ALC202 AC'97 Audio CODEC

Draft Spec.

Preliminary

Version 0.62

September 26, 2001

1. Features

- Single chip audio CODEC with high S/N ratio (>90 dB).
- 20-bit DAC, 18-bit ADC.
- Stereo full-duplex CODEC with independent and variable sampling rate.
- 4 analog line-level stereo input with 5-bit volume control: LINE_IN,CD,VIDEO,AUX
- 2 analog line-level mono input: PC BEEP, PHONE IN.
- Mono output with 5-bit volume control.
- Stereo output with 6-bit volume control.
- 2 MIC inputs: Software selectable.
- Power management and enhanced power saving.
- 3D Stereo Enhancement
- External Amplifier power down capability.
- Multiple CODEC extension.
- Compliant with AC' 97 2.2 specification
- $50 \text{mW}/8\Omega$ amplifier at LINE/ Headphone output
- Jack-detect function to mute LINE/MONO/HP output, to control S/PDIF output.
- Supports S/PDIF out is compliant with AC' 97 rev2.2.
- 2 GPIO pins.
- 14.318MHz→24.576MHz digital PLL.
- Supports double sampling rate (96KHz) of DVD audio playback.
- +30dB boost preamplifier for MIC input.
- Power support: Digital: 3.3V Analog: 3.3V/5V
- Standard 48-Pin LQFP Package

2. Pin Description

2.1 Digital I/O pins: 11 pins

Name	Type	Pin No	Description	Characteristic Definition
RESET#	I	11	AC'97 H/W reset	Schmitt trigger input
XTL-IN	I	2	Crystal input pad	Crystal: 24.576M/14.318M crystal input
				External: 24.576M/14.318M external clock input
XTL-OUT	O	3	Crystal output pad	Crystal: 24.576M/14.318M crystal output
				External: 24.576M/14.318M clock output
SYNC	I	10	Sample Sync (48KHz)	Schmitt trigger input
BIT-CLK	IO	6	Bit clock output (12.288Mhz)	CMOS input/output Vt=0.35Vdd
SDATA-OUT	I	5	Serial TDM AC97 output	Schmitt trigger input
SDATA-IN	O	8	Serial TDM AC97 input	CMOS output,
GPIO0	I/O	43	I: General purpose input pin-0. (Can	Internally pulled high by a 50K resistor.
			be software volume up)	
			O: General purpose output pin-0.	
GPIO1	I/O	44	I: General purpose input pin-1.	Internally pulled high by a 50K resistor.
			(Can be software volume down)	
			O: General purpose output pin-1	
ID0#	I	45	ID strap 0	CMOS input Vt=0.35Vdd
EAPD / JD	О	47	External Amplifier power down	CMOS output / input, JD should be internally pulled
			control / Jack –Detect sense a low to	high by a 50K resistor
			high edge	
SPDIFO /	O	48	S/PDIF output / TEST output	Digital output has 12 mA@75 Ω driving capability.
TEST				

2.2 Analog I/O Pins: 18 pins

Name	Type	Pin No	Description	Characteristic Definition				
PC-BEEP	I	12	PC speaker input	Analog input (1Vrms)				
PHONE	I	13	Speakerphone input	Analog input (1Vrms)				
AUX-L	I	14	AUX Left channel	Analog input (1Vrms)				
AUX-R	I	15	AUX Right channel	Analog input (1Vrms)				
VIDEO-L	I	16	Video audio Left channel	Analog input (1Vrms)				
VIDEO-R	I	17	Video audio Right channel	Analog input (1Vrms)				

- 2-Rev0.62

CD-L	I	18	CD audio Left channel	Analog input (1Vrms)		
CD-GND	I	19	CD audio analog GND	Analog input (1Vrms)		
CD-R	I	20	CD audio Right channel	Analog input (1Vrms)		
MIC1	I	21	First Mic input	Analog input (1Vrms)		
MIC2	I	22	Second Mic input	Analog input (1Vrms)		
LINE-L	I	23	Line input Left channel	Analog input (1Vrms)		
LINE-R	I	24	Line input Right channel	Analog input (1Vrms)		
LINE-OUTL	O	35	Line-Out Left channel	ALC202: Analog output without op-amp (1.0Vrms)		
				ALC202A: Analog output with op-amp (1.4Vrms)		
LINE-OUTR	O	36	Line-Out Right channel	ALC202: Analog output without op-amp (1.0Vrms)		
				ALC202A: Analog output with op-amp (1.4Vrms)		
HP-OUT-L	O	39	Headphone Out – Left (ALC202)	ALC202: Analog output with op-amp		
			True-LINE-Out-Left (ALC202A)	ALC202A: Analog output without op-amp		
HP-OUT-R	O	41	Headphone Out – Left (ALC202)	ALC202: Analog output with op-amp		
			True-LINE-Out-Left (ALC202A)	ALC202A: Analog output without op-amp		
MONO-OUT	O	37	Speaker Phone output	Analog output (1Vrms)		

2.3 Filter/References: 7 pins

2.5 Timer/References. / pins							
Name	Type	Pin No	Description	Characteristic Definition			
VREF		27	Reference voltage	1uf capacitor to analog ground			
VREFOUT	О	28	Ref. voltage out with 8mA drive	Analog output (2.25V – 2.75V)			
AFILT1		29	ADC anti-aliasing filter capacitor 1000pf capacitor to analog ground.				
AFILT2		30	ADC anti-aliasing filter capacitor	1000pf capacitor to analog ground.			
VRAD		31	ADC reference voltage capacitor	1uf capacitor to analog ground			
VRDA		32	DAC reference voltage capacitor	1uf capacitor to analog ground			

2.4 Power/Ground: 8 pins

Name	Type	Pin No	Description	Characteristic Definition
AVDD1	I	25	Analog VDD (5.0V or 3.3V)	
AVDD2	I	38	Analog VDD (5.0V or 3.3V)	
AVSS1	I	26	Analog GND	
AVSS2	I	42	Analog GND	
DVDD1	I	1	Digital VDD (3.3V)	
DVDD2	I	9	Digital VDD (3.3V)	
DVSS1	I	4	Digital GND	
DVSS2	I	7	Digital GND	

2.5 Others: 1 pin

Name	Type	Pin No	Description	Characteristic Definition				
TEST	О	48	Output DAC clock and ADC clock	Digital pin shared with SPDIFO				
NC		33,40,34	No Connection.					

