Week 2 Report

Haoxuan Yin

Department of Computer Science and Technology Tsinghua University yhx18@mails.tsinghua.edu.cn

Abstract

Support Vector Machine is used to classify. It finds a best line to separate two sets. When it's difficult to do so, we can allow small errors or map the vectors to higher dimensions.

1 Original Problem

Given two sets of points ,we want to find a line to classify them i.e. to draw a line between the two sets whose distance to the nearest point is as far as possible. Mathematically, we want a function $f(x) = sgn(\omega^T x + b)$ which returns 1 for one set and -1 for the other. In addition, we want to maximize γ , s.t. $\frac{1}{\|\omega\|} y^{(i)}(\omega^T x^{(i)} + b) \ge \gamma$, i = 1, ..., m.

After transformation,we equivalently need to minimize $\frac{1}{2}\|\omega\|^2$, s.t. $y^{(i)}(\omega^T x^{(i)} + b) \geq 1$, i = 1, ..., m. Then we only need to find a mathematician to solve this Lagrangian problem.

2 Improvements

There are times when the two sets are not linearly separable.

2.1 Allowing Errors

If the two sets intersect a bit,we can allow an error ξ_i and define a punishment constant C. Then the problem becomes to minimize $\frac{1}{2} \|\omega\| + C \sum_i \xi_i$, s.t. $y^{(i)}(\omega^T x^{(i)} + b) \ge 1 - \xi_i$

2.2 Kernel Function

With a proper function, we can transform x to a higher dimension so that the classification becomes easy. That is, we substitute all the x with $\Phi(x)$ where Φ is a mapping function.

Moreover,in the original problem,the ω we want can actually be expressed in the form of $w=\sum_i \alpha_i y_i x_i$ and we only need to find out the best α_i . Notice that $\omega^T x + b = \sigma \alpha_i y^{(i)} \left\langle x^{(i)}, x \right\rangle + b$, so we only need to redefine the inner product. In fact, x_i doesn't even have to be a vector as long as you can define a positive-definite inner product.

3 Training the SVM

Firstly we define the kernel function K(x,y) and punishment constant C. Then we can use a QP solver to directly calculate the α_i we want, but this approach is too slow. Instead, we introduce SMO(sequential minimal optimization) algrithm. We repeat until converge randomly choosing a pair α_i and optimize the target function while holding the other α s.