Автор: Євген Пенцак

Домашнє завдання №9 (від 11.11.2020)

Всього – 100 балів

Заняття 13-14. Оцінка інвестиційних проектів. Реальні опціони. Розширене значення NPV. Приклади розрахунку вартості реальних опціонів.

Завдання 1 (30 балів). Інвестиційні критерії: NPV, IRR, PP, DPP, MIRR, NPV-BE.

Для виробництва пілет з дерева компанія *Пілет Продакшн* планує придбати старе приміщення та зробити його ремонт протягом 2019 року загальною вартістю 3 млн. гривень. У 2020 році компанія інсталює обладнання загальною вартістю 5 млн. грн., почне виробництво і реалізацію готової продукції вартістю 5 млн. грн. Причому в наступні 5 років обсяги продаж зростуть до 15 млн грн., відповідно.

Відомо, що витрати на виробництво пілет складають 70% від вартості їх реалізації (без ПДВ), а витрати на адміністрування та збут — приблизно 5% від вартості реалізації (без ПДВ). Для початку виробництва пілет компанія повинна закупити додатково матеріалів (опилки та інші відходи деревообробки) приблизно на 10% від обсягів продаж за відповідний період (робочий капітал). У наступні роки робочий капітал (сировина, товари на складі) також приблизно становитиме 10% від річних продаж за відповідний період. Інвестиції в робочий капітал зазначені у звіті про рух грошових коштів. Ми використовуємо лінійну 5-річну амортизацію обладнання, тобто щорічна амортизація складе 5000/5=1000 тис. грн. Фінансова модель інвестиційного проекту знаходиться у файлі Case production.xls.

Компанія планує використати для інвестицій власні кошти на рівні 30% і очікує на них доходність 30%, а також залучить банківський кредит на 70% необхідного капіталу з процентною ставкою 20%. Ставка податку на прибуток компанії складає 18%.

Коментар: Мені здається у завданні є помилка, так як в текстовій умові задано витрати Змлн в 2019, а в таблиці 4млн. В подальших обчисленнях буду використовувати 4млн.

1.1 **(5 балів)**. Знайдіть середньозважену вартість капіталу компанії використовуючи формулу $WACC = \left\lceil \frac{D}{V} \times (1-T_c) \times r_{debt} \right\rceil + \left(\frac{E}{V} \times r_{equity} \right)$

де D — величина боргу, E — власний капітал, V=D+E, T — ставка податку на прибуток.

За умовами маємо: WACC = (0.7 * (1 - 0.18) * 0.2) + (0.3 * 0.3) = 0.2048

1.2 **(10 балів)**. Знайдіть наступні показники інвестиційної привабливості даного проекту, використовуючи WACC з п.1.1:

3 використанням excel:

1) NPV = 1048;

інвестиціі <u> —4</u> 000 <u> </u>	-טטטט	-1000	U	U	U	4404
-4000	-4475	2255	3255	3255	3255	7707
0,70						
0,30						
0,30						
0,20						
0,2048						
=NPV(B27;C22:H22)+	B22					
	-4000 0,70 0,30 0,30 0,20 0,2048	-4000 -4475 0,70 0,30 0,30 0,20 0,2048	-4000 -4475 2255	-4000 -4475 2255 3255	-4000 -4475 2255 3255	-4000 -4475 2255 3255 3255 3255 3255 0,70 0,30 0,30 0,20 0,20 0,2048

2) IRR=24.77%

= Вільний грошовий потік	-4000	-4475	2255	3255	3255	3255	7707
Частка боргу	0,70						
Власний капітал	0,30						
Бажана доходність на власний капітал	0,30						
Кредитна ставка	0,20						
WACC	0,2048						
NPV (WACC)	1 048						
IRR	=IRR(B22:H22)						

3) РІ = 26% (беручи до уваги, що перша інвестиція була 4млн)

	0	1	2	3	4	5	6		
	2019	2020	2021	2022	2023	2024	2025		
ACF	-4000	-8475	-6220	-2965	290	3545	11252		
DCF	-4000	-3729,1667	1565,9722	1883,6806	1569,7338	1308,1115	2581,0587		
ADCF	-4000	-7729,1667	-6163,194	-4279,514	-2709,78	-1401,669	1179,3901		

Знаходимо рік коли маємо зміну знаку і додаємо ще відношення для того щоб визначити точну частину року коли наступив цей час. Детальні обчслення додаю в excel.

