1 Section 3.A Exercises

Exercises with solutions from Section 3.A of [LADR].

Exercise 3.A.1. Suppose $b, c \in \mathbb{R}$. Define $T : \mathbb{R}^3 \to \mathbb{R}^2$ by

$$T(x, y, z) = (2x - 4y + 3z + b, 6x + cxyz).$$

Show that T is linear if and only if b = c = 0.

Solution. Suppose that b = c = 0, so that T is the map

$$T(x, y, z) = (2x - 4y + 3z, 6x).$$

Let $(x_1, y_1, z_1), (x_2, y_2, z_2) \in \mathbf{R}^3$ and $\lambda \in \mathbf{R}$ be given. Then

$$T(x_1 + x_2, y_1 + y_2, z_1 + z_2) = (2(x_1 + x_2) - 4(y_1 + y_2) + 3(z_1 + z_2), 6(x_1 + x_2))$$

$$= (2x_1 + 2x_2 - 4y_1 - 4y_2 + 3z_1 + 3z_2, 6x_1 + 6x_2)$$

$$= (2x_1 - 4y_1 + 3z_1, 6x_1) + (2x_2 - 4y_2 + 3z_2, 6x_2)$$

$$= T(x_1, y_1, z_1) + T(x_2, y_2, z_2).$$

$$T(\lambda x_1, \lambda y_1, \lambda z_1) = (2\lambda x_1 - 4\lambda y_1 + 3\lambda z_1, 6\lambda x_1)$$

$$= (\lambda (2x_1 - 4y_1 + 3z_1), \lambda (6x_1))$$

$$= \lambda (2x_1 - 4y_1 + 3z_1, 6x_1)$$

$$= \lambda T(x_1, y_1, z_1).$$

Thus T is linear.

Suppose that $b \neq 0$. Then $T(0,0,0) = (b,0) \neq (0,0)$, so T cannot be linear by 3.11. Now suppose that $c \neq 0$. Then

$$T(1,1,1) = (1+b,6+c)$$
 and $T(2,2,2) = (2+b,12+8c)$.

Since $2(6+c) = 12 + 2c \neq 12 + 8c$ for $c \neq 0$, we see that $2T(1,1,1) \neq T(2,2,2)$. Thus T is not linear.

Exercise 3.A.2. Suppose $b, c \in \mathbb{R}$. Define $T : \mathcal{P}(\mathbb{R}) \to \mathbb{R}^2$ by

$$Tp = \left(3p(4) + 5p'(6) + bp(1)p(2), \int_{-1}^{2} x^3 p(x) dx + c \sin p(0)\right).$$

Show that T is linear if and only if b = c = 0.

Solution. Suppose that b = c = 0, so that T is the map

$$Tp = \left(3p(4) + 5p'(6), \int_{-1}^{2} x^3 p(x) dx\right).$$

Let $p, q \in \mathcal{P}(\mathbf{R})$ and $\lambda \in \mathbf{R}$ be given. Then

$$T(p+q) = \left(3(p+q)(4) + 5(p+q)'(6), \int_{-1}^{2} x^{3}(p+q)(x)dx\right)$$

$$= \left(3(p(4) + q(4)) + 5(p'(6) + q'(6)), \int_{-1}^{2} x^{3}(p(x) + q(x))dx\right)$$

$$= \left(3p(4) + 3q(4) + 5p'(6) + 5q'(6), \int_{-1}^{2} x^{3}p(x)dx + \int_{-1}^{2} x^{3}q(x)dx\right)$$

$$= \left(3p(4) + 5p'(6), \int_{-1}^{2} x^{3}p(x)dx\right) + \left(3q(4) + 5q'(6), \int_{-1}^{2} x^{3}q(x)dx\right)$$

$$= Tp + Tq.$$

$$T(\lambda p) = \left(3(\lambda p)(4) + 5(\lambda p)'(6), \int_{-1}^{2} x^{3}(\lambda p)(x)dx\right)$$

$$= \left(3(\lambda p(4)) + 5(\lambda p'(6)), \int_{-1}^{2} x^{3}(\lambda p(x))dx\right)$$

$$= \left(\lambda(3p(4) + 5p'(6)), \lambda \int_{-1}^{2} x^{3}p(x)dx\right)$$

$$= \lambda \left(3p(4) + 5p'(6), \int_{-1}^{2} x^{3}p(x)dx\right)$$

$$= \lambda T p.$$

Thus T is linear.

