Treatment effects

James Scott

Causal inference

We've used prediction as a basis for model building:

- choose a model to do the best job at forecasting y at new x drawn from the same distribution as data sample X.
- this is exactly the question tackled by ML with cross validation

Causal inference

We've used prediction as a basis for model building:

- choose a model to do the best job at forecasting y at new x drawn from the same distribution as data sample X.
- this is exactly the question tackled by ML with cross validation

But it's not enough for understanding cause and effect.

Today, we'll try to estimate the effect of a special "treatment variable" d. We want to know the **causal** or **treatment effect** (TE), or how y changes when d changes independently of everything else. For example:

- Medicine: d = 1 if new drug, d = 0 if placebo (control).
- ► Macro: *d* is a policy tool (interest rates, etc...)
- Commerce: d is the price you set for a product

Potential Outcomes

Potential outcomes are used to talk about causality in a formal way:

- Let Y_1 be the *potential outcome* if the treatment is received (d = 1), and Y_0 if the treatment is not received (d = 0).
- ▶ Then the causal effect for an individual is defined as defined as $TE = Y_1 Y_0$.

Potential Outcomes

Potential outcomes are used to talk about causality in a formal way:

- Let Y_1 be the *potential outcome* if the treatment is received (d = 1), and Y_0 if the treatment is not received (d = 0).
- ▶ Then the causal effect for an individual is defined as $TE = Y_1 Y_0$.

Of course, in reality, we can only observe one of Y_1 and Y_0 for a given individual, not both. This is the **fundamental problem of causal inference:**

- One of these outcomes is actual, i.e. directly observed.
- The other is counterfactual, and never observed.
- For each unit, we can only observe the potential outcome corresponding to the treatment that was actually received.
- Formally, causal inference is like a missing-data problem!

Assumptions for Estimating Treatment Effects

So estimating treatment effects is impossible, right?

Assumptions for Estimating Treatment Effects

So estimating treatment effects is impossible, right?

Well, kind of! It *is* the hardest game in data-science town. It always requires two *strong assumptions*:

- Unconfoundedness: Treatment assignment is conditionally independent of the potential outcomes, given what we know about the individuals involved.
- 2. **Overlap:** Each unit has a positive probability of receiving either treatment.

Average Treatment Effect (ATE)

The Average Treatment Effect (ATE) is defined as the expected difference in outcomes between treated and untreated units:

Mathematically, ATE is defined as $\gamma = E[Y_1 - Y_0]$.

This measures the average effect of the treatment on the "population" (however defined).

One setting where it's possible to estimate an average treatment effect is in a designed experiment. We'll start with the simplest case: a completely randomized design.

Completely Randomized Designs

In a **completely randomized** design, each unit is independently assigned to treatment or control with the same probability.

- For example, you randomize your website visitors into groups 'A' and 'B'.
- ► Those in A see the current website (control, d=0), while those in B see a new layout (treatment, d=1).
- y is the visitor's total spend on that visit.

Under complete randomization, the treatment indicator d is independent of both the potential outcome under treatment (y_1) and the potential outcome under control (y_0) .

- ▶ Mathematically, this is expressed as $(y_0, y_1) \perp d$
- This independence implies that the treatment and control groups are, on average identical, in terms of potential outcomes.

Average Treatment Effects under Randomization

The average treatment effect (ATE) can be estimated in the "obvious" way:

- Let Y_1 and Y_0 be the potential outcomes under treatment and control respectively
- Y is the observed outcome.
- d is the treatment assignment.

Then the ATE is

$$\gamma = E[Y_1 - Y_0] = E[Y \mid d = 1] - E[Y \mid d = 0]$$

Just use the sample means in treatment and control groups to get unbiased estimator of the ATE under complete randomization. It's just Stat 101 analysis of designed experiments.

Can you do better?

Completely randomized designs (experiments, RCTs, A/B tests. . .) are immensely popular and immensely useful.

Sometimes simple is best. If you have the ability to randomize, it is very tough to find a TE estimate that is much better than $\hat{\gamma} = \bar{y}_1 - \bar{y}_0$ from an RCT. Beware of those making extravagant claims otherwise.

However, we can sometimes do better, especially if:

- ▶ there are many treatments to choose among
- ▶ the treatment effect is heterogeneous, i.e. we view $\gamma(x)$ as being a function of other features.

Multi-Arm Bandit Problem

We'll consider the case of multiple treatments as an example of the **multi-armed bandit** problem. This is a good working model for a lot of experiments in industry:

- you want to learn what's best...
- but you also want to quickly make use of what's best.

Figure 1: This guy can play all the arms at once... we're not so lucky.