2.6 Crystal (Clock) Source Selection: 1 pin

Name	Type	Pin No	Description	Characteristic Definition				
XTLSEL	I	46a	Crystal Selection	Internal pull high by a 50K resistor.				

OXTLSEL:

XTLSEL=floating, the clock source is 24.576MHz crystal or external clock. (Default)

XTLSEL=pull low, select 14.318MHz→24.576MHz digital PLL

The default state of MX7A.15 if power on latched inversely from XTLSEL.

2.7 Mixer Block Diagram

- 5-

3. ALC202 Pin Assignment

3.1 Pin-Out Diagram:

- 6-

Rev0.62

4. Mixer Registers

All mixer register access with odd-number will return with 0. Reading unimplemented registers will return 0.

REG.	NAME	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	DEFAU
(HEX)	NAME	D13	D14	D13	D12	ווע	DIU	D9	D8	D/	Ъб	טט	D4	D3	D2	DI	DU	LT
00h	Reset	X	SE4	SE3	SE2	SE1	SE0	ID9	ID8	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0	5990h
02h	Master	Mute	X		ML4			ML1	ML0	X	X	MR5	MR4	MR3			MR0	8000h/
0211	Volume	witte	Λ	IVILJ	WIL	IVILS	IVILZ	WILI	WILU	Λ	Λ	WIKS	WIIX4	IVIICS	WIKZ	IVIICI	IVIICO	0000h
04h	Headphone	Mute	X	HPL	HPL	HPL	HPL	HPL	HPL	X	X	HPR	HPR	HPR	HPR	HPR	HPR	8000h/
0.11	volume			5	4	3	2	1	0			5	4	3	2	1	0	0000h
06h	Mono-Out	Mute	X	X	X	X	X	X	X	X	X	X	MM	MM	MM	MM	MM	8000h/
	Volume												4	3	2	1	0	0000h
0Ah	PC_BEEP	Mute	X	X	X	X	X	X	X	X	X	X	PB3	PB2	PB1	PB0	X	8000h
	Volume																	
0Ch	PHONE	Mute	X	X	X	X	X	X	X	X	X	X	PH4	PH3	PH2	PH1	PH0	8008h
	Volume																	
0Eh	MIC Volume	Mute	X	X	X	X	X			X	BC	X	MI4	MI3	MI2	MI1	MI0	8008h
10h	Line-In	Mute	X	X	NL4	NL3	NL2	1 NL1	0 NL0	X	X	X	NR4	NR3	NR2	NR1	NR0	8808h
TON	Volume	Mute	Λ	Λ	NL4	NL3	NLZ	NLI	NLU	Λ	Λ	Λ	NK4	INKS	NK2	NKI	NKU	88081
12h		Mute	X	X	CL4	CL3	CL2	CL1	CL0	X	X	X	CR4	CR3	CR2	CR1	CR0	8808h
14h	Video	Mute	X	X	VI.4	VL3	VL2	VL1	VL0	X	X	X	VR4	VR3	VR2	VR1	VR0	8808h
1711	Volume	with	Λ	Λ	V L-T	V L3	V LZ	V L/1	V LO	Λ	Λ	Λ	VICT	VICS	VICZ	VICI	VICO	000011
16h		Mute	X	X	AL4	AL3	AL2	AL1	AL0	X	X	X	AR4	AR3	AR2	AR1	AR0	8808h
18h	PCM Out	Mute	X	X	PL4	PL3	PL2	PL1	PLO	X	X	X	PR4	PR3	PR2	PR1	PR0	8808h/
	Volume					_												0808h
1Ah	Record	X	X	X	X	X	LRS	LRS	LRS	X	X	X	X	X	RRS	RRS	RRS	0000h
	Select						2	1	0						2	1	0	
1Ch	Record Gain	Mute	X	X	X	LRG	LRG	LRG	LRG	X	X	X	X	RRG	RRG	RRG	RRG	8000h
						3	2	1	0					3	2	1	0	
20h	General	POP	X	3D	X	X	X	MIX	MS	LBK	X	X	X	X	X	X	X	0000h
221	Purpose	37	37	37	37	37	37	37	37	37	37	37	37	37	DD2	DD1	DDO	00001
22h	3D Control	X	X	X	X	X	X	X	X	X	X	X	X X	X	DP2	DP1	DP0	0000h
26h	Power Down Ctrl/Status	EAP D	PR6	PR5	PR4	PR3	PR2	PR1	PR0	X	X	X	X	REF	ANL	DAC	ADC	000Fh
28h	Extended	ID1	ID0	X	X	REV	REV	AM	X	X	X	X	X	X	SPDI	X	VRA	0605h
2011	Audio ID	11)1	100	Λ	Λ	1	0	AP	Λ	Λ	Λ.	Λ	Λ	Λ	F	Λ	VICA	000311
2Ah	Extended	X	X	X	X	X	SPC	X	X	X	X	SPS	SPS	X	SPDI	X	VRA	0000h
	Audio Status						V					A1	A0		F			
2Ch	PCM front	FSR	FSR	FSR	FSR	FSR	FSR	FSR	FSR	FSR	FSR	FSR	FSR	FSR	FSR	FSR	FSR	BB80h
	Out Sample	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	Rate																	
32h	PCM Input	ISR	ISR	ISR	ISR	ISR	ISR	ISR	ISR	ISR	ISR	ISR	ISR	ISR	ISR	ISR	ISR	BB80h
2.11	Sample Rate	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	2000:
3Ah	S/PDIF Ctl	V	0	SPS	SPS	L	CC6	CC5	CC4	CC3	CC2	CC1	CC0	PRE	COP	/AU	PRO	2000h
76h	GPIO Setup	0	0	R1 0	R0 0	0	0	0	0	0	0	0	0	0	Y 0	DIO 0	0	0000h
78h	GPIO Setup GPIO Status	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000h
78n 7Ch	Vendor ID1	0	1	0	0	0	0	0	1	0	1	0	0	1	1	0	0	414Ch
7Eh	Vendor ID1	0	1	0	0	0	1	1	1	0	0	0	1	V3	V2	V1	V0	4740h
7EII	vendol ID2	U	1	U	U	U	1	1	1	U	U	U	1	٧J	V Z	V I	٧U	7/4UII

X: reserved bit

Preliminary

MX00	Re	eset Default: 5990H
Bit	Type	Function
15		Reserved
14:10	R	return 10110b
9	R	Read as 0 (Not support 20-bit ADC)
8	R	Read as 1 (Support 18-bit ADC)
7	R	Read as 1 (Support 20-bit DAC)
6	R	Read as 0 (Not support 18-bit DAC)
5	R	Read as 0 (Not support for Loudness)
4	R	Read as 1 (Headphone output support)
3	R	Read as 0 (Not simulated stereo ,for analog 3D block use)
2	R	Read as 0 (Not Bess & Treble Control)
1	R	Reserved,Read as 0
0	R	Read as 0 (No Dedicated Mic PCM input)

• Write to this register will reset all mixer register to their default value. The written data should be ignored.

