Jakub Kujawa Mikołaj Kowalski Grupa G8

# Obliczanie całek $\int_{a}^{b} f(x) dx$ metodą Romberga.

Projekt nr 2

#### 1 Opis metody

Do obliczania całek  $\int_a^b f(x) dx$  zastosujemy metodę opracowaną w 1955 roku przez Wernera Romberga, która opiera się na wykorzystaniu złożonego wzoru trapezów:

$$\int_{a}^{b} f(x) dx \approx h_n \sum_{i=0}^{n} f(a+ih)$$
(1)

gdzie n jest liczbą przedziałów o równej długości, na które dzielimy odcinek [a,b] oraz

$$h_n = \frac{b-a}{n}$$

Symbol

$$\sum_{i}$$

oznacza sumę, której skrajne składniki są dzielone na 2.

W naszym przypadku odcinek [a,b] będzie dzielony na  $2^n$  przedziałów o równej długości. Zatem do wzoru (1) będziemy podstawiali

$$h_n = \frac{b-a}{2^n}$$

Niech

$$R(n,0) = h_n \sum_{i=0}^{2^n} f(a+ih)$$
 (2)

Najprostsze wyrażenie, od którego zaczniemy, to

$$R(0,0) = \frac{1}{2}(b-a)[f(a) + f(b)]$$

Aby uniknąć wielokrotnego obliczania wartości funkcji f w tych samych punktach, skorzystamy z rekurencyjnego wyznaczania

$$R(n,0) = \frac{1}{2}R(n-1,0) + h_n \sum_{i=1}^{2^{n-1}} f(a + (2i-1)h_n)$$
(3)

ponieważ w R(n,0) występują wartości potrzebne do wyliczenia R(n-1,0). Wartości funkcji f w tych punktach musimy podzielić na 2 oraz dodać do nich wartości pośrednie  $a + h_n$ ,  $a + 3h_n$ ,  $a + 5h_n$  itd, co można odczytać we wzorze (3).

Przybliżenia R(n,0) tworzą pierwszą kolumnę przybliżeń całki. Kolejne kolumny wyliczymy stosując poniższy wzór dla m>0, który wynika ze wzoru Eulera-Maclaurina oraz ekstrapolacji Richardsona:

$$R(n,m) = R(n,m-1) + \frac{1}{4^m - 1} [R(n,m-1) - R(n-1,m-1)]$$
 (4)

Wobec tego dzięki wzorom (2), (3), (4) znajdziemy wszystkie elementy tablicy trójkatnej:

$$R(0,0)$$
  
 $R(1,0)$   $R(1,1)$   
 $\vdots$   $\vdots$   $\ddots$   
 $R(n,0)$   $R(n,1)$   $\dots$   $R(n,n)$ 

która zawiera coraz lepsze przybliżenia szukanej wartości całki. Najlepsze przybliżenie, to R(n,n). Wartości z tablicy trójkątnej będą obliczane kolejno wierszami, zaczynając od pierwszego.

Obliczając kolejne przybliżenia będziemy badać błędy względem funkcji integral(f, a, b) wbudowanej w program Matlab. Funkcja ta wyznacza wartość całki z funkcji f na przedziale [a, b]. Na podstawie wyznaczonych błędów względnych oraz bezwzględnych zostanie przeprowadzona analiza metody.

#### 2 Opis programu obliczeniowego

W czasie tworzenia programu obliczeniowego zostały stworzone następujące funkcje:

1. Romberg(f, a, b, M) = [x, R]: przyjmuje za argumenty funkcję f, końce przedziału [a, b], na którym wyznaczamy wartość całki, oraz liczbę M, która określa na ile odcinków będzie dzielony przedział [a, b] (na  $2^M$  równych odcinków). Wyznacza wartość  $\int_a^b f(x) dx$  metodą Romberga oraz tablicę R, w której umieszczone są kolejnych przybliżenia wartości badanej całki.

2. testRomberg(f, a, b, n, s): przyjmuje za argumenty funkcję f, końce przedziału [a, b], na którym wyznaczamy wartość całki, liczby całkowite n oraz s. Testuje metodę Romberga dla wartości M od 1 do n z krokiem co s. Dla każdego M wypisuje tabelę w formacie LaTex i tworzy wykresy błędów względnych i bezwględnych.

