EXP NO:1	LED FLASHING WITH ARM LPC2148 MICROCONTROLLER
DATE	

To write and execute the program for LED Flashing with ARM7 (LPC2148) Processor.

HARDWARE & SOFTWARE TOOLS REQUIRED:

S.No	Hardware & Software Requirements	Quantit y
1	ARM Processor LPC2148	1
3	LEDs and Resistors	1
5	Proteus ISIS Software and Keil Software	

PROCEDURE

- 1. Create a New project, Go to "Project" and close the current project "Close Project".
- 2. Next Go to the Project New µvision Project Create New Project Select Device forTarget.
- 3. Select the data base NXP LPC2148.
- 4. Add Startup file and Next go to "File" and click "New".
- 5. Write a program on the editor window and save as "xxxxx.c".
- 6. Add this source file to Group and click on "Build Target" or F7.
- 7. Create a Hex file from "Project" menu and click on "Rebuild all target Files".
- 8. Create the circuit diagram in Proteus Software and upload the hex file of your program by double clicking on the microcontroller in Proteus workspace.
- 9. Debug and run your Proteus file to see the working of the circuit.

LED INTERFACING CIRCUIT DIAGRAM:

FLASHING OF MORE LEDS

PROGRAM TYPE-I:

```
#include < lpc214x.h>
int i;
int main()
{ IODIR0=0x000000
FF;
      while(1)
      {
       IOSET0=0x000000AA;
       for(i=0;i<120000;i++);
       IOCLR0=0x000000AA;
       for(i=0;i<120000;i++);
      }
}
TYPE-II:
#include <lpc214x.h>
int i,b;
int main()
{ IODIR0=0x000000FF;
while(1)
{
for(b=0;b<8;b++)
  {
        IOSET0=(1<<b);
       for(i=0;i<120000;i++);
       IOCLR0=(1<<b);
       for(i=0;i<120000;i++);
  }
}
}
```

EXP NO:2	SWITCH CONTROLLED LED
DATE	

To write and execute the program for switch controlled LED with ARM7 (LPC2148) Processor.

HARDWARE & SOFTWARE TOOLS REQUIRED:

S.No	Hardware & Software Requirements	Quantity
1	ARM Processor LPC2148	1
3	LEDs and Switch	
5	Proteus ISIS Software and Keil Software	

PROCEDURE

- 1. Create a New project, Go to "Project" and close the current project "Close Project".
- Next Go to the Project New μvision Project Create New Project Select Device forTarget.
- 3. Select the data base NXP LPC2148.
- 4. Add Startup file and Next go to "File" and click "New".
- 5. Write a program on the editor window and save as "xxxxx.c".
- 6. Add this source file to Group and click on "Build Target" or F7.
- 7. Create a Hex file from "Project" menu and click on "Rebuild all target Files".
- 8. Create the circuit diagram in Proteus Software and upload the hex file of your program by double clicking on the microcontroller in Proteus workspace.
- 9. Debug and run your Proteus file to see the working of the circuit.

SWITCH CONTROLLED LED CIRCUIT DIAGRAM:


```
#include c214x.h>
int i,b;
int main()
IODIR0=~(1<<16);
while(1)
if((IOPIN0&(1<<16))==0)
for(b=0;b<8;b++)
IOSET0=(1<<b);
for(i=0;i<120000;i++);
IOCLR0=(1<<b);
for(i=0;i<120000;i++);
}
}
else
{
IOCLR0=0x000000FF;
}
}
```

}

EXP NO:3	7-segment LED Display with LPC2148 Microcontroller
DATE	r cogment 225 Biopiay With 21 02140 Interesentation

To write and execute the program for seven segment led with ARM7 (LPC2148) Processor.

