Data driven peak and reachability set estimation

Jared Miller, Mario Sznaier SIAM DS MS112, May 25, 2021

Main Ideas

 L_{∞} bounded noise setting yields polytopic constraints

Use polytopic structure to simplify nonpositivity

Apply to Peak and Reachable Set Estimation

Peak Estimation Background

Peak Estimation Problem

Find maximum value of p(x) along trajectories

$$P^* = \max_{t, x_0 \in X_0} p(x(t))$$

$$\dot{x}(t) = f(t, x(t)) \qquad t \in [0, T]$$

$$x(0) = x_0 \in X_0$$

Peak Function Program

Infinite dimensional linear program (Fantuzzi, Goluskin, 2020) Uses auxiliary function v(t,x)

$$d^* = \min_{\gamma \in \mathbb{R}} \quad \gamma$$
 $\gamma \geq v(0, x) \qquad \forall x \in X_0$
 $\mathcal{L}_f v(t, x) \leq 0 \qquad \forall (t, x) \in [0, T] \times X$
 $v(t, x) \geq p(x) \qquad \forall (t, x) \in [0, T] \times X$
 $v \in C^1([0, T] \times X)$

 $P^* = d^*$ holds if $[0, T] \times X$ is compact, f Lipschitz

Auxiliary Evaluation along Optimal Trajectory

Optimal v(t,x) should be constant until peak is achieved

System with Uncertainty Example

Time-Independent Uncertainty

Time-Dependent Uncertainty

$$\dot{x} = [x_2, -x_1w - x_2 + x_1^3/3]$$

$$w \in [0.5, 1.5], x_0 = [1; 0]$$

Peak Estimation with Uncertainty

Dynamics
$$\dot{x} = f(t, x(t), w(t))$$

Uncertain process $w(t) \in W, \ \forall t \in [0, T]$

Time-dependent w

$$\mathcal{L}_f v(t, x) \leq 0$$
 $\forall (t, x, w) \in \forall [0, T] \times X \times W$

Time-independent $w\left(\frac{dw}{dt}=0\right)$

$$\mathcal{L}_f v(t, x, \mathbf{w}) \leq 0$$
 $\forall (t, x, w) \in [0, T] \times X \times W$

Data Driven Setting

Noise Model

Ground truth $\dot{x} = F(t, x)$

Corrupted observations of system F in $t \in [0, T]$

$$(t_j, x_j, \dot{x}_j)$$
 $\forall j = 1, \dots, N_s$

Assumption of L_{∞} bounded noise

$$||F(t_j, x_j) - \dot{x}_j||_{\infty} \le \epsilon$$
 $\forall j = 1, \dots, N_s$

Sampling: Flow System

Dynamics Model

Parameterize unknown F by functions in dictionary

$$\dot{x}(t) = f(t, x, w) = f_0(t, x) + \sum_{\ell=1}^{L} w_{\ell} f_{\ell}(t, x)$$

Affine in uncertainties w

Bounded noise constraint ϵ

$$||F(t_j, x_j) - \dot{x}_j||_{\infty} \le \epsilon \qquad \forall j = 1, \dots, N_s$$

$$||f(t_j, x_j, w) - \dot{x}_j||_{\infty} \le \epsilon \qquad \forall j = 1, \dots, N_s$$

Noise Constraints

2 linear constraints for each coordinate i, sample j

$$-\epsilon \leq f_0(t_j, x_j)_i + \sum_{\ell=1}^L w_\ell f_\ell(t_j, x_j)_i - (\dot{x}_j)_i \leq \epsilon$$

Polytopic region $W = \{ w \in \mathbb{R}^L \mid Aw \leq b \}$ with $b \in \mathbb{R}^{2N_xN_s}$

Prior Work

Data Driven Solving Methods:

- Interval Analysis
- Koopman Operators
- Infinite LPs
- SVM/Deep Learning

Data Driven Polytopic Framework:

- Safety Verification
- Stabilizing and Safe Control (barrier/density)

