Week 4: IVs with Constant Effects

JJ Chen

February 6, 2015

Anoucement

- ▶ Week 4:
 - ► IV Motivations, Assumptions, Mean Comparison (Wald Estimator)
 - ► IV Implementations: 2SLS
 - ▶ IV Example Paper: Card (1997), Hoxby (1994) (we will not cover the hoxby paper)
- Week 5: IV Estimation and Inference
- Week 6: Week IV and Specification Tests
- Week 7: LATE
- Week 8: Midterm Review?

(One) Traditional IV setting

- ▶ In class, we started by discussing IVs with constant effect
 - Close to traditional IV practice; allow us to focus on the first order issues: identification
 - But it imposes strong assumptions (will be relaxed)
- Example:
 - ▶ Y-Eqn: $Y_i = f(D_i, \varepsilon_i) = \beta_0 + \beta_1 D_i + \varepsilon_i$
 - ▶ D-Eqn: $D_i = f(z_i, v_i) = \alpha_0 + \alpha_1 z_i + v_i$
- Key Assumptions to identify β_1 (more on them later)

►
$$E(z_i\varepsilon_i) = 0$$
, $E(z_i\upsilon_i) = 0$, $C(D,z_i) \neq 0 \implies \beta_1^{IV} = \frac{C(Y_i,Z_i)}{C(D_i,Z_i)}$

- Implicit Assumptions:
 - Constant effect; additive separability; point identification. . .

Motivations

- We are interested in a single structural eqn:
 - $Y_{si} = \alpha + \rho S_i + A'_i \gamma + \varepsilon_i$
 - $\rho = Y_{12,i} Y_{11,i} = Y_{16,i} Y_{15,i}...$
- ▶ But we can't run a dream pop regression because of "unavailable" A_i'

$$Y_i = \alpha + \rho S_i + A_i' \gamma + e_i$$

- ▶ Assume we have an IV z_i , problem solved!
 - ▶ Should we end the review section and just go find IVs?
- More broadly, IV is a general method of studying causality
 - "Clean" variations in "treatment" variable
 - Other ID strategies link closely to the IV idea: DID, RD
- Other Motivations: measurement error, reversal causality, random assignment and actual exposure in experiments

Assumptions and Why Does IV Work

- ▶ In a nutshell, we want to capture a single channel (IV chain):
 - $(z \rightarrow y) = (z \rightarrow D) \times (D \rightarrow y)$
 - $ightharpoonup RF = 1st \times Causal Effect of Interest (maybe)$
- Conceptual ID Assumptions:
 - 1. Exclusion Restriction: Only one channel through which z affects Y
 - ▶ One implication: In a no-1st sample, we should expect RF = 0, example?
 - Another implication; Look at a sample that 1st is active, but the primary channel is not, example?
 - ightharpoonup Can we run a reg of Y_i on both D_i and Z_i to test whether ER hold?
 - 2. Relevance Condition: z has a causal impact on D (with decent size)
- Ex: Suppose you want to know the impact of school per-pupil

IV Mean Comparision: Binary IV I

- RF = 1st $\times \rho^{IV} \implies$
- When IV is a dummy, both RF and 1st can be simplified
 - ► RF: $C(Y_i, Z_i) = [E(Y_i | Z_i = 1) E(Y_i | Z_i = 0)] p(1 p)$
 - ▶ 1st: $C(D_i, Z_i) = [E(D_i | Z_i = 1) E(D_i | Z_i = 0)] p(1 p)$
- ▶ The ratio ρ^{IV} is the Wald estimator ρ^{Wald} , which provides the essential idea of IV:
 - ▶ RF mean comparisons across groups defined by the IV, scaled by the 1st

IV Mean Comparision: Binary IV II

- Another way to derive the Wald estimator is through the single structural eqn with constant effect:
 - $Y_i = \alpha + \rho D_i + \eta_i$
 - ► $E(Y | Z_i = 1) = \alpha + \rho E(D_i | Z = 1) + E(\eta_i | Z_i = 1)$
 - ► $E(Y | z_i = 0) = \alpha + \rho E(D_i | z = 0) + E(\eta_i | z_i = 0)$
 - ► E (Y | $z_i = 1$) E (Y | $z_i = 0$) = ρ [E ($D_i | z_i = 1$) - E ($D_i | z_i = 0$)] ► ER \implies E ($\eta_i | z_i = 1$) = E ($\eta_i | z_i = 0$)
- lacksquare So ho^{Wald} capture the ratio of mean diff
- ightharpoonup Further simplification: if D_i is binary, 1st becomes mean difference in conditional probability
 - ▶ $\Pr(D | z_i = 1) \Pr(D | z_i = 0)$

IV Implementation: 2SLS

- What if we have
 - 1. a multi-valued IV and controls
 - 2. multiple IVs
 - 3. RF and 1st come from different sample
- 2SLS is the way to go, but just beware the usual mistakes

