પ્રશ્ન 1(અ) [3 ગુણ]

Information અને Knowledge વચ્ચેનો તફાવત આપો.

જવાબ:

પાસાં	Information	Knowledge
વ્યાખ્યા	કાચા તથ્યો અને આંકડાઓ	અનુભવ સાથે પ્રક્રિયા કરેલી માહિતી
પ્રક્રિયા	ગોઠવેલો ડેટા	અનુભવ સાથે જોડાયેલી માહિતી
ઉપયોગ	સહેલાઈથી શેર કરી શકાય	અર્થઘટન અને સંદર્ભ જરૂરી

• Information: કાચા તથ્યો, ડેટા અને આંકડાઓ કે જેની પ્રક્રિયા કરી શકાય

• Knowledge: અનુભવ અને શિક્ષણ દ્વારા પ્રાપ્ત સમજ

મેમરી ટ્રીક: "Information માહિતી આપે, Knowledge જ્ઞાન આપે"

પ્રશ્ન 1(બ) [4 ગુણ]

OS ના કાર્યો સમજાવો.

જવાબ:

ઓપરેટિંગ સિસ્ટમના મુખ્ય કાર્યો:

รเน้	વર્ણન
Process Management	પ્રોગ્રામ્સના અમલીકરણને નિયંત્રિત કરે
Memory Management	મેમરી ફાળવણી અને મુક્તિ
File Management	ફાઇલોનું સંગઠન અને વ્યવસ્થાપન
Device Management	ઇનપુટ/આઉટપુટ ઉપકરણોનું નિયંત્રણ

• Process Control: ચાલતા પ્રોગ્રામ્સનું શેક્યુલિંગ અને વ્યવસ્થાપન

• Resource Allocation: સિસ્ટમ સંસાધનોનું કાર્યક્ષમ વિતરણ

• User Interface: યુઝર અને કમ્પ્યુટર વચ્ચે ક્રિયાપ્રતિક્રિયા

મેમરી ટ્રીક: "PMFD - Process, Memory, File, Device"

પ્રશ્ન 1(ક) [7 ગુણ]

યુનિવર્સલ ગેટ વ્યાખ્યાયિત કરો અને NAND યુનિવર્સલ ગેટનો ઉપયોગ કરીને બેસિક ગેટ બનાવો.

જવાબ:

યુનિવર્સલ ગેટની વ્યાખ્યા:

એવા લોજિક ગેટ કે જે અન્ય કોઈ ગેટનો ઉપયોગ કર્યા વિના કોઈપણ Boolean function અમલ કરી શકે.

NAND จìz Truth Table:

Α	В	NAND આઉટપુટ
0	0	1
0	1	1
1	0	1
1	1	0

NAND વડે બેસિક ગેટ્સ:

```
NOT Gate using NAND:
A ----+

| NAND ---- 해당각 (NOT A)
| A ----+

AND Gate using NAND:
A ----+
| NAND ---- NAND ---- 해당각 (A AND B)
| B ----+

OR Gate using NAND:
A ---- NAND ----+
| NAND -----+
| NAND -----+
| NAND -----+
```

• NOT: બંને NAND ઇનપુટમાં એક જ ઇનપુટ આપવું

• AND: NAND પછી NOT (બીજું NAND)

• **OR**: બંને ઇનપુટ્સને NOT કરો, પછી NAND કરો

મેમરી ટ્રીક: "NAND ને બીજા NAND ની નિશ્ચિત જરૂર"

પ્રશ્ન 1(ક OR) [7 ગુણ]

નીચેના રૂપાંતરણ કરો:

જવાબ:

રૂપાંતરણ ઉકેલો:

માંથી	ні	પ્રક્રિયા	પરિણામ
(1456) ₈	Base 16	8→10→16	(32E) ₁₆
(1011) ₂	Base 10	Binary to Decimal	(11) ₁₀
(247.38) ₁₀	Base 8	Integer અને Fraction અલગ	(367.3) ₈

વિગતવાર ઉકેલ:

- 1. $(1456)_8 = (32E)_{16}$
 - o $1 \times 8^3 + 4 \times 8^2 + 5 \times 8^1 + 6 \times 8^0 = 512 + 256 + 40 + 6 = (814)_{10}$
 - \circ 814 ÷ 16 = 50 remainder 14(E), 50 ÷ 16 = 3 remainder 2
 - o પરિણામ: (32E)₁₆
- 2. $(1011)_2 = (11)_{10}$
 - o $1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 8 + 0 + 2 + 1 = (11)_{10}$
- 3. $(247.38)_{10} = (367.3)_8$
 - ૦ પૂર્ણાંક: 247 ÷ 8 = 30 બાકી 7, 30 ÷ 8 = 3 બાકી 6, 3 ÷ 8 = 0 બાકી 3
 - o દશાંશ: 0.38 × 8 = 3.04 (3 લો)
 - o પરિણામ: (367.3)₈

મેમરી ટ્રીક: "રૂપાંતરણ સાવચેતીથી, ગણતરી ચકાસીને"

પ્રશ્ન 2(અ) [3 ગુણ]

મેમરીના પ્રકારોની સૂચિ બનાવો.

