ML/DL for Everyone Season2

Lab 05-2 Logistic Regression

cost function & optimizer

Logistic Regression

- What is Logistic Regression?
 - Classification
 - Logistic vs Linear
- How to solve?
 - Hypothesis Representation
 - Sigmoid/Logistic Function
 - Decision Boundary
 - Cost Function
 - Optimizer (Gradient Descent)
- Codes (Eager Execution)
- Summary

Cost Function

the cost function to fit the parameters(θ)

Given the training set how to we chose fit θ ? $h_{\theta}(x) = y$ then Cost = 0 $cost(h_{\theta_{-}}(x),y) = -ylog(h_{\theta}(x)) - (1-y)log(1-h_{\theta}(x))$

```
[Tensorflow Code]
def loss_fn(hypothesis labels):
    cost = _-tf.reduce_mean(labels * tf.log(hypothesis) + (1 - labels) * tf.log(1 - hypothesis))
    return_cost
```

Cost Function

A convex logistic regression cost function

Optimization

How to minimize the cost function

 $cost(h_{\theta_{1}}(x),y) = -ylog(h_{\theta}(x)) - (1-y)log(1-h_{\theta}(x))$

Repeat $\{\theta_j := \underline{\theta_j} - \alpha \frac{\partial}{\partial \theta} J(\theta)\}$

[Tensorflow Code]

def grad(hypothesis, labels):

with tf.GradientTape() as tape:

Closs_value = loss_fn(hypothesis, labels)

return tape.gradient(loss_value, [W,b])

optimizer = tf.train.GradientDescentOptimizer(learning_rate 0.01)

optimizer.apply_gradients(grads_and_vars=zip(grads, [W,b]))