Temporal pattern attention for multivariate time series forecasting

National Taiwan University,
Published online 11 June 2019

Machine Learning (2019) 108:1421-1441 https://doi.org/10.1007/s10994-019-05815-0

Temporal pattern attention for multivariate time series forecasting

Shun-Yao Shih¹ · Fan-Keng Sun¹ · Hung-yi Lee¹

Received: 26 November 2018 / Revised: 1 May 2019 / Accepted: 29 May 2019 / Published online: 11 June 2019

The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2019

Abstract

Forecasting of multivariate time series data, for instance the prediction of electricity consumption, solar power production, and polyphonic piano pieces, has numerous valuable applications. However, complex and non-linear interdependencies between time steps and series complicate this task. To obtain accurate prediction, it is crucial to model long-term dependency in time series data, which can be achieved by recurrent neural networks (RNNs) with an attention mechanism. The typical attention mechanism reviews the information at each previous time step and selects relevant information to help generate the outputs; however, it fails to capture temporal patterns across multiple time steps. In this paper, we propose using a set of filters to extract time-invariant temporal patterns, similar to transforming time series data into its "frequency domain". Then we propose a novel attention mechanism to select relevant time series, and use its frequency domain information for multivariate forecasting. We apply the proposed model on several real-world tasks and achieve state-of-the-art performance in almost all of cases. Our source code is available at https://github.com/gantheory/

 $\label{eq:Keywords} \begin{tabular}{ll} Keywords & Multivariate time series \cdot Attention mechanism \cdot Recurrent neural network \cdot Convolutional neural network \cdot Polyphonic music generation \end{tabular}$

Shun-Yao Shih and Fan-Keng Sun have contributed equally to this study.

Editors: Karsten Borgwardt, Po-Ling Loh, Evimaria Terzi, Antti Ukkonen.

Shun-Yao Shih shunyaoshih@gmail.com Fan-Keng Sun b03901056@ntu.edu.tw

Hung-yi Lee hungvilee@ntu.edu.tw

National Taiwan University, Taipei, Taiwan

Overview

- Motivation
- Description of the addressed problem
- Related work
- Methods
- Experimental Setting and Results
- Conclusions

Motivation

- This paper suggests a new general technique that can be used in multivariate time series (MTS) forecasting
- Multivariate times series are everywhere
- Increase forecasting performance would be valuable in almost every domain and for humanity

"Global Warming Brainstorm" by Richard Scott 33 is licensed under CC BY-NC-SA 2.0

"Graph With Stacks Of Coins" by kenteegardin is licensed under CC BY-SA 2

"Hydro-Power-Plant 61348-480x360" by Public Domain Photos is licensed under CC BY 2.0

Description of the addressed problem

Given $X = \{x_1, x_2, \dots, x_{t-1}\}$, where $x_i \in \mathbb{R}^n$, the task is to predict the value of $x_{t-1+\Delta}$, where Δ is a fixed horizon with respect to different tasks

As common practice, they only use $\{x_{t-w}, x_{t-w+1}, \dots, x_{t-1}\}$ to predict $x_{t-1+\Delta}$, where w is the window size

Fig. 1 Historical prices of crude oil, gasoline, and lumber. Units are omitted and scales are normalized for simplicity

Related work

Univariate time series

- ARIMA
- Linear support vector regression (SVR)

Multivariate time series traditional

- Vector autoregression (VAR)
- Kernel methods, ensembles, Gaussian processes, regime switching

Deep learning

- Univariate
 - RNN, LSTM
- Multivariate
 - LSTNet (2017)

Attention mechanism in LSTNet

LSTNet paper introduces both a recurrent-skip layer and an attention mechanism to rows (time stamps)

Rationale: If you want to predict traffic at a sunday morning, look at traffic at previous sunday mornings

Shortcomings:

- Skip-length must be manually tuned
- Skip model only works on periodic data
- Attention layer looks at relevant hidden states—not relevant time series

from the paper Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks

from https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Attention mechanism in LSTNet

LSTNet paper introduces both a recurrent-skip layer and an attention mechanism to rows (time stamps)

Rationale: If you want to predict traffic at a sunday morning, look at traffic at previous sunday mornings

Shortcomings:

- Skip-length must be manually tuned
- Skip model only works on periodic data
- Attention layer looks at relevant hidden states—not relevant time series

Fig. 1 Historical prices of crude oil, gasoline, and lumber. Units are omitted and scales are normalized for simplicity

Cannot see that crude oil is more important than lumber for gasoline price!