Now suppose that T is linear. Observe that

$$T(\pi) = \left(3\pi + b\pi^2, \frac{15\pi}{4} + c\right),$$

$$2T(\pi) = \left(6\pi + 2b\pi^2, \frac{15\pi}{2} + 2c\right),$$

$$T(2\pi) = \left(6\pi + 4b\pi^2, \frac{15\pi}{2}\right).$$

Since T is linear, we must have $2T(\pi) = T(2\pi)$, i.e.

$$\left(6\pi + 2b\pi^2, \frac{15\pi}{2} + 2c\right) = \left(6\pi + 4b\pi^2, \frac{15\pi}{2}\right) \iff (2b\pi^2, 2c) = (4b\pi^2, 0) \iff b = c = 0.$$

Exercise 3.A.3. Suppose $T \in \mathcal{L}(\mathbf{F}^n, \mathbf{F}^m)$. Show that there exist scalars $A_{j,k} \in \mathbf{F}$ for j = 1, ..., m and k = 1, ..., n such that

$$T(x_1,\ldots,x_n)=(A_{1,1}x_1+\cdots+A_{1,n}x_n,\ldots,A_{m,1}x_1+\cdots+A_{m,n}x_n)$$

for every $(x_1, \ldots, x_n) \in \mathbf{F}^n$.

[The exercise above shows that T has the form promised in the last item of Example 3.4.]

Solution. Let e_1, \ldots, e_n be the standard basis of \mathbf{F}^n and let f_1, \ldots, f_m be the standard basis of \mathbf{F}^m . For any $k \in \{1, \ldots, n\}$, we have $Te_k \in \mathbf{F}^m$. Thus there exist scalars $A_{1,k}, \ldots, A_{m,k}$ such that

$$Te_k = \sum_{j=1}^m A_{j,k} f_j.$$

Let $x = (x_1, \dots, x_n) = \sum_{k=1}^n x_k e_k$ be given. Then by linearity,

$$Tx = T\left(\sum_{k=1}^{n} x_{k} e_{k}\right)$$

$$= \sum_{k=1}^{n} x_{k} T e_{k}$$

$$= \sum_{k=1}^{n} x_{k} \sum_{j=1}^{m} A_{j,k} f_{j}$$

$$= \sum_{j=1}^{m} \left(\sum_{k=1}^{n} A_{j,k} x_{k}\right) f_{j}$$

$$= \left(\sum_{k=1}^{n} A_{1,k} x_{k}, \dots, \sum_{k=1}^{n} A_{m,k} x_{k}\right)$$

$$= (A_{1,1} x_{1} + \dots + A_{1,n} x_{n}, \dots, A_{m,1} x_{1} + \dots + A_{m,n} x_{n}).$$

Exercise 3.A.4. Suppose $T \in \mathcal{L}(V, W)$ and v_1, \ldots, v_m is a list of vectors in V such that Tv_1, \ldots, Tv_m is a linearly independent list in W. Prove that v_1, \ldots, v_m is linearly independent.

Solution. Suppose we have scalars a_1, \ldots, a_m such that

$$a_1v_1 + \dots + a_mv_m = 0.$$

Applying T to both sides of this equation and using linearity, we obtain

$$T(a_1v_1 + \dots + a_mv_m) = T(0) \iff a_1Tv_1 + \dots + a_mTv_m = 0.$$

Since the list Tv_1, \ldots, Tv_m is linearly independent, this implies that $a_1 = \cdots = a_m = 0$. Thus the list v_1, \ldots, v_m is linearly independent.

Exercise 3.A.5. Prove the assertion in 3.7.

Solution. The assertion is that, if V and W are vector spaces, then $\mathcal{L}(V,W)$ is a vector space. First, let us show that $\mathcal{L}(V,W)$ is closed under addition and scalar multiplication, i.e. if S and T are linear maps from V to W and $\lambda \in \mathbf{F}$ is a scalar, then S+T and λS are linear maps from V to W. Let $u,v \in V$ and $\alpha \in \mathbf{F}$ be given. Then

$$(S+T)(u+v) = S(u+v) + T(u+v) = Su + Sv + Tu + Tv$$

= $Su + Tu + Sv + Tv = (S+T)(u) + (S+T)(v)$.

$$(S+T)(\alpha u) = S(\alpha u) + T(\alpha u) = \alpha Su + \alpha Tu = \alpha (Su+Tu) = \alpha (S+T)(u).$$

Thus $S + T \in \mathcal{L}(V, W)$. Similarly,

$$(\lambda S)(u+v) = \lambda S(u+v) = \lambda (Su+Sv) = \lambda Su + \lambda Sv = (\lambda S)(u) + (\lambda S)(v).$$

$$(\lambda S)(\alpha u) = \lambda S(\alpha u) = \lambda(\alpha S u) = \alpha(\lambda S u) = \alpha(\lambda S)(u).$$

Thus $\lambda S \in \mathcal{L}(V, W)$. To prove that $\mathcal{L}(V, W)$ is a vector space with these operations, we will verify each of the requirements from 1.19.

