Karan_Trehan_18BCS6033_Worksheet_5&6

December 10, 2020

-	T/	TT 1
	Karan	Trehan
1	IXalali	HEHAH

1.1 UID: 18BCS6033

1.2 18AITAIML-1

1.2.1 Group B

Problem Statement: A classic problem in the field of pattern recognition is that of handwritten digit recognition. Suppose that you have images of handwritten digits ranging from 0-9 written by various people in boxes of a specific size - similar to the application forms in banks and universities.

The goal is to develop a model that can correctly identify the digit (between 0-9) written in an image.

Objective You are required to develop a model using Support Vector Machine which should correctly classify the handwritten digits from 0-9 based on the pixel values given as features. Thus, this is a 10-class classification problem.

```
[]: import warnings warnings.filterwarnings('ignore')
```

2 Loading the Required Libraries

```
[]: import pandas as pd
import numpy as np
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
```

```
from sklearn.model_selection import GridSearchCV
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import scale
```

3 Loading the Datasets

```
[]: #Reading the dataset using Pandas
     train_df = pd.read_csv("/content/drive/My Drive/train.csv")
     test_df = pd.read_csv("/content/drive/My Drive/test.csv")
[]: train_df.shape
[]: (42000, 785)
[]: test_df.shape
[]: (28000, 784)
[]: train_df.head() # printing first five columns of train_train_df
[]:
        label pixel0
                       pixel1 pixel2
                                         ... pixel780 pixel781
                                                                  pixel782 pixel783
     0
            1
                     0
                             0
                                      0
                                                      0
                                                                0
                                                                           0
                                                                                     0
            0
                     0
                             0
                                                                0
                                                                                     0
     1
                                      0
                                                      0
                                                                           0
     2
            1
                             0
                                                                0
                                                                           0
                                                                                     0
                     0
                                                      0
                                         . . .
     3
            4
                     0
                             0
                                         . . .
                                                                0
                                                                           0
                                                                                     0
                                                                                     0
                                         . . .
     [5 rows x 785 columns]
[]: test_df.head() # printing first five columns of test_train_df
[]:
                        pixel2 pixel3
                                                         pixel781
                                                                    pixel782
        pixel0
                pixel1
                                          ... pixel780
     0
             0
                      0
                              0
                                       0
                                                       0
                                                                 0
                                                                            0
                                          . . .
     1
             0
                      0
                              0
                                       0
                                         . . .
                                                       0
                                                                 0
                                                                            0
                                                                                      0
     2
             0
                              0
                                                                 0
                                                                            0
                      0
                                       0
                                                       0
                                                                                      0
                                          . . .
     3
             0
                      0
                              0
                                       0
                                         . . .
                                                       0
                                                                 0
                                                                            0
                                                                                      0
             0
                      0
                                                                                      0
     [5 rows x 784 columns]
```

4 Checking the Information about the Datasets

```
[]: train_df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 42000 entries, 0 to 41999
Columns: 785 entries, label to pixel783

dtypes: int64(785) memory usage: 251.5 MB

[]: test_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 28000 entries, 0 to 27999
Columns: 784 entries, pixel0 to pixel783

dtypes: int64(784) memory usage: 167.5 MB

4.0.1 Checking the Statistics

[]: train_df.describe()

[]:		label	pixel0	pixel1	 pixel781	pixel782	pixel783
	count	42000.000000	42000.0	42000.0	 42000.0	42000.0	42000.0
	mean	4.456643	0.0	0.0	 0.0	0.0	0.0
	std	2.887730	0.0	0.0	 0.0	0.0	0.0
	min	0.000000	0.0	0.0	 0.0	0.0	0.0
	25%	2.000000	0.0	0.0	 0.0	0.0	0.0
	50%	4.000000	0.0	0.0	 0.0	0.0	0.0
	75%	7.000000	0.0	0.0	 0.0	0.0	0.0
	max	9.000000	0.0	0.0	 0.0	0.0	0.0

[8 rows x 785 columns]

[]: test_df.describe()

[]:		pixel0	pixel1	pixel2	 pixel781	pixel782	pixel783
	count	28000.0	28000.0	28000.0	 28000.0	28000.0	28000.0
	mean	0.0	0.0	0.0	 0.0	0.0	0.0
	std	0.0	0.0	0.0	 0.0	0.0	0.0
	min	0.0	0.0	0.0	 0.0	0.0	0.0
	25%	0.0	0.0	0.0	 0.0	0.0	0.0
	50%	0.0	0.0	0.0	 0.0	0.0	0.0
	75%	0.0	0.0	0.0	 0.0	0.0	0.0
	max	0.0	0.0	0.0	 0.0	0.0	0.0

[8 rows x 784 columns]

4.0.2 Checking for Missing Values

