Satz .1

Jeder Durchschnitt von (endlich oder unendlich vielen) σ -Algebren auf der selben Menge X ist wieder eine σ -Algebra.

Satz .2 (Stetigkeitseigenschaften von Maßen)

Sei (X, \mathcal{A}, μ) Maßraum. Dann gelten für Mengen $A_i \in \mathcal{A}, i \in \mathbb{N}$ folgende Aussagen:

(i) Aus
$$A_1 \subseteq A_2 \subseteq A_3 \subseteq \dots$$
 folgt: $\mu(\bigcup_{i \in \mathbb{N}} A_i) = \lim_{i \to \infty} \mu(A_i)$

(ii) Aus
$$A_1 \supseteq A_2 \supseteq A_3 \supseteq \dots$$
 mit $\mu(A_1) < \infty$, folgt: $\mu(\bigcap_{i \in \mathbb{N}} A_i) = \lim_{i \to \infty} \mu(A_i)$

(iii)
$$\mu(\bigcup_{i\in\mathbb{N}} A_i) \leq \sum_{i\in\mathbb{N}} \mu(A_i)$$

Satz .3

 (X, \mathcal{A}, μ) Maßraum. Dann ist $\bar{\mathcal{A}}_{\mu}$ eine σ -Algebra und $\bar{\mu}$ ein vollständiges Maß auf $\bar{\mathcal{A}}_{\mu}$, welches mit μ auf \mathcal{A} übereinstimmt.

Satz .4

 (X, \mathcal{A}, μ) Maßraum und $(X, \bar{\mathcal{A}}_{\mu}, \bar{\mu})$ sei Vervollständigung. Ferner sei (X, \mathcal{B}, ν) ein vollständiger Maßraum mit $\mathcal{A} \subseteq \mathcal{B}$ und $\mu = \nu$ auf \mathcal{A} . Dann ist $\bar{\mathcal{A}}_{\mu} \subseteq \mathcal{B}$ und $\bar{\mu} = \nu$ auf $\bar{\mathcal{A}}_{\mu}$.

Satz.5

 (X, \mathcal{A}) messbarer Raum, $D \in \mathcal{A}$ und $f_k : D \to \mathbb{R}$ Folge von \mathcal{A} -messbaren Funktionen. Dann sind auch folgende Funktionen \mathcal{A} -messbar:

$$\inf_{k \in \mathbb{N}} f_k, \sup_{k \in \mathbb{N}} f_k, \lim_{k \to \infty} \inf_{k \to \infty} f_k, \lim_{k \to \infty} \sup_{k \to \infty} f_k$$

Satz .6

 (X, \mathcal{A}) messbarer Raum, $D \in \mathcal{A}$, $f, g : D \to \mathbb{R}$ \mathcal{A} -messbar, $\alpha \in \mathbb{R}$. Dann sind die Funktionen

$$f + g, \ \alpha f, \ f^{\pm}, \ max(f,g), \ min(f,g), \ |f|, \ fg, \ \frac{f}{g}$$

auf ihren Definitionsbereichen, die in \mathcal{A} liegen \mathcal{A} -messbar.

Satz.7

 (X, \mathcal{A}, μ) vollständiger Maßraum und seien $f_k, k \in \mathbb{N}$, μ -messbar. Falls f_k punktweise μ -fast überall gegen f konvergiert, dann ist f auch μ -messbar.

Satz .8 (Egorov)

 (X, \mathcal{A}, μ) Maßraum, $D \in \mathcal{A}$ Menge mit $\mu(D) < \infty$ und f_n, f μ -messbare, μ -fast überall endliche Funktionen auf D mit $f_n \to f$ μ -fast überall. Dann existiert $\forall \epsilon > 0$ eine Menge $B \in \mathcal{A}$ mit $B \subseteq D$ und

- (i) $\mu(D \setminus B) < \epsilon$
- (ii) $f_n \to f$ gleichmäßig auf B

Satz .9

Sei $\mathcal Q$ ein System von Teilmengen einer Menge X, welches die leere Menge enthält, und sei $\lambda:\mathcal Q\to[0,\infty]$ eine Mengenfunktion auf $\mathcal Q$ mit $\lambda(\emptyset)=0$. Definiere die Mengenfunktion $\mu(E):=\inf\{\sum_{i\in\mathbb N}\lambda(P_i)|\ P_i\in\mathcal Q, E\subseteq\bigcup_{i\in\mathbb N}P_i\}.$

Dann ist μ ein äußeres Maß.

 $(\inf \emptyset = \infty)$

Satz .10

Sei $\mu: \mathcal{P}(X) \to [0, \infty]$ äußeres Maß auf X. Für $M \subseteq X$ gegeben erhält man durch $\mu \llcorner M: \mathcal{P}(X) \to [0, \infty], \mu \llcorner M(A) := \mu(A \cap M)$ ein äußeres Maß $\mu \llcorner M$ auf X, welches wir **Einschränkung** von μ auf M nennen. Es gilt:

 $A \mu$ -messbar $\Longrightarrow A \mu \sqcup M$ -messbar

Satz .11

 μ äußeres Maß auf X. Dann gilt:

$$N \text{ μ-Nullmenge} \implies N \text{ μ-messbar}$$

$$N_k, k \in \mathbb{N}, \mu\text{-Nullmengen} \implies \bigcup_{k \in \mathbb{N}} N_k \text{ μ-Nullmenge}$$

Satz .12

Sei $\mu : \mathcal{P}(X) \to [0, \infty]$ ein äußeres Maß. Dann ist $\mathcal{M}(\mu)$ eine σ -Algebra und μ ist ein vollständiges Maß auf $\mathcal{M}(\mu)$.

Satz .13 (Caratheodory-Fortsetzung — Im Aufschrieb II.12)

 $\lambda: \mathcal{R} \to [0, \infty]$ Prämaß auf Ring $\mathcal{R} \subseteq \mathcal{P}(X)$. Sei $\mu: \mathcal{P}(X) \to [0, \infty]$ das in Satz II.3 aus \mathcal{R} konstruierte äußere Maß, d.h. $\forall E \subseteq X$:

$$\mu(E) := \inf\{\sum_{i \in \mathbb{N}} \lambda(A_i) \mid A_i \in \mathcal{R}, E \subseteq \bigcup_{i \in \mathbb{N}} A_i\}$$

Dann ist μ eine Fortsetzung von λ .

 μ heißt induziertes äußeres Maß oder Caratheodory-Fortsetzung von λ .

Satz .14 (Im Aufschrieb II.14)

Sei $\lambda : \mathcal{R} \to [0, \infty]$ Prämaß auf Ring $\mathcal{R} \subseteq \mathcal{P}(X)$. Dann ex. ein Maß μ auf $\sigma(\mathcal{R})$ mit $\mu = \lambda$ auf \mathcal{R} . Diese Fortsetzung ist eindeutig, falls λ σ -endlich ist.

Satz .15 (Regularität der Caratheodory-Fortsetzung — i.A. II.15)

Sei μ Caratheodory-Fortsetzung des Prämaßes $\lambda : \mathcal{R} \to [0, \infty]$ auf Ring \mathcal{R} über X. Dann ex. $\forall D \subseteq X$ ein $E \in \sigma(\mathcal{R})$ mit $E \supseteq D$ und $\mu(E) = \mu(D)$. (μ ist "reguläres "äußeres Maß)

Satz .16 (i.A. II.16)

Sei λ ein σ -endliches Prämaß auf Ring \mathcal{R} über X und sei $\mu: \mathcal{P}(X) \to [0, \infty]$ die Caratheodory-Fortsetzung von λ . Dann ist $\mu|_{\mathcal{M}(\mu)}$ die Vervollständigung von $\mu|_{\sigma(\mathcal{R})}$ und $\mathcal{M}(\mu)$ ist die vervollständigte σ -Algebra von $\overline{\sigma(\mathbb{R})}_{\mu|_{\sigma(\mathbb{R})}}$.

D.h. $\overline{\sigma(\mathbb{R})}_{\mu|_{\sigma(\mathbb{R})}} = \mathcal{M}(\mu)$. Insbesondere ex. genau eine Fortsetzung von $\lambda : \mathcal{R} \to [0, \infty]$ zu einem vollständigen Maß auf $\mathcal{M}(\mu)$.

Satz .17 (i.A. II.19)

 \mathcal{I} ist ein Halbring.

Satz .18 (i.A. II.20)

Für i = 1, ..., n sei Q_i Halbring über X_i . Dann ist $Q := \{P_1 \times ... \times P_n \mid P_i \in Q_i\}$ ein Halbring über $X_1 \times ... \times X_n$.

Satz .19 (i.A. II.21)

 Q^n ist ein Halbring.