Apellidos:	Grupo:
Nombre:	D.N.I.:

ALEM, Convocatoria de Septiembre

14 de septiembre de 2016

1. Sean f, $g: \mathbb{Z}_{51} \to \mathbb{Z}_{51}$ las aplicaciones dadas por f(x) = 31x + 33 y g(x) = 33x + 31.

Estudia si f y g son o no inyectivas y sobreyectivas. ¿Alguna de las aplicaciones tiene inversa?

2. Sea $X = \{-9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ y R la relación de equivalencia en X definida por:

xRy si
$$(x^2 - y^2)$$
 es múltiplo de 9

Calcula el conjunto cociente, dando explícitamente todos sus elementos.

- 3. Calcula los números que hay entre 20000 y 30000 que acaben en 39, al escribirlos en base 4 acaban en 13 y al escribirlos en base 8 acaban en 27.
- 4. Da tres soluciones de la ecuación diofántica 15x + 18y + 20z = 33. En una de ellas, x debe ser mayor que 10, en otra y debe ser menor que 5 y en la tercera, tanto y como z deben ser mayores que 15.
- 5. Dados los polinomios $p(x) = x^5 + 2x^2 + 2x + 2$ y $q(x) = x^4 + 2x^3 + 2x + 2$ con coeficientes en \mathbb{Z}_3 :
 - a) Calcula mcd(p(x), q(x)).
 - b) Calcula las raíces de p(x).
 - c) Encuentra una factorización de p(x) como producto de irreducibles.
- 6. Tenemos un grupo de 10 personas, de las que 6 son hombres y 4 son mujeres. Elegimos 4 de ellas:
 - a) ¿De cuántas formas distintas podemos hacer la elección?
 - b) ¿En cuántas de ellas hay más mujeres que hombres?
 - c) ¿En cuántas hay un número par de hombres?
- 7. Dado el siguiente sistema de ecuaciones con coeficientes en \mathbb{Z}_3

estudia si es compatible o incompatible según el parámetro a.

Si para a = 0 es compatible, resuélvelo.

- 8. Sea $B = \{(1,2,3); (3,2,1); (4,2,3)\}$ un subconjunto de $(\mathbb{Z}_5)^3$ y sea B_c la base canónica de dicho espacio vectorial.
 - a) Comprueba que B es una base.
 - b) Calcula las matrices del cambio de base de B a B_c y de B_c a B.
 - c) Calcula las coordenadas del vector v = (3,4,2) en la base B.
- 9. Sea $f:\mathbb{Q}^3 \to \mathbb{Q}^3$ la aplicación lineal definida como

$$f(x, y, z) = (2x - y + 3z, 4x + 3y - z, 3x + y + z)$$

- a) Calcula la matriz de f en la base canónica.
- b) Calcula una base del núcleo de f.
- c) Calcula las ecuaciones cartesianas del subespacio Im(f).
- 10. Dada la matriz

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & 0 \\ 0 & 1 & 0 \end{pmatrix} \in M_4(\mathbb{Z}_3)$$

estudia si A es o no diagonalizable, y en caso afirmativo, encuentra una matriz regular P tal que $P^{-1} \cdot A \cdot P$ sea una matriz diagonal D y di cuál es la matriz D.