CMPT 825 Natural Language Processing

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Automatic Speech Recognition

- Acoustic observations: signal processing to extract energy levels at each frequency level
- Observation sequence **o** is composed of acoustic features extracted from the waveform at regular (10msec) intervals
- ASR is the task of converting the observation sequence o into a transcription

Noisy Channel Model

• Finding the best transcription w* given an observation sequence o

$$\mathbf{w}^* = \frac{\arg \max}{\mathbf{w}} P(\mathbf{w} \mid \mathbf{o}) = \frac{\arg \max}{\mathbf{w}} \frac{P(\mathbf{o} \mid \mathbf{w})P(\mathbf{w})}{P(\mathbf{o})}$$

$$= \frac{\arg \max}{\mathbf{w}} \underbrace{P(\mathbf{o} \mid \mathbf{w})P(\mathbf{w})}_{\text{generative language}}$$

$$= \max_{\mathbf{w}} \underbrace{P(\mathbf{o} \mid \mathbf{w})P(\mathbf{w})}_{\text{generative language}}$$

Generative Models of Speech

- Typical decomposition of P(w | o) into a cascade of generative models:
 - Acoustic Model:
 - P(o | p) predict observation sequence o given phone sequence p
 - Pronunciation Model:
 - P(w | p) predict phone sequence p given a word sequence w
 - Language Model:
 - P(w) predict word sequence w

Generative Models of Speech

- Further decomposition of the acoustic model: P(o | p)
 - P(o | d) observation vectors given distribution sequences (quantitative given symbolic)
 - P(d | m) distribution sequences given model sequences (model dependent phone sequences)
 - P(m | p) model sequences given phone sequences

- 1920s: Radio Rex
 - 500 Hz of energy in the word "Rex" caused the toy dog to move
- 1950s: Digit Recognition (Bell Labs)
- 1960s: Advances in Signal Processing and Neural Nets (not much progress in ASR)
- 1970s: Despite large ARPA funding, not much success

- 1980s: Discrete ASR, Language Models, corpus collection efforts
 - TIMIT corpus (phonetics)
 - ATIS corpus (Air Travel Information System)
 - Focus on language understanding dialog systems

- 1990s: Large Vocabulary Continuous ASR
 - Dynamic Time Warping (edit distance)
 - Better phonetic models using classifiers (decision trees and neural nets)
 - Better language models using smoothing
 - Larger corpora: 10⁷ and 10⁹ in size

- Current Work
 - Other languages and dialects
 - Multiple speakers, Speaker adaptation
 - Speaker identification
 - Noise resistant (telephone speech)
 - Open source software: HTK, Sphinx, CMU LM toolkit, SRI LM toolkit