# **LAPORAN**

#### **UJIAN AKHIR SEMESTER**

# **DATA WAREHOUSE**

"Warehousing Data Employee Performance and Salary"



# Disusun Oleh:

| Aqueena Regita Hapsari        | (2341760096) |
|-------------------------------|--------------|
| Bagas Satria Yudho Nugraha    | (2341760108) |
| Lovelyta Sekarayu Krisdiyanti | (2341760081) |
| My Babby Findia R.S           | (2341760007) |

Jurusan Teknologi Informasi D-IV Sistem Informasi Bisnis Politeknik Negeri Malang Tahun Ajaran 2024/2025

# **DAFTAR ISI**

| DAFTA    | R ISI                                                | 1   |
|----------|------------------------------------------------------|-----|
| DAFTA    | R GAMBAR                                             | 2   |
| DAFTA    | R TABEL                                              | 5   |
| BAB I P  | ENDAHULUAN                                           | 6   |
| 1.1      | Latar Belakang                                       | 6   |
| 1.2      | Tujuan Proyek                                        | 6   |
| 1.3      | Ringkasan Eksekutif                                  | 6   |
| BAB II l | PENYUSUNAN DAN PROSES EXTRACT, TRANSFORM, LOAD (ETL) | 7   |
| 2.1      | Star Schema                                          | 7   |
| 2.2      | Proses Pembangunan Proyek ETL                        | 9   |
| BAB III  | PEMBANGUNAN DATA WAREHOUSE                           | .36 |
| 3.1      | Perancangan Struktur Database                        | .36 |
| 3.2      | Pembuatan Tabel Dimensi                              | .36 |
| 3.3      | Pembuatan Tabel Fakta                                | .36 |
| 3.4      | Tools yang Digunakan                                 | .37 |
| BAB IV   | IMPLEMENTASI DAN INTEGRASI SISTEM                    | .38 |
| 4.1      | Implementasi Pipeline ETL                            | .38 |
| 4.2      | Validasi dan Integritas Data                         | .38 |
| 4.3      | Kendala dan Solusi                                   | .38 |
| BAB V    | ANALISIS KPI                                         | .39 |
| 5.1      | Rata-rata Skor Kinerja per Karyawan                  | .39 |
| 5.2      | Rata-rata Skor Kinerja per Departemen                | .40 |
| 5.3      | Efisiensi Gaji vs Kinerja per Departemen             | .40 |
| 5.4      | Pengalaman vs Skor Kinerja                           | .41 |
| 5.5      | Skor Kinerja Berdasarkan Lokasi                      | .42 |
| BAR VI   | KESIMPULAN DAN PENUTUP                               | 44  |

# DAFTAR GAMBAR

| Gambar | 1 Create Table                                    | 9  |
|--------|---------------------------------------------------|----|
| Gambar | 2 Elemen uasdimdepartement                        | 9  |
| Gambar | 3 Connection ke uas_dw                            | 10 |
| Gambar | 4 Input CSV                                       | 10 |
| Gambar | 5 Preview Input                                   | 11 |
| Gambar | 6 Select Values                                   | 11 |
| Gambar | 7 Unique Rows                                     | 12 |
| Gambar | 8 Add Sequence                                    | 12 |
| Gambar | 9 Table Output                                    | 13 |
| Gambar | 10 Running                                        | 13 |
| Gambar | 11 Running berhasil                               | 14 |
| Gambar | 12 Data berhasil transformasi ke database         | 14 |
| Gambar | 13 Elemen dalam Transformasi uasdimployee         | 14 |
| Gambar | 14 Connection (2)                                 | 15 |
| Gambar | 15 Input CSV (2)                                  | 15 |
| Gambar | 16 Preview (2)                                    | 16 |
| Gambar | 17 Select Values (2)                              | 16 |
| Gambar | 18 Table Output (2)                               | 17 |
| Gambar | 19 Running (2)                                    | 17 |
| Gambar | 20 Running berhasil (2)                           | 18 |
| Gambar | 21 Berhasil di Transformasi ke Tabel dimemployee  | 18 |
| Gambar | 22 Elemen dimlocation                             | 19 |
| Gambar | 23 Connection (3)                                 | 19 |
| Gambar | 24 Table Input (3)                                | 19 |
| Gambar | 25 Select Values (3)                              | 20 |
| Gambar | 26 Unique Rows (3)                                | 20 |
| Gambar | 27 Add Sequence (3)                               | 21 |
| Gambar | 28 Table Output (3)                               | 21 |
| Gambar | 29 Running (3)                                    | 22 |
| Gambar | 30 Berhasil Running (3)                           | 22 |
| Gambar | 31 Data Berhasil di Transformasi ke tabel dimdate | 23 |
| Gambar | 32 Elemen uasdimdate                              | 23 |

| Gambar | 33 Connection (4)                                           | .23 |
|--------|-------------------------------------------------------------|-----|
| Gambar | 34 Input CSV (4)                                            | .24 |
| Gambar | 35 Preview (4)                                              | .24 |
| Gambar | 36 Select Values (4)                                        | .25 |
| Gambar | 37 Unique rows (4)                                          | .25 |
| Gambar | 38 Calculator                                               | .26 |
| Gambar | 39 Add Sequence (4)                                         | .26 |
| Gambar | 40 Table Output (4)                                         | .26 |
| Gambar | 41 Running (4)                                              | .27 |
| Gambar | 42 Running Berhasil (4)                                     | .27 |
| Gambar | 43 Data berhasil di transformasi ke tabel dimdate           | .27 |
| Gambar | 44 Elemen uasFactEmployeePerformance                        | .28 |
| Gambar | 45 Connection (5)                                           | .28 |
| Gambar | 46 Input CSV (5)                                            | .28 |
| Gambar | 47 Preview (5)                                              | .29 |
| Gambar | 48 Table Input (5)                                          | .29 |
| Gambar | 49 Stream Lookup                                            | .30 |
| Gambar | 50 Table Input 2 (5)                                        | .30 |
| Gambar | 51 Stream lookup 2                                          | .31 |
| Gambar | 52 Table input 2/2                                          | .31 |
| Gambar | 53 Stream Lookup 2/2                                        | .32 |
| Gambar | 54 Table input 2/2/2                                        | .32 |
| Gambar | 55 Stream lookup 2/2/2                                      | .33 |
| Gambar | 56 Select Values (5)                                        | .33 |
| Gambar | 57 Table Output (5)                                         | .34 |
| Gambar | 58 Running (5)                                              | .34 |
| Gambar | 59 Running Berhasil (5)                                     | .35 |
| Gambar | 60 Data berhasil di transformasi ke factemployeeperformance | .35 |
| Gambar | 61 Hasil Query Rata-rata Skor Kinerja per Karyawan          | .39 |
| Gambar | 62 Grafik Rata-rata Skor Kinerja per Karyawan               | .39 |
| Gambar | 63 Hasil Query Rata-rata Skor Kinerja per Departemen        | .40 |
| Gambar | 64 Pie Chart Rata-rata Skor Kinerja per Departemen          | .40 |
| Gambar | 65 Hasil Query Efisiensi Gaji vs Kinerja per Departemen     | .41 |
| Gambar | 66 Hasil Ouery Pengalaman vs Skor Kineria                   | 41  |

| Gambar | 67 Grafik Batang Pengalaman vs Skor Kinerja      |  |
|--------|--------------------------------------------------|--|
| Gambar | 68 Hasil Query Skor Kinerja Berdasarkan Lokasi   |  |
| Gambar | 69 Grafik Batang Skor Kinerja Berdasarkan Lokasi |  |

# **DAFTAR TABEL**

| Tabel | 1 Struktur Tabel Dimensi DimEmployee             | .7 |
|-------|--------------------------------------------------|----|
| Tabel | 2 Struktur Tabel Dimensi DimDepartement          | .8 |
| Tabel | 3 Struktur Tabel Dimensi DimLocation             | .8 |
| Tabel | 4 Struktur Tabel Dimensi DimDate                 | .8 |
| Tabel | 5 Struktur Tabel Dimensi factemployeeperformance | .9 |
| Tabel | 6 Tabel Tools                                    | 37 |
| Tabel | 7 Kendala dan Solusi                             | 38 |

### BAB I PENDAHULUAN

#### 1.1 Latar Belakang

Manajemen sumber daya manusia merupakan elemen vital dalam kesuksesan organisasi. Oleh karena itu, perlu dibangun sistem analitik berbasis data warehouse untuk mendukung pengambilan keputusan terkait performa dan efisiensi karyawan.

