objective:

- 1. Applying naive bayes to classify the amazon food reviews.
- 2. Check for different types of scoring merrics
- 3. Getting the important features.

```
In [1]: #importing all module
   import sqlite3 as s
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   import numpy as np
   from sklearn.neighbors import KNeighborsClassifier
   from sklearn.model_selection import train_test_split
   from sklearn.cross_validation import cross_val_score
   from sklearn.metrics import accuracy_score
   from sklearn.model_selection import GridSearchCV
   from sklearn.model_selection import TimeSeriesSplit
   from sklearn.metrics import confusion_matrix
```

C:\Users\himateja\Anaconda3\lib\site-packages\sklearn\cross_validation.py:41: D eprecationWarning: This module was deprecated in version 0.18 in favor of the m odel_selection module into which all the refactored classes and functions are m oved. Also note that the interface of the new CV iterators are different from t hat of this module. This module will be removed in 0.20.

"This module will be removed in 0.20.", DeprecationWarning)

```
In [2]: con=s.connect("database.sqlite")
   con
```

Out[2]: <sqlite3.Connection at 0x23df96e8490>

data=pd.read_sql_query("SELECT * FROM Reviews WHERE Score!=3",con) In [3]: data.head(5)

Out[3]:

```
ld
      ProductId
                                   ProfileName HelpfulnessNumerator HelpfulnessDenominat
1 B001E4KFG0 A3SGXH7AUHU8GW
                                      delmartian
                                                                  1
                                                                  0
2 B00813GRG4
                  A1D87F6ZCVE5NK
                                          dll pa
                                        Natalia
                                         Corres
3 B000LQOCH0
                   ABXLMWJIXXAIN
                                                                  1
                                        "Natalia
                                        Corres"
    B000UA0QIQ
                 A395BORC6FGVXV
                                           Karl
                                                                  3
                                      Michael D.
    B006K2ZZ7K A1UQRSCLF8GW1T
                                     Bigham "M.
                                                                  0
                                        Wassir"
```

```
#function to change the score to positive/negative
In [4]:
        def change(x):
            if x<3:
```

return 'positive'

return 'negative'

```
In [5]: a_s=data.Score
a_s=a_s.map(change)
data.Score.head(5)

Out[5]: 0    positive
1         negative
2         positive
3         negative
4         positive
Name: Score, dtype: object
```

Data cleaning

The data needs to get clean as it may have some unwanted things such as duplicates.

```
In [6]: #sorting the values by product ids
         data=data.sort_values("ProductId")
         #removing the duplicates from the data
 In [7]:
         final_data=data.drop_duplicates(subset={"UserId","Text","ProfileName","Time"},kee
 In [8]:
         print(final_data.shape)
         print(final data.Score.value counts())
         (364173, 10)
                     307063
         positive
         negative
                      57110
         Name: Score, dtype: int64
         p data=final data[final data.Score=="positive"]
 In [9]:
         n data=final data[final data.Score=="negative"]
In [10]:
         #randomly selecting points
         #p data=p data.sample(34000)
         #n data=n data.sample(6000)
In [11]:
         print(p_data.shape,n_data.shape)
         (307063, 10) (57110, 10)
In [12]: d=pd.concat((p_data,n_data))
In [13]:
         print(d.shape)
         (364173, 10)
```

```
In [14]: #sorting according to time stamp
d=d.sort_values('Time')

In [15]: print(d.Score.value_counts())

    positive    307063
    negative    57110
    Name: Score, dtype: int64
```

Data preprocessing

The data should be preprocessed after cleaning it

```
In [16]:
         import string
         from nltk.corpus import stopwords
         from nltk.stem import SnowballStemmer
         import re
In [17]: #stopwords
         stop_words=set(stopwords.words("english"))
         #initializing snowball stemmer
         sno=SnowballStemmer("english")
In [18]:
         #function to remove html tags
         def cleanhtml(s):
             cleanr=re.compile("<.*?>")
             cleant=re.sub(cleanr," ",s)
             return cleant
In [19]:
         #funtion to remove punctuation and special character
         def cleanpunc(s):
             cleaned = re.sub(r'[?|!|\'|"#]',r'',s)
             cleaned = re.sub(r'[.|,|)|(|\|/]',r' ',cleaned)
             return cleaned
```

```
In [20]:
         i=0
         final=[]
         for s in d.Text.values:
             f=[]
             c=cleanhtml(s)
             for w in cleanpunc(c).split():
                  if w.isalpha() and len(w)>2:
                      if w not in stop_words:
                          sne=(sno.stem(w.lower())).encode('utf-8')
                          f.append(sne)
                      else:
                          continue
                  else:
                      continue
             te=b" ".join(f)
             final.append(te)
             i+=1
In [21]:
         #adding the preprocessed data into another column
         d["cleaned"]=final
In [22]:
         #checking if new column is added
         d.columns
Out[22]: Index(['Id', 'ProductId', 'UserId', 'ProfileName', 'HelpfulnessNumerator',
                 'HelpfulnessDenominator', 'Score', 'Time', 'Summary', 'Text',
                 'cleaned'],
               dtype='object')
In [23]:
         import sqlite3
         conn=sqlite3.connect("future.sqlite")
         c=conn.cursor()
         conn.text factory=str
         d.to_sql('Reviews',conn,if_exists='replace',index=True)
```