જવાબ:

મેમરી વર્ગીકરણ:

увіг	ઉદાહરણ	લાક્ષણિકતાઓ
Primary Memory	RAM, ROM, Cache	CPU દ્વારા સીધી પહોંચ
Secondary Memory	HDD, SSD, CD/DVD	બિન-અસ્થાયી સંગ્રહ
Cache Memory	L1, L2, L3	હાઇ-સ્પીડ બફર મેમરી

- Volatile: પાવર બંધ કરવાથી ડેટા ગુમાવે (RAM)
- Non-volatile: પાવર વિના ડેટા જાળવે (ROM, HDD)
- ઍક્સેસ સ્પીડ: Cache > RAM > Secondary Storage

મેમરી ટ્રીક: "Primary પ્રક્રિયા કરે, Secondary સંગ્રહ કરે"

પ્રશ્ન 2(બ) [4 ગુણ]

Kernel Mode અને User Mode વચ્ચે તફાવત આપો.

જવાબ:

પાસાં	Kernel Mode	User Mode
અધિકાર સ્તર	સંપૂર્ણ સિસ્ટમ ઍક્સેસ	મર્યાદિત ઍક્સેસ
સૂચનાઓ	બધી સૂચનાઓની મંજૂરી	મર્યાદિત સૂચના સેટ
મેમરી ઍક્સેસ	સંપૂર્ણ મેમરી ઍક્સેસ	મર્યાદિત મેમરી વિસ્તારો
સિસ્ટમ કૉલ્સ	સીધી હાર્ડવેર ઍક્સેસ	માત્ર સિસ્ટમ કૉલ્સ દ્વારા

• Kernel Mode: ઓપરેટિંગ સિસ્ટમ સંપૂર્ણ અધિકારો સાથે ચાલે

• User Mode: એપ્લિકેશન્સ મર્યાદિત અધિકારો સાથે યાલે

• સુરક્ષા: મોડ સ્વિચિંગ અનધિકૃત ઍક્સેસ અટકાવે

મેમરી ટ્રીક: "Kernel નિયંત્રણ કરે, User ઉપયોગ કરે"

પ્રશ્ન 2(ક) [7 ગુણ]

OS ના પ્રકારોની યાદી બનાવો અને કોઈપણ બે OS સમજાવો

જવાબ:

ઓપરેટિંગ સિસ્ટમના પ્રકારો:

หลเร	ઉદાહરણ	લાક્ષણિકતાઓ
Batch OS	પ્રારંભિક mainframes	યુઝર ક્રિયાપ્રતિક્રિયા નથી
Time-sharing OS	UNIX, Linux	એકસાથે બહુવિદ્ય યુઝર્સ
Real-time OS	Embedded systems	ગેરંટીડ પ્રતિસાદ સમય
Distributed OS	Cloud systems	બહુવિદ્ય જોડાયેલા કમ્પ્યુટર્સ
Network OS	Windows Server	નેટવર્ક સંસાધન વ્યવસ્થાપન
Mobile OS	Android, iOS	સ્માર્ટફોન/ટેબલેટ સિસ્ટમ્સ

વિગતવાર સમજૂતી:

1. Time-sharing OS (Linux):

• Multi-user: બહુવિધ યુઝર્સ એકસાથે ઍક્સેસ કરી શકે

• Multi-tasking: બહુવિધ પ્રક્રિયાઓ સમાંતર ચલાવે

• **સંસાધન શેરિંગ**: CPU સમય પ્રક્રિયાઓ વચ્ચે વહેંચાય

• **G**ียเฮร**ย**เ: UNIX, Linux, Windows

2. Real-time OS:

• નિર્ધારિત: સમય મર્યાદામાં ગેરંટીડ પ્રતિસાદ

• **પ્રાથમિકતા આદ્યારિત**: મહત્વપૂર્ણ કાર્યોને ઊંચી પ્રાથમિકતા

• ઉપયોગ: મેડિકલ ઉપકરણો, ઔદ્યોગિક નિયંત્રણ

• **ਮ**sı**ર**: Hard real-time ਅਜੇ Soft real-time

મેમરી ટ્રીક: "સમય ટિક કરે, Real-time રિએક્ટ કરે"

પ્રશ્ન 2(અ OR) [3 ગુણ]

Linux Operating System નું આર્કિટેક્ચર સમજાવો.

જવાબ:

Linux આર્કિટેક્ચર સ્તરો:

• User Space: એપ્લિકેશન્સ અને યુઝર પ્રોગ્રામ્સ

• System Calls: યુઝર અને kernel વચ્ચેનું ઇન્ટરફેસ

• **Kernel**: મુખ્ય ઓપરેટિંગ સિસ્ટમ કાર્યો

મેમરી ટ્રીક: "યુઝર્સ ઉપયોગ કરે, Kernel નિયંત્રણ કરે"

પ્રશ્ન 2(બ OR) [4 ગુણ]

Search Engine ની કામગીરી સમજાવો.

જવાલ:

Search Engine કામકાજની પ્રક્રિયા:

સ્ટેપ	પ્રક્રિયા	รเข้
Crawling	વેબ સ્પાઇડર્સ વેબસાઇટ્સ સ્કેન કરે	વેબ પેજીસ શોદ્યે
Indexing	કન્ટેન્ટ વિશ્લેષણ અને સંગ્રહ	શોધી શકાય તેવો ડેટાબેસ બનાવે
Ranking	ઍલ્ગોરિધમ લાગુ કરે	સુસંગતતાનો ક્રમ નક્કી કરે
Retrieval	પરિણામો પરત કરે	ક્રમબદ્ધ પરિણામો દર્શાવે

કામકાજના પગલાં:

• વેબ ક્રોલર્સ: ઓટોમેટેડ બોટ્સ ઇન્ટરનેટ કન્ટેન્ટ સ્કેન કરે

• ઇન્ડેક્સ ડેટાબેસ: વેબપેજ માહિતી સંગ્રહિત અને ગોઠવે

• કવેરી પ્રોસેસિંગ: યુઝર શોધ શબ્દોનું વિશ્લેષણ કરે

• પરિણામ રેન્કિંગ: સુસંગતતા અનુસાર પરિણામોનો ક્રમ કરે

મેમરી ટ્રીક: "ક્રોલ, ઇન્ડેક્સ, રેન્ક, પુનઃપ્રાપ્ત"

પ્રશ્ન 2(ક OR) [7 ગુણ]

Open Source Software અને Proprietary Software વચ્ચે તફાવત આપો.

