Econometrics Lecture 3 EC2METRIE

Dr. Anna Salomons

Utrecht School of Economics (U.S.E.)

28 November 2016

This class

- Hypothesis testing
 - ► For 1 population parameter: t-test
 - ► For >1 population parameter: F-test
- ▶ Omitted variable bias (violation of OLS assumption $Corr(\varepsilon_i, X_i) = 0$)

Assumptions 1-4

To get that
$$E(\widehat{eta}_k) = eta_k$$
 :

- Population model is linear in parameters (and the error term is additive)
- 2. Error term has a zero population mean: $E(\varepsilon_i) = 0$
- 3. All independent variables are uncorrelated with the error term: $Corr(\varepsilon_i, X_i) = 0$
- 4. **No perfect (multi)collinearity** between independent variables (and no variable is a constant)

Sampling distribution: unbiasedness

Assumptions 5-6

To get that $E\left(\widehat{Var}(\widehat{eta})\right) = Var(\widehat{eta})$, we need assumptions 1-4 plus:

- 5. **No serial correlation**: errors are not correlated with each other across different observations, $Corr(\varepsilon_i, \varepsilon_i) = 0$.
- 6. No heteroskedasticity: error term has constant variance, $Var(\varepsilon_i) = \sigma^2$ (where σ^2 is a constant).

Together, assumptions 1-6 make OLS the Best (i.e. minimum variance) Linear Unbiased Estimator (BLUE).

Sampling distribution: minimum variance

Sampling distribution: normality

- ➤ To be able to perform hypothesis tests, we need **one more property of the sampling distribution,** other than unbiasedness and minimum variance: **normality**.
- Note that last week we have already been drawing the sampling distributions as normal distributions
 - ▶ Bell-shaped, symmetric
 - ► The location and shape of any particular normal distribution depend on its mean and its variance

Normal distributions

Figure 4.3 Normal Distributions

Although all normal distributions are symmetrical and bell-shaped, they do not necessarily have the same mean and variance. Distribution A has a mean of 0 and a variance of 1, whereas distribution B has a mean of 2 and a variance of 0.5. As can be seen, the whole distribution shifts when the mean changes, and the distribution gets fatter as the variance increases.

Assumption 7: normality of the error term

7. $\varepsilon \sim Normal(0, \sigma^2)$: This means we assume that the **error** term is normally distributed, with a mean of zero (cf. assumption 2) and a constant variance (cf. assumption 6) of σ^2 .

Under assumptions 1-7, it holds that

$$\widehat{\beta}_k \backsim Normal\left(\beta_k, Var(\widehat{\beta}_k)\right)$$

I.e., the sampling distribution of $\widehat{\beta_k}$ is normally distributed with a mean of β_k (the true population parameter- cf. assumptions 1-4) and a variance of $Var(\widehat{\beta}_k)$ (cf. assumptions 5-6).

Reason normality of error gives normality of sampling distribution

- **C**an be shown that $\widehat{\beta}_k$ is a linear combination of error terms ε_i
- We assume that the errors are normally distributed (assumption 7), $\varepsilon \backsim Normal$
- We had already assumed the errors are independent (assumption 5, and given random sampling)
- $\widehat{\beta}_k$ is thus a linear combination of independent normally distributed terms
- A statistical theorem tells us any such linear combination will itself also be normally distributed: hence, $\widehat{\beta}_{\nu} \backsim Normal$

How important is assumption 7?

- ▶ In large samples: not very important, as the Central Limit Theorem (CLT) tells us that sampling distributions will be normally distributed for large sample sizes.
- In small(er) samples: important, since the CLT might not apply and assumption 7 gives us normality of the sampling distribution.

Why do we need assumption 7 for hypothesis testing?

- Assumption 7 means we know the entire shape of the sampling distribution: we use this for hypothesis testing
- Let's see how by explaining the procedure of hypothesis testing:
 - About 1 population parameter (t-test)
 - ► About >1 population parameter (F-test)

Hypothesis testing: an example

Ashley Madison profiles by gender

Hypothesis testing: example

Research question: does people's gender impact the number of extra-marital affairs they have?

Population model:

$$naffairs_i = eta_0 + eta_1 male_i + arepsilon_i$$

where: naffairs = nr of affairs; male = dummy variable for men

Hypotheses:

$$H_0 : \beta_1 = 0$$

$$H_A$$
 : $\beta_1 \neq 0$

$$naffairs_i = eta_0 + eta_1 male_i + arepsilon_i$$

$$H_0$$
 : $\beta_1=0$

$$H_A$$
 : $\beta_1 \neq 0$

We estimate the population model in a sample:

$$extit{naffairs}_i = \widehat{eta}_0 + \widehat{eta}_1 extit{male}_i + e_i$$

Summary statistics for our example

. descr naffairs male

variable name		display format	value label	variable label
naffairs male	byte byte	%9.0g %9.0g		number of affairs within last year =1 if male

. sum naffairs male

Variable	0bs	Mean	Std. Dev.	Min	Max
naffairs male	601 601	1.455907 .4758735	3.298758 .4998336	0	12 1

. sum naffairs if male==0

Variable	Obs	Mean	Std. Dev.	Min	Max
naffairs	315	1.419048	3.309264	0	12

. sum naffairs if male==1

Variable	Obs	Mean	Std. Dev.	Min	Max
naffairs	286	1.496503	3.292467	0	12

Bivariate regression for our example

. reg naffairs male

Source	SS	df	MS	Number of obs = 601 F(1, 599) = 0.08
Model Residual	.899313 6528.18222			Prob > F = 0.7740 R-squared = 0.0001
Total	6529.08153	600	10.8818026	Adj R-squared = -0.0015 Root MSE = 3.3013

naffairs	Coef.	Std. Err.	(t)	P> t	[95% Conf.	Interval]
male	.0774559	.2696384	0.29	0.774	4520956	.6070073
_cons	1.419048	.1860062	7.63	0.000	1.053744	1.784351

$$\widehat{\beta}_1 = 0.077$$

- ▶ How high is the chance (=probability) that our estimated parameter, $\hat{\beta}_1 = 0.077$, comes from a population with $\beta_1 = 0$?
- ► If very low probability, reject H₀- but if high probability, do not reject H₀.
- To find the probability, we standardize our sampling distribution:

$$\begin{split} \widehat{\beta}_1 & \backsim & \textit{Normal}\left(\beta_1, \textit{Var}(\widehat{\beta}_1)\right) \\ \widehat{\frac{\beta}{sd}}(\widehat{\beta}_1) & \backsim & \textit{Normal}\left(0, 1\right) \end{split}$$

What does the sampling distribution now look like if H_0 is true? A normal distribution with $E(\widehat{\beta}_1) = 0$ and variance of 1

Which values of $\widehat{\beta}_1$ from this sampling distribution are very unlikely if H_0 is true (i.e. $\beta_1=0$)? (The ones indicated by arrows)

This is the test statistic:

$$\frac{\widehat{\beta}_1 - \beta_1}{\operatorname{sd}(\widehat{\beta}_1)} \backsim \operatorname{Normal}\left(\mathbf{0}, \mathbf{1}\right)$$

- Note that this **requires us to know sd** $(\widehat{\boldsymbol{\beta}}_1) = \sqrt{\textit{Var}(\widehat{\boldsymbol{\beta}}_1)}$ but remember from last week that we do not as the error variance σ^2 is **unknown**!
- Instead, we have to estimate $sd(\widehat{\beta}_1)$, replacing it by $se(\widehat{\beta}_1) = \sqrt{\widehat{Var}(\widehat{\beta}_1)}$. (Formula was discussed last week)

We then obtain the following **test statistic** (replacing the standard deviation of $\widehat{\beta}_1$ by its estimate, the standard error):

$$\frac{\widehat{\beta}_1 - \beta_1}{se(\widehat{\beta}_1)} \backsim t_{n-k-1}$$

- ► Instead of a normal distribution, this follows a **t-distribution** with n-k-1 degrees of freedom.
- It is therefore known as the t-statistic.

