Erkennung und Auslesen von Nummernschildern aus Bilddateien mithilfe von Deep Learning und Optical Character Recognition

Christian Peters

3. März 2021

Veranstaltung: Fallstudien II

Dozent: Prof. Dr. Markus Pauly

Gruppe: Anne-Sophie Bollmann, Susanne Klöcker,

Pia von Kolken, Christian Peters

Inhaltsverzeichnis

1	Einleitung	1
2	Datenbeschreibung	1
3	1	2 2 6 6
4	Pipeline	6
5	Ergebnisse	6
6	Zusammenfassung	6
Lit	teratur	7

1 Einleitung

Die automatisierte Erkennung von Nummernschildern aus Bilddateien ist ein wichtiger Bestandteil vieler moderner Verkehrssysteme und kommt beispielsweise in Parkhäusern, Mautstellen oder bei der Identifikation gestohlener Fahrzeuge zum Einsatz [11].

Das Ziel dieses Projektes ist es, einen Prototypen für ein solches Erkennungssystem zu entwickeln, welcher in der Lage sein soll, erfolgreich Nummernschilder aus Bilddateien erkennen und auszulesen zu können.

Zu diesem Zweck kommen bei der Entwicklung des Prototypen Methodiken aus dem Bereich des Deep Learning, sowie der Optical Character Recognition zum Einsatz, die in Abschnitt 3 näher beschrieben werden. Ein Überblick über das vorliegende Datenmaterial, welches zum Training dieser Algorithmen wervendet wurde, wird in Abschnitt 2 gegeben. Abschließend werden die erzielten Ergebnisse in Abschnitt 5 beschrieben und die Stärken sowie die Schwächen des Prototypen diskutiert.

Der gesamte Quellcode dieses Projekts ist Open Source und kann unter https://github.com/cxan96/license_plate_detection abgerufen werden.

2 Datenbeschreibung

Der vorliegende Datensatz besteht aus insgesamt 949 Bildern von Autos mit Nummernschildern.¹ Die Bilder wurden in den Regionen Brasilien, Europa, Rumänien und USA aufgenommen.

Zu jedem Bild liegen außerdem Informationen zur Position des Nummernschildes innerhalb des Bildes anhand von Pixel Koordinaten vor. Die Position des Nummernschildes ist dabei durch die Koordinaten x_{\min} , x_{\max} , y_{\min} , y_{\max} relativ zur linken oberen Ecke des Bildes eindeutig spezifiziert.

In Abbildung 1 sind drei Beispielbilder aus dem Datensatz dargestellt. Die Koordinaten der Nummernschilder sind anhand der roten Rechtecke eingezeichnet.

Abbildung 1: Drei Beispiele aus dem vorliegenden Datensatz. Die Nummernschilder sind anhand ihrer Koordinaten rot umrandet.

¹Die Originaldaten sind unter https://github.com/phibuc/Lab_FS_Data, sowie unter https://github.com/RobertLucian/license-plate-dataset einsehbar.

3 Grundlagen

3.1 Neuronale Netze

Neuronale Netze sind eine Modellklasse, welche zur Lösung des bereits ausführlich in [8] beschriebenen Problems des statistischen Lernens eingesetzt werden können. In dieser Problemsituation wird angenommen, dass sich der Zusammenhang zwischen beobachtbaren Prädiktorvariablen $X_1, ..., X_p$, welche sich durch einen Vektor $X = (X_1, ..., X_p)$ zusammenfassen lassen, und einer Zielvariable Y durch eine Funktion f^* mit $Y = f^*(X) + \epsilon$ modellieren lässt. Hierbei kann ϵ als eine zufällige Störgröße angesehen werden, die hier im weiteren Verlauf aber keine wichtige Rolle spielt. Das Ziel von Neuronalen Netzen ist es, die unbekannte Funktion f^* zu approximieren.

