

Finite State Machines

- Easier to adjust difficulty
- Understandable
- Easy to balance
- Simple to simulate
- Can be created in the toilet
- Cheap to develop

- Long development time
- Players don't like it
- You don't like it
- Boring
- No "logic" just pure code
- Non adaptable
- Doesn't look cool on your resume

Genetic Algorithm

- Whenever a specific event occurs (Text input, x frames passed), Al performs the next action from the list of actions it selected
- Simulate a lot of randomly generated Als, and measure their performance
- Select the top k best performers, and mutate/replicate/breed them until a satisfactory score is obtained
- In the simplest form, there is no need to understand what is happening by the AI (no input required)

- No input required
- If there are no random variables, this solution can work
- Easy to code for a YouTube video

- Pretty much as stupid as it gets
- Does not adapt to the situation

Genetic Algorithm... but on steroids (NN based)

- Initialize a small Neural Network with random weights, generate a population
- Whenever a specific event occurs, feed each AI current state (inputs)
- Evaluate the performance (survival time, response quality, ect)
- Mutate best performers
- Stop when satisfactory

$$\begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \\ \mathbf{y}_1 & \mathbf{y}_2 & \mathbf{y}_3 \\ \mathbf{z}_1 & \mathbf{z}_2 & \mathbf{z}_3 \end{bmatrix} \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{a}_x & \mathbf{a}_y & \mathbf{a}_z \end{bmatrix}$$

$$\begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} a_x & a_y & a_z \end{bmatrix}$$

- Reltively easy to code
- Can learn (kind of) advanced concepts
- Can adapt to the situation
- Pretty much all YouTube videos use this algorithm
- No need for complex loss functions

- May require many re-launches to get the network shape right
- Requires access to the game source code to amplify training time

A pretty NEAT algorithm

(NeuroEvolution of Augmented Topologies)

Paper:

https://nn.cs.utexas.edu/downloads/papers/stanley.cec02.pdf

- Initialize a small Neural Network with a single neuron
- Whenever a specific event occurs, feed each Al current state (inputs)
- Evaluate the performance (survival time, response quality, ect)
- Mutate best performers in various ways (list of mutations in next 2 slides)

NEAT bonuses

NEAT library can do most of the job for you

Visualizations are awesome

The most overused algorithm for simple games

Very hard to overtrain

New fresh look!

Mutation types

- Mutate with other network
- Mutate add node (with weight = 1)
- Mutate add connection (with weight = 1)
- Mutate activate/deactivate connection (percentage of all connections disabled)
- Mutate modify connection weight (multiply by a constant, usually $\sim 0.9 1.1$)
- Mutate shuffle connection weight (in range -1 1)

- Very advanced, can learn almost anything
- Looks badass
- Libraries can do most of the job
- Doesn't overtrain (at least very difficult to do)
- Can make you \$ if you upload it online for some sexy vids

- Training time is long
- Requires access to the game source code to amplify training time

AI (Policy), hence Proximal <u>Policy</u> Optimization

GAE – Generalized Advantage Estimation https://arxiv.org/abs/1506.02438

- Plays the game using observations – every frame it receives current game state, generates actions
- Every step it makes is saved to memory (action taken, log prob of action taken, rewards gathered per step, advantages – network loss)

Critic (Memory)

- Analyzes the actor's performance and adjusts policy, generates policy logits (values)
- Takes data from every training step (observation, action taken, log prob of action taken, GAE (decaying reward count)), selfoptimizes

Loss Functions

Actor (Value performer)

- L2 loss (returns values)^2
- Values what the critic predicts
- Returns Discounted rewards collected

Critic (Memory)

This unholy creation

$$L^{CPI}(\theta) = \hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)} \hat{A}_t \right] = \hat{\mathbb{E}}_t \left[r_t(\theta) \hat{A}_t \right]$$

$$\mathcal{L}_{ heta_k}^{ extit{CLIP}}(heta) = \mathop{\mathbb{E}}_{ au \sim \pi_k} \left[\sum_{t=0}^{T} \left[\min(r_t(heta) \hat{A}_t^{\pi_k}, \operatorname{clip}\left(r_t(heta), 1 - \epsilon, 1 + \epsilon
ight) \hat{A}_t^{\pi_k})
ight]
ight]$$

Actor Computations

Returns:

Actor (Value performer)

```
class MLP(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim, dropout = 0.5):
        super().__init__()

        self.fc_1 = nn.Linear(input_dim, hidden_dim)
        self.fc_2 = nn.Linear(hidden_dim, output_dim)
        self.dropout = nn.Dropout(dropout)

def forward(self, x):
        x = self.fc_1(x)
        x = self.dropout(x)
        x = nn.relu(x)
        x = self.fc_2(x)
        return x
```

Advantages:

```
def calculate_returns(rewards, discount_factor, normalize = True):
    returns = []
    R = 0

    for r in reversed(rewards):
        R = r + R * discount_factor
        returns.insert(0, R)

    returns = torch.tensor(returns)

if normalize:
        returns = (returns - returns.mean()) / returns.std()

    return returns
```

```
def calculate_advantages(returns, values, normalize = True):
    advantages = returns - values
    if normalize:
        advantages = (advantages - advantages.mean()) / advantages.series
```

Actor Training Loop

```
def train actor():
    reward = 0
    simulation memory = []
    for in range(nr of steps per simulation):
        observations = scene.get next state()
        actions = actor(observations)
        memory value = critic(observations)
        actions probabilities = softmax(actions)
        dist actions = Categorical(actions probabilities)
        action_taken = dist actions.sample()
        log prob action = dist actions.log prob(action taken)
        reward += scene.apply_action(action_taken)
        returns = calculate returns(reward, discount factor)
        gae = generalized advantage estimate = calculate advantages(
                                                returns, memory value)
        simulation_memory.append(
            [observations, action taken, log prob action, returns, gae]
        loss = (returns - memory value)**2
        loss.backwards()
        adam_optimizer.step()
```

Critic Computations

Critic (Memory, Policy)

```
class MLP(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim, dropout = 0.5):
        super().__init__()

        self.fc_1 = nn.Linear(input_dim, hidden_dim) (1) Value
        self.fc_2 = nn.Linear(hidden_dim, output_dim)
        self.dropout = nn.Dropout(dropout)

def forward(self, x):
        x = self.fc_1(x)
        x = self.dropout(x)
        x = nn.relu(x)
        x = self.fc_2(x)
        return x
```

Loss function:

```
def train_critic(old_log_prob_actions):
    observations, actions_taken, log_prob_actions, returns, gaes = zip(*simulation_memory)

for i in range(max_number_of_critic_iterations):
    # Each time we are using ALL simulated frames
    policy_ratio = torch.exp(log_prob_actions - old_log_prob_actions) # division
        clipped_policy_ratio = policy_ratio.clamp(1 - clip_value, 1 + clip_value)
        policy_loss = policy_ratio * gaes
        clipped_policy_loss = clipped_policy_ratio * gaes

final_loss = -torch.min(policy_loss, clipped_policy_loss).mean()
        final_loss.backwards()
        adam_optimizer.step()

k1_div = (old_log_prob_actions - log_prob_actions).mean()
        if k1_div > threshold or k1_div < -threshold:
            break</pre>
```

- As advanced as it gets (as of 2017)
- Can learn to walk, punch, run, everything imaginable
- Algorithm is so complex you get hired for mid if you understand it

- Algorithm is so complex that you probably will not understand it
- Requires a lot of computing power

This is the End!

Agent57

Agent57 & How to code Minecraft Al

Coming soon...

Because training on laptops takes ages