### Adaptation of Semiring Provenance

Paul LANDRIER Supervised by Silviu Maniu

- 1 Existing framework Provenance in databases
  - Example
  - Semirings and polynomials for provenance
- 2 Provenance for computation graphs
  - Computation Graphs
  - Abstraction of Computation Graphs
  - Near-semirings
- 3 Applications
  - Quantization
- 4 Future work
- 5 References
- 6 Failed attempt Differential Geometry

Existing framework - Provenance in databases

Existing framework - Provenance in databases

### Situation

This whole section is entirely based on [Green et al., 2007].

| ClientName | Country | Product      |
|------------|---------|--------------|
| (A)        | (B)     | ( <i>C</i> ) |
| Alice      | USA     | tea          |
| Bob        | USA     | coffee       |
| Charlie    | FR      | coffee       |

| Α       | С      |
|---------|--------|
| Alice   | tea    |
| Alice   | coffee |
| Bob     | tea    |
| Bob     | coffee |
| Charlie | coffee |

Figure: Databases D and q(D).

$$q(R) \stackrel{\text{def}}{=} \pi_{AC}(\pi_{AB}R \bowtie \pi_{BC}R \cup \pi_{AC}R \bowtie \pi_{BC}R)$$

Existing framework - Provenance in databases

Example

### Situation

| Α       | В   | С      |   |
|---------|-----|--------|---|
| Alice   | USA | tea    | 2 |
| Bob     | USA | coffee | 5 |
| Charlie | FR  | coffee | 1 |

| A       | В   | С      |                       |
|---------|-----|--------|-----------------------|
| Alice   | USA | tea    | $b_1$                 |
| Bob     | USA | coffee | <i>b</i> <sub>2</sub> |
| Charlie | FR  | coffee | <i>b</i> <sub>3</sub> |

| tea    | $2 \cdot 2 + 2 \cdot 2 = 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|        | $2 \cdot 2 + 2 \cdot 2 = 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
| coffee | $2 \cdot 5 = 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |
| tea    | $2 \cdot 5 = 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |
| coffee | $5 \cdot 5 + 5 \cdot 5 + 5 \cdot 1 = 55$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |
| coffee | $1\cdot 1 + 1\cdot 1 + 5\cdot 1 = 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |
| С      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
| tea    | $(b_1 \wedge b_1) \vee (b_1 \wedge b_1) :$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $= b_1$                                                |
| coffee | $b_1 \wedge b_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |
| tea    | $b_1 \wedge b_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |
| coffee | $(b_2 \wedge b_2) \vee (b_2 \wedge b_2) \vee (b_2 \wedge b_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |
| coffee | $(b_3 \wedge b_3) \vee (b_3 \wedge b_3) \vee $ | $b_2 \wedge b_3$                                       |
|        | tea coffee coffee C tea coffee tea coffee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

### Polynomials for provenance

We abstract the two preceding computations with variables p, r, s and abstract operations + and  $\cdot$ .

| Α       | В   | С      |   |
|---------|-----|--------|---|
| Alice   | USA | tea    | р |
| Bob     | USA | coffee | r |
| Charlie | FR  | coffee | S |

| Α       | С      |               |
|---------|--------|---------------|
| Alice   | tea    | $2p^{2}$      |
| Alice   | coffee | pr            |
| Bob     | tea    | pr            |
| Bob     | coffee | $2r^2 + rs$   |
| Charlie | coffee | $2s^{2} + rs$ |

Semirings and polynomials for provenance

Semirings and polynomials for provenance

# Positive Relational Algebra on K-relations I

$$\textbf{empty relation} \ \, \mathsf{There} \ \, \mathsf{is} \ \, \emptyset: \left\{ \begin{array}{ccc} \textit{U-Tup} & \to & \mathcal{K} \\ t & \mapsto & \mathsf{0}_{\mathcal{K}} \end{array} \right..$$

**union** Let  $R_1, R_2 : U$ -**Tup**  $\to K$  be two K-relations.

Then we define 
$$R_1 \cup R_2 : \left\{ \begin{array}{ccc} U\text{-}\mathbf{Tup} & \to & K \\ t & \mapsto & R_1(t) + R_2(t) \end{array} \right.$$

**projection** Let R: U-**Tup**  $\to K$  be a K-relation and let  $V \subseteq U$  be a subdomain of U.

Then we define  $\pi_V R : \left\{ egin{array}{ll} U ext{-}\mathbf{Tup} & 
ightarrow & K \ t & 
ightarrow & \sum\limits_{t' \in \mathit{supp}(R) \ \mathrm{and} \ t'_{|V} = t} R(t') \end{array} 
ight..$ 

Where  $t'_{|V} \in V$ -**Tup** is the restriction of  $t' \in U$ -**Tup** seen as a function  $U \to \mathbb{D}$  to the subset V. Since supp(R) is finite, the sum is finite.

