# FORMULE DE PLANCHEREL SUR $GL_n \times GL_n \setminus GL_{2n}$

#### 1. Introduction

Soit F un corps p-adique, G un groupe réductif déployé sur F et  $X = H \setminus G$  une variété sphérique homogène admettant une mesure bi-invariante. Sakellaridis et Venkatesh [13] introduisent un système de racines  $\Phi_X$  associé à X. Sous certaines conditions sur  $\Phi_X$ , on peut associer au système de racines dual  $\check{\Phi}_X$  un groupe réductif complexe  $\check{G}_X$  qu'ils appellent le groupe dual de la variété sphérique X. On note  $G_X$  le groupe réductif déployé sur F dont le groupe dual est  $\check{G}_X$ , le groupe  $G_X$  est associé au système de racines  $\Phi_X$ . Sakellaridis et Venkatesh introduisent aussi une application  $\iota_X : \check{G}_X \times SL_2(\mathbb{C}) \to \check{G}$ . Supposons que  $\iota_X$  est trivial sur  $SL_2(\mathbb{C})$  et la correspondance de Langlands locale pour G. Rappellons la

Conjecture 1.1 (Sakellaridis-Venkatesh [13]). Il existe un isomorphisme G-équivariant de représentations unitaires

$$(1) \hspace{1cm} L^{2}(X) \simeq \int_{\Phi_{\text{temp}}(G_{X})}^{\oplus} \mathfrak{H}_{\varphi} d\varphi,$$

où  $\Phi_{temp}(G_X)$  est l'ensemble des paramètres de Langlands tempérés de  $G_X$  modulo  $\check{G}_X$ -conjugaison,  $d\varphi$  est dans la classe naturelle des mesures sur  $\Phi_{temp}(G_X)$  et  $\mathcal{H}_{\varphi}$  est une somme directe sans multiplicité de représentations dans  $\Pi^G(\iota_X \circ \varphi)$ . La classe naturelle des mesures sur  $\Phi_{temp}(G_X)$  est la classe de la mesure de Haar sur le quotient  $\Phi_{temp}(G_X)/\check{G}_X - conj$  (???).

Supposons de plus la correspondance de Langlands locale sur  $G_X$ , on dispose alors d'une correspondance fonctorielle  $T_X: Temp(G_X)/\sim Unit(G)/\sim$ , où  $\sim$  est la relation d'équivalence des représentations. Cette correspondance associe à une classe d'équivalence de représentations tempérés de  $G_X$  un ensemble fini de classes d'équivalence de représentations unitaires de G. On obtient alors la

Conjecture 1.2 (Sakellaridis-Venkatesh [13]). Il existe un isomorphisme G-équivariant de représentations unitaires

$$(2) \hspace{1cm} L^{2}(X) \simeq \int_{\text{Temp}(G_{X})/\sim}^{\oplus} \widetilde{T}_{X}(\sigma) d\mu_{G_{X}}(\sigma),$$

où  $d\mu_{G_X}$  est la mesure de Plancherel sur  $G_X$  et  $\widetilde{T}_X(\sigma)$  est une somme directe sans multiplicité de représentations dans  $T_X(\sigma)$ .

Spécifions maintenant au cas où  $G=GL_{2n}$  et  $X=GL_n\times GL_n\setminus GL_{2n}$ . On a  $\check{G}_X=Sp_{2n}$  et  $G_X=SO(2n+1)$ . L'essentiel de notre travail consiste alors à prouver le

Date: 17 septembre 2019.

Conjecture 1.3. Il existe un isomorphisme G-équivariant de représentations unitaires

$$(3) \hspace{1cm} L^{2}(GL_{n}\times GL_{n}\backslash GL_{2n})\simeq \int_{\mathsf{Temp}(SO(2n+1))/\sim}^{\oplus}\mathsf{T}(\sigma)d\mu(\sigma),$$

où  $d\mu(\sigma)$  est la mesure de Plancherel sur SO(2n+1) et  $T: Temp(SO(2n+1))/\sim \to Temp(GL_{2n})/\sim$  est l'application de transfert provenant de la correspondance de Langlands locale.

Soit F un corps de nombres et  $\psi$  un caractère non trivial de  $\mathbb{A}_F$ . On note  $H_n(\mathbb{A}_F)$  le groupe des matrices de la forme  $\sigma_n\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix}\begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}\sigma_n^{-1}$  avec  $X \in M_n(\mathbb{A}_F)$  et  $g \in GL_n(\mathbb{A}_F)$ . L'élément  $\sigma_n$  est la matrice associée à la permutation  $\begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 3 & \dots & 2n-1 \end{pmatrix} \begin{pmatrix} n+1 & n+2 & \dots & 2n \\ 2 & 1 & 2n \end{pmatrix}$ . Soit  $\theta$  le caractère sur  $H_n(\mathbb{A}_F)$  qui envoie  $\sigma_n\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix}\begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}\sigma_n^{-1}$  sur  $\psi(Tr(X))$ .

Soit  $\pi$  une représentation automorphe cuspidale irréductible de  $GL_{2n}(\mathbb{A}_F)$  et  $\phi_1, \phi_2$  des fonctions de Schwartz sur  $H_n(\mathbb{A}_F) \backslash GL_{2n}(\mathbb{A}_F)$  qui agissent par le caractère  $\theta$  sur  $H_n(\mathbb{A}_F)$ . On note  $\Sigma \phi_i \in C^\infty([GL_{2n}])$ , pour i=1,2, la fonction définie par  $\Sigma \phi_i(g) = \sum_{x \in H_n(F) \backslash GL_{2n}(F)} \phi_i(xg)$  pour tout  $g \in GL_{2n}(\mathbb{A}_F)$ . D'autre part, pour  $\phi \in \pi$ , on introduit la période globale

$$\mathcal{P}_{\mathsf{H}_{\mathfrak{n}},\theta}(\phi) = \int_{[\mathsf{Z}_{\mathfrak{n}} \setminus \mathsf{H}_{\mathfrak{n}}]} \phi(\mathsf{h}) \theta(\mathsf{h}) d\mathsf{h},$$

où  $Z_n$  est le centre de  $GL_n$  et les crochets désignent le quotient des points adéliques modulo les points rationnels.

Sakellaridis et Venkatesh conjecturent une factorisation du produit scalaire  $<(\Sigma\varphi_1)_\pi, (\Sigma\varphi_2)_\pi>_{\text{Pet}} = \int_{[H_\pi]} (\Sigma\varphi_1)_\pi(h)(\Sigma\varphi_2)_\pi(h)dh$ , où  $(\Sigma\varphi_1)_\pi$  est la projection sur  $\pi$  de  $\Sigma\varphi_i$  et dh est la mesure de Tamagawa de  $[H_\pi]$  [13, section 17.1]. Cette factorisation prend la forme suivante

(5) 
$$<(\Sigma \phi_1)_{\pi}, (\Sigma \phi_2)_{\pi}>_{\mathsf{Pet}} = q \prod_{\nu}' <\phi_{1,\nu}, \phi_{2,\nu}>_{\sigma_{\nu}},$$

où q est un rationnel (qui dépend de  $\pi$ ), il est nul si  $\pi$  n'est pas le transfert d'une représentation automorphe cuspidale  $\sigma$  de  $SO(2n+1)(\mathbb{A}_F)$ . Les quantités  $< \varphi_{1,\nu}, \varphi_{2,\nu}>_{\sigma_{\nu}}$  sont des formes linéaires  $H_n(F_{\nu})$ -invariante. Sakellaridis et Venkatesh conjecturent que l'on devrait avoir l'égalité de ces formes linéaires avec les périodes locales canonique, autrement dit, on devrait avoir

(6) 
$$< \phi_{1,\nu}, \phi_{2,\nu} >_{\sigma_{\nu}} = \int_{H_{\pi}(F_{\nu})} < \pi_{\nu}(h)\phi_{1,\nu}, \phi_{2,\nu} > dh.$$

On renvoie à [13, section 17.5] pour la signification du produit  $\prod_{\nu}'$ . En effet, le produit n'est pas absolument convergent et on doit l'interpréter comme l'évaluation d'une fonction L.

La factorisation de la période globale  $\mathcal{P}_{H_n,\theta}$  comme produit de périodes locales va nous permettre d'obtenir une formule de Plancherel explicite sur  $L^2(H_n \backslash GL_{2n}, \theta)$ . Plus précisément, pour  $\Phi$  une fonction de Schwartz sur  $\mathbb{A}^n_F$  et  $W_{\varphi}$  la fonction de Whittaker associée à  $\varphi$ , on introduit dans la suite des fonctions zêta globales

 $J(s, W_{\varphi}, \Phi)$ , qui sont reliées à la période globale par la relation

(7) 
$$\operatorname{Res}_{s=1} J(s, W_{\varphi}, \Phi) = \mathcal{P}_{H_{n}, \theta}(\varphi) \widehat{\Phi}(0).$$

De plus, ces fonctions zêta globales se décomposent en un produit de fonctions zêta locales, pour Re(s) assez grand, on a

$$\label{eq:Jensenberg} J(s,W_\phi,\Phi) = L^S(s,\pi,\Lambda^2) \prod_{\nu \in S} J(s,W_\nu,\Phi_\nu),$$

où S est un ensemble de places suffisamment grand. Le quotient  $\frac{J(1,W_{\nu},\Phi_{\nu})}{\widehat{\Phi}_{\nu}(0)}$ , que l'on désignera par  $\beta$  dans la section 5, est la période locale qui nous servira à prouver le théorème 5.1.

On commence dans la section 2 par prouver une relation sur les facteurs  $\gamma$  du carré extérieur. Les sections 3 et 4 sont des préliminaires pour le théorème 5.1. On fini dans la section 5 par prouver une formule de Plancherel explicite sur  $L^2(H_n\backslash GL_{2n},\theta)$  et une formule de Plancherel abstraite sur  $L^2(GL_n\times GL_n\backslash GL_{2n})$ .

1.1. Notations. Dans la suite on notera F un corps p-adique (sauf dans la section 2 où F peut désigner un corps archimédien) et  $\psi$  un caractère non trivial de F. On note  $q_F$  le cardinal du corps résiduel de F et  $|.|_F$  (ou simplement |.|) la valeur absolue sur F normalisé par  $|\omega|_F=q_F^{-1}$  où  $\omega$  est une uniformisante de F. On notera  $G_m$  le groupe  $GL_m(F)$  et  $PG_m=Z_m(F)\backslash GL_m(F)$ . De plus, dans la suite on posera  $H_n=H_n(F)$  le groupe de ses F-points. On note SO(2m+1) la forme déployé du groupe spécial orthogonal sur un espace de dimension 2m+1. On note  $A_n$  le groupe des matrices diagonales inversibles,  $B_n$  le sous groupe des matrices triangulaires supérieures inversibles,  $\overline{B}_n$  le sous groupe des matrices triangulaires inférieures inversibles,  $N_n$  le sous-groupe de  $B_n$  des matrices dont les éléments diagonaux sont 1,  $\overline{N}_n={}^tN_n$  et  $M_n$  l'ensemble des matrices de taille  $n\times n$  à coefficients dans F. On note  $V_n$  le sous-groupe de  $M_n$  des matrices triangulaires inférieures strictes. On note  $V_n$  le groupe des matrices de la forme  $\begin{pmatrix} 1_{n-1} & x \\ 0 & 1 \end{pmatrix}$  pour  $x\in F^{n-1}$  et  $P_n=G_{n-1}U_n$  le sous-groupe mirabolique. On note  $\delta_{B_n}$  le caractère modulaire de  $B_n$ . On notera par des lettres gothiques les algèbres de Lie

Lorsque X est un espace totalement discontinu, on notera  $C_c^\infty(X)$  ou S(X), l'espace des fonctions localement constante à support compact. Lorsque G est un groupe algébrique réel ou complexe, on note S(G) l'espace des fonctions  $C^\infty$  à décroissance rapide ainsi que toute ses dérivées. De plus, lorsque  $\mathbb{A}_K$  l'anneau des adèles d'un corps de nombres K et G est un groupe algébrique sur K, on note  $S(G(\mathbb{A}))$  le produit restreint des espaces  $S(G(K_\nu))$  lorsque  $\nu$  parcours l'ensemble des places de K i.e. l'ensemble des combinaisons linéaires des fonctions  $f=\otimes_\nu f_\nu$  avec  $f_\nu\in S(G(K_\nu))$  pour tout  $\nu$  et  $f_\nu=\mathbb{1}_{G(\mathbb{O}_\nu)}$  sauf pour un nombre fini de  $\nu$ , où  $\mathbb{O}_\nu$  est l'anneau des entiers de  $K_\nu$ .

correspondantes et pour  $\mathfrak{g}$  une algèbre de Lie  $\mathcal{U}(\mathfrak{g})$  désignera l'algèbre enveloppante.

Pour G un groupe réductif connexe sur F (dans la suite G sera  $GL_{2n}$ ,  $SO_{2n+1}$  ou un quotient, d'un sous-groupe de Levi de ces groupes), on note Temp(G) l'ensemble des classes d'isomorphismes de représentations irréductibles tempérées de G(F) et  $\Pi_2(G) \subset Temp(G)$  le sous-ensemble des représentations de carré intégrable. On note  $Z_G$  le centre de G(F) et  $A_G$  le tore déployé maximal dans  $Z_G$ . Soit M un sous-groupe de Levi de G et G

d'isomorphisme de  $\sigma$ . On note  $\Phi(G)$  l'ensemble des paramètres de Langlands tempérés de G et  $\mathsf{Temp}(G)/\mathsf{Stab}$  le quotient de  $\mathsf{Temp}(G)$  par la relation d'équivalence  $\pi \equiv \pi' \iff \varphi_{\pi} = \varphi_{\pi'}$ , où  $\varphi_{\pi}$  est le paramètre de Langlands associé à  $\pi$ .

Pour P=MN un sous-groupe parabolique de G, on note  $i_P^G(\sigma)$  l'induction parabolique normalisée lorsque  $\sigma$  est une représentation lisse de M: c'est la représentation régulière à droite de G sur l'espace des fonctions localement constantes  $f:G\mapsto \sigma$  qui vérifient  $f(mng)=\delta_P(m)^{\frac{1}{2}}\sigma(m)f(g)$  pour tous  $m\in M, n\in N$  et  $g\in G$ . Lorsque  $G=G_n$  et  $M=G_{n_1}\times...\times G_{n_k}$ , on note  $\pi_1\times...\times \pi_k=i_P^G(\pi_1\boxtimes...\boxtimes \pi_k)$  pour  $\pi_i$  des représentations lisses de  $G_{n_i}$ . Lorsque G=SO(2n+1) et  $M=G_{n_1}\times...\times G_{n_k}\times SO(2m+1)$ , on note  $\pi_1\times...\times \pi_k\rtimes \sigma_0=i_P^G(\pi_1\boxtimes...\boxtimes \pi_k\boxtimes \sigma_0)$  pour  $\pi_i$  des représentations lisses de  $G_{n_i}$  et  $\sigma_0$  une représentation lisse de SO(2m+1).

On peut définir une application  $\Phi(SO(2m+1)) \to \Phi(G_{2m})$ , rappelons qu'un élément de  $\Phi(SO(2m+1))$  est un morphisme admissible  $\phi: W_F' \to {}^LSO(2m+1)$ , où  $W_F'$  est le groupe de Weil-Deligne de F. Or  ${}^LSO(2m+1) = Sp_{2m}(\mathbb{C})$ , l'application  $\Phi(SO(2m+1)) \to \Phi(G_{2m})$  est définie par l'injection de  $Sp_{2m}(\mathbb{C})$  dans  $GL_{2m}(\mathbb{C})$  grâce à la correspondance de Langlands locale pour  $GL_{2m}$ . La correspondance de Langlands locale pour SO(2m+1) démontrée par Arthur [1], nous permet de définir une application de transfert  $T: Temp(SO(2m+1))/Stab \to Temp(G_{2m})$ .

Dans les mesures de Plancherel, on verra apparaître des termes  $|S_{\sigma}|$  pour  $\sigma \in \text{Temp}(SO(2n+1))$  ou  $\text{Temp}(PG_{2n})$ . On n'explicite pas les ensembles  $S_{\sigma}$  et on se contente de donner leur cardinal. Pour  $\sigma \in \text{Temp}(SO(2n+1))$  sous-représentation de  $\pi_1 \times ... \times \pi_1 \rtimes \sigma_0$ , avec  $\pi_i \in \Pi_2(G_{n_i})$  et  $\sigma_0 \in \Pi_2(SO(2m+1))$ , le facteur  $|S_{\sigma}|$  est le produit  $|S_{\pi_1}|...|S_{\pi_1}||S_{\sigma_0}|$ ; où  $|S_{\sigma_0}| = 2^k$  tel que  $T(\sigma_0) \simeq \tau_1 \times ... \times \tau_k$  avec  $\tau_i \in \Pi_2(G_{m_i})$  et  $|S_{\pi_i}| = n_i$ .

Pour  $\pi \in \mathsf{Temp}(\mathsf{G})$  et r une représentation admissible de  ${}^\mathsf{L}\mathsf{G}$ , on note  $\mathsf{L}(s,\pi,r)$  la fonction  $\mathsf{L}$  associée par la correspondance de Langlands locale et  $\gamma(s,\pi,r,\psi)$  le facteur  $\gamma$  associée. Lorsque  $\mathsf{r}$  est la représentation standard, on l'omettra. De plus, on note  $\gamma^*(0,\pi,r,\psi)$  la régularisation du facteur  $\gamma$  en 0, défini par la relation

(9) 
$$\gamma^*(0,\pi,r,\psi) = \lim_{s \to 0^+} \frac{\gamma(s,\pi,r,\psi)}{(slog(q_F))^{n_{\pi,r}}},$$

où  $n_{\pi,r}$  est l'ordre du zéro de  $\gamma(s,\pi,r,\psi)$  en s=0.

1.2. **Mesures.** On équipe F avec la mesure de Haar dx qui est autoduale par rapport à  $\psi$  et  $F^{\times}$  de la mesure de Haar  $d^{\times}x = \frac{dx}{|x|_F}$ . Pour  $m \geq 1$ , on équipe  $F^m$  de la mesure produit  $(dx)^m$  et  $(F^{\times})^m$  de la mesure  $(d^{\times}x)^m$ . On équipe les groupes  $M_n, U_n, N_n, \overline{N}_N$  des mesures de Haar "produit des coordonnées". Par exemple, on équipe  $M_n$  de la mesure  $dX = \prod_{i,j=1}^n dX_{i,j}$  où  $dX_{i,j}$  est la mesure de Haar sur F que l'on a fixé précédemment. On équipe  $G_n$  de la mesure  $dg = |\det g|_F^{-n} \prod_{i,j=1}^n dg_{i,j}$  et  $P_n$  du produit des mesures sur  $U_n$  et  $G_{n-1}$ . On équipe les groupes compact des mesures de Haar de masse totale égale à 1. On équipe  $N_n \setminus G_n$  et  $P_n \setminus G_n$  des mesures que l'on obtient par l'identification d'ouvert dense à  $\overline{B}_n$  et  $F^{n-1} \times F^{\times}$  respectivement.

Pour G un groupe réductif connexe sur F, on fixe un isomorphisme  $A_G \simeq (F^\times)^{\dim(A_G)}$  et on équipe  $A_G$  de la mesure  $(d^\times x)^{\dim(A_G)}$  provenant de l'isomorphisme avec  $(F^\times)^{\dim(A_G)}$ . Décrivons le choix de la normalisation d'une mesure sur Temp(G). Soit M un sous-groupe de Levi de G et  $\sigma \in \Pi_2(M)$ . Soit  $\widehat{A_M}$  le dual unitaire de  $A_M$ et  $d\widetilde{\chi}$  la mesure de Haar duale de celle de  $A_M$ . On équipe alors  $\widehat{A_M}$ 

de la mesure  $d\chi$  définie par

(10) 
$$d\chi = \gamma^*(0,1,\psi)^{-\dim(A_M)} d\widetilde{\chi}.$$

La mesure  $d\chi$  est indépendante du caractère  $\psi$ . Il existe une unique mesure  $d\sigma$  sur  $\Pi_2(M)$  tel que l'isomorphisme local  $\sigma \in \Pi_2(M) \mapsto \omega_\sigma \in \widehat{A_M}$  préserve localement les mesures. Soit P un sous groupe parabolique de G de Levi M. On définit alors la mesure  $d\pi$  sur Temp(G) localement autour de  $\pi \simeq \mathfrak{i}_P^G(\sigma)$  par la formule

(11) 
$$d\pi = |W(G, M)|^{-1} (i_P^G)_* d\sigma,$$

où  $(i_p^G)_*d\sigma$  est la mesure  $d\sigma$  tirée en arrière en une mesure sur Temp(G) par l'application  $i_p^G$ . Cette mesure ne dépend pas du choix du groupe parabolique. La mesure  $d\pi$  est choisie pour vérifier la relation 66.

Les mesures de Plancherel sur G sont uniques modulo multiplication par une fonction positive presque partout non nulle, on parlera alors de la classe d'une mesure de Plancherel sur G.

1.3. **Résultats.** Soit F un corps p-adique. Rappelons que l'on note  $H_n(F)$  le groupe des matrices de la forme  $\sigma_n\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix}\begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}\sigma_n^{-1}$  avec  $X \in M_n(F)$  et  $g \in GL_n(F)$ . L'élément  $\sigma_n$  est la matrice associée à la permutation  $\begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 3 & \dots & 2n-1 \end{pmatrix} \begin{pmatrix} n & n+1 & n+2 & \dots & 2n \\ 2 & n & 4 & \dots & 2n \end{pmatrix}$ . De plus,  $\theta$  est le caractère sur  $H_n(F)$  qui envoie  $\sigma_n\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix}\begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}\sigma_n^{-1}$  sur  $\psi(Tr(X))$ . Le résultat principal est le

Théorème 1.1. On a un isomorphisme de représentations unitaires

$$(12) \quad L^2(\mathsf{H}_n(\mathsf{F})\backslash\mathsf{GL}_{2n}(\mathsf{F}),\theta) \simeq \int_{\mathsf{Temp}(\mathsf{SO}(2n+1)(\mathsf{F}))/\mathsf{Stab}}^{\oplus} \mathsf{T}(\sigma) \frac{|\gamma^*(0,\sigma,\mathsf{Ad},\psi)|}{|\mathsf{S}_{\sigma}|} d\sigma.$$

Ce théorème est équivalent à la conjecture 1.3. En effet, il suffit de calculer explicitement la (classe de la) mesure de Plancherel sur SO(2n+1). La mesure de Plancherel d'un groupe réductif p-adique G a été calculée par Waldspurger [16] sous la forme

(13) 
$$d\mu_{G}(\sigma) = d(\sigma)i(\sigma)^{-1}d\sigma,$$

où  $d(\sigma)$  est le degré formel de  $\sigma$  et  $j(\sigma)$  est un scalaire produit d'opérateurs d'entrelacements (voir [16]). Le degré formel pour SO(2n+1) a été calculé par Ichino-Lapid-Mao [7] et le facteur j pour SO(2n+1) découle de la normalisation des opérateurs d'entrelacements d'Arthur [1]. Finalement, on obtient que la (classe de la) mesure de Plancherel pour SO(2n+1) est

$$d\mu_{SO(2n+1)}(\sigma) = \frac{|\gamma^*(0,\sigma,Ad,\psi)|}{|S_{\sigma}|}d\sigma.$$

De l'isomorphisme  $L^2(GL_n(F)\times GL_n(F)\backslash GL_{2n}(F))\simeq L^2(H_n(F)\backslash G_{2n}(F),\theta)$  GL<sub>2n</sub>-invariant (lemme 5.7), on en déduit le

**Théorème 1.2.** On a un isomorphisme de représentations unitaires (15)

$$L^2(GL_n(F)\times GL_n(F)\backslash GL_{2n}(F))\simeq \int_{\text{Temp}(SO(2n+1)(F))/Stab}^{\oplus} \mathsf{T}(\sigma)\frac{|\gamma^*(0,\sigma,Ad,\psi)|}{|S_{\sigma}|}d\sigma.$$

#### 2. Facteurs $\gamma$ du carré extérieur

Dans cette partie F désigne un corps local de caractéristique 0 et  $\psi$  un caractère non trivial de F. Soit  $\pi$  une représentation tempérée irréductible de  $\operatorname{GL}_{2n}(F)$ . Jacquet et Shalika ont défini une fonction L du carré extérieur  $\operatorname{L}_{JS}(s,\pi,\Lambda^2)$  par des intégrales notées  $J(s,W,\varphi)$ , où  $W\in \mathcal{W}(\pi,\psi)$  est un élément du modèle de Whittaker de  $\pi$  et  $\varphi\in \mathcal{S}(F^n)$ . Matringe a prouvé que, lorsque F est non archimédien, ces intégrales  $J(s,W,\varphi)$  vérifient une équation fonctionnelle, ce qui permet de définir des facteurs  $\gamma$ , que l'on note  $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$ .

