

多重檢定

多重檢定 (multiple testing) → 提高型一錯誤

兩兩獨立

判斷結果

拒絕 H_0

接受 H_0

真實狀況

 H_0 為真

 $(不應拒絕H_0)$

 H_0 為假

(應拒絕 H_0)

型一錯誤

顯著水準,容許型一錯誤發生的機率上限

犯型一錯誤的機率

正確

型二錯誤

正確

校正後 p-value

概念

單一實驗: $\tilde{\alpha}_i$ vs. 整個實驗: α

Bonferroni

 mp_i

透過直接對單一實驗校正 控制整個實驗錯誤率修正成α → 太過嚴謹 $p_{i} \leftrightarrow \widetilde{\alpha}_{i} = \frac{\alpha}{m}$ $\widetilde{p}_{i} = \min\{\frac{mp_{i}}{m}, 1\} \leftrightarrow \alpha$

Sidak

 $1-(1-p_i)^m$

透過各實驗獨立性計算校正 控制整個實驗錯誤率修正成α → 仍太過嚴苛 $p_i \leftrightarrow \widetilde{\alpha}_i \quad s.t. \quad \alpha = 1 - (1 - \widetilde{\alpha}_i)^m$ $\Rightarrow \widetilde{\alpha}_i = 1 - (1 - \alpha)^{\frac{1}{m}}$ $\widetilde{p}_i = \min\{1 - (1 - p_i)^m, 1\} \leftrightarrow \alpha$

FDR 錯誤發現率 False Discovery Rate

 $\frac{m}{i}p$

1. 由小到大排序m個p-value $(p_1 \le p_2 \le \cdots \le p_m)$

2. 從 p_m 開始找到**第一個i** 使得 $p_i \leq \frac{i}{m} \alpha$

3. 比 *i* 還小的實驗都視為顯著

$$p_i \leftrightarrow \widetilde{\alpha}_i = \frac{i}{m} \alpha$$

$$\widetilde{p}_i = \min\{\frac{m}{i} p_i, 1\} \leftrightarrow \alpha$$

Gi* 原始

Bonferroni 校正

Sidak 校正

FDR 校正

Hotspots		
90%	95%	99%
5	2	26

Hotspots		
90%	95%	99%
1	2	15

Hotspots		
90%	95%	99%
2	3	15

Hotspots			
90%	95%	99%	
1	5	20	

21

0

校正比較

2015年登革熱疫情:台灣鄉鎮登革熱發生密度的空間自相關

90%	95%	99%
0	2	18

90%	95%	99%
0	2	14

90%	95%	99%
0	2	14

90%	95%	99%
1	1	16

校正比較

2015年登革熱疫情:南高屏鄉鎮登革熱發生密度的空間自相關

90%	95%	99%
2	1	13

90%	95%	99%
0	3	6

90%	95%	99%
0	3	6

90%	95%	99%
1	3	9

方法一

Bonferroni

p_i 和 $\tilde{\alpha}_i$ 比較

$$\widetilde{\alpha_i} = \frac{\alpha}{100} = 0.0005$$

排序 (i)	原始 p _i		修正後 $\widetilde{\alpha_i}$
1	0.00001		0.0005
2	0.00002	←	0.0005
3	0.00005		0.0005
4	0.0001		0.0005
5	0.0002		0.0005
6	0.0005		0.0005
7	0.001		0.0005
8	0.002		0.0005
9	0.005		0.0005
10	0.01		0.0005
11	0.02		0.0005
12	0.05		0.0005
13	0.1		0.0005
14	0.2		0.0005
•••••	•••••		•••••

方法二

$\tilde{p_i}$ 和 α_i 比較

$$\widetilde{p_i} = 100 p_i$$

校正後 $\widetilde{p_i}$
0.001
0.002
0.005
0.01
0.02
0.05
0.1
0.2
0.5
1
1
1
1
1
••••

直接和原始的0.05比較

p-val不會超過1

Sidak

方法一

 p_i 和 $\tilde{\alpha_i}$ 比較

$$\widetilde{\alpha_i} = 1 - (1 - \alpha)^{\frac{1}{100}}$$

方法二

 $\tilde{p_i}$ 和 α_i 比較

$$\widetilde{p_i} = 1 - (1 - p_i)^{100}$$

排序 (i)	原始 <i>p_i</i>		修正後 $\widetilde{\alpha_i}$
1	0.00001	←	0.0005128
2	0.00002	←	0.0005128
3	0.00005	←	0.0005128
4	0.0001		0.0005128
5	0.0002		0.0005128
6	0.0005	←	0.0005128
7	0.001		0.0005128
8	0.002		0.0005128
9	0.005		0.0005128
10	0.01		0.0005128
11	0.02		0.0005128
12	0.05		0.0005128
13	0.1		0.0005128
14	0.2		0.0005128
	••••		

校正後 $\widetilde{p_i}$
0.001
0.001998
0.004988
0.009951
0.019803
0.048782
0.095208
0.181433
0.39423
0.633968
0.86738
0.994079
0.999973
1
•••••

直接和原始的0.05比較

方法一

FDR

 p_i 和 $\tilde{\alpha}_i$ 比較

$$\widetilde{\alpha_i} = \alpha \times \frac{i}{100}$$

排序 (i)	原始 p _i		修正後 $\widetilde{\alpha_i}$
1	0.00001		0.0005
2	0.00002	←	0.001
3	0.00005	←	0.0015
4	0.0001		0.002
5	0.0002		0.0025
6	0.0005		0.003
7	0.001		0.0035
8	0.002		0.004
9	0.005		0.0045
10	0.01		0.005
11	0.02		0.0055
12	0.05		0.006
13	0.1		0.0065
14	0.2		0.007
•••••	•••••		••••

方法二

 $\tilde{p_i}$ 和 α_i 比較

$$\widetilde{p_i} = p_i \times \frac{100}{i}$$

15 T 14 ~	
校正後 $\widetilde{p_i}$	
0.001	
0.001	
0.001667	
0.0025	
0.004	
0.008333	
0.014286	
0.025	
0.055556	
0.1	
0.181818	
0.416667	
0.769231	
1	

直接和原始的0.05比較

p-val不會超過1

. order the test statistics p-values (p_i) in ascending order $(p_1 \leq p_2 \leq \ldots \leq p_m)$

2. starting from p_m find the first p_i for which $p_i \leq \left(\frac{i}{m}\right)\alpha$

3. regard all tests as significant for which $p_i \leq p_{critical} = \left(\frac{i}{m}\right) \alpha = p_{FDR}$

FDR
FDR

.		~
i	p_i	$\widetilde{lpha_i}$
1	0.00001	0.0005
2	0.00002	0.001
3	0.00005	0.0015
4	0.0001	0.002
5	0.0002	0.0025
6	0.0005	0.003
7	0.001	0.0035
8	0.002	0.004
9	0.0050	0.0045
10	0.0051	0.0050
11	0.0052	→ 0.0055 —
12	0.0062 ←	→ 0.0060
13	0.0123 ←	→ 0.0065
14	0.2	→ 0.0070
••••	+	→

3. 用
$$\left(\frac{11}{100}\right) \times 0.05 = p_{FDR}$$
來當判斷標準
(前面的一定都會是顯著的)

? 2. 找到
$$p_{11} \le \left(\frac{11}{100}\right) \times 0.05$$

1. 從最大開始找

```
R code
```

整體p-value校正

```
p.adjust( )
```

based on the total number

- p.adjust(p,method = "bonferroni")→ p*length(p)
- p.adjust(p,method = "fdr") *微調
 - → p*length(p)/rank(p)

P.S. ifelse(pi>1,1,pi)

考慮鄰近一隨鄰居數調整

```
localmoran(..., p.adjust.method='...')
p.adjustSP(p, nb, method)
based on the number of neighbors (+1)
```

- localmoran(x, TP.nb.w, p.adjust.method='fdr')
- p.adjustSP(p, TP.nb, "fdr")