

Sustainability Lab Research Presentation

Outline

SUSTAINABILITY

Introduction

Methodology

Results

Applications

Conclusion

Research Motivation

```
SUSTAINABILITY
```

- Computer vision has transformed Al applications
- Deep learning architectures continue to evolve
- Performance gains through novel architectural innovations
- Real-world deployment challenges remain significant

Key Research Question

How can we design efficient neural architectures that maintain high accuracy while reducing computational requirements?

Experimental Setup

Datasets Used:

- ImageNet-1K (1.28M images)
- CIFAR-10/100
- Custom industrial dataset

Hardware:

- 8x NVIDIA A100 GPUs
- 512GB RAM
- NVMe SSD storage

Figure 1: Network Architecture Overview

Algorithm Implementation

```
SUSTAINABILITY
```

```
def attention_mechanism(x, num_heads=8):
"""Multi-head self-attention implementation"""
batch_size, seq_len, d_model = x.shape
# Split into multiple heads
head_dim = d_model // num_heads
x_reshaped = x.view(batch_size, seq_len,
                   num_heads, head_dim)
# Compute attention weights
attention_weights = torch.softmax(
    torch.matmul(x_reshaped, x_reshaped.transpose(-2, -1))
    / math.sqrt(head_dim), dim=-1
return torch.matmul(attention_weights, x_reshaped)
```

Performance Comparison

Table 1: Accuracy vs. Computational Cost

Model	ImageNet Top-1	FLOPs (G)	Parameters (M)
ResNet-50	76.15%	4.1	25.6
EfficientNet-B0	77.32%	0.39	5.3
Our Method	78.94%	0.31	4.2
Vision Transformer	81.28%	17.6	86.4

- Our approach achieves 2.8× fewer FLOPs than ResNet-50
- Maintains competitive accuracy with modern architectures
- Significant reduction in parameter count enables mobile deployment

Mathematical Formulation

The attention mechanism can be expressed as:

Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$
 (1)

$$MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$$
 (2)

where each head is computed as:

$$head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$$
 (3)

Key Innovation: We introduce adaptive scaling factors α_i for each attention head:

$$head_i = \alpha_i \cdot Attention(QW_i^Q, KW_i^K, VW_i^V)$$
 (4)

Training Dynamics

Real-World Deployment

Industrial Applications:

- Autonomous vehicle perception
- Medical image analysis
- Quality control in manufacturing
- Real-time video analytics

Performance Metrics:

■ Inference time: **12ms** (mobile GPU)

■ Memory usage: **156MB**

■ Power consumption: 2.3W

Figure 3: Deployment Hierarchy

Key Contributions

```
SUSTAINABILITY
```

- 1. Novel Architecture: Adaptive attention mechanism with learnable scaling
- 2. Efficiency Gains: 2.8× reduction in computational cost
- 3. **Practical Impact**: Successful deployment in industrial settings
- 4. Open Source: Code and models available on GitHub

Future Directions

- Extension to video understanding tasks
- Integration with transformer architectures
- Quantization for ultra-low power devices

Publications & Impact

Recent Publications:

- Smith et al. "Adaptive Attention Networks" CVPR 2025
- Johnson et al. "Efficient Vision Models" ICCV 2024
- Wilson et al. "Mobile Computer Vision" *ECCV 2024*

Impact Metrics:

- 450+ citations in 18 months
- 15K+ GitHub stars
- **50+** industry partnerships

Thank You!

Questions & Discussion

Contact: jane.smith@university.edu

Lab Website: https://cvlab.university.edu

Code: https://github.com/cvlab/adaptive-attention

