Intervals, Transformations, and Slope Solution (version 73)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-6,-1) \cup (2,9)$
Negative	$(-9, -6) \cup (-1, 2)$
Increasing	$(-9, -3) \cup (1, 4)$
Decreasing	$(-3,1) \cup (4,9)$
Domain	(-9,9)
Range	(-3,6)

Intervals, Transformations, and Slope Solution (version 73)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=77$ and $x_2=81$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} \hline x & g(x) \\ \hline 30 & 77 \\ 40 & 81 \\ 77 & 40 \\ 81 & 30 \\ \hline \end{array}$$

$$\frac{g(81) - g(77)}{81 - 77} = \frac{30 - 40}{81 - 77} = \frac{-10}{4}$$

The greatest common factor of -10 and 4 is 2. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-5}{2}$$

2