User's Reference Guide for ODRPACK95 Version 1.00 Software for Weighted Orthogonal Distance Regression with Bound Constraints

Jason W. Zwolak, Paul T. Boggs, and Layne T. Watson

December 2005

User's Reference Guide for ODRPACK95 Version 1.00 Software for Weighted Orthogonal Distance Regression with Bound Constraints

Jason W. Zwolak¹ Paul T. Boggs² Layne T. Watson³

¹ Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061

² MS 9159, Sandia National Laboratories, Livermore, CA, 94551

 $^{^3}$ Departments of Mathematics and Computer Science, Virginia Tech, Blacksburg, VA $24061\,$

iv

Abstract

ODRPACK (TOMS Algorithm 676) has provided a complete package for weighted orthogonal distance regression for many years. The code is complete with user selectable reporting facilities, numerical and analytic derivatives, derivative checking, and many more features. The foundation for the algorithm is a stable and efficient trust region Levenberg-Marquardt minimizer that exploits the structure of the orthogonal distance regression problem. This user's guide describes ODRPACK95, a modification of the original ODRPACK code that adds bound constraints, uses the newer Fortran 95 language, and simplifies the interface to the user called subroutine.

Keywords: orthogonal distance regression; measurement error models; errors in variables; nonlinear least squares; bound constraints; Fortran 95.

Abstract

vi Revision History

REVISION HISTORY

- 1.00 (09-28-2004) ODRPACK95 1.0 adds bound constraints to the original ODRPACK code (version 2.01) and updates the code to the Fortran 95 standard. The implementation of bound constraints projects the step (after it is calculated and before the current parameters are updated) into the feasible region of the parameters. With the addition of bound constraints comes
 - modified finite difference calculations that avoid requests for function evaluations outside the bounds,
 - modified initialization that calculates NDIGIT without requesting function evaluations outside the bounds, and
 - modified steps so that they are projected within the feasible region.

Note that the convergence criteria are not modified and are evaluated after the step is projected into the feasible region. With the rewrite in Fortran 95 came

- a module interface to ODR,
- use of intrinsic Fortran functions to get machine constants,
- declaration of functional parameters using the OPTIONAL attribute when a meaningful or reasonable default exists, and
- array allocation and deallocation for all work arrays.

ORIGINAL ODRPACK REVISION HISTORY

2.01 (06-19-92) ODRPACK 2.01 corrects two minor errors. The first affected the derivative checking procedure, and the second affected the values specified by NDIGIT. The solutions found by ODRPACK 2.00 were not affected in any way by the first of these errors, and were not seriously affected by the second.

Version 2.01 also encorporates several other minor modifications that further improve the code. The most significant of these modifications changes how the scale values are used within the solution procedure. This change should increase the robustness of the procedure for poorly scaled problems, and will result in slightly different computed results for all problems. Another of these changes is to the report generated by the derivative checking procedure. This report now includes the user supplied derivative value, as well as the relative difference between the user supplied value and the finite difference value it was checked against. This should help users assess the validity of the checking procedure results.

The "ODRPACK 2.01 User's Reference Guide" is essentially the same as the version 2.00 Guide (NISTIR 89-4103, Revised). The major differences are that

- the minimum length of array WORK has been increased by (p+m)q locations, and
- the sample programs and output shown in Chapter 2, and the discussion of the derivative checking results in Chapter 5 have been modified to reflect the above mentioned changes.
- 2.00~(03-04-92) ODRPACK 2.00~adds several new features to those available in version 1.8~and earlier versions.

- With version 2.00, ODRPACK can now easily accommodate complex and other types of multiresponse data, i.e., data where each observation is multidimensional.
- It can handle implicit as well as explicit models.
- The weighting scheme has been enhanced to allow for instances when the components of a multidimensional observation are correlated.
- A facility for computing central finite difference derivatives has been added.
- The amount of work space required for the computations has been reduced for most problems.

Because of these new features, the argument lists for the ODRPACK 2.00 user callable subroutines, including the user supplied subroutine FCN that now comprises the functionality of subroutines FUN and JAC, are not the same as for earlier versions. The interpretations of some arguments have changed, and new arguments have been added. In addition, the arguments have been reordered, with arguments having similar purpose now grouped together. Those who have been using an earlier release of ODRPACK should be especially careful to examine the new calling sequences, and the definitions for subroutine arguments FCN, JOB, WE and WD.

- 1.80 (12-18-90) ODRPACK 1.80, a test release with only limited distribution, differs from prior releases in several respects.
 - The number of function evaluations required to find the solution has been reduced, and the "restart" facility has been modified to better accommodate cases where the user supplied subroutines FUN and/or JAC are very time consuming.
 - The printed reports have been redesigned to identify parameters that induce rank deficiency, and to include a 95% confidence interval for the estimated parameters.
 - Several enhancements have been added to the covariance matrix computations, including the option of constructing the covariance matrix without incurring any additional derivative evaluations.
 - The finite difference approximation to the Jacobian matrix has been improved.
- 1.71 (07-27-89) ODRPACK 1.71 corrects an error in the code that performs the computation of finite difference derivatives with respect to the errors Δ when $m \geq 2$ and the default value of IFIXX is invoked. (The default value of IFIXX is

invoked when IFIXX(1,1) is set to a negative value or when ODRPACK routines DODR or SODR are called.) This error could result in incorrect "fixing" of the explanatory variables, which would affect the final solution. Such "fixing" could be detected by observing the presence of estimated values for Δ that are identically zero. The error could go undetected by the user, however, if the values of Δ were not examined after the fit.

x Preface

Preface

ODRPACK95 is a portable Fortran 95 code for fitting a model to data. Based on the ODR-PACK code [Boggs et al., 1989], ODRPACK95 adds bound constraints on the parameters and takes advantage of newer Fortran 95 features. It is designed primarily for instances when all of the variables have significant errors (see, e.g., [Fuller, 1987] and [Boggs and Rogers, 1990]), implementing a highly efficient algorithm for solving the weighted orthogonal distance regression problem [Boggs et al., 1987 and 1989], i.e., for minimizing the sum of the squares of the weighted orthogonal distances between each data point and the curve described by the model equation. It can also be used to solve the ordinary least squares problem where all of the errors are attributed to the observations of the dependent variable.

ODRPACK95 is designed to handle many levels of user sophistication and problem difficulty.

- It is easy to use, providing optional subroutine arguments to control the computations, extensive error handling facilities, optional printed reports, and no size restrictions other than effective machine size.
- It can handle implicit as well as explicit models, and can accommodate complex and other types of multiresponse data, i.e., data where each observation is multidimensional.
- The necessary derivatives (Jacobian matrices) are approximated numerically if they are not supplied by the user, and the correctness of user supplied derivatives can be verified by the derivative checking procedure provided.
- Both weighted and unweighted analysis can be performed.
- Subsets of the unknowns can be treated as constants with their values held fixed at their input values, allowing the user to examine the results obtained by estimating subsets of the unknowns of a general model without rewriting the model subroutine.

Preface

• The covariance matrix and the standard errors of the model parameter estimators are optionally provided.

- The ODRPACK95 scaling algorithm automatically compensates for poorly scaled problems, i.e., problems with model parameters, and/or unknown errors in the explanatory variables that vary widely in magnitude.
- Parameters can have upper and lower bounds constraining the search space.
- The trust region Levenberg-Marquardt algorithm implemented by ODRPACK95 [Boggs et al., 1987 and 1989] has a computational effort per step that is of the same order as that required for ordinary least squares, even though the number of unknowns estimated in the orthogonal distance regression problem is the number of unknown model parameters plus the number of explanatory variables, while the number of unknowns estimated in the ordinary least squares problem is simply the number of unknown model parameters.
- The code is portable and is easily used with other Fortran libraries.

We have used subroutines from LINPACK [Dongarra et al., 1979], and from the "Basic Linear Algebra Subprograms for Fortran Usage" [Lawson et al., 1979]. The code that computes the t-values used in constructing the confidence intervals is from DATAPAC [Filliben, 1977], and the code that checks user supplied derivatives was adapted from STARPAC [Donaldson and Tryon, 1986] using algorithms described in [Schnabel, 1982].

We appreciate the comments and suggestions we have received regarding earlier versions of ODRPACK and welcome yours.

Jason Zwolak
Paul T. Boggs
Layen T. Watson

June 2006

xii Contents

CONTENTS

A	bstr	act		iv
R	evisi	on His	tory	\mathbf{vi}
P	refac	ce		x
1	Get	ting St	carted	1
	1.A	Notatio	on and Problem Definition	2
		1.A.i	Explicit Orthogonal Distance Regression	5
		1.A.ii	Implicit Orthogonal Distance Regression	6
		1.A.iii	Orthogonal Distance Regression for Multidimensional Data	6
		1.A.iv	Orthogonal Distance Regression with Bound Constraints	9
	1.B	Algorit	:hm	9
	1.C	Specify	ring the Task	10
	1.D	ODRP.	ACK95 Generated Results	11
		1.D.i	Error Reports	11
		1.D.ii	Computation Reports	$\dots 12$
			1.D.ii.a Initial Reports	12
			1.D.ii.b Iteration Reports	$\dots 13$
			1.D.ii.c Final Reports	14
	1.E	Startin	g Values	14
	1.F	Weight	S	15
	1.G	Default	t Values and Structured Arguments	16
		1.G.i	Optional Arguments and Default Values	17
		1.G.ii	Structured Arguments	17
2	Usi	ng OD	RPACK95	19
	2.A	Subrou	tine Interface and Argument.Descriptions	$\dots 19$
		2.A.i	Synopsis	19
		2.A.ii	ODRPACK95 Subroutine Argument Definitions	20
	2.B	Examp	oles	36
		2 B i	Example Problem for an Explicit Model	36

Contents

			2.B.i.a User Supplied Code (file drive1.f)	36
			2.B.i.b User Supplied Data (file data1)	42
			2.B.i.c Report Generated by ODRPACK95 (file drive1.out)	43
		2.B.ii	Example Problem for an Implicit Model	46
			2.B.ii.a User Supplied Code (file drive2.f)	46
			2.B.ii.b User Supplied Data (file data2)	
			2.B.ii.c Report Generated by ODRPACK95 (file drive2.out)	
		2.B.iii	Example Problem for an Explicit Model with Multiresponse Data .	
			2.B.iii.a User Supplied Code (file drive3.f)	
			2.B.iii.b User Supplied Data (file data3)	
			2.B.iii.c Report Generated by ODRPACK95 (file drive3.out)	
		2.B.iv	Example Problem for an Explicit Model with Bound Constraints	
			2.B.iv.a User Supplied Code (file drive4.f)	
			2.B.iv.b Report Generated by ODRPACK95 (file drive4.out)	70
3	$\mathbf{W}\mathbf{h}$	en the	Model Is Very Time Consuming	73
4	Con	nputat	ional Details	7 6
	4.A	Compu	uting the Jacobian Matrices	76
		4.A.i	"Hand Coded" Derivatives	76
		4.A.ii	Automatic Differentiation	77
		4.A.iii	Finite Difference Derivatives	78
			4.A.iii.a Forward Finite Difference Derivatives	78
			4.A.iii.b Central Finite Difference Derivatives	79
	4.B		ance Matrix	
	4.C		tion Number	
	4.D	_	g Algorithms	
		4.D.i	87	
		4.D.ii	Scaling Δ	85
5		rk Vect		86
			eting Information from Vector WORK	
	5.B	Extrac	eting Information from Vector IWORK	94
ъ	iblio	graphy	7	99

1. Getting Started

ODRPACK95 is a portable Fortran 95 code for fitting a model to data. Based on the ODRPACK code [Boggs et al., 1989], ODRPACK95 adds support for bound constraints and takes advantage of newer Fortran 95 features. It is designed primarily for instances when all of the variables have significant errors (see, e.g., [Fuller, 1987] and [Boggs and Rogers, 1990]), implementing a highly efficient algorithm for solving the weighted orthogonal distance regression problem [Boggs et al., 1987 and 1989]. It can also be used to solve the ordinary least squares problem, however, where all of the errors are attributed to the observations of only one of the variables.

We suggest that first time users of ODRPACK95 begin by at least skimming this chapter, and then proceed to the sample programs given in §2.B, modifying them as necessary to solve their particular problem. The sample programs are distributed in machine readable form with the ODRPACK95 release, and thus should be available for use as templates without requiring that the user enter the code. The subroutine arguments used in these examples are defined in detail in §2.A.ii.

Chapter 1 presents information that is especially important to first time users of ODR-PACK95. Users are directed to §1.A for a brief description of the orthogonal distance regression problem. This section introduces notation and provides background material for understanding the remainder of the documentation. The algorithm itself is described briefly in §1.B, and in greater detail in [Boggs et al., 1987 and 1989]. Options available for specifying the problem are briefly discussed in §1.C, and ODRPACK95's report generation facility is discussed in §1.D. The need for good starting values for the unknown parameters of the model is explained in §1.E, and the use of weights in §1.F. Finally, §1.G describes two features of ODRPACK95 that simplify the user interface with the package.

Chapter 2 describes the use of ODRPACK95 in detail. Most experienced users of ODR-PACK95 will only need the information in this chapter. The declaration and call statement for the ODRPACK95 subroutine is given in §2.A, the subroutine arguments are defined in §2.A, and sample programs are shown in §2.B.

The last three chapters provide auxiliary information. Chapter 3 is generally only needed by users with very time consuming functions; it explains how ODRPACK95's features can be exploited in order to minimize cost, and to reduce the possibility of losing results because limits imposed by their computer system were reached. Chapter 4 describes the details of certain ODRPACK95 computations, and Chapter 5 describes how the user can extract computed results from the work vectors.

1.A. Notation and Problem Definition

The method of least squares is often used to find the parameters $\beta \in \Re^p$ of a mathematical model that defines a relationship between variables that are subject to errors. When errors occur in more than one of the variables, then the relationship between the variables is frequently referred to as a measurement error model or an errors in variables problem. The computational problem associated with finding the maximum likelihood estimators of the parameters of such models is known as it orthogonal distance regression. These models are discussed in [Fuller, 1987], and [Seber and Wild, 1989]. The orthogonal distance regression procedure implemented in ODRPACK95 is reviewed in [Boggs and Rogers, 1990]. That publication also summarizes the results of several simulation studies that compare orthogonal distance regression results to those obtained using ordinary least squares, where the errors are assumed to occur in only one of the variables. (See also [Boggs et al., 1988].)

The model f that defines the relationship between the variables can be either linear or nonlinear in its parameters β . Sometimes one of the observed variables is distinguished as being a response that is dependent upon the remaining variables, which are commonly called the explanatory, regressor or independent variables. In these cases, the explanatory variables are often used to predict the behavior of the response variable. In other cases, however, there is no such distinction among the variables.

We say that there is an **explicit** relationship f between the variables (x, y) if

$$y \approx f(x; \beta)$$
, (1.1)

where y denotes the response variable, x denotes the explanatory variables, and y is assumed to be only approximately equal to $f(x; \beta)$ because of the measurement errors in y and possibly x. When both x and y are observed with error, then the parameters β can be found by orthogonal distance regression. If only y is subject to measurement error, and x is observed without error, then the parameters of such an explicit model can be obtained using ordinary least squares procedures.

Example: The model shown in §2.B.i,

$$y_i \approx f_i(x_i; \beta) \equiv \beta_1 + \beta_2 [e^{\beta_3 x_i} - 1]^2$$

for $i=1,\ldots,n$, which is example 3.2.2 on pages 230–238 of [Fuller, 1987], is an explicit orthogonal distance regression model. In this case, x is the percent saturation of nitrogen gas in a brine solution forced into the pores of sandstone, and y is the observed compressional wave velocity of ultrasonic signals propagated through the sandstone. Here, as in most explicit models, the explanatory variable x is used primarily to predict the behavior of the response variable y.

If the relationship between the variables is expressed **implicitly**, then

$$f(x;\beta) \approx 0$$
,

where here we denote *all* of the variables by x. Although one of these variables may still be dependent on the others, when the model is implicit we do not assume that such a dependent variable can be expressed as an explicit function of the other explanatory variables as in (1.1). Thus, in the implicit case the distinction between response and regressor variables is unnecessary. When the relationship is implicit, then the parameters β cannot be estimated by most ordinary least squares procedures, but can be estimated by orthogonal distance regression procedures such as ODRPACK95.

Example: One of the simplist examples of an implicit model is that of fitting a circle or ellipse in a plane, as is done in example 3.2.4 on page 244 of [Fuller, 1987]. In this example, shown in §2.B.ii, the data are observations digitized from the x-ray image of a hip prosthesis, where the variables $x_i = (v_i, h_i), i = 1, ..., n$, are the vertical and horizontal distances from the origin, respectively, and the implicit model is that of the ellipse

$$f_i(x_i;\beta) \equiv \beta_3(v_i - \beta_1)^2 + 2\beta_4(v_i - \beta_1)(h_i - \beta_2) + \beta_5(h_i - \beta_2)^2 \approx 0$$
 for $i = 1, ..., n$.

Sometimes the observations are **multiresponse** and thus must satisfy more than one relationship f. This most commonly arises when the observations are complex variables, although it can occur in other cases as well.

Example: The problem shown in §2.B.iii is an example of multiresponse data that originates because the underlying data are complex. The problem is described in Chapter 4, and on pages 280–281, of [Bates and Watts, 1988]. In this case, the response variable is the pair of values representing the real and imaginary parts of complex-valued impedance measurements, z_i , i = 1, ..., n, of a polymer, and the explanatory variable, x_i , i = 1, ..., n, is the (real-valued) frequency. The function is explicit, representing the dielectric constant by a general model proposed in [Havriliak and Negami, 1967],

$$z_i \approx \beta_2 + \frac{\beta_1 - \beta_2}{\left(1 + (j2\pi x_i e^{-\beta_3})^{\beta_4}\right)^{\beta_5}}$$

for $i=1,\ldots,n$, where $j=\sqrt{-1}$. For ODRPACK95, this must be encoded as a two-term multiresponse problem with $y_i\in\Re^2$ representing the pair of values $[\Re(z_i),\Im(z_i)], i=1,\ldots,n$.

Finally, sometimes parameters have physical or logical bounds constraining the search space. This problem arises frequently in chemical kinetic models where rates of chemical reactions are represented by parameters. A change in the sign of a parameter represents a qualitative change in the model usually violating empirical observations. In systems biology chemical kinetic models of proteins can be very complex and empirical data very noisy. [Zwolak et al. 2005] found it necessary to constrain parameters and did so by manually fixing parameters while using the original ODRPACK.

Example: The problem shown in §2.B.iv is taken from Zwolak et al. (2001). They use a simple phenomenological model of MPF (mitosis promoting factor) activity in frog egg extracts. In this model MPF activity M remains low for some time and eventually activates at a time t (the timelag) dependent on the total cyclin concentration C (the independent variable). The model has three kinetic parameters (or rates): k_{wee} , k_{25} , and k'_{25} (all of which are constrained with a lower bound of 0). MPF activity M is defined as the ordinary differential equation

$$\frac{dM}{dt} = -k_{wee}M + (k_{25} + k'_{25}M^2)(C - M).$$

The data are in pairs (C, t) where C is the independent variable and t is the dependent variable. MPF is defined as "active" when half the total cyclin (a component of MPF in both active and inactive forms) is in active MPF molecules. This inverse function defining the relationship between the timelag and total cyclin can be defined as

$$t = M^{-1}(C/2; k_{wee}, k_{25}, k'_{25}),$$

where k_{wee} , k_{25} , and k'_{25} are included because M is dependent on these rate constants. The function given to ODRPACK95 becomes

$$f_i(x_i; \beta) \equiv M^{-1}(x_i/2; \beta_1, \beta_2, \beta_3).$$

for
$$i=1,\ldots,n$$
.

The explicit, implicit, multiresponse, and constrained problem types are described in greater detail in the following sections. They are each easily solved using ODRPACK95. The solution procedures required for single and multiresponse data are essentially the same, although, as noted below, ODRPACK95 does need to know that the data are multiresponse rather than single response in order to find the correct solution. The solution procedures required for explicit and implicit functions, however, are different, with the

implicit relationships generally costing more to solve. (See §1.B.) The constrained and unconstrained problem types are treated identically in ODRPACK95; when the problem is "unconstrained" ODRPACK95 puts bounds on the parameters at the limits of the machine numbers (Fortran 95 HUGE and -HUGE). For constrained problems the user need only specify bounds different from the defaults. It is important that users be aware of the differences between explicit and implicit models, between single and multiresponse data, and between constrained and unconstrained parameters, and invoke ODRPACK95 appropriately for their particular model and data type.

1.A.i. Explicit Orthogonal Distance Regression

We define the explicit orthogonal distance regression problem as follows. Let (x_i, y_i) , $i = 1, \ldots, n$, be an observed set of data, where, for simplicity, we assume that $x_i \in \mathbb{R}^1$ and $y_i \in \mathbb{R}^1$. (For a discussion of the orthogonal distance regression problem for higher dimensional data, see §1.A.iii.) Suppose that the values of y_i are a possibly nonlinear function of x_i and a set of unknown parameters $\beta \in \mathbb{R}^p$, but that both the x_i and the y_i contain actual but unknown errors $\delta_i^* \in \mathbb{R}^1$ and $\epsilon_i^* \in \mathbb{R}^1$, respectively, where here, and in the remainder of this document, we use a superscript "*" to denote such actual but unknown quantities. Then the observed value of y_i satisfies

$$y_i = f_i(x_i + \delta_i^*; \beta^*) - \epsilon_i^* \qquad i = 1, \dots, n,$$

for some actual but again unknown value β^* .

The explicit orthogonal distance regression problem is to approximate β^* by finding the β for which the sum of the squares of the n orthogonal distances from the curve $f(x;\beta)$ to the n data points is minimized. This is accomplished by the minimization problem

$$\min_{\beta,\delta,\epsilon} \sum_{i=1}^{n} (\epsilon_i^2 + \delta_i^2) \tag{1.2}$$

subject to the constraints

$$y_i = f_i(x_i + \delta_i; \beta) - \epsilon_i \qquad i = 1, \dots, n. \tag{1.3}$$

Since the constraints (1.3) are linear in ϵ_i , we can eliminate them and thus the ϵ_i from (1.2), thereby obtaining

$$\min_{\beta,\delta} \sum_{i=1}^{n} ([f_i(x_i + \delta_i; \beta) - y_i]^2 + \delta_i^2) . \tag{1.4}$$

We then generalize (1.4) to the weighted orthogonal distance regression (ODR) problem

$$\min_{\beta,\delta} \sum_{i=1}^{n} \left(w_{\epsilon_i} [f_i(x_i + \delta_i; \beta) - y_i]^2 + w_{\delta_i} \delta_i^2 \right)$$
 (1.5)

by introducing the weights $w_{\epsilon_i} \in \Re^1$ and $w_{\delta_i} \in \Re^1$, i = 1, ..., n, which are sets of non-negative numbers. The weights w_{ϵ_i} and w_{δ_i} can thus be used to compensate for instances when the y_i and x_i have unequal precision, or when there are observations that should be eliminated from the analysis. (See §1.F.)

1.A.ii. Implicit Orthogonal Distance Regression

The univariate implicit orthogonal distance regression problem arises from the assumption that there is no distinguished variable y and thus that the data must satisfy

$$f_i(x_i + \delta_i^*; \beta^*) = 0$$
 $i = 1, ..., n$.

For $x_i \in \mathbb{R}^1$, this yields the minimization problem

$$\min_{\beta,\delta} \sum_{i=1}^{n} w_{\delta_i} \delta_i^2$$
subject to $f_i(x_i + \delta_i; \beta) = 0$ $i = 1, \dots, n$,

where $w_{\delta_i} \in \Re^1, i = 1, ..., n$, again denotes a set of positive numbers used for weighting. (See §1.F.) The constraints in (1.6) are not assumed to be linear in δ_i , and therefore cannot be eliminated to create an unconstrained problem as was done above to specify the explicit problem (1.4). The implicit orthogonal distance regression problem must therefore be solved differently than the explicit problem. (See §1.B.)

1.A.iii. Orthogonal Distance Regression for Multidimensional Data

For simplicity, the preceding two sections developed the explicit and implicit orthogonal distance regression problem for univariate data, i.e., for $x_i \in \Re^1$ and $y_i \in \Re^1$ with $f_i : \Re^{p+1} \to \Re^1$. In this section, we generalize these problems to allow for multivariate explanatory data $x_i \in \Re^m, m \geq 1$, and multiresponse dependent variables $y_i \in \Re^q, q \geq 1$, which are modeled by $f_i : \Re^{p+m} \to \Re^q$. For such higher dimensional data, the errors $\delta_i \in \Re^m$ associated with x_i , and the errors $\epsilon_i \in \Re^q$ associated with y_i , can be weighted by

 $w_{\delta_i} \in \Re^{m \times m}$ and $w_{\epsilon_i} \in \Re^{q \times q}, i = 1, \dots, n$, respectively, where the w_{δ_i} must be positive definite matrices and the w_{ϵ_i} must be positive semidefinite matrices.

