

Radio Test Report

Telensa Ltd 480 V Telecell 2 T2A4N

47 CFR Part 15.247 Effective Date 1st October 2017
DSS: Part 15 Spread Spectrum Transmitter
Test Date: 19th December 2017 to 21st December 2017
Report Number: 12-10223-1-17 Issue 01

R.N. Electronics Ltd.

Arnolds Court
Arnolds Farm Lane
Mountnessing
Essex
CM13 1UT
U.K.

www.RNelectronics.com

Telephone: +44 (0) 1277 352219 Email: sales@RNelectronics.com

This report is not to be reproduced by any means except in full and in any case not without the written approval of R.N. Electronics Ltd.

File Name: Telensa Ltd.10223-1 Issue 01 Page 1 of 86

QMF21J - Issue 05 - RNE Issue 03; 47 CFR Part 15C 2017

REPORT NUMBER: 12-10223-1-17 Issue 01

Arnolds Court, Arnolds Farm Lane, Mountnessing, Brentwood Essex, CM13 1UT

Certificate of Test 10223-1

The equipment noted below has been fully tested by R.N. Electronics Limited and, where appropriate, conforms to the relevant subpart of 47 CFR Part 15C. This is a certificate of test only and should not be confused with an equipment authorisation. Other standards may also apply.

Equipment: 480 V Telecell 2

Model Number: T2A4N

Applicant: Telensa Ltd

Iconix 3, London Road Pampisford, Cambridge

CB22 3EG

2850533

Full measurement results are

Unique Serial Number:

detailed in Report Number: 12-10223-1-17 Issue 01

Test Standards: 47 CFR Part 15.247 Effective Date 1st October 2017

DSS: Part 15 Spread Spectrum Transmitter

NOTE:

Certain tests were not performed based upon manufacturer's declarations. Certain other requirements are subject to manufacturer declaration only and have not been tested/verified. For details refer to section 3 of this report.

DEVIATIONS:

The following tests have had deviations applied: AC power line conducted emissions, Band Edge Compliance, Radiated emissions 30 MHz -1 GHz.

This certificate relates only to the unit tested as identified by a unique serial number and in the condition at the time it was tested. It does not relate to any other similar equipment and performance of the product before or after the test cannot be guaranteed. Whilst every effort is made to assure quality of testing, type tests are not exhaustive and although no non-conformances may be found, this doesn't exclude the possibility of unit not meeting the intentions of the standard or the requirements of the Federal Regulations, particularly under different conditions to those during testing. Any compliance statements are made reliant on (a) the application of the product and use of the assigned band being acceptable to the FCC and (b) the modes of operation as instructed to us by the Customer based on their specific knowledge of the application and functionality of the EUT. Statements of compliance, where measurements were made, do not include the measurement uncertainty. The measurement uncertainty, where stated, is the expanded uncertainty based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Date Of Test:	19th December 2017 to 21st December 2017
Test Engineer:	
Approved By: Radio Approvals Manager	
Customer Representative:	

File Name: Telensa Ltd.10223-1 Issue 01 Page 2 of 86

1 Contents

1		ntents	
2	Eq	uipment under test (EUT)	5
	2.1	Equipment specification	5
	2.2	Configurations for testing	6
	2.3	Functional description	7
	2.4	Modes of operation	7
	2.5	Emissions configuration	
3		mmary of test results	
4		ecifications	
_	4.1	Relevant standards	
	4.2	Deviations	
_			
5		sts, methods and results	
	5.1	AC power line conducted emissions	
	5.2	Radiated emissions 9 - 150 kHz	
	5.3	Radiated emissions 150 kHz - 30 MHz	
	5.4	Radiated emissions 30 MHz -1 GHz	
	5.5	Radiated emissions above 1 GHz	
	5.6	Effective radiated power field strength	
	5.7	Band Edge Compliance	
	5.8	Occupied bandwidth	
	5.9	Maximum Average conducted output power	28
	5.10	Maximum Peak conducted output power	29
	5.11	Maximum Power Spectral Density	30
	5.12	Antenna power conducted emissions	30
	5.13	Duty cycle	
	5.14	FHSS carrier frequency separation	
	5.15	Average time of occupancy	
	5.16	Number of Hop Channels	
6		ots/Graphical results	
Ŭ	6.1	AC power line conducted emissions	
	6.2	Radiated emissions 9 - 150 kHz	
	6.3	Radiated emissions 150 kHz - 30 MHz	
	6.4	Radiated emissions 30 MHz -1 GHz	
	6.5	Radiated emissions above 1 GHz	
		Effective radiated power field strength	
	6.6	Band Edge Compliance	
	6.7		
	6.8	Occupied bandwidth	
	6.9	FHSS carrier frequency separation	
	6.10	Average time of occupancy	
	6.11	Number of Hop Channels	
7		planatory Notes	
	7.1	Explanation of Table of Signals Measured	
	7.2	Explanation of limit line calculations for radiated measurements	
8	Ph	otographs	
	8.1	EUT Front View	
	8.2	EUT Reverse Angle	66
	8.3	EUT Left side View	67
	8.4	EUT Right side View	67
	8.5	EUT Antenna Port	68
	8.6	EUT Internal photos	68
	8.7	EUT ID Label	
	8.8	AC power line conducted emissions	
	8.9	Radiated emissions 9 kHz - 30 MHz	
	8.10	Radiated emissions 30 MHz -1 GHz	
	8.11	Radiated emissions above 1 GHz	
	8.12	Radiated emission diagram	
	8.13	AC powerline conducted emission diagram	
9		est equipment calibration list	
1(Auxiliary and peripheral equipment	
1 (, , 10.1	Customer supplied equipment	
	10.1	RN Electronics supplied equipment	
	10.2	IVIA Figorious anabuse eduibuseur	03

©2018 RN ELECTRONICS LIMITED

ALL RIGHTS RESERVED

REPORT NUMBER: 12-10223-1-17 Issue 01

11	Cond	ndition of the equipment tested	84
11		Modifications before test	
11		Modifications during test	_
		scription of test sites	
		previations and units	

2 Equipment under test (EUT)

2.1 Equipment specification

Applicant	Telensa Ltd				
	Iconix 3				
	London Road				
	Pampisford				
	Cambridge				
	CB22 3EG				
Manufacturer of EUT	Telensa Ltd				
Full Name of EUT	480 V Telecell 2				
Model Number of EUT	T2A4N				
Serial Number of EUT	2850533				
Date Received	19th December 2017				
Date of Test:	19th December 2017 to 21st December 2017				
Purpose of Test	To demonstrate design compliance to the relevant rules of Chapter 47 of the Code				
ruipose oi Test	of Federal Regulations.				
Date Report Issued	5th January 2018				
Main Function	Street lighting control and monitoring.				
Information Specification	Height	150 mm			
	Width	90 mm			
	Depth	90 mm			
	Weight	0.5 kg			
	Voltage	347-480 V AC			
	Current	0.01 A			

REPORT NUMBER: 12-10223-1-17 Issue 01

File Name: Telensa Ltd.10223-1 Issue 01 Page 5 of 86

REPORT NUMBER: 12-10223-1-17 Issue 01

2.2 Configurations for testing

Fixed to a street luminaire, 8 to 10 m above street			
level			
Production samples			
Integral antenna 0 dBi			
No			
No			
919.9875 MHz			
32.768 kHz			
6LA30B 02			
2.13.25			
2.13.25			
Fixed			
Proprietary FHSS			
Yes			
910.4875 to 919.9875 MHz split into 6 sub-bands			
FSK (1K10F1D)			
100 mW			
1.1 kHz			
25 kHz			
1%			
Yes			
2 ppm			
910.4875 to 919.9875 MHz split into 6 sub-bands			
1 kHz			
Not applicable			
Not applicable			
DSS: Part 15 Spread Spectrum Transmitter			
59 per each of 6 sub-bands			
Not applicable			
0.39 s			
24 s			
Not declared			

File Name: Telensa Ltd.10223-1 Issue 01 Page 6 of 86

2.3 Functional description

915 MHz transceiver to facilitate On/Off control of street lighting, dimming control of street lights and electricity usage monitoring. Uses GPS receiver to allow location and set up.

