Introducción a los espacios de Hilbert

Resolución de los ejercicios recomendados. Capítulo 4

Ejercicio 2

Se comprueba sin dificultad que la sucesión es la sucesión normalizada de la familia de polinomios de Legendre del ejercicio anterior.

a) Se hace el cambio de variable $t = \frac{2x - (b + a)}{b - a}$ en

$$\frac{2}{b-a} \int_{a}^{b} P_{n} \left[\frac{2x-(b+a)}{b-a} \right] P_{m} \left[\frac{2x-(b+a)}{b-a} \right] dx = \frac{2}{b \neq a} \int_{-1}^{1} P_{n}(t) P_{m}(t) \frac{b-a}{2} dt$$

b) Teniendo en cuenta que $\int_{-1}^{1} P_n(t) P_m(t) dt = \delta_{n,m}$ se obtiene que

$$\{\widetilde{P}_n(x)\}_{n=0}^{\infty} = \left\{ \sqrt{\frac{2}{b-a}} P_n \left[\frac{2x - (b+a)}{b-a} \right] \right\}_{n=0}^{\infty}$$

son los polinomios ortonormales buscados con respecto al producto interno $\langle f, g \rangle = \int_a^b f(t) \overline{g(t)} dt$.

c) Se trata de encontrar $h(t) = \alpha + \beta t \in V := \text{span}\{1, t\}$ tal que

$$||t^2 - h|| = \inf_{v \in V} ||t^2 - v||$$

donde la norma es la asociada al producto interno $\langle f,g\rangle=\int_0^1f(t)\overline{g(t)}dt$. Ortonormalizamos $\{1,t\}$ utilizando el apartado b) y se obtiene $\widetilde{P}_0(t)=\sqrt{2}P_0(2t-1)=1$ y $\widetilde{P}_1(t)=\sqrt{2}P_1(2t-1)=\sqrt{3}(2t-1)$ y en consecuencia

$$\begin{array}{rcl} h(t) & = & \langle t^2, \widetilde{P}_0 \rangle \, \widetilde{P}_0(t) + \langle t^2, \widetilde{P}_1 \rangle \, \widetilde{P}_1(t) \\ & = & \frac{1}{6} + \frac{\sqrt{3}}{6} \sqrt{3} (2t - 1) = t - \frac{1}{6} \, . \end{array}$$

Ejercicio 5

Si $\{x_n\}_{n=1}^{\infty}$ es un sistema ortogonal en un espacio de Hilbert \mathcal{H} , entonces para todo $N, M \in \mathbb{N}$ se tiene

$$\left\| \sum_{n=N+1}^{M} x_n \right\|^2 = \sum_{n=N+1}^{M} \|x_n\|^2.$$

Por tanto,

$$\sum_{n=1}^{\infty} x_n \text{ converge en } \mathcal{H} \iff \text{la serie } \sum_{n=1}^{\infty} x_n \text{ es de Cauchy en} \mathcal{H}$$

$$\iff \left\| \sum_{n=N+1}^{M} x_n \right\|^2 \longrightarrow 0$$

$$\iff \sum_{n=N+1}^{M} \|x_n\|^2 \longrightarrow 0$$

$$\iff \sum_{n=1}^{\infty} \|x_n\|^2 \text{ converge en } \mathbb{R}$$

Obsérvese que de lo anterior se deduce que si $\{x_n\}_{n=1}^{\infty}$ es un sistema ortonormal en un espacio de Hilbert \mathcal{H} entonces la serie $\sum_{n=1}^{\infty} x_n$ no es convergente en \mathcal{H} .

Ejercicio 8

La sucesión doble de funciones $\left\{e^{2\pi int}\chi_{[m,m+1)}(t)\right\}_{m,n\in\mathbb{Z}}$ es un sistema ortonormal de $L^2(\mathbb{R})$ pues para todo (n,m), (n',m') se tiene:

$$\langle x_{(n,m)}, x_{(n',m')} \rangle = \int_{\mathbb{R}} e^{2\pi i n t} \chi_{[m,m+1)}(t) e^{-2\pi i n' t} \chi_{[m',m'+1)}(t) dt$$

$$= \begin{cases} 0 & \text{si } m \neq m' \\ \int_{m}^{m+1} e^{2\pi i (n-n') t} dt := A & \text{si } m = m' \text{ y } A = \begin{cases} 0 & \text{si } n \neq n' \\ 1 & \text{si } n = n' \end{cases}$$