Methods

First calculate hidden states by an RNN (in practice an LSTM) RNN

$$h_{t} = F(h_{t-1}, x_{t})$$

Then apply 1-D convolution to the rows (time series) of the hidden states

Attend to the the relevant rows

Sum rows and perform matrix multiplication to get final state h_t

Fig. 2 Proposed attention mechanism. h_t represents the hidden state of the RNN at time step t. There are k 1-D CNN filters with length w, shown as different colors of rectangles. Then, each filter convolves over m features of hidden states and produces a matrix H^C with m rows and k columns. Next, the scoring function calculates a weight for each row of H^C by comparing with the current hidden state h_t . Last but not least, the weights are normalized and the rows of H^C is weighted summed by their corresponding weights to generate V_t . Finally, we concatenate V_t , h_t and perform matrix multiplication to generate h_t' , which is used to create the final forecast value (Color figure online)

Experimental Setting and Results

The paper first presents an experiment on toy data then on real-world data

Toy examples

Fig. 3 Visualization of the first type of toy examples without interdependencies (left) and the second type of toy examples with interdependencies (right) for D=6, which means that there are 6 time series in each example

Fig. 4 Mean absolute loss and the range of standard deviation in \log_{10} of the first type of toy examples without interdependencies (left) and the second type of toy examples with interdependencies (right), both in ten runs. The baseline indicates the loss if all predicted values are zero

Different real-world datasets

Dataset	L	D	S	B
Solar Energy	52,560	137	10 minutes	172 M
Traffic	17,544	862	1 hour	130 M
Electricity	26,304	321	1 hour	91 M
Exchange Rate	7,588	8	1 day	534 K
MuseData	216-102,552	128	1 beat	4.9 M
LPD-5-Cleansed	1,072–1,917,952	128	1 beat	1.7 G

Table 1 Statistics of all datasets, where L is the length of the time series, D is the number of time series, S is the sampling spacing, and B is size of the dataset in bytes. MuseData and LPD-5-Cleansed both have various-length time series since the length of music pieces varies.

Different real-world datasets

Dataset	L	D	S	B
Solar Energy	52,560	137	10 minutes	172 M
Traffic	17,544	862	1 hour	130 M
Electricity	26,304	321	1 hour	91 M
Exchange Rate	7,588	8	1 day	534 K
MuseData	216-102,552	128	1 beat	4.9 M
LPD-5-Cleansed	1,072–1,917,952	128	1 beat	1.7 G

Table 1 Statistics of all datasets, where L is the length of the time series, D is the number of time series, S is the sampling spacing, and B is size of the dataset in bytes. MuseData and LPD-5-Cleansed both have various-length time series since the length of music pieces varies.

