SBML Model Report

Model name: "Wegner2012-_TGFbetaSignalling_FeedbackLoops"

May 5, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following three authors: Vijayalakshmi Chelliah¹, Katja Wegner² and Anastasia Bachmann³ at February tenth 2012 at 11:45 a.m. and last time modified at March 27th 2012 at 1:41 p.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	53
events	0	constraints	0
reactions	91	function definitions	7
global parameters	10	unit definitions	2
rules	9	initial assignments	0

Model Notes

This model is from the article:

Dynamics and feedback loops in the transforming growth factor signaling pathway.

¹EMBL-EBI, viji@ebi.ac.uk

²Biological and Neural Computation Group, Science and Technology Research Institute, University of Hertfordshire, College Lane, Hatfield, Hertfordshire, United Kingdom, wegner@dhbw-karlsruhe.de

³Molecular Alcohol Research in Gastroentorology, Department of Medicine II, Universittsmedizin Mannheim, University of Heidelberg, Mannheim, Germany, anastasia.bachmann@medma.uni-heidelberg.de

Wegner K, Bachmann A, Schad JU, Lucarelli P, Sahle S, Nickel P, Meyer C, Klingmller U, Dooley S, Kummer U. Biophys Chem. 2012 Jan 5. 22284904,

Abstract:

Transforming growth factor (TGF-) ligands activate a signaling cascade with multiple cell context dependent outcomes. Disruption or disturbance leads to variant clinical disorders. To develop strategies for disease intervention, delineation of the pathway in further detail is required. Current theoretical models of this pathway describe production and degradation of signal mediating proteins and signal transduction from the cell surface into the nucleus, whereas feedback loops have not exhaustively been included. In this study we present a mathematical model to determine the relevance of feedback regulators (Arkadia, Smad7, Smurf1, Smurf2, SnoN and Ski) on TGF- target gene expression and the potential to initiate stable oscillations within a realistic parameter space. We employed massive sampling of the parameters space to pinpoint crucial players for potential oscillations as well as transcriptional product levels. We identified Smad7 and Smurf2 with the highest impact on the dynamics. Based on these findings, we conducted preliminary time course experiments.

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2012 The BioModels.net Team. For more information see the terms of use .

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit time

Name time

Definition 60 s

2.2 Unit substance

Name substance

Definition µmol

2.3 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.4 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.5 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
_1	cytoplasm nucleus	0000290 0000290	3 3	1	litre litre	✓	

3.1 Compartment _1

This is a three dimensional compartment with a constant size of one litre.

Name cytoplasm

SBO:0000290 physical compartment

3.2 Compartment _3

This is a three dimensional compartment with a constant size of one litre.