MX02 **Master Volume Default: 8000H / 0000H**

Bit	Type	Function					
15	R/W	Mute Control 0: Normal 1: Mute (-∞ dB)					
14		Reserved					
13:8	R/W	aster Left Volume (MLV[50]) in 1.5 dB step					
7:6		Reserved					
5:0	R/W	Master Right Volume (MRV[50]) in 1.5 dB step					

• For MRV/MLV, 00h 0 dB attenuation 3Fh 94.5 dB attenuation

② When ID=01,10,11, the default value is 0000H.

MX04 Headphone Output Volume Default: 8000H / 0000H

Bit	Type	Function
15	R/W	Mute Control 0: Normal 1: Mute (-∞ dB)
14		Reserved
13:8	R/W	Headphone Output Left Volume (HPL[50]) in 1.5 dB step
7:6		Reserved
5:0	R/W	Headphone Output Right Volume (HPR[50]) in 1.5 dB step

●For HPR/HPL, 00h 0 dB attenuation 3Fh 94.5 dB attenuation

② When ID=01,10,11, the default value is 0000H.

MX06 MONO OUT Volume Default: 8000H / 0000H

Bit	Type	Function
15	R/W	Mute Control 0: Normal 1: Mute (-∞ dB)
14:5		Reserved
4:0	R/W	Mono Master Volume (MMV[40]) in 1.5 dB step

• For MMV, 00h 0 dB attenuation 1Fh 46.5 dB attenuation

- ②Implement 5-bit volume control only. Writing 1xxxxx will be interpreted as x11111 and response when read with x11111 too.
- **❸** When ID=01,10,11, the default value is 0000H.

Rev0.62

MX0A	PC	C BEEP Volume Default: 8000H
Bit	Type	Function
15	R/W	Mute Control 0: Normal 1: Mute (-∞ dB)
14:5		Reserved
4:1	R/W	PC Beep Volume (PBV[30]) in 3 dB step
0		Reserved

• For PBV, 0 dB attenuation 00h 0Fh 45 dB attenuation

MX0C **PHONE Volume** Default: 8008H

Bit	Type	Function
15	R/W	Mute Control 0: Normal 1: Mute (-∞ dB)
14:5		Reserved
4:0	R/W	Phone Volume (PV[40]) in 1.5 dB step

• For PV, 00h +12 dB Gain 08h 0dB gain 1Fh -34.5dB Gain

MX0E **MIC Volume** Default: 8008H

Bit	Type	Function				
15	R/W	Mute Control 0: Normal 1 : Mute (-∞ dB)				
14:10		Reserved				
9:8	R/W	Boost Gain Option (BGO) ❷				
		00: 20 dB 01: 6 dB 10: 12 dB 11: 29.5 dB (V=30*Vmic-in)				
7		Reserved				
6	R/W	Boost Control (BC)				
		0: Disable 1: Enable Boost				
5		Reserved				
4:0	R/W	Mic Volume (MV[40]) in 1.5 dB step				

• For MV, 00h +12 dB Gain 08h 0dB gain -34.5dB Gain 1Fh

2 If 29.5dB boost gain is selected, input resistor can be reduced to save area of feedback resistor.

LINE_IN Volume Default: 8808H **MX10**

Bit	Type	Function		
15	R/W	Mute Control 0 : Normal 1 : Mute (-∞ dB)		
14:13		Reserved		
12:8	R/W	Line-In Left Volume (NLV[40]) in 1.5 dB step		
7:5		Reserved		
4:0	R/W	Line-In Right Volume (NRV[40]) in 1.5 dB step		

• For NLV/NRV, 00h +12 dB Gain 0dB gain 08h1Fh -34.5dB Gain

MX12 CD Volume Default: 8808H

Bit	Type		Function	
15	R/W	Mute Control 0 : Normal	1 : Mute (-∞ dB)	

-9-Rev0.62

14:13		Reserved
12:8	R/W	CD Left Volume (CLV[40]) in 1.5 dB step
7:5		Reserved
4:0	R/W	CD Right Volume (CRV[40]) in 1.5 dB step

• For CLV/CRV, 00h +12 dB Gain 08h 0dB gain

1Fh -34.5dB Gain

MX14 VIDEO Volume Default: 8808H

Bit	Type	Function	
15	R/W	Mute Control 0: Normal 1: Mute (-∞ dB)	
14:13		Reserved	
12:8	R/W	Video Left Volume (VLV[40]) in 1.5 dB step	
7:5		Reserved	
4:0	R/W	Video Right Volume (VRV[40]) in 1.5 dB step	

• For VLV/VRV, 00h +12 dB Gain 08h 0dB gain -34.5dB Gain 1Fh

MX16 AUX Volume Default: 8808H

Bit	Type	Function
15	R/W	Mute Control 0: Normal 1: Mute (-∞ dB)
14:13		Reserved
12:8	R/W	AUX Left Volume (ALV[40]) in 1.5 dB step
7:5		Reserved
4:0	R/W	AUX Right Volume (ARV[40]) in 1.5 dB step

• For ALV/ARV, 00h +12 dB Gain 08h 0dB gain

1Fh -34.5dB Gain

MX18 PCM OUT Volume Default: 8808H / 0808H

Bit	Type	Function
15	R/W	Mute Control 0: Normal 1: Mute (-∞ dB)
14:13		Reserved
12:8	R/W	PCM Volume (PLV[40]) in 1.5 dB step
7:5		Reserved
4:0	R/W	PCM Right Volume (PRV[40]) in 1.5 dB step

• For PLV/PRV, 00h +12 dB Gain 0dB gain 08h

-34.5dB Gain 1Fh

3 When ID=01,10,11, the default value is 0808H.

MX1A	Re	cord Select			Default: 0000H
			_	_	

Bit	Type	Function
15:11		Reserved
10:8	R/W	Left record source select (LRS[20])
7:3		Reserved
2:0	R/W	Right record source select (RRS[20])

