Abstract algebra manual: problems and solutions. 2nd ed

Article					
CITATIONS		READS			
0		59,979			
1 author:					
9	Ayman Badawi				
American University of Sharjah, https://scholar.google.ae/citations?user=kk6vsV0AAAAJ&hl=en					
	79 PUBLICATIONS 1,315 CITATIONS				
	SEE PROFILE				
Some of the authors of this publication are also working on these related projects:					
Project	research articles View project				

Contents

In	Introduction			
1	Tools and Major Results of Groups			
	1.1	Notations	1	
	1.2	Results	2	
2	\mathbf{Pro}	oblems in Group Theory	9	
	2.1	Elementary Properties of Groups	9	
	2.2	Subgroups	13	
	2.3	Cyclic Groups	16	
	2.4	Permutation Groups	20	
	2.5	Cosets and Lagrange's Theorem	24	
	2.6	Normal Subgroups and Factor Groups	30	
	2.7	Group Homomorphisms and Direct Product	37	
	2.8	Sylow Theorems	50	
	2.9	Simple Groups	57	
	2.10	Classification of Finite Abelian Groups	62	
	2.11	General Questions on Groups	65	
3	Too	ls and Major Results of Ring Theory	81	
	3.1	Notations	81	
	3.2	Major Results of Ring Theory	82	
4	Prol	blems in Ring Theory	89	
	4.1	Basic Properties of Rings	89	
	4.2	Ideals, Subrings, and Factor Rings	93	
	4.3	Integral Domains, and Zero Divisors	101	
	4.4	Ring Homomorphisms and Ideals	105	
	4.5	Polynomial Rings	113	
	4.6	Factorization in Polynomial Rings	119	

V	i	CONTENTS

Bibliography				
4.12	General Questions on Rings and Fields	148		
4.11	Galois Fields and Cyclotomic Fields	143		
4.10	Finite Fields	136		
4.9	Extension Fields, and Algebraic Fields	131		
4.8	Gaussian Ring : $\mathcal{Z}[i]$	124		
4.7	Unique Factorization Domains	122		

Introduction

This edition is an improvement of the first edition. In this edition, I corrected some of the errors that appeared in the first edition. I added the following sections that were not included in the first edition: Simple groups, Classification of finite Abelian groups, General question on Groups, Euclidean domains, Gaussian Ring $(\mathcal{Z}[i])$, Galois field and Cyclotomic fields, and General question on rings and fields. I hope that students who use this book will obtain a solid understanding of the basic concepts of abstract algebra through doing problems, the best way to understand this challenging subject. So often I have encountered students who memorize a theorem without the ability to apply that theorem to a given problem. Therefore, my goal is to provide students with an array of the most typical problems in basic abstract algebra. At the beginning of each chapter, I state many of the major results in Group and Ring Theory, followed by problems and solutions. I do not claim that the solutions in this book are the shortest or the easiest; instead each is based on certain well-known results in the field of abstract algebra. If you wish to comment on the contents of this book, please email your thoughts to abadawi@aus.edu

I dedicate this book to my father Rateb who died when I was 9 years old. I wish to express my appreciation to my wife Rawya, my son Nadeem, my friend Brian Russo, and Nova Science Inc. Publishers for their superb assistance in this book. It was a pleasure working with them.

Ayman Badawi

viii A. Badawi

Chapter 1

Tools and Major Results of Groups

1.1 Notations

- 1. e indicates the identity of a group G.
- 2. e_H indicates the identity of a group H
- 3. Ord(a) indicates the order of a in a group.
- 4. gcd(n,m) indicates the greatest common divisor of n and m.
- 5. lcm(n,m) indicates the least common divisor of n and m.
- 6. $H \triangleleft G$ indicates that H is a normal subgroup of G.
- 7. $Z(G) = \{x \in G : xy = yx \text{ for each } y \in G\}$ indicates the center of a group G.
- 8. Let H be a subgroup of a group G. Then $C(H) = \{g \in G : gh = hg \text{ for each } h \in H\}$ indicates the centralizer of H in G.
- 9. Let a be an element in a group G. Then $C(a) = \{g \in G : ga = ag\}$ indicates the centralizer of a in G.
- 10. Let H be a subgroup of a group G. Then $N(H) = \{g \in G : g^{-1}Hg = H\}$ indicates the normalizer of H in G.
- 11. Let H be a subgroup of a group G. Then [G : H] = number of all distinct left(right) cosets of H in G.

- 12. C indicates the set of all complex numbers.
- 13. Z indicates the set of all integers.
- 14. $Z_n = \{m : 0 \le m < n\}$ indicates the set of integers module n
- 15. Q indicates the set of all rational numbers.
- 16. $U(n) = \{a \in \mathbb{Z}_n : gcd(a,n) = 1\}$ indicates the unit group of \mathbb{Z}_n under multiplication module n.
- 17. If G is a group and $a \in G$, then (a) indicates the cyclic subgroup of G generated by a.
- 18. If G is a group and $a_1, a_2, ..., a_n \in G$, then $(a_1, a_2, ..., a_n)$ indicates the subgroup of G generated by $a_1, a_2, ..., a_n$.
- 19. $GL(m, Z_n)$ indicates the group of all invertible $m \times m$ matrices with entries from Z_n under matrix-multiplication
- 20. If A is a square matrix, then $\det(A)$ indicates the determinant of A
- 21. Aut(G) indicates the set of all isomorphisms (automorphisms) from G onto G.
- 22. S_n indicates the group of all permutations on a finite set with n elements.
- 23. $A \cong B$ indicates that A is isomorphic to B.
- 24. $a \in A \setminus B$ indicates that a is an element of A but not an element of B.
- 25. $a \mid b$ indicates that a divides b.

1.2 Results

THEOREM 1.2.1 Let a be an element in a group G. If $a^m = e$, then Ord(a) divides m.

THEOREM 1.2.2 Let p be a prime number and n, m be positive integers such that p divides nm. Then either p divides n or p divides m.

THEOREM 1.2.3 Let n, m be positive integers. Then gcd(n,m) = 1 if and only if am + bm = 1 for some integers a and b.

THEOREM 1.2.4 Let n and m be positive integers. If $a = n/\gcd(n,m)$ and $b = m/\gcd(n,m)$, then $\gcd(a,b) = 1$.

THEOREM 1.2.5 Let n, m, and c be positive integers. If gcd(c,m) = 1 and c divides nm, then c divides n.

THEOREM 1.2.6 Let n and m and c be positive integers such that gcd(n,m) = 1. If n divides c and m divides c, then nm divides c.

THEOREM 1.2.7 Let H be a subset of a group G. Then H is a subgroup of G if and only if $a^{-1}b \in H$ for every a and $b \in H$.

THEOREM 1.2.8 Let H be a finite set of a group G. Then H is a subgroup of G if and only if H is closed.

THEOREM 1.2.9 Let a be an element of a group G. If a has an infinite order, then all distinct powers of a are distinct elements. If a has finite order, say, n, then the cyclic group $(a) = \{e, a, a^2, a^3, ..., a^{n-1}\}$ and $a^i = a^j$ if and only if n divides i - j.

THEOREM 1.2.10 Every subgroup of a cyclic group is cyclic.

THEOREM 1.2.11 If G = (a), a cyclic group generated by a, and Ord(G) = n, then the order of any subgroup of G is a divisor of n.

THEOREM 1.2.12 Let G = (a) such that Ord(G) = n. Then for each positive integer k divides n, the group G = (a) has exactly one subgroup of order k namely $(a^{n/k})$.

THEOREM 1.2.13 Let $n = P_1^{\alpha_1}...P_k^{\alpha_k}$, where the P_i 's are distinct prime numbers and each α_i is a positive integer ≥ 1 . Then $\phi(n) = (P_1 - 1)P_1^{\alpha_1 - 1}...(P_k - 1)P_k^{\alpha_k - 1}$, where $\phi(n) = number$ of all positive integers less than N and relatively prime to n.

THEOREM 1.2.14 Let G be a cyclic group of order n, and let d be a divisor of n. Then number of elements of G of order d is $\phi(d)$. In particular, number of elements of G of order n is $\phi(n)$.

THEOREM 1.2.15 Z is a cyclic group and each subgroup of Z is of the form nZ for some $n \in Z$.

THEOREM 1.2.16 Z_n is a cyclic group and if k is a positive divisor of n, then (n/k) is the unique subgroup of Z_n of order k.

THEOREM 1.2.17 Let n be a positive integer, and write $n = P_1^{\alpha_1} P_2^{\alpha_2} \dots P_k^{\alpha_k}$ where the P_i 's are distinct prime numbers and each α_i is a positive integer ≥ 1 . Then number of all positive divisors of n (including 1 and n) is $(\alpha_1 + 1)(\alpha_2 + 1)...(\alpha_k + 1)$.

THEOREM 1.2.18 Let n, m, k be positive integers. Then lcm(n, m) = nm/gcd(n, m). If n divides k and m divides k, then lcm(n, m) divides k.

THEOREM 1.2.19 Let $\alpha = (a_1, a_2, ..., a_n)$ and $\beta = (b_1, b_2, ..., b_m)$ be two cycles. If α and β have no common entries, then $\alpha\beta = \beta\alpha$.

THEOREM 1.2.20 Let α be a permutation of a finite set. Then α can be written as disjoint cycles and $Ord(\alpha)$ is the least common multiple of the lengths of the disjoint cycles.

THEOREM 1.2.21 Every permutation in $S_n(n > 1)$ is a product of 2-cycles.

THEOREM 1.2.22 Let α be a permutation. If $\alpha = B_1B_2...B_n$ and $\alpha = A_1A_2...A_m$, where the B_i 's and the A_i 's are 2-cycles, then m and n are both even or both odd.

THEOREM 1.2.23 Let $\alpha = (a_1, a_2, ..., a_n) \in S_m$. Then $\alpha = (a_1, a_n)$ $(a_1, a_{n-1})(a_1, a_{n-2})...(a_1, a_2)$.

THEOREM 1.2.24 The set of even permutations A_n is a subgroup of S_n .

THEOREM 1.2.25 Let $\alpha = (a_1, a_2, ..., a_n) \in S_m$. Then $\alpha^{-1} = (a_n, a_{n-1}, ..., a_2, a_1)$.

THEOREM 1.2.26 Let H be a subgroup of G, and let $a, b \in G$. Then aH = bH if and only if $a^{-1}b \in H$. In particular, if gH = H for some $g \in G$, then $g \in H$

THEOREM 1.2.27 Let G be a finite group and let H be a subgroup of G. Then Ord(H) divides Ord(G).

THEOREM 1.2.28 Let G be a finite group and let H be a subgroup of G. Then the number of distinct left(right) cosets of H in G is Ord(G)/Ord(H).

THEOREM 1.2.29 Let G be a finite group and $a \in G$. Then Ord(a) divides Ord(G).

THEOREM 1.2.30 Let G be a group of order n, and let $a \in G$. Then $a^n = e$.

THEOREM 1.2.31 Let G be a finite group, and let p be a prime number such that p divides Ord(G). Then G contains an element of order p.

THEOREM 1.2.32 Let H be a subgroup of a group G. Then H is normal if and only if $gHg^{-1} = H$ for each $g \in G$.

THEOREM 1.2.33 Let H be a normal subgroup of G. Then $G/H = \{gH : g \in G\}$ is a group under the operation aHbH = abH. Furthermore, If [G : H] is finite, then Ord(G/H) = [G : H].

THEOREM 1.2.34 Let Φ be a group homomorphism from a group G to a group H and let $g \in G$ and D be a subgroup of G. Then:

- 1. Φ carries the identity of G to the identity of H.
- 2. $\Phi(g^n) = (\Phi(g))^n$.
- 3. $\Phi(D)$ is a subgroup of H.
- 4. If D is normal in G, then $\Phi(D)$ is normal in $\Phi(H)$.
- 5. If D is Abelian, then $\Phi(D)$ is Abelian.
- 6. If D is cyclic, then $\Phi(D)$ is cyclic. In particular, if G is cyclic and D is normal in G, then G/D is cyclic.

THEOREM 1.2.35 Let Φ be a group homomorphism from a group G to a group H. Then $Ker(\Phi)$ is a normal subgroup of G and $G/Ker(\Phi) \cong \Phi(G)$ (the image of G under Φ).

THEOREM 1.2.36 Suppose that $H_1, H_2, ..., H_n$ are finite groups. Let $D = H_1 \oplus H_2 ... \oplus H_n$. Then D is cyclic if and only if each H_i is cyclic and if $i \neq j$, then $gcd(Ord(H_i), Ord(H_i)) = 1$.

THEOREM 1.2.37 Let $H_1, ..., H_n$ be finite groups, and let $d = (h_1, h_2, ..., h_n) \in D = H_1 \oplus H_2 ... \oplus H_n$. Then $Ord(d) = Ord((h_1, h_2, ..., h_n)) = lcm(Ord(h_1), Ord(h_2), ..., Ord(h_n))$.

THEOREM 1.2.38 Let $n = m_1 m_2 ... m_k$ where $gcd(m_i, m_j) = 1$ for $i \neq j$. Then $U(n) = U(m_1) \oplus U(m_2) ... \oplus U(m_k)$.

THEOREM 1.2.39 Let H, K be normal subgroups of a group G such that $H \cap K = \{e\}$ and G = HK. Then $G \cong H \oplus K$.

THEOREM 1.2.40 Let p be a prime number. Then $U(p) \cong Z_{p-1}$ is a cyclic group. Furthermore, if p is an odd prime, then $U(p^n) \cong Z_{\phi(p^n)} = Z_{p^n-p^{n-1}} = Z_{(p-1)p^{n-1}}$ is a cyclic group. Furthermore, $U(2^n) \cong Z_2 \oplus Z_{2^{n-2}}$ is not cyclic for every $n \geq 3$.

THEOREM 1.2.41 $Aut(Z_n) \cong U(n)$.

THEOREM 1.2.42 Every group of order n is isomorphic to a subgroup of S_n .

THEOREM 1.2.43 Let G be a finite group and let p be a prime. If p^k divides Ord(G), then G has a subgroup of order p^k .

THEOREM 1.2.44 If H is a subgroup of a finite group G such that Ord(H) is a power of prime p, then H is contained in some Sylow p-subgroup of G.

THEOREM 1.2.45 Let n be the number of all Sylow p-subgroups of a finite group G. Then n divides Ord(G) and p divides (n-1).

THEOREM 1.2.46 A Sylow p-subgroup of a finite group G is a normal subgroup of G if and only if it is the only Sylow p-subgroup of G.

THEOREM 1.2.47 Suppose that G is a group of order p^n for some prime number p and for some $n \ge 1$. Then $Ord(Z(G)) = p^k$ for some $0 < k \le n$.

THEOREM 1.2.48 Let H and K be finite subgroups of a group G. Then $Ord(HK) = Ord(H)Ord(K)/Ord(H \cap K)$.

THEOREM 1.2.49 Let G be a finite group. Then any two Sylow-p-subgroups of G are conjugate, i.e., if H and K are Sylow-p-subgroups, then $H = g^{-1}Kg$ for some $g \in G$.

THEOREM 1.2.50 Let G be a finite group, H be a normal subgroup of G, and let K be a Sylow p-subgroup of H. Then $G = HN_G(K)$ and [G:H] divides $Ord(N_G(K))$, where $N_G(K) = \{g \in G: g^{-1}Kg = K\}$ (the normalizer of K in G).

THEOREM 1.2.51 Let G be a finite group, n_p be the number of Sylow-p-subgroups of G, and suppose that p^2 does not divide $n_p - 1$. Then there are two distinct Sylow-p-subgroups K and H of G such that $[K: H \cap K] = [H: H \cap K] = p$. Furthermore, $H \cap K$ is normal in both K and H, and thus $HK \subset N(H \cap K)$ and $Ord(N(H \cap K)) > Ord(HK) = Ord(H)ORD(K)/Ord(H \cap K)$.

THEOREM 1.2.52 Every finite Abelian group is a direct product of cyclic groups of prime-power order. Moreover, the factorization is unique except for rearrangement of the factors.

THEOREM 1.2.53 Let G be a finite Abelian group of order n. Then for each positive divisor k of n, there is a subgroup of G of order k.

THEOREM 1.2.54 We say a is a conjugate of b in a group G if $g^{-1}bg = a$ for some $g \in G$. The conjugacy class of a is denoted by $CL(a) = \{b \in G : g^{-1}ag = b \text{ for some } g \in G\}$. Recall that $C(a) = \{g \in G : ga = ag\}$ is a subgroup of G and C(a) is called the centralizer of a in G. Also, we say that two subgroups G is denoted the conjugate if G if G is denoted by G is denoted by G is denoted by G is denoted by G is a subgroup of G. Then G is a finite group, G is denoted by G is a subgroup of G. Then G is denoted by G is denoted by G is a subgroup of G. Then G is denoted by G is denoted by G is a subgroup of G. Then G is G is G is G is G in G.

We say that a group is simple if its only normal subgroups are the identity subgroup and the group itself.

THEOREM 1.2.55 If Ord(G) = 2n, where n is an odd number greater than 1, then G is not a simple group.

THEOREM 1.2.56 Let H be a subgroup of a finite group G and let n = [G : H] (the index of H in G). Then there is a group homomorphism, say Φ , from G into S_n (recall that S_n is the group of all permutations on a set with n elements) such that $Ker(\Phi)$ is contained in H. Moreover, if K is a normal subgroup of G and K is contained in H, then K is contained in $Ker(\Phi)$.

THEOREM 1.2.57 Let H be a proper subgroup of a finite non-Abelian simple group G and let n = [G : H] (the index of H in G). Then G is isomorphic to a subgroup of A_n .

THEOREM 1.2.58 For each $n \geq 5$, A_n (the subgroup of all even permutation of S_n) is a simple group.

THEOREM 1.2.59 Let G be a group of order p^n , where $n \geq 1$ and p is prime number. Then if H is a normal subgroup of G and $Ord(H) \geq p$, then $Ord(H \cap Z(G)) \geq p$, i.e., $H \cap Z(G) \neq \{e\}$. In particular, every normal subgroup of G of order p is contained in Z(G) (the center of G).

Chapter 2

Problems in Group Theory

2.1 Elementary Properties of Groups

QUESTION 2.1.1 For any elements a, b in a group and any integer n, prove that $(a^{-1}ba)^n = a^{-1}b^na$.

Solution: The claim is clear for n=0. We assume $n\geq 1$. We use math. induction. The result is clear for n=1. Hence, assume it is true for $n\geq 1$. We prove it for n+1. Now, $(a^{-1}ba)^{n+1}=(a^{-1}ba)^n(a^{-1}ba)=(a^{-1}b^na)(a^{-1}ba)=a^{-1}b^n(aa^{-1})ba=a^{-1}b^{n+1}a$, since aa^{-1} is the identity in the group. Now, we assume $n\leq -1$. Since $-n\geq 1$, we have $(a^{-1}ba)^n=[(a^{-1}ba)^{-1}]^{-n}=(a^{-1}b^{-1}a)^{-n}=a^{-1}(b^{-1})^{-n}a=a^{-1}b^na$. (We assume that the reader is aware of the fact that $(b^{-1})^{-n}=(b^{-n})^{-1}=b^n$.)

QUESTION 2.1.2 Let a and b be elements in a finite group G. Prove that Ord(ab) = Ord(ba).

Solution: Let n = Ord(ab) and m = Ord(ba). Now, by the previous Question, $(ba)^n = (a^{-1}(ab)a)^n = a^{-1}(ab)^n a = e$. Thus, m divides n by Theorem 1.2.1. Also, $(ab)^m = (b^{-1}(ba)b)^m = b^{-1}(ba)^m b = e$. Thus, n divides m. Since n divides m and m divides n, we have n = m.

QUESTION 2.1.3 Let g and x be elements in a group. Prove that $Ord(x^{-1}gx) = Ord(g)$.

Solution: Let $a = x^{-1}g$ and b = x. By the previous Question, Ord(ab) = Ord(ba). But ba = g. Hence, $Ord(x^{-1}gx) = Ord(g)$.

QUESTION 2.1.4 Suppose that a is the only element of order 2 in a group G. Prove that $a \in Z(G)$

Solution: Deny. Then $xa \neq ax$ for some $x \in G$. Hence, $x^{-1}ax \neq a$. Hence, by the previous question we have $Ord(x^{-1}ax) = Ord(a) = 2$, a contradiction, since a is the only element of order 2 in G. Thus, our denial is invalid. Hence, $a \in Z(G)$.

QUESTION 2.1.5 In a group, prove that $(a^{-1})^{-1} = a$.

Solution: Since $aa^{-1} = e$, we have $(aa^{-1})^{-1} = e$. But we know that $(aa^{-1})^{-1} = (a^{-1})^{-1}a^{-1}$. Hence, $(a^{-1})^{-1}a^{-1} = e$. Also by a similar argument as before, since $a^{-1}a = e$, we conclude that $a^{-1}(a^{-1})^{-1} = e$. Since the inverse of a^{-1} is unique, we conclude that $(a^{-1})^{-1} = a$.

QUESTION 2.1.6 Prove that if $(ab)^2 = a^2b^2$, then ab = ba.

Solution: $(ab)^2 = abab = a^2b^2$. Hence, $a^{-1}(abab)b^{-1} = a^{-1}(a^2b^2)b^{-1}$. Thus, $(a^{-1}a)ba(bb^{-1}) = (a^{-1}a)ab(bb^{-1})$. Since $a^{-1}a = bb^{-1} = e$, we have ba = ab.

QUESTION 2.1.7 Let a be an element in a group. Prove that $Ord(a) = Ord(a^{-1})$.

Solution: Suppose that Ord(a) = n and $Ord(a^{-1}) = m$. We may assume that m < n. Hence, $a^n(a^{-1})^m = a^na^{-m} = a^{n-m} = e$. Thus, by Theorem 1.2.1 Ord(a) = n divides n - m, which is impossible since n - m < n.

QUESTION 2.1.8 Let a be a non identity element in a group G such that Ord(a) = p is a prime number. Prove that $Ord(a^i) = p$ for each $1 \le i < p$.

Solution: Let $1 \le i < p$. Since Ord(a) = p, $(a^i)^p = a^{pi} = e$ the identity in G. Hence, we may assume that $Ord(a^i) = m < p$. Thus, $(a^i)^m = a^{im} = e$. Thus, by Theorem 1.1 Ord(a) = p divides im. Thus, by Theorem 1.2.2 either p divides i or p divides m. Since i < p and m < p, neither p divides i nor p divides m. Hence, $Ord(a^i) = m = p$.

QUESTION 2.1.9 Let G be a finite group. Prove that number of elements x of G such that $x^7 = e$ is odd.

Solution: Let x be a non identity element of G such that $x^7 = e$. Since 7 is a prime number and $x \neq e$, Ord(x) = 7 by Theorem 1.2.1. Now, By the previous question $(x^i)^7 = e$ for each $1 \leq i \leq 6$. Thus, number of non identity elements x of G such that $x^7 = e$ is 6n for some positive integer n. Also, Since $e^7 = e$, number of elements x of G such that $x^7 = e$ is 6n + 1 which is an odd number.

QUESTION 2.1.10 Let a be an element in a group G such that $a^n = e$ for some positive integer n. If m is a positive integer such that gcd(n,m) = 1, then prove that $a = b^m$ for some b in G.

Solution: Since gcd(n,m) = 1, cn + dm = 1 for some integers c and d by Theorem 1.2.3. Hence, $a = a^1 = a^{cn+dm} = a^{cn}a^{dm}$. Since $a^n = e$, $a^{cn} = e$. Hence, $a = a^{dm}$. Thus, let $b = a^d$. Hence, $a = b^m$.

QUESTION 2.1.11 Let G be a group such that $a^2 = e$ for each $a \in G$. Prove that G is Abelian.

Solution: Since $a^2 = e$ for each a in G, $a = a^{-1}$ for each a in G. Now, let a and b be elements in G. Then $(ab)^2 = abab = e$. Hence, (abab)ba = ba. But (abab)ba = aba(bb)a = aba(e)a = ab(aa) = ab(e) = ab. Thus, ab = ba.

QUESTION 2.1.12 Let a be an element in a group such that Ord(a) = n. If i is a positive integer, then prove that $Ord(a^i) = n/gcd(n, i)$.

Solution: Let $k = n/\gcd(n,i)$ and let $m = Ord(a^i)$. Then $(a^i)^k = (a^n)^{i/\gcd(n,i)} = e$ since $a^n = e$. Since $(a^i)^k = e$, m divides k by Theorem 1.2.1. Also, since $Ord(a^i) = m$, we have $(a^i)^m = a^{im} = e$. Hence, n divides im (again by Theorem 1.2.1). Since $n = [n/\gcd(i,n)]\gcd(i,n)$ divides $m = m[i/\gcd(i,n)]\gcd(i,n)$, we have $m = n[i/\gcd(i,n)]$. Since $\gcd(k,i/\gcd(n,i)) = 1$ by Theorem 1.2.4 and $m = n[i/\gcd(i,n)]$, we have $m = n[i/\gcd(i,n)]$. Since $m = n[i/\gcd(i,n)]$ and $m = n[i/\gcd(i,n)]$.

QUESTION 2.1.13 Let a be an element in a group such that Ord(a) = 20. Find $Ord(a^6)$ and $Ord(a^{13})$.

Solution: By the previous problem, $Ord(a^6) = 20/gcd(6, 20) = 20/2 = 10$. Also, $Ord(a^{13}) = 20/gcd(13, 20) = 20/1 = 20$.

QUESTION 2.1.14 Let a and b be elements in a group such that ab = ba and Ord(a) = n and Ord(b) = m and gcd(n,m) = 1. Prove that Ord(ab) = lcm(n,m) = nm.

Solution: Let c = Ord(ab). Since ab = ba, we have $(ab)^{nm} = a^{nm}b^{nm} = e$. Hence, c divides nm by Theorem 1.2.1. Since c = Ord(ab) and ab = ba, we have $(ab)^{nc} = a^{nc}b^{nc} = (ab^c)^n = e$. Hence, since $a^{nc} = e$, we have

 $b^{nc} = e$. Thus, m divides nc since m = Ord(b). Since gcd(n,m) = 1, we have m divides c by Theorem 1.2.5. Also, we have $(ab)^{mc} = a^{mc}b^{mc} = (ab^c)^m = e$. Since $b^{mc} = e$, we have $a^{mc} = e$. Hence, n divides mc. Once again, since gcd(n,m) = 1, we have n divides c. Since n divides c and m divides c and gcd(n,m) = 1, we have nm divides c by Theorem 1.2.6. Since c divides nm and nm divides c, we have nm = c = Ord(ab).

QUESTION 2.1.15 In view of the previous problem, find two elements a and b in a group such that ab = ba and Ord(a) = n and Ord(b) = m but $Ord(ab) \neq lcm(n, m)$.

Solution: Let a be a non identity element in a group and let $b = a^{-1}$. Then $Ord(a) = Ord(a^{-1}) = n > 1$ by Question 2.1.7 and ab = ba. But $Ord(ab) = Ord(e) = 1 \neq lcm(n, n) = n$.

QUESTION 2.1.16 Let x and y be elements in a group G such that $xy \in Z(G)$. Prove that xy = yx.

Solution: Since $xy = x^{-1}x(xy)$ and $xy \in Z(G)$, we have $xy = x^{-1}x(xy) = x^{-1}(xy)x = (x^{-1}x)yx = yx$.

QUESTION 2.1.17 Let G be a group with exactly 4 elements. Prove that G is Abelian.

Solution: Let a and b be non identity elements of G. Then e, a, b,ab,and ba are elements of G. Since G has exactly 4 elements, ab = ba. Thus, G is Abelian.

QUESTION 2.1.18 Let G be a group such that each non identity element of G has prime order. If $Z(G) \neq \{e\}$, then prove that every non identity element of G has the same order.

Solution: Let $a \in Z(G)$ such that $a \neq e$. Assume there is an element $b \in G$ such that $b \neq e$ and $Ord(a) \neq Ord(b)$. Let n = Ord(a) and m = Ord(b). Since n, m are prime numbers, gcd(n,m) = 1. Since $a \in Z(G)$, ab = ba. Hence, Ord(ab) = nm by Question 2.1.14. A contradiction since nm is not prime. Thus, every non identity element of G has the same order.

QUESTION 2.1.19 Let a be an element in a group. Prove that $(a^n)^{-1} = (a^{-1})^n$ for each $n \ge 1$.

Solution: We use Math. induction on n. For n = 1, the claim is clearly valid. Hence, assume that $(a^n)^{-1} = (a^{-1})^n$. Now, we need to prove the claim for n + 1. Thus, $(a^{n+1})^{-1} = (aa^n)^{-1} = (a^n)^{-1}a^{-1} = (a^{-1})^na^{-1} = (a^{-1})^{n+1}$.

QUESTION 2.1.20 Let $g \in G$, where G is a group. Suppose that $g^n = e$ for some positive integer n. Show that Ord(g) divides n.

Solution: Let m = Ord(g). It is clear that $m \le n$. Hence n = mq + r for some integers q, r where $0 \le r < m$. Since $g^n = e$, we have $e = g^n = g^{mq+r} = g^{mq}g^r = eg^r = g^r$. Since $g^r = e$ and r < Ord(g) = m, we conclude that r = 0. Thus m = Ord(g) divides n.

2.2 Subgroups

QUESTION 2.2.1 Let H and D be two subgroups of a group such that neither $H \subset D$ nor $D \subset H$. Prove that $H \cup D$ is never a group.

Solution: Deny. Let $a \in H \setminus D$ and let $b \in D \setminus H$. Hence, $ab \in H$ or $ab \in D$. Suppose that $ab = h \in H$. Then $b = a^{-1}h \in H$, a contradiction. In a similar argument, if $ab \in D$, then we will reach a contradiction. Thus, $ab \notin H \cup D$. Hence, our denial is invalid. Therefore, $H \cup D$ is never a group.

QUESTION 2.2.2 Give an example of a subset of a group that satisfies all group-axioms except closure.

Solution: Let H=3Z and D=5Z. Then H and D are subgroups of Z. Now, let $C=H\cup D$. Then by the previous question, C is never a group since it is not closed.

QUESTION 2.2.3 Let H and D be subgroups of a group G. Prove that $C = H \cap D$ is a subgroup of G.

Solution: Let a and b be elements in C. Since $a \in H$ and $a \in D$ and the inverse of a is unique and H, D are subgroups of G, $a^{-1} \in H$ and $a^{-1} \in D$. Now, Since $a^{-1} \in C$ and $b \in C$ and H, D are subgroups of G, $a^{-1}b \in H$ and $a^{-1}b \in D$. Thus, $a^{-1}b \in C$. Hence, C is a subgroup of G by Theorem 1.2.7.

QUESTION 2.2.4 Let $H = \{a \in Q : a = 3^n 8^m \text{ for some } n \text{ and } m \text{ in } Z\}$. Prove that H under multiplication is a subgroup of $Q \setminus \{0\}$.

Solution: Let $a, b \in H$. Then $a = 3^{n_1}8^{n_2}$ and $b = 3^{m_1}8^{m_2}$ for some $n_1, n_2, m_1, m_2 \in Z$. Now, $a^{-1}b = 3^{m_1-n_1}8^{m_2-n_2} \in H$. Thus, H is a subgroup of $Q \setminus \{0\}$ by Theorem 1.2.7.

QUESTION 2.2.5 Let D be the set of all elements of finite order in an Abelian group G. Prove that D is a subgroup of G.

Solution: Let a and b be elements in D, and let n = Ord(a) and m = Ord(b). Then $Ord(a^{-1}) = n$ by Question 2.1.7. Since G is Abelian, $(a^{-1}b)^{nm} = (a^{-1})^{nm}b^{nm} = e$. Thus, $Ord(a^{-1}b)$ is a finite number (in fact $Ord(a^{-1}b)$ divides nm). Hence, $a^{-1}b \in D$. Thus, D is a subgroup of G by Theorem 1.2.7.

QUESTION 2.2.6 Let a, x be elements in a group G. Prove that ax = xa if and only if $a^{-1}x = xa^{-1}$.

Solution: Suppose that ax = xa. Then $a^{-1}x = a^{-1}xaa^{-1} = a^{-1}axa^{-1} = exa^{-1} = xa^{-1}$. Conversely, suppose that $a^{-1}x = xa^{-1}$. Then $ax = axa^{-1}a = aa^{-1}xa = exa = xa$.

QUESTION 2.2.7 Let G be a group. Prove that Z(G) is a subgroup of G.

Solution: Let $a, b \in Z(G)$ and $x \in G$. Since ax = xa, we have $a^{-1}x = xa^{-1}$ by the previous Question. Hence, $a^{-1}bx = a^{-1}xb = xa^{-1}b$. Thus, $a^{-1}b \in Z(G)$. Thus, Z(G) is a subgroup of G by Theorem 1.2.7.

QUESTION 2.2.8 Let a be an element of a group G. Prove that C(a) is a subgroup of G.

Solution: Let $x, y \in C(a)$. Since ax = xa, we have $x^{-1}a = ax^{-1}$ by Question 2.2.6. Hence, $x^{-1}ya = x^{-1}ay = ax^{-1}y$. Thus, $x^{-1}y \in C(a)$. Hence, C(a) is a subgroup of G by Theorem 1.2.7.

Using a similar argument as in Questions 2.2.7 and 2.2.8, one can prove the following:

QUESTION 2.2.9 Let H be a subgroup of a group G. Prove that N(H) is a subgroup of G.

QUESTION 2.2.10 Let $H = \{x \in C : x^{301} = 1\}$. Prove that H is a subgroup of $C \setminus \{0\}$ under multiplication.

Solution: First, observe that H is a finite set with exactly 301 elements. Let $a, b \in H$. Then $(ab)^{301} = a^{301}b^{301} = 1$. Hence, $ab \in H$. Thus, H is closed. Hence, H is a subgroup of $C \setminus \{0\}$ by Theorem 1.2.8.

QUESTION 2.2.11 Let $H = \{A \in GL(608, Z_{89}) : det(A) = 1\}$. Prove that H is a subgroup of $GL(608, Z_{89})$.

Solution: First observe that H is a finite set. Let $C, D \in H$. Then det(CD) = det(C)det(D) = 1. Thus, $CD \in H$. Hence, H is closed. Thus, H is a subgroup of $GL(608, \mathbb{Z}_{89})$ by Theorem 1.2.8.

QUESTION 2.2.12 Suppose G is a group that has exactly 36 distinct elements of order 7. How many distinct subgroups of order 7 does G have?

Solution: Let $x \in G$ such that Ord(x) = 7. Then, $H = \{e, x, x^2, ..., x^6\}$ is a subgroup of G and Ord(H) = 7. Now, by Question 2.1.8, $Ord(x^i) = 7$ for each $1 \le i \le 6$. Hence, each subgroup of G of order 7 contains exactly 6 distinct elements of order 7. Since G has exactly 36 elements of order 7, number of subgroups of G of order 7 is 36/6 = 6.

QUESTION 2.2.13 *Let* $H = \{x \in U(40) : 5 \mid x - 1\}$. *Prove that* H *is a subgroup of* U(40).

Solution: Observe that H is a finite set. Let $x, y \in H$. xy - 1 = xy - y + y - 1 = y(x - 1) + y - 1. Since 5 divides x - 1 and 5 divides y - 1, we have 5 divides y(x - 1) + y - 1 = xy - 1. Thus, $xy \in H$. Hence, H is closed. Thus, H is a subgroup of G by Theorem 1.2.8

QUESTION 2.2.14 Let G be an Abelian group, and let $H = \{a \in G : Ord(a) \mid 26\}$. Prove that H is a subgroup of G.

Solution: Let $a, b \in H$. Since $a^{26} = e$, Ord(a) divides 26 by Theorem 1.2.1. Since $Ord(a) = Ord(a^{-1})$ and Ord(a) divides 26, $Ord(a^{-1})$ divides 26. Thus, $(a^{-1})^{26} = e$. Hence, $(a^{-1}b)^{26} = (a^{-1})^{26}b^{26} = e$. Thus, H is a subgroup of G by Theorem 1.2.7.

QUESTION 2.2.15 Let G be an Abelian group, and let $H = \{a \in G : Ord(a) = 1 \text{ or } Ord(a) = 13\}$. Prove that H is a subgroup of G.

Solution: Let $a, b \in H$. If a = e or b = e, then it is clear that $(a^{-1}b) \in H$. Hence, assume that neither a = e nor b = e. Hence, Ord(a) = Ord(b) = 13. Thus, $Ord(a^{-1}) = 13$. Hence, $(a^{-1}b)^{13} = (a^{-1})^{13}b^{13} = e$. Thus, $Ord(a^{-1}b)$ divides 13 by Theorem 1.2.1. Since 13 is prime, 1 and 13 are the only divisors of 13. Thus, $Ord(a^{-1}b)$ is either 1 or 13. Thus, $a^{-1}b \in H$. Thus, H is a subgroup of G by Theorem 1.2.7.

2.3 Cyclic Groups

QUESTION 2.3.1 Find all generators of Z_{22} .

Solution: Since $Ord(Z_{22}) = 22$, if a is a generator of Z_{22} , then Ord(a) must equal to 22. Now, let b be a generator of Z_{22} , then $b = 1^b = b$. Since Ord(1) = 22, we have $Ord(b) = Ord(1^b) = 22/gcd(b, 22) = 22$ by Question 2.1.12. Hence, b is a generator of Z_{22} iff gcd(b, 22) = 1. Thus, 1,3,5,7,9,11,13,15,17,19,21 are all generators of Z_{22} .

QUESTION 2.3.2 Let G = (a), a cyclic group generated by a, such that Ord(a) = 16. List all generators for the subgroup of order 8.

Solution: Let H be the subgroup of G of order 8. Then $H=(a^2)=(a^{16/8})$ is the unique subgroup of G of order 8 by Theorem 1.2.12. Hence, $(a^2)^k$ is a generator of H iff $\gcd(k,8)=1$. Thus, $(a^2)^1=a^2,(a^2)^3=a^6,(a^2)^5=a^{10},(a^2)^7=a^{14}$.

QUESTION 2.3.3 Suppose that G is a cyclic group such that Ord(G) = 48. How many subgroups does G have?

Solution: Since for each positive divisor k of 48 there is a unique subgroup of order k by Theorem 1.2.12, number of all subgroups of G equals to the number of all positive divisors of 48. Hence, Write $48 = 3^12^3$. Hence, number of all positive divisors of 48 = (1+1)(3+1) = 8 by Theorem 1.2.17. If we do not count G as a subgroup of itself, then number of all proper subgroups of G is 8-1=7.

QUESTION 2.3.4 Let a be an element in a group, and let i, k be positive integers. Prove that $H = (a^i) \cap (a^k)$ is a cyclic subgroup of (a) and $H = (a^{lcm(i,k)})$.

Solution: Since (a) is cyclic and H is a subgroup of (a), H is cyclic by Theorem 1.2.10. By Theorem 1.2.18 we know that lcm(i,k) = ik/gcd(i,k).

Since k/gcd(i,k) is an integer, we have $a^{lcm(i,k)} = (a^i)^{k/gcd(i,k)}$. Thus, $(a^{lcm(i,k)}) \subset (a^i)$. Also, since k/gcd(i,k) is an integer, we have $a^{lcm(i,k)} = (a^k)^{i/gcd(i,k)}$. Thus, $(a^{lcm(i,k)}) \subset (a^k)$. Hence, $(a^{lcm(i,k)}) \subset H$. Now, let $h \in H$. Then $h = a^j = (a^i)^m = (a^k)^n$ for some $j, m, n \in Z$. Thus, i divides j and k divides j. Hence, lcm(i,k) divides j by Theorem 1.2.18. Thus, $h = a^j = (a^{lcm(i,k)})^c$ where j = lcm(i,k)c. Thus, $h \in (a^{lcm(i,k)})$. Hence, $H \subset (a^{lcm(i,k)})$. Thus, $H = (a^{lcm(i,k)})$.

QUESTION 2.3.5 Let a be an element in a group. Describe the subgroup $H = (a^{12}) \cap (a^{18})$.

Solution: By the previous Question, H is cyclic and $H = (a^{lcm(12,18)}) = (a^{36})$.

QUESTION 2.3.6 Describe the Subgroup $8Z \cap 12Z$.

Solution: Since Z = (1) is cyclic and $8Z = (1^8) = (8)$ and $12Z = (1^{12}) = (12)$, $8Z \cap 12Z = (1^{lcm(8,12)}) = (lcm(8,12)) = 24Z$ by Question 2.3.4

QUESTION 2.3.7 Let G be a group and $a \in G$. Prove $(a) = (a^{-1})$.

Solution: Since $(a) = \{a^m : m \in Z\}, a^{-1} \in (a)$. Hence, $(a^{-1}) \subset (a)$. Also, since $(a^{-1}) = \{(a^{-1})^m : m \in Z\}$ and $(a^{-1})^{-1} = a, a \in (a^{-1})$. Hence, $(a) \subset (a^{-1})$. Thus, $(a) = (a^{-1})$.

QUESTION 2.3.8 Let a be an element in a group such that a has infinite order. Prove that $Ord(a^m)$ is infinite for each $m \in Z$.

Solution: Deny. Let $m \in \mathbb{Z}$. Then, $Ord(a^m) = n$. Hence, $(a^m)^n = a^{mn} = e$. Thus, Ord(a) divides nm by Theorem 1.2.1. Hence, Ord(a) is finite, a contradiction. Hence, Our denial is invalid. Therefore, $Ord(a^m)$ is infinite.

QUESTION 2.3.9 Let G = (a), and let H be the smallest subgroup of G that contains a^m and a^n . Prove that $H = (a^{gcd(n,m)})$.

Solution: Since G is cyclic, H is cyclic by Theorem 1.2.10. Hence, $H = (a^k)$ for some positive integer k. Since $a^n \in H$ and $a^m \in H$, k divides both n and m. Hence, k divides $\gcd(n,m)$. Thus, $a^{\gcd(n,m)} \in H = (a^k)$. Hence, $(a^{\gcd(n,m)}) \subset H$. Also, since $\gcd(n,m)$ divides both n and m, $a^n \in (a^{\gcd(n,m)})$ and $a^m \in (a^{\gcd(n,m)})$. Hence, Since H is the smallest subgroup of G containing a^n and a^m and a^n , $a^m \in (a^{\gcd(n,m)}) \subset H$, we conclude that $H = (a^{\gcd(n,m)})$.

QUESTION 2.3.10 Let G = (a). Find the smallest subgroup of G containing a^8 and a^{12} .

Solution: By the previous Question, the smallest subgroup of G containing a^8 and a^{12} is $(a^{gcd(8,12)}) = (a^4)$.

QUESTION 2.3.11 Find the smallest subgroup of Z containing 32 and 40.

Solution: Since Z=(1) is cyclic, once again by Question 2.3.4, the smallest subgroup of Z containing $1^{32}=32$ and $1^{40}=40$ is $(1^{\gcd(32,40)})=(8)$.

QUESTION 2.3.12 Let $a \in G$ such that Ord(a) = n, and let $1 \le k \le n$. Prove that $Ord(a^k) = Ord(a^{n-k})$.

Solution: Since $a^k a^{n-k} = a^n = e$, a^{n-k} is the inverse of a^k . Hence, $Ord(a^k) = Ord(a^{n-k})$.

QUESTION 2.3.13 Let G be an infinite cyclic group. Prove that e is the only element in G of finite order.

Solution: Since G is an infinite cyclic group, G=(a) for some $a\in G$ such that $\operatorname{Ord}(a)$ is infinite. Now, assume that there is an element $b\in G$ such that $\operatorname{Ord}(b)=m$ and $b\neq e$. Since $G=(a), b=a^k$ for some $k\geq 1$. Hence, $e=b^m=(a^k)^m=a^{km}$. Hence, $\operatorname{Ord}(a)$ divides km by Theorem 1.2.1, a contradiction since $\operatorname{Ord}(a)$ is infinite. Thus, e is the only element in G of finite order.

QUESTION 2.3.14 Let G = (a) be a cyclic group. Suppose that G has a finite subgroup H such that $H \neq \{e\}$. Prove that G is a finite group.

Solution: First, observe that H is cyclic by Theorem 1.2.10. Hence, $H = (a^n)$ for some positive integer n. Since H is finite and $H = (a^n)$, $Ord(a^n) = Ord(H) = m$ is finite. Thus, $(a^n)^m = a^{nm} = e$. Hence, Ord(a) divides nm by Theorem 1.2.1. Thus, (a) = G is a finite group.

QUESTION 2.3.15 Let G be a group containing more than 12 elements of order 13. Prove that G is never cyclic.

Solution: Deny. Then G is cyclic. Let $a \in G$ such that Ord(a) = 13. Hence, (a) is a finite subgroup of G. Thus, G must be finite by the previous Question. Hence, by Theorem 1.2.14 there is exactly $\phi(13) = 12$ elements in G of order 13. A contradiction. Hence, G is never cyclic.

QUESTION 2.3.16 Let G = (a) be an infinite cyclic group. Prove that a and a^{-1} are the only generators of G.

solution: Deny. Then G=(b) for some $b\in G$ such that neither b=a nor $b=a^{-1}$. Since $b\in G=(a)$, $b=a^m$ for some $m\in Z$ such that neither m=1 nor m=-1. Thus, $G=(b)=(a^m)$. Hence $a=b^k=(a^m)^k=a^{mk}$ for some $k\in Z$. Since a is of infinite order and $a=a^{mk}$, 1=mk by Theorem 1.2.9, a contradiction since neither m=1 nor m=-1 and mk=1. Thus, our denial is invalid. Now, we show that $G=(a^{-1})$. Since G=(a), we need only to show that $a\in (a^{-1})$. But this is clear since $a=(a^{-1})^{-1}$ by Question 2.1.5.

QUESTION 2.3.17 Find all generators of Z.

Solution: Since Z = (1) is an infinite cyclic group, 1 and -1 are the only generators of Z by the previous Question.

QUESTION 2.3.18 Find an infinite group G such that G has a finite subgroup $H \neq e$.

Solution: Let $G = C \setminus \{0\}$ under multiplication, and let $H = \{x \in G : x^4 = 1\}$. Then H is a finite subgroup of G of order 4.

QUESTION 2.3.19 Give an example of a noncyclic Abelian group.

Solution: Take $G = Q \setminus \{0\}$ under normal multiplication. It is easy to see that G is a noncyclic Abelian group.

QUESTION 2.3.20 Let a be an element in a group G such that Ord(a) is infinite. Prove that $(a), (a^2), (a^3), ...$ are all distinct subgroups of G, and Hence, G has infinitely many proper subgroups.

Solution: Deny. Hence, $(a^i) = (a^k)$ for some positive integers i, k such that k > i. Thus, $a^i = (a^k)^m$ for some $m \in Z$. Hence, $a^i = a^{km}$. Thus, $a^{i-km} = e$. Since k > i, $km \neq i$ and therefore $i - km \neq 0$. Thus, $\operatorname{Ord}(a)$ divides i - km by Theorem 1.2.1. Hence, $\operatorname{Ord}(a)$ is finite, a contradiction.

QUESTION 2.3.21 Let G be an infinite group. Prove that G has infinitely many proper subgroups.

Solution:Deny. Then G has finitely many proper subgroups. Also, by the previous Question, each element of G is of finite order. Let $H_1, H_2, ..., H_n$ be all proper subgroups of finite order of G, and let $D = \bigcup_{i=1}^n H_i$. Since G is infinite, there is an element $b \in G \setminus D$. Since Ord(b) is finite and $b \in G \setminus D$, (b) is a proper subgroup of finite order of G and $(b) \neq H_i$ for each $1 \leq i \leq n$. A contradiction.

QUESTION 2.3.22 Let a, b be elements of a group such that Ord(a) = n and Ord(b) = m and gcd(n,m) = 1. Prove that $H = (a) \cap (b) = \{e\}$.

Solution: Let $c \in H$. Since (c) is a cyclic subgroup of (a), Ord(c) = Ord((c)) divides n. Also, since (c) is a cyclic subgroup of (b), Ord(c) = Ord((c)) divides m. Since gcd(n,m) and Ord(c) divides both n and m, we conclude Ord(c) = 1. Hence, c = e. Thus, $H = \{e\}$.

QUESTION 2.3.23 Let a, b be two elements in a group G such that Ord(a) = 8 and Ord(b) = 27. Prove that $H = (a) \cap (b) = \{e\}$.

Solution: Since gcd(8,27) = 1, by the previous Question $H = \{e\}$.

QUESTION 2.3.24 Suppose that G is a cyclic group and 16 divides Ord(G). How many elements of order 16 does G have?

Solution: Since 16 divides Ord(G), G is a finite group. Hence, by Theorem 1.2.14, number of elements of order 16 is $\phi(16) = 8$.

QUESTION 2.3.25 Let a be an element of a group such that Ord(a) = n. Prove that for each $m \ge 1$, we have $(a^m) = (a^{gcd(n,m)})$

Solution: First observe that gcd(n,m) = gcd(n,(n,m)). Since $Ord(a^m) = n/gcd(n,m)$ and $Ord(a^{gcd(n,m)}) = n/gcd(n,gcd(n,m)) = n/gcd(n,m)$ by Question 2.1.12 and (a) contains a unique subgroup of order n/gcd(n,m) by Theorem 1.2.12, we have $(a^m) = (a^{gcd(n,m)})$.

2.4 Permutation Groups

QUESTION 2.4.1 Let $\alpha = (1, 3, 5, 6)(2, 4, 7, 8, 9, 12) \in S_{12}$. Find $Ord(\alpha)$.

Solution: Since α is a product of disjoint cycles, $Ord(\alpha)$ is the least common divisor of the lengths of the disjoint cycles by Theorem 1.2.20. Hence, $Ord(\alpha) = 12$

QUESTION 2.4.2 Determine whether $\alpha = (1, 2)(3, 6, 8)(4, 5, 7, 8) \in S_9$ is even or odd.

Solution: First write α as a product of 2-cycles. By Theorem 1.2.23 $\alpha = (1,2)(3,8)(3,6)(4,8)(4,7)(4,5)$ is a product of six 2-cycles. Hence, α is even.

QUESTION 2.4.3 Let $\alpha = (1, 3, 7)(2, 5, 7, 8) \in S_{10}$. Find α^{-1} .

Solution: Let A = (1,3,7) and B = (2,5,7,8). Hence, $\alpha = AB$. Thus, $\alpha^{-1} = B^{-1}A^{-1}$. Hence, By Theorem 1.2.25, $\alpha^{-1} = (8,7,5,2)(7,3,1)$.

QUESTION 2.4.4 Prove that if α is a cycle of an odd order, then α is an even cycle.

Solution: Let $\alpha = (a_1, a_2, ..., a_n)$. Since $Ord(\alpha)$ is odd, n is an odd number by Theorem 1.2.20. Hence, $\alpha = (a_1, a_n)(a_1, a_{n-1})...(a_1, a_2)$ is a product of n-1 2-cycles. Since n is odd, n-1 is even. Thus, α is an even cycle.

QUESTION 2.4.5 Prove that $\alpha = (3, 6, 7, 9, 12, 14) \in S_{16}$ is not a product of 3-cycles.

Solution: Since $\alpha = (3,14)(3,12)...(3,6)$ is a product of five 2-cycles, α is an odd cycle. Since each 3-cycle is an even cycle by the previous problem, a permutation that is a product of 3-cycles must be an even permutation. Thus, α is never a product of 3-cycles.

QUESTION 2.4.6 Find two elements, say, a and b, in a group such that Ord(a) = Ord(b) = 2, and Ord(ab) = 3.

Solution: Let a = (1,2), b = (1,3). Then ab = (1,2)(1,3) = (1,3,2). Hence, Ord(a) = Ord(b) = 2, and Ord(ab) = 3.

QUESTION 2.4.7 Let $\alpha = (1, 2, 3)(1, 2, 5, 6) \in S_6$. Find $Ord(\alpha)$, then find α^{35} .

Solution: First write α as a product of disjoint cycles. Hence, $\alpha = (1,3)(2,5,6)$. Thus, $Ord(\alpha) = 6$ by Theorem 1.2.20. Now, since $Ord(\alpha) = 6$, $\alpha^{35}\alpha = \alpha^{36} = e$. Hence, $\alpha^{35} = \alpha^{-1}$. Thus, $\alpha^{-1} = (6,5,2)(3,1) = (6,5,2,1)(3,2,1)$.

QUESTION 2.4.8 Let $1 \le n \le m$. Prove that S_m contains a subgroup of order n.

Solution: Since $1 \leq n \leq m$, $\alpha = (1, 2, 3, 4, ..., n) \in S_m$. By Theorem 1.2.20, $Ord(\alpha) = n$. Hence, the cyclic group (α) generated by α is a subgroup of S_m of order n.

QUESTION 2.4.9 Give an example of two elements, say, a and b, such that Ord(a)=2, Ord(b)=3 and $Ord(ab) \neq lcm(2,3)=6$.

Solution: Let a = (1, 2), b = (1, 2, 3). Then ab = (2, 3). Hence, Ord(a) = 2, Ord(b) = 3, and $Ord(ab) = 2 \neq lcm(2, 3) = 6$.

QUESTION 2.4.10 Find two elements a, b in a group such that Ord(a) = 5, Ord(b) = 7, and Ord(ab) = 7.

Solution: Let $G = S_7$, a = (1,2,3,4,5), and b = (1,2,3,4,5,6,7). Then ab = (1,3,5,6,7,2,4). Hence, Ord(a) = 5, Ord(b) = 7, and Ord(ab) = 7.

QUESTION 2.4.11 Find two elements a, b in a group such that Ord(a) = 4, Ord(b) = 6, and Ord(ab) = 4.

Solution: Let $G = S_6$, a = (1,2,3,4), b = (1,2,3,4,5,6). Then ab = (1,3)(2,4,5,6). By Theorem 1.2.20, Ord(ab) = 4.

QUESTION 2.4.12 Find two elements a, b in a group such that Ord(a) = Ord(b) = 3, and Ord(ab) = 5.

