<u>Hawkai</u>

Deep Learning for Collision Detection

Saifullah Rais Usha Challa Daniel Elkin Shahbakht Hamdani

W210 Capstone Project

Outline

- 1. Project Goal
- 2. Inspiration
- 3. Value Proposition
- 4. The Architecture
 - Data
 - Analytics
 - Serving
- 5. Performance Analysis
- 6. Demo
- 7. Q&A

Objective

- Use CCTV cameras and deep learning to automate the detection of motor vehicle collisions
- Reduce emergency service response times to save lives

Inspiration

- Survival rate dependent on Emergency Response
- More traffic cameras means less attention span
- Automated notifications can assist monitoring
- Improve emergency response time

1.3 mn

Yearly fatalities caused by car accidents globally

7-10

Median response time in U.S. in minutes (urban vs rural)

50 mn

Surveillance cameras in the US

37k
Fatalities in U.S.

13%

Fatalities prevented by reducing response time to the median

The Traffic Department's 'search' problem

24

Seconds Per Fatality

13%

Reduced Fatalities by improving response time

50 mn

surveillance cameras in US

3-35

Monitors per Operator

30%

Drop in Operator accuracy (*)

Value Proposition

- Existing products focus on Automated Incident Detection, not specifically targeting vehicular collision, such as:
 - Congestion and stopped vehicles
 - Inclement weather
 - Lighting conditions

- We will focus on Motor Vehicle Collisions
 - Difficult problem due to rarity of events
 - Automated detection can decrease EMS dispatch times
 - Video can be used to determine severity of collision

The Architecture

Architecture: Data + Analytics + Serving

DATA

CCTV VIDEOS

YouTube

DATA REPOSITORY

UNLABELLED FOOTAGE

1.6 MILLION VIDEOS

ANALYTICS

PRE PROCESSING

Background Subtraction	Motion Interaction Field
Grayscaling	Optical Flow

SUPERVISED

UNSUPERVISED

SERVING

TABLEAU SERVER

The Data Layer:

- Youtube
- Live Traffic Cameras (Caltran)

The Data (lots of it!)

25 K

hours of live traffic footage recorded

150K

videos processed into optical flow versions

298 mn

Parameters trained in the Autoencoder

374

Caltran cameras recording live traffic feed

~1.5K

Car collisions within 1km radius of these cameras in July (estd.)

1600

US\$ Outstanding on IBM Cloud Resources

Analytics Layer

Preprocessing Techniques - Examples

RAW IMAGE

GRAYSCALE

OPTICAL FLOW

BACKGROUND SUBTRACTED

Employed several preprocessing techniques to help improve our results, both for supervised and unsupervised learning.

Computational Resources

A 96-core server captured 1.6 mn minutes of traffic footage

Focusing on what matters!!

Optical flow captures erratic changes in motion and gives us triggers to detect anomalies

RAW IMAGE OPTICAL FLOW

Analytics: Self-supervised Learning

Video Feature Extraction: YT8M Challenge

FEATURE EXTRACTOR

tfRecord [1 x 1024]

2,048

KB per 1-min video

60

KB per 1-min video

Breakdown:

SELF-SUPERVISED

CONVOLUTION TUNNEL

CONVOLUTION TUNNEL

CONVOLUTION TUNNEL DEEP LAYER

THRESHOLD

RECONSTRUCTION

RECONSTRUCTION

ANOMALY DETECTOR

Self-supervised Learning - Overview

Anomaly Detection: CNN AutoEncoders

- Model is trained to reconstruct a sequence of 3 frames
- Cosine Similarity Score calculated between actual and reconstructed frame sequences
- Higher reconstruction error implies anomalous behavior

RECONSTRUCTION ERRORS

Input image Latent Space Representation

RECONSTRUCTION ERRORS

The Thin Red Line: Anomaly vs. Normality

• Reconstruction Error is lower for normal traffic footage..but just about!

NORMAL

ANOMALY

CNN AutoEncoders: Largest Anomalies Detected

- In the absence of crashes caught in footage, we had to look for 'out of context' crash videos
- These included graphics and aberrations from the standard output anticipated from CCTV

How much error is too much error?

- Anomaly, by construct, is reconstruction error.
- Scene change caused anomalies due to the training context during sequence
- Camera pose can cause reconstruction error (as in the case of incident below)

Analytics: Supervised Learning

Supervised Pipeline:

SUPERVISED

Supervised Learning: Performance Comparison

Supervised Learning: Performance Comparison

Serving: Web Resource and Edge Device

Supervised Model Predictions

Serving Layer #1: Real-time Incident Alerts

HawkAI - Questions?

The interactive dashboard below is monitoring footage from Caltrans for motor vehicle collisions. Click on an individual camera for details or here for further information about Hawkai.

PRESENT

FUTURE

(Archived Slides)

Original Dataset

- Road Collision Videos: sourced from Youtube
- Collated by Ankit et al, Carnegie Mellon University
- 5.2 hours of footage
- 45GB
- 1,416 videos
- 518,256 extracted video frames
- Variety of weather and lighting amongst frames

(a) Number of objects by categories

Caltrans

There are 374 CCTV cameras are available for streaming as open data

DISTRICT 2 DISTRICT 6 DISTRICT 10

Supervised Learning: Training

- **GOOGLENET:** Retraining all the layers outperforms
- **EPOCHS:** 10-30; **OPTIMIZER:** SGD; **LEARNING RATE:** 0.005 0.01

LEARNING CURVE: GOOGLENET (UNFIXED LAYERS)

30 accuracy (val) 97.1928 loss (val) 0.0811788 loss1/accuracy (val) 95.55080000000001 loss1/loss (val) 0.11723 loss2/accuracy (val) 96.6631 loss2/loss (val) 0.085546

LEARNING CURVE: GOOGLENET (FIXED LAYERS)

Supervised Learning: Validation and testing

- Baseline Vision API: 45% accuracy
- Recall rates improve by 15% as data doubles
- Inception V3 has the highest f1 score @ 0.7; Googlenet has the highest precision at 89%

EFFECT OF DATA SIZE ON MODEL PERFORMANCE

ARCHITECTURE-WISE MODEL PERFORMANCE

Supervised Learning: Caltrans Performance

- Model based on labeled frames from YouTube videos (non-Caltrans)
- Very low false positive rate for nighttime videos / videos with sparse traffic

33%

False Positive Rates for daytime videos / videos with dense traffic

captured from 59 videos

48,000 Total -minute video footage

Accidents captured on Traffic Cameras

Serving Layer #2 Demo Video: Jetson TX2

