

Midterm Presentation

Kathryn Doorley Math 421

Loading and Cleaning Data

- Used haven library to load the SAS dataset
- Filtered for patients discharged in 2018
- Selected only 49 columns
- Removed the following columns with missing values
 - Payfix
 - Preopday
 - Obs_hour
 - Nicu_day

Exploratory Data Analysis

What month saw the most amount of patients?

moa <dbl></dbl>	n <int></int>	
11	10636	
12	10698	

EDA Continued

What sex has the higher mean age?

EDA Continued

What provider has the highest cost?

```
midterm_df_final$total <- as.numeric(midterm_df_final$total)</pre>
midterm_df_final %>%
  group_by(provider) %>%
 summarise(mean(total))
                        tb1_df
     R Console
  provider
<chr>
                                        mean(total)
                                                           provider
<chr>
                                                                                                  mean(total)

<dbl>
  7201
                                           22775.33
                                                           7215
                                                                                                    69945.55
  7202
                                          35504.44
                                                           7216
                                                                                                    17781.83
                                          35276.94
  7204
                                          48738.82
  7205
  7206
                                          31017.81
  7209
                                          24538.79
  7210
                                          27690.88
  7211
                                          24088.58
  7213
                                          38200.23
                                          22362.14
  7214
```

Plots

A plot of total admissons by month, January has the highest total where the next month of Feburary has the lowest.

A plot of average age by sex, the female admitted patients have a lower age than the male patients

A plot of average length of stay by race. From the plot you can see Unknown race (9) has the highest average length of stay.

Density plot of the age variable. There are three distinct peaks, one for babies, 30-35 year olds, and elderly people

id Hospital, this makes sense because they are the largest hospital in Rhode Island and they do more complicated procedures

Total Charges by Baby's Birthweight

Hospital Admissions by Month Colored by Race

Predictive Modeling

Tree Model

Model Choice 1- High/Low Cost

Random Forest method had highest accuracy:

```
5. What is your final selection for the model? Test the accuracy of your final model on the test data.

```{r}

pred <- predict(forest_cv, df_test)

cm <- confusionMatrix(data = pred, reference = df_test$target, positive = "high cost")

cm$overall[1]

Accuracy

0.8275247
```

## Model Choice 2- Old/Young

Parallel Random Forest had highest accuracy

```
'``{r}
pred <- predict(parRF_cv2, df_test2)
cm <- confusionMatrix(data = pred, reference = df_test2|\$target, positive = "old")
cm\$overall[1]

Accuracy
0.867074</pre>
```