The Effects of Latency Penalties in Evaluating Push Notification Systems

Luchen Tan, Jimmy Lin, Adam Roegiest, and Charles L. A. Clarke

David R. Cheriton School of Computer Science University of Waterloo, Ontario, Canada

{luchen.tan, jimmylin, aroegies}@uwaterloo.ca, claclark@gmail.com

ABSTRACT

We examine the effects of different latency penalties in the evaluation of push notification systems, as operationalized in the TREC 2015 Microblog track evaluation. The purpose of this study is to inform the design of metrics for the TREC 2016 Real-Time Summarization track, which is largely modeled after the TREC 2015 evaluation design.

1. INTRODUCTION

There is emerging interest in building push notification systems that filter social media streams such as Twitter to deliver relevant content directly to users' mobile phones. The Microblog track at TREC 2015 operationalized the push notification task in the so-called "scenario A" variant of the real-time filtering task [2]. This evaluation forms the basis of the Real-Time Summarization (RTS) track at TREC 2016. To help inform the design of metrics for this new evaluation, in this short paper we examine the effects of latency penalties by considering the impact of different metric variants on runs submitted to TREC 2015. The primary goal of this work is to provide a basis on which the evaluation metrics for the RTS track at TREC 2016 can be developed.

2. BACKGROUND

We assume that the reader is already familiar with the general setup of the TREC 2015 Microblog track; otherwise, see Lin et al. [2] for details. All experimental analyses in this paper are based on runs submitted to that evaluation. Note the evaluation consisted of two scenarios: "scenario A" push notifications and "scenario B" email digests. Here we focus only on push notifications, as the latency penalty is not applicable for scenario B.

At a high level, push notifications must relevant (i.e., on topic), timely (i.e., the user desires news as soon as an event occurs), and novel (i.e., the user does not want to see tweets that say basically the same thing). Expected latency-discounted gain (ELG), adapted from the TREC Temporal Summarization track [1], represents an attempt to capture these salient aspects. It is defined as:

$$\frac{1}{N} \sum G(t) \tag{1}$$

where N is the number of tweets returned and G(t) is the gain of each tweet: non-relevant tweets receive a gain of 0, relevant tweets receive a gain of 0.5, and highly-relevant tweets receive a gain of 1.0.

A key aspect of this metric is its handling of redundancy and timeliness: a system only receives credit for returning one tweet from each cluster. Furthermore, a latency penalty is applied to all tweets, computed as $\mathrm{MAX}(0,(100-d)/100)$, where the delay d is the time elapsed (in minutes, rounded down) between the tweet creation time (i.e., when it was posted) and the putative time the tweet was pushed to the user. That is, if the system delivers a relevant tweet within a minute of the tweet being posted, the system receives full credit. Otherwise, credit decays linearly such that after 100 minutes, the system receives no credit even if the tweet was relevant. Lacking any empirical guidance, the linear decay and the 100 minute threshold represented arbitrary decisions made by the organizers.

Due to the setup of the task and the nature of interest profiles, it is possible (and indeed observed empirically) that for some days, no relevant tweets appear in the judgment pool. In terms of evaluation metrics, a system should be rewarded for correctly identifying these cases and not pushing non-relevant content. This is captured in the official metric as follows: If there are no relevant tweets for a particular day and the system returns zero tweets, it receives a score of one (i.e., perfect score) for that day; otherwise, the system receives a score of zero for that day. For the TREC 2015 topics, an empty run receives an ELG of 0.2471. Recognizing that there is no relevant content to push appears to be a difficult task, as most systems in TREC 2015 did not beat the empty run in terms of ELG.

Using the terminology of Tan et al. [3], who performed post hoc analyses of the TREC 2015 Microblog track evaluation, the official ELG metric is called ELG-1. For rhetorical convenience, they call days in which there are no relevant tweets for a particular topic (in the pool) "silent days". On a silent day, according to ELG-1, the only two possible scores are one (if the system remained silent) or zero (if the system pushed any tweet). As an alternative, what if we did not reward systems for remaining silent? That is, on a silent day, all systems receive a zero score, no matter what they did. Tan et al. called this variant metric ELG-0, and here we adopt the same terminology.