Solution: Let a = (1,2,3), $b = (1,4,5) \in S_5$. Then ab = (1,4,5,2,3). Hence, Ord(a) = Ord(b) = 3, and Ord(ab) = 5.

QUESTION 2.4.13 Find two elements a, b in a group such that Ord(a) = Ord(b) = 4, and Ord(ab) = 7.

Solution: Let a = (1,2,3,4), $b = (1,5,6,7) \in S_7$. Then ab = (1,5,6,7,2,3,4). Hence, Ord(a) = Ord(b) = 4, and Ord(ab) = 7.

QUESTION 2.4.14 Let $2 \le m \le n$, and let a be a cycle of order m in S_n . Prove that $a \notin Z(S_n)$.

Solution: Let $a = (a_1, a_2, ..., a_m)$, and let

 $b = (a_1, a_2, a_3, ..., a_m, b_{m+1})$. Suppose that m is an odd number and m < n. Then

 $ab = (a_1, a_3, a_5, ..., a_m, b_{m+1}, a_2, a_4, a_{m-1})$. Hence, Ord(ab) = m+1. Now, assume that $a \in Z(S_n)$. Since Ord(a) = m and Ord(b) = m+1 and gcd(m,m+1) = 1 and ab = ba, we have Ord(ab) = m(m+1) by Question 2.1.14. A contradiction since ord(ab) = m+1. Thus, $a \notin Z(S_n)$. Now, assume that m is an even number and m < n. Then $ab = (a_1, a_3, a_5, ..., a_{m-1})(a_2, a_4, a_6, ..., a_m, b_{m+1})$. Hence, Ord(ab) = ((m-1)/2))((m-1)/2 + 1) by Theorem 1.2.20. Assume $a \in Z(S_n)$. Since Ord(a) = m and Ord(b) = m+1 and gcd(m,m+1) = 1 and ab = ba, Ord(ab) = m(m+1) by Question 2.1.14. A contradiction since $Ord(ab) = ((m-1)/2)((m-1)/2 + 1) \neq m(m+1)$. Thus, $a \notin Z(S_n)$. Now, assume m = n. Then a = (1, 2, 3, 4, ..., n). Let c = (1, 2). Then ac = (1, 3, 4, 5, 6, ..., n) and ca = (2, 3, 4, 5, ..., n). Hence, $ac \neq ca$. Thus, $a \notin Z(S_n)$.

QUESTION 2.4.15 Let $H = \{\alpha \in S_n : \alpha(1) = 1\}$ (n > 1). Prove that H is a subgroup of S_n .

Solution: Let α and $\beta \in H$. Since $\alpha(1) = 1$ and $\beta(1) = 1$, $\alpha\beta(1) = \alpha(\beta(1) = 1)$. Hence, $\alpha\beta \in H$. Since H is a finite set (being a subset of S_n) and closed, H is a subgroup of S_n by Theorem 1.2.8.

QUESTION 2.4.16 Let n > 1. Prove that S_n contains a subgroup of order (n-1)!.

Solution: Let H be the subgroup of S_n described in the previous Question. It is clear that Ord(H) = (n-1)!.

QUESTION 2.4.17 Let $a \in A_5$ such that Ord(a) = 2. Show that $a = (a_1, a_2)(a_3, a_4)$, where a_1, a_2, a_3, a_4 are distinct elements.

Solution: Since Ord(a) = 2, we conclude by Theorem 1.2.20 that we can write a as disjoint 2-cycles. Since the permutation is on a set of 5 elements, it is clear now that $a = (a_1, a_2)(a_3, a_4)$, where a_1, a_2, a_3, a_4 are distinct elements.

QUESTION 2.4.18 Let $\alpha \in S_5$ be a 5-cycle, i.e., $Ord(\alpha) = 5$ (and hence $\alpha \in A_5$), and let $\beta = (b_1, b_2) \in S_5$ be a 2-cycle. If $\alpha(b_1) = b_2$ or $\alpha(b_2) = b_1$, then shhow that $Ord(\alpha\beta) = 4$. If $\alpha(b_1) \neq b_2$ and $\alpha(b_2) \neq b_1$, then show that $Ord(\alpha\beta) = 6$.

Solution: Let $\beta=(b_1,b_2)$. We consider two cases: first assume that $\alpha(b_2)=b_1$. Then $\alpha(b_1)\neq b_2$ because α is a 5-cycle. Hence $\alpha\beta=(b_1)(b_2,b_3,b_4,b_5)$ where b_1,b_2,b_3,b_4,b_5 are distinct. Thus $Ord(\alpha\beta)=4$ by Theorem 1.2.20. Also, if $\alpha(b_1)=b_2$, then $\alpha(b_2)\neq b_1$ again because α is a 5-cycle. Hence $\alpha\beta=(b_1,b_3,b_4,b_5)(b_2)$. Thus $Ord(\alpha\beta)=4$ again by Theorem 1.2.20. Second case, assume that neither $\alpha(b_1)=b_2$ nor $\alpha(b_2)=b_1$. Hence $\alpha\beta(b_1)=b_3\neq b_2$. Suppose that $\alpha\beta(b_3)=b_1$. Then $\alpha=(b_3,b_1,b_4,b_5,b_2)$ and thus $\alpha\beta=(b_1,b_3)(b_2,b_4,b_5)$ has order 6. Observe that $\alpha\beta(b_3)\neq b_2$ because $\alpha\beta(b_1)=\alpha(b_2)=b_3$ and $\alpha\beta(b_3)=\alpha(b_3)$ and α is a 5-cycle. Hence assume that $\alpha\beta(b_3)=b_4$, where $b_4\neq b_1$ and $b_4\neq b_2$. Then since $\alpha(b_1)\neq b_2$ and $\alpha(b_2)\neq b_1$, we conclude that $\alpha\beta=(b_1,b_3,b_4)(b_2,b_5)$ has order 6.

QUESTION 2.4.19 Let $\alpha \in S_5$ be a 5-cycle, $\beta \in S_5$ be 2-cycle, and suppose that $Ord(\alpha\beta) = 4$. Show that $Ord(\alpha^2\beta) = 6$.

Solution: Since $Ord(\alpha) = 5$, $Ord(\alpha^2) = 5$, and hence α^2 is a 5-cycle. Let $\beta = (b_1, b_2)$. Since $Ord(\alpha\beta) = 4$, we conclude $\alpha(b_1) = b_2$ or $\alpha(b_2) = b_1$ by Question 2.4.18. Suppose that $\alpha(b_1) = b_2$. Then α has the form $(..., b_1, b_2, ...)$ and $\alpha(b_2) \neq b_1$ because α is 5-cycle. Thus $\alpha^2(b_1) \neq b_2$ and $\alpha^2(b_2) \neq b_1$. Thus by Question 2.4.18 we conclude that $Ord(\alpha^2\beta) = 6$.

2.5 Cosets and Lagrange's Theorem

QUESTION 2.5.1 Let H = 4Z is a subgroup of Z. Find all left cosets of H in G.

Solution: H, $1+H=\{...,-11,-7,-3,1,5,9,13,17,....\}$, $2+H=\{...,-14,-10,-6,-2,2,6,10,14,18,...\}$, $3+H=\{...,-13,-9,-5,-1,3,7,11,15,19,...\}$.

QUESTION 2.5.2 Let $H = \{1, 15\}$ is a subgroup of G = U(16). Find all left cosets of H in G.

Solution: Since $Ord(G) = \phi(16) = 8$ and Ord(H) = 2, [G:H] = number of all left cosets of H in G = Ord(G)/Ord(H) = 8/2 = 4 by Theorem 1.2.28. Hence, left cosets of H in G are : H, $3H = \{3, 13\}$, $5H = \{5, 11\}$, $7H = \{7, 9\}$.

QUESTION 2.5.3 Let a be an element of a group such that Ord(a) = 22. Find all left cosets of (a^4) in (a).

Solution: First, observe that $(a) = \{e, a, a^2, a^3, ..., a^{21}\}$. Also, Since $Ord(a^2) = Ord(a^4)$ by Question 2.3.25, we have $(a^4) = (a^2) = \{e, a^2, a^4, a^6, a^8, a^{10}, a^{12}, a^{14}, a^{16}, a^{18}, a^{20}\}$ Hence, by Theorem 1.2.28, number of all left cosets of (a^4) in (a) is 22/11 = 2. Thus, the left cosets of (a^4) in (a) are : (a^4) , and $a(a^4) = \{a, a^3, a^5, a^7, a^9, ..., a^{21}\}$.

QUESTION 2.5.4 Let G be a group of order 24. What are the possible orders for the subgroups of G.

Solution: Write 24 as product of distinct primes. Hence, $24 = (3)(2^3)$. By Theorem 1.2.27, the order of a subgroup of G must divide the order of G. Hence, We need only to find all divisors of 24. By Theorem 1.2.17, number of all divisors of 24 is (1+1)(3+1) = 8. Hence, possible orders for the subgroups of G are : 1,3,2,4,8,6,12,24.

QUESTION 2.5.5 Let G be a group such that Ord(G) = pq, where p and q are prime. Prove that every proper subgroup of G is cyclic.

Solution: Let H be a proper subgroup of G. Then Ord(H) must divide pq by Theorem 1.2.27. Since H is proper, the possible orders for H are : 1, p,q. Suppose Ord(H) = 1, then $H = \{e\}$ is cyclic. Suppose Ord(H) = p. Let $h \in H$ such that $h \neq e$. Then Ord(h) divide Ord(H) by Theorem 1.2.29. Since $h \neq e$ and Ord(h) divides p, Ord(h) = p. Thus, H = (h) is cyclic. Suppose Ord(H) = q. Then by a similar argument as before, we conclude that H is cyclic. Hence, every proper subgroup of G is cyclic.

QUESTION 2.5.6 Let G be a group such that Ord(G) = 77. Prove that every proper subgroup of G is cyclic.

Solution: Since Ord(G) = 77 = (7)(11) is a product of two primes, every proper subgroup of G is cyclic by the previous Question.

QUESTION 2.5.7 Let $n \geq 2$, and let $a \in U(n)$. Prove that $a^{\phi(n)} = 1$ in U(n).

Solution: Since $Ord(U(n)) = \phi(n)$ and $a \in U(n)$, $a^{\phi(n)} = 1$ in U(n) by Theorem 1.2.30.

QUESTION 2.5.8 *Let* $3 \in U(16)$. *Find* 3^{19} *in* U(16).

Solution: Since $Ord(U(16)) = \phi(16) = 8$, $3^8 = 1$ by the previous Question. Hence, $3^{8k} = 1$ for each $k \ge 1$. Thus, $3^{19} = 3^{19mod8} = 3^3 = 27(mod16) = 11$ in U(16).

QUESTION 2.5.9 Let H, K be subgroups of a group. If Ord(H) = 24 and Ord(K) = 55, find the order of $H \cap K$.

Solution: Since $H \cap K$ is a subgroup of both H and K, $Ord(H \cap K)$ divides both Ord(H) and Ord(K) by Theorem 1.2.27. Since gcd(24,55) = 1 and $Ord(H \cap K)$ divides both numbers 24 and 55, we conclude that $Ord(H \cap K) = 1$. Thus, $H \cap K = \{e\}$.

QUESTION 2.5.10 Let G be a group with an odd number of elements. Prove that $a^2 \neq e$ for each non identity $a \in G$.

Solution: Deny. Hence, for some non identity element $a \in G$, we have $a^2 = e$. Thus, $\{e, a\}$ is a subgroup of G of order 2. Hence, 2 divides Ord(G) by Theorem 1.2.27. A contradiction since 2 is an even integer and Ord(G) is an odd integer.

QUESTION 2.5.11 Let G be an Abelian group with an odd number of elements. Prove that the product of all elements of G is the identity.

Solution: By the previous Question, G does not have a non identity element that is the inverse of itself,i.e. $a^2 \neq e$ for each non identity $a \in G$. Hence, the elements of G are of the following form : $e, a_1, a_1^{-1}, a_2, a_2^{-1}, ..., a_m, a_m^{-1}$. Hence, $e, a_1 a_a^{-1} a_2 a_2^{-1} a_3 a_3^{-1} ... a_m a_m^{-1} = e(a_1 a_1^{-1})(a_2 a_2^{-1})(a_3 a_3^{-1}) ... (a_m a_m^{-1}) = e(e)(e)(e)...(e) = e$

QUESTION 2.5.12 Let G be a group with an odd number of elements. Prove that for each $a \in G$, the equation $x^2 = a$ has a unique solution.

Solution: First, we show that for each $a \in G$, the equation $x^2 = a$ has a solution. Let $a \in G$, and let m = Ord(a). By Theorem 1.2.29, m must divide Ord(G). Since Ord(G) is an odd number and Ord(a) divides Ord(G), m is an odd number. Hence, let $x = a^{(m+1)/2}$. Then, $(a^{(m+1)/2})^2 = a^{m+1} = aa^m = a(e) = a$ is a solution to the equation $x^2 = a$. Now, we show that $a^{(Ord(a)+1)/2}$ is the only solution to the equation $x^2 = a$ for each $a \in G$. Hence, let $a \in G$. Assume there is a $b \in G$ such that $b^2 = a$. Hence, $(b^2)^{Ord(a)} = a^{Ord(a)} = e$. Thus, Ord(b) divides Ord(a). Since Ord(b) must be an odd number and hence Ord(a) by Theorem 1.2.5. Thus, Ord(a) = e. Now, Ord(a) = e.

QUESTION 2.5.13 Let a, b be elements of a group such that $b \notin (a)$ and Ord(a) = Ord(b) = p is a prime number. Prove that $(b^i) \cap (a^j) = \{e\}$ for each $1 \le i < p$ and for each $1 \le j < p$.

Solution: Let $1 \le i < p$ and $1 \le j < p$, and let $H = (b^i) \cap (a^j)$. Since Ord(a) = Ord(b) = p is a prime number and H is a subgroup of both (b^i) and (a^j) , Ord(H) divides p by Theorem 1.2.27. Hence, Ord(H) = 1 or Ord(H) = p. Suppose that Ord(H) = p. Then $(b^i) = (a^j)$. But since $Ord(b^i) = Ord(b)$ and $Ord(a) = Ord(a^j)$, we have $(b) = (b^i) = (a^j) = (a)$. Hence, $b \in (a)$ which is a contradiction. Thus, Ord(H) = 1. Hence, $H = \{e\}$.

QUESTION 2.5.14 Let G be a non-Abelian group of order 2p for some prime $p \neq 2$. Prove that G contains exactly p-1 elements of order p and it contains exactly p elements of order 2.

Solution: Since p divides the order of G, G contains an element a of order p by Theorem 1.2.31. Hence, H=(a) is a subgroup of G of order p. Hence, [G:H]=2p/p=2. Let $b\in G\setminus H$. Hence, H and bH are the only left cosets of H in G. Now, We show that $b^2 \notin bH$. Suppose that $b^2 \in bH$. Hence, $b^2 = bh$ for some $h \in H$. Thus, $b = h \in H$. A contradiction since $b \notin H$. Since $G = H \cup bH$ and $b^2 \notin bH$, we conclude that $b^2 \in H$. Since Ord(H) = p is a prime number and $b^2 \in H$, $Ord(b^2)$ must be 1 or p by Theorem 1.2.29. Suppose that $Ord(b^2) = p$. Then $b^{2p} = e$. Hence, Ord(b) = p or Ord(b) = 2p. Suppose that Ord(b) = 2p. Then G = (b) is a cyclic group. Hence, G is Abelian. A contradiction. Thus, assume that Ord(b) = p. Then $Ord(b) = Ord(b^2) = p$. Since Ord(H) = p and $Ord(b^2) = Ord(b) = p$ and $b^2 \in H$, we conclude that $(b)=(b^2)=H$. Hence, $b\in H$. A contradiction. Thus, $Ord(b^2)$ must be 1. Hence, $b^2 = e$. Thus, each element of G that lies outside H is of order 2. Since Ord(H) = p and Ord(G) = 2p, we conclude that G contains exactly p elements of order p. Hence, if $c \in G$ and Ord(c) = p, then $c \in H$. Thus, G contains exactly p-1 elements of order p.

QUESTION 2.5.15 Let G be a non-Abelian group of order 26. Prove that G contains exactly 13 elements of order 2.

Solution. Since 26 = (2)(13), by the previous Question G contains exactly 13 elements of order 2.

QUESTION 2.5.16 Let G be an Abelian group of order pq for some prime numbers p and q such that $p \neq q$. Prove that G is cyclic.

Solution: Since p divides Ord(G) and q divides Ord(G), G contains an element, say, a, of order p and it contains an element, say,b, of order q. Since ab = ba and gcd(p,q) = 1, Ord(ab) = pq by Question 2.1.14. Hence, G = (ab) is a cyclic group.

QUESTION 2.5.17 Let G be an Abelian group of order 39. Prove that G is cyclic.

Solution: Since 39 = (3)(13), G is cyclic by the previous Question.

QUESTION 2.5.18 Find an example of a non-cyclic group, say, G, such that Ord(G) = pq for some prime numbers p and q and $p \neq q$.

Solution: Let $G = S_3$. Then Ord(G) = 6 = (2)(3). But we know that S_3 is not Abelian and hence it is not cyclic.

QUESTION 2.5.19 Let G be a finite group such that Ord(G) = p is a prime number. Prove that G is cyclic.

Solution: Let $a \in G$ such that $a \neq e$. Then Ord(a) = p by Theorem 1.2.29. Hence, G = (a) is cyclic.

QUESTION 2.5.20 Find an example of a non-Abelian group, say, G, such that every proper subgroup of G is cyclic.

Solution: Let $G = S_3$. Then G is a non-Abelian group of order 6. Let H be a proper subgroup of G. Then Ord(H) = 1 or 2 or 3 by Theorem 1.2.27. Hence, by the previous Question H is cyclic.

QUESTION 2.5.21 Let G be a group such that $H = \{e\}$ is the only proper subgroup of G. Prove that Ord(G) is a prime number.

Solution: Ord(G) can not be infinite by Question 2.3.21. Hence, G is a finite group. Let Ord(G) = m. Suppose that m is not prime. Hence, there is a prime number q such that q divides m. Thus, G contains an element, say,a, of of order q by Theorem 1.2.31. Thus, (a) is a proper subgroup of G of order q. A contradiction. Hence, Ord(G) = m is a prime number.

QUESTION 2.5.22 Let G be a finite group with an odd number of elements, and suppose that H be a proper subgroup of G such that Ord(H) = p is a prime number. If $a \in G \setminus H$, then prove that $aH \neq a^{-1}H$.

Solution: Since Ord(H) divides Ord(G) and Ord(G) is odd, we conclude that $p \neq 2$. Let $a \in G \setminus H$. Suppose that $aH = a^{-1}H$. Then $a^2 = h \in H$ for some $h \in H$ by Theorem 1.2.26. Hence, $a^{2p} = h^p = e$. Thus, Ord(a) divides 2p by Theorem 1.2.1. Since Ord(G) is odd and by Theorem 1.2.29 Ord(a) divides Ord(G), Ord(a) is an odd number. Since Ord(a) is odd and Ord(a) divides 2p and $p \neq 2$ and $a \notin H$, we conclude Ord(a) = p. Hence, $Ord(a^2) = p$ and therefore $(a) = (a^2)$. Since Ord(H) = p and $a^2 \in H$ and Ord(a) = p, $(a) = (a^2) = H$. Thus, $a \in H$. A contradiction. Thus, $aH \neq a^{-1}H$ for each $a \in G \setminus H$.

QUESTION 2.5.23 Suppose that H, K are subgroups a group G such that $D = H \cap K \neq \{e\}$. Suppose Ord(H) = 14 and Ord(K) = 35. Find Ord(D).

Solution: Since D is a subgroup of both H and K, Ord(D) divides both 14 and 35 by Theorem 1.2.27. Since 1 and 7 are the only numbers that divide both 14 and 35 and $H \cap K \neq \{e\}$, $Ord(D) \neq 1$. Hence, Ord(D) = 7

QUESTION 2.5.24 Let a, b be elements in a group such that ab = ba and Ord(a) = 25 and Ord(b) = 49. Prove that G contains an element of order 35.

Solution: Since ab = ba and gcd(25,49) = 1, Ord(ab) = (25)(49) by Question 2.1.14. Hence, let $x = (ab)^{35}$. Then, by Question 2.1.12, $Ord(x) = Ord(ab^{35}) = ord(ab)/gcd(35, Ord(ab)) = (25)(49)/gcd(35, (25)(49)) = 35$. Hence, G contains an element of order 35.

QUESTION 2.5.25 Let H be a subgroup of S_n . Show that either $H \subset A_n$ or exactly half of the elements of H are even permutation.

Solution: Suppose that $H \not\subset A_n$. Let K be the set of all even permutations of H. Then K is not empty since $e \in K$ (e is the identity). It is clear that K is a subgroup of H. Let β be an odd permutation of H. Then the each element of the left coset βK is an odd permutation (recall that a product of odd with even gives an odd permutation). Now let α be an odd permutation H. Since H is a group, there is an element $k \in H$ such that $\alpha = \beta k$. Since α and β are odd, we conclude that k is even, and hence $k \in K$. Thus $\alpha \in \beta K$. Hence βK contains all odd permutation of H. Since $Ord(\beta K) = Ord(K)$ (because βK is a left coset of K), we conclude that exactly half of the elements of H are even permutation.

2.6 Normal Subgroups and Factor Groups

QUESTION 2.6.1 Let H be a subgroup of a group G such that [G:H] = 2. Prove that H is a normal subgroup of G.

Solution: Let $a \in G \setminus H$. Since [G:H] = 2, H and aH are the left cosets of H in G ,and H and Ha are the right cosets of H in G. Since $G = H \cup aH = H \cup Ha$, and $H \cap aH = \phi$, and $H \cap Ha = \phi$, we conclude that aH = Ha. Hence, $aHa^{-1} = H$. Thus, H is a normal subgroup of G by Theorem 1.2.32.

QUESTION 2.6.2 Prove that A_n is a normal subgroup of S_n .

Solution: Since $[S_n : A_n] = Ord(S_n)/Ord(A_n)$ by Theorem 1.2.28, we conclude that $[S_n : A_n] = 2$. Hence, A_n is a normal subgroup of S_n by the previous Question.

QUESTION 2.6.3 Let a be an element of a group G such that Ord(a) is finite. If H is a normal subgroup of G, then prove that Ord(aH) divides Ord(a).

Solution: Let m = Ord(a). Hence, $(aH)^m = a^mH = eH = H$. Thus, Ord(aH) divides m = Ord(a) by Theorem 1.2.1.

QUESTION 2.6.4 Let H be a normal subgroup of a group G and let $a \in G$. If Ord(aH) = 5 and Ord(H) = 4, then what are the possibilities for the order of a.

Solution: Since Ord(aH) = 5, $(aH)^5 = a^5H = H$. Hence, $a^5 \in H$ by Theorem 1.2.26. Thus, $a^5 = h$ for some $h \in H$. Thus, $(a^5)^4 = h^4 = e$. Thus, $a^{20} = e$. Hence, Ord(a) divides 20 by Theorem 1.2.1. Since $Ord(aH) \mid Ord(a)$ by the previous Question and $Ord(a) \mid 20$, we conclude that all possibilities for the order of a are : 5, 10, 20.

QUESTION 2.6.5 Prove that Z(G) is a normal subgroup of a group G.

Solution: Let $a \in G$, and let $z \in Z(G)$. Then $aza^{-1} = aa^{-1}z = ez = z$. Thus, $aZ(G)a^{-1} = Z(G)$ for each $a \in G$. Hence, Z(G) is normal by Theorem 1.2.32.

QUESTION 2.6.6 Let G be a group and let L be a subgroup of Z(G) (note that we may allow L = Z(G)), and suppose that G/L is cyclic. Prove that G is Abelian.

Solution: Since G/L is cyclic, G/Z(G)=(wL) for some $w\in G$. Let $a,b\in G$. Since $G/L=(wL),\ aL=w^nL$ and $bL=w^mL$ for some integers n,m. Hence, $a=w^nz_1$ and $b=w^mz_2$ for some $z_1,z_2\in L$ by Theorem 1.2.26. Since $z_1,z_2\in L\subset Z(G)$ and $w^nw^m=w^mw^n$, we have $ab=w^nz_1w^mz_2=w^mz_2w^nz_1=ba$. Thus, G is Abelian.

QUESTION 2.6.7 Let G be a group such that Ord(G) = pq for some prime numbers p, q. Prove that either Ord(Z(G)) = 1 or G is Abelian.

Solution: Deny. Hence 1 < Ord(Z(G)) < pq. Since Z(G) is a subgroup of G, Ord(Z(G)) divides Ord(G) = pq by Theorem 1.2.27. Hence, Ord(Z(G)) is either p or q. We may assume that Ord(Z(G)) = p. Hence, Ord(G/Z(G)) = [G:Z(G)] = Ord(G)/Ord(Z(G)) = q is prime. Thus, G/Z(G) is cyclic by Question 2.5.19. Hence, by the previous Question, G is Abelian, A contradiction. Thus, our denial is invalid. Therefore, either Ord(Z(G)) = 1 or Ord(Z(G)) = pq,i.e. G is Abelian.

QUESTION 2.6.8 Give an example of a non-Abelian group, say, G, such that G has a normal subgroup H and G/H is cyclic.

Solution: Let $G = S_3$, and let $a = (1, 2, 3) \in G$. Then Ord(a) = 3. Let H = (a). Then Ord(H) = Ord(a) = 3. Since [G:H] = 2, H is a normal subgroup of G by Question 2.6.1. Thus, G/H is a group and Ord(G/H) = 2. Hence, G/H is cyclic by Question 2.5.19. But we know that $G = S_3$ is not Abelian group.

QUESTION 2.6.9 Prove that every subgroup of an Abelian group is normal.

Solution: Let H be a subgroup of an Abelian group G. Let $g \in G$. Then $gHg^{-1} = gg^{-1}H = eH = H$. Hence, H is normal by Theorem 1.2.32.

QUESTION 2.6.10 Let Q^+ be the set of all positive rational numbers, and let Q^* be the set of all nonzero rational numbers. We know that Q^+ under multiplication is a (normal) subgroup of Q*. Prove that $[Q^*:Q^+]=2$.

Solution: Since $-1 \in Q^* \setminus Q^+$, $-1Q^+$ is a left coset of Q^+ in Q^* . Since $Q^+ \cap -1Q^+ = \{0\}$ and $Q^+ \cup -1Q^+ = Q^*$, we conclude that Q^+ and $-1Q^+$ are the only left cosets of Q^+ in Q^* . Hence, $[Q^*:Q^+]=2$.

QUESTION 2.6.11 Prove that Q (the set of all rational numbers) under addition, has no proper subgroup of finite index.

Solution: Deny. Hence Q under addition, has a proper subgroup, say, H, such that [Q:H]=n is a finite number. Since Q is Abelian, H is a normal subgroup of Q by Question 2.6.9. Thus, Q/H is a group and Ord(Q/H)=[Q:H]=n. Now, let $q\in Q$. Hence, by Theorem 1.2.30, $(qH)^n=q^nH=H$. Thus, $q^n=h\in H$ by Theorem 1.2.26. Since addition is the operation on Q, q^n means nq. Thus, $q^n=nq\in H$ for each $q\in Q$. Since $ny\in H$ for each $y\in Q$ and $q/n\in Q$, we conclude that $q=n(q/n)\in H$. Thus, $Q\subset H$. A contradiction since H is a proper subgroup of Q. Hence, our denial is invalid. Thus, Q has no proper subgroup of finite index.

QUESTION 2.6.12 Prove that R^* (the set of all nonzero real numbers) under multiplication, has a proper subgroup of finite index.

Solution: Let $H = R^+$ (the set of all nonzero positive real numbers). Then, it is clear that H is a (normal) subgroup of R^* . Since $R = R^+ \cup -1R^+$ and $R^+ \cap -1R^+ = \{0\}$, we conclude that R^+ and $-1R^+$ are the only left cosets of R^+ in R^* . Hence, $[R^* : R^+] = 2$.

QUESTION 2.6.13 Prove that R^+ (the set of all nonzero positive real numbers) under multiplication, has no proper subgroup of finite index.

Solution: Deny. Hence, R^+ has a proper subgroup, say, H, such that $[R^+:H]=n$ is a finite number. Let $r\in R^+$. Since $rH\in R^+/H$ and $Ord(R^+/H)=n$, we conclude that $(rH)^n=r^nH=H$ by Theorem 1.2.30. Thus, $r^n\in H$ for each $r\in R^+$. In particular, $r=(\sqrt[n]{r})^n\in H$. Thus, $R^+\subset H$. A contradiction since H is a proper subgroup of R^+ . Hence, R^+ has no proper subgroups of finite index.

QUESTION 2.6.14 Prove that C^* (the set of all nonzero complex numbers) under multiplication, has no proper subgroup of finite index.

Solution: Just use similar argument as in the previous Question.

QUESTION 2.6.15 Prove that R^+ (the set of all positive nonzero real numbers) is the only proper subgroup of R^* (the set of all nonzero real numbers) of finite index.

Solution: Deny. Then R^* has a proper subgroup $H \neq R^+$ such that $[R^*:H] = n$ is finite. Since $Ord(R^*/H) = [R^*:H] = n$, we have $(xH)^n = x^nH = H$ for each $x \in R^*$ by Theorem 1.2.30. Thus, $x^n \in H$ for each $x \in R^*$. Now, let $x \in R^+$. Then $x = (\sqrt[n]{x})^n \in H$. Thus, $R^+ \subset H$. Since $H \neq R^+$ and $R^+ \subset H$, we conclude that H must contain a negative number, say, -y, for some $y \in R^+$. Since $1/y \in R^+ \subset H$ and $-y \in H$ and H is closed, we conclude that $-y(1/y) = -1 \in H$. Since H is closed and $R^+ \subset H$ and $-1 \in H$, $-R^+$ (the set of all nonzero negative real numbers) $\subset H$. Since $R^+ \subset H$ and $-R^+ \subset H$, we conclude that $H = R^*$. A contradiction since H is a proper subgroup of R^* . Hence, R^+ is the only proper subgroup of R^* of finite index.

QUESTION 2.6.16 Let N be a normal subgroup of a group G. If H is a subgroup of G, then prove that $NH = \{nh : n \in N \text{ and } h \in H\}$ is a subgroup of G.

Solution: Let $x, y \in NH$. By Theorem 1.2.7 We need only to show that $x^{-1}y \in NH$. Since $x, y \in NH$, $x = n_1h_1$ and $y = n_2h_2$ for some $n_1, n_2 \in N$ and for some $h_1, h_2 \in H$. Hence, we need to show that $(n_1h_1)^{-1}n_2h_2 = h_1^{-1}n_1^{-1}n_2h_2 \in NH$. Since N is normal, we have $h_1^{-1}n_1^{-1}n_2h_1 = n_3 \in N$. Hence, $h_1^{-1}n_1^{-1}n_2h_2 = (h_1^{-1}n_1^{-1}n_2h_1)h_1^{-1}h_2 = n_3h_1^{-1}h_2 \in NH$. Thus, NH is a subgroup of G.

QUESTION 2.6.17 Let N, H be normal subgroups of a group G. Prove that $NH = \{nh : n \in N \text{ and } h \in H\}$ is a normal subgroup of G.

Solution: Let $g \in G$. Then $g^{-1}NHg = g^{-1}Ngg^{-1}Hg = (g^{-1}Ng)(g^{-1}Hg) = NH$.

QUESTION 2.6.18 Let N be a normal cyclic subgroup of a group G. If H is a subgroup of N, then prove that H is a normal subgroup of G.

Solution: Since N is cyclic, N = (a) for some $a \in N$. Since H is a subgroup of N and every subgroup of a cyclic group is cyclic and N = (a), we have $H = (a^m)$ for some integer m. Let $g \in G$, and let $b \in H = (a^m)$. Then $b = a^{mk}$ for some integer k. Since N =(a) is normal in G, we have $g^{-1}ag = a^n \in N$ for some integer n. Since $g^{-1}ag = a^n$ and by Question 2.1.1 $(g^{-1}a^{mk}g) = (g^{-1}ag)^{mk}$, we have $g^{-1}bg = g^{-1}a^{mk}g = (g^{-1}ag)^{mk} = (a^n)^{mk} = a^{mkn} \in H = (a^m)$

QUESTION 2.6.19 Let G be a finite group and H be a subgroup of G with an odd number of elements such that [G:H] = 2. Prove that the product of all elements of G (taken in any order) does not belong to H.

Solution: Since [G:H] = 2, by Question 2.6.1 we conclude that H is normal in G. Let $g \in G \setminus H$. Since [G:H] = 2, H and gH are the only elements of the group G/H. Since [G:H] = Ord(G)/Ord(H) = 2, Ord(G) = 2Ord(H). Since Ord(H) = m is odd and Ord(G) = 2Ord(H) = 2m, we conclude that there are exactly m elements that are in G but not in G. Now, say, G0, G1, G2, G3, ..., G4, G4, G5, G5, G6. Since G6, G6, G7, G8, G9, G9,

QUESTION 2.6.20 Let H be a normal subgroup of a group G such that Ord(H) = 2. Prove that $H \subset Z(R)$.

Solution: Since Ord(H) = 2, we have $H = \{e, a\}$. Let $g \in G$ and $g \neq a$. Since $g^{-1}Hg = H$, we conclude that $g^{-1}ag = a$. Hence, ag = ga. Thus, $a \in Z(R)$. Thus, $H \subset Z(R)$.

QUESTION 2.6.21 Let G be a finite group and H be a normal subgroup of G. Suppose that Ord(aH) = n in G/H for some $a \in G$. Prove that G contains an element of order n.

Solution: Since Ord(aH) = n, Ord(aH) divides Ord(a) by Question 2.6.3. Hence, Ord(a) = nm for some positive integer m. Thus, by Question 2.1.12, we have $Ord(a^m) = Ord(a)/gcd(m, nm) = nm/m = n$. Hence, $a^m \in G$ and $Ord(a^m) = n$.

QUESTION 2.6.22 Find an example of an infinite group, say, G, such that G contains a normal subgroup H and Ord(aH) = n in G/H but G does not contain an element of order n.

Solution: Let G = Z under normal addition, and n = 3, and H = 3Z. Then H is normal in Z and Ord(1+3Z) = 3, but Z does not contain an element of order 3.

QUESTION 2.6.23 Let H, N be finite subgroups of a group G, say, Ord(H) = k and Ord(N) = m such that gcd(k,m) = 1. Prove that $HN = \{hn : h \in H \text{ and } n \in N\}$ has exactly km elements.

Solution: Suppose that $h_1n_1 = h_2n_2$ for some $n_1, n_2 \in N$ and for some $h_1, h_2 \in H$. We will show that $h_1 = h_2$ and $n_1 = n_2$. Hence, $n_1n_2^{-1} = h_1^{-1}h_2$. Since Ord(N) = m, we have $e = (n_1n_2^{-1})^m = (h_1^{-1}h_2)^m$. Thus, $Ord(h_1h_2^{-1})$ divides m. Since gcd(k,m) = 1 and $Ord(h_1h_2^{-1})$ divides both k and m, we conclude that $Ord(h_1^{-1}h_2) = 1$. Hence, $h_1^{-1}h_2 = e$. Thus, $h_2 = h_1$. Also, since Ord(H) = k, we have $e = (h_1^{-1}h_2)^k = (n_1n_2^{-1})^k$. Thus, by a similar argument as before, we conclude that $n_1 = n_2$. Hence, HN has exactly km elements.

QUESTION 2.6.24 Let N be a normal subgroup of a finite group G such that Ord(N) = 7 and ord(aN) = 4 in G/N for some $a \in G$. Prove that G has a subgroup of order 28.

Solution: Since G/N has an element of order 4 and G is finite, G has an element, say, b, of order 4 by Question 2.6.21. Thus, H=(b) is a cyclic subgroup of G of order 4. Since N is normal, we have NH is a subgroup of G by Question 2.6.16. Since $\gcd(7,4)=1$, $\operatorname{Ord}(NH)=28$ by the previous Question.

QUESTION 2.6.25 Let G be a finite group such that $Ord(G) = p^n m$ for some prime number p and positive integers n, m and gcd(p,m) = 1. Suppose that N is a normal subgroup of G of order p^n . Prove that if H is a subgroup of G of order p^k , then $H \subset N$.

Solution: Let H be a subgroup of G of order p^k , and let $x \in H$. Then $xN \in G/N$. Since $\operatorname{Ord}(G/N) = [G:N] = m$, we have $x^mN = N$ by Theorem 1.2.30. Since $x \in H$ and $\operatorname{Ord}(H) = p^k$, we conclude that $\operatorname{Ord}(x) = p^j$. Thus, $x^{p^j}N = N$. Since $x^mN = x^{p^j}N = N$, we conclude that $\operatorname{Ord}(xN)$ divides both m and p^j . Hence, since $\gcd(p,m) = \gcd(p^j,m) = 1$, we have $\operatorname{Ord}(xN) = 1$. Thus, xN = N. Hence, $x \in N$ by Theorem 1.2.26.

QUESTION 2.6.26 Let H be a subgroup of a group G, and let $g \in G$. Prove that $D = g^{-1}Hg$ is a subgroup of G. Furthermore, if Ord(H) = n, then $Ord(g^{-1}Hg) = Ord(H) = n$.

Solution: Let $x, y \in D$. Then $x = g^{-1}h_1g$ and $y = g^{-1}h_2g$ for some $h_1, h_2 \in H$. Hence, $x^{-1}y = (g^{-1}h_1^{-1}g)(g^{-1}h_2g) = g^{-1}h_1^{-1}h_2g \in g^{-1}Hg$

since $h_1^{-1}h_2 \in H$. Thus, $D = g^{-1}Hg$ is a subgroup of G by Theorem 1.2.7. Now, suppose that Ord(H) = n. Let $g \in G$. We will show that $Ord(g^{-1}Hg) = n$. Suppose that $g^{-1}h_1g = g^{-1}h_2g$. Since G is a group and hence it satisfies left-cancelation and right-cancelation, we conclude that $h_1 = h_2$. Thus, $Ord(g^{-1}Hg) = Ord(H) = n$.

QUESTION 2.6.27 Suppose that a group G has a subgroup, say, H, of order n such that H is not normal in G. Prove that G has at least two subgroups of order n.

Solution: Since H is not normal in G, we have $g^{-1}Hg \neq H$ for some $g \in G$. Thus, by Question 2.6.26, $g^{-1}Hg$ is another subgroup of G of order n.

QUESTION 2.6.28 Let n be a positive integer and G be a group such that G has exactly two subgroups, say, H and D, of order n. Prove that if H is normal in G, then D is normal in G.

Solution: Suppose that H is normal in G and D is not normal in G. Since D is not normal in G, we have $g^{-1}Dg \neq D$ for some $g \in G$. Since $g^{-1}Dg$ is a subgroup of G of order n by Question 2.6.26 and $g^{-1}Dg \neq D$ and D, H are the only subgroups of G of order G, we conclude that $g^{-1}Dg = H$. Hence, $D = gHg^{-1}$. But, since G is normal in G, we have $g^{-1}Hg = H = gHg^{-1} = D$. A contradiction. Thus, $g^{-1}Dg = D$ for each G is normal in G.

QUESTION 2.6.29 Let H be a subgroup of a group G. Prove that H is normal in G if and only if $g^{-1}Hg \subset H$ for each $g \in G$.

Solution: We only need to prove the converse. Since $g^{-1}Hg \subset H$ for each $g \in G$, we need only to show that $H \subset g^{-1}Hg$ for each $g \in G$. Hence, let $h \in H$ and $g \in G$. Since $gHg^{-1} \subset H$, we have $ghg^{-1} \in H$. Since $g^{-1}Hg \subset H$ and $ghg^{-1} \in H$, we conclude that $g^{-1}(ghg^{-1})g = h \in g^{-1}Hg$. Thus, $H \subset g^{-1}Hg$ for each $g \in G$. Hence, $g^{-1}Hg = H$ for each $g \in G$. Thus, H is normal in G.

QUESTION 2.6.30 Suppose that a group G has a subgroup of order n. Prove that the intersection of all subgroups of G of order n is a normal subgroup of G.

Solution: Let D be the intersection of all subgroups of G of order n. Let $g \in G$. If $g^{-1}Dg$ is a subset of each subgroup of G of order n, then $g^{-1}Dg$ is a subset of the intersection of all subgroups of G of order n. Hence, $g^{-1}Dg \subset D$ for each $g \in G$ and therefore D is normal in G. Hence, assume that $g^{-1}Dg$ is not contained in a subgroup, say, H, of G of order n for some $g \in G$. Thus D is not contained in gHg^{-1} , for if D is contained in gHg^{-1} , then $g^{-1}Dg$ is contained in H which is a contradiction. But gHg^{-1} is a subgroup of G of order n by Question 2.6.26, and Hence $D \subset gHg^{-1}$, a contradiction. Thus, $g^{-1}Dg = D$ for each $g \in G$. Hence, D is normal in G.

QUESTION 2.6.31 Suppose that H and K are Abelian normal subgroups of a group G such that $H \cap K = \{e\}$. Prove that HK is an Abelian normal subgroup of G.

Solution: Let $h \in H$ and $k \in K$. Since $hkh^{-1}k^{-1} = (hkh^{-1})k^{-1}$ and K is normal, $hkh^{-1} \in K$. Thus, $(hkh^{-1})k^{-1} \in K$. Also, since $hkh^{-1}k^{-1} = h(kh^{-1}k^{-1})$ and H is normal, we have $kh^{-1}k^{-1} \in H$. Thus, $h(kh^{-1}k^{-1}) \in H$. Since $H \cap K = \{e\}$, we conclude that $hkh^{-1}k^{-1} = e$. Thus, hk = kh. Hence, HK is Abelian. Now, HK is normal by Question 2.6.17.

2.7 Group Homomorphisms and Direct Product

Observe that when we say that a map Φ from G ONTO H, then we mean that $\Phi(G) = H$, i.e., ϕ is surjective.

QUESTION 2.7.1 Let Φ be a group homomorphism from a group G to a group H. Let D be a subgroup of G of order n. Prove that $Ord(\Phi(D))$ divides n.

Solution: Define a new group homomorphis, say $\alpha: D \longrightarrow \Phi(D)$ such that $\alpha(d) = \Phi(d)$ for each $d \in D$. Clearly, α is a group homomorphism from D ONTO $\alpha(D) = \Phi(D)$. Hence, by Theorem 1.2.35, we have $D/Ker(\alpha) \cong \alpha(D) = \Phi(D)$. Thus, $Ord(D)/Ord(Ker(\alpha)) = Ord(\Phi(D))$. Hence, $n = Ord(ker(\alpha))Ord(\Phi(D))$. Thus, Ord(D) divides n.

QUESTION 2.7.2 Let Φ be a group homomorphism from a group G ONTO a group H. Prove that $G \cong H$ if and only if $Ker(\Phi) = \{e\}$.

Solution: Suppose that $G \cong H$. Hence, $\Phi(x) = e_H$ (the identity in H) iff x = e (the identity of G). Hence, $Ker(\Phi) = \{e\}$. Conversely, suppose that $Ker(\Phi) = \{e\}$. Hence, by Theorem 1.2.35, we have $G/Ker(\Phi) = G/\{e\} = G \cong \Phi(G) = H$.

QUESTION 2.7.3 Let Φ be a group homomorphism from a group G to a group H. Let K be a subgroup of H. Prove that $\Phi^{-1}(K) = \{x \in G : \Phi(x) \in K\}$ is a subgroup of G.

Solution: Let $x, y \in \Phi^{-1}(K)$. Then $\Phi(x) = k \in K$. Hence, by Theorem 1.2.34(2), $\Phi(x^{-1}) = (\Phi(x))^{-1} = k^{-1} \in K$. Thus, $x^{-1} \in \Phi^{-1}(K)$. Since $\Phi(x^{-1}y) = \Phi(x^{-1})\Phi(y) = k^{-1}\Phi(y) \in K$, we have $x^{-1}y \in \Phi^{-1}(K)$. Hence, $\Phi^{-1}(K)$ is a subgroup of G by Theorem 1.2.7.

QUESTION 2.7.4 Let Φ be a group homomorphism from a group G to a group H, and let K be a normal subgroup of H. Prove that $D = \Phi^{-1}(K)$ is a normal subgroup of G.

Solution: Let $g \in G$. Then $\Phi(g^{-1}Dg) = (\Phi(g))^{-1}\Phi(D)\Phi(g) = (\Phi(g))^{-1}K\Phi(g) = K$. Since $\Phi(g^{-1}Dg) = K$ for each $g \in G$, we conclude that $g^{-1}Dg \subset D$ for each $g \in G$. Thus, D is normal in G by Question 2.6.29.

QUESTION 2.7.5 Let Φ be a ring homomorphism from a group G to a group H. Suppose that D is a subgroup of G and K is a subgroup of H such that $\Phi(D) = K$. Prove that $\Phi^{-1}(K) = Ker(\Phi)D$.

Solution: Let $x \in Ker(\Phi)D$. Then x = zd for some $z \in Ker(\Phi)$ and for some $d \in D$. Hence, $\Phi(x) = \Phi(zd) = \Phi(z)\Phi(d) = e_H\Phi(d) = \Phi(d) \in K$. Thus, $Ker(\Phi)D \subset \Phi^{-1}(K)$. Now, let $y \in \Phi^{-1}(K)$. Then $\Phi(w) = y$ for some $w \in G$. Since $\Phi(D) = K$, we have $\Phi(d) = y$ for some $d \in D$. Since G is group, we have w = ad for some $a \in G$. Now, we show that $a \in Ker(\Phi)$. Hence, $y = \Phi(w) = \Phi(ad) = \Phi(a)\Phi(d) = \Phi(a)y$. Thus, $\Phi(a)y = y$. Hence, $\Phi(a) = e_H$. Thus, $\Phi(a) = e_H$.

QUESTION 2.7.6 Let Φ be a group homomorphism from a group G to a group H. Suppose that $\Phi(g) = h$ for some $g \in G$ and for some $h \in H$. Prove that $\Phi^{-1}(h) = \{x \in G : \Phi(x) = h\} = Ker(\Phi)g$. Furthermore, if $Ord(Ker(\Phi)) = n$ and $\Phi(g) = h$, then $Ord(\Phi^{-1}(h)) = n$, i.e., There are exactly n elements in G that map to $h \in H$. Hence, if Φ is

onto and $Ord(Ker(\Phi)) = n$ and D is a subgroup of H of order m, then $Ord(\Phi^{-1}(D)) = nm$. In particular, if N is a normal subgroup of G of order n and G/N has a subgroup of order m, then $\Phi^{-1}(D)$ is a subgroup of G of order nm.

Solution: We just use a similar argument as in the previous Question. Now, suppose that $Ord(Ker(\Phi)) = n$ and $\Phi(g) = h$. Since $\Phi^{-1}(h) = gKer(\Phi)$, we conclude that $Ord(\Phi^{-1}(h)) = Ord(gKer(\Phi)) = n$.

QUESTION 2.7.7 Let H be an infinite cyclic group. Prove that H is isomorphic to Z.

Solution: Since H is cyclic, H=(a) for some $a\in H$. Define $\Phi:H\longrightarrow Z$ such that $\Phi(a^n)=n$ for each $n\in Z$. It is easy to check that Φ is onto. Also, $\Phi(a^na^m)=\Phi(a^{n+m})=n+m=\Phi(a^n)\Phi(a^m)$. Hence, Φ is a group homomorphism. Now, we show that Φ is one to one. Suppose that $\Phi(a^n)=\Phi(a^m)$. Then n=m. Thus, Φ is one to one. Hence, Φ is an isomorphism. Thus, $H\cong Z$.

QUESTION 2.7.8 Let G be a finite cyclic group of order n. Prove that $G \cong \mathbb{Z}_n$.

Solution: Since G is a finite cyclic group of order n, we have $G = (a) = \{a^0 = e, a^1, a^2, a^3, ..., a^{n-1}\}$ for some $a \in G$. Define $\Phi : G \longrightarrow Z_n$ such that $\Phi(a^i) = i$. By a similar argument as in the previous Question, we conclude that $G \cong Z_n$.

QUESTION 2.7.9 Let k, n be positive integers such that k divides n. Prove that $Z_n/(k) \cong Z_k$.

Solution: Since Z_n is cyclic, we have $Z_n/(k)$ is cyclic by Theorem 1.2.34(6). Since $\operatorname{Ord}((k)) = n/k$, we have $\operatorname{order}(Z_n/(k)) = k$. Since $Z_n/(k)$ is a cyclic group of order k, $Z_n/(k) \cong Z_k$ by the previous Question.

QUESTION 2.7.10 Prove that Z under addition is not isomorphic to Q under addition.

Solution: Since Z is cyclic and Q is not cyclic, we conclude that Z is not isomorphic to Q.

QUESTION 2.7.11 Let Φ be a group homomorphism from a group G to a group G. Prove that Φ is one to one if and only if $Ker(\Phi) = \{e\}$.

Solution: Suppose that Φ is one to one. Hence, $\Phi(x) = e_H$ iff $x = e_G$ the identity in G. Hence, $Ker(\Phi) = \{e\}$. Now, suppose that $Ker(\Phi) = \{e\}$. Let $x, y \in G$ such that $\Phi(x) = \Phi(y)$. Hence, $\Phi(x)[\Phi(y)]^{-1} = \Phi(x)\Phi(y^{-1}) = \Phi(xy^{-1}) = e_H$. Since $Ker(\Phi) = \{e\}$, we conclude that $xy^{-1} = e_G$ the identity in G. Hence, x = y. Thus, Φ is one to one.

QUESTION 2.7.12 Suppose that G is a finite Abelian group of order n and m is a positive integer such that gcd(n,m) = 1. Prove that $\Phi : G \longrightarrow G$ such that $\Phi(g) = g^m$ is an automorphism (group isomorphism) from G onto G.

Solution: Let $g_1, g_2 \in G$. Then $\Phi(g_1g_2) = (g_1g_2)^m = g_1^m g_2^m$ since G is Abelian. Hence, $\Phi(g_1g_2) = g_1^m g_2^m = \Phi(g_1)\Phi(g_2)$. Thus, Φ is a group homomorphism. Now, let $b \in G$. Since $b^n = e$ and $\gcd(n,m) = 1$, By Question 2.1.10 we have $b = g^m$ for some $g \in G$. Hence, $\Phi(g) = b$. Thus, Φ is Onto. Now, we show that Φ is one to one. By the previous Question, it suffices to show that $Ker(\Phi) = \{e\}$. Let $g \in Ker(\Phi)$. Then $\Phi(g) = g^m = e$. Thus, Ord(g) divides m. Since Ord(g) divides m and Ord(g) divides n and gcd(n,m) = 1, we conclude that Ord(g) = 1. Hence, g = e. Thus, $Ker(\Phi) = \{e\}$. Hence, Φ is an isomorphism from G Onto G.

QUESTION 2.7.13 Suppose that G is a finite Abelian group such that G has no elements of order 2. Prove that $\Phi: G \longrightarrow G$ such that $\Phi(g) = g^2$ is a group isomorphism (an automorphism) from G onto G.

Solution: Since G has no elements of order 2 and 2 is prime, we conclude that 2 does not divide n by Theorem 1.2.31. Hence, n is an odd number. Thus, since gcd(2,n) = 1, we conclude that Φ is an isomorphism by the previous Question.

QUESTION 2.7.14 Let $n = m_1 m_2$ such that $gcd(m_1, m_2) = 1$. Prove that $H = Z_{m_1} \oplus Z_{m_2} \cong Z_n$.

Solution: Since Z_{m_1} and Z_{m_2} are cyclic and $gcd(m_1, m_2) = 1$, By Theorem 1.2.36 we conclude that H is a cyclic group of order $n = m_1 m_2$. Hence, $H \cong Z_n$ by Question 2.7.8.

QUESTION 2.7.15 Is there a nontrivial group homomorphism from Z_{24} onto $Z_6 \oplus Z_2$?

Solution: No. For suppose that Φ is a group homomorphism from Z_{24} onto $Z_6 \oplus Z_2$. Then by Theorem 1.2.35 we have $Z_{24}/Ker(\Phi) \cong Z_6 \oplus Z_2$. A contradiction since $Z_{24}/Ker(\Phi)$ is cyclic by Theorem 1.2.34(6) and by Theorem 1.2.36 $Z_6 \oplus Z_2$ is not cyclic (observe that $gcd(2,6) = 2 \neq 1$).

QUESTION 2.7.16 Let G be a group of order n > 1. Prove that $H = Z \oplus G$ is never cyclic.

Solution: Deny. Then H is cyclic. Since Z = (1) and Ord(G) > 1, we have H = ((1,g)) for some $g \in G$ such that $g \neq e$. Since $(1,e) \in H$, we have $(1,g)^n = (1,e)$ for some $n \in Z$. Thus, $(n,g^n) = (1,e)$. Hence, n = 1. Thus, g = e. A contradiction since $g \neq e$. Hence, H is never cyclic.

QUESTION 2.7.17 Suppose That $G = H \oplus K$ is cyclic such that Ord(K) > 1 and Ord(H) > 1. Prove that H and K are finite groups.

Solution: Since G is cyclic, we have H and K are cyclic. We may assume that H is infinite. By Question 2.7.7, $H \cong Z$. Hence, $Z \oplus K$ is cyclic, which is a contradiction by the previous Question.

QUESTION 2.7.18 Let $G = Z_n \oplus Z_m$ and $d = p^k$ for some prime number p such that d divides both n and m. Prove that G has exactly $d\phi(d) + [d - \phi(d)]\phi(d)$ elements of order d.

