CALCULUS & ANALYTICAL GEOMETRY II

LECTURE 12 WORKSHEET

Spring 2021

Subhadip Chowdhury

Math 112

§A. Parametric Curves

Imagine that a particle moves along a complicated curve C as shown in the figure below. Clearly it is impossible to describe C by an equation of the form y = f(x) or x = g(y). Then how do calculate distance travelled by the particle in this case?

Suppose instead we are given that the x- and y-coordinates of the particle are functions of time and so we can write x = f(t) and y = g(t). Such a pair of equations is often a convenient way of describing a curve and gives rise to the following definition.

Definition A.1: Parametric Curves

Suppose that x and y are both given as functions of a third variable t (called a **parameter**) by the equations

$$x = f(t)$$
 and $y = g(t)$

(called **parametric equations**). Each value of t (you can think of it as time) determines a point (x, y), which we can plot in a coordinate plane. As t varies, the point (x, y) = (f(t), g(t)) varies and traces out a curve C, which we call a **parametric curve**.

■ Question 1.

Use DESMOS to sketch the curve defined by the parametric equations $x = t^2 - 2t$, and y = t + 1. Rewrite the equation of the curve using only x and y.

Note: This equation in x and y describes **where** the particle has been, but it doesn't tell us **when** the particle was at a particular point. The parametric equations have an advantage—they tell us **when** the particle was at a point. They also indicate which direction the particle was going!

■ Question 2.

Identify the parametric curve represented by the equations

$$x(t) = \cos(t)$$
 and $y(t) = \sin(t)$ for $0 \le t \le 2\pi$

We can parametrize the same curve in different ways and interpret each parametrization as the motion of a particle with the parameter t being time.

■ Question 3.

Explain why all of the parametrized curves below should look like a circle.

- $x(t) = \cos(2t)$ and $y(t) = \sin(2t)$ for $0 \le t \le 2\pi$
- $x(t) = \cos(t^2)$ and $y(t) = \sin(t^2)$ for $0 \le t \le 2\pi$
- $x(t) = \cos(t)$ and $y(t) = -\sin(t)$ for $0 \le t \le 2\pi$
- $x(t) = -\cos(t)$ and $y(t) = \sin(t)$ for $0 \le t \le 2\pi$
- $x(t) = -\cos(t)$ and $y(t) = -\sin(t)$ for $0 \le t \le 2\pi$

§B. Tangents of Parametric Curves

Recall that the slope of a tangent to a curve at any point is given by the derivative. In the case of a parametric curve given by the equations x = f(t), y = g(t), we have

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{f'(t)}{g'(t)}$$

■ Question 4.

Consider a parametric curve whose equation is given by $x = t^2$, $y = t^3 - 3t$. Use DESMOS to draw the curve.

- (a) Find the point on the curve when the tangent is horizontal.
- (b) Show that the curve has two tangents at the point (3,0) and find their equations.

§C. Area under a Parametric Curve

We know that the area under a curve $y = \varphi(x)$ from a to b is $A = \int_a^b \varphi(x) dx$, where $\varphi(x) \ge 0$. If the curve is traced out once by the parametric equations x = f(t) and y = g(t), $\alpha \le t \le \beta$, then we can calculate an area formula by using a u-Substitution as follows:

$$A = \int_{a}^{b} y dx = \int_{\alpha}^{\beta} g(t)f'(t) dt$$

■ Question 5.

The parametric curve with equations

$$x = t - \sin t$$
, $y = 1 - \cos t$

is called a cycloid. Draw it in DESMOS. Find the area under one arch of the cycloid.

§D. Arc Length of a Parametric Curve

We already know that the arc length L of a curve C given is given by

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{a}^{b} \sqrt{dx^2 + dy^2}$$

So if the curve is parametrized as x = f(t) and y = g(t), $\alpha \le t \le \beta$, we have

$$dx = f'(t) dt$$
 and $dy = g'(t) dt$.

So the formula becomes

$$L = \int_{\alpha}^{\beta} \sqrt{f'(t)^2 + g'(t)^2} dt$$

■ Question 6.

Find the length of one arch of the cycloid.

§E. Surface Area of Solids of Revolution

In the same way as for arc length, we can adapt the formula for surface area. Suppose the curve C given by the parametric equations x = f(t) and y = g(t), $\alpha \le t \le \beta$, is rotated about the *x*-axis. If C is traversed exactly once as *t* increases from α to β , then the area of the resulting surface is given by

$$S = \int_{\alpha}^{\beta} 2\pi g(t) \sqrt{(f'(t))^2 + (g'(t))^2} dt$$

■ Question 7.

Find the surface area of a sphere of radius r. Recall that you found out the parametrization of a circle in question 2.

§F. More Practice Problems

■ Question 8.

Graph the curve given by the parametric equations

$$x = e^t \cos t$$
, $y = e^t \sin t$, $0 \le t \le \pi$

and find its exact length.

Question 9.

Find the area enclosed by the parametric curve $x = t^2 - 2t$, $y = \sqrt{t}$ and the y-axis.

Question 10.

Find the arc length of the curve $y = x^2 - \frac{\ln x}{8}$ from x = 1 to x = e.

■ Question 11.

Find the arc length of the curve $y^3 = x^2$ from (1,1) to (8,4).