Des racines imbriquées faisant intervenir des nombres premiers

Le Fay Yvann, Régus François

Mai 2018

Préface

L'objectif de ce papier est d'étudier certaines expressions de racines imbriquées faisant intervenir des nombres premiers.

1 Définition

Soit $\mathcal{P}(n)$, le n-ème nombre premier, on note ici χ_F , la fonction indicatrice de F. On étudie la fonction suivante définie par

$$\forall n, b \in \mathbb{N}^*, b \ge n, \Psi(n, b) = \mathcal{P}(n) \sqrt{1 + \Psi((n+1) \mathbb{1}_{[0;b-1]}(n), b)}$$

$$= \sqrt{\mathcal{P}(n)^2 (1 + \Psi((n+1) \mathbb{1}_{[0;b-1]}(n), b))}$$

$$\Psi(0, b) = 0$$

$$= \Psi(n, 0)$$

2 Résultats

Proposition 1. Des conditions simples sur μ et γ , deux fonctions dans les réels, permettent d'écrire

$$\mathcal{P}(n) \prod_{j=1}^{b-n} (\mu_j \mathcal{P}(n+j))^{2^{-j}} \le \Psi(n,b) \le \mathcal{P}(n) \prod_{j=1}^{b-n} (\gamma_j \mathcal{P}(n+j))^{2^{-j}}.$$

Preuve. Pour le terme à gauche,

$$\mu_{n+1}\Psi(n+1,b) < 1 + \Psi(n+1,b)$$

$$\Leftrightarrow \mathcal{P}(n)\sqrt{\mu_{n+1}\mathcal{P}(n+1)\sqrt{\dots\sqrt{\mu_b\mathcal{P}(b)}}} \le \dots \le \mathcal{P}(n)\sqrt{\mu_{n+1}\mathcal{P}(n+1)\sqrt{\mu_{n+2}\Psi(n+2,b)}} \le \mathcal{P}(n)\sqrt{\mu_{n+1}\Psi(n+1,b)} \le \Psi(n,b).$$

Pour celui à droite,

$$1 + \Psi(n+1,b) \le \gamma_{n+1}\Psi(n+1,b)$$

$$\Leftrightarrow \Psi(n,b) \le \mathcal{P}(n)\sqrt{\gamma_n\Psi(n,b)} \le \mathcal{P}(n)\sqrt{\gamma_{n+1}\mathcal{P}(n+1)\sqrt{\gamma_{n+2}\Psi(n+2,b)}} \le \dots \le \mathcal{P}(n)\sqrt{\gamma_{n+1}\mathcal{P}(n+1)\sqrt{\dots\sqrt{\gamma_b\mathcal{P}(b)}}}.$$

Remarque. On a ainsi l'égalité quand $\mu_n = \gamma_n = 1 + \frac{1}{\Psi(n,b)}$

Proposition 2.

$$\forall k \in \mathbb{N}, \Psi(n,b) \leq \Psi^{\sim}(n,b,k) = \frac{\Psi((n+k+1)\chi_{[0;b]}(n+k+1),b)}{2^{k+1}} \\ + \sum_{j=1}^{k+1} \frac{\chi_{[0;b]}(n+j-1)}{2^{j}} (\mathcal{P}(n+j-1)^{2}+1) \leq \Psi^{\sim}(n,b,k+1).$$

Preuve. Par l'inégalité arithmético-géométrique appliquée deux fois successivement à (1)

$$\begin{split} \Psi(n,b) &\leq \frac{\mathcal{P}(n)^2 + 1 + \Psi((n+1)\chi_{\llbracket 0;b-1 \rrbracket}(n)),b)}{2} = \Psi^{\sim}(n,b,0) \\ \Psi^{\sim}(n,b,0) &\leq \frac{1}{2}(\mathcal{P}(n)^2 + 1 + \frac{1}{2}(\mathcal{P}(n+1)^2 + 1 + \Psi((n+2)\chi_{\llbracket 0;b-2 \rrbracket}(n),b))) \\ &= \Psi^{\sim}(n,b,1) \end{split}$$

