Table 1: MATRIX OF COVARIANCE OF EXOGENOUS SHOCKS

Variables	ϵ^A	ϵ^G	ϵ^{MS}	ϵ^M
ϵ^A	1.000000	0.000000	0.000000	0.000000
ϵ^G	0.000000	1.000000	0.000000	0.000000
ϵ^{MS}	0.000000	0.000000	1.000000	0.000000
ϵ^M	0.000000	0.000000	0.000000	1.000000

Table 2: Endogenous

Variable	ĿŒX	Description
U	U	Utility
UC	UC	Marginal utility of consumption
UH	UH	Marginal utility of labour
LAMBDA	λ	Stochastic discount factor
R	R	Risk free interest rate
RK	R^K	Return on capital
С	C	Consumption
W	W	Real wage
H	H	Hours
Y	Y	Output
PWP	P^W	Intermediate price
K	K	Capital stock
I	I	Investment
tax	Tax	Taxes
Α	A	Production technology
G	G	Government spending
KY	$\frac{\bar{K}}{V\bar{W}}$	Capital output ratio in steady state
IY	$\frac{\bar{I}}{\bar{\nabla}}$	Investment output ratio in steady state
CY	$\frac{\overline{C}}{\overline{V}}$	Consumption output ratio in steady state
S	$G \ rac{ar{K}}{YW} \ rac{ar{I}}{Y} \ rac{ar{C}}{Y} \ S \ S^l$	Investment adjustment costs
Sdash	S^l	Adjustment costs on X
Q	Q	Tobin Q
X	\ddot{X}	Gross growth rate of investment
Rn	Rn	Nominal interest rate
ER	E(R)	Ex-post real interest rate
PIE	π	Inflation
MC	MC	Real marginal costs
JJ	JJ	Price setting - Recursive auxiliary variable 1a
JJtilde	\widetilde{JJ}	Price setting - Recursive auxiliary variable 2a
J	J	Price setting - Recursive auxiliary variable 1b
Jtilde	$ ilde{J}$	Price setting - Recursive auxiliary variable 2b
PIEtilde	$ ilde{\pi}$	Optimal reset price
Delta	δ	Price dispersion
MS	MS	Mark-up shock
UF	UF	Utility - flexible prices
UCF	UCF	Marginal utility of consumption - flexible prices
UHF	ULF	Marginal utility of labour - flexible prices
RF	RF	Risk free interest rate - flexible prices
GF	GF	Government spending - flexible prices
PWPF	PF^W	Wholesale price - flxible prices
HF	HF	Hours - flxible prices
YF	YF	Output - flxible prices
KF	KF	Capital stock - flxible prices
IF	IF	Investment - flxible prices

Table 2 – Continued

Variable	₽TEX	Description
WF	WF	Real wage - flxible prices
CF	CF	Consumption - flxible prices
KYF	$rac{ar{KF}}{ar{YF}}$ $rac{ar{FF}}{ar{YF}}$ $rac{CF}{ar{YF}}$	Capital output ratio in steady state - flxible prices
IYF	$\frac{\widehat{IF}}{\widehat{VF}}$	Investment output ratio in steady state - flxible prices
CYF	$\frac{\widetilde{CF}}{\widetilde{VF}}$	Consumption output ratio in steady state - flxible prices
taxF	TaxF	Taxes - flxible prices
LAMBDAF	λ	Stochastic discount factor - flxible prices
RKF	RFk	Gross return on capital
SF	SF	Investment adjustment costs
SdashF	SF^l	Adjustment costs on X
QF	QF	Tobin Q
XF	XF	Gross growth rate of investment
OUTGAP	OUTGAP	Output gap
RR	RR	Real interest rate - deviation from the steady state
RnRn	RRn	Nominal interest rate - deviation from the steady state
ERER	E(RR)	Ex-post real interest rate - deviation from the steady state
YY	yy	Output - deviation from the steady state
CC	cc	Consumption - deviation from the steady state
НН	hh	Hours - deviation from the steady state
WW	ww	Real wage - deviation from the steady state
II	ii	Investment - deviation from the steady state
KK	kk	Capital - deviation from the steady state
QQ	qq	Tobin Q - deviation from the steady state
PIEPIE	$\pi\pi$	Inflation - deviation from the steady state
OUTGAPOUTGAP	Ogapogap	Output gap - deviation from the steady state
varrho	ϱ	Weight on Leisure in utility