```
[]: train_df.isnull().sum()
[]: label
                  0
     pixel0
                  0
     pixel1
                  0
     pixel2
                  0
     pixel3
                  0
                 0
     pixel779
                 0
     pixel780
                 0
     pixel781
     pixel782
                 0
     pixel783
                 0
     Length: 785, dtype: int64
[]: test_df.isnull().sum()
[]: pixel0
                  0
     pixel1
                  0
     pixel2
                  0
                  0
     pixel3
     pixel4
                  0
     pixel779
                 0
     pixel780
                 0
     pixel781
                 0
     pixel782
                 0
     pixel783
                  0
     Length: 784, dtype: int64
    4.0.3 Calculating the Count of the Classes
[]: train_df['label'].value_counts()
[]:1
          4684
     7
          4401
     3
          4351
          4188
     9
     2
          4177
     6
          4137
     0
          4132
          4072
     4
     8
          4063
     5
          3795
     Name: label, dtype: int64
```

5 Sampling the Dataset since we have a very huge dataset

Since the training dataset is quite large (42,000 labelled images), it would take a lot of time for training an SVM on the full MNIST data, so we sub-sample the data for training (10-20% of the data, approx 8400 sample)

```
[]: sampled_train_df = train_df.sample(frac = .20)
     print(len(train_df), len(sampled_train_df))
     sampled_train_df
    42000 8400
            label pixel0 pixel1 pixel2 ... pixel780 pixel781 pixel782
[]:
     pixel783
     23694
                1
                         0
                                 0
                                                          0
                                                                    0
                                                                               0
                                          0
     487
                2
                         0
                                 0
                                                          0
                                                                    0
                                                                               0
                                          0
                                             . . .
     0
     41650
                3
                         0
                                 0
                                          0
                                                          0
                                                                    0
                                                                               0
                                             . . .
     0
```

.

. . .

.

[8400 rows x 785 columns]

```
[]: sampled_test_df = test_df.sample(frac = .20)
print(len(test_df), len(sampled_test_df))
sampled_test_df
```

28000 5600

[]:		pixel0	pixel1	pixel2	pixel3	 pixel780	pixel781	pixel782
	pixel7	83						
	12629	0	0	0	0	 0	0	0
	0							
	8649	0	0	0	0	 0	0	0
	0							
	2208	0	0	0	0	 0	0	0
	0							
	18303	0	0	0	0	 0	0	0
	0							
	4760	0	0	0	0	 0	0	0
	0							
	2863	0	0	0	0	 0	0	0
	0							
	12188	0	0	0	0	 0	0	0
	0							
	20442	0	0	0	0	 0	0	0
	0							
	9976	0	0	0	0	 0	0	0
	0							
	21402	0	0	0	0	 0	0	0
	0							

[5600 rows x 784 columns]

6 Data Visualization

6.0.1 Plotting the Countplot to check the count of the given classes

```
[]: # Visualizing the number of class and counts in the datasets sns.countplot(sampled_train_df["label"],palette = 'bright');
```


[]: sns.barplot(x='label', y='pixel300', data=sampled_train_df,palette='bright');


```
[]: sns.barplot(x='label', y='pixel650', data=sampled_train_df, palette='bright');
```


6.0.2 Visualizing few Numbers

```
[]: x = sampled_train_df.iloc[2, 1:]
x = x.values.reshape(28,28)
plt.imshow(x,cmap='gray')
```

[]: <matplotlib.image.AxesImage at 0x7faa434a66d8>


```
[]: x = sampled_train_df.iloc[6, 1:]
x = x.values.reshape(28,28)
plt.imshow(x,cmap='gray')
```

[]: <matplotlib.image.AxesImage at 0x7faa433f0b70>

7 Data Preprocessing

```
[]: #Averaging the Feature Values except the Target Variable
     round(sampled_train_df.drop('label', axis=1).mean(), 2)
[]: pixel0
                 0.00
    pixel1
                 0.00
    pixel2
                 0.00
    pixel3
                 0.00
    pixel4
                 0.00
                 . . .
    pixel779
                0.01
    pixel780
                0.00
                 0.00
    pixel781
    pixel782
                 0.00
    pixel783
                 0.00
    Length: 784, dtype: float64
```

7.0.1 Separating the Features and Target Variables

```
[]: #Separating the X and Y variable (i.e. separating the Features and Target⊔
→variable)

y = sampled_train_df['label']

#Dropping the Target Variable 'label' from X variable

X = sampled_train_df.drop(columns = 'label')
```

7.0.2 Normalizing the Features

```
[]: # Normalization by Dividing by the max pixel value.