REPORT NUMBER: 12-10223-1-17 Issue 01

2.4 Modes of operation

Mode Reference	Description	Used for testing
TX1	Low 20 dBm FSK 62.5 bps	Yes
TX2	Mid 20 dBm FSK 62.5 bps	Yes
TX3	High 20 dBm FSK 62.5 bps	Yes
TX4	Low 20 dBm FSK 500 bps	Yes
TX5	Mid 20 dBm FSK 500 bps	Yes
TX6	High 20 dBm FSK 500 bps	Yes
TX7	Hopping all channels 20 dBm FSK 500 bps	Yes

File Name: Telensa Ltd.10223-1 Issue 01 Page 7 of 86

2.5 Emissions configuration

The unit was installed into a luminaire so that it could receive power as it would during normal installation. The unit was powered at 480 V AC via an isolating transformer fed by a variac from 240 V AC mains. The unit was programmed using Near Field Communications (NFC) and a Raspberry Pi/laptop interface. The NFC card and interface were removed from the chamber prior to measurements being made. The unit was configured with engineering menus in software to allow permanent transmit and receive modes of the unit on the top, middle and bottom channels as stated within section 2.4 of this report. The transmit mode was 100% continuous with modulation and the power settings for each channel were as stated below:-

Low Channel (910.5 MHz) = level 100 mW. Mid Channel (915 MHz) only = level 100 mW. High Channel (919.975 MHz) = level 100 mW

2.5.1 Signal leads

Port Name	Cable Type	Connected	
Power	Custom 5-pin connector	Yes	

3 Summary of test results

The 480 V Telecell 2, T2A4N was tested for compliance to the following standard(s):

47 CFR Part 15.247 Effective Date 1st October 2017 DSS: Part 15 Spread Spectrum Transmitter

Any compliance statements are made reliant on (a) the application of the product and use of the assigned band being acceptable to the FCC and (b) the modes of operation as instructed to us by the Customer based on their specific knowledge of the application and functionality of the EUT. Whilst every effort is made to assure quality of testing, type tests are not exhaustive and although no non-conformances may be found, this doesn't exclude the possibility of equipment not meeting the intentions of the standard or the essential requirements of the directive, particularly under different conditions to those during testing. Statements of compliance, where measurements were made, do not include the measurement uncertainty. The measurement uncertainty, where stated, is the expanded uncertainty based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Title	References	Results
Transmitter Tests		
AC power line conducted emissions	47 CFR Part 15C Part 15.207	PASSED
2. Radiated emissions 9 - 150 kHz	47 CFR Part 15C Part 15.209	PASSED
3. Radiated emissions 150 kHz - 30 MHz	47 CFR Part 15C Part 15.209	PASSED
4. Radiated emissions 30 MHz -1 GHz	47 CFR Part 15C Part 15.247(d) & 15.209	PASSED
5. Radiated emissions above 1 GHz	47 CFR Part 15C Part 15.247(d) & 15.209	PASSED
6. Effective radiated power field strength	47 CFR Part 15C Part 15.247(d)	PASSED
7. Band Edge Compliance	47 CFR Part 15C Part 15.215 & 15.247(d)	PASSED
8. Occupied bandwidth	47 CFR Part 15C Part 15.247(a)(1)(i)	PASSED
Maximum Average conducted output	47 CFR Part 15C Part 15.247(b3)	NOT APPLICABLE ¹
power	, ,	
10. Maximum Peak conducted output power	47 CFR Part 15C Part 15.247(b)(2)	PASSED
11. Maximum Power Spectral Density	47 CFR Part 15C Part 15.247(e)	NOT APPLICABLE ²
12. Antenna power conducted emissions	47 CFR Part 15C Part 15.247(d)	NOT APPLICABLE ³
13. Duty cycle	47 CFR Part 15C Part 15.35(c)	NOT APPLICABLE ²
14. FHSS carrier frequency separation	47 CFR Part 15C Part 15.247(a1)	PASSED
15. Average time of occupancy	47 CFR Part 15C Part 15.247(a)(1)(i)	PASSED
16. Number of Hop Channels	47 CFR Part 15C Part 15.247(a)(1)(i)	PASSED

¹ EUT Peak conducted power measured instead.

File Name: Telensa Ltd.10223-1 Issue 01 Page 9 of 86

² EUT uses FHSS technology and is therefore not applicable to this test.

³ Applies to EUT's with an antenna port. The EUT has an integral antenna only. The EUT was tested for radiated emissions with its dedicated antenna in position.

4 Specifications

The tests were performed and operated in accordance with R.N. Electronics Ltd procedures and the relevant standards listed below.

REPORT NUMBER: 12-10223-1-17 Issue 01

4.1 Relevant standards

Ref.	Standard Number	Version	Description	
4.1.1	47 CFR Part 15C	2017	Federal Communications Commission PART 15 – RADIO	
			FREQUENCY DEVICES	
4.1.2	ANSI C63.10	2013	American National Standard of Procedures for Compliance	
			Testing of Unlicensed Wireless Devices	
4.1.3	ANSI C63.4	2014	American National Standard for Methods of Measurement of	
			Radio-Noise Emissions from Low-Voltage Electrical and	
			Electronic Equipment in the Range of 9 kHz to 40 GHz	
4.1.4	DA 00-705	2000	PUBLIC NOTICE	
			Filing and Measurement Guidelines for Frequency Hopping	
			Spread Spectrum Systems	
4.1.5	KDB 558074 D01 v04	2017	Guidance for Performing Compliance Measurements on Digital	
			Transmission Systems (DTS) Operating Under §15.247	

4.2 Deviations

Deviations have been applied on the following: - AC power line conducted emissions: EUT supply lead left at 1.4m length for test at manufacturer's request. Specification requires 1m length.,

File Name: Telensa Ltd.10223-1 Issue 01 Page 10 of 86

REPORT NUMBER: 12-10223-1-17 Issue 01

5 Tests, methods and results

5.1 AC power line conducted emissions

5.1.1 Test methods

Test Requirements: 47 CFR Part 15C Part 15.207 [Reference 4.1.1 of this report]
Test Method: ANSI C63.10 Clause 6.2 [Reference 4.1.2 of this report]
Limits: 47 CFR Part 15C Part 15.207 [Reference 4.1.1 of this report]

5.1.2 Configuration of EUT

The EUT was placed on a wooden table 0.8m above the ground plane and connected to a LISN via a 1.4 m mains cable.

During the initial scan, no difference in emissions could be seen with changing data rates and channels. Therefore full tests were performed using mode TX5.

5.1.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment listed in the 'Test Equipment' Section. Measurements were made on the live and neutral conductors using both average and quasi-peak detection. At least 6 signals within 20dB and/or all signals within 10dB of the limit were investigated.

Tests were performed in Test Site F.

5.1.4 Test equipment

LPE366, E035, ZSW1, E412, E411

See Section 9 for more details

5.1.5 Test results

Temperature of test environment 19°C
Humidity of test environment 55%
Pressure of test environment 103kPa

Band	910.4875 -919.9875 MHz
Power Level	100 mW
Channel Spacing	25 kHz
Mod Scheme	FSK 500 bps
Single channel	915 MHz

Plot refs
10223-1 Cond 1 AC Live 150k-30M Average
10223-1 Cond 1 AC Live 150k-30M Quasi-Peak
10223-1 Cond 1 AC Neutral 150k-30M Average
10223-1 Cond 1 AC Neutral 150k-30M Quasi-Peak

Table of signals measured for Cond 1 AC Live 150k-30M

Signal No.	Freq (MHz)	Peak Amp (dBuV)	QP Amp (dBuV)	QP -Lim (dB)	AV Amp (dBuV)	AV -Lim (dB)
1	0.167	62.4	54.4	-10.7	22.6	-32.5
2	0.186	60.4	52.1	-12.1	20.3	-33.9
3	0.202	58.3	50.0	-13.5	19.1	-34.4
4	0.215	56.3	48.5	-14.5	21.2	-31.8
5	0.215	56.7	49.1	-13.9	20.7	-32.3
6	0.232	56.2	48.2	-14.2	25.5	-26.9
7	1.227	38.8	36.5	-19.5	21.8	-24.2

REPORT NUMBER: 12-10223-1-17 Issue 01

8	1.336	41.0	38.8	-17.2	24.6	-21.4
9	1.432	41.2	37.7	-18.3	24.5	-21.5
10	1.471	41.4	39.0	-17.0	24.9	-21.1
11	1.602	39.8	37.3	-18.7	23.7	-22.3
12	2.402	39.8	36.9	-19.1	23.5	-22.5

Table of signals measured for Cond 1 AC Neutral 150k-30M

Signal No.	Freq (MHz)	Peak Amp (dBuV)	QP Amp (dBuV)	QP -Lim (dB)	AV Amp (dBuV)	AV -Lim (dB)
1	0.151	64.3	56.1	-9.8	21.8	-34.1
2	0.161	64.3	56.2	-9.2	22.8	-32.6
3	0.184	58.5	50.8	-13.5	21.6	-32.7
4	0.197	59.3	51.4	-12.3	22.3	-31.4
5	0.207	58.8	50.7	-12.6	21.1	-32.2
6	0.216	57.4	49.4	-13.6	20.5	-32.5
7	0.216	54.5	46.7	-16.3	18.7	-34.3
8	1.340	40.1	37.8	-18.2	23.8	-22.2
9	1.358	40.4	38.3	-17.7	24.1	-21.9
10	1.404	39.8	37.1	-18.9	23.3	-22.7
11	1.478	41.2	38.3	-17.7	23.4	-22.6
12	1.627	39.7	37.6	-18.4	23.4	-22.6

No discernible difference was noted in emissions between channels (exploratory measurements); therefore the final measurements are presented for TX mid channel mode only.

Peak detector "Max held" Analyser plots against the Quasi-Peak / Average limit line(s) can be found in Section 6 of this report.

LIMITS:

15.207: as given in the above tables / drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:

150kHz to 30MHz ±3.6dB.

