CLIMATE CONFLUENCE: ANALYZING THE IMPACT OF CO2 EMISSIONS ON GLOBAL TEMPERATURE TRENDS

Kazi Anik Islam

Matriculation number: 23399803

Friedrich-Alexander-Universität Erlangen-Nürnberg

INTRODUCTION

- Examines how CO2 emissions influence global temperatures.
- Utilizes datasets on CO2 emissions and global temperatures.
- Aims to provide evidence for effective climate strategies.
- Main Question: "How do CO2 emissions correlate with global temperature trends?"

DATA USED

- Dataset 1: CO2 emission data from Our World in Data (GitHub).
- Dataset 2: Temperature data from Figshare.
- Data processed through ETL pipeline for analysis.

Licensed under CC BY 4.0.

DATA PIPELINE OUTPUT

- Final data contains columns: country, year, CO2, and AverageTemperatureCelsius.
- Represents CO2 emissions and average temperature for various countries over time.
- Allows comprehensive analysis of CO2 emissions and temperature changes.

	country TEXT	year INTEGER	co2 REAL	AverageTemperatureCel sius REAL
1	Brazil	1901	2.103	19.804333333333336
2	Brazil	1902	2.506	20.15841666666664
3	Brazil	1903	2.44	19.913833333333333
4	Brazil	1904	2.62	19.166416666666667
5	Brazil	1905	2.799	19.901666666666667
6	Brazil	1906	3.206	19.973958333333332
7	Brazil	1907	3.451	19.568583333333333
8	Brazil	1908	3.594	19.626
9	Brazil	1909	3.609	19.3686666666666
10	Brazil	1910	4.199	19.509521739130435

Figure: Final data

CORRELATION ANALYSIS

- Correlation Matrix: Shows Pearson correlation coefficients between year, CO2, and average temperature.
- Moderate positive correlation (0.56) between year and CO2 emissions.
- Weak positive correlation (0.3) between year and average temperature.
- Very weak positive correlation (0.15) between CO2 emissions and average temperature.
- Indicates CO2 emissions increase over time, but the link to temperature changes is weaker.

Figure: Correlation Matrix of year, co2 and AverageTemperatureCelsius culumn

YEARLY CORRELATION

- Graph: Yearly correlation between CO2 emissions and average temperature from 1800s to 2000s.
- High correlation in early 1800s.
- Decline and fluctuation from mid-1800s to mid-1900s.
- Increase from 1980s, indicating strengthening relationship between
 CO2 and temperature.
- Highlights changes in the CO2-temperature link over time.

COUNTRY-WISE ANALYSIS

- FacetGrid Plot: Visualizes CO2 emissions vs. average temperature for different countries.
- Positive correlation in most countries.
- Strength of correlation varies: strong in some (e.g., South Africa, Poland), weaker in others (e.g., Japan).
- Shows variability in CO2-temperature relationship across regions.

CONCLUSION

- Main finding: CO2 emissions correlate with global temperature trends, but not very strongly.
- As CO2 emissions rise, global temperatures tend to increase.
- Trend evident over time and across various countries.
- Overall, higher CO2 emissions are associated with rising temperatures.

THANK YOU

