```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

PREPROCESSING

```
columns = ['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach', 'exang', 'oldpeak', 'slope', 'ca', 'thal', 'targe' df=pd.read_csv('processed.cleveland.data',names=columns)
```

df.head(7)

		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca
	0	63.0	1.0	1.0	145.0	233.0	1.0	2.0	150.0	0.0	2.3	3.0	0.0
	1	67.0	1.0	4.0	160.0	286.0	0.0	2.0	108.0	1.0	1.5	2.0	3.0
	2	67.0	1.0	4.0	120.0	229.0	0.0	2.0	129.0	1.0	2.6	2.0	2.0
	3	37.0	1.0	3.0	130.0	250.0	0.0	0.0	187.0	0.0	3.5	3.0	0.0
	4	41.0	0.0	2.0	130.0	204.0	0.0	2.0	172.0	0.0	1.4	1.0	0.0
	5	56.0	1.0	2.0	120.0	236.0	0.0	0.0	178.0	0.0	0.8	1.0	0.0
	6	62.0	0.0	4.0	140.0	268.0	0.0	2.0	160.0	0.0	3.6	3.0	2.0
	4 4												-

df.dtypes

```
float.64
→ age
               float64
    sex
    ср
               float64
    trestbps
             float64
   chol
               float64
    fbs
              float64
    restecg
              float64
               float64
              float64
   exang
   oldpeak
              float64
              float64
    slope
    ca
               object
   thal
               object
    target
                int64
   dtype: object
```

df.isnull().sum()

```
\overline{\Rightarrow}
   age
    sex
                  0
                  0
    ср
    trestbps
                  0
    chol
                  0
    fbs
                  Ω
    restecq
                  0
    thalach
     exang
                  0
    oldpeak
                  0
    slope
                  0
    ca
    thal
    target
    dtype: int64
```

df['sex'].unique()

```
array([1., 0.])

df['thal'] = pd.to_numeric(df['thal'], errors='coerce')

df['thal'] = df['thal'].fillna(0)

df['thal'] = df['thal'].astype(int)

df['ca'] = pd.to_numeric(df['ca'], errors='coerce')

df['ca'] = df['ca'].fillna(0)

df['ca'] = df['ca'].astype(int)

df['sex'] = df['sex'].astype(int)
```

```
df.dtypes
```

```
→ age
                 float64
    sex
                   int32
                 float64
    ср
    trestbps
                 float64
    cho1
                 float.64
    fbs
                 float64
    restecg
                 float64
    thalach
                 float64
                 float64
    oldpeak
                 float64
    slope
                 float64
                   int32
    ca
    thal
                   int32
    target
                   int64
    dtype: object
```

df.head(10)

df['target'].value_counts()

```
target
0 164
1 55
2 36
3 35
4 13
Name: count, dtype: int64
```

 $\label{lem:def} $$ df['target']=df['target'].apply(lambda x: 1 if x>1 else x) $$$

df['target'].value_counts()

```
target
0 164
1 139
Name: count, dtype: int64
```

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 303 entries, 0 to 302 Data columns (total 14 columns): # Column Non-Null Count Dtype ---0 303 non-null float64 303 non-null sex 303 non-null ср float64 trestbps 303 non-null float64 4 303 non-null float64 chol 303 non-null fbs float64 6 restecg 303 non-null float.64 thalach 303 non-null float64 8 exang 303 non-null float64 9 oldpeak 303 non-null float64 10 slope 303 non-null float64 11 303 non-null int32 thal 303 non-null target 303 non-null dtypes: float64(10), int32(3), int64(1)

memory usage: 29.7 KB

https://colab.research.google.com/drive/1uvDJpvAObz5tZE66pYC6MUEryK7w1XIR#scrollTo=9389ee06-83ba-4c24-9c51-c2fa5580db76&print...

Descriptive Statistics

df.describe()

TASKS

Task 1: Age Distribution Create a histogram to visualize the distribution of ages in the dataset. • Use Matplotlib to create the histogram. • Label the axes and provide a title.

df['age'].value_counts()

```
\overline{2}
   age
     58.0
              19
    57.0
              17
     54.0
              16
     59.0
              14
     52.0
              13
     60.0
     51.0
              12
     56.0
              11
     62.0
              11
     44.0
              11
     64.0
              10
     41.0
              10
    67.0
               9
     63.0
               9
     42.0
               8
     43.0
     45.0
     53.0
     55.0
               8
     61.0
               8
     65.0
               8
               7
     50.0
               7
     66.0
     48.0
     46.0
               7
     47.0
               5
     49.0
     70.0
               4
     68.0
     35.0
               4
     39.0
               3
     69.0
               3
     71.0
     40.0
               3
               2
     34.0
     37.0
               2
     38.0
     29.0
     77.0
     74.0
     76.0
    Name: count, dtype: int64
```

#Age frequency graph
plt.hist(df['age'],bins=20)
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.title("Age Frequency Graph")
plt.show()

_

Start coding or generate with AI.

Task 2: Gender Distribution Create a bar plot to visualize the distribution of gender in the dataset. • Use Seaborn to create the bar plot. • Label the axes and provide a title.

df.groupby('sex').size().reset index(name='count')

→		sex	count
	0	0	97
	1	1	206

sns.barplot(x='sex',y='target', data=df,errorbar=None)

plt.title('Distribution of Sex in Heart Disease Cleveland Dataset')
plt.xlabel('Sex (0 = Female, 1 = Male)')
plt.ylabel('Frequency')

plt.show()

Start coding or generate with AI.

Task 3: Chest Pain Type vs. Heart Disease Create a count plot to visualize the relationship between chest pain type (cp) and the presence of heart disease (target). • Use Seaborn to create the count plot. • Use different colors to differentiate between the presence and absence of heart disease. • Label the axes and provide a title.