Metrics Lecture 3

Hypothesis testing

Hypothesis tests about 1 population parameter

Difference between normal and t-distributions

t-Distributions with Various Degrees of Freedom

Difference between normal and t-distributions

- ► The t-distribution looks like a normal distribution, but with fatter tails
 - This reflects the additional sampling uncertainty from estimating $sd(\widehat{\beta}_1)$
- ► As the number of **degrees of freedom increases**, the t-distribution becomes **increasingly similar to the normal distribution**.
- See Studenmund Appendix Table B1.

Using the t-statistic

- Step 1 Formulate hypotheses H_0 and H_A
- Step 2 Choose a significance level, α
- Step 3 Calculate t-statistic, $t = \frac{\widehat{\beta}_k \beta_k}{se(\widehat{\beta}_k)}$
- Step 4 Find critical value from t-distribution with n-k-1 degrees of freedom and significance level α (for one-sided H_A) or $\alpha/2$ (for two-sided H_A).
- Step 5 Compare t-statistic to critical value¹.

Decision rule:

- ▶ For two-sided H_A : Reject H_0 if $|t| > t_c$
- For one-sided H_A : Reject H_0 if $|t| > t_c$ and t has the sign hypothesized in H_A

Metrics Lecture 3

Hypothesis testing

Hypothesis tests about 1 population parameter

Using the t-statistic

The shaded areas together have a probability of 5% (i.e. the chosen significance level).

The t-statistic in Stata

. reg naffairs male

Source	SS	df	MS	Number of obs = F(1. 599) =	
Model Residual	.899313 6528.18222		.899313 10.8984678	Prob > F = R-squared =	0.7740 0.0001
Total	6529.08153	600	10.8818026	Adj R-squared = Root MSE =	

naffairs	Coef.	Std. Err.	(t)	P> t	[95% Conf.	Interval]
male	.0774559	.2696384	0.29	0.774	4520956	.6070073
_cons	1.419048	.1860062	7.63	0.000	1.053744	1.784351

$$t = \frac{\widehat{\beta}_1 - \beta_1}{se(\widehat{\beta}_1)} = \frac{0.0775 - 0}{0.2696} = 0.29$$

Example of using the t-stat: 2-sided Ha

$$\textit{naffairs}_i = eta_0 + eta_1 \textit{male}_i + arepsilon_i$$

1. Hypotheses:

$$H_0: \beta_1 = 0$$
 $H_A: \beta_1 \neq 0$

- 2. $\alpha = 0.05$
- 3. t = 0.29 (see Stata output).
- 4. $t_c = t_{n-k-1,\alpha/2} = t_{599,0.025} = 1.96$ (Studenm Table B1).
- 5. 0.29 < 1.96, hence do not reject H_0 . **Conclusion**: no significant difference between the number of affairs of men and women.

Important: we cannot interpret the size of the coefficient, since it is not significantly different from zero!

Illustration of the 2-sided t-test in our example

Example of using the t-stat: 1-sided Ha

$$naffairs_i = eta_0 + eta_1 male_i + arepsilon_i$$

Hypotheses:

$$H_0 : \beta_1 \le 0$$

 $H_A : \beta_1 > 0$

- 2. $\alpha = 0.05$
- 3. t = 0.29 (see Stata output).
- 4. $t_c = t_{n-k-1,\alpha} = t_{599,0.05} = 1.645$ (Table B1).
- 5. 0.29 < 1.645, hence do not reject H_0 . **Conclusion**: no significant difference between the number of affairs of men and women.

Alternatives to using the t-statistic

- Can also perform the hypothesis test by using the p-value or the confidence interval
- This will of course lead to the exact same conclusion about H₀ (for a given chosen confidence level α)
- Stata also reports these alternatives

P-value and confidence interval in Stata

SS

df

. reg naffairs male Source

F(1, 399) =					 	
Prob > F =		.899313		1	.899313	Model
R-squared =		8984678	10.	599	6528.18222	Residual
Adj R-squared = -						
Root MSE =		8818026	10.	600	6529.08153	Total
(FOFO) - C						cc :
[95% Conf. Int	P> t) (t)	Err.	Std.	Coef.	naffairs
4520056	0 774	0.20	1000	2600	0774550	mala.
4520956 .6 1.053744 1.		0.29 7.63		.2696	.0774559 1.419048	male _cons

MS

Number of obs =

F(1, 599) =

601

Using the p-value

- Step 1 Formulate hypotheses H_0 and H_A
- Step 2 Choose a significance level, α
- Step 3 Calculate t-statistic, $t = \frac{\widehat{\beta}_k \beta_k}{se(\widehat{\beta}_k)}$
- Step 4 Obtain p-value² for t-statistic, $Pr\left(T_{n-k-1} \geq \left|\frac{\widehat{\beta}_k \beta_k}{se(\widehat{\beta}_k)}\right|\right) \text{ for one-sided } H_A \text{ and } \\ Pr\left(|T_{n-k-1}| \geq \left|\frac{\widehat{\beta}_k \beta_k}{se(\widehat{\beta}_k)}\right|\right) \text{ for two-sided } H_A,$
- Step 5 Compare p-value to the chosen significance level: reject H_0 if p-value $< \alpha$

²A p-value is the probability of obtaining a test statistic at least as extreme as the one actually observed, if the null hypothesis is true. It is therefore the smallest significance level at which we would reject the null hypothesis. ≥ ▶ ≥

Example of using the p-value: 2-sided Ha

$$naffairs_i = eta_0 + eta_1 male_i + arepsilon_i$$

Hypotheses:

$$H_0$$
: $\beta_1 = 0$
 H_A : $\beta_1 \neq 0$

- 2. $\alpha = 0.05$
- 3. t = 0.29 (see Stata output).
- 4. p-value = 0.774 (see Stata output).
- 5. 0.774 > 0.05, hence do not reject H_0 . **Conclusion**: no significant difference between the number of affairs of men and women.

An illustration of the 2-sided p-value in our example

Example of using the p-value: 1-sided Ha

$$\textit{naffairs}_i = eta_0 + eta_1 \textit{male}_i + arepsilon_i$$

1. Hypotheses:

$$H_0 : \beta_1 \le 0$$

 $H_A : \beta_1 > 0$

- 2. $\alpha = 0.05$
- 3. t = 0.29
- 4. p value = 0.77/2 = 0.385.
- 5. Since 0.385 > 0.05, do not reject H_0 . **Conclusion**: men do not have significantly more affairs than women.

Note that **Stata by default reports two-sided p-values**- to obtain the one-sided p-value, divide by 2.

An illustration of the one-sided p-value in our example

The confidence interval

- ightharpoonup Can construct a **confidence interval** (CI) for β_k
- ▶ A CI of $(1 \alpha) \times 100\%$ is given by:

$$\widehat{\boldsymbol{\beta}}_{k} \pm t_{c} \times se(\widehat{\boldsymbol{\beta}}_{k})$$

That is,

$$\Pr\left(\widehat{\boldsymbol{\beta}}_k - t_c \times se(\widehat{\boldsymbol{\beta}}_k) \leq \boldsymbol{\beta}_k \leq \widehat{\boldsymbol{\beta}}_k + t_c \times se(\widehat{\boldsymbol{\beta}}_k)\right) = 1 - \alpha$$

► The lower and upper bounds of the CI depend on the critical value of the t-statistic, and on the standard error of the estimated coefficient.

