Statistics and Probability Assignment with solution

By Akhilesh Mishra (DS20DEC03)

Questions

Q1) The maximum weight that an elevator in an apartment complex can accommodate is 800kg. The average adult weight be about 70 kgs with a variance of 200. What is the probability that the lift safely reaches the ground when there are 10 adults in the lift?

Given mean= 70

variance = 200

hence mean for 10 adults = 10 * 70= 700

variance for 10 adults = 10 * 200= 2000

therefore standard deviation (Sd) = sqrt(2000) = 44.72

If the weight > 800 kg causes the elevator to "unsafely" reach the ground, then we can find the upper tail of our normal distribution:

P (Weight of 10 adults > 800 kg).

$$Z - score = \frac{(X - mu)}{SD} = \frac{(800 - 700)}{44.72} = 2.24$$

Hence P (Z<2.24), using z table we get 0.9875 or 98.75%

Hence it is safe to reach the ground when there are 10 adults in the lift.

Q2) The life of a 60- watt light bulb in hours is known to be normally distributed with σ = 25 hours. Create 5 different random samples of 100 bulbs each which has a mean life of x_bar ~ 1000 hours and perform one-way ANOVA with state it.

					Anova: Single Factor								
sample 1	sample 2	sample 3	sample 4	sample 5									
985.0781	964.6136	976.9706	971.0627449	998.9048	SUMMARY								
1045.959	955.188	980.5609	1029.350349	994.1333	Groups	Count	Sum	Average	Variance				
1016.02	996.1133	1003.516	1009.36822	1022.389	sample 1	101	100867	998.6827	589.4664				
999.9653	1034.135	1032.293	968.0032255	993.6812	sample 2	101	101227	1002,247	645.4165				
1028.147	1044.763	961.8915	1006.914264	1026.612	sample 3	101	100557.3	995.6169	681.0503				
1009.278	1007.006	1016.183	962.6759798	970.256	sample 4	101	101108.6	1001.075	529.7452				
984.9619	974.8935	968.1783	960.0129759	983.716	sample 5	101	100785	997.8711	666.1316				
956.7309	993.1224	979.7955	1001.891368	1015.843									
977.7208	1027.261	1003.699	982.8716316	1006.295									
1015.916	1004.377	1037.804	1020.52129	978.1191	ANOVA								
1042.769	1011.116	1011.044	986.4152116	1012.508	Source of Variation	SS	df	MS	F	P-value	F crit		
973.5986	975.6559	976.6027	1004.090936	1020.169	Between Groups	5217.382	4	1304.345	2.095799	0.080202	2.389767		
984.2687	1001.774	994.089	990.5674101	1000.102	Within Groups	311181	500	622.362					
1012.136	1028.029	996.357	1008.190768	989.0929									
998.6339	993.5582	953.9409	1002.270078	995.9735	Total	316398.4	504						
992.7198	991.552	997.5449	1009.484387	974.8928									
975.0244	958.6726	1018.621	1036.050587	956.0037		One way ANOVA tests the null hypothesis that the sample are drawn from populations with equal means.							
987.3262	992.8671	981.5711	990.0918993	1053.611	The Hypthesis is rejecte		ue from th	e test is les	s than the	required al	pha level (0	.05) or if t	:he F statistic i
1024.434	1010.263	987.6308	973.4798585	1008.065	greather than the critic		V20040400						
1005.247	1023.115	1045.366	1041.917736	1049.426	One way ANOVA for the								
945.4442	1012.93	1018.417	1039.04554	981.8026	The function =NORMINV(RAND(), mean ,standard deviation) P-VALUES - 0.080202 FVALUES - 2.095799								
1055.997	1020.399	977.6914	998.2627319	1009.764									
1001.472	972.6089	981.6839	1026.568905	995.4342									
971.4838	994.7906	970.9024	1006.089372	1017.228	F - CRITICAL VALUES - 2	.389767							
		981.8892	1013,760347	074 5000									

Complete data in excel

answer: the samples are drawn from populations with different means

Q3) Fifteen trainees in a technical program are randomly assigned to three different types of instructional approaches, all of which are concerned with developing a specified level of skill in computer-assisted design. The achievement test scores at the conclusion of the instructional unit are reported in Table along with the mean performance score associated with each instructional approach. Use the analysis of variance procedure to test the null hypothesis that the three-sample means were obtained from the same population, using the 5 percent level of significance for the test.

Instrumental Method		T	est Sco	res	Total Scores	Mean Test Scores	
A1	86	79	81	70	84	400	80
A2	90	76	88	82	89	425	85
A3	82	68	73	71	81	375	75

Ans

	A1	A2	A3	Anova: Single Factor									
	86	90	82								Store 4. Hardon the Data talk aliah an		
	79		68	SUMMARY	Count	Sum	Average	Variance			Step 1: Under the Data tab, click on "Data Analysis." step2 :In the "Data Analysis" window,		
	81		73	Groups									
	70	82	71	A1	5	400	80	38.5			select the first option, "Anova: Single		
	84	89	81	A2	5	425	85	35			Factor."		
total	400	425	375	A3	5	375	75	38.5			Step 3: In the next window for "Input		
mean	80	85	75								Range," select range.		
											step 4:Since we have selected the data with headers, check the box "Labels in		
				ANOVA							First Row."		
				Source of Variation	SS	df	MS	F	P-value	F crit	Step 5: Now select the output range as		
				Between Groups	250	2	125	3.34821	0.06991	3.88529			
				Within Groups	448	12	37.33333333				Step 6: Click on Ok to complete the		
											calculation. Now we will have detailed		
				Total	698	14					Anova: Single Factor analysis.		

First, look at the "P-Value," i.e., 0.069909, which is greater than alpha or significance value (0.05), so we cannot reject the null hypothesis.

Next, F value 3.348 is less than the FCrit value 3.885, so we cannot reject the null hypothesis.

So, we can conclude the test as "Scores of A1, A2, and A3 are not significantly different."

Things to Remember

You need strong ANOVA knowledge to understand things better.

Always frame the Null Hypothesis and the Alternative Hypothesis.

If the F value is > FCrit value," then we can reject the null hypothesis.

"If F value is < FCrit value," then we cannot reject the null hypothesis.

We have the sample of the scores of 15 students (First Group, Second Group, Third Group). Each group consists of 5 students. We calculate the mean of each group. We should find out whether these means are different significantly (whether they were chosen from the different populations),

 α =0.05.

Η0:μ1=μ2=μ3

H1: at least one of the means is different.

Using Single-Factor ANOVA in Excel we get pp-value\approx 0.0699>α. So we accept H0(null hypothesis).

Three different types of the instructional approaches have the same effect on the students.