1 Short Title: Short title: Melinis minutiflora seed rain 2 3 Seed rain of molasses grass (Melinis minutiflora) in the Cerrado 4 Carlos Romero Martins¹, Roberto Brandão Cavalcanti² and John Du Vall Hay³ 5 6 7 ¹Environmental Analyst, Instituto Brasileiro do Meio Ambiente e Recursos Naturais, 8 Ed. Sede, Brasília, DF Brazil, 70818-900; ²Professor, Departamento de Zoologia, 9 Universidade de Brasilia, Brasília, DF, Brazil, 70910-900; ³Retired Professor (ORCID 10 0000-0002-97733-7433), Departamento de Ecologia, Universidade de Brasilia, Brasília, DF, Brazil, 70910-900 11 12 13 Author for correspondence: Author 3; Email: jhay@unb.br) 14 15 16 Abstract 17 Seed rain is an important pathway for the introduction, maintenance and expansion of 18 invasive species. In Brazil an important invasive species is molasses grass Melinis 19 minutiflora (P. Beauv.) and to quantify the importance of primary dispersal we 20 collected seed rain of M. minutiflora in three consecutive years in four different 21 treatments in a Cerrado community of Central Brazil. Two control treatments were 22 used in plots of native Cerrado, the first in areas with low coverage of M. minutiflora 23 (LC) and the second (HC) under tussocks of M. minutiflora (HC). The third treatment 24 was in plots that were burned once in and then allowed to naturally recover (FM) and 25 the fourth treatment was in plots that were burned once and then maintained free of

Commented [JH1]: Revisar após para incluir dados

regeneration of *Melinis* through topical spraying with a herbicide and manual removal of new sprouts (IMM). Seed rain of *Melinis* was collected using plastic trays placed on the ground in each treatment (N=16 in each treatment) at three dates during the dispersal period of *Melinis*. The initial coverage of *M. minutiflora* in the study area was approximately 50% varying between 13 and 75% in different plots. Seed rain was variable between years ranging from 856 to 23059 viable caryopses/m2. There were significant differences in the number of viable caryopses collected in each treatment, both among collection dates within the same year (F=) and treatments (F=) with a high variability among collection trays in all collections. The FM plots had a large reduction in seed rain in the first year but attained values similar to the LC plots after two years. The IMM plots had most no viable caryopses on all collections. The data indicated that dispersal limitation was high in all treatments so primary dispersal is probably not the cause of extensive spread of this invasive species.

Key Words: biological invasion, Brazil, seed dispersal

Commented [JH2]: Acho neste caso podemos usar os valores /m2, mas no texto vamos usar os valores encontrados sem ajuste para m2.
Roberto, favor inserir os valores dos testes estatísticas.
Also, considering that the HC treatment placed the seed trays under tussocks, this always resulted in very high number of seeds (total and fertile). It's probably better to make and analysis using only the LC, FM and ICC plots.

43 44 **Management Implications** 45 Melinis minutiflora has been considered to be a highly invasive species in 46 conservation areas in Brazil, but there have been few studies on its capacity to 47 colonize new areas. This study indicates that this species has strong primary dispersal 48 limitation and as such has limited capacity to spread from areas where it is established 49 although once established it produces a large quantity of viable caryopses. The use of 50 a single fire to control *M. minutiflora* does not appear to be effective as a long-term 51 strategy but the use of herbicides combined with cutting should be effective in the 52 reduction of its density and persistence in the plant community. 53

Introduction

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

Seed dispersal has been studied in many plant species in many different communities (Schupp et al. 2010). Different vectors are important in seed dispersal, ranging from wind to animals, and the shape, weight, and location of the seed on the plant has an influence on the probable type of vector (Tamme et al. 2014; Thomson et al. 2011; Willson and Traveset 2000). Measurement of the dispersal distance of seeds or diaspores in natural communities is not an easy task and has been done through direct or indirect methods, see Bullock et al. (2006) for a review of methods. Some authors have constructed mathematical models to compare actual and theoretical distributions (for example, Adams et al. 2015; Greene and Johnson 1989). The importance of seed rain on plant community assemblage (Myers and Harms 2009; Marteinsdóttir 2014) and in restoration of plant communities (Arruda et al. 2018; Kettenring and Galatowitsch 2011; Schott and Hamberg 1997; dos Santos et al. 2020) have been shown as important lines of research. Brazil is home to a vast array of plant species and a large number are present in the Cerrado, the second largest biome in Brazil, occupying over 1.8 million km². The Cerrado has a rich flora, with more than 12000 taxa, distributed in 171 families and 1454 genera (Mendonça et al. 2008). However, studies of dispersal of Cerrado fruits and seeds are relatively recent and most of these studies have focused on community analyses (Ishara and Maimoni-Rodella 2011; Mariano et al. 2019; Olivera and Moreira 1992; Reis et al 2012; Silberbauer-Gottsberger 1984; Vieira et al. 2002) although there are some studies on individual species (Farias et al. 2015; Golin et al. 2011). The dispersal strategies of Cerrado species has also been recently evaluated

from an evolutionary standpoint by Kuhlmann and Ribeiro (2016).

