- 1. (Jan-06.2) Let R be the subring of $\mathbb{Z}[x]$ consisting of all polynomials with zero x- and x^2 -coefficients.
 - (a) Show that $\mathbb{Q}(x)$ is the field of fractions of R.
 - (b) Find the integral closure of R in $\mathbb{Q}(x)$.
 - (c) Does there exist a polynomial $g(x) \in R$ such that R is generated as a ring by 1 and g(x)?

- a) Clearly $\mathbb{Q}(x)$, the field of fractions of $\mathbb{Z}[x]$, contains the field of fractions of R. Conversely, x and 1 are in the field of fractions of R, because $x = \frac{x^4}{x^3}$, so the field of fractions of R contains the field of fractions of $\mathbb{Z}[x]$.
- b) The integral closure is $\mathbb{Z}[x]$ this ring is integrally closed since it is a UFD, so we need only show that the integral closure of R contains $\mathbb{Z}[x]$. But x is in the integral closure, since it is a root of p(t) where $p(t) = t^3 x^3 \in R[t]$, hence by integrality properties, $\mathbb{Z}[x]$ is contained in the integral closure.
- c) No: if there were such a polynomial, then x^3 and x^4 would necessarily be polynomials in g(x), hence $\deg(g)$ divides 3 and 4, hence would have to be 1, but no polynomial of degree 1 is in R.
- **c-alt)** No: if there were, then R would be isomorphic to $\mathbb{Z}[g(x)] \cong \mathbb{Z}[y]$, but the latter is integrally closed while R is not.
- 2. (Aug-09.2/Jan-08.2a) Let $R \subseteq S$ be commutative rings with the same 1, and assume that every element of S is integral over R.
 - (a) If $r \in R$ has an inverse in S, prove this inverse is in R.
 - (b) Suppose R is a field and $s \in S$ is regular (i.e., if sx = 0 for some $x \in S$, then x = 0). Show that s is invertible in S.
 - (c) If P is a prime ideal of S, prove that P is maximal in S iff $R \cap P$ is maximal in R.

- a) Since $u = r^{-1}$ is integral over R, it satisfies a monic polynomial with coefficients in R: $u^n + a_{n-1}u^{n-1} + \cdots + a_1u + a_0 = 0$. Now multiply by r^{n-1} to obtain $u + a_{n-1} + a_{n-2}r + \cdots + a_0r^{n-1}$, whence $u = -a_{n-1} a_{n-2}r \cdots a_0r^{n-1} \in R$.
- b) By hypothesis s is integral over R, so again we can write $s^n + b_{n-1}s^{n-1} + \cdots + b_0 = 0$ for some monic polynomial of minimal degree. If $b_0 = 0$ then we would have $s(s^{n-1} + \cdots + b_1) = 0$ so by regularity we would have $s^{n-1} + \cdots + b_1 = 0$, contradicting minimality. Hence $b_0 \neq 0$; then we may write $s(s^{n-1} + \cdots + b_1) = -b_0$, so since R is a field we can divide by $-b_0$ to see $s \cdot \left[-\frac{s^{n-1} + \cdots + b_1}{b_0} \right] = 1$, so s is invertible.
- c) By passing to the quotient, we know that every element of S/P is integral over $R/(R \cap P)$.
 - \Rightarrow : If P is maximal in S, let $\bar{r} \in R/(R \cap P)$ be nonzero. Then \bar{r} is invertible in S/P since S/P is a field and $r \notin P$. So by part (a), \bar{r} is invertible in $R/(R \cap P)$, hence the latter is a field and $R \cap P$ is maximal in R.
 - \Leftarrow : If $R \cap P$ is maximal in R, then $R/(R \cap P)$ is a field and R/P is a domain since P is prime. Hence every nonzero element of R/P is regular, so by part (b) R/P is a field and P is maximal.

