Package 'TDAvec'

October 31, 2022

Type Package
Title Vector Summaries of Persistence Diagrams
Version 0.1.3
Description Tools for computing various vector summaries of persistence diagrams studied in Topological Data Analysis. For improved computational efficiency, all code for the vector summaries is written in 'C++' using the 'Rcpp' package.
License GPL (>= 2)
Encoding UTF-8
Imports Rcpp (>= 1.0.9), TDA, microbenchmark
LinkingTo Rcpp
Suggests knitr
VignetteBuilder knitr
NeedsCompilation yes
RoxygenNote 7.2.1
Author Umar Islambekov [aut], Alexey Luchinsky [aut, cre], Hasani Pathirana [ctb]
Maintainer Alexey Luchinsky <aluchi@bgsu.edu></aluchi@bgsu.edu>
Repository CRAN
Date/Publication 2022-10-31 16:00:23 UTC
R topics documented: computeECC computeNL computePES computePI computePL computePS computeVAB computeVAB computeVPB

2 computeECC

Index 13

computeECC

A Vector Summary of the Euler Characteristic Curve

Description

Vectorizes the Euler characteristic curve

$$\chi(t) = \sum_{k=0}^{d} (-1)^k \beta_k(t),$$

where $\beta_0, \beta_1, \dots, \beta_d$ are the Betti curves corresponding to persistence diagrams D_0, D_1, \dots, D_d of dimensions $0, 1, \dots, d$ respectively, all computed from the same filtration

Usage

computeECC(D, maxhomDim, scaleSeq)

Arguments

D matrix with three columns containing the dimension, birth and death values re-

spectively

maxhomDim maximum homological dimension considered (0 for H_0 , 1 for H_1 , etc.)

scaleSeq numeric vector of increasing scale values used for vectorization

Value

A numeric vector whose elements are the average values of the Euler characteristic curve computed between each pair of consecutive scale points of scaleSeq= $\{t_1, t_2, \dots, t_n\}$:

$$\Big(\frac{1}{\Delta t_1} \int_{t_1}^{t_2} \chi(t) dt, \frac{1}{\Delta t_2} \int_{t_2}^{t_3} \chi(t) dt, \dots, \frac{1}{\Delta t_{n-1}} \int_{t_{n-1}}^{t_n} \chi(t) dt\Big),$$

where $\Delta t_k = t_{k+1} - t_k$

Author(s)

Umar Islambekov

References

1. Richardson, E., & Werman, M. (2014). Efficient classification using the Euler characteristic. Pattern Recognition Letters, 49, 99-106.

computeNL 3

Examples

```
N <- 100
set.seed(123)
# sample N points uniformly from unit circle and add Gaussian noise
X <- TDA::circleUnif(N,r=1) + rnorm(2*N,mean = 0,sd = 0.2)
# compute a persistence diagram using the Rips filtration built on top of X
D <- TDA::ripsDiag(X,maxdimension = 1,maxscale = 2)$diagram
scaleSeq = seq(0,2,length.out=11) # sequence of scale values
# compute ECC
computeECC(D,maxhomDim=1,scaleSeq)</pre>
```

computeNL

A Vector Summary of the Normalized Life Curve

Description

For a given persistence diagram $D = \{(b_i, d_i)\}_{i=1}^N$, computeNL() vectorizes the normalized life (NL) curve

$$sl(t) = \sum_{i=1}^{N} \frac{d_i - b_i}{L} \mathbf{1}_{[b_i, d_i)}(t),$$

where $L = \sum_{i=1}^{N} (d_i - b_i)$. Points of D with infinite death value are ignored

Usage

computeNL(D, homDim, scaleSeq)

Arguments

D matrix with three columns containing the dimension, birth and death values re-

spectively

homDim homological dimension (0 for H_0 , 1 for H_1 , etc.)

scaleSeq numeric vector of increasing scale values used for vectorization

Value

A numeric vector whose elements are the average values of the persistent entropy summary function computed between each pair of consecutive scale points of scaleSeq= $\{t_1, t_2, \dots, t_n\}$:

$$\left(\frac{1}{\Delta t_1} \int_{t_1}^{t_2} sl(t)dt, \frac{1}{\Delta t_2} \int_{t_2}^{t_3} sl(t)dt, \dots, \frac{1}{\Delta t_{n-1}} \int_{t_{n-1}}^{t_n} sl(t)dt\right),$$

where $\Delta t_k = t_{k+1} - t_k$

4 computePES

Author(s)

Umar Islambekov

References

Chung, Y. M., & Lawson, A. (2022). Persistence curves: A canonical framework for summarizing persistence diagrams. Advances in Computational Mathematics, 48(1), 1-42.

