LECTURE

1

THE REAL NUMBERS: SOME BASIC CONCEPTS

The set of real numbers, denoted by \mathbb{R} , is a totally ordered field $(\mathbb{R}, +, \cdot, >)$

meaning that

- $(\mathbb{R}, +, \cdot)$ is a field, where 0 and 1 are the neutral elements of + and \cdot , respectively (notice that $0 \neq 1$);
- \geq is an order relation on \mathbb{R} , i.e., a binary relation, which is reflexive, transitive and antisymmetric;
- \geq is total, i.e., $\forall x, y \in \mathbb{R}$ we have $x \geq y$ or $y \geq x$;
- \geq is compatible with +, i.e., $\forall x, y, z \in \mathbb{R}$ we have $x + z \geq y + z$ whenever $x \geq y$;
- \geq is compatible with \cdot , i.e., $\forall x, y \in \mathbb{R}$ s.t. $x \geq 0$ and $y \geq 0$, we have $xy \geq 0$.

As usual, we associate to \geq the inverse order relation \leq as well as the strict order relations > and <, defined for any $x, y \in \mathbb{R}$ by

$$x \le y \Leftrightarrow y \ge x;$$

 $x > y \Leftrightarrow x \ge y \text{ and } x \ne y;$
 $x < y \Leftrightarrow y > x.$

Proposition 1.1 We have $x^2 \ge 0$ for all $x \in \mathbb{R}$. Consequently, 1 > 0.

Definition 1.2 For any subset A of \mathbb{R} we introduce the following (possibly empty!) sets

$$lb(A) := \{ x \in \mathbb{R} \mid x \le a, \, \forall a \in A \};$$

$$ub(A) := \{ x \in \mathbb{R} \mid x \ge a, \, \forall a \in A \}.$$

A number $x \in \mathbb{R}$ is said to be a

- lower bound of A if $x \in lb(A)$;
- upper bound of A if $x \in ub(A)$;
- least element (or minimum) of A if $x \in A \cap lb(A)$;
- greatest element (or maximum) of A if $x \in A \cap ub(A)$.

Remark 1.3 Every set $A \subseteq \mathbb{R}$ has at most one least element and, if it exists, we denote it by min A. Similarly, A has at most one greatest element and, if it exists, we denote it by max A.

Definition 1.4 A subset A of \mathbb{R} is said to be

- bounded (from) below, if A has lower bounds, i.e., $lb(A) \neq \emptyset$;
- bounded (from) above, if A has upper bounds, i.e., $ub(A) \neq \emptyset$;
- bounded, if A is both bounded above and below;
- unbounded, if A is not bounded.

Remark 1.5 The empty set is bounded. More precisely, we have

$$lb(\emptyset) = ub(\emptyset) = \mathbb{R}.$$

Example 1.6 (i) $A = \{a \in \mathbb{R} \mid a \geq 2\}$: unbounded (since it is not bounded above), bounded below by any $v \leq 2$, min A = 2.

- (ii) $A = \{a \in \mathbb{R} \mid 0 < a < 1\}$: bounded (above by any $u \ge 1$, below by any $v \le 0$), no minimum, no maximum.
- (iii) $A = \left\{ \frac{1}{n} \mid n \in \mathbb{N}^* \right\}$: bounded (above by any $u \ge 1$, below by any $v \le 0$), $\max A = 1$, no minimum.
- (iv) Every nonempty finite set has a minimum and a maximum.

Proposition 1.7 (Completeness Axiom) The totally ordered field of real numbers $(\mathbb{R}, +, \cdot, \geq)$ is complete, meaning that every nonempty set $A \subseteq \mathbb{R}$ that is bounded above has a least upper bound, denoted by $\sup A$ and called the supremum of A. In other words, we have

$$\sup A := \min(ub(A)).$$

Alternatively, every nonempty set $A \subseteq \mathbb{R}$ that is bounded below has a greatest lower bound, denoted by inf A and called the infimum of A. In other words,

$$\inf A := \max(lb(A)).$$

Example 1.8 (i) $A = \{a \in \mathbb{Z} \mid -\frac{3}{2} \le a \le \sqrt{2}\}$: $\max A = \sup A = 1$, $\min A = \inf A = -1$. (ii); $A = \{a \in \mathbb{R} \mid 0 < a \le 1\}$: $\max A = \sup A = 1$, $\inf A = 0$, no minimum.

