EOS - A New Tool for Flavor Observables

Danny van Dyk based on work with Frederik Beaujean, Christoph Bobeth, Christian Wacker

TU Dortmund

Rare B Decays @ Low Recoil 2011 DESY Hamburg

Use Cases

- calculation of flavor observables incl. theory uncertainty
 - within the SM
 - model independently via $C_i(m_b)$
 - easy integration of new models is possible via new classes
 - preparations for MSSM studies
 - →Stefan Schacht
- parameter scans with experimental constraints
 - simple lattice scans
 - ▶ full Bayesian scans using Markov chain sampling→Frederik Beaujean

Aimed at experimentalists and theorists alike!

EOS Implementation

Dependencies

- written in C++0x, needs >=g++-4.4
- written for Linux, but any UNIXoid OS should do
- minimal library dependencies: NO ROOT!
- ► GNU Scientific Library for special functions, random number generation, simplex method
- ► HDF5 for input/output

Extent

- multi-threaded calculations (POSIX threads!)
- extensive collection of test cases
- $ightharpoonup \sim 150$ File of Code, ~ 30 k Lines of Code

EOS Design

- every EOS client works on Observables
- every Observable has a unique name: PROCESS::NAME@SUFFIX
 e.g. B->K^*11::A_FB(s)@LowRecoil
- ▶ to evaluate an Observable we need its Parameters, Kinematics and Options
- Parameters include any parameters that may be freely modified at run time: CKM parameters, masses, life times, form factor parameters, . . .
- Kinematics include kinematic values that will only be supplied at runtime
- ▶ Options include choices that stay unchanged for an observable such as: model for short-distance couplings, final state lepton flavor, spectator quark flavor, choice of form factors parametrisation, . . .

Extensions

- ▶ a Model provides running couplings (α_s, C_i) and running quark masses
- ► for some exclusive decays, form factor values are provided by FormFactor<Transition>
- adding a new Model or a new FormFactor is a trivial exercise (code-wise)
- any Observable requests its model and (optionally) its form factors at construction

So for a full specification of an observable we could choose, e.g.

```
B->K^*ll::A\_FB(s)@LowRecoil,q=d,l=mu,model=SM,form-factors=KMPW2010\\ B\_q->ll::BR,q=s,l=mu,model=WilsonScan
```

B->X_s11::BR@HLMW2005,1=mu,model=SM

Exclusive Observables (I)

$$ar{\mathcal{B}}
ightarrow ar{\mathcal{K}}^* \ell^+ \ell^-$$

 \mathbf{hi} - q^2 \mathcal{B} , A_{FB} , F_{L} , $A_{\mathrm{T}}^{(i)}$, $H_{\mathrm{T}}^{(i)}$, $a_{\mathrm{CP}}^{(i)}$ checked

all observables: q^2 -integrated and single-differential in q^2 calculation according to C. Bobeth, G. Hiller, DvD '10

all observables: q^2 -integrated \mathcal{B}, F_H : also single-differential in q^2 calculation according to C. Bobeth,G. Hiller,DvD,C. Wacker (in prep.)

Exclusive Observables (II)

$$ar{B}
ightarrow ar{K}^* \ell^+ \ell^-$$
 lo- q^2 ${\cal B}$, ${\cal A}_{
m FB}$, ${\cal F}_{
m L}$, ${\cal A}_{
m T}^{(i)}$

checked

all observables: q^2 -integrated and single-differential in q^2 calculation according to M. Beneke,Th. Feldmann,D. Seidel '01 and '04

$$\bar{B} \to \bar{K} \ell^+ \ell^-$$

$$lo-q^2$$
 \mathcal{B} , $F_{\rm H}$, $R_K^{\mu/e}$

checked

all observables: q^2 -integrated \mathcal{B}, F_H : also single-differential in q^2 calculation according to M. Beneke, Th. Feldmann, D. Seidel '01 and '04

Exclusive Observables (III)

$$\bar{\it B} \to \bar{\it K}^* \gamma$$

$$\mathcal{B}, S_{\mathcal{K}^*\gamma}$$
 checked

calculation according to M. Beneke,Th. Feldmann,D. Seidel '01 and '04 for $q^2 o 0$

$$ar{\mathcal{B}}_{s,d}
ightarrow \ell^+\ell^-$$
 checked

calculation according to C. Bobeth, T. Ewerth, F. Krüger, J. Urban '02

[Also: $\bar{B} \to X_s \ell \ell$ is implemented for the SM Basis only.]

We are interested in adding more observables! Do not hesitate to approach us and/or contribute!

Frequently Needed Utilities

Physics

- ▶ NNLO matching (SM) and running of $\Delta B = 1$ Wilson coefficients→Christoph Bobeth
- ▶ NNLO running of α_s (no decoupling yet)
- \blacktriangleright NNLO running of $\overline{\mathrm{MS}}$ quark masses (no decoupling yet)

Statistics

- ▶ Bayesian analysis class→Frederik Beaujean
- ► configurable Markov chain sampling→Frederik Beaujean

Speedup

- multi-threading via Task/Ticket abstraction
- memoisation of expensive function calls

Procedure for Parameter Scans

sample the N-dim parameter space

eos-scan,
eos-scan-polynomial,
eos-scan-mc

 \downarrow

eos-find-crs

 \downarrow

eos-marginalise

ļ

eos-filter,
eos-contour,
gnuplot

[find confidence regions (CRs)]

 \downarrow

marginalise [or project] onto 1-dim/2-dim

1

plot the result distributions [or CRs]

Results (I)

Polynomial

Lattice scan: $|\mathcal{C}_{7,9,10}|$, $\arg \mathcal{C}_{7,9,10}$ + theory uncertainty

2 scans with $5.9 \cdot 10^8$ points, evaluates via polynomial in C_i

each scan: 138 hours runtime \rightarrow 42 GB output

Results (II)

Markov Chains (Preliminary)

Toy scan: $|\mathcal{C}_7^{(')}|$, $\arg \mathcal{C}_7^{(')}$, \overline{m}_b

4 chains \times 256 chunks \times 1024 points \times 5 parameters

each scan: 90 min runtime \rightarrow 250 MB output

Wishlist

Physics

- ▶ NNLO $\mathcal{B}[\bar{B} \to X_s \ell^+ \ell^-]$: add right-handed currents
- ▶ NNLO $\mathcal{B}[\bar{B} \to X_s \gamma]$: implement
- ▶ hadronic $\Delta B = 1$ decays $(B \rightarrow PP, B \rightarrow VV)$
- ▶ further form factor implementations (relativistic quark model, lattice)

Features

- continuation of Markov Chain Monte Carlo scans
- automated production of 1D/2D plots
- ► "Factorization of Efforts": use Kernel Density Estimations to parametrise (N-dim) posteriors, use posterior as prior for further scans →expertise needed
- loading/storing of numerical input parameters (Flavor LHA?)

Availability

Homepage

http://project.het.physik.tu-dortmund.de/eos/

Source code and its history available at

http://project.het.physik.tu-dortmund.de/eos/source

Preliminary documentation in the source code

make doxygen

License is GNU Public License v2