Bayesian Spatial Modeling

Lin Zhang

Department of Biostatistics School of Public Health University of Minnesota

Overview

- Researchers in diverse areas such as climatology, ecology, environmental health, and real estate marketing are increasingly faced with the task of analyzing data that are:
 - · geographically referenced, and often presented as maps, and
 - highly multivariate, with many important predictors and response variables, and
 - temporally correlated, as in longitudinal or other time series structures.
- ⇒ motivates hierarchical modeling and data analysis for complex spatial (and spatiotemporal) data sets.

Outline

- Types of Spatial Data
- Bayesian Spatial Modeling of Point-Referenced Data
- Bayesian Spatial Modeling of Areal Data
- Areal vs point-level models

Types of Spatial Data

Consider a random variable Y(s) observed in a spatial domain D. We can classify spatial data into three basic types, depending on the nature of the set D:

- Point-reference data, where D is a fixed subset of \mathbb{R}^r , and s varies continuously over D (geostatistical data)
 - Examples: climate data; air pollution data
 - Interest often lies in infering the entire spatial process and predicting outcomes at new locations.
- Areal data, where D is again fixed but partitioned into a finite number of areal units with well-defined boundaries (lattice data)
 - Examples: county-level or state-level epidemiological data
 - Interests often lies in smoothing.
- Point pattern data, where D is itself random
 - Examples: residence of persons suffering from a particular disease; locations of a certain species of tree in a forest
 - Interests often lies in clustering.

Example 1: Map of PM2.5 sampling sites

plotting color indicates range of average monitored PM2.5 level over the year 2001

Question of interest: How do the PM2.5 levels relate to regional industrialization, traffic density, and other covariates?

Example 2: Poverty map

ArcView map of percent of surveyed population with household income below 200% of the federal poverty limit for regional survey units in Hennepin County, MN

Question of interest: The geographic distribution of low-income family in Hennepin County after accounting for spatial correlation?

Example 3: Locations of Shrub in a forest

Question of interest: Is there a clustering pattern of the spatial distribution?

Bayesian regression of point-level data

Basic Model:

$$Y(\mathbf{s}) = \mathbf{x}^T(\mathbf{s})\boldsymbol{\beta} + w(\mathbf{s}) + \epsilon(\mathbf{s})$$

The residual is partitioned into two pieces:

- spatial error $w(\mathbf{s})$: a stationary Gaussian process, introducing the partial sill (σ^2) and range (ϕ) parameters.
- non-spatial error $\epsilon(\mathbf{s})$: adding the nugget (τ^2) effect.
- Interpretations attached to $\epsilon(\mathbf{s})$:
 - pure error term: model is not perfectly spatial; σ^2 and τ^2 are spatial and nonspatial variance components
 - measurement error or replication variability, causing spatial discontinuity in Y(s)
 - microscale variability, present at distances smaller than the smallest inter-location distance

Stationarity and Isotropy

Stationarity:

- A spatial process is said to be strong stationary if for any set $\{s_1, \ldots, s_n\}$ and any vector \mathbf{h} , the distribution of $(Y(s_1), \ldots, Y(s_n))$ is the same as that of $(Y(s_1 + \mathbf{h}), \ldots, Y(s_n + \mathbf{h}))$.
 - ⇒ invariant joint distribution after spatial shift!
- A spatial process is called weak stationarity: if $\mu(\mathbf{s}) \equiv \mu$ and $Cov(Y(\mathbf{s}), Y(\mathbf{s} + \mathbf{h})) = C(\mathbf{h})$ for all $\mathbf{h} \in \Re^r$.
 - ⇒ invariant moments (mean & covariance) after spatial shift!

Isotropy:

- Under weak stationarity, the covariance between any two locations can be summarized by a covariance function C (h), which depends only on the separation vector h.
- If $C(\mathbf{h})$ depends upon the separation vector only through its length $||\mathbf{h}||$, i.e. $C(\mathbf{h})||\mathbf{h}||$ then we say that the process is *isotropic*.