Using the confidence interval

- Step 1 Formulate hypotheses H_0 and H_A
- Step 2 Choose a significance level, α
- Step 3 Find critical t-statistic, t_c (depends on the number of degrees of freedom and the significance level).
- Step 4 Construct the $(1-\alpha)\%$ CI for β_k
- Step 5 Reject H_0 if the value of β_k hypothesized in H_0 does not lie within the constructed CI.

Note: cannot test a one-sided alternative hypothesis using a CI (since CI is always two-sided).

Example of using the confidence interval

$$naffairs_i = eta_0 + eta_1 male_i + arepsilon_i$$

Hypotheses:

$$H_0: \beta_1 = 0$$
 $H_A: \beta_1 \neq 0$

- 2. $\alpha = 0.05$
- 3. $t_c = t_{n-k-1,\alpha/2} = t_{599,0.025} = 1.96$
- 4. $\hat{\beta}_1 \pm t_c \times se(\hat{\beta}_1) = 0.0775 \pm 1.96 \times 0.2696$ $\Leftrightarrow -0.45 \le \beta_1 \le 0.61$ (see Stata output).
- 5. Since $\beta_1 = 0$ lies in this CI, do not reject H_0 . **Conclusion**: no significant difference between the number of affairs of men and women.

Extra example I

Population model:

$$\textit{naffairs}_i = eta_0 + eta_1 \textit{male}_i + eta_2 \textit{religion}_i + \epsilon_i$$

Research question: does religion have an impact on the number of affairs people have?

Hypotheses:

$$H_0$$
 : $\beta_2=0$

$$H_A$$
: $\beta_2 \neq 0$

Summary statistics

. descr relig

variable name		display format	value label	variable label
relig	byte	%9.0g		<pre>5 = very relig., 4 = somewhat, 3 = slightly, 2 = not at all, 1 = anti</pre>
. sum relia				

Variable	0bs	Mean	Std. Dev.	Min	Max
relig	601	3.116473	1.167509	1	5

OLS estimates

. reg naffairs male relig

Source	SS	df	MS		Number of obs = 601 F(2. 598) = 6.43
Model Residual	137.408874 6391.67266		.7044371 .6884158		F(2, 598) = 6.43 Prob > F = 0.0017 R-squared = 0.0210 Adj R-squared = 0.0178
Total	6529.08153	600 10	.8818026		Root MSE = 3.2693
naffairs	Coef.	Std. Err	. t	P> t	[95% Conf. Interval]
male relig _cons	.0847845 4085623 2.688833	.2670351 .114323 .4002195		0.751 0.000 0.000	4396562 .6092252 6330856184039 1.902827 3.47484

Hypothesis test: t-statistic

1. Hypotheses:

$$H_0: \beta_2 = 0$$
 $H_A: \beta_2 \neq 0$

- 2. $\alpha = 0.05$
- 3. Find t-stat: t = -3.57 (in Stata output)
- 4. Find critical t-stat: $t_c = t_{n-k-1,\alpha/2} = t_{598,0.025} = 1.96$
- 5. Compare actual t-stat to critical value: |-3.57| > 1.96, hence reject H_0 . **Conclusion**: religious people have a different number of affairs, ceteris paribus on gender.

Since we find a statistically significant effect, we can interpret the estimated coefficient: for each point that people are more religious (on the 5-point scale), they have 0.41 fewer affairs in a year, holding gender constant.

Hypothesis test: p-value & CI

. reg naffairs male relig

Source	SS	df	MS
Model Residual	137.408874 6391.67266	2 598	68.7044371 10.6884158
Total	6529.08153	600	10.8818026

Number of obs	=	601
	=	6.43
Prob > F	=	0.0017
	=	
Adj R-squared	=	
Root MSE	=	3.2693

naffairs	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
male	.0847845	.2670351	0.32	0.751	4396562	.6092252
relig	4085623	.114323	-3.57	0.000	6330856	184039
_cons	2.688833	.4002195	6.72	0.000	1.902827	3.47484

- ▶ P-value is 0.000, and 0.000 < 0.05, hence reject H_0
- ▶ 95% CI is $-0.633 \le \beta_2 \le -0.184$; $\beta_2 = 0$ does not lie within this CI, hence reject H_0 .

Of course, same conclusion as with using the t-statistic.

Extra example II

Population model:

$$\textit{naffairs}_i = eta_0 + eta_1 \textit{male}_i + eta_2 \textit{religion}_i + \epsilon_i$$

Research question: do people who are more religious have fewer affairs?

Hypotheses:

$$H_0~:~\beta_2\geq 0$$

$$H_A$$
: $\beta_2 < 0$

Hypothesis test: t-statistic

1. Hypotheses:

$$H_0: \beta_2 \ge 0$$
 $H_A: \beta_2 < 0$

- 2. $\alpha = 0.05$
- 3. Find t-stat: t = -3.57 (in Stata output)
- 4. Find critical t-stat: $t_c = t_{n-k-1,\alpha/2} = t_{598,0.05} = 1.345$
- 5. Compare actual t-stat to critical value: |-3.57| > 1.345, and -3.57 < 0, hence reject H_0 .

Conclusion: more religious people have significantly fewer affairs than less religious people, cet. par. (Interpretation of coefficient is the same as before.)

Extra example III

Population model:

$$naffairs_i = eta_0 + eta_1 male_i + eta_2 religion_i + arepsilon_i$$

Research question: do people who are 1 point higher on the religiousness scale have 1 less affair per year?

Hypotheses:

$$H_0$$
 : $\beta_2 = -1$

$$H_A$$
: $\beta_2 \neq -1$

OLS estimates

. reg naffairs male relig

Source

oou, cc			110		F(2. 598)	= 6.4
Model Residual	137.408874 6391.67266	2 68.7 598 10.6			Prob > F R-squared Adj R-squared	= 0.001 $= 0.021$
Total	6529.08153	600 10.8	8818026		Root MSE	= 3.269
naffairs	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval
male relig	.0847845	.2670351 .114323	0.32	0.751 0.000	4396562 6330856	.609225
cons	2.688833	4002195	6.72	0.000	1.902827	3.47484

MS

df

SS

Number of obs =

60

Hypothesis test: t-statistic

1. Hypotheses:

$$H_0 : \beta_2 = -1$$

 $H_A : \beta_2 \neq -1$

- 2. $\alpha = 0.05$
- 3. Find t-stat: $t = \frac{\hat{\beta}_2 \beta_2}{\text{se}(\hat{\beta}_2)} = \frac{-0.4086 (-1)}{0.1143} = 5.17$
- 4. Find critical t-stat: $t_c = t_{n-k-1,\alpha/2} = t_{598,0.025} = 1.96$
- 5. Compare actual t-stat to critical value: |5.17| > 1.96, hence reject H_0 . **Conclusion:** people who are 1-point more religious do not have exactly 1 less affair a year.

Hypothesis test: p-value

- The p-value reported in Stata's regression output is always for the null hypothesis that the true coefficient is zero.
- ▶ Use Stata's *test* command for any other hypothesis tests, such as $H_0: \beta_2 = -1$, $H_A: \beta_2 \neq -1$

. reg naffairs male	relig
---------------------	-------

Source	SS	df	MS
Model Residual	137.408874 6391.67266	2 598	68.7044371 10.6884158
Total	6529.08153	600	10.8818026

Number of obs		601
F(2, 598)	=	6.43
Prob > F	=	0.0017
R-squared	=	0.0210
	=	0.0178
Root MSE	=	3.2693

n	affairs	coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	male	.0847845	.2670351	0.32	0.751	4396562	.6092252
	<mark>relig</mark>	4085623	.114323	-3.57	0.000	6330856	184039
	_cons	2.688833	.4002195	6.72	0.000	1.902827	3.47484

. test relig==-1

(1) relig = -1

Which method to choose? It doesn't matter, but:

- ► Examining the **p-value is easiest**
 - Vis-a-vis t-stat: does not require looking up a critical t-statistic.
 - Vis-a-vis CI: can also be used for significance levels other than 5% (the CI given by Stata is a 95% CI by default).
- ► However, when we have a one-sided *H*_A, we have to be more careful:
 - Use the t-statistic (and compare it to the critical t-statistic for a one-sided H_A)
 - Or use the p-value, but p-values reported in Stata are by default for two-sided alternatives: you have to divide these by 2 to obtain the one-sided p-value!

