Logika és számításelmélet 12. előadás

Irányítatlan/irányított Hamilton út/kör

Hamilton út/kör

Adott egy G = (V, E) irányítatlan / irányított gráf (|V| = n). Egy $P = v_{i_1}, \ldots, v_{i_n}$ felsorolása a csúcsoknak **Hamilton út** G-ben, ha $\{v_{i_1}, \ldots, v_{i_n}\} = V$ és minden $1 \le k \le n - 1$ -re $\{v_{i_k}, v_{i_{k+1}}\} \in E$ (illetve irányított esetben $(v_{i_k}, v_{i_{k+1}}) \in E$). Ha $\{v_{i_n}, v_{i_1}\} \in E$ (illetve irányított esetben $(v_{i_n}, v_{i_1}) \in E$) is teljesül, akkor P **Hamilton kör**.

Jelölés: H-út/ H-kör Hamilton út/ Hamilton kör helyett.

 $H\acute{\mathbf{U}}=\{\langle G,s,t\rangle \mid \text{van a } G \text{ irányított gráfban } s\text{-ből } t\text{-be H-út}\}.$

IHÚ= $\{\langle G, s, t \rangle \mid \text{van a } G \text{ irányítatlan gráfban } s\text{-ből } t\text{-be H-út}\}.$

IHK= $\{\langle G \rangle \mid \text{van a } G \text{ irányítatlan gráfban H-kör}\}.$

Tétel

HÚ NP-teljes

Bizonyítás: NP-beli, hiszen polinom időben előállítható egy n darab csúcs egy P felsorolása. P-ről polinom időben ellenőrizhető, hogy a csúcsok egy permutációja-e és hogy tényleg H-út-e.

SAT \leq_p HÚ. Elég bármely φ KNF-hez konstruálni (G_{φ} , s, t)-t azzal a tulajdonsággal, hogy φ kielégíthető \Leftrightarrow a G_{φ} -ben van s-ből t-be H-út.

Legyenek $X_1, \ldots X_n$ a φ -ben előforduló ítéletváltozók és $C_1, \ldots C_m$ φ klózai.

G_{φ} konstrukciója

- ▶ $\forall 1 \le i \le n : (x_{i-1}, u_i), (x_{i-1}, v_i), (u_i, x_i), (v_i, x_i) :\in E(G_{\varphi})$
- $ightharpoonup s := x_0, t := x_n$
- ▶ $\forall 1 \leq i \leq n$ -re u_i és v_i között 2m belső pontú kétirányú út $w_{i,1}, \ldots, w_{i,2m}$.
- ▶ Minden $w_{i,k}$ legfeljebb egy C_i -vel lehet összekötve.
- ► Ha $X_i \in C_j$, akkor $(w_{i,k}, C_j)$ és $(C_j, w_{i,k+1}) :\in E(G_{\varphi})$. (pozitív bekötés)
- ▶ Ha $\neg X_i \in C_j$, akkor $(w_{i,k+1}, C_j)$ és $(C_j, w_{i,k}) :\in E(G_{\varphi})$. (negatív bekötés)

Az $u_i v_i$ út pozitív bejárása: $u_i \rightsquigarrow v_i$.

Az $u_i v_i$ út negatív bejárása: $u_i \leftrightarrow v_i$.

- ► Egy s t H-út $\forall 1 \le i \le n$ -re az (x_{i-1}, u_i) és (x_{i-1}, v_i) közül pontosan egyiket tartalmazza, előbbi esetben az $u_i v_i$ utat pozitív, utóbbi esetben negatív irányban járja be.
- ► Egy s t H-út minden C_j -t pontosan egyszer köt be, meggondolható, hogy az $u_i v_i$ út pozitív bejárása esetén csak pozitív, negatív bejárása esetén csak negatív bekötés lehetséges.
- ► Ha van H-út, akkor az $u_i v_i$ utak pozitív/negatív bejárása meghatároz egy változókiértékelést, a $\forall 1 \leq j \leq m : C_j$ klóz bekötése mutat C_j -ben egy igaz literált.
- Ha φ kielégíthető, válasszunk egy őt igazra kiértékelő interpretációt és ebben minden klózhoz egy igaz literált. Az u_iv_i utaknak válasszuk igaz változók esetén a pozitív, egyébként a negatív bejárását. Ha a kiválasztott literálokhoz rendre bekötjük a C_j csúcsokat H-utat kapunk.

