Zadanie: SLO

Słowa

Runda 4, plik źródłowy slo.*, dostępna pamięć 32 MB

21-22.04.2006

Na potrzeby tego zadania słowem nazwiemy niepusty ciąg wielkich liter alfabetu angielskiego. Długością słowa jest liczba zawartych w nim liter. Tak więc $\alpha=\mathtt{ABACBBBA}$ jest przykładem słowa o długości 9. Blokiem w słowie nazywamy maksymalny, spójny podciąg takich samych liter. Powiemy, że słowo jest *t-trudne*, jeśli zawiera t bloków. Nasze przykładowe słowo α jest 6-trudne, ponieważ składa się z bloków $\mathtt{A} \mid \mathtt{B} \mid \mathtt{AA} \mid \mathtt{C} \mid \mathtt{BBB} \mid \mathtt{A}.$

Jeśli dwa słowa mają taką samą długość, to możemy badać, jak bardzo się różnią. Dwa słowa o długośći n są k-niepodobne, jeśli dla dokładnie k indeksów i ($1 \le i \le n$), i-ta litera pierwszego słowa jest inna niż i-ta litera drugiego słowa. Jeśli weźmiemy słowo $\beta = \text{AAAABBBBB}$, to słowa α i β są β -niepodobne.

Dla danego słowa α , chcemy znaleźć niezbyt różniące się od niego słowo β , które nie będzie na dodatek zbyt trudne. Twoim zadaniem będzie stwierdzić na ile łatwe może być słowo β .

Zadanie

Napisz program, który:

- wczyta liczby n, k i słowo α o długości n;
- wyznaczy minimalne t, takie że istnieje słowo β t-trudne, które jest co najwyżej k-niepodobne do wczytanego słowa α (to znaczy, że nie istnieje k' > k takie, że słowa α i β są k'-niepodobne);
- wypisze wynik.

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby całkowite n,k oddzielone pojedynczym odstępem ($1 \le n \le 1\,000,\ 0 \le k \le n$). Oznaczają one odpowiednio: długość słowa α i dopuszczalny stopień niepodobieństwa. W drugim wierszu znajduje się n-literowe słowo α złożone z wielkich liter alfabetu angielskiego.

Wyjście

W jedynym wierszu wyjścia należy wypisać szukaną liczbę t.

Przykład

Dla danych wejściowych:
9 3
ABAACBBBA
poprawnym wynikiem jest: