

1. 適用範囲

本仕様書は、カラーTFT-LCDモジュール LQ121S1LG72 に適用致します。

本仕様書は、弊社の著作権にかかわる内容も含まれていますので、取り扱いには充分にご注意頂くと共に、本仕様書の内容を弊社に無断で複製しないようお願い申し上げます。

本仕様書に掲載されている応用例は、弊社製品を使った代表的な応用例を説明するためのものであり、本仕様書によって工業所有権、その他権利の実施に対する保証または実施権の許諾を行うものではありません。

また、弊社製品を使用したことにより、第三者と工業所有権等にかかわる問題が発生した場合、弊社は一切その責任を負いません。

本製品は、一般電子機器に使用されることを目的に開発・製造されたものです。

本製品を運送機器(航空機、列車、自動車等)の制御と安全性にかかわるユニットや防災防犯装置、各種安全装置などの機能・精度等において高い信頼性・安全性が必要とされる用途に使用される場合は、これらのシステム・機器全体の信頼性及び安全性維持のためにフェールセーフ設計や冗長設計の措置を講じる等、システム・機器全体の安全設計にご配慮頂いたうえで本製品をご使用下さい。

本製品を、航空宇宙機器、幹線通信機器、原子力制御機器、生命維持にかかわる医療機器などの極めて高い信頼性・安全性が必要とされる用途への使用は意図しておりませんので、これらの用途には使用にならないで下さい。

本仕様書に記載される本製品の使用条件や使用上の注意事項等を逸脱して使用されること等に起因する損害に関して、弊社は一切その責任を負いません。

本製品につきご不明な点がありましたら、弊社販売窓口までご連絡頂きますようお願い致します。

2. 概要

本モジュールは、アモルファス・シリコン薄膜トランジスタ(TFT: <u>Thin Film Transistor</u>)を用いた カラー表示可能なアクティブ・マトリックス透過型液晶ディスプレイモジュールです。

カラーTFT-LCDパネル、ドライバーIC、コントロール回路、電源回路及びバックライトユニット等により構成され、インターフェイスにLVDS(Low Voltage Differential Signaling)を使用し、+ 3.3Vの直流電源及びバックライト用電源を供給することにより、800×RGB×600ドットのパネル上に約1200万色の図形、文字の表示が可能です。

また、本モデルのTFT-LCDパネルは、演色性が高いカラーフィルタ(NTSC比76%)を使用しており、 さらに、高輝度LEDバックライトの搭載により明るく鮮やかな画像が得られ、マルチメディア用途に 最適なモジュールとなっております。

コントラストMAX方向は6時方向、階調反転し難いのは12時方向となっております。

また、表示応答速度向上のために、O/S(オーバーシュート)駆動回路を設けております。 さらに、より自然な中間調表現を実現する為、独立 γ 補正機能を備えております。

なお、バックライトを駆動する為のLEDドライバ回路及びPWM(Pulse Width Modulation)調光回路はモジュールに内蔵しております。

3. 機械的仕様

項。但影響	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	多单位 《
画面サイズ	30(12インチ)対角	cm
有効表示領域	246.0(H)×184.5(V)	mm
% 害 排 dt	800(H)×600(V)	絵素
絵 素 構 成	(1絵素=R+G+Bドット)	小女术
アスペクト比	4:3	
絵 素 ピッチ	0.3075(H) × 0.3075(V)	mm
絵 素 配 列	R,G,B 縦ストライプ	
表示モード	ノーマリーホワイト	
外形寸法	265.0 (W) × 205.0 (H) × 9.5(D)	mm
質量(MAX)	550	g
表面処理	アンチグレアハードコート処理:3H	

図1に外形寸法図を示します。

4. 入力端子名称および機能

4-1. TFT液晶パネル駆動部

CN1(インターフェイス信号、バックライト制御信号、及び +3.3V / +12.0V電源、)

使用コネクタ: FI-XPB30SRL-HF11 (日本航空電子工業(株))

適合コネクタ: FI-X30H / FI-X30HL / FI-X30C2-NPB (日本航空電子工業(株))

搭載LVDSレシーパ:コントロールIC内蔵タイプ(THC63LVDF84B(ザインエレクトロニクス製)同等品)

適合LVDSトランスミッタ: THC63LVDM83R(ザインエレクトロニクス製) 又は 同等性能品

The state of the s	eservicia (manage	SCHOOL STREET,	Control of the contro
	和尼男工	第2000年,1000年,1000年	三位
1_	GND	GND	
2	SELLVDS	LVDS信号のデータマッピング選択端子	【注1】
3	RL/UD	水平垂直表示方向反転端子	【注2】
4	GND	GND	-
5	RxIN3+	LVDSのCH3レシーパ信号(+)	LVDS
6	RxIN3-	LVDSのCH3レシーバ信号(-)	LVDS
7	GND	GND	
. 8	CK IN+	LVDSのCKレシーバ信号(+)	LVDS
9	CK IN-	LVDSのCKレシーバ信号(-)	LVDS
10	GND	GND	
11	RxIN2+	LVDSのCH2レシーバ信号(+)	LVDS
12	RxIN2-	LVDSのCH2レシーバ信号(-)	LVDS
13	GND	GND	
14	RxIN1+	LVDSのCH1レシーバ信号(+)	LVDS
15	RxIN1-	LVDSのCH1レシーバ信号(-)	LVDS
16	GND	GND	
17	RxIN0+	LVDSのCH0レシーバ信号(+)	LVDS
18	RxIN0-	LVDSのCH0レシーバ信号(-)	LVDS
19	GND	GND	
20	GND	GND	· · · · · · · · · · · · · · · · · · ·
21	VCC	+3.3V電源(LCD駆動用電源)	
22	VCC	+3.3V電源(LCD駆動用電源)	
23	GND	GND	
24	VBR	バックライト輝度調整用PWM信号入力端子	【注3】
25	XSTABY	バックライト ON/OFF制御信号入力端子	【注3】
26	GND	GND	
27	VDD	+12.0V電源(バックライト駆動用電源)	
28	VDD	+12.0V電源(バックライト駆動用電源)	
29	GND	GND	
30	GND	GND	