On montre que l'on a encore une équation fonctionnelle lorsque F est archimédien et que les facteurs  $\gamma$  sont égaux à une constante de module 1 prés à ceux définis par Shahidi, que l'on note  $\gamma^{\text{Sh}}(s,\pi,\Lambda^2,\psi)$ . Plus exactement, il existe une constante  $c(\pi)$  de module 1, telle que

(16) 
$$\gamma^{JS}(s, \pi, \Lambda^2, \psi) = c(\pi)\gamma^{Sh}(s, \pi, \Lambda^2, \psi),$$

pour tout  $s \in \mathbb{C}$ . La preuve se fait par une méthode de globalisation, on considère  $\pi$  comme une composante locale d'une représentation automorphe cuspidale.

#### 2.1. Préliminaires.

2.1.1. Théorie locale. Les intégrales  $J(s, W, \phi)$  sont définies par

$$(17)\quad \int_{N_{\mathfrak{n}}\setminus G_{\mathfrak{n}}}\int_{V_{\mathfrak{n}}}W\left(\sigma_{\mathfrak{n}}\begin{pmatrix}1&X\\0&1\end{pmatrix}\begin{pmatrix}g&0\\0&g\end{pmatrix}\sigma_{\mathfrak{n}}^{-1}\right)\psi(-\mathsf{Tr}(X))dX\varphi(e_{\mathfrak{n}}g)|\det g|^{s}dg$$

pour tous  $W \in \mathcal{W}(\pi, \psi)$ ,  $\phi \in \mathcal{S}(F^n)$  et  $s \in \mathbb{C}$ . Le groupe  $V_n$  est matrices triangulaires inférieures strictes, on l'équipe de la mesure de Haar  $dX = \prod_{1 \leq j < i \leq n} dX_{i,j}$ . L'élément  $\sigma_n$  est la matrice associée à la permutation  $\begin{pmatrix} 1 & 2 & \cdots & n & n+1 & n+2 & \cdots & 2n \\ 1 & 3 & \cdots & 2n & n & 2 & n \end{pmatrix}$ .

Jacquet et Shalika ont démontré que ces intégrales convergent pour Re(s) suffisamment grand, plus exactement, on dispose de la

**Proposition 2.1** (Jacquet-Shalika [9]). Il existe  $\eta > 0$  tel que les intégrales  $J(s, W, \varphi)$  convergent absolument pour  $Re(s) > 1 - \eta$ .

Kewat [11] montre, lorsque F est p-adique, que ce sont des fractions rationnelles en  $q^s$  où q est le cardinal du corps résiduel de F. On aura aussi besoin d'avoir le prolongement méromorphe de ces intégrales lorsque F est archimédien et d'un résultat de non annulation.

**Proposition 2.2** (Belt [2]). Fixons  $s_0 \in \mathbb{C}$ . Il existe  $W \in W(\pi, \psi)$  et  $\varphi \in S(F^n)$  tels que  $J(s, W, \varphi)$  admet un prolongement méromorphe à tout le plan complexe et ne s'annule pas en  $s_0$ . Si  $F = \mathbb{R}$  ou  $\mathbb{C}$ , le point  $s_0$  peut éventuellement être un pôle. Si F est  $\mathfrak{p}$ -adique, on peut choisir W et  $\varphi$  tels que  $J(s, W, \varphi)$  soit entière.

Lorsque la représentation est non-ramifiée, on peut représenter la fonction L du carré extérieur obtenue par la correspondance de Langlands locale, que l'on note  $L(s,\pi,\Lambda^2)$ , (qui est égale à celle obtenue par la méthode de Langlands-Shahidi d'après un résultat d'Henniart [6]) par ces intégrales.

**Proposition 2.3** (Jacquet-Shalika [9]). Supposons que F est p-adique, le conducteur de  $\psi$  est l'anneau des entiers  $\mathcal{O}_F$  de F. Soit  $\pi$  une représentation non ramifiée de  $\mathsf{GL}_{2n}(\mathsf{F})$ . On note  $\varphi_0$  la fonction caractéristique de  $\mathcal{O}_F^n$  et  $W_0 \in \mathcal{W}(\pi, \psi)$  l'unique fonction de Whittaker invariante par  $\mathsf{GL}_{2n}(\mathcal{O}_F)$  et qui vérifie W(1) = 1. Alors

(18) 
$$J(s, W_0, \phi_0) = L(s, \pi, \Lambda^2).$$

Pour finir cette section, on énonce l'équation fonctionnelle démontrée par Matringe lorsque F est un corps p-adique. Plus précisément, on a la

**Proposition 2.4** (Matringe [12]). Supposons que F est un corps p-adique et  $\pi$  générique. Il existe un monôme  $\varepsilon(s, \pi, \Lambda^2, \psi)$  en  $q^s$  ou  $q^{-s}$ , tel que pour tous  $W \in \mathcal{W}(\pi, \psi)$  et  $\phi \in \mathcal{S}(F^n)$ , ont ait

(19) 
$$\epsilon(s, \pi, \Lambda^2, \psi) \frac{J(s, W, \phi)}{L(s, \pi, \Lambda^2)} = \frac{J(1 - s, \rho(w_{n,n})\tilde{W}, \hat{\phi})}{L(1 - s, \tilde{\pi}, \Lambda^2)},$$

où  $\hat{\varphi}=\mathfrak{F}_{\psi}(\varphi)$  est la transformée de Fourier de  $\varphi$  par rapport au caractère  $\psi$  définie par

$$\mathfrak{F}_{\psi}(\varphi)(y) = \int_{\mathbb{F}^n} \varphi(x) \psi(\sum_{i=1}^n x_i y_i) dx$$

pour tout  $y \in F^n$  et  $\tilde{W} \in W(\tilde{\pi}, \bar{\psi})$  est la fonction de Whittaker définie par  $\tilde{W}(g) = W(w_n(g^t)^{-1})$  pour tout  $g \in GL_{2n}(F)$ , avec  $w_n$  la matrice associée à la permutation  $\begin{pmatrix} 1 & \cdots & 2n \\ 2n & \cdots & 1 \end{pmatrix}$  et  $w_{n,n} = \begin{pmatrix} 0 & 1_n \\ 1_n & 0 \end{pmatrix}$ . On définit alors le facteur  $\gamma$  de Jacquet-Shalika par la relation

(21) 
$$\gamma^{JS}(s,\pi,\Lambda^2,\psi) = \epsilon(s,\pi,\Lambda^2,\psi) \frac{L(1-s,\tilde{\pi},\Lambda^2)}{L(s,\pi,\Lambda^2)}.$$

2.1.2. Théorie globale. La méthode que l'on utilise est une méthode de globalisation. Essentiellement, on verra  $\pi$  comme une composante locale d'une représentation automorphe cuspidale. Pour ce faire, on aura besoin de l'équivalent global des intégrales  $J(s,W,\varphi)$ .

Soit K un corps de nombres et  $\psi_{\mathbb{A}}$  un caractère non trivial de  $\mathbb{A}_K/K$ . Soit  $\Pi$  une représentation automorphe cuspidale irréductible de  $GL_{2n}(\mathbb{A}_K)$ . Pour  $\varphi \in \Pi$ , on considère

$$(22) \hspace{1cm} W_{\phi}(g) = \int_{N_{2\pi}(K) \backslash N_{2\pi}(\mathbb{A}_K)} \phi(\mathfrak{u}g) \psi_{\mathbb{A}}(\mathfrak{u}) d\mathfrak{u}$$

la fonction de Whittaker associée. On considère  $\psi_{\mathbb{A}}$  comme un caractère de  $N_{2n}(\mathbb{A}_K)$  en posant  $\psi_{\mathbb{A}}(\mathfrak{u})=\psi_{\mathbb{A}}(\sum_{i=1}^{2n-1}\mathfrak{u}_{i,i+1})$ . Pour  $\Phi\in \mathcal{S}(\mathbb{A}_K^n)$  une fonction de Schwartz, on note  $J(s,W_{\phi},\Phi)$  l'intégrale

$$(23) \qquad \int_{\mathsf{N}_{\mathfrak{n}} \backslash \mathsf{G}_{\mathfrak{n}}} \int_{\mathsf{V}_{\mathfrak{n}}} \mathsf{W}_{\varphi} \left( \sigma_{\mathfrak{n}} \begin{pmatrix} 1 & \mathsf{X} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathsf{g} & 0 \\ 0 & \mathsf{g} \end{pmatrix} \right) \psi_{\mathbb{A}} (\mathsf{Tr}(\mathsf{X})) \mathsf{dX} \Phi(e_{\mathfrak{n}} g) |\det g|^{s} \mathsf{d}g$$

où l'on note  $G_n$  le groupe  $GL_n(\mathbb{A}_K)$ ,  $B_n$  le sous groupe des matrices triangulaires supérieures,  $N_n$  le sous-groupe de  $B_n$  des matrices dont les éléments diagonaux sont 1 et  $M_n$  l'ensemble des matrices de taille  $n \times n$  à coefficients dans  $\mathbb{A}_K$ .

Finissons cette section par l'équation fonctionnelle globale démontrée par Jacquet et Shalika.

**Proposition 2.5** (Jacquet-Shalika [9]). Les intégrales  $J(s, W_{\phi}, \Phi)$  convergent absolument pour Re(s) suffisamment grand. De plus,  $J(s, W_{\phi}, \Phi)$  admet un prolongement méromorphe à tout le plan complexe et vérifie l'équation fonctionnelle suivante

(24) 
$$J(s, W_{\varphi}, \Phi) = J(1 - s, \rho(w_{n,n}) \tilde{W}_{\varphi}, \hat{\Phi}),$$

où  $\tilde{W}_{\phi}(g) = W_{\phi}(w_n(g^t)^{-1})$  et  $\hat{\Phi}$  est la transformée de Fourier de  $\Phi$  par rapport au caractère  $\psi_{\mathbb{A}}$ .

Comme on peut s'y attendre, les intégrales globales sont reliées aux intégrales locales. Plus exactement, si  $W_{\phi} = \prod_{\nu} W_{\nu}$  et  $\Phi = \prod_{\nu} \Phi_{\nu}$ , où  $\nu$  décrit les places de K, on a

$$J(s,W_{\varphi},\Phi) = \prod_{\nu} J(s,W_{\nu},\Phi_{\nu}).$$

2.1.3. Globalisation. Comme la preuve se fait par globalisation, la première chose à faire est de trouver un corps de nombres dont F est une localisation. On dispose du

**Lemme 2.1** (Kable [10]). Supposons que F est un corps  $\mathfrak{p}$ -adique. Il existe un corps de nombres k et une place  $\mathfrak{v}_0$  telle que  $\mathfrak{k}_{\mathfrak{v}_0} = \mathsf{F}$ , où  $\mathfrak{v}_0$  est l'unique place de k au dessus de  $\mathfrak{p}$ .

On va définir une topologie sur  $\mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$ . Soit M un sous-groupe de Levi de  $\mathsf{GL}_{2n}(\mathsf{F})$ ,  $\mathsf{P}$  un parabolique de Levi  $\mathsf{M}$  et  $\sigma \in \Pi_2(\mathsf{M})$ . La classe d'équivalence de l'induction parabolique normalisé  $\mathfrak{i}_{\mathsf{P}}^{\mathsf{G}}(\sigma)$  est indépendante du parabolique  $\mathsf{P}$  et on la notera  $\mathfrak{i}_{\mathsf{M}}^{\mathsf{G}}(\sigma)$ . On note  $\mathsf{X}^*(\mathsf{M})$  le groupe des caractères algébriques de  $\mathsf{M}$ , on dispose alors d'une application  $\chi \otimes \lambda \in \mathsf{X}^*(\mathsf{M}) \otimes \mathfrak{i}\mathbb{R} \mapsto \mathfrak{i}_{\mathsf{M}}^{\mathsf{G}}(\sigma \otimes \chi_{\lambda}) \in \mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$  où  $\chi_{\lambda}(\mathsf{g}) = |\chi(\mathsf{g})|^{\lambda}$ . On définit alors une base de voisinage de  $\mathfrak{i}_{\mathsf{M}}^{\mathsf{G}}(\sigma)$  dans  $\mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$  comme l'image d'une base de voisinage de 0 dans  $\mathsf{X}^*(\mathsf{M}) \otimes \mathfrak{i}\mathbb{R}$ .

Cette topologie sur  $\mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$  nous permet d'énoncer le résultat principal dont on aura besoin pour la méthode de globalisation.

Proposition 2.6 (Beuzart-Plessis [4]). Soient k un corps de nombres,  $\nu_0, \nu_1$  deux places distinctes de k avec  $\nu_1$  non archimédienne. Soit U un ouvert de  $\mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{k}_{\nu_0}))$ . Alors il existe une représentation automorphe cuspidale irréductible  $\Pi$  de  $\mathsf{GL}_{2n}(\mathsf{A}_k)$  telle que  $\Pi_{\nu_0} \in U$  et  $\Pi_{\nu}$  est non ramifiée pour toute place non archimédienne  $\nu \notin \{\nu_0, \nu_1\}$ .

2.1.4. Fonctions tempérées. On aura besoin dans la suite de connaître la dépendance que  $J(s,W,\varphi)$  lorsque l'on fait varier la représentation  $\pi$ . Pour ce faire, on introduit la notion de fonction tempérée et on étend la définition de  $J(s,W,\varphi)$  pour ces fonctions tempérées.

L'espace des fonctions tempérées  $C^w(N_{2n}(F)\backslash GL_{2n}(F),\psi)$  est l'espace des fonctions  $f:GL_{2n}(F)\to\mathbb{C}$  telles que  $f(ng)=\psi(n)f(g)$  pour tous  $n\in N_{2n}(F)$  et  $g\in GL_{2n}(F)$ , on impose les conditions suivantes :

- Si F est p-adique, f est invariante à droite par un sous-groupe compact ouvert et il existe d>0 et C>0 tels que  $|f(nak)|\leqslant C\delta_{B_{2n}}(a)^{\frac{1}{2}}\log(\|a\|)^d$ , où  $\|a\|=max(|a_{i,i}|)$ , pour tous  $n\in N_{2n}(F)$ ,  $a\in A_{2n}(F)$  et  $k\in GL_{2n}(\mathfrak{O}_F)$ ,
- Si F est archimédien, f est  $C^{\infty}$  et il existe d>0 tel que pour tout  $\mathfrak{u}\in \mathcal{U}(\mathfrak{gl}_{2n}(F))$ , il existe C>0 tel que  $|(R(\mathfrak{u})f)(\mathfrak{n}\mathfrak{a}k)|\leqslant C\delta_{B_{2n}}(\mathfrak{a})^{\frac{1}{2}}\log(\|\mathfrak{a}\|)^d$  pour tous  $\mathfrak{n}\in N_{2n}(F),\ \mathfrak{a}\in A_{2n}(F),\ k\in GL_{2n}(\mathfrak{O}_F).$

On rappelle la majoration des fonctions tempérées sur la diagonale,

**Lemme 2.2** (Lemme 2.4.3 [4]). Soit  $W \in C^w(N_{2n}(F)\backslash GL_{2n}(F), \psi)$ . Il existe d > 0 tel que pour tout  $N \ge 1$ , il existe C > 0 tel que

$$|W(bk)| \leqslant C \prod_{i=1}^{2n-1} (1 + |\frac{b_i}{b_{i+1}}|)^{-N} \delta_{B_{2n}}(b)^{\frac{1}{2}} \log(||b||)^d,$$

pour tous  $b \in A_{2n}(F)$  et  $k \in GL_{2n}(O_F)$ .

**Lemme 2.3** (Lemme 2.4.4 [4]). Pour tout C > 0, il existe N tel que pour tous s vérifiant 0 < Re(s) < C et d > 0, l'intégrale

(27) 
$$\int_{A_n} \prod_{i=1}^{n-1} (1 + |\frac{a_i}{a_{i+1}}|)^{-N} (1 + |a_n|)^{-N} \log(||a||)^d |\det a|^s da$$

converge absolument.

On étend la définition des intégrales  $J(s, W, \phi)$  aux fonctions tempérées W, on montre maintenant la convergence de ces intégrales

**Lemme 2.4.** Pour  $W \in C^w(N_{2n}(F) \backslash GL_{2n}(F), \psi)$  et  $\varphi \in S(F^n)$ , l'intégrale  $J(s, W, \varphi)$  converge absolument pour tout  $s \in \mathbb{C}$  vérifiant Re(s) > 0.

Démonstration. Soit  $G_n = N_n A_n K_n$  la décomposition d'Iwasawa de  $G_n$ . Il suffit de montrer la convergence de l'intégrale

$$\left|\int_{A_n}\int_{K_n}\int_{V_n}\left|W\left(\sigma_n\begin{pmatrix}1&X\\0&1\end{pmatrix}\begin{pmatrix}\alpha k&0\\0&\alpha k\end{pmatrix}\sigma_n^{-1}\right)\varphi(e_n\alpha k)\right|dXdk\left|\det\alpha\right|^{Re(s)}\delta_{B_n}^{-1}(\alpha)d\alpha.\right|$$

On pose  $u_X = \sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \sigma_n^{-1}$ , ce qui nous permet d'écrire

(29) 
$$\sigma_{\mathfrak{n}} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathfrak{a} & 0 \\ 0 & \mathfrak{a} \end{pmatrix} = \mathfrak{bu}_{\mathfrak{a}^{-1}X\mathfrak{a}}\sigma_{\mathfrak{n}},$$

où  $b = diag(a_1, a_1, a_2, a_2, ...)$ . On effectue le changement de variable  $X \mapsto aXa^{-1}$ , l'intégrale devient alors (30)

$$\int_{A_n}\int_{K_n}\int_{V_n}\left|W\left(bu_X\sigma_n\begin{pmatrix}k&0\\0&k\end{pmatrix}\sigma_n^{-1}\right)\varphi(e_n\alpha k)\right|dXdk|\det\alpha|^{Re(s)}\delta^{-2}(\alpha)d\alpha.$$

On écrit  $u_X=n_Xt_Xk_X$  la décomposition d'Iwasawa de  $u_X$  et on pose  $k_\sigma=\sigma_n\begin{pmatrix}k&0\\0&k\end{pmatrix}\sigma_n^{-1}$ . Le lemme 2.2 donne alors

$$(31) \qquad |W(bt_Xk_Xk_\sigma)|\leqslant C\prod_{i=1}^{2n-1}(1+|\frac{t_jb_j}{t_{j+1}b_{j+1}}|)^{-2N}\delta_{B_{2n}}^{\frac{1}{2}}(bt_X)\log(\|bt_X\|)^d.$$

On aura besoin d'inégalités prouvées par Jacquet et Shalika concernant les  $\mathbf{t_{j}}.$  On dispose de la

**Proposition 2.7** (Jacquet-Shalika [9]). On a  $|t_k| \geqslant 1$  lorsque k est impair et  $|t_k| \leqslant 1$  lorsque k est pair. En particulier,  $|\frac{t_j}{t_{j+1}}| \geqslant 1$  lorsque j est impair et  $|\frac{t_j}{t_{j+1}}| \leqslant 1$  lorsque j est pair.

On combine alors cette proposition avec le fait que  $\frac{b_j}{b_{j+1}}=1$  lorsque j est impair et  $\frac{b_j}{b_{j+1}}=\frac{a_{\frac{j}{2}}}{a_{\frac{j}{2}+1}}$  lorsque j est pair. Ce qui nous permet de majorer  $(1+|\frac{t_jb_j}{t_{j+1}b_{j+1}}|)^{-2N}$  par  $|\frac{t_j}{t_{j+1}}|^{-2N}$  lorsque j est impair et par  $|\frac{t_j}{t_{j+1}}|^{-N}(1+|\frac{a_{j/2}}{a_{j/2+1}}|)^{-N}$  lorsque j est pair.

Ce qui donne

(32)

$$\begin{split} |W(bt_Xk_Xk_\sigma)| &\leqslant C \prod_{j=1}^{2n-1} |\frac{t_j}{t_j+1}|^{-N} \prod_{j=1,j \text{ impair}}^{2n-1} |\frac{t_j}{t_{j+1}}|^{-N} \prod_{i=1}^{n-1} (1+|\frac{\alpha_i}{\alpha_{i+1}}|)^{-N} \delta_{B_{2n}}^{\frac{1}{2}}(bt_X) \log(\|bt_X\|)^d \\ &\leqslant C \prod_{j=1,j \text{ impair}}^{2n-1} |\frac{t_j}{t_{j+1}}|^{-N} \prod_{i=1}^{n-1} (1+|\frac{\alpha_i}{\alpha_{i+1}}|)^{-N} \delta_{B_{2n}}^{\frac{1}{2}}(bt_X) \log(\|bt_X\|)^d, \end{split}$$

puisque  $\prod_{j=1}^{2n-1}|\frac{t_j}{t_j+1}|^{-N}=|\frac{t_1}{t_{2n}}|^{-N}\leqslant 1$  d'après la proposition 2.7.

De plus, encore d'après la proposition 2.7, on a

(33) 
$$\prod_{j=1,j \text{ impair}}^{2n-1} \left| \frac{t_j}{t_{j+1}} \right|^{-N} \leqslant \prod_{j=1,j \text{ impair}}^{2n-1} \frac{1}{|t_j|^N}.$$

Pour finir, on aura besoin de la

**Proposition 2.8** (Jacquet-Shalika [9]). Pour  $X \in Lie(\overline{N}_n)$ , on pose  $\|X\| = \sup_{i,j} |X_{i,j}|$ . On pose  $\mathfrak{m}(X) = \sqrt{1 + \|X\|}$  lorsque F est archimédien et  $\mathfrak{m}(X) = \sup(1, \|X\|)$  lorsque F est non-archimédien. Il existe une constante  $\alpha > 0$  telle que pour tout  $X \in Lie(\overline{N}_n)$ , on ait

(34) 
$$\prod_{j=1,j \text{ impair}}^{2n-1} |t_j| \geqslant \mathfrak{m}(X)^{\alpha}$$

Grâce à cette proposition, on obtient la majoration

$$(35) \qquad |W(\mathsf{bt}_X \mathsf{k}_X \mathsf{k}_\sigma)| \leqslant C \mathfrak{m}(\mathsf{X})^{-\alpha \mathsf{N}} \prod_{i=1}^{n-1} (1 + |\frac{\mathfrak{a}_i}{\mathfrak{a}_{i+1}}|)^{-\mathsf{N}} \delta_{\mathsf{B}_{2n}}^{\frac{1}{2}}(\mathsf{bt}_\mathsf{X}) \log(||\mathsf{bt}_\mathsf{X}||)^d.$$

D'autre part, il existe C' > 0 tel que

(36) 
$$|\phi(e_n ak)| \leq C'(1+|a_n|)^{-N}$$

L'intégrale  $J(s,W,\varphi)$  est alors majorée (à une constante près) par le maximum du produit des intégrales

(37) 
$$\int_{V_n} m(X)^{-\alpha N} \delta_{B_{2n}}^{\frac{1}{2}}(t_X) \log(||t_X||)^{d-j} dX$$

et

$$(38) \quad \int_{A_{n}} \prod_{i=1}^{n-1} (1+|\frac{a_{i}}{a_{i+1}}|)^{-N} (1+|a_{n}|)^{-N} \log(||b||)^{j} |\det a|^{Re(s)} \delta_{B_{2n}}^{\frac{1}{2}}(b) \delta_{B_{n}}^{-2}(a) da,$$

pour j compris entre 0 et d. La première intégrale converge pour N assez grand et la deuxième pour N assez grand lorsque Re(s)>0. On a utilisé la relation  $\delta_{B_{2n}}^{\frac{1}{2}}(b)=\delta_{B_n}^2(a)$ . En effet,

$$\delta_{B_{2n}}(\mathfrak{b}) = |\mathfrak{a}_1|^{1-2n} |\mathfrak{a}_1|^{3-2n} |\mathfrak{a}_2|^{5-2n} |\mathfrak{a}_2|^{7-2n} ... |\mathfrak{a}_n|^{2n-3} |\mathfrak{a}_n|^{2n-1},$$

$$(40) \qquad = |a_1|^{4-4n} |a_2|^{12-4n} ... |a_n|^{4n-4}.$$

$$(41) = \delta_{B_n}^4(\mathfrak{a}).$$

2.2. Facteurs  $\gamma$ . Dans cette partie, on prouve l'égalité entre les facteurs  $\gamma^{JS}(.,\pi,\Lambda^2,\psi)$ et  $\gamma^{Sh}(.,\pi,\Lambda^2,\psi)$  à une constante (dépendant de  $\pi$ ) de module 1 près.

On commence à montrer cette égalité pour les facteurs  $\gamma$  archimédiens. Pour le moment, les résultats connus ne nous donnent même pas l'existence du facteur  $\gamma^{JS}$ dans le cas archimédien, ce sera une conséquence de la méthode de globalisation.