Multi-Arm Bandit Problem

In the classic problem, a gambler has to decide which arm of K slot machines (or "bandits") to pull to maximize their total reward over a series of trials.

- Some bandits are more favorable than others...
- But we don't know which ones or by how much. We can only find out by actually pulling them.

This is a classic model in reinforcement learning, which is about balancing the trade-off between *exploration* and *exploitation*.

- Exploration: learning which treatments work best
- Exploitation: assigning users to the treatment that seems best in light of our current (partial) information

Example: online ad campaigns

In the context of online ad campaigns, each 'arm' can be considered as a different ad campaign.

- ▶ We have J different ads to show, denoted as j = 1, ..., J.
- ▶ Each time a user comes to our site, we can show them one ad, indicated by $d_i = j$.
- ► The objective is to maximize ad-clicks over all visitors, which can be seen as the rewards in the bandit problem.

Formulation as a Multi-Armed Bandit Problem

To formulate this scenario as a multi-armed bandit problem, we define:

- ▶ **States:** Each unique combination of user characteristics is a different state.
- ► **Actions:** Showing a particular ad campaign is an action.
- Rewards: Clicks on ads are rewards.

At each time step i (when a user arrives), we choose an action d_i (choose an ad to show), then we receive a reward based on whether the user clicks the ad.

Choosing Ads with Bandit Algorithms

To solve the multi-armed bandit problem, we can use time-tested algorithms like epsilon-greedy or Thompson sampling.

- ▶ These algorithms balance the trade-off between exploiting ads that have performed well in the past and exploring new ads that might perform better.
- ► The choice of algorithm can have a significant impact on the total reward (total ad-clicks) over time.

Notation:

- Let's say that $s_n = [s_{n1}, \dots, s_{nJ}]$ are the number of times each ad has been shown up through user N.
- Let's also say that $c_n = [s_{c1}, \dots, c_{nJ}]$ are the number of clicks on each ad through user N.

The Epsilon-Greedy Algorithm

The epsilon-greedy algorithm is a simple, effective method for balancing exploration and exploitation.

- At each time step n (when a new user arrives), with a small probability ϵ , we randomly select an ad to display (exploration).
- ▶ With probability 1ϵ , we display the ad with the highest observed click-through rate so far (exploitation).

We calculate the observed click-through rate for ad j as c_{nj}/s_{nj} , the currently observed success rate.

Note: we can add a small pseudo-count and use e.g. $(c_{nj} + 1)/(s_{nj} + 1)$ to avoid division by zero.

Epsilon-greedy: pseudo-code

```
Initialize s_n and c_n as zero vectors of length J
for each user n do
  Generate a random number r from U(0,1)
  if r < epsilon then
    Select a random ad j to display
  else
    ctr_j = c_{nj}/s_{nj}
    Display ad with the highest ctr j
  end if
  Update s_n and c_n based on whether the user clicks
end for
```

Thompson Sampling Algorithm

Thompson Sampling is a probabilistic algorithm that balances exploration and exploitation by maintaining a Bayesian posterior distribution for each ad's click-through rate.

- At each time step n, we sample a click-through rate θ_j from the posterior distribution for each ad j's true, unknown click-through rate.
- ▶ We show the ad with the highest sampled click-through rate.
- The uncertainty in our posterior distribution ensures that we will do some exploration rather than always choose the current best option.

Under a common choice of a Beta prior for each ad's click-through rate, the posterior distribution after seeing s_{nj} displays and c_{nj} clicks for ad j is a Beta distribution with parameters $c_{nj}+1$ and $s_{nj}-c_{nj}+1$.

Thompson sampling: pseudo-code

```
Initialize s_n and c_n as zero vectors of length J
for each user n do
   for each ad j do
     Draw theta_j ~ Be(c_{nj} + 1, s_{nj} - c_{nj} + 1)
   end for
   Display the ad with the highest theta_j
   Update s_n and c_n based on whether the user clicks
end for
```

High-Dimensional Confounding

We now turn to causal inference with non-experimental data, i.e. in the presence of confounding.

Recall the Stat 101 setup and recipe here:

- ▶ y is the response, d is the treatment, and d seems strongly predictive of y...
- ▶ But *d* is also correlated with some other variables *x* (the *confounders*).
- So run a regression of y on d and x to get an estimate for the partial effect of d on y, holding x constant.

High-Dimensional Confounding

We now turn to causal inference with non-experimental data, i.e. in the presence of confounding.

Recall the Stat 101 setup and recipe here:

- ▶ y is the response, d is the treatment, and d seems strongly predictive of y...
- But d is also correlated with some other variables x (the confounders).
- So run a regression of y on d and x to get an estimate for the partial effect of d on y, holding x constant.