En l'appliquant ainsi k+1 fois,

$$\begin{split} \forall k \in \mathbb{N}, \Psi(n,b) & \leq \Psi^{\sim}(n,b,k) = \frac{\Psi((n+k+1)\chi_{[\![0;b]\!]}(n+k+1),b)}{2^{k+1}} \\ & + \sum_{j=1}^{k+1} \frac{\chi_{[\![0;b]\!]}(n+j-1)}{2^j} (\mathcal{P}(n+j-1)^2+1) \leq \Psi^{\sim}(n,b,k+1). \end{split}$$

Remarque.

$$= \frac{\Psi((n+k+1)\chi_{[0;b]}(n+k+1),b)}{2^{k+1}} + \sum_{j=1}^{k+1} \frac{1}{2^j} (\mathcal{P}(n+j-1)^2 + 1), \quad \text{si } n+k \le b$$

$$= \sum_{j=1}^{k+1} \frac{1}{2^j} (\mathcal{P}(n+j-1)^2 + 1) = \Psi^{\sim}(n,k), \quad \text{si } n+k \ge b$$

Proposition 3.

$$\Psi^{\sim}(n,k) = 1 - \frac{1}{2^{k+1}} + \sum_{j=1}^{k+1} \frac{1}{2^{j}} (\mathcal{P}(n+j-1)^{2})$$

$$\geq 1 - \frac{1}{2^{k+1}} + \sum_{j=1}^{k+1} \frac{1}{2^{j}} ((n+j-1)(\ln(n+j-1) + \ln\ln(n+j-1) - 1))^{2}, \qquad n \geq 2$$

$$\Psi^{\sim}(n,k) \leq 1 - \frac{1}{2^{k+1}} + \sum_{j=1}^{k+1} \frac{1}{2^{j}} ((n+j-1)(\ln(n+j-1) + \ln\ln(n+j-1)))^{2}, \qquad n \geq 6$$

Preuve. Voir [1].

Proposition 4. Pour $n \ge 6$, on connaît une majoration assez fine de $\Psi^{\sim}(n,k)$, qui est un polynome de n, on la note $\Psi^{*}(n,k,n)$. Preuve. Majorons $\ln x$ pour obtenir une majoration de l'expression (1),

$$\forall a \in \mathbb{R}_*^+, \ln x \le \frac{1}{a}(x-a) + \ln a.$$

Remplaçons les termes de la somme,

$$((n+j-1)(\ln(n+j-1)+\ln\ln(n+j-1)))^2 \le \left[\left(2\ln a + \frac{\ln a}{a} - 2 - \frac{1}{a}\right)(n+j-1) + (n+j-1)^2\left(\frac{1}{a^2} + \frac{1}{a}\right)\right]^2.$$

Sommons ces termes, Φ est la fonction transcendante Lerch,

$$\begin{split} \Psi^{\sim}(n,k) &\leq 1 - \frac{1}{2^{k+1}} + \sum_{j=1}^{k+1} \frac{1}{2^j} (L^2(n+j-1)^4 + 2JL(n+j-1)^3 + J^2(n+j-1)^2) \\ &= 1 - \frac{1}{2^{k+1}} + \frac{1}{4} \left(L^2 \left(2\Phi[\frac{1}{2}, -4, n] - 2^{-k}\Phi[\frac{1}{2}, -4, n+k+1] \right) + 2JL \left(2\Phi[\frac{1}{2}, -3, n] - 2^{-k}\Phi[\frac{1}{2}, -3, n+k+1] \right) \\ &+ J^2 \left(2\Phi[\frac{1}{2}, -2, n] - 2^{-k}\Phi[\frac{1}{2}, -2, n+k+1] \right) \right) = \Psi^{\star}(n, k, a), \quad L = \frac{1}{a^2} + \frac{1}{a}, J = 2\ln a + \frac{\ln a}{a} - 2 - \frac{1}{a}. \end{split}$$

Le a fournissant la majoration la plus fine est n. Les égalités suivantes permettent de conclure,

$$\begin{split} &\Phi(\frac{1}{2},-1,n)=2n+2\\ &\Phi(\frac{1}{2},-2,n)=2n^2+4n+6\\ &\Phi(\frac{1}{2},-3,n)=2n^3+6n^2+18n+26\\ &\Phi(\frac{1}{2},-4,n)=2n^4+8n^3+36n^2+104n+150. \end{split}$$

Proposition 5. $\Psi(n,b)$ converge quand $b \to +\infty$.