Summary of Assumptions

Set
$$[0, T] \times X$$
 is compact

Dynamics f(t, x, w) are Lipschitz, affine in w

Uncertainty W is a compact polytope $\{w \mid Aw \leq b\}$

Nonempty interior: $\exists w \in \mathbb{R}^L \mid Aw < b$

Constraint Decomposition

Feasibility Pair

Setting of time-dependent uncertainty $w(t) \in W$

Problem is Feasible

$$\mathcal{L}_{f(t,x,w)}v(t,x) \leq 0 \qquad \forall (t,x,w) \in [0,T] \times X \times W$$

Problem is Infeasible

$$\mathcal{L}_{f(t,x,w)}v(t,x) > 0$$
 $\exists (t,x,w) \in [0,T] \times X \times W$

Pair of Strong Alternatives

Inequalities and Multipliers

One strict inequality, m non-strict inequalities

$$R = \{ w \mid H(w) > 0, h_1(w) \ge 0, \dots, h_m(w) \ge 0 \}$$

Define weighted sum with multipliers $\zeta \geq 0$

$$S(w;\zeta) = H(w) + \sum_{k=1}^{m} \zeta_k h_k(w)$$

S is positive for all $w \in R, \ \zeta \ge 0$

Theorem of Alternatives

Lagrange dual function g

$$g(\zeta) = \sup_{w \in \mathbb{R}^L} S(w; \zeta) = \sup_{w \in \mathbb{R}^L} H(w) + \sum_{k=1}^m \zeta_k h_k(w)$$

Certificate ζ that R is empty:

$$g(\zeta) \le 0 \quad \forall \zeta \ge 0$$

Weak alternative $g(\zeta) \leq 0$ is strong if:

- H(w), $\forall_k h_k(w)$ convex in w
- Exists a point $w: \forall_k h_k(w) > 0$ (Slater)

Apply Alternatives

Region
$$R = \{ w \mid \mathcal{L}_f v(t,x) > 0, \ Aw \leq b \}$$

Form Lagrange dual $g(\zeta; v) = \sup_{w \in \mathbb{R}^L} S(w; \zeta, t, x)$:

$$g(\zeta; v) = egin{cases} \mathcal{L}_{f_0} v + b^T \zeta & (A^T)_\ell \zeta - f_\ell \cdot \nabla_{\mathsf{x}} v = 0 & \forall \ell \\ \infty & \mathsf{else} \end{cases}$$

Bounded g requires equality constraints over $[0, T] \times X$

Lie Polytopic Decomposition

Original

$$\mathcal{L}_f v(t, x) \leq 0$$
 $\forall (t, x, w) \in [0, T] \times X \times W$

Decomposed

$$\mathcal{L}_{f_0}v(t,x) + b^T\zeta(t,x) \leq 0 \qquad \forall (t,x) \in [0,T] \times X$$
 $(A^T)_{\ell}\zeta(t,x) = f_{\ell} \cdot \nabla_x v(t,x) \quad \forall \ell = 1,\ldots,L$
 $\zeta_k(t,x) \in C_+([0,T] \times X) \qquad \forall k = 1,\ldots,m$

Strong equivalence (given convexity in w)

Summary of Relaxations

Time-independent to time-dependent uncertainty

Nonnegativity to Sum of Squares

Sum of Squares at finite degree

Peak Estimation (revisited)

Peak Original Program

Include time-varying uncertainty $w(t) \in W$

$$d^* = \min_{\gamma \in \mathbb{R}} \quad \gamma$$
 $\gamma \geq v(0, x) \qquad \forall x \in X_0$
 $\mathcal{L}_f v(t, x) \leq 0 \qquad \forall (t, x, w) \in [0, T] \times X \times W$
 $v(t, x) \geq p(x) \qquad \forall (t, x) \in [0, T] \times X$
 $v \in C^1([0, T] \times X)$