Solution: Since Z_n is cyclic, by Theorem 1.2.14 we have exactly $\phi(d)$ elements of order d in Z_n . Hence, let $g = (z_1, z_2) \in G$ such that Ord(g) = d. Since $d = p^k$ and p is prime and by Theorem 1.2.37 $Ord(g) = lcm(Ord(z_1), Ord(z_2)) = p^k = d$, we conclude that either $Ord(z_1) = d$ and $dz_2 = 0$ or $Ord(z_2) = d$ and $dz_1 = 0$. Hence, if $Ord(z_1) = d$ and $dz_2 = 1$, then Ord(g) = d. Thus, there are exactly $d\phi(d)$ elements in D of this kind. If $Ord(z_2) = d$ and $dz_1 = 0$, then Ord(g) = d. Hence, we have exactly $d\phi(d)$ elements in G of this kind. If $Ord(z_1) = d$ and $Ord(z_2) = d$, then there are exactly $\phi(d)\phi(d)$ elements of this kind, but this kind of elements has been included twice in the first calculation and in the second calculation. Hence, number of all elements in G of order d is $d\phi(d) + d\phi(d) - \phi(d)\phi(d) = d\phi(d) + [d - \phi(d)]\phi(d)$

QUESTION 2.7.19 How many elements of order 4 does $G = Z_4 \oplus Z_4$ have ?

Solution: Since $4 = 2^2$, By the previous Question, number of elements of order 4 in G is $4\phi(4) + [4 - \phi(4)]\phi(4) = [4]2 + [2]2 = 8 + 4 = 12$.

QUESTION 2.7.20 How many elements of order 6 does the group $G = Z_6 \oplus Z_6$ have?

Solution: Let $g = (z_1, z_2) \in G$ such that Ord(g) = 6. Since $Ord(g) = lcm(Ord(z_1), Ord(z_2)) = 6$, we conclude that $Ord(z_1) = 6$ and $6z_2 = 0$ or $Ord(z_2) = 6$ and $6z_1 = 0$ or $Ord(z_1) = 2$ and $Ord(z_2) = 3$ or $Ord(z_1) = 3$ and $Ord(z_2) = 2$. Hence, number of elements in G of order G is G is G in G of G in G i

QUESTION 2.7.21 How many elements of order 6 does $G = Z_{12} \oplus Z_2$

Solution: Let $g=(z_1,z_2)\in G$. Since $Ord(g)=lcm(Ord(z_1), Ord(z_2))=6$, we conclude that $Ord(z_1)=6$ and $6z_2=2z_2=0$ or $Ord(z_1)=3$ and $Ord(z_2^2)=2$. Hence number of elements of order 6 in G is $2\phi(6)+\phi(3)\phi(2)=4+2=6$.

QUESTION 2.7.22 *Find the order of* $g = (6, 4) \in G = Z_{24} \oplus Z_{16}$.

Solution: Ord(g) = lcm(Ord(6), Ord(4)) = lcm(4, 4) = 4.

QUESTION 2.7.23 Prove that $H = Z_8 \oplus Z_2 \not\cong G = Z_4 \oplus Z_4$.

Solution: We just observe that G has no elements of order 8, but the element $(1,0) \in H$ has order equal to 8. Thus, $H \not\cong G$.

QUESTION 2.7.24 Let Φ be a group homomorphism from Z_{13} to a group G such that Φ is not one to one. Prove that $\Phi(x) = e$ for each $x \in Z_{13}$.

Solution: Since Φ is not one to one, we have $Ord(Ker(\Phi)) > 1$. Since $Ord(Ker(\Phi)) > 1$ and it must divide 13 and 13 is prime, we conclude that $Ord(Ker(\Phi)) = 13$. Hence, $\Phi(x) = e$ for each $x \in Z_{13}$.

QUESTION 2.7.25 Let Φ be a group homomorphism from Z_{24} onto Z_8 . Find $Ker(\Phi)$.

Solution: Since $Z_{24}/Ker(\Phi) \cong Z_8$ by Theorem 1.2.35 and $Ord(Z_8) = 8$ and $Ord(Z_{24}) = 24$, we conclude that $Ord(Ker(\Phi)) = 3$. Since Z_{24} is cyclic, by Theorem 1.2.12 Z_{24} has a unique subgroup of order 3. Since $Ker(\Phi)$ is a subgroup of Z_{24} and $Ord(Ker(\Phi)) = 3$, $Ker(\Phi)$ is the only subgroup of Z_{24} of order 3. Hence, we conclude that $Ker(\Phi) = \{0, 8, 16\}$.

QUESTION 2.7.26 Is there a group homomorphism from Z_{28} onto Z_6 ?

Solution: NO. For let Φ be a group homomorphism from Z_{28} onto Z_6 . Then by Question 2.7.1 we conclude that 6 divides 28. A Contradiction. Hence, there is no group homomorphism from Z_{28} onto Z_6 .

QUESTION 2.7.27 Let Φ be a group homomorphism from Z_{20} to Z_8 such that $Ker(\Phi) = \{0, 4, 8, 12, 16\}$ and $\Phi(1) = 2$. Find all elements of Z_{20} that map to \mathcal{Z} , i.e., find $\Phi^{-1}(2)$.

Solution: Since $\Phi(1) = 2$, By Question 2.7.6 we have $\Phi^{-1}(2) = Ker(\Phi) + 1 = \{1, 5, 9, 13, 17\}.$

QUESTION 2.7.28 Let Φ be a group homomorphism from Z_{28} to Z_{16} such that $\Phi(1) = 12$. Find $Ker(\Phi)$.

Solution: Since Z_{28} is cyclic and $Z_{28} = (1)$ and $\Phi(1) = 12$, we conclude that $\Phi(Z_{28}) = (\Phi(1)) = (12)$. Hence, $Ord(\Phi(Z_{28})) = Ord(\Phi(1)) = Ord(12) = 4$. Since $Z_{28}/Ker(\Phi) \cong \Phi(Z_{28})$ by Theorem 1.2.35 and $Ord(\Phi(Z_{28})) = 4$, we conclude that $Ord(Ker(\Phi))) = 7$. Since Z_{28} is cyclic, Z_{28} has a unique subgroup of order 7 by Theorem 1.2.12. Hence, $Ker(\Phi) = \{0, 4, 8, 12, 16, 20, 24\}$.

QUESTION 2.7.29 Let Φ be a group homomorphism from Z_{36} to Z_{20} . Is it possible that $\Phi(1) = 2$?

Solution: NO. because $Ord(\Phi(1)) = Ord(2)$ must divide Ord(1) by Theorem 1.2.34. But since $1 \in Z_{36}$ and $\Phi(1) = 2 \in Z_{20}$, Ord(1) = 36 and Ord(2) = 5. Hence, 5 does not divide 36.

QUESTION 2.7.30 Find all group homomorphism from Z_8 to Z_6 .

Solution: Since Z_8 is cyclic and $Z_8=(1)$, a group homomorphism, say, Φ , from Z_8 to Z_6 is determined by $\Phi(1)$. Now, by Theorem 1.2.34 $Ord(\Phi(1) \in Z_6)$ must divide $Ord(1 \in Z_8)$. Also, since $\Phi(1) \in Z_6$,

 $Ord(\Phi(1))$ must divide 6. Hence, $Ord(\Phi(1) \in Z_6)$ must divide both numbers 8 and 6. Hence, $Ord(\Phi(1)) = 1$ or 2. Since $0 \in Z_6$ has order 1 and $3 \in Z_6$ is the only element in Z_6 has order 2, we conclude that the following are all group homomorphisms from Z_8 to Z_6 : (1) $\Phi(1) = 0$. (2) $\Phi(1) = 3$.

QUESTION 2.7.31 Find all group homomorphism from Z_{30} to Z_{20} .

Solution: Once again, since $Z_{30}=(1)$ is cyclic, a group homomorphism Φ from Z_{30} to Z_{20} is determined by $\Phi(1)$. Now, since $\Phi(1)$ divides both numbers 20 and 30, we conclude that the following are all possibilities for $Ord(\Phi(1)): 1, 2, 5, 10$. By Theorem there are exactly $\phi(1)=1$ element in Z_{20} of order 1 and $\phi(2)=1$ element in Z_{20} of order 2 and $\phi(5)=4$ elements in Z_{20} of order 5 and $\phi(10)=4$ elements in Z_{20} of order 10. Now, 0 is of order 1, 10 is the only element in Z_{20} of order 2, each element in $\{4,8,12,16\}$ is of order 5, and each element in $\{2,6,14,18\}$ is of order 10. Thus, the following are all group homomorphisms from Z_{30} to $Z_{20}: (1) \Phi(1)=0$. $(2) \Phi(1)=10$. $(3)\Phi(1)=4$. $(4)\Phi(1)=8$. $(5)\Phi(1)=12$. $(6)\Phi(1)=16$. $(7)\Phi(1)=2$. $(8)\Phi(1)=6$. $(9)\Phi(1)=14$. $(10) \Phi(1)=18$. Hence, there are exactly 10 group homomorphisms from Z_{30} to Z_{20} .

QUESTION 2.7.32 Let m_1 , m_2 , m_3 ,..., m_k be all positive integers that divide both numbers n and m. Prove that number of all group homomorphisms from Z_n to Z_m is $\phi(m_1)+\phi(m_2)+\phi(m_3)+...+\phi(m_k)=\gcd(n,m)$.

Solution: As we have seen in the previous two Questions, a homomorphism Φ from Z_n to Z_m is determined by $\Phi(1)$. Since $Ord(\Phi(1))$ must divide both numbers n and m, we conclude that $Ord(\Phi(1))$ must be m_1 or m_2 , or...or m_k . Since Z_m has exactly $\phi(m_1)$ elements of order m_1 and $\phi(m_2)$ elements of order m_2 and...and $\phi(m_k)$ elements of order m_k , we conclude that number of all group homomorphisms from Z_n to Z_m is $\phi(m_1) + \phi(m_2) + \ldots + \phi(m_k) = \gcd(n, m)$.

QUESTION 2.7.33 Let Φ be a group homomorphism from Z_{30} to Z_6 such that $Ker(\Phi) = \{0, 6, 12, 18, 24\}$. Prove that Φ is onto. Also, find all possibilities for $\Phi(1)$.

Solution: Since $Z_{30}/Ker(\Phi) \cong \Phi(Z_{30}) \subset Z_6$ by Theorem 1.2.35 and $Ord(Ker(\Phi)) = 5$, we conclude that $Ord(Z_{30}/Ker(\Phi)) = Ord(\Phi(Z_{30}) = 30/5 = 6$. Hence, $\Phi(Z_{30}) = Z_6$. Thus, Φ is onto. Now, since $Z_{30} = (1)$ is cyclic and a group homomorphism from Z_{30} to Z_6 is determined by $\Phi(1)$

and Φ is onto, we conclude $Ord(\Phi(1)) = 6$. Hence, there are $\phi(6) = 2$ elements in Z_6 of order 6, namely, 1 and 5. Thus, all possibilities for $\Phi(1)$ are : $(1) \Phi(1) = 1$. $(2)\Phi(1) = 5$.

QUESTION 2.7.34 Let Φ be a group homomorphism from G onto H, and suppose that H contains a normal subgroup K such that [H:K]=n. Prove that G has a normal subgroup D such that [G:D]=n.

Solution: Since $\alpha: H \longrightarrow H/K$ such that $\alpha(h) = hK$ is a group homomorphism from H onto H/K, we conclude that $\alpha \circ \Phi$ is a group homomorphism from G onto H/K. Thus, by Theorem 1.2.35 $G/Ker(\alpha \circ \Phi) \cong H/K$. Since n = [H:K] = Ord(H/K), we conclude that $Ord(G/Ker(\alpha \circ \Phi)) = [G:Ker(\alpha \circ \Phi] = n$. Thus, let $D = Ker(\alpha \circ \Phi)$. Then [G:D] = n and D is a normal subgroup of G by Theorem 1.2.35.

QUESTION 2.7.35 Let Φ be a group homomorphism from G onto Z_{15} . Prove that G has normal subgroups of index 3 and 5.

Solution: Since Z_{15} is cyclic and both numbers 3, 5 divide 15, Z_{15} has a subgroup, say, H, of order 3 and it has a subgroup, say, K, of order 5. Since Z_{15} is Abelian, H and K are normal subgroups of Z_{15} . Since $[Z_{15}:H]=5$, by the previous Question we conclude that G has a normal subgroup of index 5. Also, since $[Z_{15}:K]=3$, once again by the previous Question we conclude that G has a normal subgroup of index 3.

QUESTION 2.7.36 Let H be a subgroup of G and N be a subgroup of K. Prove that $H \oplus N$ is a subgroup of $G \oplus K$.

Solution: Let $(h_1, n_1), (h_2, n_2) \in H \oplus N$. Then $(h_1, n_1)^{-1}(h_2, n_2) = (h_1^{-1}, n_1^{-1})(h_2, n_2) = (h_1^{-1}h_2, n_1^{-1}n_2) \in H \oplus N$. Hence, by Theorem 1.2.7 $H \oplus N$ is a subgroup of $G \oplus K$.

QUESTION 2.7.37 Let H be a normal subgroup of G and N be a normal subgroup of K. Prove that $H \oplus N$ is a normal subgroup of $G \oplus K$.

Solution: Let $(g,k) \in G \oplus K$. Then $(g,k)^{-1}[H \oplus N](g_1,k_1) = (g^{-1},k^{-1})[H \oplus N](g,k) = g^{-1}Hg \oplus k^{-1}Nk = H \oplus N$ since $g^{-1}Hg = H$ and $k^{-1}Nk = N$. Thus, $H \oplus N$ is a normal subgroup of $G \oplus K$.

QUESTION 2.7.38 Let H be a normal subgroup of G such that [G : H] = n and N be a normal subgroup of K such that [K : N] = m. Prove that $H \oplus N$ is a normal subgroup of $G \oplus K$ of index nm.

Solution: Let $\Phi: G \oplus K \longrightarrow G/H \oplus K/N$ such that $\Phi(g, k) = (gH, kN)$. Then clearly that Φ is a group homomorphism from $G \oplus K$ onto $G/H \oplus K/N$ and $Ker(\Phi) = H \oplus N$. Hence, by Theorem 1.2.35 we have $G \oplus K/Ker(\Phi) = G \oplus K/H \oplus N \cong G/H \oplus K/N$. Since [G:H] = n and [K:N] = m, Ord(G/H) = n and Ord(K/N) = m. Hence, $Ord(G/H \oplus K/N) = nm$. Thus, $Ord(G \oplus K/H \oplus N) = nm$. Hence, $[G \oplus K:H \oplus N] = nm$.

QUESTION 2.7.39 Prove that $Z_4 \oplus Z_8$ has a normal subgroup of index 16.

Solution: Let $H = \{0\} \subset Z_4$, and let $N = \{0,4\} \subset Z_8$. Then H is a normal subgroup of Z_4 of index 4 and N is a normal subgroup of Z_8 of index 4. Hence, by the previous Question $H \oplus N$ is a normal subgroup of $G \oplus K$ of index 16.

QUESTION 2.7.40 Let Φ be a group homomorphism from G onto $Z_8 \oplus Z_6$ such that $Ord(Ker(\Phi)) = 3$. Prove that G has a normal subgroup of order 36.

Solution: Let H be a normal subgroup of Z_8 of order 4 and let N be a normal subgroup of Z_6 of order 3. Then $H \oplus N$ is a normal subgroup of $Z_8 \oplus Z_6$ of order 12. Now, let $a \in H \oplus N$. Then $Ord(\Phi^{-1}(a)) = Ord(Ker(\Phi)) = 3$ by Question 2.7.6. Hence, since $Ord(\Phi^{-1}(a)) = 3$ for each $a \in H \oplus N$ and $Ord(H \oplus N) = 12$, we conclude that $Ord(\Phi^{-1}(H \oplus N)) = (12)(3) = 36$. Now, by Question 2.7.4 $D = \Phi^{-1}(H \oplus N)$ is a normal subgroup of G. (by a similar argument, one can prove that G has normal subgroups of order 6, 9, 12, 18, 24.)

QUESTION 2.7.41 Let G be a group of order pq for some prime numbers $p, q, p \neq q$ such that G has a normal subgroup H of order p and a normal subgroup K of order q. Prove that G is cyclic and hence $G \cong Z_{pq}$.

Solution: Since $\gcd(p,q) = 1$, by Question 2.6.23 we have $\operatorname{Ord}(HK) = pq$. Thus, HK = G. Also, since $\gcd(p,q) = 1$, we conclude that $H \cap K = \{e\}$. Hence, by Theorem 1.2.39 $G \cong H \oplus K$. Since $\operatorname{Ord}(H) = p$ and $\operatorname{Ord}(K) = q$, H and K are cyclic groups. Hence, since H and K are cyclic groups and $\gcd(p,q) = 1$, by Theorem 1.2.36 we conclude that $G \cong H \oplus K$ is cyclic. Hence, $G \cong Z_{pq}$ by Question 2.7.8.

QUESTION 2.7.42 Let G be a group of order 77 such that G has a normal subgroup of order 11 and a normal subgroup of order 7. Prove that G is cyclic and hence $G \cong Z_{77}$.

Solution: Since Ord(G) = 77 is a product of two distinct prime numbers, the result is clear by the previous Question.

QUESTION 2.7.43 Prove that $Aut(Z_{125})$ is a cyclic group.

Solution: Since $Aut(Z_{125}) \cong U(125) = U(5^3)$ by Theorem 1.2.41 and $U(5^3)$ is cyclic by Theorem 1.2.40, we conclude that $Aut(Z_{125})$ is cyclic.

QUESTION 2.7.44 Let p be an odd prime number and n be a positive integer. Then prove that $U(2p^n)$ is a cyclic group.

Solution: By Theorem 1.2.38, we have $U(2p^n) \cong U(2) \oplus U(p^n)$. Since U(2) and $U(p^n)$ are cyclic groups by Theorem 1.2.40 and $gcd(Ord(U(2)), Ord(U(p^n))) = gcd(1, (p-1)p^{n-1}) = 1$, we conclude that $U(2p^n) \cong U(2) \oplus U(p^n)$ is cyclic by Theorem 1.2.36.

QUESTION 2.7.45 Prove that U(54) is a cyclic group.

Solution: Since $54 = 2(3^3)$, U(54) is cyclic by the previous Question.

QUESTION 2.7.46 Let p and q be two distinct odd prime numbers and n, m be positive integers. Prove that $U(p^nq^m)$ is never a cyclic group.

Solution: By Theorem 1.2.38, we have $U(p^nq^m) \cong U(p^n) \oplus U(p^m) \cong Z_{(p-1)p^{n-1}} \oplus Z_{(q-1)q^{m-1}}$ by Theorem 1.2.40. Since $(p-1)p^{n-1}$ and $(q-1)q^{m-1}$ are even numbers, we conclude that $gcd((p-1)p^{n-1}, (q-1)q^{m-1}) \neq 1$. Hence, by Theorem 1.2.36 $U(p^nq^m)$ is not cyclic.

QUESTION 2.7.47 Let n be a positive integer. Prove that up to isomorphism there are finitely many groups of order n.

Solution: Let G be a group of order n. By Theorem 1.2.42, G is isomorphic to a subgroup of S_n . Hence, number of groups of order n up to isomorphism equal number of all subgroups of S_n of order n. Since S_n is a finite group, S_n has finitely many subgroups of order n.

QUESTION 2.7.48 Let p be a prime number in Z. Suppose that H is a subgroup of Q^* under multiplication such that $p \in H$. Prove that there is no group homomorphism from Q under addition onto H. Hence, $Q \ncong H$.

Solution: Deny. Then there is a group homomorphism Φ from Q onto H. Since $p \in H$, there is an element $x \in Q$ such that $\Phi(x) = p$. Hence, $p = \Phi(x) = \Phi(x/2 + x/2) = \Phi(x/2)\Phi(x/2) = (\Phi(x/2))^2$. Since $\Phi(x/2)^2 = p$, we conclude $\Phi(x/2) = \sqrt{p}$. A contradiction, since p is prime and $\Phi(x/2) \in H \subset Q^*$ and $\sqrt{p} \notin Q$.

QUESTION 2.7.49 Prove that Q under addition is not isomorphic to Q^* under multiplication.

Solution: This result is now clear by the previous Question.

QUESTION 2.7.50 Let H be a subgroup of C^* under multiplication, and let Φ be a group homomorphism from Q under addition to H. Then prove that there is a positive real number $a \in H$ such that $\Phi(n/m) = a^{n/m}$ for each $n/m \in Q$, n and m are integers.

Solution: Now $\Phi(1) = a \in H$. Let n be a positive integer. Then $\Phi(n) = \Phi(1+1+...+1) = \Phi(1)\Phi(1)...\Phi(1) = \Phi(1)^n = a^n$. Also, $a = \Phi(1) = \Phi(n(1/n)) = \Phi(1/n+1/n+...+1/n) = \Phi(1/n)\Phi(1/n)...\Phi(1/n) = \Phi(1/n)^n$. Since $\Phi(1/n)^n = a$, we have $\Phi(1/n) = \sqrt[n]{a}$. Now, if n is a negative number, then since $1 = \Phi(0) = \Phi(n-n)$ and $\Phi(-n) = a^{-n}$ we have $\Phi(n) = a^n$. Also, if n is negative, then $\Phi(1/n) = a^{1/n}$. Hence, if n and n are integers and $n \neq 0$, then $\Phi(n/m) = a^{n/m}$. Since $\Phi(1/2) = \sqrt{a}$, we conclude that n is a positive real number.

QUESTION 2.7.51 Prove that Q under addition is not isomorphic to R^* under multiplication.

Solution: By the previous Question, a group homomorphism Φ from Q to R^* is of the form $\Phi(x) = a^x$ for each $x \in Q$ for some positive real number a. Since $a^x \geq 0$ for each $x \in Q$, There is no element in Q maps to -1. Hence, $Q \ncong R^*$.

QUESTION 2.7.52 Prove that Q under addition is not isomorphic to R^+ (the set of all nonzero positive real numbers) under multiplication.

Solution: Deny. Then Φ is an isomorphism from Q onto R^+ . Hence, by Question 2.7.50 there is a positive real number a such that $\Phi(n/m) = a^{n/m}$. Now, suppose that $a = \pi$. Then there is no $x \in Q$ such that $a^x = \pi^x = 2$. Thus, Φ is not onto. Hence, assume that $a \neq \pi$. Then there is no $x \in Q$ such that $a^x = \pi$. Thus, once again, Φ is not onto. Hence, $Q \ncong R^+$.

QUESTION 2.7.53 Give an example of a non-Abelian group of order 48

Solution: Let $G = S_4 \oplus Z_2$. Then Ord(G) = 48. Since S_4 is a non-Abelian group, G is non-Abelian.

QUESTION 2.7.54 Let Φ be a group homomorphism from a group G into a group H. If D is a subgroup of H, then $Ker(\Phi)$ is a subgroup of $\Phi^{-1}(D)$. In particular, if K is a normal subgroup of G and D is a subgroup of G/K, then K is a subgroup of $\Phi^{-1}(D)$ where $\Phi: G \longrightarrow G/K$ given by $\Phi(g) = gK$.

Solution: Let D be a subgroup of H. Since $e_H \in D$, we have $\Phi(b) = e_H$ for each $b \in Ker(\Phi)$. Thus, $Ker(\Phi) \subset \Phi^{-1}(D)$. The remaining part is now clear.

QUESTION 2.7.55 Let G be a group and H be a cyclic group and Φ be a group homomorphism from G onto H. Is $\Phi^{-1}(H) = G$ an Abelian group?

Solution: No. Let $G = S_4$, and $K = A_4$. Now, H = G/K is a cyclic group of order 2 and Φ from G into H given by $\Phi(g) = gK$ is a group homomorphism from G onto H. Now, $\Phi^{-1}(H) = G = S_4$ is not Abelian.

QUESTION 2.7.56 Let H be a subgroup of a finite group G. Prove that C(H) is a normal subgroup of N(H) and Ord(N(H)/C(H)) divides Ord(Aut(H)). In particular, prove that if H is a normal subgroup of G, then Ord(G/C(H)) divides Ord(Aut(H)).

Solution: We know that C(H) is a subgroup of G. By the definitions $C(H) \subset N(H)$. Now, let $g \in N(H)$. We need to show that $g^{-1}C(H)g \subset C(H)$. Let $c \in C(H)$. We need to show that $g^{-1}cg \in C(H)$. Hence, let $h \in H$. We show that $(g^{-1}cg)h = h(g^{-1}cg)$. Now, since H is normal in N(H), we have gh = fg for some $f \in H$. Hence, $g^{-1}f = hg^{-1}$. Since gh = fh and $g^{-1}f = hg^{-1}$ and cf = fc, we have $g^{-1}cgh = g^{-1}cfg = g^{-1}fcg = hg^{-1}cg$. Thus, $g^{-1}cg \in C(H)$. Hence, C(H) is normal in N(H). Let α be a map from N(H) to Aut(H) such that $\alpha(x) = \Phi_x$ for each $x \in N(H)$, where Φ_x is an automorphism from H onto H such that $\Phi_x(h) = x^{-1}hx$ for each $h \in H$. It is easy to check that α is a group homomorphism from N(H) to Aut(H). Now, $Ker(\alpha) = \{y \in N(H) : \Phi_y = \Phi_e\}$. But $\Phi_y = \Phi_e$ iff $y^{-1}hy = e$ for each $h \in H$ iff hy = yh

for each $h \in H$. Thus, $Ker(\alpha) = C(H)$. Hence, by Theorem 1.2.35 we have $N(H)/C(H) \cong Image(\alpha)$. But $Image(\alpha)$ is a subgroup of Aut(H). Thus, $Ord(Image(\alpha))$ divides Ord(Aut(H)). So, since $N(H)/C(H) \cong Image(\alpha)$, we have Ord(N(H)/C(H)) divides Ord(Aut(H)). For the remaining part, just observe that if H is normal in G, then N(H) = G.

QUESTION 2.7.57 Let p be a prime number > 3. We know that Z_p^* under multiplication modulo p is a cyclic group of order p-1. Let $H = \{a^2 : a \in Z_p^*\}$. Prove that H is a subgroup of Z_p^* such that $[Z_p^* : H] = 2$.

Solution: Let $\Phi: Z_p^* \longrightarrow Z_p^*$ such that $\Phi(a) = a^2$. It is trivial to check that Φ is a group homomorphism. Clearly $\Phi(Z_p^*) = H$. Thus, H is a subgroup of Z_p^* . Now, $Ker(\Phi) = \{a \in Z_p^* : a^2 = 1\}$. Since $2 \mid p-1$ and Z_p^* is cyclic, there are exactly two elements, namely 1 and p-1 in Z_p^* whose square is 1. Thus $Ker(\Phi) = \{1, p-1\}$. Hence, by Theorem 1.2.35 $Z_p^*/Ker(\Phi) \cong \Phi(Z_p^*) = H$. Thus, Ord(H) = (p-1)/2. Hence, $[Z_p^*: H] = 2$

QUESTION 2.7.58 Let p be a prime number > 3, and let $H = \{a^2 : a \in Z_p^*\}$. Suppose that $p-1 \notin H$. Prove that if $a \in Z_p^*$, then either $a \in H$ or $p-a \in H$.

Solution: By the previous Question, since H is a subgroup of $G=Z_p^*$ and [G:H]=2, we conclude that the group G/H has exactly two elements. Since $p-1\not\in H$, we conclude that H and (p-1)H=-H are the elements of G/H. Now, let $a\in Z_p^*$ and suppose that $a\not\in H$. Hence, $aH\neq H$. Thus, aH=(p-1)H=-H. Hence, H=-H-H=-aH=(p-a)H. Thus, $p-a\in H$.

2.8 Sylow Theorems

QUESTION 2.8.1 Let H be a Sylow p-subgroup of a finite group G. We know that (the normalizer of H in G) $N(H) = \{x \in G : x^{-1}Hx = H\}$ is a subgroup of G. Prove that H is the only Sylow p-subgroup of G contained in N(H).

Solution: Let $h \in H$. Then $h^{-1}Hh = H$. Hence, $h \in N(H)$. Thus, $H \subset N(H)$. Now, we show that H is the only Sylow p-subgroup of G contained in N(H). By the definition of N(H), we observe that H is a normal subgroup of N(H). Hence, H is a normal Sylow p-subgroup of N(H). Thus, by Theorem 1.2.46, we conclude that H is the only Sylow p-subgroup of G contained in N(H).

QUESTION 2.8.2 Let H be a Sylow p-subgroup of a finite group G. Let $x \in N(H)$ such that $Ord(x) = p^n$ for some positive integer n. Prove that $x \in H$.

Solution: Since $Ord(x) = p^n$, $Ord((x)) = p^n$. Since N(H) is a group (subgroup of G) and $x \in N(H)$ and $Ord((x)) = p^n$, by Theorem 1.2.44 (x) is contained in a Sylow p-subgroup of N(H). By the previous Question H is the only Sylow p-subgroup of G contained in N(H). Hence, $x \in H$.

QUESTION 2.8.3 Let G be a group of order p^2 . Prove that G is Abelian.

Solution: Since $Ord(G) = p^2$, by Theorem 1.2.47 we have Ord(Z(G)) = p or p^2 . If $Ord(Z(G)) = p^2$, then G is Abelian. Thus, assume that Ord(Z(G)) = p. Hence, Ord(G/Z(G)) = p. Thus, G/Z(G) is cyclic. Hence, G is Abelian by Question 2.6.6.

QUESTION 2.8.4 Let G be a non-Abelian group of order 36. Prove that G has more than one Sylow 2-subgroup or more than one Sylow 3-subgroup.

Solution: Deny. Since $36 = 2^2 3^2$, G has exactly one Sylow 3-subgroup, say, H, and it has exactly one Sylow 2-subgroup, say, K. Thus, H and K are normal subgroups of G by Theorem 1.2.46. Since $Ord(H) = 3^2 = 9$ and $Ord(K) = 2^2 = 4$ and $\gcd(4,9) = 1$, we have $H \cap K = \{e\}$ and Ord(HK) = 36 = Ord(G) by Question 2.6.23. Hence, HK = G and by Theorem 1.2.39 we have $G \cong H \oplus K$. Since $Ord(H) = 3^2 = 9$ and $Ord(K) = 2^2 = 4$, we conclude that H and K are Abelian groups by the previous Question. Thus, $G \cong H \oplus K$ is Abelian. A contradiction since G is a non-Abelian group by the hypothesis.

QUESTION 2.8.5 Let G be a group of order 100. Prove that G has a normal subgroup of order 25.

Solution: Since $Ord(G) = 100 = 2^25^2$, we conclude that G has a Sylow 5-subgroup, say, H. Then Ord(H) = 25. Let n be the number of all Sylow 5-subgroups. Then 5 divides (n-1) and n divides Ord(G) = 100 by Theorem 1.2.45. Hence, n = 1. Thus, H is the only Sylow 5-subgroup of G. Hence, H is normal by Theorem 1.2.46.

QUESTION 2.8.6 Let G be a group of order 100. Prove that G has a normal subgroup of order 50.

Solution:Since 2 divides 100, G has a subgroup, say, K, of order 2 by Theorem 1.2.43. By the previous Question, G has a normal subgroup of order 25, say, H. Hence, HK is a subgroup of G by Question 2.6.16. Since $\gcd(2,25)=1$, $\operatorname{Ord}(HK)=50$ by Question 2.6.23. Thus, [G:HK]=2. Hence, HK is normal by Question 2.6.1.

QUESTION 2.8.7 Let G be a group such that Ord(G) = pq for some primes p < q and p does not divide q - 1. Prove that $G \cong Z_{pq}$ is cyclic.

Solution: Let n be the number of all Sylow q-subgroups and let m be the number of all Sylow p-subgroups. Then n divides pq and q divides n-1 and m divides pq and p divides m-1. Since p < q, we conclude that n=1. Also, since p does not divide q-1, m=1. Hence, q has exactly one Sylow q-subgroup, say, q and it has exactly one Sylow p-subgroup, say, q and q and q and q are normal subgroups of q by Theorem 1.2.46. Since q and q and q are q and q an

QUESTION 2.8.8 Let G be a group of order 35. Prove that G is a cyclic group and $G \cong Z_{35}$.

Solution: Let p = 5 and q = 7. Then Ord(G) = pq such that p < q and p does not divide q - 1. Hence, $G \cong Z_{35}$ is cyclic by the previous Question.

QUESTION 2.8.9 Let G be a noncyclic group of order 57. Prove that G has exactly 38 elements of order 3.

Solution: Since 57 = (3)(19) and 19 does not divide 3 - 1, by Theorem 1.2.45 G has exactly one Sylow 19-subgroup, say, H. Let $a \in G$ such that $a \neq e$. Since Ord(a) divides Ord(G) = 57 = (3)(19) and G is not cyclic and $a \neq e$, we conclude that the possibilities for Ord(a) are: 3, 19. Since H is the only Sylow 19-subgroup of order 19, we have exactly 18 elements in G of order 19. Hence, there are exactly 38 elements in G of order 3.

QUESTION 2.8.10 Let G be a group of order 56. Prove that H has a proper normal subgroup, say, H, such that $H \neq \{e\}$.

Solution: Since $56 = 72^3$, we conclude that G has a Sylow 7-subgroup, say, H, and it has a Sylow 2-subgroup, say, K, by Theorem 1.2.43. If H is the only Sylow 7-subgroup of G, then by Theorem 1.2.46 we conclude that H is normal and we are done. Hence, let n be the number of all Sylow 7-subgroups of G such that n > 1. Since n divides 56 and 7 divides n - 1 and n > 1, we conclude that n = 8. Since each non identity element in a Sylow 7-subgroup of G has order 7, we conclude that there are (8)(6) = 48 elements in G of order 7. Since there are exactly 48 elements in G of order 7 and G is a Sylow 2-subgroup of order 8, we conclude that G is the only Sylow 2-subgroup of G. Thus, G is normal by Theorem 1.2.46.

QUESTION 2.8.11 Let G be a group of order 105. Prove that it is impossible that Ord(Z(G)) = 7.

Solution: Deny. Hence, Ord(Z(G)) = 7. Then Ord(G/Z(G)) = 15. Since 15 = (3)(5) and 3 does not divide 5 - 1 = 4, by Question 2.8.7 we conclude that G/Z(G) is cyclic. Hence, G is Abelian by Question 2.6.6. Hence, G is a contradiction. Thus, it is impossible that Ord(Z(G)) = 7.

QUESTION 2.8.12 Let G be a group of order 30. Prove that G has an element of order 15.

Solution: Since 30 = (2)(3)(5), by Theorem 1.2.43 there is a subgroup of order 2 and a subgroup of order 3 and a subgroup of order 5. Let n be the number of all subgroups of G of order 3. Then by Theorem 1.2.45 we conclude that either n = 1 or n = 10. Suppose that n = 1. Let H be the subgroup of G of order 3. Then H is normal by Theorem 1.2.46. Since Ord(G/H) = 10 = (2)(5), by Theorem 1.2.45 we conclude that G/H has exactly one subgroup of order 5. Hence, by Question 2.7.6, we conclude that G has a subgroup, say, D, of order 15. Since 15 = (3)(5) and 3 does not divide 5-1, by Question 2.8.7 we conclude that D is cyclic. Hence, there is an element in G of order 15. Now, assume that n = 10. Let m be the number of all subgroups of G of order 5. Then by Theorem 1.2.45 we conclude that either m=1 or m=6. Since n=10, there are exactly (10)(2) = 20 elements of order 3. Hence, m = 1, for if m = 6, then there are exactly (6)(4) = 24 elements of order 5, which is impossible since Ord(G) = 30 and there are 20 elements of order 3. Let K be the subgroup of G of order 5. Then by Theorem 1.2.46 we conclude that Kis normal. Since Ord(G/K) = 6, by Theorem 1.2.45 we conclude that G/K has a subgroup of order 3. Hence, by Question 2.7.6 we conclude

that G has a subgroup, say, L, of order 15. Thus, as mentioned earlier in the solution G has an element of order 15.

QUESTION 2.8.13 Let G be a group of order 30. Prove that G has exactly one subgroup of order 3 and exactly one subgroup of order 5.

Solution: Since 30 = (2)(3)(5), by Theorem 1.2.43 G has a subgroup of order 2 and a subgroup of order 3 and a subgroup of order 5. Let n be the number of all subgroups of G of order 3, and let m be the number of all subgroups of G of order 5. By Theorem 1.2.45 we conclude that either n = 1 or n = 10 and either m = 1 or m = 6. Suppose that n = 10. Then G has exactly (10)(2) = 20 elements of order 3. Since by the previous Question G has an element of order 15, we conclude by Theorem 1.2.14 that G has at least $\phi(15) = 8$ elements of order 15. Since $\operatorname{Ord}(G) = 30$ and there are 20 elements of order 3 and 8 elements of order 15, we conclude that there are no subgroups of G of order 5, a contradiction. Hence, n = 1. Now, suppose that m = 6. By an argument similar to the one just given, we will reach to a contradiction. Hence, we conclude that m = 1.

QUESTION 2.8.14 Let G be a group of order 30. Prove that G has a normal subgroup of order 3 and a normal subgroup of order 5.

Solution: By the previous Question there are exactly one Sylow 3-subgroup of G, say, H, and exactly one Sylow 5-subgroup of G, say, K. Hence, by Theorem 1.2.46 we conclude that H and K are normal in G.

QUESTION 2.8.15 Let G be a group of order 60 such that G has a normal subgroup of order 2. Prove that G has a normal subgroup of order 6 and a normal subgroup of order 10 and a normal subgroup of order 30.

Solution: Let H be a normal subgroup of G of order 2. Then G/H is a group of order 30. Hence, by the previous Question G/H has a normal subgroup of order 3, say , K. Thus, by Question 2.7.6 G has a normal subgroup of order 6. Since G/H has a normal subgroup of order 5, by an argument similar to the one just given we conclude that G has a normal subgroup of order 10. Also, by the previous Question G/H has a normal subgroup of order 5, say, D. Hence, by Question 2.7.6 KD is a normal subgroup of G/H. Since $\gcd(3,5)=1$, we conclude that Ord(KD)=15. Thus, by Question 2.7.6 we conclude that G has a normal subgroup of order 30.

QUESTION 2.8.16 Let G be a group of order 60 such that G has a normal subgroup of order 2. Prove that G has a subgroup of order 20 and a subgroup of order 12.

Solution: By the previous Question G has a normal subgroup of order 10, say, H. Hence, Ord(G/H)=6. Since 6=(2)(3), by Theorem 1. 2.43 G/H has a subgroup of order 2. Hence, by Question 2.7.6 G has a subgroup of order 20. Also, by the previous Question G has a normal subgroup of order 6, say, K. Since Ord(G/K)=10 and 10=(2)(5), by Theorem 1.2.43 G/K has a subgroup of order 2. Thus, by Question 2.7.6 we conclude that G has a subgroup of order 12.

QUESTION 2.8.17 Let G be a group of order 60 such that G has a normal subgroup of order 2. Prove that G has a cyclic subgroup of order 30, that is, show that G has an element of order 30.

Solution: Let K be a normal subgroup of G of order 2. Set H = G/K. Since Ord(H) = 30, By Question 2.8.12 H has an element a of order 15. Hence, D = (a) is a subgroup of H of order 15. Thus, by Question 2.7.6 G has a subgroup, V, of order 30 and by Question 2.7.54 $K \subset V$. By Question 2.8.12 V has an element m of order 15. Thus, M = (m) is a subgroup of V of order 15. Since [V:M] = 2, by Question 2.6.1 M is a normal subgroup of V. Since K is normal in K and $K \subset V$, K is a normal subgroup of K. Since K is normal in K and K are Abelian normal subgroups of K and $K \cap M = \{e\}$, by Question 2.6.31 KM is an Abelian group. Hence, let $K \in K$ such that $K \cap K \cap K$ is an Abelian group. Hence, let $K \cap K \cap K \cap K$ such that $K \cap K \cap K \cap K$ is an Abelian group. Hence, let $K \cap K \cap K \cap K \cap K$ is an Abelian group. Hence, let $K \cap K \cap K \cap K \cap K$ is an Abelian group. Hence, let $K \cap K \cap K \cap K \cap K \cap K$ is an Abelian group. Hence, let $K \cap K \cap K \cap K \cap K \cap K \cap K$ is an Abelian group. Hence, let $K \cap K \cap K \cap K \cap K \cap K \cap K$ is an Abelian group. Hence, let $K \cap K \cap K \cap K \cap K \cap K \cap K$ is an Abelian group of order 30, namely (km).

QUESTION 2.8.18 Let G be a group of order 345. Prove that G is cyclic.

Solution: Since 345 = (3)(5)(23), by Theorem 1.2.43 there are subgroups of G of order 3 and 5 and 23. Let H be a subgroup of G of order 23. By Theorem 1.2.45, we conclude that H is the only subgroup of G of order 23. Thus, by Theorem 1.2.46, H is normal in G. Hence, by Question 2.7.56 we have Ord(G/C(H)) divides Ord(Aut(H)). By Theorem 1.2.41 we have Ord(Aut(H)) = Ord(U(23)) = 22. Thus, Ord(G/C(H)) divides 22. Since Ord(G/C(H)) divides both numbers 365 and 22, we conclude that Ord(G/C(H)) = 1. Hence, C(H) = G. Hence, by the definition

of C(H) we conclude that C(H) = G means that every element in H commute with every element in G. Hence, $H \subset Z(G)$. Thus, $\operatorname{Ord}(Z(G)) \ge 23$. Hence, $\operatorname{Ord}(G/Z(G)) = 1$ or 3 or 5 or 15. In each case, we conclude that G/Z(G) is cyclic. Thus, by Question 2.6.6, G must be Abelian. Now, since G has subgroups of order 3 and 5 and 23, G has an element G of order 3 and an element G of order 23. Since G of order 23. Since G of order 23. Since G of order 23. Thus, G commute with each other, by Question 2.1.14 $\operatorname{Ord}(\operatorname{abc}) = \operatorname{Ord}(\operatorname{a(bc)}) = \operatorname{Ord}(\operatorname{abc}) = (3)(5)(23) = 345$. Thus, G = (abc) is cyclic.

QUESTION 2.8.19 let H, K be two distinct Sylow p-subgroups of a finite group G. Prove that HK is never a subgroup of G.

Solution: Since H and K are Sylow p-subgroups of G, we conclude $Ord(H) = Ord(K) = p^n$ such that p^{n+1} does not divide Ord(G). Since H and K are distinct, $Ord(H \cap K) = p^m$ such that $0 \le m < n$. Hence, by Theorem 1.2.48 we conclude $Ord(HK) = p^n p^n / p^m = p^{2n-m} > p^n$. Since order of any subgroup of G must divide Ord(G) and p^{2n-m} does not divide Ord(G), HK is not a subgroup of G.

QUESTION 2.8.20 Let H be a subgroup of order p (prime) of a finite group G such that $p^2 > Ord(G)$. Prove that H is the only subgroup of G of order p and hence it is normal in G.

Solution: Suppose that there is another subgroup, say, K, of G of order p. Hence, $H \cap K = \{e\}$. By Theorem 1.2.48, $Ord(HK) = p^2/1 = p^2 > Ord(G)$ which is impossible since $HK \subset G$. Thus, H is the only subgroup of order p of G. Since $p^2 > Ord(G)$, we conclude that p^2 does not divide Ord(G). Thus, H is a Sylow p-subgroup of G. Hence, by Theorem 1.2.46, we conclude that H is normal in G.

QUESTION 2.8.21 Let G be a group of order 46 such that G has a normal subgroup of order 2. Prove that G is cyclic, that is, $G \cong Z_{46}$.

Solution: Since 46 = (2)(23). By Theorem 1.2.43, G has a Sylow 23-subgroup H, of G. By Theorem 1.2.45, we conclude that H is the only subgroup of G of order 23. By Theorem 1.2.46, H is normal in G. By hypothesis, let K be a normal subgroup of G of order 2. Hence, $H \cap K = \{e\}$. By Theorem 1.2.48 we have HK = G. Since $H \cap K = \{e\}$ and HK = G and H, K are normal in G, by Theorem 1.2.39, $G \cong H \oplus K$. But $K \cong Z_2$ and $H \cong Z_{23}$. Hence, $G \cong Z_2 \oplus Z_{23}$. Thus, by Theorem 1.2.36, G is a cyclic group of order 46. Hence, by Question 2.7.8 we have $G \cong Z_{46}$.

QUESTION 2.8.22 Let G be a group of order p^n for some prime number p such that for each $0 \le m \le n$ there is exactly one subgroup of G of order p^m . Prove that G is cyclic.

Solution: Let $x \in G$ of maximal order. Then $Ord(x) = p^k$ for some $1 \le k \le n$. Now, let $y \in G$. Then $Ord(y) = p^i$ for some $i \le k$. Since $Ord((y)) = p^i$ and G has exactly one subgroup of order p^i and the subgroup (x) of G, being cyclic, has a subgroup of order p^i , we conclude that $(y) \subset (x)$. Hence, $y \in (x)$. Thus, $G \subset (x)$. Hence, G = (x) is cyclic.

QUESTION 2.8.23 Let G be a finite Abelian group. Show that A Sylow-p-subgroup of G is unique.

Solution: Let H be a Sylow-p-subgroup of G. Since G is Abelian, we conclude that H is normal. Hence H is the only Sylow-p-subgroup of G by Theorem 1.2.46

QUESTION 2.8.24 Let G be a group of order p^2q , where p and q are distinct prime numbers, p does not divide q-1, and q does not divide p^2-1 . Show that G is Abelian.

Solution: Let n_p be the number of Sylow-p-subgroups and n_q be the number of Sylow-q-subgroups. Then since q does not divide p^2-1 and p does not divide q-1, by Theorem 1.2.45 we conclude that $n_p=n_q=1$. Let H be a Sylow-p-subgroup and K be a Sylow-q-subgroup. Then H and K are both normal in G by Theorem 1.2.46. Since $H \cap K = \{e\}$ and $Ord(G) = p^2q$, we conclude that $G \cong H \oplus K$. Since q is prime, K is cyclic and hence Abelian. Also, since p is prime and $Ord(H) = p^2$, we conclude that H is Abelian by Question 2.8.3.

2.9 Simple Groups

QUESTION 2.9.1 Prove that there is no simple groups of order $300 = (2^2)(3)(5^2)$.

Solution: Let G be a group of order 300. Let n_5 be the number of Sylow-5-subgroups of G. Then by Theorem 1.2.45 we have $n_5 = 1$ or $n_5 = 6$. If $n_5 = 1$, then a Sylow-5-subgroup of G is normal in G by Theorem 1.2.46, and hence G is not simple. Hence assume that $n_5 = 6$. Since 25 does not divide $n_5 - 1$, by Theorem 1.2.51 we conclude that there are two distinct Sylow-5-subgroups H and K of G, such that

 $Ord(H \cap K) = 5$ and $HK \subset N(H \cap K)$. Again by Theorem 1.2.51 we have $Ord(N(H \cap K)) > Ord(HK) = Ord(H)Ord(K)/Ord(H \cap K) = (25)(25)/5 = 125$. So, let $m = Ord(N(H \cap K))$. Since m > 125 and m divides 300, we conclude that m = 150 or m = 300. If m = 300, then $H \cap K$ is normal in G, and since $Ord(H \cap K) = 5$, we conclude that G is not simple. Thus assume that m = 150. Hence $[G:N(H \cap K)] = 2$. Since $n_5 \neq 1$, we conclude that G is non-Abelian (see Question 2.8.23) and hence if G is simple, then G is isomorphic to a subgroup of A_2 by Theorem 1.2.57 which is clearly impossible because Ord(G) = 300 where $Ord(A_2) = 1$.

QUESTION 2.9.2 Prove that there is no simple groups of order 500.

Solution: Since 500 = 2(125) and 125 is an odd number, we conclude that there is no simple groups of order 500 by Theorem 1.2.55.

QUESTION 2.9.3 Show that there is no simple groups of order $396 = (2^2)(3^2)(11)$.

Solution: Let G be a group of order 396. Let n_{11} be the number of Sylow-11-subgroups. Then by Theorem 1.2.45 we have $n_{11}=1$ or $n_{11}=12$. If $n_{11}=1$, then a Sylow-11-subgroup of G is normal in G by Theorem 1.2.46, and hence G is not simple. Thus assume that $n_{11}=12$. Let H be a Sylow-11-subgroup of G. Then by Theorems 1.2.49 and 1.2.54 we conclude that $12=n_{11}=[G:N(H)]$. Thus Ord(N(H))=Ord(G)/12=33. Hence N(H) is cyclic by Question 2.8.7. Thus G has an element of order 33. Now since $n_{11}\neq 1$, we conclude that G is non-Abelian. Since N(H) is a subgroup of G and G:N(H)=12, if G is simple, then we conclude that G is isomorphic to a subgroup of G and the important of order 33, for if G is a product of DISJOINT cycles of length 11 and 3, which is clearly impossible.

QUESTION 2.9.4 Show that there is no simple groups of order $525 = (3)(5^2)(7)$.

Solution: Let G be a group of order 525. Let n_7 be the number of Sylow-7-subgroups of G. Then by Theorem 1.2.45 we have $n_7 = 1$ or $n_7 = 15$. If $n_7 = 1$, then a Sylow-7-subgroup of G is normal in G by Theorem 1.2.46, and hence G is not simple. Hence assume that

 $n_7=15$. Let H be a Sylow-7-subgroup of G. Thus by Theorems 1.2.54 and 1.2.49, we conclude that $15=n_7=[G:N(H)]$. Hence N(H)=Ord(G)/15=35. Thus N(H) is cyclic (and hence Abelian) by Question 2.8.7. Now let K be a subgroup of N(H) of order 5. Since N(H) is Abelian, $N(H)\subset N(K)$. Also, since K is a 5-subgroup of G, K is contained in a Sylow-5-subgroup of G by Theorem 1.2.44. Hence there is a Sylow-5-subgroup, say D, such that $K\subset D$. Since $Ord(D)=5^2$, we conclude that D is Abelian by Question 2.8.3. Thus $D\subset N(K)$. Since $N(H)\subset N(K)$ and $D\subset N(K)$, we conclude that $Ord(N(K))\geq (5)(35)=175$. Thus $m=[G:N(K)]\leq 3$. Hence if G is simple, then G is isomorphic to a subgroup of A_m , which is impossible because $m\leq 3$ and $Ord(G)>3!/2=Ord(A_3)$.

QUESTION 2.9.5 Let G be a finite simple group and suppose that G has two subgroups K and H such that [G:H]=q and [G:K]=p where q,p are prime numbers. Show that Ord(H)=Ord(K).

Solution: Since G is finite, we need only to show that p=q. Hence assume that p>q. By Theorem 1.2.56 there is a group homomorphism Φ from G into S_q such that $Ker(\Phi)=\{e\}$ (because G is simple). Hence G is isomrphic to a subgroup of S_q , which is impossible since p>q, p divides Ord(G) and p does not divide q!. Thus p=q, and hence Ord(H)=Ord(K).

QUESTION 2.9.6 Show that A_5 cannot contain subgroups of order 30 or 20 or 15.

Solution: Suppose that A_5 has a subgroup H of order 30–20 or 15. Then [G:H]=2 or 3 or 4. Since A_5 is non-Abelian simple group (see Theorem ??), by Theorem 1.2.57 we conclude that A_5 is isomorphic to a subgroup of A_2 or A_3 or A_4 , which is impossible since G has more elements than A_2 or A_3 or A_4 .

QUESTION 2.9.7 Show that a simple group of order 60 has a subgroup of order 10 and a subgroup of order 6.

Solution: Let G be a simple group of order 60. Write $60 = (2^2)(3)(5)$. Let n_5 be the number of Sylow-5-subgroups, n_3 be the number of Sylow-3-subgroups. By Theorem 1.2.45 we conclude that $n_5 = 6$. Let H be a Sylow-5-subgroup. Then by Theorems 1.2.49 and 1.2.54, we conclude that $6 = n_5 = [G: N(H)]$. Hence Ord(N(H)) = 60/6 = 10. Thus

G has a subgroup of order 10. Now by Theorem 1.2.45 we conclude that $n_3 = 4$ or 10. Let K be a Sylow-3-subgroup. Then again by Theorems 1.2.49 and 1.2.54 $n_3 = 4 = [G:N(K)]$ or $10 = n_3 = [G:N(K)]$. If $n_3 = 4 = [G:N(K)]$, then by Theorem 1.2.57 we conclude that G is isomorphic to a subgroup of A_4 which is impossible since Ord(G) = 60 where $Ord(A_4) = 12$. Thus $10 = n_3 = [G:N(K)]$. Hence Ord(N(K)) = 60/10 = 6. Thus G has a subgroup of order 6.

QUESTION 2.9.8 Show that a simple group G of order 60 is isomorphic to A_5 .

Solution: Write $Ord(G)=(2^2)(3)(5)$. Let n_2 be the number of Sylow-2-subgroups of G. Then either $n_2=5$ or $n_2=15$ or $n_2=3$ by Theorem 1.2.49. By Theorem 1.2.57 it is impossible that $n_2=3$. Let K be a Sylow-2-subgroup. If $n_2=5$, then 5=[G:N(K)] by Theorem 1.2.49 and 1.2.54, and hence $G\cong A_5$ by Theorem 1.2.57. Thus assume that $n_2=15$. Since 4 does not divide $14=n_2-1$, by Theorem 1.2.51 we conclude that there are two distinct Sylow-2-subgroup H and K such that $Ord(H\cap K)=2$ $Ord(N(H\cap K))>Ord(HK)=Ord(H)Ord(K)/2=8$. Since $Ord(N(H\cap K))>8$ and $Ord(N(H\cap K))$ divides 60, we conclude that $m=[G:N(H\cap K)]\leq 5$. Thus G is isomorphic to a subgroup of A_m by Theorem 1.2.57. Since Ord(G)=60 and $Ord(A_m)<60$ if m<5, we conclude that m=5. Since G is isomorphic to a subgroup of A_5 and $Ord(G)=Ord(A_5)=60$, we conclude that G is isomorphic to A_5 .

QUESTION 2.9.9 Let H be a subgroup of S_5 that contains a 5-cycle and a 2-cycle. Show that $H = S_5$.