Table 3: Exogenous

Variable	Ŀ₽ŢĘX	Description	
epsA	ϵ^A	Labour augmenting shock	
epsG	ϵ^G	Government spending shock	
epsMS	ϵ^{MS}	Mark-up shock	
epsM	ϵ^M	Monetary policy shock	

Table 4: Parameters

Variable	L TEX	Description
gy	gy	Government spending output ratio in steady state
zzeta	ζ	Elasticity of substitution across products

Table 4 – Continued

Variable	L T _E X	Description		
alp	$\frac{\mathbf{L}}{\alpha}$	Labour share		
betta	β	Discount factor		
delta	δ	Capital depreciation		
$sigma_c$	σ_C	Inverse of the elasticity of substitution		
${\tt rhoA}$	$ ho_A$	Persistence of labour augmentig shock		
${\tt rhoG}$	$ ho_G$	Persistence of government spending shock		
Ass	$ar{A}$	Labour technology in steady state		
phiX	ϕ_X	Smoothing parameter of investment adjustment costs		
хi	ξ	Calvo parameter		
${\tt rho_r}$	$ ho_R$	Interest rate smoothing parameter		
${ t theta_pie}$	$ heta^{\pi}$	Taylor rule parameter for inflation		
$\mathtt{theta}_{\mathtt{-}}\mathtt{y}$	$ heta^y$	Taylor rule parameter for output		
rhoMS	$ ho_{MS}$	Persistence of mark-up shock		
chi	χ	habits persistence		
gammap	$\gamma^p \ ar{H}$	degree of indexation		
Hss	$ar{H}$	Hours in steady state		
${\tt sigma_A}$	σ_A	STD of labour augmentig shock		
${\tt sigma_G}$	σ_G	STD of government spending shock		
${\tt sigma_MS}$	σ_{MS}	STD of mark-up shock		
$sigma_M$	σ_{M}	STD of monetary policy shock		

Table 5: Parameter Values

Parameter	Value	Description
gy	0.200	Government spending output ratio in steady state
ζ	1000.000	Elasticity of substitution across products
α	0.700	Labour share
β	0.990	Discount factor
δ	0.025	Capital depreciation
σ_C	2.000	Inverse of the elasticity of substitution
$ ho_A$	0.750	Persistence of labour augmentig shock
$ ho_G$	0.750	Persistence of government spending shock
$egin{array}{c} ho_G \ ar{A} \end{array}$	1.000	Labour technology in steady state
ϕ_X	0.100	Smoothing parameter of investment adjustment costs
ξ	0.000	Calvo parameter
$ ho_R$	0.700	Interest rate smoothing parameter
$ heta^\pi$	1.500	Taylor rule parameter for inflation
$ heta^y$	0.300	Taylor rule parameter for output
$ ho_{MS}$	0.750	Persistence of mark-up shock
χ	0.700	habits persistence
$\gamma^p \ ar{H}$	0.500	degree of indexation
$ar{H}$	0.350	Hours in steady state
σ_A	1.000	STD of labour augmentig shock
σ_G	1.000	STD of government spending shock
σ_{MS}	1.000	STD of mark-up shock
σ_M	1.000	STD of monetary policy shock

Table 6: COEFFICIENTS OF AUTOCORRELATION

Order	1	2	3	4	5
\overline{yy}	0.8525	0.6822	0.5395	0.4281	0.3427
cc	0.9671	0.9182	0.8668	0.8169	0.7698
ii	0.8110	0.5959	0.4202	0.2873	0.1890
hh	0.8238	0.6195	0.4502	0.3201	0.2225
ww	0.7716	0.6271	0.5229	0.4437	0.3822
RR	-0.0880	-0.0165	-0.0011	0.0016	0.0016
E(RR)	0.1721	-0.0001	-0.0254	-0.0205	-0.0116
qq	0.1572	-0.0188	-0.0451	-0.0405	-0.0316
RRn	0.5792	0.4404	0.3752	0.3333	0.3015
$\pi\pi$	-0.0041	0.0302	0.0328	0.0292	0.0252

