两组率同为 100% 或 0% 时率差置信区间估计的 SAS 实现 *

南方医科大学生物统计学系(510515) 黄耀华 唐欣然 段重阳 陈平雁△

【提 要】目的 通过 SAS 编程实现两组事件发生率均为 0% 或 100% 时率差置信区间的估计。方法 针对事件发生率均为 100% 或 0% 时率差置信区间的估计问题 ,采用 SAS9. 4 编程,使置信区间估计的 Miettinen Nurminen 法、New-combe—Wilson 法及校正 Newcombe—Wilson 法等三种方法得以实现,并通过实例进行说明。结果 所编程序实现了三种方法的置信区间估计,便于专业和非专业人员使用。实例中两组样本量分别为 59~56~64果两组事件发生率均为 100%,三种方法的 95% 置信区间:Miettinen Nurminen 法为 [-6.16% 6.47%]; Newcombe 法为 [-6.11% 6.42%]; 校正 Newcombe 法为 [-7.62% 8.00%]。结论 本文所提供的 SAS 宏程序可以简便地实现两组事件发生率均为 0% 或 100% 时三种常用的率差置信区间的估计方法。

【关键词】 率差置信区间 SAS 宏程序 Newcombe 法 Miettinen Nurminen 法

SAS Implements of Calculating Rate Differences Confidence Intervals in Clinical Trials with Rates of 0% or 100% in Both Groups

Huang Yaohua Tang Xinran Duan Chongyang et al (Biometrics Department School of Public Health and Tropical Medicine, South Medical University (510515), Guangzhou)

(Abstract) Objective To estimate confidence intervals of clinical trials with success rates of 0% or 100% in both treatment and controlled groups using SAS programming. **Methods** To resolve the issue of calculating confidence intervals of rate differences in clinical trials with both rates of 0% or 100% programs were drafted using SAS 9.4. Miettinen and Nurminen , Newcombe-Wilson Score and Continuity-corrected Newcombe-Wilson methods could all be implemented with these programs. In addition ρne example was displayed to illustrate the convenience of the programs. **Results** Confidence intervals in trials with both success rates of 0% or 100% could be resolved using the 3 methods and it can be used feasibly by professionals and non-professionals. In the given example with sample size of 59 ,56 ,both of two groups had the success rate of 100%. 95% CI of rate difference was [-6.16% β.47%] calculated by Miettinen Nurminen , [-6.11% β.42%] by Newcombe-Wilson Score and [-7.62% β.00%] by Continuity-corrected Newcombe-Wilson Score. **Conclusion** Miettinen and Nurminen Newcombe-Wilson Score and Continuity-corrected Newcombe-Wilson methods could all be implemented easily to calculate confidence intervals of rate differences in clinical trials with both rates of 0% or 100% by invoking the developed programs.

[Key words] Proportion difference confidence interval; SAS macro procedure; Newcome-Wilson score; Miettinen Nurminen

医学研究领域,有时会遇到一种极端的结果,即两个比较组的事件发生率均为100%或0%,如CT成像的优良率、关节置换的成功率、使用脑膜贴片的脑脊液渗漏率等,此时两组的率差为0。目前,常用的两组事件发生率均为100%或0%时率差的置信区间估计方法有三种,分别是 Miettinen Nurminen 法^[1]、New-combe 法和校正 Newcombe 法^[2-4]。然而,最新版本的SAS 软件尚未提供上述三种方法的计算模块,既不便于专业人员的操作,又阻碍了非专业人员的应用。因此,本研究将编制SAS 9.4 宏程序,为此种类型的数据处理提供方便可靠的工具。

方法介绍

1. Miettinen Nurminen 法 若用 x_1 、 x_2 分别表示两组的事件数 p_1 、 p_2 为两组

事件发生率 n_1 n_2 分别为两组样本量 $N = n_1 + n_2$ 为总样本。对于率差 θ Miettinen Nurminen 法 $n_1 + n_2$ 为如下统计量:

$$T_{MN} = \frac{p_1 - p_2 - \theta}{\sqrt{\frac{N}{N - 1} \left(\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}\right)}}$$

