UNCLASSIFIED

AD NUMBER AD868367 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 17 APR 1970. Other requests shall be referred to Naval Avionics Faciity, Indianapolis, IN 46218. **AUTHORITY** NAFI ltr, 10 May 1972

TR-1554 17 APRIL 1970

NAFI publication

APPLIED RESEARCH DEPT.

RAPID CALCULATION TECHNIQUES FOR RADAR PERFORMANCE PREDICTIONS

THIS DOCUMENT IS SUBJECT TO SPECIAL EXPORT CONTROLS AND EACH TRANSMITTAL TO FOREIGN GOVERNMENTS OR FOREIGN NATIONALS MAY BE MADE ONLY WITH PRIOR APPROVAL OF NAVAL AVIONICS FACILITY, INDIANAPOLIS, INDIANA

46218

INDIANAPOLIS, INDIANA 46218

Reproduced by the CLEARINGHOUSE for Foderal Scientific & Technical Information Springfield Va. 22151

34

NAFI publication

APPLIED RESEARCH DEPT.

RAPID CALCULATION TECHNIQUES FOR RADAR PERFORMANCE PREDICTIONS

THIS DOCUMENT IS SUBJECT TO SPECIAL EXPORT CONTROLS AND EACH TRANSMITTAL TO FOREIGN GOVERNMENTS OR FOREIGN NATIONALS MAY BE MADE ONLY WITH PRIOR APPROVAL OF NAVAL AVIONICS FACILITY. INDIANAPOLIS. INDIANA

46218

NAVAL AVIONICS FACILITY

INDIANAPOLIS, INDIANA 46218

Figure 1, and the Ho CLEARING HOUNT that technical Secretaria, N. A. Standard Household Secretaria No. 2010.

NAFI NR-1554

ABSTRACT

This report provides a work form and rationale to perform hand calculations of the radar range equation. The techniques described cover the conventional geometric aspects of the radar equations as well as the effects of rain clutter, rain attenuation, atmospheric attenuation, sea and land clutter, and pulse integration for both conventional pulse and chirp radar. The report is designed be complete within itself, requiring no further texts, tables, references or slide rules.

Prepared by

Don L. GRAYSON JON

THE THE PROPERTY OF THE PROPER

Approved by RONALD R. Janings, mief cf Control Systems Branch

MARASCO, Manager of Experimental Research Division

TABLE OF CONTENTS

I.	MI	iodu(TION		•	• •	•	•	•	•	•	•	•	•	•	•	•	¢	•	•	•	•	•	•	•	•	0	1
II.	CAL	CULA	rions		•		•	•	•	•	•	•	•	•		•	•	•	•		•	•	ş	•	•	•	•	3
	Ā.	Max	imm culat	Ran	ge	Ee	tin	mt	io	n	•	•		٠	٠	•	•	¢	•	•		•	•		•	•		3
	В.	Cal	rulat	ion	0	2 8	igi	າຄິ	Lt	20	No	i	e	P.	عندا	; (72 1	1 t 1	.e 1	•	•	•	,	٠	•	•	•	6
APPE	NDEX	A:	SIM	LI	IE	D F	AD	LR.	DA	LTA	1	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	A-3
afpe	NDIX	B :	MATE	EM	T	CAI	DI	R	[V.	T	EO N	ī.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	B-1
A TO/D/IP	ATTIVE	σ.	LEA TON	190	\ DAG	170	A CTI	P 1	PV 1	w	OT E	3																St_1

I. INTRODUCTION

In the evaluation of the detection performance of a radar system, it is necessary to use the radar equation in one of its many forms. Unfortunately the mixture of units and the calculation of clutter effects defy convenient manipulation. However, with certain simplifying assumptions and limitations, one can develop equations which can be used conveniently by hand. The calculation techniques in this report cover the effects of rain clutter, rain attenuation, atmospheric attenuation, sea clutter, land clutter and palse integration as well as the conventional geometric aspects.

The limiting assumptions are: the depression (or elevation) angle must be less than 10°, the slant range must be greater than 3 nautical miles, and the radar and target altitude should be less than 10,000 feet. These limits are imposed by certain geometric simplifications. Fortunately, the majority of radar applications fall well within these limitations.

