HW 3: TVM

2021-01 인공지능 플랫폼 최적화 HW/SW Optimization for Machine Learning 박영준

TVM

TVM

- 자동화된 딥러닝 최적화 프레임워크 Stack
- CPU, GPU, NPU, FPGA 등의 다양한 Architecture에 적용 가능

TVM의 특징

- Python 스크립트로 되어 있어 비교적 쉬운 프로그래밍
- Tensorflow, pytorch 등의 Framework에서 생성된 모델의 TVM 적용 가능
- pre-build된 모듈을 동일한 Architecture의 다른 디바이스에서 사용가능

• TVM의 한계

- 오픈소스이기 때문에 지속적으로 기능 변경이 있다.
- 현재 Training 이 불가능하다.

TVM

TVM paper: https://arxiv.org/pdf/1802.04799.pdf

TVM: Installation

- Install from Source
 - 아래의 Github 주소에서 TVM 소스코드를 다운 https://github.com/apache/tvm
 - 설치 안내를 바탕으로 소스코드를 빌드

https://tvm.apache.org/docs/install/from_source.html

Quick Start Tutorial for Compiling Deep Learning Models

- 이 단계에서는 Relay python frontend로 Neural Network를 구축하고 TVM을 사용하는 NVIDIA GPU 용 런타임 라이브러리를 생성하는 방법을 수행합니다.
- VGG16 모델을 TVM으로 컴파일 해보고 생성되는 모델 코드와 결과값을 확인해볼 수 있습니다.

Pre-requisite

- CUDA 및 LLVM 설치가 반드시 필요합니다.

Reference: Installing a CUDA on Ubuntu OS:

URL: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html

Reference: Installing a llvm with Source Code (recommend version: 8.0.0)

Source code: https://releases.llvm.org/download.html

Baseline

- 이번 단계의 Baseline을 아래의 링크에서 확인할 수 있습니다.

URL: https://tvm.apache.org/docs/tutorials/get_started/relay_quick_start.html

- Quick Start Tutorial for Compiling Deep Learning Models
 - vgg16.py

```
import numpy as no
from tym import relay
from tvm.relay import testing
import tym
from tym import te
from tvm.contrib import graph_executor
import tym.testing
batch_size = 1
num class = 1000
image_shape = (3, 224, 224)
data_shape = (batch_size,) + image_shape
out_shape = (batch_size, num_class)
mod, params = relay.testing.vgg.get_workload(
    num_layers=16, batch_size=batch_size, image_shape=image_shape
opt level = 3
target = tvm.target.cuda()
with tvm.transform.PassContext(opt level=opt level):
   lib = relay.build(mod, target, params=params)
# create random input
dev = tvm.cuda()
data = np.random.uniform(-1, 1, size=data_shape).astype("float32")
# create module
module = graph executor.GraphModule(lib["default"](dev))
# set input and parameters
module.set input("data", data)
```

```
# run
module.run()
# get output
out = module.get output(0, tvm.nd.empty(out shape)).asnumpy()
# Print first 10 elements of output
print(out.flatten()[0:10])
# save the graph, lib and params into separate files
from tym.contrib import utils
temp = utils.tempdir()
path_lib = temp.relpath("deploy_lib.tar")
lib.export_library(path_lib)
print(temp.listdir())
# load the module back.
loaded lib = tvm.runtime.load module(path lib)
input_data = tvm.nd.array(data)
module = graph_executor.GraphModule(loaded_lib["default"](dev))
module.run(data=input data)
out deploy = module.get output(0).asnumpy()
# Print first 10 elements of output
print(out deploy.flatten()[0:10])
# check whether the output from deployed module is consistent with original one
tvm.testing.assert allclose(out deploy, out, atol=1e-5)
```

