Update Estimation and Scheduling for Over-the-Air Federated Learning with Energy Harvesting Devices

Furkan Bagci

Furkan Bagci¹, Busra Tegin¹, Mohammad Kazemi², and Tolga M. Duman¹

¹Dept. of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey

²Dept. of Electrical and Electronic Engineering, Imperial College London, London, UK

{bagci, btegin, duman}@ee.bilkent.edu.tr, mohammad.kazemi@imperial.ac.uk

June 12, 2025

What is Federated Learning (FL)?

Federated Learning

- A machine learning approach where:
 - Data remains decentralized
 - Devices collaboratively train a shared global model

Key Components

- Mobile Users (MUs)
- Parameter Server (PS)

Process

Figure 1: Illustration of a standard FL.

- PS sends the global model to users.
- ② Users compute local updates.
- **3** Updates are aggregated by the PS.
- 4 Repeat until convergence.

Why Federated Learning (FL)?

Introduction

Traditional ML

- Centralized data sharing:
 - Requires high resources
 - Compromises privacy

Collaborative model training without sharing local data

- Advantages:
 - Preserves privacy
 - Reduces latency
 - Improves learning quality

Why Over-the-Air (OTA) FL?

Challenge in FL

 Key bottleneck: Communication bandwidth.

Solution: OTA FL

- Leverages superposition property of wireless MAC
- Saves bandwidth by avoiding separate transmissions for each user.

$$\Delta \boldsymbol{\theta}(t) = \frac{1}{M} \sum_{m=1}^{M} \Delta \boldsymbol{\theta}_m(t). \tag{1}$$

Figure 2: Illustration of OTA FL.

Challenges in OTA FL

Energy Harvesting (EH) Devices

- Uneven and stochastic participation in learning.
- Existing studies focus on optimizing energy usage via:
 - Transceiver optimization, receive beamforming design.
- Bernoulli energy arrival process:
 - The m-th user receives unit energy with probability $p_e^m(t)$,

$$E_{m}(t) = \begin{cases} 1 \text{ with probability } p_{e}^{m}(t), \\ 0 \text{ with probability } 1 - p_{e}^{m}(t). \end{cases}$$
 (2)

• Unit-sized battery at the users.

Challenges in OTA FL

Non-i.i.d. Data Distribution

Figure 3: Illustration of non-i.i.d data.

Non-i.i.d. Data

- Data heterogeneity impacts:
 - Model convergence ².
 - Accuracy due to bias in updates.
- Existing works tackle this with:
 - Clustered Sampling ³
 - Diverse User Selection ⁴

• In contrast, our OTA FL setup uses noisy aggregated updates.

These studies rely on separate transmission of user updates.

² X. Li et al., "On the convergence of FedAvg on non-iid data," arXiv preprint, arXiv:1907.02189, 2019.

³ Y. Fraboni et al., "Clustered sampling for client selection in federated learning," ICML, 2021.

 $^{^4\,}$ R. Balakrishnan et al., "Diverse client selection for federated learning via submodular maximization," ICLR, 2022.

Contributions

Introduction

Diverse User Selection for FL with EH Devices

- 1. Entropy-Based Scheduling:
 - For known data distributions.
 - Ensures a **balanced representation** of data labels.
- 2. LSE-Based Scheduling:
 - For unknown data distributions.
 - Estimates user updates from aggregated signals at the PS.
 - Clusters users based on estimated representations to enhance diversity and eliminate redundant information.

FL Setup

- M: number of MUs
- K: number of receive antennas
- **Objective:**

$$F(\boldsymbol{\theta}) = \sum_{m=1}^{M} \frac{|B_m|}{B} F_m(\boldsymbol{\theta}), \tag{3}$$

where:

- $F_m(\theta)$: Local loss function.
- $F_m(\boldsymbol{\theta}) = \frac{1}{|B_m|} \sum_{\boldsymbol{u} \in P} f(\boldsymbol{\theta}, \boldsymbol{u})$

Selected users S(t) perform τ iterations of local SGD:

$$\boldsymbol{\theta}_{m}^{i+1}(t) = \boldsymbol{\theta}_{m}^{i}(t) - \eta_{m}^{i}(t) \nabla F_{m}(\boldsymbol{\theta}_{m}^{i}(t), \xi_{m}^{i}(t)),$$

$$\tag{4}$$

The *m*-th user computes the model update as:

$$\Delta \boldsymbol{\theta}_{m}(t) = \boldsymbol{\theta}_{m}^{\tau}(t) - \boldsymbol{\theta}_{m}^{1}(t). \tag{5}$$

These updates are transmitted back to the PS for aggregation as:

$$\Delta \boldsymbol{\theta}_{PS}(t) = \frac{1}{|S(t)|} \sum_{m \in S(t)} \Delta \theta_m(t). \tag{6}$$

OTA FL Setup

- Using **over-the-air** transmission over a fading MAC via **superposition** of signals
- The received signal at the *k*-th antenna of the PS at iteration *t* is:

$$\mathbf{y}_{PS,k}(t) = \sum_{m \in S(t)} \mathbf{h}_{m,k}(t) \circ \mathbf{x}_m(t) + \mathbf{z}_{PS,k}(t), \quad (7)$$

where:

- $h_{m,k}(t)$: i.i.d. channel gain from user m to antenna k with $h_{m,k}^n(t) \sim CN(0, \sigma_k^2)$.
- $x_m(t)$: Signal transmitted by user m.
- $z_{PS} k(t)$: i.i.d. circularly symmetric AWGN with $z_{DS,k}^n(t) \sim CN(0,\sigma_z^2)$.