Semirings and polynomials for provenance

# Positive Relational Algebra on K-relations II

**selection** Let  $R: U\text{-}\mathbf{Tup} \to K$  be a K-relation and

 $\mathbf{P}: \textit{U-Tup} \rightarrow \{0_{\textit{K}}, 1_{\textit{K}}\}$  be a predicate.

Then we define 
$$\sigma_{\mathbf{P}}R: \left\{ \begin{array}{ccc} U\text{-}\mathbf{Tup} & \rightarrow & K \\ t & \mapsto & R(t)\cdot\mathbf{P}(t) \end{array} \right.$$

In the two remaining definitions, be aware that the set of attributes over which functions are defined changes.

**natural join** Let  $U_1, U_2$  be two finite sets of attributes. Let

 $R_1: U_1$ -**Tup**  $\to K$  and  $R_2: U_2$ -**Tup**  $\to K$  be two K relations.

Then we define

$$R_1 \bowtie R_2: \left\{ egin{array}{ll} (U_1 \cup U_2) ext{-}\mathbf{Tup} & 
ightarrow & \mathcal{K} \ t & \mapsto & R_1(t_{|U_1})\cdot R_2(t_{|U_2}) \end{array} 
ight.$$

**renaming** Let  $R: U\text{-}\mathbf{Tup} \to K$  be a  $K\text{-}\mathrm{relation}$  and  $\beta: U \to U'$  be a bijection.

Then we define 
$$ho_{eta}R: \left\{ egin{array}{ccc} U' ext{-}\mathbf{Tup} & o & K \\ t & \mapsto & R(t\circ\beta) \end{array} \right.$$

Semirings and polynomials for provenance

## Semirings for provenance

#### A very nice property:

#### Semirings are a good choice for provenance

The  $\mathcal{RA}^+$  equalities:

- Union is associative, commutative and has identity ∅;
- Join is associative, commutative and distributive over union;
- Projections and selections commute with each other as well as with unions and joins;
- For all R,  $\sigma_{\mathsf{false}}(R) = \emptyset$  and  $\sigma_{\mathsf{true}}(R) = R$

are satisfied if and only if  $(K,+,\cdot,0_K,1_K)$  is a commutative semiring.

Provenance for computation graphs

Computation Graphs

### **Definition**

#### Definition - Computation Graph

A computation graph (V, E, Fun, Op, F, Operator) over a set S is a directed acyclic graph (V, E) together with:

- two subsets  $F \subset (S \to S)$  and  $Operator \subset (S^{(\mathbb{N})} \to S)$ ,
- $\blacksquare$  a function  $Fun: E \rightarrow F$ ,
- a function  $Op: V \rightarrow Operator$ .

Computation Graphs

### An Example

Goal: derive a computation for the function  $f(x) = e^{x^2}(x^2 + 2x + 2)$  using only the linear, square, "plus constant" and exponential functions, with + and  $\times$  operators.



Figure: One possible computation graph of f.

Computation Graphs

### Links with Neural Networks

### Property

A Deep Neural Network can be represented by a computation graph.



Figure: Computation graph of a perceptron.

## Abstract Computation Graph

#### Definition - Computation Graph over a Set

A computation graph (V, E, Fun, Op, F, Operator) over a set S is a directed acyclic graph (V, E) together with :

- two subsets  $F \subset (S \to S)$  and  $Operator \subset (S^{(\mathbb{N})} \to S)$ ,
- $\blacksquare$  a function  $Fun: E \rightarrow F$ ,
- lacksquare a function Op:V o Operator.

#### Definition - Computation Graph over a General Algebraic Structure

A generalised computation graph (V, E, Fun, F) is a directed acyclic graph (V, E) together with :

- an algebraic structure  $(F, +, \circ, 0_F, id)$ ,
- $\blacksquare$  a function Fun :  $E \rightarrow F$ .

## Interpretation of a Generalized Computation Graph



Figure: An abstract computation graph.