- 3. (Jan-01.3): Let $f(x) \in \mathbb{Z}[x]$ be monic and such that $f(\alpha) = f(2\alpha) = 0$ for some $\alpha \in \mathbb{C}$.
 - (a) Show that $f(0) \neq 1$.
 - (b) If f is irreducible, prove $\alpha = 0$.

- a) Since f is monic, all its roots r_1, \dots, r_n are algebraic integers, with $r_1 = \alpha$ and $r_2 = 2\alpha$. Then $\frac{1}{2}f(0) = \frac{1}{2}(-1)^n r_1 r_2 \cdots r_n = (-1)^n \alpha^2 r_3 \cdots r_n$ is a product of algebraic integers hence also an algebraic integer. Since it is also a rational number, it is an integer. We conclude that f(0) is an even integer, so it is not
- b) Consider $\gcd(f(x), f(2x))$: it has positive degree since $x-\alpha$ divides both terms, hence since f is irreducible it must equal f(x). Since f(x) and f(2x) have the same degree, the latter is a scalar multiple of the former. We conclude that if β is a root of f, then so is 2β , meaning that $\alpha, 2\alpha, 4\alpha, \ldots$ are all roots of f. Since f has finite degree, it must be the case that $\alpha = 0$.
- **Remark** Part (b) is showing that multiplication by 2 is an element of the Galois group of f. Examples of such irreducible f exist in any positive odd characteristic: for example, over \mathbb{F}_3 , the irreducible polynomial $p(x) = x^2 + 1$ has roots i and 2i = -i, where $i^2 = -1$ in $\overline{\mathbb{F}}_3$.
- 4. (Aug-12.5) Let R be a not necessarily commutative ring with 1, such that $x^5 = x$ for every $x \in R$.
 - (a) Show that J(R) = 0.
 - (b) Now assume R is right-Artinian. Prove that R is a direct sum of division rings.
 - (c) Let D be a division ring direct summand of R. If F is any subfield of D, show that $F = \mathbb{F}_2$, \mathbb{F}_3 , or \mathbb{F}_5 .
 - (d) Deduce that D above is isomorphic to \mathbb{F}_2 , \mathbb{F}_3 , or \mathbb{F}_5 , and conclude that R is commutative.

- a) If $y \in J$, then 1-syr is a unit for any $s, r \in R$, so in particular $1-y^4$ is a unit. Since $0 = y-y^5 = y(1-y^4)$, multiplying by the inverse of $1-y^4$ yields y = 0.
- b) A right-Artinian ring has a finite number of maximal right ideals m_1, \dots, m_k , as otherwise $m_1, m_1 \cap m_2, \dots$ would yield an infinite decreasing chain of right ideals. Now since the Jacobson radical is the intersection of the maximal right ideals of R, part (a) implies that $\bigcap m_k = 0$. Now by the Chinese Remainder Theorem, we see that $R \cong \bigoplus (R/m_k)$, since by maximality it must be the case that $m_i + m_j = R$ for any (i,j), and so $\prod m_i = \bigcap m_i = 0$. Finally, R/m_k is a division ring.
- **b-alt)** By the Artin-Wedderburn theorem, we see that R is a direct sum of matrix rings over division rings: $R \cong \bigoplus M_{k \times k}(D_i)$. But the Jacobson radical is only zero if all of the matrix rings are 1-dimensional since (for example) there are nilpotent elements in a $k \times k$ matrix ring if k > 1.
- c) Suppose F is a field in which $x^5 x = 0$ for all $x \in F$. By unique factorization we see that $|F| \le 5$, and so |F| can only be 2, 3, 4, or 5. It is then trivial to see that |F| = 2, 3, 5 work, but |F| = 4 does not work.
- d) Let F be the subfield generated by 1 in D. If $z \in D$ is any element of D, then F(z) is commutative hence also a subfield of D, but by part (c) it must be the case that F(z) = F, so $z \in F$ hence D = F. Thus, R is a direct sum of fields hence commutative.
- **Remark** This is a special case of a theorem, due to Jacobson, that if R is such that $x^{n(x)} = x$ for every $x \in R$ (where the exponent can depend on x), then R is commutative.

