L1 (CHAPTER 2)

Data Representation Exercises ANS

Decimal, Binary and Hex

Decimal	Binary	Hex
0	0000	0x0
1	0001	0x1
2	0010	0x2
3	0011	0x3
4	0100	0x4
5	0101	0x5
6	0110	0x6
7	0111	0x7
8	1000	0x8
9	1001	0x9
10	1010	0xA
11	1011	0xB
12	1100	0xC
13	1101	0xD
14	1110	0xE
1 5	1111	0xF

Prefix 0x denotes hex

Question: Number Conversion

Q: Convert 0x3A56E2F8 into binary

Q: Convert binary number 111010 into hex

Answer: Number Conversion

- Q: Convert 0x3A56E2F8 into binary
- A: 0011 1010 0101 0110 1110 0010 1111 1000 (simple table lookup for each hex symbol)
- Q: Convert binary number 111010 into hex
- A: 0x3A (group 111010 into two parts 0011 1010, followed by table lookup)

Adding two integers

- Same bit patterns, different interpretation.
 - Unsigned addition: 23+6=29
 - ▶ Signed addition: -9+6=-3
- This example shows that the hardware adder for adding unsigned numbers, also works correctly for adding signed numbers.

Signed Integers

Method 3: Two's Complement

Two's Complement $(\overline{\alpha})$:

$$\alpha + \overline{\alpha} = 2^n$$

TC of a number can be obtained by its bitwise NOT plus one.

Example 1: TC(3)

	Binary	Decimal
Original number	00011	3
Step 1: Invert every bit	11100	
Step 2: Add 1	+ 00001	
Two's complement	11101	-3

Signed Integer Representation Overview

- Three ways to represent signed binary integers:
 - Signed magnitude

•
$$value = (-1)^{sign} \times Magnitude$$

– One's complement $(\widetilde{\alpha})$

•
$$\alpha + \widetilde{\alpha} = 2^n - 1$$

– Two's complement ($\overline{\alpha}$)

•
$$\alpha + \overline{\alpha} = 2^n$$

	Sign-and-Magnitude	One's Complement	Two's Complement
Range	$[-2^{n-1}+1,2^{n-1}-1]$	$[-2^{n-1}+1,2^{n-1}-1]$	$[-2^{n-1}, 2^{n-1} - 1]$
Zero	Two zeroes (± 0)	Two zeroes (± 0)	One zero
Unique Numbers	$2^{n}-1$	$2^{n} - 1$	2^n

Question: 2's Complement

- For each of the following binary numbers, give the corresponding binary number of the negative of its value, for 2's-complement system
- (a) x=01010101
- (b) x=10101010
- (c) x=10000000

Answer: 2's Complement

- For each of the following binary numbers x, give the corresponding binary number of –x in 2's-complement representation?
- (a) x=01010101
 - --x = 10101011
- (b) x=10101010
 - --x = 01010110
- (c) x=10000000
 - -x=10000000

Question: Number Conversion

- Q: What is the decimal value of binary number x=10100111 as either unsigned int, or signed int in 2's complement representation?
- What about x=11100001?
- What about x=10000000?

Answer: Number Conversion

- Q: What is the decimal value of binary number x=10100111 as either unsigned int, or signed int in 2's complement representation?
- A: if unsigned int, then $x=2^7+2^5+2^2+2^1+2^0=167$
- If signed int, then it is a negative number, since leftmost sign bit is 1. First convert it into its positive counterpart of bitwise NOT plus one to get 01011001, which is equal to decimal 2^6+2^4+2^3+2^0=89. Hence x=-89
- Similarly, for x=11100001 (unsigned int 225), first convert it into its positive counterpart of bitwise NOT plus one to get 00011111, which is equal to decimal 31. Hence x=-31
- Similarly, for x=10000000 (unsigned int 128), first convert it into its positive counterpart of bitwise NOT plus one to get 10000000, which is equal to decimal 2^7 . Hence $x=-2^7=-128$

	uint	Int
10100111	167	-89
11100001	225	-31
10000000	128	-128

Question: Number Conversion

- Q: Which number is larger: 1001 or 0011 in binary?
- Q: Which number is larger: 0xFFFFFFF or 0x00000001 in hex?

Answer: Number Conversion

- Q: Which number is larger: 1001 or 0011 in binary?
- A: depends on the number system.
 - If unsigned int, then 1001 is 9, and 0011 is 3 in decimal, and 9 > 3
 - If signed int, then 1001 is -7 (negative of 0111), and 0011 is 3 in decimal, and -3 < 3
- Q: Which number is larger: 0xFFFFFFF or 0x00000001 in hex?
- Q: depends on the number system.
 - If unsigned int, then 0xFFFFFFFF is 2^32-1, and 0x00000001 is 1 in decimal, and 2^32-1 > 1

Question: Number Range

• Which range of decimals can be expressed with a 6-bit number (assuming Two's complement representation)?

Answer	Range
Α	-32 32
В	-64 63
С	-31 32
D	-16 15
E	-32 31

Answer: Number Range

 Which range of decimals can be expressed with a 6-bit number (assuming Two's complement representation)?

