Dimensionality Reduction and JL Lemma

Lecture 12 February 21, 2019

F₂ estimation in turnstile setting

```
\begin{array}{l} \mathsf{AMS-}\ell_2\text{-}\mathsf{Estimate}\colon\\ \mathsf{Let}\ Y_1,\,Y_2,\ldots,\,Y_n\ \mathsf{be}\ \{-1,+1\}\ \mathsf{random}\ \mathsf{variables}\ \mathsf{that}\ \mathsf{are}\\ 4\text{-}\mathsf{wise}\ \mathsf{independent}\\ z\leftarrow 0\\ \mathsf{While}\ (\mathsf{stream}\ \mathsf{is}\ \mathsf{not}\ \mathsf{empty})\ \mathsf{do}\\ a_j=(i_j,\Delta_j)\ \mathsf{is}\ \mathsf{current}\ \mathsf{update}\\ z\leftarrow z+\Delta_j\,Y_{i_j}\\ \mathsf{endWhile}\\ \mathsf{Output}\ z^2 \end{array}
```

Claim: Output estimates $||x||_2^2$ where x is the vector at end of stream of updates.

Analysis

$$Z = \sum_{i=1}^{n} x_i Y_i$$
 and output is Z^2

$$Z^{2} = \sum_{i} x_{i}^{2} Y_{i}^{2} + 2 \sum_{i \neq j} x_{i} x_{j} Y_{i} Y_{j}$$

and hence

$$E[Z^2] = \sum_i x_i^2 = ||x||_2^2.$$

One can show that $Var(Z^2) \leq 2(E[Z^2])^2$.

Linear Sketching View

Recall that we take average of independent estimators and take median to reduce error. Can we view all this as a sketch?

```
AMS-\ell_2-Sketch:
    k = c \log(1/\delta)/\epsilon^2
    Let M be a \ell \times n matrix with entries in \{-1,1\} s.t
          (i) rows are independent and
          (ii) in each row entries are 4-wise independent
    z is a \ell \times 1 vector initialized to 0
    While (stream is not empty) do
         a_i = (i_i, \Delta_i) is current update
         z \leftarrow z + \Delta_i Me_{i}
    endWhile
    Output vector z as sketch.
```

 ${\it M}$ is compactly represented via ${\it k}$ hash functions, one per row, independently chosen from 4-wise independent hash family.

Geometric Interpretation

Given vector $x \in \mathbb{R}^n$ let M the random map z = Mx has the following features

- $\mathbf{E}[z_i] = \mathbf{0}$ and $\mathbf{E}[z_i^2] = ||x||_2^2$ for each $1 \le i \le k$ where k is number of rows of M
- Thus each z_i^2 is an estimate of length of x in Euclidean norm
- When $k = \Theta(\frac{1}{\epsilon^2} \log(1/\delta))$ one can obtain an $(1 \pm \epsilon)$ estimate of $||x||_2$ by averaging and median ideas

Thus we are able to compress x into k-dimensional vector z such that z contains information to estimate $||x||_2$ accurately

Chandra (UIUC) CS498ABD 5 Spring 2019 5 / 23

Geometric Interpretation

Given vector $x \in \mathbb{R}^n$ let M the random map z = Mx has the following features

- $\mathbf{E}[z_i] = \mathbf{0}$ and $\mathbf{E}[z_i^2] = ||x||_2^2$ for each $1 \le i \le k$ where k is number of rows of M
- Thus each z_i^2 is an estimate of length of x in Euclidean norm
- When $k = \Theta(\frac{1}{\epsilon^2} \log(1/\delta))$ one can obtain an $(1 \pm \epsilon)$ estimate of $||x||_2$ by averaging and median ideas

Thus we are able to compress x into k-dimensional vector z such that z contains information to estimate $||x||_2$ accurately

Question: Do we need median trick? Will averaging do?

Chandra (UIUC) CS498ABD 5 Spring 2019 5 / 23

Distributional JL Lemma

Lemma (Distributional JL Lemma)

Fix vector $\mathbf{x} \in \mathbb{R}^d$ and let $\mathbf{\Pi} \in \mathbb{R}^{k \times d}$ matrix where each entry $\mathbf{\Pi}_{ij}$ is chosen independently according to standard normal distribution $\mathcal{N}(\mathbf{0},\mathbf{1})$ distribution. If $\mathbf{k} = \Omega(\frac{1}{\epsilon^2}\log(1/\delta))$, then with probability $(1-\delta)$

$$\|\frac{1}{\sqrt{k}}\Pi x\|_2 = (1 \pm \epsilon)\|x\|_2.$$

Can choose entries from $\{-1,1\}$ as well.

Note: unlike ℓ_2 estimation, entries of Π are independent.

