Inferencia Estadística Tema 1: Introduc<u>ción</u>

C. Carleos, N.Corral, M.T. López

Departamento de Estadística Universidad de Oviedo

23 de septiembre de 2021

Inferencia Estadística

Objetivo: extraer conclusiones sobre el comportamiento en la población de una o varias variables con la información suministrada por una muestra.

- No se conocen los parámetros, o valores poblacionales, o aspectos importantes para el comportamiento de variables (p, μ , σ , independencia de dos variables)
- Dispone de la información suministrada por una muestra (X_1, \dots, X_n) .

Probabilidad

A toda característica de la población(variable) se le asocia el conjunto de posibles resultados o espacio muestral, Ω , y una colección de sucesos $\mathcal A$ con estructura de σ -álgebra. Sobre estos sucesos se define la probabilidad como una medida, entre 0 y 1, de la posibilidad de que ocurra un suceso

$$P:\mathcal{A}\longrightarrow [0,1]$$

Axiomas de Kolmogorov

- $P(A) \ge 0$ $A \in A$
- $P(\Omega) = 1$
- Si A_1, A_2, \ldots son sucesos mutuamente excluyentes (incompatibles dos a dos, o de intersección vacía), entonces: $P(A_1 \cup A_2 \cup \cdots) = \sum P(A_i)$

Probabilidad

Propiedades que se deducen de los axiomas:

- $P(\varnothing) = 0$
- Si $A \subseteq B$ entonces $P(A) \le P(B)$
- $P(A) \leq 1$
- $P(A^c) = 1 P(A)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Probabilidad

- Independencia Dados dos sucesos $A, B \in \mathcal{A}$ se dice que son independientes $siP(A \cap B) = P(A)P(B)$.
- **Probabilidad condicionada** Dados dos sucesos $A, B \in \mathcal{A}$ con P(B) > 0 entonces: $P(A|B) = P(A \cap B)/P(B)$ ().
- Teorema de la probabilidad total: Sean $A_1, A_2, ..., A_n$ una partición del espacio muestral, tal que $P(A_i) > 0$ y sea B un suceso cualquiera con probabilidades condicionadas $P(B|A_i)$, entonces: $P(B) = \sum_{i=1}^n P(B|A_i)P(A_i)$
- Teorema de Bayes Sea $\{A_1, A_2, ..., A_n\}$ una partición del espacio muestral, tal que $P(A_i) > 0$. Sea B un suceso con P(B) > 0 con probabilidades condicionadas $P(B|A_i)$, entonces: $P(A_i|B) = \sum_{i=1}^n \frac{P(B|A_i)P(A_i)}{P(B)} = \frac{P(B|A_i)P(A_i)}{\sum_{i=1}^n P(B|A_i)P(A_i)}$

Variable aleatoria

Una variable aleatoria (v.a.) X es una cuantificación de los resultados de un experimento aleatorio para trabajar con modelos probabilísticos sobre \mathbb{R} , $X:\Omega\to\mathbb{R}$

La definición formal involucra concepto de medibilidad: dado un espacio de probabilidad (Ω, \mathcal{A}, P) X es una variable aleatoria si es una aplicación medible $(X^{-1}(B) \in \mathcal{A}, B \in \mathcal{B} \text{ con } \mathcal{B}$ la σ -álgebra de Borel en \mathbb{R})

La variable aleatoria permite el "paso" de la probabilidad, P, del espacio inicial a otra probabilidad sobre subconjuntos de R, \mathcal{B} , llamada probabilidad inducida: $P(B) = P(X^{-1}(B)), \quad B \in \mathcal{B}$ El comportamiento de la probabilidad inducida por X se puede caracterizar por su función de distribución $F: \mathbb{R} \to [0,1]$, definida por

$$F(a) = P(\omega/X(\omega) \le a), \ a \in \mathbb{R}$$

Las variables aleatorias pueden ser discretas o continuas

Función de distribución

Propiedades:

- $F(-\infty) = 0$.
- $F(\infty) = 1$.
- F es continua por la derecha.
- F es no decreciente.
- $P(X = a) = F(a) F(a^{-})$.

Según la forma de la función de distribución las variables aleatorias pueden ser discretas (función de distribución escalonada), continuas (función de distribución absolutamente continua) y mixtas.

Variable aleatoria discreta

Toma un número finito o numerable de valores x_i con probabilidades $p_i > 0$ verificando que $\sum p_i = 1$ (distribución de probabilidad)

- Su función de distribución es $F(a) = \sum_{x_i \le a} p(x_i)$
- Su esperanza, si existe, es $\mu = E(X) = \sum_i x_i p(x_i)$ (representa un centro de la distribución)
- Su varianza, si existe, es $\sigma^2 = Var(X) = \sum_i (x_i \mu)^2 p(x_i)$ (mide dispersión respecto a la media)

Variable aleatoria continua

Puede tomar valores en un continuo, intervalo, queda caracterizada por su función de densidad $f(x) \ge 0$ y con $\int_R f(x) dx = 1$

- Su función de distribución es $F(a) = \int_{-\infty}^{a} f(x) dx$
- Su esperanza, si existe, es $\mu = E(X) = \int_R x f(x) dx$
- Su varianza, si existe, es $\sigma^2 = Var(X) = \int_{B} (x \mu)^2 f(x) dx = E(X^2) E^2(X)$

Distribuciones discretas

- Bernoulli, B(p), $\mu = p, \ \sigma^2 = p(1 p) = pq$
- Binomial, B(n,p), $\mu = np$, $\sigma^2 = np(1-p) = npq$
- Geométrica, G(p) (X=1,2,....) $\mu = 1/p, \ \sigma^2 = q/p^2$
- Hipergeométrica, H(N,D,n); $\mu = nD/N, \ \sigma^2 = nD/N (N-D)/N (N-n)/(N-1)$
- Poisson, $P(\lambda)$, $\mu = \lambda$, $\sigma^2 = \lambda$