Summary

- ▶ We have covered **hypothesis testing about one population parameter**: can use t-stat, p-value or CI.
- However, sometimes we want to test hypothesis that are about more than one population parameter at the same time, i.e. joint hypotheses.
- For this, we will need a different test statistic: the F-statistic.

Why test joint hypotheses?

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \varepsilon_i$$

Exclusion restrictions: we want to test whether we can leave out a group of independent variables from the model, or not. For instance:

$$H_0$$
: $\beta_2 = \beta_3 = 0$
 H_A : H_0 not true

► Economic theory tells us a **certain relationship has to exist** between coefficients. For instance:

$$H_0$$
 : $\beta_2 + \beta_3 = 1$
 H_Δ : H_0 not true

Example: estimating a Mincer model

$$hrlywage_i = eta_0 + eta_1 educ_i + eta_2 age_i + eta_3 age_i^2 + arepsilon_i$$

Research question: does age have an impact on hourly wages? Use $\alpha = 0.05$.

$$H_0: \beta_2 = \beta_3 = 0$$
 $H_A: H_0$ not true

Age enters this equation twice: need to assess both coefficients simultaneously.

OLS regression results on next slide show that neither age nor age² has an individually significant impact on wages: their p-values are above 0.05. But it turns out we **should not use t-statistics to** answer this research question.

Example: estimating a Mincer model

. descr hrwage educ age agesq

variable name		display format	value label	variable label	
hrwage educ age agesq	byte	%9.0g %9.0g %9.0g %9.0g		hourly wage years of schooling age in years age^2	

. reg hrwage educ age agesq

	Source	SS	df	MS	Number of obs = $F(3, 147) =$	
		452.987817 2476.05932			Prob > F = R-squared =	0.0000
_	Total	2929.04714	150	19.5269809	Adj R-squared = Root MSE =	

hrwage	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
 educ	.5842392	.1198999	4.87	0.000	.347289	.8211894
age	.4195173	.2447848	1.71	0.089	0642346	.9032692
agesq	0039981	.002883	-1.39	0.168	0096955	.0016994
_cons	-11.84532	5.269089	-2.25	0.026	-22.25827	-1.432374

Why not use t-statistics for testing joint hypotheses?

hrlywage_i =
$$\beta_0 + \beta_1 educ_i + \beta_2 age_i + \beta_3 age_i^2 + \varepsilon_i$$

 H_0 : $\beta_2 = \beta_3 = 0$ H_A : H_0 not true

Using the two t-statistics for $\widehat{\beta}_2$ and $\widehat{\beta}_3$ would lead to a smaller probability of a Type I error α than we decided on. (I.e. we are being "too strict".)

- ▶ Recall that $Pr(Type\ I\ error) = Pr(H_0 = rejected|H_0 = true)$.
- ho $lpha_1=0.05$: type I error probability for $H_0:eta_2=0$; $lpha_2=0.05$: type I error probability for $H_0:eta_3=0$
- ► Type 1 error probability for H_0 : $\beta_2 = \beta_3 = 0$ is $\alpha_1 \times \alpha_2 = 0.05 \times 0.05 = 0.025$
- ► Hence H₀ will not be rejected often enough when using sequential t-tests: need F-test!

Interlude: a reminder on Type I and Type II errors

POPULATION

	H₀ true	H _A true
H₀ not rejected	Accurate $1-\alpha$	Type II error β
H ₀ rejected	Type I error α	Accurate $1-\beta$

Why not use t-statistics for testing joint hypotheses?

$$\begin{array}{lll} \textit{hrlywage}_i & = & \beta_0 + \beta_1 \textit{educ}_i + \beta_2 \textit{age}_i + \beta_3 \textit{age}_i^2 + \epsilon_i \\ & H_0 & : & \beta_2 = \beta_3 = 0 & H_A : H_0 \text{ not true} \end{array}$$

- ▶ Using the two t-statistics for $\widehat{\beta}_2$ and $\widehat{\beta}_3$ would lead to a smaller probability of a Type I error α than we decided on. (I.e. we are being "too strict".)
- Sequential t-tests do not take the correlation between explanatory variables into account: age & age² strongly correlated.

Testing joint hypotheses

- Hypothesis testing with the F-statistic is very similar to with the t-statistic- only the test statistic itself (and its distribution) is different.
- ▶ We again need **assumption 7**, normality of the error term.
- Unlike with the t-test, it is impossible to test one-sided alternative hypotheses with the F-test

The F-test

- Step 1 Define hypotheses, H_0 and H_A
- Step 2 Choose a significance level α
- Step 3 Estimate the restricted and unrestricted models, where the restricted model is the one obtained if H_0 is true.
- Step 4 Compare the residual sum of squares (RSS) across the two models by calculating the F-statistic:

$$\frac{(RSS_M - RSS) / M}{RSS / (n - k - 1)} \backsim F_{M, n - k - 1}$$

- Step 5 Find the critical value for the F-statistic, $F_c = F_{M,n-k-1,\alpha}$.
- Step 6 Compare the observed statistic to the critical valuereject H_0 if $F > F_c$

The F-statistic

$$\frac{(RSS_M - RSS)/M}{RSS/(n-k-1)} \backsim F_{M,n-k-1}$$

- $ightharpoonup RSS_M$: residual sum of squares from the restricted model
- RSS: residual sum of squares from the unrestricted model
- ► *M* : number of restrictions in the null hypothesis
- n: number of observations in the sample
- k : number of parameters in the unrestricted model

This statistic **follows an F-distribution** with M numerator degrees of freedom and n-k-1 denominator degrees of freedom if H_0 is true.

Interlude: some examples of F-distributions

Interlude: some examples of F-distributions

F-test steps 1 & 2: our example

$$\begin{array}{lll} \textit{hrlywage}_i &=& \beta_0 + \beta_1 \textit{educ}_i + \beta_2 \textit{age}_i + \beta_3 \textit{age}_i^2 + \epsilon_i \\ H_0 &:& \beta_2 = \beta_3 = 0 \\ H_A &:& H_0 \text{ not true} \\ \alpha &=& 0.05 \end{array}$$

Restricted model (with M = 2, i.e. 2 restrictions):

$$hrlywage_i = eta_0 + eta_1 educ_i + arepsilon_i$$

Unrestricted model:

$$hrlywage_i = eta_0 + eta_1 educ_i + eta_2 age_i + eta_3 age_i^2 + arepsilon_i$$

Step 3: estimating the restricted and unrestricted models

Source	SS	df		MS		Number of obs	
Model Residual	305.278788 2623.76835	1 149		278788 091836		F(1, 149) Prob > F R-squared	= 0.000: = 0.1042
Total	2929.04714	150	19.5	269809		Adj R-squared Root MSE	= 0.0987 = 4.1963
hrwage	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval:
educ _cons	.4877584	.117		4.16	0.000 0.579	.2562771 -3.867134	.719239
	educ age agesq						
eg hrwage e Source	educ age agesq	df		MS		Number of obs	
				MS 995939 843941		F(3, 147) Prob > F R-squared	= 8.90 = 0.0000 = 0.154
Source	SS 452.987817	df 3	16.	995939		F(3, 147) Prob > F	= 8.90 = 0.0000 = 0.154
Source Model Residual	SS 452.987817 2476.05932	df 3 147	16.	995939 843941	P> t	F(3, 147) Prob > F R-squared Adj R-squared	= 8.90 = 0.0000 = 0.154 = 0.137 = 4.104

F-test step 4: our example

- We want to quantify the added value of age and age² to the equation: can do that by comparing the residual sum of squares from the restricted model, RSS_M, to that of the unrestricted model, RSS.
- But note that by construction of OLS, RSS_M > RSS!
- ► Therefore, to reject H₀ (i.e. reject the restricted model in favor of the unrestricted model), the difference in RSS should be "big enough". This is exactly what the F-statistic tells us.