Soit  $\pi$  une représentation tempérée irréductible de  $GL_{2n}(F)$ . On aura besoin d'un résultat sur la continuité du quotient  $\frac{J(1-s,\rho(w_{n,n})\tilde{W},\hat{\varphi})}{J(s,W,\varphi)}$  lorsque l'on fait varier la représentation  $\pi$ , on dispose du

**Lemme 2.5.** Soient  $W_0 \in \mathcal{W}(\pi, \psi)$ ,  $\phi \in \mathcal{S}(\mathsf{F}^n)$  et  $s \in \mathbb{C}$  tel que  $0 < \mathsf{Re}(s) < \mathsf{Re}(s)$ 1. Supposons que  $J(s,W_0,\varphi)\neq 0$ . Alors il existe une application continue  $\pi'\in$  $\mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F})) \mapsto W_{\pi'} \in C^w(\mathsf{N}_{2n}(\mathsf{F}) \backslash \mathsf{GL}_{2n}(\mathsf{F}), \psi) \ \mathit{et un voisinage} \ V \subset \mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$  $de \ \pi \ tels \ que \ W_0 \ = \ W_\pi \ et \ l'application \ \pi' \in V \mapsto \frac{J(1-s,\rho(w_{\pi,n})\tilde{W}_{\pi'},\mathcal{F}_{\psi}(\varphi))}{J(s,W_{\pi'},\varphi)} \ soit$ continue.

En particulier, si F est un corps p-adique, ce quotient est égal à  $\gamma^{JS}(s,\pi',\Lambda^2,\psi)$ (proposition 2.4); donc  $\pi' \in V \mapsto \gamma^{JS}(s, \pi', \Lambda^2, \psi)$  est continue.

Démonstration. On utilise l'existence de bonnes sections  $\pi' \mapsto W_{\pi'}$  (Beuzart-Plessis). La forme linéaire  $W \in C^w(N_{2n}(F)\backslash GL_{2n}(F), \psi) \mapsto J(s, W, \varphi)$  est continue, il existe donc un voisinage V de  $\pi$  tel que  $J(s, W_{\pi'}, \varphi) \neq 0$ . Le quotient  $\frac{J(1-s,\rho(w_{n,n})\tilde{W}_{\pi'},\mathcal{F}_{\psi}(\varphi))}{J(s,W_{\pi'},\varphi)} \text{ est alors bien une fonction continue de $\pi'$ sur $V$.}$ 

On étudie maintenant la dépendance du quotient  $\frac{J(1-s,\rho(w_{n,n})\tilde{W},\mathcal{F}_{\psi}(\phi))}{J(s,W,\phi)}$  par rapport au caractère additif  $\psi$ , où l'on note  $\mathcal{F}_{\psi}$  pour la transformée de Fourier par rapport à  $\psi$ . Les caractères additifs de F sont de la forme  $\psi_{\lambda}$  avec  $\lambda \in F^*$  où  $\psi_{\lambda}(x) = \psi(\lambda x).$ 

**Lemme 2.6.** Soient  $\lambda \in F^*$ ,  $W \in \mathcal{W}(\pi, \psi)$ ,  $\phi \in \mathcal{S}(F^n)$  et  $s \in \mathbb{C}$  tel que  $0 < \text{Re}(s) < \infty$ 1. Supposons que  $J(s, W, \phi) \neq 0$ . Alors

$$(42)\quad \frac{J(1-s,\rho(w_{n,n})\tilde{W},\mathcal{F}_{\psi_{\lambda}}(\varphi))}{J(s,W,\varphi)}=|\lambda|^{n(s-\frac{1}{2})}\omega_{\pi}(\lambda)\frac{J(1-s,\rho(w_{n,n})\tilde{W},\mathcal{F}_{\psi}(\varphi))}{J(s,W,\varphi)}.$$

 $D\acute{e}monstration$ . En effet, la mesure de Haar auto-duale pour  $\psi_{\lambda}$  est reliée à la mesure de Haar auto-duale pour  $\psi$  par un facteur  $|\lambda|^{\frac{1}{2}}$ . On en déduit que  $\mathcal{F}_{\psi_{\lambda}}(\phi)(x) =$  $|\lambda|^{\frac{n}{2}}\mathcal{F}_{\psi}(\phi)(\lambda x)$ . Le changement de variable  $g\mapsto \lambda^{-1}g$  dans l'intégrale définissant  $J(1-s, \rho(w_{n,n})\tilde{W}, \mathcal{F}_{\psi}(\phi)(\lambda))$  donne

(43) 
$$J(1-s, \rho(w_{n,n})\tilde{W}, \mathcal{F}_{\psi}(\varphi)(\lambda)) = |\lambda|^{n(s-1)}\omega_{\pi}(\lambda)J(1-s, \rho(w_{n,n})\tilde{W}, \mathcal{F}_{\psi}(\varphi)).$$
  
On en déduit immédiatement le lemme.

On en déduit immédiatement le lemme.

Les facteurs  $\gamma$  de Shahidi du carré extérieur vérifient la même dépendance par rapport au caractère additif ψ (voir Henniart [6]). Dans la suite, on pourra donc choisir arbitrairement un caractère additif non trivial, les relations seront alors vérifiées pour tous les caractères additifs, en particulier pour le caractère  $\psi$  que l'on a fixé.

**Proposition 2.9.** Soit  $F = \mathbb{R}$  ou  $\mathbb{C}$ . Soit  $\pi$  une représentation tempérée irréductible de  $GL_{2n}(F)$ . Les intégrales  $J(s,W,\varphi)$  admettent un prolongement méromorphe à  $\mathbb C$ pour tous  $W \in \mathcal{W}(\pi, \psi)$  et  $\phi \in \mathcal{S}(F^n)$ .

Il existe une fonction méromorphe  $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$  telle que pour tous  $s\in\mathbb{C}$ ,  $W\in\mathcal{W}(\pi,\psi)$  et  $\varphi\in\mathcal{S}(F^n)$ , on ait

(44) 
$$\gamma^{JS}(s, \pi, \Lambda^2, \psi)J(s, W, \phi) = J(1 - s, \rho(w_{n,n})\tilde{W}, \mathcal{F}_{\psi}(\phi)).$$

De plus, il existe une constante  $c(\pi)$  de module 1 telle que pour tout  $s \in \mathbb{C}$ ,

(45) 
$$\gamma^{JS}(s, \pi, \Lambda^2, \psi) = c(\pi)\gamma^{Sh}(s, \pi, \Lambda^2, \psi).$$

Démonstration. Soit k un corps de nombres, on suppose que k a une seule place archimédienne, elle est réelle (respectivement complexe) lorsque  $F=\mathbb{R}$  (respectivement  $F=\mathbb{C}$ ); par exemple,  $k=\mathbb{Q}$  si  $F=\mathbb{R}$  et  $k=\mathbb{Q}(i)$  si  $F=\mathbb{C}$ . Soient  $\nu\neq\nu'$  deux places non archimédiennes distinctes, soit  $U\subset Temp(GL_{2n}(F))$  un ouvert contenant  $\pi$ . On choisit un caractère non trivial  $\psi_\mathbb{A}$  de  $\mathbb{A}_k/k$ .

D'après la proposition 2.6, il existe une représentation automorphe cuspidale irréductible  $\Pi$  telle que  $\Pi_{\infty} \in \mathbb{U}$  et  $\Pi_{w}$  soit non ramifiée pour toute place non archimédienne  $w \neq v$ .

On choisit des fonctions  $W_w \in \mathcal{W}(\pi_w, (\varphi_{\mathbb{A}})_w)$  et  $\varphi_w \in \mathcal{S}(k_w)$  dans le but d'appliquer l'équation fonctionnelle globale. On note  $S = \{\infty, \nu\}$  l'ensemble des places où  $\Pi$  est ramifiée et T l'ensemble des places où  $\psi_{\mathbb{A}}$  est ramifié. Pour  $w \notin S \cup T$ , on prend les fonctions "non ramifiées" qui apparaissent dans la proposition 2.3. Pour  $w = S \cup T$ , on fait un choix, d'après la proposition 2.2, tel que  $J(s, W_w, \varphi_w) \neq 0$ . On pose alors

$$(46) W = \prod_{w} W_{w} \quad \text{et} \quad \Phi = \prod_{w} \phi_{w}.$$

D'après la proposition 2.5, on a

$$(47) \qquad \prod_{w \in S \cup T} J(s, W_w, \phi_w) L^{S \cup T}(s, \Pi, \Lambda^2)$$

$$= \prod_{w \in S \cup T} J(1 - s, \rho(w_{n,n}) \tilde{W}_w, \mathcal{F}_{(\psi_{\mathbb{A}})_w}(\phi_w)) L^{S \cup T}(1 - s, \tilde{\Pi}, \Lambda^2),$$

où  $L^{S \cup T}(s, \Pi, \Lambda^2) = \prod_{w \in S \cup T} L(s, \Pi_w, \Lambda^2)$  est la fonction L partielle. D'autre part, les facteurs  $\gamma$  de Shahidi vérifient une relation similaire (voir Henniart [6]),

$$(48) \qquad \mathsf{L}^{\mathsf{S}\cup\mathsf{T}}(\mathsf{s},\Pi,\Lambda^2) = \prod_{\mathsf{w}\in\mathsf{S}\cup\mathsf{T}} \gamma^{\mathsf{Sh}}(\mathsf{s},\Pi_{\mathsf{w}},\Lambda^2,(\psi_{\mathbb{A}})_{\mathsf{w}}) \mathsf{L}^{\mathsf{S}\cup\mathsf{T}}(1-\mathsf{s},\tilde{\Pi},\Lambda^2).$$

Les équations (47) et (48), en utilisant la proposition 2.4 pour les places  $w \in \{v\} \cup T$ , donne

$$(49) \qquad J(1-s,\rho(w_{n,n})\tilde{W}_{\infty},\mathcal{F}_{(\psi_{\mathbb{A}})_{\infty}}(\varphi_{\infty})) = \\ J(s,W_{\infty},\varphi_{\infty})\gamma^{Sh}(s,\Pi_{\infty},\Lambda^{2},(\psi_{\mathbb{A}})_{\infty}) \prod_{w\in\{v\}\cup\mathsf{T}} \frac{\gamma^{Sh}(s,\Pi_{w},\Lambda^{2},(\psi_{\mathbb{A}})_{w})}{\gamma^{JS}(s,\Pi_{w},\Lambda^{2},(\psi_{\mathbb{A}})_{w})}.$$

Ce qui prouve la première partie de la proposition pour  $\Pi_{\infty}$ , l'existence du facteur  $\gamma^{JS}(s,\Pi_{\infty},\Lambda^2,(\psi_{\mathbb{A}})_{\infty})$ .

On s'occupe tout de suite du quotient  $\frac{\gamma^{\text{Sh}}(s,\Pi_w,\Lambda^2,(\psi_{\mathbb{A}})_w)}{\gamma^{\text{JS}}(s,\Pi_w,\Lambda^2,(\psi_{\mathbb{A}})_w)}$  lorsque  $w \in \mathbb{T}$ . En effet,  $\Pi_w$  est non ramifiée, une combinaison de la proposition 2.3 et du lemme 2.6 va nous permettre de calculer ce quotient. Il existe  $\lambda \in \mathbb{F}^*$  et un caractère non ramifié  $\psi_0$  de  $\mathbb{F}$  tel que  $(\psi_{\mathbb{A}})_w(x) = \psi_0(\lambda x)$ . La remarque suivant le lemme 2.6 nous

dit que les facteurs  $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$  et  $\gamma^{Sh}(s,\pi,\Lambda^2,\psi)$  ont la même dépendance par rapport au caractère additif. On en déduit que

$$\frac{\gamma^{\text{Sh}}(s,\Pi_{w},\Lambda^{2},(\psi_{\mathbb{A}})_{w})}{\gamma^{\text{JS}}(s,\Pi_{w},\Lambda^{2},(\psi_{\mathbb{A}})_{w})} = \frac{\gamma^{\text{Sh}}(s,\Pi_{w},\Lambda^{2},\psi_{0})}{\gamma^{\text{JS}}(s,\Pi_{w},\Lambda^{2},\psi_{0})} = 1,$$

d'après la proposition 2.3 et le calcul non ramifié des facteurs gamma de Shahidi (voir Henniart [6]).

L'équation (49) devient alors

(51) 
$$J(1-s, \rho(w_{n,n})\tilde{W}_{\infty}, \mathcal{F}_{(\psi_{\mathbb{A}})_{\infty}}(\varphi_{\infty})) = \\ J(s, W_{\infty}, \varphi_{\infty})\gamma^{Sh}(s, \Pi_{\infty}, \Lambda^{2}, (\psi_{\mathbb{A}})_{\infty}) \frac{\gamma^{Sh}(s, \Pi_{\nu}, \Lambda^{2}, (\psi_{\mathbb{A}})_{\nu})}{\gamma^{JS}(s, \Pi_{\nu}, \Lambda^{2}, (\psi_{\mathbb{A}})_{\nu})}.$$

On choisit maintenant pour U une base de voisinage contenant  $\pi$ , en utilisant le lemme 2.5 et la continuité des facteurs  $\gamma$  de Shahidi sur  $\mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$ , on en déduit que  $\frac{\mathsf{J}(1-s,\rho(w_{n,n})\bar{W},\mathcal{F}_{\psi}(\varphi))}{\mathsf{J}(s,W,\varphi)}$  est une fonction méromorphe indépendante de W et de  $\varphi$ , que l'on note  $\gamma^{\mathsf{JS}}(s,\pi,\Lambda^2,\psi)$ , qui est le produit de  $\gamma^{\mathsf{Sh}}(s,\pi,\Lambda^2,\psi)$  et d'une fonction, que l'on note  $\mathsf{R}(s)$ . La fonction  $\mathsf{R}(s)$  ne dépend pas du choix de la base de voisinage et des choix qui sont fait lors de l'utilisation de la proposition 2.6. En effet, on a

(52) 
$$R(s) = \frac{J(1-s, \rho(w_{n,n})\tilde{W}, \mathcal{F}_{(\psi_{\mathbb{A}})_{\infty}}(\varphi_{\infty}))}{J(s, W, \varphi_{\infty})\gamma^{Sh}(s, \pi, \Lambda^{2}, (\psi_{\mathbb{A}})_{\infty})},$$

où  $W \in \mathcal{W}(\pi, \psi)$ , qui est bien indépendant des choix que l'on a fait. De plus, R est une limite de fractions rationnelles en  $q_{\nu}^s$  (les quotients  $\frac{\gamma^{\text{Sh}}(s,\Pi_{\nu},\Lambda^2,(\psi_{\mathbb{A}})_{\nu})}{\gamma^{\text{JS}}(s,\Pi_{\nu},\Lambda^2,(\psi_{\mathbb{A}})_{\nu})}$ ); donc R est une fonction périodique de période  $\frac{2i\pi}{\log q_{\nu}}$ .

En réutilisant le même raisonnement en une place  $\nu'$  de caractéristique résiduelle distincte de celle de  $\nu$ , on voit que R est aussi périodique de période  $\frac{2i\pi}{\log q_{\nu'}}$ . L'équation (52) s'écrit

(53) 
$$\gamma^{JS}(s,\pi,\Lambda^2,\psi) = R(s)\gamma^{Sh}(s,\pi,\Lambda^2,\psi).$$

La fonction R est donc une fonction périodique de période  $\frac{2i\pi}{\log q_{\nu}}$  et  $\frac{2i\pi}{\log q_{\nu'}}$  avec  $q_{\nu}$  et  $q\nu'$  premier entre eux; ce qui est impossible sauf si R est constante. Ce qui nous permet de voir qu'il existe une constante  $c(\pi) = R$  telle que

(54) 
$$\gamma^{JS}(s,\pi,\Lambda^2,\psi) = c(\pi)\gamma^{Sh}(s,\pi,\Lambda^2,\psi).$$

Il ne nous reste plus qu'à montrer que la constante  $c(\pi)$  est de module 1. Reprenons l'équation fonctionnelle locale archimédienne,

(55) 
$$\gamma^{\mathrm{JS}}(s,\pi,\Lambda^2,\psi)J(s,W,\varphi) = J(1-s,\rho(w_{\mathfrak{n},\mathfrak{n}})\tilde{W},\mathfrak{F}_{\psi}(\varphi)).$$

On utilise maintenant l'équation fonctionnelle sur la représentation  $\tilde{\pi}$  pour transformer le facteur  $J(1-s,\rho(w_{n,n})\tilde{W},\mathcal{F}_{\psi}(\varphi))$ , ce qui nous donne

(56) 
$$\gamma^{JS}(s,\pi,\Lambda^2,\psi)J(s,W,\varphi) = \frac{J(s,W,\mathcal{F}_{\bar{\psi}}(\mathcal{F}_{\psi}(\varphi)))}{\gamma^{JS}(1-s,\tilde{\pi},\Lambda^2,\bar{\psi})}.$$

Puisque  $\mathcal{F}_{\bar{\psi}}(\mathcal{F}_{\psi}(\phi)) = \phi$ , on obtient donc la relation

$$\gamma^{\rm JS}(s,\pi,\Lambda^2,\psi)\gamma^{\rm JS}(1-s,\tilde{\pi},\Lambda^2,\bar{\psi})=1.$$

D'autre part, en conjuguant l'équation 55, on obtient

(58) 
$$\overline{\gamma^{JS}(s,\pi,\Lambda^2,\psi)} = \gamma^{JS}(\bar{s},\bar{\pi},\Lambda^2,\bar{\psi}).$$

Comme  $\pi$  est tempérée,  $\pi$  est unitaire, donc  $\tilde{\pi} \simeq \bar{\pi}$ . On en déduit, pour  $s = \frac{1}{2}$ ,

(59) 
$$|\gamma^{JS}(\frac{1}{2}, \pi, \Lambda^2, \psi)|^2 = 1.$$

D'autre part, le facteur  $\gamma$  de Shahidi vérifie aussi  $|\gamma^{\text{Sh}}(\frac{1}{2},\pi,\Lambda^2,\psi)|^2=1$ ; on en déduit donc que  $c(\pi)$  est bien de module 1.

**Proposition 2.10.** Supposons que F est un corps p-adique. Soit  $\pi$  une représentation tempérée irréductible de  $GL_{2n}(F)$ .

Le facteur  $\gamma^{JS}(s, \pi, \Lambda^2, \psi)$  est défini par la proposition 2.4. Alors il existe une constante  $c(\pi)$  de module 1 telle que pour tout  $s \in \mathbb{C}$ ,

(60) 
$$\gamma^{JS}(s, \pi, \Lambda^2, \psi) = c(\pi)\gamma^{Sh}(s, \pi, \Lambda^2, \psi).$$

Démonstration. D'après le lemme 2.1, il existe un corps de nombres k et une place  $\nu_0$  telle que  $k_{\nu_0} = F$ , où  $\nu_0$  est l'unique place de k au dessus de p. Soit  $\nu$  une place non archimédiennes et de caractéristique résiduelle distincte de celle de  $\nu_0$ . Soit  $U \subset \mathsf{Temp}(\mathsf{GL}_{2n}(F))$  un ouvert contenant  $\pi$ . On choisit un caractère non trivial  $\psi_{\mathbb{A}}$  de  $\mathbb{A}_k/k$ .

D'après la proposition 2.6, il existe une représentation automorphe cuspidale irréductible  $\Pi$  telle que  $\Pi_{\nu_0} \in U$  et  $\Pi_w$  soit non ramifiée pour toute place non archimédienne  $w \neq \nu$ .

Pour  $w = v_0, v$  ou une place archimédienne, on choisit d'après la proposition 2.2, des fonctions de Whittaker  $W_w$  et des fonctions de Schwartz  $\phi_w$  telles que  $J(s, W_w, \phi_w) \neq 0$ . Pour les places non ramifiées, on choisit les fonctions "non ramifiées" de la proposition 2.3. On pose alors

$$W = \prod_{w} W_{w}$$
 et  $\Phi = \prod_{w} \Phi_{w}$ .

On note  $S_{\infty}$  l'ensemble des places archimédienne,  $S = S_{\infty} \cup \{\nu, \nu_0\}$  et T l'ensemble des places où  $\psi_{\mathbb{A}}$  est non ramifié. D'après l'équation fonctionnelle globale (proposition 2.5), on a

(61) 
$$\prod_{w \in S \cup T} J(s, W_w, \phi_w) L^{S \cup T}(s, \Pi, \Lambda^2)$$

$$= \prod_{w \in S \cup T} J(1 - s, \rho(w_{n,n}) \tilde{W}_w, \mathcal{F}_{(\psi_{\mathbb{A}})_w}(\phi_w)) L^{S \cup T}(1 - s, \tilde{\Pi}, \Lambda^2),$$

où  $L^{S\cup T}(s,\Pi,\Lambda^2)$  est la fonction L partielle. Les facteurs  $\gamma$  de Shahidi vérifient (voir Henniart [6])

$$(62) \qquad \mathsf{L}^{\mathsf{S}\cup\mathsf{T}}(\mathsf{s},\Pi,\Lambda^2) = \prod_{\mathsf{w}\in\mathsf{S}\cup\mathsf{T}} \gamma^{\mathsf{Sh}}(\mathsf{s},\Pi_{\mathsf{w}},\Lambda^2,(\psi_{\mathbb{A}})_{\mathsf{w}}) \mathsf{L}^{\mathsf{S}\cup\mathsf{T}}(1-\mathsf{s},\tilde{\Pi},\Lambda^2).$$

On rappelle que lors de la preuve de la proposition précédente, on a démontré que  $\frac{\gamma^{S\,h}(s,\Pi_w,\Lambda^2,(\psi_{\mathbb{A}})_w)}{\gamma^{J\,S}(s,\Pi_w,\Lambda^2,(\psi_{\mathbb{A}})_w)}=1$  pour  $w\in\mathsf{T}$ . En utilisant les propositions 2.4 et 2.9, on obtient donc la relation

(63) 
$$\prod_{\nu_{\infty} \in S_{\infty}} c(\Pi_{\nu_{\infty}}) \frac{\gamma^{JS}(s, \Pi_{\nu}, \Lambda^{2}, (\psi_{\mathbb{A}})_{\nu})}{\gamma^{Sh}(s, \Pi_{\nu_{0}}, \Lambda^{2}, (\psi_{\mathbb{A}})_{\nu})} \frac{\gamma^{JS}(s, \Pi_{\nu_{0}}, \Lambda^{2}, \psi)}{\gamma^{Sh}(s, \Pi_{\nu_{0}}, \Lambda^{2}, \psi)} = 1.$$

Le reste du raisonnement est maintenant identique à la fin de la preuve de la proposition 2.9. Par continuité, le quotient  $\frac{\gamma^{JS}(s,\pi,\Lambda^2,\psi)}{\gamma^{Sh}(s,\pi,\Lambda^2,\psi)}$  est une fonction périodique de période  $\frac{2i\pi}{\log q_{\nu}}$ . Or c'est une fraction rationnelle en  $q_{\nu_0}^s$ , on obtient que c'est une constante. En évaluant  $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$  en  $s=\frac{1}{2}$ , on montre que cette constante est de module 1.

#### 3. Limite spectrale

Dans cette partie F est un corps p-adique. On renvoie à la section 1.2 pour la normalisation des mesures sur Temp(G), pour un groupe G réductif connexe sur F.

On note  $PG_{2n}=G_{2n}(F)/Z_{2n}(F)$ . Soit  $f\in S(PG_{2n})$ , pour  $\pi\in Temp(PG_{2n})$ , on définit  $f_\pi$  par

(64) 
$$f_{\pi}(g) = \operatorname{Tr}(\pi(g)\pi(f^{\vee})),$$

pour tout  $g \in PG_{2n}$ , où  $f^{\vee}(x) = f(x^{-1})$ .

Proposition 3.1 (Harish-Chandra [16], Shahidi [14], Silberger-Zink [15]). Il existe une unique mesure  $\mu_{PG_{2n}}$  sur  $Temp(PG_{2n})$  telle que

(65) 
$$f(g) = \int_{\text{Temp}(PG_{2n})} f_{\pi}(g) d\mu_{PG_{2n}}(\pi),$$

pour tous  $f \in S(PG_{2n})$  et  $g \in PG_{2n}$ . De plus, on a l'égalité de mesure suivante :

(66) 
$$d\mu_{\mathsf{PG}_{2\pi}}(\pi) = \frac{\gamma^*(0, \pi, \overline{\mathsf{Ad}}, \psi)}{|\mathsf{S}_{\pi}|} d\pi,$$

 $\begin{array}{ll} \text{où } \gamma^*(0,\pi,\overline{Ad},\psi) = \lim_{s \to 0} (slog(q_F)^{-n_{\pi,\overline{Ad}}}\gamma(s,\pi,\overline{Ad},\psi), \text{ avec } n_{\pi,\overline{Ad}} \text{ l'ordre du }\\ \text{z\'ero } \text{de } \gamma(s,\pi,\overline{Ad},\psi) \text{ en } s = 0. \text{ Pour } \pi \in \text{Temp}(PG_{2n}) \text{ sous-repr\'esentation de }\\ \pi_1 \times ... \times \pi_k, \text{ avec } \pi_i \in \Pi_2(G_{n_i}), \text{ le facteur } |S_\pi| \text{ est le produit } \prod_{i=1}^k n_i. \end{array}$ 

On note  $\Phi(G)$  l'ensemble des paramètres de Langlands tempérés de G et  $\mathsf{Temp}(G)/\mathsf{Stab}$  le quotient de  $\mathsf{Temp}(G)$  par la relation d'équivalence  $\pi \equiv \pi' \iff \varphi_{\pi} = \varphi_{\pi'}$ , où  $\varphi_{\pi}$  est le paramètre de Langlands associé à  $\pi$ .

