

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Zastosowanie metod wielowymiarowej analizy porównawczej do oceny stanu środowiska w województwie dolnośląskim

> Mikołaj Ziółkowski Wydział Zarządzania Informatyka i Ekonometria, rok 3

1. Dane:

Badanie przeprowadzono na podstawie danych statystycznych o stanie i ochronie środowiska w 30 powiatach województwa dolnośląskiego w 2022 r., udostępnionych na stronie Głównego Urzędu Statystycznego(GUS). Uwzględniono 9 zmiennych.

Zmienne	OPIS	Charakter zmiennej							
X1	Pobór wody na potrzeby gospodarki narodowej i ludności[dam3/os]	destymulanta							
X2	Zużycie wody na potrzeby gospodarki narodowej i ludności[dam3/os]	destymulanta							
Х3	cieki przemysłowe i komunalne/ludność korzystająca z destymulanta czyszczalni ścieków								
X4	Oczyszczalnie ścieków[szt/os]	stymulanta							
X5	emisja i redukcja zanieczyszczeń powietrza	destymulanta							
X6	ochrona przyrody i krajobrazu — powierzchnia[ha]	stymulanta							
X7	ochrona przyrody i krajobrazu — pomniki przyrody[szt/ha]	stymulanta							
X8	Odpady wytworzone [t/os]	destymulanta							
X9	odpady dotychczas składowane i tereny ich składowania[t/ha]	destymulanta							

Zmienne powstały na podstawie Banku Danych Lokalnych(BDL) w następujący sposób:

- a) Zmienna X1 -> Pobór wody na potrzeby gospodarki narodowej i ludności[dam^3] podzielono przez liczbę ludności danego powiatu.
- b) Zmienna X2 -> Zużycie wody na potrzeby gospodarki narodowej i ludności[dam^3] podzielono przez liczbę ludności danego powiatu.
- c) Zmienna X3 -> Ścieki przemysłowe i komunalne podzielono przez ludność korzystającą z oczyszczalni ścieków.
- d) Zmienna X4 -> Ścieki przemysłowe i komunalne[szt] podzielono przez liczbę ludności danego powiatu.
- e) Zmienna X5 -> [(Emisja zanieczyszczeń pyłowych) (redukcja zanieczyszczeń pyłowych)]+[(Emisja zanieczyszczeń gazowych) (redukcja zanieczyszczeń gazowe)].
- f) Zmienna X6 -> ochrona przyrody i krajobrazu powierzchnia[ha] podzielona przez powierzchnię[ha] danego powiatu.
- g) Zmienna X7 -> ochrona przyrody i krajobrazu pomniki przyrody[szt] podzielona przez powierzchnię[ha] danego powiatu.
- h) Zmienna X8 -> odpady wytworzone[t] podzielone prze liczbę ludności danego powiatu.
- i) Zmienna X9 -> odpady dotychczas składowane[t] podzielone przez tereny ich składowania[ha].

Zmienne przeskalowano w celu możliwości lepszego porównywania wartości pomiędzy powiatami, które różnią się pod wieloma czynnikami, m.in.: powierzchnią, ludnością, etc.

1.1 Dane w formie tabeli

Tabela o wymiarach 11x31.

Kolumny: L.P ,Poiwaty i zmienne X1,X2,X3,X4,X5,X6,X7,X8,X9

L.P	Powiaty	X1	X2	X3	X4	Х	X6	X7	X8	X9
1	bolesławiecki	0,0920	0,0779	0,0460	0,0001	36813,0	0,0920	0,0014	4,44	99896,1
2	dzierżoniowski	0,0327	0,0352	0,0349	0,0001	33846,0	0,1788	0,0025	0,19	0,0
3	głogowski	0,1905	0,0423	0,0367	0,0002	385885,0	0,0279	0,0008	13,13	123618,4
4	górowski	0,0675	0,0492	0,0576	0,0002	3477,0	0,7059	0,0011	0,20	0,0
5	jaworski	0,0527	0,0445	0,0356	0,0001	20288,0	0,2629	0,0020	2,26	0,0
6	karkonoski	0,0972	0,0544	0,0465	0,0002	55834,0	0,2625	0,0009	0,23	0,0
7	kamiennogórski	0,2500	0,0337	0,0417	0,0003	13592,0	0,1603	0,0007	1,80	57823,9
8	kłodzki	0,0614	0,0379	0,0527	0,0001	33815,0	0,3755	0,0011	1,83	355713,0
9	legnicki	0,1733	0,1701	0,0381	0,0002	37829,0	0,1201	0,0018	1,30	0,0
10	lubański	0,0546	0,0395	0,0521	0,0002	21489,0	0,0225	0,0032	0,78	0,0
11	lubiński	0,0579	0,4076	0,0394	0,0002	148655,0	0,0212	0,0011	74,03	315998,6
12	lwówecki	0,0324	0,0262	0,0306	0,0002	845,0	0,1326	0,0007	0,28	0,0
13	milicki	2,1749	2,1592	0,0350	0,0001	0,0	0,6776	0,0007	0,00	0,0
14	oleśnicki	0,0826	0,0720	0,0421	0,0001	32540,0	0,1046	0,0006	0,08	0,0
15	oławski	0,0715	0,0637	0,0478	0,0001	55686,0	0,0015	0,0006	2,21	0,0
16	polkowicki	0,0471	0,0388	0,0366	0,0002	266730,0	0,2669	0,0003	346,70	340259,2
17	strzeliński	0,0887	0,0684	0,0360	0,0002	72323,0	0,1465	0,0004	2,05	0,0
18	średzki	0,0594	0,0467	0,0400	0,0002	53537,0	0,0074	0,0004	0,59	0,0
19	świdnicki	0,0622	0,0459	0,0461	0,0001	114831,0	0,0743	0,0025	0,41	0,0
20	trzebnicki	0,3192	0,3059	0,0426	0,0002	386,0	0,2401	0,0020	0,22	0,0
21	wałbrzyski	0,0976	0,0291	0,0311	0,0002	837,0	0,3557	0,0031	0,53	0,0
22	wołowski	0,2464	0,2314	0,1893	0,0001	104730,0	0,1179	0,0004	1,71	45587,7
23	wrocławski	0,0891	0,1109	0,0723	0,0001	533717,0	0,1097	0,0013	2,59	82036,4
24	ząbkowicki	0,0471	0,0365	0,0403	0,0003	0,0	0,1585	0,0021	4,18	226882,8
25	zgorzelecki	0,3383	0,3089	0,0386	0,0002	9220266,0	0,0014	0,0005	23,07	0,0
26	złotoryjski	0,0515	0,0360	0,0351	0,0003	166,0	0,0705	0,0012	11,43	0,0
27	*miasto Jelenia Góra	0,0645	0,0466	0,0877	0,0000	88607,0	0,1991	0,0016	0,12	0,0
28	*miasto Legnica	0,1019	0,0510	0,0487	0,0000	154914,0	0,0027	0,0096	4,52	107505,4
29	*miasto Wrocław	0,1262	0,1076	0,0573	0,0000	1132852,0	0,0240	0,0039	0,87	229923,1
30	*miasto Wałbrzych	0,0052	0,0459	0,0353	0,0000	268684,0	0,1694	0,0076	1,59	166027,3

^{*}miasto na prawach powiatu

2. Statystyki opisowe:

	X1	X2	X3	X4	X5	X6	X7	X8	X9
Min	0.005	0.026	0.03	1.187e- 05	0	0.0014	0.0003	0	0
1st Q	0.0554	0.039	0.036	8.523e- 05	15266	0.039	0.0007	0.3137	0
Mediana	0.077	0.048	0.041	1.517e- 04	45683	0.126	0.00117	1.65	0
Średnia	0.175	0.161	0.049	1.410e- 04	429772	0.169	0.0019	16.779	717
3rd Q	0.12	0.1	0.049	1.951e- 04	140199	0.229	0.002	3.782	105603
Max	2.174	2.159	0.189	2.697e- 04	9220266	0.7059	0.0096	346.7036	355713
Odch.Stan	0.39	0.39	0.03	0	1675711	0.18	0	63.83	112766.62
Kurtoza	20.82	20.11	15	-0.92	22.25	2.57	5.58	20.81	0.51

Zmienne X1,X2 i X3 mają stosunkowo małe wartości mediany i średniej, ale duży rozstęp, co sugeruje, że dane są bardzo zróżnicowane, bądź istnieją znaczące outliery. Kurtoza w tych zmiennych jest wysoka, co sugeruje na rozkład z wąskim szczytem, a tym samym występowanie dużej ilości ekstremalnych wartości. X5 Ma dużą różnicę między wartością minimalną a maksymalną, co wskazuje na znaczną zmienność danych. Średni jest zdecydowanie większa niż mediana, co oznacz, że prawdopodobnie istnieją duże wartości odstające. X9 i X10 mają duże różnice między wartościami max i min, co wskazuje na dużą zmienność danych i obecność potencjalnych wartości odstających.

