二维环面上的 Allen-Cahn 方程定义如下:

(AC) 
$$\begin{cases} \partial_t u = \Delta u - \frac{1}{\varepsilon^2} f(u), & (t, x) \in (0, \infty) \times \mathbb{T}^2 \\ u(0, x) = u_0 \end{cases},$$

其中  $f(u) = u^3 - u$ ,  $\mathbb{T}^2 = [0, 2\pi)^2$ .

1. (编程) 假设初始条件给定如下:

$$\tanh \frac{\sqrt{(x-\pi)^2 + (y-\pi)^2} - 2}{\epsilon\sqrt{2}}$$

试用 Backward Euler 方法求解:

$$\frac{u_{n+1} - u_n}{\tau} = \Delta u_{n+1} - \frac{1}{\epsilon^2} f(u_{n+1}) ,$$

选取  $\epsilon = 0.01, 0.1, 1$  时, 画出对应 T = 0, 50, 100 的图。你选取的时间步长为多少?猜测满足稳定性要求的时间步长  $\tau$  和  $\epsilon$  的关系。

2. (编程) 选取以下的初始条件

(0.1) 
$$u_0(x,y) = -1 + \sum_{i=1}^{7} f_0\left(\sqrt{(x-x_i)^2 + (y-y_i)^2} - r_i\right),$$

其中

$$f_0(s) = \begin{cases} 2e^{-\frac{\epsilon^2}{s^2}}, & s < 0; \\ 0, & s \ge 0. \end{cases}$$

球的中心坐标和半径长度如下表: 试用 Semi-implicit 格式计算满足此初始条件的 Allen-Cahn

表 0.1. 中心坐标及半径长度

方程,取  $\epsilon = 0.1$ ,以及合适的 $\tau$  画出T = 0.5,15时对应的解。

3. (编程) 二维环面上的 Cahn-Hilliard 方程定义如下:

(AC) 
$$\begin{cases} \partial_t u = -\Delta(\Delta u - \frac{1}{\varepsilon^2} f(u)), & (t, x) \in (0, \infty) \times \mathbb{T}^2 \\ u(0, x) = u_0 \end{cases},$$

其中  $f(u)=u^3-u$ ,  $\mathbb{T}^2=[0,2\pi)^2$ . 试用 Semi-implicit 格式计算满足第 2 题中初始条件的 Cahn-Hilliard 方程,取  $\epsilon=0.1$ ,以及合适的  $\tau$  画出 T=0,5,15 时对应的解。比较与第 2 题中解的动力学表现。