CSC258 Lab #6 Pre-Lab

Finite State Machines

Last name: Fan

First name: Yuchen

Student number: 1003800265

Prat I

Complete sequence_detector.v
see the file sequence_detector.v

2. is the resetn signal is an synchronous or asynchronous reset? reset is synchronous and active low.

if I want to reset the state, I need to make sure the clock is on when the reset is enabled.

3. Complete the state table

Present state	Input	Next state	Output	
A:000	0	A:000	0	
A:000	1	B:001	0	
B:001	0	A:000	0	
B:001	1	C:010	0	
C:010	0	E:100	0	
C:010	1	D:011	0	
D:011	0	E:110	0	
D:011	1	F:101	0	
E:100	0	A:000	0	
E:100	1	G:110	0	
F:101	0	E:100	1	
F:101	1	F:101	1	
G:110	0	A:000	1	
G:110	1	C:010	1	

4. Simulate your circuit using ModelSim see the file sequence_detector.do

Prat II

- 1. understand the circuitry
- 2. draw a table that shows the state of the Registers and control signals for each cycle of your computation

Cycle	Computation	ld_a	ld_b	ld_alu_out	ld_r	alu_select _a	alu_select _b	Α	В	R
0	A * X	1	0	1	0	2'b00	2'b11	A * X	В	
1	AX + B	0	1	1	0	2'b00	2'b01	A * X	AX + B	
2	X(AX+B)	0	1	1	0	2'b11	2'b01	A * X	X(AX+B)	
3	X(AX+B)+C	0	0	0	1	2'b01	2'b10	A * X	X(AX+B)	X(AX+B)+C

- Draw a state diagram for your controller see the next page
- Modify the controller part see the file poly_function.v
- 5. examine the circuit

6. Simulate your circuit with ModelSim

