Probability Distributions & Confidence Interval Estimation

Nagiza F. Samatova, samatova@csc.ncsu.edu
Professor, Department of Computer Science
North Carolina State University

Learning Objectives: Confidence Intervals (CI)

- Distinguish between the proper use of point estimates and interval estimates
- Calculate confidence intervals (via resampling or formula)
- Calculate standard error and explain its difference from standard deviation
- Calculate CI for:
 - a mean
 - a proportion
 - a difference in means
 - a difference in proportion
- Explain the relationship between the Central Limit Theorem and the applicability of Normal approximation for confidence intervals

Descriptive vs. Inferential Statistics

- Descriptive or Summary Statistics
 - Goal: to describe the features of a collection of data in a quantitative way
 - Measures of Central Tendency:
 - mean, median, and mode
 - Measures of Variability, Dispersion, or Spread:
 - range, variance, standard deviation, quartiles
- Inferential or Inductive Statistics
 - Goal: to summarize a sample of the data to infer or draw conclusions about the population from which the sample is drawn
 - Hypothesis testing
 - A/B testing
 - -p-value
 - t-tests, χ^2 -tests, F-tests
 - Confidence intervals

Confidence Interval (CI): Bootstrap Procedure

- Use the observed sample as a good proxy for the population
- Make the resample size equal the size of the original sample
- Conduct Bootstrap Sampling
 - to compute confidence interval for the point estimate of the population statistic;
 - with point estimate calculated from the original observed sample
- R package:
 - install.packages ("boot")
 - library (boot)
 - boot.obj = boot.boot(...)
 - ci.obj = boot::boot.ci(boot.obj)
 - Example: Bootstrap_sampling.R

Ex: CI Estimation via Bootstrap Simulation

```
# Example: Obama's handling economy example
     resample.statistic <- function(data, size=200,
                                     replace = TRUE, fun.name) {
 5
       draw <- sample(data, size, replace)</pre>
 6
       pos.rate <- fun.name(draw)/size
       return (pos.rate)
 8
 9
10
     # positive and negative rates
11
     sample.size <- 200
12
     pos.response <- 72
13
     neg.response <- 128
14
     positive.rate <- pos.response / sample.size
15
16
     hat <- c(rep(1,pos.response), rep(0,neg.response))
17
18
     with.replacement <- TRUE
19
     n.repeats <- 1000
20
21
     trials <- replicate(n.repeats,
22
                          resample.statistic(hat, sample.size,
23
                                    with.replacement, sum))
24
     hist(trials)
25
     ci \leftarrow quantile(trials, c(0.05, 0.95))
26
     cat("Point Estimate: ", positive.rate, "\n")
     cat("90% Confidence Interval: ",ci,"\n")
```


Statistical Distributions & Functions in R

Distribution	Random Number Generator	Density	Distribution	Quantile
Normal	rnorm	dnorm	pnorm	qnorm
t	rt	dt	pt	qt
F	rf	df	pf	qf
χ^2	rchisq	dchisq	pchisq	qchisq

{dpqr}distribution_abbreviation()

- **d** = density
- p = distribution function
- q = quantile function
- r = random generation
- pnorm(a) $\equiv P(X \leq a)$: probability that a or smaller number occurs
- pnorm(b) pnorm(a) $\equiv P(a \leq X \leq b)$: probability that the variable falls between two points
- qnorm(): given the cumulative probability distribution, it returns the quantile

Statistical Distributions: Mean and Variance

Distribution	Degrees of freedom	Mean	Variance
Normal		μ	σ^2
t	\boldsymbol{n}	0	n/(n-2)
F	n_1 and n_2	$n_2/(n_2-2)$	a/b
χ^2	r	r	2r

$$a = 2n_2^2(n_1 + n_2 - 2)$$

 $b = n_1(n_2 - 2)^2(n_2 - 4)$

Unit Normal Distribution: $N(\mu = 0, \sigma^2 = 1)$

```
# Generate 1000 points with the unit normal distribution
31
32
     randUnitNormal <- rnorm(1000, mean=0, sd = 1)
33
34
     # Calculate their distribution
35
     densityRandUnitNormal <- dnorm(randUnitNormal)</pre>
36
37
     # Plot the ditribution
38
     require (ggplot2)
39
     df <- data.frame(x=randUnitNormal, y=densityRandUnitNormal)</pre>
40
     qqplot(df) + aes(x=x, y=y) + qeom point() +
41
               labs (x="Random Unit Normal Variable", y="Density")
42
43
     # Compute the probability that x is less than 1.64
44
     pnorm (1.64)
45
46
     # Compute the probability that x lies between -1.96 and 1.96
47
     pnorm(1.96) - pnorm(-1.96)
48
49
     # Compute cumulative probability distribution
50
     probabilityRandUnitNormal <- pnorm(randUnitNormal)</pre>
51
     df2 <- data.frame(x=randUnitNormal, y=probabilityRandUnitNormal)</pre>
52
     qqplot(df2) + aes(x=x, y=y) + qeom line() +
53
           labs(x="Random Unit Normal Variable", y="Probability")
54
55
     1 - pnorm(1.96)
```

