FORD-FULKERSON ALGORITHM

2005095 - Tamim Hasan Saad 2005096 - Habiba Rafique 2005119 - Sadia afrin Sithi

Department of CSE Bangladesh University Of Engineering and Technology

February 19, 2024

Table of Contents

Scenarios

Introduction

Problem Description

Properties

Residual Graph Augmenting Path Ford-Fulkerson

Example

Min-Cut

Running Time Complexity

Scenarios

Introduction

Problem Description

Properties

Residual Graph Augmenting Path Ford-Fulkerson

Example

Min-Cut

Running Time Complexity

Scenarios

Some real life scenarios!!

- → Network Traffic Optimization
- → Water Distribution Systems
- → Electric Power Grids
- → Network reliability
- → Airline scheduling
- \rightarrow Baseball elimination
- ightarrow Distributed computing
- and many many more . . .

Soviet Rail Network, 1955

Source: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

enarios **Introduction** Problem Description Properties Example Min-Cut Running Time Complexity

Scenarios

Introduction

Problem Description

Properties

Residual Graph Augmenting Path Ford-Fulkerson

Example

Min-Cut

Running Time Complexity

Introduction

Network FLow

A Network is a directed graph G

Edges represent pipes that carry flow

Each edge < u,v > has a maximum capacity c < u,v >

A source node s in which flow arrives

A sink node t out which flow leaves

Value of a Flow

$$|f| = \sum_{v \in V} (s, v) = \sum_{v \in V} (v, t)$$

This is the total flow leaving s =the total flow arriving in t.

Introduction

Definition

The Ford-Fulkerson algorithm efficiently solves the maximum flow problem in a network by determining the maximum amount of flow from a source to a sink, respecting edge capacity constraints.

History

Inventors

This algorithm was discovered in 1956 by Ford and Fulkerson.

L.R.Ford, Jr.

Delbert Ray Fulkerson

Scenarios

Introduction

Problem Description

Properties

Residual Graph Augmenting Path Ford-Fulkerson

Example

Min-Cut

Running Time Complexity

The Problem

Use a graph to model material that flows through conduits. Each edge represents one conduit, and has a capacity, which is an upper bound on the flow rate = units/time. Can think of edges as pipes of different sizes. Want to compute max rate that we can ship material from a designated source to a designated sink.

The Problem

- \blacksquare Each edge (u,v) has a nonnegative capacity c(u,v).
- If (u,v) is not in E, assume c(u,v)=0.
- We have a source s, and a sink t.
- Assume that every vertex v in V is on some path from s to t.
- \blacksquare c(s,v1)=16; c(v1,s)=0; c(v2,v3)=0

enarios Introduction Problem Description **Properties** Example Min-Cut Running Time Complexity

Scenario

Introduction

Problem Description

Properties

Residual Graph Augmenting Path Ford-Fulkerson

Example

Min-Cut

Running Time Complexity

Residual Network

Residual Graph

- \rightarrow Original edge: $e = (u, v) \in E$. Flow f(e), capacity c(e).
- \rightarrow Create two residual edges

Forward edge

$$e = (u, v)$$
 with capacity $c(e) - f(e)$

Backward/reverse edge

$$e' = (v, u)$$
 with capacity $f(e)$

$$\rightarrow$$
 Residual graph: $G_f = (V, E_f)$

where,

 $E_f =$ edges with positive residual capacity

$$E_f = \{e : f(e) < c(e)\} \cup \{e' : f(e) > 0\}$$

enarios Introduction Problem Description **Properties** Example Min-Cut Running Time Complexity

Residual Network

Why do we need residual networks?

- Allow us to reverse flow if necessary
- If we take a bad path then it will be helpful
- The bad path will overlap with too many paths.....

Augmenting Path

Definition

An augmenting path P is a simple path from s to t on the residual network.

Idea

Increase flow on forward edges
Decrease flow on backward edges

Bottleneck capacity

let bottleneck(P, f) be the minimum residual capacity (i.e., capacity in G_f) of any edge in P

$$C_f(P) = \min \{(u, v) : (u, v) \text{ is on } P\}$$

Augmenting Path

Augmenting path which is a simple path from the source to the sink. Here is an augmenting path:

$$\textbf{S} \rightarrow \textbf{A} \rightarrow \textbf{B} \rightarrow \textbf{F}$$

Bottleneck capacity is the minimum capacity of augmenting path. Here Bottleneck capacity is 8 which is the minimum of the three edges in augmenting path

Augmenting Path

Use path P in G_f to to update flow f

```
Augment(f, P){ // edge on P with least residual capacity
  b = \mathsf{bottleneck}(P, f)
  foreach e = (u, v) \in P\{
    if e is a forward edge
       f(e) = f(e) + b //forward edge: increase flow
    else
       let e' = (v, u)
       f(e') = f(e') - b //backward edge: decrease flow
  return f
```

Ford-Fulkerson Method

Ford-Fulkerson Algorithm

Repeat: find an augmenting path, and augment!

```
Ford-Fulkerson(G, s, t){
  foreach e \in E f(e) = 0 //initially, no flow
  G_f = \text{copy of G} //residual graph = original graph
  while (there exists an s-t path P in G_f)
    f = Augment(f, P) //change the flow
    update G_f //build a new residual graph
  return f
```

enarios Introduction Problem Description Properties **Example** Min-Cut Running Time Complexity

Scenarios

Introduction

Problem Description

Properties

Residual Graph Augmenting Path Ford-Fulkerson

Example

Min-Cut

Running Time Complexity

s Introduction Problem Description Properties Example Min-Cut Running Time Complexity

An Example

Flow Network

 $F_m = 0 + 8 = 8$ Augmenting Path: $S \rightarrow A \rightarrow B \rightarrow F$

Residual Graph G_f

Residual Capacity: 8

ios Introduction Problem Description Properties **Example** Min-Cut Running Time Complexity

An Example

Flow Network

Residual Graph G_f

Flow Network

$$F_m = 8 + 3 = 11$$

Augmenting Path:
 $S \rightarrow C \rightarrow D \rightarrow F$

Residual Graph G_f

Residual Capacity: 3

Flow Network

Residual Graph G_f

But is there any flow remaining?