Para ver que es una base utilizamos el resultado admitido en la proposición 4.18, la familia de funciones $\left\{ \mathrm{e}^{2\pi i n t} \, \chi_{[m,m+1)}(t) \right\}_{n \in \mathbb{Z}}$ en una base ortonormal del espacio $L^2[m,m+1]$, para comprobar que se cumple la identidad de Parseval en $L^2(\mathbb{R})$. En efecto, para cualquier $f \in L^2(\mathbb{R})$ se tiene:

$$||f||_{2}^{2} = \int_{\mathbb{R}} |f(t)|^{2} dt = \sum_{m \in \mathbb{Z}} \int_{m}^{m+1} |f(t)|^{2} dt = \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} \left| \langle f \chi_{[m,m+1)}, e^{2\pi i n t} \rangle \right|^{2}$$
$$= \sum_{m,n \in \mathbb{Z}} \left| \langle f, \chi_{[m,m+1)} e^{2\pi i n t} \rangle \right|^{2}$$

Ejercicio 9

La sucesión $\left\{\frac{e^{int}}{\sqrt{2\pi}}e^{i\varphi(t)}\right\}_{n\in\mathbb{Z}}$ es una sucesión ortonormal en $L^2[-\pi,\pi]$ pues

$$\int_{-\pi}^{\pi} \frac{e^{int}}{\sqrt{2\pi}} e^{i\varphi(t)} \frac{e^{-imt}}{\sqrt{2\pi}} e^{-i\varphi(t)} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(n-m)t} dt = \delta_{nm}.$$

Para comprobar que es base, partimos de que $\left\{\frac{e^{int}}{\sqrt{2\pi}}\right\}_{n\in\mathbb{Z}}$ es una base ortonormal de $L^2[-\pi,\pi]$. En ese caso, si $f \in L^2[-\pi,\pi]$ es tal que $f \perp \frac{e^{int}}{\sqrt{2\pi}}e^{i\varphi(t)}$ para todo $n \in \mathbb{Z}$, resulta que $f e^{-i\varphi(t)} \perp \frac{e^{int}}{\sqrt{2\pi}}$ para todo $n \in \mathbb{Z}$ y de la completitud del sistema $\left\{\frac{e^{int}}{\sqrt{2\pi}}\right\}_{n\in\mathbb{Z}}$ se obtiene que $f e^{-i\varphi(t)} \equiv 0$ en $L^2[-\pi,\pi]$, y simplificando, $f \equiv 0$ en $L^{2}[-\pi,\pi].$

En particular, las sucesiones:

$$\left\{\frac{1}{\sqrt{2\pi}}e^{i(n+\alpha)x}\right\}_{n=-\infty}^{\infty};\quad \left\{\frac{e^{inx}}{\sqrt{2\pi}}e^{-ix^2}\right\}_{n\in\mathbb{Z}};\quad \left\{i\operatorname{sgn}w\frac{e^{inw}}{\sqrt{2\pi}}\right\}_{n\in\mathbb{Z}},$$

que se obtienen tomando sucesivamente

$$\varphi(x) = \alpha x; \quad \varphi(x) = -x^2; \quad \varphi(w) = (\operatorname{sgn} w) \frac{\pi}{2}$$

en $\left\{\frac{e^{int}}{\sqrt{2\pi}}e^{i\varphi(t)}\right\}_{n\in\mathbb{Z}}$, son bases ortonormales de $L^2[-\pi,\pi]$.

Ejercicio 10

- a) La expresión $\langle F,G\rangle_{\mathcal{H}}=\langle f_1,g_1\rangle_{L^2[0,\pi]}+\langle f_2,g_2\rangle_{L^2[0,\pi]}$ para cada par de elementos $F=(f_1,f_2)$ y $G=(f_1,f_2)$ (g_1, g_2) define un producto interno en el espacio \mathcal{H} . En efecto:

- 1. $\langle F, F \rangle_{\mathcal{H}} = \int_0^{\pi} |f_1(t)|^2 dt + \int_0^{\pi} |f_2(t)|^2 dt \geqslant 0$ y si $\langle F, F \rangle = 0$ entonces $f_1 \equiv 0$ y $f_2 \equiv 0$. 2. $\langle F, G \rangle_{\mathcal{H}} = \langle f_1, g_1 \rangle_{L^2[0,\pi]} + \langle f_2, g_2 \rangle_{L^2[0,\pi]} = \overline{\langle g_1, f_1 \rangle_{L^2[0,\pi]}} + \overline{\langle g_2, f_2 \rangle_{L^2[0,\pi]}} = \overline{\langle G, F \rangle_{\mathcal{H}}}$. 3. $\langle \alpha F + \beta H, G \rangle_{\mathcal{H}} = \langle \alpha f_1 + \beta h_1, g_1 \rangle_{L^2[0,\pi]} + \langle \alpha f_2 + \beta h_2, g_2 \rangle_{L^2[0,\pi]} = \alpha \langle f_1, g_1 \rangle_{L^2[0,\pi]} + \beta \langle h_1, g_1 \rangle_{L^2[0,\pi]} + \alpha \langle f_2, g_2 \rangle_{L^2[0,\pi]} + \beta \langle h_2, g_2 \rangle_{L^2[0,\pi]}$