- 5. (Aug-04.2) Let R be a ring with 1, M be a finitely-generated (right) R-module, and $N \subset M$ a proper submodule of M.
 - (a) Prove that there exists a maximal submodule of M containing N.
 - (b) Show that N + MJ is a proper submodule of M, where J = J(R) is the Jacobson radical of R.

- a) This is the module version of Krull's lemma (that a commutative ring with 1 contains a maximal ideal). Let Σ be the set of proper submodules of M containing N, partially ordered by inclusion; it is nonempty since it contains N. If $C: M_1 \subset M_2 \subset \cdots$ is a chain, we claim $M' = \bigcup M_i$ is an upper bound and a proper submodule of M. It is clearly an upper bound, and it is proper since otherwise it would necessarily contain each of the generators of M at some finite stage, but then one of the M_i would necessarily equal M, contradiction. Hence Zorn's lemma gives a maximal element, as desired.
- b) This is Nakayama's lemma. Without loss of generality we can replace N with the maximal submodule K from part (a); then the result is equivalent to showing that K+MJ is proper, which is in turn equivalent to showing that MJ is contained in K i.e., that MJ is contained in every maximal submodule of M. This last statement is equivalent to the more usual statement of Nakayama's lemma, which says that if M is finitely-generated and M/MJ=0 then M=0: to prove it, suppose that n is the smallest possible number of generators m_1, \dots, m_n of M and write $m_n = r_1 m_1 + \dots + r_n m_n$ with the $r_j \in J$; then $m_n(1-r_n) = r_1 m_1 + \dots + r_{n-1} m_{n-1}$, but now since $r_n \in J$ we know that $1-r_n$ is a unit (else $1-r_n$ would be contained in some maximal ideal of R hence in J, but then $r_n + (1-r_n) = 1$ would be in J, contradiction) hence m_n is in the span of m_1, \dots, m_{n-1} . This is a contradiction since then m_1, \dots, m_{n-1} would generate M.
- 6. (Aug-06.2) Let R be a ring with 1 and N a nil ideal of R such that R/N has no zero divisors.
 - (a) Show that the only idempotents of R are 0 and 1.
 - (b) If R/N is a division ring, show that every zero divisor in R is nilpotent.

- a) Suppose $e^2 = e$ in R so that e(1 e) = 0. Passing to R/N shows that $\bar{e} \cdot (1 \bar{e}) = \bar{0}$ in R/N, so since R/N has no zero divisors we see that e or 1 e is in N. But then since N is a nil ideal, $e^n = 0$ or $(1 e)^n = 0$ for some n, and since $e^2 = e$ and $(1 e)^2 = (1 e)$ a trivial induction shows e = 0 or 1 e = 0, hence e = 0 or e = 1.
- b) Suppose $x \in R$ has $\bar{x} \neq \bar{0}$ in R/N (which is to say, $x \notin N$). Then since R/N is a division ring, \bar{x} has a left inverse \bar{y} , so there exists y with xy = 1 + n for some $n \in N$. But then $xy(1 n + n^2 + \cdots + (-n)^k) = 1$ where $n^k = 0$, so x has a left inverse. Symmetrically, we see x has a right inverse, so it is a unit. Hence every nonunit is contained in N, so in particular every zero divisor is nilpotent.

- 7. (Jan-14.1): Let R be a commutative ring and I an ideal of R.
 - (a) Show that the radical of I, rad(I), is an ideal of R. (Recall that the radical is given by the set of all elements $x \in R$ such that there exists an integer n such that $x^n \in I$.)
 - (b) Give an example of an ideal I in $\mathbb{Q}[x,y]$ such that I is non-principal but $\mathrm{rad}(I)$ is principal.
 - (c) Suppose we try to define rad(0) in $R = M_{2\times 2}(\mathbb{R})$ to be the set of all elements $r \in R$ such that there exists an integer n with $r^n = 0$. Show that this set rad(0) is not an ideal of R.

