Нижегородский	государственный университет имени Н.И.Лобачевского Радиофизический факультет
0	v∷n vo vo6onomenvo∺ no6ono №911
	чёт по лабораторной работе №211 одольные ультразвуковые волны в проволоке
	Выполнили (420гр) Горюнов О.А., Плешков Д.С., Сиднев А.А

Содержание

1	Teo	ретич	еская часть	3
	1.1	Продо	ольные упругие волны	3
	1.2	Метод	ц возбуждения и приёма упругих волн	4
2	Опі	исание	установки	6
3	Пра	актиче	еская часть	7
	3.1	Импу.	пьсный режим	7
		3.1.1	Определение скважности	7
		3.1.2	Определение скорости распространения волны	8
	3.2	Непре	рывный режим	10
		3.2.1	Определение длины волны по расстоянию между пучностями	10
		3.2.2	Определение коэффициента стоячести волны (КСВ)	12
		3.2.3	Определение длины волны по фазе сигнала	13
4	Вы	вод		14

Цель работы - изучить распространение ультразвуковых волн в проволоке, измерить скорость распространения и длину волны.

1 Теоретическая часть

1.1 Продольные упругие волны

В пренебрежении поглощением распространение продольных упргуих волн в проволоке описывается волновым уравнением:

$$\frac{\partial^2 s}{\partial t^2} = \frac{E}{\rho} \frac{\partial^2 s}{\partial x^2} \tag{1}$$

где s(x,t) - смещение в момент t сечения, равновесная координата которого равна x (х и s отсчитываются вдоль оси, параллельной проволоке). E и ρ - соответственно модуль Юнга и плотность материала проволоки. Уравнение (1) справедливо при малых деформациях, лежащих в пределах применимости закона Гука. Общее решение этого уравнения представляет собой суперпозицию двух бегущих навстречу недеформирующихся волн:

$$s = s_1(x + ut) + s_2 = (x - ut)$$

где $u=\sqrt{\frac{E}{\rho}}$ - скорость распространения волны, а вид функций s_1 и s_2 зависит от способа возбуждения волн и граничных условий.

Если s_1 и s_2 - плоские синусоидальные волны с циклической частотой ω и волновым числом k:

$$s_1 = A_1 cos(\omega t + kx - \alpha_1), \quad s_2 = A_2 cos(\omega t - kx - \alpha_2)$$

Связь между ω и k получим, подставляя любую из функций в (1):

$$\omega = uk$$

В рассматриваемом случае связь частоты волны с волновым числом линейная (скорость распространения волны u не зависит от частоты ω), без свободного члена. Такие среды называются средами без дисперсии.

Рассмотрим суперпозицию двух плоских синусоидальных волн одинаковой амплитуды $(A_1=A_2=A),$ распространяющихся во встречных направлениях:

$$s = s_1 + s_2$$

Из тригонометрических преобразований:

$$s = 2A\cos\left(kx - \frac{\alpha_1 + \alpha_2}{2}\right)\cos\left(\omega t + \frac{\alpha_1 - \alpha_2}{2}\right) \tag{2}$$

Величина s во всех точках струны совершает гармоническое колебание с одинаковой частотой, но амплитуда колебаний

$$2A \left| cos \left(kx - \frac{\alpha_1 + \alpha_2}{2} \right) \right|$$

различна в разных точках. Решение (2) описывает стоячую волну.

Точки, где амплитуда равна нулю, и, следовательно, s=0 в любой момент времени, называются yзлами стоячей волны. Точки, где амплитуда колебаний максимальна, называются nyчностями стоячей волны.

Расстояние между двумя пучностями или двумя узлами равна: $\lambda/2$

Можно заметить, что множитель cos(kx) при переходе через нулевое значение меняет знак, что соответсвует изменению фазы колебаний на π . В соответсвии с этим фаза колебаний по разные стороны от узла отличаются на π . Точки, заключенные между двумя соседники узлами, колеблются синфазно.

