Linear Algebra General Linear Models and Least Squares Automotive Intelligence Lab.

Contents

- General linear models
- Solving GLMs
- GLM in a simple example
- Least squares via QR
- Summary
- Code exercises

General Linear Models

General Linear Model

Statistical model (data-driven model)

- ► A set of equations that relates predictors to observations.
 - Predictors: independent variable.
 - Observations: dependent variable.

Example of the model in stock market price

- ▶ Independent variable: time
- Dependent variable: stock market price

■ We will focus on General Linear Model, which is called as GLM.

Regression is a type of GLM, for example.

Terminology of GLM

Difference terminology between fields of statistics and linear algebras

	MXN	<u>,</u>
LinAlg	Stats	Description
Ax = b	XC=y	General Linear Model(GLM)
A	X	Design matrix (columns=independent variables, predictors, regressors)
x	B Curknown	Regression coefficients or beta parameters
b	у	Dependent variable, outcome measure, data

Table of terms in GLMs

Setting up a GLM

Process to set up GLM

- 1. Define an equation that relates the predictor variables to the dependent variable.
- 2. Map the observed data onto the equations.
- 3. Transform the series of equations into a matrix equation.
- 4. Solve that equation.

Simple Example to Explain Process of GLM

Model: Predicts adult height based on weight and parent's height

> y: height of an individual

> *w*: weight

▶ h: parents' height (average of mother and father)

 $ightharpoonup \epsilon$: error term (also called residual)

■ Why we need error term ϵ (residual)?

- ▶ Weight and parents' height cannot perfectly determine an individual's height.
- ▶ Variance not attributable to weight and parents' height will be absorbed by residual.
 - Such as growing environment, sleeping time and so on.

More Explanation about Previous Simple GLM

■ What is β ?

- Coefficients or weights.
- Describe how to combine weight and parent's height to predict an individual's height.
- \triangleright β_0 ?
 - Called an intercept or a constant.
 - Without this term, best-fit line always pass the origin.
 - It will be explained at the end of chapter.

$$y = \beta_0 + \beta_1 w + \beta_2 h + \epsilon$$

Previous GLM model

After defining equations, map the observed data onto the equations.

- ▶ Use the simple data table below.
- \blacktriangleright For simplicity, omit ϵ .

y	W	h
175	70	177
181	86	190
159	63	180
165	62	172

$$\begin{array}{c}
175 = \beta_0 + 70\beta_1 + 177\beta_2 \\
181 = \beta_0 + 86\beta_1 + 190\beta_2 \\
159 = \beta_0 + 63\beta_1 + 180\beta_2 \\
165 = \beta_0 + 62\beta_1 + 172\beta_2
\end{array}$$

$$\begin{bmatrix}
1 & 70 & 177 \\
1 & 86 & 190 \\
1 & 63 & 180 \\
1 & 62 & 172
\end{bmatrix}
\begin{bmatrix}
\beta_0 \\
\beta_1 \\
\beta_2
\end{bmatrix} =$$

Simple data table

Transforming series of equations into a matrix equation

Of course, we can express this equation briefly as $X\beta = y$.

Solving GLMs

Idea to Solve for the Vector of Unknown Coefficients β

 \blacksquare Simply left-multiply both sides of the equation by left-inverse of X.

$$X\beta = y^{\text{(XTX)}}$$
$$(X^TX)^{-1}X^TX\beta = (X^TX)^{-1}X^Ty$$
$$\beta = (X^TX)^{-1}X^Ty$$

Solution to solve β

- - ► Also called **least squares solution**.
 - ▶ One of the most important mathematical equations in applied linear algebra.

Code Exercise of Left-Multiply to Solve Least Square

Code Exercise (11_01)

- Simply left-multiply both sides of the equation.
- ► Variable *X*: design matrix
- Variable y: data vector

```
% Clear workspace, command window, and close all figures
clc; clear; close all;

% Define a matrix X and y
X = [7; 5; 6];
y = [4; 7; 8];

% Compute the left-inverse of X
X_leftinv = ;

% Calculate beta
beta = ;
disp("beta");
disp(beta);

MATLAB code to solve the least square using left-multiply
```


Is the Solution Exact?