Two-sided Confidence Interval

95% of the unit normal distribution lies between - 1.96 and 1.96

$$P\{ |Z - 0| < 1.96 \} = 0.95$$

pnorm (1.96) – pnorm (-1.96)

What is (1 - pnorm(1.96))?

One-sided Confidence Interval

95% of the unit normal distribution lies below 1.64

$$P\{Z < 1.64\} = 0.95$$

Normal Distribution: $N(\mu, \sigma^2)$

- Generate a sample of 100 random normal deviates with a mean $\mu = 50$ and a standard deviation $\sigma = 10$:
 - rand.normal <- rnorm (100, mean = 50, sd = 10)
- Compute the estimate of the mean (m) and the estimate of the standard deviation (S) from the rand.normal:
 - m <- mean (rand.normal)
 - S <- sd (rand.normal)
- Are the estimates equal to the theoretical model parameters?
 - $m == \mu$?
 - $S == \sigma$?
- Repeat the first two steps 1000 times, plot the histogram of the mean estimates, and compute the mean and the variance of the estimates:
 - m.estimates <- sapply (1:1000, FUN=function(iter) { mean(rnorm(100, mean=50, sd=10)) })
 - hist (m.estimates)
 - mean (m.estimates)
 - var (m.estimates)

Normal Distribution of Point Estimator: $m \sim N(\mu, \sigma^2/n)$

Suppose we are trying to **estimate the mean** μ of a **population** with a normal density from its **sample** $X = \{x^t\}, t = 1, ..., n$, i.e., $x^t \sim N(\mu, \sigma^2)$:

- $m = \sum_t x^t / n$: the sample average, i.e. the point estimator to the mean
- Because m is the sum of normals, it is also **normal**, $m \sim N(\mu, \frac{\sigma^2}{n})$

Illustration of this concept:

- n <- 100
- mu <- 50
- sigma <- 10
- m.estimates <- sapply (1:1000, FUN=function(iter) { mean(rnorm(n, mean=mu, sd=sigma)) })
- hist (m.estimates)
- mean (m.estimates)
- var (m.estimates)
- sigma * sigma / n

Histogram of m.estimates

Z-normalization: $Z \sim \frac{m-\mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

Suppose we are trying to estimate the mean μ of a normal density from a sample $X = \{x^t\}, t = 1, ..., n$, i.e., $x^t \sim N(\mu, \sigma^2)$:

- $m = \sum_t x^t / n$: the sample average, i.e. the point estimator to the mean
- Assumption: the variance σ^2 is known
- <u>Define</u>: Z-statistic, $Z \sim \frac{m-\mu}{\sigma/\sqrt{n}}$
- Claim: Z-statistic is from a unit normal distribution, $Z \sim N(0, 1)$

Two-sided Confidence Interval for Z-statistic

Remind that we are trying to estimate the mean μ of a population with normal density from its sample $X = \{x^t\}, t = 1, ..., n, i.e., x^t \sim N(\mu, \sigma^2)$:

- $m = \sum_t x^t / n$: the sample average, i.e. the point estimator to the mean
- Assumption: the variance σ^2 is known
- Define: Z-statistic, $Z \sim \frac{m-\mu}{\sigma/\sqrt{n}}$
- Claim: Z-statistic is from a unit normal distribution, $Z \sim N(0,1)$
 - Remember that 95% of Z lies in (-1.96; 1.96)

•
$$P\{-1.96 < Z < 1.96\} = 0.95$$

Based on the definition of the Z-statistic:

•
$$P\left\{-1.96 < \frac{m-\mu}{\sigma/\sqrt{n}} < 1.96\right\} = 0.95$$

$$P\left\{m-1.96\frac{\sigma}{\sqrt{n}} < \mu < m+1.96\frac{\sigma}{\sqrt{n}}\right\} = 0.95$$

With 95% two-sided confidence, μ lies within 1.96 σ/\sqrt{n} units of the sample average

