模 3 加法。从而由模 3 加法的性质知, 。满足交换律和结合律,不满足幂等律。a是单位元。无零元。

- (2) 由运算表显然有: $x \circ y = y, \forall x, y \in A$ 。易见,。满足结合律和幂等律,但不满足交换律。 *A* 中每一个元素都是左单位元和右零元。无右单位元和左零元。
- (3) 易于验证,若令 $\varphi: A \to \mathbb{Z}_3$, $\varphi(a) = 1$, $\varphi(b) = 2$, $\varphi(c) = 0$, 则 $\langle A, \circ, a \rangle \stackrel{\varphi}{\cong} \langle \mathbb{Z}_3, \otimes, 1 \rangle$, 其中 \otimes 是模 3 乘法。从而由模 3 乘法的性质可知,。满足交换律和结合律。 $b \circ b = a$,不满足幂等律。a 是单位元。c 是零元。
- (4) 考虑代数系统 $\{B, \otimes, 1\}$,其中 $B = \{1, 4, 6\}$, \otimes 是模 10 乘法。易于验证,若令 $\varphi: A \to B, \varphi(a) = 1, \varphi(b) = 6, \varphi(c) = 4$,则 $\langle A, \circ, a \rangle \stackrel{\varphi}{=} \langle B, \otimes, 1 \rangle$ 。从而由模 10 乘法的性质可知,。满足交换律和结合律。 $c \circ c = b$,不满足幂等律。a 是单位元。无零元。

15.13

证明: 由 θ_l 是左零元可知, $\theta_l \circ \theta_r = \theta_l$ 。又由 θ_r 是右零元可知, $\theta_l \circ \theta_r = \theta_r$ 。

于是有: $\theta_l = \theta_l \circ \theta_r = \theta_r$ 。也即, 左零元等于右零元。

假设 θ' 也是 \circ 的一个左(右)零元,则由 θ' 是左(右)零元知, $\theta' \circ \theta = \theta'$ (或 $\theta \circ \theta' = \theta'$),又由 θ 是零元知, $\theta' \circ \theta = \theta \circ \theta' = \theta$ 。

从而有: $\theta' = \theta' \circ \theta = \theta$ (或 $\theta' = \theta \circ \theta' = \theta$)。

即,若。同时有左、右零元,则它的左零元等于右零元,是。唯一的零元。

15.14 $V_1 = \langle \mathbb{Z}_6, \oplus \rangle$ 也就是 V 本身,是 V 的平凡子代数。

 $V_2 = (\{0, 2, 4\}, \oplus)$ 是 V 的真子代数。

 $V_3 = \langle \{0,3\}, \oplus \rangle$ 是 V 的真子代数。

 $V_4 = \langle \{0\}, \oplus \rangle$ 是 V 的真子代数。

15.15

 $(1) \quad \ \ \, \forall \exists \ V_1 \times V_2 \ \ \ \, \forall \ \, \langle \{\langle 1,5 \rangle, \langle 1,6 \rangle, \langle 2,5 \rangle, \langle 2,6 \rangle, \langle 3,5 \rangle, \langle 3,6 \rangle \}, \, \triangle, \, \langle 1,6 \rangle \rangle \, .$

△ 的运算表如下:

Δ	$\langle 1, 5 \rangle$	$\langle 1, 6 \rangle$	$\langle 2, 5 \rangle$	$\langle 2, 6 \rangle$	$\langle 3, 5 \rangle$	$\langle 3, 6 \rangle$
$\langle 1, 5 \rangle$	$\langle 1, 5 \rangle$	$\langle 1, 5 \rangle$	$\langle 2, 5 \rangle$	$\langle 2, 5 \rangle$	$\langle 3, 5 \rangle$	$\langle 3, 5 \rangle$
$\langle 1, 6 \rangle$	$\langle 1, 5 \rangle$	$\langle 1, 6 \rangle$	$\langle 2, 5 \rangle$	$\langle 2, 6 \rangle$	$\langle 3, 5 \rangle$	$\langle 3, 6 \rangle$
$\langle 2, 5 \rangle$	$\langle 2, 5 \rangle$	$\langle 2, 5 \rangle$	$\langle 2, 5 \rangle$	$\langle 2, 5 \rangle$	$\langle 3, 5 \rangle$	$\langle 3, 5 \rangle$
$\langle 2, 6 \rangle$	$\langle 2, 5 \rangle$	$\langle 2, 6 \rangle$ $\langle 3, 5 \rangle$	$\langle 2, 5 \rangle$	$\langle 2, 6 \rangle$	$\langle 3, 5 \rangle$	$\langle 3,6 \rangle$
$\langle 3, 5 \rangle$	$\langle 3, 5 \rangle$	$\langle 3, 5 \rangle$	$\langle 3, 5 \rangle$	$\langle 3, 5 \rangle$	$\langle 3, 5 \rangle$	$\langle 3, 5 \rangle$
$\langle 3, 6 \rangle$	$\langle 3, 5 \rangle$	$\langle 3, 6 \rangle$	$\langle 3, 5 \rangle$	$\langle 3,6 \rangle$	$\langle 3, 5 \rangle$	$\langle 3,6 \rangle$

其中 $\langle 1,6\rangle$ 是 \triangle 的单位元。 $\langle 3,5\rangle$ 是 \triangle 的零元。所有元素都是幂等元。除 $\langle 1,6\rangle$ 外,其它元素皆无逆元。

(2) $V_1 = \langle \{1, 2, 3\}, \circ, 1 \rangle$ 就是 V 自身,是 V 的平凡子代数。

 $V_2 = \langle \{1,2\}, \circ, 1 \rangle$ 是 V 的真子代数。

 $V_3 = (\{1,3\}, 0, 1)$ 是 V 的真子代数。

 $V_4 = \langle \{1\}, \circ, 1 \rangle$ 是 V 的平凡真子代数。

15.16

(1) 记 $V_1 \times V_2$ 为 $\langle \mathbb{Z}_3 \times \mathbb{Z}_2, \circ \rangle$ 。