• For LRS

http://www.realtek.com.tw

Rev0.62

- 0 MIC
- 0 CD LEFT
- 0 VIDEO LEFT
- 0 **AUX LEFT**
- 0 LINE LEFT
- 0 STEREO MIXER OUTPUT LEFT
- 0 MONO MIXER OUTPUT
- 7 **PHONE**

For RRS

- 0 MIC
- 0 CD RIGHT
- 0 VIDEO RIGHT
- 0 **AUX RIGHT**
- 0 LINE RIGHT
- 0 STEREO MIXER OUTPUT RIGHT
- 0 MONO MIXER OUTPUT
- 0 **PHONE**

MX1C **Record Gain**

Bit	Type	Function	
15	R/W	Mute Control 0 : Normal 1 : Mute (-∞ dB)	
14:12		Reserved	
11:8	R/W	Left Record Gain Select (LRG[30]) in 1.5 dB step	
7:4		Reserved	
3:0	R/W	Right Record Gain Select (RRG[30]) in 1.5 dB step	

●For LRG/RRG, 0Fh +22.5dB

> 00h 0 dB (No Gain)

MX20 General Purpose Register Default: 0000H

Bit	Type	Function		
15:14		Reserved, Read as 0		
13	R/W	BD Control 1: On 0: Off		
12:10		Reserved, Read as 0		
9	R/W	Mono output select 0: MIX 1: MIC		
8	R/W	Mic select 0: Mic 1 1: Mic 2		
7	R/W	AD to DA loop-back control 0 : Disable 1 : Enable		
6:0		Reserved		

Default: 0000H **MX22** 3D Control

Bit	Type	Function			
15:3		Reserved ,Read as 0			
2:0	R/W	Depth control (DP[20])			

O3D effect control

http://www.realtek.com.tw

711 00 7 0 0111101					
DP[2:0]	Function	DP[2:0]	Function		
000	0%(off*)	100	50%		
001	12.5%	101	67.5%		
010	25%	110	75%		
011	37.5	111	100%		

- 11 **-**

Default: 8000H

MX26	Po	werdown Control/Status Default: 000FH	
Bit	Type	Function	
15	R/W	PR7 External Amplifier Power Down (EAPD) 0: normal 1: Power down	
14	R/W	PR6 0: Normal 1: Power down Headphone Out (HP-OUT)	
13	R/W	PR5 0: Normal 1: Disable internal clock	
12	R/W	PR4 0: Normal 1: Power down AC-Link	
11	R/W	PR3 0: Normal 1: Power down Mixer (Vref off)	
10	R/W	PR2 0: Normal 1: Power down Mixer (Vref still on)	
9	R/W	PR1 0: Normal 1: Power down PCM DAC	
8	R/W	PR0 0: Normal 1: Power down PCM ADC and input MUX	
7:4		Reserved, Read as 0	
3	R	Vref status 1: Vref is up to normal level 0: Not yet	
2	R	Analog Mixer status 1: Ready 0: Not yet	
1	R	DAC status 1: Ready 0: Not yet	
0	R	ADC status 1: Ready 0: Not yet	

MX28	Extended Audio ID	Default: 060Fh
111/1/1/1	Latenaca Ataaro ID	Delauit. voor ii

Bit	Type	Function	
15	R	ID1 0	
14	R	ID0	
13:12		Reserved, Read as 0	
11:10	R	REV[1:0]=01 to indicates ALC202 is AC' 97 rev2.2 compliant.	
9	R	AMAP read as 1 (DAC mapping based on ID)	
8:6		Reserved, Read as 0	
5:4	R/W	DSA[1:0], DAC Slot Assignment ② (Default value depends on ID[1:0])	
		DSA[1:0] control DAC slot assignment described in AC' 97 rev2.2.	
3		Reserved, Read as 0	
2	R	SPDIF read as 1 (S/PDIF is supported)	
1	R	DRA read as 1	
0	R	VRA read as 1 (Variable Rate Audio is supported)	

•ID1 is latched inversely from pin 46 when system reset. ID0 is latched inversely from pin 45 when system reset.

2ALC202 maps DAC slot according to the following table: (default maps to AC' 97 spec. rev2.2)

DSA[1:0]	Left DAC slot #	Right DAC slot #	Comment
0,0	3	4	Default when ID[1:0]=00
0,1	7	8	Default when ID[1:0]=01,10
1,0	6	9	Default when ID[1:0]=11
1,1	10	11	

MX2A **Extended Audio Status and control register** Default: 0000H

Bit	Type	Function	
15:11		Reserved	
10	R	SPCV (S/PDIF Configuration Valid)	
		0: current S/PDIF configuration {SPSA,SPSR,DAC/slot rate} is not valid.	
		1: current S/PDIF configuration {SPSA,SPSR,DAC/slot rate} is valid.	
9:6		Reserved	
5:4	R/W	SPSA[1:0] (S/PDIF Slot Assignment)	
		00: S/PDIF source data assigned to AC-LINK slot3/4.	
		01: S/PDIF source data assigned to AC-LINK slot7/8.	
		10: S/PDIF source data assigned to AC-LINK slot6/9.	

- *12* -Rev0.62

Default: BB80H

Default RR80H

		11: S/P	11: S/PDIF source data assigned to AC-LINK slot10/11.		
3		Reserve	Reserved		
2	R/W	SPDIF	1: enable	0: disable (SPDIFO is in high impedance)	
1	R/W	DRA	1: enable	0: disable	
0	R/W	VRA.	1: enable	0: disable €	

●If VRA = 0, ALC202 ADC/DAC operate at fixed 48KHz sampling rate. Otherwise, it operates with variable sampling rate defined in MX2C and MX32. VRA also control write operation of MX2Cand MX32.

MX2C **PCM DAC Rate**

Bit	Type	Function
15:0	R/W	FOSR[15:0]Output sampling rate.

• ALC202 support the following sampling rate required in PC99/PC2001 design guide.

Sampling rate	FOSR[15:0]
8000	1F40h
11025	2B11h
12000	2EE0
16000	3E80h
22050	5622h
24000	5DC0
32000	7D00h
44100	AC44h
48000	BB80h

Note that If the value written is not support, the closest value is returned.

2When MX2A.0=0 (VRA is disable), this register will return BB80h when read.

MX32 PCM ADC Rate

1111102	1 (THE TALL	
Bit	Type	Function	
15:0	R/W	FISR[15:0]Output sampling rate.	

• ALC202 support the following sampling rate required in PC99/PC2001 design guide.

	<u>C</u>
Sampling rate	FISR[15:0]
8000	1F40h
11025	2B11h
12000	2EE0
16000	3E80h
22050	5622h
24000	5DC0
32000	7D00h
44100	AC44h
48000	BB80h

Note that If the value written is not support, the closest value is returned.

