4. Mekaniska lösningar

4.1. Pelle glömde att lämna in sin skoluppgift. Under natten bryter han sig in i skolan för att smyga in uppgiften i lärarens pärm. Det krävs $10\,000\,\mathrm{N}\,\mathrm{m}\,$ för att bryta upp dörren till skolan. Pelle har en kofot som är $65\,\mathrm{cm}\,$ lång. Hur stor kraft måste Pelle använda för att bryta upp dörren?

4.2. Pelle ska hjälpa sin kompis flytta upp en soffa. Den väger $50\,\mathrm{kg}$. Han väljer att lyfta soffan rakt uppåt med ett rep. **Med hur mycket kraft måste Pelle dra i repet för att lyfta soffan i konstant hastighet?**

4.3. Det var för tungt för Pelle att lyfta soffan hela vägen upp. Hans kompis kom på idén att bygga en ramp. Normalkraften från rampen på soffan är $425.22\,\mathrm{N}$ Hur stor kraft måste Pelle nu använda för att dra soffan uppför rampen i konstant hastighet?

- **4.4.** I vilka av följande situationer visar sig mekanikens gyllene regel?
 - a. En lång nyckel gör det enklare att dra åt en bult jämfört med en kort nyckel.
 - **b.** Det är jobbigare i stunden att cykla uppför en brant backe jämfört med en planare backe.
 - **c.** Verktyg som drivs av elektricitet är starkare än verktyg som drivs av handkraft.
 - d. Batterier som används sällan håller längre än batterier som används ofta.
 - e. Pincett gör det enklare att nypa hårdare än med fingrarna.
- 4.5. Pelle är ute och cyklar 30 km/h. Han väger 80 kg, och sitter precis på cykelns tyngdpunkt. Cykeln väger 10 kg. Hur mycket kraft tar bak- respektive framhjulet upp?

4.6. Pelle åkte och välte med farsans bil. Han försöker välta tillbaka bilen på hjulen igen. Bilen väger 2 ton och till sin hjälp har han en stålbalk som är 3 meter lång, varav 10 cm kan han få in under bilen så att den precis nuddar bilens tyngdpunkt. **Hur stor kraft måste Pelle använda för att välta tillbaka bilen på hjulen igen?**

