Note del corso di Analisi Matematica 1

Gabriel Antonio Videtta

17 marzo 2023

Successioni per ricorsione

Osservazione. Sia X l'insieme delle successioni a valori reali che soddisfano una data eq. ricorsiva lineare ed omogenea di ordine k (ossia che coinvolge k precedenti elementi di una successione).

- ightharpoonup X è uno spazio vettoriale su \mathbb{R} .
- ▶ $T: X \to \mathbb{R}^n$, $(x_n) \mapsto (x_0, ..., x_{k-1})^\top$ è un isomorfismo, e quindi dim X = k.
- ▶ Si può facilmente individuare una base naturale di X, costituita dagli elementi della forma $\underline{x_i} = T^{-1}(\underline{e_{i+1}})$ con i = 0, ..., k-1, dove $\underline{x_i}$ rappresenta una successione di X dove l'i-esimo elemento è pari a 1 e gli altri, tra 0 e k-1, sono nulli.

Osservazione. Le eq. differenziali ordinarie si possono approssimare ad eq. su differenze finite (e questa considerazione è alla base della grande somiglianza tra i concetti sviluppati sia per queste che per quelle).

Esempio. (ricondursi a un caso discreto) Si consideri un'eq. differenziale omogenea lineare del primo ordine su x(t). Si può approssimare t con nh, dato h piccolo, e così scrivere $x_n = x(nh) \approx x(t)$. Così, allora, $x_{n+1} = x((n+1)h) = x(t+h)$. Conseguentemente $hx'(t) \approx x(t+h) - x(t) \approx x_{n+1} - x_n$.

Si provi a risolvere, per esempio, l'eq. differenziale x'(t) = x(t). Sostituendo, si ottiene $x_{n+1} - x_n = hx_n$, da cui si ricava l'eq. ricorsiva $x_{n+1} = (1+h)x_n$. Allora $x(nh) = x_n = (1+h)^n x(0) = (1+h)^n c$.

In effetti $x(t) = \lim_{h \to 0} (1+h)^n c = \lim_{h \to 0} \left[(1+h)^{\frac{1}{h}} \right]^{\frac{c}{t}} c = ce^t$, la famiglia di soluzioni dell'eq. differenziale originale.

Esempio. (metodo delle bisettrici) Sia data la sequente successione:

$$(x_n) = \begin{cases} x_n = x_{n-1}^4, \\ x_0 = \frac{1}{2}. \end{cases}$$

Si consideri allora il sistema di funzioni:

$$\begin{cases} f(x) = x^4, \\ y = x, \end{cases}$$

ossia i punti fissi di f(x). Si può disegnare facilmente la successione mediante il seguente algoritmo: si prenda x_0 sull'asse delle ascisse, e si valuti $f(x_0) = x_1$ collegando il punto $(x_0,0)$ a (x_0,x_1) , alla fine ricollegato sulla bisettrice al punto (x_1,x_1) ; si colleghi (x_1,x_1) a $(x_1,x_2=f(x_1))$ e quest'ultimo a (x_2,x_2) , etc. Si sarà allora disegnato in modo grafico la successione, e considerando i blocchi che connettono (x_{n-1},x_{n-1}) , (x_{n-1},x_n) e (x_n,x_n) , si potrà facilmente intuire che $x_n \xrightarrow[n \to \infty]{} \infty$ per $x_0 > 1$, che $x_n \xrightarrow[n \to \infty]{} 1$ per $x_0 = 1$, e che $x_n \xrightarrow[n \to \infty]{} 0$ per $x_0 < 1$. Quindi nel caso dell'esempio, $x_n \xrightarrow[n \to \infty]{} 0$.

Figura 1: Applicazione dell'algoritmo con $x_0 = 1,0001$.

Esempio. Riprendendo l'esempio precedente, si può ora provare a dimostrare formalmente i risultati ottenuti. Sempre graficamente, si intuisce che (x_n) sarà decrescente, e quindi che ammetterà limite (che, in particolare, coinciderà con il suo estremo inferiore).

Si dimostra quindi, per prima cosa, che (x_n) è decrescente, e che vale $0 \le x_n \le \frac{1}{2}$. Si procede per induzione: se n = 0, la tesi è già verificata; se la tesi è vera fino a n - 1, allora $x_n = \underbrace{x_{n-1}^4}_{>0} \le \left(\frac{1}{2}\right)^4 = \frac{1}{16} \le \frac{1}{2}$.

Quindi (x_n) è decrescente, e poiché 0 ne è minorante, varrà in particolare che $\ell = \lim_{n \to \infty} x_n \in [0, \frac{1}{2}].$

Si mostra che ℓ deve essere un punto fisso di f: poiché $x_n \xrightarrow[n \to \infty]{} \ell$, anche $x_{n+1} \xrightarrow[n \to \infty]{} \ell$ (essendone una sottosuccessione); inoltre, poiché $x_{n+1} = x_n^4$, $x_{n+1} \xrightarrow[n \to \infty]{} \ell^4$. Poiché il limite è unico, deve allora valere $\ell = \ell^4 = f(\ell)$. Poiché gli unici punti di fissi di f sono 0 e 1, e 1 non è minorante di (x_n) , deve valere che $\ell = 0$.

Se invece x_0 fosse stato maggiore di 1, si sarebbe dimostrato che (x_n) era strettamente crescente, e dunque avrebbe ammesso comunque limite; tale limite non sarebbe potuto essere né 0 né 1, dacché non sarebbero stati maggioranti di (x_n) , né tantomeno $-\infty$. Allora tale limite avrebbe dovuto essere, forzatamente, ∞ .

Esempio. Si consideri adesso la successione:

$$\begin{cases} x_0 = 2, \\ x_{n+1} = \frac{x_n}{2} + \frac{1}{x_n}. \end{cases}$$

Applicando lo stesso ragionamento di prima, si considera $f(x) = \frac{x}{2} + \frac{2}{x}$. È sufficiente dimostrare che (x_n) è tale che $\sqrt{2} \le x_n \le 2 \ \forall n \in \mathbb{N}$ (dove $\sqrt{2}$ è l'unico punto fisso di f(x)) per concludere immediatamente che il limite di tale successione è proprio $\sqrt{2}$.

Esempio. Si consideri l'eq. ricorsiva $x_n=\frac{1}{x_{n-1}^2}$, con $x_0>1$. Qualsiasi disegno si faccia, si osserverà una "spirale" nella configurazione della successione: si ipotizzerà dunque che x_n non ammetterà limite. Si distinguono dal disegno due sottosuccessioni: x_{2n} e x_{2n+1} , che, rispettivamente, obbediranno a due eq. ricorsive, $x_{2(n+1)}=x_{2n}^4$ e $x_{2(n+1)+1}=x_{2n+1}^4$, ossia la successione analizzata in uno scorso esempio.

Figura 2: Applicazione del metodo della bisettrice con $x_0=1,0001.$

Poiché $x_0 > 1$, $x_1 = \frac{1}{x_0^2} < 1$. Allora $x_{2n} \xrightarrow[n \to \infty]{} \infty$, mentre $x_{2n+1} \xrightarrow[n \to \infty]{} 0$: poiché una sottosuccessione deve tendere allo stesso limite della successione da cui deriva, ed il limite è unico, si conclude che (x_n) non ammette limite.