Scaling Hidden Markov Models

March 12, 2021

Hidden Markov Models in NLP

- ► Simplest latent variable models for time series data
- Are thought to be very poor language models
- We show they are not!

Scaling HMMs with Emission Sparsity

Lessons from Large Neural Language Models

Large models perform better but are ...

- 1. Slow to train
- 2. Prone to overfitting

We must overcome these issues when scaling HMMs

HMMs

For times t, model states $z_t \in [Z]$, and tokens $x_t \in [X]$,

We wish to optimize

$$p(x) = \sum_{z} p(x, z),$$

computed via the forward algorithm

3 Techniques for Training Large HMMs

- ▶ Block-sparse emission constraints
 - ♠ Speed
- Compact neural parameterization
 - **Generalization**
- State dropout
 - **↑** Speed **↑** Generalization

Technique 1: Block-Sparse Emission Constraints

- Reduce cost of marginalization by enforcing structure
- Partition words and states jointly
- Words can only be emit by states in same group

Block-Sparse Emissions: Effect on Inference

Given each word x_t , only the states in the correct group can occur

Technique 2: Neural Parameterization

- A neural parameterization allows for parameter sharing
- Generate conditional distributions from state E_z and token representations E_x

Technique 3: State Dropout

- State dropout encourages broad state usage
- ightharpoonup At each batch, sample dropout mask $\mathbf{b} \in \{0,1\}^Z$

Experiments

- Language modeling on Penn Treebank
- Baselines
 - Feedforward 5-gram model
 - 2-layer LSTM
 - A 900 state HMM (Buys et al 2018)
- Model
 - ▶ 2¹⁵ (32k) state very large HMM (VL-HMM)
 - M = 128 groups (256 states per type), obtained via Brown Clustering
 - Dropout rate of 0.5 during training

Results on PTB Validation Data

State Size Ablation

Validation perplexity on PTB by state size ($\lambda = 0.5$ and M = 128)

Other Ablations

Model	Param	Train	Val
VL-HMM (2 ¹⁴)	7.2M	115	134
- neural param	423M	119	169
- state dropout	7.2M	88	157

Scaling HMMs with Kernel Methods

Embedded Structure Prediction

- ▶ The previous model relied on emission sparsity constraints
- Can we scale with weaker assumptions?
- Reduce the quadratic dependence of inference on number of states to linear with kernel trick

Generalized Softmax

Focusing on the transition distribution,

Softmax

$$p(z_t \mid z_{t-1}) = \frac{\exp(\mathbf{u}_{z_{t-1}}^{\top} \mathbf{v}_{z_t})}{\sum_{z} \exp(\mathbf{u}_{z_{t-1}}^{\top} \mathbf{v}_{z})}$$

Generalized Softmax

$$p(z_t \mid z_{t-1}) = \frac{K(\mathbf{u}, \mathbf{v})}{\sum_z K(\mathbf{u}, \mathbf{v}_z)} = \frac{\phi(\mathbf{u})^\top \phi(\mathbf{v})}{\sum_z \phi(\mathbf{u})^\top \phi(\mathbf{v}_z)},$$

for positive kernel $K: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}_+$ and feature map $\phi: \mathbb{R}^d \to \mathbb{R}^f$

Inference

▶ The key $O(Z^2)$ step in the forward algorithm:

$$p(z_t \mid x_{< t}) = \sum_{z_{t-1}} p(z_t \mid z_{t-1}) p(z_{t-1} \mid x_{< t})$$

► In matrix form,

$$oldsymbol{\gamma}_t = \underbrace{oldsymbol{lpha}_{t-1}}_{\mathbb{R}^Z} \underbrace{igwedge_{\mathbb{R}^{Z imes Z}}}_{\mathbb{R}^{Z imes Z}},$$

where we have the probability of the

current state
$$[\gamma_t]_{z_t} = p(z_t \mid x_{< t}),$$
 last state
$$[\alpha_{t-1}]_{z_{t-1}} = p(z_{t-1} \mid x_{< t}),$$
 transition probability
$$[\Lambda]_{z_{t-1},z_t} = p(z_t \mid z_{t-1})$$

Embedded Inference

Use generalized softmax in transition distribution

$$[\Lambda]_{z_{t-1},z_t} = \rho(z_t \mid z_{t-1}) \propto \phi(\mathbf{u}_{z_{t-1}})^\top \phi(\mathbf{v}_{z_t})$$

 Allows us to apply associative property of matrix multiplication

$$\begin{split} \gamma_t &= \alpha_{t-1} \Lambda \\ &= \alpha_{t-1} (\mathrm{diag}(d) \phi(U) \phi(V)^\top) \\ &= \underbrace{(\alpha_{t-1} \circ d)}_{\mathbb{R}^Z} \underbrace{\phi(U)}_{\mathbb{R}^{Z \times f}} \underbrace{\phi(V)}_{\mathbb{R}^{f \times Z}}^\top, \end{split}$$

with stacked embeddings $\phi(U), \phi(V)$ and normalizing constants d

► Takes *O*(*Zf*) time from left to right!

Experiments

- Language modeling on PTB
- ▶ Work directly with feature map $\phi(\mathbf{x}) = \exp\left(W\mathbf{x} \frac{\|\mathbf{x}\|^2}{2}\right)$, with learned $W \in \mathbb{R}^{d \times f}$

No dropout or sparsity constraints

Results on PTB Validation

- ► Holding number of features fixed, perplexity mostly improves or remains the same with an increasing number of states
- Achieve similar performance as softmax with around 4:1 state to feature ratio (also holds for 8k and 16k states)

Conclusion

- ▶ Hopeful that HMMs can be competitive language models
- Introduced 4 techniques for tackling speed and overfitting
- Future work will extend to other discrete latent variable models

EOS

Citations