Table of Physical Constants

Avogadro constant Gravitational constant	$N_{\rm A}$,	$= 6.022140857 \cdot 10^{23} \mathrm{mol}^{-1}$	
Cravitational constant		- 0.022140037 · 10 III01	
Gravitational constant	G	$= 6.667_4 \cdot 10^{-11} \mathrm{N} \mathrm{m}^2/\mathrm{kg}^2$	
Electric field constant	ε_0	$= 8.854188 \cdot 10^{-12} \mathrm{A}\mathrm{s/V}\mathrm{m}$	
Magnetic field constant	μ_0	$= 12.566370 \cdot 10^{-7} \mathrm{V} \mathrm{s/A} \mathrm{m}$	
Velocity of light in vacuum	c	$= (\varepsilon_0 \mu_0)^{-1/2} = 2.997925 \cdot 10^8 \text{m/s}$	
Wave resistance of vacuum	$Z_{ m el}$	$= (\mu_0/\varepsilon_0)^{1/2} = 376.73 \text{Ohm}$	
Relative atomic mass of the proton	$(A)_p$	$= 1.007277 u^*$	
Relative atomic mass of the neutron	$(A)_n$	$= 1.008665 u^*$	
Rest mass of the proton	m_p	$= 1.672621 \cdot 10^{-27} \mathrm{kg}$	
Rest energy of the proton	$(W_p)_0$	$= 9.382720 \cdot 10^8 \mathrm{eV}$	
Rest mass of the electron	m_0	$=9.101383 \cdot 10^{-31} \mathrm{kg}$	
Rest energy of the electron	$(W_e)_0$	$= 5.10999 \cdot 10^5 \mathrm{eV}$	
Ratio of proton mass/electron mass	m_p/m_0	= 1836.152	
Elementary electric charge	e	$= 1.602177 \cdot 10^{-19} \mathrm{As}$	
Specific charge of the electron	e/m_0	$= 1.760366 \cdot 10^{11} \mathrm{A}\mathrm{s/kg}$	
Faraday constant	F	= 96 485.332 ₉ A s/mol	
Boltzmann's constant	k	$= 1.380648 \cdot 10^{-23} \mathrm{W} \mathrm{s/K}$	
		$= 8.617325 \cdot 10^{-5} \text{eV/K}$	
Stefan-Boltzmann constant	σ		
Planck's constant	h	$= 6.626070 \cdot 10^{-34} \mathrm{W s^2}$	
		$= 4.135667 \cdot 10^{-15} \text{eV s}$	
Bohr magneton	μ_B	$= he/4\pi m_0$	
~ · · · · ·		$= 9.274010 \cdot 10^{-24} \mathrm{Am}^2 (= \mathrm{J/T})$	
Classical electron radius	$r_{ m el}$	$= \mu_0 e^2 / 4\pi m_0 = 2.820 419 \cdot 10^{-15} \text{m}$	
Rydberg frequency	R_{y}	$= e^4 m_0 / 8\varepsilon_0^2 h^3 = 3.289842 \cdot 10^{15} \mathrm{s}^{-1}$	
Rydberg constant	R_{y}^{*}	$= e^4 m_0 / 8\varepsilon_0^2 h^3 c = 10973731.6\mathrm{m}^{-1}$	
Compton wavelength	λ_C	$= h/m_0c = 2.426310 \cdot 10^{-12} \mathrm{m}$	
Sommerfeld's fine structure constant	α	$= e^2/2\varepsilon_0 hc = 1/137.036$	
	Ele	$\alpha = \frac{\text{Electron's velocity } v_0 \text{ in the smallest H orbit}}{\text{Velocity of light } c}$	
	$\alpha = -$		

^{*} u is the atomic mass unit, $u = 1.660539 \cdot 10^{-27}$ kg. See http://physics.nist.gov/cuu/Constants/index.html.

Solutions to the Exercises

I. Electromagnetism

- **1.1.** $I = 4.98 \,\mathrm{A}$
- **1.2.** 745 hours
- **1.3.** The voltmeter is connected in series with a resistance of 99 Ω .
- **1.4.** $R_{\text{shunt}} = 5.025 \,\text{m}\Omega$
- **1.5.** $R = U/(I U/R_V)$ (If OHM's law does not hold for the conductor, then R depends on I.)
- **1.6.** Two values of R_2 fulfill this condition: $R_2 = 1 \Omega$ and 4Ω !
- **1.7.** The battery has an internal resistance R_i of 1Ω , $U_I = 1.25 \text{ V}$
- **1.8.** N = 147
- **1.9.** $I = 0.167 \,\mathrm{A}$
- **1.10.** $U = 6.8 \,\mathrm{kV}$
- **1.11.** a) I = 1.25 A, b) $\dot{Q}_2/\dot{Q}_1 = 3$
- **2.1.** a) $\varrho = -\sigma/h$; b) $E = -(1/\varepsilon_0)\varrho(h-x)$, up to the height h, E is negative, and for $x \ge h$, E = 0; c) $U_x = -(1/\varepsilon_0)\varrho(x^2/2 hx)$; d) $U = (1/\varepsilon_0)\varrho h^2/2$
- **2.2.** $C = 356 \,\mu\text{F}$
- **2.3.** $C = 0.9995 \,\mathrm{nF}$
- **2.4.** $C_{\rm V} = 0.9 \, \rm nF$
- **2.5.** $N_{\rm e} = 5.54 \cdot 10^{10} \, {\rm cm}^{-2}$
- **2.6.** $C/l = 93 \,\mathrm{pF/m}$

- **2.7.** a) 1.37 m from Q_1 , on the side away from Q_2 ; b) 25 cm away from Q_1 , between the two charges
- **2.8.** $\int U dt = 10^{-5} \text{ V s}$
- **2.9.** a) $t_{1/2} = RC \ln 2$; b) $C = 44.8 \, pF$
- **2.10.** With I = dQ/dt and U = -Q/C, we find $dQ/dt = -Q/RC + U_g/R$, $(U_g = 157 \text{ V})$, with the solution $Q = Ae^{-t/RC} + U_gC$, $(A = U_{\text{max}} U_g, U_{\text{max}} = 220 \text{ V})$. It then follows that $\tau = 1.16 \text{ s}$.
- **2.11.** $W_{\text{Batt}} = U_0 \int I \, dt = U_0 Q = U_0^2 C$, $W_{\text{C}} = (1/2) U_0^2 C$ (Eq. (3.19)). Half of the energy supplied by the battery is therefore converted to heat in the resistor, independently of its resistance! This result however does not hold for R = 0, since then the condenser would be charged within an infinitely short time without allowing any energy to be converted to heat. See Chap. 10, "Electrical Oscillations".
- **2.12.** 17 plates
- **2.13.** $\varepsilon = 2.8$
- **2.14.** 6.5 % of the volume between the plates is filled with metal. This reduces the spacing of the plates effectively by 6.5 %, i.e. the capacitance is increased by about 7 %. This leads to $\varepsilon = 1.07$.
- **2.15.** Corresponding to Eqns. (2.11) and (2.25), the capacitance of the completely filled condenser would be $C = \varepsilon \varepsilon_0(a \ b/l)$, and thus the energy stored in it would be $W_e = (1/2)\varepsilon \varepsilon_0(U/l)^2 a \ bl$. In the present experiment, the energy thus increases when h increases, by an amount $\Delta W_e = (1/2)(\varepsilon 1)\varepsilon_0(U/l)^2 h bl = Fh$. The liquid is thus pulled up into the condenser with a constant force F. h is then found by setting F equal to the opposite force of the weight of the liquid which has been pulled up: $h = (1/2)(\varepsilon 1)\varepsilon_0(U/l)^2/(\varrho g)$.
- **2.16.** The electrical energy is $W_e = (1/2)\varepsilon\varepsilon_0(U/l)^2A l$. This leads (compare Eqns. (3.17) and (3.11) in Sect. 3.7) to the force $F = (1/2)\varepsilon\varepsilon_0(U/l)^2A$.
- **3.1.** The weight of the brass plate is $F = 1.6 \,\mathrm{N}$. Using Eq. (3.12), this leads to $l = 50 \,\mu\mathrm{m}$ (this corresponds roughly to the thickness of a human hair; see Vol. 1, Sect. 1.2). The roughness of the polished stone causes an average spacing which is however certainly much smaller, so that a considerable fraction of the potential drop must occur within the stone!
- **3.2.** $R = 80 \, \text{nm}$
- **3.3.** The capacitance C and thus also the energy W_e vary by a factor n. If n < 1, then energy will be pumped back into the current source.
- **5.1.** $\int U dt = 3.2 \cdot 10^{-4} \,\mathrm{V}$ s, in good agreement with the observed 10 scale divisions
- **5.2.** a) u = 2.04 m/s; b) $\int U dt = 3.9 \cdot 10^{-5}$ V s, in good agreement with the observed 1.2 scale divisions $(3.8 \cdot 10^{-5} \text{ V s})$

- **5.3.** a) $B_h = 2.5 \cdot 10^{-5} \, \text{V s/m}^2$; b) $\varphi = 66^\circ$ (In Göttingen, the horizontal component of the earth's magnetic field points to the north and its vertical component points downwards).
- **5.4.** $\nu = 1.06 \,\mathrm{Hz}$
- **5.5.** The voltmeter indicates zero! (See also the first paragraph in small print in Sect. 5.5). The pilot could indeed detect an electric field, e.g. by carrying out the experiment of W. WIEN described at the end of Sect. 7.3, but he cannot detect the voltage of U = 0.8 V between the wing tips as given by Eq. (5.9), since it will be compensated by the charges which collect on the wing tips. (The "insulated wire" corresponds to the conductor CA in Fig. 7.2).
- **5.6.** The angle between the field vector \mathbf{B} and the surface vector \mathbf{A} is $\alpha = 2\pi \nu t$. From this, it follows from Eq. (5.10) that $U = -d/dt(BAN\cos(2\pi \nu t)) = 2\pi \nu BAN\sin(2\pi \nu t)$, i.e. an AC voltage, as described in Chap. 8 (Fig. 9.3). Note that this result does not depend on the frame of reference.
- **6.1.** a) I = 93 A ($\int H \, ds = 1.85 \text{ scale divisions}$); b) measured: $H = 1360 \, \text{A/m}$, calculated with Eq. (4.1): $H = 1610 \, \text{A/m}$; c) $\int H \, ds = 500 \, \text{A}$
- **6.2.** a) Since the magnetic potentiometer measured outside all the remaining coils along a closed path (Fig. 6.7), we find $U_{\text{mag}} = 0$; b) From a), it follows that $U_{\text{mag,i}} = -U_{\text{mag,a}}$.
- **6.3.** If we combine the two methods of measuring the magnetic potentials $U_{\rm mag,a}$ and $U_{\rm mag,i}$, a closed path results. Around this path, the magnetic potential is always equal to zero unless the path encloses a current. This is the case here, since, as mentioned in Sect. 6.3, each tunnel bored through the material does not pass through individual molecules but rather between them; i. e. no molecular currents can be included. We thus have $U_{\rm mag,i} = -U_{\rm mag,a}$. The same result follows also from the MAXWELL equation (14.12). (See also Exercise 6.2.)
- **8.1.** $B = 3.37 \cdot 10^{-4} \,\mathrm{T}$
- **8.2.** $M_{\text{mech}} = 0.1 \,\text{N}\,\text{m}$
- **8.3.** From the area which is marked with dashed lines, we obtain the flux $\Phi \approx 1.5 \cdot 10^{-6} \, \text{V}$ s. The magnetic flux measured in Video 5.1 is $8 \cdot 10^{-6} \, \text{V}$ s.
- **8.4.** $W_{\text{magn}} = (1/2)\mu_0(N^2/l)I^2\pi r^2$. W_{magn} increases when l becomes smaller. In order to prevent this, we require a force of $F = 10^{-2} \,\text{N}$.
- **10.1.** $L = 0.55 \,\mathrm{H}$
- **10.2.** $L_{\rm N} = N^2 L_1$
- **10.3.** $R = 3.466 \,\Omega$
- **10.4.** $I_{\text{eff}} = 0.796 \,\text{A}$
- **10.5.** $v = 50 \,\mathrm{Hz}$
- **10.6.** $L = 123 \,\mathrm{mH}$

