GENERACJA SIATEK DLA DOWOLNYCH OBSZARÓW DWUWYMIAROWYCH

Siatka:

podział obszaru na skończoną liczbę prostych elementów spełniających zadane warunki (całkowite pokrycie obszaru, bez nakładających się elementów i dziur)

Zastosowania:

- symulacja procesów
 (np. metodą elementów skończonych)
- modelowanie i wizualizacja (głównie siatki powierzchni),
- geometria obliczeniowa
- systemy informacji geograficznej ...

Definicja siatki

Siatka Ω_h - zbiór elementów K pokrywających obszar Ω

- zgodna z Ω $\overline{\Omega} = \bigcup_{K \in \Omega_h} K$
- wszystkie elementy K są o wnętrzu niepustym
- wnętrza różnych elementów są rozłączne, a każda ściana dowolnego elementu jest albo częścią brzegu $\partial\Omega$, albo ścianą sąsiedniego elementu

Wymagania wobec dyskretyzacji obszaru:

- √ zgodność z obszarem,
- ✓ obecność w siatce zadanych brzegów podobszarów,
- ✓ odpowiednia jakość elementów,
- ✓ odpowiednia gęstość i kształt elementów w zadanych podobszarach.

Zagadnienia związane z konstrukcją siatek

Automatyzacja procedury tak, aby umożliwić generację siatki dla dowolnie złożonego obszaru

(przy zapewnieniu kontroli nad rozmiarem, kształtem elementów oraz ogólną strukturą siatki)

Adaptacja siatek do rozpatrywanego zagadnienia, czyli ich optymalizacja przy jednoczesnym zachowaniu możliwie najmniejszej liczby elementów

Topologia siatki

Topologia siatki

Siatki strukturalne

Połączenia pomiędzy węzłami i elementami oraz wynikająca stąd orientacja elementów jest zdeterminowana pewnym przepisem lub równaniem algebraicznym

			(i+1,j+1)
(i-1	1,j)	(i,j)	(i+1,j)
			(i+1,j-1)
•			

- prosta definicja węzłów
 poprzez indeksy i współrzędne węzłów
- ◆ prosta relacja sąsiedztwa elementów
- ◆ problemy przy dyskretyzacji dowolnej geometrii
- ♦ konieczność znacznej interwencji użytkownika

Topologia siatki

Siatki niestrukturalne

Połączenia pomiędzy węzłami i elementami nie są określone żadną regułą. Liczba elementów wokół węzła nie musi być stała. Relacje między węzłami i elementami – np. *tablica połączeń*

- ♦ konieczność przechowywania:
 - współrzędnych węzłów
 - relacji między węzłami i elementami
- ♦ możliwość rozpatrywania dowolnej geometrii
- ♦ łatwość automatyzacji tworzenia siatki

Metody generacji siatek 2D

Przeciwległe ściany muszą mieć taką samą dyskretyzację

trójkątne

Poprzez odpowiednie odwzorowanie obszaru

Metody

- algebraiczne
- w oparciu o równania różniczkowe

Różne przekształcenia

Siatka w przestrzeni parametrycznej

Siatka w przestrzeni fizycznej

Podział na bloki

Problemy:

- wyznaczenie bloków
- łączenie siatek bloków

Metody generacji siatek trójkątnych niestrukturalnych

quadtree frontalne Advancing Front w oparciu o triangulację Delaunay'a

Metoda "quadtree"

Obiekt nałożony na "pre-siatkę" Struktura hierarchiczna pre-siatki (niektóre elementy dzielone na 4 części)

(Yerry and Shephard, 84)

Metoda "quadtree"

- Definiujemy początkowy prostokąt (*root* of quadtree)
- Rekurencyjnie dzielimy na 4 ćwiartki tak, żeby uwzględnić geometrię obszaru
- Znajdujemy przecięcia ćwiartek z brzegiem
- Tworzymy siatkę dla każdego liścia używając węzłów czworokątów i przecięć z brzegiem
- Usuwamy trójkąty zewnętrzne

Tworzony jest *front*, który przesuwa się do wnętrza obszaru

Lo, 85; Löhner, 88

- Definiujemy początkowy *front* jako brzeg obszaru
- Dla każdej krawędzi frontu określamy najlepsze położenie dla węzła C na krawędzi frontu AB

Sprawdzamy, który węzeł frontu powinien zostać wybrany (D czy C?)

Nowe *krawędzie frontu* dodawane i usuwane, gdy tworzone są trójkąty

- Gdy możliwe kilka lokalizacji punktu, wybieramy najlepszą
- Krawędzie nie mogą przecinać frontu
- Trójkąty nie mogą być odwrócone

W oparciu o triangulację Delaunay'a

Triangulacja Delaunay'a jest jedyną triangulacją powłoki wypukłej zbioru *S*, w której żaden punkt chmury nie leży we wnętrzu kuli opisanej na dowolnym *k*-sympleksie.

