Response to the Comments: Boundary Multiple Measurement Vectors for Multi-Coset Sampler

Dong Xiao, Jian Wang and Yun Lin

I. NEW EXPERIMENT

We provide a new experiment that compares the recent algorithm DTMP in the literature [16] with SI-SSP. The high sparsity case which has been studied in many compressed sensing literature absolutely can be still valid for SI-SSP and details can be seen in Fig. 1. In our experiments, we consider a multi-band signal with frequency range $[-5,5] \mathrm{GHz}$ and $N_{\mathrm{sig}}=3$ PU's signals, whose bandwidths are B=100 and $500\mathrm{MHz}$ corresponding to $\frac{L}{M}=2$ and 6, respectively. We divide the frequency range into L=100 cosets and use $p\in[6,20]$ channels or $p\in[36,50]$ channels to get the MCS signals, with delay coefficients randomly generated. We set conditions where $\frac{L}{M}=6$, $N_{\mathrm{sig}}=3$ and the $|\mathrm{supp}(\mathbf{X})|=18$. The sparsity of \mathbf{X} is a very high value for the signal length L=100.

Moreover, we add Gaussian white noise to the signal with signal-to-noise ratio (SNR) of $\{-10,10,30\}$ dB. In bMMV, we consider r=4 partitioning sub-matrices and set $\omega=0.8$ to the weighting matrix W. In SI-SSP, we select triple noise variance as the tolerance. In DTMP, we select the hyper-parameter constant $C=\{3,0.001,0.001\}$ for SNR $=\{-10,10,30\}$. To compare the recovery accuracy of SI-SSP with DTMP, we use the detection probability P_d and false alarm probability P_f as metrics.

From Fig. 1, SI-SSP has a better recovery performance than DTMP algorithm in both the low and high signal sparsity cases.

Fig. 1. P_d and P_f of DTMP and SI-SSP against p from $6 \sim 20$ and $36 \sim 50$ with SNR = $\{-10, 10, 30\}$ dB. From above to below: the signal with $\frac{L}{M} = 6$ is decomposed into r = 4 sub-matrices and the signal with $\frac{L}{M} = 2$ is decomposed into r = 4 sub-matrices.

II. COMPUTATIONAL ANALYSIS

We give the computational analysis of SI-SSP. We divide SI-SSP into two main steps i) the subsequent selection and ii) pruning operations for computational analysis. First, in each iteration, the proxy step requires O(pNL/r) computations for a sub-matrix in general. Second, the identification need O(L) computing cost. Then, the support merger step will cost O(K) computations, where $K = |\text{supp}(\mathbf{X})|$ is the signal sparsity. Finally, we consider that SI-SSP repeats O(K) iterations and there r sub-matrices, the total time complexity of the subsequent selection is upper-bounded by O(pNL+rL+rK).

In each iteration, the cost of computing the projections and the pruning operations are of $O(pK^2N/r)$ and O(K) the order for a sub-matrix. Then, we could sum the two-part costs to get $O(pK^2N/r+K)$ computations. Furthermore, we consider that SI-SSP repeats O(K) iterations and there r sub-matrices, the total time complexity of SI-SSP is upper-bounded by $O(pN(L+K^2))$. When the signal is very sparse, in particular, when $K^2 < O(L)$, the total complexity of SI-SSP is upper-bounded by O(pNL).

III. COMPLEX FORM OF RIP

The restricted isometry property (RIP) framework can be defined on the complex field. We have:

Definition 1. A sensing matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$ is said to satisfy the s-order RIP if for any s-sparse $(\|\mathbf{x}\|_0 \leq s)$ signal $\mathbf{x} \in \mathbb{C}^n$

$$(1 - \delta) \|\mathbf{x}\|_{2}^{2} \le \|\mathbf{A}\mathbf{x}\|_{2}^{2} \le (1 + \delta) \|\mathbf{x}\|_{2}^{2},$$
 (S.1)

where $0 \le \delta < 1$. The infimum of δ , denoted by δ_s , is called the restricted isometry constant (RIC) of \mathbf{A} .

Obviously, the RIP condition can be used to analyze both complex and real matrices (A and X).

1