- a) Suppose $r \in R$ and $x, y \in rad(I)$, so that $x^n \in I$ and $y^m \in I$. Then $(rx)^n = r^n x^n \in I$, and $(x+y)^{m+n} \in I$, since after expanding with the binomial theorem we see that each term has an x^m or y^m (and these are in I). Also, $0 \in rad(I)$, so we see rad(I) is nonempty and closed under addition and R-multiplication.
- b) One example is $I=(x^2,xy)$: it is nonprincipal because any generator would necessarily divide both x^2 and xy hence divide their gcd x, but I contains no polynomials of degree less than 2. But then $\mathrm{rad}(I)=(x)$: clearly $\mathrm{rad}(I)$ contains x since $x^2 \in I$, and since $I \subset (x)$ we see $\mathrm{rad}(I) \subseteq \mathrm{rad}(x)$, but since (x) is prime, it equals its radical.
- c) This set is not closed under addition or multiplication: $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$ are both nilpotent, but neither their sum nor their product (in either order) is.
- **c-alt**) A matrix ring over a field is a simple ring, so the only two-sided ideals of R are 0 and R, but the set rad(0) is neither of those.
- 8. (Aug-08.2) Let $S = \mathbb{Z} \oplus \mathbb{Z}$, and $R = \{(a, b) \in S : a \equiv b \mod 6\}$.
 - (a) Show that R is a finitely-generated \mathbb{Z} -module and conclude that R is a Noetherian ring.
 - (b) Prove that the ideal $P = \{(a, 0) \in R : a \equiv 0 \mod 6\}$ is prime in R.
 - (c) If Q is a primary ideal of R with P = rad(Q), show that Q = P.

- a) It is easy to see that $R = \{(a, a + 6k), a, k \in \mathbb{Z}\}$, so R is generated by (1,1) and (0,6). Since \mathbb{Z} is Noetherian, so is R.
- **a-alt)** S is a Noetherian \mathbb{Z} -module, so any submodule (e.g., R) is Noetherian as well, and a Noetherian module is finitely-generated.
- b) Suppose $(a, b) \cdot (c, d) = (6t, 0)$; then one of b, d is zero. By interchanging, we can assume b = 0; then since $(a, b) \in R$ we see $a \equiv 0 \mod 6$, so $(a, b) \in P$. So P is prime.
- **b-alt)** Observe that the homomorphism $\varphi: R \to \mathbb{Z}$ sending $(a,b) \mapsto b$ is surjective and has kernel P. The first isomorphism theorem then says $R/P \cong \mathbb{Z}$, which is an integral domain.
- c) If P = rad(Q) then Q is contained in P, and also there is some element $(a, b) \in Q$ with $(a, b)^n = (6, 0) \in P$ but this forces (a, b) = (6, 0) so (6, 0) hence all of P is in Q so Q = P.
- **c-alt)** In fact this result holds if P is any principal prime ideal (x): if $P = \operatorname{rad}(Q)$, we need only see that $x \in Q$: since $x \in P = \operatorname{rad}(Q)$, there is some $y \in Q$ with $y^n = x \in P$. But since P is prime, a trivial induction shows $y \in P$ whence we conclude $x \in Q$.

- 9. (Jan-12.2) Let R be a commutative ring with 1 and Q be a primary ideal of R. Suppose that $Q = \bigcap X_i$ is a finite intersection of the ideals X_i .
 - (a) If each X_i is prime, prove that $Q = X_j$ for some j. [Hint: Show that Q is prime.]
 - (b) If R is Noetherian and each X_i is primary, and the radicals of the X_i are distinct, prove again that $Q = X_j$ for some j.