Examples

```
N <- 100
set.seed(123)
# sample N points uniformly from unit circle and add Gaussian noise
X <- TDA::circleUnif(N,r=1) + rnorm(2*N,mean = 0,sd = 0.2)
# compute a persistence diagram using the Rips filtration built on top of X
D <- TDA::ripsDiag(X,maxdimension = 1,maxscale = 2)$diagram
scaleSeq = seq(0,2,length.out=11) # sequence of scale values
# compute NL for homological dimension H_0
computeNL(D,homDim=0,scaleSeq)
# compute NL for homological dimension H_1
computeNL(D,homDim=1,scaleSeq)</pre>
```

computePES

A Vector Summary of the Persistent Entropy Summary Function

Description

For a given persistence diagram $D = \{(b_i, d_i)\}_{i=1}^N$, computePES() vectorizes the persistent entropy summary (PES) function

$$S(t) = -\sum_{i=1}^{N} \frac{l_i}{L} \log_2{(\frac{l_i}{L})} \mathbf{1}_{[b_i, d_i]}(t),$$

where $l_i = d_i - b_i$ and $L = \sum_{i=1}^N l_i$. Points of D with infinite death value are ignored

Usage

```
computePES(D, homDim, scaleSeq)
```

Arguments

D matrix with three columns containing the dimension, birth and death values re-

spectively

homDim homological dimension (0 for H_0 , 1 for H_1 , etc.)

scaleSeq numeric vector of increasing scale values used for vectorization

computePI 5

Value

A numeric vector whose elements are the average values of the persistent entropy summary function computed between each pair of consecutive scale points of scaleSeq= $\{t_1, t_2, \dots, t_n\}$:

$$\left(\frac{1}{\Delta t_1} \int_{t_1}^{t_2} S(t)dt, \frac{1}{\Delta t_2} \int_{t_2}^{t_3} S(t)dt, \dots, \frac{1}{\Delta t_{n-1}} \int_{t_{n-1}}^{t_n} S(t)dt\right),$$

where $\Delta t_k = t_{k+1} - t_k$

Author(s)

Umar Islambekov

References

1. Atienza, N., Gonzalez-Díaz, R., & Soriano-Trigueros, M. (2020). On the stability of persistent entropy and new summary functions for topological data analysis. Pattern Recognition, 107, 107509.

Examples

```
N <- 100
set.seed(123)
# sample N points uniformly from unit circle and add Gaussian noise
X <- TDA::circleUnif(N,r=1) + rnorm(2*N,mean = 0,sd = 0.2)
# compute a persistence diagram using the Rips filtration built on top of X
D <- TDA::ripsDiag(X,maxdimension = 1,maxscale = 2)$diagram

scaleSeq = seq(0,2,length.out=11) # sequence of scale values
# compute PES for homological dimension H_0
computePES(D,homDim=0,scaleSeq)
# compute PES for homological dimension H_1
computePES(D,homDim=1,scaleSeq)</pre>
```

computePI

A Vector Summary of the Persistence Surface

Description

For a given persistence diagram $D = \{(b_i, p_i)\}_{i=1}^N$, computePI() computes the persistence image (PI) - a vector summary of the persistence surface:

$$\rho(x,y) = \sum_{i=1}^{N} f(b_i, p_i) \phi_{(b_i, p_i)}(x, y),$$

6 computePI

where $\phi_{(b_i,p_i)}(x,y)$ is the Gaussian distribution with mean (b_i,p_i) and covariance matrix $\sigma^2 I_{2\times 2}$ and

$$f(b,p) = w(p) = \begin{cases} 0 & y \le 0 \\ p/p_{max} & 0$$

is the weighting function with p_{max} being the maximum persistence value among all persistence diagrams considered in the experiment. Points of D with infinite persistence value are ignored

Usage

```
computePI(D, homDim, xSeq, ySeq, sigma)
```

Arguments

D	matrix with three columns containing the dimension, birth and persistence values respectively
homDim	homological dimension (0 for H_0 , 1 for H_1 , etc.)
xSeq	numeric vector of increasing x (birth) values used for vectorization
ySeq	numeric vector of increasing y (persistence) values used for vectorization
sigma	standard deviation of the Gaussian

Value

A numeric vector whose elements are the average values of the persistence surface computed over each cell of the two-dimensional grid constructred from $xSeq=\{x_1,x_2,\ldots,x_n\}$ and $ySeq=\{y_1,y_2,\ldots,y_m\}$:

$$\left(\frac{1}{\Delta x_1 \Delta y_1} \int_{[x_1, x_2] \times [y_1, y_2]} \rho(x, y) dA, \dots, \frac{1}{\Delta x_{n-1} \Delta y_{m-1}} \int_{[x_{n-1}, x_n] \times [y_{m-1}, y_m]} \rho(x, y) dA\right),$$

where dA = dxdy, $\Delta x_k = x_{k+1} - x_k$ and $\Delta y_j = y_{j+1} - y_j$

Author(s)

Umar Islambekov

References

1. Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., ... & Ziegelmeier, L. (2017). Persistence images: A stable vector representation of persistent homology. Journal of Machine Learning Research, 18.