【注1】4-2の項を参照して下さい。

【注2】 RL/UD = LOW

RL/UD = HIGH

【注3】6-2の項を参照して下さい。

1) 8ビット入力時

【注2】SEL_LVDSの割り当て (THC63LVDM83R(ザインエレクトロニクス製) 又は 同等性能品)

A alirans	mitter 1	2Pin Si	LLVDS					
Pin Not	Data)	L(GND) or Open	E HOOSY)					
51	TA0	R0 (LSB)	R2					
52	TA1	R1	R3					
54	TA2	R2	R4					
55	TA3	R3	R5					
 56	TA4	R4	R6					
3	TA5	R5	R7 (MSB)					
4	TA6	G0 (LSB)	G2					
6	TB0	G1	G3					
7	TB1	G2	G4					
11	TB2	G3	G5					
12	TB3	G4	G6					
14	TB4	G5	G7 (MSB)					
15	TB5	B0 (LSB)	B2					
19	TB6	B1	B3					
20	TC0	B2	B4					
22	TC1	B3	B5					
23	TC2	B4	B6					
24	TC3	B5	B7 (MSB)					
27	TC4	(HS)	(HS)					
28	TC5	(VS)	(VS)					
30	TC6	DE	DE					
50	TD0	R6	R0 (LSB)					
2	TD1	R7 (MSB)	R1					
8	TD2	G6	G0 (LSB)					
10	TD3	G7 (MSB)	G1					
16	TD4	B6	80 (LSB)					
18	TD5	B7 (MSB)	Bí					
25	TD6	(NA)	(NA)					

Global LCD Panel Exchange Center

LD-22301C- 5

DE: DATA ENABLE

HS: Hsync VS: Vsync

2) 6ビット入力時

【注2】SELLVDSの割り当て (THC63LVDM83R(ザインエレクトロニクス製) 又は 同等性能品)

(Trans	mitter/	2Pin7SI	ELL VDS
Pin No-1	Data	≓EL(GND) or Open	HOSON PER
51	TA0	-	R0 (LSB)
52	TA1	-	R1
54	TA2	-	R2
55	TA3	_	R3
56	TA4		R4
3	TA5	-	R5 (MSB)
4	TA6	-	G0 (LSB)
6	ТВ0	_	G1
7	TB1	-	G2
11	TB2	-	G3
12	твз	-	G4
14	TB4	-	G5 (MSB)
15	TB5	-	B0 (LSB)
19	TB6	<u>.</u>	B1
20	TC0		B2
22	TC1	-	B3
23	TC2	_	B4
24	TC3	-	B5 (MSB)
27	TC4	-	(HS)
28	TC5	-	(VS)
30	TC6	_	DE
50	TD0	-	GND
2	TD1	-	GND
8	TD2	_	GND
10	TD3	-	GND
16	TD4	-	GND
18	TD5	-	GND
25	TD6	_	(NA)

HS: Hsync VS:Vsync

Global LCD Panel Exchange Center

5. 絶対最大定格

河目	SACE NO	深条件 3	5	7000定格值[37]	三 単位三	通過
電源電圧	Vcc	Ta=25°C	VCC	-0.3 ~ +4.0	٧	【注1,2】
电源电压	VDD	Ta=25°C	VDD	-0.3 ~ +15.0	٧	【注1,2】
	٧ ₁₁	Ta=25°C	RxINi-/+	-0.3 ∼ +VCC+0.3	V	:=0 1 0 2
入力電圧	V _{I2}	Ta=25°C	CK IN-/+	-0.3 14 + 400+0.3	V	i=0,1,2,3
八刀电压	V _{I3}	Ta=25°C	RL/UD,SELLVDS	-0.3~+VCC+0.3	V	
	V _{I 4}	Ta=25°C	XSTABY,VBR	-0.3~+VDD	V	- **
保存温度	T _{STG}	_	_	-30 ~ +75	°C	【注1】
動作温度	T _{OPA}		_	-10 ~ + 75	ပ	【注1,3,4】

- 【注1】 湿度:95%RH Max.(Ta≦40°C) 静電気に注意すること。 最大湿球温度39℃以下(Ta>40℃) ただし、結露させないこと。
- 【注2】 電源電圧Vccの電源容量は2A以上のものを使用すること。 電源電圧VDDの電源容量は2A以上のものを使用すること。
- 【注3】 動作温度項目において、65~75℃で使用される場合、液晶モジュールは破壊には至りませんが、 画面ムラ他、表示品位の劣化を招く可能性があります。
- 【注4】 動作温度項目において、低温側は周囲温度規定、高温側はパネル表面温度規定と致します。

6. 電気的特性

6-1. TFT液晶パネル駆動部

Ta=+25°C

经验项目	記事。	象件处	国	機學的	最大	運伍	
電源電圧	V _{cc}		3.0	3.3	3.6	٧	【注1】
消費電流	l _{cc}	Vcc=3.3V	-	360	430	mA	【注2】
LVDS入力電圧	٧ _L		0	_	2.4	٧	
許容入カリップル電圧	V_{RP}		_		200	mV _{P-P}	Vcc=3.3V
差動入力スレッショルド電圧	V_{TH}			_	V _{CM} +100	mV	V _{CM} =+1.2V
差動入力スレッショルド電圧	V _{TL}		V _{CM} -100	_	-	mV	【注3】
2 + 都に	V _{tH}		2.1	_	1	V	【注4】
入力電圧	V _{IL}		_	_	0.8	V	
2 土山 有廊;去	I _{OH}		_	_	400	μΑ	V ₁₂ =+3.3V【注4】
入カリーク電流	I _{OL}		-10	_	+10	μΑ	V ₁₂ =0V【注4】
終端抵抗	Rτ			100	-	Ω	差動信号間

