Équations différentielles linéaires d'ordre 1

1	Synthèse	5
	3.2 Méthode générale : variation de la constante	5
	3.1 Principe de superposition	
3	Équation générale : obtenir une solution particulière.	4
2	Résolution de l'équation homogène.	4
1	Ensemble des solutions d'une ED linéaire d'ordre 1.	3

Dans ce cours, \mathbb{K} désignera \mathbb{R} ou \mathbb{C} et I un intervalle de \mathbb{R} .

Introduction: Notion d'équation différentielle.

En physique, en chimie, en économie... on étudie parfois l'évolution, au sein d'un système, d'une quantité d'intérêt Q, dépendant d'un paramètre t (par exemple le temps). On va donc être amené à s'interroger sur la fonction $Q:t\mapsto Q(t)$. Les contraintes s'exerçant sur le système sont traduites à travers des équations, qui peuvent faire intervenir Q mais aussi ses dérivées successives.

Considérons trois exemples issus de la physique.

8

position x(E)

Figure 1 – Circuit RC série.

Figure 2 - Ressort

Figure 3 – Pendule

Exemple 1. Circuit RC série.

Soient une résistance R et un condensateur de capacité C branchés en série à un générateur de tension sinusoïdal imposant à ses bornes une tension $u_g(t) = U_0 \sin(\omega t)$. On étudie la tension u aux bornes du condensateur. Si on note i le courant traversant le circuit, la loi des mailles amène $u_g = u + Ri$. Or, on a $i = C \frac{du}{dt}$. D'où, pour $t \ge 0$,

$$RC\frac{\mathrm{d}u}{\mathrm{d}t}(t) + u(t) = U_0 \sin(\omega t) \tag{1}$$

Exemple 2. Masse attachée à un ressort.

Soit une masse m, attachée à un ressort ayant un coefficient de rappel k. La masse se déplace sur une surface

plane, avec un coefficient de frottement fluide λ . On étudie la position x de la masse au cours du temps. Notons \overrightarrow{a} son accélération. Le principe fondamental de la dynamique donne

$$m \overrightarrow{a} = \overrightarrow{P} + \overrightarrow{N} + \overrightarrow{F}_{rappel} + \overrightarrow{F}_{frott}.$$

En dehors du poids \overrightarrow{P} et de la réaction normale du support \overrightarrow{N} , la masse est soumise à la force de rappel $\overrightarrow{F}_{rappel} = -kx(t)\overrightarrow{e_1}$, et à une force de frottement fluide $\overrightarrow{F}_{frott} = -\lambda \overrightarrow{v} = -\lambda \frac{\mathrm{d}x}{\mathrm{d}t}\overrightarrow{e_1}$. Son accélération est $\overrightarrow{a} = \frac{\mathrm{d}^2x}{\mathrm{d}t^2}\overrightarrow{e_1}$. Ainsi, en projetant l'égalité vectorielle sur $\overrightarrow{e_1}$, on obtient pour tout $t \geq 0$:

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2}(t) + \lambda \frac{\mathrm{d}x}{\mathrm{d}t}(t) + kx(t) = 0.$$
 (2)

Exemple 3. Pendule simple, sans frottement.

Une masse attachée à un fil non élastique, et non pesant, de longueur ℓ . La force de tension \overrightarrow{T} , orthogonale au vecteur vitesse, ne travaille pas, contrairement au poids \overrightarrow{P} . On étudie l'angle $\theta(t)$ entre la position à l'instant t et celle de repos. En dérivant une expression de l'énergie mécanique, constante ici, on peut obtenir la relation suivante, pour $t \geq 0$.

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2}(t) + \frac{g}{\ell} \sin\left(\theta(t)\right) = 0,\tag{3}$$

où g est l'accélération de la pesanteur.

Les relations (1), (2) et (3) sont des **équations différentielles**. Le plus haut degré de dérivation mis en jeu dans l'équation est appelé **ordre** de l'équation. L'équation (1) est d'ordre 1 car seule la première dérivée y figure. Les équations (2) et (3) sont, elles, d'ordre 2.

On dit d'une équation différentielle qu'elle est linéaire si elle se présente sous la forme

$$\sum_{k=0}^{n} a_k(t) y^{(k)}(t) = b(t),$$

où a_0, a_1, \ldots, a_n et b sont des fonctions. Les équations (1) et (2) sont linéaires, ce qui n'est pas le cas pour (3) à cause du sinus.

