Model Linear

Ali Akbar Septiandri

Universitas Al-Azhar Indonesia aliakbars@live.com

April 22, 2019

Selayang Pandang

- Ulasan
- Regresi Linear Simple Linear Regression Basis Function Regression Regularisation
- 3 Regresi Logistik
- 4 Optimasi
- 6 Klasifikasi

Bahan Bacaan

- 1 VanderPlas, J. (2016). Python Data Science Handbook. (In Depth: Linear Regression) http://nbviewer.jupyter.org/github/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/05.06-Linear-Regression.ipynb
- Murray, I. (2016). MLPR class notes. (Linear Regression; Regression and Gradients; Logistic Regression) http://www. inf.ed.ac.uk/teaching/courses/mlpr/2016/notes/ (graduate level)

Ulasan

Minggu lalu...

- Dimensionality Reduction
- Eigenvector & Eigenvalue
- Principal Component Analysis

Apa interpretasi dari determinan? Apa hubungannya dengan nilai eigen? Video dari Victor Lavrenko untuk PCA

Regresi Linear

Prediksi hubungan antara dua variabel

Gambar: Data hubungan antara 'share' dengan 'like' pada Facebook

Prediksi hubungan antara dua variabel

Gambar: Data hubungan antara 'share' dengan 'like' pada Facebook

Simple Linear Regression

Fungsi linear

Kasus paling sederhana adalah mencocokkan garis lurus ke sekumpulan data

$$y = ax + b$$

dengan a adalah slope, sedangkan b dikenal dengan nama intercept.

Notasi lain

$$y = w_0 + w_1 x_1$$

dengan w adalah bobot atau koefisien.

Simple Linear Regression

Example

```
rng = np.random.RandomState(1)
x = 10 * rng.rand(50)
y = 2 * x - 5 + rng.randn(50)
plt.scatter(x, y);
```


Gambar: Data yang dimunculkan secara acak [VanderPlas, 2016]

Mencocokkan Garis

Gambar: Hasil pencocokan garis [VanderPlas, 2016]

Model slope: 2.02720881036

Model intercept: -4.99857708555

Bagaimana kalau ada lebih dari dua variabel yang ingin kita lihat hubungannya?

Multidimensional Linear Regression

Model

$$y = w_0 x_0 + w_1 x_1 + w_2 x_2 + ... + w_D x_D = \sum_{j=0}^{D} w_j x_j$$

dengan $x_0 = 1$

Notasi matriks-vektor

$$y = \phi \mathbf{w}$$

dengan
$$\phi = (1, \mathbf{x}^T)$$

Regresi linear untuk dua variabel

Gambar: Hubungan antara 'share', 'comment', dan 'like' pada foto di Facebook

Prediktor linear (contoh)

Vektor bobot $\mathbf{w} \in \mathbb{R}^D$

bias: -20.24 share: 6.65

comment: 3.53

Vektor fitur $\phi(x) \in \mathbb{R}^D$

bias: 1 share: 147

comment: 58

$$\hat{y} = \mathbf{w} \cdot \phi(x)$$

$$= \sum_{j=1}^{D} w_j \phi_j(x)$$

$$= -20.24(1) + 6.65(147) + 3.53(58) = 1162.05$$

Jadi, diprediksi bahwa untuk foto dengan share = 147 dan comment = 58, foto tersebut akan mendapatkan ≈ 1162.05 likes.

Kita sudah tahu nilai y dan ϕ , tapi berapa nilai \mathbf{w} ?

