خلاصه فیزیک هالیدی - فصل سوم:بردارها

نرده ایهای و بردارها: نرده ایها ،مانند دما، فقط دارای اندازه اند. آنها با یک عدد و یک یکا (مثلا $0^{\circ}C$) مشخص می شوند و از قاعده های حساب و جبر معمولی پیروی می کنند. بردارها ، مانند جا به جایی ، هم دارای اندازه و هم جهت هستند (مثلا 5m) و از قاعده های جبر برداری پیروی می کنند.

جمع بردارها به روش هندسی: دو بردار \vec{b} و را می توان با رسم آنها در یک مقیاس مشترک و قرار دادن ابتدای یکی بر انتهای دیگری به طور هندسی با هم جمع کرد. برداری که ابتدای بردار اولی را به انتهای بردار دوم وصل می کند بردار مجموع \vec{s} است. برای تفریق \vec{b} از \vec{b} جهت \vec{b} را وارون می کنیم تا \vec{b} - به دست آید؛آنگاه \vec{b} - را با \vec{b} جمع می کنیم. جمع برداری جا به جایی پذیر است و از قانون توزیع پذیری پیروی می کند.

مؤلفه های یک بردار: مؤلفه های(نرده ای) a_{y} و a_{y} هر بردار دو بعدی \vec{a} بارسم خط های عمود از سر \vec{a} بر محور های مختصات به دست می آیند.این مؤلفه ها چنین داده می شوند :

$$a_{\rm x} = a \cos \theta$$
 $a_{\rm y} = a \sin \theta$

که در آن θ زاویهٔ بین جهت مثبت محور x و جهت \vec{a} است. علامت جبری یک مؤلفه،معرف جهت آن در امتداد محور مربوط به آن است. با معلوم بودن مؤلفه ها ،بزرگی و سمتگیری بردار \vec{a} از رایطه های زیر بدست می آیند:

$$a = \sqrt{a_x^2 + a_y^2} \cdot tan\theta = \frac{a_y}{a_x}$$

$$\vec{a} = \hat{a_{xi}} + \hat{a_{yj}} + \hat{a_{zk}}$$

که در آن a_z و a_z مؤلفه های بردار \vec{a} و a_z و a_z مؤلفه های نرده ای آن هستند.

جمع برداری بر حسب مؤلفه ها: برای جمع کردن بردارها به صورت مؤلفه ای ، از قاعده های زیر استفاده می کنیم:

$$r_x = a_x + b_x$$
 $r_y = a_y + b_y$ $r_z = a_z + b_z$

که در اینجا \overrightarrow{r} و \overrightarrow{d} بردار هایی هستند که باید با هم جمع شوند و \overrightarrow{r} بردار مجموع است.

ضرب یک نرده ای در یک بردار: ضرب نرده ای \mathbf{S} در بردار \vec{v} ، بردار جدیدی است که بزرگی آن برابر با \mathbf{v} و جهت آن در صورتی که \mathbf{S} مثبت باشد ، همان جهت \vec{v} و در صورتی که \mathbf{S} منفی باشد مخالف جهت \vec{v} است. برای تقسیم \vec{v} بر \mathbf{S} را در \mathbf{v} ضرب می کنیم.

ضرب نرده ای یا نقطه ای: دو بردار \vec{a} و \vec{d} که به صورت \vec{a} . \vec{b} نوشته می شود،یک کمیت نرده ای است که با رابطهٔ زیر داده می شود:

$$\vec{a} \cdot \vec{b} = ab \cos \emptyset$$

که در آن \emptyset زاویه \mathcal{D} میان بردارهای \overrightarrow{d} و آست . ضرب نرده عبارت است از ضرب بزرگی یک بردار در مؤلفه نرده ای بردار دوم در امتداد راستای بردار اول برحسب بردار های یکه داریم:

$$\vec{a} \cdot \vec{b} = (a_{x\hat{i}} + a_{y\hat{j}} + a_{z\hat{k}}) \cdot (b_{x\hat{i}} + b_{y\hat{j}} + b_{z\hat{k}})$$

که می شود آن را بنابر قانون توزیع پذیری بسط داد توجه کنید که $ec{a}.ec{b}=ec{b}.ec{a}$ است.

ضرب برداری یا ضربدری: دو بردار \vec{a} و \vec{d} به صورت $\vec{a} \times \vec{b}$ نوشته می شود و حاصل آن بردار \vec{c} است که بزرگی آن با رابطهٔ زیر داده می شود:

 $c = ab \sin \emptyset$

 $\ddot{\phi}$ زاویهٔ کوچکتر بین جهتهای بردارهای \ddot{a} و \ddot{d} است.راستای \ddot{c} بر صفحهٔ \ddot{b} و \ddot{d} عمود است.توجه کنید که \ddot{a} خنید که \ddot{a} بر حسب بردارهای یکه داریم:

$$\vec{a} \times \vec{b} = (a_{x\hat{i}} + a_{y\hat{j}} + a_{z\hat{k}}) \times (b_{x\hat{i}} + b_{y\hat{j}} + b_{z\hat{k}})$$

که می توان آن را با قانون توزیع پذیری بسط داد.