Dipartimento di Informatica Università di Verona A.A. 2018-19

Elaborazione dei Segnali e Immagini

Analisi di Fourier

Trasformata di Fourier

tempo-discreta

Gonzalez Cap.4.3

CAMPIONAMENTO

• Sia f(t) segnale reale continuo $f:]-\infty,+\infty[\in\mathbb{R} \to \mathbb{R}$ (attenzione al dominio non limitato), anche non periodico

• per essere elaborato al computer deve essere innanzitutto *campionato* ad intervalli discreti

• Sia $s_{\Delta T}(t) = \sum_{n=-\infty}^{\infty} \delta(t - n\Delta T)$ il treno di impulsi di $periodo \Delta T$, ossia con frequenza di campionamento

$$\mu_s = \frac{1}{\Delta T}$$

 Matematicamente, campionare un segnale significa moltiplicarlo per un treno di impulsi

$$\widetilde{f}(t) = f(t) \cdot s_{\Delta T}(t) = f(t) \cdot \sum_{n=-\infty}^{+\infty} \delta(t - n\Delta T)$$

TRASFORMATA DI FOURIER A TEMPO-DISCRETO

- Sia $F(\mu)$ la trasformata di Fourier di un segnale $f(t): \mathbb{R} \to \mathbb{R}$. Ora considero $\widetilde{f}(t)$ e voglio calcolarne la trasformata di Fourier $\widetilde{F}(\mu)$
- Attraverso il teorema della convoluzione so che:

$$\widetilde{F}(\mu) = \mathcal{F}\left\{\widetilde{f}(t)\right\}$$

$$= \mathcal{F}\left\{f(t) \cdot s_{\Delta t}(t)\right\}$$

$$= F(\mu) * S_{\Delta t}(\mu)$$

• dove so che
$$S_{\Delta t}(\mu) = \frac{1}{\Delta T} \sum_{n=-\infty}^{+\infty} \delta \left(\mu - \frac{n}{\Delta T} \right)$$

Più lungo il periodo di campionamento ΔT nel dominio del tempo...

...più è fitto il periodo di campionamento nel dominio della frequenza e meno sono alti gli impulsi

...E VICEVERSA!

Più corto il periodo di campionamento ΔT nel tempo...

Più è alta la frequenza di campionamento

$$\frac{1}{\Delta T} = \mu_s \dots$$

...più è sparso il periodo di campionamento in frequenza e meno sono alti gli impulsi • la convoluzione in frequenza si risolve come segue:

$$F(\mu) * S_{\Delta t}(\mu) = \int_{-\infty}^{+\infty} F(\tau) \cdot S_{\Delta t}(\mu - \tau) d\tau$$

$$= \frac{1}{\Delta T} \int_{-\infty}^{+\infty} F(\tau) \cdot \sum_{n = -\infty}^{+\infty} \delta \left(\mu - \frac{n}{\Delta T} - \tau \right) d\tau$$

$$= \frac{1}{\Delta T} \sum_{n = -\infty}^{+\infty} \int_{-\infty}^{+\infty} F(\tau) \cdot \delta \left(\mu - \frac{n}{\Delta T} - \tau \right) d\tau$$

$$= \frac{1}{\Delta T} \sum_{n = -\infty}^{+\infty} F\left(\mu - \frac{n}{\Delta T} \right)$$

• Capiamo cos'è $\widetilde{F}(\mu) = F(\mu) * S_{\Delta t}(\mu) = \frac{1}{\Delta T} \sum_{n=-\infty}^{+\infty} F(\mu - \frac{n}{\Delta T})$

 $F(\mu)$ = TdF della funzione originale f(t) (assumo abbia spettro finito, ipotesi più che ragionevole...)

Per esempio, $\mu_{\text{max}} = 2000 \text{Hz}$ (max frequenza generabile da una voce umana)

• Capiamo cos'è
$$\widetilde{F}(\mu) = F(\mu) * S_{\Delta t}(\mu) = \frac{1}{\Delta T} \sum_{n=-\infty}^{+\infty} F\left(\mu - \frac{n}{\Delta T}\right)$$

$$F\left(\mu - \frac{n}{\Delta T}\right) = \text{TdF della fu}$$
quantità par

 $F\left(\mu - \frac{n}{\Delta T}\right) = \text{TdF della funzione originale } f(t) \text{ shiftato a dx di una}$ quantità pari a $\frac{n}{\Delta T}$

Per esempio, se:

 $\mu_{\text{max}} = 2000 \text{ Hz} = 2 \text{KHz}$ (slide precedente, max esprimibile da una voce)

$$\Delta T = 1/44000 \sec \Rightarrow \frac{1}{\Delta T} = 44000 \text{ Hz} = 44 \text{ KHz}$$

