Binärlogarithmus

$$\log_2 x = \frac{\log x}{\log 2}$$

Entscheidungsgehalt

$$H_0 = \log_2 K$$
 mit $K =$ Anzahl Symbole

Informationsgehalt

$$I(a_k) = -\log_2 P(a_k)$$
 [bit]

- Je kleiner $P(a_k)$, desto größer I.
- Wenn $P(a_k) = 1$, dann $I(a_k) = 0$.

Entropie - mittlerer Info.gehalt

$$H = -\sum_{k=1}^K \left[P(a_k) \cdot \log_2 P(a_k)
ight] ext{[bit]}$$

- ullet Wenn alle Sym. gleich Wahrscheinlich $I(a_k)=H_0=H$
- Max bei $P(a_k) = \frac{1}{K}$

Redundanz

$$R = H_0 - H$$
 [bit]

$$ullet$$
 relative Red. $oldsymbol{R}=rac{oldsymbol{H}_0-oldsymbol{H}}{oldsymbol{H}}$

Ideale Codewortlänge

$$n = -\log_2 P(a_k)$$
 [bit]

Mittlere Codewortlänge

$$\overline{m} = \sum_{k=1}^K \left[P(a_k) \cdot m_k
ight] ext{[bit]}$$

Kraft'sche Ungleichung

$$\sum_{k=1}^K 2^{-m_k} \leq 1$$