Introduction to Rings and Modules

Lecture 2, Monday March 20 2023 Ari Feiglin

2.1 Subrings

Definition 2.1.1:

Let R be a ring, and $\emptyset \neq S \subseteq R$. Then S is a subring of R if it satisfies the following:

- (1) (S,+) is a subgroup of (R,+) (equivalently it is closed under subtraction, if $a,b \in S$ then $a-b \in S$).
- (2) S is closed under multiplication: if $a, b \in S$ then $a \cdot b \in S$.
- (3) $1_R \in S$.

Equivalent to the last two conditions is that (S, \cdot) is a submonoid of (R, \cdot) .

If we remove the third condition, then S is a subrng (if (S, +) is a subgroup of (R, +) and S is closed under multiplication, then S is a subrng).

Note that $\varnothing S \subseteq R$ is a subrng of R if and only if S is a rng.

Example 2.1.2:

Let $R = M_2(\mathbb{Z})$ be our ring and

$$S = \left\{ \begin{pmatrix} a & a \\ 0 & 0 \end{pmatrix} \middle| a \in \mathbb{Z} \right\}$$

be a subset of R. Then S is not a subring of R's since the identity is not in S, but S is a ring under the same operations as R:

- (1) It is closed under addition and inverses, so (S, +) is a group (it is a subgroup of (R, +)).
- (2) It is closed under multiplication, and $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ is its identity, so (S,\cdot) is a monoid.

And so S is indeed a ring, but not a subring (and therefore S is a subring).

So it is not sufficient to show that $\emptyset \neq S \subseteq R$ is a ring, we must show it is a ring where the identity is 1_R . This is true since then (S, +) is a group and since $S \subseteq R$ it is a subgroup of (R, +). And it is necessarily closed under multiplication since it is a ring, and $1_R \in S$ by assumption

Example 2.1.3:

Let $R = \mathbb{Z}$, then every subring of R must, by definition, contain 1. But since (S, +) is a group, $\mathbb{Z} = \langle 1 \rangle \subseteq S \implies S = \mathbb{Z}$. So \mathbb{Z} has no non-trivial subrings.

Example 2.1.4:

Let \mathbb{F} be a field and $R = \mathbb{F}[x]$. Then let $a \in \mathbb{F}$ and $S = \{P \in R \mid P(a) = 0_{\mathbb{F}}\}$. S is closed under subtraction since if P(a) = Q(a) = 0 then (P - Q)(a) = P(a) - Q(a) = 0. And it is closed under multiplication since (PQ)(a) = P(a)Q(a) = 0 since \mathbb{F} is a field. But $1 \notin S$ so S is a subring but not a subring.

Example 2.1.5:

If $\{R_{\lambda}\}_{{\lambda}\in\Lambda}$ are rings, then their product ring: $R=\prod_{{\lambda}\in\Lambda}R_{\lambda}$ is also a ring. The operations are

$$(f+g)(\lambda) = f(\lambda) + g(\lambda) \in R_{\lambda}, \qquad (f \cdot g)(\lambda) = f(\lambda) \cdot g(\lambda) \in R_{\lambda}$$

The additive identity is $0(\lambda) = 0_{R_{\lambda}}$ and the multiplicative identity is $1(\lambda) = 1_{R_{\lambda}}$. The proof that this is indeed a ring

is trivial.

And if S_{λ} is a subring of R_{λ} then $S = \prod_{\lambda \in \Lambda} S_{\lambda}$ is a subring of R (again, this is trivial).

Example 2.1.6:

If R is a ring and $y \in R$ then the center of y is

$$C_R(y) = \{ a \in R \mid ay = ya \}$$

the center of y is a subring of R:

- (1) If $a, b \in C_R(y)$ we must show that (a + b)y = y(a + b), and we know (a + b)y = ay + by = ya + yb = y(a + b) as required. And if $a \in C_R(y)$ then (-a)y = -(ay) since (-a)y + ay = (-a + a)y = 0y = 0, and so (-a)y = -(ay) = -(ya) = y(-a) (the last equality is similarly trivial). So $C_R(y)$ is a group under addition.
- (2) If $a, b \in C_R(y)$ then (ab)y = a(by) = a(yb) = (ay)b = (ya)b = y(ab) so $ab \in C_R(y)$.
- (3) And $1 \in C_R(y)$ trivially.

Proposition 2.1.7:

If $\{S_{\lambda}\}_{{\lambda}\in\Lambda}$ are subrings of R, then $S=\bigcap_{{\lambda}\in\Lambda}S_{\lambda}$ is also a subring of R.