### 3 Przykłady obliczeniowe

By zbadać poprawność naszego programu sprawdzimy jego działanie dla pewnych konkretnych funkcji:

1. 
$$f(x) = 1 + \sin(\frac{1}{x})$$

2. 
$$f(x) = \sin(x)$$

$$3. \ f(x) = tg(x)$$

4. 
$$f(x) = x^{-1}$$

5. 
$$f(x) = |x|$$

6. 
$$f(x) = \ln x$$

3.1 
$$f(x) = 1 + sin(\frac{1}{x})$$

Sprawdzamy dla przedziałów  $(10^{-3}, 1), (10^{-4}, 1), (10^{-5}, 1), (10^{-6}, 1)$ 

#### **3.1.1 Przedział** $(10^{-3}, 1)$

Tabela 1: Tabela dla  $\int_{10^{-3}}^{1} 1 + \sin \frac{1}{x} dx$ 

| M  | Wynik metodą Romberga | Wynik funkcją integral | Błąd bezwzględny | Błąd względny |
|----|-----------------------|------------------------|------------------|---------------|
| 1  | 1.83234e + 00         | 1.50307e + 00          | 3.29275e - 01    | 2.19069e - 01 |
| 2  | 1.88292e + 00         | 1.50307e + 00          | 3.79858e - 01    | 2.52722e - 01 |
| 3  | 1.32904e + 00         | 1.50307e + 00          | 1.74031e - 01    | 1.15784e - 01 |
| 4  | 1.75390e + 00         | 1.50307e + 00          | 2.50838e - 01    | 1.66884e - 01 |
| 5  | 1.50368e + 00         | 1.50307e + 00          | 6.16420e - 04    | 4.10109e - 04 |
| 6  | 1.45937e + 00         | 1.50307e + 00          | 4.37013e - 02    | 2.90748e - 02 |
| 7  | 1.51810e + 00         | 1.50307e + 00          | 1.50307e - 02    | 1.00000e - 02 |
| 8  | 1.50249e + 00         | 1.50307e + 00          | 5.75817e - 04    | 3.83095e - 04 |
| 9  | 1.49449e + 00         | 1.50307e + 00          | 8.57592e - 03    | 5.70562e - 03 |
| 10 | 1.50079e + 00         | 1.50307e + 00          | 2.28148e - 03    | 1.51789e - 03 |



Rysunek 1: Zależność błędu względnego od dokładności przybliżenia całki  $\int_{10^{-3}}^1 1 + \sin \frac{1}{x} dx$  metodą Romberga

### 3.1.2 Przedział $(10^{-4}, 1)$

Tabela 2: Tabela dla  $\int_{10^{-4}}^1 1 + \sin \frac{1}{x} dx$ 

| M  | Wynik metodą Romberga | Wynik funkcją integral | Błąd bezwzględny | Błąd względny |
|----|-----------------------|------------------------|------------------|---------------|
| 1  | 1.26780e + 00         | 1.50397e + 00          | 2.36166e - 01    | 1.57028e - 01 |
| 2  | 1.69539e + 00         | 1.50397e + 00          | 1.91427e - 01    | 1.27281e - 01 |
| 3  | 1.23957e + 00         | 1.50397e + 00          | 2.64395e - 01    | 1.75798e - 01 |
| 4  | 1.70998e + 00         | 1.50397e + 00          | 2.06014e - 01    | 1.36980e - 01 |
| 5  | 1.46424e + 00         | 1.50397e + 00          | 3.97289e - 02    | 2.64161e - 02 |
| 6  | 1.48336e + 00         | 1.50397e + 00          | 2.06074e - 02    | 1.37020e - 02 |
| 7  | 1.54157e + 00         | 1.50397e + 00          | 3.76039e - 02    | 2.50031e - 02 |
| 8  | 1.50853e + 00         | 1.50397e + 00          | 4.55822e - 03    | 3.03080e - 03 |
| 9  | 1.49687e + 00         | 1.50397e + 00          | 7.09600e - 03    | 4.71819e - 03 |
| 10 | 1.50673e + 00         | 1.50397e + 00          | 2.76236e - 03    | 1.83671e - 03 |



Rysunek 2: Zależność błędu względnego od dokładności przybliżenia całki  $\int_{10^{-4}}^1 1 + \sin \frac{1}{x} dx$  metodą Romberga