Some common isotropic covariograms

Model Covariance function,
$$C(d)$$
 $(d = ||h||)$

$$C(d) = \begin{cases} 0 & \text{if } d \ge 1/\phi \\ \sigma^2 \left[1 - \frac{3}{2}\phi d + \frac{1}{2}(\phi d)^3\right] & \text{if } 0 < d \le 1/\phi \end{cases}$$
Exponential $C(d) = \{ \sigma^2 \exp(-\phi d) & \text{if } d > 0 \end{cases}$
Powered Exp $C(d) = \{ \sigma^2 \exp(-|\phi d|^p) & \text{if } d > 0 \}$
Gaussian $C(d) = \{ \sigma^2 \exp(-\phi^2 d^2) & \text{if } d > 0 \}$
Matérn $C(d) = \{ \frac{\sigma^2}{2^{\nu-1}\Gamma(\nu)} (2\sqrt{\nu}d\phi)^{\nu} K_{\nu}(2\sqrt{\nu}d\phi) & \text{if } d > 0 \}$

- Two parameters: spatial variance (partial sill) σ^2 , and decay parameter ϕ .
- $\rho(d) = C(d)/\sigma^2$ is often called the correlation function.

Isotropic spatial models

Suppose for the two error terms:

$$\mathbf{w} = [w(\mathbf{s}_1), \dots, w(\mathbf{s}_n)]^T \sim N(\mathbf{0}, \sigma^2 H(\phi))$$

$$\epsilon = [\epsilon(\mathbf{s}_1), \dots, \epsilon(\mathbf{s}_n)]^T \sim N(\mathbf{0}, \tau^2 I)$$

- $H_{ij} = \rho(\mathbf{s}_i \mathbf{s}_j; \phi)$, where ρ is a valid (and typically isotropic) correlation function.
- Combining the two errors, we have the likelihood:

$$\mathbf{Y}|\boldsymbol{\theta} \sim N(X\boldsymbol{\beta}, \sigma^2 H(\phi) + \tau^2 I),$$

where
$$\boldsymbol{\theta} = (\boldsymbol{\beta}, \sigma^2, \tau^2, \phi)^T$$
.

 Gaussian kriging models are special cases of the general linear model, with a particular specification of the covariance matrix

$$\Sigma = \sigma^2 H(\phi) + \tau^2 I.$$

Prior specification

• In Bayesian framework, we require a prior $\pi(\theta)$, so the posterior is:

$$p(\theta|\mathbf{y}) \propto f(\mathbf{y}|\theta)\pi(\theta)$$

Typically, independent priors are chosen for the parameters:

$$\pi(\boldsymbol{\theta}) = \pi(\boldsymbol{\beta})\pi(\sigma^2)\pi(\tau^2)\pi(\phi)$$

Useful candidates are multivariate normal for β , and inverse gamma for σ^2 and τ^2 . Specification of $\pi(\phi)$ depends upon choice of ρ function; a uniform or gamma prior is usually selected.

• Informativeness: $\pi(\beta)$ can be "flat" (improper), but ϕ and at least one of σ^2 and τ^2 require informative priors.

Hierarchical modeling

• We can recast the foregoing in a hierarchical setup by considering a conditional likelihood on the spatial random effects $\mathbf{w} = (w(\mathbf{s}_1), \dots, w(\mathbf{s}_n)).$

First stage:

$$\mathbf{Y}|\boldsymbol{eta},\mathbf{w}, au^2 \sim N(X\boldsymbol{eta}+\mathbf{w}, au^2I)$$

The $Y(\mathbf{s}_i)$ are conditionally independent given the $w(\mathbf{s}_i)$'s.

Second stage:

$$\mathbf{w}|\sigma^2, \phi \sim N(\mathbf{0}, \sigma^2 H(\phi))$$

• Third stage:

$$\pi(\boldsymbol{\theta}) = \pi(\boldsymbol{\beta})\pi(\sigma^2)\pi(\tau^2)\pi(\phi)$$

Marginal or Conditional Model?

