§3. Дифференцируемость функции в точке. Дифференциал

Определение 3.1. Пусть функция y = f(x) определена на некоторой окрестности точки x_0 . Если её приращение $\Delta y = f(x_0 + \Delta x) - f(x_0)$ представимо в виде

$$\Delta y = A \cdot \Delta x + o(\Delta x), \tag{3.1}$$

где множитель A зависит от x_0 , но не зависит от Δx , а $o(\Delta x)$ – величина более высокого порядка малости, чем Δx при $\Delta x \to 0$, то данная функция называется $\partial u \phi \phi$ еренцируемой в точке x_0 , а слагаемое $A \cdot \Delta x$ из (3.1) называется $\partial u \phi \phi$ еренциалом функции y = f(x) в точке x_0 и обозначается следующим образом:

$$df(x_0)$$
, $dy(x_0)$, $dy_{|x=x_0|}$, dy . Итак, $dy = A \cdot \Delta x$.

В силу равенства (3.1) дифференциал $dy = A \cdot \Delta x$ при $A \neq 0$ есть главная часть приращения функции y = f(x), линейная относительно Δx (определение 7.2 главы 3 раздела 4), при этом $\Delta y \sim dy$ при $\Delta x \to 0$. Если A = 0, то dy = 0 при любых значениях Δx , а $\Delta y = o(\Delta x)$ при $\Delta x \to 0$, в этом случае Δy является при $\Delta x \to 0$ бесконечно малой более высокого порядка, чем Δx .

Для линейной функции y = kx + b приращение функции в любой точке x_0 вещественной оси совпадает с её дифференциалом в этой точке. Действительно,

$$\Delta y(x_0) = k(x_0 + \Delta x) + b - kx_0 - b = k \cdot \Delta x.$$

В этом случае, $o(\Delta x) = 0$, а $dy = k \cdot \Delta x = \Delta y$.

Пример 3.1. Показать, что функция $f(x) = x^3 - x$ дифференцируема в точке x = 1 и найти её дифференциал в этой точке.

▶ $\Delta f(1) = 2\Delta x + 3(\Delta x)^2 + (\Delta x)^3$ (пример 1.1 из главы 4 раздела 4). Так как $3(\Delta x)^2 + (\Delta x)^3 = \Delta x^2(3 + \Delta x) = o(\Delta x)$ при $\Delta x \to 0$, то $\Delta f(1) = 2\Delta x + o(\Delta x)$. Данная функция дифференцируема в точке x = 1 по определению 3.1, $dy = 2\Delta x$. ◀

Равенство (3.1) можно записать в другой эквивалентной форме:

$$\Delta y = A \cdot \Delta x + \alpha(\Delta x) \Delta x, \tag{3.2}$$

где $\alpha(\Delta x) \to 0$ при $\Delta x \to 0$.

▶Покажем сначала, что из равенства (3.2) следует (3.1). Имеем:

$$\lim_{\Delta x \to 0} \frac{\alpha(\Delta x) \Delta x}{\Delta x} = \lim_{\Delta x \to 0} \alpha(\Delta x) = 0,$$

следовательно, по определению символа o (определение 6.2 главы 3, раздела 4) $\alpha(\Delta x)\Delta x = o(\Delta x)$ при $\Delta x \to 0$. А это и означает, что из (3.2) следует (3.1).

Теперь осуществим переход от (3.1) к (3.2). В силу вышеупомянутого определения символа o имеем: $\lim_{\Delta x \to 0} (o(\Delta x)/\Delta x) = 0$, поэтому

 $o(\Delta x)/\Delta x = 0 + \alpha(\Delta x)$ или $o(\Delta x) = \alpha(\Delta x) \cdot \Delta x$, где $\alpha(\Delta x) \to 0$ при $\Delta x \to 0$ (теорема 4.3 глава 3 раздел 4). Таким образом, переход от (3.1) к (3.2) обоснован. ◀

Теорема 3.1 (необходимое и достаточное условие дифференцируемости). Функция y = f(x) дифференцируема в точке x_0 тогда и только тогда, когда она имеет в этой точке конечную производную $y'(x_0)$.

▶Пусть функция y = f(x) дифференцируема в точке x_0 , т.е. для неё справедливо равенство (3.2). Поделим обе его части на Δx : $\frac{\Delta y}{\Delta x} = A + \alpha(\Delta x)$. Имеем: $\lim_{\Delta x \to 0} \left(A + \alpha(\Delta x) \right) = A$, ибо $\alpha(\Delta x) \to 0$ при $\Delta x \to 0$. Но тогда $\exists \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = A$. Этот предел по определению равен производной $y'(x_0)$, поэтому заключаем, что данная функция имеет в точке x_0 производную, при этом $y'(x_0) = A$.

Предположим теперь, что существует $y'(x_0)$, т.е. $\exists \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = y'(x_0)$. Но тогда

$$\frac{\Delta y}{\Delta x} = y'(x_0) + \alpha(\Delta x)$$
 или $\Delta y = y'(x_0) \Delta x + \alpha(\Delta x) \Delta x$,

где $\alpha(\Delta x) \to 0$ при $\Delta x \to 0$ (теорема 4.3 глава 3 раздел 4). Приращение Δy представлено в виде (3.2), где $A = y'(x_0)$, и функция дифференцируема в точке x_0 .

Следствие из теоремы 3.1. Для функции y = f(x), дифференцируемой в точке x_0 , множитель A в равенствах (3.1) и (3.2) определяется единственным образом, а именно: $A = y'(x_0)$.

В силу определения 3.1 и следствия из теоремы 3.1 имеем:

$$dy = y'(x_0)\Delta x. (3.3)$$

Из формулы (3.3), в частности, при $y \equiv x$ следует, что $dx = (x)'\Delta x = \Delta x$, т.е. дифференциал аргумента равен его приращению: $dx = \Delta x$. Поэтому равенство (3.3) можно переписать в виде:

$$dy = y'(x_0)dx. (3.4)$$

Замечание 3.1. Вычисление производной и дифференциала функции в данной точке принято называть одним термином – *дифференцирование*.

Пример 3.2. Найти дифференциал функции $f(x) = x^3 - x$ в точке x = 1.

▶ 1 способ. $\Delta f(1) = 2\Delta x + o(\Delta x)$ (пример 3.1), следовательно, $df(1) = 2\Delta x$ (определение 3.1) или df(1) = 2dx.

2 способ. f'(1) = 2 (пример 1.1), в силу (3.4) df(1) = 2dx. ◀

Замечание 3.2. Из (3.4) имеем $y'(x_0) = \frac{dy}{dx}$, поэтому символ Лейбница $\frac{dy}{dx}$ можно трактовать и как отношение дифференциалов dy и dx.

Теорема 3.2 (*необходимое условие дифференцируемости*). Если функция y = f(x) дифференцируема в точке x_0 , то она непрерывна в этой точке.

▶ Действительно, из формулы (3.1) имеем $\Delta y = A \cdot \Delta x + o(\Delta x)$, где $A = y'(x_0)$ (следствие из теоремы 3.1). Данная функция непрерывна в точке x_0 , так как $\Delta y \to 0$ при $\Delta x \to 0$ (теорема 1.1 главы 4 раздела 4). ◀

Замечание 3.3. Непрерывность функции в данной точке не является достаточным условием её дифференцируемости в этой точке, т.е. теорема, обратная теореме 3.2, неверна.

Пример 3.3. Показать, что функция f(x) = x |x+1| непрерывна в точке x = -1, но не дифференцируема в этой точке.

▶ $\Delta f(-1) = (-1 + \Delta x) |\Delta x|$ (пример 1.2), $\Delta f(-1) \to 0$ при $\Delta x \to 0$. Функция непрерывна в точке x = -1, ибо бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции (теорема 1.1 главы 4 раздела 4), но она не дифференцируема в этой точке, ибо $\exists f'(-1)$ (пример 1.2). \blacktriangleleft

Замечание 3.4. Дифференциал можно использовать для вычисления приближённого значения функции в точке. Из равенства (3.1) следует, что $\Delta y \cong dx$ при малых значениях Δx , т.е. $f(x_0 + \Delta x) - f(x_0) \cong f'(x_0) \Delta x$ или

$$f(x_0 + \Delta x) \cong f(x_0) + f'(x_0) \Delta x$$
. (3.5)

При вычислениях приближённого значения $f(x_0 + \Delta x)$ по формуле (3.5) погрешность тем меньше, чем меньше Δx . Эта погрешность при $\Delta x \rightarrow 0$ является бесконечно малой более высокого порядка, чем Δx .