- 4) PP = 3+(2965/3255)=3.91
- 5) DPP = 5.46

Зробіть висновок про інвестиційну привабливість даного інвестиційного проекту на основі критеріїв NPV та IRR.

Проект є достатньо інвестиційно привабливим. Ну принаймні не збитковий на даному часовому проміжку. Проте дані показники краще використовувати для порівняння двох чи більше проектів між собою, тоді таке порівняння буде більш правильним, так як для різного роду проектів і часових рамок ці показники різні. NPV>0, Також маємо IRR більший за коефіцієнт дисконтування, отже даний проект треба приймати.

- 1.3 **(5 балів)**. Знайдіть NPV-BEP (NPV точку беззбитковості) даного інвестиційного проекту, тобто такий рівень продаж компанії протягом 2021-2025рр., при якому NPV проекту буде дорівнювати 0.
- Дане значення підібрав вручну, воно для нашого проекту буде становити 12759. За допомогою зміни значень обсягу продажів в excel, знайшов таке значення яке переводить NPV в нуль.
- 1.4 **(10 балів)**. а) Побудуйте графік впливу дисконтної ставки інвестиційного проекту на показник NPV (аналіз чутливості);
 - б) Побудуйте графік впливу вартості обладнання інвестиційного проекту на показник NPV;
 - в) Побудуйте графік впливу обсягів продаж інвестиційного проекту у 2021-2025 рр. на показник NPV.

Я не експерт excel, але старався) вручну підібрав значення і побудував графіки

Як бачимо для кожного з випадків отримали лінійну залежність. Тобто зміна даних показників напряму впливає на NPV і може бути фактором до зростання або падіння інвестиційної привабливості проекту.

Компанія ПІЛЕТ ПРОДАКШН

Рух грошових коштів

Рух грошових коштів	2040	2020	2024	2022	2022	2024	2025
	2019	2020	2021	2022	2023	2024	2025
Інвестиції:	4000	5000	0	0	0	0	0
Капітальні витрати	4000		O	O	O	O)
Чистий робочий капітал (10%	0	500	1000	0	0	0	0
від продажів)							
Загальна сума інвестицій	4000	5500	1000	0	0	0	0
Повернення інвестицій:							
Ліквідаційна вартість (20%							2952
total*(1-0,18) for taxes)							
Чистий робочий капітал							1500
(повне повернення)							
Доходи до сплати відсотків							
та податків (EBIT):		E000	45000	45000	45000	45000	45000
Обсяг продажів		5000	15000	15000	15000	15000	15000
Собівартість проданих		3500	10500	10500	10500	10500	10500
товарів (70% продаж)		3300	10300	10300	10300	10300	10300
		250	750	750	750	750	750
SG&A (5% продаж)							
Амортизація (5000/5)			1000	1000	1000	1000	1000
		3750	12250	12250	12250	12250	12250
Загальна сума витрат							
EBIT(прибуток до виплати		1250	2750	2750	2750	2750	2750
процентів і податків)		005	405	405	405	405	405
Податок на прибуток (18%)		225	495	495	495	495	495
- NODAT		1025	2255	2255	2255	2255	2255
= NOPAT			4000	4000	4000	4000	4000
+Амортизація			1000	1000	1000	1000	1000
Інвестиції	-4000	-5500	-1000	0	0	0	4452
= Вільний грошовий потік	-4000	-4475	2255	3255	3255	3255	7707

Завдання 2 (70 балів).

Керівництво компанії оцінює можливість купівлі нової пічки, термін експлуатації якої складає 2 роки. Вартість пічки 5000 доларів, а майбутні грошові потоки залежать від попиту на продукцію компанії.

