CSE471 - Homework 3

Kumal Patel

$March\ 2,\ 2021$

Exercise 1.1 (a)

- (b)
- (c) i. Shown from this truth table, there are 12 models, 12 out of the 16 worlds that are true.

A	$\mid B \mid$	$\mid C \mid$	D	$B \vee C$
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1 1 1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1 0 0 1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

ii. Shown from this truth table, there are 15 models, 15 out of

the 16 worlds that are true.

A	$\mid B \mid$	$\mid C$	D	
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

iii. Shown from this truth table, there are 0 models, 0 out of the 16 worlds that are true.

A	B	C	D	$(A \Longrightarrow B) \land A \land \neg B \land C \land D$
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Exercise 1.2 (a) This axiom entails if the left and right are both true, and in this one it is, so they entail.

				1	1
p	q	r	s	$(p \to q) \land (r \to s)$	$(p \lor r) \to (q \lor s)$
0	0	0	0	1	1
0	0	0	1	1	1
0	0	1	0	0	0
0	0	1	1	1	1
0	1	0	0	1	1
0	1	0	1	1	1
0	1	1	0	0	1
0	1	1	1	1	1
1	0	0	0	0	0
1	0	0	1	0	1
1	0	1	0	0	0
1	0	1	1	0	1
1	1	0	0	1	1
1	1	0	1	1	1
1	1	1	0	0	1
1	1	1	1	1	1

(b) This axiom entails if the left and right are both true, and in this one it is, so they entail.

p	q	$(p \lor (q \to p)) \land q$	p
0	0	0	0
0	1	0	0
1	0	1	1
1	1	1	1

(c) This axiom entails if the left and right are both true, and in this

one it is, so they entail.

p	q	r	s	$p \to (q \lor r) \land (q \to s) \land (r \to s)$	$(p \to s)$
0	0	0	0	1	1
0	0	0	1	1	1
0	0	1	0	1	1
0	0	1	1	1	1
0	1	0	0	1	1
0	1	0	1	1	1
0	1	1	0	1	1
0	1	1	1	1	1
1	0	0	0	0	0
1	0	0	1	0	1
1	0	1	0	0	0
1	0	1	1	1	1
1	1	0	0	0	0
1	1	0	1	1	1
1	1	1	0	0	0
1	1	1	1	1	1

Exercise 1.3 (a)

Exercise 1.4 (a)

