Demanda y Desviación típica

Para poder culminar con éxito el trabajo, es muy importante determinar la mejor aproximación a la demanda esperada, es decir la respuesta que, en compra, podrían tener los clientes en cada uno de los productos ofertados y la posible desviación de esta demanda y esto, para cada uno de los destinos.

Nuestro departamento de forecasting ha podido establecer con bastante precisión para algunos productos y destinos, el valor de esta demanda y su desviación, como se muestra en la siguiente tabla:

	Team 1		Team 6		Team 2		Team 3		Team 4		Team 5	
Clase de reserva	μ	σ	μ	σ	μ	σ	μ	σ	μ	σ	μ	σ
Α	?	?	?	?	?	?	?	?	?	?	?	?
В	45	5	12	3	67	7	99	10	87	8	101	11
С	65	9	?	?	?	?	89	7	89	9	90	14
D	38	9	66	10	98	8	34	9	?	?	?	?
E	?	?	75	12	102	15	?	?	60	9	84	15
Team Leader	Víctor Berná		Alejandro Barbosa		Daniel Casanova		Lucía Linares		Guillermo Martín		Alvaro Martínez	
Destino	BCN		SVQ		VLC		AGP		BIO		SCQ	

Y para el resto ha podido determinar la existencia de una relación funcional entre esta demanda esperada y su desviación asociada.

Esta relación funcional puede ser del tipo: exponencial, logarítmica, parabólica o una mezcla de ellas.

Para el día de vuelo considerado y en función del destino, la mejor aproximación a la demanda y desviación será la solución (punto de corte) de los siguientes sistemas de ecuaciones no lineales:

Barcelona => MAD - BCN / Aplicable a los productos A y E

$$\sigma = 2 * \ln(\mu) + 15$$

$$\sigma = \mu^2 - 20 * \mu + 5$$

Sevilla => MAD - SVQ / Aplicable a los productos A y C

$$\sigma = e^{\mu/10} + 1$$

$$\sigma = 0.01 * \mu^3 - 10 * \mu + 7$$

Valencia => MAD - VLC / Aplicable a los productos A y C

$$\sigma = e^{\mu/10} + \ln(\mu)$$

$$\sigma = \mu^2 - 15 * \mu + 6$$

Málaga => MAD - AGP / Aplicable a los productos A y E

$$\sigma = \ln(\mu) + 7$$

$$\sigma = 0.5 * \mu^2 - 10 * \mu + 1$$

Bilbao => MAD - BIO / Aplicable a los productos A y D

$$\sigma = e^{\mu/7} + 2$$

$$\sigma = 0.1 * \mu^3 - 20 * \mu + 20$$

Santiago de Compostela => MAD - SCQ / Aplicable a los productos A y D

$$\sigma = e^{\mu/10} + 2 * \ln(\mu) + 2$$

$$\sigma = \mu^2 - 10 * \mu + 5$$

Sugerencias y Normas para resolver los Sistemas de Ecuaciones no Lineales

- ✓ Deberá utilizarse el método de Newton y para la resolución de los sistemas lineales asociados, el método LU.
- ✓ En todos los casos se trabajará con soluciones comprendidas en el rectángulo:
 - \circ 5 $\leq \mu \leq$ 35
 - \circ $1 \le \sigma \le 30$
- ✓ Fijar un número máximo de iteraciones (que no exceda de 50).
- ✓ El error o tolerancia será 10⁻³.
- ✓ Para el criterio de parada deberá construirse una función norma euclídea.
- ✓ Se deberá utilizar programación modular para la resolución del sistema.
- ✓ Obligatorio trabajar con al menos 5 decimales.

Dado que la elección de la solución inicial es importante para la convergencia del sistema, se sugiere representar las dos curvas de los sistemas y a partir de la visualización del entorno donde se produce el cruce de las mismas, razonad cual puede ser la solución inicial o de partida.