Exemples de rédactions de solutions de certains exercices de la feuille 1

• Exercice 1.1.1 Montrons que $(A^E, +)$ est un groupe commutatif. Montrons tout d'abord que + est associative, c'est-à-dire montrons

$$\forall (f, g, h) \in (A^E)^3, (f+g) + h = f + (g+h).$$

Soit $(f, g, h) \in (A^E)^3$. Il s'agit de montrer

$$\forall x \in E, ((f+g) + h)(x) = (f + (g+h))(x).$$

Soit $x \in E$. Par définition de la loi + sur A^E , on a

$$((f+g)+h)(x) = (f+g)(x) + h(x) = (f(x)+g(x)) + h(x)$$

 et

$$(f + (g+h))(x) = f(x) + (g+h)(x) = f(x) + (g(x) + h(x)).$$

Par associativité de la loi + sur A, on a

$$(f(x) + g(x)) + h(x) = f(x) + (g(x) + h(x)).$$

On a donc bien démontré

$$\forall x \in E, ((f+g)+h)(x) = (f+(g+h))(x).$$

On a donc bien démontré

$$\forall (f, g, h) \in (A^E)^3, (f+g) + h = f + (g+h).$$

Montrons que + est commutative, c'est-à-dire montrons

$$\forall (f, g) \in (A^E)^2, f + g = g + f.$$

Soit $(f,g) \in (A^E)^2$. Il s'agit de montrer

$$\forall x \in E, (f+q)(x) = (q+f)(x).$$

Soit $x \in E$. Par définition de la loi + sur A^E , on a

$$(f+g)(x) = f(x) + g(x)$$

et

$$(g+f)(x) = g(x) + f(x).$$

Par commutativité de la loi + sur A, on a

$$f(x) + g(x) = g(x) + f(x).$$

On a donc bien démontré

$$\forall x \in E, (f+q)(x) = (q+f)(x).$$

On a donc bien démontré

$$\forall (f,g) \in (A^E)^2, \ f+g=g+f.$$

Montrons que la loi + sur A^E a un élément neutre. Soit f_0 la fonction constante sur Eégale à 0_A . Montrons

$$\forall f \in A^E, f + f_0 = f.$$

Soit $f \in A^E$. Il s'agit de montrer

$$\forall x \in E, (f + f_0)(x) = f(x).$$

Soit $x \in E$. Par définitions de la loi + sur A^E et de f_0 , on a

$$(f + f_0)(x) = f(x) + 0_A$$

d'où, comme 0_A est l'élément neutre de la loi + sur A,

$$(f+f_0)(x) = f(x).$$

On a donc bien démontré

$$\forall x \in E, (f + f_0)(x) = f(x).$$

On a donc bien démontré

$$\forall f \in A^E, f + f_0 = f.$$

Ainsi f_0 est un élément neutre pour la loi + sur A^E Montrons que tout élément de A^E admet un symétrique pour la loi +. Soit $f \in A^E$. Soit $q \in A^{\vec{E}}$ l'application définie par

$$\forall x \in E, g(x) = -f(x).$$

Montrons que $f + g = g + f = f_0$. Comme la loi + sur A^E est commutative, il suffit de montrer que $f + g = f_0$. Il s'agit de montrer

$$\forall x \in E, (f+q)(x) = f_0(x).$$

Soit $x \in E$. Par définitions de la loi + sur A^E et de g, on a

$$(f+g)(x) = f(x) + g(x) = f(x) + (-f(x)).$$

Ainsi $(f+g)(x) = 0_A$, soit $(f+g)(x) = f_0(x)$ par définition de f_0 . On a donc bien démontré

$$\forall x \in E, (f+g)(x) = f_0(x).$$

On a donc bien démontré que $f + g = f_0$. Ainsi f admet un symétrique pour la loi +sur A^E . On a donc bien démontré que tout élément de A^E admettait un symétrique pour la loi + sur A^E .

Par des méthodes strictement similaires, on démontre que la loi \times sur A^E est associative, commutative, admet un élément neutre (qui est la fonction constante sur E égale à 1_A) et est distributive par rapport à la loi + sur A^E .

