éalisation d'un mailleur de type Delaunay en 2D

Thomas Philibert - Matthieu Nastorg

- Tiffanie Carlier

Les points clés de la méthode

Création d'une boîte englobante Création d'un maillage de départ à deux triangles Ajout des points selon le critère du noyau de Delaunay

pour retrouver les arêtes manquantes

Identification des zones connexes

Suppression
des zones ne
concernant
pas la
géométrie

Ajout de points sur les segments du maillage

Passage à une géométrie complexe demande un basculement plus élaboré boite englobante + méthode du noyau de delaunay obtention du même Mise au point d'une méthode de résultat basculement par identification des croisements avec un segments Test de la nouvelle fonction sur l'exemple précédent

Dans le cas de plusieurs basculements

être capable d'identifier l'ordre des basculements

après maillage de la boîte englobante