 G_{φ} polinom időben megkonstruálható így SAT \leq_p HÚ, azaz HÚ NP-nehéz, de láttuk, hogy NP-beli, így NP-teljes is.

Megjegyzés: IHÚ és IHK NP-belisége az előzőekhez hasonlóan adódik.

Tétel

IHÚ NP-teljes

Bizonyítás: $HÚ \le_p IHÚ$. Adott G, s, t, ahol G irányított. Kell G', s', t', ahol G' irányítatlan és akkor és csak akkor van G-ben s-ből t-be H-út, ha G'-ben van s'-ből t'be.

G minden v csúcsának feleljen meg G'-ben 3 csúcs v_{be} , $v_{k\"oz\'ep}$ és v_{ki} . és G' élei közé vegyük be a $\{v_{be}, v_{k\"oz\'ep}\}$ és $\{v_{k\"oz\'ep}, v_{ki}\}$ éleket. Továbbá minden E = (u, v) G-beli él estén adjuk hozzá E(G')-höz $\{u_{ki}, v_{be}\}$ -t. $s' := s_{be}, t' := t_{ki}$.

Könnyű látni, hogy ha P H-út G-ben, akkor P' H-út G'-ben, ahol P'-t úgy kapjuk P-ből, hogy minden v csúcsot v_{be} , $v_{k\"oz\'ep}$ és v_{ki} -vel helyettesítünk, ebben a sorrendben.

Irányítatlan Hamilton út/kör NP teljes

Fordítva, könnyen látható, hogy ha P egy H-út G'-ben akkor v_{be} , $v_{k\"oz\'ep}$, v_{ki} sorrendű 3-asok követik egymást (különben a $v_{k\"oz\'ep}$ -eket nem tudnánk felfűzni). Ezeket a 3-asokat v-vel helyettesítve egy G-beli utat kapunk.

Az utak kezdetére és végére vonatkozó feltételek is teljesülnek.

Tétel

IHK NP-teljes

Bizonyítás: IHÚ \leq_p IHK. Adott G, s, t. G' konstrukciójában adjunk hozzá egy új x csúcsot és két új élt $\{s, x\}$ -et és $\{t, x\}$ -t G-hez. Könnyen meggondolható, hogy akkkor és csak akkor van G-ben s-t H-út, ha G'-ben van H-kör.

Az utazóügynök probléma

Számítási (optimalizálási) verzió: Adott egy *G* élsúlyozott irányítatlan gráf nemnegatív élsúlyokkal. Határozzuk meg a legkisebb összsúlyú H-kört (ha van).

Eldöntési verzió:

TSP={ $\langle G, K \rangle | G$ -ben van $\leq K$ súlyú H-kör}.

Tétel

TSP NP-teljes

Bizonyítás: TSP \in NP, hasonló érvek miatt, mint HÚ, az összköltségfeltétel is polinom időben ellenőrizhető. IHK \leq_p TSP. Adott egy G gráf. G függvényében konstruálunk egy G' élsúlyozott gráfot és megadunk egy K számot. G':=G, minden élsúly legyen 1 és K:=|V|. Könnyen látható, hogy G-ben van H-kör $\Leftrightarrow G'$ -ben van legfeljebb K összsúlyú H-kör.

NP szerkezete

NP-köztes nyelv

L NP-köztes, ha $L \in$ NP, $L \notin$ P és L nem NP-teljes.

Ladner tétele

Ha P ≠ NP, akkor létezik NP-köztes nyelv.

(biz. nélkül)

NP-köztes jelöltek (persze egyikről se tudhatjuk):

- ► Gráfizomorfizmus= $\{\langle G_1, G_2 \rangle \mid G_1 \text{ és } G_2 \text{ irányítatlan izomorf gráfok}\}.$
- ► Prímfaktorizáció: adjuk meg egy egész szám prímtényezős felbontását [számítási feladat],

Egy új eredmény: Babai László, magyar matematikus (még nem lektorált) eredménye: Gráfizomorfizmus ∈ QP, ahol

$$QP = \bigcup_{c \in \mathbb{N}} TIME(2^{(\log n)^c})$$

a "kvázipolinom időben" megoldható problémák osztálya.

coC

co© bonyolultsági osztály

Ha $\mathfrak C$ egy bonyolultsági osztály $\operatorname{co}\mathfrak C = \{L \mid \bar L \in \mathfrak C\}.$

Bonyolultsági osztály polinom idejű visszavezetésre való zártsága

 \mathbb{C} zárt a polinomidejű visszavezetésre nézve, ha minden esetben ha $L_2 \in \mathbb{C}$ és $L_1 \leq_p L_2$ teljesül következik, hogy $L_1 \in \mathbb{C}$.

Volt: P és NP zártak a polinomidejű visszavezetésre nézve.

Tétel

Ha C zárt a polinomidejű visszavezetésre nézve, akkor coC is.

Bizonyítás: Legyen $L_2 \in \operatorname{co} \mathfrak{C}$ és L_1 tetszőleges nyelvek, melyekre $L_1 \leq_p L_2$. Utóbbiból következik, hogy $\overline{L}_1 \leq_p \overline{L}_2$ (ugyananaz a visszavezetés jó!). Mivel $\overline{L}_2 \in \mathfrak{C}$, ezért a tétel feltétele miatt $\overline{L}_1 \in \mathfrak{C}$. Azaz $L_1 \in \operatorname{co} \mathfrak{C}$.

coC

Igaz-e, hogy P=coP? Igen. (L-et polinom időben eldöntő TG q_i és q_n állapotát megcseréljük: \overline{L} -t polinom időben eldöntő TG.)

Igaz-e, hogy NP=coNP? A fenti konstrukció NTG-re nem feltétlen \overline{L} -t dönti el.

Következmény

coNP zárt a polinom idejű visszavezetésre nézve.

Tétel

 $L \, \mathfrak{C}$ -teljes $\iff \overline{L} \, \operatorname{co} \mathfrak{C}$ -teljes.

Bizonyítás:

- ► Ha $L \in \mathfrak{C}$, akkor $\overline{L} \in \operatorname{co}\mathfrak{C}$.
- ▶ Legyen $L' \in \mathbb{C}$, melyre $L' \leq_p L$. Ekkor $\overline{L'} \leq_p \overline{L}$. Ha L' befutja \mathbb{C} -t akkor $\overline{L'}$ befutja co \mathbb{C} -t. Azaz minden co \mathbb{C} -beli nyelv polinom időben visszavezethető \overline{L} -re.

Tehát \overline{L} co $\mathbb C$ -beli és co $\mathbb C$ -nehéz, így co $\mathbb C$ -teljes.

Példák coNP teljes nyelvekre

UNSAT := $\{\langle \varphi \rangle | \varphi \text{ kielégíthetetlen nulladrendű formula} \}$.

TAUT := $\{\langle \varphi \rangle \mid a \varphi \text{ nulladrendű formula tautológia}\}.$

Tétel

UNSAT és TAUT coNP-teljesek.

Bizonyítás: ÁLTSAT = $\{\langle \varphi \rangle | \varphi \text{ kielégíthető nulladrendű formula} \}$ is NP-teljes (NP-beli és SAT speciális esete neki.)

ÁLTSAT = UNSAT, az előző tétel alapján UNSAT coNP-teljes. UNSAT \leq_p TAUT, hiszen $\varphi \mapsto \neg \varphi$ polinom idejű visszavezetés.

Informálisan: coNP tartalmazza a polinom időben cáfolható problémákat.

Megjegyzések: Sejtés, hogy NP \neq coNP. Egy érdekes osztály ekkor a NP \cap coNP. Sejtés: P \neq NP \cap coNP. Bizonyított, hogy ha egy coNP-teljes problémáról kiderülne, hogy NP-beli, akkor NP = coNP.

Tárbonyolultság

Probléma a tárbonyolultság mérésénél: Hiába "takarékos" a felhasznált cellákkal a gép, az input hossza mindig alsó korlát lesz a felhasznált tárterületre. Egy megoldási lehetőség: A valódi tárigény az **ezen felül** igénybevett cellák száma. A csak az input területét használó számításoknak 0 legyen a tárigénye? Ez se az igazi.