File Name: Telensa Ltd.10223-1 Issue 01 Page 12 of 86

5.2 Radiated emissions 9 - 150 kHz

5.2.1 Test methods

Test Requirements: 47 CFR Part 15C Part 15.209 [Reference 4.1.1 of this report]
Test Method: ANSI C63.10 Clause 6.4 [Reference 4.1.2 of this report]

Limits: 47 CFR Part 15C Part 15.209/15.247(d) [Reference 4.1.1 of this report]

REPORT NUMBER: 12-10223-1-17 Issue 01

5.2.2 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was assessed in its normal use position. Radiated Emissions testing was performed whilst powered from a 480 V AC power supply. The EUT was operated in TX4 to TX6 modes.

5.2.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below. Measurements were made in a semi-anechoic chamber (pre-scan) with any final measurements required performed on an OATS without a ground plane. The antenna was placed 1m above the ground. The equipment and the antenna were rotated 360 degrees to record the worst case emissions.

At least 6 signals within 20dB and all signals within 10dB of the limit were investigated.

Tests were performed using Test Site M and OATS.

5.2.4 Test equipment

TMS81, ZSW1, E412, E411

See Section 9 for more details

5.2.5 Test results

Temperature of test environment 19°C
Humidity of test environment 55%
Pressure of test environment 103kPa

Band	910.4875 -919.9875 MHz
Power Level	100 mW
Channel Spacing	25 kHz
Mod Scheme	FSK 500 bps
Low channel	910.5 MHz

Plot refs
10223-1 Rad 1 9k-150kHz Para
10223-1 Rad 1 9k-150kHz Perp

Band	910.4875 -919.9875 MHz
Power Level	100 mW
Channel Spacing	25 kHz
Mod Scheme	FSK 500 bps
Mid channel	915 MHz

Plot refs
10223-1 Rad 2 9k-150kHz Para
10223-1 Rad 2 9k-150kHz Perp

File Name: Telensa Ltd.10223-1 Issue 01 Page 13 of 86

040 4075 040 0075 MU

REPORT NUMBER: 12-10223-1-17 Issue 01

Band	910.4875 -919.9875 MHz
Power Level	100 mW
Channel Spacing	25 kHz
Mod Scheme	FSK 500 bps
High channel	919.975 MHz

Plot refs
0223-1 Rad 3 9k-150kHz Para
0223-1 Rad 3 9k-150kHz Perp

No signals were found within 20 dB of limits.

Peak detector "Max held" Analyser plots against the Quasi-Peak / Average limit line(s) can be found in Section 6 of this report.

LIMITS:

15.209 limits are applicable in the restricted bands of 15.205 with the relevant detector.

15.247(d) other emissions, outside the intentional band, must be attenuated by at least 20/30dB from the level of the fundamental / meet the general limits of 15.209.

The general limits of 15.209 are as drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: 9kHz - 30MHz ±3.9dB

File Name: Telensa Ltd.10223-1 Issue 01 Page 14 of 86

5.3 Radiated emissions 150 kHz - 30 MHz

5.3.1 Test methods

Test Requirements: 47 CFR Part 15C Part 15.209 [Reference 4.1.1 of this report]
Test Method: ANSI C63.10 Clause 6.4 [Reference 4.1.2 of this report]

Limits: 47 CFR Part 15C Part 15.209/15.247(d) [Reference 4.1.1 of this report]

REPORT NUMBER: 12-10223-1-17 Issue 01

5.3.2 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was assessed in its normal use position. Radiated Emissions testing was performed whilst powered from a 480 V AC power supply. The EUT was operated in TX4 to TX6 modes.

5.3.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below. Measurements were made in a semi-anechoic chamber (pre-scan) with any final measurements required performed on an OATS without a ground plane. The antenna was placed 1m above the ground. The equipment and the antenna were rotated 360 degrees to record the worst case emissions.

At least 6 signals within 20dB and all signals within 10dB of the limit were investigated.

Tests were performed using Test Site M and OATS.

5.3.4 Test equipment

TMS81, ZSW1, E412, E411

See Section 9 for more details

5.3.5 Test results

Temperature of test environment 19°C
Humidity of test environment 55%
Pressure of test environment 103kPa

Band	910.4875 -919.9875 MHz
Power Level	100 mW
Channel Spacing	25 kHz
Mod Scheme	FSK 500 bps
Low channel	910.5 MHz

Plot refs
10223-1 Rad 1 150k-30MHz Para
10223-1 Rad 1 150k-30MHz Perp

Band	910.4875 -919.9875 MHz
Power Level	100 mW
Channel Spacing	25 kHz
Mod Scheme	FSK 500 bps
Mid channel	915 MHz

Plot refs
10223-1 Rad 2 150k-30MHz Para
10223-1 Rad 2 150k-30MHz Perp

File Name: Telensa Ltd.10223-1 Issue 01 Page 15 of 86

REPORT NUMBER: 12-10223-1-17 Issue 01

Band	910.4875 -919.9875 MHz
Power Level	100 mW
Channel Spacing	25 kHz
Mod Scheme	FSK 500 bps
High channel	919.975 MHz

Plot refs
10223-1 Rad 3 150k-30MHz Para
10223-1 Rad 3 150k-30MHz Perp

No signals were found within 20 dB of limits.

Peak detector "Max held" Analyser plots against the Quasi-Peak / Average limit line(s) can be found in Section 6 of this report.

LIMITS:

15.209 limits are applicable in the restricted bands of 15.205 with the relevant detector.

15.247(d) other emissions, outside the intentional band, must be attenuated by at least 20/30dB from the level of the fundamental / meet the general limits of 15.209.

The general limits of 15.209 are as drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: 9kHz - 30MHz ±3.9dB.

File Name: Telensa Ltd.10223-1 Issue 01 Page 16 of 86

5.4 Radiated emissions 30 MHz -1 GHz

5.4.1 Test methods

Test Requirements: 47 CFR Part 15C Part 15.247(d) & 15.209 [Reference 4.1.1 of this report]

REPORT NUMBER: 12-10223-1-17 Issue 01

Test Method: ANSI C63.10 Clause 6.5 [Reference 4.1.2 of this report]

Limits: 47 CFR Part 15C Part 15.209/15.247(d) [Reference 4.1.1 of this report]

5.4.2 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was assessed in its normal use position. Radiated Emissions testing was performed whilst powered from a 480 V AC power supply. The EUT was operated in TX4 to TX6 modes.

5.4.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below. Measurements were made on a site listed with the FCC. The equipment was rotated 360 degrees and the antenna scanned 1-4 metres in both horizontal and vertical polarisations to record the worst case emissions.

At least 6 signals within 20dB and all signals within 10dB of the limit were investigated.

Tests were performed using Test Site M.

5.4.4 Test equipment

LPE364, E743, NSA1, ZSW1, E412, E411

See Section 9 for more details

5.4.5 Test results

Temperature of test environment 16 - 20°C Humidity of test environment 46 - 55% Pressure of test environment 104kPa

Band	910.4875 -919.9875 MHz
Power Level	100 mW
Channel Spacing	25 kHz
Mod Scheme	FSK 500 bps
Low channel	910.5 MHz

Plot refs
10223-1 Rad 1 VHF Horiz
10223-1 Rad 1 VHF Vert
10223-1 Rad 1 UHF Horiz
10223-1 Rad 1 UHF Vert

Band	910.4875 -919.9875 MHz
Power Level	100 mW
Channel Spacing	25 kHz
Mod Scheme	FSK 500 bps
Mid channel	915 MHz

Plot refs	
10223-1 Rad 2 VHF Horiz	
10223-1 Rad 2 VHF Vert	
10223-1 Rad 2 UHF Horiz	
10223-1 Rad 2 UHF Vert	

©2018 RN ELECTRONICS LIMITED

ALL RIGHTS RESERVED

Band	910.4875 -919.9875 MHz
Power Level	100 mW
Channel Spacing	25 kHz
Mod Scheme	FSK 500 bps
High channel	919.975 MHz

REPORT NUMBER: 12-10223-1-17 Issue 01

Plot refs	
0223-1 Rad 3 VHF Horiz	
0223-1 Rad 3 VHF Vert	
0223-1 Rad 3 UHF Horiz	
0223-1 Rad 3 UHF Vert	

Table of signals measured for Rad 1 Horizontal Sig List

Signal No.	Freq (MHz)	Peak Amp (dBuV/m)	QP Amp (dBuV/m)	QP -Lim (dB)
1	79.999	22.9	18.9	-21.1
2	884.500	39.4	36.6	-9.4

Table of signals measured for Rad 1 Vertical Sig List

Signal No.	Freq (MHz)	Peak Amp (dBuV/m)	QP Amp (dBuV/m)	QP -Lim (dB)
1	48.377	22.2	15.5	-24.5
2	79.999	25.4	21.5	-18.5
3	120.001	27.7	23.5	-20.0
4	884.500	40.3	37.7	-8.3
5	936.500	40.1	37.2	-8.8

Table of signals measured for Rad 2 Horizontal Sig List

Signal No.	Freq (MHz)	Peak Amp (dBuV/m)	QP Amp (dBuV/m)	QP -Lim (dB)
1	79.999	22.2	17.4	-22.6
2	863.594	38.9	34.4	-11.6
3	889.000	39.7	35.7	-10.3

Table of signals measured for Rad 2 Vertical Sig List

Signal No.	Freq (MHz)	Peak Amp (dBuV/m)	QP Amp (dBuV/m)	QP -Lim (dB)
1	79.999	25.2	21.8	-18.2
2	120.003	27.3	23.5	-20.0
3	889.000	41.3	38.4	-7.6
4	941.000	40.3	36.8	-9.2

Table of signals measured for Rad 3 Horizontal Sig List

Signal No.	Freq (MHz)	Peak Amp (dBuV/m)	QP Amp (dBuV/m)	QP -Lim (dB)
1	79.999	22.1	18.0	-22.0
2	864.955	38.2	34.2	-11.8
3	893.975	39.9	36.3	-9.7

File Name: Telensa Ltd.10223-1 Issue 01 Page 18 of 86

REPORT NUMBER: 12-10223-1-17 Issue 01

	_		_	
Signal No.	Freq (MHz)	Peak Amp (dBuV/m)	QP Amp (dBuV/m)	QP -Lim (dB)
1	79.999	23.7	20.5	-19.5
2	120.000	27.3	23.1	-20.4
3	893.975	40.7	38.2	-7.8
4	945.975	39.0	35.9	-10.1
5	974.987	36.0	31.8	-22.2

Table of signals measured for Rad 3 Vertical Sig List

Peak detector "Max held" Analyser plots against the Quasi-Peak / Average limit line(s) can be found in Section 6 of this report.