<u>W 2D</u>:

Dla zadanej chmury punktów triangulacja Delaunay'a, maksymalizuje minimum sześciu kątów w każdym dwóch przylegających trójkątów.

W oparciu o triangulację Delaunay'a

Algorytm iteracyjny:

- \triangleright Tworzymy początkową triangulację T_0
- \triangleright Wprowadzamy do istniejącej triangulacji T_i kolejny punkt P_{i+1}

2 sposoby uaktualniania triangulacji

Kolejność wprowadzania punktów brzegowych

dodawane zgodnie z kolejnością generowania

dodawane w kolejności losowej

Respektowanie geometrii obszaru

bok, który nie jest reprezentowany w zbiorze krawędzi triangulacji

Triangulacja Delaunay'a z ograniczeniami

Może być definiowana jako:

- Triangulacja powłoki chmury punktów, w której wybrano pewien podzbiór trójkątów, które nie mogą być modyfikowane ani usunięte.
- Triangulacja, która musi zawierać pewne odcinki w zbiorze krawędzi.
- Jeśli dwuwymiarową triangulację Delaunay'a traktować jako graf planarny G(P) rozpięty na zbiorze wierzchołków P, to triangulację z ograniczeniami rozpatrywać można jako graf z ograniczeniami G(P,L), gdzie L reprezentuje zbiór nieprzecinających się krawędzi, których wierzchołki należą do P, a L stanowić musi podgraf grafu G.
- Triangulacja obszaru wklęsłego ograniczonego brzegiem, którego odcinki stanowią krawędzie triangulacji.
 Jeśli w takiej triangulacji jakiś punkt *Pi* znajduje się we wnętrzu koła opisanego na trójkącie Δ, to punkt ten jest oddzielony od Δ brzegiem obszaru

Odzyskanie brzegu w triangulacji

Poprzez wprowadzenie dodatkowych punktów:

Odzyskanie brzegu w triangulacji

Poprzez zamianę przekątnych:

Usunięcie elementów zewnętrznych

Wprowadzanie węzłów wewnętrznych

Równomierna siatka węzłów

Kiedy należy dodać węzeł i gdzie go umieścić?

- Ocena jakości elementów według zadanego kryterium
- Sposób umieszczenia nowego węzła

Kryteria oceny trójkąta:

- wagowe
- równoboczności
- rozmiaru ...

W środku trójkąta

W środku okręgu opisanego na trójkącie

Na krawędziach trójkątów

Na środku odcinka łączącego środki okręgów opisanych na dwóch sąsiednich trójkątach

Na "wzór" metody frontalnej

Kwestia kryterium stopu

W zależności od kryterium jakości i sposobu lokalizacji punktu

Siatki utworzone na bazie tych samych węzłów brzegowych przy różnych kryteriach oceny elementów i różnej lokalizacji węzłów wewnętrznych

Etapy generowania siatki

Dyskretyzacja konturów

- Triangulacja węzłów brzegowych
- Odzyskiwanie krawędzi brzegowych

Etapy generowania siatki

Usunięcie trójkątów zewnętrznych

Wprowadzenie węzłów wewnętrznych

Poprawa jakości siatki

Poprawa jakości siatki

Poprawa jakości siatki

- Metody geometryczne
 - modyfikacja pozycji węzłów
- Metody topologiczne
 - zamiana krawędzi
 - tworzenie/usuwanie składników siatki

Wygładzanie Laplace'a

$$\mathbf{P} = \frac{\sum_{i=1}^{n} \mathbf{P}_i}{n}$$

Wygładzanie Laplace'a

zagrożenia

odwrócone elementy

Wygładzanie ważone

$$\mathbf{P} = \frac{\sum_{i=1}^{n} A_i \mathbf{C}_i}{\sum_{i=1}^{n} A_i}$$

 A_i =pole trójkąta i

 C_i = środek trójkąta i

Zamiana przekątnych

Możliwe różne metody oceny

Zamiana przekątnych

W celu zmiany krotności wierzchołka

Usuwanie wierzchołków

Połączenie przesunięcia wierzchołków oraz dodanie wierzchołka

lepszy kształt trójkątów i zmiana krotności wierzchołka

Złożoność obliczeniowa Przykłady

I – dyskretyzacja brzegu i triangulacja dla węzłów brzegowych
 II – wprowadzanie węzłów wewnętrznych i triangulacja
 III – poprawa siatki

Geometria modelu a rozmiar elementów

Krzywizna Bliskość brzegu ...

Geometria modelu a rozmiar elementów

Jak wygenerować?