- **10.7.** $v = 97.5 \,\mathrm{Hz}$
- **10.8.** $L = 158 \,\mathrm{mH}$
- **10.9.** $LC = 2.53 \cdot 10^{-8} \text{ s}^2$
- **10.10.** a) $Z_{\rm RL}=849\,\Omega$, $\varphi_1=87.4^\circ$ (the current in the *RL* branch "lags behind" the applied voltage); b) $I_{\rm RL,0}=86\,{\rm mA}$, $I_{\rm C,0}=84.85\,{\rm mA}$, $I_0=86\,{\rm mA}\cdot\sin2.6^\circ=3.9\,{\rm mA}$, $\varphi_2=15.2^\circ$; c) It follows from these values that $Z=73\,{\rm V}/3.9\,{\rm mA}=1872\,\Omega$, and from Eq. (10.33), we find $Z=1840\,\Omega$, in agreement with the value found in b) (compare this value also with the one that can be read off at the maximum of the curve in Fig. 10.20).
- **10.11.** $\Lambda = 0.139$, in agreement with the value in Fig. 10.20.
- **10.12.** a) The active current is 3.77 mA and the reactive current is 1.0 mA; b) $\dot{W} = (1/2) U_0 I_0 \cos 15^\circ = 0.138 \text{ W}, \dot{W}_{RLC} = (1/2) (I_{RL,0})^2 R = 0.141 \text{ W},$ and thus within the error limits, the values are the same.
- **10.13.** The current in the primary coil is $I_p = I_{p,0} \sin \omega t$, with $I_{p,0} = U_{p,0} l_p / (\mu_0 \omega N_p^2 A_p)$ (Eq. (10.4)). From this we find, with Eqns. (4.1) and (5.4), the flux density B of the magnetic field from the primary coil, and with it, applying the law of induction (Sect. 5.6), the voltage across the secondary coil, $U_s = N_s (-dB/dt) A_p$. This leads finally to Eq. (10.39).
- **10.14.** a) Owing to the phase difference of 90° between the current and the voltage, in the primary circuit we expect $\dot{W} = 0$. b) With a finite value of R, a current will flow in the secondary circuit. The thermal energy from JOULE heating in the secondary circuit then must come from the primary circuit. The mechanism for this is that the current in the secondary circuit induces an additional current in the primary circuit, so that the phase difference there is no longer 90°, and a finite active current results.
- **11.1.** The voltage across the condenser is $U_C = Q/C$. The voltage across the coil is $U_L = L \, dI/dt = L \, d^2 Q/dt^2$. These voltages are equal and opposite at all times: $Q_C/C + L \, d^2 Q/dt^2 = 0$. This differential equation can be solved by the trial function $Q_C = Q_{C,0} \cos \omega t$. This then yields $\omega = \sqrt{(1/LC)}$. Thus, we find that $U_C = (Q_0/C) \cos \omega t$ and $I = dQ/dt = -U_{C,0}\omega C \sin \omega t$.
- **11.2.** $U_L = L \, \mathrm{d}I/\mathrm{d}t$ (Eq. (10.16)). Therefore, $U_{L,1} = L_1 \, \mathrm{d}I/\mathrm{d}t$ and $U_L = (U_{L,1} + U_{L,2}) = (L_1 + L_2) \, \mathrm{d}I/\mathrm{d}t$. From this, it follows that $|U_{L,1}/U_L| = L_1/(L_1 + L_2)$. The coils thus act as a voltage divider. An application is shown by the experiment described in Fig. 11.7. With the correct choice of the inductance of the wire loop relative to the overall inductance of the oscillator circuit, a voltage will be induced which causes the lamp to light up without burning out.
- **11.3.** With the values of the capacitance $C = 3.2 \,\mathrm{nF}$ and the inductance $L = 0.048 \,\mathrm{mH}$, we find the frequency to be $v_0 = 400 \,\mathrm{kHz}$.
- **12.1.** The rectifier allows only half of the sinusoidal current to pass. The throttle coils in Fig. 12.21 pass only the low-frequency FOURIER components of this current (for FOURIER analysis, see Vol. 1, Sect. 11.3). These components include a direct-current contribution which is proportional to the amplitude I_0 , and it will be indicated by the galvanometer.

- **12.2.** a) Using the trial function $E_x = E_{x,0} \sin \omega (-t + z/c)$, superposition with the incident wave gives $E_{\text{tot}} = 2E_{x,0} \sin \omega (z/c) \cos \omega t$, that is a standing wave with a node at z = 0, as seen in Fig. 12.28. b) The magnetic component of the incident wave is described by the term $B_y = -B_{y,0} \sin \omega (t + z/c)$, and thus its amplitude points in the negative y direction (right-handed coordinate system, wave propagation in the negative z direction). The reflected magnetic component is given by $B_y = B_{y,0} \sin \omega (-t + z/c)$ (in phase with the electrical component; the sign follows again from the right-handed coordinate system). Superposition of the two magnetic components gives $B_{\text{tot}} = 2B_{y,0} \cos \omega (z/c) \sin \omega t$, i.e. again a standing wave, but now it has a maximum (wave crest) at the reflecting surface (z = 0), with the amplitude $2B_{y,0}$.
- **12.3.** a) E = 220 V/m, $B = 1.8 \cdot 10^{-4} \text{ V s/m}^2$, $S = 31.5 \text{ kW/m}^2$; the POYNTING vector points towards the interior of the spiral, as if the thermal power were deposited in the spiral from outside. b) $b = 1.35 \text{ kW/m}^2$, E = 713 V/m, $B = 2.38 \cdot 10^{-6} \text{ V s/m}^2$ (also effective values).
- **12.4.** The electromagnetic wave which is radiated from the outside and is used to excite the small dipoles of the water molecules (Fig. 12.6) has a wavelength of $\lambda = 3$ m. With its velocity of propagation, $c = 3 \cdot 10^8$ m/s, we find its frequency to be $\nu = 10^8$ Hz. The dielectric constant of water at this frequency is $\varepsilon = 81$ (Table 13.2 and Fig. 13.11); thus its index of refraction is n = 9.0. It follows from this that R = 0.64 (at normal incidence). 36% of the incident radiation thus penetrates into the water; this is sufficient to excite the small dipoles.
- **13.1.** The energy changes from $(1/2)QU_0$ to $(1/2)QU_m$, where $U_m = U_0/\varepsilon$. The excess energy is taken up by the person who places the plate into the condenser.
- **13.2.** The voltage is $U' = E(l-d) + (E/\varepsilon)d$ with the electric field E = U/l. Solving for ε , we find $\varepsilon = d/(d + l(U'/U 1))$. In this example, the result is $\varepsilon = 5$.
- **13.3.** The voltage between the points 1 and 2 is zero when the voltage drop over the capacitance C_1 is equal to that over the resistance R_1 . Since the charges Q on the two condensers are then equal, we have $Q/C_1 = I/R_1$ and $Q/C_x = I/R_2$. From this, it follows that $C_x = C_1R_1/R_2$.
- **13.4.** The electric field E experiences no depolarization (Eq. (13.11)). It follows that $D = \varepsilon D_0$. The displacement density in the rod is thus larger than in the space outside it. The concept of "depolarization" refers to the field E (see also "demagnetization", Sect. 14.6)
- **13.5.** $P = 3((\varepsilon 1)/(\varepsilon + 2))\varepsilon_0 E_0$ (compare this result with the magnetization of a sphere, Eq. (14.18))
- **13.6.** $p_p = 3.04 \cdot 10^{-30} \, \text{A s m}$, and thus only half a large as measured in the gas phase. The reason for this discrepancy is that in deriving the CLAUSIUS-MOSSOTTI equation within the "cavity", the interactions between neighboring molecules were not taken into account; that is, for water, the hydrogen bonds between the water molecules (see H. Fröhlich, "Theory of dielectrics", Oxford University Press (1949), p. 137).
- **13.7.** In paraelectric materials, ε depends on the temperature, both due to the equation of state of ideal gases and to the LANGEVIN-DEBYE theory. For the electric susceptibility, one finds $\chi_e = \varepsilon 1 = (1/3\varepsilon_0)p_p^2/(kT)^2 \cdot p$ (to distinguish it from the pressure p, the dipole moment is denoted here by p_p). This explains the difference between the two values of χ_e to better than 1%.

- **13.8.** a) From Fig. 13.11, we read off the dielectric constant at this frequency, thus obtaining the index of refraction n=9.0. It then follows that $\lambda_{\rm W}=1.36\,{\rm cm}$. b) $\dot{W}=697\,{\rm W.~c}$) $S=11.6\,{\rm kW/m^2}=8.6\,E_{\rm e}$ (this is about the same as the value of the solar constant on the planet Mercury!) (For reflection losses, see Exercise 12.4).
- **14.1.** $\chi_{\rm m} = -1.42 \cdot 10^{-5}$. The permeability μ is thus only slightly greater than 1.0, so that the demagnetization effect can be neglected.
- **14.2.** a) Analogously to Eq. (13.15), we have here $H = H_0 + H_{\rm m}$. Comparing with Eq. (14.18), we then find $H_{\rm m} = -M/3 = -((\mu 1)/(\mu + 2))H_0$. b) From Eq. (14.7), it follows that $B_{\rm m} = (2/3)\mu_0 M$.
- **14.3.** $H_i = 3\mu_a H_a/(\mu_i + 2\mu_a)$; from this, we find $\mu_i = 1$ and $H_a = H_0/\mu_a$: $H_i = 3H_0/(1 + 2\mu_a)$, and for $\mu_a \gg 1$: $H_i \approx (1.5/\mu_a)H_0$.
- **14.4.** $F_0 = 600 \,\mathrm{N}$, $F_\mathrm{d} = 17.6 \,\mathrm{N}$. Due to the hysteresis of the iron (Fig. 14.7), we must consider these values to be only rough estimates.
- **14.5.** a) and b): Following the rapid change of the current during the first second, both measurements show an exponential variation with a relaxation time of $\tau_r = 10 \text{ s. c}$) Here, also, following an initial rapid change, an exponential variation begins, but with a relaxation time of 110 s. Only near the saturation value does the rate of change become more rapid and again approaches a relaxation time of 10 s. For a qualitative explanation: During the initial rapid variation, of which we can see an inkling even in experiment c), the magnetic domains cannot follow. The coil thus has a small inductance during this variation. Thereafter, the reversals of the domains delay the rate of change of the current in the coil in the same manner as the changes of the current in the coil delay its rate of change due to induction. The coil now has a larger inductance because of the iron core. From experiments a) and b), we obtain $L = \tau_r R = 1300 \,\mathrm{H}$. In experiment c), the delay of the current changes in the coil is even greater, since in the first 60 seconds, the magnetic domains (remanent magnetization) rotate through 180°, causing the induced voltage which delays the current change to be increased. This results in a still larger inductance: $L = 14\,000\,\mathrm{H}$. Only near the end of the increase in the current, after the remanent magnetization has been completely overcome, does the rate of change again correspond to the same time constant as in experiments a) and b); L is thus again smaller.
- **14.6.** In Exercise 14.2, it was shown for a magnetized ball that the field $H_{\rm m}$ in its interior is given by $H_{\rm m} = -NM$ (N is the demagnetization factor). Starting from Eq. (14.14), it can be shown that the same result holds for every ellipsoid of rotation which is magnetized parallel to its axis of rotational symmetry. For the disk with l/d = 0.1, we find N = 0.863 (Table 13.4). For a long rod ($l/d = \infty$), N = 0, and the field $H_{\rm m}$ is thus zero. From this, with Eq. (14.7) we find for the field $B_{\rm m}$ in the disk the value $B_{\rm m} = \mu_0 (M 0.863M) = 0.137 \mu_0 M$, and for the rod, $B_{\rm m} = \mu_0 M$. These flux densities continue into the space outside the material, since div B = 0 (MAXWELL's equation (14.13)).

II. Optics

16.1. From the expressions for the law of refraction on both sides of the prism, $\sin \alpha_1 = n \cdot \sin \beta_1$ and $\sin \alpha_2 = n \cdot \sin \beta_2$, we obtain from the sum and the difference: $\sin \alpha_1 \pm \sin \alpha_2 = n \cdot (\sin \beta_1 \pm \sin \beta_2)$. Rearranging, this gives $\sin((\alpha_1 + \alpha_2)/2) \cdot \cos((\alpha_1 - \alpha_2)/2) = n \cdot \sin((\beta_1 + \alpha_2)/2)$.