The goal of this report is to allow an evaluation to be made without further reference to any aids, including charts, tables or slide rule. These techniques were originally developed at NAFI in order to more fully assess a radar design during meetings and conferences.

Other, more general techniques, as well as a more complete discussion of many of the parameters and their effect on a radar system can be found in the following NAFI reports: "Simplified Radar Calculation Techniques" NAFI TR-917, and "Computer Aided Radar Design" NAFI TR-1261.

Most of the calculations in this report use decibels to facilitate division, multiplication and root extractions. Numerous simplified tables are included to estimate integration, attenuation and clutter effects. The major radar parameters calculated include maximum range, integrated signal to noise, signal to weather clutter, signal to land clutter and signal to sea clutter ratio. These ratios may be combined to yield the integrated signal to noise plus weather plus sea or land clutter ratio for any specified range and target.

with a color of the second of the color of the second

The calculation of the integrated signal to noise plus clutter ratio is performed in two parts. The first part uses Section A to determine an estimate of the maximum range without any clutter or weather effects. The second part uses Section B to calculate the integrated signal to noise plus clutter ratio with clutter and weather effects at a particular range. Most calculations are in decibels and a foldout decibel to ratio conversion table is given in Appendix A to help the user. Section A and section B are work forms for calculation of maximum range and signal to noise plus clutter ratio, respectively.

Appendix B presents the mathematical derivation of the simplified equations used in sections A and B. Appendix $\mathcal C$ is an example of the usage of the work forms.

II. CALCULATIONS

A. MAXIMUM RANGE ESTIMATION

1. Single Pulse

Parameter	Value	Units	db Representation	Multiply By	Add db Results
P _k : Peak Power		KW		+1	
λ : Wavelength		cm		+2	
$\sigma_{ extbf{T}}$: Target RCS		м ²		+1	
G : Antenna Gain		db —		+2	
L : Losses		db		- 1	
B : Bandwidth		MHz		-1	
NF : Noise Figure		₫b		-1	
(S/N): Signal/Noise		₫b		-1	
Conversion Factor					-30
				<u></u>	

4 db nautical miles = $SUM_{4R} = _{db}$

The maximum range (N miles) is obtained by multiplying the SUM decibel by $\frac{1}{4}$ and expressing this as a ratio:

Maximum Range Estimation = NM

2. Comments

- a. Chirp Systems
 - (1). Use peak transmitter power (as at the antenna)
 - (2). Use the narrow, unchirped bandwidth
- b. Antenna Gain
 - (1). It aperture only is given, see table in Appendix A.

c. Losses

- (1). Typical value for search radar 16 db, minimum value 10 db.
- (2). Losses included are:

		Minimum áb
L _c	collapsing	2
L,	integration	1
Le	gate or filter overlap	Ο
Lg	threshold	1
Ld	scan distribution	1
Le	target	0
L	antenna efficiency	0
L	filter matching	1
r°	post detection integration	1
L p	antenna pattern	1
Ļ	receiving loss	ı
Lt	transmitting loss	ı
Ls	scanning loss	0
		10 db

d. Signal to Noise Ratic (S/N). Typical value: 12db. This provides a probability of detection of about 90 percent with a false alarm ratio of .0001. For other values see Appendix A.

e. Noise Figure. The following table gives the minimum moise figures that may be expected from different types of detectors. Actual values that may be expected from equipment in the field exceed these values by about 40 percent.

f. PRF Limited Range

.

Parameter	Value	Units	db Representation	Multiply By	Add db Results
PRF		pulses/sec		-1	
Conversion Factor					+49.2db
		<u> </u>		لــــــــــــــــــــــــــــــــــــــ	

Udb, Unambiguous decibel range = ___db

The PRF limited range is the ratio representation of the Unambiguous decibel range, $U_{\rm db}$. Therefore, PRF Limited Range = NM

- B. CALCULATION OF $\left(\frac{S}{N + C_{\omega} + C_{S/L}}\right)_{4}$ RATIO
 - 1. Preliminary Information for $\left(\frac{S}{N+C_w+C_{S/L}}\right)_i$ Calculation

Limitations: Radar height less than 10,000 feet.

Target height less than 10,000 feet.

Depression angles less than 10 degrees.

