

בית הספר להנדסת חשמל שפת תיאור חומרה - VHDL

VHDL PS/2 Mouse Controller

Block Diagram

<u>RTL</u>

State Machine

Diagram

• rst_n = '0' - asynchronous reset, return to Idle (from any state)

RTL - State Machine

Control Lines

State Machine - OUTPUT

State	Start	В	Valid_sm
ldle	0	000	0
Tx	1	000	0
Byte1	0	001	0
Byte2	0	010	0
Byte3	0	100	0
Valid	0	000	1

State Machine - INPUT

Current State	Next State	done_s	cnt_11
ldle	Tx	X	XXX
Tx	Tx	0	XXX
Tx	Byte1	1	XXX
Byte1	Byte1	X	XXX
Byte1	Byte2	X	001
Byte2	Byte2	X	XXX
Byte2	Byte3	X	010
Byte3	Byte3	X	XXX
Byte3	Valid	X	100
Valid	Byte1	X	XXX

Testbench

פירוט:

ומצב Idle שמתקיים למשך מחזור שעון אחד. reset - **1**. מעבר למצב tx

testbench- מהבקר ל-0xF6 קבלת 2.

- 0xF6 שמכיל את ההודעה cyclic shift register המידע מועבר בעזרת בעזרת בעזרת פרוטוקול PS2.
- לאחר סיום העברת ההודעה ניתן לראות את קווי הבקרה מתעדכנים ואת
 מכונת המצבים מתקדמת למצב Rx − Byte_1
 - דחיפת Z קו ה-INOUT ישמש כקו כניסה.

testbench. קבלת מידע תקין מה-3

- . ניתן לראות את השעון והמידע ב-'1' עד לתחילת שליחת המידע
- .counter דגימת המידע נעשית בהתאם לירידות השעון ולספירת ה-
- ה-valid לא יכול להיות '1' כל עוד מכונת המצבים לא במצב valid, ולכן אפשר valid, ולכן אפשר את המידע ישירות ישירות ל-mov x, mov v.
- ניתן לראות את ההמתנה עד לירידת קו המידע ל-'0' זיהוי ה-start bit. לאחרמכן flag עולה ל-'1' וקליטת המידע הרלוונטי מתחילה.
 - כיוון שהמידע תקין סיבית valid_rx נשארת '1' בסוף התהליך, ובעת סיום קליטת 3 ה-packets מכונת המצבים עוברת למצב valid, שם מתבצע שער valid_rx בין valid_rx ל-valid_sm ומתקבל פולס צר של '1' (עד לירידת השעון המרכזי) בביט ה-valid. המידע יקלט במחשב.

valid_rx = '0' כתוצאה מכך overflow- במקרה הבא הוכנס '1' לאחת מספרות ה-valid_rx = '0' – המידע לא יקלט במחשב. בסוף קליטת המידע, ולכן ה-valid במוצא ישאר '0' – המידע לא יקלט במחשב.

במקרה השלישי התבצעה בדיקה נוספת של ערכים תקינים עם זמני המתנה שונים בין ה-'1' valid עלה ל-'1' valid עלה ל-'1' לאחר מעבר למצב valid.