

APPENDIX B: BV ADT SAR MEASUREMENT SYSTEM

APPENDIX C: PHOTOGRAPHS OF SYSTEM VALIDATION

APPENDIX D: SYSTEM CERTIFICATE & CALIBRATION

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item .	SAM Twin Phantom V4.0		
Type No	QD 000 P40 CA		
Series No	TP-1150 and higher	5	
Manufacturer / Origin -	Untersee Composites		
	Hauptstr. 69	•	
•	CH-8559 Fruthwilen	• •	
~	Switzerland	,	

Tests

The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz - 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date

28.02.2002

Signature / Stamp

Schmid & Partner Engineering AG

Zeughausstrasse 43, CH-8004 Zurich Tel. +41 1 245 97 00, Fex +41 1 245 97 79

F. Bambalt

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

ADT (Auden)

Certificate No: EX3-3504_Jan09

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object EX3DV3 - SN:3504

Calibration procedure(s) QA CAL-01.v6, QA CAL-14.v3 and QA CAL-23.v3

Calibration procedure for dosimetric E-field probes

Calibration date: January 21, 2009

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41495277	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41498087	1-Apr-08 (No. 217-00788)	Apr-09
Reference 3 dB Attenuator	SN: S5054 (3c)	1-Jul-08 (No. 217-00865)	Jul-09
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-08 (No. 217-00787)	Apr-09
Reference 30 dB Attenuator	SN: S5129 (30b)	1-Jul-08 (No. 217-00866)	Jul-09
Reference Probe ES3DV2	SN: 3013	2-Jan-09 (No. ES3-3013_Jan09)	Jan-10
DAE4	SN: 660	9-Sep-08 (No. DAE4-660_Sep08)	Sep-09
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-08)	In house check: Oct-09
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	R-119
			1/12
Approved by:	Niels Kuster	Quality Manager	1111

Issued: January 21, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3504_Jan09

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage

C Service suisse d etalornage
Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF

sensitivity in TSL / NORMx,y,z

DCP Polarization φ diode compression point φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3504_Jan09

EX3DV3 SN:3504 January 21, 2009

Probe EX3DV3

SN:3504

Manufactured: December 15, 2003 Last calibrated: August 30, 2007 Recalibrated: January 21, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3504_Jan09 Page 3 of 9

DASY - Parameters of Probe: EX3DV3 SN:3504

Sensitivity in Free Space ^A Diode Co	mpression ^B
---	------------------------

NormX	0.60 ± 10.1%	$\mu V/(V/m)^2$	DCP X	94 mV
NormY	0.62 ± 10.1%	μ V/(V/m) ²	DCP Y	94 mV
NormZ	0.65 ± 10.1%	μV/(V/m)²	DCP Z	95 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance			3.0 mm
SAR _{be} [%]	Without Correction Algorithm	10.0	6.0
SAR _{be} [%]	With Correction Algorithm	0.7	0.3

TSL 1750 MHz Typical SAR gradient: 10 % per mm

Sensor Center to	o Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	8.0	4.9
SAR _{be} [%]	With Correction Algorithm	0.8	0.6

Sensor Offset

Probe Tip to Sensor Center 1.0 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

⁸ Numerical linearization parameter: uncertainty not required.

