Advanced Topics in Programming Languages (ATPL) Quantum Circuits in Standard ML

Martin Elsman¹

Department of Computer Science University of Copenhagen DIKU

November 25, 2024

¹With som quantum material borrowed from slides by Michael Kirkedal Thomsen.

- 1 Quantum Circuits
 - Why Writing Your Own Quantum Circuit Framework
 - Motivation
- 2 Quantum Gates and Circuits
 - Qubits and Single-Qubit Gates
 - Multi-Qubit Circuits
- 3 Standard ML
 - The Language and the Compilers
- 4 A Standard ML Framework for Quantum Circuits and Simulation
 - Circuits
 - Complex Numbers
 - Matrices
 - Circuit Semantics and Simulation
- 5 Exercises and Project Ideas

Why Writing Our Own Quantum Circuit Framework?

- Much understanding is obtained by focusing on the details of an implementation.
- Great for reproducing old ideas and for exploring new ideas!

Why Standard ML?

- A strongly-typed functional language with good abstraction mechanisms (higher-order functions, polymortphism, modules).
- Developed in the 90'es. Few (if any) modifications to the language since.

The Breakdown of Classical Reasoning

Fig. 1.9 Setup with two beam splitters.

(from Phillip Kaye, Raymond Laflamme, and Michele Mosca. An Introduction to Quantum Computing. Oxford University Press. 2007.)

Qubits and Single-Qubit Gates

- A *qubit* can be modelled as a two-dimensional complex vector $\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ specifying a linear combination $\alpha |0\rangle + \beta |1\rangle$ of the basis vectors $|0\rangle$ and $|1\rangle$ such that $|\alpha|^2 + |\beta|^2 = 1$.
- A single-qubit gate models a transformation of a qubit and can be represented as a 2×2 unitary complex matrix U, meaning $U^{\dagger}U = UU^{\dagger} = I$ (norm-preserving and reversible).
- Pauli-gates:

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 $Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$ $Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

■ Hadamard-gate and T-gate:

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad T = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$$

The Hadamard Gate Models a Beam Splitter

Fig. 1.9 Setup with two beam splitters.

One Hadamard gate puts a qubit in "superposition", but two Hadamard gates in sequence (modelled using matrix multiplication), acts as the identity:

$$HH = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Multi-Qubit Circuits

A state of more qubits is modelled as a product of all standard bases.

- A two-qubit state is $\alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \theta |11\rangle$, where $|\alpha|^2 + |\beta|^2 + |\gamma|^2 + |\theta|^2 = 1$.
- A three-qubit state is modelled by an eight-element complex vector.

Circuit Diagrams

- Circuits may be *drawn* using a simple diagram notation with each qubit represented by a horizontal line, single-qubit operations drawn as boxes, and swaps drawn by interchanging two lines.
- Tensors are implicit and represented as vertical composition whereas sequential composition is horizontal.
- Control-gates use a special "connect notation".
- Example diagram and semantics:

Γ <i>i</i>	0	0	0	0	0	0	70
0	0	i	0	0	0	0	0
0 0 0 0 0 0	0 0 <i>i</i>	0	0	0	0	0	0 0 0 0 0 i
0	0 0 0 0	0	i	0	0	0	0
0	0	0	0	0	i	0	0
0	0	0	0	0	0	0	i
0	0	0	0	i	0	0	0
Lο	0	0	0	0	0	i	0]

Terminology

- Superposition: A single qubit $\alpha |0\rangle + \beta |1\rangle$ is in a *superposition* state if it is in a non-trivial combination of the basis states (both α and β are non-zero).
- **Entanglement**: Two qubits are *entangled* if there is a dependency between their individual states. Entanglement may be created using control-gates.
- **Measurement**: Projects the state of a qubit onto one of the basis vectors. Measurement thus "destroys" any superposition of a qubit and affects also other qubits that a qubit is entangled with!

Standard ML - the Language

A strongly-typed functional language, specified (i.e., defined) separately from any implementation (much like C).

Compilers

- Quite a few compilers are avaiable, including MosML, Mlton, SML/NJ, MLKit, and PolyML.
- MLton and MLKit support the use of so-called mlb-files to organise the dependencies of source files.

Libraries

- A large stadardised basis library is specified and implemented by most compilers.
- A package system smlpkg is available for controling the use of non-standardised libraries.

A Module for Specifying Circuits

```
signature CIRCUIT =
  sig
    datatype t =
                 (* swap *)
        C of t (* control *)
        Tensor of t * t
        Seq of t * t
    val on : t * t \rightarrow t
    val ** : t * t \rightarrow t
    val pp : t \rightarrow string
    val draw : t \rightarrow string
    val dim : t \rightarrow int
  end
```

Notice:

- Read signatures, before reading implementations!
- Tensor composition (infix **) is binary only!
- Sequential composition (infix oo) takes circuits with the same dimension!
- The dim function returns the dimensionality of a circuit (i.e., the number of qubits it works on) and fails if a sequential composition operator is misused.