Both data rates available were initially tested with no discernible difference in emissions noted.

LIMITS:

15.209 limits are applicable in the restricted bands of 15.205 with the relevant detector.

15.247(d) other emissions, outside the intentional band, must be attenuated by at least 20/30dB from the level of the fundamental / meet the general limits of 15.209.

The general limits of 15.209 are as drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: 30MHz - 1000MHz ±6.1dB

File Name: Telensa Ltd.10223-1 Issue 01 Page 19 of 86

5.5 Radiated emissions above 1 GHz

5.5.1 Test methods

Test Requirements: 47 CFR Part 15C Part 15.247(d) & 15.209 [Reference 4.1.1 of this report]

REPORT NUMBER: 12-10223-1-17 Issue 01

Test Method: ANSI C63.10 Clause 6.6 [Reference 4.1.2 of this report]

Limits: 47 CFR Part 15C Part 15.247(d) & 15.209 [Reference 4.1.1 of this report]

5.5.2 Configuration of EUT

The EUT was placed on a 1.5 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was assessed in its normal use position. Radiated Emissions testing was performed whilst powered from a 480 V AC power supply. The EUT was operated in TX1 to TX3 modes.

5.5.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below. Measurements were made in a semi-anechoic chamber with appropriate absorbing material for use in this range. Horn antennas were used at heights where the whole of the EUT was contained within the main beam. The EUT was rotated through 360 degrees to record the worst case emissions. A measurement distance of 3m was used between the test range 1 - 6GHz, and 1.2m was used in the test range 6 - 18GHz.

At least 6 signals within 20dB and all signals within 10dB of the limit were investigated.

Tests were performed using Test Site M.

5.5.4 Test equipment

E136, E253, E410, E411, E412, E429, E478, TMS78, TMS82

See Section 9 for more details

5.5.5 Test results

Temperature of test environment 18-21°C
Humidity of test environment 47-50%
Pressure of test environment 104kPa

Setup Table

Band	910.4875 -919.9875 MHz
Power Level	100 mW
Channel Spacing	25 kHz
Mod Scheme	FSK 500 bps
Low channel	910.5 MHz

Spurious Frequency (MHz)	Measured Peak Level (dBμV/m)	Difference to Peak Limit (dB)	Measured Average Level (dBµV/m)	Difference to Average Limit (dB)	EUT Polarisation	Antenna Polarisation
1821	68.7	-22.2	56.1	-24.8	flat	Vertical
1821	69.3	-21.6	57.6	-23.3	flat	Horizontal
2731.5	51.0	-23.0	40.5	-13.5	flat	Vertical
2731.5	49.2	-24.8	43.1	-10.9	flat	Horizontal
3642	49.0	-25.0	36.6	-17.4	flat	Vertical
3642	47.6	-26.4	38.8	-15.2	flat	Horizontal
5463	48.5	-42.4	42.2	-38.7	flat	Vertical
5463	52.6	-38.3	49.3	-31.6	flat	Horizontal
7284	41.9	-32.1	32.6	-21.4	flat	Horizontal

File Name: Telensa Ltd.10223-1 Issue 01 Page 20 of 86

©2018 RN ELECTRONICS LIMITED

ALL RIGHTS RESERVED

MITED REPORT NUMBER: 12-10223-1-17 Issue 01

Setup Table

Band	910.4875 -919.9875 MHz
Power Level	100 mW
Channel Spacing	25 kHz
Mod Scheme	FSK 500 bps
Mid channel	915 MHz

Spurious Frequency (MHz)	Measured Peak Level (dBµV/m)	Difference to Peak Limit (dB)	Measured Average Level (dBµV/m)	Difference to Average Limit (dB)	EUT Polarisation	Antenna Polarisation
1830	69.3	-20.8	56.9	-23.2	flat	Vertical
1830	67.8	-22.3	56.2	-23.9	flat	Horizontal
2745	50.4	-23.6	39.3	-14.7	flat	Vertical
2745	49.7	-24.3	43.5	-10.5	flat	Horizontal
3660	49.4	-24.6	36.9	-17.1	flat	Vertical
3660	49.0	-25.0	35.0	-19.0	flat	Horizontal
5490	47.3	-42.8	40.2	-39.9	flat	Vertical
5490	51.5	-38.6	46.9	-33.2	flat	Horizontal
7320	43.9	-30.1	36.6	-17.4	flat	Horizontal

Plots
10223-1 Horizontal 1 - 3 GHz Mid chan TX
10223-1 Horizontal 3 - 5 GHz Mid chan TX
10223-1 Horizontal 5 - 6 GHz Mid chan TX
10223-1 Horizontal 6 - 7.8 GHz Mid chan TX
10223-1 Horizontal 7.8 - 10.0 GHz Mid chan TX
10223-1 Horizontal 10 - 12.4 GHz Mid chan TX
10223-1, Horizontal 12-16GHz Mid chan TX
10223-1 Vertical 1 - 3 GHz Mid chan TX
10223-1 Vertical 3 - 5 GHz Mid chan TX
10223-1 Vertical 5 - 6 GHz Mid chan TX
10223-1 Vertical 6 - 7.8 GHz Mid chan TX
10223-1 Vertical 7.8 - 10 GHz Mid chan TX
10223-1 Vertical 10 - 12.4 GHz Mid chan TX
10223-1, Vertical 12-16GHz Mid chan TX

File Name: Telensa Ltd.10223-1 Issue 01 Page 21 of 86

©2018 RN ELECTRONICS LIMITED

ALL RIGHTS RESERVED

Setup Table

Setup Table	
	910.4875 -919.9875
Band	MHz
Power Level	100 mW
Channel Spacing	25 kHz
Mod Scheme	FSK 500 bps
High channel	919.975 MHz

Spurious Frequency (MHz)	Measured Peak Level (dBµV/m)	Difference to Peak Limit (dB)	Measured Average Level (dBµV/m)	Difference to Average Limit (dB)	EUT Polarisation	Antenna Polarisation
1839.95	68.2	-20.4	56.4	-22.2	flat	Vertical
1839.95	67.4	-21.2	55.9	-22.7	flat	Horizontal
2759.925	51.6	-22.4	40.5	-13.5	flat	Vertical
2759.925	52.9	-21.1	43.6	-10.4	flat	Horizontal
3679.9	50.1	-23.9	36.9	-17.1	flat	Vertical
3679.9	49.4	-24.6	37.5	-16.5	flat	Horizontal
5519.85	50.3	-38.3	45.3	-33.3	flat	Vertical
5519.85	52.9	-35.7	49.5	-29.1	flat	Horizontal
7359.8	42.9	-31.1	35.4	-18.6	flat	Horizontal
9199.75	42.7	-31.3	30.5	-23.5	flat	Horizontal

REPORT NUMBER: 12-10223-1-17 Issue 01

Peak detector "Max held" Analyser plots against the Average limit line can be found in Section 6 of this report.

Note: Whilst Low, Mid and High channels were tested, plots are for illustrative purposes only and only Mid channel plots are shown in this report.

Both data rates available were initially tested with no discernible difference in emissions noted.

LIMITS:

15.209 limits are applicable in the restricted bands of 15.205 with the relevant detector.

15.247(d) other emissions, outside the intentional band, must be attenuated by at least 20/30dB from the level of the fundamental / meet the general limits of 15.209.

The general limits of 15.209 are as drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: $1 - 18 \text{ GHz} \pm 3.5 \text{dB}$

File Name: Telensa Ltd.10223-1 Issue 01 Page 22 of 86

5.6 Effective radiated power field strength

5.6.1 Test methods

Test Requirements: 47 CFR Part 15C Part 15.247(d) [Reference 4.1.1 of this report]

Test Method: ANSI C63.10 Clause 6.5 [Reference 4.1.2 of this report]

Limits: 47 CFR Part 15C Part 15.247(d) & 15.209(a) [Reference 4.1.1 of this

REPORT NUMBER: 12-10223-1-17 Issue 01

report]

5.6.2 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was assessed in its normal use position. Final measurements were taken at 3m. The EUT was operated in TX1 to TX3 modes.