Over the last several decades, the scientific community has shown increasing preoccupation with biological invasions (Latombe et al. 2017; Simberloff et al. 2013) and invasions by plants or animals have caused significant alterations to natural ecosystems (see revisions by Ehrenfeld 2010; Sharma et al. 2005; Vilà et al. 2011; Williams and Baruch 2000). Brazil is no exception and in several conservation areas the invasion by alien grasses, especially molasses grass (Melinis minutiflora (P. beauv.)), signal grass (Urochloa) decumbens. Staph. R Webster), and jaraguá (Hypharrenia rufa (Nees) Staph) has been considered to be a serious threat to the diversity of these areas (Damasceno et al. 2018; Klink and Machado 2005; Pivello et al. 1999; Sampaio and Schmidt 2013). These grass species were introduced into Brazil in commercial ventures for forage or accidentally and according to some authors (Baruch et al. 1985; Pivello et al. 1999) due to their highly competitive ability have been able to spread. DiVittorio et al. (2007) showed that dispersal was important in the maintenance of several exotic species in a temperate grassland. Other studies on the dispersal of invasive grasses have been done by Quinn et al (2011) and Saura-Mas and Lloret (2005). Previous studies Melinis minutiflora in Brazil have been done with different objectives. These studies include competition (Zenni et al. 2019), control methods (Martins et al. 2017; Sato et al. 2015), effect of fire (Damasceno and Fidelis 2020; Gorgone-Barbosa et al. 2020), forage quality (Bauer et al. 2008; Gomide et al. 1969), germination and seed quality (Carmona and Martins 2010), growth and productivity (Eller and Oliveira 2017), impacts on the surrounding plant community (César et al. 2014; Hoffmann and Haridasan 2008), reproduction (Silveira and Moraes 1996), and species distribution models (de Souza et al. 2017; Sciamarelli et al. 2011) among others. However, to our knowledge, there is only one other study quantifying

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

dispersal of caryopses of *M. minutiflora* either in the Brazilian Cerrado or elsewhere in the world (Xavier et al 2021).

The objectives of this three year study were: 1) to quantify seed rain of *M. minutiflora* in a Cerrado community, 2) compare seed rain of *M. minutiflora* among years, 3) to evaluate if there were differences in the percentage of fertile caryopses of *M. minutiflora* in the seed rain during the same year and between years, 4) to evaluate the effect of different management techniques on seed rain of *M. minutiflora* and 5) to calculate dispersal limitation.

Materials and Methods

Site description

The study area (15° 43' 53.3"S and 47° 55' 35.4"W) is located in Special Use Zone of the National Park of Brasilia, Brasília, DF, Brazil. The regional climate is the Aw type with rainy summers and dry winters. The study area is rectangular (50 x 70 m), subdivided into four blocks each containing six 10 x 10 m plots with a 1 m buffer zone between adjacent plots. For a detailed description of the study area and treatments applied in each plot see Martins et al. (2017).

Data collection

The aboveground coverage of all vegetation, and specifically M. minutiflora, in the study area was visually estimated in April 2003, April 2004 and April 2005. In each 10×10 m plot coverage data were collected in 15 quadrats (1×1 m), placing 5 quadrats along each of 3 parallel lines. Using the lower left corner of the plot as the origin the starting point of each line along the base line was determined using a random number table (min = 0 and max = 9) and the position of the five quadrats

along each line was also determined using a random number table (min = 0 and max = 9). The position of the lines and the quadrats used for estimation of aerial coverage was variable among plots and among years.

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

Seed rain of M. minutiflora was collected in 16 of the 24 plots in the study area (Fig. 1). Seed rain was collected using open topped plastic trays measuring 28 x 18 x 5 cm (504 cm² of collection area) placed on the soil surface. The raw values can be converted into the number per m² by multiplying the raw value by 19.84. The bottom of the trays was not perforated. Four trays were used in each plot where collection of seed rain was done. Two types of control plots were used and placement of the seed collection trays in these plots was subjective. In four control plots (LC = low coverage) the trays were placed in areas where M. minutiflora was not present or with few nearby individuals (> 1 m distant). In the other four control plots (HC = high coverage) the trays were placed underneath tussocks of M. minutiflora. In the Fire May plots (FM) and the IMM plots (IMM) the trays were placed equidistantly along a straight line connecting two opposite corners of the plot from the lower left to upper right. The FM plots were burned in May 2003 and then allowed to regenerate naturally. The IMM plots were also burned in May 2003 and were maintained free of regeneration of M. minutiflora by spot spraying with glyphosate (Roundup®, 480 g ai L-1, Monsanto) in January and April 2004 and manual removal of any new individuals or resprouts from January to March 2005.

Seed rain was collected in 2003, 2004 and 2005 during the dispersal period of *M. minutiflora* and the location of all trays was the same in each year both in the control plots and in the FM and IMM plots. In all years the trays were placed in the field on May 2nd prior to flowering of *M. minutiflora* in this region except for the FM plots when the trays were placed three days after passage of the prescribed fire (May

Commented [JH3]: Roberto, alterei esta parte. Deste modo, creio que as análises podem ser separadas também – LC vs. HC e FM vs. IMM. 5th 2003). The IMM plots were burned on May 6th 2003, but seed rain was not collected in these plots during 2003. Within each year, three collections of the seed rain were made: the first (t₁) on July 9th, the second (t₂) on July 23rd and the third (t₃) on September 25th. Although the number of days between each collection date within years was different (t_0 to $t_1 = 68$; t_1 to $t_2 = 14$; and t_2 to $t_3 = 64$) the same intervals were maintained among years. On each collection date the contents of each tray were removed and placed in a separate numbered paper bag and taken to the laboratory where all bags were stored at room temperature until processing. The seeds collected from each tray were processed in two stages: 1) caryopses of M. minutiflora were manually separated from all other seeds and 2) the caryopses of M. minutiflora were then separated into to two groups, fertile (containing caryopses) and non-fertile (without caryopses) using a General Seed Blower following the procedure described in Carmona and Martins (2010). After separation the number of seeds of M. minutiflora in each group was counted. Viability of the caryopses was not tested. Dispersal limitation based on the number of fertile caryopses that were collected in the trays over the entire collection period within the year for each treatment in each year was calculated following Xavier et al (2021).

