Approximate data deletion and replication with the Bayesian influence function

Ryan Giordano (rgiordano herkeley.edu, UC Berkeley), Tamara Broderick (MIT) 2024 ISBA World Meeting

Economist 2016 Election Model [Gelman and Heidemanns, 2020]

A time series model to predict the 2016 US presidential election outcome from polling data.

Model:

- $X = x_1, ..., x_N =$ Polling data (N = 361).
- + $\theta = \text{Lots of random effects (day, pollster, etc.)}$
- $f(\theta) = \mbox{Democratic }\%$ of vote on election day

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

We want to know $\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$

Economist 2016 Election Model [Gelman and Heidemanns, 2020]

A time series model to predict the 2016 US presidential election outcome from polling data.

Model:

- $X = x_1, ..., x_N =$ Polling data (N = 361).
- $\theta = \text{Lots of random effects (day, pollster, etc.)}$
- $f(\theta) = \text{Democratic } \% \text{ of vote on election day }$

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

We want to know $\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$

The people who responded to the polls were randomly selected.

If we had selected a different random sample, how much would our estimate have changed?

Idea: Re-fit with bootstrap samples of data [Huggins and Miller, 2023]

Economist 2016 Election Model [Gelman and Heidemanns, 2020]

A time series model to predict the 2016 US presidential election outcome from polling data.

Model:

- $X=x_1,\ldots,x_N=$ Polling data (N=361).
- $\theta = \text{Lots of random effects (day, pollster, etc.)}$
- $f(\theta) = \text{Democratic } \% \text{ of vote on election day }$

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

We want to know $\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)]$.

The people who responded to the polls were randomly selected.

If we had selected a different random sample, how much would our estimate have changed?

Idea: Re-fit with bootstrap samples of data [Huggins and Miller, 2023]

Problem: Each MCMC run takes about 10 hours (Stan, six cores).

Results

Proposal: Use full–data posterior draws to form a linear approximation to *data reweightings*.

Results

Proposal: Use full–data posterior draws to form a linear approximation to *data reweightings*.

Results

Proposal: Use full—data posterior draws to form a linear approximation to *data reweightings*.

Compute time for 100 bootstraps: 51 days

Compute time for the linear approximation: Seconds (But note the approximation has some error)

.

Outline

- · Data reweighting
 - Write the change in the posterior expectation as linear component + error
 - The linear component can be computed from a single run of MCMC
 - The linear component can be used to estimate the frequentist variability of posterior expectations
- In finite dimensions, the linear approximation gives a consistent variance estimator
- · In problems with high-dimensional nuisance parameters, the linear approximation is
 - Inconsistent (!)
 - · Even for parameters that marginally obey a Bernstein von-Mises theorem (!)
 - But the error is $O_p(1)$, and proportional a nuisance parameter posterior covariance.

Augment the problem with data weights w_1, \ldots, w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n | \theta)$$
 $\log p(X | \theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$

Original weights:

Augment the problem with data weights w_1,\ldots,w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$
 $\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$

Original weights:

Leave-one-out weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$
 $\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

The re-scaled slope $N\psi_n$ is known as the "influence function" at data point x_n .

$$\mathbb{E}_{p(\theta|X,w)}[f(\theta)] - \mathbb{E}_{p(\theta|X)}[f(\theta)] = \sum_{n=1}^{N} \psi_n(w_n - 1) + \mathcal{E}(w).$$

,

How can we use the approximation?

Example: Approximate bootstrap.

Draw bootstrap weights $w \sim p(w) = \text{Multinomial}(N, N^{-1})$.

This is equivalent to re-sampling data with replacement.

Bootstrap variance
$$= \underset{p(w)}{\operatorname{Var}} \left(\underset{p(\theta|x,w)}{\mathbb{E}} [f(\theta)] \right)$$

$$\approx \underset{p(w)}{\operatorname{Var}} \left(\underset{p(\theta|x)}{\mathbb{E}} [f(\theta)] + \psi_n(w_n - 1) \right) \quad \text{(assuming the error is small)}$$

$$= \sum_{n=1}^N \left(\psi_n - \overline{\psi} \right)^2.$$

The final line is also known as the "infinitesimal jackknife" variance approximation.

How can we use the approximation?

Example: Approximate bootstrap.

Draw bootstrap weights $w \sim p(w) = \text{Multinomial}(N, N^{-1})$.

This is equivalent to re-sampling data with replacement.

Bootstrap variance
$$= \underset{p(w)}{\operatorname{Var}} \left(\underset{p(\theta|x,w)}{\mathbb{E}} [f(\theta)] \right)$$

$$\approx \underset{p(w)}{\operatorname{Var}} \left(\underset{p(\theta|x)}{\mathbb{E}} [f(\theta)] + \psi_n(w_n - 1) \right) \quad \text{(assuming the error is small)}$$

$$= \sum_{n=1}^N \left(\psi_n - \overline{\psi} \right)^2.$$

The final line is also known as the "infinitesimal jackknife" variance approximation.

Other examples: Cross validation, conformal inference, outlier identification, etc.

Expressions for the slope and error

How to compute the slopes ψ_n ? How can we analyze the error $\mathcal{E}(w)$?

$$\underset{p(\theta|X,w)}{\mathbb{E}}[f(\theta)] - \underset{p(\theta|X)}{\mathbb{E}}[f(\theta)] = \underset{n=1}{\overset{N}{\sum}} \psi_n(w_n - 1) + \underbrace{\mathcal{E}(w)}.$$

Expressions for the slope and error

How to compute the slopes ψ_n ? How can we analyze the error $\mathcal{E}(w)$?

$$\underset{p(\theta|X,w)}{\mathbb{E}} [f(\theta)] - \underset{p(\theta|X)}{\mathbb{E}} [f(\theta)] = \underset{n=1}{\overset{N}{\sum}} \psi_n(w_n - 1) + \mathcal{E}(w).$$

Let an overbar denote "posterior—mean zero." For example, $\bar{f}(\theta) := f(\theta) - \underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$

By dominated convergence and the mean value theorem, for some $\tilde{w} :$

$$\psi_n = \underbrace{\underset{p(\theta|X)}{\operatorname{Cov}}(\theta, \ell_n(\theta))}_{\text{Estimatable with MCMC!}}$$

Expressions for the slope and error

How to compute the slopes ψ_n ? How can we analyze the error $\mathcal{E}(w)$?

$$\underset{p(\theta|X,w)}{\mathbb{E}}\left[f(\theta)\right] - \underset{p(\theta|X)}{\mathbb{E}}\left[f(\theta)\right] = \underset{n=1}{\overset{N}{\sum}} \psi_n(w_n-1) + \mathcal{E}(w).$$

Let an overbar denote "posterior–mean zero." For example, $\bar{f}(\theta) := f(\theta) - \underset{p(\theta|X)}{\mathbb{E}} [f(\theta)].$

By dominated convergence and the mean value theorem, for some \tilde{w} :

$$\psi_n = \underbrace{\operatorname{Cov}_{p(\theta|X)}(\theta, \ell_n(\theta))}_{\text{Estimatable with MCMC!}}$$

$$\mathcal{E}(w) = \frac{1}{2} \sum_{n=1}^{N} \sum_{n'=1}^{N} \underbrace{\mathbb{E}_{\boldsymbol{p}(\boldsymbol{\theta}|\boldsymbol{X},\bar{\boldsymbol{w}})} \left[\bar{\boldsymbol{f}}(\boldsymbol{\theta})\bar{\boldsymbol{\ell}}_{\boldsymbol{n}'}(\boldsymbol{\theta})\right]}_{\boldsymbol{p}(\boldsymbol{\theta}|\boldsymbol{x},\boldsymbol{u}')}(w_n - 1)(w_{n'} - 1)$$

Cannot compute directly! (we don't know the intermediate value theorem's \tilde{w}).

But we can analyze it.

Theoretical results

How good is the linear approximation (IJ covariance)?

$$\sqrt{N} \left(\underbrace{\mathbb{E}}_{p(\theta|X)} \left[f(\theta) \right] - f(\theta_0) \right) \xrightarrow[N \to \infty]{dist} \mathcal{N}(0, \underbrace{\Sigma}) \text{ for some } \theta_0$$
 Want to estimate this

Theoretical results

How good is the linear approximation (IJ covariance)?

$$\sqrt{N} \left(\underbrace{\mathbb{E}}_{p(\theta|X)} \left[f(\theta) \right] - f(\theta_0) \right) \xrightarrow[N \to \infty]{dist} \mathcal{N}(0, \underbrace{\Sigma}) \text{ for some } \theta_0$$

Theorem 3 of Giordano and Broderick [2023] (paraphrase):

If the parameter dimension is fixed, and Berstein–von Mises (BVM) theorem–like conditions hold, then the IJ covariance is consistent, because $\sqrt{N}\mathcal{E}(w) \xrightarrow[N \to \infty]{prob} 0$.

Theoretical results

How good is the linear approximation (IJ covariance)?

$$\sqrt{N} \left(\underset{p(\theta|X)}{\mathbb{E}} \left[f(\theta) \right] - f(\theta_0) \right) \xrightarrow[N \to \infty]{dist} \mathcal{N}(0, \underbrace{\Sigma}) \text{ for some } \theta_0$$

Theorem 3 of Giordano and Broderick [2023] (paraphrase):

If the parameter dimension is fixed, and Berstein–von Mises (BVM) theorem–like conditions hold, then the IJ covariance is consistent, because $\sqrt{N}\mathcal{E}(w) \xrightarrow[N \to \infty]{prob} 0$.

Problem: we're doing MCMC because BVM does not hold. What if $f(\theta)$ concentrates marginally, but some components don't concentrate?

How good is the linear approximation (IJ covariance)?

$$\sqrt{N} \left(\underset{p(\theta|X)}{\mathbb{E}} \left[f(\theta) \right] - f(\theta_0) \right) \xrightarrow[N \to \infty]{dist} \mathcal{N}(0, \underbrace{\Sigma}) \text{ for some } \theta_0$$

Theorem 3 of Giordano and Broderick [2023] (paraphrase):

If the parameter dimension is fixed, and Berstein–von Mises (BVM) theorem–like conditions hold, then the IJ covariance is consistent, because $\sqrt{N}\mathcal{E}(w) \xrightarrow[N \to \infty]{prob} 0$.

Problem: we're doing MCMC because BVM does not hold.

What if $f(\theta)$ concentrates marginally, but some components don't concentrate?

Theorem 4 of Giordano and Broderick [2023] (paraphrase):

In a flexible class of high-dimensional exponential family models,

- $\sqrt{N}\mathcal{E}(w)$ does not converge to zero (so the IJ covariance is inconsistent), but...
- $\sqrt{N}\mathcal{E}(w) = \tilde{O}_p$ (1), and proportional to the nuisance parameters' posterior covariance

even when $p\left(f(\theta)|X\right)$ obeys a BVM marginally. (!)

- Proofs use the von Mises expansion to accommodate high–dimensional θ [von Mises, 1947].
- ⇒ Proofs (and experiments) strongly suggest the bootstrap is inconsistent as well.

Observations and consequences

Preprint: Giordano and Broderick [2023] (arXiv:2305.06466)

- · Detailed proofs
- · Simple analytical examples
- · Simulated and real-world experiments

References

- A. Gelman and M. Heidemanns. The Economist: Forecasting the US elections., 2020. URL https://projects.economist.com/us-2020-forecast/president. Data and model accessed Oct., 2020.
- R. Giordano and T. Broderick. The Bayesian infinitesimal jackknife for variance. arXiv preprint arXiv:2305.06466, 2023.
- J. Huggins and J. Miller. Reproducible model selection using bagged posteriors. Bayesian Analysis, 18(1):79-104, 2023.
- R. von Mises. On the asymptotic distribution of differentiable statistical functions. *The Annals of Mathematical Statistics*, 18 (3):309–348, 1947.

How can we use the approximation?

How can we use the approximation?

Cross validation. Let $w_{(-n)}$ leave out point n, and loss $f(\theta) = -\ell(x_n|\theta)$.

$$\text{LOO CV loss at point } n = \mathop{\mathbb{E}}_{p(\theta|x,w_{(-n)})}[f(\theta)] \mathop{\approx}_{p(\theta|x)} \mathop{\mathbb{E}}_{[f(\theta)] - \psi_n}$$

How can we use the approximation?

Cross validation. Let $w_{(-n)}$ leave out point n, and loss $f(\theta) = -\ell(x_n|\theta)$.

$$\text{LOO CV loss at point } n = \underset{p(\theta|x,w_{(-n)})}{\mathbb{E}} \left[f(\theta) \right] \approx \underset{p(\theta|x)}{\mathbb{E}} \left[f(\theta) \right] - \psi_{\mathbf{n}}$$

Example: Approximate bootstrap.

Draw bootstrap weights $w \sim p(w) = \text{Multinomial}(N, N^{-1})$.

$$\begin{aligned} \text{Bootstrap variance} &= \underset{p(w)}{\text{Var}} \left(\underset{p(\theta|x,w)}{\mathbb{E}} [f(\theta)] \right) \\ &\approx \underset{p(w)}{\text{Var}} \left(\underset{p(\theta|x)}{\mathbb{E}} [f(\theta)] + \psi_n(w_n - 1) \right) \\ &= \underset{n=1}{\overset{N}{\sum}} \left(\psi_n - \overline{\psi} \right)^2. \end{aligned}$$

How can we use the approximation?

Cross validation. Let $w_{(-n)}$ leave out point n, and loss $f(\theta) = -\ell(x_n|\theta)$.

$$\text{LOO CV loss at point } n = \underset{p(\theta|x,w_{(-n)})}{\mathbb{E}} \left[f(\theta) \right] \underset{p(\theta|x)}{\thickapprox} \mathbb{E} \left[f(\theta) \right] - \psi_{\textbf{n}}$$

Example: Approximate bootstrap.

Draw bootstrap weights $w \sim p(w) = \text{Multinomial}(N, N^{-1})$.

$$\begin{split} \text{Bootstrap variance} &= \operatorname*{Var}_{p(w)} \left(\underset{p(\theta|x,w)}{\mathbb{E}} \left[f(\theta) \right] \right) \\ &\approx \operatorname*{Var}_{p(w)} \left(\underset{p(\theta|x)}{\mathbb{E}} \left[f(\theta) \right] + \psi_n(w_n - 1) \right) \\ &= \sum_{n=1}^N \left(\psi_n - \overline{\psi} \right)^2. \end{split}$$

Influential subsets: Approximate maximum influence perturbation (AMIP).

Let $W_{(-K)}$ denote weights leaving out K points.

$$\max_{w \in W_{(-K)}} \left(\underset{p(\theta|x,w)}{\mathbb{E}} \left[f(\theta) \right] - \underset{p(\theta|x)}{\mathbb{E}} \left[f(\theta) \right] \right) \approx - \sum_{n=1}^K \psi_{(n)}.$$

Consider $p(X|\gamma) = \prod_{n=1}^N \text{NegativeBinomial}(x_n|\gamma)$. Here, $\theta = \gamma$ is a scalar.

Consider $p(X|\gamma) = \prod_{n=1}^N \text{NegativeBinomial}(x_n|\gamma)$. Here, $\theta = \gamma$ is a scalar.

As $N \to \infty$, $p(\gamma|X)$ concentrates at rate $1/\sqrt{N}$ (Bernstein–von Mises).

$$\Rightarrow N\left(\underset{p(\gamma|X,w_n)}{\mathbb{E}}[\gamma] - \underset{p(\gamma|X)}{\mathbb{E}}[\gamma]\right) = \psi_n(w_n - 1) + \underset{\boldsymbol{O_p}(N^{-1})}{\boldsymbol{O_p}(N^{-1})}.$$

Consider $p(X|\gamma) = \prod_{n=1}^{N} \text{NegativeBinomial}(x_n|\gamma)$. Here, $\theta = \gamma$ is a scalar.