Examples

```
N <- 100

set.seed(123)

# sample N points uniformly from unit circle and add Gaussian noise

X <- TDA::circleUnif(N,r=1) + rnorm(2*N,mean = 0,sd = 0.2)
```

compute a persistence diagram using the Rips filtration built on top of X

computePL 7

```
D <- TDA::ripsDiag(X,maxdimension = 1,maxscale = 2)$diagram
# switch from the birth-death to the birth-persistence coordinates
D[,3] \leftarrow D[,3] - D[,2]
colnames(D)[3] <- "Persistence"</pre>
resB <- 5 # resolution (or grid size) along the birth axis
resP <- 5 # resolution (or grid size) along the persistence axis
# compute PI for homological dimension H_0
minPH0 \leftarrow min(D[D[,1]==0,3]); maxPH0 \leftarrow max(D[D[,1]==0,3])
ySeqH0 <- seq(minPH0,maxPH0,length.out=resP+1)
sigma <- 0.5*(maxPH0-minPH0)/resP
computePI(D, homDim=0, xSeq=NA, ySeqH0, sigma)
# compute PI for homological dimension H_1
minBH1 \leftarrow min(D[D[,1]==1,2]); maxBH1 \leftarrow max(D[D[,1]==1,2])
minPH1 \leftarrow min(D[D[,1]==1,3]); maxPH1 \leftarrow max(D[D[,1]==1,3])
xSeqH1 <- seq(minBH1,maxBH1,length.out=resB+1)</pre>
ySeqH1 <- seq(minPH1,maxPH1,length.out=resP+1)</pre>
sigma <- 0.5*(maxPH1-minPH1)/resP
computePI(D,homDim=1,xSeqH1,ySeqH1,sigma)
```

computePL

A Vector Summary of the Persistence Landscape Function

Description

Vectorizes the persistence landscape (PL) function constructed from a given persistence diagram. The kth order landscape function of a persistence diagram $D = \{(b_i, d_i)\}_{i=1}^N$ is defined as

$$\lambda_k(t) = k \max_{1 \le i \le N} \Lambda_i(t), \quad k \in N,$$

where kmax returns the kth largest value and

$$\Lambda_i(t) = \begin{cases} t - b_i & t \in [b_i, \frac{b_i + d_i}{2}] \\ d_i - t & t \in (\frac{b_i + d_i}{2}, d_i] \\ 0 & \text{otherwise} \end{cases}$$

Usage

```
computePL(D, homDim, scaleSeq, k=1)
```

Arguments

D matrix with three columns containing the dimension, birth and death values re-

spectively

homDim homological dimension (0 for H_0 , 1 for H_1 , etc.)

scaleSeq numeric vector of increasing scale values used for vectorization

k order of landscape function. By default, k=1

8 computePS

Value

A numeric vector whose elements are the values of the kth order landscape function evaluated at each point of scaleSeq= $\{t_1, t_2, \dots, t_n\}$:

$$(\lambda_k(t_1), \lambda_k(t_2), \dots, \lambda_k(t_n))$$

Author(s)

Umar Islambekov

References

- 1. Bubenik, P. (2015). Statistical topological data analysis using persistence landscapes. Journal of Machine Learning Research, 16(1), 77-102.
- 2. Chazal, F., Fasy, B. T., Lecci, F., Rinaldo, A., & Wasserman, L. (2014, June). Stochastic convergence of persistence landscapes and silhouettes. In Proceedings of the thirtieth annual symposium on Computational geometry (pp. 474-483).