- $(\beta_2)/2 \cdot \cos((\beta_1 \beta_2)/2)$ and $\cos((\alpha_1 + \alpha_2)/2) \cdot \sin((\alpha_1 \alpha_2)/2) = n \cdot \cos((\beta_1 + \beta_2)/2) \cdot \sin((\beta_1 \beta_2)/2)$; dividing these two equations yields: $\tan((\alpha_1 + \alpha_2)/2)/\tan((\alpha_1 \alpha_2)/2) = n \cdot \tan((\beta_1 + \beta_2)/2)/\tan((\beta_1 \beta_2)/2)$. With $\beta_1 + \beta_2 = \gamma$ and $\alpha_1 + \alpha_2 = \delta + \gamma$, Eq. (16.8) follows. b) Inserting the values of $\beta_1 = 19.47^\circ$ and $\gamma/2 = 30^\circ$ into Eq. (16.8), we obtain a quadratic equation for $\tan(\delta/2)$, and thus initially two solutions for δ . To find the correct solution, we consider a sketch corresponding to Fig. 16.13. The result is finally $\delta = 47^\circ$.
- **16.2.** The point at which the incident beam in Fig. 16.24 is reflected by the mirror is called A, and the angle of reflection is α . Then we have $AF = FZ = R/(2\cos\alpha)$. For rays near the axis of the mirror (paraxial rays), α is small and so $\cos\alpha \approx 1$. It follows that f = R FZ = R/2.
- **16.3.** A scale drawing corresponding to Fig. 18.1 for a concave mirror with an object y at a distance a and the associated image y' at a distance b allows us to compare similar triangles and obtain y/y' = f/(b-f) = a/b, from which it follows that 1/f = 1/a + 1/b.
- **16.4.** A parallel shift of light beams, even when they have differing wavelengths, leaves the image in the focal plane of the eye unchanged (see e. g. Fig. 18.24, with parallel light beams between the lens and the eye).
- **17.1.** a) $d \approx 100 \,\mathrm{m}$; b) $B \approx 11 \,\mathrm{cm}$
- **17.2.** $2\varphi_{\min} = 1.04 \cdot 10^{-7}, \alpha = 2.28 \cdot 10^{-7}$
- **18.1.** Considering two pairs of similar triangles in Fig. 18.1, we find y/y' = a/b = f'/(b-f'). From this, it follows that 1/a + 1/b = 1/f'.
- **20.1.** a) $m_{\text{max}} = 133$, x = 21 cm, b) $x_{10} = 1.19$ m
- **20.2.** The observation is carried out at an angle of inclination $\beta_{\rm m}$, which can be treated as constant for small changes in the order number. Then from Eq. (20.4), we find $d = (1/3)\lambda/2 = 0.1 \,\mu{\rm m}$.
- **21.1.** a) No change, since over the whole slit, the same path differences are found; b) likewise no change, since the path difference due to the glass, $\Delta = d(n-1)$, is an integral multiple of the wavelength ($\Delta = 145.8 \, \lambda$, thus nearly the "order-one position"); c) $\alpha = 8.2^{\circ}$. since in general the quantities d, n and λ are not known with sufficient accuracy, this calculation shows how one can obtain the two positions in practice.
- **21.2.** Due to the phase difference of $\lambda/2$ between the two halves of the slit, in making the construction, we must rotate the arrows 7 to 12 by 180°; we then obtain the diffraction pattern of the order-two position, that is with extrema at $\sin \alpha = N\lambda/B$, where N = 1, 3, ... for the maxima and N = 0, 2, 4, ... for the minima. (A more precise calculation shows that the maxima at N = 1 (Fig. 21.12) are slightly shifted.)
- **21.3.** The angular range of the principal maximum determined by the width B of the slit ranges over $\sin \alpha = \pm \lambda/B$. The maxima which occur through interference with immediately neighboring slits are found at $\sin \alpha_{\rm m} = \pm m\lambda/D$ (m = 0, 1, 2, ...). Then for a), we observe only three maxima, but for b) there are 39 maxima.
- **21.4.** a) In this case, the whole surface of the grating radiates with the same phase; diffraction occurs only at its edges. b) The diffracted waves which emerge from two neighboring pairs of beams and slits produce a diffraction pattern as shown in Fig. 21.12, lower left. The superposition

of the waves emerging from all the beams and slits leads to a sharpening of the maxima (Fig. 22.6), but leaves their positions and relative heights unchanged.

- **21.5.** Since in the order-two position (β), the radiant power is zero for the non-deflected beam ($\alpha = 0$), the power of the light which passes through the gaps and the "grating beams" must be the same. Thus, if we can neglect absorption in the grating beams, they must have the same width, i.e. L/D = 1/2.
- **21.6.** $c = m\lambda v/(m \sin \alpha) = 875 \,\text{m/s}$
- **22.1.** a) $\lambda = 600 \, \text{nm}$, b) n = 1.33
- **26.1.** a) The equation of motion for free damped oscillations is given by $F_R + F_D = m \, \mathrm{d}^2 l / \mathrm{d} t^2$, with $F_R = -\alpha \, \mathrm{d} l / \mathrm{d} t$ (frictional force) and $F_D = -Dl$ (elastic force). That the expression $l = l_0 e^{-\delta t}$, with $\delta = (1/2)(\alpha/m)$, is a solution of this equation of motion can be demonstrated by substituting it into that equation. For the relation between α and Λ , we obtain with this solution $\alpha = 2\delta m = 2\lambda v_0 m$. b) The equation of motion is now given by $F_P + F_R + F_D = m \, \mathrm{d}^2 l / \mathrm{d} t^2$, or, after inserting the forces and dividing by m: $\mathrm{d}^2 l / \mathrm{d} t^2 + 2\Lambda v_0 \, \mathrm{d} l / \mathrm{d} t + 4\pi^2 v_0^2 l = (F_0/m) \cos(2\pi v t)$. We now insert the complex trial solution $l = l_0 e^{i(2\pi v t)}$ together with its first and second time derivatives into the equation of motion, obtaining $4\pi^2[(v_0^2 v^2) + i(\Lambda/\pi)v_0v] = (F_0/l_0 m)e^{i\varphi}$. From this, applying the mathematical relations $a + ib = r(\cos\varphi + i\sin\varphi) = re^{i\varphi}$ (Eq. (25.27)) and $\sin^2\varphi + \cos^2\varphi = 1$, we obtain equations (26.1) and (26.3). (For literature on "forced oscillations", see e.g. The Feynman Lectures, Vol. 1, Chap. 21-5 (http://www.feynmanletures.caltech.edu/), or http://hyperphysics.phy-astr.gsu.edu/hbase/oscdr.html).
- **27.1.** $(1/2)l_{0,\text{max}}^2/l_{0,\text{max}}^2 = (\Lambda/\pi)^2 \nu_0^4/[(2\nu_0)^2(\nu_0 \nu)^2 + (\Lambda/\pi)^2 \nu_0^4],$ $(1/2)(2\nu_0)^2(\nu_0 \nu)^2 = (1/2)(\Lambda/\pi)^2 \nu_0^4, 2(\nu_0 \nu) = H = (\Lambda/\pi)\nu_0.$ This result holds for every harmonic oscillator, in particular for an electrical resonator.
- **27.2.** Let the deflection be $x = l_0 \sin \omega t$; taking the time derivative gives: $\dot{x} = \omega l_0 \cos \omega t$. The kinetic energy is thus $W_{\rm kin} = (1/2)m\dot{x}^2 = (1/2)m(\omega l_0 \cos \omega t)^2$. With the average value of $\cos^2 \omega t = 1/2$ over a whole oscillation, it follows that $\overline{W}_{\rm kin} = (1/4)m(\omega l_0)^2$.

