Department of Statistics
University of Wisconsin, Madison
PhD Qualifying Exam Part II
August 29, 2013
1:00-4:00pm, Room 133 SMI

- There are a total of FOUR (4) problems in this exam. Please do a total of TWO (2) problems.
- Each problem must be done in a separate exam book.
- Please turn in TWO (2) exam books.
- Please write your code name and NOT your real name on each exam book.

1. Let X and Y be integrable random variables and \mathcal{F} and \mathcal{G} be two σ -fields on a probability space with probability P. For a random variable Z, define $\sigma(Z)$ be the σ -field generated by Z. For parts (a), (b), and (c), suppose that

$$P(B|\mathcal{F}) = P(B|\mathcal{G})$$
 a.s. for any $B \in \sigma(X)$. (1)

(a) Show that

$$E[E(Y|X)|\mathcal{F}] = E[E(Y|X)|\mathcal{G}]$$
 a.s.

(b) Under condition (1) with $\mathcal{F} = \sigma(X)$, show that

$$\sigma(X) \subset \mathcal{G}$$

and

$$E(X|\mathcal{F}) = E(X|\mathcal{G})$$
 a.s.

(c) Under condition (1) with $\mathcal{F} \subset \mathcal{G}$, show that, for any $A \in \mathcal{G}$ and $B \in \sigma(X)$,

$$P(A \cap B|\mathcal{F}) = P(A|\mathcal{F})P(B|\mathcal{F})$$
 a.s.

(d) For any event B, show that, for any $A \in \sigma(Y)$,

$$\int_{A} P(B|Y)dP = P(A \cap B).$$

Without further assumptions, can we conclude that $P(B|Y) = I_B$ a.s.? If not, then determine the conditions needed so that this is true. Prove your claims.

2. Fix s>0. Let $\{Z_n\}_{n\geq 1}$ be a collection of independent random variables with

$$P(Z_n = -1) = P(Z_n = 1) = \frac{n^{-s}}{2}$$
, and $P(Z_n = 0) = 1 - n^{-s}$.

Set $Y_0 = 0$ and for $n \ge 1$ define

$$Y_n = n^s Y_{n-1} |Z_n| + Z_n I (Y_{n-1} = 0).$$

where I(A) denotes the indicator function for the event A.

- (a) Prove that $\{Y_n\}$ satisfies, for every n,
 - i. $E(|Y_n|) < \infty$, and
 - ii. $E(Y_{n+1}|Y_1, Y_2, ..., Y_n) = Y_n$.
- (b) Determine the values of s > 0, if any, for which $Y_n \xrightarrow{P} 0$. Prove both when convergence holds and when it does not.
- (c) Determine the values of s > 0, if any, for which $Y_n \xrightarrow{a.s.} 0$. Prove both when convergence holds and when it does not.
- (d) Determine the values of s > 0, if any, for which $Y_n \xrightarrow{L_1} 0$. Prove both when convergence holds and when it does not.
- (e) Prove that for any x > 0,

$$P\left(\max_{1 \le k \le n} Y_k \ge x\right) \le \frac{1}{2x} \left(1 + \sum_{k=1}^{n-1} (k+1)^{-s} (1 - k^{-s})\right).$$

- 3. Suppose we have n pairs of observations $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ from the model $Y_i \sim N(\beta x_i, \sigma^2)$ where we treat the x_1, x_2, \ldots, x_n values as fixed.
 - (a) Find the maximum likelihood estimate of β and of σ^2 .
 - (b) State the distribution of the maximum likelihood estimate $\hat{\beta}$.
 - (c) Suppose σ^2 is known to be equal to 5. We seek a test of the null hypothesis $H_0: \beta = 0$ versus the alternative $H_A: \beta = 2$. Which of the following designs will result in more power if in fact H_A is true? Explain your choice.
 - (i) $x_1 = x_2 = \cdots = x_{10} = 0$; $x_{11} = x_{12} = \cdots = x_{20} = 10$; or
 - (ii) $x_1 = x_2 = \cdots = x_5 = 0$; $x_6 = x_7 = \cdots = x_{15} = 12$?
 - (d) Suppose instead that the true model is $Y_i \sim N(\gamma_0 + \gamma_1 x_i, \sigma^2)$. Repeat part (c) for $H_0: \gamma_1 = 0$ versus the alternative $H_A: \gamma_1 = 2$.
 - (e) Suppose that it is uncertain whether the true model is $Y_i \sim N(\beta x_i, \sigma^2)$ or $Y_i \sim N(\gamma_0 + \gamma_1 x_i, \sigma^2)$. Suppose σ^2 is known to be equal to 5. We seek a test of the null hypothesis that the slope, i.e., the coefficient of x_i , is zero, versus the alternative that the slope is 2. Which of the two designs, (i) or (ii), in part (c) would you recommend? Explain your choice.
 - (f) We can assess the model $Y_i \sim N(\gamma_0 + \gamma_1 x_i, \sigma^2)$ by using the quantity