Table 7: MATRIX OF CORRELATIONS

Variables	yy	cc	ii	hh	ww	RR	E(RR)	qq	RRn	$\pi\pi$
\overline{yy}	1.0000	0.7983	0.9357	0.6919	0.9192	0.1132	-0.5589	0.5251	-0.8913	-0.2956
cc	0.7983	1.0000	0.5937	0.4632	0.8233	0.0367	-0.2911	0.2322	-0.7299	-0.2064
ii	0.9357	0.5937	1.0000	0.6728	0.8331	0.1337	-0.6372	0.6156	-0.8526	-0.2974
hh	0.6919	0.4632	0.6728	1.0000	0.7875	0.0235	-0.2579	0.2870	-0.4693	-0.1417
ww	0.9192	0.8233	0.8331	0.7875	1.0000	0.1711	-0.6177	0.5996	-0.8827	-0.3257
RR	0.1132	0.0367	0.1337	0.0235	0.1711	1.0000	-0.4097	0.4147	-0.2782	-0.9750
E(RR)	-0.5589	-0.2911	-0.6372	-0.2579	-0.6177	-0.4097	1.0000	-0.9957	0.8420	0.4470
qq	0.5251	0.2322	0.6156	0.2870	0.5996	0.4147	-0.9957	1.0000	-0.8058	-0.4413
RRn	-0.8913	-0.7299	-0.8526	-0.4693	-0.8827	-0.2782	0.8420	-0.8058	1.0000	0.4136
$\pi\pi$	-0.2956	-0.2064	-0.2974	-0.1417	-0.3257	-0.9750	0.4470	-0.4413	0.4136	1.0000

Table 8: THEORETICAL MOMENTS

VARIABLE	MEAN	STD.DEV.	VARIANCE
\overline{yy}	1.0000	1.6335	2.6682
cc	1.0000	1.0283	1.0574
ii	1.0000	5.7068	32.5680
hh	1.0000	1.1634	1.3534
ww	1.0000	1.6974	2.8811
RR	1.0000	2.5742	6.6266
E(RR)	1.0000	0.5529	0.3057
qq	1.0000	0.6973	0.4862
RRn	1.0000	0.5728	0.3281
$\pi\pi$	1.0000	2.5341	6.4214

Table 9: VARIANCE DECOMPOSITION (in percent)

	ϵ^A	ϵ^G	ϵ^{MS}	ϵ^M
\overline{yy}	75.21	0.27	24.51	0.00
cc	67.83	1.64	30.53	0.00
ii	77.10	2.59	20.31	0.00
hh	14.49	1.30	84.21	0.00
ww	44.48	0.29	55.23	0.00
RR	20.22	0.22	5.03	74.52
E(RR)	77.58	2.69	19.73	0.00
qq	74.85	2.30	22.85	0.00
RRn	81.42	0.88	17.71	0.00
$\pi\pi$	18.36	0.14	4.59	76.90

$$\varrho_t = (\bar{\varrho}) \tag{1}$$

$$U_{t} = \frac{\left(\left(C_{t} - \chi C_{t-1} \right)^{1-\varrho_{t}} \left(1 - H_{t} \right)^{\varrho_{t}} \right)^{1-\sigma_{C}} - 1}{1 - \sigma_{C}}$$
(2)

$$UC_{t} = (1 - \varrho_{t}) \left(C_{t} - \chi C_{t-1} \right)^{(1-\varrho_{t})(1-\sigma_{C})-1} \left(1 - H_{t} \right)^{\varrho_{t}(1-\sigma_{C})}$$
(3)

$$UH_t = (-\varrho_t) \left(C_t - \chi C_{t-1} \right)^{(1-\varrho_t)(1-\sigma_C)} \left(1 - H_t \right)^{\varrho_t (1-\sigma_C) - 1}$$
(4)

$$\lambda_t = \frac{UC_t \,\beta}{UC_{t-1}} \tag{5}$$

$$R_{t+1}\lambda_{t+1} = 1\tag{6}$$

$$R_t = \frac{Rn_{t-1}}{\pi_t} \tag{7}$$

$$E(R)_t = \frac{Rn_t}{\pi_{t+1}} \tag{8}$$

$$\frac{(-UH_t)}{UC_t} = W_t \tag{9}$$

$$\delta_t = \xi \,\tilde{\pi}_t^{\zeta} \,\delta_{t-1} + (1 - \xi) \,\left(\frac{J_t}{JJ_t}\right)^{(-\zeta)} \tag{10}$$

$$Y_{t} = \frac{(H_{t} A_{t})^{\alpha} K_{t-1}^{1-\alpha}}{\delta_{t}}$$
 (11)

$$R^{K}_{t} = \frac{\frac{\delta_{t} Y_{t} (1-\alpha) P^{W}_{t}}{K_{t-1}} + (1-\delta) Q_{t}}{Q_{t-1}}$$
(12)

$$Q_t \left(1 - S_t - X_t S_t^l\right) + \lambda_{t+1} Q_{t+1} S_{t+1}^l X_{t+1}^2 = 1$$
(13)

$$\lambda_{t+1} \, R^{K}_{t+1} = 1 \tag{14}$$

$$\frac{P^{W_t} \delta_t Y_t \alpha}{H_t} = W_t \tag{15}$$

$$Y_t = C_t + G_t + I_t \tag{16}$$

$$K_t = (1 - S_t) I_t + K_{t-1} (1 - \delta)$$
(17)

$$X_t = \frac{I_t}{I_{t-1}} \tag{18}$$

$$S_t = \phi_X (X_t - 1)^2 \tag{19}$$

$$S^{l}_{t} = (X_{t} - 1) \ 2 \phi_{X} \tag{20}$$

$$G_t = Tax_t (21)$$

$$JJ_t - \beta \xi \tilde{J}J_{t+1} = UC_t Y_t \tag{22}$$

$$J_{t} - \beta \xi \, \tilde{J}_{t+1} = UC_{t} Y_{t} \, \frac{1}{1 - \frac{1}{\zeta}} \, MC_{t} \, MS_{t} \tag{23}$$

$$\tilde{J}J_t = JJ_t \,\tilde{\pi}_t^{\zeta - 1} \tag{24}$$

$$\tilde{J}_t = \tilde{\pi}_t^{\zeta} J_t \tag{25}$$

$$1 = \xi \,\tilde{\pi}_t^{\zeta - 1} + (1 - \xi) \, \left(\frac{J_t}{JJ_t}\right)^{1 - \zeta} \tag{26}$$

$$\tilde{\pi}_t = \frac{\pi_t}{\pi_{t-1}^{\gamma^p}} \tag{27}$$

$$\log\left(\frac{Rn_t}{(\bar{R}n)}\right) = \rho_R \log\left(\frac{Rn_{t-1}}{(\bar{R}n)}\right) + (1 - \rho_R) \ \theta^{\pi} \log\left(\frac{\pi_t}{(\bar{\pi})}\right) + (1 - \rho_R) \ \theta^{y} \log\left(\frac{Y_t}{(\bar{Y})}\right) + \sigma_M \epsilon^{M}_{t}$$
 (28)

$$MC_t = P^W_{\ t} \tag{29}$$

$$\log(A_t) - \log((\bar{A})) = \rho_A \left(\log(A_{t-1}) - \log((\bar{A}))\right) + \sigma_A \epsilon^A_t$$
(30)

$$\log(G_t) - \log((\bar{G})) = \rho_G(\log(G_{t-1}) - \log((\bar{G}))) + \sigma_G \epsilon^G_t$$
(31)