- Quick Start Tutorial for Compiling Deep Learning Models
 - 실행 결과 출력부분

```
import numpy as no
from tym import relay
from tvm.relay import testing
import tym
from tym import te
from tvm.contrib import graph_executor
import tym.testing
batch_size = 1
num class = 1000
image_shape = (3, 224, 224)
data_shape = (batch_size,) + image_shape
out_shape = (batch_size, num_class)
mod, params = relay.testing.vgg.get_workload(
    num_layers=16, batch_size=batch_size, image_shape=image_shape
opt level = 3
target = tvm.target.cuda()
with tvm.transform.PassContext(opt level=opt level):
   lib = relay.build(mod, target, params=params)
# create random input
dev = tvm.cuda()
data = np.random.uniform(-1, 1, size=data_shape).astype("float32")
# create module
module = graph executor.GraphModule(lib["default"](dev))
# set input and parameters
module.set input("data", data)
```

```
# run
module.run()
# get output
out = module.get output(0, tvm.nd.empty(out shape)).asnumpy()
# Print first 10 elements of output
print(out.flatten()[0:10])
# save the graph, lib and params into separate files
from tym.contrib import utils
temp = utils.tempdir()
path_lib = temp.relpath("deploy_lib.tar")
lib.export_library(path_lib)
print(temp.listdir())
# load the module back.
loaded lib = tvm.runtime.load module(path lib)
input_data = tvm.nd.array(data)
module = graph executor.GraphModule(loaded lib["default"](dev))
module.run(data=input data)
out deploy = module.get output(0).asnumpy()
# Print first 10 elements of output
print(out deploy.flatten()[0:10])
# check whether the output from deployed module is consistent with original one
tvm.testing.assert allclose(out deploy, out, atol=1e-5)
```

- Quick Start Tutorial for Compiling Deep Learning Models
 - 아래와 실행 결과를 screenshot으로 제출
 - (1) 연산 결과가 올바르게 출력 되는지 (직접 수행한 결과가 아래와 동일한 숫자일 필요는 없습니다.)

```
[0.00100052 0.00099585 0.00099843 0.00100801 0.00099786 0.00100267 0.00100183 0.00100203 0.00099908 0.0010008 ]
```

(2) 올바르게 저장된 네트워크 파일 이름과 이를 load한 후 위와 동일한 연산 결과가 나오는지

```
['deploy_lib.tar']
[0.00100052 0.00099585 0.00099843 0.00100801 0.00099786 0.00100267 0.00100183 0.00100203 0.00099908 0.0010008 ]
```

Schedule Primitives in TVM

- 동일한 결과를 도출하는 연산 방법에는 여러가지가 있지만, 그 방법에 따라 성능이 달라지기 때문에 TVM을 이용하여 scheduling을 수행해야 합니다.
- 이번 단계에서는 TVM에서 제공하는 다양한 primitive로 연속적인 연산을 scheduling 하는 방법을 수행합니다.
- 이번 단계에서 사용하는 primitive는 split, tile, fuse, reorder, bind 총 5가지를 사용합니다.

Baseline

이번 단계의 Baseline을 아래의 링크에서 확인할 수 있습니다.

URL: https://tvm.apache.org/docs/tutorials/language/schedule_primitives.html

- Schedule Primitives in TVM
 - schedule primitive.py

```
from future import absolute import, print function
import tym
from tym import te
import numpy as np
# declare some variables for use later
n = te.var("n")
m = te.var("m")
# declare a matrix element-wise multiply
A = te.placeholder((m, n), name="A")
B = te.placeholder((m, n), name="B")
C = te.compute((m, n), lambda i, j: A[i, j] * B[i, j], name="C")
s = te.create schedule([C.op])
# lower will transform the computation from definition to the real
# callable function. With argument `simple mode=True`. it will
# return you a readable C like statement, we use it here to print the
# schedule result.
print(tvm.lower(s, [A, B, C], simple_mode=True))
A = te.placeholder((m,), name="A")
B = te.compute((m,), lambda i: A[i] * 2, name="B")
s = te.create_schedule(B.op)
xo, xi = s[B].split(B.op.axis[0], factor=32)
print(tvm.lower(s, [A, B], simple_mode=True))
A = te.placeholder((m,), name="A")
B = te.compute((m,), lambda i: A[i], name="B")
s = te.create_schedule(B.op)
bx, tx = s[B].split(B.op.axis[0], nparts=32)
print(tvm.lower(s, [A, B], simple mode=True))
```

```
A = te.placeholder((m, n), name="A")
B = te.compute((m, n), lambda i, j: A[i, j], name="B")
s = te.create schedule(B.op)
xo, yo, xi, vi = s[B].tile(B.op.axis[0], B.op.axis[1], x factor=10, y factor=5)
print(tvm.lower(s, [A, B], simple mode=True))
A = te.placeholder((m, n), name="A")
B = te.compute((m, n), lambda i, j: A[i, j], name="B")
s = te.create schedule(B.op)
# tile to four axes first: (i.outer, j.outer, i.inner, j.inner)
xo, yo, xi, yi = s[B].tile(B.op.axis[0], B.op.axis[1], x factor=10, y factor=5)
# then fuse (i.inner, j.inner) into one axis: (i.inner.j.inner.fused)
fused = s[B].fuse(xi, yi)
print(tvm.lower(s, [A, B], simple mode=True))
A = te.placeholder((m, n), name="A")
B = te.compute((m, n), lambda i, j: A[i, j], name="B")
s = te.create_schedule(B.op)
# tile to four axes first: (i.outer, j.outer, i.inner, j.inner)
xo, yo, xi, yi = s[B].tile(B.op.axis[0], B.op.axis[1], x_factor=10, y_factor=5)
# then reorder the axes: (i.inner, j.outer, i.outer, j.inner)
s[B].reorder(xi, yo, xo, yi)
print(tvm.lower(s, [A, B], simple_mode=True))
A = te.placeholder((n,), name="A")
B = te.compute(A.shape, lambda i: A[i] * 2, name="B")
s = te.create schedule(B.op)
bx, tx = s[B].split(B.op.axis[0], factor=64)
s[B].bind(bx, te.thread_axis("blockIdx.x"))
s[B].bind(tx, te.thread_axis("threadIdx.x"))
print(tvm.lower(s, [A, B], simple_mode=True))
```

