1.6. Trigonometric Integrals and Trigonometric Substitutions

1.6.1. Trigonometric Integrals. Here we discuss integrals of powers of trigonometric functions. To that end the following *half-angle identities* will be useful:

$$\sin^2 x = \frac{1}{2}(1 - \cos 2x),$$
$$\cos^2 x = \frac{1}{2}(1 + \cos 2x).$$

Remember also the identities:

$$\sin^2 x + \cos^2 x = 1,$$

$$\sec^2 x = 1 + \tan^2 x.$$

1.6.1.1. Integrals of Products of Sines and Cosines. We will study now integrals of the form

$$\int \sin^m x \cos^n x \, dx \,,$$

including cases in which m = 0 or n = 0, i.e.:

$$\int \cos^n x \, dx \, ; \qquad \int \sin^m x \, dx \, .$$

The simplest case is when either n = 1 or m = 1, in which case the substitution $u = \sin x$ or $u = \cos x$ respectively will work.

Example:
$$\int \sin^4 x \cos x \, dx = \cdots$$

 $(u = \sin x, du = \cos x dx)$

$$\cdots = \int u^4 du = \frac{u^5}{5} + C = \left[\frac{\sin^5 x}{5} + C \right].$$

More generally if at least one exponent is odd then we can use the identity $\sin^2 x + \cos^2 x = 1$ to transform the integrand into an expression containing only one sine or one cosine.

Example:

$$\int \sin^2 x \cos^3 x \, dx = \int \sin^2 x \cos^2 x \cos x \, dx$$
$$= \int \sin^2 x \left(1 - \sin^2 x\right) \cos x \, dx = \cdots$$

 $(u = \sin x, du = \cos x dx)$

$$\dots = \int u^2 (1 - u^2) du = \int (u^2 - u^4) du$$

$$= \frac{u^3}{3} - \frac{u^5}{5} + C$$

$$= \left[\frac{\sin^3 x}{3} - \frac{\sin^5 x}{5} + C \right].$$

If all the exponents are even then we use the half-angle identities.

Example:

$$\int \sin^2 x \cos^2 x \, dx = \int \frac{1}{2} (1 - \cos 2x) \frac{1}{2} (1 + \cos 2x) \, dx$$

$$= \frac{1}{4} \int (1 - \cos^2 2x) \, dx$$

$$= \frac{1}{4} \int (1 - \frac{1}{2} (1 + \cos 4x)) \, dx$$

$$= \frac{1}{8} \int (1 - \cos 4x) \, dx$$

$$= \frac{x}{8} - \frac{\sin 4x}{32} + C.$$

1.6.1.2. Integrals of Secants and Tangents. The integral of $\tan x$ can be computed in the following way:

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = -\int \frac{du}{u} = \boxed{-\ln|u| + C = -\ln|\cos x| + C},$$

where $u = \cos x$. Analogously

$$\int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx = \int \frac{du}{u} = \ln|u| + C = \left[\frac{\ln|\sin x| + C}{u} \right],$$

where $u = \sin x$.

The integral of $\sec x$ is a little tricky:

$$\int \sec x \, dx = \int \frac{\sec x \, (\tan x + \sec x)}{\sec x + \tan x} \, dx = \int \frac{\sec x \tan x + \sec^2 x}{\sec x + \tan x} \, dx =$$

$$\int \frac{du}{u} = \ln|u| + C = \boxed{\ln|\sec x + \tan x| + C},$$

where $u = \sec x + \tan x$, $du = (\sec x \tan x + \sec^2 x) dx$.

Analogously:

$$\int \csc x \, dx = \boxed{-\ln|\csc x + \cot x| + C}.$$

More generally an integral of the form

$$\int \tan^m x \sec^n x \, dx$$

can be computed in the following way:

- (1) If m is odd, use $u = \sec x$, $du = \sec x \tan x dx$.
- (2) If n is even, use $u = \tan x$, $du = \sec^2 x \, dx$.

Example:
$$\int \tan^3 x \sec^2 x \, dx = \cdots$$

Since in this case m is odd and n is even it does not matter which method we use, so let's use the first one:

 $(u = \sec x, du = \sec x \tan x dx)$

$$\dots = \int \underbrace{\tan^2 x \sec x \tan x \sec x \, dx}_{u^2 - 1} = \int (u^2 - 1)u \, du$$

$$= \int (u^3 - u) \, du$$

$$= \frac{u^4}{4} - \frac{u^2}{2} + C$$

$$= \left[\frac{1}{4} \sec^4 x - \frac{1}{2} \sec^2 x + C \right].$$

Next let's solve the same problem using the second method:

$$(u = \tan x, du = \sec^2 x dx)$$

$$\int \underbrace{\tan^3 x \sec^2 x \, dx}_{u^3} = \int u^3 \, du = \frac{u^4}{4} + C = \left[\frac{1}{4} \tan^4 x + C \right].$$

