

Interfaces Cerebro-Cloud para la predicción de actividades de imaginación motriz

Autor:

Ing. Freddy Julian Riascos Salas

Director:

Mg. Ing. Jaime Andrés Riascos Salas (Potsdam Embodied Cognition Group PECoG)

${\rm \acute{I}ndice}$

1. Descripción técnica-conceptual del proyecto a realizar	5
2. Identificación y análisis de los interesados	7
3. Propósito del proyecto	7
4. Alcance del proyecto	8
5. Supuestos del proyecto	8
6. Product backlog	9
7. Criterios de aceptación de historias de usuario	l 1
8. Fases de CRISP-DM	۱ 2
9. Desglose del trabajo en tareas	L 4
10. Diagrama de Gantt	١9
11. Planificación de Sprints	20
12. Normativa y cumplimiento de datos (gobernanza)	22
13. Gestión de riesgos	23
14. Sprint Review	26
15. Sprint Retrospective	27

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
0	Creación del documento	4 de marzo de 2025
1	Se completa hasta el 5 punto inclulsive	20 de marzo de 2025
2	Se completa hasta el 8 punto inclulsive	28 de marzo de 2025

Acta de constitución del proyecto

Buenos Aires, 4 de marzo de 2025

Por medio de la presente se acuerda con el Ing. Freddy Julian Riascos Salas que su Trabajo Final de la Carrera de Especialización en Inteligencia Artificial se titulará "Interfaces Cerebro-Cloud para la predicción de actividades de imaginación motriz" y consistirá en evaluar una interfaz cerebro-computadora (Brain-Computer Interface, BCI) con soporte en la nube para la detección de patrones de imaginación motriz. El trabajo tendrá un presupuesto preliminar estimado de 600 horas y un costo estimado de \$25000, con fecha de inicio el 4 de marzo de 2025 y fecha de presentación pública en octubre de 2025.

Se adjunta a esta acta la planificación inicial.

Dr. Ing. Ariel Lutenberg Director posgrado FIUBA $\begin{tabular}{ll} Xprende \\ Xprende tech S.A \end{tabular}$

Mg. Ing. Jaime Andrés Riascos Salas Director del Trabajo Final

1. Descripción técnica-conceptual del proyecto a realizar

Las interfaces cerebro-computadora (*Brain-Computer Interfaces*, BCI) han emergido como una tecnología innovadora que permite la comunicación directa entre el cerebro humano y dispositivos externos. En particular, la predicción de actividades de imaginación motriz a través de BCI han cobrado relevancia en campos que varían desde la rehabilitación, robótica, control de protésis hasta sistemas domóticos, videojuegos y realidad virtual.

La integración de las BCI con tecnologías en la nube permite el almacenamiento, procesamiento y análisis eficiente de grandes volúmenes de datos cerebrales. Esto favorece la aplicación de algoritmos avanzados de aprendizaje automático y mejora la precisión de la interpretación de señales cerebrales.

1.1 Conceptos fundamentales

Interfaces cerebro-computadora

Los BCI son sistemas que registran la actividad cerebral mediante técnicas como la electroence-falografía (EEG) y traducen estas señales en comandos computacionales. Existen distintos tipos de BCI:

- Invasivas: electrodos implantados directamente en el cerebro.
- No invasivas: uso de sensores externos como EEG, MEG o fNIRS.

Imaginación motriz

La imaginación motriz se refiere a la capacidad de representar mentalmente movimientos sin ejecutarlos físicamente. Durante este proceso, se activan patrones específicos en la corteza motora, los cuales pueden ser detectados mediante EEG y utilizados para el control de dispositivos externos.

Computación en la nube y BCI

El uso de servicios en la nube permite procesar grandes volúmenes de datos EEG en tiempo real obteniendo beneficios como:

- Almacenamiento y procesamiento escalable de datos cerebrales.
- Acceso remoto para análisis colaborativo.
- Implementación de modelos de aprendizaje automático en infraestructura distribuida.

1.2 Problema actual

Al presente, las personas con discapacidades motoras severas enfrentan grandes dificultades en la interacción con su entorno. Los sistemas actuales de BCI presentan limitaciones en términos de precisión, latencia, accesibilidad, recopilación, análisis y clasificación de las señales EEG. Normalmente, estos datos se encuentran contaminados por distintos artefactos biológicos, tales como señales cardíacas, respiratorias o músculos, como también por ruidos externos.

Así mismo, la dimensión de estos datos, dada por la cantidad de canales y señal de tiempo, crea una problema de procesamiento y dimensionalidad. Todas estas dificultades evitan que

el clasificador reciba características latentes de la señal y así realizar la predicción de forma adecuada y rápida.

1.3 Solución propuesta

La interfaz Cerebro-Cloud sugerida integra un modelo de predicción basado en aprendizaje automático con una arquitectura en la nube que permita la adquisición, procesamiento y transmisión de señales cerebrales en tiempo real. Esto proporcionará una solución más precisa, escalable y accesible para el control de dispositivos mediante imaginación motriz.