• The PS aligns and combines signals from K antennas to mitigate fading effects.

$$\mathbf{y}_{PS}(t) = \frac{1}{K} \sum_{k=1}^{K} \left(\sum_{m \in S(t)} \mathbf{h}_{m,k}(t) \right)^* \circ \mathbf{y}_{PS,k}(t), \tag{8}$$

with:

exact information on the sum of the channel gains

OTA FL Setup

 The n-th symbol of (8) can be partition into three signals⁵

$$y_{PS}^{n}(t) = \underbrace{\sum_{m \in S(t)} \left(\frac{1}{K} \sum_{k=1}^{K} |h_{m,k}^{n}(t)|^{2} \right) \Delta \theta_{m}^{n,cx}(t)}_{y_{PS}^{n,sig}(t) \text{ (signal term)}}$$

$$+ \underbrace{\frac{1}{K} \sum_{m \in S(t)} \sum_{m' \in S(t)} \sum_{k=1}^{K} (h_{m,k}^{n}(t))^{*} h_{m',k}^{n}(t) \Delta \theta_{m'}^{n,cx}(t)}_{y_{PS}^{n,int}(t) \text{ (interference term)}}$$

$$+ \underbrace{\frac{1}{K} \sum_{m \in S(t)} \sum_{k=1}^{K} (h_{m,k}^{n}(t))^{*} z_{PS,k}^{n}(t)}_{y_{PS}^{n,noise}(t) \text{ (noise term)}}$$
(9)

 Recovery of noisy aggregated updates as

$$\Delta \hat{\boldsymbol{\theta}}_{PS}^{n}(t) = \frac{1}{|S(t)|\sigma_{h}^{2}} \operatorname{Re}\{y_{PS}^{n}(t)\},\tag{10a}$$

$$\Delta \hat{\boldsymbol{\theta}}_{PS}^{n+N}(t) = \frac{1}{|S(t)|\sigma_h^2} \operatorname{Im}\{y_{PS}^n(t)\},\tag{10b}$$

to update the global model, as

$$\boldsymbol{\theta}_{PS}(t+1) = \boldsymbol{\theta}_{PS}(t) + \Delta \hat{\boldsymbol{\theta}}_{PS}(t). \quad (11)$$

⁵ M. M. Amiri et al., "Blind Federated Edge Learning," IEEE Trans. Wireless Commun., vol. 20, no. 8, pp. 5129-5143, Aug. 2021.

Convergence Analysis

Convergence Rate:

· We have

$$\mathbb{E}\left[\|\boldsymbol{\theta}(t) - \boldsymbol{\theta}^*\|_2^2\right] \le \left(\prod_{i=0}^{t-1} A(i)\right) \|\boldsymbol{\theta}(0) - \boldsymbol{\theta}^*\|_2^2 + \sum_{j=0}^{t-1} B(j) \prod_{i=j+1}^{t-1} A(i),$$
(12)

with

$$\begin{split} A(i) &\triangleq 1 - \mu \eta(i) \left(\tau - \eta(i)(\tau - 1) \right), \\ B(i) &\triangleq \frac{\eta^2(i)\tau^2 G^2}{K} + \frac{\sigma_z^2 N}{\alpha_i^2 K |S(i)| \sigma_h^2} \\ &+ \left(1 + \mu (1 - \eta(i)) \right) \eta^2(i) G^2 \frac{\tau(\tau - 1)(2\tau - 1)}{6} + \eta^2(i)(\tau^2 + \tau - 1) G^2 + 2\eta(i)(\tau - 1) \Gamma \\ &+ \left(\eta^2(t)\tau(\tau - 1) LG + \eta(t)\tau \epsilon \right)^2 + \left(\eta^2(t)\tau(\tau - 1) LG + \eta(t)\tau \epsilon \right) c, \end{split}$$

• with ϵ being the gradient approximation error and defined as

$$\epsilon \triangleq \left\| \frac{1}{M} \sum_{m=1}^{M} \nabla F_m(\theta_m(t)) - \frac{1}{|S(t)|} \sum_{m \in S(t)} \nabla F_m(\theta_m(t)) \right\|_2. \tag{13}$$

User Scheduling Strategies: Entropy-Based

We propose diverse user selection to handle:

- · Data heterogeneity
- · Stochastic participation

Entropy-Based Scheduling:

 Goal: Achieve a uniform representation of data across users.