Examples

```
N <- 100
set.seed(123)
# sample N points uniformly from unit circle and add Gaussian noise
X <- TDA::circleUnif(N,r=1) + rnorm(2*N,mean = 0,sd = 0.2)
# compute a persistence diagram using the Rips filtration built on top of X
D <- TDA::ripsDiag(X,maxdimension = 1,maxscale = 2)$diagram
scaleSeq = seq(0,2,length.out=11) # sequence of scale values
# compute persistence landscape (PL) for homological dimension H_0 with order of landscape k=1
computePL(D,homDim=0,scaleSeq,k=1)
# compute persistence landscape (PL) for homological dimension H_1 with order of landscape k=1</pre>
```

computePS

computePL(D,homDim=1,scaleSeq,k=1)

A Vector Summary of the Persistence Silhouette Function

Description

Vectorizes the persistence silhouette (PS) function constructed from a given persistence diagram. The pth power silhouette function of a persistence diagram $D = \{(b_i, d_i)\}_{i=1}^N$ is defined as

$$\phi_p(t) = \frac{\sum_{i=1}^{N} |d_i - b_i|^p \Lambda_i(t)}{\sum_{i=1}^{N} |d_i - b_i|^p},$$

computePS 9

where

$$\Lambda_i(t) = \begin{cases} t - b_i & t \in [b_i, \frac{b_i + d_i}{2}] \\ d_i - t & t \in (\frac{b_i + d_i}{2}, d_i] \\ 0 & \text{otherwise} \end{cases}$$

Points of D with infinite death value are ignored

Usage

```
computePS(D, homDim, scaleSeq, p=1)
```

Arguments

D matrix with three columns containing the dimension, birth and death values re-

spectively

homDim homological dimension (0 for H_0 , 1 for H_1 , etc.)

scaleSeq numeric vector of increasing scale values used for vectorization power of the weights for the silhouette function. By default, p=1

Value

A numeric vector whose elements are the average values of the pth power silhouette function computed between each pair of consecutive scale points of scaleSeq= $\{t_1, t_2, \dots, t_n\}$:

$$\left(\frac{1}{\Delta t_1} \int_{t_1}^{t_2} \phi_p(t) dt, \frac{1}{\Delta t_2} \int_{t_2}^{t_3} \phi_p(t) dt, \dots, \frac{1}{\Delta t_{n-1}} \int_{t_{n-1}}^{t_n} \phi_p(t) dt\right),$$

where $\Delta t_k = t_{k+1} - t_k$

Author(s)

Umar Islambekov

References

1. Chazal, F., Fasy, B. T., Lecci, F., Rinaldo, A., & Wasserman, L. (2014). Stochastic convergence of persistence landscapes and silhouettes. In Proceedings of the thirtieth annual symposium on Computational geometry (pp. 474-483).

Examples

```
N <- 100
set.seed(123)
# sample N points uniformly from unit circle and add Gaussian noise
X <- TDA::circleUnif(N,r=1) + rnorm(2*N,mean = 0,sd = 0.2)
# compute a persistence diagram using the Rips filtration built on top of X
D <- TDA::ripsDiag(X,maxdimension = 1,maxscale = 2)$diagram
scaleSeq = seq(0,2,length.out=11) # sequence of scale values</pre>
```

10 computeVAB

```
# compute persistence silhouette (PS) for homological dimension H_0
computePS(D,homDim=0,scaleSeq,p=1)
```

compute persistence silhouette (PS) for homological dimension H_1
computePS(D,homDim=1,scaleSeq,p=1)

computeVAB

A Vector Summary of the Betti Curve

Description

For a given persistence diagram $D = \{(b_i, d_i)\}_{i=1}^N$, computeVAB() vectorizes the Betti Curve

$$\beta(t) = \sum_{i=1}^{N} w(b_i, d_i) \mathbf{1}_{[b_i, d_i)}(t),$$

where the weight function $w(b, d) \equiv 1$

Usage

computeVAB(D, homDim, scaleSeq)

Arguments

D matrix with three columns containing the dimension, birth and death values re-

spectively

homDim homological dimension (0 for H_0 , 1 for H_1 , etc.)

scaleSeq numeric vector of increasing scale values used for vectorization

Value

A numeric vector whose elements are the average values of the Betti curve computed between each pair of consecutive scale points of scaleSeq= $\{t_1, t_2, \dots, t_n\}$:

$$\Big(\frac{1}{\Delta t_1} \int_{t_1}^{t_2} \beta(t) dt, \frac{1}{\Delta t_2} \int_{t_2}^{t_3} \beta(t) dt, \dots, \frac{1}{\Delta t_{n-1}} \int_{t_{n-1}}^{t_n} \beta(t) dt\Big),$$

where $\Delta t_k = t_{k+1} - t_k$

Author(s)

Umar Islambekov, Hasani Pathirana

References

- 1. Chazal, F., & Michel, B. (2021). An Introduction to Topological Data Analysis: Fundamental and Practical Aspects for Data Scientists. Frontiers in Artificial Intelligence, 108.
- 2. Chung, Y. M., & Lawson, A. (2022). Persistence curves: A canonical framework for summarizing persistence diagrams. Advances in Computational Mathematics, 48(1), 1-42.