• Exercice 1.1.4

Notons $\mathcal B$ l'ensemble des applications constantes de E vers A.

Montrons que \mathcal{B} est un sous-groupe de $(A^E, +)$.

Soit $f, g \in \mathcal{B}$. Montrons que $f + g \in \mathcal{B}$. Par définition de \mathcal{B} , il existe $a \in A$ tel que

$$\forall x \in E, f(x) = a$$

et il existe $b \in A$ tel que

$$\forall x \in E, g(x) = b.$$

Soit $x \in E$. On a

$$(f+g)(x) = f(x) + g(x) = a + b.$$

Ainsi

$$\forall x \in E, (f+g)(x) = a+b$$

ce qui montre bien que $f + g \in \mathcal{B}$.

Soit $f \in \mathcal{B}$. Montrons que $-f \in \mathcal{B}$. Par définition de \mathcal{B} , il existe $a \in A$ tel que

$$\forall x \in E, f(x) = a.$$

Soit $x \in E$. Alors (-f)(x) est l'opposé de f(x) pour la loi + sur A (cf. question 1 de l'exercice). Donc -f(x) = -a. Ainsi

$$\forall x \in E, (-f)(x) = a + b$$

ce qui montre bien que $-f \in \mathcal{B}$.

Enfin, l'élément neutre de la loi + sur A^E , qui est la fonction constante sur E égale à 0_A , est bien un élément de $\mathcal B$. Ceci achève de montrer que $\mathcal B$ est un sous groupe de $(A^E,+)$. Par une méthode strictement similaire, on montre que $\mathcal B$ est stable par la loi \times sur A^E . Par ailleurs $\mathcal B$ contient l'élément neutre pour la loi \times sur A^E ; en effet ce n'est autre que la fonction constante égale à 1_A sur E.

Ceci achève de montrer que \mathcal{B} est un sous-anneau de A^E .

Pour montrer que \mathcal{B} est isomorphe à A, on considère l'application

$$\varphi \colon \begin{array}{ccc} A & \longrightarrow & \mathcal{B} \\ a & \longmapsto & \varphi(a) \colon x \mapsto a \end{array}$$

Cette application est clairement bien définie. Montrons que c'est un morphisme d'anneaux. En notant f_1 la fonction constante sur E égale à 1_A , il s'agit de montrer

$$\forall (a,b) \in A^2, \ \varphi(a+b) = \varphi(a) + \varphi(b)$$

$$\forall (a,b) \in A^2, \, \varphi(a \times b) = \varphi(a) \times \varphi(b)$$

$$\operatorname{et}\varphi(1_A) = f_1.$$

La dernière propriété découle aussitôt des définitions de φ et de f_1 . Montrons la deuxième propriété, la première se montre par une méthode similaire.

Soit $(a,b) \in A^2$. La fonction $\varphi(a \times b)$ est la fonction définie par

$$\forall x \in E, \, \varphi(a \times b)(x) = a \times b.$$

Soit $x \in E$. Par défintions de $\varphi(a)$, $\varphi(b)$ et de la loi \times sur A^E , on a

$$(\varphi(a) \times \varphi(b))(x) = (\varphi(a)(x)) \times (\varphi(b)(x)) = a \times b.$$

On a donc démontré

$$\forall x \in E, \ \varphi(a \times b)(x) = (\varphi(a) \times \varphi(b))(x).$$

On a donc démontré $\varphi(a \times b) = \varphi(a) \times \varphi(b)$. On a donc démontré

$$\forall (a,b) \in A^2, \ \varphi(a \times b) = \varphi(a) \times \varphi(b).$$

Il reste à montrer que φ est un isomorphisme d'anneaux. En fait ceci ne vaut que si E est non vide (hypothèse oubliée dans l'énoncé). Il suffit d'après le cours de montrer que φ est bijective. Montrons que φ est injective. Soit $a,b\in A$ tel que $\varphi(a)=\varphi(b)$. Montrons que a=b. Soit $x\in E$ (E est un ensemble non vide). On a

$$a = \varphi(a)(x) = \varphi(b)(x) = b.$$

Donc φ est injective.