- When is equation $X\beta = y$ exactly solvable?
 - \blacktriangleright In case of y is in the column space of design matrix X.

- ► Answer is "No"
 - There is no such guarantee.
 - Data vector y is almost never in the column space of X.

Why is Data Vector Not Guaranteed?

Imagine a survey of university students.

- Researchers are trying to predict average GPA based on drinking behavior.
- Survey may contain data from 2000 students.
- But questions are only 3.
 - How much alcohol do you consume?
 - How often do you black out?
 - What is your GPA?

lacksquare Data will be contained in a 2000 imes 3 table.

- ➤ 3 questions for 2000 students.
- Column space of the design matrix
 - 2D subspace inside that 2000D ambient dimensionality.
 - Question of "How much alcohol do you consume?" and "How often do you black out?"
- Data vector
 - 1D subspace inside that same ambient dimensionality.
 - Question of "What is your GPA?"

Meaning of Data in the Column Space of Design Matrix

- "Data vector in the column space" means that matrix model accounts for 100% of the variance of data.
 - ▶ This almost never happens.
 - ► Real world data contains **noise** and **sampling variability**.
 - ▶ Models are simplifications that don't account for all of variability.
 - GPA is determined by myriad factors that our model ignores.

Solution to this Conundrum

- Modify GLM equation to allow for a discrepancy between model predicted data and observed data.
 - lt can be expressed in several equivalent ways as below.

$$Xeta = y + \epsilon$$
 $Xeta - \epsilon = y$
 $\epsilon = Xeta - y$
three equivalent expressions

- ► Interpretation of the first equation.
 - \bullet is residual, or an error term.
 - Added to the data vector.
 - So that it fits inside the column space of the design matrix.
- Interpretation of the second equation.
 - Residual term is an adjustment to the design matrix.
 - So that it fits the data perfectly.
- ▶ Interpretation of the third equation.
 - Residual is defined as the difference between model-predicted data and observed data.

Point of This Section

- Observed data is almost never inside the subspace spanned by regressors.
 - ▶ Reason why we can easily see GLM expressed as $X\beta = \hat{y}$, not $X\beta = y$.

$$\bullet \ \widehat{y} = y + \epsilon$$

Goal of the GLM

- ► To find linear combination of the regressors.
- Close as possible to the observed data.

Geometric Perspective on Least Squares

- lacktriangle Consider column space of design matrix C(X) is a subspace of \mathbb{R}^M .
 - It's typically a very low-dimensional subspace.
 - It means $N \ll M$.
 - Statistical models tend to have much more observations (M, rows) than predictors (N, columns).
 - ▶ Dependent variable is vector $y \in \mathbb{R}^M$.
 - Questions:
 - Is vector y in the column space of the design matrix?
 - If not, what coordinate inside the column space of the design matrix is as close as possible to data vector?

Abstracted Geometric View of GLM

- Our goal: find set of coefficients β
 - \blacktriangleright Weighted combination of columns in X minimizes distance to data vector y.
 - \blacktriangleright We can call projection vector ϵ .
 - \blacktriangleright How can find vector ϵ and coefficients β ?
 - Use orthogonal vector projection!
 - Key insight
 - Shortest distance between y and X is given by the projection vector $\mathbf{y} \mathbf{X}\boldsymbol{\beta}$ that meets X at a right angle as shown in below equation.

We have rederived the same left-inverse solution which we got from the algebraic

approach.

$$X^{T} \epsilon = 0$$

$$X^{T} (y - X\beta) = 0$$

$$X^{T} y - X^{T} X\beta = 0$$

$$X^{T} X\beta = X^{T} y$$

$$\beta = (X^{T} X)^{-1} X^{T} y$$

Meaning of Least Squares

Why is it called "least squares"?

- Squares
 - Squared errors between predicted data and observed data
 - There is an error term for each i^{th} predicted data point.
 - Defined as $\epsilon_i = X_i \beta y_i$.
 - Each data point is predicted using same set of coefficients.
 - Same weights for combining predictors in design matrix.
 - So, we can capture all errors in one vector: $\epsilon = X\beta y$.
- If model is a good fit to the data,
 - Errors ϵ should be small.
- Objective of model fitting
 - Choose elements in β that minimize elements in ϵ .