Siatka izotropowa

Siatka o zmiennej gęstości

Siatka anizotropowa

Wpływ dyskretyzacji brzegu

Wpływ dyskretyzacji brzegu

Wagi przypisane do punktów

Wpływ dyskretyzacji brzegu

Przykład siatki zagęszczonej w wyniki wprowadzenia dodatkowej linii brzegowej

Wpływ sposobu wprowadzania węzłów wewnętrznych na gęstość siatki

Siatki oparte na tych samych węzłach brzegowych, w których inaczej wprowadzono węzły wewnętrzne

Modyfikacje siatki

Przemieszczanie węzłów

Modyfikacje siatki

Modyfikacje topologiczne

W trakcie generowania – funkcja rozmiaru i kształtu

Jak zadawać i przechowywać tę funkcję?

Siatki anizotropowe

Siatki anizotropowe

Kontrola wydłużenia elementów przez wprowadzenie innej metryki w trakcie generowania siatki

Metryka wprowadzona poprzez iloczyn skalarny:

$$(x,y) = x^{\mathrm{T}} M y$$

M – macierz symetryczna, dodatnio określona

W izolowanych punktach zadawane są trzy parametry określające metrykę

$$m_{i} = (\alpha_{i}, lx_{i}, ly_{i})$$

$$lx_{i}$$

$$ly_{\alpha}$$

gdzie:

α – kierunek wydłużenia,
lx, ly – żądana długość
elementów w kierunku α
i prostopadłym do α

Niestrukturalne czworokątne

metody bezpośrednie

- Paving
- Grid based
- Medial axis

Paving

- podobnie jak Advancing Front: zaczynamy front od brzegu obszaru
- tworzymy rzędy elementów na bazie kątów frontu
- musimy zapewnić parzystą liczbę krawędzi frontu

Paving

Nowy front – nachodzenie na siebie elementów

Paving

Zamknięcie pętli i wygładzenie

Grid based

• Generujemy regularną siatkę czworokątną obejmującą model

• Zaznaczamy elementy wewnątrz obszaru

Grid based

• Łączymy odpowiednio zaznaczone elementy wewnętrzne

z brzegiem

Zła jakość elementów przy brzegu

A, B – punkty szkieletu C – poza szkieletem

Przybliżenie Medial Axis

Z wykorzystaniem triangulacji Delaunay'a

Siatka w oparciu o Medial Axis

Niestrukturalne – pośrednie Łączenie trójkatów

(a) Base segment

(b) Base triangle

(c) New quadrilateral

Niestrukturalne – pośrednie Łączenie trójkatów

Przykład

Niestrukturalne – pośrednie Q-Morph

Niestrukturalne – pośrednie Q-Morph

Poprawa jakości siatki

Modyfikacje geometryczne - położenia węzłów

Poprawa jakości siatki

Modyfikacje topologiczne

Zamiana przekątnych

Usunięcie wierzchołka

Poprawa jakości siatki

Modyfikacje topologiczne i geometryczne

Poprawa krotności węzłów + przesunięcie

Co ma być przechowywane?

- informacje geometryczne współrzędne wierzchołków
- □ połączenia (topologia siatki)
- ☐ inne atrybuty
 - ✓ dla wierzchołka, krawędzi, ściany

Raczej – oddzielić informacje geometryczne od topologicznych!

Wymagania topologiczne:

- > Jaki typ siatki ma reprezentować nasza struktura?
- Czy występują osobliwe krawędzie i wierzchołki?
- Siatka strukturalna, czy nie?
- > Jaki typ elementów (trójkątne, czworokątne ...)? Jednorodne?
- Potrzebna hierarchia elementów?

Wymagania algorytmiczne:

- Jakie algorytmy będziemy stosować ?
- Do czego będziemy stosować siatkę?
 - → Zapytania geometryczne i topologiczne np.:
 - Które wierzchołki należą do ściany #2?
 - Czy wierzchołek A jest sąsiedni dla wierzchołka B?
 - Jakie ściany przylegają do elementu #5?
- Siatka statyczna czy podlegająca modyfikacjom, jakim?

Jak dobra jest nasza struktura?