Both variant metrics can be reasonably justified. ELG-1 makes sense because we want to reward systems for knowing when to "shut up", which is important if the user has many active interest profiles and does not wish to be bombarded with notifications. On the other hand, how would a user know to reward a system for staying silent—she has no global knowledge of whether there actually were any relevant tweets (in the evaluation, this global knowledge comes from pooling). Thus, from an individual user's perspective, it makes sense just to give a score of zero, regardless. Fur-

Figure 1: ELG-1 (left) and ELG-0 (right) of all runs submitted to TREC 2015, comparing the official latency penalty definition with removing the latency penalty altogether. Green circles indicate empty runs.

Figure 2: ELG-1 vs. ELG-0 of all runs submitted to TREC 2015. Green circle indicates the empty run.

thermore, ELG-1 introduces a sharp discontinuity in the objective function, which makes system tuning difficult.

In Figure 2, we show a scatterplot of ELG-1 vs. ELG-0 for all TREC 2015 runs. The green circle here and in all subsequent scatterplots represents the empty run. The R^2 value reports the result of a linear regression, and rank correlation is shown in terms of Kendall's τ . We see no discernible relationship between the two metrics, which shows that they are measuring different things. Lacking user studies to provide empirical guidance, we have no way of determining which metric better captures user preferences. For these reasons, we report the results of subsequent analyses with respect to both ELG-1 and ELG-0.

3. EFFECTS OF THE DELAY PENALTY

The simplest way to quantify the impact of the latency penalty is to remove it altogether. This analysis is shown in Figure 1, where for ELG-1 and ELG-0, we plot the score of each run with and without the latency penalty. In both scatterplots we show the diagonal y=x (note, not the best fit line) for reference. In this and all scatterplots, R^2 values report the results of linear regressions, and rank correlations

are shown in terms of Kendall's τ . As expected, all points lie above the diagonal, since without the latency penalty system scores increase. We were surprised, however, that the scores of many systems were exactly the same, which meant that their algorithms made immediate decisions with respect to each incoming tweet. In fact, there were only a few outlier systems whose scores substantially changed, which meant that they pushed tweets posted in the past.

We are quick to caution, however, that past system behavior is not necessarily a good indication of system behavior in future evaluations. In particular, TREC 2015 represented the first evaluation of push notifications, and it is entirely possible that participants focused on simple algorithms that did not attempt to model the tradeoffs involved in pushing past tweets (i.e., accepting the latency penalty for perhaps better relevance scoring).

Another noteworthy aspect of ELG (both the ELG-1 and ELG-0 variants) is that the latency penalty is computed with respect to the pushed tweet, as opposed to the first tweet in the cluster. Recall that in the evaluation protocol, tweets are semantically clustered into "equivalence sets" that contain substantively the same information. Let's consider the case where tweets A and B belong to the same cluster, but tweet B was posted three hours after tweet A. Suppose system P pushed tweet A two hours after it was posted and system Q pushed tweet B immediately when it was posted. Under the official scoring metric, system P would receive no credit whereas system Q would receive full credit; this doesn't make sense since system P conveyed the relevant information to the user before system Q did.

Recognizing this issue, it seems appropriate to compute the latency penalty with respect to the first tweet in each cluster (which is essentially what the Temporal Summarization track does). The effect of this change on system scores is shown in Figure 3, where the scatterplots show each run under the official score definition and the alternate computation of the latency penalty with respect to the first tweet in each cluster. In both scatterplots we show the diagonal y=x for reference. As expected, all points lie below the diagonal since scores decrease, but system rankings don't change much.

For another perspective, in Figure 4 we show the mean (bars) and median (diamonds) delay in pushing tweets by

Figure 3: ELG-1 (left) and ELG-0 (right) of all runs submitted to TREC 2015, comparing the official latency penalty definition with computing the latency penalty with respect to the first tweet in each cluster. Green circles indicate empty runs.

Figure 4: Quantifying the delay of each run in pushing tweets, with respect to the posted tweet (left) and with respect to the first tweet in each cluster (right). Runs are sorted in descending order of ELG-1.

Figure 5: The push volume of each system, showing the number of relevant tweets pushed and the fraction that contributed to gain. The two bar charts differ in the sort order of the runs: on the left, in descending order of ELG-1, and on the right, in descending order of ELG-0.

each system, according to the official metric on the left, and with respect to the first tweet in each cluster on the right. In these plots, we only consider tweets that actually contributed to a run's score (i.e., yielded non-zero gain). Note that the y axis is on a logarithmic scale in minutes. The bars are arranged in descending ELG-1 score, from left to right. From the bar chart on the left in Figure 4, we see that, indeed, most systems always push immediately when a tweet is posted (if the system thinks the tweet is relevant). We also see a few teams that pushed tweets with a large delay—however, these are systems that pushed very few results, and so their ELG-1 scores are fairly close to that of the empty run.

