

The AFIT of Today is the Air Force of Tomorrow.

Probability, Statistics, and Calculus Review

LOGM 634

9 October 2014

Statistics & Probability

The AFIT of Today is the Air Force of Tomorrow.

Statistics

- Inferring a population's behavior based on the performance of a sample
 - Representative of the population?
 - Sample is unbiased?

Probability

 Predicting the future behavior of a single item, based on the population's known performance

Another view

- Probability:
 - The study of the laws of chance
- Statistics:
 - Use probability laws on past information to predict future events

Modeling Uncertainty

- Basic Method
 - Sample space & events within an experiment
 - Define probabilities of events
 - Compute probabilities of more complex events formed from unions/intersections of the elementary events
- Concept of Random Variables
 - Variable that takes on certain values iaw specific probabilities
 - Specify the probability distribution of a random variable to characterize a random process
- Use both through the course

Key Terms

- Probability
- Experiments
- Sample spaces
- Outcomes
- Events
- Random variables

An Experiment

The AFIT of Today is the Air Force of Tomorrow.

- Probability analysis is always made in the context of some experiment
 - If I exceed my aircraft's weight and balance limits, can I still take off?
 - I bought a ticket -- will I win the lottery tonight?

I was just handed two dice -- will I roll a seven?

Sample Space

The AFIT of Today is the Air Force of Tomorrow.

- Collection of all possible outcomes of an experiment
 - Mutually exclusive
 - Collectively exhaustive
- Countable (discrete)

We know something will happen in our next experiment, we're just not sure what!

Uncountable (continuous)

Events

- Just a collection (subset) of outcomes contained in the sample space
 - · one, a few, or all of 'em
 - Exactly 1 = simple
 - > 1 = compound

A Random Variable

- A variable that takes on numerical values iaw some probability distribution
- May be continuous or discrete
- Nothing random about it it's not really a variable!
- It's a FUNCTION
 - It maps an event (a single outcome or a set of 'em) to the real number line,

Roll the dice...

What about the Probability?

- Probability is the *likelihood* of an outcome
 - Call it "X"
- For each event, X, in the sample space, we assume the probability of X occurring has the following properties:
 - for any specified event X, $0 \le P(X) \le 1$
 - If P(X) = 1, then X is a certainty
 - If P(X) = 0, then X is an *impossibility*
 - Doesn't mean x won't happen it's just highly unlikely

What about...

The AFIT of Today is the Air Force of Tomorrow.

- The union:
 - The probability that either x or y or both occur

$$P(X \cup Y) = P(X) + P(Y) - P(X \cap Y)$$

The union

$$P(X \cup Y) = ?$$

The intersection

$$P(X \cap Y) = ?$$

What about.....

The AFIT of Today is the Air Force of Tomorrow.

Are X and Y Mutually Exclusive?

The union

$$P(X \cup Y) = ?$$

The intersection

$$P(X \cap Y) = ?$$

What about..

The AFIT of Today is the Air Force of Tomorrow.

If X and Y are mutually exclusive then X and Y cannot occur together and $P(X \cap Y) = 0$

So, when X and Y are Mutually Exclusive, then

$$P(X \cup Y) = P(X) + P(Y) - P(X \cap Y)$$

$$P(X \cup Y) = P(X) + P(Y) - 0$$

$$P(X \cup Y) = P(X) + P(Y)$$

What about.....

The AFIT of Today is the Air Force of Tomorrow.

Are X and Y Independent?

The union

$$P(X \cup Y) = ?$$

The intersection

$$P(X \cap Y) = ?$$

Conditional Probabilities

The AFIT of Today is the Air Force of Tomorrow.

Theorem for Conditional Probability:

Defn: If P(Y) > 0, then

$$P(X|Y) = \frac{P(X \cap Y)}{P(Y)} \to P(X \cap Y) = P(X|Y)P(Y)$$

Conditional & Independent

The AFIT of Today is the Air Force of Tomorrow.

