DAGs and Bad Controls

Francis J. DiTraglia

University of Oxford

Core Empirical Research Methods

Selection on observables again...

Last Time

- ▶ Binary treatment D, potential outcomes (Y_0, Y_1) .
- ▶ Observed outcome $Y = (1 D)Y_0 + DY_1$.
- ▶ Selection on observables: $D_{\perp \!\!\!\perp}(Y_0,Y_1)|X$ for observed covariates X.
- Overlap: 0 < p(X) < 1. (Recall that we can check this.)
- Regression Adjustment, Propensity Score weighting, Matching

Elephant in the Room

We have completely ignored the question of what to include in \boldsymbol{X} .

The Omitted Variables Bias (OVB) Formula¹

▶ To keep things simple, assume a linear model with homogeneous effects:

$$Y = \alpha + \beta D + \gamma X + U$$
, $Cov(D, U) = Cov(X, U) = \mathbb{E}(U) = 0$.

► In other words:

$$Y_0 = \alpha + \gamma X + U$$
, $Y_1 = Y_0 + \beta$, $ATE = TOT = \beta$

What does a regression of Y on D identify?

$$\frac{\mathsf{Cov}(D,Y)}{\mathsf{Var}(D)} = \frac{\mathsf{Cov}(D,\alpha+\beta D + \gamma X + U)}{\mathsf{Var}(D)} = \beta + \gamma \frac{\mathsf{Cov}(D,X)}{\mathsf{Var}(X)}$$

▶ "Short" regression coefficient only equals β if $\gamma = 0$ or Cov(D, X) = 0.

¹See, e.g., Section 3.2.2 of *Mostly Harmless Econometrics*.

How *not* to interpret the OVB Formula.

- ightharpoonup OVB Formula tells us when and how the coefficient on D differs depending on whether we include X in the regression.
- ▶ "Short" regression includes only D; "Long" regression includes both D and X.
- "Short" and "Long" coefficients for D agree if:
 - 1. X does not help predict Y in the "Long" regression or
 - 2. X is uncorrelated with D.
- ▶ Only if we **assume** that the long regression is the true causal model does this tell us whether we need to adjust for *X*.

Bad Advice: "Adjust for any observed variable that is correlated with D and Y."

Example 1: A prototypical bad control.

```
set.seed(1693)
n <- 5000
d <- rbinom(n, 1, 0.4)
x <- rbinom(n, 1, 0.25 + 0.5 * d)
y <- x + rnorm(n)
mean(y[d == 1]) - mean(y[d == 0])
## [1] 0.523149</pre>
```

$$\mathbb{E}[Y_1 - Y_0] = \mathbb{E}[Y|D = 1] - \mathbb{E}[Y|D = 0]$$

= $\mathbb{E}[X|D = 1] - \mathbb{E}[X|D = 0] = 0.5$

Why is X a bad control?

Intermediate Outcome

- Example 1: X is itself an outcome of D that goes on to cause Y.
- Adjusting for an intermediate outcome masks the true causal effect of D.
- ▶ E.g. randomized early childhood intervention causes college; college causes wage.
- ▶ In the simulation, 100% of the effect of D on Y goes through X.

Common Advice

Variables measured before the variable of interest [D] was determined are usually good controls. In particular, because these variables were determined before the variable of interest, they cannot themselves be outcomes in the causal nexus.²

²From Section 3.2.3 of *Mostly Harmless Econometrics*, but similar statements are common.

Example 2: This bad control is not an intermediate outcome.

```
library(mvtnorm)
R \leftarrow matrix(c(1, 0.5, 0.5, 1),
             2, 2)
errors <- rmvnorm(n, sigma = R)
u <- errors[.1]
v <- errors[.2]
x \leftarrow rbinom(n, 1, 0.5)
d \leftarrow 1 * ((-1 + 2 * x + y) > 0)
v < -0.3 + d + u
mean(y[d == 1]) - mean(y[d == 0])
## [1] 1.511498
```

```
xtilde \leftarrow x - mean(x)
lm(y \sim d + x + d:xtilde) >
  tidy() |>
  filter(term == 'd') |>
  select(estimate, std.error)
## # A tibble: 1 \times 2
     estimate std.error
##
##
        <dbl> <dbl>
## 1 1.90 0.0355
```

Why is X a bad control?

Instrumental Variable

- Example 2: X is a valid instrument for the endogenous treatment D.
- But this is the wrong way to use an instrumental variable: should run IV.
- ightharpoonup Adjusting for X soaks up the **exogenous** part of D, making the bias worse.³

³See here for a proof.