### 3.1.3 Przedział $(10^{-5}, 1)$

Tabela 3: Tabela dla  $\int_{10^{-5}}^1 1 + \sin \frac{1}{x} dx$ 

| M  | Wynik metodą Romberga | Wynik funkcją integral | Błąd bezwzględny | Błąd względny |
|----|-----------------------|------------------------|------------------|---------------|
| 1  | 1.43860e + 00         | 1.50406e + 00          | 6.54608e - 02    | 4.35228e - 02 |
| 2  | 1.75239e + 00         | 1.50406e + 00          | 2.48333e - 01    | 1.65109e - 01 |
| 3  | 1.26598e + 00         | 1.50406e + 00          | 2.38080e - 01    | 1.58292e - 01 |
| 4  | 1.72296e + 00         | 1.50406e + 00          | 2.18901e - 01    | 1.45540e - 01 |
| 5  | 1.46897e + 00         | 1.50406e + 00          | 3.50854e - 02    | 2.33272e - 02 |
| 6  | 1.48980e + 00         | 1.50406e + 00          | 1.42549e - 02    | 9.47764e - 03 |
| 7  | 1.54794e + 00         | 1.50406e + 00          | 4.38814e - 02    | 2.91754e - 02 |
| 8  | 1.51330e + 00         | 1.50406e + 00          | 9.24697e - 03    | 6.14802e - 03 |
| 9  | 1.49689e + 00         | 1.50406e + 00          | 7.16514e - 03    | 4.76388e - 03 |
| 10 | 1.51345e + 00         | 1.50406e + 00          | 9.39073e - 03    | 6.24360e - 03 |



Rysunek 3: Zależność błędu względnego od dokładności przybliżenia całki  $\int_{10^{-5}}^1 1 + \sin \frac{1}{x} dx$  metodą Romberga

### 3.1.4 Przedział $(10^{-6}, 1)$

Tabela 4: Tabela dla  $\int_{10^{-6}}^1 1 + \sin \frac{1}{x} dx$ 

| M  | Wynik metodą Romberga | Wynik funkcją integral | Błąd bezwzględny | Błąd względny |
|----|-----------------------|------------------------|------------------|---------------|
| 1  | 1.83234e + 00         | 1.50307e + 00          | 3.29275e - 01    | 2.19069e - 01 |
| 2  | 1.88292e + 00         | 1.50307e + 00          | 3.79858e - 01    | 2.52722e - 01 |
| 3  | 1.32904e + 00         | 1.50307e + 00          | 1.74031e - 01    | 1.15784e - 01 |
| 4  | 1.75390e + 00         | 1.50307e + 00          | 2.50838e - 01    | 1.66884e - 01 |
| 5  | 1.50368e + 00         | 1.50307e + 00          | 6.16420e - 04    | 4.10109e - 04 |
| 6  | 1.45937e + 00         | 1.50307e + 00          | 4.37013e - 02    | 2.90748e - 02 |
| 7  | 1.51810e + 00         | 1.50307e + 00          | 1.50307e - 02    | 1.00000e - 02 |
| 8  | 1.50249e + 00         | 1.50307e + 00          | 5.75817e - 04    | 3.83095e - 04 |
| 9  | 1.49449e + 00         | 1.50307e + 00          | 8.57592e - 03    | 5.70562e - 03 |
| 10 | 1.50079e + 00         | 1.50307e + 00          | 2.28148e - 03    | 1.51789e - 03 |



Rysunek 4: Zależność błędu względnego od dokładności przybliżenia całki  $\int_{10^{-6}}^1 1 + \sin \frac{1}{x} dx$  metodą Romberga