En comparación con el estado del arte actual, la solución se destaca en:

- Precisión mejorada: uso de modelos de inteligencia artificial optimizados para la interpretación de señales eléctricas (electroencefalografía, EEG).
- Reducción de latencia: procesamiento distribuido en la nube.
- Accesibilidad: plataforma escalable con acceso a la información para usuarios y especialistas.

Este interfaz BCI-Cloud tiene como objetivo mejorar la calidad de vida de personas con discapacidades motoras al proporcionar una herramienta en la nube para la comunicación y control de dispositivos protésicos.

El proyecto se enmarca dentro de un programa de innovación tecnológica de la empresa Xprende, que cuenta con financiamiento para su ejecución.

1.4 Descripción funcional y diagrama en bloques

La solución propuesta consta de los siguientes módulos principales:

- Adquisición de señales EEG: sensores no invasivos capturan la actividad cerebral del usuario.
- Preprocesamiento de datos: filtrado y eliminación de ruido en las señales EEG.
- Modelo de predicción: algoritmos de aprendizaje automático analizan los datos y determinan la intención motriz.
- Transmisión en la nube: los datos procesados se envían a servidores remotos para análisis y almacenamiento.
- Interfaz usuario-dispositivo: una interfaz que traduce la predicción en comandos para dispositivos externos, como prótesis o interfaces de control.

En la figura 1 se presenta el diagrama de bloques del sistema BCI-Cloud. Se observa que el usuario inicial genera datos con el sensor EEG. Luego envía los datos a un sistema de preprocesamiento. Una vez que los datos se encuentran óptimos se envian a la nube. Seguidamente el modelo seleccionado se entrena. Finalmente el modelo predice el movimiento imaginado en la interfaz de usaurio.

Figura 1. Diagrama del sistema BCI-Cloud.

2. Identificación y análisis de los interesados

A continuación, se presentan los principales actores involucrados en el desarollo del proyecto y su respectiva función:

Rol	Nombre y Apellido	Organización	Puesto
Cliente	Ing. Miguel Amaya	Xprendetech S.A	-
Responsable	Ing. Freddy Julian	FIUBA	Alumno
	Riascos Salas		
Orientador	Mg. Ing. Jaime Andrés	Potsdam Embodied	Director del Trabajo Final
	Riascos Salas	Cognition Group	
		PECoG	
Usuario final	Paciente	-	-

A continuación las principales características de cada interesado.

- Orientador: el Mg. Ing. Andrés Salas es experto en desarrollar interfaces cerebro-maquina y dará orientación con la definición de los requerimientos y el desarrollo del sistema BCI-Cloud.
- Usuario final: usuario con discapacidad motora severa, quien se beneficiaría directamente del control del dispositivo y la interfaz.

3. Propósito del proyecto

La intención del proyecto es diseñar y desarrollar una plataforma basada en BCI-Cloud que facilite la predicción de actividades de imaginación motriz en personas con discapacidades motoras severas. A través de la integración de inteligencia artificial y computación en la nube, se busca ofrecer una solución innovadora que permita mejorar la interacción con el entorno mediante el control preciso de dispositivos electrónicos y protésicos.

4. Alcance del proyecto

El proyecto comprenderá los siguientes componentes:

- Modelo de predicción basado en algoritmos de aprendizaje automático para la interpretación de señales EEG. Se evaluarán distintos modelos como CNNs, RNNs y Transformers para determinar el que mejor performe en términos de precisión y latencia.
- Datos adquiridos de sensores EEG, que se utilizarán para entrenar y validar el modelo. Se garantizará que la adquisición de datos cumpla con estándares de calidad y se preprocesen para eliminar ruido.
- Código de la infraestructura en la nube.
- Documentación técnica y científica, que detalla el diseño, implementación y validación del sistema.
- Pruebas y validaciones realizadas con usuarios objetivo para evaluar el desempeño y precisión del modelo. Se incluirán métricas clave que garanticen el óptimo desempeño del sistema.
- Desarrollo y entrenamiento del modelo de predicción de actividades de imaginación motriz, con comparaciones entre distintos enfoques de inteligencia artificial.
- Integración con una infraestructura en la nube escalable y segura en Amazon Web Services.
- Adquisición y procesamiento de señales cerebrales mediante sensores EEG.
- Evaluación del sistema con usuarios finales para validar su precisión y usabilidad.
- Generación de documentSación técnica para futuras mejoras e implementación.
- Optimización del procesamiento en la nube para reducir latencia y mejorar la eficiencia del sistema.

El presente proyecto no incluye:

- Desarrollo de hardware EEG propio. Para ello se utilizarán dispositivos comerciales disponibles en el mercado.
- Implementación de interfaces cerebro-máquina más allá de la imaginación motriz.
- Integración con sistemas de salud o bases de datos clínicas.

5. Supuestos del proyecto

- Disponibilidad de datos EEG de calidad: se asume que los datos recopilados mediante sensores EEG serán suficientes y de calidad adecuada para el entrenamiento del modelo sin necesidad de un preprocesamiento excesivo.
- Recursos computacionales: se cuenta con acceso a instancias de cómputo en la nube, tales como las brindadas por Amazon Web Services, que permitan el entrenamiento y despliegue del modelo de inteligencia artificial sin limitaciones de procesamiento o almacenamiento.