 If X and Y are independent, then neither influences the outcome of the other

then,
$$P(X|Y) = P(X)$$

and $P(X \cap Y) = P(X|Y)P(Y) = P(X)P(Y)$

What about.....

The AFIT of Today is the Air Force of Tomorrow.

So, back to the Union of X and Y,

If X and Y are Independent, then

$$P(X \cup Y) = P(X) + P(Y) - P(X \cap Y)$$

$$P(X \cup Y) = P(X) + P(Y) - P(X|Y)P(Y)$$

$$P(X \cup Y) = P(X) + P(Y) - P(X)P(Y)$$

When X and Y are Mutually Exclusive,

$$P(X \cup Y) = P(X) + P(Y)$$

Discrete vs Continuous

- Discrete: when can count stuff
 - We can be exact

$$P(X) = P(X = x)$$

- Continuous: used for measuring (other) stuff
 - We're using some tool (clock, meter, etc.)
 - can never be exact
 - We thus need to specify a tolerance or confidence

$$P(X) = P(X \le x)$$

'Formal' Probability

The AFIT of Today is the Air Force of Tomorrow.

- Discrete: use a probability mass function (pmf)
 - We're interested in the *relative frequency* of each event
 - Example: our dice toss

can roll a '7' six of 36 ways -- hence p(7) = 1/6

can roll a '2' only 1 way

-- hence p(2) = 1/36

- what about rolling a '13'?
- What's the big assumption?
 - The dice are fair -- each face equally likely to appear on each die
- Since the sample space is discrete, we can assign a probability to every outcome

A pmf (Our dice toss) The AFIT of Today is the Air Force of Tomorrow.

Continuous Data

- We use a <u>probability density function</u> (pdf)
- Can not assign a probability to an exact value -can only assign probabilities to ranges of values
 - Calculus alert! (the pdf is a derivative)
- The shape of the pdf curve shows us what values of a random variable are most likely to occur
 - I.e., values of x occur most frequently where f(x) is largest

A pdf

The amount of time until a component fails

Graph of a CDF

The cdf

- The cumulative distribution function is based on either the pmf or pdf
 - · depends on the data type
 - Gives us the probability of a random variable X taking a value equal to, or less than, some specified value x

$$F(x) = P(X \le x)$$
 for $-\infty < x < \infty$

cdf Example

The AFIT of Today is the Air Force of Tomorrow.

Let X be the number I'll roll on my next toss of two dice.

The probability I'll roll a 7 or less is

$$P(X \le 7) = \sum_{k=0}^{7} p(x) = 21/36$$

It's easy, in the discrete case -- we just sum up all the probabilities less than or equal to the value of interest.

Example

The AFIT of Today is the Air Force of Tomorrow.

Let X be the amount of time to component failure

The probability the component will fail in 225 hours is written as

$$P(T \le 225 \ hrs)$$

Since time is a continuous-valued variable, I would really need to *integrate* some pdf over the interval (0, 225) to compute this probability!

Integrals??!

- An integral is a sum of infinitely small things
- Its usually thought of as the area under a curve
- In our case:
 - The pdf (a function) defines the shape of the curve
 - A *cdf* value, F(t), represents the *cumulative* area under the pdf curve within the interval $[-\infty, t]$
 - The total area under the pdf curve always equals 1
 - To get the area within some interval [a,b], an integral adds all possible pdf values, each evaluated for a small interval dt (for values of t within [a,b])

pdf and cdf

Integration

The AFIT of Today is the Air Force of Tomorrow.

An integral as the limit of a sum of rectangles $\rightarrow dt$ wide by f(t) tall. As dt becomes smaller, the rectangles better approximate the true area.

$$\int_{0}^{b} f(t) dt \approx \text{sum} \left(\sum_{k=0}^{\infty} \right) \text{ of the rectangles over the interval [a,b]}$$

The Basic Integral

The AFIT of Today is the Air Force of Tomorrow.