જવાબ:

પાસાં	Open Source Software	Proprietary Software
સોર્સ કોડ	મુક્તપણે ઉપલબ્ધ અને સુધારી શકાય	બંધ અને સુરક્ષિત
કિંમત	સામાન્યતે મફત	લાઇસન્સ ખરીદવાની જરૂર
સપોર્ટ	કમ્યુનિટી આધારિત	વેન્ડર દ્વારા પૂરું પાડવામાં આવે
કસ્ટમાઇઝેશન	સંપૂર્ણ કસ્ટમાઇઝ કરી શકાય	મર્યાદિત કસ્ટમાઇઝેશન
ઉદાહરણ	Linux, Firefox, LibreOffice	Windows, MS Office, Photoshop
સુરક્ષા	પારદર્શક, કમ્યુનિટી ઓડિટેડ	અસ્પષ્ટતા દ્વારા સુરક્ષા
અપડેટ્સ	કમ્યુનિટી સંચાલિત	વેન્ડર નિયંત્રિત

મુખ્ય તફાવતો:

• **લાઇસન્સિંગ**: Open source પુનઃવિતરણ અને સુધારાની મંજૂરી આપે vs proprietary પેઇડ

• કિંમત મોડેલ: Open source સામાન્યતે મફત vs proprietary પેઇડ

• **ડેવલપમેન્ટ**: કમ્યુનિટી સહયોગ vs કંપની નિયંત્રિત

• **પારદર્શિતા**: Open source કોડ વૃશ્યમાન vs proprietary છુપાયેલ

ફાયદા:

• Open Source: કિફાયતી, કસ્ટમાઇઝ કરી શકાય, સુરક્ષિત

• Proprietary: વ્યાવસાયિક સપોર્ટ, એકીકૃત લક્ષણો, યુઝર-ફ્રેન્ડલી

મેમરી ટ્રીક: "Open ખુલ્લું કરે, Proprietary સુરક્ષિત કરે"

પ્રશ્ન 3(અ) [3 ગુણ]

નીચેનાનું સંપૂર્ણ નામ આપો: OSI, LLC, FTP

જવાબ:

સંપૂર્ણ રૂપો:

સંક્ષેપ	સંપૂર્ણ રૂપ
OSI	Open Systems Interconnection
LLC	Logical Link Control
FTP	File Transfer Protocol

• OSI: 7 સ્તરો સાથેનું નેટવર્કિંગ સંદર્ભ મોડેલ

• LLC: OSI મોડેલમાં Data Link Layer નું સબલેયર

• FTP: નેટવર્ક પર ફાઇલો ટ્રાન્સફર કરવા માટેનું પ્રોટોકોલ

ਮੇਮરੀ ਟ੍ਰੀs: "Open Logic Files"

પ્રશ્ન 3(બ) [4 ગુણ]

Twisted Pair Cable ના ફાયદા અને ગેરફાયદા આપો

જવાબ:

Twisted Pair Cable વિશ્લેષણ:

ફાયદા	ગેરફાયદા
ઓછી કિંમત	મર્યાદિત અંતર
સરળ ઇન્સ્ટોલેશન	ઇલેક્ટ્રોમેગ્નેટિક હસ્તક્ષેપ
લવચીક	ઓછી બેન્ડવિડ્થ
વ્યાપકપણે ઉપલબ્ધ	સુરક્ષા સમસ્યાઓ

ફાયદા:

• કિફાયતી: સૌથી સસ્તો નેટવર્કિંગ કેબલ વિકલ્પ

• સરળ ઇન્સ્ટોલેશન: ઇન્સ્ટોલ અને જાળવણી સરળ

• લવચીકતા: સહેલાઈથી વાળી અને રૂટ કરી શકાય

ગેરકાયદા:

• **અંતર મર્યાદા**: રિપીટર વિના મહત્તમ 100 મીટર

• હસ્તક્ષેપ: ઇલેક્ટ્રોમેગ્નેટિક હસ્તક્ષેપ માટે સંવેદનશીલ

• બેન્ડવિડ્થ: ફાઇબર કરતાં ઓછા ડેટા ટ્રાન્સમિશન રેટ

મેમરી ટ્રીક: "Twisted સસ્તું પણ મર્યાદિત"

પ્રશ્ન 3(ક) [7 ગુણ]

Modulation શું છે? Analog Modulation સમજાવો.

જવાબ:

Modulation ની વ્યાખ્યા:

લાંબા અંતર સુધી માહિતી ટ્રાન્સમિટ કરવા માટે carrier signal ની લાક્ષણિકતાઓ બદલવાની પ્રક્રિયા.