Montrons que φ est surjective. Soit $f \in \mathcal{B}$. Par définition de \mathcal{B} , il existe $a \in A$ tel que

$$\forall x \in E, \quad f(x) = a.$$

Pour un tel a, on a bien $\varphi(a) = f$. Donc φ est surjective.

Finalement φ est un morphisme d'anneaux bijectif de A vers \mathcal{B} , donc un isomorphisme d'anneaux de A sur \mathcal{B} .

• Exercice 1.4.4

Montrons tout d'abord

$$\forall (a_1, a_2) \in A^2, (\psi \circ \varphi)(a_1 + a_2) = (\psi \circ \varphi)(a_1) + (\psi \circ \varphi)(a_2).$$

Soit $(a_1, a_1) \in A^2$. On a

$$(\psi \circ \varphi)(a_1 + a_2) = \psi(\varphi(a_1 + a_2))$$

Comme φ est un morphisme d'anneaux, on a

$$\varphi(a_1 + a_2) = \varphi(a_1) + \varphi(a_2).$$

Comme ψ est un morphisme d'anneaux, on a

$$\psi(\varphi(a_1 + a_2)) = \psi(\varphi(a_1)) + \psi(\varphi(a_2)).$$

Finalement on a

$$(\psi \circ \varphi)(a_1 + a_2) = \psi(\varphi(a_1)) + \psi(\varphi(a_2)) = (\psi \circ \varphi)(a_1) + (\psi \circ \varphi)(a_2).$$

On a bien montré

$$\forall (a_1, a_2) \in A^2, (\psi \circ \varphi)(a_1 + a_2) = (\psi \circ \varphi)(a_1) + (\psi \circ \varphi)(a_2).$$

Par une méthode strictement similaire, on montre

$$\forall (a_1, a_2) \in A^2, \ (\psi \circ \varphi)(a_1 \times a_2) = (\psi \circ \varphi)(a_1) \times (\psi \circ \varphi)(a_2).$$

Enfin, comme φ et ψ sont des morphismes d'anneaux, on a

$$(\psi \circ \varphi)(1_A) = \psi(\varphi(1_A)) = \psi(1_B) = 1_C.$$

Ainsi $\psi \circ \varphi$ est bien un morphisme d'anneaux.

• Exercice 1.4.9

Montrons que $\varphi^{-1}(\mathcal{I})$ est un sous-groupe de A.

Soit $x, y \in \varphi^{-1}(\mathcal{J})$. Montrons que $x + y \in \varphi^{-1}(\mathcal{J})$. Il s'agit de montrer que $\varphi(x + y) \in \mathcal{J}$. Or, comme φ est un morphisme d'anneaux, on a $\varphi(x + y) = \varphi(x) + \varphi(y)$. Par ailleurs, comme x et y sont dans $\varphi^{-1}(\mathcal{J})$, $\varphi(x)$ et $\varphi(y)$ sont dans \mathcal{J} . Comme \mathcal{J} est un idéal de B, on a donc $\varphi(x) + \varphi(y) \in \mathcal{J}$, d'où $\varphi(x + y) \in \mathcal{J}$. Ainsi, on a démontré

$$\forall (x,y) \in \varphi^{-1}(\mathcal{J})^2, x+y \in \varphi^{-1}(\mathcal{J}).$$

Soit $x \in \varphi^{-1}(\mathcal{J})$. Montrons que $-x \in \varphi^{-1}(\mathcal{J})$. Il s'agit de montrer que $\varphi(-x) \in \mathcal{J}$. Or, comme φ est un morphisme d'anneaux, on a $\varphi(-x) = -\varphi(x)$. Par ailleurs, comme x est dans $\varphi^{-1}(\mathcal{J})$, $\varphi(x)$ est dans \mathcal{J} . Comme \mathcal{J} est un idéal de B, on a donc $-\varphi(x) \in \mathcal{J}$, d'où $\varphi(-x) \in \mathcal{J}$. Ainsi, on a démontré

$$\forall x \in \varphi^{-1}(\mathcal{J}), -x \in \varphi^{-1}(\mathcal{J}).$$

Comme φ est un morphisme d'anneaux, on a $\varphi(0_A) = O_B$. Comme \mathcal{J} est un idéal de B, on a $0_B \in \mathcal{J}$. Donc $0_A \in \varphi^{-1}(\mathcal{J})$.