#### 1.2 Tujuan Proyek

Membangun sistem Data Warehouse berbasis star schema dari dataset "Employee Performance and Salary" untuk mengevaluasi dan menganalisis kinerja karyawan melalui pendekatan ETL menggunakan Pentaho Data Integration.

#### 1.3 Ringkasan Eksekutif

Laporan ini membahas pembangunan sistem **Data Warehouse** untuk menganalisis performa dan gaji karyawan berdasarkan dataset *Employee Performance and Salary* dari Kaggle. Tujuan utama dari proyek ini adalah menyediakan sistem analitik yang membantu perusahaan dalam:

- 1.3.1 Menilai kinerja individu dan departemen
- 1.3.2 Mengukur efisiensi gaji terhadap produktivitas
- 1.3.3 Mengevaluasi pengaruh pengalaman kerja terhadap performa
- 1.3.4 Menentukan lokasi kerja paling produktif

Sistem dibangun menggunakan tools Pentaho Data Integration (Spoon) yang melakukan proses ETL (Extract, Transform, Load) dari file CSV ke dalam Data Warehouse berbasis skema bintang (Star Schema). Skema ini terdiri dari satu tabel fakta factemployeeperformance dan empat tabel dimensi: dimemployee, dimdepartement, dimlocation, dan dimdate.

Analisis dilakukan menggunakan lima indikator kinerja utama (Key Performance Indicators/KPI) yang menghasilkan insight strategis untuk pengambilan keputusan, termasuk promosi, alokasi SDM, dan efisiensi departemen.

Hasil akhir proyek ini berupa sistem data warehouse yang bersih, terstruktur, dan siap digunakan untuk membangun laporan dashboard atau sistem Business Intelligence di masa depan.

# BAB II PENYUSUNAN DAN PROSES EXTRACT, TRANSFORM, LOAD (ETL)

#### 2.1 Star Schema



Star Schema ini terdiri dari 1 tabel fakta dan 4 tabel dimensi, yang membentuk struktur seperti bintang. Tujuan dari skema ini adalah untuk menyederhanakan query analitik dan mempercepat pemrosesan data untuk analisis performa dan gaji karyawan.

# 2.1.1 Dimensi 1: DimEmployee

Berisi informasi deskriptif tentang karyawan.

| Kolom      | Deskripsi                                      |  |  |
|------------|------------------------------------------------|--|--|
| EmployeeID | Primary key                                    |  |  |
| Name       | Nama lengkap                                   |  |  |
| Age        | Umur                                           |  |  |
| Gender     | Jenis kelamin                                  |  |  |
| Status     | Status kerja (aktif/tidak, kontrak/tetap, dll) |  |  |

Tabel 1 Struktur Tabel Dimensi DimEmployee

# 2.1.2 Dimensi 2: DimDepartment

Berisi infirmasi mengenai departemen kerja.

| Kolom         | 8 | 1           | J | Deskripsi |
|---------------|---|-------------|---|-----------|
| DepartementID |   | Primary key |   |           |

| <b>DepartementName</b> | Nama departemen (HR, Finance, IT, dll) |
|------------------------|----------------------------------------|
|                        |                                        |

Tabel 2 Struktur Tabel Dimensi DimDepartement

# 2.1.3 Dimensi 3: DimLocation

Berisi informasi lokasi kerja.

