

Department of Computer Science and Engineering

Design and Analysis of Algorithms

Job Sequencing with Deadlines.

Problem Description

We are given a set of n jobs. Associated with job i is an integer deadline $d_i \geq 0$ and a profit $p_i > 0$. For any job i the profit p_i is earned iff the job is completed by its deadline. To complete a job, one has to process the job on a machine for one unit of time. Only one machine is available for processing jobs. A feasible solution for this problem is a subset J of jobs such that each job in this subset can be completed by its deadline. The value of a feasible solution J is the sum of the profits of the jobs in J, or $\sum_{i \in J} |p_i|$. An optimal solution is a feasible solution with maximum value. Here again, since the problem involves the identification of a subset, it fits the subset paradigm.

Example 4.2 Let n = 4, $(p_1, p_2, p_3, p_4) = (100, 10, 15, 27)$ and $(d_1, d_2, d_3, d_4) = (2, 1, 2, 1)$. The feasible solutions and their values are:

Example 4.2 Let n = 4, $(p_1, p_2, p_3, p_4) = (100, 10, 15, 27)$ and $(d_1, d_2, d_3, d_4) = (2, 1, 2, 1)$. The feasible solutions and their values are:

	feasible solution	processing sequence	value
1.	(1, 2)	$2, \bar{1}$	110
2.	(1, 3)	1, 3 or 3, 1	115
3.	(1, 4)	4, 1	127
4.	(2, 3)	$2, \ 3$	25
5.	(3, 4)	4, 3	42
6.	(1)	1	100
7.	(2)	2	10
8.	(3)	3	15
9.	(4)	4	27

Theorem 4.3 Let J be a set of k jobs and $\sigma = i_1, i_2, \ldots, i_k$ a permutation of jobs in J such that $d_{i_1} \leq d_{i_2} \leq \cdots \leq d_{i_k}$. Then J is a feasible solution iff the jobs in J can be processed in the order σ without violating any deadline.

Theorem 4.3 Let J be a set of k jobs and $\sigma = i_1, i_2, \ldots, i_k$ a permutation of jobs in J such that $d_{i_1} \leq d_{i_2} \leq \cdots \leq d_{i_k}$. Then J is a feasible solution iff the jobs in J can be processed in the order σ without violating any deadline.

Proof: Clearly, if the jobs in J can be processed in the order σ without violating any deadline, then J is a feasible solution. So, we have only to show that if J is feasible, then σ represents a possible order in which the jobs can be processed. If J is feasible, then there exists $\sigma' = r_1, r_2, \ldots, r_k$ such that $d_{r_q} \geq q$, $1 \leq q \leq k$. Assume $\sigma' \neq \sigma$. Then let a be the least index such that $r_a \neq i_a$. Let $r_b = i_a$. Clearly, b > a. In σ' we can interchange r_a and r_b . Since $d_{r_a} \geq d_{r_b}$, the resulting permutation $\sigma'' = s_1, s_2, \ldots, s_k$ represents an order in which the jobs can be processed without violating a deadline. Continuing in this way, σ' can be transformed into σ without violating any deadline. Hence, the theorem is proved.

High-level description of job sequencing algorithm

```
Algorithm GreedyJob(d,J,n)

// J is a set of jobs that can be completed by their deadlines.

J:=\{1\};

for i:=2 to n do

{

if (all jobs in J \cup \{i\} can be completed

by their deadlines) then J:=J \cup \{i\};

}

10 }
```

High-level description of job sequencing algorithm

Greedy Algorithm for sequencing unit time jobs with dead-lines and profits

```
Algorithm JS(d, j, n)
  //d[i] \ge 1, 1 \le i \le n are the deadlines, n \ge 1. The jobs
   // are ordered such that p[1] \geq p[2] \geq \cdots \geq p[n]. J[i]
    // is the ith job in the optimal solution, 1 \le i \le k.
    // Also, at termination d[J[i]] \leq d[J[i+1]], 1 \leq i < k.
         d[0] := J[0] := 0; // Initialize.
         J[1] := 1; // Include job 1.
         k := 1;
         for i := 2 to n do
11
12
              // Consider jobs in nonincreasing order of p[i]. Find
13
              // position for i and check feasibility of insertion.
14
             r := k;
              while ((d[J[r]] > d[i]) and (d[J[r]] \neq r)) do r := r - 1;
15
16
             if ((d[J[r]] \leq d[i]) and (d[i] > r)) then
17
18
                  // Insert i into J[].
                  for q := k to (r+1) step -1 do J[q+1] := J[q];
20
                  J[r+1] := i; k := k+1;
21
22
23
         return k;
24 }
```


Example 4.3 Let $n = 5, (p_1, \ldots, p_5) = (20, 15, 10, 5, 1)$ and (d_1, \ldots, d_5)

=(2,2,1,3,3). Using the above feasibility rule, we have

J	assigned slots	job considered	\mathbf{action}	profit
Ø	none	1	assign to [1, 2]	0
$\{1\}$	$[1, \ 2]$	2	$_{\perp} assign to [0, 1]$	20
$\{1, 2\}$	$[0,\ 1],\ [1,\ 2]$	3	cannot fit; reject	35
$\{1,\ 2\}$	[0, 1], [1, 2]	4	assign to $[2, 3]$	35
$\{1,2,4\}$	[0, 1], [1, 2], [2, 3]	5	${f reject}$	40

The optimal solution is $J = \{1, 2, 4\}$ with a profit of 40.

