Functional Analysis Assignment 6

Ashish Kujur

Note

Then end of a proof is denoted by $\ddot{\smile}$.

Contents

1	Question 1	3
2	Question 2	4
3	Question 3	5
4	Question 4	6
5	Question 5	8
6	Question 6	11
7	Question 7	12
8	Question 8	13
9	Question 9	14
10	Question 10	15
11	Question 11	18
12	Question 12	19
13	Question 13	21

14 Question 14	23
15 Question 15	24
16 Question 16	27
17 Question 17	29

Let H be a Hilbert space and $T \in \mathcal{B}(H)$. Show that $T^*T \geq 0$.

Proof. First, we need to show that T^*T is self-adjoint. Observe that

$$(T^*T)^* = T^* (T^*)^*$$
 $(ST)^* = T^*S^*$
= T^*T . $(T^*)^* = T$

To show that $T^*T \geq 0$, we need to show that $\langle T^*Tx, x \rangle \geq 0$ for each $x \in H$. To this end, let $x \in H$. Then we have

$$\langle T^*Tx, x \rangle = \langle Tx, (T^*)^*x \rangle$$
 by definition
= $\langle Tx, Tx \rangle \ge 0$ by definition of inner product

Let H be a Hilbert space and $T \in \mathcal{B}(H)$. Suppose $A \in \mathcal{B}(H)$ and $A \geqslant 0$. Then show that $T^*AT \geqslant 0$.

Proof. Let $A, T \in \mathcal{B}(H)$ and suppose that $A \geq 0$. Then we need to show that $T^*AT \geq 0$. First, we need to show that T^*AT is self adjoint. To this end, consider the following:

$$(T^*AT)^* = T^*A^*(T^*)^*$$

= T^*AT

Since $A \geq 0$, we have that A is self-adjoint by definition. Now, let us show that $\langle T^*ATx, x \rangle \geq 0$ for each $x \in H$. To this end, let $x \in H$ and consider the following:

$$\langle T^*ATx, x \rangle = \langle ATx, Tx \rangle \ge 0$$
 since $Tx \in H$ and $A \ge 0$.

Let H be a Hilbert space and $T, S \in \mathcal{B}(H)$, satisfying $T \geqslant 0$ and $S \geqslant 0$. Show that $T + S \geqslant 0$.

Proof. The fact that T+S is selfadjoint follows from the fact that the adjoint map is antilinear. To complete the rest, let $x \in H$ and consider the following:

$$\langle (S+T)x, x \rangle = \langle Sx, x \rangle + \langle Tx, x \rangle$$

 $\geq 0.$

Let H be a Hilbert space and $P_1, P_2 \in \mathcal{B}(H)$, are two orthogonal projections, that is, $P_j^2 = P_j$ and $P_j^* = P_j$ for each j = 1, 2. Show that P_1P_2 is an orthogonal projection if and only if $P_1P_2 = P_2P_1$. In this case $\operatorname{ran}(P_1P_2) = \operatorname{ran}(P_1) \cap \operatorname{ran}(P_2)$.

Proof. Let $P_1, P_2 \in \mathcal{B}(H)$ be two orthogonal projections. We show that P_1P_2 is an orthogonal projection iff $P_1P_2 = P_2P_1$.

 (\Longrightarrow) Suppose that P_1P_2 is an orthogonal projection. We wish to show that $P_1P_2=P_2P_1$. To do so, consider the following:

$$P_1P_2 = (P_1P_2)^*$$
 P_1P_2 being orthogonal projection
 $= P_2^*P_1^*$ property of the adjoint
 $= P_2P_1$ P_1, P_2 being orthogonal projection

 (\Leftarrow) Suppose that $P_1P_2 = P_2P_1$. We wish to show that P_1P_2 is an orthogonal projection.

 P_1P_2 is self adjoint: Consider the following:

$$(P_1P_2)^* = P_2^*P_1^*$$

= P_2P_1
= P_1P_2 . by assumption

 P_1P_2 is idempotent: Consider the following:

$$(P_1P_2)^2 = P_1P_2P_1P_2$$

 $= P_1P_1P_2P_2$ since $P_1P_2 = P_2P_1$
 $= P_1^2P_2^2$
 $= P_1P_2$ since P_1, P_2 are orthogonal projection

This shows that the both directions of the iff. Let us assume that $P_1P_2 = P_2P_1$. Now, we proceed to show that im $(P_1P_2) = \text{im } P_1 \cap \text{im } P_2$.

- (\subset): Let $y \in \text{im } P_1P_2$. Then we have that $y = P_1P_2x$ for some $x \in H$. Since $P_2x \in H$, we have that $y = P_1x$. Also, note that $y = P_2P_1x$ since P_1 and P_2 commute. Hence, we have that $y \in \text{im } P_2$. This shows that im $P_1P_2 \subset \text{im } P_1 \cap \text{im } P_2$.
- (⊃): Let $y \in \text{im } P_1 \cap \text{im } P_2$. Then we have $y = P_1 x_1 = P_2 x_2$ for some $x_1 \in H$ and some $x_2 \in H$. It follows that

$$P_1 y = P_1^2 x_1 \rightsquigarrow P_1 y = P_1 x_1 \rightsquigarrow y = P_1 y$$

and

$$P_2y = P_2^2x_2 \leadsto P_2y = P_2x_2 \leadsto y = P_2y.$$

The above two equalities show that $y \in \text{im } P_1 \cap \text{im } P_2$.