- Factibilidad técnica de integración: se considera viable la integración entre los sensores EEG, la infraestructura en la nube y la interfaz de usuario.
- Condiciones regulatorias favorables: no existen restricciones legales o normativas que impidan la recopilación y procesamiento de datos EEG.

6. Product backlog

1. Épica 1 Adquisición y procesamiento de datasets EEG

1.1. HU1

Como ingeniero, quiero obtener señales EEG desde datasets públicos para alimentar el modelo de predicción.

Dificultad: 5 Complejidad: 4 Incertidumbre: 3

Suma: $12 \rightarrow Story\ Points$: 13

Prioridad: 1

1.2. HU2

Como ingeniero, quiero que las señales EEG sean filtradas y normalizadas automáticamente para mejorar la calidad del entrenamiento del modelo.

Dificultad: 4 Complejidad: 2 Incertidumbre: 2

Suma: $8 \rightarrow Story\ Points$: 8

Prioridad: 2

2. Épica 2 Inteligencia artificial y modelado

2.1. HU3

Como ingeniero, quiero entrenar un modelo de inteligencia artificial con señales EEG preprocesadas para predecir actividades de imaginación motriz con alta precisión.

Dificultad: 5 Complejidad: 5 Incertidumbre: 4

Suma: $14 \rightarrow Story\ Points$: 21

Prioridad: 3

2.2. HU4

Como ingeniero, quiero optimizar el modelo de inteligencia artificial para que su inferencia sea menor a 5000 ms, alcance al menos un $80\,\%$ de precisión y exponga sus predicciones mediante una API REST.

Dificultad: 4 Complejidad: 3 Incertidumbre: 3

Suma: $10 \rightarrow Story\ Points$: 13

Prioridad: 4

3. Épica 3 Infraestructura en la nube

3.1. HU5

Como ingeniero, quiero que el procesamiento de datos EEG ocurra en Amazon Web Services AWS Lambda para mejorar la escalabilidad del sistema.

Dificultad: 5 Complejidad: 4 Incertidumbre: 3

Suma: $12 \rightarrow Story Points$: 13

Prioridad: 5

3.2. HU6

Como ingeniero, quiero desplegar automáticamente el modelo entrenado en AWS para facilitar su mantenimiento, escalabilidad y monitoreo.

Dificultad: 4 Complejidad: 3 Incertidumbre: 3

Suma: $10 \rightarrow Story\ Points$: 13

Prioridad: 6

4. Épica 4 Interfaz de usuario y seguridad

4.1. HU7

Como usuario final, quiero visualizar mis señales EEG en una interfaz gráfica para entender cómo se interpretan mis actividades cerebrales.

Dificultad: 5 Complejidad: 3 Incertidumbre: 2

Suma: $10 \rightarrow Story\ Points$: 13

Prioridad: 7

4.2. HU8

Como ingeniero, quiero que los datos EEG sean almacenados y transmitidos de manera segura para cumplir con las normativas de privacidad.

Dificultad: 5 Complejidad: 5 Incertidumbre: 2

Suma: $12 \rightarrow Story\ Points$: 13

Prioridad: 8

5. Épica 5 Gestión del proyecto, documentación y defensa final

5.1. HU9

Como ingeniero del proyecto, quiero planificar, documentar y estructurar el trabajo desarrollado, para asegurar la trazabilidad y resultados del trabajo final.

Dificultad: 5 Complejidad: 3 Incertidumbre: 2

Suma: $10 \rightarrow Story\ Points$: 13

Prioridad: 7

7. Criterios de aceptación de historias de usuario

- 1. Épica 1 Adquisición y procesamiento de datasets EEG
 - 1.1. Criterios de aceptación HU1
 - Se deben verificar al menos 2 repositorios públicos de datasets que estén accesibles y disponibles para su descarga.
 - Los datos deben almacenarse automáticamente en una ruta definida del proyecto, sin intervención manual.
 - Se debe validar que el formato de los datos descargados sea compatible con la tubería de procesamiento.
 - Los datos almacenados se deben organizar en una estructura jerárquica que difiera entre los repositorios consultados.
 - Se debe crear un archivo de documentación que describa la información de los datos, tales como fuentes usadas, formatos y cantidad de muestras.
 - 1.2. Criterios de aceptación HU2
 - Se debe aplicar al menos un filtro a las señales EEG para eliminar frecuencias no deseadas.
 - Los datos deben estar escalados y asegurar que todos los canales estén en la misma escala.
 - Se debe crear un archivo de documentación que describa los filtros aplicados, método de normalización y duración del proces.
 - Se debe crear un archivo de documentación que describa los filtros aplicados, método de normalización y duración del proces.
 - Se debe generarse un gráfico comparando la señal original y la procesada conocer la efectividad del filtrado y normalización.
- 2. Épica 2 Inteligencia artificial y modelado
 - 2.1. Criterios de aceptación HU3

- \blacksquare El modelo de predicción debe alcanzar una precisión mínima del $85\,\%$ en validación cruzada.
- Se deben entrenar al menos tres arquitecturas y seleccionar la mejor.
- Se deben generar logs detallados del proceso de entrenamiento con métricas de desempeño.
- 2.2. Criterios de aceptación HU4
 - El modelo optimizado debe tener un tiempo de inferencia menor a 5000 ms.
 - Se debe medir la latencia en diferentes condiciones de carga y garantizar estabilidad.
 - Los resultados de predicción deben ser accesibles en tiempo real a través de una API REST.
- 3. Épica 3 Infraestructura en la nube
 - 3.1. Criterios de aceptación HU5
 - La infraestructura debe ser escalable, permitiendo hasta 1000 eventos concurrentes.
 - Se debe garantizar un 85.9 % de disponibilidad del servicio en producción.
 - Amazon Web Services Lambda debe procesar eventos EEG en tiempo real con ejecución máxima de 15 segundos.
 - 3.2. Criterios de aceptación HU6
 - El modelo debe estar expuesto a travésde una API REST en AWS.
 - Se debe mantener un historico de versiones del modelo.
 - El modelo debe integrarse con logs y métricas para monitoreo.
- 4. Épica 4 Interfaz de usuario y seguridad
 - 4.1. Criterios de aceptación HU7
 - La interfaz debe permitir visualizar las señales EEG en gráficos.
 - Se debe permitir la exportación de datos en formatos CSV y JSON.
 - 4.2. Criterios de aceptación HU8
 - Los datos EEG deben ser cifrados en tránsito y en reposo.
 - El sistema debe incluir una política de retención y eliminación de datos.
- 5. Épica 5 Gestión del proyecto, documentación y defensa final
 - 5.1. Criterios de aceptación HU9
 - La documentación técnica debe incluir diagramas, descripciones de componentes, procesos y arquitectura.

8. Fases de CRISP-DM

Comprensión del negocio

Objetivo: desarrollar un modelo de inteligencia artificial que analice señales EEG para predecir la intención de movimiento en usuarios, lo que facilitarían aplicaciones en neurorehabilitación y control de dispositivos.

Valor agregado: automatización del análisis de señales cerebrales para mejorar la accesibilidad a tecnologías BCI.

Métricas de éxito:

- Tiempo promedio de inferencia menor o igual a 5000 ms, permitiendo respuestas ágiles para facilitar el control de dispositivos o feedback terapéutico.
- Precisión mínima del modelo del 85 % en la predicción de actividades de imaginación motora, permitiendo mejorar la predicción actual en la intención de movimiento en usuarios.
- Reducción del tiempo total de análisis manual de señales EEG en al menos un 50 %, gracias a la automatización del preprocesamiento y predicción.

Comprensión de los datos

- Tipo de datos: señales de series temporales EEG obtenidas de dispositivos de adquisición neurofisiológica.
- Fuentes: sensores EEG comerciales como *OpenBCI*, *Emotiv* o bases de datos públicas.
- Cantidad: al menos 100,000 registros diarios procesados en Amazon Web Services.
- Calidad: se esperan encontrar ruidos, artefactos musculares y variabilidad intersujeto.

Preparación de los datos

Las características claves a tener en cuenta para las señales EEG son:

- Bandas de frecuencia.
- Espectrogramas de señales EEG.
- Características temporales obtenidas con algoritmos de STFT y Wavelet.

Las transformaciones que podrían ser requeridas para las señales EEG son:

- Filtrado pasa bandas.
- Normalización de señales.
- Eliminación de artefactos usando algoritmos de análisis de componentes principales.

Modelado

El problema se define como una clasificación de señales EEG para la predicción de imaginación motriz. Las arquitecturas candidatas para este problema son redes neuronales como CNNs, RNNs y *Transformers*.

Evaluación del modelo

Se podría utilizar el acurracy para conocer la precisión de aciertos en la predicción de clases de imaginación motriz. Además el F1-score y la matriz de confusión para obtener el balance entre precisión y exhaustividad y los falsos positivos y falsos negativos.

Despliegue del modelo

El modelo se implementará con un sistema basado en la nube con *Amazon Web Services* Lambda para procesamiento, una API REST para enviar los datos a la nube y una fuente de almacenamiento que proporcione un costo beneficio en los datos durante el tiempo.

9. Desglose del trabajo en tareas

Cantidad total de horas: 580.