For the explicit problem, we assume that the q responses of the observed values of y_i satisfies

$$y_i = f_i(x_i + \delta_i^*; \beta^*) - \epsilon_i^* \qquad i = 1, \dots, n,$$

for some actual, but unknown value β^* . Thus, if we let $X \in \mathbb{R}^{n \times m}$ and $Y \in \mathbb{R}^{n \times q}$ denote the arrays with *i*th row x_i and y_i , respectively, and $\Delta \in \mathbb{R}^{n \times m}$ and $E \in \mathbb{R}^{n \times q}$ denote the arrays with *i*th row δ_i and ϵ_i , respectively, we are then assuming that the observed values X and Y satisfy

$$X = X^* - \Delta^*$$
$$Y = Y^* - E^*,$$

and that the estimated values, which we denote by a "hat," will satisfy

$$\hat{X} = X + \hat{\Delta}$$

$$\hat{Y} = Y + \hat{E}.$$

Generalizing the problem presented in §1.A.i, the explicit multiresponse orthogonal distance regression problem for multivariate explanatory data is defined as

$$\min_{\beta,\delta,\epsilon} \sum_{i=1}^{n} ([\epsilon_{i}^{T} w_{\epsilon_{i}} \epsilon_{i}] + [\delta_{i}^{T} w_{\delta i} \delta_{i}])$$

$$Y_{i1} = f_{i1}(x_{i} + \delta_{i}; \beta) - E_{i1}$$

$$Y_{i2} = f_{i2}(x_{i} + \delta_{i}; \beta) - E_{i2}$$

$$\vdots$$

$$Y_{iq} = f_{iq}(x_{i} + \delta_{i}; \beta) - E_{iq}$$

$$i = 1, \dots, n,$$

where subscript il denotes the (i, l)th element of the corresponding array, e.g., Y_{il} denotes the lth response of the ith observation, and $f_{il}(x_i + \delta_i; \beta)$ denotes the model for the lth response of observation i. Because the constraints in (1.7) are linear in E, this is equivalent to the problem

$$\min_{\beta,\delta} \sum_{i=1}^{n} ([f_i(x_i + \delta_i; \beta) - y_i]^T w_{\epsilon_i} [f_i(x_i + \delta_i; \beta) - y_i] + \delta_i^T w_{\delta_i} \delta_i) = \min_{\beta,\delta} S(\beta,\delta) , \quad (1.8)$$

¹ The matrix A is positive definite if and only if $A^T = A$, and $a^T A a > 0$ for all nonzero vectors a. It is positive semidefinite if and only if $A^T = A$, and $a^T A a \ge 0$ for all vectors a. When A is positive definite or positive semidefinite, then there is an upper triangular matrix U such that $A = U^T U$. ODRPACK95 checks for positive (semi)definiteness by attempting to form U.

where we define the weighted sum of squares $S(\beta, \delta)$ by

$$S(\beta, \delta) \equiv S_{\epsilon}(\beta, \delta) + S_{\delta}(\beta, \delta)$$

with

$$S_{\epsilon}(\beta, \delta) \equiv \sum_{i=1}^{n} ([f_i(x_i + \delta_i; \beta) - y_i]^T w_{\epsilon_i} [f_i(x_i + \delta_i; \beta) - y_i])$$

and

$$S_{\delta}(\beta, \delta) \equiv \sum_{i=1}^{n} (\delta_{i}^{T} w_{\delta_{i}} \delta_{i}) .$$

The implicit multiresponse orthogonal distance regression problem for multivariate explanatory data is

$$\min_{\beta,\delta} \sum_{i=1}^{n} [\delta_{i}^{T} w_{\delta_{i}} \delta_{i}] = \min_{\beta,\delta} S_{\delta}(\beta,\delta)$$

$$\begin{cases}
f_{i1}(x_{i} + \delta_{i}; \beta) = 0 \\
f_{i2}(x_{i} + \delta_{i}; \beta) = 0 \\
\vdots \\
f_{iq}(x_{i} + \delta_{i}; \beta) = 0
\end{cases}$$

$$i = 1, \dots, n.$$

$$(1.9)$$

As was the case in §1.A.ii, the constraints in (1.9) are not assumed to be linear in δ_i , and therefore cannot be eliminated to create an unconstrained problem as was done above to specify the explicit problem (1.8). The implicit orthogonal distance regression problem must therefore be solved differently than the explicit problem. (See §1.B.)

Note that when q > 1, the responses of a multiresponse orthogonal distance regression problem cannot simply be treated as q separate observations as can be done for ordinary least squares when the q responses are uncorrelated. This is because ODRPACK95 would then treat the variables associated with these q observations as unrelated, and thus not constrain the errors δ_i in x_i to be the same for each of the q occurrences of the ith observation. The user must therefore indicate to ODRPACK95 when the observations are multiresponse, so that ODRPACK95 can make the appropriate adjustments to the estimation procedure. (See §2.A.ii, subroutine argument NQ.)

1.A.iv. Orthogonal Distance Regression with Bound Constraints

Bound constraints can be applied to the parameters in any of the cases mentioned above and seen in equations (1.2)–(1.3), (1.6), (1.7), and (1.9). Using equations (1.2)–(1.3), the bound constrained problem is defined as

$$\min_{\beta,\delta,\epsilon} \sum_{i=1}^{n} (\epsilon_i^2 + \delta_i^2)$$
subject to
$$y_i = f_i(x_i + \delta_i; \beta) - \epsilon_i \qquad i = 1, \dots, n,$$
and
$$L_j \le \beta_j \le U_j \qquad j = 1, \dots, p,$$
(1.10)

where $L_j \in \mathbb{R}^1$ and $U_j \in \mathbb{R}^1$ and are defined by the user as the lower and upper bound, respectively, on parameter β_j for $j = 1, \dots, p$.

1.B. Algorithm

The algorithm implemented in ODRPACK95 is described in [Boggs et al., 1987 and 1989] and [Zwolak et al. 2006]. Briefly, the solution is found iteratively using a trust region Levenberg-Marquardt method with bound constraints and scaling (used to accommodate problems in which estimated values have widely varying magnitudes). The Jacobian matrices, i.e., the matrices of first partial derivatives of $f_{il}(x_i + \delta_i; \beta)$, i = 1, ..., n, and l = 1, ..., q, with respect to each component of β and Δ , are computed at every iteration either by finite differences or by a user supplied subroutine, as specified by subroutine argument JOB (see §2.A.ii, and also §4.A). These are used to calculate the step, which is projected inside the bounds, for the current iterate. The iterations are stopped when any one of three stopping criteria are met. Two of these indicate the iterations have converged to a solution. These are sum of squares convergence, which indicates that the change in the weighted sum of the squared observation errors is sufficiently small, and parameter convergence, which indicates the change in the estimated values of β and Δ is sufficiently small. The third stopping criterion is a limit on the number of iterations.

ODRPACK95 finds the solution of an implicit orthogonal distance regression problem using the classic quadratic penalty function method. The *penalty function* is

$$P(\beta, \delta; r_k) = \sum_{i=1}^{n} (r_k [f_i(x_i + \delta_i; \beta)]^T [f_i(x_i + \delta_i; \beta)] + [\delta_i^T w_{\delta_i} \delta_i]), \qquad (1.11)$$

with penalty term

$$\sum_{i=1}^{n} r_k [f_i(x_i + \delta_i; \beta)]^T [f_i(x_i + \delta_i; \beta)]$$

and penalty parameter r_k . A sequence of unconstrained minimization problems

$$\min_{\beta,\delta} P(\beta,\delta;r_k)$$

is then solved for a sequence of values of the penalty parameter r_k tending to ∞ . These problems are equivalent to an explicit orthogonal distance regression problem with $\epsilon_i \equiv f_i(x_i + \delta_i; \beta)$. As $r_k \to \infty$, $\epsilon_i \to 0$, $i = 1, \ldots, n$, and the solution to (1.11) will approach that of the implicit problem defined by (1.9). See, e.g., [Gill *et al.*, 1981] for further discussion of penalty function methods.

1.C. Specifying the Task

The user has the option of specifying several different aspects of the problem:

- 1. whether the fit is to be by explicit or implicit orthogonal distance regression, or by ordinary least squares (see §1.A);
- 2. whether the necessary Jacobian matrices should be approximated by ODRPACK95 using forward or central finite differences, or whether the user has supplied the code to compute them, and, if such code has been provided by the user, whether it should be checked (see §4.A);
- 3. whether the covariance matrix V_{β} and standard deviations σ_{β} should be computed for the estimators of β , and whether the Jacobian matrices should be recalculated at the solution for this computation (see §4.B);
- 4. whether the errors Δ have been initialized by the user (see §1.E, and §2.A.ii, subroutine arguments JOB and WORK);
- 5. whether the fit is a "restart," i.e., whether the fit will use information preserved in the vectors BETA, WORK and IWORK to continue from a previously found point (see Chapter 3);
- 6. whether the data are multiresponse or not;
- 7. whether subsets of the unknowns β and Δ should be treated as constants with their values held "fixed," allowing the user to examine the results obtained by estimating subsets of the parameters of a general model without rewriting the model subroutine, and allowing the user to specify that some components of X are to be treated as if they are known exactly;
- 8. whether weighted or unweighted analysis should be performed (see §1.F);
- 9. whether the unknowns β and Δ should be scaled to compensate for cases where their values vary widely in magnitude (see §4.D); and
- 10. which, if any, of the parameters β are bound and values of the lower and upper bounds.

The first 5 of these options are specified by ODRPACK95 subroutine argument JOB; multiresponse data are indicated by subroutine argument NQ; parameter "fixing" is specified by subroutine arguments IFIXB and IFIXX; weighting is controlled by arguments WE and WD; scaling is controlled by arguments SCLB and SCLD; and bound constraints are controlled by arguments LOWER and UPPER. A detailed discussion of each of these subroutine arguments can be found in §2.A.ii.

1.D. ODRPACK95 Generated Results

Results generated by ODRPACK95 are returned to the user in four ways:

- the estimated parameter values $\hat{\beta}$ are returned in subroutine argument BETA;
- the stopping condition is returned in subroutine argument INFO;
- the computed results available at the time the job stopped are returned in the vectors specified by subroutine arguments WORK and IWORK; and
- selected results are summarized in automatically generated reports.

Arguments BETA, INFO, WORK and IWORK are discussed in detail in §2.A.ii. The remainder of this section describes ODRPACK95's automatically generated reports.

ODRPACK95 can generate two different types of reports. The first is an *error report*, and the second is a *computation report*. These are written to the logical units specified by subroutine arguments LUNERR and LUNRPT, respectively. The user can associate these units with a file using a Fortran OPEN statement. If the user sets one or the other of these units to a negative value, then the corresponding report will be generated on unit 6. On most systems, unit 6 is "standard output," which for an "interactive" run will be the screen. If the user sets one or the other of these units to 0, then generation of the corresponding report is suppressed.

ODRPACK95's computation reports (see §1.D.ii below) can, at the user's option, be written simultaneously to both the file associated with the unit specified by LUNRPT and to unit 6 (assuming LUNRPT does not specify unit 6). This option, invoked by ODRPACK95 subroutine argument IPRINT, enables the user to monitor ODRPACK95's progress interactively while still preserving the results in a file for future reference. The option is especially useful when the user's model is time consuming and the user is interactively experimenting with starting values and other ODRPACK95 options: results printed to the screen can be used to terminate ineffective or incorrect runs, while results stored on the logical unit specified by LUNRPT can be used to preserve the successful experiments.

1.D.i. Error Reports

Error reports identify incorrect user supplied information passed to ODRPACK95 that prevents the computations from beginning. For example, an error report will be generated

if the user specifies the number of observations to be an obviously meaningless number, such as a negative value. Error reports are self explanatory, and are not discussed further here. The information written in the error reports is also encoded and returned to the user in subroutine argument INFO. (See §2.A.ii.)

1.D.ii. Computation Reports

Computation reports are divided into three sections:

- **a.** the initial report,
- **b.** the iteration report, and
- **c.** the final report.

Each of these can be either "short" or "long".

1.D.ii.a. Initial Reports

ODRPACK95's initial report identifies the output for future reference, and provides information that should enable the user to verify that the problem was specified correctly.

The short initial report is shown in §2.B.i.c. It includes

- the values n, m, p and q, the number \tilde{n} of observations with nonzero weights, and the number \tilde{p} of parameters β actually being estimated;
- the values specified by ODRPACK95 subroutine arguments JOB, NDIGIT, TAU-FAC, SSTOL, PARTOL, and MAXIT, that indicate, respectively, the requested task, the number of "good" digits in the user's function results, the stopping criteria for testing for sum of squares convergence, the stopping criteria for testing for parameter convergence, and the maximum number of iterations permitted; and
- the weighted sum of the squared errors $S(\beta, \delta)$, $S_{\delta}(\beta, \delta)$, $S_{\epsilon}(\beta, \delta)$, evaluated at the initial values of β and Δ .

The long initial report, shown in §2.B.ii.c and §2.B.iii.c, includes all the information in the short initial report and, in addition, includes a brief summary of the information specified for the function parameters β , and also information about the user supplied values for the X and Y data. This information includes

- the starting parameter values $\beta_k, k = 1, ..., p$, whether or not each parameter is to be treated as "fixed", what "scale" value will be used, the lower and upper bounds, and, when the derivatives are constructed using finite differences the step size used in that calculation, or when the user supplied derivatives were checked what derivatives were identified as questionable;
- the value of the first and last observation of each column of the explanatory variable X, and when the solution is found by orthogonal distance regression,

- \circ the starting errors Δ for each of these observations,
- whether or not these values will be held fixed at their input values,
- o the scale values,
- \circ the diagonal elements of the weights w_{δ_i} associated with each of these observations, and
- when the derivatives are constructed using finite differences the step size used in that calculation, or when the user supplied derivatives were checked what derivatives were identified as questionable;
- the value of the first and last observation of the response variable Y, and the value of the corresponding diagonal entries of the error weights w_{ϵ_i} .

1.D.ii.b. Iteration Reports

The ODRPACK95 iteration reports enable the user to monitor the progress of the fitting procedure, where the user controls at which iterations these reports will be generated.

ODRPACK95 iteration reports are of the greatest use in cases when ODRPACK95 fails to find a satisfactory solution. In cases when ODRPACK95 does reach a satisfactory solution, the *final report* discussed below summarizes the most useful information.

The short iteration report, shown in §2.B.i.c, is a one line summary of the results, listing

- the iteration number;
- the cumulative number of function evaluations made by the end of the listed iteration;
- the weighted sum of the squared observation errors $S(\beta, \delta)$ at the current point;
- the actual relative reduction in $S(\beta, \delta)$ at the most recently tried step (used to check for sum of squares convergence);
- the predicted relative reduction in $S(\beta, \delta)$ at the most recently tried step (used to check for sum of squares convergence);
- the ratio of the trust region radius to the scaled norm of β and Δ , which is an upper bound on the relative change in the estimated values possible at the next step (used to check for parameter convergence); and
- whether the step was a Gauss-Newton step.

The long iteration summary lists all of the information found in the short iteration summary and, in addition, includes

• the values of β at the end of the current iteration. (At the last iteration, the values listed will be those that produced the actual and predicted relative reductions shown only if the most recently tried step did in fact make the fit better. If not, then the values of β listed are those that produced the best fit.)

The long iteration report requires 125 columns, and uses $\lceil p/3 \rceil$ lines per iteration.

1.D.ii.c. Final Reports

The final report provides information that allows the user to assess the quality of the solution found by ODRPACK95.

The short final report, shown in §2.B.ii.c and §2.B.iii.c, includes

- the reason the computations stopped;
- the number of iterations;
- the number of function evaluations and, if the Jacobian was supplied by the user, the number of Jacobian evaluations;
- the rank deficiency of the model at the time the computations stopped;
- the inverse of the condition number of the problem at the time the computations stopped (see §4.C);
- the weighted sum of the squared errors, $S(\beta, \delta)$, $S_{\delta}(\beta, \delta)$, and $S_{\epsilon}(\beta, \delta)$, evaluated at the final values $\hat{\beta}$ and $\hat{\Delta}$, and if the covariance matrix was computed, the estimated residual variance of the fit and its associated degrees of freedom; and
- the final values $\hat{\beta}$, whether each value was "fixed" using subroutine argument IFIXB or "dropped" by ODRPACK95 because it induced rank deficiency, the lower and upper bounds, and, if the covariance matrix \hat{V}_{β} and standard deviations $\hat{\sigma}_{\beta}$ were computed, the standard errors and 95% confidence intervals for the estimators of β . (See §4.B).

The long final report is shown in §2.B.i.c. It includes the same information as the short final report, and, in addition, provides the values for all \hat{E}_{il} , i = 1, ..., n, l = 1, ..., q, and $\hat{\Delta}_{ij}$, i = 1, ..., n, j = 1, ..., m.

1.E. Starting Values

The user must supply starting values for the unknowns being estimated, i.e., for β and Δ . Users familiar with the nonlinear ordinary least squares problem are generally aware of the importance of obtaining good starting values for β . It is equally important here. Good initial approximations can significantly decrease the number of iterations required to find a solution; a poor initial approximation may even prevent a solution from being found. Reasonable initial approximations are often available from previous analysis or experiments. When good starting values are not readily available, the user may have to do some preliminary analysis to obtain them. (See, e.g., [Bates and Watts, 1988], or [Himmelblau, 1970].)

Users who do not provide scale information are strongly encouraged not to use zero as an initial approximation for any of the parameters β since a zero value can result in incorrect scaling. (See §4.D). Setting the initial approximation to the largest magnitude that, for the user's problem, is effectively zero, rather than to zero, will help to eliminate scaling problems and possibly produce faster convergence. For example, if β_1 represents change in a cost measured in millions of dollars, then the value 10 might be considered "effectively zero" and an initial value of $\beta_1^0 = 10$ is preferable to $\beta_1^0 = 0$.

When using orthogonal distance regression it is also important to have good starting values for the estimated errors Δ . The ODRPACK95 default is to initialize Δ to zero, which is the most obvious initial value. (Note that zero starting values for Δ do not cause scaling problems similar to those discussed above for β .) Initializing Δ to zero, however, is equivalent to initially assigning all of the errors to the dependent variable as is done for ordinary least squares. While this is quite adequate in many cases, in others it is not. A plot of the observed data and of the curve described by the model function for the initial parameters may indicate whether or not zero starting values for Δ are reasonable and may make it possible to visually determine better starting values for some of the Δ_{ij} . For example, if such a plot shows that the vertical distance from a data point (x_i, y_i) to the curve is far larger than the orthogonal distance, then δ_i should probably not be initialized to zero for that point. This may occur near an asymptote or near a local minimum or maximum. In such cases, it is often appropriate to initialize δ_i to the horizontal distance from the data point to the curve. (See §2.A.ii, subroutine arguments JOB and WORK.)

1.F. Weights

Weights can be used to eliminate observations from the analysis, to compensate for unequal variances or correlations in the variables y and x, or simply to modify the effect of the various errors ϵ and δ on the fit.

The weights $w_{\epsilon_i} \in \mathbb{R}^{q \times q}$ associated with $\epsilon_i, i = 1, ..., n$, must be positive semidefinite matrices, and the weights $w_{\delta_i} \in \mathbb{R}^{m \times m}$ associated with $\delta_i, i = 1, ..., n$, must be positive definite matrices.² If w_{ϵ_i} is diagonal, then the errors in the q responses of y_i are treated as uncorrelated. Similarly, if w_{δ_i} is diagonal, then the errors in the m elements of x_i are treated as uncorrelated. When the weights are not diagonal matrices, then the errors within an observation are treated as correlated. In all cases, however, the errors between observations are treated as uncorrelated.

Observations can be eliminated from the analysis by setting the appropriate weight values w_{ϵ_i} to zero. This will produce the same results as an analysis with the zero-weighted values removed from the data prior to calling ODRPACK95. Zero weights can be used to

² See footnote 1 on page 7.

allow for cases of multiresponse data where the number of responses is not constant for all observations. They also allow for easy examination of the effect of outliers and influential data points.

Outliers can often be identified by large values of ϵ and/or δ . Careful checking of the data often leads to confirmation that the data are in error, and sometimes to a correction. When a cause for suspicious data cannot be found, it may be advisable to compare the analysis with and without the questionable data. Caution is in order if the estimates or conclusions are highly sensitive to a small amount of suspicious data. Data that have a very high influence on a fitted curve may not result in large errors, however, even if they are in error. In fact, extremely influential observations may force the fitted curve to be very close, leading to very small residuals. It is therefore desirable to identify influential observations and to compare the results obtained with and without these points. Several methods for detecting influential observations for ordinary least squares are discussed in [Belsley et al., 1980], [Bement and Williams, 1969], [Cook, 1977], and [Hoaglin and Welsch, 1978].

Using weights to compensate for unequal error variances is not as straightforward as using zero weights to eliminate observations from the analysis. When the errors e_i , i = 1, ..., n, and δ_i , i = 1, ..., n, have covariances $\sigma_{e_i}^2 \in \Re^{q \times q}$ and $\sigma_{\delta_i}^2 \in \Re^{m \times m}$, respectively, that are known, then the weights can be set using

$$w_{\epsilon_i} = c_1 \sigma_{e_i}^{-2}$$
 and $w_{\delta_i} = c_2 \sigma_{\delta_i}^{-2}$,

 $i=1,\ldots,n$, where c_1 and c_2 are constants selected so that the magnitudes of the weighted errors $\epsilon_i^T w_{\epsilon_i} \epsilon_i$ and $\delta_i^T w_{\delta_i} \delta_i$ will be approximately the same.

In practice, weights are often derived from theory or obtained from the data being fit. Users must be aware that incorrectly specified weights can adversely affect the results. (See, e.g., [Boggs and Rogers, 1990a].) Thus, when the need for weights is suspected and the error covariances are not known, it is extremely important to analyze how the weights are affecting the computed results. See [Fuller, 1987] for a more complete discussion of weights and their implications for the estimation of the parameters of measurement error models, and also [Bates and Watts, 1988] for a procedure that can be used to estimate the covariance matrix $\sigma_{e_i}^2$ in the case of multiresponse nonlinear ordinary least squares.

1.G. Default Values and Structured Arguments

ODRPACK95 uses optional arguments, default values and structured arguments to simplify the user interface. The availability of default values in ODRPACK95 means that the user does not have to be concerned with determining values for many of the ODRPACK95

arguments unless the problem being solved requires the use of nondefault values. Structured arguments, described below, can reduce the amount of storage space required for some arguments, and the work required by the user to initialize those arguments.

1.G.i. Optional Arguments and Default Values

Default values have been specified for ODRPACK95 subroutine arguments wherever reasonable. These default values are invoked when the user sets the corresponding argument to any negative value or leaves the argument out of the subroutine call. Arrays with default values are invoked by setting the first element of the array to a negative value (in which case only the first value of the array will ever be used) or leaving the array argument out of the subroutine call. Setting arguments to negative values to invoke the defaults remains for backwards compatibility with old code and easy user migration from ODRPACK to ODRPACK95. For readability users are encouraged to remove unused arguments from the subroutine call.

Users are encouraged to invoke the default values of arguments wherever possible. These values have been found to be reasonable for a wide class of problems. Fine tuning these arguments can then be done later if necessary.

1.G.ii. Structured Arguments

Certain ODRPACK95 arguments specify attributes of the individual components of X, Δ , and Y. These attribute arrays are frequently either constant for all components or are constant within each column and vary only between the columns. The *structured argument* facility allows a scalar to specify an attribute of an entire column or of the whole array.

For example, ODRPACK95 argument WD specifies the attribute array of weights $W_{\Delta} \in \Re^{n \times (m \times m)}$ whose ith component specifies the elements of w_{δ_i} , $i=1,\ldots,n$ (cf. (1.8) and (1.9)). Suppose X contains temperature measurements, where each row indicates a different hour at which the readings were taken, and each column a different day. Then the user might want to weight each component of Δ equally, and thus W_{Δ} would be constant throughout. If one column of X contained hourly temperature readings and the other hourly humidity readings, however, then the user would probably not want to weight the errors in the temperature measurements the same as those in the humidity measurements, but might want to specify the same weight w_{ϵ} for each observation. In this case, the components of W_{Δ} would be constant for each row i, $i=1,\ldots,n$. Of course, in other cases, the user might want to weight each component of Δ differently, and thus each component of W_{Δ} would be different.

ODRPACK95 structured arguments exploit this structure. If each of the elements of an attribute array is the same, then a scalar can be used to specify all elements of the array.

If the values of such an array only vary between the columns, then each column of the array can be specified by a single value using a row vector. Thus, it is only necessary for the user to supply all elements of an attribute array when the elements of one or more of the columns must be individually specified. The use of structured arguments in described in detail in §2.A.ii. (See, e.g., subroutine argument WD.)

2. Using ODRPACK95

2.A. Subroutine Interface and Argument Descriptions

2.A.i. Synopsis

The arguments of the ODRPACK95 user callable subroutine are logically grouped as shown below. Arguments shown in parenthesis (...) are optional (as specified by the Fortran 95 keyword: OPTIONAL) and automatically preset to the default values given in §2.A.ii. All other arguments are required.

Argument		
Number	Arguments	Group Description
1	FCN,	Name of user supplied subroutine for function and derivative computation
2 to 5	N,M,NP,NQ,	Problem size specification
6	BETA,	Function parameters
7 to 8	Y,X	Dependent and explanatory variables
9	(DELTA,)	Initial error in explanatory variables
10 to 11	(WE,WD,)	Weights
12 to 13	(IFIXB,IFIXX,)	Parameter and variable fixing
14 to 16	(JOB, NDIGIT, TAUFAC,)	Computation and initialization control
17 to 19	(SSTOL, PARTOL, MAXIT,)	Stopping criteria
20 to 22	(IPRINT, LUNERR, LUNRPT,)	Print control
23 to 24	(STPB,STPD,)	Derivative step sizes
25 to 26	(SCLB,SCLD,)	Scaling
27 to 28	(WORK,IWORK,)	Work vectors and returned results
29	(INFO,)	Stopping condition
30 to 31	(LOWER, UPPER)	Bound constraints on BETA

2.A.ii. ODRPACK95 Subroutine Argument Definitions

The arguments of ODRPACK95's user callable subroutine are described below in order of their occurrence in the call statement. Appropriate declaration statements for each argument are shown in brackets [...] following the argument name; the character string <real> denotes REAL (KIND=R8). Each argument is numbered as shown in §2.A.i, and will be cross referenced by both number and name, e.g., 1-FCN, enabling the user to easily find the definition of a specific argument. In addition, a flag indicating whether the argument is passed to or from ODRPACK95 is placed in the left margin by the argument number. The flags are:

- ⇒ indicating the argument specifies information that must be *input* to ODRPACK95, and that the input information is preserved upon return from the ODRPACK95 subroutine;
- indicating the argument specifies information that is *output* by the ODRPACK95 subroutine; and
- ⇒ indicating the argument specifies information that must be *input* to ODRPACK95, but that the input values will be *overwritten* by ODRPACK95 upon return from the subroutine.

$\implies 1 - FCN [EXTERNAL FCN]$

The name of the user supplied subroutine that, given the current values of the explanatory variable, $x_{\rm I} + \delta_{\rm I}$, and the current values of the function parameters, β , computes the predicted values

$$F(I,L) = f_{IL}(x_I + \delta_I; \beta)$$
,

I = 1, ..., n, and L = 1, ..., q, and optionally computes the matrices of first partial derivatives, i.e., the Jacobian matrices

$$\text{FJACB}(I, K, L) = \frac{\partial f_{IL}(x_I + \delta_I; \beta)}{\partial \beta_K} ,$$

for $I = 1, \ldots, n$, $K = 1, \ldots, p$, and $L = 1, \ldots, q$, and

$$\mathtt{FJACD}(\mathtt{I},\mathtt{J},\mathtt{L}) = \frac{\partial f_{\mathtt{IL}}(x_{\mathtt{I}} + \delta_{\mathtt{I}};\beta)}{\partial \Delta_{\mathtt{II}}} \ ,$$

for $I=1,\ldots,n$, $J=1,\ldots,m$, and $L=1,\ldots,q$. The code for evaluating F must always be provided. The code for evaluating FJACB and FJACD is required only when the second digit of argument 14-J0B is greater than or equal to two. (When the second digit of J0B is zero or one, the necessary Jacobian matrices will be approximated by ODRPACK95 using finite differences. See argument 14-J0B, and also §4.A.) The code for FJACD does not need to be supplied when the fit is by OLS.

At a given call to subroutine FCN, ODRPACK95 will never request that both the function values (F) and the derivative values (FJACB and FJACD) be computed. While it is generally most cost effective if the user only performs the required computations, it is not an error for both function values and derivatives to be computed each time FCN is invoked. Note, however, that array FJACD must never be altered when the fit is by ordinary least squares, since no space is assigned to that array in that case.

