Important Formulas

- ightharpoonup Distance $S = v_{av} \times t$
- Average acceleration

 $a_{av} = rac{v_f - v_i}{t}$ Average acceleration = $\frac{Change \ in \ velocity}{\pi}$

First Equation of Motion

$$v_f = v_i + at$$

Second Equation of Motion

$$S = v_i t + \frac{1}{2} a t^2$$

Third Equation of Motion

$$2aS = v_f^2 - v_i^2$$

- To concert ms^{-1} to kmh^{-1} multiply speed with
- \triangleright To concert kmh^{-1} to ms^{-1} multiply speed with 36
- > First Equation of Motion Body Moving Under Gravity $v_f = v_i + gt$
- Second Equation of Motion Body Moving Under Gravity $h = v_i t + \frac{1}{2} g t^2$
- > Third Equation of Motion Body Moving Under Gravity $2gh = v_f^2 - v_i^2$
- \triangleright For bodies **falling down** freely value of g is **positive** and $v_i = 0$
- For bodies **moving upward** value of **g** is **negative** and $v_f = 0$

2.1 Draw the representative lines of the following vectors:

- (a) A velocity of $400 \, ms^{-1}$ making an angle of 60° with x-axis.
- (b) A force of 50 N making an angle of 120° with x-axis.

Solution

- (a) A velocity of $400 \, ms^{-1}$ making an angle of 60° with x-axis.
- (i) Draw horizontal and vertical lines to represent *x-axis* y-axis shown in figure (a).
- (ii) Select a suitable If $100 \text{ ms}^{-1} = 1 \text{ cm}$ then $400 \, ms^{-1} = 4 \, cm$
- (iii) Draw 4 cm line 0Qat angle of 60° with positive *x-axis*. The OQ is vector \vec{V} .
- 400 m/s = 4 cm0 (a)
- **(b)** A velocity of 50 N making an angle of 120° with xaxis.

- (i) Draw horizontal and vertical lines to represent xaxis and y-axis as shown in figure (b).
- (ii) Select a suitable scale If 10 N = 1 cmthen 50N = 5 cm
- (iii) Draw 5 cm line OQ at angle of

 120° with x-axis. The OQ is vector \vec{F} .

2.2 A car is moving with an average speed of 72 kmh^{-1} . How much time will it take to cover a distance of 360 km?

Given Data

Average speed of
$$car = v_{av} = 72 \text{ kmh}^{-1}$$

Distance = $S = 360 \text{ km}$

To Find

$$Time = t = ?$$

Solution

By using formula of distance

$$S = v_{av} \times t$$

$$360 = 72 \times t$$

$$\frac{360}{72} = t$$

$$5 = t$$

$$t = 5 hr$$

2.3 A truck starts from rest. It reaches a velocity of $90 \ kmh^{-1}$ 50 seconds. Find acceleration.

Given Data

Initial velocity of truck =
$$v_i = 0 \text{ kmh}^{-1}$$

Final velocity = $v_f = 90 \text{ kmh}^{-1}$
 $v_f = 90 \times \frac{10}{36} \text{ ms}^{-1}$
 $v_f = 25 \text{ ms}^{-1}$
Time = $t = 50 \text{ s}$

To Find

Average acceleration =
$$a_{av}$$
 = ?

Solution

By using formula of average acceleration

$$a_{av} = \frac{v_f - v_i}{t}$$

$$a_{av} = \frac{25 - 0}{50}$$

$$a_{av} = \frac{25}{50}$$

$$a_{av} = \mathbf{0.5} \, \mathbf{ms}^{-2}$$

2.4 A car passes a green traffic signal while moving with a velocity of $5 ms^{-1}$. It then accelerates to $1.5 ms^{-2}$. What is the velocity of car after 5 seconds? **Given Data**

Initial velocity of
$$car = v_i = 5 ms^{-1}$$

 $Acceleration = a = 1.5 ms^{-2}$
 $Time = t = 5 s$

To Find

Final Velocity =
$$v_f$$
 = ?

Solution

By using first equation of motion

$$v_f = v_i + at$$

 $v_f = 5 + (1.5)(5)$
 $v_f = 5 + 7.5$
 $v_f = 12.5 ms^{-1}$

2.5 A motorcycle initially travelling at $18 \, kmh^{-1}$ accelerates at constant rate of $2 \, ms^{-2}$. How far will the motorcycle go in $10 \, seconds$?

Given Data

Initial velocity =
$$v_i$$
 = 18 kmh^{-1}
 v_i = $18 \times \frac{10}{36} \text{ ms}^{-1}$
 v_i = 5 ms^{-1}
Acceleration = a = 2 ms^{-2}
 $Time$ = t = 10 s

To Find

Distance moved = S = ?

Solution

By using second equation of motion

$$S = v_i t + \frac{1}{2}at^2$$

$$S = (5)(10) + \frac{1}{2}(2)(10)^2$$

$$S = 50 + \frac{1}{2}(2)(100)$$

$$S = 50 + 100$$

$$S = 150 m$$

2.6 A wagon is moving on the road with a velocity of $54 \ kmh^{-1}$. Brakes are applied suddenly. The wagon covers a distance of $25 \ m$ before stopping. Determine the acceleration of the wagon.

