1) Probability

Vitor Kamada

January 2018

Reference

Tables, Graphics, and Figures from
Introductory Statistics with
Randomization and Simulation

Diez et al. (2014): APPENDIX A - Probability

Law of Large Numbers (LLN)

$$p = \frac{1}{6} \cong 0.167$$

Disjoint or Mutually Exclusive Outcomes

$$A = \{1, 2\}; B = \{4, 6\}; D = \{2, 3\}$$

$$P(A \cup B) = P(A) + P(B) = \frac{1}{3} + \frac{1}{3}$$

Probabilities when Events are not Disjoint

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(face.card \cup \diamondsuit)$$

$$P(face.card) + P(\diamondsuit) - P(face.card \cap \diamondsuit)$$

$$\frac{12}{52} + \frac{13}{52} + \frac{3}{52} = 0.423$$

Vitor Kamada

Probability Distribution

Dice sum	2	3	4	5	6	7	8	9	10	11	12
Probability	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

Independence

$$P(A \cap B) = P(A) \times P(B)$$

$$P(\heartsuit \cap ace) = P(A\heartsuit) = \frac{1}{52}$$

$$P(\heartsuit) \times P(ace)$$

$$\frac{1}{4} \times \frac{1}{13} = \frac{1}{52}$$

Marginal and Joint Probabilities

		inocı	inoculated		
		yes	no	Total	
result	lived	238	5136	5374	
	died	6	844	850	
	Total	244	5980	6224	

$$P(result = died) = \frac{850}{6224} = 13.7\%$$

$$P(\textit{result} = \textit{died} \cap \textit{inoculated} = \textit{yes})$$
 $= \frac{6}{6224} = 0.1\%$

Conditional Probability

		inocu	inoculated		
		yes	no	Total	
result	lived	0.0382	0.8252	0.8634	
	died	0.0010	0.1356	0.1366	
	Total	0.0392	0.9608	1.0000	

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(result = died|inoculated = no)$$

$$\frac{P(\textit{result} = \textit{died} \cap \textit{inoculated} = \textit{no})}{P(\textit{inoculated} = \textit{no})}$$

$$\frac{0.1356}{0.9608} = 14.1\%$$

Tree Diagrams

$$P(inoculated = yes \cap result = lived)$$

 $P(inoculated = yes) \times P(result = lived | inoculated = yes)$
 $= 0.0392 \times 0.9754 = 0.0382$

Independence and Conditional Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) \times P(B)}{P(B)} = P(A)$$

Let X and Y represent the outcomes of rolling two dice

$$P(Y=1|X=1)$$

$$\frac{P(Y=1)\times(X=1)}{P(X=1)} = P(Y=1)$$