i. $(W_{1,1}, \wedge \neg W_{1,2} \wedge \neg W_{1,3} \wedge \neg W_{1,4} \wedge \neg W_{2,1}, \wedge \neg W_{2,2} \wedge \neg W_{2,3} \wedge \neg W_{2,3})$ (b) $\neg W_{2,4} \land \neg W_{3,1}, \land \neg W_{3,2} \land \neg W_{3,3} \land \neg W_{3,4} \land \neg W_{4,1}, \land \neg W_{4,2} \land \neg W_{4,2}, \land \neg$ $\neg W_{4,3} \land \neg W_{4,4}) \lor (\neg W_{1,1}, \land W_{1,2} \land \neg W_{1,3} \land \neg W_{1,4} \land \neg W_{2,1}, \land \neg W_{2,2} \land \neg W_{1,4} \land \neg W_{2,4}, \land \neg W_{2,4},$ $\neg W_{2,3} \land \neg W_{2,4} \land \neg W_{3,1}, \land \neg W_{3,2} \land \neg W_{3,3} \land \neg W_{3,4} \land \neg W_{4,1}, \land \neg W_{4,2} \land$ $\neg W_{4,3} \land \neg W_{4,4}) \lor (\neg W_{1,1}, \land \neg W_{1,2} \land W_{1,3} \land \neg W_{1,4} \land \neg W_{2,1}, \land \neg W_{2,2} \land w_{1,4})$ $\neg W_{2,3} \land \neg W_{2,4} \land \neg W_{3,1}, \land \neg W_{3,2} \land \neg W_{3,3} \land \neg W_{3,4} \land \neg W_{4,1}, \land \neg W_{4,2} \land \neg W_{4,2} \land \neg W_{4,3} \land \neg W_{4,4}, \land \neg W_{4,2} \land \neg W_{4,3} \land \neg W_{4,4}, \land$ $\neg W_{4,3} \land \neg W_{4,4}) \lor (\neg W_{1,1}, \land \neg W_{1,2} \land \neg W_{1,3} \land W_{1,4} \land \neg W_{2,1}, \land \neg W_{2,2} \land \neg W_{1,4} \land \neg W_{2,1}, \land \neg W_{2,2} \land \neg W_{2,4} \land \neg W_{2,4}, \land \neg W_{2,4} \land \neg W$ $\neg W_{23} \land \neg W_{24} \land \neg W_{31}, \land \neg W_{32} \land \neg W_{33} \land \neg W_{34} \land \neg W_{41}, \land \neg W_{42} \land \neg W_{43} \land \neg W_{44}, \land \neg W_{45} \land \neg W_{4$ $\neg W_{4,3} \land \neg W_{4,4}) \lor (\neg W_{1,1}, \land \neg W_{1,2} \land \neg W_{1,3} \land \neg W_{1,4} \land W_{2,1}, \land \neg W_{2,2} \land \neg W_{2,4})$ $\neg W_{2,3} \land \neg W_{2,4} \land \neg W_{3,1}, \land \neg W_{3,2} \land \neg W_{3,3} \land \neg W_{3,4} \land \neg W_{4,1}, \land \neg W_{4,2} \land$ $\neg W_{4,3} \land \neg W_{4,4}) \lor (\neg W_{1,1}, \land \neg W_{1,2} \land \neg W_{1,3} \land \neg W_{1,4} \land \neg W_{2,1}, \land W_{2,2} \land \neg W_{1,4} \land \neg W_{2,1}, \land W_{2,2} \land \neg W_{2,4} \land \neg W_{2,4}, \land W_{2,4} \land \neg W_{2,4} \land \neg$ $\neg W_{2,3} \land \neg W_{2,4} \land \neg W_{3,1}, \land \neg W_{3,2} \land \neg W_{3,3} \land \neg W_{3,4} \land \neg W_{4,1}, \land \neg W_{4,2} \land$ $\neg W_{4,3} \land \neg W_{4,4}) \lor (\neg W_{1,1}, \land \neg W_{1,2} \land \neg W_{1,3} \land \neg W_{1,4} \land \neg W_{2,1}, \land \neg W_{2,2} \land \neg W_{1,4} \land \neg W_{2,4}, \land \neg W_{2,4$ $W_{2,3} \land \neg W_{2,4} \land \neg W_{3,1}, \land \neg W_{3,2} \land \neg W_{3,3} \land \neg W_{3,4} \land \neg W_{4,1}, \land \neg W_{4,2} \land$ $\neg W_{4,3} \land \neg W_{4,4}) \lor (\neg W_{1,1}, \land \neg W_{1,2} \land \neg W_{1,3} \land \neg W_{1,4} \land \neg W_{2,1}, \land \neg W_{2,2} \land \neg W_{1,4} \land \neg W_{2,4}, \land \neg W_{2,4$