A Recursive Function for Identifying the Circuit Dimension

```
fun dim (t:t) : int =
    case t of
         Tensor(a,b) \Rightarrow dim a + dim b
       | Seq(a,b) \Rightarrow
         let val d = dim a
         in if d <> dim b
             then raise Fail "Sequence error: \
                                \mismatching dimensions"
             else d
         end
       I SW \Rightarrow 2
       \mid C t \Rightarrow 1 + dim t
       | ⇒ 1
```

A Standard ML Library for Complex Numbers

Available at http://github.com/diku-dk/sml-complex

```
signature COMPLEX = sig
 type complex
 val mk : real * real → complex
 val fromRe : real → complex
 val fromIm : real → complex
 val fromInt : int → complex
 val conj : complex → complex
 val re : complex \rightarrow real
 val im
           : complex → real
 : complex * complex → complex
 val +
 val - : complex * complex → complex
 val *
            : complex * complex → complex
 val sart : complex → complex
 val exp : complex \rightarrow complex
 val abs : complex → complex
 val pow : complex * complex → complex
 val fmt
         : StringCvt.realfmt → complex → string
 val fmtBrief : StringCvt.realfmt → complex → string
 val toString : complex → string
end
```

A Standard ML Library for Matrices using "Pull-Arrays"

Available at http://github.com/diku-dk/sml-matrix

```
signature MATRIX = sig
   type \alpha t
   val fromListList : \alpha list list \rightarrow \alpha t
   val dimensions : \alpha t \rightarrow int * int
   val sub : \alpha t * int * int \rightarrow \alpha
   \begin{array}{lll} \text{val map} & : (\alpha \to \beta) \to \alpha \ \mathsf{t} \to \beta \ \mathsf{t} \\ \text{val map2} & : (\alpha * \beta \to \gamma) \to \alpha \ \mathsf{t} \to \beta \ \mathsf{t} \\ \text{val listlist} & : \alpha \ \mathsf{t} \to \alpha \ \mathsf{list list} \\ \end{array}
   {f val} transpose : lpha t 
ightarrow lpha t
   val memoize
                                        : \alpha t \rightarrow \alpha t
   val tabulate : int * int * (int*int \rightarrow \alpha) \rightarrow \alpha t val pp : int \rightarrow (\alpha \rightarrow \text{string}) \rightarrow \alpha t \rightarrow \text{string}
   val ppv
                                           : int \rightarrow (\alpha \rightarrow string) \rightarrow \alpha vector \rightarrow string
   val dot gen : (\alpha^*\alpha \rightarrow \alpha) \rightarrow (\alpha^*\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha \text{ vector } \rightarrow \alpha \text{ vector } \rightarrow \alpha
   val matvecmul gen : (\alpha^*\alpha \rightarrow \alpha) \rightarrow (\alpha^*\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha \leftarrow \alpha \leftarrow \alpha vector \rightarrow \alpha vector
end
```

Implementation:

```
type \alpha t = {rows:int,cols:int,qet: (int * int) \rightarrow \alpha}
```

The function memoize may be used to materialize a matrix in memory.

14/24

The Semantics of Circuits — the SEMANTICS signature

```
signature SEMANTICS =
  siq
    type mat = Complex.complex Matrix.t
    val pp mat : mat \rightarrow string
    val sem : Circuit.t → mat
    eqtype ket
    val ket : int list \rightarrow ket
    val pp ket : ket \rightarrow string
    type state
    val pp state : state \rightarrow string
    val init : ket \rightarrow state
    val eval : Circuit.t \rightarrow state \rightarrow state
    type dist = (ket*real) vector
    val pp_dist : dist → string
    val measure dist : state \rightarrow dist
  end
```

The Semantics of Circuits — Auxiliary Math

Kronecker Product:2

$$(A \otimes B)_{ij} = A_{(i/p,j/q)}B_{(i\%p,j\%q)}$$

where

$$(p,q) = Dim(B)$$

Generalised Control:

$$(Cntrl\ A)_{ij} = \left(egin{array}{ll} A_{(i-p,j-q)} & i \geq p \land j \geq q \\ I_{ij} & i$$

where

$$(p,q) = Dim(A)$$

²https://en.wikipedia.org/wiki/Kronecker product

The Semantics of Circuits — Auxiliary Functions

```
(* See https://en.wikipedia.org/wiki/Kronecker product *)
fun tensor (a: mat,b:mat) : mat =
    let val (m,n) = M.dimensions a
        val(p,q) = M.dimensions b
    in M.tabulate(m * p, n * q,
                  fn(i,j) \Rightarrow
                     C.* (M.sub(a,i div p, j div q),
                          M.sub(b.i mod p. i mod a)))
    end
(* Generalised control - see section 2.5.7 in
   https://iontrap.umd.edu/wp-content/uploads/2016/01/Quantum-Gates-c2.pdf
fun control (m: mat) : mat =
    let val (n, ) = M.dimensions m
    in M.tabulate(2*n,2*n,
                  fn(r.c) \Rightarrow
                                                     (* 1 0 0 0 *)
                     if r >= n and also c >= n (* 0 1 0 0 *)
                     then M. sub(m,r-n,c-n) (* 0 0 a b *)
                     else if r = c then C.fromInt 1 (* 0 0 c d *)
                     else C.fromInt 0)
    end
fun fromTntM iss : mat =
    M.fromListList (map (map C.fromInt) iss)
fun matmul (t1:mat.t2:mat) : mat =
    M.matmul gen C.* C.+ (C.fromInt 0) t1 t2
```