						Sh	ın-Yao Sl	nih* et al.
RAE		Solar I	3			T	iffic	
Horizon	3	6	nergy 12	24	3	6	12	24
	-							
AR	0.1846	0.3242	0.5637	0.9221	0.4491	0.4610	0.4700	0.4696
LRidge	0.1227	0.2098	0.4070	0.6977	0.4965	0.5115	0.5198	0.4846
LSVR	0.1082	0.2451	0.4362	0.6180	0.4629	0.5483	0.7454	0.4761
GP	0.1419	0.2189	0.4095	0.7599	0.5148	0.5759	0.5316	0.4829
SETAR	0.1285	0.1962	0.2611	0.3147	0.3226	0.3372	0.3368	0.3348
Net-Skip	0.0985	0.1554	0.2018	0.3551	0.3287	0.3627	0.3518	0.3852
5 ΓNet-Attn	0.0900	0.1332	0.2202	0.4308	0.3196	0.3277	0.3557	0.3666
Our model	0.0918	0.1296	0.1902	0.2727	0.2901	0.2999	0.3112	0.3118
	± 0.0005	\pm 0.0008	\pm 0.0021	± 0.0045	\pm 0.0095	\pm 0.0022	± 0.0015	± 0.0034
RAE	E Electricity Exchange Rate					ge Rate		
Horizon	3	6	12	24	3	6	12	24
AR	0.0579	0.0598	0.0603	0.0611	0.0181	0.0224	0.0291	0.0378
LRidge	0.0900	0.0933	0.1268	0.0779	0.0144	0.0225	0.0358	0.0602
LSVR	0.0858	0.0816	0.0762	0.0690	0.0148	0.0231	0.0360	0.0576
GP	0.0907	0.1137	0.1043	0.0776	0.0230	0.0239	0.0355	0.0547
SETAR	0.0475	0.0524	0.0545	0.0565	0.0136	0.0199	0.0288	0.0425
STNet-Skip	0.0509	0.0587	0.0598	0.0561	0.0180	0.0226	0.0296	0.0378
STNet-Attn	0.0515	0.0543	0.0561	0.0579	0.0229	0.0269	0.0384	0.0517
Our model	0.0463	0.0491	0.0541	0.0544	0.0139	0.0192	0.0280	0.0372
	\pm 0.0007	\pm 0.0007	\pm 0.0006	\pm 0.0007	± 0.0001	\pm 0.0002	\pm 0.0006	\pm 0.0005
RSE	1	Solar I	nergy			Tro	ffic	
Horizon	3	6	12	24	3	6	12	24
AR.	0.2435	0.3790	0.5911	0.8699	0.5991	0.6218	0.6252	0.6293
LRidge	0.2019	0.2954	0.4832	0.7287	0.5833	0.5920	0.6148	0.6025
LSVR	0.2021	0.2999	0.4846	0.7300	0.5740	0.6580	0.7714	0.5909
GP	0.2259	0.3286	0.5200	0.7973	0.6082	0.6772	0.6406	0.5995
SETAR	0.2374	0.3381	0.4394	0.5271	0.4611	0.4805	0.4846	0.4898
STNet-Skip	0.1843	0.2559	0.3254	0.4643	0.4777	0.4893	0.4950	0.4973
STNet-Attn	0.1816	0.2538	0.3466	0.4403	0.4897	0.4973	0.5173	0.5300
Our model	0.1803	0.2347	0.3234	0.4389	0.4487	0.4658	0.4641	0.4765
	± 0.0008					± 0.0053		± 0.0068
RSE		Elect					ge Rate	
Horizon	3	6	12	24	3	6	12	24

LSTNet-Attn	0.0868	0.0953	0.0984	0.1059	0.0276	0.0321	0.0448	0.0590
Our model	0.0823	0.0916	0.0964	0.1006	0.0174	0.0241	0.0341	0.0444
	± 0.0012	± 0.0018	± 0.0015	± 0.0015	± 0.0001	± 0.0004	± 0.0011	± 0.0006
		-						
CORR		Solar l	Energy			Tra	affic	
Horizon	3	6	12	24	3	6	12	24
AR	0.9710	0.9263	0.8107	0.5314	0.7752	0.7568	0.7544	0.7519
LRidge	0.9807	0.9568	0.8765	0.6803	0.8038	0.8051	0.7879	0.7862
LSVR	0.9807	0.9562	0.8764	0.6789	0.7993	0.7267	0.6711	0.7850
GP	0.9751	0.9448	0.8518	0.5971	0.7831	0.7406	0.7671	0.7909
SETAR	0.9744	0.9436	0.8974	0.8420	0.8641	0.8506	0.8465	0.8443
LSTNet-Skip	0.9843	0.9690	0.9467	0.8870	0.8721	0.8690	0.8614	0.8588
LSTNet-Attn	0.9848	0.9696	0.9397	0.8995	0.8704	0.8669	0.8540	0.8429