Distribuciones continuas

- Uniforme, U(a,b), $\mu = (a+b)/2$, $\sigma^2 = (b-a)^2/12$
- Exponencial, E(a), $\mu = 1/a$, $\sigma^2 = 1/a^2$
- Gamma, $\gamma(p, a)$, $\mu = p/a$, $\sigma^2 = p/a^2$
- Normal, $N(\mu, \sigma)$
- Beta, $\beta(p,q)$
- Asociadas al muestreo en poblaciones normales: chi-cuadrado, t y F

Muestra aleatoria simple

Se obtiene por repetidas observaciones independientes y en las mismas condiciones de una variable aleatoria (v.a.) X El vector aleatorio (X_1, \ldots, X_n) es una **muestra aleatoria simple** de tamaño n de X si todas sus componentes son independientes y con la misma distribución

El comportamiento de la variable aleatoria determina el comportamiento de la muestra:

$$P(x_1,...,x_n) = \prod_i P_X(x_i)$$
 (caso discreto)
 $f(x_1,...,x_n) = \prod_i f_X(x_i)$ (caso continuo)

Estadístico

Un estadístico es cualquier aplicación medible del conjunto de posibles resultados muestrales en \mathbb{R}^p

$$T: (X_1, \ldots, X_n) \longrightarrow \mathbb{R}^p, (\text{ en general } p \ll n).$$

- Con el manejo de estadísticos se pretende simplificar la información contenida en la muestra.
- Los estadísticos permiten trasladar la distribución de probabilidades de \mathbb{R}^n al espacio \mathbb{R}^p ($p \ll n$).
- Estadísticos mas utilizados: $\overline{X}, \widehat{S}^2$

Cambio de variable

Teorema (de cambio de variable): Sea f(x) la función de densidad de una v. a. X continua con soporte S = (a, b) y g una función diferenciable en S con derivada distinta de cero (es decir inyectiva) entonces la función de densidad de la variable Y = g(X) viene dada por:

$$f_Y(y) = f(g^{-1}(y))|(g^{-1})'(y)| \quad y \in g(a,b)$$

El teorema puede extenderse al caso de una función g no inyectiva en S pero tal que exista una partición finta o numerable del soporte $S = \bigcup_{i \in I} A_i$ donde g verifique esas condiciones en cada A_i . En este caso, la función de densidad de Y = g(X) es:

$$f_Y(y) = \sum_{i \in I} f_X(g_i^{-1}(y)) |(g_i^{-1})'(y)| \quad y \in g(a, b)$$

Transformaciones de variable

- Sea $X \equiv U(0,1)$ e $Y = -log(X) \Leftrightarrow Y \equiv exp(1)$.
- Sea $X \equiv N(0,1)$ e $Y = X^2$, considerando las funciones $g_1(x) = x^2$, x > 0 y $g_2(x) = x^2$, $x \le 0$, se tiene

$$f_Y(y) = \frac{f_{N(0,1)}(\sqrt{y}) + f_{N(0,1)}(-\sqrt{y})}{2\sqrt{y}} \quad y \in (0,\infty)$$

$$Y \equiv \gamma(\frac{1}{2}, \frac{1}{2}) \equiv \chi_1^2.$$

- variable tipificada de X, v.a. con media, μ y varianza, σ^2 finitas es $Z_x = \frac{X \mu}{\sigma}$ es adimensional.
- Si X es v.a. absolutamente continua con función de distribución F(x) ⇒ Y=F(X) tiene distribución U(0,1).

Momentos muestrales

Dada una muestra aleatoria simple (X_1, \ldots, X_n) de una variable aleatoria X se define los estadísticos:

1 In a media muestral de orden r como $\overline{X^r} = \sum X_i^r/n$ **In a media muestral** es el momento muestral de orden 1:

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

2 momento muestral centrado de orden r como $(X - \overline{X})^r = \sum (X_i - \overline{X})^r/n$ la varianza muestral es el momento muestral centrado de orden 2

$$S^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n}$$

Estadístico \overline{X}

El estadístico **media muestral** $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$ verifica

- ② Si $X \equiv N(\mu, \sigma)$ entonces $\overline{X} \equiv N(\mu, \sigma/\sqrt{n})$.
- 3 X no normal se verifica el TCL: $\frac{\overline{X} \mu}{\sigma/\sqrt{n}} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$
- $\bullet \ \, \text{Otros resultados as intóticos:} \ \, \overline{X} \overset{P}{\to} \mu; \quad \overline{X} \overset{c.s.}{\longrightarrow} \mu$

Estadístico \hat{S}^2

El estadístico cuasivarianza muestral

$$\widehat{S}^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n-1}$$

verifica

- $(\widehat{S}^2) = \sigma^2.$
- ② Si $X \equiv N(\mu, \sigma)$ entonces $\frac{(n-1)\widehat{S}^2}{\sigma^2} \equiv \chi^2_{n-1} = \gamma((n-1)/2, 1/2)$.
- **3** Si $X \equiv N(\mu, \sigma)$ entonces \bar{X} y S^2 (o \hat{S}^2) son independientes.

Otros estadísticos importantes

- coeficiente de asimetría (de Fisher) $A_F = \sum_{i=1}^n \left(\frac{X_i \overline{X}}{S}\right)^3$
- **2** coeficiente de curtosis $K = \sum_{i=1}^{n} \left(\frac{X_i \overline{X}}{S} \right)^4 3$.