COMP3421

Inverse Transformations, Shaders

Robert Clifton-Everest

Email: robertce@cse.unsw.edu.au

View transform

- The world is rendered as it appears in the camera's local coordinate frame.
- The view transform converts the world coordinate frame into the camera's local coordinate frame.
- Note that this is the inverse of the transformation that would convert the camera's local coordinate frame into world coordinates.

Transformation pipeline

We transform in 2 stages

$$P_{camera} \stackrel{view}{\longleftarrow} P_{world} \stackrel{model}{\longleftarrow} P_{local}$$

- The model transform transforms points in the local coordinate system to the world coordinate system
- The view transform transforms points in the world coordinate system to the camera's coordinate system

View transform

Mathematically if:

$$P_{world} = Trans(Rot(Scale(P_{camera})))$$

Then the view transform is:

$$P_{camera} = Scale^{-1}(Rot^{-1}(Trans^{-1}(P_{world})))$$

Inverse Transformations

If the local-to-global transformation is:

$$Q = \mathbf{M_T} \mathbf{M_R} \mathbf{M_S} P$$

then the global-to-local transformation is the inverse:

$$P = \mathbf{M_S^{-1}M_R^{-1}M_T^{-1}}Q$$

Inverse Transformations

Inverses are easy to compute:

```
translation: \mathbf{M_T}^{-1}(d_x, d_y) = \mathbf{M_T}(-d_x, -d_y)
rotation: \mathbf{M_R}^{-1}(\theta) = \mathbf{M_R}(-\theta)
scale: \mathbf{M_S}^{-1}(s_x, s_y) = \mathbf{M_S}(1/s_x, 1/s_y)
shear: \mathbf{M_H}^{-1}(h) = \mathbf{M_H}(-h)
```

Local to World Exercise

Given this local coordinate frame:

```
CoordFrame2D.identity()
   .translate(3,2)
   .rotate(-45)
   .scale(0.5,0.5);
```

• What point in the local co-ordinate frame would correspond to the world co-ordinate Q (2,-1)?

Assignment I

- Automarking
 - -Junit 4 Unit Tests
 - -diff image files that you output with required image output
- Tutor subjective marking
 - MyCoolSceneObject
 - -Bonus Game (also course vote)

JUnit

- You can run JUnit tests directly from eclipse
- For floating point equality we use an epsilon
- Demo

Hints

Drawing twice: once as a fill and once as an outline.

- Draw fill first
- -Then outline over the top

Reparenting

- What if the person picks up the bottle?
- What's the new transformation?

Lerping

· We can add affine combinations of points:

$$\frac{1}{2}(p_1, p_2, 1)^{\top} + \frac{1}{2}(q_1, q_2, 1)^{\top} = (\frac{p_1 + q_1}{2}, \frac{p_2 + q_2}{2}, \mathbf{1})^{\top}$$

We often use this to do linear interpolation between points:

$$lerp(P,Q,t) = P + t(Q - P)$$

$$lerp(P,Q,t) = P(1-t) + tQ$$

$$lerp(P,Q,0.3)$$

Lerping Exercise

• Using linear interpolation, what is the midpoint between A=(4,9) and B=(3,7)?

Lines

Parametric form:

$$L(t) = P + t\mathbf{v}$$

$$\mathbf{v} = Q - P$$

$$L(t) = P + t(Q - P)$$

 $\begin{array}{c} L(t) & Q & t > 1 \\ \hline 0 < t < 1 & \\ \hline t < 0 & \end{array}$

Point-normal form in 2D:

$$\mathbf{n} \cdot (P - L) = 0$$

Line intersection

Two lines

$$L_{AB}(t) = A + (B - A)t$$
$$L_{CD}(u) = C + (D - C)u$$

Solve simultaneous equations:

$$(B-A)t = (C-A) + (D-C)u$$

Line Intersection Example

A = (0,3) B = (12,7)
$$L_{AB}(t) = A + (B-A)t$$
 C = (2,0) D = (7,20)
$$L_{CD}(u) = C + (D-C)u$$

Line Intersection Example 2

Find where the line L(t) = A + ct intersects with the line n.(P-B) = 0 where

$$A=(2,3)$$
, $c=(4,-4)$, $n=(6,8)$, $B=(7,7)$

NOT DONE IN LECTURE DUE TO TIME. Left as an exercise for the reader.

Point in Polygon

- For any ray from the point
- Count the number of crossings with the polygon
- If there is an odd number of crossings the point is inside

Point in polygon

Point in polygon

Difficult points

Solution

Only count crossings at the lower vertex of an edge.

Point in polygon

Computational Geometry

- Computational Geometry in C, O'Rourke
- http://cs.smith.edu/~orourke/books/ compgeom.html
- CGAL
 Computational Geometry Algorithms Library
- http://cgal.org/

Shaders

- Shaders are programs executed on the GPU for the purpose of rendering graphics.
- They are written in a special language called GLSL (GL Shader Language).

GLSL Syntax

- C like language with
 - -No pointers!
 - -Basic types: float int bool
 - -Standard C/C++ arithmetic and logic operators and overloaded ones to work on vectors and matrices
 - if statements, loops

GLSL Syntax

- No characters, strings or printf
 - Hard to debug
- No recursion
- No double (limited support in later versions)

Vertex Shaders

- The GPU will execute the vertex shader for every vertex we supply it.
- e.g. if we're drawing a triangle, the vertex shader will execute three times.

Basic Vertex Shader

Takes the input position and returns it as is.

```
// Incoming vertex position
in vec2 position;

void main() {
    gl_Position = vec4(position, 0, 1);
}
```

GLSL

Variables declared:

- 'in' are inputs to the shader and are different for each vertex.
- 'uniform' are inputs to the shader that are the same for every vertex
- 'out' are what the shader outputs
- Variables starting with 'gl_' are built-in and have special meaning.

GLSL Syntax

- Has support for 2D, 3D, 4D vectors (array like list like containers) of different types
 - -vec2, vec3, vec4 are float vectors
- Operators are overloaded for vector operations.
- · Can be constructed in many ways. e.g.

vec4 vec4(vec2 xy, float z, float w);

GLSL

• gl_Position is a homogenous point in 3D (i.e. a vector of rank 4)

```
// Incoming vertex position
in vec2 position;

void main() {
    gl_Position = vec4(position, 0, 1);
}
```

GLSL

 This shader applies no transformation to the vertex at all (equivalent to UNSWgraph v0.2 and earlier)

```
// Incoming vertex position
in vec2 position;

void main() {
    gl_Position = vec4(position, 0, 1);
}
```

Fragment Shaders

 The GPU will execute the fragment shader for every pixel it draws into the framebuffer

• e.g. if we're drawing a triangle, the fragment shader will execute for every pixel that gets filled in.

Basic Fragment Shader

 In OpenGL if the fragment shader only has one declared output, then that is what gets written to the framebuffer.

```
out vec4 outputColor;

void main() {
    // Output black
    outputColor = vec4(0,0,0,0);
}
```

Basic Fragment Shader

 For reasons we will cover later, the output is a rank 4 vector. The first 3 components are the RGB values.

```
out vec4 outputColor;

void main() {
    // Output black
    outputColor = vec4(0,0,0,0);
}
```

Setting up Shaders

- OpenGL support a full compiler pipeline for GLSL.
- Shaders can be loaded from text files, compiled, linked and loaded (transferred to the GPU).
- See Shader.java in unsw.graphics

Using Shaders

- After your shaders have been set up you need to tell OpenGL what shaders to use.
- To set the current shader use:
- gl.glUseProgram(shaderProgramID);
- UNSWgraph has Shader.use() that does this

Color Fragment Shader

This shader allows us to draw in colour

```
out vec4 outputColor;
uniform vec3 input_color;

void main()
{
    // Output whatever was input outputColor = vec4(input_color, 0);
}
```

Uniform Variables

- Uniforms are read-only input variables
- Defined in your JOGL program and input into your vertex or fragment shader.
- Can't be changed for a given primitive.

User Defined Uniforms

 To pass in your own uniforms into your shaders from the application program

```
int loc =
gl.glGetUniformLocation(shaderProgram,"myVal");
gl.glUniform1f(loc,0.5);
```

 Your vertex and/or fragment shader will need a matching declaration like:

```
uniform float myVal;
```

Color Fragment Shader

See Shader.setPenColor()

```
out vec4 outputColor;
uniform vec3 input_color;

void main()
{
    // Output whatever was input outputColor = vec4(input_color, 0);
}
```

Transforming Vertex Shader

```
// Incoming vertex position
in vec2 position;
uniform mat3 model_matrix;
uniform mat3 view_matrix;
void main() {
   // The global position is in homogenous coordinates
    vec3 globalPosition = model_matrix * vec3(position, 1);
    // The position in camera coordinates
    vec3 viewPosition = view_matrix * globalPosition;
    // We must convert from a homogenous coordinate in 2D to a homogenous
    // coordinate in 3D.
    gl_Position = vec4(viewPosition.xy, 0, 1);
```

Transforming Vertex Shader

- See shaders/vertex_2d.glsl
- This is how we apply the model and view transforms.
- See Shader.setModelMatrix() and Shader.setViewMatrix()

Matrix Components

Matrices are in column major order

GLSL Functions

- Standard Maths functions: sqrt, pow, abs, floor, ceiling, clamp etc
- Trigonometric functions in radians: cos sin tan degrees etc.
- Vector functions: dot, cross, normalize, reflect etc
- Can create user defined functions, syntax similar to C

Exercise

 Write a fragment shader to generate a visualisation of the Mandelbrot set.

See Mandelbrot.java in unsw.graphics.example.

Revision: Complex numbers

 Have both a real component and an imaginary component.

$$c = a + bi$$

Where:

$$i = \sqrt{-1}$$

Revision: Complex numbers

Can be added

$$c_1 = a_1 + b_1 i$$

$$c_2 = a_2 + b_2 i$$

$$c_1 + c_2 = (a_1 + b_1 i) + (a_2 + b_2 i)$$

$$= (a_1 + a_2) + (b_1 + b_2) i$$

and multiplied

$$c_1c_2 = (a_1 + b_1i)(a_2 + b_2i)$$

$$= a_1a_2 + a_1b_2i + b_1a_2i + b_1b_2i^2$$

$$= (a_1a_2 - b_1b_2) + (a_1b_2 + b_1a_2)i$$

• Note that $i^2 = -1$

Revision: Complex numbers

The magnitude

$$|a+bi|$$

is defined as

$$\sqrt{a^2+b^2}$$

Mandelbrot Set

 Defined as the set of complex numbers, c, for which

$$z_{n+1} = z_n^2 + c$$

remains bounded in its magnitude. i.e if |z| in this loop remains bounded

```
while (true) {
   z = z² + c;
}
```

Mandelbrot Set

- We can't compute it exactly as it requires infinite computation
- We have to approximate it!
- Execute the loop N times, if it doesn't diverge, assume it never will.
- if |z| > 2 then it has diverged.