The Semantics of Circuits — the sem Function

```
fun sem (t:Circuit.t) : mat =
    let open Circuit
         val c0 = C.fromInt 0
         val c1 = C.fromInt 1
         val cn1 = C. c1
         val ci = C.fromIm 1.0
         val cni = C. ci
    in case t of
            I \Rightarrow fromIntM \lceil \lceil 1, 0 \rceil,
                                                                           (* dim 1 *)
                              Γ0,177
          \mid X \Rightarrow \text{fromIntM} \lceil [0,1],
                                                                           (* dim 1 *)
                              [1,0]
          | Y \Rightarrow M.fromListList [[c0,cni],
                                                                           (* dim 1 *)
                                     [ci,c0]
          | Z \Rightarrow fromIntM [[1,0],[0,^1]]
                                                                           (* dim 1 *)
          | H \Rightarrow let \ val \ rsqrt2 = C.fromRe (1.0 / Math.sqrt 2.0) (* dim 1 *)
                  in M.fromListList [[rsqrt2,rsqrt2],
                                         [rsqrt2,C. rsqrt2]]
                  end
          \mid SW \Rightarrow fromIntM [[1,0,0,0],
                                                                           (* dim 2 *)
                               [0,0,1,07.
                               Ī0.1.0.0Ī.
                               [0,0,0,1]]
          | Seq(t1,t2) \Rightarrow matmul(sem t2,sem t1)  (* dim t1 = dim t2 *)
          | Tensor(t1,t2) \Rightarrow tensor(sem t1,sem t2) (* dim t1 * dim t2 *)
          | C t \Rightarrow control (sem t)
                                                                       (* dim t + 1 *)
    end
```

Example Semantics — quantum_ex1.sml

The result of running the code:

```
Circuit for c = (I ** H oo CX oo Z ** Z oo CX oo I ** H) ** I oo I ** SW oo CX ** Y:
Semantics of c:
```

Implementation of Kets and States

A state of n qubits is modelled as a 2^n -dimensional complex vector.

```
type ket = int list (* list of 0's and 1's *)
fun ket xs = xs
fun pp ket (v:ket) : string =
    "|" ^ implode (map (fn i \Rightarrow if i > 0 then #"1"
                                   else #"0") v) ^ ">"
type state = C.complex vector
fun init (is: ket) : state =
    let val i = foldl (fn (x,a) \Rightarrow 2 * a + x) 0 is
    in Vector.tabulate(pow2 (length is),
                         fn j \Rightarrow if i = j then C.fromInt 1
                                  else C.fromInt 0)
    end
```

Ket-Distributions

When evaluating a circuit in an initial state, the output is a state for which we can present the "output-ket probability distribution":

```
type dist = (ket*real) vector
fun pp dist (d:dist) : string =
    Vector.foldr (fn ((k,r),a) \Rightarrow
                      (pp_ket k ^ " : " ^ pp_r r) :: a) nil d
                  I> String.concatWith "\n"
fun toKet (n:int, i:int) : ket =
    (* state i \in [0;2^n-1] among total states 2^n, in binary *)
    let val s = StringCvt.padLeft #"0" n (Int.fmt StringCvt.BIN i)
    in CharVector.foldr (fn (#"1".a) \Rightarrow 1::a | ( .a) \Rightarrow 0::a) nil s
    end
fun dist (s:state) : real vector =
    let fun square r = r*r
    in Vector.map (square o Complex.mag) s
    end
fun measure dist (s:state) : dist =
    let val v = dist s
        val n = log2 (Vector.length s)
    in Vector.mapi (fn (i,p) \Rightarrow (toKet(n,i), p)) v
    end
```

Evaluation

```
fun eval (x:Circuit.t) (v:state) : state =
   M.matvecmul_gen C.* C.+ (C.fromInt 0) (sem x) v
```

Example Evaluation Code

Output

```
Result distribution when evaluating c on |101>: |000>: 0 | |001>: 0 | |010>: 0 | |010>: 0 | |010>: 0 | |111>: 0 | |110>: 0 | |110>: 0 | |110>: 0 | |110>: 0 | |110>: 0 | |110>: 0 | |110>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |111>: 0 | |11
```

Exercises

See http://github.com/diku-dk/atpl-sml-quantum

■ Clone the repository and read the README.md file.

Project Ideas

■ The README.md file also mentions a series of project ideas.

Bonus Slide on Drawing Diagrams

The source code contains an auxiliary library for drawing diagrams, which is used by the Circuit.draw function:

Notice:

- The type t is a string list, but kept abstract! Each list entry represents a text line.
- Only par and seq adds spacing, other combinators draw to the boundary box (ensures proper associative drawing behavior).