# AN ARCHITECTURE FOR MACHINE LEARNING IN DJANGO



## Web Applications that Learn by Example By Benjamin Bengfort and Rebecca Bilbro



#### **REST API DESIGN**



#### **MACHINE LEARNING:**

- Batch analysis: learns by iterating over a single table
- Must be routinely updated to take advantage of feedback
- Once trained, is able to make predictions on new data
- Can be evaluated via cross-validation

#### **WEB APPLICATIONS:**

- Transactional, deal with only a few rows at a time
- Are live, and perform computation on demand • Must make immediate responses to requests
- Can be interactive and solicit feedback

SIMPLE VIEW OF INTEGRATION



### **INGESTION PROCESS** django **POSTGRESQL** 2 learn WRANGLING ETL **COMPUTATION PROCESSES, AUTOMATIC WORKFLOWS**

### MACHINE LEARNING PIPELINES



**SUPERVISED MACHINE LEARNING - CLUSTERING** 

#### TWO PHASES IN DJANGO

#### **BUILD PHASE**

- Routinely (nightly/weekly) join feature tables into an instance table to create a static snapshot of the data to learn on.
- Engage the model selection triple to fit one or more models.
- Evaluate models using cross-validation.
- Pickle models and save them back to the database.

#### **OPERATION PHASE**

- Initialize API by loading "best" model from the database into memory (time consuming, so must be done before request).
- Pass GET request to model predict(). • Save/update predictions to database and return the
- predicted response.
- Store feedback and update feature tables on POST/PUT/PATCH.
- Remove predictions on DELETE.



#### DATA PRODUCT PIPELINE



### MODEL STORAGE (ALSO "MODEL MANAGEMENT")



Additionally, models are also stored in the database as pickles, and can be retrieved and loaded by the web application.

| ID | Model          | Hyperparameters                 | Build Time | Score | Pickle |
|----|----------------|---------------------------------|------------|-------|--------|
| 1  | Naive<br>Bayes | {"alpha": 1.0}                  | 235.32     | .832  | BLOB   |
| 2  | SVC            | {"C": 1.0, "kernel": "linear"}  | 20.312     | .861  | BLOB   |
| 3  | KNN            | {"k": 5, "weights": "distance"} | 482.129    | .821  | BLOB   |





SUPERVISED MACHINE LEARNING - CLASSIFICATION/REGRESSION

#### **MODEL SELECTION TRIPLE**

- Feature Analysis
- Hyperparameter Tuning
- Model Selection

### **Evaluation:**

- Visual Evaluation
- Cross-Validation

For more on the model selection triple, check out Yellowbrick

(https://github.com/DistrictDataLabs/yellowbrick): a visual diagnostic tool for machine learning.