"No causes in; no causes out."4

Feeling confused?

- ▶ How can we tell which variables to adjust for and which are bad controls?
- ▶ Is is simply a matter of "I know it when I see it"?

Bad News

- ▶ Meaningful causal inference **always** requires assumptions, even in RCTs.
- Causal inference from observational data requires even more assumptions.

Good News

- ▶ If you make your assumptions explicit, there is a **definitive** solution.
- ▶ If it's possible to use selection-on-observables, find the correct **X**; if it's not possible, show why this is so.
- Free bonus: better intuition about bad controls.

⁴Nancy Cartwright

The Birthweight Paradox⁵

The analyses in Yerushalmy's paper indicated that, among low birthweight infants of less than 2500g, maternal smoking was associated with lower infant morality. The results have been replicated in a number of studies and populations, and these seemingly paradoxical associations are now often referred to as the 'birthweight paradox'

- ightharpoonup D = 1 mother smokes while pregnant
- ightharpoonup Y = 1 infant dies
- ightharpoonup X = 1 low birthweight

Should we adjust for birthweight when studying the causal effect of maternal smoking on infant mortality?

⁵Quote from VanderWeele (2014).

Graph: set of **nodes** connected by **edges**.

- Two nodes are adjacent if connected by an edge.
- Edges can be directed (figure) or undirected.
- Directed edge points from parent to child.
- Directed graph has only directed edges.
- Path: sequence of connected vertices.
- Directed Path: a path that "obeys one-way signs"
- Directed path points from ancestor to descendant.
- **Cycle**: directed path that returns to starting node.
- Acyclic Graph: a graph without any cycles.

Exercise

- 1. Is this graph directed?
- 2. Is this graph acyclic?
- 3. Are Z and D adjacent?
- 4. List all paths between D and Y.
- 5. List all *directed* paths from D to Y.

Exercise

- 1. Is this graph directed?
- 2. Is this graph acyclic?
- 3. Are Z and D adjacent?
- 4. List all paths between D and Y.
- 5. List all *directed* paths from D to Y.

Solution

- 1. Yes: all edges in the graph are directed.
- 2. Yes: there is no directed path that takes you back to the node where you started.
- 3. Z and D are not adjacent: there is no edge between them.
- 4. There are three: $(D \to Y)$, $(D \leftarrow X \to Y)$, and $(D \leftarrow X \leftarrow Z \to Y)$.
- 5. There is only one: $(D \rightarrow Y)$.

Graphical Causal Models: Directed Acyclic Graphs (DAGs)

Graphical Causal Model

Directed edges encode assumptions about the "flow" of causation (edge) or lack thereof (no edge).

Potential Cause

If D is an ancestor of Y, it is a **potential cause** of Y.

Direct Cause

If D is a parent of Y, it is a **direct cause** of Y.

Back Door Criterion

Can we learn $(D \rightarrow Y)$ using selection on observables? If so, what covariates should we adjust for?

"Draw Your Assumptions" – Birthweight Example

Birthweight Paradox

- Y mortality
- X birthweight
- ► D maternal smoking
- ightharpoonup U unobserved: e.g. malnutrition / birth defect

Should we condition on X?

Can't adjust for U: unobserved. Should we adjust for birthweight when studying (smoking \rightarrow mortality) effect?

Figure 1: A possible model for the birthweight example.

Causal and Non-causal Paths

Causal Path

Directed path between treatment and outcome; always starts with an edge pointing *out* of treatment.

Backdoor Path

Noncausal path path between treatment and outcome; always starts with an edge pointing *into* treatment.

Exercise

- 1. List all causal paths from D to Y.
- 2. List all backdoor paths between D and Y.

Causal and Non-causal Paths

Causal Path

Directed path between treatment and outcome; always starts with an edge pointing *out* of treatment.

Backdoor Path

Noncausal path path between treatment and outcome; always starts with an edge pointing *into* treatment.

Exercise

- 1. List all causal paths from D to Y.
- 2. List all backdoor paths between D and Y.

Solution

- 1. $(D \rightarrow Y)$
- 2. $(D \leftarrow X \rightarrow Y)$, and $(D \leftarrow X \leftarrow Z \rightarrow Y)$.

Graph Surgery

Observational Distribution: $\mathbb{P}(Y|D=d)$

- ightharpoonup Actual distribution of Y among people observed to have D=d.
- DAG shows the observational distribution and how it arises from our causal model.