Рассмотренный выше случай образования стоячей волны из двух бегущих навстречу волн является идеализированным. На практике, из-за внутреннего трения в проволоке, теплообмена, неполного отражения от стенок приводят к тому, что волна затухает при распространении, то есть энергия упругой волны переходит в тепловую. В результате мы имеем суперпозицию волн с разными амплитудами, и наблюдается режим смешанных волн. В более общем случае:

$$A_2 = A, \quad A_1 = A + a$$

Легко видеть, что $s = s_1 + s_2$, есть суперпозиция стоячей волны, описываемой уравнением (2), и бегущей волны

$$acos(kx - \omega t - \alpha_1)$$

Величина $(a/A)^2$ называется коэффициентом бегучести. Отношение

$$\frac{A_1^2 + A_2^2}{A_1^2 - A_2^2}$$

называется $\kappa o = \phi \phi u u u e + mom c mos u e c mu волны (KCB)$. В чисто стоячей волне КСВ равен бесконечности, а в чисто бегущей - единице.

1.2 Метод возбуждения и приёма упругих волн

Под действием магнитного поля происходит деформация некоторых веществ (в частности, никеля). Это явление получило название магнитострикции. Относительная деформация $\varepsilon = \Delta L/L$ в полях намагниченных до насыщения ($H \approx 10^5~{\rm A/m}$), обычно имеет порядок $10^{-5}-10^{-6}$. Величина и знак деформации не зависит от направления магнитного поля, то есть функция $\varepsilon(H)$ - чётная.

Для возбуждения упругих волн необходимо периодически изменять величину магнитного поля. Для достижения оптимальных условий возбуждения необходимо постоянное подмагничивание. В этом случае колебания $\varepsilon(t)$ будут иметь максимальную амплитуду, а их частота будет совпадать с частотой H(t). Такая зависимость $\varepsilon(H)$ характерна для никеля.

На рис. 1а постоянное подмагничивание отсутствует, а на рис. 1б имеется постоянная составляющая поля H. Очевидно, что во втором случае "раскачка" колебаний $\varepsilon(t)$ гораздо эффективнее.

2 Описание установки

Блок-схема экспериментальной установки приведена на рис. 2. Установка состоит из передатчика, натянутой никелевой проволоки, передающей и приемной катушек, которые могут перемещаться вдоль проволоки, приемника и осциллографа. Передатчик и приемник собраны в одном корпусе.

Рис. 2. Блок-схема установки

Передатчик включает в себя: генератор высокой частоты, импульсный генератор, модулятор, усилитель, усиливающий подводимое напряжение до величины, необходимой для нормальной работы передающей катушки.

С помощью переключателя "НЕПР-ИМП"напряжение ГВЧ подается или непосредственно на выходной усилитель (непрерывный режим) или на модулятор (импульсный режим). Выходное напряжение снимается с разъёма "Выход к разъёму "Видеоимпульс" подводится сигнал от импульсного генератора.

Для создания постоянного подмагничивания в месте расположения приемной и передающей катушек установлены постоянные магниты. Катушки секционированы, т.е. намотаны несколькими секциями, длина каждой секции порядка 2 мм. В месте расположения отдельных секций передающей катушки при подаче на неё переменного напряжения возникают упругие колебания. В приёмной катушке переменное магнитное поле, возникающее из-за обратного магнитострикционного эффекта, создает ЭДС индукции. Напряжение, снимаемое с этой катушки, поступает далее на разъём "Вход"приёмника. Приёмник представляет собой усилитель с полосой пропускания, достаточной для неискаженного усиления принимаемых сигналов.

3 Практическая часть

3.1 Импульсный режим

3.1.1 Определение скважности

Скважность можно определить как отношение периода видеоимпульса, к времени самого импульса: T/ au.

T, MC	τ , MKC	ΔT , MKC	$\Delta \tau$, MKC
2,06	16,9	50	0,5

$$\frac{T}{\tau} = \frac{2,06 \cdot 10^{-3}}{16,9 \cdot 10^{-6}} \approx 121,89$$

Абсолютные погрешности времени определяем по цене деления осциллографа.

$$\Rightarrow \quad \Delta(T/\tau) = \delta(T/\tau) \cdot (T/\tau) = \left(\frac{\Delta T}{T} + \frac{\Delta \tau}{\tau}\right) \frac{T}{\tau} \approx 6,56$$

$$\Rightarrow \quad T/\tau = 121,89 \pm 6,56$$

3.1.2 Определение скорости распространения волны

Опыт проводился при четырёх разных расположениях приёмника (при этом источник неподвижен, и стоит на отметке 0). На рисунке ниже цифрами пронумерованы волны, которые приходят в приёмник разными путями.

				x	= 35 cm			
N	L, cm	t, MKC	ΔL , cm	Δt , MKC	u, м/с	Δu , м/с	$u_{ m cp},{ m m/c}$	$(\Delta u)_{ m cp},\ { m M/c}$
1	35	66	0,1	10	5303,0303	818,64	5268,28	364,88
2	94,2	178	-	-	5292,13483	302,93	-	-
3	140,8	270	-	-	5214,81481	196,84	-	-
4	200	380	-	-	5263,15789	141,14	-	-

L - путь, который проходит волна до приёмника.

