

min 2x, - 3x2 + x3 $3x_1 + 2x_2 = 12$ 5+d $4x_1 + 2x_1 + 3x_3 \ge 2 = 0$ $2x_1 + \frac{1}{2}x_2 - 2x_3 \le 4$ X20, X20, X530 min 2x, - 3x, + x3 X1, X2, X3, X4, X8 30 3 x1 + 2 x2 4x1+2x2-3x3-x4 = 2 $2x_1 + \frac{1}{4}x_2 - 2x_3 + x_5 = 4$ $\begin{array}{c|c}
 & C_1 \\
 & C_2 \\
 & C_3
\end{array}$ $\begin{array}{c|c}
 & C_3 \\
 & C_3
\end{array}$ · Verifica amonissibilità 12=12 OK 12=12 OK $10 \ge 2$ $12 \ge 2$ $13 \ge 2$ $26 \le 4$ $27 \le 4$ 2· 5BA 14,0,2,8,0 12 = 12 & vor to = × vincoli = S13A 10 - x4 =2 =1> x4 = 8 4 + 15=4=0 16=0

c) Puo esistere una soluzione ottimo del Problema con xi in bose max -4x1-3x2+x3 $X_1 - 3X_2 - X_4 = 0$ X1+ X2 + 4X3 +X5 = 8 X120, X270, X3 20 $|\chi_{\lambda}\rangle$ 150 $x_1 - 3x_2 = 10 = 0$ $x_1 = 10 + 3x_2 = 10 + 3x_2$ $x_1 + x_2 = 8 = 0$ 10 + 3 x_2 + x_3 = 8 = 0 4 x_2 = -2 = 0 x_2 = -1 $= 5 \times 2 = \frac{1}{2} = 5 \times 1 = 10 + \frac{3}{2} = \frac{17}{2}$

