下世代物聯網應用技術工作坊-機器學習

國立陽明交通大學MIPLab - 吳仁傑

Course Summary

1. Validation

- K-fold cross validation (*optional)
- Leave-one-out cross validation
- Holdout validation

2. Evaluation

Confusion matrix

Course Summary

- 3. Supervised learning algorithm
 - Naive Bayes
 - Decision tree
 - Linear regression
 - Logistic regression
 - SVM
- Unsupervised learning algorithm
 - KNN

Setting

- 1. 下載教材檔案 ML_workshop.zip
 - https://drive.google.com/file/d/1GAkqaSCaGXiR1kGKrQZ4BnYFq5gFE8VL/view?usp=sharing
- 2. 將檔案解壓縮後把整個ML_workshop資料夾上傳到自己的google雲端 硬碟

Setting (安裝Google Colaboratory)

Setting (安裝Google Colaboratory)

Setting (安裝Google Colaboratory)

Linear regression

- 1. Input : $X = [x_1, \dots, x_n] \in \mathbb{R}^n$
 - Every x_k is a quantitative variable
- 2. Output: $\widehat{Y} \in \mathbb{R}$
- 3. Parameters: $W = [w_0, w_1, \cdots, w_n] \in \mathbb{R}^{n+1}$

Linear regression

- 4. Formula: $\hat{Y} = w_0 + w_1 x_1 + \dots + w_n x_n$
- 5. Loss(Error) function: $L = (Y \hat{Y})^2$
- 6. Optimization: $\operatorname{argmin}_{w} \frac{1}{m} \sum (Y \hat{Y})^{2}$
 - m pieces of data
 - Find W such that we have minimal average loss.

Naive Bayes classifier

- Bayes' theorem : $P(Y|x_1, \dots, x_n) = \frac{P(Y)P(x_1, \dots, x_n|Y)}{P(x_1, \dots, x_n)}$
- Naïve assumption (conditional independence): $P(x_i|y, x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) = P(x_i|y)$
- New formula: $P(Y|x_1, \dots, x_n) = \frac{P(Y)\prod_{i=1}^n (x_i|Y)}{P(x_1, \dots, x_n)} \propto P(Y)\prod_{i=1}^n P(x_i|Y)$

Naive Bayes classifier

• Making prediction according to the new formula:

$$\operatorname{argmax}_{Y} P(Y|x_{1}, \dots, x_{n}) \propto P(Y) \prod_{i=1}^{n} P(x_{i}|Y)$$

- 1. $Y \in \{y_1, \dots, y_k\}$: a categorical variable
- 2. x_i : an input feature (either categorical or quantitative)
- 3. P(Y): estimated by training dataset
- 4. $P(x_i|Y)$: make some assumption of distribution (ex: Gaussian distribution, multinomial distribution, ...)

K-fold cross validation

- 3 roles of dataset
 - Training set: for train model
 - Validation set: for hyperparameters tuning
 - Testing set: for model performance evaluation

K-fold cross validation

- Hyperparameters is a parameter whose value is used to control the learning process
- Find hyperparameter settings that have best average performance of each split.

