Poziom rozszerzony 2023

Zadanie 4. (0-3)

Liczby rzeczywiste x oraz y spełniają jednocześnie równanie x+y=4 i nierówność $x^3-x^2y\leq xy^2-y^3$.

Wykaż, że x=2 oraz y=2.

Zadanie 9. (0-4)

Rozwiąż nierówność

$$\sqrt{x^2+4x+4}<\frac{25}{3}-\sqrt{x^2-6x+9}$$

Zapisz obliczenia.

Zadanie 12.1. (0-2)

Wykaż, że dla każdej liczby dodatniej x wyrażenie

$$81^{\log_3 x} + \frac{2 \cdot \log_2 \sqrt{27} \cdot \log_3 2}{3} \cdot x^2 - 6x$$

można równoważnie przekształcić do postaci $x^4 + x^2 - 6x$.

Zadanie 2. (0-1)

Dane są wektory $\vec{u}=[4,-5]$ oraz $\vec{v}=[-1,-5]$. Długość wektora $\vec{u}-4\vec{v}$ jest równa

A. 7

B. 15

C. 17

D. 23

Zadanie 1. (0-1)

Na osi liczbowej zaznaczono sumę przedziałów.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Zbiór zaznaczony na osi jest zbiorem wszystkich rozwiązań nierówności

A.
$$|x - 3.5| \ge 1.5$$

B.
$$|x - 1.5| \ge 3.5$$

C.
$$|x - 3.5| \le 1.5$$

D.
$$|x - 1.5| \le 3.5$$

Zadanie 2. (0−1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Liczba
$$\sqrt[3]{-\frac{27}{16}} \cdot \sqrt[3]{2}$$
 jest równa

A.
$$\left(-\frac{3}{2}\right)$$
 B. $\frac{3}{2}$

B.
$$\frac{3}{2}$$

c.
$$\frac{2}{3}$$

D.
$$\left(-\frac{2}{3}\right)$$

Zadanie 3. (0-2)

Wykaż, że dla każdej liczby naturalnej $n \geq 1$ liczba $(2n+1)^2 - 1$ jest podzielna przez 8.

Zadanie 4. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Liczba $\log_9 27 + \log_9 3$ jest równa

Zadanie 5. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Dla każdej liczby rzeczywistej a wyrażenie $(2a-3)^2-(2a+3)^2$ jest równe

A.
$$-24a$$

D.
$$16a^2 - 24a$$

Zadanie 6. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Zbiorem wszystkich rozwiązań nierówności

$$-2(x+3) \le \frac{2-x}{3}$$

jest przedział

A.
$$(-\infty, -4]$$
 B. $(-\infty, 4]$ **C.** $[-4, \infty)$

B.
$$(-\infty, 4]$$

C.
$$[-4, \infty]$$

D.
$$[4, \infty)$$

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Jednym z rozwiązań równania $\sqrt{3}(x^2-2)(x+3)=0$ jest liczba

A. 3

B. 2

C. $\sqrt{3}$

D. $\sqrt{2}$

Zadanie 8. (0-1) **□□□** ✓

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Równanie $\frac{(x+1)(x-1)^2}{(x-1)(x+1)^2} = 0$ w zbiorze liczb rzeczywistych

A. nie ma rozwiązania.

B. ma dokładnie jedno rozwiązanie: -1.

C. ma dokładnie jedno rozwiązanie: 1.

D. ma dokładnie dwa rozwiązania: -1 oraz 1.

Zadanie 10. (0-1)

Na rysunku przedstawiono interpretację geometryczną w kartezjańskim układzie współrzędnych (x, y) jednego z niżej zapisanych układów równań A–D.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Układem równań, którego interpretację geometryczną przedstawiono na rysunku, jest

A.
$$\begin{cases} y = -x + 2 \\ y = -2x + 1 \end{cases}$$

B.
$$\begin{cases} y = x - 2 \\ y = -2x - 1 \end{cases}$$

c.
$$\begin{cases} y = x - 2 \\ y = 2x + 1 \end{cases}$$

D.
$$\begin{cases} y = -x + 2 \\ y = 2x - 1 \end{cases}$$

Zadanie 11. (0-2)

Dany jest prostokąt o bokach długości a i b, gdzie a > b. Obwód tego prostokąta jest równy 30. Jeden z boków prostokąta jest o 5 krótszy od drugiego.

Uzupełnij zdanie. Wybierz dwie właściwe odpowiedzi spośród oznaczonych literami A-F i wpisz te litery w wykropkowanych miejscach.