- Choice: Fit the marginal model as $f(\mathbf{y}|\theta)p(\theta)$ or the conditional model as $f(\mathbf{y}|\theta,\mathbf{w})p(\mathbf{w}|\theta)p(\theta)$.
- Note that the posterior $p(\theta|\mathbf{y})$ is the same for the original and hierarchical settings.
- Fitting the marginal model is computationally more stable:
 - lower dimensional sampler (no w's)
 - $-\sigma^2 H(\phi) + \tau^2 I$ more stable than $\sigma^2 H(\phi)$
- BUT the conditional model allows conjugate full conditionals for σ^2 , τ^2 (inverse gamma), β , and **w** (Gaussian) easy updates!
- Marginalized model will need Metropolis or slice sampling updates for σ^2 , τ^2 , and ϕ . But these usually work well and often converge faster than the full Gibbs updates.

Recover the spatial effects w's

- Interest often lies in the spatial surface w y.
- Have we lost the w's with the marginalized sampling?
- No. Note that

$$p(\mathbf{w}|\mathbf{y}) = \int p(\mathbf{w}|\boldsymbol{\theta}, \mathbf{y}) p(\boldsymbol{\theta}|\mathbf{y}) d\boldsymbol{\theta}$$

and,

$$p(\mathbf{w}|\boldsymbol{\theta}, \mathbf{y}) \propto f(\mathbf{y}|\mathbf{w}, \boldsymbol{\beta}, \tau^2) p(\mathbf{w}|\sigma^2, \phi)$$

is a multivariate normal distribution.

- Thus we can generate posterior samples of **w** by
 - First generate $\theta^{(g)} \sim p(\theta|\mathbf{y})$ for $g = 1, \dots, G$
 - Second generate $\mathbf{w}^{(g)} \sim p(\mathbf{w}|\boldsymbol{\theta}^{(g)},\mathbf{y})$ given each $\boldsymbol{\theta}^{(g)}$

Spatial prediction (Bayesian kriging)

- Often we need to predict the response Y at a new site \mathbf{s}_0 with associated covariates $\mathbf{x}_0 \equiv \mathbf{x}(\mathbf{s}_0)$.
- It requires the predictive distribution:

$$p(y_0|\mathbf{y}, X, \mathbf{x}_0) = \int p(y_0, \theta|\mathbf{y}, X, \mathbf{x}_0) d\theta$$
$$= \int p(y_0|\mathbf{y}, \theta, X, \mathbf{x}_0) p(\theta|\mathbf{y}, X) d\theta$$

Note that $p(y_0|\mathbf{y}, \theta, X, \mathbf{x}_0)$ is normal since $p(y_0, \mathbf{y}|\theta, X, \mathbf{x}_0)$ is multivariate normal!

- ⇒ same algorithm in previous slide:
 - First, generate $\theta^{(g)} \sim p(\theta|\mathbf{y})$ for $g = 1, \dots, G$
 - Second, draw $Y_0^{(g)}$ from $p(y_0|\mathbf{y},\boldsymbol{\theta}^{(g)},X,\mathbf{x}_0)$ given each $\boldsymbol{\theta}^{(g)}$

Spatial Generalized Linear Models

- Some data sets preclude Gaussian modeling; Y(s) may not even be continuous!
- Example: Y(s) is a binary or count variable
 - precipitation or deposition was measurable or not
 - price is high or low for home at location s
 - ullet number of insurance claims by residents of a single family home at ${f s}$
- - Binomial likelihood for binary data
 - Poisson (or over-dispersed Poisson) for count data

and then introduce the spatial process in modeling the transformed mean response (with some link function).

Spatial GLM (cont'd)

Say, we have binary outcomes $Y(\mathbf{s}_i)$, i = 1, ..., n:

• First stage: we assume $Y(\mathbf{s}_i) \sim Bern(p(\mathbf{s}_i))$, with

$$logit(p(s_i)) = x^T(s_i)\beta + w(s_i)$$
.

• Second stage: Model w(s) as a Gaussian process:

$$\mathbf{w} \sim N(\mathbf{0}, \sigma^2 H(\phi))$$

- Third stage: Priors and hyperpriors
- Note: Usually no pure error term $\epsilon(\mathbf{s})$, but possible computational advantage.