In [24]: #replacing positive and negative with 1,0 to make it work for different metrics
d=d.replace(['positive','negative'],[1,0]) d.head(10)

Out[24]:

	ld	ProductId	Userld	ProfileName	HelpfulnessNumerator	HelpfulnessD
138706	150524	0006641040	ACITT7DI6IDDL	shari zychinski	0	
138683	150501	0006641040	AJ46FKXOVC7NR	Nicholas A Mesiano	2	
417839	451856	B00004CXX9	AIUWLEQ1ADEG5	Elizabeth Medina	0	
346055	374359	B00004CI84	A344SMIA5JECGM	Vincent P. Ross	1	
417838	451855	B00004CXX9	AJH6LUC1UT1ON	The Phantom of the Opera	0	
346116	374422	B00004CI84	A1048CYU0OV4O8	Judy L. Eans	2	
346041	374343	B00004CI84	A1B2IZU1JLZA6	Wes	19	
70688	76882	B00002N8SM	A32DW342WBJ6BX	Buttersugar	0	
346141	374450	B00004CI84	ACJR7EQF9S6FP	Jeremy Robertson	2	
346094	374400	B00004CI84	A2DEE7F9XKP3ZR	jerome	0	
4						•

```
In [25]: #importing the needed module
    from sklearn.naive_bayes import MultinomialNB
    from sklearn.metrics import f1_score,make_scorer
    from sklearn.metrics import recall_score
    from sklearn.metrics import precision_score
```

Lets create functions for finding best parameter.

```
In [26]:
         #function for multinomial naive bayes
         def main(h,j,k,l):
             #gridsearchcv
             #params we need to try on classifier
             nb = MultinomialNB()
             param_grid = {'alpha':[0.0001,0.001,0.01,0.1,1,10,100]}
             #For time based splitting
             t = TimeSeriesSplit(n_splits=5)
             gsv = GridSearchCV(nb,param grid,cv=t,n jobs=-1,scoring='f1',refit=True)
             gsv.fit(h,j)
             print("Best HyperParameter: ",gsv.best_params_)
             #assinging best alpha to optimal
             optimal=gsv.best params ['alpha']
             print("Best Accuracy: %.2f%%"%(gsv.best_score_*100))
             print("best estimator: ",gsv.estimator)
             nb_optimal=MultinomialNB(alpha=optimal)
             nb optimal.fit(h,j)
             pred=nb_optimal.predict(k)
             #accuracy
             acc=accuracy score(1,pred)*100
             print("\nthe accuracy is %.2f%%"%acc)
             df cm=pd.DataFrame(confusion matrix(l,pred))
             sns.set(font scale=1.4)
             sns.heatmap(df_cm,annot=True,fmt="d")
             re=recall score(1,pred,) * 100
             print("\nthe recall is %.2f%%"%re)
             pre=precision_score(l,pred) * 100
             print("the precision is %.2f%%"%pre)
             f1=f1 score(1,pred) * 100
             print("the f1 score is %.2f%%"%f1)
```

Bag of words

```
In [28]: x_1, x_test, y_1, y_test = train_test_split(d.cleaned.values, d.Score, test_size=
         \#x_{tr}, x_{cv}, y_{tr}, y_{cv} = train_test_split(x_1, y_1, test_size=0.3)
In [29]: | print(x_1.shape,x_test.shape,y_1.shape,y_test.shape)
         (254921,) (109252,) (254921,) (109252,)
In [30]:
         from sklearn.feature_extraction.text import CountVectorizer
         from sklearn import preprocessing
In [31]: | #bigrams
         count_vect=CountVectorizer(ngram_range=(1,2))
In [32]: #transforming the data
         bdata=count_vect.fit_transform(x_1)
         test_data=count_vect.transform(x_test)
         print(bdata.shape,y_1.shape,test_data.shape,y_test.shape)
         (254921, 2351349) (254921,) (109252, 2351349) (109252,)
In [33]:
         %%time
         main(bdata,y_1,test_data,y_test)
         Best HyperParameter: {'alpha': 0.001}
         Best Accuracy: 93.70%
         best estimator: MultinomialNB(alpha=1.0, class prior=None, fit prior=True)
         the accuracy is 88.85%
         the recall is 98.24%
         the precision is 89.32%
         the f1 score is 93.57%
         Wall time: 35 s
                                                      75000
                   8485
                                     10597
          0
                                                     60000
                                                     45000
                                                      30000
                    1583
                                     88587
                                                      15000
                     0
                                       1
```

Feature importance

```
In [34]: #getting all feature names
all_feat = count_vect.get_feature_names()
    #model with optimal hyperparameter
    clf=MultinomialNB(alpha=0.001)
    clf.fit(bdata,y_1)
```