compute VPB 11

Examples

```
N <- 100
set.seed(123)
# sample N points uniformly from unit circle and add Gaussian noise
X <- TDA::circleUnif(N,r=1) + rnorm(2*N,mean = 0,sd = 0.2)
# compute a persistence diagram using the Rips filtration built on top of X
D <- TDA::ripsDiag(X,maxdimension = 1,maxscale = 2)$diagram

scaleSeq = seq(0,2,length.out=11) # sequence of scale values
# compute vector of averaged Bettis (VAB) for homological dimension H_0
computeVAB(D,homDim=0,scaleSeq)
# compute vector of averaged Bettis (VAB) for homological dimension H_1
computeVAB(D,homDim=1,scaleSeq)</pre>
```

computeVPB

A Vector Summary of the Persistence Block

Description

For a given persistence diagram $D = \{(b_i, p_i)\}_{i=1}^N$, computeVPB() vectorizes the persistence block

$$f(x,y) = \sum_{i=1}^{N} \mathbf{1}_{E(b_i,p_i)}(x,y),$$

where $E(b_i,p_i)=[b_i-\frac{\lambda_i}{2},b_i+\frac{\lambda_i}{2}]\times[p_i-\frac{\lambda_i}{2},p_i+\frac{\lambda_i}{2}]$ and $\lambda_i=2\tau p_i$ with $\tau\in(0,1]$. Points of D with infinite persistence value are ignored

Usage

```
computeVPB(D, homDim, xSeq, ySeq, tau)
```

Arguments

D	matrix with three columns containing the dimension, birth and persistence values respectively
homDim	homological dimension (0 for H_0 , 1 for H_1 , etc.)
xSeq	numeric vector of increasing x (birth) values used for vectorization
ySeq	numeric vector of increasing y (persistence) values used for vectorization
tau	parameter (between 0 and 1) controlling block size. By default, tau=0.3

12 computeVPB

Value

A numeric vector whose elements are the weighted averages of the persistence block computed over each cell of the two-dimensional grid constructred from $xSeq=\{x_1,x_2,\ldots,x_n\}$ and $ySeq=\{y_1,y_2,\ldots,y_m\}$:

$$\Big(\frac{1}{\Delta x_1 \Delta y_1} \int_{[x_1, x_2] \times [y_1, y_2]} f(x, y) w dA, \dots, \frac{1}{\Delta x_{n-1} \Delta y_{m-1}} \int_{[x_{n-1}, x_n] \times [y_{m-1}, y_m]} f(x, y) w dA\Big),$$

where wdA = (x + y)dxdy, $\Delta x_k = x_{k+1} - x_k$ and $\Delta y_j = y_{j+1} - y_j$

Author(s)

Umar Islambekov, Aleksei Luchinsky

References

1. Chan, K. C., Islambekov, U., Luchinsky, A., & Sanders, R. (2022). A computationally efficient framework for vector representation of persistence diagrams. Journal of Machine Learning Research 23, 1-33.

Examples

```
N <- 100
set.seed(123)
# sample N points uniformly from unit circle and add Gaussian noise
X \leftarrow TDA::circleUnif(N,r=1) + rnorm(2*N,mean = 0,sd = 0.2)
# compute a persistence diagram using the Rips filtration built on top of X
D <- TDA::ripsDiag(X,maxdimension = 1,maxscale = 2)$diagram
# switch from the birth-death to the birth-persistence coordinates
D[,3] \leftarrow D[,3] - D[,2]
colnames(D)[3] <- "Persistence"</pre>
# construct one-dimensional grid of scale values
ySeqH0 \leftarrow unique(quantile(D[D[,1]==0,3],probs = seq(0,1,by=0.2)))
tau <- 0.3 # parameter in [0,1] which controls the size of blocks around each point of the diagram
# compute VPB for homological dimension H_0
computeVPB(D, homDim = 0, xSeq=NA, ySeqH0, tau)
xSeqH1 \leftarrow unique(quantile(D[D[,1]==1,2],probs = seq(0,1,by=0.2)))
ySeqH1 \leftarrow unique(quantile(D[D[,1]==1,3],probs = seq(0,1,by=0.2)))
# compute VPB for homological dimension H_1
computeVPB(D,homDim = 1,xSeqH1,ySeqH1,tau)
```

Index

computeECC, 2 computeNL, 3 computePES, 4 computePI, 5 computePL, 7 computePS, 8 computeVAB, 10 computeVPB, 11