- a) We claim that Q is prime. To see this suppose xy ∈ Q: then since Q is primary we know that x ∈ Q or yⁿ ∈ Q. In the latter case we have yⁿ ∈ X_i for all i, but then since each X_i is prime (hence equal to its radical) we see y ∈ X_i for all i, hence y ∈ Q = ∩ X_i. We conclude that if xy ∈ Q then x ∈ Q or y ∈ Q, meaning Q is prime.
 The result then follows from: if Q is a prime ideal and Q = ∩ X_i is a finite intersection of ideals, then some X_i = Q. If any X_i contains the intersections of the others, we can throw it away without changing anything. If after we do this we are left with only one X_i then it is equal to Q and we are done. Otherwise, suppose we have 2 or more, and pick x_k ∈ X_k \ ∩_{i≠k} X_i. Then x₁x₂ ··· x_k ∈ Q whence some x_j ∈ Q since Q is prime. But this is a contradiction since then x_j ∈ X_j, contrary to our assumption.
- b) This follows from the uniqueness part of the primary decomposition theorem: if we reduce this intersection by throwing out ideals contained in the intersection of all the others like in part (a), we get a minimal primary decomposition of Q. There is one associated prime for Q, namely rad(Q), so there must be only a single X_i that survives, and it must be equal to Q.
- **b-alt)** Taking radicals yields $\operatorname{rad}(Q) = \bigcap \operatorname{rad}(X_i)$, and applying part (a) we see that $\operatorname{rad}(Q) = \operatorname{rad}(X_i)$ for some i, and all of the other $\operatorname{rad}(X_j)$ contain elements not in $\operatorname{rad}(X_i)$. Then if we localize Q at the prime ideal $P = \operatorname{rad}(Q)$, because $\operatorname{rad}(X_j) \cap (R \setminus P) \neq \emptyset$ for $j \neq i$, all of the X_j except for X_i are sent to zero. Then taking a contraction shows $Q = X_i$, as desired.
- 10. (Aug-02.2) Let R be a commutative ring with 1 in which every proper ideal is primary.
 - (a) If P is a prime ideal and I is any ideal, show that either $I \subseteq P$ or $P = IP \subseteq I$.
 - (b) If M is a maximal ideal of R, show that M is the set of nonunits of R.
 - (c) Show that J is prime in R iff for all $r \in R$, $r^2 \in J$ implies $r \in J$.

- a) If $I \subseteq P$ we are done, so choose $a \in I \setminus P$ and let $b \in P$ be arbitrary. Then $ba \in IP$ so since IP is primary, either $b \in IP$ or $a^n \in IP$: however it cannot be that $a^n \in IP$ since this would imply $a^n \in P$ and primality of P would give $a \in P$, which is not true. Hence $b \in IP$, so $P \subseteq IP \subseteq P$, whence P = IP.
- b) By part (a), for every ideal I of R, it is either the case that $I \subseteq M$ or $M \subseteq I$. Since M is maximal the latter cannot happen unless I = M or I = R, so every proper ideal of R is contained in M, hence R has a unique maximal ideal. Then it is standard to see that a local ring (a ring with a unique maximal ideal) has the property that the maximal ideal is the set of nonunits: a nonunit generates a proper ideal (as it doesn't contain 1) hence the ideal hence the nonunit must be contained in M, and no unit is contained in M.
- c) We only need that J is primary for this part. If J is prime then we immediately have that $r^2 \in J$ implies $r \in J$. Conversely, suppose J is a primary ideal and $xy \in J$. Then either $x \in J$ and we are done, or $y^n \in J$. We claim that $y^n \in J$ implies $y \in J$: this follows by a downward induction on n: if n is even then the criterion implies $y^{n/2} \in J$; if n is odd then the criterion implies $y^{(n+1)/2} \in J$, and in either case we see that a lower power of y is in J.