

Trabajo práctico Nº2

• Autores:

- Gonzalo Ezequiel Filsinger Leg. 403797 (Coordinador)
- Ignacio Ismael Perea Leg. (Doc)
- Mariano Alberto Condori Leg. (Operador)
- Marcos Acevedo Leg. (Doc)
- **Curso:** 3R1
- **Asignatura:** Dispositivos Electrónicos.
- Institución: Universidad Tecnológica Nacional Facultad Regional de Córdoba.

<u>Índice</u>

1.	Actividad 1: Polarización de la juntura BE	1
	1.1. Materiales usados:	1
	1.2. Mediciones:	1
2.	Actividad 2: Curva Característica	1
	2.1. Objetivo:	1
	2.2. Tablas de medición	1
3.	Actividad 3: Característica de transferencia de corriente	2

1. Actividad 1: Polarización de la juntura BE

Armar el circuito en una plataforma de simulación con el objetivo de observar la curva de la corriente de base a medida que aumenta la tensión de polarización de la juntura base-emisor. Es importante identificar el codo de la corriente y la estabilidad de la tensión VBE una vez polarizada la juntura. Podría, sí le parece, hacer simulaciones modificando otros parámetros que en el circuito básico se encuentran fijos como VCC(V2) o la temperatura ambiente simulada.

1.1. Materiales usados:

- Transistor BC546/7/8/9.
- Resistores $R_s = 10 \text{k}\Omega$, $R_c = 560 \Omega$.
- Fuentes de alimentación.

1.2. Mediciones:

Mantenemos la $V_{CC} = 10V$, realizamos un barrido de 0V a 10V de V_{BB} para completar la siguiente tabla:

V_{BB}	500mV	1V	2V	3V	4V	10V
I_B	$4,5\mu A$	$30,43\mu A$	124μΑ	220μΑ	323μΑ	913μΑ
V_{BE}	0,493V	0,682V	0,73V	0,74V	0,74V	0,75V

Tabla 1: Tabla 1

Figura 1: Curva de I_B en función de V_{BE}

2. Actividad 2: Curva Característica

2.1. Objetivo:

Obtener las diferentes curvas características del transistor NPN utilizando dos fuentes variables que permitirán obtener las diferentes corrientes y tensiones del transistor.

2.2. Tablas de medición

$V_{CC}[V]$	$I_B = 10\mu A$		$I_B = 15 \mu$ A	
	I_C	V_{CE}	I_C	V_{CE}
0				
0,25				
0,5				
1				
2				
5				
10				

Tabla 2: Curvas características para $I_B = 10\mu A$ y $I_B = 15\mu A$

V_{CC} [V]	$I_B = 20\mu A$		$I_B = 25 \mu A$	
	I_C	V_{CE}	I_C	V_{CE}
0				
0,25				
0,5				
1				
2				
5				
10				

Tabla 3: Curvas características para $I_B = 20\mu A$ y $I_B = 25\mu A$

3. Actividad 3: Característica de transferencia de corriente

Objetivo

Se propondrá una práctica de laboratorio que nos permitirá observar sí la relación entre la I_C e I_B se mantiene constante en diferentes regiones de trabajo del transistor. Esta relación es la ganancia de corriente (β).