【注1】入力電圧シーケンス

 $\begin{array}{cccc} 0 < & t_1 \leqq & 10 \text{ms} \\ 0 < & t_2 \leqq & 20 \text{ms} \\ 0 < & t_3 \leqq & 1 \text{s} \\ 1 \text{s} < & t_4 \\ 500 \text{ms} < & t_5 \\ 200 \text{ms} < & t_6 \end{array}$

瞬時電圧降下

1) $V_{th} < V_{CC} \le V_{min}$ $td \le 10ms$ 2) $V_{CC} < V_{th}$

> 瞬時電圧降下条件は入力電圧シーケンスに 順ずるものと致します。

- ・ ENAB信号 はV₁電圧値でのスタートにて使用ください。
- ・ 本機種はENAB信号のみにて駆動する為、Hsync/Vsyncは入力頂く必要はありません。 但し、Hsync/Vsyncが入力されても反応はしない為、誤動作に至ることはありません。
- ・ データ入力とバックライト点灯との関係は、上記入力シーケンスを推奨致します。 パネル動作以前のバックライト点灯、あるいはパネル動作停止後のバックライト点灯にて、瞬間白表示 あるいは正常でない表示を行う場合がありますが、これは入力信号の変動によるものであり、液晶 モジュールにダメージを与えるものではありません。

【注2】消費電流

標準值:白黒縦253階調表示時

(測定条件 Vcc=+3.3V、fck = 40MHz、Ta=25℃)

RGB各階調は第8章参照

【注3】 V_{CM}: LVDSドライバのコモンモード電圧

【注4】RL/UD, SELLVDS

6-2. LEDパックライト 駆動回路部

Global LCD Panel Exchange Center

Ta=+25°C

			SO DO	经规模 基础	2. 最大三	4年位	多爾哥科
電源	電圧	Voo	10.2	12.0	13.8	V	【注1】
 消費	雷 法	I DD1	•	300	400	mA	【注2】
/11.0	电/ル	IDD2	-	-	10	μΑ	
許容入カリ	ップル電圧	VRP_BL	1	_	200	mVP-P	VDD=+12.0V
XSTABY	High側	Vih_xst	2.4	-	VDD	٧	【注3】
入力電圧	Low側	VIL_XST	1	_	0.2	٧	【注3】
VBR	High側	VIH_VBR	2.1	-	VDD	٧	【注4】
入力電圧	Low側	VIL_VBR	•	-	0.8	٧	【注4】
PWM	引波数	fрwм	50	_	1K	Hz	【注4,5】
PWMデューティー比		Dрwм	50	_	100	%	【注4,5】
寿	命	L	-	(50,000) (モジュール状態)	-	h	【参考値】 【注6】

【注1】入力電圧シーケンス

【注2】消費電流

標準値: VDD=+12.0V、デューティー比100% 最大値: VDD=+10.2V、デューティー比100%

【注3】適用端子: ON/OFF制御信号入力端子(10kΩのプルダウン抵抗が接続されています。)

【注4】適用端子: バックライト輝度調整用PWM信号入力端子(10kΩのプルダウン抵抗が接続されています。)

周波数が遅くなると、ちらつき等の表示品位の低下を招く場合があります。

【注6】Ta=25℃ 調光MAXにて連続点灯した際、輝度が初期値の 50%になった時

7. 入力信号のタイミング特性

7-1. タイミング特性

Global LCD Panel Exchange Center

	項目的。	配身。		模學。	逐步	運動	Contains of
クロック	周波数	1/Tc	35	40	42	MHz	
		TH	940	1056	1395	clock	
	水平周期	TH	23.5	26.4	39.9	μs	
ENAD E D	有効表示領域	THd	800	800	800	clock	
ENAB信号		T1 (628	666	798	line	【注1】
	垂直周期	TV	_	16.7	-	ms	しまり
	有効表示領域	TVd	600	600	600	line	

【注1】ENAB信号のTV期間が長くなると、フリッカ等の表示品位の低下を招く可能性があります。

7-2. 入力信号と画面表示

8. 入力信号と表示基本色および各色の輝度階調

8-1. 8 ビット入力時

		データ信号																								
	色及び			1								デー	ータ	信号	7			, ,		r						\square
	輝度階調	階調値	R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	B 0	B1	B2	В3	В4	B5	В6	B7
	黒	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ō	0	0
1	育	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	х	1	i	1	1	1	1
	緑	-	0	0	0	0	0	0	0	0	×	Х	1	1	-	1	1	1	Ō	0	0	0	0	0	0	0
基本色	シアン	-	0	0	0	0	0	0	0	0	х	х	1	1	1	1	1	1	Х	х	1	1	1	1	1	1
色	赤	1	Х	х	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	マゼンタ	_	х	х	1	1	1	1	1	1	0	0	0	0	0	0	0	0	Х	х	1	1	1	1	1	1
	黄	. –	х	х	1	1	1	1	1	1	X	Х	ì	1	1	1	1	ï	0	0	0	0	٥	0	0	0
	白	-	х	X	1	1	1	1	1	1	Х	х	1	1	1	1	1	1	Х	х	1	1	1	1	1	1
	黒	G\$0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 :	0	0	0	0	0	0	0
	1	GS1	1	0	0	0	0	0	Ο.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
赤	暗	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
の	1	. 1				1	i							1								1	i			
階調	Ţ	1					l							ļ	!							ļ	ļ 			
	明	GS250	0	1	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ţ	GS251	1	1	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	赤	GS252	Х	Х	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	黒	GS0	0	0	0	0	0	0	0	0	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ť	GS1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
緑	暗	G\$2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
の	1	1				1	ì				†										i	i				
階調	1	1				!]				_				l					, -,	, . <u>. </u>		l			
	明	GS250	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	0	0	0	0	0	0	0	0
	Į.	GS251	0	0	0	0	0	0	0	0	1	1	0	1	1	1	1	١	0	0	0	0	0	0	0	0
	緑	GS252	0	0	0	0	0	0	0	0	Х	Х	1	1 -	1	1	1	1	0	0	0	0	0	0	0	0
	黒	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	G\$1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
青	暗	G\$2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
の	1	1				1									i								İ			
階調	<u> </u>	ļ	<u> </u>		····		l	1			<u> </u>		1	, . 	! 								ļ			, <u> </u>
	明	GS250	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1
	ļ	GS251	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	1	1	ī	1
	背	GS252	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	х	Х	1	1	1	1	1	1

