

Assignment 2

Made by

Khadija Hesham

E-mail

khesh072@uottawa.com

Supervised by

Dr, Bisi Runsewe

Part A):

Data Preparation:

Missing values handling:

We have noticed that missing data has been represented by the "?" sign, hence we are converting this sign to NaN then to drop these data, or to fill them.

TBG_measured	TBG	referral_source
f	NaN	SVHC
f	NaN	other
f	NaN	other
f	NaN	other
f	NaN	SVI
f	NaN	other
f	NaN	other
f	NaN	SVI
f	NaN	other

We have noticed that the "TBG" column has all nan data, so we have to get rid of it.

We have noticed that age, T4U and T3 all have approx. a bell shaped distribution. T3 and T4U both of them have a right skewed distribution, hence we will use median to fill missing data.

In addition to using mean in age column to fill missing data.

The rest of features do not follow a distribution. For the rest of numerical features , we will drop missing data as all do not follow a distribution.

For categorical data, we will drop all missing values.

We have noticed that the females have much age in comparison with males.

Attribute Selection:

- It enables the machine learning algorithm to train faster.
- It reduces the complexity of a model and makes it easier to interpret.
- It improves the accuracy of a model if the right subset is chosen.
- It reduces overfitting.

We will rank features by Feature Ranking Algorithm which has a package called "Fselector" in r. We have performed feature importance

	attr_importance
age	0.000000e+00
sex	4.553184e-03
on_thyroxine	2.107800e-02
query_on_thyroxine	7.905279e-03
on_antithyroid_medication	6.833025e-03
sick	7.231943e-03
pregnant	1.679760e-02
thyroid_surgery	1.169328e-02
I131_treatment	4.334956e-04
query_hypothyroid	1.026899e-02
query_hyperthyroid	1.059329e-03
lithium	4.585593e-03
goitre	1.486643e-02
tumor	7.274957e-05
hypopituitary	9.596977e-03
psych	8.259455e-03

TSH_measured	0.000000e+00
TSH	1.868196e-01
T3_measured	3.781190e-03
T3	9.868282e-02
TT4_measured	0.000000e+00
TT4	4.592558e-02
T4U_measured	9.596977e-03
T4U	0.000000e+00
FTI_measured	0.000000e+00
FTI	6.312347e-02
TBG_measured	0.000000e+00
referral_source	5.362943e-03

We will use features having importance above or equal 0.001. Reduced data set:

> d	lt_df	-00 000	the state	41 4190 1 101000				Class
	on_thyroxine	pregnant t	thyroid_surgery	query_hypothyroid	goitre	TSH T3	TT4	negative
1	f	f	f	f	f	112 29	30	negative
3	f	f	f	f	f	105 24	12	negative
5	f	f	f	f	f	79 14	203	_
6	t	f	f	f	f	7 24	94	negative
8	f	f	f	f	f	155 8	222	negative
9	f	f	f	f	f	67 26	28	negative
10	f	f	f	f	f	157 19	225	negative

Modeling:

We are modeling with DT algorithm using 10 k fold.

Resampling results:

Metrics per fold:

	Ассигасу	Карра	Resample
1	0.9517685	0.7007697	Fold02
2	0.9612903	0.7376957	Fold01
3	0.9581994	0.7361311	Fold03
4	0.9449838	0.6352083	Fold06
5	0.9389068	0.4644734	Fold05
6	0.9453376	0.5203665	Fold04
7	0.9451613	0.5903933	Fold07
8	0.9294872	0.4229508	Fold10
9	0.9514563	0.6523402	Fold09
10	0.9356913	0.4222552	Fold08

Confusion Matrix and Statistics:

Confusion Matrix and Stat	istics			
	Reference			
Prediction	compensated_hypothyr	roid	negative	
compensated_hypothyroid		22	3	
negative		21	709	
primary_hypothyroid		0	0	
secondary_hypothyroid		0	0	
	Reference			
Prediction	primary_hypothyroid	sec	ondary_hypothyroid	ď
compensated_hypothyroid	7		(9
negative	14		(9
primary_hypothyroid	0		(9
secondary_hypothyroid	0			9

Accuracy:

Overall Statistics

Accuracy: 0.942

95% CI: (0.9232, 0.9574)

No Information Rate : 0.9175 P-Value [Acc > NIR] : 0.005929

Kappa : 0.5087

Mcnemar's Test P-Value : NA

Statistics by Class:		
Cla	ss: compensated_hypothyroid	Class: negative
Sensitivity	0.51163	0.9958
Specificity	0.98636	0.4531
Pos Pred Value	0.68750	0.9530
Neg Pred Value	0.97177	0.9063
Prevalence	0.05541	0.9175
Detection Rate	0.02835	0.9137
Detection Prevalence	0.04124	0.9588
Balanced Accuracy	0.74899	0.7245

	Class: primary_hypothyroid	
Sensitivity	0.00000	
Specificity	1.00000	
Pos Pred Value	NaN	
Neg Pred Value	0.97294	
Prevalence	0.02706	
Detection Rate	0.00000	
Detection Prevalence	0.00000	
Balanced Accuracy	0.50000	

	Class:	secondary_hypothyroid
Sensitivity		NA
Specificity		1
Pos Pred Value		NA
Neg Pred Value		NA
Prevalence		0
Detection Rate		0
Detection Prevalence		0
Balanced Accuracy		NA

Tree Plot:

We can get some rules as:

If the TSH value is not above or equal 230, the class is negative.

