

planetmath.org

Math for the people, by the people.

semi-continuous

Canonical name Semicontinuous
Date of creation 2013-03-22 12:45:41
Last modified on 2013-03-22 12:45:41

Owner drini (3) Last modified by drini (3)

Numerical id 6

Author drini (3)
Entry type Definition
Classification msc 26A15
Classification msc 54-XX
Synonym semicontinuous

A real function $f:A\to\mathbb{R}$, where $A\subseteq\mathbb{R}$ is said to be lower semi-continuous in x_0 if

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in A \ |x - x_0| < \delta \Rightarrow f(x) > f(x_0) - \varepsilon,$$

and f is said to be *upper semi-continuous* if

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in A \ |x - x_0| < \delta \Rightarrow f(x) < f(x_0) + \varepsilon.$$

Remark A real function is continuous in x_0 if and only if it is both upper and lower semicontinuous in x_0 .

We can generalize the definition to arbitrary topological spaces as follows. Let A be a topological space. $f: A \to \mathbb{R}$ is lower semicontinuous at x_0 if, for each $\varepsilon > 0$ there is a neighborhood U of x_0 such that $x \in U$ implies $f(x) > f(x_0) - \varepsilon$.

Theorem Let $f:[a,b] \to \mathbb{R}$ be a lower (upper) semi-continuous function. Then f has a minimum (maximum) in [a,b].