# $3.2 \quad f(x) = \sin(x)$

Sprawdzenie dla przedziałów  $[0,2\pi]$ oraz  $[o,\pi]$ 

Tabela 5: Tabela dla  $\int_0^{2\pi} \sin x dx$ 

| M  | Wynik metodą Romberga | Wynik funkcją integral | Błąd bezwzględny | Błąd względny |
|----|-----------------------|------------------------|------------------|---------------|
| 1  | -7.69468e - 16        | -5.55112e - 17         | 7.13957e - 16    | 1.28615e + 01 |
| 2  | 2.56489e - 16         | -5.55112e - 17         | 3.12001e - 16    | 5.62050e + 00 |
| 3  | -1.70993e - 17        | -5.55112e - 17         | 3.84119e - 17    | 6.91966e - 01 |
| 4  | -2.51692e - 16        | -5.55112e - 17         | 1.96181e - 16    | 3.53407e + 00 |
| 5  | 2.10462e - 16         | -5.55112e - 17         | 2.65973e - 16    | 4.79135e + 00 |
| 6  | 2.34544e - 17         | -5.55112e - 17         | 7.89655e - 17    | 1.42252e + 00 |
| 7  | -9.00888e - 17        | -5.55112e - 17         | 3.45776e - 17    | 6.22895e - 01 |
| 8  | 1.02755e - 17         | -5.55112e - 17         | 6.57866e - 17    | 1.18511e + 00 |
| 9  | -1.41478e - 16        | -5.55112e - 17         | 8.59667e - 17    | 1.54864e + 00 |
| 10 | -2.30603e - 16        | -5.55112e - 17         | 1.75092e - 16    | 3.15417e + 00 |
| 11 | 3.99984e - 16         | -5.55112e - 17         | 4.55495e - 16    | 8.20548e + 00 |
| 12 | 3.47263e - 16         | -5.55112e - 17         | 4.02774e - 16    | 7.25574e + 00 |
| 13 | 5.13150e - 16         | -5.55112e - 17         | 5.68661e - 16    | 1.02441e + 01 |
| 14 | -4.08115e - 17        | -5.55112e - 17         | 1.46996e - 17    | 2.64805e - 01 |
| 15 | -3.34600e - 16        | -5.55112e - 17         | 2.79088e - 16    | 5.02761e + 00 |
| 16 | -4.25196e - 17        | -5.55112e - 17         | 1.29915e - 17    | 2.34034e - 01 |
| 17 | 5.21761e - 17         | -5.55112e - 17         | 1.07687e - 16    | 1.93992e + 00 |
| 18 | 3.61441e - 16         | -5.55112e - 17         | 4.16952e - 16    | 7.51114e + 00 |
| 19 | 1.74492e - 16         | -5.55112e - 17         | 2.30003e - 16    | 4.14336e + 00 |
| 20 | -2.45431e - 16        | -5.55112e - 17         | 1.89920e - 16    | 3.42129e + 00 |



Rysunek 5: Zależność błędu względnego od dokładności przybliżenia całki  $\int_0^{2\pi} \sin x$ metodą Romberga

Tabela 6: Tabela dla  $\int_0^{\pi} \sin x dx$ 

| M  | Wynik metodą Romberga | Wynik funkcją integral | Błąd bezwzględny | Błąd względny |
|----|-----------------------|------------------------|------------------|---------------|
| 1  | 1.92367e - 16         | 2.00000e + 00          | 2.00000e + 00    | 1.00000e + 00 |
| 2  | 2.09440e + 00         | 2.00000e + 00          | 9.43951e - 02    | 4.71976e - 02 |
| 3  | 1.99857e + 00         | 2.00000e + 00          | 1.42927e - 03    | 7.14634e - 04 |
| 4  | 2.00001e + 00         | 2.00000e + 00          | 5.54998e - 06    | 2.77499e - 06 |
| 5  | 2.00000e + 00         | 2.00000e + 00          | 5.41271e - 09    | 2.70635e - 09 |
| 6  | 2.00000e + 00         | 2.00000e + 00          | 1.32139e - 12    | 6.60694e - 13 |
| 7  | 2.00000e + 00         | 2.00000e + 00          | 6.66134e - 16    | 3.33067e - 16 |
| 8  | 2.00000e + 00         | 2.00000e + 00          | 2.22045e - 16    | 1.11022e - 16 |
| 9  | 2.00000e + 00         | 2.00000e + 00          | 4.44089e - 16    | 2.22045e - 16 |
| 10 | 2.00000e + 00         | 2.00000e + 00          | 0.00000e + 00    | 0.00000e + 00 |
| 11 | 2.00000e + 00         | 2.00000e + 00          | 4.44089e - 16    | 2.22045e - 16 |
| 12 | 2.00000e + 00         | 2.00000e + 00          | 2.44249e - 15    | 1.22125e - 15 |
| 13 | 2.00000e + 00         | 2.00000e + 00          | 1.99840e - 15    | 9.99201e - 16 |
| 14 | 2.00000e + 00         | 2.00000e + 00          | 2.22045e - 16    | 1.11022e - 16 |
| 15 | 2.00000e + 00         | 2.00000e + 00          | 2.88658e - 15    | 1.44329e - 15 |
| 16 | 2.00000e + 00         | 2.00000e + 00          | 4.21885e - 15    | 2.10942e - 15 |
| 17 | 2.00000e + 00         | 2.00000e + 00          | 2.22045e - 16    | 1.11022e - 16 |
| 18 | 2.00000e + 00         | 2.00000e + 00          | 2.88658e - 15    | 1.44329e - 15 |
| 19 | 2.00000e + 00         | 2.00000e + 00          | 2.70894e - 14    | 1.35447e - 14 |
| 20 | 2.00000e + 00         | 2.00000e + 00          | 1.53211e - 14    | 7.66054e - 15 |