Расчёт погрешностей:

 ΔL и Δt определяются по цене деления линейки и шкалы на осциллографе соответсвенно. Δu можно найти по формуле:

$$\Delta u = \delta u \cdot u = \left(\frac{\Delta L}{L} + \frac{\Delta t}{t}\right) \cdot u$$

Абсолютная погрешность величины определяется по формуле:

$$\Delta A = \sqrt{\Delta A_{\rm cp}^2 + \Delta A_{\rm np}^2}$$

где $\Delta A_{\rm cp}$ - погрешность среднего значения, а $\Delta A_{\rm np}$ - приборная погрешность.

В нашем случае:

$$\Delta u_{\rm cp} = \frac{|u_{\rm cp} - u_1| + \dots + |u_{\rm cp} - u_4|}{4}$$

А приборную погрешность усредним относительно каждого опыта:

$$(\Delta u)_{\rm cp} = \frac{\Delta u_1 + \dots + \Delta u_4}{4}$$

В итоге получим итоговую погрешность для данной серии экспериментов:

$$\Delta u = \sqrt{\Delta u_{
m cp}^2 + (\Delta u)_{
m cp}^2} \approx 366,06$$
 $u \approx (5268,28 \pm 366,06) \; {
m m/c}$

Аналогичные рассуждения проводятся и для других опытов.

				x	=40 cm			
N	$N \mid L$, cm $\mid t$, mkc $\mid \Delta L$, cm $\mid \Delta t$				и, м/с	Δu , м/с	$u_{ m cp},{ m m/c}$	$(\Delta u)_{ m cp},\ { m M/c}$
1	40	76	0,1	10	5263,15789	705,68	5244,18	334,62
2	99,2	188	-	-	5276,59574	285,99	-	-
3	135,8	260	-	-	5223,07692	204,73	-	-
4	195	374	-	-	5213,90374	142,08	-	-

$$\Delta u = \sqrt{\Delta u_{\rm cp}^2 + (\Delta u)_{\rm cp}^2} \approx 335,60$$

 $u \approx (5244, 18 \pm 335, 60) \text{ m/c}$

				\overline{x}	$= 45 \mathrm{cm}$			
N	$N \mid L$, cm $\mid t$, mkc $\mid \Delta L$, cm $\mid \Delta$				u, м/с	Δu , м/с	$u_{ m cp},{ m m/c}$	$(\Delta u)_{ m cp},~{ m M/c}$
1	45	86	0,1	10	5232,55814	620,06	5236,74	312,58
2	104,2	198	-	-	5262,62626	270,84	-	-
3	130,8	250	-	-	5232,0	213,28	-	-
4	190	364	-	-	5219,78022	146,15	-	-

$$\Delta u = \sqrt{\Delta u_{\rm cp}^2 + (\Delta u)_{\rm cp}^2} \approx 312,85$$

 $u \approx (5236,74 \pm 312,85) \; {\rm m/c}$

				x	= 30 см			
N	L, cm	t, MKC	ΔL , cm	Δt , MKC	<i>u</i> , м/с	Δu , м/с	$u_{ m cp},{ m m/c}$	$(\Delta u)_{ m cp},~{ m M/c}$
1	30	58	0,1	10	5172,41379	909,04	5223,42	387,95
2	89,2	170	-	-	5247,05882	314,53	-	-
3	145,8	278	-	-	5244,60432	192,25	-	-
4	205	392	-	-	5229,59184	135,96	-	-

$$\Delta u = \sqrt{\Delta u_{\rm cp}^2 + (\Delta u)_{\rm cp}^2} \approx 388,78$$

 $u \approx (5223,42 \pm 388,78) \text{ m/c}$

3.2 Непрерывный режим

3.2.1 Определение длины волны по расстоянию между пучностями

$$T=2$$
 мкс $\qquad
u=rac{1}{T}=500$ к Γ ц

Расстояние между двумя пучностями (или узлами) равна половине длине волны. Зная частоту и длину волны, можно определить её скорость:

$$u = \frac{\omega}{k} = \frac{2\pi\nu\lambda}{2\pi} = \lambda\nu$$

1 опыт:

а	x_1 , cm	x_2 , cm	$\frac{\lambda}{2}$, CM	λ , cm	$\Delta \lambda$, cm	u, м/с	Δu , м/с
	30,25	35,5	0,525	1,05	0,04	5250	210

Расчёт погрешностей:

В эксперименте мы измеряем расстояние между 10 пучностями. Длину волны определяем по формуле:

$$\lambda = \frac{2(x_2 - x_1)}{10}$$
$$\delta \lambda = \delta(x_2 - x_1)$$
$$\delta(x_2 - x_1) = \frac{2\Delta x}{x_2 - x_1}$$
$$\Rightarrow \Delta \lambda = \frac{2\Delta x}{x_2 - x_1} \cdot \lambda$$

где $\Delta x = 0, 1$ см, равна цене деления линейки.

$$u = \lambda \cdot \nu$$

Частоту мы определяем точно с помощью осциллографа, её погрешностью можно пренебречь. Тогда:

$$\Delta u = \delta u \cdot u = \{\delta u = \delta \lambda\} = \frac{\Delta \lambda}{\lambda} \cdot u$$

Аналогичный расчёт и для других опытов.

$$\lambda \approx (1,05 \pm 0,04), \text{ cm}$$

 $u \approx (5250 \pm 210) \text{ m/c}$

2 опыт:

x_1 , cm	x_2 , cm	$\frac{\lambda}{2}$, CM	λ , cm	$\Delta \lambda$, cm	u, м/с	Δu , м/с
36,1	41,3	0,52	1,04	0,04	5200	208

$$\lambda \approx (1,04 \pm 0,04), \text{ cm}$$
 $u \approx (5200 \pm 208) \text{ m/c}$

3 опыт:

x_1 , cm	x_2 , cm	$\frac{\lambda}{2}$, CM	λ , cm	$\Delta \lambda$, cm	u, м/с	Δu , м/с
41,9	47,2	0,53	1,06	0,04	5300	212

$$\lambda pprox (1,06\pm0,04), \ {
m cm}$$
 $upprox (5300\pm212)\ {
m m/c}$

Средние значения:

$$\lambda_{\mathrm{cp}} pprox (1,05\pm0,04), \, \, \mathrm{cm}$$
 $u_{\mathrm{cp}} pprox (5250\pm210) \, \, \mathrm{m/c}$

3.2.2 Определение коэффициента стоячести волны (КСВ)

Коэффициент стоячести определяется по формуле:

$$KCB = \frac{A_{max}^2 + A_{min}^2}{A_{max}^2 - A_{min}^2}$$

Зависимость от положения приёмной катушки:

Передающая катушка неподвижна, находится на отметке $x_{\text{пер}} = 0$ см (по линейке):

N	$x_{\text{приёмника}}, \text{ cm}$	A_{min} , мВ	$x_{\text{приёмника}}, \text{ CM}$	A_{max} , мВ	KCB	ΔA , мВ	Δx , cm	$\Delta ext{KCB}$
1	41,3	290	41,6	750	1,352	100	0,1	0,098
2	41,9	250	41,9	750	1,250			0,090
3	42,4	270	42,4	750	1,298			0,094

Расчёт погрешностей: $\Delta = 100 \text{ мB}$ - по цене деления на осциллографе.

$$\delta(A_{max}^2 + A_{min}^2) = \frac{\Delta(A_{max}^2) + \Delta(A_{min}^2)}{|A_{max}^2 + A_{min}^2|} = \frac{2(\Delta A)^2}{|A_{max}^2 + A_{min}^2|}$$

Аналогично:

$$\begin{split} \delta(A_{max}^2 - A_{min}^2) &= \frac{2(\Delta A)^2}{|A_{max}^2 - A_{min}^2|} \\ \Rightarrow & \delta(\text{KCB}) = \frac{2(\Delta A)^2}{|A_{max}^2 + A_{min}^2|} + \frac{2(\Delta A)^2}{|A_{max}^2 - A_{min}^2|} \end{split}$$

Тогда:

$$\Delta(KCB) = KCB \cdot \delta(KCB)$$

Тот же эксперимент при другом положении катушки:

Передающая катушка неподвижна, находится на отметке $x_{\text{пер}} = 8$ см (по линейке):

N	$x_{\text{приёмника}}$, см	A_{min} , MB	$x_{\text{приёмника}}, \text{ cm}$	A_{max} , мВ	KCB	ΔA , мВ	Δx , cm	$\Delta ext{KCB}$
1	42,4	450	42,7	1120	1,385	100	0,1	0,045
2	42,9	430	43,2	1110	1,353			0,045

Если зажимать проволоку рукой, то амплитуда в пучностях уменьшается, а в узлах увеличивается.

