Binomial Theorem - Class XI

Past Year JEE Questions

Questions

Quetion: 01

Let
$$(1 + x + 2x^2)^{20} = a_0 + a_1x + a_2x^2 + \dots + a_{40}x^{40}$$
. Then $a_1 + a_3 + a_5 + \dots + a_{37}$ is equal to

A.
$$2^{20}(2^{20} - 21)$$

B.
$$2^{19}(2^{20} - 21)$$

$$C. 2^{19}(2^{20} + 21)$$

D.
$$2^{20}(2^{20} + 21)$$

Solutions

Solution: 01

Explanation

$$(1 + x + 2x^2)^{20} = a_0 + a_1x + a_2x^2 + \dots + a_40x^{40}$$

Put
$$x = 1$$

$$\Rightarrow 4^{20} = a_0 + a_1 + \dots + a_{40} + a$$

Put
$$x = -1$$

$$\Rightarrow 2^{20} = a_0 - a_1 + \dots + a_{39} + a_{40} + a$$

by (i)
$$-$$
 (ii) we get,

$$4^{20} - 2^{20} = 2(a_1 + a_3 + \dots + a_{37} + a_{39})$$

$$\Rightarrow a_1 + a_3 + \dots + a_{37} = 2^{39} - 2^{19} - a_{39} + \dots$$
 (iii)

$$a_{39} = \text{coeff. } x^{39} \text{ in } (1 + x + 2x^2)^{20}$$

$$=\frac{20!}{0!1!}(1)^0(1)^1(2)^{19}$$

$$=20.2^{19}$$

$$a_1 + a_3 + \dots + a_{37} = 2^{39} - 2^{19} = 2^{39}$$

$$\Rightarrow 2^{19}(2^{20} - 21)$$