The user must supply a value for every element of the selected arrays. If some responses of some observations are actually missing, then the user can set the corresponding weights in argument 10-WE to zero in order to remove the effect of the missing observation from the analysis. (See §1.F.)

ODRPACK95's parameter fixing arguments IFIXB, IFIXX and LDIFX are passed to subroutine FCN for the user's convenience. When a parameter is fixed, then the derivative with respect to that parameter can be set to zero. ODRPACK95 will automatically zero these derivative values, however, and thus it is not necessary

for the user to be concerned with this unless the derivative computations are especially expensive. (See Chapter 3.)

The argument list and dimension statements for subroutine FCN must be exactly as shown below.

```
SUBROUTINE FCN(N,M,NP,NQ,
                   LDN, LDM, LDNP,
                   BETA, XPLUSD,
   +
                   IFIXB, IFIXX, LDIFX,
                   IDEVAL, F, FJACB, FJACD,
                   ISTOP)
INPUT ARGUMENTS
(WHICH MUST NOT BE CHANGED BY THIS ROUTINE)
   INTEGER IDEVAL, LDFIX, LDM, LDN, LDNP, M, N, NP, NQ
   INTEGER IFIXB(NP), IFIXX(LDIFX, M),
    <real> BETA(NP), XPLUSD(LDN, M)
OUTPUT ARGUMENTS
   INTEGER ISTOP
   <real> F(LDN,NQ),FJACB(LDN,LDNP,NQ),FJACD(LDN,LDM,NQ)
   < set ISTOP >
   IF (ISTOP.NE.O) RETURN
COMPUTE FUNCTION
   IF (MOD(IDEVAL, 10).GE.1) THEN
       < compute F(I,L), I=1,...,N, L=1,...,NQ >
   END IF
COMPUTE DERIVATIVES WITH RESPECT TO BETA
   IF (MOD(IDEVAL/10,10).GE.1) THEN
       < compute FJACB(I,K,L), I=1,...,N, K=1,...,NP, & L=1,...,NQ >
   END IF
COMPUTE DERIVATIVES WITH RESPECT TO DELTA
   IF (MOD(IDEVAL/100,10).GE.1) THEN
       < compute FJACD(I,J,L), I=1,...,N, J=1,...,M, & L=1,...,NQ >
   END IF
   RETURN
   END
 where
```

- N is the number of observations, n.
- M is the number of elements, m, in each explanatory variable, $x_i \in \mathbb{R}^m$, i.e., the number of columns of data in $X + \Delta$.
- NP is the number of function parameters, p.
- NQ is the number of responses, q, per observation.
- LDN is an array leading dimension declarator that equals or exceeds n.
- LDM is an array leading dimension declarator that equals or exceeds m.
- LDNP is an array leading dimension declarator that equals or exceeds p.
- BETA is the singly subscripted array that contains the current values of β .
- XPLUSD is the doubly subscripted array that contains the current value of the explanatory variables, i.e., $X + \Delta$.
- IFIXB is the singly subscripted array designating whether a given parameter β_{K} is to be treated as fixed. (See argument 12-IFIXB below.)
- IFIXX is the doubly subscripted array designating whether, when the solution is found by orthogonal distance regression, a given explanatory variable $X_{\rm IJ}$ is to be treated as without error. (See argument 13-IFIXX below.)
- LDIFX is the leading dimension of array IFIXX. (See argument 19-LDIFX below.)
- IDEVAL is a three digit INTEGER variable with decimal expansion $\mathcal{I}_3\mathcal{I}_2\mathcal{I}_1$ passed to subroutine FCN by ODRPACK95 to designate what values are to be computed.

Computation	Digit	
F	$\mathcal{I}_1 = 0$	array F need not be computed
	=1	function values F must be computed
		(for constructing finite difference derivatives)
	=2	function values F must be computed
		(for evaluating $S(\beta, \delta)$ at new point)
	= 3	function values F must be computed
		(for miscellaneous calculations)
FJACB	$\mathcal{I}_2 = 0$	array FJACB need not be computed
	=1	derivative values FJACB must be computed
FJACD	$\mathcal{I}_3 = 0$	array FJACD must not be altered
	=1	derivative values FJACD must be computed
		(required for ODR fits only)

F is the doubly subscripted array in which the $n \times q$ array of predicted values for each response of each observation must be stored.

- FJACB is the triply subscripted array in which the $n \times p \times q$ array of partial derivatives with respect to β for each response of each observation must be stored.
- FJACD is the triply subscripted array in which the $n \times m \times q$ array of partial derivatives with respect to Δ for each response of each observation must be stored.
- ISTOP is a variable that enables the user to instruct ODRPACK95 to reject the current values in BETA and XPLUSD as unacceptable.

ISTOP	Meaning
< 0	regression procedure should be stopped
=0	current β and Δ are acceptable for use by FCN:
	requested values were properly computed within FCN and regression procedure should continue
> 0	current β and Δ are unacceptable for use by FCN:
	if call to FCN was for constructing derivatives regression procedure will be stopped
	if call to FCN was for evaluating $S(\beta, \delta)$
	a new point will be selected closer to the most
	recently tried acceptable values of β and Δ
	if call to FCN was for miscellaneous calculations
	regression procedure will be stopped

Note that even when ISTOP is used to stop the regression procedure, the final summary of the computation report will still be generated if it has been requested. (See argument 20-IPRINT.)

\implies 2 - N [INTEGER N]

The number of observations, n.

\implies 3 - M [INTEGER M]

The number of elements, m, in each explanatory variable $x_i \in \mathbb{R}^m$, i.e., the number of columns of data in X.

\implies 4 - NP [INTEGER NP]

The number of function parameters, p.

$\Longrightarrow 5 - NQ [INTEGER NQ]$

The number of responses, q, per observation.

\iff 6 - BETA [<real> BETA(NP)]

The singly subscripted array that contains the (current) values of β .

On input: BETA must contain initial approximations for the function parameters β within the bounds LOWER and UPPER (if the bounds are specified). Initial approximations should be chosen with care since poor initial

approximations can significantly increase the number of iterations required to find a solution and possibly prevent the solution from being found at all. (See §1.E.)

On return: BETA contains the "best" estimate of the parameters, $\hat{\beta}$, at the time the computations stopped.

$\Longrightarrow 7 - Y \text{ [<real> } Y(N,NQ)]$

The double subscripted array that contains the values of the response variable $Y_{\rm IL}, {\tt I}=1,\ldots,n, {\tt L}=1,\ldots,q.$ When the model is *explicit*, the user must supply a value for each of the $n\times q$ elements of Y; if some responses of some observations are actually missing, then the user can set the corresponding weight in argument 10-WE to zero in order to remove the effect of the missing observation from the analysis. When the model is *implicit*, Y is not referenced. (See argument 14-JOB, and §1.F.)

$\Longrightarrow 8 - X [\langle real \rangle X(N,M)]$

The doubly subscripted array that contains the observed values of the explanatory variable X.

\iff 9 - DELTA [<real> DELTA(N,M)]

The doubly subscripted array that contains initial errors δ in the observed values of the explanatory variable X.

\implies 10 - WE [<real> WE(LDWE,LD2WE,NQ)]

The triply subscripted array that, when the model is *explicit* specifies how each $\epsilon_{\rm I}$ is to be weighted in the weighted orthogonal distance, and when the model is *implicit* specifies the starting penalty parameter value, r_0 (see §1.A, §1.B, §1.F, and argument 14-JOB).

For *explicit* models, WE is a structured argument: only the specific elements of WE identified in the table below are referenced by ODRPACK95. (See §1.G.)

			For $I = 1, \ldots, n$,
WE(1,1,1)	LDWE	LD2WE	$w_{\epsilon_{ m I}}$
< 0	_	_	$=$ -WE(1,1,1) I_q , I_q a $q \times q$ identity matrix
≥ 0	= 1	= 1	$= \operatorname{diag}\{\mathtt{WE}(\mathtt{1},\mathtt{1},\mathtt{L2}),\ \mathtt{L2} = 1,\ldots,q\}$
	$\geq n$	= 1	$= diag\{WE(I, 1, L2), L2 = 1,, q\}$
	= 1	$\geq q$	= WE(1,L1,L2), L1 = 1,,q, & L2 = 1,,q
			= WE(I,L1,L2), L1 = 1,,q, & L2 = 1,,q

For implicit models, only the first element of WE is ever referenced, and r_0 is set as follows.

WE(1,1,1)	r_0
≤ 0	= 10
> 0	= WE(1,1,1)

\implies 11 - WD [<real> WD(LDWD,LD2WD,M)]

The triply subscripted array that specifies how each $\delta_{\rm I}$ is to be weighted in the weighted orthogonal distance. (See §1.A and §1.F.) WD is a structured argument: only the specific elements of WD identified in the table below are ever referenced by ODRPACK95. (See §1.G.)

			For $I = 1, \dots, n$,
WE(1,1,1)	LDWD	LD2WD	w_{δ_1}
< 0	_		$=$ -WD(1,1,1) I_m, I_m an $m \times m$ identity matrix
=0			$=I_m, I_m \text{ an } m \times m \text{ identity matrix}$
> 0	= 1	= 1	$= \operatorname{diag}\{\mathtt{WD}(1,1,\mathtt{J2}),\ \mathtt{J2} = 1,\ldots,m\}$
	$\geq n$	=1	$=\operatorname{diag}\{\mathtt{WD}(\mathtt{I},\mathtt{1},\mathtt{J2}),\ \mathtt{J2}=1,\ldots,m\}$
	=1	$\geq m$	= WD(1,J1,J2), J1 = 1,, m , & J2 = 1,, m
	$\geq n$	$\geq m$	= WE(I,J1,J2), J1 = 1,, m , & J2 = 1,, m

\implies 12 - IFIXB [INTEGER IFIXB(NP)]

The singly subscripted array that specifies the indicator variable \mathcal{F}_{β_K} designating whether β_K is to be treated as "fixed," i.e., is to be treated as a constant, or is to be "unfixed" and thus is to be estimated.

- If $\mathcal{F}_{\beta_{K}} = 0$ then β_{K} is fixed and BETA(K) is not changed.
- If $\mathcal{F}_{\beta_{K}} \neq 0$ then β_{K} is unfixed and BETA(K) is overwritten by $\hat{\beta}_{K}$.

The default values are $\mathcal{F}_{\beta_{\mathbf{K}}} = 1$, $\mathbf{K} = 1, \ldots, p$.

IFIXB(1)	For $K = 1, \dots, p$, \mathcal{F}_{β_K}
< 0	=1
≥ 0	= IFIXB(K)

\implies 13 - IFIXX [INTEGER IFIXX(LDIFX,M)]

The doubly subscripted array that specifies the indicator variable $\mathcal{F}_{X_{IJ}}$ designating whether, when the solution is found by orthogonal distance regression, the (I,J)th element of the explanatory variable X_{IJ} is to be treated as without error and thus Δ_{IJ} is to be "fixed" at zero, or whether that observation is "unfixed" and therefore the error Δ_{IJ} is to be estimated. (When the solution is found by ordinary least squares, the X_{IJ} are always treated as fixed, and thus $\Delta_{IJ} = 0$ for all $I = 1, \ldots, n$ and $J = 1, \ldots, m$.)

• If $\mathcal{F}_{X_{IJ}} = 0$ then X_{IJ} is fixed and Δ_{IJ} is set to zero.

Using ODRPACK95

• If $\mathcal{F}_{X_{IJ}} \neq 0$ then X_{IJ} is unfixed and Δ_{IJ} is estimated.

The default values are $\mathcal{F}_{X_{IJ}} = 1$, I = 1, ..., n, and J = 1, ..., m.

IFIXX is a structured argument: only the specific elements of IFIXX identified in the table below are referenced by ODRPACK95. (See §1.G.)

		For $I = 1,, n$, & $J = 1,, m$,
IFIXX(1,1)	LDIFX	$\mathcal{F}_{ ext{X}_{ ext{IJ}}}$
< 0		= 1
≥ 0	= 1	= IFIXX(1,J)
	$\geq n$	= IFIXX(I,J)

\implies 14 - JOB [INTEGER JOB]

The variable that specifies problem initialization and computational methods. (See §1.C.) The default options, selected when $\mathtt{JOB} \leq 0$, are that

- the solution will be found by explicit orthogonal distance regression;
- the derivatives will be computed by forward finite differences;
- the covariance matrix will be computed using Jacobian matrices recalculated at the solution;
- $\bullet \Delta$ will be initialized to zero; and
- the fit will not be a restart.

When $JOB \geq 0$, it is assumed to be a 5 digit INTEGER with decimal expansion $\mathcal{I}_5\mathcal{I}_4\mathcal{I}_3\mathcal{I}_2\mathcal{I}_1$, where each digit controls a different option.

Ontion	Dimit	Coloation
Option	Digit	Selection
Computational method	$\mathcal{I}_1 = 0$	explicit orthogonal distance regression
(see §1.A)	= 1	implicit orthogonal distance regression
	≥ 2	ordinary least squares
Derivative calculation	$\mathcal{I}_2 = 0$	forward finite differences
(see §4.A)	= 1	central finite differences
	=2	user supplied derivative code,
		checked by ODRPACK95
	≥ 3	user supplied derivative code,
		not checked by ODRPACK95
Covariance matrix V_{β} ,	$\mathcal{I}_3 = 0$	V_{β} and σ_{β} calculated using
& standard deviation σ_{β}		derivatives recomputed at solution
(see §4.B)	=1	V_{β} and σ_{β} calculated using
		derivatives from last iteration
	≥ 2	V_{β} and σ_{β} not calculated
Δ Initialization	$\mathcal{I}_4 = 0$	Δ initialized to zero by ODRPACK95
(see §1.E)	≥ 1	Δ initialized by user
		(see argument 27-WORK)
Restart facility	$\mathcal{I}_5 = 0$	fit is not a restart
(see Chapter 3)	≥ 1	fit is a restart

\implies 15 - NDIGIT [INTEGER NDIGIT]

The variable that specifies the number of reliable decimal digits ψ in the values computed using subroutine FCN. The value ψ is needed to calculate the default values for the relative step sizes used in calculating finite difference derivatives. (See arguments 23-STPB and 24-STPD, and §4.A.) It is also used to determine when the Jacobian with respect to one or more of the parameter β appears to be rank deficient. It can not exceed the number of decimal digits Ψ carried by the user's computer for a <real> value. The default value is experimentally determined by ODRPACK95 for the user's particular model. This determination of ψ requires 4 evaluations of the model function from user supplied subroutine FCN.

NDIGIT	ψ
≤ 1	= default value
≥ 2	$= \min\{\mathtt{NDIGIT}, \Psi\}$

$\Longrightarrow 16 - {\tt TAUFAC}$ [<real> TAUFAC]

The variable that specifies the factor τ used to initialize the trust region radius. The trust region is the region in which the local approximation to $S(\beta, \delta)$ is considered reliable. The diameter of this region is adaptively chosen at each iteration based on information from the previous iteration. At the first iteration,

the initial diameter is set to τ times the length of the full Gauss-Newton step calculated at the initial values of β and Δ . The default value is $\tau=1$. When $\tau<1$ the size of the initial step attempted at the first iteration is smaller than the full Gauss-Newton step. This may be appropriate if, at the first iteration, the computed results for the full Gauss-Newton step cause an overflow, or cause β and/or Δ leave the region of interest.

TAUFAC	au
≤ 0	=1
> 0	$= \min\{\mathtt{TAUFAC}, 1\}$

\implies 17 - SSTOL [<real> SSTOL]

The variable that specifies \mathcal{T}_S , the stopping tolerance for sum of squares convergence, i.e., for convergence based on the relative change in $S(\beta, \delta)$. The default value is $\mathcal{T}_S = \xi^{1/2}$, where ξ is defined as the smallest value such that $1 + \xi > 1$ for a <real> computation on the machine being used.

SSTOL	\mathcal{T}_S
< 0	$=\xi^{1/2}$
≥ 0	$= \min\{\mathtt{SSTOL}, 1\}$

\implies 18 - PARTOL [<real> PARTOL]

The variable that specifies \mathcal{T}_P , the stopping tolerance for parameter convergence, i.e., for convergence based on relative change in the estimated parameters β and Δ . When the model is *explicit* the default value is $\mathcal{T}_P = \xi^{2/3}$, and when the model is *implicit* the default value is $\mathcal{T}_P = \xi^{1/3}$, where ξ is defined as the smallest value such that $1 + \xi > 1$ for a $\mathbf{real} > \mathbf{computation}$ on the machine being used.

PARTOL	\mathcal{T}_P
< 0	= default value
≥ 0	$= \min\{\mathtt{PARTOL}, 1\}$

\implies 19 - MAXIT [INTEGER MAXIT]

The variable that specifies \mathcal{T}_I , the maximum number of iterations allowed. The default value depends on whether the fit is a restart or not. (See argument 14-JOB.) If the fit is not a restart, then

$$T_I = 50$$
.

If the fit is a restart, then

$$\mathcal{T}_I = \mathcal{T}_{I^-} + 10 ,$$

where \mathcal{T}_{I^-} is the number of iterations completed in the previous run, thus indicating that the procedure will continue for an additional 10 iterations.

MAXIT	Restart	\mathcal{T}_I
< 0	no	= 50
	yes	$=T_{I^-}+10$
≥ 0	no	= MAXIT
	yes	$=\mathcal{T}_{I^-}+ exttt{MAXIT}$

If MAXIT = 0 then no iterations will be taken, but whatever computations are required to complete the final computation report will be made. For example, by setting MAXIT = 0 and the third digit of JOB to zero, the user can compute the covariance matrix V_{β} for the input values β and Δ . (See arguments 14-JOB and 20-IPRINT, and also §1.D.)

\implies 20 - IPRINT [INTEGER IPRINT]

The variable that controls generation of the computation reports described in $\S 1.D$. The default computation reports include

- a long initial summary,
- no iteration summary, and
- a short final summary.

When IPRINT < 0, the default reports are generated only on \mathcal{L}_{CR} , the logical unit specified by argument 22-LUNRPT. When IPRINT ≥ 0 , it is assumed to be a 4 digit INTEGER with decimal expansion $\mathcal{I}_4\mathcal{I}_3\mathcal{I}_2\mathcal{I}_1$, where each digit controls a different part of the computation report and whether that report is to be generated only on \mathcal{L}_{CR} or to both \mathcal{L}_{CR} and unit 6. (See §1.D).

Initial summary		Iteration summary			Fi	Final summary			
\mathcal{I}_4	\mathcal{I}_4 - unit -		\mathcal{I}_3	\mathcal{I}_2	\mathcal{I}_2 - unit -		${\mathcal I}_1$	- unit -	
	\mathcal{L}_{CR}	6			\mathcal{L}_{CR}	6		\mathcal{L}_{CR}	6
			≥ 0	=0	none	none			
=0	none	none	=0	≥ 1	none	none	=0	none	none
=1	short	none	=1	≥ 1	short	none	=1	short	none
=2	long	none	=2	≥ 1	long	none	=2	long	none
=3	short	short	=3	≥ 1	short	short	=3	short	short
=4	long	short	=4	≥ 1	long	short	=4	long	short
=5	short	long	=5	≥ 1	short	long	=5	short	long
=6	long	long	=6	≥ 1	long	long	=6	long	long

If $\mathcal{I}_2 = 0$ no iteration summary will be generated, even if the value of \mathcal{I}_3 is nonzero.

If $\mathcal{I}_2 \geq 1$ an iteration summary will be generated every $\mathcal{I}_2 th$ iteration beginning with iteration one.

\implies 21 - LUNERR [INTEGER LUNERR]

The variable that specifies \mathcal{L}_{ER} , the logical unit number to be used for error messages. (See §1.D.) By default, $\mathcal{L}_{ER} = \clubsuit$. STDERR

LUNERR	\mathcal{L}_{ER}
< 0	= \$ LUNERR
=0	error messages suppressed
≥ 0	= LUNERR

\implies 22 - LUNRPT [INTEGER $\frac{=6}{\text{LUNRPT}}$] STDERR

The variable that specifies \mathcal{L}_{CR} , the logical unit number to be used for computation reports. (See also argument 20-IPRINT, and §1.D.) By default, $\mathcal{L}_{CR} =$ **6**. STDOUT

LUNRPT	\mathcal{L}_{CR}
< 0	= \$ LUNRPT
=0	computation records suppressed,
	even when argument 20-IPRINT is nonzero
≥ 0	= LUNRPT

$\Rightarrow 23 - \text{STPB} [\langle \text{real} \rangle \text{STPB(NP)}]$

The singly subscripted array that specifies the *relative* step sizes, $h_{\beta_{\rm K}}$, $K=1,\ldots,p$, used to compute the finite difference derivatives with respect to each of the parameters β as discussed in §4.A. The default value is set as described in §4.A.iii depending on whether forward or central finite difference derivatives are being computed. (See argument 14-JOB.)

STPB(1)	For $K = 1, \dots, p$, h_{β_K}
≤ 0	= default value
> 0	= STPB(K)

\implies 24 - STPD [<real> STPD(LDSTPD,M)]

The doubly subscripted array that specifies the relative step sizes, $h_{\Delta_{\text{IJ}}}$, $I = 1, \ldots, n$, and $J = 1, \ldots, m$, used to compute the finite difference derivatives with respect to the errors in each of the elements of X as discussed in §4.A. The default value is set as described in §4.A.iii depending on whether forward or central finite difference derivatives are being computed. (See argument 14-JOB.) STPD is a structured argument: only the specific elements of STPD identified in the table below are referenced by ODRPACK95. (See §1.G.)

		For $I = 1,, n$, & $J = 1,, m$,
STPD(1,1)	LDSTPD	$h_{\Delta { m IJ}}$
≤ 0	_	= default value
> 0	=1	= STPD(1,J)
	$\geq n$	= STPD(I,J)

\implies 25 - SCLB [<real> SCLB(NP)]

The singly subscripted array that specifies the scale values, SCALE $\{\beta_K\}$, $K = 1, \ldots, p$, of the function parameters, i.e., the reciprocals of the expected magnitudes or typical sizes of β_K , $K = 1, \ldots, p$. Scaling is used within the regression procedure in order that the units of the variable space will have approximately the same magnitude. This increases the stability of the procedure, but does not affect the problem specification. Scaling should not be confused with the weighting matrices w_{ϵ_I} and w_{δ_I} specified by arguments 10-WE and 11-WD. (See §1.A, and §1.F.) Except as noted below, the scale values specified for each value of β must be greater than zero. The default values are set as described in §4.D.i.

SCLB(1)	For $K = 1,, p$, $SCALE\{\beta_K\}$
≤ 0	= default value
> 0	= SCLB(K)

$\Longrightarrow 26 - \text{SCLD} [\langle \text{real} \rangle \text{SCLD}(\text{LDSCLD}, M)]$

The doubly subscripted array that specifies the scale values for the errors Δ in the explanatory variable X, i.e., the reciprocals of the expected magnitudes or typical sizes of Δ_{IJ} , $I=1,\ldots,n$, and $J=1,\ldots,m$. Scaling is used within the regression procedure in order to ensure that the units of the variable space will have approximately the same magnitude. This increases the stability of the procedure, but does not affect the problem specification. Scaling should not be confused with the weighting matrices $w_{\epsilon_{\rm I}}$ and $w_{\delta_{\rm I}}$ specified by arguments 10-WE and 11-WD. (See §1.A, and §1.F.) Except as noted below, the scale values specified for each value of Δ must be greater than zero. The default values are set as described in §4.D.ii. SCLD is a structured argument: only the specific elements of SCLD identified in the table below are referenced by ODRPACK95. (See §1.G.)

		For $I = 1, \ldots, n$,
		& $J = 1, \dots, m,$
SCLD(1,1)	LDSCLD	$ ext{SCALE}\{\Delta_{ ext{IJ}}\}$
≤ 0	_	= default value
> 0	=1	= SCLD(1,J)
	$\geq n$	= SCLD(I,J)

\iff 27 - WORK [<real> WORK(LWORK)]

The singly subscripted array used for <real> work space, and an array in which various computed values are returned. The smallest acceptable dimension of WORK is

$$18+13p+p^2+m+m^2+4nq+6nm+2nqp+2nqm+q^2+5q+q(p+m)+(LDWE*LD2WE)q;$$

for orthogonal distance regression and

$$18 + 13p + p^2 + m + m^2 + 4nq + 2nm + 2nqp + 5q + q(p + m) + (LDWE * LD2WE)q;$$

for ordinary least squares. The work area does not need to be initialized by the user unless the user wishes to initialize Δ (also initializable by 9-DELTA), which is stored in the first $n \times m$ locations of WORK. An easy way to access these values, either for initialization, as is necessary when the fourth digit of argument 14-JOB is nonzero and the fit is by orthogonal distance regression, or for analysis upon return from ODRPACK95, is to include in the user's program the declaration statements

<real> DELTA(<N>,<M>)

where N indicates that the first dimension of the array DELTA must be exactly the number of observations, N = n; and M indicates that the second dimension of the array DELTA must be exactly the number of columns, M = m, of the explanatory variable X.

This allows the error associated with observation X(I,J) to be accessed as DELTA(I,J) rather than as WORK(I+(J-1)*N). The values in DELTA will be over written by the final estimates of the errors in the explanatory variable when this equivalencing method is used. Other values returned in array WORK may also be of interest and can be accessed as described in §5.A.

N.B., if the fit is a "restart," i.e., if the fifth digit of argument 14-JOB is nonzero, then all elements of vector WORK, including the values of DELTA, must be exactly as returned from a previous call to ODRPACK95.

\iff 28 - IWORK [INTEGER IWORK(LIWORK)]

The singly subscripted array used for INTEGER work space, and an array in which various computed values are returned. The smallest acceptable dimension of IWORK is

$$20 + 2p + q(p+m).$$

Certain values returned in array IWORK are of general interest and can be accessed as described below in §5.B. In particular, the results of the derivative checking procedure are encoded in IWORK. These results may be especially useful if ODR-PACK95's error reports have been suppressed. (See argument 21-LUNERR.)

N.B., if the fit is a "restart," i.e., if the fifth digit of argument 14-JOB is nonzero, then all elements of vector IWORK must be exactly as returned from a previous call to ODRPACK95.

\iff 29 - INFO [INTEGER INFO]

The variable used to indicate why the computations stopped.

INFO	Stopping Condition
=1	sum of squares convergence
	parameter convergence
=3	both sum of squares and parameter convergence
=4	iteration limit reached
≥ 5	questionable results or fatal errors detected

When INFO ≥ 5 the questionable results or fatal errors detected by ODRPACK95 are reported in the messages generated on the logical units specified by arguments 21-LUNERR and 22-LUNRPT. In this case, INFO is a 6 digit INTEGER with decimal expansion $\mathcal{I}_6\mathcal{I}_5\mathcal{I}_4\mathcal{I}_3\mathcal{I}_2\mathcal{I}_1$, where $\mathcal{I}_6\mathcal{I}_5=00$ and $\mathcal{I}_4\mathcal{I}_3\mathcal{I}_2\neq 000$ indicates that questionable conditions were found, and $\mathcal{I}_6\mathcal{I}_5\geq 01$ indicates that fatal errors were detected. The nonzero values of \mathcal{I}_6 , \mathcal{I}_5 , \mathcal{I}_4 , \mathcal{I}_3 , \mathcal{I}_2 and \mathcal{I}_1 are used to identify what conditions were detected at the time the program stopped.

