Chapter 6: 95% Confidence Interval for the Mean and Data Transformation

TXCL7565/PHSC7565

What This Chapter Covers

- What is a confidence interval (CI)?
- What do we mean by '95%' confidence?
- Calculating a CI
- Sensitivity of CI to SD, sample size, and level of confidence
- One-sided CIs
- CI for difference between two means
- Normal distribution and CI

WHAT IS A CONFIDENCE INTERVAL?

Age Guess

Bruce Benson President of CU

Don Cheadle
Actor
Alumnus of East
High School

Stranger

Confidence Interval

- A mean derived from a sample is unlikely to be a perfect estimate of the population mean.
- Therefore, we normally give a range that the population mean is likely to fall within.
- Since we have no reason to believe there is bias in our sample mean estimate, we create a range by subtracting and adding the same amount to the sample mean estimate.

Width of the Interval

The wider the interval

The more confident we are that the true population mean falls within the interval

Norm in the Field

- A '95% confidence interval' is the standard confidence interval width.
- It originates from a p-value threshold of 0.05 for significance.
- I'll explain more when we tackle p-values next week.

WHAT DO WE MEAN BY '95%' CONFIDENCE?

95% Confidence

- For a 95% CI, we typically say that we are 95% confident that the interval includes the true population mean
 - CANNOT say that there is a 95% **probability** that the interval includes the true population mean

Statistical Definition of Level of Confidence

Level of Confidence = the proportion of intervals that will cover the true population mean when the intervals are calculated in the same manner and generated from sampling of the same population

FIGURE 2.9

The confidence intervals of the sperm counts of Japanese quail (horizontal axis) for 50 different samples (vertical axis)

Calculating a CI

The width of confidence intervals are influenced by:

- Standard Deviation = higher SD, wider interval
- Sample Size = smaller sample size, wider interval
- Level of Confidence = higher level of confidence, wider interval

Calculating 95% CI

Formula for CI

$$\bar{x} \pm t_c \frac{s}{\sqrt{n}}$$

 $\bar{x} = \text{sample mean}$ $t_c = \text{t-statistic}$ s = sample standard deviation n = number of observations in sample

1.Click 'Analyze icon

1.Select 'CI of the mean'

SENSITIVITY OF CI TO SD, SAMPLE SIZE, AND LEVEL OF CONFIDENCE

Sensitivity to SD

Sensitivity to Sample Size

Sensitivity to Level of Confidence

Assessing the reliability of our conclusions

Statistics never draws any absolute conclusions. It will offer an opinion and then back that up with a measure of that conclusion's reliability.

One-sided 95% CIs

Two-sided / Two-tailed CIs

- In a two-sided Cls, we specify both a minimum and maximum value to our range.
- The 'hazard', i.e., 1 level of confidence, is split between the two ends.
- 1. The true population mean is no *less* than some stated figure (2.5% chance this is false)
- 2. The true population mean is no *greater* than some stated figure (2.5% chance this is false)

One-sided 95% Cls

 Sometimes we are only interested in whether the mean is above a certain level

The true population mean is no *less* than some stated figure (5% chance this is false)

OR

The true population mean is no *greater* than some stated figure (5% chance this is false)

One-sided CIs in GraphPad

- GraphPad doesn't offer a one-sided confidence interval options
- Solution Change the level of confidence by doubling the risk, i.e., to get a 95% one-sided confidence interval, ask for a 90% two-sided confidence interval

95% CI FOR THE DIFFERENCE BETWEEN TWO TREATMENTS

95% CI for Difference Between 2 Means

95% Cl of Difference Between 2 Means

Formula for 95% CI of Difference Between 2 Means

To come in later chapters...

95% Confidence Interval for Difference Between 2 Means - GraphPad

NORMAL DISTRIBUTION AND CI

Normal Distribution and CI

- The methods presented for calculating CI are based on the assumption that the data have a normal distribution.
- However, the CI is pretty robust and only performs poorly when the data are grossly non-normal.

Example of Non-Normal Data

Histogram of pesticide residue

Concentration (ng per g of leaf)

Common Solution to Positive Skewness - Log Transform

Histogram of Transform of pesticide residue

Log of Concentration (ng per g of leaf)

Log Transform Data in GraphPad

1.Select 'Y=Log(Y)' transformation

Geometric Mean

To calculate a geometric mean:

- 1. Log transform data
- 2. Calculate mean of log transformed data
- 3. Take the antilog of the mean of the log transformed data

geometric mean =
$$10^{\left[\frac{1}{n}\sum_{i=1}^{n}\log a_i\right]}$$

Calculate 95% Based on Transformed Data

- 1. Log transform the data
- 2. Calculate the 95% CI based on the log transformed data
- Take the antilog of the lower and upper bounds of the 95% CI calculated on the log transformed data

Log Transform Gives Asymmetrical Limits

GraphPad will calculate CI for the geometric mean automatically

Other transformations

- Log transformation with an added constant if
 the data contains zeros or negative values, it is
 impossible to log transform the data. The usual
 solution is to add a fixed value to each point prior
 to log transforming the data.
- Square-root transformation Data that represent counts tend to be positively skewed. Transform the data by taking the square root.

What did we learn?

- Confidence intervals give a sense of how accurately we estimated the population mean from our sample mean.
- Level of confidence refers to the number of intervals generated in the same manner that would cover the true mean.
- Larger SD results in larger CI, smaller sample size results in larger CI, higher level of confidence results in larger CI
- 95% CI for the difference between two means takes into account the error in estimating both means.
- Deviations from normality can cause CI to be incorrect
- Data transformation can alleviate the problems of non-normality