F-test step 4: our example

$$H_0: eta_2 = eta_3 = 0 \qquad H_A: H_0 \text{ not true}$$

► The **F-statistic** is

$$F = \frac{(RSS_M - RSS)/M}{RSS/(n-k-1)} \backsim F_{M,n-k-1}$$

- Here we have 2 restrictions (M=2):
 - Restriction 1: $\beta_2 = 0$
 - Restriction 2: $\beta_3 = 0$
- ▶ This statistic **follows an F-distribution** with M numerator degrees of freedom and n k 1 denominator degrees of freedom if H_0 is true.

F-test step 4: our example

► The F-statistic formula is

$$F = \frac{(RSS_M - RSS) / M}{RSS / (n - k - 1)} \backsim F_{M, n - k - 1}$$

Here the value is:

$$F = \frac{(2623.77 - 2476.06)/2}{2476.06/(151 - 3 - 1)} = 4.38$$

F-test steps 5 & 6: our example

- This F-statistic of 4.38 needs to be **compared to a critical value** obtained from the relevant F-distribution: here, with 2 numerator df and 147 denominator df and $\alpha = 0.05$.
- $ightharpoonup F_c = F_{2,147,0.05} = 3.00$ (see Studenmund Appendix Table B2)
- ▶ 4.38>3.00: the F-statistic is larger than the critical value, so we reject the null hypothesis that the restricted model is true.
- ► Conclusion: age and age² have a jointly significant impact on wages, holding constant education. (Note that this is despite the effects being *individually* insignificant!)

The F-statistic in Stata

. reg hrwage educ age agesg

Source	SS	df	MS
Model Residual	452.987817 2476.05932	3 147	150.995939 16.843941
Total	2929.04714	150	19.5269809

Number of obs	=	151
F(3, 147)	=	8.96
Prob > F	=	0.0000
	=	
Adj R-squared	=	0.1374
Root MSE	=	4.1041

hrwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
educ	.5842392	.1198999	4.87	0.000	.347289	.8211894
age	.4195173	.2447848	1.71	0.089	0642346	.9032692
agesq	0039981	.002883	-1.39	0.168	0096955	.0016994
_cons	-11.84532	5.269089	-2.25	0.026	-22.25827	-1.432374

. test age agesq

Stata gives us the probability value, which we can compare directly to our chosen significance level: 0.01 < 0.05 hence reject H_0 .

More applications of the F-test

Take the following unrestricted model:

$$Y_{i} = \beta_{0} + \beta_{1} X_{1i} + \beta_{2} X_{2i} + \beta_{3} X_{3i} + \varepsilon_{i}$$

► The example used the **F-test for exclusion restrictions**, e.g. $H_0: \beta_2 = \beta_3 = 0$

But the F-test has more applications which are natural extensions of the one above:

- ▶ Model F-test: $H_0: \beta_1 = \beta_2 = \beta_3 = 0$
- ▶ Other multiple linear restrictions, e.g.: $H_0: \beta_1 = \beta_2 = 1$; $H_0: \beta_3 = 2 * \beta_2$

Model F-test

The **model F-test** is an F-test on the joint impact of **all independent variables** included in the model. (Note that the intercept is still allowed to be non-zero.)

$$hrlywage_i = \beta_0 + \beta_1 educ_i + \beta_2 age_i + \beta_3 age_i^2 + \varepsilon_i$$

$$H_0$$
 : $\beta_1 = \beta_2 = \beta_3 = 0$

 H_A : H_0 not true

- The model F-test establishes whether a regression exists
- ▶ It is **reported in Stata regression output**, together with its p-value.

The model F-test

. reg hrwage educ age agesq

Source	SS	df	MS
Model Residual	452.987817 2476.05932	3 147	150.995939 16.843941
Total	2929.04714	150	19.5269809

Number of obs =	151
F(3, 147) =	8.96
Prob > F =	
R-squared =	0.1547
Adj R-squared =	0.1374
Root MSE =	4.1041

hrwage	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
educ	.5842392	.1198999	4.87	0.000	.347289	.8211894
age	.4195173	.2447848	1.71	0.089	0642346	.9032692
agesq	0039981	.002883	-1.39	0.168	0096955	.0016994
_cons	-11.84532	5.269089	-2.25	0.026	-22.25827	-1.432374

All independent variables (educ, age, agesq) are jointly statistically significant since 0.00 < 0.05.

F-test for other multiple linear restrictions: example

Cobb-Douglas production function:

$$Y = \gamma Labor^{\alpha} Capital^{\beta}$$
 with $\alpha + \beta = 1$

Log-linearize:

$$\ln Y = \ln \gamma + \alpha \ln Labor + \beta \ln Capital$$

We can write this as the following **population model**:

$$\ln Y_i = eta_0 + eta_1 \ln Labor_i + eta_2 \ln Capital_i + arepsilon_i$$

To test for constant returns to scale:

$$H_0$$
 : $\beta_1 + \beta_2 = 1$

 H_A : H_0 not true

F-test for constant returns to scale

. reg lny lnL lnK

Source	SS	αŤ	MS
Model Residual	4.52531097 .645039833	2 27	2.26265549
Total	5.17035081	29	.178287959

Number of obs	=	30
F(2, 27)	=	94.71
Prob > F	=	0.0000
	=	0.8752
Adj R-squared	=	0.8660
Root MSE	=	.15457

lnY	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnL	.4144814	.0404376	10.25	0.000	.3315102	.4974526
lnK	.347066	.0418764	8.29	0.000	.2611427	.4329894
_cons	.4500011	.2789965	1.61	0.118	1224526	1.022455

```
. test lnL + lnK = 1
(1) lnL + lnK = 1
```

F(1, 27) = 18.32Prob > F = 0.0002

0.00 < 0.05: H_0 rejected, hence constant returns to scale rejected.

The F-test versus the t-test

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + \beta_{4}X_{4i} + \varepsilon_{i}$$

- ► The t-test can only be used for null hypotheses involving a single population parameter.
- ► The **F-test** must be used for null hypotheses involving multiple population parameters.
- ▶ But the F-test can also be used to test against a two-sided H_A whenever the t-test is used: in that case $t^2 = F$ with identical associated p-values.

