# **Algorithm Theory**

(08 exact cover, backtracking, multiply linked lists, dancing links)

Alois Heinz
Heilbronn University,
Max-Planck-Str. 39, 74081 Heilbronn
heinz@hs-heilbronn.de

Nov 17 2022

#### **Overview: Exact Cover Problem**

- common computational core of many practical application problems
- can be used to model decision, optimization, constraint satisfaction, or counting problems
- Ex.: partitions, tilings, time tables, graph colorings, map colorings, n-queens, sudoku
- challenge: find / any / the best / all / the # / of the potential solutions
- can be described with the help of the subsets of a set, matrices (tables) or bipartite graphs
- ullet  $\mathcal{NP}$ -complete problem, therefore solutions are often difficult to find
- dancing links (DLX) is a recursive, nondeterministic, depth-first backtracking algorithm, that finds solutions to the exact cover problem efficiently.
- DLX is able to search the complete potential solution space, the efficiency is a direct result of a most intelligent use of list structures to model and adapt matrices fast

#### **Definition: Exact Cover Problem**

#### Exact Cover problem:

**Given:** finite set X of elements, and  $S \subseteq 2^X$ , set of subsets of X

**Sought:** one / the best / all / the # of subsets  $S^* \subseteq S$ , which allow a disjunctive decomposition of X:

$$\biguplus_{M_j \in S^*} M_j = X \quad \land \quad (\forall M_k, M_\ell \in S^*) \quad M_k \cap M_\ell = \emptyset$$

**Example:**  $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$  and  $S = \{\{1, 5, 9\}, \{1, 6, 8\}, \{2, 4, 9\}, \{2, 5, 8\}, \{2, 6, 7\}, \{3, 4, 8\}, \{3, 5, 7\}, \{4, 5, 6\}\}$ 

**Variant:** In some cases it is sufficient to cover only a subset  $\widetilde{X}\subseteq X$  disjunctively:  $\biguplus_{M_i\in S^*}M_j=\widetilde{X}$ 

**Question:** How can solutions be found — as fast as possible?

#### **Ex.: Set Partitions**

Find the number a(n) of all disjunctive decompositions of  $X = \{1, 2, \dots, 6n + 3\}$  into (2n + 1) 3-element subsets of X having the same element sum.

If 
$$n=1$$
 we have  $X=\{1,2,\ldots,9\}$  and  $S=\{\{1,5,9\},\ \{1,6,8\},\ \{2,4,9\},\ \{2,5,8\},\ \{2,6,7\},\ \{3,4,8\},\ \{3,5,7\},\ \{4,5,6\}\}$ 

The cover-matrix of the problem is:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

$$S_1 = \{\{1, 5, 9\}, \{2, 6, 7\}, \{3, 4, 8\}\}\$$
  
 $S_2 = \{\{1, 6, 8\}, \{2, 4, 9\}, \{3, 5, 7\}\}$   $a(1) = 2$ 

# Ex.: Tilings using $2 \times 2$ -Tiles and L-Trominoes

Let b(n) be the number of tilings in a  $4 \times n$ -rectangle, e.g. in a  $4 \times 4$ -rectangle:

$$X = \{1, \dots, 16\}, |S| = 45$$

```
S = \{\{1,2,5\}, \{1,2,6\}, \{1,5,6\}, \{2,3,6\}, \{2,3,7\}, \{2,5,6\}, \{2,6,7\}, \{3,4,7\}, \{3,4,8\}, \{3,6,7\}, \{3,7,8\}, \{4,7,8\}, \{5,6,9\}, \{5,6,10\}, \{5,9,10\}, \{6,7,10\}, \{6,7,11\}, \{6,9,10\}, \{6,10,11\}, \{7,8,11\}, \{7,8,12\}, \{7,10,11\}, \{7,11,12\}, \{8,11,12\}, \{9,10,13\}, \{9,10,14\}, \{9,13,14\}, \{10,11,14\}, \{10,11,15\}, \{10,13,14\}, \{10,14,15\}, \{11,12,15\}, \{11,12,16\}, \{11,14,15\}, \{11,15,16\}, \{12,15,16\}, \{1,2,5,6\}, \{2,3,6,7\}, \{3,4,7,8\}, \{5,6,9,10\}, \{6,7,10,11\}, \{7,8,11,12\}, \{9,10,13,14\}, \{10,11,14,15\}, \{11,12,15,16\}\}
```



Here we have exactly b(4) = 6 solutions.