Ainsi, $\varphi^{-1}(\mathcal{I})$ est un sous-groupe de A.

Soit $x \in \varphi^{-1}(\mathcal{J})$ et $y \in A$. Montrons que $xy \in \varphi^{-1}(\mathcal{J})$. Il s'agit de montrer que $\varphi(xy) \in \mathcal{J}$. Or, comme φ est un morphisme d'anneaux, on a $\varphi(xy) = \varphi(x)\varphi(y)$. Par ailleurs, comme x est dans $\varphi^{-1}(\mathcal{J})$, $\varphi(x)$ est dans \mathcal{J} . Comme \mathcal{J} est un idéal de B, on a donc $\varphi(x)\varphi(y) \in \mathcal{J}$, d'où $\varphi(xy) \in \mathcal{J}$. Ainsi, on a démontré

$$\forall (x, y) \in \varphi^{-1}(\mathcal{J}) \times A, xy \in \varphi^{-1}(\mathcal{J}).$$

Ceci achève de montrer que $\varphi^{-1}(\mathcal{J})$ est un idéal de A.

Montrons que $\varphi^{-1}(\mathcal{J})$ contient $\operatorname{Ker}(\varphi)$. Comme \mathcal{J} est un idéal de B, \mathcal{J} contient $\{0_B\}$. Donc $\varphi^{-1}(\mathcal{J})$ contient $\varphi^{-1}(\{0_B\}) = \operatorname{Ker}(\varphi)$.

• Exercice 1.7.3.a

Montrons que $\mathbf{Z}_{(p)}$ est un sous-anneau de \mathbf{Q} . On montre seulement ici que $\mathbf{Z}_{(p)}$ est stable par addition. Le reste de la démonstration utilise des méthodes et raisonnements similaires. Soit $x,y\in\mathbf{Z}_{(p)}$. Par définition, il existe $a,b,c,d\in\mathbf{Z}$ tels que p ne divise ni b ni d et $x=\frac{a}{b},\ y=\frac{c}{d}$. On a

$$x + y = \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

Évidemment, $ad + bc \in \mathbf{Z}$ et $bd \in \mathbf{Z}$. Par ailleurs, comme p ne divise ni b ni d, p ne divise par bd (lemme d'Euclide). Ceci montre bien que $x + y \in \mathbf{Z}_{(p)}$.

Comme $\mathbf{Z}_{(p)}$ est un sous-anneau de \mathbf{Q} et que \mathbf{Q} est un anneau intègre, $\mathbf{Z}_{(p)}$ est un anneau intègre.

Comme p ne divise pas 1 et que tout élément a de ${\bf Z}$ s'écrit $\frac{a}{1}$, on voit que ${\bf Z}_{(p)}$ contient ${\bf Z}$.

• Exercice 1.7.3.c

Faisant abstraction de la valuation p-adique pour l'instant, on va montrer que

$$\mathbf{Z}_{(p)}^{\times} = \left\{\frac{a}{b}\right\}_{a,\,b \in \mathbf{Z} \backslash p\mathbf{Z}}.$$

Soit a, b des entiers non divisibles par p. Alors par définition de $\mathbf{Z}_{(p)}$ on a $\frac{a}{b} \in \mathbf{Z}_{(p)}$ et $\frac{b}{a} \in \mathbf{Z}_{(p)}$. Comme $\frac{a}{b} \times \frac{b}{a} = 1$, ceci montre que $\frac{a}{b} \in \mathbf{Z}_{(p)}^{\times}$. Ceci montre l'inclusion

$$\left\{\frac{a}{b}\right\}_{a,\,b\in\mathbf{Z}\setminus p\mathbf{Z}}\subset\mathbf{Z}_{(p)}^{\times}.$$