2When MX2A.0=0 (VRA is disable), this register will return BB80h when read.

MX3A S/PDIF Channel Status and Control Default: 2000H

Bit	Type	Function
15	R/W	Validity Control (control V bit in Sub-Frame)
		0: the V bit (valid flag) in sub-frame depends on whether the S/PDIF data is
		under-run or over-run.
		1: the V bit in sub-frame is always send as 1 to indicate the invalid data is not
		suitable for receiver.

- 13 -Rev0.62

14	R	DRS (Double Rate S/PDIF)			
		ALC202 doesn't support double rate S/PDIF, this bit is always 0.			
13:12	R/W	SPSR[1:0] (S/PDIF Sample Rate)			
		00: sample rate set to 44.1KHz, Fs[0:3]=0000			
		01: reserved			
		10: sample rate set to 48.0KHz, Fs[0:3]=0100 (default)			
		11: sample rate set to 32.0KHz, Fs[0:3]=1100			
11	R/W	LEVEL (Generation Level)			
10:4	R/W	CC[6:0] (Category Code)			
3	R/W	PRE (Preemphasis)			
		0 : None 1: filter preemphasis is 50/15 usec			
2	R/W	COPY (Copyright)			
		0: Not asserted 1: Asserted			
1	R/W	/AUDIO (Non-Audio Data type)			
		0: PCM data 1: AC3 or other digital non-audio data			
0	R	PRO (Professional or Consumer format)			
		0: consumer format 1: professional format			
		ALC202 supports consumer channel status format, this bit is always 0.			

The consumer channel status block (bit0~bit31):

0	1	2	3	4	5	6	7
PRO=0	/AUDIO	COPY	PRE	0	0	0	0
8	9	10	11	12	13	14	15
CC0	CC1	CC2	CC3	CC4	CC5	CC6	LEVEL
16	17	18	19	20	21	22	23
0	0	0	0	0	0	0	0
24	25	26	27	28	29	30	31
Fs0	Fs1	Fs2	Fs3	0	0	0	0

Vendor Define Registers:

MX6A Miscellaneous Control Default: 0000h

Bit	Type	Function
15:14		Reserved.
13	R/W	DAC PCM(n+1) Slot# Select (When DRA=1)
		0: PCM(n+1) captured from Slot-10/11. (Default in AC' 97 rev2.2)
		1: PCM(n+1) captured from Slot-7/8.
12	R/W	S/PDIF Source •
		0: S/PDIF data is from controller (default)
		1: S/PDIF data is from ADC
11:4		Reserved
3	R/W	SPDIF Out Volume Control – Mute Bit
		0: Normal 1: Clamp SPDIF output data to 0. (Mute)
2:0	R/W	SPDIF Out Volume Control – in 6 dB Step Attenuation 2
		000: 0dB
		001: - 6dB
		010: -12dB
		111: -42dB

● The default source of S/PDIF output is data sent by controller. When this bit is set, S/PDIF data comes from ALC202's ADC. To keep data concurrence, software must guarantee the sample rates in MX32 and MX3A[13:12] are the same. SPCV is no more a validity for S/PDIF configuration. If

- 14 - Rev0.62

software doesn't keep the same sample rates, the S/PDIF output will be auto forbidden by hardware, and undefined consequence may be occurred.

Extension Registers:

MX76	GPIO Setup	Default: 0000h

MAI	0	110 Setup Default. 000011
Bit	Type	Function
15	R/W	GPIO Statue Indication in SDATA_IN
		0:The status of GPIO0/GPIO1/JD and its valid tag are not indicated in
		SDATA_IN.
		1: The status of GPIO0/GPIO1/JD and its valid tag are indicated in SDATA_IN
14:6		Reserved
6	R/W	JD (Jack-Detect) interrupt Enable (when pin-47 is used as Jack-Detect)
		0: Disable 1: Enable.
		A low to high transaction will trigger the JD interrupt in bit0 of SDATA_IN's
		slot-12. 0
5	R/W	GPIO1 interrupt Enable (when GPIO1 is used as input)
		0: Disable 1: Enable.
		A low to high transaction will trigger the GPIO interrupt in bit0 of SDATA_IN's
		slot-12.
4	R/W	GPIO0 interrupt Enable (when GPIO0 is used as input)
		0: Disable 1: Enable.
		A low to high transaction will trigger the GPIO interrupt in bit0 of SDATA_IN's
		slot-12.
3:2		Reserved
1	R/W	GPIO1Primitiveness Control
		0: Set GPIO1 as input pin.
		1: Set GPIO1 as output pin.
0	R/W	GPIO0 Primitiveness Control
		0: Set GPIO0 as input pin.
		1: Set GPIO0 as output pin.

•Software programmer can enable JD interrupt to know the "Jack Detection" event occurs.

² The Bit-Allocation of GPIO/JD status in AC-LINK:

 $*GPINT = (MX78.6 \mid MX78.5 \mid MX78.4)$

MX78	GI	PIO Status		Default: 0000h	
Bit	Type		Function		
			- <i>15</i> -		Rev0.62

15:10		Reserved
9	R/W	GPIO1 Output Control
		0: Drive GPIO1 low.
		1: Drive GPIO1 high.
8	R/W	GPIO0 Output Control
		0: Drive GPIO0 as low.
		1: Drive GPIO0 as high.
7	NA	Reserved
6	R/W	JD Interrupt Status (JD_IS) ①
		0: Not JD interrupt.
		1: JD interrupt.
		JD_IS= (MX78.2==1)&(MX76.6==1) & (JD low-to-high transition).
		Write 1 to clear this status bit.
5	R/W	GPIO1 Interrupt Status (GPIO1_IS). (When GPIO1 is used as input)●
		0: No GPIO1 interrupt.
		1: GPIO1 interrupt.
		GPIO1_IS= (MX76.1==0)&(MX76.5==1) & (GPIO1 low-to-high transition).
		Write 1 to clear this status bit.
4	R/W	GPIO0 Interrupt Status (GPIO0_IS). (When GPIO0 is used as input)●
		0: No GPIO0 interrupt.
		1: GPIO0 interrupt.
		GPIO0_IS= (MX76.0==0)&(MX76.4==1) & (GPIO0 low-to-high transition)
		Write 1 to clear this status bit.
3	NA	Reserved
2	R	Jack-Detect Event (JDEVT)
		0: No Jack-Detect event occurs.
		1: Jack-Detect event occurs.
		JDEVT = MX7A.0 & MX7A.1
1	R	GPIO1 Input Status 2
		0: GPIO1 is driven low by external device (input).
		1: GPIO1 is driven high by external device (input).
0	R	GPIO0 Input Status 2
		0: GPIO0 is driven low by external device (input).
		1: GPIO0 is driven high by external device (input).