2SLS with One IV and Covariates

- Suppose a causal model with controls is
 - $Y_i = X_i' \alpha + \rho s_i + \eta_i, \ \eta_i = A_i' \gamma + \upsilon_i$
 - Even if the IV is insanely good (An amazing valid ER), we might still want to control for some "useless" covariates to reduce std.err.
- ▶ 2SLS: Get predicted value: $s_i = \hat{s}_i + \xi_{1i}$ and derive 2st:
 - 2st: $Y_i = X_i' \alpha + \rho \hat{S}_i + [\eta_i + \rho \xi_{1i}]$
- Notice when the IV is $\hat{\mathbf{s}}_i^*$, 2SLS = IV
 - $ightharpoonup \hat{\mathbf{s}}_i^*$ is the res of running a reg of $\hat{\mathbf{s}}_i$ on \mathbf{X}_i
- Note: manual 2SLS won't get correct std.err.

ILS with One IV and Covariates

- ▶ ILS: Find a 1st $s_i = X_i' \pi_{10} + \pi_{11} z_i + \xi_{1i}$ and derive RF
 - $Y_i = X_i' \alpha + \rho [X_i' \pi_{10} + \pi_{11} Z_i + \xi_{1i}] + \eta_i$
 - $Y_i = X_i' [\alpha + \rho \pi_{10}] + \rho \pi_{11} Z_i + [\rho \xi_{1i} + \eta_i]$
 - Page 12.5 Page 12.
- \blacktriangleright Notice that one-IV 2SLS equals IV, when the IV is \mathbf{z}_i^* , and it also equals ILS
 - ightharpoonup z_i^* is the res of running a reg of z_i on X_i

2SLS with Multiple IVs

- ▶ 2SLS yields a weighted average of estimates one would get using each of the IVs separately
- ▶ Let $\rho_j^{IV} = \frac{C(Y_i, Z_{ji})}{C(D_i, Z_{ji})}, j = 1, 2$
 - lacktriangle Two IV estimands using z_{1i} and z_{2i} to instrument d_i
- ▶ 2SLS estimand will be $\rho^{2SLS} = \phi \rho_1 + (1 \phi)\rho_2$
 - lacktriangledown ϕ captures the relative strength of the IVs in the 1st
- 2SLS with multiple IVs will also give smaller std.err.
 - Use more "clean" variations

Visual IV

- When we have multiple IVs, each IV defines a causal effect (hopefully) for one group of people
 - $E(\mathbf{Y}_i | \mathbf{R}_i) = \alpha + \rho E(\mathbf{D}_i | \mathbf{R}_i) = \alpha + \rho \Pr(\mathbf{D}_i = 1 | \mathbf{R}_i),$ $\mathbf{R}_i \in j = 1, \cdots, J$

 - Look like a 2SLS?
- In a constant effect linear model, GLS (in this case, WLS) would be efficient for grouped data
 - ► Recall from last semester, one motivation for learning GLS is heteroskedasticity
 - ▶ If $V\left(\eta_{i}\right)=\sigma_{\eta}^{2}$, then the group variance is σ_{η}^{2}/n_{j}
- GLS is 2SLS, so 2SLS is the efficient linear combination of the underlying Wald estimates

Split Sample IV

- lacktriangle Recall the IV estimator is $ho^{IV}=rac{RF}{1st}$
- Nothing in the formula prevents us from estimating RF and 1st separately from different sample
- Example:
 - ▶ RF: One dataset on income and draft numbers, but no veteran status
 - 1st: Another dataset on draft numbers and veteran status, but no income information

2SLS Mistakes

- 1. Doing 2SLS manually
- 2. Doing 2SLS manually and/or forget to add the same covariates in both the 1st and 2st
- 3. Doing 2SLS manually and/or use nonlinear model for 1st

Questions and Discussions

- Q: Does Competition Among Public Schools Benefit Students and Taxpayers?
 - Competition is good, but also economics of scale
 - ▶ We can run a OLS, are we done?
 - Direction of Bias?
- How to measure the degree of competition among public school districts within metropolitan areas?
- IV: number of streams (cross section variations)
 - What are the key ID assumptions?
 - ▶ Table 1: What can we conclude from the 1st reg table?
- ▶ Table 2 and 2a, 3, 4 and 4a: Compare OLS with IV estimates
- ► Aside: many other competing policies: charter schools, voucher plans, catholic schools, private schools, competitions among school districts...

References I

Card, David. 1997. *Immigrant Inflows, Native Outflows, and the Local Labor Market Impacts of Higher Immigration*. National Bureau of Economic Research.

Hoxby, Caroline Minter. 1994. *Does Competition Among Public Schools Benefit Students and Taxpayers?* National Bureau of Economic Research.