- Theory and Background (Andrea, 15m)
- Properties and Taxonomy (Thomas, 12m)
 - Question (5m)
- Skeletonization Methods (Andrea, 12m)
 - Questions (5m)
- Analyzing Skeletons (Thomas, 10m)
- Applications (Thomas, 10m)
- Conclusions (Andrea, 10m)
 - Questions (10m)

Analyzing Skeletons

Analysis and processing needed to use skeletons

- 4.1 Comparing skeletons
- 4.2 Building the skeletal structure
- 4.3 Garbing

- Theory and Background (Andrea, 15m)
- Properties and Taxonomy (Thomas, 12m)
 - Question (5m)
- Skeletonization Methods (Andrea, 12m)
 - Questions (5m)
- Analyzing Skeletons (Thomas, 10m)
 - Comparing Skeletons
 - Building the Skeletal Structure
 - Garbing
- Applications (Thomas, 10m)
- Conclusions (Andrea, 10m)
 - Questions (10m)

Comparing skeletons (1/3)

Skeletonizations widely differ in many aspects:

- definition, approximation, computation...
- compliance with desired properties

must compare to choose

Properties assessment:

- can be done quantitatively
 - invariance, centeredness [SJT14], thinness, speed & scalability, reconstruction [ASS11]
- must be done qualitatively
 - homotopy, detail preservation, smoothness, regularization

Comparing skeletons (3/3)

Comparing skeletons is a difficult challenge:

- hard to obtain full implementations of methods
- lack of accepted property definitions
- lack of ground truth (especially for curve skeletons)
- lack of benchmark shapes
- sheer amount of algorithms (+ regularizations / parameters)
- still needed for both practitioners and researchers

- Theory and Background (Andrea, 15m)
- Properties and Taxonomy (Thomas, 12m)
 - Question (5m)
- Skeletonization Methods (Andrea, 12m)
 - Questions (5m)
- Analyzing Skeletons (Thomas, 10m)
 - Comparing Skeletons
 - Building the Skeletal Structure
 - Garbing
- Applications (Thomas, 10m)
- Conclusions (Andrea, 10m)
 - Questions (10m)

Building skeletal structure (1/4)

MAT produces a set of balls:

only useful for garbing & thickness estimation [JKT13]

For other applications, we need to:

- a) approximate the skeletal structure
- b) segment the skeletal structure into curves or surfaces

Building skeletal structure (2/4)

Relatively simpler for Image Skeletons (IS)

- for a), IS are already sets of connected voxels
- for b), finding component bounders/junctions efficiently done by
 - templates in image morphology [BM94,SC94,PK99a]
 - using cardinality of voxel-based feature transform [RT08c]

Image Surface Skeleton components segmentation [RT08c]

Building skeletal structure (3/4)

Approximating skeletal structure for analytic skeletons:

- similar to Point Cloud Reconstruction (PCR) methods [BTS*14]
- few PCR can handle multiply intersecting noisy manifolds [CLK09,KJT14a]
- other popular methods: Voronoi diagram, weighted alpha shape and Delaunay reconstruction [JT12]

Weighted

Weighted Alpha Shape

Delaunay Reconstruction

Building skeletal structure (4/4)

Segmenting analytic surface skeletons into components

- classifying medial points [GK04]: find borders & junctions
- medial scaffold classification [LK07]
 - slower & complex to implement
 - delivers **also a segmentation** into manifolds
- classification by cardinality of feature transform [KJT15]
 - faster & simpler to implement but gives only a classification
 - after, cluster medial points into manifolds and reconstruct them [KJT14a]

- Theory and Background (Andrea, 15m)
- Properties and Taxonomy (Thomas, 12m)
 - Question (5m)
- Skeletonization Methods (Andrea, 12m)
 - Questions (5m)
- Analyzing Skeletons (Thomas, 10m)
 - Comparing Skeletons
 - Building the Skeletal Structure
 - Garbing
- Applications (Thomas, 10m)
- Conclusions (Andrea, 10m)
 - Questions (10m)

Garbing (1/2)

Approximating the shape from its skeleton by a surface mesh

- implicit surfaces [Bli82,JLW10]: smooth but costly
- meshing the union of balls
 - Regular triangulation methods [AE96]: quite efficient
 - Skin surfaces methods [Ede99]: more for molecules than dense skeletons

Garbing (2/2)

Approximating the shape from its skeleton by splatting & impostors

- Theory and Background (Andrea, 15m)
- Properties and Taxonomy (Thomas, 12m)
 - Question (5m)
- Skeletonization Methods (Andrea, 12m)
 - Questions (5m)
- Analyzing Skeletons (Thomas, 10m)
- Applications (Thomas, 10m)
- Conclusions (Andrea, 10m)
 - Questions (10m)

Applications

Curve skeletons

most present in applications (easy / fast to compute)

Surface Skeletons

Increasingly being used (due to recent efficient computation)

Applications

- Computer animation & shape synthesis
- Shape processing and analysis

- Theory and Background (Andrea, 15m)
- Properties and Taxonomy (Thomas, 12m)
 - Question (5m)
- Skeletonization Methods (Andrea, 12m)
 - Questions (5m)
- Analyzing Skeletons (Thomas, 10m)
- Applications (Thomas, 10m)
 - Computer Animation & Shape Synthesis
 - Shape Processing & Analysis
- Conclusions (Andrea, 10m)
 - Questions (10m)

Surface reconstruction

Goals

- we have a (dense) point-sampling of some 3D surface
- we want to reconstruct a compact surface representation

cloud reconstruction by ball splatting [JKT13]

cloud reconstruction by medial scaffold [CLK09]

Shape Animation & Synthesis

Goals

- we have a high-level shape (modification) description
- we want to create (modify) a shape along that description

m-reps[PFJ*03]

skeleton-based modeling [AC02]

- Theory and Background (Andrea, 15m)
- Properties and Taxonomy (Thomas, 12m)
 - Question (5m)
- Skeletonization Methods (Andrea, 12m)
 - Questions (5m)
- Analyzing Skeletons (Thomas, 10m)
- Applications (Thomas, 10m)
 - Computer Animation & Shape Synthesis
 - Shape Processing & Analysis
- Conclusions (Andrea, 10m)
 - Questions (10m)

Shape Segmentation

Part-based segmentation

find the 'natural' parts of organic shapes

Patch-based segmentation

find the 'quasi-flat' parts of surfaces of synthetic shapes

Shape Repairing

Automatically fix various problems in (acquired) shapes

automatic topology repair in scanned shapes [ZJH07]

skeletonization and reconstruction of incomplete point clouds [TZCO09]

3D Shape Matching

Fundamental problem in shape retrieval, computer vision

Hard part: finding correspondences between 2 shapes

fast automatic shape correspondence using curve skeletons [ATCO*10]

skeleton-based shape retrieval [SSGD03]

Shape Metrology

Estimate various properties of 3D shapes

- genus, local tubularity, local thickness, local eccentricity, ...
- important for many applications (3D printing, manufacturing)

curve skeletons [SSCO08] surface skeletons [JKT13] local shape thickness computation

offset surface computation

[Musialski et al. SIGGRAPH'15] Reduced-Order Shape Optimization Using Offset Surfaces

Medical image visualization

Use curve skeletons to facilitate 3D navigation/inspection

virtual bronchoscopy [PFP04]

vessel planar reformation [KWFG03]

virtual colon unfolding [VWKG01]