Answer	Range
А	-32 32
В	-64 63
С	-31 32
D	-16 15
E	-32 31

$$[-2^{n-1}, 2^{n-1} - 1] = [-2^5, 2^5 - 1] = [-32,31]$$

Question: Number Range

 Which range of decimals can be expressed with a 6-bit unsigned integer?

Answer	Range
Α	-32 32
В	-64 63
С	-31 32
D	-16 15
E	-32 31

Answer: Number Range

 Which range of decimals can be expressed with a 6-bit unsigned integer?

Answer	Range
А	-32 32
В	-64 63
С	-31 32
D	-16 15
E	0 63

$$[0, 2^n - 1] = [0, 2^6 - 1] = [0,63]$$

Question: Integer arithmetic

• Q: What is the result of 1001 + 0011?

Answer: Integer arithmetic

- Q: What is the result of 1001 + 0011?
- A: 1001 + 0011 = 1100
- Value of 1100 depends on the number system.
 - If unsigned int, then 1100 is 12, which is equal to 9 (1001) + 3 (0011)
 - If signed int, then 1100 is -4 (negative of 0100), which is equal to -7
 (1001) + 3 (0011) in decimal

Review

Summary of Carry and Overflow Flags

Bit	Name	Meaning after add or sub
N	negative	result is negative
Z	zero	result is zero
٧	overflow	signed overflow
С	carry	unsigned overflow

Carry flag C = I upon an <u>unsigned</u> addition if the answer is wrong (true result > 2^n -I)

Carry flag C = 0 (Borrow flag = I) upon an <u>unsigned</u> subtraction if the answer is wrong (true result < 0)

Overflow flag V = I upon a <u>signed</u> addition if the answer is wrong (true result > 2^{n-1} -I or true result < -2^{n-1})

Signed or unsigned

Whether the carry flag or the overflow flag should be used depends on the programmer's intention.

C Program

Check the carry flag for unsigned addition

C Program

Check the overflow flag for signed addition

Question: Addition

Q: Consider a 4-bit system. What is the result of addition 1011+0110, assuming either unsigned integers, or signed integers in 2's-complement representation?

Answer: Addition

- Q: Consider a 4-bit system. What is the result of addition 1011+0110, assuming either unsigned integers, or signed integers in 2's-complement representation?
- A: A 4-bit unsigned int has the range $[0,2^4-1]=[0,15]$; a 4-bit signed int has the range $[-2^3,2^3-1]=[-8,7]$
- ▶ 1011 is 11 in decimal as unsigned int; -5 in decimal as signed int; 0110 is 6 as either unsigned or signed int.
- ▶ 1011+0110 = 10001; the extra leftmost bit is discarded, so the result is 0001 (I in decimal) for both cases.
- For unsigned addition, true result should be 11+6=17 in decimal. Since 17>15, the result is wrong, and Carry flag is set to 1.
- For signed addition, true result should be -5+6=1 in decimal.
 So the result is correct.

Question: Subtraction

Q: Q: Consider a 4-bit system. What is the result of subtraction 1011-0110, assuming either unsigned integers, or signed integers in 2's-complement representation?

Answer: Subtraction

- Q: Consider a 4-bit system. What is the result of subtraction 1011-0110, assuming either unsigned integers, or signed integers in 2's-complement representation?
- A: 1011-0110 = 0101, so the computed result is 0101 (5 in decimal) for both cases.
- ▶ For unsigned subtraction, true result should be 11-6=5 in decimal. So the result is correct
- For signed subtraction, true result should be -5-6=-11.
 Since -11 < -8, the result of 5 is wrong, and Overflow flag is set to 1.</p>

Question: Subtraction

Q: Consider a 4-bit system. What is the result of subtraction 0110-1011, assuming either unsigned integers, or signed integers in 2's-complement representation?

Answer: Subtraction

- Q: Consider a 4-bit system. What is the result of subtraction 0110-1011, assuming either unsigned integers, or signed integers in 2's-complement representation?
- A: 0110-1011 = 1011, so the computed result is 11 in decimal for unsigned, or -5 in decimal for signed.
- For unsigned subtraction, true result should be 6-11=-5 in decimal. Since -5 < 0, the result is wrong, and Carry flag is 0 (Borrow flag is 1).
- For signed subtraction, true result should be 6-(-5) = 11.
 Since 11 > 7, the result is wrong, and Overflow flag is set to 1.

Question: True or False

- I. Overflow is impossible when subtracting one unsigned number from another.
- 2. Overflow is impossible when subtracting two signed operands of the same sign.
- ▶ 3. There are two representations of zero in 2's complement representation.
- 4. In 2's complement, the absolute values of full-scale negative and full-scale positive are identical

Answer: True or False

- I. Overflow is impossible when subtracting one unsigned number from another. False
- 2. Overflow is impossible when subtracting two signed operands of the same sign. True
- 3. There are two representations of zero in 2's complement representation. False
- 4. In 2's complement, the absolute values of smallest negative and largest positive numbers are identical. False