Let's see a quick example as a refresher:

- \triangleright y = price of an Airbnb rental in Sante Fe, NM
- ightharpoonup d = distance to the center of town
- $\triangleright x =$ other stuff about the rental

Airbnb example

The relationship between Price and PlazaDist seems strong:

```
lm0 = lm(Price ~ PlazaDist, data=airbnb)
get_regression_table(lm0) %>%
  select(term, estimate, std_error)
```

Airbnb example

But this is a naive answer because bigger places tend to be a bit closer to the center of town:

```
cor(PlazaDist ~ Bedrooms, data=airbnb)

## [1] -0.1096495

cor(PlazaDist ~ Baths, data=airbnb)
```

[1] -0.2732923

So in estimating a PlazaDist effect on Price, we are also implicitly including a size effect! Causal confusion, a.k.a. **confounding.**

Airbnb example

What if we adjust for size by adding bedrooms and bathrooms? Now the distance effect looks weaker:

```
lm1 = lm(Price ~ PlazaDist + Bedrooms + Baths, data=airbnb)
get_regression_table(lm1) %>%
    select(term, estimate, std_error)
```

That's because beds/baths both have large effects on y and were correlated with distance. This led to causal confusion in our first model!

High-Dimensional Confounding

Unfortunately, this "Stat 101" approach breaks down in the presence of lots and lots of confounders.

Why? **Overfitting.**

- ▶ With a large number of confounders relative to the number of observations, the model is likely to overfit the data.
- ▶ When you force the model to control for every crazy possibility in a high-D x, it will!
- Result: massively inflated variance of the estimated treatment effect.

High-Dimensional Confounding

Unfortunately, this "Stat 101" approach breaks down in the presence of lots and lots of confounders.

Why? **Overfitting.**

- ▶ With a large number of confounders relative to the number of observations, the model is likely to overfit the data.
- When you force the model to control for every crazy possibility in a high-D x, it will!
- Result: massively inflated variance of the estimated treatment effect.

OK, so why not just run the LASSO?!

- ▶ It performs L1 regularization, which has the effect of shrinking some regression coefficients exactly to zero.
- ► This performs both variable selection and regularization, helping to mitigate overfitting.

LASSO for treatment effect estimation?

Seems like a no-brainer to use LASSO regression to estimate the treatment effect in a regression framework:

$$y \sim d + x$$

where:

- y is the outcome,
- d is the treatment indicator, and
- x is the vector of potential confounders.
- the whole model is fit with a single run of LASSO-CV.

LASSO for treatment effect estimation?

Seems like a no-brainer to use LASSO regression to estimate the treatment effect in a regression framework:

$$y \sim d + x$$

where:

- y is the outcome,
- d is the treatment indicator, and
- x is the vector of potential confounders.
- the whole model is fit with a single run of LASSO-CV.

Please don't do it! It's a causal-inference disaster.

Let's take a simple counter-example to show why it won't work.

Why naive LASSO is a (potential) disaster

Suppose the true data-generating process is this:

- $y = x_1 + x_2 + e_y$. No treatment effect, but the confounders have true effects on the outcome.
- ▶ $d = x_1 + x_2 + e_d$. The confounders strongly predict the treatment.
- ▶ E.g.: y is getting a fancy job, d is Harvard attendance, x_1 is whether parents are wealthy, x_2 is Harvard legacy status.

This model is *structural*, in the sense that it is assumed to generate the *correct potential outcomes*, conditional on covariates. To wit:

- $F(Y_0 \mid x_1, x_2) = x_1 + x_2$
- $F(Y_1 \mid x_1, x_2) = x_1 + x_2$
- ▶ Therefore $TE = E(Y_1) E(Y_0) = 0$. No treatment effect!

Why naive LASSO is a (potential) disaster

But notice that, since $E(d \mid x_1, x_2) = x_1 + x_2$, I could consider two perfectly good "sparse" regression models for E(y):

- $\triangleright E(y) = \beta_1 x_1 + \beta_2 x_2$
- \triangleright $E(y) = \beta_d d$

The second model isn't structural:

- ▶ It doesn't specify the correct potential outcomes, which we know don't depend on d! (It's what econometricians would call a "reduced-form" model.)
- ▶ But the LASSO would strongly prefer it: it predicts just as well as the correct structural model, but it only costs $1 \cdot \lambda$ rather than $2 \cdot \lambda$ to "unzero" its coefficients.
- ► The lasso cares about *prediction* and *parsimony*, not correct causal identification.

(Note: x is low-D and so "naive" OLS would do great!)

Why naive LASSO is a (potential) disaster

This is a quite general problem with the LASSO (or anything similar that "regularizes" the model fit – i.e. *everything* in ML!).