Exercise: 99% two-sided CI for μ

• Note: the variance σ^2 is known

$$\mu \in (m - \frac{2.58\sigma}{\sqrt{n}}; m + \frac{2.58\sigma}{\sqrt{n}})$$

- $m = \sum_t x^t / n$: the sample average, i.e. the point estimator to the mean
- The higher the confidence value is, the larger the confidence interval is
- The interval gets smaller as n, the sample size, increases

Generalization: Two-sided Confidence Interval (CI)

- Assumption: the variance σ^2 is known
- Define: Z-statistic, $Z \sim \frac{m-\mu}{\sigma/\sqrt{n}}$
- Let's denote z_{α} such that: $P\{Z > z_{\alpha}\} = \alpha, 0 < \alpha < 1$
- Because Z is symmetric around the mean:
 - $z_{1-\alpha/2} = -z_{\alpha/2}$
 - $P\{X < -z_{\alpha/2}\} = P\{X > z_{\alpha/2}\} = \alpha/2$
 - $P\{-z_{\alpha/2} < Z < z_{\alpha/2}\} = 1 \alpha$
 - Based on the definition of the Z-statistic:

•
$$P\left\{-z_{\alpha/2} < \frac{m-\mu}{\sigma/\sqrt{n}} < z_{\alpha/2}\right\} = 1 - \alpha$$

100(1 – α)% two-sided confidence interval for μ for any α :

$$P\left\{m - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < m + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right\} = 1 - \alpha$$

Generalization: One-sided Confidence Interval

 $100(1-\alpha)\%$ one-sided upper confidence interval for μ defines a lower bound:

$$P\left\{m-z_{\alpha}\frac{\sigma}{\sqrt{n}}<\mu\right\}=1-\alpha$$

• Example: $(m - \frac{1.64\sigma}{\sqrt{n}}; \infty)$ is 95% a one-sided upper confidence interval for μ

Summary #1: Confidence Intervals (CI)

- A $(1 \alpha) * 100\%$ confidence interval is a random interval [L; U] such that
 - If we were to repeat the data gathering and formation of sample average $m = \bar{X}$ and [L; U] many times then [L; U] would contain μ at least $(1 \alpha) * 100\%$ of the time.
- Confidence interval measures how much your estimator will vary from one sample to the next:
 - It is wide when your estimator is based on limited information (small samples) or is approximating a parameter in a noisy setting.
- For i.i.d. normal sample from $N(\mu, \sigma^2)$ with known variance:
 - $m \pm 1.96\sigma/\sqrt{n}$ is a 95% Cl for μ
 - More generally, $m \pm z_{1-\alpha/2} \sigma / \sqrt{n}$ is a $(1-\alpha)100\%$ CI for μ , where $z_{1-\alpha}$ satisfies $P(Z>z_{1-\alpha})=1-\alpha$ for the Z-statistic
- Smaller values of will result in wider intervals (need to be more sure)
- More data will result in smaller (shorter) intervals

Statistical Distributions & Functions in R

Distribution	Random Number Generator	Density	Distribution	Quantile
Normal	rnorm	dnorm	pnorm	qnorm
t	rt	dt	pt	qt
F	rf	df	pf	qf
χ^2	rchisq	dchisq	pchisq	qchisq

{dpqr}distribution_abbreviation()

- d = density
- p = distribution function
- q = quantile function
- r = random generation

Distribution	Degrees of freedom	Mean	Variance
Normal		μ	σ^2
t	\boldsymbol{n}	0	n/(n-2)
F	n_1 and n_2	$n_2/(n_2-2)$	a/b
χ^2	r	r	2r

χ^2 -distribution

- X²-distribution plays an important role in several applications:
 - Test for independence of two categorical variables
 - Confidence interval estimation
 - Hypothesis testing
 - Goodness of fit of the observed data to the expected data under the fitted model
- X^2 -distribution is the component of a number of distributions:
 - t-distribution
 - F-distribution

