This set of notes aims to provide complete proofs of a number of asymptotic results regarding the Bootstrap [2] contained in Bickel and Freedman [1].

1 Bootstrap asymptotics for sample mean

Theorem 1.1 (Bootstrap Central Limit Theorem for I.I.D. sample mean, Theorem 2.1 [1])

Let $(\Omega, \mathcal{A}, \nu)$ be a probability space. Let $X, X_1, X_2, \ldots : \Omega \longrightarrow \mathbb{R}$ be a sequence of independent and identically distributed \mathbb{R} -valued random variables defined on Ω with finite expectation value $\mu_X \in \mathbb{R}$ and variance $\sigma_X^2 < \infty$. For each $n \in \mathbb{N}$ be fixed, define:

$$\overline{X}_n : \Omega \longrightarrow \mathbb{R} : \omega \longmapsto \frac{1}{n} \sum_{i=1}^n X_i(\omega).$$

For $n, m \in \mathbb{N}$, define $\mathcal{S}_m^{(n)}$ to be the set of all functions from $\{1, 2, \dots, m\} \longrightarrow \{1, 2, \dots, n\}$. Thus, each

$$s = (s(1), s(2), \dots, s(m)) \in \mathcal{S}_m^{(n)}$$

can be regarded as a length-m finite (ordered) sequence of positive integers between 1 and n, inclusive. Note that $\mathcal{S}_m^{(n)}$ is a finite set with $|\mathcal{S}_m^{(n)}| = n^m$. Endow $\mathcal{S}_m^{(n)}$ with the probability space structure induced by the uniform probability function:

$$P_{\mathcal{S}_m^{(n)}}(s) := \frac{1}{n^m}, \text{ for each } s \in \mathcal{S}_m^{(n)}.$$

Let $\Omega \times \mathcal{S}_m^{(n)}$ be the product probability space of Ω and $\mathcal{S}_m^{(n)}$. Define:

$$\overline{X}_m^{(n)}: \Omega \times \mathcal{S}_m^{(n)} \longrightarrow \mathbb{R}: (\omega, s) \longmapsto \frac{1}{m} \sum_{i=1}^n X_{s(j)}(\omega).$$

For each $\omega \in \Omega$, define:

$$\Phi_{m,\omega}^{(n)} : \mathcal{S}_m^{(n)} \longrightarrow \mathbb{R} : s \longmapsto \sqrt{m} \left(\overline{X}_m^{(n)}(\omega, s) - \overline{X}_n(\omega) \right)$$

Then,

$$P\Big(\stackrel{\Phi^{(n)}}{\longrightarrow} \stackrel{d}{\longrightarrow} N(0,\sigma_X^2), \text{ as } n,m \to \infty \; \Big) \;\; = \;\; \nu\Big(\Big\{ \; \omega \in \Omega \; \left| \; \Phi^{(n)}_{m,\omega} \stackrel{d}{\longrightarrow} N(0,\sigma_X^2), \text{ as } n,m \to \infty \; \right. \Big\} \Big) \;\; = \;\; 1.$$

Remark 1.2

For each fixed $\omega \in \Omega$, $\left\{\Phi_{m,\omega}^{(n)}: \mathcal{S}_m^{(n)} \longrightarrow \mathbb{R}\right\}_{n,m\in\mathbb{N}}$ is a doubly indexed sequence of \mathbb{R} -valued random variables. Note that their respective domains $\mathcal{S}_m^{(n)}$ are pairwise distinct probability spaces. The **Bootstrap Central Limit Theorem** for I.I.D. sample mean asserts that for almost every $\omega \in \Omega$, the doubly indexed sequence $\left\{\Phi_{m,\omega}^{(n)}\right\}$ of \mathbb{R} -valued random variables converges in distribution to $N(0,\sigma_X^2)$ as $n,m \longrightarrow \infty$.

Remark 1.3 The following results are well known from classical asymptotic theory:

By the Weak Law of Large Numbers, \overline{X}_n converges in probability to μ_X , as $n \longrightarrow \infty$; in other words,

$$\lim_{n \to \infty} P(|\overline{X}_n - \mu_X| > \varepsilon) = \lim_{n \to \infty} \nu(\{\omega \in \Omega : |\overline{X}_n(\omega) - \mu_X| > \varepsilon\}) = 0, \text{ for each } \varepsilon > 0.$$

By the Strong Law of Large Numbers, \overline{X}_n converges almost surely to μ_X , as $n \to \infty$; in other words,

$$P\Big(\lim_{n\to\infty}\,\overline{X}_n=\mu_X\,\Big)\ =\ \nu\left(\Big\{\,\omega\in\Omega\,\,\Big|\,\lim_{n\to\infty}\,\overline{X}_n(\omega)=\mu_X\,\Big\}\right)\ =\ 1.$$

By the Central Limit Theorem, $\sqrt{n}(\overline{X}_n - \mu_X)$ converges in distribution to $N(0, \sigma_X^2)$.

Some Asymptotic Theory for the Bootstrap

Study Notes June 27, 2015 Kenneth Chu

References

- [1] BICKEL, P. J., AND FREEDMAN, D. A. Some asymptotic theory for the bootsrap. *The Annals of Statistics 9*, 6 (1981), 1196–1217.
- [2] EFRON, B. Bootsrap methods: another look at the jackknife. The Annals of Statistics 7, 1 (1979), 1–26.