Expression of Least Squares

- Why is it called "least squares"?
 - ▶ If just minimizing errors,
 - It cause the model to predict values toward negative infinity.
 - ► Instead, minimizing squared errors
 - Corresponding to their geometric squared distance to observed data y.
 - Regardless of whether prediction error itself is positive or negative.
 - ► Same as minimizing the squared norm of the errors.
 - Hence named "least square".
 - Leads to the following modification:

$$\|e\|^2 = \|X\beta - y\|^2$$
Expression of least squares

View Least Squares as Optimization Problem

- Find set of coefficients β that minimizes squared errors.
 - Minimization can be expressed as follows:

$$\min_{\beta} \|X\beta - y\|^2$$

Minimization

- Solution to this optimization
 - Can be found by setting derivative of objective to zero.
 - Applying a bit of differential calculus and a bit of algebra.

$$0 = \frac{d}{d\beta} ||X\beta - y||^2 = 2X^T (X\beta - y)$$

$$0 = X^T X\beta - X^T y$$

$$X^T X\beta = X^T y$$

$$\beta = (X^T X)^{-1} X^T y$$

Solution of optimization

- ► Rediscover same solution that reached simply by using our linear algebra intuition!
 - Although started from a different perspective to minimize the squared distance between the model-predicted values and the observed values.

Visualization Intuition for Least Squares

Black squares

Observed data

Gray dots

Model predicted values

Gray dashed lines

- Distances between observed data and model predicted values
- All model predicted values lie on a line.
- Goal of least squares
 - ► Find slope and intercept!
 - Minimize distance from predicted to observed data.

All Roads Lead to Least Squares

- You've now seen three ways.
 - ▶ To derive least squares solution.
- Remarkably, all approaches lead to same conclusion.
 - Left-multiply both sides of GLM equation by left-inverse of design matrix X.
- Different approaches have unique theoretical perspectives.
 - Provide insight into nature and optimality of least squares.
- But it is a beautiful thing.
 - No matter how you begin your adventure into linear model fitting.
 - Because you end up at same conclusion.

GLM in a Simple Example

GLM in a Simple Example

Example

- Report the number of online courses they took and their general satisfaction with life.
- Experiment which is surveyed a random set of 20 students.
- Table 1. shows first 4 (out of 20) rows of data matrix.
- Data is easier to visualize in scatterplot as Fig 1...
 - Notice that independent variable is plotted on the x-axis.
 - While dependent variable is plotted on the y-axis.
 - That is common convention in statistics.

Number of courses	Life happiness
4	25
12	54
3	21
14	80

Table 1. Data table

Fig 1. Fake data from fake survey

Create Design Matrix

- Design matrix is actually only 📶 column vector.
 - ▶ Because this is a simple model with only one predictor.
- Matrix equation $X\beta = y$ looks like Eq 1. (Only first four data values).

$$\begin{bmatrix} 4 \\ 12 \\ 3 \\ 14 \end{bmatrix} [\beta] = \begin{bmatrix} 25 \\ 54 \\ 21 \\ 80 \end{bmatrix}$$
Eq 1. Matrix equation $X\beta = y$

Code Exercise of Creating Design Matrix

■ Code Exercise (11_02)

- ► Follow the previous slide.
- ightharpoonup The matrix equation looks like a form of $X\beta = y$.

```
% Clear workspace, command window, and close all figures
clc; clear; close all;
% Define a matrix number of courses and life happiness
X = [4,12,3,14,13,12,9,11,7,13,11,9,2,5,7,10,0,9,7,13]';
                                                         % number of course
y = [25,54,21,80,68,84,62,57,40,60,64,45,38,51,52,58,21,75,70,70]'; % life happiness
% Compute the left-inverse of X
X leftinv = ;
% Calculate beta
beta = ;
disp("beta");
disp(beta);
% Calculate y_pred with beta
y_pred = ;
% Plot
figure;
hold on;
grid on;
scatter(X, y, 'k', 'filled'); % X and y
plot(X, y pred, 'b', 'LineWidth', 2); % Plot predicted line with beta
for i = 1:length(X)
    plot([X(i) X(i)], [y(i) y_pred(i)], 'k--'); % Plot residuals as dashed lines
end
title('Create Design Matrix');
xlabel('Number of Courses ');
ylabel('Life Happiness');
legend('X and y', 'Prediction with beta', 'Location', 'northwest');
hold off;
```


