APRESENTAÇÃO PEDAGÓGICA

COMO ENSINAR A MEDIÇÃO AUTOMATIZADA DE TEMPERATURA E UMIDADE UTILIZANDO ESP32

AUTOR: DAVID KOLLER FILIU

DATA: 23/07/2025

VERSÃO: 1.0

AGENDA

01	Pré-requitos
02	Etapas
03	Metodologia
04	Duração
05	Materiais
06	Estratégias de engajamento

1) PRÉ-REQUISITOS

Hardware	Software	Conhecimentos Prévios	
 Computador; Celular; ESP32 DevKit Sensor DHT22. LCD I2C 16×2. Módulo microSD + cartão. 2 LEDs ou relés. Cabos jumper e protoboard. 	 Arduino IDE (versão ≥1.8.13) Conta e acesso aos simuladores: WOKWI. BLYNK. 	 Noções básicas de programação em C++. Conceitos básicos de eletrônica. 	

2) ETAPAS DO PROJETO

Concepção

Apresentar o desafio: medir, exibir e registrar temperatura/umidade

Prototipação

Montar circuito básico e testar leitura

Armazenamento & Alertas

Integrar gravação em microSD (log.txt). e programar alertas via Blynk.

Encerramento e Reflexão

Demonstração final em grupos.

Feedback cruzado e planejamento de extensões.

Planejamento

Desenhar diagrama de blocos: DHT22 \rightarrow ESP32 \rightarrow LCD \rightarrow microSD \rightarrow Blynk.

Implementação IoT

Autenticar ESP32 no Wi-Fi e plataforma Blynk.

Teste, Depuração e Validação

Realizar sessões de bug hunting em duplas.

Testar cada módulo isoladamente

- Aprendizagem Baseada em Projetos (PBL)
- Scrum Educacional com sprints curtos e papéis rotativos
- Jigsaw Sensor: subgrupos de especialistas por componente eletrônico
- Pair Programming para codificação e debug
- Bug Hunt: troca de códigos para identificação de erros
- Peer Review: feedback estruturado entre grupos
- Microprojetos/desafios curtos: Recompensa imediata com pontos ou até elogios públicos.

4) DURAÇÃO ESTIMADA

Sessão		Duração
1	Desafio, planejamento e prototipagem	3 horas
2	Integração de sensores e exibição local	3 horas
3	Armazenamento em microSD e alertas Blynk	3 horas
4	Demonstração, peer review e retrospectiva	3 horas

5) MATERIAL DIDÁTICO

- Slides de introdução ao ESP32 e Blynk
- Fichas de cheat-sheet: pinos ESP32 e funções Blynk
- Exemplos de código comentados
- Quadro colaborativo (Miro) para backlog

6) ESTRATÉGIAS DE ENGAJAMENTO

- Feedback Contínuo: mini-quizzes ao final de cada módulo
- Rotação de Papéis: mantém todos ativos e responsabilizados
- Apoio Visual: diagramas de conexão e mapas mentais
- Debug Guiado: professor demonstram fluxo de solução de erros
- Documentação Coletiva: Google Class/Docs para registrar aprendizados
- **Diagnóstico Individual:** Para mapear forças e dificuldades e ainda entender medos, interesses e ritmos.