Historia de usuario	Tarea técnica	Estimación	Prioridad
HU1	Investigar y comparar datasets públicos EEG	8 h	Alta
HU1	Descargar datasets seleccionados y limpiar estructura de carpetas	8 h	Alta
HU1	Analizar formato de datos y convertir si es necesario	8 h	Media
HU1	Crear <i>scripts</i> para carga, validación y <i>parsing</i>	8 h	Alta
HU1	Automatizar descarga periódica desde repositorios	8 h	Media
HU1	Conversión y unificación de formatos	8 h	Media
HU1	Verificación de integridad de los archivos descargados	8 h	Alta
HU1	Almacenamiento y organización de datos EEG	8 h	Alta
HU1	Documentación del proceso de adquisición	4 h	Baja
HU1	Evaluación legal/licencia de uso de los datasets	6 h	Media
HU1	Generación de logs y reportes de adquisición	4 h	Baja
HU2	Investigar técnicas de preprocesamiento EEG	8 h	Alta
HU2	Implementación de función de filtrado por banda	8 h	Alta
HU2	Implementación de detección y corrección de artefactos simples	8 h	Alta
HU2	Implementación de métodos de normalización	8 h	Alta
HU2	Diseño de <i>pipeline</i> automático de procesamiento por lote	8 h	Alta
HU2	Pruebas con datos reales y comparación visual	6 h	Media
HU2	Generación de <i>logs</i> por archivo procesado	4 h	Baja
HU2	Creación de gráficas de valida- ción por dataset	6 h	Media
HU2	Evaluación de calidad de la señal post-procesamiento	6 h	Media
HU2	Desarrollo de manejo de errores en procesamiento	8 h	Media
HU2	Documentación del pipeline de procesamiento	8 h	Baja
HU2	Generación de logs y reportes de adquisición	4 h	Baja

Historia de usuario	Tarea técnica	Estimación	Prioridad
HU3	Estudio de modelos adecuados	8 h	Alta
	para señales EEG		
HU3	Seleccionar arquitectura del pri-	8 h	Alta
	mer modelo (baseline)		
HU3	Preparar datasets de entrena-	8 h	Alta
	miento y test con etiquetas		
	(baseline)		
HU3	Entrenar modelo con logs y	8 h	Alta
	métricas (baseline)		
HU3	Validación cruzada y testing	8 h	Medio
	(baseline)		
HU3	Implementar early stopping y	8 h	Medio
	checkpointing (baseline)		
HU3	Evaluar métricas clave como	8 h	Alta
	accuracy, precision, recall, o F1		
	(baseline)		
HU3	Seleccionar arquitectura del se-	8 h	Alta
	gundo modelo (alternativo)		
HU3	Preparar datasets de entrena-	6 h	Alta
	miento y test con etiquetas		
	(alternativo)		
HU3	Entrenar modelo con logs y	6 h	Alta
	métricas (alternativo)		
HU3	Validación cruzada y testing	6 h	Medio
	(alternativo)		3.5.1.
HU3	Implementar early stopping y	6 h	Medio
TITLO	checkpointing (alternativo)	2.1	A 1.
HU3	Evaluar métricas clave como	6 h	Alta
	accuracy, precision, recall, o F1		
TILLO	(alternativo)	6.1	N. T. 11
HU3	Análisis comparativo entre mo-	6 h	Media
TTTT	delos	0.1	A 1.
HU4	Afinar hiperparámetros y sim-	8 h	Alta
TTTT 4	plificar arquitectura	0.1	A 1/
HU4	Evaluación comparativa del mo-	8 h	Alta
	delo con diferentes configuracio-		
	nes de <i>batch sizes</i> , hardware y		
TTTT 4	frameworks	0.1	A 1/
HU4	Medir tiempo de inferencia en	8 h	Alta
TITTA	entorno controlado	0.1	A 1.
HU4	Desarrollo de una API REST	8 h	Alta
TITIA	para servir las predicciones	0.1	A 1.
HU4	Añadir arquitectura de conte-	8 h	Alta
	nedores para la API REST y		
TITTA	modelo para despliegue rápido	0.1	3.6.11
HU4	Realizar test de carga con locust	6 h	Media
TTTT	a la API REST	0.1	3.6.11
HU4	Documentar API y latencia de	6 h	Media
	respuesta		

Historia de usuario	Tarea técnica	Estimación	Prioridad
HU4	Despliegue del modelo en un	8 h	Alta
	entorno cloud con aceleración		
HU5	Diseñar la arquitectura en AWS	8 h	Alta
HU5	Codificar las funciones que reci-	8 h	Alta
	birán y preprocesarán los data-		
	sets		
HU5	Crear <i>scripts</i> para emular even-	6 h	Media
	tos desde datasets		
HU5	Configurar límites de timeout y	8 h	Alta
	memoria en Lambda		
HU5	Simular carga de 500 a 1000	8 h	Media
	eventos para probar escalabili-		
	dad		
HU5	Configurar logs, métricas y aler-	8 h	Media
	tas para el procesamiento de los		
	datasets		
HU5	Documentar la arquitectura y	6 h	Media
	diagramas de arquitectura		
HU5	Validar tiempo de ejecución	6 h	Media
	menor o igual a 15 s	_	
HU6	Crear <i>script</i> de empaquetado	8 h	Alta
	del modelo y sus dependencias	_	
HU6	Configurar pipeline CI/CD para	8 h	Alta
	despliegue automático	0	
HU6	Definir e implementar pruebas	8 h	Alta
	automatizadas antes del desplie-	0 11	111000
	gue		
HU6	Investigar la plataforma para	8 h	Alta
	alojar el modelo productivo	0 11	111000
HU6	Desplegar el modelo productivo	8 h	Alta
	en la plataforma seleccionada		11100
HU6	Implementar un mecanismo pa-	8 h	Media
	ra almacenar versiones del mo-		- Titodia
	delo y realizar rollbacks		
HU6	Habilitar logging y métricas con	8 h	Media
	AWS CloudWatch		- Titodia
HU6	Configurar alarmas básicas de	8 h	Media
1100	disponibilidad y errores	0 11	Micdia
HU6	Documentar el flujo de desplie-	8 h	Media
1100	gue automático y monitoreo	0 11	Media
HU7	Implementar componente de vi-	8 h	Alta
1101	sualización	0 11	Ana
HU7	Exportar datos visualizados a	8 h	Alta
1107	CSV y JSON	0 11	Alla
шп7	-	8 h	Alta
HU7	Conectar frontend con backend	0 11	Ana
шп	de predicción	4 h	M - 4: -
HU7	Realizar pruebas de usabilidad	4 h	Media
HU7	Documentar guía básica de uso	4 h	Baja