Rappelons (section 1.1) que la correspondance de Langlands locale pour SO(2m+1) nous permet de définir une application de transfert  $T: Temp(SO(2m+1))/Stab \to Temp(G_{2m})$ . On sait caractériser l'image de l'application de transfert. Plus exactement,

$$(67) \hspace{1cm} \pi \in \mathsf{T}(\mathsf{Temp}(\mathsf{SO}(2\mathsf{n}+1))/\mathsf{Stab}) \iff \pi = \left( \bigvee_{\mathfrak{i}=1}^k \tau_{\mathfrak{i}} \times \widetilde{\tau_{\mathfrak{i}}} \right) \times \bigvee_{\mathfrak{j}=1}^l \mu_{\mathfrak{i}}$$

avec  $\tau_i \in \Pi_2(G_{n_i})$  et  $\mu_j \in T(Temp(SO(2m_j + 1))/Stab) \cap \Pi_2(G_{2m_j})$ .

**Proposition 3.2.** Soit  $\phi$  une fonction à support compact sur  $Temp(PG_{2n})$ , on a

$$(68) \qquad \begin{aligned} & \lim_{s \to 0^+} n \gamma(s,1,\psi) \int_{\mathsf{Temp}(\mathsf{PG}_{2\pi})} \varphi(\pi) \gamma(s,\pi,\Lambda^2,\psi)^{-1} d\mu_{\mathsf{PG}_{2\pi}} = \\ & \int_{\mathsf{Temp}(\mathsf{SO}_{2\pi+1})/\mathsf{Stab}} \varphi(\mathsf{T}(\sigma)) \frac{\gamma^*(0,\sigma,\mathsf{Ad},\psi)}{|\mathsf{S}_{\sigma}|} d\sigma. \end{aligned}$$

 $\begin{array}{l} \textit{Pour} \ \sigma \in \ \mathsf{Temp}(\mathsf{SO}(2n+1)) \ \textit{sous-représentation} \ \textit{de} \ \pi_1 \times ... \times \pi_l \rtimes \sigma_0, \ \textit{avec} \\ \pi_i \in \Pi_2(\mathsf{G}_{\pi_i}) \ \textit{et} \ \sigma_0 \in \Pi_2(\mathsf{SO}(2m+1)), \ \textit{le facteur} \ |\mathsf{S}_{\pi}| \ \textit{est le produit} \ |\mathsf{S}_{\pi_1}| ... |\mathsf{S}_{\pi_l}| |\mathsf{S}_{\sigma_0}| \ ; \\ \textit{où} \ |\mathsf{S}_{\sigma_0}| = 2^k \ \textit{tel que} \ \mathsf{T}(\sigma_0) \simeq \tau_1 \times ... \times \tau_k \ \textit{avec} \ \tau_i \in \Pi_2(\mathsf{G}_{m_i}). \end{array}$ 

Démonstration. D'après la relation 66, on a

$$\int_{\mathsf{Temp}(\mathsf{PG}_{2n})} \varphi(\pi) \gamma(s,\pi,\Lambda^2,\psi)^{-1} d\mu_{\mathsf{PG}_{2n}}(\pi) = \int_{\mathsf{Temp}(\mathsf{PG}_{2n})} \varphi(\pi) \frac{\gamma^*(0,\pi,\overline{Ad},\psi)}{|S_\pi| \gamma(s,\pi,\Lambda^2,\psi)} d\pi.$$

Soit  $\pi \in \text{Temp}(PG_{2n})$ . En prenant des partitions de l'unité, on peut supposer que  $\phi$  est à support dans un voisinage U suffisamment petit de  $\pi$ . On écrit la représentation  $\pi$  sous la forme

(70) 
$$\pi = \left( \underset{i=1}{\overset{t}{\times}} \tau_i^{\times m_i} \times \widetilde{\tau_i}^{\times n_i} \right) \times \left( \underset{j=1}{\overset{u}{\times}} \mu_j^{\times p_j} \right) \times \left( \underset{k=1}{\overset{v}{\times}} \nu_k^{\times q_k} \right),$$

- $-\tau_i \in \Pi_2(G_{d_i})$  vérifie  $\tau_i \not\simeq \widetilde{\tau_i}$  pour tout  $1 \leqslant i \leqslant t$ . De plus, pour tous  $1\leqslant i< i'\leqslant t,\, \tau_i\not\simeq \tau_{i'}\,\,\mathrm{et}\,\,\tau_i\not\simeq \widetilde{\tau_{i'}}.$
- $--\mu_j\in\Pi_2(\mathsf{G}_{e_j}) \text{ vérifie } \mu_j\simeq\widetilde{\mu_j} \text{ et } \gamma(0,\mu_j,\Lambda^2,\psi)\neq 0 \text{ pour tout } 1\leqslant j\leqslant u. \text{ De}$
- plus, pour tous  $1 \leqslant j < j' \leqslant u$ ,  $\mu_j \not\simeq \mu_{j'}$ .  $\nu_k \in \Pi_2(G_{f_k})$  vérifie  $\gamma(0, \nu_k, \Lambda^2, \psi) = 0$  ( et donc  $\nu_k \simeq \widetilde{\nu_k}$  ) pour tout  $1 \leqslant k \leqslant \nu$ . De plus, pour tous  $1 \leqslant k < k' \leqslant \nu$ ,  $\nu_k \not\simeq \nu_{k'}$ .

On note  $M = \left(\prod_{i=1}^t G_{d_i}^{\mathfrak{m}_i + \mathfrak{n}_i} \times \prod_{j=1}^u G_{e_j}^{\mathfrak{p}_j} \times \prod_{k=1}^{\mathfrak{v}} G_{f_k}^{\mathfrak{q}_k}\right) / Z_{2\mathfrak{n}}$ . Alors  $\pi = \operatorname{Ind}_M^{PG_{2\mathfrak{n}}}(\tau)$ pour une certaine représentation  $\tau$  de M.

On note  $X^*(M)$  le groupe des caractères algébriques de M. On note  $\mathcal{A} \subset \prod_{i=1}^t (i\mathbb{R})^{m_i+n_i} \times \mathbb{R}$  $\prod_{i=1}^{\mathfrak{u}}(i\mathbb{R})^{\mathfrak{p}_{i}}\times\prod_{k=1}^{\mathfrak{v}}(i\mathbb{R})^{\mathfrak{q}_{k}}=(i\mathbb{R})_{M}$  qui est l'hyperplan défini par la condition que la somme des coordonnées est nulle.

On équipe  $(i\mathbb{R})_M$  du produit des mesures de Lebesgue sur  $i\mathbb{R}$  et A de la mesure de Haar telle que la mesure quotient sur  $(i\mathbb{R})_M/A \simeq i\mathbb{R}$  soit la mesure de Lebesgue. L'isomorphisme local  $\chi \otimes \alpha \in X^*(M) \otimes i\mathbb{R}/(\frac{2i\pi}{\log(q_F)})\mathbb{Z} \mapsto |\chi|_F^\alpha \in \widehat{A_M}$  préserve

localement les mesures, où l'on équipe  $\widehat{A_M}$  de la mesure  $\left(\frac{2\pi}{\log(\mathfrak{q}_F)}\right)^{\dim(A_M)}$ 

Dans la suite, on notera les coordonnées de la manière suivante :

- $x_{i}(\lambda) = (x_{i,1}(\lambda), ..., x_{i,m_{i}}(\lambda), \widetilde{x_{i,1}}(\lambda), ..., \widetilde{x_{i,n_{i}}}(\lambda)) \in (i\mathbb{R})^{m_{i}} \times (i\mathbb{R})^{n_{i}},$
- $--y_{\mathfrak{j}}(\lambda)=(y_{\mathfrak{j},1}(\lambda),...,y_{\mathfrak{j},p_{\mathfrak{j}}}(\lambda))\in (\mathfrak{i}\mathbb{R})^{p_{\mathfrak{j}}},$
- $--z_{\mathbf{k}}(\lambda)=(z_{\mathbf{k},1}(\lambda),...,z_{\mathbf{k},q_{\mathbf{k}}}(\lambda))\in (i\mathbb{R})^{q_{\mathbf{k}}},$

pour tout  $\lambda \in \mathcal{A}$ .

On a un isomorphisme  $\mathcal{A} \simeq X^*(M) \otimes i\mathbb{R}$  donné par  $\lambda \mapsto |\det|^{\lambda}$ , où l'on note  $|\det|^{\lambda} = \prod_{i=1}^t \prod_{l=1}^{m_i} |\det|^{\frac{x_{i,l}(\lambda)}{d_i}} |\det|^{\frac{x_{i,l}(\lambda)}{d_i}} \times \prod_{j=1}^u \prod_{l=1}^{p_j} |\det|^{\frac{y_{j,l}(\lambda)}{e_j}} \times \prod_{k=1}^v \prod_{l=1}^{q_k} |\det|^{\frac{z_{k,l}(\lambda)}{f_k}}.$ On dispose alors d'une application  $\lambda \in \mathcal{A} \mapsto \pi_{\lambda} \in \mathsf{Temp}(\mathsf{PG}_{2n})$ , o

$$(71) \quad \pi_{\lambda} = \left( \underset{i=1}{\overset{t}{\underset{l=1}{\times}}} \left( \underset{l=1}{\overset{m_{i}}{\underset{l=1}{\times}}} \tau_{i} \otimes |\det|^{\frac{x_{i,l}(\lambda)}{d_{i}}} \right) \times \left( \underset{l=1}{\overset{n_{i}}{\underset{i}{\times}}} \widetilde{\tau_{i}} \otimes |\det|^{\frac{x_{i,l}(\lambda)}{d_{i}}} \right) \right) \\ \times \left( \underset{j=1}{\overset{u}{\underset{l=1}{\times}}} \mu_{j} \otimes |\det|^{\frac{y_{j,l}(\lambda)}{e_{j}}} \right) \times \left( \underset{k=1}{\overset{n_{i}}{\underset{l=1}{\times}}} v_{k} \otimes |\det|^{\frac{z_{k,l}(\lambda)}{f_{k}}} \right).$$

Cette dernière induit un homéomorphisme  $U \simeq V/W(PG_{2n}, \tau)$ , où V est un voisinage de 0 dans  $\mathcal{A}$  et  $W(PG_{2n}, \tau)$  est le sous-groupe de  $W(PG_{2n}, M)$  fixant la

$$(72) \qquad \int_{\mathsf{U}} \varphi(\pi) \gamma(s,\pi,\Lambda^2,\psi)^{-1} d\mu_{\mathsf{PG}_{2\pi}}(\pi) = \int_{\mathsf{U}} \varphi(\pi) \frac{\gamma^*(0,\pi,\overline{\mathsf{Ad}},\psi)}{|\mathsf{S}_{\pi}| \gamma(s,\pi,\Lambda^2,\psi)} d\pi$$

d'après la relation 66. Du choix des mesures  $d\pi$  sur  $Temp(PG_{2n})$  et  $d\lambda$  sur  $\mathcal{A}$ , cette intégrale est égale à

$$(73) \qquad \frac{1}{|W(\mathsf{PG}_{2n},\tau)|} \left(\frac{\log(\mathsf{q})}{2\pi}\right)^{\dim(\mathcal{A})} \int_{V} \varphi(\pi_{\lambda}) \frac{\gamma^{*}(0,\pi_{\lambda},\overline{\mathsf{Ad}},\psi)}{|S_{\pi_{\lambda}}|\gamma(s,\pi_{\lambda},\Lambda^{2},\psi)} d\lambda.$$

De plus, on a

$$|S_{\pi_{\lambda}}| = \prod_{i=1}^{t} d_{i}^{m_{i} + n_{i}} \prod_{j=1}^{u} e_{j}^{p_{j}} \prod_{k=1}^{v} f_{k}^{q_{k}}.$$

On notera ce produit P dans la suite.

On en déduit l'égalité suivante :

$$(75) \quad \begin{aligned} \int_{\mathsf{Temp}(\mathsf{PG}_{2n})} & \varphi(\pi) \gamma(s,\pi,\Lambda^2,\psi)^{-1} d\mu_{\mathsf{PG}_{2n}}(\pi) = \\ & \frac{1}{|W(\mathsf{PG}_{2n},\tau)| \mathsf{P}} \left(\frac{\log(\mathsf{q})}{2\pi}\right)^{\dim(\mathcal{A})} \int_{\mathcal{A}} \phi(\lambda) \frac{\gamma^*(0,\pi_\lambda,\overline{\mathrm{Ad}},\psi)}{\gamma(s,\pi_\lambda,\Lambda^2,\psi)} d\lambda, \end{aligned}$$

où  $\phi(\lambda) = \phi(\pi_{\lambda})$  si  $\lambda \in V$  et 0 sinon. La fonction  $\phi$  est  $W(PG_{2n}, \tau)$ -invariante à support compact.

Décrivons maintenant la forme des facteurs  $\gamma$ , on aura besoin des propriétés de ces derniers.

Propriété 3.1. Les facteurs  $\gamma$  vérifient les propriétés suivantes :

- $\gamma(s, \pi_1 \times \pi_2, Ad) = \gamma(s, \pi_1, Ad)\gamma(s, \pi_2, Ad)\gamma(s, \pi_1 \times \widetilde{\pi_2})\gamma(s, \widetilde{\pi_1} \times \pi_2),$
- $\gamma(s, \pi | \det|^x, Ad) = \gamma(s, \pi, Ad),$
- $-\gamma(s,\pi,Ad)$  a un zéro simple en s=0,
- $\gamma(s, \pi_1 \times \pi_2, \Lambda^2) = \gamma(s, \pi_1, \Lambda^2) \gamma(s, \pi_2, \Lambda^2) \gamma(s, \pi_1 \times \pi_2),$
- $-\gamma(s,\pi|\det|^x,\Lambda^2)=\gamma(s+2x,\pi,\Lambda^2),$
- $\gamma(s, \pi, \Lambda^2)$  a au plus un zéro simple en s = 0 et  $\gamma(0, \pi, \Lambda^2) = 0$  si et seulement si  $\pi$  est dans l'image de l'application de transfert T,

pour tous  $x \in \mathbb{C}$ ,  $\pi \in \Pi_2(G_m)$  et  $\pi_1, \pi_2 \in \text{Temp}(G_m)$ .

On en déduit que

$$\begin{split} & (76) \\ & \gamma^*(0,\pi_{\lambda},\overline{Ad},\psi) = \left(\prod_{i=1}^t \prod_{1\leqslant l\neq l'\leqslant m_i} (\frac{x_{i,l}(\lambda)-x_{i,l'}(\lambda)}{d_i}) \prod_{1\leqslant l\neq l'\leqslant n_i} (\frac{\widetilde{x_{i,l}}(\lambda)-\widetilde{x_{i,l'}}(\lambda)}{d_i}) \right) \\ & \left(\prod_{j=1}^u \prod_{1\leqslant l\neq l'\leqslant p_j} (\frac{y_{j,l}(\lambda)-y_{j,l'}(\lambda)}{e_j}) \right) \left(\prod_{k=1}^v \prod_{1\leqslant l\neq l'\leqslant q_k} (\frac{z_{k,l}(\lambda)-z_{k,l'}(\lambda)}{f_k}) \right) F(\lambda), \end{split}$$

où F est une fonction  $W(PG_{2n}, \tau)$ -invariante  $C^{\infty}$  qui ne s'annule pas sur le voisinage V (quitte à rétrécir V), il s'agit d'un produit de facteur  $\gamma$  ne s'annulant pas sur V.

De même, on a

$$\begin{split} \gamma(s,\pi_{\lambda},\Lambda^2,\psi)^{-1} &= \left( \prod_{i=1}^t \prod_{\substack{1\leqslant l\leqslant m_i\\1\leqslant l'\leqslant n_i}} (s+\frac{x_{i,l}(\lambda)+\widetilde{x_{i,l'}}(\lambda)}{d_i})^{-1} \right) \\ \left( \prod_{j=1}^u \prod_{1\leqslant l< l'\leqslant p_j} (s+\frac{y_{j,l}(\lambda)+y_{j,l'}(\lambda)}{e_j})^{-1} \right) \left( \prod_{k=1}^v \prod_{1\leqslant l\leqslant l'\leqslant q_k} (s+\frac{z_{k,l}(\lambda)+z_{k,l'}(\lambda)}{f_k})^{-1} \right) G(2\lambda+s), \end{split}$$

où la fonction G est une fonction  $W(\mathsf{PG}_{2n},\tau)$ -invariante méromorphe sur  $\mathcal{A}\otimes\mathbb{C}$  et n'a pas de pôle sur  $\frac{1}{2}V + \mathcal{H}$  (quitte à rétrécir V); ici  $\mathcal{H} = \{z \in \mathbb{C}, Re(z) > 0\} \cup \{0\}$ s'injecte dans  $\mathcal{A} \otimes \mathbb{C}$  par l'application  $\mathbf{s} \in \mathcal{H} \mapsto \lambda_{\mathbf{s}} \in \mathcal{A} \otimes \mathbb{C}$  dont les coordonnées sont  $x_i(\lambda_s) = d_i(s, ..., s), y_i(\lambda_s) = e_i(s, ..., s)$  et  $z_k(\lambda_s) = f_k(s, ..., s)$ .

On énonce maintenant le résultat fondamental de [4], qui permet d'obtenir la proposition pour la représentation d'Asai. En reprenant les notations de [4], on écrit

$$\phi(\lambda)\frac{\gamma^*(0,\pi_\lambda,\overline{Ad},\psi)}{\gamma(s,\pi_\lambda,\Lambda^2,\psi)} = \phi_s(\lambda)\prod_{i=1}^t P_{\mathfrak{m}_i,\mathfrak{n}_i,s}(\frac{x_i(\lambda)}{d_i})\prod_{i=1}^u Q_{\mathfrak{p}_j,s}(\frac{y_j(\lambda)}{e_j})\prod_{i=1}^v R_{\mathfrak{q}_k,s}(\frac{z_k(\lambda)}{f_k}),$$

où  $\varphi_s(\lambda) = \varphi(\lambda)F(\lambda)G(2\lambda + s)$ . De plus,  $\varphi_s$  est  $W(PG_{2n}, \tau)$ -invariante à support compact. Les lettres P, Q, R désignent des fractions rationnelles qui apparaissent dans le quotient des facteurs  $\gamma$  (voir [4, section 3]).

**Proposition 3.3** (Beuzart-Plessis [4]). La limite

$$(79) \quad \lim_{s\to 0^+}\frac{ns}{|W|}\int_{\mathcal{A}}\phi_s(\lambda)\prod_{i=1}^t P_{\mathfrak{m}_i,\mathfrak{n}_i,s}(\frac{x_i(\lambda)}{d_i})\prod_{i=1}^u Q_{\mathfrak{p}_j,s}(\frac{y_j(\lambda)}{e_j})\prod_{i=1}^\nu R_{q_k,s}(\frac{z_k(\lambda)}{f_k})d\lambda$$

est nulle si  $m_i \neq n_i$  pour un certain i ou si l'un des  $p_i$  est impair. De plus, dans le cas contraire, elle est égale à

$$\frac{D(2\pi)^{N-1}2^{-c}}{|W'|}$$

$$\int_{\mathcal{A}'} \lim_{s \to 0^+} \phi_s(\lambda') s^N \prod_{i=1}^t P_{\mathfrak{m}_i,\mathfrak{n}_i,s}(\frac{x_i(\lambda')}{d_i}) \prod_{j=1}^u Q_{\mathfrak{p}_j,s}(\frac{y_j(\lambda')}{\varepsilon_j}) \prod_{i=1}^v R_{\mathfrak{q}_k,s}(\frac{z_k(\lambda')}{f_k}) d\lambda';$$

$$- D = \prod_{i=1}^{t} d_i^{n_i} \prod_{j=1}^{u} e_j^{\frac{r_j}{2}} \prod_{k=1}^{v} f_k^{\lceil \frac{q_k}{2} \rceil},$$

$$- N = \sum_{i=1}^{t} n_i + \sum_{i=1}^{u} \frac{p_i}{2} + \sum_{k=1}^{v} \left\lceil \frac{q_k}{2} \right\rceil,$$

 $\begin{array}{l} - D = \prod_{i=1}^t d_i^{n_i} \prod_{j=1}^u e_j^{\frac{p_j}{2}} \prod_{k=1}^v f_k^{\lceil \frac{q_k}{2} \rceil}, \\ - \textit{c est le cardinal des } 1 \leqslant k \leqslant t \textit{ tel que } q_k \equiv 1 \mod 2, \\ - N = \sum_{i=1}^t n_i + \sum_{j=1}^u \frac{p_j}{2} + \sum_{k=1}^v \lceil \frac{q_k}{2} \rceil, \\ - \textit{W et W' sont définis de manière intrinsèque dans 3.3, W est isomorphe à la distribution de manière de la distribution de manière de la distribution de la distri$  $W(PG_{2n}, \tau)$  et W' est isomorphe à  $W(SO(2n+1), \sigma)$  (defini plus loin).

De plus, A' est le sous-espace de A défini par les relations :

$$-x_{i,l}(\lambda) + \widetilde{x_{i,l}}(\lambda) = 0 \text{ pour tous } 1 \leqslant i \leqslant t \text{ et } 1 \leqslant l \leqslant n_i,$$

$$-y_{j,l}(\lambda) + y_{j,p_j+1-l}(\lambda) = 0 \text{ pour tous } 1 \leqslant j \leqslant u \text{ et } 1 \leqslant l \leqslant \frac{p_j}{2},$$

$$\begin{array}{l} -\ y_{j,l}(\lambda) + y_{j,p_j+1-l}(\lambda) = 0 \ \textit{pour tous} \ 1 \leqslant j \leqslant u \ \textit{et} \ 1 \leqslant l \leqslant \frac{p_j}{2}, \\ -\ z_{k,l}(\lambda) + z_{k,q_k+1-l}(\lambda) = 0 \ \textit{pour tous} \ 1 \leqslant k \leqslant v \ \textit{et} \ 1 \leqslant l \leqslant \lceil \frac{q_k}{2} \rceil. \end{array}$$

On équipe A' de la mesure Lebesgue provenant de l'isomorphisme

(81) 
$$\mathcal{A}' \simeq \prod_{i=1}^{t} (i\mathbb{R})^{n_i} \prod_{j=1}^{u} (i\mathbb{R})^{\frac{p_j}{2}} \prod_{k=1}^{\nu} (i\mathbb{R})^{\lfloor \frac{q_k}{2} \rfloor}$$

 $\mathit{qui\ envoie}\ (x_i(\lambda),y_j(\lambda),z_k(\lambda))\ \mathit{sur}\ ((x_{i,1},...,x_{i,n_i}),(y_{j,1},...,y_{j,\frac{p_j}{2}}),(z_{k,1},...,z_{k,\lceil\frac{q_k}{2}\rceil})).$ 

Supposons tout d'abord que  $\pi$  n'est pas de la forme  $T(\sigma)$  pour un certain  $\sigma \in \text{Temp}(SO(2n+1))/\text{Stab}$ . D'après la caractérisation 67, il existe  $1 \leqslant i \leqslant r$  tel que  $m_i \neq n_i$  ou  $p_j$  est impair (on vérifie aisément que les autres cas se mettent sous la forme qui apparait dans 67). Alors en prenant U suffisamment petit, on peut supposer que U ne rencontre pas l'image de l'application de transfert T. Autrement dit, le terme de droite de la proposition est nul; d'après 3.3, le terme de gauche l'est aussi

Supposons maintenant qu'il existe  $\sigma \in Temp(SO(2n+1))/Stab$  tel que  $\pi = T(\sigma)$ . Alors  $m_i = n_i$  pour tout  $1 \le i \le t$  et les  $p_i$  sont pairs. De plus, on peut écrire

(82) 
$$\sigma = \left( \underset{i=1}{\overset{t}{\times}} \tau_i^{\times n_i} \times \underset{j=1}{\overset{u}{\times}} \mu_j^{\times \frac{p_j}{2}} \times \underset{k=1}{\overset{v}{\times}} \nu_k^{\times \lfloor \frac{q_k}{2} \rfloor} \right) \rtimes \sigma_0,$$

où  $\sigma_0$  est une représentation de  $\mathsf{SO}(2\mathfrak{m}+1)$  pour un certain  $\mathfrak{m}$  tel que

(83) 
$$\mathsf{T}(\sigma_0) = \sum_{\substack{k=1 \\ q_k \equiv 1 \mod 2}}^{\nu} \nu_k.$$

On note  $L=\prod_{i=1}^t G_{d_i}^{n_i}\prod_{j=1}^u G_{e_j}^{\frac{p_j}{2}}\prod_{k=1}^\nu G_{f_k}^{\lfloor\frac{q_k}{2}\rfloor}\times SO(2\mathfrak{m}+1).$  On a  $\sigma=Ind_L^{SO(2\mathfrak{n}+1)}(\Sigma),$  où  $\Sigma\in\Pi_2(L).$  Le groupe W' de la proposition 3.3 est isomorphe à  $W(SO(2\mathfrak{n}+1),\sigma),$  où  $W(SO(2\mathfrak{n}+1),\sigma)$  est le sous-groupe de  $W(SO(2\mathfrak{n}+1),L)$  fixant la classe d'isomorphisme de  $\sigma.$ 

Comme précédemment,  $X^*(L) \otimes i\mathbb{R}$  est isomorphe à  $\mathcal{A}'$ . On en déduit une application  $\lambda' \in \mathcal{A}' \mapsto \sigma_{\lambda'} \in \mathsf{Temp}(\mathsf{SO}(2n+1))$ , avec

$$(84) \qquad \sigma_{\lambda'} = \left( \bigotimes_{i=1}^{t} \bigotimes_{l=1}^{n_{i}} \tau_{i} \otimes |\det|^{\frac{x_{i,1}(\lambda')}{d_{i}}} \right) \times \left( \bigotimes_{j=1}^{u} \bigotimes_{l=1}^{\frac{p_{j}}{2}} \mu_{j} \otimes |\det|^{\frac{y_{j,1}(\lambda')}{e_{j}}} \right) \\ \times \left( \bigotimes_{k=1}^{v} \bigotimes_{l=1}^{\lfloor \frac{q_{k}}{2} \rfloor} \nu_{k} \otimes |\det|^{\frac{z_{k,1}(\lambda')}{f_{k}}} \right) \rtimes \sigma_{0}.$$

De plus, d'après 67, pour  $\lambda \in V$ ,  $\pi_{\lambda} \in T(SO(2n+1)/Stab)$  si et seulement si  $\lambda \in \mathcal{A}'$ ; quitte à rétrécir V. Dans ce cas  $\pi_{\lambda} = T(\sigma_{\lambda})$ .