### **Ex.: N-Queens Problem**

Find the number c(n) of placements of n queens on the  $n \times n$  chessboard such that no queen is able to capture any other using the standard chess queen's moves.

This problem can be coded into a cover-matrix with one row for each queen position, one column for each of the rows, columns and diagonals of the chessboard. c(4) = 2:

| (r,c)    row   col                     | up diag   down dg | elements    solut | tions             |
|----------------------------------------|-------------------|-------------------|-------------------|
| 1234   1234                            | 1234567   1234567 | of X              | I                 |
| ++-!!!!-+-!!!!-+                       |                   | -++               | +                 |
| (1,1)     1   1                        | 1   1             | 1 5 9 19          | (1) 1 2 3 4       |
| (1,2)     1   1                        | 1   1             | 1 6 10 20         | (2)   ++          |
| (1,3)     1   1                        | 1   1             | 1 7 11 21    (1)  | 1   Q             |
| (1,4)     1   1                        | 1   1             |                   | 2  Q              |
| $(2,1) \mid \mid 1 \mid 1 \mid \mid 1$ | 1   1             | 2 5 10 18    (1)  | 3   Q             |
| $(2,2) \mid \mid 1 \mid 1 \mid 1 \mid$ | 1   1             | 2 6 11 19         | 4   Q             |
| (2,3)   1   1                          | 1   1             |                   | ++                |
| $(2,4) \mid \mid 1 \mid 1 \mid 1 \mid$ | 1   1             |                   | (2)               |
| (3,1)                                  | 1   1             | 3 5 11 17         | (2)   (2) 1 2 3 4 |
| (3,2)                                  | 1   1             | 3 6 12 18         | ++                |
| (3,3)   1   1                          | 1   1             | 3 7 13 19         | 1   Q             |
| (3,4)                                  | 1   1             | 3 8 14 20    (1)  | 2   Q             |
| (4,1)                                  | 1   1             | 4 5 12 16         | 3  Q              |
| (4,2)                                  | 1   1             | 4 6 13 17    (1)  | 4  Q              |
| (4,3)                                  | 1   1             | 4 7 14 18         | (2)   ++          |
| (4,4)                                  | 1   1             | 4 8 15 19         | 1                 |

#### **DLX: Basic Ideas**

- Store only 1-elements of the (sparsely populated) cover matrix within a multiply linked list structure (preprocessing)
  - for each row there is a circular doubly linked list of 1's
  - for each column there is a circular doubly linked list of 1's plus a column header element (with additional information)
  - a further circular doubly linked list contains all these column headers plus a special root element h
  - each element has references (pointers) for left, right, up, down and an additional reference column pointing to the column header element
- find a subset of the rows such that all their 1-elements cover at least the mandatory columns (and each column is covered not more than once)
- the temporary removal of a column c from the doubly linked row list is done like this:

```
c.left.right = c.right;
c.right.left = c.left;
```

re-inserting c into the doubly linked row list is done like this:

```
c.left.right = c;
c.right.left = c;
```

removal from and re-insertion into column list is done analogously

# **DLX: Matrix Link Structure**



Source: Donald E. Knuth: Dancing Links, P. 6

#### **DLXNode und search**

```
class DLXNode{
                           // represents 1 element or header
                             // reference to column-header
 DLXNode C:
 DLXNode L, R, U, D; // left, right, up, down references
 DLXNode(){ C=L=R=U=D=this; } // supports circular lists
public static void search (int k){ // finds & counts solutions
 if (h.R == h) {cnt++; return;} // if empty: count & done
                   // choose next column c
 DLXNode c = h.R;
 cover(c);
                                // remove c from columns
 for (DLXNode r=c.D; r!=c; r=r.D){ // forall rows with 1 in c
    for (DLXNode j=r.R; j!=r; j=j.R) // forall 1-elements in row
                      // remove column
       cover(j.C);
    search(k+1);
                                  // recursion
    for (DLXNode j=r.L; j!=r; j=j.L) // forall 1-elements in row
       uncover(j.C);
                                 // backtrack: un-remove
 uncover(c);
                                   // un-remove c to columns
```