式中 \hat{p}_1 、 \hat{p}_2 为给定 θ 情况下的限制性极大似然估计值 (restricted maximum likelihood estimates):

$$\hat{p}_1 = \hat{p}_2 + \theta$$

 $\hat{p}_2 = 2B\cos(A) - L_2/(3L_3)$

其中

$$A = \frac{\pi + \cos^{-1}(C/B^3)}{3},$$

$$B = sign(C) \sqrt{\left(\frac{L_2}{3L_3}\right)^2 - \frac{L_1}{3L_3}},$$

$$C = \left(\frac{L_2}{3L_3}\right)^3 - \frac{L_1L_2}{6L_3^2} + \frac{L_0}{2L_3}$$

$$L_0 = x_2\theta(1-\theta), L_1 = (n_2\theta - N - 2x_2)\theta + x_1 + x_2$$

^{*} 国家自然科学基金项目资助(81673270)

[△]通信作者: 陈平雁 Æ-mail: chenpy99@ 126. com

$$L_2 = (n_1 + 2n_2) \theta - N - x_1 - x_2 L_3 = N$$

率差置信区间(L,U) 分别为如下两个等式的解:

$$L: T_{MN} = -z_{\alpha/2}$$

$$U: T_{MN} = z_{\alpha/2}$$

Newcombe^[2]对上述算法重新表示为如下表达式:

$$|\hat{\theta} - \theta| = z_{\alpha/2} \times$$

$$\sqrt{\frac{N}{N-1} \left[\frac{\left(\psi_{\theta} + \theta/2 \right) \left(1 - \psi_{\theta} - \theta/2 \right)}{n_1} + \frac{\left(\psi_{\theta} - \theta/2 \right) \left(1 - \psi_{\theta} + \theta/2 \right)}{n_2} \right]}$$

率差置信区间(L,U) 为上述表达式的两个解 $\hat{\theta}$ = $p_1 - p_2 \psi_{\theta}$ 为给定 θ 情况下两组率加和的限制性极大似然估计值。

当两组事件发生率均为 0% 时 $,\hat{\theta}=0$, $New-combe^{[2]}$ 给出 $\psi_{\theta}=\frac{|\theta|}{2}$,上述置信区间构建过程可以简化为:

$$L = -\frac{z_{\alpha/2}^2}{n_2} \times \frac{N}{N-1} / \left(1 + \frac{z_{\alpha/2}^2}{n_2} \times \frac{N}{N-1}\right)$$

$$U = \frac{z_{\alpha/2}^2}{n_1} \times \frac{N}{N-1} / \left(1 + \frac{z_{\alpha/2}^2}{n_1} \times \frac{N}{N-1} \right)$$

当两组事件发生率均为 100% 时 $\hat{\theta}=0$,我们推出 $\psi_{\theta}=1-\frac{|\theta|}{2}$,上述置信区间构建过程可以简化为:

$$L = -\frac{z_{\alpha/2}^2}{n_1} \times \frac{N}{N-1} / \left(1 + \frac{z_{\alpha/2}^2}{n_1} \times \frac{N}{N-1} \right)$$

$$U = \frac{z_{\alpha/2}^2}{n_2} \times \frac{N}{N-1} / \left(1 + \frac{z_{\alpha/2}^2}{n_2} \times \frac{N}{N-1} \right)$$

2. Newcombe-Wilson 法

Newcombe-Wilson 方法已被 FDA 指南推荐,作为 差置信区间计算方法的首选[2-5]。其计算方法是通过 Wilson 法分别得到两单样本率的可信区间上下限[3]。 Wilson 法单样本率置信区间上下限为等式 $(z_{\alpha/2}^2 + n) \pi^2 - (z_{\alpha/2}^2 + 2np) \pi + np^2 = 0 中 \pi$ 的两个解, 表示单组的样本量, 表示单组的事件发生率。 求

n 表示单组的样本量 p 表示单组的事件发生率。求解可得单组率置信区间(l μ) 的计算公式为: ($2np + z^2$

$$\pm z \sqrt{(z^2 + 4npq)})/2(n+z^2)$$
,

式中 q = 1 - p。 New combe—Wilson 法通过杂交方式构建出率差置信区间上下限(L,U) 如下:

$$L = p_1 - p_2 - \sqrt{(p_1 - l_1)^2 + (u_2 - p_2)^2}$$

$$U = p_1 - p_2 + \sqrt{(p_2 - l_2)^2 + (u_1 - p_1)^2}$$

其中 l_1 μ_1 l_2 μ_2 分别为两组率 Wilson 得分方法计算得到的置信区间上下限^[2-4]。

3. 校正 Newcombe-Wilson 法

连续校正 Newcombe-Wilson 得分方法相对较为保守^[2-3] ,其率差计算公式杂交方法同 Newcombe-Wilson 得分方法 区别在于 Wilson 单组置信区间的计算公式有所调整 采用了连续性校正后的结果 具体计

算公式为

$$l = \left[2np + z^2 - 1 - z \sqrt{z^2 - 2 - 1/n + 4p(qn + 1)} \right] /$$

$$\left[2(n + z^2) \right]$$

$$u = \left[2np + z^2 + 1 + z \sqrt{z^2 + 2 - 1/n + 4p(qn - 1)} \right] /$$

$$\left[2(n + z^2) \right]$$

连续校正方法因单组率计算的调整而增加可信区间的宽度 ,从而更加保守地估计组间差异^[2-4]。

率差置信区间估计的 SAS 实现^[6-8]

% macroratediff(n1 = ,n1_event = ,n2 = ,n2_event = ,alpha = ,side =);

/* 近似正态方法 1 ,此方法无法计算两组率均 100% 率差 ,因此将两组率保守设为 99% */

data CMHChisq;

$$n1 = &n1.$$
; $p1 = 0.995$;

$$n2 = \&n2$$
.; $p2 = 0.995$;

$$d = p1 - p2;$$

 $l_{diff} = d_{probit}(1-\&alpha. /\&side.) * sqrt(p1 * (1-p1) /n1 + p2 * (1-p2) /n2);$

 $u_diff = d + probit(1-&alpha. /&side.) * sqrt(p1*(1-p1) /n1 + p2*(1-p2) /n2);$

run;

/* Miettinen Nurminen 方法* /

data mienur;

$$n1 = \&n1$$
.; $a1 = \&n1$ _event.; $a2 = n1$ -a1; $p1 = a1/n1$;

$$n2 = &n2$$
.; $a3 = &n2$ _event.; $a4 = n2$ - $a3$; $p2 = a3/n2$;

z = probit(1-&alpha. /&side.);

d = p1 - p2;

* 率差置信区间下限;

$$l_{diff} = (z * * 2* (a1 + a3) / ((a1 + a3-1) * a1)) / ((z * * 2* (a1 + a3) / ((a1 + a3-1) * a1)) + 1);$$

* 率差置信区间上限;

$$\begin{array}{l} u_{-} \mathrm{diff} = \left(\ z \, * \, * \, 2 \, * \, \left(\ a1 \, + \, a3 \right) \, / (\, \left(\ a1 \, + \, a3 \, - 1 \right) \, * \\ a3) \, \right) \, / \left(\left(\ z \, * \, * \, 2 \, * \, \left(\ a1 \, + \, a3 \right) \, / (\, \left(\ a1 \, + \, a3 \, - \, 1 \right) \, * \, a3) \, \right) \, + \\ 1) \, ; \end{array}$$

run;

/* Newcombe – Wilson 得分方法 ,提交 FDA 报告中常见的方法 * /

data Newcombe;

$$n1 = &n1$$
; $a1 = &n1_event$; $a2 = n1 - a1$; $p1 = a1/n1$:

$$n2 = &n2$$
; $a3 = &n2$ _event.; $a4 = n2 - a3$; $p2 = a3/n2$;

```
z = probit(1 - &alpha. /&side.);
    * 单样本率置信区间下限:
    11 = (2* a1 + z * *2 - z* sqrt(z * *2 + 4* a1*
a2/n1))/(2*(n1+z**2));
    12 = (2* a3 + z * *2 - z* sqrt(z * *2 + 4* a3*
a4/n2))/(2*(n2+z**2));
    * 单样本率置信区间上限:
    u1 = (2* a1 + z * *2 + z* sqrt(z * *2 + 4* a1*
a2/n1))/(2*(n1+z**2));
    u2 = (2* a3 + z * *2 + z* sqrt(z * *2 + 4* a3*
a4/n2))/(2*(n2+z**2));
    d = p1 - p2;
    单样本率置信区间下限
    l_{diff} = d - sqrt((p1 - l1) * *2 + (u2 - p2) * *
2);
    单样本率置信区间上限
    u_{diff} = d + sqrt((p2 - l2) * *2 + (u1 - p1) * *
2);
    run;
    /* Newcombe - Wilson 得分连续校正方法,所有
计算方法中最保守 * /
    data NewcombeCC:
    n1 = &n1; a1 = &n1_event.; a2 = n1 - a1; p1 =
a1/n1;
    n2 = \&n2; a3 = \&n2_event.; a4 = n2 - a3; p2 =
a3/n2;
    z = probit(1 - & alpha. / & side.);
    * 单样本率置信区间下限;
    11 = (2* a1 + z * *2 - 1 - z* sqrt(z * *2 - 2 -
1/n1 + 4* p1* (n1* a2/n1 + 1)) / (2* (n1 + z * *
2));
    12 = (2* a3 + z * * 2 - 1 - z * sqrt(z * * 2 - 2 -
1/n2 + 4* p2* (n2* a4/n2 + 1)))/(2* (n2 + z * *
2));
    * 单样本率置信区间上限;
    u1 = (2* a1 + z * *2 + 1 + z* sqrt(z * *2 + 2 -
1/n1 + 4* p1* (n1* a2/n1 - 1)))/(2* (n1 + z * *
2));
    u2 = (2* a3 + z * *2 + 1 + z* sqrt(z * *2 + 2 -
1/n^2 + 4* p^2* (n^2* a^4/n^2 - 1)))/(2* (n^2 + z * *
2));
    d = p1 - p2;
    * 率差置信区间下限;
    l_diff = d - sqrt( ( p1 - l1) \,\,\star\,\,\,\star\,\,2 + ( u2 - p2) \,\,\star\,\,\,\star\,\,\,
2);
    * 率差置信区间上限;
    u_{diff} = d + sqrt((p2 - l2) * *2 + (u1 - p1) * *
```

```
run;
   data ratediff;
   length method $ 200;
    setmienur (in = mienur) CMHChisq (in = CMH-
Chisa)
    Newcombe(in = Newcombe) NewcombeCC(in =
NewcombeCC);
    if mienur then method = 'Miettinen Nurminen (仅
限两组均为100%) ′;
    if CMHChisq then method = ´近似正态(两组率均
为 99.5%) ′;
    if Newcombe then method = 'Newcombe';
    if NewcombeCC then method = ´Newcombe 连续校
正′;
   l_diff = l_diff* 100;
   u_diff = u_diff* 100;
   run;
   proc print data = ratediff;
    var method n1 a1 p1 n2 a3 p2 d l diff u diff;
   format l_diff u_diff8. 2;
   run:
    % mend;
                   实例分析
    某项用于骨折患者的骨钉临床试验,由于产品技
```

2);

某项用于骨折患者的骨钉临床试验,由于产品技术成熟,所有随访到的受试者在最终的临床评价中都为有效,即试验组和对照组事件发生率皆为100%。其中试验组有效例数为59,对照组有效例数为56,计算两组事件发生率差值的点估计和置信区间估计。

该研究符合两组率都为 100% 条件,可以调用之前所编写程序,获得三种方法下计算得到的率差的点估计和置信区间估计。

% ratediff(n1 = 59 ,n1_event = 59 ,n2 = 56 ,n2_event = 56 ,alpha = 0.05 ,side = 2) ;

表 1 为调用该宏程序后得到的结果 其中 n1 为试验组样本量 a1 为试验组有效的例数 p1 为试验组事件发生率 n2 为对照组样本量 a2 为对照组有效的例数 p2 为对照组事件发生率 d 为试验组和对照组两组率差点估计 l_diff 和 u_diff 分别为率差置信区间的下限和上限。

