به نام خدا

پروژه داده کاوی

اعضای گروه: سارا سلطانی گردفرامرزی

بهار ۱۴۰۲–۱۴۰۱

معرفي حوزه

پیش بینی تاییدیه وام بانکی:

در این مسئله پیشبینی کنیم که آیا یک فرد وام خود را پرداخت خواهد کرد یا خیر تا بتوان تا حدودی جلوی خسارت وارده به بانکها را گرفت.

- مشخصات هر متقاضی
 - « مدت زمان برگشت وام
 - مبلغ وام
- « مقدار خالص وام (مبلغ وام منهای هزینههای اولیه)
 - « مدت زمان استخدام
 - - •••

بالانس اوليه دادهها

- عدم وجود کورولیشن بین دادههای آموزش،
- صفر بودن تمامی مقادیر هدف در دادههای تست
 - ▶ ترکیب دادههای آموزش و تست
 - 🕨 ٪۸۰ کل داده برای آموزش، ٪۲۰ تست
- توزیع ابتدایی دادههای آموزش ۸۳٪ به ۱۷٪ درنتیجه up sampling

قبل از ترکیب و آپ سمیل

اكتشافات دادهاي

مجموعهی دادگان شامل:

- مشخصات ۸۷۱۱۲ نفر متقاضی وام برای دادههای آموزشی جمعآوری شده است
 - تقاضا ۷۲۱۱۲ نفر رد و تقاضا ۱۵۰۰۰ نفر پذیرفته شدهاست
 - مشخصات ۱۹۲۷۶ نفر متقاضی وام برای دادههای تست جدا شده است
 - تقاضا ۱۸۰۲۳ نفر رد و تقاضا ۱۲۵۳ نفر پذیرفته شدهاست
 - ۳۴ ویژگی پیش بینی کننده و ۱ ویژگی هدف باینری داریم
 - دادهی null یا گمشده نداریم
- حذف ویژگیهای آیدی و برنامه پرداخت به دلیل مقادیر یکتا و تکراری برای هر رکورد

نحوه حل مسئله

- ▶ شناسایی دادهای پرت و حذف آنها
- ▶ نرمالسازی و استاندارسازی ویژگیها
- ◄ بررسی امکان دسته بندی مجدد متغیرهای دستهای
- ▼ تبدیل متغیرهای دستهای به عددی برای تحلیل آسان تر و استفاده در آموزش مدل
 - ▶ سبد بندی متغیرهای عددی و بررسی تاثیر آن روی همبستگی ویژگیها
 - ◄ بررسی امکان اضافه کردن متغیر جدید به دیتاست و تاثیر آن روی همبستگی
 ویژگیها با متغیر هدف
 - ▶ آموزش دادن مدل های مختلف با استفاده از داده آموزش
 - ▶ ارزیابی و انتخاب مدل با توجه به مجوعه کراس ولیدیشن
 - ▶ ارزیابی نتیجه پیش بینی دادههای تست با استفاده از مدل انتخابی

تبدیل متغیرهای دستهای به عددی

- Label Encoder تبديل متغيرها با روش
 - 🔪 متغیرهای دسته ای:
 - 🗸 متغیرهای اسمی:

Employment Duration

Verification Status

Loan Title

🕨 متغیرهای ترتیبی:

Grade

Sub Grade

🕨 متغیرهای باینری:

Initial List Status

Application Type

- ▶ استفاده از دو روش IQR, Zscore برای شناسایی دادههای پرت
 - ▶ نمایش توزیع دادهها قبل وبعد از حذف دادهههای پرت
 - ▶ (استفاده از دو روش و بررسی روی سه ویژگی)
- Total Revolving Credit Limit روی ویژگی z score بررسی ►

z_score قبل از اعمال

Z_score بعد از اعمال

total current balance بررسی روی ویژگی

Z_SCORE قبل از اعمال

z score بعد از اعمال

ا IQR روی ویژگی Total Revolving Credit Limit

0 50000 100000 150000 200000 Total Revolving Credit Limit

IQR قبل از اعمال

IQR بعد از اعمال

IQR روی ویژگی Total Current Balance

IQR قبل از اعمال

IQRبعد از اعمال

حذف ۷۵ درصد داده ها توسط IQR انتخاب روش Z Score به عنوان روش نهایی

بعد از حذف داده های پرت

- 🗸 از بین ۳۲ ویژگی پیشبینی کننده موجود ۲۱ ویژگی دارای داده پرت است
 - حذف ویژگیها تا جایی که بهترین نتیجه از حیث کورولیشن بدست آید