χ^2 -distribution: Formal Definition

- If Z_i are independent unit normal random variables $(Z_i \sim N(0,1))$, then
 - $Q = Z_1^2 + Z_2^2 + \dots + Z_r^2$ is chi-square with r degrees of freedom, i.e.
 - $Q \sim \chi_r^2$ or $Q \sim \chi^2(r)$, r is positive integer
- The expected value of Q: E[Q] = r
- The variance of Q: Var(Q) = 2r
- Example of chi-square distribution:
 - Consider the sample $X = \{x^t\}, t = 1, ..., n$, i.e., $x^t \sim N(\mu, \sigma^2)$:
 - $m = \sum_t x^t / n$: the sample average
 - Consider the estimated sample variance:

$$\bullet S^2 = \frac{\sum_t (x^t - m)^2}{n - 1}$$

$$(n-1)\frac{s^2}{\sigma^2} \sim \chi_{n-1}^2$$

χ^2 -distribution with different degrees of freedom

```
f_k(x)
                                                                                  \chi_k^2
                                                              0.5
50
      # Generate n random numbers from the
      # Chi-squared-distribution
                                                              0.4
      # with n degrees of freedom
53
      n = 1000
                                                              0.3
54
      df <- 7
      chiSquaredRandom <- rchisq(n, df=df)</pre>
                                                              0.2
56
      # Confirm that the empirical mean is n
                                                              0.1
      # and the variance is 2n
59
     mean (chiSquaredRandom)
60
      var(chiSquaredRandom)
                                                                                        Src: Wiki page
61
62
      # Compute and Plot the chi-squared-distribution
63
      require (ggplot2)
64
      densityChiSquared <- dchisq(chiSquaredRandom, df=df)</pre>
65
      df.data <- data.frame(x=chiSquaredRandom, y=densityChiSquared)</pre>
      ggplot(df.data) + aes(x=x, y=y) + geom line() +
66
```

File: Explore_distributions.R

67

• How does χ_n^2 look like?

labs (x="Random Chi-Squared-Distribution Variable", y="Density")

Exercise

 Find the 95th percentile of the Chi-Squared distribution with 7 degrees of freedom.

```
> qchisq(.95, df=7)
[1] 14.06714
```


Table of χ^2 values vs. p-values

Degrees of freedom (df)	χ^2 value ^[18]										
1	0.004	0.02	0.06	0.15	0.46	1.07	1.64	2.71	3.84	6.64	10.83
2	0.10	0.21	0.45	0.71	1.39	2.41	3.22	4.60	5.99	9.21	13.82
3	0.35	0.58	1.01	1.42	2.37	3.66	4.64	6.25	7.82	11.34	16.27
4	0.71	1.06	1.65	2.20	3.36	4.88	5.99	7.78	9.49	13.28	18.47
5	1.14	1.61	2.34	3.00	4.35	6.06	7.29	9.24	11.07	15.09	20.52
6	1.63	2.20	3.07	3.83	5.35	7.23	8.56	10.64	12.59	16.81	22.46
7	2.17	2.83	3.82	4.67	6.35	8.38	9.80	12.02	14.07	18.48	24.32
8	2.73	3.49	4.59	5.53	7.34	9.52	11.03	13.36	15.51	20.09	26.12
9	3.32	4.17	5.38	6.39	8.34	10.66	12.24	14.68	16.92	21.67	27.88
10	3.94	4.87	6.18	7.27	9.34	11.78	13.44	15.99	18.31	23.21	29.59
P value (Probability)	0.95	0.90	0.80	0.70	0.50	0.30	0.20	0.10	0.05	0.01	0.001

• The p-value is the probability of observing a test statistic at least as extreme as in a chi-squared distribution.

Statistical Distributions & Functions in R

Distribution	Random Number Generator	Density	Distribution	Quantile
Normal	rnorm	dnorm	pnorm	qnorm
t	rt	dt	pt	qt
F	rf	df	pf	qf
χ^2	rchisq	dchisq	pchisq	qchisq

{dpqr}distribution_abbreviation()

- **d** = density
- p = distribution function
- q = quantile function
- r = random generation

Distribution	Degrees of freedom	Mean	Variance
Normal		μ	σ^2
t	\boldsymbol{n}	0	n/(n-2)
F	n_1 and n_2	$n_2/(n_2-2)$	a/b
χ^2	r	r	2r

t – Distribution

- If $Z \sim N(0,1)$ and $Q \sim \chi_n^2$ are independent, then
- $T_n = \frac{Z}{\sqrt{Q/n}}$ is t-distributed with n degrees of freedom
- The expected value of T_n : $E[T_n] = 0$
- The variance of $T_n: Var(T_n) = \frac{n}{n-2}$, n > 2
 - Like the unit normal density, t -distribution is symmetric around 0
 - As n becomes larger, t -density becomes more like the unit normal
 - t –distribution has thicker tails indicating greater variability than does normal

