

Pulseq to Philips (P2P) Interpreter

Imam Ahmed Shaik, Qiang Liu, Ryan Robinson, Jon-Fredrik Nielsen, Maxim Zaitsev, Yogesh Rathi, Lipeng Ning, Carl F Westin, Yansong Zhao, Andrew Ellison, Rushmore Jarrett, Berkin Bilgic, Borjan Gagoski, William A Grissom

Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States, ²School of Biomedical Engineering, Southern Medical University, Guangzhou, China, ³Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States, ⁴Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States, ⁵Department of Radiology, Harvard Medical School, Boston, MA, United States, ⁶Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH, United States, ⁷fMRI Laboratory and Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States, ⁸Division of Medical Physics, Department of Radiology, University Medical Center Freiburg, Freiburg, Germany. Department of Radiology, Boston University Medical School

Motivation & Outline

Motivation:

- Lack of Philips interpreter until this year
- •The goal of this project is to develop acquisitions and reconstructions primarily for diffusion MRI acquisitions that yield consistent measures across sites and scanner vendors NIH R01 EB032378
- Brigham & Women's Hospital Boston
- Case Western Reserve University, Cleveland
- Department of Radiology, University Medical Center Freiburg, Freiburg, Germany
- fMRI Laboratory and Biomedical Engineering, University of Michigan, Ann Arbor

- Philips sequence programming architecture & interpreter block diagram
- Safety evaluation
- Results
- Interpreter workflow from user perspective
- Discussion & Future work

Philips sequence programming architecture

compressed data

97

Pulseq blocks mapping to Philips sequence objects

- **Update Object attributes during run time**
- **Not all attributes are run time** interpreter smartly initializes some of the attributes on - Host
- Gradient delay blocks can be executed without any timing constraint RF & ADC needs to accommodate deadTime/ringdownTime

Deadtime/Ringdown time for RF & ADC

Deadtime/Ringdown time for RF & ADC

Pulseq framework provides an option for the user to set

Comparatively longer deadtimes leads to sub-Optimal sequences with block-by-block execution – especially for sequences like EPI

Deadtime/Ringdown time for RF & ADC – combine blocks

PNS, SAR & HW constraint safety checks

Different gradient waveforms captured from scanner graphical viewer

Arbitrary gradient waveforms

- Any gradient and RF shape designed for Philips system hardware constraints (Gmax, Slew rate, dwell time etc.) can be played
- Crusher gradients emulating "Philips Pulseq" simulated and played in a gradient echo sequence
- Two TRs 17 & 135 from vendor provided graphical Viewer

Pulseq GRE comparison with Philips

Pulseq DWI comparison with Philips

So what does a user need to do?

p2p interpreter workflow from user perspective

Discussion & Future Work

- Any sequence can be played if the **deadTime and ringdownTime** are set according to Philips requirements
- Up to **256** distinct RF shapes
- Sequence with 100,000 blocks had 12% CPU usage
- Current limitations and Future Work:
 - Blocks with consecutive RF cannot be combined
 - Geometric scan planning is not supported yet acquisition happens w.r.t iso-centre
 - RF block followed by ADC block cannot be combined
 - For EPI sequence Blocks incorporating readout, blip and ADC should iterate by simply altering the sign (readout time, blip duration and number of samples remain same)

Acknowledgement

Dr. William A Grissom

Dr. Yogesh Rathi

Dr. Ryan Robison

Qiang Liu

Dr. Jon-Fredrik Nielsen

Dr. Maxim Zaitsev

Dr. Yansong Zhao

Dr. Berkin Bilgic

Dr. Borjan Gagoski

Dr. C-F Westin

Dr. Lipeng Ning

Andrew Ellison

Dr. Rushmore Jarrett

Dr. Sai Abitha Srinivas

Thank you!

Patch available on request to Philips users email: ishaik@bwh.harvard.edu

This work was supported by NIH R01 EB032378.