复变函数

Complex Analysis-Stein **2021** 数学基地班-耿浩源 复变函数提纲

目录

1	Pre	liminaries to Complex Analysis	1		
	1.1	Complex numbers and the complex plane	1		
	1.2	Functions on the complex plane	3		
	1.3	Integration along curves	5		
	1.4	Exercises	7		
2	Cau	ichy's Theorem and Its Applications	9		
	2.1	Goursat's theorem	9		
	2.2	Local existence of primitives and Cauchy's theorem in a disc	9		
	2.3	Evaluation of some integrals	9		
	2.4	Cauchy's integral formulas	9		
	2.5	Further applications	10		
3	Meromorphic Functions and the Logarithm				
	3.1	Zeros and poles	12		
	3.2	The residue formula	12		
	3.3	Singularities and meromorphic functions	12		
	3.4	The argument principle and applications	12		
	3.5	Homotopies and simply connected domains	12		
	3.6	The complex logarithm	12		
	3.7	Fourier series and harmonic functions	12		
4	The	e Fourier Transform	13		
	4.1	The class \mathfrak{F}	13		
	4.2	Action of the Fourier transform on $\mathfrak F$	13		
	4.3	Paley-Wiener theorem	13		

5	Enti	ire Functions	14
	5.1	Jensen's formula	14
	5.2	Functions of finite order	14
	5.3	Infinite products	14
	5.4	Weierstrass infinite products	14
	5.5	Hadamard's factorization theorem	14
6	The	Gamma and Zeta Functions	15
	6.1	The gamma function	15
	6.2	The zeta function	15
7	The	Zeta Function and Prime Number Theorem	16
	7.1	Zeros of the zeta function	16
	7.2	Reduction to the functions ψ and ψ_1	16
8	Con	formal Mappings	17
	8.1	Conformal equivalence and examples	17
	8.2	The Schwarz lemma; automorphisms of the disc and upper half-plan	17
	8.3	The Riemann mapping theorem	17
	8.4	Conformal mappings onto polygon	17
9	An	Introduction to Elliptic Functions	18
	9.1	Elliptic functions	18
	9.2	The modular character of elliptic functions and Eisenstein series	18
10	App	olications of Theta Functions	19
	10.1	Product formula for the Jacobi theta function	19
	10.2	Generating functions	19
	10.3	The theorems about sums of squares	19

11 Asymptotics						
	11.1 Bessel functions	20				
	11.2 Laplace's method and Stirling's formula	20				
	11.3 The Airy function	20				
	11.4 The partition function	20				
12	12 Simple Connectivity and Jordan Curve Theorem					
	12.1 Equivalent formulations of simple connectivity	21				
	19.9 The Jordan guryo theorem	21				

1 Preliminaries to Complex Analysis

1.1 Complex numbers and the complex plane

定义 1 形如 z = x + iy, $(x, y \in \mathbb{R})$ 的数称为复数 (complex number), 其中 i 满足 $i^2 = -1$, 称为虚数单位; x = Re(z) 称为 z 的实部 (real part), y = Im(z) 称为 z 的虚部 (imaginary part).

所有复数组成的集合记作 €, 称作复数域.

命题 1 设
$$z_1 = x_1 + iy_1$$
, $z_2 = x_2 + iy_2$, 则 $z_1 \pm z_2 = (x_1 \pm x_2) + i(y_1 \pm y_2)$;

$$z_1 z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1), \frac{z_1}{z_2} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + i \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2}, (z_2 \neq 0).$$

注 复数的加法, 乘法遵循交换律与结合律, 乘法对加法遵循分配律.

定义 2 称 (x,y) 为复数 x+iy 的实数对形式, 它与复平面 (complex plane) 上的点——对应.

定义 3 定义复数 $z=x+\mathrm{i}y$ 的模长 (absolute value) $|z|=\sqrt{x^2+y^2}$; 特殊地, $z_1=x_1+\mathrm{i}y_1$ 与 $z_2=x_2+\mathrm{i}y_2$ 的距离 $d(z_1,z_2)=|z_1-z_2|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$.

定理 1 三角不等式: 对 $z_1, z_2 \in \mathbb{C}$, $|z_1 + z_2| \le |z_1| + |z_2|$, $||z_1| - |z_2|| \le |z_1 - z_2|$.

推论 $\forall z, w \in \mathbb{C}, |\text{Re}(z)| \le |z|, |\text{Im}(z)| \le |z|, ||z| - |w|| \le |z - w|.$

定义 4 定义复数 z=x+iy 的辐角 (argument) φ 满足 $\tan\varphi=\frac{y}{x}$, 记作 $\operatorname{Arg} z=\varphi$; 称适合 $-\pi<\theta\leq\pi$ 的辐角为其辐角主值, 记作 $\arg z=\theta$.

