ADBIS 2010

Query Evaluation Techniques for Cluster Database Systems

Andrey V. Lepikhov, Leonid B. Sokolinsky
South Ural State University
Russia

22 September 2010

Outline

- Motivation
- Problem Statement
- Background
- Partial mirroring method
- Results
- Future work

Motivation

Top500

• Cluster: 84.8%

• MPP: 14.8%

• Others: 0.4%

Problem Statement

- Not expensive parallel hardware needs not expensive parallel database management system
- Today we have no such chip parallel database management system

5

Background

Exchange operator

- p: port
- ψ: distributing function

Parallel plan for query Q = R⋈S

ADBIS 2010

Query processing in cluster system

The problem

Load balancing

Partial mirroring method

- Fragmentation strategy
- Replication strategy

Fragmentation strategy

- Relation is divided into fragments distributed among cluster nodes
- Each fragment is divided into sequence of segments with an equal length
- Segment is the minimal unit of replication

Replication strategy

$$\rho_j = 50\%$$

22 September 2010

12

Load balancing method

Parallel agent with two input streams

Load balancing algorithm

```
/* load balancing procedure between agents \bar{Q} (forward)
and Q (backward). */
\bar{u} = Node(\bar{Q}); // \text{ pointer to the agent node } \bar{Q}
pause \tilde{Q}; // turn agent \tilde{Q} into passive state
for (i=1; i \le n; i++) {
   \mathbf{if}(\tilde{Q}.s[i].a == 1) {
      \tilde{f}_i = \tilde{Q}.s[i].f; // fragment assigned to agent \tilde{Q}
      \bar{r}_i = Re(\tilde{f}_i, \bar{u}); // \text{ replica } \tilde{f}_i \text{ into the node } \bar{u}
      \delta_i = Delta(Q.s[i]); // \text{ quantity of segments to trans-}
fer
      Q.s[i].q-=\delta_i;
      \bar{Q}.s[i].f = \bar{r}_i;
      \bar{Q}.s[i].b = \tilde{Q}.s[i].b + \tilde{Q}.s[i].q;
      \bar{Q}.s[i].q = \delta_i;
   } else
          print("Load balancing is not permitted.");
activate \tilde{Q} // turn agent \tilde{Q} into active state
activate \bar{Q} // turn agent \bar{Q} into active state
```

Parameters of experiments

Parameter	Value
Parameters of a cluster system	
Quantity of processing	128
nodes	
Processor type	Intel Xeon E5472 (4
	cores with 3.0 GHz)
RAM size	8 GB/node
Disk memory size	120 GB/node
Communication Net-	InfiniBand (20 Gb/s)
work type	
Operating system	SUSE Linux Enterprise
	Server 10
database parameters	
Number of tuples in rela-	60 million
tion R	
Number of tuples in rela-	1.5 million
tion S	
Query parameters	
Load balancing indicator	0 (load balancing is not
for relation R	admitted)
Load balancing indicator	1 (load balancing is ad-
for relation S	mitted)

Speedup versus replication factor

Speedup versus skew factor θ

- 0.68 corresponds to the "80-20" rule (80 percents of tuples of the relation will be stored in 20 percents of fragments)
- 0 corresponds to the uniform distribution

Future Work

- To incorporate the proposed technique of parallel query execution into open source PostgreSQL DBMS.
- ▶ To extend this approach on GRID DBMS for clusters with multicor processors.

Thank you