3.2.3 Определение длины волны по фазе сигнала

$$\Delta \varphi = k \Delta x = \frac{2\pi \Delta x}{\lambda}$$

Когда мы сдвинемся по x и фаза изменится на 2π из формулы следует, что:

$$\Delta x = \lambda$$

Чтобы уменьшить погрешность измерения, будем измерять несколько сдвигов фазы на 2π (N штук). Погрешности вычисляются аналогично пункту 3.2.1.

1 опыт:

x_1 , cm	$cm \mid x_2, cm \mid$		λ , cm	$\Delta\lambda$, cm		
30,3	46,1	15	1,05333	0,01333		

2 опыт:

x_1 , cm x_2 , cm		N	λ , cm	$\Delta\lambda$, cm	
25	40,7	15	1,04667	0,01333	

3 опыт:

x_1 , cm	x_2 , cm	N	λ , cm	$\Delta \lambda$, cm		
35,5	56,7	20	1,06	0,01		

Среднее значение:

$$\lambda \approx (1,053 \pm 0.012) \text{ cm}$$

4 Вывод

Выполнив лабораторную работу, мы:

1) Определили скважность видеоимпульса:

$$\frac{T}{\tau} \approx 121,89 \pm 6,56$$

2) Определили скорость распространения волны в импульсном режиме, при разных положениях приёмника (п. 3.1.2):

$$u \approx (5268, 28 \pm 366, 06) \text{ m/c}$$

2 опыт: х=40 см

$$u \approx (5244, 18 \pm 335, 60) \text{ m/c}$$

3 опыт: х=45 см

$$u \approx (5236, 74 \pm 312, 85)$$
 м/с

<u>4 опыт:</u> х=30 см

$$u \approx (5223, 42 \pm 388, 78) \text{ m/c}$$

$$u_{\rm cp} \approx (5242, 91 \pm 355, 82) \; {\rm m/c}$$

Если сравнить с теоретическими значениями. $E_{\text{николя}} \approx 210 \cdot 10^3~\Pi \text{a},~ \rho \approx 8902~\text{кг/м}^3$:

$$u_{ ext{теор}} = \sqrt{rac{E}{
ho}} pprox 4856,97 \; ext{м/c}$$
 $\lambda_{ ext{Teop}} = rac{u}{
u} pprox 0,971 \; ext{cm}$

3) В непрерывном режиме определили длину и скорость волны по расстояниям между пучностями:

$$\lambda_{\rm cp} \approx (1,05 \pm 0,04), \ {
m cm}$$

$$u_{\rm cp} \approx (5250 \pm 210) \; {\rm m/c}$$

4) Определили коэффициент стоячести волны (КСВ) при разных положениях передающей катушки и при перемещении приёмной катушки: Передающая катушка на отметке $x_{\text{пер}} = 0$ см (по линейке):

N	$x_{\text{приёмника}}, \text{ cm}$	A_{min} , мВ	$x_{\text{приёмника}}, \text{ cm}$	A_{max} , мВ	KCB	ΔA , мВ	Δx , cm	$\Delta ext{KCB}$
1	41,3	290	41,6	750	1,352	100	0,1	0,098
2	41,9	250	41,9	750	1,250			0,090
3	42,4	270	42,4	750	1,298			0,094

Передающая катушка на отметке $x_{\rm nep} = 8$ см (по линейке):

Λ	7	$x_{\text{приёмника}}$, см	A_{min} , мВ	$x_{\text{приёмника}}$, СМ	A_{max} , мВ	KCB	ΔA , мВ	Δx , cm	$\Delta ext{KCB}$
1	-	42,4	450	42,7	1120	1,385	100	0,1	0,045
2	2	42,9	430	43,2	1110	1,353			0,045

5) Определили длину волны по фазе сигнала:

$$\lambda \approx (1,053 \pm 0.012)$$
 см