Die folgenden Erklärungen zum Aufbau und zum Training neuronaler Netze stützen sich wesentlich auf [6] und sind hier auf das grundlegendste reduziert worden. Obwohl es der Name neuronale Netze suggeriert, wird auch hier genau wie in [6] ebenfalls auf jegliche biologische Motivation verzichtet, damit nicht der fälschliche Eindruck entstehen kann, dass es sich bei neuronalen Netzen um Modelle von echten biologischen Gehirnen handeln könnte. Das Ziel von neuronalen Netzen ist es viel eher, unbekannte Funktionen anhand von Trainingsdaten zu approximieren und die Ergebnisse dann auf ungesehene Daten zu generalisieren.

3.1.1 Aufbau

Wie in 3.1 angedeutet, definiert ein neuronales Netz also eine Abbildung f, welche den Zusammenhang zwischen einer Eingabe X und einer Ausgabe Y approximieren soll. Eine Hauptcharakteristik von neuronalen Netzen ist es, dass die Funktion f durch die Verkettung weiterer Funktionen gebildet wird. Ist ein neuronales Netz beispielsweise durch $f(x) = f^{(3)}(f^{(2)}(f^{(1)}(x)))$ gegeben, so setzt es sich aus der Verkettung der einzelnen Funktionen $f^{(1)}$, $f^{(2)}$ und $f^{(3)}$ zusammen. Wie genau diese Funktionen aussehen können, soll an dieser Stelle bewusst ersteinmal offen bleiben.

Solche Ketten von Funktionen können gut durch azyklische Graphen beschrieben werden. Hierbei wird jedes Zwischenergebnis durch einen Knoten repräsentiert, jede Kante zwischen zwei Knoten beschreibt die Operation, die von einen Ergebnis zum nächsten geführt hat. Der Beispielgraph zu $f(x) = f^{(3)}(f^{(2)}(f^{(1)}(x)))$ ist in Abbildung 2 zu sehen.

Im Kontext von neuronalen Netzen wird jede der Funktionen $f^{(1)}$, $f^{(2)}$ und $f^{(3)}$ auch als eine **Schicht** im neuronalen Netz bezeichnet. Da $f^{(1)}$ und $f^{(2)}$ im Inneren des Netzwerks liegen, bezeichnet man diese Schichten auch als **versteckte Schichten**. Die Gesamtanzahl der Schichten wird als die **Tiefe** des neuronalen Netzes bezeichnet.

Zusammenfassend lässt sich also sagen, dass sich ein neuronales Netz als eine Verkettung beliebiger Funktionen auffassen lässt, welche auf eine Eingabegröße X angewendet werden. Wie genau diese Funktionen, also die Schichten des neuronalen Netzes, aussehen können, wird nun im nächsten Abschnitt beschrieben.

Abbildung 2: Verkettung dreier Funktionen dargestellt als azyklischer Graph.

3.1.2 Schichten

Eine Schicht eines neuronalen Netzes ist eine Funktion f, die eine Eingabe $x \in \mathbb{R}^n$ auf eine Ausgabe $f(x) \in \mathbb{R}^m$ abbildet. Häufig hat f dabei die folgende Form:

$$f(x) = g(Wx + b) \tag{1}$$

 $W \in \mathbb{R}^{m \times n}$ ist hierbei eine sogenannte Gewichtsmatrix, die die Eingabe x der Schicht linear transformiert. $b \in \mathbb{R}^m$ wird auch Bias genannt und wird auf das Ergebnis der Multiplikation von W mit x addiert. Die Funktion $g : \mathbb{R}^m \to \mathbb{R}^m$ heißt Aktivierungsfunktion.

Oftmals ist es so, dass Aktivierungsfunktionen elementweise auf das Resultat von Wx + b angewendet werden. Hierzu kann man sich eine Funktion $\Phi : \mathbb{R} \to \mathbb{R}$ definieren und dann $g_i(u) = \Phi(u_i)$, i = 1, ..., m setzen. Hierbei beschreibt g_i das i-te Element der vektorwertigen Funktion g und u_i das i-te Element des Vektors Wx + b.

Die Parameter W und b einer Schicht können während der Trainingsphase des neuronalen Netzwerks optimiert werden. Dieses Vorgehen wird in Abschnitt 3.1.4 näher beschrieben. Die Aktivierungsfunktion einer Schicht hingegen ist ein sogenannter \mathbf{Hy} perparameter des Netzwerks. Dies bedeutet, dass dieser Parameter vor dem Training vom Anwender spezifiziert werden muss.