命题 2 记复数 $z=x+\mathrm{i}y, -\frac{\pi}{2}<\arctan\frac{y}{x}=\gamma<\frac{\pi}{2},$ 则:

$$\arg z = \begin{cases} \gamma, & x > 0, y \in \mathbb{R} \\ k\frac{\pi}{2}, & x = 0, y \neq 0, k = \text{sgn}(y) \\ \gamma + k\pi, & x < 0, y \neq 0, k = \text{sgn}(y) \\ \pi, & x < 0, y = 0 \end{cases}.$$

定义 5 记 $z=x+\mathrm{i}y$ 的辐角主值 $\arg z=\theta$, 则称 $z=|z|(\cos\theta+\mathrm{i}\sin\theta)$ 为其三角形式, $z=|z|\cdot\mathrm{e}^{\mathrm{i}\theta}$ 为其指数形式或极坐标形式 (polar form).

定理 2 Euler 公式: $e^{i\theta} = \cos \theta + i \sin \theta$.

命题 3 $|z_1z_2| = |z_1||z_2|, \ \left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}, \operatorname{Arg}(z_1z_2) = \operatorname{Arg}z_1 + \operatorname{Arg}z_2, \operatorname{Arg}\frac{z_1}{z_2} = \operatorname{Arg}z_1 - \operatorname{Arg}z_2.$

注 z_1z_2 对应的向量为 z_1 伸缩 $|z_2|$ 倍, 再旋转 $\arg z_2$ 得到的向量, 即 $re^{i\theta} \cdot se^{i\varphi} = rse^{i(\theta+\varphi)}$.

定义 6 设 z = x + iy, 则称 $\overline{z} = x - iy$ 为 z 的共轭复数 (complex conjugate).

命题 4 设 $z_1, z_2 \in \mathbb{C}$,

$$(1)|z| = |\overline{z}|, \operatorname{Arg}\overline{z} = -\operatorname{Arg}z, \overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}, \overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}, \overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{z_1}{z_2}}, (z_2 \neq 0);$$

$$(2)|z|^2 = z\overline{z}, \operatorname{Re} z = \frac{z + \overline{z}}{2}, \operatorname{Im} z = \frac{z - \overline{z}}{2i}, |z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2\operatorname{Re}(z_1\overline{z_2}).$$

命题 5 设 $z = re^{i\theta}$, 则:

$$(1)z^n = r^n e^{in\theta} = r^n (\cos n\theta + i\sin n\theta), |z^n| = |z|^n, \operatorname{Arg} z^n = n\operatorname{Arg} z;$$

(2)
$$\sqrt[n]{z} = e^{i\frac{2k\pi}{n}} \cdot \sqrt[n]{r}e^{i\frac{\theta}{n}}, (k = 0, \dots, n - 1), |\sqrt[n]{z}| = \sqrt[n]{|z|}, \operatorname{Arg}\sqrt[n]{z} = \frac{\operatorname{Arg}z}{n}.$$

推论 De Moivre 公式: $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$.

注 1 的 $n \uparrow n$ 次方根 $\omega^k = e^{i\frac{2k\pi}{n}}$, $(k=0,\cdots,n-1)$ 称为 n 次单位根.

命题 6 复平面上的方程表示:

- (1) 线段 z_1z_2 : $z = z_1 + t(z_2 z_1)$, $(0 \le t \le 1)$; 直线 z_1z_2 : $z = z_1 + t(z_2 z_1)$, $(t ∈ \mathbb{R})$;
- (2) 圆心为 z_0 , 半径为 R 的圆: $|z z_0| = R$;
- (3) 以 z_1, z_2 为焦点, a 为长半轴的椭圆: $|z z_1| + |z z_2| = 2a$, $(a > 0, 2a > |z_1 z_2|)$;
- (4) 以 z_1, z_2 为焦点, 2a 为实轴长的双曲线: $||z z_1| |z z_2|| = 2a$, $(0 < 2a < |z_1 z_2|)$.

推论 z_1, z_2, z_3 共线的充要条件是 $\frac{z_3 - z_1}{z_2 - z_1} = t, (t \neq 0, t \in \mathbb{R}).$

定义 7 对复数列 $\{z_1,z_2,\cdots,\}$,若 $\exists \omega \in \mathbb{C}$,使得 $\lim_{n\to\infty}|z_n-\omega|=0$,则称该复数列收敛 (converge) 于 ω ,记作 $\omega=\lim_{n\to\infty}z_n$.

定义 8 若数列 $\{z_n | n \in \mathbb{N}_+\}$ 满足 $\lim_{n,m\to\infty} |z_n - z_m| = 0$, 则称该数列是 Cauchy 列, 即

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}_+, n, m > N : |z_n - z_m| < \varepsilon.$$

定理 3 \mathbb{C} 是完备的 (complete), 即 \mathbb{C} 中的每个 Cauchy 列在 \mathbb{C} 中都有极限.

