

Improving Closed and Open-Vocabulary Attribute Prediction Using Transformers

Khoi Pham¹, Kushal Kafle², Zhe Lin², Zhihong Ding², Scott Cohen², Quan Tran², Abhinav Shrivastava¹

¹University of Maryland, College Park

²Adobe Research

Project page: https://vkhoi.github.io/TAP/

Motivation

Limitations of existing work

- □ Focus on object physical properties (*adjectives*) and ignore interaction-based properties.
- □ Visual relationship detection study object interactions but require object localization → difficult for large-scale data collection.
- Attributes are abundant in existing image-text datasets but have not been utilized for large-scale attribute learning.

Proposal Large-scale attribute learning from image-text datasets, extendable to open-vocabulary attribute prediction that allows to recognize arbitrary textual attribute phrases.

Adjective

Verb & Verb-Object

Preposition-Object

Large-Scale Attribute (LSA) Dataset

Datasets	# images	# instances	# attr annotations	Type of grounding
VG + GQA	108k	6.5M	10.1M	Box
Flickr30K-Entities	32k	285k	503k	Box
MS-COCO + COCO-Attrs	122k	1.2M	2.2M	Ungrounded + Box
Localized Narratives	312k	1.4M	1.7M	Mouse trace
Total	420k	9.5M	14.6M	

Indian man in mustard jacket is shoveling snow

A man is shoveling snow without a hat or gloves

Man wearing glasses & brown jacket shovels deep snow

Flickr30K-Entities captions

Attribute types	# of classes in C_s
Adjective	1251
Verb	950
Interaction	1278
Location	2047
Total	5526

Statistics of attributes

Transformer for Attribute Prediction (TAP)

Object grounding: Train network to softly localize object when grounding supervision is available → can attend to correct image regions when train/test on ungrounded objects

$$\mathcal{L}_{\text{ground}} = \sum_{i=1}^{N} \frac{1}{|O_i^+|} \sum_{j \in O_i^+} -\log \left(\frac{\exp(z_i^T v_j' / \tau)}{\sum_{k=0}^{L_v - 1} \exp(z_i^T v_k' / \tau)} \right)$$

Qualitative Examples

Adjective: uniformed, mounted, multiple, horseback Verb: sitting, riding, gathering, idling, loitering Interaction: riding horse, holding horse, wearing helmet, wearing coat, wearing beret Location: on horse, on street, on sidewalk, in front of building Horse: Adjective: hairy, adult, brown, furry, white, leased, strong, buff Verb: standing, being ridden, walking Interaction: carrying person

Leaves:
Adjective: yellow, dry, green, golden, orange, colorful, sun-dried, fall-colored, bony
Verb: falling, sprawling, branching, regretting
Interaction: covering street, covering branch
Location: on tree, on ground, above pole

Street light:
Adjective: black, tall, overhead, red, lit up, metal, electric, globed
Verb: glowing, hanging, illuminating, being shrouded Location: in background, on street, on pole

Excited

ocation: on street, on ground, in line

Fishing

Salmon-colored

Classification

$$\mathcal{L}_{ ext{bce}}^{ ext{cl}}(Y,r) = \sum_{i=1}^{N} \sum_{c=1}^{\mathcal{C}_s} - \mathbb{1}_{[y_{i,c}=1]} p_c \log(\sigma(r_{i,c})) - \mathbb{1}_{[y_{i,c}=0]} n_c \log(1 - \sigma(r_{i,c}))$$

Open-vocabulary attribute branch:

Generate class embedding for attribute j

$$q_j = \operatorname{CLIP}(ext{`A photo of a object'})$$

Attribute prediction score of object i against attribute j

$$s_{i,j} = (z_i^{
m T} q_j/ au)/(\|z_i\|\|q_j\|)$$

 $lue{}$ Trained with BCE loss: $\mathcal{L}_{\mathrm{bce}}^{\mathrm{op}}(Y,s)$

Experiments

Methods	LSA pretrained	VAW supervised	mAP	mR@15	mA	F1@15	
RN50-Baseline		✓	63.0	52.1	68.6	63.9	
ML-GCN		\checkmark	63.0	52.8	69.5	64.1	
Sarafianos et al.		\checkmark	64.6	51.1	68.3	64.6	
SCoNE		\checkmark	68.3	58.3	71.5	70.3	
TAP [Ours]		✓	65.4	54.2	67.2	66.4	
RN50-Context	✓	✓	67.3	54.1	69.3	66.1	
TAP [Ours]	\checkmark		67.2	53.8	65.5	61.5	
TAP [Ours]	✓	✓	73.4	63.3	73.5	71.1	

New state-of-the-art result on VAW after pretraining on LSA. Without pretraining, TAP outperforms the baselines and is only lower than SCoNE due to being data hungry.

Methods	$\mathrm{AP}_{\mathrm{seen}}$	$\mathrm{AP}_{\mathrm{unseen}}$	$\mathrm{AP}_{\mathrm{overall}}$	Methods	Bbox	Pose	CLIP te	ext mAP
CLIP (attribute prompt)	2.53	3.37	2.64	PastaNet	\checkmark	\checkmark		46.3
CLIP (object-attribute prompt)	0.97	1.56	1.04	HAKE	\checkmark	\checkmark		47.1
CLIP (combined prompt)	2.81	3.67	2.92	DEFR-RN50			\checkmark	49.7
OpenTAP	14.34	7.62	13.59	OpenTAP			\checkmark	51.7

- □ (Left) On LSA, OpenTAP outperforms CLIP (using custom designed prompts for attribute prediction) → can recognize large # of attributes, even those unseen in the open-world.
- □ (Right) On HICO, finetuned OpenTAP achieves SOTA human-object interaction classification → can recognize well interaction classes.