2.1 (5 балів) Які спільні ймовірності реалізації подій? Обрахунки роблю в excel. Тут буду додавати скріншоти. Виділив знайдені відповідні спільні ймовірності.

	ть ЧГП	Спіьна ймовірніст		
0,2	2000	0,06		
0,4	2500			
0,4	3000			
		0		
0,3	3000	0,21		
0,3	4000	0,21		
0,4	6000	0,28		
	0,4 0,3 0,3	0,4 2500 0,4 3000 0,3 3000 0,3 4000		

2.2 (5 балів) Знайдіть чисту поточну вартість (NPV) для кожної вітки. Для дисконтування грошових потоків використайте без ризикову процентну ставку 15%. За відповідною формулою порахував відповідну колонку

A	В	С	D E	F	G	Н	- 1	J	K	L M	0	P
	Початкові витрати	Попоти	рва ймовірніс	u Unormi	грошовий потік	VMODUO	ймовірніс	OT1	чгп	Спіьна ймовірність	NPV	o*NPV
	початкові витрати	ПОчатко	ова имовірніс	ь чистии	грошовии потк	УМОВНА	имовірніс	ыь	7111	Співна имовірніств	INFV	DINEV
						0,2			2000	0,06	-2183,4	
		0,3		1500		0,4			2500	0,12	-1805,3	
						0,4			3000	0,12	-1427,2	
										0		
	-5000	0,7		2500		0,3			3000	0,21	-557,7	
)						0,3			4000	0,21	198,5	
1						0,4			6000	0,28	1710,8	
2												
1											rate	0,15
											NPV	
											STD	
3											CR	
7											PROB(NPV<0)	

2.3 (10 балів) Обчисліть очікуване значення NPV та стандартне відхилення NPV, коефіцієнт покриття CR та ймовірність неуспіху проекту.

Α	В	С	D	Е	F	G	Н	- 1	J	K	L M	0	Р	Q	R	S
	Початкові витрати	Початк	ова ймовір	ність	Чистий	грошовий потік	Умовна	а ймовірн	ість	чгп	Спіьна ймовірніст	ь NPV	p*NPV	p*(NPV-MEAN)^2		Abandon
							0,2			2000	0,06	-2183,4	-131,0	256610,6		
		0,3			1500		0,4			2500	0,12	-1805,3	-216,6	342724,3		
							0,4			3000	0,12	-1427,2	-171,3	206532,7		
											0					
	-5000	0,7			2500		0,3			3000	0,21	-557,7	-117,1	41090,3		
							0,3			4000	0,21	198,5	41,7	20678,7		
							0,4			6000	0,28	1710,8	479,0	933686,2		
												mean npv	-115,3	1801322,9		
												rate	0,15			
												NPV	-115,3			
												STD	1342,1			
												CR	-0,0859			
												CV	-11,6391595	s		
												PROB(NPV<0)	53,42%			

Провів відповідні обчислення і знайшов середнє і дисперсію NPV за заданими ймовірностями, та ймовірність неуспіху, яка дуже висока.

2.4 (10 балів) Обчисліть очікуване значення NPV та стандартне відхилення NPV, якщо компанія може відмовитись від виконання проекту вкінці першого року за 2000 дол. Який коефіцієнт покриття CR та ймовірність неуспіху проекту? Який висновок ви можете зробити? Яка вартість опціону відмови?

Якщо продавати проект то тільки якщо компанія піде за першим сценарієм бо за другим немає сенсу, так як там великі грошові потоки.