Interventional Distribution: $\mathbb{P}(Y|do(D=d))$

- ightharpoonup Distribution of Y that we would obtain if we intervened and set D=d for everyone.
- Obtain from DAG by removing edges pointing into D.
- ► Causal effect of interest is the path from *D* to *Y* in this "modified" graph.
- $\blacktriangleright \mathsf{ATE} = \mathbb{E}(Y_1 Y_0) = \mathbb{E}(Y|\mathsf{do}(D=1)) \mathbb{E}(Y|\mathsf{do}(D=0))$
- This is what an experiment does: removes all causes of treatment!

Graph Surgery: Delete Edges Pointing Into D

Observational Distribution

Interventional Distribution: do(D)

Interventional DAG has *no backdoor paths*. To use the observational distribution for causal inference, we will attempt to "block" the backdoor paths by conditioning.

Exercise: Draw the DAG for the do(X) Interventional Distribution

Observational Distribution

Interventional Distribution: do(X)

Exercise: Draw the DAG for the do(X) Interventional Distribution

Observational Distribution

Interventional Distribution: do(X)

Figure 2: The Four Basic DAGs

Fork = Common Cause / Confounder

Confounder = Good Control

- ▶ *D* and *Y* are dependent: **open** path between them.
- ▶ But *D* doesn't cause *Y*: *X* causes *D* and *Y*.
- ► Conditioning on *X* blocks the path from *D* to *Y*.

Example

D is shoe size, Y is reading ability, X is age.

Fork Rule

If X is a common cause of D and Y and there is only one path between D and Y, then $D \perp\!\!\!\!\perp Y | X$.

Figure 3: X is a confounder. Good control for $D \rightarrow Y$.

Pipe = Mediator

Mediator = Bad Control

- D and Y are dependent: **open** path between them.
- D causes Y through its causal effect on X.
- Conditioning on X blocks the path from D to Y.

Example

D is SAT coaching, X is SAT score, Y is college acceptance

Pipe Rule

If there is only one directed path from D to Y and X intercepts that path, then $D_{\parallel}Y|X$.

"Don't condition on an intermediate outcome."

Figure 4: X is a mediator. Bad control for $D \rightarrow Y$.

Collider = Common Effect

Common Effect = Bad Control

- ▶ D and Y are independent: **blocked** path between them.
- D and Y both cause X, but neither causes the other.
- ightharpoonup Conditioning on X **unblocks** the path between D and Y.

Example

D, Y indep. coins; X = bell rings if at least one HEADS.

Collider Rule

If there is only one path between D and Y and X is their common effect, then $D \perp\!\!\!\perp Y$ but $D \not\!\!\!\perp Y | X$.

Why are brilliant researchers lousy teachers?

Figure 5: Teaching and Research are independent N(0,1). Professor is a collider: TRUE if the sum of Research and Teaching is in the top 10th percentile of all observations.

The Descendant

Descendant Rule

Conditioning on a descendant Z of X has the effect of partially conditioning on X itself.

Collider Corollary

In the figure, $D \perp \!\!\! \perp Y$ but $D \not \perp \!\!\! \perp Y | Z$.

Discussion

- What this means depends on the situation.
- In the figure X is a collider.
- Could also have X as the middle node in pipe/fork.
- ▶ Pipe/fork: adjust for $Z \Rightarrow$ partially block D, Y path.

Figure 6: Z is a descendant of the collider X. Bad control for $D \rightarrow Y$

Exercise: Find all examples of the four basic DAGS.

Figure 7: Birthweight DAG

Exercise: Find all examples of the four basic DAGS.

Figure 7: Birthweight DAG

Solution

- 1. Forks: $X \leftarrow U \rightarrow Y$ and $X \leftarrow D \rightarrow Y$
- 2. Pipes: $D \rightarrow X \rightarrow Y$, $U \rightarrow X \rightarrow Y$
- 3. **Colliders**: $D \rightarrow X \leftarrow U$ and $D \rightarrow Y \leftarrow U$.
- 4. **Descendant**: Y is a descendant of the collider $D \rightarrow X \leftarrow U$.

Blocking and Opening Paths in the Four Basic DAGs

Fork

 $D \leftarrow X \rightarrow Y$ is an **open** path; conditioning on the **confounder** X **blocks** the path.

Pipe

 $D \rightarrow X \rightarrow Y$ is an **open** path; conditioning on the **mediator** X **blocks** the path.

Collider

 $D \rightarrow X \leftarrow Y$ is a **blocked** path; conditioning on the **collider** X **opens** the path.

