Лекция 15. Распределенные алгоритмы

МЕТОДЫ МАШИННОГО ОБУЧЕНИЕ

ПАПУЛИН С.Ю. (papulin.study@yandex.ru)

Содержание

1.	Среднее значение и стандартное отклонение	2	
2.	Косинусное сходство	4	
3.	Градиентный спуск	5	
4.	Стохастический градиентный спуск	7	
5.	Распределённая факторизация матрицы рейтингов	8	
Спи	Список литературы		

1. Среднее значение и стандартное отклонение

Среднее значение

Пусть у нас есть набор данных D, который содержит n элементов. Каждый элемент x — вещественное число, то есть $x \in \mathbb{R}$. Тогда среднее значение можно вычислить следующим образом

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Предположим, что набор данных D разбит на P непересекающихся частей (подмножества). Например, значения D распределены между P вычислительными узлами так, что нет возможности собрать все данные на одном узле и рассчитать среднее значение. Часть данных будем обозначать как D^p , где p — индекс части. В этом случае необходимо вычислить сумму значений и количество элементов каждой части из P. Тогда среднее значение можно вычислить следующим образом

$$\overline{x} = \frac{\sum_{p=1}^{P} sum_p}{\sum_{p=1}^{P} count_p}.$$

Ниже приведены схематичное представления и алгоритм распределенного вычисления среднего значения.

Алгоритм 1. Distributed Mean	
1	for p in 1 P in parallel:
2	$sum_p \leftarrow 0$
3	$count_p \leftarrow 0$
4	for x in D^p :
5	$sum_p \leftarrow sum_p + x$
6	$count_p \leftarrow count_p + 1$
7	$collect((sum_1, count_1),, (sum_P, count_P))$
8	$\overline{x} \leftarrow \sum_{p=1}^{P} sum_p / \sum_{p=1}^{P} count_p$

Стандартное отклонение

В общем виде стандартное отклонение вычисляется как

$$s = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2}.$$

В данном выражении для расчета используется среднее значение \overline{x} . Это означает, что сперва необходимо вычислить \overline{x} . Преобразуем исходную формулу так, чтобы избавиться от предварительного вычисления среднего

$$s = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} x_i\right)^2}.$$

Таким образом, алгоритм может вычислить стандартное отклонение за один проход по данных D.

Если данные разбиты на P частей, как рассматривалось ранее, то такой подход требует получения дополнительных данных от каждой части для расчета стандартного отклонения. Помимо суммы (sum_p) и количества элементов $(count_1)$ каждой части, вычисляется сумма квадратов $(ssum_p)$. После этого вычисляется общее количество элементов, сумма и сумма квадратов от всех частей

$$n = \sum_{p=1}^{P} count_{p},$$

$$\overline{x} = \sum_{p=1}^{P} sum_{p} / n$$

$$\overline{x} = \sum_{p=1}^{r} sum_p / n,$$

$$\overline{x^2} = \sum_{p=1}^{P} ssum_p / n.$$

В итоге стандартное отклонение примет вид

$$s = \sqrt{\overline{x^2} - \overline{x}^2}$$

Ниже приведен пример при разбиении данных на четыре части

Общий алгоритм распределенного вычисления стандартного отклонения приведен ниже

Алгоритм 2. Distributed Standard Deviation	
1	for p in 1 P in parallel:

2	$sum_p \leftarrow 0$
3	$ssum_p \leftarrow 0$
4	$count_p \leftarrow 0$
5	for x in D^p :
6	$sum_p \leftarrow sum_p + x$
7	$ssum_p \leftarrow ssum_p + x^2$
8	$count_p \leftarrow count_p + 1$
9	$collect((sum_1, ssum_1, count_1),, (sum_P, ssum_P, count_P))$
10	$n \leftarrow \sum_{p=1}^{p} count_p; \overline{x} \leftarrow \sum_{p=1}^{p} sum_p/n; \overline{x^2} \leftarrow \sum_{p=1}^{p} ssum_p/n$
11	$s = \sqrt{\overline{x^2} - \overline{x}^2}$

2. Косинусное сходство

Исходные данные:

$$X = \begin{bmatrix} - & x_1 & - \\ \vdots & \ddots & \vdots \\ - & x_n & - \end{bmatrix}^{n \times p} = \begin{bmatrix} | & \cdots & | \\ c_1 & \ddots & c_p \\ | & \cdots & | \end{bmatrix}^{n \times p}$$