We're integrating with respect to a variable called "x". We evaluate the integral for values of x within [a,b]

Integrand: The stuff we insert here—usually a function

- It is the pdf $\rightarrow f(x)$
- Or, the expectation formula $\rightarrow x f(x)$
- If we insert nothing, then we assume the integrand is a constant, and equal to 1.0

Integral Examples

The AFIT of Today is the Air Force of Tomorrow.

The (continuous) cdf is an integral value

$$P(T \le a) = F(a) = \int_{0}^{a} f(t) dt$$

 The probability of failure over a specific time interval [a,b]:

$$P(a \le T \le b) = F(b) - F(a)$$

$$= \int_{0}^{b} f(t) dt - \int_{0}^{a} f(t) dt$$

$$= \int_{0}^{b} f(t) dt$$

Some Useful Integrals

$$\int kdx \longrightarrow kx$$

$$\int kf(x)dx \longrightarrow k \int f(x)dx$$

$$\int [f(x) + g(x)]dx \longrightarrow \int f(x)dx + \int g(x)dx$$

$$\int x^{n}dx = \frac{1}{n+1}x^{n+1} \longrightarrow \int x^{3}dx = \frac{1}{4}x^{4}$$

$$\int x^{-1}dx = \int \frac{1}{x}dx \longrightarrow \ln x$$

Some More Useful Integrals

$$\int e^{ax} dx = \frac{1}{a} e^{ax} \quad \to \quad \int e^{2x} dx = \frac{1}{2} e^{2x}$$

$$\int be^{ax} dx = \frac{b}{a} e^{ax} \quad \to \quad \int 3e^{\lambda t} dt = \frac{3}{\lambda} e^{\lambda t}$$

$$\ln e = 1$$

$$\ln e^{k} = k$$

Applications of the Integral

- The mean is an expectation
 - Each possible value, t, weighted by its "rectangle area"
 - We use the cdf integrand, but now multiply the integrand by t
 - We integrate over all possible values of t (from t = 0 to ∞)

$$E(T) = \int_{0}^{\infty} t f(t) dt$$

$$MTTF = E(T) = \int_{0}^{\infty} R(t) dt$$
 (A form you'll see soon)

Compare with Discrete Variables

The AFIT of Today is the Air Force of Tomorrow.

 To help see what the integral is doing, recall the average value (expectation) of a discrete RV:

$$E(X) = \sum_{all \, x} x \, p(x)$$

- In words: the average value of a discrete RV is simply the sum of all possible values of x, each weighted by its probability of occurrence p(x)
- The integral is doing the same thing, except we must deal with the "billions and billions" (infinitely many) t values

Variance

The AFIT of Today is the Air Force of Tomorrow.

The 'spread' or dispersion about the mean

$$Var(X) = E\left[\left(X - \mu\right)^2\right]$$

$$Var(X) = \sum_{all \ x} (x - \mu)^2 \ p(x)$$
 (discrete)

$$Var(X) = \int_{0}^{\infty} (x - \mu)^{2} f(x) dx$$
 (continuous)

Variance—An easier way

The AFIT of Today is the Air Force of Tomorrow.

The 'spread' or dispersion about the mean

$$Var(X) = E\left[\left(X - \mu\right)^{2}\right] = E\left[X^{2}\right] - \mu^{2} = E\left[X^{2}\right] - E\left[X^{2}\right]^{2}$$

Note: To find the second moment

$$E[X^2] = \sum_{all \ x} x^2 \ p(x) \qquad \text{(discrete)}$$

$$= \int_0^\infty x^2 f(x) dx \quad \text{(continuous)}$$

Uniform Distribution, U(a, b)

The AFIT of Today is the Air Force of Tomorrow.

 Useful when occurrences randomly vary and little else is known about the shape of the distribution

$$pdf: f(t) = \begin{cases} \frac{1}{b-a} & \text{if } a \le t \le b \\ 0 & \text{otherwise} \end{cases}$$

Normal Distribution, $N(\mu, \sigma^2)$

The AFIT of Today is the Air Force of Tomorrow.