En utilisant cette caractérisation et la définition de la fonction  $\varphi$  (équation 75), on obtient

$$(85) \qquad \int_{\mathsf{Temp}(\mathsf{SO}(2n+1))/\mathsf{Stab}} \Phi(\mathsf{T}(\sigma)) \frac{\gamma^*(0,s,\mathsf{Ad},\psi)}{|\mathsf{S}_{\sigma}|} d\sigma$$

$$= \frac{1}{|W'|} \left(\frac{\log(\mathsf{q}_{\mathsf{F}})}{2\pi}\right)^{\dim(\mathcal{A}')} \int_{\mathcal{A}'} \Phi(\mathsf{T}(\sigma_{\lambda'})) \frac{\gamma^*(0,\sigma_{\lambda'},\mathsf{Ad},\psi)}{|\mathsf{S}_{\sigma_{\lambda'}}|} d\lambda'$$

$$= \frac{1}{|W'|} \left(\frac{\log(\mathsf{q}_{\mathsf{F}})}{2\pi}\right)^{\dim(\mathcal{A}')} \int_{\mathcal{A}'} \phi(\lambda') \frac{\gamma^*(0,\sigma_{\lambda'},\mathsf{Ad},\psi)}{|\mathsf{S}_{\sigma_{\lambda'}}|} d\lambda'.$$

De plus,

(86) 
$$|S_{\sigma_{\lambda'}}| = \prod_{i=1}^{t} d_{i}^{n_{i}} \prod_{j=1}^{u} e_{j}^{\frac{p_{j}}{2}} \prod_{k=1}^{\nu} f_{k}^{\lfloor \frac{q_{k}}{2} \rfloor} |S_{\sigma_{0}}| = 2^{c} \frac{P}{D}.$$

d'après les notations de la proposition 3.3 et la relation 83. D'autre part, d'après la proposition 3.3 et l'équation 75, on a

$$\begin{split} &\lim_{s\to 0^+} n\gamma(s,1,\psi) \int_{\mathsf{Temp}(\mathsf{PG}_{2n})} \varphi(\pi)\gamma(s,\pi,\lambda^2,\psi)^{-1} d\mu_{\mathsf{PG}_{2n}}(\pi) = \frac{D(2\pi)^{N-1}2^{-c}\gamma^*(0,1,\psi)log(\mathfrak{q}_{\mathsf{F}})}{|W'|\mathsf{P}} \\ &\left(\frac{log(\mathfrak{q}_{\mathsf{F}})}{2\pi}\right)^{\dim(\mathcal{A})} \int_{\mathcal{A}'} \lim_{s\to 0^+} \phi_s(\lambda') s^N \prod_{i=1}^t \mathsf{P}_{\mathfrak{m}_i,\mathfrak{n}_i,s}(\frac{x_i(\lambda')}{d_i}) \prod_{i=1}^u \mathsf{Q}_{\mathfrak{p}_j,s}(\frac{y_j(\lambda')}{e_j}) \prod_{i=1}^v \mathsf{R}_{\mathfrak{q}_k,s}(\frac{z_k(\lambda')}{f_k}) d\lambda'. \end{split}$$

Cette dernière intégrale est égale à

(88) 
$$\int_{\mathcal{A}'} \phi(\lambda') \lim_{s \to 0^+} s^{N} \frac{\gamma^*(0, \pi_{\lambda'}, \overline{Ad}, \psi)}{\gamma(s, \pi_{\lambda'}, \Lambda^2, \psi)} d\lambda'.$$

De plus, on remarque que  $s\mapsto \gamma(s,\pi_{\lambda'},\Lambda^2,\psi)^{-1}$  a un pôle d'ordre N en s=0. Notre membre de gauche est donc égal à

$$(89) \qquad \frac{D\left(2\pi\right)^{\mathsf{N}-1}2^{-\mathsf{c}}\mathsf{log}(\mathfrak{q}_{\mathsf{F}})}{|W'|\mathsf{P}}\left(\frac{\mathsf{log}(\mathfrak{q})}{2\pi}\right)^{\mathsf{dim}(\mathcal{A})}\int_{\mathcal{A}'}\phi(\lambda')\frac{\gamma^{*}(0,\sigma_{\lambda'},Ad,\psi)}{\mathsf{log}(\mathfrak{q}_{\mathsf{F}})^{\mathsf{N}}}d\lambda';$$

On a utilisé les relations  $\gamma^*(0,1,\psi)\gamma^*(0,\pi_{\lambda'},\overline{Ad},\psi)=\gamma^*(0,\pi_{\lambda'},Ad,\psi)$  et

(90) 
$$\frac{\gamma(s, \mathsf{T}(\sigma_{\lambda'}), \mathsf{Ad}, \psi)}{\gamma(s, \mathsf{T}(\sigma_{\lambda'}), \Lambda^2, \psi)} = \gamma(s, \sigma_{\lambda'}, \mathsf{Ad}, \psi).$$

Dans l'expression 89, le facteur  $\frac{\log(\mathfrak{q}_F)}{2\pi}$  apparait avec un exposant  $\dim(\mathcal{A})$  –  $N+1=\dim(\mathcal{A}')$ ; on en déduit que 89 est égal au membre de droite 85, d'après l'égalité 86.

## 4. Une formule d'inversion de Fourier

On note  $H_n$  le sous-groupe des matrices de la forme  $\sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_n^{-1}$  où X est dans  $M_n$  et g dans  $G_n$ . On pose  $H_n^P = H_n \cap P_{2n}$ . On note  $\theta$  le caractère sur  $H_n$  qui envoie  $\sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_n^{-1}$  sur  $\psi(\mathsf{Tr}(X))$ .

On équipe  $H_n$ ,  $H_n\cap N_{2n}\setminus H_n$  et  $H_n^P\cap N_{2n}\setminus H_n^P$  des mesures suivantes :

$$- \int_{\mathsf{H}_n} \mathsf{f}(s) ds = \int_{\mathsf{G}_n} \int_{\mathsf{M}_n} \mathsf{f}\left(\sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_n^{-1} \right) dX dg, \quad \mathsf{f} \in \mathbb{S}(\mathsf{G}_{2n}),$$

$$- \int_{\mathsf{H}_{\mathfrak{n}} \cap \mathsf{N}_{2\mathfrak{n}} \setminus \mathsf{H}_{\mathfrak{n}}} \mathsf{f}(\xi) d\xi = \int_{\mathsf{N}_{\mathfrak{n}} \setminus \mathsf{G}_{\mathfrak{n}}} \int_{\mathsf{V}_{\mathfrak{n}}} \mathsf{f} \left( \sigma_{\mathfrak{n}} \begin{pmatrix} 1 & \mathsf{X} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_{\mathfrak{n}}^{-1} \right) d\mathsf{X} dg, \quad \mathsf{f} \in \mathcal{S}(\mathsf{G}_{2\mathfrak{n}}) \text{ invariante à gauche par } \mathsf{N}_{2\mathfrak{n}},$$

$$- \int_{H_n^P \cap N_{2n} \setminus H_n^P} f(\xi) d\xi = \int_{N_n \setminus P_n} \int_{V_n} f\left(\sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_n^{-1} \right) dX dg, \quad f \in \mathcal{S}(G_{2n}) \text{ invariante à gauche par } N_{2n}.$$

**Proposition 4.1.** *Soit*  $f \in S(G_{2n})$ , *alors on a* 

$$(91) \int_{\mathsf{H}_n} \mathsf{f}(s) \theta(s)^{-1} ds = \int_{\mathsf{H}_n^p \cap \mathsf{N}_{2n} \setminus \mathsf{H}_n^p} \int_{\mathsf{H}_n \cap \mathsf{N}_{2n} \setminus \mathsf{H}_n} W_\mathsf{f}(\xi_\mathfrak{p}, \xi) \theta(\xi)^{-1} \theta(\xi_\mathfrak{p}) d\xi d\xi_\mathfrak{p}.$$

 $où W_f$  est la fonction de  $G_{2n} \times G_{2n}$  définie par

(92) 
$$W_{f}(g_{1}, g_{2}) = \int_{N_{2n}} f(g_{1}^{-1}ug_{2})\psi(u)^{-1}du$$

pour tous  $g_1, g_2 \in G_{2n}$ .

Démonstration. On montre la proposition par récurrence sur n. Pour n = 1,  $\sigma_n$ est trivial,  $H_1 = N_2 Z(G_2)$  et  $H_1^P = N_2$  donc  $H_1^P \cap N_2 \setminus H_1^P$  est trivial. Le membre de droite est alors

$$(93) \qquad \int_{\mathbb{F}^*} W_{\mathbf{f}} \left( 1, \begin{pmatrix} z & 0 \\ 0 & z \end{pmatrix} \right) \mathrm{d}z = \int_{\mathbb{F}^*} \int_{\mathbb{N}_2} \mathbf{f} \left( \mathfrak{u} \begin{pmatrix} z & 0 \\ 0 & z \end{pmatrix} \right) \psi(\mathfrak{u})^{-1} \mathrm{d}\mathfrak{u} \mathrm{d}z.$$

Ce qui est bien l'égalité voulue. Supposons maintenant que n > 1 et que la proposition soit vraie au rang n-1.

Le sous groupe  $\Omega_n$  des matrices de la forme  $\sigma_n \begin{pmatrix} 1 & Y \\ 0 & 1 \end{pmatrix} \begin{pmatrix} h & 0 \\ 0 & h \end{pmatrix} \sigma_n^{-1}$  où Y est une matrice triangulaire inférieure stricte de taille n et  $h \in \overline{B}_n$  le sous-groupe des matrices triangulaires inférieures inversible, s'identifie à un ouvert dense du quotient  $H_n \cap N_{2n} \setminus H_n$ . On injecte  $\Omega_{n-1}$  dans  $\Omega_n$ , en rajoutant des 0 sur la dernière ligne et colonne de Y et voyant h comme un élément de  $\overline{\mathbb{B}}_n$ . On note  $\Omega_n$  l'ensemble  $\mathrm{des\ matrices\ de\ la\ forme}\ \sigma_{\mathfrak{n}} \begin{pmatrix} 1 & \widetilde{Y} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \widetilde{\mathfrak{h}} & 0 \\ 0 & \widetilde{\mathfrak{h}} \end{pmatrix} \sigma_{\mathfrak{n}}^{-1} \ où\ \widetilde{Y} \ \mathrm{est\ de\ la\ forme}\ \begin{pmatrix} 0_{\mathfrak{n}-1} & 0 \\ \widetilde{y} & 0 \end{pmatrix}$ avec  $\widetilde{y} \in F^{n-1}$  et  $\widetilde{h}$  de la forme  $\begin{pmatrix} 1_{n-1} & 0 \\ \widetilde{l} & \widetilde{l}_n \end{pmatrix}$  avec  $\widetilde{l} \in F^{n-1}$  et  $\widetilde{l}_n \in F^*$ . Dans la suite, on fera l'identification de  $F^{n-1} \times F^{n-1} \times F^*$  et  $\widetilde{\Omega}_n$  à travers l'isomorphisme  $(\widetilde{\mathbf{y}},\widetilde{\mathbf{l}},\widetilde{\mathbf{l}}_{\mathbf{n}}) \in \mathsf{F}^{\mathbf{n}-1} \times \mathsf{F}^{\mathbf{n}-1} \times \mathsf{F}^* \mapsto \sigma_{\mathbf{n}} \begin{pmatrix} 1 & \widetilde{\mathsf{Y}} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \widetilde{\mathsf{h}} & 0 \\ 0 & \widetilde{\mathsf{h}} \end{pmatrix} \sigma_{\mathbf{n}}^{-1} \in \widetilde{\Omega}_{\mathbf{n}} \text{ où } \widetilde{\mathsf{Y}} = \begin{pmatrix} 0_{\mathbf{n}-1} & 0 \\ \widetilde{\mathsf{y}} & 0 \end{pmatrix}$ 

$$\mathrm{et}\ \widetilde{h} = \begin{pmatrix} 1_{\mathfrak{n}-1} & 0 \\ \widetilde{\mathfrak{l}} & \widetilde{\mathfrak{l}}_{\mathfrak{n}} \end{pmatrix} . \ \mathrm{On} \ \mathrm{en} \ \mathrm{d\'eduit} \ \mathrm{que} \ \Omega_{\mathfrak{n}} = \Omega_{\mathfrak{n}-1}\widetilde{\Omega}_{\mathfrak{n}}.$$

De même, on dispose d'une décomposition,  $\Omega_n^P = \Omega_{n-1}^P \widetilde{\Omega}_n^P$ , où  $\Omega_n^P$  est l'ensemble des matrices de  $\Omega_n$  avec  $h \in P_n$  et  $\widetilde{\Omega}_n^P$  est l'ensemble des matrices de la forme  $\sigma_{\mathfrak{n}}\begin{pmatrix}1 & \widetilde{\mathsf{Z}}\\0 & 1\end{pmatrix}\begin{pmatrix}\widetilde{\mathfrak{p}} & 0\\0 & \widetilde{\mathfrak{p}}\end{pmatrix}\sigma_{\mathfrak{n}}^{-1} \text{ où } \widetilde{\mathsf{Y}} \text{ est de la forme } \begin{pmatrix}0_{\mathfrak{n}-1} & 0\\\widetilde{z} & 0\end{pmatrix} \text{ avec } \widetilde{z} \in \mathsf{F}^{\mathfrak{n}-1} \text{ et } \widetilde{\mathfrak{p}} \text{ de la }$ 

$$\text{forme} \begin{pmatrix} \mathbf{1}_{n-2} & \mathbf{0} & \mathbf{0} \\ \widetilde{\mathbf{l}} & \widetilde{\mathbf{l}}_{n-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \text{ avec } \widetilde{\mathbf{l}} \in \mathsf{F}^{n-2} \text{ et } \widetilde{\mathbf{l}}_{n-1} \in \mathsf{F}^*. \text{ De plus, } \Omega^\mathsf{P}_n \text{ s'identifie à un }$$

ouvert dense du quotient  $H_n^P \cap N_{2n} \setminus H_n^P$ . Dans la suite, on fera l'identification de  $F^{n-1}\times F^{n-2}\times F^* \text{ et } \widetilde{\Omega}^P_n \text{ à travers l'isomorphisme } (\widetilde{z},\widetilde{l},\widetilde{l}_{n-1}) \in F^{n-1}\times F^{n-2}\times F^* \mapsto$  $\sigma_n\begin{pmatrix}1 & \widetilde{\mathsf{Z}}\\0 & 1\end{pmatrix}\begin{pmatrix}\widetilde{\mathsf{p}} & 0\\0 & \widetilde{\mathsf{p}}\end{pmatrix}\sigma_n^{-1}\in\widetilde{\Omega}_n^P\ \text{où}\ \widetilde{\mathsf{Z}}=\begin{pmatrix}0_{n-1} & 0\\\widetilde{\mathsf{z}} & 0\end{pmatrix}\ \text{et}\ \widetilde{\mathsf{p}}=\begin{pmatrix}1_{n-1} & 0\\\widetilde{\mathsf{l}} & \widetilde{\mathsf{l}}_n\end{pmatrix}.$ 

On équipe  $\Omega_n$ ,  $\widetilde{\Omega}_n$ ,  $\Omega_n^P$ ,  $\widetilde{\Omega}_n^P$  des mesures

$$-\int_{\Omega_{\mathfrak{n}}} f(\xi) d\xi = \int_{\overline{B}_{\mathfrak{n}}} \int_{V_{\mathfrak{n}}} f\left(\sigma_{\mathfrak{n}} \begin{pmatrix} 1 & Y \\ 0 & 1 \end{pmatrix} \begin{pmatrix} h & 0 \\ 0 & h \end{pmatrix} \sigma_{\mathfrak{n}}^{-1}\right) dY dh, \quad f \in \mathcal{S}(G_{2\mathfrak{n}}),$$

$$- \int_{\widetilde{\Omega}_n} f(\widetilde{\xi}) d\widetilde{\xi} = \int_{F_{n-1} \times F^*} \int_{F^{n-1}} f \left( \sigma_n \begin{pmatrix} 1 & \widetilde{Y} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \widetilde{h} & 0 \\ 0 & \widetilde{h} \end{pmatrix} \sigma_n^{-1} \right) d\widetilde{Y} d\widetilde{h}, \quad f \in \mathcal{S}(G_{2n}),$$

$$\begin{split} & - \int_{\Omega_n^P} f(\xi_p) d\xi_p = \int_{\overline{B}_n \cap P_n} \int_{V_n} f\left(\sigma_n \begin{pmatrix} 1 & Z \\ 0 & 1 \end{pmatrix} \begin{pmatrix} p & 0 \\ 0 & p \end{pmatrix} \sigma_n^{-1} \right) dZ dp, \quad f \in \mathbb{S}(\mathsf{G}_{2n}), \\ & - \int_{\widetilde{\Omega}_n^P} f(\widetilde{\xi}_p) d\widetilde{\xi}_p = \int_{\mathsf{F}_{n-2} \times \mathsf{F}^*} \int_{\mathsf{F}^{n-1}} f\left(\sigma_n \begin{pmatrix} 1 & \widetilde{Z} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \widetilde{p} & 0 \\ 0 & \widetilde{p} \end{pmatrix} \sigma_n^{-1} \right) d\widetilde{Y} d\widetilde{h}, \quad f \in \mathbb{S}(\mathsf{G}_{2n}). \end{split}$$

On utilise ces décompositions pour écrire le membre de droite de la proposition sous la forme

$$(94) \qquad \int_{\widetilde{\Omega}_{p}^{p}} \int_{\Omega_{p-1}^{p}} \int_{\widetilde{\Omega}_{p}} \int_{\Omega_{p-1}} W_{f}(\xi_{p}'\widetilde{\xi}_{p},\xi'\widetilde{\xi}) |\det \xi_{p}'\xi'|^{-1} d\xi' d\widetilde{\xi} d\xi_{p}' d\widetilde{\xi}_{p},$$

On a choisi les représentants des matrices Y et  $\widetilde{Y}$  de sorte que le caractère  $\theta$  soit trivial.

On fixe  $\widetilde{\xi}_p \in \widetilde{\Omega}_{n-1}$  et  $\widetilde{\xi} \in \widetilde{\Omega}_n$ . On pose  $f' = L(\widetilde{\xi}_p)R(\widetilde{\xi})f$ , on a alors

$$(95) \qquad \int_{\Omega_{n-1}^{p}} \int_{\Omega_{n-1}} W_{f}(\xi_{p}'\widetilde{\xi}_{p}, \xi'\widetilde{\xi}) |\det \xi_{p}'\xi'|^{-1} d\xi' d\xi_{p}' = \int_{\Omega_{n-1}^{p}} \int_{\Omega_{n-1}} W_{f'}(\xi_{p}', \xi') |\det \xi_{p}'\xi'|^{-1} d\xi' d\xi_{p}'.$$

De plus,

(96) 
$$W_{f'}(\xi_p', \xi') = \int_{N_{2n-2}} \int_{V} f'(\xi_p'^{-1} v u \xi') \psi(u)^{-1} \psi(v)^{-1} dv du,$$

où V est le sous-groupe des matrices de  $N_{2n}$  avec seulement les deux dernières colonnes non triviales, on dispose donc d'une décomposition  $N_{2n}=N_{2n-2}V$ . On effectue le changement de variable  $\nu\mapsto {\xi'}_p\nu{\xi'}_p^{-1}$ , ce qui donne

$$(97) W_{f'}(\xi_p',\xi') = |\det \xi_p'|^2 \int_{N_{2n-2}} \int_{V} f'(\nu \xi_p'^{-1} u \xi') \psi(u)^{-1} \psi(\nu)^{-1} d\nu du.$$

On note  $\widetilde{f}'(g) = |\det g|^{-1} \int_V f'\left(\nu\begin{pmatrix} g & 0 \\ 0 & I_2 \end{pmatrix}\right) \psi(\nu)^{-1} d\nu$  pour  $g \in G_{2n-2}$ ; alors  $\widetilde{f}' \in \mathcal{S}(G_{2n-2})$ . On obtient ainsi l'égalité

(98) 
$$W_{f'}(\xi_p', \xi') = |\det \xi_p' \xi'| W_{\widetilde{f}'}(\xi_p', \xi').$$

Appliquons l'hypothèse de récurrence,

(99) 
$$\int_{\Omega_{n-1}^{p}} \int_{\Omega_{n-1}} W_{f'}(\xi'_{p}, \xi') |\det \xi'_{p} \xi'|^{-1} d\xi' d\xi'_{p} =$$

$$\int_{\Omega_{n-1}^{p}} \int_{\Omega_{n-1}} W_{\widetilde{f'}}(\xi'_{p}, \xi') d\xi' d\xi'_{p} = \int_{H_{n-1}} \widetilde{f}'(s) \theta(s)^{-1} ds =$$

$$\int_{H_{n-1}} |\det s|^{-1} \int_{V} f(\widetilde{\xi}_{p}^{-1} v s \widetilde{\xi}) \theta(s)^{-1} \psi(v)^{-1} dv ds.$$

Il nous faut maintenant intégrer sur  $\widetilde{\xi}_p$  et  $\widetilde{\xi}$  pour revenir à notre membre de droite. Explicitons l'intégrale sur  $\widetilde{\xi}_p$  en le décomposant sous la forme  $\sigma_n\begin{pmatrix} 1 & \widetilde{Z} \\ 0 & 1 \end{pmatrix}\begin{pmatrix} \widetilde{p} & 0 \\ 0 & \widetilde{p} \end{pmatrix}\sigma_n^{-1}$ . On rappelle que l'on identifie  $F^{n-1}\times F^{n-2}\times F^*$  et  $\widetilde{\Omega}_n^P$  à travers l'isomorphisme  $(\widetilde{z},\widetilde{l},\widetilde{l}_{n-1})\in F^{n-1}\times F^{n-2}\times F^*\mapsto \sigma_n\begin{pmatrix} 1 & \widetilde{Z} \\ 0 & 1 \end{pmatrix}\begin{pmatrix} \widetilde{p} & 0 \\ 0 & \widetilde{p} \end{pmatrix}\sigma_n^{-1}\in \widetilde{\Omega}_n^P$  où  $\widetilde{Z}=\begin{pmatrix} 0_{n-1} & 0 \\ \widetilde{z} & 0 \end{pmatrix}$ 

et 
$$\widetilde{p} = \begin{pmatrix} 1_{n-1} & 0 \\ \widetilde{l} & \widetilde{l}_n \end{pmatrix}$$
. On obtient alors
$$(100)$$

$$\int_{F^{n-2}\times F^*}\int_{F^{n-1}}\int_{\widetilde{\Omega}_n}\int_{H_{n-1}}|\det s|^{-1}\int_V f\left(\sigma_n\begin{pmatrix}\widetilde{p}^{-1}&0\\0&\widetilde{p}^{-1}\end{pmatrix}\begin{pmatrix}1&-\widetilde{Z}\\0&1\end{pmatrix}\sigma_n^{-1}\nu s\widetilde{\xi}\right)\theta(s)^{-1}\psi(\nu)^{-1}d\nu ds d\widetilde{\xi}d\widetilde{Z}d\widetilde{p}.$$