Solution: Let alpha be a 5-cycle in H, and let $\beta = (b_1, b_2)$ be a 2-cycle. By Question 2.4.18 we conclude that $Ord(\alpha\beta) = 4$ OR 6. If $Ord(\alpha\beta) = 4$, then $Ord(\alpha^{\beta}) = 6$ by Question 2.4.19. Thus H contains an element of order 6. Since H contains an element of order 5 and an element of order 6 and gcd(5,6) = 1, we conclude that 30 divides Ord(H). Let $D = H \cap A_5$ and $m = [A_5 : D]$. By Question 2.5.25 we conclude that $Ord(D) \geq 15$. If $D \neq A_5$, then $1 < m \leq 4$, and thus $A_5 \cong A_m$ by Theorem 1.2.57 which is impossible. Thus $D = A_5$. Since D is exactly half of H by Question 2.5.25, we conclude that $H = S_5$.

QUESTION 2.9.10 Let H be a subgroup of A_5 that contains a 5-cycle and a 3-cycle. Show that either $H = A_5$ or $H = S_5$.

Solution: Let $D = H \cap A_5$, α be a 5-cycle of H, and β be a 3-cycle of H. Since β and α are even permutation, we conclude that $\alpha \in D$ and $\beta \in D$. Thus 15 divides Ord(D). Hence $Ord(D) \geq 15$. Suppose that $D \neq A_5$, and let $m = [A_5 : D]$. Then $1 < m \leq 4$. Thus $A_5 \cong A_m$ by Theorem 1.2.57 which is impossible. Thus $D = A_5$. If $H \neq A_5$, then $H = S_5$ because $D = A_5$ contains exactly half of the elements of H by Question 2.5.25.

QUESTION 2.9.11 Show that S_5 contains exactly one subgroup of order 60.

Solution: Clearly A_5 is a subgroup of S_5 of order 60. Let H be a subgroup of S_5 of order 60. We will show that $H = A_5$. Let $D = H \cap A_5$. Suppose that $H \neq A_5$. Hence D is a proper subgroup of A_5 . By Question 2.5.25 we conclude that Ord(D) = 30. Since $[A_5:D] = 2$, we conclude that D is normal in A_5 by Question 2.6.1, a contradiction since A_5 is simple.

QUESTION 2.9.12 Let G be a group of order p^n where p is prime and $n \ge 2$. Show that G is not simple.

Solution: If G is Abelian, then every subgroup of G of order p is normal in G, and thus G is not simple. Thus assume that G is not Abelian. Then By Theorem 1.2.47 $Ord(Z(G)) \geq p$, and since G is not Abelian $Z(G) \neq G$. Thus Z(G) is normal in G. Since $Z(G) \neq \{e\}$ and $Z(G) \neq G$, we conclude that G is not simple.

QUESTION 2.9.13 Let G be a group of order pqr such that p > q > r and p, q, r are prime numbers. Show that G is not simple.

Solution: Deny. Hence G is simple. Let n_p be the number of Sylow-p-subgroups of G, n_q be the number of Sylow-q-subgroups of G, and n_r be the number of Sylow-r-subgroups of G. Since G is simple, by Theorem 1.2.46 we conclude that $n_p \neq 1$, $n_q \neq 1$, and $n_r \neq 1$. Since p > q > r, we conclude that $n_p = qr$ by Theorem 1.2.45. Hence there are $N_p = (p-1)qr = pqr - qr$ elements of order p. Since q > r and p > q, we conclude that the minimum value of $n_q = p$ and the minimum value of $n_r = q$. Hence there are at least $N_q = (q-1)p = pq - p$ elements of order q and at least $N_r = (r-1)q = qr - q$ elements of order r. Now $N_p + N_q + N_r \geq pqr - qr + pq - p + qr - q = pqr + pq - (p+q) > pqr = Ord(G)$ (because p > q we have pq > (p+q)), a contradiction. Thus G is not simple.

QUESTION 2.9.14 Let G be a group of order p^2q , where p and q are distinct prime numbers. Show that G is not simple.

Solution: Deny. Hence G is simple. Let n_p be the number of Sylow-p-subgroups of G, n_q be the number of Sylow-q-subgroups of G. Since G is simple, by Theorem 1.2.46 we conclude that $n_p \neq 1$ and $n_q \neq 1$. Thus $n_p = q$ by Theorem 1.2.45. Thus p < q. Hence $n_q = p^2$ again by Theorem 1.2.45. Thus p^2 does not divide $n_p - 1 = q - 1$. Hence by Theorem 1.2.51 there are two distinct Sylow-p-subgroups H and K such that $Ord(H \cap K) = p$ and $Ord(N(H \cap K)) > Ord(HK) = p^2p^2/p = p^3$. Since $Ord(N(H \cap K)) > p^3$ and $Ord(N(H \cap K))$ must divide $Ord(G) = p^2q$, we conclude that $Ord(N(H \cap K)) = p^2q = Ord(G)$. Hence $N(H \cap K) = G$, and thus $H \cap K$ is normal in G a contradiction. Hence G is not simple.

2.10 Classification of Finite Abelian Groups

QUESTION 2.10.1 What is the smallest positive integer n such that there are exactly 3 nonisomorphic Abelian group of order n.

Solution: Let n = 8. Then a group of order 8 is isomorphic to one of the following three nonisomorphic groups: Z_8 , $Z_2 \oplus Z_2 \oplus Z_2$, and $Z_2 \oplus Z_4$.

QUESTION 2.10.2 How many elements of order 2 in $Z_8 \oplus Z_2$? How many elements of order 2 in $Z_4 \oplus Z_2 \oplus Z_2$?

Solution: In $Z_8 \oplus Z_2$, there are exactly 3 elements of order 2, namely: (4, 0), (4, 1), (0, 1). In $Z_4 \oplus Z_2 \oplus Z_2$, there are exactly 6 elements of order 2, namely: (2, 0, 0), (2, 1, 0), (2, 0, 1), (0, 1, 0), (0, 1, 1), (0, 0, 1).

QUESTION 2.10.3 Show that an (Abelian) group G of order 45 contains an element of order 15.

By Theorem 1.2.52, G is isomorphic to one of the following: $Z_{45} \cong Z_5 \oplus Z_9$, or $Z_5 \oplus Z_3 \oplus Z_3$. In the first case, since Z_{45} is cyclic and 15 divides 45, we conclude that G contains an element of order 15. In the second case, let a = (1,1,1). Then by Theorem 1.2.37 Ord(a) = lcm[Ord(1), Ord(1), Ord(1)] = lcm[5,3,3] = 15.

QUESTION 2.10.4 Show that an Abelian group of order p^n for some prime p and some $n \ge 1$ is cyclic if and only if G has exactly one subgroup of order p.

Solution: Suppose that G is cyclic. Then G has exactly subgroup of order p by Theorem 1.2.12. Conversely, suppose that G has exactly one subgroup of order p. Then G must be isomorphic to Z_{p^n} by Theorem 1.2.52, for if by Theorem 1.2.52 G is isomorphic to $Z_{p^k} \oplus Z_{p^i} \oplus ...$ for some $k, i \geq 1$, then G would have at least two subgroups of order p.

QUESTION 2.10.5 Show that there are exactly two Abelian groups of order 108 that have exactly one subgroup of order 3.

Solution: First $108 = (3)(36) = (2^2)(3^3)$. For G to have exactly one subgroup of order 3, G must have a cyclic a subgroup of order 27 (see Question 2.10.4.) Let $G_1 = Z_4 \oplus Z_{3^3}$ and $G_2 = Z_2 \oplus Z_2 \oplus Z_{3^3}$. Then clearly that G_1 and G_2 are nonisomorphic. The subgroup of G_1 generated by (0,9) is cyclic of order 3, and the subgroup of G_2 generated by (0,0,9) is also cyclic of order 3.

QUESTION 2.10.6 Suppose that G is an Abelian group of order 120 such that G has exactly three elements of order 2. Classify G up to isomorphism.

Solution: Write $120 = (2^3)(3)(5)$. Since G has exactly 3 elements of order 2. G can not have a cyclic subgroup of order 8. Thus by Theorem 1.2.52 G is isomorphic to $G_1 = Z_2 \oplus Z_4 \oplus Z_{15}$ (observe that Z_{15} is isomorphic to $Z_3 \oplus Z_5$) or G is isomorphic to $G_2 = Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_{15}$. In the first case, G_1 has the following elements of order 2, namely: (1, 2, 0), (1, 0, 0), (0, 2, 0). In the second case G_2 has the following elements of order 2, namely: (1, 1, 0), (1, 0, 0), (0, 1, 0).

QUESTION 2.10.7 Suppose that the order of a finite Abelian group G is divisible by 10. Show that G has an element of order 10.

Solution: Since 2 divides Ord(G), G has an element, say a, of order 2 by Theorem 1.2.31. Also, since 5 divides Ord(G), G has an element, say b, of order 5 again by Theorem 1.2.31. Since gcd(2,5) = 1 and ab = ba, we conclude that Ord(ab) = 10 by Question 2.1.14.

QUESTION 2.10.8 Find an example of a finite Abelian group such that Ord(G) is divisible by 4 but G has no elements of order 4.

Solution: Let $G = Z_2 \oplus Z_2 \oplus Z_2$. Then G is a group of order 8 and hence Ord(G) is divisible by 4, but each nonidentity element of G is of order 2.

QUESTION 2.10.9 What is the isomorphism class of U(20), i.e., $U(20) = \{a : 1 \le a < 20 \text{ and } gcd(a, 20) = 1\} \}$ is a group under multiplication module 20.

Solution: First $Ord(U(20)) = \phi(20) = 8$ (see Theorem 1.2.13) by Theorem 1.2.14. Since U(20) is not cyclic, by Theorem 1.2.52 we conclude that U(20) is isomorphic to $G_1 = Z_2 \oplus Z_4$ or $G_2 = Z_2 \oplus Z_2 \oplus Z_2$. Since $3 \in U(20)$ and Ord(3) = 4, we conclude that U(20) is not isomorphic to G_2 (because every nonidentity element of G_2 is of order 2). Thus U(20) is isomorphic to $Z_2 \oplus Z_4$. **Another Solution**: Write 20 = (4)(5). Since gcd(4,5) = 1, we conclude that $U(20) \cong U(4) \oplus U(5)$ by Theorem 1.2.38. But U(4) is isomorphic to Z_2 by Theorem 1.2.40 and U(5) is isomorphic to Z_4 again by Theorem 1.2.40. Thus $U(20) \cong Z_2 \oplus Z_4$.

QUESTION 2.10.10 What is the isomorphism class of U(100). How many elements of order 20 does U(100) have?

Solution: First $100 = (2^2)(5^2)$. By Theorems 1.2.38 and 1.2.40 we conclude that $U(100) = U(2^2) \oplus U(5^2) = Z_2 \oplus Z_{20}$. If $b \in Z_{20}$ such that Ord(b) = 20, then 20(a,b) = (0,0) for every $a \in Z_2$. By Theorem 1.2.14, there are $\phi(20) = 8$ elements in Z_{20} of order 20. Since (a,b) has order 20 if and only if b has order 20 and a has two choices, namely: 0, 1, we conclude that there $8 \times 2 = 16$ elements in $Z_2 \oplus Z_{20}$ of order 20. Since $U(100) \cong Z_2 \oplus Z_{20}$, we conclude that U(100) has exactly 16 elements of order 20.

QUESTION 2.10.11 Let G be a finite Abelian group and $b \in G$ has maximal order. Show that if $a \in G$, then Ord(a) divides Ord(b).

Solution: Let n = Ord(b) and let $a \in G$ such that m = Ord(a). We need to show that m divides n. Let k = gcd(m, n). Then 1 = gcd(m, n/k). Since Ord(b) = n, we conclude that $Ord(b^k) = n/k$. Since G is Abelian and gcd(m, n/k) = 1, we conclude that $Ord(ab^k) = mn/k$ by Question 2.1.14. Now since k = gcd(m, n), we conclude that $nm/k \ge n$. Since Ord(b) = n is of maximal order, we conclude that mn/k = n. Since k divides m and mn/k = n, we conclude that k = m. Since k = m = gcd(m, n), we conclude that m divides n.

QUESTION 2.10.12 Let G be a finite Abelian group of order 2^n . Show that G has an odd number of elements of order 2.

Solution: If G is cyclic, then $G \cong Z_{2^n}$, and hence G has exactly one element of order 2 because G has exactly one subgroup of order 2. Thus suppose that G is not cyclic. Then by Theorem 1.2.52 we conclude that $G \cong G_1 = Z_{2^{m_1}} \oplus Z_{2^{m_2}} \oplus Z_{2^{m_3}} \oplus \cdots \oplus Z_{2^{m_i}}$ where $m_1 + m_2 + \cdots + m_i = n$, and $1 \leq m_k < n$. Let $a = (a_1, a_2, ..., a_i) \in G_1$ of order 2. Then not all a_k 's are zeros, and for each a_k we have either $a_k = 0$ or $Ord(a_k) = 2$. Since each $Z_{2^{m_k}}$ has exactly one subgroup of order 2, we conclude that there are exactly $2^i - 1$ elements of order 2. Since $2^i - 1$ is an odd number, the proof is completed.

QUESTION 2.10.13 Let G be a finite Abelian group such that for each divisor k of Ord(G) there is exactly one subgroup of G of order k. Show that G is cyclic.

Solution: Write $Ord(G)=(p_1^{n_1})(p_2^{n_2})\cdots(p_m^{n_m})$ where the p_i 's are distinct prime numbers and each $n_i\geq 1$. We need to show that $G\cong G_1=Z_{p_1^{n_1}}\oplus\cdots Z_{p_m^{n_m}}$. Deny. Then by Theorem 1.2.52 and Theorem 1.2.53 there is a p_i a prime divisor of G and a subgroup H of G such that $H\cong Z_{p_i}\oplus Z_{p_i}$. Thus H has two distinct subgroups of order p_i , and thus G has two distinct subgroups of order p_i , a contradiction. Hence G is cyclic.

2.11 General Questions on Groups

QUESTION 2.11.1 Give an example of a group G that contains two elements, say a, b, such that $Ord(a^2) = Ord(b^2)$ but $Ord(a) \neq Ord(b)$.

Solution: Let $G = Z_6$, under addition module 6, let a = 1 and b = 2. Then $a^2 = 1 + 1 = 2$ and $b^2 = 2 + 2 = 4$. Hence $ord(a^2) = Ord(b^2) = 3$. But Ord(a) = 6 and Ord(b) = 3.

QUESTION 2.11.2 let $\beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 8 & 7 & 6 & 5 & 2 & 4 \end{bmatrix}$ Write β as disjoint cycles, then find $Ord(\beta)$ and β^{-1} .

Solution: $\beta = (1)(2,3,8,4,7)(5,6)$. Hence by Theorem 1.2.20 $Ord(\beta) = LCM(4,2) = 4$. Now $\beta^{-1} = (6,5)(7,4,8,3,2) = (7,4,8,3,2)(6,5)$.

QUESTION 2.11.3 Let $\beta \in S_7$ and suppose that $\beta = (2, 1, 4, 3)(5, 6, 7)$. Find the least positive integer n such that $\beta^n = \beta^{-3}$.

Solution: The idea is to find the order of β . So, we write β as disjoint cycles. But β is already written in disjoint cycles. Hence $Ord(\beta) = lcm[4,3] = 12$. Now $\beta^n = \beta^{-3}$ implies $\beta^{n+3} = e$ (the isentity). Hence n+3=12. Thus n=9.

QUESTION 2.11.4 Let $\beta = (1, 2, 3)(1, 4, 5)$. Write β^{99} in cycle form.

Solution: First, write β as disjoint cycles. Hence $\beta = (1,4,5,2,3)$. Thus $Ord(\beta) = 5$. Since 5 divides 100, we have $\beta^{100} = \beta\beta^{99} = e$. Thus $\beta^{99} = b^{-1} = (3,2,5,4,1)$.

QUESTION 2.11.5 Let $\beta = (1, 5, 3, 2, 6)(7, 8, 9)(4, 10) \in S_{10}$. Given β^n is a 5-cycle. What can you say about n.

Solution: Since β^n is a 5-cycle, we conclude that $Ord(\beta^n)=5$. Now since beta is in disjoint cycles, we conclude that $Ord(\beta)=lcm[5,3,2]=30$. Hence by Question 2.1.12 we have $Ord(\beta^n)=30/gcd(n,30)=5$. Thus gcd(n,30)=6. Thus n=6m for some $m\geq 1$ such that gcd(m,5)=1. So, n=6,12,18,24,36,... so all n such that gcd(n,30)=6.

QUESTION 2.11.6 Let $G = U(8) \oplus Z_{12} \oplus S_7$. Find the order of a = (3, 3, (1, 2, 4)(5, 7)).

Solution: By Theorem 1.2.37, Ord(a) = lcm(Ord(3), Ord(3), Ord((1, 2, 4)(5, 7))) = (2, 4, 6) = 12.

QUESTION 2.11.7 Suppose that H and K are two distinct normal subgroups of a finite group G such that [G:H] = [G:K] = p, where p is a prime number. Show that there is a group homomorphism from G ONTO $G/H \oplus G/K$. Also, show that G has a normal subgroup D such that $[G:D] = p^2$. In particular, show that $D = H \cap K$ is a normal subgroup of G such that $[G:D] = p^2$.

Solution: First observe that since H and K are distinct and G is finite, $[G:H\cap K]>p$. Now let Φ be a map from G into $G/H\oplus G/K$ such that $\Phi(g)=(gH,gK)$. It is clear that Φ is a group homomorphism from G into $G/H\oplus G/K$ and $Ker(\Phi)=H\cap K$. Hence $G/Ker(\Phi)=G/(H\cap K)$ cong to a subgroup F of $G/H\oplus G/K$. Since $Ord(G/H\oplus G/K)=p^2$ and p is prime, we conclude that Ord(F)=1, or p, or p^2 .

Since $Ord(G/(H \cap K)) = [G: H \cap K] = Ord(F)$ and $[G: H \cap K] > p$, we conclude that $Ord(G/(H \cap K)) = Ord(F) = [G: H \cap K] = p^2$. Hence Φ is ONTO and $H \cap K$ is normal in G such that $[G: H \cap K] = p^2$.

QUESTION 2.11.8 Suppose that H and K are two distinct subgroups of a finite group G such that [G:H] = [G:K] = 2. Show that there is a group homomorphism from G ONTO $G/H \oplus G/K$. Also, show that G has a normal subgroup D such that [G:D] = 4. In particular, show that $D = H \cap K$ is a normal subgroup of G such that [G:D] = 4.

Solution: Since [G:H] = [G:K] = 2, we conclude that H and K are both normal in G by Question 2.6.1. Hence replace p in Question 2.11.7 with 2 and use the same argument.

QUESTION 2.11.9 Let G be a finite group with an odd number of elements. Suppose that G has a normal subgroup H of order S. Show that G has a normal subgroup S of order S.

Solution: Since H is normal in G, we conclude that Ord(G/C(H)) divides Ord(Aut(H)) by Question 2.7.56. But $H \cong Z_5$ because H is cyclic with 5 elements. Thus Ord(G/C(H)) divides $Ord(Aut(Z_5))$. Hence Ord(G/C(H)) divides Ord(U(5)) = 4 because $Ord(Aut(Z_5)) = Ord(U(5)) = 4$ by Theorem 1.2.41. Let n = Ord(G/C(H)) = [G:C(H]]. Since G has an odd order, n must be an odd number. Since n divides n = 1 divides n = 1. Hence n = 1 divides n = 1 di

QUESTION 2.11.10 Let G be a finite group with an odd number of elements such that G has no subgroup K with [G:K]=3. If H is a normal subgroup of G with 7 elements, then show that $H \subset Z(G)$.

Solution: Since H is normal in G, we conclude that Ord(G/C(H)) divides Ord(Aut(H)) by Question 2.7.56. But $H \cong Z_7$ because H is cyclic with 7 elements. Thus Ord(G/C(H)) divides $Ord(Aut(Z_7))$. Hence Ord(G/C(H)) divides Ord(U(7)) = 6 because $Ord(Aut(Z_7)) = Ord(U(7)) = 6$ by Theorem 1.2.41. Let n = Ord(G/C(H)) = [G:C(H]]. Since G has an odd order, n must be an odd number. Since G has no subgroups of index G, we conclude that G and G is odd and G and G and G is odd and G and G is odd and G and G is ordered element of G is ordered element of G.

QUESTION 2.11.11 Show that $G = \mathcal{Q}/\mathcal{Z}$ is an infinite group such that each element of G is of finite order.

Solution: Deny. Then G has a finite order, say n. Thus $n = [\mathcal{Q} : \mathcal{Z}]$, and thus $ng = \mathcal{Z}$ for every $g \in G$. Now let $x = 1/(n+1)\mathcal{Z} \in G$. Then $nx = n/(n+1)\mathcal{Z} \neq \mathcal{Z}$, a contradiction. Thus G is an infinite group. Let $y \in G$. Then $y = a/m\mathcal{Z}$ for some $a \in \mathcal{Z}$ and for some nonzero nonnegative $m \in \mathcal{Z}$. Thus $my = a\mathcal{Z} = \mathcal{Z}$. Thus Ord(y) divides m, and hence y is of finite order.

QUESTION 2.11.12 For each $n \geq 2$, show that $G = \mathcal{Q}/\mathcal{Z}$ has a unique subgroup of order n.

Solution: let $n \geq 2$ and $H_n = \{a/n\mathcal{Z} : 0 \leq a < n\}$. It is easy to see that H_n is a subgroup of G of order n. Suppose that D is a subgroup of G of order n. We will show that $D = H_n$. let $d \in D$. Then $d = g\mathcal{Z}$. Since $nd = ng\mathcal{Z} = \mathcal{Z}$, we conclude that $ng = b \in \mathcal{Z}$. Thus $g = b/n \in \mathcal{Q}$, and hence $d = c/n\mathcal{Z}$ for some $0 \leq c < n$. Thus $d \in H_n$, and hence $D \subset H_n$. Since $Ord(H_n) = Ord(D) = n$ and $D \subset H_n$, we conclude that $D = H_n$.

QUESTION 2.11.13 *Is there a group homomorphism from* $G = Z_8 \oplus Z_2 \oplus Z_2$ *ONTO* $D = Z_4 \oplus Z_4$.

Solution: No. For suppose that Φ is a group homomorphism from G ONTO D. Since $F = G/Ker(\Phi) \cong D$ and Ord(G) = 32 and Ord(D) = 16, we conclude that $Ord(Ker(\Phi)) = 2$. Hence $Ker(\Phi) = \{(0,0,0),(a_1,a_2,a_3)\}$. Suppose that $a_1 = 0$. Then $Ord((1,0,0)Ker(\Phi)) = 8$, a contradiction since D has no elements of order 8. Thus assume that $a_1 \neq 0$. Since $Ord((a_1,a_2,a_3)) = 2$, we conclude that $a_1 = 4$. Now $(2,0,0)Ker(\Phi),(2,0,1)Ker(\Phi),(2,1,0)Ker(\Phi),(2,1,1)Ker(\Phi),(0,1,1)Ker(\Phi)$ are all distinct elements of $F = G/Ker(\Phi)$ and each is of order 2. Now D has exactly 3 elements of order 3, namely: (2,2),(2,0),(0,2). Thus $F \not\cong D$ because F has at least 4 elements of order 2, where D has exactly 3 elements of order 2. A contradiction. Hence there is no group homomorphism from $G = Z_8 \oplus Z_2 \oplus Z_2$ ONTO $D = Z_4 \oplus Z_4$.

QUESTION 2.11.14 Let $G = \mathcal{Z} \oplus \mathcal{Z}$ and let $H = \{(a,b) : a,b \text{ are even integers }\}$. Show that H is a subgroup of G. Describe the group G/H.

Let $x = (a_1, b_1), y = (a_2, b_2) \in H$. Then $y^{-1}x = (-a_2, -b_2) + (a_1, b_1) = (a_1 - a_2, b_1 - b_2) \in H$ because $a_1 - a_2, b_1 - b_2$ are even integers. Thus H is a subgroup of G by Theorem 1.2.7. Observe that $H = 2\mathbb{Z} \oplus 2\mathbb{Z}$. Now let $K = \mathbb{Z}/2\mathbb{Z}$ and let Φ be the group homomorphism from G ONTO $K \oplus K$ defined by $\Phi(a, b) = (a2\mathbb{Z}, b2\mathbb{Z})$. Then $Ker(\Phi) = 2\mathbb{Z} \oplus 2\mathbb{Z} = H$. Hence $G/H \cong K \oplus K = \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Thus G/H has exactly 4 elements.

For two elements x, y in a group G, [xy] denotes the element $x^{-1}y^{-1}xy$ (such element is called the commutator of x and y).

QUESTION 2.11.15 Let x, y be two elements in a group G such that y commutes with the element [xy]. Prove that $y^n x = xy^n [yx]^n$ for every positive integer $n \ge 1$.

Solution: First observe that [yx] is the inverse of [xy]. Since y commutes with [xy], we conclude that y commutes with [yx] by Question 2.2.6. We prove the claim by induction. Let n=1. Then $yx=xy[yx]=xyy^{-1}x^{-1}yx=yx$. Assume the claim is valid for a positive integer $n \geq 1$, i.e., $y^nx=xy^n[yx]^n$. We prove the claim for n+1. Now $y^{n+1}x=yy^nx=yxy^n[yx]^n$. But yx=xy[yx] and y^m commutes with [yx] for every positive integer m (since y commute with [yx]). Hence $y^{n+1}x=yy^nx=yxy^n[yx]^n=xy[yx]y^n[yx]^n=xy^{n+1}[yx]^{n+1}$.

QUESTION 2.11.16 Let x, y be two elements in a group G such that X and y commute with the element [xy]. Prove that $(xy)^n = x^n y^n [yx]^{n(n-1)/2}$ for every positive integer $n \ge 1$.

Solution: Once again, observe that [yx] is the inverse of [xy]. Since x and y commute with [xy], we conclude that x and y commute with [yx] by Question 2.2.6. We prove the claim by induction. Let n=1. Then $xy=xy[yx]^0=xy$. Assume the claim is valid for a positive integer $n\geq 1$, i.e., $(xy)^n=x^ny^n[yx]^{n(n-1)/2}$. We prove the claim for n+1, i. e., we need to show that $(xy)^{n+1}=x^{n+1}y^{n+1}[yx]^{(n+1)n/2}$. Now $(xy)^{n+1}=(xy)^n(xy)=x^ny^n[yx]^{n(n-1)/2}(xy)=x^ny^nxy[yx]^{n(n-1)/2}$ (since x and y commute with [xy]). But $y^nx=xy^n[yx]^n$ by Question 2.11.15. Hence $(xy)^{n+1}=(xy)^n(xy)=x^ny^n[yx]^{n(n-1)/2}(xy)=x^ny^nxy[yx]^{n(n-1)/2}=x^nxy^ny[yx]^n[yx]^{n(n-1)/2}=x^{n+1}y^{n+1}[yx]^{n+(n(n-1)/2)}=x^{n+1}y^{n+1}[yx]^{n+(n(n-1)/2)}$.

QUESTION 2.11.17 Let G be a non-cyclic group of order p^3 for some odd prime number p. Then:

1. If G is non-Abelian, then show that Z(G) (the center of G) contains exactly p elements. Also, show that $(xy)^p = x^p y^p$ for every $x, y \in G$.

- 2. Let L be a subgroup of Z(G) of order p. Show that the map $\alpha: G \longrightarrow L$ such that $\alpha(g) = g^p$ is a ring homomorphism from G into L.
- 3. Show that G contains a normal subgroup H that is isomorphic to $Z_p \oplus Z_p$.
- Solution (1). By Theorem 1.2.47, Ord(Z(G)) = p or p^2 or p^3 . Since G is non-Abelian, we conclude that $Ord(Z(G)) \neq p^3$. Suppose that $Ord(Z(G)) = p^2$. Since Z(G) is a normal subgroup of G and Ord(G/Z(G)) = p, we conclude that G/Z(G) is a cyclic group, and hence G is Abelian by Question 2.6.6, a contradiction. Thus Ord(Z(G)) = p (observe that p is an odd number not needed here.) Now since $Ord(G/Z(G)) = p^2$, we conclude that G/Z(G) is abelian by Question 2.8.3. Hence xyZ(G) = yxZ(G) for every $x, y \in G$, and thus $[xy] = x^{-1}y^{-1}xy = z \in Z(G)$ for every $x, y \in G$. Since $[xy] \in Z(G)$ for every $x, y \in G$, we conclude that $(xy)^p = x^py^p[yx]^{p(p-1)/2}$ for every $x, y \in G$ by Question 2.11.16. Since Ord(Z(G)) = p and 2 divides p-1 (because p is odd), we conclude that $[yx]^{p(p-1)/2} = 1$. Thus $(xy)^p = x^py^p[yx]^{p(p-1)/2} = x^py^p$.
- (2) Since $L \subset Z(G)$, we conclude that L is normal in G. Since Ord(L) = p $Ord(G/L) = p^2$. Since G is non-cyclic, we conclude that G/L is not cyclic. Since $Ord(G/L) = p^2$ and G/L is not cyclic, we conclude that each non-identity element of G/L has order p, i.e., $g^p \in L$ for every $g \in G$. Now let $x, y \in G$. Since $\alpha(xy) = (xy)^p = x^p y^p$ by (1) and $x^p \in L$ for each $x \in G$, we conclude that α is a group homomorphism from G into L.
- (3) Assume that G is Abelian. Since G is non-cyclic, we conclude that $G \cong Z_{p^2} \oplus Z_p$ OR $G \cong Z_p \oplus Z_p \oplus Z_p$ by Theorem 1.2.52, and thus in either case G contains a normal subgroup isomorphic to $Z_p \oplus Z_p$. Now suppose that G is non-Abelian. By Theorem 1.2.43, we conclude that G has a subgroup H of order p^2 . Since [G:H]=p, we conclude that there is a group homomorphism from G into S_p such that $Ker(\Phi)$ is contained in H by Theorem 1.2.56. Hence $Ord(Ker(\Phi))=1$ OR p Or

 p^2 . Thus, $Ord(G/Ker(\Phi)) = p^3$ or p^2 or p. Since $G/Ker(\Phi)$ is group-isomorphic to a subgroup of S_p and neither p^3 divides $Ord(S_p) = p!$, nor p^2 divides p!, we conclude that $Ord(G/Ker(\Phi)) = p$, and thus $Ker(\Phi) = H$ (since $Ker(\Phi)$ is contained in H). Thus H is a normal subgroup of G. Now since $Ord(H) = p^2$, we conclude that H is Abelian by Question 2.8.3. Hence $H \cong Z_{p^2}$ or $H \cong Z_p \oplus Z_p$ by Theorem 1.2.52. If $H \cong Z_p \oplus Z_p$, then we are done. Hence assume that $H \cong Z_{p^2}$. Thus H is cyclic and hence G contains an element of order p^2 . Now let α as in (2). Since Ord(Z(G)) = p and α is a group homomorphism from G into Z(G) and G contains an element of order p^2 , we conclude that $\alpha(G) = Z(G)$. Thus, $G/Ker(alpha) \cong Z(G)$, and hence $Ord(G/Ker(\alpha)) = p$. Thus, $Ord(Ker(\alpha)) = p^2$, and therefore $Ker(\alpha)$ is Abelian by Question 2.8.3. Now let $x \in Ker(\alpha)$. Then $\alpha(x) = x^p = 1 \in Z(G)$. Hence Ord(x) = 1 or Ord(x) = p. Since $ker(\alpha)$ is Abelian and each nonidentity element of $Ker(\alpha)$ has order p, we conclude that $Ker(\alpha) \cong Z_p \oplus Z_p$.

QUESTION 2.11.18 Suppose that a non-cyclic group G has order p^n for some odd prime number p and $n \geq 3$. Show that G contains a normal subgroup isomorphic to $Z_p \oplus Z_p$.

Solution: Suppose that G is a non-cyclic Abelian. Then $G \cong Z_{p^i} \oplus D$ for some Abelian group D of order p^{n-i} for some $i, 1 \leq i < n$ by Theorem 1.2.52. Thus G contains a normal subgroup isomorphic to $Z_p \oplus Z_p$. Thus assume that G is non-Abelian. We prove it by induction on n. If n = 3, then by (3) in Question 2.11.17 we are done. Hence assume that the claim is valid for $3 \le m < n$ and we will prove the claim when m = n. Since $Ord(Z(G)) = p^k$ for some $1 \le k < n$ by Theorem 1.2.47, let F = G/L for some subgroup L of order p contained in Z(G). Thus $Ord(F) = p^{n-1}$. Now suppose that F is cyclic. Then G is Abelian by Question 2.6.6, a contradiction. Hence F is not cyclic. Thus F contains a normal subgroup J (of order p^2) isomorphic to $Z_p \oplus Z_p$ by the assumption. Since $Ord(J \cap Z(F)) \geq p$ by Theorem 1.2.59, let M be a subgroup $J \cap Z(F)$ of order p. Then M is a normal subgroup of F. Let Φ be the of group homomrphism from GONTO F = G/L defined by $\Phi(g) = gL$. Thus $H = \Phi^{-1}(J)$ is a normal subgroup of G which contains L and $Ord(H) = p^3$; also $\Phi^{-1}(M) = N$ is a normal subgroup of G such that $Ord(N) = p^2$ and $N \subset H$. Thus, N is Abelian by Question 2.8.3. Thus either $N \cong Z_{p^2}$ OR $N \cong Z_p \oplus Z_p$ by Theorem 1.2.52. If $N \cong \mathbb{Z}_p \oplus \mathbb{Z}_p$, then we are done (since N is normal in G). Thus assume that $N \cong \mathbb{Z}_{p^2}$, and hence H contains an element of

order p^2 (Since $N \subset H$ and $N \cong \mathbb{Z}_{p^2}$). Observe that H is a non-cyclic normal subgroup of G because $\Phi(H) = J$ is a non-cyclic subgroup of F. Since L is a subgroup of H of order p and it is normal being a subset of Z(G), let $\alpha: H \longrightarrow L$ such that $\alpha(h) = h^p$ for every $h \in H$. Hence α is a group homomorphism from H into L by (2) in Question 2.11.17. Since H contains an element of order p^2 , we conclude that $\alpha(H) = L$. Since $H/Ker(\alpha) \cong \alpha(H) = L$, we conclude that $Ord(Ker(\alpha)) = p^2$ and $Ker(\alpha) = \{h \in H : \alpha(h) = h^p = e \text{ (the identity of } H(G)\}.$ It is clear that $Ker(\alpha)$ is normal in H. Now let $g \in G$. Since H is normal in G and $Ker(\alpha) \subset H$, we conclude that $g^{-1}Ker(\alpha)g \subset H$. Let $a \in Ker(\alpha)$. Then $(g^{-1}ag)^p = g^{-1}a^pg = e$. Hence $g^{-1}ag \in Ker(\alpha)$. Thus $g^{-1}Ker(\alpha)g \subset Ker(\alpha)$ for every $g \in G$. Hence $Ker(\alpha)$ is a normal subgroup of G by Question 2.6.29. Since $Ord(Ker(\alpha)) = p^2$ and every nonidentity element of $Ker(\alpha)$ has order p, we conclude that $Ker(\alpha) \cong Z_p \oplus Z_p$ is a normal subgroup of G. [LONG PROOF BUT I TRIED TO GIVE ALL THE DETAILS, SO DO NOT GET DISCOURAGED]

QUESTION 2.11.19 (compare with Question 2.8.22) Let G be a group of order p^n where $n \geq 1$ and p is an odd prime number. If G contains exactly one subgroup of order p, then show that G is cyclic.

Solution: If n=1 OR n=2, then the claim is clear. Hence assume that $n \geq 3$. Deny. Then by Question 2.11.18, G contains a subgroup that is isomorphic to $Z_p \oplus Z_p$. Thus G contains at least two distinct subgroups of order p, a contradiction. Thus G must be cyclic.

QUESTION 2.11.20 Let H, K be normal subgroups of a group G such that G/H and G/K are Abelian groups. Prove that $G/(H \cap K)$ is Abelian group.

Solution Let Φ be the group homomorphism from G into $G/H \oplus G/K$ defined by $\Phi(g) = (gH, gK)$. Then $Ker(\Phi) = H \cap K$. Thus, $G/(H \cap K) \cong$ to a subgroup of $G/H \oplus G/K$. Hence $G/(H \cap K)$ is an Abelian group.

QUESTION 2.11.21 Let G be a group of order p^n where $n \ge 1$ and p is an odd prime number. If every subgroup of G is normal in G, then show that G is Abelian.

Solution If n=1 OR n=2, then there is nothing to prove. Hence assume that $n\geq 3$. Assume the claim is valid for all $2\leq m< n$. Then by Question 2.11.18, G contains a normal subgroup isomorphic to $Z_p\oplus Z_p$. Hence G contains two distinct normal subgroups, say H and K, each is of order p. Hence G/H and G/K are Abelian by assumption. Thus $G/(H\cap K)$ is Abelian by Question ??. But $H\cap K=\{e\}$ (e = the identity of G). Thus G is Abelian.

QUESTION 2.11.22 (A generalization of Question 2.6.1) let G be a group of order n and let H be a subgroup of G such that [G:H]=p where p is the smallest prime divisor of n. Prove that H is normal in G.

Solution: By Theorem 1.2.56, there is a group homomorphism Φ from G into S_p such that $Ker(\Phi)$ is a normal subgroup of H. We will show that $Ker(\Phi) = H$, and hence H is normal in G. Suppose that $Ker(\Phi)$ is properly contained in H. Since [G:H] = p, we conclude that $Ord(G/Ker(\Phi)) = d$ for some integer d > 2. Since p is the smallest positive prime divisor of n, we conclude that either p^2 divides d or there is a prime number q > p such that q divides d. Since $G/Ker(\Phi)$ is isomorphic to a subgroup of S_p and $Ord(S_p) = p! = p(p-1)(p-2)...(1)$, we conclude that p is the largest prime number that may divide the order of $G/Ker(\Phi) = d$ and if p divides d, then p^2 does not divide d. Hence neither p^2 divides d nor q divides d, a contradiction. Thus $Ker(\Phi) = H$ is a normal subgroup of G.

QUESTION 2.11.23 Let G be a group of order p^n where $n \ge 1$ and p is a prime number. Prove that for every $m, 1 \le m < n$, there is a normal subgroup of G of order p^m .

Solution: If n=1 OR n=2, then the claim is clear. Hence assume that $n\geq 3$. First it is clear that for every $m, 1\leq m< n$, there is a subgroup of order p^m . Hence let H be a subgroup of G of order n-1. Then [G:H]=p is the smallest prime divisor of the order of G. Thus H is normal in G by Question 2.11.22. Also, since $Ord(Z(G))\geq p$ by Theorem 1.2.47, we conclude that G has a normal subgroup of order p. We prove the claim by induction. For n=3, then the claim is clear by the previous argument. Hence assume that the claim is correct for all groups of order p^k where $3\leq k< n$. Let L be a subgroup of Z(G) of order p. Set F=G/L and let Phi be the group homomorphism from G ONTO F defined by $\Phi(g)=gL$ for every $g\in G$. Then

 $Ord(G/L) = p^{n-1}$. Thus, by assumption, for every $2 \le mleq n - 1$, there is a normal subgroup D of F of order p^{m-1} , and hence $J = \Phi^{-1}(D)$ is a normal subgroup of G of order p^m .

QUESTION 2.11.24 Let L be a normal subgroup of a group G, Φ be the group homomorphism from G ONTO F = G/L defined by $\Phi(g) = gL$ for every $g \in G$, H be a subgroup of F, $N_F(H)$ be the normalizer of H in F, $K = \Phi^{-1}(H)$. Then $N(K) = \Phi^{-1}(N_F(H))$, where N(K) is the normalizer of K in G.

Solution: First observe that L is a subgroup of K. Let $g \in N(K)$. Since $gKg^{-1} = K$ and $\Phi(K) = H$, $gLHg^{-1}L = H$ in F. Thus $gL \in N_F(H)$, and hence $g \in \Phi^{-1}(N_F(H))$. Now let $g \in \Phi^{-1}(N_F(H))$ and let kinK. Then $\Phi(k) = kL \in H$. Thus $gLkLg^{-1}L = gkg^{-1}L \in H$. Since $\Phi(K) = H$, we conclude that $gLkLg^{-1}L = gkg^{-1}L = k_1L$ for some $k_1 \in K$. Thus $gkg^{-1} = k_1z \in K$ for some $z \in L \subset K$. Thus $g \in N(K)$. Hence $N(K) = \Phi^{-1}(N_F(H))$

QUESTION 2.11.25 Let G be a group of order p^n where $n \geq 1$ and p is a prime number. Prove that H is properly contained in N(H) for every proper subgroup H of G.

Solution: If n=1 or n=2, then the claim is clear. Also if G is Abelian, then there is nothing to prove. Hence assume that $n \geq 3$ and G is non-Abelian. Now let H be a subgroup of G. If Z(G) not $\subset H$, then Ord(Z(G)H) > Ord(H) by Theorem 1.2.48 and it is clear that $H \subset Z(G)H$. But is easily verified that $Z(G)H \subset N(H)$. Thus $H \neq N(H)$. So we prove the claim for all proper subgroups of G that contain Z(G). Now Let n=3. Then every subgroup of G of order p^2 is normal in G by Question 2.11.22 and if H is subgroup of G of order p containing Z(G), then H = Z(G) and thus N(H) = N(Z(G)) = G. We proceed by induction on n. For n=3, then the claim is clear by the previous argument. Hence assume that the claim is correct for all groups of order p^k where $3 \le k < n$. Set F = G/Z(G) and let Phi be the group homomorphism from G ONTO F defined by $\Phi(g) = gZ(G)$ for every $g \in G$. Then $Ord(F = G/Z(G)) < p^n$ and there is one to one correspondence between the subgroups of G containing Z(G) and the subgroups of F. Let H be a subgroup of F, and $K = \Phi^{-1}(H)$. Then $N(K) = \Phi^{-1}(N_F(H))$ by Question 2.11.24, where $N_F(H)$ is the normalizer of H in F. Since $H \neq N_F(H)$ by assumption, we conclude that $K \neq N(K)$, and thus K is properly contained in N(K).

QUESTION 2.11.26 Show that A_4 does not contain a subgroup of order 6,

Solution: Deny. Let H be a subgroup of A_4 of order 6. Since $[A_4:H]=2$, by Question 2.6.1 we conclude that H is normal in A_4 . Now since Ord(H)=6=(3)(2), let K be a Sylow-3-subgroup of H (observe that K is also a Sylow-3-subgroup of A_4). Then by Theorem 1.2.50 we conclude that $A_4=HN_{A_4}(K)$ (note that $N_{A_4}(K)$ is the normalizer of K in A_4). Since [H:K]=2, once again K is normal in H. Thus $H \subset N_{A_4}(K)$. Hence by Theorem 1.2.48 we have $Ord(A_4)=Ord(H)Ord(N_{A_4}(K))/Ord(H\cap N_{A_4}(K))=6Ord(N_{A_4}(K))/6=Ord(N_{A_4}(K))$. Hence $N_{A_4}(K)=A_4$. Thus K is normal in A_4 . Hence K is unique by Theorem 1.2.46. Thus there are exactly two elements of order K in K in K in K and each is of order K in K and each is of order K in K in K is normal in K and each is of order K in K is normal and each is of order K in K in K is normal in K and each is of order K in K in

QUESTION 2.11.27 Let G be a group of order 105 = (7)(5)(3). Show that if G has a subgroup H of order 35 = (7)(5), then G has exactly subgroup, say K, of order 7, and hence show that K is normal in G.

Solution: Since [G:H]=3, we conclude that H is normal in G by Question 2.11.22. By Theorem 1.2.43, we conclude that H has a Sylow-7-subgroup, say K (observe that K is a Sylow-7-subgroup of G). Since [H:K]=5, we conclude that K is normal in H again by Question 2.11.22. Thus $H \subset N_G(K)$. But by Theorem 1.2.50, we conclude that [G:H]=3 divides $N_G(K)$. Since $H \subset N_G(K)$, we conclude that 35 divides $Ord(N_G(K))$. Since 35 divides $Ord(N_G(K))$ and 3 divides $Ord(N_G(K))$ and gcd(35, 3)=1, we conclude that (35)(3)=105 divides $Ord(N_G(K))$. Thus $N_G(K)=G$. Hence K is normal in G. Now G is unique by Theorem 1.2.46.

QUESTION 2.11.28 (a generalization of Question 2.11.27) Suppose that G is a group of order pqr such that p > q > r, where p, q, r are prime numbers. Show that G has a subgroup of order pq if and only if G has exactly one subgroup of order p, i.e., if and only if G has a normal subgroup of G of order p.

Solution: Suppose that G has a subgroup H of order pq. Since [G:H]=r, we conclude that H is normal in G by Question 2.11.22.

Let K be a Sylow-p-subgroup of H. Since [H:K]=q and q < p, we conclude that K is normal in H again by Question 2.11.22. Hence $H \subset N_G(K)$, and thus pq divides $Ord(N_G(K))$. Now by Theorem 1.2.50 we conclude that r divides $Ord(N_G(K))$. Since gcd(pq,r)=1 and pq divides $Ord(N_G(K))$ and r divides $Ord(N_G(K))$, we conclude that pqr divides $Ord(N_G(K))$. Thus $N_G(K)=G$. Hence K is normal in G, and thus K is unique by Theorem 1.2.46.

For the converse, suppose that G has exactly one subgroup, say K, of order p. Then K is normal in G by Theorem 1.2.46. Let D be a Sylow-q-subgroup of G. Then KD is a subgroup of G by Question 2.6.16. Now since $K \cap D = \{e\}$, we conclude that Ord(KD) = pq by Theorem 1.2.48.

QUESTION 2.11.29 Let G be an infinite group and suppose that G has a a proper subgroup H such that $[G:H]=n<\infty$. Show that G has a normal subgroup K such that neither K=G nor $K=\{e\}$.

Solution: By Theorem 1.2.56, there is a group homomorphism Φ from G into S_n such that $Ker(\Phi) \subset H$. Now $K = Ker(\Phi)$ is a normal subgroup of G. Since G is infinite and S_n is finite and $G/K \cong$ to a subgroup of S_n , we conclude that $K \neq \{e\}$. Also, since $K \subset H$ and $H \neq G$, we conclude that $K \neq G$.

QUESTION 2.11.30 Let G be a finite group of odd order. Prove that if a is a nonidentity elements of G, then a is not a conjugate of a^{-1} , i.e., show that $a \neq g^{-1}a^{-1}g$ for every $g \in G$.

Solution First observe that since ord(G) is an odd number, $a \neq a^{-1}$ for every nonidentity element $a \in G$ (for if $a = a^{-1}$ and a is nonidentity, then Ord(a) = 2 which is impossible since Ord(G) is an odd number). Now assume that $a = g^{-1}a^{-1}g$ for some $g \in G$, where a is nonidentity. Then a and a^{-1} are two distinct elements of G. Now let $b \in CL(a)$ (recall that CL(a) is the conjugacy class of a, see Theorem 1.2.54), Since b is a conjugate of a, b^{-1} is a conjugate of a^{-1} . Thus b^{-1} is a conjugate of a. Hence $b^{-1} \in CL(a)$. Since $b^{-1} \in CL(a)$ for every $b \in CL(a)$ and $b^{-1} \neq b$ for every $b \in CL(a)$, we conclude that Ord(CL(a)) is an even number. But Ord(CL(a)) = Ord(G)/Ord(C(a)) by Theorem 1.2.54 and Ord(G)/Ord(C(a)) is an odd number since Ord(G) is an odd number. Thus Ord(CL(a)) is an odd number which is contradiction. Thus, a is not a conjugate of a^{-1} for every nonidentity element a of G.

QUESTION 2.11.31 Let G be a group and Φ be a map from G ONTO G given by $\Phi(g) = g^{-1}$. Show that Φ is a group isomorphism if and only if G is an Abelian group.

Solution: If G is Abelian, then it is clear that Φ is an isomorphism. Hence assume that Φ is an isomorphism. Let $g_1, g_2 \in G$. Then $\Phi(g_1g_2) = (g_1g_2)^{-1} = g_1^{-1}g_2^{-1}$. But $(g_1g_2)^{-1} = g_2^{-1}g_1 - 1$. Thus $g_2^{-1}g_1 - 1 = g_1^{-1}g_2^{-1}$. Hence $(g_2^{-1}g_1 - 1)^{-1} = (g_1^{-1}g_2^{-1})^{-1}$. Hence $g_1g_2 = g_2g_1$.

QUESTION 2.11.32 Let G be a finite a group and Φ be an isomorphism from G ONTO G such that $\Phi(g) = g$ if and only if g = e and Φ^2 is the identity map (Φ^2 means the composition of Φ with Φ). Show that G is Abelian.

Solution: Let $K = \{g_1^{-1}\Phi(g_1): g_1 \in G\}$. First we show that G = K. Suppose that $g_1^{-1}\Phi(g_1) = g_2^{-1}\Phi(g_2)$ for some $g_1, g_2 \in G$. Then $\Phi(g_1)\Phi(g_2)^{-1} = \Phi(g_1g_2-1) = g_1g_2-1$. Thus $g_1g_2^{-1} = e$ by hypothesis. Hence $g_1 = g_2$. Since G is finite and for every $g_1, g_2 \in G$ $g_1^{-1}\Phi(g_1) \neq g_2^{-1}\Phi(g_2)$, we conclude that K = G. Now let $x \in G$. Then $x = g^{-1}\Phi(g)$ for some $g \in G$. Thus $\Phi(x) = \Phi(g^{-1}\Phi(g)) = \Phi(g^{-1})\Phi(\Phi(g)) = \Phi(g)^{-1}g = (g^{-1}\Phi(g))^{-1} = x^{-1}$. Since $\Phi(x) = x^{-1}$ is an isomorphism, we conclude that G is Abelian by Question 2.11.31.

QUESTION 2.11.33 Let G be a group and Φ be a group isomorphism from G Onto G such that $\Phi(g) = g^2$ for every $g \in G$. Suppose that Φ^2 is the identity map on G. Show that G is Abelian such that Ord(g) = 3 for every nonidentity $g \in G$. In particular, if G is finite, then show that $Ord(G) = 3^n$ for some $n \geq 1$ and $G \cong Z_3 \oplus Z_3 \cdots \oplus Z_3$ (n copies of Z_3).

Solution: Let $g \in G$. Since $\Phi(g) = g^2$ and $\Phi(\Phi(g)) = g$, we conclude that $g = \Phi(\Phi(g)) = \Phi(g^2) = g^4$. Thus $g^3 = e$. Hence Ord(g) = 3 for every nonidentity $g \in G$ and $g^2 = g^{-1}$. Thus $\Phi(g) = g^2 = g^{-1}$ for every $g \in G$. Since ϕ is an isomorphism, we conclude that G is Abelian by Question 2.11.31. Suppose G is finite. Since every nonidentity element of G has order 3, we conclude that $Ord(G) = 3^n$ for some $n \geq 1$. Also, by Theorem 1.2.52, we conclude that $G \cong Z_3 \oplus Z_3 \cdots \oplus Z_3$ (n copies of Z_3).

QUESTION 2.11.34 Show that
$$G = \{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} : a, b, c \in Z_3 \}$$
 is a

non-Abelian group of order 27, under matrix multiplication such that each nonidentity element of G has order 3.

Solution: A straight forward calculation will show that G is a group

with 27 elements. Now let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$. Then

the entry in the first row and third column of AB is 2. But the entry in the first row and third column of BA is 1. Hence $AB \neq BA$.

Thus G is non-Abelian. Let $A=\begin{bmatrix}1&a&b\\0&1&c\\0&0&1\end{bmatrix},\ a,b,c\in Z_3$. Thus

$$A^{3} = \begin{bmatrix} 1 & 3a & 3ac + 3b \\ 0 & 1 & 3c \\ 0 & 0 & 1 \end{bmatrix}. \text{ but } 3a = 3ac + 3b = 3c = 0 \text{ in } Z_{3}. \text{ Hence}$$

$$A^{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

QUESTION 2.11.35 Let
$$A = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$$
, $a, b, c \in \mathbb{Z}_n$. Show that Thus $A^m = \begin{bmatrix} 1 & ma & m(m-1)/2ac + mb \\ 0 & 1 & mc \\ 0 & 0 & 1 \end{bmatrix}$.

Solution: For m=1, the claim is clear. Hence assume that the claim is valid for $m=k\geq 1$. We prove it for m=k+1. Now $A^{k+1}=$

claim is valid for
$$m = k \ge 1$$
. We prove it for $m = k + 1$. Now $A^{k+1} = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} A^k = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & ka & k(k-1)/2ac + kb \\ 0 & 1 & kc \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & (k+1)a & (k(k-1)/2+k)ac & (k+1)b \\ 0 & 1 & (k+1)c & \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & (k+1)a & k(k+1)/2ac & (k+1)b \\ 0 & 1 & (k+1)c & \\ 0 & 0 & 1 \end{bmatrix}$

QUESTION 2.11.36 (a generalization of Question 2.11.34) Let

$$p$$
 be an odd prime number. Show that $G = \{\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} : a, b, c \in Z_p\}$ is

79

a non-Abelian group of order p^3 , under matrix multiplication, such that each nonidentity element of G has order p.

Solution: A straight forward calculation will show that G is a group

with
$$p^3$$
 elements. Now let $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.

Then the entry in the first row and third column of AB is $\overline{2}$. But the entry in the first row and third column of BA is 1. Hence $AB \neq BA$.

