Foreword

Usage

• Notes are presented in two columns: main notes on the left, and sidenotes on the right. Main notes will have a larger margin.

• The following is the color code for the notes:

Blue Definitions

Red Important points

Yellow Points to watch out for / comment for incompletion

Green External definitions, theorems, etc.

Light Blue Regular highlighting
Brown Secondary highlighting

• The following is the color code for boxes, that begin and end with a line of the same color:

Blue Definitions
Red Warning

Yellow Notes, remarks, etc.

Brown Proofs

Magenta Theorems, Propositions, Lemmas, etc.

Hyperlinks are underlined in magenta. If your PDF reader supports it, you can follow the links to either be redirected to an external website, or a theorem, definition, etc., in the same document.
 Note that this is only reliable if you have the full set of notes as a single document, which you can find on:

https://japorized.github.io/TeX_notes

11 Lecture 11 May 25th 2018

The following theorem is useful for A₂. The proof is not provided in this lecture, but expect the corollary to be restated and proven in a later lecture.

Corollary

Let G be a finite group and H, K \triangleleft G, H - K = $\{1\}$ and |H||K| = |G|. Then $G \cong H \times K$.

11.1 Normal Subgroup (Continued 2)

11.1.1 Normal Subgroup (Continued)

Note (Recall)

Recall the definition of a normal subgroup as in Definition 23. Let H be a subgroup of G. If gH = Hg for all $g \in G$, then $H \triangleleft G$.

Proposition 27 (Normality Test)

Let H be a subgroup of a group G. The following are equivalent:

- 1. *H* ⊲ *G*
- 2. $\forall g \in G \ gHg^{-1} \subseteq H$
- 3. $\forall g \in G \ gHg^{-1} = H$

Note

Note that item 3 is indeed a stronger statement that item 2. But since the statements are equivalent, while using the Normality Test, if we can show that item 2 is true, item 3 is automatically true.

Proof

 $(1) \implies (2)$:

$$x \in gHg^{-1} \implies \exists h \in H \ x = ghg^{-1}$$

 $\implies \exists h_1 \in H \ gh = h_1g \quad \because gh \in gH = Hg$
 $\implies x = ghg^{-1} = h_1gg^{-1} = h_1 \in H$
 $\implies gHg^{-1} \subseteq H$

 $(2) \implies (3)$:

$$(2) \implies \forall g \in G \quad gHg^{-1} \subseteq H$$

$$\implies \exists g^{-1} \in G \quad g^{-1}Hg \subseteq H$$

$$\implies H \subseteq gHg^{-1}$$

$$\stackrel{(2)}{\implies} gHg^{-1} = H$$

 $(3) \implies (1)$:

$$(3) \implies \forall g \in G \quad gHg^{-1} = H$$

$$\implies \forall x \in gH \quad xg^{-1} \in gHg^{-1} = H$$

$$\implies x \in Hg \quad \because gg^{-1} = 1$$

$$\implies gH \subseteq Hg$$

Using a similar argument, we would have $Hg \subseteq Hg$. And so gH = Hg as required.

Example 11.1.1

Let $G = GL_n(\mathbb{R})$ and $H = SL_n(\mathbb{R})$.¹ For $A \in G$ and $B \in H$ we have

 $\det ABA^{-1} = \det A \det B \det A^{-1} = \det A(1) \frac{1}{\det A} = 1.$

Thus $\forall A \in G$, $ABA^{-1} \in H$. By Proposition 27, $H \triangleleft G$, i.e. $SL_n(\mathbb{R}) \triangleleft GL_n(\mathbb{R})$.²

¹ Recall Definition 8 and Definition 11.

Note

The normality is true for any field, not just \mathbb{R} .

Proposition 28 (Subgroup of Index 2 is Normal)

$$\forall H \ subgroup \ of \ G \land [G:H] = 2 \implies H \triangleleft G$$

Proof

Let $a \in G$.

$$a \in H \implies aH = Ha$$

 $a \notin H \implies G = H \cup Ha \implies Ha = G \setminus H \implies Proposition 22$
 $a \notin H \implies G = H \cup aH \implies aH = G \setminus H \implies Proposition 22$

That implies that aH = Ha for any $a \in G$. Hence, by Proposition 27, $H \triangleleft G$.

Example 11.1.2

Let A_n be the Alternating Group contained by S_n .³ By Proposition 28, since $[S_n : A_n] = 2$ because $S_n = A_n \cup O_n$ and O_n is a coset of A_n , we have that

³ Recall the definition of alternating group from Theorem 11 and S_n from Definition 4

$$A_n \triangleleft S_n$$
.