$$R_c^2 = \frac{\sum (\hat{y}_i - \bar{y})^2}{\sum (y_i - \bar{y})^2},$$

where \hat{y}_i is the fitted value for *i*-th observation.

Consider the data set:

$$x \quad 0 \quad 1 \quad 2$$

$$y$$
 1 2 1

For this data set $R_c^2 = 0$.

Suppose instead we fit the model $Y_i \sim N(\beta x_i, \sigma^2)$. We could assess this model by using the quantity

$$R_{nc}^2 = \frac{\sum \hat{y}_i^2}{\sum y_i^2},$$

where \hat{y}_i is the fitted value from this model. Some authors argue that this quantity is meaningless as a measure of the success of the regression. By referring to the data set above, explain why.

4. Consider the linear regression model,

$$y_i = x_{i1}\beta_1 + \dots + x_{iK}\beta_K + \epsilon_i, \quad i = 1, \dots, n,$$

where $\epsilon_1, \dots, \epsilon_n$ are independent and identically distributed $\mathcal{N}(0, \sigma^2)$ random variables. Assume that σ^2 is known and, without loss of generality, that $\sigma^2 = 1$. Also, assume that the true K-dimensional vector β is of the form $(\beta_1, \dots, \beta_{k_0}, 0, \dots, 0)'$ for some $k_0 \leq K$ and $\beta_j > 0$, $\forall j \leq k_0$. Consider model selection criteria of the form

$$C(k, \lambda) \equiv RSS(k) + \lambda k, \quad k = 0, \dots, K,$$

where RSS(k) is the residual sum of squares of the least squares fit with the first k covariates only, and $\lambda > 0$ represents penalty for over-fitting. The model dimension is chosen by minimizing this criterion over $k = 0, \dots, K$.

- (a) Fit a linear model with the first k covariates to the data and call the fit $\hat{\mathbf{Y}}_k$. Let $\mathbf{P}_k = \mathbf{X}_k (\mathbf{X}_k' \mathbf{X}_k)^{-1} \mathbf{X}_k'$, where \mathbf{X}_k is the design matrix of a linear model with the first k covariates. Show that for $k = k_0, \dots, K$, the residual random vector $\mathbf{Y} \hat{\mathbf{Y}}_k$ is $(\mathbf{I} \mathbf{P}_k)\epsilon$ for the fitted model, where $\mathbf{Y} = (y_1, \dots, y_n)'$, $\hat{\mathbf{Y}}_k = (\hat{y}_1, \dots, \hat{y}_n)'$, $\epsilon = (\epsilon_1, \dots, \epsilon_n)'$, and \mathbf{I} is n dimensional identity matrix.
- (b) Find an expression for $C(k, \lambda)$ that only involves ϵ , \mathbf{P}_k , λ , and k.
- (c) Consider the sequence of random variables, $Z_i \equiv \epsilon'(\mathbf{P}_i \mathbf{P}_{i-1})\epsilon$, for $i = 1, \dots, K$. By convention, define $\mathbf{P}_0 = 0$, the zero matrix. Derive the joint distribution of Z_1, \dots, Z_K .
- (d) Define $\delta_k(\lambda) = \epsilon' \mathbf{P}_k \epsilon \lambda k$. Using the sequence of random variables Z_i derived in (c), show that

$$\delta_k(\lambda) = \sum_{i=1}^k (Z_i - \lambda).$$

- (e) The results in (c) and (d) show that $\delta_k(\lambda)$ is a sequence of partial sums. Define \hat{k}_{λ} as the minimizer of $C(k,\lambda)$ over $\{k_0 \leq k \leq K\}$. How is \hat{k}_{λ} related to the path defined by the sequence $\{\delta_k(\lambda): k=k_0,\cdots,K\}$?
- (f) How would you simulate the distribution of \hat{k}_{λ} to study statistical properties of the model size selected by the criterion $C(k,\lambda)$?