ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА ФИЗИКИ И ИССЛЕДОВАНИЙ ИМ.ЛАНДАУ (ЛФИ)

ЛАБОРАТОРНАЯ РАБОТА ПО ФИЗИКЕ

Работа №1.3.3

"Измерение вязкости воздуха по течению в тонких трубках"

Студента 1 курса группы Б02-106 Шкиндерова Данилы Алексеевича

Аннотация

Цель работы: экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха

В работе используются: система подачи воздуха (компрессор, поводящие трубки); газовый счетчик барабанного типа; спиртовой микроманометр с регулируемым наклоном; набор трубок различного диаметра с выходами для подсоединения микроманометра; секундомер.

Теоретическое введение и схема установки

Рассмотрим движение вязкой жидкости или газа по трубке круглого сечения. При малых скоростях потока движение оказывается ламинарным (слоистым), скорости частиц меняются по радиусу и направлены вдоль оси трубки. С увеличением скорости потока движение становится турбулентным, а слои перемешиваются. При турбулентном движении скорость в каждой точке быстро меняет величину и направление, сохраняется только средняя величина скорости.

Характер движения газа (или жидкости) в трубке определяется безразмерным числом Рейнольдса:

$$Re = \frac{vr\rho}{\eta},$$

где v — скорость потока, r — радиус трубки, ρ — плотность движущейся среды, η — её вязкость. В гладких трубах круглого сечения переход от ламининарного движения к турбулентному происходит при $Re \approx 1000$.

При ламинарном течении объем газа V, протекающий за время t по трубе длиной l, определяется формулой Пуазейля:

$$Qv = \frac{\pi r^4}{8l\eta} (P_1 - P_2). {1}$$

В этой формуле $P_1 - P_2$ — разность давлений в двух выбранных сечениях 1 и 2, расстояние между которыми равно l. Величину Q обычно называют расходом. Формула (1) позволяет определять вязкость газа по его расходу.

Отметим условия, при которых справедлива формула (1). Прежде всего необходимо, чтобы с достаточным запасом выполнялось неравенство Re < 1000. Необходимо также, чтобы при течении не происходило существенного изменения удельного объёма газа (при выводе формулы удельный объём считался постоянным). Для жидкости это предположение выполняется практически всегда, а для газа — лишь в тех случаях, когда перепад давлений вдоль трубки мал по сравнению с самим давлением. В нашем случае давление газа равно атмосферному (10^3 см вод. ст.), а перепад давлений составляет не более 10 см вод. ст., т. е. менее 1% от атмосферного. Формула (1) выводится для участков трубки, на которых закон распределения скоростей газа по сечению не меняется при двидении вдоль потока.

Рис. 1: Формирование потока газа в трубке круглого сечения

При втекании газа в трубку из большого резервуара скорости слоёв вначале постоянны по всему направлению. По мере продвижения газа по трубке картина распределения скоростей меняется, так как сила трения о стенку тормозит прилежащие к ней оси. Характерное для ламинарного течения параболическое распределение скоростей устанавливается на некотором расстоянии a от входа в трубку, которое зависит от радиуса трубки r и числа Рейнольдса по формуле

$$a \approx 0.2r \cdot Re.$$
 (2)

Градиент давления на участке формирования потока оказывается бо́льшим, чем на участке с установившимся ламинарным течением, что позволяет разделить эти участки экспериментально. Формула (2) даёт возможность оценить длину участка формирования.