 $\ddot{}$

Let H be a Hilbert space and $P_1, P_2 \in \mathcal{B}(H)$, are two orthogonal projections in $\mathcal{B}(H)$. Show that $P_1 + P_2$ is an orthogonal projection if and only if $ran(P_1)$ is orthogonal to $ran(P_2)$, that $\langle P_1x, P_2y \rangle = 0$ for every $x, y \in H$. In this case $ran(P_1 + P_2) = ran(P_1) + ran(P_2)$.

Proof. Let H be a Hilbert space and let P_1 , P_2 be two orthogonal projections in $\mathfrak{B}(H)$. We proceed to show that $P_1 + P_2$ is an orthogonal projection iff im P_1 is orthogonal to im P_2 .

(\Longrightarrow) Suppose that $P_1 + P_2$ is an orthogonal projection. Let $y_1 \in \text{im } P_1$ and $y_2 \in \text{im } P_2$. Then we have that $y_1 = P_1 x_1$ and $y_2 = P_2 x_2$ for some $x_1 \in H$ and some $x_2 \in H$.

First, we show that $P_1P_2 = -P_1P_2$. Note that

$$P_1 + P_2 = (P_1 + P_2)^2$$

= $P_1 + P_1P_2 + P_2P_1 + P_2$

Hence, this implies that

$$P_1 P_2 = -P_2 P_1. (5.1)$$

Now, multiplying the previous equation by P_2 , we have that $P_2P_1 = -P_2P_1P_2$. P_2P_1 is then self-adjoint as

$$(P_2P_1)^* = (-P_2P_1P_2)^* = -P_2^*P_1^*P_2^* = -P_2P_1P_2 = P_2P_1.$$

Taking adjoint in both sides of Equation 5.1, we have that

$$P_2P_1 = (P_2P_1)^*$$

= $(-P_1P_2)^*$
= $-P_2P_1$

and consequently,

$$P_2 P_1 = P_1 P_2 = 0. (5.2)$$

Now, we proceed to show that im P_1 is orthogonal to im P_2 . To this end, let $x_1, x_2 \in H$. Then we have that

$$\langle P_1 x_1, P_2 x_2 \rangle = \langle P_2 P_1 x_1, x_2 \rangle$$

= $\langle 0x_1, x_2 \rangle$
= 0 (See 5.2)

This shows that im P_1 is orthogonal to im P_2 .

(\Leftarrow) Suppose that im P_1 is orthogonal to im P_2 . We wish to show that $P_1 + P_2$ is an orthogonal projection. The fact that $P_1 + P_2$ is selfadjoint is immediate. It remains to show that $P_1 + P_2$ is idempotent.

But before that, we show that $P_1P_2=0$. Let $f\in H$. Observe that

$$||P_1P_2f||^2 = \langle P_1P_2f, P_1P_2f \rangle$$

$$= \langle P_1^*P_1P_2f, P_2f \rangle$$

$$= \langle P_1^2P_2f, P_2f \rangle$$

$$= \langle P_1P_2f, P_2f \rangle$$

$$= 0.$$

The first equality is by definition, the second is by definition of adjoint operator and the third is because P_1 is an orthogonal projection and hence adjoint, the the third is because P_1 is selfadjoint and the last is due to our assumption that im P_1 is orthogonal to im P_2 . This shows that $P_1P_2 = 0$.

Similarly, it can be shown that $P_2P_1 = 0$. Now, we proceed to $(P_1+P_2)^2 = P_1 + P_2$. Observe that

$$(P_1 + P_2)^2 = P_1^2 + P_1P_2 + P_2P_1 + P_2^2$$

= $P_1 + P_2$.

The first equality is obvious and in the second one, we are using the fact that P_1, P_2 are idempotent and $P_1P_2 = P_2P_1 = 0$.

Now, we proceed to show that im $(P_1 + P_2) = \text{im } P_1 + \text{im } P_2$. Consider the following:

(\subset): Let $y \in \text{im } (P_1 + P_2)$. Then $y = (P_1 + P_2) x$ for some $x \in H$. Then we have that

$$y = \underbrace{P_1 x}_{\in \operatorname{im} P_1} + \underbrace{P_2 x}_{\in \operatorname{im} P_2} \in \operatorname{im} P_1 + \operatorname{im} P_2.$$

(\supset): Let $y \in \text{im } P_1 + \text{im } P_2$. Then $y = P_1x_1 + P_2x_2$ for some $x_1 \in H$ and some $x_2 \in H$. Since we have that $P_1 + P_2$ is an orthogonal projection, we have that $P_1P_2 = -P_2P_1$ as in (\Longrightarrow) in the first part of the proof. Thus, we have that

$$P_2 y = P_2 P_1 x_1 + P_2^2 x_2 = P_2 x_2$$

and similarly we have that

$$P_1y = P_1x_1.$$

Hence we have that

$$y = P_1 y + P_2 y = (P_1 + P_2) y$$

and consequently $y \in \text{im } (P_1 + P_2)$.

Let H be a Hilbert space and M be a closed subspace of H. Let P_M be the orthogonal projection onto M. Suppose $T \in \mathcal{B}(H)$. Show that M is an invariant subspace for T if and only if $TP_M = P_M TP_M$. Show that M is a reducing subspace for T if and only if $P_M T = TP_M$.

Proof. Let P_M be the orthogonal projection onto the closed subspace M and let $T \in \mathcal{B}(H)$. First, we show that if $x \in M$ then Px = x.

We wish to show that M is an invariant subspace of T iff $TP_M = P_M TP_M$.

 (\Longrightarrow) Suppose that M is an invariant subspace of T, that is, $TM \subset M$. We wish to show that $TP_M = P_M T P_M$.

First, we show that if $x \in M$ then $P_M x = x$. To show this, let $x \in M$. Then by the decomposition of Hilbert space by a closed subspace, we have that

$$x = P_M x + P_{M^{\perp}} x$$

but then $x - P_M x \in M \cap M^{\perp} = \{0\}$. Thus, we must have that $x = P_M x$.

Now, let $x \in M$ then we have that $TP_Mx \in M$ because $P_Mx \in M$ and therefore, we have that $TP_Mx \in M$. By what we just proved we have that $TP_Mx = P_MTP_Mx$. Since $x \in H$ was arbitrary, we have that $TP_M = P_MTP_M$.

(\iff) Suppose that $TP_M = P_M TP_M$. Let $x \in M$. Then we have that $P_M x = x$ by what we proved earlier. Thus, we have that $Tx = P_M TP_M x \in M$.

Let H be a Hilbert space and $T \in \mathcal{B}(H)$, satisfying $T^k = 0$ for some $k \in \mathbb{N}$. Show that $\sigma(T) = \{0\}$.

Proof. By the Spectral Mapping Theorem, we have that

$$(\sigma(T))^k = \sigma(T^k)$$
$$= \sigma(0)$$
$$= \{0\}$$

This shows that $\sigma(T) \subset \{0\}$. Since the spectrum is always nonempty, we have that $\sigma(T) = \{0\}$.

Let H be a Hilbert space and M be a closed subspace of H. Let P_M be the orthogonal projection onto M. Compute the spectrum $\sigma(P_M)$.

Proof. Let P_M be the orthogonal projection onto M. Define a polynomial $p(z) \in \mathbb{C}[z]$ given by $p(z) = z^2 - z$. It is easy to see that $p(P_M) = 0$. It follows that by the Spectral Mapping Theorem that

$$p(\sigma(P_M)) = \sigma(p(P_M)) = \sigma(0) = \{0\}.$$

Hence, if $\alpha \in \sigma(P_M)$, we have that $\alpha^2 - \alpha = 0$. Thus, $\alpha \in \{0, 1\}$. This shows that $\sigma(P_M) \subset \{0, 1\}$.

Since the spectrum is nonempty, we must have that exactly one of the following holds: $\sigma(P_M) = \{0\}$ or $\sigma(P_M) = \{1\}$ or $\sigma(P_M) = \{0,1\}$. Since P_M is a projection, we have that $H = \ker P_M \oplus \operatorname{im} P_M$. This shows that this corresponds to $P_M = I$, $P_M = 0$ and "something in between"!

Let H be a Hilbert space and $T \in \mathcal{B}(H)$. Suppose X is an invertible operator in $\mathcal{B}(H)$. Then show that $\sigma(X^{-1}TX) = \sigma(T)$. (In other words similar operators have same spectrum).

Proof. Let X be an invertible operator in $\mathfrak{B}(H)$. Consider the following equivalence:

$$\alpha \notin \sigma(T) \iff T - \alpha I \text{ is invertible}$$

$$\iff X^{-1}T - \alpha X^{-1} \text{ is invertible}$$

$$\iff X^{-1}TX - \alpha I \text{ is invertible}$$

$$\iff \alpha \notin \sigma(X^{-1}TX).$$

This shows that $\sigma\left(X^{-1}TX\right) = \sigma\left(T\right)$.

Let H be a Hilbert space and $T \in \mathcal{B}(H)$. Suppose X is a unitary operator in $\mathcal{B}(H)$. Then show that

- (i) $||X^{-1}TX|| = ||T||$.
- (ii) T is normal if and only if $X^{-1}TX$ is normal.
- (iii) T is self adjoint if and only if $X^{-1}TX$ is self adjoint.
- (iv) $T \ge 0$ if and only if $X^{-1}TX \ge 0$.
- (v) T is an orthogonal projection if and only if $X^{-1}TX$ is orthogonal projection.

Proof. Let H be a Hilbert space and $T \in \mathcal{B}(H)$. Let X be a unitary operator in $\mathcal{B}(H)$.

(i) We intend to show that $||X^{-1}TX|| = ||T||$. Since X is a unitary operator, we have that X is an isometric isomorphism. To this end, let $f \in H$ and consider the following:

$$||X^{-1}TXf||^{2} = ||X^{*}TXf||^{2}$$

$$= \langle X^{*}TXf, X^{*}TXf \rangle$$

$$= \langle TXf, XX^{*}TXf \rangle$$

$$= \langle TXf, TXf \rangle$$

$$= ||TXf||^{2}.$$

Thus, we have that

$$||X^{-1}TXf|| = ||TXf|| \tag{10.1}$$

for each $f \in H$. Now, we claim that

$${||TXf|| : ||f|| = 1} = {||Tf|| : ||f|| = 1}.$$
 (10.2)

To prove this:

- (\subset): Let y = ||TXf|| for some $f \in H$ with ||f|| = 1. Since X is a unitary operator, we have that ||Xf|| = ||f|| = 1, hence, y is in the set of the right side of the equality of the aforementioned claim.
- (⊃): Let y = ||Tg|| for some $g \in H$ with ||g|| = 1. Since X is unitary, it is invertible and hence Xf = g for some $f \in H$. Since X is unitary, we have that ||f|| = ||Xf|| = ||g|| = 1. Thus, y is in the left side of the set in the aforementioned equality.

Thus, we have

$$||X^*TX|| = \sup_{\|f\|=1} ||X^*TXf||$$
 (by definition)
 $= \sup_{\|f\|=1} ||TXf||$ (see 10.1)
 $= \sup_{\|f\|=1} ||Tf||$ (see 10.2)
 $= ||T||$. (by definition)

This completes the proof.

(ii) (\Longrightarrow) Assume that T is normal. Consider the following:

$$(X^*TX)(X^*TX)^* = X^*TXX^*T^*X$$

= X^*TT^*X

and on the other hand, we have

$$(X^*TX)^* (X^*TX) = X^*TXX^*TX$$
$$= X^*TT^*X$$

Note that the two computations above show that X^*TX is normal by assuming T is normal.

(\Leftarrow) The computation in the other direction, normality of X^*TX and the invertibility of X imply that T is normal.

This completes the proof.

(iii) (\Longrightarrow): Suppose that T is adjoint. To show that X^*TX is self-adjoint, consider the following:

$$(X^*TX)^* = X^*T^*X$$

= X^*TX (using the fact that T is self-adjoint)

 (\Longrightarrow) Suppose that X^*TX is self-adjoint. To show T is adjoint, consider the following:

$$T^* = XX^*T^*XX^*$$

$$= X(X^*TX)^*X^*$$

$$= XX^*TXX^*$$

$$= T.$$
(T is self-adjoint)
$$= T.$$

(iv) (\Longrightarrow) Suppose that $T \ge 0$. The fact that X^*TX is self-adjoint follows from item (iii). Now, let $x \in H$. Consider the following:

$$\langle X^*TXx, x \rangle = \langle TXx, Xx \rangle$$

 ≥ 0 (since T is positive)

(\iff) Suppose that $X^*TX \geq 0$. The fact that T is selfadjoint follows from item (iii). To complete the rest, let $f \in H$ and consider the following:

$$\langle Tx, x \rangle = \langle XX^*TXX^*x, x \rangle$$

= $\langle X^*TX(X^*x), X^*x \rangle$
 ≥ 0 (since $X^*TX \geq 0$)

- (v) First of all, note that item (iii) does half of the job.
 - (\Longrightarrow) Suppose that T is idempotent. Then we have that

$$(X^*TX)^2 = X^*TXX^*TX$$

$$= X^*T^2X$$

$$= X^*TX \qquad (T \text{ is idempotent})$$

 (\Leftarrow) Suppose that X^*TX is idempotent. We wish to show that T is idempotent. Observe that

$$T^{2} = TT$$

$$= XX^{*}TXX^{*}XX^{*}$$

$$= X(X^{*}TX)^{2}X^{*}$$

$$= XX^{*}TXX^{*} \qquad (X^{*}TX \text{ is idempootent})$$

$$= T.$$

This completes the entire proof.

Let H be a Hilbert space and $T \in \mathcal{B}(H)$. Show that the following statements are equivalent :

- (i) T is an isometry, that is, $T^*T = I$.
- (ii) ||Tx|| = ||x|| for every $x \in H$.
- (iii) $\langle Tx, Ty \rangle = \langle x, y \rangle$ for every $x, y \in H$.

Proof. (i) \Longrightarrow (ii): Suppose that $T^*T = I$. Let $x \in H$. Then

$$||Tx||^2 = \langle Tx, Tx \rangle$$

$$= \langle T^*Tx, x \rangle$$

$$= \langle x, x \rangle$$

$$= ||x||^2.$$

- (ii) \Longrightarrow (iii) Suppose that ||Tx|| = ||x|| for each $x \in H$. See Axler's Theorem 7.42.
- (iii) \Longrightarrow (i) Suppose that $\langle Tx, Ty \rangle = ||x, y||$ for each $x, y \in H$. Let $x, y \in H$. Then we have

$$\begin{split} \langle (T^*T-I)x,y\rangle &= \langle T^*Tx-x,y\rangle \\ &= \langle T^*Tx,y\rangle - \langle T^*Tx,y\rangle \\ &= \langle Tx,Ty\rangle - \langle x,y\rangle \\ &= 0 \end{split}$$

This shows that $T^*T = I$.

Let H be a Hilbert space and $T \in \mathcal{B}(H)$. Show that the following statements are equivalent:

- (i) T is left invertible, that is, there exists $S \in \mathcal{B}(H)$ such that ST = I.
- (ii) T is bounded below, that is, there exists c > 0 such that $||Tx|| \ge c ||x||$ for each $x \in H$.
- (iii) $\ker T = \{0\}$ and im T is closed.

Proof. Let $T \in \mathcal{B}(H)$.

(i) \Longrightarrow (ii): Suppose that T is left invertible. Define c := ||S|| and let $x \in H$. Then we have that

$$||x|| = ||STx|| \qquad (ST = I)$$

$$\leq ||S|| ||Tx|| \qquad (S \in \mathcal{B}(H))$$

$$\leq c ||Tx||$$

Since x was arbitrary, we are done.

(ii) \Longrightarrow (iii): Suppose that T is bounded below. To see that $\ker T = \{0\}$, let $x \in H$ and suppose Tx = 0. Then we have that $c ||x|| \ge ||Tx|| = 0$ which implies ||x|| = 0. Hence x = 0. To see that im T is closed, let (y_n) be a sequence in im T converging to some $y \in H$. Then for each $n \in \mathbb{N}$, we have that $y_n = Tx_n$ for some $x_n \in H$.

Since (y_n) is convergent, it is Cauchy. We show that (x_n) is Cauchy. To this end, let $\varepsilon > 0$ be given. Then there exist some $N \in \mathbb{N}$ such that

$$||Tx_n - Tx_m|| < \varepsilon/c$$
 for every $n, m \ge N$.

Now, let $n, m \geq N$. Then we have that

$$||x_n - x_m|| < \frac{1}{c} ||Tx_n - Tx_m||$$

 $< c\left(\frac{\varepsilon}{c}\right) = \varepsilon.$

This shows that (x_n) is Cauchy.

Since H is a Hilbert space, we have that $x_n \to x$ for some $x \in H$. Using the continuity of T, we have that $Tx_n \to Tx$. By the uniqueness of limits, we have that Tx = y. Thus, $y \in \text{im } T$. This shows that im T is closed.

(iii) \Rightarrow (i): Suppose that $\ker T = \{0\}$ and $\operatorname{im} T$ is closed. Consider the map $T^{-1} : \operatorname{im} T \to H$ which is given by $T^{-1}(Tx) = x$ for each $x \in H$. This map is well defined because T is injective. Since $\operatorname{im} T$ is closed, $\operatorname{im} T$ is a Hilbert space in its own right. The fact that T is bijective is clear. Thus, by the Banach Isomorphism Theorem, we have that T^{-1} is invertible, that is, $T^{-1} \in \mathcal{B}$ ($\operatorname{im} T, H$).

Now, we define $S: H \to H$ in the following fashion:

$$Sx = \begin{cases} T^{-1}x & x \in \text{im } T \\ 0 & \text{otherwise.} \end{cases}$$

It is easy to see that ST = I but it remains to show that $S \in \mathcal{B}(H)$. To this end, consider the following:

$$||S|| = \sup_{x \in H, ||x|| \le 1} ||Sx||$$

$$\le \sup_{x \in \text{im } T, ||x|| \le 1} ||T^{-1}x||$$

$$= ||T^{-1}||.$$

Let H be a Hilbert space and $T \in \mathcal{B}(H)$. Show that the following statements are equivalent:

- (i) ran(T) closed.
- (ii) T is bounded below on $(\ker T)^{\perp}$, that is, there exist a c > 0 such that $||Tx|| \ge c|x||$ for every $x \in (\ker T)^{\perp}$.
- (iii) There exist a $S, Y \in \mathcal{B}(H)$ such that $ST = I P_{\ker T}$ and $TY = P_{ran(T)}$.
- (iv) $ran(T^*)$ closed.

Proof. Let H be a Hilbert space and $T \in \mathcal{B}(H)$. We proceed to show the equivalences:

(i) \Rightarrow (ii): Assume that im (T) is closed. Then im T is a Hilbert space with the restricted inner product. Since $\ker T$ is closed, we can consider $X/\ker T$ which again is a Banach space with the quotient norm. Consider the linear isomorphism given by first isomorphism theorem:

$$X/\ker T \xrightarrow{\tilde{T}} \operatorname{im} T$$

$$[x] \mapsto \tilde{T}([x]) = T(x)$$

We aim to show that \tilde{T} is continuous and apply the Banach isomorphism theorem to show that \tilde{T}^{-1} is continuous for it is bijective. Before that, we prove a result about Hilbert spaces:

Lemma. Let H be a Hilbert space, M be a closed subspace of H. Then

$$\left\| [x]_{X/M} \right\| = \left\| P_{M^{\perp}} x \right\|_X$$

for every $x \in X$.

Proof of Lemma. Let $x \in X$. Since M is a closed subspace of X, we have that

$$x = P_M x + P_{M^{\perp}} x$$

where P_M , $P_{M^{\perp}}$ are projections into the subspaces M and M^{\perp} respectively.

Let $y \in M$. Then

$$||x - y||^2 = ||y - P_M x||^2 + ||P_{M^{\perp}} x||^2$$
.

Taking infimum over $y \in M$, we have what we wanted.

Now, we get back to what we were trying to prove. let $x \in H$. Then we have

$$\begin{split} \left\| \tilde{T}\left[x \right] \right\| &= \left\| \tilde{T}\left[P_{(\ker T)^{\perp}} x \right] \right\| \\ &= \left\| T P_{(\ker T)^{\perp}} x \right\| \\ &\leq \left\| T \right\| \left\| P_{(\ker T)^{\perp}} x \right\| \\ &= \left\| T \right\| \left\| \left[x \right] \right\| \qquad \text{(by Lemma that we just proved)}. \end{split}$$

This shows that \tilde{T} is continuous.

Now, let $f \in (\ker T)^{\perp}$. Then we have that

$$||f|| = ||\tilde{T}^{-1}(\tilde{T}f)||$$

$$\leq ||\tilde{T}^{-1}|| ||\tilde{T}f||$$

$$\leq ||\tilde{T}^{-1}|| ||Tf||$$

This shows that T is bounded below on $(\ker T)^{\perp}$.

- $(ii) \Rightarrow (iii)$:
- $(iii) \Rightarrow (iv)$:
- (iv) \Rightarrow (i): We showed that (i) \Rightarrow (iv) from the previous arguments, that is, im (T) is closed implies im (T^*) for any bounded operator T on a Hilbert space. Now, if T is bounded, we have that T^* is bounded and furthermore if im (T^*) is closed, we must have that im $((T^*)^*) = \text{im } (T)$ must be closed. This completes the proof.

 $\ddot{}$

Let H be a Hilbert space. Suppose that $T \in \mathcal{B}(H)$ and T is invertible. Then show that

$$\sigma(T^{-1}) = \left\{ \frac{1}{\lambda} : \lambda \in \sigma(T) \right\}.$$

Proof. Let $T \in \mathcal{B}(H)$ and suppose that T is invertible, hence, T^{-1} is invertible. Then $0 \notin \sigma(T^{-1})$. Therefore, whatever we are trying to prove makes sense.

Let $\alpha \in \sigma(T^{-1})$. We may assume $\alpha \neq 0$ because we have shown that $0 \not\in \sigma(T^{-1})$. Then $T^{-1} - \alpha I$ is not invertible. We claim that $T - \frac{1}{\alpha}I$ is not invertible. If our claim was not true then $T - \frac{1}{\alpha}I$ is invertible and αT^{-1} is invertible. Hence $\alpha T^{-1}(T - \alpha^{-1}I) = \alpha - T^{-1}$ would be invertible which would contradict our assumption. Thus, we have that $\frac{1}{\alpha} \in \sigma(T)$. Hence $\alpha = \frac{1}{1/\alpha}$.

To show the converse, let $\lambda \in \sigma(T)$. Note that $\lambda \neq 0$ because T is invertible. Now, we wish to show that $\frac{1}{\lambda} \in \sigma(T^{-1})$, that is, $T^{-1} - \frac{1}{\lambda}I$ is not invertible. Suppose that $T^{-1} - \frac{1}{\lambda}$ were invertible. Then we would have that

$$\lambda - T = (\lambda T) \left(T^{-1} - \frac{1}{\lambda} \right)$$

would be invertible which would contradict our assumption that $\lambda \in \sigma(T)$. $\ddot{\smile}$

For $\varphi \in L^{\infty}[0,1]$, consider the operator $M_{\varphi}: L^{2}[0,1] \to L^{2}[0,1]$, defined by $M_{\varphi}f = \varphi f, f \in L^{2}[0,1]$. The essential range of φ (w.r.t the Lebesgue measure) denoted as ess ran (φ) is defined as follows:

A point $p \in \mathbb{C}$ is said to be not in the ess ran (φ) if there exist a $\delta > 0$ such that the Lebesgue measure $m(\varphi^{-1}(B(p,\delta))) = 0$.

Prove that $\sigma(M_{\varphi}) = \operatorname{ess\ ran}(\varphi)$.

Proof. We first show that α is an eigenvalue of M_{φ} iff m ($\{t \in [0,1] : \varphi(t) = \alpha\}$) > 0.

 (\Longrightarrow) Let α be an eigenvalue of M_{φ} . Then there exists $f \neq 0$ such that $M_{\varphi}f = \alpha f$, that is, $\varphi f = \alpha f$.

Assume for the sake of contradiction that $m(\{\varphi = \alpha\}) = 0$.

Observe that $\{f \neq 0\} \subset \{\varphi = \alpha\} \cup \{\varphi f \neq \alpha \varphi\}$. This is easy to verify: let $t \in [0,1]$ be such that $f(x) \neq 0$. If $\varphi(x) = \alpha$, we are done because then $x \in \{\varphi = \alpha\}$. So suppose not, that is, $\varphi(x) \neq \alpha$. Then $\varphi(x)f(x) \neq \alpha f(x)$ because we are multiplying by a nonzero number.

Now, $m(f \neq 0) \leq m(\{\varphi = \alpha\}) + m(\{\varphi f \neq \alpha \varphi\}) = 0$. Hence, $m(f \neq 0) = 0$ as $\varphi(x)f(x) = \alpha f(x)$ for almost all $x \in [0, 1]$.

(\iff) Let $\alpha \in \mathbb{C}$ such that $m(\{t \in [0,1] : \varphi(t) = \alpha\}) > 0$. We wish to show that α is an eigenvalue of M_{φ} . Note that $\chi_{\{\varphi=\alpha\}} \neq 0$ and also we have that $\varphi\chi_{\{\varphi=\alpha\}} = \alpha\chi_{\{\varphi=\alpha\}}$. This shows that α is an eigenvalue of M_{φ} as $\chi_{\{\varphi=\alpha\}} \in L^2[0,1]$.

This describes the point spectrum of M_{φ} .

Now, we show that $\sigma(M_{\varphi}) = \operatorname{essran} \varphi$. This is equivalent to showing that $\alpha \notin \sigma(M_{\varphi})$ iff $m(\{|h - \alpha| < \varepsilon\}) = 0$ for some $\varepsilon > 0$. Before we prove this, we prove a preliminary lemma:

Lemma 1. Let (X, \mathscr{A}, μ) be a finite measure space. Let $h \in \mathcal{L}^{\infty}(d\mu)$, $\varepsilon > 0$ and suppose that $|h| \geq \varepsilon$ for μ -almost everywhere. Then we have that there is a $\eta \in \mathcal{L}^{\infty}(\mu)$ such that $h(x)\eta(x) = \eta(x)h(x) = 1$ for μ -almost all $x \in X$.

Proof of Lemma 1. Let h be as in the hypothesis of the lemma. We can define a function. Define a function $\eta: X \to \mathbb{C}$ given by

$$\eta(x) = \begin{cases} \frac{1}{h(x)} & h(x) \neq 0\\ 0 & x = 0 \end{cases}$$

Note that $\{x \in X : h(x) = 0\}$ is a set of measure zero because it is contained in $\{x \in X : |h(x)| < \varepsilon\}$ which is a set of measure zero by assumption. Thus, $\eta(x) = \frac{1}{h(x)}$ for μ -almost all $x \in X$. Hence, we have that $h(x)\eta(x) = \eta(x)h(x) = 1$ for μ almost all $x \in X$. Since $|\eta(x)| \leq \frac{1}{\varepsilon}$ for μ -almost all $x \in X$. We have that $\|\eta\|_{\infty} \leq \frac{1}{\varepsilon}$. This completes the proof of the lemma.

- (\Longrightarrow) Let $\alpha \in \mathbb{C}$ and suppose that there exist $\varepsilon > 0$ such that $m\left(\{|\varphi \alpha| < \varepsilon\} = 0\right)$. Since $\varphi \in \mathcal{L}^{\infty}[0,1]$, we have that $\varphi \alpha \in \mathcal{L}^{\infty}[0,1]$. By hypothesis, we have that $|\varphi \alpha| \geq \varepsilon$ for almost all $x \in [0,1]$. Hence by the previous lemma, there exists a function (which we call) $(\varphi \alpha)^{-1} \in \mathcal{L}^{\infty}[0,1]$ such that $(\varphi \alpha)(x) \cdot (\varphi \alpha)^{-1}(x) = (\varphi \alpha)^{-1}(x) \cdot (\varphi \alpha)(x) = 1$ for almost all $x \in [0,1]$. It is easy to see now that $M_{\varphi \alpha}M_{(\varphi \alpha)^{-1}} = I$ and $M_{(\varphi \alpha)^{-1}}M_{\varphi \alpha} = I$ and hence $\alpha \notin \sigma(M_{\varphi})$.
- (\Leftarrow) Suppose that $\alpha \notin \sigma(M_{\varphi})$. Thus, we have that $M_{\varphi-\alpha}$ is invertible. Hence, by Question 12, we have that there exists $\varepsilon > 0$ such that

$$||M_{\varphi - \alpha}x|| \ge \varepsilon ||x||$$

for each $x \in X$. As a consequence we have that

$$||M_{\varphi-\alpha}||_{(L^2[0,1])^*} \ge \varepsilon.$$

Also, it can be easily shown that

$$||M_{\varphi-\alpha}|| \le ||\varphi-\alpha||_{\infty}$$
.

From the above two lines, we have that

$$\|\varphi - \alpha\|_{\infty} \ge \varepsilon.$$

Thus by definition of esssup, we have that

$$|\varphi(x) - \alpha| \ge \varepsilon$$

for almost all $x \in X$. Hence, we have that

$$m\left(\left\{\left|\varphi-\alpha\right|<\varepsilon\right\}=0\right).$$

This completes the proof.

::

Let H be a Hilbert space and $A, B \in \mathcal{B}(H)$.

(i) Suppose (I - AB) is invertible with $X = (I - AB)^{-1}$. Show that

$$(I - BA)(I + BXA) = I = (I + BXA)(I - BA).$$

Hence (I - BA) is invertible.

- (ii) Show that $\sigma(AB) \cup \{0\} = \sigma(BA) \cup \{0\}$.
- (iii) Assume that H is of finite dimension. Then show that $\sigma(AB) = \sigma(BA)$.

Proof. (i) Observe that

$$(I - BA) (I + BXA) = (I - BA) (B (I - AB)^{-1} A + I)$$

$$= B (I - AB)^{-1}) A + I - BAB (I - AB)^{-1} A - BA$$

$$= B ((I - AB)^{-1} - AB (I - AB)^{-1}) A - BA + I$$

$$= B ((I - AB) (I - AB)^{-1}) A - BA + I$$

$$= BA + I - BA$$

$$= I$$

and it can be also verified easily that

$$(I + BXA)(I - BA) = I.$$

(ii) We proceed to show that $\sigma(AB) \cup \{0\} \subset \sigma(BA) \cup \{0\}$. To this end, let $\lambda \in \sigma(AB) \cup \{0\}$. If $\lambda = 0$ then there is nothing to prove as 0 is a member of the right set. Now, suppose $\lambda \neq 0$. Then that forces $\lambda \in \sigma(AB)$. Thus, $\lambda - AB$ is not invertible. We claim that $\lambda - BA$ is not invertible. If it were invertible then we would have that $I - (\lambda^{-1}B)A$ is invertible as $\lambda \neq 0$. By item (i), we have that $I - A(\lambda^{-1}B)$ is invertible. Hence $\lambda - BA$ is invertible. That is a contradiction! This shows that $\sigma(AB) \cup \{0\} \subset \sigma(BA) \cup \{0\}$. Interchanging the roles of A and B, we have that $\sigma(BA) \cup \{0\} \subset \sigma(AB) \cup \{0\}$. This completes the proof.

(iii) For finite dimensional vector spaces, we have that the spectrum is the same as the point spectrum. Therefore, we aim to show that $\sigma_p(AB) = \sigma_p(BA)$. Let $\lambda \in \sigma_p(AB)$. First, let us show that $\sigma_p(AB) \subset \sigma_p(BA)$. Let $\lambda \in \sigma_p(AB)$. Therefore, $\lambda - AB$ is not injective. Thus, there is some nonzero $f \in H$ such that $(\lambda - AB)f = 0$. Now, we wish to show that $\lambda - BA$ is not injective. Consider Bf. If Bf = 0 then $ABf = \lambda f = 0$ which would imply that f = 0. Hence $Bf \neq 0$.

Now, observe that

$$(\lambda - BA) Bf = (\lambda B - BAB) f$$
$$= B(\lambda - AB) f$$
$$= 0.$$

This shows that $\lambda \in \sigma_p(BA)$. Hence, $\sigma_p(AB) \subset \sigma_p(BA)$. Interchanging the roles of A and B, we have $\sigma_p(BA) \subset \sigma_p(AB)$.

Let $\lambda = {\lambda_j}_{j \in \mathbb{N}}$ be sequence in $\ell^{\infty}(\mathbb{N})$. Consider the unilateral weighted shift operator W_{λ} on $\ell^2(\mathbb{N})$ defined by

$$W_{\lambda}(e_j) = \lambda_j e_{j+1}, \quad j \in \mathbb{N},$$

and extend linearly, that is,

$$W_{\lambda}(c_1, c_2, c_3, \ldots) = (0, c_1\lambda_1, c_2\lambda_2, c_3\lambda_3, \ldots)$$

Prove that the adjoint of W_{λ} on $\ell^2(\mathbb{N})$ is given by

$$W_{\lambda}^*(c_1, c_2, c_3, \ldots) = (c_2 \overline{\lambda_1}, c_3 \overline{\lambda_2}, c_4 \overline{\lambda_3}, \ldots).$$

Moreover show that $||W_{\lambda}|| = ||\lambda||_{\infty} = \sup\{|\lambda_j| : j \in \mathbb{N}\}.$

Proof. Let (c_1, c_2, \ldots) and $(d_1, d_2, \ldots) \in \ell^2(\mathbb{N})$. Then consider the following:

$$\langle (c_1, c_2, \dots), W_{\lambda}^* (d_1, d_2, \dots) \rangle = \langle W_{\lambda} (c_1, c_2, \dots), (d_1, d_2, \dots) \rangle$$

$$= \langle (0, c_1 \lambda_1, c_2 \lambda_2, \dots), (d_1, d_2, d_3, \dots) \rangle$$

$$= c_1 \lambda_1 \bar{d}_2 + c_2 \lambda_2 \bar{d}_3 + \dots$$

$$= \langle (c_1, c_2, \dots), (\bar{\lambda}_1 d_2, \bar{\lambda}_2 d_3, \dots) \rangle.$$

Since (c_i) and (d_i) were arbitrary, we have that

$$W_{\lambda}^*(d_1, d_2, \ldots) = (\bar{\lambda_1}d_2, \bar{\lambda_2}d_3, \ldots)$$

for each $(d_1, d_2, \ldots) \in \ell^2(\mathbb{N})$.

Now, observe that $W_{\lambda}(e_i) = \lambda_i$ for each $i \in \mathbb{N}$. Thus, we have that

$$\|\lambda\|_{\infty} = \sup_{j \in \mathbb{N}} |\lambda_j| \le \|W_{\lambda}\|.$$

To show the reverse inequality, let $(c_1, c_2, \ldots) \in \ell^2(\mathbb{N})$. Then we have that

$$||W_{\lambda}(c_{1}, c_{2}, \ldots)||_{2}^{2} = \sum_{i=1}^{\infty} |\lambda_{i} c_{i}|^{2}$$

$$\leq \sup_{i \in \mathbb{N}} |\lambda_{i}|^{2} \sum_{i=1}^{\infty} |c_{i}|^{2}$$

$$= ||\lambda||_{\infty}^{2} ||(c_{1}, c_{2}, \ldots)||_{2}$$

This implies that $||W_{\lambda}|| \leq ||\lambda||_{\infty}$. This completes the proof.