Slant ranges greater than 3 N miles

a. Slant Range, R = _____ n miles

Radar Height, h = _____ (100's feet)

Depression angle, θ° , = $\frac{h (100 \text{ s ft})}{R (n \text{ miles})}$ = _____ degrees.

b. Atmospheric Attenuation, A = ____ db.

c. Rain Attenuation

la externe d

1

THE REAL PROPERTY.

(1)					
Parameter	Value	Units	db Representation	Multiply By	Add db Results
R : Range		NM		+1	
W : Rain Rate		mm/hr		+1	
λ : Wavelength		cm,		-2	
Factor					1.42
	l				,,

 $\mathtt{SUM}_{R} = \underline{\hspace{1cm}}\mathtt{db}$

(2)				
Parameter	Value	Units	Ratio P-resentation	A _R
SUM _R		රැර		

A_R, 2-way Rain Attenuation = ____db

2. Calculation of (S/N)i

a. Single Pulse (S/N)

	Parameter	Value	Units	db Representation	Multiply By	Add db Results
P _k	: Peak Power : Wavelength : Target RCS : Antenna Gain : Losses		Kw cm M db		+1 +2 +1 +2 +2	
A	: Atmospheric Attenuation		qp —		→ -1	
A _R NF _O E R	: Rain Attenuation : Noise Figure : IF Bandwidth : Range		db db MH2 NM		-1 -1 -1 -4	
	Factor					-30.0

 $\left(\frac{S}{N}\right)_1 = \underline{\qquad} db$

b. Integration Improvement (Assuming visual PPI detection)

#H, (Hits/Scan) =	5	10	15	20	25	30	40	50	60
I, Integration = Improvement in ab	6	8.4	9.6	10.5	11.2	11.8	12.6	13.2	13.8

Integration Improvement, I = ____ db

c. Integrated (S/N)1

$$\left(\frac{S}{N}\right)_{i} = \left(\frac{S}{N}\right)_{i} (db) + idb = ___db$$

3. Calculation of $(\frac{S}{C_w})_1$

a. Single Pulse $(8/C_{us})_1$

Parameter	Value		db Representation	Multiply By	Add db Results
$\sigma_{_{ m T}}$: Target RCS		M ²		+1	
λ : Wavelength		cm		44	
W : Rain Rate		mm/hr		-1.6	
AZ : AZ Beamwidth		deg.		-1	
EL : EL Beamwidth		deg.		-1	
τ : Pulse Length		ji sec		-1	
R : Range		NM		- 2	
Factor					+ 4.87 db

b. Integration Factor

Integration Improvement, I, from 2b. = ____db

c. Pulse Compression Ratio

Pulse Compression Ratio = ____ unitless

The Pulse Compression Factor, CR, is the decibel representation of the unitless

Pulse Compression Ratio.

Therefore Pulse Compression Factor, CR = ____ db

d. Integrated (S/Cw)

$$\left(\frac{S}{C_w}\right)_1 = \left(\frac{S}{C_w}\right)_{1,db} + I_{db} + CR_{db} = \underline{\hspace{1cm}}$$
 ab

4. Calculate
$$\left(\frac{S}{C_{S/L}}\right)_{i}$$

a. Clutter Reflectivity

(1). Depression Angle,
$$\theta$$
, from la. = _____ deg.

Radar Band = _____

Clutter Type = _____

Clutter Reflectivity, $\sigma_{_{\rm C}}$, from Clutter values Appendix A. = ____ab.

(2). Pulse Compression Effect:

Parameter	Val.ue	Units	Multiply By	Add đo Results
$\sigma_{_{ m O}}$: Clutter Reflectivity		+đb	-1	
CR : From Sec. 3c.		+db	-1	

 $\sigma_{o}(EFF)$, Erfective Clutter Reflectivity = ____db.

b. Single Pulse
$$(\frac{S}{C_{S/L}})_1$$

Parameter	Value	Units	db Representation	Multiply by	Add d5 Results
o _T : Terget R€3		m ²		+1	
T : Pulse Length		µsec.		-1	
R : Range		NM		-1	
AZ : AZ Beamwidth		deg.		-1	
Jo(EFF): From Sec.		gp —		> - 1	
Factor					-35,35 db