Рис. 2: Схема установки

Рис. 3: Подробная схема микроманометра

Снятие измерений

- 1. Подготовим установку к работе:
- а. ознакомимся с устройством и характеристиками приборов (газового счетчика и спиртового микроманометра); проведем их предварительную настройку и регулировку согласно техническому описанию установки;
- б. ознакомимся с измерительными шкалами приборов, запишем рабочий диапазон и цену деления; предварительно оценим инструментальные погрешности (по паспортам приборов и/или по цене деления их шкал).
- 2. Проведем предварительный запуск установки и убедимся в ее работоспособности.
- а. Подсоединим манометр к двум соседним выводам на конце одной из трубок. Убедимся, что все отверстия, кроме одного выходного плотно завинчены пробками.
- б. Убедимся, что кран K, соединяющий компрессор с установкой, закрыт. Включим компрессор. Переведем рычажок микроманометра в рабочее положение (+).
- в. Медленно приоткрывая кран К и непрерывно контролируя показания микроманометра, создадим небольшой поток воздуха через трубку
- г. Пронаблюдаем за показаниями приборов в зависимости от интенсивности потока через трубку. Убедимся, что при неизменном положении крана К показания манометра стабильны, а стрелка расходомера вращается равномерно.
- **3.** Измерим параметры окружающей среды: температуру $(21.2^{\circ}C)$, влажность воздуха (70%) и атмосферное давление (756 мм рт.ст.). Запишем диаметры трубок $((5.10\pm0.05)$ мм, (3.95 ± 0.05) мм). Зарисуем схему расположения измерительных отверстий на трубках с указанием расстояний между ними.
- 4. Рассчитаем значение расхода $Q_{\rm \kappa p}\approx 0.1~{\rm n}/c$, при котором число Рейнольдса трубке станет равным критическому $Re_{\rm \kappa p}\approx 10^3$. Для предварительной оценки примем вязкость воздуха равной $2\cdot 10^{-5}~{\rm Ha\cdot c}$, плотность воздуха определим по уравнению идеального газа. В качестве характерной скорости потока используем её среднее значение.
- **5.** Измерим зависимости перепада давления на выбранном участке трубки от расхода газа Q
- а. Постепенно увеличивая расход, проведем измерения так, чтобы на ламинарный режим течения приходилось 7–9 экспериментальных точек.
- б. Получим также 7-9 экспериментальных точек в турбулентном режиме, меняя давление от граничного до максимально возможного. В процессе измерений будем менять шкалу манометра, но в таблице, все пересчитано в изначальную.
- 6. Измерим распределение давления газа вдоль трубки P(x). Установим поток воздуха через трубку, близкий к критическому, но всё ещё сохраняющий ламинарность. Не меняя расход Q, последовательно подсоединим манометр ко всем парам выводов исследуемой трубки и измерим соответстсвующие перепады давлений.
- 7. Повторим все измерения для остальных трубок и запишем результаты в таблицы 1 и 2.
- 8. Измерим зависимость расхода от радиуса трубы при заданном градиенте давления.
- а. Подберем некоторое значение градиента давления (перепада давления на единицу длины трубы) $\Delta P/l = 0.98~\Pi a/c m$, при котором обеспечивается ламинарность потока на всех трубках. Проводя измерения поочередно на каждой трубке, подберем величины расхода, при которых градиент давления равен выбранному.
- б. Подберем некоторое максимальное значение градиента давления $\Delta P/l=6.27~\mathrm{\Pi a/cm}$, достижимое на всех трубках в турбулентном режиме. Аналогично измерим значения Q для каждой трубки, при которых градиент давления равен выбранному. Все измерения запишем в таблицу 3.

Таблица 1: Измерение зависимости $\Delta P(Q)$

Трубка диаметром 3.95 мм										
Q, мл/с	12.52	27.59	40.34	53.75	64.82	75.91	84.54	91.16	98.18	104.38
ΔP , дел	20	40	60	80	100	120	140	160	180	200
	113.25	118.76	124.22	131.30	138.39	164.86	189.35	210.58	235.73	-
	240	280	320	360	400	560	720	880	1080	-
Трубка диаметром 5.10 мм										
Q, мл/с	17.90	33.15	49.75	65.98	80.52	95.97	109.68	121.13	127.29	170.57
ΔP , дел	10	20	30	40	50	60	70	80	90	160
	224.15	274.07	-	-	-	-	-	-	-	-
	280	406	-	-	-	-	-	-	-	-

Таблица 2: Измерение зависимости P(x)