 $\neg W_{2,3} \land W_{2,4} \land \neg W_{3,1}, \land \neg W_{3,2} \land \neg W_{3,3} \land \neg W_{3,4} \land \neg W_{4,1}, \land \neg W_{4,2} \land$ $\neg W_{4.3} \land \neg W_{4.4}) \lor (\neg W_{1.1}, \land \neg W_{1.2} \land \neg W_{1,3} \land \neg W_{1,4} \land \neg W_{2,1}, \land \neg W_{2,2} \land \neg W_{1,4} \land \neg W_{2,1}, \land \neg W_{2,2} \land \neg W_{2,1}, \land \neg W_{2,2} \land \neg W_{2,1}, \land \neg W_{2,2} \land \neg W_{2,2}$ $\neg W_{2,3} \land \neg W_{2,4} \land W_{3,1}, \land \neg W_{3,2} \land \neg W_{3,3} \land \neg W_{3,4} \land \neg W_{4,1}, \land \neg W_{4,2} \land$ $\neg W_{4,3} \land \neg W_{4,4}) \lor (\neg W_{1,1}, \land \neg W_{1,2} \land \neg W_{1,3} \land \neg W_{1,4} \land \neg W_{2,1}, \land \neg W_{2,2} \land \neg W_{1,4} \land \neg W_{2,4}, \land \neg W_{2,4$ $\neg W_{2,3} \land \neg W_{2,4} \land \neg W_{3,1}, \land W_{3,2} \land \neg W_{3,3} \land \neg W_{3,4} \land \neg W_{4,1}, \land \neg W_{4,2} \land \neg W_{4,2} \land \neg W_{4,3} \land \neg W_{4,4} \land \neg W_$ $\neg W_{4,3} \land \neg W_{4,4}) \lor (\neg W_{1,1}, \land \neg W_{1,2} \land \neg W_{1,3} \land \neg W_{1,4} \land \neg W_{2,1}, \land \neg W_{2,2} \land \neg W_{1,4} \land \neg W_{2,4}, \land \neg W_{2,4$ $\neg W_{2,3} \land \neg W_{2,4} \land \neg W_{3,1}, \land \neg W_{3,2} \land W_{3,3} \land \neg W_{3,4} \land \neg W_{4,1}, \land \neg W_{4,2} \land$ $\neg W_{4,3} \land \neg W_{4,4}) \lor (\neg W_{1,1}, \land \neg W_{1,2} \land \neg W_{1,3} \land \neg W_{1,4} \land \neg W_{2,1}, \land \neg W_{2,2} \land \neg W_{1,4} \land \neg W_{2,4}, \land \neg W_{2,4$ $\neg W_{2,3} \land \neg W_{2,4} \land \neg W_{3,1}, \land \neg W_{3,2} \land \neg W_{3,3} \land W_{3,4} \land \neg W_{4,1}, \land \neg W_{4,2} \land \neg W_$ $\neg W_{4,3} \land \neg W_{4,4}) \lor (\neg W_{1,1}, \land \neg W_{1,2} \land \neg W_{1,3} \land \neg W_{1,4} \land \neg W_{2,1}, \land \neg W_{2,2} \land \neg W_{1,4} \land \neg W_{2,4}, \land \neg W_{2,4$ $\neg W_{2,3} \land \neg W_{2,4} \land \neg W_{3,1}, \land \neg W_{3,2} \land \neg W_{3,3} \land \neg W_{3,4} \land W_{4,1}, \land \neg W_{4,2} \land \neg W_{4,3} \land \neg W_{4,4} \land \neg W_$ $\neg W_{4,3} \land \neg W_{4,4}) \lor (\neg W_{1,1}, \land \neg W_{1,2} \land \neg W_{1,3} \land \neg W_{1,4} \land \neg W_{2,1}, \land \neg W_{2,2} \land \neg W_{1,4} \land \neg W_{2,1}, \land \neg W_{2,2} \land \neg W_{2,4} \land \neg W_{2,4}, \land$ $\neg W_{2,3} \land \neg W_{2,4} \land \neg W_{3,1}, \land \neg W_{3,2} \land \neg W_{3,3} \land \neg W_{3,4} \land \neg W_{4,1}, \land W_{4,2} \land \neg W_{4,2}, \land \neg W_{4,2}, \land \neg W_{4,2} \land \neg W_{4,2}$ $\neg W_{4,3} \land \neg W_{4,4}) \lor (\neg W_{1,1}, \land \neg W_{1,2} \land \neg W_{1,3} \land \neg W_{1,4} \land \neg W_{2,1}, \land \neg W_{2,2} \land \neg W_{1,4} \land \neg W_{2,4}, \land \neg W_{2,4$ $\neg W_{2,3} \land \neg W_{2,4} \land \neg W_{3,1}, \land \neg W_{3,2} \land \neg W_{3,3} \land \neg W_{3,4} \land \neg W_{4,1}, \land \neg W_{4,2} \land$ $W_{4,3} \land \neg W_{4,4}) \lor (\neg W_{1,1}, \land \neg W_{1,2} \land \neg W_{1,3} \land \neg W_{1,4} \land \neg W_{2,1}, \land \neg W_{2,2} \land \neg W_{2,4})$ $\neg W_{2,3} \land \neg W_{2,4} \land \neg W_{3,1}, \land \neg W_{3,2} \land \neg W_{3,3} \land \neg W_{3,4} \land \neg W_{4,1}, \land \neg W_{4,2} \land$ $\neg W_{4,3} \wedge W_{4,4}$

(c)

Exercise 1.5 (a)

(b)