

Projecto de Sistemas de Informação

Life Inspiration - Versão 0.4 Otimização de funções

Objectivo: Dada uma função, encontrar o máximo (mínimo) da função (num dado intervalo definido).

Algoritmos genéticos de parâmetro real

- Não são limitados pelo número de bits, mas pela precisão da máquina
- Semelhantes aos AG binários; as grandes diferenças estão nos operadores de cruzamento e mutação.
- Não necessitam de codificação e descodificação

Algoritmos genéticos de parâmetro real

- Genes codificados diretamente, em vez de representação binária
- Cruzamento e mutação necessitão de mudanças estruturais
- Mudanças simples não são adequadas

Selecção mantém-se

Inicialização

- Definir intervalo de pesquisa de máximos (mínimos)
- Seja N_{pop} = número de individuos
 - Gerar individuos aleatórios, cujos genes se encontram no intervalo definido:

Npop X Ngenes

Individuo	31.0	0.40	62.0	1.08
Individuo	10.5	7	33.12	9.2
Individuo	1.1	3.0	24.5	49.3

Método de inicialização

Exemplo: Inicializar população para optimização de uma função no intervalo [5,10]

- Gerar número real r, entre 0 e 1;
- Multiplicar r pela dimensão do intervalo
- Somar valor minimo do intervalo

Intermediate recombination

- Seleccionam-se 2 individuos Pe P para reprodução
- Selectionam-se 2 genes, $G_i^{P_1} \in G_i^{P_2}$, dos individuos $P_1 \in P_2$ respectivamente, em que $i \in (1,2,3,...,numeroGenes)$
- Gera-se um número aleatório a, percencente ao intervalo [-0.5,1.5]

- Diversidade dos filhos proporcional à dos pais
- A procura é muito grande, se os pais são distantes

Intermediate recombination

- Seleccionam-se 2 individuos Pe P para reprodução
- Selectionam-se 2 genes, $G_i^{P_1} \in G_i^{P_2}$, dos individuos $P_1 \in P_2$ respectivamente, em que $i \in (1, 2, 3, ..., numeroGenes)$
- Gera-se um número aleatório a, percencente ao intervalo [-0.5,1.5]
- Calculam-se os genes $G_i^{F_1} \in G_i^{F_2}$, dos novos individuos F_1 e F_2 , da seguinte forma:

$$G_{i}^{F_{1}} = G_{i}^{P_{1}} \times a_{i} + G_{i}^{P_{2}} \times (1 - a_{i})$$

 $G_{i}^{F_{2}} = G_{i}^{P_{1}} \times (1 - a_{i}) + G_{i}^{P_{2}} \times a_{i}$

 Volta-se ao segundo ponto até que todos os genes dos individuos Pe Psejam percorridos

Exemplo

Considerar os seguintes individuos, com 4 genes cada:

	$G_0^{P_1}$	$G_1^{P_1}$	$G_2^{P_1}$	$G_3^{P_1}$
Pai 1	31.0	6.40	62.0	1.08
	$oldsymbol{G}_{0}^{P_{2}}$	$G_1^{P_2}$	$G_2^{P_2}$	$G_3^{P_2}$
Pai 2	10.5	7	33.12	9.2

Considerar os seguintes valores de a

$$a_0 = 0.6$$
 $a_1 = 1.5$ $a_2 = -0.1$ $a_3 = 0.24$

$$G_0^{F_1} = G_0^{P_1} \times a_0 + G_0^{P_2} \times (1 - a_0) = 31.0 \times 0.6 + 10.5 \times (1 - 0.6) = 22.8$$

 $G_0^{F_2} = G_0^{P_1} \times (1 - a_0) + G_0^{P_2} \times a_0 = 31.0 \times (1 - 0.6) + 10.5 \times 0.6 = 18.7$

Gaussian Mutation

Mut: $I \rightarrow I$ Mut(x) = ($x_0 + Z_0, x_1 + Z_1, ..., x_n + Z_n$) $Z_i \sim N_i(0, 0.01)$

That's all Folks!