

Tutorium 42, #2

Max Göckel- uzkns@student.kit.edu

Institut für Theoretische Informatik - Grundbegriffe der Informatik

Rückblick: Alphabete

Definition

Ein Alphabet ist eine *endliche, nichtleere* Menge aus Zeichen / Symbolen. Was dabei ein Zeichen ist, ist nicht eingeschränkt.

Beipielalphabete:

- 1. {H, a, n, d, y}
- 2. {Handy}
- 3. {Ha, ndy}

Können alle "Handy" erstellen/schreiben

Worte

Definition

Ein Wort w aus einem Alphabet A ist eine Folge von Zeichen aus A

Beipielworte aus $A = \{H, a, n, d, y, -, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0\}$

- 1. Handy
- 2. H1a2n3d4y5
- 3. —aa——HH1-
- 4. 017341856397

Folgen

Definition

 Eine Folge ist eine Auflistung von Objekten, welche fortlaufend nummeriert sind.

Wofür brauchen wir Folgen?

- 13tes Zeichen aus dem Wort? e.
- Länge des Wortes? 13.

Worte als Abbildungen

Definition

■ Ein Wort ist eine surjektive Abb. $w : \mathbb{Z}_n \to B$ mit $B \subseteq A$

formal: w = Handy $w : \mathbb{Z}_5 \rightarrow \{H, a, n, d, y\}$ mit w(0) = H, w(1) = a, w(2) = n, w(3) = d, w(4) = y

Leerzeichen

Achtung

 Ein Leerzeichen ist auch nur wieder ein Symbol. es trennt Wörter nach der Definition nicht

Beipielwort aus A = {H, a, I, o, W, e, t, } ist w = Hallo Welt

- Eine Folge von Zeichen
- Ein Wort, nicht zwei (auch wenn durch Leerzeichen getrennt)
- Leerzeichen manchmal auch _ geschrieben

Leeres Wort

Definition

lacksquare Das leere Wort ist die Abbildung $\epsilon: \mathbb{Z}_0 o \{\}$

Das leere Wort hat Länge $|\epsilon|$ = 0, da es aus 0 Zeichen besteht

Konkatenation

Definition

- $|w_1| = m \text{ und } |w_2| = n$
- $\mathbf{w}_1 \cdot w_2 : \mathbb{Z}_{m+n} \to A_1 \cup A_2. \ i \mapsto \left\{ egin{array}{ll} w_1(i), & 0 \leq i < m \\ w_2(i-m), & m \leq i < m+n \end{array} \right.$
- Hintereinanderschreiben von 2 Worten
- Gtrennt durch einen ., kann auch weggelassen werden
- Zuerst die m Buchstaben des ersten Wortes, dann die n Buchstaben des zweiten Wortes
- leeres Wort ϵ ist neutrales Element der Konkatenation $(\mathbf{w} \cdot \mathbf{\epsilon} = \mathbf{\epsilon} \cdot \mathbf{w} = \mathbf{w})$
- Konkatenation ist nicht kommutativ, aber assoziativ

Potenzen

Definition

A* ist die Menge aller Wörter über dem Alphabet A

Definition

Aⁿ ist die Menge aller Wörter der Länge n über dem Alphabet A

Definition

 w^n ist die n-fache Aneinanderreihung des Wortes w mit $w^0 = \epsilon$

Aussagen

Was sind sinn sinn volle Aussagen?

- "Dieses Tutorium findet wöchentlich statt."
- $f: \mathbb{N}_+ \to \mathbb{R}$, $x \mapsto 2x$ ist surjektiv.
- Wenn es regnet wird die Straße nass.
- Grün ist toll
- Regnet es?

Aussagen

Was sind sinn sinn volle Aussagen?

- "Dieses Tutorium findet wöchentlich statt." Wahr
- $f: \mathbb{N}_+ \to \mathbb{R}$, $x \mapsto 2x$ ist surjektiv. **Falsch**
- Wenn es regnet wird die Straße nass. Wahr
- Grün ist toll Keine Ahnung
- Regnet es? Wo?

Aussagen: Grundlagen

Aussagen sind entweder objektiv wahr oder falsch, nichts dazwischen. Man kann sie mit Ja oder Nein beantworten.

Aussagen: Verknüpfung

Wir können die Grundaussagen miteinander verknüpfen. Seien A, B zwei Aussagen so gibt es folgende Verknüpfungen:

					A o B	$ extbf{A} \leftrightarrow extbf{B}$
f	f	W	f	f	W	W
f	W	w	W	f	W	f
W	f	f	W	f	f	f
W	W	f	W	f f f W	W	W

Aussagen: Verknüpfung

- Die Verknüpfung $A \rightarrow B$ entspricht der Verknüpfung $\neg A \lor B$
- Die Verknüpfung $A \leftrightarrow B$ entspricht der Verknüpfung $(A \rightarrow B) \land (B \rightarrow A)$
- Die Reihenfolge der Verknüpfungen ist: (,) vor ¬ vor ∨ vor ∧ vor → vor ↔

Aufgabe

Wertet die komplexe Aussage mittels Tabelle aus:

$$\neg \textit{A} \land (\textit{B} \rightarrow \textit{A}) \leftrightarrow \neg (\textit{A} \lor \neg \textit{B})$$

		1	9	2	6	3	10	8	4	7	5
Α	В	$\neg A$	\wedge	(B	\rightarrow	A)	\leftrightarrow	_	(A	\vee	¬ B)
f	f	w	W	f	W	f	f	f	f	W	W
f	W	w	f	W	f	f	f	w	f	f	f
W	f	f	f	f	W	W	W	f	W	W	W
W	W	f	f	W	W	W	w	f	W	W	f

Quantoren

es gibt 2 Quantoren:

- ∀: Für alle/jedes ... gilt, dass...
- ∃: Es gibt (min.) ein..., sodass...

Aufgabe

Formulert die Aussagen mittels Prädikatenlogik (d.h. mit Quantoren und Konnektiven):

Sei V die Menge aller Vögel, Eltern(v) die Menge der Eltern des Vogels v, Farbe(v) die Farbe von v

- Jeder Vogel kann fliegen, wenn alle Eltern fliegen können
 - $ightharpoonup \forall v \in V : \mathsf{Eltern}(\mathsf{v}) \ \mathsf{k\"{o}}\mathsf{n}\mathsf{n}\mathsf{e}\mathsf{n} \ \mathsf{fliegen} \to \mathsf{v} \ \mathsf{kann} \ \mathsf{fliegen}.$
- Alle schwarzen Vögel können fliegen
 - $\forall v \in V$: Farbe(v)=schwarz \rightarrow v kann fliegen.

Interpretationen

Definition

eine Interpretation I ist eine Belegung der Variablen in der Formel z.B. I(A)=w und I(B)=f

val_I(F) gibt den Wahrheitswert der Formel F zur Belegung I an. z.B. $val_I(A \rightarrow B) = f$ mit obigem I

eine aussagenlogische Formel ist entweder

- **Nicht erfüllbar**, wenn es keine Interpretation gibt für die sie wahr ist.
- **Erfüllbar**, wenn es eine Interpretation gibt für die sie erfüllbar ist.
- **Nicht Allgemeingültig**, wenn sie für nicht jede Interpration wahr ist (also für min. 1 Interpretation falsch)
- Allgemeingültig, wenn sie für jede Interpretation wahr ist.