171172

173

174

175

176

177

178

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

<mark>Statistical</mark> analyses

Comparisons of data on the coverage values was done using the mean value of the 15 values obtained in each plot for all vegetation and separately for *M. minutiflora*.

Comparisons among percentages of coverage were done using PAST 4.0 (Hammer et al. 2000). No transformation of the data was done prior to this analysis. Comparisons of seed rain was done using only data for fertile caryopses, as was done by Forcella et al. (1996). Since tray placement was different among treatments, analyses of annual

Commented [JH4]: Roberto, acho que precisamos melhorar a descrição sobre os métodos usados para analisar os dados

variation was done only using data from the LC and HC plots (objectives 1 and 2) and comparison of treatment effects were done between the FM and IMM plots (objective 4). These data were analyzed in the R environment. A Generalized Linear Model (GLM, with Poisson and Identity function) was used to answer questions about the number of viable seeds. A GLM model with binomial distribution was used to test for differences of viable caryopses among treatments (objective 3). Prior to analysis of coverage the values were arcsine transformed.

Results and Discussion

Dispersal of caryopses of Melinis minutiflora

Previous studies have indicated different modes of seed dispersal in *M. minutiflora*. D'Antonio et al. (2001) states that dispersal of *M. minutiflora* is anemochoric and this mode is also indicated by Hauser (2008) and CABI (2020). However, Barger et al. (2003) affirmed that since *M. minutiflora* does not possess a strong dispersal mechanism such as a plume for wind dispersal its ability to colonize new areas is limited. There are no studies on terminal velocity of any species in the genus *Melinis*, but Stokes (2010) under laboratory conditions collected data on distances of wind dispersal of *Melinis repens*, a congeneric species, and even at the highest velocity used the mean distance traveled by *M. repens* seeds was only around 1.5 m.

Considering that caryopses of *M. minutiflora* are slightly lighter than those of *M. repens* (Ansong and Pickering 2016) the mean distance traveled would probably would not be much greater. Silberbauer-Gottsberger (1984) considered that epizoochory is the dispersal mechanism of *M. minutiflora* and this is also reinforced by data from Ansong and Pickering (2016) who showed that seeds of *M. minutiflora* were retained on different types of fabrics. Endozoochory is probably not an

204 important factor in dispersal of M. minutiflora as was shown by Gardener et al. 205 (1993).206 207 Coverage 208 All plots initially contained a variable mixture of native Cerrado vegetation and M. 209 minutiflora. Prior to the start of data collection, the mean total aboveground coverage 210 in all 24 plots varied from 87 to 98% (94.9 \pm 2.65) and the percentage of M. 211 minutiflora in the total varied from 13 to 75% (47.75±18.20). There was no statistical 212 difference between the median total coverage in the subset of 16 plots used in this 213 experiment and the other 8 plots (U = 60, p = 0.824) and the median coverage of M. 214 minutiflora was also not statistically different between these groups (U = 43.50, p =215 0.220). Over the three years the median coverage of M. minutiflora in the control 216 plots varied. In the FM plots both total coverage and coverage of M. minutiflora 217 declined in 2004 but increased in 2005. In the IMM plots total coverage followed the 218 same pattern as in the FM plots, but coverage of M. minutiflora was reduced after one 219 year and was almost eliminated after two years (Fig. 2). 220

Commented [JH5]: Fiz esta figura usando SigmaPlot. Não tenho no meu Mac mas tenho um laptop com o programa instalado se precisar alterar algo.

221 Seed rain of M. minutiflora

222

223

224

225

226

227

228

Different methods have been tested to quantify seed rain (for example, see Bullock et al. 2006; Chabrerie and Allard 2005; Forcella et al. 1996; Koelmann and Goetze 1998). The traps used in this study are larger than those generally used in studies of seed rain but are similar in size to those used by Saura-Mas and Lloret (2005). This type of trap has the advantage of being simple and easily replicable but also the disadvantage of possibly being affected by environmental factors, principally wind, rain and the possibility of seed removal by animals. In this study the farthest distance

of a tray to the nearest potential seed source of M. minutiflora was approximately 6 m for trays near the center of the FM and IMM plots. Seed rain of M. minutiflora in the LC and HC plots was always statistically different () as was expected from the placement of the traps but both treatments had the same pattern among years with a slight decrease in absolute number between 2003 and 2004 and a larger decrease in 2005 (Tab. 1). Interannual differences in seed rain have also been shown in different species in other studies (Pilipavičius 2006; Urbanska and Fattorini 2000; Webster et al. 2003). The observed decrease in seed rain of M. minutiflora apparently was not associated with differences in rainfall since there is no clear relation with accumulated rainfall in the January to April period, 620.7, 1055.3 and 820.6 mm respectively (INMET 2019) at the nearest automatic meteorological station (≈6.5 km). This time period was chosen since it covers the interval from the middle to the end of the rainy season prior to flowering of M. minutiflora. The accumulated rainfall over the seed rain collection period (May to September) was also variable among years (135.6, 7.4 and 65.7 mm respectively). Small scale spatial variation in seed rain between trays within the same plots was high in all collections as was indicated by the values of the coefficient of variation in all collections, generally over 100%, even in the HC plots.

Commented [JH6]: Roberto, acho que vale a pena incluir esta análise embora é um resultado obvio devido à localização das bandeja. Todavia o padrão é semelhante nos dois tratamentos e creio isto pode ser afirmado.

