

Motivation

Preparation of a soccer game has a very extensive checklist.

• Defensive positioning in certain game situations is one item.

Can AI (Optimization algorithms) help in this regard?

Problem definition

- 11 opposition players
 - Dependent on the use case
 - E.g., Goal kick
 - 10 (x,y) tupples

Problem definition

- 11 opposition players
 - Dependent on the use case
 - E.g., Goal kick
 - 10 (x,y) tupples
- We want to position 10 defensive players
 - 10 (x,y) tupples

 Maximize coverage of pass lines

- Maximize coverage of pass lines
- Maximize coverage of the goal line

- Maximize coverage of pass lines
- Maximize coverage of the goal line
- Minimize the distance to opponent players

- Maximize coverage of pass lines
- Maximize coverage of the goal line
- Minimize the distance to opponent players
- Maximize pitch control area

- Maximize coverage of pass lines
- Maximize coverage of the goal line
- Minimize the distance to opponent players
- Maximize pitch control area
- Follow the rules

Heuristic

- Each criterion Cx will have a quantified value (we will normalize them between [0, 1]).
- The user will define a weight Wx for each criterion [0,1].

$$\bullet H(x) = \sum_{i=1}^{x} Wx * Cx$$

Algorithms

Optuna (TPE/CMA-ES)

Hill Climbing, Simulated annealing

Genetic algorithms

Tiago Mendes-Neves – up201406104@fe.up.pt

RANDOM SEARCH

CMA-ES

CMA-ES

TPE

TPE

HILL CLIMBING

HILL CLIMBING

SIMULATED ANNEALING

SIMULATED ANNEALING

GENETIC ALGORITHM

GENETIC ALGORITHM

COMPARING ALL ALGORITHMS

Tiago Mendes-Neves – up201406104@fe.up.pt

COMPARING ALL ALGORITHMS

COMPARING ALL ALGORITHMS

Tiago Mendes-Neves – up201406104@fe.up.pt

SOLUTION CMA-ES

SOLUTION SIMULATED ANNEALING

Conclusions

- CMA-ES & Simulated annealing are the best approaches for our problem.
 - CMA-ES wins in consistency and under restrict time constraints.
 - Simulated annealing wins otherwise (except against Grid Search if time available $\rightarrow \infty$).
- Local methods make a lot of sense:
 - Teams usually have predefined formations which will serve as a good starting point.
- Fitness function is the most important factor -> knowing what to optimize is the hardest thing to solve.

Future Work

- Test more scenarios to check if the algorithms generalize properly.
- Test on real-time scenarios.

Tiago Mendes-Neves

up201406104@fe.up.pt

github.com/nvsclub/MarkingWithAl