								-	Гаsk 2.4			
ть	Чистий грошовий потік	Умовна ймовірністі	чгп	Спіьна ймовірність	NPV	p*NPV	p*(NPV-MEAN ^		USIC ZY		p*(NPV-MEAN)^2	Abandon
		0,2	2000	0,06	-2183,4	-131,0	25661	10,6				
	1500	0,4	2500	0,12	-1805,3	-216,6	342 2	24,3	-1087,0	-326,086957	406790,9992	
		0,4	3000	0,12	-1427,2	-171,3	206	32,7				
				0								
	2500	0,3	3000	0,21	-557,7	-117,1	410	90,3	-557,7	-117,10775	41090,33344	
		0,3	4000	0,21	198,5	41,7	2067	78,7	198,5	41,68241966	20678,74257	
		0,4	6000	0,28	1710,8	479,0	9336	6,2	1710,8	479,0170132	933686,2004	
					mean_npv	-115,3	180132	2,9			1402246,276	
					rate	0,15		$\mathbf{\Lambda}$				
					NPV	-115,3		1			NPV	77
					STD	1342,1		- 1			STD	1184
					CR	-0,0859					CR	0,0654509
					CV	-11,6391595					CV	15,278614
					PROB(NPV<0)	53,42%					PROB(NPV<0)	0,4739074

Як ми бачимо при такому рішенні ризиковість проекту дещо падає, проте вона всерівно дуже висока, і становить 47%. Тому проект всерівно не привабливий.

2.5 (10 балів) Припустимо, що є можливість здійснити додаткову інвестицію в розмірі 1000 дол. вкінці першого року, коли грошовий потік складає 2500 грн., щоб наступного року замість грошових потоків

Стан 1	0,3	3000
Стан 2	0,3	4000
Стан 3	0,4	6000

Стан 1	0,3	3500
Стан 2	0,3	6000
Стан 3	0,4	9000

Обчисліть очікуване значення NPV та стандартне відхилення NPV у цьому випадку. Який коефіцієнт покриття CR та ймовірність неуспіху проекту. Який висновок можна зробити? Яка вартість опціону розширення?

По факту потрібно після першого року в вітці де буде проведена інвестиція відняти її

Тобто значення грошового потоку буде становити вже 1500 замість 2500 і також змінити відповідні грошові потоки на другому році для відповідної вітки. Отримаємо такі результати:

Завдання 2.5											
Початкові витрати	Початко	ва ймовірність	Чистий	грошовий потік	Умовна	ймовірність	ЧГП	Спіьна ймовірність	NPV	p*NPV	p*(NPV-MEAN)^2
					0,2		2000	0,06	-2183,4	-131,0	256610,6
	0,3		1500		0,4		2500		-1805,3		
	0,0		1000		0,4		3000		-1427,2		
					0,1			0		,0	200002,
-5000	0,7		1500		0,3		3500	0,21	-179,6	-37,7	867,5
					0,3		6000	0,21	1710,8	359,3	700264,7
					0,4		9000	0,28	3979,2	1114,2	4694221,6
									mean_npv	916,8	6201221,4
									rate	0,15	
									NPV	916,8	
									STD	2490,2	
									CR	0,36817	
									CV	2,716142507	
									PROB(NPV<0)	35,64%	
										,,	

Як бачимо CR: 0.36 а ймовірність неуспіху 35.64%, NPV=917

Як бачимо ймовірність успіху значно виросла. Проте вона ще досі не достатньо хороша, щоб прийняти такий проект. Оптимальне значення (поріг) зазвичай має бути 10-15%

2.6 (10 балів) Обчисліть значення NPV та стандартне відхилення NPV у випадку можливості скористатись як опціоном відмови так і опціоном розширення. Який коефіцієнт покриття CR та ймовірність неуспіху проекту? Який висновок можна зробити? Яка вартість двох опціонів разом: відмови та розширення? Як бачимо CR: 0.42 а ймовірність неуспіху 33.57% що краще ніж в опціоні суто розширення.

							Task 2.4			
Умовна	ймовірність	ЧГП	Спіьна ймовірність	NPV	p*NPV	p*(NPV-MEAN)^2			p*(NPV-MEAN)^2	Abandon
0,2		2000	0,06	-2183,4	-131,0	256610,6				
0,4		2500	0,12	-1805,3	-216,6	342724,3	-1087,0	-326,086957	1447511,98	
0,4		3000	0,12	-1427,2	-171,3	206532,7				
			0							
0,3		3500	0,21	-179,6	-37,7	867,5	-179,6	-37,7126654	867,4926119	
0,3		6000	0,21	1710,8	359,3	700264,7	1710,8	359,2627599	700264,6503	
0,4		9000	0,28	3979,2	1114,2	4694221,6	3979,2	1114,177694	4694221,647	
				mean_npv	916,8	6201221,4			6842865,77	
				rate	0,15					
				NPV	916,8				NPV	1109,
				STD	2490,2				STD	2615,
				CR	0,36817				CR	0,42419292
				CV	2,716142507				CV	2,35741792
				PROB(NPV<0)	35,64%				PROB(NPV<0)	0,33571256

Що краще ніж в попередньому пункті.