Index

imaging and diffraction, 340, 434 Aberration astronomical, 460 spherical, 344 Absorbance, 579 Absorption, 492 and electrical conductivity, 565 interpretation of, 556 weak and strong, 496, 497 Absorption constant, 492, 559 definition, 492 in the X-ray region, 538 Table, 493 Absorption operator, 195 resistance, 183 synchronous motor, 166 Achromatization, 351 Activity, optical, 486 Activity	A Abbe, Ernst	Alternating-current generator, 161,	Avogadro constant, 274 Axis, optical, 471
Aberration Ampere second, 21, 47 Aberration Ampere second, 21, 47 Ampere second, 21, 20 Ampere second 21, 20 Ballistic deflection or impulse deflection or impulse deflection of inguse deflection, 21, 52 Barlows and sharkause offect, 285 Barlows and sharkause offect, 285 Barlows wheel, 109 Beam boundary, 299 Beam splitter, 34 Beer's law, 194 Betremable beer's formula, 509 Beer's law, 194 Betremable beer's portule, 38 Bray hause offect, 285 Barlows w			Axis, optical, 471
Aberration astronomical, 460 astronomical, 460 astronomical, 344 Absorbance, 579 Absorption, 492 and electrical conductivity, 565 and forced oscillations, 557 by atomic and colloidally dissolved metals, 570 by free electrons in metals, 565 weak and strong, 496, 497 Absorption band, 559 Absorption constant, 492, 559 definition, 492 an before the electrons in metals, 565 interpretation of, 556 weak and strong, 496, 497 Absorption conflicient, 258, 494 Absorption conflicient, 258, 494 Absorption constant, 492, 559 definition, 492 an laysis, 560 AC (alternating current) generator, 195 resistance, 183 synchronous motor, 166 Achromatization, 351 Active turne, 190 Activity, optical, 486 Acuity visual (sharpness of vision), 363 Aepinus, F. U. T., 36 Acpinus, F. U. T.,			p
astronomical, 460 Absorbance, 579 Absorption, 492 and electrical conductivity, 565 and forced oscillations, 557 by atomic and colloidally dissolved metals, 570 by free electrons in metals, 565 interpretation of, 556 weak and strong, 496, 497 Absorption band, 559 Absorption coefficient, 258, 494 Absorption constant, 492, 559 definition, 492 in the X-ray region, 538 Table, 493 Absorption spectra analysis, 560 AC (alternating current) generator, 195 resistance, 183 synchronous motor, 166 Achromatization, 351 Active current, 190 Activo grid, and a displance of light, 537 reflectivity, 543 Alterating current, 161 production, 195 production, 195 resistance, 183 Alterating current, 161 production, 195 production, 195 reflection, 191, 122 Ampere-turns, 96 Amplitude of a light wave, 318 Barkhausen effect, 285 Ballistic deflection, 21, 52 Ballistic galvanometer, 145 Barkhausen effect, 285 Barkhausen eff			_
spherical, 344 Absorbance, 579 Absorbance, 579 Absorbance, 579 Absorbance, 579 Absorbance, 579 and electrical conductivity, 565 and forced oscillations, 557 by atomic and colloidally dissolved metals, 570 by free electrons in metals, 565 interpretation of, 556 weak and strong, 496, 497 Absorption band, 559 Absorption constant, 492, 559 definition, 492 in the X-ray region, 538 Table, 493 Absorption spectra analysis, 560 AC (alternating current) generator, 195 resistance, 183 synchronous motor, 166 Achomatization, 351 Active current, 190 Activity, optical, 486 Acuity visual (sharpness of vision), 363 Aepinus, F. U. T., 36 Air in a magnetic field, 266 molecular picture, 34 Air gap of an electromagnet core, 272 Alkali halides absorption of light, 537 reflectivity, 543 Alterating current, 161 production, 195 production, 195 reflectivity, 543 Alterating current, 161 production, 195 production, 195 Active current, 190 Active field, 266 molecular picture, 34 Air gap of an electromagnet core, 272 Alkali halides absorption of light, 537 reflectivity, 543 Alteractive force magnetic, 156, 273 Autractive force magnetic, of current-carrying conductors, 139 Robration, 21, 52 Ballistic galvanometer, 145 Barkhause effect, 285 Barllow's wheel, 109 Beam Spiliter, 384 Beer's formula, 509, 542 Drude's approximation, 566 Beer's lave, 494 Birefringence, 478, 574 due to flow, 574 Birefringence or double refraction, 468, 472 of mica, 475, 478 of mica, 475, 478 of mica, 475, 478 Black-body remicanter, 185 Barkbaody, 349 Belar spiliter, 384 Beer's formula, 509, 542 Drude's a			
Absorbance, 579 Absorption, 492 Absorption, 492 and electrical conductivity, 565 and forced oscillations, 557 by atomic and colloidally dissolved metals, 570 by free electrons in metals, 565 interpretation of, 556 weak and strong, 496, 497 Absorption band, 559 Absorption coefficient, 258, 494 Absorption constant, 492, 559 definition, 492 in the X-ray region, 538 Table, 493 Absorption spectra analysis, 560 AC (alternating current) generator, 195 resistance, 183 synchronous motor, 166 Achromatization, 351 Active current, 190 Activity, optical, 486 Acuity visual (sharpness of vision), 363 Aepinus, F. U. T., 36 Air an amagnetic field, 266 molecular picture, 34 Alteraction of light, 537 reflectivity, 543 Alteraction of light, 537 reflectivity, 543 Alteraction, 195 production, 195 production, 195 Acuity Absorption of light, 537 reflectivity, 543 Alteracting current, 161 production, 195 production, 1954 Anplitude of a light wave, 318 Amplitude of alternating current, amplitude of alternating current, amplitude of altight wave, 318 Amplitude of alternating current, Barphause effect, 285 Barchov swheel, 109 Beam boundary, 299 Beam splitter, 384 Beer's farw, 494 Betrigenator, 44 Birefriagence, 478, 574 due to flow, 574 Birefriagence, 478, 574 due to flow, 574 due to flow, 574 Birefriagence, 478, 574 due to flow, 574 Birefriagence, 478, 574 due to flow, 574 Anglar momentum, 97, 277 Angular velocity or circular frequency, 181 Antenna, 31, 234 Anti-reflection coatings, 502 Aperture, 310 Apertur		*	*
Absorption, 492 and electrical conductivity, 565 and forced oscillations, 557 by atomic and colloidally dissolved metals, 570 by free electrons in metals, 565 interpretation of, 556 weak and strong, 496, 497 Absorption band, 559 Absorption coefficient, 258, 494 Absorption coefficient, 258, 494 Absorption oconstant, 492, 559 definition, 492 in the X-ray region, 538 Table, 493 Absorption spectra analysis, 560 AC (alternating current) generator, 195 resistance, 183 synchronous motor, 166 Achromatization, 351 Active current, 190 Activity, optical, 486 Acuity visual (sharpness of vision), 363 Aepinus, F. U. T., 36 Air in a magnetic field, 266 molecular picture, 34 Air gap of an electromagnet core, 272 Alkali halides absorption of light, 537 reflectivity, 543 Alteracting current, 161 production, 195 production, 195 production, 195 production, 196 Amplitude of a light wave, 318 Amplitude of alternating current, 181 Amplitude of alternating current, 184 Analyzer, 479, 481 Angle of inclination of principal rays, 363 Angle of vision, 333 definition, 353 increase (magnification), 356 increasing, 354 Angles of vision, 333 definition, 352 increase (magnification), 356 increasing, 354 Angles of vision, 333 definition, 352 increase (magnification), 356 increasing, 354 Angles micrease (magnification), 356 Beer's law, 494 Bete generator, 44 Birefringence or double refraction, 468, 472 of calcite, 473, 478 of quartz, 473, 488 Black body, 372, 379, 580, 594 Black-body radiation, 580 Bla	1		
and electrical conductivity, 565 and forced oscillations, 557 by atomic and colloidally dissolved metals, 570 by free electrons in metals, 565 interpretation of, 556 weak and strong, 496, 497 Absorption band, 559 Absorption coefficient, 258, 494 Absorption constant, 492, 559 definition, 492 in the X-ray region, 538 Table, 493 Absorption spectra analysis, 560 AC (alternating current) generator, 195 resistance, 183 synchronous motor, 166 Achromatization, 351 Active current, 190 Activity, optical, 486 Acuity visual (sharpness of vision), 363 Aepinus, F. U. T., 36 Air gap of an electromagnet core, 272 Alkali halides absorption of light, 537 reflectivity, 543 Alternating current, 161 production, 195 production, 195 quarted aphragm current, 161 production, 196 Activate of the service of a magnetic, of current-carrying conductors, 139 Autreactive force magnetic, of current-carrying conductors, 139 Autreactive force magnetic, of current-carrying conductors, 139 Autreactive force magnetic, of current-carrying conductors, 139 Autreactive face and policy and a face and policy and a conduction current, 19 Barlow's wheel, 109 Beam boundary, 299 Beam spoluter, 34 Beer's law' 494 Beer's formula, 509, 542 Drude's approximation, 566 Beer's law, 494 Bett generator, 44 Birefringence or double refraction, 468, 472 of calcite, 473, 474 of mica, 475, 478 of quartz, 473, 488 Black-body, 372, 379, 580, 594 Black-body ardiation, 580 Black-body ardia			
and forced oscillations, 557 by atomic and colloidally dissolved metals, 570 by free electrons in metals, 565 interpretation of, 556 weak and strong, 496, 497 Absorption band, 559 Absorption constant, 492, 559 Absorption constant, 492, 559 definition, 492 in the X-ray region, 538 Table, 493 Absorption spectra analysis, 560 AC (alternating current) generator, 195 resistance, 183 synchronous motor, 166 Achromatization, 351 Active current, 190 Activity, optical, 486 Acuity Visual (sharpness of vision), 363 Aepinus, F. U. T., 36 Air in a magnetic field, 266 molecular picture, 34 Altali halides absorption of light, 537 reflectivity, 543 Alternating current, 161 production, 195 production, high-frequency, 198 Amplitude structure, 422, 436 Analyzer, 479, 481 Angle of inclination of principal rays, 363 Angle of vision, 333 definition, 353 definition, 353 definition, 353 definition, 353 definition, 353 definition, 353 increase (magnification), 356 Bier slaw, 494 Bierfringence of obuble refraction, 468, 472 of calcite, 473, 474 due to flow, 574 Birefringence of obuble refraction, 468, 472 of calcite, 473, 474 of mica, 475, 478 of quart-749, 481 Birefringence of obuble refraction, 468, 472 of calcite, 473, 474 of mica, 475, 478 of quart-749, 481 Birefringence of obuble refraction, 468, 472 of calcite, 473, 474 of mica, 475, 478 of quart-749, 481 Birefringence of obuble refraction, 468, 472 of calcite, 473, 474 of mica, 475, 478 of quart-749, 481 Birefringence of obuble refraction, 468, 472 of calcite, 473, 474 of mica, 475, 478 birefringence of obuble refraction, 468, 472 of calcite, 473, 474 of mica, 475, 478 birefringence of obuble refraction, 468, 472 of calcite, 473, 474 birefringence of obuble refraction, 488 birefringence of obuble refraction, 468, 472 of calcite, 473, 474 birefringence of obuble refraction, 568 Black-body tempine model. 277 Bohr's atomic model, 277 Bohr's atomic model, 277 Bohr's atomic			
by atomic and colloidally dissolved metals, 570 by free electrons in metals, 565 interpretation of, 556 weak and strong, 496, 497 Absorption band, 559 Absorption constant, 492, 559 definition, 492 in the X-ray region, 538 Table, 493 units, 314, 333 Absorption spectra analysis, 560 AC (alternating current) generator, 195 resistance, 183 synchronous motor, 166 Achromatization, 351 Active current, 190 Activity, optical, 486 Acuity visual (sharpness of vision), 363 Aperture stop, 342 Altali halides absorption of light, 537 reflectivity, 543 Alternating current, 161 production, 195 magnetic, 160 magnetic fleed, 266 molecular picture, 34 Alternating current, 161 production, 195 moduction, 195 magnetic, 195 magnetic, 196 current, 272 Altali halides absorption of light, 537 reflectivity, 543 Alternating current, 161 production, 195 magnetic, 198 Autcontrol (feedback) Amplitude structure, 422, 436 Analeyer, 479, 481 Beer's formula, 509, 542 Drude's approximation, 566 Beer's law, 494 Beer's formula, 509, 542 Drude's approximation, 566 Beer's law, 494 Belt profers formula, 509, 542 Drude's approximation, 566 Beer's law, 494 Belt profers formula, 509, 542 Drude's approximation, 566 Beer's law, 494 Belt generator, 44 due to flow, 574 due t		1	· · · · · · · · · · · · · · · · · · ·
dissolved metals, 570 by free electrons in metals, 565 interpretation of, 556 weak and strong, 496, 497 Absorption band, 559 Absorption constant, 492, 559 definition, 492 in the X-ray region, 538 Table, 493 Absorption spectra analysis, 560 AC (alternating current) generator, 195 resistance, 183 synchronous motor, 166 Achromatization, 351 Active current, 190 Activity, optical, 486 Acuity visual (sharpness of vision), 363 Aepinus, F. U. T., 36 Air in a magnetic field, 266 molecular picture, 34 Air gap of an electromagnet core, 272 Alkali halides absorption of light, 537 reflectivity, 543 Alternating current, 161 production, high-frequency, 198 Analyzer, 479, 481 Angle of vision, 333 Angle of vision, 333 Angle of vision, 333 definition, 333 definition, 353 Angle of vision, 333 definition, 354 Angle of vision, 353 definition, 353 Angle of vision, 353 Angle of vision, 353 definition, 353 Angle of vision, 353 definition, 354 Angle of vision, 353 definition, 353 definition, 352 definition, 353 definition, 352 definition, 353 definition, 353 definition, 353 def			•
by free electrons in metals, 565 interpretation of, 556 weak and strong, 496, 497 Absorption band, 559 Absorption coefficient, 258, 494 Absorption coefficient, 258, 494 Absorption constant, 492, 559 definition, 492 in the X-ray region, 538 Table, 493 Absorption spectra analysis, 560 AC (alternating current) generator, 195 resistance, 183 synchronous motor, 166 Achromatization, 351 Active current, 190 Activity, optical, 486 Acuity visual (sharpness of vision), 363 Aepinus, F. U. T., 36 Air in a magnetic field, 266 molecular picture, 34 Alkali halides absorption of light, 537 reflectivity, 543 Alternating current, 161 production, 195 production, high-frequency, 198 Auer mantle, 585 adefinition, 353 Aengle of vision, 363 Angle of vision, 353 Belt generator, 44 Buet to flow, 574 Birefringence or double refraction, 468, 472 due to flow, 574 Birefringence or double refraction, 468, 472 of calcite, 473, 474 of mica, 475, 478 of quartz, 473, 488 of quartz, 473, 488 Aprivar, 197 Angular momentum, 97, 277 Black-body adiation, 580 Black-body adiation, 580 Black-body adi	•		
interpretation of, 556 weak and strong, 496, 497 Absorption band, 559 Absorption coefficient, 258, 494 Absorption constant, 492, 559 definition, 492 in the X-ray region, 538 Table, 493 Absorption spectra analysis, 560 AC (alternating current) generator, 195 resistance, 183 synchronous motor, 166 Achromatization, 351 Active current, 190 Activity, optical, 486 Acuity visual (sharpness of vision), 363 Aepinus, F. U. T., 36 Air in a magnetic field, 266 molecular picture, 34 Alkali halides absorption of light, 537 reflectivity, 543 Alternating current, 161 production, 195 production, high-frequency, 198 Angle of vision, 333 Angle of vision, 333 definition, 323 definition, 325 definiton, 492 duc to flow, 574 Birefringence, 478, 474 of calcite, 473, 474 of mica, 475, 478 of quartz, 473, 488 Black body, 372, 379, 580, 594 Black-body radiation, 580 Black-body rad		•	
weak and strong, 496, 497 Absorption band, 559 Absorption coefficient, 258, 494 Absorption constant, 492, 559 definition, 492 in the X-ray region, 538 Table, 493 Absorption spectra analysis, 560 AC (alternating current) generator, 195 resistance, 183 synchronous motor, 166 Achromatization, 351 Activity, optical, 486 Acuity visual (sharpness of vision), 363 Acpinus, F. U. T., 36 Air in a magnetic field, 266 molecular picture, 34 Alkali halides absorption of light, 537 reflectivity, 543 Alternating current, 161 production, 195 production, high-frequency, 198 Angle of vision, 333 definition, 333 definition, 353 definition, 356 dincrease (magnification), 356 due to flow, 574 Birefringence or double refraction, 468, 472 of calcite, 473, 474 of mica, 475, 478 of opart, 473, 478 of opart, 473, 478 of opart, 48, 574 due to flow, 574 Birefringence or double refraction, 468, 472 of calcite, 473, 474 of mica, 475, 478 of opart, 473, 478 of quartz, 473, 488 Black body, 372, 379, 580, 594 Black-body radiation, 580 Black-body temperature, 587 Blazed grating, 453 Bohr magnetic, 160, 57 Booth and the form of calcite, 473, 474 of mica, 475, 478 of calcite, 473, 474 of mica, 475, 478 of calcite, 473, 474 of mica,		2	11
Absorption band, 559 Absorption coefficient, 258, 494 Absorption constant, 492, 559 definition, 492 in the X-ray region, 538 Table, 493 Absorption spectra analysis, 560 AC (alternating current) generator, 195 resistance, 183 synchronous motor, 166 Achromatization, 351 Activity, optical, 486 Acuity visual (sharpness of vision), 363 Aepinus, F. U. T., 36 Air an angentic field, 266 molecular picture, 34 Air gap of an electromagnet core, 272 Alkali halides absorption of light, 537 reflectivity, 543 Alternating current, 161 production, 195 Alternating current, 195 Auer mantle, 585 Alternating current, 195 Autocontrol (feedback) Absorption coefficient, 258, 494 Angles increase (magnification), 356 increasing, 354 due to flow, 574 due to flow flow factors, 72 of calcite, 473, 474 of mica, 475, 478 of quartz, 473, 474 of mica, 472 of calcite, 478, 472 of calcite, 473, 474 of mica, 472 of calcite, 473, 4			
Absorption coefficient, 258, 494 Absorption constant, 492, 559 definition, 492 in the X-ray region, 538 Table, 493 Absorption spectra analysis, 560 AC (alternating current) generator, 195 resistance, 183 synchronous motor, 166 Achromatization, 351 Active current, 190 Activity, optical, 486 Acuity visual (sharpness of vision), 363 Aepinus, F. U. T., 36 Air an angnetic field, 266 molecular picture, 34 Air gap of an electromagnet core, 272 Alkali halides absorption, 195 Alternating current, 161 production, 195 Alternating current, 161 production, 195 production, high-frequency, 198 Anglea minrease (magnification), 356 increasing, 354 increasing, 354 due to flow, 574 Birefringence or double refraction, 468, 472 defe, 472 defe, 473, 474 of mica, 475, 478 of quartz, 473, 488 Black body, 372, 379, 580, 594 Black-body temperature, 587 Blazed grating, 453 Bohr magneton, 277 Bohr's atomic model, 277 Bohr's atomic model, 277 Boltzmann's constant, 256, 275 Bound charges, 63, 245 Boundaries of light beams and perspective, 367 Braun's tube, 22, 77 Brewster's law, 498 Bright-field illumination, 358, 433 Brightness, 600 Brilliance, 611 Brownian molecular motion, 19 Buildup of a conduction current,			
Absorption constant, 492, 559 definition, 492 in the X-ray region, 538 Table, 493 Absorption spectra analysis, 560 AC (alternating current) generator, 195 resistance, 183 synchronous motor, 166 Achromatization, 351 Active current, 190 Activity, optical, 486 Acuity visual (sharpness of vision), 363 Aepinus, F. U. T., 36 Air in a magnetic field, 266 molecular picture, 34 Alkali halides absorption of light, 537 reflectivity, 543 Alternating current, 161 production, 195 Alternating current, 195 Alternating current, 196 Alternating current, 197 Alternating current, 198 Alternating current, 199 Autocontrol (feedback) Birefringence or double refraction, 468, 472 of calcite, 473, 474 of mica, 475, 478 of quartz, 473, 478 of quartz, 473, 488 Black body, 372, 379, 580, 594 Black-body radiation, 580 Black-body temperature, 587 Blazed grating, 453 Black-body temperature, 587 Blazed grating, 453 Bohr magneton, 277 Bohr's atomic model, 277 Bohr's atomic model, 277 Bound charges, 63, 245 Bound charges, 63, 245 Boundaries of light beams and perspective, 367 Boyle, Robert, 33 Bragg spectrograph, 455 Braun's tube, 22, 77 Brewster's angle, 498 Brewster's law, 498 Bridge circuit, 244 Bright-field illumination, 358, 433 Brightness, 600 Brilliance, 611 Brownian molecular motion, 19 Buildup of a conduction current,			
definition, 492 in the X-ray region, 538 Table, 493 Absorption spectra analysis, 560 AC (alternating current) generator, 195 resistance, 183 synchronous motor, 166 Achromatization, 351 Achrivity, optical, 486 Acuity visual (sharpness of vision), 363 Aepinus, F. U. T., 36 Acin a magnetic field, 266 molecular picture, 34 Alkali halides absorption, 195 Alternating current, 161 production, 195 Alternating current, 161 production, 195 Angular manlet. 585 Angular mementum, 97, 277 Angular velocity or circular frequency, 181 frequency, 181 Antenna, 31, 234 Antenna, 31, 234 Black-body radiation, 580 Black-body temperature, 587 Blazed grating, 453 Black-body radiation, 580 Black-body temperature, 587 Blazed grating, 453 Black body, 372, 379, 580, 594 Black-body temperature, 587 Blazed grating, 453 Black-body radiation, 580 Black-			
in the X-ray region, 538 Table, 493 Angles Units, 314, 333 Absorption spectra analysis, 560 AC (alternating current) generator, 195 Aresistance, 183 synchronous motor, 166 Achromatization, 351 Active current, 190 Activity, optical, 486 Acuity Visual (sharpness of vision), 363 Aepinus, F. U. T., 36 Air in a magnetic field, 266 molecular picture, 34 Air gap of an electromagnet core, 272 Alkali halides absorption of light, 537 reflectivity, 543 Alternating current, 161 production, 195 production, high-frequency, 198 AC (alternating current, 190 Angular wolocity or circular Angular wolocity or circular Angular wolocity or circular Angular velocity or circular Angular wolocity or circular Frequency, 181 Black body, 372, 379, 580, 594 Black-body radiation, 580 Black-body temperature, 587 Blazed grating, 453 Black-body temperature, 587 Blazed grating, 453 Black-body temperature, 587 Blazed grating, 453 Black-body radiation, 580 Black-body temperature, 587 Blazed grating, 453 Black body, 372, 379, 580, 594 Black-body radiation, 580 Black-body radiation, 580 Black-body temperature, 587 Blazed grating, 453 Black-body radiation, 580 Black-body, 372, 379, 580, 594 Black-body radiation, 580 Black-body ra		<u>C</u> .	_
Table, 493 Absorption spectra analysis, 560 AC (alternating current) generator, 195 resistance, 183 synchronous motor, 166 Achromatization, 351 Active current, 190 Activity, optical, 486 Acuity visual (sharpness of vision), 363 Aepinus, F. U. T., 36 Air in a magnetic field, 266 molecular picture, 34 Air analysis, 537 reflectivity, 543 Alternating current, 161 production, 195 production, 195 Absorption of fight, 537 reflectivity, 543 Alternating current, 196 Absorption of light, 537 reflectivity, 543 Alternating current, 196 Angular momentum, 97, 277 Angular velocity or circular frequency, 181 Black-body radiation, 580 Black-body temperature, 587 Blazed grating, 453 Black-body radiation, 580 Black-body temperature, 587 Blazed grating, 453 Black-body temperature, 587 Blazed grating, 453 Black-body radiation, 580 Black-body temperature, 587 Blazed grating, 453 Black body, 372, 379, 580, 594 Black-body radiation, 580 Black-body temperature, 587 Blazed grating, 453 Black-body radiation, 580 Black-body temperature, 587 Blazed grating, 453 Bohr magneton, 277 Bohr's atomic model, 277 Bohr's atomic model, 277 Bound charges, 63, 245 Boundaries of light beams Attraction Brage spectrograph, 455 Braun's tube, 22, 77 Brewster's angle, 498 Brewster's law, 498 Brightness, 600 Brilliance, 611 Brownian molecular motion, 19 Brownian molecular motion, 19 Buildup of a conduction current,			
Absorption spectra analysis, 560 AC (alternating current) generator, 195 resistance, 183 synchronous motor, 166 Achromatization, 351 Active current, 190 Activity, optical, 486 Acuity visual (sharpness of vision), 363 Aepinus, F. U. T., 36 Air in a magnetic field, 266 molecular picture, 34 Air gap of an electromagnet core, 272 Alkali halides absorption of light, 537 reflectivity, 543 Alternating current, 161 production, 195 production, high-frequency, 198 Antenna, 31, 234 Antenna, 31, 234 Black-body radiation, 580 Black-body temperature, 587 Blazed grating, 453 Black-body radiation, 580 Black-body temperature, 587 Blazed grating, 453 Black-body radiation, 580 Black-body temperature, 587 Blazed grating, 453 Black-body radiation, 580 Black-body temperature, 587 Blazed grating, 453 Black body, 372, 379, 580, 594 Black-body radiation, 580 Black-body temperature, 587 Blazed grating, 453 Black-body radiation, 580 Black-body radiation, 580 Black-body temperature, 587 Blazed grating, 453 Bohr magneton, 277 Bohr's atomic model, 277 Bohr's atomic model, 277 Bound charges, 63, 245 Boundaries of light beams Attraction Braug perior, 555 Attraction Braug perior, 277 Brewster's angle, 498 Brewster's law, 498 Brightness, 600 Brilliance, 611 Brownian molecular motion, 19 Buildup of a conduction current,			
analysis, 560 Angular velocity or circular frequency, 181 Alc (alternating current) generator, 195 resistance, 183 synchronous motor, 166 Achromatization, 351 Active current, 190 Activity, optical, 486 Acuity visual (sharpness of vision), 363 Aepinus, F. U. T., 36 Air in a magnetic field, 266 molecular picture, 34 Alkali halides absorption of light, 537 Alkali halides absorption of light, 537 Alternating current, 161 production, 195 Acuity manufactor, 195 Acuity manufactor, 196 Angular velocity or circular frequency, 181 Black body, 372, 379, 580, 594 Black-body radiation, 580 Black-body temperature, 587 Blazed grating, 453 Bohr magneton, 277 Bohr's atomic model, 277 Bordian in a magnetio, 27 Bohr's atomic model, 277 Bohr's atomic mo			
AC (alternating current) generator, 195 resistance, 183 Anti-reflection coatings, 502 synchronous motor, 166 Aperture, 310 Achromatization, 351 Active current, 190 Activity, optical, 486 Acuity visual (sharpness of vision), 363 Aepinus, F. U. T., 36 Air in a magnetic field, 266 molecular picture, 34 Alkali halides absorption of light, 537 Alkali halides absorption of light, 537 Alternating current, 161 production, 195 production, high-frequency, 198 Anti-reflection coatings, 502 Anti-reflection coatings, 502 Blazed grating, 453 Bohr magneton, 277 Bohr's atomic model, 277 Bohr's atomic model, 277 Bohr's atomic model, 277 Bohr magneton, 277 Bohr magneton, 277 Bohr magneton, 277 Bohr magneton, 277 Bound charges, 63, 245 Boundaries of light beams and perspective, 367 Bound charges, 63, 245 Boundaries of light beams and perspective, 367 Bound charges, 63, 245 Boundaries of light beams and perspective, 367 Bound charges, 63, 245 Boundaries of light beams and perspective, 367 Boun			
generator, 195 resistance, 183 synchronous motor, 166 Achromatization, 351 Active current, 190 Activity, optical, 486 Acuity visual (sharpness of vision), 363 Arr in a magnetic field, 266 molecular picture, 34 Air gap of an electromagnet core, 272 Alkali halides absorption of light, 537 reflectivity, 543 Alternating current, 161 production, 195 resistance, 183 Anti-reflection coatings, 502 Blazed grating, 453 Bohr magneton, 277 Bohr's atomic model, 277 Bohr's atomic	•	•	
resistance, 183 synchronous motor, 166 Aperture, 310 Achromatization, 351 Active current, 190 Active, optical, 486 Acuity visual (sharpness of vision), 363 Are a turns, 107 Are aturns, 107 Bound charges, 63, 245 Boundaries of light beams and perspective, 367 Boyle, Robert, 33 Bragg spectrograph, 455 Braun's tube, 22, 77 Brewster's angle, 498 Brewster's angle, 498 Brewster's law, 498 Bridge circuit, 244 Brid			•
synchronous motor, 166 Achromatization, 351 Achromatization, 351 Active current, 190 Activity, optical, 486 Acuity Visual (sharpness of vision), 363 Aepinus, F. U. T., 36 Air			
Achromatization, 351 Active current, 190 Active current, 190 Activity, optical, 486 Acuity Visual (sharpness of vision), 363 Aepinus, F. U. T., 36 Air		C .	
Active current, 190 Activity, optical, 486 Acuity Visual (sharpness of vision), 363 Aepinus, F. U. T., 36 Air	•		e ,
Activity, optical, 486 Acuity visual (sharpness of vision), 363 Aepinus, F. U. T., 36 Air			
Acuity visual (sharpness of vision), 363 Aepinus, F. U. T., 36 Air Atmospheric ray refraction, 555 Air Atomic model, Bohr's, 277 Boyle, Robert, 33 Bragg spectrograph, 455 Braun's tube, 22, 77 Air gap of an electromagnet core, 272 Alkali halides absorption of light, 537 reflectivity, 543 Alternating current, 161 production, 195 production, high-frequency, 198 Atmospheric ray refraction, 555 Atmospheric ray refraction, 555 Atmospheric ray refraction, 555 Boundaries of light beams and perspective, 367 Boyle, Robert, 33 Bragg spectrograph, 455 Braun's tube, 22, 77 Brewster's angle, 498 Brewster's angle, 498 Bridge circuit, 244 Bright-field illumination, 358, 433 Brightness, 600 Brilliance, 611 Brownian molecular motion, 19 Buildup of a conduction current,			
visual (sharpness of vision), 363 Aepinus, F. U. T., 36 Air Air Atmospheric ray refraction, 555 Air Atmospheric ray refraction, 555 Air Atmospheric ray refraction, 555 Atomic model, Bohr's, 277 Boyle, Robert, 33 Bragg spectrograph, 455 Braun's tube, 22, 77 Braun's tube, 22, 77 Brewster's angle, 498 Brewster's angle, 498 Brewster's law, 498 Bridge circuit, 244 Bright-field illumination, 358, 433 Attractive force reflectivity, 543 Alternating current, 161 production, 195 production, high-frequency, 198 Autocontrol (feedback) Boundaries of light beams and perspective, 367 Boyle, Robert, 33 Bragg spectrograph, 455 Braun's tube, 22, 77 Brewster's angle, 498 Brewster's law, 498 Bridge circuit, 244 Bright-field illumination, 358, 433 Brightness, 600 Brilliance, 611 Brownian molecular motion, 19 Buildup of a conduction current,	• •		
Aepinus, F. U. T., 36 Air Atmospheric ray refraction, 555 Air Atomic model, Bohr's, 277 Boyle, Robert, 33 Bragg spectrograph, 455 Braun's tube, 22, 77 Air gap of an electromagnet core, 272 Alkali halides absorption of light, 537 reflectivity, 543 Alternating current, 161 production, 195 production, high-frequency, 198 Autocontrol (feedback) Atmospheric ray refraction, 555 Atmospheric ray refraction, 555 Atmospheric ray refraction, 555 Atmospheric ray refraction, 555 and perspective, 367 Boyle, Robert, 33 Bragg spectrograph, 455 Braun's tube, 22, 77 Brewster's angle, 498 Bridge circuit, 244 Bright-field illumination, 358, 433 Bright-field illumination, 358, 433 Brightness, 600 Brilliance, 611 Brownian molecular motion, 19 Buildup of a conduction current,	•		
Air Atomic model, Bohr's, 277 in a magnetic field, 266 molecular picture, 34 Air gap of an electromagnet core, 272 Alkali halides absorption of light, 537 Attractive force magnetic, 154 Alternating current, 161 production, 195 production, high-frequency, 198 Automic model, Bohr's, 277 Boyle, Robert, 33 Bragg spectrograph, 455 Braun's tube, 22, 77 Brewster's angle, 498 Bridge circuit, 244 Bright-field illumination, 358, 433 Bright-field illumination, 358, 433 Brightness, 600 Brilliance, 611 Brownian molecular motion, 19 Buildup of a conduction current,		-	_
in a magnetic field, 266 molecular picture, 34 Air gap of an electromagnet core, 272 Alkali halides absorption of light, 537 Alternating current, 161 production, 195 production, high-frequency, 198 Air gap of an electromagnet core, electric, of current-carrying conductors, 7 Brewster's angle, 498 Bridge circuit, 244 Bright-field illumination, 358, 433 Bright-field illumination, 358, 433 Bright-field illumination, 358, 433 Bright-field illumination, 358, 433 Brightness, 600 Brilliance, 611 Brownian molecular motion, 19 Buildup of a conduction current,			
molecular picture, 34 electric, 72 Braun's tube, 22, 77 Air gap of an electromagnet core, 272 conductors, 7 Brewster's angle, 498 272 conductors, 7 Brewster's law, 498 Alkali halides magnetic, 156, 273 Bridge circuit, 244 absorption of light, 537 Attractive force Bright-field illumination, 358, 433 reflectivity, 543 magnetic, of current-carrying Alternating current, 161 conductors, 139 Brightness, 600 Alternating current, 161 conductors, 139 Brilliance, 611 production, 195 Auer mantle, 585 Brownian molecular motion, 19 production, high-frequency, 198 Autocontrol (feedback) Buildup of a conduction current,			•
Air gap of an electromagnet core, 272 conductors, 7 Brewster's angle, 498 Alkali halides magnetic, 156, 273 Bridge circuit, 244 absorption of light, 537 Attractive force Bright-field illumination, 358, 433 reflectivity, 543 magnetic, of current-carrying Alternating current, 161 conductors, 139 Brightness, 600 Alternating current, 195 Auer mantle, 585 Brownian molecular motion, 19 production, high-frequency, 198 Autocontrol (feedback) Buildup of a conduction current,			
272 conductors, 7 Brewster's law, 498 Alkali halides magnetic, 156, 273 Bridge circuit, 244 absorption of light, 537 Attractive force Bright-field illumination, 358, 433 reflectivity, 543 magnetic, of current-carrying Brightness, 600 Alternating current, 161 conductors, 139 Brilliance, 611 production, 195 Auer mantle, 585 Brownian molecular motion, 19 production, high-frequency, 198 Autocontrol (feedback) Buildup of a conduction current,			
Alkali halides magnetic, 156, 273 Bridge circuit, 244 absorption of light, 537 Attractive force Bright-field illumination, 358, 433 reflectivity, 543 magnetic, of current-carrying Alternating current, 161 conductors, 139 Brightness, 600 Brilliance, 611 production, 195 Auer mantle, 585 Brownian molecular motion, 19 production, high-frequency, 198 Autocontrol (feedback) Buildup of a conduction current,			_
absorption of light, 537 Attractive force reflectivity, 543 Alternating current, 161 production, 195 production, high-frequency, 198 Autocontrol (feedback) Attractive force Bright-field illumination, 358, 433 Brightness, 600 Brilliance, 611 Brownian molecular motion, 19 Buildup of a conduction current,			
reflectivity, 543 magnetic, of current-carrying Alternating current, 161 conductors, 139 Brightness, 600 Brilliance, 611 production, 195 Auer mantle, 585 Brownian molecular motion, 19 production, high-frequency, 198 Autocontrol (feedback) Buildup of a conduction current,			
Alternating current, 161 conductors, 139 Brilliance, 611 production, 195 Auer mantle, 585 Brownian molecular motion, 19 production, high-frequency, 198 Autocontrol (feedback) Buildup of a conduction current,	1 0		
production, 195 Auer mantle, 585 Brownian molecular motion, 19 production, high-frequency, 198 Autocontrol (feedback) Buildup of a conduction current,			
production, high-frequency, 198 Autocontrol (feedback) Buildup of a conduction current,			
	=		· · · · · · · · · · · · · · · · · · ·
Alternating current = AC , 180 with diodes, 204 177			*
	Alternating current = AC , 180	with diodes, 204	177

