Theoretische Physik I: Klassische Mechanik Prof. Dr. A. Hebecker

Dr. N. Zerf

9. Übungsblatt

Abgabe in den Tutorien 19.12.2016 Besprechung in den Tutorien 09.01.2017

Aufgabe 9.1 (2 Punkte):

Fortsetzung von Aufgabe 3.1

 \bullet Ein Vektor ist ein Tensor erster Stufe. Im Euklidischen Vektorraum \mathbb{R}^3 transformiert sich jeder Vektor unter Drehungen wie folgt

$$\vec{x}' = \overset{\leftrightarrow}{R} \cdot \vec{x}$$
.

Hierbei ist $\overset{\leftrightarrow}{R}$ eine 3×3 Drehmatrix mit Determinante +1. Eine Drehung läßt den Wert eines beliebigen Skalarprodukts unverändert/invariant, wenn man beide Vektoren auf gleiche Weise dreht

$$\vec{x}' \cdot \vec{y}' = \vec{x} \cdot \vec{y}.$$

Des Weiteren ändert eine Drehungen die relativen Winkel zwischen den Vektoren nicht. Zeigen Sie, ausgehend von der bereits bewiesenen Äquivalenz der Gleichungen (1) und (2) auf Blatt 2 innerhalb des Spezialfalls $\vec{x} = (x_1, 0, 0), \vec{y} = (y_1, y_2, 0)$ mit $x_1, y_1, y_2 > 0$, die Äquivalenz im allgemeinen Fall, indem Sie die aufgeführten Eigenschaften eines Vektors anwenden.

Aufgabe 9.2 (8 Punkte):

Fortsetzung von Aufgabe 7.4

a) Integrieren Sie die erhaltene BWGL (\hat{v} ist die Austrittsgeschwindigkeit des Treibstoffs)

$$\dot{v}(t) = -g + \frac{\alpha \hat{v}}{m_0 - \alpha t},$$

unter der Annahme, dass die Rakete zur Zeit t=0 aus der Ruhe startet. Berechnen Sie die Geschwindigkeit v(t) der Rakete.

- b) Bestimmen Sie die Position der Rakete z(t) für den Fall, dass $z(0) = z_0$ gilt.
- c) Wie hoch fliegt die Rakete und nach welcher Zeit erreicht sie ihren höchsten Bahnpunkt? Betrachten Sie dazu $\hat{v} \geq \frac{m_0 g}{\alpha}$.
- d) Was passiert für $\hat{v} < \frac{m_0 g}{\alpha}$?

Aufgabe 9.3 (*):

Zeigen Sie, dass für die zeitliche Änderung eines Vektors \vec{b} konstanter Länge, der um eine raumfeste Achse in Richtung \vec{n} ($|\vec{n}| = 1$) mit der Winkelgeschwindigkeit $\vec{\omega} = \omega \vec{n}$ rotiert, folgende Gleichung gilt:

$$\frac{\mathrm{d}\vec{b}}{\mathrm{d}t} = \vec{\omega} \times \vec{b}$$

Aufgabe 9.4 (2 Punkte):

Für einen gedämpften harmonischen Oszillator mit der BWGL

$$\ddot{x} + 2\gamma \dot{x} + \omega_0^2 x = 0,$$

erhält man im Kriechfall $\omega_0^2 = \gamma^2$ die allgemeine Lösung $(a, b \in \mathbb{R})$

$$x(t) = ae^{-\gamma t} + bte^{-\gamma t}.$$

Bestimmen Sie im Kriechfall für die Anfangsbedingungen bei $t_0=0$

$$x(t_0) = x_0,$$
 $\dot{x}(t_0) = 0,$

die Auslenkung in Abhängigkeit der Zeit x(t), indem Sie die zwei Kostanten a und b bestimmen.

Aufgabe 9.5 (8 Punkte):

Berechnen Sie die folgenden Grenzwerte:

(i)
$$\lim_{x \to 0} \frac{\sin x}{x}, \qquad \qquad (ii) \qquad \lim_{x \to 0} x \ln x, \qquad (iii) \qquad \lim_{x \to \infty} (1 - 2/x)^{5x}$$

(i)
$$\lim_{x \to 0} \frac{\sin x}{x}$$
, (ii) $\lim_{x \to 0} x \ln x$, (iii) $\lim_{x \to \infty} (1 - 2/x)^{5x}$, (iv) $\lim_{x \to 0} \frac{\cos x - \sqrt{1 - x^2}}{x^4}$, (v) $\lim_{x \to 0^+} \frac{\cot x}{\ln x}$, (vi) $\lim_{x \to 0} \frac{x \sin 2x}{\sinh^2 x}$.