HARDWARE & SOFTWARE TOOLS REQUIRED:

S.No	Hardware & Software Requirements	Quantity
1	ARM Processor LPC2148	1
3	7seg LED	1
5	Proteus ISIS Software and Keil Software	

PROCEDURE

- 1. Create a New project, Go to "Project" and close the current project "Close Project".
- Next Go to the Project New μvision Project Create New Project Select Device forTarget.
- 3. Select the data base NXP LPC2148.
- 4. Add Startup file and Next go to "File" and click "New".
- 5. Write a program on the editor window and save as "xxxxx.c".
- 6. Add this source file to Group and click on "Build Target" or F7.
- 7. Create a Hex file from "Project" menu and click on "Rebuild all target Files".
- 8. Create the circuit diagram in Proteus Software and upload the hex file of your program by double clicking on the microcontroller in Proteus workspace.
- 9. Debug and run your Proteus file to see the working of the circuit.

```
#include <lpc214x.h>
void delay();
unsigned int i, j, k;
unsigned int
ar[10]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};
int main(void){
      IODIR0= 0x000000FF;
      while(1){
            for(i=0; i<10; i++) {
                  IOSET0=ar[i];
                 delay();
                  IOCLR0=ar[i];
                 }
    }
        return 0;
void delay(){
                                    for(j=0;j<1000;j++);
       for(k=0;k<400;k++);
}
```


EXP NO:4	TIMERS
DATE	TIMEIXO

PROGRAM;

```
#include <LPC214x.H>
void timer_sec(unsigned int x)
TOMR0 = x;
TOMCR = 1;
 TOPR = 0 \times 00E4E1C0;
 TOTCR = 0x1;
 while(TOTC < TOMRO);</pre>
 TOTCR = 0x0;
 TOTC = 0x0;
int main (void)
 unsigned int n;
 PINSEL2=0x00000000;
 IODIR0 = 0x00FF;
  while (1)
      IOSET0 = 0 \times 00 FF;
      timer sec(1);
      IOCLR0 = 0x00FF;
      timer_sec(1);
  }
```

EXP NO:5	DC Motor Interfacing
DATE:	

To design a circuit and develop a C program for controlling a DC motor.

HARDWARE AND SOFTWARE REQUIRED:

S.No	Hardware & Software Requirements	Quantity
1	ARM Processor LPC2148	1
2	L293D IC	1
3	Proteus Software and Keil Software	-
4	Simple DC Motor active	1

CIRCUIT DIAGRAM:


```
#include <lpc214x.h>
void delay();
unsigned int j,k;
void main(void)
{
IO0DIR=0x03;
while(1)
{
IOSET0 = (1 << 0);
IOCLR0=(1<<1);
delay();
delay();
delay();
delay();
IOCLR0=0x03;
delay();
delay();
delay();
delay();
IOSET0 = (1 << 1);
IOCLR0=(1<<0);
delay();
delay();
delay();
delay();
IOCLR0=0x03;
delay();
delay();
delay();
delay();
}
```

```
void delay()
{ for (j=0;j<1000;j++)
for (k=0;k<400;k++);
}</pre>
```

EXP NO:6	Stepper Motor Interfacing with LPC2138
DATE:	

To design and develop a C program for interfacing Stepper Motor with LPC2138.

HARDWARE AND SOFTWARE REQUIRED:

S.No	Hardware & Software Requirements	Quantity
1	ARM Processor LPC2138	1
2	ULN2003A	1
3	Proteus Software and Keil Software	-
4	Stepper Motor Animated Unipolar.	1

PROCEDURE:

- 1. Create a New project, Go to "Project" and close the current project "Close Project".
- 2. Next Go to the Project New µvision Project Create New Project Select Device for Target.
- 3. Select the data base NXP LPC2148.
- 4. Add Startup file and Next go to "File" and click "New".
- 5. Write a program on the editor window and save as "Main.c".
- 6. Add this source file to Group and click on "Build Target" or F7.
- 7. Create a Hex file from "Project" menu and click on "Rebuild all target Files".
- 8. Open Flash magic and select the device LPC2148 in ARM 7
- 9. Next browse the path of hex file and click ok.
- 10. Start debugging process and run the simulation for getting output.

CIRCUIT DIAGRAM:


```
#include<lpc213x.h>
#include<stdint.h>
uint8_t i,j;
void delay_ms(uint16_tj)
{
    uint16_t x,i;
    for(i=0;i<j;i++)
{
    for(x=0;x<6000;x++);
}
}
int main(void)
{
IO0DIR=(IO0DIR | 0x0000000F);
while(1) {
    for(j=0;j<12;j++)
{</pre>
```

```
IO0PIN=1<<0;
delay_ms(500);
IO0PIN=1<<3;
delay_ms(500);
}
}
```