Analog Modulation પ્રકારો:

уѕіг	બદલાતું પરિમાણ	ઉપયોગ
AM	Amplitude	રેડિયો બ્રોડકાસ્ટિંગ
FM	Frequency	FM રેડિયો, TV સાઉન્ડ
PM	Phase	ડિજિટલ કમ્યુનિકેશન્સ

Amplitude Modulation (AM):

મુખ્ય ખ્યાલો:

• Carrier Wave: ટ્રાન્સમિશન માટે હાઇ-ફ્રીક્વન્સી સિગ્નલ

• Message Signal: ટ્રાન્સમિટ કરવાની માહિતી

• Modulation Index: લાગુ કરેલ modulation ની માત્રા

ઉપયોગ:

• AM Radio: 530-1710 kHz ફ્રીક્વન્સી બેન્ડ

• **FM Radio**: 88-108 MHz ફ્રીક્વન્સી બેન્ડ

• **ટેલિવિઝન**: વિવિધ modulation તકનીકો

ફાયદા:

• લાંબું અંતર: લાંબા અંતરની કમ્યુનિકેશન શક્ય બનાવે

• Noise Immunity: FM વધુ સારી noise પ્રતિકાર આપે

મેમરી ટ્રીક: "Amplitude બદલાય, Frequency ફલક્ચ્યુએટ કરે"

પ્રશ્ન 3(અ OR) [3 ગુણ]

Network Topology ની ચાદી બનાવો. Bus Topology ના ફાયદા અને ગેરફાયદા લખો.

જવાબ:

નેટવર્ક ટોપોલોજીઓ:

- Bus Topology
- Star Topology
- Ring Topology
- Mesh Topology
- Hybrid Topology

Bus Topology વિશ્લેષણ:

ફાયદા	ગેરફાયદા
સરળ ડિઝાઇન	સિંગલ પોઇન્ટ ઓફ ફેઇલ્યુર
કિફાયતી	મર્ચાદિત કેબલ લંબાઇ
સરળ વિસ્તરણ	પર્ફોર્મન્સ ઘટાડો

મેમરી ટ્રીક: "Bus સરળ પણ સિંગલ-ફેઇલ્યુર-પ્રોન"

પ્રશ્ન 3(બ OR) [4 ગુણ]

Serial અને Parallel Transmission વચ્ચેનો તફાવત જણાવો.

જવાબ:

પાસાં	Serial Transmission	Parallel Transmission
ડેટા પાથ	સિંગલ કમ્યુનિકેશન લાઇન	એકસાથે બહુવિદ્ય લાઇન્સ
સ્પીડ	ટૂંકા અંતર માટે ધીમું	ટૂંકા અંતર માટે ઝડપી
કિંમત	ઓછી કિંમત	વધારે કિંમત
અંતર	લાંબા અંતર માટે યોગ્ય	ટૂંકા અંતર માટે મર્યાદિત

લાક્ષણિકતાઓ:

• Serial: બિટ્સ એક પછી એક ટ્રાન્સમિટ થાય

• Parallel: બહુવિધ બિટ્સ એકસાથે ટ્રાન્સમિટ થાય

• ઉપયોગ: નેટવર્ક માટે Serial, આંતરિક બસ માટે Parallel

મેમરી ટ્રીક: "Serial સિંગલ-ફાઇલ, Parallel પ્રોસેસીસ"

પ્રશ્ન 3(ક OR) [7 ગુણ]

Transmission Modes સમજાવો.

જવાબ:

Transmission Modes ๆว์โรรย:

મોડ	દિશા	ઉદાહરણ	ઉપયોગ
Simplex	માત્ર એક દિશા	રેડિયો, TV બ્રોડકાસ્ટ	બ્રોડકાસ્ટિંગ
Half-duplex	બંને દિશા, એકસાથે નહીં	વોકી-ટૉકી	વારાફરતી કમ્યુનિકેશન
Full-duplex	બંને દિશા એકસાથે	ટેલિફોન	રિયલ-ટાઇમ કમ્યુનિકેશન

વિગતવાર સમજૂતી:

1. Simplex Mode:

• એકદિશીય: ડેટા માત્ર એક દિશામાં વહે

• ઉદાહરણ: ટેલિવિઝન બ્રોડકાસ્ટિંગ, રેડિયો ટ્રાન્સમિશન

• ફાયદો: સરળ અમલીકરણ

• ગેરફાયદો: ફીડબેક શક્ય નથી

2. Half-duplex Mode:

• દ્વિદિશીય: બંને દિશામાં ડેટા વહી શકે, પણ એકસાથે નહીં

• **ઉદાહરણ**: વોકી-ટૉકીઝ, CB રેડિયો

• ફાયદો: સિંગલ ચેનલ સાથે બે-દિશીય કમ્યુનિકેશન

• ગેરફાયદો: એકસાથે મોકલી અને મેળવી શકાતું નથી

3. Full-duplex Mode:

• એકસાથે દ્વિદિશીય: બંને દિશામાં એક જ સમયે ડેટા વહે

• ઉદાહરણ: ટેલિફોન વાતચીત, આધુનિક નેટવર્ક્સ

• ફાયદો: કાર્યક્ષમ રિયલ-ટાઇમ કમ્યુનિકેશન

• ગેરફાયદો: વધુ જટિલ અમલીકરણ જરૂરી

મેમરી ટ્રીક: "Simplex સિંગલ, Half-duplex અટકે, Full-duplex વહે"

પ્રશ્ન 4(અ) [3 ગુણ]

Crossover Ethernet Cable εὶ૨ὶ.