Bayesian spatial model in WinBUGS

- Data: Observations are home values (based on recent real estate sales) at 50 locations in Baton Rouge, Louisiana, USA.
- The response Y(s) is a binary variable, with

$$Y(s) = \begin{cases} 1 & \text{if price is "high" (above the median)} \\ 0 & \text{if price is "low" (below the median)} \end{cases}$$

- Observed covariates include the house's age and total living area.
- Model: We fit a generalized linear model

$$Y(\mathbf{s}_i) \sim Bernoulli(p(\mathbf{s}_i)),$$

 $logit(p(\mathbf{s}_i)) = x^T(\mathbf{s}_i)\beta + w(\mathbf{s}_i).$

Non-Gaussian point-level model in WinBUGS

 Code for spatial GLM (logistic) model model{ for (i in 1:N) { Y[i] ~ dbern(p[i]) logit(p[i]) <- w[i]</pre> mu[i] <- beta[1]+beta[2]*LivingArea[i]/1000+beta[3]*Age[i]</pre> for (i in 1:3) {beta[i] ~ dnorm(0.0,0.001)} w[1:N] ~ spatial.exp(mu[], x[], y[], spat.prec, phi, 1) phi ~ dunif(0.1.10) spat.prec ~ dgamma(0.1, 0.1) sigmasq <- 1/spat.prec }

Summaries of posterior distributions

1.678

1.663

sigmasq

```
node
                 sd
                      MC error
                                 2.5%
                                       median
                                                 97.5%
                                                       start sample
        mean
beta[1] -1.19
                1.01
                       0.08325 -3.857
                                        -0.9445
                                                0.1727
                                                        1001
                                                               5000
beta[2] 0.6922 0.5378 0.04714
                                0.02099 0.5597 2.123
                                                        1001
                                                              5000
beta[3] -0.002336 0.02242 5.901E-4 -0.053 -8.878E-4 0.0382
                                                        1001
                                                               5000
                                1.281
                                         5.637
                                                 9.756
phi
        5.656
                2.507 0.04839
                                                        1001
                                                               5000
```

0.1903

1.149 6.384 1001

5000

0.1267

Estimated Spatial Effects

- Export the posterior samples of the spatial effects w_i into .txt file.
- Read the .txt file into R, and plot image on w_i posterior medians.
- negative residuals (i.e. lower prices) in the north; positive residuals (i.e. higher prices) in the south

Spatial GLM: comments

- Our use of spatial random effects in the (transformed) mean encourages the means of spatial variables at proximate locations to be similar to each other
- But the observed Y(s) and Y(s') need not be similar.
- Thus second stage spatial modeling is attractive for spatial explanation in the *mean*, while direct (first stage) spatial modeling is better for encouraging proximate observations to be similar.
- For computation, unlike the Gaussian case, an MCMC algorithm will have to update **w** as well as β , σ^2 , ϕ , and γ .

Spatial modeling of areal data

- Suppose we have observations $\mathbf{y} = (y_1, \dots, y_n)$ observed from areal units $i = 1, \dots, n$ in a region D of interest.
- Key interest: To obtain a joint distributional model of $\{Y_i, i = 1, ..., n\}$.
- Difficulty: When the number of areal units is very large (say, a fine-resolution image or a large geographic region with small units), it's hard to write down the joint distribution.
- Solutions: Works with full conditionals of the Y_i 's, which will yield a valid joint distribution!

Example: Scottish lip cancer data

Panel (a): Standardized mortality rate, $SMR_i = 100Y_i/E_i$ for lip cancer in n = 56 districts, 1975-1980.

Panel (b): One covariate, x_i = percentage of the population engaged in agriculture, fishing or forestry (AFF)

Lip Cancer Example – Likelihood

Consider the Poisson model for disease count in each district:

$$Y_i | \eta_i \stackrel{ind}{\sim} Pois(E_i \eta_i)$$
, where $Y_i = \text{observed disease count from district } i$
 $E_i = \text{expected count (known) from district } i$
 $\eta_i : \text{relative risk of the disease in district } i$.

We model log-relative risk as

$$\psi_i = \log(\eta_i) = \beta_0 + x_i'\beta + \phi_i + \theta_i,$$

where x_i is the explanatory spatial covariate, AFF, with coefficient β .

- Note the mean structure also contains two sets of random effects!
 - $-\phi_i$: spatial clustering random effects
 - $-\theta_i$: unstructural heterogeneity random effects
- Interest: find the estimated posterior of the AFF effect β_1 , and map the fitted relative risks $E(e_i^{\psi}|\mathbf{y})$.