C	Complex index of refraction, 508,	inductive, 160
Calibration factor	509	Current transformer, 190
of instruments, 108	Complex numbers, 507	Curved light rays, 553
of measurement instruments, 13	Compound lenses, 335	Cyclotron frequency, 237
Candela (cd), unit of the luminous	Concave gratings, 453	Cylindrical lenses, 310
intensity, 593	Concave lenses, 315	Cylindrical rotor, 162
Capacitance, 56	Concave mirrors, 315	•
of a parallel-plate condenser, 56	Concentration, definition, 494	D
of a sphere, 57	Condenser, 30, 72	Damping, 496, 557
with a dielectric, 62, 243	charging and discharging, 59	Damping constant, 207
Capacitive reactance, 185	electrolytic, 61	Damping, aperiodic limit, 145
Capacitive resistance, 185	in an AC circuit, 184	Dark-field illumination, 358, 433,
Carrier of electricity, 31	technical, 61	436
Cathode-ray tube, 22, 77	Condenser = capacitor, 28	Dazzling, 602
Cat's eye, 325	Condenser lens, 342, 343, 358, 363	DC motor, 167
Cauchy's formulas, 513	Condenser plates, attraction of, 72	Debye, cgs unit for molecular
Central projection, 366	Condensers	electric dipole moments, 246
Characteristic (<i>I-V</i>) curves, 204	examples, 31, 56	Debye-Scherrer method, 440
Charge carrier, 42, 81	parallel circuit, 56	Debye-Sears experiment, 426
Charge, electric, 34, 37	series circuit, 56	Decrement, logarithmic, 207
bound, 245	Conductance	Deflection of a current-carrying
definition, 48	specific, 16	conductor in a magnetic
influence, 41, 52	Conductivity, 16	field, 7, 138
measurement, 46	electrical, 36, 565	Delimiting of light beams, 343
		Demagnetization, 271
moving; production of magnetic	specific, 232	Demagnetizing factor, 251, 271
fields, 94	Conductor, 36	Depolarization, 250
separation, 52, 159	Continuous spectrum, 320	Depolarizing factor, 251
surface density of, 51	Control grid, 203	Depth of field or depth of focus, 365
Charging a condenser, 59	Control of voice currents, 165	
Choke coil, 225	Converging lenses, 315	Depth of focus, 365
Christiansen filter, 514	Convex lenses, 315	Diamagnetic materials, 263, 264, 279
Chroma, 605	Corner mirror, 325	
Chromatic aberration, 350	Corona ring, 53, 73	Dichroism, 471, 573
Chromatic colors, 604	Coulomb = 1 ampere second, 48	artificial, 573
Circular vibrations, 170	Coulomb, Charles A., 52	Dielectric, 62, 243
Clausius-Mossotti equation, 254,	Coulomb's law, 52, 72	Dielectric constant, 62, 217
549	Creeping galvanometer, 145	complex, 566
Closure bar	Critical angle for total reflection,	definition, 243
for magnetic circuit, 147	306	frequency dependence, 257, 549
Coaxial cable, 237	Crystal	measurement, 243
Coercive field, 268, 288	principal plane, 472	of dielectric materials, Table,
Coherence condition, 385, 390, 407	Crystalline axes in mica, 475	246
Coherence, partial, 408	Curie constant, 264	Table, 244, 246
Collimated beams, 300, 381, 491	Curie temperature, 248, 264	Dielectric materials, 246, 252
of light, 301	Curie's law, 264	Dielectric polarization, 245
Collimator, 444	Current	Dielectric susceptibility, 245
Color centers, 559, 570, 571	as a moving charge, 96	Diffraction, 317, 318, 328, 413
Color filters for pure hues, 606	during electric-field decay, 46	by a step, 422
Color hue, 588, 605	during magnetic-field decay, 179	model experiments, 318
Color temperature, 588	effective value, 181	of X-rays, 438
Colors	electrolytic effect of, 9	Diffraction pattern
achromatic, 603	examples, 17	from a semi-plane, 416
chromatic, 604	time integral, 20	from a slit, 319, 407
of the spectral regions, 322	Current impulse, 20, 46	from a step, 422
tints and shades, 605	measurement of, 145	from a wire, 417
Coma, 348	Current meter $=$ ammeter, 11	from circular disks and
Compass needle, 4, 88, 92, 96, 155	Current resonance, 189	openings, 414
Complementary colors, 607	Current sources, 159	in model experiments, 318, 423
	* *	Diffuse reflection, 306, 517, 532