Create Design Matrix

MATLAB code of creating design matrix

Result of code

90

Meaning of Least Squares Formula's Result

- Following least squares formula tells $\beta = 5.92$.
- What does this number mean?
 - lt means in formula.
 - For each additional course that someone takes, their self-reported life happiness increases by 5.92 points.
- Let's see how that result looks in plot as Fig 1..

Fig 1. Observed and predicted data (SSE=sum of squared errors)

Feeling of Unease While Looking at Fig 1.

- If you experience feeling of unease while looking at Fig 1.,
 - ► Then, that's good signal!
 - It means you are thinking critically and noticed that model doesn't do great job at minimizing errors.
 - ➤ You can easily imagine pushing left side of best-fit line up to get better fit.
- What's the problem here in term of mathematics?

Problem in Fig 1.

- Design matrix contains no
 - ightharpoonup Equation of the best-fit line is y = mx.
 - Which means x = 0, y = 0.
 - That constraint doesn't make sense for this problem.
 - Because it means anyone who doesn't take courses is completely devoid of life satisfaction.

Add Intercept Term

- In form of y = mx + b.
 - **b** is **intercept** term.
 - Allows the best-fit line to cross the y-axis at any value.
- Statistical interpretation of intercept
 - Expected numerical value of observations when predictors are set to zero.
- Adding intercept term to design matrix as below Eq 1.
 - ► Only showing first four rows.
- Code doesn't change with one exception of creating design matrix.

$$\begin{bmatrix} 1 & 4 \\ 1 & 12 \\ 1 & 3 \\ 1 & 14 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 25 \\ 54 \\ 21 \\ 80 \end{bmatrix}$$

Eq 1. Adding intercept term at design matrix

Code Exercise to Add Intercept Term

■ Code Exercise (11_03)

- ▶ Code is same with Code Exercise (11_02) with one exception.
- ▶ The difference is design matrix.
- Add intercept term in design matrix following the previous slide.

```
% Clear workspace, command window, and close all figures
                                                                          % Plot
clc; clear; close all;
                                                                          figure;
                                                                          hold on;
% Define a matrix number of courses and life happiness
                                                                          grid on;
number_of_course = [4,12,3,14,13,12,9,11,7,13,11,9,2,5,7,10,0,9,7,13]';
                                                                          scatter(number_of_course, y, 'k', 'filled'); % X and y
                                                                          plot(number_of_course, y_pred, 'b', 'LineWidth', 2); % Plot predicted
life_happiness =
[25,54,21,80,68,84,62,57,40,60,64,45,38,51,52,58,21,75,70,70]';
                                                                          line with beta
                                                                          for i = 1:length(X)
% Define a new design matrix X that contains the intercept term and
                                                                              plot([number_of_course(i) number_of_course(i)], [y(i) y_pred(i)],
% dependent variable matrix v
                                                                          'k--'); % Plot residuals as dashed lines
X = ; % Use number_of_course
                                                                          end
                                                                          title('Add Intercept Term');
y = ;
                                                                          xlabel('Number of Courses ');
% Compute the left-inverse of X
                                                                          ylabel('Life Happiness');
X_{leftinv} = ;
                                                                          legend('X and y', 'Prediction with beta', 'Location', 'northwest');
                                                                          hold off;
% Calculate the beta
beta = ; % [beta0 beta1]
beta = flip(beta);
                        % [beta1 beta0]
y_pred = polyval(beta, number_of_course); % Predict y values using
beta
```

MATLAB code to add Intercept term

Visual result of Code Exercise

■ Code Exercise (11_03)

Result of Including Intercept Term

- Now, β is two-element vector [23.1, 3.7].
 - Expected level of happiness for someone who has taken zero courses is 23.1.
 - ► For each additional course someone takes, their happiness increase by 3.7 points.
- You will agree that Fig 2. looks much better than Fig 1...
 - ▶ And SSE is around half of what it was when we excluded intercept.