Найти:

cosine
$$(i,j) = \frac{c_i^T c_j}{\|c_i\| \|c_j\|} = \frac{\sum_{k=1}^n x_{ki} x_{kj}}{\|c_i\| \|c_j\|},$$

где

$$c_i = \begin{bmatrix} x_{1i} \\ \vdots \\ x_{ni} \end{bmatrix} u c_j = \begin{bmatrix} x_{1j} \\ \vdots \\ x_{nj} \end{bmatrix}$$

Решение:

Внешнее произведение векторов:

$$x_i x_i^T = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{ip} \end{bmatrix} \begin{bmatrix} x_{i1} & \cdots & x_{ip} \end{bmatrix} = \begin{bmatrix} x_{i1} x_{i1} & \cdots & x_{i1} x_{ip} \\ \vdots & \ddots & \vdots \\ x_{ip} x_{i1} & \cdots & x_{ip} x_{ip} \end{bmatrix}$$

Тогда внешнее перемножение матриц можно представить как

$$X^{T}X = \sum_{i=1}^{n} x_{i}x_{i}^{T} = \begin{bmatrix} \sum_{i=1}^{n} x_{i1}x_{i1} & \cdots & \sum_{i=1}^{n} x_{i1}x_{ip} \\ \vdots & \ddots & \vdots \\ \sum_{i=1}^{n} x_{ip}x_{i1} & \cdots & \sum_{i=1}^{n} x_{ip}x_{ip} \end{bmatrix} = \begin{bmatrix} c_{1}^{T}c_{1} & \cdots & c_{1}^{T}c_{p} \\ \vdots & \ddots & \vdots \\ c_{p}^{T}c_{1} & \cdots & c_{p}^{T}c_{p} \end{bmatrix}$$

Ниже приведен алгоритм распределенного вычисления косинусного сходства, который состоит из двух стадий – map (трансформация данных) и reduce (агрегирование)

Ал	Алгоритм 1. Cosine Similarity. Map		
1	for m in 1 M in parallel:	<i>M</i> тар-задач	
2	for x in D^m :	D^m — наблюдения в части m	
3	for (x_j, x_k) in all_pairs_x:	$x = (x_1, \dots, x_p)$ – одно наблюдение	
4	$v \leftarrow x_j \cdot x_k$		
5	$\operatorname{emit}((j,k) \to v)$	$key \rightarrow value$	

Ал	Алгоритм 2. Cosine Similarity. Reduce		
1	for r in 1 R in parallel:	R reduce-задач с разделением по ключу (partitioned by key)	
2	$receive(c_1 ,, c_p)$	Заранее вычисленные значения	
3	receive pairs from map part		
4	for $(i,j) \rightarrow [v_1,, v_K]$ in pairs:	v_k – ненулевые значения из тар части	
5	$c_i^T c_j \leftarrow \sum_{k=1}^K v_k$		
6	$cosine(i,j) \leftarrow \frac{c_i^T c_j}{\ c_i\ \ c_j\ }$		

3. Градиентный спуск

Функция потерь в общем виде:

$$L(y, x, \theta) = \sum_{(x,y)\in D} l(y, x, \theta)$$

Для линейной регрессии:

$$l(y, x, \theta) = (y - x^T \theta)^2$$

Градиент от функции потерь:

$$\nabla L(y, x, \theta) = \sum_{(x,y) \in D} (y - x^T \theta) x$$

Алгоритм 1. GD	
1	initialize(θ)
2	for <i>i</i> in 1 <i>T</i> :
3	$grad \leftarrow 0$
4	for (x, y) in D :
5	$grad \leftarrow grad + (y - x^T\theta)x$
6	$\theta \leftarrow \theta - \eta \cdot grad$
7	return $ heta$

Общий вид записи итерации в градиентном спуске:

$$\theta \leftarrow \theta - \eta \cdot \nabla L(y, x, \theta)$$

Распределенный градиентный спуск

Алг	оритм 2. Distributed GD
1	initialize(θ)
2	for <i>i</i> in 1 <i>T</i> :
3	$broadcast(\theta)$
4	for p in 1 P in parallel:
5	$grad_p \leftarrow 0$
6	for (x, y) in D^p :
7	$grad_p \leftarrow grad_p + (y - x^T\theta)x$
8	$collect(grad_1,,grad_P)$
9	P
	$ heta \leftarrow heta - \eta \cdot \sum grad_p$
	p=1
10	return $ heta$