定义 9 对 $z_0 \in \mathbb{C}$, r > 0, 定义以 z_0 为中心, r 为半径 (radius) 的开圆盘 (open disc) $D_r(z_0) = \{z \in \mathbb{C} | |z - z_0| < r\}$; 闭圆盘 $\overline{D}_r(z_0) = \{z \in \mathbb{C} | |z - z_0| \le r\}$. 它们的边界是圆 $C_r(z_0) = \{z \in \mathbb{C} | |z - z_0| = r\}$.

注 通常记单位圆盘 (unit disc) 为 $\mathbb{D} = \{z \in \mathbb{C} | z < 1\}.$

定义 10 对集合 $\Omega \subset \mathbb{C}$, 若 $\exists r > 0$, $D_r(z_0) \subset \Omega$, 则称 z_0 为 Ω 的内点 (interior point), Ω 的所有内点组成的集合称作 Ω 的内部 (interior), 记作 $\operatorname{int}(\Omega)$. 若 Ω 中的每个点都是其内点, 则称 Ω 为开集 (open set); Ω 是闭集 (closed set) 当且仅当它的补 $\Omega^C = \mathbb{C} - \Omega$ 是开集.

定义 11 对 $z \in \mathbb{C}$, 若存在一列点 $z_n \in \Omega$, 满足 $z_n \neq z$ 且 $\lim_{\substack{n \to \infty \\ n \to \infty}} z_n = z$, 则称 z 是极限点 (limit point). 集合 Ω 与其所有极限点的并集称作 Ω 的闭包 (closure), 记作 $\overline{\Omega}$. Ω 的边界 (boundary) 等于其闭包减去它的内部, 记作 $\partial\Omega$.

定义 12 若 $\exists M>0, \ \forall z\in\Omega, \ |z|< M,$ 则称 Ω 是有界的 (bounded). 此时, 定义 Ω 的直径 (diameter) 为 diam(Ω) = $\sup_{z\to c\Omega}|z-w|$.

定义 13 C 上的有界闭集被称作紧集 (compact set).

定理 4 集合 $\Omega \subset \mathbb{C}$ 是紧集当且仅当每个序列 $\{z_n\} \subset \Omega$ 都有一个收敛到 Ω 中某一点的子列.

定义 14 Ω 的一个开覆盖 (open covering) 是指满足 $\Omega \subset \bigcup_{i \in I} U_i$ 的开集族 $\{U_i | i \in I\}$.

定理 5 集合 $\Omega \subset \mathbb{C}$ 是紧集当且仅当 Ω 的每个开覆盖都有一个有限子覆盖.

命题 7 若无限非空紧集序列

$$\mathbb{C} \supset \Omega_1 \supset \Omega_2 \supset \cdots \supset \Omega_n \supset \cdots$$

满足 $\lim_{n\to\infty} \operatorname{diam}(\Omega_n) = 0$, 则存在唯一的点 $w \in \mathbb{C}$, 使得 $\forall n \in \mathbb{N}_+, w \in \Omega_n$.

定义 15 对开 (闭) 集 $\Omega \in \mathbb{C}$, 若不存在两个非交的非空开 (闭) 集 $\Omega_1, \Omega_2 \subset \mathbb{C}$, 使得 $\Omega = \Omega_1 \bigcup \Omega_2$, 则称 Ω 是连通集 (connected set). 特殊地, \mathbb{C} 上的连通开集被称作区域 (region).

1.2 Functions on the complex plane

定义 1 对定义在 $\Omega \in \mathbb{C}$ 上的函数 f, 若 $\forall \varepsilon > 0$, $\exists \delta > 0$, $\forall z \in \Omega$, $|z - z_0| < \delta$, 则称 f 在 $z_0 \in \Omega$ 处连续 (continuous). 若 f 在 Ω 的每个点上都连续, 则称 f 在 Ω 上连续.

推论 连续函数的和与积也是连续的.

命题 1 C 上的函数 f(z) 连续当且仅当它被视为二元实函数 f(x,y) 时连续, 其中 z=x+iy.

定义 2 对 $\Omega \in \mathbb{C}$ 上的函数 f, 若 $\exists z_0 \in \Omega$, 使得 $\forall z \in \Omega$, $f(z) \leq f(z_0)$, 则称 f 在 z_0 处达到最大值 (maximum). 最小值 (minimum) 时不等号反向.

定理 1 紧集 Ω 上的连续函数有界, 且在 Ω 上能取到最大值和最小值.

定义 3 对 $\Omega \in \mathbb{C}$ 上的复变函数 f, 若对 $z_0 \in \Omega$, $h \in \mathbb{C}$, $h \neq 0$ 且 $z_0 + h \in \Omega$, 商

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = C$$

为一固定值, 则称 f 在 z_0 点全纯 (holomorphic).