F-test versus t-test

. reg naffairs male

Source	SS	df	MS
Model Residual	.899313 6528.18222	1 599	.899313 10.8984678
Total	6529.08153	600	10.8818026

Number of obs	=	601
F(1, 599)	=	0.08
Prob > F	=	0.77.10
R-squared	=	0.0001
Adj R-squared	=	-0.0015
Root MSE	=	3.3013

naffairs	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
male	.0774559	.2696384	<mark>0.29</mark>	0.774	4520956	.6070073
_cons	1.419048	.1860062	7.63	0.000	1.053744	1.784351

- . test male
- (1) male = 0

$$F(1, 599) = 0.08$$

 $Prob > F = 0.7740$

$$t^2 = F$$

This class

- We have discussed **hypothesis testing** (Studenmund Chapter 5)
 - ► For 1 population parameter: t-test
 - ► For >1 population parameter: F-test
- Now we turn to **omitted variable bias** (a violation of OLS assumption $Corr(\varepsilon_i, X_i) = 0$) (Studenmund Chapter 6)

Assumptions 1-4

To get that $E(\widehat{\beta}_k) = \beta_k$:

- Population model is linear in parameters (and the error term is additive)
- 2. Error term has a zero population mean: $E(\varepsilon_i) = 0$
- 3. All independent variables are uncorrelated with the error term: $Corr(\varepsilon_i, X_i) = 0$. Note that this has to hold for all k independent variables.
- 4. No perfect (multi)collinearity between independent variables (and no variable is a constant)

Violation of assumption 3: omitted variable bias

$$Corr(\varepsilon_i, X_i) = 0$$

- Assumption 3 is violated when we exclude a relevant variable, that is, a variable that has a partial effect on Y and is therefore in the error term ε , and this variable is also correlated with the included independent variable(s), such that $Corr(\varepsilon_i, X_i) \neq 0$.
- We will see that this causes **biased estimates**, $E(\widehat{\beta}_{\iota}) \neq \beta_{\iota}$
- This bias is called omitted variable bias (OVB)

Conditions for omitted variable bias

The omitted variable X_m must satisfy two conditions to get OVB:

- 1. X_m is in the error term, i.e. X_m is a determinant of Y; and
- 2. X_m is correlated with the included regressor(s) X_k , i.e. $Corr(X_{ki}, X_{mi}) \neq 0$

Taken together, these two conditions give us $Corr(\varepsilon_i, X_i) \neq 0$

Omitted variable bias: mechanics

 Assume that the true population model, which satisfies all OLS assumptions, is

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \varepsilon_i \tag{1}$$

Estimating this model with OLS yields unbiased estimates.

▶ But now assume we omit X₂, such that

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \varepsilon_{i}^{*}$$

$$\varepsilon_{i}^{*} = \beta_{2}X_{2i} + \varepsilon_{i}$$
(2)

Note that the error term ε^* now contains the effect of the omitted variable X_2 .

Omitted variable bias: mechanics

▶ We omitted X₂, such that

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \varepsilon_{i}^{*}$$

$$\varepsilon_{i}^{*} = \beta_{2}X_{2i} + \varepsilon_{i}$$
(2)

- ▶ The error term ε^* contains the effect of the omitted variable X_2 .
- ▶ We know this model violates assumption 3 that $Corr(\varepsilon_i^*, X_{1i}) = 0$, if $Corr(X_{1i}, X_{2i}) \neq 0$.
- ► As a result, OLS estimates of equation 2 will be biased. But we can find the direction and size of the bias!

The omitted variable bias formula

The **misspecified model**, where X_2 is the omitted variable:

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \varepsilon_{i}^{*}$$

$$\varepsilon_{i}^{*} = \beta_{2}X_{2i} + \varepsilon_{i}$$
(2)

The relationship between the omitted and the included variable is given by

$$X_{2i} = \alpha_0 + \alpha_1 X_{1i} + u_i$$

Estimates of equation 2:

$$Y_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_{1i} + e_i$$

We can show that $E(\widehat{\beta}_1) \neq \beta_1$ but instead:

$$\mathbf{E}(\widehat{oldsymbol{eta}}_1) = oldsymbol{eta}_1 + lpha_1 oldsymbol{eta}_2$$
 (OVB formula)

See appendix for proof.

OVB: direction & size of the bias

The **OVB formula** is:

$$\underbrace{E(\widehat{\beta}_1)}_{E(\text{estimated coefficient})} = \underbrace{\beta_1}_{\text{true coefficient}} + \underbrace{\alpha_1 \beta_2}_{\text{bias}}$$

This shows that that the bias depends on:

- $ightharpoonup lpha_1$: the bivariate relationship between the included and the omitted variable: sign and size
- \triangleright β_2 : the partial effect of the omitted variable on the dependent variable Y: sign and size

OVB: direction of the bias

$$\underbrace{E(\widehat{\beta}_1)}_{E(\text{estimated coefficient})} = \underbrace{\beta_1}_{\text{true coefficient}} + \underbrace{\alpha_1 \beta_2}_{\text{bias}}$$

- $\alpha_1\beta_2>0$: **Positive bias** = overestimate the effect of X_1 on Y, such that $\widehat{\beta}_1>\beta_1$
 - Occurs when α_1 and β_2 have the same sign
- $\alpha_1\beta_2<0$: **Negative bias** = underestimate the effect of X_1 on Y, such that $\widehat{\beta}_1<\beta_1$
 - Occurs when α_1 and β_2 have opposing signs

OVB: direction of the bias

$$\underbrace{E(\widehat{\beta}_1)}_{E(\text{estimated coefficient})} = \underbrace{\beta_1}_{\text{true coefficient}} + \underbrace{\alpha_1 \beta_2}_{\text{bias}}$$

	$\alpha_1 > 0$	$\alpha_1 < 0$
$\beta_2 > 0$	positive bias	negative bias
$\beta_2 < 0$	negative bias	positive bias

OVB: size of the bias

$$\underbrace{E(\widehat{\beta}_1)}_{E(\text{estimated coefficient})} = \underbrace{\beta_1}_{\text{true coefficient}} + \underbrace{\alpha_1 \beta_2}_{\text{bias}}$$

- ▶ In absolute terms, the bias is larger when α_1 and β_2 are larger.
- The bias is zero if
 - $\alpha_1 = 0$: correlation between X_1 and X_2 is zero, or
 - $\beta_2 = 0: X_2$ has no effect on Y
 - ▶ These are the 2 conditions for OVB!

Consequence of OVB

- When we have omitted variable bias, OLS produces biased estimates
- ► This means we can no longer interpret our coefficients as causal since not all relevant other variables are held constant!
- Let's illustrate this with some examples.

Affairs

Let's say we want to find the **effect of having kids on the number of affairs**, and we estimate the following sample model

$$\mathit{nraffairs}_i = \widehat{eta}_0 + \widehat{eta}_1 \mathit{kids}_i + e_i$$

where kids is a dummy variable, =1 if the person has kids.

We expect that people with kids have more affairs than people without kids, and choose the following hypotheses about the unobserved population model:

$$H_0$$
 : $\beta_1=0$

$$H_A$$
 : $\beta_1 \neq 0$

Affairs

. sum kids

Variable	Obs	Mean	Std. Dev.	Min	Max
kids	601	.7154742	.4515641	0	1

. reg naffairs kids

Source Model Residual	70.632204 6458.44933	df 1 599		MS 632204 7820523		Number of obs F(1, 599) Prob > F R-squared	=	601 6.55 0.0107 0.0108
Total	6529.08153	600	10.8	8818026		Adj R-squared Root MSE	=	0.0092 3.2836
naffairs	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
kids _cons	.7598123 .9122807	.2968 .2511		2.56 3.63	0.011 0.000	.176794 .4191306		.342831 .405431

$$\widehat{\beta}_1 = 0.76$$

The effect is significant at the 5% level: having kids increases the number of affairs in the last year by 0.76 affair.

Affairs

But what if the true population model is not

$$nraffairs_i = eta_0 + eta_1 kids_i + arepsilon_i^*$$

but rather

$$nraffairs_i = \beta_0 + \beta_1 kids_i + \beta_2 yrsmarried_i + \varepsilon_i$$

This means we have omitted the variable years of marriage. We should have estimated:

$$nraffairs_i = \widehat{eta}_0 + \widehat{eta}_1 kids_i + \widehat{eta}_2 yrsmarried_i + e_i$$

Metrics Lecture 3 Omitted variable bias OVB example 1

Affairs

. sum yrsmarr

Variable	Obs	Mean	Std. Dev.	Min	Max
yrsmarr	601	8.177696	5.571303	.125	15

. reg naffairs kids vrsmarr

Source	SS	df	MS	Number of obs = 601 F(2, 598) = 10.82
Model Residual	228.017878 6301.06365		114.008939 10.5368957	Prob > F = 0.0000 R-squared = 0.0349 Adj R-squared = 0.0317
Total	6529.08153	600	10.8818026	Root MSE = 3.2461

naffairs	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
kids	0328768	.3580389	-0.09	0.927	7360433	.6702896
yrsmarr	.1121551	.0290197	3.86	0.000	.0551622	.169148
_cons	.562259	.2642378	2.13	0.034	.0433122	1.081206

The effect is **no longer statistically significant**: having children does not have an impact on the number of affairs, once the duration of the marriage is controlled for!

