

Informatics Institute of Technology Department of Computing

Bsc(Hons) Artificial Intelligence and Data Science

Module: CM2604 Machine Learning

Module Coordinator: Mr. Prasan Yapa

Coursework Report

Vinuwara Ronath Jayasuriya RGU ID – 2119942 IIT Student No. – 20210167 Spam dataset is done using the Decision Trees Classification and K Nearest Neighbors Classification (KNN)

Preprocessing techniques

Corpus Preparation

Data Cleaning: This was done by removing duplicates and null values from the dataset.

Removing duplicate in dataset.

Getting the duplicates in the dataset
Data_set.duplicated()
0 False
1 False
2 False
3 False
4 False
4596 False
4597 False
4598 False
4599 False
4600 False
Length: 4601, dtype: bool
removing the duplicate values
Data_set.drop_duplicates(inplace=True)

Removing null values

Data set.isna().sum())	
word_freq_make	0	
word_freq_address	0	
word_freq_all	0	
word_freq_3d	0	
word_freq_our	0	
word_freq_over	0	
word_freq_remove	0	
word_freq_internet	0	
word_freq_order	0	
word_freq_mail	0	
word_freq_receive	0	
word_freq_will	0	
word_freq_people	0	
word_freq_report	0	
word_freq_addresses	0	
word_freq_free	0	
word_freq_business	0	
word_freq_email	0	
word_freq_you	0	

```
0
word_freq_credit
                         0
word_freq_your
                        0
word_freq_font
word_freq_000
                         0
                          0
word_freq_money
word freq hp
                        0
word_freq_hpl
                        0
word_freq_george
                         0
                         0
word_freq_650
word_freq_lab
                        0
word_freq_labs
                        0
word_freq_telnet
                        0
                         0
word_freq_857
word_freq_data
                        0
word_freq_415
                         0
                        0
word_freq_85
                           0
word_freq_technology
word_freq_1999
                         0
word\_freq\_parts
                        0
                         0
word_freq_pm
word_freq_direct
                        0
word_freq_cs
word_freq_meeting
                          0
word_freq_original
                         0
word_freq_project
                         0
                        0
word_freq_re
                        0
word_freq_edu
word_freq_table
                        0
word_freq_conference
                          0
char_freq_;
                      0
char_freq_(
                      0
                      0
char_freq_[
char_freq_!
                      0
char_freq_$
                       0
char_freq_#
capital_run_length_average 0
capital_run_length_longest
capital_run_length_total
spam
dtype: int64
```

Removing the target column

data=Data_set.drop(labels=['spam'], axis=1)

data.head()

Data Transformation: outliers were removed using standard scaling.

Since capital_run_lenghth_avarage,capital_run_length_longest and Capital_run_lenghth_total are outliers

Remove the outliers using the IQR method

code

```
import numpy as np
# Calculate the interquartile range for each column
Q1 = Data set.quantile(0.25)
Q3 = Data set.quantile(0.75)
IQR = Q3 - Q1
# Remove the outliers using the IQR method
Data set outliers removed = Data set[\sim((Data set < (Q1 - 1.5 * IQR)) | (Data set > (Q3 + 1.5 *
IQR))).any(axis=1)]
# Create individual box plots for the columns with outliers removed
fig, axs = plt.subplots(1, 3, figsize=(15, 5))
axs[0].boxplot(Data set outliers removed['capital run length total'], vert=False)
axs[0].set title('Capital Run Length Total (outliers removed)')
axs[0].set xlabel(")
axs[0].set xlim([0, 600])
axs[1].boxplot(Data set outliers removed['capital run length average'], vert=False)
axs[1].set title('Capital Run Length Average (outliers removed)')
axs[1].set xlabel(")
axs[1].set_xlim([0, 10])
axs[2].boxplot(Data set outliers removed['capital run length longest'], vert=False)
axs[2].set title('Capital Run Length Longest (outliers removed)')
axs[2].set xlabel(")
axs[2].set\_xlim([0, 50])
plt.show()
```


