### $10_{54} \ (K10a_{48})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$I_1^u = \langle -u^{16} + 2u^{14} - 6u^{12} + 8u^{10} - 2u^9 - 10u^8 + 2u^7 + 8u^6 - 6u^5 - 4u^4 + 4u^3 + b - 2u, \ u^{23} + u^{22} + \dots + a + 2, \ u^{26} + 2u^{25} + \dots + 2u - 1 \rangle$$

$$I_2^u = \langle u^2 + b, \ a + u, \ u^3 - u^2 + 1 \rangle$$

\* 2 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 29 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $<sup>^2</sup>$  All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^{16} + 2u^{14} + \dots + b - 2u, \ u^{23} + u^{22} + \dots + a + 2, \ u^{26} + 2u^{25} + \dots + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{23} - u^{22} + \dots + 2u - 2 \\ u^{16} - 2u^{14} + \dots - 4u^{3} + 2u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{25} - u^{24} + \dots - 2u + 3 \\ -u^{25} - 2u^{24} + \dots - 4u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{5} + u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 2u^{25} + 2u^{24} + \dots + 2u - 3 \\ 2u^{25} + 4u^{24} + \dots + 7u - 2 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = 
$$3u^{25} + 6u^{24} - 4u^{23} - 20u^{22} + 15u^{21} + 67u^{20} - 6u^{19} - 133u^{18} + 9u^{17} + 243u^{16} + 26u^{15} - 312u^{14} - 14u^{13} + 380u^{12} + 8u^{11} - 325u^{10} + 66u^{9} + 275u^{8} - 98u^{7} - 154u^{6} + 121u^{5} + 79u^{4} - 58u^{3} - 13u^{2} + 27u + 3$$

#### (iv) u-Polynomials at the component

| Crossings          | u-Polynomials at each crossing       |
|--------------------|--------------------------------------|
| $c_1, c_7$         | $u^{26} + 2u^{25} + \dots + 2u - 1$  |
| $c_2, c_3, c_5$    | $u^{26} + 4u^{25} + \dots - u - 1$   |
| $c_4, c_9$         | $u^{26} - u^{25} + \dots - 12u + 8$  |
| $c_6, c_8, c_{10}$ | $u^{26} + 6u^{25} + \dots + 14u + 1$ |

#### (v) Riley Polynomials at the component

| Crossings          | Riley Polynomials at each crossing      |
|--------------------|-----------------------------------------|
| $c_1, c_7$         | $y^{26} - 6y^{25} + \dots - 14y + 1$    |
| $c_2, c_3, c_5$    | $y^{26} - 28y^{25} + \dots + 9y + 1$    |
| $c_4, c_9$         | $y^{26} - 21y^{25} + \dots - 272y + 64$ |
| $c_6, c_8, c_{10}$ | $y^{26} + 30y^{25} + \dots - 38y + 1$   |