Out[34]: MultinomialNB(alpha=0.001, class_prior=None, fit_prior=True)

```
In [81]: #probability of class given feature
log_probabilities=np.exp(clf.feature_log_prob_)
```

```
In [101]: #dataframe for negative probabilities
    negative_dataframe=pd.DataFrame({"word":all_feat,"negative_proba":log_probabilitient
    negative_dataframe.head(4)
```

Out[101]:

	word	negative_proba
0	aa	3.087364e-10
1	aa pleas	3.087364e-10
2	aa state	3.087364e-10
3	aaa	3.090451e-07

In [103]: #sorting in descending order negative_dataframe=negative_dataframe.sort_values(by="negative_proba",ascending=F negative_dataframe.head(4)

Out[103]:

	word	negative_proba
2028406	tast	0.007193
1159383	like	0.006632
2063012	the	0.005681
1587721	product	0.005608

```
In [105]: #dataframe for positive probabilites
    positive_dataframe=pd.DataFrame({"word":all_feat,"positive_proba":log_probabilitie
    positive_dataframe.head(4)
```

Out[105]:

	word	positive_proba
0	aa	1.183994e-07
1	aa pleas	5.922928e-08
2	aa state	5.922928e-08
3	aaa	1.301802e-06

In [107]: #sorting in descending order
positive_dataframe=positive_dataframe.sort_values(by="positive_proba",ascending=F
positive_dataframe.head(4)

Out[107]:

	word	positive_proba
1159383	like	0.005710
2028406	tast	0.005321
2063012	the	0.004941
881139	good	0.004649

In [108]: #barplot for positive feature importance
sns.barplot(y='word', x='positive_proba', data=positive_dataframe.head(10), palet

Out[108]: Text(0.5,1,'important features in Positive reviews')


```
In [109]: #barplot for negative feature importance
sns.barplot(y='word', x='negative_proba', data=negative_dataframe.head(10), palet
```

Out[109]: Text(0.5,1,'important features in negative reviews')

Out[115]:

 accuracy
 88.85%

 recall
 98.24%

 precision
 89.32%

 f1
 93.57%

Tfidf

```
In [119]: #transforming the data
    tdata=tfidf.fit_transform(x_1)
    test_data=tfidf.transform(x_test)
    print(tdata.shape,test_data.shape)
```

(254921, 2351349) (109252, 2351349)

Best HyperParameter: {'alpha': 0.001}

Best Accuracy: 93.50%

best estimator: MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)

the accuracy is 87.92%

the recall is 99.14% the precision is 87.80% the f1 score is 93.12%

Wall time: 32 s

In [121]: #getting all feature names all_feat = tfidf.get_feature_names() #model with optimal hyperparameter clf=MultinomialNB(alpha=0.001) clf.fit(bdata,y_1)

Out[121]: MultinomialNB(alpha=0.001, class_prior=None, fit_prior=True)

In [122]: #probability of class given feature log_probabilities=np.exp(clf.feature_log_prob_)

In [123]:

#dataframe for negative probabilities

negative_dataframe=pd.DataFrame({"word":all_feat,"negative_proba":log_probabiliti negative_dataframe.head(4)

Out[123]:

	word	negative_proba
0	aa	3.087364e-10
1	aa pleas	3.087364e-10
2	aa state	3.087364e-10
3	aaa	3.090451e-07

In [124]: #sorting in descending order

negative_dataframe=negative_dataframe.sort_values(by="negative_proba",ascending=F negative_dataframe.head(4)

Out[124]:

	word	negative_proba
2028406	tast	0.007193
1159383	like	0.006632
2063012	the	0.005681
1587721	product	0.005608

In [125]:

#dataframe for positive probabilites

positive_dataframe=pd.DataFrame({"word":all_feat,"positive_proba":log_probabiliti positive dataframe.head(4)

Out[125]:

	word	positive_proba
0	aa	1.183994e-07
1	aa pleas	5.922928e-08
2	aa state	5.922928e-08
3	222	1 301802e-06

In [126]: #sorting in descending order

positive dataframe=positive dataframe.sort values(by="positive proba",ascending=F positive dataframe.head(4)

Out[126]:

	word	positive_proba
1159383	like	0.005710
2028406	tast	0.005321
2063012	the	0.004941
881139	good	0.004649

```
In [127]: #barplot for positive feature importance
sns.barplot(y='word', x='positive_proba', data=positive_dataframe.head(10), palet
```

Out[127]: Text(0.5,1,'important features in Positive reviews')

In [128]: #barplot for negative feature importance
sns.barplot(y='word', x='negative_proba', data=negative_dataframe.head(10), palet

Out[128]: Text(0.5,1,'important features in negative reviews')

Out[131]:

	score
accuracy	87.92%
recall	99.14%
precision	87.80%
f1	93.12%

Conclusion:

- 1.naive bayes works well ,when features are independent. That is why we have not done word2vec as feature are highly dependent.
- 2.time complexity of naive bayes is very less.(theortically o(n*d) n=number of points,d=no of features)
- 3.accuracy is not a good parameter to use in naive bayes

Both the above models are performing good as metrics have a good value.

In []:			
---------	--	--	--