5.6.3 Test procedure

Tests were made in accordance with the Test Method noted above using the measuring equipment listed in the 'Test Equipment used' section. The power stated is Peak field strength. The equipment was rotated 360 degrees and the antenna scanned 1 – 4 metres in both horizontal and vertical polarisations to record the Highest fundamental field strength. Tests were performed in test site M.

5.6.4 Test equipment

E410, E411, E412, E743, LPE364

See Section 9 for more details

5.6.5 Test results

Temperature of test environment 14°C
Humidity of test environment 49%
Pressure of test environment 103kPa

Band	910.4875 -919.9875
Daria	MHz
Power Level	100 mW
Channel Spacing	25 kHz
Mod Scheme	FSK 62.5 bps
Low channel	910.5 MHz
Mid channel	915 MHz
High channel	919.975 MHz

	Low channel	Mid channel	High channel
Peak Level (dBµV/m)	110.90	110.10	108.60
Plot reference	10223-1 Low vert up	10223-1 Mid vert up	10223-1 High vert up
Flot reference	62.5 bps ERP	62.5 bps ERP	62.5 bps ERP
Antenna Polarisation	Vert	Vert	Vert
EUT Polarisation	Upright	Upright	Upright

Analyser plots can be found in Section 6 of this report.

Note: Both data rates available were initially tested with no discernible difference in output power noted.

LIMITS:

The maximum output power in all cases is 30dBm/ 1watt.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:

 $< \pm 3.9 dB$

5.7 Band Edge Compliance

5.7.1 Test methods

Test Requirements: 47 CFR Part 15C Part 15.215 & 15.247(d) [Reference 4.1.1 of this report]

REPORT NUMBER: 12-10223-1-17 Issue 01

Test Method: ANSI C63.10 Clause 6.10 [Reference 4.1.2 of this report]

Limits: 47 CFR Part 15C Part 15.209(a) & 15.247(d) [Reference 4.1.1 of this

report]

5.7.2 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres.

The EUT was operated in TX4 and TX6 and TX7 mode.

5.7.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below. The emission from the EUT was maximised before taking the plots.

Tests were performed using Test Site M.

5.7.4 Test equipment

E410, E411, E412, E743, LPE364

See Section 9 for more details

5.7.5 Test results

Temperature of test environment 20°C
Humidity of test environment 41%
Pressure of test environment 103kPa

Band	910.4875 -919.9875 MHz
Power Level	100 dBm
Channel Spacing	25 kHz
Mod Scheme	FSK 500 bps
Low channel	910.5 MHz
High channel	919.975 MHz

Restricted Band Edge	Low channel	High channel
Restricted Band Edge Plot reference	See TX Unwanted radiated emissions 30 MHz-1 GHz in	
	sect	on 6

Authorised Band Edge	Low channel	High channel
Authorised Band Edge Plot references	10223-1 Fixed channel lower	10223-1 Fixed channel upper
	authorised band edge	authorised band edge
	10223-1 Hopping lower	10223-1 Hopping upper
	authorised band edge	authorised band edge

Analyser plots for the Band Edge Compliance can be found in Section 6 of this report. The restricted band edges are also shown in section 6 under TX Unwanted radiated emissions 30 MHz-1 GHz.

LIMITS:

AV = 54dBuV/m at band edges

PK = 74dBuV/m at band edges

The restricted band edges closest to the EUT frequency of 902-928MHz are 614 & 960MHz.

File Name: Telensa Ltd.10223-1 Issue 01 Page 24 of 86

©2018 RN ELECTRONICS LIMITED

ALL RIGHTS RESERVED

Further wider span plots have been taken to show the fact that there are no spurious emissions above the restricted limits of 15.209.

REPORT NUMBER: 12-10223-1-17 Issue 01

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: $<\pm$ 3.9 dB

File Name: Telensa Ltd.10223-1 Issue 01 Page 25 of 86

REPORT NUMBER: 12-10223-1-17 Issue 01

5.8 Occupied bandwidth

5.8.1 Test methods

Test Requirements: 47 CFR Part 15C Part 15.247(a)(1)(i)/(ii)/(iii)15 [Reference 4.1.1 of this

report]

Test Method: ANSI C63.10 Clause 6.9 [Reference 4.1.2 of this report]

Limits: 47 CFR Part 15C Part 15.215(c)/ 15.247(a)(1)(i) [Reference 4.1.1 of this

report]

5.8.2 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was operated in TX1, TX2, TX3, TX4, TX5 and TX6 modes.

5.8.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below. A 51 Hz RBW, 3x VBW, auto sweep time and max hold settings were used for the 20 dB bandwidth.

Tests were performed using Test Site M.

5.8.4 Test equipment

E410, E411, E412, E743, LPE364

See Section 9 for more details

5.8.5 Test results

Temperature of test environment 14°C
Humidity of test environment 49%
Pressure of test environment 103kPa

Band	910.4875 -919.9875
	MHz
Power Level	100 mW
Channel Spacing	25 kHz
Mod Scheme	FSK 62.5 bps
Low channel	910.5 MHz
Mid channel	915 MHz
High channel	919.975 MHz

	Low channel	Mid channel	High channel
20 dB Bandwidth (kHz) Nominal Temp & Volts	0.616397	0.618366	0.618715
Plot for 20 dB Bandwidth (kHz) Nominal Temp	10223-1 Low 62.5	10223-1 Mid 62.5	10223-1 High 62.5
& Volts	bps OBW	bps OBW	bps OBW

Band	910.4875 -919.9875 MHz
Power Level	100 mW
Channel Spacing	25 kHz
Mod Scheme	FSK 500 bps
Low channel	910.5 MHz
Mid channel	915 MHz
High channel	919.975 MHz

	Low channel	Mid channel	High channel
20 dB Bandwidth (kHz) Nominal Temp & Volts	1.119	1.107	1.116
Plot for 20 dB Bandwidth (MHz) Nominal Temp	10223-1 Low 500	10223-1 Mid 500 bps	10223-1 High 500
& Volts	bps OBW	OBW	bps OBW

Page 26 of 86

©2018 RN ELECTRONICS LIMITED

ALL RIGHTS RESERVED

Analyser plots for the 20 dB bandwidth can be found in Section 6 of this report.

LIMITS:

15.215(c) The 20dB bandwidth of the emission must be contained within the designated frequency band. 15.247(a)(1)(i) The maximum allowed 20dB bandwidth of the hopping channel is 500kHz.

REPORT NUMBER: 12-10223-1-17 Issue 01

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: $<\pm$ 1.9 %

File Name: Telensa Ltd.10223-1 Issue 01 Page 27 of 86

5.9 Maximum Average conducted output power

REPORT NUMBER: 12-10223-1-17 Issue 01

NOT APPLICABLE: EUT Peak conducted power measured instead.

File Name: Telensa Ltd.10223-1 Issue 01 Page 28 of 86

5.10 Maximum Peak conducted output power

5.10.1 Test methods

Test Requirements: 47 CFR Part 15C Part 15.247(b)(2) [Reference 4.1.1 of this report]

REPORT NUMBER: 12-10223-1-17 Issue 01

Test Method: ANSI C63.10 Clause 9.7 [Reference 4.1.2 of this report]

Limits: 47 CFR Part 15C Part 15.247(b)(2) [Reference 4.1.1 of this report]

5.10.2 Configuration of EUT

Please refer to section 5.6 for fundamental field strength.

5.10.3 Test procedure

Tests were made in accordance with the Test Method noted above using the measuring equipment listed in the 'Test Equipment used' section. The power stated is Peak field strength measured in section 5.6 of this report converted to power in dBm minus the antenna gain of 0 dBi as declared by the manufacturer.

5.10.4 Test equipment

E410, E411, E412, E743, LPE364

See Section 9 for more details

5.10.5 Test results

Temperature of test environment 14°C Humidity of test environment 49% Pressure of test environment 103kPa

Band	910.4875 -919.9875 MHz
Power Level	100 mW
Channel Spacing	25 kHz
Mod Scheme	FSK 500 bps
Low channel	910.5 MHz
Mid channel	915 MHz
High channel	919.975 MHz

Test cond	ditions	Peak Power (dBm)	Peak Power (dBm)	Peak Power (dBm)
Temperature 20 Deg C	480 Volts	Low channel	Mid channel	High channel
Maximum TX Power	observed (dBm)	15.74	14.94	13.44
TX Power observe	ed to limit (dB)	-14.30	-15.10	-16.60

Note: Calculations used from ANSI C63.10, clause 9.7: $P_{COND} = EIRP$ (LINEAR) / $G_{EUT.}$ and Clause 9.5: EIRP(dBm) = E_{MEAS} + 20Log(d_{MEAS})-104.7. Distance used 3m. E_{MEAS} in dBuV/m.

LIMITS:

15.247(b)(2)

For FHSS operating 902-928 MHz employing at least 50 channels 1 Watt (+30dBm)

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: <± 1.0 dB

File Name: Telensa Ltd.10223-1 Issue 01 Page 29 of 86

5.11 Maximum Power Spectral Density

NOT APPLICABLE: EUT uses FHSS technology and is therefore not applicable to this test.