As $N \to \infty$, $p(\gamma|X)$ concentrates at rate $1/\sqrt{N}$ (Bernstein–von Mises).

$$\Rightarrow N\left(\underset{p(\gamma|X,w_n)}{\mathbb{E}}[\gamma] - \underset{p(\gamma|X)}{\mathbb{E}}[\gamma]\right) = \psi_n(w_n - 1) + \frac{O_p(N^{-1})}{.}$$

Negative Binomial model leaving out single datapoints with N = 800

Consider $p(X|\gamma) = \prod_{n=1}^{N} \text{NegativeBinomial}(x_n|\gamma)$. Here, $\theta = \gamma$ is a scalar.

As $N \to \infty$, $p(\gamma|X)$ concentrates at rate $1/\sqrt{N}$ (Bernstein–von Mises).

$$\Rightarrow N\left(\underset{p(\gamma|X,w_n)}{\mathbb{E}}[\gamma] - \underset{p(\gamma|X)}{\mathbb{E}}[\gamma]\right) = \psi_n(w_n - 1) + \frac{O_p(N^{-1})}{N}.$$

Negative Binomial model leaving out single datapoints with N = 800

Problem: Most computationally hard Bayesian problems don't concentrate.

Experiments

Example: Poisson model with random effects (REs) λ and fixed effect $\gamma.$

A contradiction?

Negative binomial observations.

Asymptotically linear in \boldsymbol{w} .

Poisson observations with random effects.

Asymptotically non-linear in \boldsymbol{w} .

A contradiction?

Negative binomial observations.

Poisson observations with random effects.

Asymptotically linear in \boldsymbol{w} .

Asymptotically non-linear in \boldsymbol{w} .

With a constant regressor, Gamma REs, and one RE per observation, these are the same model, with the same $p(\gamma|X)$.

Is $\underset{p(\gamma|X,w)}{\mathbb{E}}[\gamma]$ linear in the data weights or not?

Negative binomial observations.

Poisson observations with random effects.

Asymptotically linear in w.

Asymptotically non-linear in w.

$$\log p(X|\gamma, w^m) = \sum_{n=1}^N w_n^m \log p(x_n|\gamma) \quad \ \log p(X|\gamma, \lambda, w^c) = \sum_{n=1}^N w_n^c \log p(x_n|\lambda, \gamma)$$

With a constant regressor, Gamma REs, and one RE per observation, these are the same model, with the same $p(\gamma|X)$.

Is $\underset{p(\gamma|X,w)}{\mathbb{E}}[\gamma]$ linear in the data weights or not?

Trick question! We weight a log likelihood contribution, not a datapoint.

The two weightings are not equivalent in general.

Experimental results

Our results were actually computed on **identical datasets** with G=N and $g_n=n$.

Uses
$$\log p(x_n|\gamma)$$
:
$$\psi_n = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma) \right]$$

Experimental results

Our results were actually computed on **identical datasets** with G=N and $g_n=n$.

Uses $\log p(x_n|\gamma)$: $\psi_n = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma) \right]$

Not computable from $\gamma, \lambda \sim p(\gamma, \lambda|X)$ in general.

Uses $\log p(x_n|\gamma,\lambda)$: $\psi_n = \mathop{\mathbb{E}}_{p(\gamma,\lambda|X)} \left[\bar{\gamma} \bar{\ell}_n(\gamma,\lambda) \right]$

Computable from

$$\gamma, \lambda \sim p(\gamma, \lambda | X).$$

Experimental results

Our results were actually computed on **identical datasets** with G=N and $g_n=n$.

Uses $\log p(x_n|\gamma)$: $\psi_n = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma) \right]$

Not computable from $\gamma, \lambda \sim p(\gamma, \lambda|X)$ in general.

Uses $\log p(x_n|\gamma, \lambda)$: $\psi_n = \mathop{\mathbb{E}}_{p(\gamma, \lambda|X)} \left[\bar{\gamma} \bar{\ell}_n(\gamma, \lambda) \right]$

Computable from $\gamma, \lambda \sim p(\gamma, \lambda | X)$.

May still be useful when $p(\lambda|X)$ is *somewhat* concentrated.