Fig 2. Observed and predicted data, with an intercept term

Least Squares via QR

Problem of Left-Inverse

- Left-inverse method is theoretically reasonable but risks numerical instability.
 - Because of computing matrix inverse which can be numerically unstable.
 - \blacktriangleright Matrix X^TX itself can introduce difficulties.
 - Multiplying matrix by its transpose has implications.
 - Properties such as norm and condition number which you will learn more later.
 - Matrices with high condition number can be numerically unstable.
 - Thus, design matrix with high condition number will become even less numerically stable when squared.

Stable Way to Solve Least Squares Problem

QR decomposition

- Observe following sequence of equations as Eq 1...
- ► Eq 1. is slightly simplified.
 - From actual low-level numerical implementations.

$$X\beta = y$$
 $QR\beta = y$
 $R\beta = Q^{T}y$
 $\beta = R^{-1}Q^{T}y$

Eq 1. Sequence of equation

Example of How to Increase Numerical Stability

\blacksquare R is same shape as X.

- ► Tall (and therefore noninvertible)
- ▶ Although only first *N* rows are nonzero.
 - Rows N + 1 through M do not contribute to the solution.
 - In matrix multiplication, rows of zeros produce results of zeros.
- Those rows can be removed.
 - From \mathbf{R} and from $\mathbf{Q}^T \mathbf{y}$.

Row swaps

- ► Implemented via matrices.
- ▶ Might be used to increase numerical stability.

$$X\beta = y$$
 $QR\beta = y$
 $R\beta = Q^{T}y$
 $\beta = R^{-1}Q^{T}y$

Eq 1. Sequence of equation

Best Part of Eq 1.

- Unnecessary to invert R.
 - ► Matrix is
 - ▶ Therefore, solution can be obtained via back substitution.
 - As solving simultaneous equations via Gauss-Jordan method.
 - Augment coefficients matrix by constants.
 - Reduce row to obtain RREF.
 - Extract solution from final column of augmented matrix.

$$X\beta = y$$
 $QR\beta = y$
 $R\beta = Q^{T}y$
 $\beta = R^{-1}Q^{T}y$

Eq 1. Sequence of equation

Conclusion of Least Squares Via QR Decomposition

- QR decomposition solves least squares problem.
 - ▶ Without squaring X^TX .
 - ► Without explicitly inverting a matrix.
- \blacksquare Main risk of numerical instability comes from computing Q.
 - ► This is fairly numerically stable.
 - When implemented via Householder reflections.

Summary

Summary

GLM is a statistical framework.

- To understand our rich and beautiful universe.
- Works by setting up simultaneous equations.
 - Like that you learned about in previous lecture.

■ Different terms between linear algebra and statistics

- Once you learn terminological mappings, statistics becomes easier.
 - Because you already know math.

Least squares method of solving equations via left-inverse

- Foundation of many statistical analysis
- You will often see least squares solution "hidden" inside seemingly complicated formulas.

Least squares formula

- Derived via algebra, geometry or calculus.
- ► Multiple ways of understanding and interpreting least squares

Summary

- Multiplying observed data vector by left-inverse
 - ► Right way to think about least squares
- In practice, other methods are more numerically stable.
 - ► Such as LU and QR decomposition

Code Exercises

SSE Calculation

- Code Exercise (11_03) introduced the best fit line y = mx + b.
- Write code that calculate SSE(Sum of Squares Error) between real data and predicted data.

Result of the code

SSE Calculation using QR Decomposition

- You can also calculate beta using QR Decomposition.
- Write code that calculate SSE(Sum of Squares Error) between real data and predicted data using QR Decomposition.
- Hint: Calculate Economy-sized QR.
- Hint: Use '\' for get inverse of matrix R.

Result of the code

THANK YOU FOR YOUR ATTENTION