Peak Decomposed Program

Only the Lie Derivative constraint changes

$$d^* = \min_{\gamma \in \mathbb{R}} \gamma$$
 $\gamma \geq v(0, x)$ $\forall x \in X_0$
 $\mathcal{L}_{f_0} v(t, x) + b^T \zeta(t, x) \leq 0$ $\forall (t, x) \in [0, T] \times X$
 $(A^T)_{\ell} \zeta(t, x) = (f_{\ell} \cdot \nabla_x) v(t, x)$ $\forall \ell = 1, \dots, L$
 $v(t, x) \geq p(x)$ $\forall (t, x) \in [0, T] \times X$
 $v(t, x) \in C^1([0, T] \times X)$
 $\zeta_k(t) \in C_+([0, T] \times X)$ $\forall k = 1, \dots, m$

$$L=1,\ m=80$$
 (2 nonredundant)

$$L = 10, m = 80$$
 (33 nonredundant)

Peak Estimation Example (Epidemic)

Dynamics model:

$$S' = -\beta SI$$
$$I' = \beta SI - \gamma I$$

Truth:
$$\beta = 0.4, \ \gamma = 0.1$$

m = 400 constraints

Peak Estimation Example (Epidemic)

$$L=2, m=400 (5 nonredundant)$$

Dynamics model:

$$\dot{x}_i = A_{ij}x_j - B_{ij}(4x_j^3 - 3x_j)$$

$$A = \begin{bmatrix} -1 & 1 & 1 \\ -1 & 0 & -1 \\ 0 & 1 & -2 \end{bmatrix}$$

$$B = \begin{bmatrix} -\frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

100 Noisy Observations with ϵ =0.5

$$m = 2N_sN_x = 600$$
 constraints

Unknown A, Known B

$$L=9, m=600 (34 nonredundant)$$

Known A, Unknown B

$$L=9, m=600 (30 nonredundant)$$

Unknown A, Unknown B

$$L=18, m=600 (70 nonredundant)$$

Reachable Set Estimation

Reachable Set Estimation

Find set of states reachable from $x_0 \in X_0$ at time t = T

$$P^* = \max_{X_T \subseteq X} \operatorname{vol}(X_T)$$

$$X_T : \exists x(t \mid x_h) :$$

$$\dot{x}(t) = f(t, x(t), w(t)) \qquad \forall t \in [0, T]$$

$$w(t) \in W \qquad \forall t \in [0, T]$$

$$x(0) \in X_0, \ x(T) \in X_T$$

Indicator Function Approximation

Reachability indicator function χ_T

$$\chi_{\mathcal{T}}(x) = \begin{cases} 1 & x \in X_{\mathcal{T}} \\ 0 & x \notin X_{\mathcal{T}} \end{cases}$$

Create upper bound approximant $\omega(x) \in C(X)$:

$$\omega(x) \ge 1$$
 $\forall x \in X_T \subseteq X$
 $\omega(x) \ge 0$ $\forall x \in X$

Stone-Weierstrass: $\omega(x)$ is polynomial

Indicator Function Approximation Example

Determine quality by comparing $\int_X \omega(x) dx$ vs vol (X_T)

$$X_T = [0.1, 0.5] \cup [0.8, 0.9]$$

Function
$$d = 6$$
 $d = 20$ $d = 120$ Truth Area 0.927 0.734 0.671 0.5

Reachable Set Standard Program

Infinite dimensional linear program (Henrion, Korda, 2012)

$$d^* = \min \int_X \omega(x) dx$$

$$v(0,x) \le 0 \qquad \forall x \in X_0$$

$$\mathcal{L}_{f(t,x,w)} v(t,x) \le 0 \qquad \forall (t,x,w) \in [0,T] \times X \times W$$

$$v(T,x) + \omega(x) \ge 1 \qquad \forall x \in X$$

$$v(t,x) \in C^1([0,T] \times X)$$

$$\omega(x) \in C_+(X)$$

Approximation $X_T \subset \{x \in X \mid \omega(x) \geq 1\}$

Reachable Set Decomposed Program

Approximation
$$X_T \subset \{x \in X \mid \omega(x) \geq 1\}$$

$$d^* = \min \int_X \omega(x) dx$$

$$v(0,x) \leq 0 \qquad \forall x \in X_0$$

$$\mathcal{L}_{f_0} v(t,x) + b^T \zeta(t,x) \leq 0 \qquad \forall (t,x) \in [0,T] \times X$$