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.74	0.65	9.57 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.56	0.64	8.53 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.76	0.57	8.08 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.53	0.66	7.67 ± 11.0% (k=2)
2600	± 50 / ± 100	Head	39.0 ± 5%	1.96 ± 5%	0.24	0.98	7.56 ± 11.0% (k=2)
5200	± 50 / ± 100	Head	36.0 ± 5%	4.66 ± 5%	0.42	1.70	4.65 ± 13.1% (k=2)
5300	± 50 / ± 100	Head	35.9 ± 5%	4.76 ± 5%	0.42	1.70	4.49 ± 13.1% (k=2)
5500	± 50 / ± 100	Head	35.6 ± 5%	4.96 ± 5%	0.42	1.70	4.39 ± 13.1% (k=2)
5600	± 50 / ± 100	Head	35.5 ± 5%	5.07 ± 5%	0.42	1.70	4.29 ± 13.1% (k=2)
5800	± 50 / ± 100	Head	35.3 ± 5%	5.27 ± 5%	0.42	1.70	4.40 ± 13.1% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.50	0.73	9.71 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.46	0.73	8.36 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.43	0.73	8.21 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.27	1.07	7.53 ± 11.0% (k=2)
2600	± 50 / ± 100	Body	52.5 ± 5%	2.16 ± 5%	0.25	1.10	7.33 ± 11.0% (k=2)
5200	± 50 / ± 100	Body	49.0 ± 5%	5.30 ± 5%	0.45	1.75	4.38 ± 13.1% (k=2)
5300	± 50 / ± 100	Body	48.9 ± 5%	5.42 ± 5%	0.45	1.75	4.06 ± 13.1% (k=2)
5500	± 50 / ± 100	Body	48.6 ± 5%	5.65 ± 5%	0.42	1.75	3.98 ± 13.1% (k=2)
5600	± 50 / ± 100	Body	48.5 ± 5%	5.77 ± 5%	0.42	1.75	3.91 ± 13.1% (k=2)
5800	± 50 / ± 100	Body	48.2 ± 5%	6.00 ± 5%	0.42	1.75	3.98 ± 13.1% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

APPENDIX D: SYSTEM CERTIFICATE & CALIBRATION

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

S

C

Client

ADT (Auden)

Certificate No: D2600V2-1020_Jan09

CALIBRATION	ERTIFICATE		
Object	D2600V2 - SN: 1	020	
Calibration procedure(s)	QA CAL-05.v7 Galbrebon probs	väure for dipole validation kits	
Calibration date:	January 14, 2009)	
Condition of the calibrated item	In Tolerance		
		ional standards, which realize the physical units robability are given on the following pages and	
		ry facility: environment temperature (22 ± 3)°C a	
Calibration Equipment used (M&T			
	1	Cal Data (Calibrated by Andreasta No.)	Scheduled Calibration
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Oct-09
Power meter EPM-442A	GB37480704	08-Oct-08 (No. 217-00898)	Oct-09 Oct-09
Power sensor HP 8481A	US37292783	08-Oct-08 (No. 217-00898)	Oct-09 Jul-09
Reference 20 dB Attenuator	SN: 5086 (20g)	01-Jul-08 (No. 217-00864)	Jul-09 Jul-09
Type-N mismatch combination	SN: 5047.2 / 06327	01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025, Apr08)	Jul-09 Apr-09
Reference Probe ES3DV2	SN: 3025 SN: 601	28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08)	Apr-09 Mar-09
DAE4	SN: 601	T-Mai-00 (NO. DAE4-00 I_Waf00)	,,m. ••
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-07)	In house check: Oct-09
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-08)	In house check: Oct-09
	, 233, 220000 07200		
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	Ja la
Approved by:	Katja Pokovic	Technical Manager	22-111
			Janes Land
			Issued: January 15, 2009

Certificate No: D2600V2-1020_Jan09

Page 1 of 9

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

N/A

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No
 uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.0 ± 6 %	1.93 mho/m ± 6 %
Head TSL temperature during test	(21.6 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	14.7 mW / g
SAR normalized	normalized to 1W	58.8 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	58.8 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.59 mW / g
SAR normalized	normalized to 1W	26.4 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	26.3 mW / g ± 16.5 % (k=2)

Certificate No: D2600V2-1020_Jan09 Page 3 of 9

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.5 ± 6 %	2.13 mho/m ± 6 %
Body TSL temperature during test	(21.6 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	condition	
SAR measured	250 mW input power	14.2 mW / g
SAR normalized	normalized to 1W	56.8 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	57.3 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.37 mW / g
SAR normalized	normalized to 1W	25.5 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	25.6 mW / g ± 16.5 % (k=2)

Certificate No: D2600V2-1020_Jan09

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.2 Ω - 5.0 jΩ
Return Loss	– 25.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.6 Ω - 3.9 jΩ
Return Loss	– 23.1 dB

General Antenna Parameters and Design

	
Electrical Delay (one direction)	1.154 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 13, 2008

Certificate No: D2600V2-1020_Jan09

DASY5 Validation Report for Head TSL

Date/Time: 14.01.2009 10:37:41

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN1020

Communication System: CW-2600; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB

Medium parameters used: f = 2600 MHz; $\sigma = 1.93 \text{ mho/m}$; $\varepsilon_r = 38$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

Probe: ES3DV2 - SN3025; ConvF(4.29, 4.29, 4.29); Calibrated: 28.04.2008

• Sensor-Surface: 3.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 14.03.2008

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; d = 10 mm 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.3 V/m; Power Drift = 0.031 dB

Peak SAR (extrapolated) = 31.6 W/kg

SAR(1 g) = 14.7 mW/g; SAR(10 g) = 6.59 mW/g

Maximum value of SAR (measured) = 17.7 mW/g

0 dB = 17.7 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 14.01.2009 11:55:42

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN1020

Communication System: CW-2600; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: MSL U10

Medium parameters used: f = 2600 MHz; $\sigma = 2.13$ mho/m; $\varepsilon_r = 53.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

Probe: ES3DV2 - SN3025; ConvF(3.96, 3.96, 3.96); Calibrated: 28.04.2008

• Sensor-Surface: 3.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 14.03.2008

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.7 V/m; Power Drift = 0.014 dB

Peak SAR (extrapolated) = 29.8 W/kg

SAR(1 g) = 14.2 mW/g; SAR(10 g) = 6.37 mW/g

Maximum value of SAR (measured) = 17.8 mW/g

0 dB = 17.8 mW/g

Certificate No: D2600V2-1020 Jan09

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client

BV-ADT (Auden)

Certificate No: D2600V2-1003_Feb09

CALIBRATION CERTIFICATE

Object D2600V2 - SN: 1003

QA CAL-05.v7 Calibration procedure(s)

Calibration procedure for dipole validation kits

Calibration date: February 17, 2009

In Tolerance Condition of the calibrated item

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	08-Oct-08 (No. 217-00898)	Oct-09
Power sensor HP 8481A	US37292783	08-Oct-08 (No. 217-00898)	Oct-09
Reference 20 dB Attenuator	SN: 5086 (20g)	01-Jul-08 (No. 217-00864)	Jul-09
Type-N mismatch combination	SN: 5047.2 / 06327	01-Jul-08 (No. 217-00867)	Jul-09
Reference Probe ES3DV2	SN: 3025	28-Apr-08 (No. ES3-3025_Apr08)	Apr-09
DAE4	SN: 601	14-Mar-08 (No. DAE4-601_Mar08)	Mar-09
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
	MY41092317	10.0 1.00 (1.1	1 1 1 0 100
Power sensor HP 8481A	101141092317	18-Oct-02 (in house check Oct-07)	In house check: Oct-09
Power sensor HP 8481A RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-07)	In house check: Oct-09

Name Signature Function Calibrated by: Jeton Kastrati Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: February 20, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2600V2-1003 Feb09

Page 1 of 9

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2600V2-1003_Feb09

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	——————————————————————————————————————

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.6 ± 6 %	1.94 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	14.4 mW / g
SAR normalized	normalized to 1W	57.6 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	57.4 m W / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.46 mW / g
SAR normalized	normalized to 1W	25.8 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	25.7 mW / g ± 16.5 % (k=2)

Certificate No: D2600V2-1003_Feb09

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	2.15 mho/m ± 6 %
Body TSL temperature during test	(21.0 ± 0.2) °C	and and talk this are talk this	THE TOP AND AND SAN

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	250 mW input power	14.7 mW / g
SAR normalized	normalized to 1W	58.8 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	59.1 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.59 mW / g
SAR normalized	normalized to 1W	26.4 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	26.4 mW / g ± 16.5 % (k=2)

Certificate No: D2600V2-1003_Feb09

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.6 Ω - 1.9 jΩ
Return Loss	– 33.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.9 Ω - 0.5 jΩ
Return Loss	– 27.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.150 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 23, 2006

Certificate No: D2600V2-1003_Feb09 Page 5 of 9

DASY5 Validation Report for Head TSL

Date/Time: 17.02.2009 12:13:21

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN1003

Communication System: CW-2600; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB

Medium parameters used: f = 2600 MHz; $\sigma = 1.94 \text{ mho/m}$; $\epsilon_r = 37.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

Probe: ES3DV2 - SN3025; ConvF(4.29, 4.29, 4.29); Calibrated: 28.04.2008

• Sensor-Surface: 3.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 14.03.2008