• Capiamo cos'è
$$F(\mu) * S_{\Delta t}(\mu) = \frac{1}{\Delta T} \sum_{n=-\infty}^{+\infty} F\left(\mu - \frac{n}{\Delta T}\right)$$

$$\frac{1}{\Delta T} \sum_{n=-\infty}^{+\infty} F\left(\mu - \frac{n}{\Delta T}\right)$$

 $\frac{1}{\Lambda T} \sum_{n=0}^{+\infty} F\left(\mu - \frac{n}{\Delta T}\right) = \text{infinite copie dello spettro } F(\mu), \text{ ripetute ogni } \frac{1}{\Lambda T}$

= è un segnale periodico (nelle frequenze!) di

periodo $\frac{1}{\Lambda T}$, ovvero di ripete ogni $\frac{1}{\Lambda T}$ Hz

= ho una scalatura nell'ampiezza di un fattore $\frac{1}{4\pi}$

= Trasformata di Fourier a Tempo Discreto (DTFT)

Marco Cristani

Elaborazione dei Segnali e Immagini

• Come cambia la DTFT in funzione del periodo di campionamento ΔT del segnale f(t)?

TEOREMA DEL CAMPIONAMENTO

• Un segnale reale continuo f(t), limitato in banda, può essere ricostruito senza errori completamente da un set di suoi campioni...

... se essi sono acquisiti con un tempo di campionamento ΔT tale per cui

$$\frac{1}{\Lambda T} = \mu_s > 2\mu_{\text{MAX}}$$

= se nel tempio adotto una frequenza di campionamento $1/\Delta T$ almeno doppia rispetto alla frequenza massima del segnale μ_{max} Marco Cristani

- In pratica il teorema del campionamento mi dice che tutte le proprietà di un segnale possono essere espresse usando dei campioni.
- Posso dimenticarmi di porzioni del segnale (quelle che stanno tra coppie di campioni) e non sto perdendo nulla!
- E' un risultato teorico, non posso ancora vederlo nel PC!
- $1/\Delta T$ viene detta frequenza di Nyquist. Per frequenze minori, ho aliasing

Come avviene la ricostruzione del segnale originale?

- Ho il segnale campionato,
 ne calcolo la trasformata
 di Fourier
- La Trasformata di Fourier di una funzione campionata è una funzione periodica, dove ogni periodo riporta una copia dello spettro della funzione continua
- Isolo un periodo della funzione periodica, lo antitrasformo con Fourier

• In formule:

• A questo punto, devo antitrasformare la copia ritagliata per arrivare al segnale f(t)

$$f(t) = \mathcal{F}^{-1} \{ F(\mu) \}$$

$$= \mathcal{F}^{-1} \{ H(\mu) \cdot \widetilde{F}(\mu) \}$$

$$= h(t) * \widetilde{f}(t)$$

• si può dimostrare (lo faremo come esercizio)

$$f(t) = \sum_{n=-\infty}^{\infty} f(n\Delta T) \operatorname{sinc}\left[\left(t - n\Delta T\right) / n\Delta T\right]$$

Osservo il comportamento di questa espressione

$$- Se \ t = m\Delta T \quad f(t = m\Delta T) = \sum_{n = -\infty}^{\infty} f(n\Delta T) \operatorname{sinc}[(t - n\Delta T)/n\Delta T]$$

$$= \sum_{n = -\infty}^{\infty} f(n\Delta T) \operatorname{sinc}[(m\Delta T - n\Delta T)/n\Delta T]$$

$$= \sum_{n = -\infty}^{\infty} f(n\Delta T) \operatorname{sinc}[(m - n)/n]$$

$$= \begin{cases} f(n\Delta T) \cdot 1 & \text{se } m = n \\ f(n\Delta T) \cdot 0 & \text{se } m \neq n \end{cases}$$

• Se *t* corrisponde alla posizione di uno dei campioni $(t = m\Delta T)$ riesco ad avere una ricostruzione "semplice"

• Osservo il comportamento di questa espressione

- Se
$$t \neq m\Delta T$$
 $f(t) = \sum_{n=-\infty}^{\infty} f(n\Delta T) \operatorname{sinc}[(t - n\Delta T)/n\Delta T]$

- f(t) è il risultato di una somma infinita di termini. Ognuno di questi è una sinc posizionata in un punto del tempo, pesata dal campione $f(n\Delta T)$
- è una interpolazione!

PROBLEMA

$$f(t) = \sum_{n=-\infty}^{\infty} f(n\Delta T) \operatorname{sinc}[(t - n\Delta T)/n\Delta T]$$

• L'interpolazione che, dal punto di vista teorico, mi permette di ricostruire esattamente il segnale non può essere implementata perché il segnale che sto trattando ha durata finita!