0:Lowレベル電圧 1:Highレベル電圧 X:Don't care

各色表示用のデータ信号8ビット入力にて、赤234階調、緑238階調、青230階調を表示し、

合計24ビットのデータの組合せにより1280万色の表示が可能です。

※)各色の出力階調については、末尾の【付録A】を参照頂きますようお願い致します。

8-2.6 ビット入力時

	色及び		データ信号																	
	輝度階調	階調値	R0	R1	R2	R3	R4	R5	G0	G1	G2	G3	G4	G5	во	B1	B2	ВЗ	В4	В5
	黒	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	育	-	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	緑	-	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
基本色	シアン	_	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
色色	赤	-	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	マゼンタ	-	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	黄	-	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	白	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	黒	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ť	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
赤	暗	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
の	1	Ţ	1					Į.								,	l			
踏調	1	↓ ↓				<u> </u>					,	<u> </u>					,	<u> </u>		
,	明	GS61	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
ļ	ļ	GS62	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
<u></u>	赤	GS63	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	黒	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	GS1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
緑	暗	GS2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
の	1	Ţ				l			<u></u>								,] .		
踏調	ļ	ţ].					, 	<u> </u>					,	ļ.		
	明	GS61	0	0	0	0	0	0	1	0	1	1	1	1	0	0	0	0	0	0
	Ţ	GS62	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0
	緑	GS63	0	0	0	0	0	0	1	1	1	1	í	1	0	0	0	0	0	0
	黒	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	GS1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
青	暗	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
O DEE	Ť	 ↓			ļ						ļ						,	ļ		
の 階 調	I	ļ										_					,	!		
	明	GS61	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1
	!	GS62	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	_1
	育	GS63	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

各色表示用のデータ信号6ビット入力にて、各色64階調を表示し、合計18ビットのデータの組み合わせにより、262,144色の表示が可能です。

9. 光学的特性

Global LCD Panel Exchange Center

Ta=+25°C, Vcc=+3.3V

g	1	E le B	7条件2	原是小型	逐步。	最大。	建位	(
	水平	θ 21, θ 22		60	80	_	度	
視角範囲	垂直	<i>θ</i> 11	CR>10	35	60	_	度	【注1,2,4】
	포면	<i>θ</i> 12		60	80	-	度	
コント	ラスト比	CR	最適視角	600	900	_		【注2,4】
応答速度	白黒	τr+τd		-	30	-	ms	【注3,4】(条件1)
心古还没	中間調	τ		-	10	_	ms	【注3,4】(条件2)
事 子高。	白色色度	Wx		0.240	0.290	0.340		
24.700	口口口及	Wy		0.255	0.305	0.355		
李子高	赤色色度	Rx		0.600	0.650	0.700		
双小 国。	小巴巴及	Ry		0.280	0.330	0.380		【注4】
集异菌组	绿色色度	Gx	<i>θ</i> =0°	0.260	0.310	0.360		· -
双小山。	冰巴巴及	Gy		0.590	0.640	0.690		:
丰 -西	專品 & 萨	Bx		0.100	0.150	0.200		
表示面青色色度		Ву		0.010	0.060	0.110		
白色表面輝度		Y _{L1}		240	300	-	cd/m²	【注4】
輝度分布				_	-	1.33		【注5】

※バックライト点灯後30分後に、VBRのデューティー比100%にて測定をします。

また光学的特性測定は、下記の図2の測定方法を用いて暗室あるいはこれと同等な状態にて行います。

図2 光学的特性測定方法

Global LCD Panel Exchange Center

【注2】コントラスト比の定義

白表示の画面中央輝度 次式にてコントラスト比を定義します。 コントラスト比(CR)= 黒表示の画面中央輝度

【注3】応答速度の定義

<条件1:白黒での定義>

下図に示すように「白」及び「黒」に変化する信号を入力し、受光器出力の変化時間にて定義します。

<条件2:中間調での定義>

9通りの階調(GS0,32,64,96,128,160,192,224,255)から9通りの階調 (GS0,32,64,96,128,160,192,224,255)へ変化する信号を入力した時の受光器出力の変化時間 τ *×-yを 測定し、その値の平均値でτを定義します。(パネル表面温度:40°Cとする)

> でよ:x-y ··· 任意の階調(x)から別の任意の(y)階調への変化時間 応答速度 $\tau = [\Sigma(\tau_r; x-y) + \Sigma(\tau_d; x-y)]/72$ (r,… 立上がり時間、r_d…立下り時間)

表: t .:x-vの定義

18	c *.x yo	7 AC 930								
						階調(変化	後)			
		GS0	GS32	GS64	G\$96	GS128	GS160	GS192	GS224	GS255
	GS0		r d:0-32	r _d :0-64	τ ჟ:0−96	τ _σ :0−128	r ₀:0–160	T d:0-192	T d:0-224	τ _σ :0−255
階	GS32	τ ,:32-0		t d:32-64	r _d :32-96	τ _d :32−128	τ _e :32-160	r _d :32-192	τ _d :32-224	τ _d :32−255
調	GS64	0-64:, ۳	τ ,:64−32		τ _d :64-96	r _d :64-128	τ ₆ :64-160	τ _d :64-192	T d:64-224	τ _d :64-255
_	GS96	τ ,:96−0	r ,:96-32	τ ₁ :96-64		τ _d :96−128	τ _s :96-160	τ _d :96-192	τ _d :96~224	τ _d :96-255
変	GS128	τ ,:128-0	r ,:128-32	r,:128-64	τ :128-96		τ _d :128−160	r d:128-192	T d:128-224	T d:128-255
化	G\$160	r ,:160-0	r,:160-32	64–160; ت	τ,:160-96	r :160-128		r _d :160-192	T d:160-224	τ d:160−255
前	G\$192	τ ,:192-0	τ,:192-32	τ ,:192-64	τ,:192-96	τ,:192-128	τ,:192-160		r d:192-224	T d:192-255
- l	GS224	τ ,:224-0	r ,:224-32	τ ,:224-64	τ ,:224-96	τ _r :224-128	τ :224-160	r ,:224-192		T d:224-255
	GS255	τ,:255-0	τ ,:255-32	r ,:255-64	τ ,:255-96	r ,:255-128	τ ,:255-160	τ ,:255-192	τ ,:255-224	

