COMS W4701: Artificial Intelligence

Lecture 1: Introduction, Intelligent Agents

Tony Dear, Ph.D.

Department of Computer Science School of Engineering and Applied Sciences

Today

Course syllabus and logistics

Definition, foundations, and modern capabilities of Al

Properties of task environments

Structure and types of intelligent agents

Course Expectations

MS-level (4XXX) CS course

- Your peers: Mostly CS undergrads, CS grads, and SEAS grads
- Some taking first 4000-level course, others taking first CS course

Coursework: Both programming and quantitative analysis

• Must be able to learn independently, keep up with course

Course Expectations

- Attendance not required, but try your best to attend live
- Recordings uploaded by CVN within 24 hours of each lecture

- We are covering material twice as fast as usual
- You should expect workload equivalent to two regular courses

University course hour requirements for immersive courses: 6
hours in class, 12 hours out of class; 18 hours total weekly

What is Artificial Intelligence?

Two dimensions: thinking vs acting, humanly vs rationally

- Acting humanly, i.e. pass the Turing test
 - Capabilities: Natural language processing, knowledge representation, automated reasoning, machine learning, computer vision, robotics

- Example application areas of Al
- Modern AI extends well beyond "human" behaviors

What is Artificial Intelligence?

- Thinking humanly: Studied in cognitive science
 - Al models can be used in psychological experiments, but human thinking is not necessary to excel at different tasks

- Thinking rationally: The "laws of thought"
 - If we know all the rules of the world, **logic** and **inference** can help connect observations with understanding and predictions
 - But no clear connection to intelligent behavior

Acting Rationally: The Standard Model

- An agent autonomously interacts with an environment through perception and action to achieve pre-defined goals
- A rational agent tries to achieve the best expected outcome
- Focus on optimal behavior, possibly through reasoning or inference

An Interdisciplinary Field

- Al draws ideas and techniques from many other fields
- Philosophy: Logic, inference, theory of knowledge and the mind
- Mathematics: Formal logic, uncertainty, algorithms, computability
- **Economics**: Decision making, game theory, multiagent systems
- Neuroscience and psychology: Study of the brain, thoughts, behaviors
- Control theory: Autonomous control, feedback control, optimal control
- Linguistics: Knowledge representation, natural language processing

History of Al: Inception

- First AI work founded on neural networks
 - Boolean circuit model of brain (McCulloch and Pitts, 1943), neuron learning update rules (Hebb, 1949), neural network computer (Minsky and Edmonds, 1950)
- 1956: Dartmouth meeting of 10 influential researchers
 - First usage of and declared interest in "artificial intelligence"
- 1950s: Development of logic, math, and theorem-proving systems; games like checkers programs; planners; miniature worlds with limited domains

History of AI: Boom and Bust

- Early AI researchers were overly optimistic and overconfident
 - Herbert Simon: Al systems will solve problems "coextensive with the range to which the human mind has been applied" (1957)
- Challenges: Early systems relied too much on human methods; complex problems quickly became computationally intractable
- 1970s and 1980s: Expert systems utilized domain-specific knowledge
 - Advances in representation and reasoning tools, natural language understanding
- Late 1980s: Al winter as systems failed to deal with uncertainty and learning

Modern Al

- Late 1980s-1990s: Shift toward probability, experience, machine learning
- Less emphasis on philosophy, intuition, and symbolic computation
- 1988: Introduction of Bayesian networks (Pearl) for probabilistic reasoning;
 connection of decision theory and reinforcement learning (Sutton)
- 2000s-present: Big data facilitated success of new ML algorithms
- 2010s-present: Deep learning using multiple-layer neural networks facilitated by hardware improvements, starting in speech and visual recognition

Modern Al Applications

- Robotics: Autonomous vehicles, drones, legged systems
- Planning and scheduling (mapping directions)
- Machine translation and speech recognition (Skype, Alexa, Siri)
- Recommender systems (Amazon, YouTube, Spotify, Netflix, Instagram)
- Game playing (AlphaGo and AlphaZero, Atari, StarCraft)

Agents and Environments

- An agent uses sensors and actuators to interact with its environment
- Anything can be an agent, e.g. humans, robots, software systems
- Agent's actions may depend on its percepts
- May even depend on entire percept sequence

- Agent function maps percept sequence to action
- Environment is (smallest) part of the universe directly interacting with agent

