1.	Plaintext is the original message, while is the encrypted message.	1/1 point
	○ cipher	
	olgorithm algorithm	
	O digest	
	(ciphertext	
	 Correct Once the original message is encrypted, the result is referred to as ciphertext. 	
2.	The specific function of converting plaintext into ciphertext is called a(n)	1/1 point
	O permutation	
	O data protection standard	
	encryption algorithm	
	integrity check	
	 Correct An encryption algorithm is the specific function or steps taken to convert plaintext into encrypted ciphertext. 	
3.	Studying how often letters and pairs of letters occur in a language is referred to as	1/1 point
	○ cryptography	
	frequency analysis	
	○ codebreaking	
	espionage	
	 Correct Frequency analysis involves studying how often letters occur and looking for similarities in ciphertext to uncover possible plaintext mappings. 	
4.	The practice of hiding messages instead of encoding them is referred to as	1/1 point
	● steganography	
	hashing	
	oncryption encryption	
	O obfuscation	
	 Correct Steganography involves hiding messages from discovery instead of encoding them. 	
5.	ROT13 and a Caesar cipher are examples of	1/1 point
	substitution ciphers	
	○ steganography	
	asymmetric encryption	
	odigital signatures	
	 Correct These are both examples of substitution ciphers, since they substitute letters for other letters in the alphabet. 	
6.	DES, RC4, and AES are examples of encryption algorithms.	1/1 point
	weak	
	strong	
	asymmetric	
	● symmetric	

7.	Which of the following are necessary components for encryption and decryption operations when using an asymmetric encryption system? Check all that apply. Public key	1/1 poin
	○ Correct In asymmetric encryption systems, there's a public key used for encryption, and a private key used for decryption.	
	 □ Random number generator □ Digest ☑ Private key 	
	○ Correct In asymmetric encryption systems, there's a public key used for encryption, and a private key used for decryption.	
8.	To create a public key signature, use the key. ② private	1/1 poin
	Correct The private key is used to sign data. This allows a third party to verify the signature using the public key, ensuring that the signature came from someone in possession of the private key.	
9.	Using an asymmetric cryptosystem provides which of the following benefits? Check all that apply. Confidentiality	1/1 poin
	Correct Confidentiality is provided by the encryption, authenticity is achieved through the use of digital signatures, and non-repudiation is also provided by digitally signing data.	
	☐ Hashing✓ Authenticity	
	Correct Confidentiality is provided by the encryption, authenticity is achieved through the use of digital signatures, and non-repudiation is also provided by digitally signing data.	
	✓ Non-repudiation	
	Correct Confidentiality is provided by the encryption, authenticity is achieved through the use of digital signatures, and non-repudiation is also provided by digitally signing data.	
10.	If two different files result in the same hash, it is referred to as a	1/1 poin
	hash collision coincidence	
	Coincidence mistake	
	key collision	
	 ✓ Correct When two different inputs yield the same hash, it is called a hash collision. 	