2.7 (10 балів) Припустимо, що є можливість здійснити додаткову інвестицію в розмірі 500 у.о. вкінці першого року з метою зменшення витрат на виробництво, коли грошовий потік складає 1500 у.о., щоб наступного року замість грошових потоків

Стан 1	0,2	2000
Стан 2	0,4	2500
Стан 3	0,4	3000

отримати

Стан 1	0,2	3000
Стан 2	0,4	3500
Стан 3	0,4	5000

Обчисліть очікуване значення NPV та стандартне відхилення NPV у цьому випадку. Який коефіцієнт покриття CR та ймовірність неуспіху проекту. Який висновок можна зробити? Яка вартість опціону зменшення витрат?

Висновок: дана можливість є краща ніж базовий опціон, проте навіть за зменшення витрат ризики збитковості досить великі (42.7%)

Завдання 2.7											
Початкові витрати	Початкова ймовірність		Чистий грошовий потік		Умовна ймовірність		ЧГП	Спіьна ймовірність	NPV	p*NPV	p*(NPV-MEAN)^2
					0,2		3000	0,06	-1427,2	-85,6	103266,4
	0,3		1000		0,4		3500		-1049.1		
					0,4		5000		85,1		
								0			
-5000	0,7		2500		0,3		3000	0,21	-557,7	-117,1	41090,
					0,3		4000	0,21	198,5	41,7	20678,
					0,4		6000	0,28	1710,8	479,0	933686,2
									mean_npv	202,3	1208186,
									rate	0,15	
									NPV	202,3	
									STD	1099,2	
									CR	0,18402	
									CV	5,43423991	
									PROB(NPV<0)	42,70%	

2.8 (10 балів) Обчисліть значення NPV та стандартне відхилення NPV у випадку можливості скористатись як опціоном відмови, опціоном зменшення витрат, так і опціоном розширення. Який коефіцієнт покриття CR та ймовірність неуспіху

проекту? Який висновок можна зробити? Яка вартість трьох опціонів разом: відмови, зменшення витрат та розширення?

авдання 2.7										Task 2.8			
Початкові витрати	Початкова ймовірність		Чистий грошовий потік	Умовна ймовірність ЧГП		Спіьна ймовірність	NPV	p*NPV	p*(NPV-MEAN)^2			p*(NPV-MEAN)^2	Abandon
				0,2	3000	0,06	-1427,2	-85,6	103266,4				
	0,3		1000	0,4	3500		-1049,1				-456,521739	1876418,037	
				0,4	5000	0,12	85,1	10,2	4818,2				
						0							
-5000	0,7		1500	0,3	3500	0,21	-179,6	-37,7	867,5	-179,6	-37,7126654	867,4926119	
				0,3	6000	0,21	1710,8	359,3	700264,7	1710,8	359,2627599	700264,6503	
				0,4	9000	0,28	3979,2	1114,2	4694221,6	3979,2	1114,177694	4694221,647	
							mean_npv	1234,4	5608084,6			7271771,828	
							rate	0,15					
							NPV	1234,4				NPV	979
							STD	2368,1				STD	2696,
							CR	0,52125				CR	0,3631231
							CV	1,918446837				CV	2,753886
							PROB(NPV<0)	30.11%				PROB(NPV<0)	0.3582564

У даному випадку, бачимо, що зменшення витрат і розширення буде найоптимальніше з погляду на показник ймовірності беззбитковості, тоді як відмова погіршує загальне становище у цьому випадку.