Single Pulse
$$\left(\frac{S}{C_{S/L}}\right)_{l} = \underline{\qquad} db$$

c. Integrated
$$(\frac{S}{C_{S/L}})_i$$

$$\left(\frac{s}{c_{s/L}}\right)_1$$
 (from Sec. bb.) = _____db

$$\left(\frac{S}{C_{S/L}}\right)_{i} = \left(\frac{S}{C_{S/L}}\right)_{i} + I = \underline{\qquad} db$$

5. Calculate
$$(\frac{S}{N + C_{\omega} + C_{S/L}})$$

a. Calculate "Energy" Ratio

Parameter	Value	Units	Multiply By	Add Ratio Representation
(S/N);: Section 2c.		đb	-1	
(S/C_{ij}) ; Section 3d.		дъ	-1	
(S/C _{S/L}) _i : Section 4c.		₫b	-1	

b. Integrated $(\frac{S}{N + C_{u'} + C_{S/L}})_1$

			· · · · · · · · · · · · · · · · · ·	S/L		
	Parameter	Value	Units	db Representation	Multiply By	$(\frac{S}{N+C_w+C_S/L})$, db
	E, Sec. 5a.		unitless		-1	,
•						

$$\left(\frac{S}{N+C_{\omega}+C_{S}/L^{1}}\right) = \underline{\qquad}$$

APPENDIX A

SIMPLIFIED RADAR DATA

A. Signal to Noise Ratio VS Probability of Detection

-

$\left(\frac{S}{N+C_{\omega}+C_{S/L}}\right)_{i}$	Probability of Detection	Probability of False Alarm
4 аь	99 %	•
	90	•50
	80	.25
	50	•05
8 db	99	.30
	90	.05
	80	.02
	50	.01
12 d b	99	5 x 1.0, ⁻²
	90	10-4
	80	10 ⁻⁵
	50	20 ⁻⁷
16 db	99•9	10-7
	99	10-10
	90	30 -1 3
	8c	10-14

NAFI TR-1554

B.	Clutter	Reflectivity:	σο	in	Ф	below	one	square	meter
----	---------	---------------	----	----	---	-------	-----	--------	-------

Ka Band 35 GHz				K:	Band	17 (Hz				
Clutter		_	Angle			Clutter	Gre	zing	Angle	?	
CIUCSEL,	<u>.1°</u>	.3°	1°	3°	10°	OTGREET	.17	<u>.3°</u>	1°	3°	10°
Seastate 1			43	41	38	Seastate 1			47	43	40
3	-		34	34	31	3			37	3ხ	32
5			31	30	26	5		3 9	32	31.	26
Desert					22	Desert					26
Farm Land				23	20	Farm Land			23		23
Wooded	}			13	19	Wooded			20		20
City						City					
X	Band	100	Hz			C	Band	5.6 (liz		
Clutter Grazing Angle				Ciutter	Gra	zing	Angle	?	·		
	.1°	•3°	ı°	3°	10°		.1°	•3°	1°	3°	10°
Seastate 1	65	58	50	45	42	Seastate 1	75	60	53	49	44
3	51	45	39	38	32	3	56	48	43	40	34
5	44	39	33	31	26	5	48	41	35	33	28
Desert			38		26	Desert					
Farmland			3ó		25	Farmland			38		29
Wooded			30		23	Wooded			35		
City			24	:	12	City					
S	Bane	i 36 (GHz			L	Band	1.25	GHz		
Clutter	Gre	azing	Angle	 ^		Clutter	Gra	azing	Angle	e	
	.7.°	•3°	1°	3°	10°		.1°	.3°	l°	3°	10°
Seastate 1	80	62	56	52		Seastate 1			65	53	54
3	68	55	48	43	34	3	82		54	43	34
5	53	50	38	35	28	5	65		43	38	28
Desert		İ	1	30	28	Desert			Ì	45	40
Farmland		1		1	21	Farmland			İ	32	33
Wooded				33	25	Wcoded				34	23
City					18	City		į		30	18

C. ANTENNA CHARACTERISTICS

1. Beamwidth Calculations

a. Azimuth Beamwidth

Parameter	Value	Unit	đb Representation	Multiply By	Add db Results
Wavelength		cm		+1	
Antenna Width		ft		-1	
Conversion Factor					+4.3 ab

