Alexander V. Zakharov^a, Yuriy A. Zhabanov^a and Mikhail K. Islyaikin^b

Structures and properties of thiadiazole-containing expanded heteroazaporphyrinoids and their metallocomplexes

- ^a Department of Physics
- b Department of Fine organic synthesis

Ivanovo State University of Chemistry and Technology

The unsubstituted thiadiazole-containing expanded heteroazaporphyrinoid $(\mathsf{C}_{30}\mathsf{H}_{15}\mathsf{N}_{15}\mathsf{S}_3)$

History of discovery

First synthesis (no structural characterisation):

V. F. Borodkin and N. A. Kolesvikov, *Khim. Geterotsikl. Soedin.*, 1971, (2), 194; N. A. Kolesvikov and V. F. Borodkin, *Zh. Prikl. Spektrosk.*, 1971, **14**, 1124.

Presented (erroneously) as ABAB-type ("2+2") macrocycle:

N. A. Kolesvikov and V. F. Borodkin, *Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol.*, 1972, **15**, 880.

First synthesis of the *tert*-butylsubstituted macrocycle:

M. K. Islyaikin, V. F. Borodkin, E. A. Danilova, S. P. Konovalov, and A. A. Panov, *Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol.*, 1990, **33**, 18.

Again, no structural characterisation, supposed to be ABAB-type.

Second-time synthesis, characterisation...

The substituted macrocycle synthesised by two groups:

M. K. Islyaikin, E. A. Danilova, L. D. Yagodarova, M. S. Rodríguez-Morgade, and T. Torres, *Org. Lett.*, 2001, **3**, 2153; N. Kobayashi, S. Inagaki, V. N. Nemykin, and T. Nonomura, *Angew. Chem., Int. Ed.*, 2001, **40**, 2710.

Characterised by mass spectrometry (MALDI, FAB), 1 H and 13 C NMR, infrared and UV-vis spectroscopy, and elemental analysis.

... and direct experimental structural studies (at last)

Gas-phase electron diffraction and computational study:

A. V. Zakharov, S. A. Shlykov, N. V. Bumbina, E. A. Danilova, A. V. Krasnov, M. K. Islyaikin, and G. V. Girichev, *Chem. Commun.*, 2008, p. 3573; A. V. Zakharov, S. A. Shlykov, E. A. Danilova, A. V. Krasnov, M. K. Islyaikin, and G. V. Girichev, *Phys. Chem. Chem. Phys.*, 2009, DOI:10.1039/B905436G.

Possible orientations of the thiadiazole rings; the right structure was found to be a saddle point ($\Delta E = 235 \text{ kJ} \cdot \text{mol}^{-1}$)

Two possible conformers of the tert-butylsubstituted macrocycle, $C_{42}H_{39}N_{15}S_3$ $(\Delta E=1.4~kJ\cdot mol^{-1})$

Two possible regioisomers of the \emph{tert}-butylsubstituted macrocycle $(\Delta E < 0.1~\text{kJ}\cdot\text{mol}^{-1})$

Atom designations of the *tert*-butylsubstituted macrocycle

9 Selected structural parameters of $C_{42}H_{39}N_{15}S_3$ (1) and $C_{30}H_{15}N_{15}S_3$ (2) yielded by B3LYP/cc-pVTZ study

yicided by DOLIT / ee p v 12 Study							
Distances, Å				Angles, degrees			
	1^a	1^b	2		1^a	1^b	2
$r(N_p-C_{p1})$	1.385	1.384	1.384	$\alpha(N_p-C_{p1}-N_m)$	129.3	129.4	129.4
$r(C_{p1} - N_m)$	1.290	1.289	1.289	$\alpha(C_{p1} - N_m - C_t)$	122.4	122.4	122.4
$r(N_m-C_t)$	1.361	1.361	1.361	$\alpha(N_m^T-C_t-N_t)$	128.0	127.9	127.9
$r(C_t-N_t)$	1.316	1.316	1.316	$\alpha(N_m-C_t-S)$	119.2	119.2	119.2
$r(N_t-N_t)$	1.346		1.346	$\alpha(N_t-C_t-S)$	112.8	112.9	112.9
$r(C_t-S)$	1.752	1.752	1.751	$\alpha(N_p-C_{p1}-C_{p2})$	106.2	106.3	106.3
$r(C_{p1}-C_{p2})$	1.466	1.468	1.468	$\alpha(C_{p1}-C_{p2}-C_{p2})$	108.0	107.8	107.8
$r(C_{p2}-C_{p2})$	1.392		1.397	$\alpha(C_{p1}^T-C_{p2}^T-C_{b1}^T)$	131.7	130.5	130.9
$r(C_{p2}-C_{b1})$	1.386	1.386	1.386	$\alpha(C_{p2}^T-C_{b1}^T-C_{b2})$	117.9	119.1	117.6
$r(C_{b1}^T-C_{b2})$	1.388	1.397	1.392	$\alpha(C_{b1}^T-C_{b2}-C_{b2})$	122.8	118.2	121.1
$r(C_{b2}-C_{b2})$	1.409		1.398				
$r(Z\cdots N_t)^c$	2.754	2.753	2.753				
$r(Z\cdots N_p)^c$	3.880		3.880				
$r(N_t \cdots N_t)$	3.951		3.951				
$r(N_p\cdots N_p)$	6.720		6.720				

^a Clockwise part of the molecule, atoms labelled without stars.

^b Counter-clockwise part, starred atom labels.

 $^{^{}c}$ Distances from the z axis, *i.e.* from the centre of the molecule.

Two possible tautomers of the unsubstituted macrocycle ($\Delta E = 108 \text{ kJ} \cdot \text{mol}^{-1}$)

3,6-methoxy- and 4,5-methoxysubstituted macrocycles

Changes in electronic spectrum of 3,6-alcoxysubstituted macrocycle (left); fully protonated 3,6-methoxysubstituted macrocycle used as a model (right)

Yttrium (YC $_{30}$ N $_{15}$ H $_{12}$ S $_3$, left) and lanthanum (LaC $_{30}$ N $_{15}$ H $_{12}$ S $_3$, right) complexes

Synthesis of tert-butylsubstituted complexes of La, Tm and Lu:

N. V. Bumbina, E. A. Danilova, M. K. Islyaikin, *Izv. vuzov. Khim. khim. tekhnol.*, 2008, **51**, p. 15; N. V. Bumbina, E. A. Danilova, I. G. Abramov, S. I. Filimonov, V. S. Sharunov, M. K. Islyaikin, *J. Porphyrins and Phthalocyanines*, 2008, **12**, p. 489.

LaC₃₀N₁₅H₁₂S₃ complex, C_s symmetry, front and side views; r(La-N)=2.559-2.578 Å, barrier to macrocycle inversion is 6 kJ·mol⁻¹