```
sns.countplot(data=df,x='cp',hue='target')
plt.xlabel('Chest pain type')
plt.title('Chest Pain Type vs. Heart Disease ')
```

Text(0.5, 1.0, 'Chest Pain Type vs. Heart Disease ')

Start coding or <u>generate</u> with AI.

Task 4: Cholesterol Levels Create a box plot to visualize the distribution of cholesterol levels (chol) for patients with and without heart disease. • Use Seaborn to create the box plot. • Label the axes and provide a title.

-

1 1 1 0	1.0 4.0 4.0 3.0 2.0	160.0 120.0 130.0	233.0 286.0 229.0 250.0 204.0	1.0 0.0 0.0 0.0 0.0	2.0 2.0 2.0 0.0 2.0	150.0 108.0 129.0 187.0 172.0	0.0 1.0 1.0 0.0 0.0	2.3 1.5 2.6 3.5	3.0 2.0 2.0 3.0 1.0
1 1 0 	4.0 3.0 2.0	120.0 130.0 130.0	229.0 250.0	0.0	2.0 0.0	129.0 187.0	1.0	2.6 3.5	2.0
1 0 	3.0	130.0 130.0	250.0	0.0	0.0	187.0	0.0	3.5	3.0
0	2.0	130.0							
			204.0	0.0	2.0	172.0	0.0	1.4	1.0
			•••						
1	1.0	110.0	264.0	0.0	0.0	132.0	0.0	1.2	2.0
1	4.0	144.0	193.0	1.0	0.0	141.0	0.0	3.4	2.0
1	4.0	130.0	131.0	0.0	0.0	115.0	1.0	1.2	2.0
0	2.0	130.0	236.0	0.0	2.0	174.0	0.0	0.0	2.0
1	3.0	138.0	175.0	0.0	0.0	173.0	0.0	0.0	1.0
	0	1 3.0	0 2.0 130.0	0 2.0 130.0 236.0 1 3.0 138.0 175.0	0 2.0 130.0 236.0 0.0 1 3.0 138.0 175.0 0.0	0 2.0 130.0 236.0 0.0 2.0 1 3.0 138.0 175.0 0.0 0.0	0 2.0 130.0 236.0 0.0 2.0 174.0 1 3.0 138.0 175.0 0.0 0.0 173.0	0 2.0 130.0 236.0 0.0 2.0 174.0 0.0 1 3.0 138.0 175.0 0.0 0.0 173.0 0.0	0 2.0 130.0 236.0 0.0 2.0 174.0 0.0 0.0 1 3.0 138.0 175.0 0.0 0.0 173.0 0.0 0.0

```
\verb|sns.boxplot(data=df,y='chol',x='target')|\\
```

```
plt.xlabel('Target')
plt.ylabel('Cholestrol Level')
plt.title("Boxplot: Target vs Cholestrol ")
```

Text(0.5, 1.0, 'Boxplot: Target vs Cholestrol ')

Start coding or $\underline{\text{generate}}$ with AI.

Task 5: Pair Plot Create a pair plot to visualize relationships between multiple variables. • Use Seaborn to create the pair plot. • Include the following variables: age, trestbps, chol, thalach, and target. • Differentiate the points based on the target variable.

```
selected_columns = ['age', 'trestbps', 'chol', 'thalach', 'target']
df_selected = df[selected_columns]
sns.pairplot(df_selected, hue='target', diag_kind='hist')
```


Start coding or generate with AI.

Task 6: Correlation Heatmap Create a heatmap to visualize the correlation between different attributes in the dataset. • Use Seaborn to create the heatmap. • Display the correlation values on the heatmap. • Provide a title.

```
corr_rel=df.corr()
plt.figure(figsize=(12,12))
sns.heatmap(corr_rel,annot=True)
plt.title ('Heatmap')
```


Task 7: Exercise Induced Angina vs. Maximum Heart Rate Create a scatter plot to visualize the relationship between exercise-induced angina (exang) and maximum heart rate (thalach). • Use Matplotlib to create the scatter plot. • Color the points based on the presence of heart disease (target). • Label the axes and provide a title.

```
plt.figure(figsize=(6, 6))
scatter = plt.scatter(df['exang'], df['thalach'], c=df['target'], cmap='coolwarm', alpha=0.5)
```

₹

```
plt.figure(figsize=(6, 6))
scatter = plt.scatter(df['exang'], df['thalach'], c=df['target'], cmap='coolwarm', alpha=0.5)
plt.title('Exercise-Induced Angina vs. Maximum Heart Rate Achieved')
plt.xlabel('Exercise-Induced Angina (0 = No, 1 = Yes)')
plt.ylabel('Maximum Heart Rate Achieved')
```

cbar = plt.colorbar(scatter)

Start coding or generate with AI.