$$(A^T)_{\ell} \zeta(t,x) = (f_{\ell} \cdot \nabla_x) v(t,x) \quad \forall \ell = 1, \dots, L$$

$$v(T,x) + \omega(x) \geq 1 \qquad \forall x \in X$$

$$v(t,x) \in C^1([0,T] \times X)$$

$$\omega(x) \in C_+(X)$$

$$\zeta_k(t) \in C_+([0,T] \times X) \qquad \forall k = 1, \dots, m$$

Reachable Set Estimation Example (Flow)

$$L=1, m=80$$
 (2 nonredundant)

Reachable Set Estimation Example (Flow)

$$L=10, m=80$$
 (33 nonredundant)

Reachable Set Estimation Example (Flow)

Unknown A, Known B

$$L = 9$$
, $m = 600$ (34 nonredundant)

Take-aways

Conclusion

Exploit polytopic structure of L_{∞} -bounded noise

More SOS constraints in fewer variables

Tractable optimization problems (after preprocessing)

Future Work

- Streaming data and warm starts
- Time-space partitioning
- Maximum positively invariant sets
- Optimal control and extraction
- Hybrid systems
- Compatibility with structure (e.g. sparsity)

Acknowledgements

LAAS-CNRS: Didier Henrion

Robust Systems Lab: Tianyu Dai

Chateaubriand Fellowship of the Office for Science Technology of the Embassy of France in the United States.

National Science Foundation

Air Force Office of Scientific Research

Thank you

Thank you for your attention

Extra Material

Preprocessing: Centering

Chebyshev center c: center of sphere with largest radius in W

Find through linear programming

$$A_k c + r ||A_k||_2 \le b_k$$
 $\forall k$
 $r > 0, c \in \mathbb{R}^L$

Shifted dynamics $f_0 \leftarrow f_0 + \sum_{\ell=1}^L c_\ell f_\ell$

Preprocessing: Redundancy

Majority of $m = 2N_x N_s$ constraints are often redundant

Convex hull of dual polytope: Time: $\Omega(m \log m + m^{\lfloor L/2 \rfloor})$

Linear program per constraint: Time: $m \times \tilde{O}(mL + L^3)$ (Jan van den Brand *et. al.* 2020)

Variations: Nonnegative Control

Control set is
$$W = \{ w \mid Aw \leq b, w \geq 0 \}$$

$$\mathcal{L}_{f_0}v(t,x) + b^T\zeta(t,x) \leq 0 \qquad \forall (t,x) \in [0,T] \times X$$

$$(A^T)_\ell\zeta(t,x) \geq f_\ell \cdot \nabla_x v(t,x) \quad \forall (t,x) \in [0,T] \times X, \forall \ell$$

$$\zeta_k(t,x) \in C_+([0,T] \times X) \qquad \forall k = 1,\dots, m$$

 $Mix \ge and = depending on input structure$

Variations: Centrally Symmetric Control Set

If
$$w \in W$$
, then $-w \in W$

Control set is $W = \{w \mid -b \leq Aw \leq b\}$

$$\mathcal{L}_{f_0} v(t, x) + b^T \zeta(t, x) \leq 0 \qquad \forall (t, x) \in [0, T] \times X$$

$$(A^T)_{\ell} \zeta(t, x) \geq |f_{\ell} \cdot \nabla_x v(t, x)| \quad \forall (t, x) \in [0, T] \times X, \forall \ell$$

$$\zeta_k(t, x) \in C_+([0, T] \times X) \qquad \forall k = 1, \dots, m$$

Generalization of "Convex Optimization of Nonlinear Feedback Controllers via Occupation Measures" by Majumdar *et. al.* (A = I, b = 1)