$$\log(GF_t) - \log((\bar{GF})) = \sigma_G \epsilon^G_t + \rho_G \left(\log(GF_{t-1}) - \log((\bar{GF}))\right)$$
(32)

$$\log(MS_t) - \log((\bar{M}S)) = \rho_{MS} \left(\log(MS_{t-1}) - \log((\bar{M}S))\right) + \sigma_{MS} \epsilon^{MS}_t$$
(33)

$$yy_t = \frac{Y_t}{(\bar{Y})}\tag{34}$$

$$kk_t = \frac{K_t}{(\bar{K})} \tag{35}$$

$$ii_t = \frac{I_t}{(\bar{I})} \tag{36}$$

$$cc_t = \frac{C_t}{(\bar{C})} \tag{37}$$

$$ww_t = \frac{W_t}{(\bar{W})} \tag{38}$$

$$hh_t = \frac{H_t}{(\bar{H})} \tag{39}$$

$$qq_t = \frac{Q_t}{(\bar{Q})} \tag{40}$$

$$RR_t = \frac{R_t}{(\bar{R})} \tag{41}$$

$$E(RR)_t = \frac{E(R)_t}{(E(R))} \tag{42}$$

$$RRn_t = \frac{Rn_t}{(\bar{Rn})} \tag{43}$$

$$\pi \pi_t = \frac{\pi_t}{(\bar{\pi})} \tag{44}$$

$$Ogapogap_{t} = \frac{OUTGAP_{t}}{(OU\bar{T}GAP)} \tag{45}$$

$$\frac{\bar{K}}{Y\bar{W}_t} = \frac{K_t}{Y_t} \tag{46}$$

$$\frac{\bar{I}}{\bar{Y}_t} = \frac{I_t}{Y_t} \tag{47}$$

$$\frac{\bar{C}}{\bar{Y}_t} = \frac{C_t}{Y_t} \tag{48}$$

$$UF_{t} = \frac{\left((CF_{t} - \chi CF_{t-1})^{1-\varrho_{t}} (1 - HF_{t})^{\varrho_{t}} \right)^{1-\sigma_{C}} - 1}{1 - \sigma_{C}}$$
(49)

$$UCF_{t} = (1 - \varrho_{t}) \left(CF_{t} - \chi CF_{t-1} \right)^{(1-\varrho_{t})(1-\sigma_{C})-1} \left(1 - HF_{t} \right)^{\varrho_{t}(1-\sigma_{C})}$$
(50)

$$ULF_{t} = (-\varrho_{t}) \left(CF_{t} - \chi CF_{t-1} \right)^{(1-\varrho_{t})(1-\sigma_{C})} \left(1 - HF_{t} \right)^{\varrho_{t}(1-\sigma_{C})-1}$$
(51)

$$\lambda_t = \frac{\beta \, UCF_t}{UCF_{t-1}} \tag{52}$$

$$RF_t \lambda_{t+1} = 1 \tag{53}$$

$$\frac{(-ULF_t)}{UCF_t} = WF_t \tag{54}$$

$$YF_t = (A_t H F_t)^{\alpha} K F_{t-1}^{1-\alpha}$$
 (55)

$$RFk_{t} = \frac{\frac{YF_{t}(1-\alpha)PF^{W}_{t}}{KF_{t-1}} + (1-\delta)QF_{t}}{QF_{t-1}}$$
(56)

$$QF_t \left(1 - SF_t - XF_t SF_t^l \right) + \lambda_{t+1} QF_{t+1} SF_{t+1}^l XF_{t+1}^2 = 1$$
 (57)

$$\lambda_{t+1} RF k_{t+1} = 1 \tag{58}$$

$$\frac{PF^{W_{t}} \alpha YF_{t}}{HF_{t}} = WF_{t} \tag{59}$$

$$YF_t = GF_t + CF_t + IF_t \tag{60}$$

$$KF_t = (1 - SF_t) IF_t + (1 - \delta) KF_{t-1}$$
 (61)