3.1.3 Aktivierungsfunktionen

Im Folgenden werden ausschließlich elementweise Aktivierungsfunktionen $\Phi: \mathbb{R} \to \mathbb{R}$ betrachtet, da diese die größte praktische Relevanz haben. Zwei sehr häufig eingesetzte Aktivierungsfunktionen, die auch in diesem Projekt verwendet wurden, sind die **Rectified Linear Unit (ReLU)** Funktion und die **Sigmoid** Funktion. Beide werden im Folgenden kurz beschrieben.

ReLU Die ReLU Funktion ist nach [5] quasi eine Standardempfehlung für die Aktivierungsfunktion in den versteckten Schichten tiefer neuronaler Netze. Sie ist durch

folgenden Ausdruck gegeben:

$$\Phi_{\text{ReLU}}(x) = \max\{0, x\}$$

Wird diese Funktion elementweise auf einen Vektor angewendet, so werden alle negativen Elemente auf Null gesetzt. Die restlichen Elemente bleiben unberührt.

Sigmoid Die Sigmoid Funktion ist durch folgenden Ausdruck gegeben:

$$\Phi_{\text{Sigmoid}}(x) = \frac{1}{1 + \exp(-x)}$$

Da der Wertebereich der Sigmoid Funktion auf das Intervall [0,1] beschränkt ist, kommt diese Funktion häufig in der letzten Schicht zum Einsatz, also der Schicht, welche für die Vorhersage der Zielgröße Y zuständig ist.

3.1.4 Training

Möchte man ein neuronales Netz zur Approximation einer unbekannten Funktion f^* einsetzen, so muss man sich zunächst für eine grundlegende Architektur des Netzes entscheiden. Dies bedeutet, dass man festlegen muss, welche Art von Schichten wie miteinander kombiniert werden sollen. Je nach Anwendungsfall können hier unterschiedliche Architekturen sinnvoll sein und es müssen oft mehrere Varianten getestet und gegeneinander abgewogen werden.

Gehen wir aber nun einmal davon aus, dass wir uns für eine konkrete Architektur entschieden haben (die tatsächliche Architektur, die in diesem Projekt zum Einsatz gekommen ist, wird später beschrieben). Die Frage ist nun, wie die freien Parameter, also die Gewichtsmatrizen W sowie die Bias Vektoren b in jeder Schicht angepasst werden können, damit das neuronale Netz die Funktion f^* möglichst gut approximiert.

Zur Beantwortung dieser Frage ist es hilfreich, sich in Erinnerung zu rufen, dass ein neuronales Netz lediglich durch eine Funktion f(x) von einer Eingabe x beschrieben werden kann. Sämtliche Parameter dieser Funktion (also die Gewichtsmatrizen und die Bias-Vektoren) lassen sich o.B.d.A. zu einem einzigen Parametervektor θ zusammenfassen, welcher die Funktion f parametrisiert (wir sprechen deshalb im Folgenden von f_{θ}).

Gehen wir des Weiteren davon aus, dass wir eine Menge S an Trainings-Beispielen vorliegen haben:

$$S = \{(x_1, y_1), ..., (x_n, y_n)\}, \quad x_i \in \mathbb{R}^p, \ y_i \in \mathbb{R}, \ i = 1, ..., n$$
 (2)

Der mittlere quadratische Approximationsfehler unseres neuronalen Netzes f_{θ} für einen Parametervektor θ auf den Trainingsdaten S lässt sich dann wie folgt beschreiben:

$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f_{\theta}(x_i))^2$$
 (3)

Das Training eines neuronalen Netzes f_{θ} besteht nun also darin, einen Parametervektor θ zu finden, für den die sogenannte Verlustfunktion $L(\theta)$ minimiert wird. Es liegt also ein nicht-lineares Optimierungsproblem einer geschlossenen und differenzierbaren Funktion $L(\theta)$ vor.

Zur Lösung eines solchen Problems gibt es viele verschiedene Verfahren. In der Praxis kommen meist Varianten des stochastischen Gradientenabstiegs zum Einsatz. Dieses allgemeine Optimierungsverfahren ist in [10] im Bezug auf allgemeine Machine Learning Probleme ausführlich beschrieben und analysiert worden und soll hier nur einmal bezüglich der vorliegenden Problemstellung kurz umrissen werden.