Seed rain of fertile caryopses of M. minutifora

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

Seed rain was spatially variable over time within each year when compared by evaluating the number of trays with and without fertile caryopses at each collection date. Fertile caryopses were collected in all of the trays in all the collection dates only in the HC plots. In the LC plots almost all of the trays had fertile caryopses in the first and second collection but in third collection less than half of the trays contained fertile caryopses. In September 2003 the FM plots had a higher number of empty trays than

Commented [JH7]: Roberto, é possível comparar o número de bandejas sem sementes ao longo do tempo?

in 2004 and 2005 in this treatment. In the IMM plots, the September collections were always lower from the other two in this treatment. In each year the total number of traps with fertile caryopses always decreased during the dispersal period except for the traps in the HC treatment which always had fertile caryopses.

Insert analyses?

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

Apparently the majority of fertile caryopses of M. minutiflora were collected close to the seed source. This is similar to results reported by Saura-Mas and Lloret (2005) in their study of pampas grass (Cortaderia selloana (Schult. & Schult.f.) Axch. & Gordon) where the majority of seeds were collected within 0.5 m of the focal individuals. The majority of dispersed seeds of the annual grass, Vulpia ciliata ssp ambigua (Le Gall) Stace & Auquier, were also collected close to the source plants (Carey and Watkinson 1993). A study by Quinn et al. (2011) with two species of the grass Miscanthus showed that the majority of seeds were collected within 5 m of the source, but in their study seeds were released at 1.75 m above the ground, approximately 1 m higher than the average height of M. minutiflora, and seeds of Miscanthus are better adapted for wind dispersal than those of M. minutiflora. Differences in percentage of fertile caryopses of Melinis minutiflora Caryopses of M. minutiflora are formed synchronously (Loch and Souza 1999) and apparently can remain in the seedheads for several months. Although there are previous studies of the percentage of fertile caryopses in collections of M. minutiflora (Aires et al. 2013; Carmona and Martins 2010) there are no previous studies of differences of percentages of fertile caryopses in the seed rain of M. minutiflora over time within the same year. This study shows that fertile caryopses remain in the

Commented [JH8]: Roberto, dá para fazer análises comparativas entre

- 1-DIferenca entre anos por microambiente (Já tem esta
- 2- Diferença entre microambientes dentro do mesmo ano

Commented [JH9]: Roberto, creio que esta é uma análise que pode ser feita, Pode ser para cada tratamento individualmente bem como comparando 1 e 2 e depois 3 e 4. Como tentei explicar, nas medida que a distância da fonte aumenta, creio que a porcentagem de viáveis deve diminuir. As frases destacadas abaixo que tratam deste assunto provavelmente precisam ser ajustadas para a realidade "nova" após as análises

seedheads and that dispersal their dispersal is possible during several months after

flowering and production of seeds although the vast majority are dispersed near the onset of the dispersal period. The maintenance of fertile seeds over time in seedheads has been reported for other invasive plant species and has been suggested for use in control measures (Bitafaran and Andreasen 2020; Walsh and Powles 2014). The retention of seeds aboveground by M. minutiflora would result in a reduction in seed rain and consequently the seed bank in the soil if the area was burned prior to their release. There was a reduction in the percentage of dispersed fertile caryopses over time within the same year, with a higher percentage collected near the beginning (33%) than at the end (23%) of the dispersal period (H = 11.66, p = 0.003) (Tab. 2). The percentage of fertile caryopses was statistically different among treatment, 27.8% in the LC plots, 35.6% in the HC plots and 27.0% in the FM plots (H = 10.96, p = 0.004). The percentage of fertile caryopses in the first collection date is comparable with other data on seed quality presented by Carmona and Martins (2010) who reported a range of values of fertile caryopses from 17.5 to 36.1% for seeds of M. minutiflora collected in three different sites in the Federal District of Brazil in June of 2004 and by Martins et al. (2019) for different sites in Brazil. However, the values in this study are slightly higher than those reported by Aires et al. (2013) for percentage of fertile caryopses of M. minutiflora collected in May and June in another preserved Cerrado in the Federal District of Brazil.

Commented [JH10]: Roberto, creio que estes dados precisam ser analisados de novo

- 1-Diferença entre anos
- 2-Diferença entre microambientes
- 3-Diferença emtre plots no mêsmo microambiente

Seed rain and differences between management techniques

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

Analysis Roberto = There was a highly significant difference between the number of viable seeds in the FM and IMM treatments.

Commented [MOU11]: Rever após conversar com Roberto sobre as análises. Separate comparisons - LC and HC and FM and IMM Comparing the FM and IMM plots in 2004 and 2005 the seed rain was always significantly lower in the IMM plots. The results of the GLM indicated highly significant differences between the FM and IMM treatments. The LC and FM plots had intermediate values compared to the HC and IMM plots but were statistically different only in 2003.

Commented [JH12]: Probably delete this sentence since the data were collected using different methods.

Dispersal limitation in Melinis minutiflora

The values for dispersal limitation in *M. minutiflora* were variable among years (Table 3) and all values indicated a higher restriction than found by Xavier et al (2021). The highest restriction was in the treatments in the natural areas and under tussocks of *Melinis*. The effect of fire on dispersal limitation was apparent in the first year of data collection but increased in subsequent years. Although the number of seeds reaching the trays in the IMM treatment was very small (< 5% of the values in the natural area) dispersal was occurring. Among the three collection dates within the same year, the values for dispersal limitation always decreased from the first to the last collection which might be related to increasing mean wind velocity over this period (Maggiotto et al 2013).