Nyatanya, kita tidak bisa mencari nilai ϕ^{-1}

 ϕ bukan matriks bujur sangkar dan datanya mengandung \emph{noise}

Asumsi Gaussian Noise

- Asumsikan $y = \mathbf{w}^T \phi + \epsilon$ dengan $\epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$
- Berdasarkan asumsi distribusi Gaussian, implikasinya $p(y|\phi, \mathbf{w}) = \mathcal{N}(y; \mathbf{w}^T \phi, \sigma_{\epsilon}^2)$
- Dengan asumsi i.i.d., nilai log likelihood menjadi

$$L(\mathbf{w}) = \sum_{i=1}^{N} \log p(y|\phi, \mathbf{w})$$
$$= -\frac{N}{2} \log(2\pi\sigma_{\epsilon}^{2}) - \frac{1}{2\sigma_{\epsilon}^{2}} \sum_{i=1}^{N} (y_{i} - \mathbf{w}^{T}\phi_{i})^{2}$$

Fungsi Linear dengan Gaussian Noise

Gambar: Fungsi linear dengan Gaussian *noise* dalam asumsi *ordinary least* squares

Meminimalkan Error

$$L(\mathbf{w}) = -\frac{N}{2}\log(2\pi\sigma_{\epsilon}^2) - \frac{1}{2\sigma_{\epsilon}^2}\sum_{i=1}^{N}(y_i - \mathbf{w}^T\phi_i)^2$$
$$= -C_2 - C_1\sum_{i=1}^{N}(y_i - \mathbf{w}^T\phi_i)^2$$

dengan $C_1 > 0$ dan C_2 tidak terpengaruh oleh **w**. Beberapa hal yang perlu diketahui:

- Mengalikan dengan konstanta positif tidak akan mengubah titik maksimum
- Menambahkan konstanta tidak mengubah titik maksimum
- $\sum_{i=1}^{N} (y_i \mathbf{w}^T \phi_i)^2$ adalah sum of squared errors

Jadi, memaksimalkan likelihood akan sama dengan meminimalkan sum of squared error.

Loss Function

- Harus menggunakan loss function E(w) yang dapat diminimalkan
- Pilihan umum: squared error

$$E(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$
$$= (\mathbf{y} - \phi \mathbf{w})^T (\mathbf{y} - \phi \mathbf{w})$$

Solusi

- Jawaban: Minimalkan $E(\mathbf{w}) = \sum_{i=1}^{n} (y_i \mathbf{w}^T \mathbf{x}_i)^2$ dengan mencari turunan parsial yang diatur sama dengan 0
- Solusi analitis:

$$\hat{\mathbf{w}} = (\phi^T \phi)^{-1} \phi^T \mathbf{y}$$

ullet Bagian $(\phi^T\phi)^{-1}\phi^T$ dikenal sebagai *pseudo-inverse*

Perhatikan kembali

Non-linearity

Gambar: Data yang dihasilkan dari fungsi sin dengan noise

Bagaimana kalau datanya seperti ini?

Underfitting

Gambar: Hasil fitting regresi linear sederhana

Jika model yang dihasilkan lebih sederhana dibandingkan data yang seharusnya dicocokkan, maka model tersebut disebut mengalami underfitting.

Polynomial Basis Functions

Regresi linear dengan fungsi basis polinomial

Jika kita mengubah $x_p=f_p(x)$, dengan $f_p()$ adalah fungsi transformasi, maka untuk $f_p()=x^p$ dan x adalah input berdimensi satu, modelnya menjadi

$$y = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + \dots$$

Polynomial Basis Functions

In

```
from sklearn.preprocessing import PolynomialFeatures
x = np.array([2, 3, 4])
poly = PolynomialFeatures(3, include_bias=False)
poly.fit_transform(x[:, None])
```

Out

```
array([[ 2., 4., 8.], [ 3., 9., 27.], [ 4., 16., 64.]])
```

Best-fit

Gambar: Hasil fitting fungsi basis polinomial p = 2

Apa yang terjadi jika p dibuat lebih besar?

Overfitting

Gambar: Hasil fitting fungsi basis polinomial p = 15

Jika model yang dihasilkan lebih kompleks (\sim parameternya banyak) dibandingkan data yang seharusnya dicocokkan, maka model tersebut disebut mengalami overfitting.