Rysunek 6: Zależność błędu względnego od dokładności przybliżenia całki  $\int_0^\pi \sin x$ metodą Romberga

### $3.3 \quad f(x) = tg(x)$

Sprawdzenie dla przedziałów  $[0,\frac{0,99\pi}{2}]$ oraz  $[-\frac{0,99\pi}{2},\frac{0,99\pi}{2}]$ 

Tabela 7: Tabela dla  $\int_{-\frac{0.99\pi}{2}}^{\frac{0.99\pi}{2}} tg(x) dx$ 

| M  | Wynik metodą Romberga | Wynik funkcją integral | Błąd bezwzględny | Błąd względny |
|----|-----------------------|------------------------|------------------|---------------|
| 1  | 0.00000e + 00         | -1.66533e - 16         | 1.66533e - 16    | 1.00000e + 00 |
| 2  | 0.00000e + 00         | -1.66533e - 16         | 1.66533e - 16    | 1.00000e + 00 |
| 3  | 0.00000e + 00         | -1.66533e - 16         | 1.66533e - 16    | 1.00000e + 00 |
| 4  | -9.97774e - 16        | -1.66533e - 16         | 8.31241e - 16    | 4.99143e + 00 |
| 5  | -1.68252e - 16        | -1.66533e - 16         | 1.71863e - 18    | 1.03200e - 02 |
| 6  | -3.56558e - 16        | -1.66533e - 16         | 1.90024e - 16    | 1.14106e + 00 |
| 7  | -1.09731e - 15        | -1.66533e - 16         | 9.30772e - 16    | 5.58910e + 00 |
| 8  | -3.45315e - 16        | -1.66533e - 16         | 1.78782e - 16    | 1.07355e + 00 |
| 9  | 7.49472e - 15         | -1.66533e - 16         | 7.66125e - 15    | 4.60043e + 01 |
| 10 | -2.12673e - 15        | -1.66533e - 16         | 1.96019e - 15    | 1.17706e + 01 |
| 11 | 6.84248e - 16         | -1.66533e - 16         | 8.50781e - 16    | 5.10877e + 00 |
| 12 | 1.15889e - 15         | -1.66533e - 16         | 1.32542e - 15    | 7.95887e + 00 |
| 13 | 5.78013e - 16         | -1.66533e - 16         | 7.44547e - 16    | 4.47085e + 00 |
| 14 | -2.92274e - 15        | -1.66533e - 16         | 2.75621e - 15    | 1.65505e + 01 |
| 15 | 8.38394e - 16         | -1.66533e - 16         | 1.00493e - 15    | 6.03439e + 00 |
| 16 | 2.45863e - 16         | -1.66533e - 16         | 4.12397e - 16    | 2.47636e + 00 |
| 17 | -1.26976e - 16        | -1.66533e - 16         | 3.95577e - 17    | 2.37536e - 01 |
| 18 | 1.11703e - 15         | -1.66533e - 16         | 1.28356e - 15    | 7.70752e + 00 |
| 19 | -4.04998e - 16        | -1.66533e - 16         | 2.38465e - 16    | 1.43193e + 00 |
| 20 | -2.06147e - 16        | -1.66533e - 16         | 3.96135e - 17    | 2.37871e - 01 |