3. Korelacja:

	X1	X2	X3	X4	X5	X6	X7	X8	X9
X1	1,000								
X2	0,977	1,000							
X3	-0,032	-0,032	1,000						
X4	0,054	0,032	-0,226	1,000					
X5	0,067	0,060	-0,052	0,150	1,000				
X6	0,509	0,483	-0,046	0,055	-0,217	1,000			
<i>X</i> 7	-0,147	-0,142	-0,101	-0,535	-0,091	-0,159	1,000		
X8	-0,074	-0,037	-0,102	0,278	0,035	0,044	-0,164	1,000	
X9	-0,160	-0,086	-0,027	0,034	-0,064	-0,048	0,128	0,528	1,000

Na podstawie wyników korelacji można zauważyć, iż istnieje wysoka zależność(0,98) między X1 i X2. Ta wysoka korelacja wskazuje, iż w dalszym badaniu należy rozważyć usunięcie jednej ze zmiennych X1/X2, o ile inne, późniejsze modyfikacje nie zmienią odpowiednio wartości korelacji.

4. Współczynnik zmienności:

Zmienne	Wsp.
	zmiennosci
X1	221.72
X2	242.264
X3	59.299
X4	52.739
X5	389.91
X6	103.305
X7	110.35
X8	380.44
X9	157.256

Bardzo wysokie współczynniki zmienności oznaczają, że wartości zmiennych są bardzo rozporoszone wokół średniej, co może wynikać z obecności outlierów. W zmiennych X5 i X8 współczynnik wskazuje na ekstremalne wartości, co prawdopodobnie jest wynikiem związanym z nielicznymi bardzo dużymi wartościami odstającymi.

5. Wartości odstające(outliery)

5.1 Boxploty

Na podstawie wykresów pudełkowych można wywnioskować, iż w danych istnieją znaczące wartości odstające w większości przypadków. Jedynie zmienna X4 nie posiada wartości odstających.

5.2 Test Grubbsa

Używam testu Grubbsa do wykrywania wartości odstających w próbach

- hipoteza zerowa H0: W próbie nie ma wartości odstających
- -hipoteza alternatywna H1: W próbie występują wartości odstające

Zmienne	p-value
X1	0
X2	0
X3	5.8280047454673e-11
X4	1
X5	0
X6	0.01241
X7	0.000189
X8	0
X9	0.1183

Dla zmiennych X1,X2,X3,X5,X6,X7,X8 odrzucamy H0 i przyjmujemy, że występują wartości odstające. Dla Zmiennej X4, p-value-1, co oznacza, że nie ma wartości odstających. Dla Zmiennej X9 nie ma wystarczających dowodów na występowanie wartości odstających.

6. Podsumowanie wstępnej analizy.

Przez wzgląd na istnienie znaczących wartości odstających wśród większości ze zmiennych, decyduję się na zmianę wartości outlierów na wartość końca "wąsa" tzn. na najwyższy wynik, który nie jest outlierem w odrębie danej zmiennej. Wartość końca wąsa obliczana jest ze wzroru: Q3 + 1.5 * IQR, gdzie IQR = Q3 – Q1, Q3-kwantyl trzeci, Q1-kwantyl pierwszy.

6.1 Zamiana outlierów

Pierwsze	13	wierszy	ро	zmianie:

L.P	Powiaty	X1	X2	X3	X4	X5	X6	X7	X8	X9
1	bolesławiecki	0,092	0,078	0,046	0,000080	36813,000	0,092	0,001	4,443	99896,057
2	dzierżoniowski	0,033	0,035	0,035	0,000083	33846,000	0,179	0,002	0,193	0,000
3	głogowski	0,190	0,042	0,037	0,000198	327598,500	0,028	0,001	8,986	123618,399
4	górowski	0,067	0,049	0,058	0,000153	3477,000	0,517	0,001	0,195	0,000
5	jaworski	0,053	0,045	0,036	0,000105	20288,000	0,263	0,002	2,257	0,000
6	karkonoski	0,097	0,054	0,047	0,000213	55834,000	0,263	0,001	0,228	0,000
7	kamiennogórski	0,217	0,034	0,042	0,000270	13592,000	0,160	0,001	1,802	57823,864
8	kłodzki	0,061	0,038	0,053	0,000114	33815,000	0,375	0,001	1,835	264007,616
9	legnicki	0,173	0,170	0,038	0,000164	37829,000	0,120	0,002	1,301	0,000
10	lubański	0,055	0,039	0,052	0,000154	21489,000	0,023	0,003	0,780	0,000
11	lubiński	0,058	0,192	0,039	0,000203	148655,000	0,021	0,001	8,986	264007,616
12	lwówecki	0,032	0,026	0,031	0,000185	845,000	0,133	0,001	0,280	0,000
13	milicki	0,217	0,192	0,035	0,000140	0,000	0,517	0,001	0,000	0,000

6.2 korelacja po zmianie:

	X1	X2	X3	X4	X5	X6	X7	X8	X9
X1	1,00								
X2	0,66	1,00							
Х3	0,09	0,14	1,00						
X4	0,23	0,04	-0,44	1,00					
X5	0,12	0,18	0,20	-0,23	1,00				
X6	0,03	-0,04	-0,04	0,06	-0,39	1,00			
X7	-0,25	-0,19	0,05	-0,55	0,13	-0,11	1,00		
X8	0,06	0,11	-0,24	0,45	0,48	-0,36	-0,23	1,00	
X9	-0,19	-0,02	0,07	0,00	0,45	-0,06	0,16	0,45	1,00

Po modyfikacji outlierów, korelacja również się zmieniła, żadna wartość w macierzy nie

wskazuje na wartość powyżej 0.9. Nie ma już potrzeby rozważania usunięcia jednej z zmiennych X1 i X2, jak to było przed zmianą.

