Notation Guide

Before we jump into Markov Chains and their role in AI agents, let's get comfortable with the notation we'll use. Think of these symbols as a language for describing how systems change, how agents perceive and act, and how we predict what's next. They're designed to be intuitive yet precise, connecting math to real-world ideas like weather shifts or game moves. Each symbol captures a piece of the puzzle—states, transitions, observations, and decisions—and we'll build on them throughout the chapter.

What's This All About?

At its core, this notation tracks a system's states (what's happening), how they shift over time or actions, what an agent sees, and how it decides. It's flexible enough to model a robot navigating a room or a player strategizing in a game. We'll start with Markov Chains—where states are all we need—and later hint at how this grows into hidden states, actions, and beliefs. Ready? Here's the lineup:

Core Symbols

• \$s\$: Hidden States

The underlying "truths" or conditions of a system—like the weather (sunny or rainy) or a robot's location (room A or B). These are what we're tracking or guessing. In visuals, they're bold (\$s\$) to grab your eye as the foundation of everything.

• *\$o\$*: Observations

The clues or sensory data we get about states—like seeing clouds (hinting at rain) or hearing a beep (suggesting a position). They're italicized (\$0\$) in text to stand apart from states, since they're what we perceive, not the full truth.

- \$a\$: Actions
 - Choices an agent makes to influence the system—like turning left or flipping a switch. They're underlined (\$a\$) in examples to spotlight decisions that shape what happens next.
- \$t(s,s')\$: Transition Probability
 The chance of moving from state \$s\$ to \$s'\$—think "what's the next step?" It's a number
 between 0 and 1 (e.g., 0.7 chance of rain after sun), capturing how states evolve. For Markov
 Chains, this is the star of the show.
- \$t(s,s',a)\$: Action-Driven Transition Probability
 How likely \$s'\$ follows \$s\$ when action \$a\$ is taken—like "if I turn right, what's next?" It adds control to transitions, hinting at decision-making we'll see in MDPs.
- \$e(o|s)\$: Emission Probability
 The likelihood of observing \$o\$ given state \$s\$—answering "what do I see if this is true?" For example, a 0.9 chance of clouds if it's raining. This previews HMMs, where states hide behind observations.

PROF

- \$b(s)\$: Belief Distribution
 The agent's best guess about \$s\$, based on what it's seen—like "I'm 80% sure it's raining." It's a probability spread over states, bridging perception to action, and nods to POMDPs.
- \$r(s,a)\$: Reward
 The payoff for being in \$s\$ and taking \$a\$—think "was that a good move?" Maybe +5 points for a win. It's key for goal-driven agents, setting the stage for MDPs.

How We'll Use Them

In this chapter, Markov Chains lean on s and t(s,s') to model state shifts—like a game board's changing positions. We'll hint at how e(o|s) hides states in HMMs, t(s,s',a) and r(s,a) add decisions in MDPs, and b(s) handles uncertainty in POMDPs. Each symbol builds intuition for agents interacting with environments.

Compared to Classical Notations

Our notation is custom but echoes classics:

- Sutton & Barto (MDPs): Uses \$S\$ for states, \$P(s'|s,a)\$ for transitions, and \$R(s,a)\$ for rewards. We simplify with \$s\$, \$t\$, and \$r\$, making transitions mnemonic ("t" for transition) and states lowercase for readability.
- Rabiner (HMMs): Has \$A\$ for transitions, \$B\$ for emissions, and \$\pi\$ for initial states. Our \$t\$
 and \$e\$ are similar but unified across concepts, avoiding extra letters.
- Standard Probability: Often \$P(s_{t+1}|s_t)\$ for transitions—we condense to \$t(s,s')\$ for brevity and agent focus. Ours is streamlined for students, blending agent intuition with math, while staying flexible for visuals (\$s\$, \$o\$, \$a\$) and future chapters.

[Image Placeholder: Diagram of \$s\$ and \$t(s,s')\$ in a simple system—add your sketch here!]