Innovative approaches to 3D motion control in plasmonic nanomotors with optical pulling forces

G. Serrera^{1,*}, Y. Y. Tanaka² & P. Albella¹

- ¹ Group of Optics, Department of Applied Physics, University of Cantabria.
- ² Research Institute for Electronic Science, Hokkaido University.

Email: * guillermo.serrera@unican.es

ORGANIZERS:
L BAUSA (UAM) - M. RAMÍREZ (UAM)

UNIVERSIDAD AUTÓNOMA DE MADRID
(FACULTAD DE CIENCIAS, SALA DE CONFERENCIAS, MODULO O, MADRID)

ering forces from plasmonic nanoantennas or dielectric

CONFERENCIA ESPANOLA DE NANOFOTONICA

Research Institute for

Electronic Science

Hokkaido University

Abstract: Recent advancements in nanophotonics have led to the use of scattering forces from plasmonic nanoantennas or dielectric metasurfaces to enable transverse two-dimensional motion [1-3]. However, achieving control over longitudinal motion remains a significant challenge. Here, we introduce a novel nanomotor design that facilitates both transversal and longitudinal motion control. Our system relies on optical pulling forces by an azimuthally polarized Bessel beam [4] on a glass cylinder, while asymmetric plasmonic dimers drive lateral motion under plane wave illumination.

Lateral movement powered by asymmetric scattering

Optical pulling by an azimuthally polarized Bessel beam

Optical pulling stability and diffusion simulations

- Optical pulling is stable to displacements and rotations.
- Non-trivial dynamics: mismatch between force and torque potential wells \rightarrow Need for diffusion simulations.
- Cross-talk between torques and transverse forces make the nanomotor travel mainly through the optical pulling region \rightarrow Stable pulling for long times.

References

- [1] Y. Y. Tanaka et al., *Sci. Adv.*, **6**, 45 (2020).
- [2] X. Wu et al., *Nat. Nanotech.* **17,** 5 (2022).
- [3] D. Ardrén et al., *Nat. Nanotech.* **16,** 9 (2021).
- [4] X. Li et al., *Sci. Adv.*, **5**, 3 (2019).

Conclusions

- Our design allows for independent control of transversal and longitudinal motion.
- Despite the non-trivial lateral forces and torques, optical pulling is stable for long illumination times.
- This design can be further optimized or extended with other structures/materials.