*

Dans ce cours on résout les équations de la forme

$$y'(t) + a(t)y(t) = b(t),$$

où a et b sont des fonctions continues sur un intervalle de \mathbb{R} . On se restreint donc à l'étude de (certaines) équations différentielles linéaires d'ordre 1.

1 Ensemble des solutions d'une ED linéaire d'ordre 1.

Définition 1.

Soient $a, b: I \to \mathbb{K}$ deux applications continues sur I. On considère l'équation différentielle

$$y' + a(x)y = b(x) \qquad (E)$$

- On dit que $y: I \to \mathbb{K}$ est solution de (E) sur I si elle est dérivable sur I et si $\forall x \in I \ y'(x) + a(x)y(x) = b(x)$.
- La fonction b est souvent appelée second membre de l'équation.
- On appelle **équation homogène** associée à (E) (ou équation "sans second membre") l'équation différentielle

$$y' + a(x)y = 0 (E_0)$$

Dans tout ce qui suit, sauf précision du contraire, (E) et (E_0) désignent les équations ci-dessus. La proposition suivante découle de la linéarité de l'équation.

Proposition 2 (Lien entre S et S_0).

Si z_1 et z_2 deux solutions de (E) sur I, alors la fonction $(z_1 - z_2)$ est solution sur I de l'équation homogène (E_0) .

Par conséquent, si S et S_0 désignent respectivement les ensembles des solutions de (E) et de (E_0) , et si $z \in S$ (z est une solution particulière de l'équation) alors

$$S = \{z + y, \quad y \in S_0\}.$$

Pour connaître toutes les solutions de (E), il suffit donc de

- connaître toutes les solutions de (E_0) \longrightarrow partie 2 du cours.
- \bullet connaître *une* solution de (E)
- \longrightarrow partie 3 du cours.

Proposition 3 (Structure de S_0).

L'ensemble S_0 contient la fonction nulle et il est stable par combinaison linéaire.

Précisons le second point : si y_1 et y_2 deux solutions de (E_0) sur I, λ , μ sont deux scalaires de \mathbb{K} , alors $(\lambda y_1 + \mu y_2)$ est une solution de (E_0) sur I.

Remarque. Plus tard dans l'année, la proposition précédente s'énoncera en écrivant que S_0 est un sousespace vectoriel dans l'espace des fonctions dérivables. Dans le cas des ED linéaires d'ordre 1, le prochain paragraphe va montrer que ce sous espace est de dimension 1 : c'est une droite vectorielle.

2 Résolution de l'équation homogène.

On va donner toutes les solutions de

$$y' + a(x)y = 0 (E_0)$$

sur un intervalle I de \mathbb{R}

Cas particulier (instructif) : le cas où a est une fonction constante (égale à $a \in \mathbb{K}$). On montre que les solutions de y' + ay = 0 sont les fonctions de la forme $x \mapsto \lambda e^{-ax}$, où λ est une constante quelconque de \mathbb{K} .

Dans le cas général d'une fonction $a: I \to \mathbb{C}$, le résultat ci-dessus est généralisé par le théorème suivant.

Théorème 4.

Soit (E_0) l'équation y' + a(x)y = 0, où a est une fonction continue sur I. Soit A une primitive de a sur I. L'ensemble S_0 des solutions de (E_0) sur I est

$$S_0 = \left\{ x \mapsto \lambda e^{-A(x)}, \lambda \in \mathbb{K} \right\}.$$

On dit aussi que $x \mapsto \lambda e^{-A(x)}$, où $\lambda \in \mathbb{R}$ est la solution générale de (E_0) .

Remarque. L'ensemble ci-dessus est une droite : les solutions de (E_0) sont les multiples d'une même solution : $x \mapsto e^{-A(x)}$, que l'on peut voir comme le vecteur directeur de la droite.

Exemple. Les solutions sur \mathbb{R} de l'équation $y' + x^2y = 0$ sont les fonctions de l'ensemble $\left\{ x \mapsto \lambda e^{-\frac{x^3}{3}}, \lambda \in \mathbb{R} \right\}$.

3 Équation générale : obtenir une solution particulière.

Il s'agit ici de trouver *une* solution de l'équation

$$y' + a(x)y = b(x) (E)$$

3.1 Principe de superposition.

Lorsque le second membre se présente comme somme de deux fonctions, la proposition suivante, qui découle de la linéarité de l'équation, peut être utile.

Proposition 5 (Principe de superposition).