Lecibel Antenna Beamwiath, AZ db = ____db

b. Elevation Beamwidth

Parameter	Value	Unit	db Representation	Multiply By	Add db Results
Wavelength		∕3m		+1	
Antenna Height		ŕ		-1	
Converstion Factor					+4.3 ab

Decibel Antenna Beamwidth, EL db = ____db

The antenna it amwidths in degrees are the ratio representation of the decibel antenna beamwidth. Therefore,

2. Antenna Gain Calculation

Perameter	Value	Units	db Representation	Multiply By	Add db Results
AZ°		deg.		-1	
EL°		deg.		-1	,
Conversion Factor					+44.3ap

Antenna Gain, G = ____db

D. DECIBEL TO RATIO CONVERSION TABLE

A-4

APPENDIX B

SIMPLIFIED MATHEMATICAL DERIVATION FOR ($\frac{S}{N+C_{\omega}+C_{S}/L}$) i

The derivation of the equations used in this report are in NAFI TR-1461. The decibel equation form used is as given in NAFI TR-917. The following derivations are a summary of some of the equations in these two reports.

A. SINGLE PULSE SIGNAL TO NOISE RATIO

$$\left(\frac{S}{N}\right)_{1} = \left(\frac{P\lambda^{2}}{BR^{4}}\right) \sigma_{T} 10^{\left(2G - L - A_{R} - \overline{NF}_{O}\right)/10} \times 10^{3}$$
(B.1)

where

S = Signal Power Watts

N = Noise Power Watts

P = Peak Power, kw

 λ = Wavelength, cm

 $\sigma_{\mathbf{T}} = \text{Target RCS, } \mathbf{M}^2$

B = IF Noise Bandwidth, MHz

R = Slant Range, NM

G = Antenna Gain, db

L = System Losses, db

 $A_{R} = Rain Losses, db$

A = Atmospheric Attenuation, db

NF = Noise Figure, db

B. WEATHER CLUTTER BACKSCATTER

$$\sigma_{w} = \frac{w^{1.6} \text{ AZ° EL° R}^{2} \gamma}{\lambda^{14}} .32549 \text{ (M}^{2})$$

$$\left(\frac{c_{\underline{w}}}{N}\right)_{\underline{l}} = \left(\frac{\underline{s}}{N}\right)_{\underline{l}} \frac{\sigma_{\underline{w}}}{\sigma_{\underline{T}}}$$

therefore

A Same of

$$\left(\frac{\mathbf{S}}{\mathbf{C}_{\mathbf{\omega}}}\right)_{\mathbf{J}} = \frac{\mathbf{\sigma}_{\mathbf{T}}}{\mathbf{\sigma}_{\mathbf{\omega}}}$$

Therefore, signal to weather clutter ratio:

$$\left(\frac{s}{c_{\omega}}\right) = \frac{c_{T}}{w^{1.6} Az^{\circ} EL^{\circ} R^{2} \tau}$$
(B.2)

where:

 C_{ω} = Weather clutter backscatter power, watts

 $\sigma_{(i)}$ = Weather clutter reflective area, N^2

W = Rain Rate, MM/Hour

AZ° = Antenna azimuth beamwidth, degrees

EL° = Antenna elevation beamwidth, degrees

 τ = Pulse length, μ seconds

C. SEA OR LAND CLUTTER RETURN

$$\sigma_{S/L} = \frac{AZ^{\circ} R \tau}{Cos E}$$
 3427.1 10 $(\sigma_{o}/10)$ (M²)

Assume: pulse width limited clutter

Assume: depression angle, E, is less than 10° so Cos E = 1

Therefore,

$$\sigma_{S/L} = AZ^{\circ} R \tau 10^{(\sigma_{O}/10)}$$
 3427.1 M²

$$\left(\frac{s}{c_{s/L}}\right) = \frac{\sigma_{T}}{\sigma_{s/L}}$$

$$\left(\frac{S}{C_{S/L}}\right) = \frac{\sigma_{T}}{AZ^{\circ}} \frac{2.917}{R + 10^{(G_{\gamma}/LO)}} \times 10^{-14}$$
(3.3)

where

 $\sigma_{S/L}$ = Sea or land clutter area, M^2 σ_{O} = Clutter reflectivity, db_{M^2}

