Analytics Portfolio

Jessica Gutstein

Dirty to Clean Data - Google Sheets Project

Skills: identify dirty elements using **Google Sheets** in a dataset, remove duplicate data, and use the **COUNTIF** and **SPLIT** functions to help clean data.

Dataset: Marketing Agency

https://docs.google.com/spreadsheets/d/1p5TiRjV-criLJTI7A0tBdMF0tEUiBldjY3xL0KOGGHg/edit?usp=sharing

Functions - COUNTIF

- Yelp Rates in Column C can only be between (0-5).
- Using COUNTIF to determine if any values are over 5.
- 9 entries that have a rating greater than 5.
- Solution:
- 1. Research Boba locations on yelp to find the accurate rankings, in this dataset example, the incorrect entries will be replaced with 5.

Sorting/Filtering

Solution: Replaced all 9 incorrect data entries with 5. To validate correction, the COUNTIF function will show 0 entries >5.

Functions - SPLIT

	Agency_sf_b /iew Insert Fo			♪ ⊘ ons Help			
、 5 → 合	\$ 100%	\$ % .0	.00 123	Arial 🕶	- 10 + B	<i>I</i>	À. ⊞
▼ f _X =	SPLIT(F2,"-")						
A	В ▼	С	D	E	F	G	Н
id	name	rating	address	city	lat-long		
243	che-lo-union-city	5	1767 Decoto Blv	Union City	37.5895628278	=SPLIT(F2,"-")	122.022492
88	super-cue-cafe-s	5	1330 Ocean Ave	San Francisco	37.724295422977	77-122.45704454	1931
133	t4-san-leandro	5	1443 E 14th St	San Leandro	37.723825-122.15	54662999999	
6	gong-cha-fremor	5	46827 Warm Sp	Fremont	37.488568263569	95-121.92919126	8869
271	happy-lemon-su	5	605 E El Camino	Sunnyvale	37.36189-122.024	4539999999	
218	ohana-hawaiian-	5	5410 Sunol Blvd	Pleasanton	37.652229999999	99-121.8786	
65	infinitea-san-frar	5	5351 Geary Blvc	San Francisco	37.780295679705	5-122.477084781	597
160	amor-cafe-and-te	5	110 E San Ferna	San Jose	37.335454999999	99-121.886596	
23	boba-queen-fren	5	34420 Fremont I	Fremont	37.5757-122.0397	769999999	
533	honey-bear-smo	5	1 Southland Mal	Hayward	37.6542332-122.	1048419	
505	golden-bakery-p	5	2229 Railroad A	Pittsburg	38.0136496-121.8	8904874	
426	waterfront-cafe-t	5	500 Airport Blvd	Burlingame	37.590323-122.34	4142	
397	i-tea-burlingame	5	346 Lorton Ave	Burlingame	37.5801206-122.3	346889099999	
368	mr-green-bubble	5	1255 S Mary Ave	Sunnyvale	37.35338-122.050	071	
365	taza-deli-and-ca	5	1796 Broadway	Redwood City	37.4868656-122.2	223413299999	
147	bobateani-san-jc	5	75 E Santa Clara	San Jose	37.33709-121.889	941	
128	qteabar-oakland	5	478 Lake Park A	Oakland	37.811068634171	17-122.24723573	774
89	puppy-bobar-sar	5	1142 Grant Ave	San Francisco	37.797539952542	28-122.40678995	8477

	G	•	н
	Lat		Long
3	37.589	56283	122.0224927
	37.7242	29542	122.4570445
	37.72	23825	122.154663
)	37.488	56826	121.9291913
	37.3	36189	122.02454
	37.6	552 <mark>2</mark> 3	121.8786
	37.7802	29568	122.4770848
	37.33	35455	121.886596
	37	.5757	122.03977
	37.654	12332	122.1048419
	38.013	36496	121.8904874
	37.59	90323	122.34142
	37.580	01206	122.3468891
	37.3	35338	122.05071
	07.40	20050	100 000 1100

Formulas

G	н	
	Longituda Formula	1
2.0224927	-122.0224927	
2.4570445	-122.4570445	
22.154663	-122.154663	
.9291913	-121.9291913	
22.02454	-122.02454	
121.8786	-121.8786	
2.4770848	-122.4770848	
21.886596	-121.886596	
22.03977	-122.03977	
2.1048 <mark>4</mark> 19	-122.1048419	
.8904874	-121.8904874	
22.34142	-122.34142	
2.3468891	-122.3468891	
22.05071	-122.05071	
2.2234133	-122.2234133	
04 00044	404 00044	

- Longitude values should be negative so that they are accurate coordinates for mapping.
- =G2*-1

SQL - Common Queries

Identifies variable within a specific row

Updating a variable within a row

SQL-Filtering

Cleaning String Variables - removing duplicates

Functions - LENGTH / DISTINCT / SUBSTR

TRIM()

OH is not greater than 2 characters, so using the TRIM function will remove any spaces

Dirty to Clean Data - SQL Project

Dataset: Automobiles

https://docs.google.com/spreadsheets/d/1uc563psJrCU6 Gf0ftaWLXKXAF7czdONsKnaCgC5bz9c/edit?usp=shari ng

Contains historical sales data, including details such as car features and prices. You can use this data to find the top 10 most popular cars and trims

Goal of project: clean data to avoid presenting inaccurate inventory, which could result in the company to lose money on their car investment

<u>Automobile - UCI Machine Learning Repository</u> - verifies that the fuel_type column should contain only two unique string values 'diesel' and 'gas'.