6.3 Test Grubbsa i wykresy pudełkowe

Zmienne	p-
	value
X1	0.989
X2	0.747
X3	0359
X4	1
X5	0.605
X6	0.112
X7	0.386
X8	0.571
X9	0.468

Brak wartości odstających, ich wpływ został zniwelowany.

7. Porządkowanie liniowe

W kolejnym etapie badania przechodzę do porządkowania liniowego. Do analizy wykorzystuje 3 metody: Hellwiga, Topsis oraz Standaryzowanych Sum.

! ustalenie wag zmiennych — przyjęto takie same wagi dla wszystkich zmiennych

7.1 Wyniki poszczególnych metod porządkowania liniowego:

Hell	wiga		Topsis				StandaryzowanychSum			
Ran	ıking		Ranking			Ranking				
L. P	Powiaty	WSK	L.P	Powiaty	WSK	L.P	Powiaty	WSK		
8	kłodzki	0,52333 2	21	wałbrzyski	0,77703	8	kłodzki	1		
21	wałbrzyski	0,44967 6	4	górowski	0,72613 3	21	wałbrzyski	0,97085 8		
24	ząbkowicki	0,43366 8	5	jaworski	0,68277 5	2	dzierżoniowsk i	0,94325 5		
2	dzierżoniowsk i	0,42307 5	2	dzierżoniowsk i	0,68182 3	12	lwówecki	0,91904		
14	oleśnicki	0,40797 4	6	karkonoski	0,66142 7	4	górowski	0,85629 7		
6	karkonoski	0,40693 8	12	lwówecki	0,64861 5	19	świdnicki	0,84495 4		
4	górowski	0,39960 3	10	lubański	0,64264 7	5	jaworski	0,84094 1		
5	jaworski	0,39733 3	27	miasto Jelenia Góra	0,60167 5	24	ząbkowicki	0,83007 2		
19	świdnicki	0,39459 7	19	świdnicki	0,60160 8	14	oleśnicki	0,80332 4		
12	lwówecki	0,36803 7	13	milicki	0,59700 6	6	karkonoski	0,77213 6		

I		0,35384	l		0,59133	l		0,76380
1	bolesławiecki	2	14	oleśnicki	4	10	lubański	3
		0,33554			0,58065			0,76292
20	trzebnicki	9	17	strzeliński	8	20	trzebnicki	2
		0,32904			0,57618			0,68501
10	lubański	4	20	trzebnicki	9	18	średzki	5
		0,28779	_	kamiennogórs	0,57197			0,68345
26	złotoryjski	5	7	ki	2	26	złotoryjski	3
1,7	- 4 1:-5 - 1:-	0.00507	40	4 al-1 si	0,57008		المام مامينا مادا	0,62895
17	strzeliński	0,28537	18	średzki	0.50070	1	bolesławiecki	0.64440
9	lognicki	0,28513 3	24	ząbkowicki	0,56676	17	strzeliński	0,61118 3
9	legnicki	0,28134	24	ZąDKOWICKI	0,55809	17	Suzemiski	0,60363
18	średzki	5	26	złotoryjski	9	13	milicki	5
 	STOUZIN	0,23576	20	Ziotoi yjoki	0,55502	10	THIIOKI	0,58502
13	milicki	8	9	legnicki	8	9	legnicki	3
		0,22975		J. J. W. L. W.	0,55267			0,52242
15	oławski	5	8	kłodzki	6	15	oławski	7
				miasto				
	kamiennogórs	0,22035		Wałbrzych od	0,53916		kamiennogórs	
7	ki	5	30	2013	7	7	ki	0,51611
							miasto	
		0,21596			0,53491		Wałbrzych od	0,43022
23	wrocławski	9	15	oławski	3	30	2013	1
1,0		0.40445			0,50245			0,36308
16	polkowicki	0,19415	1	bolesławiecki	1	23	wrocławski	5
	miasto	0.40005		:	0.40040			0.04007
20	Wałbrzych od		20	miasto	0,49246	16	n alkawiaki	0,34327 9
30	2013 miasto	6 0,14564	28	Legnica	5 0,44334	16	polkowicki miasto	0,34242
28	Legnica	8	22	wołowski	7	27	Jelenia Góra	5
20	Legilica	O		WOIOWSKI	0,41702	21	Jelerila Gora	0,27752
11	lubiński	0,13949	23	wrocławski	6	11	lubiński	7
Ë	miasto	0,10259		miasto	0,40739	l	miasto	0,25505
29	Wrocław	6	29	Wrocław	7	28	Legnica	9
		0,09981			0,40658			0,20621
3	głogowski	4	16	polkowicki	1	3	głogowski	5
	miasto	0,06825			0,35380		miasto	0,12350
27	Jelenia Góra	4	25	zgorzelecki	3	29	Wrocław	8
		0,02988			0,34387			0,10121
25	zgorzelecki	6	3	głogowski	1	25	zgorzelecki	6
		0,00328			0,33141			
22	wołowski	4	11	lubiński	6	22	wołowski	0