Affairs: finding the bias with the OVB formula

. reg naffairs kids yrsmarr

Source	ss	df	MS
Model Residual	228.017878 6301.06365	2 598	114.008939 10.5368957
Total	6529.08153	600	10.8818026

Number of obs	_	601
F(2, 598)	=	10.82
Prob > F	=	0.0000
R-squared	=	0.0349
Adj R-squared	=	0.0317
Root MSE	=	3.2463

naffairs	s	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
kids	r	0328768	.3580389	-0.09	0.927	7360433	.6702896
yrsmarı		.1121551	.0290197	3.86	0.000	.0551622	.169148
_cons		.562259	.2642378	2.13	0.034	.0433122	1.081206

. reg yrsmarr kids

Source	SS	df	MS
Model Residual	6111.64094 12512.0103	1 599	6111.64094 20.8881642
Total	18623.6513	600	31.0394188

Number of obs	=	601
F(1, 599)	=	292.59
Prob > F	=	0.0000
R-squared	=	0.3282
Adj R-squared	=	
Root MSE	=	4.5704

yrsmarr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
kids _cons	7.067794 3.120871	.413195 .3495039	17.11 8.93		6.256307 2.434469	7.879281 3.807273

Affairs: finding the bias with the OVB formula

$$\begin{array}{rcl} \textit{nraffairs}_i & = & \widehat{\beta}_0 + \widehat{\beta}_1 \textit{kids}_i + \widehat{\beta}_2 \textit{yrsmarried}_i + \textit{e}_i \\ \widehat{\beta}_2 & = & 0.1121551 \\ \textit{yrsmarried}_i & = & \widehat{\alpha}_0 + \widehat{\alpha}_1 \textit{kids}_i + \textit{u}_i \\ \widehat{\alpha}_1 & = & 7.067794 \end{array}$$

bias =
$$\widehat{\alpha}_1 \widehat{\beta}_2$$

= 7.067794 × 0.1121551
= 0.79269

The bias is positive, which means we overestimated the effect of having children on the number of affairs because we omitted the duration of the marriage from the equation. The size of the overestimation was $0.79 \ (= 0.7598123 - -0.0328768)$.

Affairs example: intuition

- ► The first estimate gave the impression that having children has a positive effect on the number of affairs in the past year.
- However, once we controlled for the duration of the marriage, this effect disappeared.
- This is because longer marriages are more likely to have children, and people in longer marriages had more affairs in the past year.
- ► So what appeared to be the effect of having children on affairs, was actually the effect of being married longer on affairs!

Ability bias in the Mincer equation

Wage regression (so-called Mincer equation):

$$wage_i = eta_0 + eta_1 educ_i + arepsilon_i^*$$

- β_1 : the impact of one additional year of education on wage, i.e. the rate of return for one year of education.
- All other factors that have an influence on the wage are in the error term- if such factors are also correlated with education, we get omitted variable bias.
 - Ability is one of the factors that also impact the wage: we can think of ability as people's IQ.
 - Ability is also **correlated with education**: people with higher IQ are more likely to get more years of education.

Ability bias in the Mincer equation

Wage regression (so-called Mincer equation):

$$\begin{array}{lll} \textit{wage}_i & = & \beta_0 + \beta_1 \textit{educ}_i + \epsilon_i^* \\ \textit{wage}_i & = & \beta_0 + \beta_1 \textit{educ}_i + \beta_2 \textit{IQ}_i + \epsilon_i \\ \textit{IQ}_i & = & \alpha_0 + \alpha_1 \textit{educ}_i + u_i \end{array}$$

We expect:

- $\beta_2 > 0$: IQ increases wages (cet. par. on education)
- ho $lpha_1 > 0$: higher educated people have higher IQs
- ▶ Hence, bias $\alpha_1\beta_2 > 0$, so we **overestimate the return to education if we do not control for IQ**. This is a very famous example of OVB in economics, called "ability bias".

Ability bias in the Mincer equation

. descr wage educ iq

ariable name	storage disp type form		value label		variable	label	
age duc qscore	float %9.0 float %9.0 float %9.0	g			Nr of ye	cents per hour ars of education IQ score	on
reg wage ed	uc)						
Source	ss	df	MS			Number of obs	
Model Residual	7596517.54 135851554	2059	7596517 65979.			F(1, 2059) Prob > F R-squared Adi R-squared	= 0.0000 = 0.0530
Total	143448071	2060	69634.9	861		Root MSE	= 256.86
wage	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
educ _cons	26.70297 242.8137	2.488		0.73 6.92	0.000 0.000	21.82252 173.9663	31.58342 311.6612
reg wage ed	uc iq						
Source	ss	df	MS			Number of obs	
Model Residual	8675400.98 134772670	2058	4337700 65487.2			F(2, 2058) Prob > F R-squared Adj R-squared	= 0.0000 = 0.0605
Total	143448071	2060	69634.9	861		Root MSE	= 255.9
wage	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
educ iqscore _cons	20.73191 1.725291 149.1893	2.882 .4250 41.89	0631	7.19 4.06 3.56	0.000 0.000 0.000	15.0782 .8916926 67.02539	26.38561 2.55889 231.3532

Explaining the obesity epidemic

We want to investigate whether a lack of exercise causes higher BMI

$$BMI_{i} = \beta_{0} + \beta_{1} exercise_{i} + \varepsilon_{i}^{*}$$
 (3)

But we **omit an important explanatory variable which is correlated with exercise, food intake** (daily calories consumed):

$$BMI_i = \beta_0 + \beta_1 \text{ exercise}_i + \beta_2 \text{ calories}_i + \varepsilon_i$$

 $calories_i = \alpha_0 + \alpha_1 \text{ exercise}_i + u_i$

If we estimated equation 3, what direction would we expect for the bias?

$$bias = \alpha_1 \beta_2$$

Explaining the obesity epidemic

$$BMI_{i} = \beta_{0} + \beta_{1} \operatorname{exercise}_{i} + \varepsilon_{i}^{*}$$

$$BMI_{i} = \beta_{0} + \beta_{1} \operatorname{exercise}_{i} + \beta_{2} \operatorname{calories}_{i} + \varepsilon_{i}$$

$$\operatorname{calories}_{i} = \alpha_{0} + \alpha_{1} \operatorname{exercise}_{i} + u_{i}$$

$$(4)$$

We expect $\beta_2 < 0$, and $\alpha_1 < 0$ — that is, taking in more calories increases BMI (cet. par.) and there is a negative correlation between exercise & calories (i.e. people who exercise more tend to take in fewer calories, e.g. because they're the health-conscious type).

bias =
$$\alpha_1 \beta_2 < 0$$

We would expect a **negative bias** in equation 3, such that we find a more negative effect of exercise on BMI than the true effect of exercise on BMI if we omit calorie intake from the equation.

Metrics Lecture 3

└Omitted variable bias └OVB example 4

Fox news

Fox news, another gem

Does Fox news make you stupid?

Study: Watching Fox News Actually Makes You Stupid

POSTED: MAY 24, 1:20 PM ET | BU JILLIAN RAYFIELD

It's not exactly a revelation that Fox News viewers are spectacularly ill informed about current events compared to people who watch other networks. But according to a recent report, the Fox audience knows less even than folks who don't watch any news at all.