Diodes, 204	theory of relativity, 103, 133	number density, 527
Diopter = unit of lens power, 314	Electret, 85, 132, 248, 251	quasi-elastically bound, 560, 562
Dipole	Electric charges	Elementary electric charge, 77
electric, 81, 213, 215	bound, 63	Elliptically-polarized light, 476, 479
electric field of, 223	free, 63	Emissivity
in water, 217	Electric current, 4, 10	of the sun, 376
magnetic, 153	Electric dipole, 81, 213, 215	Emitter area, projected, 373
radiation field of, 228	in an inhomogeneous electric	Enamel or varnish paint, 610
Dipole field, 225	field, 83	Energy
Dipole moment, 82, 245	Electric dipole moment, 82, 520	electrical, measurement of, 23
electric, 520	from influence, 84	of the electric field, 78
electric, of polar molecules, 521,	of polar molecules, 564	of the magnetic field, 156, 179
564	permanent, 85	resonance curve, 209
molecular, 246, 257	Electric field, 27, 30, 114	Energy current, 401
Dipole radiation, 518, 521	decay of, 36, 211	Entrance pupil, 340, 343
Direct-current dynamo, 163	direction of, 49	Equipotential surface, 79
Direct-current generator, 162	energy of, 78	Equivalence principle
Direction of the electric current, 93	force on a charge, 68	Faraday, 141
Direction of the magnetic field, 93	general definition of, 70	Faraday's equivalence principle,
Dispersion, 322, 443, 539	gradient of, 54	12
anomalous, 538, 540	measurement of, 49	Exit pupil, 340, 343
by free electrons, 566	of a dipole, 225, 228	Exit window, 363
curves, 538, 539, 541, 547	path integral of, 50	Extinction
demonstration experiment, 539	shielding of, 42	by large metal colloids, 572
interpretation, 546	within matter, 249	by scattering, 492, 523
normal, 444, 538	Electric field constant, 52	by scattering of X-rays, 526
of a prism, 445	Electric field lines, 30, 71, 75	by small, strongly-absorbing
of NaCl, 550	Electric field strength, 49	particles, 569
quantitative treatment, 548	Electric fields	by very fine colloidal metal
Dispersion formula, 550	dependence on the frame of	particles, 572
for gases and vapors, 550	reference, 129	Extinction constant, 492, 523
Displacement current, 123, 184	in vacuum, 33	molar, 494
Displacement current density, 124	Electric flux, 55	of a metal, 541
Displacement density, 52, 123	Electric flux density, 52	of NaCl, 538
Displacement law of W. Wien, 583	Electric motor, 166	specific, 494
Distinct vision	Electric polarization, 249	Eye
distance of, 353	Electric potential, 80	acuity (sharpness of vision), 365
Diverging lenses, 315	Electric voltage, 13	adaptation, 598
Doppler effect, 463, 520	Electric waves, see Waves,	as a radiation detector, 293
Double refraction	electromagnetic, 211	fixing, 362, 599
due to inner strains, 489	Electric wind, 58	fovea centralis, 363
of an optically-active material,	Electrical conductivity, 565	nodal points of, 338
487	Electrical oscillations, see	range of accommodation, 353
Double-fiber voltmeter, 14	Oscillations, electrical, 196	resolvable angle of vision, 333
Drag of light, 552	Electrification, 84	retina, 332, 599
Dressing of glass surfaces, 502	Electrodeless ring current, 202	rise and accumulation times, 600
Drift velocity, 141	Electrolytic condenser, 61	sensitivity, 599
Du Fay, C. F., 34	Electromagnet, 143, 156, 272	spectral sensitivity distribution,
	Electromagnetic fields, 135	597
E	Electromagnetic waves, see Waves,	Eyeball
Earth	electromagnetic, 211, 230	turning while observing, 363
electric field, 53, 54	Electron, 77	Eyes
magnetic field, 94, 108	mass of, 527	of insects, 555
Earth inductor, 109	Electron beam, made visible, 137	_
Echelette grating, 453	Electron volt (eV), energy unit, 538	F
Eddy currents, 142	Electronic spin, 278	Farad, unit of capacitance, 56
Eddy-current damping, 145	Electrons, 276	Faraday cage, 42
Effective values, 181	free, 565	Faraday constant
Einstein		equivalence principle, 12, 141

