TDAB01 Probability and Statistics

Maryna Prus IDA, Linköping University

Lecture 7: Introduction to Statistics

Overview

- ► Population and sample, parameters and statistics
- Descriptive statistics
- ► Introduction to parameter estimation and sampling distributions
- Graphical methods

Basic concepts

- Population = all units of interest
 - Sweden's population
 - All units produced at a factory
- Parameter = numerical characteristic of population
 - Average income (μ) or income dispersion (σ^2)
 - Proportion of broken products (p)
- Sample = observed units collected from population
 - 1000 randomly selected people
 - ▶ 10 selected boxes of products
- Statistic = function of sample
 - Sample mean \bar{X} , sample variance s^2 , proportion of defect products \hat{p}
- Simple random sampling units are chosen independently of each other, equally likely to be sampled

Probability theory and statistical inference

Estimator

- Population parameter: θ , unknown Inference: Learning about θ from data (sample)
- $\hat{\theta}$ **estimator** of θ , function of sample
 For a given sample X_1, \dots, X_n , we get an **estimate** (a value) of $\hat{\theta}$ representing our **best "guess"** of θ based on information in this sample
- **Example:** $\theta = p$, success probability for Bernoulli trials

$$\hat{p} = \frac{\sum_{i=1}^{n} X_i}{n} = \text{proportion of success}$$

• \hat{p} is **correct on average** over all possible samples of size n

$$\mathbb{E}(\hat{\rho}) = \mathbb{E}\left(\frac{\sum_{i=1}^{n} X_i}{n}\right) = \frac{\sum_{i=1}^{n} \mathbb{E}(X_i)}{n} = \frac{\sum_{i=1}^{n} p}{n} = \frac{np}{n} = p$$

• Estimator $\hat{\theta}$ of θ is **unbiased** if

$$\mathbb{E}(\hat{\theta}) = \theta$$

► Bias:

$$Bias(\hat{ heta}) = \mathbb{E}\left(\hat{ heta}\right) - heta$$

Sampling distribution

- Sampling distribution for $\hat{\theta}$
 - \rightarrow describes how $\hat{\theta}$ can vary from sample to sample
- ► Example: Population $\{3, 5, 5, 7, 10\}$, θ mean $\rightarrow \theta = \frac{3+5+5+7+10}{5} = 6$
- Random sample of size n = 3:
 - Random sample 1: $\{3, 5, 5\}$ with $\bar{x} = 4.333$
 - Random sample 2: $\{3, 5, 7\}$ with $\bar{x} = 5.000$
 - •
 - Random sample 10: $\{5, 7, 10\}$ with $\bar{x} = 7.333$
- ▶ Sampling distribution for \bar{X} with n = 2, 3, 4, 5:

Mean

- ► Sample: $X_1, ..., X_n$ with $\mathbb{E}(X_i) = \mu$, $Var(X_i) = \sigma^2$, i = 1, ..., n
- Sample mean arithmetic average

$$\hat{\mu} = \bar{X} = \frac{X_1 + \dots + X_n}{n}$$

- Sample mean is unbiased estimator of μ : $\mathbb{E}(\hat{\mu}) = \mu$
- Simple random sampling
 - $\rightarrow X_1, \dots, X_n$ independent and identically distributed (or **iid**)
- **Variance** for $\hat{\mu}$:

$$Var(\hat{\mu}) = Var\left(\frac{\sum_{i=1}^{n} X_i}{n}\right) = \frac{1}{n^2} \sum_{i=1}^{n} Var(X_i) = \frac{1}{n^2} n\sigma^2 = \frac{\sigma^2}{n}$$

• Standard deviation for $\hat{\mu}$:

$$Std(\bar{X}) = \frac{\sigma}{\sqrt{n}}$$

Consistency

- $\hat{\theta}$ is **consistent** estimator for θ if its distribution becomes increasingly concentrated around θ as the sample size n is increasing
- Formally: Estimator $\hat{\theta}$ is consistent for θ if for all $\varepsilon > 0$

$$P\{|\hat{\theta} - \theta| > \varepsilon\} \to 0 \text{ when } n \to \infty$$

- For iid X_1, \ldots, X_n , \bar{X} is consistent estimator for μ
- Proof via Chebyshev's inequality:

$$P\{|\bar{X} - \mu| > \varepsilon\} \le \frac{Var(\bar{X})}{\varepsilon^2} = \frac{\sigma^2/n}{\varepsilon^2} \to 0 \text{ when } n \to \infty.$$

- From Central Limit Theorem: Distribution for \bar{X} is approximately $N(\mu, \sigma^2/n)$ for large n
- Formally: Cdf of

$$Z = \frac{\bar{X} - \mathbb{E}(\bar{X})}{Std(\bar{X})} = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}}$$

converges to cdf of standard normal distribution

Normal distribution

• If $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$ independent, then $aX + bY \sim N(a\mu_X + b\mu_Y, a^2\sigma_Y^2 + b^2\sigma_Y^2)$

- If X and Y dependent, aX + bY still normally distributed, but with different variance
- This result also holds for multiple variables

 Especially for $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$ we obtain

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

In this case \bar{X} is not approximately normally distributed but **exactly** normally distributed

Median and quantiles

- ► Sample mean is sensitive to extreme measurement values, called **outliers**
- Median M is more robust:

$$P(X < M) \le 0.5$$

 $P(X > M) \le 0.5$

- (Population) median = half of the probability on the left, half on the right
- Sample median:

$$\hat{M} = \begin{cases} \left(\frac{n+1}{2}\right) \text{-th smallest observation} & \text{if } n \text{ odd} \\ \text{the mean of } \left(\frac{n}{2}\right) \text{-th and } \left(\frac{n+2}{2}\right) \text{-th observations} & \text{if } n \text{ even} \end{cases}$$

► Generalization of median: *p*-quantile is a number *c* which solves

$$P(X < c) \le p$$

 $P(X > c) \le 1 - p$

- ► **Percentiles**: 5%, 37%, etc. 0.05-, 0.37, etc.-quantlites
- Quartiles: $25\%-Q_1$, $50\%-Q_2$, $75\%-Q_3$; $IQR = Q_3 Q_1$
- R code for 0.05-quantile for N(1,2): qnorm(p=0.05,mean=1,sd =2)

Sampling Variance

Sample variance:

$$s^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{n-1}$$

- s^2 is unbiased estimator for population variance σ^2 , i.e. $\mathbb{E}(s^2) = \sigma^2$
- Proof: Rewrite s^2 as

$$s^{2} = \frac{\sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2}}{n-1}$$

$$\Rightarrow \mathbb{E}(s^{2}) = \frac{\sum_{i=1}^{n} \mathbb{E}(X_{i}^{2}) - n\mathbb{E}(\bar{X}^{2})}{n-1}$$

From

$$Var(X_i) = \mathbb{E}(X_i^2) - \mu^2 = \sigma^2 \text{ and } Var(\bar{X}) = \mathbb{E}(\bar{X}^2) - \mathbb{E}(\bar{X})^2 = \mathbb{E}(\bar{X}^2) - \mu^2 = \frac{\sigma^2}{n}$$

$$\Rightarrow \sum_{i=1}^n \mathbb{E}(X_i^2) - n\mathbb{E}(\bar{X}^2) = n(\sigma^2 + \mu^2) - n\left(\frac{\sigma^2}{n} + \mu^2\right) = \sigma^2(n-1)$$

► Sample standard deviation: $s = \sqrt{s^2}$ - estimator of σ

Graphical methods - demo

See SS7GraferDemo.R.

Thank you for your attention!