Esercizi sui numeri finiti con Matlab Prof. V. Ruggiero

- 1. Realizzare un M-function file per il calcolo di $\sin(x)$ usando lo sviluppo in serie di Taylor in modo che l'errore commesso non superi 10^{-3} nell'intervallo $[0, \pi]$. Usare formule trigonometriche per realizzare il calcolo per altri valori di x.
- 2. Implementare in Matlab il calcolo di π usando i seguenti due differenti metodi:
 - sviluppo in serie di Taylor di $\arctan(1) = \frac{\pi}{4}$:

$$\pi = 4\left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots\right)$$

• sviluppo in serie di Taylor di $\arcsin(1/2) = \pi/6$:

$$\pi = 6 \left(\frac{1}{2} + \frac{1}{2^3} \frac{1}{2 \cdot 3} + \frac{1}{1 \cdot 3} \frac{1}{2^5} \frac{1}{2 \cdot 4 \cdot 5} + \frac{1}{1 \cdot 3 \cdot 5} \frac{1}{2^7} \frac{1}{2 \cdot 4 \cdot 6 \cdot 7} + \dots \right)$$
$$= 6 \left(0.5 + \frac{(0.5)^3}{2 \cdot 3} + \frac{(0.5)^5}{(1 \cdot 3)(2 \cdot 4 \cdot 5)} + \frac{(0.5)^7}{(1 \cdot 3 \cdot 5)(2 \cdot 4 \cdot 6 \cdot 7)} + \dots \right)$$

Volendo ottenere un errore relativo non superiore a 10^{-3} , quanti termini occorre considerare nei due casi?

3. Implementare con una M-function Matlab il calcolo delle soluzioni di una equazione di secondo grado in modo stabile.