

Worksheet 2 HoTTEST Summer School 2022

The HoTTEST TAs, and 08 July 2022

1 (*)

The type **suit** is a type generated by four constructors:

Hearts: suit Diamonds: suit Clubs: suit Spades : suit

Suppose we had a type family $s : \mathbf{suit} \vdash P(s)$ type. What data do we need to supply in order to define a term of the following type?

$$\prod_{s:\mathbf{suit}} P(s)$$

2 (**)

Here's an informal description of a type:

 $\mathbbm{1}$ is a type generated by one constructor term, $\star\colon \mathbbm{1}.$

Express this description formally as two inference rules, a 'Formation' rule, and an 'Introduction' rule (analogously to how we introduced **bool** in lecture).

Now, write the induction principle for 1, where $x: 1 \vdash D$ type is some type family.

Instantiate this for the constant type family, i.e. D doesn't depend on $x:\mathbb{I}$ and is always a fixed type D. What do the elimination and computation rules for \mathbb{I} say?

Define a boolean-valued 'less than' operation on natural numbers:

$$<_2$$
 : $\mathbb{N} \to \mathbb{N} \to \mathsf{bool}$

so that $(m <_2 n) \doteq \mathsf{true}$ when m is less than n, and false otherwise.

Using this definition of add,

$$\begin{array}{ll} \operatorname{add} \ 0 & n \ \stackrel{.}{=} \ n \\ \operatorname{add} \ s(m) \ n \ \stackrel{.}{=} \ s(\operatorname{add} \ m \ n) \end{array}$$

Compute the term

$$(\mathsf{add}\ s(s(0))\ s(s(0)))\ <_2\ (\mathsf{add}\ s(0)\ s(0))$$

to either true or false.

Fix some type X, and some type family $x: X, x': X \vdash P(x, x')$ type. Write a term of type

$$\sum_{b:X} \prod_{a:X} P(a,b) \to \prod_{a:X} \sum_{b:X} P(a,b)$$

What does this say, under our logical interpretation?

$$\mathbf{5} \quad (\star \star \star)$$

 \emptyset is the *empty type*: there are no terms of type \emptyset . It has the following induction principle:

For any type family $x: \emptyset \vdash Q(x)$ type, we have a term $\mathsf{ind}_{\emptyset}: \prod_{x:\emptyset} Q(x)$.

What does this say when Q(x) is a fixed type Q?

Remember that we interpret types to be logical propositions, and terms/inhabitants to be proofs or witnesses of those propositions. What proposition does \emptyset represent?

If P is some proposition, what is the logical meaning of $P \to \emptyset$?

We write $\neg P$ as an abbreviation for $P \to \emptyset$ Write a term of type $\neg \neg 1$.

Is there a term of type $\neg\neg\emptyset$? Why or why not?

Let P and Q be types. We will write $P \leftrightarrow Q$ for the type $(P \to Q) \times (Q \to P)$. Use the fact that $\neg P$ is defined as the type $P \to \emptyset$ of functions from P to the empty type to give type theoretic proofs of the constructive tautologies

- (i) $\neg (P \times \neg P)$
- (ii) $\neg (P \leftrightarrow \neg P)$