Letting $z=\frac{1}{\sqrt{k}}\Pi x$ we have projected x from d dimensions to $k=O(\frac{1}{\epsilon^2}\log(1/\delta))$ dimensions while preserving length to within $(1\pm\epsilon)$ -factor.

Chandra (UIUC) CS498ABD 6 Spring 2019 6

Dimensionality reduction

Theorem (Metric JL Lemma)

Let v_1, v_2, \ldots, v_n be any n points/vectors in \mathbb{R}^d . For any $\epsilon \in (0,1/2)$, there is linear map $f: \mathbb{R}^d \to \mathbb{R}^k$ where $k < 8 \ln n / \epsilon^2$ such that for all 1 < i < j < n.

$$(1-\epsilon)||v_i-v_j||_2 \leq ||f(v_i)-f(v_j)||_2 \leq ||v_i-v_j||_2.$$

Moreover f can be obtained in randomized polynomial-time.

Linear map f is simply given by random matrix Π : $f(v) = \Pi v$.

Chandra (UIUC) CS498ABD Spring 2019

Normal Distribution

Density function: $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

Standard normal: $\mathcal{N}(0,1)$ is when $\mu=0,\sigma=1$

8

Normal Distribution

Cumulative density function for standard normal:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{\infty}^{t} e^{-t^2/2}$$
 (no closed form)

9 / 23

Sum of independent Normally distributed variables

Lemma

Let X and Y be independent random variables. Suppose

$$X \sim \mathcal{N}(\mu_X, \sigma_X^2)$$
 and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$. Let $Z = X + Y$. Then

 $Z \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$.

Sum of independent Normally distributed variables

Lemma

Let X and Y be independent random variables. Suppose $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$. Let Z = X + Y. Then $Z \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$.

Corollary

Let X and Y be independent random variables. Suppose $X \sim \mathcal{N}(0,1)$ and $Y \sim \mathcal{N}(0,1)$. Let Z = aX + bY. Then $Z \sim \mathcal{N}(0,a^2+b^2)$.

Concentration of sum of squares of normally distributed variables

Lemma

Let Z_1, Z_2, \ldots, Z_k be independent $\mathcal{N}(0,1)$ random variables and let $Y = \sum_i Z_i^2$. Then, for $\epsilon \in (0,1/2)$, there is a constant c such that,

$$\Pr[(1-\epsilon)^2k \le Y \le (1+\epsilon)^2k] \ge 1-2e^{c\epsilon^2k}.$$

χ^2 distribution

Density function

χ^2 distribution

Cumulative density function

Without loss of generality assume $||x||_2 = 1$ (unit vector)

$$Z_i = \sum_{j=1}^n \Pi_{ij} x_i$$

• $Z_i \sim \mathcal{N}(0,1)$

$$Z_i = \sum_{j=1}^n \Pi_{ij} x_i$$

- $Z_i \sim \mathcal{N}(0,1)$
- Let $Y = \sum_{i=1}^k Z_i^2$. Y's distribution is χ^2 since Z_1, \ldots, Z_k are iid

$$Z_i = \sum_{j=1}^n \Pi_{ij} x_i$$

- $Z_i \sim \mathcal{N}(0,1)$
- Let $Y = \sum_{i=1}^k Z_i^2$. Y's distribution is χ^2 since Z_1, \ldots, Z_k are iid
- Hence $\Pr[(1-\epsilon)^2 k \le Y \le (1+\epsilon)^2 k] \ge 1-2e^{c\epsilon^2 k}$

$$Z_i = \sum_{j=1}^n \Pi_{ij} x_i$$

- $Z_i \sim \mathcal{N}(0,1)$
- Let $Y = \sum_{i=1}^k Z_i^2$. Y's distribution is χ^2 since Z_1, \ldots, Z_k are iid
- Hence $\Pr[(1-\epsilon)^2 k \le Y \le (1+\epsilon)^2 k] \ge 1-2e^{c\epsilon^2 k}$
- Since $k = \Omega(\frac{1}{\epsilon^2} \log(1/\delta))$ we have $\Pr[(1 \epsilon)^2 k \le Y \le (1 + \epsilon)^2 k] \ge 1 \delta$

$$Z_i = \sum_{j=1}^n \Pi_{ij} x_i$$

- $Z_i \sim \mathcal{N}(0,1)$
- Let $Y = \sum_{i=1}^k Z_i^2$. Y's distribution is χ^2 since Z_1, \ldots, Z_k are iid
- Hence $\Pr[(1-\epsilon)^2 k \le Y \le (1+\epsilon)^2 k] \ge 1-2e^{c\epsilon^2 k}$
- Since $k = \Omega(\frac{1}{\epsilon^2} \log(1/\delta))$ we have $\Pr[(1 \epsilon)^2 k \le Y \le (1 + \epsilon)^2 k] \ge 1 \delta$
- Therefore $||z||_2 = \sqrt{Y/k}$ has the property that with probability (1δ) , $||z||_2 = (1 \pm \epsilon)||x||_2$.