这里, 记该极限为 $C = f'(z_0)$, 称作 f 在 z_0 处的导数 (derivative).

注 复变函数的导数具有方向性.

推论 也经常将导数写作 $f(z_0 + h) - f(z_0) - ah = h\psi(h)$ 的形式, 其中 $\lim_{h\to 0} \psi(h) = 0$.

定义 4 若 f 在开集 Ω 上的每个点均全纯, 则称 f 在 Ω 上全纯. 若对闭集 D, f 在某个包含 D 的 开集上全纯, 则称 f 在 D 上全纯. 若 f 在 $\mathbb C$ 上全纯, 则称 f 是整的 (entire).

命题 2 全纯函数无限次复可微,即一阶导数存在会保证任意阶导数存在.

命题 3 对 Ω 上的全纯函数 f, g, \mathbb{Q}

- (1) f + g 在 Ω 上全纯, 且 (f + g)' = f' + g';
- (2) fg 在 Ω 上全纯, 且 (fg)' = f'g + g'f;

(3) 若
$$g(z_0) \neq 0$$
, 则 $\frac{f}{g}$ 在 z_0 处全纯且 $\left(\frac{f}{g}\right)' = \frac{f'g - g'f}{g^2}$.

推论 若这里 $f: \Omega \to U, g: U \to \mathbb{C}$ 均全纯, $\Omega, U \subset \mathbb{C}$ 则

$$\forall z \in \Omega, (g \circ f)'(z) = g'(f(z)) \cdot f'(z).$$

定理 2 Cauchy-Riemann 方程: 对 $\Omega \subset \mathbb{C}$ 上的函数 f(z), 记 z = x + iy 且 f = u + iv, 则成立

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

注 在实复可微函数同时出现时, 一般默认 f = u + iv 的拆分.

定义 5 定义如下两个形式微分算子:

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right), \quad \frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} - \frac{1}{i} \frac{\partial}{\partial y} \right).$$

定理 3 若 f 在 z_0 处全纯,则

$$\frac{\partial f}{\partial \bar{z}}(z_0) = 0, \quad f'(z_0) = \frac{\partial f}{\partial z}(z_0) = 2\frac{\partial u}{\partial z}(z_0).$$

此外, 若记 f(z) 为 F(x,y), 则 F 实可微, 且 $|J_f(x_0,y_0)| = |f'(z_0)|^2$, 其中左式表示 F 在 (x_0,y_0) 处的 Jacobi 矩阵的行列式值.

定理 4 对开集 $\Omega\in\mathbb{C}$ 上的复值函数 $f=u+\mathrm{i} v,$ 若 u,v 连续可微且满足 Cauchy-Riemann 方程,则 f 在 Ω 上全纯且 $f'(z)=\frac{\partial f}{\partial z}$.

例 1 复指数函数 (Complex exponential function):
$$\forall z \in \mathbb{C}, e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$
.

注 上述复指数函数的定义是良性的, 因为:

(1) $\forall z \in \mathbb{C}$, 上述幂级数收敛 (converge);

- (2) $\forall z, w \in \mathbb{C}, e^{w+z} = e^w e^z;$
- (3) $\forall z \in \mathbb{C}, (e^z)' = e^z$.

定义 6 称形式扩展 $\sum_{n=0}^{\infty} a_n z^n$, $(a_n, z \in \mathbb{C})$ 为复幂级数 (power series).

定理 5 对幂级数 $\sum_{n=0}^{\infty} a_n z^n$, $(a_n, z \in \mathbb{C})$, 记 $\frac{1}{R} = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$, 则

- (1) 若 |z| < R, 则该幂级数绝对收敛;
- (2) 若 |z| > R, 则该幂级数发散;
- (3) 若 |z| = R, 则该幂级数敛散性不确定.

这里, 称 R 为收敛半径 (radius of convergence); 区域 |z| < R 为收敛圆盘 (disc).

例 2 三角函数 (Trigonometric functions): $\forall z \in \mathbb{C}$,

$$\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}, \quad \sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}.$$

定理 6 Euler 公式: $\forall \theta \in [0, 2\pi), e^{i\theta} = \cos \theta + i \sin \theta.$

定义 7 若开集 $\Omega \subset \mathbb{C}$ 上的函数 f 在 $z_0 \in \Omega$ 处可展开为幂级数形式 $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, 则称 f 在 z_0 处解析 (analytic).

命题 4 对
$$f = \sum_{n=0}^{\infty} a_n z^n$$
, 则 $f' = \sum_{n=0}^{\infty} n a_n z^{n-1}$, 且 f, f' 收敛半径相同.

1.3 Integration along curves

定义 1 称映射 $z:[a,b]\to\mathbb{C},\,t\mapsto z(t)$ 为参数曲线 (parametrized curve).