7.2 Ranking(od 1 do 30) według poszczególnych metod:

-	Hellwig	Topsis	StandaryzowanychSum
kłodzki	1	19	1
wałbrzyski	2	1	2
ząbkowicki	3	16	8
dzierżoniowski	4	4	3
oleśnicki	5	11	9
karkonoski	6	5	10
górowski	7	2	5
jaworski	8	3	7
świdnicki	9	9	6

lwówecki	10	6	4
bolesławiecki	11	22	15
trzebnicki	12	13	12
lubański	13	7	11
złotoryjski	14	17	14
strzeliński	15	12	16
legnicki	16	18	18
średzki	17	15	13
milicki	18	10	17
oławski	19	21	19
kamiennogórski	20	14	20
wrocławski	21	25	22
polkowicki	22	27	23
miasto Wałbrzych	23	20	21
miasto Legnica	24	23	26
lubiński	25	30	25
miasto Wrocław	26	26	28
głogowski	27	29	27
miasto Jelenia Góra	28	8	24
zgorzelecki	29	28	29
wołowski	30	24	30

Uzyskane wyniki charakteryzują się istotnym zróżnicowaniem, przy czym zaskakujący jest fakt, iż większa zbieżność dotyczy rankingów pomiędzy wzorcowymi metodami a bez wzorcowymi. W szczególności dotyczy to metod Hellwiga i Stand.Sum., co również wynika z poniższej korelacji. Można zauważyć, że w metodzie Hellwiga oraz Standaryzowanych Sum w pierwszej czwórce rankingu znajdują się powiaty: kłodzki(1), wałbrzyski(2), ząbkowicki i dzierżoniowski.

7.3 Korelacja Tau-Kendalla pomiędzy rankingami metod

	Hellwig	Topsis	StandSum
Hellwig	1		
Topsis	0.526	1	
Stand.Sum	0.844	0.609	1

7.4 Grupowanie według średniej

a) obliczenia:

	Hellwiga	Topsis	StandaryzowanychSum
średnia	0,273607784	0,558088348	0,586197817
odchyenie	0,136803892	0,106133756	0,283571825
suma	0,410411676	0,664222104	0,869769642
różnica	0,136803892	0,451954592	0,302625992
GR.I	r>=0,4104	r>=0,6642	r>=0,8697
GR.II	0,2736<=r<0,4104	0,558<=r<0,6642	0,5861<=r<0,8697
GR.III	0,1368<=r<0,2736	0,4519<=r<0,558	0,3026<=r<0,5861
GR.IV	r<0,1368	r<0,4519	r<0,3026

b) Klasyfikacja powiatów województw

W klasie pierwszej znalazły się powiaty wyróżniające się najlepszym stanem ochrony środowiska ([klasa I]zgodna klasyfikacja w przypadku powiatów: wałbrzyski, dzierżoniowski),

a w czwartej – najgorszym ([klasa IV]zgodna klasyfikacja w przypadku powiatów miasto Wrocław, głogowski, zgorzelecki, wołowski)

