Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	P3211	К работе допущен	14.03.2024							
Студент <u>Бо</u>	лорболд Аригуун	Работа выполнена	03.05.2024							
Преподаватель_	Смирнов А. В.	Отчет принят								
Рабочий протокол и отчет по лабораторной работе №3.01 Изучение электростатического поля методом										
моделирования										

Цель работы:

Построение сечений эквипотенциальных поверхностей и силовых линий электростатического поля на основе экспериментального моделирования распределения потенциала в слабопроводящей среде.

Измерения:

y∖B	1,6	2,6	3,6	4,6	5,6	6,6	7,6	8,6	9,6	10,6	11,6
2	2,0	4,9	7,5	10,1	12,6	15,1	17,5	19,7	21,9	24,0	26,1
4	2,6	5,0	7,4	10,0	12,5	15,1	17,8	19,9	21,9	24,0	25,9
6	2,9	5,1	7,3	9,8	12,3	15,3	18,1	20,2	22,1	24,0	25,8
8	3,0	5,2	7,3	9,5	11,7		18,7	20,6	22,3	24,1	25,7
10	3,2	5,2	7,2	9,3	11,0		18,7	20,8	22,6	24,1	25,6
12	3,1	5,3	7,4	9,5	11,5		19,0	21,0	22,7	24,2	25,6
14	3,0	5,2	7,4	9,9	12,2	15,7	18,8	20,9	22,5	24,0	25,7
16	2,9	5,1	7,6	10,1	12,8	15,7	18,2	20,6	22,4	24,1	25,9
18	2,6	4,9	7,6	10,3	13,0	15,6	18,0	20,4	22,3	24,1	26,1

Потенциал внутри стрелки: 6,6 В

Обработка измерений:

Области с максимальной напряженностью (E_{max}) находятся у краев стрелки, а с минимальной напряженностью (E_{min}) — в пространстве между кольцом и электродами у верхней и нижней границ ёмкости.

Вычислим примерные значения максимальной и минимальной напряженности по следующей формуле:

$$\langle E_{12} \rangle \approx \frac{\varphi_1 - \varphi_2}{l_{12}},$$

где l_{12} — длина участка силовой линии между точками:

 $E_{min} \approx 0.4$

 $E_{max} \approx 1.25$

График зависимости $\varphi = \varphi(x)$ потенциала от координаты для «горизонтали» Y = 10 см.

- Потенциал увеличивается с увеличением X почти плавно, не достигает плато, где потенциал остается постоянным (как у кольца), а затем снова начинает расти.
- У границ стрелки имеет место быстрое возрастание потенциала.

Вывод:

В ходе лабораторной работы было проведено экспериментальное моделирование электростатического поля в слабопроводящей среде. Используя измерения потенциала в различных точках среды, были определены области с максимальной и минимальной напряженностью поля. Результаты измерений показали, что максимальная напряженность поля наблюдается у краёв проводящей стрелки, что соответствует теоретическим предположениям о поведении электростатического поля вблизи проводников. Минимальная напряженность была зафиксирована в центральной части ёмкости, что также согласуется с теоретическими ожиданиями.