Preuve. Chacune des propositions précédentes peuvent-être utilisées pour démontrer ce résultat, en associant des équivalences $\mathcal{P}(n)$, pour exemple, $\mathcal{P}(n) \sim n \ln n$.

Proposition 6. Pour tout $(n,b) \in \mathbb{N}_*^2 \setminus \{(1,2),(2,2)\}, \ \Psi(n,b)$ est un nombre irrationnel.

Preuve. Montrons tout d'abord l'irrationnalité de $\sqrt{1+p}$ où $p \in \mathbb{P}$. Déterminons p tel que $\sqrt{1+p}$ est rationnel,

$$p \in \mathbb{P}, \sqrt{1+p} \in \mathbb{Q}$$

$$\Leftrightarrow p \in \mathbb{P}, 1+p = \frac{q^2}{k^2}, q \land k = 1$$

$$\Leftrightarrow p \in \mathbb{P}, p = (q-1)(q+1), \quad \text{car } 1+p \in \mathbb{N}$$

$$\Leftrightarrow p = 3.$$

Excluons donc le cas particulier de p=3 et travaillons par récurrence. Premièrement l'initialisation en partant du b-ème terme

$$\begin{split} &\sqrt{1+\mathcal{P}(b)}\notin\mathbb{Q}\\ \Rightarrow &\mathcal{P}(b-1)\sqrt{1+\mathcal{P}(b)}=\Psi(b-1,b)\notin\mathbb{Q}. \end{split}$$

Enfin, l'hérédité

$$\begin{split} &\Psi(n,b) \notin \mathbb{Q} \\ \Rightarrow &\sqrt{1 + \Psi(n,b)} \notin \mathbb{Q} \\ \Leftrightarrow &\mathcal{P}(n-1)\sqrt{1 + \Psi(n,b)} = \Psi(n-1,b) \notin \mathbb{Q}. \end{split}$$

Finalement, à part pour $\Psi(1,2)=4, \Psi(2,2)=3, \Psi(n,b)\notin \mathbb{Q}.$

3 Conjectures

Proposition 7.

$$\forall k \in \mathbb{N}, k \ge n - b, \qquad \sum_{j=1}^{k+1} \frac{1}{2^j} (\mathcal{P}(n+j-1))^2 \ge \Psi(n,b)$$

Proposition 8.

$$\forall n \in \mathbb{N}, n \ge 2, n+k \ge b \qquad \Psi(n,b) \ge 1 - \frac{1}{2^{k+1}} + \sum_{j=1}^{k+1} \frac{1}{2^j} ((n+j-1)(\ln(n+j-1) + \ln\ln(n+j-1) - 1))^2$$

4 En particulier $\Psi(1, +\infty)$

Par la proposition 3,

$$\Psi(1, +\infty) = 2\sqrt{1 + 3\sqrt{1 + 5\sqrt{1 + 7\sqrt{1 + 11\sqrt{1 + \Psi(6, +\infty)}}}}} = 9.4050436124452175781...$$

$$\leq 2\sqrt{1 + 3\sqrt{1 + 5\sqrt{1 + 7\sqrt{1 + 11\sqrt{2 + \sum_{j=1}^{+\infty} \frac{1}{2^{j}}((5+j)(\ln{(5+j)} + \ln{\ln{(5+j)}}))^{2}}}}$$

$$\approx 9.5115535478645464675$$

$$\Psi^{\sim}(1,+\infty) \ge 2\sqrt{1+3\sqrt{1+5\sqrt{1+7\sqrt{1+11\sqrt{2+\sum_{j=1}^{+\infty}\frac{1}{2^{j}}((5+j)(-1+\ln{(5+j)}+\ln{\ln{(5+j)}}))^{2}}}}$$

$$\approx 9.2701262054698438784$$

Par la proposition 4,

$$\Psi^{\sim}(1, +\infty) \le 2\sqrt{1 + 3\sqrt{1 + 5\sqrt{1 + 7\sqrt{1 + 11\sqrt{1 + \Psi^{\star}(6, +\infty, 6)}}}} \approx 9.57099$$

References

[1] PIERRE DUSART. THE k-th PRIME IS GREATER THAN $k(\ln k + \ln \ln k)$ FOR $k \geq 2$. MATHEMATICS OF COMPUTATION, 1999.