$$XF_t = \frac{IF_t}{IF_{t-1}} \tag{62}$$

$$SF_t = \phi_X \left(XF_t - 1 \right)^2 \tag{63}$$

$$SF^l_{t} = 2 \phi_X \left(XF_t - 1 \right) \tag{64}$$

$$TaxF_t = GF_t (65)$$

$$PF^{W}{}_{t} = 1 - \frac{1}{\zeta} \tag{66}$$

$$OUTGAP_t = \frac{YF_t}{Y_t} \tag{67}$$

$$\frac{\bar{KF}}{\bar{YF}_t} = \frac{KF_t}{YF_t} \tag{68}$$

$$\frac{\bar{IF}}{\bar{YF}_t} = \frac{IF_t}{YF_t} \tag{69}$$

$$\frac{\bar{CF}}{\bar{YF}_t} = \frac{CF_t}{YF_t} \tag{70}$$

$$\varrho = (\varrho) \tag{71}$$

$$U = \frac{\left((C - C \chi)^{1 - \varrho} (1 - H)^{\varrho} \right)^{1 - \sigma_C} - 1}{1 - \sigma_C}$$
 (72)

$$UC = (1 - \varrho) (C - C\chi)^{(1-\varrho)(1-\sigma_C)-1} (1 - H)^{\varrho(1-\sigma_C)}$$
(73)

$$UH = (-\varrho) (C - C\chi)^{(1-\varrho)(1-\sigma_C)} (1 - H)^{\varrho(1-\sigma_C)-1}$$
(74)

$$\lambda = \beta \tag{75}$$

$$\lambda R = 1 \tag{76}$$

$$R = \frac{Rn}{\pi} \tag{77}$$

$$E(R) = \frac{Rn}{\pi} \tag{78}$$

$$\frac{(-UH)}{UC} = W \tag{79}$$

$$\delta = \delta \, \xi \, \tilde{\pi}^{\zeta} + (1 - \xi) \, \left(\frac{J}{JJ}\right)^{(-\zeta)} \tag{80}$$

$$Y = \frac{(HA)^{\alpha} K^{1-\alpha}}{\delta} \tag{81}$$

$$R^{K} = \frac{\frac{\delta Y (1-\alpha) P^{W}}{K} + (1-\delta) Q}{Q}$$
(82)

$$Q(1 - S - XS^{l}) + S^{l} \lambda QX^{2} = 1$$
(83)

$$\lambda R^K = 1 \tag{84}$$

$$\frac{P^W \,\delta \,Y \,\alpha}{H} = W \tag{85}$$

$$Y = C + G + I \tag{86}$$

$$K = (1 - S) I + K (1 - \delta)$$
(87)

$$X = 1 \tag{88}$$

$$S = \phi_X \left(X - 1 \right)^2 \tag{89}$$

$$S^{l} = (X - 1) \ 2 \phi_X \tag{90}$$

$$G = Tax (91)$$

$$JJ - \beta \xi \, \tilde{JJ} = UC \, Y \tag{92}$$

$$J - \beta \xi \,\tilde{J} = UCY \, \frac{1}{1 - \frac{1}{\zeta}} \, MCMS \tag{93}$$

$$\tilde{JJ} = JJ\,\tilde{\pi}^{\zeta-1} \tag{94}$$

$$\tilde{J} = \tilde{\pi}^{\zeta} J \tag{95}$$

$$1 = \xi \,\tilde{\pi}^{\zeta - 1} + (1 - \xi) \left(\frac{J}{JJ}\right)^{1 - \zeta} \tag{96}$$

$$\tilde{\pi} = \frac{\pi}{\pi^{\gamma^p}} \tag{97}$$

$$\log\left(\frac{Rn}{(Rn)}\right) = \log\left(\frac{Rn}{(Rn)}\right) \rho_R + (1 - \rho_R) \theta^{\pi} \log\left(\frac{\pi}{(\pi)}\right) + (1 - \rho_R) \theta^{y} \log\left(\frac{Y}{(Y)}\right) + \sigma_M \epsilon^{M}$$
 (98)