જવાબ:

Crossover Cable વાયરિંગ ડાયાગ્રામ:

```
RJ-45 Connector A

Pin 1: White-Orange <---> Pin 3: White-Green

Pin 2: Orange <---> Pin 6: Green

Pin 3: White-Green <---> Pin 1: White-Orange

Pin 4: Blue <---> Pin 4: Blue

Pin 5: White-Blue <---> Pin 5: White-Blue

Pin 6: Green <---> Pin 2: Orange

Pin 7: White-Brown <---> Pin 7: White-Brown

Pin 8: Brown <---> Pin 8: Brown
```

મુખ્ય મુદ્દાઓ:

- હેતુ: સમાન ઉપકરણો વચ્ચે સીધું કનેક્શન
- ક્રોસ્ડ પેર્સ: ટ્રાન્સમિટ અને રિસીવ પેર્સ અદલાબદલી
- ઉપયોગ: PC થી PC, Switch થી Switch કનેક્શન્સ

મેમરી ટ્રીક: "Cross કમ્પ્યુટર્સને કનેક્ટ કરે"

પ્રશ્ન 4(બ) [4 ગુણ]

IPv4 અને IPv6 વચ્ચેનો તકાવત જણાવો.

જવાબ:

લક્ષણ	IPv4	IPv6
એડ્રેસ સાઇઝ	32 બિટ્સ	128 બિટ્સ
એડ્રેસ ફોર્મેટ	ડોટેડ ડેસિમલ	હેક્સાડેસિમલ કોલોન
એડ્રેસ સ્પેસ	4.3 બિલિયન એડ્રેસ	340 અનડેસિલિયન એડ્રેસ
હેડર સાઇઝ	વેરિયેબલ (20-60 બાઇટ્સ)	ફિક્સ્ડ (40 બાઇટ્સ)

મુખ્ય તફાવતો:

• **IPv4 G**ยเ_ยเย: 192.168.1.1

• IPv6 Gะเษะย: 2001:0db8:85a3:0000:0000:8a2e:0370:7334

• **સુરક્ષા**: IPv6 માં બિલ્ટ-ઇન IPSec સપોર્ટ

• NAT: IPv4 ને NAT જરૂરી, IPv6 જરૂરિયાત દૂર કરે

મેમરી ટ્રીક: "IPv4 ચાર-બિલિયન, IPv6 છ-ગણાં-વધારે"

પ્રશ્ન 4(ક) [7 ગુણ]

OSI મોડલની સુઘડ અને સ્વચ્છ આકૃતિ દોરો અને Physical Layer અને Data Link Layer ની કાર્યક્ષમતા લખો.

જવાબ:

OSI મોડલ ડાયાગ્રામ:

લેયર કાર્યો:

લેચર	ธเช้	ઉદાહરણ
Physical (Layer 1)	માધ્યમ પર બિટ ટ્રાન્સમિશન	કેબલ્સ, હબ્સ, રિપીટર્સ
Data Link (Layer 2)	નજીકના નોડ્સ વચ્ચે ફ્રેમ ડિલિવરી	સ્વિય, MAC એડ્રેસ

Physical Layer รเข้า:

- બિટ ટ્રાન્સમિશન: ડેટાને ઇલેક્ટ્રિકલ/ઑપ્ટિકલ સિગ્નલમાં રૂપાંતરિત કરે
- માધ્યમ સ્પેસિફિકેશન: કેબલ પ્રકારો અને કનેક્ટર્સ વ્યાખ્યાયિત કરે
- સિગ્નલ એન્કોડિંગ: બિટ્સ કેવી રીતે રજૂ કરવા નક્કી કરે
- ટાન્સમિશન રેટ: ડેટા સ્પીડ નિયંત્રિત કરે

Data Link Layer รเข้า:

- ફ્રેમ ફોર્મેશન: બિટ્સને ફ્રેમ્સમાં ગોઠવે
- **એરર ડિટેક્શન**: ટાન્સમિશન એરર્સ ઓળખે
- ક્લો કંટોલ: ડેટા ટાન્સમિશન રેટ મેનેજ કરે
- MAC એડ્રેસિંગ: લોકલ ડિલિવરી માટે હાર્ડવેર એડ્રેસ ઉપયોગ કરે

મેમરી ટ્રીક: "Physical ધકેલે, Data-Link પહોંચાડે"

પ્રશ્ન 4(અ OR) [3 ગુણ]

Time Division Multiplexing સમજાવો.

જવાબ:

Time Division Multiplexing (TDM):

TDM લાક્ષણિકતાઓ:

• ટાઇમ સ્લોટ્સ: દરેક ચેનલને સમર્પિત સમય અવધિ મળે

• સિંકોનાઇઝેશન: બધી ચેનલો સિંકોનાઇઝ હોવી જોઈએ

• બેન્ડવિડ્થ શેરિંગ: બહુવિધ ચેનલો વચ્ચે સિંગલ હાઇ-સ્પીડ લિંક શેર

મેમરી ટ્રીક: "ટાઇમ વળતા લે"

પ્રશ્ન 4(બ OR) [4 ગુણ]

નેટવર્કિંગ ઉપકરણના પ્રકારોની યાદી બનાવો અને કોઈપણ એક સમજાવો.

