K-Means Clustering

Name: Satbhai Anket Satbhai

Roll No.: 4286, Batch: B7

In [1]: import pandas as pd
 df=pd.read_csv('C:\\Users\\DELL\\Desktop\\sales_data_sample.csv', encoding='lating
 df.head()

Out[1]:

	ORDERNUMBER	QUANTITYORDERED	PRICEEACH	ORDERLINENUMBER	SALES	ORDERDATE
0	10107	30	95.70	2	2871.00	2/24/2003 0:00
1	10121	34	81.35	5	2765.90	5/7/2003 0:00
2	10134	41	94.74	2	3884.34	7/1/2003 0:00
3	10145	45	83.26	6	3746.70	8/25/2003 0:00
4	10159	49	100.00	14	5205.27	10/10/2003 0:00

5 rows × 25 columns

4

Out[2]:

	QUANTITYORDERED	SALES
0	30	2871.00
1	34	2765.90
2	41	3884.34

In [3]: # k-mean algorithm

from sklearn.cluster import KMeans

```
In [4]: # elbow method
    inertia=[]
    k=[]
    for i in range(1,11):
        km=KMeans(n_clusters=i)
        km.fit(cf)
        inertia.append(km.inertia_)
        k.append(i)
```

```
In [5]: from matplotlib import pyplot as plt
%matplotlib inline
plt.xlabel('k')
plt.ylabel('Inertia')
plt.plot(k,inertia)
```

Out[5]: [<matplotlib.lines.Line2D at 0x1b0ff020d60>]


```
In [6]: plt.scatter(df['QUANTITYORDERED'],df['SALES'])
```

Out[6]: <matplotlib.collections.PathCollection at 0x1b0fd0c0df0>


```
In [7]: kmean=KMeans(n_clusters=3)
    y_pred=kmean.fit_predict(df[['QUANTITYORDERED','SALES']])
    y_pred

Out[7]: array([0, 0, 2, ..., 2, 0, 0])

In [8]: cf['cluster']=y_pred
    cf.head(2)
```

C:\Users\DELL\AppData\Local\Temp\ipykernel_5948\3023818644.py:1: SettingWithCop
vWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

cf['cluster']=y_pred

Out[8]:

	QUANTITYORDERED	SALES	cluster
0	30	2871.0	0
1	34	2765.9	0

```
In [9]: cf0=cf[cf.cluster==0]
    cf1=cf[cf.cluster==1]
    cf2=cf[cf.cluster==2]
```

```
In [10]: kmean.cluster_centers_
```

```
In [11]: plt.title('K-Means Clustering',size=20)
    plt.xlabel('Quantity Order',size=17)
    plt.ylabel('Sales',size=17)
    plt.scatter(cf0['QUANTITYORDERED'],cf0['SALES'],marker="p")
    plt.scatter(cf1['QUANTITYORDERED'],cf1['SALES'],marker='h')
    plt.scatter(cf2['QUANTITYORDERED'],cf2['SALES'])
    plt.scatter(kmean.cluster_centers_[:,0],kmean.cluster_centers_[:,1],color='black')
```

Out[11]: <matplotlib.collections.PathCollection at 0x1b0804d7ca0>

In [12]: # min max scaler
from sklearn.preprocessing import MinMaxScaler
slr=MinMaxScaler()

```
In [13]: slr.fit(cf[['QUANTITYORDERED']])
    cf['QUANTITYORDERED']=slr.transform(cf[['QUANTITYORDERED']])
    slr.fit(cf[['SALES']])
    cf['SALES']=slr.transform(cf[['SALES']])
    cf.head()
```

C:\Users\DELL\AppData\Local\Temp\ipykernel_5948\827238070.py:2: SettingWithCopy
Warning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

cf['QUANTITYORDERED']=slr.transform(cf[['QUANTITYORDERED']])

C:\Users\DELL\AppData\Local\Temp\ipykernel_5948\827238070.py:4: SettingWithCopy
Warning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

cf['SALES']=slr.transform(cf[['SALES']])

Out[13]:

	QUANTITYORDERED	SALES	cluster
0	0.263736	0.175644	0
1	0.307692	0.167916	0
2	0.384615	0.250150	2
3	0.428571	0.240030	2
4	0.472527	0.347273	2

Out[14]: array([1, 1, 0, ..., 2, 1, 0])

```
In [15]: cf['cluster2']=y_pred_new
```

C:\Users\DELL\AppData\Local\Temp\ipykernel_5948\1195066258.py:1: SettingWithCop
yWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

```
cf['cluster2']=y_pred_new
```

```
In [16]: cfn0=cf[cf.cluster2==0]
         cfn1=cf[cf.cluster2==1]
         cfn2=cf[cf.cluster2==2]
In [17]:
         kmean.cluster_centers_
Out[17]: array([[0.38076717, 0.22462815],
                [0.22516923, 0.13535002],
                [0.42454575, 0.45246352]])
In [18]:
         plt.title('K-Means Clustering', size=20)
         plt.xlabel('Quantity Order', size=17)
         plt.ylabel('Sales', size=17)
         plt.scatter(cfn0['QUANTITYORDERED'],cfn0['SALES'],marker="p")
         plt.scatter(cfn1['QUANTITYORDERED'],cfn1['SALES'],marker='h')
         plt.scatter(cfn2['QUANTITYORDERED'],cfn2['SALES'])
         plt.scatter(kmean.cluster_centers_[:,0],kmean.cluster_centers_[:,1],color='black
```

Out[18]: <matplotlib.collections.PathCollection at 0x1b080558e80>