Proof:

We know that $1_R \in S$ because it is in every S_λ . Suppose $a, b \in S$ then $a, b \in S_\lambda$ for every $\lambda \in \Lambda$ so $a - b \in S_\lambda$ for every $\lambda \in \Lambda$ and so $a - b \in S$, so (S, +) is a subgroup of (R, +). And if $a, b \in S$ then $a, b \in S_\lambda$ and so $ab \in S_\lambda$ for every $\lambda \in \Lambda$ and so $ab \in S$. So S is indeed a subring of R.

Definition 2.1.8:

Suppose R is a ring, then we define its center to be:

$$Z(R) = \{ a \in R \mid \forall b \in R : ab = ba \}$$

It is trivial to see that:

$$Z(R) = \bigcap_{a \in R} C_R(a)$$

and so Z(R) is a subring of R's.

2.2 Ring Homomorphisms

Definition 2.2.1:

Suppose R and S are two rings, then a function $f: R \longrightarrow S$ is a ring homomorphism if it satisfies:

- (1) For every $a, b \in R$, $f(a +_R b) = f(a) +_S f(b)$ (f is a group homomorphism between $(R, +_R)$ and $(S, +_S)$).
- (2) For every $a, b \in R$, $f(a \cdot_R b) = f(a) \cdot_S f(b)$.
- (3) $f(1_R) = 1_S$.

If R and S are rngs, and $f: R \longrightarrow S$ satisfies the first two properties above, it is a rng homomorphism.

Example 2.2.2:

If $S \subseteq R$ is a subring of R's, then $f: S \longrightarrow R$ defined by f(s) = s is called the inclusion monomorphism.

Example 2.2.3:

If R is a ring, then if $f: \mathbb{Z} \longrightarrow R$ is a ring homomorphism, $f(1) = 1_R$ and this defines the image of every $n \in \mathbb{Z}$: $f(n) = 1_R + \cdots + 1_R = [n]_R$. This homomorphism is also well-defined, the first axiom is trivial. And the second axioms follows from $f(n \cdot m) = [nm]_R = [n]_R[m]_R = f(n) \cdot f(m)$. And by definition $f(1) = 1_R$. So there exists exactly one ring homomorphism from \mathbb{Z} to R for every ring R.

Example 2.2.4:

Let R be a ring, and $b \in R$. We define the evaluation of b is $\operatorname{ev}_b : R[x] \longrightarrow R$ defined by $\operatorname{ev}_b(P) = P(b)$. This obviously satisfies the first axiom. Now suppose

$$P = \sum_{i=0}^{n} a_i x^i, \qquad Q = \sum_{i=0}^{n} c_i x^i$$

then

$$PQ = \sum_{k=0}^{2n} \sum_{i+j=k} a_i c_j x^k$$

And so we have that:

$$\operatorname{ev}_b(PQ) = \sum_{k=0}^{2n} \left(\sum_{i+j=k} a_i c_j \right) b^k$$

If $b \in \mathbf{Z}(R)$ then

$$= \sum_{k=0}^{2n} a_i b^i c_j b^j = \left(\sum_{i=0}^n a_i b^i\right) \cdot \left(\sum_{j=0}^n c_j b^j\right) = P(b) \cdot Q(b) = \operatorname{ev}_b(P) \cdot \operatorname{ev}_b(Q)$$

And the third axiom is trivial since $1_{R[x]}(b) = 1_R$. So if $b \in Z(R)$ then ev_b is a ring homomorphism.

Example 2.2.5:

Suppose $f: R \longrightarrow S$ is a ring homomorphism, then we define $F: M_n(R) \longrightarrow M_n(S)$ by $F((a_{ij})) = (f(a_{ij}))$, ie we take the image of each element in the matrix. Obviously

$$F((a_{ij}) + (b_{ij})) = (f(a_{ij} + b_{ij})) = (f(a_{ij}) + f(b_{ij})) = (f(a_{ij})) + (f(b_{ij})) = F((a_{ij})) + F((b_{ij}))$$

And:

$$F\left((a_{ij})\cdot(b_{ij})\right) = F\left(\left(\sum_{k=1}^n a_{ik}b_{kj}\right)\right) = \left(f\left(\sum_{k=1}^n a_{ik}b_{kj}\right)\right) = \left(\sum_{k=1}^n f(a_{ik})f(b_{kj})\right) = \left(f(a_{ij})\right)\cdot\left(f(b_{ij})\right) = F\left(a_{ij}\right)\cdot F\left((b_{ij})\right)$$

And $F(I_R) = I_S$ is obvious.