```
In [30]: import pandas as pd
    flightdata=pd.read_csv("FormattedData.csv")
    flightdata.head()
```

Out[30]:	(CARRIER	DEST	DISTANCE	FL_DATE	FL_NUM	ORIGIN	WEATHER	DAY_WEEK	DAY_OF_MONTH	TAIL_NUM	FLIGHT_STATUS	UPDATED_CRS_DEP_TIME	UPDATED_DEP_TIME	DELAY_IN_MINS
	0	DH	JFK	213	2004-01-01	6155	DCA	0	Thursday	1	N405FJ	ontime	16:40	16:40	0
	1	DH	LGA	229	2004-01-01	7208	IAD	0	Thursday	1	N695BR	ontime	12:45	12:45	0
	2	DH	LGA	229	2004-01-01	7215	IAD	0	Thursday	1	N662BR	ontime	17:15	17:09	-6
	3	DH	LGA	229	2004-01-01	7792	IAD	0	Thursday	1	N698BR	ontime	10:39	10:35	-4
	4	DH	JFK	228	2004-01-01	7800	IAD	0	Thursday	1	N687BR	ontime	8:40	8:39	-1

```
In [16]: #For DAY_OF_MONTH- Histograms
DAY_OF_MONTH= flightdata.DAY_OF_MONTH.hist()
DAY_OF_MONTH.set_xlabel('DAY_OF_MONTH');
DAY_OF_MONTH.set_ylabel('count');
```



```
In [17]: #For DAY_OF_MONTH - statistics
flightdata['DAY_OF_MONTH'].describe()
```

```
2198.000000
         count
Out[17]:
                    16.027298
         mean
                     8.675885
         std
         min
                     1.000000
         25%
                     8.000000
         50%
                    16.000000
         75%
                    23.000000
                    31.000000
         max
         Name: DAY_OF_MONTH, dtype: float64
```

In [21]: #For DISTANCE- Histograms
DISTANCE= flightdata.DISTANCE.hist()
DISTANCE.set_xlabel('DISTANCE');
DISTANCE.set_ylabel('count');

In [22]: #For DISTANCE - statistics
flightdata['DISTANCE'].describe()

```
Out[22]:

count 2198.000000

mean 211.868517

std 13.302595

min 169.000000

25% 213.000000

50% 214.000000

75% 214.000000

max 229.000000
```

max 229.000000 Name: DISTANCE, dtype: float64

In [23]: #For WEATHER- Histograms
WEATHER= flightdata.WEATHER.hist()
WEATHER.set_xlabel('WEATHER');
WEATHER.set_ylabel('count');

In [24]: #For WEATHER - statistics
flightdata['WEATHER'].describe()

```
count
                   2198.000000
Out[24]:
                       0.014559
          mean
          std
                       0.119805
                      0.000000
          min
          25%
                       0.000000
          50%
                       0.000000
          75%
                       0.000000
                      1.000000
          {\sf max}
          Name: WEATHER, dtype: float64
```

