CSE4203: Computer Graphics Chapter – 7 (part - C) Viewing

Mohammad Imrul Jubair

Outline

Perspective projection matrix

Homogeneous Coordinates (1/3)

$$[x, y, w] \rightarrow [4, 6, 2]$$

Homogeneous Coordinates (2/3)

$$[x, y, w] \rightarrow [x/w, y/w, 1]$$

Homogeneous Coordinates (3/3)

Key property of perspective

 Size of an object on the screen is proportional to 1/z

perspective view volume (viewing frustum)

orthographic view volume

$$\frac{y'}{d} = \frac{y}{z}$$
$$y' = \frac{dy}{z}$$

$$\begin{bmatrix} d & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} y \\ z \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} dy \\ z \end{bmatrix} \sim \begin{bmatrix} dy/z \\ 1 \end{bmatrix} = \begin{bmatrix} y' \\ 1 \end{bmatrix}$$

M. I. Jubair

13

For 2D:

$$y' = dy/z$$
$$x' = dx/z$$

$$\begin{bmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} dx \\ dy \\ z \end{bmatrix} \sim \begin{bmatrix} dx/z \\ dy/z \\ 1 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$

For 3D:

$$y' = dy/z$$
$$x' = dx/z$$
$$z' = z$$

There will be always division by z, so z'=z is not possible.

For 3D:

$$\begin{bmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Scaling **z** with **a** and translating it by **b**.

$$= \begin{bmatrix} dx \\ xy \\ az + b \end{bmatrix} \sim \begin{bmatrix} dx/z \\ dy/z \\ (az + b)/z \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix}$$

$$z = f$$

$$z = n$$

$$z = n$$

$$\begin{bmatrix} 0 \\ 0 \\ n \\ 1 \end{bmatrix}$$

$$z = f$$

$$\begin{bmatrix} 0 \\ 0 \\ f \\ 1 \end{bmatrix}$$

$$P = \begin{bmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

$$a = (n+f)$$

$$b = -fn$$

$$d = ?$$

perspective matrix:
$$P = \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -fn \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Summary (1/6)

pers. view. vol.

Summary (2/6)

pers. view. vol.

Summary (3/6)

pers. view. vol.

Summary (4/6)

Summary (5/6)

Summary (6/6)

$$M = M_{vp} * M_{orth} * P * M_{cam}$$

 $M = M_{vp}^* M_{per}^* M_{cam}$

pers. view. vol.

M. I. Jubair 29

Screen

Perspective Matrix (1/1)

 $\mathbf{M}_{\mathsf{per}} = \mathbf{M}_{\mathsf{orth}} \mathbf{P}$

$$= \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -fn \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{l+r}{l-r} & 0\\ 0 & \frac{2n}{t-b} & \frac{b+t}{b-t} & 0\\ 0 & 0 & \frac{f+n}{n-f} & \frac{2fn}{f-n}\\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{l+r}{l-r} & 0 \\ 0 & \frac{2n}{t-b} & \frac{b+t}{b-t} & 0 \\ 0 & 0 & \frac{f+n}{n-f} & \frac{2fn}{f-n} \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{M}_{\text{OpenGL}} = \begin{bmatrix} \frac{2|n|}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2|n|}{t-b} & \frac{t+b}{t-b} & 0 \\ 0 & 0 & \frac{|n|+|f|}{|n|-|f|} & \frac{2|f||n|}{|n|-|f|} \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Perspective Transformation Chain (1/1)

- 1. Modeling transform: M_m
- 2. Camera Transformation: M_{cam}
- 3. Perspective: P
- 4. Orthographic projection: M_{orth}
- 5. Viewport transform: M_{vp}

$$\mathbf{p}_s = \mathbf{M}_{\mathrm{vp}} \mathbf{M}_{\mathrm{orth}} \mathbf{P} \mathbf{M}_{\mathrm{cam}} \mathbf{M}_{\mathrm{m}} \mathbf{p}_o$$

$$\begin{bmatrix} x_s \\ y_s \\ z_c \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{n_x}{2} & 0 & 0 & \frac{n_x - 1}{2} \\ 0 & \frac{n_y}{2} & 0 & \frac{n_y - 1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{2}{r - l} & 0 & 0 & -\frac{r + l}{r - l} \\ 0 & \frac{2}{t - b} & 0 & -\frac{t + b}{t - b} \\ 0 & 0 & \frac{2}{n - f} & -\frac{n + f}{n - f} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n + f & -fn \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{M}_{\text{cam}} \mathbf{M}_{\text{m}} \begin{bmatrix} x_o \\ y_o \\ z_o \\ 1 \end{bmatrix}$$

Code: Orth. to Screen v.3 (1/2)

Drawing many 3D lines with endpoints a_i and b_i :

```
Construct M_{vp}
Construct M_{per}
Construct M_{cam}

M = M_{vp} * M_{per} * M_{cam}

for each line segment (a_i, b_i) do:

p = M * a_i
q = M * b_i
drawline (x_p/W_p, y_p/W_p, x_q/W_q, y_q/W_q)
```

Code: Orth. to Screen v.3 (2/2)

Drawing many 3D lines with endpoints a_i and b_i :

Construct
$$M_{\text{vp}}$$

$$\text{Cons} \begin{bmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} dx \\ xy \\ az+b \end{bmatrix} \sim \begin{bmatrix} dx/-z \\ dy/-z \\ (az+b)/-z \\ 1 \end{bmatrix}$$

$$\text{for each line segment (a, b, b, do:}$$

$$p = M*a_i$$

$$q = M*b_i$$

$$\text{drawline} (x_p/W_p, y_p/W_p, x_q/W_q, y_q/W_q)$$

Field-of-View (1/6)

Field-of-View (2/6)

Field-of-View (3/6)

Field-of-View (4/6)

$$l = -r,$$

$$b = -t.$$

$$b = -t$$
.

Field-of-View (5/6)

$$l = -r,$$

$$b = -t.$$

$$\tan\frac{\theta}{2} = \frac{t}{|n|}$$

Field-of-View (6/6)

$$\begin{aligned}
l &= -r, \\
b &= -t.
\end{aligned} \qquad \tan \frac{\theta}{2} = \frac{t}{|n|}$$
Field-of-View (FoV)

Practice Problem (1/2)

Show that, the M_{OpenGL} can be written as follows –

$$\mathbf{M}_{\mathrm{OpenGL}} = \begin{bmatrix} \frac{2|n|}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2|n|}{t-b} & \frac{t+b}{t-b} & 0 \\ 0 & 0 & \frac{|n|+|f|}{|n|-|f|} & \frac{2|f||n|}{|n|-|f|} \\ 0 & 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{aspect*tan(\frac{fov}{2})} & 0 & 0 & 0 \\ 0 & \frac{1}{tan(\frac{fov}{2})} & 0 & 0 \\ 0 & 0 & -\frac{far+near}{far-near} & -\frac{2*far*near}{far-near} \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

here, aspect = ratio of the width to the height of the view. vol. = ?

Practice Problem (2/2)

- Derive all the matrices (using your own words):
 - a) M_{vp}
 - b) M_{orth}
 - c) M_{cam}
 - d) P and M_{per}
- Rotate a camera by -45 degree along x-axis with the eye position at 0, 0.5, -4. For a point $P_{xyz} \equiv (0, 0, 3)$, $P_{uvw} \equiv ?$
- Exercise:
 - 1, 7, 8, 10