Classificação

- 1. Dado um grupo de instâncias (conjunto de treino) onde cada instância contém uma série de atributos e um deles é a **classe**.
- 2. Encontre um modelo para o atributo de classe em função dos valores dos demais atributos
- 3. Para novas instâncias, a classe atribuída deve ser o mais próximo possível do correto
- 4. Um conjunto de teste deve ser usado para determinar a acurácia do modelo.

Algoritmos

- Árvore de Decisão
- Naïve Bayes e Redes Bayesianas
- Redes Neurais
- Máquinas de Vetores de Suporte (SVM)
- Regressão Logística

Classificação

l In		F			0-16-1-	Di	1			
ID	Nome	Enjôo	Mancha	Dor	Salário	Diagnóstico				
01	Ana	sim	pequena	sim	1000	doente		Algoritmo		
02	Maria	não	pequena	não	1100	saudável				
03	José	sim	grande	não	600	saudável				
04	Pedro	não	pequena	sim	2000	doente		•		_
05	Paulo	não	grande	sim	1800	saudável		Aprender		
06	Juliana	não	grande	sim	900	doente		Modelo	Modelo	
							_			
07	Jorge	sim	grande	sim	1900	?		Anligar		
08	Eduarda	não	pequena	não	1700	?] ←	Aplicar Modelo		
09	Francisco	sim	pequena	sim	950	?]	Modelo		

Flamingo	Quente	Não	?
Nome	Temperatura Corporal	Amamenta	 Classe

- Algoritmo de Hunt: D_t = conjunto de treino. y = rótulos de classes
- Passo 1: Se todas as instâncias em D_t pertencem à mesma classe y_t, então t é um nó folha rotulado y_t

Passo 2: Se D_t contém instâncias que pertencem à mais de uma classe, uma condição de teste baseada em um atributo deve ser selecionada para dividir as instâncias em conjuntos menores. Um nó filho deve ser criado para cada saída desta condição e as instâncias em D_t são distribuídas para os nós gerados com base nas saídas. O algoritmo é aplicado recursivamente para cada nó filho.

ID	Proprietário de imóvel	Estado civil	Renda Annual	Calote
1	Sim	Solteiro	125k	Não
2	Não	Casado	100k	Não
3	Não	Solteiro	70k	Não
4	Sim	Casado	120k	Não
5	Não	Divorciado	95k	Sim
6	Não	Casado	60k	Não
7	Sim	Divorciado	220k	Não
8	Não	Solteiro	85k	Sim
9	Não	Casado	75k	Não
10	Não	Solteiro	90k	sim

calote = não

- Pode haver situações onde não é possível fazer a distribuição das instâncias em nós filhos
- Quando todos os valores dos atributos (exceto a classe) forem iguais;
- Quando não houver instâncias que possuem a combinação de atributos necessária para ser atribuídas a um nó.

- 1.Como dividir as instâncias de treino?
- 2. Quando parar de dividir?

Atributos binários

Atributos categóricos e ordinais

Atributos categóricos e ordinais

Atributos categóricos e ordinais

- Atributos categóricos e ordinais
- Tamanho da camiseta = {P, M, G, GG}
- Divisões possíveis?

- Atributos categóricos e ordinais
- Tamanho da camiseta = {P, M, G, GG}
- Divisões possíveis?
- ▶ 2^{k-1}-1 divisões binárias

Atributos contínuos?

- Atributos contínuos?
- Aplicar discretização

- Medidas para selecionar a melhor divisão
- Feito com base na distribuição das classes antes e depois de dividir
- p(i | t) é a fração de instâncias que pertencem à classe i em um nó t. Também denominado p_i.
- Em um problema com duas classes a distribuição em qualquer nó pode ser definida como (p0, p1), onde p1 = 1 - p0.

- ▶ (p0, p1), onde p1 = 1 p0
- Qual é a distribuição de classes antes da divisão?