Thus
$$G$$
 is non-Abelian. Let $A = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$, $a,b,c \in \mathbb{Z}_p$. Then

Thus
$$G$$
 is non-Abelian. Let $A = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$, $a,b,c \in Z_p$. Then by Question 2.11.35, we have $A^p = \begin{bmatrix} 1 & pa & p(p-1)/2ac + pb \\ 0 & 1 & pc \\ 0 & 0 & 1 \end{bmatrix}$. but $pa = p(p-1)/2ac + pb = pc = 0$ in Z_p . Hence $A^p = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

$$pa = p(p-1)/2ac + pb = pc = 0$$
 in Z_p . Hence $A^p = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

QUESTION 2.11.37 Give an example of a a non-Abelian group H of order 3^5 such that each element of G is of order 3. Also, give an example of a non-Abelian group H of order 54 such that H has an element of order 12.

Solution: Let $H = Z_3 \oplus Z_3 \oplus G$, where G is the group in Question 2.11.34. Since G is non-Abelian, we conclude that H is non-Abelian. It is clear that each element of H is of order 3.

For the second part, let $H = Z_4 \oplus G$, where G is the group in Question 2.11.34. Then H a non-Abelian group and Ord(H) = 54. Let a=(1,B), where B is a nonidentity element of G. Then by Theorem 1.2.37 Ord(a) = lcm[Ord(1), Ord(B)] = lcm[4, 3] = 12.

Chapter 3

Tools and Major Results of Ring Theory

3.1 Notations

- 1. R indicates the set of all real numbers.
- 2. Z indicates the set of all integers.
- $3.\ Q$ indicates the set of all rational numbers.
- 4. Nil(A) indicates the set of all nilpotent elements of a ring A.
- 5. Integral Domain indicates a commutative ring with 1 and with no zero divisors.
- 6. $GL_n(A)$ indicates the set of all $n \times n$ matrices with entries from a ring A.
- 7. Char(A) indicates the characteristic of a ring A.
- 8. U(A) indicates the set of all units of a ring A.
- 9. $Z_n = \{0, 1, 2, ..., n-1\}$ is a ring under addition and multiplication modulo n.
- 10. if f(x) is a polynomial, then deg(f(x)) indicates the degree of f(x).
- 11. A is a ring with 1 means A is a ring with identity under multiplication.

12. $GF(p^n)$ indicates a finite field with p^n elements, where $n \ge 1$ and p is prime.

- 13. $a \in A \setminus B$ indicates that $a \in A$ but $a \notin B$.
- 14. $a \mid b$ indicates that a divides b.
- 15. A^* indicates the set of all nonzero elements of a ring A.
- 16. $A \cong B$ indicates that A is isomorphic to B.
- 17. $\Phi_n(x)$ indicates the nth cyclotomic polynomial.
- 18. $Aut_F(E)$ indicates the set $\{\Phi : \Phi \text{ is a field isomorphism from } E$ onto E and $\Phi(y) = y$ for every $y \in F\}$.

3.2 Major Results of Ring Theory

THEOREM 3.2.1 Let A be a commutative ring with 1 and let M be a proper ideal of A. Then M is a maximal ideal of A if and only if A/M is a field.

THEOREM 3.2.2 Let A be a ring with 1. If 1 has infinite order under addition, then the characteristic of A is 0. If 1 has a finite order, say, n, under addition, then the characteristic of A is n.

THEOREM 3.2.3 Suppose that $A, A_1, A_2, ..., A_n$ are rings with 1 such that $A = A_1 \oplus A_2 \oplus A_3 \oplus ... \oplus A_n$. Then $U(A) = U(A_1) \oplus U(A_2) \oplus ... \oplus U(A_n)$.

THEOREM 3.2.4 Let A be a commutative ring with 1, and let I be a proper ideal of A. Then there is a maximal ideal M of A $(M \neq A)$ that is contained I.

THEOREM 3.2.5 Let A, B be rings and Φ be a ring homomorphism from A into B. Then $A/Ker(\Phi) \cong \Phi(A)$.

THEOREM 3.2.6 Let F be a field. Then F[x] is a principal ideal domain, that is every ideal of F[x] is generated by one element of F[x].

THEOREM 3.2.7 Let F be a field, and let I be a nonzero ideal of F[x], and g(x) is a nonzero polynomial of a minimum degree of I. Then I = (g(x)).

THEOREM 3.2.8 Let F be a field, and $a \in F$. Then a is a zero (root) of f(x) if and only if x - a is a factor of f(x).

THEOREM 3.2.9 Let F be a field, and f(x) in F[x] of degree $n \ge 1$. Then f(x) has at most n zeros (roots) counting multiplicity.

THEOREM 3.2.10 Let $f(x) \in Z[x]$. If f(x) is reducible over Q, then f(x) is reducible over Z.

THEOREM 3.2.11 Let p be a prime number and $f(x) \in Z[x]$ such that $deg(f(x)) \ge 1$. Let g(x) be the polynomial in $Z_p[x]$ obtained from f(x) by reducing all the coefficients of f(x) modulo p. If g(x) is irreducible over Z_p and deg(f(x)) = deg(g(x)), then f(x) is irreducible over Q.

THEOREM 3.2.12 Let F be a field and $f(x) \in F[x]$ such that $deg((f(x)) \ge 1$. Then the ideal (f(x)) is a maximal ideal of F[x] if and only if f(x) is irreducible over F.

THEOREM 3.2.13 Let F be a field, and $f(x), k(x), g(x) \in F[x]$ such that g(x) is irreducible over F. If $g(x) \mid f(x)k(x)$, then either $g(x) \mid f(x)inF[x]$ or $g(x) \mid k(x)inF[x]$.

THEOREM 3.2.14 Let F be a field, and let $f(x), g(x) \in F[x]$ such that $deg(g(x)) \leq deg(f(x))$. Then f(x) = g(x)h(x) + d(x), where $h(x), d(x) \in F[x]$ and deg(d(x)) < deg(g(x)).

THEOREM 3.2.15 Let F be a field, and $f(x) \in F[x]$ such that deg(f(x)) > 1. Then f(x) can be written uniquely as $f(x) = uf_1(x)f_2(x)...$ $f_n(x)$, where u is a unit in F and $f_1(x), f_2(x),..., f_n(x)$ are monic irreducible polynomials in F[x].

THEOREM 3.2.16 Let F be a field, and $f(x) \in F[x]$ such that either deg(f(x)) = 2 or deg(f(x)) = 3. Then f(x) is reducible over F if and only if f(x) has a root (zero) in F.

THEOREM 3.2.17 Let $f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n \in Z[x]$. If there is a prime number p such that $p \mid a_i$ for every $0 \le i < n$, and $p \nmid a_n$, and $p^2 \nmid a_0$. Then f(x) is irreducible over Q.

THEOREM 3.2.18 Let $f(x) = a_0 + a_1x + ... + a_nx^n \in Z[x]$. If f(x) has a root (zero) $z \in Q$, then z = c/d for some c, d in Z such that $c \mid a_0$ in Z and $d \mid a_n$ in Z.

THEOREM 3.2.19 Let F be a field and $f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n \in F[x]$ such that $deg(f(x)) = n \ge 1$. Let I = (f(x)), and let $z \in F[x]/I$. Then $Z = b_0 + b_1x + b_2x^2 + ... + b_{n-1}x^{n-1} + I$, where the $b_i's \in F$.

THEOREM 3.2.20 Let F be a field and $f(x), g(x) \in F[x]$ such that gcd(f(x), g(x)) = 1. Then (f(x)) + (g(x)) = F[x].

THEOREM 3.2.21 (see Theorem 3.2.20). Let p be a positive prime number of Z and $f(x), g(x) \in Z_p[x]$ such that gcd(f(x), g(x)) = 1. Then $(f(x)) + (g(x)) = Z_p[x]$.

THEOREM 3.2.22 If R is a principal ideal domain, then R is a unique factorization domain.

THEOREM 3.2.23 Let D < 0. Then $\mathcal{Z}[\sqrt{D}]$ is a unique factorization domain if and only if D = -1 or -2.

THEOREM 3.2.24 If R is a unique factorization domain and $a_1, a_2, ..., a_n \in R$, then the greatest common divisor of $a_1, a_2, ..., a_n$ ($gcd(a_1, a_2, ..., a_n)$) exists. In particular if R is a principal ideal domain and $a_1, a_2, ..., a_n \in R$, then there are $d_1, d_2, ..., d_n \in R$ such that $gcd(a_1, a_2, ..., a_n) = d_1a_1 + d_2a_2 + ... + d_na_n$.

THEOREM 3.2.25 Let R be an Euclidean domain. Then R is a principal ideal of R, and hence R is a unique factorization domain.

THEOREM 3.2.26 Let $i = \sqrt{-1}$. Then $\mathcal{Z}[i]$ is a Euclidean domain and hence a Principal Ideal Domain.

THEOREM 3.2.27 Let F be a field and $f(x) \in F[x]$ is irreducible over F such that $deg(f(x)) = n \ge 2$. Suppose that E is an extension field of F and f(a) = 0 for some $a \in E$. Then $F(a) \cong F[x]/(f(x))$. Furthermore, if $z \in F(a)$, then $z = b_0 + b_1 a + b_2 a^2 + ... + b_{n-1} a^{n-1}$, where the b_i' s in F.

THEOREM 3.2.28 Let F be a field, and $f(x) \in F[x]$ be irreducible over F. Suppose that E and K are extension fields of F such that f(a) = f(b) = 0 for some $a \in E$ and $b \in K$. Then $F(a) \cong F(b)$

THEOREM 3.2.29 Let K be a finite extension field of the field E and let E be a finite extension of the field F. Then K is a finite extension of the field F and [K:F] = [K:E][E:F].

THEOREM 3.2.30 Let F be a field, and $f(x) \in F[x]$ be irreducible over F such that deg(f(x)) = n. If a is in some extension field of F such that f(a) = 0, then [F(a) : F] = n.

THEOREM 3.2.31 Let F be a field and $f(x) \in F[x]$. Let deg(f(x)) = n. If a is in some extension field of F such that f(a) = 0 and [F(a) : F] = n, then f(x) is irreducible over F.

THEOREM 3.2.32 Let F be a field and $f(x) \in F[x]$ be irreducible over F. Suppose that a is in some extension field of F such that f(a) = 0. If [F(a):F] = n, then deg(f(x)) = n.

THEOREM 3.2.33 Let F be a field. Suppose that a is in some extension field of F such that a is algebraic over F. Then there is a unique nonzero monic polynomial $p(x) \in F[x]$ of minimum degree such that p(a) = 0 (observe that such polynomial must be irreducible).

THEOREM 3.2.34 Let F be a field and $g(x) \in F[x]$ be irreducible over F. Suppose that g(a) = 0 for some a in some extension field of F. Then if $f(x) \in F[x]$ such that f(a) = 0, then $deg(f(x)) \ge deg(g(x))$.

THEOREM 3.2.35 Let F be a field and $f(x) \in F[x]$ such that deg(f(x)) = n. Then there is an extension field E of F (called a splitting field for f(x) over F) such that f(x) is factored completely over E, that is $f(x) = b(x - e_1)(x - e_2)...(x - e_n)$, where b is a unit of F and $e_1, e_2, ..., e_n \in E$.

THEOREM 3.2.36 Let F be a field, and $f(x) \in F[x]$. Then f(x) has a multiple root (zero) if and only if f(x) and f'(x)) have a common root (zero).

THEOREM 3.2.37 Let F be a field, and let $f(x) \in F[x]$ be irreducible over F. If Char(F) = 0, then f(x) has no multiple roots (zeros).

THEOREM 3.2.38 Let F be a finite field, and let $f(x) \in F[x]$ be irreducible over F. Then f(x) has no multiple roots.

THEOREM 3.2.39 Let F be a finite field. Then F has exactly p^n elements, where $n \ge 1$ and p is prime. Furthermore, the group of all nonzero elements of F is cyclic.

THEOREM 3.2.40 Suppose that $m \mid n$. Then $GF(p^n)$ has a unique subfield with exactly p^m elements. Furthermore, if F is a subfield of $GF(P^n)$, then F has exactly p^d elements for some positive integer d such that $d \mid n$.

- **THEOREM 3.2.41** Let a be a generator of the group of nonzero elements of $GF(P^n)$ under multiplication. Then there is an irreducible polynomial $p(x) \in GF(p)[x]$ of degree n such that p(a) = 0, and hence $[GF(p^n): GF(p)] = n$.
- **THEOREM 3.2.42** Let f(x) be a nonzero irreducible polynomial over a field F and let K be a splitting field of f(x), i.e., K is the "smallest" field extension of F which contains all the roots of f(x). Then $f(x) = u(x-z_1)^n(x-z_2)^n \cdots (x-z_i)^n$ where z_1, z_2, \ldots, z_i are the distinct roots of f(x) in K, and u is a nonzero element of F, i.e., all the roots (zeros) of f(x) in K have the same multiplicity.
- **THEOREM 3.2.43** Recall that If D is an extension field of a field H, then $Aut_H(D) = \{\Phi : \Phi \text{ is a field-isomorphism from } D \text{ ONTO } D \text{ such that } \Phi(h) = h \text{ for every } h \in H\}.$
- Let F be a field of characteristic 0 or a finite field. If E is a splitting field over F for some polynomial in F[x], then there is a one to one correspondence between the subfields of E containing F and the subgroups of $Aut_F(E)$, i.e., if K is a subfield of E containing F, then $Aut_K(E)$ is a subgroup of $Aut_F(E)$, and if H is a subgroup of $Aut_F(E)$, then there is a unique subfield K of E containing F such that $H = Aut_K(E)$. Furthermore, for any subfield K of E containing F, we have:
- 1)[E:K] = $Ord(Aut_K(E))$ and $[K:F] = Ord(Aut_F(E))/Ord(Aut_K(E))$. In particular $[E:F] = Ord(Aut_F(E))$.
- 2) K is a splitting field of some polynomial in F[x] if and only if $Aut_K(E)$ is a normal subgroup of $Aut_F(E)$ and in this case $Aut_F(K)$ is a group-isomorphic to $Aut_F(E)/Aut_K(E)$.
- 3) If H_1, H_2 are subgroups of $Aut_F(E)$, then $H_1 \cap H_2 = Aut_{K_1K_2}(E)$, where $H_1 = Aut_{K_1}(E)$ and $H_2 = Aut_{K_2}(E)$ and K_1, K_2 are subfields of E containing F.
- **THEOREM 3.2.44** Let F be a field of characteristic 0 of a finite field, and let E be an extension field of F. Then $Aut_F(E) = [E:F]$ if and only if E is a splitting field of some polynomial over F.

THEOREM 3.2.45 Let E be a finite field which is an extension of a finite field F. Then E is a Galois extension of F, i.e., E is the splitting field of a polynomial over F, $Aut_F(E)$ is a a finite cyclic group, and $Ord(Aut_F(E)) = [E:F]$. In particular, $Aut_{Z_p}(GF(p^n))$ is isomorphic to Z_n and $Ord(Aut_{Z_p}(GF(p^n))) = [GF(p^n):Z_p] = n$.

THEOREM 3.2.46 Let E be a splitting field of a polynomial of degree n in F[x] where F is a field and $F \subset E$. If $\Phi \in Aut_F(E)$, then Φ is detrinined by $\Phi(a_1), \Phi(a_2), ..., \Phi(a_k)$ where $a_1, a_2, a_3, ..., a_k \in E$ are the distinct roots of f(x).

THEOREM 3.2.47 Let F be a field of characteristic 0 or a finite field, and let E be a field extension of F such that [E:F] is a finite number. Then $E = F(\alpha)$ for some $\alpha \in E$.

THEOREM 3.2.48 Let F be a field of characteristic 0 or a finite field, and E be a splitting field over F for some polynomial in F[x]. If f(x) is an irreducible polynomial in F[x] and it has a root in E, then f(x) has no multiple roots in E and f(x) has all its roots in E.

THEOREM 3.2.49 Let $w = cos(\theta) + isin(\theta)$. Then $w^n = cos(n\theta) + isin(n\theta)$. The roots of the polynomial $x^n - 1$ are given by $w^k = cos(2k\pi/n) + isin(2k\pi/n)$, where $0 \le k \le n - 1$. $G_n = \{c \in \mathcal{C} : c^n - 1 = 0\}$ is a cyclic subgroup of the complex numbers \mathcal{C} under multiplication. A generator of G_n is called the primitive nth root of unity. G_n has exactly $\phi(n)$ distinct primitive nth roots of unity. Recall that $\phi(n) = Ord(\{m : 1 \le m < n \text{ and } gcd(m,n) = 1\})$. In particular, $w = cos(2\pi/n) + isin(2\pi/n)$ is a primitive nth root of unitity.

THEOREM 3.2.50 Let $w_1, w_2, ..., w_{\phi(n)}$ be the primitive nth roots of unity of the group G_n in Theorem 3.2.49. Then the cyclotomic polynomial $\Phi_n(x) = (x - w_1)(x - w_2) \cdots (x - w_{\phi(n)})$ is a monic irreducible polynomial of degree $\phi(n)$ in \mathcal{Z} , (and hence is irreducible over \mathcal{Q} by Theorem 3.2.10). Furthermore, $x^n - 1 = \prod_{d|n} \Phi_d(x)$ where product is over all positive divisors of n. In particular $\Phi_1(x) = x - 1$, $\Phi_2(x) = x + 1$, and $\Phi_3(x) = x^2 + x + 1$.

THEOREM 3.2.51 Let w be a primitive nth root of unity, i.e., w is a generator of the cyclic group G_n in Theorem 3.2.49. Then $Aut_{\mathcal{Q}}(Q(w))$ is isomorphic to $U(n) = \{m : 1 \leq m \leq n-1\}$, and hence $Ord(Aut_{\mathcal{Q}}(Q(w))) = [\mathcal{Q}(w) : \mathcal{Q}] = \phi(n)$.

THEOREM 3.2.52 Suppose that a field F contains a primitive nth root of unity. If the characteristic of F does not divide n, then $G = Aut_F(F(\sqrt[n]{a}))$ is a finite cyclic group such that $Ord(G) = [F(\sqrt[n]{a}:F]$ divides n.

Chapter 4

Problems in Ring Theory

4.1 Basic Properties of Rings

QUESTION 4.1.1 Let A be a ring such that whenever xy = zx for some $x, y, z \in A$, then z = y. Prove that A is commutative.

Solution: Let $a, b \in A$. Set x = a, y = ba, z = ab. Since a(ba) = (ab)a, we have xy = zx. Thus, by hypothesis we have z = y. Hence, ab = ba.

QUESTION 4.1.2 Give an example of a non-commutative ring with 64 elements.

Solution: Let $B = GL_2(Z_2)$. It is easily verified that B is a non-commutative ring with exactly 16 elements. Now, let $A = Z_4 \oplus B$. Then A is a non-commutative ring with exactly 64 elements.

QUESTION 4.1.3 Give an example of a non-commutative ring with 125.

Solution: Let $A = \{B \in GL_2(Z_5) \text{ such that } B \text{ is an upper triangular matrix } \}$. It is clear that A is a ring with exactly 125 elements. To see that A is non-commutative: let $B_1 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ and let $B_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Then B_1 and B_2 are in A. But $B_1B_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $B_2B_1 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Hence $B_1B_2 \neq B_2B_1$, and thus A is non-commutative.

QUESTION 4.1.4 Let A be a ring. Suppose that ab = 1 for some $a, b \in A$. Prove that $a^nb^n = 1$ for each positive integer n.

Solution: We use math. induction. For n = 1, the claim is clear. Hence, assume that $a^nb^n = 1$. We need to show that $a^{n+1}b^{n+1} = 1$. Now, $a^{n+1}b^{n+1} = a(a^nb^n)b = a(1)b = ab = 1$.

QUESTION 4.1.5 Let A be a ring. Suppose that ab = 1 for some $a, b \in A$. Prove that $(1 - ba)b^n = 0$ for every positive integer $n \ge 1$.

Solution: For n = 1. We have (1-ba)b = b - bab = b - b(ab) = b - b(1) = b - b = 0. Let $n \ge 1$. Then $(1 - ba)b^n = b^n - bab^n = b^n - b(ab)b^{n-1} = b^n - b(1)b^{n-1} = b^n - b^n = 0$.

QUESTION 4.1.6 Let A be a domain (recall that "domain" means a ring with no zero divisors). Suppose that ab = 1 for some $a, b \in A$. Prove that ba = 1, that is, a, b are units in A.

Solution: Since ab = 1, we have $b \neq 0$. By the previous Question we conclude that (1 - ba)b = 0. Since A is a domain and $b \neq 0$, we conclude that 1 - ba = 0. Hence, ba = 1.

QUESTION 4.1.7 Let A be a ring and $a, b \in A$ such that ab = 1. Prove that ba and 1 - ba are idempotents of A.

Solution: Since ab = 1, $(ba)^2 = baba = b(ab)a = b(1)a = ba$. Hence, ba is an idempotent of A. Also, Since $(ba)^2 = ba$, we have $(1 - ba)^2 = (1 - ba)(1 - ba) = 1 - 2ba + (ba)^2 = 1 - 2ba + ba = 1 - ba$. Thus, 1 - ba is an idempotent of A.

QUESTION 4.1.8 Let A be a ring and $a, b, c \in A$ such that ab = ca = 1. Prove that c = b and therefore a is a unit of A.

Solution: cab = c(ab) = c(1) = c. Also, cab = (ca)b = (1)b = b. Since cab = b and cab = c, we conclude that c = b. Thus a is a unit of A.

QUESTION 4.1.9 Let A be a ring and $a, b \in A$ such that ab = ba is a unit of A. Prove that both a and b are units of A.

Solution: Suppose that ab = ba = u is a unit of A. Hence, $(u^{-1}a)b = 1$ and $b(au^{-1}) = 1$. By the previous Question, we conclude that b is a unit of A. by a similar argument to the one just given, we conclude that a is a unit of A.

QUESTION 4.1.10 Let A be a ring and w be a nilpotent element of A and u be a unit of A such that wu = uw. Prove that u + w is a unit of A. In particular, prove that 1 + w is a unit of A.

Solution: Since w is nilpotent, there is a positive number n such that $w^n = 0$. Hence, $u^n + w^n = u^n$ is a unit in A. Now, since uw = wu, we have $u^n = u^n + w^n = (u+w)(u^{n-1} - wu^{n-2} + w^2u^{n-3} - w^3u^{n-4} + ... + w^{n-1}$. Let $x = u^{n-1} - wu^{n-2} + w^2u^{n-3} - ... + w^{n-1}$. Since uw = wu, we conclude u+w = x(u+w). Since $u= x(u+w) = u^n$ is a unit of u= x(u+w). Since $u= x(u+w) = u^n$ is a unit of u= x(u+w). Since $u= x(u+w) = u^n$ is a unit of u= x(u+w).

QUESTION 4.1.11 Let A be a ring and $a, b \in A$ such that ab = 1. Prove that $(b^n - b^{n+1}a)$ is a nilpotent of A for each n > 1.

Solution: Let $n \ge 1$. Now, $x = (b^n - b^{n+1}a) = b^n(1 - ba)$. Hence, $x^2 = (b^n - b^{n+1}a)^2 = [b^n(1 - ba)][b^n(1 - ba)] = b^n[(1 - ba)b^n](1 - ba)$. By Question 4.1.5 we have $(1 - ba)b^n = 0$. Thus, $x^2 = 0$. Hence, $x = b^n - b^{n+1}a$ is a nilpotent element of A.

QUESTION 4.1.12 Let A be a ring and $a, b \in A$ such that ab = 1 and $ba \neq 1$. Prove that A has infinitely many nilpotent elements.

Solution: Let $n \geq 1$. By the previous Question we know that $b^n - b^{n+1}a$ is a nilpotent of A. Now, let $n, m \geq 1$ such that n > m. We will show that $b^n - b^{n+1}a \neq b^m - b^{m+1}a$ and therefore we will conclude that A has infinitely many nilpotent elements. Suppose that $b^n - b^{n+1}a = b^m - b^{m+1}a$. Hence, $a^mb^n - a^mb^{n+1}a = a^mb^m - a^mb^{m+1}a$. Since ab = 1 and a > m, we conclude that $a^mb^m = 1$ and $a^mb^n = b^{n-m}$ and $a^mb^{n+1} = b^{n-m+1}$. Thus, $a^mb^n - a^mb^{n+1}a = a^mb^m - a^mb^{m+1}a$ implies that $b^{n-m} - b^{n-m+1}a = 1 - ba$. By Question 4.1.7 1 - ba is an idempotent of A. Since $ba \neq 1$, $1 - ba \neq 0$. Hence, 1 - ba is not a nilpotent of A. But by the previous Question $b^{n-m} - b^{n-m+1}a$ is a nilpotent of A. Thus, it is impossible that $b^{n-m} - b^{n-m+1}a = 1 - ba$. Hence, $b^n - b^{n+1}a \neq b^m - b^{m+1}a$. Thus, A has infinitely many nilpotent elements.

QUESTION 4.1.13 Let A be a finite ring and $a, b \in A$ such that ab = 1. Prove that ba = 1.

Solution: If $ba \neq 1$, then by the previous Question A must have infinitely many nilpotent elements. But since A is finite, it is impossible that A contains infinitely many nilpotent elements. Hence, ba = 1.

QUESTION 4.1.14 Let $A = GL_5(Z_{12})$, note that A is the ring of all 5×5 matrices with entries from Z_{12} . Suppose that CD = I for some $C, D \in A$ and I is the 5×5 identity matrix in A. Prove that DC = I.

Solution: Since A is a finite ring, by the previous Question the claim is now clear.

QUESTION 4.1.15 Let A be a ring such that for some positive integer n > 1 we have $a^n = a$ for every $a \in A$. Prove that 0 is the only nilpotent element of A.

Solution: Let a be a nilpotent element of A. Then let m be the smallest positive integer such that $a^m=0$. Assume that $m \leq n$. Then $a=a^n=a^{n-m}a^m=a^{n-m}0=0$. Hence, a=0. Now assume that m>n. Since n>1, we have m+1-n < m. Thus, $0=a^m=a^{m-n}a^n=a^{m-n}a$ (since $a^n=a)=a^{m+1-n}$. A contradiction, since $a^{m+1-n}=0$ and m+1-n < m and m is the least positive integer such that $a^m=0$. Thus, m must be $\leq n$. But if $m \leq n$, we just proved that a=0. Hence, 0 is the only nilpotent element of A.

QUESTION 4.1.16 Let A be a ring and $a \in A$. Prove that a.0 = 0.a = 0.

Solution: a.0 = a(0+0) = a.0 + a.0. Hence, a.0 = a.0 - a.0 = 0. Also, 0.a = (0+0)a = 0.a + 0.a. Thus, 0.a = 0.a - 0.a = 0.

QUESTION 4.1.17 Let A be a ring and $a, b \in A$. Prove that (-a)b = a(-b) = -(ab) and (-a)(-b) = ab.

Solution: 0 = (a + -a)b = ab + (-a)b. Thus, (-a)b = -(ab). Also, 0 = a(b+-b) = ab+a(-b). Thus, a(-b) = -(ab). Now, 0 = (a+-a)-b = a(-b) + (-a)(-b) = -(ab) + (-a)(-b). Hence, (-a)(-b) = ab.

QUESTION 4.1.18 Let A be a ring and suppose that for some even positive integer n we have $a^n = a$. Prove that -a = a for every $a \in A$.

Solution: Let $a \in A$. By hypothesis, $a^n = a$ and $(-a)^n = -a$. By the previous Question since $(-a)(-a) = a^2$, we have $(-a)^n = (-a)(-a)^{n/2} = (a^2)^{n/2} = a$. Since $(-a)^n = -a$ and $(-a)^n = a$, we conclude that a = -a.

QUESTION 4.1.19 Let A be a ring such that $a^2 = a$ for each $a \in A$. Prove that A is commutative.

Solution: Let $a \in A$. By hypothesis, $a^2 = a$ and $(-a)^2 = -a$. Since $-a = (-a)^2 = (-a)(-a) = a^2$ and $a^2 = a$, we conclude that a = -a. Now, let $a, b \in A$. Then by hypothesis $a+b=(a+b)^2=a^2+ab+ba+b^2=a+ab+ba+b$. Hence, ab+ba=0. Thus, ab=-ba=ba.

4.2 Ideals, Subrings, and Factor Rings

QUESTION 4.2.1 Give an example of a subring of a ring, say, A, that is not an ideal of A.

Solution: Let A be the set of all real numbers under normal addition and normal multiplication. Then A is a ring. Now, let S=Z the set of all integers. Then S is a subring of A. But let $r=1/2\in A$ and $a=3\in Z$. Then $ra=3/2\not\in S=Z$. Hence, S=Z is not an ideal of A.

QUESTION 4.2.2 Let A = R[x] be the set of all polynomials with coefficient from R, the set of all real numbers, and $S = \{f(x) \in A : f(0) \in Z\}$. We know that A is a ring. Is S an ideal of A?

Solution: NO. Let $r = 1/2 \in A$ and $f(x) = x - 1 \in S$. Then $rf(x) \notin S$ since $rf(0) = 1/2 \notin Z$.

QUESTION 4.2.3 Let A = R[x], and set $I = \{f(x) \in A : f(1) = 0\}$. Prove that I is a prime ideal of A.

Solution: It is easy to see that I is an ideal of A. Now, suppose that $f(x)g(x) \in I$ for some, $f(x), g(x) \in A$. Then f(1)g(1) = 0. Since $f(1) \in R$ and $g(1) \in R$ and f(1)g(1) = 0, we conclude that either f(1) = 0 or g(1) = 0. Hence, $f(x) \in I$ or $g(x) \in I$.

QUESTION 4.2.4 Let $A = Z_4[x]$, the ring of all polynomials with coefficient from Z_4 . Set $I = \{f(x) \in A : f(1) = 0\}$. It is easy to see that I is an ideal of A. Is I a prime ideal of A?

Solution: NO. Let $f(x) = 2x \in A$ and $g(x) = 2x \in A$. Then $f(x)g(x) = 4x^2 = 0 \in A$. Hence, f(1)g(1) = 0 and therefore $f(x)g(x) \in I$. Since f(1) = g(1) = 2, neither $f(x) \in I$ nor $g(x) \in I$.

QUESTION 4.2.5 Let A be a commutative ring with 1 that is not an integral domain, and let $I = \{f(x) \in A[x] : f(1) = 0\}$. Prove that I is never a prime ideal of A[x].

Solution: Since A is not an integral domain, there are $a, b \in A$ such that ab = 0 and $a \neq 0$ and $b \neq 0$. Let $f(x) = ax \in A[x]$ and $g(x) = bx \in A[x]$. Then, $f(x)g(x) = abx^2 = 0$. Since f(1)g(1) = 0, we conclude that $f(x)g(x) \in I$. Since $f(1) = a \neq 0$ and $g(1) = b \neq 0$, we conclude that neither $f(x) \in I$ nor $g(x) \in I$. Thus, I is never a prime ideal of A[x].

QUESTION 4.2.6 Find an example of a commutative ring A that contains a subset, say, S, such that for every $a \in A$ and for every $s \in S$ we have $as \in S$, but S is not an ideal of A.

Solution: Let A=Z, and $S=3Z\cup 5Z$. Let $a\in Z$, and let $s\in S$. Then s=3m or s=5m for some $m\in Z$. Hence, either $as=3ma\in S$ or $as=5ma\in S$. But $3\in S$ and $5\in S$ and $3+5\not\in S$. Thus, I is not a subring of Z. Hence, I is not an ideal of Z.

QUESTION 4.2.7 Let A be a commutative ring with 1 and I be a proper ideal of A. Prove that I is prime if and only if A/I is an integral domain.

Solution: Suppose that I is a prime ideal of A. Let a+I, b+I be two elements in A/I such that (a+I)(b+I)=ab+I=0+I=I. Thus, $ab \in I$. Since I is prime, either $a \in I$ or $b \in I$. Hence, either a+I=I or b+I=I. Hence, A/I is an integral domain. Conversely, suppose that A/I is an integral domain. Suppose that $ab \in I$ for some $a,b \in A$. Then (a+I)(b+I)=I in A/I. Since A/I is an integral domain, either a+I=I or b+I=I. Hence, $a \in I$ or $b \in I$. Thus, I is a prime ideal of A.

QUESTION 4.2.8 Let A be a commutative ring with 1 and M be a maximal ideal of A. Prove that M is prime.

Solution: By Theorem 3.2.1, A/M is a field. Since every field is an integral domain, we conclude that A/M is an integral domain. Hence, by the previous Question, M is prime.

QUESTION 4.2.9 Find the smallest subring of Q that contains the number 1/3.

Solution: Let $S=\{n/3^k:n\in Z\text{ and }k\geq 0\text{ is an integer }\}$. Clearly, $1/3\in S$. Let $a,b\in S$. Then $a=n/3^k$ and $b=m/3^l$ for some $n,m\in Z$ and for some integers $k,l\geq 0$. Hence, $a-b=(n3^l-m3^k)/3^{k+l}$. Since $n2^l-m2^k\in Z$ and $l+k\in Z$, we have $a-b\in S$. Now, $ab=nm/2^k2^l=1$

 $nm/2^{k+l} \in S$. Thus, S is a subring of Q. Now, suppose that W is a subring of Q such that $1/3 \in W$. We need to show that $S \subset W$. Let $a \in S$. Then $a = n/3^k$ for some $n \in Z$ and for some integer $k \geq 0$. If k = 0, then $a = n = 3n(1/3) \in W$. Hence, assume that k > 0. Since $1/3 \in W$ and W is a subring of Q and k > 0, we conclude that $(1/3)^{k-1} = 1/3^{k-1} \in W$ and it is easy to see that $n(1/3) = n/3 \in W$. Hence, $s = (n/3)(1/3^{k-1}) = n/3^k \in W$. Thus, $S \subset W$.

QUESTION 4.2.10 Let A be a ring with 1, and let I be an ideal of A such that I contains a unit of A. Prove that I = A. In particular, if I contains 1, then I = A.

Solution: Suppose that I contains a unit u of A. Since I is an ideal of A, $u^{-1}u=1 \in I$. Now, let $a \in A$. Then $a(1)=a \in I$. Hence, $A \subset I$. Thus, I=A.

QUESTION 4.2.11 Let A be a commutative ring with 1 and $x \in A$. Prove that the ideal (x) = xA = A if and only if x is a unit of A.

Solution: Suppose that xA = A. Hence, xy = 1 for some $y \in A$. Hence, x is a unit of A. Conversely, suppose that x is a unit of A. Hence, by the previous Question A = xA.

QUESTION 4.2.12 *Let* A = Z[x], *and let* $I = (x, x^2 + 1)$. *Prove that* I = A = Z[x].

Solution: Since $1 = x^2 + 1 - xx = x^2 + 1 - x^2 \in I$, conclude that I = A = Z[x].

QUESTION 4.2.13 Find an example of a commutative ring A with 1 such that A has a prime ideal that is not maximal.

Solution: Let A=Z[x], and I=(x). It is easy to check that I is a prime ideal of A. Observe that $I=\{f(x)\in Z[x]:f(0)=0\}$. By Theorem 3.2.1, if we show that A/I is not a field , then I will not be a maximal ideal of A. So, let $2+I\in A/I$ and suppose that (2+I)(f(x)+I)=(1+I) for some $f(x)\in A$. Hence, $2f(x)-1\in I$. Hence, 2f(0)-1=0 and therefore 2f(0)=1. Thus, $f(0)=1/2\not\in Z$. Hence, $f(x)\not\in A=Z[x]$, a contradiction. Thus, 2+I is not a unit in A/I. Hence, A/I is not a field. Thus, I is not maximal.

QUESTION 4.2.14 Let A = Z[x], and let $I = \{f(x) \in A : f(1) = f(-1) = 0\}$. Prove that I is an ideal of A generated by one element, that is, prove that I is a principal ideal of A.

Solution: Let $f(x), g(x) \in I$. Since f(1) - g(1) = f(-1) - g(-1) = 0, $f(x) - g(x) \in I$. Let $k(x) \in A$ and $f(x) \in I$. Since k(1)f(1) = k(-1)f(-1) = 0, $k(x)f(x) \in I$. Thus, I is an ideal of A. Now, we show that I is generated by one element. Let $g(x) \in I$ and assume that $g(x) \neq 0$. Since g(1) = g(-1) = 0, x - 1, x + 1 are factors of g(x). Thus, $(x - 1)(x + 1) = x^2 - 1$ is a factor of g(x). Hence, $g(x) = k(x)(x^2 - 1)$ for some $k(x) \in A$. Thus, $I = (x^2 - 1)$, that is, I is generated by $x^2 - 1$.

QUESTION 4.2.15 Let A be a ring with 1, and S be a subring of A. Must S have an identity?

Solution: NO. Let A = Z is a ring with 1. Then S = 3Z is a subring (ideal) of A and it does not have an identity.

QUESTION 4.2.16 Let A be a ring with 1, and S be a subring of A with identity, say, e. Is it necessary that 1 = e?

Solution: NO. Let $A = Z_6$, and $S = \{0, 3\}$. Then S is a subring of A with identity $e = 3 \neq 1$.

QUESTION 4.2.17 Let A be a commutative ring, and let e be an idempotent of A, that is $e^2 = e$. Let I = (e). Prove that I is a subring of A with identity e.

Solution: Clearly, I is a subring of A since it is an ideal of A. Let $i \in I$. Then i = ae for some $a \in A$. Hence, ie = aee = ae = i, and ei = eae = eea (since A is commutative) = ea = ae = i. Thus, e is the identity of I.

QUESTION 4.2.18 Let A be a commutative ring, and Nil(A) be the set of all nilpotent elements of A. Prove that Nil(A) is an ideal of A.

Solution: Let $a \in A$ and $w \in Nil(A)$. Then $w^n = 0$ for some positive integer n. Hence, since A is commutative, $(aw)^n = a^n w^n = 0$. Thus, $aw \in Nil(A)$. Now, let $w, z \in Nil(A)$. Then $w^n = z^m = 0$ for some positive integers n, m. Since A is commutative, we could use the BINOMIAL EXPANSION THEOREM to show that $(w-z)^{n+m} = 0$. Hence, $w-z \in Nil(A)$. Thus, Nil(A) is an ideal of A.

QUESTION 4.2.19 *Prove that* $2x^{5} + 4x + 7$ *is a unit of* $Z_{16}[x]$.

Solution: Since $(2x^5)^4 = (4x)^2 = 0 \in Z_{16}[x]$, we conclude that $2x^5$ and 4x are nilpotent elements of $Z_{16}[x]$. Since $Z_{16}[x]$ is a commutative ring, by the previous Question we conclude that $Nil(Z_{16}[x])$ is an ideal of $Z_{16}[x]$. Hence, $2x^5 + 4x$ is a nilpotent of $Z_{16}[x]$. Since 7 is a unit of $Z_{16}[x]$, by Question 4.1.10 we conclude that $2x^5 + 4x + 7$ is a unit of $Z_{16}[x]$.

QUESTION 4.2.20 Let A be an integral domain such that every ideal of A is principal, that is every ideal of A is generated by one element. Prove that every nonzero prime ideal of A is maximal. (Recall that if every ideal of an integral domain R is principal, then R called a principal ideal domain.)

Solution: Let P be a prime ideal of A. By hypothesis, P=(p) for some $p \in P$. Now suppose that $P=(p) \subset I$ for some ideal $I \neq P$ of A. We need to show that I=R. By hypothesis I=(i) for some $i \in I$. Since $I \neq P$, $i \notin P$. Since $p \in P \subset I=(i)$, we have p=ik for some $k \in A$. Since P is prime and $ik=p \in P$ and $i \notin P$, we conclude that $k \in P=(p)$. Thus, k=pc for some $c \in A$. Hence, p=ki=pci. Since A is an integral domain and p=pci, we could cancel p from both sides and we get 1=ci. Hence, p is a unit of p. Thus, p is a unit of p.

QUESTION 4.2.21 Prove that Z[x] is not a principal ideal domain.

Solution: Let I = (x, 2), the ideal of Z[x] generated by x and x. Then it is easy to see that it is impossible that x be generated by one element of Z[x].

QUESTION 4.2.22 *Let* I, J *be ideals of a (commutative) ring* A. *Prove that* $IJ \subset I \cap J$.

Solution: Let $x \in IJ$. Then $x = i_1j_1 + i_2j_2 + ... + i_nj_n$, where each $i_k \in I$ and each $j_k \in J$. Since I, J are ideals of A, we have each $i_kj_k \in I$ and in J. Thus, $x \in I$ and $x \in J$. Thus, $x \in I \cap J$.

QUESTION 4.2.23 Let I, J be ideals of a commutative ring A with identity such that I + J = A. Prove that $IJ = I \cap J$.

Solution: By the previous Question $IJ \subset I \cap J$. Now, let $x \in I \cap J$. Since I+J=A and $1 \in A$, we have i+j=1 for some $i \in I$ and for some $j \in J$. Hence, x(i+j)=x(1). Thus, xi+xj=x. Since $xi \in I$ and $xj \in J$, we have $x=xi+xj \in I \cap J$. Thus, $I \cap J \subset IJ$. Hence, $IJ=I \cap J$.

QUESTION 4.2.24 Let I, J be two distinct maximal ideals of a commutative ring A with 1. Prove that $IJ = I \cap J$.

Solution: Since I, J are two distinct maximal ideals of A, we have I + J = A. Hence, by the previous Question the proof is completed.

QUESTION 4.2.25 Let $I = \{f(x) \in Z[x] : f(0) = 0\}$. Prove that I is not a maximal ideal of Z[x].

Solution: Clearly $2 \notin I$. Let $J = I + 2Z[x] = \{i + 2m : i \in I$, and $m \in Z[x]\}$. It is easy to see that $1 \notin J$. Hence, $J \neq Z[x]$. Thus, we have an ideal J such that I is properly contained in J and J is properly contained in Z[x]. Hence, I is not a maximal ideal of Z[x].

QUESTION 4.2.26 Let I be a proper ideal of a commutative ring A with 1. Prove that I is a maximal ideal of A if and only if for every $a \in A \setminus I$, the ideal I + aA = A.

Solution: Let I be a maximal ideal of A and $a \in A \setminus I$. Hence, the ideal I + aA is properly contained I. Thus, by the definition of maximal ideals we have I + aA = A. Conversely, suppose that aA + I = R for every $a \in A \setminus I$. Let M be an ideal of A that is properly contained I. We need to show that M = A. Since M is properly contained I, there is an $m \in M \setminus I$. Hence, $mA + I \subset M$. But by hypothesis, we have mA + I = A. Hence, A = M. Thus, A = A is a maximal ideal of A.

QUESTION 4.2.27 Let $I = \{f(x) \in Z[x] : f(0) \text{ is an even integer } \}$. Prove that I is a maximal ideal of Z[x], and hence is prime.

Solution: It is trivial to check that I is an ideal of Z[x]. Now, let $g(x) \not\in I$. By the previous Question, we need to prove that I+g(x)Z[x]=Z[x]. Since $g(x) \not\in I$, we have g(0) is an odd integer. Thus, $f(x)=-g(x)+1\in I$. Hence, f(x)+g(x)=-g(x)+1+g(x)=1. Thus, I+g(x)Z[x]=Z[x]. Hence, I is a maximal ideal of Z[x].

QUESTION 4.2.28 Give an example of a subset B of a ring A such that B is not an ideal of A but whenever $ac \in B$ for some $a, c \in A$, then $a \in B$ and $c \in B$.

Solution: Let A = Z, and let B be the set of all odd integers. Since the sum of two odd integers is an even integer, B is not an ideal of A = Z. But if $ac \in B$ for some $a, c \in A = Z$, then both a, c must be odd integers.

QUESTION 4.2.29 Let A be a commutative ring with 1 and let x be an element of A such that x is contained in every maximal ideal of A. Prove that x + u is a unit of A for each unit u of A.

Solution: Deny. Then v = x + u is a nonunit of A Thus, the ideal (v) = vA is a proper ideal of A. Hence, by Theorem 3.2.4 there is a maximal ideal M of A that is contained vA. Thus, $v = x + u \in M$. By hypothesis, we have $x \in M$. Hence, $u = v - x = x + u - x \in M$. Since M contains a unit, we have M = R, a contradiction since maximal ideals are always by definition proper ideals. Thus, u + x is a unit of A.

QUESTION 4.2.30 Let A be a commutative ring with 1 such that $a^2 = a$ for every $a \in A$. Let I be a prime ideal of A. Prove that A/I has exactly two elements, namely, 1 + I and 0 + I = I.

Solution: Let $b \in A \setminus I$. We need to show that b+I=1+I in R/I. Since $b^2=b$ in A, we have $b^2+I=b+I$ in A/I. Hence, $b^2-b=b(1-b)\in I$. Since $b \notin I$ and I is a prime ideal of A and $b(1-b)\in I$, $1-b\in I$. Hence, b+I=1+I.

QUESTION 4.2.31 Let $I = \{f(x) \in Z[x] : f(0) = 0\}$. We know that I is an ideal of Z[x]. Let n be a positive integer. Prove that there exists a sequence of strictly increasing ideals of Z[x] such that $I \subset I_1 \subset I_2 ... \subset I_n$.

Solution: First, consider the following ideals of $Z: B_1 = (2^n) = 2^n Z, B_2 = (2^{n-1}) = 2^{n-1} Z, B_3 = (2^{n-2}) = 2^{n-2} Z, ..., B_n = (2) = 2Z.$ Now, let $I_1 = \{f(x) \in Z[x] : f(0) \in B_1\}, I_2 = \{f(x) \in Z[x] : f(0) \in B_2\}, ..., I_n = \{f(x) \in Z[x] : f(0) \in B_n\}.$ It is trivial to check that each I_k is an ideal of Z[x]. Also, since $B_1 \subset B_2 \subset ... \subset B_n$ is a strictly increasing sequence, it is clear that $I \subset I_1 \subset ... \subset I_n$ is a strictly increasing sequence.

QUESTION 4.2.32 Let A be a commutative ring with 1. Suppose that for each $a \in A$ there is a positive integer n > 1 such that $a^n = a$. Prove that every prime ideal of A is a maximal ideal of A.

Solution: Let I be a prime ideal, and let $a \in A \setminus I$. We need to show that a+I is a unit of A/I. Since $a^n=a$ in A, we conclude that $a^n+I=a+I$ in A/I. Hence, $a(a^{n-1}-1)=a^n-a\in I$. Since I is prime and $a\not\in I$ and $a(a^{n-1}-1)\in I$, we conclude that $a^{n-1}-1\in I$. Hence, $a^{n-1}+I=1+I$. Thus, a+I is a unit of A/I. Since a+I is a unit of A/I for every $a\in A\setminus I$, we conclude that A/I is a field. Hence, by Theorem 3.2.1 we conclude that I is a maximal ideal of A.

QUESTION 4.2.33 Let A, B be commutative rings (with 1), and M be and ideal of $C = A \oplus B$. Prove that $M = I \oplus J$, where I is an ideal of A and J is an ideal of B.

Solution: Let $I = \{i \in A : (i,j) \in M\}$, and let $J = \{j \in B : (i,j) \in M\}$. Then, it is clear that $M = I \oplus J$. Now, let $i_1, i_2 \in I$. Then $(i_1, j_1), (i_2, j_2) \in M$. Hence, $(i_1, j_1) + (i_2, j_2) = (i_1 + i_2, j_1 + j_2) \in M$. Thus, by definition of I we have $i_1 + i_2 \in I$. Now, let $a \in A$, and $i \in I$. Hence, $(i, j) \in M$. Also, since $a \in A$, we have $(a, b) \in C$ for some $b \in B$. Thus, $(a, b)(i, j) = (ai, bj) \in M$. Hence, $ai \in I$. Thus, I is an ideal of A. In an argument similar to the one just given, we conclude that J is an ideal of B.

QUESTION 4.2.34 Let A, B be commutative rings with 1, and let M be a prime ideal of $C = A \oplus B$. Prove that either $M = I \oplus B$ for some prime ideal I of A or $M = A \oplus J$ for some prime ideal J of A.

Solution: By the previous Question $M = I \oplus J$, where I is an ideal of A and J is an ideal of B. Suppose that neither I = A nor J = B. Hence, there is an $a \in A \setminus I$ and a $b \in B \setminus J$. Now, $(0,b), (a,0) \in C$, and $(0,b)(a,0) = (0,0) \in M$. But neither $(0,b) \in M$ nor $(a,0) \in M$. Thus, I = A or J = B. Suppose that J = B. Since M is a proper ideal of C, $I \neq A$. Now, suppose that $a_1, a_2 \in A$ such that $a_1a_2 \in I$. Hence, $(a_1,0)(a_2,0) = (a_1a_2,0) \in M = I \oplus J$. Since M is prime, we have either $(a_1,0) \in M$ or $(a_2,0) \in M$. Thus, $a_1 \in I$ or $a_2 \in I$. Hence, I is a prime ideal of A. Now, if I = A, then by a similar argument to the one just given, we conclude that J is a prime ideal of B

QUESTION 4.2.35 Let A, B be commutative rings with 1, and let M be a maximal ideal of $C = A \oplus B$. Prove that either $M = I \oplus B$ for some maximal ideal I of A or $M = A \oplus J$ for some maximal ideal J of B.

Solution: Since every maximal ideal is prime, by the previous Question we conclude that either $M = I \oplus B$ for some prime ideal of A or $M = A \oplus J$ for some prime ideal J of B. Hence, suppose that $M = I \oplus B$. Let $\Phi: A \oplus B \longrightarrow A/I$, such that $\phi((a,b)) = a+I$. It is easy to see that Φ is a ring homomorphism from $A \oplus B$ ONTO A/I. Now, $Ker(\Phi) = \{(a,b) \in A \oplus B : \Phi((a,b)) = a+I = I\}$. Hence, $(a,b) \in Ker(\Phi)$ if and only if $a \in I$. Hence, $Ker(\Phi) = I \oplus B = M$. Thus, by Theorem 3.2.5 we have $(A \oplus B)/M \cong A/I$. Since M is maximal, by Theorem 3.2.1 $(A \oplus B)/M \cong A/I$ is a field. Since A/I is a field, once again by Theorem

3.2.1 *I* is a maximal ideal of *A*. If $M = A \oplus J$, then by a similar argument to the one just given, we conclude that *J* is a maximal ideal of *B*.

4.3 Integral Domains, and Zero Divisors

QUESTION 4.3.1 Let A be a finite integral domain. Prove that A is a field.

Solution: Let $a \in A$ such that $a \neq 0$ and $a \neq 1$. Suppose that A has n elements. Now, consider $a, a^2, a^3, ..., a^n, a^{n+1}$. Since A has exactly n elements, we conclude that $a^i = a^k$ for some i > k and $1 \leq i, k \leq n+1$. Thus, $a^i - a^k = 0$. Hence, $a^k(a^{i-k} - 1) = 0$. Since $a \neq 0$ and A has no Zero divisors, we conclude that $a^{i-k} = 1$. Since $a \neq 1, i-k > 1$. Thus, $aa^{i-k-1} = 1$. Thus, a is a unit in A. Thus, A is a field.

QUESTION 4.3.2 Let A be a finite commutative ring with no Zero divisors. Prove that A is a field.

Solution: By the previous Question we need only to show that A is an integral domain. Hence, we just need to show that A has an identity. Let $a \in A$ such that $a \neq 0$. Since A has no Zero divisors, we conclude that if $x, y \in A$ and $x \neq y$, then $ax \neq ay$. Thus, since A is finite, we conclude that az = a for some $z \in A$. Now, let $b \in A$. Since az = a, we have ba = baz = bza. Since ba = bza, we have (b - bz)a = 0. Since $a \neq 0$ and $a \neq 0$ has no Zero divisors, we conclude that $a \neq 0$. Thus, $a \neq 0$ and $a \neq 0$ has no Zero divisors, we conclude that $a \neq 0$. Thus, $a \neq 0$ has no Zero divisors, we conclude that $a \neq 0$. Thus, $a \neq 0$ has no Zero divisors, we conclude that $a \neq 0$. Thus, $a \neq 0$ has no Zero divisors, we conclude that $a \neq 0$. Thus, $a \neq 0$ has no Zero divisors, we conclude that $a \neq 0$. Thus, $a \neq 0$ has no Zero divisors, we conclude that $a \neq 0$. Thus, $a \neq 0$ has no Zero divisors, we conclude that $a \neq 0$. Thus, $a \neq 0$ has no Zero divisors, we conclude that $a \neq 0$ has no Zero divisors, we conclude that $a \neq 0$ has no Zero divisors, we conclude that $a \neq 0$ has no Zero divisors, we conclude that $a \neq 0$ has no Zero divisors, we conclude that $a \neq 0$ has no Zero divisors, we conclude that $a \neq 0$ has no Zero divisors, we conclude that $a \neq 0$ has no Zero divisors.

QUESTION 4.3.3 Let I be a prime ideal of a finite commutative ring A with 1. Prove that I is maximal.

Solution: Since I is prime, we know that A/I is an integral domain. Since A is finite, we have A/I is a finite ring. Since A/I is a finite integral domain, by the previous Question we have A/I is a field. Hence, by Theorem 3.2.1 I is a maximal ideal of A.

QUESTION 4.3.4 Let A be an integral domain. Prove that either Char(A) = 0 or Char(A) is a prime number.

Solution: Suppose that $1 \in A$ has infinite order under addition. Then by Theorem 3.2.2 we conclude Char(A) = 0. Hence, assume that $1 \in A$

has a finite order, say, n, under addition. Then by Theorem 3.2.2 we have $\operatorname{Char}(A) = n$. We need to show that n is prime. Suppose that n is not prime. Then n = mk for some positive integers m, k such that 1 < m < n and 1 < k < n. Now, 0 = n.1 = (m.1)(k.1). Since k < n and m < n and

QUESTION 4.3.5 Let A be a finite ring with 1. Prove that every element in A is either a unit of A or a zero divisor of A.