#### cover und uncover

```
public static void cover (DLXNode c){ // remove column c
 c.R.L = c.L;
                                      // remove header
 c.L.R = c.R;
                                       // .. from row list
  for (DLXNode i=c.D; i!=c; i=i.D) // forall rows with 1
    for (DLXNode j=i.R; i!=j; j=j.R){ // forall elem in row
                                   // remove row element
       j.D.U = j.U;
       j.U.D = j.D;
                                        // .. from column list
public static void uncover (DLXNode c){//undo remove col c
  for (DLXNode i=c.U; i!=c; i=i.U) // forall rows with 1
    for (DLXNode j=i.L; i!=j; j=j.L){ // forall elem in row
                                      // un-remove row elem
       i.D.U = i;
       j.U.D = j;
                                        // .. to column list
                                      // un-remove header
 c.R.L = c;
                                      // .. to row list
  c.L.R = c;
```

### **A Selection of Solutions**

| n   | a(n)             | b(n)       | c(n)               |
|-----|------------------|------------|--------------------|
| 0   | 1                | 1          | 1                  |
| 1   | 2                | 0          | 1                  |
| 2   | 11               | 1          | 0                  |
| 3   | 84               | 4          | 0                  |
| 4   | 1296             | 6          | 2                  |
| 5   | 24293            | 16         | 10                 |
| 6   | 703722           | 37         | 4                  |
| 7   | 24212879         | 92         | 40                 |
| 8   | 1157746949       | 245        | 92                 |
| 9   | 63552536107      | 560        | 352                |
| 10  | ?                | 1426       | 724                |
| 27  |                  | 9564393972 | 234907967154122528 |
| 50  |                  | ?          |                    |
| 100 | 1943247477519075 |            |                    |

$$b(n) = b(n-1) + b(n-2) + 9b(n-3) + b(n-4)$$
$$-3b(n-5) - 22b(n-6) - 16b(n-7) - 4b(n-9)$$

#### **Exercises**

Write a Java program that reads a number  $n \in \mathbb{N}$  and computes a(n).

Here a(n) is the number of set partitions of  $\{1, 2, \ldots, 5n\}$  into 5-element subsets  $\{i, i+k, i+2k, i+3k, i+4k\}$  with  $1 \le k \le n$ .

Use your program to compute a table with  $n \to a(n)$  as large as possible.

Hint: a(4) = 10:

```
{{1,2,3,4,5}, {6,7,8,9,10}, {11,12,13,14,15}, {16,17,18,19,20}}, {{1,3,5,7,9}, {2,4,6,8,10}, {11,12,13,14,15}, {16,17,18,19,20}}, {{1,2,3,4,5}, {6,8,10,12,14}, {7,9,11,13,15}, {16,17,18,19,20}}, {{1,4,7,10,13}, {2,5,8,11,14}, {3,6,9,12,15}, {16,17,18,19,20}}, {{1,2,3,4,5}, {6,7,8,9,10}, {11,13,15,17,19}, {12,14,16,18,20}}, {{1,3,5,7,9}, {2,4,6,8,10}, {11,13,15,17,19}, {12,14,16,18,20}}, {{1,5,9,13,17}, {2,4,6,8,10}, {3,7,11,15,19}, {12,14,16,18,20}}, {{1,2,3,4,5}, {6,9,12,15,18}, {7,10,13,16,19}, {8,11,14,17,20}}, {{1,3,5,7,9}, {2,6,10,14,18}, {4,8,12,16,20}, {11,13,15,17,19}}, {{1,5,9,13,17}, {2,6,10,14,18}, {4,8,12,16,20}, {11,13,15,17,19}},
```