 부정 (True Negative, TN)

- ♣F-점수(F-score)
 - ◆정밀도와 재현율(민감도)의 가중조화평균(weight harmonic average)을 F점수(F-score)라고함
 - > 정밀도에 주어지는 가중치를 베타(beta)라고 함

$$F_{\beta} = \frac{(1 + \beta^2) \times Precision \times Recall}{(\beta^2 \times Precision) + Recall}$$

>F1-점수(f1-score)는 정밀도와 재현율(민감도)의 조화평균을 나타내며 정밀도와 재현율(민감도)에 같은 가중치를 부여하여 평균하게 됨

$$F_1 - Score = 2 \times \frac{1}{\frac{1}{Precision} + \frac{1}{Recall}} = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

- ◆F1-점수는 일반적으로 불균형 분류 문제에서 평가척도로 주로 사용됨
 - > 데이터가 불균형한 상태에서 정확도로 성능을 평가하는 경우 데이터 편향이 너무 크게 나타나 올바른 성능을 측정하기 어려움
 - 이런 경우에 F1-점수를 평가척도로 사용함
 - 불균형 데이터 상태에 F1-점수를 이용하는 이유는 재현율(또는 민감도)와 정밀도로 조화평균을 구하여 평가척도를 구성했기 때문임

▲ Classification_Report

◆ 각각의 클래스를 양성(positive)클래스로 보았을 때의 정밀도, 재현율, F1점수를 각각 구하고 그 평균값으로 전체 모형의 성능을 평가함

> support: 실제 타겟 클래스의 개수

> macro : 단순평균

> weighted : 각 클래스에 속하는 표본의 갯수로 가중평균

> accuracy : 정확도(전체 학습데이터의 개수에서 각 클래스에서 자신의 클래스를 정확하게 맞춘 개수의 비율)

	precision	recall	f1-score	support
setosa versicolor virginica	1.00 0.68 0.83	0.93 0.87 0.67	0.97 0.76 0.74	15 15 15
accuracy macro avg weighted avg	0.84 0.84	0.82 0.82	0.82 0.82 0.82	45 45 45

Classification Report 예시

🔇 회귀 모델 평가 지표

- ▲ 평균 제곱근 오차 (Root Mean Square Error, RMSE)
 - ◆모델에 의해 예측된 값과 실제 환경에서 관찰되는 값의 차이를 다룰 때 많이 사용하는 측도임
 - > 모델의 정밀도(precision)를 표현하는데 적합함
 - > MSE(Mean Square Error)에 루트 씌워서 에러를 제곱해서 생기는 값의 왜곡을 줄임
 - > 값이 낮을수록 좋음
 - > 평균제곱근오차를 구하는 수식은 다음과 같음
 - \blacksquare 여기서 y_i 는 실제값이고, \hat{y}_i 는 예측치임

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2}$$

- ▲ 평균 절대 오차 (Mean Absolute Error, MAE)
 - ◆ 실제 정답 값과 예측 값의 차이를 절댓값으로 변환한 뒤 합산하여 평균을 구함
 - > 특이값이 많은 경우에 주로 사용됨
 - > 값이 낮을수록 좋음
 - > 평균절대오차를 구하는 수식은 다음과 같음
 - 여기서 y_i 는 실제값이고, \hat{y}_i 는 예측치임

$$MAE = \frac{\sum_{i=1}^{n} |y_i - \widehat{y}_i|}{n}$$

- ▲ 평균 제곱 오차 (Mean Squared Error, MSE)
 - ◆ 실제 정답 값과 예측 값의 차이를 제곱한 뒤 평균을 구함
 - > 값이 낮을수록 좋음

- > 평균제곱오차를 구하는 수식은 다음과 같음
 - 여기서 y_i 는 실제값이고, \hat{y}_i 는 예측치임

$$MSE = \frac{\sum_{i=1}^{n} (y_i - \widehat{y}_i)^2}{n}$$

05 회 기모델 평가 지표

- ▲ 평균 절대 비율 오차 (Mean Absolute Percentage Error, MAPE)
 - ◆ MAE(Mean Absolute Error)를 비율 퍼센트로 표현하여 단위(scale) 의존적 에러의 문제점을 개선함
 - > 값이 낮을수록 좋음
 - > 평균 절대 비율 오차를 구하는 수식은 다음과 같음
 - 여기서 y_i 는 실제값이고, \hat{y}_i 는 예측치임

$$MAPE = \frac{100}{n} \sum_{i=1}^{n} \left| \frac{y_i - \widehat{y}_i}{y_i} \right|$$

- ▲ 결정 계수 (R-squared; R²로 표기)
 - ◆ 다른 지표(MAE, MSE, RMSE)들은 모델마다 값이 다르기 때문에 절댓값만 보고 성능을 판단하기 어려움
 - > 결정 계수는 상대적인 성능을 나타내어 비교가 쉬움
 - > 실제 값의 분산 대비 예측값의 분산 비율을 의미함
 - > 1에 가까울 수록 좋음

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

$$SST(SS_{yy}) = \sum_{i=1}^{n} (y_i - \overline{y})^2$$
 $SSR = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$ $SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$