Esercitazione 14 novembre 2023

Algoritmi su alberi

problema 1

Input: un albero binario T di n nodi

ogni nodo v ha:

-valore val(v)>0

-colore col(v)∈{R,N}

Output: valore del cammino rosso di tipo radice-nodo di valore massimo

Def.: il valore di un cammino è la somma di valori dei nodi del cammino

Def.: un cammino è rosso se tutti i suoi nodi sono di colore rosso.

Output: 20

MaxRosso(v)

Restituisce il valore del cammino rosso di valore massimo di tipo v-discendente di v

> -info che vengono "dal basso", calcolate rispetto al sottoalbero con radice v;

-possono essere usate per "passare informazioni" al padre di v

MaxRosso(v)

if v=null **then** return 0

if col(v)=N return 0

return $val(v)+max\{MaxRosso(sx(v)), MaxRosso(dx(v))\}$

MaxRosso(v)

Restituisce il valore del cammino rosso di valore massimo di tipo v-discendente di v

Complessità: O(n) -info che vengono "dal basso", calcolate rispetto al sottoalbero con radice v;

-possono essere usate per "passare informazioni" al padre di v

problema 2

Input: - un albero binario T di n nodi (rappresentato con record e puntatori)

- un intero h≥0

Output: numero di nodi di T con profondità almeno h

profondità di un nodo: distanza (#di archi) dalla radice.

Output: 7

info che vengono "dall'alto"

ContaProf(v, h, i)

restituisce il numero di nodi nel sottoalbero radicato in v che hanno prof ≥ h. assume che v ha profondità i

info che vengono "dal basso"

ContaProf(v, h, i)

if *v*=null **then return** 0

if $i \ge h$

then return 1+ ContaProf(sx(v), h, i+1) +ContaProf(dx(v), h, i+1)

else return ContaProf(sx(v), h, i+1) +ContaProf(dx(v), h, i+1)

chiamata iniziale:

ContaProf(r, h, 0)

Complessità: O(n)

problema 3

Input: - un albero binario T di n nodi (rappresentato con record e puntatori)

- ogni nodo v ha un valore val(v)>0

Output: numero di nodi che soddisfano

somma dei valori degli $\underline{}$ somma dei valori dei antenati del nodo $\underline{}$ discendenti del nodo

Output: 2

Bilanciati(*v*, *SA*)

restituisce (SD,k)

-SD: somma valore
discendenti di v (v
incluso);

-k: numero nodi nel sottoalbero radicato in v che soddisfano (Δ).

assume:

-SA: somma valori antenati di v (v escluso)

Bilanciati(v, SA)

if v=null then return (0,0)

SA=SA+val(v)

 (SD_s,k_s) =Bilanciati(sx(v),SA)

 (SD_d, k_d) =Bilanciati(dx(v), SA)

 $SD=SD_s+SD_d+val(v)$

if SD=SA

then return (SD, $1+ k_s + k_d$)

else return (SD, $k_s + k_d$)

CalcoBilanciati(*r*)

(SD,k)=Bilanciati(r,0)

return k

Complessità: O(n)

Esercizio

Sia T un albero binario di n nodi con radice r in cui ogni nodo ha un valore non negativo associato. La profondità di un nodo v è il numero di archi del cammino da v alla radice. I nodi che si incontrano lungo tale cammino (v compreso) sono detti antenati di v. Diremo che un nodo v è generazionalmente <math>profondo se la sua profondità è strettamente maggiore del valore di un suo antenato di valore minimo.

Si assuma che T è mantenuto attraverso una struttura collegata e che ogni nodo v abbia associato i seguenti campi: puntatori al padre e ai figli (v.p, v.s, v.d) e valore del nodo (v.val). Si progetti un algoritmo con complessità temporale O(n) che, preso T, restituisca il numero di nodi generazionalmente profondi di T. Si fornisca lo pseudocodice dettagliato dell'algoritmo.

Esercizio

Sia T un albero binario di n nodi con radice r. La profondità di un nodo v è il numero di archi del cammino da v alla radice. Un nodo u è un discendente di v se u si trova nel sottoalbero di T radicato in v. Si assuma che T è mantenuto attraverso una struttura collegata e che ogni nodo v mantenga i puntatori al padre e ai figli (v.p, v.s, v.d). Si progetti un algoritmo con complessità temporale O(n) che, preso T, restituisca il nodo v di profondità minima la cui profondità è maggiore o uguale al numero dei suoi discendenti. Si fornisca lo pseudocodice dettagliato dell'algoritmo e possibilmente non si usino variabili globali e passaggi di parametri per riferimento.