Questionable Results:	
$\mathcal{I}_6 \mathcal{I}_5 = 00 \text{ with } \mathcal{I}_4 \neq 0$	derivatives possibly not correct (see §4.A)
$\mathcal{I}_3 \neq 0$	ISTOP $\neq 0$ at last call to FCN
	(see argument 1-FCN)
$\mathcal{I}_2 \neq 0$	problem is not full rank at solution
$\mathcal{I}_1 = 1$	sum of squares convergence
=2	parameter convergence
=3	sum of squares and parameter convergence
=4	iteration limit reached

```
Fatal Errors:
   \mathcal{I}_6 \mathcal{I}_5 = 01 \text{ with } \quad \mathcal{I}_4 \neq 0
                                                 N < 1
                                \mathcal{I}_3 \neq 0
                                                M < 1
                                \mathcal{I}_2 \neq 0
                                                 NP < 1 \text{ or } NP > N
                                \mathcal{I}_1 \neq 0
                                                 NQ < 1
   \mathcal{I}_6 \mathcal{I}_5 = 02 with
                                \mathcal{I}_4 \neq 0
                                                 Y and/or X dimensions too small
                                \mathcal{I}_3 \neq 0
                                                 WE and/or WD dimensions too small
                                \mathcal{I}_2 \neq 0
                                                 IFIXX, STPD and/or SCLD dimensions too small
                                \mathcal{I}_1 \neq 0
                                                 WORK and/or IWORK dimensions too small
   \mathcal{I}_6 \mathcal{I}_5 = 03 with
                                \mathcal{I}_4 \neq 0
                                                 STPB and/or STPD incorrect
                                \mathcal{I}_3 \neq 0
                                                 SCLB and/or SCLD incorrect
                                \mathcal{I}_2 \neq 0
                                                 WE incorrect
                                \mathcal{I}_1 \neq 0
                                                 WD incorrect
   \mathcal{I}_6 \mathcal{I}_5 = 04
                                                 error in derivatives
```

D t I D	1\	
Fatal Errors (conti	nued):	
T T 05		TOTOD / O + 1 + 11 + TOY
$\mathcal{I}_6 \mathcal{I}_5 = 05$		ISTOP $\neq 0$ at last call to FCN
$\sigma \sigma = 0.0$		(see argument 1-FCN)
$\mathcal{I}_6 \mathcal{I}_5 = 06$		numerical error detected
$\mathcal{I}_6 \mathcal{I}_5 = 07$	- / 0	JOB inconsistent with passed arguments
	$\mathcal{I}_4 \neq 0$	DELTA absent or not associated
	9 /	WORK absent or not associated
	$\mathcal{I}_2 \neq 0$	IWORK absent or not associated
$\mathcal{I}_6 \mathcal{I}_5 = 08$ with	$\mathcal{I}_4 \neq 0$	array allocation failed for DELTA TEMPRET
	$\mathcal{I}_3 \neq 0$	array allocation failed for WORK
	$\mathcal{I}_2 \neq 0$	array allocation failed for IWORK
$\mathcal{I}_6 \mathcal{I}_5 = 09$ with		UPPER(I) < LOWER(I) for some I
	$\mathcal{I}_3 = 1$	initial BETA outside the bounds
	$\mathcal{I}_2 = 1$	bounds too small for calculating the number
		of reliable digits NDIGIT
	$\mathcal{I}_2 = 2$	bounds too small for derivative calculations
bit	(I)	array dimensions too small for one or more of
0	(1)	BETA
1	(2)	Y
2	(4)	X
3	(8)	DELTA
4	(16)	WE
5	(32)	WD
6	(64)	IFIXB
7	(128)	IFIXX
8	(256)	STPB
9	(512)	STPD
10	(1024)	SCLB
11	(2048)	SCLD
12	(4096)	WORK
13	(8192)	IWORK
14	(16384)	UPPER
15	(32768)	LOWER

Note that INFO = 60000 indicates an error possibly caused by incorrectly specified user input to ODRPACK95, and more commonly by a poor choice of scale or weights, or a discontinuity in the derivatives.

$\implies 30 - \texttt{LOWER} \ [\ensuremath{\texttt{<real> LOWER(NP)]}}$

The lower bound of 6-BETA. ODRPACK95 will maintain LOWER(I) \leq BETA(I) for I=1,...,NP.

 \implies 31 - UPPER [<real> UPPER(NP)]

The upper bound of 6-BETA. ODRPACK95 will maintain UPPER(I) \geq BETA(I) for I=1,...,NP.

2.B. Examples

The following sample programs invoke ODR to solve the examples of explicit, implicit and multiresponse problems shown in §1.A.

The first program invokes ODR with user supplied derivatives, the second program invokes ODR with the derivatives approximated by ODRPACK95 using forward finite differences, and the third invokes ODR with central finite difference derivatives. The use of forward or central difference derivatives generally causes very little change in the results from those obtained using analytic derivatives. (See §4.A.)

Users are encouraged to use these examples, modified as necessary, to form their own ODRPACK95 drivers.

2.B.i. Example Problem for an Explicit Model

The following sample program invokes ODR to solve example 3.2.2 on pages 230–238 of [Fuller, 1987]. The data $(x_i, y - i)$ are the percent saturation of nitrogen gas in a brine solution forced into the pores of sandstone, and the observed compressional wave velocity of ultrasonic signals propagated through the sandstone, respectively. These data (listed in §2.B.i.b) are modeled by the explicit function

$$y_i \approx f(x_i; \beta) \equiv \beta_1 + \beta_2 [e^{\beta_3 x_i} - 1]^2, \quad i = 1, \dots, n.$$

The starting values for the model parameters are

$$\beta = (1500.0, -50.0, -0.1)^{\mathrm{T}}$$

and Δ is initialized to zero.

Fuller notes that it is reasonable to believe that the saturation measurements of 0% and 100% are more precise than the other saturation measurements. We have thus "fixed" x_1, x_2 and x_{12} at their original values. As a consequence, $\delta_1^* = \delta_2^* = \delta_{12}^* = 0$ at the solution. We assume the remaining observed data are all of equal precision, and thus set $w_{\epsilon} = w_{\delta} = 1$ using ODRPACK95's structured argument feature. The remaining arguments are set to their default values. (See §1.G.)

2.B.i.a. User Supplied Code (file drive1.f)

PROGRAM SAMPLE USE ODRPACK95

USE REAL_PRECISION

```
ODRPACK95 Argument Definitions
C
       ==> FCN
                    Name of the user supplied function subroutine
C
       ==> N
                    Number of observations
C
       ==> M
                    Columns of data in the explanatory variable
C
       ==> NP
                    Number of parameters
С
      ==> NQ
                    Number of responses per observation
С
      <==> BETA
                    Function parameters
С
       ==> Y
                    Response variable
С
       ==> X
                    Explanatory variable
С
      ==> WE
                    "Epsilon" weights
C
      ==> WD
                    "Delta" weights
С
                    Indicators for "fixing" parameters (BETA)
      ==> IFIXB
C
       ==> IFIXX
                    Indicators for "fixing" explanatory variable (X)
С
       ==> JOB
                    Task to be performed
С
       ==> NDIGIT
                    Good digits in subroutine function results
С
      ==> TAUFAC
                    Trust region initialization factor
С
       ==> SSTOL
                    Sum of squares convergence criterion
C
      ==> PARTOL
                    Parameter convergence criterion
С
       ==> MAXIT
                    Maximum number of iterations
С
       ==> IPRINT
                    Print control
       ==> LUNERR
                    Logical unit for error reports
С
С
      ==> LUNRPT
                    Logical unit for computation reports
С
       ==> STPB
                    Step sizes for finite difference derivatives wrt BETA
С
       ==> STPD
                    Step sizes for finite difference derivatives wrt DELTA
С
       ==> SCLB
                    Scale values for parameters BETA
С
      ==> SCLD
                    Scale values for errors delta in explanatory variable
С
      <==> WORK
                    REAL (KIND=R8) work vector
C
      <== IWORK
                    Integer work vector
С
      <== INFO
                    Stopping condition
С
 Parameters specifying maximum problem sizes handled by this driver
С
      MAXN
                    Maximum number of observations
С
      MXAM
                    Maximum number of columns in explanatory variable
С
      MAXNP
                    Maximum number of function parameters
С
      MAXNQ
                    Maximum number of responses per observation
C Parameter Declarations and Specifications
                 LDIFX,LDSCLD,LDSTPD,LDWD,LDWE,LDX,LDY,LD2WD,LD2WE,
      INTEGER
                 LIWORK, LWORK, MAXM, MAXN, MAXNP, MAXNQ
     PARAMETER (MAXM=5, MAXN=25, MAXNP=5, MAXNQ=1,
                 LDY=MAXN, LDX=MAXN,
                 LDWE=1,LD2WE=1,LDWD=1,LD2WD=1,
     Вr.
                 LDIFX=MAXN, LDSTPD=1, LDSCLD=1,
```

```
LWORK=18 + 11*MAXNP + MAXNP**2 + MAXM + MAXM**2 +
     &
                       4*MAXN*MAXNQ + 6*MAXN*MAXM + 2*MAXN*MAXNQ*MAXNP +
     &
     &
                       2*MAXN*MAXNQ*MAXM + MAXNQ**2 +
                       5*MAXNQ + MAXNQ*(MAXNP+MAXM) + LDWE*LD2WE*MAXNQ,
                 LIWORK=20+MAXNP+MAXNQ*(MAXNP+MAXM))
C Variable Declarations
      INTEGER.
                     I, INFO, IPRINT, J, JOB, L, LUNERR, LUNRPT, M, MAXIT, N,
     &
                     NDIGIT, NP, NQ
      INTEGER
                     IFIXB(MAXNP), IFIXX(LDIFX, MAXM), IWORK(:)
     REAL (KIND=R8) PARTOL, SSTOL, TAUFAC
     REAL (KIND=R8) BETA(MAXNP), SCLB(MAXNP), SCLD(LDSCLD, MAXM),
                     STPB(MAXNP), STPD(LDSTPD, MAXM),
                     WD(LDWD,LD2WD,MAXM),WE(LDWE,LD2WE,MAXNQ),
     &
                     WORK(:),X(LDX,MAXM),Y(LDY,MAXNQ)
      EXTERNAL
                     FCN
      POINTER
                     IWORK, WORK
C Allocate work arrays
      ALLOCATE(IWORK(LIWORK), WORK(LWORK))
C Specify default values for ODR arguments
      WE(1,1,1) = -1.0E0_R8
      WD(1,1,1) = -1.0E0_R8
      IFIXB(1) = -1
      IFIXX(1,1) = -1
                = -1
      JOB
      NDIGIT
                = -1
      TAUFAC
                = -1.0E0_R8
      SSTOL
                = -1.0E0_R8
      PARTOL
                 = -1.0E0_R8
                = -1
      MAXIT
      IPRINT
                = -1
                = -1
      LUNERR
      LUNRPT
                = -1
      STPB(1)
                = -1.0E0_R8
      STPD(1,1) = -1.0E0_R8
      SCLB(1)
                = -1.0E0_R8
      SCLD(1,1) = -1.0E0_R8
C Set up ODRPACK95 report files
      LUNERR =
      LUNRPT =
      OPEN (UNIT=9,FILE='REPORT1')
```

C Read problem data, and set nondefault value for argument IFIXX

```
OPEN (UNIT=5,FILE='DATA1')
      READ (5,FMT=*) N,M,NP,NQ
      READ (5,FMT=*) (BETA(I),I=1,NP)
      DO 10 I=1,N
         READ (5,FMT=*) (X(I,J),J=1,M),(Y(I,L),L=1,NQ)
         IF (X(I,1).EQ.0.0E0_R8 .OR. X(I,1).EQ.100.0E0_R8) THEN
            IFIXX(I,1) = 0
         ELSE
            IFIXX(I,1) = 1
         END IF
   10 CONTINUE
C Specify task: Explicit orthogonal distance regression
С
                 With user supplied derivatives (checked)
С
                 Covariance matrix constructed with recomputed derivatives
С
                 Delta initialized to zero
С
                 Not a restart
C And indicate short initial report
С
                Short iteration reports every iteration, and
С
                Long final report
      JOB
              = 00020
      IPRINT = 1112
C Compute solution
      CALL ODR (FCN=FCN,
               N=N, M=M, NP=NP, NQ=NQ,
     &
               BETA=BETA,
     &
     &
               Y=Y, X=X,
               WE=WE, WD=WD,
     &
               IFIXB=IFIXB,IFIXX=IFIXX,
     &
               JOB=JOB, NDIGIT=NDIGIT, TAUFAC=TAUFAC,
     lг.
               SSTOL=SSTOL, PARTOL=PARTOL, MAXIT=MAXIT,
               IPRINT=IPRINT, LUNERR=LUNERR, LUNRPT=LUNRPT,
     Хr.
               STPB=STPB, STPD=STPD,
     &
               SCLB=SCLB, SCLD=SCLD,
               WORK=WORK, IWORK=IWORK,
               INFO=INFO)
      END
      SUBROUTINE FCN(N,M,NP,NQ,
                     LDN, LDM, LDNP,
                     BETA, XPLUSD,
     &
                     IFIXB, IFIXX, LDIFX,
                     IDEVAL, F, FJACB, FJACD,
                     ISTOP)
```

```
C Subroutine arguments
C
       ==> N
                    Number of observations
C
       ==> M
                    Number of columns in explanatory variable
С
       ==> NP
                    Number of parameters
С
       ==> NQ
                    Number of responses per observation
C
       ==> LDN
                    Leading dimension declarator equal or exceeding N
С
       ==> LDM
                    Leading dimension declarator equal or exceeding M
С
       ==> LDNP
                    Leading dimension declarator equal or exceeding NP
С
       ==> BETA
                    Current values of parameters
С
       ==> XPLUSD
                    Current value of explanatory variable, i.e., X + DELTA
С
       ==> IFIXB
                    Indicators for "fixing" parameters (BETA)
C
       ==> IFIXX
                    Indicators for "fixing" explanatory variable (X)
С
       ==> LDIFX
                    Leading dimension of array IFIXX
С
      ==> IDEVAL
                    Indicator for selecting computation to be performed
С
      <== F
                    Predicted function values
C
      <== FJACB
                    Jacobian with respect to BETA
С
      <== FJACD
                    Jacobian with respect to errors DELTA
С
      <== ISTOP
                    Stopping condition, where
С
                      O means current BETA and X+DELTA were
С
                        acceptable and values were computed successfully
С
                      1 means current BETA and X+DELTA are
С
                        not acceptable; ODRPACK95 should select values
С
                        closer to most recently used values if possible
С
                     -1 means current BETA and X+DELTA are
С
                        not acceptable; ODRPACK95 should stop
  Used modules
      USE REAL PRECISION
C Input arguments, not to be changed by this routine:
                       I, IDEVAL, ISTOP, L, LDIFX, LDM, LDN, LDNP, M, N, NP, NQ
      REAL (KIND=R8) BETA(NP), XPLUSD(LDN, M)
      INTEGER
                       IFIXB(NP),IFIXX(LDIFX,M)
C Output arguments:
      REAL (KIND=R8) F(LDN,NQ),FJACB(LDN,LDNP,NQ),FJACD(LDN,LDM,NQ)
C Local variables
      INTRINSIC
                       EXP
C Do something with IFIXB and IFIXX to avoid warnings that they are not being
C used. This is simply not to worry users that the example program is failing.
      IF (IFIXB(1) .GT. O .AND. IFIXX(1,1) .GT. O ) THEN
С
         Do nothing.
      END IF
```

```
C Check for unacceptable values for this problem
      IF (BETA(1) .LT. 0.0E0_R8) THEN
         ISTOP = 1
         RETURN
      ELSE
         ISTOP = 0
      END IF
C Compute predicted values
      IF (MOD(IDEVAL, 10).GE.1) THEN
         DO 110 L = 1,NQ
            DO 100 I = 1,N
               F(I,L) = BETA(1) +
                        BETA(2)*(EXP(BETA(3)*XPLUSD(I,1)) - 1.0E0_R8)**2
     &
  100
            CONTINUE
  110
         CONTINUE
      END IF
C Compute derivatives with respect to BETA
      IF (MOD(IDEVAL/10,10).GE.1) THEN
         DO 210 L = 1,NQ
            DO 200 I = 1,N
               FJACB(I,1,L) = 1.0E0_R8
               FJACB(I,2,L) = (EXP(BETA(3)*XPLUSD(I,1)) - 1.0E0_R8)**2
               FJACB(I,3,L) = BETA(2)*2*
    &
                              (EXP(BETA(3)*XPLUSD(I,1)) - 1.0E0_R8)*
                              EXP(BETA(3)*XPLUSD(I,1))*XPLUSD(I,1)
     &
  200
            CONTINUE
  210
         CONTINUE
      END IF
C Compute derivatives with respect to DELTA
      IF (MOD(IDEVAL/100,10).GE.1) THEN
         DO 310 L = 1,NQ
            DO 300 I = 1,N
               FJACD(I,1,L) = BETA(2)*2*
     &
                              (EXP(BETA(3)*XPLUSD(I,1)) - 1.0E0_R8)*
                              EXP(BETA(3)*XPLUSD(I,1))*BETA(3)
     δг.
  300
            CONTINUE
         CONTINUE
  310
      END IF
      RETURN
      END
```

2.B.i.b. User Supplied Data (file data1)

```
12
        1
            3
1500.0 -50.0 -0.1
   0.0
        1265.0
   0.0
        1263.6
   5.0
        1258.0
   7.0
        1254.0
   7.5
        1253.0
  10.0
        1249.8
  16.0
        1237.0
  26.0
        1218.0
  30.0
        1220.6
  34.0
        1213.8
  34.5
        1215.5
  100.0 1212.0
```

2.B.i.c. Report Generated by ODRPACK95 (file drive1.out)

```
**************
* ODRPACK95 version 1.00 of 12-27-2005 (REAL (KIND=R8)) *
*****************
*** Derivative checking report for fit by method of ODR ***
   For response 1 of observation
                         User
                      Supplied
                                 Relative
                                           Derivative
     Derivative WRT
                        Value
                              Difference
                                           Assessment
                      1.00E+00
                                 0.00E+00
                                           Verified
          BETA(1)
          BETA(2)
                      1.55E-01
                                 1.03E-06
                                           Verified
          BETA(3)
                      1.19E+02
                                 2.96E-06
                                           Verified
       DELTA( 3, 1)
                     -2.39E+00
                                 2.96E-06
                                           Verified
   Number of reliable digits in function results
                                                  16
      (estimated by ODRPACK95)
   Number of digits of agreement required between
   user supplied and finite difference derivative for
   user supplied derivative to be considered verified
   Row number at which derivatives were checked
                                                   3
     -values of the explanatory variables at this row
       X(3,1) 5.0000000E+00
*****************
* ODRPACK95 version 1.00 of 12-27-2005 (REAL (KIND=R8)) *
******************
*** Initial summary for fit by method of ODR ***
--- Problem Size:
         N =
                         (number with nonzero weight =
                                                     12)
               12
        NO =
                1
         M =
```

(number unfixed =

A=0 ==> fit is not a restart.

3)

NP =

JOB = 00020

= ABCDE, where

--- Control Values:

2.14455017E+01

```
C=0 ==> covariance matrix will be computed using
                             derivatives re-evaluated at the solution.
                     D=2 ==> derivatives are supplied by user.
                             derivatives were checked.
                             results appear correct.
                     E=0 ==> method is explicit ODR.
      NDIGIT =
                 16
                             (estimated by ODRPACK95)
      TAUFAC =
                  1.00E+00
--- Stopping Criteria:
      SSTOL =
                  1.49E-08
                             (sum of squares stopping tolerance)
      PARTOL =
                  3.67E-11
                             (parameter stopping tolerance)
      MAXIT =
                             (maximum number of iterations)
--- Initial Weighted Sum of Squares
                                                               6.63720354E+05
        Sum of Squared Weighted Deltas
                                              0.0000000E+00
        Sum of Squared Weighted Epsilons
                                              6.63720354E+05
*** Iteration reports for fit by method of ODR ***
                                       Pred. Rel.
        Cum.
                            Act. Rel.
It. No. FN
                Weighted
                           Sum-of-Sqs Sum-of-Sqs
                                                               G-N
Num.
              Sum-of-Sqs
                            Reduction
                                         Reduction TAU/PNORM Step
      Evals
   1
         19 2.51166E+01
                           9.9996E-01 9.9997E-01 3.499E-01
                                                               YES
   2
         20 2.14730E+01
                           1.4507E-01 1.5249E-01 6.900E-02
                                                               YES
         21 2.14463E+01
   3
                           1.2418E-03 1.4631E-03 8.573E-03
                                                               YES
                                                               YES
   4
         22 2.14455E+01
                           3.7676E-05 4.7131E-05 2.016E-03
         23 2.14455E+01
                           1.5116E-06 1.8950E-06 3.927E-04
   6
         24 2.14455E+01
                           6.2002E-08 7.7723E-08 8.017E-05
                                                               YES
         25 2.14455E+01 2.5359E-09
                                       3.1790E-09 1.617E-05
*** Final summary for fit by method of ODR ***
--- Stopping Conditions:
       INFO =
                  1 ==> sum of squares convergence.
      NITER =
                  7
                             (number of iterations)
       NFEV =
                 25
                             (number of function evaluations)
       NJEV =
                  8
                             (number of jacobian evaluations)
       IRANK =
                             (rank deficiency)
       RCOND =
                  6.12E-03 (inverse condition number)
       ISTOP =
                             (returned by user from subroutine FCN)
```

--- Final Weighted Sums of Squares

B=0 ==> deltas are initialized to zero.

Using ODRPACK95 45

```
Sum of Squared Weighted Deltas =
                                             7.78974669E+00
        Sum of Squared Weighted Epsilons =
                                             1.36557550E+01
--- Residual Standard Deviation
                                                              1.54364294E+00
       {\tt Degrees} \ {\tt of} \ {\tt Freedom}
                                             9
--- Estimated BETA(J), J = 1, ..., NP:
                                                  S.D. ___ 95% Confidence ___
                    BETA
                             LOWER
                                       UPPER
                                                               Interval
     1 1.26465481E+03 -1.80+308 1.80+308 1.03E+00 1.26E+03 to 1.27E+03
     2 -5.40184100E+01 -1.80+308 1.80+308 1.58E+00 -5.76E+01 to -5.04E+01
      3 -8.78497122E-02 -1.80+308 1.80+308 6.33E-03 -1.02E-01 to -7.35E-02
--- Estimated EPSILON(I) and DELTA(I,*), I = 1, ..., N:
            EPSILON(I,1)
                              DELTA(I,1)
        1 -3.45194935E-01 0.0000000E+00
        2 1.05480506E+00 0.00000000E+00
        3 -3.00719286E-02 -6.50838155E-02
        4 -1.13916405E-01 -2.67201445E-01
        5 -1.40250730E-01 -3.31357554E-01
        6 -5.53155555E-01 -1.30641313E+00
       7 -6.99564762E-01 -1.32525687E+00
       8 1.88412530E+00 1.45885497E+00
       9 -1.70916306E+00 -1.18803577E+00
      10 1.80916198E+00 7.71243449E-01
      11 1.90299896E-01 8.24139253E-02
      12 -1.34707485E+00 0.00000000E+00
```

2.B.ii. Example Problem for an Implicit Model

This sample program invokes ODR to solve the implicit problem shown in example 3.2.4 on page 244 of [Fuller, 1987]. In this example, the data (listed in §2.B.ii.b) are observations digitized from the x-ray image of a hip prosthesis, where the variables $x_i = (v_i, h_i)$, $i = 1, \ldots, n$, are the vertical and horizontal distances from the origin, respectively, and the implicit model is that of the ellipse

$$f_i(x_i;\beta) \equiv \beta_3(v_i - \beta_1)^2 + 2\beta_4(v_i - \beta_1)(h_i - \beta_2) + \beta_5(h_i - \beta_2)^2 = 0$$

for i = 1, ..., n. The starting values for the model parameters are

$$\beta = (-1.0, -3.0, 0.09, 0.02, 0.08)^{\mathrm{T}}$$

and Δ is initialized to zero. Since the observed data are all of equal precision, we set $w_{\delta} = 1$ using ODRPACK95's structured argument feature. The remaining arguments are set to their default values. (See §1.G.)

