documentation

jazzmoe

November 9, 2018

Things to check

- Many age variables are missing which might cause bias | run regression on age and estimate ages of missing values
- make a dummy for cabin no cabin | classify different cabin categories

•

Data Documentation

Variable	Definition	Key
survival	Survival	0 = No, 1 = Yes
pclass	Ticket class	1 = 1st, 2 = 2nd, 3 = 3rd
sex	Sex	
Age	Age in years	
sibsp	# of siblings / spouses aboard the Titanic	
parch	# of parents / children aboard the Titanic	
ticket	Ticket number	
fare	Passenger fare	
cabin	Cabin number	
embarked	Port of Embarkation	C = Cherbourg, Q = Queenstown, S = Southampton

Exploratory Data Analysis

Analyze here relationships of variables. z.B Plot of fare and pclass

glimpse(Train)

```
## Observations: 891
## Variables: 15
## $ passengerid <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,...
## $ survived
                 <fct> 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0,...
                 <int> 3, 1, 3, 1, 3, 3, 1, 3, 3, 2, 3, 1, 3, 3, 3, 2, 3,...
## $ pclass
                 <chr> "Braund, Mr. Owen Harris", "Cumings, Mrs. John Bra...
## $ name
                 <chr> "male", "female", "female", "female", "male", "male...
## $ sex
## $ age
                 <dbl> 22, 38, 26, 35, 35, NA, 54, 2, 27, 14, 4, 58, 20, ...
## $ sibsp
                 <int> 1, 1, 0, 1, 0, 0, 0, 3, 0, 1, 1, 0, 0, 1, 0, 0, 4,...
                 <int> 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 5, 0, 0, 1,...
## $ parch
## $ ticket
                 <chr> "A/5 21171", "PC 17599", "STON/O2. 3101282", "1138...
## $ fare
                 <dbl> 7.2500, 71.2833, 7.9250, 53.1000, 8.0500, 8.4583, ...
## $ cabin
                 <chr> NA, "C85", NA, "C123", NA, NA, "E46", NA, NA, NA, ...
                 <chr> "S", "C", "S", "S", "S", "Q", "S", "S", "S", "C", ...
## $ embarked
## $ pclass1
                 <dbl> 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, ...
## $ pclass2
                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0,...
## $ pclass3
                 <dbl> 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, ...
```

p5 ## NULL p6

Missing Data

naFrame %>% kable

passengerid	survived	pclass	name	sex	age	sibsp	parch	ticket	fare	cabin	embarked	pclass1	pclass
0	0	0	0	0	177	0	0	0	0	687	2	0	(

Embarked

emb.surv

##

0 1

C 75 93

Q 47 30

S 427 217

emb.surv.chisq

##
Pearson's Chi-squared test
##

```
## data: Train$embarked and Train$survived
## X-squared = 26.489, df = 2, p-value = 1.77e-06
```

Peoplo who embarked in Southhampton have significantly higher likelihood of dying.

Age

Training Models

Random forrest with 10-fold cv

summary(Mod3)

##		Length	Class	Mode
##	call	5	-none-	call
##	type	1	-none-	character
##	predicted	572	factor	numeric
##	err.rate	1500	-none-	numeric
##	confusion	6	-none-	numeric
##	votes	1144	matrix	numeric
##	oob.times	572	-none-	numeric
##	classes	2	-none-	character
##	importance	6	-none-	numeric
##	importanceSD	0	-none-	NULL
##	${\tt localImportance}$	0	-none-	NULL
##	proximity	0	-none-	NULL
##	ntree	1	-none-	numeric
##	mtry	1	-none-	numeric
##	forest	14	-none-	list
##	у	572	factor	numeric
##	test	0	-none-	NULL
##	inbag	0	-none-	NULL
##	xNames	6	-none-	character
##	problemType	1	-none-	character
##	tuneValue	1	${\tt data.frame}$	list
##	obsLevels	2	-none-	character
##	param	1	-none-	list

confusionMatrix(Mod3)

Best model so far Mod3 with accuracy of 0.83.

```
## Cross-Validated (10 fold, repeated 5 times) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction 0 1
## 0 52.4 12.4
## 1 6.7 28.5
##
## Accuracy (average) : 0.8087
```