| Kolom        | Deskripsi                                       |
|--------------|-------------------------------------------------|
| LocationID   | Primary key                                     |
| LocationName | Nama lokasi (cabang/kota/kantor pusat)          |
| Session      | Bisa diartikan sebagai shift atau jadwal kerja. |

Tabel 3 Struktur Tabel Dimensi DimLocation

#### 2.1.4 Dimensi 4: DimDate

Berisi informasi tanggal, untuk mendukung analisis waktu.

|             | 66 )              |    |
|-------------|-------------------|----|
| Kolom       | Deskrip           | si |
| DateID      | Primary key       |    |
| JoiningDate | Tanggal bergabung |    |
| Year        | Tahun gabung      |    |
| Month       | Bulan gabung      |    |
| Day         | Hari gabung       |    |

Tabel 4 Struktur Tabel Dimensi DimDate

# 2.1.5 Tabel Fakta: factemployeeperformance

Tabel ini berisi data transaksional atau peristiwa utama yang ingin dianalisis, yaitu performa dan gaji karyawan.

| Postorium mars Bull start) and mars |                                                |  |
|-------------------------------------|------------------------------------------------|--|
| Kolom                               | Deskripsi                                      |  |
| EmployeeID                          | ID unik karyawan, foreign key dari DimEmployee |  |
| DepartementID                       | ID departemen, foreign key dari DimDepartement |  |
| DateID                              | Tanggal bergabung, foreign key dari DimDate    |  |
| LocationID                          | Lokasi kerja, foreign key dari DimLocation     |  |
| Salary                              | Gaji karyawan                                  |  |
| Experience                          | Lama kerja atau pengalaman                     |  |

# PerformanceScore Nilai performa karyawan

Tabel 5 Struktur Tabel Dimensi factemployeeperformance

#### 2.2 Proses Pembangunan Proyek ETL

#### 2.2.1 Create Database uas\_dw

```
CREATE DATABASE uas_dw;
USE uas dw;
```

# 2.2.2 Create Table



Gambar 1 Create Table

#### 2.2.3 Create Dimensi Tabel

- 1) Tabel Dimensi uasdimdepartement
  - a) Elemen yang dibutuhkan:



Gambar 2 Elemen uasdimdepartement

# b) Tambahkan Connection ke Database uas\_dw:



Gambar 3 Connection ke uas\_dw

# c) Masukkan file dataset ke table input:



Gambar 4 Input CSV

#### d) Preview



Gambar 5 Preview Input

e) Setting kolom yang akan digunakan pada elemen select values yaitu Departement:



Gambar 6 Select Values

f) Masukkan kolom uniqe pada unique rows



Gambar 7 Unique Rows

g) Tambahkan kolom baru yang berisi nilai berurutan pada Add sequence



Gambar 8 Add Sequence

h) Isi tabel output dengan menggunakan target tabel dimdepartment sesuai dengan tabel yang ada pada database uas dw



Gambar 9 Table Output

i) Kemudian Running atau jalankan pentaho yang sudah kita buat



Gambar 10 Running



Gambar 11 Running berhasil

j) Setelah berhasil running data, maka data akan masuk kedalam tabel dimdepartment pada database uas\_dw



Gambar 12 Data berhasil transformasi ke database

- 2) Tabel Dimensi uasdimemployee
  - a) Elemen yang dibutuhkan



Gambar 13 Elemen dalam Transformasi uasdimployee

# b) Tambahkan Connection ke Database uas\_dw:



Gambar 14 Connection (2)

#### c) Masukkan file dataset pada tabel input CSV



Gambar 15 Input CSV (2)

# d) Preview data input



Gambar 16 Preview (2)

e) Setting kolom yang akan digunakan pada elemen select values



Gambar 17 Select Values (2)

f) Isi tabel output dengan menggunakan target tabel dimemployee sesuai dengan tabel yang ada pada database uas\_dw



Gambar 18 Table Output (2)

g) Kemudian Running atau jalankan pentaho yang sudah kita buat



Gambar 19 Running (2)



Gambar 20 Running berhasil (2)

h) Setelah berhasil running data, maka data akan masuk kedalam tabel dimemployee pada database uas\_dw



