Building Native Erasure Coding Support in HDFS

Zhe Zhang⁺, Kai Zheng⁺, Bo Li⁺, Andrew Wang⁺, Vinayakumar B⁺, Uma Gangumalla⁺, Todd Lipcon⁺, Yi Liu⁺, Weihua Jiang⁺, Aaron Myers⁺ & Silvius Rus⁺

+Cloudera, *Intel, zhezhang@cloudera.com, kai.zheng@intel.com

Problem Statement

Benefits of triplication

 Fault tolerance 200% overhead Better locality Secondary replicas rarely accessed Load balancing

Erasure coding?

- Same or better fault tolerance
- < 50% overhead in a typical setup</p>

Data Layouts

Contiguous

Good compatibility with locality-sensitive applications Poor handling of small files

Striping

Improved I/O performance with high speed networking Heavier memory and CPU overhead on NameNode

HDFS-EC aims to enable all 4 forms to support heterogenous workloads

HDFS-EC Architecture

BlockGroup: data and parity blocks in an erasure coding group ECSchema: e.g., 6 data + 3 parity blocks, with Reed-Solomon **ECManager**: group allocation, placement, monitoring **ECWorker/ECClient**: codec calculation and striped read/write logics

Unique Research Challenges

Reduce NameNode overhead

- Hierarchical block naming protocol
- Fixed placement groups
- Peer monitoring and recovery in a group

Preserve data locality

- Hybrid storage forms for individual files

Faster codec calculation

Preliminary Results

File categorization

- Assuming (6,3) coding schema
- Small files: < 1 block,
- Medium files: 1~6 blocks Large files: > 6 blocks (1 group)

is larger than secondary replicas

Storage usage simulation Contiguous skips a file if parity data

Memory usage calculation

- Each block uses ~78 bytes
- Each additional replica location uses ~16 bytes

Cluster A Profile

96.29% file count 64.61% space usage 26.06% 1.86% 9.33% 1.85% medium small large

Top 2% files occupy ~65% space

Memory

Overhead

400% striping

striping w/

hierarchical

block naming

contig.

3%

Storage

Saving

50.00% striping

contiguous

34.00%

Cluster B Profile 86.59% file count space usage 23.89% 11.38% 2.03% medium large small

Top 2% files occupy ~40% space

Storage

0.02%

8<mark>6.00% contig.</mark>

0.00%

Memory Memory Overhead Storage Saving Overhead Saving 350.00% striping 540.00% striping 50.00% striping 48.00% striping contiguous 27.00% striping w/ hierarchical striping w/ block naming hierarchical block naming

, contig

31.00% 8.00%