

FIRST SEMESTER 2018-2019 Course Handout (Part II)

Date: 02/08/2018

In addition to Part I (General Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No.: PHY F213

Course Title:OPTICS

Instructor-in-charge: MANJULADEVI. V

Course Description:

The course will cover Geometrical optics, Crystal optics, Diffraction, Laser theory and the recent trends of research in the optical physics.

Scope and objective of the course:

The objective of the course is to give an introduction to basic phenomena in optics and the techniques used to deal with them. The recent development of the subject and its application in the research level will be discussed. Course will assume a basic knowledge of optics at the level of the core Physics courses. The course will also provide theoretical background for the optics experiments done in Electromagnetism & Optics Lab. (PHYF214).

Text Book (TB):

Optics: AjoyGhatak, 5th Edition, Tata McGraw Hill (2012)

Reference Book (RB):

- 1. Principles of Optics, B. K. Mathur
- 2. Introduction to Electrodynamics, David J. Griffiths, 3rd Ed., Pearson, 1999
- 3. Lasers and non-linear optics, B. B. Laud, 2nd Ed., Wiley Eastern Ltd
- 4. Optical Physics by A. Lipson, S. G. Lipson, H. Lipson, Cambridge university press, 2010

1. Course Plan:

Lecture No.	Learning Objectives	Topics to be covered	Reference Chap. Sec. #	Learning outcome
1-4	Introduction to optics, Fermat's principle and applications	Basic introduction to optics, Newton's corpuscular model, laws of reflection and refraction from Fermat's principle, ray equations, ray paths	2&3,28.1 to 28.7	Understand the basic optical phenomenon. why Newton's corpuscular model was a failure? Correct explanation of reflection refraction using Fermat's principle, predict the angles of refraction and reflection at interfaces, understanding various optical phenomena for ex: mirage by solving the ray equation, obtain ray paths in inhomogeneous media for ex: optical fiber, transit time calculation in an optical fiber, Numerical aperture
5-8	Matrix methods in paraxial optics	Matrices for translation, refraction and reflection, unit planes, nodal points, system of two thin lenses	5.1-5.5	In Paraxial approximation, applying the matrix method to a given set of many lenses, student will be able to predict by calculation the exact location of image, magnification factor; and

				focal length of any optical
				system with many optical
				components without
				performing actual
				experiments,
9-11	Aberrations	Chromatic and Spherical	6.1-6.3.1	Understand that Chromatic
9-11	ADEITALIONS		0.1-0.5.1	
		Aberration, achromatic		aberration is a distortion of
		doublet, separated doublet		image occurring due to the
				variation of refractive index
				of the material of lens with
				wavelength of light,
				Designing achromatic
				doublet Will be able to
				propose a design for an
				optical system with minimal
				optical distortions
12-15	Origin of	Origin of refractive index,	7.5, 7.6	Knowledge about Origin of
	refractive	refractive index is complex,	Lecture notes	index of refraction of a
	index,	Rayleigh Scattering,		medium and effect of
	dispersion	Dispersion		damping coefficient of a
	and			given medium on refractive
	scattering			index. explanation for why a
	theory			given medium looks of a
				particular colour for
				example the most
				fundamental example: Why
				sky looks blue? Dispersion:
				variation of refractive index
				Tanada of Tanada of Tanada

				with frequency
16-17	Coherence	Line width of a source,	17.1-17.3,	Student will be able to
		spatial coherence,	17.6	define and hence estimate
		coherence time		coherence time and
				coherence length of a given
				source, estimate the
				monochromaticity or the
				spectral purity of source ,
				concept of aptialchoerence
10.00	D.(('.		10.1.10.2.10	NACH I III
18-22	Diffraction	Fresnel and Fraunhofer	18.1,18.2,18.	Will learn difference
		diffraction: Single slit	6-18.7,RB1,	between Fresnel and
		diffraction, double slit	Lecture notes	Fraunhofer diffraction,
		diffraction, N slit		theory of Frensel zones,
		diffraction, Fresnel half		construction of zone plate
		period zones, diffraction by		and its applications; will be
		circular aperture, Zone		able to calculate the Fresnel
		plate		diffraction patterns of slits
				of various shapes;
				Relation between
				Fraunhofer diffraction and
				Fourier transform;
				Fraunhofer diffraction by
				single slit and double slit, a
				student will be able to apply
				the concept of N slit
				diffraction to understand
				the working principle of
				<u> </u>

