UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO
INSTITUTO DE FÍSICA ARMANDO DIAS TAVARES
DEPARTAMENTO DE ELETRÔNICA QUÂNTICA
FÍSICA TEÓRICA E EXPERIMENTAL III
PROF. NILSON ANTUNES DE OLIVEIRA

 $\underline{2^{\mathrm{a}}\ \mathrm{PR\acute{A}TICA}}$ LINHAS EQUIPOTENCIAIS EM UM PLANO

ALUNA: PRISCILA QUEIROZ DE AGUIAR

RIO DE JANEIRO

NOVEMBRO DE 2012

PROCEDIMENTOS

Com o esquema experimental montado, o auxílio de um papel milimetrado e o auxílio do Multímetro, mediu-se inicialmente o potencial elétrico no ponto cartesiano P1=(0,0), que encontra-se ao centro da cuba. Concluiu-se então que o potencial medido neste ponto é de 0,7 Voltz. Ressalta-se que, para que se caracterizasse o dipolo elétrico teórico, isto é, onde o potencial eletrostático medido encontra-se igual a 0 Voltz, seria necessário que as duas cargas fossem pontuais e tivessem módulo precisamente igual, que a precisão de medição dos instrumentos e a precisão da equidistância do centro da cuba fossem maiores, e não poderia haver interação do meio com o experimento.

Em seguida, mediu-se outros dois pontos P2 e P3 sobre o eixo dos Y, um acima e outro abaixo do ponto P1, e concluiu-se que os dois possuíam mesmo potencial de 0,7 V.

Logo após, posicionou-se a extremidade medidora do multímetro no ponto cartesiano P4 = (-1,0) e constatou-se que o potencial elétrico era de 3,1 V. Mediu-se outros quatro pontos P5, P6, P7, P8, sendo dois destes acima do ponto P4 e outros dois abaixo deste ponto, em relação ao eixo dos Y. Todos os pontos nesta medição possuem potencial elétrico de 3,1 V.

Por fim, repetiu-se o procedimento anterior a partir dos pontos P9 = (-2,0), P14 = (1,0) e P19 = (2,0), medindo-se dois pontos acima e dois abaixo de cada um deles com mesmo potencial do ponto inicial. Os dados obtidos encontram-se dispostos nas Tabelas 1, 2, 3, 4, 5 e no Gráfico 1.

Posicionou-se um vetor $\bar{\boldsymbol{v}}$ sobre o ponto P4 com direção e sentido dados pelo campo elétrico que age sobre ele. Calculou-se o módulo da intensidade deste campo elétrico.

COLETA E TRATAMENTO DE DADOS

• GRÁFICO 1

• TABELAS DE 1 A 5.

2,7 V		
х	у	
-2,3	3	
-2,2	1,5	
-2	0	
-2,2	-1,5	
-2,5	-3	

3,1 V		
x	У	
-1,2	4	
-1	2	
-1	0	
-1,1	-2	
-1,3	-4	

0,7 V		
х	у	
0	2	
0	0	
0	-2	

4,0 V		
х	у	
1,5	3	
1,2	2	
1	0	
1,2	-2	
1,5	-3	

4,4 V		
x	У	
2,5	2,5	
2	1,5	
2	0	
2,3	-1,5	
2,5	-2,5	

CÁLCULOS

• MÓDULO DO CAMPO ELÉTRICO.

o FÓRMULA:

$$|E| = \left| \frac{-\Delta V}{\Delta r} \right|$$

Onde:

E – Módulo do campo elétrico

 ΔV – Variação de potencial

 Δr – Distância entre os pontos

$$|E| = \left| \frac{-(0,7-3,1)}{0 - (-0,01)} \right|$$

$$|E| = 240 \ \frac{N}{C}$$

• DIREÇÃO E SENTIDO DO VETOR CAMPO ELÉTRICO.

O campo elétrico atuante no ponto P4= (-1,0) tem direção

do vetor $\bar{\mathbf{v}}$ = (-1,0) e sentido da esquerda para a direita.