Commutativity. Suppose $S, T \in \mathcal{L}(V, W)$ and $u \in V$. Then

$$(S+T)(u) = Su + Tu = Tu + Su = (T+S)(u).$$

Thus S + T = T + S.

Associativity. Suppose $R, S, T \in \mathcal{L}(V, W), a, b \in \mathbf{F}$, and $u \in V$. Then

$$((R+S)+T)(u) = (R+S)(u) + Tu = (Ru+Su) + Tu = Ru + (Su+Tu)$$
$$= Ru + (S+T)(u) = (R+(S+T))(u).$$

$$((ab)R)(u) = (ab)Ru = a(bRu) = a((bR)(u)) = (a(bR))(u).$$

Thus (R + S) + T = R + (S + T) and (ab)R = a(bR).

Additive identity. It is easily verified that the map $0: V \to W$ given by $v \mapsto 0$ belongs to $\mathcal{L}(V, W)$. We claim that this map is the additive identity in $\mathcal{L}(V, W)$. Let $S \in \mathcal{L}(V, W)$ and $u \in V$ be given. Then

$$(S+0)(u) = Su + 0u = Su + 0 = Su.$$

Thus S + 0 = S.

Additive inverse. Suppose that $S \in \mathcal{L}(V, W)$. Define $T : V \to W$ by Tu = -Su; it is not hard to see that T is linear. We claim that T is the additive inverse to S. Indeed, for any $u \in V$,

$$(S+T)(u) = Su + Tu = Su + (-Su) = 0.$$

Thus S + T = 0.

Multiplicative identity. Let $S \in \mathcal{L}(V, W)$ and $u \in V$ be given. Then

$$(1S)(u) = 1Su = Su.$$

Thus 1S = S.

Distributive properties. Let $S, T \in \mathcal{L}(V, W), a, b \in \mathbf{F}$, and $u \in V$ be given. Then

$$(a(S+T))(u) = a(S+T)(u) = a(Su+Tu) = aSu + aTu = (aS)(u) + (aT)(u).$$

$$((a+b)S)(u) = (a+b)Su = aSu + bSu = (aS)(u) + (bS)(u).$$

Thus a(S+T) = aS + aT and (a+b)S = aS + bS.

Exercise 3.A.6. Prove the assertions in 3.9.

Solution. The first assertion is that if the products make sense, then $(T_1T_2)T_3 = T_1(T_2T_3)$. This is certainly the case, since the composition of functions is associative.

The second assertion is that if $T \in \mathcal{L}(V, W)$, I_V is the identity map on V, and I_W is the identity map on W, then $TI_V = I_W T = T$. Indeed, let $v \in V$ be given. Then

$$(TI_V)(v) = T(I_V v) = Tv$$
 and $(I_W T)(v) = I_W (Tv) = Tv$.

The third assertion is that if $T, T_1, T_2 \in \mathcal{L}(U, V)$ and $S, S_1, S_2 \in \mathcal{L}(V, W)$, then

$$(S_1 + S_2)T = S_1T + S_2T$$
 and $S(T_1 + T_2) = ST_1 + ST_2$.

Let $u \in U$ be given. Then

$$((S_1 + S_2)T)(u) = (S_1 + S_2)(Tu) = S_1(Tu) + S_2(Tu) = (S_1T)(u) + (S_2T)(u).$$

$$(S(T_1 + T_2))(u) = S((T_1 + T_2)(u)) = S(T_1 u + T_2 u) = S(T_1 u) + S(T_2 u) = (ST_1)(u) + (ST_2)(u).$$

Exercise 3.A.7. Show that every linear map from a 1-dimensional vector space to itself is multiplication by some scalar. More precisely, prove that if dim V = 1 and $T \in \mathcal{L}(V, V)$, then there exists $\lambda \in \mathbf{F}$ such that $Tv = \lambda v$ for all $v \in V$.

Solution. Since dim V=1, there exists a basis u for V. Then since $Tu \in V$, it must be of the form λu for some $\lambda \in \mathbf{F}$. Let $v=\alpha u \in V$ be given. Then

$$Tv = T(\alpha u) = \alpha Tu = \alpha(\lambda u) = \lambda(\alpha u) = \lambda v.$$

Exercise 3.A.8. Give an example of a function $\varphi: \mathbf{R}^2 \to \mathbf{R}$ such that

$$\varphi(av) = a\varphi(v)$$

for all $a \in \mathbf{R}$ and all $v \in \mathbf{R}^2$ but φ is not linear.