Conditional autoregressive (CAR) model

 Assuming Y_i's are Gaussian-distributed, the conditional autoregressive (CAR) model specifies the full conditional distribution for each Y_i

$$p(y_i|y_j, j \neq i) = N\left(\sum_{j \sim i} b_{ij}y_j, \tau_i^2\right)$$

where $i \sim i$ indicates that units i and j are neighbors.

- The coefficients b_{ij} introduces spatial smoothing between neighboring pairs, and τ_i^2 gives the conditional variance of unit i.
- Question: Can these full conditionals specification lead to a valid joint distribution of Y?
- Answer: Yes!

CAR model (cont'd)

- The Brook's Lemma ensures that we can retrieve the joint distribution based on the given the full conditionals specified by CAR model.
- Based on Brook's Lemma, we can derive the joint distribution as

$$p(y_1, y_2, ...y_n) \propto \exp\left\{-\frac{1}{2}\mathbf{y}'D^{-1}(I-B)\mathbf{y}\right\},$$

where $B = \{b_{ij}\}$ and D is diagonal with $D_{ii} = \tau_i^2$.

• This suggests a multivariate normal distribution of Y with

$$\mu_V = 0$$
 and $\Sigma_Y = (I - B)^{-1}D$

 To ensure the validity of the joint distribution, the covariance matrix must be symmetric and positive definite!

CAR model (cont'd)

- $D^{-1}(I-B)$ being symmetric requires $\frac{b_{ij}}{\tau_i^2} = \frac{b_{ji}}{\tau_i^2}$ for all i,j.
- Let W be some user-defined proximity matrix, which is a $p \times p$ matrix with off-diagonal entries w_{ij} indicating spatial connection between i and j units, and diagonal entries $w_{ij} = 0$.
- Assuming W is symmetric, choose $b_{ij} = w_{ij}/w_{i+}$ and $\tau_i^2 = \tau^2/w_{i+}$, then

$$p(y_1, y_2, ...y_n) \propto \exp\{-\frac{1}{2\tau^2}\mathbf{y}'(D_w - W)\mathbf{y}\},$$

where D_w is diagonal with $(D_w)_{ii} = w_{i+}$. This is called Intrinsic autoregressive (IAR) model!

• The joint distribution is equivalent to

$$p(y_1, y_2, ...y_n) \propto \exp \left\{ -\frac{1}{2\tau^2} \sum_{i \sim j} w_{ij} (y_i - y_j)^2 \right\},$$

a function only on the pairwise difference between neighboring units.

Proximity matrices

- w_{ij} can be viewed as 'weights' that determines the spatial connection between i and j.
 - Larger w_{ij} if j is closer to i.
- Choices for w_{ij}:
 - $w_{ij} = 1$ if i, j share a common boundary (possibly a common vertex)
 - w_{ij} is an *inverse* distance between units
 - $w_{ij} = 1$ if distance between units is $\leq K$
 - $w_{ij} = 1$ for m nearest neighbors.

W is typically symmetric, but need not be.

- \widetilde{W} : standardized entries $\widetilde{w}_{ij} = w_{ij}/w_{i+}$, where i by $w_{i+} = \sum_{i} w_{i+}$
 - \widetilde{W} is row stochastic, i.e. $\widetilde{W}\mathbf{1} = 1$, but need not be symmetric.

CAR model (cont'd)

Question: Is the IAR model a valid joint distribution of Y?

$$p(y_1, y_2, ...y_n) \propto \exp\{-\frac{1}{2\tau^2}\mathbf{y}'(D_w - W)\mathbf{y}\},\,$$

- No! The joint distribution is improper since $(D_w W)\mathbf{1} = \mathbf{0}$; \Rightarrow the precision matrix of the distribution is singular!
- The IAR model is NOT a valid likelihood distribution, but can be used as prior for the random effects in a regression model!

Example: Scottish lip cancer data

Panel (a): Standardized mortality rate, $SMR_i = 100Y_i/E_i$ for lip cancer in n = 56 districts, 1975-1980.

