Communities

Question 1:

For the following graph:

Write the adjacency
matrix A, the degree
matrix D, and the
Laplacian matrix L. For
each, find the sum of all
entries and the number of
nonzero entries.

Solution:

Question 2:

Consider the following undirected graph (i.e., edges may be considered bidirectional):

Run the "trawling" algorithm for finding dense communities on this graph and find all complete bipartite subgraphs of types $K_{3,2}$ and $K_{2,2}$. Note: In the case of $K_{2,2}$, we consider $\{\{W,\,X\},\,\{Y,\,Z\}\}$ and $\{\{Y, Z\}, \{W, X\}\}\$ to be identical.

Question 3:

We fit AGM to the network on the left, and found the parameters on the right:

Learned AGM parameters

Find the optimal values for p_{A} and p_{B} .

Solution:

Pa = Number of edges in the network / Total possible number of edges = 7 / 5c2 = 7/10.

Pb = Number of edges in the network / Total possible number of edges = 9 / 6c2 = 9/15.