La conjugaison de  $\nu$  par  $\sigma_n^{-1}$  s'écrit sous la forme  $\begin{pmatrix} n_1 & y \\ t & n_2 \end{pmatrix}$  où  $n_1, n_2$  sont dans  $U_n$ , les coefficients de y sont nuls sauf la dernière colonne et t est de la forme  $\begin{pmatrix} 0_{n-1} & * \\ 0 & 0 \end{pmatrix}$ . Le caractère  $\psi(\nu)$  devient après conjugaison  $\psi(\text{Tr}(y) + \text{Ts}(t))$ , où  $\text{Ts}(t) = t_{n-1,n}$ . Les changements de variables  $\widetilde{Z} \mapsto \widetilde{p}\widetilde{Z}\widetilde{p}^{-1}, \ n_1 \mapsto \widetilde{p}n_1\widetilde{p}^{-1}, \ n_2 \mapsto \widetilde{p}n_2\widetilde{p}^{-1}, \ t \mapsto \widetilde{p}t\widetilde{p}^{-1}$  et  $y \mapsto \widetilde{p}y\widetilde{p}^{-1}$  transforme l'intégrale précédente en (101)

$$\begin{split} \int_{F^{n-2}\times F^*} \int_{F^{n-1}} \int_{\widetilde{\Omega}_n} \int_{H_{n-1}} |\det s|^{-1} \int_{\sigma_n^{-1}V\sigma_n} f\left(\sigma_n \begin{pmatrix} 1 & -\widetilde{Z} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} n_1 & y \\ t & n_2 \end{pmatrix} \begin{pmatrix} \widetilde{p}^{-1} & 0 \\ 0 & \widetilde{p}^{-1} \end{pmatrix} \sigma_n^{-1} s \widetilde{\xi} \right) \\ \theta(s)^{-1} \psi(-\mathsf{Tr}(y)) \psi(-\mathsf{Ts}(\widetilde{p}t\widetilde{p}^{-1})) |\det \widetilde{p}|^3 d\left(\begin{matrix} n_1 & y \\ t & n_2 \end{matrix}\right) ds d\widetilde{\xi} d\widetilde{Z} d\widetilde{p}. \end{split}$$

On explicite maintenant l'intégrale sur s ce qui donne que  $\sigma_n^{-1}s\sigma_n$  est de la forme  $\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix}\begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}$  avec X une matrice de taille n dont la dernière ligne et dernière colonne sont nulles et  $g \in G_{n-1}$  vu comme élément de  $G_n$ . Le changement de variable  $X \mapsto \widetilde{p}X\widetilde{p}^{-1}$  donne

$$\begin{split} &\int_{F^{n-2}\times F^*}\int_{F^{n-1}}\int_{\widetilde{\Omega}_n}\int_{M_{n-1}}\int_{G_{n-1}}|\det\widetilde{p}^{-1}g|^{-2}\int_{\sigma_n^{-1}V\sigma_n}\\ (102) &\quad f\left(\sigma_n\begin{pmatrix}1&-\widetilde{Z}\\0&1\end{pmatrix}\begin{pmatrix}n_1&y\\t&n_2\end{pmatrix}\begin{pmatrix}1&X\\0&1\end{pmatrix}\begin{pmatrix}\widetilde{p}^{-1}g&0\\0&\widetilde{p}^{-1}g\end{pmatrix}\sigma_n^{-1}\widetilde{\xi}\right)\\ &\quad \psi(-\text{Tr}(X))\psi(-\text{Tr}(y))\psi(-\text{Ts}(\widetilde{p}t\widetilde{p}^{-1}))|\det\widetilde{p}|d\begin{pmatrix}n_1&y\\t&n_2\end{pmatrix}dgdXd\widetilde{\xi}d\widetilde{Z}d\widetilde{p}. \end{split}$$

On effectue maintenant le changement de variables  $g\mapsto\widetilde{p}g,$  notre intégrale devient alors

$$\begin{split} &\int_{\mathsf{F}^{n-2}\times\mathsf{F}^*} \int_{\mathsf{F}^{n-1}} \int_{\widetilde{\Omega}_n} \int_{\mathsf{M}_{n-1}} |\det \mathsf{g}|^{-2} \int_{\sigma_n^{-1}\mathsf{V}\sigma_n} \\ (103) &\quad \mathsf{f}\left(\sigma_n \begin{pmatrix} 1 & -\widetilde{\mathsf{Z}} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathsf{n}_1 & \mathsf{y} \\ \mathsf{t} & \mathsf{n}_2 \end{pmatrix} \begin{pmatrix} 1 & \mathsf{X} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathsf{g} & 0 \\ 0 & \mathsf{g} \end{pmatrix} \sigma_n^{-1} \widetilde{\mathsf{\xi}} \right) \\ &\quad \psi(-\mathsf{Tr}(\mathsf{X})) \psi(-\mathsf{Tr}(\mathsf{y})) \psi(-\mathsf{Ts}(\widetilde{\mathsf{p}}\mathsf{t}\widetilde{\mathsf{p}}^{-1})) |\det \widetilde{\mathsf{p}}| \mathsf{d} \begin{pmatrix} \mathsf{n}_1 & \mathsf{y} \\ \mathsf{t} & \mathsf{n}_2 \end{pmatrix} \mathsf{d} \mathsf{g} \mathsf{d} \mathsf{X} \mathsf{d} \widetilde{\mathsf{\xi}} \mathsf{d} \widetilde{\mathsf{Z}} \mathsf{d} \widetilde{\mathsf{p}}. \end{split}$$

**Lemme 4.1.** *Soit*  $F \in S(M_n)$ , *alors* 

$$(104) \qquad \int_{\mathsf{F}^{\mathfrak{n}-2}\times\mathsf{F}^*}\int_{\mathsf{Lie}(\mathsf{U}_{\mathfrak{n}})}\mathsf{F}(\mathsf{t})\psi(-\mathsf{Ts}(\widetilde{\mathsf{p}}\mathsf{t}\widetilde{\mathsf{p}}^{-1}))|\det\widetilde{\mathsf{p}}|d\mathsf{t}d\widetilde{\mathsf{p}}=\mathsf{F}(0).$$

On rappelle que l'on identifie  $F^{n-2} \times F^*$  à l'ensemble des matrices de la forme  $\begin{pmatrix} 1_{n-2} & 0 \\ \widetilde{l} & \widetilde{l}_{n-1} \end{pmatrix} \text{ avec } \widetilde{l} \in F^{n-2} \text{ et } \widetilde{l}_n \in F^*.$ 

Démonstration. La mesure  $|\det \widetilde{\mathfrak{p}}|d\widetilde{\mathfrak{p}}$  correspond à la mesure additive sur  $\mathsf{F}^{n-1}$ . En remarquant que  $\mathsf{Ts}(\widetilde{\mathfrak{p}}\mathsf{t}\widetilde{\mathfrak{p}}^{-1})$  n'est autre que le produit scalaire des vecteurs dans  $\mathsf{F}^{n-1}$  correspondant à  $\widetilde{\mathfrak{p}}$  et t, le lemme n'est autre qu'une formule d'inversion de Fourier.

Le lemme précédent nous permet de simplifier notre intégrale en

(105)

$$\begin{split} \int_{\mathsf{F}^{\mathfrak{n}-1}} \int_{\widetilde{\Omega}_{\mathfrak{n}}} \int_{\mathsf{M}_{\mathfrak{n}-1}} |\det g|^{-2} \int_{\sigma_{\mathfrak{n}}^{-1} V_0 \sigma_{\mathfrak{n}}} \mathsf{f} \left( \sigma_{\mathfrak{n}} \begin{pmatrix} 1 & -\widetilde{\mathsf{Z}} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathsf{n}_1 & \mathsf{y} \\ 0 & \mathsf{n}_2 \end{pmatrix} \begin{pmatrix} 1 & \mathsf{X} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathsf{g} & 0 \\ 0 & \mathsf{g} \end{pmatrix} \sigma_{\mathfrak{n}}^{-1} \widetilde{\xi} \right) \\ \psi(-\mathsf{Tr}(\mathsf{X})) \psi(-\mathsf{Tr}(\mathsf{y})) \mathsf{d} \begin{pmatrix} \mathsf{n}_1 & \mathsf{y} \\ 0 & \mathsf{n}_2 \end{pmatrix} \mathsf{d} \mathsf{g} \mathsf{d} \mathsf{X} \mathsf{d} \widetilde{\xi} \mathsf{d} \widetilde{\mathsf{Z}}, \end{split}$$

où  $\sigma_n^{-1}V_0\sigma_n$  est le sous-groupe de  $\sigma_n^{-1}V\sigma_n$  où t=0.

On explicite l'intégration sur  $\widetilde{\xi}$  de la forme  $\sigma_n \begin{pmatrix} 1 & \widetilde{Y} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \widetilde{h} & 0 \\ 0 & \widetilde{h} \end{pmatrix} \sigma_n^{-1}$  où  $\widetilde{Y}$  est une

matrice de la forme  $\begin{pmatrix} 0_{n-1} & 0 \\ \widetilde{y} & 0 \end{pmatrix}$  avec  $\widetilde{y} \in F^{n-1}$  et  $\widetilde{h} \in F^{n-1} \times F^*$  que l'on identifie avec un élément de  $G_n$  dont seule la dernière ligne est non triviale. Ce qui nous permet d'identifier  $F^{n-1} \times F^{n-1} \times F^*$  et  $\widetilde{\Omega}_n$ . L'intégrale devient

$$\begin{split} &\int_{\mathbb{F}^{n-1}} \int_{\mathbb{F}^{n-1}} \int_{\mathbb{F}^{n-1} \times \mathbb{F}^*} \int_{G_{n-1}} \int_{M_{n-1}} |\det g|^{-2} \int_{\sigma_n^{-1} V_0 \sigma_n} \\ (106) &\quad f \left( \sigma_n \begin{pmatrix} 1 & -\widetilde{Z} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} n_1 & y \\ 0 & n_2 \end{pmatrix} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \begin{pmatrix} 1 & \widetilde{Y} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \widetilde{h} & 0 \\ 0 & \widetilde{h} \end{pmatrix} \sigma_n^{-1} \right) \\ &\quad \psi(-\mathsf{Tr}(X)) \psi(-\mathsf{Tr}(y)) d \begin{pmatrix} n_1 & y \\ 0 & n_2 \end{pmatrix} dX dg d\widetilde{h} d\widetilde{Y} d\widetilde{Z}. \end{split}$$

On remarque que l'on a

$$\begin{pmatrix} \mathfrak{n}_1 & \mathfrak{y} \\ 0 & \mathfrak{n}_2 \end{pmatrix} \begin{pmatrix} 1 & \mathsf{X} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathsf{g} & 0 \\ 0 & \mathsf{g} \end{pmatrix} \begin{pmatrix} 1 & \widetilde{\mathsf{Y}} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \mathfrak{n}_1 & 0 \\ 0 & \mathfrak{n}_2 \end{pmatrix} \begin{pmatrix} 1 & \mathfrak{n}_1^{-1} \mathfrak{y} + \mathsf{X} + \mathsf{g} \widetilde{\mathsf{Y}} \mathsf{g}^{-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathsf{g} & 0 \\ 0 & \mathsf{g} \end{pmatrix},$$

On effectue les changement de variable  $y\mapsto n_1y$  et  $\widetilde{Y}\mapsto g^{-1}\widetilde{Y}g$  et on combine les intégrales sur X, y et  $\widetilde{Y}$  en une intégration sur  $M_n$  dont on note encore la variable X. On obtient alors

$$\begin{split} & \int_{\mathbb{F}^{n-1}} \int_{\mathbb{F}^{n-1} \times \mathbb{F}^*} \int_{G_{n-1}} \int_{M_n} |\det g|^{-1} \int_{U_n^2} \\ & f\left(\sigma_n \begin{pmatrix} 1 & -\widetilde{\mathsf{Z}} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathfrak{n}_1 & 0 \\ 0 & \mathfrak{n}_2 \end{pmatrix} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g\widetilde{\mathsf{h}} & 0 \\ 0 & g\widetilde{\mathsf{h}} \end{pmatrix} \sigma_n^{-1} \right) \psi(-\mathsf{Tr}(\mathsf{X})) d(\mathfrak{n}_1,\mathfrak{n}_2) d\mathsf{X} dg d\widetilde{\mathsf{h}} d\widetilde{\mathsf{Z}}. \end{split}$$

On effectue le changement de variable  $n_2 \mapsto n_2 n_1$  et on remarque que l'on a

$$(109) \qquad \begin{pmatrix} 1 & -\widetilde{\mathsf{Z}} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathsf{n}_1 & 0 \\ 0 & \mathsf{n}_2 \mathsf{n}_1 \end{pmatrix} \begin{pmatrix} 1 & \mathsf{X} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \mathsf{n}_1 \mathsf{X} \mathsf{n}_1^{-1} - \widetilde{\mathsf{Z}} \mathsf{n}_2 \\ 0 & \mathsf{n}_2 \end{pmatrix} \begin{pmatrix} \mathsf{n}_1 & 0 \\ 0 & \mathsf{n}_1 \end{pmatrix}.$$

Le changement de variables  $X \mapsto \mathfrak{n}_1^{-1}(X + \widetilde{Z}\mathfrak{n}_2)\mathfrak{n}_1$  nous donne alors

(110)

$$\begin{split} \int_{\mathsf{F}^{\mathfrak{n}-1}} \int_{\mathsf{F}^{\mathfrak{n}-1} \times \mathsf{F}^*} \int_{G_{\mathfrak{n}-1}} \int_{\mathsf{M}_{\mathfrak{n}}} |\det g|^{-1} \int_{\mathsf{U}_{\mathfrak{n}}^2} \mathsf{f} \left( \sigma_{\mathfrak{n}} \begin{pmatrix} 1 & X \\ 0 & n_2 \end{pmatrix} \begin{pmatrix} \mathfrak{n}_1 g \widetilde{\mathfrak{h}} & 0 \\ 0 & \mathfrak{n}_1 g \widetilde{\mathfrak{h}} \end{pmatrix} \sigma_{\mathfrak{n}}^{-1} \right) \\ \psi(-\mathsf{Tr}(X)) \psi(-\mathsf{Tr}(\widetilde{Z}\mathfrak{n}_2)) \mathsf{d}(\mathfrak{n}_1,\mathfrak{n}_2) \mathsf{d}X \mathsf{d}g \mathsf{d}\widetilde{\mathsf{h}} \mathsf{d}\widetilde{Z}. \end{split}$$

On reconnait une formule d'inversion de Fourier selon les variables  $\widetilde{Z}$  et  $\mathfrak{n}_2$  ce qui nous permet de simplifier notre intégrale en

$$(111) \qquad \int_{\mathsf{F}^{\mathfrak{n}-1}\times\mathsf{F}^*} \int_{\mathsf{G}_{\mathfrak{n}-1}} \int_{\mathsf{M}_{\mathfrak{n}}} |\det \mathsf{g}|^{-1} \int_{\mathsf{U}_{\mathfrak{n}}} \mathsf{f}\left(\sigma_{\mathfrak{n}} \begin{pmatrix} 1 & \mathsf{X} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathfrak{n}_1 \mathsf{g}\widetilde{\mathsf{h}} & 0 \\ 0 & \mathfrak{n}_1 \mathsf{g}\widetilde{\mathsf{h}} \end{pmatrix} \sigma_{\mathfrak{n}}^{-1} \right) \\ \psi(-\mathsf{Tr}(\mathsf{X})) d\mathfrak{n}_1 d\mathsf{X} d\mathsf{g} d\widetilde{\mathsf{h}}.$$

Après combinaison des intégrations sur  $n_1$ , g, h; on trouve bien notre membre de gauche

(112) 
$$\int_{G_n} \int_{M_n} f\left(\sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_n^{-1} \right) \psi(-\mathsf{Tr}(X)) dX dg.$$

On remarquera que l'on a pris garde à ne pas échanger l'intégrale sur V avec les intégrales sur  $\widetilde{H}$ ,  $H_{n-1}$ ,  $\widetilde{\Omega}_{n-1}$  et  $H_{n-1}^P$  qui chacune est absolument convergente mais l'intégrale totale ne l'est pas. On s'est contenté d'échanger des intégrales sur les différents H d'une part, d'échanger des intégrales sur les  $n_1$ ,  $n_2$ , t, y qui compose l'intégrale sur V d'autre part. On doit seulement vérifier qu'il n'y a pas de problème de convergence lorsque l'on combine l'intégration en X sur  $M_n$  (cf. intégrale 108) et lorsque l'on échange l'intégrale sur  $U_n$  et  $M_n$  (cf. intégrale 111). Pour ce qui est de la dernière intégrale, on intègre sur un sous-groupe fermé et  $f \in \mathcal{S}(G_{2n})$  donc l'intégrale est absolument convergente. Pour ce qui est de l'intégrale 108, à part l'intégrales.

Finissons par montrer la convergence absolue de notre membre de droite. Notons  $r(g) = 1 + ||e_{2n}g||_{\infty}$ . On a

(113)

$$\begin{split} W_{r^N \mid \det \mid^{-\frac{1}{2}} f} \left( \sigma_n \begin{pmatrix} 1 & X' \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha' k' & 0 \\ 0 & \alpha' k' \end{pmatrix} \sigma_n^{-1}, \sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha k & 0 \\ 0 & \alpha k \end{pmatrix} \sigma_n^{-1} \right) = \\ (1 + |\alpha_n|)^N \mid \det \alpha(\alpha')^{-1} \mid^{-1} W_f \left( \sigma_n \begin{pmatrix} 1 & X' \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha' k' & 0 \\ 0 & \alpha' k' \end{pmatrix} \sigma_n^{-1}, \sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha k & 0 \\ 0 & \alpha k \end{pmatrix} \sigma_n^{-1} \right), \end{split}$$

pour tous  $a \in A_n$ ,  $a' \in A_{n-1}$ ,  $X, X' \in V_n$ ,  $k \in K_n$  et  $k' \in K_{n-1}$ . Il suffit de vérifier la convergence de l'intégrale

$$\begin{split} & \int_{V_{n}} \int_{A_{n-1}} \int_{\bar{\mathfrak{n}}_{n}} \int_{A_{n}} (1 + |a_{n}|)^{-N} |\det \mathfrak{a}(\mathfrak{a}')^{-1}| \\ & W_{r^{N}|\det|^{-\frac{1}{2}}f} \left( \sigma_{n} \begin{pmatrix} 1 & X' \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathfrak{a}'k' & 0 \\ 0 & \mathfrak{a}'k' \end{pmatrix} \sigma_{n}^{-1}, \sigma_{n} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathfrak{a}k & 0 \\ 0 & \mathfrak{a}k \end{pmatrix} \sigma_{n}^{-1} \right) \\ & \delta_{B_{n}}(\mathfrak{a})^{-1} \delta_{B_{n-1}}(\mathfrak{a}')^{-1} d\mathfrak{a} dX d\mathfrak{a}' dX' \end{split}$$

pour N suffisamment grand. On note  $u_X = \sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \sigma_n^{-1}$  et  $u_{X'} = \sigma_n \begin{pmatrix} 1 & X' \\ 0 & 1 \end{pmatrix} \sigma_n^{-1}$ . On a glors

$$\sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} ak & 0 \\ 0 & ak \end{pmatrix} \sigma_n^{-1} = b\sigma_n k \sigma_n^{-1} u_{(ak)^{-1}X(ak)},$$

où  $b = diag(a_1, a_1, a_2, a_2, ...)$  et

$$(116) \hspace{1cm} \sigma_{\mathfrak{n}} \begin{pmatrix} 1 & X' \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathfrak{a}'k' & 0 \\ 0 & \mathfrak{a}'k' \end{pmatrix} \sigma_{\mathfrak{n}}^{-1} = \mathfrak{b}' \sigma_{\mathfrak{n}} k' \sigma_{\mathfrak{n}}^{-1} \mathfrak{u}_{(\mathfrak{a}'k')^{-1}X'(\mathfrak{a}'k')},$$

où  $b' = diag(a'_1, a'_1, a'_2, a'_2, ...).$ 

On effectue les changements de variables  $X \mapsto (\alpha k)X(\alpha k)^{-1}$  et  $X' \mapsto (\alpha' k')X'(\alpha' k')^{-1}$ . D'après les lemme 2.2 et la preuve du lemme 2.4, il existe d > 0 tel que pour tout  $N \ge 1$ , l'intégrale 114 est alors majorée à une constante près par

$$\int_{V_n} \int_{A_{n-1}} \int_{\nu_n} \int_{A_n} (1+|\alpha_n|)^{-N} |\det \alpha(\alpha')^{-1} |m(X)^{-\alpha N} \prod_{i=1}^{n-1} (1+|\frac{\alpha_i}{\alpha_{i+1}}|)^{-N} \delta_{B_{2n}}^{\frac{1}{2}}(bt_X) \log(\|bt_X\|)^d$$

$$m(X')^{-\alpha'N} \prod_{i=1}^{n-1} (1+|\frac{\alpha_i'}{\alpha_{i+1}'}|)^{-N} \delta_{B_{2n}}^{\frac{1}{2}}(b't_{X'}) \log(\|b't_{X'}\|)^d \delta_{B_n}^{-2}(a) \delta_{B_{n-1}}^{-2}(a') dadX da'dX'.$$

Les quantités  $\mathfrak{m}(X)$ ,  $\mathfrak{m}(X')$ ,  $\alpha$  et  $\alpha'$  sont celles que l'on obtient par l'application de la proposition 2.8. On rappelle que  $\mathfrak{m}(X) = \sup(1, ||X||)$ , où  $||X|| = \sup_{i,j} |X_{i,j}|$ . On a  $\delta_{B_{2n}}^{\frac{1}{2}}(\mathfrak{b}')\delta_{B_{n-1}}^{-2}(\mathfrak{a}') = |\det \mathfrak{a}'|^2$ . On en déduit que cette dernière intégrale est majorée (à constante près) par le maximum du produit des intégrales

(118) 
$$\int_{V_n} \mathfrak{m}(X)^{-\alpha N} \delta_{B_{2n}}^{\frac{1}{2}}(t_X) \log(\|t_X\|)^{d-j} dX,$$

(119) 
$$\int_{V_n} \mathfrak{m}(X')^{-\alpha' N} \delta_{B_{2n}}^{\frac{1}{2}}(\mathfrak{t}_{X'}) \log(\|\mathfrak{t}_{X'}\|)^{d-j'} dX',$$

$$(120) \qquad \qquad \int_{\mathcal{A}_{\mathfrak{n}}} \prod_{i=1}^{\mathfrak{n}-1} (1+|\frac{\mathfrak{a}_{i}}{\mathfrak{a}_{i+1}}|)^{-N} (1+|\mathfrak{a}_{\mathfrak{n}}|)^{-N} \log(||\mathfrak{b}||)^{j} |\det \mathfrak{a}| d\mathfrak{a},$$

et

(121) 
$$\int_{A_{n-1}} \prod_{i=1}^{n-2} (1 + |\frac{\alpha_i'}{\alpha_{i+1}'}|)^{-N} (1 + |\alpha_{n-1}'|)^{-N} \log(||b'||)^{j'} |\det \alpha'| d\alpha',$$

pour j, j' compris entre 0 et d. Ces dernières intégrales convergent pour N assez grand, voir [9, proposition 5.5] pour les deux premières intégrales et le lemme 2.3 pour les deux dernières.

5. Formules de Plancherel

Pour  $W \in \mathcal{C}^w(N_{2n} \backslash G_{2n})$ , on note

(122) 
$$\beta(W) = \int_{H_p^P \cap N_{2n} \setminus H_p^P} W(\xi_p) \theta(\xi_p)^{-1} d\xi_p.$$

**Lemme 5.1.** L'intégrale 122 est absolument convergente. La forme linéaire  $W \in \mathcal{C}^w(N_{2n} \setminus G_{2n}) \mapsto \beta(W)$  est continue. De plus, la restriction de  $\beta$  a  $\mathcal{W}(\pi, \psi)$  est non nulle.

 $D\acute{e}monstration$ . D'après la décomposition d'Iwasawa,  $P_n = N_n A_{n-1} K_n^P$ , où  $K_n^P$  est un sous-groupe compact, il suffit de montrer la convergence de l'intégrale

$$(123) \qquad \int_{V_n} \int_{A_{n-1}} \left| W \left( \sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} ak & 0 \\ 0 & ak \end{pmatrix} \sigma_n^{-1} \right) \right| \delta_{B_{n-1}}(a)^{-1} dadX,$$

pour tout  $k \in K_n^P$ . D'après la preuve du lemme 2.4, on obtient la majoration suivante :

$$\int_{V_n} \int_{A_{n-1}} \prod_{i=1}^{n-2} (1 + \frac{|a_i|}{|a_{i+1}|})^{-N} \mathfrak{m}(X)^{-\alpha N} \delta_{B_{2n}} (bt_X)^{\frac{1}{2}} \\ \log(||bt_X||)^d \delta_{B_n}(a) \delta_{B_{n-1}}(a)^{-1} dadX,$$

pour tout  $N \ge 1$ . Cette dernière intégrale est convergente pour N suffisamment grand par le même argument que dans la preuve du lemme 2.4.

Pour finir, le modèle de Kirillov  $\mathcal{K}(\pi,\psi)$  contient  $C_c^{\infty}(N_{2n}\backslash P_{2n},\psi)$  [5]. En particulier, il existe une fonction de Whittaker dont la restriction a  $A_{2n-1}K_{2n}^P$  est l'indicatrice de  $A_{2n-1}(\mathcal{O}_F)$ , alors  $\beta$  est non nulle sur cette fonction.

**Proposition 5.1.** Pour  $\pi = T(\sigma)$  avec  $\sigma \in Temp(SO(2n+1))$ , la restriction de  $\beta$  à  $\mathcal{W}(\pi, \psi)$  est un élément de  $Hom_{H_n}(\mathcal{W}(\pi, \psi), \theta)$ .

La preuve de cette proposition se fera après quelques préliminaires. On commence par prouver un lemme et introduire des notations.

**Lemme 5.2.** Pour  $W \in S(Z_{2n}N_{2n} \setminus G_{2n})$  et  $\phi \in S(F^n)$ , on a

$$(125) \qquad \lim_{s\to 0^+}\gamma(\mathfrak{n} s,1,\psi) J(s,W,\varphi) = \varphi(0) \int_{\mathsf{Z}_{2\mathfrak{n}}(\mathsf{H}_\mathfrak{n}\cap\mathsf{N}_{2\mathfrak{n}})\backslash\mathsf{H}_\mathfrak{n}} W(\xi) \theta(\xi)^{-1} d\xi.$$

 $D\'{e}monstration$ . On a

(126)

$$\begin{split} \gamma(ns,1,\psi) J(s,W,\varphi) &= \int_{A_{n-1}} \int_{K_n} \int_{V_n} W\left(\sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha k & 0 \\ 0 & \alpha k \end{pmatrix} \sigma_n^{-1} \right) \\ & \psi(-\text{Tr}(X)) dX \gamma(ns,1,\psi) \int_{Z_n} \left. \varphi(e_n z k) |\det z|^s dz dk |\det \alpha|^s \delta_{B_n}(\alpha)^{-1} d\alpha k \right] \end{split}$$

De plus, d'après la thèse de Tate, on a

$$(127) \hspace{1cm} \gamma(\mathfrak{n}\mathfrak{s},1,\psi)\int_{Z_\mathfrak{n}} \varphi(e_\mathfrak{n}zk) |\det z|^{\mathfrak{s}} \, dz = \int_{F^*} \widehat{\varphi_k}(x) |x|^{1-\mathfrak{n}\mathfrak{s}} \, dx,$$

où l'on a posé  $\varphi_k(x)=\varphi(xe_nk)$  pour tous  $x\in F$  et  $k\in K_n$ . Ce qui nous donne par convergence dominée

(128) 
$$\lim_{s\to 0+} \gamma(ns,1,\psi) \int_{Z_n} \varphi(e_n z k) |\det z|^s dz = \int_F \widehat{\varphi_k}(x) dx = \varphi(0).$$

On en déduit, aussi par convergence dominée, que  $\lim_{s\to 0^+} \gamma(\mathfrak{n} s,1,\psi) J(s,W,\varphi)$  est égal a

ce qui nous permet de conclure.

On étend la forme linéaire  $f \in \mathcal{S}(G_{2n}) \mapsto \int_{N_{2n}} f(u) \psi(u)^{-1} du$  par continuité en une forme linéaire sur  $C^w(G_{2n})$  [4], que l'on note

(130) 
$$f \in C^{w}(G_{2n}) \mapsto \int_{N_{2}}^{*} f(u)\psi(u)^{-1}du.$$

Pour  $f \in C^w(G_{2n})$ , on peut ainsi définir  $W_f$  par la formule

(131) 
$$W_{f}(g_{1},g_{2}) = \int_{N_{2n}}^{*} f(g_{1}^{-1}ug_{2})\psi(u)^{-1}du,$$

pour tous  $g_1, g_2 \in G_{2n}$ .

Soit  $f \in S(G_{2n})$  et  $\pi \in Temp(G_{2n})$ , on pose  $W_{f,\pi} = W_{f_{\pi}}$ .

Proposition 5.2 (Beuzart-Plessis [4]). L'application linéaire

$$f \in \mathcal{S}(G_{2n}) \mapsto (\pi \mapsto W_{f,\pi}) \in \mathcal{S}(\mathsf{Temp}(G_{2n}, C^w(N_{2n} \times N_{2n} \setminus G_{2n} \times G_{2n}, \psi \otimes \psi^{-1}))$$
 est continue.

**Proposition 5.3** (Beuzart-Plessis [4]). Pour tout  $f \in S(PG_{2n})$ . On pose  $\widetilde{f}(g) = \int_{Z_n} f(zg) dz$ , alors  $\widetilde{f} \in PG_{2n}$ . On a  $\widetilde{f}_{\pi} = f_{\pi}$  pour tout  $\pi \in Temp(PG_{2n})$ . De plus,

(132) 
$$W_{\tilde{f}} = \int_{\text{Temp}(PG_{2n})} W_{f,\pi} d\mu_{PG_{2n}}(\pi).$$

**Lemme 5.3.** Soit  $W \in W(\pi, \psi)$ , alors il existe  $f \in S(G_{2n})$  tel que  $W_{f,\pi}(1,.) = W$ . Démonstration. On a

(133) 
$$W_{f,\pi}(1,.) = \int_{N_{2\pi}} f_{\pi}(u.)\psi(u)^{-1} du.$$

D'autre part, soit  $f \in \mathcal{S}(G_{2n})$  alors f est bi-invariante par un sous-groupe ouvert compact K. On a une décomposition  $V_{\pi} = V_{\pi}^K \oplus V_{\pi}(K)$ , où  $V_{\pi}(K)$  est l'espace des vecteurs K-invariants. Comme  $\pi$  est admissible,  $V_{\pi}^K$  est de dimension finie. On note  $\mathcal{B}_{\pi}^K$  une base de cet espace. Alors pour tout  $g \in G_{2n}$ , on a  $f_{\pi}(g) = \text{Tr}(\pi(g)\pi(f^{\vee})) = \sum_{\nu \in \mathcal{B}_{\pi}^K} < \pi(g)\pi(f^{\vee})\nu, \nu^{\vee} >$ , où  $(\nu^{\vee})_{\nu \in \mathcal{B}_{\pi}^K}$  est la base duale de  $\mathcal{B}_{\pi}^K$ . On en déduit que  $f_{\pi}$  est une somme (finie) de coefficient matriciel.

On note  $\mathsf{Coeff}^\mathsf{K} = \{g \mapsto \prec \pi(g) \nu, \widetilde{\nu} >, \nu \in V_\pi, \widetilde{\nu} \in V_{\widetilde{\pi}} \}$ . Alors toute somme finie de  $\mathsf{Coeff}^\mathsf{K}$  est de la forme  $f_\pi$  avec  $f \in \mathcal{S}(\mathsf{G}_{2n},\mathsf{K})$ . En effet,  $f \in \mathcal{S}(\mathsf{G}_{2n},\mathsf{K}) \mapsto \pi(f^\vee) \in \mathsf{End}(V_\pi^\mathsf{K})$  est surjective, où l'on a noté  $\mathcal{S}(\mathsf{G}_{2n},\mathsf{K})$  le sous espace de  $\mathcal{S}(\mathsf{G}_{2n},\mathsf{K})$  des fonctions bi-invariante par  $\mathsf{K}$ . La surjectivité est une conséquence du lemme de Burnside et du fait que  $V_\pi^\mathsf{K}$  est un  $\mathcal{S}(\mathsf{G}_{2n},\mathsf{K})$ -module irréductible de dimension finie. L'isomorphe de représentation nous donne  $\mathsf{End}(V_\pi^\mathsf{K}) \simeq \pi^\mathsf{K} \boxtimes \widetilde{\pi}^\mathsf{K}$  le résultat.

Pour montrer le lemme, il nous faut montrer qu'il existe un coefficient matriciel  $c = <\pi(.)\nu, \widetilde{\nu}>$  tel que  $W=\int_{N_{2n}}c(u.)\psi(u)^{-1}du.$  Or

$$(134) \qquad \qquad \nu \mapsto \int_{\mathsf{N}_{2n}} \mathsf{c}(\mathfrak{u}.) \psi(\mathfrak{u})^{-1} \mathsf{d}\mathfrak{u} = \int_{\mathsf{N}_{2n}} <\pi(\mathfrak{u}.) \nu, \widetilde{\nu} > \psi(\mathfrak{u})^{-1} \mathsf{d}\mathfrak{u}$$

est une fonctionnelle de Whittaker. Il suffit donc de montrer que l'on peut choisir  $\widetilde{\nu}$  pour que cette fonctionnelle soit non nulle. C'est le contenu de [13, Théorème 6.4.1].

Corollaire 5.1 (de la limite spectrale). Soit  $f \in S(G_{2n})$  et  $g \in G_{2n}$ , alors

$$(135) \int_{\mathsf{H}_{\mathfrak{n}}\cap\mathsf{N}_{2\mathfrak{n}}\backslash\mathsf{H}_{\mathfrak{n}}} W_{\mathsf{f}}(g,\xi)\theta(\xi)^{-1}d\xi = \int_{\mathsf{Temp}(\mathsf{SO}(2\mathfrak{n}+1))/\mathsf{Stab}} \beta(W_{\mathsf{f},\mathsf{T}(\sigma)}(g,.)) \\ \frac{\gamma^{*}(0,\sigma,\mathsf{Ad},\psi)}{|\mathsf{S}_{\sigma}|} c(\mathsf{T}(\sigma))c_{\beta}(\sigma)d\sigma.$$

Démonstration. On peut supposer que g = 1 en remplaçant f par L(g)f. On pose  $f(g) = \int_{Z_n} f(zg)dz$ , alors  $\tilde{f} \in PG_{2n}$ . On a donc

$$(136) \qquad \int_{\mathsf{H}_{\mathfrak{n}}\cap\mathsf{N}_{2\mathfrak{n}}\backslash\mathsf{H}_{\mathfrak{n}}} W_{\mathsf{f}}(1,\xi)\theta(\xi)^{-1}\mathrm{d}\xi = \int_{\mathsf{Z}_{2\mathfrak{n}}(\mathsf{H}_{\mathfrak{n}}\cap\mathsf{N}_{2\mathfrak{n}})\backslash\mathsf{H}_{\mathfrak{n}}} W_{\widetilde{\mathsf{f}}}(1,\xi)\theta(\xi)^{-1}\mathrm{d}\xi.$$

On choisit  $\phi \in \mathcal{S}(\mathsf{F}^n)$  tel que  $\phi(0) = 1$ . D'après le lemme 5.2, la proposition 5.3 et la continuité de  $\pi \mapsto J(s, W_{f,\pi}(1,.), \phi)$ , on a

$$\begin{split} \int_{Z_{2n}(\mathsf{H}_n\cap\mathsf{N}_{2n})\backslash\mathsf{H}_n} W_{\widetilde{\mathsf{f}}}(1,\xi)\theta(\xi)^{-1}d\xi &= \lim_{s\to 0^+} \mathsf{n}\gamma(s,1,\psi)\mathsf{J}(s,W_{\widetilde{\mathsf{f}}}(1,.),\varphi) \\ &= \lim_{s\to 0^+} \mathsf{n}\gamma(s,1,\psi) \int_{\mathsf{Temp}(\mathsf{PG}_{2n})} \mathsf{J}(s,W_{\mathsf{f},\pi}(1,.),\varphi)d\mu_{\mathsf{PG}_{2n}}(\pi). \end{split}$$

D'après l'équation fonctionnelle 2.4, on a

$$\begin{split} &\int_{H_{\mathfrak{n}}\cap N_{2\mathfrak{n}}\setminus H_{\mathfrak{n}}} W_{f}(1,\xi)\theta(\xi)^{-1}d\xi = \\ &\lim_{s\to 0^{+}} \eta\gamma(s,1,\psi) \int_{Temp(PG_{2\mathfrak{n}})} J(1-s,\rho(w_{\mathfrak{n},\mathfrak{n}})\widetilde{W_{f,\pi}(1,.)},\widehat{\varphi})c(\pi)\gamma(s,\pi,\Lambda^{2},\psi)^{-1}d\mu_{PG_{2\mathfrak{n}}}(\pi). \end{split}$$

La proposition 3.2, nous permet d'obtenir la relation

$$\begin{split} & \int_{\mathsf{H}_{\mathfrak{n}} \cap \mathsf{N}_{2\mathfrak{n}} \backslash \mathsf{H}_{\mathfrak{n}}} W_{\mathsf{f}}(1,\xi) \theta(\xi)^{-1} d\xi = \\ & \int_{\mathsf{Temp}(\mathsf{SO}(2\mathfrak{n}+1)/\mathsf{Stab}} J(1,\rho(w_{\mathfrak{n},\mathfrak{n}}) \widetilde{W_{\mathsf{f},\mathsf{T}(\sigma)}}(1,.),\widehat{\varphi}) c(\mathsf{T}(\sigma)) \frac{\gamma^*(0,\sigma,\mathsf{Ad},\psi)}{|\mathsf{S}_{\sigma}|} d\sigma. \end{split}$$

En remplaçant f par R(h)f,  $h \in H_n$ , dans le membre de droite; cela revient à multiplier par  $\theta(h)$ . On en déduit la même relation pour le membre de droite. Ce qui signifie que

$$\int_{\mathsf{Temp}(\mathsf{SO}(2\mathfrak{n}+1)/\mathsf{Stab}} J(1,\mathsf{R}(\xi)\rho(w_{\mathfrak{n},\mathfrak{n}})\widetilde{W_{\mathsf{f},\mathsf{T}(\sigma)}}(1,.),\widehat{\varphi}) - \theta(\xi)J(1,\rho(w_{\mathfrak{n},\mathfrak{n}})\widetilde{W_{\mathsf{f},\mathsf{T}(\sigma)}}(1,.),\widehat{\varphi})\mathrm{d}\mu(\sigma) = 0,$$

pour tout 
$$\xi \in H_n$$
, où  $d\mu(\sigma) = c(T(\sigma)) \frac{\gamma^*(0,\sigma,Ad,\psi)}{|S_{\sigma}|} d\sigma$ 

pour tout  $\xi \in H_n$ , où  $d\mu(\sigma) = c(T(\sigma)) \frac{\gamma^*(0,\sigma,Ad,\psi)}{|S_{\sigma}|} d\sigma$ . D'après le lemme de séparation spectrale [4, Lemme 5.7.2] et la continuité de  $\sigma \mapsto$  $J(1, \rho(w_{n,n})\widetilde{W_{f,T(\sigma)}}(1,.), \widehat{\phi})$ , on en déduit que  $J(1, R(\xi)\rho(\widetilde{w_{n,n}})\widetilde{W_{f,T(\sigma)}}(1,.), \widehat{\phi}) =$  $\theta(\xi)J(1,\rho(w_{n,n})W_{f,T(\sigma)}(1,.),\widehat{\phi})$  pour tout  $\xi\in H_n$  et donc que  $J(1,\rho(w_{n,n})W_{f,T(\sigma)}(1,.),\widehat{\phi})$  est  $(H_n, \theta)$ -invariant (dans le sens où le changement f par  $R(\xi)$ f revient à multiplier par  $\theta(\xi)$ ).

**Lemme 5.4.** *Soit*  $\sigma \in \text{Temp}(SO(2n+1))$  *et*  $\pi = T(\sigma)$ *. Alors* 

(141) 
$$J(1,\widetilde{W},\widehat{\phi}) = \phi(0)c_{\beta}(\sigma)\beta(W),$$

pour tous  $W \in \mathcal{W}(\pi, \psi)$  et  $\phi \in \mathcal{S}(F^n)$ .

*Démonstration*. En effet, soit  $W \in \mathcal{W}(\pi, \psi)$ , on a

(142) 
$$J(1,\widetilde{W},\widehat{\varphi}) = \int_{N_{\mathfrak{n}} \backslash G_{\mathfrak{n}}} \int_{V_{\mathfrak{n}}} \widetilde{W} \left( \sigma_{\mathfrak{n}} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_{\mathfrak{n}}^{-1} \right) \psi(-\mathsf{Tr}(X)) dX \widehat{\varphi}(e_{\mathfrak{n}}g) |\det g| dg.$$

D'après le lemme 5.3, on choisit  $f \in \mathcal{S}(G_{2n})$  tel que  $W_{f,\pi}(1,.) = \rho(w_{n,n}^{-1})W$ . D'après ce que l'on vient de dire précédemment, on en déduit que  $J(1,\widetilde{W},\widehat{\varphi})$  vérifie la relation  $J(1,R(\xi)\widetilde{W},\widehat{\varphi}) = \theta(\xi)J(1,\widetilde{W},\widehat{\varphi})$ , pour tout  $\xi \in H_n$ .

Comme  $\widehat{\varphi}(e_ng)$  est arbitraire parmi les fonctions invariante à gauche par  $G_{n-1}U_{n-1}$ , on en déduit que

$$\int_{N_{\mathfrak{n}} \setminus P_{\mathfrak{n}}} \int_{V_{\mathfrak{n}}} \widetilde{W} \left( \sigma_{\mathfrak{n}} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_{\mathfrak{n}}^{-1} \right)$$

$$\psi(-\mathsf{Tr}(X)) \mathsf{d}X \mathsf{d}g$$

est  $(H_n, \theta)$ -invariant en tant que fonction de  $\widetilde{W}$ . D'après l'isomorphisme  $G_{2n}$ -équivariant  $W \in \mathcal{W}(\pi, \psi) \mapsto \widetilde{W} \in \mathcal{W}(\widetilde{\pi}, \psi^{-1})$ ,  $\beta$  restreint à  $\mathcal{W}(\pi, \psi)$  est  $(H_n, \theta)$ -invariant, ce qui termine la preuve de la proposition 5.1.

Remarque 5.1. Cette preuve que  $\beta$  restreint à  $\mathcal{W}(\pi,\psi)$  est  $(H_n,\theta)$ -invariant est quelque peut détournée dû au fait qu'il nous manque un résultat. On conjecture que  $\operatorname{Hom}_{H_n\cap P_{2n}}(\pi,\theta)$  qui est de dimension au plus 1. En utilisant le fait que  $\pi\simeq\widetilde{\pi}$  donc  $\pi$  est  $(H_n,\theta)$ -distinguée, on a  $\operatorname{Hom}_{H_n}(\pi,\theta)\neq 0$ . Ce dernier est un sous-espace de  $\operatorname{Hom}_{H_n\cap P_{2n}}(\pi,\theta)$ . On en déduirait alors que la restriction de  $\beta$  à  $\mathcal{W}(\pi,\psi)$ , qui est bien  $H_n\cap P_{2n}$ -invariant, est un élément de  $\operatorname{Hom}_{H_n}(\pi,\theta)$ . Ce qui simplifierait légèrement la preuve à condition de prouver le résultat de dimension 1.

**Proposition 5.4.** Soit  $\sigma \in \text{Temp}(SO(2n+1))$ , on pose  $\pi = T(\sigma)$  le transfert de  $\sigma$  dans  $\text{Temp}(G_{2n})$ . La forme linéaire  $\widetilde{W} \in \mathcal{W}(\widetilde{\pi}, \psi^{-1}) \mapsto \beta(\widetilde{W})$  est un élément de  $\text{Hom}_{H_n}(\mathcal{W}(\widetilde{\pi}, \psi^{-1}), \theta)$ . On identifie  $\mathcal{W}(\pi, \psi)$  et  $\mathcal{W}(\widetilde{\pi}, \psi^{-1})$  par l'isomorphisme  $G_{2n}$ -équivariant  $W \mapsto \widetilde{W}$ . Il existe un signe  $c_{\beta}(\sigma) = c_{\beta}(\pi)$  tel que

(144) 
$$\beta(\widetilde{W}) = c_{\beta}(\sigma)\beta(W),$$

pour tout  $W \in \mathcal{W}(\pi, \psi)$ .

Démonstration. En effet,  $\operatorname{Hom}_{H_n}(\mathcal{W}(\pi,\psi),\theta)$  est de dimension au plus 1, d'après l'unicité du modèle de Shalika [8]. De plus,  $\pi$  est le transfert de  $\sigma$  donc  $\widetilde{\pi} \simeq \pi$ . On en déduit l'existence de  $c_{\beta}(\pi) \in \mathbb{C}$ . Pour finir, en appliquant l'équation 144, pour  $\pi$  et  $\widetilde{\pi}$ , on obtient  $\beta(\widetilde{W}) = c_{\beta}(\pi)c_{\beta}(\widetilde{\pi})\beta(\widetilde{W})$ . Comme  $\beta$  est non nulle (lemme 5.1), on en déduit que  $c_{\beta}(\widetilde{\pi})c_{\beta}(\pi) = 1$  donc  $c_{\beta}(\pi)$  est un signe.

Finissons la preuve du lemme 5.4, on remarque que l'on a

(145)

$$\begin{split} &\int_{N_{n}\backslash G_{n}}\int_{V_{n}}\widetilde{W}\left(\sigma_{n}\begin{pmatrix}1 & X\\ 0 & 1\end{pmatrix}\begin{pmatrix}g & 0\\ 0 & g\end{pmatrix}\sigma_{n}^{-1}\right)\psi(-\mathsf{Tr}(X))dX\widehat{\varphi}(e_{n}g)|\det g|dg\\ &=\int_{P_{n}\backslash G_{n}}\int_{N_{n}\backslash P_{n}}\int_{V_{n}}\widetilde{W}\left(\sigma_{n}\begin{pmatrix}1 & X\\ 0 & 1\end{pmatrix}\begin{pmatrix}ph & 0\\ 0 & ph\end{pmatrix}\sigma_{n}^{-1}\right)\psi(-\mathsf{Tr}(X))dXdp\widehat{\varphi}(e_{n}h)|\det h|dh.\\ &\text{De plus,} \end{split}$$

$$\int_{N_{n}\backslash P_{n}} \int_{V_{n}} \widetilde{W} \left( \sigma_{n} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} ph & 0 \\ 0 & ph \end{pmatrix} \sigma_{n}^{-1} \right) \psi(-Tr(X)) dX dp$$

$$= \beta \left( R \left( \sigma_{n} \begin{pmatrix} h & 0 \\ 0 & h \end{pmatrix} \sigma_{n}^{-1} \right) \widetilde{W} \right)$$

$$= \beta(\widetilde{W}),$$

puisque  $\beta$  est  $(H_n, \theta)$ -invariant. De plus,

(147) 
$$\int_{P_n \setminus G_n} \widehat{\phi}(e_n h) |\det h| dh = \int_{F^n} \widehat{\phi}(x) dx$$
$$= \phi(0).$$

On conclut grâce à la proposition 5.4.

Pour finir la preuve du corollaire, il suffit d'utiliser le lemme 5.4 dans la relation 139.

5.1. Formule de Plancherel explicite sur  $H_n \setminus G_{2n}$ . On note  $Y_n = H_n \setminus G_{2n}$  munie de la mesure quotient. On dispose d'une surjection  $f \in \mathcal{S}(G_{2n}) \mapsto \phi_f \in \mathcal{S}(Y_n, \theta)$  avec

(148) 
$$\varphi_f(y) = \int_{H_n} f(hy)\theta(h)^{-1}dh,$$

pour tout  $y \in G_{2n}$ .

