Homework Solution MER311: ADHANCED MECHANICS PROB 1.16 PG I OF BUDYWAS ZND

PROBLEM 1.16 DETERMINE THE STRESS MATRIX IF THE MODULUS OF ELASTICITY IS 30 MPSI, POISSON'S RATTO IS 0.3, AND THE STRAIN MATRIX IS

$$\begin{bmatrix} \boldsymbol{\epsilon} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\epsilon}_{\mathsf{X}} & \boldsymbol{y}_{\mathsf{X}\mathsf{y}} & \boldsymbol{y}_{\mathsf{Z}\mathsf{X}} \\ \boldsymbol{y}_{\mathsf{X}\mathsf{y}} & \boldsymbol{\epsilon}_{\mathsf{Y}} & \boldsymbol{\delta}_{\mathsf{Y}\mathsf{E}} \\ \boldsymbol{y}_{\mathsf{Z}\mathsf{X}} & \boldsymbol{y}_{\mathsf{Y}\mathsf{E}} & \boldsymbol{\epsilon}_{\mathsf{Z}} \end{bmatrix} = \begin{bmatrix} 5 & -2 & 3 \\ -2 & -3 & 1 \\ 3 & 1 & 2 \end{bmatrix} \times 10^{4}$$

CIAEN:

1. Moducus 30 msI

2. Poisson's Ratio 0.3 3. STRAIN STATE GIVEN

ASSOMPTIONS:

1. ISOTROPIC, LINEAR ELASTIC MATERIAL

2.

FIND:

1. STRESS MATRIX

SOLUTION!

$$\begin{cases} \mathcal{E}_{x} \\ \mathcal{E}_{y} \\ \mathcal{E}_{z} \\ \mathcal{E}_{yz} \\ \mathcal{E}_{xz} \\ \mathcal{E}_{yy} \end{cases} = \begin{cases} \mathcal{E}_{z} - \mathcal{E}_{z} - \mathcal{E}_{z} \\ \mathcal{E}_{z} - \mathcal{E}_{z} \\ \mathcal{E}_{z} - \mathcal{E}_{z} \\ \mathcal{E}_{z} - \mathcal{E}_{z} - \mathcal{E}_{z} - \mathcal{E}_{z} - \mathcal{E}_{z} \\ \mathcal{E}_{z} - \mathcal{E}_{z} - \mathcal{E}_{z} - \mathcal{E}_{z} - \mathcal{E}_{z} \\ \mathcal{E}_{z} - \mathcal{E}_{z} \\ \mathcal{E}_{z} - \mathcal{E}_{z}$$

$$\begin{pmatrix} \mathcal{E}_{x} \\ \mathcal{E}_{7} \\ \mathcal{E}_{8} \\ \mathcal{E}_{9} \\ \mathcal{E}_{$$

"Advanced Strength and Stress Analysis," 2nd ed., Budynas, Problem 1.16: Determine the stress matrix if the modulus of elasticity is 30 Msi, Poissons ratio is 0.3, and the strain matrix is [5, -2, 3; -2, -3, 1; 3, 1, 2] x10-4.

	E=	3.00E+07	nu=	0.3							
	Strain									Stress	
e_x			3.33E-08	-1.00E-08	-1.00E-08	0	0	0			S _x
\mathbf{e}_{y}			-1.00E-08	3.33E-08	-1.00E-08	0	0	0			Sy
e_z		"="	-1.00E-08	-1.00E-08	3.33E-08	0	0	0	x		sz
e_{zy}			0	0	0	8.67E-08	0	0			Szy
e_{zx}			0	0	0	0	8.67E-08	0			S _{zx}
e_{xy}			0	0	0	0	0	8.67E-08			S _{xy}
		,									
	Stress									Strain	
s_x	1.8462E+04		40384615	17307692	17307692	0	0	0		5.00E-04	e _x
s_y	2.7285E-12		17307692	40384615	17307692	0	0	0		-3.00E-04	e _y
S_z	1.1538E+04	"="	17307692	17307692	40384615	0	0	0	x	2.00E-04	e _z
S _{zy}	1.1538E+03		0	0	0	11538462	0	0		1.00E-04	e _{zy}
S_{zx}	3.4615E+03		0	0	0	0	11538462	0		3.00E-04	e _{zx}
\mathbf{S}_{xy}	-2.3077E+03		0	0	0	0	0	11538462		-2.00E-04	e _{xy}

-0.2308

```
>> S=[33.33 -10 -10 0 0 0
-10 33.33 -10 0 0 0
-10 -10 33.33 0 0 0
0 0 0 86.67 0 0
0 0 0 0 86.67 0
0 0 0 0 0 86.67]*1e-9
S =
 1.0e-007 *
  0.3333 -0.1000 -0.1000
                                   0
                                             0
                                                        0
  -0.1000 0.3333
                    -0.1000
                                    0
                                              0
                                                        0
  -0.1000
            -0.1000
                     0.3333
                                     0
                                              0
                                                        0
        0
                 0
                          0
                                0.8667
        0
                  0
                           0
                                    0
                                         0.8667
                  0
                          0
        0
                                   0
                                                   0.8667
                                             0
>> C=inv(S)
C =
 1.0e+007 *
   4.0392 1.7313
                      1.7313
                                   0
                                             0
                                                        0
   1.7313
            4.0392
                      1.7313
                                    0
                                              0
                                                        0
                      4.0392
   1.7313
             1.7313
                                     0
                                1.1538
        0
                  0
                           0
                                              0
                  0
                           0
        0
                                  0
                                         1.1538
                 0
                                   0
        0
                          0
                                             0 1.1538
>> Strain=[5 -3 2 1 3 -2]*1e-4
Strain =
 1.0e-003 *
   0.5000 -0.3000 \ 0.2000 \ 0.1000 \ 0.3000 -0.2000
>> Stress=C*Strain'
Stress =
 1.0e+004 *
   1.8465
   0.0002
   1.1541
   0.1154
   0.3461
```