Klasa	Hellwiga		Topsis		Standaryzowanych Su	m	
	kłodzki	4	wałbrzyski	4	kłodzki	4	
	wałbrzyski		górowski		wałbrzyski		
•	ząbkowicki		jaworski		dzierżoniowski		
	dzierżoniowski		dzierżoniowski		lwówecki		
	oleśnicki	13	karkonoski	13	górowski	13	
	karkonoski		lwówecki		świdnicki		
	górowski		lubański		jaworski		
	jaworski		miasto Jelenia Góra		ząbkowicki		
	świdnicki		świdnicki		oleśnicki		
	lwówecki		milicki		karkonoski		
II	bolesławiecki		oleśnicki		lubański		
	trzebnicki		strzeliński		trzebnicki		
	lubański	trzebnicki		średzki			
	złotoryjski	kamiennogórski		złotoryjski			
	strzeliński	średzki		bolesławiecki			
	legnicki		ząbkowicki		strzeliński		
	średzki		złotoryjski		milicki		
	milicki	8	legnicki	6	legnicki	7	
	oławski		kłodzki		oławski		
	kamiennogórski		miasto Wałbrzych		kamiennogórski		
III	wrocławski		oławski		miasto Wałbrzych		
'''	polkowicki		bolesławiecki		wrocławski		
	miasto Wałbrzych		miasto Legnica		polkowicki		
	miasto Legnica				miasto Jelenia Góra		
	lubiński						
	miasto Wrocław	5	wołowski	7	lubiński	6	
	głogowski		wrocławski		miasto Legnica		
	miasto Jelenia Góra		miasto Wrocław		głogowski		
IV	zgorzelecki		polkowicki		miasto Wrocław		
	wołowski		zgorzelecki		zgorzelecki		
			głogowski		wołowski		
			lubiński				

7.5 Wizualizacja grupowania

Na mapach poniże zilustrowano klasyfikację powiatów ze względu na stan ochrony środowiska (mniej intensywny kolor oznacza klasę powiatów charakteryzujących się lepszym stanem ochrony środowiska)

Z przedstawionych powyżej ilustracji można zauważyć, iż powiaty o gorszym stanie ochrony środowiska znajdują się w północno-zachodniej części województwa dolnośląskiego, co wynika z wszystkich zastosowanych metod. Natomiast te o lepszym stanie znajdują się na południu oraz w centrum województwa.

d) wykres radarowy

Oś radialna: reprezentuje różne powiaty. Każdy z powiatów jest reprezentowany przez swoje wartości w trzech metodach.

Oś wartości: Okręgi oznaczające wartości wskaźników dla poszczególnych metod.

Zauważalny jest fakt, iż metoda Hellwiga zazwyczaj ma mniejsze wartości w porównaniu do pozostałych metod. Dla Topsis wartości są zazwyczaj wyższe niż w przypadku Hellwiga. W niektórych powiatach (np. kłodzki, wołowski, wrocławski) widzimy znacząco wyższe wartości w porównaniu do Hellwiga. Standaryzowanych sum: Podobnie jak TOPSIS, ta metoda wykazuje większe rozróżnienie między powiatami, co oznacza bardziej widoczne różnice w wynikach. Powiat Kłodzki uzyskuje wysokie wskaźniki we wszystkich trzech metodach, co oznacza, że według każdej z nich jego sytuacja jest oceniana pozytywnie. Ząbkowicki i wałbrzyski: Te powiaty również są wysoko oceniane, szczególnie w metodach TOPSIS i Standaryzowanych Sum. Powiaty takie jak polkowicki, milicki, średzki: Mają niższe wskaźniki w każdej z metod, co sugeruje, że są oceniane słabiej według wszystkich trzech algorytmów.

8. Analiza Skupień

W kolejnej części badania przeprowadzam analizę skupień dwoma metodami, metodą hierarchiczną Warda oraz metodą podziałową k-średnich. Do metody k-średnich poszukuje optymalnej liczby klastrów za pomocą metody "Łokciowej" oraz metody "Sylwetkowej".

8.1Metoda Łokciowa:

Metoda ta wskazuje, iż optymalną liczbą klastrów jest liczba 4.

8.2 Metoda Sylwetkowa:

Natomiast ta metoda wskazuje, iż optymalną liczbą klastrów będzie 5.

8.3 Metoda k-średnich

Porównanie podziałów przez wzgląd na 4 i 5 klastrów, oraz wybór najbardziej optymalnego rozwiązania.

Powiat	5 klastrów	4 klastry
bolesławiecki	5	3
dzierżoniowski	5	3
głogowski	2	4
górowski	1	3
jaworski	5	3
karkonoski	5	3
kamiennogórski	5	3
kłodzki	1	3
legnicki	4	1
lubański	5	3
lubiński	2	4
lwówecki	5	3
milicki	4	1
oleśnicki	5	3
oławski	5	3
polkowicki	2	4
strzeliński	5	3
średzki	5	3
świdnicki	5	2
trzebnicki	4	1
wałbrzyski	5	3
wołowski	4	1
wrocławski	3	2
ząbkowicki	5	3
zgorzelecki	2	4
złotoryjski	5	3
miasto Jelenia Góra	1	2
miasto Legnica	3	2
miasto Wrocław	3	2
miasto Wałbrzych	3	2

Porównując otrzymane wyniki podziału z rankingami z porządkowania liniowego dochodzę do wniosku, iż podział na 4 klastry jest lepszym podziałem ponieważ widać pewne zależności pomiędzy podziałem na 4 klastry a rankingiem wg. Metod: Hellwiga, Topsis, StandaryzowanychSum.