X = X/255.0
print("X:", X.shape)

X: (8400, 784)
```

7.0.3 Scaling the Features

```
[]: #Scaling the Features
X_scaled = scale(X)
```

7.0.4 Splitting the Training Dataset further into Training and Testing data

```
[]: #Splitting the Training Dataset further into Training and Testing data
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size = 0.

→3, train_size =0.7)
```

8 Model Building

8.0.1 Building a Linear SVM model

```
[]: #Linear model
     model_linear = SVC(kernel='linear')
     model_linear.fit(X_train, y_train)
     # predict
     y_pred = model_linear.predict(X_test)
[]: # accuracy
     print("accuracy:", metrics.accuracy_score(y_true=y_test, y_pred=y_pred), "\n")
     # confusion matrix
     print(metrics.confusion_matrix(y_true=y_test, y_pred=y_pred))
    accuracy: 0.91111111111111111
    ΓΓ258
          0
                0
                    0
                        0
                            2
                                2
                                    0
                                             0]
     [ 0 274
                    1
                        1
                                    0
                                             0]
                1
                             1
                                0
            3 231
                    5
                            0
                                             17
            1
                7 232
                                         7
                                             1]
     Е
            2
                3
                    0 213
                            0
                                2
                                             9]
       1
                        9 183
       3 4
                2
                    8
                                3
                                         3
                                             2]
     [ 1
           0 4
                    0
                        4
                            2 248
                                    0
                                             0]
     Γ
            2 2
                                0 229
                                             8]
                    1
                        8
                            1
                            7
            6
                3
                    3
                        0
                                 2
                                     1 209
                                             5]
     Γ 3
                    2 18
            0
                                         5 219]]
[]: #precision, recall and f1-score
     scores=metrics.classification_report(y_test, y_pred, labels=[0, 1, 2, 3, 4, 5, ...
     \rightarrow6, 7, 8, 9])
     print(scores)
```

	precision	recall	f1-score	support
0	0.95	0.98	0.96	264
1	0.94	0.98	0.96	280
2	0.91	0.92	0.91	252
3	0.92	0.88	0.90	264
4	0.84	0.92	0.87	232
5	0.88	0.84	0.86	219
6	0.96	0.95	0.96	260

7	0.92	0.91	0.91	252
8	0.90	0.88	0.89	237
9	0.89	0.84	0.87	260
accuracy			0.91	2520
macro avg	0.91	0.91	0.91	2520
weighted avg	0.91	0.91	0.91	2520

We have achieved an accuracy of 91% with the help of linear SVM model.

8.0.2 Building Non-Linear SVM model using RBF kernel

```
[]: #Non-linear model using rbf kernel, C=1, default value of gamma
non_linear_model = SVC(kernel='rbf')
#Fitting the model
non_linear_model.fit(X_train, y_train)
#Making Predictions
y_pred = non_linear_model.predict(X_test)
```

```
[]: #Calculating Accuracy
print("accuracy:", metrics.accuracy_score(y_true=y_test, y_pred=y_pred), "\n")
#Displaying Confusion Matrix
print(metrics.confusion_matrix(y_true=y_test, y_pred=y_pred))
```

accuracy: 0.9293650793650794

```
ΓΓ256
        0
             2
                  0
                      0
                           2
                                3
                                    0
                                              0]
    0 274
                  2
                           1
                                         0
                                              0]
             1
                      1
                                0
                                    1
    2
        0 231
                  4
                      0
                           0
                                              2]
                                1
                                    8
 Е
        0
             8 242
                      0
                           2
                                              2]
                                0
                                    8
                  0 215
                                    3
        3
             5
                           0
                                              5]
        2
             4
                  6
                      4 189
                                3
                                    3
                                              2]
 Γ
        0
             2
                  0
                      1
                           1 243
                                   10
                                              07
                                0 241
 0
             0
                  1
                      5
                           1
                                              41
 ΓΟ
         2
                  2
             0
                      0
                           6
                                2
                                    3 218
                                              4]
 Γ
                  2
   1
        0
             5
                      7
                           1
                                0
                                    9
                                         2 233]]
```