Kita dapat menggunkan fungsi basis Gaussian sebagai alternatif (non-examinable)

Bagaimana cara menghindari overfitting?

Ridge Regression

- Digunakan untuk menghindari overfitting
- Dikenal juga sebagai L₂ regularisation atau Tikhonov regularisation
- Pemberian penalti untuk koefisien model

$$P = \alpha \sum_{j=1}^{p} w_j^2 = \alpha \|\mathbf{w}\|_2^2$$

Loss Function pada Ridge Regression

Loss function yang harus diminimalkan menjadi

$$E(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 - \alpha \|\mathbf{w}\|_2^2$$

dengan
$$\|\mathbf{w}\|_d = (\sum_{j=1}^p |w_j|^d)^{\frac{1}{d}}$$

Loss Function pada Ridge Regression

Loss function yang harus diminimalkan menjadi

$$E(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 - \alpha \|\mathbf{w}\|_2^2$$

dengan
$$\|\mathbf{w}\|_d = (\sum_{j=1}^p |w_j|^d)^{\frac{1}{d}}$$

• Parameter α (terkadang juga ditulis sebagai λ) bernilai bebas (ditentukan oleh pengguna)

Loss Function pada Ridge Regression

Loss function yang harus diminimalkan menjadi

$$E(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 - \alpha \|\mathbf{w}\|_2^2$$

dengan
$$\|\mathbf{w}\|_d = (\sum_{j=1}^p |w_j|^d)^{\frac{1}{d}}$$

- Parameter α (terkadang juga ditulis sebagai λ) bernilai bebas (ditentukan oleh pengguna)
- Solusi analitis:

$$\hat{\mathbf{w}} = (\boldsymbol{\phi}^{\mathsf{T}} \boldsymbol{\phi} + \alpha I_p)^{-1} \boldsymbol{\phi}^{\mathsf{T}} \mathbf{y}$$

Lasso Regression

- Secara konsep mirip seperti ridge regression
- Penalti dengan jumlah nilai absolut dari koefisien (1-norms; L_1 regularisation)

$$P = \alpha \sum_{j=1}^{p} |w_j|$$

Bekerja dengan membuat banyak koefisien bernilai nol

Break

Regresi Logistik

Mengubah Keluaran

- Berdasarkan keluaran regresi linear, kita bisa memaksanya menjadi [0, 1]
- Gunakan fungsi sigmoid:

$$P(y = 1 | \mathbf{x}) = f(\mathbf{x}; \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$

- Nilai [0, 1] dapat diartikan sebagai probabilitas dari kelas
- Karena probabilitas harus memiliki total 1, maka

$$P(y = 0|\mathbf{x}) = 1 - P(y = 1|\mathbf{x})$$

Fungsi Sigmoid

Gambar: Fungsi sigmoid/logistik $\sigma(z) = \frac{1}{1 + exp(-z)}$

Decision Boundary

- $\sigma(z) = 0.5$ saat z = 0 sehingga batas keputusannya diberikan oleh $\mathbf{w}^T \mathbf{x} = 0$
- Batas keputusannya merupakan M-1 hyperplane untuk masalah M dimensi
- Kita perlu mencari nilai w

Decision Boundary

Gambar: Batas keputusan dan vektor bobot untuk klasifikasi dua kelas

Likelihood

- Asumsi i.i.d.
- Dataset $\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_n, y_n)\}$
- Likelihood-nya menjadi

$$\begin{split} p(\mathcal{D}|\mathbf{w}) &= \prod_{i=1}^{N} p(y = y_i|\mathbf{x}_i, \mathbf{w}) \\ &= \prod_{i=1}^{N} p(y = 1|\mathbf{x}_i, \mathbf{w})^{y_i} (1 - p(y = 1|\mathbf{x}_i, \mathbf{w}))^{1-y_i} \end{split}$$