In [26]: #For FL_NUM- Histograms
FL_NUM= flightdata.FL_NUM.hist()
FL_NUM.set_xlabel('FL_NUM');
FL_NUM.set_ylabel('count');

```
700

600

500

400

300

200

1000

2000

3000

4000

5000

6000

7000

8000

FL_NUM
```

```
In [27]: #For FL_NUM - statistics
         flightdata['FL_NUM'].describe()
                  2198.000000
         count
Out[27]:
                  3810.601456
         mean
                  2408.139011
         std
                   746.000000
         min
         25%
                  2156.000000
         50%
                  2385.000000
         75%
                  5935.000000
                  7924.000000
         Name: FL_NUM, dtype: float64
In [63]: #For UPDATED_CRS_DEP_TIME- Histograms- converting in to 24 hour continous format for a better histogram
          \#Reference - https://sparkbyexamples.com/pandas/pandas-convert-string-column-to-datetime()\%20 function, string\%20 you\%20 wanted\%20 to\%20 convert.
         flightdata['UPDATED_CRS_DEP_TIME'] = pd.to_datetime(flightdata['UPDATED_CRS_DEP_TIME'], infer_datetime_format=True)
         hour_list = [t.hour for t in flightdata['UPDATED_CRS_DEP_TIME']]
         numbers=[x for x in range(0,24)]
         labels=map(lambda x: str(x), numbers)
         plt.xticks(numbers, labels)
         plt.xlim(0,24)
         plt.hist(hour_list)
         plt.show()
          300
          250
          200
          150
          100
          50
             0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
In [37]: flightdata['UPDATED_CRS_DEP_TIME'].describe()
                    2198
         count
Out[37]:
         unique
                      59
                   14:55
         top
                     137
         freq
         Name: UPDATED_CRS_DEP_TIME, dtype: object
In [64]: #For UPDATED_DEP_TIME- Histograms- converting in to 24 hour continous format for a better histogram
          #Reference - https://sparkbyexamples.com/pandas/pandas-convert-string-column-to-datetime/#:~:text=Use%20pandas%20to_datetime()%20function,string%20you%20wanted%20to%20convert.
          flightdata['UPDATED_DEP_TIME'] = pd.to_datetime(flightdata['UPDATED_DEP_TIME'], infer_datetime_format=True)
         hour_list = [t.hour for t in flightdata['UPDATED_DEP_TIME']]
         numbers=[x \text{ for } x \text{ in } range(0,24)]
          labels=map(lambda x: str(x), numbers)
         plt.xticks(numbers, labels)
         plt.xlim(0,24)
         plt.hist(hour_list)
         plt.show()
          400
          350
          300
          250
          200
          150
          100
           50
             0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
In [44]: flightdata['UPDATED_DEP_TIME'].describe()
         count
                    2198
Out[44]:
         unique
                     631
                   14:55
         top
         freq
                      25
         Name: UPDATED_DEP_TIME, dtype: object
In [49]: #PIVOT table to summarize total flights between each airports
         flightdata['NUM']=1
         import numpy as np
         table = pd.pivot_table(flightdata,values='NUM',index=['ORIGIN'],columns=['DEST'], aggfunc=np.sum)
         table
           DEST EWR JFK LGA
Out[49]:
         ORIGIN
            BWI 115.0 29.0 NaN
            DCA 256.0 149.0 965.0
            IAD 294.0 207.0 183.0
In [52]: #Pivot table to show delayed and ontime flight count across the days of the week
          table2 = pd.pivot_table(flightdata,values='NUM',index=['FLIGHT_STATUS'],columns=['DAY_WEEK'], aggfunc=np.sum)
         table2
Out[52]:
             DAY_WEEK Friday Monday Saturday Sunday Thursday Tuesday Wednesday
         FLIGHT_STATUS
                delayed
                                                                                57
                                                             57
                                                                     63
```

In [53]: #Pivot table to show number of flights per carrier across the days of the week

185

314

table3 = pd.pivot_table(flightdata,values='NUM',index=['CARRIER'],columns=['DAY_WEEK'], aggfunc=np.sum)

244

263

ontime

table3

Out [53]: DAY_WEEK Friday Monday Saturday Sunday Thursday Tuesday Wednesday CARRIER CO DH DL MQ ОН RU UA US

In [54]: #Pivot table to show number of flights per carrier across the days of the week
 table4 = pd.pivot_table(flightdata,values='NUM',index=['CARRIER'],columns=['FLIGHT_STATUS'], aggfunc=np.sum)
 table4

Out[54]: FLIGHT_STATUS delayed ontime

CARRIER		
со	26	68
DH	135	414
DL	47	341
MQ	80	215
ОН	4	25
RU	94	314
UA	5	26
US	35	369

In []:

In []: