Feedback — Problem Set-6

Help Center

You submitted this quiz on **Sat 21 Nov 2015 8:38 AM PST**. You got a score of **2.00** out of **5.00**. You can attempt again in 1 minutes.

Question 1

Suppose we use a hash function h to hash n distinct keys into an array T of length m. Assuming simple uniform hashing --- that is, with each key mapped independently and uniformly to a random bucket --- what is the expected number of keys that get mapped to the first bucket? More precisely, what is the expected cardinality of the set $\{k: h(k) = 1\}$.

Your Answer	Score	Explanation
\bigcirc $m/(2n)$		
● 1/n	× 0.00	Use linearity of expectation, with one indicator variable for each key. Don't forget to sum over the keys.
\bigcirc n/m		
\bigcirc $n/(2m)$		
○ 1/m		
0 m/n		
Total	0.00 / 1.00	

Question 2

You are given a binary tree (via a pointer to its root) with n nodes, which may or may not be a binary search tree. How much time is necessary and sufficient to check whether or not the tree

Your Answer	Score	Explanation
$\Theta(n \log n)$		
$\Theta(\log n)$		
$\Theta(n)$	✓ 1.00	For the lower bound, if there is a violation of the search tree property, you might need to examine all of the nodes to find it (in the worst case).
O Θ(height)		
Total	1.00 / 1.00	

Question 3

You are given a binary tree (via a pointer to its root) with n nodes. As in lecture, let size(x) denote the number of nodes in the subtree rooted at the node x. How much time is necessary and sufficient to compute size(x) for every node x of the tree?

Your Answer		Score	Explanation	
$\Theta(n)$				
$\Theta(n^2)$	×	0.00	Can you do better?	
O(height)				
$\Theta(n \log n)$				
Total		0.00 / 1.00		

Question 4

Which of the following is not a property that you expect a well-designed hash function to have?

Your Answer		Score	Explanation
The hash function should "spread out" most (i.e., "non-pathological") data sets (across the buckets/slots of the hash table).			
• The hash function should "spread out" every data set (across the buckets/slots of the hash table).	~	1.00	As discussed in lecture, unfortunately, there is no such hash function.
 The hash function should be easy to compute (constant time or close to it). 			
 The hash function should be easy to store (constant space or close to it). 			
Total		1.00 / 1.00	

Question 5

Suppose we relax the third invariant of red-black trees to the property that there are no *three* reds in a row. That is, if a node and its parent are both red, then both of its children must be black. Call these *relaxed* red-black trees. Which of the following statements is *not* true?

Your Answer	Score	Explanation
The height of every relaxed		
red-black tree with <i>n</i> nodes is		
$O(\log n)$.		
There is a relaxed red-black tree		
that is not also a red-black tree.		

 Every red-black tree is also a relaxed red-black tree. 	×	0.00	The third invariant is only easier to satisfy, and the other three invariants are the same.
Every binary search tree can be turned into a relaxed red-black tree (via some coloring of the nodes as black or red).			
Total		0.00 / 1.00	