

FILTRE ACTIF PASSE-BANDE

OBJECTIF

L'objectif est de réaliser un filtre passe-bande ne laissant passer qu'une bande ou intervalle de fréquences compris entre une fréquence de coupure basse et une fréquence de coupure haute.

ETUDE THEORIQUE ET SIMULATION

Figure 1-Schéma de câblage

Fonction Transfert:

Etape 1 : Détermination des impédances Z1 et Z2 :

$$Z_{1} = R + Z_{C} = \frac{1 + jRC\omega}{jC\omega}$$
$$Z_{2} = R//Z_{C} = \frac{R}{1 + jRC\omega}$$

Etape 2: Fonction transfert H:

$$H(j\omega) = -\frac{Z_2}{Z_1} = -\frac{jRC\omega}{(1 + jRC\omega)^2}$$

Etape3: Fréquence de coupure: D'après l'étude théorique réalisée sur MultiSim (Annexe 1) on a :

- ➤ -Gain ≈-3 dB
- ➤ Fréquence de coupure ≈65 Hz

NOMENCLATURE

Composant	Nom	Valeur	Code fournisseur RS	Prix/unité
Résistance	R1	5ΚΩ	849-9007	1,04€
Résistance	R2	10ΚΩ	683-2709	0,53 €
Condensateur	C1	800nF	172-5720	0,94 €
Condensateur	C2	150nF	297-9986	0,12 €
AOP TL081ACD	U1	Ø	920-3447	0,26 €

Figure 2-Nomenclature des composants

FILTRE ACTIF PASSE-BANDE

REALISATION ET ROUTAGE DE LA CARTE

Figure 4-Routage de la carte

Figure 4-Routage des pistes

Figure 3-Vue 3D

ANNEXE

Fréquence de coupure :

-3, 2dB à 65,3Hz

Annexe 1

Résultat théorique sur l'oscilloscope

Annexe 2