Historia de usuario	Tarea técnica	Estimación	Prioridad
HU8	Cifrar datos en tránsito con HTTPS / TLS	6 h	Alta
HU8	Cifrar datos en reposo con servicios de AWS	6 h	Alta
HU8	Configurar políticas de IAM para acceso restringido	6 h	Alta
HU8	Definir e implementar políticas y reglas de retención de datos	4 h	Media
HU8	Documentar cumplimiento normativo básico	4 h	Media
HU8	Configurar un registro y monitoreo de accesos	4 h	Alta
HU9	Reuniones iniciales de planifica- ción y definición de alcance del proyecto	8 h	Alta
HU9	Elaboración del cronograma y planificación detallada	8 h	Alta
HU9	Diseño de cronograma de traba- jo	8 h	Alta
HU9	Redacción del capítulo de intro- ducción y objetivos	8 h	Alta
HU9	Redacción del capítulo de meto- dología	8 h	Alta
HU9	Redacción del capítulo de resultados y discusión	8 h	Alta
HU9	Redacción de conclusiones y recomendaciones	8 h	Alta
HU9	Revisión general y edición del documento final	8 h	Alta
HU9	Diseño y elaboración de presentación para defensa	8 h	Alta
HU9	Ensayos de presentación y de- fensa con retroalimentación	8 h	Alta

10. Diagrama de Gantt

En la siguiente figura se puede observar el diagrama de Gantt

Figura 2. Diagrama de Gantt.

11. Planificación de Sprints

A continuación, se detalla la tabla de planificación de Sprints.

Sprint	HU	Tarea	Horas	Responsable	Completado %
Sprint 0	Planificación	Definición de alcance	25	Alumno	100
	inicial	y cronograma			
Sprint 0	Planificación	Reunión con orienta-	15	Alumno	100
	inicial	dor			
Sprint 0	Planificación	Ajuste de entregables	15	Alumno	100
	inicial	y metodología			
Sprint 1	HU1 –	Exploración de data-	20	Alumno	10
	Obtención EEG	sets MOABB y carga inicial			
Sprint 1	HU1 –	Limpieza preliminar	30	Alumno	0
opinio i	Obtención	de datos EEG	00	1110111110	
	EEG	ac acces 220			
Sprint 2	HU2 – Prepro-	Diseño e implementa-	35	Alumno	0
_	cesamiento	ción del pipeline de			
		preprocesamiento			
Sprint 2	HU2 – Prepro-	Evaluación y valida-	15	Alumno	0
	cesamiento	ción de datos procesa-			
		dos			
Sprint 3	HU3 -	Definición de arqui-	35	Alumno	0
	Entrenamiento	tecturas			
	del modelo IA				
Sprint 3	HU3 -	Entrenamiento inicial	25	Alumno	0
	Entrenamiento	y validación cruzada			
	del modelo IA				
Sprint 4	HU4 -	Optimización de infe-	35	Alumno	0
	Optimización	rencia y reducción de			
	para	latencia			
Q	despliegue			4.1	
Sprint 4	HU4 -	Exposición del mo-	15	Alumno	0
	Optimización	delo mediante API			
	para	REST			
Sprint 5	despliegue HU5 –	Diseño de arquitectu-	30	Alumno	0
Sprint 5	Procesamiento	ra en AWS	30	Aiuiiiio	U
	en AWS	Ta en Avvo			
	Lambda				
Sprint 5	HU5 –	Implementación y	25	Alumno	0
or	Procesamiento	pruebas de funciones			
	en AWS	Lambda			
	Lambda				
Sprint 6	HU6 – CI/CD	Configuración de des-	50	Alumno	0
	Cloud	pliegue automático y			
		monitoreo			
Sprint 7	HU7 – Interfaz	Diseño de interfaz	25	Alumno	0
	de usuario	gráfica de señales			
	EEG	EEG			
Sprint 7	HU7 – Interfaz	Exportación de	25	Alumno	0
	de usuario	datos en formatos			
	EEG	CSV/JSON			

Sprint	HU	Tarea	Horas	Responsable	Completado $\%$
Sprint 8	HU8 -	Implementación de	40	Alumno	0
	Seguridad	cifrado y política de			
	datos EEG	retención			
Sprint 9	HU9 – Docu-	Redacción de	40	Alumno	30
	mentación	capítulos técnicos			
Sprint 10	HU9 – Docu-	Integración final de	40	Alumno	0
	mentación	memoria y revisión			
		ortográfica			
Sprint 11	HU9 –	Preparación de ex-	40	Alumno	0
	Defensa final	posición y simula-			
		cros			

12. Normativa y cumplimiento de datos (gobernanza)

En el presente proyecto, trabajará con datos de señales EEG provenientes de datasets públicos como MOABB (*Mother of All BCI Benchmarks*), un repositorio público ampliamente utilizado en la comunidad científica para el estudio de interfaces cerebro-computadora. A continuación, se analizan los aspectos legales, éticos y técnicos relacionados con la gobernanza de estos datos.

