Angela Krontiris CISC 6930: Data Mining Assignment 2 October 12, 2018

1a) Report test accuracies when k = 1,5,11,21,41,61,81,101,201,401 without normalizing the features.

k	Test accuracies
1	0.751847
5	0.754889
11	0.764885
21	0.746632
41	0.752282
61	0.737505
81	0.726641
101	0.728814
201	0.731421
401	0.719687

1b) Report test accuracies when k = 1,5,11,21,41,61,81,101,201,401 with z-score normalization applied to the features.

k	Test accuracies
1	0.856150
5	0.870056
11	0.878748
21	0.884398
41	0.885267
61	0.882660
81	0.877445
101	0.875272
201	0.860061
401	0.839635

1c) Generate an output of KNN predicted labels for the first 50 instances (i.e. t1 - t50) when k = 1,5,11,21,41,61,81,101,201,401 (in this order)

	ID	1	5	11	21	41	61	81	101	201	401												
0	t1	spam	no	no	19	t20	no	spam															
1	t2	spam	no	no	20	t21	spam																
2	t3	spam	21	t22	spam	no	no	no															
3	t4	spam	22	t23	spam																		
4	t5	spam	•	spam		spam		spam		•	spam	23	t24	no	spam								
5	t6	spam	spam	·		no		·	·	•	·	24		spam	spam	·	spam	spam	spam		spam	spam	spam
		·	•	no	spam		no	no	no		spam	25	t26	spam	spam		spam	spam	spam		spam	spam	spam
6	t7	spam	no	26	t27	•	spam	·	spam	spam	spam		spam	spam	spam								
7	t8	spam	•	•	spam		•	•	•	spam		27	t28	spam	spam	·	spam						
8	t9	spam	28		spam	spam	·	spam	spam	spam		spam	no	no									
9	t10	spam	29	t30	·	spam	·	spam	no	no	no	no	no	no									
10	t11	spam	30	t31	spam	no																	
11	t12	spam	31		spam	·	spam	spam	spam	spam	spam	spam	no	no									
12	t13	spam	no	no	no	33	t34	spam	spam	,	spam	spam	no	no	no	no	no						
13	t14	spam	no	no	34		spam	·	spam	spam	spam		spam		spam	spam							
14	t15	spam	35		spam	spam	·	spam	spam	spam	spam	•	spam	spam									
15	t16	spam	36	t37	spam																		
16	t17	spam	37	t38	spam	spam	·	spam	spam	spam		spam	spam	spam									
17	t18	spam	no	38	t39	spam	spam	•	spam	spam	spam		spam	spam	spam								
18	t19	spam	39	t40	no																		
40	t41	no	n n	o no																			
41	t42	spam	ı no	o no																			
42	t43	no	n n	o no																			
43	t44	no	n n	o no																			
44	t45	spam	span	n spam																			
45	t46	spam	spam			•		·			•												
			•		•		•		•	•													
46	t47	spam	•		spam		spam	•		span	•												
47	t48	spam	span	n spam																			
48	t49	spam	span	n spam																			
49	t50	spam	span	n spam																			

1d) Comparing the performances in part a and b, you can see that using z-score normalization on the features improves the test accuracy scores. In part a, k=11 gives the best the best test accuracy of 76.5% and in part b, k=41 gives the best test accuracy of 88.5%. Using z-score normalization, our test accuracy increased by 12%.

1e) Choosing Optimal K

"Knee" or "Elbow" Method

When K increases, the centroids (mean of points in a cluster) are closer to the clusters centroids. The improvements will decline, at some point rapidly, creating the elbow shape. That point is the optimal value for k. In the example above, k=4.

2. Create a decision tree including the number of low's and high's, entropy at each step and information gain for each feature at each node in the tree. Then, prune the tree you obtained using the validation data give in Table 2.

Method used for post-pruning:

For every non-leaf node N:

- Test the accuracy of pruned tree on validation set. Checking to see if the pruned tree performs no worse than the original over the validation set.
- Remove the subtree that results in the greatest improvement in accuracy on validation set.

