

USED CAR PRICE PRICE

FLEMTEAM

BUSSINESS PROBLEM

Day	Schedule			
Thursday (26/7/2023)	Meeting with ASS company			
Friday	Team meeting (45 min) starting EDA (each one alone).			
Saturday	Team meeting (45 min) Discussion about data, determine the work of each one.			
Monday	Team meeting (45 min) Discussion about our work, determine the ML model to predict data.			
Tuesday	Team meeting (45 min) Discussion about our work, determine the best models.			
Wednesday	Team meeting (45 min) determine the procesure of presentation			
Thursday	presentation			

STATISTICAL DETAILS ABOUT NUMERIC COLUMNS \Box

	UNNAMED: 0	ID	YEAR	ODOMETER	LAT	LONG	PRICE
COUNT	290129.0	2.901290e+0	290129.0	2.901290e+0 5	285726.0	285726.0	2.901290e+05
MEAN	207301.718	7.311503e+09	2011.359	9.764241e+04	38.505649	-94.61642	5.193300e+04
STD	119595.64	4.378450e+06	9.149422	2.058970e+05	5.830007	18.319158	9.591680e+06
MIN	0.0	7.301583e+09	1900	000e+0	-84.122245	-159.827728	0.0000e+00
25%	103622	7.308154e+09	2008	3.80e+04	34.60	-111.924900	5.9910e+03
50%	207440	7.312664e+09	2014	8.56150e+05	39.170	-88.212494	1.39900e+04
75%	310804	7.315255e+09	2017	1.334360e+0 5	42.4084	-80.83000	2.6500e+04
MAX	414469	7.317101e+09	2022	1.000e+07	82.252826	173.885502	3.736929e+09

STATISTICAL DETAILS ABOUT CATEGORICAL COLUMNS

		MUNFACTU RER	N	MODEL COND		OITION	CYLINDERS		FUEL		TITLE_STAT US	transmission
	count	278527	2	289867 1		173807 17063		38	288414		284826	289867
	uniqu	41		24300	6		8		5		6	3
	top	ford		f-150	good		6 cylind	lers	gaf		clean	automatic
	freq	48400		5493	84	189	6475	9	242464		275588	229455
		DRIVE		TYPE 227283 13 sedan 59452		PAIN	AINT_COLO R		STATE	Р	OSTING_DA TE	
	count	201823				13 12			289867		289867	
	uniqu	3						12		267017		
	top	4wd							ca		2021-04- 29T20:06:09	
\mathbf{Q}	freq	89953				54	1145		33963		8	8

THE PERCENTAGE OF NULL VALUES IN THE DATASET S

Due to the prevalence of null values, exceeding 70% of the total column values, we will be removing the "size" column from our datasetrty!

DROP UNNECESSARY COLUMNS

UUNIVARIATE ANALYSIS

YEAR

Condition

MANUFACTURER

FUEL

TRANSMISSION

CYLINDERS 140k

PAINT_COLOR

DATA WRANGLING AND CLEANING

In order to better analyze and interpret our data, we will be generating a new column called "age" based on the information in the "year" column, and discarding the latter.

MISSINGVALUE

MANUFACTURER

We intend to utilize a model feature to manually fill in the null values in the "manufacturer" column, followed by filling the remaining null values with the column's mode, before finally dropping the "model" column.

```
mask = (train.manufacturer.isnull()) & (train.model == 'Silverado k2500hd')
train.loc[mask, 'manufacturer'] = 'chevrolet'
mask = (test.manufacturer.isnull()) & (test.model == 'Silverado k2500hd')
test.loc[mask, 'manufacturer'] = 'chevrolet'

mask = (train.manufacturer.isnull()) & (train.model == 'Scion XB')
train.loc[mask, 'manufacturer'] = 'scion'
mask = (test.manufacturer.isnull()) & (test.model == 'Scion XB')
test.loc[mask, 'manufacturer'] = 'Scion'
```

```
mask = (train.manufacturer.isnull()) & (train.model == 'INTERNATIONAL WATER TRUCK')
train.loc[mask, 'manufacturer'] = 'navistar'
mask = (test.manufacturer.isnull()) & (test.model == 'INTERNATIONAL WATER TRUCK')
test.loc[mask, 'manufacturer'] = 'navistar'
```


MANUFACTURER

We intend to tidy our dataset by reclassifying "manufacturer" values with less than 5000 counts as "other", in addition to replacing "rover" with "land rover" and "general motors" with "gmc".

FUEL

The "fuel" feature has (1453, 645) null values in the training and test datasets. To address this missing data, we will be filling these null values with an "other" value.

fuel		fuel		
gas	242693	gas	242693	
other	20904	other	22357	
diesel	20309	diesel	20309	
hybrid	3607	hybrid	3607	
electric	1163	electric	1163	
22				

drive related to manufacturer

DRIVE

Based on previous figures:
 'manufacturer', 'fuel'
features affect on
 'drive' feature so we use
them to fill the null values by
KNN algorithm,
 we use search grid to find
the best value for K and we
obtain
 (Best Parameters:
{'n_neighbors': 50}

PAINT COLOR

Based on this result the effect of color on price is few and there are (5004) value green is a little then we decided to drop this column.