Solution: Let n be the number of all elements of A, and let $a \in A$ such that $a \neq 0$ and $a \neq 1$. Consider the elements : $a, a^2, a^3, ..., a^{n+1}$. Since A has exactly n elements, $a^m = a^k$ for some m > k where $1 \leq m \leq n+1$ and $1 \leq k \leq n+1$. Hence, $a^m - a^k = 0$. Thus, $a^k(a^{m-k}-1) = 0$. Suppose that $a^{m-k}-1=0$. Then $a^{m-k}=1$ and therefore a is a unit of A. Hence, assume that $a^{m-k}-1 \neq 0$. Let a be the least positive integer such that $a^d(a^{m-k}-1)=0$. Then $a \leq k$ and since $a \neq 0$, we have $a \geq 1$. Hence, $a^{d-1}(a^{m-k}-1)=0$ and $a^{d-1}(a^{m-k}-1)\neq 0$. Thus, a is a zero divisor of a.

QUESTION 4.3.6 Find all Zero divisors of Z_{24} .

Solution: Find all factors of 24 that are > 1 and < 24. These factors are : 2, 3, 4, 6, 8, 12. Now, all Zero divisors of Z_{24} is $2Z_{24} \cup 3Z_{24} \cup 4Z_{24} \cup 6Z_{24} \cup 8Z_{24} \cup 12Z_{24}$. Since $4Z_{24}$ and $6Z_{24}$ and $8Z_{24}$ and $12Z_{24}$ are subsets of $2Z_{24}$, we conclude that all Zero divisors of Z_{24} is $2Z_{24} \cup 3Z_{24} = \{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22\} \cup \{0, 3, 6, 9, 12, 15, 18, 21\} = \{0, 2, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22\}.$

Another Solution: Since Z_{24} is a finite ring, by the previous Question, every element in Z_{24} is either a unit or a zero divisor. But we know that $U(Z_{24}) = \{a \in Z_{24} : gcd(a, 24) = 1\} = \{1, 5, 7, 11, 13, 17, 19, 23\}.$ Hence, Zero divisors of Z_{24} is $\{0, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22\}.$

[0, 2, 3, 1, 0, 0, 0, 10, 12, 11, 13, 10, 10, 20, 21, 22].

QUESTION 4.3.7 Let A be a finite commutative ring with 1 such that A has a prime number of elements. Prove that A is a field.

Solution: Let p be the number of elements of A. Then by hypothesis, p is a prime number. Let $a \in A$ such that $a \neq 0$. Consider the ideal (a). Since (a) is a group under addition, the order of (a) must divide p.

Hence, either the order of (a) = 1 or order of (a) = p. Since $a \neq 0$, the order of $(a) \neq 1$. Hence, the order of (a) = p order of A. Since $1 \in A$ and (a) = A, we conclude that ab = ba = 1 for some $b \in A$. Hence, a is a unit of A. Thus, A is a field.

QUESTION 4.3.8 Find an example of a ring A with n elements such that $Char(A) = m \neq n$.

Solution: Let $A = Z_4 \oplus Z_4$. Then A has 16 elements and $Char(A) = 4 \neq 16$.

QUESTION 4.3.9 Let $A = Z_{n_1} \oplus Z_{n_2} ... \oplus Z_{n_m}$. Prove that U(A) has exactly $\phi(n_1)\phi(n_2)...\phi(n_m)$ distinct elements.

Solution: We know that $U(Z_k) = \phi(k)$. Hence, By Theorem 3.2.3, U(A) has exactly $\phi(n_1)\phi(n_2)...\phi(n_m)$ elements.

QUESTION 4.3.10 Let $A = Z_3 \oplus Z_3 \oplus Z_8$. Find the number of units of A and the number of Zero divisors of A.

Solution: By the previous Question, the number of units of A is $\phi(3)\phi(3)\phi(8)=(2)(2)(4)=16$. Since A is finite, by Question 4.3.4 every element in A is either a unit or a zero divisor. Hence, since A has (3)(3)(8)=72 elements and exactly 16 elements of A are units, we conclude that the number of Zero divisors of A is 72-16=56.

QUESTION 4.3.11 Find an example of an infinite integral domain of characteristic 5.

Solution: Let $A = Z_5[x]$ the ring of all polynomials with coefficients from Z_5 . Then A is an infinite integral domain and Char(A) = 5.

QUESTION 4.3.12 Let A be a ring with 1 such that A has exactly m elements. Prove that Char(A) divides m.

Solution: By Theorem 3.2.2, Char(A) is the order of 1 under addition. Since A is a group under addition, we know from Group Theory that the order of 1 under addition must divide the order of A. Hence, Char(A) must divide m.

QUESTION 4.3.13 Find all solutions of $x^2 - 8x + 5 = 0$ in Z_{10} .

Solution: $x^2-8x+5=(x-3)(x-5)$ in $Z_{10}[x]$. Thus, x=3 and x=5 are solutions of x^2-8x+5 in Z_{10} . But this is not all since Z_{10} has zero divisors. We consider the following products: (2)(5)=(4)(5)=(6)(5)=(8)(5)=0. Let y=x-3. Then x-5=y-2. Thus, (x-3)(x-5)=0 iff y(y-2)=0. So, we consider the solutions of y(y-2)=0 in Z_{10} . If y=2, then $y-2\neq 5$. Hence, 2 is not a solution. If y=4, then $y-2\neq 5$. Hence, 4 is not a solution. If y=6, then $y-2\neq 5$. Hence, 6 is not a solution. If y=8, then $y-2\neq 5$. Hence, 8 is not a solution. If y=5, then y-2=3. Since $(5)(3)\neq 0$, we conclude that 5 is not a solution. Thus, 3 and 5 are the only solutions of $x^2-8x+5=0$ in Z_{10} .

QUESTION 4.3.14 Find all solutions of $x^2 + 2x = 0$ in Z_{12} .

Solution: $x^2 + 2x = x(x+2) = 0$. Thus, x = 0 and x = -2 = 10 in Z_{12} are solutions. But since Z_{12} has Zero divisors, we need to consider more elements. Now, (2)(6) = (4)(6) = (6)(6) = (8)(6) = (10)(6) = (3)(4) = (9)(4) = (8)(3) = 0. Hence, we see that 4 and 6 are also a solution of $x^2 + 2x = 0$. Thus, all solutions of $x^2 + 2x = 0$ in Z_{12} are 0, 10, 4, 6.

QUESTION 4.3.15 Let A be an integral domain such that $Char(A) \neq 2$. Let $a \in A$ such that $a \neq 0$. Prove that $2a \neq 0$.

Solution: Suppose that 2a = 0. Then, a + a = 0. Hence, a(1 + 1) = 0. Thus, 2.1 = 0. Hence, Char(A) = 2. A contradiction.

QUESTION 4.3.16 Let F be a field such that $Char(F) \neq 2$. Suppose that the set of all units of F is a cyclic group. Prove that F is finite.

Solution: Let F^* be the set of all units of F. Hence, $F^* = (a)$, under multiplication, for some $a \in F^*$, that is $F^* = F \setminus \{0\}$. Since $a \in F^*$, we have $-a \in F^*$. Since $Char(F) \neq 2$, $a \neq -a$. Hence, $a^m = -a$ for some integer $m \neq 1$. Hence, $1 = a^m(a^{-1})^m = -a(a^{-1})^m = -aa^{-1}(a^{-1})^{m-1} = -1(a^{-1})^{m-1}$, and thus $(a^{-1})^{2m-2} = 1$. Hence, $a^{2m-2} = 1$. Hence, Ord(a) under multiplication must divided 2m-2. Thus, $F^* = (a)$ is finite. Hence, F is a finite field.

QUESTION 4.3.17 consider the following ring: $A = \{0, 2, 4, 6, 8, 10\}$ under multiplication and addition modulo 12. Find Char(A).

Solution: Since 6 is the smallest positive integer such that 6.2 = 0 modulo 12 and 6.4 = 6.6 = 6.8 = 6.10 = 0 modulo 12, we conclude that Char(A) = 6.

QUESTION 4.3.18 Let A be a commutative ring with 1 such that Char(A) = n, and let B be a subring of A with the same identity of A, and let S be a subring of A. Is Char(B) = n?. Is Char(S) = n?.

Solution: Since Char(A) = n is the additive order of 1 in A by Theorem 3.2.2 and $1 \in B$, we conclude that Char(B) = n. However, Char(S) does not need to be n. For example, $Char(Z_{12}) = 12$. Let $S = \{0, 2, 4, 6, 8, 10\}$ is a subring of Z_{12} but by the previous Question we have $Char(S) = 6 \neq 12$.

QUESTION 4.3.19 Let A be an integral domain and I be an ideal of A. Is A/I an integral domain?

Solution: Not necessarily. For example let A = Z and I = 6Z. Then Z/6Z is not an integral domain since (2 + I)(3 + I) = 0 + I in Z/6Z. Hence, 2 + I and 3 + I are Zero divisors of A/I.

QUESTION 4.3.20 Let A be a commutative ring such that Char(A) = p is a prime number. Let $x, y \in A$. Prove that $(x + y)^{p^n} = x^{p^n} + y^{p^n}$ for every $n \ge 1$.

Solution: By the BINOMIAL EXPANSION THEOREM, $(x+y)^{p^n} = x^{p^n} + pc_1yx^{p^n-1} + pc_2y^2x^{p^n-2} + ... + pc_{p^n-1}y^{p^n-1}x + y^{p^n}$, where the c_k 's are positive integers. Since every term different from x^{p^n} and y^{p^n} in the expansion of $(x+y)^{p^n}$ is divisible by p and Char(A) = p, we conclude that all these terms that are divisible by p are zero in A. Hence, $(x+y)^{p^n} = x^{p^n} + y^{p^n}$.

4.4 Ring Homomorphisms and Ideals

QUESTION 4.4.1 Let Φ be a ring isomorphism from Q ONTO Q. Prove that $\Phi(a) = a$ for every $a \in Q$.

Solution: Since 1 is the multiplicative identity of Q^* , we conclude that $\Phi(1)=1$. Since $0=\Phi(0)=\Phi(1+-1)=\Phi(1)+\Phi(-1)=1+\Phi(-1)$, we have $\Phi(-1)=-1$. Hence, $\Phi(n)=n$ for every $n\in Z$. Let $n\in Z\setminus\{0\}$. Since $1=\Phi(n/n)=\Phi(n)\Phi(1/n)=n\Phi(1/n)$. We conclude that $\Phi(1/n)=1/n$. Now, let $q\in Q$. Then q=m/n, where $m\in Z$ and $n\in Z\setminus\{0\}$. Hence, $\Phi(q)=\Phi(m/n)=\phi(m)\Phi(1/n)=m.1/n=m/n=q$.

QUESTION 4.4.2 Is the ring 2Z isomorphic to the ring 3Z?

Solution: No. For if $\Phi: 2Z \longrightarrow 3Z$ is a ring isomorphism, then $\Phi(2) = 3$ or $\Phi(2) = -3$ since 2Z and 3Z are cyclic groups under addition and 2 generates 2Z and 3, -3 generate 3Z. Hence, $\Phi(4) = \Phi(2) + \Phi(2) = 6$ or -6. Also, $\Phi(4) = \Phi(2)\Phi(2) = 9$. Hence, Φ is not well-defined.

QUESTION 4.4.3 Let n, m be distinct positive integers. Prove that $nZ \ncong mZ$ as rings.

Solution: Deny. Then, there is a ring isomorphism, $\Phi: nZ \longrightarrow mZ$. Since nZ = (n) under addition is a cyclic group generated by n and mZ = (m) under addition is a cyclic group generated by m and -m, we conclude that $\Phi(n) = m$ or -m. Hence, $\Phi(n.n) = \Phi(n) + \Phi(n) + ... + \Phi(n)$ (n times)= nm or -nm. Also, $\Phi(n.n) = \Phi(n)\Phi(n) = m^2$. Since $n \neq m$, $nm \neq m^2$ and $-nm \neq m^2$. Hence, Φ is not well-defined. Thus, $nZ \not\cong mZ$ as ring.

QUESTION 4.4.4 Let $\Phi: Z_5 \longrightarrow Z_{30}$ such that $\Phi(a) = 6a$. Is Φ a ring homomorphism?

Solution: Yes. Since $Z_5 = (1)$ under addition is a cyclic group and $Ord(\Phi(1)) = Ord(6) = 5$ under addition in Z_{30} , we conclude that Φ under addition is a group homomorphism. Also, $\Phi(ab) = 6ab = 6a6b$ (since $6^2 = 6$ in $Z_{30}) = \Phi(a)\Phi(b)$ in Z_{30} . Hence, Φ is a ring homomorphism.

QUESTION 4.4.5 Let $e \in Z_n$ and $\Phi : Z_m \longrightarrow Z_n$ be a ring homomorphism such that $\Phi(x) = ex$. Prove that Ord(e) under addition in Z_n must divide m, and e must be an idempotent of Z_n .

Solution: Since $\Phi(1) = e$ and Φ is a group homomorphism under addition, we know from Group Theory that Ord(e) under addition in Z_n must divide Ord(1) under addition in Z_m . Since Ord(1) = m under addition in Z_m , we conclude that Ord(e) divides m. Now, $e = \Phi(1) = \Phi(1.1) = \Phi(1)\Phi(1) = e.e = e^2$. Hence, $e^2 = e$, and hence e is an idempotent of Z_n .

QUESTION 4.4.6 Is $\Phi: Z_7 \longrightarrow Z_{12}$ such that $\Phi(a) = 4a$ a ring homomorphism?

Solution: No. Since $\Phi(1) = 4$, by the previous Question we know Ord(4) under addition in Z_{12} must divide 7. But Ord(4) = 3 under addition in Z_{12} . Hence, since 3 does not divide 7, Φ is not a ring homomorphism.

QUESTION 4.4.7 Let e be an idempotent of Z_n such that Ord(e) under addition in Z_n divides m. Prove that $\Phi: Z_m \longrightarrow Z_n$ such that $\Phi(x) = ex$ is a ring homomorphism.

Solution: Since $Z_m = (1)$ is a cyclic group and $Ord(\Phi(1)) = Ord(e)$ divides m, we conclude that Φ under addition is a group homomorphism. Now, $\Phi(ab) = eab = eaeb$ (since $e^2 = e$)= $\Phi(a)\Phi(b)$. Thus, Φ is a ring homomorphism.

QUESTION 4.4.8 Prove that $S = \{0, 8, 16, 24, 32, 40, 48\}$ under addition and multiplication modulo 56 is a field.

Solution: First, observe that number of elements in S is 7 and we know that Z_7 is a field. Hence, one way to attack this problem is to construct a ring homomorphism from Z_7 into Z_{56} , and then we make a use of Theorem 3.2.5. So, let $\Phi: Z_7 \longrightarrow Z_{56}$ such that $\Phi(a) = 8a$. Since Ord(8) = 7 under addition in Z_{56} and $8^2 = 8$ in Z_{56} , by the previous Question we conclude that Φ is a ring homomorphism. Now, $Ker(\Phi) = \{0\}$. Hence, by Theorem 3.2.5 we have $Z_7 = Z_7/Ker(\Phi) \cong \Phi(Z_7) = \{0, 8, 16, 24, 32, 40, 48\}$. Thus, S is a field.

QUESTION 4.4.9 Prove that if $m \mid n-1$, then Z_{mn} contains a subring isomorphic to Z_m .

Solution: Let $\Phi: Z_m \longrightarrow Z_{nm}$ such that $\Phi(x) = nx$. Since $m \mid n-1$, we have $n^2 = n$ in Z_{nm} . Thus, n is an idempotent of Z_{nm} . Also, Ord(n) = m under addition in Z_{nm} . Hence, by Question 4.4.7 Φ is a ring homomorphism. Since Ord(n) = m and $\Phi(x) = nx$, we conclude that $Ker(\Phi) = \{0\}$. Thus, by Theorem 3.2.5 we have $Z_m \cong \Phi(Z_m)$. Hence, Z_{nm} contains a subring that is isomorphic to Z_m .

QUESTION 4.4.10 Prove that Z_{56} contains a subring that is isomorphic to Z_7 .

Solution: Let m = 7 and n = 8. Since $m \mid n - 1$, by the previous Question we conclude that Z_{56} contains a subring that is isomorphic to Z_7 .

QUESTION 4.4.11 (compare with Question 4.4.9) Suppose that Z_{nm} contains a subring that is isomorphic to Z_m . Does $m \mid n-1$?

Solution: No. For example, let m = 3 and n = 5. Then $m \not\mid (n - 1)$. However, $S = \{0, 5, 10\}$ is a subring of $Z_{mn} = Z_{15}$ that is isomorphic to Z_3 .

QUESTION 4.4.12 Let A, B, C be rings, Φ be a ring homomorphism from A into B and β be a ring homomorphism from B into C. Prove that $\beta \circ \Phi : A \longrightarrow C$ is a ring homomorphism.

Solution: Let $x, y \in A$. Then $\beta \circ \Phi(x + y) = \beta(\Phi(x + y)) = \beta(\Phi(x) + \Phi(y)) = \beta(\Phi(x)) + \beta(\Phi(y)) = \beta \circ \Phi(x) + \beta \circ \Phi(y)$. Also, $\beta \circ \Phi(xy) = \beta(\Phi(xy)) = \beta(\Phi(x)\Phi(y)) = \beta(\Phi(x))\beta(\Phi(y)) = \beta \circ \Phi(x)\beta \circ \Phi(y)$. Hence, $\beta \circ \Phi$ is a ring isomorphism from A into C.

QUESTION 4.4.13 Let A, B be commutative rings with 1 and Φ : $A \longrightarrow B$ be a ring homomorphism from A ONTO B, and let I be an ideal of A such that $Ker(\Phi) \subset I$. Prove that $\Phi^{-1}(\Phi(I)) = I$.

Solution: Let $J = \Phi^{-1}(\Phi(I))$. It is clear that $I \subset J$. Hence, let $j \in J$. Then $\Phi(j) = \Phi(i)$ for some $i \in I$. Hence, $\Phi(j-i) = 0$. Thus, $j-i=k \in Ker(\Phi)$. Hence, j=i+k. Since $i \in I$ and $k \in Ker(\Phi) \subset I$, we conclude that $j \in I$. Thus, J=I.

QUESTION 4.4.14 Let A, B be commutative rings with 1, and Φ : $A \longrightarrow B$ be a ring homomorphism from A ONTO B. Let I be an ideal of B. Prove that $J = \Phi^{-1}(I)$ is an ideal of A such that $Ker(\Phi) \subset J$. In particular, prove that if I is a prime ideal of B, then $J = \Phi^{-1}(I)$ is a prime ideal of A such that $Ker(\Phi) \subset J$, and if I is a maximal ideal of B, then $J = \Phi^{-1}(I)$ is a maximal ideal of A such that $Ker(\Phi) \subset J$

Solution: Let $\beta: B \longrightarrow B/I$ such that $\beta(b) = b + I$. Then, it is easy to check that β is a ring homomorphism from B ONTO B/I. Now, consider : $\beta \circ \Phi: A \longrightarrow B/I$. By the previous Question $\beta \circ \Phi$ is a ring homomorphism. Since Φ and β are both ONTO, we conclude that $\beta \circ \Phi$ is a ring homomorphism from A ONTO B/I. Now, $Ker(\beta \circ \Phi) = \{a \in A: \beta(\Phi(a)) = \Phi(a) + I = 0 + I = I\}$. Hence, $a \in Ker(\beta \circ \Phi)$ iff $\Phi(a) \in I$. Thus, $Ker(\beta \circ \Phi) = \Phi^{-1}(I)$. Hence, $J = \Phi^{-1}(I)$ is an ideal of A. Since $0 \in I$, we have $\Phi^{-1}(0) = Ker(\Phi) \subset J$. Now, suppose that I is a prime ideal of B. Then by Theorem 3.2.5 we have $A/\Phi^{-1}(I) \cong \beta(\Phi(A)) = \beta(B) = B/I$. Since I is a prime ideal of B, B/I is an integral domain by Question 4.2.7. Hence, $A/\Phi^{-1}(I)$ is an integral domain. Thus, once again, by Question 4.2.7 we have $J = \Phi^{-1}(I)$ is a prime ideal of A.

Finally, suppose that I is a maximal ideal of B. Then by Theorem 3.2.1 B/I is a field. Since $A/\Phi^{-1}(I) \cong B/I$ and B/I is a field, we conclude that $A/\Phi^{-1}(I)$ is a field, and hence by Theorem 3.2.1 $J = \Phi^{-1}(I)$ is a maximal ideal of A.

QUESTION 4.4.15 Let A, B be commutative rings with 1, and let $\Phi: A \longrightarrow B$ be a ring homomorphism from A ONTO B. Let S be the set of all prime ideals of B, and H be the set of all maximal ideals of B. Prove that $S = \{\Phi(I) : I \text{ is a prime ideal of } A \text{ and } Ker(\Phi) \subset I\}$, and $H = \{\Phi(I) : I \text{ is a maximal ideal of } A \text{ and } Ker(\Phi) \subset I\}$.

Solution: Let P be a prime ideal of B, by the previous Question $J = \Phi^{-1}(P)$ is a prime ideal of A and $Ker(\Phi) \subset J$. Hence, $\Phi(J) = P$. Now, let I be a prime ideal of A such that $Ker(\Phi) \subset I$. Let $\beta: A \longrightarrow B/\Phi(I)$ such that $\beta(a) = \Phi(a) + \Phi(I)$. It is easy to check that β is a ring homomorphism from A ONTO $B/\Phi(I)$. Since $Ker(\beta) = \{a \in A: \beta(a) = \Phi(a) + \Phi(I) = \Phi(I)\}$. Thus, $Ker(\beta) = \Phi^{-1}(\Phi(I)) = I$ by Question 4.4.13. Since $A/Ker(\beta) = A/I \cong B/\Phi(I)$ and I is a prime ideal of A, by Question 4.2.7 A/I is an integral domain and hence $B/\Phi(I)$ is an integral domain. Thus, once again, by Question 4.2.7 $\Phi(I)$ is a prime ideal of B. Hence, $S = \{\Phi(I): I$ is a prime ideal of A and $Ker(\Phi) \subset I\}$. Finally, assume that A is a maximal ideal of A and A argument similar to the one just given and Theorem 3.2.1, we conclude that A is a maximal ideal of A and A and A argument similar to the one just given and Theorem 3.2.1, we conclude that A is a maximal ideal of A and A argument similar to the one just given and A and A argument similar to the one just given and A and A argument similar to the one just given and A argument A argument similar to the one just given and A argument A argument similar to the one just given and A argument A argumen

QUESTION 4.4.16 Let n be a positive integer, and write $n = p_1^{n_1} p_2^{n_2} ... p_m^{n_m}$, where the p_i 's are distinct primes and the n_i 's are positive integers ≥ 1 . Let S be the set of all prime (maximal) ideals of Z_n . Prove that either $S = \{0\}$ or $S = \{p_i Z_n : 1 \leq i \leq m\}$.

Solution: If m=1 and $n_1=1$, then it is trivial to check that $S=\{0\}$. Hence, assume that either m>1 or $n_1>1$. Since Z_n is a finite ring, by Question 4.3.3 every prime ideal of Z_n is maximal. Since $\Phi:Z\longrightarrow Z/nZ\cong Z_n$ such that $\Phi(a)=a+nZ$ is a ring homomorphism from Z ONTO Z/nZ, by the previous Question we conclude that $S=\{\Phi(I):I$ is a prime (maximal) ideal of Z with $Ker(\Phi)=nZ\subset I\}$. Hence, since every nonzero prime(maximal) ideal of Z is of the form pZ for some prime integer p, we conclude that a prime (maximal) ideal of Z which contains $Ker(\Phi)=nZ$ must have the form p_iZ . Hence, $S=\{\Phi(p_iZ)=p_iZ/nZ\cong p_iZ_n:1\leq i\leq m\}$.

QUESTION 4.4.17 Find all prime(maximal) ideals of Z_{180} .

Solution: Write $180 = 2^2.3^2.5$. Hence, by the previous Question $2Z_{60}, 3Z_{60}, 5Z_{60}$ are the prime (maximal) ideals of Z_{60} .

QUESTION 4.4.18 Find all prime (maximal) ideals of $Z_{45} \oplus Z_{36}$.

Solution: Write $45 = 3^2.5$ and write $36 = 3^2.2^2$. Then by Question 4.4.16 $3Z_{45}, 5Z_{45}$ are the prime (maximal) ideals of Z_{45} , and $3Z_{36}$, $2Z_{36}$ are the prime (maximal) ideals of Z_{36} . Hence, by Question 4.2.34 we conclude that $3Z_{45} \oplus Z_{36}$, $5Z_{45} \oplus Z_{36}$, $Z_{45} \oplus 3Z_{36}$, $Z_{45} \oplus 2Z_{36}$ are the prime (maximal) ideals of $Z_{45} \oplus Z_{36}$

QUESTION 4.4.19 Describe all prime (maximal) ideals of $Z_6 \oplus Z$.

Solution: Write 6=2.3. By Question $4.4.16\ 2Z_6$, $3Z_6$ are the prime (maximal) ideals of Z_6 . Also, we know that a nonzero ideal I of Z is a prime (maximal) of Z iff I=pZ for some prime integer p. Hence, by Question $4.2.34\ Z_6 \oplus \{0\}$ is a prime ideal of $Z_6 \oplus Z$, and $2Z_6 \oplus Z$, $3Z_6 \oplus Z$, $Z_6 \oplus pZ$ where p is a prime integer are both prime and maximal ideals of $Z_6 \oplus Z$.

QUESTION 4.4.20 Prove that $(Z_{18} \oplus Z)/(3Z_{18} \oplus Z) \cong Z_3$.

Solution: Let $\Phi: Z_{18} \oplus Z \longrightarrow Z_3$ such that $\Phi((a,b)) = a \mod 3$. It is easy to check that Φ is a ring homomorphism from $Z_{18} \oplus Z$ ONTO Z_3 . Now, $Ker(\Phi) = \{(a,b) \in Z_{18} \oplus Z : \Phi((a,b)) = a \mod 3 = 0\}$. Thus, $(a,b) \in Ker(\Phi)$ iff $a \mod 3 = 0$ iff $a \in 3Z_{18}$. Hence, $Ker(\Phi) = 3Z_{18} \oplus Z$. Thus, by Theorem 3.2.5 we have $(Z_{18} \oplus Z)/(3Z_{18} \oplus Z) \cong Z_3$.

QUESTION 4.4.21 Let n, m be positive integers > 1. Prove that $(Z \oplus Z)/(nZ \oplus mZ) \cong Z_n \oplus Z_m$ as rings.

Solution: Let $\Phi: Z \oplus Z \longrightarrow Z_n \oplus Z_m$ such that $\Phi((a,b)) = (a \mod n,b \mod m)$. Now, $\Phi((a,b)+(c,d)) = \Phi((a+c,b+d)) = ((a+c)\mod n,(b+d)\mod m) = (a\mod n,b\mod m)+(c\mod n,d\mod m) = \Phi((a,b))+\Phi((c,d))$. In a similar way, we conclude $\Phi((a,b)(c,d)) = \Phi((a,b))\Phi((c,d))$. Hence, Φ is a ring homomorphism. Now, let $(z,w) \in Z_n \oplus Z_m$. Then $\Phi((z,w)) = (z,w)$. Hence, Φ is ONTO, that is $\Phi((Z \oplus Z)) = Z_n \oplus Z_m$. Now, $Ker(\Phi) = \{(x,y) \in Z \oplus Z : x \mod n = y \mod m = 0\}$. Thus, $(x,y) \in Ker(\Phi)$ iff $x \in nZ$ and $y \in mZ$. Thus, $Ker(\Phi) = nZ \oplus mZ$. Hence, by Theorem 3.2.5 we conclude that $(Z \oplus Z)/Ker(\Phi) = (Z \oplus Z)/(nZ \oplus mZ) \cong \Phi((Z \oplus Z)) = Z_n \oplus Z_m$.

QUESTION 4.4.22 Let $A = \{ \begin{bmatrix} a & b \\ b & a \end{bmatrix} : a, b \in Z \}$, and let $\Phi : A \longrightarrow Z$ such that $\Phi(z) = a - b$ for every $z \in A$. Prove that Φ is a ring homomorphism from A ONTO Z. Also, show that A is a commutative ring and $Ker(\Phi)$ is a prime ideal of A but not a maximal ideal of A.

Solution: By a trivial calculations, we conclude that $\Phi(z+w) = \Phi(z) + \Phi(w)$ and $\Phi(zw) = \Phi(z)\Phi(w)$ for every $z,w \in A$. Also, by simple calculations we conclude that A is a commutative ring with identity. Now, let $m \in Z$. Then $\Phi(\begin{bmatrix} 2m & m \\ m & 2m \end{bmatrix}) = m$. Hence, Φ is ONTO.

Thus, by Theorem 3.2.5 we have $A/Ker(\Phi) \cong \Phi(A) = Z$. Since Z is an integral domain and $A/Ker(\Phi) \cong Z$, by Question 4.2.7 we conclude that $Ker(\Phi)$ is a prime ideal of A. Since Z is not a field and $A/Ker(\Phi) \cong Z$, we conclude that $Ker(\Phi)$ is not a maximal ideal of A.

QUESTION 4.4.23 Prove that $I = \{f(x) \in Z[x] : f(-3) = 0\}$ is a prime ideal of Z[x] that is not a maximal ideal of Z[x].

Solution: Let $\Phi: Z[x] \longrightarrow Z$ such that $\Phi(f(x)) = f(-3)$. It is easy to check that Φ is a ring homomorphism. Now, let $m \in Z$. Then $\Phi(x+3+m)=m$. Hence, Φ is ONTO. Now, $Ker(\Phi)=I$. Hence, by Theorem 3.2.5 we have $Z[x]/Ker(\Phi) \cong \Phi(Z[x]) = Z$. Thus, by Question 4.2.7 I is a prime ideal of Z[x]. Since Z is not a field and $Z[x]/I \cong Z$, we conclude that I is not a maximal ideal of Z[x].

QUESTION 4.4.24 Let A be a commutative ring with identity and D be an integral domain. Suppose that $\Phi: A \longrightarrow D$ is a nonzero-ring homomorphism. Prove that $\Phi(1_A) = 1_D$, where 1_A is the identity of A and 1_D is the identity of D.

Solution: Let $x = \Phi(1_A)$. Hence, $x = \Phi(1_A) = \Phi(1_A.1_A) = \Phi(1_A)\Phi(1_A) = x^2$. Thus, x is an idempotent of D. Since D is an integral domain, 0 and 1_D are the only idempotents of D. Thus, either x = 0 or $x = 1_D$. Suppose that $0 = x = \Phi(1_A)$. Hence, $\Phi(a) = \Phi(a.1_A) = \Phi(a)\Phi(1_A) = 0$ for every $a \in A$. A contradiction, since by hypothesis Φ is a nonzero ring homomorphism. Thus, $1_D = x = \Phi(1_A)$.

QUESTION 4.4.25 Suppose A, B are rings with identity and Φ is a nonzero-ring homomorphism from A into B. Is $\Phi(1_A) = \Phi(1_B)$?, where 1_A is the identity of A and 1_B is the identity of B.

Solution: NO. Let $A = Z_5$ and $B = Z_{30}$, and let $\Phi : Z_5 \longrightarrow Z_{30}$ such that $\Phi(x) = 6x$. By Question 4.4.4, Φ is a nonzero-ring homomorphism and $\Phi(1_A) = 6 \neq 1_B$.

QUESTION 4.4.26 Let M, N be two distinct ideals of a commutative ring A with 1 such that M + N = A. Prove that $A/(M \cap N) = A/MN \cong A/M \oplus A/N$.

Solution: Let $\Phi: A \longrightarrow A/M \oplus A/N$, such that $\Phi(a) = (a+M,a+N)$ for every $a \in A$. It is easy to check that Φ is a ring homomorphism. Now, let $(a+M,b+N) \in A/M \oplus A/N$. Since M+N=A, we have m+n=1 for some $m \in M$ and $n \in N$. Now, $\Phi(bm+an) = (bm+an+M,bm+an+N)$. Since $bm \in M$ and $n-1=-m \in M$, we have bm+an+M=a+M. Also, since $an \in N$ and $m-1=-n \in N$, we conclude that bm+an=b+N. Thus, $\Phi(bm+an)=(a+M,b+N)$. Hence, Φ is ONTO. Now, $Ker(\Phi)=\{a\in A:\Phi(a)=(a+M,a+N)=(M,N)\}$. Thus, $a\in Ker(\Phi)$ iff $a\in M$ and $a\in N$. Hence, $Ker(\Phi)=M\cap N$. By Question 4.2.23, we have $M\cap N=MN$. Hence, $A/MN=A/M\cap N$. By Theorem 3.2.5 we have $A/MN=A/M\cap N\cong A/M\oplus A/N$.

QUESTION 4.4.27 Prove that $Z_{35} \cong Z_7 \oplus Z_5$.

Solution: Since 5Z + 7Z = Z and $5Z \cap 7Z = 35Z$. By the previous Question, we have $Z/5Z \cap 7Z = Z/35Z \cong Z/5Z \oplus Z/7Z \cong Z_5 \oplus Z_7$. Since $Z/35Z \cong Z_{35}$, we have $Z_{35} \cong Z_5 \oplus Z_7$

QUESTION 4.4.28 Prove that $Z_{72} \cong Z_8 \oplus Z_9$

Solution: Since 8Z + 9Z = Z and $8Z \cap 9Z = 72Z$, by Question 4.4.26 we have $Z/72Z \cong Z/8Z \oplus Z/9Z \cong Z_8 \oplus Z_9$. Since $Z/72Z \cong Z_{72}$, we have $Z_{72} \cong Z_8 \oplus Z_9$.

QUESTION 4.4.29 Let A be a commutative ring with 1 and M, N be two distinct maximal ideals of A. Prove that $A/MN = A/M \cap N \cong A/M \oplus A/N$.

Solution: Since M, N are two distinct maximal ideals of A, we conclude that M+N=A. Hence, by Question 4.4.26 we have $A/MN=A/M\cap N\cong A/M\oplus A/N$.

QUESTION 4.4.30 Let k, n be positive integers such that k divides n (in Z). Prove that Z_n/kZ_n is ring-isomorphic to Z_k .

Solution :Let $\Phi: Z_n \to Z_k$ such that $\phi(m) = m \mod(k)$ for every $m \in Z_n$. Then it is easily verified that Φ is a ring homomorphism from Z_n to Z_k . We show that $\Phi(Z_n) = Z_k$. Let $d \in Z_k$. Then $k+d \in Z_n$ and $\Phi(k+d) = (k+d) \mod(k) = 0 + d \mod(k) = d$. Hence $\Phi(Z_n) = Z_k$. Now $Ker(\Phi) = \{k, 2k, 3k, ..., kn/k\} = kZ_n$. Thus Z_n/kZ_n is ring-isomorphic to $\Phi(Z_n) = Z_k$.

QUESTION 4.4.31 Let n, k be positive integers such that k divides n (in Z). k < n. Prove that $kZ_n = (k)$ is a maximal ideal of z_n if and only if k is prime.

Solution: First by Question 4.4.30, we conclude that Z_n/kZ_n is ring-isomorphic to Z_k . Suppose that kZ_n is a maximal ideal of Z_n . Hence Z_n/kZ_n is a field and thus Z_k is a field. Hence k is prime. Conversely, suppose that k is a prime number. Thus Z_k is a field, and hence Z_n/kZ_n is a field. Thus, kZ_n is a maximal ideal of Z_n .

4.5 Polynomial Rings

QUESTION 4.5.1 Let F be a field and $f(x), g(x) \in F[x]$ such that f(a) = g(a) for every $a \in F$. Is f(x) = g(x)?

Solution: NO. Let $F = Z_2$, and $f(x) = x^3 + x$, $g(x) = x^2 + x \in Z_2[x]$. Then f(0) = g(0) = 0 and f(1) = g(1) = 0. Hence, f(a) = g(a) for every $a \in Z_2$. But $f(x) \neq g(x)$.

QUESTION 4.5.2 Let F be a field such that Char(F) = 0, and let $f(x), g(x) \in F[x]$ such that f(a) = g(a) for every $a \in F$. Prove that f(x) = g(x).

Solution: Since Char(F) = 0, by Theorem 3.2.2 we conclude that 1 has an infinite order under addition. Hence, F is an infinite field. Now, let $h(x) = f(x) - g(x) \in F[x]$. Since f(a) = g(a) for every $a \in F$, we conclude that h(a) = f(a) - g(a) = 0 for every $a \in F$. Since F is infinite and h(a) = 0 for ever $a \in F$, we conclude that h(x) has infinitely many zeros (roots) in F. If $deg(h(x)) = n \ge 1$, then by Theorem 3.2.9 h(x) will have at most n zeros (roots) in F. Thus, h(x) = f(x) - g(x) = 0. Hence, f(x) = g(x).

QUESTION 4.5.3 Let F be an infinite field, and $g(x), f(x) \in F[x]$ such that f(a) = g(a) for infinitely many $a's \in F$. Prove that f(x) = g(x).

Solution: By an argument similar to the solution given to the previous Question, we conclude that f(x) = g(x).

QUESTION 4.5.4 Let F be a finite field with n elements, and let $f(x), g(x) \in F[x]$ such that $f(x) \neq g(x)$ and f(a) = g(a) for every $a \in F$. Prove that $deg(f(x) - g(x)) \geq n$.

Solution: Let h(x) = f(x) - g(x). Since f(a) = g(a) for every $a \in F$, we conclude h(a) = 0 for every $a \in F$. Since $f(x) \neq g(x)$ and h(a) = 0 for every $a \in F$, we conclude that $deg(h(x)) \geq 1$. Hence, since h(a) = 0 for every $a \in F$ and F has n elements and $deg(h(x)) \geq 1$, we conclude that h(x) has exactly n distinct roots (zeros) in F. Thus, by Theorem $3.2.9 \ deg(h(x)) = deg(f(x) - g(x)) \geq n$.

QUESTION 4.5.5 Prove that the ideal (x-3) is a maximal ideal of Q[x].

Solution: Let $\Phi:Q[x]\longrightarrow Q$ such that $\Phi(f(x))=f(3)$. It is trivial to check that Φ is a ring homomorphism. Now, let $m\in Q$. Then $f(x)=x-3+m\in Q[x]$ and $\Phi(f(x))=f(3)=m$. Hence, Φ is ONTO. Now, $Ker(\Phi)=\{f(x)\in Q[x]:f(3)=0\}$. Since $x-3\in Ker(\Phi)$ and x-3 is of a minimum degree, by Theorem 3.2.7 we conclude that I=(x-3). Now, by Theorem 3.2.5 we have $Q[x]/(x-3)\cong \Phi(Q[x])=Q$. Since Q is a field and $Q[x]/(x-3)\cong Q$, by Theorem 3.2.1 we conclude that (x-3) is a maximal ideal of Q[x].

QUESTION 4.5.6 Find a polynomial, say h(x), with integer coefficients such that -1/4 and 3/5 are roots (zeros) of h(x).

Solution: Let g(x) = 4x + 1 and f(x) = 5x - 3. Then -1/4 is a root of g(x) and 3/5 is a root of f(x). Hence, $h(x) = g(x)f(x) = (4x + 1)(5x - 3) = 20x^2 - 7x - 3$ has -1/4 and 3/5 as roots (zeros).

QUESTION 4.5.7 Let $f(x) \in R[x]$ (R is the set of all real numbers which is a field). Suppose that for some $a \in R$ we have f(a) = 0 and $f'(a) \neq 0$. Prove that a is a zero (root) of f(x) of multiplicity 1.

Solution: Since f(a) = 0, by Theorem 3.2.8 we conclude that (x - a) is a factor of f(x). Let m be the multiplicity of a. Then $f(x) = (x - a)^m g(x)$ for some $g(x) \in R[x]$ such that $g(a) \neq 0$. Now, $f'(x) = m(x-a)^{m-1}g(x) + g'(x)(x-a)^m$ (by the product formula for derivative).

Hence, $f'(a) = m(a-a)^{m-1}g(a) + (a-a)^m g'(a)$. Since $g'(a) \neq 0$ and $f'(a) \neq 0$, we conclude that m = 1. Thus, a is a root (zero) of f(x) of multiplicity 1.

QUESTION 4.5.8 Let $f(x) \in R[x]$ such that f(a) = 0 and f'(a) = 0 for some $a \in R$. Prove that a is a zero(root) of f(x) of multiplicity ≥ 2 .

Solution: Since f(a) = 0, by the solution of the previous Question, we conclude that a is a zero of f(x) of multiplicity 1 if and only $f'(a) \neq 0$. Hence, since f(a) = f'(a) = 0, we conclude that a is a zero of f(x) of multiplicity ≥ 2 .

QUESTION 4.5.9 Prove that $Q[x]/(x^2 - 5)$ is a ring-isomorphic to $Q[\sqrt{5}] = \{a + b\sqrt{5} : a, b \in Q\}.$

Solution: Let $\Phi: Q[x] \longrightarrow Q$, such that $\Phi(f(x)) = f(\sqrt{5})$. It is trivial to check that Φ is a ring homomorphism. Now, let $a + b\sqrt{5} \in Q[\sqrt{5}]$. Then $f(x) = a + bx \in Q[x]$ and $\Phi(f(x)) = f(\sqrt{5}) = a + b\sqrt{5}$. Thus, Φ is ONTO. Now, $Ker(\Phi) = \{f(x) \in Q[x] : f(\sqrt{5}) = 0\}$. Since $x^2 - 5 \in Ker(\Phi)$ and $x^2 - 5$ is of a minimum degree, by Theorem 3.2.9 we conclude that $Ker(\Phi) = (x^2 - 5)$. Hence, by Theorem 3.2.5 we have $Q[x]/(x^2 - 5) \cong \Phi(Q[x]) = Q[\sqrt{5}]$.

QUESTION 4.5.10 Let A be a commutative ring with 1 and I be an ideal of R. Prove that I[x] is an ideal of A[x] and A[x]/I[x] is a ring-isomorphic to (A/I)[x].

Solution: Let $\Phi: A[x] \longrightarrow (A/I)[x]$, such that if $f(x) = a_0 + a_1x + ... + a_nx^n \in A[x]$, then let $\Phi(f(x)) = (a_0 + I) + (a_1 + I)x + ... + (a_n + I)x^n$. It is easy to see that Φ is a ring-homomorphism from A[x] ONTO (R/I)[x]. Now, $Ker(\Phi) = \{f(x) \in A[x] : \Phi(f(x)) = 0 + I = I\}$. Hence, let $g(x) = a_0 + ... + a_nx^n \in Ker(\Phi)$. Then $\Phi(g(x)) = a_0 + I + ... + (a_n + I)x^n = I$. Hence, $a_0 + I = a_1 + I = ... = a_n + I = I$. Thus, $a_0, a_1, ..., a_n \in I$. Thus, $g(x) \in I[x]$. Hence, $Ker(\Phi) = I[x]$ is an ideal of A[x]. Now, by Theorem 3.2.5 we have $A[x]/I[x] \cong \Phi(A[x]) = (A/I)[x]$.

QUESTION 4.5.11 Prove that $Z[x]/5Z[x] \cong Z_5[x]$.

Solution: Since 5Z is an ideal of Z, by the previous Question $Z[x]/5Z[x] \cong (Z/5Z)[x] \cong Z_5[x]$.

QUESTION 4.5.12 Let A be a commutative ring with 1. Prove that A[x] is never a field.

Solution: This is clear since $x \notin U(A[x])$, that is x does not have a multiplicative inverse in A[x].

QUESTION 4.5.13 Let A be a commutative ring with 1, and let I be a proper ideal of A. Prove that I[x] is never a maximal ideal of A[x].

Solution: By Question 4.5.10 we have $A[x]/I[x] \cong (A/I)[x]$. Since (A/I)[x] is never a field by the previous Question, we conclude that I[x] is never a maximal ideal of A[x] by Theorem 3.2.1.

QUESTION 4.5.14 Let A be a commutative ring with 1 and I be a prime ideal of A. Prove that I[x] is a prime ideal of A[x].

Solution: By Question 4.5.10 we have $A[x]/I[x] \cong (A/I)[x]$. Since A/I is an integral domain by Question 4.2.7, we conclude that A[x]/I[x] is an integral domain. Hence, by Question 4.2.7, we conclude that I[x] is a prime ideal of A[x].

QUESTION 4.5.15 Recall that R(x) denotes the field of quotients of R[x]. Prove that there is no element in R(x) whose square is x.

Solution: Suppose that there is an element $z \in R(x)$ such that $z^2 = x$. Write z = f(x)/g(x) for some $f(x) \in R[x]$ and $0 \neq g(x) \in R[x]$. Hence, $f^2(x) = xg^2(x)$. Hence, by Theorem 3.2.9 there is a negative number a such that $f(a) \neq 0$. Hence, $f^2(a) > 0$ and $g^2(a) \geq 0$. Thus, since a < 0 and $f^2(a) > 0$ and $g^2(a) \geq 0$, we conclude that $f^2(a) \neq ag^2(a)$. Thus, $f^2(x) \neq xg^2(x)$. Hence, there is no element in R(x) whose square is x.

QUESTION 4.5.16 Let M be a maximal ideal of a commutative ring A with identity. Set $P = \{f(x) \in A[x] \text{ such that } f(0) \in M\}$. Prove that P is a maximal ideal of A[x].

Solution: First, we show that P is an ideal of A[x]. Let $g_1(x), g_2(x) \in P$. Since $g_1(0) \in M$ and $g_2(0) \in M$ and M is an ideal of A, we have $g_1(0) - g_2(0) \in M$. Thus $g_1(x) - g_2(x) \in P$. Now let $d(x) \in A[x]$ and $g(x) \in P$. Since $h(0) \in A$ and $g(0) \in M$ and M is an ideal of A, we conclude that $h(0)g(0) \in M$. Thus, $h(x)g(x) \in P$. Now we show that P is maximal. Let $g(x) \in A[x] \setminus P$. We need to show that

P+g(x)A[x]=A[x]. It suffices to show that $1\in P+g(x)A[x]$. Since $g(x)\in A[x]\setminus P$, we have $g(0)\not\in M$. Since M is a maximal ideal of A and $g(0)\not\in M$, we have m+hg(0)=1 for some $h\in A$ and some $m\in M$. Now, let f(x)=1-hg(x). Since $f(0)=1-hg(0)=m\in M$, we conclude that $f(x)\in P$. Hence, hg(x)+f(x)=h(x)+1-hg(x)=1. Since $1\in P+g(x)A[x]$, we conclude that P+g(x)A[x]=A[x]. Thus, P is a maximal ideal of A[x].

QUESTION 4.5.17 Find a maximal ideal of $A = Z_{12}[x]$.

Solution: Since $3Z_{12}$ is a maximal ideal of Z_{12} by Question 4.4.31, we conclude that $P = \{f(x) \in Z_{12}[x] \text{ such that } f(0) \in 3Z_{12}\}$ is a maximal ideal of $Z_{12}[x]$ by Question 4.5.16.

QUESTION 4.5.18 Find a prime ideal of $A = Z_{16}[x]$ that is not a maximal ideal of A.

Solution: Let $I = 2Z_{16}$. Then I is a prime of Z_{16} . Hence, $I[x] = \{f(x) \in A : \text{the coefficients of } f(x) \text{ are in } I\}$. Hence, by Question 4.5.14 I[x] is a prime ideal of A. But by Question 4.5.13 I[x] is not a maximal ideal of A.

QUESTION 4.5.19 Let F be a field. Prove that every nonzero prime ideal in F[x] is maximal.

Solution: By Theorem 3.2.7, F[x] is a principal ideal domain. Hence, by Question 4.2.20 every nonzero prime ideal of F[x] is maximal.

QUESTION 4.5.20 Find all prime (maximal) ideals of $Z_2[x]/(x^3+x)$.

Solution: By the previous Question every nonzero prime ideal of $Z_2[x]$ is maximal. Let $\Phi: Z_2[x] \longrightarrow Z_2[x]/(x^3+x)$. Then Φ is a ring homomorphism from $Z_2[x]$ ONTO $Z_2[x]/(x^3+x)$ and $Ker(\Phi)=(x^3+x)$. By Question 4.4.15 the set S of all prime (maximal) ideals of $Z_2[x]/(x^3+x)$ is $\{\Phi(I): I \text{ is prime (maximal) ideal of } Z_2[x] \text{ with } Ker(\Phi)=(x^3+x)\subset I\}$. By Theorem 3.2.12 an ideal I is a maximal ideal of $Z_2[x]$ iff I=(p(x)) for some irreducible polynomial p(x) of $Z_2[x]$. Thus, write x^3+x as a product of irreducible polynomials. Hence, $x^3+x=x(x+1)^2$. Thus, I is a maximal (prime) ideal of $Z_2[x]$ such that $(x^3+x)\subset I$ iff either I=(x) or I=(x+1). Hence, $S=\{(x)/(x^3+x),(x+1)/(x^3+x)\}$ is the set of all prime (maximal) ideals of $Z_2[x]/(x^3+x)$.

QUESTION 4.5.21 Prove that $Z_3[x]/(x^2+2) \cong Z_3[x]/(x+1) \oplus Z_3[x]/(x+2)$.

Solution: First, observe that $x^2+2=(x+1)(x+2)$ in $Z_3[x]$. Since (x+1), (x+2) are irreducible over Z_3 , by Theorem 3.2.12 we conclude that (x+1), (x+2) are maximal ideals of $Z_3[x]$. Hence, by Question 4.4.29 we conclude that $Z_3[x]/(x+1)(x+2)=Z_3[x]/(x^2+2)\cong Z_3[x]/(x+1)\oplus Z_3[x]/(x+2)$.

QUESTION 4.5.22 Prove that $Z_2[x]/(x^2+x+1)$ is a field.

Solution: Let $f(x) = x^2 + x + 1$. Since f(0) = 1, and f(1) = 1, f(x) has no zeros (roots) in Z_2 . Thus, by Theorem 3.2.16 f(x) is irreducible over Z_2 . Hence, by Theorem 3.2.12 (f(x)) is a maximal ideal of $Z_2[x]$. Hence, by Theorem 3.2.1 $Z_2[x]/(x^2 + x + 1)$ is a field.

QUESTION 4.5.23 Find all prime (maximal) ideals of $Z_3[x] \oplus Z_5$.

Solution: Since Z_5 is a field, (0) is the only prime (maximal) ideal of Z_5 . By Theorem 3.2.12 and Question 4.5.19 a nonzero ideal I of $Z_3[x]$ is a maximal (prime) ideal of $Z_3[x]$ iff I = (p(x)) for some irreducible polynomial p(x) of $Z_3[x]$. Hence, by Question 4.2.34 $\{0\} \oplus Z_5$ is a prime ideal of $Z_3[x] \oplus Z_5$, and $(p(x)) \oplus Z_5$ where p(x) is an irreducible polynomial of $Z_3[x]$, and $Z_3[x] \oplus (0)$ are both prime and maximal ideals of $Z_3[x] \oplus Z_5$.

QUESTION 4.5.24 Find all prime (maximal) ideals of $Z_5[x]/((x+2)^3(x+1)^5) \oplus Z_{12}$.

Solution: Let $I = ((x+2)^3(x+1)^5)$). By an argument similar to that in Question 4.5.20, we conclude that (x+2)/I and (x+1)/I are the prime (maximal) ideals of $Z_5[x]/I$. Also, by Question 4.4.16 we conclude that $2Z_{12}$ and $3Z_{12}$ are the prime (maximal) ideals of Z_{12} . Hence, by Question 4.2.34 $(x+2)/I \oplus Z_{12}$, $(x+1)/I \oplus Z_{12}$, $Z_5[x]/I \oplus 2Z_{12}$, and $Z_5[x]/I \oplus 3Z_{12}$ are the prime (maximal) ideals of $Z_5[x]/I \oplus Z_{12}$.

QUESTION 4.5.25 Prove $Z[x]/((x-2)^3(x+1)^5) \cong Z[x]/((x-2)^3) \oplus Z[x]/((x+1)^5)$.

Solution: Let $I = ((x-2)^3(x+1)^5)$, and $f(x) = (x-2)^3$, $g(x) = (x+1)^5$. Since gcd(f(x), g(x)) = 1, by Theorem 3.2.21 we conclude that (f(x)) + (g(x)) = Z[x]. Hence, by Question 4.4.26 we have $Z[x]/I \cong Z[x]((x-2)^3) \oplus Z[x]/((x+1)^5)$.

4.6 Factorization in Polynomial Rings

QUESTION 4.6.1 Prove that $f(x) = x^4 + x + 1$ is irreducible over Z_2 .

Solution: Since f(0) = 1 and f(1) = 1, f(x) has no zeros (roots) in Z_2 . Thus, f(x) does not have linear factors. Hence, if f(x) is reducible, then f(x) is a product of two irreducible polynomials of degree 2 over Z_2 . But $x^2 + x + 1$ is the only irreducible polynomial of degree 2 over Z_2 and it is easy to check that $f(x) = x^4 + x + 1 \neq (x^2 + x + 1)^2$. Hence, f(x) is irreducible over Z_2 .

QUESTION 4.6.2 Prove that $f(x) = 7x^4 + 19x + 33$ is irreducible over Q.

Solution: Let $g(x) = f(x) \mod 2$. Then $g(x) = x^4 + x + 1 \in \mathbb{Z}_2[x]$. Since g(x) is irreducible over \mathbb{Z}_2 by the previous Question and deg(f(x)) = deg((g(x))), by Theorem 3.2.11 we conclude that f(x) is irreducible over Q.

QUESTION 4.6.3 Prove that $f(x) = x^{15} + 2/5x^{13} + 4/3x - 2$ is irreducible over Q.

Solution: Let $g(x) = 15x^{15} + 6x^{13} + 20x - 30$. Since f(x) = g(x)/15 (are associates over Q), we conclude that f(x) is irreducible over Q iff g(x) is irreducible over Q. Now, since $2 \not| 15, 2 \mid 6, 2 \mid 20, 2 \mid -30$, and $4 \not| -30$, by Theorem 3.2.17 we conclude that g(x) is irreducible over Q. Hence, f(x) is irreducible over Q.

QUESTION 4.6.4 Prove that $f(x) = x^3 - 5x^2 + 2x + 1$ is irreducible over Q.

Solution: Since f(1) = -1 and f(-1) = -7, by Theorem 3.2.16 f(x) has no zeros (roots) in Q. Thus, f(x) is irreducible over Q by Theorem 3.2.16.