【注4】画面中央部で測定します。

【注5】輝度分布の定義

右図に示す5箇所(①~⑤)の測定値で、次の計算式にて定義します。

10. モジュールの取り扱い

- a)ケーブルを入力コネクタに挿入あるいは入力コネクタから抜く時は、必ずモジュールに入力する電源や 信号をOFFにしてから行って下さい。
- b)パネル表面の偏光板は傷つき易いので、硬い物や鋭利な物で擦ったりしない様、取り扱いには充分 注意して下さい。
- c)水滴等が長時間付着すると変色やシミの原因になりますので、すぐに拭き取って下さい。
- d)パネル表面が汚れた場合は、脱脂綿あるいは柔らかい布等で拭き取って下さい。
- e) ガラスや微細配線部品を使用しておりますので、落としたり固いものに当てたり、強い衝撃を加えると、 ワレ, カケや内部断線の原因になりますので、取り扱いには十分注意して下さい。
- f) CMOS LSIを使用していますので、取り扱い時の静電気に十分注意し、人体アース等の配慮をして下さい。その他、通常電子部品に対する注意事項は遵守して下さい。
- g)モジュール裏面には、回路基板がありますので、筐体設計及び組み立て時にストレスが加わらない様にご配慮下さい。ストレスが加わると回路部品が破損する恐れがあります。
- h) モジュール裏面に常時一定の圧力がかかると表示ムラ、表示不良などの原因となりますのでモジュール 裏面を圧迫するような構造にはしないでください。
- i)液晶パネルには、太陽光等の直射光を当てないよう使用下さい。この様な環境下でご使用になる場合は、遮光フードを設ける等ご配慮ください。液晶パネルに強い光が照射されますとパネル特性の劣化に繋がり、表示品位が低下する事があります。
- j) モジュールはEMIや外来ノイズに対する安定化の為に、確実にアースする事をお薦めします。
- k) モジュールの取り扱い及び機器への組み込みに際して酸化性または還元性ガス雰囲気中での長期保管ならびに、これらの蒸気を発生する試薬、溶剤、接着剤、樹脂等の材料の使用は、腐食や変色の原因になることがあります。
- 1) モジュールの取り付け時、LED FPCを引っ張ったり引っ掛けたりしないように注意して下さい。
- m) LCDが破損した場合、パネル内の液晶が漏れる恐れがあります。もし誤って目や口に入った場合は 直ちに水で洗い流して下さい。
- n)長時間の固定パターン表示での使用は、残像現象が起こる場合がありますのでご注意下さい。
- o)モジュールのボリューム(調光用ボリュームを除く)は出荷時に最適に調整されていますので、調整値を変更しないで下さい。調整値を変更されますと、本仕様を満足しない場合があります。
- p)液晶モジュール内部に細かい異物等が入ると光学部材に付着し、経時とともにムラが発生する事があります。 筐体設計時、冷却等の空気孔及び強制対流させるファン使用時にはその吸入口にも目の細かいフィルタを取り付ける等の配慮をお願い致します。
- q)パネル表面の偏光板に低反射対応のアンチグレア処理を施しています。さらに保護板等を付ける場合は、干渉縞など画質を劣化させることのないよう注意して下さい。
- r)故障の原因となりますので、基板カバー、ネジ、テープ類を外す等の分解は決して行なわないで下さい。
- s) セット側に使用している材料や包装材料から出てくるエポキシ樹脂(アミン系硬化剤)、シリコン接着剤 (脱アルコール系及びオキシム系)、トレイ発泡剤(アゾ化合物)等により、偏光板への接触・非接触に関わらず、偏光板の変質による表示の異常が起きる場合があります。 貴社の使用材料との適合性をご確認下さい。

11. 出荷形態

a) カートン積み上げ段数 : MAX. 5段

b) 最大収納台数: 20台

c) カートンサイズ: 504mm(W) × 426mm(D)×326mm(H)