Used for errors of various types

pdf:
$$f(t) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(t-\mu)^2/(2\sigma^2)}$$
 for $-\infty < t < \infty$

cdf: no closed form \rightarrow use look-up tables

Lognormal Distribution, LN(μ, σ²)

The AFIT of Today is the Air Force of Tomorrow.

Time to perform some task

pdf:
$$f(t) = \begin{cases} \left(\frac{1}{t\sigma\sqrt{2\pi}}\right) e^{-(\ln t - \mu)^2/(2\sigma^2)} & \text{if } t > 0\\ 0 & \text{otherwise} \end{cases}$$

cdf: no closed form \rightarrow use look-up tables

Weibull Distribution, Weibull(β, θ)

The AFIT of Today is the Air Force of Tomorrow.

Time to complete some task, time to failure

pdf:
$$f(t) = \begin{cases} \frac{\beta}{\theta} \left(\frac{t}{\theta}\right)^{\beta - 1} e^{-(t/\theta)^{\beta}} & \text{if } t > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\operatorname{cdf:} F(t) = \begin{cases} 1 - e^{-(t/\theta)^{\beta}} & \text{if } t > 0 \\ 0 & \text{otherwise} \end{cases}$$

Exponential Distribution Expon(β)

The AFIT of Today is the Air Force of Tomorrow.

Constant failure rates, 1/β

pdf:
$$f(t) = \begin{cases} \frac{1}{\beta} e^{-t/\beta} & \text{if } t \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

$$cdf: F(t) = \begin{cases} 1 - e^{-t/\beta} & \text{if } t \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Binomial Distribution, bin(n, p)

- Discrete distribution representing # of successes in n independent Bernoulli trials where the probability of success for each trial is p
- The binomial (a set of Bernoulli trials)
 - Probability I'll get exactly 3 '7's on my next 5 tosses of two dice
 - Probability of exactly 1 failure among 5 identical components

pmf:
$$p(x) = {n \choose x} p^x (1-p)^{n-x}$$
 for x=0,1,...,n

where,
$$\binom{n}{x} = \frac{n!}{(n-x)!x!}$$
 (binomial coefficient)

A Poisson Process

- A unique relationship between the Poisson pmf and the exponential pdf...
- It's WHEN the time between successive occurrences is exponentially distributed, AND
 - Failure rate = λ
- The number of occurrences in a given time, t, is Poisson distributed
 - Expected # failures over time $t = \lambda t$

Poisson Process – the idea...

The AFIT of Today is the Air Force of Tomorrow.

Time between successive occurrences is exponentially distributed with parameter λ

Number of occurrences in a specified time interval t is Poisson distributed with parameter , λt

Poisson Process Assumptions

- Things happen serially (no stinkin' batches)
- Stationarity (parameters are constant w.r.t. time)
- Independent increments:
 - What happens in one time period doesn't affect what happens in a different, non-overlapping period

Poisson Distribution

- The Poisson is a discrete distribution representing the number of random events that occur in an interval of time, when events occur at a constant rate
 - Probability I'll get exactly 5 emails in the next hour, given they average about λ per hour

pmf:
$$p_n(t) = \frac{e^{-\lambda t} (\lambda t)^n}{n!}$$

Other Useful Things!

$$x^m x^n = x^{(m+n)}$$

$$\frac{x^m}{x^n} = x^{(m-n)}$$

$$\left(x^{m}\right)^{n}=x^{mn}$$

$$(xy)^m = x^m y^m$$

$$Log_a(x) = y$$
 \Rightarrow $a^y = x$

$$Log_a(a^x) = x$$

$$Log_a(r^x) = x Log_a(r)$$

$$Log_a(xy) = Log_a(x) + Log_a(y)$$

$$Log_a(x/y) = Log_a(x) - Log_a(y)$$

$$Log_e(x) = ln x$$