Estudo dirigido sobre o capítulo 5 (parte 1) — camada de enlace

1. Descreva os dois tipos de canais de camada de enlace.

- O primeiro tipo são os canais de broadcast, que são comuns em redes locais (LANs), LANs sem fio, redes por satélite e redes de acesso híbridas de cabo coaxial e de fibra (HFC)
 - Muitos hospedeiros estão conectados ao mesmo canal de comunicação e é preciso um protocolo de acesso ao meio para coordenar transmissões e evitar colisões entre quadros transmitidos
- O segundo tipo de canal de camada de enlace é o enlace de comunicação ponto a ponto, tal como o existente entre dois roteadores ou entre um modem discado residencial e um roteador ISP

2. Quais são os serviços oferecidos por um protocolo de camada de enlace?

- Enquadramento de quadros
- Acesso ao enlace
- Entrega confiável
- Controle de fluxo
- Detecção de erros
- Correção de erros

3. Onde é implementada a camada de enlace ?

- Na maior parte, a camada de enlace é implementada em um adaptador de rede, por vezes também conhecido como controlador de interface de rede (NIC)
- No núcleo do adaptador de rede está o controlador da camada de enlace, normalmente um único chip de sistema especial, que implementa vários serviços da camada de enlace
- Dessa forma, muito da funcionalidade do controlador da camada de enlace é implementado em hardware
- Parte da camada de enlace é implementada em software que é executada na CPU do hospedeiro: recepção do datagrama, montagem de informações de endereçamento da camada de enlace e ativação do controle de hardware
 - No lado receptor, o software de camada de enlace responde a interrupções do controlador (por ex., devido ao recebimento de um ou mais quadros), lida com condições de erro e passa o datagrama para a camada de rede

3. Onde é implementada a camada de enlace ?

4. Explique a figura 5.4.

- No nó remetente, para que os dados, D, fiquem protegidos contra erros de bits, eles são aumentados com bits de detecção e de correção (error detectionand-correction bits - EDC)
- Tanto D como EDC são enviados ao nó receptor em um quadro de enlace
 - No nó receptor, são recebidas sequências D' e EDC', que podem ser diferentes dos D e EDC originais, como resultado de alterações nos bits em trânsito

4. Explique a figura 5.4.

5. Como é implementada a técnica de paridade par no transmissor ?

 Em um esquema de paridade par, o remetente simplesmente inclui um bit adicional e escolhe o valor desse bit de modo que o número total de 1 nos bits d+1 (a informação original mais um bit de paridade) seja par

6. Explique a técnica de paridade bidimensional.

	Paridade de linha							
g	d _{1,1}		d _{1,j}	d _{1, j+1}				
olun	d _{2,1}		d _{2, j}	d _{2, j+1}				
e de								
Paridade de coluna	$d_{i,1}$		$d_{i,j}$	$d_{i,j+1}$				
g 1	d _{i+1,1}		d _{i+1, j}	d _{i+1,j+1}				

Nenhum erro					úr	Erro de bit único corrigível						
1	0	1	0	1	1	1	0	1	0	1	1	
1	1	1	1	0	0	1	0	1	1	0	0	Erro de paridade
0	1	1	1	0	1	0	1	1	1	0	1	
0	0	1	0	1	0	0	0	1	0	1	0	
Erro de paridade												

7. O que é CRC?

- É uma técnica de detecção de erros usada amplamente nas redes de computadores de hoje
- Códigos de verificação de redundância cíclica (cyclic redundancy check CRC) também são conhecidos como códigos polinomiais, já que é possível considerar a cadeia de bits a ser enviada como um polinômio cujos coeficientes são os valores 0 e 1 na cadeia de bits, sendo as operações na cadeia de bits
 interpretadas como aritmética polinomial

7. O que é CRC ?

- Considere a parcela de d bits de dados, D, que o nó remetente quer enviar para o nó receptor
- O remetente e o receptor devem, primeiramente, concordar com um padrão de r+1 bits, conhecido como um gerador, que será denominado G
- Para uma dada parcela de dados, D, o remetente escolherá r bits adicionais, R, e os anexará a D de modo que o padrão de d+r bits resultante (interpretado como um número binário) seja divisível exatamente por G usando aritmética de módulo 2
- O processo de verificação de erros é simples: o receptor divide os d+r bits recebidos por G
 - Se o resto for diferente de zero, o receptor saberá que ocorreu um erro; caso contrário, são aceitos como corretos

