

				S	Subje	ect (2ode	: K	AS2	031
Roll No:										

Printed Page: 1 of 2

BTECH (SEM II) THEORY EXAMINATION 2021-22 ENGINEERING MATHEMATICS-II

Time:3 Hours Total Marks:100

Notes-

- Attempt all sections and assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SEC	CTION -A	Attempt all of following question in brief	Marks (10×2=20)	CO
Q.1(a)	Find the difforigins?	ferential equation which represents the family of straight lin	es passing through the	1
Q.1(b)	State the cri differential	terion for linearly independent solutions of the homogeneous equation.	is linear nth order	1
Q.1(c)	Evaluate: \int_0^1	$\frac{dx}{\sqrt{-logx}}$.		2
Q.1(d)	Find the vol	ume of the solid obtained by rotating the ellipse $x^2 + 9y^2 =$	= 9 about the x -axis.	2
Q.1(e)	Test the seri	es $\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{1}{n}$.		3
Q.1(f)	Find the cor	stant term when $f(x) = 1 + x $ is expanded in Fourier serior	ies in the interval (-3, 3).	3
Q.1(g)	Show that <i>f</i>	$(z) = z + 2\bar{z}$ is not analytic anywhere in the complex plane	e. 2. ·	4
Q.1(h)	Find the image	age of $ z - 2i = 2$ under the mapping $w = \frac{1}{z}$.	, Silvi	4
Q.1(i)	2.5	$= e^{z/(z-2)}$ in a Laurent series about the point $z = 2$.	1/3	5
Q.1(j)	Discuss the	nature of singularity of $\frac{\cot \pi z}{(z-a)^2}$ at $z = a$ and $z = \infty$.	1	5

SECT	TION -B Attempt any three of the following questions	Marks (3×10=30)	CO
Q.2(a)	Solve: $\frac{d^2x}{dt^2} + \frac{dy}{dt} + 3x = e^{-t}$, $\frac{d^2y}{dt^2} - 4\frac{dx}{dt} + 3y = \sin 2t$.		1
Q.2(b)	Assuming $\Gamma n \Gamma(1-n) = \pi \csc n\pi$, $0 < n < 1$, show that $\int_0^\infty \frac{x^{p-1}}{1+x} dx = 1$	$\frac{\pi}{\sin n\pi}$; $0 .$	2
Q.2(c)	Test the series $\frac{x}{1.2} + \frac{x^2}{3.4} + \frac{x^3}{5.6} + \frac{x^4}{7.8} + \cdots$		3
Q.2(d)	If $f(z) = u + iv$ is an analytic function, find $f(z)$ in term of z if $u - v = \frac{c}{2}$	$\frac{e^y - \cos x + \sin x}{\cosh y - \cos x}$ when	4
Q.2(e)	$f\left(\frac{1}{2}\right) = \frac{1}{2}.$ Evaluate by contour integration: $\int_0^{2\pi} e^{-\cos\theta} \cos(n\theta + \sin\theta) d\theta ; n\epsilon I.$		5

Roll No: Subject Code: KAS203T

Printed Page: 2 of 2

BTECH (SEM II) THEORY EXAMINATION 2021-22 ENGINEERING MATHEMATICS-II

SECTION -C		Attempt any one of the following questions	Marks (1×10=10)	CO
Q.3(a)	Use the vari	ation of parameter method to solve the differential equation		1
		$(D^2 - 1)y = 2(1 - e^{-2x})^{-1/2}$	* , *	
Q.3(b)	Solve: (1 +	$x)^{2} \frac{d^{2}y}{dx^{2}} + (1+x)\frac{dy}{dx} + y = 4\cos\log(1+x).$		1

SECTION -C		Attempt any one of the following questions	Marks (1×10=10)	CO	
Q.4(a)		the cardioid $r = a(1 + \cos \theta)$ included between $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ and the area of surface generated	is rotated about the	2	
Q.4(b)	Evaluate ∭	line = $\frac{\pi}{2}$. Find the area of surface generated. Evaluate $\iiint xyz \sin(x+y+z)dx dy dz$, the integral being extended to all positive values of the variables subject to the condition $+y+z \le \frac{\pi}{2}$.			

SEC'	TION -C	Attempt any one of the following questions	Marks (1×10=10) CO
Q.5(a)	Test for con	vergence of the series $\frac{a+x}{1!} + \frac{(a+2x)^2}{2!} + \frac{(a+3x)^3}{3!} + \cdots$	3
Q.5(b)	Obtain Four	rier series for the function $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi < x < 0 \\ 1 - \frac{2x}{\pi}, & 0 < x < \pi \end{cases}$ ce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{8}$.	3

SEC'	ΓΙΟΝ -C	Attempt any one of the following	questions	Marks (1×10=10)	CO
Q.6(a)	Prove that $w = \frac{z}{1-z}$ maps the upper half of the z-plane onto upper half of the w-plane. What is				4
	the image of the circle $ z = 1$ under this transformation?				
Q.6(b)	Find a bilinear transformation which maps the points i , $-i$, 1 of the z —plane into 0, 1, ∞ of the			4	
	w – plane	respectively.	03		
		N	2		

SECTION -C Attempt any one of the following questions Marks (1×10=10)	CO
Q.7(a) Evaluate $\oint_C \frac{e^z}{z(1-z)^3} dz$, where c is (i) $ z = \frac{1}{2}$ (ii) $ z-1 = \frac{1}{2}$ (iii) $ z = 2$.	5
Q.7(b) Find the Taylor's and Laurent's series which represent the function $\frac{z^2-1}{(z+2)(z+3)}$ when (i) $ z < 2$ (ii) $ z < 3$ (iii) $ z > 3$.	5