

Gibbs sampling

Algorithme de Gibbs (général)

2. Générer (et mettre à jour) $x_2 \sim X_2$ avec X_1, X_3, \ldots, X_d fixés selon la loi conditionnelle $X_2 | X_1 = x_1, X_3 = x_3, \ldots, X_d = x_d$ 3. Générer (et mettre à jour) $x_3 \sim X_3$ avec X_1, X_2, \ldots, X_d fixés selon la loi conditionnelle $X_3 | X_1 = x_1, X_2 = x_2, \ldots, X_d = x_d$

On souhaite simuler $\mathbf{X} = (X_1, \dots, X_d) \in \mathbb{R}^d$ d'une distribution jointe $\mathbb{P}_{(X_1, \dots, X_d)}$. Soit $x_2, \dots, x_d \in \mathbb{R}$.

La suite X_n définie par ces itérés est une chaîne de Markov avec $\mathbb{P}_{(X_1,...,X_n)}$ comme distribution stationnaire.

1. Générer $x_1 \sim X_1$ avec X_2, \ldots, X_d fixés selon la loi conditionnelle $X_1 | X_2 = x_2, \ldots, X_d = x_d$

4. ...

Avantages:

1. Simple et facile à mettre en oeuvre

2. Efficace pour simuler les lois a posteriori d'un modèle hiérarchique

1. Nécessite de savoir simuler les lois conditionnelles 2. Convergence lente en grande dimension 3. Convergence très lente si les composantes sont corrélées

Inconvénients:

En dimension d

Algorithme de Gibbs (général)

On souhaite simuler $\mathbf{X} = (X_1, \dots, X_d) \in \mathbb{R}^d$ d'une distribution jointe $\mathbb{P}_{(X_1, \dots, X_d)}$. Soit $x_2, \dots, x_d \in \mathbb{R}$.

- 1. Générer $x_1 \sim X_1$ avec X_2, \ldots, X_d fixés selon la loi conditionnelle $X_1 | X_2 = x_2, \ldots X_d = x_d$
- 2. Générer (et mettre à jour) $x_2 \sim X_2$ avec X_1, X_3, \ldots, X_d fixés selon la loi conditionnelle $X_2 | X_1 = x_1, X_3 = x_3, \ldots, X_d = x_d$
- 3. Générer (et mettre à jour) $x_3 \sim X_3$ avec X_1, X_2, \dots, X_d fixés selon la loi conditionnelle $X_3 | X_1 = x_1, X_2 = x_2, \dots, X_d = x_d$
- 4. ...

La suite X_n définie par ces itérés est une chaîne de Markov avec $\mathbb{P}_{(X_1,...,X_n)}$ comme distribution stationnaire.

Avantages:

- 1. Simple et facile à mettre en oeuvre
- 2. Efficace pour simuler les lois a posteriori d'un modèle hiérarchique
 - 1. Nécessite de savoir simuler les lois conditionnelles

Inconvénients:

- 2. Convergence lente en grande dimension
- 3. Convergence très lente si les composantes sont corrélées

- 1. Pourquoi Monte-Carlo ? (Exemple de modèle hiérarchique)
- 2. Introduction à la méthode Monte-Carlo (historique, PRNG)
- 3. Algorithmes de simulation i.i.d (PRNG, transformation, rejet)
- 4. Méthodes MCMC (Gibbs, Metropolis)
- 5. Diagonstics de convergence MCMC
- 6. Méthodes MCMC avancées (Langevin, HMC, NUTS)

Intro to Metropolis

L'algorithme de Gibbs permet de découper le problème de simulation d'une loi jointe en lois conditionnelles en 1D.