Gambar 21 Berhasil di Transformasi ke Tabel dimemployee

- 3) Tabel Dimensi uasdimlocation
  - a) Elemen yang dibutuhkan



Gambar 22 Elemen dimlocation

b) Tambahkan Connection ke Database uas\_dw:



Gambar 23 Connection (3)

c) Masukkan file dataset ke table input:



Gambar 24 Table Input (3)

d) Setting kolom yang akan digunakan pada location select values



Gambar 25 Select Values (3)

- e) Setelah berhasil running data, maka data akan masuk kedalam tabel factemployeeerfomance pada database uas dw
- f) Masukkan kolom uniqe pada unique rows



Gambar 26 Unique Rows (3)

g) Tambahkan kolom baru yang berisi nilai berurutan pada Add sequence



Gambar 27 Add Sequence (3)

h) Isi tabel output dengan menggunakan target tabel dimlocation sesuai dengan tabel yang ada pada database uas\_dw



Gambar 28 Table Output (3)

i) Kemudian Running atau jalankan pentaho yang sudah kita buat



Gambar 30 Berhasil Running (3)

j) Setelah berhasil running data, maka data akan masuk kedalam tabel dimdate pada database uas dw



Gambar 31 Data Berhasil di Transformasi ke tabel dimdate

- 4) Tabel Dimensi uasdimdate
  - a) Elemen yang dibutuhkan



Gambar 32 Elemen uasdimdate

b) Tambahkan Connection ke Database uas\_dw:



Gambar 33 Connection (4)

#### c) Masukkan file dataset pada tabel input CSV



Gambar 34 Input CSV (4)

#### d) Preview



Gambar 35 Preview (4)

e) Setting kolom yang akan digunakan pada elemen select values



Gambar 36 Select Values (4)

f) Masukkan kolom uniqe pada unique rows



Gambar 37 Unique rows (4)

g) Lakukan perhitungan atau manipulasi data antar kolom dalam data stream menggunakan calculator pada pentaho



Gambar 38 Calculator

h) Tambahkan kolom baru yang berisi nilai berurutan pada Add sequence



Gambar 39 Add Sequence (4)

i) Isi tabel output dengan menggunakan target tabel dimdepartment sesuai dengan tabel yang ada pada database uas dw



Gambar 40 Table Output (4)

j) Kemudian Running atau jalankan pentaho yang sudah kita buat



Gambar 42 Running Berhasil (4)

k) Setelah berhasil running data, maka data akan masuk kedalam tabel dimdate pada database uas\_dw



Gambar 43 Data berhasil di transformasi ke tabel dimdate

# 5) Tabel Dimensi uasFactEmployeePerformance

# a) Elemen yang dibutuhkan



Gambar 44 Elemen uasFactEmployeePerformance

b) Tambahkan Connection ke Database uas\_dw:



Gambar 45 Connection (5)

c) Masukkan file dataset pada tabel input CSV



Gambar 46 Input CSV (5)

#### d) Preview



Gambar 47 Preview (5)

e) Mengambil data dari database menggunakan sql melalu tabel input 1 DimEmployee



Gambar 48 Table Input (5)



Gambar 49 Stream Lookup

f) Mengambil data dari database menggunakan sql melalu tabel input 2 DimDepartment



Gambar 50 Table Input 2 (5)



Gambar 51 Stream lookup 2

g) Mengambil data dari database menggunakan sql melalu tabel input 2 DimDate



Gambar 52 Table input 2/2



Gambar 53 Stream Lookup 2/2

h) Mengambil data dari database menggunakan sql melalu tabel input 3 DimLocation



Gambar 54 Table input 2/2/2



Gambar 55 Stream lookup 2/2/2

i) Setting kolom yang akan digunakan pada elemen select values



Gambar 56 Select Values (5)

i) Isi tabel output dengan menggunakan target tabel dimdepartment sesuai dengan tabel yang ada pada database uas\_dw



Gambar 57 Table Output (5)

j) Kemudian Running atau jalankan pentaho yang sudah kita buat



Gambar 58 Running (5)



