Digital Signal Processing

Spring Semester 2022

Frequency-Based Analysis, Part 1

Damon M. Chandler < chandler@fc.ritsumei.ac.jp>
Visual Information Engineering Laboratory
Ritsumeikan University

Last time's learning objectives

- Describe filtering (what it is and why it's used)
- Describe the relationship between filtering and convolution
- Perform basic convolution between two signals

Operations on DT signals

Con	ا بر ر ،	(, t	501				<u>:</u>								! !		
	00.			•													
	46	n)	=	×,	L	n)		*		くっ	(ب	ı)					
	Ø				Ì	1				ļ		:					
				5		>	۲, ۱	يعار) >	× _Z	ير	и -	- k	()			
				K =		S											
				8		:						, ,	_	: : : : :		:	
				_		×	1 C	1 -	- k)	Χz	_('	K)				
				K=	-0	9				· · · · · · · · · · · · · · · · · · ·			; :	 :		: ! !	

$$=\frac{1}{1}\sum_{i=1}^{N}\frac{x_{i}(ii)}{x_{i}(ii)}$$

$$=\frac{1}{1}\sum_{i=1}^{N}\frac{x_{i}(ii)}{x_{i}(ii)}$$

$$=\frac{1}{1}\sum_{i=1}^{N}\frac{x_{i}(ii)}{x_{i}(ii)}$$

$$=\frac{1}{1}\sum_{i=1}^{N}\frac{x_{i}(ii)}{x_{i}(ii)}$$

$$=\frac{1}{1}\sum_{i=1}^{N}\frac{x_{i}(ii)}{x_{i}(ii)}$$

$$=\frac{1}{1}\sum_{i=1}^{N}\frac{x_{i}(ii)}{x_{i}(ii)}$$

Last time's in-class activity

Given the following two signals, compute $x_1(n) * x_2(n)$:

Properties of convolution

O Commutative property

$$x_1(n) * x_2(n) = x_2(n) * x_1(n)$$

(2) Associative property

 $\left[x_1(n) * x_2(n)\right] * x_3(n)$
 $= x_1(n) * \left[x_2(n) * x_3(n)\right]$

(3) Distributive property

 $x_1(n) * \left[x_2(n) + x_3(n)\right]$

 $= x_1(n) * x_2(n) + x_1(n) * x_3(n)$

Properties of convolution

$$Ex: X_{1}(n) = \left(\frac{3}{4}\right)^{n} u(n)$$

$$\times_{2}(n) = u(n)$$

$$X_{1}(n) * X_{2}(n) = \sum_{k=-\infty}^{\infty} X_{1}(k) \times_{2}(n-k)$$

Why is convolution useful?

- Used for analysis and filtering
 - to isolate particular features/frequencies
 - to remove noise
 - enhance particular features/frequencies
 - interpolation (e.g., rate changing, resizing)
 - and many other uses in encryption, compression, transmission, etc.
- We will return to filtering later in the course

Ex: Audio DSP software

Today's learning objectives

From today's lecture, you should be able to...

- Explain the term "DT frequency"
- Explain what is the "spectrum" of a signal
- Use the Discrete-Time Fourier Transform (DTFT) to compute a signal's spectrum

Today

- 1. What is DT frequency?
- 2. Discrete-time Fourier transform (DTFT)
- 3. Some DTFT examples

Today

- 1. What is DT frequency?
- 2. Discrete-time Fourier transform (DTFT)
- 3. Some DTFT examples

$$\omega = ?$$

1 cycle / 16 samples

(Recall: 1 cycle = 2π radians)

2π radians / 16 samples

π radians / 8 samples

 $\rightarrow \omega = \pi/8 \text{ radians/sample}$

1 cycle / 16 samples

(Recall: 1 cycle = 2π radians)

2π radians / 16 samples

π radians / 8 samples

 $\rightarrow \omega = \pi/8 \text{ radians}$

Today

- 1. What is DT frequency?
- 2. Discrete-time Fourier transform (DTFT)
- 3. Some DTFT examples

Discrete-time Fourier transform (DTFT)

Transforms a signal from the time domain into the frequency domain

time-domain
$$\chi(n) \leftrightarrow \chi(\omega)$$
 frequency domain

CTFT vs. DTFT

$$T_n \ CT$$
: $X(a) = \int x(t) e^{-j\cdot at} dt$ (CTT)

 $T_n \ DT$: $X(\omega) = \int x(t) e^{-j\cdot at} dt$ (DTTT)

Notation: $X(\omega) = X(e^{j\omega}) + T \text{ most lexts use}$
 $+ \text{ke } e^{j\omega} \text{ argument},$
 $+ \text{so } \omega e \text{ will too}$

Discrete-time Fourier transform (DTFT)

<u>Discrete-time Fourier transform (DTFT)</u>

Discrete-time Fourier transform (DTFT)

Discrete-time Fourier transform (DTFT)

Three very important notes about the DTFT...

Proof of Note 3

[that $X(e^{j\omega})$ repeats with a period of 2π]

DTFT formula

$$X(e^{i\omega}) = \int_{-\infty}^{\infty} x(n) e^{-i\omega n}$$

After a shift of 2π (or 4π , 8π , etc.)...

Today

- 1. What is DT frequency?
- 2. Discrete-time Fourier transform (DTFT)
- 3. Some DTFT examples

Today's in-class activity

Compute the DTFT of the following signals:

1.
$$x(n) = \delta(n+1) - \delta(n-1)$$

2. $y(n) = \delta(n+1) + 2\delta(n) - \delta(n-1)$

Question: We can see that $y(n) = x(n) + 2\delta(n)$. Please write $Y(e^{j\omega})$ in terms of $X(e^{j\omega})$?