z scoréداده پرت با

13

بهترین نتیجه از حذف دادههای پرت ۶ ویژگی Total Received Interest", "Total" Accounts", "Open Account", "Funded Amount Investor", "Total "Total Revolving Credit Limit", "Total Current Balance" بدست آمد. که بین ۱۲۳_۲و۲۲_۲۹۴کورولیشن ایجاد می شود.

z scoreداده یوت با

تبدیل و استاندارد سازی دادهها

- ◄ شاهد تغییر مقیاس زیادی در ویژگیها هستیم (با مشاهده مقادیر مینیمم و ماکزیمم و میانگین هر ویژگی)
 - ▶ شاهد میانگین ۱۶۶۹۷٫۷۵۸۳۵۹و ۱ هستیم در ویژگیهای مختلف
 - پس به استاندارد سازی دادهها نیاز است

	Loan Amount	Funded Amount	Funded Amount Investor	Term	Batch Enrolled	Interest Rate	Grade	Sub Grade	Employment Duration	Home Ownership	 Recover
count	79763.000000	79763.000000	79763.000000	79763.000000	7.976300e+04	79763.000000	79763.000000	79763.000000	79763.000000	79763.000000	 79763.000
mean	16697.758359	15673.711533	14620.063816	57.186628	3.179999e+06	11.935295	1.825483	1.986924	0.828128	80026.353863	 57.899
std	8357.006819	8126.050543	6877.849424	5.717684	1.523204e+06	3.768818	1.377080	1.488450	0.932119	44481.214913	 355.075
min	1000.000000	1000.000000	1000.000000	36.000000	2.249230e+05	5.320000	0.000000	0.000000	0.000000	14573.537170	 0.000
25%	9930.000000	9227.000000	9786.753924	58.000000	1.930365e+06	9.329726	1.000000	1.000000	0.000000	51366.149780	 1.296
50%	15913.000000	13033.000000	12794.921590	59.000000	2.803411e+06	11.459140	2.000000	2.000000	0.000000	69054.367060	 3.099
75%	21987.500000	21671.500000	18054.801020	59.000000	4.351734e+06	14.322009	3.000000	3.000000	2.000000	94394.614960	 5.271
max	35000.000000	35000.000000	35000.000000	60.000000	5.924421e+06	27.310000	6.000000	6.000000	2.000000	406944.859000	 4354.467

تبدیل و استاندارد سازی دادهها

قبل از استاندارد سازی

- تبدیل و استاندارد سازی دادهها
 - ✓ استفاده از دو روش:
 - z_score , min max >
- ایویژگی:loan amount 🕨

تبدیل و استاندارد سازی دادهها

- انتخاب روش minmax در نهایت
- مماهنگی بیشتر مقیاس ها بعد از استانداردسازی

	Loan Amount	Funded Amount	Funded Amount Investor	Term	Batch Enrolled	Interest Rate	Grade	Sub Grade	Employment Duration	Home Ownership	 Recoveri
count	79763.000000	79763.000000	79763.000000	79763.000000	79763.000000	79763.000000	79763.000000	79763.000000	79763.000000	79763.000000	 79763.0000
mean	0.461699	0.431580	0.400590	0.882776	0.518480	0.300832	0.304247	0.331154	0.414064	0.166813	0.0132!
std	0.245794	0.239001	0.202290	0.238237	0.267252	0.171388	0.229513	0.248075	0.466059	0.113365	 0.0815
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	 0.0000
25%	0.262647	0.241971	0.258434	0.916667	0.299227	0.182343	0.166667	0.166667	0.000000	0.093770	 0.0002
50%	0.438618	0.353912	0.346909	0.958333	0.452406	0.279179	0.333333	0.333333	0.000000	0.138850	 0.0007
75%	0.617279	0.607985	0.501612	0.958333	0.724066	0.409368	0.500000	0.500000	1.000000	0.203432	 0.0012
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	 1.0000