●GPIO interrupt (GPINT) in bit0 of SDATA IN's slot-12 = (MX78.4 | MX78.5 | MX78.6).

When GPIO1/0 is used as input pin, its status will be also reflected in bit2/1 of SDIN's slot-12. Once GPIO1/0 is used as output pin, the bit2/1 of SDATA_IN's slot-12 is always 0. The GPIOx is internally pulled high by a weak resistor.

MX7A Default: 57C0H

Bit	Type	Function		
15	R	Clock Source Selection (XTLSEL)		
		0: 24.576MHz crystal is used. DPLL is bypass. (XTLSEL is floating or open)		
		1: 14.318MHz crystal is used. 14.318M→24.576M digital PLL is enabled.		
		(XTLSEL is pull low)		
14	R/W	ENHPF, Digital high-pass filter to eliminate variation in DC offset.		
		0: Disable 1: Enable (default)		
13:8	NA	Reserved		
7	R/W	Pin-48 Function Selection		
		0: S/PDIF output (default) 1: TEST		
6	R/W	Output value of TEST (when bit-7 is set)		
		0: ADC CLK 1: DAC CLK		
5	R/W	Pin-47 Function Selection		
		0: EAPD output (default) 1: Jack-Detect input		

4	R/W	HP-OUT Control
		0: Normal
		1: HP-OUT is auto muted by H/W when JDS=1
3	R/W	MONO-OUT Control
		0: Normal
		1: MONO-OUT is auto muted by H/W when JDS=1
2	R/W	SPDIF Output Gating
		0: SPDIF output is not gated with JDS.
		1: SPDIF output is gated with JDS.
1	R	Jack-Detect status (JDS)
		0: JD is pull low
		1: JD is floating or pull high
		This bit always indicates the JD pin status after power on.
0	R/W	LINE-OUT Control
		0: Normal
		1: LINE-OUT is auto muted by H/W when JDS=1

MX7C	VI	ENDOR ID1 Default: 414CH	
Bit	Type	Function	
15:0	R	Vendor ID "AL"	

MX7E	V	ENDOR ID2 Default: 4740H
Bit	Type	Function
15:8	R	Vendor ID "G"
7:4	R	Chip ID 0100 (ALC202)
3:0	R	Version number 00: version A.
		For WHQL issue, The version number is always 0.

5. Design Suggestion

5.1 Clocking

The clock source of different configuration is listed below:

CODEC ID[10]	BIT-CLK (12.288MHz)	Clock source
00		24.576M/14.318M crystal or external clock source input from XTAL-IN*
01	Input	12.288MHz clock input from BIT-CLK
10	Input	12.288MHz clock input from BIT-CLK
11	Input	12.288MHz clock input from BIT-CLK

^{*}The default clock source should be decided by XTLSEL, once 14.318MHz clock is selected, internal digital PLL transfers it into 24.576MHz clock.

5.2 AC-Link

When ALC202 take serial data from AC97 controller, it sample **SDATA_OUT** on the falling edge of **BIT_CLK**. When ALC202 send serial data to AC97 controller, it start to drive **SDATA_IN** on the rising edge of **BIT_CLK**.

ALC202 will return any uninstalled bits or registers with 0 for read operation.. ALC202 also stuff the unimplemented slot or bit with 0 in **SDATA-IN**. Note that AC-LINK is MSB-justified.

Refer to "Audio CODEC' 97 Component Specification Revision 2.1/2.2" for detail.

Fig5.2-1 Default ALC202 slot arrangement - CODEC ID = 00

Fig5.2-2 Default ALC202 slot arrangement – CODEC ID = 01, 10

- 18 - Rev0.62

Fig5.2-3 Default ALC202 slot arrangement – CODEC ID = 11

5.3 Reset

There are 3 kinds of reset operation. *Cold, Warm* and *Register* reset which listed below:

Reset Type	Trigger condition	CODEC response
Cold	Assert RESET# for a specified period	Reset all hardware logic and all registers
		to its default value.
Register	Write register indexed 00h	Reset all registers to its default value.
Warm	Driven SYNC high for specified period	Reactivates AC-LINK, no change to
	without BIT_CLK	register values.

The AC97 controller should drive SYNC and SDATA-OUT low during the period of RESET# assertion to guarantee ALC202 reset successfully.

5.4 CD Input

Pay attention to differential CD input. Below is an example of differential CD input.

Fig 5.4-1 Example of differential CD input

5.5 Odd Addressed Register Access

ALC202 will return "0000h" when those odd-addressed registers and unimplemented registers are read.

5.6 Power-down Mode

Pay special attention to power down control register (index 26h), especially PR4 (powerdown AC-link).

5.7 Test Mode

5.7.1 ATE In Circuit Test Mode:

SDATA_OUT is sampled high at the trailing edge of **RESET#.** At this mode ALC202 will drive **BIT CLK, SDATA IN, EAPD and SPDIFO to high impedance**.

5.7.2 Vendor Specific Test Mode:

SYNC is sampled high at the trailing edge of RESET#. At this mode ALC202 will drive BIT_CLK, SDATA IN, EAPD and SPDIFO to high impedance.

Note: To make the most compatibility with AC' 97 rev2.2, ALC202 will float its digital output pins in both ATE and Vendor-Specific test mode. Please refer to AC' 97 rev2.2 section 9.2 for detail description about test mode.

- 19 - Rev0.62

5.8 Jack-Detect Function

JD (Jack-Detect) is an **internal pull high** input pin used to decide whether LINE-OUT should be auto muted or not. If JDE (Jack Detect Enable) is set and ALC202 detects the JD is floating or pull high (JDS=1), ALC202 will disable the analog output of LINE-OUT even the MX02 is not muted. Fig5.8-1 shows the jack detect example to implement this function. If no audio plug is inserted in HP-OUT jack, JD is detected as low, LINE output normally. If audio plug is inserted, ALC202 **disable LINE output, still output to HP-OUT and MONO-OUT**. It's useful to some PC application especially in notebook environment.