જવાબ:

નેટવર્કિંગ ઉપકરણો:

ઉપકરણ	લેચર	รเข้
Hub	Physical	સિગ્નલ રિપીટર
Switch	Data Link	ક્રેમ સ્વિચિંગ
Router	Network	પેકેટ રાઉટિંગ
Bridge	Data Link	નેટવર્ક સેગમેન્ટેશન

Switch સમજૂતી:

• **કાર્ય**: MAC એડ્રેસ આધારે ફ્રેમ્સ ફોરવર્ડ કરે

• **લર્નિંગ**: MAC એડ્રેસ ટેબલ ડાયનેમિકલી બનાવે

• કોલિઝન ડોમેન: દરેક પોર્ટ અલગ કોલિઝન ડોમેન બનાવે

• **કુલ-ડુપ્લેક્સ**: દરેક પોર્ટ પર એકસાથે મોકલી/મેળવી શકે

ફાયદા:

• **બેન્ડવિડ્ય**: દરેક પોર્ટ માટે સંપૂર્ણ બેન્ડવિડ્થ

• સુરક્ષા: ફ્રેમ્સ માત્ર ઇચ્છિત પ્રાપ્તકર્તાને મોકલાય

• **કોલિઝન**: કોલિઝન દૂર કરે

મેમરી ટ્રીક: "Switch સ્માર્ટલી મોકલે"

પ્રશ્ન 4(ક OR) [7 ગુણ]

Computer Network શું છે? Computer Network ના પ્રકારો સમજાવો.

જવાબ:

Computer Network વ્યાખ્યા:

આંતરસંબંધિત સ્વતંત્ર કમ્પ્યુટર્સનો સંગ્રહ કે જે કમ્યુનિકેટ કરી શકે અને સંસાધનો શેર કરી શકે.

Computer Networks ના પ્રકારો:

явіғ	કવરેજ	ઉદાહરણ	લાક્ષણિકતાઓ
LAN	લોકલ એરિયા (બિલ્ડિંગ)	ઑફિસ નેટવર્ક	હાઇ સ્પીડ, લો કોસ્ટ
MAN	મેટ્રોપોલિટન એરિયા (શહેર)	શહેરવ્યાપી નેટવર્ક	મીડિયમ સ્પીડ, મોડરેટ કોસ્ટ
WAN	વાઇડ એરિયા (દેશ/વિશ્વ)	ઇન્ટરનેટ	ઓછી સ્પીડ, વધારે કિંમત

વિગતવાર સમજૂતી:

1. Local Area Network (LAN):

• કવરેજ: સિંગલ બિલ્ડિંગ કે કેમ્પસ

• **સ્પીડ**: હાઇ (100 Mbps થી 10 Gbps)

• **ટે**รनोલોજી: Ethernet, Wi-Fi

• માલિકી: સિંગલ સંસ્થા

2. Metropolitan Area Network (MAN):

• કવરેજ: શહેર કે મેટ્રોપોલિટન એરિયા

• **સ્પીડ**: મીડિયમ (10-100 Mbps)

• ટેકનોલોજી: ફાઇબર ઑપ્ટિક, માઇક્રોવેવ

• **ઉદાહરણ**: કેબલ TV નેટવર્ક્સ

3. Wide Area Network (WAN):

• કવરેજ: દેશો કે ખંડો

• સ્પીડ: વેરિયેબલ (ટેકનોલોજી પર આધાર)

• ટેકનોલોજી: સેટેલાઇટ, લીઝ્ડ લાઇન્સ

• ઉદાહરણ: ઇન્ટરનેટ, કોર્પોરેટ નેટવર્ક્સ

નેટવર્ક ફાયદા:

• સંસાધન શેરિંગ: ફાઇલો, પ્રિન્ટર્સ, એપ્લિકેશન્સ

• કમ્યુનિકેશન: ઇમેઇલ, મેસેજિંગ, વિડિયો કોન્ફરન્સિંગ

• કિંમત ઘટાડો: શેર કરેલ સંસાધનો કિંમત ઘટાડે

• ડેટા બેકઅપ: કેન્દ્રીકૃત બેકઅપ સિસ્ટમ્સ

મેમરી ટ્રીક: "લોકલ પ્રેમ કરે, મેટ્રો મેનેજ કરે, વાઇડ ભટકે"

પ્રશ્ન 5(અ) [3 ગુણ]

Information security ની જરૂરિયાત સમજાવો.

જવાબ:

માહિતી સુરક્ષાની જરૂરિયાતો:

ยหริ	અસર	સુરક્ષા જરૂર
ડેટા ચોરી	આર્થિક નુકસાન	ગોપનીયતા
અનધિકૃત પ્રવેશ	ગોપનીયતા ભંગ	પ્રવેશ નિયંત્રણ
સિસ્ટમ હુમલા	સેવા વિક્ષેપ	ઉપલબ્ધતા

મુખ્ય આવશ્યકતાઓ:

• ગોપનીયતા: અનધિકૃત પ્રવેશથી સંવેદનશીલ માહિતીનું રક્ષણ

• ડેટા સુરક્ષા: મૂલ્યવાન ડેટાના નુકસાન કે દૂષિતતા અટકાવવું

• બિઝનેસ કન્ટિન્યુઇટી: સિસ્ટમ્સ થાલુ રહેવાની ખાતરી

મેમરી ટ્રીક: "સુરક્ષા સંવેદનશીલ સિસ્ટમ્સ બચાવે"

પ્રશ્ન 5(બ) [4 ગુણ]

Fiber Optic Cable ના ફાયદા અને ગેરફાયદા લખો.