8.4 Podział na 4 klastry:

W powyższym podziale metodą k-średnich, można za pomocą ilustracji zauważy pewne podobieństwa do metody Topsis w podziale powiatów, co pozytywnie wpływa na przebieg badania. Jednak wciąż istnieje dość spora różnica między metodami porządkowania liniowego a metodą k-średnich, przykładowo powiat Kłodzki dla metod Hellwiga i Standaryzowanych Sum jest na szczycie rankingu, natomiast w k-średnich w klastrze numer 3.

8.5 Hierarchiczna metoda Warda

Podział metodą Warda dzieli powiaty na 7 obszarów, co obrazuje poniższy dendrogram

Dendrogram - Hierarchiczne grupowanie metodą Warda

Powiat	Podział
bolesławiecki	1
dzierżoniowski	1
głogowski	2
górowski	3
jaworski	1
karkonoski	3

kamiennogórski	4
kłodzki	3
legnicki	5
lubański	1
lubiński	2
lwówecki	1
milicki	5
oleśnicki	1
oławski	1
polkowicki	2
strzeliński	1
średzki	1
świdnicki	1
trzebnicki	5
wałbrzyski	1
wołowski	6
wrocławski	6
ząbkowicki	4
zgorzelecki	2
złotoryjski	4
Jelenia Góra	6
miasto Legnica	7
miasto Wrocław	7
miasto	7
Wałbrzych	

Na podstawie powyższego podziału oraz mapy można zauważy podobieństwo do poprzednich metod. Mianowicie powiaty "lepsze,, w centrum i na południu województwa, natomiast nieco gorsze na północy. Zgodność z innymi metodami np.: z metodami porządkowania liniowego występuje przykładowo w powiecie wołowskim oraz w powiecie miast Wrocław (jako gorsze) oraz zgodność z nieco lepszymi jak świdnicki, kłodzkim, jaworski.

8.6 Statystyki w grupach i ich analiza

średnia

klaster	X1	X2	X3	X4	X5	X6	X7	X8	X9
1	0.066	0.049	0.0402	0.0000123	40276	0.125	0.00158	1.26	9801
2	0.128	0.116	0.0378	0.000 <u>213</u>	<u>267</u> 6460	0.079 <u>4</u>	0.000 <u>680</u>	8.99	162908
3	0.075 <u>4</u>	0.047 <u>2</u>	0.052 <u>3</u>	0.000 <u>160</u>	<u>31</u> 042	0.385	0.001 <u>04</u>	0.753	88003
4	0.105	0.035 <u>4</u>	0.039 <u>0</u>	0.000 <u>267</u>	<u>4</u> 586	0.130	0.001 <u>34</u>	4.99	94902
5	0.202	0.185	0.038 <u>6</u>	0.000 <u>154</u>	<u>12</u> 738	0.292	0.0149	0.506	0
6	0.124	0.117	0.066 <u>9</u>	0.000 <u>073</u> 7	<u>173</u> 645	0.142	0.001 <u>12</u>	1.47	42541
7	0.077 <u>8</u>	0.068 <u>2</u>	0.047 <u>1</u>	0.000 <u>021</u> 2	<u>250</u> 399	0.065 <u>4</u>	0.003 <u>99</u>	2.33	167819

Odchylenie standardowe

_									
	X1	X2	X3	X4	X5	X6	X7	X8	X9

1	0.022 <u>6</u>	0.017 <u>8</u>	0.007 <u>16</u>	0.000 <u>041</u> 6	<u>33</u> 128	0.109	0.001 <u>12</u>	1.34	<u>30</u> 120
2	0.088 <u>1</u>	0.087 <u>4</u>	0.001 <u>40</u>	0.00 <u>014</u> 3	<u>84</u> 357	0.126	0.000 <u>361</u>	0	<u>127</u> 181
3	0.019 <u>2</u>	0.008 <u>42</u>	0.005 <u>56</u>	0.000 <u>049</u> 8	<u>26</u> 288	0.127	0.000 <u>114</u>	0.937	<u>152</u> 425
4	0.096 <u>9</u>	0.001 <u>48</u>	0.003 <u>52</u>	0.000 <u>004</u> 24	<u>7</u> 800	0.051 <u>3</u>	0.000 <u>669</u>	3.66	<u>117</u> 898
5	0.025 <u>3</u>	0.012 <u>7</u>	0.003 <u>83</u>	0.000 <u>013</u> 0	<u>21</u> 730	0.203	0.000 <u>690</u>	0.697	0
6	0.081 <u>9</u>	0.072 <u>9</u>	0	0.000 <u>059</u> 1	<u>133</u> 571	0.049 <u>4</u>	0.000 <u>646</u>	1.25	<u>41</u> 103
7	0.064 <u>0</u>	0.034 <u>3</u>	0.011 <u>1</u>	0.000 <u>010</u> 3	<u>87</u> 782	0.090 <u>7</u>	0.000 <u>081</u> 6	1.93	<u>61</u> 229

Wnioski:

X1:destymulanta

Klastry 1,3,7 mają niższe wartości średniego poboru wody (X1), co jest pozytywne, bo X1 jest dystymulantą. Powiaty w tych klastrach średnio zużywają mniej wody na mieszkańca. Klastry 5 i 2 mają wyższe wartości– oznacza to, że powiaty w tych klastrach mają wyższe zużycie wody, co jest negatywne z punktu widzenia tej zmiennej.

