

Weight- and output-stationary reconfigurable 2D systolic array-based Al accelerator and mapping on Cyclone IV GX

SOC - Bei Pei, Marin Cao, Xinyuan Cai, Andy Zhang, David Wang

Motivation:

As machine learning models grow in complexity, it becomes increasingly important to keep efficiency in mind. A 2D systolic is able to deliver significant performance boosts by effectively calculating MAC (Multiply and Accumulate) operations. We designed a 2D systolic array equipped with weight stationary mapping and output stationary mapping and experimented with various methods of

Mapping on FPGA (Cyclone IV GX)

increasing efficiency.

	VGGNet
Frequency	125.69 MHz
Dynamic Power	27.4 mW
TOPs/W	0.588TOPs/W
TOPs/s	0.0161TOPs
Registers	22,221
Logical Elements	12,098

2D Systolic Array

Reconfigurable 8 x 8 array architecture for both weight and output stationary mapping.

Alpha 1: Resnet
Quantized and compressed
convolution layer on Resnet20 to fit
our 8x8 2D systolic array

VGGNet & Resnet

4 bit activation and weight quantization for integer operations in MAC

	Accuracy (Cifar 10)
VGGNet16	92.67%
Resnet20	90.94%

Alpha 2: Structured Pruning on VGGNet

- 40% of the output channels with the smallest L1 norm puned
- 3/8 columns in 2D systolic array can be skipped, leading to lower power usage

Alpha 3: Tiling 64 8x8 arrays for 64x64 convolution layer in Resnet20

Acknowledgements:

Starter code and main project outline are from Professor Mingu Kang, UCSD ECE 284.