Used Standard Scaler on the dataset

Before standard scaler

Mean

Code – performing standard scaler on the dataset

```
# Perform Standard Scaling on the data
scaler = StandardScaler()
scaled_data = scaler.fit_transform(Data_set.iloc[:, :-1])
Data_scaled = pd.DataFrame(data=scaled_data, columns=Data_set.columns[:-1])
```

Boxplot after performing the standard scaler on the dataset

Mean

Variance graph

Performing PCA to the Dataset

Code

Splitting the dataset into the Training set and Test set

- 20 percent of the dataset was used to test the dataset.
- 80 percent of the dataset was used to train the dataset

Code

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 0)
```

Decision Tree Classification

Accuracy of testing dataset: 0.9560570071258907

Summary of the dataset

code

```
from sklearn.metrics import classification_report
predicted_labels = clf.predict(X_test)
classification_report = classification_report(y_test, predicted_labels)
print(classification_report)
```

Classification report

	precision	recall	f1-score	support
0	0.96	0.96	0.96	495
1	0.94	0.94	0.94	347
accuracy			0.95	842
macro avg	0.95	0.95	0.95	842
weighted avg	0.95	0.95	0.95	842

Accuracy of the training dataset of the decision tree: 1.0

Decision tree

Confusion Matrix before pruning

Equations

True positive rate: measures the proportion of positive instances correctly identified as positive.

• FN = False Negative : Number of positive instances that are incorrectly classified as positive.

$$TPR = TP / (TP + FN)$$

False positive rate: measures the proportion of negative instances incorrectly identified as positive.

• TN = true negative : The number of negative instances that are correctly classified as negative

$$FPR = FP / (FP + TN)$$

Experiments

- TP:474 mails are correctly identified as not spam.
- FP: 21 mails are incorrectly identified as spam as not spam.
- TN:331 mails are correctly identified as spam.
- FN: 16 mails are incorrectly identified as not spam as spam.

Receiver Operating Characteristics (ROC): A plot to test sensitivity as the y coordinate versus its 1-specificity or false positive rate (FPR) as the x coordinate, is an effective method of evaluating the performance of diagnostic tests.

AUC score for the code: 0.96

Pruning the Decision tree: Pruning is a technique that removes the parts of the Decision Tree which prevent i t from growing to its full depth. The parts that it removes from the tree are the parts that do not provide the power to classify instances.

A graph is plotted between 'Total impurity of leaves' as Y axis and 'Effective alpha' as the X axis. Using the graph, we can find the optimal 'ccp alpha' value required for pruning. The regularization parameter ccp alpha balances the accuracy and model complexity in decision trees.

- TP: 475 mails are correctly identified as not spam.
- FP: 20 mails are incorrectly identified as spam as not spam.
- TN:326 mails are correctly identified as spam.
- FN: 21 mails are incorrectly identified as not spam as spam.

	precision	recall	f1-score	support
0	0.96	0.96	0.96	495
1	0.94	0.94	0.94	347
accuracy			0.95	842
macro avg	0.95	0.95	0.95	842
weighted avg	0.95	0.95	0.95	842

Decision Tree obtaining after pruning.

K Nearest Neighbors (KNN) Classification Classification Report of KNN

	precision	recall	f1-score	support
0	0.90	0.93	0.91	495
1	0.89	0.85	0.87	347
accuracy			0.90	842
macro avg	0.90	0.89	0.89	842
weighted avg	0.90	0.90	0.90	842

Confusion matrix of KNN

- TP: 480 mails are correctly identified as not spam.
- FP: 51 mails are incorrectly identified as spam as not spam.
- TN: 296 mails are correctly identified as spam.
- FN: 35 mails are incorrectly identified as spam as spam.

KNN Accuracy: 0.8729216152019003

Limitations & Enhancements

Limitations

- Due to the dataset being small the accuracy of the model would be effected.
- Feature engineering step may not have included all the relevant information, making the model performance suboptimal.

Future Enhancements

- Training the model with a larger dataset would increase the accuracy of it
- Utilizing other machine learning algorithms
 - o Support vector machines SVM
 - o Random Forest
- Experiment with different feature engineering techniques