જવાબ:

ફાયદા	ગેરફાયદા
વધારે બેન્ડવિડ્થ	વદ્યારે કિંમત
EMI થી મુક્તિ	મુશ્કેલ ઇન્સ્ટોલેશન
લાંબું અંતર	નાજુક પ્રકૃતિ
સુરક્ષિત ટ્રાન્સમિશન	વિશેષ સાધનો

ફાયદા:

• સ્પીડ: સૌથી વધારે ડેટા ટ્રાન્સમિશન રેટ

• અંતર: સિગ્નલ ડિગ્રેડેશન વિના લાંબા અંતર સુધી જઈ શકે

• સુરક્ષા: ટેપ કરવું મુશ્કેલ, સુરક્ષિત કમ્યુનિકેશન આપે

ગેરકાયદા:

• કિંમત: મોંઘા કેબલ અને સાધનો

• ઇન્સ્ટોલેશન: કુશળ ટેકનિશિયન જરૂરી

• જાળવણી: રિપેર અને સ્પ્લાઇસ કરવું મુશ્કેલ

મેમરી ટ્રીક: "ફાઇબર ફાસ્ટ પણ નાજુક"

પ્રશ્ન 5(ક) [7 ગુણ]

Attack ના પ્રકારોની યાદી બનાવો. અને કોઈપણ બે Web આધારિત Attack ને સમજાવો.

જવાબ:

હુમલાના પ્રકારો:

કેટેગરી	હુમલાના પ્રકારો	લક્ષ્ય
વેબ-આધારિત	SQL Injection, XSS, CSRF	વેબ એપ્લિકેશન્સ
નેટવર્ક	DoS, DDoS, Man-in-Middle	નેટવર્ક ઇન્ફ્રાસ્ટ્રક્ચર
મેલવેર	વાઇરસ, ટ્રોજન, રેન્સમવેર	સિસ્ટમ્સ અને ડેટા
સામાજિક	ફિશિંગ, સોશિયલ એન્જિનિયરિંગ	માનવ યુઝર્સ

વેબ-આદ્યારિત હુમલાઓ સમજાવ્યા:

1. SQL Injection:

• **પદ્ધતિ**: વેબ એપ્લિકેશન ઇનપુટ્સમાં દુર્ભાવનાપૂર્ણ SQL કોડ દાખલ કરવો

• અસર: અનધિકૃત ડેટાબેસ ઍક્સેસ, ડેટા ચોરી

• ઉદાહરણ: લોગિન ફોર્મમાં '; DROP TABLE users;-- દાખલ કરવું

• અટકાવવાનો ઉપાય: ઇનપુટ વેલિડેશન, પેરામીટરાઇઝ્ડ ક્વેરીઝ

• ગંભીરતા: સંપૂર્ણ ડેટાબેસ કમ્પ્રોમાઇઝ કરી શકે

2. Cross-Site Scripting (XSS):

• પદ્ધતિ: વેબ પેજીસમાં દુર્ભાવનાપૂર્ણ સ્ક્રિપ્ટ્સ ઇન્જેક્ટ કરવી

• અસર: સેશન હાઇજેકિંગ, કૂકી ચોરી, પેજ ડિફેસમેન્ટ

• มรเล้: Stored XSS, Reflected XSS, DOM-based XSS

• અટકાવવાનો ઉપાય: ઇનપુટ સેનિટાઇઝેશન, આઉટપુટ એન્કોડિંગ

• લક્ષ્ય: કમ્પ્રોમાઇઝ્ડ વેબસાઇટ્સ મુલાકાત લેતા યુઝર્સને અસર કરે

હુમલાની લાક્ષણિકતાઓ:

• SQL Injection: વેબ એપ્લિકેશન દ્વારા ડેટાબેસને લક્ષ્ય બનાવે

• XSS: કમ્પ્રોમાઇઝ્ડ વેબ પેજીસ દ્વારા યુઝર્સને લક્ષ્ય બનાવે

• સામાન્ય પરિબળ: બંને અપૂરતા ઇનપુટ વેલિડેશનનો લાભ લે

અટકાવવાના ઉપાયો:

• ઇનપુટ વેલિડેશન: બધા યુઝર ઇનપુટ્સ ચકાસો

• નિયમિત અપડેટ્સ: સોફ્ટવેર અને સિસ્ટમ્સ અપડેટ રાખો

• સુરક્ષા પ્રશિક્ષણ: યુઝર્સને હુમલાની પદ્ધતિઓ શીખવો

મેમરી ટ્રીક: "SQL થોરે, XSS સ્ક્રિપ્ટ્સ એક્સપ્લોઇટ કરે"

પ્રશ્ન 5(અ OR) [3 ગુણ]

Confidentiality, Integrity અને Availability સમજાવો.

જવાબ:

CIA ત્રિકોણના ઘટકો:

ยรร	વ્યાખ્યા	ઉદાહરણ
Confidentiality	માત્ર અધિકૃત યુઝર્સ દ્વારા માહિતીની પ્રવેશ	એન્ક્રિપ્શન, ઍક્સેસ કંટ્રોલ્સ
Integrity	ડેટાની સચોટતા અને સંપૂર્ણતા	ચેકસમ્સ, ડિજિટલ સિગ્નેચર્સ
Availability	જરૂર પડે ત્યારે સિસ્ટમ્સ ઍક્સેસિબલ	રીડન્ડન્સી, બેકઅપ સિસ્ટમ્સ

મુખ્ય ખ્યાલો:

• Confidentiality: અનધિકૃત યુઝર્સથી માહિતી ગુપ્ત રાખે

• Integrity: ડેટા અનધિકૃત રીતે સુધારાયો નથી તેની ખાતરી કરે

• Availability: જરૂર પડે ત્યારે સિસ્ટમ્સ ચાલુ હોવાની ગેરંટી આપે

મેમરી ટ્રીક: "CIA સંપૂર્ણપણે માહિતીનું રક્ષણ કરે"

પ્રશ્ન 5(બ OR) [4 ગુણ]

નીચેના IP સરનામાઓનો Class શોદ્યો.