Name nucleus

SBO:0000290 physical compartment

4 Species

This model contains 53 species. Section 9 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
_75	TGF_RII	_1	μ mol·l ⁻¹		
_79	TGFbeta_TGF_RII	_1	$\mu mol \cdot l^{-1}$		\Box
_84	TGF_RI	_1	μ mol · l ⁻¹		\Box
_96	Rec_active	_1	μ mol \cdot l ⁻¹		\Box
_99	Smad2_c	_1	μ mol \cdot l ⁻¹		\Box
_101	SARA	_1	$\mu mol \cdot l^{-1}$		\Box
_105	Smad2_SARA	_1	$\mu mol \cdot l^{-1}$		\Box
_129	pSmad2_c	_1	$\mu mol \cdot l^{-1}$		\Box
_147	Smad4_c	_1	$\mu mol \cdot l^{-1}$		\Box
_153	pSmad2_Smad4_c	_1	$\mu mol \cdot l^{-1}$		\Box
_174	Smad7_c	_1	$\mu mol \cdot l^{-1}$		
_181	Smad7_Smurf2_c	_1	$\mu mol \cdot l^{-1}$		
_198	Rec_Smad7	_1	$\mu mol \cdot l^{-1}$		
species_1	Smurf2_c	_1	$\mu \mathrm{mol} \cdot \mathrm{l}^{-1}$		
species_2	$SnoN_c$	_1	$\mu \mathrm{mol} \cdot \mathrm{l}^{-1}$		\Box
species_3	Smad3_c	_1	$\mu mol \cdot l^{-1}$		
species_4	pSmad3_c	_1	$\mu mol \cdot l^{-1}$		
species_5	Smad3_SARA	_1	$\mu mol \cdot l^{-1}$		
species_6	pSmad3_Smad4_c	_1	μ mol· 1^{-1}		
species_7	Ski_c	_1	μ mol· 1^{-1}		
species_8	Smad3_Ski_c	_1	μ mol·l ⁻¹		
species_9	Smurf1_c	_1	$\mu \mathrm{mol} \cdot \mathrm{l}^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
species_10	Smad7_Smurf1_c	_1	μ mol·l ⁻¹		\Box
species_11	pSmad2_Smad4_Ski_n	_1	$\mu \text{mol} \cdot l^{-1}$		
species_12	Smad2_Ski_c	_1	μ mol·l ⁻¹		
species_13	pSmad2_SnoN_n	_1	μ mol·l ⁻¹		
species_14	pSmad3_SnoN_n	_1	μ mol·l ⁻¹		
species_15	Arkadia_c	_1	μ mol·l ⁻¹		
_5	Smad4_n	_3	μ mol·l ⁻¹		
_9	pSmad2_Smad4_n	_3	μ mol·l ⁻¹		
_11	SnoN_n	_3	μ mol·l ⁻¹		
_13	pSmad2_Smad4_SnoN_n	_3	μ mol·l ⁻¹		
_15	Smurf2_n	_3	μ mol·l ⁻¹		
_19	pSmad2_n	_3	$\mu mol \cdot l^{-1}$		
_21	Smad2_n	_3	$\mu mol \cdot l^{-1}$		
_25	Smad7_n	_3	μ mol·l ⁻¹		
_27	Smad7_Smurf2_n	_3	$\mu mol \cdot l^{-1}$		\Box
species_16	Smad4_SnoN_n	_3	μ mol·l ⁻¹		
species_17	Smad3_n	_3	$\mu mol \cdot l^{-1}$		\Box
species_18	pSmad3_Smad4_n	_3	$\mu mol \cdot l^{-1}$		
species_19	Smad4_Smad2_n	_3	$\mu mol \cdot l^{-1}$		\Box
species_20	pSmad3_n	_3	$\mu mol \cdot l^{-1}$		\Box
species_21	pSmad3_Smad4_SnoN_n	_3	$\mu mol \cdot l^{-1}$		\Box
species_22	Ski_n	_3	$\mu mol \cdot l^{-1}$		\Box
species_23	Smad4_Ski_n	_3	$\mu mol \cdot l^{-1}$		\Box
species_24	Smurf1_n	_3	$\mu mol \cdot l^{-1}$		\Box
species_25	Smad7_Smurf1_n	_3	$\mu \text{mol} \cdot l^{-1}$		\Box
species_26	pSmad3_Smad4_Ski_n	_3	μ mol·l ⁻¹		\Box
species_27	Smad4_Smad3_n	_3	$\mu mol \cdot l^{-1}$	\Box	\Box

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
species_28	freePromoters	_3	μ mol·l ⁻¹		\Box
species_29	inactivePromoters	_3	μ mol \cdot l ⁻¹		
species_30	geneProduct	_3	$\mu mol \cdot l^{-1}$		
species_31	Arkadia_n	_3	$\mu mol \cdot l^{-1}$		

5 Parameters

This model contains ten global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
parameter_1	TGFbeta	0000196	0.01		\overline{Z}
$parameter_2$	allSnoN		0.00		
$parameter_3$	allSmad7		0.00		\Box
$parameter_4$	allSmurf2		0.00		\Box
$parameter_5$	allSmad2		0.00		
$parameter_6$	allSmad4		0.00		
$parameter_{-}7$	allPSmad3		0.00		
parameter_8	allSmad3		0.00		
parameter_9	allSmad4cyt		0.00		
parameter_10	allSmad4nuc		0.00		

6 Function definitions

This is an overview of seven function definitions.