2.B.ii.a. User Supplied Code (file drive2.f)

PROGRAM SAMPLE
USE ODRPACK95
USE REAL_PRECISION

```
C ODRPACK95 Argument Definitions
```

```
C
       ==> FCN
                    Name of the user supplied function subroutine
C
       ==> N
                    Number of observations
С
       ==> M
                    Columns of data in the explanatory variable
С
       ==> NP
                    Number of parameters
C
       ==> NQ
                    Number of responses per observation
C
      <==> BETA
                    Function parameters
С
       ==> Y
                    Response variable (unused when model is implicit)
C
                    Explanatory variable
C
       ==> WE
                    Initial penalty parameter for implicit model
С
       ==> WD
                    "Delta" weights
C
       ==> JOB
                    Task to be performed
С
       ==> IPRINT
                    Print control
C
       ==> LUNERR
                    Logical unit for error reports
С
       ==> LUNRPT
                    Logical unit for computation reports
                    REAL (KIND=R8) work vector
C
      <==> WORK
C
      <== IWORK
                    Integer work vector
С
           INFO
                    Stopping condition
```

C Parameters specifying maximum problem sizes handled by this driver

C MAXN Maximum number of observations

Using ODRPACK95 47

```
С
      MXAM
                    Maximum number of columns in explanatory variable
С
      MAXNP
                    Maximum number of function parameters
C
      MAXNQ
                    Maximum number of responses per observation
C Parameter declarations and specifications
      INTEGER
                 LDWD, LDWE, LDX, LDY, LD2WD, LD2WE,
     &
                 LIWORK, LWORK, MAXM, MAXN, MAXNP, MAXNQ
     PARAMETER (MAXM=5, MAXN=25, MAXNP=5, MAXNQ=2,
                 LDY=MAXN, LDX=MAXN,
                 LDWE=1,LD2WE=1,LDWD=1,LD2WD=1,
     &
     &
                 LWORK=18 + 11*MAXNP + MAXNP**2 + MAXM + MAXM**2 +
                       4*MAXN*MAXNQ + 6*MAXN*MAXM + 2*MAXN*MAXNQ*MAXNP +
                       2*MAXN*MAXNQ*MAXM + MAXNQ**2 +
     ₽т.
                       5*MAXNQ + MAXNQ*(MAXNP+MAXM) + LDWE*LD2WE*MAXNQ,
                 LIWORK=20+MAXNP+MAXNQ*(MAXNP+MAXM))
C Variable declarations
      INTEGER
                    I, INFO, IPRINT, J, JOB, LUNERR, LUNRPT, M, N, NP, NQ
      INTEGER
                     IWORK(:)
      REAL (KIND=R8) BETA(MAXNP),
                     WD(LDWD, LD2WD, MAXM), WE(LDWE, LD2WE, MAXNQ),
                     WORK(:),X(LDX,MAXM),Y(LDY,MAXNQ)
     EXTERNAL
                     FCN
      POINTER
                     IWORK, WORK
C Allocate work arrays
      ALLOCATE(IWORK(LIWORK), WORK(LWORK))
C Specify default values for DODR arguments
      WE(1,1,1) = -1.0E0_R8
      WD(1,1,1) = -1.0E0_R8
      JOB
      IPRINT
                 = -1
      LUNERR
                 = -1
      LUNRPT
                 = -1
C Set up ODRPACK95 report files
      LUNERR = 9
      LUNRPT = 9
      OPEN (UNIT=9,FILE='REPORT2')
C Read problem data
      OPEN (UNIT=5,FILE='DATA2')
      READ (5,FMT=*) N,M,NP,NQ
      READ (5,FMT=*) (BETA(I),I=1,NP)
      DO 10 I=1,N
```

```
READ (5,FMT=*) (X(I,J),J=1,M)
   10 CONTINUE
  Specify task: Implicit orthogonal distance regression
С
                 With forward finite difference derivatives
С
                 Covariance matrix constructed with recomputed derivatives
С
                 DELTA initialized to zero
C
                 Not a restart
      JOB
              = 00001
C Compute solution
      CALL ODR (FCN=FCN,
               N=N,M=M,NP=NP,NQ=NQ,
     &
               BETA=BETA,
               Y=Y, X=X,
     ₽т.
               WE=WE, WD=WD,
     &
               JOB=JOB,
     &
               IPRINT=IPRINT, LUNERR=LUNERR, LUNRPT=LUNRPT,
     lг.
               WORK=WORK, IWORK=IWORK,
     &
               INFO=INFO)
      END
      SUBROUTINE FCN(N,M,NP,NQ,
                     LDN, LDM, LDNP,
                     BETA, XPLUSD,
                     IFIXB, IFIXX, LDIFX,
     Хr.
     &
                     IDEVAL, F, FJACB, FJACD,
     &
  Subroutine Arguments
C
       ==> N
                     Number of observations
С
       ==> M
                    Number of columns in explanatory variable
C
       ==> NP
                     Number of parameters
С
       ==> NQ
                     Number of responses per observation
C
       ==> LDN
                    Leading dimension declarator equal or exceeding {\tt N}
С
       ==> LDM
                    Leading dimension declarator equal or exceeding {\tt M}
C
       ==> LDNP
                    Leading dimension declarator equal or exceeding NP
С
       ==> BETA
                     Current values of parameters
С
       ==> XPLUSD
                    Current value of explanatory variable, i.e., X + DELTA
C
       ==> IFIXB
                    Indicators for "fixing" parameters (BETA)
С
       ==> IFIXX
                    Indicators for "fixing" explanatory variable (X)
С
       ==> LDIFX
                    Leading dimension of array IFIXX
С
       ==> IDEVAL
                    Indicator for selecting computation to be performed
С
      <== F
                    Predicted function values
      <== FJACB
                    Jacobian with respect to BETA
```

```
C
      <== FJACD
                    Jacobian with respect to errors DELTA
С
      <== ISTOP
                    Stopping condition, where
С
                      O Means current BETA and X+DELTA were
C
                        acceptable and values were computed successfully
С
                      1 Means current BETA and X+DELTA are
С
                        not acceptable; ODRPACK95 should select values
С
                        closer to most recently used values if possible
C
                     -1 Means current BETA and X+DELTA are
C
                        not acceptable; ODRPACK95 should stop
C Used Modules
      USE REAL_PRECISION
C Input arguments, not to be changed by this routine:
                       I, IDEVAL, ISTOP, L, LDIFX, LDM, LDN, LDNP, M, N, NP, NQ
      REAL (KIND=R8) BETA(NP), XPLUSD(LDN, M)
      INTEGER
                       IFIXB(NP),IFIXX(LDIFX,M)
C Output arguments:
      REAL (KIND=R8) F(LDN,NQ),FJACB(LDN,LDNP,NQ),FJACD(LDN,LDM,NQ)
C Do something with FJACD, FJACB, IFIXB and IFIXX to avoid warnings that they
C are not being used. This is simply not to worry users that the example
C program is failing.
      IF (IFIXB(1) .GT. 0 .AND. IFIXX(1,1) .GT. 0
          .AND. FJACB(1,1,1) .GT. O .AND. FJACD(1,1,1) .GT. O ) THEN
         Do nothing.
      END IF
C Check for unacceptable values for this problem
      IF (BETA(1) .GT. 0.0E0_R8) THEN
         ISTOP = 1
         RETURN
      ELSE
         ISTOP = 0
      END IF
C Compute predicted values
      IF (MOD(IDEVAL, 10).GE.1) THEN
         DO 110 L = 1,NQ
            DO 100 I = 1,N
               F(I,L) = BETA(3)*(XPLUSD(I,1)-BETA(1))**2 +
                        2*BETA(4)*(XPLUSD(I,1)-BETA(1))*
     &
                                  (XPLUSD(I,2)-BETA(2)) +
     &
                        BETA(5)*(XPLUSD(I,2)-BETA(2))**2 - 1.0E0_R8
     &
  100
            CONTINUE
```

110 CONTINUE

END IF

RETURN

END

2.B.ii.b. User Supplied Data (file data2)

```
20 2 5 1
 -1.0 -3.0 0.09 0.02 0.08
0.50 -0.12
 1.20 -0.60
 1.60 -1.00
 1.86 -1.40
 2.12 -2.54
 2.36 -3.36
 2.44 -4.00
 2.36 -4.75
 2.06 -5.25
 1.74 -5.64
1.34 -5.97
0.90 -6.32
-0.28 -6.44
-0.78 -6.44
-1.36 -6.41
-1.90 -6.25
-2.50 -5.88
-2.88 -5.50
-3.18 -5.24
```

-3.44 -4.86

2.B.ii.c. Report Generated by ODRPACK95 (file drive2.out)

```
**************
* ODRPACK95 version 1.00 of 12-27-2005 (REAL (KIND=R8)) *
*****************
*** Initial summary for fit by method of ODR ***
--- Problem Size:
          N =
                 20
                            (number with nonzero weight =
                                                            20)
         NQ =
                  1
          M =
         NP =
                            (number unfixed =
                                                 5)
--- Control Values:
        JOB = 00001
            = ABCDE, where
                     A=0 ==> fit is not a restart.
                     B=0 ==> deltas are initialized to zero.
                     C=O ==> covariance matrix will be computed using
                            derivatives re-evaluated at the solution.
                     D=0 ==> derivatives are estimated by forward differences.
                     E=1 ==> method is implicit ODR.
     NDIGIT =
                            (estimated by ODRPACK95)
     TAUFAC =
                  1.00E+00
--- Stopping Criteria:
      SSTOL =
                  1.49E-08
                            (sum of squares stopping tolerance)
     PARTOL =
                  6.06E-06
                            (parameter stopping tolerance)
      MAXIT =
                            (maximum number of iterations)
--- Initial Sum of Squared Weighted Deltas =
                                                             0.0000000E+00
       Initial Penalty Function Value
                                            8.39823392E-01
               Penalty Term
                                            8.39823392E-01
                                         =
               Penalty Parameter
                                            1.0E+01
--- Function Parameter Summary:
     Index
             BETA(K)
                       Fixed
                                 Scale
                                         LOWER(K)
                                                   UPPER(K)
                                                               Derivative
                                                               Step Size
       (K)
                                                                   (STPB)
                      (IFIXB)
                                (SCLB)
         1 -1.00E+00
                          NO 1.00E+00 -1.80E+308 1.80E+308
                                                              3.16228E-10
         2 -3.00E+00
                          NO 3.33E-01 -1.80E+308 1.80E+308
                                                              3.16228E-10
         3 9.00E-02
                          NO 1.11E+01 -1.80E+308 1.80E+308
                                                              3.16228E-10
         4 2.00E-02
                          NO 5.00E+01 -1.80E+308 1.80E+308
                                                              3.16228E-10
         5 8.00E-02
                          NO 1.25E+01 -1.80E+308 1.80E+308
                                                              3.16228E-10
```

Using ODRPACK95 53

```
--- Explanatory Variable and Delta Weight Summary:
      Index
                X(I,J) DELTA(I,J)
                                     Fixed
                                               Scale
                                                         Weight
                                                                  Derivative
                                                                   Step Size
      (I,J)
                                    (IFIXX)
                                               (SCLD)
                                                           (WD)
                                                                      (STPD)
             5.000E-01
                         0.000E+00
                                         NO 2.00E+00 1.00E+00
                                                                 3.16228E-10
       N,1 -3.440E+00
                         0.000E+00
                                            2.91E-01 1.00E+00
                                                                 3.16228E-10
                                         NO
       1,2 -1.200E-01
                         0.000E+00
                                         NO 8.33E+00 1.00E+00
                                                                 3.16228E-10
       N,2 -4.860E+00
                         0.000E+00
                                         NO 2.06E-01 1.00E+00
                                                                 3.16228E-10
*** Final summary for fit by method of ODR ***
```

--- Stopping Conditions:

INFO = 2 ==> parameter convergence.

NITER = 18 (number of iterations)

NFEV = 217 (number of function evaluations)

IRANK = 0 (rank deficiency)

RCOND = 3.18E-02 (inverse condition number)

ISTOP = 0 (returned by user from subroutine FCN)

--- Final Sum of Squared Weighted Deltas = 8.82420346E-02

Final Penalty Function Value = 8.82445616E-02Penalty Term = 2.52701227E-06

Penalty Parameter = 1.0E+05

--- Residual Standard Deviation = 7.66994283E-02

Degrees of Freedom = 15

--- Estimated BETA(J), J = 1, ..., NP:

	BETA	LOWER	UPPER	S.D. BETA	95% Confi	
1	-9.99380462E-01	-1.80+308	1.80+308	1.11E-01	-1.24E+00 to	-7.62E-01
2	-2.93104890E+00	-1.80+308	1.80+308	1.10E-01	-3.17E+00 to	-2.70E+00
3	8.75730642E-02	-1.80+308	1.80+308	4.11E-03	7.88E-02 to	9.63E-02
4	1.62299601E-02	-1.80+308	1.80+308	2.75E-03	1.04E-02 to	2.21E-02
5	7.97538109E-02	-1.80+308	1.80+308	3.50E-03	7.23E-02 to	8.72E-02

2.B.iii. Example Problem for an Explicit Model with Multiresponse Data

The problem shown here is an example of multiresponse data that originates because the underlying data are complex. The problem is described in Chapter 4, and on pages 280–281, of [Bates and Watts, 1988]. In this case, the dependent variable is the pair of values representing the real and imaginary parts of complex-valued impedance measurements of a polymer, z_i , i = 1, ..., n, and the explanatory variable, x_i , i = 1, ..., n is the (real-valued) frequency. The data are shown in §2.B.iii.b. The function form is explicit, representing the dielectric constant by the general model proposed by [Havriliak and Negami, 1967]

$$[\Re(z_i), \Im(z_i)] \approx \beta_2 + \frac{\beta_1 - \beta_2}{(1 + (j2\pi x_i e^{-\beta_3})^{\beta_4})^{\beta_5}}$$

for i = 1, ..., n, where $j = \sqrt{-1}$. For ODRPACK95, this must be encoded as two-term multiresponse data with $y_i \in \Re^2$ representing the pair of values $[\Re(z_i), \Im(z_i)], i = 1, ..., n$. Havriliak and Negami (1967) show that the real and imaginary components can be written as

$$\Re(z_i) = \beta_2 + (\beta_1 - \beta_2) R^{\beta_5} \cos(\beta_5 \phi)$$

$$\Im(z_I) = (\beta_1 - \beta_2) R^{\beta_5} \sin(\beta_5 \phi)$$

where

$$R^{2} = \left[1 + (2\pi x_{i}/\beta_{3})^{\beta_{4}} \cos(\pi \beta_{4}/2)\right]^{2} + \left[(2\pi x_{i}/\beta_{3})^{\beta_{4}} \sin(\pi \beta_{4}/2)\right]^{2}$$

and

$$\phi = \arctan \left[\frac{(2\pi x_i/\beta_3)^{\beta_4} \sin(\pi \beta_4/2)}{1 + (2\pi x_i/\beta_3)^{\beta_4} \cos(\pi \beta_4/2)} \right] .$$

The estimation procedure described in [Bates and Watts, 1988] for this multiresponse problem is slightly different from that implemented in ODRPACK95. In particular, their procedure provides an estimate of w_{ϵ} , but does not include estimates of Δ . Thus, we would not assume that the results obtained here using ODRPACK95 will exactly equal those presented by Bates and Watts.

For our example, we have set the starting values for the model parameters to be the final solution shown on page 152 of [Bates and Watts, 1988], i.e.,

$$\beta = (4.398, 2.451, 8.245, 0.487, 0.571)^{\mathrm{T}}$$

and have initialized Δ to the decade corrections described by them. Bates and Watts assume that there is no error in the first decade of frequency values, and we have done the same, "fixing" these variables at their input values. Bates and Watts also identify two outliers in the data set, which are eliminated from our analysis by setting the corresponding

weights to zero. The remaining weights w_{ϵ_i} in our example are set to an estimate of the 2×2 covariance matrix of the errors in the responses of the dependent variable,

$$w_{\epsilon_i} = (\check{e}_i^{\mathrm{T}} \check{e}_i)^{-1}, \quad i = 1, \dots, n$$

where \check{e}_i is the estimate of ϵ_i , $i=1,\ldots,n$, obtained using the Bates and Watts solution. The weights w_{δ_i} are set to values proportional to the magnitude of the frequencies. The remaining arguments are set to their default values. (See §1.G.)

2.B.iii.a. User Supplied Code (file drive3.f)

PROGRAM SAMPLE
USE ODRPACK95
USE REAL_PRECISION

```
С
  ODRPACK95 Argument Definitions
С
       ==> FCN
                    Name of the user supplied function subroutine
C
       ==> N
                    Number of observations
С
                    Columns of data in the explanatory variable
       ==> M
С
       ==> NP
                    Number of parameters
С
                    Number of responses per observation
       ==> NQ
C
      <==> BETA
                    Function parameters
С
       ==> Y
                    Response variable
С
                    Explanatory variable
       ==> X
C
       ==> WE
                    "Epsilon" weights
С
       ==> WD
                    "Delta" weights
С
                    Indicators for "fixing" parameters (BETA)
       ==> IFIXB
                    Indicators for "fixing" explanatory variable (X)
C
       ==> IFIXX
С
       ==> JOB
                    Task to be performed
C
       ==> NDIGIT
                    Good digits in subroutine fcn results
С
       ==> TAUFAC
                    Trust region initialization factor
C
       ==> SSTOL
                    Sum of squares convergence criterion
C
       ==> PARTOL
                    Parameter convergence criterion
С
       ==> MAXIT
                    Maximum number of iterations
С
       ==> IPRINT
                    Print control
С
       ==> LUNERR
                    Logical unit for error reports
C
       ==> LUNRPT
                    Logical unit for computation reports
C
       ==> STPB
                    Step sizes for finite difference derivatives wrt BETA
С
       ==> STPD
                    Step sizes for finite difference derivatives wrt DELTA
C
       ==> SCLB
                    Scale values for parameters BETA
С
       ==> SCLD
                    Scale values for errors DELTA in explanatory variable
С
      <==> WORK
                    REAL (KIND=R8) work vector
C
      <== IWORK
                    Integer work vector
      <== INFO
                    Stopping condition
```

```
C Parameters specifying maximum problem sizes handled by this driver
С
                    Maximum number of observations
С
      MXAM
                    Maximum number of columns in explanatory variable
С
      MAXNP
                    Maximum number of function parameters
C
      MAXNQ
                    Maximum number of responses per observation
C Parameter declarations and specifications
      INTEGER
                 LDIFX,LDSCLD,LDSTPD,LDWD,LDWE,LDX,LDY,LD2WD,LD2WE,
                 LIWORK, LWORK, MAXM, MAXN, MAXNP, MAXNQ
      PARAMETER (MAXM=5, MAXN=100, MAXNP=25, MAXNQ=5,
                 LDY=MAXN, LDX=MAXN,
     &
                 LDWE=MAXN, LD2WE=MAXNQ, LDWD=MAXN, LD2WD=1,
                 LDIFX=MAXN, LDSCLD=1, LDSTPD=1,
                 LWORK=18 + 11*MAXNP + MAXNP**2 + MAXM + MAXM**2 +
     Хr.
                        4*MAXN*MAXNQ + 6*MAXN*MAXM + 2*MAXN*MAXNQ*MAXNP +
                       2*MAXN*MAXNQ*MAXM + MAXNQ**2 +
     &
                       5*MAXNQ + MAXNQ*(MAXNP+MAXM) + LDWE*LD2WE*MAXNQ,
                 LIWORK=20+MAXNP+MAXNQ*(MAXNP+MAXM))
C Variable declarations
      INTEGER
                     I, INFO, IPRINT, J, JOB, L, LUNERR, LUNRPT, M, MAXIT, N,
     &
                     NDIGIT, NP, NQ
      INTEGER
                     IFIXB(MAXNP), IFIXX(LDIFX, MAXM), IWORK(:)
      REAL (KIND=R8) PARTOL, SSTOL, TAUFAC
      REAL (KIND=R8) BETA(MAXNP),DELTA(:,:),
                     SCLB (MAXNP), SCLD (LDSCLD, MAXM),
                     STPB (MAXNP), STPD (LDSTPD, MAXM),
     &
     &
                     WD(LDWD, LD2WD, MAXM), WE(LDWE, LD2WE, MAXNQ),
                     WORK(:), X(LDX, MAXM), Y(LDY, MAXNQ)
      EXTERNAL
                     FCN
      POINTER
                     DELTA, IWORK, WORK
C Specify default values for DODRC arguments
      WE(1,1,1) = -1.0E0_R8
      WD(1,1,1) = -1.0E0_R8
      IFIXB(1) = -1
      IFIXX(1,1) = -1
      JOB
                 = -1
      NDIGIT
                 = -1
      TAUFAC
                 = -1.0E0_R8
                 = -1.0E0_R8
      SSTOL
      PARTOL
                 = -1.0E0_R8
                 = -1
      TIXAM
      IPRINT
                 = -1
      LUNERR
                 = -1
```

```
LUNRPT
                = -1
     STPB(1)
              = -1.0E0_R8
     STPD(1,1) = -1.0E0_R8
     SCLB(1)
                = -1.0E0_R8
     SCLD(1,1) = -1.0E0_R8
C Set up ODRPACK95 report files
      LUNERR = 9
     LUNRPT = 9
      OPEN (UNIT=9,FILE='REPORT3')
C Read problem data
      OPEN (UNIT=5,FILE='DATA3')
     READ (5,FMT=*) N,M,NP,NQ
     READ (5,FMT=*) (BETA(I),I=1,NP)
     DO 10 I=1,N
         READ (5,FMT=*) (X(I,J),J=1,M),(Y(I,L),L=1,NQ)
   10 CONTINUE
C Allocate work arrays
      ALLOCATE(DELTA(N,M), IWORK(LIWORK), WORK(LWORK))
C Specify task as explicit orthogonal distance regression
С
                  With central difference derivatives
С
                  Covariance matrix constructed with recomputed derivatives
С
                  DELTA initialized by user
C
                  Not a restart
C And indicate long initial report
С
               No iteration reports
С
               Long final report
      JOB
              = 01010
      IPRINT = 2002
C Initialize DELTA, and specify first decade of frequencies as fixed
     DO 20 I=1,N
         IF (X(I,1).LT.100.0E0_R8) THEN
           DELTA(I,1) = 0.0E0_R8
           IFIXX(I,1) = 0
        ELSE IF (X(I,1).LE.150.0E0_R8) THEN
           DELTA(I,1) = 0.0E0_R8
           IFIXX(I,1) = 1
         ELSE IF (X(I,1).LE.1000.0E0_R8) THEN
           DELTA(I,1) = 25.0E0_R8
           IFIXX(I,1) = 1
         ELSE IF (X(I,1).LE.10000.0E0_R8) THEN
           DELTA(I,1) = 560.0E0_R8
```

```
IFIXX(I,1) = 1
         ELSE IF (X(I,1).LE.100000.0E0_R8) THEN
            DELTA(I,1) = 9500.0E0_R8
            IFIXX(I,1) = 1
         ELSE
            DELTA(I,1) = 144000.0E0_R8
            IFIXX(I,1) = 1
         END IF
   20 CONTINUE
C Set weights
      DO 30 I=1,N
         IF (X(I,1).EQ.100.0E0_R8 .OR. X(I,1).EQ.150.0E0_R8) THEN
            WE(I,1,1) = 0.0E0_R8
            WE(I,1,2) = 0.0E0_R8
            WE(I,2,1) = 0.0E0_R8
            WE(I,2,2) = 0.0E0_R8
         ELSE
            WE(I,1,1) = 559.6E0_R8
            WE(I,1,2) = -1634.0E0_R8
            WE(I,2,1) = -1634.0E0_R8
            WE(I,2,2) = 8397.0E0_R8
         END IF
         WD(I,1,1) = (1.0E-4_R8)/(X(I,1)**2)
  30 CONTINUE
C Compute solution
      CALL ODR (FCN=FCN,
     &
               N=N,M=M,NP=NP,NQ=NQ,
               BETA=BETA,
     &
               Y=Y, X=X,
     &
     &
               DELTA=DELTA,
     &
               WE=WE, WD=WD,
               IFIXB=IFIXB,IFIXX=IFIXX,
               JOB=JOB, NDIGIT=NDIGIT, TAUFAC=TAUFAC,
     &
               SSTOL=SSTOL, PARTOL=PARTOL, MAXIT=MAXIT,
               IPRINT=IPRINT,LUNERR=LUNERR,LUNRPT=LUNRPT,
     &
     &
               STPB=STPB, STPD=STPD,
               SCLB=SCLB, SCLD=SCLD,
               WORK=WORK, IWORK=IWORK,
     &
               INFO=INFO)
     &
      END
     SUBROUTINE FCN(N,M,NP,NQ,
                    LDN, LDM, LDNP,
```

```
&
                     BETA, XPLUSD,
                     IFIXB, IFIXX, LDIFX,
     &
     &
                     IDEVAL, F, FJACB, FJACD,
     &
                     ISTOP)
  Subroutine arguments
C
       ==> N
                    Number of observations
С
       ==> M
                    Number of columns in explanatory variable
С
       ==> NP
                    Number of parameters
C
      ==> NQ
                    Number of responses per observation
С
      ==> LDN
                    Leading dimension declarator equal or exceeding N
С
       ==> LDM
                    Leading dimension declarator equal or exceeding M
С
      ==> LDNP
                    Leading dimension declarator equal or exceeding NP
C
      ==> BETA
                    Current values of parameters
С
      ==> XPLUSD
                    Current value of explanatory variable, i.e., X + DELTA
С
      ==> IFIXB
                    Indicators for "fixing" parameters (BETA)
       ==> IFIXX
C
                    Indicators for "fixing" explanatory variable (X)
С
       ==> LDIFX
                    Leading dimension of array IFIXX
С
       ==> IDEVAL
                    Indicator for selecting computation to be performed
C
      <== F
                    Predicted function values
C
      <== FJACB
                    Jacobian with respect to BETA
C
      <== FJACD
                    Jacobian with respect to errors DELTA
С
      <== ISTOP
                    Stopping condition, where
                      O Means current BETA and X+DELTA were
С
С
                        acceptable and values were computed successfully
С
                      1 Means current BETA and X+DELTA are
С
                        not acceptable; ODRPACK95 should select values
С
                        closer to most recently used values if possible
C
                     -1 Means current BETA and X+DELTA are
С
                        not acceptable; ODRPACK95 should stop
C Used modules
      USE REAL_PRECISION
C Input arguments, not to be changed by this routine:
      INTEGER
                       I, IDEVAL, ISTOP, LDIFX, LDM, LDN, LDNP, M, N, NP, NQ
      REAL (KIND=R8) BETA(NP), XPLUSD(LDN, M)
      INTEGER
                       IFIXB(NP),IFIXX(LDIFX,M)
C Output arguments:
      REAL (KIND=R8) F(LDN,NQ),FJACB(LDN,LDNP,NQ),FJACD(LDN,LDM,NQ)
C Local variables
      REAL (KIND=R8) FREQ,PI,OMEGA,CTHETA,STHETA,THETA,PHI,R
      INTRINSIC
                       ATAN2, EXP, SQRT
```

C Do something with FJACD, FJACB, IFIXB and IFIXX to avoid warnings that they

END

```
C are not being used. This is simply not to worry users that the example
C program is failing.
      IF (IFIXB(1) .GT. O .AND. IFIXX(1,1) .GT. O
         .AND. FJACB(1,1,1) .GT. O .AND. FJACD(1,1,1) .GT. O ) THEN
С
        Do nothing.
      END IF
C Check for unacceptable values for this problem
      DO 10 I=1,N
         IF (XPLUSD(I,1).LT.0.0E0_R8) THEN
            ISTOP = 1
            RETURN
        END IF
   10 CONTINUE
      ISTOP = 0
      PI = 3.141592653589793238462643383279E0_R8
      THETA = PI*BETA(4)*0.5E0_R8
      CTHETA = COS(THETA)
      STHETA = SIN(THETA)
C Compute predicted values
      IF (MOD(IDEVAL, 10).GE.1) THEN
        DO 100 I = 1,N
            FREQ = XPLUSD(I,1)
            OMEGA = (2.0E0_R8*PI*FREQ*EXP(-BETA(3)))**BETA(4)
           PHI = ATAN2((OMEGA*STHETA), (1+OMEGA*CTHETA))
           R
                 = (BETA(1)-BETA(2)) *
                    SQRT((1+OMEGA*CTHETA)**2+
     &
                             (OMEGA*STHETA)**2)**(-BETA(5))
           F(I,1) = BETA(2) + R*COS(BETA(5)*PHI)
           F(I,2) =
                              R*SIN(BETA(5)*PHI)
        CONTINUE
  100
      END IF
      RETURN
```

Using ODRPACK95 61

2.B.iii.b. User Supplied Data (file data3)

```
1
           5
4.0 2.0 7.0 0.40 0.50
   30.0 4.220 0.136
   50.0 4.167 0.167
   70.0 4.132 0.188
  100.0 4.038 0.212
  150.0 4.019 0.236
  200.0 3.956 0.257
  300.0 3.884 0.276
  500.0 3.784 0.297
  700.0 3.713 0.309
 1000.0 3.633 0.311
 1500.0 3.540 0.314
 2000.0 3.433 0.311
 3000.0 3.358 0.305
 5000.0 3.258 0.289
 7000.0 3.193 0.277
10000.0 3.128 0.255
15000.0 3.059 0.240
20000.0 2.984 0.218
30000.0 2.934 0.202
50000.0 2.876 0.182
70000.0 2.838 0.168
100000.0 2.798 0.153
150000.0 2.759 0.139
```