જવાબ:

IP એડ્રેસ Class ઓળખ:

IP એડ્રેસ	પ્રથમ ઓક્ટેટ	ક્લાસ	રેન્જ
192.12.44.12	192	Class C	192-223
123.77.42.213	123	Class A	1-126
190.65.22.15	190	Class B	128-191
10.0.0.11	10	Class A (Private)	1-126

ક્લાસ લાક્ષણિકતાઓ:

• Class A: 1-126 (પ્રથમ બિટ 0), મોટા નેટવર્ક્સને સપોર્ટ કરે

• Class B: 128-191 (પ્રથમ બે બિટ્સ 10), મધ્યમ નેટવર્ક્સ

• Class C: 192-223 (પ્રથમ ત્રણ બિટ્સ 110), નાના નેટવર્ક્સ

• **Private IPs**: 10.x.x.x, 172.16-31.x.x, 192.168.x.x

મેમરી ટ્રીક: "A ઓસમ, B બેટર, C કોમ્પેક્ટ"

પ્રશ્ન 5(ક OR) [7 ગુણ]

Cryptography સમજાવો.

જવાબ:

Cryptography વ્યાખ્યા:

માત્ર અધિકૃત પક્ષકારો જ ઍક્સેસ કરી શકે તે રીતે માહિતીને એન્કોડ કરીને કમ્યુનિકેશન સુરક્ષિત કરવાનું વિજ્ઞાન.

Cryptography પ્રકારો:

увіг	કી ઉપયોગ	ઉદાહરણ	ઉપયોગ
Symmetric	સિંગલ શેર્ડ કી	DES, AES	ઝડપી બલ્ક એન્ક્રિપ્શન
Asymmetric	પબ્લિક-પ્રાઇવેટ કી જોડી	RSA, ECC	ડિજિટલ સિગ્નેયર્સ, કી એક્સચેન્જ
Hash Functions	એક-દિશીય રૂપાંતરણ	MD5, SHA	કેટા ઇન્ટેગ્રિટી, પાસવર્ડ્સ

મુખ્ય ખ્યાલો:

1. Symmetric Cryptography:

• સિંગલ કી: એન્ક્રિપ્શન અને ડિક્રિપ્શન માટે સમાન કી

• **સ્પીડ**: મોટા ડેટા માટે ઝડપી પ્રોસેસિંગ

• પડકાર: સુરક્ષિત કી વિતરણ

• **G**ียเ**๔**ะยเ: AES-256, 3DES

2. Asymmetric Cryptography:

• કી જોડી: પબ્લિક કી (શેર કરી શકાય) અને પ્રાઇવેટ કી (ગુપ્ત)

• ડિજિટલ સિગ્નેચર્સ: પ્રામાણિકતા અને બિન-ઇનકાર સાબિત કરે

• ક્રી એક્સચેન્જ: સિમેટ્રિક કીઝ શેર કરવાની સુરક્ષિત પદ્ધતિ

• **G**ียเองยา: RSA, Elliptic Curve Cryptography

3. Hash Functions:

• એક-દિશીય: હેશ ગણતરી કરવી સરળ, ઉલટાવવી મુશ્કેલ

• નિશ્ચિત આઉટપુટ: હંમેશા સમાન લંબાઇનું આઉટપુટ આપે

• ક્રોલિઝન પ્રતિકાર: અલગ ઇનપુટ્સ અલગ હેશ આપવા જોઈએ

• ઉપયોગ: પાસવર્ડ સંગ્રહ, ડિજિટલ ફોરેન્સિક્સ

ક્રિપ્ટોગ્રાફિક પ્રક્રિયા:

ઉપયોગ:

- **સુરક્ષિત કમ્યુનિકેશન**: HTTPS, VPN, ઇમેઇલ એન્ક્રિપ્શન
- **ડેટા સુરક્ષા**: ફાઇલ એન્ક્રિપ્શન, ડેટાબેસ સિક્યોરિટી
- **ઓથેન્ટિકેશન**: ડિજિટલ સર્ટિફિકેટ્સ, પાસવર્ડ હેશિંગ
- નાણાકીય સિસ્ટમ્સ: ઑનલાઇન બેન્કિંગ, ક્રિપ્ટોકરન્સી

આધુનિક પડકારો:

- **કવાન્ટમ કમ્પ્યુટિંગ**: વર્તમાન એન્ક્રિપ્શન પદ્ધતિઓ માટે ધમકી
- ક્રી મેનેજમેન્ટ: કીઝનો સુરક્ષિત સંગ્રહ અને વિતરણ
- પર્ફોર્મન્સ: સિસ્ટમ પર્ફોર્મન્સ સાથે સુરક્ષાનું સંતુલન

મેમરી ટ્રીક: "Cryptography કોડેડ કમ્યુનિકેશન્સ બનાવે"