Panel (b): One covariate, x_i = percentage of the population engaged in agriculture, fishing or forestry (AFF)

Lip Cancer Example – Likelihood

Consider the Poisson model for disease count in each district:

$$Y_i | \eta_i \stackrel{ind}{\sim} Pois(E_i \eta_i)$$
, where $Y_i = \text{observed disease count from district } i$
 $E_i = \text{expected count (known) from district } i$
 $\eta_i : \text{relative risk of the disease in district } i$.

We model log-relative risk as

$$\psi_i = \log(\eta_i) = \beta_0 + x_i'\beta + \phi_i + \theta_i,$$

where x_i is the explanatory spatial covariate, AFF, with coefficient β .

- Note the mean structure also contains two sets of random effects!
 - $-\phi_i$: spatial clustering random effects
 - $-\theta_i$: unstructural heterogeneity random effects
- Interest: find the estimated posterior of the AFF effect β_1 , and map the fitted relative risks $E(e_i^{\psi}|\mathbf{y})$.

Priors

In Bayesian framework, we need to assign priors for $\mathbf{\Theta} = (\beta, \theta, \phi)$.

- We assume a flat prior for the fixed effect $\beta = (\beta_0, \beta_1)$
- \bullet θ_i captures unstrunctural heterogeneity via the prior

$$\theta_i \stackrel{ind}{\sim} N(0, \tau_h^{-1}).$$

• ϕ_i captures spatial clustering via the CAR prior,

$$|\phi_i|\phi_{j\neq i} \sim N\left(\frac{1}{m_i}\sum_{j\sim i}\phi_j,(m_i\tau_c)^{-1}\right),$$

where m_i is the number of "neighbors" of region i.

• The CAR prior is translation invariant, so requires a constraint by centering $\sum_{i=1}^{n} \phi_i = 0$ (imposed numerically after each MCMC iteration).

Identifiability

- Note Y_i cannot inform about θ_i or ϕ_i , but only about their sum $\epsilon_i = \theta_i + \phi_i$.
- Though unidentified, the θ_i and ϕ are interesting in their own right, as is

$$\alpha = \frac{\mathsf{sd}(\phi)}{\mathsf{sd}(\theta) + \mathsf{sd}(\phi)},$$

where $sd(\cdot)$ is the empirical marginal standard deviation function.

- We want to specify values τ_h and τ_c such that the priors
 - are proper that leads to acceptable convergence behavior, and
 - yet vague that still allows Bayesian learning.
- In addition, we also want a "fair" prior that balances between the unstructured heterogeneity and the spatial clustering (e.g. leads to $\alpha \approx 1/2$).

WinBUGS code to fit this model

The following WinBUGS code uses vague priors for τ_h and τ_c as suggested by Best et al. (1999).

```
model{
   for (i in 1 : regions) {
      O[i] ~ dpois(mu[i])
      log(mu[i]) \leftarrow log(E[i]) + beta0 + beta1*aff[i]/10 + phi[i] + theta[i]
      theta[i] ~ dnorm(0.0,tau.h)
      psi[i] <- theta[i] + phi[i]</pre>
      SMRhat[i] <- 100 * mu[i] / E[i]</pre>
      SMRraw[i] <- 100* 0[i] / E[i]</pre>
   phi[1:regions] ~ car.normal(adj[], weights[], num[], tau.c)
   beta0 ~ dnorm(0.0, 1.0E-5) # vague prior on grand intercept
   beta1 ~ dnorm(0.0, 1.0E-5) # vague prior on covariate effect
   tau.h ~ dgamma(1.0E-3,1.0E-3) # ''fair'' prior from Best et al.
   tau.c ~ dgamma(1.0E-1,1.0E-1) # (1999, Bayesian Statistics 6)
   sd.h <- sd(theta[]) # marginal SD of heterogeneity effects</pre>
   sd.c <- sd(phi[]) # marginal SD of clustering (spatial) effects</pre>
   alpha \leftarrow sd.c / (sd.h + sd.c)
                                                   4D > 4B > 4B > B 990
}
```