# (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 0.846572 + 0.426560I  |                                       |                     |
| a = 0.369102 + 1.145660I  | 0.25133 - 3.55563I                    | 0.67279 + 7.82227I  |
| b = -0.275280 + 0.265581I |                                       |                     |
| u = 0.846572 - 0.426560I  |                                       |                     |
| a = 0.369102 - 1.145660I  | 0.25133 + 3.55563I                    | 0.67279 - 7.82227I  |
| b = -0.275280 - 0.265581I |                                       |                     |
| u = -1.05838              |                                       |                     |
| a = 0.930276              | 3.31147                               | 2.10670             |
| b = -0.383659             |                                       |                     |
| u = 1.024210 + 0.483667I  |                                       |                     |
| a = -0.41844 - 1.77157I   | 6.23030 - 6.31822I                    | 4.39684 + 5.98052I  |
| b = -0.06027 - 1.68353I   |                                       |                     |
| u = 1.024210 - 0.483667I  |                                       |                     |
| a = -0.41844 + 1.77157I   | 6.23030 + 6.31822I                    | 4.39684 - 5.98052I  |
| b = -0.06027 + 1.68353I   |                                       |                     |
| u = 0.352335 + 0.784080I  |                                       |                     |
| a = -1.72547 - 0.09649I   | 8.43955 + 1.72575I                    | 8.31886 - 0.55186I  |
| b = -0.633711 - 1.002200I |                                       |                     |
| u = 0.352335 - 0.784080I  |                                       |                     |
| a = -1.72547 + 0.09649I   | 8.43955 - 1.72575I                    | 8.31886 + 0.55186I  |
| b = -0.633711 + 1.002200I |                                       |                     |
| u = -0.714859 + 0.468666I |                                       |                     |
| a = 1.90202 - 1.71328I    | 2.60764 + 1.82411I                    | 3.14672 - 3.41167I  |
| b = 0.66236 - 1.66931I    |                                       |                     |
| u = -0.714859 - 0.468666I |                                       |                     |
| a = 1.90202 + 1.71328I    | 2.60764 - 1.82411I                    | 3.14672 + 3.41167I  |
| b = 0.66236 + 1.66931I    |                                       |                     |
| u = 0.884681 + 0.778751I  |                                       |                     |
| a = -0.886815 - 0.322575I | 3.71424 - 2.93248I                    | -1.57920 + 3.07432I |
| b = -0.169423 - 1.226160I |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 0.884681 - 0.778751I  |                                       |                     |
| a = -0.886815 + 0.322575I | 3.71424 + 2.93248I                    | -1.57920 - 3.07432I |
| b = -0.169423 + 1.226160I |                                       |                     |
| u = -0.782649 + 0.135062I |                                       |                     |
| a = -0.896199 + 0.591232I | -1.320760 + 0.339413I                 | -6.54496 - 0.64162I |
| b = -0.443229 + 0.258658I |                                       |                     |
| u = -0.782649 - 0.135062I |                                       |                     |
| a = -0.896199 - 0.591232I | -1.320760 - 0.339413I                 | -6.54496 + 0.64162I |
| b = -0.443229 - 0.258658I |                                       |                     |
| u = -0.890496 + 0.876738I |                                       |                     |
| a = 0.197188 - 0.399123I  | 8.31406 + 0.26926I                    | 5.67547 + 0.24692I  |
| b = 0.018430 - 1.188940I  |                                       |                     |
| u = -0.890496 - 0.876738I |                                       |                     |
| a = 0.197188 + 0.399123I  | 8.31406 - 0.26926I                    | 5.67547 - 0.24692I  |
| b = 0.018430 + 1.188940I  |                                       |                     |
| u = -0.851371 + 0.929645I |                                       |                     |
| a = -1.80201 + 0.27660I   | 15.7394 - 4.0044I                     | 7.52896 + 1.00327I  |
| b = -0.91806 + 3.09384I   |                                       |                     |
| u = -0.851371 - 0.929645I |                                       |                     |
| a = -1.80201 - 0.27660I   | 15.7394 + 4.0044I                     | 7.52896 - 1.00327I  |
| b = -0.91806 - 3.09384I   |                                       |                     |
| u = 0.920092 + 0.872965I  |                                       |                     |
| a = 2.37362 + 0.94576I    | 10.46160 - 3.23113I                   | 6.21855 + 2.44261I  |
| b = 0.20685 + 3.87193I    |                                       |                     |
| u = 0.920092 - 0.872965I  |                                       |                     |
| a = 2.37362 - 0.94576I    | 10.46160 + 3.23113I                   | 6.21855 - 2.44261I  |
| b = 0.20685 - 3.87193I    |                                       |                     |
| u = -0.942244 + 0.855193I |                                       |                     |
| a = 1.174670 - 0.368934I  | 8.15003 + 6.14753I                    | 5.18996 - 5.20017I  |
| b = 0.172482 - 1.056320I  |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------------|---------------------------------------|--------------------|
| u = -0.942244 - 0.855193I |                                       |                    |
| a = 1.174670 + 0.368934I  | 8.15003 - 6.14753I                    | 5.18996 + 5.20017I |
| b = 0.172482 + 1.056320I  |                                       |                    |
| u = -0.996075 + 0.858678I |                                       |                    |
| a = -1.86455 + 1.56620I   | 15.2731 + 10.5913I                    | 6.79989 - 5.68919I |
| b = 0.61540 + 3.28212I    |                                       |                    |
| u = -0.996075 - 0.858678I |                                       |                    |
| a = -1.86455 - 1.56620I   | 15.2731 - 10.5913I                    | 6.79989 + 5.68919I |
| b = 0.61540 - 3.28212I    |                                       |                    |
| u = 0.493543 + 0.417386I  |                                       |                    |
| a = -0.243260 - 0.166657I | 1.336670 + 0.113896I                  | 6.51816 + 0.27618I |
| b = 0.698144 + 0.266835I  |                                       |                    |
| u = 0.493543 - 0.417386I  |                                       |                    |
| a = -0.243260 + 0.166657I | 1.336670 - 0.113896I                  | 6.51816 - 0.27618I |
| b = 0.698144 - 0.266835I  |                                       |                    |
| u = 0.370909              |                                       |                    |
| a = -1.28999              | 1.14285                               | 10.2090            |
| b = 0.636266              |                                       |                    |

II. 
$$I_2^u = \langle u^2 + b, \ a + u, \ u^3 - u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} + u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} + u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes =  $-2u^2 + 7u + 2$

#### (iv) u-Polynomials at the component

| Crossings     | u-Polynomials at each crossing |
|---------------|--------------------------------|
| $c_1$         | $u^3 - u^2 + 1$                |
| $c_2, c_3$    | $(u+1)^3$                      |
| $c_4, c_9$    | $u^3$                          |
| <i>C</i> 5    | $(u-1)^3$                      |
| $c_6, c_{10}$ | $u^3 - u^2 + 2u - 1$           |
| $c_7$         | $u^3 + u^2 - 1$                |
| $c_8$         | $u^3 + u^2 + 2u + 1$           |

# (v) Riley Polynomials at the component

| Crossings          | Riley Polynomials at each crossing |
|--------------------|------------------------------------|
| $c_1, c_7$         | $y^3 - y^2 + 2y - 1$               |
| $c_2, c_3, c_5$    | $(y-1)^3$                          |
| $c_4, c_9$         | $y^3$                              |
| $c_6, c_8, c_{10}$ | $y^3 + 3y^2 + 2y - 1$              |

# (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------------|---------------------------------------|--------------------|
| u = 0.877439 + 0.744862I  |                                       |                    |
| a = -0.877439 - 0.744862I | 4.66906 - 2.82812I                    | 7.71191 + 2.59975I |
| b = -0.215080 - 1.307140I |                                       |                    |
| u = 0.877439 - 0.744862I  |                                       |                    |
| a = -0.877439 + 0.744862I | 4.66906 + 2.82812I                    | 7.71191 - 2.59975I |
| b = -0.215080 + 1.307140I |                                       |                    |
| u = -0.754878             |                                       |                    |
| a = 0.754878              | 0.531480                              | -4.42380           |
| b = -0.569840             |                                       |                    |

III. u-Polynomials

| Crossings      | u-Polynomials at each crossing                             |
|----------------|------------------------------------------------------------|
| $c_1$          | $ (u^3 - u^2 + 1)(u^{26} + 2u^{25} + \dots + 2u - 1) $     |
| $c_2, c_3$     | $((u+1)^3)(u^{26}+4u^{25}+\cdots-u-1)$                     |
| $c_4, c_9$     | $u^3(u^{26} - u^{25} + \dots - 12u + 8)$                   |
| $c_5$          | $((u-1)^3)(u^{26} + 4u^{25} + \dots - u - 1)$              |
| $c_6, c_{10}$  | $(u^3 - u^2 + 2u - 1)(u^{26} + 6u^{25} + \dots + 14u + 1)$ |
| $c_7$          | $(u^3 + u^2 - 1)(u^{26} + 2u^{25} + \dots + 2u - 1)$       |
| c <sub>8</sub> | $(u^3 + u^2 + 2u + 1)(u^{26} + 6u^{25} + \dots + 14u + 1)$ |

IV. Riley Polynomials

| Crossings          | Riley Polynomials at each crossing                           |
|--------------------|--------------------------------------------------------------|
| $c_1, c_7$         | $(y^3 - y^2 + 2y - 1)(y^{26} - 6y^{25} + \dots - 14y + 1)$   |
| $c_2, c_3, c_5$    | $((y-1)^3)(y^{26} - 28y^{25} + \dots + 9y + 1)$              |
| $c_4,c_9$          | $y^3(y^{26} - 21y^{25} + \dots - 272y + 64)$                 |
| $c_6, c_8, c_{10}$ | $(y^3 + 3y^2 + 2y - 1)(y^{26} + 30y^{25} + \dots - 38y + 1)$ |