• Log likelihood $L(\mathbf{w}) = \log p(\mathcal{D}|\mathbf{w})$

$$L(\mathbf{w}) = \sum_{i=1}^{N} y_i \log \sigma(\mathbf{w}^T \mathbf{x}_i) + (1 - y_i) \log(1 - \sigma(\mathbf{w}^T \mathbf{x}_i))$$

Solusi

- Nilai optimum untuk kasus ini unik, i.e. convex
- Untuk memaksimalkan nilainya, gunakan gradien

$$\frac{\partial L}{\partial w_j} = \sum_{i=1}^{N} (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i)) x_{ij}$$

• Tidak ada solusi tertutup sehingga harus menggunakan optimasi numerik, e.g. dengan gradient descent

Optimasi

Mengapa dinamakan machine learning?

Alasan Melakukan Optimasi

- ullet Belajar o masalah optimasi kontinu
- Contoh: regresi linear, regresi logistik, jaringan saraf tiruan, SVM
- Salah satu caranya adalah dengan maximum likelihood

"Berapa peluangnya kita melihat data ini jika diketahui parameternya?"

Cara Melakukan Optimasi

- Menggunakan fungsi galat/error $E(\mathbf{w})$ yang akan diminimalkan
- e.g. dapat berupa $-L(\mathbf{w})$
- Beda nilai w, beda besar error
- Belajar ≡ menuruni permukaan error

Menuruni Permukaan Fungsi Error

Gambar: Menuruni lembah fungsi error E(w)

Menuruni Permukaan Fungsi Error

Gambar: Menuruni lembah fungsi error

Gradient Descent

```
\begin{array}{c|c} \textbf{begin} \\ & \textbf{Inisialisasi w} \\ & \textbf{while } E(\textbf{w}) \text{ masih terlalu besar do} \\ & & \textbf{Hitung g} \leftarrow \frac{\partial E}{\partial \textbf{w}} \\ & & \textbf{w} \leftarrow \textbf{w} - \eta \textbf{g} \\ & \textbf{end} \\ & \textbf{return w} \\ \textbf{end} \end{array}
```

Algorithm 1: Melatih dengan gradient descent

Learning Rate

- η (baca: "eta") dikenal sebagai $step\ size$ atau $learning\ rate$ dengan nilai $\eta>0$
- η terlalu kecil \rightarrow lambat
- η terlalu besar \rightarrow tidak stabil

Batch vs Online

 Untuk data yang sedikit, kita bisa menjumlahkan semua error sebelum memperbarui nilai w (batch)

Batch vs Online

- Untuk data yang sedikit, kita bisa menjumlahkan semua error sebelum memperbarui nilai w (batch)
- Bagaimana untuk 10 juta data?

Batch vs Online

- Untuk data yang sedikit, kita bisa menjumlahkan semua error sebelum memperbarui nilai w (batch)
- Bagaimana untuk 10 juta data?
- Ternyata, kita bisa memperbarui nilai w untuk setiap satu data (online)

Gradient Descent (Batch)

```
begin

Inisialisasi w

while E(\mathbf{w}) masih terlalu besar do

Hitung \mathbf{g} \leftarrow \sum_{i=1}^{N} \frac{\partial E_i}{\partial \mathbf{w}}

\mathbf{w} \leftarrow \mathbf{w} - \eta \mathbf{g}

end

return w
end
```

Algorithm 2: Melatih dengan batch gradient descent

Stochastic Gradient Descent

```
\begin{array}{c|c} \textbf{begin} \\ & \textbf{Inisialisasi w} \\ & \textbf{while } E(\textbf{w}) \text{ } \textit{masih terlalu besar do} \\ & & \textbf{Pilih } \textit{j} \text{ sebagai integer acak antara } 1..N \\ & & \textbf{Hitung } \textbf{g} \leftarrow \frac{\partial E_{\textit{j}}}{\partial \textbf{w}} \\ & & \textbf{w} \leftarrow \textbf{w} - \eta \textbf{g} \\ & \textbf{end} \\ & \textbf{return w} \\ \textbf{end} \end{array}
```