Researchers from New Jersey's <u>Fairleigh Dickinson University</u> asked about a thousand people five questions on domestic issues (e.g., "Which party has the most seats in the House of Representatives right now?") and five on international ones (e.g., "There have been increasing talks about economic sanctions against Iran. What are these sanctions supposed to do?").

Fox viewers scored the lowest in both categories, getting an average of 1.04 questions right on domestic issues and 1.08 on international, behind people who watch MSNBC (which on international affairs, also larged the non-news watchers) The Daily Show, and the

Does Fox news make you stupid?

Research question: does watching Fox news *reduce* people's knowledge about what is going on in the world?

$$knowledge_i = \beta_0 + \beta_1 Fox_i + \varepsilon_i$$

where *knowledge* measures respondents score on a test about knowledge of the world; and Fox is a dummy variable, =1 if the person watches Fox news, =0 if they do not.

$$H_0 : \beta_1 \ge 0$$

 $H_A : \beta_1 < 0$

The researchers claim that they reject H_0 , and conclude that watching Fox news makes you less informed.

Is this a causal effect? Suspected omitted variable bias..

knowledge; =
$$\beta_0 + \beta_1 Fox_i + \varepsilon_i^*$$

knowledge; = $\beta_0 + \beta_1 Fox_i + \beta_2 IQ_i + \varepsilon_i$
 $IQ_i = \alpha_0 + \alpha_1 Fox_i + u_i$

I suspect IQ is an omitted variable here, causing a biased $\widehat{\beta}_1$. What would the bias be?

- ho $eta_2>0$: smarter people have more knowledge of the world
- $lpha_1 < 0$: people who watch Fox news are less likely to be smart.
- ho $\alpha_1 \beta_2 < 0$: **negative bias**, hence the estimated effect is more negative than the true effect!

Suspected omitted variable bias

$$E(\widehat{\beta}_1) = \beta_1 + \underbrace{\alpha_1 \beta_2}_{\text{negative}}$$

The researchers found a statistically significant negative effect, e.g. $\widehat{\beta}_1 = -5$.

But the bias term is also negative, so the **true effect could be zero** (of course, it could also still be negative, or even be positive, depending on how large the bias is!). For instance:

$$\underbrace{-5}_{\text{found effect}} = \underbrace{0}_{\text{true effect}} + \underbrace{(-5)}_{\text{bias}}$$

OVB detection & an easy solution

- Use economic theory and reasoning to detect OVB:
 - Think of any variables you may have omitted from your model: which variables are relevant for explaining the dependent variable Y? Are these also correlated with the included X variables? If so, you have an OVB problem.
- If possible, easy solution = include the omitted variable(s) in your model.

OVB: when the easy solution is impossible

- ▶ If the dataset does not have information the omitted variable(s), there is no easy solution.
- ▶ Instead: use the OVB formula to reason whether the omitted variable(s) would bias your estimate of interest, and if so, in what direction. (This was done in examples 3 & 4: even without being able to estimate the bias, we can still reason to say something about how it would affect our estimates.)

(In a MSc course, you will see there is another estimator you can use in the case of suspected OVB, rather than OLS.)

Summary

- Omitted variable bias is a serious problem for empirical economic research: it violates one of the OLS assumptions for unbiasedness.
- ➤ You cannot rely on the data to tell you everything: you must use economic reasoning to detect and fix omitted variable bias!
- Also see Studenmund's "four important specification criteria"
 (p. 178 in 6th edition)

Project paper

- Interpretation of statistical significance (using t-values / p-values / confidence intervals).
- ► **Economic significance**: given statistical significance, discuss the magnitude of the effects you find (e.g. is it what you expected from economic reasoning?).
- Interpretation of F-statistics.
- Are there important omitted variables you can think of? (Note the 2 conditions for OVB!)
- If you can think of such omitted variables: what are the consequences for the bias of the parameter estimates? Do you expect you are over- or underestimating the true effect?

True model:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \varepsilon_i \tag{1}$$

Model with variable X_2 omitted:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \varepsilon_i^* \tag{2}$$

In equation (2), the OLS estimate of β_1 is given by (see lecture slides week 2):

$$\widehat{\beta}_1 = \frac{Cov(X_{1i}, Y_i)}{Var(X_{1i})}$$

$$\widehat{eta}_1 = rac{Cov(X_{1i}, Y_i)}{Var(X_{1i})}$$

We can work out the covariance term to find the OVB formula:

$$\begin{array}{lcl} \textit{Cov}(\textit{X}_{1i}, \textit{Y}_{i}) & = & \textit{Cov}(\textit{X}_{1i}, \textit{\beta}_{0} + \textit{\beta}_{1}\textit{X}_{1i} + \textit{\beta}_{2}\textit{X}_{2i} + \epsilon_{i}) \\ & = & \textit{Cov}(\textit{X}_{1i}, \textit{\beta}_{0}) + \textit{Cov}(\textit{X}_{1i}, \textit{\beta}_{1}\textit{X}_{1i}) + \textit{Cov}(\textit{X}_{1i}, \epsilon_{i}^{*}) \\ & = & 0 + \textit{\beta}_{1}\textit{Var}(\textit{X}_{1i}) + \textit{Cov}(\textit{X}_{1i}, \epsilon_{i}^{*}) \end{array}$$

Using that $\varepsilon_i^* = \beta_2 X_{2i} + \varepsilon_i$:

$$\begin{array}{rcl} \textit{Cov}(\textit{X}_{1i}, \textit{Y}_{i}) & = & \textit{\beta}_{1}\textit{Var}(\textit{X}_{1i}) + \textit{Cov}(\textit{X}_{1i}, \textit{\beta}_{2}\textit{X}_{2i} + \varepsilon_{i}) \\ & = & \textit{\beta}_{1}\textit{Var}(\textit{X}_{1i}) + \textit{Cov}(\textit{X}_{1i}, \textit{\beta}_{2}\textit{X}_{2i}) + \textit{Cov}(\textit{X}_{1i}, \varepsilon_{i}) \\ \text{since } \textit{Cov}(\textit{X}_{1i}, \varepsilon_{i}) & = & \textit{0}: \\ \textit{Cov}(\textit{X}_{1i}, \textit{Y}_{i}) & = & \textit{\beta}_{1}\textit{Var}(\textit{X}_{1i}) + \textit{Cov}(\textit{X}_{1i}, \textit{\beta}_{2}\textit{X}_{2i}) \end{array}$$

$$\widehat{eta}_1 = rac{Cov(X_{1i}, Y_i)}{Var(X_{1i})}$$

Using the previously found expression for $Cov(X_{1i}, Y_i)$,

$$\begin{split} \widehat{\beta}_{1} &= \frac{\beta_{1} Var(X_{1i}) + Cov(X_{1i}, \beta_{2} X_{2i})}{Var(X_{1i})} \\ &= \frac{\beta_{1} Var(X_{1i})}{Var(X_{1i})} + \frac{Cov(X_{1i}, \beta_{2} X_{2i})}{Var(X_{1i})} \\ &= \beta_{1} + \beta_{2} \frac{Cov(X_{1i}, X_{2i})}{Var(X_{1i})} \end{split}$$

$$\widehat{eta}_1 = eta_1 + eta_2 rac{ extit{Cov}(oldsymbol{X}_{1i}, oldsymbol{X}_{2i})}{ extit{Var}(oldsymbol{X}_{1i})}$$

Note that $\frac{Cov(X_{1i},X_{2i})}{Var(X_{1i})}$ is α_1 , the slope coefficient from the bivariate model of X_2 on X_1 :

$$X_{2i} = \alpha_0 + \alpha_1 X_{1i} + u_i$$

Hence, the OVB formula is given by:

$$\widehat{\beta}_1 = \beta_1 + \beta_2 \alpha_1$$

Back to main slides