See screenshot to verify fuel_type has the two unique strings.

MAX/MIN Functions

```
1 SELECT
2 | MIN(length) AS min_length,
3 | MAX(length) AS max_length
4 FROM sql-portfolio-444521.cars.car_info
```

Within the automobiles dataset, I wanted to know the (max/min) within the length column. When the query returned the values, I asked to make two new columns for the entries to fall into.

Query results

SQL - Missing Data

ALWAYS check data for null or missing values. Confirm replace with team or data owner and make correction.

SQL - Correcting Misspelling

'Tow' is now corrected to 'two'. The DISTINCT function only picks up 'two'.

MAX/MIN ranges (removing/deleting <> outliers)

```
SELECT
      MAX (compression_ratio) AS max_compression_ratio,
      MIN (compression_ratio) AS min_compression_ratio
    FROM
      sql-portfolio-444521.cars.car_info
     -WHERE
      --compression_ratio <> 70;
                                                        Pres
Query results

■ SAVE RESULTS ▼

     JOB INFORMATION
                            RESULTS
                                           CHART
                                                        JS(
                        min_compression_ra
       max_compression_ra
                 70.0
                                    7.0
```


SQL - Multiple Functions

GROUP BY

 Applying the GROUPBY to the non-aggregated function for MAX price to align the make with MAX/AVG prices.

ORDER BY

Advanced Function - CAST()

SC	CHEMA	DETAILS	PREVI	
- 00	· ·	·	TILLY	
	Field name		Туре	
	date		DATETIME	
	transaction_id		INTEGER	
	customer_id		INTEGER	
	product		STRING	
	product_	code	STRING	
	product_	color	STRING	
	product_	price	FLOAT	
	purchase	e_size	INTEGER	
	purchase	e_price	STRING	
П	revenue		FLOAT	

- String -> Float conversion.
- Verify change through SCHEMA.
- We needed to determine the customer purchase price from greatest to least, but the numbers were being ordered by strings not numerical values. By changing to FLOAT, we can accurately order the values.

SELECT CAST(purchase_price AS FLOAT64) FROM sql-portfolio-444521.customer_data2.customer_purchase ORDER BY CAST(purchase_price AS FLOAT64) DESC

Filtering Date Periods (Correcting String -> Date)

CONCAT()

product_code	product_color
SKU83503	brass
SKU83503	brass
SKU83503	white

	JOB INFORMATION	RESULTS	CHART	JSON
1.	new_product_code ▼	le		
1	SKU31871grey			
2	SKU31871grey			
3	SKU31871grey			
4	SKU31871blue			

Results per page:

50 ▼

Advanced Function - COALESCE ()

```
SELECT
COALESCE (product, product_code) AS product_info
FROM
sql-portfolio-444521.customer_data2.customer_purchase
```

- This function replaces NULL's with another identifier in the column you are trying to calculate total. This would be a placeholder for another field that shows as NULL.

Verifying Data is Cleaned - Excel/Google Sheets Using Pivot Tables/ Find & Replace

Verifying Data is Cleaning Using SQL CASE()

```
SELECT
         CASE
 3
           WHEN Attrition = false THEN 'Active'
           WHEN Attrition = true THEN 'Non-Active'
 4
         END AS Attrition.
 5
 6
         CASE
           WHEN Age BETWEEN 18 AND 19 THEN '10s'
 8
           WHEN Age BETWEEN 20 AND 29 THEN '20s'
 9
           WHEN Age BETWEEN 30 AND 39 THEN '30s'
10
           WHEN Age BETWEEN 40 AND 49 THEN '40s'
11
           WHEN Age BETWEEN 50 AND 59 THEN '50s'
           WHEN Age BETWEEN 60 AND 69 THEN '60s'
12
13
         END AS Age.
14
         MAX(MonthlyIncome) AS max monthlyincome,
15
         MIN(MonthlyIncome) AS min monthlyincome,
16
         ROUND(AVG(MonthlyIncome), 2) AS average_monthlyincome,
         APPROX_QUANTILES(MonthlyIncome, 100)[OFFSET(25)] AS `25th_percentile`,
17
         APPROX_QUANTILES(MonthlyIncome, 100)[OFFSET(75)] AS `75th_percentile`
18
19
       FROM
         sql-portfolio-444521.HR People Attrition data.attrition data
20
21
       GROUP BY Attrition, Age
       ORDER BY Age DESC
22
```