				grating and dispersion	
				power of grating, its	
				application in optics as well	
				as solid state physics	
23-27	Basic of wave	1D wave equation and its	11.9, 10.1-	Consent of group valority	
25-27		1D wave equation and its	,	Concept of group velocity	
	motion,	general solution, Wave	10.3, RB 2	and phase velocity,	
	group	Equation, Poynting vector,		variation of refractive index	
	velocity and	oscillating dipole, dispersion		with wavelength;	
	Dispersion	and group velocity, normal		calculation of material	
		and anomalous dispersion		dispersion coefficient,	
				Poynting vector; Energy	
				travels with group velocity;	
				negative refractive index	
28-31	Polarization	Malus' law, double	22.1-22.17	Polarization of EM wave;	
20 01	T Glarization	refraction Optical activity,		student can design a filter	
		remaction optical activity,		with varying gray scale	
		linearly polarized light,		, , ,	
		Circular polarized light,		intensity; how to control	
				polarization of EM waves at	
				interfaces with various	
				angles of incidence, concept	
				of Brewster angle and	
				importance of Brewster	
				angle in various	
				applications, Jones matrix	
				representation, ray velocity	
				and ray refractive index,	
				Faraday rotation	
32-35	Maxwell's	wave propagation in	20.3-20.5,	Application of Maxwell's	

	_			
	equations	anisotropic media, Plane	19.12, 21.1-	equations to EM waves,
	and	wave propagation in	21.2 & RB 2	Estimation of Reflection and
	Electromagn	anisotropic media,		transmission coefficients of
	etic waves,	Reflection and Refraction		parallel and perpendicular
		of EM waves, Reflection		polarized components of
		and transmission		EM waves in isotropic
		coefficients,		medium, How an EM wave
				propagates through
				anisotropic medium, why
				the direction of propagation
				of wave is not the direction
				of energy propagation
				direction in anisotropic
				medium?; Propagation of
				EM waves in uniaxial
				crystals
				or years.
36-40	Lacore and	Chantanagus amissian	DD 2 Lacture	How stimulated emission is
30-40	Lasers and	Spontaneous emission,	RB 3, Lecture	
	applications	Stimulated emission,	notes	responsible for lasing
	of lasers	Einstein coefficients,		action? why the
		threshold condition,		spontaneous emission is
		somelaser systems,		useless for lasing; concept
		application of lasers: Non		of spatial and temporal
		Linear Optical effect ;		coherence and their
		Second Harmonic		importance; classical and
		Generation		quantum mechanical
				treatment of photons to
				understand the basics of
				lasers; applications of lasers

leading to modern optics
applications, Kerr effect,
Pockel effect, Nonlinear
optical effect, concept of
second harmonic
generation and its
importance

Evaluation Scheme:

EC	Component	Duration	Weightage	Date & Time	Nature
No.			(%)		
1	Mid-Sem Test	90 minutes	30	9/10 9:00 - 10:30 AM	Closed Book
2	Tutorial Tests/Assignments		30		Closed/Open Book
4	Comprehensive Examination	3 hours	40	3/12 FN	Closed Book/Open Book

Chamber Consultation Hour: To be announced in the class

Notices: All notices will be displayed on Physics Department Notice Board

Make-up Policy: Make-up will be given only in genuine cases.

Instructor-in-charge

PHY F213