Общий вид записи итерации в распределенном градиентном спуске:

$$\nabla L(y, x, \theta) = \sum_{(x,y) \in D} (y - x^T \theta) x$$

$$= \sum_{(x,y) \in D^1} (y - x^T \theta) x + \sum_{(x,y) \in D^2} (y - x^T \theta) x + \sum_{(x,y) \in D^3} (y - x^T \theta) x$$

$$+ \sum_{(x,y) \in D^4} (y - x^T \theta) x$$

4. Стохастический градиентный спуск

Градиент от функции потерь одного наблюдения в линейной регрессии:

$$\nabla l(y, x, \theta) = (y - x^T \theta)x$$

Алгоритм 1. SGD		
1	initialize(θ)	
2	for <i>i</i> in 1 <i>T</i> :	
3	shuffle(D)	
4	for (x, y) in D :	
5	$\theta \leftarrow \theta - \eta \nabla l(y, x, \theta)$	
6	return $ heta$	

Общий вид записи итерации в стохастическом градиентном спуске:

$$\theta \leftarrow \theta - \eta \nabla l(y, x, \theta)$$

Стохастический градиентный спуск с мини-пакетами

Алг	Алгоритм 2. SGD: mini-batch		
1	initialize(θ)		
2	for <i>i</i> in 1 <i>T</i> :	эпохи	
3	shuffle(D)	выборка без возврата	
4	$batches \leftarrow split(D, batch_{size})$		
5	for $\mathcal B$ in batches:		
6	grad ← 0		
7	for (x, y) in \mathcal{B} :		
8	$\operatorname{grad} \leftarrow \operatorname{grad} + \nabla l(y, x, \theta)$		
9	$\theta \leftarrow \theta - \eta \cdot \text{grad}$		
10	return $ heta$		

Общий вид записи итерации в стохастическом градиентном спуске с мини-пакетами:

$$\theta \leftarrow \theta - \eta \cdot \sum_{(x,y) \in \mathcal{B}} \nabla l(y,x,\theta)$$

Параллельный стохастический градиентный спуск

Алгоритм 3. SGD: parallel		
1	for p in 1 P in parallel:	
2	initialize $(heta^p)$	
3	$\operatorname{shuffle}(D^p)$	
4	for (x, y) in D^p :	
5	$\theta^p \leftarrow \theta^p - \eta \nabla l(y, x, \theta^p)$	

6	$\operatorname{collect}(\theta^1,,\theta^P)$
7	$\theta = \frac{1}{P} \sum_{i=0}^{P} \theta^{i}$
8	return $ heta$

Стохастический градиентный спуск с общей памятью

Ал	Алгоритм 4. SGD: HogWild!		
1	initialize(θ)		
2	for p in 1 P in parallel:		
3	$shuffle(D^p)$		
4	for (x, y) in D^p :		
5	$\Delta\theta \leftarrow -\eta \nabla l(y, x, \theta)$		
6	for <i>i</i> in 1 <i>M</i> with $\Delta \theta_i \neq 0$:		
7	$\theta_i \leftarrow \theta_i + \Delta \theta_i$	Атомарная операция	
8	return $ heta$		

Алгоритм 5. SGD: Spark mini-batch		
1	initialize(θ)	
2	for <i>i</i> in 1 <i>T</i> :	
3	$broadcast(\theta)$	
4	for p in 1 P in parallel:	
5	$\mathcal{B}^p \leftarrow \text{sample}(D^p, batch_{size})$	
6	$\operatorname{grad}_p \leftarrow 0$	
7	for (x, y) in \mathcal{B}^p :	
8	$\operatorname{grad}_p \leftarrow \operatorname{grad}_p + \nabla l(y, x, \theta)$	
9	$collect(grad_1,,grad_p)$	
10	P	
	$\theta \leftarrow \theta - \eta \cdot \sum_{p} \operatorname{grad}_{p}$	
	<i>p</i> =1	
11	return $ heta$	

$$\theta \leftarrow \theta - \eta \cdot \sum_{p=1}^{P} \sum_{(x,y) \in \mathcal{B}^p} \nabla l(y,x,\theta)$$

5. Распределённая факторизация матрицы рейтингов

Задача оптимизации

$$\widehat{W}, \widehat{H} = \arg\min_{W,H} L(W, H)$$

Функция потерь

$$L(\boldsymbol{W},\boldsymbol{H}) = \sum_{(i,j) \in \Omega} L_{ij}(\boldsymbol{W},\boldsymbol{H})$$

$$L_{ij}(\boldsymbol{W},\boldsymbol{H}) = l(\boldsymbol{R}_{ij},\boldsymbol{W}_{i*},\boldsymbol{H}_{*j})$$