Descendant

Conditioning on the descendant of a **confounder** / **mediator** partially blocks the open path. Conditioning on the descendant of a **collider** partially opens the blocked path.

Backdoor Criterion

Use what we know about the four basic DAGs to **block** all backdoor paths between D and Y in our "big" DAG. Obtain interventional distribution from observational data.

The Backdoor Criterion

Recall: Backdoor Path

Noncausal path between D and Y; starts with edge pointing **into** D.

Blocked Path

A set of nodes X blocks a path p if and only if p contains: (1) a **pipe** or **fork** whose middle node is in X or (2) a **collider** that is *not* in X and has no descendants in X.

Backdoor Criterion

A set of nodes X satisfies the back-door criterion relative to (D, Y) if no node in X is a descendant of D and X blocks every back-door path between D and Y.

A Less Formal Statement of the Back-door Criterion

- 1. List all the paths that connect treatment and outcome.
- 2. Check which of them open. A path is open unless it contains a collider.
- 3. Check which of them are back-door paths: contain an arrow pointing at D.
- 4. If there are no open back-door paths, you're done. If not, look for nodes you can condition on to **block** remaining open back-door paths without opening new ones.

Of course we can only condition on observed variables!

Important Note

In a given DAG there may be *no way* to satisfy the badk-door criterion, given what we observe. There may also be *multiple ways*!

Backdoor Theorem = Selection on observables!

Backdoor Theorem

If X satisfies the back-door criterion relative to (D, Y), then

$$\mathbb{P}(Y = y | \mathsf{do}(D = d)) = \sum_{\mathsf{all} \ \mathsf{x}} \mathbb{P}(Y = y | D = d, X = \mathsf{x}) \cdot \mathbb{P}(X = \mathsf{x})$$

What if *X* is empty?

Then we don't to condition on anything: $\mathbb{P}(Y=y|\mathsf{do}(D=d))=\mathbb{P}(Y=y|D=d)$

Counterfactual Interpretation

If X satisfies the back-door criterion relative to (D, Y), then $Y_d \perp \!\!\! \perp D \mid X$ for all d.

Translating to Potential Outcomes

- ightharpoonup The "counterfactuals" Y_d are our potential outcomes from earlier in this lecture.
- ightharpoonup Back-door criterion implies selection on observables assumption for D given X.
- ► The formula above is nothing more than **regression adjustment**.

Exercise: What to adjust for to learn the effect of each intervention?

- 1. The effect of D on Y.
- 2. The effect of *X* on *Y*.
- 3. The effect of Z on Y?

Exercise: What to adjust for to learn the effect of each intervention?

- 1. The effect of *D* on *Y*.
- 2. The effect of *X* on *Y*.
- 3. The effect of Z on Y?

Solution

- 1. There are two backdoor paths. In $(D \leftarrow X \rightarrow Y)$, the middle node in a fork is X. In $(D \leftarrow X \leftarrow Z \rightarrow Y)$ the middle node in a pipe is X. Adjusting for X blocks both.
- 2. The only backdoor path is $(X \leftarrow Z \rightarrow Y)$, a fork with Z as its middle node. Adjusting for Z blocks this path.
- 3. There are no arrows pointing into Z, hence no backdoor paths. We don't have to adjust for anything.

(Possible) Solution to Birthweight Paradox

Among low birthweight infants...maternal smoking was associated with lower infant mortality.

Notation

Y mortality, X birthweight, D maternal smoking, and U unobserved: e.g. malnutrition / birth defect

Birthweight is a bad control!

- Can't adjust for U because it's unobserved.
- ▶ No arrows pointing into *D* so no backdoor paths.
- ➤ X is a collider: conditioning on it creates spurious dependence between D and U.

Figure 8: If we believe this model, X is a bad control.

Low birthweight infants whose mothers did *not* smoke must have an unfavorable value of U, making it appear as though smoking has health benefits.

Exercise / Cancer Example Continued

- \triangleright X is a **collider**: it *blocks* the back-door path between D and Y through (U, V).
- ▶ Adjusting for *X* opens this blocked path, so *X* is a **bad control**.
- ▶ Back door criterion is satisfied with $Z = \emptyset$: don't condition on anything!

```
library(dagitty)
library(ggdag)
dagify(Y \sim D + U, D \sim V, X \sim U + V) >
  paths(from = 'D', to = 'Y')
## $paths
## [1] "D -> Y"
                                 "D <- V -> X <- U -> Y"
##
## $open
## [1] TRUE FALSE
```