小作业三: 测量 OpenMP 并行 for 循环不同调度策略的性能

我使用 make 进行编译,并使用 srun -N 1 ./omp_sched 提交,即线程数为 1。

对于 OpenMP 的 static 、 dynamic 和 guided 三种调度模式,我补全的指导语句分别如下:

- 1 #pragma omp parallel for schedule(static)
- 2 #pragma omp parallel for schedule(dynamic)
- 3 #pragma omp parallel for schedule(guided)

此外,我另外测试了串行不使用 OpenMP 的情况,以及只添加 #pragma omp parallel for 而不指定调度模式的情况。

调度模式	Uniform (ms)	加速比	Random (ms)	加速比
串行	1852.33	1.00	3797.51	1.00
不指定	71.6435	25.85	189.68	20.02
static	67.9934	27.24	190.335	19.95
dynamic	84.0829	22.03	171.721	22.11
guided	69.2433	26.75	163.531	23.22

对于较多且为均匀长度的分段(Uniform),static 策略将所有分段平均分块分配给线程,实现了负载均衡,同时分配开销很小,因此耗时最小;而 dynamic 策略将分段分配给线程时,每次分配一个分段,因此开销较大,耗时较长; guided 策略则是动态调整分段大小,因此介于两者之间。

对于较少且为随机长度的分段(Random),static 策略分配给线程的计算量是随机的,分段长度不均匀,负载均衡较差,因此耗时较长;而 dynamic 策略实现了完全的负载均衡,同时由于分段数量较少,分配开销不大,因此耗时较小; guided 策略进一步减少了分配开销,因此耗时更小。

实验结果基本符合预期。不过在实际实验中发现,多次实验结果会有一定的、有时是不小的波动,可能会对实验结果产生一定的影响。