
(Z) VOORWOORD

Dit is de samenvatting aardrijkskunde voor de toets die we hebben deze module. **Deze module is** alternatief dus dit is géén examenleerstof, we hebben namelijk geen examen.

De samenvattingen voor de toets zijn opgedeeld in 3 delen:

DEEL 1: De aarde in dienst van de mens

DEEL 2: Bodemkunde
DEEL 3: Oceanografie

RECLAME: Deze samenvatting aardrijkskunde is gesponsord door 'the flat earth society'

(Y) FOUTJE?

Dat kan. Als het een ernstige fout is meld het me dan via Smartschool, ik ben je alvast dankbaar.

(X) INHOUDSTAFEL

Zie volgende pagina

Inhoud

1) Onze aarde zit vol water	3
1.1) 71% van de aarde is bedekt met water	3
1.2) Indeling van al het water op aarde	3
2) Een zee heeft zijn eigen reliëf	3
2.1) Hoe diep is onze zee? Laten we dat bathymetrisch meten!	3
2.2) Het onderzeese reliëf	3
3) Heb jij ooit zeewater gedronken? Eigenschappen van ons zeewater	4
3.1) Saliniteit	4
3.2) Temperatuur	4
3.3) Optische eigenschappen	4
3.4) Zonlicht	5
3.5) Dichtheid	5
3.6) Grondstoffen	5

1) Onze aarde zit vol water

1.1) 71% van de aarde is bedekt met water

- *71% van de oppervlakte van de aarde is bedekt met water, slechts 29% door land dus.
- --> 70% landmassa ligt in het noorden
- --> Zuidelijk halfrond = zeehalfrond: tropische/polaire zone land

1.2) Indeling van al het water op aarde

- *We gaan van groot naar klein:
- --> Oceanen: grote, diepe, uitgestrekte en samenhangende watermassa, dieper/groter dan zeeën
 - --> Op basis van deze definitie onderscheidt men 3, 4 of 5 oceanen:

Deze 3 hebben we altijd: Grote/Stille/Pacifische oceaan, Atlantische oceaan, Indische oceaan

--> De grootste oceaan is de Grote Oceaan

Deze 2 soms: Arctische Oceaan (Noordelijke Ijszee), Antarctische oceaan

- --> Er wordt nog over gedebatteerd of deze twee oceanen wel oceanen zijn of niet.
- --> Zeeën: Minder diepe en uitgestrekte watermassa in vergelijking met oceanen.
 - --> Randzee: Zee gelegen aan de rand van de continent, dringt niet diep in land (Noordzee aan België)
 - --> Binnenzee: Zee (bijna) volledig door land ingesloten, bijvoorbeeld de Zwarte Zee
 - --> Zeestraat: enge verbinding tussen zee en oceaan (straat van Gibraltar: de zeestraat die Marokkanen jaarlijks oversteken om met de auto op vakantie naar Marokko te gaan).

2) Een zee heeft zijn eigen reliëf

2.1) Hoe diep is onze zee? Laten we dat bathymetrisch meten!

- *Het meten van de zeediepte = bathymetrie (bad = water, onthouden)
- --> Loding: lood gewichtje aan touw --> in zee neerlaten --> adhv lengte touw kan men diepte zee weten
 - --> Niet zo nauwkeurig: invloed zeestromen? Invloed schip?

2.2) Het onderzeese reliëf

- *Je moet het onderzeese reliëf goed vanbuiten kennen, studeren maar!
- (1) Continentale randzones:
- = randzone continenten: bevat sedimentlagen dankzij riviererosie
- (2) Continentale shelf: overstromende randzone continenten
- (3) Continentale helling: vormt overgang van shelf naar abyssale vlakte.
- (4) Submarine canyons: geulen/gleuven
 uitgeschuurd langs continentale helling, door modder-/troebelstromen:
 continentale helling = stijl --> sedimentwater veel E --> schuurt dus goed uit!

- (5) Diepzeevlakten/abbysale vlakten: vlakke delen op oceaanbodem --> diep.
- (6) Diepzeetroggen: smalle geulen, paar km diep, voorkomen = plaatranden: subductie

--> Marianentrog = diepe trog

- (7) Abbysale heuvel: langgerekte heuvel in oceaan
- (8) Seamount: Uitgedoofde vulkanen met steile helling --> verhoging in het reliëf.

(9) Guyots: Seamount met afgeplatte top --> synoniem = Tablemount (Grote Oceaan)

3) Heb jij ooit zeewater gedronken? Eigenschappen van ons zeewater.

*Ik hoop dat het antwoord nee is, ons zeewater heeft enkele eigenschappen (zoals de hoge saliniteit oftewel zoutgehalte) waardoor je het beter niet drinkt.

