

Computing Mappings with Layered Networks

Let a_i , (the activation of i), be 1 if $j > \Theta$ (where Θ is a threshold) and 0 otherwise:

5

Computing Mappings with Layered Networks

i divides its input space (the line, j) into two regions, an "on" region and an "off" region, at a single point, Θ .

11 12

25

Computing Mappings with Layered Networks
And for all points above the diagonal: $n_i > 1$, so $a_i = 1$ $\begin{array}{c}
i \\
\Theta = 1 \\
y \\
\downarrow \\
0
\end{array}$ $\begin{array}{c}
w_{ix} = 1 \\
j \\
x
\end{array}$ $\begin{array}{c}
w_{iy} = 1 \\
j \\
x
\end{array}$ $\begin{array}{c}
a_i = \sum_{j} w_{ij} a_j > 1.0$ $\begin{array}{c}
a_i = \begin{cases}
1 \text{ if } n_i \ge \Theta \\
0 \text{ otherwise}
\end{cases} = 1$

31 32

41

Computing Mappings with Layered Networks By manipulating Θ and w, you can make any line you wish... $w_{ix} = 0.5$ $w_{iy} = 1$ yChanging w rotates the line;

Computing Mappings with Layered Networks By manipulating Θ and w, you can make *any* line you wish...

Changing w rotates the line; changing Θ slides it.

Computing Mappings with Layered Networks

By manipulating Θ and w, you can make *any* line you wish...

Changing w rotates the line; changing Θ slides it.

45

0

46

Computing Mappings with Layered Networks

By manipulating Θ and w, you can make *any* line you wish...

Changing w rotates the line; changing Θ slides it.

Computing Mappings with Layered Networks

By manipulating Θ and w, you can make *any* line you wish...

Changing w rotates the line; changing Θ slides it.

50

49

Computing Mappings with Layered Networks

What about a BTU with three inputs?

Its input space is 3-D, and it divides that space into two parts with 2-D planes.

Computing Mappings with Layered Networks

What about a BTU with three inputs?

Its input space is 3-D, and it divides that space into two parts with 2-D planes. *Any* plane you want, as long as its straight.

53

54

Computing Mappings with Layered Networks

In general: A BTU with *N* inputs divides its input space into two parts (an "on" part and an "off" part) with an *N*-1 dimensional hyperplane...

Computing Mappings with Layered Networks

In general: A BTU with N inputs divides its input space into two parts (an "on" part and an "off" part) with an N-1 dimensional hyperplane...

... any hyperplane you want, as long as it's straight.

55

Linear Separability

Two categories are *linearly separable* iff the members of one can be separated from the members of the other by a straight hyperplane.

Iff two categories are linearly separable, then they can be distinguished by a BTU.

57 58

59 60

61

But What About the Middle Class?

And What About Those Who Work Just the Right Amount?

63 64

65

67 68

85

87 88

Summary and Implications

Summary: A three-layer¹ non-linear² perceptron³ can compute *any* computable mapping from its inputs to its outputs.

- ¹Three layers of connections above the input.
- 2 Non-linear activation function (e.g., BT $\hat{\rm U}$).
- ³Layered network.

Implication: Does this mean it can compute symbolic functions?

<u>Answer:</u> No. It must be trained on (or wired to compute) each mapping *individually*: It can compute any mapping (in principle), but you have to tell it how to compute each one.

A function, by contrast, is simultaneously applicable to *all* possible mappings in its domain.

105