8. Qual é o significado do termo *broadcast* ?

- Pode ter vários nós remetentes e receptores, todos conectados ao mesmo canal de transmissão único e compartilhado
- O termo broadcast é usado porque, quando qualquer um dos nós transmite um quadro, o canal propaga o quadro e cada um dos nós recebe uma cópia
- A ethernet e as LANs sem fio são exemplos de tecnologias de broadcast de camada de enlace

9. Qual é o objetivo dos protocolos de acesso múltiplo?

- Para assegurar que o canal broadcast realize trabalho útil quando há vários nós ativos, é preciso coordenar, de algum modo, as transmissões destes nós ativos
- Essa tarefa de coordenação é de responsabilidade do protocolo de acesso múltiplo

9. Qual é o objetivo dos protocolos de acesso múltiplo?

fio compartilhado (p. e., Ethernet cabeado)

RF compartilhada (p. e., WiFi 802.11)

RF compartilhada (satélite)

humanos em uma festa (ar e acústica compartilhados)

10. Como podem ser classificados os protocolos de acesso múltiplo?

 Podemos classificar qualquer protocolo de acesso múltiplo em uma das seguintes categorias: protocolos de divisão de canal, protocolos de acesso aleatório e protocolos de revezamento

11. Liste os três protocolos de divisão de canal.

- Multiplexação por divisão de tempo (TDM) e a multiplexação por divisão de frequência (FDM)
- Um terceiro protocolo de divisão de canal é o protocolo de acesso múltiplo por divisão de código

12. Aponte uma desvantagem de um protocolo de acesso múltiplo que use multiplexação por divisão de tempo (TDM).

- A primeira desvantagem é que um nó fica limitado a uma velocidade média de R/N bps, mesmo quando ele é o único nó com pacotes a enviar
- A segunda desvantagem é que o nó deve sempre esperar sua vez na sequência de transmissão – de novo, mesmo quando ele é o único nó com um quadro a enviar

13. Como funciona um protocolo de acesso múltiplo por divisão de código (CDMA) ?

- O protocolo CDMA atribui um código diferente a cada nó
- Então, cada nó usa seu código exclusivo para codificar os bits de dados que envia
- Se os códigos forem escolhidos cuidadosamente, as redes CDMA terão a maravilhosa propriedade de permitir que nós diferentes transmitam simultaneamente...
 - e, ainda assim, consigam que seus receptores respectivos recebam corretamente os bits codificados pelo remetente (admitindo-se que o receptor conheça o código do remetente), a despeito das interferências causadas pelas transmissões dos outros nós

14. Como é o funcionamento de um protocolo de acesso aleatório ?

- Com um protocolo de acesso aleatório, um nó transmissor sempre transmite à taxa total do canal, isto é, R bps
- Quando há uma colisão, cada nó envolvido nela retransmite repetidamente seu quadro até que passe sem colisão
- Mas quando um nós sofre uma colisão, ele nem sempre retransmite o quadro imediatamente
- Em vez disso, ele espera um tempo aleatório antes de transmitir o quadro
- Cada nó envolvido em uma colisão escolhe atrasos aleatórios independentes

15. Como é o funcionamento do *slotted ALOHA* em cada nó ?

- Quando o nó tem um novo quadro para enviar, espera até o início do próximo intervalo e transmite o quadro inteiro no intervalo
- Se não houver uma colisão, o nó transmitirá o seu quadro com sucesso e, assim, não precisará considerar a retransmissão do quadro
- Se houver uma colisão, o nó a detectará antes do final do intervalo
 - Ele retransmitirá seu quadro em cada intervalo subsequente com probabilidade p até que o quadro seja transmitido sem colisão

16. Qual é a diferença do Aloha pura em relação ao *slotted ALOHA* ?

- O slotted ALOHA requer que todos os nós sincronizem suas transmissões para que comecem no início de um intervalo
- O primeiro protocolo ALOHA era, na realidade, um protocolo sem intervalos e totalmente descentralizado
- No ALOHA puro, quando um quadro chega pela primeira vez, o nó imediatamente o transmite inteiro ao canal broadcast
- Tanto no slotted ALOHA quanto no ALOHA puro, a decisão de transmitir tomada por um nó independe da atividade dos outros nós ligados ao canal broadcast

17. O que são detecção de portadora e detecção de colisão ?

- Detecção de portadora um nó ouve o canal antes de transmitir
 - Se um quadro de outro nó estiver correntemente sendo transmitido para dentro do canal, o nó então esperará (se afastará – back off) por um período de tempo aleatório e, então, novamente sondará o canal
- Detecção de colisão um nó que está transmitindo ouve o canal enquanto transmite
 - Se detectar que outro nó está transmitindo um quadro interferente, ele para de transmitir e usa algum protocolo para determinar quando deve tentar transmitir novamente

