

EXCRETORY PRODUCTS AND THEIR ELIMINATION

METABOLISM

EXCESS INGESTION

Results in accumulation of

- Nitrogenous wastes NH₂, Urea, Uric acid
- Other contents CO₂, H₂O, ions (Na⁺, K⁺ Cl⁻, PO₄³⁻ SO₄²)

Removed Partially/Completely

EXCRETORY STRUCTURES

- Most invertebrates Simple tubular forms
 Vertebrates Complex tubular organs called kidneys

Structures

- Protonephridia/flame cells
- Nephridia
- Malpighian tubules
- Antennal/Green glands

Examples

- Platyhelminthes (Planaria)
- Rotifers
- Some annelids
- Cephalochordates (Amphioxus)
- Annelids (Earthworms)
- Insects (Cockroaches)
- Crustaceans (Prawn)
- Protonephridia are primarily concerned with osmoregulation
- Functions of excretory structures
- Eliminate nitrogenous wastes
- Maintan ionic and acid-base balance of body fluids. i.e., osmoregulation

MICTURITION

- · Process of release of urine
- Mechanism Micturition reflex

Urinary bladder (Store Urine) Activates

Stretch receptors

CNS (voluntary signal)

- Send motor message Urinary bladder
- Smooth muscle contract
- Urethral sphincters relax Release

Urine

NITROGENOUS WASTES

 Nature of nitrogenous waste formed and their excertion vary among anilmals depending on the habitat/availability of water

Major Nitrogenous Waste	Nature & Examples	Toxicity And Water Required	Typical
• Ammonia	Ammonotelic	Maximum	Diffusion through gills surface or body surface ammonium ions
• Urea	Ureotelic	Less	• Kidneys filter urea from blood
• Uric acid	Urecotelic • Land snads • Insects • Reptiles • Birds	Least	Pellet/Paste

- Elimination of urea, uric acid is meant for conservation or water i.e., a type of terrestrial
- Kidneys do not play a significant role in removal of ammonia
- Some amount of urea may be retained in the kidney
- matrix of some animals to maintain desired osmolarity

Columns of Bertini Renal columns

• Part of cortex which extents between medullary pyramids

Capsule-outer tough covering

Cortex (Outer)

zones

Medulla (Inner)

Notch towards concave-surface

Ureter, blood vessels and nerves enter

Renal pelvis

 Funnel shaped space with projection called calyes

section of kidney Medullary pyramids are conical masses that project into calyces.

Functional unit of kidney

· Each nephron has two parts

· Nearly 1 million/kidney Parts: (i) Glomerulus (ii) Renal tubule

NEPHRON

HUMAN EXCRETORY SYSTEM

- 1 pair, bean shaped, reddish brown.
- Length 10-12 cm, Width 5-7 cm Thickness 2-3 cm.
- · Weight 120-470 g.
- Between T₁₂ L₃ vertebra, close Io dorsal inner wall of abdominal

URINARY BLADDER

- · Have stretch receptors.
- Store urine till voluntary signals from CNS carries out its release.

URETHRA

- · Guarded by sphincters.
- · Meant for release of urine.

Parameters	Cortical	Juxtamedullary
• Number	More	Less
• Loop of Henle	Too short	Very long
• Extension Into medulla	Very Mild	Deep
• Vasa recta	Absent/reduced	Present

Juxtaglomerular apparatus (JGA)

Sensitive region formed by cellular modifications in distal convoluted tubule and afferent arteriole at the location of their contact

- Nephrons are dipped in interstitial fluid having specific osmolarity
- Cortex 300 mOsm/L Medulla upto 1200 mOsm/L (Gradient)
- Glomerulus is a tuft of capillaries formed by Afferent Arteriole. A fine branch of Renal Artery.
- Malpighian Corpuscle, PCT, DCT Located In Cortex.
- Loop of Henle Dips into Medulla.
- •Many Ducts open into straight tube called collecting duct, many of which converge into renal pelvis through mediullary Pyramids in the calyces.
- Efferent Arteriole emerging from glomerulus forms peritubular capillaries around renal tubule
- Vesa recta:

Branch of petitubular capillaries Parallel to loop of Henle 'U' shaped

- Filtration is due to pressure in the glomerular capillaries.
- Glomerular filtration rate (GFR) = Filtration/min 125ml/min Kidney has an ability to regulate GFR.

