

Semester S1 Foundations of electromagnetic wave propagation

EXAMINATION

PART S. VERDEYME

E(rasmus) Mundus on Innovative Microwave Electronics and Optics Master

Consider the waveguide presented figure 1. The material embedded in this support is characterized by its relative permeability $\mu_r = 1$ and its relative permittivity $\varepsilon_r = 1$. It is bounded by perfect magnetic walls (PMW), placed in x=0, x=a=22.86 mm, and by perfect electric walls (PEW), placed at y=0 and y=b=10.16 mm. We will work in the frequency domain.

Figure 1

1) TEM Mode

- a) Can you consider that the propagation along this support (figure 1) is quite similar to the propagation along a microstrip line? Explain why.
- b) We give for this TEM mode:

$$\overrightarrow{H(x,y)} = \frac{V}{bZ_0} \overrightarrow{e_x}$$

$$\overrightarrow{E(x,y)} = -\frac{v}{b}\overrightarrow{e_y}$$

where:

Z₀ is the plane wave impedance

V is the voltage on the conductor placed in the plane y=b (the other conductor is grounded)

Compute the expression of:

- ➤ the waveguide metallic losses per unit length on the TEM mode, for conductors characterized by their surface resistance R_s
- > the power transmitted through the line
- > the attenuation coefficient of the waveguide.

E(rasmus) Mundus on Innovative Microwave Electronics and Optics Master

2) TE Mode

This waveguide is now excited on TE modes. On a PMW, the H_z component cancels (in the planes defined by x=0 and x=a), and you know the condition for the magnetic field on the PEW.

- a. From the propagation equation, considering the waveguide lossless,:
 - \triangleright compute the expressions of the first TE mode cutoff frequency and the H_z component of this mode.
 - From the following expressions, compute all the E and H field components of the first TE mode.

$$\left(\gamma^{2} + k_{o}^{2} \right) \overrightarrow{E_{t}}(\xi, \eta) = -\gamma \overrightarrow{\nabla_{t}} E_{z}(\xi, \eta) + j \omega \mu \overrightarrow{u} \wedge \overrightarrow{\nabla_{t}} H_{z}(\xi, \eta)$$

$$\left(\gamma^{2} + k_{O}^{2} \right) \overrightarrow{H_{t}}(\xi, \eta) = -\gamma \overrightarrow{\nabla_{t}} H_{z}(\xi, \eta) - j \omega \varepsilon \overrightarrow{u} \wedge \overrightarrow{\nabla_{t}} E_{z}(\xi, \eta)$$

With \vec{u} the unitary vector in the z direction.

- b. The metallic enclosure placed in the plane y=0 and y=b is now again a real conductor, characterized by its conductivity σ .
 - ➤ Compute the waveguide metallic losses on the first TE mode
 - ➤ Compute the power transmitted through the waveguide
 - > Compute the attenuation coefficient of the waveguide.
- 3) Compare now the attenuation per unit length of this support on the TE and TEM modes:
 - ➤ At the cutoff frequency of the TE mode
 - \triangleright For $\beta >> K_c$

Conclude