- ▶ (p0, p1), onde p1 = 1 p0
- Qual é a distribuição de classes após a divisão?

Qual destas divisões produz um resultado com nós filhos mais <u>puros</u>?

▶ Objetivo: minimizar a impureza com a divisão.

- Medidas para selecionar a melhor divisão
- Obs.: Considerar $0 * log_2 0 = 0$

$$\begin{aligned} \text{Entropy}(t) &=& -\sum_{i=0}^{c-1} p(i|t) \log_2 p(i|t), \\ \text{Gini}(t) &=& 1 - \sum_{i=0}^{c-1} [p(i|t)]^2, \\ \text{Classification error}(t) &=& 1 - \max_i [p(i|t)], \end{aligned}$$

Nó N1	Quantidade
Classe 0	0
Classe 1	6

Entropy(t) =
$$-\sum_{i=0}^{c-1} p(i|t) \log_2 p(i|t)$$
,
Gini(t) = $1 - \sum_{i=0}^{c-1} [p(i|t)]^2$,

Classification error(t) =
$$1 - \max_{i}[p(i|t)],$$

Gini	
Entropia	
Erro	

Nó N1	Quantidade
Classe 0	1
Classe 1	5

Entropy(t) =
$$-\sum_{i=0}^{c-1} p(i|t) \log_2 p(i|t)$$
,
Gini(t) = $1 - \sum_{i=0}^{c-1} [p(i|t)]^2$,

Classification error(t) = $1 - \max_{i}[p(i|t)],$

Gini	
Entropia	
Erro	

Nó N1	Quantidade
Classe 0	3
Classe 1	3

Entropy(t) =
$$-\sum_{i=0}^{c-1} p(i|t) \log_2 p(i|t)$$
,
Gini(t) = $1 - \sum_{i=0}^{c-1} [p(i|t)]^2$,

Classification error(t) =
$$1 - \max_{i}[p(i|t)],$$

Gini	
Entropia	
Erro	

Ganho, Delta, para decidir o quão bom é uma divisão

$$\Delta = I(\text{parent}) - \sum_{j=1}^{k} \frac{N(v_j)}{N} I(v_j),$$

- Onde: I(.) é a impureza de um dado nó;
- N é o total de instâncias no nó pai;
- k é o número de valores de um atributo;
- $ightharpoonup N(v_j)$ é o número de instâncias associados com o nó filho, v_j .
- Quanto maior o Delta, melhor a divisão.

6
O
6

$$\Delta = I(\text{parent}) - \sum_{j=1}^{k} \frac{N(v_j)}{N} I(v_j),$$

	Nó Pai	
Classe 0	6	
Classe 1	6	
Gini=0,5		

	Nó Filho 1	
Classe 0	4	
Classe 1	3	
Gini=?		

$${\rm Gini}(t) \ = \ 1 - \sum_{i=0}^{c-1} [p(i|t)]^2,$$

$$\Delta = I(\text{parent}) - \sum_{j=1}^{k} \frac{N(v_j)}{N} I(v_j),$$

	Nó Filho 2
Classe 0	2
Classe 1	3
Gini=?	

Ganho?

	Nó Pai							
Classe 0	6							
Classe 1	6							
Gini=0,5								

	Nó Filho 1							
Classe 0	1							
Classe 1	4							
Gini=?								

Gini(t) =
$$1 - \sum_{i=0}^{c-1} [p(i|t)]^2$$
,

$$\Delta = I(\text{parent}) - \sum_{j=1}^{k} \frac{N(v_j)}{N} I(v_j),$$

	Nó Filho 2								
Classe 0	5								
Classe 1	2								
Gini=?									

Ganho?