[The exercise above and the next exercise show that neither homogeneity nor additivity alone is enough to imply that a function is a linear map.]

Solution. Let $\varphi : \mathbf{R}^2 \to \mathbf{R}$ be given by $\varphi(x,y) = (x^3 + y^3)^{\frac{1}{3}}$. Then for any $a \in \mathbf{R}$ and $(x,y) \in \mathbf{R}^2$, we have

$$\varphi(ax, ay) = \left((ax)^3 + (ay)^3 \right)^{\frac{1}{3}} = \left(a^3 \right)^{\frac{1}{3}} \left(x^3 + y^3 \right)^{\frac{1}{3}} = a \left(x^3 + y^3 \right)^{\frac{1}{3}} = a \varphi(x, y).$$

However, observe that

$$\varphi(1,0) + \varphi(0,1) = 1 + 1 = 2 \neq 2^{\frac{1}{3}} = \varphi(1,1).$$

Thus φ is not linear.

Exercise 3.A.9. Give an example of a function $\varphi: \mathbb{C} \to \mathbb{C}$ such that

$$\varphi(w+z) = \varphi(w) + \varphi(z)$$

for all $w, z \in \mathbf{C}$ but φ is not linear. (Here \mathbf{C} is thought of as a complex vector space.) [There also exists a function $\varphi : \mathbf{R} \to \mathbf{R}$ such that φ satisfies the additivity condition above but φ is not linear. However, showing the existence of such a function involves considerably more advanced tools.]

Solution. Let $\varphi: \mathbf{C} \to \mathbf{C}$ be given by $\varphi(x+iy) = x$, i.e. φ takes a complex number to its real part. Then

$$\varphi((x+iy)+(u+iv))=\varphi((x+u)+i(y+v))=x+u=\varphi(x+iy)+\varphi(u+iv).$$

However, $\varphi(i) = 0$ and $\varphi(i^2) = \varphi(-1) = -1 \neq i\varphi(i)$. Thus φ is not linear.

Exercise 3.A.10. Suppose U is a subspace of V with $U \neq V$. Suppose $S \in \mathcal{L}(U, W)$ and $S \neq 0$ (which means that $Su \neq 0$ for some $u \in U$). Define $T: V \to W$ by

$$Tv = \begin{cases} Sv & \text{if } v \in U, \\ 0 & \text{if } v \in V \text{ and } v \notin U. \end{cases}$$

Prove that T is not a linear map on V.

Solution. There is some $u \in U$ such that $Su \neq 0$, and since $U \neq V$ there is some $v \in V$ such that $v \notin U$. This implies that $u - v \notin U$, otherwise $v = -(u - v) + u \in U$. Then we have

$$Tv + T(u - v) = 0 + 0 = 0 \neq Su = Tu = T(v + u - v).$$

Thus T is not linear.

Exercise 3.A.11. Suppose V is finite-dimensional. Prove that every linear map on a subspace of V can be extended to a linear map on V. In other words, show that if U is a subspace of V and $S \in \mathcal{L}(U, W)$, then there exists $T \in \mathcal{L}(V, W)$ such that Tu = Su for all $u \in U$.

Solution. Let u_1, \ldots, u_m be a basis of U, which we extend to a basis $u_1, \ldots, u_m, v_1, \ldots, v_n$ of V. By 3.5, we may define a (unique) linear map $T: V \to W$ by specifying

$$Tu_j = Su_j$$
 for $1 \le j \le m$ and $Tv_j = 0$ for $1 \le j \le n$.

If $u \in U$, then there are scalars a_1, \ldots, a_m such that $u = a_1u_1 + \cdots + a_mu_m$. Observe that

$$Tu = T(a_1u_1 + \dots + a_mu_m) = a_1Tu_1 + \dots + a_mTu_m$$

= $a_1Su_1 + \dots + a_mSu_m = S(a_1u_1 + \dots + a_mu_m) = Su$.

Thus T extends S.

Exercise 3.A.12. Suppose V is finite-dimensional with $\dim V > 0$, and suppose W is infinite-dimensional. Prove that $\mathcal{L}(V, W)$ is infinite-dimensional.

Solution. For a finite-dimensional vector space V with dim V > 0, we wish to prove that

W is infinite-dimensional $\implies \mathcal{L}(V, W)$ is infinite-dimensional.