Using LASSO regression directly for causal inference can lead to biased treatment-effect estimates:

- ► LASSO can zero out important confounders due to the L1 penalty.
- ► This is particularly problematic when the confounders are highly correlated with the treatment assignment.

Let's see an example on simulated data to build our intuition.

```
N = 100
P = 200 # lots of confounders

# matrix of confounders
X = matrix(runif(N*P), N, P)

# same 10 confounders affect treatment/outcome
D = rowSums(X[,1:10]) + rnorm(N, 0, 0.1)
Y = rowSums(X[,1:10]) + rnorm(N, 0, 1)
```

Now we run the naive lasso:

```
lm_naive = gamlr::cv.gamlr(cbind(D, X), Y)
coef(lm naive) %>% head(12)
## 12 x 1 sparse Matrix of class "dgCMatrix"
##
                  seg19
## intercept 2.0002861
## D
             0.6204517
##
##
##
##
##
##
##
##
##
##
```

This isn't just bad luck. Here's we are simulating the same situation many times:

```
sim = do(250)*{
    X = matrix(runif(N*P), N, P)
    D = rowSums(X[,1:10]) + rnorm(N, 0, 0.1)
    Y = rowSums(X[,1:10]) + rnorm(N, 0, 1)
    lm_naive = gamlr::cv.gamlr(cbind(D, X), Y)
    coef(lm_naive)[2]
}
```

The histogram of our treatment-effect estimates looks like this:

The bias is terrible.

Double-Selection or "Double LASSO"

A particularly simple solution is the so-called "double-selection" procedure of Belloni, Chernozhukov, and Hansen (2014):

- 1. **Selection Step 1**: Use LASSO to select variables that are predictive of the treatment d.
- 2. **Selection Step 2**: Use LASSO to select variables that are predictive of the outcome *y*.
- Inference Step: Use the variables selected from both steps in an ordinary regression of the outcome on the treatment, plus the selected controls: y ~ d + x_selected

The coefficient on the treatment indicator d in this regression represents the estimated treatment effect.

Not a panacea, but not a bad approach! Theory says that the standard error of the *d* coefficient should be about right.

Double lasso for our toy example

```
sim2 = do(250)*{}
 X = matrix(runif(N*P), N, P)
  D = rowSums(X[,1:10]) + rnorm(N, 0, 0.1)
 Y = rowSums(X[,1:10]) + rnorm(N, 0, 1)
  lm d = gamlr::cv.gamlr(X, D)
  include from d = which(coef(lm d) != 0) - 1
  lm_y = gamlr::cv.gamlr(X, Y)
  include from y = which(coef(lm y) != 0) - 1
  include = union(include from d, include from y)
  combined = cbind(D, X[,include])
  lm double = lm(Y \sim combined)
  coef(lm double)[2]
```

Double lasso for our toy example

The histogram of our treatment-effect estimates now looks like this:

Huge variability, centered at 0. No bias.

A useful diagnostic plot

A really useful plot in these regressions is to check how much independent or "quasi-experimental" variation remains in the treatment variable d, once we've regressed it on the control variables.

The thinking goes like this:

- we judge cause and effect by trying to correlate variation in y with variation in d, after we've controlled for variation that can be explained by the confounders.
- ▶ high R^2 for y vs. d: bad. The confounders *strongly* predict the treatment. No variation leftover for causal inference.
- low R^2 for y vs. d: we might be OK. The treatment seems to vary at least somewhat, independently of the confounders.

A useful diagnostic plot

```
X = matrix(runif(N*P), N, P)
D = rowSums(X[,1:10]) + rnorm(N, 0, 0.1)
Y = rowSums(X[,1:10]) + rnorm(N, 0, 1)
lm_d = gamlr::cv.gamlr(X, D)
d_hat = predict(lm_d, X)
```

A useful diagnostic plot

Our example? No hope.

A real example

Donahoe and Levitt argue a controversial thesis: easier access to abortion causes decreased crime.

Made famous in Freakonomics. Maybe you read it.

There's obviously no experiment here. How have they controlled for confounders?

A real example

The treatment variable d is by-state, by-year lagged abortion rate, and for response we look at y = murder rate.

DL control for bunch of state-specific confounders: income, poverty, child tax credits, weapons laws, beer consumption. . .

They also include state effects (factor 's') and a linear time trend (numeric 't') to control for missed confounders.

A real example

The treatment variable d is by-state, by-year lagged abortion rate, and for response we look at y = murder rate.

DL control for bunch of state-specific confounders: income, poverty, child tax credits, weapons laws, beer consumption. . .

They also include state effects (factor 's') and a linear time trend (numeric 't') to control for missed confounders.

Skeptical? You should be! Let's visit abortion.R.