Question 1 Not yet answered Marked out of

₹ Flag question

Question 1 [45 M]

- 1. GaNithanAyaka (GN) knows that two RVs Y^\star and X^\star (with mean μ_{X^\star} and variance $\sigma_{X^\star}^2$) share a perfect linear relationship $Y^\star = \alpha_0 X^\star$. He has access to, however, only corrupted observations of Y^\star and X^\star , essentially, $y[k] = y^\star[k] + \varepsilon_y[k]$ and $x[k] = x^\star[k] + \varepsilon_x[k]$, where $\varepsilon_x[k]$ and $\varepsilon_y[k]$ are zero-mean i.i.d. sequences of variances λ_X and λ_Y , respectively.
 - (a) Provide MoM estimates of the unknowns α_0 , μ_X^\star , $\sigma_{X^\star}^2$, λ_X and λ_Y using the first and second-order moments only. Examine the consistency $\lim_{N\to\infty}\hat{\alpha}_{\mathsf{MoM}}$. How does the solution change when $\mu_{X^\star}=0$?
 - (b) GN intends to estimate α_0 using the LS approach, i.e., that which minimizes $\sum_{k=1}^{N} (y[k] \alpha x[k])^2$. Examine the consistency $\lim_{N\to\infty} \hat{\alpha}_{LS}$. Can you explain the result?

Question **2**Not yet
answered

Marked out of 55.00

Flag question

Question 2 [55 M]

- i. Determine the MLE of λ given N observations of a RV $Y \sim \mathsf{Poisson}(\lambda)$ with the constraint that $\lambda \geq b$, where b > 0 is a known constant.
- ii. A random sample of N observations of $Y \sim \Gamma(1,\theta)$ is available. Parignya chooses a prior as $\pi(\theta) \propto 1/\theta^2$.
 - (a) Is Parignya's choice in the class of Jeffreys' priors? If not, correct Parignya's choice.
 - (b) Find $f(\theta|\mathbf{y}_N)$ with Parignya's / corrected prior up to a proportionality constant.
 - (c) If $\tau = 1/\theta$, determine the Bayesian (MMSE) estimator of τ .

PnSE > Quiz 3 >

Quiz 3: Probability estimation and Linear Regression

0 solutions submitted (max: 4)

Observations of a process variable y[k] over a duration of time are available. Answer / do the following

- 1. Find the probability $Pr(a \le y[k] \le b)$, where a and b are known constants. Report your answer in prob_est variable.
- 2. Heera and Panna wish to fit an MA(3) model $y[k] = e[k] + c_1e[k-1] + c_2e[k-2] + c_3e[k-3]$ to the given data. Realizing that the MLE method is quite complicated, H-P propose the following idea so as to use linear LS. Fit a high-order AR model such that the residuals are white. Use these residuals to fit an LR model for y[k] e[k] with appropriate regressors. Obtain estimates of c_1 , c_2 and c_3 using this algorithm (report in MATLAB **vector** variable Chat = [c1hat c2hat c3hat])
- 3. Determine the significant coefficients (at $\alpha = 0.05$) and report them in Cflags = [c1flag c2flag c3flag] (1 for significant and 0 for otherwise).
- 4. Do you expect $\Pr(a \le y[k]|y[k-1] \le b)$ to be **significantly** different from $\Pr(a \le y[k] \le b)$? Report your answer in prob_ans (1 for 'Yes' and 0 for 'No').

Note: The data set y[k] $k = 1, 2, \cdots N$ and the values of a, b are auto-generated by the script datagen_ts.m supplied with this question.