Analytics Pipeline at Lyft

Shenghu Yang | March 2018

Agenda

- Lyft at a glance
- Lyft analytics data audience
- How Lyft analytics pipeline evolved
- Principles & challenges
- What we solved
- What's next

Lyft at a glance

Lyft at a glance

- Mission
 - "Improve people's lives with the world's best transportation"
- **600**+ cities
- 95% US population
- Growing fast

Lyft Analytics Data Audience

Lyft analytics data audience

- Growth
 - driver acquisition & engagement, passenger activation & retention
- City team Ops
 - market health, local marketing
- Data Science / Analytics
 - rides, conversion, driver hours, finance, marketing
- Engineering / Product / Design
 - fraud, ETA, pricing, routing, feature design
- Experimentation Platform
 - A/B testing

How Lyft Analytics Pipeline Evolved

How analytics pipeline evolved

- 2015 Redshift, Kinesis, MongoDB, Dynamo
- 2016 Hive, Spark, Airflow
- 2017 Presto, Kafka, Flink
- 2018 Druid, Superset

Once upon a time ...

Current in Production

Quick Stats

Data volume:

- 20PB Warehouse
- 3B+ events / day

Query stats:

- Hive 60k / day
- Presto 20k / day
- Redshift 40k / day

Principles & Challenges

Principles:

- Keep business up & running fast
- Forward looking

Challenges:

- Schema Management
- Operation vs. Performance
- Backfill Orchestration
- Data Replication
- User Expectation / Onboarding

What we Solved

1. Schema Management - early days

Schema-on-Read:

- Very flexible (KV)
- Hard to scale
- No clear contract between producers & consumers
- No backward compatibility data breakage

Schema Management - 2017

Schema-on-Write:

Schema Management - 2017

- Centralized schema
 - decouple producers and consumers
 - direct single source of truth
- Schema evolution backward compatible
 - no removing field
 - no renaming field
 - no changing existing type
 - append only
- Support Parquet/Snappy for storage
 - 2-3X faster than json / gzip
 - 60% storage saved than KV

2. Operation vs. Performance

We choose S3 over HDFS as our storage layer for operation and cost

Pros:

- Decouple compute with storage instant new cluster launching
- Capacity planning like a breeze
- SLA (99.99% availability & 99.99999999% durability)
- Backup and disaster recovery
- Cost (compute node auto scaling & spot market)

Cons:

- Performance (less data locality)
- Eventual consistency
- No object renaming

Mitigation Plan

- s3a vs. s3n
- S3 bucket/prefix structure & file size (e.g 256M)
- Deep copy for regular ETL
 - s3 read-after-write consistency for new PUTs
 - on new partition/s
- Shallow copy for backfill jobs
 - s3 overwrite PUTs is eventual consistent
 - shallow copy eliminates the eventual consistency
 - no need to rename object

3. Backfill Orchestration

Pain points:

- Engineering hours / context switch
- Chance to break production
- Costly (time & money)

Backfill Orchestration Tool & Airflow DAG

```
TARS $ service_venv /srv/service/current/bin/hive_etl rebuild create \
--dryrun \
--start 2017-01-01 --end 2017-01-31 \
--table etl.stg_driver_locations \
--table base.ride_status \
--table core.fact_driver_locations \
--ds_step 14 | less
```


Backfill orchestration tool - results

- 12-18X gain on engineering productivity
- Chance to perform QA <u>before</u> promoting to prod
- 2-3X infra cost saving & speedup in wall clock time

4. Data Replication

Challenges:

- Many databases
- Frequent schema changes
- Data truncation & append
- No SLAs

Replication - Scheduled Runs

	6	DAG	Schedule	Owner	Recent Tasks 9	Last Run 6	DAG Runs 6	Links
Ø	On	financial_replication_d2r	02***	data- platform	40	2018-03-04 02:00 🚯	276	⊙♥ ₩₼ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
C	On	financial_replication_d2r_fpna	0 10 * * 2	data- platform	21	2018-02-20 10:00 🚯	39	○◆*imi ★=≠ = C
Ø	On	financial_replication_m2r	0 13 * * *	data- platform	20	2018-03-04 13:00 🚯	275	⊙●#訓詁法三ヶ≣♡
Œ	On	redshift3_replication_d2r	04***	data- platform	59	2018-03-04 04:00 🚯	151	⊙♥ ₩.IM IA=≠ = S
Œ	On	redshift3_replication_m2r	0 14 * * *	data- platform	29	2018-03-04 14:00 🚯	148	⊙♥ ₩.IM IA=≠≡S
Œ	On	redshift_replication_driver_engagement	0 15 * * *	data- platform		2018-02-06 15:00 🚯	2	⊙♥ #.Ini A≘≠≣S

Replication - self-service tools

CSV Uploader

One Time Replication

Information Input						
Target Database:	hive •					
Source Database:	lyfthouse2 (Redshift2) 💠					
Source Schema:	syang					
Source Table:	fact_rides_exp					
Start Copy						

5. User Expectation & Onboarding

User concerns / questions:

- Hive query is much slower than Redshift
- Hive ETL dev productivity is lower lack of UDFs, tools, doc etc.
- Part of required data is not live in Hive/Presto
- Hive/Presto clusters is less available than Redshift
- When to use Hive vs. Presto?
- I really need something urgently, can I use Redshift?
- I am new to HiveQL/Presto query

User Expectation & Onboarding

Our answers:

- Performance: Use Presto for interactive query
- Productivity: We provide similar UDFs, dev tools and docs for best practices and gaps
- Data availability: We provide backfill tool, one time copy tool and csv uploader
- Uptime: We are striving to provide the same SLA, and the gap is shrinking
- Hive vs. Presto: Hive for big batch ETL, Presto for smaller adhoc query (<1TB)
- One time exception: We will examine it case by case
- Newbie: Data bootcamp (101: SQL, BI tools; 201: Hive, Presto, Event logging)

What's Next

What's Next

- Geospatial: Druid & Superset
- Streaming platform: Kinesis/KCL -> Kafka/Flink
- Further scale Presto / Hive
- Query Federation Proxy
 - Kill "bad" query
 - Forward query to right cluster
 - Convert long Presto query to hive (investigating)
- Better logging / schema service
- Move more queries off Redshift
- Open source: Airflow / Superset

Thank you!

Shenghu Yang