若 z'(t) 存在且在 [a,b] 上连续, 则称 z 在 [a,b] 上光滑 (smooth). 若 $\exists a=a_0 < a_1 < \cdots < a_n=b$, 满足 z 在 $[a_i,a_{i+1}]$ 上光滑, 则称 z 分段光滑 (piecewise smooth).

定义 2 对 [a,b] 上的参数曲线 z, 可定义单侧导数 (one-sided derivative)

$$z'(a) = \lim_{h \to 0^+} \frac{z(a+h) - z(a)}{h}, \quad z'(b) = \lim_{h \to 0^-} \frac{z(b+h) - z(b)}{h}.$$

定义 3 对两参数曲线 $z:[a,b]\to\mathbb{C},\,\tilde{z}:[c,d]\to\mathbb{C},\,$ 若存在连续可微的双射 $[c,d]\to[a,b],\,s\to t(s),$ 使得 t'(s)>0 且 $\tilde{z}(s)=z(t(s)),$ 则称 z,\tilde{z} 等价 (equivalent).

注 t'(s) > 0 保证了双射的方向, 即 s 从 $c \to d$ 时, t(s) 从 $a \to b$.

定义 4 与 z(t) 等价的所有参数曲线定义了一条光滑曲线 $\gamma \subset \mathbb{C}$.

定义 5 若对 γ 的任一参数曲线 $z:[a,b]\to\mathbb{C}, z(a)=z(b)$. 则称它是闭的 (closed).

若 $z(t) = z(s) \Rightarrow t = s$, 则称 z 是简单的 (simple).

注 在之后的讨论中一般简称分段光滑曲线为曲线.

例 1 圆 $C_r(z_0) = \{z \in \mathbb{C} | |z - z_0| = r\}$ 是闭的简单曲线, 其中正方向是由标准参数表示 $z(t) = z_0 + re^{it}, t \in [0, 2\pi]$ 给出的逆时针方向. 一般用 C 表示一般的正向圆.

定义 6 对 \mathbb{C} 上由参数 $z:[a,b]\to\mathbb{C}$ 给出的光滑曲线 γ , 若 f 定义在 γ 上且连续, 则定义 f 沿 γ 的积分 (integral of f along γ) 为

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(z(t))z'(t) dt.$$

若 γ 分段光滑,则f沿 γ 的积分为各分段积分之和.

定义 7 定义光滑曲线 γ 的长度 (length) 为 length(γ) = $\int_a^b |z'(t)| dt$.

注 显然上述积分、长度的定义是良的,即它们和参数的选取无关.

命题 1 连续函数 f 在光滑曲线 γ 上的积分满足以下性质:

(1) 线性:
$$\forall a, b \in \mathbb{C}$$
, $\int_{\gamma} (\alpha f(z) + \beta g(z)) dz = \alpha \int_{\gamma} f(z) dz + \beta \int_{\gamma} g(z) dz$;

(2) 自反性: 对
$$\gamma$$
 的反向曲线 γ^- , $\int_{\gamma} f(z) dz = -\int_{\gamma^-} f(z) dz$;

(3)
$$\left| \int_{\gamma} f(z) dz \right| \le \sup_{z \in \gamma} |f(z)| \cdot \operatorname{length}(\gamma).$$

定义 8 对 $\Omega \subset \mathbb{C}$ 上的函数 f, F, 若 $\forall z \in \Omega$, F'(z) = f(z), 则称 F 为 f 的原函数 (primitive). 显然 F 是全纯的.

定理 1 对 Ω 上的连续函数 f 及其原函数 F, 若 γ 是 Ω 上由 a 到 b 的曲线, 则

$$\int_{\gamma} f(z) \, \mathrm{d}z = F(b) - F(a).$$

定理 2 对开集 Ω 上的闭曲线 γ 及连续函数 f, 若 f 在 Ω 上有原函数, 则 $\int_{\gamma} f(z) dz = 0$.

注 经常用该定理的逆否形式判断一个函数有无原函数.

推论 若区域 Ω 上的函数 f 全纯且 $f'(z) \equiv 0$, 则 f 是常值函数.

1.4 Exercises

定义 1 对 $\Omega \subset \mathbb{C}$, 若 Ω 内的任意两点可通过一条完全包含在 Ω 中的 (分段光滑) 曲线连接, 则称 Ω 是道路连通 (pathwise connected) 的.

命题 1 对 \mathbb{C} 上的集合 Ω , 则 Ω 连通的充要条件是它道路连通.

定义 2 Blaschke 因子: 对于单位圆盘 \mathbb{D} 及 $w \in \mathbb{D}$, 称如下映射为 Blaschke 因子:

$$F: z \mapsto \frac{w-z}{1-\overline{w}z}.$$

命题 2 上述 Blaschke 因子 F 满足如下性质:

- (1) F 是单位圆盘 \mathbb{D} 上的自映射, 且 $F: \mathbb{D} \to \mathbb{D}$ 是双射;
- (2) F 是全纯映射;
- (3) F(0) = w, F(w) = 0, 且 |z| = 1 时成立 |F(z)| = 1.

定理 1 链式法则:对 \mathbb{C} 上的开集 U,V,设 $f:U\to V,g:V\to\mathbb{C}$ 均实可微,记 $h=g\circ f$,则

$$\frac{\partial h}{\partial z} = \frac{\partial g}{\partial z} \frac{\partial f}{\partial z} + \frac{\partial g}{\partial \overline{z}} \frac{\partial \overline{f}}{\partial z}, \quad \frac{\partial h}{\partial \overline{z}} = \frac{\partial g}{\partial z} \frac{\partial f}{\partial \overline{z}} + \frac{\partial g}{\partial \overline{z}} \frac{\partial \overline{f}}{\partial \overline{z}}.$$

注 直观来看, 该公式便是 $h = g(f, \overline{f}), f = f(z, \overline{z})$ 时的链式法则.

定理 2 Cauchy-Riemann 方程的极坐标形式: 对 $z = re^{i\theta}$, 则

$$\frac{\partial u}{\partial r} = \frac{1}{r} \cdot \frac{\partial v}{\partial \theta}, \quad \frac{1}{r} \cdot \frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial r}.$$

推论 对数函数 $\log z = \log r + i\theta$ 在区域 $r > 0, -\pi < \theta < \pi$ 上全纯.

定义 3 对 f(x,y), 定义其 Laplace 算子 (Laplacian) $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$.

命题 3 Laplace 算子满足 $4\frac{\partial}{\partial z}\frac{\partial}{\partial \overline{z}} = 4\frac{\partial}{\partial \overline{z}}\frac{\partial}{\partial z} = \Delta$.

命题 4 若 f 在开集 Ω 上全纯, 则 $\Delta_f = 0$. 这说明全纯函数的实部和虚部调和 (harmonic).

定理 3 Abel 定理: 对收敛的幂级数
$$\sum_{n=1}^{\infty} a_n$$
, 则 $\lim_{r \to 1-} \sum_{n=1}^{\infty} r^n a_n = \sum_{n=1}^{\infty} a_n$.

定义 4 超几何级数 (Hypergeometric series): 对 $\alpha, \beta \in \mathbb{C}$, 则定义如下级数为超几何级数:

$$F(\alpha,\beta,\gamma;z) = 1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha+1)\cdots(\alpha+n-1)\beta(\beta+1)\cdots(\beta+n-1)}{n!\gamma(\gamma+1)\cdots(\gamma+n-1)} z^n, \ (\gamma=0,-1,\cdots).$$

定义 5 Bessel 级数: 定义如下的级数为 r 阶 Bessel 级数:

$$J_r(z) = \left(\frac{z}{2}\right)^r \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(n+r)!} \left(\frac{z}{2}\right)^{2n}, (r \in \mathbb{N}_+).$$

命题 5 $\forall n \in \mathbb{Z}$, 记 γ 为任意正方向圆, 则 $\int_{\gamma} z^n dz = 0$.

命题 6 对半径满足 |a| < r < |b| 的以原点为圆心的正方向圆, 则 $\int_{\gamma} \frac{1}{(z-a)(z-b)} \, \mathrm{d}z = \frac{2\pi \mathrm{i}}{a-b}.$

2 Cauchy's Theorem and Its Applications

2.1 Goursat's theorem

定理 1 Goursat 定理: 对 $\mathbb C$ 上的开集 Ω , 设 $T\subset\Omega$ 是三角形且 $\operatorname{int}(T)\subset\Omega$, 则对 Ω 上任一全纯函数 f, 有 $\int_{\mathbb T} f(z)\,\mathrm{d}z=0$.

推论 若上述定理中的 T 是矩形,则该定理仍然成立.

2.2 Local existence of primitives and Cauchy's theorem in a disc

定理 1 在开圆盘 D 上的全纯函数 f 在 D 上必存在一个原函数.

定理 2 圆盘上的 Cauchy 定理: 设 f 在圆盘 D 上全纯, 则对 D 上的任一闭合曲线 γ , 成立

$$\int_{\gamma} f(z) \, \mathrm{d}z = 0.$$

推论 对圆 C 和开集 Ω , 若 $C \subset \Omega$ 且 $\mathrm{int} C \subset \Omega$, 则对 Ω 上任一全纯函数 f, 有 $\int_C f(z) \,\mathrm{d}z = 0$.

定义 1 一般称分段光滑的简单曲线为周线 (contour).