= Depression angle, degrees

 $C_{S/L}$ = Sea or land clutter return, watts

D. INTEGRATED
$$\left(\frac{S}{N + C_{\omega} + C_{S/L}}\right)_{i}$$
RFTIO

$$\left(\frac{S}{N + C_w + C_{S/L}}\right)_i \equiv 10 \log \left(\frac{S}{N + C_w + C_{S/L}}\right) + I(in db)$$

where: I = Integration Improvement, db

 $I_F = Integration Improvement Ratio = 10^(1/10), unitless$

Using Equations (B.1), (B.2) and (B.3), the integrated signal to noise plus weather clutter plus sea or land clutter ratio may be written as:

$$\frac{S}{N + C_{\omega} + C_{S}/L} = \frac{1}{\frac{N}{S} + \frac{C_{\omega}}{S} + \frac{C_{S}/L}{S}}$$

$$\frac{S}{N + C_{\omega} + C_{S/L}} = \frac{1}{(\frac{S}{N}) + \frac{1}{(\frac{S}{C_{\omega}})} + \frac{1}{(\frac{S}{C_{S/L}})}}$$

The equation as used in this report is:

$$\left(\frac{S}{N + C_{\omega} + C_{S/L}}\right)_{j} = 10 \log \left[\frac{\frac{1}{\left(\frac{S \cdot I_{F}}{N}\right)} + \frac{1}{\left(\frac{S \cdot I_{F}}{C_{\omega}}\right)} + \frac{1}{\left(\frac{S \cdot I_{F}}{C_{S/L}}\right)}}\right]$$

E. DEPRESSION ANGLE APPROXIMATION

R = Slant Range, N miles

h = Height, 100's feet

E° = Depression Angle, degrees

therefore

$$R \sin E^{\circ} = \frac{h}{60.8}$$

therefore

$$E_{(Rad)} = \frac{h}{R - 60.8}$$
 (Rad)

$$E(\text{deg}) = E^c = \frac{h}{R + 60.8} = \frac{360^{\circ}}{2\pi Rad}$$

$$\mathbf{E}^{\circ} = \frac{\mathbf{h}}{\mathbf{R}} \cdot 942$$

therefore

E°
$$\approx \frac{h(100 \text{'s feet})}{R(N \text{ miles})}$$
 in degrees

APPENDIX C

WORK FORM USAGE EXAMPLE

This is an example of usage of the work forms presented in sections A and B. The calculations are for the performance of a radar which has the following characteristics.

RADAR PARAMETERS

P: 50 kw

No.

L: 13 db

MFo: 10 db

λ: 3.22 cm (X band)

Rain: lmm/hour

Antenna: $AZ = 2^{\circ}$, $EL = 2^{\circ}$, Gain = 38 db

τ: 1 μsecB: 1 MHz

PRF: 1000 pulses/sec

Scan Rate: 90°/sec Target RCS: 1000 M²

Radar

Height: 6,000 feet

Target

Height: 0 feet

Clutter: sea state 3

Desired Pd: 90% at PFA = 10-4

MANI TR-1554

II. CALCULATIONS

A. MAXIMUM RANGE ESTIMATION

1. Single Pulse

Parameter	Value	Units	db Representation	Multiply By	Add db Results
P. : Peak Power A : Wavelength G : Target RCS G : Antenna Gain L : Losses B : Bandwidth F : Hoise Figure (S/W): Signal/Noise Conversion Factor	13 1	Cm M ² db MHz db	17 db 5.1db 30 db	+1 +2 +1 +2 -1 -2 -1 -1	+171 +10.2 +301 +761 -131 -016 -164

b db nautical miles = SUM_{kR} = 44.2 db

The maximum range (N miles) is obtained by multiplying the SUM decibel by $\frac{1}{4}$ and expressing this as a ratio:

Maximum Range Estimation = 10 RM

2. Comments

- a. Chirp Systems
 - (1). Use peak transmitter power (as at the antenna)
 - (2). Use the narrow, unchirped bandwidth
- b. Antenna Gain
 - (1). If aperture only is given, see table in Appendix A.

c. Losses

- (1). Typical value for search radar 16 db, minimum value 10 db.
- (2). Losses included are:

_		Minimum	đħ
Lc		2	
$\mathbf{r}_{\mathbf{i}}$		1	
Le		0	
Lg	threshold	1.	
	scan distribution	1	
L	target	0	
L	antenna erficiency	Ċ	
	filter matching	1	
r _o	post detection integration	1	
Ļ	antenna pattern	1	
L	receiving loss	1	
Lt	transmitting loss	1	
L _s	scanning loss	0	
		10 db	

d. Signal to Noise Ratio (S/N). Typical value: 12db.. This provides a probability of detection of about 90 percent with a false alarm ratio of .0001. For other values see Appendix A.