Example: Vacuum Cleaner World

- Agent: Vacuum cleaner
- Environment: Square A and square B

Example: Vacuum Cleaner World

- Percepts: Current square; is the square dirty?
- Actions: Move left, move right, clean, do nothing
- Agent function:

[A, IsClean]	Move right
[A, IsDirty]	Clean
[B, IsClean]	Move left
[B, IsDirty]	Clean
[[A, IsDirty], [A, IsClean]]	Move right
[[A, IsDirty], [A, IsClean]] [[B, IsDirty], [A, IsClean]]	Move right
	•

Rational Agents

- Sequence of environment states evaluated by a performance measure
- Performance measures usually based on desired outcomes, not behaviors
- A rational agent selects an action to maximize its performance measure given percept sequence and in-built knowledge.
 - What performance measure makes our vacuum cleaner rational or irrational?

- Rational agents maximize expected performance, are not omniscient
- Rationality may involve info gathering, exploration, learning

Task Environments

- **PEAS**: Performance measure, environment, actuators, sensors
- A rational agent is a solution to a given task environment

- Vacuum cleaner task environment
 - P: Cleanliness, power usage, time taken
 - E: The small grid world
 - A: Wheels to move, filter to clean
 - S: "GPS", cleanliness sensor

Example: Self-Driving Taxi

- P: Safe, fast, legal, comfortable, profit-maximizing
 - Performance measures can be complementary or contradictory!

- E: Roads, other traffic, pedestrians, customers, weather
 - Not just "physical" environment, but also everything taxi interacts with

- A: Steering, acceleration, brakes, turn signals, horn, etc.
- S: Cameras, GPS, speedometer, accelerometer, odometer, etc.

Task Environment Properties

- Fully observable vs partially observable vs unobservable
 - Can agent access all relevant information?
- Single-agent vs multi-agent
 - Does behavior of other agents depend on what we do?
- Deterministic vs stochastic
 - Can we determine environment changes completely based on our actions?
- Episodic vs sequential
 - Do future decisions depend on what we do now?
- Static vs dynamic
 - Does the environment change while the agent is thinking or doing nothing?
- Discrete vs continuous
 - Is number of states, actions, percepts, time, etc. finite?

Examples of Environments

Environment	Partially / Fully Observable	Single- / Multi- Agent	Deterministic / Stochastic	Sequential / Episodic	Dynamic / Static	Continuous / Discrete
Vacuum cleaner world	Partially	Single	Deterministic	Sequential	Static	Discrete
Chess	Fully	Multi (adversarial)	Deterministic	Sequential	Static	Discrete
Self-driving car*	Partially	Multi (cooperative)	Stochastic	Sequential	Dynamic	Continuous
Image classification	Fully	Single	Deterministic	Episodic	Static	Depends

Agent Programs

- Agent programs (percept to action) implement agent functions (percept sequence to action)
- Simplest idea: Lookup table indexed by all possible percept sequences
- What's the problem?

Simple Reflex Agents

- Simple reflex agent: Use current percept only
- Can be implemented using if-then rules

Environment must be fully observable!

```
function SIMPLE-REFLEX-AGENT(percept) returns an action persistent: rules, a set of condition—action rules state \leftarrow \text{INTERPRET-INPUT}(percept) \\ rule \leftarrow \text{RULE-MATCH}(state, rules) \\ action \leftarrow rule. \text{ACTION} \\ \text{return } action
```


Model-Based Reflex Agents

- What about partially observable environments?
- Maintain an internal state of the world!
- Transition model: How the world changes

function MODEL-BASED-REFLEX-AGENT(percept) returns an action persistent: state, the agent's current conception of the world state model, a description of how the next state depends on current state and action rules, a set of condition—action rules action, the most recent action, initially none $state \leftarrow \text{UPDATE-STATE}(state, action, percept, model)$ $rule \leftarrow \text{RULE-MATCH}(state, rules)$

 $action \leftarrow rule. ACTION$

return action

Goal-Based Agents

- Reflex agents are very rigid and predictable
- How to change a reflex agent's behavior?
- Include goal information in program
- Goals may be encoded using utilities
- Internalize the overall performance measure

- Utilities specify tradeoffs for competing goals
- Also useful in face of uncertainty

Summary

- Al is the interdisciplinary study of designing rational agents
- Lots of ups and downs from inception in 1940s
- Modern-day AI: Probabilistic methods, big data, machine learning
- Rational agents maximize expected performance measure
- Difficulty of a task environment depends on specific properties
- Agent programs may use current percept only, keep a model around, and/or try to achieve certain goals quantified by utilities