The Answer is no!

But is there any flow remaining?

The Answer is no!

enarios Introduction Problem Description Properties **Example** Min-Cut Running Time Complexit

An Example

THINK AGAIN!

enarios Introduction Problem Description Properties **Example** Min-Cut Running Time Complexit

An Example

THE ANSWER IS STILL NO !!!

rios Introduction Problem Description Properties Example Min-Cut Running Time Complexity

An Example

enarios Introduction Problem Description Properties Example **Min-Cut** Running Time Complexity

Scenario

Introduction

Problem Description

Properties

Residual Graph Augmenting Path Ford-Fulkerson

Example

Min-Cut

Running Time Complexity

What is Cut?

Cuts

An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

The capacity of a cut (A, B) is $c(A,B) = \sum_{e \text{ out of } A} c(e)$

Let f be any flow, and let (A, B) be any s-t cut. Then $\sum_{e \text{ out of A}} f(e) - \sum_{e \text{ into A}} f(e) = v(f)$. renarios Introduction Problem Description Properties Example **Min-Cut** Running Time Complexity

O ○○○ ○○ ○○○○○○○○ ○○○○○○○ ○○○○○

Max Flow - Min Cut

Min-Cut

Min-cut is the one with the minimum total capacity. It has the smallest sum of capacities among all cuts that separate the source and sink nodes.

The value of the minimum cut is equal to the maximum flow in the network, which is a fundamental property exploited by the Ford-Fulkerson algorithm for finding the maximum flow.

Maxflow-Mincut Theorem

Conditions

If f is a flow in a flow network G=(V,E), with source s and sink t, then the following conditions are equivalent:

- \Rightarrow f is a maximum flow in G.
- \Rightarrow The residual network G_f contains no augmented paths.
- \Rightarrow |f| = c(S,T) for some cut (S,T) (a min-cut).

It is a flow since there is no augmented paths It is maximum since the sink is not reachable from the source

enarios Introduction Problem Description Properties Example **Min-Cut** Running Time Complexity

Min-Cut Example

mincut value = 11

See!!

Mincut Value v(f) \Leftrightarrow Maxflow $|M_f| = 11$

Scenario

Introduction

Problem Description

Properties

Residual Graph Augmenting Path Ford-Fulkerson

Example

Min-Cut

Running Time Complexity

Running Time?

The running time depends on

- ✓ Number of augmenting paths needed to find a maxflow
- ✓ Time needed to find each augmenting path

Running Time

```
Find a residual path \rightarrow O(m+n)
Compute bottleneck capacity \rightarrow O(m)
Update flow \rightarrow O(m)
Update residual graph \rightarrow O(m)
Total running time \rightarrow O(C(m+n))
```

Running Time?

Analysis

```
\begin{cases} \textbf{for} \ \mathsf{each} \ \mathsf{edge} \ (\mathsf{u},\mathsf{v}) \ \in E[G] \\ & \qquad \qquad \qquad \mathsf{do} \ \mathsf{f}[\mathsf{u},\mathsf{v}] \leftarrow 0 \\ & \qquad \qquad \mathsf{f}[\mathsf{u},\mathsf{v}] \leftarrow 0 \\ & \qquad \qquad \mathsf{while} \ \mathsf{there} \ \mathsf{exits} \ \mathsf{a} \ \mathsf{path} \ \mathsf{p} \ \mathsf{from} \ \mathsf{s} \ \mathsf{to} \ \mathsf{t} \ \mathsf{in} \ \mathsf{there} \ \mathsf{exidual} \ \mathsf{network} \ \mathsf{G}_f \\ & \qquad \qquad \mathsf{do} \ c_f(\mathsf{p}) \leftarrow \min \ c_f\{(\mathsf{u},\mathsf{v}) : (\mathsf{u},\mathsf{v}) \mathsf{is} \ \mathsf{in} \ \mathsf{p}\} \\ & \qquad \qquad \mathsf{for} \ \mathsf{each} \ \mathsf{edge} \ (\mathsf{u},\mathsf{v}) \ \mathsf{in} \ \mathsf{p} \\ & \qquad \qquad \mathsf{do} \ \mathsf{f}[\mathsf{u},\mathsf{v}] \leftarrow \mathsf{f}[\mathsf{u},\mathsf{v}] + c_f(\mathsf{p}) \\ & \qquad \qquad \mathsf{f}[\mathsf{u},\mathsf{v}] \leftarrow -\mathsf{f}[\mathsf{u},\mathsf{v}] \end{cases}
```

O(E) for both cases 'indicated by {'

Running Time?

Analysis

- \circ If capacities are all integers, then each augmenting path raises |f| by ≥ 1 .
- If maxflow is f^* , then need $\leq |f^*|$ iterations.
- \circ So the time complexity is $O(E|f^{\star}|)$.
- \circ This running time is not polynomial in input size. It depends on f^* , which is not a function of |V| or |E|.
- o If capacities are rational, you can scale them to integers.
- If capacities are irrational, the Ford-Fulkerson algorithm might never terminate!

