# FPGA NN Accelerator

# Al from a Hardware Perspective

- Long training times
- High compute load
- Highly Parallelizable
- Typically accelerated on a GPU
  - Using Floating Point arithmetic
  - High power consumption / temperature
- Need for high speed inference and training in all applications
- Need for energy efficient operation in mobile/embedded applications



# What are our options?

#### **GPU/ASIC** Acceleration

#### Pros

- Highly Parallel
- High Clock speeds (~5 GHz)
- Much faster than CPU
- Well documented software (easily programmed)
- Plentiful Memory

#### Cons

- Energy Inefficient
- Static Architecture (optimized for FP)
- Software Stack / Instruction Overhead

#### **FPGA Acceleration**

#### Pros

- Potentially faster than GPUs
- Energy Efficient (compared to GPUs)
- Much higher parallelism potential
- Reconfigurable Architecture

#### Cons

- Requires HDL programming
- FPGA Fabric Overhead
- Lower Clock speeds (50MHz)
- Poor at FP arithmetic
- Less onboard memory

# So why FPGAs?



Reconfigurability.

Highly optimized hardware for a particular application

# A Short Aside: Floating Point vs Fixed Point (Q8.8)



Floating-Point Format



Fixed-Point Format



# **GPU Overhead**

| Half-precision      | Operation (GPU) | Energy** | Overhead* |
|---------------------|-----------------|----------|-----------|
| Fused Multiply-Add  | HFMA            | 1.5pJ    | 2000%     |
| 4-way dot-product ~ | HDP4A           | 6.0pJ    | 500%      |

Source: Bill Dally "Hardware for Deep Learning" SysML 2018

#### Sources of Overhead During Inference

- Moving data from RAM to registers
- Memory Fragmentation
- Unutilized Compute Cores
- Synchronization and Scheduling
- Accounting for FP overflow, mantissas
- And last, but not least, API/Libraries

#### **FPGA Precision**

#### **GPU Precision**



### Block Floating Point [FP11, block = 8]



## Literature Review

Guo, Kaiyuan, et al. [DL] a Survey of FPGA-Based Neural Network Inference Accelerators. 2017

- Binarization (1 bit quantization), Pruning
- LUTs and Nonlinear LUT Quantization

Liang, Shuang, et al. "FP-BNN: Binarized Neural Network on FPGA." 2018

- Quantization by layer
- Pipelining, Caching, and Loop Unrolling

```
for (i = 0; i < 32; i ++)
{
    sum1 += const[i] * input[128 - i];
    sum2 += const[2*i] * input[128 - (2*i)];
    sum3 += const[3*i] * input[128 - (3*i)];
    sum4 += const[4*i] * input[128 - (4*i)];
}
```

Loop Unrolling (rolled and unrolled examples)

# My Implementation

- Goal: fast, energy efficient, and lightweight inference of small models
- Work with existing training software to create small models to prove concepts
- Create extendable Hardware Descriptions for basic NN operations
  - A neuron consisting of X inputs, any fixed point bit width, and LUT based activation functions
  - A framework for describing MLP networks
- Create a set of scripts that will automate the process of training and exporting model information to an FPGA





Describe and Train
 Model

- Try varying levels of fixed point quantization, verifying model meets performance target
- Export Weights, Biases,
   Activation functions into LUTs
- Describe Network
   Architecture for HDL

- Synthesize hardware design and verify inference performance
- Export test simulations to txt files, visualize with matplotlib

## **Trial Network:**

- Single Hidden Layer
- 5 hidden neurons
- Modeling a simple nonlinear function, xe<sup>-x</sup>

- Trained in Floating Point
- Weights, Biases, and Sigmoid Function quantized to Q4.6



Input Layer  $\in \mathbb{R}^1$ 

Hidden Layer ∈ ℝ<sup>5</sup>

Output Layer  $\in \mathbb{R}^1$ 

# **Tensorflow Quantization**



# **FPGA Implementation**



## **FPGA Utilization**

- 30 ns inference time
- Small models (minimum 800 Q4.6 neurons) are able to fit onto single entry level FPGA
- By sharing Sigmoid LUTs, this could be bumped up to (~4,000 Q4.6 neurons!)
- Some floating point layers can be implemented for maximum precision (with a large performance and area compromise)

| Resource | Utilization | Available | Utilization % |
|----------|-------------|-----------|---------------|
| LUT      | 111         | 20800     | 0.53          |
| FF       | 10          | 41600     | 0.02          |
| IO       | 41          | 106       | 38.68         |

# Next Steps

- Integrate training and validation with FPGA simulations
- Convolutional Layers
- Pipelining and Caching to allow larger models to fit on smaller FPGAs
- Nonlinear LUT Quantization
- Training during deployment

# Sometime In the not-so-far Future...

#### FPGAs with Dedicated Accelerators

 Offloading the stuff that ASICs are good at to an on-chip accelerator