3.1) Saliniteit

- *Zeewater smaakt zout: 96,5% water en 3,5% opgeloste stoffen
- --> Zout bestaat uit natrium en chloor: natriumchloride --> vormen samen haliet (steenzout)
- → Het zoutgehalte wordt in promille (‰) uitgedrukt.
 - --> De gemiddelde saliniteit van ons zeewater is dus 35 promille
 - --> De échte waarde hangt echter af van: verdamping --> hoe meer verdamping er is, hoe minder zeewater er is, hoe groter de concentratie aan haliet er is, hoe hoger de saliniteit
 - --> Verdamping hangt af van de temperatuur: warmer = sneller verdampen
 - --> Dit hangt ook af van: toevoegen zoet water --> zoutgehalte wordt dan verdund
 - → Daarom: Baltische zee --> sterk zoutgehalte: véél aanvoer rivieren/gesmolten gletsjers, waardoor er zéér veel wordt verdunt.
 - --> Andere factoren: vulkanisme, samenstelling bodem
 - Dode zee = hoog zoutgehalte: helemaal ingesloten in een land (weinig verdunning), hoge temperaturen (verdamping), samenstelling bodem (bevat veel zouten) ...

3.2) Temperatuur

- *Temperatuur = afhankelijk volgens breedteligging, seizoenen én van diepte water: dieper = kouder
- --> Neemt van polen naar evenaar toe → tropische gebieden >25°C
 - ⇔ Poolwater koud: >0°C --> vriespunt verlaagd door: beweging water, zoutgehalte ...

3.3) Optische eigenschappen

- *Zonlicht gereflecteerd door zeeoppervlak: overige deel geabsorbeerd --> omgezet naar warmte
- --> Zeewater = blauw: blauw = korte lichtgolven: deze kleur gaat overheersen (daarom zien we blauwe kleuren aan de hemel overdag en rode bij zonsondergang)

*Al het leven in water is sterk afhankelijk van zonlicht

3.4) Zonlicht

- *We onderscheiden verschillende zones op basis van de hoeveelheid zonlicht die zone bereikt en dus met gevolg de invloed van fotosynthese in die zone (fotosynthese gebeurt onder invloed van zonlicht).
- → Planten en dieren moeten zich telkens aan omstandigheden aanpassen.
- → De zones die we onderscheiden zijn:
 - (1) Eufotische zone (epipelagische zone): tot 100m diepte; fotosynthese mogelijk.
 - (2) **Disfotische zone** (mesopelagische zone): schemerzone, overgangszone
 - (3) Afotische zone: helemaal donker; geen fotosynthese mogelijk
 - --> Bathypelagische zone
 - --> Abyssopelagische zone

Ezelsbruggetje: Erik Doe Anders rustig!

3.5) Dichtheid

- *Temperatuur heeft een invloed op de dichtheid van het water
- --> Vanboven (oppervlakte) = warmer = lagere dichtheid
- --> Vanonder (diepzee) = kouder = hogere dichtheid
- *De hoeveelheid zout heeft ook een invloed: meer zout = meer dichtheid

3.6) Grondstoffen

*Men haalt keukenzout en zoet water uit zeewater, echter ook waterenergie enzovoort...

4) Bewegingen van zeewater

4.1) Waarom beweegt zeewater?

- *Zeewater beweegt vooral door de invloed van de wind, maan, aardbevingen in de zee ...
- \rightarrow Zeewater beweegt op $\frac{1}{25}$ van de snelheid van wind.

4.2) De fysica achter golfbewegingen

H = golfhoogte, verticale
afstand tussen golftop en -dal.
L = golflengte, horizontale
afstand tussen twee golftoppen
C = golfsnelheid
A = amplitude --> helft van de
golfhoogte; de grootste
afwijking die men heeft t.o.v.
het middelpunt
T = periode --> tijdsverloop
tussen twee opeenvolgende
golftoppen.

4.3) Invloed van wind op golfbewegingen

- *Wind --> zet waterdeeltjes in beweging. ⇔ Vanaf bepaalde diepte zee = géén golfbeweging meer!
- *Golflengte en -hoogte nemen toe naarmate: F_{wind} toeneemt, de wind langer waait of de oppervlakte waarover de wind kan waaien groter is.
- *Golven niet beperkt tot windgebied: kunnen nog over een grote afstand doorlopen = deining!
- → Golven in ondiep water: bewegingen samengedrukt --> eigenschappen veranderen
 - --> Golven breken in kust: E komt vrij, golf sedimenteert (= zet af) dingen.
 - --> Golven gaan ook terug de zee in: erodeert deeltjes en neemt ze mee naar de zee.