- Schedule Primitives in TVM
 - Matrix multiply가 정의된 부분

```
from future import absolute import, print function
import tym
from tym import te
import numpy as np
# declare some variables for use later
n = te.var("n")
m = te.var("m")
# declare a matrix element-wise multiply
A = te.placeholder((m, n), name="A")
B = te.placeholder((m, n), name="B")
C = te.compute((m, n), lambda i, j: A[i, j] * B[i, j], name="C")
s = te.create schedule([C.op])
# lower will transform the computation from definition to the real
# callable function. With argument `simple mode=True`. it will
# return you a readable C like statement, we use it here to print the
# schedule result.
print(tvm.lower(s, [A, B, C], simple_mode=True))
A = te.placeholder((m,), name="A")
B = te.compute((m,), lambda i: A[i] * 2, name="B")
s = te.create_schedule(B.op)
xo, xi = s[B].split(B.op.axis[0], factor=32)
print(tvm.lower(s, [A, B], simple_mode=True))
A = te.placeholder((m,), name="A")
B = te.compute((m,), lambda i: A[i], name="B")
s = te.create_schedule(B.op)
bx, tx = s[B].split(B.op.axis[0], nparts=32)
print(tvm.lower(s, [A, B], simple mode=True))
```

```
A = te.placeholder((m, n), name="A")
B = te.compute((m, n), lambda i, j: A[i, j], name="B")
s = te.create schedule(B.op)
xo, yo, xi, vi = s[B].tile(B.op.axis[0], B.op.axis[1], x factor=10, y factor=5)
print(tvm.lower(s, [A, B], simple mode=True))
A = te.placeholder((m, n), name="A")
B = te.compute((m, n), lambda i, j: A[i, j], name="B")
s = te.create schedule(B.op)
# tile to four axes first: (i.outer, j.outer, i.inner, j.inner)
xo, yo, xi, yi = s[B].tile(B.op.axis[0], B.op.axis[1], x factor=10, y factor=5)
# then fuse (i.inner, j.inner) into one axis: (i.inner.j.inner.fused)
fused = s[B].fuse(xi, yi)
print(tvm.lower(s, [A, B], simple_mode=True))
A = te.placeholder((m, n), name="A")
B = te.compute((m, n), lambda i, j: A[i, j], name="B")
s = te.create_schedule(B.op)
# tile to four axes first: (i.outer, j.outer, i.inner, j.inner)
xo, yo, xi, yi = s[B].tile(B.op.axis[0], B.op.axis[1], x_factor=10, y_factor=5)
# then reorder the axes: (i.inner, j.outer, i.outer, j.inner)
s[B].reorder(xi, yo, xo, yi)
print(tvm.lower(s, [A, B], simple_mode=True))
A = te.placeholder((n,), name="A")
B = te.compute(A.shape, lambda i: A[i] * 2, name="B")
s = te.create schedule(B.op)
bx, tx = s[B].split(B.op.axis[0], factor=64)
s[B].bind(bx, te.thread_axis("blockIdx.x"))
s[B].bind(tx, te.thread_axis("threadIdx.x"))
print(tvm.lower(s, [A, B], simple_mode=True))
```