دسته بندی مجدد متغیرهای دستهای

- sub grade دسته بندی مجدد متغیر دسته ای
- بعد از بستهبندی مجدد متوجه شدیم کورولیشن بین ویژگی sub grade و grade
 به اندازه حدودا ۱ ۱ ۱ افزایش داشته که این یعنی بستهبندی مجدد خوب بوده

قبل از دسته بندی مجدد

سبد بندی متغیرهای عددی

استفاده از دو روش برای سبد بندی متغیرهای عددی:

- KBinsDiscretizer مستههای سه یا چهار یا ۵ تایی با روش کا دستههای سه یا چهار یا ۵ تایی با روش
 - Qcut یا ۴ یا ۵ تایی با روش ۳ یا ۴ یا ۵ تایی با روش
- loan amount روی ویژگی KBinsDiscretizer کا اعمال روش

قبل از سبد بندی سه تایی

بعد از سبد بندی سه تایی

سبد بندی متغیرهای عددی

پس از سبد بندی ۴ تایی

پس از سبد بندی ۵ تایی

سبد بندی متغیرهای عددی

loan amount روی ویژگی qcut کے

- رسم نمودار overlay در حالت اسکیل شده برای هر ویژگی (term, loan amoun,...)
 و هدف در حالت سبدبندی شده
 - محاسبه mutual information بین ویژگیهای بالا و هدف 🗡

kbins سبد بندی شده توسط ۶

Knbins:

- 🕨 ستونهای با کورولیشن بزرگتر از ۰/۱ بعد از سبد بندی سه تایی:
 - Loan Amount, Term
 - Collection Recovery Fee 9 Recoveries
- ✓ ستونهای با کورولیشن بزرگتر از ۰/۱ بعد از سبد بندی ۴ تایی:
 - Collection Recovery Fee Recoveries
- ستونهای با کورولیشن بزرگتر از 1/1 بعد از سبد بندی Δ تایی:
 - Collection Recovery Fee Recoveries
 - Term , Debit to Income
 - ستونهای با کورولیشن بزرگتر از ۰/۱ قبل از سبد بندی:
 - Loan Amount, Term
 - Term , Debit to Income
 - Collection Recovery Fee Recoveries
- Revolving Balance, Total Revolving Credit Limit,

:Qcut

- ✓ ستونهای با کورولیشن بزرگتر از ۰/۱ بعد از سبد بندی سه تایی:
 Total Received Late Fee, Recoveries
- Recoveries و Total Received Late Fee و Total Collection Amount و Total Collection Recovery Fee و Recoveries و Total Collection Recovery Fee و Recovery Fee و Recoveries و Recoveries

مجموع mutual information ویژگی ها با ویژگی هدف:

KBinsDiscretizer method

قبل از سبد بندی: ۵/۷۸۹۹۱

بعد از سبد بندی سه تایی: ۱۲ ۰/۰

بعد از سبد بندی ۴ تایی: ۱۳ ۰/۰

بعد از سبد بندی ۵ تایی: ۱۴ ۰/۰

Qcut method

قبل از سبد بندی: ۵/۷۸۹۹۱

بعد از سبد بندی ۳ تایی: ۱۵ ۰/۰

بعد از سبد بندی ۴ تایی: ۱۷ ۰/۰

بعد از سبد بندی ۵ تایی: ۰/۰۲

- 🕨 کاهش کورولیشن بین دادهها بعد از سبد بندی با هر دو روش
- 🗡 کاهش mutual information بین داده ها بعد از سبد بندی با هر دو روش
 - در نتیجه عدم مفید بودن سبد بندی برای دیتاست

26

بررسی روابط تک متغیره بین متغیرهای پیشبین و متغیر هدف

- 🕨 نمایش هیت مپ مربوط به ویژگیهای شناسایی شده و بررسی روابط
 - 🕨 شناسایی ویژگیهایی با بیشترین همبستگی با ویژگی هدف