Gambar 59 Running Berhasil (5)

k) Setelah berhasil running data, maka data akan masuk kedalam tabel factemployeeperfomance pada database uas\_dw



Gambar 60 Data berhasil di transformasi ke factemployeeperformance

#### BAB III PEMBANGUNAN DATA WAREHOUSE

#### 3.1 Perancangan Struktur Database

Perancangan data warehouse menggunakan pendekatan Star Schema, yang terdiri dari satu tabel fakta factemployeeperformance dan empat tabel dimensi: dimemployee, dimdepartement, dimlocation, dan dimdate.

- 3.1.1 Pemilihan Star Schema dilakukan karena:
- 3.1.2 Memiliki struktur sederhana dan mudah dipahami.
- 3.1.3 Mempermudah pembuatan guery analitik dan pelaporan.
- 3.1.4 Cocok untuk data historis dan analisis kinerja.

Diagram Star Schema ditampilkan pada Bab II, yang menunjukkan hubungan antar tabel melalui foreign key.

#### 3.2 Pembuatan Tabel Dimensi

Setiap dimensi menyimpan informasi deskriptif yang relevan untuk mendukung analisis dari tabel fakta.

- 1) Tabel dimemployee
  - Berisi informasi dasar karyawan: EmployeeID, Name, Age, Gender, dan Status. Tabel ini dibangun dari hasil ekstraksi file CSV dan transformasi menggunakan Select Values, Add Sequence, dan Unique Rows di Spoon.
- 2) Tabel dimdepartement
  - Berisi data departemen tempat karyawan bekerja, seperti DepartmentID dan DepartmentName. Data ini diambil dari kolom "Department" di dataset utama.
- 3) Tabel dimlocation
  - Berisi informasi lokasi kerja, seperti LocationID dan LocationName. Setiap lokasi dibuat unik dan diberi ID melalui Add Sequence.
- 4) Tabel dimdate
  - Dibuat berdasarkan kolom tanggal masuk karyawan (JoinDate), lalu diturunkan menjadi kolom Day, Month, dan Year menggunakan kalkulasi otomatis di Spoon.

#### 3.3 Pembuatan Tabel Fakta

Tabel factemployeeperformance merupakan inti dari skema, berisi informasi kuantitatif seperti:

a) PerformanceScore : skor kinerja

b) Salary: gaji karyawan

c) Experience : tahun pengalaman

Tabel ini juga menyimpan foreign key ke semua dimensi (EmployeeID, DepartmentID, LocationID, DateID). Proses join dilakukan pada transformasi terakhir uasFactEmployeePerformance.ktr.

# 3.4 Tools yang Digunakan

Berikut adalah beberapa tools yang digunakan:

| Tools                | Fungsi                                 |
|----------------------|----------------------------------------|
| Pentaho Spoon        | Alat utama untuk ETL                   |
| MySQL / phpMyAdmin   | Menyimpan dan mengelola data warehouse |
| Microsoft Excel      | Meninjau dan membersihkan dataset awal |
| Draw.io / Lucidchart | Membuat diagram star schema (opsional) |

Tabel 6 Tabel Tools

#### BAB IV IMPLEMENTASI DAN INTEGRASI SISTEM

# 4.1 Implementasi Pipeline ETL

Seluruh file .ktr dijalankan satu per satu dengan urutan sebagai berikut:

- 1) uasdimdepartement.ktr
- 2) uasdimemployee.ktr
- 3) uasdimlocation.ktr
- 4) dwdimdate.ktr
- 5) uasFactEmployeePerformance.ktr

Setiap transformasi memuat data ke dalam database uas\_dw menggunakan komponen Table Output setelah proses Extract dan Transform selesai.

#### 4.2 Validasi dan Integritas Data

Beberapa langkah yang dilakukan untuk menjamin integritas:

- 1) Seluruh foreign key yang digunakan valid dan memiliki referensi di tabel dimensi.
- 2) Tidak ditemukan data NULL pada kolom ID penting.
- 3) Tidak terdapat duplikasi pada tabel dimensi.
- 4) Kolom tanggal dan numeric disesuaikan dengan format standar (yyyy-MM-dd, Integer, dll).

