المدرسة الوطنية المتعددة التقنيات Ecole Nationale Polytechnique d'Alger

Département d'Automatique

ojet de Fin d'Etudes en vue de l'obtention des diplômes d'Ingénieur d'état et de Master en Automatique

Thème

Optimisation par Reinforcement Learning et implémentation d'une technique V-SLAM(2D) sur un robot mobile

Présenté par :

Oussama DEROUICHE El Hacene CHABANE

Dirigé par :

Pr. Mohamed TADJINE Mr. Zeryab MOUSSAOUI

Plan de travail

- Introduction
- Techniques utilisées
- 3 Navigation autonome
- 4 Mise en œuvre pratique
- Conclusion et perspectives

Introduction

Techniques utilisées

Navigation autonome

Implémentation

Conclusion

Présentation du sujet

Introduction

Techniques utilisées

Navigation autonome

Implémentation

Conclusion

Robotique mobile

- On distingue robotique de manipulation et robotique mobile.
- Un robot mobile est une machine intelligente capable de se mouvoir dans un environnement.

Introduction

Techniques utilisées

Navigation autonome

Implémentation

Conclusion

Robotique mobile

• Architecture hiérarchique

Architecture réactive

Introduction

Techniques utilisées

Navigation autonome

Implémentation

Conclusion

Problématiques

- La Navigation, problématique principale de la robotique mobile.
- La Localisation, problématique secondaire mais essentielle.
- Solution retenue : Navigation Floue
- Optimisation par Reinforcement Learning.
- Localisation : incrémentale ou par fermeture de la boucle.
- Implémentation du VSLAM pour gain de précision.

Introduction

Techniques utilisées

Navigation autonome

Implémentation

Conclusion

Visual SLAM

- Simultaneous Localisation And Mapping, avec (au moins) une caméra.
- Plus fiable et plus robuste que l'Odométrie.
- Monoculaire: ORB-SLAM2 (2017), LSDSLAM (2015)
 MonoSLAM (2007), PTAM(2007)
- RGBD: ORB-SLAM2(2017), RGB-D SLAM (2014)
- Solution retenue : ORB-SLAM2
- ORB SLAM2 est récent, polyvalent et open-source.

Techniques utilisées

Navigation autonome

Implémentation

Conclusion

Logique floue

• Extension de la logique, introduite par le Professeur iranien Lotfi Zadeh en 1965.

• Application : Automatique, Traitement Images, ...

• Choix : Régulateur Mamdani

Introduction

Techniques utilisées

Navigation autonome

Implémentation

Conclusion

Apprentissage par renforcement

- Branche du *Machine Learning*.
- Interactions d'un agent avec l'environnement.
- Formalisé par Markov Decision Process $\langle \mathbb{S}, \mathbb{A}, \mathbb{P}, \mathbb{R}, \gamma \rangle$
- Recherche d'une politique optimale maximisant les récompenses.
- Fonctions de décision Q(s, a) ou V(s) à estimer :

Introduction

Techniques utilisées

Navigation autonome

Implémentation

Conclusion

Apprentissage par renforcement

Méthodes de la programmation dynamique :

Policy Iteration

$$V_{k+1}(s) = \sum_{a \in \mathbb{A}(s)} \pi(a \mid s) \left(\mathbb{R}^a_s + \gamma \sum_{s' \in \mathbb{S}} \mathbb{P}^a_{s,s'} V_k(s') \right)$$

Value Iteration

$$V_{k+1}(s) = \max_{a \in \mathbb{A}(s)} Q_{\pi}(s, a) = \max_{a \in \mathbb{A}(s)} \left(\mathbb{R}^{a}_{s} + \gamma \sum_{s' \in \mathbb{S}} \mathbb{P}^{a}_{s, s'} V_{k}(s') \right)$$

Méthode de Monte Carlo:

$$V_{k+1}(s) = V_k(s) + \frac{1}{k+1} [G_{k+1}(s) - V_k(s)]$$
 ou

 $Q_{k+1}(s,a) = Q_k(s,a) + \alpha [G_{k+1}(s) - Q_k(s,a)]$

Méthodes de Temporal difference learning :

Q Learning

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha \left[R_t + \gamma \max_{a \in \mathbb{A}(s_{t+1})} Q(s_{t+1}, a) \right]$$

SARSA

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha \left[R_t + \gamma Q(s_{t+1}, a_{t+1})\right]$$

Sutton.