Professor Sandro Neves Soares

18. Se todos os nós realizam detecção de portadora, por que ocorrem colisões?

 Quanto mais longo for o atraso de propagação fim a fim do canal, maior será a chance de um nó que detecta portadora ainda não poder perceber uma transmissão que já começou em outro nó da rede

19. Descreva o protocolo de revezamento de seleção (polling). Dê um exemplo de tecnologia que o utiliza.

- O protocolo de polling requer que um dos nós seja designado como nó mestre
- O nó mestre seleciona cada um dos nós por alternância circular
- O protocolo de polling elimina as colisões e os intervalos vazios que atormentam os protocolos de acesso aleatório, o que permite que ele tenha uma eficiência muito maior
- Uma desvantagem é que o protocolo introduz um atraso de seleção
- Outra desvantagem é que se o nó mestre falhar, o canal inteiro ficará inoperante
- O protocolo 802.15 e o Bluetooth são exemplos de protocolos de *polling*

Professor Sandro Neves Soares

20. Descreva o protocolo de revezamento de passagem de permissão. Dê um exemplo de tecnologia que o utiliza.

- Um pequeno quadro de finalidade especial conhecido como uma permissão (token) é passado entre os nós obedecendo a uma determinada ordem fixa
- Quando um nó recebe uma permissão, ele a retém somente se tiver alguns quadros para transferir, caso contrário, imediatamente a repassa para o nó seguinte
- Se um nó tiver quadros para transmitir quando recebe a permissão, ele enviará um número máximo de quadros e, e em seguida, passará a permissão para o nó seguinte
- A passagem de permissão é descentralizada e tem uma alta eficiência
- Desvantagem: a falha de um nó pode derrubar o canal inteiro
- Exemplos: FDDI e o IEEE 802.5
- A FDDI foi projetada para LANs de alcance geográfico maior, incluindo as denominadas redes de área metropolitana (MANs)

21. O que é um endereço MAC? Descreva algumas de suas características.

- São endereços de camada de enlace
- É também denominado endereço de LAN, um endereço físico ou um endereço MAC (media access control)
- Para a maior parte das LANs (incluindo a Ethernet e as LANs 802.11 sem fio), o endereço MAC tem 6 bytes de comprimento
- É possível mudar o endereço MAC de um adaptador via software, apesar deles serem projetados como permanentes
- O endereço MAC de um adaptador tem uma estrutura linear e nunca muda, não importando para onde vá o adaptador (semelhante ao CPF)
- O endereço IP é hierárquico (semelhante ao endereço da moradia)
- Numa rede broadcast, conforme o endereço MAC de destino, somente o adaptador deste nó interromperá seu nó pai quando receber um quadro

22. Descreva uma consulta ARP.

- Como existem endereços de camada de rede e endereços de camada de enlace, é preciso fazer a tradução de um para outro – essa é uma tarefa do protocolo de resolução de endereços (address resolution protocol – ARP)
- Para enviar um datagrama, o nó da fonte deve dar a seu adaptador não somente o datagrama IP, mas também o endereço MAC para o nó de destino
- Um módulo ARP no nó remetente toma como entrada qualquer endereço IP na mesma LAN e retorna o endereço MAC
 correspondente
- O ARP converte endereços IP apenas para nós na mesma sub-rede
- Cada nó tem em sua RAM uma tabela ARP que contém mapeamentos de endereços IP para endereços MAC

22. Descreva uma consulta ARP.

- No caso do mapeamento não estar contigo na tabela ARP, o nó remetente monta um pacote especial denominado ARP Query
- O endereço de destino é FF-FF-FF-FF-FF
- O único nó (no máximo) que atende a essa condição devolve um pacote ARP de resposta ao nó que fez a consulta, com o mapeamento desejado
- O nó que fez a consulta pode, então, atualizar sua tabela ARP
- O ARP é um protocolo plug-and-play, isto é, é construída automaticamente

23. O que há de novo quando o pacote é dirigido a um hospedeiro em outra subrede.

- Um roteador que tem duas interfaces, tem dois endereços IP, dois módulos ARP e dois adaptadores
- Quando um pacote é dirigido a outra sub-rede, o endereço MAC de destino primeiramente utilizado é o da interface do roteador que leva à outra subrede

23. O que há de novo quando o pacote é dirigido a um hospedeiro em outra subrede.

Figura 5.19 Duas sub-redes interconectadas por um roteador