Remark 1.9 The Completeness Axiom is also known in the literature as the Supremum Property, since it shows that every nonempty subset of \mathbb{R} which is bounded above has a supremum in \mathbb{R} . Its counterpart shows that every nonempty subset of \mathbb{R} which is bounded below has an infimum in \mathbb{R} . Indeed, let $A \subseteq \mathbb{R}$, $A \neq \emptyset$, bounded below. Then the set $-A = \{-a \mid a \in A\}$ is nonempty and bounded above, so, by the Supremum Property, it has a supremum in \mathbb{R} . Thus we have $\inf A = -\sup(-A)$.

Remark 1.10 Let $A \subseteq \mathbb{R}$ be a nonempty set. If A has a greatest element (resp. a least element), then $\sup A = \max A$ (resp. $\inf A = \min A$). Conversely, if A is bounded above and $\sup A \in A$ (resp. A is bounded below and $\inf A \in A$), then $\sup A = \max A$ (resp. $\inf A = \min A$).

Definition 1.11 We attach to \mathbb{R} two elements $-\infty$ and $+\infty$ (or ∞) s.t.

$$\forall x \in \mathbb{R}, -\infty < x \text{ and } x < +\infty.$$

The set $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$ is called the extended real number system.

If a set $A \subseteq \mathbb{R}$ is not bounded above, we define $\sup A := +\infty$.

If a set $A \subseteq \mathbb{R}$ is not bounded below, we define $\inf A := -\infty$.

Also, we define $\sup \emptyset := -\infty$ and $\inf \emptyset := +\infty$ (see Remark 1.5!).

We denote by $\mathbb{N} := \{1, 2 := 1 + 1, 3 := 1 + 1 + 1, \dots\}$ the set of natural numbers.

Remark 1.12 \mathbb{N} is the smallest inductive subset of \mathbb{R} w.r.t. inclusion (a set $A \subseteq \mathbb{R}$ is said to be inductive if $1 \in A$ and $x+1 \in A$ whenever $x \in A$). We have $\min \mathbb{N} = 1$ and for every $n \in \mathbb{N}$, n < n+1 and $\{x \in \mathbb{N} \mid n < x < n+1\} = \emptyset$. Every nonempty subset of \mathbb{N} has a least element.

Proposition 1.13 (Principle of Mathematical Induction) Let $n_0 \in \mathbb{N}$ and let P(n) be a property defined for any number $n \in \mathbb{N}$, $n \ge n_0$. Suppose that the following two conditions hold:

- **I.** $P(n_0)$ is true;
- **II.** If P(k) is true for some $k \in \mathbb{N}$, $k \geq n_0$, then P(k+1) is also true. Then we have
 - **III.** P(n) is true, $\forall n \in \mathbb{N}, n \geq n_0$.

The following result is a consequence of the Completeness Axiom (Supremum Property).

Corollary 1.14 (Archimedean Property) The set of natural numbers \mathbb{N} is not bounded from above. In other words, for every $x \in \mathbb{R}$ there exists $n \in \mathbb{N}$ s.t. n > x.

Proof. Suppose $x \ge n$, $\forall n \in \mathbb{N}$. Then \mathbb{N} is nonempty and bounded above by x, so, by Theorem 1.7, it has a supremum $u \in \mathbb{R}$. Since u-1 < u, u-1 cannot be an upper bound of \mathbb{N} . This means that $\exists m \in \mathbb{N}$ s.t. u-1 < m. Thus, $u < m+1 \in \mathbb{N}$, which is a contradiction to the fact that u is an upper bound of \mathbb{N} .