HAFI TR-1554

e. Noise Figure. The following table gives the minimum noise figures that may be expected from different types of detectors. Actual values that may be expected from equipment in the field exceed these values by about 40 percent.

f. PRF Limited Range

Parameter	Value	Units	db Representation	Multiply By	Add db Results
PRF	•	pulses/sec	31.5db	-1	-31.5
Conversion Factor					+49.2db

Udb, Unambiguous decibel range =+12.7db

The PRF limited range is the ratio representation of the Unambiguous decibel range, bab. Therefore, PRF Limited Range = 60 NM

B. CALCULATION OF
$$\left(\frac{S}{N + C_{\omega} + C_{S/L}}\right)_{i}$$
 RATEO

1. Preliminary Information for
$$\left(\frac{S}{N+C_w+C_{S/L}}\right)_1$$
 Calculation

Limitations: Radar height less than 10,000 feet.

Target height less than 10,000 feet.

Depression angles less than 10 degrees.

Slant ranges greater than 3 N miles

Depression angle,
$$\theta^{\circ}$$
, = $\frac{h(100^{\circ} s ft)}{R(n miles)} = 1.5$ degrees.

b. Atmospheric Attenuation,
$$A = \frac{1}{100}$$
 do.

c. Rain Attenuation

(1)	·			A	
Parameter	Value	Units	₫ b	Multiply	
,			Representation	By	
Range	Un	NW	i 6 db	+1	Γ

Add db Results +16 db R: Range o db Odb W: Rain Rate +1 mm/hr -10.2 db 3.22 5.1 db λ: Wavelength -2 \mathbf{cm}

-1.42 **Factor**

$$SUM_{R} = 4.4$$
 db

(2)

Parameter	Value	Units	Ratio Representation	A _R
sum _R	4.4	ďb	2.8	2.8

A_R, 2-way Rain Attenuation = 2.8 db

2. Calculation of (8/N)i

a. Single Pulse (8/N)

Penmeter		Peremeter Value Unit		db Representation	Multiply By	Add db Results	
P _k \(\sigma_T \) G L	: Reak Fower : Wavelength : Target RCS : Antenna Gain : Loases : Atmospheric	50 3.22 1000 38 13	Ev cm.	17 db 5.1 db 30 db	+1 +2 +1 +2 +2 -1 -1	+17 db +10.2d +30 db +26 db -13 db -1 db	
A A _R MF _o B	Attenuation Rain Attenuation Boise Figure IF Bandwidth Range Pactor	2.8 10 1 40	db db MHz MM	0 db	-1 -1 -1 -1 -4	-3.84l -104l -04l -64dl	

b. Integration Improvement (Assuming visual PPI detection)

SCAN RATE 90 degrees/second

masher of Hits/Scan,
$$\#H = \frac{(PRF)(AZ^{\circ})}{(SCAN RATE)} = 33$$
 Hits/Scan

#H, (Hits/Scan) =	5	10	15	20	25	30	40	50	60
I, Integration Improvement in db	6	8.4	9.6	10.5	11.2	11.8	12.6	13.2	13.8

Integration Improvement, I = 12 db

c. Integrated (S/N),

$$\left(\frac{S}{N}\right)_1 = \left(\frac{S}{N}\right)_1 \text{ (db)} + I\tilde{a}\tilde{b} = 24.4 \text{ db}$$

3. Calculation of $(\frac{s}{c_{ur}})_i$

a. Single Pulse (S/C_w)₁

	Parameter	Value	Units	db Representation	Multiply By	Add db Results
λ W AZ	: Target RCS : Wavelength : Rain Rate : AZ Beamwidth : EL Beamwidth : Pulse Length : Range	2	mm/hr deg. deg.	30 db 5.1 db 0 db 3 db 3 db 0 db	+1 +4 -1.6 -1 -1 -1	+30db +20.4db -0db -3db -3db -0db -32db
	Factor	,		16 db		+ 4.87 db

 $(s/c_w)_1 = 17.3$ db

b. Integration Factor

Integration Improvement, I, from 2b. = 12 db

c. Pulse Compression Ratio

Pulse Compression Ratio = ____ unitless

The Pulse Compression Factor, CR, is the decibel representation of the unitless

Pulse Compression Ratio.