Rysunek 7: Zależność błędu względnego od dokładności przybliżenia całki  $\int_{-\frac{0.99\pi}{2}}^{\frac{0.99\pi}{2}} tg(x)dx$  metodą Romberga

Tabela 8: Tabela dla  $\int_0^{\frac{0.99\pi}{2}} tg(x)dx$ 

| M  | Wynik metodą Romberga | Wynik funkcją integral | Błąd bezwzględny | Błąd względny |
|----|-----------------------|------------------------|------------------|---------------|
| 1  | 4.94959e + 01         | 4.15363e + 00          | 4.53423e + 01    | 1.09163e + 01 |
| 2  | 1.75192e + 01         | 4.15363e + 00          | 1.33656e + 01    | 3.21781e + 00 |
| 3  | 9.42158e + 00         | 4.15363e + 00          | 5.26795e + 00    | 1.26828e + 00 |
| 4  | 6.14049e + 00         | 4.15363e + 00          | 1.98686e + 00    | 4.78343e - 01 |
| 5  | 4.79897e + 00         | 4.15363e + 00          | 6.45342e - 01    | 1.55368e - 01 |
| 6  | 4.31677e + 00         | 4.15363e + 00          | 1.63141e - 01    | 3.92768e - 02 |
| 7  | 4.18191e + 00         | 4.15363e + 00          | 2.82769e - 02    | 6.80776e - 03 |
| 8  | 4.15652e + 00         | 4.15363e + 00          | 2.89548e - 03    | 6.97097e - 04 |
| 9  | 4.15378e + 00         | 4.15363e + 00          | 1.50800e - 04    | 3.63056e - 05 |
| 10 | 4.15363e + 00         | 4.15363e + 00          | 3.51208e - 06    | 8.45546e - 07 |
| 11 | 4.15363e + 00         | 4.15363e + 00          | 3.31122e - 08    | 7.97188e - 09 |
| 12 | 4.15363e + 00         | 4.15363e + 00          | 1.17343e - 10    | 2.82508e - 11 |
| 13 | 4.15363e + 00         | 4.15363e + 00          | 1.15463e - 13    | 2.77982e - 14 |
| 14 | 4.15363e + 00         | 4.15363e + 00          | 2.84217e - 14    | 6.84262e - 15 |
| 15 | 4.15363e + 00         | 4.15363e + 00          | 3.01981e - 14    | 7.27029e - 15 |
| 16 | 4.15363e + 00         | 4.15363e + 00          | 2.39808e - 14    | 5.77346e - 15 |
| 17 | 4.15363e + 00         | 4.15363e + 00          | 3.46390e - 14    | 8.33945e - 15 |
| 18 | 4.15363e + 00         | 4.15363e + 00          | 3.46390e - 14    | 8.33945e - 15 |
| 19 | 4.15363e + 00         | 4.15363e + 00          | 2.39808e - 14    | 5.77346e - 15 |
| 20 | 4.15363e + 00         | 4.15363e + 00          | 1.33227e - 14    | 3.20748e - 15 |



Rysunek 8: Zależność błędu względnego od dokładności przybliżenia całki  $\int_0^{0.99\pi} tg(x)dx$  metodą Romberga