Lip Cancer Results

	posterior for α			posterior for eta_1		
priors for τ_c, τ_h	mean	sd	l1 acf	mean	sd	l1 acf
G(1.0, 1.0), G(3.2761, 1.81)	0.57	0.056	0.80	0.43	0.16	0.94
G(.1,.1), G(.32761,.181)	0.65	0.071	0.89	0.40	0.14	0.93
G(.1,.1), G(.001,.001)	0.83	0.099	0.97	0.37	0.13	0.92
	posterior for ϵ_1			posterior for ϵ_{56}		
priors for τ_c, τ_h	mean	sd	l1 acf	mean	sd	l1 acf
G(1.0, 1.0), G(3.2761, 1.81)	1.23	0.34	0.05	-0.68	0.50	0.02
G(.1,.1), G(.32761,.181)	1.16	0.31	0.08	-0.54	0.39	0.09
G(.1,.1), G(.001,.001)	1.15	0.30	0.12	-0.48	0.33	0.11

- AFF covariate is significantly $\neq 0$ under all 3 priors
- Convergence is slow for α , but rapid for ϵ_i .
- Excess variability in the data is mostly due to clustering $(E(\psi|\mathbf{y}) > .50)$, but the posterior distribution for α is not robust to changes in the prior.

Proper Car Model

• "Proper CAR": replace (D_w-W) by $(D_w-\rho W)$, such that

$$p(y_1, y_2, ...y_n) \propto \exp\{-\frac{1}{2\tau^2}\mathbf{y}'(D_w - \rho W)\mathbf{y}\},$$

and choose ρ such that $\Sigma_y = \tau^2 (D_w - \rho W)^{-1}$ exists.

This in turn implies the full conditional

$$p(y_i|y_j, j \neq i) = N\left(\rho \sum_{j\neq i} \frac{w_{ij}}{w_{i+}} y_j, \frac{\tau^2}{w_{i+}}\right).$$

- \Rightarrow Using proper CAR as a prior, ρ determines the spatial smoothing (shrinkage) of y_i toward the average of its neighbors!
- Choice of ρ : Σ_y exists if $\rho \in (1/\lambda_{(1)},1)$, where $\lambda_{(1)}$ is the smallest eigenvalue of $D_w^{-1/2}WD_w^{-1/2}$. In practice, the bound $\rho \in (0,1)$ is often preferred.

To ρ or not to ρ ?

- Advantages:
 - makes distribution proper
 - adds parametric flexibility
 - $\rho = 0$ interpretable as independence
- However, does ρ give sensible interpretation of "strength of spatial association"?
 - \bullet calibration of ρ as a correlation, e.g.,

$$ho = 0.80$$
 yields $0.1 \le I \le 0.15$, $ho = 0.90$ yields $0.2 \le I \le 0.25$, $ho = 0.99$ yields $I < 0.5$

- So, used with random effects, scope of spatial pattern limited.
- In a Bayesian framework, a prior on ρ that encourages a consequential amount of spatial association would place most of its mass near 1

Comments on CAR models

- We specify Σ_y^{-1} , not Σ_Y , so does not directly model association.
- If $(\Sigma_y^{-1})_{ii} = 1/\tau_i^2$; $(\Sigma_y^{-1})_{ij} = 0 \Leftrightarrow$ conditional independence.
- Prediction at new sites is ad hoc, in that if

$$p(y_0|y_1, y_2, ...y_n) = N\left(\sum_j \frac{w_{0j}}{w_{0+}}y_j, \frac{\tau^2}{w_{0+}}\right)$$

then $p(y_0, y_1, ...y_n)$ well-defined but not equivalent to the CAR model arising from the full conditionals of $Y_0, Y_1, ..., Y_n$.

• Non-Gaussian case: for binary data, the autologistic model

$$\log \frac{P(Y_i=1)}{P(Y_i=0)} = \psi \sum_{i \sim i} w_{ij} y_i y_j.$$

Comparing point-referenced and areal data models

- Spatial process vs. a single *n*-dimensional distribution
- Gaussian process vs. CAR model
- Modeling $\Sigma_{\mathbf{Y}}$ (Gaussian process) vs. $\Sigma_{\mathbf{Y}}^{-1}$ (CAR)
- Prediction vs. smoothing
- "big N problem" (with matrix inversion for likelihood evaluation) vs.
 NO "big N problem" (readily available full conditionals for Gibbs sampling)