Zależności między długościami boków tego prostokąta zapisano w układach równań

oznaczonych literami: oraz

A.
$$\begin{cases} 2ab = 30 \\ a - b = 5 \end{cases}$$

B.
$$\begin{cases} 2a + b = 30 \\ a = 5b \end{cases}$$

c.
$$\begin{cases} 2(a+b) = 30 \\ b = a - 5 \end{cases}$$

D.
$$\begin{cases} 2a + 2b = 30 \\ b = 5a \end{cases}$$

E.
$$\begin{cases} 2a + 2b = 30 \\ a - b = 5 \end{cases}$$

F.
$$\begin{cases} a+b=30 \\ a=b+5 \end{cases}$$

Zadanie 12.

W kartezjańskim układzie współrzędnych (x, y) narysowano wykres funkcji y = f(x)(zobacz rysunek).

Zadanie 12.1. (0–1) **□ □ □** ✓

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Dziedziną funkcji f jest zbiór

- **A.** [-6,5] **B.** (-6,5) **C.** (-3,5] **D.** [-3,5]

Zadanie 12.2. (0–1) ∮

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Największa wartość funkcji f w przedziale [-4,1] jest równa

A. 0

B. 1

C. 2

D. 5

Zadanie 12.3. (0-1) **□** □ □ ✓

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Funkcja f jest malejąca w zbiorze

A.
$$[-6, -3)$$

B.
$$[-3, 1]$$

Funkcja liniowa f jest określona wzorem f(x) = ax + b, gdzie a i b są pewnymi liczbami rzeczywistymi. Na rysunku obok przedstawiono fragment wykresu funkcji f w kartezjańskim układzie współrzędnych (x, y).

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Liczba $\,a\,$ oraz liczba $\,b\,$ we wzorze funkcji $\,f\,$ spełniają warunki:

A. a > 0 i b > 0.

B. a > 0 i b < 0.

C. a < 0 i b > 0.

D. a < 0 i b < 0.

Zadanie 19. (0–1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Dla każdego kąta ostrego α wyrażenie $\sin^4 \alpha + \sin^2 \alpha \cdot \cos^2 \alpha$ jest równe

A. $\sin^2 \alpha$

B. $\sin^6 \alpha \cdot \cos^2 \alpha$

C. $\sin^4 \alpha + 1$

D. $\sin^2 \alpha \cdot (\sin \alpha + \cos \alpha) \cdot (\sin \alpha - \cos \alpha)$

W kartezjańskim układzie współrzędnych (x, y) dane są proste k oraz l o równaniach

$$k: \ y = \frac{2}{3}x$$

$$l: \ y = -\frac{3}{2}x + 13$$

Dokończ zdanie. Wybierz odpowiedź A albo B oraz odpowiedź 1., 2. albo 3.

Proste k oraz l

A.	są prostopadłe		1.	(-6, -4)
	nio oo	i przecinają się w punkcie P o współrzędnych	2.	(6, 4)
B.	nie są prostopadłe		3.	(-6,4)

Zadanie 24. (0-1)

W kartezjańskim układzie współrzędnych (x, y) dana jest prosta k o równaniu

$$y = -\frac{1}{3}x + 2$$

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Prosta o równaniu y = ax + b jest równoległa do prostej k i przechodzi przez punkt P = (3, 5), gdy

A.
$$a = 3$$
 i $b = 4$.

B.
$$a = -\frac{1}{3}$$
 i $b = 4$.

C.
$$a = 3$$
 i $b = -4$.

D.
$$a = -\frac{1}{3}$$
 i $b = 6$.

Zadanie 3. (0-1)

Cenę aparatu fotograficznego obniżono o 15%, a następnie – o 20% w odniesieniu do ceny obowiązującej w danym momencie. Po tych dwóch obniżkach aparat kosztuje 340 zł. Przed obiema obniżkami cena tego aparatu była równa

Zadanie 9. (0-1)

Miejscem zerowym funkcji liniowej f(x) = (2p-1)x + p jest liczba (-4). Wtedy

A.
$$p = \frac{4}{9}$$

B.
$$p = \frac{4}{7}$$

C.
$$p = -4$$

A.
$$p = \frac{4}{9}$$
 B. $p = \frac{4}{7}$ **C.** $p = -4$ **D.** $p = -\frac{4}{7}$

Zadanie 24. (0-1)

Dane są punkty K=(-3,-7) oraz S=(5,3). Punkt S jest środkiem odcinka KL. Wtedy punkt L ma współrzędne

A. (13, 10)

B. (13, 13)

C. (1, -2)

D. (7, -1)

Zadanie 25. (0-1)

Dana jest prosta o równaniu y=2x-3. Obrazem tej prostej w symetrii środkowej względem początku układu współrzędnych jest prosta o równaniu

A. y = 2x + 3

B. y = -2x - 3

C. y = -2x + 3

D. y = 2x - 3

Zadanie 32. (0-2)

Wykaż, że dla każdej liczby rzeczywistej $x \neq 1$ i dla każdej liczby rzeczywistej y prawdziwa jest nierówność

$$x^2 + y^2 + 5 > 2x + 4y$$