- 1.0

- 0.8

- 0.6

- 0.4

-0.2

- 0.0

1 m 08000 DEERSCHED 120 2000 DEED ATE C 1022 DEAD 1800 DEERSCHED 120 DEED 120 DE 120 D

Loan Amount Funded Amount Funded Amount Investor Batch Enrolled Interest Rate Grade Sub Grade **Employment Duration** Home Ownership Verification Status Loan Title Debit to Income Delinquency - two years Inquires - six months Open Account Public Record Revolving Balance Revolving Utilities Total Accounts Initial List Status Total Received Interest Total Received Late Fee Recoveries Collection Recovery Fee Collection 12 months Medical Application Type Last week Pay Accounts Delinquent Total Collection Amount Total Current Balance Total Revolving Credit Limit

Funded Amount Investor
Batch Enrolled
Grade
Employment Duration
Verification Status
Debit to Income
Inquires - six months
Public Record
Revolving Utilities
Initial List Status
Total Received Late Fee
Application Type
Accounts Delinquent
Total Current Balance

بررسی روابط چند متغیره بین متغیرها

- 🗡 بررسی روابط بین کلیه متغیرهایی که بیشترین میزان کورولیشن را با هم دارند
 - ← شیب کم به دلیل ارتباط کم (کمتر از ۱/۲)

استخراج متغيرهاى جديد براساس تركيب متغيرهاى موجود

- 🗸 عدم حذف فیچرها به دلیل همبستگی پایین تمامی فیچرها
 - 🕨 انتخاب فیچرهایی برای ترکیب با یکدیگر

	0	1
Loan Amount	-0.002166	0.010495
Term	-0.031998	0.155035
Debit to Income	-0.004368	0.021163
Recoveries	-0.002399	0.011625
Collection Recovery Fee	0.002525	-0.012233
Revolving Balance	0.012395	-0.060054
Total Revolving Credit Limit	0.002641	-0.012795

استخراج متغيرهاي جديد براساس تركيب متغيرهاي موجود

- 🗸 ترکیب خطی چندین فیچر که کمی شباهت داشتند (محاسبه مجموع و میانگین)
- 🗡 مناسب نبودن این فیچرها به دلیل تغییر ندادن همبستگی ویژگی ها با متغیر هدف

پس از اضافه کردن سه ستون جدید

چارچوب تقسیم دادهها روش انجام Cross-validation بالانس دادهها

درده برای آموزش، ٪۲۰ cross validation رای آموزش، ٪۲۰ validation کل داده برای آموزش، ٪۲۰ validation و validation و ۱۲۰٪)

جواب پایه با Dummy Classifier و استراتژی most frequent انجام شده که جواب تقریبا Λ درصد داده است.

0.82612895435	88505			
	precision	recall	f1-score	support
0	0.83	1.00	0.90	13684
1	0.00	0.00	0.00	2880
accuracy			0.83	16564
macro avg	0.41	0.50	0.45	16564
weighted avg	0.68	0.83	0.75	16564

انتخاب و پیاده سازی الگوریتمهای لازم

از ۴ الگوریتم زیر برای مدل کردن استفاده شد:

accuracy on trai			5		
accuracy on test	0.82950978 ecision	802463173 recall 1	f1-score	support	
•					:knn
0	0.90	0.89	0.90	13681	• [7] [1]
1	0.51	0.53	0.52	2883	
accuracy			0.83	16564	
macro avg	0.71	0.71	0.71	16564	
weighted avg	0.83	0.83	0.83	16564	
accuracy on tra					
	precision	recall	f1-score	support	
0	0.83	0.98	0.90	13681	·ml=
1	0.47	0.07	0.13		:mlp
accuracy			0.82	16564	•
macro avg	0.65	0.53	0.51		
weighted avg	0.77	0.82	0.77	16564	
accuracy on tra	st 0.826491	118570393	6 2		
I	orecision	recall	f1-score	support	
0	0.83	1.00	0.91	13690	t l
1	0.00	0.00	0.00	2874	:naivebayes
accuracy			0.83	16564	
macro avg	0.41	0.50	0.45	16564	
weighted avg	0.68	0.83	0.75	16564	
accuracy on tra	in 0.88735	944457022	211		
accuracy on tes	t 0.861446	510504709	9		
p	recision	recall	f1-score	support	
0	0.86	1.00	0.92	13690	:xgboost
1	0.93	0.22	0.35		·vanonsr
1	0.33	0.22	0.33	20/4	
accuracy			0.86	16564	
macro avg	0.90	0.61	0.64	16564	
weighted avg	0.87	0.86	0.82	16564	32