One salient feature of the participating systems is that they vary quite a bit in the volume of relevant tweets that they push. Because of the reward associated with "staying quiet", systems can achieve similar ELG scores with very different push volumes. This is shown in Figure 5 (left), where each bar shows the total number of relevant tweets that are pushed by each system. The bars are arranged in decreasing ELG-1 score from left to right. The red portions of the bars represent tweets that contribute non-zero gain, while the tan portions of the bars represent tweets that did not contribute any gain. These are either redundant tweets or tweets pushed beyond the maximum acceptable latency (100 minutes) to receive any credit.

We see that there are many cases where systems that pushed more relevant tweets actually score lower than systems that pushed fewer relevant tweets. Many of these are systems that always push tweets no matter what—in other words, they don't know when to "shut up". In the range of middle-scoring runs, we see a number of systems that barely push any content, and so their ELG-1 scores are very close to that of the empty run (which, recall, was a baseline that actually beats most systems). This effect is highlighted in Figure 5 (right), where the runs are resorted in terms of ELG-0 (but otherwise the bars are exactly the same). Under this metric, systems are not rewarded for staying quiet, and therefore systems that push more relevant tweets tend to score higher.

As a final analysis, in Table 1 we tally the number of clusters for each topic, the number of singleton clusters (with only a single relevant tweet), and singleton clusters expressed as a percentage of all clusters. We see that most of the clusters are singletons, which helps explain the results observed in Figure 4: for singleton clusters, the latency penalty is always computed with respect to the same tweet.

4. CONCLUSION

Push notifications should be relevant, novel, and timely. The focus of this work is the last property. Intuitively, systems should be "punished" for returning tweets late, hence the latency penalty implemented in ELG. There is, however, little empirical characterization of how real users would respond to push notifications with increasing delay. Ultimately, user studies are needed to ensure that metric definition and user needs actually align.

5. REFERENCES

 J. Aslam, M. Ekstrand-Abueg, V. Pavlu, F. Diaz, R. McCreadie, and T. Sakai. TREC 2014 Temporal Summarization Track overview. TREC, 2014.

Profile Clusters Singleton	s %
Profile Clusters Singletons	
	3 100%
MB236 97 40	-
MB242 73 4'	1
MB243 119 70	0 59%
MB246 171 12'	7 74%
	3 100%
MB254 32 2'	
MB255 15 12	2 80%
MB260 1 0	0%
MB262 67 48	
MB265 58 44	4 76%
MB267 39 29	9 74%
MB278 35 30	0 86%
MB284 51 42	
MB287 71 58	8 82%
MB298 8	7 88%
MB305 3 2	2 67%
MB324 3 3	3 100%
MB326 20 10	50%
MB331 25	8 32%
MB339 10 9	90%
MB344 818 594	4 73%
MB348 37 25	2 59%
MB353 10 9	90%
MB354 18 :	3 17%
MB357 7	7 100%
MB359 8	7 88%
MB362 55 49	9 89%
MB366 97 79	9 81%
MB371 103 64	4 62%
MB377 12 9	9 75%
MB379 28 15	5 54%
MB383 16 13	3 81%
MB384 14 11	1 79%
MB389 17 14	4 82%
MB391 75 63	1 81%
MB392 17	6 35%
MB400 87 81	1 93%
MB401 311 236	6 76%
MB405 5 5	5 100%
MB409 9	5 56%
	6 75%
MB419 56 36	
MB432 44 4	
MB434 276 25	
MB439 67 63	
MB448 1 1 0	0%
Average 66 49	

Table 1: The total number of clusters and singleton clusters for each interest profile.

- [2] J. Lin, M. Efron, Y. Wang, G. Sherman, and E. Voorhees. Overview of the TREC-2015 Microblog Track. TREC, 2015.
- [3] L. Tan, A. Roegiest, J. Lin, and C. L. A. Clarke. An exploration of evaluation metrics for mobile push notifications. SIGIR, 2016.