#### 4.3 Kendala dan Solusi

| Kendala                          | Solusi                                        |
|----------------------------------|-----------------------------------------------|
| Format tanggal tidak terbaca     | Gunakan komponen Calculator untuk             |
|                                  | memformat ulang                               |
| Duplikasi pada kolom Department  | Terapkan Unique Rows di Spoon                 |
| Penggabungan antar tabel dimensi | Lakukan Join berdasarkan ID yang konsisten    |
| tidak tepat                      | dan validasi hasil preview                    |
| Beberapa nilai kosong di kolom   | Isi dengan nilai default (0) atau hitung dari |
| pengalaman                       | tanggal join jika tersedia                    |

Tabel 7 Kendala dan Solusi

#### BAB V ANALISIS KPI

# 5.1 Rata-rata Skor Kinerja per Karyawan

KPI: Rata-rata PerformanceScore per karyawan

SELECT EmployeeID, AVG(PerformanceScore) AS AvgPerformance FROM factemployeeperformance

GROUP BY EmployeeID;



Gambar 61 Hasil Query Rata-rata Skor Kinerja per Karyawan



Gambar 62 Grafik Rata-rata Skor Kinerja per Karyawan

#### 5.2 Rata-rata Skor Kinerja per Departemen

#### KPI: Menilai kinerja per departemen



Gambar 63 Hasil Query Rata-rata Skor Kinerja per Departemen



Gambar 64 Pie Chart Rata-rata Skor Kinerja per Departemen

#### 5.3 Efisiensi Gaji vs Kinerja per Departemen

KPI: Efisiensi gaji terhadap output kinerja

```
SELECT DepartmentID,

SUM(Salary) AS TotalSalary,

SUM(PerformanceScore) AS TotalPerformance,

SUM(PerformanceScore) / SUM(Salary) AS

PerformancePerSalary
```

#### FROM FactEmployeePerformance

#### GROUP BY DepartmentID;



Gambar 65 Hasil Query Efisiensi Gaji vs Kinerja per Departemen

Interpretasi: Semakin tinggi rasio PerformancePerSalary, semakin efisien departemen tersebut.

#### 5.4 Pengalaman vs Skor Kinerja

KPI: Apakah pengalaman berkorelasi dengan kinerja?

SELECT Experience, AVG(PerformanceScore) AS AvgPerformance FROM FactEmployeePerformance GROUP BY Experience;



Gambar 66 Hasil Query Pengalaman vs Skor Kinerja



Gambar 67 Grafik Batang Pengalaman vs Skor Kinerja

# 5.5 Skor Kinerja Berdasarkan Lokasi

KPI: Lokasi mana yang paling produktif?



Gambar 68 Hasil Query Skor Kinerja Berdasarkan Lokasi



Gambar 69 Grafik Batang Skor Kinerja Berdasarkan Lokasi

#### BAB VI KESIMPULAN DAN PENUTUP

Berdasarkan hasil pembangunan data warehouse dan analisis yang dilakukan, dapat disimpulkan bahwa sistem ini mampu menyediakan informasi yang relevan dan strategis bagi perusahaan untuk mengevaluasi kinerja karyawan secara efisien. Dengan menggunakan pendekatan ETL dan skema bintang, data yang semula tidak terstruktur dapat diolah menjadi sumber informasi yang terpusat dan siap dianalisis.

Lima KPI yang dihasilkan memberikan gambaran menyeluruh mengenai produktivitas karyawan, efisiensi departemen, pengaruh pengalaman, serta kinerja berdasarkan lokasi. Sistem ini sangat bermanfaat untuk mendukung pengambilan keputusan manajerial, seperti promosi, pembinaan SDM, dan perencanaan anggaran.

*Updating* lebih lanjut dapat diarahkan pada integrasi yang interaktif dan penambahan data historis agar bisa digunakan untuk analisis tren jangka panjang.