МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №8

по дисциплине: «Исследование операций» Вариант 23

Выполнил: ст. группы ПВ-211

Чувилко Илья Романович

Проверил:

Куртова Лилиана Николаевна

Вирченко Юрий Петрович

Тема: Задачи дробно-линейного программирования

Цель работы: освоить метод сведения задачи ДЛП к задаче ЛП с помощью введения новых переменных. Изучить алгоритм решения задачи ДЛП.

Ход работы:

$$z = \frac{-5x_1 + 7x_2}{4x_1 + 9x_2} \to \text{max};$$

$$\begin{cases} 2x_1 + 8x_2 + x_3 = 21, \\ 5x_1 + 3x_2 - x_4 = 17, \\ 6x_1 - 2x_2 + x_5 = 25, \end{cases}$$

$$x_i \ge 0 \ (i = \overline{1, 5}).$$

- 1.Изучить постановку задачи ДЛП, а также подходы к ее решению
- 2. Ознакомиться с введением новых переменных, при которых задача ДЛП превращается в задачу ЛП.
- 3. Изучить метод и алгоритм решения задачи ДЛП, составить и отладить программу решения этой задачи, используя в качестве тестовых данных одну из нижеследующих задач, решенную вручную.

$$Z = \frac{-5X_1 + 7X_2}{4X_1 - 3X_2} \rightarrow max$$

$$\begin{cases} 3X_1 + 8X_2 + X_3 = 18 \\ -5X_1 - 3X_2 + X_4 = -17 \\ 7X_1 - 2X_2 + X_5 = 26 \\ X_i \gg 0, (i = \overline{1,5}) \end{cases}$$

Введем новые переменные $y0 = 1/(4x_3-3x_2)$, yi = y0 * xi, (i = 1,5). Получим задачу линейного программирования:

$$Z = -5Y_1 + 7Y_2 \rightarrow MOX$$

$$(34_1 + 84_2 + 4_3 - 184_6 = 0)$$

$$-54_1 - 34_2 + 44_4 + 174_6 = 0$$

$$74_1 - 34_2 = 1$$

$$43_1 - 34_2 = 1$$

$$4i > 0, (i = 0.5)$$

Построим M-задачу при M = 100:

$$Z_{M} = -5y_{1} + 7y_{2} - |000 \rightarrow max$$

$$3y_{1} + 8y_{2} + y_{3} - |8y_{0} = 0$$

$$-5y_{1} - 3y_{2} + y_{4} + |7y_{0} = 0$$

$$7y_{1} - 2y_{2} + y_{5} - 26y_{0} = 0$$

$$4y_{1} - 3y_{2} + u = 1$$

$$y_{1} = 0$$

Исключим из целевой функции базисную переменную и составим первую симплекс-таблицу:

$$U = 1 - 44, +34$$

$$Z_{M} = -54, +74, -100 + 4004, -3004$$

$$Z_{M} = 3954, -2934, -100$$

$$Z_{M} - 3954, +2934, = -100$$

Таблица 1

Б	C	y1↓	y2	у3	y4	y5	yO	u	Отн
← y3	0	3	8	1	0	0	-18	0	0
y4	0	-5	-3	0	1	0	17	0	0
y5	0	7	2	0	0	1	-26	0	0
u	1	4	-3	0	0	0	0	1	1/4
z	-100	-395	293	0	0	0	0	0	

Таблица 2

Б	C	y1	y2		у3		y4	y5	yo↓	u	Отн
y1	0	1	2	2/3		1/3	0	0	-6	0	0
y4	0	0	10	1/3	1	2/3	1	0	-13	0	0
←y5	0	0	-16	2/3	-2	1/3	0	1	16	0	0
u	1	0	-13	2/3	-1	1/3	0	0	24	1	1/24
Z	-100	0	1346	1/3	131	2/3	0	0	-2370	0	

Таблица 3

Б	C	y1	y2↓		y3		y4	y5		y0	u	Отн
y1	0	1	-3	7/12		13/24	0		3/8	0	0	0
y4	0	0	-3	5/24		11/48	1		13/16	0	0	0
yO	0	0	-1	1/24	-	7/48	0		1/16	1	0	0
←u	1	0	11	1/3	2	1/6	0	-1	1/2	0	1	3/34
z	-100	0	-1122	5/12	-213	23/24	0	148	1/8	0	0	

Таблица 4

Б	C	y1	y2	y3	y4	y5↓	y0	u		Отн
y1	43/136	1	0	39/272	0	- 27/272	0		43/136	-3 5/27
<-y4	77/272	0	0	209/544	1	211/544	0		77/272	154/211
y0	25/272	0	0	29/544	0	- 41/544	1		25/272	-1 9/41
y2	3/34	0	1	13/68	0	- 9/68	0		3/34	- 2/3
z	- 131/136	0	0	169/272	0	- 117/272	0	99	5/136	