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

• Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; d = 10 mm 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.9 V/m; Power Drift = 0.018 dB

Peak SAR (extrapolated) = 31.1 W/kg

SAR(1 g) = 14.4 mW/g; SAR(10 g) = 6.46 mW/g

Maximum value of SAR (measured) = 17.5 mW/g

0 dB = 17.5 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 11.02.2009 13:13:59

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN1003

Communication System: CW-2600; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 2600 MHz; $\sigma = 2.16 \text{ mho/m}$; $\varepsilon_r = 53.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

Probe: ES3DV2 - SN3025; ConvF(3.96, 3.96, 3.96); Calibrated: 28.04.2008

Sensor-Surface: 3.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 14.03.2008

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.7 V/m; Power Drift = -0.010 dB

Peak SAR (extrapolated) = 30.8 W/kg

SAR(1 g) = 14.7 mW/g; SAR(10 g) = 6.59 mW/g

Maximum value of SAR (measured) = 18.5 mW/g

0 dB = 18.5 mW/g

Impedance Measurement Plot for Body TSL

APPENDIX D: SYSTEM CERTIFICATE & CALIBRATION

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

IMPORTANT NOTICE

USAGE OF THE DAE 3

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE3 unit is connected to a fragile 3-pin battery connector. Customer is responsible to apply outmost caution not to bend or damage the connector when changing batteries.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration the customer shall remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, Customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the E-stop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

ADT (Auden)

Certificate No: DAE3-510_Jan09

Accreditation No.: SCS 108

S

CALIBRATION CERTIFICATE

DAE3 - SD 000 D03 AA - SN: 510 Object

QA CAL-06.v12 Calibration procedure(s)

Calibration procedure for the data acquisition electronics (DAE)

January 21, 2009 Calibration date:

In Tolerance Condition of the calibrated item

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Fluke Process Calibrator Type 702	SN: 6295803	30-Sep-08 (No: 7673)	Sep-09
Keithley Multimeter Type 2001	SN: 0810278	30-Sep-08 (No: 7670)	Sep-09
Secondary Standards	ID#	Check Date (in house)	Scheduled Check

Name **Function** Signature Eric Hainfeld Technician Calibrated by:

R&D Director Fin Bomholt Approved by:

Issued: January 21, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE3-510 Jan09

Page 1 of 5

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv

data acquisition electronics DAE

information used in DASY system to align probe sensor X to the robot Connector angle

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-510_Jan09

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1\mu V$, full range = -100...+300 mVLow Range: 1LSB = 61nV, full range = -1......+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.180 ± 0.1% (k=2)	404.237 ± 0.1% (k=2)	404.597 ± 0.1% (k=2)
Low Range	3.98584 ± 0.7% (k=2)	3.96418 ± 0.7% (k=2)	3.97982 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	42°±1°

Certificate No: DAE3-510_Jan09 Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range		Input (μV)	Reading (μV)	Error (%)
Channel X	+ Input	200000	200000.4	0.00
Channel X	+ Input	20000	20006.50	0.03
Channel X	- Input	20000	-20001.19	0.01
Channel Y	+ Input	200000	200000	0.00
Channel Y	+ Input	20000	20006.34	0.03
Channel Y	- Input	20000	-19999.47	0.00
Channel Z	+ Input	200000	200000.4	0.00
Channel Z	+ Input	20000	20005.85	0.03
Channel Z	- Input	20000	-20001.94	0.01

Low Range		Input (μV)	Reading (μV)	Error (%)	
Channel X	+ Input	2000	2000.1	0.00	
Channel X	+ Input	200	200.26	0.13	
Channel X	- Input	200	-200.29	0.14	
Channel Y	+ Input	2000	1999.9	0.00	
Channel Y	+ Input	200	199.55	-0.22	
Channel Y	- Input	200	-200.78	0.39	
Channel Z	+ input	2000	2000	0.00	
Channel Z	+ Input	200	199.35	-0.32	
Channel Z	- Input	200	-200.86	0.43	

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	17.77	16.87
	- 200	-15.55	-16.83
Channel Y	200	16.07	14.66
	- 200	-15.10	-16.55
Channel Z	200	-7.41	-8.67
. , , , , , , , , , , , , , , , , , , ,	- 200	8.31	7.63