- Schedule Primitives in TVM
 - 실행결과 출력 부분

```
from future import absolute import, print function
import tym
from tym import te
import numpy as np
# declare some variables for use later
n = te.var("n")
m = te.var("m")
# declare a matrix element-wise multiply
A = te.placeholder((m, n), name="A")
B = te.placeholder((m, n), name="B")
C = te.compute((m, n), lambda i, j: A[i, j] * B[i, j], name="C")
s = te.create schedule([C.op])
# lower will transform the computation from definition to the real
# callable function. With argument `simple mode=True`, it will
# return you a readable C like statement, we use it here to print the
# schedule result.
print(tym.lower(s, [A, B, C], simple mode=True))
A = te.placeholder((m,), name="A")
B = te.compute((m,), lambda i: A[i] * 2, name="B")
s = te.create_schedule(B.op)
xo, xi = s[B].split(B.op.axis[0], factor=32)
print(tvm.lower(s, [A, B], simple_mode=True))
A = te.placeholder((m,), name="A")
B = te.compute((m,), lambda i: A[i], name="B")
s = te.create_schedule(B.op)
bx, tx = s[B].split(B.op.axis[0], nparts=32)
print(tvm.lower(s, [A, B], simple mode=True))
```

```
A = te.placeholder((m, n), name="A")
B = te.compute((m, n), lambda i, j: A[i, i], name="B")
s = te.create schedule(B.op)
xo, yo, xi, yi = s[B].tile(B.op.axis[0], B.op.axis[1], x_factor=10, y_factor=5)
print(tvm.lower(s, [A, B], simple_mode=True))
A = te.placeholder((m, n), name="A")
B = te.compute((m, n), lambda i, j: A[i, j], name="B")
s = te.create schedule(B.op)
# tile to four axes first: (i.outer, j.outer, i.inner, j.inner)
xo, yo, xi, yi = s[B].tile(B.op.axis[0], B.op.axis[1], x factor=10, y factor=5)
# then fuse (i.inner, j.inner) into one axis: (i.inner.j.inner.fused)
fused = s[B].fuse(xi, yi)
print(tvm.lower(s, [A, B], simple mode=True))
A = te.placeholder((m, n), name="A")
B = te.compute((m, n), lambda i, j: A[i, j], name="B")
s = te.create_schedule(B.op)
# tile to four axes first: (i.outer, i.outer, i.inner, i.inner)
xo, vo, xi, vi = s[B].tile(B.op.axis[0], B.op.axis[1], x factor=10, v factor=5)
# then reorder the axes: (i.inner, j.outer, i.outer, j.inner)
s[B].reorder(xi, yo, xo, yi)
print(tvm.lower(s, [A, B], simple mode=True))
A = te.placeholder((n,), name="A")
B = te.compute(A.shape, lambda i: A[i] * 2, name="B")
s = te.create schedule(B.op)
bx, tx = s[B].split(B.op.axis[0], factor=64)
s[B].bind(bx, te.thread_axis("blockIdx.x"))
s[B].bind(tx, te.thread_axis("threadIdx.x"))
print(tym.lower(s. [A. Bl. simple mode=True))
```

- Schedule Primitives in TVM
 - 아래의 실행 결과를 Screenshot으로 제출

(1) Matrix Multiply Default

Hanyang University

- Schedule Primitives in TVM
 - 아래의 실행 결과를 screenshot으로 제출

(2-1) Split with factor

(2-2) Split with nparts

- Schedule Primitives in TVM
 - 아래의 실행 결과를 screenshot으로 제출

(3) Tile

(4) Fuse

- Schedule Primitives in TVM
 - 아래의 실행 결과를 screenshot으로 제출

(5) Reorder

(6) Bind

Optimize Convolution on GPU

해당 단계에서는 사각형 형태의 Convolution의 Input Tensor와 Filter Tensor를 사용해서 GPU CUDA 환경에서의 연산을 수행한다. 또한 아래와 같이,

- GPU 공유 메모리를 활용한 Buffer Caching을 수행하는 Memory Hierarchy,
- Thread Block 단위로 Split를 수행하는 Blocking,
- Thread Block을 개별 Thread 단위로 나누는 Virtual thread Split,
- GPU의 global memory 위의 Data를 shared memory로 전달하도록 변경하는 Cooperative Fetching 등의 최적화 방법을 수행해본다.

Baseline

- 이번 단계의 Baseline을 아래의 링크에서 확인할 수 있습니다.