X2:destymulanta

Klastry 1,3,4 mają niższe wartości zużycia wody, co wpływa pozytywnie .Natomiast klastry 2,5 i 6 mają najwyższe średnie zużycie wody, co jest bardziej negatywne.

X3:destymulanta

Klastry 2,4,5 mają niską wartość, co oznacz lepsze wyniki w zakresie ścieków na osobę. Klastry 3 i 6 mają najwyższą wartość, co sugeruje gorszy wpływ na ranking.

X4:stymulanta

Klaster 4 ma najwyższą wartość, co oznacza, że w powiatach tych jest lepsza infrastruktura oczyszczalni ścieków na osobę. Klaster 7 ma najniższą wartość, co jest negatywne.

X5:destymulanta

Klaster 4 ma stosunkowo niską wartość w porównaniu do pozostałych, co oznacza że te powiaty mają niski poziom emisji zanieczyszczeń. Natomiast problem z emisją zanieczyszczeń przypuszczalnie znajduje sie w klastrach 7 i 2, ponieważ tam sa najwyższe wartości.

X6:stymulanta

Klastry 2 i 3 mają największą wartość, co wskazuje na obecność większych obszarów objętych ochroną przyrody i krajobrazu w tych powiatach niż w pozostałych. Klaster 7 ma najniższą wartość, co może sugerować, że w tych powiatach jest mniej obszarów chronionych.

X7:stymulanta

Klaster 5 ma najwyższą wartość, a tym samym w tych powiatach znajduje się więcej pomników przyrody niż w pozostałych. Klaster 2 ma bardzo niską wartość, a tym samym te powiaty mają najmniej pomników przyrody.

X8:destymulanta

Klastry 1,3 i 5 mają niskie wartości, co jest pozytywne i oznacza mniejszą produkcje odpadów na mieszkańca. Wartość w klastrach 2 i 4 sugeruje, iż powiaty te mają większy problem z odpadami od pozostałych

X9:destymulanta

Klaster 1 ma niską wartość, a tym samym oznacza to mniejsze składowiska odpadów na jednostkę terenu. Większe problemy związane z odpadami obejmują klastry 2 i 7, gdzie wartości są dość duże w porównaniu do reszty klastrów.

Podsumowanie Klastrów:

Klaster 1 : Można zauważyć, iż powiaty w tym klastrze mają stosunkowo niskie wartości dla destymulant(w szczególności dla X1,X2,X8,X9, co oznacza lepsze wyniki. Odchylenie standardowe jest stosunkowo niskie ,co sugeruje małą zmienność między powiatami w tym klastrze.

Klaster 7: "Najgorszy" Powiaty w tym klastrze charakteryzują się stosunkowo wysokimi średnimi wartościami dla destymulant, co oznacza większe problemy np.: wysoka emisja zanieczyszczeń, dużą produkcją odpadów. Jednocześnie mają niższe wartości dla niektórych stymulant np.: oczyszczalnie ścieków, co wskazuje na niedostateczną infrastrukturę.

Klaster 4 : Wyróżnił się najlepiej pod względem oczyszczalni ścieków na osobę X4. Jednocześnie powiaty te mają także najniższą emisję zanieczyszczeń.

Klaster 5 i 2: klastry te charakteryzują się wysokim poborem(X1) i zużyciem wody(X2), co jest niekorzystne. Klaster 2 dodatkowo ma stosunkowo wysoką wartość zanieczyszczeń.

Niskie odchylenia standardowe w klastrach (szczególnie w klastrach 1, 3 i 4) sugerują, że powiaty w tych klastrach są bardziej jednorodne. Wysokie odchylenia standardowe, szczególnie w zmiennych takich jak X9 (odpady składowane) i X5 (emisja zanieczyszczeń), wskazują na dużą różnorodność w zarządzaniu odpadami i emisją zanieczyszczeń wśród powiatów. Przykładowo, klaster 2 i 7 są wyraźnie bardziej zróżnicowane, co może wskazywać na istnienie zarówno powiatów z poważnymi problemami środowiskowymi, jak i tych, które radzą sobie lepiej.