Además, $||F||_{\mathcal{H}} = \sqrt{\langle F, F \rangle_{\mathcal{H}}} = \sqrt{\int_0^{\pi} |f_1(t)|^2 dt + \int_0^{\pi} |f_2(t)|^2 dt} = \sqrt{||f_1||^2 + ||f_2||^2}$.

b) Veamos en primer lugar que la sucesión $\left\{\frac{1}{\sqrt{\pi}}(\cos nt, \sin nt)\right\}_{n\in\mathbb{Z}}$ es un sistema ortonormal en \mathcal{H} . En efecto,

$$\langle \frac{1}{\sqrt{\pi}} (\cos nt, \sin nt), \frac{1}{\sqrt{\pi}} (\cos mt, \sin mt) \rangle_{\mathcal{H}} = \frac{1}{\pi} \int_0^{\pi} (\cos nt \cos mt + \sin nt \sin mt) dt$$
$$= \frac{1}{\pi} \int_0^{\pi} \cos(n - m) t dt = \delta_{n,m}.$$

Veamos ahora que el sistema es completo. En efecto sea $F = (f_1, f_2) \in \mathcal{H}$ tal que $\langle F, \frac{1}{\sqrt{\pi}}(\cos nt, \sin nt) \rangle_{\mathcal{H}} = 0$ para todo $n \in \mathbb{Z}$. En consecuencia, $\langle f_1, \frac{1}{\sqrt{\pi}}\cos nt \rangle_{L^2[0,\pi]} + \langle f_2, \frac{1}{\sqrt{\pi}}\sin nt \rangle_{L^2[0,\pi]} = 0$, y por tanto, $\int_0^{\pi} (f_1(t)\cos nt + f_2(t)\sin nt) dt = 0$ para todo $n \in \mathbb{Z}$. Así pues,

$$\int_0^{\pi} \left(f_1(t) \frac{e^{int} + e^{-int}}{2} + f_2(t) \frac{e^{int} - e^{-int}}{2i} \right) dt = 0.$$

Operando, se obtiene

$$\begin{split} & \int_0^\pi \Big(\frac{f_1(t)}{2} + \frac{f_2(t)}{2i}\Big) \mathrm{e}^{int} dt - \int_{-\pi}^0 \Big(\frac{f_1(-t)}{2} - \frac{f_2(-t)}{2i}\Big) \mathrm{e}^{int} dt \\ = & \int_{-\pi}^\pi \Big[\Big(\frac{f_1(t)}{2} + \frac{f_2(t)}{2i}\Big) \chi_{[0,\pi]}(t) - \Big(\frac{f_1(-t)}{2} - \frac{f_2(-t)}{2i}\Big) \chi_{[-\pi,0]}(t) \Big] \mathrm{e}^{int} \\ = & 0 \text{ para todo } n \in \mathbb{Z} \,, \end{split}$$

de donde se deduce que

$$\frac{f_1(t)}{2} + \frac{f_2(t)}{2i} \equiv 0 \text{ y } \frac{f_1(t)}{2} + \frac{f_2(t)}{2i} \equiv 0$$

en c.t.p en $[0, \pi]$, por lo que $f_1 \equiv f_2 \equiv 0$ en c.t.p en $[0, \pi]$.

Ejercicio 12

Como $\{x_n\}_{n=1}^{\infty}$ una sucesión de norma 1 que cumple la identidad de Parseval, para ver que $\{x_n\}_{n=1}^{\infty}$ es una base ortonormal bastará comprobar que $\langle x_n, x_m \rangle = 0$ si $n \neq m$. En efecto, aplicamos la identidad de Parseval a cada x_m y se obtiene

$$1 = \|x_m\|^2 = \sum_{n=1}^{\infty} |\langle x_m, x_n \rangle|^2 = \|x_m\|^2 + \sum_{n \neq m} |\langle x_m, x_n \rangle|^2 = 1 + \sum_{n \neq m} |\langle x_m, x_n \rangle|^2$$

y en consecuencia $\langle x_n, x_m \rangle = 0$ si $n \neq m$.