```
[]: #Checking Precision, Recall and F1-score
scores=metrics.classification_report(y_test, y_pred, labels=[0, 1, 2, 3, 4, 5, □
→6, 7, 8, 9])
print(scores)
```

```
precision recall f1-score support
0 0.98 0.97 0.97 264
```

-	1	0.98	0.98	0.98	280
	2	0.90	0.92	0.91	252
3	3	0.93	0.92	0.93	264
4	1	0.92	0.93	0.92	232
į	5	0.93	0.86	0.90	219
6	3	0.96	0.93	0.95	260
7	7	0.84	0.96	0.90	252
8	3	0.93	0.92	0.93	237
9	9	0.92	0.90	0.91	260
accuracy	I			0.93	2520
macro av	3	0.93	0.93	0.93	2520
weighted ave	5	0.93	0.93	0.93	2520

We have achieved an accuracy of 93% approx by building a non-linear SVM model using RBF kernel

8.0.3 Grid Search: Hyperparameter Tuning:

```
[]: # creating a KFold object with 5 splits
folds = KFold(n_splits = 5, shuffle = True, random_state = 10)
# specify range of hyperparameters and set the parameters by cross-validation
hyper_params = [ {'gamma': [1e-2, 1e-3, 1e-4], 'C': [5,10]}]
# specify model
model = SVC(kernel="rbf")
# set up GridSearchCV()
model_cv = GridSearchCV(estimator = model, param_grid = hyper_params,
scoring= 'accuracy',cv = folds,verbose = 1,
return_train_score=True)
model_cv.fit(X_train, y_train)
```

Fitting 5 folds for each of 6 candidates, totalling 30 fits

iid='deprecated', n_jobs=None,

```
param_grid=[{'C': [5, 10], 'gamma': [0.01, 0.001, 0.0001]}],
pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
scoring='accuracy', verbose=1)
```

```
[]:
       mean_fit_time std_fit_time ... mean_train_score std_train_score
           39.590864
                          0.328756 ...
                                                 1.000000
                                                                  0.000000
    Λ
    1
            9.125943
                          0.082293 ...
                                                 0.997236
                                                                  0.000403
    2
            8.648292
                          0.094652 ...
                                                 0.947109
                                                                  0.001987
           38.658482
                          0.199503 ...
                                                 1.000000
                                                                  0.000000
    4
            8.972331
                          0.062833 ...
                                                 0.999787
                                                                 0.000134
            7.032721
                          0.052634 ...
                                                 0.960289
                                                                 0.002247
```

[6 rows x 22 columns]

8.0.4 Plot the graphs for the Train vs Test accuracy

```
[]: | # converting C to numeric type for plotting on x-axis
     cv_results['param_C'] = cv_results['param_C'].astype('int')
     # # plotting
     plt.figure(figsize=(16,8))
     # subplot 1/3
     plt.subplot(131)
     gamma_01 = cv_results[cv_results['param_gamma']==0.01]
     plt.plot(gamma_01["param_C"], gamma_01["mean_test_score"])
     plt.plot(gamma_01["param_C"], gamma_01["mean_train_score"])
     plt.xlabel('C')
     plt.ylabel('Accuracy')
     plt.title("Gamma=0.01")
     plt.ylim([0.60, 1])
     plt.legend(['test accuracy', 'train accuracy'], loc='upper left')
     plt.xscale('log')
     # subplot 2/3
     plt.subplot(132)
     gamma_001 = cv_results[cv_results['param_gamma']==0.001]
     plt.plot(gamma_001["param_C"], gamma_001["mean_test_score"])
     plt.plot(gamma_001["param_C"], gamma_001["mean_train_score"])
     plt.xlabel('C')
     plt.ylabel('Accuracy')
     plt.title("Gamma=0.001")
     plt.ylim([0.60, 1])
     plt.legend(['test accuracy', 'train accuracy'], loc='upper left')
     plt.xscale('log')
     # subplot 3/3
     plt.subplot(133)
```

```
gamma_0001 = cv_results[cv_results['param_gamma']==0.0001]
plt.plot(gamma_0001["param_C"], gamma_0001["mean_test_score"])
plt.plot(gamma_0001["param_C"], gamma_0001["mean_train_score"])
plt.xlabel('C')
plt.ylabel('Accuracy')
plt.title("Gamma=0.0001")
plt.ylim([0.60, 1])
plt.legend(['test accuracy', 'train accuracy'], loc='upper left')
plt.xscale('log')
```



```
[]: # printing the optimal accuracy score and hyperparameters

best_score = model_cv.best_score_

best_hyperparams = model_cv.best_params_

print("The best test score is {0} corresponding to hyperparameters {1}".