Example 11.1.3

Let

$$D_{2n} = \{1, a, a^2, ..., a^{n-1}, b, ba, ba^2, ..., ba^{n-1}\}$$

be the **Dihedral Group** of order 2n. Since $[D_{2n}: \langle a \rangle] = 2,4$ we have that

⁴ The coset of $\langle a \rangle$ is $b \langle a \rangle$.

$$\langle a \rangle \triangleleft D_{2n}$$
 : Proposition 27.

LET *H* and *K* be subgroups of a group *G*. Recall an earlier discussion: $H \cap K$ is the largest subgroup contained in both H and K.

What is the "smallest" subgroup that contains both *H* and *K*? Since $H \cap K$ is the largest, it makes sense to think about $H \cup K$. However,

$$H \cup K$$
 is a subgroup of $G \iff H \subseteq K \veebar K \subseteq H$

While we know that $H \cup K$ can indeed be such a subgroup, the price of the restriction is too high, since it is overly restrictive.

A more "useful" construction turns out to be the **product** of the

subgroups.

Definition 24 (Product of Groups)

$$HK := \{hk : h \in H, k \in K\}$$

However, HK is not necessarily a subgroup. For example, for $h_1k_1, h_2k_2 \in HK$, it is not necessary that $h_1k_1h_2k_2 \in HK$, since k_1h_2 is not necessarily equal to h_2k_1 .

Lemma 29 (Product of Groups as a Subgroup)

Let H and K be subgroups of G. The following are equivalent:

- 1. HK is a subgroup of G
- 2. $HK = KH^{5}$
- 3. KH is a subgroup of G

⁵ If one of *H* or *K* is normal, then the lemma immediately kicks in.

Proof

It suffices to prove $(1) \iff (2)$, since $(1) \iff (3)$ simply through exchanging H and K.

(1) \Longrightarrow (2): Let $kh \in KH$ such that $k \in K$ and $h \in H$. Their inverses are $k^{-1} \in K$ and $h^{-1} \in H$, since K and H are groups. Note that

$$kh = (h^{-1}k^{-1})^{-1} \in HK$$
 : HK is a subgroup of G.

Therefore $kh \in HK$, which implies $KH \subseteq HK$. By a similar argument, we can arrive at $HK \subseteq KH$ and so HK = KH.

(2) \Longrightarrow (1): Note that $1 = 1 \cdot 1 \in HK$. For all $hk \in HK$, $(hk)^{-1} = k^{-1}h^{-1} \in KH = HK$. For $h_1k_1, h_2k_2 \in HK$, note that $k_1h_2 \in KH = HK$, so there exists $hk \in HK$ such that $k_1h_2 = hk$. Therefore,

$$h_1k_1h_2k_2=h_1hkk_2\in HK.$$

By the Subgroup Test, HK is a subgroup of G.

Proposition 30 (Product of Normal Subgroups is Normal)

Let H and K be subgroups of G.

- 1. $H \triangleleft G \lor K \triangleleft G \implies HK = KH$ is a subgroup of G
- 2. $H, K \triangleleft G \implies HK = KH \triangleleft G$

Proof

1. Without loss of generality, suppose $H \triangleleft G$. Then

$$HK = \bigcup_{k \in K} Hk = \bigcup_{k \in K} kH = KH$$
 (11.1)

By Lemma 29, HK = KH is a subgroup of G.

2. Suppose $H, K \triangleleft G$. Then

$$\forall g \in G \ \forall hk \in HK \ g^{-1}(hk)g = (g^{-1}hg)(g^{-1}kg) \in HK$$

Thus $gHKg^{-1} \subseteq HK$. Thus by Proposition 27, we have that $HK \triangleleft G$.

Note that Equation (11.1) is a weaker statement than the regular normality that we have defined, since it only requires all elements of K to work instead of the entire G.

With that, we define the following notion:

Definition 25 (Normalizer)

Let H be a subgroup of G. The normalizer of H, denoted by $N_G(H)$, is defined to be

$$N_G(H) := \{g \in G : gH = Hg\}$$

Note

By the above definition, we immediately see that $H \triangleleft G \iff N_G(H) = G$ by Equation (11.1). Observe that since we only needed kH = Hk in Equation (11.1) for all $k \in K$, we have that $k \in N_G(H)$.

We shall now provide the following corollary which shall be proven in the next lecture.

Corollary

Let H and K be subgroups of a group G.

$$K \subseteq N_G(H) \vee H \subseteq N_G(K) \implies HK = KH \text{ is a subgroup of } G$$