# 3.4 $f(x) = x^{-1}$

Sprawdzenie dla przedziału  $[10^{-5}, 2]$ 

Tabela 9: Tabela dla  $\int_{10^{-5}}^2 x^{-1} dx$ 

| M  | Wynik metodą Romberga | Wynik funkcją integral | Błąd bezwzględny | Błąd względny |
|----|-----------------------|------------------------|------------------|---------------|
| 1  | 1.00000e + 05         | 1.22061e + 01          | 9.99878e + 04    | 8.19164e + 03 |
| 2  | 3.33347e + 04         | 1.22061e + 01          | 3.33225e + 04    | 2.72999e + 03 |
| 3  | 1.55577e + 04         | 1.22061e + 01          | 1.55455e + 04    | 1.27359e + 03 |
| 4  | 7.65723e + 03         | 1.22061e + 01          | 7.64502e + 03    | 6.26329e + 02 |
| 5  | 3.81577e + 03         | 1.22061e + 01          | 3.80357e + 03    | 3.11613e + 02 |
| 6  | 1.90854e + 03         | 1.22061e + 01          | 1.89633e + 03    | 1.55360e + 02 |
| 7  | 9.56896e + 02         | 1.22061e + 01          | 9.44690e + 02    | 7.73951e + 01 |
| 8  | 4.81625e + 02         | 1.22061e + 01          | 4.69419e + 02    | 3.84578e + 01 |
| 9  | 2.44361e + 02         | 1.22061e + 01          | 2.32155e + 02    | 1.90196e + 01 |
| 10 | 1.26076e + 02         | 1.22061e + 01          | 1.13870e + 02    | 9.32899e + 00 |
| 11 | 6.72774e + 01         | 1.22061e + 01          | 5.50713e + 01    | 4.51179e + 00 |
| 12 | 3.82169e + 01         | 1.22061e + 01          | 2.60108e + 01    | 2.13097e + 00 |
| 13 | 2.40182e + 01         | 1.22061e + 01          | 1.18122e + 01    | 9.67728e - 01 |
| 14 | 1.72364e + 01         | 1.22061e + 01          | 5.03032e + 00    | 4.12116e - 01 |
| 15 | 1.41369e + 01         | 1.22061e + 01          | 1.93085e + 00    | 1.58187e - 01 |
| 16 | 1.28342e + 01         | 1.22061e + 01          | 6.28176e - 01    | 5.14642e - 02 |
| 17 | 1.23642e + 01         | 1.22061e + 01          | 1.58099e - 01    | 1.29525e - 02 |
| 18 | 1.22332e + 01         | 1.22061e + 01          | 2.71754e - 02    | 2.22638e - 03 |
| 19 | 1.22088e + 01         | 1.22061e + 01          | 2.75027e - 03    | 2.25319e - 04 |
| 20 | 1.22062e + 01         | 1.22061e + 01          | 1.41156e - 04    | 1.15644e - 05 |



Rysunek 9: Zależność błędu względnego od dokładności przybliżenia całki  $\int_{10^{-5}}^2 x^{-1} dx$ metodą Romberga

# **3.5** f(x) = |x|

Sprawdzenie dla przedziału  $\left[-1,2\right]$ 

Tabela 10: Tabela dla  $\int_{-1}^{2} |x| dx$ 

| M  | Wynik metodą Romberga | Wynik funkcją integral | Błąd bezwzględny | Błąd względny |
|----|-----------------------|------------------------|------------------|---------------|
| 1  | 4.50000e + 00         | 2.50000e + 00          | 2.00000e + 00    | 8.00000e - 01 |
| 2  | 2.50000e + 00         | 2.50000e + 00          | 4.18100e - 07    | 1.67240e - 07 |
| 3  | 2.50000e + 00         | 2.50000e + 00          | 4.18100e - 07    | 1.67240e - 07 |
| 4  | 2.50000e + 00         | 2.50000e + 00          | 4.18100e - 07    | 1.67240e - 07 |
| 5  | 2.50000e + 00         | 2.50000e + 00          | 4.18100e - 07    | 1.67240e - 07 |
| 6  | 2.50000e + 00         | 2.50000e + 00          | 4.18100e - 07    | 1.67240e - 07 |
| 7  | 2.50000e + 00         | 2.50000e + 00          | 4.18100e - 07    | 1.67240e - 07 |
| 8  | 2.50000e + 00         | 2.50000e + 00          | 4.18100e - 07    | 1.67240e - 07 |
| 9  | 2.50000e + 00         | 2.50000e + 00          | 4.18100e - 07    | 1.67240e - 07 |
| 10 | 2.50000e + 00         | 2.50000e + 00          | 4.18100e - 07    | 1.67240e - 07 |
| 11 | 2.50000e + 00         | 2.50000e + 00          | 4.18100e - 07    | 1.67240e - 07 |
| 12 | 2.50000e + 00         | 2.50000e + 00          | 4.18100e - 07    | 1.67240e - 07 |
| 13 | 2.50000e + 00         | 2.50000e + 00          | 4.18100e - 07    | 1.67240e - 07 |
| 14 | 2.50000e + 00         | 2.50000e + 00          | 4.18100e - 07    | 1.67240e - 07 |
| 15 | 2.50000e + 00         | 2.50000e + 00          | 4.18100e - 07    | 1.67240e - 07 |
| 16 | 2.50000e + 00         | 2.50000e + 00          | 4.18100e - 07    | 1.67240e - 07 |
| 17 | 2.50000e + 00         | 2.50000e + 00          | 4.18100e - 07    | 1.67240e - 07 |
| 18 | 2.50000e + 00         | 2.50000e + 00          | 4.18100e - 07    | 1.67240e - 07 |
| 19 | 2.50000e + 00         | 2.50000e + 00          | 4.18100e - 07    | 1.67240e - 07 |
| 20 | 2.50000e + 00         | 2.50000e + 00          | 4.18100e - 07    | 1.67240e - 07 |



