

cenie liniowe $F:C^3(\mathbb{C})\to C^3(\mathbb{C})$ w bazie standardowej \mathcal{E}_3 ma macierz

$$M_{\mathcal{E}_3}^{\mathcal{E}_3}(F) = \left(egin{array}{ccc} 0 & 0 & i \ 0 & 1 & 0 \ -i & 0 & 0 \end{array}
ight).$$

acz wartości własne i odpowiadające im podprzestrzenie własne przekształcenia F.

acz bazę $\mathcal C$ przestrzeni $C^3(\mathbb C)$, w której macierz $M_{\mathcal C}^{\mathcal C}(F)$ ma postać diagonalną, a następnie macierze $M_{\mathcal C}^{\mathcal C}(F)$, id_{C^3}) oraz $M_{\mathcal E_3}^{\mathcal C}(\mathrm{id}_{C^3})$.

$$V = \begin{bmatrix} it, & t_1, t_2 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 0, 1, 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} i, 0, 1 \end{bmatrix}$$

$$N_1 = \mathcal{L} \left(\begin{bmatrix} 0, 1, 0 \end{bmatrix}, \begin{bmatrix} i, 0, 1 \end{bmatrix} \right)$$

$$d_{\alpha} = \lambda = -1$$

$$\begin{bmatrix} 1 & 0 & i & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 2 & 0 & 0 \end{bmatrix} \xrightarrow{\chi_{\alpha}} \begin{bmatrix} 0 \\ \chi_{\alpha} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & i & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\chi_{\alpha}} \begin{bmatrix} 0 \\ \chi_{\alpha} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & i & 0 \\ 0 & 2 & 0 \\ 0 & 0 \end{bmatrix} \xrightarrow{\chi_{\alpha}} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{\chi_{\alpha}} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{\chi_{\alpha}} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & i & 0 \\ 0 & 2 & 0 \\ 0 & 0 \end{bmatrix} \xrightarrow{\chi_{\alpha}} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{$$

e 3 (13 punktów) est układ równań z parametrem $b \in \mathbb{R}$:

$$\begin{cases} x + (2 - b)y + z = 0 \\ x + 2y + (1 - b)z = b \\ (1 - b)x + 2y + z = b \end{cases}$$

ołując się na twierdzenie Kroneckera-Cappeliego określ liczbę rozwiązań powyższego układu w zależności od b.