Calcular Gini e Ganho

Gini(t) =
$$1 - \sum_{i=0}^{c-1} [p(i|t)]^2$$
, $\Delta = I(parent) - \sum_{j=1}^{k} \frac{N(v_j)}{N} I(v_j)$,

	Tipo de carro									
	{Esporte Luxo}	{Famíliar}								
C 0	9	1								
C1	7	3								
Gini										

	Tipo de carro										
	{Esporte}	{Luxo, Famíliar}									
C 0	8	2									
C 1	0	10									
Gini											

	Tipo de		
	(Familiar)	{Esporte}	{Luxo}
C 0	1	8	1
C 1	3	0	7
Gini			

ID	Proprietário de imóvel	Estado civil	Renda Annual	Calote
1	Sim	Solteiro	125k	Não
2	Não	Casado	100k	Não
3	Não	Solteiro	70k	Não
4	Sim	Casado	120k	Não
5	Não	Divorciado	95k	Sim
6	Não	Casado	60k	Não
7	Sim	Divorciado	220k	Não
8	Não	Solteiro	85k	Sim
9	Não	Casado	75k	Não
10	Não	Solteiro	90k	sim

	Class	ı	No	No		•	N	0	Ye	s	Ye	s	Υe	es	No		No		No		No		
			Annual Income																				
Sorted Va	lues →		60		70)	7	5	85	5	90)	9	5	10	00	12	20	12	25		220	
Split Posi	Split Positions →		5	6	5	72		8	80		7	9	92 9		7	11	0 12		22	17	172 2		80
		<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
Gini		0.4	20	0.4	100	0.3	75	0.3	43	0.4	17	0.4	00	0.3	<u>00</u>	0.3	43	0.3	75	0.4	00	0.4	20

- Como evitar que um atributo com alta diversidade de valores interfira de forma negativa?
- Permitir apenas divisões binárias (CART)
- Utilizar razão de ganho (Gain ratio), que penaliza quando há muitas divisões

$$SplitInfo_A(D) = -\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times log_2(\frac{|D_j|}{|D|})$$

$$GainRatio(A) = \frac{Gain(A)}{SplitInfo(A)}$$

- Abordagem nãoparamétrica
- Encontrar árvore ótima é um problema de alta complexidade
- O processo de construção da árvore é rápido, idem para o teste
- Fáceis de interpretar, inclusive por leigos

- Robustas à presença de ruídos
- Atributos redundantes não trazem grandes prejuízos para a acurácia
- Podem ter profundidade excessivamente grande
- Pode haver replicação de trechos da árvore (poda)
- Fronteiras de decisão são hiperplanos

Fronteiras de Decisão

Fronteiras

Fronteiras

Fronteiras

- Utilize o conjunto de dados "adult" que trata do censo de 1995 nos Estados Unidos.
- A classe é renda anual maior que 50k ou menor.
- Os dados para teste estão no arquivo "adult.test".
- Meça a acurácia. Lide com dados categóricos.

```
from sklearn import tree
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, Y)
print clf.predict(X_test)
```


base.columns = ['age', 'workclass', 'fnlwgt', 'education', 'education-num', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'capital-gain', 'capital-loss', 'hours-per-week', 'native-country', 'class']


```
base['age'] = base['age'].astype(float)
base['workclass'] = base['workclass'].astype('category')
base['fnlwgt'] = base['fnlwgt'].astype(float)
base['education'] = base['education'].astype('category')
base['education-num'] = base['education-num'].astype(float)
base['marital-status'] = base['marital-status'].astype('category')
base['occupation'] = base['occupation'].astype('category')
base['relationship'] = base['relationship'].astype('category')
```



```
base['race'] = base['race'].astype('category')
base['sex'] = base['sex'].astype('category')
base['capital-gain'] = base['capital-gain'].astype(float)
base['capital-loss'] = base['capital-loss'].astype(float)
base['hours-per-week'] = base['hours-per-week'].astype(float)
base['native-country'] = base['native-country'].astype('category')
base['class'] = base['class'].astype('category')
```


class sklearn.tree.DecisionTreeClassifier(criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, class_weight=None, presort=False)