Algorithm 3: Stochastic gradient descent (SGD)

Kelebihan dan Kekurangan

- Batch lebih powerful
- Batch lebih mudah dianalisis
- Online lebih praktikal untuk data yang besar

Pengembangan Gradient Descent (non-examinable)

- "Why Momentum Really Works" [Goh, 2017]
- Performance-dependent η , e.g. "NewBOB": η berubah menjadi setengahnya saat validation set tidak menjadi lebih baik
- Time-dependent schedules, e.g. eksponensial: $\eta(t) = \eta(0) exp(-t/r)$ ($r \sim$ ukuran data latih)

Tentang Metode Optimasi

- Masih banyak metode optimasi yang tidak dibahas, e.g. linear programming, Newton's method, dll.
- Optimasi merupakan bidang matematika yang kompleks
- Masalah convex: optimum global. Non-convex: optimum lokal.
- Pahami mengapa gradient descent bisa mengalami masalah

Klasifikasi

• Naïve Bayes memodelkan bagaimana kelas "menghasilkan" vektor fitur $p(\mathbf{x}|y)$ untuk kemudian diklasifikasikan dengan

$$p(y|\mathbf{x}) \propto p(\mathbf{x}|y)p(y)$$

• Naïve Bayes memodelkan bagaimana kelas "menghasilkan" vektor fitur $p(\mathbf{x}|y)$ untuk kemudian diklasifikasikan dengan

$$p(y|\mathbf{x}) \propto p(\mathbf{x}|y)p(y)$$

• Regresi logistik langsung memodelkan $p(y|\mathbf{x})$, i.e. diskriminatif

• Naïve Bayes memodelkan bagaimana kelas "menghasilkan" vektor fitur $p(\mathbf{x}|y)$ untuk kemudian diklasifikasikan dengan

$$p(y|\mathbf{x}) \propto p(\mathbf{x}|y)p(y)$$

- Regresi logistik langsung memodelkan $p(y|\mathbf{x})$, i.e. diskriminatif
- Keuntungan metode diskriminatif: Buat apa memodelkan p(x)? Kita selalu punya input.

• Naïve Bayes memodelkan bagaimana kelas "menghasilkan" vektor fitur $p(\mathbf{x}|y)$ untuk kemudian diklasifikasikan dengan

$$p(y|\mathbf{x}) \propto p(\mathbf{x}|y)p(y)$$

- Regresi logistik langsung memodelkan $p(y|\mathbf{x})$, i.e. diskriminatif
- Keuntungan metode diskriminatif: Buat apa memodelkan p(x)? Kita selalu punya input.
- Keuntungan metode generatif: Bisa menangani kasus data yang hilang, mendeteksi pencilan, atau mungkin memang perlu menghasilkan input

Klasifikasi Multikelas

- Buat vektor bobot w_k untuk setiap kelas, untuk mengklasifikasikan k dan bukan-k
- Gunakan fungsi softmax

$$p(y = k | \mathbf{x}) = \frac{exp(\mathbf{w}_k^T \mathbf{x})}{\sum_{j=1}^{C} exp(\mathbf{w}_j^T \mathbf{x})}$$

• Perhatikan bahwa $0 \le p(y=k|\mathbf{x}) \le 1$ dan $\sum_{j=1}^C p(y=j|\mathbf{x}) = 1$

Ikhtisar

- Regresi linear sebagai fungsi dengan Gaussian noise
- Asumsi Gaussian noise \rightarrow sum of squared error
- Ordinary least squares (OLS) didapatkan dengan solusi analitis dari fungsi error
- Transformasi fitur dan regularisasi
- Klasifikasi dengan regresi logistik dan gradient descent
- Model generatif vs diskriminatif

Referensi

Jake VanderPlas (2016)

In Depth: Linear Regression

Python Data Science Handbook

Gabriel Goh (2017)

"Why Momentum Really Works"

Distill http://distill.pub/2017/momentum/

Terima kasih