Yulian Kraynyak HW3

Question 7 A: Exercise 3.1.1, sections A - G

$$A = \{x \in Z : x \text{ is an integer multiple of 3}\}$$
 $B = \{x \in Z : x \text{ is a perfect square}\}$
 $C = \{4, 5, 9, 10\}$
 $D = \{2, 4, 11, 14\}$
 $E = \{3, 6, 9\}$
 $F = \{4, 6, 16\}$

True	$27 \in A$	A.
False	27 ∈ <i>B</i>	B.
True	$100 \in B$	C.
False	$E\subseteq C\ or\ C\subseteq E$	D.
True	$E \subseteq A$	E.
False	$A \subset E$	F.
True	$E \in A$	G.

Question 7 B: Exercise 3.1.2, sections A - E

 $A = \{x \in Z: x \text{ is an integer multiple of } 3\}$

 $B = \{x \in Z : x \text{ is a perfect square}\}$

 $C = \{4, 5, 9, 10\}$

 $D = \{2, 4, 11, 14\}$

 $E = \{3, 6, 9\}$

 $F = \{4, 6, 16\}$

A. $15 \subset A$

15 ⊂ A

B. $\{15\} \subset A$

C. $\emptyset \subset A$

 $\mathsf{D}. \qquad A \subseteq A$

E. $\emptyset \in B$

False

True

True

True

False

Question 7 C: Exercise 3.1.5, sections B, D

B. {3, 6, 9, 12,}

 $\{x \in N: x \text{ is a multiple of 3}\}$; set is infinite

D. $\{0, 10, 20, 30, \dots, 1000\}$

 $\{x \in N: x \text{ is a multiple of } 10 \text{ and } 0 \le x \le 1000\}$; the cardinality is 101

Question 7 D: Exercise 3.2.1, sections A - K

$$X = \{1, \{1\}, \{1, 2\}, 2, \{3\}, 4\}$$

2 ∈ <i>X</i> Tr	A.	True
$\{2\} \subseteq X$ Tr	B.	True
$\{2\} \in X$ Fa	C.	False
3 ∈ <i>X</i> Fa	D.	False
$\{1,2\} \in X$ Tr	E.	True
$1,2\}\subseteq X$ Tr	F.	True
$[2,4] \subseteq X$ Tr	G.	True
$\{2,4\} \in X$ Fa	H.	False
$(2,3) \subseteq X$	I.	False
$\{2,3\} \in X$ Fa	J.	False
X = 7	K.	False

Question 8: Exercise 3.2.4, section B Let $A = \{1, 2, 3\}$. What is $\{X \in P(A): 2 \in X\}$?

{2,{2,3}}

Question 9 A: Exercise 3.3.1, sections C - E

$$A = \{-3, 0, 1, 4, 17\}$$

$$B = \{-12, -5, 1, 4, 6\}$$

$$C = \{x \in Z: x \text{ is odd}\}$$

$$D = \{x \in Z: x \text{ is positive}\}$$

C. $A \cap C$

$$\{-3, 1, 17\}$$

D. $A \cup (B \cap C)$

$$B \cap C = \{-5, 1\}$$

$$A \cup (B \cap C) = \{-3, 0, 1, 4, 17, -5\}$$

E. $A \cap B \cap C$

Question 9 B: Exercise 3.3.3, sections A, B, E, F

 $A_i=\{i^0,i^1,i^2\}$ (Recall that for any number $x,x^0=1$.) $B_i=\{x\in\mathbf{R}:-i\leq x\leq 1/i\}$ $C_i=\{x\in\mathbf{R}:-1/i\leq x\leq 1/i\}$

A.	$igcap_{i=2}^5 A_i$	$A_2 = \{2^0, 2^1, 2^2\} = \{1, 2, 4\}$
	11=2	$A_3 = \{3^0, 3^1, 3^2\} = \{1, 3, 9\}$
		$A_4 = \{4^0, 4^1, 4^2\} = \{1, 4, 16\}$
		$A_5 = \{5^0, 5^1, 5^2\} = \{1, 5, 25\}$
		$A_2 \cap A_3 \cap A_4 \cap A_5 = \{1\}$
В.	ı 15 <i>ı</i>	$A_2 = \{2^0, 2^1, 2^2\} = \{1, 2, 4\}$
	$igcup_{i=2}^5 A_i$	$A_3 = \{3^0, 3^1, 3^2\} = \{1, 3, 9\}$
		$A_4 = \{4^0, 4^1, 4^2\} = \{1, 4, 16\}$
		$A_4 = \{4, 4, 4\} = \{1, 4, 10\}$ $A_5 = \{5^0, 5^1, 5^2\} = \{1, 5, 25\}$
		$A_5 = \{3, 3, 3, 3, -\{1, 3, 23\}$
		$A_2 \cup A_3 \cup A_4 \cup A_5 = \{1, 2, 4, 3, 9, 16, 5, 25\}$
E.	$\bigcap_{i=1}^{100} C_i$	
E.	$igcap_{i=1}^{100} C_i$	
E.	$\bigcap_{i=1}^{100} C_i$	$C_{r} = \{-1/1 < r < 1/1\}$
E. F.	$igcap_{i=1}^{100} C_i$ $igcup_{i=1}^{100} C_i$	$C_1 = \{-1/1 \le x \le 1/1\}$ $C_1 = \{-1/2 \le x \le 1/2\}$
E. F.	$igcap_{i=1}^{100} C_i$ $igcup_{i=1}^{100} C_i$	$C_2 = \{-1/2 \le x \le 1/2\}$
E.	$igcap_{i=1}^{100} C_i$ $igcup_{i=1}^{100} C_i$	$C_2 = \{-1/2 \le x \le 1/2\}$ $C_3 = \{-1/3 \le x \le 1/3\}$
E.	$igcap_{i=1}^{100} C_i$ $igcup_{i=1}^{100} C_i$	$C_2 = \{-1/2 \le x \le 1/2\}$
E.	$igcap_{i=1}^{100} C_i$ $igcup_{i=1}^{100} C_i$	$C_2 = \{-1/2 \le x \le 1/2\}$ $C_3 = \{-1/3 \le x \le 1/3\}$