Трубка диаметром $3.95 \; \text{мм, Q} = 82.5 \; \text{мл/c}$							
x, cm	10.9	40.9	80.9	130.9			
Р, Па	82.3	186.2	313.6	450.8			
Трубка диаметром $5.10 \text{ мм, } Q = 105.7 \text{ мл/c}$							
x, cm	10.9	40.9	80.9	130.9			
Р, Па	52.9	94.1	121.5	182.3			

Таблица 3: Измерения при одинаковых градиентах давления

Ламинарное течение						
d, mm	3.00	3.95	5.10			
Q мл/с	11.5	31.0	105.7			
Турбулентное течение						
d, mm	3.00	3.95	5.10			
Q мл/с	57.7	119.0	268.8			

Обработка результатов измерений

1. Построим графики зависимостей $\Delta P(Q)$ от перепада давления (4 мм, 5 мм):

Проанализируем полученные результаты:

- а. Для каждой трубки по графику (по пересечению линий для ламинарного и турбулентного течений) определим $Q_{\rm KP}$: 103 мл/с и 144 мл/с соответственно
 - б. Убедимся, что зависимости на ламинарном участке линейные
- в. По МНК найдем угловые коэффициенты: (1.65 ± 0.06) дел $\cdot c/$ мл и (0.666 ± 0.013) дел $\cdot c/$ мл соответсвенно. Используя формулу Пуазейля найдем коэффициенты вязкости:

$$k = \frac{\Delta P}{Q} = \frac{8\eta L}{\pi R^4} \to \eta = k \cdot \frac{\pi R^4}{8L}$$

Значит: $3.867 \cdot 10^{-5} \ \Pi a \cdot c$ и $4.338 \cdot 10^{-5} \ \Pi a \cdot c$

- г. Рассчитаем критическое число Рейнольдса: 1030 и 994. Сходится с общепринятым значением $\approx 10^3$.
- д. Рассчитаем погрешности коэффициентов вязкости. Поскольку расход воды и давление измерялись с довольно большой точностью (в большинстве случаев $\varepsilon < 1\%$), случайная погрешность k равна полной. Тогда:

$$\sigma_{\eta} = \eta \sqrt{\varepsilon_k^2 + 16\varepsilon_R^2 + \varepsilon_L^2}$$

В итоге, коэффициенты вязкости равны: $(3.87\pm0.24)\cdot10^{-5}$ Па·с и $(4.34\pm0.19)\cdot10^{-5}$ Па·с. Как видно, они сходятся между собой в пределах погрешности, но примерно в два раза отличаются от табличного значения.

2. Построим графики P(x):

Как видно, определить, где поток устанавливается довольно сложно, поскольку все точки ложатся на прямую, а расстояния между ними большие. Но мы можем получить теоретическую оценку по формуле:

$$l_{ ext{vct}} = 0.2 \cdot r \cdot Re \approx 40$$
 см и 50 см соответственно

3. По результатам измерений п. 8 убедимся, что расход в ламинарном режиме пропорционален четвертой степени радиуса трубы $Q \sim R^4$, и проверим, выполняется ли зависимость расхода от радиуса $Q \sim R^{2.5}$ в турбулентном режиме.

Изобразим результаты на графике в двойном логарифмическом масштабе. Наклон полученной прямой будет соответствовать показателю степени зависимости.

Получаем коэффициенты: (4.2 ± 0.3) для ламинарного течения и (2.90 ± 0.16) для турбулентного. Как видно, первое значение сходится с теоретическим в пределах погрешности, а второе довольно близко к теоретическому.

Вывод

В данной лабораторной работе мы экспериментально подтвердили наличие ламинарного и турбулентного режимов течения воздуха и определили критическое число Рейнольдса, совпавшее с верным значением.

Также был измерен коэффициент вязкости, но он не сошелся с табличным значением.

Ещё был исследован профиль давления, который, как и ожидалось, оказался линейным, и вычислены показатели степеней в формуле Пуазейля и формуле для турбулентного течения, которые также с неплохой точностью сошлись с теорией.