The presence of fertile caryopses in the FM plots in 2003 and in the IMM plots in 2004 and 2005 indicates that dispersal of caryopses of *M. minutiflora* is possible over distances of at least 6 m since there were no reproductive individuals within these plots. If all the fertile caryopses collected in the IMM plots in 2005 germinated this value was within the lower range of germination of *M. minutiflora* found by Sato et al. (2015) in areas that were subjected to annual mowing. Thus, our data support their suggestion that annual mowing could be an effective control

329 330 Fertile caryopses of *M. minutiflora* can remain in the seedheads through the 331 dispersal period although the majority are dispersed shortly after formation. The 332 importance of tussocks of M. minutiflora for maintenance of its presence of was 333 shown by the large difference in seed rain between the LC plots and the HC plots. Our 334 results indicate that short distance dispersal is possible since there were fertile 335 caryopses present in the trays in the IMM plots where the coverage of M. minutiflora 336 was almost eliminated. However, we do not believe that primary dispersal is an 337 important factor in a rapid spread of M. minutiflora as can be observed in the values of dispersal limitation. Thus, our data support the affirmation by Barger et al. (2003) 338 339 that since M. minutiflora does not possess a strong dispersal mechanism such as a 340 plume for wind dispersal its ability to colonize new areas is limited. 341 342 Author contribution. CRM designed the experiment and collected the data. RBC did 343 the statistical analyses in the R environment. All authors contributed to writing and 344 discussion of the text. 345 346 Acknowledgements 347 To the Instituto Chico Mendes de Conservação da Biodiversidade and the Parque 348 Nacional de Brasilia for authorization to perform this study 349 350 Funding 351 To WWF/Brazil (Project BTZ-NT-614/2002) and The Nature Conservancy Brazil

measure for M. minutiflora since the possibility of reintroduction through seed rain is

328

352

(Donation No. 020/03) for financial support.

353	
354	Competing Interests
355	The authors declare none.
356	
357	References
358	Adams V, Petty AM, Douglas, Buckley, YM; Ferdinands KB, Okazaki T, Ko D.W,
359	Setterfield SA (2015) Distribution, demography and dispersal model of spatial
360	spread of invasive plant populations with limited data. Methods Ecol Evol 6:782-
361	794
362	Aires SS, Sato MN, Miranda HS (2013) Seed characterization and direct sowing of
363	native grass species as a management tool. Grass Forage Sci 69:470-478
364	Ansong M, Pickering C (2016) The effects of seed traits and fabric type of the
365	retention of seed on different types of clothing. Basic Appl Ecol 17:516-526
366	Arruda AJ, Buisson E, Poschlod P, Silveira FAO (2018) How have we studied seed
367	rain in grasslands and what do we need to improve for better restoration? Restor
368	ecol 26 (S2):S84-S91
369	Barger NN, D'Antonio CM, Ghneim T, Cuevas E (2003) Constraints to colonization
370	and growth of the African grass Melinis minutiflora in a Venezuelan savanna. Plant
371	Ecol 167: 31–43
372	Bauer MO, Gomide JA, da Silva EAM, Regazzi AJ, Chichorro JF (2008)
373	Características anatômicas e valor nutritivo de quatro gramíneas predominantes em
374	pastagem natural em Viçosa, MG. Rev Bras de Zootecn 37:9-17
375	Bitafaran, Z, Andreasen C (2020) Seed production and retention at maturity of
376	blackgrass (Alopecurus myosuroides) and silky windgrass (Apera spica-venti) at
377	wheat harvest. Weed Sci 68(2):1-6

Commented [JH13]: Não tenho cópia em PDF das referências destacadas em amarelo. Todavia provavelmente não são necessárias.

378	Bullock JM, Shea K, Skarpaas O (2006) Measuring plant dispersal: an introduction to
379	field methods and experimental design. Plant Ecol 186:217-234
380	CABI (2020) Melinis minutiflora [Rojas-Sandoval, J and Acevedo-Rodrigues, P.]. In:
381	Invasive Species Compendium Datasheet 32983. Wallingford, UK: CAB
382	International. www.cabi.org/isc. Accessed: February 14, 2020
383	Carey PD, Watkinson AR (1993) The dispersal and fate of seeds of the winter annual
384	grass Vulpia ciliata. J Ecol 81:759-767.
385	Carmona R, Martins CR (2010) Qualidade física, viabilidade e dormência de
386	sementes recém-colhidas de capim-gordura (Melinis minutiflora P. Beauv.). Rev
387	Brasil Sementes 32:77-82
388	César RG, Viana RAG, da Silva MC, Brancalion PHS (2014) Does a native grass
389	(Imperata brasiliensis Trin.) limit tropical forest restoration like an alien grass
390	(Melinis minutiflora P. Beauv.)? Trop Conserv Sci 7:639-656
391	Chabrerie O, Alard D (2005) Comparison of three seed trap types in a chalk
392	grassland: toward a standardized protocol. Plant Ecol 176:101-112
393	D'Antonio CMD, Hughes RF, Vitosek PM (2001) Factors influencing dynamics of
394	two invasive C4 grasses in seasonally dry Hawaiian woodlands. Ecology 82:89-
395	104
396	Damasceno G, Fidelis A (2020) Abundance of invasive grasses is dependent on fire
397	regime and climatic conditions in tropical savannas. Journal of Environ Manage.
398	271:111016
399	Damasceno G, Souza L, Pivello VR, Gorgone-Barbosa E, Giroldo PA, Fidelis A
400	(2018) Impact of invasive grasses on Cerrado under natural regeneration. Biol
401	Invasions 20:3621-3629