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Υ (μV)	Channel Z (μV)
Channel X	200	-	2.33	0.92
Channel Y	200	0.91	-	2.64
Channel Z	200	-1.49	0.24	-

Certificate No: DAE3-510_Jan09 Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15922	16220
Channel Y	16083	15853
Channel Z	16077	16696

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.06	-0.34	0.80	0.21
Channel Y	-1.04	-1.65	0.01	0.25
Channel Z	0.59	-0.07	2.82	0.30

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2001	199.1
Channel Y	0.2001	197.8
Channel Z	0.2001	199.1

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	0.01	-8	-9

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

IMPORTANT NOTICE

USAGE OF THE DAE 3

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE3 unit is connected to a fragile 3-pin battery connector. Customer is responsible to apply outmost caution not to bend or damage the connector when changing batteries.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration the customer shall remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, Customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the E-stop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

ADT (Auden)

Accreditation No.: SCS 108

Certificate No: DAE3-579 Jul09

CA	LID	DAT	IANI	CERT	CIEIO	ATE
LA		RAI	$\mathbf{I}(\mathbf{J})\mathbf{N}$			

Object DAE3 - SD 000 D03 AA - SN: 579

Calibration procedure(s) QA CAL-06.v20

Calibration procedure for the data acquisition electronics (DAE)

Calibration date: July 17, 2009

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	30-Sep-08 (No: 7670)	Sep-09
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Calibrator Box V1.1	SE UMS 006 AB 1004	05-Jun-09 (in house check)	In house check: Jun-10

Function Signature Calibrated by: **Daniel Hess** Technician

Approved by: Fin Bomholt **R&D Director**

Name

Issued: July 17, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-579_Jul09

Page 2 of 5

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range:

1LSB =

6.1μV,

full range = -100...+300 mV

Low Range:

1LSB =

61nV ,

full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.340 ± 0.1% (k=2)	404.405 ± 0.1% (k=2)	404.179 ± 0.1% (k=2)
Low Range	3.98795 ± 0.7% (k=2)	3.99425 ± 0.7% (k=2)	3.94999 ± 0.7% (k=2)

Connector Angle

	Connector Angle to be used in DASY system	358.5°±1°
1		050.5 1

Appendix

1. DC Voltage Linearity

High Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	199993.3	-0.13	-0.00
Channel X	+ Input	20003.43	2.43	0.01
Channei X	- Input	-19993.69	5.81	-0.03
Channel Y	+ input	200002.8	0.51	0.00
Channel Y	+ Input	19999.73	-0.07	-0.00
Channel Y	- Input	-19996.86	2.44	-0.01
Channel Z	+ Input	200001.0	-0.52	-0.00
Channel Z	+ Input	20001.01	0.31	0.00
Channel Z	- Input	-19998.70	-0.01	-0.01

Low Range		Reading (μV)	Difference (μV)	Error (%)
Channel X +	Input	2000.0	-0.09	-0.00
Channel X +	·Input	198.99	-0.91	-0.46
Channel X -	Input	-200.88	-0.88	0.44
Channel Y +	Input	2000.4	0.38	0.02
Channel Y +	Input	198.39	-1.61	-0.80
Channel Y -	Input	-202.11	-2.21	1.10
Channel Z +	Input	2000.1	0.13	0.01
Channel Z +	Input	197.95	-2.05	-1.02
Channel Z -	Input	-202.15	-2.15	1.07

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	8.06	5.79
	- 200	-4.78	-6.20
Channel Y	200	7.41	7.20
	- 200	-8.12	-8.99
Channel Z	200	8.29	8.32
	- 200	-10.02	-10.01

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	*	-0.14	-0.70
Channel Y	200	2.34	-	3.07
Channel Z	200	1.88	-0.12	•

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16340	15896
Channel Y	16193	16225
Channel Z	15813	15945

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	-0.86	-2.24	0.56	0.49
Channel Y	-2.23	-3.31	-1.32	0.34
Channel Z	0.01	-1.37	3.11	0.46

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2001	200.9
Channel Y	0.2001	203.9
Channel Z	0.2001	204.5

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9