Soit  $\phi_1,\phi_2\in S(Y_n,\theta)$ , il existe  $f_1,f_2\in S(G_{2n})$  tel que  $\phi_{\mathfrak{i}}=\phi_{f_{\mathfrak{i}}}$  pour  $\mathfrak{i}=1,2.$  On a

(149) 
$$(\varphi_1, \varphi_2)_{L^2(Y_n)} = \int_{H_n} f(h)\theta(h)^{-1} dh,$$

où  $f = f_1 * f_2^*$ , on note  $f_2^*(g) = \overline{f_2(g^{-1})}$ .

$$(150) \qquad (\phi_1,\phi_2)_{\mathsf{L}^2(\mathsf{Y}_n)} = \int_{\mathsf{Y}_n} \int_{\mathsf{H}_n \times \mathsf{H}_n} \mathsf{f}_1(\mathsf{h}_1 \mathsf{y}) \overline{\mathsf{f}_2(\mathsf{h}_2 \mathsf{y})} \theta(\mathsf{h}_1)^{-1} \theta(\mathsf{h}_2) d\mathsf{h}_1 d\mathsf{h}_2 d\mathsf{y}.$$

L'intégrale est absolument convergente. On effectue le changement de variable  $h_1\mapsto h_1h_2$  et on combine les intégrales selon y et  $h_2$  en une intégrale sur  $G_{2n}$ . Ce qui donne

$$(151) \qquad (\phi_1,\phi_2)_{L^2(Y_n)} = \int_{G_{2n}} \int_{H_n} f_1(h_1 y) \overline{f_2(y)} \theta(h_1)^{-1} dh_1 dy.$$

On pose

$$(152) \qquad (\phi_{1}, \phi_{2})_{Y_{n}, \pi} = (f_{1}, f_{2})_{Y_{n}, \pi} = \int_{H_{n}^{p} \cap N_{2n} \setminus H_{n}^{p}} \beta \left(W_{f, \pi}(\xi_{p}, .)\right) \theta(\xi_{p}) d\xi_{p},$$

pour tout  $\pi \in T(Temp(SO(2n + 1)))$ .

On note  $S(Y_n, \theta)_{\pi}$  le quotient de  $S(Y_n, \theta)$  par l'intersection des noyaux de toutes les applications  $S(Y_n, \theta) \to \pi$  linéaires  $G_{2n}$ -équivariante.

**Proposition 5.5.** Supposons  $\pi = \mathsf{T}(\sigma)$  avec  $\sigma \in \mathsf{Temp}(\mathsf{SO}(2n+1))$ . La forme bilinéaire  $(.,.)_{\mathsf{Y}_n,\pi}$  sur  $\mathsf{S}(\mathsf{G}_{2n})$ ) est une forme hermitienne continue semi-definie positive qui se factorise par  $\mathsf{S}(\mathsf{Y}_n,\theta)_{\pi}$ .

Démonstration. Commençons par le

**Lemme 5.5.** Soit  $\pi \in \text{Temp}(G_{2n})$ . On introduit un produit scalaire sur  $W(\pi, \psi)$ :

(153) 
$$(W, W')^{Wh} = \int_{N_{2n} \setminus P_{2n}} W(\mathfrak{p}) \overline{W'(\mathfrak{p})} d\mathfrak{p},$$

*pour tous*  $W, W' \in \mathcal{W}(\pi, \psi)$ .

L'opérateur  $\pi(f^{\vee}): W(\pi, \psi) \to W(\pi, \psi)$  est de rang fini. Notons  $\mathcal{B}(\pi, \psi)_f$  une base finie orthonormée de son image. Alors

(154) 
$$W_{\mathbf{f},\pi} = \sum_{W' \in \mathfrak{B}(\pi, \Psi)_{\mathbf{f}}} \pi(\mathbf{f}_2) W' \otimes \overline{\pi(\mathbf{f}_1) W'}.$$

 $D\acute{e}monstration$ . Le produit scalaire  $(.,.)^{Wh}$  est  $P_{2n}$ -invariant, d'après Bernstein [3], il est aussi  $G_{2n}$ -invariant.

Pour  $W \in \mathcal{W}(\pi, \psi)$ , la décomposition de  $\pi(f^{\vee})W$  selon ce produit scalaire est

(155) 
$$\pi(\mathbf{f}^{\vee})W = \sum_{W' \in \mathcal{B}(\pi, \psi)_{f}} (\pi(\mathbf{f}^{\vee})W, W')^{Wh}W'$$
$$= \sum_{W' \in \mathcal{B}(\pi, \psi)_{f}} (W, \pi(\overline{\mathbf{f}})W')^{Wh}W'.$$

Cette égalité nous permet grâce au produit scalaire  $(.,.)^{Wh}$  de faire l'identification

(156) 
$$\pi(f^{\vee}) = \sum_{W' \in \mathcal{B}(\pi, \psi)_f} W' \otimes \overline{\pi}(f) \overline{W'}.$$

<u>La</u>  $G_{2n}$ -invariance de  $(.,.)^{Wh}$  nous donne que  $W' \otimes \overline{\pi}(f_1 * f_2^*)\overline{W'} = \pi(f_2)W' \otimes \overline{\pi}(f_1)W'$ .

On obtient alors

(157) 
$$\pi(f^{\vee}) = \sum_{W' \in \mathcal{B}(\pi, \psi)_f} \pi(f_2) W' \otimes \overline{\pi(f_1) W'}.$$

On en déduit que

$$(158) W_{\mathbf{f},\pi}(g_1,g_2) = \sum_{W' \in \mathfrak{B}(\pi,\psi)_{\mathbf{f}}} \int_{N_{2n}}^{*} (\pi(\mathbf{u}g_2)\pi(\mathbf{f}_1)W',\pi(g_1)\pi(\mathbf{f}_2)W')\psi(\mathbf{u})^{-1}d\mathbf{u}$$

$$= \sum_{W' \in \mathfrak{B}(\pi,\psi)_{\mathbf{f}}} \pi(\mathbf{f}_1)W'(g_2)\overline{\pi(\mathbf{f}_2)W'}(g_1),$$

pour tous  $g_1, g_2 \in G_{2n}$ . La dernière égalité provient de [4, Prop 2.14.3].

Le lemme 5.5 donne la relation

$$(159) \qquad (\mathsf{f}_1, \mathsf{f}_2)_{\mathsf{Y}_n, \mathsf{T}(\sigma)} = \sum_{\mathsf{W}' \in \mathcal{B}(\mathsf{T}(\sigma), \psi)_{\mathsf{f}}} \overline{\beta(\mathsf{T}(\sigma)(\mathsf{f}_2)\mathsf{W}')} \beta(\mathsf{T}(\sigma)(\mathsf{f}_1)\mathsf{W}')$$

qui est indépendant du choix de  $f_1, f_2$  puisque la restriction de  $\beta$  à  $\mathcal{W}(\mathsf{T}(\sigma), \psi)$  est  $(\mathsf{H}_n, \theta)$ -invariante, d'après la proposition 5.1. De plus,  $(\mathsf{f}_1, \mathsf{f}_2)_{\mathsf{Y}_n, \mathsf{T}(\sigma)}$  dépend uniquement de  $\mathsf{T}(\sigma)(\mathsf{f}_1)$  et  $\mathsf{T}(\sigma)(\mathsf{f}_2)$ . On en déduit que  $(.,.)_{\mathsf{Y}_n,\pi}$  se factorise par  $\mathcal{S}(\mathsf{Y}_n, \theta)_{\mathsf{T}(\sigma)}$ .

On remarque que

(160) 
$$(f_1, f_2)_{Y_n, T(\sigma)} = (\beta \otimes \beta)(W_{f_1 * f_2^*, \pi}),$$

ce qui nous permet de déduire, d'après la proposition 5.2 et le lemme 5.1, que  $(.,.)_{Y_n,T(\sigma)}$  est continue.

**Théorème 5.1.** Soient  $\varphi_1, \varphi_2 \in \mathcal{S}(Y_n, \theta)$ . On a

$$(161) \quad (\phi_1,\phi_2)_{\mathsf{L}^2(\mathsf{Y}_{\mathfrak{n}})} = \int_{\mathsf{Temp}(\mathsf{SO}(2\mathfrak{n}+1))/\mathsf{Stab}} (\phi_1,\phi_2)_{\mathsf{Y}_{\mathfrak{n}},\mathsf{T}(\sigma)} \frac{|\gamma^*(0,\sigma,Ad,\psi)|}{|\mathsf{S}_{\sigma}|} d\sigma.$$

Démonstration. D'après 4.1 et 5.1, on a

$$(162) \begin{array}{l} \int_{H_{\mathfrak{n}}} f(\mathfrak{h}) \theta(\mathfrak{h})^{-1} d\mathfrak{h} = \int_{H_{\mathfrak{n}} \cap N_{2\mathfrak{n}} \setminus H_{\mathfrak{n}}^{p}} \int_{\mathsf{Temp}(\mathsf{SO}(2\mathfrak{n}+1))/\mathsf{Stab}} \beta\left(W_{\mathsf{f},\mathsf{T}(\sigma)}(\xi_{\mathfrak{p}},.)\right) \\ \theta(\xi_{\mathfrak{p}}) \frac{\gamma^{*}(0,\sigma,\mathsf{Ad},\psi)}{|\mathsf{S}_{\sigma}|} c(\mathsf{T}(\sigma)) c_{\beta}(\sigma) d\sigma d\xi_{\mathfrak{p}}. \end{array}$$

**Lemme 5.6.** La fonction  $\sigma \mapsto \beta \left(W_{f,T(\sigma)}(\xi_{\mathfrak{p}},.)\right)$  est à support compact.

Démonstration. D'après la définition de  $f_{\pi}$ ,  $W_{f,\pi}$  est nul dès que  $\pi(f^{\vee})$  l'est.

Soit K un sous-groupe ouvert compact tel que  $f^{\vee}$  est biinvariant par K. Alors  $\pi(f^{\vee}) \neq 0$ , seulement lorsque  $\pi$  admet des vecteurs K-invariant non nuls.

D'après Harish-Chandra [16, Théorème VIII.1.2], il n'y a qu'un nombre fini de représentations  $\tau \in \Pi_2(M)$  modulo  $X^*(M) \otimes i\mathbb{R}$  qui admettent des vecteurs  $K_f$ -invariant non nuls.

Comme toute représentation  $\pi \in Temp(G_{2n})$  est une induite d'une telle représentation  $\tau$  pour un bon choix de sous-groupe de Levi M, on en déduit le lemme.  $\square$ 

D'après la proposition 5.2 et le lemme 5.1, on sait que  $\xi_p\mapsto \beta(W_{f,\pi}(\xi_p,.))$  est continue. On en déduit que

$$(163) \quad \int_{\mathsf{Temp}(\mathsf{SO}(2n+1))/\mathsf{Stab}} \beta\left(W_{\mathsf{f},\mathsf{T}(\sigma)}(\xi_{\mathsf{p}},.)\right) \frac{\gamma^*(0,\sigma,\mathsf{Ad},\psi)}{|\mathsf{S}_{\sigma}|} c(\mathsf{T}(\sigma)) c_{\beta}(\sigma) d\sigma$$

est absoluement convergente.

De plus, l'intégration extérieure  $\int_{H_{n}\cap N_{2n}\setminus H_{n}^{p}}\theta(\xi_{p})d\xi_{p}$  n'est autre que la forme linéaire continue  $\overline{\beta}(\overline{.})$ , on en déduit que l'on peut échanger l'ordre d'intégration pour obtenir

$$(164) \qquad \int_{\mathsf{Temp}(\mathsf{SO}(2n+1))/\mathsf{Stab}} (\phi_1,\phi_2)_{\mathsf{Y}_n,\mathsf{T}(\sigma)} \frac{\gamma^*(0,\sigma,\mathsf{Ad},\psi)}{|\mathsf{S}_\sigma|} c(\mathsf{T}(\sigma)) c_\beta(\sigma) d\sigma.$$

Pour finir, [4, prop 4.1.1] nous dit que les formes sesquilinéaires  $(\phi_1, \phi_2) \mapsto (\phi_1, \phi_2)_{Y_n, T(\sigma)} \frac{\gamma^*(0, \sigma, Ad, \psi)}{|S_{\sigma}|} c(T(\sigma)) c_{\beta}(\sigma)$  sont automatiquement définies positives. On en déduit que

(165) 
$$\gamma^*(0, \sigma, \mathrm{Ad}, \psi)c(\mathsf{T}(\sigma))c_{\beta}(\sigma) = |\gamma^*(0, \sigma, \mathrm{Ad}, \psi)|.$$

Corollaire 5.2. On a une décomposition de Plancherel abstraite sur  $L^2(H_n \backslash G_{2n})$ :

$$(166) \hspace{1cm} L^{2}(\mathsf{H}_{\mathfrak{n}}\backslash\mathsf{G}_{2\mathfrak{n}}) = \int_{\mathsf{Temp}(\mathsf{SO}(2\mathfrak{n}+1))/\mathsf{Stab}}^{\oplus} \mathsf{T}(\sigma) \frac{|\gamma^{*}(0,\sigma,Ad,\psi)|}{|\mathsf{S}_{\sigma}|} d\sigma.$$

# 5.2. Formule de Plancherel abstraite sur $\mathsf{G}_n \times \mathsf{G}_n \backslash \mathsf{G}_{2n}$ .

**Lemme 5.7.** On dispose d'un isomorphisme  $G_{2n}$ -équivariant d'espace de Hilbert

(167) 
$$L^2(G_n \times G_n \backslash G_{2n}) \simeq L^2(H_n \backslash G_{2n}, \theta).$$

Démonstration. On considère l'application  $f \in C_c^{\infty}(H_n \backslash G_{2n}, \theta) \mapsto \widetilde{f} \in C_c^{\infty}(G_n \times G_n \backslash G_{2n})$ , où  $\widetilde{f}$  est définie par

(168) 
$$\widetilde{f}(g) = \int_{G_n} f\left(\sigma_n \begin{pmatrix} \gamma & 0 \\ 0 & 1_n \end{pmatrix} g \sigma_n^{-1} \right) d\gamma$$

pour tout  $g \in G_{2n}$ .

Commençons par montrer que l'application est bien définie. En effet, pour  $g' \in G_n$  et  $X \in M_n$ , on a

(169) 
$$\begin{pmatrix} g' & X \\ 0 & g' \end{pmatrix} \begin{pmatrix} \gamma & 0 \\ 0 & 1_n \end{pmatrix} = \begin{pmatrix} g'\gamma & X\gamma \\ 0 & g' \end{pmatrix}.$$

On note K un compact tel que  $supp(f)\subset H_nK$ . On en déduit que  $f\left(\sigma_n\begin{pmatrix}\gamma&0\\0&1_n\end{pmatrix}g\sigma_n^{-1}\right)$ 

est nul sauf si il existe  $g' \in G_n$  tel que  $\begin{pmatrix} g'\gamma & X\gamma \\ 0 & g' \end{pmatrix} \in K$ . On en déduit alors que  $\gamma$  est dans un compact. L'intégrale est donc absoluement convergente. De plus, pour tous  $g_1,g_2\in G_n$  et  $g\in G_{2n}$ , on a

$$\begin{split} \widetilde{f}\left(\begin{pmatrix} g_1 & 0 \\ 0 & g_2 \end{pmatrix}g\right) &= \int_{G_n} f\left(\sigma_n \begin{pmatrix} \gamma & 0 \\ 0 & 1_n \end{pmatrix} \begin{pmatrix} g_1 & 0 \\ 0 & g_2 \end{pmatrix} g\sigma_n^{-1} \right) d\gamma \\ &=_{\gamma \mapsto g_2 \gamma g_1^{-1}} \int_{G_n} f\left(\sigma_n \begin{pmatrix} g_2 & 0 \\ 0 & g_2 \end{pmatrix} \begin{pmatrix} \gamma & 0 \\ 0 & 1_n \end{pmatrix} g\sigma_n^{-1} \right) d\gamma \\ &= \int_{G_n} f\left(\sigma_n \begin{pmatrix} \gamma & 0 \\ 0 & 1_n \end{pmatrix} g\sigma_n^{-1} \right) d\gamma \\ &= \widetilde{f}(g). \end{split}$$

Pour finir, montrons que  $\widetilde{f}$  est à support compact modulo  $G_n \times G_n$ . Grâce à la décomposition d'Iwasawa, écrivons g sous la forme  $\begin{pmatrix} g_2 & x \\ 0 & g_2 \end{pmatrix}$  k avec  $g_1,g_2 \in G_n$ ,

$$x\in M_n \text{ et } k\in K. \text{ Alors } \widetilde{f}(g)=\widetilde{f}\left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} k\right), \text{ on a alors }$$

(171) 
$$\widetilde{f}(g) = \int_{G_{\mathfrak{n}}} f\left(\sigma_{\mathfrak{n}} \begin{pmatrix} 1 & \gamma x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} k \sigma_{\mathfrak{n}}^{-1} \right) d\gamma$$

$$= \int_{G_{\mathfrak{n}}} f\left(\sigma_{\mathfrak{n}} \begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} k \sigma_{\mathfrak{n}}^{-1} \right) \psi(\mathsf{Tr}(\gamma x)) d\gamma$$

Cette dernière intégrale est la transformée de Fourier d'une fonction à support compact sur  $M_n$ , à savoir la fonction  $\varphi_k$  définie par  $\varphi_k(y) = f\left(\sigma_n\begin{pmatrix} y & 0 \\ 0 & 1 \end{pmatrix} k\sigma_n^{-1}\right) |\det y|^{-n}$ 

si  $y \in G_n$  et 0 sinon. Le facteur  $|\det y|^{-n}$  provient de la transformation de la mesure multiplicative  $d\gamma$  en une mesure additive. On en déduit que  $\widetilde{f}$  est à support compact modulo  $G_n \times G_n$ . Ce qui prouve que l'application  $f \in C_c^{\infty}(H_n \backslash G_{2n}, \theta) \mapsto \widetilde{f} \in C_c^{\infty}(G_n \times G_n \backslash G_{2n})$  est bien définie.

Cette application est linéaire et injective. En effet, si  $\widetilde{f}=0,$  alors  $\varphi_k=0$  pour tout  $k\in K,$  donc  $f\left(\sigma_n\begin{pmatrix}\gamma&0\\0&1\end{pmatrix}k\sigma_n^{-1}\right)=0$  pour tout  $\gamma\in G_n$  et  $k\in K.$  On en déduit que f=0 car elle est  $(H_n,\theta)$ -invariante.

Pour finir, montrons qu'il existe une constante c>0 telle que  $\|f\|_{L^2(H_n\setminus G_{2n},\theta)}=c\|\widetilde{f}\|_{L^2(G_n\times G_n\setminus G_{2n})}$ . Ce qui prouve que l'application  $f\in C_c^\infty(H_n\setminus G_{2n},\theta)\mapsto \widetilde{f}\in C_c^\infty(G_n\times G_n\setminus G_{2n})$  s'étend en un isomorphisme d'espace de Hilbert  $L^2(H_n\setminus G_{2n},\theta)\simeq L^2(G_n\times G_n\setminus G_{2n})$ .

En effet,

$$\begin{aligned} \|\widetilde{\mathbf{f}}\|_{\mathsf{L}^{2}(\mathsf{H}_{\mathfrak{n}}\backslash\mathsf{G}_{2\mathfrak{n}},\boldsymbol{\theta})} &= \int_{\mathsf{M}_{\mathfrak{n}}\times\mathsf{K}} |\widetilde{\mathbf{f}}\left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \mathbf{k} \right)|^{2} dx dk \\ &= \int_{\mathsf{M}_{\mathfrak{n}}\times\mathsf{K}} |\int_{\mathsf{G}_{\mathfrak{n}}} \mathbf{f}\left(\sigma_{\mathfrak{n}}\begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} \mathbf{k} \sigma_{\mathfrak{n}}^{-1}\right) \psi(\mathsf{Tr}(\gamma x) d\gamma|^{2} dx dk \\ &= \int_{\mathsf{M}_{\mathfrak{n}}\times\mathsf{K}} |\widehat{\boldsymbol{\varphi}}_{\mathbf{k}}(x)|^{2} dx dk. \end{aligned}$$

La transformé de Fourier conserve la norme  $L^2$  avec un choix de constante appropriée, on en déduit qu'il existe une constante c' > 0 telle que

$$\begin{split} \|\widetilde{f}\|_{L^2(H_{\mathfrak{n}}\setminus G_{2\mathfrak{n}},\theta)} &= c' \int_{M_{\mathfrak{n}}\times K} |\varphi_k(x)|^2 dx dk \\ &= c' \int_K \int_{G_{\mathfrak{n}}} |f\left(\sigma_{\mathfrak{n}}\begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} k \sigma_{\mathfrak{n}}^{-1} \right)|^2 \frac{d\gamma}{|\det \gamma|^{\mathfrak{n}}} dk. \end{split}$$

On met l'accent sur le fait que l'on a modifié la mesure additive sur  $M_n$  restreinte à  $G_n$  en une mesure multiplicative sur  $G_n$ . La mesure  $\frac{d\gamma}{|\det\gamma|^n}dk$  est une mesure de Haar sur  $G_nK\simeq H_n\backslash G_{2n}$ . On en déduit bien qu'il existe une constante c>0 telle que  $\|f\|_{L^2(H_n\backslash G_{2n},\theta)}=c\|\widetilde{f}\|_{L^2(G_n\times G_n\backslash G_{2n})}$ .

Cet isomorphisme d'espace  $L^2$  nous permet de faire le lien entre les formules de Plancherel sur  $G_n \times G_n \setminus G_{2n}$  et sur  $H_n \setminus G_n$ . En effet, on dispose du

**Théorème 5.2.** Une décomposition de Plancherel abstraite sur  $L^2(G_n \times G_n \backslash G_{2n})$  est obtenue par la relation

$$(174) \qquad L^{2}(\mathsf{G}_{\mathfrak{n}}\times\mathsf{G}_{\mathfrak{n}}\backslash\mathsf{G}_{2\mathfrak{n}}) = \int_{\mathsf{Temp}(\mathsf{SO}(2\mathfrak{n}+1))/\mathsf{Stab}}^{\oplus} \mathsf{T}(\sigma) \frac{|\gamma^{*}(0,\sigma,Ad,\psi)|}{|\mathsf{S}_{\sigma}|} d\sigma.$$

Démonstration. C'est une conséquence du lemme 5.7 et du corollaire 5.2.

## Références

- [1] J. Arthur, The Endoscopic Classification of Representations Orthogonal and Symplectic Groups, vol. 61, American Mathematical Soc., 2013.
- [2] D. Belt, On the holomorphy of exterior-square L-functions, arXiv preprint arXiv:1108.2200, (2011).

- [3] J. N. BERNSTEIN, P-invariant distributions on gl(n) and the classification of unitary representations of gl(n) (non-archimedean case), in Lie Group Representations II, R. Herb, S. Kudla, R. Lipsman, and J. Rosenberg, eds., Berlin, Heidelberg, 1983, Springer Berlin Heidelberg.
- [4] R. Beuzart-Plessis, Plancherel formula for  $GL_n(F)\backslash GL_n(E)$  and applications to the Ichino-Ikeda and formal degree conjectures for unitary groups, (2018).
- [5] GEL'FAND, I. M. AND KAZHDAN, D. A., On the representation of the group GL(n, K) where K is a local field, Functional Analysis and Its Applications, 6 (1972), pp. 315–317.
- [6] G. Henniart, Correspondence de Langlands et Fonctions L des carrés extérieur et symétrique, International Mathematics Research Notices, 2010 (2010), pp. 633–673.
- [7] A. ICHINO, E. LAPID, AND Z. MAO, On the formal degrees of square-integrable representations of odd special orthogonal and metaplectic groups, Duke Math. J., 166 (2017), pp. 1301– 1348.
- [8] H. Jacquet and S. Rallis, Uniqueness of linear periods, Compositio Mathematica, 102 (1996), pp. 65–123.
- [9] H. Jacquet and J. Shalika, Exterior square L-functions, Automorphic forms, Shimura varieties, and L-functions, 2 (1990), pp. 143–226.
- [10] A. C. Kable, Asai L-functions and Jacquet's conjecture, American journal of mathematics, 126 (2004), pp. 789–820.
- [11] P. K. Kewat, The local exterior square l-function: Holomorphy, non-vanishing and shalika functionals, Journal of Algebra, 347 (2011), pp. 153 – 172.
- [12] N. MATRINGE, Linear and Shalika local periods for the mirabolic group, and some consequences, Journal of Number Theory, 138 (2014), pp. 1–19.
- [13] Y. Sakellaridis and A. Venkatesh, Periods and harmonic analysis on spherical varieties, arXiv e-prints, (2012), p. arXiv:1203.0039.
- [14] F. Shahidi, Fourier transforms of intertwining operators and plancherel measures for gl(n), American Journal of Mathematics, 106 (1984).
- [15] A. J. Silberger and E.-W. Zink, The formal degree of discrete series representations of central simple algebras over p-adic fields, Max-Planck-Institut für Mathematik, (1996).
- [16] J.-L. WALDSPURGER, La formule de Plancherel pour les groupes p-adique. d'après Harish-Chandra, Journal of the Institute of Mathematics of Jussieu, 2 (2003), pp. 235–333.