2.B.iii.c. Report Generated by ODRPACK95 (file drive3.out)

```
***************
* ODRPACK95 version 1.00 of 12-27-2005 (REAL (KIND=R8)) *
*** Initial summary for fit by method of ODR ***
--- Problem Size:
          N =
                 23
                              (number with nonzero weight =
                                                              21)
         NQ =
                   2
          M =
                  1
         NP =
                              (number unfixed =
                                                   5)
--- Control Values:
         JOB = 01010
             = ABCDE, where
                     A=0 ==> fit is not a restart.
                     B=1 ==> deltas are initialized by user.
                     C=0 ==> covariance matrix will be computed using
                              derivatives re-evaluated at the solution.
                     D=1 ==> derivatives are estimated by central differences.
                     E=0 \Longrightarrow method is explicit ODR.
      NDIGIT =
                 16
                              (estimated by ODRPACK95)
      TAUFAC =
                  1.00E+00
--- Stopping Criteria:
       SSTOL =
                  1.49E-08
                             (sum of squares stopping tolerance)
      PARTOL =
                   3.67E-11
                             (parameter stopping tolerance)
      MAXIT =
                 50
                              (maximum number of iterations)
--- Initial Weighted Sum of Squares
                                                               1.71064070E+03
        Sum of Squared Weighted Deltas
                                              2.01382943E-04
        Sum of Squared Weighted Epsilons
                                              1.71064050E+03
--- Function Parameter Summary:
      Index
             BETA(K)
                        Fixed
                                  Scale
                                          LOWER(K)
                                                     UPPER(K)
                                                                 Derivative
                                                                  Step Size
        (K)
                       (IFIXB)
                                  (SCLB)
                                                                     (STPB)
         1 4.00E+00
                           NO 2.50E-01 -1.80E+308 1.80E+308
                                                                4.64159E-06
                           NO 5.00E-01 -1.80E+308
         2 2.00E+00
                                                                4.64159E-06
                                                   1.80E+308
         3 7.00E+00
                           NO 1.43E-01 -1.80E+308
                                                    1.80E+308
                                                                4.64159E-06
         4 4.00E-01
                           NO 2.50E+00 -1.80E+308 1.80E+308
                                                                4.64159E-06
         5 5.00E-01
                           NO 2.00E+00 -1.80E+308 1.80E+308
                                                                4.64159E-06
```

⁻⁻⁻ Explanatory Variable and Delta Weight Summary:

```
Index
                X(I,J) DELTA(I,J)
                                                          Weight
                                                                    Derivative
                                      Fixed
                                                 Scale
                                                                     Step Size
                                                                        (STPD)
      (I,J)
                                     (IFIXX)
                                                (SCLD)
                                                            (WD)
              3.000E+01
                          0.000E+00
                                         YES 3.33E-02 1.11E-07
                                                                   4.64159E-06
        1,1
              1.500E+05
                          1.440E+05
                                             6.67E-06 4.44E-15
        N.1
                                          NO
                                                                   4.64159E-06
--- Response Variable and Epsilon Error Weight Summary:
      Index
                Y(I,L)
                            Weight
      (I,L)
                               (WE)
        1,1
              4.220E+00
                         5.596E+02
        N,1
              2.759E+00
                          5.596E+02
        1,2
              1.360E-01
                          8.397E+03
        N,2
              1.390E-01
                         8.397E+03
*** Final summary for fit by method of ODR ***
--- Stopping Conditions:
        INFO =
                   1 ==> sum of squares convergence.
      NITER =
                              (number of iterations)
       NFEV =
                              (number of function evaluations)
                121
       IRANK =
                              (rank deficiency)
      RCOND =
                   8.15E-03
                              (inverse condition number)
       ISTOP =
                              (returned by user from subroutine FCN)
--- Final Weighted Sums of Squares
                                                               4.20538922E-01
        Sum of Squared Weighted Deltas
                                              5.54021897E-04
        Sum of Squared Weighted Epsilons =
                                              4.19984900E-01
--- Residual Standard Deviation
                                                               1.62122431E-01
        Degrees of Freedom
                                             16
--- Estimated BETA(J), J = 1, ..., NP:
                    BETA
                              LOWER
                                        UPPER
                                                  S.D. ___ 95% Confidence ___
                                                                Interval
                                                  BETA
      1 4.37998803E+00 -1.80+308 1.80+308 1.31E-02
                                                         4.35E+00 to 4.41E+00
          2.43330576E+00 -1.80+308 1.80+308 1.30E-02
                                                         2.41E+00 to 2.46E+00
         8.00288459E+00 -1.80+308 1.80+308 1.17E-01
      3
                                                         7.76E+00 to 8.25E+00
      4
          5.10114716E-01 -1.80+308 1.80+308 1.33E-02
                                                         4.82E-01 to 5.38E-01
                                                         4.56E-01 to 5.79E-01
          5.17390233E-01 -1.80+308 1.80+308 2.89E-02
--- Estimated EPSILON(I) and DELTA(I,*), I = 1, ..., N:
```

I	EPSILON(I,1)	<pre>EPSILON(I,2)</pre>	DELTA(I,1)
1	-7.38558795E-03	1.25939187E-03	0.0000000E+00
2	-1.05614733E-03	-1.22846292E-03	0.0000000E+00
3	-2.70863921E-03	-2.14347329E-03	0.0000000E+00
4	4.68593517E-02	-4.25940138E-03	0.0000000E+00
5	8.08102389E-03	-3.47539194E-03	0.0000000E+00
6	1.53882522E-03	3.85293713E-04	3.03694400E+01
7	4.60535703E-03	1.19118896E-03	3.78986750E+01
8	4.50906165E-03	1.23570892E-03	6.22630487E+01
9	-1.00621895E-03	-2.91865042E-04	1.11186980E+02
10	1.05810803E-02	3.27284194E-03	1.15709877E+02
11	6.93622740E-03	2.43482106E-03	2.41436590E+02
12	3.95828022E-05	1.75905019E-05	9.61344532E+02
13	-3.77617796E-03	-2.42907814E-03	1.33029845E+03
14	-5.56734974E-04	-1.70123784E-03	2.07511566E+03
15	2.08263807E-03	-2.23723233E-03	2.90289532E+03
16	-7.50689916E-03	2.16462893E-03	5.21815818E+03
17	-1.56731844E-03	2.03367085E-04	7.54564636E+03
18	-5.93223182E-04	2.72069170E-05	1.74201021E+04
19	1.15260099E-04	-2.42126138E-07	2.42745472E+04
20	2.63641111E-04	5.18510319E-06	3.78492052E+04
21	-3.81011181E-04	-1.03963849E-05	5.53493280E+04
22	-3.36822612E-04	-1.26141392E-05	8.75791432E+04
23	2.87173883E-03	1.41199841E-04	1.29496300E+05

2.B.iv. Example Problem for an Explicit Model with Bound Constraints

The following sample program invokes ODR to find the parameters for the simple frog egg model of [Zwolak et al., 2001]. They use a simple phenomenological model of MPF (mitosis promoting factor) activity in frog egg extracts. In this model MPF activity M remains low for some time and eventually activates at a time t (the timelag) dependent on the total cyclin concentration C (the independent variable). The model has three kinetic parameters (or rates): k_{wee} , k_{25} , and k'_{25} (all of which are constrained with a lower bound of 0). MPF activity M is defined as the ordinary differential equation

$$\frac{dM}{dt} = -k_{wee}M + (k_{25} + k'_{25}M^2)(C - M).$$

The data are in pairs (C,t) where C is the independent variable and t is the dependent variable. MPF is defined as "active" when half the total cyclin (a component of MPF in both active and inactive forms) is in active MPF molecules. This inverse function defining the relationship between the timelag and total cyclin can be defined as

$$t = M^{-1}(C/2; k_{wee}, k_{25}, k'_{25}),$$

where k_{wee} , k_{25} , and k'_{25} are included because M is dependent on these rate constants. The function given to ODRPACK95 becomes

$$f_i(x_i; \beta) \equiv M^{-1}(x_i/2; \beta_1, \beta_2, \beta_3).$$

for $i = 1, \ldots, n$.

The starting values for the model parameters are

$$\beta = (1.1, 3.3, 8.7)^T,$$

 Δ is initialized to zero, the lower bounds are

$$L = (0, 0, 0)^T,$$

and the upper bounds are left to the defaults. The iterations are limited to 20 by setting MAXIT, the reporting facility is set to long reports to \mathcal{L}_{CR} only by setting IPRINT, and all other ODRPACK95 settings are left to their default values. (see §1.G.)

2.B.iv.a. User Supplied Code (file drive4.f)

- C This sample problem comes from Zwolak et al. 2001 (High Performance Computing
- C Symposium, "Estimating rate constants in cell cycle models"). The call to
- C ODRPACK95 is modified from the call the authors make to ODRPACK. This is

```
C done to illustrate the need for bounds. The authors could just have easily
C used the call statement here to solve their problem.
C Curious users are encouraged to remove the bounds in the call statement,
C run the code, and compare the results to the current call statement.
      PROGRAM SAMPLE
      USE REAL_PRECISION
      USE ODRPACK95
      IMPLICIT NONE
      INTEGER :: I
      DOUBLE PRECISION :: C, M, TOUT
      INTERFACE
          SUBROUTINE FCN(N,M,NP,NQ,LDN,LDM,LDNP,BETA,XPLUSD,IFIXB,
              IFIXX,LDIFX,IDEVAL,F,FJACB,FJACD,ISTOP)
         USE REAL_PRECISION
          INTEGER, INTENT(IN) :: IDEVAL,LDIFX,LDM,LDN,LDNP,M,N,NP,NQ
          INTEGER, INTENT(IN) :: IFIXB(NP), IFIXX(LDIFX, M)
         REAL(KIND=R8), INTENT(IN) :: BETA(NP), XPLUSD(LDN,M)
          INTEGER, INTENT(OUT) :: ISTOP
          REAL(KIND=R8), INTENT(OUT) :: F(LDN,NQ),FJACB(LDN,LDNP,NQ),
              FJACD(LDN,LDM,NQ)
          END SUBROUTINE FCN
     END INTERFACE
      REAL(KIND=R8) :: BETA(3) = (/ 1.1E-0_R8, 3.3E+0_R8, 8.7_R8 /)
      OPEN(9,FILE="REPORT4")
      CALL ODR(
         FCN,
         N = 5, M = 1, NP = 3, NQ = 1,
         BETA = BETA,
         Y = RESHAPE((/55.0_R8, 45.0_R8, 40.0_R8, 30.0_R8, 20.0_R8 /),
         X = RESHAPE((/ 0.15_R8, 0.20_R8, 0.25_R8, 0.30_R8, 0.50_R8 /),
              (/5,1/)),
         LOWER = (/ 0.0_R8, 0.0_R8, 0.0_R8 /),
         IPRINT = 2222,
         LUNRPT = 9,
         MAXIT = 20
      CLOSE(9)
C The following code will reproduce the plot in Figure 2 of Zwolak et
C al. 2001.
C
      DO I = 0, 100
C
           C = 0.05+(0.7-0.05)*I/100
С
           TOUT = 1440.0D0
           !CALL MPF(M,C,1.1D-10,3.3D-3,8.7D0,0.0D0,TOUT,C/2)
```

```
CALL MPF(M,C,1.15395968E-02_R8, 2.61676386E-03_R8,
С
С
                    9.23138811E+00_R8,0.0D0,TOUT,C/2)
С
           WRITE(*,*) C, TOUT
С
      END DO
      END PROGRAM
      SUBROUTINE FCN(N,M,NP,NQ,LDN,LDM,LDNP,BETA,XPLUSD,IFIXB,
          IFIXX,LDIFX,IDEVAL,F,FJACB,FJACD,ISTOP)
      USE REAL_PRECISION
      IMPLICIT NONE
      INTEGER, INTENT(IN) :: IDEVAL,LDIFX,LDM,LDN,LDNP,M,N,NP,NQ
      INTEGER, INTENT(IN) :: IFIXB(NP), IFIXX(LDIFX, M)
      REAL(KIND=R8), INTENT(IN) :: BETA(NP), XPLUSD(LDN, M)
      INTEGER, INTENT(OUT) :: ISTOP
     REAL(KIND=R8), INTENT(OUT) :: F(LDN,NQ),FJACB(LDN,LDNP,NQ),
         FJACD(LDN,LDM,NQ)
      ! Local variables
      REAL(KIND=R8) :: MOUT
      INTEGER :: I
      ISTOP = 0
     FJACB(:,:,:) = 0.0E0_R8
      FJACD(:,:,:) = 0.0E0_R8
      IF ( MOD(IDEVAL, 10).GE.1 ) THEN
         DO I = 1, N
              F(I,1) = 1440.0_{R8}
              CALL MPF(MOUT, XPLUSD(I,1), BETA(1), BETA(2), BETA(3), 0.0_R8,
                  F(I,1),XPLUSD(I,1)/2)
          END DO
      END IF
      END SUBROUTINE FCN
С
C MPF
С
C If ROOT is not zero then returns value of time when M==ROOT in TOUT. Else,
C runs until TOUT and returns value in M. If PRINT_EVERY is non-zero then
C the solution is printed every PRINT_EVERY time units or every H (which ever
C is greater).
С
C This routine is not meant to be precise, it is only intended to be good
C enough for providing a working example of ODRPACK95 with bounds. 4th order
C Runge Kutta and linear interpolation are used for numerical integration and
C root finding, respectively.
С
C M - MPF
```

```
C C - Total Cyclin
C KWEE, K25, K25P - Model parameters (BETA(1:3))
С
      SUBROUTINE MPF(M,C,KWEE,K25,K25P,PRINT_EVERY,TOUT,ROOT)
          DOUBLE PRECISION, INTENT(OUT) :: M
          DOUBLE PRECISION, INTENT(IN) :: C, KWEE, K25, K25P,
              PRINT_EVERY, ROOT
          DOUBLE PRECISION, INTENT(INOUT) :: TOUT
          ! Local variables
          DOUBLE PRECISION, PARAMETER :: H = 1.0D-1
          DOUBLE PRECISION :: LAST_PRINT, LAST_M, LAST_T, T
          DOUBLE PRECISION :: K1, K2, K3, K4
          M = 0.0D0
          T = 0.0D0
          IF ( PRINT_EVERY .GT. O.ODO ) THEN
              WRITE(*,*) T, M
          END IF
          DO WHILE ( T .LT. TOUT )
             LAST_T = T
              LAST_M = M
              K1 = H*DMDT(M,C,KWEE,K25,K25P)
              K2 = H*DMDT(M+K1/2,C,KWEE,K25,K25P)
              K3 = H*DMDT(M+K2/2,C,KWEE,K25,K25P)
              K4 = H*DMDT(M+K3,C,KWEE,K25,K25P)
              M = M + (K1 + 2 * K2 + 2 * K3 + K4)/6
              T = T + H
              IF ( T .GE. PRINT_EVERY+LAST_PRINT .AND.
                  PRINT_EVERY .GT. 0.0D0 )
              THEN
                  WRITE(*,*) T, M
                  LAST_PRINT = LAST_PRINT + PRINT_EVERY
              END IF
              IF ( ROOT .GT. O.ODO ) THEN
                  IF ( LAST_M .LE. ROOT .AND. ROOT .LT. M ) THEN
                      TOUT = (T-LAST_T)/(M-LAST_M)*(ROOT-LAST_M)+LAST_T
                      RETURN
                  END IF
              END IF
          END DO
      END SUBROUTINE MPF
C Equation from Zwolak et al. 2001.
      DOUBLE PRECISION FUNCTION DMDT(M,C,KWEE,K25,K25P)
          DOUBLE PRECISION :: M, C, KWEE, K25, K25P
          DMDT = KWEE*M+(K25+K25P*M**2)*(C-M)
```

END FUNCTION DMDT

2.B.iv.b. Report Generated by ODRPACK95 (file drive4.out)

```
****************
* ODRPACK95 version 1.00 of 12-27-2005 (REAL (KIND=R8)) *
******************
*** Initial summary for fit by method of ODR ***
--- Problem Size:
          N =
                             (number with nonzero weight =
                                                             5)
         NQ =
          M =
         NP =
                             (number unfixed =
                                                  3)
--- Control Values:
        JOB = 00000
            = ABCDE, where
                     A=0 ==> fit is not a restart.
                     B=0 ==> deltas are initialized to zero.
                     C=0 ==> covariance matrix will be computed using
                             derivatives re-evaluated at the solution.
                     D=0 ==> derivatives are estimated by forward differences.
                     E=0 \Longrightarrow method is explicit ODR.
                             (estimated by ODRPACK95)
     NDIGIT =
                 16
     TAUFAC =
                  1.00E+00
--- Stopping Criteria:
      SSTOL =
                  1.49E-08
                             (sum of squares stopping tolerance)
     PARTOL =
                  3.67E-11
                             (parameter stopping tolerance)
      MAXIT =
                 20
                             (maximum number of iterations)
--- Initial Weighted Sum of Squares
                                                             7.88051339E+03
       Sum of Squared Weighted Deltas
                                             0.0000000E+00
                                         =
       Sum of Squared Weighted Epsilons
                                             7.88051339E+03
--- Function Parameter Summary:
     Index
             BETA(K)
                                 Scale
                                         LOWER(K)
                                                    UPPER(K)
                                                               Derivative
                        Fixed
                                                                Step Size
       (K)
                                                                   (STPB)
                      (IFIXB)
                                 (SCLB)
         1 1.10E+00
                           NO 1.15E-01 0.00E+000 1.80E+308
                                                              1.00000E-10
         2 3.30E+00
                           NO
                              1.15E-01 0.00E+000
                                                  1.80E+308
                                                              1.00000E-10
         3 8.70E+00
                           NO 1.15E-01 0.00E+000 1.80E+308
                                                              1.00000E-10
--- Explanatory Variable and Delta Weight Summary:
     Index
                X(I,J) DELTA(I,J)
                                                        Weight
                                     Fixed
                                               Scale
                                                                 Derivative
```

--- Residual Standard Deviation

```
Step Size
      (I,J)
                                    (IFIXX)
                                               (SCLD)
                                                           (WD)
                                                                       (STPD)
             1.500E-01
                         0.000E+00
                                         NO 2.00E+00 1.00E+00
                                                                  1.00000E-10
        1,1
        N,1
             5.000E-01
                         0.000E+00
                                         NO
                                            2.00E+00 1.00E+00
                                                                  1.00000E-10
--- Response Variable and Epsilon Error Weight Summary:
      Index
                Y(I,L)
                            Weight
      (I,L)
                              (WE)
             5.500E+01
                         1.000E+00
        1.1
        N,1
             2.000E+01
                         1.000E+00
*** Iteration reports for fit by method of ODR ***
                            Act. Rel.
        Cum.
                                        Pred. Rel.
It. No. FN
                Weighted
                           Sum-of-Sqs
                                        Sum-of-Sqs
                                                                G-N
Niim.
      Evals
              Sum-of-Sqs
                            {\tt Reduction}
                                         Reduction TAU/PNORM Step
   1
         21 7.46931E+03
                           5.2180E-02 6.8748E-03 3.471E-01
                                                                 NO
   3
         37 6.11407E+03
                           1.1907E-01 6.2899E-02 1.281E-02
                                                                 NO
   5
         55 2.72616E+02
                           9.1085E-01 4.7752E-01 1.662E-03
                                                                 NO
         73 1.41168E+00
                           9.8681E-01 9.9999E-01 7.550E-02
                                                                 NO
   9
         84 2.30945E-02
                           4.8180E-01 9.8153E-01 6.620E-02
                                                                 NO
  11
         96 1.75440E-03
                           1.0773E-01 5.8170E-01 1.469E-02
                                                                 NO
  13
        107 8.78907E-04
                           8.6083E-03 7.2672E-02 7.139E-03
  15
        118 8.24618E-04
                           4.7535E-04
                                        3.7037E-03 3.321E-03
                                                                 NO
  17
        129 8.22040E-04
                           4.7114E-05
                                        2.4203E-04 1.604E-03
                                                                 NO
  19
        140 8.21853E-04
                           2.2162E-05
                                       3.4216E-05 1.574E-03
                                                                 NO
*** Final summary for fit by method of ODR ***
--- Stopping Conditions:
        INFO =
                  4 ==> iteration limit reached.
       NITER =
                 20
                             (number of iterations)
       NFEV =
                             (number of function evaluations)
                149
                   0
       IRANK =
                             (rank deficiency)
      RCOND =
                  1.28E-06 (inverse condition number)
       ISTOP =
                  0
                             (returned by user from subroutine FCN)
--- Final Weighted Sums of Squares
                                                              8.21833725E-04
        Sum of Squared Weighted Deltas
                                             8.21734527E-04
        Sum of Squared Weighted Epsilons =
                                             9.91982003E-08
```

2.02710844E-02

```
Degrees of Freedom
--- Estimated BETA(J), J = 1, ..., NP:
                    BETA
                              LOWER
                                        UPPER
                                                    S.D. ___ 95% Confidence ___
                                                                Interval
                                                    BETA
      1 1.37157532E-02 0.00E+00 1.80+308 6.63E-02 -2.72E-01 to 2.99E-01
      2 2.02887855E-03 0.00E+00 1.80+308 1.74E-02 -7.29E-02 to 7.69E-02
      3 \qquad 1.16507107E+01 \qquad 0.00E+00 \quad 1.80+308 \quad 9.20E+01 \quad -3.84E+02 \ \text{to} \quad 4.07E+02
--- Estimated EPSILON(I) and DELTA(I,*), I = 1, ..., N:
        Ι
          EPSILON(I,1)
                             DELTA(I,1)
        1 7.15956516E-05 4.90397616E-03
        2 4.74369190E-05 1.20102885E-04
        3 -8.72587955E-05 -1.95283255E-02
```

4 2.70223053E-04 1.97270726E-02 5 -1.05770536E-04 -5.21135562E-03

3. When the Model Is Very Time Consuming

ODRPACK95 executes user supplied subroutine FCN not only to compute the initial sum of the squared errors $S(\beta,\delta)$ and to obtain function and derivative values within its main iterative procedure, but also when setting the default value for the number of good digits in the function results, when performing derivative checking, and when constructing the covariance matrix and standard deviations of the estimated parameters $\hat{\beta}$. When the time required for finding the solution is dominated by the evaluation of FCN, the user will want to make judicious use of these options in light of their "cost." Let \tilde{p} be the number of unfixed parameters β , and let $\varphi=1$ if the fit is by orthogonal distance regression and $\varphi=0$ if the fit is by ordinary least squares. Then the number of times the function and derivatives are evaluated in each of these instances is summarized as follows:

Computation	Function	Derivative	Controlling
	Evaluations	Evaluations ¹	Variable
• Initial $S(\beta, \delta)$:	1	0	
• Per Iteration:	≥ 1	1	
• Default number of			
good digits in function results:	4	0	NDIGIT
• Derivative checking:	$\geq q(\tilde{p} + \varphi m)$	1	J0B
• Default covariance matrix:	0	1	J0B

Users with a very time consuming subroutine FCN should also be aware of two of ODR-PACK95's options that are specifically designed for such problems. The most important of these is the restart facility. The other is the option of constructing the covariance matrix without recomputing the derivative matrices at the solution. This second option is discussed in §2.A.ii, under the description of subroutine argument JOB, and also in §4.B. The remainder of this section describes how ODRPACK95's restart facility can be used

¹A forward finite difference approximation to the derivative requires $q(\tilde{p} + \varphi m)$ function evaluations, and a central finite difference approximation requires $2q(\tilde{p} + \varphi m)$ function evaluations. (See §4.A.)

to minimize the risk of losing important results because system imposed time limits are reached before the solution is found.

The restart facility enables the user to step through the solution procedure one or more iterations at a time without incurring any additional function or derivative evaluations over what would be required if the procedure were allowed to run to convergence. Figure 3.1 shows an example of how the restart facility can be employed. This example allows up to a total of 30 iterations, and writes the contents of arrays BETA, WORK and IWORK to a file between every iteration, alternating between two files. This minimizes the chance of losing significant amounts of important information due to system imposed limits: if such a limit is reached before convergence, arrays BETA, WORK and IWORK can be restored using the saved data and the computations restarted. In this example, the initial computation report is only generated at the first iteration, while the final computation report is generated after every iteration. The options selected include constructing the covariance matrix using the derivative matrices from the last iteration, and thus no additional calls to subroutine FCN are incurred in order to provide the standard deviations of the parameters printed in each of the reports.

Users with very time consuming problems should be aware that, depending on which options are selected, ODRPACK95 will make at least one and possibly more calls to subroutine FCN before attempting to generate any computation reports. Also, on many systems the output generated by a program is not written directly in a file but rather is stored in a "buffer" until the buffer is full, and is only written to the file at that point. If a run is aborted prematurely, either by the user or because a system imposed limit is reached, then the content of these buffers might not be emptied into the files associated with them. Thus, the files associated with the logical units specified by arguments LUNERR and LUNRPT might not include all information actually generated by ODRPACK95 at the time it stopped. When the user is not getting the expected reports from ODRPACK95, it may be necessary to have ODRPACK95 generate reports directly to "standard output," which is usually not buffered, in order to determine exactly where the computations are stopping. (See §2.A.ii, subroutine arguments IPRINT, LUNERR and LUNRPT.

100 CONTINUE

Figure 3.1: Using ODRPACK95's Restart Facility c set up files to save computations for future restarts lun1 = 11OPEN (unit=lun1,file='save1.dat') lun2 = 12OPEN (unit=lun2,file='save2.dat') c set the maximum number of iterations for each call to ODRPACK to one c so results can be stored between iterations maxit = 1c set argument appropriately, making sure for first iteration that fit is not a restart and covariance matrix is constructed without recomputing derivatives job = 00100c set iprint to indicate a long initial report, a short iteration report, and С a long final report С iprint = 2112c step through up to 30 iterations DO 100 niter = 1, 30CALL odr(fcn, ..., work=work, iwork=iwork, info=info, job=job) c save the contents of beta, work and iwork for future reference IF (mod(niter,2).eq.1) THEN lun = lun1ELSE lun = lun2END IF OPEN (UNIT=lun) WRITE (lun,*) (beta(k),k=1,np) WRITE (lun,*) (work(i),i=1,lwork) WRITE (lun,*) (iwork(i),i=1,liwork) CLOSE (UNIT=lun) IF (info.ge.10000 .or. mod(info,10).le.3) then c stop because either a fatal error was detected, or the problem converged stop ELSE. c set job to indicate the next iteration is a restart and c set iprint to suppress the initial report for future iterations. job = 10100iprint = 0112END IF

4. Computational Details

4.A. Computing the Jacobian Matrices

As was noted in §1.A, the matrices of first partial derivatives, i.e., the Jacobian matrices

$$\frac{\partial f_{il}(x_i + \delta_i; \beta)}{\partial \beta_k}, \quad i = 1, \dots, n, \quad k = 1, \dots, p, \quad \&l = 1, \dots, q,
\frac{\partial f_{il}(x_i + \delta_i; \beta)}{\partial \Delta_{ij}}, \quad i = 1, \dots, n, \quad j = 1, \dots, m, \quad \&l = 1, \dots, q,$$
(4.1)

are required at every iteration. These can be provided by the user as described for subroutine argument FCN in §2.A.ii, or can be approximated automatically by ODRPACK95. User supplied derivatives are generally either "hand coded" as is done in the example program shown in §2.B.i, or are the product of an "automatic differentiation" tool. ODRPACK95's approximations are formed using either forward or central finite differences.