QUESTION 4.6.5 Prove that $Q[x]/(6x^5 + 10x^3 - 10)$ is a field.

Solution: Let $f(x) = 6x^5 + 10x^3 - 10$. Since $5 \not| 6, 5 \mid 10, 5 \mid -10$, and $25 \not| -10$, by Theorem 3.2.17 we conclude that f(x) is irreducible over Q. Hence, by Theorem 3.2.12 (f(x)) is a maximal ideal of Q[x]. Thus, by Theorem 3.2.1 Q[x]/(f(x)) is a field.

QUESTION 4.6.6 Let p be a prime positive integer. Prove that $f(x) = x^{p-1} + x^{p-2} + ... + x + 1$ is irreducible over Q.

Solution: It is easy to check that a polynomial g(x) is irreducible over Q iff g(x+a) is irreducible over Q for some $a \in Z$. Now, observe that $f(x) = (x^p - 1)/(x - 1)$. Hence, $f(x+1) = ((x+1)^p - 1/x)$. By the BINOMIAL EXPANSION THEOREM, we have $f(x+1) = (x^p + pc_{p-1}x^{p-1} + pc_{p-2}x^{p-2} + ... + px)/x = x^{p-1} + pc_{p-1}x^{p-2} + ... + p$. Since $p \mid pc_{p-1}, p \mid pc_{p-2}, ..., p \mid p$, and $p^2 \not\mid p$, by Theorem 3.2.17 we conclude that f(x+1) is irreducible over Q. Hence, f(x) is irreducible over Q.

QUESTION 4.6.7 Let p be a prime integer geq3. Prove that $f(x) = x^{p-1} - x^{p-2} + x^{p-3} - \dots - x + 1$ is irreducible over Q.

Solution: Observe that $f(x) = (x^p + 1)/(x + 1)$. Now, by an argument similar to that one given in the previous Question we conclude that f(x - 1) is irreducible over Q. Hence, f(x) is irreducible over Q.

QUESTION 4.6.8 For every positive integer n, prove that there is a polynomial in Z[x] of degree n that is irreducible over Q.

Solution: Let n be a positive integer. Then by Theorem 3.2.17 we conclude that $f(x) = x^n + 3$ is irreducible over Q.

QUESTION 4.6.9 Prove that $f(x) = x^4 + 1$ is reducible over Z_p for every prime p.

Solution: Let p=2. Since f(1)=0, we conclude that f(x) is reducible over Z_2 . Let p=3. Then it is easy to check that $f(x)=x^4+1=(x^2+x+2)(x^2+2x+2)$. Now, let p>3. Then let $H=\{a^2:a\in Z_p^*\}$. Suppose that $p-1=-1\in H$. Hence, $a^2=p-1$ for some $a\in Z_p^*$. Thus, $x^4+1=(x^2+a)(x^2+(p-a))=(x^2+a)(x^2-a)$. Suppose that $p-1=-1\not\in H$. By Question 2.7.58 $2\in H$ or $p-2=-2\in H$. Suppose that $2\in H$. Then $b^2=2$ for some $b\in Z_p^*$. Hence, $x^4+1=(x^2+bx+1)(x^2+(p-a)x+1)=(x^2+bx+1)(x^2-bx+1)$. Finally, suppose that $-2\in H$. Hence, $c^2=-2=p-2$ for some $c\in Z_p^*$. Thus, $x^4+1=(x^2+cx-1)(x^2-cx-1)$. Hence, x^4+1 is reducible over Z_p for every prime integer p.

QUESTION 4.6.10 Let F be a field and $f(x) \in F[x]$ such that f(x) is reducible over F and $deg(f(x)) \ge 2$. Prove that $f(x^n)$ is reducible over F for every positive integer n.

Solution: Since f(x) is reducible over F, we have f(x) = p(x)h(x) such that $deg(p(x)) \ge 1$ and $deg(h(x)) \ge 1$. Hence, $f(x^n) = p(x^n)h(x^n)$ is reducible over F.

QUESTION 4.6.11 Prove that $f_1(x) = x^8 + 1$, $f_2(x) = x^{12} + 1$, and $f_3(x) = x^{20} + 1$ are reducible over Z_p for every prime p.

Solution: By Question 4.6.9, $f(x) = x^4 + 1$ is reducible over Z_p for every prime p. Since $f_1(x) = f(x^2)$, $f_2(x) = f(x^3)$, and $f_3(x) = f(x^5)$ and f(x) is reducible over Z_p for every prime p, by the previous Question we conclude that $f_1(x)$, $f_2(x)$, $f_3(x)$ are reducible over Z_p for every prime p.

QUESTION 4.6.12 (Compare with Question 4.6.10) Let F be a field and $f(x) \in F[x]$ such that f(x) is irreducible over F. Is $f(x^2)$ irreducible over F?

Solution: Not necessarily. For, let $F = Z_3$, and $f(x) = x^2 + 1 \in Z_3[x]$. Since f(x) has no roots (zeros) in Z_3 , by Theorem 3.2.16 f(x) is irreducible over Z_3 . But by Question 4.6.9 $f(x^2) = x^4 + 1$ is reducible over Z_3 .

QUESTION 4.6.13 Let F be a field and $f(x) \in F[x]$ such that $deg(f(x)) \geq 2$ and $f(x^n)$ is irreducible over F for some positive integer n. Prove that f(x) is irreducible over F.

Solution: Deny. Then f(x) = p(x)h(x) such that $deg(f(x)) \ge 1$ and $deg(h(x)) \ge 1$. Hence, $f(x^n) = p(x^n)h(x^n)$ is reducible over F, a contradiction. Hence, f(x) is irreducible over F.

QUESTION 4.6.14 Let U be the Abelian group of all units of a finite field F. Show that U is cyclic.

Let n = Ord(U). Suppose that U is not cyclic. Let $g \in U$ of maximal order m. Hence $1 \leq m < n$. Thus for every $d \in U$ we have Ord(d) divides m by Question 2.10.11. Now let $f(x) = x^m - 1 \in F[x]$. Hence $f(a) = a^m - 1 = 1 - 1 = 0$. Thus f(x) has n distinct roots which is impossible by Theorem 3.2.9 because deg(f(x)) = m and m < n. Thus U is cyclic.

QUESTION 4.6.15 Let p be a prime number, and let R be a commutative ring with 1 that has exactly p elements. Show that R is a field and R is field-isomorphic to Z_p .

Solution: Let M be a maximal ideal of R. Since M is a subgroup (under addition) of R, we conclude that Ord(M) = p OR 1. Since $M \neq R$, Ord(M) = 1. Hence $M = \{0\}$. Thus $R \cong R/\{0\}$ is a field by Theorem 3.2.1. By Question 4.6.14, we conclude that the Abelian group U of all units of R is a cyclic group. Hence Ord(U) = p - 1. Now let Φ from R into Z_p such that $\Phi(c^m) = h^m$ and $\Phi(0) = 0$, where c is a generator of U and h is a generator of U(p). Now let a, b be a nonzero elements of R. Then $a = c^k, b = c^n$. Hence $\Phi(ab) = \Phi(c^{k+n}) = h^{k+n} = h^k h^n = \Phi(a)\Phi(b)$. Thus $U \cong U(p)$ under multiplication. If a + b = 0, then $b = -c^k$, and hence $\Phi(a + b) = h^k - c^k = 0$. Hence assume that $a + b \neq 0$. Then $a + b \in U$, and hence $a + b = c^m$. Thus $\Phi(a + b) = \Phi(c^m) = h^m = h^k + h^n = \Phi(a) + \Phi(b)$. It is clear that Φ is one-to-one, and thus Φ is ONTO because $Ord(R) = Ord(Z_p)$. Hence $R \cong Z_p$.

4.7 Unique Factorization Domains

Recall that an integral domain R is called a Euclidean domain if there is a function γ from the nonzero elements of R to the nonnegative integers such that

- 1) $\gamma(a) \leq \gamma(ab)$ for every nonzero $a, b \in R$; and
- 2) if $a, b \in R$, $b \neq 0$, then there exist elements q, r inD such that a = bq + r, where r = 0 or $\gamma(r) < \gamma(b)$.

QUESTION 4.7.1 Show that $\mathcal{Z}[\sqrt{-3}] = \{a + b\sqrt{-3} : a, b \in \mathcal{Z}\}$ is not a unique factorization domain, and thus it is not a Euclidean domain.

Solution: We will factor 4 in two different ways: 4 = (2)(2) and $4 = (1 + \sqrt{-3})(1 - \sqrt{-3})$. It is clear that 2, $(1 + \sqrt{-3})$, and $(1 - \sqrt{-3})$ are distinct nonassociate irreducible elements of $\mathbb{Z}[\sqrt{-3}]$

QUESTION 4.7.2 let R be an Euclidean domain and γ be the associated function. Prove that an element $u \in R$ is a unit in R if and only if $\gamma(u) = \gamma(1)$.

Solution: Suppose that u is a unit of R. Then $1 = uu^{-1}$. Hence $\gamma(u) \leq \gamma(uu^{-1}) = \gamma(1)$; also $\gamma(1) \leq \gamma(1u) = \gamma(u)$. Since $\gamma(u) \leq \gamma(1)$ and $\gamma(1) \leq \gamma(u)$, we conclude that $\gamma(1) = \gamma(u)$. Conversely, suppose that $\gamma(u) = \gamma(1)$. Since R is Euclidean, there exists $q, r \in R$ such that 1 = uq + r. We will show that r = 0. Deny. Hence $r \neq 0$, and

thus $\gamma(r) < \gamma(u)$. Since $\gamma(u) = \gamma(1)$, we conclude that $\gamma(r) < \gamma(1)$. But $\gamma(1) \le \gamma(1r) = \gamma(r)$, a contradiction. Thus r = 0, 1 = uq, and thus u is a unit of R.

QUESTION 4.7.3 Two elements a, b in a commutative ring R are called associate if a = ub for some unit u of R. Let R be an Euclidean domain and γ be the associated function. Suppose that a, b are nonzero elements of R such that a, b are associate. Show that $\gamma(a) = \gamma(b)$.

Solution: Since a, b are associate, we have b = au for some unit u of R. Thus $\gamma(a) \leq \gamma(au) = \gamma(b)$. Since b = au, $a = bu^{-1}$. Thus $\gamma(b) \leq \gamma(bu^{-1}) = \gamma(a)$. Since $\gamma(a) \leq \gamma(b)$ and $\gamma(b) \leq \gamma(a)$, we conclude that $\gamma(a) = \gamma(b)$.

QUESTION 4.7.4 Let R be an Euclidean domain. Show that every prime ideal of R is maximal.

Solution: By Theorem 3.2.25, R is a principal ideal domain. Thus every prime ideal of R is maximal by Question 4.2.20.

QUESTION 4.7.5 Show that every prime element of an integral domain R is irreducible.

Solution: Let p be a prime element of R and suppose that p=mn. Then p divides n or p divides m. We may assume that p divides m. Thus m=up for some $u \in R$. Hence p=nm=nup. Thus nu=1 (cancellation is legal here since R is an integral domain.) Hence n is a unit of R. Thus p is an irreducible element of R.

QUESTION 4.7.6 Give an example of an irreducible element in an integral domain R which is not prime.

Solution: Let $R = \mathcal{Q}[x^2, x^3] = \{f(x) \in \mathcal{Q}[x] : f(x) \text{ does not have an x-term }\}$. Then it is easy to see that R is an integral domain. Now x^2 is irreducible since $x \notin R$. Now x^2 divides $x^6 = x^3x^3$ in R. But x^2 does not divide x^3 because again $x \notin R$.

Another Solution: Let R be the ring in Question 4.7.1. We know that 4 = (2)(2) and $4 = (1 + \sqrt{-3})(1 - \sqrt{-3})$. Now by Question 4.7.1 2 and $(1 + \sqrt{-3})$ are irreducible in R. Since $(1 + \sqrt{-3})$ divides 4 = (2)(2) and clearly $(1 + \sqrt{-3})$ does not divide 2 in R, we conclude that $(1 + \sqrt{-3})$ is an irreducible element of R which is not prime.

QUESTION 4.7.7 Let R be a unique factorization domain. Show that every irreducible element of R is prime.

Let x be an irreducible element of R, and suppose that x divides yz for some $y, z \in R$. Since R is a unique factorization domain, $y = y_1y_2...y_m$ and $z = z_1z_2...z_n$ where the y_i 's and the z_i 's are irreducible elements of R. Since x divides yz, we have $yz = (y_1y_2...y_m)(z_1z_2...z_n) = xd$ for some $d \in R$. Since x is irreducible, we conclude that x is associate to one of the y_i 's or to one of the z_i 's. In the first case, we conclude that x divides y; and in the second case, we conclude that y divides y. Hence y is prime.

QUESTION 4.7.8 Let $d \in \mathcal{Z}$ such that $\sqrt{d} \notin \mathcal{Z}$. Show that $\mathcal{Z}[x]/(x^2-d)$ is ring-isomorphic to $\mathcal{Z}[\sqrt{d}]$.

Solution: Let Φ be a map from $\mathcal{Z}[x]$ into $\mathcal{Z}[\sqrt{d}]$ such that $\Phi(f(x)) = f(\sqrt{d})$. It is easily verified that Φ is a ring homomorphism from $\mathcal{Z}[x]$ ONTO $\mathcal{Z}[\sqrt{d}]$ and $Ker(\Phi) = (x^2 - d)$. Thus $\mathcal{Z}[x]/(x^2 - d)$ is ringisomorphic to $\mathcal{Z}[\sqrt{d}]$.

QUESTION 4.7.9 Let R be a unique factorization domain and P be a prime ideal of R. Is R/P a unique factorization domain?

Solution: NO. let $R = \mathcal{Z}[x]$ is a unique factorization domain, and let $P = (x^2 + 3)$. Then by Question 4.7.8 $R/P \cong \mathcal{Z}[\sqrt{-3}]$. But $\mathcal{Z}[\sqrt{-3}]$ is not a unique factorization domain by Theorem 3.2.23. Hence R/P is not a unique factorization domain.

QUESTION 4.7.10 Give an example of a unique factorization domain such that $gcd(x,y) \neq d_1x + d_2y$ for every $d_1, d_2 \in R$.

Solution: Let $R = \mathcal{Z}[x]$. Then R is a unique factorization domain and gcd(x,y) exists for every $x,y \in R$ by Theorem 3.2.24. Now gcd(2,x) = 1, however there is no $d_1, d_2 \in R$ such that $1 = gcd(2,x) = d_12 + d_2x$ (observe that R is not a principal ideal domain).

4.8 Gaussian Ring : Z[i]

QUESTION 4.8.1 Show that $\mathcal{Z}[i]$ is a unique factorization domaion.

Solution: By Theorem 3.2.26 R is an Euclidean domain and hence a principal ideal domain. Thus $\mathcal{Z}[i]$ is a unique factorization domain by Theorems 3.2.25 and 3.2.22.

QUESTION 4.8.2 Show that $U = \{1, -1, i, -i\}$ is the set of all units of $\mathcal{Z}[i]$.

Solution: Suppose that a+bi is a unit. Then (a+bi)(c+di)=1 for some $c+di \in \mathcal{Z}[i]$. Thus (a-bi)(c-di)=1. Thus a-bi is a unit. Hence $(a+bi)(a-bi)=a^2+b^2$ is a unit (note that a product of two units is a unit). Since a^2+b^2 is a unit in $\mathcal{Z}[i]$, we conclude that a^2+b^2 is a unit in \mathcal{Z} . Thus $a^2+b^2=1$ or -1. It is impossible that $a^2+b^2=-1$. Thus $a^2+b^2=1$. Hence a=1,b=0 OR a=0,b=1 or a=-1,b=0 OR a=0,b=-1. Thus the set of all units of $\mathcal{Z}[i]$ is $\{1,-1,i,-i\}$.

QUESTION 4.8.3 Show that an element $x \in \mathcal{Z}[i]$ is prime if and only x is irreducible.

Solution: Since $\mathcal{Z}[i]$ is a unique factorization domain by Question 4.8.1, the claim is clear by Questions 4.7.5 and 4.7.7.

QUESTION 4.8.4 Let I = (a + bi) be the ideal of $\mathcal{Z}[i]$ generated by a + bi where a + bi is a nonzero nonunit element of $\mathcal{Z}[i]$. Show that the characteristic of $D = \mathcal{Z}[i]/(a + bi)$ divides $a^2 + b^2$.

Solution First observe that $(a+bi)(a-bi)=a^2+b^2\in(a+bi)$. Hence $(a^2+b^2)[1+(a+bi)]=0$ in D. Now Char(D)=Ord(1+(a+bi)) under addition. Thus Char(D)=Ord(1+(a+bi)) divides a^2+b^2 by Question 2.1.20.

QUESTION 4.8.5 Let $a+bi \in \mathcal{Z}[i]$, where $a \neq 0$, $b \neq 0$, gcd(a,b) = 1, and let I be the ideal of $\mathcal{Z}[i]$ generated by a+bi. Set $D = \mathcal{Z}[i]/I$. Show that $(a+bi)(a-bi) = a^2+b^2$ is the smallest positive integer that is contained in I, and hence $Char(D) = a^2 + b^2$. In particular, if $n \in \mathcal{Z}$ and $n \in I$, then $n = k(a+bi)(a-bi) = k(a^2+b^2)$ for some $k \in \mathcal{Z}$.

Solution: Let $n \in \mathbb{Z}$ such that $n \in \mathbb{I}$. Then n = (a+bi)(c+di) = ac-bd+(bc+da)i. Thus bc+da=0, and hence bc=-da. Since gcd(a,b)=1 and a divides bc, we conclude that a divides c by Theorem 1.2.5. Thus d=-b(c/a). By a similar argument, we conclude b divides d and

thus c=(-d/b)a. Now bc=-da implies ba(-d/b)=ba(c/a). Hence c/a=-d/b. Let k=c/a=-d/b. Then d=-bk, and c=ak. Thus $n=(a+bi)(c+di)=(a+bi)(ak-bki)=(a+bi)(a-bi)k=(a^2+b^2)k$. Hence when k=1 $(a+bi)(a-bi)=a^2+b^2$ is the smallest positive integer that is contained in I. Thus $Ord(1+I)=a^2+b^2$ (under addition). Hence $Char(D)=a^2+b^2$.

QUESTION 4.8.6 Let $a + bi \in \mathcal{Z}[i]$, where $a \neq 0$, $b \neq 0$, $m = \gcd(a,b)$, and let I be the ideal of $\mathcal{Z}[i]$ generated by a + bi. Set $D = \mathcal{Z}[i]/I$. Show that $m(a/m + (b/m)i)(a/m - (b/m)i) = (a^2 + b^2)/m$ is the smallest positive integer that is contained in I, and hence $Char(D) = (a^2 + b^2)/m$. In particular, if $n \in \mathcal{Z}$ and $n \in I$, then $n = km(a/m + (b/m)i)(a/m - (b/m)i) = k(a^2 + b^2)/m$ for some $k \in \mathcal{Z}$.

Solution: Let $n \in \mathbb{Z}$ such that $n \in I$. Since gcd(a/m, b/m) = 1 by Theorem 1.2.4, we conclude that $n = km(a/m + (b/m)i)(a/m - (b/m)i) = k(a^2 + b^2)/m$ for some $k \in \mathbb{Z}$. Thus when k = 1 $m(a/m + (b/m)i)(a/m - (b/m)i) = (a^2 + b^2)/m$ is the smallest positive integer that is contained in I. Thus $Ord(1+I) = (a^2 + b^2)/m$ (under addition). Hence $Char(D) = (a^2 + b^2)/m$.

QUESTION 4.8.7 Let I=(a+bi) be the ideal of $\mathcal{Z}[i]$ generated by a+bi where a+bi is a nonzero nonunit element of $\mathcal{Z}[i]$, and let $D=\mathcal{Z}[i]/I$. Show that D is a finite ring. In particular, show that if x in D, then x=c+di, where $0 \le c, d < a^2+b^2$, and hence $1 \le Ord(D) \le (a^2+b^2)^2$.

Solution: Let $m = a^2 + b^2$. Hence $m = (a + bi)(a - bi) \in I$. Now let $c + di + I \in D$. Then c + di + I = c(modm) + d(modm) + I because $m \in I$. Now $0 \le c(modm) < m$ and $0 \le d(modm) < m$. Thus D has at most m^2 distinct elements. Hence D is a finite ring.

QUESTION 4.8.8 What is the Characteristic of $D = \mathcal{Z}[i]/I$, where I is the ideal generated by 1 + 2i.

Solution: let $m = 1^2 + 2^2 = 5 = (1+2i)(1-2i) \in I$. Hence Char(D) divides 5 by Question 4.8.4. Thus we conclude that Char(D) = 1 or 5. Since 1 $\ln I$, we conclude that Char(D) = Ord(1+I) = 5.

QUESTION 4.8.9 Let I = (a + bi) be the ideal of $\mathcal{Z}[i]$ generated by a + bi where a + bi is a nonzero nonunit element of $\mathcal{Z}[i]$. Show that I is a maximal ideal of $\mathcal{Z}[i]$ if and only if a + bi is an irreducible (prime) element of $\mathcal{Z}[i]$.

Solution: Suppose that I is a maximal ideal of $\mathcal{Z}[i]$. Then $\mathcal{Z}[i]/I$ is a field by Theorem 3.2.1, and hence $\mathcal{Z}[i]/I$ is an integral domain. Thus I is a prime ideal of $\mathcal{Z}[i]$ by Question 4.2.7. Hence a+bi is prime and thus irreducible by Question 4.7.5. Conversely, suppose that a+bi is irreducible. Thus a+bi is prime by Question 4.7.7. Hence I is a prime ideal, and thus $\mathcal{Z}[i]/I$ is an integeral domain by Question 4.2.7. Hence $\mathcal{Z}[i]/I$ is a finite integral domain by Question 4.8.7. Thus $\mathcal{Z}[i]/I$ is a field by Question 4.3.1. Hence I is a maximal ideal of $\mathcal{Z}[i]$ by Theorem 3.2.1.

QUESTION 4.8.10 Let $a + bi \in \mathcal{Z}[i]$ such that $a^2 + p^2 = p$ where p is a prime number, and let I be the ideal of $\mathcal{Z}[i]$ generated by a + bi. Show that a + bi is an irreducible (prime) element of $\mathcal{Z}[i]$ and $D = \mathcal{Z}[i]/I$ is a finite field such that $D \cong \mathbb{Z}_p$ (as fields).

Solution: We only need to show that D is a field. For suppose that Dis a field. Then I is a maximal ideal of $\mathcal{Z}[i]$ and hence I is prime. Thus a+bi is a prime element of $\mathcal{Z}[i]$, and hence a+bi is an irreducible element by Question 4.7.5. First observe that gcd(a,b) = 1 because $p = a^2 + b^2$ is prime, and thus by Question 4.8.5 Char(D) = p = Ord(1+I) (under addition), and hence p is the smallest positive integer that is contained in I. Since $a^2 + b^2 = p$ and p is prime, we conclude that $a \neq 0$ and $b \neq 0$. Since $1 \leq b < p$ and p is prime, we conclude that b is a unit in Z_p . Thus there is a $d \in Z_p$ such that $d \neq 0$ and bd = 1in Z_p , i.e., there is a positive integer q such that bd = pq + 1. Now $(a+bi)d = ad + bdi = ad + (pq+1)i \in I$. Since $p \in I$, $pqi \in I$. Thus $ad + (pq + 1)i - pqi = ad + i \in I$. Thus -ad + I = i + I (in D). Let $1 \le c < p$ such that c = -ad(modp). Since $p \in I$, we conclude that c+I=-ad+I=i+I. Now let $x\in D$. Then x=h+fi+I where $0 \le h, f < p$ by Question 4.8.7. Since c + I = i + I, we conclude that h + fi + I = h + fc + I (we just substituted c + I for i + I). Thus x = h + fc + I = (h + fc)(modp) + I. Since p is the smallest positive integer that is contained in I, we conclude that 0+I, 1+I, ..., p-1+Iare the distinct elements of D. Hence D has exactly p elements. Thus D is a field and D is field-isomorphic to Z_p by Question 4.6.15.

QUESTION 4.8.11 Let $D = \mathcal{Z}[i]/I$, where I is the ideal generated by 1 + 2i. Show that D is a field and $D \cong Z_5$ (as fields).

Solution: Since $1^2 + 2^2 = 5$ is a prime number, by Question 4.8.10 we conclude that D is a field and $D \cong Z_5$ as fields.

QUESTION 4.8.12 Let $n \in \mathcal{Z}$, and let I be the ideal of $\mathcal{Z}[i]$ generated by n. Show that $D = \mathcal{Z}[i]/I$ is ring-isomorphic to $\mathcal{Z}_n + \mathcal{Z}_n i = \{a + bi : a, b \in \mathcal{Z}_n\}$.

Solution: Let $x \in D$. Then x = a + bi + I, where $0 \le a, b < n$ by Question 4.8.7. Since Char(D) = n, we conclude that n is the smallest positive integer that is contained in I, and hence $\{a+bi+I: 0 \le a, b < n\}$ is the set of all distinct elements of D. Let Φ from D ONTO $\mathcal{Z}_n + \mathcal{Z}_n i$ such that $\Phi(a+bi+I) = a(modn) + b(modn)i$. It is now clear to see that Φ is a ring-isomorphism.

QUESTION 4.8.13 Let a + bi be an irreducible (prime) element of $\mathcal{Z}[i]$, where $a \neq 0$ and $b \neq 0$. Show that $a^2 + b^2$ is a prime number.

Solution: Since a+bi is irreducible, we conclude that gcd(a,b)=1. For if $gcd(a,b)\neq 1$, then a+bi=gcd(a,b)(a/gcd(a,b)+(b/gcd(a,b))i) and neither gcd(a,b) nor ((a/gcd(a,b)+(b/gcd(a,b))i) is a unit by Question 4.8.2, a contradiction. Since gcd(a,b)=1, we conclude that a^2+b^2 is the smallest positive integer that is contained in the ideal I of $\mathcal{Z}[i]$ generated by a+bi by Question 4.8.5. Set $D=\mathcal{Z}[i]/I$. Since a+bi is irreducible(prime), I is a maximal ideal of $\mathcal{Z}[i]$ by Question 4.8.9, and hence D is a finite field by Theorem 3.2.1 and Question 4.8.7. Hence Char(D) is a prime number. But $Char(D)=a^2+b^2$ by Question 4.8.5. Thus a^2+b^2 is a prime number.

QUESTION 4.8.14 Let p be a prime number. Show that $F = \mathcal{Z}_p[x]/(x^2+1)$ is ring-isomorphic to $\mathcal{Z}_p + \mathcal{Z}_pi$ (and hence observe that Observe that $F = \mathcal{Z}_p[x]/(x^2+1)$ is ring-isomorphic to $\mathcal{Z}[i]/(p)$ by Question 4.8.12).

Solution: Let Φ be a map from $\mathcal{Z}_p[x]$ into $\mathcal{Z}_p + \mathcal{Z}_p i$ defined by $\Phi(f(x)) = f(i)$. It is easily verified that Φ is a ring homomorphism from $\mathcal{Z}_p[x]$ ONTO $\mathcal{Z}_p + \mathcal{Z}_p i$. Now $Ker(\Phi)$ is a principal ideal of $\mathcal{Z}_p[i]$ by Theorem 3.2.6 and hence $Ker(\Phi) = (x^2 + 1)$. Thus $F = \mathcal{Z}_p[x]/(x^2 + 1)$ is ring-isomorphic to $\mathcal{Z}_p + \mathcal{Z}_p i$.

QUESTION 4.8.15 Let p be a prime number. Show that $\mathcal{Z}_p + \mathcal{Z}_p i$ is a field if and only if p is and odd prime number and 4 divides p-3.

Solution: If p = 2, then (1+i)(1+i) = 0 in $\mathcal{Z}_2 + \mathcal{Z}_2 i$, and hence $\mathcal{Z}_2 + \mathcal{Z}_2 i$ is not a field. Hence suppose that p is an odd prime number.

Observe that we must have either 4 divides p-1 or 4 divides p-3 (because p is an odd prime number). By Question 4.8.14, we conclude that $\mathcal{Z}_p + \mathcal{Z}_p i$ is a field if and only if $F = \mathcal{Z}_p[x]/(x^2+1)$ is a field. Now F is a field if and only if x^2+1 is irreducible in $\mathcal{Z}_p[x]$ by Theorem 3.2.12 if and only x^2+1 has no roots in \mathcal{Z}_p . Let $a \in \mathcal{Z}_p$ be a root of x^2+1 . Then $a \in U(p)$, and $a^2=-1$. Thus $a^4=1$ and Ord(a)=4. Since Ord(U(p))=p-1 we conclude that 4 divides p-1. Also suppose that 4 divides p-1. Then there is an element $b \in U(P)$ such that Ord(b)=4 (because U(p) is cyclic). Hence $b^2=-1$ and thus b is a root of x^2+1 . Hence x^2+1 has a root in \mathcal{Z}_p if and only if 4 divides p-3, and hence x^2+1 is irreducible in $\mathcal{Z}_p[x]$ if and only if 4 divides p-3. Thus $F=\mathcal{Z}_p[x]/(x^2+1)$ is a field if and only if 4 divides p-3. Since $F=\mathcal{Z}_p[x]/(x^2+1)$ is ring-isomorphic to $\mathcal{Z}_p+\mathcal{Z}_p i$ by Question 4.8.14, we conclude that $\mathcal{Z}_p+\mathcal{Z}_p i$ is a field if and only if 4 divides p-3.

QUESTION 4.8.16 Let $p \in \mathcal{Z}$. Show that p is irreducible in $\mathcal{Z}[i]$ if and only if p is an odd prime number and 4 divides p-3.

Solution: First observe that if p is not a prime number of \mathcal{Z} , then p is reducible over \mathcal{Z} and hence reducible over $\mathcal{Z}[i]$. Suppose that p is irreducible in $\mathcal{Z}[i]$. Then $\mathcal{Z}[i]/(p)$ is a field by Question 4.8.9 (because (p) is a maximal ideal of $\mathcal{Z}[i]$). Hence $\mathcal{Z}_p + \mathcal{Z}_p i$ is a field by Question 4.8.12. Thus p is an odd prime number and 4 divides p-3 by Question 4.8.15. Conversely, suppose that p is an odd prime number and 4 divides p-3. Then by Question 4.8.15 we conclude that $\mathcal{Z}_p + \mathcal{Z}_p i$ is a field. Thus $\mathcal{Z}[i]/(p)$ is a field by Question 4.8.12. Hence (p) is a maximal ideal of $\mathcal{Z}[i]$. Thus p is an irreducible element of $\mathcal{Z}[i]$ by Question 4.8.9.

QUESTION 4.8.17 Let x be a nonzero nonunit element in $\mathcal{Z}[i]$. Show that x is an irreducible element of $\mathcal{Z}[i]$ if and only if (Up to associate) either x is an odd prime number of \mathcal{Z} and 4 divides x-3 OR x=a+bi, where $a\neq 0, b\neq 0$, and a^2+b^2 is a prime number of \mathcal{Z} .

Solution: The proof is clear by Questions 4.8.10, 4.8.13, and 4.8.16.

QUESTION 4.8.18 Show that $\mathcal{Z}[i]/(7)$ is a field with 49 elements.

Solution: Since 4 divides 7-3, we conclude that $F = \mathcal{Z}_7 + \mathcal{Z}_7 i$ is a field by Question 4.8.15. It is clear that F has 49 elements. Now by Question 4.8.12 we have $\mathcal{Z}[i]/(7)$ is ring-isomorphic to $F = \mathcal{Z}_7 + \mathcal{Z}_7 i$. Thus $\mathcal{Z}[i]/(7)$ is a field with 49 elements.

QUESTION 4.8.19 What is the Char(D), where $D = \mathcal{Z}[i]/(2+4i)$. Show that D is ring-isomorphic to $\mathcal{Z}_2 + \mathcal{Z}_2 i \oplus \mathcal{Z}_5$.

Write 2+4i=2(1+2i), where $2=\gcd(2,4)$. Thus $Char(D)=(2^2+4^2)/2=10$ by Question 4.8.6. Since $\gcd(2,1+2i)=1$ and $\mathcal{Z}[i]$ is a principal ideal domain, there are a $d_1,d_2\in\mathcal{Z}[i]$ such that $d_1(2)+d_2(1+2i)=1$ by Theorem 3.2.24. Let I be the ideal of $\mathcal{Z}[i]$ generated by 2 and J be the ideal of $\mathcal{Z}[i]$ generated by 1+2i. Thus $I+J=\mathcal{Z}[i]$. Hence by Question 4.4.26 $\mathcal{Z}[i]/IJ=\mathcal{Z}[i]/(2+4i)=\mathcal{Z}[i]/I\oplus\mathcal{Z}[i]/J=\mathcal{Z}[i]/(2)\oplus\mathcal{Z}[i]/(1+2i)$. But by Question 4.8.12 we have $\mathcal{Z}[i]/(2)$ is ring-isomorphic to $\mathcal{Z}_2+\mathcal{Z}_2i$ and since $1^2+2^2=5$ by Question 4.8.10 we have $\mathcal{Z}[i]/(1+2i)$ is ring-isomorphic to \mathcal{Z}_5 . Thus $D=\mathcal{Z}[i]/(2+4i)$ is ring-isomorphic to $\mathcal{Z}_2+\mathcal{Z}_2i\oplus\mathcal{Z}_5$

QUESTION 4.8.20 Note that $5 = (2+i)(2-i) = (1+2i)(1-2i) \in \mathcal{Z}[i]$. Does this contradict the fact that $\mathcal{Z}[i]$ is a unique factorization domain.

Solution: No. Observe that (2+i)=i(1-2i) and i is a unit in $\mathcal{Z}[i]$ by Question 4.8.2. Hence 2+i and 1-2i are associate. Also, (2-i)=-i(1+2i) and -i is a unit in $\mathcal{Z}[i]$. Thus 2-i and 1+2i are associate.

QUESTION 4.8.21 Write 3 + 4i, 6 + 3i, 35, 4 + 6i as a product of irreducible elements in $\mathcal{Z}[i]$.

Solution. Here is the idea for solving questions of this type. Assume that $a \neq 0$ and $b \neq 0$, write $a+bi=\gcd(a,b)(a/\gcd(a,b)+(b/(\gcd(a,b))i)$, let $c=a/\gcd(a,b)$, and $d=b/\gcd(a,b)$. Then $\gcd(c,d)=1$. Now Define $N(c+di)=(c+di)(c-di)=c^2+d^2$. Then write N(c+di) as a product of prime number of \mathcal{Z} , say $p_1,p_2,...,p_m$. Choose elements say, $d_1,d_2,...,d_m$ in $\mathcal{Z}[i]$ such that $N(d_1)=p_1,\,N(d_2)=p_2,\,...,\,N(d_m)=p_m$ (note that $d_1,d_2,...,d_m$ will be irreducible by Question 4.8.10). If $\gcd(a,b)=1$, then there is nothing to do. Suppose that $\gcd(a,b)\neq 1$. Then write $\gcd(a,b)=q_1q_2...q_k$ where the q_i 's are prime numbers in \mathcal{Z} . If 4 divides q_i-3 for some i, then q_i is irreducible. If 4 does not divide

 $q_j - 3$, then write $q_j = (f + hi)(f - hi) = f^2 + h^2$ (note that f + hi, f - hi are irreducible by Question 4.8.10.

For 3+4i: gcd(3,4)=1. Hence N(3+4i)=25. Thus 25=(5)(5). Let $d_1=2+i$, $d_2=2+i$. Since N(2+i)=5, 2+i is irreducible. Thus (3+4i)=(2+i)(2+i).

For 6+3i: gcd(3,6)=3. Thus 6+3i=3(2+i). Now 3 is irreducible since 4 divides 3-3. Also, (2+i) is irreducible by Question 4.8.10 or Question 4.8.17.

For 35: 35 = (5)(7). Now since 4 divides 7-3, 7 is irreducible by Question 4.8.17. Also by Question 4.8.17, 5 is not irreducible. Hence 5 = (1+2i)(1-2i) (observe that 5 = (2+i)(2-i)). Thus 35 = 7(1+2i)(1-2i).

For 2+6i: gcd(2,6)=2. Hence 2+6i=2(1+3i). Now 2=(1+i)(1-i). 1+3i is not irreducible since $1^2+3^2=10$ and 10 is not prime. Now 10=(2)(5). Choose d_1, d_2 such that $N(d_1)=2$ and $N(d_2)=5$ and $d_1d_2=1+3i$. Hence 1+3i=(1+i)(2+i). Thus 2+6i=2(1+3i)=(1+i)(1-i)(1+i)(2+i).

4.9 Extension Fields, and Algebraic Fields

QUESTION 4.9.1 Find a splitting field of $f(x) = x^4 + x + 1 = (x^2 + x + 1)(x^2 - x + 1)$ over Q.

Solution: Find the roots of $x^4 + x + 1 \in C$. So, set $x^2 + x + 1 = 0$ and set $x^2 - x + 1 = 0$. Hence, $x = (-1 + \sqrt{3}i)/2, (-1 - \sqrt{3}i)/2, (1 + \sqrt{3}i)/2, (1 - \sqrt{3}i)/2$. Since $1/2, -1/2, -1 \in Q$, the splitting field of $x^4 + x + 1$ over Q is $Q(\sqrt{3}i)$.

QUESTION 4.9.2 Find a polynomial f(x) over Q such that $Q(\sqrt{1+\sqrt{2}}) \cong Q[x]/(f(x))$.

Solution: By Theorem 3.2.27, we need to find an irreducible polynomial f(x) over Q such that $f(\sqrt{1+\sqrt{2}})=0$. Set $x=\sqrt{1+\sqrt{2}}$. Hence, $x^2=1+\sqrt{2}$. Thus, $x^2-1=\sqrt{2}$. Hence, $(x^2-1)^2=2$. Thus, $x^4-2x^2-1=0$. Hence, let $f(x)=x^4-2x^2-1$. By Theorem 3.2.27 we have $Q[x]/(f(x))\cong Q(\sqrt{1+\sqrt{2}})$.

QUESTION 4.9.3 Let F be a finite field with n elements, and $f(x) \in F[x]$ is irreducible over F such that $deg(f(x)) = m \geq 2$. Prove that F[x]/(f(x)) is a finite field with n^m elements.

Solution: Since f(x) is irreducible over F, by Theorem 3.2.12 (f(x)) is a maximal ideal of F[x]. Hence, by Theorem 3.2.1 F[x]/(f(x)) is a field. By Theorem 3.2.19 every element in F[x]/(f(x)) is of the form $b_0 + b_1 x + b_2 x^2 + ... + b_{m-1} x^{m-1} + ((f(x)))$, where the b_i 's are in F. Since each b_i , $0 \le i \le m-1$, has exactly n choices, we conclude that F[x]/(f(x)) has exactly n^m elements.

QUESTION 4.9.4 Let $f(x) = x^3 + x^2 + 2 \in Z_3[x]$. Suppose that f(a) = 0, where a is in an extension field of Z_3 . How many elements does $Z_3(a)$ have?

Solution: Since f(0) = 2, f(1) = 1, and f(2) = 2 in Z_3 , we conclude that f(x) has no zeros (roots) in Z_3 . Thus, by Theorem 3.2.16 f(x) is irreducible over Z_3 . Thus, by the previous Question $Z_3[x]/(f(x))$ has exactly $3^3 = 27$ elements. By Theorem 3.2.27 we have $Z_3[x]/(f(x)) \cong Z_3(a)$. Hence, $Z_3(a)$ has exactly 27 elements.

QUESTION 4.9.5 Let $a, b \in Q$ such that $\sqrt{a} \notin Q$ and $\sqrt{b} \notin Q$. Prove that if $\sqrt{a} \in Q(\sqrt{b})$, then $a = bc^2$ for some $c \in Q$.

Solution: Since $\sqrt{b} \notin Q$, we conclude that $x^2 - b$ is irreducible over Q. Hence, by Theorem 3.2.27 every element in $Q(\sqrt{b})$ is of the form $b_0 + b_1\sqrt{b}$ where $b_0, b_1 \in Q$. Hence, $\sqrt{a} = c_0 + c_1\sqrt{b}$ for some $c_0, c_1 \in Q$. Thus, $a = c_0^2 + 2c_0c_1\sqrt{b} + c_1^2b$. Since $a \in Q$, $c_0^2 \in Q$, $c_1^2b \in Q$, $2c_0c_1 \in Q$, and $\sqrt{b} \notin Q$, we conclude that c_0 must be 0. Hence, $a = c_1^2b$.

QUESTION 4.9.6 Is $Q(\sqrt{3}) \cong Q(\sqrt{5})$ as fields?

Solution: No. For assume that $\Phi: Q(\sqrt{3}) \longrightarrow Q(\sqrt{5})$ is a ringisomorphism. Then Φ restricted on Q is a ringisomorphism from Q ONTO Q. Hence, by Question 4.4.1 $\Phi(a)=a$ for every $a\in Q$. Thus, $0=\Phi(0)=\Phi((\sqrt{3})^2-3)=(\Phi(\sqrt{(3)}))^2-3$. Hence, $\Phi(\sqrt{3})=\sqrt{3}$ or $-\sqrt{3}$. Thus, $\sqrt{3}\in Q(\sqrt{5})$. But $3=(\sqrt{3}/\sqrt{5})^25$ and $\sqrt{3}/\sqrt{5}\not\in Q$. Hence, by the previous Question $\sqrt{3}\not\in Q(\sqrt{b})$, a contradiction. Thus, $Q(\sqrt{3})\not\cong Q(\sqrt{5})$.

QUESTION 4.9.7 Is $Q[x]/(x^2-3) \cong Q[x]/(x^2-5)$?

Solution: No. Since $f(x) = x^2 - 3$ and $g(x) = x^2 - 5$ are irreducible over Q, by Theorem 3.2.27, we conclude that $Q[x]/(f(x)) \cong Q(\sqrt{3})$ and $Q[x]/(g(x)) \cong Q(\sqrt{5})$. By the previous Question $Q(\sqrt{3})$ is not isomorphic $Q(\sqrt{5})$. Thus, Q[x]/(f(x)) is not isomorphic to Q[x]/(g(x)).

QUESTION 4.9.8 Is $Q(\sqrt{5}) \cong Q(\sqrt{-5})$ as fields ?

Solution: No. For assume that $\Phi: Q(\sqrt{5} \longrightarrow Q(\sqrt{-5}))$ is a ring isomorphism. Hence, Φ restricted on Q is a ring isomorphism from Q ONTO Q. Thus, by Question 4.4.1 $\Phi(a)=a$ for every $a\in Q$. Thus, $0=\Phi((\sqrt{5})^2-5)=(\Phi(\sqrt{5}))^2-5$. Thus, $\Phi(\sqrt{5})=\sqrt{5}$ or $-\sqrt{5}$. But $5=-5i^2$ and $i=\sqrt{-1}\not\in Q$. Thus, by Question 4.9.5 $\sqrt{5}\not\in Q(\sqrt{-5})$. A contradiction. Hence, $Q(\sqrt{5})\not\cong Q(\sqrt{-5})$.

QUESTION 4.9.9 Is $Q(\sqrt[4]{2}) \cong Q(\sqrt{-\sqrt{2}})$ as fields?

Solution: Yes. Since $f(x) = x^4 - 2$ is irreducible over Q by Theorem 3.2.17 and $f(\sqrt[4]{2}) = f(\sqrt{-\sqrt{2}}) = 0$, by Theorem 3.2.28 we conclude that $Q(\sqrt[4]{2}) \cong Q(\sqrt{-\sqrt{2}})$ as fields.

QUESTION 4.9.10 Prove that $Q(\sqrt{2}, \sqrt{5}) = Q(\sqrt{5} + \sqrt{2})$.

Solution: Since $\sqrt{2} + \sqrt{5} \in Q(\sqrt{2}, \sqrt{5})$, we conclude that $Q(\sqrt{5} + \sqrt{2}) \subset Q(\sqrt{2}, \sqrt{5})$. Since $Q(\sqrt{5} + \sqrt{2})$ is a field, we conclude $(\sqrt{5} + \sqrt{2})^{-1} = 1/(\sqrt{5} + \sqrt{2}) = (\sqrt{5} - \sqrt{2})/3 \in Q(\sqrt{5} + \sqrt{2})$. Thus, $\sqrt{5} - \sqrt{2} \in Q(\sqrt{5} + \sqrt{2})$. Hence, $\sqrt{5} - \sqrt{2} + \sqrt{5} + \sqrt{2} = 2\sqrt{5} \in Q(\sqrt{5} + \sqrt{2})$. Thus, $\sqrt{5} \in Q(\sqrt{5} + \sqrt{2})$. Hence, $\sqrt{2} = \sqrt{5} + \sqrt{2} - \sqrt{5} \in Q(\sqrt{5} + \sqrt{2})$. Thus, $Q(\sqrt{5}, \sqrt{2}) \subset Q(\sqrt{5} + \sqrt{2})$. Hence, $Q(\sqrt{5}, \sqrt{2}) = Q(\sqrt{5} + \sqrt{2})$.

QUESTION 4.9.11 Find $[Q(\sqrt{5} + \sqrt{2}) : Q]$.

Solution: By the previous Question, we have $Q(\sqrt{5}+\sqrt{2})=Q(\sqrt{5},\sqrt{2})$. Since $\sqrt{5} \notin Q(\sqrt{2})$ by Question 4.9.5, we conclude that x^2-5 is irreducible over $Q(\sqrt{2})$. Hence, $[Q(\sqrt{2},\sqrt{5}):Q(\sqrt{2})]=2$. Also, since x^2-2 is irreducible over Q, we have $[Q(\sqrt{2}):Q]=2$. Hence, $[Q(\sqrt{5}+\sqrt{2}):Q]=[Q(\sqrt{2},\sqrt{5}):Q]=(Q(\sqrt{2},\sqrt{5}):Q]=(Q(\sqrt{2},\sqrt{5}):Q)=(Q(\sqrt{2},\sqrt{5}):Q)=(Q(\sqrt{2},\sqrt{2}))=(Q(\sqrt{2},\sqrt$

QUESTION 4.9.12 Let $f(x) = 23x^{18} - 6x^5 + 15x^3 - 18x + 12 \in Q[x]$. Let α be in some extension field of Q such that $f(\alpha) = 0$. Prove that $\sqrt[8]{7} \notin Q(\alpha)$.

Solution: Deny. Hence, $\sqrt[8]{7} \in Q(\alpha)$. Thus, $Q(\sqrt[8]{7}) \subset Q(\alpha)$. By Theorem 3.2.17 (using p =3) we conclude that f(x) is irreducible over Q, also by Theorem 3.2.17 (using p =7) we conclude that $g(x) = x^8 - 7$ is irreducible over Q. Thus, by Theorem 3.2.30 we conclude that $[Q(\alpha): Q] = 18$ and

 $[Q(\sqrt[8]{7}):Q]=8$. By Theorem 3.2.29 we have $18=[Q(\alpha):Q]=[Q(\alpha):Q(\sqrt[8]{7})][Q(\sqrt[8]{7}:Q]$. Thus, $18=[Q(\alpha):Q(\sqrt[8]{7})]8$. Hence, $8\mid 18$ which is impossible. Thus, $\sqrt[8]{7}\not\in Q(\alpha)$.

QUESTION 4.9.13 Let F be a field and $f(x), g(x) \in F[x]$ be irreducible over F. Suppose that deg((f(x))) = n, and deg(g(x)) = m such that gcd(n,m) = 1. Let a in some extension field of F such that f(a) = 0, and let b in some extension field of F such that g(b) = 0. Prove that [F(a,b):F] = nm.

Solution: By Theorem 3.2.30 we have [F(a):F] = n and [F(b):F] = m. By Theorem 3.2.29 we have c = [F(a,b):F] = [F(a,b):F(a)][F(a):F] = [f(a,b):F(a)]n. Hence, $n \mid c$. Also, c = [F(a,b):F] = [F(a,b):F(b):F] = [F(a,b):F(b)]m. Thus, $m \mid c$. Since $n \mid c$, $m \mid c$, and gcd(n,m) = 1, we conclude that $nm \mid c$. Thus $c \geq nm$. Finally, since $c = [F(a,b):F] = [F(a,b):F(a)][F(a):F] \leq [F(b):F][F(a):F] = mn$. Since $c \geq nm$ and $c \leq nm$, we conclude that c = [F(a,b):F] = nm.

QUESTION 4.9.14 Let F be a field, and $f(x), g(x) \in F[x]$ be irreducible over F. Let n = deg(f(x)), and m = deg(g(x)) such that gcd(n,m) = 1. Assume that a is in some extension field of F such that f(a) = 0. Prove that g(x) is irreducible over F(a).

Solution: By Theorem 3.2.30 we have [F(a):F]=n. Let b in some extension field of F such that g(b)=0. Hence, by the previous Question we have [F(a,b):F]=nm. But by Theorem 3.2.29 we have nm=[F(a,b):F]=[F(a,b):F(a)][F(a):F]=[F(a,b):F(a)]n. Thus [F(a,b):F(a)]=m. Hence, by Theorem 3.2.31 we conclude that g(x) is irreducible over F(a).

QUESTION 4.9.15 Prove that $g(x) = x^5 + 3x - 6$ is irreducible over $Q(\sqrt{2})$.

Solution: Let $f(x) = x^2 - 2$. By Theorem 3.2.17 we conclude that f(x), g(x) are irreducible over Q. Since $f(\sqrt{2}) = 0$ and gcd(deg(f(x)), deg(g(x))) = gcd(2,5) = 1, by the previous Question we conclude that g(x) is irreducible over $Q(\sqrt{2})$.

QUESTION 4.9.16 Find $[Q(\sqrt{3}, \sqrt[5]{7}) : Q]$.

Solution: Let $f(x) = x^2 - 3$, and $g(x) = x^5 - 7$. By Theorem 3.2.17 we conclude that f(x) and g(x) are irreducible over Q. Since $f(\sqrt{3}) = g(\sqrt[5]{7}) = 0$ and gcd(deg(f(x)), deg(g(x))) = gcd(2,5) = 1, by Question 4.9.13 we conclude that $[Q(\sqrt{3}, \sqrt[5]{7}) : Q] = 2.5 = 10$.

QUESTION 4.9.17 (compare with Question 4.9.13) Find two distinct irreducible polynomials $f(x), g(x) \in Q[x]$ such that f(a) = 0 for some a in some extension field of Q and g(b) = 0 for some b in some extension field of Q, but [Q(a,b):Q] < nm, where n = deg(f(x)) and m = deg(g(x)).

Solution: Let $f(x)=x^2-2$, and $g(x)=x^4-2$. By Theorem 3.2.17 we conclude that f(x),g(x) are irreducible over Q. Clearly, $f(\sqrt{2})=g(\sqrt[4]{2})=0$. Since $x^4-2=(x^2-\sqrt{2})(x^2+\sqrt{2})$, we conclude that $g(x)=x^4-2$ is reducible over $Q(\sqrt{2})$. Let $h(x)=x^2-\sqrt{2}$. Then $h(\sqrt[4]{2})=0$. Since $[Q(\sqrt[4]{2}):Q]=4$ and $[Q(\sqrt{2}):Q]=2$, we conclude that $\sqrt[4]{2} \not\in Q(\sqrt{2})$. Thus, h(x) is irreducible over $Q(\sqrt{2})$. Hence, by Theorem 3.2.30 $[Q(\sqrt{2},\sqrt[4]{2}):Q(\sqrt{2})]=2$. Thus, by Theorem 3.2.29 we have $[Q(\sqrt{2},\sqrt[4]{2}):Q]=[Q(\sqrt{2},\sqrt[4]{2}):Q(\sqrt{2})]=2.2=4<2.4=8$.

QUESTION 4.9.18 Prove that $Q(\sqrt{3}, \sqrt[5]{3}) = Q(\sqrt[10]{3})$.

Solution: Since $\sqrt{3}=(\sqrt[10]{3})^5$ and $\sqrt[5]{3}=(\sqrt[10]{3})^2$, we conclude that $Q(\sqrt{3},\sqrt[5]{3})\subset Q(\sqrt[10]{3})$. Since $Q(\sqrt{3},\sqrt[5]{3})$ is a field, we have $(\sqrt[5]{3})^{-1}=1/\sqrt[5]{3}=3^{-1/5}\in Q(\sqrt{3},\sqrt[5]{3})$. Hence, $(3^{-1/5})^2=3^{-2/5}\in Q(\sqrt{3},\sqrt[5]{3})$. Thus, $3^{1/2}3^{-2/5}=3^{1/10}=\sqrt[10]{3}\in Q(\sqrt{3},\sqrt[5]{3})$. Thus, $Q(\sqrt[10]{3})\subset Q(\sqrt{3},\sqrt[5]{3})$. Hence, $Q(\sqrt{3},\sqrt[5]{3})=Q(\sqrt[10]{3})$.

QUESTION 4.9.19 *Prove that* [C : R] = 2

Solution: Since each element of C is of the form a+bi for some $a,b \in R$. We conclude that $\{1, i = \sqrt{-1}\}$ is a basis for C over R. Thus, [C:R] = 2.

QUESTION 4.9.20 Let f(x) be an irreducible polynomial in R[x] of degree ≥ 2 . Prove that deg(f(x)) = 2.

Solution: Since f(x) is irreducible over R of degree ≥ 2 , we conclude that all zeros of f(x) are in $C \setminus R$. Thus, Let a be a zero of f(x). Then R(a) = C is the splitting field of f(x) over R. Hence, by the previous Question [R(a):R] = [C:R] = 2. Hence, by Theorem 3.2.32 we conclude that deg(f(x)) = 2.

QUESTION 4.9.21 Let F be a field and $f(x), g(x) \in F[x]$ such that g(x) is irreducible over F. Suppose that f(a) = g(a) = 0 for some a in some extension field of F. Prove that g(x) divides f(x) in F[x].