t -distribution is like the unit normal

```
10
     # Generate n random numbers from the t-distribution
11
     # with n degrees of freedom
12
     n = 1000
     deaf <- n
13
14
     tRandom <- rt(n, df=degf)
15
16
     # Confirm that the empirical mean is zero
     # and the variance of n / (n-2)
17
18
     mean (tRandom)
19
     var (tRandom)
20
     # Compute and Plot the t-distribution
21
22
     require (ggplot2)
23
     densityTRandom <- dt(tRandom, df=degf)</pre>
24
     df <- data.frame(x=tRandom, y=densityTRandom)</pre>
     qqplot(df) + aes(x=x, y=y) + qeom line() +
25
       labs (x="Random t-Distribution Variable", y="Density")
26
27
     # Use a Shapiro-Wilk test to check
28
29
     # whether tRandom is from the normal distribution
30
     # when the p-value is lower than 0.05,
31
     # conclude that the sample deviates from normality
32
     plot(density(tRandom))
33
     shapiro.test(tRandom)
34
35
     # Plot using the agnorm()
36
     ggnorm (tRandom)
37
     ggline(tRandom, col=2)
```

t – Distribution: Applications

- The most used applications are power calculations for t-tests
- Example of t distribution:
 - Consider the sample $X = \{x^t\}, t = 1, ..., n$, i.e., $x^t \sim N(\mu, \sigma^2)$:
 - $m = \sum_t x^t / n$: the estimated sample mean
 - $S^2 = \frac{\sum_t (x^t m)^2}{n 1}$: the estimated sample variance
- Define: T-statistic, $T_{n-1} \sim \frac{m-\mu}{S/\sqrt{n}}$
- Claim: T_{n-1} -statistic is from a t -distribution with n-1 degrees of freedom

t – Distribution: Confidence Interval Estimation

- Consider the i.i.d sample $X = \{x^t\}, t = 1, ..., n$, i.e., $x^t \sim N(\mu, \sigma^2)$:
- $m = \sum_t x^t / n$: the estimated sample mean
- $S^2 = \frac{\sum_t (x^t m)^2}{n-1}$: the estimated sample variance
- Define: T-statistic, $T_{n-1} \sim \frac{m-\mu}{S/\sqrt{n}}$
- Claim: T_{n-1} -statistic is from a t -distribution with n-1 degrees of freedom
- Let's denote $t_{\alpha,n-1}$ such that: $P\left\{T_{n-1} > t_{\alpha,n-1}\right\} = \alpha, 0 < \alpha < 1$
- Because T_{n-1} is symmetric around the mean:
 - $t_{1-\alpha/2,n-1} = -t_{\alpha/2,n-1}$
 - $P\{t_{1-\alpha/2,n-1} < T_{n-1} < t_{\alpha/2,n-1}\} = 1 \alpha$

$$P\left\{t_{1-\alpha/2,n-1} < \frac{m-\mu}{S/\sqrt{n}} < t_{\alpha/2,n-1}\right\} = 1 - \alpha$$

$$P\{m-t_{\alpha/2,n-1}\frac{s}{\sqrt{n}}<\mu< m+t_{\alpha/2,n-1}\frac{s}{\sqrt{n}}\}=1-\alpha$$

Central Limit Theorem

- So far we have assumed that the data were generated from a normal distribution
 - This is a reasonable approximation in some cases
- Central Limit Theorem: even if the data are not normal, the sample mean m is approximately normal provided that n is sufficiently large:
 - For our purposes 'sufficiently large' means 30
 - In real life 'sufficiently large' will depend on the underlying distribution

Summary #2: Confidence Intervals (CI)

- A $(1 \alpha) * 100\%$ confidence interval is a random interval [L; U] such that
 - If we were to repeat the data gathering and formation of sample average $m = \bar{X}$ and [L; U] many times then [L; U] would contain μ at least $(1 \alpha) * 100\%$ of the time.
- For i.i.d. normal sample from $N(\mu, \sigma^2)$ with the **Un-known** variance:
 - $m \pm t_{n-1,1-\alpha/2} S/\sqrt{n}$ is a $(1-\alpha)100\%$ CI for μ ,
 - where $t_{1-\alpha,n-1}$ satisfies $P(T_{n-1} > z_{1-\alpha,n-1}) = 1-\alpha$ for the t -statistic T_{n-1} with n-1 degrees of freedom and
 - $S^2 = \frac{\sum_t (x^t m)^2}{n 1}$: the estimated sample variance
- For i.i.d. normal sample from $N(\mu, \sigma^2)$ with the **known** variance:
 - $m \pm z_{1-\alpha/2}\sigma/\sqrt{n}$ is a $(1-\alpha)100\%$ Cl for μ , where $z_{1-\alpha}$ satisfies $P(Z>z_{1-\alpha})=1-\alpha$ for the **Z-statistic Z**