4.A.i. "Hand Coded" Derivatives

Hand coded derivatives are those produced by the user without the aid of a differentiation tool. Because coding errors are a common problem with hand coded derivatives, ODRPACK95 has an option to check the validity of the user supplied derivative code by comparing its results to finite difference values for the derivative. The derivative checking procedure examines the unfixed variables at only one row of the Jacobian matrix, and is therefore quite efficient. Checking only one row is reasonable for regression models since the same code is frequently used to compute the model function and derivatives for each row, as is the case for each of the examples shown in §2.B.

When the value of the user supplied derivative disagrees with the corresponding finite difference value, the checking procedure attempts to determine whether the disagreement is due to an error in the user's code, or is due to the inaccuracy of the finite difference

approximation. The checking procedure generates an error report when one or more of the derivatives are found to be questionable. This information is also returned to the user in subroutine argument IWORK. (See §5.B.)

Questionable derivatives can occur when the derivative is exactly zero or when the numerical derivative used in the checking procedure is believed to be inaccurate because of the properties of the function. Zero valued derivatives are questionable because they could indicate that the initial values of the function parameters β might be hiding an error in the derivative, such as could occur if the initial value of one of the parameters was zero. Users should examine the ODRPACK95 error reports, or the encoded values in subroutine argument IWORK as described in §5.B, to determine the cause of the questionable results, and then examine subroutine FCN to insure that there is not an error in the user supplied derivatives that could be adversely affecting the least squares results.

4.A.ii. Automatic Differentiation

Automatic differentiation tools produce code to calculate a function's derivatives directly from the code used to compute the function values. Such tools enable the user to generate the derivatives required by ODRPACK95 without the tedium and errors associated with hand coded derivatives. An overview of automatic differentiation is presented in [Griewank, 1989], and a survey of automatic differentiation software is provided in [Juedes, 1991]. We have found tools such as ADIFOR [Bischof et al., 1991] and DAPRE [Stephens and Pryce, 1991], which are precompilers that transform a Fortran subroutine that evaluates the function into a Fortran subroutine that evaluates both the function and its derivatives, especially suitable for use with ODRPACK95.

Currently, most differentiation tools, including ADIFOR and DAPRE, generate code to evaluate the function and derivative values simultaneously. Least squares procedures, however, need the derivatives only after determining that a satisfactory new point has been found, and this determination requires at least one and possibly more function evaluations. Thus, when using a differentiation tool, one has two choices: either the function and derivatives can be always evaluated together using the code generated by the differentiation tool; or the hand coded function can be evaluated by itself until a satisfactory new point has been found, at which time the derivative code generated by the differentiation tool code can be evaluated. The first choice has the drawback that sometimes the computed derivative values will not be used. If the second option is selected, the function values produced by the differentiation tool generated code are used only for the evaluation of the Jacobian matrices and not within the least squares procedure.

For the differentiation tools and problems examined by the authors, the time required to evaluate the derivative and function together using code generated by automatic differentiation is frequently significantly more than that required to evaluate only the hand coded function. We thus believe that in most cases it will be more cost effective for users to employ the second of the two choices mentioned above. Users must also be aware that ODRPACK95 never asks that both the function and its derivatives be computed in a single call to subroutine FCN, and that it is possible that an invocation of FCN for evaluating the derivative will not be *immediately* preceded with a call to FCN to evaluate the function for the same parameter values. Thus, if the first of the two options is employed, the user will need to construct a mechanism for saving the computed derivatives until ODRPACK95 actually requests them, possibly using the Fortran COMMON facility, and also a mechanism for determining whether the saved derivative values were in fact those evaluated at the selected parameter values.

4.A.iii. Finite Difference Derivatives

Finite difference derivatives are automatically constructed by ODRPACK95 to approximate the Jacobian matrices when the user does not supply code within subroutine FCN to compute them. Either forward or central finite differences can be employed for the approximation. (See §2.A.ii, subroutine argument JOB.) A central finite difference derivative gives a more accurate approximation than the corresponding forward finite difference derivative, but at the expense of an additional call to subroutine FCN for each partial derivative computed. The interested reader is referred to [Dennis and Schnabel, 1983] and [Gill et al., 1981] for a more complete discussion of forward and central finite difference approximations.

4.A.iii.a. Forward Finite Difference Derivatives

The forward finite difference derivative with respect to β for response l of observation i is computed using

$$\frac{f_{il}(x_i + \delta_i; \beta + \tilde{h}_{\beta_k} u_k) - f_{il}(x_i + \delta_i; \beta)}{\tilde{h}_{\beta_k}},$$

 $i=1,\ldots,n,\ k=1,\ldots,p,$ and $l=1,\ldots,q,$ where u_k is the kth unit vector, i.e., the kth column of a $p\times p$ identity matrix, and where \tilde{h}_{β_k} is the finite difference step size,

$$\tilde{h}_{\beta_k} = h_{\beta_k} |\beta_k|, \qquad k = 1, \dots, p, \tag{4.2}$$

with h_{β_k} the *relative* step size for parameter β_k specified by subroutine argument STPB. (See §2.A.ii.) The default value for the relative step for a forward finite difference derivative is

$$h = \frac{1}{100} 10^{-\psi/2} ,$$

where ψ indicates the number of good digits in the results of the user supplied subroutine FCN. (See §2.A.ii, subroutine argument NDIGIT.) This default value is selected based on empirical evidence that indicates it generally outperforms the commonly recommended value $h = 10^{(-\psi/2)}$. (See, e.g., [Dennis and Schnabel, 1983].) Procedures for selecting near optimal relative step sizes are discussed in [Gill et al., 1981] and [Schnabel, 1982].)

The step \tilde{h}_{β_k} must be large enough so that approximately half of the good digits of $f_{il}(x_i + \delta_i; \beta + \tilde{h}_{\beta_k}u_k)$ and $f_{il}(x_i + \delta_i; \beta)$ will be the same. The forward finite difference approximation to the derivative can then be expected to have roughly half the number of good digits as are in the computed value of $f_{il}(x_i + \delta_i; \beta)$. When the computation of $f_{il}(x_i + \delta_i; \beta)$ has sufficient precision, then forward finite difference derivatives will cause very little change in the results from those that would be obtained using hand coded or automatic differentiation derivatives.

The forward finite difference derivatives with respect to Δ are formed analogously to those with respect to β . (See §2.A.ii, subroutine argument STPD, for specification of the relative stepsize.)

4.A.iii.b. Central Finite Difference Derivatives

When the user suspects that the forward finite difference approximation will not provide sufficient precision, then a central finite difference approximation can be used. (See §2.A.ii, subroutine argument JOB.) The central finite difference approximation to the partial derivative with respect to β_k for response l of observation i is given by

$$\frac{f_{il}(x_i + \delta_i; \beta + \tilde{h}_k u_k) - f_{il}(x_i + \delta_i; \beta - \tilde{h}_k u_k)}{\tilde{h}_k} ,$$

i = 1, ..., n, k = 1, ..., p, and l = 1, ..., q. The step \tilde{h}_k is formed as in (4.2), where the default value for the relative step for a central finite difference derivative is

$$h = 10^{-\psi/3}$$
.

The central finite difference derivatives with respect to Δ are again formed analogously.

4.B. Covariance Matrix

The linearized confidence regions and intervals for the unknowns β and Δ estimated by orthogonal distance regression are the same as the linearized regions and intervals that would be obtained if the orthogonal distance regression problem were solved as a p + nm parameter nonlinear ordinary least squares problem. The confidence intervals are meaningful only for unbounded parameters, but are calculated and reported just the same for

bounded parameters. Parameters far from their bounds can still retain some useful information as the probability that the actual parameter is at or beyond the bound (according to the probability distribution for that parameter) becomes small. Even parameters on their bounds have useful information in the confidence intervals if one were to ignore the bounds, albeit the user likely does not wish to ignore the bounds he or she chose. If we express the orthogonal distance regression problem defined by (1.8) or (1.9) as such a nonlinear ordinary least squares problem with nq+nm observations and p+nm unknowns, and we designate the unknowns of this ordinary least squares problem as $\eta^{\rm T}=(\beta^{\rm T},\delta_1^{\rm T},\ldots,\delta_n^{\rm T})$, then the sum of squares to be minimized is

$$S(\eta) \equiv G(\eta)^{\mathrm{T}} \Omega G(\eta)$$

where $G(\eta)$ is the vector valued function whose ith "element" is defined by

$$g_i(\eta) = \begin{cases} f_i(x_i + \delta_i; \beta) - y_i & i = 1, \dots, n, \\ \delta_{i-n} & i = n+1, \dots, 2n, \end{cases}$$

and $\Omega \in \Re^{(nq+nm)\times(nq+nm)}$ is the block diagonal weighting matrix given by

The ordinary least squares representation of (1.8) or (1.9) is thus

$$\min_{\eta} S(\eta) = \min_{\eta} \sum_{i=1}^{2n} g_i(\eta)^{\mathrm{T}} \Omega_{ii} g_i(\eta)$$
(4.3)

where Ω_{ii} denotes the (i, i)th "element" of Ω .

Let $G'(\hat{\eta}) \in \Re^{(nq+nm)\times(p+nm)}$ denote the Jacobian matrix with (ν, k) th element equal to $\partial g_{\nu}(\eta)/\partial \eta_{k}$ evaluated at $\hat{\eta}$. If we assume that $G'(\hat{\eta})$ and Ω are full rank, so that $[G'(\hat{\eta})^{\mathrm{T}}\Omega G'(\hat{\eta})]$ is nonsingular, then the linearized covariance matrix for the estimators $\hat{\eta}$ is the $(p+nm)\times(p+nm)$ matrix

$$\hat{V} = \hat{\sigma}^2 [G'(\hat{\eta})^{\mathrm{T}} \Omega G'(\hat{\eta})]^{-1},$$

where $\hat{\sigma} = S(\hat{\eta})/\mu = S(\hat{\beta}, \hat{\delta})/\mu$ is the estimated residual variance with μ degrees of freedom. (The degrees of freedom is the number of observations with nonzero weights minus the

number of parameters actually being estimated, i.e., $\mu = \tilde{n} - \tilde{p}$.) This covariance matrix \hat{V} can be partitioned

$$\hat{V} = egin{bmatrix} \hat{V}_eta & \hat{V}_{eta\delta} \ \hat{V}_{\deltaeta} & \hat{V}_{\delta} \end{bmatrix}$$

where $\hat{V}_{\beta} \in \Re^{p \times p}$ is the covariance matrix for the estimators $\hat{\beta}$, $\hat{V}_{\delta} \in \Re^{nm \times nm}$ is the covariance matrix for the estimators $\hat{\Delta}$, and $\hat{V}_{\beta\delta} = \hat{V}_{\delta\beta}^{\mathrm{T}} \in \Re^{p \times nm}$ gives covariances between β and Δ . It is the covariance matrix \hat{V}_{β} of the estimators $\hat{\beta}$ that is automatically provided by ODRPACK95. The actual computational technique used by ODRPACK95 to compute \hat{V}_{β} is described in detail in [Boggs and Rogers, 1990b].

By default, ODRPACK95 will recompute the Jacobian matrices at the final solution before constructing the covariance matrix. However, ODRPACK95 also provides the option of constructing the covariance matrix using the Jacobian matrices from the last iteration. (See §2.A.ii, subroutine argument JOB.) The option of using the Jacobian matrices from the last iteration to construct the covariance matrix is especially useful when the evaluation of user supplied subroutine FCN is very time consuming. Assuming that the algorithm has actually converged, using the Jacobian matrices from the last iteration should give essentially the same covariance matrix as that which would be obtained using the Jacobian matrices recomputed at the solution. Once the user confirms that the solution is satisfactory, the covariance matrix can easily be computed at the actual solution by calling ODRPACK95 with the final values of β and Δ as input, and with argument MAXIT = 0 and the third digit of argument JOB set to 0.

The standard deviations, $\hat{\sigma}_{\beta}$, of the function parameters $\hat{\beta}$ listed in the ODRPACK95 final report are the square roots of the diagonal elements of \hat{V}_{β} , i.e.,

$$\hat{\sigma}_{\beta_k} = \hat{V}_{\beta}^{1/2}(k,k) .$$

The 95% confidence intervals are computed using

$$\hat{\beta}_k \pm t_{.975,\mu} \hat{\sigma}_{\beta_k}$$

where $t_{.975,\mu}$ is the appropriate value for constructing a two-sided 95% confidence interval using the Student's t value for μ degrees of freedom. When $\mu > 20$, $t_{.975,\mu} \approx 2$; when $\mu < 5$, $t_{.975,\mu} > 2.5$.

If necessary, the full covariance matrix \hat{V} for all of the estimators $\hat{\eta}$ can be computed using the equations given in [Boggs and Rogers, 1990b], or can be "automatically" obtained from most ordinary least squares software (including ODRPACK95) by solving the orthogonal distance regression problem as the ordinary least squares problem defined by (4.3).

Note that for nonlinear ordinary least squares, the linearized confidence regions and intervals are asymptotically correct as $n \to \infty$ [Jennrich, 1969]. For the orthogonal distance regression problem, they have been shown to be asymptotically correct as $\sigma^* \to 0$ [Fuller, 1987]. The difference between the conditions of asymptotic correctness can be explained by the fact that, as the number of observations increases in the orthogonal distance regression problem one does not obtain additional information for Δ . Note also that \hat{V} is dependent upon the weight matrix Ω , which must be assumed to be correct, and cannot be confirmed from the orthogonal distance regression results. Errors in the values of w_{ϵ_i} and w_{δ_i} that form Ω will have an adverse affect on the accuracy of \hat{V} and its component parts. The results of a Monte Carlo experiment examining the accuracy of the linearized confidence intervals for four different measurement error models is presented in [Boggs and Rogers, 1990b]. Those results indicate that the confidence regions and intervals for Δ are not as accurate as those for β .

Despite its potential inaccuracy, the covariance matrix is frequently used to construct confidence regions and intervals for both nonlinear ordinary least squares and measurement error models because the resulting regions and intervals are inexpensive to compute, often adequate, and familiar to practitioners. Caution must be exercised when using such regions and intervals, however, since the validity of the approximation will depend on the nonlinearity of the model, the variance and distribution of the errors, and the data itself. When more reliable intervals and regions are required, other more accurate methods should be used. (See, e.g., [Bates and Watts, 1988], [Donaldson and Schnabel, 1987], and [Efron, 1985].)

4.C. Condition Number

For a *linear* least squares system of equations

$$A\beta =_2 Y , \qquad (4.4)$$

with $A \in \Re^{n \times p}$ assumed to have full column rank and $=_2$ meaning "equals in the least squares sense," the *condition number* of A is defined as

$$\kappa(A) \equiv ||A|| ||A^{\dagger}|| ,$$

where $A^{\dagger} \equiv (A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}$ is known as the pseudo inverse of A. From this definition, we can show that $\kappa(A) \geq 1$, and that $\kappa(A) \to \infty$ as the columns of A become dependent.

Using $\kappa(A)$, bounds can be constructed on the relative error in the true least squares solution $\beta^* = A^{\dagger}Y$ due to a perturbation E_Y of Y, or to a perturbation E_A of A. While the actual bounds, discussed in detail in [Stewart, 1973], are quite complicated, we can roughly approximate them as follows. Let $\bar{\beta}_Y$ and $\bar{\beta}_A$ denote the solutions to the perturbed

systems, $\bar{\beta}_Y = A^{\dagger}(Y + E_Y)$ and $\bar{\beta}_A = (A + E_A)^{\dagger}Y$, respectively, and let $R = A\beta^* - Y$ denote the residual at β^* . Then

$$\frac{\|\beta^* - \bar{\beta}_Y\|}{\|\beta^*\|} \lesssim \kappa(A) \frac{\|E_Y\|}{\|Y\|} \tag{4.5}$$

and

$$\frac{\|\beta^* - \bar{\beta}_A\|}{\|\beta^*\|} \lesssim \left(\kappa(A) + \kappa^2(A) \frac{\|R\|}{\|Y\|}\right) \frac{\|E_A\|}{\|A\|}. \tag{4.6}$$

For (4.5) we thus observe that the relative error in the solution could be as much as $\kappa(A)$ larger than the relative error in Y. Similarly, for (4.6) we observe that if the residual R is small, then the relative error in A is multiplied by $\kappa(A)$, whereas if the residual is not small, then the second term in (4.6) will dominate and the relative error in A could be multiplied by as much as $\kappa^2(A)$.

If we express the condition number $\kappa(A)$ as a power of 10, i.e., $\kappa(A) = 10^{\mathcal{K}}$, then (4.5) implies that the elements of the least squares solution could have \mathcal{K} fewer significant digits of accuracy than the elements of Y, while (4.6) implies that the least squares solution could have as many as $2\mathcal{K}$ fewer significant digits of accuracy than the elements of A. Therefore, $\kappa(A)$ sufficiently large could indicate that the least squares solution has no significant digits. For the condition number to provide a meaningful estimate of ill-conditioning, however, the user's problem must be formulated so that the errors in the columns of A are equilibrated. This requires an intimate knowledge of the problem, and cannot be done as part of ODRPACK95's automatic scaling procedure. If this equilibration has not been done by the user, the condition number returned by ODRPACK95 may not reflect the true conditioning of the problem.

ODRPACK95 returns an approximation to the inverse of the condition number $\kappa(M_{\delta}J_{\beta})$, where J_{β} is the Jacobian matrix of partial derivatives with respect to β , and M_{δ} is a block diagonal matrix formed using the partial derivatives with respect to Δ as described in [Boggs et al., 1987]. The matrix $M_{\delta}J_{\beta}$ is used by ODRPACK95 to form a linearization of the user's problem at the solution, and can thus be substituted for the matrix A in in the above discussions. The approximate inverse condition number is calculated as described in the Linpack Users' Guide [Dongarra et al., 1980].

4.D. Scaling Algorithms

Poorly scaled problems, i.e., problems in which the unknowns β and Δ vary over several orders of magnitude, can cause difficulty for least squares procedures. ODRPACK95's scaling algorithms (discussed below) attempt to overcome these difficulties automatically, although it is preferable for the user to choose the units of β and Δ so that their estimated

values will have roughly the same magnitude. (See, e.g., [Dennis and Schnabel, 1983].) When the variables have roughly the same magnitude, the ODRPACK95 scaling algorithm will select scale values that are roughly equal, and the resulting computations will be the same (except for the effect of finite precision arithmetic) as an unscaled analysis, i.e., an analysis in which all of the scale values are set to one. If the user does not do this, the ODRPACK95 scaling algorithm will select varying scale values. This will not change the optimal solution, but it may affect the number of iterations required, or, in some cases, whether the algorithm is or is not successful.

The scale value times the corresponding absolute value of the expected solution should be approximately one. For example, if $\beta_{\rm K}$ is expected to be of order 10^{10} then SCALE $\{\beta_{\rm K}\}$ should be set to 10^{-10} , while if $\beta_{\rm K}$ is expected to lie between -10^{-2} and -10^{-4} then SCALE $\{\beta_{\rm K}\}$ should be set to 10^3 . Scaling should not be confused with the weighting matrices w_{ϵ_i} and w_{δ_i} specified by subroutine arguments WE and WD. (See also §1.A and §1.F.)

4.D.i. Scaling β

ODRPACK95 chooses the default scale values for the estimated values of β as follows.

If some of the values of β are nonzero then

 $SCALE\{\beta_K\} = 1$

```
Let \beta_{\max} = the largest nonzero absolute value in \beta, and Let \beta_{\min} = the smallest nonzero absolute value in \beta. For K = 1, \ldots, p do

If \beta_K = 0 then

SCALE\{\beta_K\} = 10/\beta_{\min}
Else if \log(\beta_{\max}) - \log(\beta_{\min}) > 1 then

SCALE\{\beta_K\} = 1/|\beta_K|
Else

SCALE\{\beta_K\} = 1/|\beta_{\max}|
Else if all of the values of \beta are zero then

For K = 1, \ldots, p do
```

Users may also substitute their own scaling values for β . (See §2.A.ii, subroutine argument SCLB.)

4.D.ii. Scaling Δ

ODRPACK95 chooses default scale values for the estimated errors Δ_{IJ} in the explanatory variables as follows.

For J = 1,...,
$$m$$
 do If some values in column J of X are nonzero then Let X_{\max} = the largest nonzero absolute value in column J Let X_{\min} = the smallest nonzero absolute value in column J For I = 1,..., n do If $X_{\text{IJ}} = 0$ then
$$\text{SCALE}\{\Delta_{\text{IJ}}\} = 10/X_{\min}$$
 Else if $\log(X_{\max}) - \log(X_{\min}) > 1$ then
$$\text{SCALE}\{\Delta_{\text{IJ}}\} = 1/|X_{\text{IJ}}|$$
 Else
$$\text{SCALE}\{\Delta_{\text{IJ}}\} = 1/X_{\max}$$
 Else if all values in column J of X are zero then For I = 1,..., n do

 $SCALE\{\Delta_{IJ}\}=1$

Users may also substitute their own scaling values for Δ . (See §2.A.ii, subroutine argument SCLD.)

5. Work Vectors

5.A. Extracting Information from Vector WORK

Upon return from a call to ODRPACK95, array WORK contains values that may be of interest to the user. To extract information from WORK, the following declaration statement must be added to the user's program:

LOGICAL

- + ISODR
- INTEGER
- + DELTAI, EPSI, XPLUSI, FNI, SDI, VCVI,
- + RVARI, WSSI, WSSDEI, WSSEPI, RCONDI, ETAI,
- + OLMAVI, TAUI, ALPHAI, ACTRSI, PNORMI, RNORSI, PRERSI,
- + PARTLI, SSTOLI, TAUFCI, EPSMAI,
- + BETAOI, BETACI, BETASI, BETANI, SI, SSI, SSFI, QRAUXI, UI,
- + FSI,FJACBI,WE1I,DIFFI,
- + DELTSI, DELTNI, TI, TTI, OMEGAI, FJACDI,
- + WRK1I, WRK2I, WRK3I, WRK4I, WRK5I, WRK6I, WRK7I,
- + LOWERI, UPPERI,
- + LWKMN

where DELTAI through WRK7I are variables that indicate the starting locations within WORK of the stored values, and LWKMN is the minimum acceptable length of array WORK.

The appropriate values of DELTAI through UPPERI are obtained by invoking subroutine DWINF. To invoke the subroutine, use

CALL DWINF

- + (N,M,NP,NQ,LDWE,LD2WE,ISODR,
- + DELTAI, EPSI, XPLUSI, FNI, SDI, VCVI,
- + RVARI, WSSI, WSSDEI, WSSEPI, RCONDI, ETAI,
- + OLMAVI, TAUI, ALPHAI, ACTRSI, PNORMI, RNORSI, PRERSI,
- + PARTLI, SSTOLI, TAUFCI, EPSMAI,
- + BETAOI, BETACI, BETASI, BETANI, SI, SSI, SSFI, QRAUXI, UI,
- + FSI, FJACBI, WE1I, DIFFI,
- + DELTSI, DELTNI, TI, TTI, OMEGAI, FJACDI,
- + WRK1I, WRK2I, WRK3I, WRK4I, WRK5I, WRK6I, WRK7I,
- + LOWERI, UPPERI,
- + LWKMN).

The variables N, M, NP, NQ, LDWE, and LD2WE must be input to DWINF with exactly the same values as were used in the original call to ODRPACK95, and ISODR must be input set to *true* if the fit was by orthogonal distance regression, and be input set to *false* if the fit was by ordinary least squares. Note that when ISODR is false, the locations that are specified by DELTASI through WRK1I are the same as the location specified by DELTAI.

In the following descriptions of the information returned in WORK, \triangleright indicates values that are most likely to be of interest.

 \triangleright WORK(DELTAI) is the first element of an $n \times m$ array DELTA containing the estimated errors $\hat{\Delta}$ in the explanatory variables at the solution, where

WORK(DELTAI-1+I+(J-1)*N) = DELTA(I,J) =
$$\hat{\Delta}_{\mathrm{IJ}}$$
 for I = 1,...,n, and J = 1,...,m.
DELTAI = 1.

WORK(EPSI) is the first element of an $n \times q$ array EPS containing the estimated errors \hat{E} in the response variables at the solution, where

WORK(EPSI-1+I+(L-1)*N) = EPS(I,L) =
$$\hat{E}_{\rm IL}$$
 for I = 1,...,n, and L = 1,...,q. EPSI = $nm+1$.

 \triangleright WORK(XPLUSI) is the first element of an $n \times m$ array XPLUSD containing the final estimates of the explanatory variable \hat{X} , where

WORK(XPLUSI-1+I+(J-1)*N) = XPLUSD(I,J) =
$$\hat{X}_{\text{IJ}} = X_{\text{IJ}} + \hat{\Delta}_{\text{IJ}}$$
 for I = 1,...,n, and J = 1,...,m.

$$\mathtt{XPLUSI} = nm + nq + 1 \ .$$

 \triangleright WORK(FNI) is the first element of an $n \times q$ array FN containing the final estimates of the response variable \hat{Y} , where

WORK(FNI-1+I+(L-1)*N) = FN(I,L) =
$$\hat{Y}_{\rm IL} = f_{\rm IL}(x_{\rm I} + \hat{\delta}_{\rm I}; \hat{\beta})$$
 for I = 1,...,n, and L = 1,...,q.
FNI = $2nm + nq + 1$.