5.12 Antenna power conducted emissions

NOT APPLICABLE: Applies to EUT's with an antenna port. The EUT has an integral antenna only. The EUT was tested for radiated emissions with its dedicated antenna in position.

REPORT NUMBER: 12-10223-1-17 Issue 01

5.13 Duty cycle

NOT APPLICABLE: EUT uses FHSS technology and is therefore not applicable to this test.

File Name: Telensa Ltd.10223-1 Issue 01 Page 30 of 86

5.14 FHSS carrier frequency separation

5.14.1 Test methods

Test Requirements: 47 CFR Part 15C Part 15.247(a1) [Reference 4.1.1 of this report]

Test Method: ANSI C63.10 Clause 7.8 [Reference 4.1.2 of this report]

Limits: 47 CFR Part 15C Part 15.247(a1) [Reference 4.1.1 of this report]

5.14.2 Configuration of EUT

The EUT was tested in the chamber and ambient conditions were monitored. The EUT was operated in TX7 mode.

REPORT NUMBER: 12-10223-1-17 Issue 01

5.14.3 Test procedure

Tests were made using the measuring equipment listed in the 'Test Equipment' Section. With the EUT hopping, a span was set on the spectrum analyser to show two adjacent channel peaks. The analyser was set to Peak detector and a max held trace, the trace was allowed enough sweeps to stabilise.

Tests were performed in test site M.

5.14.4 Test equipment

E410, E411, E412, E743, LPE364

See Section 9 for more details

5.14.5 Test results

Temperature of test environment	14°C
Humidity of test environment	49%
Pressure of test environment	103kPa

Band	910.4875 -919.9875 MHz
Power Level	100 mW
Channel Spacing	25 kHz
Mod Scheme	FSK 500 bps
Single channel	Hopping

	Single channel
Separation (kHz)	25.1892
Plot of Separation (kHz)	10223-1 Hopping frequency separation

Analyser plots for the carrier separation can be found in Section 6 of this report.

LIMITS:

FHSS shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: $<\pm$ 1.9 %

File Name: Telensa Ltd.10223-1 Issue 01 Page 31 of 86

5.15 Average time of occupancy

5.15.1 Test methods

Test Requirements: 47 CFR Part 15C Part 15.247(a)(1)(i) [Reference 4.1.1 of this report]

REPORT NUMBER: 12-10223-1-17 Issue 01

Test Method: ANSI C63.10 Clause 7.8 [Reference 4.1.2 of this report]

Limits: 47 CFR Part 15C Part 15.247(a)(1)(i) [Reference 4.1.1 of this report]

5.15.2 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was assessed in its normal use position. Ambient conditions were monitored. The EUT was operated in TX7 mode for this test.

5.15.3 Test procedure

Tests were made using the measuring equipment listed in the 'Test Equipment' Section. With the EUT hopping, a suitable sweep time was set on the spectrum analyser in zero span mode centred on a hopping channel. Both the TX time period and the repetition time were measured and plotted for comparison to the limits. Initial tests showed no difference between 62.5 or 500 bps data rates so results are shown for 500 bps only.

Tests were performed in test site M.

5.15.4 Test equipment

E410, E411, E412, E743, LPE364

See Section 9 for more details

5.15.5 Test results

Temperature of test environment 20°C
Humidity of test environment 41%
Pressure of test environment 103kPa

Band	910.4875 -919.9875 MHz
Power Level	100 mW
Channel Spacing	25 kHz
Mod Scheme	FSK 500 bps
Single channel	918.5 MHz

Measured Dwell time/pulse width (ms)	399.25
Period time (s)	21
Instances of pulse within period time	1
Average time of occupancy (ms)	399.25
	10223-1 Average time of
Measured Dwell time/pulse width (ms)	occupancy
Period time (s)	10223-1 Period

Analyser plots showing pulse width and period /repetition can be found in Section 6 of this report.

LIMITS:

For FHSS in the band 902-928 MHz: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20-second period.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: 2.57 ms

REPORT NUMBER: 12-10223-1-17 Issue 01

5.16 Number of Hop Channels

5.16.1 Test methods

Test Requirements: 47 CFR Part 15C Part 15.247(a)(1)(i) [Reference 4.1.1 of this report]

Test Method: ANSI C63.10 Clause 7.8 [Reference 4.1.2 of this report]

Limits: 47 CFR Part 15C Part 15.247(a)(1)(i) [Reference 4.1.1 of this report]

5.16.2 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was assessed in its normal use position. Ambient conditions were monitored. The EUT was operated in TX7 mode for this test.

5.16.3 Test procedure

Tests were made using the measuring equipment noted in the 'Test Equipment' Section at Site M. With the EUT hopping, a suitable span was set on the spectrum analyser to show clearly over a range of plots the number of channels being used by the EUT. The analyser was set to Peak detector and max held and the trace was allowed to stabilise for each plot.

5.16.4 Test equipment

E410, E411, E412, E743, LPE364

See Section 9 for more details

5.16.5 Test results

Temperature of test environment 14°C
Humidity of test environment 49%
Pressure of test environment 103kPa

Band	910.4875 -919.9875 MHz
Power Level	100 mW
Channel Spacing	25 kHz
Mod Scheme	FSK 500 bps
Channel	Hopping band 0

No of hopping Channels	59
Minimum No. Required number by specification	50
Plot of Hopping Channels 1-59	10223-1 Number of channels band 0

Band	910.4875 -919.9875 MHz
Power Level	100 mW
Channel Spacing	25 kHz
Mod Scheme	FSK 500 bps
Channel	Hopping band 1

No of hopping Channels	59
Minimum No. Required number by specification	50
Plot of Hopping Channels 1-59	10223-1 Number of channels band 1

Band	910.4875 -919.9875 MHz
Power Level	100 mW
Channel Spacing	25 kHz
Mod Scheme	FSK 500 bps
Channel	Hopping band 2

©2018 RN ELECTRONICS LIMITED

ALL RIGHTS RESERVED

REPORT NUMBER: 12-10223-1-17 Issue 01

No of hopping Channels	59
Minimum No. Required number by specification	50
Plot of Hopping Channels 1-59	10223-1 Number of channels band 2

Band	910.4875 -919.9875 MHz
Power Level	100 mW
Channel Spacing	25 kHz
Mod Scheme	FSK 500 bps
Channel	Hopping band 3

No of hopping Channels	59
Minimum No. Required number by specification	50
Plot of Hopping Channels 1-59	10223-1 Number of channels band 3

Band	910.4875 -919.9875 MHz
Power Level	100 mW
Channel Spacing	25 kHz
Mod Scheme	FSK 500 bps
Channel	Hopping band 4

No of hopping Channels	59
Minimum No. Required number by specification	50
Plot of Hopping Channels 1-59	10223-1 Number of channels band 4

Band	910.4875 -919.9875 MHz
Power Level	100 mW
Channel Spacing	25 kHz
Mod Scheme	FSK 500 bps
Channel	hopping band 5

No of hopping Channels	59
Minimum No. Required number by specification	50
	10223-1 Number of channels band
Plot of Hopping Channels 1-59	5

Analyser plots showing the number of hopping channels can be found in Section 6 of this report.

LIMITS:

For FHSs in the band 902-928 MHz: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: $<\pm$ 1.9 %

File Name: Telensa Ltd.10223-1 Issue 01 Page 34 of 86

Plots/Graphical results 6

AC power line conducted emissions 6.1

RF Parameters: Band 910.4875 -919.9875 MHz, Power 100 mW, Channel Spacing 25 kHz, Modulation FSK 500 bps, Channel 915 MHz

Plot of Live150k-30M Average

Plot of Live150k-30M Quasi-Peak

Plot of Neutral150k-30M Average

Plot of Neutral150k-30M Quasi-Peak

File Name: Telensa Ltd.10223-1 Issue 01 Page 36 of 86

6.2 Radiated emissions 9 - 150 kHz

RF Parameters: Band 910.4875 -919.9875 MHz, Power 100 mW, Channel Spacing 25 kHz, Modulation FSK 500 bps, Channel 910.5 MHz

Plot of 9k-150kHz Parallel

Plot of 9k-150kHz Perpendicular

Page 37 of 86

QMF21J - Issue 05 - RNE Issue 03; 47 CFR Part 15C 2016

6.3 Radiated emissions 150 kHz - 30 MHz

RF Parameters: Band 910.4875 -919.9875 MHz, Power 100 mW, Channel Spacing 25 kHz, Modulation FSK 500 bps, Channel 910.5 MHz

Plot of 150kHz-30MHz Parallel

Plot of 150kHz-30MHz Perpendicular

File Name: Telensa Ltd.10223-1 Issue 01 Page 38 of 86

6.4 Radiated emissions 30 MHz -1 GHz

RF Parameters: Band 910.4875 -919.9875 MHz, Power 100 mW, Channel Spacing 25 kHz, Modulation FSK 500 bps, Channel 910.5 MHz

Plot of Peak emissions for VHF Horizontal against the QP limit line.

Plot of Peak emissions for VHF Vertical against the QP limit line.

Plot of Peak emissions for UHF Horizontal against the QP limit line.