If headphone output jack is not implemented and HP-OUT kept as floating, once JDE is enable, LINE output will be muted unless JD is pull low by a 10K ohm resistor (Fig5.8-2). To conquer this disadvantage, the Jack-Detect mute LINE-OUT function is disable after power up (default JDE is 0), that make ALC202 compatible with others AC' 97. So it is software's responsibility to enable this function if headphone jack detection is implemented.

Fig5.8-1 Jack detect connection example

Fig5.8-2 JD is pull low by a 10K ohm resistor

Figure 5.8-3 shows another simple way to implement jack detect function without using ALC202's JD pin. It is especially easy for motherboard maker. No extra components needed, just layout issue. Once the HP-OUT jack is plugged in, output signals to LINE-OUT will be isolated, no signals output at LINE-OUT jack. The only drawback to this plan is software will not sense the HP-OUT jack is plugged in. It may be not convenient for software to pay attention to special application.

Fig5.9-3 Implement Jack-Detect function without using ALC202's pin

6. Electrical Characteristics

6.1 DC Characteristics

6.1.0 Absolute Maximum Ratings:

Parameter	Symbol	Min	Тур	Max	Units				
Power Supplies									
Digital	DVdd	3.0	3.3	3.6	V				
Analog	AVdd	4.5	5.0	5.5	V				
Operating Ambient Temperature	Та	0	-	+70	°C				
Storage Temperature	Ts			+125	°C				
ESD (Electrostatic Disch	ESD (Electrostatic Discharge)								
	Susceptibility Voltage								
Others		Ove	er 5000V						

6.1.1 Threshold Hold Voltage:

Dvdd= 3.3V±5%, T_{ambient}=25°C, with 50pF external load.

Parameter	Symbol		Тур	Max	Units
Input voltage range	V_{in}	-0.30	-	Dvdd+0.30	V
Low level input voltage (SYNC,SDATA_OUT,RESET#)	$V_{\rm IL}$	-	0.7	0.35Dvdd	V
Low level input voltage (XTAL_IN,BIT_CLK)	$V_{\rm IL}$	-	1.0	0.35Dvdd	V
Low level input voltage (ID1#,ID0#)	$V_{\rm IL}$	-	1.2	0.35Dvdd	V
High level input voltage (SYNC,SDATA_OUT,RESET#)	V_{IH}	0.4DVdd	1.7	-	V
High level input voltage (XTAL_IN,BIT_CLK)	V_{IH}	0.4DVdd	2.2	-	V
High level input voltage (ID1#,ID0#)	V_{IH}	0.4DVdd	1.7	-	V
High level output voltage	V_{OH}	0.9DVdd		-	V
Low level output voltage	V_{OL}	-	-	0.1DVdd	V
Input leakage current	-	-10	-	10	uA
Output leakage current (Hi-Z)	-	-10	-	10	uA
Output buffer drive current	-	-	5	-	mA
Internal pull up resistance	-	50k	100k	200k	Ω

6.1.2 Digital Filter Characteristics:

Filter	Symbol	Min	Тур	Max	Units
ADC Lowpass Filter	Passband	0	-	19.2	KHz
	Stopband	28.8			KHz
	Stopband Rejection		-76.0		dB
	Passband		+- 0.15		dB
	Frequency Response				
DAC Lowpass Filter	Passband	0	-	19.2	KHz
	Stopband	28.8			KHz
	Stopband Rejection		-78.5		dB
	Passband		+- 0.15		dB
	Frequency Response				

6.1.3 S/PDIF output Characteristics:

Dvdd= 3.3V, T_{ambient}=25⁰C, with 75 ohm external load.

Parameter	Symbol	Min	Тур	Max	Units
High level output voltage	V_{OH}	3.0	3.3		V
Low level output voltage	V_{OL}	-	0	0.5	V

6.2 AC Timing Characteristics

6.2.1 Cold Reset:

Parameter	Symbol	Min	Тур	Max	Units
RESET# active low pulse width	T _{rst low}	1.0	-	-	us
RESET# inactive to BIT_CLK	T _{rst2clk}	162.8	-	-	ns
Startup delay					

Fig 6.2.1-1 Cold reset timing diagram

6.2.2 Warm Reset:

Fig 6.2.2-1 Cold reset timing diagram

Parameter	Symbol	Min	Тур	Max	Units
SYNC active high pulse width	T _{sync high}	1.0	-	1	us
SYNC inactive to BIT_CLK	$T_{sync2clk}$	162.8	1	-	ns
Startup delay					

6.2.3 AC-Link Clocks:

Fig 6.2.3-1 BIT_CLK and SYNC timing diagram

Parameter	Symbol	Min	Тур	Max	Units
BIT_CLK frequency		-	12.288	-	MHz
BIT_CLK period	T _{clk period}	1	81.4	-	ns
BIT_CLK output jitter		-	-	750	ps
BIT_CLK high pulse width (note 2)	T _{clk high}	36	40.7	45	ns
BIT_CLK low pulse width (note 2)	T _{clk low}	36	40.7	45	ns
SYNC frequency		-	48.0	-	KHz

- 23 - Rev0.62

SYNC period	T _{sync period}	-	20.8	-	us	
SYNC high pulse width	T _{sync high}	-	1.3	-	us	
SYNC low pulse width	T _{sync low}	-	19.5	-	us	
Note 1: Worse case duty cycle restricted to 45/55.						

6.2.4 Data Output and Input Times:

Fig 6.2.4-1 Data Output and Input timing diagram

Parameter	Symbol	Min	Тур	Max	Units
Output Valid Delay from rising edge of	t_{co}	-	-	15	ns
BIT_CLK					

Note 1: Timing is for SDATA and SYNC outputs with respect to BIT_CLK at the device driving the output.

Note 2: 50pF external load

Parameter	Symbol	Min	Тур	Max	Units		
Input Setup to falling edge of BIT_CLK	t_{setup}	10	1	-	ns		
Input Hold from falling edge of BIT_CLK	t_{hold}	10	-	-	ns		
Note: Timing is for SDATA and SYNC outputs with respect to BIT CLK at the							

device driving the output.

Parameter	Symbol	Min	Тур	Max	Units
BIT_CLK combined rise or fall plus flight		-	-	7	ns
time					
SDATA combined rise or fall plus flight		-	-	7	ns
time					

Note: Combined rise or fall plus flight times are provided for worst case scenario modeling purpose.

