2014~2015 学年第一学期 《复变函数与积分变换》课程考试试卷(A卷)(闭卷)

院(系) 专业班级 学号 姓名

考试日期: 2014年11月24日

考试时间: 晚上7:00~9:30

题号	_	_	Ξ	四	五	六	七	八	总分
得分									

得 分	
评卷人	

、填空题(毎級3分,共24分).

- (1)设 $z = \cos i$,则 Im z =______; Arg z =______.
- (2)复数 $-i^{i}$ 的值为_____.
- (3)设 $f(z) = (bx^2 + y^2 + x) + i(axy + y)$ 在复平面上可导,则 a + b =____.
- (4)设C为正向圆周 $\left|\zeta\right|=2$, $f(z)=\oint_{C}\frac{\sin\frac{\pi}{3}\zeta}{\zeta-z}d\zeta$,则f'(1)=____.
- (5) Res $[\frac{e^z}{z^4}, 0] = \underline{\hspace{1cm}}$.
- (6) 映射 $w = z^2 + 2z$ 在 $|z+1| = \frac{1}{2}$ 上每一点的伸缩率均为_____.
- (7) 函数 $f(t) = \delta(t t_0)$ 的 Fourier 变换 $F(\omega) =$ _____.
- (8)函数 $u(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$ 与 $f(t) = e^{-t}u(t)$ 的卷积 $f(t)*u(t) = \underline{\qquad}$.

得 分	
评卷人	

二、(
$$\emptyset$$
 $\boldsymbol{\varsigma}$)设 $f(z) = u(x,y) + i(x^2 + g(y))$ 是解析函数,且

$$g(0) = g'(0) = 0$$
. $\Re g(y)$, $u(x, y)$, $\oint f(z)$

足条件:

$$f(0) = 0.$$

得 分	
评卷人	

三、(z) 将函数 $f(z) = \frac{1}{z(z^2 - 1)}$ 在点 $z_0 = 1$ 展开为 洛朗(Laurent) 级数.

得 分	
评卷人	

1. $\int_0^{\frac{\pi}{2}} \frac{2}{2 + \cos 2x} \, dx$.

四、计算下列积分(*共20* **分**). (每小题 5 分)

2.
$$\oint_{|z|=1} \frac{z \sin z}{(1-e^z)^3} dz$$
.

3.
$$\oint_{|z|=1} \frac{(z^2-1)e^{\frac{1}{z}}}{z} dz$$
.

4.
$$\int_0^{+\infty} \frac{\cos x}{x^4 + 10x^2 + 9} \, dx$$
.

得 分	
评卷人	

五、(N6)已知区域D如下图所示,求一共形映射w=f(z),将D映射到单位圆内部.

得 分	
评卷人	

六、(65)求下图所示区域 D在映射 $w = \frac{(1/z)^2 + 1}{(1/z)^2 - 1}$ 下的像.

得 分	
评卷人	

七、(12 分)利用 Laplace 变换求解常微分方程:
$$x''(t)-x'(t)-2x(t)=\mathrm{e}^t+1, \quad x(0)=x'(0)=0 \ .$$

得 分	
评卷人	

八、(6.5) 设 f(z) 在复平面上解析,且存在正整数 N,使

在|z|>1上满足: $|f(z)| \le M |z|^N$, (M>0), 证明 f(z) 是

个不超过N次的多项式。