1998

10

Techniques utilisées

Navigation autonome

Implémentation

Conclusion

Modélisation

Odométrie:

$$x(k+1) = x(k) + r\frac{T}{2}(\omega_D(k) + \omega_G(k))\cos(\theta(k))$$
$$y(k+1) = y(k) + r\frac{T}{2}(\omega_D(k) + \omega_G(k))\sin(\theta(k))$$
$$\theta(k+1) = \theta(k) + r\frac{T}{2}(\omega_D(k) - \omega_G(k))$$

But:

$$d_{rg} = \sqrt{(x_g - x)^2 + (y_g - y)^2}$$

$$\theta_{rg} = \arctan(\frac{y_g - y}{x_g - x}) - \theta$$

Techniques utilisées

Navigation autonome

Implémentation

Conclusion

Synthèse des régulateurs flous

Architecture de commande

- Navigation réactive par logique floue.
- Comportement de convergence vers un but.
- Comportement d'évitement d'obstacles.

Introduction

Techniques utilisées

Navigation autonome

Implémentation

Conclusion

Synthèse des régulateurs flous

Régulateur de convergence vers un but (FLC20)

Fonctions d'appartenance des sorties de FLC20 (Convergence)

d_{rg}		N	NP	Z	PP	P
N	ω_D	M	M	N	N	N
1	ω_G	N	N	N	M	M
n	ω_D	G	G	M	M	M
P	ω_G	M	M	M	G	G
M	ω_D	G	G	M	M	M
IVI	ω_G	M	M	M	G	G
C	ω_D	G	G	M	М	M
G	ω_G	M	M	\boldsymbol{G}	\boldsymbol{G}	G

Les règles de FLC20

Introduction

Techniques utilisées

Navigation autonome

Implémentation

Conclusion

Synthèse des régulateurs flous

Régulateur de convergence vers un but (FLC49)

Fonctions d'appartenance des sorties de FLC49 (Convergence)

d_{rg}	d_{rg}		NM	NP	z	PP	PM	PG
N	ω_D	N	N	N	N	P	P	M
.,	ω_G	M	P	P	N	N	N	N
TP	ω_D	TP	TP	N	TP	M	FG	G
IF	ω_G	G	FG	M	TP	N	TP	TP
P	ω_D	TP	TP	TP	P	FG	G	TG
r	ω_G	TG	G	FG	P	TP	TP	TP
M	ω_D	TP	TP	TP	M	G	G	TG
IVI	ω _G	TG	G	G	M	TP	TP	TP
MG	ω_D	TP	TP	P	FG	FG	G	TG
MG	ω_G	TG	G	FG	FG	P	TP	TP
G	ωD	TP	TP	M	G	FG	G	TG
G	ω_G	TG	G	FG	G	M	TP	TP
TC	ω_D	TP	TP	P	TG	FG	G	TG
TG	ω_G	TG	G	FG	TG	P	TP	TP

Les règles de FLC49

Introduction

Techniques utilisées

Navigation autonome

Implémentation

Conclusion

Synthèse des régulateurs flous

Résultats de comparaison (convergence vers un but)

Comparaison

Introduction

Techniques utilisées

Navigation autonome

Implémentation

Conclusion

Synthèse des régulateurs flous

Régulateur d'évitement d'obstacles

L	P	P	NG	PG
L	P	M	NG	PG
L	P	L	PG	NG
L	M	P	N	PG
L	M	M	P	PG
L	M	L	P	PG
L	L	P	N	PG
L	L	M	P	PG
L	L	L	P	P

	F	Entrée	S	Sorties		
	d_{ro}^G	d_{ro}^A	d_{ro}^D	ω_G	ω_D	
] [P	P	P	NG	NG	
	P	P	M	PG	NG	
	P	P	L	PG	NG	
	P	M	P	NG	NG	
	P	M	M	PG	N	
	P	M	\boldsymbol{L}	PG	N	
	P	L	P	NG	NG	
	P	L	M	P	N	
	P	L	L	P	N	

M	P	P	NG	PG
M	P	M	NG	PG
M	P	L	PG	NG
M	M	P	N	PG
M	M	M	NG	NG
M	M	L	PG	N
M	L	P	N	PG
M	\boldsymbol{L}	M	P	P
M	L	L	PG	P

Techniques utilisées

Navigation autonome

Implémentation

Conclusion

Synthèse des régulateurs flous

Résultats de simulation (évitement d'obstacles)

t(s)