定理 3 Cauchy 定理: 对复平面上的单连通区域 D, 设 γ 是 D 上的一条周线, 则对 D 上的任一全纯函数 f, 有

$$\int_{\gamma} f(z) \, \mathrm{d}z = 0.$$

2.3 Evaluation of some integrals

定理 1 Fresnel 积分: $\int_0^\infty \sin(x^2) dx = \int_0^\infty \cos(x^2) dx = \frac{\sqrt{2\pi}}{4}.$

2.4 Cauchy's integral formulas

定理 1 Cauchy 积分公式: 对圆盘 D 及正方向边界圆 C, 若 f 在包含 D 闭包的开集中全纯, 则

$$\forall z \in D, \ f(z) = \frac{1}{2\pi i} \cdot \int_C \frac{f(\zeta)}{\zeta - z} d\zeta.$$

推广 广义 Cauchy 积分: 对开集 Ω 上的全纯函数 f, 则 f 在 Ω 中无穷阶复可微, 且对满足 $C \subset \Omega$, int $C \subset \Omega$ 的圆 C, 成立:

$$\forall z \in C, \ f^{(n)}(z) = \frac{n!}{2\pi i} \cdot \int_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} \,\mathrm{d}\zeta.$$

命题 1 Cauchy 不等式: 对以 $z_0 \in \mathbb{C}$ 为圆心, 半径为 R 的圆盘 D, 若 f 在包含 D 闭包的集合 上全纯, 则

$$|f^{(n)}(z_0)| \le \frac{n! \cdot ||f||_C}{R^n},$$

其中 $||f||_C = \sup_{z \in C} |f(z)|$, 表示边界圆 $C \perp |f|$ 值的上确界.

定理 2 对以 $z_0 \in \mathbb{C}$ 为圆心, 半径为 R 的圆盘 D, 若 f 在包含 D 闭包的开集 Ω 上全纯, 则 $\forall z \in D$, 有幂级数展开

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \quad a_n = \frac{f^{(n)}(z_0)}{n!}, (n \in \mathbb{N}).$$

这实际上说明了复变函数 f 的全纯性与解析性等价.

定理 3 Liouville 定理: 有界整函数 f 是常值函数.

定理 4 代数基本定理 (The Fundamental Theroem of Algebra): 对 n 次复系数多项式 $P(z) = \sum_{i=0}^{n} a_i z^i$, $(a_n \neq 0)$, 它在 \mathbb{C} 上至少有一个根.

定理 5 设 f 是连通区域 Ω 上的全纯函数, 若在 Ω 中某个具有极限点的数列 $\{z_n | n \in \mathbb{N}_+\}$ 上有 $\forall i \in \mathbb{N}_+, f(z_i) = 0$, 则 $\forall z \in \Omega, f(z) = 0$.

推论 对连通区域 Ω 上的函数 f,g, 若在 Ω 的某个非空开子集 (或 Ω 中某具有极限点的数列) Ω_0 上, 有 $\forall z \in \Omega_0, f(z) = g(z), 则 <math>\forall z \in \Omega, f(z) \equiv g(z).$

定义 1 对连通区域 Ω 上的全纯函数 f 和 Ω' 上的全纯函数 F, 设 $\Omega \subset \Omega'$, 若 $\forall w \in \Omega$, f(w) = F(w), 则称 F 是 f 在区域 Ω' 上的解析延拓 (analytic continuation). 这样的 F 由 f 唯一决定.

2.5 Further applications

定理 1 Morera 定理: 对开圆盘 D 上的连续函数 f, 若对 D 上任一条周线 γ , 均有 $\int_{\gamma} f(z) \, \mathrm{d}z = 0$, 则 f 在 D 上全纯.

推广 这里的任一周线 γ 可加强为任一三角形 T. 此时该结论仍成立.

注 Morera 定理实际上是 Cauchy 定理的逆定理.

定理 2 对在 Ω 的每个紧子集中一致收敛到函数 f 的全纯函数列 $\{f_n|n\in\mathbb{N}\}$, 则 f 在 Ω 中全纯.

定理 3 假设同定理 2, 则导数序列 $\{f'_n|n\in\mathbb{N}_+\}$ 在 Ω 的每个紧子集上一致收敛到 f'.

推广 在上述假设下, $k \in \mathbb{N}_+$ 阶导数序列 $\{f_n^{(k)} | n \in \mathbb{N}_+\}$ 在 Ω 的每个紧子集上一致收敛到 $f^{(k)}$.

注 一般可通过上述定理将全纯函数 f 构造为级数 $F(z) = \sum_{n=1}^{\infty} f_n(z)$. 这里, 若 f_n 在区域 Ω 上全

纯且该级数在 Ω 的每一个紧子集中均一致收敛, 则上述定理保证了 F(z) 在 Ω 中的全纯性.