Off-line Turing-gép

Az off-line Turing-gép egy legalább 3 szalagos gép, amelynek az első szalagja csak olvasható, az utolsó szalagja csak írható. További szalagjait munkaszalagoknak nevezzük.

Off-line TG-ek tárigénye

Az off-line TG **tárigénye** egy adott inputra a munkaszalagjain felhasznált cellák száma. Egy TG f(n) **tárkorlátos**, ha bármely u inputra legfeljebb f(|u|) tárat használ.

Determinisztikus és nemdeterminisztikus tárbonyolultsági osztályok

Így az off-line TG-pel **szublineáris** (lineáris alatti) tárbonyolultságot is mérhetünk.

- ► SPACE $(f(n)) := \{L \mid L \text{ eldönthető } O(f(n)) \text{ tárkorlátos}$ determinisztikus off-line TG-pel $\}$
- ► NSPACE $(f(n)) := \{L \mid L \text{ eldönthető } O(f(n)) \text{ tárkorlátos}$ nemdeterminisztikus off-line TG-pel}
- ► PSPACE:= $\bigcup_{k>1}$ SPACE (n^k) .
- ► NPSPACE:= $\bigcup_{k>1}$ NSPACE (n^k) .
- ► L:=SPACE $(\log n)$.
- ► NL:=NSPACE $(\log n)$.

Az ELÉR probléma

ELÉR= $\{\langle G, s, t \rangle \mid A G \text{ irányított gráfban van } s\text{-ből } t\text{-be út}\}.$ ELÉR \in P (valójában $O(n^2)$, lásd Algoritmusok és adatszerk. II., szélességi/mélységi bejárás)

Tétel

 $\text{EL\'{E}R} \in \text{SPACE}(\log^2 n).$

Bizonyítás:

- Rögzítsük a csúcsok egy tetszőleges sorrendjét.
- ▶ ÚT(x, y, i) :=igaz, ha létezik x-ből y-ba legfeljebb 2^i hosszú út.
- ► s-ből van t-be út G-ben \iff ÚT(x, y, $\lceil \log n \rceil$)=igaz.
- ► ÚT(x, y, i)=igaz $\iff \exists z ($ ÚT(x, z, i 1)=igaz \land ÚT(z, y, i 1)=igaz).
- Ez alapján egy rekurzív algoritmust készítünk, melynek persze munkaszalagján tárolnia kell, hogy a felsőbb szinteken milyen (x, y, i)-kre létezik folyamatban lévő hívás.

ELÉR: az ÚT(x, y, i) algoritmus

- ► ha i = 0, akkor $2^0 = 1$ hosszú út (megnézi az inputot).
- ► A munkaszalagon (*x*, *y*, *i*) típusú hármasok egy legfeljebb [log *n*] hosszú sorozata áll. A hármasok 3. attribútuma 1-esével csökkenő sorozatot alkot [log *n*]-től
- ▶ ÚT(x, y, i) meghívásakor az utolsó hármas (x, y, i) a munkaszalagon. Az algoritmus felírja az (x, z, i − 1) hármast a munkaszalagra (x, y, i) utáni helyre majd kiszámítja ÚT(x, z, i − 1) értékét.
- ► Ha hamis, akkor kitörli (x, z, i 1)-et és z értékét növeli.
- ► Ha igaz, akkor is kitörli (x, z, i 1)-et és (z, y, i 1)-et ráírja, (y-t tudja az előző (x, y, i) hármasból).
 - Ha igaz, akkor ÚT(x, y, i) igaz, visszalép ((x, y, i) és (z, y, i 1)
 - 2. argumentumának egyezéséből látja)
 - Ha hamis akkor kitörli és z értékét eggyel növelve ÚT(x, z, i-1)-en dolgozik tovább.
- ► Ha egyik z se volt jó, akkor UT(x, y, i) hamis.

Konfigurációs gráf

Az ÚT(s, t, $\lceil \log n \rceil$) algoritmus a munkaszalagján $O(\log n)$ darab tagból álló egyenként $O(\log n)$ hosszú (x, y, i) hármast tárol, így ELÉR \in SPACE($\log^2 n$).

Konfigurációs gráf

Egy M TG G_M konfigurációs gráfjának csúcsai M konfigurációi és $(C, C') \in E(G_M) \Leftrightarrow C \vdash_M C'$.