Question 9 C: Exercise 3.3.4, sections B, D

Let
$$A = \{a, b\}$$
 and $B = \{b, c\}$

B. $P(A \cup B)$

$$A \cup B = \{a, b, c\}$$

$$P(A \cup B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$$

D. $P(A) \cup P(B)$

$$P(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\}$$

$$P(B) = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}\}$$

$$P(A) \cup P(B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}\}$$

Question 10 A: Exercise 3.5.1, sections B, C

$$A = \{tall, grande, venti\}$$

 $B = \{foam, no - foam\}$
 $C = \{non - fat, whole\}$

B. Write an element from the set B * A * C.

$$(foam, tall, non - fat)$$

C. Write the set B * C using roster notation.

$$\{(foam, non - fat), (foam, whole), (no - foam, non - fat), (no - foam, whole)\}$$

Question 10 B: Exercise 3.5.3, sections B, C, E

B.
$$Z^2 \subseteq R^2$$

True

C.
$$Z^2 \cap Z^3 = \emptyset$$

False

E. For any three sets, A, B, and C, if $A \subseteq B$, then $A * C \subseteq B * C$.

Ex:

$$A = \{1, 2\}$$

 $B = \{1, 2, 3\}$
 $C = \{4\}$

$$A * C = \{(1,4), (2,4)\}$$

$$B * C = \{(1,4), (2,4), (3,4)\}$$

$$A*C\subseteq B*C$$

True

Question 10 C: Exercise 3.5.6, sections D, E

D. $\{xy: where \ x \in \{\mathcal{O}\} \cup \{\mathcal{O}\}^2 \ and \ y \in \{\mathcal{T}\} \cup \{\mathcal{T}\}^2\}$

$$x = \{0, 00\}$$
$$y = \{1, 11\}$$

$$xy = \{01, 011, 001, 0011\}$$

E. $\{xy: x \in \{aa, ab\} \ and \ y \in \{a\} \cup \{a\}^2\}$

$$x = \{aa, ab\}$$
$$y = \{a, aa\}$$

 $xy = \{aaa, aaaa, aba, abaa\}$

Question 10 D: Exercise 3.5.7, sections C, F, G

$$A = \{a\}$$

$$B = \{b, c\}$$

$$C = \{a, b, d\}$$

 $\mathbf{C}.\;(A*B)\cup(A*C)$

$$A * B = \{ab, ac\}$$
$$A * C = \{aa, ab, ad\}$$

 $(A * B) \cup (A * C) = \{ab, ac, aa, ad\}$

F. P(A * B)

$$\{ \bigcirc, \{ab\}, \{ac\}, \{ab, ac\} \}$$

G. P(A) * P(B). Use ordered pair notation for elements of the Cartesian product.

$$P(A) = \{ \emptyset, \{a\} \}$$

 $P(B) = \{ \emptyset, \{b\}, \{c\}, \{b, c\} \}$

 $P(A)*P(B) = \{\{\emptyset,\emptyset\},\{\emptyset,\{b\}\},\{\emptyset,\{c\}\},\{\emptyset,\{b,c\}\},\{\{a\},\emptyset\},\{\{a\},\{b\}\},\{\{a\},\{c\}\},\{\{a\},\{b,c\}\}\}\}\}$

Question 11 A: Exercise 3.6.2, sections B, C

 $\mathsf{B.}\; (B\cup A)\cap (\underline{B}\cup A)=A$

$(B \cup A) \cap (\underline{B} \cup A) = A$	
$(B \cap \underline{B}) \cup A$	Distributive Law
$A\cup (B\cap \underline{B})$	Commutative Law
$A \cup \oslash$	Complement Law
Α	Identity Law

C. $\underline{\underline{A} \cap \underline{B}} = \underline{\underline{A}} \cup \underline{B}$

$\underline{A \cap \underline{B}} = \underline{A} \cup B$	
<u>A</u> ∪ B	De Morgan's Law

Question 11 B: Exercise 3.6.3, sections B, D

$$\mathsf{B.}\ A - (B \cap A) = A$$

If $A = \{a, b\}$ and $B = \{b\}$ then $A - (B \cap A) = \{a\}$ which is not equal to B.

$$D. (B - A) \cup A = A$$

If $A = \{b\}$ and $B = \{a, b\}$, then $(B - A) \cup A = \{a, b\}$ which does not equal A.

Question 11 C: Exercise 3.6.4, sections B, C

 $\mathsf{B.}\ A \cap (B - A) = \emptyset$

$A \cap (B-A)$	
$A \cap (B \cap \underline{A})$	Set Subtraction Law
$A \cap (\underline{A} \cap B)$	Commutative Law
(<i>A</i> ∩ <u><i>A</i></u>) ∩ <i>B</i>	Associative Law
⊘∩ B	Complement Law
Ø	Domination Law

 $\mathbf{C}.\ A\cup(B-A)=A\cup B$

$A \cup (B - A)$	
$A \cup (B \cap \underline{A})$	Set Subtraction Law
$(A \cup B) \cap (A \cup \underline{A})$	Distributive Law
$(A \cup B) \cap U$	Complement Law
$A \cup B$	Identity Law