3) SVM using Weka

SMO Classifier (10-fold cross-validation, Classifier for classes: car, noncar)

First run

• Linear Kernel: $K(x,y) = \langle x,y \rangle$

• Exponent = 1.0

Correctly Classified Instances	717	84.7518%	
Incorrectly Classified Instances	129	15.2482%	

Second run

• Poly Kernel: $K(x,y) = \langle x,y \rangle^2.0$

• Exponent = 2.0

Correctly Classified Instances	810	95.7447%
Incorrectly Classified Instances	36	4.2553%

Third run

• Poly Kernel: $K(x,y) = \langle x,y \rangle^3.0$

• Exponent = 3.0

Correctly Classified Instances	800	94.5626%	
Incorrectly Classified Instances	46	5.4374%	

Fourth run

• RBF Kernel: $K(x,y) = \exp(-0.01^*(x-y)^2)$

• Gamma = 0.01

Correctly Classified Instances	614	75.5768%
Incorrectly Classified Instances	232	27.4232%

Fifth run

• RBF Kernel: $K(x,y) = \exp(-1.0*(x-y)^2)$

• Gamma = 1.0

Correctly Classified Instances	764	90.3073%
Incorrectly Classified Instances	82	9.6927%

The fourth run using RBF SVM with parameter gamma performed the lowest. When gamma is very small, the model is too constrained and cannot capture the complexity or "shape" of the data. You can see that as gamma increased in the fifth run using the same model, the number of correct classified instances improved by 15%. For the polynomial kernel, the exponent parameter controls the degree of the polynomial. The default is set to 1 for the linear kernel (i.e., no kernel at all, just a dot product). Setting the exponent to 2 for the quadratic kernel gave better results.

Question 4: Kernels

Wednesday, October 10, 2018

11:05 PM

Assume X=(X1,X2) is a two dimensional vector and a function K defined as $K(\chi_{1}Z) = \chi_{1}*Z_{1} + \chi_{1}*e^{Z_{2}} + Z_{1}*e^{\chi_{1}} + e^{\chi_{2}} + e^{\chi_{2}}$. Prove that K is a Kernel.

$$K(\chi,Z) = \chi,*Z_1 + \chi_1 * e^{Z_2} + Z_1 * e^{X_2} + e^{X_2} + e^{X_2}$$
. Prove that $K(X,Z) = \varphi(x) \cdot \varphi(Z) = 1 + 2 \stackrel{d}{\underset{z=1}{}} \chi_i Z_i + 2 \stackrel{d}{\underset{z=1}{}} \chi_i Z_i Z_j = (1 + \chi \cdot Z)$

$$K(\chi,Z) = \varphi(x) \cdot \varphi(Z) = 1 + 2 \stackrel{d}{\underset{z=1}{}} \chi_i Z_i + 2 \stackrel{d}{\underset{z=1}{}} \chi_i Z_i Z_j = (1 + \chi \cdot Z)$$

$$K(\chi,Z) = \varphi(x) \cdot \varphi(Z) = 1 + 2 \stackrel{d}{\underset{z=1}{}} \chi_i Z_i + 2 \stackrel{d}{\underset{z=1}{}} \chi_i Z_i Z_j = (1 + \chi \cdot Z)$$

$$K(\chi,Z) = \varphi(x) \cdot \varphi(Z) = 1 + 2 \stackrel{d}{\underset{z=1}{}} \chi_i Z_i + 2 \stackrel{d}{\underset{z=1}{}} \chi_i Z_i Z_j = (1 + \chi \cdot Z)$$

Kernel Proof &

I.
$$K(\chi, z) = \chi_1 Z_1 + \chi_1 e^{z_2} + Z_1 e^{\chi_2} + e^{\chi_2} e^{z_2}$$
 $K(\chi, z) = \chi_1 (Z_1 + e^{z_2}) + e^{\chi_2} (Z_1 + e^{z_2})$
 $K(\chi_1 z) = (\chi_1 + e^{\chi_2}) (Z_1 + e^{z_2})$
 $K(\chi_1 z) = (\chi_1 + e^{\chi_2}) (\chi_1 + e^{\chi_2})$
 $K(\chi_1 z) = (\chi_1 + e^{\chi_2}) (\chi_1 + e^{\chi_2})$
 $K(\chi_1 z) = K(\chi_1 z) = K(\chi_1 z)$

(Sommutative Property of multiplication $\alpha \cdot b = b \cdot \alpha$
 $\alpha \cdot b = b \cdot \alpha$
 $\alpha \cdot b = b \cdot \alpha$

According to Mercer's 1st condition, $K(x,z)=K(z,\pi)$ is symmetric.

II. Let
$$\chi = \chi_1 + e^{\chi_2}$$

$$Z = Z_1 + e^{Z_2}$$

$$Z = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
Matrix = $\begin{bmatrix} \chi^2 & \chi_2 \\ Z\chi & Z^2 \end{bmatrix}$

$$\left[\left[1 \times N \right] \left[N \times N \right] \left[N \times I \right] \right] \geq O\left[\left[1 \times I \right] \right]$$

$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} \chi^2 & \chi \neq \\ \chi \chi & \chi^2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 \times 1$$

$$1 \times 2 \begin{bmatrix} \chi^2 & \chi \neq \\ \chi \chi & \chi^2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

According to Mercer's and consistion, the matrix is positive semi-definite.