If the TSH value is above or equal 230 and the on_thyro value is not equal to 0, the class is negative.

If the TSH value is above or equal 230 and the on_thyro value is equal to 0, the class is compensa.

Model Evaluation:

We will try to improve the decision tree by pruning by adding a max depth of 10:

Metrics after cross validation:

```
Kappa
            Accuracy
ср
0.007751938 0.9658528
                      0.7858355
0.009689922 0.9658528
                      0.7866480
0.011627907 0.9632815
                      0.7610241
0.012919897 0.9626353
                      0.7543075
0.025193798 0.9626436
                      0.7462436
0.027131783 0.9600671
                      0.7249753
0.062015504 0.9494613 0.6281206
0.069767442 0.9426890 0.5380050
0.104651163 0.9365630 0.4869733
0.205426357 0.9211071 0.1971107
```

Accuracy was used to select the optimal model using the largest value. The final value used for the model was cp = 0.009689922.

Prediction for each fold:

	Ассигасу	Карра	Resample
1	0.9612903	0.7526596	Fold02
2	0.9775641	0.8630292	Fold01
3	0.9741935	0.8260138	Fold05
4	0.9580645	0.7545228	Fold06
5	0.9549839	0.7015764	Fold10
6	0.9838710	0.8892462	Fold04
7	0.9710611	0.8076817	Fold08
8	0.9612903	0.7610483	Fold09
9	0.9614148	0.7613506	Fold03
10	0.9677419	0.8010780	Fold07

We can get some rules from the best model above:

If the TSH value was lower than 230 but greater than or equal 119, the class is negative. if the TSH value was above or equal 230 and if the on_thyro value was zero, the class is negative. if the TSH value was above or equal 230, if the on_thyro value was zero, and if the T3 value was above 12, the class is compensa, while if the T3 value was below 12, the class is primary.

Model Performance:

Confusion Matrix and Stat	istics		
20	Reference		
Prediction	compensated_hypothyroid	negative	primary_hypothyroid
compensated_hypothyroid	43	6	5
negative	0	704	0
primary_hypothyroid	0	2	16
secondary_hypothyroid	0	0	0
	Reference		
Prediction	secondary_hypothyroid		
compensated_hypothyroid	- 0		
negative	0		
primary_hypothyroid	0		
secondary_hypothyroid	0		
1200 000			

Statistics by Class:			
	Class:	compensated_hypothyroid C	lass: negative
Sensitivity		1.00000	0.9888
Specificity		0.98499	1.0000
Pos Pred Value		0.79630	1.0000
Neg Pred Value		1.00000	0.8889
Prevalence		0.05541	0.9175
Detection Rate		0.05541	0.9072
Detection Prevalence		0.06959	0.9072
Balanced Accuracy		0.99250	0.9944
	Class:	<pre>primary_hypothyroid Class</pre>	: secondary_hypothyroid
Sensitivity		0.76190	NA
Specificity		0.99735	1
Pos Pred Value		0.88889	NA
Neg Pred Value		0.99340	NA
Prevalence		0.02706	0
Detection Rate		0.02062	0
Detection Prevalence		0.02320	0
Balanced Accuracy		0.87963	NA

Overall Statistics

Accuracy: 0.9832

95% CI: (0.9715, 0.9911)

No Information Rate: 0.9175 P-Value [Acc > NIR]: 1.619e-15

Kappa : 0.8973

It's shown that tree pruning has resulted in a significant improvement in metrics and accuracy has been increased from 94.2% up to 98.32%

Part B):

We will fill nan values in BIM, blood pressure and skin thickness by the mean.

We will fill nan values in age and pregnancy by median, other wise we will drop all missing values in the rest of features.

We have splitted a 25% of data for testing and made min max transformation to the data, then we have modeled with NN algorithm with 2 hidden neurons.

NN plot:

Error: 32.717441 Steps: 161

Evaluation:

The Root Mean Square Error (RMSE) is 0.4921767

Retrain with 2 layers and 5 neurons:

Error: 32.324124 Steps: 1171

0.4994945

Evaluation:

The Root Mean Square Error (RMSE) is 0.4994945, and in comparison with the previous RMSE, there is no significant change.

Retrain with logistic activation function with 2 hidden layes each have 5,2 neurons respectively, having learning rate from (-1,1.2) and a threshold of 0.05:

Error: 20.756622 Steps: 51347

Evaluation:

The Root Mean Square Error (RMSE) is 0.4962181, there is no significant change.

References:

- [1] Lab code and lecture notes.
- $[2] \ \underline{https://www.analyticsvidhya.com/blog/2016/12/introduction-to-feature-selection-methods-with-anexample-or-how-to-select-the-right-variables/$
- [3] https://statisticsglobe.com/loop-through-data-frame-columns-rows-in-r/
- [4] https://stackoverflow.com/questions/10085806/extracting-specific-columns-from-a-data-frame
- [5] https://www.datacamp.com/community/tutorials/neural-network-models-r