Elérhetőségi módszer: bonyolultsági osztályok közötti összefüggéseket lehet bizonyítani az ELÉR \in P vagy ELÉR \in SPACE($\log^2 n$) tételeket alkalmazva a konfigurációs gráfra, vagy annak egy részgráfjára.

Savitch tétele

Savitch tétele

Ha $f(n) \ge \log n$, akkor NSPACE $(f(n)) \subseteq SPACE(f^2(n))$.

Bizonyítás: Legyen M egy f(n) tárigényű NTG és w az M egy n hosszú bemenete.

Ekkor M egy konfigurációját $O(f(n) + \log n)$ tárral eltárolhatjuk (aktuális állapot, a munkaszalagok tartalma, fejek pozíciója, az első szalag fejének pozíciója n féle lehet, ezért $\geq \log n$ tár kell ennek eltárolásához). Ha $f(n) \geq \log n$, akkor ez O(f(n)).

Feltehető, hogy M-nek csak egy elfogadó konfigurációja van. (Törölje le a TG a munkaszalagjait, mielőtt q_i -be lép!)

A legfeljebb ekkora méretű konfigurációkat tartalmazó konfigurációs gráf mérete $2^{df(n)}$ valamely d>0 konstansra. Így az előző tétel szerint $O(\log^2(2^{df(n)})) = O(f^2(n))$ tárral egy determinisztikus TG eldönti, hogy

 $\text{ÚT}(c_{\text{kezdő}}, c_{\text{elfogadó}}, \lceil \log(2^{df(n)}) \rceil)$ igaz-e.

Savitch tétele

Következmények

Következmény

PSPACE = NPSPACE

Bizonyítás: polinom négyzete is polinom.

Tétel

 $NL\subseteq P$

Bizonyítás

Legyen $L \in NL$ és M L-et $f(n) = O(\log n)$ tárral eldöntő NTG. Meggondolható, hogy egy n méretű inputra M legfeljebb f(n) méretű szalagtartalmakat tartalmazó konfigurációinak a száma legfeljebb $cnd^{\log n}$ alkalmas c,d konstansokkal, ami egy p(n) polinommal felülről becsülhető. Így a G konfigurációs gráfnak legfeljebb p(n) csúcsa van. G polinom időben megkonstruálható.

Feltehető, hogy G-ben egyetlen elfogadó konfiguráció van. G-ben a kezdőkonfigurációból az elfogadó konfiguráció elérhetősége $O(p^2(n))$ idejű determinisztikus TG-pel eldönthető, azaz $L \in P$.

L és NL

ELÉR fontos szerepet tölt be az L[?]=NL kérdés vizsgálatában is.

Tétel

ELÉR ∈ NL

Bizonyítás: Az M 3-szalagos NTG a (G, s, t) inputra (n = |V(G)|) a következőt teszi:

- ► ráírja *s*-t a második szalagra
- ► ráírja a 0-t a harmadik szalagra
- ► Amíg a harmadik szalagon *n*-nél kisebb szám áll
 - Legyen u a második szalagon lévő csúcs
 - Nemdeterminisztikusan felírja u helyére egy v ki-szomszédját a második szalagra
 - Ha v = t, akkor elfogadja a bemenetet, egyébként növeli a harmadik szalagon lévő számot binárisan eggyel
- ► Elutasítja a bemenetet
- ightharpoonup Mindkét szalag tartalmát $O(\log n)$ hosszú kóddal tárolhatjuk.

L és NL

Log. táras visszavezetés

Egy $L_1 \subseteq \Sigma^*$ nyelv **logaritmikus tárral visszavezethető** egy $L_2 \subseteq \Delta^*$ nyelvre $L_1 \leq_{\ell} L_2$, ha $L_1 \leq L_2$ és a visszavezetéshez használt függvény kiszámítható logaritmikus táras determinisztikus (off-line) Turing-géppel

NL-nehéz, NL-teljes nyelv

Egy L nyelv \mathbf{NL} -nehéz (a log. táras visszavezetésre nézve), ha minden $L' \in \mathbf{NL}$ nyelvre, $L' \leq_{\ell} L$; ha ráadásul $L \in \mathbf{NL}$ is teljesül, akkor L \mathbf{NL} -teljes (a log. táras visszavezetésre nézve)

Tétel

L zárt a logaritmikus tárral való visszavezetésre nézve

Bizonyítás: Tegyük fel, hogy $L_1 \le_{\ell} L_2$ és $L_2 \in NL$. Legyen M_2 az L_2 -t eldöntő, M pedig a visszavezetésben használt f függvényt kiszámoló logaritmikus táras determinisztikus TG.