命题 1 对开集 $\Omega \in \mathbb{C}$, 在 $(z,s) \in \Omega \times [0,1]$ 上定义函数 F(z,s), 若 f 满足:

- (1) $\forall s \in [0,1], F(z,s)$ 关于 z 全纯;
- (2) F 在 $\Omega \times [0,1]$ 上连续,

则定义在 Ω 上的函数 $f(z) = \int_0^1 F(z,s) \, \mathrm{d}s$ 是全纯函数.

定义 1 对开集 $\Omega \subset \mathbb{C}$, 若它关于实轴对称 (即 $z \in \Omega \Leftrightarrow \overline{z} \in \Omega$), 则定义 $\mathrm{Im}(z) > 0$ 的部分为 Ω^+ , $\mathrm{Im}(z)$ 的部分为 Ω^- , $z \in \mathbb{R}$ 为 I. 显然有 $\Omega^+ + \Omega^- + I = \Omega$.

定理 4 对称原理 (Symmetry principle): 记号同上定义, 设 f^+ 在 Ω^+ 上全纯, f^- 在 Ω^- 上全纯, f^+ , f^- 在 I 上连续且 $\forall x \in I$, $f^+(x) = f^-(x)$, 则如下 Ω 上的函数在 Ω 上全纯:

$$f(z) = \begin{cases} f^{+}(z) & z \in \Omega^{+} \\ f^{+}(z) = f^{-}(z) & z \in I \\ f^{-}(z) & z \in \Omega^{-} \end{cases}$$

定理 5 Schwarz 反射原理 (Schwarz Reflection Principle): 记号同定义 1, 对 Ω^+ 上的全纯函数 f, 若它在 I 上连续且 $\forall z \in I$, $f(z) \in \mathbb{R}$, 则存在 Ω 上的全纯函数 F, 使得 $\forall z \in \Omega^+$, f(z) = F(z).

引理 1 对开集 $\Omega \in \mathbb{C}$ 上的全纯函数 f, 设 $K \subset \Omega$ 是紧子集, 则存在 $\Omega - K$ 上的有限多线段 $\gamma_1, \cdots, \gamma_N$, 使得

$$\forall z \in K, f(z) = \sum_{n=1}^{N} \frac{1}{2\pi i} \int_{\gamma_n} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

引理 2 假设同上述引理, 则对任意线段 $\gamma\subset\Omega-K$, 存在一列在 γ 上有奇点的有理函数, 使得它们在 K 上一致逼近到积分 $\int_{\gamma}\frac{f(\zeta)}{\zeta-z}\,\mathrm{d}\zeta$.

引理 3 假设同上述引理, 若 K^{c} 连通, 则对 $z_0 \notin K$, $\frac{1}{z-z_0}$ 可通过多项式在 K 上一致逼近.

定理 6 Runge 逼近定理 (Runge Approximation Theroem): 紧集 K 的邻域中的任一全纯函数都能通过奇点在 K^c 上的有理函数在 K 上一致逼近; 特殊地, 若 K^c 连通, 则任一 K 邻域内的全纯函数都能通过多项式在 K 上一致逼近.

注 Runge 逼近可看作 Hahn-Banach 定理在复分析中的对应形式.

3 Meromorphic Functions and the Logarithm

- 3.1 Zeros and poles
- 3.2 The residue formula
- 3.3 Singularities and meromorphic functions
- 3.4 The argument principle and applications
- 3.5 Homotopies and simply connected domains
- 3.6 The complex logarithm
- 3.7 Fourier series and harmonic functions

4 The Fourier Transform

- 4.1 The class \mathfrak{F}
- 4.2 Action of the Fourier transform on $\mathfrak F$
- 4.3 Paley-Wiener theorem

5 Entire Functions

- 5.1 Jensen's formula
- 5.2 Functions of finite order
- 5.3 Infinite products
- 5.4 Weierstrass infinite products
- 5.5 Hadamard's factorization theorem

- 6 The Gamma and Zeta Functions
- 6.1 The gamma function
- 6.2 The zeta function

7 The Zeta Function and Prime Number Theorem

- 7.1 Zeros of the zeta function
- 7.2 Reduction to the functions ψ and ψ_1

8 Conformal Mappings

- 8.1 Conformal equivalence and examples
- 8.2 The Schwarz lemma; automorphisms of the disc and upper half-plan
- 8.3 The Riemann mapping theorem
- 8.4 Conformal mappings onto polygon

9 An Introduction to Elliptic Functions

- 9.1 Elliptic functions
- 9.2 The modular character of elliptic functions and Eisenstein series

- 10 Applications of Theta Functions
- 10.1 Product formula for the Jacobi theta function
- 10.2 Generating functions
- 10.3 The theorems about sums of squares

11 Asymptotics

- 11.1 Bessel functions
- 11.2 Laplace's method and Stirling's formula
- 11.3 The Airy function
- 11.4 The partition function

12 Simple Connectivity and Jordan Curve Theorem

- 12.1 Equivalent formulations of simple connectivity
- 12.2 The Jordan curve theorem