CORR		Electricity				Exchange Rate			
Horizon	3	6	12	24	3	6	12	24	
AR	0.8845	0.8632	0.8591	0.8595	0.9734	0.9656	0.9526	0.9357	
LRidge	0.8890	0.8594	0.8003	0.8806	0.9788	0.9722	0.9543	0.9305	
LSVR	0.8888	0.8861	0.8961	0.8891	0.9782	0.9697	0.9546	0.9370	
GP	0.8670	0.8334	0.8394	0.8818	0.8713	0.8193	0.8484	0.8278	
SETAR	0.9402	0.9294	0.9202	0.9171	0.9759	0.9675	0.9518	0.9314	
LSTNet-Skip	0.9283	0.9135	0.9077	0.9119	0.9735	0.9658	0.9511	0.9354	
LSTNet-Attn	0.9243	0.9095	0.9030	0.9025	0.9717	0.9656	0.9499	0.9339	
Our model	0.9429	0.9337	0.9250	0.9133	0.9790	0.9709	0.9564	0.9381	
	+ 0.0004	+ 0.0011	+0.0013	+ 0.0008	+ 0.0003	+ 0.0003	+ 0.0005	+ 0.0008	

Table 2 Results on typical MTS datasets using RAE, RSE and CORR as metrics. Best performance in boldface; second best performance is underlined. We report the mean and standard deviation of our model in ten runs. All numbers besides the results of our model is referenced from the paper of LSTNet [Lai et al.(2018)Lai. Chang, Yang, and Liul.

Different real-world datasets

Dataset	L	D	S	B
Solar Energy	52,560	137	10 minutes	172 M
Traffic	17,544	862	1 hour	130 M
Electricity	26,304	321	1 hour	91 M
Exchange Rate	7,588	8	1 day	534 K
MuseData	216-102,552	128	1 beat	4.9 M
LPD-5-Cleansed	1,072–1,917,952	128	1 beat	1.7 G

Table 1 Statistics of all datasets, where L is the length of the time series, D is the number of time series, S is the sampling spacing, and B is size of the dataset in bytes. MuseData and LPD-5-Cleansed both have various-length time series since the length of music pieces varies.

	MuseData					
Metric	Precision	Recall	F1			
W/o attention	0.84009	0.67657	0.74952			
W/ Luong attention	0.75197	0.52839	0.62066			
W/ proposed attention	0.85581	0.68889	0.76333			

	LPD-5-Cleansed					
Metric	Precision	Recall	F1			
W/o attention	0.83794	0.73041	0.78049			
W/ Luong attention	0.83548	0.72380	0.77564			
W/ proposed attention	0.83979	0.74517	0.78966			

Table 3 Precision, recall, and F1 score of different models on polyphonic music datasets

CNN filters play the role of bases in DFT

Expect CNN filters to learn temporal MTS patterns

Authors calculated the average DFT of the 1-D convolutional filters after training on periodic dataset

Found that the prevailing frequency of the CNN filters were the same as the prevailing frequency in the dataset

This suggests that the CNN filters play the role of bases in DFT

Fig. 7 Magnitude comparison of (1) DFT of CNN filters trained on Traffic with a 3-hour horizon, and (2) every window of the Traffic dataset. To make the figure more intuitive, the unit of the horizontal axis is the period.

Fig. 8 Two different CNN filters trained on Traffic with a 3-hour horizon, which detect different periods of temporal patterns.

Conclusions

- The paper proposed a novel temporal pattern attention mechanism
- Experiments on toy examples and real-world datasets achieves state-of-the-art results
- Visualization of CNN filters verifies that they capture temporal information