Soit à présent $x \in \mathbf{Z}_{(p)}^{\times}$. Il existe donc $y \in \mathbf{Z}_{(p)}$ tel que xy = 1. Soit $a, b, c, d \in \mathbf{Z}$ tels que p ne divise ni b ni d et $x = \frac{a}{b}$, $y = \frac{c}{d}$. Comme xy = 1, on a ac = bd. Comme p ne divise ni b ni d, p ne divise pas bd (lemme d'Euclide). Donc p ne divise pas a. Ceci montre l'inclusion

$$\mathbf{Z}_{(p)}^{\times} \subset \left\{ \frac{a}{b} \right\}_{a, b \in \mathbf{Z} \setminus p\mathbf{Z}}.$$

On a donc bien démontré

$$\mathbf{Z}_{(p)}^{\times} = \left\{ \frac{a}{b} \right\}_{a, b \in \mathbf{Z} \setminus p\mathbf{Z}}.$$

Notons à présent que par définition même de la valuation p-adique, on a clairement

$$\left\{\frac{a}{b}\right\}_{a,\,b\in\mathbf{Z}\backslash p\mathbf{Z}}=\{x\in\mathbf{Z}_{(p)},\quad \nu_p(x)=0\}.$$

On peut remarquer alors que la démonstration de l'inclusion

$$\mathbf{Z}_{(p)}^{\times} \subset \{x \in \mathbf{Z}_{(p)}, \quad \nu_p(x) = 0\}$$

est rapide en utilisant la valuation p-adique : soit $x \in \mathbf{Z}_{(p)}^{\times}$ et $y \in \mathbf{Z}_{(p)}$ tel que xy = 1; En particulier, on a $\nu_p(xy) = \nu_p(1) = 0$ soit $\nu_p(x) + \nu_p(y) = 0$; comme $\nu_p(x), \nu_p(y) \in \mathbf{N} \cup \{+\infty\}$, cette dernière égalité impose $\nu_p(x) = 0$.

• Exercice 1.10.2

Si n = 0, on a $\mathbf{Z}/n\mathbf{Z} = \mathbf{Z}$. Comme \mathbf{Z} est intègre, la question 1 de l'exercice montre que l'ensemble des nilpotents de \mathbf{Z} est réduit à $\{0\}$.

Si $n=1,\,{\bf Z}/n{\bf Z}$ est l'anneau nul. Son unique élément est clairement nilpotent.

On suppose désormais $n \ge 2$. Soit n_0 le produit de tous les facteurs premiers de n. Ainsi si n = 6, $n_0 = 6$ et si n = 20, $n_0 = 10$.

Soit $a \in \mathbf{Z}$. Montrons que $[a]_n$ est nilpotent si et seulement si n_0 divise a.

Supposons [a] nilpotent. Soit m un entier strictement positif tel que $[a]_n^m = [0]_n$. Comme $[a]_n^m = [a^m]_n$, on en déduit que n divise a^m . Par le lemme d'Euclide, tout facteur premier de n divise a. Donc n_0 divise a.

Supposons que n_0 divise a. Soit m le plus grand exposant des facteurs premiers de n dans la décomposition de n en facteurs premiers. En particulier n divise n_0^m . Mais par ailleurs, comme n_0 divise a, n_0^m divise a^m , donc n divise a^m . Donc $[a]_n^m = [0]_n$.

Finalement l'ensemble des éléments nilpotents de $\mathbf{Z}/n\mathbf{Z}$ est l'idéal de $\mathbf{Z}/n\mathbf{Z}$ engendré par $[n_0]_n$. Ceci montre au passage qu'il y a $\frac{n}{n_0}$ éléments nilpotents dans $\mathbf{Z}/n\mathbf{Z}$. En particulier $\mathbf{Z}/n\mathbf{Z}$ est réduit si et seulement si $n=n_0$ si et seulement si n est sans facteur carré.