The sets of integer numbers and rational numbers are defined as

$$\mathbb{Z} := \{ m - n \mid m, n \in \mathbb{N} \};$$

$$\mathbb{Q} := \{ mn^{-1} \mid m \in \mathbb{Z}, n \in \mathbb{N} \}.$$

Remarks 1.15 1. For every $x \in \mathbb{R}$ there is a unique $k \in \mathbb{Z}$ such that $k \leq x < k+1$; we denote this k by [x] or |x| and call it the integer part or floor of x.

- **2.** For every $n \in \mathbb{N}$ and $x \in \mathbb{R}$, $x \geq 0$, there exists a unique number $y \in \mathbb{R}$, $y \geq 0$ such that $x = y^n$ (when $n \geq 2$ we denote $y = \sqrt[n]{x}$).
 - **3.** We have $\sqrt{2} \notin \mathbb{Q}$. Therefore the set $\mathbb{R} \setminus \mathbb{Q}$ of the so-called irrational numbers is nonempty.

As a consequence of the Archimedean Property we obtain the following result:

Corollary 1.16 (Density of \mathbb{Q} in \mathbb{R}) For any real numbers $a, b \in \mathbb{R}$ such that a < b there exists $x \in \mathbb{Q}$ such that a < x < b.

Proof. Let $a, b \in \mathbb{R}$ such that a < b. By the Archimedean Property (Corollary 1.14) we can find a number $n \in \mathbb{N}$ s.t. $n > \frac{1}{b-a}$, i.e.,

$$nb - 1 > na \tag{1.1}$$

Case 1: If $nb \in \mathbb{Z}$ then (1.1) shows that $a < \frac{nb-1}{n} < b$, hence $x := \frac{nb-1}{n} \in \mathbb{Q}$ satisfies the property in demand.

Case 2: If $nb \notin \mathbb{Z}$ then we consider the integer part of nb, namely m := [nb]. In this case we have

$$m < nb < m+1. \tag{1.2}$$

By (1.1) and (1.2) we deduce that m > nb - 1 > na hence na < m < nb. Thus, in this case the number $x := \frac{m}{n} \in \mathbb{Q}$ satisfies a < x < b.

Remark 1.17 $(\mathbb{Q}, +, \cdot, \geq)$ is a totally ordered field but, in contrast to $(\mathbb{R}, +, \cdot, \geq)$, it does not satisfy the Completeness Axiom. However, for every $x \in \mathbb{R}$ we have

$$\sup\{y \in \mathbb{Q} \mid y < x\} = x = \inf\{y \in \mathbb{Q} \mid y > x\};$$

$$\sup\{z \in \mathbb{R} \setminus \mathbb{Q} \mid z < x\} = x = \inf\{z \in \mathbb{R} \setminus \mathbb{Q} \mid z > x\}.$$

Next we present some properties which are of practical interest.

Proposition 1.18 If $A \subseteq B \subseteq \mathbb{R}$ are nonempty bounded sets, then

$$\inf B < \inf A < \sup A < \sup B$$
.

Proposition 1.19 If A and B are nonempty subsets of \mathbb{R} which are bounded above, then $A \cup B$ is bounded above and the following relations hold:

$$\sup(A \cup B) = \max\{\sup A, \sup B\};$$

$$\inf(A \cup B) = \min\{\inf A, \inf B\};$$

Proposition 1.20 For any nonempty subsets A and B of \mathbb{R} , we have

$$\sup(A+B) = \sup A + \sup B,$$

$$\inf(A+B) = \inf A + \inf B,$$

where $A + B := \{a + b \mid a \in A, b \in B\}.$

If $f: D \to \mathbb{R}$ is a function, defined on a nonempty set D, then it will be convenient to denote

$$\inf_{x \in D} f(x) := \inf f(D) \quad \text{ and } \quad \sup_{x \in D} f(x) := \sup f(D),$$

where $f(D) = \text{Im}(f) := \{f(x) \mid x \in D\}$ represents the function's image.