Plot of Peak emissions for UHF Vertical against the QP limit line.

RF Parameters: Band 910.4875 -919.9875 MHz, Power 100 mW, Channel Spacing 25 kHz, Modulation FSK 500 bps, Channel 915 MHz

Plot of Peak emissions for VHF Horizontal against the QP limit line.

Plot of Peak emissions for VHF Vertical against the QP limit line.

Plot of Peak emissions for UHF Horizontal against the QP limit line.

Plot of Peak emissions for UHF Vertical against the QP limit line.

RF Parameters: Band 910.4875 -919.9875 MHz, Power 100 mW, Channel Spacing 25 kHz, Modulation FSK 500 bps, Channel 919.975 MHz

Plot of Peak emissions for VHF Horizontal against the QP limit line.

Plot of Peak emissions for VHF Vertical against the QP limit line.

Plot of Peak emissions for UHF Horizontal against the QP limit line.

Plot of Peak emissions for UHF Vertical against the QP limit line.

6.5 Radiated emissions above 1 GHz

RF Parameters: Band 910.4875 -919.9875 MHz, Power 100 mW, Channel Spacing 25 kHz, Modulation FSK 500 bps, Channel 915 MHz

Stop: 3.0000 GHz

Sweep: 4.37 ms

E4440A

Vid BW: 3 MHz

File Name: Telensa Ltd.10223-1 Issue 01

-10

Page 48 of 86

Start: 1.0000 GHz

21/12/2017 09:26:17

Res BW: 1 MHz

Page 50 of 86

6.6 Effective radiated power field strength

File Name: Telensa Ltd.10223-1 Issue 01 Page 52 of 86

ALL RIGHTS RESERVED

File Name: Telensa Ltd.10223-1 Issue 01 Page 53 of 86

6.7 Band Edge Compliance

RF Parameters: Band 910.4875 -919.9875 MHz, Power 100 dBm, Channel Spacing 25 kHz, Modulation FSK 500 bps, Channel 910.5 MHz

Fixed, lower authorised band edge plot

Hopping, lower authorised band edge plot

RF Parameters: Band 910.4875 -919.9875 MHz, Power 100 dBm, Channel Spacing 25 kHz, Modulation FSK 500 bps, Channel 919.975 MHz

Fixed, upper authorised band edge plot

Hopping, upper authorised band edge plot

File Name: Telensa Ltd.10223-1 Issue 01 Page 55 of 86

REPORT NUMBER: 12-10223-1-17 Issue 01

6.8 Occupied bandwidth

RF Parameters: Band 910.4875 -919.9875 MHz, Power 100 mW, Channel Spacing 25 kHz, Modulation FSK 62.5 bps, Channel 910.5 MHz

Plot for 20 dB Bandwidth (Hz) Nominal Temp & Volts

RF Parameters: Band 910.4875 -919.9875 MHz, Power 100 mW, Channel Spacing 25 kHz, Modulation FSK 62.5 bps, Channel 915 MHz

Plot for 20 dB Bandwidth (Hz) Nominal Temp & Volts

Page 56 of 86

RF Parameters: Band 910.4875 -919.9875 MHz, Power 100 mW, Channel Spacing 25 kHz, Modulation FSK 62.5 bps, Channel 919.975 MHz

Plot for 20 dB Bandwidth (Hz) Nominal Temp & Volts

RF Parameters: Band 910.4875 -919.9875 MHz, Power 100 mW, Channel Spacing 25 kHz, Modulation FSK 500 bps, Channel 910.5 MHz

Plot for 20 dB Bandwidth (kHz) Nominal Temp & Volts

RF Parameters: Band 910.4875 -919.9875 MHz, Power 100 mW, Channel Spacing 25 kHz, Modulation FSK 500 bps, Channel 915 MHz

Plot for 20 dB Bandwidth (kHz) Nominal Temp & Volts

RF Parameters: Band 910.4875 -919.9875 MHz, Power 100 mW, Channel Spacing 25 kHz, Modulation FSK 500 bps, Channel 919.975 MHz

Plot for 20 dB Bandwidth (kHz) Nominal Temp & Volts

File Name: Telensa Ltd.10223-1 Issue 01 **QMF21J - Issue 05 - RNE Issue 03; 47 CFR Part 15C 2016**

6.9 FHSS carrier frequency separation

RF Parameters: Band 910.4875 -919.9875 MHz, Power 100 mW, Channel Spacing 25 kHz, Modulation FSK 500 bps

Mkr	Trace	X-Axis	Value	Notes
1 ₹	Trace A	913.9747 MHz	-24.16 dBm	
2-1 ▽	Trace A	25.1892 kHz	-0.26 dB	

Plot of Separation (kHz)

File Name: Telensa Ltd.10223-1 Issue 01 Page 59 of 86

6.10 Average time of occupancy

RF Parameters: Band 910.4875 -919.9875 MHz, Power 100 mW, Channel Spacing 25 kHz, Modulation FSK 500 bps, Channel 918.5 MHz

Measured Dwell time/pulse width (ms)

Period time (s)

Page 60 of 86

6.11 Number of Hop Channels

RF Parameters: Band 910.4875 -919.9875 MHz, Power 100 mW, Channel Spacing 25 kHz, Modulation FSK 500 bps, Channel Hopping

Plot of Hopping Channels band 0

Plot of Hopping Channels band 1

File Name: Telensa Ltd.10223-1 Issue 01 Page 61 of 86

Plot of Hopping Channels band 2

Plot of Hopping Channels band 3

Plot of Hopping Channels band 4

Plot of Hopping Channels band 5

REPORT NUMBER: 12-10223-1-17 Issue 01

7 Explanatory Notes

7.1 Explanation of Table of Signals Measured

Measurements are made as required by the standard. These measurements are made and recorded using detectors, either peak, quasi peak or average dependant on the test. A table of results has been given following the relevant plots. This table looks similar to the one illustrated below dependant on the measurements required by the test: -

Signal No.	Freq (MHz)	Peak Amp (dBuV)	Pk – Lim 1 (dB)	QP Amp (dBuV)	QP - Lim1 (dB)	Av Amp (dBuV)	Av - Lim1 (dB)
1	12345	54.9	-10.5	48	-12.6	37.6	-14.4

Column One - Labelled Signal No. is an incremental number that the receiver has given to each signal that has been measured.

Column Two - Labelled Freq (MHz) is the approximate frequency of the signal received.

Column Three - Labelled Peak Amp ($dB\mu V$) is the level of received signal that was measured in dB above $1\mu V$ using the peak detector.

Column Four - Labelled Pk - Lim1 (dB) is the difference in level from the peak signal given to the active limit line. If this column appears in the table the peak detector measurement is required by the standard for this test. The results entered in this column indicate the signal level relative to the compliance limit required. Negative numbers indicate that the product is compliant.

Column Five - Labelled QP Amp (dB μ V) is the level of received signal that was measured in dB above 1 μ V using the quasi-peak detector.

Column Six - Labelled QP - Lim1 (dB) is the difference in level from the quasi-peak signal given to the active limit line. If this column appears in the table the quasi-peak detector measurement is required by the standard for this test. The results entered in this column indicate the signal level relative to the compliance limit required. Negative numbers indicate that the product is compliant.

Column Seven - Labelled Av Amp (dB μ V) is the level of received signal that was measured in dB above 1 μ V using the average detector.

Column Eight - Labelled Av - Lim1 (dB) is the difference in level from the average signal given to the active limit line. If this column appears in the table the average detector measurement is required by the standard for this test. The results entered in this column indicate the signal level relative to the compliance limit required. Negative numbers indicate that the product is compliant.

Only signals highlighted in red are deemed to exceed the limit of the detector required.

7.2 Explanation of limit line calculations for radiated measurements

The limits given in the test standard are normally expressed as absolute values (e.g. in μ V/m at a specified distance), whereas the measured values are expressed as peak, quasi peak or average values in dB μ V/m referenced to the measuring instrument inputs. RN Electronics calibrate the test set-up to account for any path losses, antenna gains, etc. so that the value read at the receiver relates directly to the absolute value required, except that it is expressed in dB relative to one microVolt and may need to take account of any alternative measuring distance used. Examples:

- (a) limit of 500 μ V/m equates to 20.log (500) = 54 dB μ V/m.
- (b) limit of 300 μ V/m at 10m equates to 20.log (300 . 10/3) = 60 dB μ V/m at 3m

ALL RIGHTS RESERVED

REPORT NUMBER: 12-10223-1-17 Issue 01

(c) limit of 30 μ V/m at 30m, but below 30MHz, equates to 20.log(30) + 40.log(30/3) = 69.5 dB μ V/m at 3m, as extrapolation factor below 30MHz is 40dB/decade per 15.31(f)(2).

The measurement receiver used for emissions testing, performs the field strength (FS) calculations automatically. The receiver combines the signal amplitude (RA), Antenna Factor (AF) and Cable Loss (CL) factors for the frequency to be measured.

Example calculation: -FS = RA + AF + CL.