d) 総質量(20台収納時): 13kg

図3に包装形態図を示します。

12. 信頼性項目

1 高温保存 周囲温度 75°C の雰囲気中に 240H 放置 2 低温保存 周囲温度 75°C の雰囲気中に 240H 放置 3 高温高湿動作 周囲温度 40°C、湿度 95% RHの雰囲気中に 240H 動作 (ただし結露がないこと) 4 高温動作 パネル表面温度 75°C の雰囲気中で 240H 動作 5 低温動作 周囲温度 -10°C の雰囲気中で 240H 動作 6 振動 <正弦波> 周波数範囲:10~57Hz/片振幅:0.076mm :57~500Hz/加速度:9.8m/s2 掃引の割合:11分間 試験時間:3H(X, Y, Z方向 1H) 【JIS C60068-2-27】 最高加速度:490m/s2 パルス:11ms 正弦半波方向:±X,±Y,±Z 回数:1回/1方向	(注1) (注1)
1 高温保存 周囲温度 75°C の雰囲気中に 240H 放置 2 低温保存 周囲温度 -30°C の雰囲気中に 240H 放置 3 高温高湿動作 周囲温度 40°C、湿度 95% RHの雰囲気中に 240H 動作 (ただし結露がないこと) 4 高温動作 パネル表面温度 75°C の雰囲気中で 240H 動作 5 低温動作 周囲温度 -10°C の雰囲気中で 240H 動作 6 振動 <正弦波> 周波数範囲:10~57Hz/片振幅:0.076mm:57~500Hz/加速度:9.8m/s2 掃引の割合:11分間 試験時間:3H(X, Y, Z方向 1H) [JIS C60068-2-27 】 7 衝撃 最高加速度:490m/s2 パルス:11ms 正弦半波方向:±X,±Y,±Z 回数:1回/1方向	
3 高温高湿動作 周囲温度 40°C、湿度 95% RHの雰囲気中に 240H 動作 (ただし結露がないこと) 4 高温動作 パネル表面温度 75°C の雰囲気中で 240H 動作 1 10°C の雰囲気中で 240H 動作 10°C の雰囲気中で 240H 動作 1 10°C の雰囲気中で 240H 動作 10°C のでのでのでのでを可能を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を	【注1】
(ただし結露がないこと) 4 高温動作 パネル表面温度 75°C の雰囲気中で 240H 動作 5 低温動作 周囲温度 -10°C の雰囲気中で 240H 動作 6 振動 <正弦波> 周波数範囲:10~57Hz/片振幅:0.076mm:57~500Hz/加速度:9.8m/s2 掃引の割合:11分間 試験時間:3H(X, Y, Z方向 1H) 【JIS C60068-2-27】 7 衝撃 最高加速度:490m/s2 パルス:11ms 正弦半波方向:±X,±Y,±Z 回数:1回/1方向	
5 低温動作 周囲温度 -10°C の雰囲気中で 240H 動作 6 振動	【注1】
6 振動	【注1】
周波数範囲:10~57Hz/片振幅:0.076mm :57~500Hz/加速度:9.8m/s2 掃引の割合:11分間 試験時間:3H(X, Y, Z方向 1H) 【JIS C60068~2~27】 7 衝撃 最高加速度:490m/s2 パルス:11ms 正弦半波方向:±X,±Y,±Z 回数:1回/1方向	【注1】
正弦半波方向: ±X,±Y,±Z 回数:1回/1方向	【注1】
	【注1】
8 静電耐圧 接触放電(150pF 330 Ω): 非動作=±10kV、動作時=±8kV 気中放電(150pF 330 Ω): 非動作=±20kV、動作時=±15kV 端子放電(200pF 0 Ω): 各端子1回 ±200V	【注1】
9 EMI 10mサイトにて測定	VCCI ClassB
10 熱衝撃 -30°C[0.5h]~75°C[0.5h]/50サイクル	【注1】

【注1】標準状態(*)において出荷検査基準書の検査条件下、実用上支障となる変化がない事とします。

(*)標準状態:温度:15~35℃,湿度:45~75%,気圧:86~106kpaの環境(JISZ8703準拠)

13. その他

13-1. Lot No ラベル

Global LCD Panel Exchange Center

A) モジュールシリアルラベル

モジュール裏面に、SHARP・製品型名(LQ121S1LG72)・製造番号を表示したラベルを貼付します。

B) バックライトシリアルラベル

モジュール裏面に、バックライトの製品型名・製造番号を表示したラベルを貼付します。

(※1) Model Noの1桁目は LEDランクの識別コード となります。

13-2. 梱包箱表示

梱包箱に、①型名(LQ121S1LG72) ②出荷日付 ③モジュール数量 を表示したラベルを貼付します。 また、バーコード表示もこれに準じます。

- ① 型名(LQ121S1LG72)
- ② 出荷日付及び生産工場識別コード
- ③ モジュール数量

RoHS規制対応済の梱包箱に対しては、右図の表記を行います。

※ R.C.(RoHS Compliance)とはRoHS指令に適合していることを意味します。 当モジュールは、1台目よりRoHS指令に対応しております。

R.

- オゾン層破壊化学物質は使用していません。
- 本仕様書に疑義が生じた場合は、双方の打合せにより解決するものとします。 13-4.

14. 保管温湿度環境条件範囲

温度 0~40℃

相対湿度 95%以下

(注) ・保管温湿度環境の平均値としては、下記条件を参考に管理願います。

夏場20~35℃ 85%以下

冬場 5~15℃ 85%以下

・40℃ 95%RHの環境下で保管される時間が、累計で240時間以内に管理願います。

直射日光

製品に直射日光が直接当たらないように包装状態か暗室で保管願います。

雰囲気

腐食性ガスや揮発溶剤の発生の危険性がある場所では保管しないで下さい。

結露防止に対するお願い

- ・結露を避けるため包装箱は直接床に置かず、必ずパレットか台の上に保管願います。 またパレット下側の通風を良くするために、一定方向に正しく並べて下さい。
- ・保管倉庫の壁から離して保管願います。