Таблица 5

Б	C	y1	y2	у3	y4	y5	y0	u
y1	82/211	1	0	51/211	54/211	0	0	82/211
y5	154/211	0	0	209/211	2 122/211	1	0	154/211
y0	31/211	0	0	27/211	41/211	0	1	31/211
y2	39/211	0	1	68/211	72/211	0	0	39/211
Z	- 137/211	0	0	1 10/211	1 23/211	0	0	99 74/211

Решение М-задачи:

$$Z_{\text{Mmax}} = -\frac{137}{211}, \quad Y_0 = \frac{31}{211}, \quad Y_1 = \frac{82}{211}, \quad Y_2 = \frac{39}{211}, \quad Y_3 = 0, \quad Y_4 = 0, \quad Y_5 = \frac{159}{211}$$

Решение исходной задачи:

$$Z_{\text{max}} = -\frac{137}{211}, X_i = \frac{3i}{30} (i = \overline{1,5})$$

$$X_1 = \underbrace{82}_{31}, X_2 = \underbrace{39}_{31}, X_3 = 0, X_4 = 0, X_5 = \underbrace{154}_{31}$$

Код программы:

```
std::vector <Fraction> getNewFuncForPenalty(
    std::vector <Fraction> &functionVal,
    std::vector<int> &basics) {
    auto &tmp = *this;
    std::vector <Fraction> funcVal(_nCols, 0);
    Fraction sum = 0;
    for (int i = 0; i < _nRows - 1; i++) {
        sum += tmp[i][_nCols - 1];
    }
    Fraction penalty = sum * 10;
    funcVal[0] = sum * penalty;</pre>
```

```
for (int j = 0; j < _nCols - 1; j++) {
 if (std::find(
       basics.begin(),
       basics.end(),
       j) != basics.end()) {
 Fraction sumOfCol = 0;
  for (int i = 0; i < _nRows - 1; i++) {
  sumOfCol += tmp[i][j];
 funcVal[j + 1] = sumOfCol * penalty * (-1) -
             functionVal[j + 1];
 funcVal[j + 1] *= (-1);
return funcVal;
std::vector <Fraction> getPenaltyMethod(
    std::vector <Fraction> &functionVal) {
Matrix &tmp = *this;
Matrix m(_nRows, _nCols + _nRows - 1);
for (int i = 0; i < _nRows - 1; i++) {
 for (int j = 0; j < nCols - 1; j++) {
  m[i][j] = tmp[i][j];
std::vector<int> basics;
for (int i = 0; i < _nRows - 1; i++) {
 m[i][i + _nCols - 1] = 1;
 basics.push_back(i + _nCols - 1);
m.setCol(getCol(_nCols - 1), m._nCols - 1);
auto newFunc = m.getNewFuncForPenalty(functionVal, basics);
std::vector <Fraction> res = m.getSimplexMethod(newFunc);
res.erase(res.begin() + res.size() - _nRows + 1, res.end());
return res;
nt main() {
std::vector <Fraction> data = {{2, 8, 1, 0, 0, -21, 0},
                    \{6, -2, 0, 0, 1, -25\}\};
std::vector <Fraction> functionVal = {-5, 7, 0, 0, 0, 4, -3, 0, 0, 0};
Matrix m(data, 5, 6);
std::vector <Fraction> res1 = m.getPenaltyMethod(functionVal);
std::cout << "z = " << res1[0] << "n' << "(y0 = " << res1[res1.
for (int i = 1; i < res1.size() - 1; i++) {
 if (i != res1.size() - 2) {
  std::cout << ", " << '\n';
  } else {
  std::cout << ")";
for (int i = 1; i < res1.size() - 1; i++) {
 Fraction curX = res1[i] / res1[res1.size() - 1];
 if (i != res1.size() - 2) {
  std::cout << '', '' << '\n';
```

```
} else {
    std::cout << ")";
    }
}</pre>
```

Результат работы программы:

```
z = -137/211
(y0 = 31/211, y1 = 82/211,
y2 = 39/121,
y3 = 0,
y4 = 0,
y5 = 154/211
Reverse substitution:
x1 = 82/31,
x2 = 39/31,
x3 = 0,
x4 = 0,
x5 = 154/31

Process finished with exit code 0
```

Вывод: Освоил метод сведения задачи ДЛП к задаче ЛП с помощью введения новых переменных. Изучил алгоритм решения задачи ДЛП