CSC236 Worksheet 5 Solution

Hyungmo Gu

May 7, 2020

Question 1

a. Rough Works:

For convenience, define $H(k): R(3^k) = 3^k k$. Notice that when $n = 3^k$, $3^k k$ is the same as $n \log_3 n$. I will use simple induction to prove $\forall k \in \mathbb{N}, \ H(k)$.

1. Base Case (k=0)

Let k = 0.

Then,

$$3^k \cdot k = 3^0 \cdot 0 \tag{1}$$

$$=0 (2)$$

$$= R(n)$$
 [By def.] (3)

Thus, H(0) is verified.

2. Inductive Step

Let $k \in \mathbb{N}$. Assume H(k). That is $R(3^k) = 3^k k$.

I will show that H(k+1) follows. That is, $R(3^{k+1}) = (k+1)3^{k+1}$.

The definition of $R(3^{k+1})$ tells us,

$$R(3^{k+1}) = 3^{k+1} + 3R(\lceil 3^{k+1}/3 \rceil)$$
(4)

$$=3^{k+1} + 3R(3^k) (5)$$

Then, using this fact, we can conclude

$$R(3^{k+1}) = 3^{k+1} + 3 \cdot 3^k k$$
 [By I.H] (6)
= $3^{k+1} + 3^{k+1} k$ (7)

$$=3^{k+1}+3^{k+1}k\tag{7}$$

$$=3^{k+1}(k+1) (8)$$