Chapitre 7: Fonctions

Définition: Fonction, image, antécédent

Une **fonction** est un procédé qui à un nombre réel x associe un unique nombre réel f(x).

• f(x) est **L'image** de x par la fonction f. On représente une image par la lettre y, et on écrit alors

$$f(x) = y x \xrightarrow{f} f(x)$$

• x est UN antécédent de y.

Remarque

- Il n'y a qu'une seule image pour un nombre donné.
- Il peut y avoir plusieurs antécédents pour un nombre donné.

Définition: Calcul d'image

Si on a une expression **algébrique** de la fonction f, on peut calculer l'image d'un nombre en remplaçant x par ce nombre dans l'expression de la fonction.

Exemple

Si f est la fonction qui à x associe 3x + 2:

- $f(2) = 3 \times 2 + 2 = 8$
- Attention : si on remplace \boldsymbol{x} par une expression complexe, il faut ajouter des parenthèses. Par exemple,

$$f(1+3) = 3 \times (1+3) + 2 = 3 \times 4 + 2 = 14$$

Définition: Domaine de définition

L'ensemble des nombres ayant une image par la fonction f est appelé le **domaine de définition** de f. On le note \mathcal{D}_f .

Exemple

- Si f est la fonction qui à x associe $\frac{1}{x}$, alors x ne peut pas être 0. Son domaine de définition est $\mathcal{D}_f =]-\infty;0[\ \cup\]0;+\infty[.$
- Si f représente une longueur, x ne peut pas être négatif. Son domaine de définition est $\mathcal{D}_f = [0; +\infty[$.

Définition: Courbe représentative

La **courbe représentative** d'une fonction f est l'ensemble des points (x;y) tels que y=f(x).

Définition: fonction affine

Une fonction affine est une fonction définie par

$$f(x) = mx + p$$

où m et p sont des nombres réels fixés.

Remarque

- Si p = 0, on a alors f(x) = mx, donc la fonction est **linéaire**.
- Si m = 0, on a alors f(x) = p, donc la fonction est **constante**.

Définition : Coefficient directeur et ordonnée à l'origine

Soit f(x) = mx + p une fonction affine. Alors

- m est le **coefficient directeur** (ou la **pente**) de la droite représentative de f.
- p est l'ordonnée à l'origine.

Exemple

La droite ci-contre correspond à la fonction

$$f(x) = mx + p$$
$$= 1.5x + 2$$

Propriété: Représentation d'une fonction affine

La représentation graphique d'une fonction affine est une droite.

Définition: Variations d'une fonction

On considère une fonction f définie sur un intervalle ${\rm I.}$

- On dit que f est **croissante** sur I si pour tout réels a et b de I tels que $a \le b$, on a $f(a) \le f(b)$.
- On dit que f est **décroissante** sur I si pour tout réels a et b de I tels que $a \le b$, on a

$$f(a) \geq f(b).$$

Exemple

On a $a \le b$, et $f(a) \le f(b)$, donc f est croissante.

On a $a \le b$, et $f(a) \ge f(b)$, donc f est décroissante.

Tableau de variations

Un **tableau de variations** résume les intervalles sur lesquelles la fonction est croissante ou décroissante :

x	-2	1	3
f(x)	7		2

Fonctions carrée et cube

La fonction **carrée** est la fonction $f(x) = x^2$

Pour tout nombre réel x, on a f(x) = f(-x)

L'axe des ordonnées est un axe de symétrie du graphe.

La courbe est une **parabole**. Le point (0;0) est le **sommet** de cette parabole.

Tableau de variations :

x	-∞	0	+∞
x^2		0	

La fonction **cube** est la fonction $q(x) = x^3$

Pour tout nombre réel x, on a g(x) = -g(-x)

Le centre du repère est un centre de symétrie du graphe.

Tableau de variations :

x	-∞	+∞
x^3		<i></i>

Rappel

La racine carrée \sqrt{a} d'un nombre positif a est l'unique nombre positif tel que $\sqrt{a}^2=a$.

Fonction racine carrée

La **fonction racine carrée** est $f(x) = \sqrt{x}$, définie sur $[0;+\infty[$.

x	0	1	2	3	4	5
\sqrt{x}	0	1	≈ 1,41	≈ 1,73	2	≈ 2,24

x	0	+∞
\sqrt{x}	0	

Fonction inverse

La **fonction inverse** est $f(x) = \frac{1}{x}$, définie sur $]-\infty;0[\ \cup\]0;+\infty[$.

\boldsymbol{x}	-4	-3	-2	-1	0	1	2	3	4
$\frac{1}{x}$	-0,25	≈ - 0,33	-0,5	-1	NON	1	0,5	≈ 0,33	0,25

x	-∞	0	+∞
$\frac{1}{x}$			*