Lenguajes formales autómatas

Expresiones regulares

- Permiten expresar lenguajes regulares
- Se consideran un metalenguaje
- Si α es una expresión regular, entonces $\{\alpha\}$ es el conjunto descripto por α . Podemos decir que la expresión regular α denota el lenguaje de la cadena α .
- Para poder describir los lenguajes regulares definimos determinadas operaciones relacionadas a las operaciones de los lenguajes regulares.
- Dos expresiones regulares son equivalentes si designan el mismo conjunto regular.

Operaciones.

- Sean α y β dos expresiones regulares
- Unión o alternativa $\alpha | \beta \ o \ [\alpha \beta]$

Puede aparecer α o β de manera indistinta. $\{\alpha|\beta\} = \{\alpha\} \bigcup \{\beta\}$

• Concatenación $\alpha\beta$

Es α seguido de β . $\{\alpha\beta\} = \{\alpha\}\{\beta\}$

• Cierre α^*

Viene **cero o más** α . $\alpha^* = {\alpha}^*$

• Cierre positivo α^+

Viene una o más α . $\alpha^+ = \{\alpha\}^+$

Precedencia de las operaciones

- 1. Paréntesis
- 2. Cierres
- 3. Concatenación
- 4. Alternativa

Indicar el lenguaje que denotan y algunas cadenas de dicho lenguaje para las siguientes ER:

- **1.** aa*bb*
- **2.** 1(01)*
- 3. $(0|1)^+$
- **4.** $((a|b)(a|b))^*$
- **5.** [a..zA..Z_]([a..zA..Z0..9_])*

Autómatas

- Un autómata reconocedor de un lenguaje funciona de tal forma que cuando recibe en su entrada una cadena de símbolos indica si la misma pertenece o no al lenguaje.
- El **estado de un autómata** es toda la información necesaria en un momento dado para poder deducir, dado un símbolo de entrada en el momento actual, cual será el símbolo de salida.
- Un autómata tiene un determinado número de estados y se encontrará en uno u otro dependiendo de la historia de símbolos que han llegado.
- Al arribar un símbolo de entrada se produce una **transición** de un estado a otro.

Definición formal de autómata finito

Una máquina de estados finitos M es un quíntuplo $(K, \Sigma, \delta, s, F)$ donde:

- K es un conjunto de identificadores de estados
- Σ es el alfabeto de entrada
- $s \in K$ es el estado inicial
- $F \subset K$ es un conjunto de estados finales
- δ : $K \times \Sigma \to K$ es la función de transición, donde a partir de un estado y un símbolo indica el nuevo estado

Representación de autómatas

Determinísticos vs No determinísticos

- Un autómata es determinístico cuando para cada par (estado, símbolo) hay solo ${\bf un}$ estado relacionado. δ es una función
- Un autómata no determinístico permite que por cada par (estado, símbolo) haya más de un estado relacionado
- Los autómatas finitos deterministas son más veloces como reconocedores (la velocidad es proporcional al tamaño de la entrada), pero la tabla que los representa es más grande.

Vamos a ver como pasar de ER => AFN => AFD => AFD de estados mínimos

ER => AFN. Construcción de Thompson

- Se dan autómatas básicos para algunas ERs y luego se combinan para formar ERs más complejas
- Todos los AFN tienen un único estado inicial y un único estado final.

Ejercicio.

• Genere un AFN para la ER (< $let ra > |_)[$ < let ra > < $digito >_]*$

AFN => AFD.

• $Clausura_{_{\lambda}}(s)$: es el conjunto de todos los estados alcanzables desde **s** por medio de λ

Ejemplo

• Estado propio: vamos a denominar así a los estados que poseen una transición de salida distinta de lambda o son estados de aceptación. En el ejemplo anterior 2 y 4 serían estados propios.

Algoritmo

```
a_procesar = [Estado(propios(clausura(s0)))]
procesados = []

while a_procesar:
    estado_actual = a_procesar.pop()
    procesados.append(estado_actual)

for simbolo in estado_actual.simbolos_salida():
    proximo_estado = Estado(propios(clausura(ir(estado_actual, simbolo))))
    if proximo_estado not in (procesados + a_procesar):
        a_procesar.append(proximo_estado)
    hacer_transicion(estado_actual, simbolo, proximo_estado)
```

AFd => AFDEM.

- Dos estados son equivalentes si al unirse en un solo estado pueden reconocer el mismo lenguaje regular que si estuvieran separados.
- Dos estados no equivalentes son estados distinguibles.
- Un estado es alcanzable si es posible llegar a él desde el estado inicial.
- Un AFD está minimizado si todos sus estados son distinguibles y alcanzables

Algoritmo

- 1. Crear una partición en 2 grupos: estados no finales y estados finales
- 2. Particionar cada grupo de la partición de manera tal que todas las transiciones de cada uno de los símbolos apunten a estados en la misma partición.
- 3. Repetir 2 hasta que la partición no varíe.

4. Elegir 1 estado de cada grupo y eliminar los restantes, reemplazando en la tabla aquellos que son eliminados por el elegido del grupo.

Ejemplo:

AFD				AFDEM			
			Ι,				
	а	b			а	b	
A	В	С		А	В	A	
В	В	D		В	В	D	
С	В	С		D	В	E	
D	В	E		E*	В	A	
E*	В	С					

- 1. {A, B, C, D} {E}
- 2.1. {A, B, C} {D} {E} Separamos D porque con **a** apunta a {A, B, C, D} y con **b** a {E}
- 2.2. {A, C} {B} {D} {E} Separamos B porque con **a** apunta a {A, B, C} y con **b** a {D}
 - {A, C} no se necesita separar ya que con a apuntan a {B} y con b apuntan a {A, C}
 - 4. Elegimos A como representante de {A, C} y renombramos todas las C

• Otro método, aka la escalerita

В				
С				
D				
E*				
	Α	В	С	D

Bibliografía y enlaces útiles.

- Alfonseca Cubero y otros Teoría de autómatas y lenguajes formales -McGRAW-HILL
- Aho Alfred y Ullman Jeffrey Compiladores, principios, técnicas y herramientas -PEARSON EDUCACION
- Juan Manuel Cueva Lovelle, Lenguajes, Gramáticas y Autómatas, 2001, http://di002.edv.uniovi.es/~cueva/publicaciones/AUTOMATA.pdf
- http://es.wikipedia.org/wiki/Aut%C3%B3mata_finito