Solution: By Theorem 3.2.34, we conclude that $deg(f(x)) \ge deg(g(x))$. By Theorem 3.2.14 we conclude that f(x) = g(x)h(x) + d(x) such that $h(x), d(x) \in F[x]$ and deg(d(x)) < deg(g(x)). Since f(a) = g(a) = 0, we have 0 = f(a) = g(a)h(a) + d(a) = d(a). Hence, by Theorem 3.2.34 we conclude that d(x) = 0 is the zero polynomial in F[x]. Thus, g(x) divides f(x) in F[x].

QUESTION 4.9.22 Let $f(x) \in Q(x)$ such that $f(\sqrt{-3}) = 0$. Prove that $x^2 + 3$ divides f(x) in Q[x].

Solution: Since $g(x) = x^2 + 3$ is irreducible over Q and $g(\sqrt{-3}) = f(\sqrt{-3}) = 0$, by the previous Question we conclude that g(x) divides f(x) in Q[x].

QUESTION 4.9.23 Find a polynomial, say, $d(x) \in Q[x]$. Such that $d(\sqrt[3]{2}) = d(i) = 0$.

Solution: Let d(x) be a polynomial in Q[x] such that $d(\sqrt[3]{2}) = d(i) = 0$. Since $g(x) = x^2 + 1$, $f(x) = x^3 - 2$ are irreducible over Q and $g(i) = f(\sqrt[3]{2}) = 0$, by Question 4.9.21 we conclude that $g(x) \mid d(x)$ and $f(x) \mid d(x)$ in Q[x]. Since gcd(f(x), g(x)) = 1, we have $f(x)g(x) \mid d(x)$ in Q[x]. Hence, we may take $d(x) = (x^2 + 1)(x^3 - 2)$.

4.10 Finite Fields

QUESTION 4.10.1 Let n be a positive integer and p be a prime number. Prove that there exists a field with exactly p^n elements.

Solution: Let $f(x) = x^{p^n} - x \in Z_p[x]$. By Theorem 3.2.35 there is an extension field E of Z_p such that f(x) is factored completely in E. Let $S = \{b \in E : f(b) = b(x^{p^n-1} - 1) = 0\}$. Since f'(x) = -1, f(x) and f'(x) have no common root. Hence, by Theorem 3.2.36 f(x) has no multiple roots. Hence, S has exactly p^n distinct elements. We will show that S is a field. Since S is a finite subset of E and E is a field, by Theorem 1.2.8 we only need to show that S is closed under addition and all nonzero elements of S is closed under multiplication. Let $b_1, b_2 \in S \setminus \{0\}$.

Since $b_1^{p^n-1} = b_2^{p^n-1} = 1$, we conclude that $(b_1b_2)^{p^n-1} = b_1^{p^n-1}b_2^{p^n-1} = 1$. Thus, $b_1b_2 \in S$. Hence, by Theorem 1.2.8 $S \setminus \{0\}$ is a group under multiplication. Now, let $b_1, b_2 \in S$. Then $b_1^{p^n} - b_1 = 0$ and $b_2^{p^n} - b_2 = 0$. Hence, $(b_1 + b_2)^{p^n} - (b_1 + b_2) = ($ by Question 4.3.20) $b_1^{p^n} + b_2^{p^n} - b_1 - b_2 = b_1^{p^n} - b_1 + b_2^{p^n} - b_2 = 0$. Thus, $b_1 + b_2 \in S$. Hence, once again by Theorem 1.2.8 S is a group under addition. Thus, S is a field with S0 elements.

QUESTION 4.10.2 Let n be a positive integer, and p be a prime number. Prove that there is an irreducible polynomial over Z_p of degree n.

Solution: By the previous Question, there is a finite field with p^n elements, say $GF(p^n)$ which is an extension field of Z_p . By Theorem 3.2.41 there is an element $\beta \in GF(p^n)$ and an irreducible polynomial p(x) over Z_P of degree n such that $p(\beta) = 0$.

QUESTION 4.10.3 Construct a finite field with 27 elements.

Solution: First, write $81 = 3^3$. Find an irreducible polynomial p(x) over Z_3 of degree 3. So, let $f(x) = x^3 + 2x + 2$. Hence, by Theorem 3.2.16 f(x) is irreducible over Z_3 . Thus, by Theorem 3.2.12 $F = Z_3[x]/(f(x))$ is a field. By Theorem 3.2.19 each element in F is of the form $a_0 + a_1x + a_2x^2 + (f(x))$, where $a_0, a_1, a_2 \in Z_3$. Since every a_i has three choices, we conclude that F has exactly $27 = 3^3$ elements.

QUESTION 4.10.4 Let f(x) be an irreducible polynomial over Z_p , where p is a prime number. Prove that $F = Z_p[x]/(f(x))$ is a finite field with p^n elements.

Solution: By Theorem 3.2.12, $F = Z_p[x]/(f(x))$ is a filed. Let $z \in F$. By Theorem 3.2.19, $z = a_0 + a_1x + a_2x^2 + ... + a_{n-1}x^{n-1} + (f(x))$, where the $a_i's \in Z_p$. Since every a_i has p choices, we conclude that F has exactly p^n elements.

QUESTION 4.10.5 Prove that $f(x) = x^9 + 2x^6 + x^3 + 2x + 1 \in Z_3[x]$ has no multiple roots (zeros).

Solution: f'(x) = 2. By Theorem 3.2.36 since f(x) and f'(x) have no common roots (zeros), we conclude that f(x) has no multiple roots.

QUESTION 4.10.6 Let $f(x) = x^{p^n} - x \in GF(p)[x]$. Prove that f(a) = 0 for every $a \in GF(p^n)$. Hence, show that $f(x) = x(x - a_1)(x - a_2)...(x - a_{p^n-1})$, where the a_i 's are the distinct nonzero elements of $GF(p^n)$.

Solution: Since $f(x) = x(x^{p^n-1} - 1)$ and $a^{p^n-1} = 1$ for each nonzero element of $GF(p^n)$, we conclude that every nonzero element of $GF(p^n)$ is a zero (root) of f(x). It is clear that 0 is a root of f(x). Thus, the claim is now clear.

QUESTION 4.10.7 Prove that $p \mid [(p-1)! + 1]$ for every prime p.

Solution: If p=2, then the claim is clear. Hence, assume that $p \neq 2$. Let $f(x) = x^p - x \in Z_p$. By the previous Question, we have $f(x) = x^p - x = x(x-1)(x-2)(x-3)...(x-(p-1))$. Hence, (-1.-2.-3...-(p-1))x = -x in Z_p . Thus, (-1.-2...-(p-1)) = -1 in Z_p . Since z_p has an even number of nonzero elements, we conclude that (-1.-2.-3...-(p-1)) = (1.2.3.4...(p-1)). Thus, (p-1)! = -1 in Z_p . Hence, $p \mid [(p-1)! + 1]$.

QUESTION 4.10.8 Prove that the product of the nonzero elements of $GF(p^n)$ is -1. In particular, prove that the product of nonzero elements of Z_p is -1.

Solution: Let $f(x) = x^{p^n} - x \in GF(p)[x]$. By Question 4.10.6 we know that $f(x) = x(x-a_1)(x-a_2)...(x-a_{p^n-1})$, where the $a_i's$ are the nonzero elements of $GF(p^n)$. Hence, $(-a_1.a_2...a_{p^n-1})x = -x$ in $GF(p^n)$. Thus, $(-a_1.-a_2...-a_{p^n-1}) = -1$ in $GF(p^n)$. Suppose that p=2. Then $-a_i = a_i$. Hence, $(a_1.a_2...a_{p^n-1}) = -1$ in $GF(p^n)$. Suppose that $p \neq 2$. Since $GF(p^n)$ has an even number of nonzero elements, we conclude that $(-a_1.-a_2...-a_{p^n-1}) = (a_1.a_2...a_{p^n-1}) = -1$.

QUESTION 4.10.9 Let $a \in GF(p^n)$. Prove that there is an element $b \in GF(p^n)$ such that $a = b^p$.

Solution: Let $a \in GF(p^n)$. Since every element in $GF(p^n)$ is a root of $x^{p^n} - x$ by the previous Question, we conclude that $a^{p^n} - a = 0$. Thus, $a = a^{p^n}$. Hence, let $b = a^{p^{n-1}}$. Then $a = b^p$.

QUESTION 4.10.10 Let F and H be finite fields having the same number of elements. Prove that $F \cong H$.

Solution: Since $F^* = F \setminus \{0\}$ and $H^* = H \setminus \{0\}$ are cyclic groups under multiplication of the same order, let f be a generator of F^* and h be a generator of H^* . Now define $\Phi: F \longrightarrow H$ such that $\Phi(f^m) = h^m$ and $\phi(0) = 0$. It is easy to check that Φ is a ring isomorphism. Hence, $F \cong H$.

QUESTION 4.10.11 Prove that $F = Z_3[x]/(x^3 + 2x + 2) \cong K = Z_3[x]/(x^3 + x^2 + 2)$.

Solution: Let $f(x) = x^3 + 2x + 2$, and $g(x) = x^3 + x^2 + 2$. By Question 3.2.16, we conclude that f(x), and g(x) are irreducible over Z_3 . Hence, by Question 4.10.4 we conclude that F and K are finite fields with p^3 elements. Thus, by Question 4.10.10 we conclude $F \cong K$.

QUESTION 4.10.12 (compare with Question 4.9.7) Let $f(x), g(x) \in GF(p)[x]$ be irreducible over GF(p) of degree n. Prove that $F = GF(p)[x]/(f(x)) \cong K = GF(p)[x]/(g(x))$.

Solution: By Question 4.10.4, we conclude that F and K are finite fields such that each has exactly p^n elements. Thus, by Question 4.10.10, we conclude that $F \cong K$.

QUESTION 4.10.13 Let $f(x) \in GF(p)[x]$ be irreducible over GF(p) of degree n, and suppose that β in some extension field of GF(p) such that $f(\beta) = 0$. Prove that $GF(p)(\beta) = GF(p^n)$, that is prove that $GF(p)(\beta)$ is a finite field with p^n elements.

Solution: By Theorem 3.2.27 we conclude that $GF(p)(\beta) \cong GF(p)[x]/(f(x))$. By Question 4.10.4, since GF(p)[x]/(f(x)) is a finite field with p^n elements, we conclude that $GF(p)(\beta)$ has exactly p^n elements.

QUESTION 4.10.14 Let $g(x) \in GF(p)[x]$ be irreducible over GF(p) of degree n. Prove that $g(x) \mid x^{p^n} - x$ in GF(p)[x].

Solution: Let $f(x) = x^{p^n} - x$. Now, let β in some extension field of GF(p) such that $g(\beta) = 0$. By the previous, we conclude that $\beta \in GF(p)(\beta) = GF(p^n)$. By Question 4.10.6, we conclude $f(\beta) = 0$. Thus, by Question 4.9.21 we conclude that $g(x) \mid f(x)$.

QUESTION 4.10.15 (compare with Theorem 3.2.41) Let $f(x) \in GF(p)[x]$ be irreducible over GF(p) of degree n. Suppose that $f(\beta) = 0$ for some $\beta \in GF(p^n)$. Can we conclude that β generates the group of all nonzero elements of $GF(p^n)$ under multiplication?

Solution: NO. For let $F = Z_3[x]/(x^2 + 1)$, and $f(x) = x^2 + 1 \in Z_3[x]$. Since $x^2 + 1$ is irreducible over Z_3 , by Question 4.10.4 we conclude that

F is a finite field with $3^2 = 9$ elements. Now, let $\beta = x + (x^2 + 1) \in F$. Then, $f(\beta) = x^2 + 1 + (x^2 + 1) = 0$ in F. Since $(x^2 + 1) \mid (x^4 - 1)$ in $Z_3[x]$, we conclude that $x^4 + (x^2 + 1) = 1 + (x^2 + 1)$ in F. Thus, the order of $\beta = x + (x^2 + 1)$ (under multiplication) in F is 4 which is not 8. Thus, $\beta = x + (x^2 + 1)$ does not generate F^* .

QUESTION 4.10.16 Let F be a field. If $m \mid n$, then prove that $x^m - 1 \mid x^n - 1$ for every $x \in F$.

Solution: Just use long division.

QUESTION 4.10.17 Let n > 1 be a positive integer, and let $g(x) \in G(p)[x]$ be irreducible over GF(p) of degree m. Prove that $g(x) \mid x^{p^n} - x$ in GF(p)[x] if and only if $m \mid n$.

Solution: Let $f(x) = x^{p^n} - x$. Suppose that $g(x) \mid f(x)$ in GF(p). Hence, g(x) has a root, say, $\beta \in GF(p^n)$. Thus, $GF(p)(\beta)$ is a subfield of $GF(p^n)$. By Question 4.10.13 $GF(p)(\beta)$ is a finite field with exactly p^m elements. Hence, since $GF(p)(\beta)$ is a subfield of $GF(p^n)$, by Theorem 3.2.40 we conclude that $m \mid n$. Conversely, suppose that $m \mid n$. Once again, let β be a root of g(x). Hence, by Question 4.10.13 $GF(p)(\beta)$ is a finite field with exactly p^m elements. Hence, by Question 4.10.14 we conclude that $g(x) \mid x^{p^m} - x$. Since $m \mid n$, we know that $p^m - 1 \mid p^n - 1$. Thus, by the previous Question we conclude that $x^{p^m-1} - 1 \mid x^{p^n-1} - 1$. Thus, $g(x) \mid x^{p^m} - x = x(x^{p^m-1} - 1) \mid x^{p^n} - x = x(p^{p^m-1} - 1)$. Hence, $g(x) \mid x^{p^m} - x$.

QUESTION 4.10.18 How many monic irreducible polynomials of degree 5 are there in $Z_2[x]$?

Solution: By Theorem 3.2.15 we know that $x^{2^5} - x$ is a product of monic irreducible polynomials over Z_2 . Since $x^{2^5} - x$ has no multiple roots (zeros), we conclude that $x^{2^5} - x$ is a product of distinct monic irreducible polynomials over Z_2 . Hence, each irreducible factor of $x^{2^5} - x$ divides $x^{2^5} - x$. By Question 4.10.17 we conclude that the degree of each irreducible factor of $x^{2^5} - x$ is either 1 or 5. Recall that if h(x), d(x) are distinct and irreducible over a field F and $f(x) \in F[x]$ such that $h(x) \mid f(x)$ and $d(x) \mid f(x)$, then $h(x)d(x) \mid f(x)$. Hence, $x^{2^5} - x$ is the product of all distinct monic irreducible polynomials of degree 1 and of degree 5. But there are exactly 2 monic irreducible polynomials of degree 1 over Z_2 , namely, x and x + 1. Since the sum of the degrees of the irreducible

factors of $x^{2^5} - x$ is $2^5 = 32$ and there are 2 irreducible polynomials of degree 1 over Z_2 , we conclude that the number of all distinct monic irreducible polynomials of degree 5 over Z_2 is $(2^5 - 2)/5 = 6$.

QUESTION 4.10.19 How many monic irreducible polynomials of degree 3 are there in $Z_5[x]$?

Solution: By an argument similar to that one just given in the previous Question, we conclude that there are $(5^3-5)/3=(125-5)/3=40$ monic irreducible polynomials of degree 3 in $Z_5[x]$.

QUESTION 4.10.20 Let F be a finite field with 25 elements. Find the number of all generators of F^* (under multiplication).

Solution: Let β be a generator of F^* . Hence $ord(\beta)=24$ (under multiplication). By a theorem in Group Theory, we know that β^m generates F^* iff gcd(24,m)=1. Hence, there are exactly $\phi(24)=8$ generators of F^* (recall that if $n=p_1^{\alpha_1}...p_m^{\alpha_m}$, then the number of all numbers that are less than n and relatively prime to n is $\phi(n)=(p_1-1)p_1^{\alpha_1-1}...(p_m-1)p_m^{\alpha_m-1}$).

QUESTION 4.10.21 Let F be a finite field with $3^4 = 81$ elements, and let β be a generator of F^* (under multiplication). We know that F has a unique subfield K of order $3^2 = 9$. Write all elements of K in terms of β .

Solution: Since β generates F^* , we conclude $Ord(\beta) = 80$. Hence, $\beta^{80} = 1$. Now, a generator of K^* must have an order of 8. Thus, we conclude that β^{10} generates K^* . Hence, $K = \{0, 1, \beta^{10}, \beta^{20}, \beta^{30}, \beta^{40}, \beta^{50}, \beta^{60}, \beta^{70}\}$.

QUESTION 4.10.22 Suppose that $m \mid n$. Prove that $[GF(p^n) : GF(p^m)] = n/m$.

Solution: Since $m \mid n$, by Theorem 3.2.40 $GF(p^m)$ is a subfield of $GF(p^n)$. Hence, by Theorem 3.2.29 we have $n = [GF(p^n) : GF(p)] = [GF(p^n) : GF(p^m)][GF(p^m : GF(p)] = [GF(p^n) : GF(p^m)]m$ since $[GF(p^m) : GF(p)] = m$ by Theorem 3.2.41. Hence, $[GF(p^n) : GF(p^m)] = n/m$.

QUESTION 4.10.23 Let p, q be prime numbers. Prove that number of irreducible monic polynomials of degree q over Z_p is $(p^q - p)/q$.

Solution: Consider $f(x) = x^{p^q} - x \in Z_p[x]$. Now, by an argument similar to that one given in the solution of Question 4.10.18, we conclude that the number of irreducible monic polynomials of degree q over Z_p is $(p^q - p)/q$.

QUESTION 4.10.24 Find the number of irreducible monic polynomials of degree 6 over Z_3 .

Solution: Consider $f(x) = x^{3^6} - x \in Z_3[x]$. By Question 4.10.17, we conclude that each monic irreducible factor of f(x) over Z_3 is either of degree 1 or 2 or 3 or 6. Furthermore, f(x) is the product of all irreducible monic polynomials in $Z_3[x]$ that are of degree 1 and 2 and 3 and 6. Clearly, number of irreducible monic polynomials in $Z_3[x]$ of degree 1 is 3. By the previous Question: number of irreducible monic polynomials over Z_3 of degree 2 is $(3^2 - 3)/2 = 3$, number of irreducible monic polynomials of degree 3 over Z_3 is $(3^3 - 3)/3 = 8$. Now, let n be the number of all irreducible monic polynomials of degree 6 over Z_3 . Observe that $3^6 = 1(3) + 2(3) + 3(8) + 6(n)$. Hence, $n = (3^6 - 33)/6 = 116$.

QUESTION 4.10.25 Write $x^9 - x$ as product of monic irreducible polynomials in $Z_3[x]$.

Solution: Since $9=3^2$ and 1, 2 are the only positive divisors (factors) of 2, by Question 4.10.17 we conclude that x^9-x is the product of all monic irreducible polynomials of degree 1 and 2 over Z_3 . Now, it is clear that x, x-1, x-2 are the only monic irreducible polynomials of degree 1 in $Z_3[x]$. By Question 4.10.23, there are exactly $(9-3)/2=(3^2-3)/2=3$ monic irreducible polynomials of degree 2 over Z_3 . By Theorem 3.2.16, we conclude that x^2+x+2, x^2+2x+2 , and x^2+1 are the monic irreducible polynomials of degree 2 over Z_3 . Hence, $x^9-x=x(x-1)(x-2)(x^2+1)(x^2+2x+2)(x^2+x+2) \in Z_3[x]$.

QUESTION 4.10.26 Let $f(x) = g(x)h(x) \in Z_3[x]$ such that g(x) is a monic irreducible polynomial of degree 2 over Z_3 , and h(x) is a monic irreducible polynomial of degree 3 over Z_3 . Find a splitting field of f(x).

Solution: We know that g(x) has all its roots in $GF(3^2)$. By Question 4.9.14, h(x) is irreducible over $GF(3^2)$. Hence, let β be a root of h(x) in some extension field of $GF(3^2)$. Hence, $GF(3^2)(\beta) = GF(3^6)$. Thus, $GF(3^6)$ is a splitting field of f(x). So, let d(x) be a monic irreducible polynomial of degree 6 over Z_3 . Then $K = Z_3[x]/(d(x))$ is a splitting field of f(x).

4.11 Galois Fields and Cyclotomic Fields

QUESTION 4.11.1 Let E be an extension field of \mathcal{Q} . Show that if Φ is an isomorphism from E ONTO E, then $\Phi(q) = q$ for every $q \in \mathcal{Q}$.

Solution: Since $\Phi(1) = 1$, $\Phi(n) = n$ for every $n \in \mathcal{Z}$. Since $1 = \Phi(1) = Phi(n(1/n)) = \Phi(n)\Phi(1/n) = n\Phi(1/n)$ for every nonzero $n \in \mathcal{Z}$, we conclude that $\phi(1/n) = 1/n$ for every nonzero $n \in \mathcal{Z}$. Now let $q \in Q$. Then q = n/m = n(1/m) for some $n\mathcal{Z}$ and for some nonzero $m \in \mathcal{Z}$. Hence $\Phi(q) = \Phi(n(1/m)) = \Phi(n)\Phi(1/m) = n(1/m) = n/m = q$.

QUESTION 4.11.2 Let E be an extension field of a field F, and let H be a subgroup of $Aut_F(E)$. Show that $K = \{x \in E : \Phi(x) = x \text{ for every } \Phi \in H\}$ is a subfield of E.

Let $x,y\in K$. We only need to show that $x-y\in K$ and if $y\neq 0$, then $xy^{-1}\in K$. Since $\Phi(y)=y$ for every $\Phi\in H$, we conclude that $\Phi(-y)=-y$ (because Φ is a group-isomorphism under addition) and $\Phi(y^{-1})=\Phi(y)^{-1}=y^{-1}$ (because Φ is a group-isomorphism under multiplication) for every $\Phi\in H$. Thus $\Phi(x-y)=\Phi(x)+\Phi(-y)=x-y$ and $\Phi(xy^{-1})=\Phi(x)\Phi(y^{-1})=xy^{-1}$ for every $\Phi\in H$. Thus $x-y\in K$ and if $y\neq 0$, then $xy^{-1}\in K$.

QUESTION 4.11.3 Let E be a splitting field of a polynomial $f(x) \in F(x)$ (F is a field) such that deg(f) = n. show that $[E : F] \le n!$.

Solution: Let E_1 be an extinsion of F that contains a root of f(x). Then $[E_1:F] \leq n$. Let E_2 be an extinsion of E_1 that contains a root of f(x). Then $[E_2:E_1] \leq n-1$. We continue in this process to get a sequence of extension fields of $F \subset E_1 \subset E_2 \subset \cdots E_i \cdots E_n = E$ such that $[E_{i+1}:E_i] \leq n-i$. Thus $[E:F] = [E_n:E_{n-1}][E_{n-1}:E_{n-2}] \cdots [E_3:E_2][E_2:E_1][E_1:F] \leq (1)(2)(3)....(n-1)(n)$.

QUESTION 4.11.4 Let F be a field of characteristic 0 or a finite field, and let E be a splitting field over F of a polynomial of degree n in F[x]. Show that $Aut_F(E)$ is isomorphic to a subgroup of S_n and hence $Ord(Aut_F(E))$ divides n!, i.e., show that [E:F] divides n!

Solution: Let m be the number of all distinct roots of f(x). Then $m \le n$ and S_m is a subgroup of S_n . Then $S = \{a_1, a_2, ..., a_m\}$ is

the set of all distinct roots of f(x). Let $\Phi \in Aut_F(E)$. Then Φ is determined by $\Phi(a_1), \Phi(a_2), ..., \Phi(a_m)$ by Theorem 3.2.46. Hence each element in $Aut_F(E)$ can be viewed as a permutation on the set S. Thus $Aut_F(E)$ can be viewed as a subgroup of S_m . Thus $Aut_F(E)$ is isomorphic to a subgroup of S_m , and thus is isomorphic to a subgroup of S_n . Hence $Ord(Aut_F(E))$ divides $Ord(S_m) = m!$. Since $m \leq n$, we have m! divides n!. Thus $Ord(Aut_F(E))$ divides n!.

QUESTION 4.11.5 Let $F = \mathcal{Q}(\sqrt{2}, \sqrt{5})$. What is the order of $Aut_{\mathcal{Q}}(F)$? What is the order of $Aut_{\mathcal{Q}}(\mathcal{Q}(\sqrt{10}))$?

Solution: First observe that x^2-5 and x^2-2 are irreducible over \mathcal{Q} by Theorem 3.2.17. Also, x^2-5 is irreducible over $\mathcal{Q}(\sqrt{2})$. Hence $[F:\mathcal{Q}(\sqrt{2})]=2$ and $[\mathcal{Q}(\sqrt{2}):\mathcal{Q}]=2$. Thus $Ord(Aut_{\mathcal{Q}}(F))=[F:\mathcal{Q}]$ by Theorem 3.2.43(1). Thus by Theorem 3.2.24 we have $Ord(Aut_{\mathcal{Q}}(F))=[F:\mathcal{Q}(\sqrt{2})][\mathcal{Q}(\sqrt{2}):\mathcal{Q}]=(2)(2)=4$. Since $f(x)=x^2-10$ is irreducible over \mathcal{Q} by Theorem 3.2.17 and $\mathcal{Q}(\sqrt{10})$ is a splitting field of f(x), we conclude that $[\mathcal{Q}(\sqrt{10}):\mathcal{Q}]=2$. Hence by Theorem 3.2.43(1) we have $Ord(Aut_{\mathcal{Q}}(\mathcal{Q}(\sqrt{10})))=[\mathcal{Q}(\sqrt{10}):\mathcal{Q}]=2$.

QUESTION 4.11.6 Let E be a splitting field of $x^4 + 1$ over \mathcal{Q} . Show that $Aut_{\mathcal{Q}}(E) \cong \mathcal{Z}_2 \oplus \mathcal{Z}_2$. Is there $\Phi \in Aut_{\mathcal{Q}}(E)$ such that $Q = \{x \in E : \Phi(x) = x\}$? Explain.

Solution: Let w be a primitive 8th root of unity. Since Ord(w) = 8, we conclude that $w^4 = -1$, and Hence $w^4 + 1 = 0$. Since every primitive 8th root of unity is a root of x^4+1 and there are exactly $\phi(8)=4$ of them by Theorem 3.2.49 and $deg(x^4+1)=4$, we conclude that $x^4+1=\Phi_8(x)=$ $(x-w_1)(x-w_2)...(x-w_4)$ where the w_i 's are the distinct 8th roots of unity. Thus $x^4 + 1 = \Phi_8(x)$ is irreducible over Q by Theorem 3.2.50. Thus let w be be a primitive 8th root of unity. Then $E = \mathcal{Q}(w)$. Hence $Ord(Aut_{mathcalQ}(E) = [E : Q] = 4 \text{ and } Aut_Q(E) \cong U(8) \cong \mathcal{Z}_2 \oplus \mathcal{Z}_2 \text{ by}$ Theorem 3.2.51 and Theorem 1.2.40. Since every nonidentity element in $G = \mathcal{Z}_2 \oplus \mathcal{Z}_2$ has order 2 and thus G has exactly 3 subgroups of order 2, namely $G_1 = \mathcal{Z}_2 \oplus \{0\}, G_2 = \{0\} \oplus \mathcal{Z}_2$, and $\{(1,1), (0,0)\}$, by Theorem 3.2.43 we conclude that there are exactly 3 distinct subfield of E that are properly between Q and E, say K_1, K_2, K_3 such that each $K_i \neq \mathcal{Q}$ and $Ord(Aut_{K_1}(E)) = Ord(Aut_{K_2}(E)) = Ord(Aut_{K_3}(E)) =$ 2. Thus each nonidentity element of $Aut_{\mathcal{Q}}(E)$ must lie in one of the following subgroups $Aut_{K_1}(E), Aut_{K_2}(E), Aut_{K_3}(E)$. Hence there is no $\Phi \in Aut_{\mathcal{O}}(E)$ such that $Q = \{x \in E : \Phi(x) = x\}.$

QUESTION 4.11.7 Is $Q(\sqrt[3]{2})$ a Galois extension of Q?

Solution: NO. For suppose that $E = \mathcal{Q}(\sqrt[3]{2})$ is a Galois extension of \mathcal{Q} . Since $f(x) = x^3 - 2$ has a root in E, we conclude that f(x) has all its roots in E by Theorem 3.2.48. But $r = \sqrt[3]{2}(\cos(2\pi/3) + i\sin(2\pi/3))$ is a root of f(x) and it is clear that $r \notin E$.

QUESTION 4.11.8 Show that $E = \mathcal{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ is a Galois extension of \mathcal{Q} and $Aut_{\mathcal{Q}}(E) \cong G = \mathcal{Z}_2 \oplus \mathcal{Z}_2 \oplus \mathcal{Z}_2$.

Solution: Since E is a splitting filed of $f(x)=(x^2-2)(x^2-3)(x^2-5)$ over \mathcal{Q} , we conclude that E is Galois over \mathcal{Q} . Since x^2-3 is irreducible over $\mathcal{Q}(\sqrt{2})$, we conclude that $[\mathcal{Q}(\sqrt{2},\sqrt{3}):\mathcal{Q}(\sqrt{2})]=2$. Also, x^2-5 is irreducible over $\mathcal{Q}(\sqrt{2},\sqrt{3})$ and hence $[E:\mathcal{Q}(\sqrt{2},\sqrt{3}]=2]$. Thus $[E:\mathcal{Q}]=[E:\mathcal{Q}(\sqrt{2},\sqrt{3}]][\mathcal{Q}(\sqrt{2},\sqrt{3}):\mathcal{Q}(\sqrt{2})][\mathcal{Q}(\sqrt{2}):\mathcal{Q}]=(2)(2)(2)=8$. Thus $Ord(Aut_{\mathcal{Q}}(E))=8$ by Theorem 3.2.43(1). We will show that each nonidentity element of $Aut_{\mathcal{Q}}(E)$ has order 2. To do this we will find 7 distinct subgroups of $Aut_{\mathcal{Q}}(E)$ of order 2. Let $E_1=Aut_{\mathcal{Q}(\sqrt{2},\sqrt{3})}(E), E_2=Aut_{\mathcal{Q}(\sqrt{2},\sqrt{5})}(E), E_3=Aut_{\mathcal{Q}(\sqrt{3},\sqrt{5})}(E), E_4=Aut_{\mathcal{Q}(\sqrt{6},\sqrt{5})}(E), E_5=Aut_{\mathcal{Q}(\sqrt{10},\sqrt{3})}(E), E_6=Aut_{\mathcal{Q}(\sqrt{15},\sqrt{2})}(E),$ and $E_7=Aut_{\mathcal{Q}(\sqrt{15},\sqrt{6})}(E)$. It is easily verivied that the E_i 's are distinct and $Ord(E_1)=Ord(E_2)=...=Ord(E_7)=2$. Thus each nonidentity element of $Aut_{\mathcal{Q}}(E)$ has order 2. Hence $Aut_{\mathcal{Q}}(E)$ is Abelian by Question 2.1.11. Thus by Theorem 1.2.52 we conclude that $Aut_{\mathcal{Q}}(E)\cong G=\mathcal{Z}_2\oplus\mathcal{Z}_2\oplus\mathcal{Z}_2\oplus\mathcal{Z}_2$.

QUESTION 4.11.9 In Question 4.11.8 how many subfields of E are containing Q (note that Q will be included in the count)?

Solution: By Theorem 3.2.43, the number of subfields of E that are containing $\mathcal{Q} = \text{Number of all subgroups of } G = \mathcal{Z}_2 \oplus \mathcal{Z}_2 \oplus \mathcal{Z}_2$. By the solution of Question 4.11.8 G has exactly 7 subgroups of order 2. One can easily check that G has exactly 7 groups of order 4, one subgroup of order 1, and G itself is a subgroup of order 8. Thus there are 16 subfields counting E and \mathcal{Q} .

QUESTION 4.11.10 In Question 4.11.8. Find all subgroups of $Aut_{\mathcal{Q}}(E)$ that has order 4.

Solution: By Question 4.11.9, $Aut_{\mathcal{Q}}(E)$ has exactly 7 subgroups of order 4. Let $G_1 = Aut_{\mathcal{Q}(\sqrt{2})}(E)$, $G_2 = Aut_{\mathcal{Q}(\sqrt{3})}(E)$, $G_3 = Aut_{\mathcal{Q}(\sqrt{5})}(E)$, $G_4 = Aut_{\mathcal{Q}(\sqrt{6})}(E)$, $G_5 = Aut_{\mathcal{Q}(\sqrt{2})}(10)$, $E_6 = Aut_{\mathcal{Q}(\sqrt{15})}(E)$, $G_7 = Aut_{\mathcal{Q}(\sqrt{30})}(E)$.

QUESTION 4.11.11 Let E be a splitting field of a polynomial over \mathcal{Q} such that $Aut_{\mathcal{Q}}(E) \cong A_5$. Show that E does not have a subfield F such that $[F:\mathcal{Q}]=2$.

Solution: Suppose it does. Since $Aut_{\mathcal{Q}}(E) \cong A_5$ and $Ord(A_5) = 60$, we conclude that [E:Q] = 60. Thus by Theorem 3.2.24 we have 60 = [E:Q] = [E:F][F:Q] = [E:F](2), and hence [E:F] = 30. Thus by Theorem 3.2.43 we conclude that $Ord(Aut_{\mathcal{F}}(E)) = 30$. Since $[Aut_{\mathcal{Q}}(E):Aut_{\mathcal{F}}(E)] = 2$, we conclude that $Aut_{\mathcal{F}}(E)$ is normal in $Aut_{\mathcal{Q}}(E)$ by Question 2.6.1, a contradiction since A_5 is simple.

QUESTION 4.11.12 Let E be the splitting field of a polynomial f(x) of degree n over a field F of characteristic 0. Show that E has finitely many subfields.

Solution: By Theorem 3.2.43 we have $Ord(Aut_F(E)) = [E:F]$. By question 4.11.4 we have $Ord(Aut_F(E))$ divides n!. Thus $Ord(Aut_F(E)) = [E:F]$ is a finite number. Thus $Aut_F(E)$ has finitely many subgroups. Since for each subgroup H of $Aut_F(E)$ there is a unique subfield K of E such that $H = Aut_K(E)$ by Theorem 3.2.43 and there are finitely many such H, we conclude that E has a finite number of subfields.

QUESTION 4.11.13 Let E be the splitting field of $f(x) = x^3 - 5$ over Q. Show that $Aut_Q(E) \cong S_3$, and then find all subfields of E.

Solution: Let w be a primitive 3rd roor of unity. Since $w\sqrt[3]{5}$ is aroot of f(x) and $u = \sqrt[3]{5}$ is a root of f(x), we conclude that $u^{-1} \in E$, and hence $w \in E$. Let $F = \mathcal{Q}(w)$. Then by Theorem 3.2.51 we conclude that $[F:\mathcal{Q}] = \phi(3) = 2$. Now, $w\sqrt[3]{5}$, $w^2\sqrt[3]{5}$, $\sqrt[3]{5}$ are the distinct roots of f(x), and hence $E = \mathcal{Q}(w,\sqrt[3]{5})$. By Theorem 3.2.52 we conclude that [E:F] = 3. Thus $[E:\mathcal{Q}] = [E:F][F:\mathcal{Q}] = (3)(2) = 6$. Thus $Ord(Aut_{\mathcal{Q}}(E)) = [E:\mathcal{Q}] = 6$ by Theorem 3.2.43. Thus $Aut_{\mathcal{Q}}(E)$ is isomorphic to a subgroup of S_3 by Question 4.11.4. Since $Ord(Aut_{\mathcal{Q}}(E)) = Ord(S_3) = 6$, we conclude that $Aut_{\mathcal{Q}}(E)$ is isomorphic to S_3 . Now 6 = (2)(3). By Theorem 1.2.45 we conclude that S_3 has exactly one subgroup of order 3. Since S_3 is non-Abelian, by Theorem 1.2.45 S_3 has exactly 3 subgroups of order 2. Hence E has exactly 6 subfields including \mathcal{Q} and E, namely: $\mathcal{Q}, E, \mathcal{Q}(\sqrt[3]{5}), \mathcal{Q}(w\sqrt[3]{5}), \mathcal{Q}(w^2\sqrt[3]{5}), \mathcal{Q}(w)$.

QUESTION 4.11.14 Let E be the splitting field of $f(x) = x^{1001} - 1$ over \mathcal{Q} . Show that if K is subfield of E containing \mathcal{Q} , then K is the splitting field of some polynomial over \mathcal{Q} .

Solution: First by Theorem 3.2.51 we conclude that $G = Aut_{\mathcal{Q}}(E)$ is an Abelian group because $Aut_{\mathcal{Q}}(E) \cong U(1001)$ by Theorem 3.2.51 and U(1001) is an Abelian group. Let K be a subfield of E containing \mathcal{Q} . Since G is Abelian, we conclude that $D = Aut_K(E)$ is a normal subgroup of G. Thus K is the splitting field of some polynomial over \mathcal{Q} by Theorem ??(2).

QUESTION 4.11.15 Let E be the splitting field of $f(x) = x^{10} - 1$ over \mathcal{Q} . Show that E contains a subfield K containing \mathcal{Q} such that K is the splitting field of an irreducible polynomial of degree 2 over \mathcal{Q} .

Solution: Let w be a primitive 10th root of unity. Then $E = \mathcal{Q}(w)$, and hence $[\mathcal{Q}(w):\mathcal{Q}] = \phi(10) = 4$ by Theorem 3.2.51. By Theorem 3.2.43 we have $Ord(Aut_{\mathcal{Q}}(E) = 4)$, and thus there is a subgroup H of $Aut_{\mathcal{Q}}(E)$ of order 2, where $H = Aut_{K}(E)$ for some subfield K of E containing \mathcal{Q} , and thus [E:K] = 2. Since $Aut_{\mathcal{Q}}(E)$ is Abelian being isomorphic to U(10) by Theorem 3.2.51, H is a normal subgroup of $Aut_{\mathcal{Q}}(E)$, and thus K is a splitting field by Theorem 3.2.43(2). Now $4 = [E:\mathcal{Q}] = [E:K][K:\mathcal{Q}] = (2)[K:\mathcal{Q}]$, and thus $[K:\mathcal{Q}] = 2$. Hence K is a splitting field of an irreducible polynomial of degree 2.

QUESTION 4.11.16 Give an example of a splitting field E over a field D that contains a field F such that $D \subset F \subset E$ and F is not a splitting field of any irreducible polynomial of degree ≥ 2 over D.

Solution: Let $f(x) = x^3 - 2$. Then f(x) is irreducible over Q by Theorem 3.2.17. Let E be a splitting field of f(x). Since sqrt[3]2 is a root of f(x), we have $Q \subset Q(\sqrt[3]{2}) \subset E$. Now $F = Q(\sqrt[3]{2})$ is not a splitting field of a polynomial of degree ≥ 2 over Q by Question 4.11.7.

QUESTION 4.11.17 Show that $f(x) = x^{2^n} + 1$ is irreducible over \mathcal{Z} (and hence over \mathcal{Q} for every $n \geq 1$.

Solution: Let w be the $2^{n+1}th$ root of unity, i.e., w is a root of $x^{2^{n+1}}-1$, i.e., $w^{2^{n+1}}=1$, and w generate the group $G_{2^{n+1}}$ (see Theorem 3.2.49). Thus $w^{2^n}=-1$, and hence w is a root of $g(x)=x^{2^n}+1$. Now $[\mathcal{Q}(w):\mathcal{Q}]=\phi(2^{n+1})=2^n$ by Theorem 3.2.51. Since g(w)=0

and $[\mathcal{Q}(w):\mathcal{Q}] = \phi(2^{n+1}) = 2^n = deg(g(x))$, we conclude that g(x) is irreducible over \mathcal{Q} by Theorem 3.2.26, and hence g(x) is irreducible over \mathcal{Z} because g(x) is monic.

QUESTION 4.11.18 Let p be a prime number. Show that $\Phi_p(x) = x^{p-1} + x^{p-2} + x^{p-3} + \cdots + x + 1$. Recall that $\Phi_p(x)$ is the pth cyclotomic polynomial.

Solution: By Theorem 3.2.49 we have $x^p-1=\prod_{d|p}\Phi_d(x)=\Phi_1(x)\Phi_p(x)$. Since $\Phi_1(x)=x-1$, we have $\Phi_p(x)=(x^p-1)/(x-1)$. Use long division and then we get $\Phi_p(x)=x^{p-1}+x^{p-2}+x^{p-3}+\cdots+x+1$.

QUESTION 4.11.19 Let w be a primitive 15th root of unity. What is the minimum polynomial of w^3, w^5, w^9, w^{10} ?

Solution: Since $Ord(w)=15,\ Ord(w^i)=15/gcd(i,15)$ by Question 2.1.12. Hence $Ord(w^3)=5,\ Ord(w^5)=3,\ Ord(w^9)=5,\ Ord(w^{10})=3.$ Thus w^5,w^{10} are primitive 3rd roots of unity, and hence the minimum polynomial of $w^5=$ minimum polynomial of $w^{10}=\Phi_3(x)=x^2+x+1$ by Question 4.11.18. Also w^3,w^9 are primitive 5th roots of unity, and thus the minimum polynomial of $w^3=$ minimum polynomial of $w^9=\Phi_5(x)=x^4+x^3+x^2+x+1$ by Question 4.11.18.

QUESTION 4.11.20 Let E be the splitting field of a polynomial over a field F of characteristic 0 such that $[E:F]p^2q$ where p,q are prime numbers. Show that E has subfields K_1, K_2 such that $[K_1:F]=pq$, $[K_2:F]=p^2$.

Solution: By Theorem 3.2.43 we have $Ord(Aut_F(E)) = [E:F] = p^2q$. Thus by $Aut_F(E)$ has a subgroup H of order p and a subgroup D of order q by Theorem 1.2.43. Thus $H = Aut_{K_1}(E), D = Aut_{K_2}(E)$ by Theorem 3.2.43 where K_1, K_2 are subfields of E containing F. Hence $[E:K_1] = p$ and $[E:K_2] = q$. But $p^2q = [E:F] = [E:K_1][K_1:F] = (p)[K_1:F]$ and $p^2q = [E:F] = [E:K_2][K_2:F] = (q)[K_2:F]$ by Theorem 3.2.24. Thus $[K_1:F] = pq$ and $[K_2:F] = p^2$.

4.12 General Questions on Rings and Fields

QUESTION 4.12.1 Let p be a prime number. Show that $\Phi_{p^n}(x) = \Phi_p(x^{p^{n-1}})$. Then $\Phi_{32}(X)$ and $\Phi_{27}(x)$.

Solution: Let $g(x)=(x^{p^n}-1)/(x^{p^{n-1}}-1)$, and let w be a primitive p^nth root of unity. Then g(w)=0 because $Ord(w)=p^n$. Let $y=x^{p^{n-1}}$. Then $g(x)=(y^p-1)/(y-1)=y^{p-1}+y^{p-2}+\cdots+y+1=(x^{p^{n-1}})^{p-1}+(x^{p^{n-1}})^{p-2}+(x^{p^{n-1}})^{p-3}+\cdots+x^{p^{n-1}}+1=\Phi_p(x^{p^{n-1}})$ (note that $\Phi_p(y)=y^{p-1}+y^{p-2}+\cdots+y+1$ by Question 4.11.18). Then g(x) is a monic polynomial of degree $p^{n-1}(p-1)=\phi(p^n)$. Since $\Phi_{p^n}(x)$ is the minimum polynomial of w over $\mathcal Q$ and g(w)=0, we conclude that $\Phi_{p^n}(x)$ divides g(x). But $\Phi_p^n(x)$ and g(x) are both monic and have the same degree. Thus $\Phi_{p^n}(x)=g(x)=\Phi_p(x^{p^{n-1}})$.

Since $\Phi_2(x) = x + 1$ and $\Phi_3(x) = x^2 + x + 1$ by Question 4.11.18, we conclude that $\Phi_{32}(x) = \Phi_2(x^{16}) = x^{16} + 1$ and $\Phi_{27}(x) = \Phi_3(x^9) = x^{18} + x^9 + 1$.

QUESTION 4.12.2 Let $E = F(\alpha)$ be an extension field of a field F such that [E:F] is odd number. Show that $F(\alpha^2) = E = F(\alpha)$.

Solution: Clearly $F(\alpha^2) \subset F(\alpha)$. Now let $g(x) = x^2 - \alpha^2$ over $F(\alpha^2)$. Then α is a root of g(x). Suppose that $\alpha \notin F(\alpha^2)$. Then g(x) is irreducible over $F(\alpha^2)$, and thus $[F(\alpha):F(\alpha^2)]=deg(g(x))=2$. Thus by Theorem 3.2.24 we have $[F(\alpha):F]=[F(\alpha):F(\alpha^2)][F(\alpha^2):F]=2[F(\alpha^2):F]$ is an even integer, a contradiction. Thus $\alpha \in F(\alpha^2)$, and hence $F(\alpha)=F(\alpha^2)$.

QUESTION 4.12.3 Let $F = GF(p^n)$ be an extension field of Z_p and f(x) be an irreducible polynomial of degree m over Z_p . If f(x) has a root in F, then show that all the roots of f(x) are in F and m divides n.

Solution: By Theorem 3.2.45 we conclude that $GF(p^n)$ is a Galois extension of Z_p . Since f(x) has a root in $GF(p^n)$ and f(x) is irreducible over Z_p , we conclude that all the roots of f(x) are in $F = GF(p^n)$ by Theorem 3.2.48, and thus f(x) has no multiple roots by Theorem 3.2.33. Since $x^{p^n} - x = \prod_{a \in GF(p^n)} (x-a)$ by Question 4.8.6 and all the roots of f(x) are in $GF(p^n)$ and f(x) has no multiple roots, we conclude that f(x) divides $x^{p^n} - x$. Thus deg(f(x)) = m divides n by Question 4.8.17.

QUESTION 4.12.4 Let p be a prime number. Show that $x^p - x - a$ is irreducible over \mathcal{Z}_p for every nonzero $a \in \mathcal{Z}_p$.

Solution: Let $g(x) = x^p - x - a$, and let $c \in Z_p$. Since $c^p = c$, we have $g(c) = c^p - c - a = c - c - a \neq 0$ because $a \neq 0$. Suppose that g(x) is reducible over Z_p . Then $g(x) = P_1(x)P_2(x)...P_m(x)$ where each $P_i(x)$ is irreducible over Z_p and of degree ≥ 2 and $m \geq 2$. Since $p = deg(g(x)) = deg(P_1(x)) + deg(P_2(x)) + \cdots + deg(P_m(x))$ is a prime number, there is an i and a k such that $gcd(deg(P_i(x)), deg(P_k(x))) = 1$. Let $m = deg(P_i(x)), j = deg(P_k(x)),$ and let β be a root of $P_i(x)$ where $\beta \in GF(p^m)$. Let $d \in Z_p$. Then $g(\beta + d) = (\beta + d)^p - (\beta + d) - a = \beta^p + d^p - \beta - d - a = \beta^p + d - \beta - d - a = \beta^p - \beta - a = g(\beta) = 0$ (Recall that $(x+y)^p = x^p + y^p$ by Question 4.3.20). Thus $\beta, \beta + 1, \beta + 2, ..., \beta + (p-1)$ are all the roots of g(x). Thus all the roots of $P_k(x)$ are in $GF(p^m)$. Hence $j = deg(P_k(x))$ divides m by Question 4.12.3, a contradiction since $deg(P_k(x)) \geq 2$ and gcd(m, j) = 1. Thus $g(x) = x^p - x - a$ is irreducible over \mathcal{Z}_p for every nonzero $a \in \mathcal{Z}_p$.

QUESTION 4.12.5 Write $g(x) = x^1 5 + 1$ as a product of cyclotomic polynomials, and hence write g(x) as a product of irreducible polynomials over Q

Solution: Note that every primitive 30th root of unity is a root of g(x), and thus g(x) has exactly $\phi(30) = 8$ roots of this kind by Theorem 3.2.49. Now every primitive 10th root of unity is a root of g(x), because if w is a primitive 10th root of unity, then $w^10 = 1$ and $w^5 = -1$, and hence $w^{15} + 1 = w^{10}w^5 + 1 = 1(-1) + 1 = 0$. Thus g(x) has exactly $\phi(10) = 4$ roots of this kind. Also, every primitive 6th root of unity is a root of g(x) because if w is a primitive 6th root of unity, then $w^6 = 1$ and $w^3 = -1$, and hence $w^{15} + 1 = w^{12}w^3 + 1 = (1)(-1) + 1 = 0$. Hence g(x) has exactly $\phi(6) = 2$ roots of this kind. It is clear that -1 is a root of g(x). Thus we found all the roots of g(x). Hence $g(x) = x^{15} + 1 = (x + 1)\Phi_{30}(x)\Phi_{10}(x)\Phi_{6}(x)$.

QUESTION 4.12.6 Lest $S = \{f(x) \in Z_2[x] : deg(f(x)) = 9 \text{ and } f(x) \}$ has no multiple roots and all roots of f(x) are in GF(16). Recall that GF(16) is the finite field with 16 elements. How many elements does S have?

Solution: Let $g(x) \in S$. Since all roots of g(x) in GF(16) and g(x) has no multiple roots, we conclude that g(x) divides $x^{2^4} - x$, and hence $g(x) = P_1(x)P_2(x)...P_m(x)$ where each $P_i(x)$ is irreducible over Z_2 , and thus $deg(P_k(x))$ divides 4 by Question 4.8.17 for each $k \ 1 \le k \le m$. Thus each $P_i(x)$ has degree 1, or 2, or 4. Let

 n_1 = number of irreducible polynomials of degree 1 over Z_2 , n_2 = number of irreducible polynomials of degree 2 over Z_2 , and n_4 = number of irreducible polynomials of degree 4 over Z_2 . We know that $n_1 + 2n_2 + 4n_4 = 2^4 = 16$. It is clear $n_1 = 2$, and we know that $n_2 = 1$, and hence $n_4 = (16 - 4)/4 = 3$. Since deg(g(x)) = 9 and it has no multiple roots, we conclude that g(x) must be a product of two distinct irreducible polynomial over Z_2 of degree 4 and a polynomial of degree 1. Hence g(x) has exactly 6 choices. Thus S has exactly 6 elements.

QUESTION 4.12.7 (Compare with Question 4.5.16) Let M be a maximal ideal of a commutative ring R with 1, and let $H = \{f(x) \in R[x] : f(0) \in M\}$. Show that $R[X]/H \cong R/M$ is a field, and hence H is a maximal ideal of R[x].

Solution: Let Φ be a map from R[x] into R/M such that $\Phi(f(x)) = f(0) + M$. It is easily verefied that Φ is a ring-homomorphism. Now let $a + M \in R/M$, and let f(x) = x + a. Then $\Phi(f(x)) = a + M$. Thus Φ is ONTO. Now $Ker(\Phi) = \{f(x) \in R[x] : f(0) \in M\} = H$. Thus $R[x]/H \cong R/M$. Since R/M is a field (because M is a maximal ideal of R[x]/M is a field, and hence M is a maximal ideal of R[x]/M by Theorem 3.2.1.

QUESTION 4.12.8 Find an example of a ring that has two distinct prime ideals, say P, and N such that $P \cap N$ is not a prime ideal.

Solution: Let $R = Z_{12}$. Then $P = 2Z_{12}$, $N = 3Z_{12}$ are prime (maximal) ideals of R by Question 4.4.16. Now $P \cap N = 6Z_{12} = \{0, 6\}$ is not a prime ideal of R, for $(2)(3) \in 6Z_{12}$ but neither $2 \in 6Z_{12}$ nor $3 \in 6Z_{12}$.

QUESTION 4.12.9 Show that Z[x] has a maximal ideal N such that $Z[x]/N \cong Z/5Z$.

Solution: Let $H = \{f(x) \in Z[x] : f(0) \in 5Z\}$. Then H is a maximal ideal of Z[x] by Question 4.12.7 because 5Z is a maximal ideal of Z.

QUESTION 4.12.10 In \mathcal{Z} , let A = (2) and B = (8). Show that A/B is isomorphic to Z_4 as groups but not as rings.

Solution: $S = \{B, 2 + B, 4 + B, 6 + B\}$ is the set of all elements of A/B. Now (2+B) = A/B, i.e., A/B is cyclic generated by the element

2+B. Thus $A/B\cong Z_4$ being cyclic groups. Now Z_4 has 1 as the multiplicative identity, but A/B does not have a multiplicative identity, for (2+B)(2+B)=4+B, (4+B)(4+B)=B, (6+B)(6+B)=4+B. Thus A/B is not isomorphic to Z_4 as rings.

QUESTION 4.12.11 Show that the number of reducible polynomials over Z_p of the form $x^2 + ax + b$ is p(p+1)/2. How many irreducible polynomials over Z_p are there of the form $x^2 + ax + b$?

Solution: For a polynomial of the form $f(x) = x^2 + ax + b$ is reducible over Z_P iff either f(x) has a root of multiplicity 2 or f(x) has two distinct roots. Now there are exactly p of the first kind and (pchoose2) = P(p-1)/2 of the second kind. Thus the total number is $p+p(p-1)/2 = (2p+p^2-p)/2 = p(p+1)/2$.

Number of all polynomials of the form $x^2 + ax + b$ over Z_p is p^2 because there are exactly p choices for the values of a and also there are exactly p choices for the values of b. Since number of all reducible polynomials over Z_p of the form $x^2 + ax + b$ is p(p+1)/2, we conclude that the number of irreducible polynomials over Z_p of the form $x^2 + ax + b$ is $p^2 - p(p+1)/2 = (2p^2 - p^2 - p)/2 = p^2 - p/2 = p(p-1)/2$.

Bibliography

- [1] . R. Durbin, Modern Algebra, Wiley & Sons, Inc. (1979).
- [2] . A. Gallian, Contemporary Abstract Algebra, Fourth Edition, Houghton Mifflin Company (1998).
- [3] . N. Herstein, Topics in Algebra, Wiley & Sons, Inc. (1975).

Index