The expression represented by the figure above is  $f_7 \circ [f_3 \circ (f_1 \circ x + g_1 \circ y) + f_4 \circ (f_2 \circ x + g_2 \circ y) + f_6 \circ f_5 \circ (f_2 \circ x + g_2 \circ y)] + f_8 \circ f_5 \circ (f_2 \circ x + g_2 \circ y)$ 

# Identifying the Right Structure

- Since there is no order on the edges, + should be associative and commutative.
- For modularity, ∘ should be associative.
- To model the concept of "0 weight", there should be a neutral element for +, noted  $0_F$ , and it should satisfy  $\forall f \in Fun, 0_F \circ f = 0_F$
- To be able to transmit information in the graph, to initialize some algorithm, to model the one node graph, there should be a neutral element for o noted id.
- For modularity and theoretical reasons, we should have the equality:  $\forall (f,g,h) \in F^3, (f+g) \circ h = f \circ h + g \circ h$

# Near-semirings

#### Definition - Near-semirings

An algebraic structure  $(F, +, \circ, 0_F, id)$  is a near-semiring if it satisfies:

- $(F, +, 0_F)$  is a commutative monoid,
- $\blacksquare$   $(F, \cdot, id)$  is a monoid,
- $\forall (f,g,h) \in F^3, (f+g) \circ h = f \circ h + g \circ h,$
- $\forall f \in F, 0_F \circ f = 0_F.$

# Examples of Near-semirings

- Every semiring is a near-semiring. The interpretation of elements of a semiring as functions can be made through the semi-module structure.
- 2 If  $(M, +, 0_M)$  is a monoid, the set of functions  $M \to M$  with the usual composition and identity and with the natural addition on function is a near-semiring.
- 3 Continuous functions on a topological monoid. (For instance  $(\mathbb{R}^n_+,+,0)$ , that is stable by a linear function composed with ReLU.)
- 4 The  $\mathcal{C}^{\infty}$  functions over the real numbers.
- The near-semiring generated by the linear functions, the translations ("plus constant") and an activation function.

└ Near-semirings

# Generality of the Near-semiring over a Monoid

#### Theorem - Generality of the Near-semiring over a Monoid

It is equivalent to be given:

- 1 a near-semiring  $(F, +, \circ, 0, id)$
- 2 a monoid (M, +, 0) together with a set of functions  $M \to M$  containing 0 and id and stable by  $\circ$  and +.

# Computer Science Universal Object for Near-semirings

#### Property - Near-semirings generated by a finite free set

Let  $F=\{f_1,f_2,f_3,\ldots,f_n\}$  be a finite set. We define a sequence of sets  $(F_n)$  by  $F_0=\{0,id\}\cup F$  and

$$F_{n+1} = \left\{ f \circ \left( \sum_{i=1}^k f_i \right) \middle| \ k \in \mathbb{N}, f \in F, (f_i)_{1 \leq i \leq n} \in (F_n)^k \right\}.$$

The free semiring generated by F is  $\bigcup_{n\in\mathbb{N}} F_n$ .

☐ Applications

# **Applications**

# Quantization - Principle

#### Definition - Quantization

Quantization is a technique that consists of changing the format of the representation of the number in a neural network.

The process typically involves changing the weight of a network and/or the representation of datatype from FP32 to FP16 or INT8. According to [Wu et al., 2020], this method has several advantages:

- it can speed-up computations,
- it reduces memory bandwidth pressure and
- it lowers memory size requirement.

# Quantization - Toy Example



Figure: An example of quantization on a small neural network trained to compute xor. The network contains a unique hidden layer with 5 features.

Future work

### Future work

## Instanciation of the Theory

We pass a first sanity check: we can model a neural network with a generalized computation graph using near-semiring. We can discuss other possible instanciation:

- Is layer-wise relevance propagation captured by the model?
- Is the work done by Antoine an instance of the model?
- Does the model allow to retrieve efficiently shapley values?
- Can the model be a theoretical basis for high-level circuits that explain neural networks, considering the near-semiring over the monoid  $\Sigma^*$ ?

## Further Theoretical Development

- Investigate the differences between forward and backward modes.
- Investigate a potential theory of computation graphs with an algebraic derivation.
- Develop an analogous model for a coarse-grained provenance.

References

### **Re**ferences

### References



Green, T. J., Karvounarakis, G., and Tannen, V. (2007). Provenance semirings.

In Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 31–40, Beijing China. ACM.



Ramusat, Y. (2022).

The semiring-based provenance framework for graph databases.

phdthesis, Université Paris sciences et lettres.



Wu, H., Judd, P., Zhang, X., Isaev, M., and Micikevicius, P. (2020).

Integer quantization for deep learning inference: Principles and empirical evaluation.

# Computer Science Universal Object for Near-semirings

I lack a formal framework for retrieving a function from a graph.

Theorem - Freely Generated Near-Semirings Capture Provenance

Given a computation graphs with n edges, the

Failed attempt - Differential Geometry

Adaptation of Semiring Provenance

Failed attempt - Differential Geometry

[Ramusat, 2022]