	Antenna factor (3m)		
Receiver amplitude (RA)	(AF)	Cable loss (CL)	Field strength result (3m) (FS)
20dBuV	25 dB	3 dB	48dBuV/m

File Name: Telensa Ltd.10223-1 Issue 01 Page 65 of 86

8 Photographs

8.1 EUT Front View

8.2 EUT Reverse Angle

File Name: Telensa Ltd.10223-1 Issue 01 **QMF21J - Issue 05 - RNE Issue 03; 47 CFR Part 15C 2016**

Page 67 of 86

8.3 EUT Left side View

8.4 EUT Right side View

Unit is cylindrical

8.5 EUT Antenna Port

8.6 EUT Internal photos

General assembly

Interface board underside

Interface board topside

Power board underside

Power board topside

ALL RIGHTS RESERVED

Interboard underside

Interboard topside

Radio board underside

Radio board topside

Page 73 of 86

Radio board topside (screening removed)

8.7 **EUT ID Label**

File Name: Telensa Ltd.10223-1 Issue 01 QMF21J - Issue 05 - RNE Issue 03; 47 CFR Part 15C 2016

8.8 AC power line conducted emissions

File Name: Telensa Ltd.10223-1 Issue 01

QMF21J - Issue 05 - RNE Issue 03; 47 CFR Part 15C 2016

8.9 Radiated emissions 9 kHz - 30 MHz

File Name: Telensa Ltd.10223-1 Issue 01 Page 75 of 86

File Name: Telensa Ltd.10223-1 Issue 01 Page 76 of 86

8.10 Radiated emissions 30 MHz -1 GHz

File Name: Telensa Ltd.10223-1 Issue 01 Page 77 of 86

8.11 Radiated emissions above 1 GHz

File Name: Telensa Ltd.10223-1 Issue 01 Page 78 of 86

File Name: Telensa Ltd.10223-1 Issue 01 Page 79 of 86

8.12 Radiated emission diagram

Diagram of the radiated emissions test setup 30 - 1000 MHz

File Name: Telensa Ltd.10223-1 Issue 01 Page 80 of 86

8.13 AC powerline conducted emission diagram

Diagram of the AC conducted emissions test setup

File Name: Telensa Ltd.10223-1 Issue 01 Page 81 of 86

9 Test equipment calibration list

The following is a list of the test equipment used by R.N. Electronics Ltd to test the unit detailed within this report. In line with our procedures, the equipment was within calibration for the period during which testing was carried out.

REPORT NUMBER: 12-10223-1-17 Issue 01

RN No.	Model No.	Description	Manufacturer	Calibration date	Cal period
E035	11947A	Transient Limiter + 10dB Atten.	Hewlett Packard	27-Nov-2017	6 months
E136	3105	Horn Antenna 12.5GHz	EMCO	03-Apr-2017	12 months
E253	6810.19.A	Attenuator 10 dB	Suhner	22-Mar-2017	12 months
E410	N5181A	Signal Generator 3 GHz MXG	Agilent Technologies	30-Apr-2015	36 months
E411	N9039A	9 kHz - 1 GHz RF Filter Section	Agilent Technologies	11-Jul-2017	12 months
E412	E4440A	PSA 3 Hz - 26.5 GHz	Agilent Technologies	10-Jul-2017	24 months
E429	-	Filter Box 5 Switch Filters 0.91 GHz - 16.3 GHz	RN Electronics	29-Aug-2017	12 months
E478	LQ2992/H	Filter - Band pass 1-3GHz	RACAL-MESL	N/A	N/A
E743	RR2017 4/2dB	Attenuator 4/2dB 30-1000MHz	RN Electronics	15-Feb-2017	12 months
LPE364	CBL6112A	Antenna Bilog 30MHz - 2GHz	Chase Electronics Ltd	22-Jan-2016	24 months
LPE366	NNLK 8121	3-Phase LISN 9kHz-30MHz	Schwarzbeck-Mess Elektronik	12-Apr-2017	12 months
NSA1	NSA - M	NSA - Site M	RN Electronics	08-Jan-2015	36 months
TMS78	3160-08	Std Gain Horn Antenna 12.4-18 GHz	ETS Systems	25-Jul-2017	12 months
TMS81	6502	Antenna Active Loop	EMCO	08-Jun-2017	24 months
TMS82	8449B	Pre Amplifier 1 - 26 GHz	Agilent Technologies	19-Dec-2017	12 months
ZSW1	V2.1	Measurement Software Suite	RN Electronics	N/A	N/A

File Name: Telensa Ltd.10223-1 Issue 01 Page 82 of 86

ALL RIGHTS RESERVED

10 Auxiliary and peripheral equipment

10.1 Customer supplied equipment

Item No.	Model No.	Description	Manufacturer	Serial No.
1	ProBook	Laptop and PSU	HP	Telensa asset 1093
2		Raspberry Pi		IP 192.168.1.50
3	MB1054B	NFC card	ST Microelectronics	

REPORT NUMBER: 12-10223-1-17 Issue 01

10.2 RN Electronics supplied equipment

RN No.	Model No.	Description	Manufacturer	Serial No
E187	84534.01	Variac 0-290VAC, 4A, 50Hz	Marconi Instruments	15202

File Name: Telensa Ltd.10223-1 Issue 01 Page 83 of 86

ALL RIGHTS RESERVED

11 Condition of the equipment tested

In order for the EUT to produce the results shown within this report the following modifications, if any, were implemented.

REPORT NUMBER: 12-10223-1-17 Issue 01

11.1 Modifications before test

No modifications were made before test by RN Electronics Ltd.

11.2 Modifications during test

No modifications were made during test by RN Electronics Ltd.

File Name: Telensa Ltd.10223-1 Issue 01 Page 84 of 86

©2018 RN ELECTRONICS LIMITED

ALL RIGHTS RESERVED

12 Description of test sites

Site A Radio / Calibration Laboratory and anechoic chamber

REPORT NUMBER: 12-10223-1-17 Issue 01

Site B Semi-anechoic

chamber

FCC Registration No. 293246 IC Registration No. 5612A-4

Site B1 Control Room for

Site B

Site C Transient Laboratory

Site D Screened Room (Conducted

Immunity)

Site E Screened Room (Control Room for Site D)

Site F Screened Room (Conducted Emissions)

Site G Screened Room (Control Room for Site H)

Site H 3m Semi-anechoic chamber (indoor

OATS)

FCC Registration No. 293246 IC Registration No. 5612A-2

Site J Screened Room

Site K Screened Room (Control Room for Site M)

Site M 3m Semi-anechoic chamber (indoor

OATS)

FCC Registration No. 293246 IC Registration No. 5612A-3

Site Q Fully-anechoic

chamber

Site 3m and 10m Open Area Test

OATS Site

FCC Registration No. 293246 IC Registration No. 5612A-1

Site R Screened Room (Conducted

Immunity)

Site S Safety Laboratory

Site T Transient Laboratory

File Name: Telensa Ltd.10223-1 Issue 01 Page 85 of 86

QMF21J - Issue 05 - RNE Issue 03; 47 CFR Part 15C 2016

©2018 RN ELECTRONICS LIMITED

ALL RIGHTS RESERVED

13 **Abbreviations and units**

13 /	Appreviations and units		
%	Percent	LBT	Listen Before Talk
μA/m	microAmps per metre	LO	Local Oscillator
μV	microVolts	mA	milliAmps
μW	microWatts	max	maximum
AC	Alternating Current	kPa	Kilopascal
ALSE	Absorber Lined Screened Enclosure	Mbit/s	MegaBits per second
AM	Amplitude Modulation	MHz	MegaHertz
Amb	Ambient	mic	Microphone
ATPC	Automatic Transmit Power Control	min	minimum
BER	Bit Error Rate	mm	milliMetres
°С	Degrees Celsius	ms	milliSeconds
C/I	Carrier / Interferer	mW	milliWatts
CEPT	European Conference of Postal and Telecommunications Administrations	NA	Not Applicable
COFDM	Coherent OFDM	nom	Nominal
CS	Channel Spacing	nW	nanoWatt
CW	Continuous Wave	OATS	Open Area Test Site
dB	deciBels	OFDM	Orthogonal Frequency Division Multiplexing
dBμA/m	deciBels relative to 1µA/m	ppm	Parts per million
dΒμV	deciBels relative to 1µV	PRBS	Pseudo Random Bit Sequence
dBc	deciBels relative to Carrier	QAM	Quadrature Amplitude Modulation
dBm	deciBels relative to 1mW	QPSK	Quadrature Phase Shift Keying
DC	Direct Current	R&TTE	Radio and Telecommunication Terminal Equipment
DTA	Digital Transmission Analyser	Ref	Reference
EIRP	Equivalent Isotropic Radiated Power	RF	Radio Frequency
ERP	Effective Radiated Power	RFC	Remote Frequency Control
EU	European Union	RSL	Received Signal Level
EUT	Equipment Under Test	RTP	Room Temperature and Pressure
FM	Frequency Modulation	RTPC	Remote Transmit Power Control
FSK	Frequency Shift Keying	Rx	Receiver
g	Grams	S	Seconds
GHz	GigaHertz	SINAD	Signal to Noise And Distortion
Hz	Hertz	Tx	Transmitter

REPORT NUMBER: 12-10223-1-17 Issue 01

File Name: Telensa Ltd.10223-1 Issue 01 Page 86 of 86

Volts

Intermediate Frequency

kiloHertz

ΙF

kHz