MCQ BASED ON RECURRENECE RELATIONS

- 1. Consider the recurrence relation a₁=4, a_n=5n+a_{n-1}. The value of a₆₄ is _____
- a) 10399
- b) 23760
- c) 75100
- d) 53700

Answer: a

Explanation: $a_n=5n+a_{n-1}$

$$= 5n + 5(n-1) + ... + a_{n-2}$$

$$= 5n + 5(n-1) + 5(n-2) + ... + a_1$$

$$= 5n + 5(n-1) + 5(n-2) + ... + 4 [since, a1=4]$$

$$=5n+5(n-1)+5(n-2)+...+5.1-1$$

$$= 5(n + (n-1)+...+2+1)-1$$

$$= 5 * n(n+1)/2 - 1$$

$$a_n = 5 * n(n+1)/2 - 1$$

Now, n=64 so the answer is $a_{64} = 10399$.

- 2. Determine the solution of the recurrence relation $F_n=20F_{n-1}-25F_{n-2}$ where $F_0=4$ and $F_1=14$.
- a) $a_n = 14*5^{n-1}$
- b) $a_n = 7/2 * 2^n 1/2 * 6^n$
- c) $a_n = 7/2 * 2^n 3/4 * 6^{n+1}$
- d) $a_n = 3*2^n 1/2*3^n$

Answer: b

Explanation: The characteristic equation of the recurrence relation is \rightarrow x²-20x+36=0

So, (x-2)(x-18)=0. Hence, there are two real roots $x_1=2$ and $x_2=18$. Therefore the solution to the recurrence relation will have the form: $a_n=a2^n+b18^n$. To find a and b, set n=0 and n=1 to get a system of two equations with two unknowns: $4=a2^0+b18^0=a+b$ and $3=a2^1+b6^1=2a+6b$. Solving this system gives b=-1/2 and a=7/2. So the solution to the recurrence relation is,

$$a_n = 7/2 * 2^n - 1/2 * 6^n$$
.

- 3. What is the recurrence relation for 1, 7, 31, 127, 499?
- a) $b_{n+1} = 5b_{n-1} + 3$
- b) $b_n = 4b_n + 7!$
- c) $b_{n}=4b_{n-1}+3$
- d) $b_{n}=b_{n-1}+1$

Answer: c

Explanation: Look at the differences between terms: 1, 7, 31, 124,.... and these are growing by a factor of 4. So, $1 \cdot 4 = 4$, $7 \cdot 4 = 28$, $31 \cdot 4 = 124$, and so on. Note that we always end up with 3 less than the next term. So, $b_n = 4b_{n-1} + 3$ is the recurrence relation and the initial condition is $b_0 = 1$.

- 4. If S_n =4 S_{n-1} +12n, where S_0 =6 and S_1 =7, find the solution for the recurrence relation.
- a) $a_n = 7(2^n) 29/6n6^n$
- b) $a_n = 6(6^n) + 6/7n6^n$
- c) $a_n = 6(3^{n+1}) 5n$

d) $a_n = nn - 2/6n6^n$

Answer: b

Explanation: The characteristic equation of the recurrence relation is $\rightarrow x^2-4x-12=0$

So, (x-6)(x+2)=0. Only the characteristic root is 6. Therefore the solution to the recurrence relation will have the form: $a_n=a.6^n+b.n.6^n$. To find a and b, set n=0 and n=1 to get a system of two equations with two unknowns: $6=a6^0+b.0.6^0=a$ and $7=a6^1+b.1.6^1=2a+6b$. Solving this system gives a=6 and b=6/7. So the solution to the recurrence relation is, $a_n=6(6^n)-6/7n6^n$.

- 5. Find the value of a₄ for the recurrence relation $a_n=2a_{n-1}+3$, with $a_0=6$.
- a) 320
- b) 221
- c) 141
- d) 65

Answer: c

Explanation: When n=1, $a_1=2a_0+3$, Now $a_2=2a_1+3$. By substitution, we get $a_2=2(2a_0+3)+3$.

Regrouping the terms, we get a₄=141, where a₀=6.

- 6. The solution to the recurrence relation $a_n=a_{n-1}+2n$, with initial term $a_0=2$ are _____
- a) 4n+7
- b) 2(1+n)
- c) 3n²
- d) 5*(n+1)/2

Answer: b

Explanation: When n=1, $a_1=a_0+2$. By substitution we get, $a_2=a_1+2 \Rightarrow a_2=(a_0+2)+2$ and so on. So the solution to the recurrence relation, subject to the initial condition should be $a_n=2+2n=2(1+n)$.

- 7. Determine the solution for the recurrence relation $b_n=8b_{n-1}-12b_{n-2}$ with $b_0=3$ and $b_1=4$.
- a) 7/2*2ⁿ-1/2*6ⁿ
- b) 2/3*7ⁿ-5*4ⁿ
- c) 4!*6ⁿ
- d) 2/8ⁿ

Answer: a

Explanation: Rewrite the recurrence relation b_n -8 b_{n-1} +12 b_{n-2} =0. Now from the characteristic equation: x^2 -8x+12=0 we have x: (x-2)(x-6)=0, so x=2 and x=6 are the characteristic roots. Therefore the solution to the recurrence relation will have the form: b_n = b^2 ⁿ+ c^6 ⁿ. To find b and c, set n=0 and n=1 to get a system of two equations with two unknowns: 3= b^2 ⁰+ c^6 0=b+c, and 4= b^2 1+ c^6 1=2b+6c. Solving this system gives c=-1/2 and b=7/2. So the solution to the recurrence relation is, b_n =7/2*a=a=0.

- 8. What is the solution to the recurrence relation $a_n=5a_{n-1}+6a_{n-2}$?
- a) 2n²
- b) 6n
- c) (3/2)n
- d) n!*3

Answer: b

Explanation: Check for the left side of the equation with all the options into the recurrence relation. Then, we get that 6n is the required solution to the recurrence relation $a_n=5a_{n-1}+6a_{n-2}$.

- 9. Determine the value of a2 for the recurrence relation $a_n = 17a_{n-1} + 30n$ with $a_0=3$.
- a) 4387
- b) 5484
- c) 238
- d) 1437

Answer: d

Explanation: When n=1, $a_1=17a_0+30$, Now $a_2=17a_1+30*2$. By substitution, we get $a_2=17(17a_0+30)+60$. Then regrouping the terms, we get $a_2=1437$, where $a_0=3$.

10. Determine the solution for the recurrence relation $a_n = 6a_{n-1} - 8a_{n-2}$ provided initial conditions $a_0 = 3$ and $a_1 = 5$.

a)
$$a_n = 4 * 2^n - 3^n$$

b)
$$a_n = 3 * 7^n - 5*3^n$$

c)
$$a_n = 5 * 7^n$$

d)
$$a_n = 3! * 5^n$$

Answer: b

Explanation: The characteristic polynomial is x^2-6x+8 . By solving the characteristic equation, $x^2-6x+8=0$ we get x=2 and x=4, these are the characteristic roots. Therefore we know that the solution to the recurrence relation has the form $a_n=a*2^n+b*4^n$, for some constants a and b. Now, by using the initial conditions a_0 and a_1 we have: a=7/2 and b=-1/2. Therefore the solution to the recurrence relation is: $a_n=4*2^n-1*3^n=7/2*2^n-1/2*3^n$.