In the Specification:

Please replace the paragraph beginning at page 8, line 28 and ending at page 9, line 8 with the following amended paragraph:

An embodiment of a complex filter 28_1 , 28_2 , 28_n is illustrated in figure 3. The complex filter 35 includes a channel 36_l for the in-phase input I and a channel 36_Q for the quadrature phase input Q. Included in channels 36_l and 36_Q are adders 37_l and 37_Q and integrators 38_l and 38_Q respectively. In addition to the in-phase signal I and quadrature signal Q being applied to the adders $36\underline{37}_l$ and $36\underline{37}_Q$ respectively, a feedback with coefficient α which may be any real number is applied to each adder $36\underline{37}_l$ and $36\underline{37}_Q$ respectively. As well, a feedback with negative coefficient β is applied from the output of integrator 38_Q to adder $36\underline{37}_l$ while a feedback with positive coefficient β is applied from the output of integrator 38_l to adder $36\underline{37}_Q$. Coefficient β may also be any real number. The selection of α , β and ω_0 will determine the bandwidth and centre frequency of the filter 35. Also, depending on the values of α , β and ω_0 the positive and negative frequencies will experience different attenuations which is desired for an LIF device.