URL: https://tvm.apache.org/docs/tutorials/optimize/opt conv cuda.html

- Optimize Convolution on GPU
 - Preparation and Algorithm

```
import numpy as np
import tym
from tvm import te
# The sizes of inputs and filters
batch = 256
in channel = 256
out_channel = 512
in size = 14
kernel = 3
pad = 1
stride = 1
# Algorithm
A = te.placeholder((in_size, in_size, in_channel, batch), name="A")
W = te.placeholder((kernel, kernel, in_channel, out_channel), name="W")
out_size = (in_size - kernel + 2 * pad) // stride + 1
# Pad input
Apad = te.compute(
   (in_size + 2 * pad, in_size + 2 * pad, in_channel, batch),
   lambda yy, xx, cc, nn: tvm.tir.if_then_else(
       tvm.tir.all(yy >= pad, yy - pad < in_size, xx >= pad, xx - pad < in_size),
        A[yy - pad, xx - pad, cc, nn],
        tvm.tir.const(0.0, "float32"),
   name="Apad",
# Create reduction variables
rc = te.reduce_axis((0, in_channel), name="rc")
ry = te.reduce_axis((0, kernel), name="ry")
rx = te.reduce_axis((0, kernel), name="rx")
# Compute the convolution
B = te.compute(
   (out_size, out_size, out_channel, batch),
   lambda yy, xx, ff, nn: te.sum(
       Apad[yy * stride + ry, xx * stride + rx, rc, nn] * W[ry, rx, rc, ff], axis=[ry, rx, rc]
   name="B",
```

- Optimize Convolution on GPU
 - Memory Hierarchy and Blocking

```
# Memory Hierarchy
# Designate the memory hierarchy
s = te.create_schedule(B.op)
s[Apad].compute_inline() # compute Apad inline
AA = s.cache_read(Apad, "shared", [B])
WW = s.cache read(W, "shared", [B])
AL = s.cache_read(AA, "local", [B])
WL = s.cache_read(WW, "local", [B])
BL = s.cache write(B, "local")
# Blocking
# tile consts
tile = 8
num thread = 8
block_factor = tile * num_thread
step = 8
vthread = 2
# Get the GPU thread indices:a
block_x = te.thread_axis("blockIdx.x")
block_y = te.thread_axis("blockIdx.y")
block z = te.thread axis("blockIdx.z")
thread_x = te.thread_axis((0, num_thread), "threadIdx.x")
thread_y = te.thread_axis((0, num_thread), "threadIdx.y")
thread_xz = te.thread_axis((0, vthread), "vthread", name="vx")
thread_yz = te.thread_axis((0, vthread), "vthread", name="vy")
# Split the workloads
hi, wi, fi, ni = s[8].op.axis
bz = s[B].fuse(hi, wi)
by, fi = s[B].split(fi, factor=block_factor)
bx, ni = s[B].split(ni, factor=block_factor)
# Bind the iteration variables to GPU thread indices
s[B].bind(bz, block_z)
s[B].bind(by, block_y)
s[B].bind(bx, block_x)
```

- Optimize Convolution on GPU
 - Virtual thread Split and Cooperative Fetching

```
# Virtual Thread Split
tyz, fi = s[B].split(fi, nparts=vthread) # virtual thread split
txz, ni = s[B].split(ni, nparts=vthread) # virtual thread split
ty, fi = s[B].split(fi, nparts=num_thread)
tx, ni = s[B].split(ni, nparts=num_thread)
s[B].reorder(bz, by, bx, tyz, txz, ty, tx, fi, ni)
s[B].bind(tyz, thread_yz)
s[B].bind(txz, thread_xz)
s[B].bind(ty, thread_y)
s[B].bind(tx, thread_x)
# Cooperative Fetching
# Schedule BL local write
s[BL].compute_at(s[B], tx)
yi, xi, fi, ni = s[BL].op.axis
ry, rx, rc = s[BL].op.reduce_axis
rco, rci = s[BL].split(rc, factor=step)
s[BL].reorder(rco, ry, rx, rci, fi, ni)
# Attach computation to iteration variables
s[AA].compute_at(s[BL], rx)
s[WW].compute_at(s[BL], rx)
s[AL].compute at(s[BL], rci)
s[WL].compute_at(s[BL], rci)
# Schedule for A's shared memory load
yi, xi, ci, ni = s[AA].op.axis
ty, ci = s[AA].split(ci, nparts=num_thread)
tx, ni = s[AA].split(ni, nparts=num_thread)
_, ni = s[AA].split(ni, factor=4)
s[AA].reorder(ty, tx, yi, xi, ci, ni)
s[AA].bind(ty, thread_y)
s[AA].bind(tx, thread_x)
s[AA].vectorize(ni) # vectorize memory load
# Schedule for W's shared memory load
yi, xi, ci, fi = s[WW].op.axis
ty, ci = s[WW].split(ci, nparts=num_thread)
tx, fi = s[WW].split(fi, nparts=num_thread)
_, fi = s[WW].split(fi, factor=4)
s[WW].reorder(ty, tx, yi, xi, ci, fi)
s[WW].bind(ty, thread_y)
s[WW].bind(tx, thread_x)
s[WW].vectorize(fi) # vectorize memory load
```