Faraday effect, 486	in an electric field, 68	Grazing angle, 439, 455
Faraday, M., 101	in an inhomogeneous electric	Green flash, 555
Feddersen spark, 198	field, 83	Grey filter, 543
Feedback	in an inhomogeneous magnetic	Grey scale, 603
in a klystron, 235	field, 151	Ground, 31
with triodes, 202	Forced oscillations, 205, 517, 520,	Grounding, 80
Feedback = autocontrol, 203	548	Group velocity, 238, 459
Fermat's principle, 304	quantitative treatment, 207	Guericke, Otto von, 45, 76
Ferrites, 287	Forced oscillations = forced	Guericke's levitation experiment, 76
Ferroelectric materials, 247	vibrations, 566	Gyromagnetic ratio, 277
Ferromagnetic materials, 264, 266,	Forces	of an electron, 278
280	between two parallel currents,	
Field gradient, 55	139	Н
Field lens, 363	in electric fields, 70	Half-maximum width, 208
Field lines	in magnetic fields, 137	Halfwidth, 448
electric, 30, 71, 75	inhomogeneous, 263, 265	of diffraction patterns, 444
electric, closed loops, 113, 201,	on moving charges, 137	of spectral lines, 559
228	Forward scattering, 530, 534	of the energy-resonance curve,
magnetic, 4, 87	Fovea centralis, 363	558
around and in a conducting	Frames of reference, 103	Halo phenomena, atmospheric, 305
wire, 200	Franklin, Benjamin, 42	Hammer interrupter, 192
Field of view, 362	Fraunhofer's observation mode,	Harmonic oscillator, 517
Field of view aperture, 363	406, 416	Harmonic oscillator circuit,
Field strength, 92	Free charges, 63	electrical, 212
electric, 31, 49	Fresnel zone plate, 428	Harmonics, 218
magnetic	Fresnel's formulas, 501	Hauksbee, F., 586
at the center of a cylindrical	Fresnel's observation mode, 416	Headlight, 378
coil, 120	Fresnel's zone construction, 413	Heating by electric current $=$ Joule
Field, electric; see Electric field, 27,	Frictional electricity, 45	heating, 8
30, 114	Frictional electrification machine,	Heaviside layer, 568
Field, magnetic; see Magnetic field,	22	Hefner candle, 594
87	f-stop	Helmholtz coils, 120, 137
Filter, 323	camera lens, 366	Henry, J., 173
for infrared, 323	Fundamental oscillation, 217	Henry, unit of inductance, 175
for pure hues, 606	C	Hering's triangle, 606
for ultraviolet, 323	G	Hertz, H., 227
Fixed stars, 333, 408	Galilean telescope, 360	Heusler alloys, 268
aberration, 460	or terrestrial telescope, 361	Hilsch, R., 204
color temperature, 589	Galvanometer, 7, 11, 19, 102, 145 Gas molecules	Holography, 431
parallax, 601		Hysteresis loop, 247, 267
Fixing with the eye, 362, 599	average spacing, 33 mean free path, 34	I
Flame, light absorption, 578	Gauss (unit) = 10^{-4} T, 107	Illuminance, 594, 600
Flickering, limiting frequency, 596	Generator, 159	Illuminances
Flow birefringence, 574	Geometric distortion, 349	definition of two equal, 595
Fluctuations, 410	Gilbert, W., 84	Illumination intensity, 594, 600
Fluorescent tube 586	Gold-leaf electrometer, 14	Image definition
Fluorescent tube, 586 Flux	Gold-leaf voltmeter, 14	aberrations, 349
	Gradient Gradient	Image distance, 335
electric, 55	in the refractive index, 553, 555	Image formation, 327
magnetic, 106, 261	Granulation, 419	by a pinhole camera, 427
Flux density	Grating constant	by a steel sphere, 427
magnetic, 107, 261 Focal length, 312, 336	optical, 446	by circular rings, 427
	Grating spectrometer, 446	by concave mirrors, 327
Focal plane, 313 Focal point, 313	Grating spectrometer, 440 Grating, optical, 423, 451	by lenses, 327
virtual, 315	resolving power, 447	using water waves, 328
Focal ratio, 366	sine-wave, 424	Image point, 310
Force	sinusoidal modulation by, 424	as a diffraction pattern, 328
TOTAL	Gray S. 36	from a lens 328

real, 311	Interaction cross-section, 495, 522	Law of refraction, 302
virtual, 315	Interference, 238	Lead tree, 9
Image scale, 314	A. Fresnel's biprism experiment,	Lecher line, 220
Image-plane arching, 345	389	Lecher system, 220
Imaging	curves of constant inclination,	Lens
and irradiance, 376	396	focal ratio $N_{\rm f}$, 366
by a pinhole camera, 365	due to particles which redirect	Lens formulas, 312
by a ring grating, 428	the light, 404	Lenses
by lenses, 311, 331	experiment of T. Young, 388,	for electromagnetic waves, 236
by zone plates, 429	406	image points from, 328
of invisible objects, 432	H. Lloyd's experiment, 389	model experiment, 546
	• •	resolving power, 331
of non-emitting objects, 435	microscopy, 398	
of three-dimensional objects,	model experiments, 387, 389	thick, 336
365	of polarized light, 481, 483	with gradients in the refractive
Imaging aberrations, 344	redirection of radiant power by,	index, 555
astigmatism, 345	401	Lenses, "rubber", 352
chromatic, 350	sharpening the fringes, 397	Lenz's law, 142, 145, 177
distortion, 349	spectrometer, 454	Levitation experiment, 75
Imaging errors	of FABRY and PÉROT, 454	Leyden jar, 61
coma, 348	with a continuous spectrum, 399	Lichtenberg, G. C., 34, 38
spherical aberration, 344	with planar, parallel plates, 390	Lichtenberg's figures, 38
Immersion fluid, 357	Interference filter, 402, 579	Light
Impedance, 183	Interferometer	absorption of, 538, 541
or AC resistance, 183	after A.A. Michelson, 409	as a transverse wave, 468
Impulse, 107, 145	optical, 408	drag, 552
Impulse deflection, 21	Interrupter, electrolytic	in a moving reference frame, 460
mechanical, 146	Wehnelt, 192, 204	in gravitational fields, 556
Incandescent gaslight, 584	Ionization chamber, 298, 529	monochromatic, 383
Incandescent light, 397, 481, 482,	Iron core, 146	Light beam, 299, 300
580	Irradiance, 296, 318, 319, 374, 376,	boundaries of, 343
Inclination angle, 314	592	principal ray, 310
Increase	of the solar image, 379	Light density or radiance, 197
of the angle of vision, 356	Irradiation intensity, 374, 592	Light rays, 300
Index of refraction, 233, 302	irradiation intensity, 374, 372	curved, 553
Table, 303, 322	J	Light source, 598
Inductance, 175	Joule heating, 8, 23, 177	in the moving frame of
Induction, 101, 142, 265	Joure heating, 6, 23, 177	reference, 461
	K	
in conductors at rest, 104	Kenelly-Heaviside layer, 568	linear, 342
in moving conductors, 108, 131	*	measuring the diameter of, 407
Induction coil, 101, 116, 191	Kepler's telescope or astronomical	pointlike, 383
Induction damping, 145	telescope, 356, 360	thermal, 584
Induction furnace, 191	Kerr effect, 575	Light sources, 301
Induction phenomena, relativity,	Kirchhoff's law, 578	Light vector, 471
103	Klystron, 234	Light waves
Inductive reactance, 180, 183	Y	amplitude of, 318
Inductive resistance, 180, 183	L	Light waves as electromagnetic
Inertia	Lambert's cosine law, 372, 379, 533	waves, 233
mechanical, 176	Lambert's law of absorption, 492	Light waves, standing, 403
of a magnetic field, 176	Landé g-factor, 278	Light-beam boundaries, 334, 340
Influence, 38, 71	Langevin-Debye formula, 257	and energy transport, 371
Influence machine, 19, 29	Larmor precession, 279	and perspective, 368
Holtz, 19	Laser, 301, 399, 430	Line grating, 423, 452
Wimshurst, 19	Lattice constant	for X-rays, 453
Infrared, 323	crystallographic, 455	sinusoidal modulation by, 424
Initial curve = new curve, 267	Laue diagram, 439	Line spectrum, 448
Insulator, 36	Law of induction, 105, 106, 109,	in the X-ray region, 456
Intensity, 373	174	Line structure, 454
of scattered radiation, 519	most general form, 110	•
	Law of reflection, 302	

Logarithmic decrement, 187, 189,	Magnetic polarization, 262	electric polarizability, 523, 552
207	Magnetic poles, 88, 152	non-polar, 246
Lorentz contraction, 130, 133, 139	Magnetic potential difference, 115	number density
Lorentz force, 132, 137, 144, 160	Magnetic potentiometer, 116, 117	optical determination, 559
Loss factor, 190, 207	Magnetic shielding, 272	polar, 246, 521, 564
	Magnetic susceptibility, 262	Monochromatic (single-frequency)
Loupe, 354		
Low-voltage transformer, 191	Magnetizability	sound waves, 444
Lumen (lm), unit of luminous flux,	molecular, 273	Monochromatic light, 309, 322,
594	Magnetization, 262, 270	344, 351, 396, 397, 419, 421,
Luminance, 594, 602	remanent, 147, 268	422, 424, 425, 430–432, 443,
Table, 602	Magnetometer, 93	449
Luminosity function, 598	Magneton, Bohr, 277	hologram, 431, 432
Luminous efficiency, 598	Magnetron, 236	laser, 399, 410, 430
•		
Luminous energy, 594	Magnification, 354	single-frequency, 443
Luminous flux, 594	Magnification or power	Monochromatic wave group, 449
Luminous fountain, 307	of a microscope, 356	Monochromatic wave train, 383,
Luminous intensity, 593	of a telescope, 355, 361	429–431
Lummer-Gehrcke plate, 454	Magnifying glass, 354	Monochromator, 449
Lux (lx), unit of illuminance, 594	Magnitudes	Motion pictures, image changing
Zun (m), ume er mammanee, e)	of stars, 601	without flickering, 596
M		Ç.
	Malus, E. L., 498	Muller's stripes, 399
Mach's stripes, 294	Mass	
Madelung, E., 563	of the electron, 527	N
Magnetic charge, 153	Maxwell equations, 124, 125	Nanometer (nm) = 10^{-9} m, 322
Magnetic constant, 106	in matter, 270	Natural light, 301, 320, 449
Magnetic dipole, 153	in vacuum, 55, 89, 114, 124, 125	spectrum, 320
Magnetic field, 87, 113, 153	Maxwell, J. C., 140	Néel temperature, 286
direction of, 89, 93		New curve, 267
	Maxwell's relation, 233, 549	
gradient, 151, 263	Mean free path of molecules, 34	Newton's rings, 396
homogeneous, 89, 91	Meissner-Ochsenfeld effect, 265	Nicol prism, 471
inertia of, 176	Meniscus lens, 339, 347	Night glass, 362
of a current-carrying wire, 5,	Mercury vapor, optical detection,	Nodal points, 338
118, 120	562	Non-reflective coating, 401
of a long coil, 89, 93, 120	Michelson interferometer, 409	Normal element, 15
of a permanent magnet, 90, 270	Microphone, 165, 248	Number density, 254, 274
of a ring coil, 91		
E .	Microscope, 356	of electrons, 527
of an oscillating dipole, 229	free object distance, 359	of molecules, 495, 567
of the earth, 108	immersion fluid, 357	Numerical aperture NA, 358
production of, 94	magnification, 356	
switching on and off, 177	making phase structures visible,	0
unit of, 93	437	Object distance, 335
Magnetic field constant or induction	numerical aperture, 358	Objective, 335, 358
constant, 106	•	Objective lens, 355
Magnetic field lines, 4, 87, 200	oblique illumination, 437	
	resolving power, 357	Ocular, 351, 355, 363
of the earth's field, 94	telecentric optical path, 367	Oersted, H. C., 87
Magnetic field of the earth, 94	with dark-field illumination, 358	Ohm, unit of resistance, 16
Magnetic field strength, 92	Microwaves, 237, 258	Ohmic resistance, 16, 182
at the center of a cylindrical coil,	Millikan, R.A., 77	Ohmic voltage, 182
120	Mirror charge, 71	Ohm's law, 16, 17
Magnetic field, rotating, 170, 184		Opaque or topcoat paints, 610
	Mirror galvanometer, 11, 19	
Magnetic fields	Mirror image, 302	Opening angle, 299, 314
dependence on the frame of	Mirror prisms, 324	and radiant flux (power), 375
reference, 129	Mirror surface grating, 453	Opening-angle ratio = focal ratio,
Magnetic flux, 106, 146, 152, 154,	Mirror, concave, 328	352
261	Modulation length, 239	Optical activity, 486, 487
Magnetic flux density, 107, 261	Molecular currents, 97, 147	Optical axis, 471, 472
Magnetic moment, 148, 262, 275		Optical constants
	Molecules	*
of a molecule, 275 of an electron, 278	and dispersion, 548	Beer's formula, 509 measurement of, 500, 513