In particular, if $D = \mathbb{N}$, a function $f : \mathbb{N} \to \mathbb{R}$ represents a sequence $(x_n)_{n \in \mathbb{N}}$. In this case we will write

$$\inf_{n \in N} x_n := \inf\{x_n \mid n \in \mathbb{N}\} \quad \text{and} \quad \sup_{n \in N} x_n := \sup\{x_n \mid n \in \mathbb{N}\}.$$

The following result is another important consequence of the Completeness Axiom (Supremum Property).

Corollary 1.21 (Nested Interval Property) Consider a sequence of closed intervals $I_n = [a_n, b_n] \subseteq \mathbb{R}$, with $a_n < b_n$ for all $n \in \mathbb{N}$. If $I_n \supseteq I_{n+1}$ for all $n \in \mathbb{N}$, i.e.,

$$I_1 \supseteq I_2 \supseteq \ldots \supseteq I_n \supseteq I_{n+1} \supseteq \ldots$$
 is a nested sequence of closed intervals,

then we have $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$ (i.e., $\exists x \in \mathbb{R} \text{ s.t. } \forall n \in \mathbb{N}, x \in I_n$).

Proof. Let $A = \{a_k \mid k \in \mathbb{N}\}$. Then, $\forall n \in \mathbb{N}$, b_n is an upper bound of A. Hence A is nonempty and bounded above. By the Completeness Axiom (Proposition 1.7), we deduce that A has a supremum

in
$$\mathbb{R}$$
. Thus, $\forall n \in \mathbb{N}$, $a_n \leq \sup A \leq b_n$. This shows that $\sup A \in \bigcap_{n=1}^{\infty} I_n$.

Definition 1.22 A set $V \subseteq \mathbb{R}$ is said to be

- a neighborhood of a number $x \in \mathbb{R}$, if there exists a real number $\varepsilon > 0$ such that $(x \varepsilon, x + \varepsilon) \subseteq V$;
- a neighborhood of $-\infty$, if there exists a number $a \in \mathbb{R}$ such that $(-\infty, a) \subseteq V$;
- a neighborhood of $+\infty$, if there exists a number $a \in \mathbb{R}$ such that $(a, +\infty) \subseteq V$.

Proposition 1.23 Let $x \in \overline{\mathbb{R}}$. Then

- (i) if $x \in \mathbb{R}$ and $V \in \mathcal{V}(x)$, then $x \in V$.
- (ii) if $V \in \mathcal{V}(x)$ and $U \subseteq \mathbb{R}$ s.t. $V \subseteq U$, then $U \in \mathcal{V}(x)$.
- (iii) if $U, V \in \mathcal{V}(x)$, then $U \cap V \in \mathcal{V}(x)$.

Theorem 1.24 Let $A \subseteq \mathbb{R}$ be a nonempty set, which is bounded from below by $\alpha \in \mathbb{R}$. Then the following assertions are equivalent:

- $1^{\circ} \inf A = \alpha$.
- 2° For every real number $\beta > \alpha$ there exists $x \in A$ such that $x < \beta$.
- 3° For every real number $\varepsilon > 0$ we have $A \cap [\alpha, \alpha + \varepsilon) \neq \emptyset$.
- 4° For every $V \in \mathcal{V}(\alpha)$ we have $V \cap A \neq \emptyset$.

Corollary 1.25 Let $A \subseteq \mathbb{R}$ be a nonempty set, which is bounded from above by $\alpha \in \mathbb{R}$. Then the following assertions are equivalent:

- $1^{\circ} \sup A = \alpha.$
- 2° For every real number $\beta < \alpha$ there exists $x \in A$ such that $x > \beta$.
- 3° For every real number $\varepsilon > 0$ we have $A \cap (\alpha \varepsilon, \alpha] \neq \emptyset$.
- 4° For every $V \in \mathcal{V}(\alpha)$ we have $V \cap A \neq \emptyset$.