保管期間

・上記保管条件にて1年以内の保管として下さい。

図4 モジュール組立形態図

図5 モジュール裏面のロットナンバー図

【付**録A】** 各色(R, G, B)の入力データ(P.13 8-1/8-2)に対する出力階調表

	R	G	В
階調效	234	238	230

	出力階級							
階調値	R	<u>出力階級</u> G	В					
GS0	0	<u> </u>	0					
GS1	1	1 1	1					
GS2 GS3	2 3	2 3	2					
GS4	4	4	3					
GS5	5	4	4					
GS6 GS7	6 7	_ 5 6	5					
GS8	9	7	6					
GS9	10	8	7					
G\$10	11	9	8					
GS11 GS12	12	10	9 9					
GS13	14	11	10					
GS14	15	12	11					
GS15 GS16	16 17	13	12					
GS17	18	15	13					
G\$18	19	16	14					
GS19 CS20	20	. 17	15					
GS20 GS21	21	18	15 16					
GS22	23	20	17					
GS23	24	20	18					
GS24 GS25	25	21 22	19 19					
GS26	27	23	20					
GS27	28	24	21					
GS28 GS29	29	25	22					
GS29 GS30	30	26 27	22					
G\$31	32	28	24					
GS32	33	29	25					
GS33 GS34	34	29 30	26 26					
GS35	36	31	27					
GS36	37	32	28					
GS37 GS38	38 39	33 34	29 29					
GS39	40	35	30					
GS40	41	36	31					
GS41	42	37	32					
GS42 GS43	43 44	38 39	33 33					
GS44	45	40	34					
GS45	46	41	35					
GS46 GS47	47	42	36 37					
GS48	49	43	37					
GS49	50	44	38					
GS50 GS51	51 52	45 46	39					
GS52	53	47	40					
GS53	54	48	41					
GS54	55	49	42					
GS55 GS56	56 57	50 51	43 44					
GS57	58	52	44					
GS58	59	53	45					
GS59 GS60	60 61	54 55	46					
GS61	62	56	48					
GS62	63	57	49					
GS63 GS64	64 65	58 59	49 50					
GS65	66	60	51					
GS66	67	61	52					
GS67 GS68	68 69	62 63	53 53					
GS69	70	64	54					
GS70	. 71	65	55					
GS71	72	66	_ 56					
GS72 GS73	73 74	67 68	57 57					
GS74	75	69	58					
GS75	76	70	59					
GS76 GS77	77 79	71 72	60 61					
GS78	80	73	62					
GS79	81	74	62					
GS80	82	75	63					
GS81 GS82	83 84	76 77	64 65					
GS83	85	78	66					
G\$84	86	79	67					
GS85	87	81	67					

DX 8/3 Ch	1	出力階調	_
階調値	R	G	В
GS86	88	82	68
GS87 GS88	90	83 84	69 70
GS89	91	85	71
GS90	93	86	72
GS91 GS92	94	87	72
GS92 GS93	95 96	88	73
G\$94	97	90	75
GS95	98	91	76
GS96 GS97	100	92 93	77
GS98	101	94	78
GS99	102	96	79
GS100	104	97	80
GS101 GS102	105 106	98	81
GS103	107	100	83
GS104	108	101	84
GS105 GS106	109	102	85 85
GS107	112	104	86
GS108	113	105	87
GS109	114	107	88
GS110 GS111	115 116	108	<u>89</u> 90
GS112	117	110	91
GS113	118	111	92
GS114 GS115	120	112	93
GS116	121	113	93 94
GS117	123	116	95
GS118	124	117	96
GS119 GS120	125 127	118	97 98
GS121	128	120	99
GS122	129	121	100
GS123	130	122	101
GS124 GS125	131	124	102
GS126	134	126	104
GS127	135	127	104
GS128 GS129	136 137	128 129	105
GS130	138	130	106
GS131	140	132	108
GS132	141	133	109
GS133 GS134	142	134 135	110
GS135	144	136	112
GS136	146	137	113
GS137 GS138	147	139	114
GS139	149	141	116
GS140	151	142	117
GS141 GS142	152	143	118
GS142 GS143	153 154	144	119
GS144	155	147	121
GS145 GS146	157	148	122
GS145 GS147	158 159	149 150	123 124
GS148	160	151	125
GS149	161	153	126
GS150 GS151	163 164	154 155	127 128
GS152	165	156	129
GS153	166	157	130
GS154 GS155	167 169	158 160	131
GS156	170	161	133
GS157	171	162	134
GS158	172	163	135
GS159 GS160	173 175	164 165	136 137
GS161	176	166	138
GS162	177	168	139
GS163	178	169	140
GS164 GS165	179 181	170 171	141
G\$166	182	172	143
GS167	183	173	144
GS168	184	175	145
GS169 GS170	185 186	176	146 147
G\$171	188	178	148

啓調値	出力階間					
	R	G	В			
GS172 GS173	189	179 180	149 150			
GS174	191	181	152			
GS175	192	183	153			
GS176 GS177	193 195	184 185	154 _ 155			
GS178	196	186	156			
GS179	197	187	157			
GS180 GS181	198	188	158			
GS182	200	190	159 160			
GS183	201	192	161			
GS184	203	193	163			
GS185 GS186	204 205	194 195	164 165			
GS187	206	196	166			
GS188	207	197	167			
GS189 GS190	208	198 199	168			
GS191	210	200	170			
GS192	211	201	172			
GS193 GS194	212	202	173			
GS194	213	203 205	174 175			
GS196	215	206	176			
GS197	216	207	177			
GS198 GS199	217	208 209	179 180			
GS200	219	210	181			
GS201	220	211	182			
GS202 GS203	221	212 213	183			
GS204	223	214	184			
GS205	224	215	187			
GS206	225	216	188			
GS207 GS208	226 227	217	189			
GS209	228	219	192			
G\$210	229	220	193			
GS211 GS212	230 231	221 222	194 195			
GS213	232	223	197			
GS214	232	224	198			
GS215 GS216	233	225 225	199			
GS217	235	226	200			
GS218	236	227	203			
GS219	237	228	204			
GS220 GS221	237 238	229 230	205 207			
GS222	239	231	208			
GS223	240	232	209			
GS224 GS225	240 241	233 233	211			
GS226	242	234	213			
GS227	242	235	214			
GS228 GS229	243 244	236	216			
GS229 GS230	244	237 238	217			
GS231	245	238	220			
GS232 GS233	246 246	239	221			
GS233 GS234	247	240 241	222			
GS235	247	241	225			
GS236 GS237	248	242	226			
GS237 GS238	248 249	243 244	228 229			
G\$239	249	244	230			
GS240	250	245	232			
GS241 GS242	250 251	246 246	233			
GS243	251	247	236			
GS244	252	248	237			
GS245 GS246	252	248	239			
GS246 GS247	252 253	249 250	240 241			
GS248	253	250	243			
GS249	253	251	244			
GS250 GS251	253 254	251 252	246 247			
GS252	254	253	248			
GS253	254	253	250			
GS254	254	254	251			
GS255	255	255	255			

【 付録 B 】 LVDSレシーパコア特性(18/24Bit Color)

