

Reminder of MOOC

Software security based on Isolation

Agenda

- What is isolation? Why is it important?
- What means of isolation we have today on STM32?
- What is Trustzone? How it works? What are the benefits over current solution?
- Show system integration of TrustZone on STM32L5
- Introduce development flow. CMSIS support of TrustZone

Isolate runtime environments

- Separate responsibilities
- Hardware based isolation
- Restrict access to code and data

Various means of isolation

Various means of isolation

Secure flash

TrustZone

Cortex M33 and TrustZone Key features

- New processor state
- Real time
 - Low interrupt latency
 - Low state switching overhead
 - Deterministic

Non-Secure State

Development flow

- Independent development of Secure and Non-Secure
- Secure project exports legal API via Secure gateway library
- Non-Secure project is linked against Secure gateway library
- · Rmk: Build order

Isolation Features by STM32 Series

STM32 Series	Isolation features				
	Secure mem/ HDP	MPU	Firewall	Trustzone	Arm Cortex®
STM32 F0					МО
STM32 F1					М3
STM32 F2					М3
STM32 F3					M4
STM32 F4					M4
STM32 F7					M7
STM32 L0					M0+
STM32 L1					М3
STM32 L4					M4
STM32 L5					M33
STM32 H7					M7/M4
STM32 G0					M0+
STM32 G4					M4
STM32 WB					M4/M0+

Conclusion

- Isolation means on STM32 families
 - MPU
 - Firewall
 - Secure Memory
 - TrustZone

- Security Part 3: STM32 security features MOOC (link)
- How to enable TrustZone® and start a project with STM32L5 (Youtube <u>link</u>)

