Ring Taxonomy

 $\mathrm{Fields} \subset \mathrm{Euclidean\ domains} \subset \mathrm{PIDs} \subset \mathrm{UFDs} \subset \mathrm{Integral\ domains}$

Examples of property X do not apply to listed property $Y \subset X$. Eg, examples of UFDs are not also PIDs

Ideals, Rings

- maximal \implies prime
- if char(R) = n, then R contains subring $\cong \mathbb{Z}/n\mathbb{Z}$

Integral domains

- \bullet prime \Longrightarrow irreducible
- characteristic 0 or prime
- Ex: $\mathbb{Z}[2i]$ not a UFD: 4 = (2)(2) = (2i)(-2i)
- Also, (2i) is irreducible but not prime in $\mathbb{Z}[2i]$, since $\mathbb{Z}[2i]/(2i) \cong \mathbb{Z}/4\mathbb{Z}$

UFD

- prime \iff irreducible
- Ex: $\mathbb{Z}[x], \mathbb{Q}[x,y]$

PID

- irreducible \implies prime (also from inclusion in UFD)
- nonzero prime ideal \implies maximal
- R commutative, R[x] PID \iff R is field. (since (x) is prime \implies maximal)
- Ex: (nontrivial... most are Euclidean)

Euclidean domain

• Ex: $F[x], \mathbb{Z}[i]$

Fields

• Ex: $\mathbb{R}, \mathbb{Q}, \mathbb{R}[x]/(x^2+1) \cong \mathbb{C}$