انتخاب و پیاده سازی الگوریتمهای لازم

اگر از یکی از روشهای دیگر برای حذف دادههای پرت (oneclasssym) استفاده شود:

•	knn
	NHH

					:knn
accuracy on t	rain 0.8997	999768089	053		
accuracy on t	est 0.83238	636363636	36		
	precision	recall	f1-score	support	
0	0.90	0.89	0.90	14301	
1	0.51	0.54	0.52	2947	
accuracy			0.83	17248	
macro avg	0.71	0.71	0.71	17248	
weighted avg	0.84	0.83	0.83	17248	
	train 0.84333 test 0.827690 precision	0166975881 3	3	support	Mlp
e	0.85	0.97	0.90	14301	
1		0.97 0.14	0.90 0.21	14301 2947	
	0.49				
1	0.49		0.21	2947	
accuracy	0.49 0.67	0.14	0.210.83	2947 17248	

accuracy on train 0.82//191558441559									
accuracy on	accuracy on test 0.8291396103896104								
•	precision	recall	f1-score	support					
	•			• • •					
e	0.83	1.00	0.91	14301					
1	0.00	0.00	0.00	2947					
accuracy	,		0.83	17248					
macro avg	0.41	0.50	0.45	17248					
weighted avg	0.69	0.83	0.75	17248					

Naivebayes

انتخاب و پیاده سازی الگوریتمهای لازم

accuracy on train 0.8837111549165121 accuracy on test 0.8603316326530612

:xgboost	support	f1-score	recall	precision	
	14301	0.92	1.00	0.86	0
	2947	0.33	0.20	0.91	1
	17248	0.86			accuracy
	17248	0.63	0.60	0.88	macro avg
	17248	0.82	0.86	0.87	weighted avg

- حاصل نشدن دقت بهتر نسبت به روش قبلی حذف داده های پرت
 - کر Xgboost در تمامی معیارهای ارزیابی از بیس لاین بهتر بوده

تنظیم بهینه مدل و هایپر پارامترها

```
:knn
Best parameters set:
        leaf size: 9
        n neighbors: 19
        weights: distance
  activation: tanh
                                          :mlp
  alpha: 0.0001
  hidden_layer_sizes: (50, 50, 50)
  learning rate: adaptive
  solver: adam
Best parameters set:
                                 :naivebayes
        alpha: 0.5
       class_prior: None
       fit_prior: True
Best parameters set:
                                     :xgboost
        learning_rate: 0.1
        max_depth: 9
        n_estimators: 100
```

تنظیم بهینه مدل و هایپر پارامترها

نتایج مدل بعد از تنظیم هایپر پارامترها

accuracy on accuracy on	train 1.0 test 0.96450	1328181598	36		:knn
,	precision		f1-score	support	
	0 0.98	0.98	0.98	13690	
	0.89	0.91	0.90	2874	
accurac	V		0.96	16564	
macro av		0.94	0.94	16564	
weighted av		0.96	0.96	16564	
accuracy on t	est 0.8527529	9582226515	5	oupport	:mlp
	precision	recall	f1-score	support	
0	0.90	0.93	0.91	13690	
1	0.59	0.49	0.54	2874	
accuracy			0.85	16564	
macro avg	0.74	0.71	0.72	16564	
weighted avg	0.84	0.85	0.85	16564	

accuracy on tra					·nai
ŗ	recision	recall	f1-score	support	:naı
Ø	0.83	1.00	0.90	13684	
1	0.00	0.00	0.00	2880	
accuracy			0.83	16564	
macro avg	0.41	0.50	0.45	16564	
weighted avg	0.68	0.83	0.75	16564	

naivebayes

معرفی مجموعه معیارهای ارزیابی و محاسبه آنها و تفسیر نتایج

- انتخاب مدل باتوجه به معیارهای:
 - Recall >
 - Precision >
 - Accuracy >
 - F-score >
- Precision = TP / (TP+FP) .\
 - Recall = TP / (TP+FN) .*
- F1 Score = 2 * (Precision * Recall) / (Precision + Recall) ."