JL lower bounds

Question: Are the bounds achieved by the lemmas tight or can we do better? How about non-linear maps?

Essentially optimal modulo constant factors for worst-case point sets.

Fast JL and Sparse JL

Projection matrix Π is dense and hence Πx takes $\Theta(kn)$ time.

Question: Can we find Π to improve time bound?

Two scenarios:

- x is dense
- x is sparse

Fast JL and Sparse JL

Projection matrix Π is dense and hence Πx takes $\Theta(kn)$ time.

Question: Can we find Π to improve time bound?

Two scenarios:

- x is dense
- x is sparse

Main ideas:

- Choose Π_{ij} to be $\{-1,0,1\}$ with probability 1/6,1/3,1/6. Also works. Roughly 1/3 entries are 0
- Fast JL: Choose Π in a dependent way to ensure Πx can be computed in $O(d \log d)$ time
- Sparse JL: Choose Π such that each column is s-sparse. The best known is $s = O(\frac{1}{\epsilon} \log(1/\delta))$

Question: Suppose we have linear subspace E of \mathbb{R}^d of dimension ℓ . Can we find a projection $\Pi: \mathbb{R}^d \to \mathbb{R}^k$ such that for every $x \in E$, $\|\Pi x\|_2 = (1 \pm \epsilon) \|x\|_2$?

Question: Suppose we have linear subspace E of \mathbb{R}^d of dimension ℓ . Can we find a projection $\Pi: \mathbb{R}^d \to \mathbb{R}^k$ such that for every $x \in E$, $\|\Pi x\|_2 = (1 \pm \epsilon) \|x\|_2$?

• Not possible if $k < \ell$. Why?

Question: Suppose we have linear subspace E of \mathbb{R}^d of dimension ℓ . Can we find a projection $\Pi: \mathbb{R}^d \to \mathbb{R}^k$ such that for every $x \in E$, $\|\Pi x\|_2 = (1 \pm \epsilon) \|x\|_2$?

• Not possible if $k < \ell$. Why? Π maps E to a lower dimension. Implies some non-zero vector $x \in E$ mapped to $\mathbf{0}$

Question: Suppose we have linear subspace E of \mathbb{R}^d of dimension ℓ . Can we find a projection $\Pi: \mathbb{R}^d \to \mathbb{R}^k$ such that for every $x \in E$, $\|\Pi x\|_2 = (1 \pm \epsilon)\|x\|_2$?

- Not possible if $k < \ell$. Why? Π maps E to a lower dimension. Implies some non-zero vector $x \in E$ mapped to $\mathbf{0}$
- Possible if $k = \ell$. Why?

Question: Suppose we have linear subspace E of \mathbb{R}^d of dimension ℓ . Can we find a projection $\Pi: \mathbb{R}^d \to \mathbb{R}^k$ such that for every $x \in E$, $\|\Pi x\|_2 = (1 \pm \epsilon)\|x\|_2$?

- Not possible if $k < \ell$. Why? Π maps E to a lower dimension. Implies some non-zero vector $x \in E$ mapped to $\mathbf{0}$
- Possible if $k = \ell$. Why? Pick Π to be an orthonormal basis for E.

Question: Suppose we have linear subspace E of \mathbb{R}^d of dimension ℓ . Can we find a projection $\Pi: \mathbb{R}^d \to \mathbb{R}^k$ such that for every $x \in E$, $\|\Pi x\|_2 = (1 \pm \epsilon)\|x\|_2$?

- Not possible if $k < \ell$. Why? Π maps E to a lower dimension. Implies some non-zero vector $x \in E$ mapped to $\mathbf{0}$
- Possible if k = ℓ. Why? Pick Π to be an orthonormal basis for E. Disadvantage: This requires knowing E and computing orthonormal basis which is slow.

Question: Suppose we have linear subspace E of \mathbb{R}^d of dimension ℓ . Can we find a projection $\Pi: \mathbb{R}^d \to \mathbb{R}^k$ such that for every $x \in E$, $\|\Pi x\|_2 = (1 \pm \epsilon)\|x\|_2$?

- Not possible if $k < \ell$. Why? Π maps E to a lower dimension. Implies some non-zero vector $x \in E$ mapped to $\mathbf{0}$
- Possible if k = ℓ. Why? Pick Π to be an orthonormal basis for E. Disadvantage: This requires knowing E and computing orthonormal basis which is slow.