12.1. Evaluación normativa aplicable

Los datos EEG utilizados en este proyecto no contienen información de identificación personal (PII), ya que han sido anonimizados previamente por las entidades que los generaron. No obstante, al tratarse de datos biométricos, pueden estar sujetos a regulaciones de privacidad según la jurisdicción. Se considera la siguiente normativa:

■ Reglamento General de Protección de Datos (GDPR - Unión Europea): establece que los datos biométricos se consideran datos sensibles y su tratamiento requiere garantías específicas, incluso si están anonimizados.

12.2. Consentimiento de los usuarios

El dataset MOABB incluye únicamente registros cuya recolección fue realizada bajo protocolos éticos con consentimiento informado, documentado por las instituciones que lo generaron. Como usuario del dataset, el proyecto se adhiere a las licencias y restricciones de uso establecidas por los propietarios de los datos.

12.3. Restricciones de uso, compartición o publicación

Los datos EEG empleados provienen de fuentes de acceso abierto, bajo licencias que permiten su uso para fines de investigación, con la condición de no intentar identificar a los sujetos participantes ni redistribuir los datos de forma desautorizada.

12.4. Fuente y licenciamiento de los datos

Los datos utilizados pertenecen al proyecto MOABB * con licencia BSD 3-Clause License que ofrece múltiples datasets estandarizados para evaluación de modelos BCI. Se emplean únicamente los que están públicamente disponibles y cuentan con licencias de uso explícitas para investigación académica.

12.5. Consideraciones éticas y viabilidad legal

Desde el punto de vista legal, el uso de MOABB como fuente de datos es viable para los fines del proyecto, siempre y cuando se respeten los términos de la licencia de uso y no se intente aplicar el sistema a datos personales sin consentimiento.

12.6. Gobernanza de los datos

Se establece como principio del proyecto el cumplimiento del ciclo de vida de datos responsable, incluyendo:

- Almacenamiento seguro y cifrado de los resultados.
- Eliminación periódica de datos temporales.
- Documentación clara sobre el uso y transformación de los datos.
- Evaluación de riesgos asociados a la exposición o mal uso de los datos.

13. Gestión de riesgos

Riesgo 1: retrasos en la adquisición o validación de datos

- Severidad (S): 8
 La falta de datos validados compromete el entrenamiento del modelo y la evaluación general del sistema.
- Ocurrencia (O): 5 Aunque los datos MOABB son de acceso abierto, la validación y el preprocesamiento pueden requerir más tiempo del esperado.

Riesgo 2: dificultad en el despliegue en AWS Lambda por límites técnicos

Severidad (S): 7
 Superar límites de ejecución o memoria afectaría la escalabilidad del sistema.

^{*}NeuroTechX, "MOABB: Mother of All BCI Benchmarks," GitHub, disponible en: https://github.com/NeuroTechX/moabb

Ocurrencia (O): 6
 La ejecución de modelos en tiempo real puede exceder los 15 segundos, especialmente en inferencia no optimizada.

Riesgo 3: falta de experiencia previa con MLOps y DevOps

- Severidad (S): 6
 El desconocimiento en herramientas que brindan automatización pueden retrasar la integración y despliegue continuo.
- Ocurrencia (O): 7
 El desconocimiento del uso de las herramientas de automatización puede generar obstáculos técnicos, dado que el proyecto requiere el aprendizaje e implementación de estas herramientas, esto implica una curva de aprendizaje considerable.

Riesgo 4: vulnerabilidades en la seguridad de datos EEG

- Severidad (S): 9
 La filtración o uso indebido de datos EEG podría tener consecuencias legales y éticas graves.
- Ocurrencia (O): 4
 Aunque se usan prácticas de cifrado, errores de configuración o descuidos pueden generar brechas.

Riesgo 5: sobrecarga de trabajo hacia el final del proyecto

- Severidad (S): 6
 Puede comprometer la calidad de entregables finales (documentación, defensa).
- Ocurrencia (O): 6
 Hay alta probabilidad si no se sigue el cronograma de sprints rigurosamente.

Riesgo	\mathbf{S}	О	RPN	S*	O*	RPN*
Retrasos en adquisición o validación de datos EEG	8	5	40	6	3	18
Dificultades técnicas en procesamiento en AWS	7	6	42	6	4	24
Lambda						
Inexperiencia en herramientas MLOps			42	5	4	20
Fallas en la seguridad de datos EEG			36	6	3	18
Sobrecarga de trabajo en etapas finales	6	6	36	5	3	15

Criterio adoptado: se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a 30.