Although this answer looks different from the one obtained using the first method it is in fact equivalent to it because they differ in a constant:

$$\frac{1}{4}\tan^4 x = \frac{1}{4}(\sec^2 x - 1)^2 = \underbrace{\frac{1}{4}\sec^4 x - \frac{1}{2}\sec^2 x + \frac{1}{4}}_{\text{previous answer}}.$$

1.6.2. Trigonometric Substitutions. Here we study substitutions of the form x = some trigonometric function.

Example: Find
$$\int \sqrt{1-x^2} dx$$
.

Answer: We make $x = \sin t$, $dx = \cos t dt$, hence

$$\sqrt{1-x^2} = \sqrt{1-\sin^2 t} = \sqrt{\cos^2 t} = \cos t$$

and

$$\int \sqrt{1-x^2} \, dx = \int \cos t \, \cos t \, dt$$

$$= \int \cos^2 t \, dt$$

$$= \int \frac{1}{2} (1 + \cos 2t) \, dt \qquad \text{(half-angle identity)}$$

$$= \frac{t}{2} + \frac{\sin 2t}{4} + C$$

$$= \frac{t}{2} + \frac{2\sin t \cos t}{4} + C \qquad \text{(double-angle identity)}$$

$$= \frac{t}{2} + \frac{\sin t \sqrt{1 - \sin^2 t}}{2} + C$$

$$= \left[\frac{\sin^{-1} x}{2} + \frac{x\sqrt{1 - x^2}}{2} + C \right].$$

The following substitutions are useful in integrals containing the following expressions:

expression	substitution	identity
$a^2 - u^2$	$u = a\sin t$	$1 - \sin^2 t = \cos^2 t$
$a^2 + u^2$	$u = a \tan t$	$1 + \tan^2 t = \sec^2 t$
$u^2 - a^2$	$u = a \sec t$	$\sec^2 t - 1 = \tan^2 t$

So for instance, if an integral contains the expression a^2-u^2 , we may try the substitution $u=a\sin t$ and use the identity $1-\sin^2 t=\cos^2 t$ in order to transform the original expression in this way:

$$a^2 - u^2 = a^2(1 - \sin^2 t) = a^2 \cos^2 t$$
.

Example:

$$\int \frac{x^3}{\sqrt{9-x^2}} dx = 27 \int \frac{\sin^3 t \cos t}{\sqrt{1-\sin^2 t}} dt \qquad (x = 3\sin t)$$

$$= 27 \int \sin^3 t dx$$

$$= 27 \int (1-\cos^2 t) \sin t dx$$

$$= 27 \left(-\cos t + \frac{\cos^3 t}{3}\right) + C$$

$$= 27 \left(-\sqrt{1-\sin^2 t} + \frac{1}{3}(1-\sin^2 t)^{3/2}\right) + C$$

$$= \left[-9\sqrt{9-x^2} + \frac{1}{3}(9-x^2)^{3/2} + C\right].$$

where $x = 3\sin t$, $dx = 3\cos t dt$.

Example:

$$\int \sqrt{9 + 4x^2} \, dx = 2 \int \sqrt{\frac{9}{4} + x^2} \, dx \qquad (x = \frac{3}{2} \tan t)$$

$$= 2 \int \frac{3}{2} \sqrt{1 + \tan^2 t} \, \frac{3}{2} \sec^2 t \, dt$$

$$= \frac{9}{2} \int \sec^3 t \, dt$$

$$= \frac{9}{4} (\sec t \tan t + \ln|\sec t + \tan t|) + C_1$$

$$= \frac{9}{4} \left(\frac{2}{3} x \sqrt{1 + \frac{4}{9} x^2} + \ln\left| \frac{2}{3} x + \sqrt{1 + \frac{4}{9} x^2} \right| \right) + C_1$$

$$= \frac{x \sqrt{9 + 4x^2}}{2} + \frac{9}{4} \ln|2x + \sqrt{9 + 4x^2}| + C$$

where $x = \frac{3}{2} \tan t$, $dx = \frac{3}{2} \sec^2 t dt$

Example:

$$\int \frac{\sqrt{x^2 - 1}}{x} dx = \int \frac{\sqrt{\sec^2 t - 1}}{\sec t} \sec t \tan t dt \qquad (x = \sec t)$$

$$= \int \tan^2 t dt$$

$$= \tan t - t + C$$

$$= \sqrt{\sec^2 t - 1} - t + C$$

$$= \sqrt{x^2 - 1} - \sec^{-1} x + C.$$

where $x = \sec t$, $dx = \sec t \tan t dt$.