 \triangleright WORK(SDI) is the first element of a $p \times 1$ array SD containing the standard deviations $\hat{\sigma}_{\beta_{\rm K}}$ of the function parameters β , i.e., the square roots of the diagonal entries of the covariance matrix, where

WORK(SDI-1+K) = SD(K) =
$$\hat{V}_{eta}^{1/2}(exttt{K}, exttt{K}) = \hat{\sigma}_{eta_{ exttt{K}}}$$

for $K=1,\ldots,p$. The standard deviations are only computed when the third digit of JOB is less than or equal to 1. (See §2.A.ii, subroutine argument JOB, and §4.B.) Rows of SD corresponding to fixed elements of β , and to elements dropped because they induced rank deficiency, are set to zero.

$$\mathtt{SDI} = 2nm + 2nq + 1 \; .$$

ightharpoonup WORK(VCVI) is the first element of a $p \times p$ array VCV containing the values of the covariance matrix of the parameters β prior to scaling by the residual variance, where

$$\texttt{WORK}(\texttt{VCVI-1+I+(J-1)*(NP)}) = \texttt{VCV(I,J)} = \hat{\sigma}^{-2} \hat{V}_{\beta}(\texttt{I,J})$$

for $I=1,\ldots,p$ and $J=1,\ldots,p$. The covariance matrix is only computed when the third digit of JOB is less than or equal to 1. (See §2.A.ii, subroutine argument JOB, and §4.B.) Rows and columns of VCV corresponding to fixed elements of β , and to elements dropped because they induced rank deficiency, are set to zero.

$$\mathtt{VCVI} = 2nm + 2nq + p + 1 \ .$$

- $\mbox{WORK(RVARI)} \ \mbox{is the estimated residual variance} \ \hat{\sigma}^2 = S(\hat{\beta},\hat{\delta})/\mu. \ \mbox{(See §4.B.)}$ $\mbox{RVARI} = 2nm + 2nq + p + p^2 + 1 \ .$
- $\text{WORK(WSSI) is } S(\hat{\beta}, \hat{\delta}). \text{ (See §1.A.)}$ $\text{WSSI} = 2nm + 2nq + p + p^2 + 2 \text{ .}$

- > WORK(WSSDEI) is $S_\delta(\hat{\beta},\hat{\delta})$. (See §1.A.) ${\tt WSSDEI}=2nm+2nq+p+p^2+3\ .$
- > WORK(WSSEPI) is $S_{\epsilon}(\hat{\beta},\hat{\delta})$. (See §1.A.) ${\tt WSSEPI} = 2nm + 2nq + p + p^2 + 4 \ .$
- ightharpoonup WORK(RCONDI) is $\kappa^{-1}(M_{\delta}J_{\beta})$ at the solution. (See §4.C.) $\text{RCONDI} = 2nm + 2nq + p + p^2 + 5 \ .$
- WORK(ETAI) is the relative error in the function values computed within FCN. ${\tt ETAI} = 2nm + 2nq + p + p^2 + 6 \ .$
 - WORK(OLMAVI) is the average number of steps required to obtain the Levenberg-Marquardt parameter.
 - WORK(TAUI) is the trust region radius at the time the computations stopped.
 - WORK(ALPHAI) is the Levenberg-Marquardt parameter at the time the computations stopped.
 - WORK(ACTRSI) is the actual relative reduction in $S(\beta, \delta)$ from the last iteration.
 - WORK(PNROMI) is the norm of the scaled values of $\hat{\beta}$ and $\hat{\delta}$.
 - WORK(RNORSI) is $S(\hat{\beta}, \hat{\delta})^{1/2}$.
 - WORK(PRERSI) is the predicted relative reduction in $S(\beta, \delta)$ from the last iteration.
 - WORK (PARTLI) is the stopping tolerance used to detect parameter convergence.
 - WORK(SSTOLI) is the stopping tolerance used to detect sum of squares convergence.
 - WORK (TAUFCI) is the factor used to compute the initial trust region radius.
 - WORK (EPSMAI) is machine precision, i.e., the smallest value ξ such that $1 + \xi > 1$.

WORK (BETAOI) is the first element of a $p \times 1$ array BETAO containing the *initial* estimates of the function parameters β^0 , where

WORK (BETAIO-1+K) = BETAO(K) =
$$\beta_{\rm K}^0$$

for K = 1, ..., p. For implicit models, BETAO is the initial value used for the last value of the penalty parameter.

WORK (BETACI) is the first element of a $p \times 1$ array BETAC containing the *current* working estimates of the \tilde{p} unfixed function parameters $\tilde{\beta}^c$, where

$$\texttt{WORK}(\texttt{BETACI-1+K}) = \texttt{BETAC}(\texttt{K}) = \tilde{\beta}^c_{\texttt{K}}$$

for
$$K = 1, \ldots, \tilde{p}$$
.

WORK (BETASI) is the first element of a $p \times 1$ array BETAS containing the saved working estimates of the \tilde{p} unfixed function parameters $\tilde{\beta}^s$, where

$$\texttt{WORK}(\texttt{BETASI-1+K}) = \texttt{BETAS}(\texttt{K}) = \tilde{\beta}^s_{\texttt{K}}$$

for
$$K = 1, \ldots, \tilde{p}$$
.

WORK (BETANI) is the first element of a $p \times 1$ array BETAN containing the new working estimates of the \tilde{p} unfixed function parameters $\tilde{\beta}^n$, where

$$\texttt{WORK}(\texttt{BETANI-1+K}) = \texttt{BETAN}(\texttt{K}) = \tilde{\beta}^n_{\texttt{K}}$$

for
$$K = 1, \ldots, \tilde{p}$$
.

WORK(SI) is the first element of a $p \times 1$ array S containing the step in the \tilde{p} unfixed function parameters at the last iteration, where

$$WORK(SI-1+K) = S(K)$$

for
$$K = 1, \ldots, \tilde{p}$$
.

WORK(SSI) is the first element of a $p \times 1$ array SS containing the scale of the \tilde{p} unfixed function parameters $\tilde{\beta}$, where

$$\texttt{WORK}(\texttt{SSI-1+K}) = \texttt{SS}(\texttt{K}) = \texttt{SCALE}\{\tilde{\beta}_{\texttt{K}}\}$$

for
$$K = 1, \ldots, \tilde{p}$$
.

WORK(SSFI) is the first element of a $p \times 1$ array SSF containing the scale of all of the function parameters β , where

WORK(SSFI-1+K) = SSF(K) =
$$SCALE\{\beta_K\}$$

for
$$K = 1, \ldots, p$$
.

WORK (QRAUXI) is the first element of a $p \times 1$ array QRAUX used during the computations, where

WORK(QRAUXI-1+I) = QRAUX(I) for
$$I = 1, ..., p$$
.

WORK(U) is the first element of a $p \times 1$ array U used during the computations, where

WORK(UI-1+I) = U(I) for
$$I = 1, ..., p$$
.

WORK(FSI) is the first element of an $n \times q$ array FS containing the saved estimated errors E^s in the response variable, where

WORK(FSI-1+I+L*N) = FS(I,L) =
$$E_{\mathrm{IJ}}^s$$
 for I = 1,..., q .

WORK(FJACBI) is the first element of an $n \times p \times q$ array FJACB containing the weighted partial derivative with respect to the \tilde{p} unfixed function parameters $\tilde{\beta}$, where

$$\begin{split} & \texttt{WORK(FJACBI-1+I+(K-1)*N+(L-1)*N*NP)} \\ &= \texttt{FJACB(I,K,L)} = \mathcal{W}_{\text{I}} \frac{\partial f_{\text{IL}}(x_{\text{I}} + \delta_{\text{I}};\beta)}{\partial \tilde{\beta}_{\text{K}}} \end{split}$$

for I = 1, ..., n, $K = 1, ..., \tilde{p}$, L = 1, ..., q, and $W_I^T W_I = w_{\epsilon_I}$. The derivatives are the values evaluated at the beginning of the last iteration unless the user requested that the covariance matrix be computed using the final solution, in which case they are the values obtained at the final solution. (See §2.A.ii, subroutine argument JOB.)

WORK(WE1I) is the first element of an LDWE \times LD2WE \times q array WE1 containing the Cholesky factorizations for the weights w_{ϵ} specified in WE, where

$$WORK(WE1I-1+I+(L1-1)*LDWE+(L2-1)*LDWE*LD2WE)$$

$$= WE1I(I,L1,L2)$$

for $I=1,\ldots,LDWE$, $L1=1,\ldots,LD2WE$, and $L2=1,\ldots,q$. WE1I specifies the factorization in the same manner that subroutine argument WE is used to specify w_{ϵ} . (See §2.A.ii.)

WORK(DIFFI) is the first element of an $q \times (p+m)$ array DIFF containing the relative differences between the user supplied derivatives and the finite difference values they were checked against, where

WORK(DIFFI-1+L+(J-1)*NQ) = DIFF(L,J) for L = 1,...,
$$q$$
, and J = 1,..., $(p+m)$.

WORK(DELTSI) is the first element of an $n \times m$ array DELTAS containing the saved working estimates of the errors Δ^s in the explanatory variables, where

WORK(DELTSI-1+I+(J-1)*N) = DELTAS(I,J) = $\Delta^s_{ ext{II}}$

for I = 1, ..., n, and J = 1, ..., m. If ISODR is *false*, then this array is equivalenced to the array DELTA beginning in WORK(DELTAI).

WORK(DELTNI) is the first element of an $n \times m$ array DELTAN containing the new working estimates of the errors Δ^n in the explanatory variables, where

WORK(DELTNI-1+I+(J-1)*N) = DELTAN(I,J) = Δ_{IJ}^n

for I = 1, ..., n, and J = 1, ..., m. If ISODR is *false*, then this array is equivalenced to the array DELTA beginning in WORK(DELTAI).

WORK(TI) is the first element of an $n \times m$ array T used in the computations, where

WORK(TI-1+I+(J-1)*N) = T(I,J)

for I = 1, ..., n, and J = 1, ..., m. If ISODR is *false*, then this array is equivalenced to the array DELTA beginning in WORK(DELTAI).

WORK(TTI) is the first element of an $n \times m$ array TT containing the scale of each of the estimated errors Δ in the explanatory variable, where

WORK(TTI-1+I+(J-1)*N) = TT(I,J) =
$$SCALE\{\Delta_{IJ}\}\$$

for I = 1, ..., n, and J = 1, ..., m. If ISODR is *false*, then this array is equivalenced to the array DELTA beginning in WORK(DELTAI).

WORK(OMEGAI) is the first element of a $q \times q$ array OMEGA used during the computations, where

WORK(OMEGAI-1+L1+(L2-1)*NQ) = OMEGA(L1,L2)

for L1 = 1, ..., q, and L2 = 1, ..., q. If ISODR is *false*, then this array is equivalenced to the array DELTA beginning in WORK(DELTAI).

WORK(FJACDI) is the first element of an $n \times m \times q$ array FJACD containing the weighted partial derivative with respect to Δ , where

$$WORK(FJACDI-1+I+(J-1)*N+(L-1)*N*M)$$

$$= \texttt{FJACD(I,J,L)} = \mathcal{W}_{\text{I}} \tfrac{\partial f_{\text{IL}}(x_{\text{I}} + \delta_{\text{I}};\beta)}{\partial \Delta_{\text{IJ}}}$$

for I = 1, ..., n, J = 1, ..., m, L = 1, ..., q, and $W_I^T W_I = w_{\epsilon_I}$. The derivatives are the values evaluated at the beginning of the last iteration unless the user requested that the covariance matrix be computed using the final solution, in which case they are the values obtained at the final solution. (See §2.A.ii, subroutine argument JOB.) If ISODR is false, then this array is equivalenced to the array DELTA beginning in WORK (DELTAI).

WORK(WRK1I) is the first element of an $n \times m \times q$ array WRK1 required for work space, where

$$WORK(WRK1I-1+I+(J-1)*N+(L-1)*N*NQ) = WRK1(I,J,L)$$

for I = 1, ..., n, J = 1, ..., m, and L = 1, ..., q. If ISODR is false, then this array is equivalenced to the array DELTA beginning in WORK(DELTAI).

WORK(WRK2I) is the first element of an $n \times q$ array WRK2 required for work space, where

WORK(WRK2I-1+I+(L-1)*N) = WRK2(I,L) for
$$I = 1, ..., n$$
, and $L = 1, ..., q$.

WORK(WRK3) is the first element of a $p \times 1$ array WRK3 required for work space, where WORK(WRK3-1+K) = WRK3(K)

for
$$K = 1, ..., p$$
.

WORK(WRK4I) is the first element of an $m \times m$ array WRK4 required for work space, where

WORK(WRK4I-1+J1+(J2-1)*M) = WRK4(J1,J2) for
$$J1 = 1, ..., m$$
, and $J2 = 1, ..., m$.

WORK(WRK5I) is the first element of an m array WRK5 required for work space, where WORK(WRK5I-1+J) = WRK5(J) for J = 1, ..., m.

WORK(WRK6I) is the first element of an $n \times p \times q$ array WRK6 required for work space, where

WORK(WRK6I-1+I+(K-1)*N+(L-1)*N*NQ) = WRK6(I,K,L) for I = 1,...,
$$n$$
, K = 1,..., p , and L = 1,..., q .

WORK(WRK7I) is the first element of an 5q array WRK7 required for work space, where

$$WORK(WRK7I-1+J) = WRK7(J)$$

for
$$J = 1, ..., 5q$$
.

WORK(LOWERI) is the first element of an p array used to store the lower bounds of the user supplied or default 30-LOWER

$$WORK(LOWERI-1+J) = LOWER(J)$$

for
$$J = 1, \ldots, p$$
.

WORK (UPPERI) is the first element of an p array used to store the upper bounds of the user supplied or default 31-UPPER

$$WORK(UPPERI-1+J) = UPPER(J)$$

for
$$J = 1, \ldots, p$$
.

5.B. Extracting Information from Vector IWORK

Upon return from a call to ODRPACK95, array IWORK contains values that may be of interest to the user. To extract information from IWORK, the following declaration statement must be added to the user's program

INTEGER

- + MSGBI, MSGDI, IFIX2I, ISTOPI,
- + NNZWI, NPPI, IDFI,
- + JOBI, IPRINI, LUNERI, LUNRPI,
- + NROWI, NTOLI, NETAI,
- + MAXITI, NITERI, NFEVI, NJEVI, INT2I, IRANKI, LDTTI,
- + LIWKMN

where MSGBI through LDTTI are variables that indicate the starting locations within IWORK of the stored values, and LIWKMN is the minimum acceptable length of array IWORK. The appropriate values of MSGBI through LDTTI are obtained by invoking subroutine DIWINF. To invoke the subroutine, use

CALL DIWINF

- + (M, NP, NQ,
- + MSGBI, MSGDI, IFIX2I, ISTOPI,
- + NNZWI, NPPI, IDFI,
- + JOBI, IPRINI, LUNERI, LUNRPI,
- + NROWI, NTOLI, NETAI,
- + MAXITI, NITERI, NFEVI, NJEVI, INT2I, IRANKI, LDTTI,
- + LIWKMN).

Note that the values of M, NP, and NQ must be input to DIWINF with exactly the same values as were used in the original call to ODRPACK95.

In the following descriptions of the information returned in IWORK, \triangleright indicates values that are most likely to be of interest.

Double IWORK(MSGBI) is the first element of a 1 + $(q \times p)$ array MSGB used to indicate the results of checking the partial derivatives with respect to β at observation NROW. (See IWORK(NROWI) below.)

The value of IWORK(MSGBI) summarizes the results over all β .

- If IWORK(MSGBI) < 0 then the partial derivatives with respect to β were not checked.
- If IWORK(MSGBI) = 0 then the partial derivatives with respect to each of the β_{K} , K = 1, ..., p, for each of the q responses appear to be correct.
- If IWORK(MSGBI) = 1 then the partial derivative with respect to at least one of the $\beta_{\rm K}$, K = $1,\ldots,p$, appears to be questionable for at least one of the q responses.
- If IWORK(MSGBI) = 2 then the partial derivative with respect to at least one of the $\beta_{\rm K}$, ${\rm K}=1,\ldots,p,$ appears to be seriously questionable for at least one of the q responses.

The value of IWORK(MSGBI+L+(K-1)*NQ), $L=1,\ldots,q$, $K=1,\ldots,p$, indicates the individual results of checking the partial derivative of the Lth response with respect to each β_K , where for $L=1,\ldots,q$, and $K=1,\ldots,p$:

• If IWORK(MSGBI + L + (K - 1) * NQ) = -1 then the partial derivative of the Lth response with respect to β_K was not checked because β_K was fixed.

- If IWORK(MSGBI + L + (K 1) * NQ) = 0 then the partial derivative of the Lth response with respect to β_K appears to be correct, i.e., the relative difference between its value and the finite difference approximation it is checked against is within the required tolerance.
- If IWORK(MSGBI + L + (K 1) * NQ) = 1 then the partial derivative of the Lth response with respect to β_K is questionable because the user supplied derivative and the finite difference value it is checked against are both zero.
- If IWORK(MSGBI + L + (K 1) * NQ) = 2 then the partial derivative of the Lth response with respect to β_K is questionable because either the user supplied derivative is exactly zero and the finite difference value it is checked against is only approximately zero, or the user supplied derivative only approximately zero and and the finite difference value it is checked against is exactly zero.
- If IWORK(MSGBI + L + (K 1) * NQ) = 3 then the partial derivative of the Lth response with respect to β_K is questionable because either the user supplied derivative is exactly zero and the finite difference value it is checked against is not even approximately zero, or the user supplied derivative not even approximately zero and and the finite difference value it is checked against is exactly zero.
- If IWORK(MSGBI + L + (K 1) * NQ) = 4 then the partial derivative of the Lth response with respect to β_K is questionable because the finite difference value it is being checked against is questionable due to a high ratio of relative curvature to relative slope or to an incorrect scale value.
- If IWORK(MSGBI + L + (K 1) * NQ) = 5 then the partial derivative of the Lth response with respect to β_K is questionable because the finite difference value it is being checked against is questionable due to a high ratio of relative curvature to relative slope.
- If IWORK(MSGBI + L + (K 1) * NQ) = 6 then the partial derivative of the Lth response with respect to β_K is questionable because it does not agree with the finite difference value it is being checked against to the required tolerance, although the values do agree in their first two digits. (See IWORK(NTOLI) below.)

• If IWORK(MSGBI + L + (K - 1) * NQ) = 7 then the partial derivative of the Lth response with respect to β_K is seriously questionable because it has fewer than two digits agreement with the finite difference value it is being checked against.

MSGBI = 1.

IWORK(MSGDI) is the first element of a $1+(q\times m)$ array MSGD used to indicate the results of checking the partial derivatives with respect to Δ , analogous to MSGB described above. The values in MSGD have the same meanings as those used to indicate the results of checking the partial derivatives with respect to β , except that the value of IWORK(MSGDI) summarizes the results over all columns of Δ , and the values of IWORK(MSGDI+L+(J-1)*NQ), $L=1,\ldots,q, J=1,\ldots,m,$ indicates the individual results for checking the partial derivative of the Lth response with respect to the Jth column of Δ at observation NROW. (See IWORK(NROWI) below.) MSGDI = qp+2 .

 \triangleright IWORK(IFIX2I) is the first element of a $p \times 1$ array IFIX2 containing values used to indicate whether a given parameter is unfixed, fixed or dropped because it induced rank deficiency, where

WORK(IFIX2I-1+K) = IFIX2(K)

for $K = 1, \ldots, p$. If

- IFIX2(K) = 1 the parameter was unfixed,
- IFIX2(K) = 0 the parameter was fixed,
- IFIX2(K) = -1 the parameter was dropped, and
- IFIX2(K) = -2 no parameters were estimated.

IFIX2I = qp + qm + 3.

▷ IWORK(ISTOPI) is value of ISTOP returned from the last call to subroutine FCN.

$$\mathtt{ISTOPI} = qp + qm + p + 3 \ .$$

IWORK(NNZWI) is the number of nonzero ϵ error weights, $w_{\epsilon_{\rm I}}$, ${\rm I}=1,\ldots,n$.

IWORK(NPPI) is the number \tilde{p} of function parameters actually being estimated, i.e., the number of unfixed parameters.

IWORK(IDFI) is the degrees of freedom, μ , of the fit, i.e., the number of observations with nonzero weights minus the number of parameters actually being estimated.

- IWORK(JOBI) is the value used to specify problem initialization and computational methods.
- IWORK(IPRINI) is the print control value used.
- IWORK (LUNERI) is the logical unit number used for error reports.
- IWORK (LUNRPI) is the logical unit number used for computation reports.
- IWORK(NROWI) is the observation NROW at which the derivatives were checked.
- IWORK(NTOLI) is the number of digits of agreement required between the numerical derivatives and the user supplied derivatives for the user supplied derivatives to be considered correct.
- IWORK(NETAI) is the number of good digits in the function results returned by user supplied subroutine FCN.
- IWORK (MAXITI) is the maximum number of iterations allowed.
- IWORK(NITERI) is the number of iterations taken.
- IWORK(NFEVI) is the number of function evaluations made.
- IWORK (NJEVI) is the number of Jacobian matrix evaluations made.
- IWORK(INT2I) is the number of internal doubling steps taken at the time the computations stopped.
- IWORK(IRANKI) is the rank deficiency at the solution.
- IWORK (LDTTI) is the leading dimension of the $n \times m$ array TT. (See §5.A.)

Bibliography 99

BIBLIOGRAPHY

- [1] American National Standards Institute (1977), ANS FORTRAN X3.9-1977, American National Standards Institute, New York, NY.
- [2] Bates, D. M., and D. G. Watts (1988), Nonlinear Regression Analysis and its Applications, John Wiley and Sons, New York, NY.
- [3] Belsley, D. A., E. Kuh, and R. E. Welsch (1980), *Regression diagnostics*, John Wiley and Sons, New York, NY.
- [4] Bement, T. R., and J. S. Williams (1969), "Variance of weighted regression estimators when sampling errors are independent and heteroscedastic," *J. Amer. Statists. Assoc.*, 64:1369–1382.
- [5] Bischof, C., A. Carle, G. Corliss, A. Griewank, P. Hovland (1991), "ADIFOR generating derivative codes from Fortran programs," ADIFOR Working Note #1, MCS-P263-0991, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL; also available as CRPC-TR91185, Center for Research on Parallel Computation, Rice University, Houston, TX.
- [6] Boggs, P. T., R. H. Byrd, and R. B. Schnabel (1987), "A stable and efficient algorithm for nonlinear orthogonal distance regression," SIAM J. Sci. Stat. Comput., 8(6):1052– 1078.
- [7] Boggs, P. T., R. H. Byrd, J. R. Donaldson, and R. B. Schnabel (1989), "Algorithm 676 ODRPACK: Software for Weighted Orthogonal Distance Regression," ACM Trans. Math. Software, 15(4):348–364.
- [8] Boggs, P. T., J. R. Donaldson, R. B. Schnabel, and C. H. Spiegelman (1988), "A computational examination of orthogonal distance regression," *J. Econometrics*, 38(1/2):169–201.

100 Bibliography

[9] Boggs, P. T., and J. E. Rogers (1990a), "Orthogonal Distance Regression," Contemporary Mathematics, 112:183–194.

- [10] Boggs, P. T., and J. E. Rogers (1990b), "The Computation and Use of the Asymptotic Covariance Matrix for Measurement Error Models," Internal Report 89-4102, Applied and Computational Mathematics Division, National Institute of Standards and Technology, Gaithersburg, MD.
- [11] Cook, D. R. (1977), "Detection of influential observations in linear regression," *Technometrics*, 19:15–18.
- [12] Dennis, J. E., and R. B. Schnabel (1983), Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ.
- [13] Donaldson, J. R., and Schnabel, R. B. (1987), "Computational Experience with Confidence Regions and Confidence Intervals for Nonlinear Least Squares," *Technometrics*, 29(1):67–82.
- [14] Donaldson, J. R., and P. V. Tryon (1986), "STARPAC the Standards Time Series and Regression Package," Internal Report 86-3448, Computing and Applied Mathematics Laboratory, National Institute of Standards and Technology, Boulder, CO.
- [15] Dongarra, J. J., C. B. Moler, J. R. Bunch, and G. W. Stewart (1979), *LINPACK Users' Guide*, SIAM, Philadelphia, PA.
- [16] Efron, B. (1985), The Jackknife, the Bootstrap and Other Resampling Plans, SIAM, Philadelphia, PA.
- [17] Filliben, J. J. (1977), "User's Guide to the DATAPAC Data Analysis Package," (unpublished: available from NIST Statistical Engineering Division, Gaithersburg, MD).
- [18] Fox, P. A., A. D. Hall, and N. L. Schryer (1978), "Algorithm 528 Framework for a Portable Library [z]," ACM Trans. Math. Software, 4(2):177–188.
- [19] Fuller, W. A. (1987), Measurement Error Models, John Wiley and Sons, New York, NY.
- [20] Gill, P. E., W. Murray, and M. H. Wright (1981), *Practical Optimization*, Academic Press, New York, NY.
- [21] Griewank, A. (1989), "On automatic differentiation," in *Mathematical Programming: Recent Developments and Applications*, M. Iri and K. Tanabe, editors, Kluwer Academic Publishers, Amsterdam, Holland.

Bibliography 101

[22] Havriliak, S. Jr., and S. Negami (1967), "A Complex Plane Representation of Dielectric and Mechanical Relaxation Processes in Some Polymers," *Polymer*, 8: 161–205.

- [23] Himmelblau, D. M. (1970), *Process Analysis by Statistical Methods*, John Wiley and Sons, New York, NY.
- [24] Hoaglin, D. C., and R. E. Welsch (1978), "The hat matrix in regression and ANOVA," *American Statistician*, 32:17–22.
- [25] Jennrich, R. I. (1969), "Asymptotic Properties of Non-linear Least Squares Estimators," Annals of Mathematical Statistics, 40:633–643.
- [26] Juedes, D. (1991) "A taxonomy of automatic differentiation tools," in *Proceedings of the Workshop on Automatic Differentiation of Algorithms: Theory, Implementation, and Application*, A. Griewank and P. L. Toint, editors, SIAM, Philadelphia, PA.
- [27] Lawson, C., R. Hanson, D. Kincaid, and F. Krogh (1979), "Basic linear algebra subprograms for FORTRAN usage," *ACM Trans. Math. Software*, 5(3):308–371.
- [28] Schnabel, R. B. (1982), "Finite difference derivatives theory and practice," (unpublished: available from author).
- [29] Seber, G. A. F., and C. J. Wild (1989), *Nonlinear Regression*, John Wiley and Sons, New York, NY.
- [30] Stephens, B. R., and J. D. Pryce (1991), "DAPRE: a differentiation arithmetic system for Fortran," Technical Report ACM-91-3, Royal Military College of Science, Shrivenham, UK.
- [31] Stewart, G. W. (1973), Introduction to Matrix Computations, Academic Press, New York, NY.
- [32] Zwolak, J. W., J. J. Tyson, and L. T. Watson (2001), "Estimating rate constants in cell cycle models." *Proc. High Performance Computing Symposium 2001*, A. Tentner (ed.), Soc. for Modeling and Simulation Internat., San Diego, CA, 53–57.
- [33] Zwolak, J. W., J. J. Tyson, and L. T. Watson (2005), "Parameter Estimation for a Mathematical Model of the Cell Cycle in Frog Eggs." *Journal of Computational Biology*, 12(1):48–63.
- [34] Zwolak, J. W., J. J. Tyson, and L. T. Watson (2005), "Globally Optimized Parameters for a Model of Mitotic Control in Frog Egg Extracts." *IEE Systems Biology*, 152(2):81–92.
- [35] Zwolak, J. W., P. T. Boggs, and L. T. Watson (2006), "ODRPACK95: A Weighted Orthogonal Distance Regression Code with Bound Constraints" *ACM TOMS*, submitted.