A continuación se presenta el plan de mitigación de los riesgos que exceden el RPN máximo establecido

Riesgo 1: retrasos en adquisición o validación de datos EEG

• Plan de mitigación: asignar un sprint exclusivo para preprocesamiento y exploración de datasets. Revisión temprana de compatibilidad y calidad de datos.

- $S^* = 6$: se reduce la severidad al distribuir la carga y revisar posibles fuentes alternativas.
- $O^* = 3$: se reduce la ocurrencia al incorporar actividades preventivas y planificadas.

Riesgo 2: dificultades técnicas en AWS Lambda

- Plan de mitigación: realizar pruebas de carga anticipadas con versiones reducidas del modelo. Optimizar uso de recursos desde etapas tempranas.
- $S^* = 6$: se reduce al anticipar cambios arquitectónicos si son necesarios.
- $O^* = 4$: disminuye gracias a pruebas en entorno de staging con métricas reales.

Riesgo 3: inexperiencia en herramientas MLOps

- Plan de mitigación: planificación de capacitación autodidacta en los primeros sprints. Uso de plantillas y recursos oficiales de AWS.
- $S^* = 5$: se reduce al adquirir familiaridad y estructurar procesos con ayuda.
- O* = 4: baja gracias a tareas prácticas planificadas con revisión progresiva.

Riesgo 4: fallas en la seguridad de datos EEG

- Plan de mitigación: Implementar cifrado en tránsito y en reposo desde el inicio. Aplicar políticas estrictas de permisos en los buckets y servicios involucrados.
- \bullet S* = 6: se reduce al incorporar prácticas estándar de ciberseguridad desde el diseño.
- O* = 3: baja gracias al uso de herramientas automatizadas de auditoría y monitoreo.

Riesgo 5: Sobrecarga de trabajo en etapas finales

- Plan de mitigación: Distribuir la redacción de entregables en múltiples sprints y reservar buffers en el cronograma. Usar control de versiones también para la memoria escrita.
- $S^* = 5$: baja al equilibrar mejor la carga desde etapas intermedias.
- $O^* = 3$: disminuye al tener planificadas entregas parciales desde el sprint 6 en adelante.

14. Sprint Review

HU selec- cionada	Tareas asociadas	Entregable esperado	¿Cómo sabrás que está cumplida?	Observaciones o riesgos	
	Exploración del dataset MOABB	Módulo	Cumple criterios de	Puede requerirse	
HU1	Limpieza y validación de señales EEG	funcional para adquisición de datos	aceptación: datos limpios, cargados y validados	adaptar scripts para distintos formatos de dataset	
	Entrenamiento de modelo inicial	Modelo	Métricas de desempeño	Podrían surgir ajustes	
HU3	Validación cruzada del modelo entrenado	entrenado y validado	alcanzadas con precisión mayor o igual a 80 %	de hiperparámetros no previstos	
	Visualización de señales en interfaz gráfica			Riesgo en	
HU5	Exportación de señales en CSV y JSON	Visualizador EEG funcional	Gráficos legibles y exportaciones exitosas	compatibilidad de formatos o librerías	
	Implementación de despliegue automático en AWS	Modelo	Endpoints activos y		
HU6	Configuración de monitoreo y pruebas	accesible vía API REST con CI/CD	latencia medida en menor o igual a 15s	Puede requerirse ajuste en recursos o permisos	

15. Sprint Retrospective

Sprint (tipo y N)	¿Qué hacer más?	¿Qué hacer menos?	¿Qué mantener?	¿Qué empezar a hacer?	¿Qué dejar de hacer?
Sprint 0 (No técnico - Planificación)	Dedicar más tiempo a la planificación detallada y realista de tareas.	subestimación de tiempos de docu- mentación y revisión.	La revisión cruzada de entregables antes de enviar.	Hacer revisiones iterativas del cronograma a medida que avance el proyecto.	Dejar de asumir que todas las tareas técnicas serán lineales en duración.
Sprint 2 (Técnico – Preprocesamiento EEG)	Validar calidad de señal y documenta- ción de scripts.	Optimizar código antes de validarlo.	Pipeline modular para reusabilidad y claridad.	Usar validaciones automáticas en el flujo de preproce- samiento.	Postergar tareas de documenta- ción para el final.
Sprint 5 (Técnico – Extracción de características)	Pruebas unitarias en etapas tempranas del desarrollo.	Depender de notebooks desordena- dos.	La automatización del pipeline con scripts parametrizables.	Crear un repositorio limpio y separado para funciones reutilizables.	Trabajar sin control de versiones fino por etapa.
Sprint 9 (Técnico – Entrenamiento y evaluación del modelo)	Probar más métricas y evaluar resultados con mayor profundi- dad.	Iteraciones sin docu- mentación intermedia de resultados.	La evaluación cruzada para robustez de resultados.	Explorar herramientas para visualización de métricas.	Almacenar resultados sólo localmente, sin respaldo en la nube.