- Optimize Convolution on GPU
 - Generate CUDA Kernel
 - 실행결과 출력 부분

```
# Generate CUDA Kernel
func = tvm.build(s, [A, W, B], "cuda")
dev = tvm.cuda(0)
a_np = np.random.uniform(size=(in_size, in_size, in_channel, batch)).astype(A.dtype)
w_np = np.random.uniform(size=(kernel, kernel, in_channel, out_channel)).astype(W.dtype)
a = tvm.nd.array(a_np, dev)
w = tvm.nd.array(w_np, dev)
b = tvm.nd.array(np.zeros((out_size, out_size, out_channel, batch), dtype=B.dtype), dev)
func(a, w, b)
evaluator = func.time evaluator(func.entry name, dev. number=1)
print("Convolution: %f ms" % (evaluator(a, w, b).mean * 1e3))
```

- Optimize Convolution on GPU
 - 아래와 같은 출력결과를 Screenshot으로 제출

Convolution: 78.342357 ms

Relay Pass Infra

- 해당 단계는 생성한 Relay 프로그램을 최적화 Pass 들을 사용해서 초기 프로그램과 비교하는 과정을 수행해본다.
- 해당 단계에서는 최적화에 사용된 Constant Fold, Eliminate Common subexpression, Optimized Fuse 옵션을 확인하고, 사용하기 전후를 비교한다.

Baseline

- 이번 예제의 Baseline을 아래의 링크에서 확인할 수 있습니다.

URL: https://tvm.apache.org/docs/tutorials/dev/use_pass_infra.html

- Relay Pass Infra
 - relay pass infra.py

```
import numpy as np
import tvm
from tym import te
import tym.relay as relay
# Create An Example Relay Program
def example():
   shape = (1, 64, 54, 54)
   c_data = np.empty(shape).astype("float32")
   c = relay.const(c_data)
   weight = relay.var("weight", shape=(64, 64, 3, 3))
   x = relay.var("x", relay.TensorType((1, 64, 56, 56), "float32"))
    conv = relay.nn.conv2d(x, weight)
    y = relay.add(c, c)
   y = relay.multiply(y, relay.const(2, "float32"))
   y = relay.add(conv, y)
   z = relay.add(y, c)
   z1 = relay.add(y, c)
   z2 = relay.add(z, z1)
    return relay.Function([x, weight], z2)
# Optimize the Program
f = example()
mod = tvm.IRModule.from_expr(f)
print(mod)
fold const = relay.transform.FoldConstant()
mod = fold_const(mod)
mod = relay.transform.EliminateCommonSubexpr()(mod)
mod = relay.transform.FuseOps(fuse_opt_level=2)(mod)
print(mod)
print("done")
```

- Relay Pass Infra
 - 실행 결과 출력 부분

```
import numpy as np
import tvm
from tym import te
import tym.relay as relay
# Create An Example Relay Program
def example():
    shape = (1, 64, 54, 54)
    c_data = np.empty(shape).astype("float32")
    c = relay.const(c_data)
    weight = relay.var("weight", shape=(64, 64, 3, 3))
    x = relay.var("x", relay.TensorType((1, 64, 56, 56), "float32"))
    conv = relay.nn.conv2d(x, weight)
    y = relay.add(c, c)
    y = relay.multiply(y, relay.const(2, "float32"))
    y = relay.add(conv, y)
    z = relay.add(y, c)
    z1 = relay.add(y, c)
    z2 = relay.add(z, z1)
    return relay.Function([x, weight], z2)
# Optimize the Program
f = example()
mod = tvm.IRModule.from_expr(f)
print(mod)
fold const = relay.transform.FoldConstant()
mod = fold_const(mod)
mod = relay.transform.EliminateCommonSubexpr()(mod)
mod = relay.transform.FuseOps(fuse_opt_level=2)(mod)
print(mod)
print("done")
```

- Relay Pass Infra
 - 아래의 실행 결과를 screenshot으로 제출
 - 반드시 마지막에 Done 문구가 출력되어야 함.