5) De zee die stroomt: zeestromingen

5.1) Factoren die de zeestromingen beïnvloeden

- *Beïnvloedende factoren voor zeestromingen zijn:
- --> Wind
- --> Corioliskracht: deze kracht is verantwoordelijk voor de afbuiging van wind, water ... o.i.v. de draaiende aarde. Verschil in baansnelheid tussen gebieden met verschillende breedteligging zorgt voor de afbuiging
- --> Temperatuurverschillen

5.2) Oppervlakte- vs. dieptestromingen

- *Oppervlaktestromingen: sterk beïnvloed door de wind (warm).
- *Dieptestromingen: Compenserende koudere onderstroming voor warm oppervlaktewater.
- *Zeestromingen op noordelijk halfrond: wijzersin
- *Zeestromingen op zuidelijk halfrond: tegenwijzersin

5.3) Studie van de Noord-Atlantische kringloop

We beginnen bij Marokko aan de straat van Gibraltar:

- (1) Water gaat naar ZW door:
 - --> NO-passaatwind
 - --> Invloed kustvorm Afrika
- (2) Water stroomt deels terug naar NW door:
 - --> Zeestromingen zuiden evenaar
 - --> ZO-passaatwind
 - --> invloed oostelijke afbuiging
 - --> Invloed vorm O/Z-kust van Amerika
- (3) Water stroomt naar NO:
 - --> invloed van ZW-wind
 - --> invloed van O-kustvormn VS
 - --> water wordt goed opgewarmd
 - --> Uit het noorden komt kouder water naar hier!
- (4) Water stroomt terug/gaat weg:
 - --> Gaat weg: NO omdat er plaats is
 - --> (Z)O-draaiing: komt terug: water in Noordzee dus ook in België.
 - --> Koude zeestromen naar dit water

5.3.1) De Noord-Atlantische kringloop tekenen op je toets

Dit is een vereenvoudigde voorstelling van de Noord-Atlantische kringloop die je zou moeten tekenen om je toets:

FASE 1:

--> NO-passaatwind laat water afbuigen vanuit de straat van Gibraltar + invloed kustvorm afrika

FASE 2:

--> ZO-passaatwind laat water opnieuw afbuigen vanuit de straat van Gibraltar

FASE 3:

--> Nog meer afbuiging + koud water komt erin + water vertrekt

5.3.2) Invloed van de Noord-Atlantische kringloop op het Belgisch klimaat

- *Wij hebben een verzachtende invloed van de Mexicaanse Golfstroom
- --> Winters zijn zachter en zomers zijn minder warm.

5.3.3) Invloed van zeestromen in 't algemeen

- *Scheepvaart: varen met zeestromen = sneller + bespaart koude gebieden = langer ijsvrij door komst warmer zeewater
- *Visserij: Oppervlaktewater weg = ondergrondse dieptestromingen naar boven
 - --> Dieptestromingen bevat veel voedingsstoffen: groei plankton bevordert: meer kans om vis te vangen.
- *Weer en klimaat: Temperatuur zeewater heeft invloed op 't klimaat!

6) Getijden

*Dankzij: aantrekkingskracht maan + zon --> watermassa aangetrokken

Want: aarde en maan draaien rond zelfde massapunt; centrifugale kracht grootst bij wegkering

6.1) Soorten getijden

- *Springtij: zon + maan liggen op één lijn --> aantrekkingskracht wordt versterkt
- *Doodtij: gravitatiekrachten zon en maan heffen elkaar op --> géén werking van getijden

6.2) Eb en vloed

- *Eb = laag water: zijde van de aarde is NIET weggekeerd van de maan
- *Vloed = hoog water: zijde van de aarde IS weggekeerd van de maan

Water wordt opgestuwd aan de zijde die weggekeerd is van de maan

6.3) Eustatische bewegingen

- *We onderscheiden drie soorten eustatische bewegingen, een eustatische beweging is een beweging die het globaal zeeniveau doet veranderen:
- (1) Tektono-eustatisme: watercapaciteit wijzigt door wijziging oceaanbodem
- (2) Sedimentatie-eustatisme: veranderingen watercapaciteit treden op door sedimentatie (afzetting) → de zee geraakt dus vol of minder vol.
- (3) Glacio-eustatisme: veranderingen optreden onder invloed van afwisseling ijstijden en tussenijstijden.

7) Kustvormen

- *Zeeën hebben zowel een afbrekende als opbouwende werking
- → Snelheid kustprocessen hangt af van: intensiteit golfslag, geologische structuur, samenstelling en resistentie van gesteente

7.1) Baai- en klifkust

- *Kusten; harde gesteenten --> wijken traag achteruit
 - --> Vormen kapen: een uitstekend kustgedeelte (een kustgedeelte dat uitsteekt!) zachte gesteenten --> sneller aangetast
 - --> Vormen baaien: inham van de zee in het land
 - --> abrasie: water tegen klif oefent afbrekende werking uit = abrasie
 - --> Hellingserosie: opspattende water oefent constant kracht uit --> golven breken rotsen op zeeniveau af --> alle gesteente boven rots stort in.

7.2) Tombolo

- *Opbouwende werking zeewater: landtong gevormd tussen rotseiland en kust
- → Golven vallen in op eiland: erosie --> nemen deeltjes mee --> zetten deeltjes af --> tombolo!

7.3) Deltakust

- *Rivierdelta = alle vertakkingen van een rivier
- --> Deltakust: kust rond rivierdelta.

7.4) Transgressiekusten

- *Zeepijl daalt = regressie
- *Zeepijl stijgt = transgressie
- → Als dit gebeurt: alles overspoeld --> kapen/eilanden worden gevormd = transgressiekust.

8) Online zelftest

https://www.surveymonkey.com/r/LV6KD8G