What we really want: Oblivious subspace embedding ala JL based on random projections

Oblivious Supspace Embedding

Theorem

Suppose E is a linear subspace of \mathbb{R}^n of dimension d. Let Π be a DJL matrix $\Pi \in \mathbb{R}^{k \times d}$ with $k = O(\frac{d}{\epsilon^2} \log(1/\delta))$ rows. Then with probability $(1 - \delta)$ for every $x \in E$,

$$\|\frac{1}{\sqrt{k}}\Pi x\|_2 = (1 \pm \epsilon)\|x\|_2.$$

In other words JL Lemma extends from one dimension to arbitrary number of dimensions in a graceful way.

Proof Idea

How do we prove that Π works for all $x \in E$ which is an infinite set?

Several proofs but one useful argument that is often a starting hammer is the "net argument"

- Choose a large but finite set of vectors **T** carefully (the net)
- Prove that
 П preserves lengths of vectors in
 T (via naive union bound)
- Argue that any vector $x \in E$ is sufficiently close to a vector in T and hence Π also preserves length of x

Chandra (UIUC) CS498ABD 19 Spring 2019 19 / 23

Sufficient to focus on unit vectors in *E*. Why?

Sufficient to focus on unit vectors in *E*. Why?

Also assume wlog and ease of notation that \boldsymbol{E} is the subspace formed by the first \boldsymbol{d} coordinates in standard basis.

Sufficient to focus on unit vectors in *E*. Why?

Also assume wlog and ease of notation that \boldsymbol{E} is the subspace formed by the first \boldsymbol{d} coordinates in standard basis.

Claim: There is a net T of size $e^{O(d)}$ such that preserving lengths of vectors in T suffices.

Sufficient to focus on unit vectors in *E*. Why?

Also assume wlog and ease of notation that \boldsymbol{E} is the subspace formed by the first \boldsymbol{d} coordinates in standard basis.

Claim: There is a net T of size $e^{O(d)}$ such that preserving lengths of vectors in T suffices.

Assuming claim: use DJL with $k = O(\frac{d}{\epsilon^2} \log(1/\delta))$ and union bound to show that all vectors in T are preserved in length up to $(1 \pm \epsilon)$ factor.

Sufficient to focus on unit vectors in *E*.

Also assume wlog and ease of notation that \boldsymbol{E} is the subspace formed by the first \boldsymbol{d} coordinates in standard basis.

A weaker net:

- ullet Consider the box $[-1,1]^d$ and make a grid with side length ϵ/d
- Number of grid vertices is $(2d/\epsilon)^d$
- Sufficient to take T to be the grid vertices
- Gives a weaker bound of $O(\frac{1}{\epsilon^2}d\log(d/\epsilon))$ dimensions
- A more careful net argument gives tight bound

Net argument:analysis

```
Fix any x \in E such that ||x||_2 = 1 (unit vector)
There is grid point y such that ||y||_2 \le 1
Let z = x - y. We have |z_i| \le \epsilon/d for 1 \le i \le d and z_i = 0 for i > d
```

Net argument:analysis

Fix any $x \in E$ such that $||x||_2 = 1$ (unit vector) There is grid point y such that $||y||_2 \le 1$ Let z = x - y. We have $|z_i| \le \epsilon/d$ for $1 \le i \le d$ and $z_i = 0$ for i > d

$$\|\Pi x\| = \|\Pi y + \Pi z\| \leq \|\Pi y\| + \|\Pi z\|$$

$$\leq (1+\epsilon) + (1+\epsilon) \sum_{i=1}^{d} |z_i|$$

$$\leq (1+\epsilon) + \epsilon(1+\epsilon) = 1 + O(\epsilon)$$

Net argument:analysis

Fix any $x \in E$ such that $||x||_2 = 1$ (unit vector) There is grid point y such that $||y||_2 \le 1$ Let z = x - y. We have $|z_i| \le \epsilon/d$ for $1 \le i \le d$ and $z_i = 0$ for i > d

$$\|\Pi x\| = \|\Pi y + \Pi z\| \leq \|\Pi y\| + \|\Pi z\|$$

$$\leq (1+\epsilon) + (1+\epsilon) \sum_{i=1}^{d} |z_i|$$

$$\leq (1+\epsilon) + \epsilon(1+\epsilon) = 1 + O(\epsilon)$$

Similarly $\|\Pi x\| \geq 1 - O(\epsilon)$.

Application of Subspace Embeddings

Faster algorithms for approximate

- matrix multiplication
- regression
- SVD

Basic idea: Want to perform operations on matrix A with n data columns (say in large dimension \mathbb{R}^h) with small effective rank d. Want to reduce to a matrix of size roughly $\mathbb{R}^{d\times d}$ by spending time proportional to nnz(A).

Later in course, hopefully.