Soient a, b_1, b_2 trois fonctions continues sur I. Si

- y_1 est solution sur I de $y' + a(x)y = b_1(x)$ (E_1) ,
- y_2 est solution sur I de $y' + a(x)y = b_2(x)$ (E_2) ,

alors $y_1 + y_2$ est solution sur I de l'équation $y' + a(x)y = b_1(x) + b_2(x)$ (E₃).

Exemple. Trouver une solution de l'équation $y' + 2y = 1 + e^x$.

3.2 Méthode générale : variation de la constante.

L'idée est de chercher une solution de (E) de la forme $z: x \mapsto \lambda(x)u(x)$, où u est une solution (non nulle) de l'équation homogène (E_0) et λ une fonction dérivable de notre choix. Il nous faut comprendre comment choisir la fonction λ pour que la fonction z soit solution de (E). On a

$$z' + az = (\lambda u)' + a(\lambda u)$$

$$= \lambda' u + \lambda u' + \lambda au$$

$$= \lambda' u + \underbrace{\lambda (u' + au)}_{=0},$$

où on a utilisé à la dernière ligne que u est solution de (E_0) . Ainsi,

$$z$$
 est solution de (E) \iff $z' + az = b$ $\sup I$ \Leftrightarrow $\lambda' u = b$ $\sup I$

Lorsque u s'écrit sous la forme $u = e^{-A}$, où A est une primitive de a, on a

$$z$$
 est solution de (E) \iff $\lambda' = be^A$ sur I .

Notre fonction z sera donc solution si et seulement si λ est choisie parmi les primitives de be^A .

Exemple. Résolution de $y' + 2xy = \cos(x)e^{-x^2}$.

4 Synthèse.

Théorème 6 (de synthèse).

Soient $a: I \to \mathbb{K}$ et $b: I \to \mathbb{K}$ deux fonctions continues. L'équation

$$y' + a(x)y = b(x) \quad (E)$$

a des solutions. Si z est une telle solution (« particulière ») et A une primitive de a sur I, alors l'ensemble des solutions de (E) est

$$S = \left\{ x \mapsto z(x) + \lambda e^{-A(x)}, \lambda \in \mathbb{K} \right\}.$$

Preuve.

- La fonction a est continue sur l'intervalle I. Elle y admet donc des primitives (conséquence du TFA). Si A est l'une d'entre elles, $u: x \mapsto e^{-A(x)}$ est solution de l'équation homogène associée.
- Posons $z = \lambda u$, où λ est une fonction définie sur I. En expliquant la méthode de variation de la constante, on a prouvé que si λ est une primitive de $x \mapsto b(x)e^{A(x)}$, alors z est une solution de (E). Une telle primitive existe-t-elle? Oui car $x \mapsto b(x)e^{A(x)}$ est continue, comme produit et composée.
- \bullet D'après la proposition 2, l'ensemble des solutions de (E) est

$$S = \{z + y, \quad y \in S_0\} \underset{\text{Th} 4}{=} \left\{ x \mapsto z(x) + \lambda e^{-A(x)}, \lambda \in \mathbb{K} \right\}.$$

5

Définition 7.

Soient $x_0 \in I$ et $y_0 \in \mathbb{R}$. On appelle **problème de Cauchy** la donnée d'une équation différentielle et d'une condition initiale (valeur imposée en un point)

$$\begin{cases} y' + a(x)y &= b(x) \\ y(x_0) &= y_0 \end{cases}.$$

Théorème 8 (de Cauchy-Lipschitz, cas linéaire).

Soient $a, b: I \to \mathbb{K}$ continues, $x_0 \in I$ et $y_0 \in \mathbb{K}$.

Le problème de Cauchy $\begin{cases} y' + a(x)y = b(x) \\ y(x_0) = y_0 \end{cases}$ admet une unique solution sur I.

Preuve. D'après le théorème précédent, l'équation différentielle admet des solutions. On en fixe une que l'on note z. Si A une primitive fixée de a sur I, alors les solutions sont les fonctions de la forme

$$y: x \mapsto z(x) + \lambda e^{-A(x)}$$
.

Parmi ces fonctions, on veut distinguer celles qui satisfont la condition initiale. On écrit donc

$$y(x_0) = y_0 \iff z(x_0) + \lambda e^{-A(x_0)} = y_0$$
$$\iff \lambda = e^{A(x_0)} (y_0 - z(x_0)).$$

Il existe donc une unique valeur pour λ pour laquelle $y(x_0) = y_0$; notons-la λ_0 . Le problème de Cauchy possède une unique solution : la fonction $y = z + \lambda_0 e^{-A}$.