6.2.5 Signal Rise and Fall Times:

Fig 6.2.5-1 Signal Rise and Fall timing diagram

- 24 **-**

Parameter	Symbol	Min	Тур	Max	Units
BIT_CLK rise time	Trise _{clk}	-	-	6	ns
BIT_CLK fall time	Tfall _{clk}	-	-	6	ns
SYNC rise time	Trise _{sync}	-	-	6	ns
SYNC fall time	Tfall _{sync}	-	-	6	ns
SDATA_IN rise time	Trise _{din}	-	-	6	ns
SDATA_IN fall time	Tfall _{din}	-	-	6	ns
SDATA_OUT rise time	Trise _{dout}	-	-	6	ns
SDATA_OUT fall time	Tfall _{dout}	-	-	6	ns

Note 1: 75pF external load (50 pF in AC' 97 rev2.1) Note 2: rise is from 10% to 90% of Vdd (V_{ol} to V_{oh}) Note 3: fall is from 90% to 10% of Vdd (V_{oh} to V_{ol})

6.2.6 AC-Link Low Power Mode Timing:

Fig 6.2.6-1 AC-Link low power mode timing diagram

Parameter	Symbol	Min	Тур	Max	Units
End of slot 2 to BIT_CLK,	T _{s2 pdown}	1	1	1.0	us
SDATA_IN low					

6.2.7 ATE Test Mode:

Fig 6.2.6-1 ATE test mode timing diagram

*To meet AC'97 rev2.2, there are EAPD, SPDIFO, BIT_CLK and SDATA_IN should be floating in test mode.

Parameter	Symbol	Min	Тур	Max	Units
Setup to trailing edge of	$T_{setup2rst}$	15.0	-	-	ns
RESET# (also applies to SYNC)					
Rising edge of RESET# to Hi-Z	$T_{\rm off}$		-	25.0	ns
delay					

- 25 - Rev0.62

6.2.8 AC-Link IO Pin Capacitance and Loading:

Output Pin	1 Codec	2 Codec	3 Codec	4 Codec
BIT_CLK (must support ≥ 2 Codecs)	55pF	62.5pF	75pF	85pF
SDATA_IN	47.5pF	55pF	60pF	62.5pF

6.2.9 SPDIF output:

SPDIF_OUT	Min	Тур	Max	Unit
Rise time/fall time	0		10	%
Duty cycle	45		55	%

Note:

Rise time =
$$100 * T_{(r)}/(T_{(l)} + T_{(h)})\%$$

Fall time = $100 * T_{(f)}/(T_{(l)} + T_{(h)})\%$
Duty cycle = $100 * T_{(h)}/(T_{(l)} + T_{(h)})\%$

6.2.10 BIT-CLK and SDATA-IN state when RESET# is active:

When RESET# is active the BIT-CLK and SDATA-IN must be floating by internal pull low 100K resistors. So the ac-link signals are driven by another AC' 97 on CNR board. This requirement is not mentioned in AC' 97 specification rev2.1, please refer CNR (Communication Network Riser) specification rev1.0 page23~25 to get detail information.

7. Analog Performance Characteristics

Standard test conditions: T_{ambient}=25^oC, Dvdd=3.3V ±5%,Avdd=5.0V±5%

1KHz input sine wave; Sampling frequency=48KHz; 0dB=1Vrms 10K Ω /50pF load; Test bench Characterization BW: 10Hz \sim 22KHz

0dB attenuation; tone and 3D disabled

Parameter	Min	Тур	Max	Units
Full scale input voltage				
Line inputs (Mixers)	-	1.6	-	Vrms
Line inputs (A/D)	-	1.2	-	
Mic input (0 dB)	-	1.6	-	
Mic input (20 dB boost)	-	0.16	ı	
Full scale output voltage				
LINE-OUT	-	1.0	1.50	Vrms
HEADPHONE-OUT	-	1.7	-	Vrms

- 26 - Rev0.62

Analog to Analog S/N				
CD to LINE-OUT		95		dB
Other to LINE-OUT	-	95	_	uБ
Analog frequency response	16	-	22,000	Hz
S/N (A-weighted)	10	_	22,000	TIZ
D/A		90		dB
A/D	-	90	-	uБ
Total Harmonic Distortion (A-weighted)	-	90	-	
D/A		-85		dB
A/D	-	-85 -85	-	uБ
D/A & A/D frequency response	20	-63	19,200	Hz
Transition Band	19,200	<u>-</u> -		Hz
Stop Band		-	28,800	Hz
1	28,800		∞	
Stop Band Rejection	-75	-	-	dB
Out-of-Band Rejection	-	-65	-	dB
Group delay	-	-	1	ms
Power Supply Rejection	-	-65	-	dB
MIC Amplifier 20dB Gain	18	20	22	dB
Master Volume (Mono, Stereo): 32 step				
Step Size	-	1.5	-	dB
Attenuation Control Range	0	-	46.5	dB
PC Beep Volume: 16 step				
Step Size	-	3.0	-	dB
Attenuation Control Range	0	-	45	dB
Analog Mixer Volume: 32 step				
Step Size	-	1.5	-	dB
Gain Control Range	-34.5	-	+12	dB
Record Gain: 16 step				
Step Size	-	1.5	-	dB
Gain Control Range	0	-	+22.5	dB
Input impedance (gain = 0dB, mixer = off)				
LINE-IN		64		ΚΩ
CD-IN, AUX-IN, VIDEO-IN, MIC-IN		32		ΚΩ
PCBEEP, PHONE		16		ΚΩ
Analog Output Impedance (LINE-OUT)		10		Ω
Analog Output Impedance (HP-OUT)		10		Ω
Power Supply Current			-	
VA=5.0v,		60	70	mA
VD=3.3v		10		mA
Power Down Current				
VA=5.0v		-	500	uA
VD=3.3v			1000	uA
V _{refout}	-	2.50	-	V
V _{refout} Drive Current		8		mA

8. Package:

SYMBOL		MILLIMETER	-		INCH			
	MIN.	TYP.	MAX.	MIN. TYP. MA				
A			1.60			0.063		
A1	0.05		0.15	0.002		0.006		
A2	1.35	1.40	1.45	0.053	0.055	0.057		
c	0.09		0.20	0.004 0.				
D	9.00 BSC			0.354 BSC				
D1	7.00 BSC			0.276 BSC				
D2		5.50		0.217				
Е		9.00 BSC			0.354 BSC			
E1	7.00BSC				0.276 BSC			
E2	5.50				0.217			
b	0.17	0.20	0.27	0.007 0.008 0.011				
e		0.50 BSC			0.016 BSC			
TH	0°	3.5°	7°	0°	3.5°	7°		
L	0.45	0.60	0.75	0.018	0.024	0.030		

- 28 - Rev0.62