مشخص کردن بهترین مدل همراه با پارامترهای تعیین شده

:Knn

بهبود دقت نسبت به بیس لاین بهبود precision ,f1_score بهبود بهبود الله یک بهبود mlp:
بهبود دقت نسبت به بیس لاین بهبود دقت نسبت به بیس لاین precision ,f1_score بهبود Lyboost یک بهبود Xgboost:

بهترین مدل با توجه به معیارها:

precision , recall , f1_score بهبود

xgboost

اعمال مدل انتخابی روی دادهی نهایی تست

- توزیع ۹۳٪ به ۷٪ کلاسها در تست
 - خروجي ۹۳,۴۱٪ بيس لاين
- اعمال مدل xgboost روی دادههای تست نهایی
- ▶ دریافت دقت حدودا ۹۳٫۴۹٪(تقریبا ۸ صدم بهتر از بیس لاین)

accuracy on test 0.9349968873210209								
	precis	sion	recall	f1-score	support			
e) (0.93	1.00	0.97	18023			
1	. (0.00	0.00	0.00	1253			
accuracy				0.93	19276			
macro avg	; (0.47	0.50	0.48	19276			
weighted ave	; (0.87	0.93	0.90	19276			

گزارش آزمایشات برگشت به فاز های قبلی برای بهبود ارزیابی

روش اول: با توجه به اینکه خیلی دقت بالاتری نسبت به بیس لاین بدست نمی آوریم به فازهای اولیه برگشته و روش های مختلف تشخیص و حذف داده های پرت(سه روش) را اعمال کرده و در هر مرحله سبد بندی مجدد متغیرهای دسته ای و همچنین میتوال اینفورمیشن میان متغیرهای عدد و تارگت با هر بار سبد بندی (سه ، % ، % تایی) بررسی میکنیم و در صورت بهبود میوتوال اینفورمیشن این سبد بندی ها را روی دیتاست خود اعمال کرده در غیر اینصورت تغییری در دیتاست اعمال نمیکنیم. همچنین در هر مرحله امکان ایجاد فیچرهای جدید را بررسی کرده و در صورت ممکن اضافه میکنیم. در نهایت با هر کدام این روش ها نتایج بهبودی نداشته و خیلی بالاتر از بیس لاین نخواهد شد.

روش دوم: به جای آپ سمپل کردن ابتدایی داده های ترین در جهت بالانس توزیع داده ها در هر کلاس از متد نیر میس استفاده کرده و مجدد مدل را ترین میکنیم اما باز هم بهبودی در دقت نهایی حاصل نمیشود.

روش سوم: به جای اینکه ابتدا داده ها را آپ سمپل کنیم(با توجه به اینکه جنریت کردن داده تا حدودی میتواند داده را دستکاری کند) از الگوریتم هایی که نسبت به بالانس نبودن کلاس ها حساسیت کمتری دارند مثل کا ان استفاده میکنیم. اما باز هم نتیجه بهتری حاصل نمیشود.

تحلیل نقاط قوت و ضعف کار انجام شده و پیشنهادات برای بهبود آینده

نقاط ضعف:

این دیتاست دارای دادههای فیک و رندوم بوده و هیچکدام از ویژگیها کورولیشنی با مقادیر هدف نداشتند. از طرف دیگر توزیع دادها در کلاس های مختلف متناسب نبوده که این عوامل منجر به این شد که نتوان هوشمند سازی در دادهها را به نحو احسنت انجام داد. در دادههای واقعی قطعا الگو برای ساخت مدل وجود دارد اما وجود الگو در دادههای رندوم احتمال خیلی کمی دارد.

نقاط قوت:

تعداد زیاد رکوردهای دیتاست که میتواند منجر به جلوگیری از اورفیت شدن دادهها شود و به راحتی میتوان مجوعه کراس ولیدیشن را جدا کرد و محدودیت کمبود داده نداریم

معرفی کارهای مرتبط

- https://rpubs.com/saramonica/loan-prediction
- https://ieeexplore.ieee.org/document/8389442
- https://www.researchgate.net/publication/325917915_Prediction_of_loan_status_in_commercial_bank_using_machine_learning_classifier