Techniques utilisées

Navigation autonome

Implémentation

Conclusion

Synthèse des régulateurs RL flous

Apprentissage des règles par Fuzzy Q-Learning

Pour chaque épisode d'apprentissage

Pour chaque règle i

$$a_i = argmax_kq[i,k]$$
 with probability $1 - \epsilon$ $a_i = random\{a_k, k = 1, 2, \cdots, J\}$ with probability ϵ

$$a = \sum_{i=1}^{N} \alpha_i(s(t)) a_i$$

$$Q(s(t), a) = \sum_{i=1}^{N} \alpha_i(s) \times q[i, a_i]$$

$$V(s(t+1)) = \sum_{i=1}^{N} \alpha_i(s(t+1)).max_k(q[i, q_k]).$$

$$\Delta Q = r(t+1) + \gamma \times V_t(s(t+1)) - Q(s(t), a)$$

$$q[i, a_i] = q[i, a_i] + \eta \cdot \Delta Q \cdot \alpha_i(s(t))$$

 ϵ : Coeff exploitation

η: Taux d'apprentissage

α : Degré d'activation

 γ : facteur de réduction

Techniques utilisées

Navigation autonome

Implémentation

Conclusion

Synthèse des régulateurs RL flous

Optimisation Convergence vers un but (RL-FLC20)

Convergence vers but

Si "
$$d_{rg}$$
 est N et θ_{rg} est N " Alors $\omega_{Di} = \omega_{Di1}$ et $\omega_{Gi} = \omega_{Gi1}$ avec $Q_i = Q_{i11}$ ou $\omega_{Di} = \omega_{Di1}$ et $\omega_{Gi} = \omega_{Gi2}$ avec $Q_i = Q_{i12}$ \vdots \vdots ou $\omega_{Di} = \omega_{Di3}$ et $\omega_{Gi} = \omega_{Gi3}$ avec $Q_i = Q_{i33}$

Comportement du robot	Renforcement reçu		
Le robot s'approche du but	1		
Le robot s'éloigne du but	-1		
Le robot atteint le but	10		

Renforcements reçus par épisode (Convergence vers un but)

Techniques utilisées

Navigation autonome

Implémentation

Conclusion

Synthèse des régulateurs RL flous

Comparaison de convergence vers but (FLC20 et RL-FLC20)

Comparaison

Techniques utilisées

Navigation autonome

Implémentation

Conclusion

Synthèse des régulateurs RL flous

Régulateur de d'évitement d'obstacle

Evitement d'obstacles

Si "
$$o$$
 et O_i " Alors $\omega_{Di} = \omega_{Di1}$ et $\omega_{Gi} = \omega_{Gi1}$ avec $Q_i = Q_{i11}$ ou $\omega_{Di} = \omega_{Di1}$ et $\omega_{Gi} = \omega_{Gi2}$ avec $Q_i = Q_{i12}$ \vdots \vdots ou $\omega_{Di} = \omega_{Di4}$ et $\omega_{Gi} = \omega_{Gi4}$ avec $Q_i = Q_{i44}$

Comportement du robot	Renforcement reçu
Le robot s'éloigne de l'obstacle	1
Le robot s'approche de l'obstacle	-1
Le robot percute un obstacle	-10

Renforcements reçus par épisode (évitement d'obstacles)

Techniques utilisées

Navigation autonome

Implémentation

Conclusion

Synthèse des régulateurs renforcement-flous

Résultats de simulation et de comparaison (évitement)

(a) Régulateur flou

(b) Régulateur renforcement-flou

Introduction Techniques utilisées

Navigation autonome

Implémentation

Conclusion

Matériel

Techniques utilisées

Navigation autonome

Implémentation

Conclusion

Localisation par V-SLAM

Test sur le MonoSLAM

Techniques utilisées

Navigation autonome

Implémentation

Conclusion

Localisation par V-SLAM:

Test sur le RGB-D SLAM

Val	eurs 1	réelles]	RGB-D SLAM Odométrie (Cyborg 2			borg 2017)	
X	у	θ	x	у	θ	x	у	θ
0	0	0	-0.0370	0.0200	-1.7094^{-4}	0	0	0
40	40	0	39.9858	40.6389	-0.0975	40.53	42.87	0.01
0	0	0	-0.5027	-0.6823	-0.0111	-2.06	2.71	0.01
40	40	0	40.8477	40.5749	-0.0064	38	43.76	0
0	0	0	0.0313	-4.2988	-0.0264	-4.75	5.96	-0.01
40	40	0	40.5742	41.2686	-0.0954	37.01	46.09	-0.02

Techniques utilisées

Navigation autonome

Implémentation

Conclusion

Navigation floue par V-SLAM

Navigation floue avec odométrie

Navigation floue avec V-SLAM

Introduction Techniques utilisées Navigation autonome Implémentation Conclusion

Navigation renforcement -floue par V-SLAM (vidéo)

Techniques utilisées

Navigation autonome

Implémentation

Conclusion

Conclusion

- Navigation floue efficace.
- Navigation renforcement-floue par apprentissage.
- Efficacité de ORB-SLAM2 pour la localisation.
- Navigation floue par ORB-SLAM2 en mode SLAM.

Perspectives

- Extension aux environnements dynamiques.
- Hybridation de la logique floue et les réseaux de neurones.

Merci pour votre attention