Rysunek 10: Zależność błędu względnego od dokładności przybliżenia całki  $\int_{-1}^2 |x| dx$ metodą Romberga

# **3.6** f(x) = ln(x)

Sprawdzenie dla przedziału [0.5, 3]

Tabela 11: Tabela dla  $\int_{0.5}^{3} \ln x dx$ 

| M  | Wynik metodą Romberga | Wynik funkcją integral | Błąd bezwzględny | Błąd względny |
|----|-----------------------|------------------------|------------------|---------------|
| 1  | 5.06831e - 01         | 1.14241e + 00          | 6.35579e - 01    | 5.56349e - 01 |
| 2  | 1.10164e + 00         | 1.14241e + 00          | 4.07737e - 02    | 3.56909e - 02 |
| 3  | 1.13896e + 00         | 1.14241e + 00          | 3.44878e - 03    | 3.01886e - 03 |
| 4  | 1.14221e + 00         | 1.14241e + 00          | 1.96782e - 04    | 1.72252e - 04 |
| 5  | 1.14240e + 00         | 1.14241e + 00          | 5.94359e - 06    | 5.20268e - 06 |
| 6  | 1.14241e + 00         | 1.14241e + 00          | 8.17907e - 08    | 7.15949e - 08 |
| 7  | 1.14241e + 00         | 1.14241e + 00          | 4.61816e - 10    | 4.04247e - 10 |
| 8  | 1.14241e + 00         | 1.14241e + 00          | 9.91873e - 13    | 8.68228e - 13 |
| 9  | 1.14241e + 00         | 1.14241e + 00          | 8.88178e - 16    | 7.77460e - 16 |
| 10 | 1.14241e + 00         | 1.14241e + 00          | 2.22045e - 16    | 1.94365e - 16 |
| 11 | 1.14241e + 00         | 1.14241e + 00          | 0.00000e + 00    | 0.00000e + 00 |
| 12 | 1.14241e + 00         | 1.14241e + 00          | 1.11022e - 15    | 9.71825e - 16 |
| 13 | 1.14241e + 00         | 1.14241e + 00          | 0.00000e + 00    | 0.00000e + 00 |
| 14 | 1.14241e + 00         | 1.14241e + 00          | 0.00000e + 00    | 0.00000e + 00 |
| 15 | 1.14241e + 00         | 1.14241e + 00          | 1.77636e - 15    | 1.55492e - 15 |
| 16 | 1.14241e + 00         | 1.14241e + 00          | 3.77476e - 15    | 3.30420e - 15 |
| 17 | 1.14241e + 00         | 1.14241e + 00          | 2.22045e - 16    | 1.94365e - 16 |
| 18 | 1.14241e + 00         | 1.14241e + 00          | 3.77476e - 15    | 3.30420e - 15 |
| 19 | 1.14241e + 00         | 1.14241e + 00          | 4.66294e - 15    | 4.08166e - 15 |
| 20 | 1.14241e + 00         | 1.14241e + 00          | 8.21565e - 15    | 7.19150e - 15 |



Rysunek 11: Zależność błędu względnego od dokładności przybliżenia całki  $\int_{0.5}^3 \ln x dx$ metodą Romberga

### 4 Analiza wyników



Rysunek 12: Zależność błędu względnego od dokładności przybliżenia całki  $\int_{0.5}^3 \ln x dx$ metodą Romberga



Rysunek 13: Zależność błędu względnego od dokładności przybliżenia całki  $\int_{0.5}^3 \ln x dx$ metodą Romberga



Rysunek 14: Zależność błędu względnego od dokładności przybliżenia całki  $\int_{0.5}^3 \ln x dx$ metodą Romberga



Rysunek 15: Zależność błędu względnego od dokładności przybliżenia całki  $\int_{0.5}^3 \ln x dx$ metodą Romberga