Methodology:

 Compute the Shannon entropy of label distributions for all available subsets

$$\mathbf{L} = \begin{bmatrix} l_{1,0} & l_{1,1} & \cdots & l_{1,N_c-1} \\ l_{2,0} & l_{2,1} & \cdots & l_{2,N_c-1} \\ \vdots & \vdots & \ddots & \vdots \\ l_{M,0} & l_{M,1} & \cdots & l_{M,N_c-1} \end{bmatrix}.$$

 Select users with the highest combined entropy to ensure diversity

User Scheduling Strategies: LSE-Based

LSE-Based Scheduling:

 Goal: Estimate the representative user updates at the PS.

Estimation Phase

- Active users transmit their updates without scheduling
- PS stores global updates to create user representations
- Groups users into clusters using cosine similarities
- Selects equal users from each cluster for unbiased training

Figure 4: Illustration of clusters and diverse scheduling.

User Scheduling Strategies: LSE-Based

• Define a matrix $\hat{\Theta}_{PS}$, where each row corresponds to the **global model updates**

$$\hat{\mathbf{\Theta}}_{PS,j} = \mathbf{A}_j \mathbf{\Theta}_j + \mathbf{N'}_j$$

$$\hat{\boldsymbol{\Theta}}_{PS,j} = \boldsymbol{A}_{j} \begin{bmatrix} \Delta \boldsymbol{\theta}_{j,1} \\ \vdots \\ \Delta \boldsymbol{\theta}_{j,M} \end{bmatrix}_{M \times 2N} + \begin{bmatrix} N'_{j,1} \\ \vdots \\ N'_{j,2N} \end{bmatrix}^{T} . \quad (14)$$

where:

- A_i : binary **participation vector** of size M.
- Θ_j : matrix with each row representing the **local model updates** from users.
- *N'*_j: **effective noise** from MAC fading, AWGN, and combining errors.

• We also define $\Theta_{rep} \in \mathbb{R}^{M \times 2N}$ as

$$\hat{\boldsymbol{\Theta}}_{PS,j} = \boldsymbol{A}_{j}(\boldsymbol{\Theta}_{rep} + \boldsymbol{\Theta}_{d,j}) + \boldsymbol{N}'_{j}, \tag{15}$$

where
$$\Theta_{d,j} \triangleq \Theta_{rep} - \Theta_j$$
 and $N_j^* \triangleq A_j \Theta_{d,j} + N_j'$.

• Combining $\hat{\mathbf{\Theta}}_{PS,j}$ across T iterations

$$\hat{\mathbf{\Theta}}_{PS} = A\mathbf{\Theta}_{rep} + N^*, \tag{16}$$

- Solve for Θ_{rep} using Least-Squares Estimation.
- Using Θ_{rep} , the PS:
 - Captures the **data characteristics** of users.
 - Groups users based on cosine similarity of representations.

- MNIST & FMNIST: Single-layer neural network with 2N=7850.
- **CIFAR-10**: Convolutional Neural Network (CNN) with 2N=797,962.
- SGD with a learning rate of 0.05 and a scheduler, $\tau = 5$ and mini-batch size $|\xi_m(t)| = 100$ for MNIST and FMNIST, and $\tau = 3$ and $|\xi_m(t)| = 128$ for CIFAR-10.

- Non-i.i.d. Data Scenarios
 - 1 or 2 classes per user
 - $p_m \sim \text{Dir}_{N_c}(\beta)$ with $\beta \in \{0.1, 0.2\}$
- Wireless Setup
 - K = 200, M = [20 100] users
 - Noise variance: $\sigma_h^2 = 1$, and $\sigma_z^2 = 0.1$.

Figure 5: The mean test accuracy of entropy-based scheduling for CIFAR-10 with M=100, $|B_m|=500$ and $p_e^m(t)=0.1$, $\forall m,t$.

Figure 6: The mean test accuracy for MNIST with M = 40, $|B_m| = 1250$ and $p_e^m(t) = 0.25$, $\forall m, t$.

Figure 7: The mean test accuracy for MNIST and FMNIST.

Conclusions

- We analyze the convergence rate for the OTA FL with EH devices and demonstrate the effect of user scheduling.
- Entropy-based scheduling approach yields higher and more stable accuracy levels.
- LSE-based scheduling can estimate user representations at the PS.
- Scheduling diverse users preserves privacy, eliminates redundant update transfers, and improves learning performance.

Future Directions

- Investigate the effect of estimation strategies under varying scenarios and energy constraints
- Implement clustered federated learning for the user clusters derived from our estimation.

Update Estimation and Scheduling for Over-the-Air Federated Learning with Energy Harvesting Devices

Furkan Bagci

June 12, 2025

Thank You!

Questions?

Acknowledgments

This work is supported by TUBITAK (Grant 221N366) under the CHIST-ERA SONATA project. Furkan Bagci is also supported by Türk Telekom within the 5G & Beyond Graduate Programme. Mohammad Kazemi acknowledges support from UKRI (Grant 101103430) under the Horizon Europe Guarantee.

