Машинное обучение, DS-поток

Домашнее задание 5

Правила:

- Дедлайн **20 марта 02:00**. После дедлайна работы не принимаются кроме случаев наличия уважительной причины.
- Выполненную работу нужно отправить на почту mipt.stats@yandex.ru, указав тему письма " [ml] Фамилия Имя задание 5". Квадратные скобки обязательны. Если письмо дошло, придет ответ от автоответчика.
- Прислать нужно ноутбук и его pdf-версию (без архивов). Названия файлов должны быть такими: 5.N.ipynb и 5.N.pdf, где N ваш номер из таблицы с оценками.
- Теоретические задачи необходимо оформить в техе/markdown или же прислать фотку в правильной ориентации рукописного решения, **где все четко видно**.
- Решения, размещенные на каких-либо интернет-ресурсах не принимаются. Кроме того, публикация решения в открытом доступе может быть приравнена к предоставлении возможности списать.
- Для выполнения задания используйте этот ноутбук в качествие основы, ничего не удаляя из него.
- Никакой код из данного задания при проверке запускаться не будет.

Баллы за задание:

- Задача 1 1 балл
- Задача 2 1 балл
- Задача 3 3 балла
- Задача 4 1 балл
- Задача 5 7 баллов

Теория

Рассмотрим задачу бинарной классификации, причем $\mathcal{Y} = \{+1, -1\}$. Пусть так же \hat{y} --- некоторый классификатор, предсказывающий степень принадлежности классу. При этом решающее правило имеет вид $f(x) = \text{sign}\left(\hat{y}(x)\right)$. Рассмотрим логистическую функцию потерь:

$$\mathcal{L}(y, z) = \log (1 + \exp(-yz))$$

Задача 1

Покажите, что задача минимизации функционала ошибки $Q(\widehat{y}) = \sum_{i=1}^n \mathcal{L}\left(Y_i, \widehat{y}(x_i)\right)$ для логистической

функции потерь эквивалентна максимизации по y функции правдоподобия в предположении $Y_i \sim Bern(\sigma(y(x)))$.

Задача 2

Рассмотрим градиентный бустинг с логистической функцией потерь. Выпишите для градиентного спуска формулу для вектора сдвигов и задачу поиска новой базовой модели.

Задача 3

Предположим, модель градиентного бустинга \hat{y}_{t-1} уже построена.

- 1. Выпишите вид функционала ошибки $Q(\widehat{y}_t) = \sum_{i=1}^n \mathcal{L}\left(Y_i, \widehat{y}_t(x_i)\right)$ для логистической функции потерь.
 - Одинаковый ли вклад вносят разные объекты в ошибку?
- 2. Выпишите формулу для вектора сдвигов. Как она выражается через отклики на объектах обучающей выборки? Одинаковый ли вклад вносят разные объекты в формирование вектора сдвигов?
- 3. На лекции было показано, что для экспоненциальной функции есть проблема: базовый классификатор может настраиваться только на шумовые объекты. Наблюдается ли такая проблема у логистической функции потерь?

Задача 4

Рассмотрим градиентный бустинг над решающими деревьями. После построения дерева выполняется делать перенастройку в листьях дерева.

- 1. Выпишите оптимизационную задачу для коэффициентов γ_{ti} --- новых ответов в листьях.
- 2. Решите полученную задачу сделав один шаг метода Ньютона из начального приближения $\gamma_{tj}=0$, что соответствует отсутствию базовой модели b_t .

Практика

Задача 5

Внимание! Перед выполнением задачи прочитайте полностью условие. В задаче используются смеси различных моделей с разными гиперпараметрами. Подумайте над тем, какой гиперпараметр как подбирать и на каком множестве. Не забудьте, что на тестовой выборке, по которой делаются итоговые выводы, ничего не должно обучаться.

- 1. Повторите исследование, проведенное в задаче 2 предыдущего домашнего задания, используя градиентный бустинг из sklearn. Сравните полученные результаты со случайным лесом. Детали:
 - В качестве основы можно использовать как свое решение предыдущего задания, так и выложенное на Вики. В большинстве случаев нужно только заменить RandomForestRegressor на GradientBoostingRegressor.
 - У градиентного бустинга есть также важный гиперпараметр learning_rate. Поясните его смысл и проведите аналогичные исследования.
 - При сравнении методов по одинаковым свойствам желательно рисовать результаты на одном графике.
 - Обратите внимание на метод staged_predict y GradientBoostingRegressor. Он позволяет получить "кумулятивные" предсказания, то есть по первым t деревьям по всем значениям t.
 - При кросс-валидации проводите достаточное количество итераций рандомизированного поиска (при ≥ 2 параметров) на большой сетке параметров. Даже если долго обучается.
- **2.** Выберите самый значимый признак согласно feature_importances_ и визуализируйте работу первых 10 деревьев на графиках зависимости таргета от этого признака. Пример графиков смотрите в лекции.
- 3. Обучите градиентный бустинг на решающих деревьях, у которого в качестве инициализирующей модели используется линейная регрессия. Для этого используйте класс GradientBoostingRegressor, которому при инициализации в качестве параметра init передайте

модель ридж-регрессии Ridge, которая должна быть инициализирована, но необучена. Подберите оптимальные гиперпараметры такой композиции. Как вы будете подбирать гиперпараметр ридж-регрессии? Улучшилось ли качество модели на тестовой выборке?

4. Рассмотрим модели смеси градиентного бустинга \hat{y}_{gb} и случайного леса \hat{y}_{rf} в виде $\hat{y}(x)=w\hat{y}_{gb}(x)+(1-w)\hat{y}_{rf}(x),$

где $w \in [0,1]$ --- коэффициент усреднения. Подберите оптимальное значение гиперпараметра w. Удалось ли добиться улучшения качества на тестовой выборке?