of Na and K, 572	Permittivity of vacuum = electric	Potentiometer, magnetic, 116, 117
Optical path, 304, 397, 444	field constant, 52	Pot-type magnet, 157
Optical temperature measurements,	Perspective, 343, 366	Power of a lens, 314
586	Phase grating, 425	Power, electric, 25
Order	Phase jump on reflection, 392, 502,	of alternating current, 189
of interference fringes, 384	510	Poynting vector, 231
of interference maxima, 389,	Phase shift, 183, 184	Precession, 280
395	Phase structure, 425, 437	Primary light source, 358, 602
of interference rings, 392	Phase velocity, 237, 457	Principal angle of incidence, 498
Order-one and order-two positions	in metals, 542	Principal orientation, 155
of a step grating, 422	Phase-contrast method, 437	Principal plane, 335
Oscillations	Phasor diagram, 183	of a crystal, 472
autocontrol, 204	Photocell, 297	of a prism, 309
damped, 196 electrical, 196	Photodiode, 297 Photometry, 202, 503, 500	Principal points, 338 Principal ray, 310, 314, 336, 343
energy resonance curve, 209	Photometry, 293, 593, 599 Photomultiplier, 298	angle of inclination, 314, 336,
forced, 205, 207, 520, 548, 566	Piezoelectric crystals, 86	340, 343
resonance frequency, 196	Pinhole camera, 331, 338, 365, 427	Principle of relativity, 132
undamped, 202	Planck's constant, 277, 582	Prism, 309, 451, 472
Oscillator circuit, electrical, 196,	Planck's radiation formula, 582	direct-vision, 540
214	Plane of incidence, 302	made of ZnO, 539
Oscillator strength, 561	Plasma oscillations, 566	principal plane, 309
Oscillator, electrical, 206	Poisson's spot, 414	Wollaston, 474
Oscilloscope, 77	Polar molecules, 246, 256, 521, 564	Prism spectrometer, 443
Overcorrection, spherical, 345	Polarizability, 255	Probe coil, 107
Overtones, 218	electric, 523, 552	Prometheus, 585
Oxygen, liquid, in a magnetic field,	molecular, 253	Propeller, electric, 58
266	Polarization, 467, 470	Pupils, 340
	by birefringence, 469	Purcell's experiment, 520
P	by reflection, 498	Purple, 607
Paper condenser, 61	by scattering, 528	Pyroelectric crystals, 85
Paraelectric materials, 246, 252	electric, of a dielectric material,	Pyrometer, 587
Parallax, 601	63, 84, 245, 249	
Parallel circuit, 188, 189, 195, 209	magnetic, 262	Q
of condensers, 56	of electromagnetic waves, 231,	Q-factor, 207, 559
of resistor, coil, and condenser,	233	Quality factor or Q-factor, 207
188	Polarization angle, 498	Quarter-wave plate, 480
of resistors, 17	Polarization foils, 471, 483	Quartz, birefringence, 472, 473, 48°
Parallel light beams, 381 separation by image formation,	Polarized light, 467	Quetelet's rings, 404
316	elliptic, 476, 479	R
Parallel-bounded beams, 491	interference, 481, 483 Polarized light (partially polarized),	Radiance, 373, 579
of light, 300	502	of an emitter, 376
Parallel-plate condenser, 28, 35, 56,	Polarizers, 468–470	spectral, of a black body, 581
77, 243	for ultraviolet, 474	Radiant energy, 594
attraction of the plates, 72	for X-rays, 529	Radiant exitance, 375
Paramagnetic materials, 264, 265,	Polarizing	Radiant flux, 371
274, 280	in the infrared, 498	Radiant intensity, 373, 448
Parsec = $3.08 \cdot 10^{16}$ m, 601	Pole regions	direction-independent, 381
Path difference, 383, 478	forces between, 152	of X-rays, 381
Path integral of the electric field, 50,	Poles of magnet coils, 90	Radiant intensity (or Intensity), 591
115	Poles of magnets, 154	Radiant power, 296, 297, 401, 578,
Path, optical, 304, 397, 444	Polychromatic light, 351	591
Penetration depth	Potential, 80	Radiation detectors, 296
mean, of light, 493, 538, 541	Potential difference, 81	Radiation field of a dipole, 228
of X-rays, 544	magnetic, 115	Radiation formula of M. Planck,
Permanent magnets, 97, 121, 149	Potentiometer, 18	582
Permeability, 261	Potentiometer circuit, 18	Radiometer, 296, 491
Permeability constant, 106		Rainbow, 419

Ram, hydraulic, 176	specific, 16	transition to diffraction, 532
Raster grating, 425	Resistivity, 16	Scherrer, P., 456
Rate of change	Resistors	Schlieren method, 432
of a magnetic field, 106, 113	in parallel, 17	Schmidt mirror, 352
of an electric field, 123	in series, 17	Secondary light source, 358, 375
Rayleigh scattering, 520, 522	Resolvable angular spacing, 332	Secondary radiation, 522, 533
and compressibility, 525	Resolving power, 331	Sector wheel
dependence on the wavelength,	of a grating, 447	with radial sectors, 596
522	of a lens, 333	Sector wheel or chopper, 592
extinction constant, 523	of a microscope, 357	Seignette salt crystals, 247
Reactance	of a prism, 445	Self-inductance, 173, 199
capacitive, 185	of spectrometers, 448	Series circuit, 187, 195, 209
inductive, 180, 183	Resonance, 186, 188, 207	of a resistor and a coil, 178, 182
Receiver, 371, 519	Resonance curve, 209	of condensers, 56
Redshift, 465	for the energy, 560	of resistor, coil and condenser,
Reflection, 302	Resonance frequency, 186, 196	186, 207
avoiding, 502	Resonant transformer, 199	of resistors, 15
elimination of, 401	Resonators	Shadow, 413
from a weakly-absorbing	properties of optical, 562	Shallow-water lens, 328, 555
material, 501	Retina, 332, 599	Shimmering colors, 611
of linearly-polarized light, 499	Reversing prism, 324	Shine, 611
with strong absorption, 509	Rheostat, 18	Short-circuit current, 168
Reflection coefficient, 232, 603	Ring coil, 91, 262	Shorted rotor, 143
Reflection filters, 401	Ring current, electrodeless, 202	SI = Systeme International
Reflection grating, 450	Ring current, molecular, 276	d'Unités, 12
Reflection source, 598, 602	Ring grating, 428	Sine condition, 348, 357, 377
Reflectivity, 232, 497, 501, 509, 542		
metallic, 509, 542	with only one focal length, 430 Rochon prism, 474	Sine-wave grating, 424, 429 Skin effect, 199
	Rotary condenser, 60	
Refraction, 302, 550, 552	•	Sky blue, 523
by a plane-parallel glass block,	Rotating field, 143	color temperature, 589
320	Rotating field, magnetic, 143, 170,	Slide projector, 364
reduction to scattering, 545	184	Slip, 143
Table, 552	Rotating-coil ammeter, 7, 11, 145	Soft-iron ammeter, model, 8
Refractive index, 537	Rotating-coil instrument, 8	Solar constant, 376
and gas density, 552	Rotating-field motor, 171	Solar image, diameter of, 315
complex, 508, 509	Rotational frequency of electric	Solar surface
for X-rays, 551	motors, 167, 171	radiation, 376
imaginary, 568	Rotor, 168	temperature, 583
of mica, 475	in motors, 166	Solid angle, 373
Refractometer, 307	Rowland's experiment, 94, 129	Space charge, 54
Reis P., 165	Rubber lenses, 352	Spark, 37
Rejection circuit, 189	Ruby glass, extinction spectrum,	Spark gap, 197
Relative aperture $N_{\rm f}$	570	Sparking, 197
of a lens, 366	2	Specific resistance, 16
Relativity principle, 103, 132	S	Spectral apparatus
Relativity, theory of, 103, 133	Saccharimeter (sugar content), 307,	after Fabry and Pérot, 398
Relaxation of a conduction current,	487	Spectral lines, 443, 446
179	Saturation magnetization, 266	X-ray, 456
Relaxation time, 60, 178, 208	Savart's plate, 485	Spectrometer
Remanence, 268	Scattered light, 306	after Lummer and Gehrcke, 454
Residual rays, 543	Scattered radiation, 519	and incandescent light, 449
Resistance, 16, 23	Scattering, 300, 492	for X-rays, 455
capacitive, 185	angular dependence, 519	Spectrum
electrical, 177	by weakly-absorbing particles,	produced by a plane-parallel
inductive, 180, 183	530	block, 320
measurement by field decay, 60	from matte surfaces, 532	produced by a plane-parallel
negative differential, 204	of X-rays, 526	glass plate, 443
Ohmic, 16, 182	Rayleigh, 520, 522	produced by a prism, 321, 448
	significance of, 517	

Spherical aberration, 344	Thick lenses, 336	measurement using the
Spin, 278	Thomson, J. J., 528	astronomical aberration,
Spinning top, 98	Three-dimensional viewing of	461
Split-pole motor, 184	two-dimensional images, 370	Versorium, 84
Standard light source, 593	Three-phase current, 171	Vibrations
Standing light waves, 403	Tinting and shading triangle, 606	circular, 170
Standing waves, 220, 229	Tints and shades	forced, 517, 520, 566
Stark effect, 132	of chromatic colors, 605	Visual sharpness (acuity), 595
Stars	Toepler's schlieren method, 433	Volt balance, 13
deflection of rays, 556	Toggle action, 192	Volt, unit of potential difference, 24,
Starter, 168	Toggle oscillations, 205	70
Stefan-Boltzmann law, 582	Tolansky, S., 399	Voltage
Strain birefringence, 489	Top, spinning, 278	effective value, 181
Streak focal line, 381	Toriodal coil, 262	examples, 17
Superconductivity, 177, 265, 272	Torque, 81, 82, 147, 166	induced, 106, 113
Superparamagnetism, 282	Torsional waves, 496	Ohmic, 182
Surface, 514	Total reflection, 306, 470, 504	time integral of, 102
Surface tension, reduction by an	by electrons, 568	unit of, 70
electric field, 74	critical angle, 306	Voltage divider, 18
Susceptibility	Tourmaline crystal, 86	Voltage impulse, 102, 116, 174
dielectric, 245	Transformer, 190	measurement of, 145
magnetic, 262	Transmission coefficient, 609	Voltage or potential difference, 13
	Transmitter, 165, 224	Voltage resonance, 187
T	Transverse waves, 467, 478	Voltmeter, 14
Tangent condition, 350	Triode, 203	current-carrying or dynamic, 16
Tank circuit, 206	Tungsten lamps, 585	galvanic, 16
Telecentric optical path, 341, 458	Tunnel effect, 504	static, 14
image side, 341	Two-phase AC motor, 171	
object side, 367	Tyndall effect, 470	W
Telegraph equations, 223	Tyridair erreet, 170	Waitz, J. S., 42
Telegraph of Gauss and Weber, 145		Walkiers de St. Amand, 45
Telegraphy, wireless, 197	U	Watt second $= 1$ newton meter, 24
Telephone as an alternating-current	Ultramicroscope, 569	Watt, unit of power, 25
generator, 164	Ultraviolet, 323	Wave center
Telephoto objective lens, 337	Undercorrection, spherical, 344	extended, 385
Telescope, 407	Unipolar induction, 110	pointlike, 383, 385
Galilean or Huygens, 360	Unit	-
Kepler's or astronomical, 333,	of electric current, 12	Wave groups, 237, 383, 449
*	Unit system, 12	length of, 399
356	Usable wavelength range, 447, 451	Wave resistance, 231
magnification, 355, 361		Waveguide, 237
perspective, 370	**	Wavelength, 322, 537
single-lens, 355	V	measurement of, 229
Telescopic optical path, 360	Vacuum tube	Waves
Temperature measurements	with three electrodes (triode),	mathematical representation,
optical, 586	203	506
Temperature radiation, 577	Van de Graaff generator, 44	Waves, electromagnetic, 211, 230
Temperature, true and black-body,	van de Graaff, R. J., 45	energy transport by, 231
587	Variable resistor, 18	polarization of, 231, 233
Terrestrial telescope, 360	Vector diagram, 183	reflection of, 228
Tesla coil, 198	Velocity	refraction of, 233
Tesla, unit of the magnetic flux	critical (electromagnetism), 140	standing, 220
density, 107	of electromagnetic waves, 223	velocity of, 223, 231
Test charge, 68	of electrons in metals, 141	Waves, electromagnetic, travelling
Theory of relativitaty	Velocity of light, 140, 231, 457	detection of, 229
special, 130	in vacuum, 130, 223	Wehnelt interrupter, 192, 204
Thermal radiation, 577	measurement by Foucault, 458	White light = natural light, 301
selective, 583	measurement by interference	Wien's displacement law, 583
Thermocouple, 297	experiments, 462	Wilcke, J. C., 30, 32, 38
Thermoelement, 586	measurement by Römer, 457	Wimshurst machine, 19
	· · · · · · · · · · · · · · · · · · ·	

634 Index

Wind, electric, 58 Wire wave, electromagnetic, 222 Wollaston prism, 474	line spectrum, 456 penetration depth, 544 polarized, 529	Z Zernike, F., 437 Zinc oxide
Wood, R.W., 540	refractive index, 537, 551 scattering of, 526	dispersion of, 539 selective radiation, 584
X Xerography, 38 X-ray spectrometer, 455	Y Young, Thomas, 384, 387, 405, 409,	Zone construction, Fresnel, 413 Zone plate, 428 Zoom lenses, 352
X-rays, 381, 453, 455 absorption of, 537, 541 diffraction of, 438	450, 502, 520 Young's interference experiment, 388, 406	