DISCRETE RANDOM VARIABLES

Two types Bnomia

Normal Non-bnowial

NORMAL / NON-BINOMIAL

Example: torsing a coin twice

let x = no of heads obtained when a fair con is tossed twice

x can be 0, 1, 2

, x ²	0	١	4	>> Probability	distribution table
×	0	1	2	J	
P(x)	1/4	Υ ₂	7 4		

ai) find mean of x stands for "expected"

= 1 - means that on average, I expect to get 1 head when I toss the coin twice

ii) find variance of X

$$-\left[\left(0 \times \frac{1}{2}\right) + \left(1 \times \frac{1}{2}\right) + \left(4 \times \frac{1}{4}\right)\right] - \left(1\right)^{2}$$

Standard Deviation is the sq. root of the variance						
but what is the variance? Variance is the spread of the data						
ie. 1,2,3 vs. 1,4,8						
						
lower variance higher variance less spread out more spread out						
Standard deviation is a different measure of the same thing (spread of the dat						
Note: Mean of a frequency distribution table						
Example X 1 2 3 4 5 f(x) 16 8 4 2 2						
Mean $\rightarrow E(X) = \Sigma f_X = 1.94$ $X \rightarrow \Sigma f$						
Variance -> $Var(x) : \frac{\sum f_{x^2} - (E(x))^2}{\sum f}$ $= \frac{(16x1) + (8x4) + (4x9) + (2x16) + (2x25)}{32} - (1.937)^2$						
Homework: Do the following questions: 14, 40, 41, 45, 44, 48, 55, 62, 61						