Пример функции потерь (без регуляризации)

$$L(\boldsymbol{W}, \boldsymbol{H}) = \sum_{(i,j)\in\Omega} (\boldsymbol{R}_{ij} - \boldsymbol{W}_{i*}\boldsymbol{H}_{*j})^2$$

Факторизация неполной матрицы:

- Градиентный спуск
- Стохастический градиентный спуск
- Чередование наименьших квадратов (Alternating Least Squares ALS)

Метод наименьших квадратов с чередованием

$$L(\mathbf{W}, \mathbf{H}) = \sum_{(i,j)\in\Omega} (\mathbf{R}_{ij} - \mathbf{W}_{i*}\mathbf{H}_{*j})^{2}$$

$$\frac{\partial L(\mathbf{W}, \mathbf{H})}{\partial \mathbf{W}_{i*}} = 0$$

$$\frac{\partial L(\mathbf{W}, \mathbf{H})}{\partial \mathbf{H}_{*j}} = 0$$

$$\mathbf{R}_{i*} - \mathbf{W}_{i*}\mathbf{H}^{(n)} = \mathbf{0}$$

$$\mathbf{R}_{*j} - \mathbf{W}^{(n+1)}\mathbf{H}_{*j} = \mathbf{0}$$
9

Шаг 1. Вычисление $oldsymbol{W}$ при фиксированном $oldsymbol{H}$

Метод наименьших квадратов для задачи линейной регрессии:

$$\widehat{\boldsymbol{\theta}} = \left(\mathbf{X}^{\mathrm{T}} \mathbf{X} \right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y}$$

Для матрицы рейтингов

$$W_{i*}^{(n+1)^{T}} = \left(H_{\Omega_{i*}}^{(n)}H_{\Omega_{i*}}^{(n)^{T}}\right)^{-1}H_{\Omega_{i*}}^{(n)}R_{\Omega_{i*}}^{T}$$

Шаг 2. Вычисление $oldsymbol{H}$ при фиксированном $oldsymbol{W}$

$$H_{*j}^{(n+1)} = \left(W_{\Omega_{*j}}^{(n+1)^T}W_{\Omega_{*j}}^{(n+1)}\right)^{-1}W_{\Omega_{*j}}^{(n+1)^T}R_{\Omega_{*j}}$$

Распределенный ALS

Факторизация матрицы рейтингов на одном вычислительном узле

Распределенная факторизация матрицы рейтингов

На каждом узле хранятся часть рейтингов по горизонтали и вертикали (R^{i*} и R^{*j}) и матрицы W и H. При этом на каждом узле зафиксированная матрица хранит полностью в неизменном виде и обновляется только часть используемой в качестве неизвестных параметров.

Схематично алгоритм обучения приведены на рисунке ниже

- 1 Н ← средний рейтинг для первой строки и малые случайные значения для остальных
- 2 Цикл: критерий остановки
- 3 W ← вычисление при фиксированном H распределено на d узлах
- 4 Обновление **W** на всех узлах
- 5 $H \leftarrow$ вычисление при фиксированном W распределено на d узлах
- 6 Обновление *H* на всех узлах

Список литературы

- 1. Zadeh, Reza & Carlsson, Gunnar. (2013). Dimension Independent Matrix Square using MapReduce.
- CME 323: Distributed Algorithms and Optimization, Spring 2015
 http://stanford.edu/~rezab/dao. Instructor: Reza Zadeh, Databricks and Stanford. Lecture 10, 4/29/2015. Scribed by Jan Dlabal, Fang-Chieh Chou, Yu-Wei Lin, Yi-Hong Kuo.
- 3. Lars Schmidt-Thieme. Lecture Note. Big Data Analytics. Distributed Machine Learning Algorithms: Distributed Stochastic Gradient Descent, University of Hildesheim, Germany
- 4. Niu, Feng & Recht, Benjamin & Ré, Christopher & Wright, Stephen. (2011). HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient
- R. Gemulla, P. J. Haas, E. Nijkamp, Y. Sismanis «Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent», IBM Research Report RJ10481, March 2011 Revised February, 2013
- 6. Yunhong Zhou, Dennis Wilkins, Robert Schreiber, Rong Pan «Large-Scale Parallel Collaborative Filtering for the Netflix Prize» AAIM '08 Proceedings of the 4th international conference on Algorithmic Aspects in Information and Management. PP 337–348, Springer-Verlag Berlin, Heidelberg, 2008