USN

NMAM INSTITUTE OF TECHNOLOGY, NITTE

(An Autonomous Institution affiliated to VTU, Belagavi)

II Son B.E. (Credit System) Mid Semester Examinations - I, February 2016

15PH102 - ENGINEERING PHYSICS

paration: 1 Hour

Max. Marks; 20

Ist of constants: Velocity of light, c = 3 x 10 ms⁻¹, Planck's constant, h = 6.63 x 10⁻³⁴ Js,

Electron mass, m = 9.11 x 10⁻³¹ kg. Electron charge, e = 1.602 x 10⁻¹⁹C, Permittivity of vacuum, ϵ_e = 8.85x10⁻¹²F/m, Boltzmann constant, k = 1.38 x 10⁻²³J/K, Avogadro number, N_A = 6.023 x 10²⁶ / k mole.

Note: Answer any One full question from each Unit.

	Note: Answer any One run question non		BT	**
	1 letter 1	larks		31.76
a	What are dielectric materials? Explain the temperature dependence of polar dielectrics.	3 L	.*1, L	2
6)	What is internal field? Deduce an expression Eint = E + P / 3 ce in the case of solids and			
	liquids. In case of cases the internal field is equal to the applied field, Why?	4	11.1	4
6)	A parallel plate capacitor has a capacitance of 2µF with a dielectric of relative permittivity 80. Find the energy stored in the capacitor with and without the polarizing medium for an applied voltage of 1KV.	3		4
3)	What are ferro-elctric materials? Explain their properties.	3	1.1.	1.2
951	With a neat sketch, explain the behavior of dielectric constant in AC field and			
1	disappearance of various polarization mechanisms with relevant frequency ranges.	4	L1,	L3
c)	A solid dielectric material contains 5×10^{28} identical atoms/m ³ each with polarizability 3.6×10^{-40} Fm ² . Assuming the internal field is given by the Lorentz relation, calculate the ratio of the internal field to the applied field.			L4
	Unit – II			
	Discuss the probability of occupation of various energy states by electrons at T = 0K and		3	L2
14	T > 0K on the basis of Fermi factor. Define drift velocity. On the basis of free electron theory of metals, obtain an expression			10
			4 L1	, L3
c)	for the electrical conductivity of a metal. A uniform silver wire has a resistivity of 1.54x 10 ⁻⁸ ohm m, at room temperature. For an electric field of 1 volt/cm, calculate (i) the drift velocity (ii) the mobility and the (iii) the relaxation time of electrons assuming that there are 5.8x 10 ²⁸ conduction electrons per			
	m³ of the material.		3	L4
8)	What is Fermi level? Explain the effect of temperature on the Fermi level in an n typ	е	3 L	1, L2
1	extrinsic semiconductor. What is Hall effect? Obtain an expression for the carrier concentration in terms of Hall effect?	all		
	and the late the conductivity and the Hall coefficient.		4 1	1, L3
c.)	Find the temperature at which there is 2% probability that a state with an energy 0.3 e above Fermi energy is occupied.	V	3	L

BT* Bloom's Taxonomy, L* Level