

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Facultad de Ciencias

Plan de estudios de la Licenciatura en Actuaría

Programación No Lineal Créditos Área Clave Semestre 0634 7 u 8 10 Campo de Investigación de Operaciones conocimiento Etapa Profundización Curso (X) Taller () Lab () Sem () Modalidad Tipo P() T/P() T(X) Obligatorio () Optativo (X) Carácter **Horas** Obligatorio E () Optativo E() Semana Semestre **Teóricas Teóricas** 5 80 **Prácticas** 0 **Prácticas** 0 Total 5 Total 80

Seriación			
	Ninguna ()		
Obligatoria ()			
Asignatura antecedente			
Asignatura subsecuente			
	Indicativa (X)		
Asignatura antecedente	Asignaturas del campo de Investigación de Operaciones.		
Asignatura subsecuente	Optativas del campo de Investigación de Operaciones.		

Objetivos generales:

- Conocer la naturaleza de la programación no lineal, y el tipo de problemas que en ella se presentan.
- Conocer y aplicará los conceptos relacionados con el de convexidad, para el planteamiento y solución de problemas de programación no lineal.
- Conocer y aplicar los principales métodos de optimización no lineal, con y sin restricciones.

Objetivos específicos:

- Comprender el desarrollo histórico y los ejemplos típicos de aplicación de la programación no lineal.
- Discutir las propiedades algebraicas y geométricas de la convexidad.

- Identificar los conceptos que permiten formular modelos de programación no lineal sin restricciones y los fundamentos de los métodos que permiten resolver tales modelos.
- Identificar los conceptos que permiten formular modelos de programación no lineal con restricciones y los fundamentos de los métodos que permiten resolver tales modelos.

Índice temático					
	Tema	Horas semestre			
		Teóricas	Prácticas		
1	Introducción.	15	0		
2	Convexidad.	15	0		
3	Optimización sin restricciones.	25	0		
4	Optimización con restricciones.	25	0		
	Total	80			

	Contenido Temático				
	Tema y subtemas				
1	Introducción.				
	1.1 Optimización.				
	1.2 Tipos de problemas.				
	1.3 Tamaño del problema.				
	1.4 Algoritmo iterativas y convergencias.				
2	Convexidad.				
	2.1 Definiciones básicas.				
	2.2 Hiperplanos.				
	2.3 Separación e hiperplanos de soporte.				
	2.4 Puntos extremos.				
3	Optimización sin restricciones.				
	3.1 Condiciones necesarias y suficientes para existencia de óptimos.				
	3.2 Teoría de algoritmos.				
	3.2.1 Fibonacci.				
	3.2.2 Newton.				
	3.2.3 Gradiente.				
	3.2.4 Direcciones conjugadas.				
4	Optimización con restricciones.				
	4.1 Teoría de Kuhn-Tucker.				
	4.2 Lagrangiano.				
	4.3 Método de direcciones factibles.				
	4.4 Método de penalidades.				
	4.5 Planos cortantes.				
	4.6 Convex.				

4.7	Programación cuadrática.

Estrategias didácticas		Evaluación del aprendizaje	
Exposición	()	Exámenes parciales	(X)
Trabajo en equipo	(X)	Examen final	(X)
Lecturas	(X)	Trabajos y tareas	(X)
Trabajo de investigación	()	Presentación de tema	()
Prácticas (taller o laboratorio)	()	Participación en clase	(X)
Prácticas de campo	()	Asistencia	()
Aprendizaje por proyectos	()	Rúbricas	()
Aprendizaje basado en problemas	(X)	Portafolios	()
Casos de enseñanza	()	Listas de cotejo	()
Otras (especificar)		Otras (especificar)	

Perfil profesiográfico		
Título o grado	El profesor que impartirá el curso deberá ser egresado de las licenciaturas de	
	Actuaría, Matemáticas, Matemáticas aplicadas o alguna afín	
Experiencia docente	Con experiencia docente en el área de la Programación no Lineal.	
Otra característica		

Bibliografía básica:

- Avriel, M. (2003). Nonlinear Programming: Analysis and Methods. Dover.
- Bazaraa, M.S., Sherali, H.D., and Shetty, C.M. (2006). <u>Nonlinear Programming: Theory and Algorithms</u> (3^a ed.). John Wiley & Sons.
- Bertsekas, D.P. (1999). Nonlinear Programming. Athena Scientific (2^a ed.).
- Griva, I., Nash, S.G., and Sofer, A. (2009). <u>Linear and Nonlinear Optimization</u> (2^a ed.). SIAM.
- Hillier, F.S. and Lieberman, G.J. (2009). Introduction to Operations Research (9^a ed.). Mc Graw Hill.
- Papadimitriou, C.H. and Steiglitz, K. (1998). <u>Combinatorial Optimization: Algorithms and Complexity</u>. Dover Publications.
- Ruszczyński, A. (2006). Nonlinear Optimization. Princeton University Press.
- Luenberger, D.G. and Ye, Y. (2010). <u>Linear and Nonlinear Programming</u> (3^a ed.). Springer.
- Taha, H.A. (2010). Operations Research: an Introduction (9^a ed.). Prentice Hall/Pearson Education.
- Winston, W.L. (2003). Operations Research: Applications and Algorithms (4^a ed.). Prentice Hall-Kent.

Bibliografía complementaria:

- Peressini, A.L., Sullivan, F.E., Ulh, J.J.Jr. (1988). <u>The Mathematics of Nonlinear Programming</u> (<u>Undergraduate Texts in Mathematics</u>). Springer.
- Antoniou, A., and Lu, W.S. (2010). <u>Practical Optimization: Algorithms and Engineering Applications</u>.
 Springer.