- Czas tworzenia
- Czas odpowiedzi na zapytanie
- Czas wykonania różnych operacji np. modyfikowania siatki
- Złożoność pamięciowa
- Redundancja

Set of faces

Każda ściana zawiera listę współrzędnych wierzchołków

FACE TABLE						
F ₁ F ₂ F ₃	$ \begin{array}{c} (x_1,y_1,z_1)(x_2,y_2,z_2)(x_3,y_3,z_3) \\ (x_2,y_2,z_2)(x_4,y_4,z_4)(x_3,y_3,z_3) \\ (x_2,y_2,z_2)(x_5,y_5,z_5)(x_4,y_4,z_4) \end{array} $					

- Prosta struktura (+)
- Brak informacji o połączeniach (-)
- Redundancja (-)
- dla siatek niejednorodnych zmienny rozmiar danych (-)

List of faces – shared vertex

Informacje geometryczne i topologiczne oddzielone

VERTEX TABLE

V ₁	x ₁	Y ₁	z ₁
V_2	X ₂ X ₃	Y_2	z_2
V_3	Х3	Y_3	Z_3
V_4		Y_4	z_4
V ₅	X ₅	Y ₅	Z_5

FACE TABLE

F ₁	V ₁	V ₂ V ₄ V ₅	٧3
F_2	V_2	V_4	٧3
F_3	V ₂	V ₅	V_4

List of faces – shared vertex

- Mniejsza zajętość pamięci (+)
- Może reprezentować siatki nie tylko dla rozmaitości (+)
- Dla siatek niejednorodnych zmienny rozmiar danych (-)
- Brak wystarczającej informacji o połączeniach (-)

Zapytania:

- Jakie są wierzchołki ściany F₂? O(1)
- Do jakich ścian należy wierzchołek v₁?
 Wymaga przeglądnięcia wszystkich ścian
- Czy wierzchołki v₁ i v₄ są sąsiednie? podobnie

Adjacency matrix

dodatkowo

	\mathbf{v}_1	V_2	V_3	V_4	V_5	v_6
\mathbf{v}_1		1	1			·
V_2	1		1	1		
V_3	1	1		1		1
V_4		1	1		1	1
V_5				1		1
V_6			1	1	1	

- Sąsiedztwo wierzchołków, ale nie elementów
- Zapytanie o elementy, do których należy wierzchołek
 - wymaga sprawdzenia wszystkich elementów

Pełna lista połączeń

Pełna lista połączeń

Częściowa lista połączeń

Winged Edge Data Structure

Winged Edge Data Structure

ED	GE 1	TABL	.E	11	12	21	22	
e ₁	V ₁	V ₃		F ₁	e ₂	e ₂	e ₄	e ₃
e ₂	٧1	V_2	F_1		e ₁	e_1	e_3	e ₆
e ₃	V ₂	V_3	F_1	F_2	e ₂	e ₅	e ₁	e_4
e ₄	V3	V_4		F_2	e ₁	e_3	e ₇	e ₅
e ₅	V ₂	V_4	F_2	F_3	ез	e ₆	e_4	e ₇
e ₆	V ₂	V_5	F ₃		e ₅	e_2	e ₇	e ₇
e ₇	V ₄	V_5		F ₃	e ₄	e ₅	e ₆	e ₆

	FACE TABLE				
F ₁	e ₁				
F ₂	e ₃				
F ₃	e ₅				

VEI	VERTEX TABLE						
V ₁	X ₁	Y ₁	Z ₁	e ₁			
V ₂	X_2	Y ₂ Y ₃	Z_2	e ₆			
V ₃	X_3	Y_3	Z_3	e ₃			
V ₄	X_4	Y ₄ Y ₅	Z_4	e ₅			
V ₅	X ₅	Y ₅	Z ₅	e ₆			

Wierzchołek

- współrzędne
- 1 wychodząca krawędź

"Halfedge"

- wierzchołek origin
- ścianę przylegającą do e
- krawędzie twin, next, prev

Ściana Face

krawędź e

Vertex	coordinate	IncidentEdge
V_1	(x_1, y_1, z_1)	$e_{2,1}$
V_2	(x_2, y_2, z_2)	e _{5,1}
V_3	(x_3, y_3, z_3)	e _{1,1}
V_4	(x_4, y_4, z_4)	e _{7,1}
V_5	(x_5, y_5, z_5)	e _{9,1}
v_6	(x_6, y_6, z_6)	e _{7,2}

face	edge
f_1	e _{1,1}
f_2	e _{5,1}
f_3	e _{4,2}
f_4	e _{8,1}

Half-edge	origin	Opposite	IncidentFace	next	prev
e _{3,1}	V_2	e _{3,2}	f_1	e _{1,1}	$e_{2,1}$
e _{3,2}	V_3	e _{3,1}	f_2	e _{5,1}	e _{4,1}
e _{4,1}	V_4	e _{4,2}	f_2	e _{3,2}	e _{5,1}
e _{4,2}	V_3	e _{4,1}	f_3	e _{7,1}	e _{6,1}

- Zapytania w czasie O(1) (+)
- Może reprezentować siatki tylko dla rozmaitości (-)

Face Based Connectivity

Wierzchołek

- współrzędne
- 1 przylegająca ściana

Ściana Face

- 3 wierzchołki
- 3 sąsiednie ściany

Nie ma informacji explicite o krawędzi