L és NL

Az M_1 TG egy tetszőleges u szóra a következőképpen működik

- A második szalagján egy bináris számlálóval nyomon követi, hogy M_2 feje hányadik betűjét olvassa az f(u) szónak; legyen ez a szám i (kezdetben 1)
- Amikor M_2 lépne egyet, akkor M_1 az M-et szimulálva előállítja a harmadik szalagon f(u) i-ik betűjét (de csak ezt a betűt!!!)
- Ezután M_1 szimulálja M_2 aktuális lépését a harmadik szalagon lévő betű felhasználásával és aktualizálja a második szalagon M_2 fejének újabb pozícióját
- ▶ Ha eközben M_1 azt látja, hogy M_2 elfogadó vagy elutasító állapotba lép, akkor M_1 is belép a saját elfogadó vagy elutasító állapotába, egyébként folytatja a szimulációt a következő lépéssel

Belátható, hogy M_1 L_1 -et dönti el és a működése során csak logaritmikus méretű tárat használ, azaz $L_1 \in L$.

ELÉR NL-teljessége

Következmény

Ha L NL-teljes és $L \in L$, akkor L = NL.

Bizonyítás: Legyen $L' \in NL$ tetszőleges, ekkor $L \leq_{\ell} L$ és $L \in L$, így L logaritmikus tárral való visszavezetésre nézve zártsága miatt $L' \in NL$. Tehát L=NL.

Tétel

ELÉR NL-teljes a logaritmikus tárral történő visszavezetésre nézve.

Bizonyítás:

- ► Korábban láttuk, hogy ELÉR ∈ NL
- ► Legyen $L \in NL$, megmutatjuk, hogy $L \leq_{\ell} ELÉR$
- ► Legyen M egy L-et eldöntő $O(\log n)$ táras NTG és |u| = n
- ► Az $O(\log n)$ tárat használó konfigurációk $\leq c \cdot \log n$ hosszúak (alkalmas c-re)

ELÉR NL-teljessége; Immerman-Szelepcsényi

► A G_M konfigurációs gráfban akkor és csak akkor lehet a kezdőkonfigurációból az elfogadóba jutni (feltehető, hogy csak 1 ilyen van), ha $u \in L(G)$. Így $L \leq ELÉR$.

Kell még, hogy a visszavezetés log. tárat használ, azaz G_M megkonstruálható egy log. táras N determinisztikus TG-pel:

- ► N sorolja fel a hossz-lexikografikus rendezés szerint az összes legfeljebb c · log n hosszú szót az egyik szalagján, majd tesztelje, hogy az legális konfigurációja-e M-nek, ha igen, akkor a szót írja ki a kimenetre
- ► Az élek (konfiguráció párok) hasonlóképpen felsorolhatók, tesztelhetők és a kimenetre írhatók

Immerman-Szelepcsényi tétel

NL = coNL

(biz. nélkül)

Hierarchia tétel

EXPTIME:= $\bigcup_{k\in\mathbb{N}}$ TIME(2^{n^k}).

Tétel

 $NL \subset PSPACE$ és $P \subset EXPTIME$.

(biz. nélkül)

Tétel

 $L \subseteq NL = coNL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXPTIME$

Bizonyítás: 1 és 4 definíció szerint, 2-es Immerman-Szelepcsényi, 3-ast előbb bizonyítottuk. 5-ös: egy TG-nek "nincs ideje" több tárat használni, mint időt. 6-os: elérhetőségi módszerrel. A használt tárban exponenciális méretű lesz a konfigurációs gráf, a gráf méretében négyzetes (azaz összességében a tár méretében exponenciális) időben tudjuk az elérhetőséget tesztelni a kezdőkonfigurációból az elfogadóba konfigurációba.

Sejtés: Utóbbiban minden tartalmazás valódi.

R szerkezete

R szerkezete P≠NP esetén [ábra: Gazdag Zs. jegyzet]