Given Data

Initial velocity of wagon =
$$v_i = 54 \text{ kmh}^{-1}$$

 $v_i = 54 \times \frac{10}{36} \text{ ms}^{-1}$
 $v_i = 15 \text{ ms}^{-1}$
Distance coverd = $S = 25 \text{ m}$
Final velocity = $v_f = 0 \text{ ms}^{-1}$

To Find

$$Acceleration = a = ?$$

Solution

By using third equation of motion

$$2aS = v_f^2 - v_i^2$$

$$2(a)(25) = (0)^2 - (15)^2$$

$$50(a) = 0 - 225$$

$$a = \frac{-225}{50}$$

$$a = -4.5 \text{ ms}^{-2}$$

2.7 A stone is dropped from a height of $45\ m$. How long will it take to reach the ground? What will be its velocity just before hitting the ground? Given Data

 $Height = h = 45 \ m$ $Initial \ velocity = v_i = 0 \ ms^{-1}$ $Acceleration \ due \ to \ gravity = g = 10 \ ms^{-2}$ $Time = t = 5 \ s$

To Find

Time to reach ground = t = ?Velocity just before hitting ground = $v_f = ?$

Solution

By using second equation of motion body moving under gravity

$$h = v_i t + \frac{1}{2} g t^2$$

$$45 = (0)(t) + \frac{1}{2} (10)(t)^2$$

$$45 = 0 + 5(t)^2$$

$$45 = 5(t)^2$$

$$\frac{45}{5} = t^2$$

$$9 = t^2$$

$$\sqrt{9} = \sqrt{t^2}$$

$$3 = t$$

$$t = 3 s$$

Now for final velocity by using first equation of motion under gravity

$$v_f = v_i + gt$$

 $v_f = 0 + (10)(3)$
 $v_f = 0 + 30$
 $v_f = 30 \text{ ms}^{-1}$

2.8 A car travels $10 \ km$ with an average velocity of $20 \ ms^{-1}$. Then it travels in the same direction through a diversion at an average velocity of $4 \ ms^{-1}$ for the next $0.8 \ km$. Determine the average velocity of the car for the total journey.

Given Data

Distance traveld =
$$S_1 = 10 \text{ km}$$

 $S_1 = 10 \times 10^3 \text{ m}$
 $S_1 = 10000 \text{ m}$
Average velocity = $v_1 = 20 \text{ ms}^{-1}$
Next distance traveld = $S_2 = 0.8 \text{ km}$
 $S_2 = 0.8 \times 10^3 \text{ m}$
 $S_2 = 800 \text{ m}$
Average velocity = $v_2 = 4 \text{ ms}^{-1}$

To Find

Average velocity for total journey = v_{av} = ? Solution

For S_1 time taken by using formula S = vt

$$t_1 = \frac{S_1}{v_1}$$

$$t_1 = \frac{10000}{20}$$

$$t_1 = 500 \, s$$

For S_2 time taken

$$t_2 = \frac{S_2}{v_2}$$

$$t_2 = \frac{800}{4}$$

$$t_2 = 200 \text{ s}$$

$$Total \ time = t = t_1 + t_2$$

$$t = 500 + 200$$

$$t = 700 \text{ s}$$

$$Total \ distance = S = S_1 + S_2$$

$$S = 10000 + 800$$

Prepared By: M. Tayyab, SSE(Math) Govt Christian High School, Daska. Website: https://hira-science-academy.github.io

$$S = 10800 m$$

Now by using formula of distance

$$S = v_{av} \times t$$
 $10800 = v_{av} \times 700$
 $\frac{10800}{700} = v_{av}$
 $15.4 = v_{av}$
 $v_{av} = 15.4 \text{ ms}^{-1}$

2.9 A ball is dropped from the top of a tower. The ball reaches the ground in 5 seconds. Find the height of the tower and the velocity of the ball with which it strikes the ground.

Given Data

$$Time \ taken = t = 5 \ s$$

$$Initial \ velocity = v_i = 0 \ ms^{-1}$$

$$Acceleration \ due \ to \ gravity = g = 10 \ ms^{-2}$$

To Find

Height of tower =
$$h = ?$$

Final velocity = $v_f = ?$

Solution

By using second equation of motion body moving under gravity

$$h = v_i t + \frac{1}{2} g t^2$$

$$h = (0)(5) + \frac{1}{2} (10)(5)^2$$

$$h = 0 + (5)(25)$$

$$h = 125 m$$

Now for final velocity by using first equation of motion under gravity

$$v_f = v_i + gt$$

 $v_f = 0 + (10)(5)$
 $v_f = 50 \text{ ms}^{-1}$

2.10 A cricket ball is hit so that it travels straight up in the air. An observer notes that it took $3\ seconds$ to reach the highest point. What was the initial velocity of the ball? If the ball was hit $1\ m$ above the ground, how high did it rise from the ground?

Given Data

Time to reach the highest point =
$$t = 3 s$$

Final velocity = $v_f = 0 m s^{-1}$
Acceleration due to gravity = $g = -10 m s^{-2}$

To Find

Initial velocity =
$$v_i$$
 = ?
Height of ball 1 m above the ground = h_t = ?

Solution

For initial velocity by using first equation of motion under gravity

$$v_f = v_i + gt$$

 $0 = v_i + (-10)(3)$
 $0 = v_i - 30$
 $30 = v_i$
 $v_i = 30 \text{ ms}^{-1}$

Now by using second equation of motion body moving under gravity

$$h = v_i t + \frac{1}{2}gt^2$$

$$h = (30)(3) + \frac{1}{2}(-10)(3)^{2}$$
 $h = 90 + (-5)(9)$
 $h = 90 - 45$
 $h = 45 m$
Required total height = $h_{t} = h_{gain} + h_{initial}$
 $h_{t} = 45 m + 1 m$
 $h_{t} = 46 m$

Mobile: 03338114798

Page 3 of 3