Numerical Methods
$$f(x) = 0$$

Last time: Newton's method $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

as a fixed point method for $\phi(x) = x - \frac{f(x)}{f'(x_n)}$.

The saw it was locally quadratically conveyent provided $f'(x) \neq 0$.

Comment: when $f'(x) = 0$, only get linear conveyence in general. Need to check defails carefully.

E.g. is $\phi(x) = 0$, in tinuous at $x = x$?

To evaluate
$$\lim_{\chi \to \infty} x - \frac{f(x)}{f'(x)}$$
 (assuming $f'(x) \neq 0$ near x , except at x)

then Taylor expanding: $f(x) = f(x) + f'(x)(x-x) + \dots + \frac{f(p-1)(x)(x-x)}{f(p-1)!} + \frac{f(x)(x-x)}{f'(x)} +$

Newton is fast but requires knowledge of
$$f'$$
.

To avail evaluating $f'(xk)$ we could replace it by the approximation $f'(xk) \sim \frac{f(xk) - f(xk-1)}{xk - xk-1}$.

This leads to the secont method:

$$x_{k+1} = x_k - \frac{f(xk)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}, \quad k=1,2,...$$

This is a 2nd order recurrence - we need 2 initial quesses, x_0 and x_1 .

Fact (with out proof): The serant method is order p convergent, for
$$p = \frac{1+\sqrt{5}}{2} \approx 1.63$$
.

An even simpler method, sometimes used in practice, is the chord method, which is a fixed point method for
$$\phi(x) = x - \frac{f(x)}{2}, \qquad \qquad = |\phi'(x)| = 0$$
for some $q \in \mathbb{R}$, $q \neq 0$.

This is only linearly invergent in general. Need $|1 - \frac{f'(x)}{2}| < 1$
for foral linear convergence.

Given an iterative method producing a sequence (xk) conveying to a real number
$$\propto$$
, we'd like to know how large k needs to be to ensure $|e_k| := |x_k - x| \leq tol$, where tol is some user-prescribed tolerance.

If we have an a priori error bound, we can use that: e.g. for bisection,
$$|e_R| \leq \frac{b-a}{2^{R+1}}$$

so $|e_R| \leq tol$ provided $\frac{b-a}{2^{R+1}} \leq tol$

i.e. $k \geq \frac{\log \frac{b-a}{tol}}{\log 2} - 1$

Similarly, if we're using any linearly convergent method for which $|e_R| \leq C \Lambda^k$ for some $0 < \Lambda < 1$.