We will prove the contrapositive statement:

 $\mathcal{L}(V,W)$ is finite-dimensional $\Longrightarrow W$ is finite-dimensional.

Suppose therefore that $\mathcal{L}(V,W) = \operatorname{span}(S_1,\ldots,S_m)$ for some (possibly empty) list S_1,\ldots,S_m in $\mathcal{L}(V,W)$. Since V is finite-dimensional with $\dim V > 0$, there is a non-empty basis v_1,\ldots,v_n for V. Consider the (possibly empty) list w_1,\ldots,w_m where $w_j:=S_jv_1$. We claim that this list spans W. To see this, let $w \in W$ be given. By 3.5, there is a (unique) linear map $T: \operatorname{span}(v_1) \to W$ such that $Tv_1 = w$. Then by Exercise 3.A.11, T can be extended to a linear map $S: V \to W$. Since $\mathcal{L}(V,W) = \operatorname{span}(S_1,\ldots,S_m)$, there are scalars a_1,\ldots,a_m such that $S = a_1S_1 + \cdots + a_mS_m$ (this is to be understood as the "empty linear combination" if $\mathcal{L}(V,W) = \{0\}$, so that S = 0). Then observe that

$$w = Sv_1 = (a_1S_1 + \dots + a_mS_m)(v_1) = a_1S_1v_1 + \dots + a_mS_mv_1 = a_1w_1 + \dots + a_mw_m.$$

Thus $W = \operatorname{span}(w_1, \dots, w_m)$. This shows that W is finite-dimensional and moreover that $\dim W \leq \dim \mathcal{L}(V, W)$.

Exercise 3.A.13. Suppose v_1, \ldots, v_m is a linearly dependent list of vectors in V. Suppose also that $W \neq \{0\}$. Prove that there exist $w_1, \ldots, w_m \in W$ such that no $T \in \mathcal{L}(V, W)$ satisfies $Tv_k = w_k$ for each $k = 1, \ldots, m$.

Solution. Since $W \neq \{0\}$, there is a $w \in W$ such that $w \neq 0$, and by the Linear Dependence Lemma, there is a $j \in \{1, \ldots, m\}$ such that $v_j \in \text{span}(v_1, \ldots, v_{j-1})$. If j = 1 then $v_1 = 0$. Consider the list w, \ldots, w of length m in W. If $T \in \mathcal{L}(V, W)$, then $Tv_1 = T(0) = 0 \neq w$, and so we have found the desired list.

If j > 1, then there are scalars a_1, \ldots, a_{j-1} such that $v_j = a_1v_1 + \cdots + a_{j-1}v_{j-1}$. Consider the list w_1, \ldots, w_m where $w_k = w$ if $k \neq j$ and $w_j = (a_1 + \cdots + a_{j-1} + 1)w$. Suppose we have some $T \in \mathcal{L}(V, W)$ such that $Tv_k = w_k$ for $1 \leq k < j$. Then observe that

$$Tv_j = T(a_1v_1 + \dots + a_{j-1}v_{j-1}) = a_1Tv_1 + \dots + a_{j-1}Tv_{j-1}$$

= $a_1w + \dots + a_{j-1}w = (a_1 + \dots + a_{j-1})w$.

Since $w \neq 0$, we have $Tv_j = (a_1 + \cdots + a_{j-1})w \neq (a_1 + \cdots + a_{j-1} + 1)w = w_j$. Thus no $T \in \mathcal{L}(V, W)$ can possibly satisfy $Tv_k = w_k$ for each $k = 1, \dots, m$.

Exercise 3.A.14. Suppose V is finite-dimensional with dim $V \geq 2$. Prove that there exist $S, T \in \mathcal{L}(V, V)$ such that $ST \neq TS$.

Solution. There is a basis v_1, v_2, \ldots, v_n for V with $n \geq 2$. By 3.5, to define $S, T \in \mathcal{L}(V, V)$, it is enough to specify where the basis vectors v_1, v_2, \ldots, v_n get mapped to. So let S be the linear map defined by $Sv_1 = v_2, Sv_2 = v_1$, and $Sv_j = v_j$ for $j \geq 2$, and let T be the linear map defined by $Tv_1 = 2v_2, Tv_2 = v_1$, and $Tv_j = v_j$ for $j \geq 2$. Then observe that

$$(ST - TS)(v_1) = S(Tv_1) - T(Sv_1) = S(2v_2) - Tv_2 = 2v_1 - v_1 = v_1 \neq 0.$$

Thus $ST \neq TS$.

[LADR] Axler, S. (2015) Linear Algebra Done Right. 3rd edition.