→format(best_score, best_hyperparams))
```

The best test score is 0.935204081632653 corresponding to hyperparameters {'C': 10, 'gamma': 0.001}

Build the final model with the optimal hyperparameters

```
[]: # model with optimal hyperparameters
    # model
    model = SVC(C=10, gamma=0.001, kernel="rbf")
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    # metrics
    print("accuracy", metrics.accuracy_score(y_test, y_pred), "\n")
```

```
print(metrics.confusion\_matrix(y\_test, y\_pred), "\n")
    accuracy 0.9436507936507936
    [[258
                 2
                             2
                                 1
                                              0]
                                      0
                                          1
     0 274
                 1
                     1
                         1
                             1
                                 0
                                      1
                                          1
                                              0]
            0 236
                     4
                         0
                             0
                                 0
                                      7
                                          3
                                              2]
     Е
            0
                 5 248
                         0
                             2
                                      5
                                              2]
        1
                                 0
                                          1
                     0 221
     0
                 3
                             0
                                 0
                                      2
                                              5]
            1
     Γ
                     3
                         2 197
        3
                 2
                                 3
                                              2]
     Γ
       2
            0
                2
                     0
                         1
                             1 242
                                      9
                                              07
     Γ
                                 0 240
       0 0
               0
                     0
                         6
                             1
                                              5]
     [ 0
            3
               0
                     1
                         0
                             2
                                 2
                                      2 224
                                              3]
     Γ
                         7
                                          3 238]]
        1
            0
                                 0
[]: | # different class-wise accuracy - #precision, recall and f1-score
     scores=metrics.classification_report(y_test, y_pred, labels=[0, 1, 2, 3, 4, 5, __
      \rightarrow6, 7, 8, 9])
     print(scores)
                   precision
                                recall f1-score
                                                    support
                0
                        0.97
                                   0.98
                                             0.98
                                                         264
                1
                        0.98
                                  0.98
                                             0.98
                                                         280
                        0.93
                                  0.94
                2
                                             0.93
                                                         252
                3
                        0.96
                                  0.94
                                             0.95
                                                         264
                4
                        0.93
                                  0.95
                                             0.94
                                                         232
                5
                        0.95
                                  0.90
                                             0.92
                                                         219
                6
                        0.98
                                  0.93
                                             0.95
                                                         260
                7
                        0.88
                                  0.95
                                             0.91
                                                         252
                        0.94
                                  0.95
                                             0.94
                                                         237
                8
                9
                        0.93
                                  0.92
                                             0.92
                                                         260
```

Finally, after tuning our hyperparameters we achieve an accuracy of 94% approx.

0.94

0.94

accuracy

0.94

0.94

macro avg

weighted avg

```
[]: # Let us visualize our final model on unseen training dataset
df = np.random.randint(1,y_pred.shape[0]+1,5)
plt.figure(figsize=(16,4))
for i,j in enumerate(df):
```

0.94

0.94

0.94

2520

2520

2520

```
plt.subplot(150+i+1)
d = X_test[j].reshape(28,28)
plt.title(f'Predicted Label: {y_pred[j]}')
plt.imshow(d)
plt.show()
```


8.0.5 Let us use our final model on test data

```
[]: sampled_test_df = sampled_test_df/255.0
    print("test_df:", sampled_test_df.shape)

    test_df: (5600, 784)

[]: test_scaled = scale(sampled_test_df)

[]: test_predict = model.predict(test_scaled)

[]: # Plotting the distribution of prediction
    a = {'ImageId': np.arange(1,test_predict.shape[0]+1), 'Label': test_predict}
    data_to_export = pd.DataFrame(a)
    sns.countplot(data_to_export['Label'], palette = 'bright');
```



```
[]: # Let us visualize few of predicted test numbers
df = np.random.randint(1,test_predict.shape[0]+1,5)
plt.figure(figsize=(16,4))
for i,j in enumerate(df):
    plt.subplot(150+i+1)
    d = test_scaled[j].reshape(28,28)
    plt.title(f'Predicted Label: {test_predict[j]}')
    plt.imshow(d)
plt.show()
```


9 Conclusion

The accuracy achieved using a non-linear kernel (0.93) is a bit higher than that of a linear one (0.91). We can conclude that the problem is non-linear in nature.