Stochastischer Gradientenabstieg Möchte man die Funktion $L(\theta)$ durch stochastischen Gradientenabstieg minimieren, so muss man zunächst einen Startwert $\theta^{(0)}$ auswählen, an welchem die Optimierung beginnen soll. Hierbei gibt es viele mögliche Vorgehensweisen. Im Kontext tiefer neuronaler Netze hat sich beispielsweise die Glorot Initialisierung bewährt, welche erstmals in [4] vorgestellt wurde und auf eine möglichst gleichmäßige, aber zufällige Initialisierung der Parameter abzielt.

Hat man einen Startwert $\theta^{(0)}$ gewählt, so wird dieser nun durch stochastischen Gradientenabstieg schrittweise verbessert. Dies geschieht dadurch, dass sukkzessive Schritte in die Richtung des negativen Gradienten von $L(\theta)$ durchgeführt werden. Im Optimierungsschritt t wird der aktuelle Parametervektor $\theta^{(t)}$ also wie folgt aktualisiert:

$$\theta^{(t+1)} = \theta^{(t)} - \eta \nabla L(\theta^{(t)}) \tag{4}$$

Hierbei gibt η eine Schrittweite an, die zuvor vom Anwender spezifiziert werden muss.

Die Idee dabei ist, dass der negative Gradient immer in die Richtung des steilsten Abstieges einer Funktion zeigt. Man erhofft sich durch diese lokale Minimierung der Funktion, dass man schlussendlich in einem globalen Minimum auskommt. Dies ist aber nur dann mathematisch garantiert, wenn die Funktion $L(\theta)$ konvex ist (in diesem Fall gibt es nur ein einziges globales Minimum). Da es sich hier allerdings um ein hochgradig nicht-lineares Optimierungsproblem handelt, ist die Konvexität von L für tiefe neuronale Netze in den meisten Fällen nicht gegeben. Man kann also bestenfalls auf die Konvergenz des Verfahrens in ein lokales Minimum hoffen. Laut [7] scheint es aber in der Praxis Anhaltspunkte dafür zu geben, dass lokale Minima anders als man denken könnte oft kein großes Problem beim Training darstellen.

TODO: early stopping

- 3.1.5 Convolutional Neural Networks
- 3.2 OpenCV
- 3.3 Tesseract
- 4 Pipeline
- 5 Ergebnisse
- 6 Zusammenfassung

Literatur

- [1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from http://www.tensorflow.org.
- [2] G. Bradski. The OpenCV Library. Dr. Dobb's Journal of Software Tools, 2000.
- [3] F. Chollet. Deep Learning with Python. Manning Publications Co., 2017.
- [4] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In *Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics*, volume 9 of *Proceedings of Machine Learning Research*, pages 249–256. JMLR Workshop and Conference Proceedings, 2010.
- [5] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In *Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics*, volume 15 of *Proceedings of Machine Learning Research*, pages 315–323. JMLR Workshop and Conference Proceedings, 2011.
- [6] I. Goodfellow, Y. Bengio, and A. Courville. *Deep Learning*. MIT Press, 2016. http://www.deeplearningbook.org.
- [7] I. Goodfellow, O. Vinyals, and A. Saxe. Qualitatively characterizing neural network optimization problems. In *International Conference on Learning Representations*, 2015.
- [8] G. James, D. Witten, T. Hastie, and R. Tibshirani. *An Introduction to Statistical Learning*. Springer-Verlag New York, 2013.
- [9] M. A. Nielsen. *Neural Networks and Deep Learning*. Determination Press, 2015. http://neuralnetworksanddeeplearning.com/.
- [10] S. Shalev-Shwartz and S. Ben-David. *Understanding Machine Learning From Theory to Algorithms*. Cambridge University Press, 2014.
- [11] S. M. Silva and C. R. Jung. License plate detection and recognition in unconstrained scenarios. In 2018 European Conference on Computer Vision (ECCV), pages 580–596, Sep 2018.
- [12] R. Smith. An overview of the tesseract ocr engine. Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), 2:629–633, 2007.