$$MC = P^W (99)$$

$$\log(A) - \log((A)) = (\log(A) - \log((A))) \rho_A + \sigma_A \epsilon^A$$
(100)

$$\log(G) - \log((G)) = (\log(G) - \log((G))) \rho_G + \sigma_G \epsilon^G$$
(101)

$$\log(GF) - \log((GF)) = \sigma_G \epsilon^G + \rho_G (\log(GF) - \log((GF)))$$
(102)

$$\log(MS) - \log((MS)) = (\log(MS) - \log((MS))) \rho_{MS} + \sigma_{MS} \epsilon^{MS}$$
(103)

$$yy = \frac{Y}{(Y)} \tag{104}$$

$$kk = \frac{K}{(K)} \tag{105}$$

$$ii = \frac{I}{(I)} \tag{106}$$

$$cc = \frac{C}{(C)} \tag{107}$$

$$ww = \frac{W}{(W)} \tag{108}$$

$$hh = \frac{H}{(H)} \tag{109}$$

$$qq = \frac{Q}{(Q)} \tag{110}$$

$$RR = \frac{R}{(R)} \tag{111}$$

$$E(RR) = \frac{E(R)}{(E(R))} \tag{112}$$

$$RRn = \frac{Rn}{(Rn)} \tag{113}$$

$$\pi\pi = \frac{\pi}{(\pi)} \tag{114}$$

$$Ogapogap = \frac{OUTGAP}{(OUTGAP)} \tag{115}$$

$$\frac{\bar{K}}{Y\bar{W}} = \frac{K}{Y} \tag{116}$$

$$\frac{\bar{I}}{\bar{Y}} = \frac{I}{Y} \tag{117}$$

$$\frac{\bar{C}}{\bar{Y}} = \frac{C}{Y} \tag{118}$$

$$UF = \frac{\left((CF - \chi CF)^{1-\varrho} (1 - HF)^{\varrho} \right)^{1-\sigma_C} - 1}{1 - \sigma_C}$$
(119)

$$UCF = (1 - \varrho) (CF - \chi CF)^{(1-\varrho)(1-\sigma_C)-1} (1 - HF)^{\varrho(1-\sigma_C)}$$
(120)

$$ULF = (-\varrho) (CF - \chi CF)^{(1-\varrho)(1-\sigma_C)} (1 - HF)^{\varrho(1-\sigma_C)-1}$$
(121)

$$\lambda = \beta \tag{122}$$

$$\lambda RF = 1 \tag{123}$$

$$\frac{(-ULF)}{UCF} = WF \tag{124}$$

$$YF = (AHF)^{\alpha} KF^{1-\alpha}$$
 (125)

$$RFk = \frac{\frac{YF(1-\alpha)PF^W}{KF} + (1-\delta)QF}{QF}$$
(126)

$$QF \left(1 - SF - XF SF^{l}\right) + SF^{l} \lambda QF XF^{2} = 1$$

$$(127)$$

$$\lambda \, RFk = 1 \tag{128}$$

$$\frac{PF^W \alpha YF}{HF} = WF \tag{129}$$

$$YF = GF + CF + IF \tag{130}$$

$$KF = (1 - SF) IF + (1 - \delta) KF$$
 (131)

$$XF = 1 (132)$$

$$SF = \phi_X \left(XF - 1 \right)^2 \tag{133}$$

$$SF^l = 2\,\phi_X\,\left(XF - 1\right) \tag{134}$$

$$TaxF = GF (135)$$

$$PF^W = 1 - \frac{1}{\zeta} \tag{136}$$

$$OUTGAP = \frac{YF}{Y} \tag{137}$$

$$\frac{\bar{KF}}{\bar{YF}} = \frac{KF}{YF} \tag{138}$$

$$\frac{\bar{IF}}{\bar{YF}} = \frac{IF}{YF} \tag{139}$$

$$\frac{\bar{CF}}{\bar{YF}} = \frac{CF}{YF} \tag{140}$$