Proposición. Sean $A, B \subseteq \mathbb{R}$ no vacíos. Si $a \leq b$ para todo $a \in A$ y para todo $b \in B$, entonces A está acotada superiormente y B está acotado inferiormente, y además, $\sup(A) \leq \inf(B)$.

Demostración.

Sea $b \in B$, ya que $a \le b$ para todo $a \in A$, se tiene que A está acotado superiormente. De igual forma, sea $a \in A$ como $a \le b$ para todo $b \in B$, se da que B está acotado inferiormente. Además, dado que A y B son no vacíos, se obtiene que el supremo y el ínfimo de A y B existen, respectivamente. Como todo elemento de B es cota superior de A se tiene que sup(A) es una cota inferior de B. Por lo tanto, sup $(A) \le \inf(B)$, pues $\inf(B)$ es la mayor cota inferior de B.