Data Management for Data Science

Lecture 24: Data Vizualization

Prof. Asoc. Endri Raço

John Snow

Hypothesis at the time:

Diseases such as cholera and bubonic plague are caused by pollution or a noxious form of "bad air".

John Snow's Research:

The source of the outbreak was the public water pump [On the Mode of Communication of Cholera]

How did he do it?

Death/Survival in cholera in 19th century London by district and water company.

St. Savior, Southwark	1	0	19211
St. Savior, Southwark	1	1	406
St. Savior, Southwark	2	0	14129
St. Savior, Southwark	2	1	72
St. Olave, Southwark	1	0	18361
St. Olave, Southwark	1	1	277
St. Olave, Southwark	2	0	0
St. Olave, Southwark	2	1	0
St. George, Southwark	1	0	24651
St. George, Southwark	1	1	388
St. George, Southwark	2	0	23613
St. George, Southwark	2	1	99
Bermondsey	1	0	57063
Bermondsey	1	1	821
Bermondsey	2	0	1785
Bermondsey	2	1	0
Newington	1	0	31482
Newington	1	1	458
Newington	2	0	33473
Newington	2	1	58
Lambeth	1	0	54457
Lambeth	1	1	525
Lambeth	2	0	83648
Lambeth	2	1	138
Wandsworth	1	0	18122
Wandsworth	1	1	268
Wandsworth	2	0	3863
Wandsworth	2	1	7
Campberwell	1	0	23120
Campberwell	1	1	352
Campberwell	2	0	10445
Campberwell	2	1	33
Rotherhithe	1	0	14744
Rotherhithe	1	1	207
Rotherhithe	2	0	0
Rotherhithe	2	1	0

How did he do it?

Snow's **data visualization** study is regarded as the founding event of the science of epidemiology.

Charles Joseph Minard 1869 Napoleon's March

According to Tufte: "It may well be the best statistical graphic ever drawn." 5 variables: Army Size, location, dates, direction, temperature during retreat https://news.nationalgeographic.com/2017/03/charles-minard-cartography-infographics-history/

Interactivity to Educate

- The famous Gapminder Video, Hans Rosling:
 200 Countries, 200 Years, 4 Minutes
- https://www.youtube.com/watch?feature=player_embedded&v=jbkSRLYSojo

Outline

Visualization:

- Some great examples
- Some counter-examples
- Principles for Visualization Design
- Visualization Toolkits preview

Some Anti-Examples

Courtesy of WTFViz.net

Visualization to Educate?

Pie in the Sky?

90% of US Households Consume Peanut Butter

Needs Fixing

Outline

Visualization:

- Some great examples
- Some counter-examples
- Principles for Visualization Design
- Visualization Toolkits preview

Visualization Definitions

"Transformation of the symbolic into the geometric"
 [McCormick et al. 1987]

- "... finding the artificial memory that best supports our natural means of perception." [Bertin 1967]
- "The use of computer-generated, interactive, visual representations of data to amplify cognition." [Card, Mackinlay, & Shneiderman 1999]

Uses for Data Viz

A: Support reasoning about information (analysis)

- Finding relationships
- Discover structure
- Quantifying values and influences
- Should be part of a query/analyze cycle

B: Inform and persuade others (communication)

- Capture attention, engage
- Tell a story visually
- Focus on certain aspects, and omit others

Uses for Data Viz

Principle 1

• Simplify!

Principle 1: Simplify

- Tables and charts
 - Reduce chartjunk/tablejunk; increase data-ink ratio
 - Lessons from perception: Limit the number of objects displayed at once
- Beware:
 - Gratuitous 3D
 - Shadows
 - Gratuitous animation
- How do you tell if a feature is gratuitous?
 Ask whether using it reveals more information.

Interactive Chart Design: Simplifying

- With interactive charts you can keep things very simple by hiding and dynamically revealing important structure.
- On an interactive chart, you reveal the information most useful for navigating the chart.

Principle 2: Understand Magnitudes

Which is brighter?

Principle 2: Understand Magnitudes (128, 128, 128) (144, 144, 144)

Which is brighter?

Just Noticeable Difference

• JND (Weber's Law)

$$\Delta S = k \frac{\Delta I}{I}$$

- Ratios more important than magnitude
- Most continuous variations in stimuli are perceived in discrete steps

Steven's Power law

[graph from Wilkinson 99, based on Stevens 61]

[alternate graph: http://www.undergrad.ahs.uwaterloo.ca/~wchedder/stevenspowerlaw.htm]

Compare area of circles

Compare area of circles

Principle 2: Understand Magnitudes

Principle 3: Use Color

- Color
 - Choose colors based on the information you want to convey
 - Sequential
 - Diverging
 - Categorical
 - Use online resources to discover and record your color schemes
 - Color Brewer
 - Kuler
 - Colour Lovers
 - Where possible, use your organization's palette

Principle 3: Use Color

Color

Principle 3: Use Color

Color

Principle 4: Use Structure

• Gestalt Psychology principles (1912):

Source http://blog.fusioncharts.com/2014/03/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/

Principle 4: Use Structure (but not like this)

Principle 4: Use Structure

Chart Selection – Andrew Abela

Chart Suggestions—A Thought-Starter

Chart Selection – Juice Analytics

Chart Chooser Data templates for the picking.

Welcome to the Chart Chooser

Use the filters to find the right chart type for your needs. Then download as Excel or PowerPoint templates and insert your data.

- Comparison
- Distribution
- Composition
- Trend
- Relationship
- ___ Table

17 charts selected

Data Viz in the Sciences

A case for Ugly visualizations

People instinctively gravitate to attractive visualizations, and they have a better chance of getting on the cover of a journal.

But does this conflict with the goals of visualization?:

- Rapid exploration
- Focus on most important details
- Easy and fast to develop and customize

e.g. Powerpoint vs Keynote

Outline

Visualization:

- Some great examples
- Some counter-examples
- Principles for Visualization Design
- Visualization Toolkits preview

Interactive Toolkits: D3

Without Doubt, the most widely used interactive visualization framework is **D3**, developed around 2011 by Jeff Heer, Mike Bostock and Vadim Ogievetsky.

Note from the authors: D3 is intentionally a low-level system. During the early design of D3, we even referred to it as a "visualization kernel" rather than a "toolkit" or "framework"

Interactive Toolkits: Vega

Vega is a "visualization grammar" developed on top of d3.js It specifies graphics in JSON format.

vega

Vega is a visualization grammar, a declarative format for creating, saving, and sharing interactive visualization designs.

Interactive Toolkits: Vincent

Vincent is a Python-to-Vega translator.

Trivia question: why is it called Vincent? Hint: Vincent+Vega=?

Interactive Toolkits: Vincent

Vincent is a Python-to-Vega translator.

Trivia question: why is it called Vincent? Hint: Vincent+Vega=?

Bokeh: Another Interactive Viz Library

Bokeh is an independent Viz library focused more heavily on big data visualization. Has both Python and Scala bindings.