- Lined by simple cuboidal brush border epithelium
- Nearly all essential nutrients, 70-80% electrolytes and water ere reabsorbed
- Major site of reabsorption & selective secretion

8

COUNTER CURRENT MECHANISM TO CONCEITTRATE FILTRATE

- Flow of filtrate in different limbs of following structures are in opposite direction (Counter current)
- Loop of Henle (HL)
- Vasa Recta (VR)
- HL and VR
- Proximity of HL and VR and counter current in them increase osmolarity towards inner medullary interstitium (300 mOsm/L in cortex to 1200 mOsm/L)
- · Interstitium gradient is caused by NaCl and urea.
- NaCl transported by ascending limb of HL exchanged with descending limb of vasa recta and is returned to medullary interstitium by ascending limb of VR.
- Urea which enters in thin part of ascending limb of HL is transported back to interstitium by collecting tubule
- This mechanism maintain interstitial concentration gradient that helps in easy passage of water from collecting tubule thereby concentrating filtrate (urine).

- Mammals have ability to poroduce concentrated urine.
- HL primarily helps to maintain osmolarity gradient in kidney intetstitium.

REGULATION OF KIDNEY FUNCTION/GLOMERULAR FILTRATION RATE

ANF mechanism acts as a check on Renin-Angiotensin mechanism

10

Blood pressure increases

CHARACTERISTICS AND COMPOSITION OF URINE

Colour - Light yellow

pH = 6

Odour - Characteristic

Human kidneys can produce urine nearly **4 times** concentrated than initial filtrate.

Urea - 25-30 gm/day

Various conditions can affect characteristics of urine.

Abnormal constituents of urine	Condition	Indicate
Glucose	Glucosuria	Diabetes mellitu
Ketone bodies	Ketonuria	Diabetes mellitus

DISORDERS OF EXCRETORY SYSTEM

Disorders	Symptoms or Treatment		
Renal catculi	Stone or insoluble mass of crystalised salts (e.g. oxalates)		
Glomerulonephritls	Inflammation of glomeruli of kidney		
Renal/kidney failure			
	Malfunctioning of kidneys leads to accumulation of urea in blood (Uremia); highly harmful, may lead to kidney failure		
	Treatment		
	(i) Haemodialysis: Process to remove urea from blood Method is a boon for thousands of uremic patients all over the world.		
	Blood drained from artery Mix with Heparin (Anticoagulant) Pumped through		
Composition of dialysis	Dialysing unit		
fluid is same as plasma except the nitrogenous	Anticoagulant Mix with Clear Concentration gradient Private Porous cellophane tubes		
wastes	blood Nitrogenous wastes freely move out surrounded by dialysing fluid. Pumped back to body through		
	Vein		
	(ii) Kidney transplantation Ultimate method in correction of acute renal failure		
	Functional kidney is taken from donor To minimize rejection, close relatives are preferred as donor Modern clinical problems have increased success rate of such complicated techniques		

12 ROLE OF OTHER ORGANS IN EXCRETION

Accessory structure	substances	Basic Work	
Lungs	CO2, water	 Remove large amount of CO₂ approximately 200 mL/min Remove significant quantity of water 	
Liver (Largest gland)	Bilirubin, vitamins biliverdin, drugs cholesterol, degraded steroid hormones	Most of these substances pass out alongwith digestive wastes	
Skin • Sweat glands	Sweat contains • NaCl • Urea • Lactic acid	Primary function of sweat is to facilitate cooling effect on body surface	
• Sebaceous glands	Sebum contains • Sterols • Hydrocarbons • Waxes	Sebum provides a protective oily covering for the skin	
Salivary glands		Small amount of nitrogenous wastes are eliminated through saliv	