回DC 特性(Ta = 25℃, LRVDD = 3.3V)

項目	£3.5	規格値		単位	·····································	
	記号	Min.	Тур.	Max.	单位	ж п
差動入力 "H"スレッシュホールド	RxVтн	-	-	+50	mV	RxVcm=1.2V
差動入力 "L"スレッシュホールド	RxVTL	-50	-	-	mV	RxVcm=1.2V
差動入力 コモンモード電圧	RxVcM	0.7	1.2	1.75	٧	RxVTH-RxVTL=200mV
差動人力 コモンモード電位差	Rx∆Vсм	-50	_	+50	mV	RxVTH-RxVTL=200mV
差動入力リーク電流	RxIIZ	-20	_	20	μΑ	

☑ LVDSレシーバコア 電気的特性の定義

図差動入力"H"、"L"スレッシュホールド: Rx_{VTH}、Rx_{VTL}

回差動入力コモンモード電圧: Rxvcm

RxVCM: 差動入力の中間電位

RxVTH: 差動入力のH側レベルスレッシュホールド RxVTL: 差動入力のL側レベルスレッシュホールド

母差動入力コモンモード電位差:Rx∆∨см

回差動入力電圧: |VID|

RxVCM: 差動入力コモン電圧を基準にして、H側レベルの中間値とL側レベルの中間値の電位差

|VID|: 差動入力 H 側レベルと L 側レベルの電位差の絶対値

☑ LVDSコア ブロック図

図 LVDSコア 端子説明

(1) LVDS 入力信号

No.	端子名	1/0	機能
1	RCLK+	- 1	LVDS クロック(+)入力
2	RCLK-	1	LVDS クロック(ー)入力
3	RX0+	1	LVDS データ0(+)入力
4	RX0-	ī	LVDS データ0(ー)入力
5	RX1+		LVDS データ1(+)入力
6	RX1-	1	LVDS データ1(ー)入力
7	RX2+	1	LVDS データ2(+)入力
8	RX2-		LVDS データ2(一)入力
9	RX3+		LVDS データ3(+)入力
10	RX3-		LVDS データ3(ー)入力

(2)テ	2)データ・クロック信号出力(ロジック部への出力信号)				
No.	端子名	1/0	機能		
1	PD00 PD01 PD02 PD03 PD04 PD05 PD06	0	パラレルデータ出力 0 RXO+・RXO- のLVDSデータが出力される		
2	PD10 PD11 PD12 PD13 PD14 PD15 PD16	0	パラレルデータ出力 1 RX1+・RX1- の LVDS データが出力される		
3	PD20 PD21 PD22 PD23 PD24 PD25 PD26	0	パラレルデータ出力 2 RX2+・RX2- の LVDS データが出力される		
4	PD30 PD31 PD32 PD33 PD34 PD35 PD36	0	パラレルデータ出力 3 RX3+・RX3- の LVDS データが出力される		
5	CLK	0	クロック出力 RCLK+・RCLK-のLVDS クロックが出力される		

(3)制御信号

No.	端子名	1/0	機能
1	PLLEN PLLENX RCVEN RCVENX	1	リセット(パワーダウン)制御入力 PLLENX = not(PLLEN) RCVENX = not(RCVEN) 通常動作時:

■ LVDS レシーバコア データ配列

差動信号	DATA	TFT 24bit (SELLVDS="L")	TFT 24bit (SELLVDS="H")		
	PD00	R2	R0		
	PD01	R3	R1		
	PD02	R4	R2		
RX0+/-	PD03	R5	R3		
	PD04	R6	R4		
	PD05	R7	R5		
	PD06	G2	G0		
	PD10	G3	G1		
·	PD11	G4	G2		
	PD12	G5	G3		
RX1+/-	PD13	G6	G4		
	PD14	G7	G5		
	PD15	B2	B0		
	PD16	B3	B1		
	PD20	B4	B2		
	PD21	B5	B3		
	PD22	B6	B4		
RX2+/-	PD23	B7	B5		
	PD24	HSYNC	HSYNC		
	PD25	VSYNC	VSYNC		
	PD26	DE	DE		
	PD30	R0	R6		
	PD31	R1	R7		
	PD32	G0	G6		
RX3+/-	PD33	G1	G7		
•	PD34	B0	B6		
	PD35	B1	B7		
	PD36	NA	NA		

□ タイミング・シーケンス (24Bit Color)

図 LVDS入力 タイミング定義

note) Tclk = 1/RxFCLK

図 LVDSコア データ/クロック出力タイミング

Global LCD Panel Exchange Center

※ パラメータは設計時の TYP 値を示すものであり、タイミングを保証するものではありません。 Tclk はデータクロック周期

図 スイッチング特性

(特に指定のない場合 Ta=25℃,LRVDD=2.5V)

	項目 信号	規格値		単位	条件	
月 日		Min.	Тур.	Max.	市瓦	*IT
入力データスキューマージン	TDISKM	-300		+300	pS	*1
PLL 安定化時間 XRST to Lock	TenPLL		-	1	mS	

*1: RxFCLK=100MHz, RxVTH-RxVTL=200mV, RxVcM=1.2V, Rx\(\Delta\text{VCM=0mV}\)

図LVDSレシーバ コア スイッチング特性の定義

入力データスキューマージン: TDISKM

入力クロックをベースに生成される内部クロックと、シリアル入力データとのセットアップ/ホールドマージン。

RxIN: LVDS シリアル入力データ

SW:内部レジスター固有のセットアップホールド

PLL LOCK UP TIME(XRST ↑ to Lock): TenPLL 初期リセット解除後、PLLが安定動作するまでの時間

Global LCD Panel Exchange Center www.panelook.com

図 LVDS 未使用端子処理に関して

LVDS6bit 入力モード時の RX3P/N の処理方法および出力 bit は下記の通りになります。

LSI 内部で ch に対応する bit データは"H"として扱われる。

LSI 内部で ch に対応する bit データは"L"として扱われる。