402	de Souza TS, Fulgêncio-Lima LG, Silva D (2017) Modelagem atual e futura da
403	espécie invasora Melinis minutiflora no cerrado brasileiro. Multi-Science Journal
404	1.8:19
405	DiVittorio CT, Corbin JD, D'Antonio CM (2007) Spatial and temporal patterns of
406	seed dispersal: an important determinant of grassland invasions. Ecol Appl 17:311-
407	316
408	dos Santos BR, Pereira JA, Oliveira ML, Rocha CTV, Londe V (2020) Forest matrix
409	favors the recovering of seed rain in áreas undergoing restoration. Floresta e
410	Ambiente (27(4)): e20190190
411	Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annu Rev Ecol
412	Syst 41:59-80
413	Eller CB, Oliveira RS (2017) Effects of nitrogen availability on the competitive
414	interactions between an invasive and a native grass from Brazilian cerrado. Plant
415	Soil 410:63-72
416	Farias J, Sanchez M, Abreu MF, Pedroni F (2015) Seed dispersal and predation of
417	Buchenavia tomentosa Eichler (Combretaceae) in a Cerrado sensu stricto, Midwest
418	Brazil. Braz J Biol 75:S88-S96
419	Forcella F, Peterson DH, Barbour JC (1996) Timing and measurement of weed seed
420	shed in corn (Zea mays). Weed Technol 10:535-543
421	Gardener CJ, McIvor JG, Jansen A (1993) Passage of legume and grass seed through
422	the digestive tract of cattle and their survival in faeces. J Appl Ecol 30:63-74
423	Golin V, Santos-Filho M, Pereira MJB (2011) Dispersão e predação de sementes de
424	araticum no Cerrado de Mato Grosso, Brasil. Ciênc Rural (Santa Maria) 41:101-
425	107

426	Gomide JA, Noller CH, Mott GO, Conrad JH, Hill DL (1969) Mineral composition of
427	six tropical grasses as influenced by plant age and nitrogen fertilization. Agron
428	Jour 61:120-123
429	Gorgone-Barbosa E, Daibes LF, Novaes RB, Pivello VR, Fidelis A (2020) Fire cues
430	and germination of invasive and native grasses in the Cerrado. Acta Bot Bras
431	34:185-191
432	Greene DF, Johnson EA (1989) A model of wind dispersal of winged or plumed
433	seeds. Ecology 70:339-347
434	Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software
435	Package for Education and Data Analysis. Palaeontologia Electronica 4(1):9
436	Hauser AS (2008) Melinis minutiflora. In: Fire Effects Information System, [Online].
437	U.S. Department of Agriculture, Forest Service, Rocky Mountain Research
438	Station, Fire Sciences Laboratory (Producer).
439	https://www.fs.fed.us/database/feis/plants/graminoid/melmin/all.html. Accessed:
440	February 14, 2020
441	Hoffmann WA, Haridasan M (2008) The invasive grass, Melinis minutiflora, inhibits
442	tree regeneration in a Neotropical savanna. Austral Ecol 33:29-36
443	INMET – Instituto Nacional de Meteorologia (2019) Historical meteorological data.
444	http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep. Accessed February
445	26, 2020
446	Ishara K, Maimoni-Rodella RCS (2011) Pollination and dispersal systems in a
447	Cerrado remnant (Brazilian Savanna) in southeastern Brazil. Braz Arch Biol Techn
448	54:629-642
449	Kettenring KM, Galatowitsch SM (2011) Seed rain of restored and natural prairie
450	wetlands. Wetlands 31:283-294

451	Klink CA, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol
452	19:707-713
453	Kuhlmann M, Ribeiro JF (2016) Evolution of seed dispersal in the Cerrado biome:
454	ecological and phylogenetic considerations. Acta Bot Bras 30:271-282
455	Latombe G, Pysek P, Jeschke JM, Blackburn TM, Bacher S, Capinha C, Costello MJ,
456	Fernández M, Gregory RD, Hobern D, Hui C, Jetz W, Kumschick S,
457	McGrannachan C, Pergi J, Roy HE, Scalera R, Squires ZE, McGeoch MA (2017)
458	A vision for global monitoring of biological invasions. Biol Conserv 213:295-308
459	Lock DS, Souza FHD (1999) Seed harvesting and drying: grasses. Pages 191-211 in
460	Loch DS, Ferguson JE, eds. Forage seed production vol. 2: tropical and subtropical
461	species. Wallingford: CABI
462	Maggiotto, SR, Ferreira, FMS, Maximiano, CV (2013) Um estudo da velocidade e
463	direção predominante do vento em Brasilia, DF. XVIII Congresso Brasileiro de
464	Agrometeorologia, Belem, PA, Brasil,
465	Mariano V, Rebolo IF, Christianini AV (2019) Fire-sensitive species dominate seed
466	rain after fire suppression: Implications for plant community diversity and woody
467	encroachment in the Cerrado. Biotropica 51:5-9
468	Marteinsdóttir B (2014) Seed rain and seed bank reveal that seed limitation strongly
469	influences plant community assembly in grasslands. PloS ONE 9(7)103352
470	Martins CR, Hay JD, Scalea M, Malaquias JV (2017) Management techniques for the
471	control of Melinis minutiflora P. Beauv. (molasses grass): ten years of research on
472	an invasive grass species in the Brazilian Cerrado. Acta Bot Bras 31:546-554
473	Mendonça RC, Felfili J.M, Walter BMT, Silva Júnior MC, Rezende AV, Filgueiras
474	TS, Nogueira PE, Fagg CW (2008) Flora vascular do Bioma Cerrado: checklist
475	com 12356 espécies. Pages 421-1279 in Sano SM. Almeida SP, Ribeiro JF, eds.

476	Cerrado: ecologia e flora. Planaltina, DF: EMBRAPA Cerrados/Embrapa
477	Informação Tecnológica
478	Myers JA, Harms, KE (2009) Seed arrival, ecological filters, and plant species
479	richness: a meta-analysis. Ecol Lett 12:1250-1260
480	Oliveira PEAM, Moreira AG (1992) Anemocoria em espécies de cerrado e mata de
481	galeria de Brasília, DF. Rev Bras de Bot 15:163-174
482	Pilipavičius V (2006) Three year assessment of weed dynamics in herbicide-free
483	barley culture: a field study. Žemdirbystė 93:89-98
484	Pivello VR, Carvalho VMC, Lopes PP Peccinini, A.A.; Rosso, S. Abundance and
485	distribution of native and alien grasses in a "cerrado" (Brazilian savannas)
486	Biological Reserve. Biotropica 31 (1): p. 72-82, 1999
487	Quinn LD, Matlaga DP, Stewart JR, Davis AS (2011) Empirical evidence of long-
488	distance dispersal in Miscanthus sinensis and Miscanthus x giganteus. Invas Plant
489	Sci Mana 4:142-150
490	Sampaio AB, Schmidt IB (2013) Espécies exóticas invasoras em Unidades de
491	Conservação Federais no Brasil. Biodiversidade Brasileira 3(2):32-49
492	Sato MN, Aires SS, Aires FS, Miranda HS (2015) Annual mowing prevents the
493	recruitment of molasses-grass in a Brazilian savanna. Heringeriana 10(2):79-90
494	Saura-Mas S, Lloret F (2005) Wind effects on dispersal patterns of the invasive alien
495	Cortaderia selloana in Mediterranean wetlands. Acta Oecol 129-133
496	Schott GW, Hamburg SP (1977) The seed rain and seed bank of an adjacent native
497	tallgrass prairie and old field. Can J Bot 75:1-7
498	Schupp EW, Jordano P, Gómez JM (2010) Seed dispersal effectiveness revisited: a
499	conceptual review. New Phytol 188:333-353

500	Sciamarelli A, Gugllieri-Capora A, Caporal FJM (2011) Prediction for expansion of
501	two invasive grasses in Mato Grosso do Sul, Brazil, using climatic data and
502	NDVI/MODIS. Geografia 36: 97-106
503	Sharma GP, Singh JS, Raghubanshi AS (2005) Plant invasions: Emerging trends and
504	future implications. Current Science 88:726-734
505	Silveira LRM, Moraes CF (1996) Determinação do modo de reprodução em capim-
506	gordura (Melinis minutiflora Beauv.) por padrões enzimáticos. Ciencia Rural
507	(Santa Maria) 26 (1):39-44
508	Simberloff D, Martin J-L, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp
509	F, Galil B, Garcia-Berthou E, Pascal M, Pysek P, Sousa R, Tacacchi E, Vilá M
510	(2013) Impacts of biological invasions: what's what and the way forward. Trends
511	Ecol Evol 28:58-66
512	Silberbauer-Gottsberger I (1984) Fruit dispersal and trypanocargy in Brazilian cerrado
513	grasses. Plant Syst Evol 147:1-27
514	Sciamarelli A, Guglieri-Caporal A, Caporal FJM (2011). Prediction for expansion of
515	two invasive grasses in Mato Grosso do Sul, Brazil, using climatic data and
516	NDVI/MODIS. Geografia:36, 97-106
517	Stokes CA (2010) Biology, ecology and management of Natal grass (Melinis repens).
518	Master's Thesis. Gainesville, FL: University of Florida. 108 p
519	Tamme R, Gotzenberger L, Zobel M, Bullock JM, Hooftman DA, Kaasik A, Partel M
520	(2014) Predicting species' maximum dispersal distances from simple plant traits.
521	Ecology 95:505-513
522	Thomson FJ, Moles AT, Auld TD, Kingsford RT (2011) Seed dispersal distance in
523	more strongly correlated with plant height than with seed mass. J Ecol 99:1299-
524	1307

525	Urbanska, KM and Fattorini M (2000) Seed rain in high-altitude restoration plots in
526	Switzerland. Restor Ecol 8:74-79
527	Vieira DLM, Aquino FG, Brito MA, Fernandes-Bulhão C, Henriques RPB (2002)
528	Síndromes de dispersão de espécies arbustivo-arbóreas em cerrado sensu stricto do
529	Brasil Central e savanas amazônicas. Rev Bras Bot: 25:215-220
530	Vilà M, Espinar JL, Hejda M, Hulme PE, Jarosik V, Maron JL, Pergl J, Schaffner Ul.
531	Sun Y, Pysek P (2011) Ecological impacts of invasive alien plants: a meta-analysis
532	of their effects on species, communities and ecosystems. Ecol Lett 14:702-708
533	Walsh JM, Powles SB (2014) High seed retention at maturity of annual weeds
534	infesting crop fields highlights the potential for harvest weed seed control. Weed
535	Technol 28(3):486-493
536	Webster TM, Cardina J, White AD (2003) Weed seed rain, soil seedbanks, and
537	seedling recruitment in no-tillage crop rotations. Weed Sci 51:569-575
538	Williams DG, Baruch Z (2000) African grass invasion in the Americas: ecosystem
539	consequences and the role of ecophysiology. Biol Invasions 2:123-140
540	Willson MF, Traveset A (2000) The ecology of seed dispersal. Pages 85-100 in
541	Fenner M, ed. Seeds: the ecology of regeneration in plant communities. 2nd ed.
542	Wallingford, UK: CABI
543	Xavier RO, Christianini AV, Pegler G, Leite MB, Silva-Matos DM (2021) Distinctive
544	seed dispersal and seed bank patterns of invasive African grasses favour their
545	invasion in a neotropical savanna. Oecologia. 196:155-169
546	https://doi.org/10.1007/s00442-021-04904-z
547	Zenni RD, Sampaio AB, Lima YP, Pessoa-Filho M, Lins TCL, Pivello VR, Daehler C
548	(2019) Invasive Melinis minutiflora outperforms native species, but the magnitude
549	of the effect is context-dependent. Biol Invasions. 21:657-667

Table 1. Accumulated rainfall in Brasília, DF prior to the flowering season (January to April) and during the flowering season (May to September) of Melinis minutiflora in a cerrado near Brasilía, DF (INEMET 2019).

Commented [JH14]: Acho que podemos retirar esta tabela porque os dados estão apresentados dentro de texto

 January to April
 May to September

 mm
 mm

 2003
 620.7
 135.6

 2004
 1055.3
 7.4

 2005
 820.6
 65.7

558

559

560

	2003	2004	2005	All years
I	163,69 ± 292.3	104.04 ± 138.49	43.17 ± 66.31	2057 1 . 2002 4
Low coverage	(0 - 1716) 0 - 660	0 - 660	0 - 363	2056.1 ± 3883.4
III ah aanaan	$1162,23 \pm 1111.72$	1060.60 ± 1266.72	728.15 ± 918.35	10515 0 . 22140 0
High coverage	(22 - 4493)	51 - 4736	6 - 4360	19515.8 ± 22140.9
Eine Mov	$1,19 \pm 1.68$	132.48 ± 294.19	174.10 ± 362.60	2121.2 + 5610.6
Fire May	(0 - 6)	0 - 1466	0 - 1791	$\frac{2121.2 \pm 5619.6}{1}$
Integrated Management May		5.52 ± 12.02	4.35 ± 15.76	98.0 ± 276.9
Integrated Management May		0 - 59	0 - 106	76.0 ± 270.9

Commented [JH15]: Roberto, acho que provavelmente podemos excluir a coluna de All years nesta tabela e a próxima. Acha que podemos usar box plots para estes dados ou melhor deixar como tabela, talvez uma vantagem de box plots é mostrar a grande quantidade de outliers nos dados.

Table 2. Mean percentage of fertile caryopses of *Melinis minutiflora* (Mean \pm 1 SD) collected in the Brazilian Cerrado in each treatment during the entire collection period of each year. The number of trays with fertile caryopses is indicated in parentheses. Data were not collected in the Integrated Management May plots in 2003.

Commented [JH16]: Roberto, também isto pode ser uma figura (boxplot)

	2003	2004	2005	All years
Low coverage	27.74 ± 17.61 (48)	28.97 ± 13.94 (47)	23.19± 15.22 (45)	$0.267 \pm 0.158 (140)$
High coverage	35.60 ± 13.91 (48)	46.25 ± 10.56 (48)	38.20 ± 17.15 (48)	$0.400 \pm 0.148 (144)$
Fire May	26.98 ± 23.58 (24)	32.14 ± 17.57 (46)	27.67 ± 18.22 (39)	$0.331 \pm 0.502 (112)$
Integrated Management May		24.83 ± 22.53 (36)	20.77± 20.57 (30)	0.229 ± 0.216 (66)

Table 3. Dispersal limitation for fertile caryopses of *Melinis minutiflora* in a cerrado near Brasília. DF. The values in parentheses are the number of trays with at least one fertile caryopsis during each year in all three collections (Maximum number is 48).

	2003	2004	2005
Low coverage	0.958 (46)	0.938 (45)	0.896 (43)
High coverage	1.000 (48)	1.000 (48)	1.000 (48)
Fire May	0.689 (23)	0.854 (41)	0.854 (34)
Integrated Management May		0.607 (29)	0.528 (25)

Commented [JH17]: Inclui esta tabela baseado nos cálculos que fiz referente ao conceito de limitação de dispersão

1.1 IMM •	2.1 FS	3.1 IMS	4.1 CM •
1.2 CM	2.2 IMS	3.2 CS •	4.2 FM ▲
1.3 FM	2.3 CS	3.3 FS	4.3 IMM ▼
1.4 IMS	2.4 FM •	3.4 CS •	4.4 CM •
1.5 FS	2.5 CM	3.5 FS	4.5 IMM ▼
1.6 CS •	2.6 IMM ▼	3.6 IMS	4.6 FM ▲

Figure 1. Experimental design of the treatments used for studying *Melinis minutiflora* in the National Park of Brasilia, Brasilia, Brazil (CM = control May. CS = control September, FM = fire May, FS = fire September, IMM = integrated management May, IMS – integrated management September). Each block is $10 \times 10 \text{ m}$. with a 1 m buffer zone between blocks. Data on seed rain were collected in the four CS plots in areas with low coverage of *M. minutiflora* (\bullet), in the four CM plots under tussocks of *M. minutiflora* (\blacksquare), in the four FM plots (\blacktriangle) and in the four IMM plots (\blacktriangledown), The FS and IMS plots were not used for collection of seed rain.

Figure 2. Means and standard deviations for total percent ground cover (filled bars) and percent cover of *M. minutiflora* (open bars) in April of each year in the plots where seed rain of *M. minutiflora* was collected. A = LC plots with trays placed in areas with low coverage of *M. minutiflora*, B = HC plots with trays placed under tussocks of *M. minutiflora*, C = fire May (FM) plots, and D = integrated management May (IMM) plots.