CONDITION

THE "CONDITION" FEATURE OF A CAR IS INFLUENCED BY BOTH ITS "AGE" AND "ODOMETER" READINGS

By applying the KNN algorithm to fill in missing values in the "condition" feature and conducting a search grid to identify the most suitable value for K, we determined that the best parameters were {'n_neighbors': 1}

	condition	odometer
5	salvage	242048.583127
1	fair	212906.567069
0	excellent	105848.453411
3	like new	92809.418635
2	good	83121.556378
4	new	43749.556044

	condition	age
1	fair	24.941383
5	salvage	22.136476
0	excellent	12.940834
3	like new	11.344604
2	good	11.004555
4	new	9.352747

TITLE_STATUS


```
title_status
clean 275824
rebuilt 4924
salvage 2692
lien 981
missing 506
parts only 136
Name: count, dtype: int64
```

title_status
clean 275824
missing 5572
rebuilt 4924
salvage 2692
lien 981
parts only 136

Name: count, dtype: int64

CYLINDERS

FILLING THE NULL VALUE BY 'OTHER' VALUE

TYPE

TYPE

WE USE 'CYLINDERS', 'DRIVE' FEATURE TO FILL MISSING VALUE IN TYPE FEATURE.

By applying KNN algorithm we use search grid to find the best value for K and we obtain:

Best Parameters: {'n_neighbors': 500}

OUTLIERS

we have dropped only the data that have a price greater than 1,000,000

AGE

We handle the outlier in age by by put the value above 60 to mean and apply it on model

'odometer' feature has mean=97636.81368726927 and median=85615.0 we fill the value in odometer which has values > 0.4e7 with mean.

ENCODING DATA. USING LDA

SCALING DATA USING STANDARD SCALAR.

MODEL QEVELOPMENT

Following the data cleaning and preprocessing procedures, we tested various machine learning models to identify the most effective approach for our analysis

POLYNOMIAL REGRESSION (DEGREE = 2 & 3)

BAGGING DECISION TREE

KNN (K = 1.....10, 20, 50, 100)

XGBOOST REGRESSOR

RF (WITH DIFFERENT HYPERPARAMETERS)

EXTRATREESREGRESSOR

POLYNOMIAL REGRESSION

Hyperparamete r(degree)	R2_score for train	R2_score for validation	Kaggle score	
2	.3775	.3086	We don't try it b/c the score is very low	
3	0.4180	0.3960	We don't try it	

KNN

WE TRAINED THE KNN WITH DIFFERENT K. THE LEARNING

KNN

Hyperparamete r(K)	R2_score for train	R2_score for validation	Kaggle score
2	0.8739	0.5927	Don't run
3	0.8025	0.6021	Don't run

BAGGING REGRESSOR (USING DECISION TREE REGRESSOR)

HYPERPARA METER(DEGREE)	R2_SCORE FOR TRAIN	R2_SCORE FOR VALIDATION	KAGGLE SCORE
base_estimator=Decisio nTreeRegressor(max_de pth=20) n_estimators=50	0.9026	0.7237	0.00038
random_state=1 max_samples=1.0 max_features=1.0			

RANDOM FOREST REGRESSOR

Hyper parameters	1	2	3	4	5	6	7	8	9	10
N_estimators	10	50	100	180	180	100	50	50	50	50
Max_depth	20	20	20	20	10	15	15	25	30	20
Min_samples_leaf	1	1	1	1	1	1	1	1	1	3
Random_state	0	0	0	0	0	0	0	0	0	0
R2_score train	0.889	0.904	0.906	0.90 72	0.55	0.78 32	0.781	0.94	0.95	0.8
R2_score validation	0.7	0.729	0.729	0.72 9	0.55	0.66	0.667	0.739	0.74 4	0.7
KAGGLE SCORE		0.000								0.0004

42

DOM FOREST REGRESSOR

								-			
Hyper parameters	11	12	13	14	15	16	17	18	19	20	
N_estimators	50	50	50	50	50	50	50	50	50	100	
Max_depth	20	20	20	20	20	20	20	20	20	20	
Min_leaf_samples	5	7	10	20	15	10	10	10	10	10	
Random_state	00	0	0	0	0	1	10	40	100	0	
R2_score train	0.75	0.71	0.677	0. 60 4	0.63 2	0.66	0.66	0.6 6	0.67	0.66	
0.75R2_score validation	0.68	0.67 5	0.6598	0. 62 5	0.64 4	0.67	0.67	0.6 7	0.65	0.67	
KAGGLE SCORE			0.00044								 4

43

title_status has lowest importance what happened if we drop it?

DROPTITLE_STATUS

RFR	R2_SCORE FOR TRAIN	R2_SCORE FOR VALIDATION	KAGGLE SCORE
best one (trial number 13)	0.6713	0.6582	0.00044

XGBOOST REGRESSOR

		R2_SCORE	
HYPERPARAMETE	R2_SCORE	FOR	KAGGLE
RS	FOR TRAIN	VALIDATIO	SCORE
		N	
n_estimators=500, max_depth=10, subsample=0.5	.9632	.6725	0.0008

XGBOOST REGRESSOR

BEST HYPERPARAMETE RS	R2_SCORE FOR TRAIN	R2_SCORE FOR VALIDATIO N	KAGGLE SCORE
'learning_rate': 0.5, 'max_depth': 7, 'min_child_weight': 1, 'n_estimators': 100, 'subsample': 1,	0.7641	0.6397	0.0018

EXTRATREESREGRESSOR

HYPERPARAMETER S	R2_SCORE FOR TRAIN	R2_SCORE FOR VALIDATIO N	KAGGLE SCORE
n_estimators=50, max_features=4000, max_depth=30, min_samples_leaf=3, n_jobs=-1	.859	.7153	0.0038
n_estimators=50, random_state=0, max_depth=20, min_samples_leaf=10	.6472	.6384	0.003

SCORE FOR THE VARIOUS MODEL

OTHER TRIALS:

RFR	R2_SCORE FOR TRAIN	R2_SCORE FOR VALIDATION	KAGGLE SCORE	
Handling the outliers by the median rather than the mean	0.6717	06598	0.0044	
Dropping the outliers that has price greater than Q3 (26500.0) and lower than Q1 (5991.0)	0.796	0.7258	0.0012	

THANKYOU