Therefore, Pulse Compression Factor, CR = O db

d. Integrated (S/Cw)

$$\left(\frac{s}{c_w}\right)_1 = \left(\frac{s}{c_w}\right)_{1db} + I_{db} + CR_{db} = 29.3$$
 db

4. Calculate
$$\left(\frac{S}{C_{S/L}}\right)_{i}$$

a. Clutter Reflectivity

Clutter Reflectivity, σ_0 , from Clutter values Appendix A. = 39 db.

(?). Pulse Compression Effect:

Farameter	Value	Units	Multiply	Add úb Results
σ _o : Clutter Reflectivity	39	+đb	-1	-39
CR : From Sec. Sc.	0	+đb	-1	-0

• $\sigma_0(EFF)$, Effective Clutter Reflectivity = -39 db.

Parameter	Value	Units	db Representation	Multiply	Add db
GT: Target RCS F: Pulse Length R: Range AZ: AZ Beamwidth G(EFF): From Cec. 4a. Factor	40	M ² µsec NM deg. db	30 db 0 db 16 db 3 db	by +1 -1 -1 -1 -1	Results +30 db -0 db -16 db -3 db +39 db,

Single Pulse $\left(\frac{S}{C_{S/L}}\right)_1 = \frac{14.6}{db}$

c. Integrated
$$(\frac{S}{C_{S/I}})_i$$

 $(\frac{S}{C_{S/L}})_1$ (from Sec. 4b.) = 14.6 dt
I (From Sec. 2b.) = 12 db
 $(\frac{S}{C_{S/L}})_i = (\frac{S}{C_{S/L}})_1 + I = 26.6$ db

5. Calculate
$$(\frac{S}{N + C_{\omega} + C_{S/L}})$$

a. Calculate "Energy" Ratio

Parameter	Value	Units	Multiply By	Add Ratio Representation
(S/N);: Section 2c.	24.4	ďb	-1	.0035
(S/C _w): Section 3d.	29.3	ďb	-1	.0015
(S/C _{S/L'1} : Section 4c.	26.6	đъ	-1	.0025

E, Inverse "Energy" Ratio = .0025 unitiess

b. Integrated
$$\left(\frac{S}{N + C_w + C_{S/L}}\right)_i$$

			10/ ±1		
Parameter	Value	Units	db Representation	Multiply By	$\left(\frac{S}{N+C_{\omega}+C_{S}/L}\right)_{i}$ db
E, Sec. 5a.	.0075	unitless	-21.346	-1	+21,3db

$$(\frac{S}{N + C_{\omega} + C_{S/L^{1}}}) = + 21.3$$
 db

CONTROL DATA - I	RAD	
		the overall report to classified,
	1	ORT SECURITY C 1, ASSISTED ATION
		NCLASSIFIED
	26 G#51	₽.
		
DAR PERFORMANCL	PREDICTI	ons
))	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
* 1	PAGES	76. NO OF REFS
29		
Se. ORIGINATOR'S	REPORT NU	MBER(S)
TR-1554		
Sb. OTHER REPOR	RT HO(S) (An	y other numbers that may be easily a
None		
pelis.		
niques described tions as well as uation, sea and ulse and chirp o	i cover to the eff land clucter.	the conventional fects of rain clutter, atter, and pulse It is complete,
	TR-1554 So. OTHER REPORT TR-1554 So. OTHER REPORT None expert controls onals may be made polis. 12. SPONSORING M diques described tions as well as uation, sea and ulse and chirp of	DAR PERFORMANCE PREDICTION 7. TOTAL NO. OF PAGES 29 20. ORIGINATOR'S REPORT NU TR-1554 20. OTHER REPORT NO(5) (And None export controls and each onals may be made only well as the controls and each only well as the

DD .5084. 1473

UNCLASSIFIED

Security Classification