三种方法算得的点估计都为 0 ,Miettinen Nurminen 计算的率差置信区间估计为 [-6.16% 6.47%]; 近似正态方法因无法估算两组率差的置信区间 ,将两组事件发生率保守估计为 99.5% ,获得率差置信区间估计为 [-2.58% 2.58%]; Newcombe 方法计算的率差置信区间估计为 [-6.11% 6.42%]; 而 Newcombe

连续校正方法计算的率差置信区间估计为 [-7.62% 8.00%]。

表 1	调用% ratediff	宏获得三种方法	下两组率差点估计和置信区间估计	
-----	--------------	---------	-----------------	--

Obs	method	n1	al	р1	n2	аЗ	p2	d	I_diff	u_diff
1	Miettinen Nurminen(仅限两组均为 100%)	59	59	1	56	56	1	0	-6.16	6.47
2	Newcombe	59	59	1	56	56	1	0	-6.11	6.42
3	Newcomber 连续校正	59	59	1	56	56	1	0	-7.62	8.00

研究者可以根据试验预先设定的评价方法选择恰当的一种 结合临床和统计评价标准判断试验研究假设是否成立。

讨 论

率差置信区间估计最常用的方法是 CMH(Cocheran-Mantal Haenszel) 法[5,9-11] ,但该法对于两组率同为 0% 或 100% 的情况无法进行置信区间估计 ,应用中虽然有将 0% 或 100% 用接近的数据替代(如 0.5% 或 99.5%) ,但毕竟导致数据失真 不宜提倡。

从实例看 "Miettinen Nurminen 法和 Newcombe 法的结果相近 ,而校正 Newcombe 法的结果最为保守 ,且精度较差。关于这三种方法的统计性能究竟如何,尚有待我们进一步的研究予以明确^[9-11]。

参 考 文 献

- [1] Miettinen O , Nurminen M. Comparative analysis of two rates Stat Med ,1985 4(2):213-226.
- [2] Newcombe RG. Interval estimation for the difference between independent proportions: comparison of eleven methods. Stat Med, 1998, 17(8):873-890.

- [3] Newcombe RG. Improved confidence intervals for the difference between binomial prportions based on paired data. Statist. Stat Med, 1998, 17(6):2635-2650.
- [4] Newcombe RG. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med ,1998 ,17(8):857-872.
- [5] FDA. Guidance for Industry and FDA Staff Statistical Guidance on Reporting Results from Studies Evaluating Diagnostic Tests. (2007-03-13) http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm071148.htm
- [6] SAS Institute Inc. SAS/IML[®] 9. 2User's Guide. Second Edition. Cary North Carolina JUSA: SAS Institute Inc 2009.
- [7] Barker N. A Practical Introduction to the Bootstrap Using the SAS System. Heidelberg 2005.
- [8] Mehrotra D ,Railkar R. Minimum risk weights for comparing treatments in stratified binomial trials. Statistics in Medicine ,2000 ,19: 811-825
- [9] 张高魁. 阳性药对照临床试验有效性的可信区间评价方法. 中华临床药学 2005 (5):389-391.
- [10] 刘沛. 总体率可信区间计算的一次近似法及其特征. 中国卫生统计 2004 21(5):297-299.
- [11] 刘沛. 四种方法计算总体率可信区间的比较研究. 中国卫生统计 2005 22(6):354-358.

(责任编辑:郭海强)

(上接第10页)

- [14] Demicheli R ,Abbattista A ,Miceli R ,et al. Time distribution of the recurrence risk for breast cancer patients undergoing mastectomy: further support about the concept of tumor dormancy. Breast cancer research and treatment ,1996 ,41(2):177-185.
- [15] Demicheli R ,Retsky MW ,Hrushesky WJ ,et al. Tumor dormancy and surgery-driven interruption of dormancy in breast cancer: learning from failures. Nature Clinical Practice Oncology 2007 4(12):699-710.
- [16] 周力恒 殷文瑾 陆劲松 等. 乳腺癌患者术后不同部位复发转移的风险分布. 中国癌症杂志 2008 18(2):124-127.
- [17] Demicheli R ,Biganzoli E ,Ardoino I ,et al. Recurrence and mortality dynamics for breast cancer patients undergoing mastectomy according to estrogen receptor status: different mortality but similar recurrence. Cancer science 2010 ,101(3):826-830.

(责任编辑:郭海强)