6.1 Function definition function_4

Name Constant flux (irreversible)

Argument v

Mathematical Expression

(1)

6.2 Function definition function_1

Name Henri-Michaelis-Menten (irreversible)

Arguments substrate, Km, V

Mathematical Expression

$$\frac{V \cdot substrate}{Km + substrate} \tag{2}$$

6.3 Function definition function_3

Name Rate Law for SARA-Phosph [1]

Arguments k, rec, s, km

Mathematical Expression

$$\frac{\mathbf{k} \cdot \mathbf{rec} \cdot \mathbf{s}}{\mathbf{km} + \mathbf{s}} \tag{3}$$

6.4 Function definition function_2

Name Rate Law for Rec_comp1 [1]

Arguments TGFbeta, k, s, s2

Mathematical Expression

$$k \cdot s \cdot s2 \cdot TGFbeta$$
 (4)

6.5 Function definition function_7

Name Rate Law for Degradation

Arguments k1, substrate, modifier

Mathematical Expression

$$k1 \cdot \text{substrate} \cdot (1 + \text{modifier})$$
 (5)

6.6 Function definition function_5

Name Rate Law for flux and basicflux [1]

Arguments k, k1, m

Mathematical Expression

$$k + k1 \cdot m \tag{6}$$

6.7 Function definition function_6

Name Rate Law for fluxSmad7_1 [1]

Arguments k, k1, m, m2, m3

Mathematical Expression

$$\frac{k+k1\cdot m}{1+m2+m3}\tag{7}$$

7 Rules

This is an overview of nine rules.

7.1 Rule parameter_3

Rule parameter_3 is an assignment rule for parameter parameter_3:

parameter_3 =
$$[_174] + [_181] + [_198] + [_25] + [_27]$$
 (8)

Derived unit $\mu mol \cdot l^{-1}$

7.2 Rule parameter_2

Rule parameter_2 is an assignment rule for parameter parameter_2:

$$parameter 2 = [species 2] + [11] + [species 16] + [species 16]$$
 (9)

Derived unit $\mu mol \cdot l^{-1}$

7.3 Rule parameter_4

Rule parameter_4 is an assignment rule for parameter parameter_4:

parameter_4 =
$$[.181]$$
 + $[species_1]$ + $[.15]$ + $[.27]$ (10)

Derived unit $\mu \text{mol} \cdot l^{-1}$

7.4 Rule parameter_5

Rule parameter_5 is an assignment rule for parameter parameter_5:

parameter_5 =
$$[-99] + [-105] + [-129] + [-153] + [-9] + [-13] + [-19] + [-21] + [species_19]$$
 (11)

Derived unit $\mu mol \cdot l^{-1}$

7.5 Rule parameter_6

Rule parameter_6 is an assignment rule for parameter parameter_6:

$$parameter_6 = [_147] + [_153] + [species_6] + [_5] + [_9] + [species_18] + [_13] + [species_16] + [species_21] + [species_27] + [species_26] + [species_23]$$

$$(12)$$

Derived unit $\mu mol \cdot l^{-1}$

7.6 Rule parameter_7

Rule parameter_7 is an assignment rule for parameter parameter_7:

$$parameter_7 = [species_4] + [species_6] + [species_18] + [species_20] + [species_21] + [species_26]$$

$$(13)$$

Derived unit $\mu mol \cdot l^{-1}$

7.7 Rule parameter_8

Rule parameter_8 is an assignment rule for parameter parameter_8:

$$parameter_8 = [species_3] + [species_4] + [species_5] + [species_6] + [species_8] + [species_17] + [species_18] + [species_20] + [species_21] + [species_26] + [species_27]$$

$$(14)$$

Derived unit $\mu mol \cdot l^{-1}$

7.8 Rule parameter_9

Rule parameter_9 is an assignment rule for parameter parameter_9:

parameter_9 =
$$[-147] + [-153] + [species_6]$$
 (15)

Derived unit $\mu mol \cdot l^{-1}$

7.9 Rule parameter_10

Rule parameter_10 is an assignment rule for parameter parameter_10:

Derived unit $\mu mol \cdot l^{-1}$

8 Reactions

This model contains 91 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

$N\!$	Id	Name	Reaction Equation	SBO
1	_29	Smad_dissoc3	species $27 \longrightarrow 5 + 2$ species 17	
2	_31	Smad2_dephosphNuc	$_{-}9 \longrightarrow \text{species}_{-}19$	
3	_33	Smad_inhibComp2SnoN	_9+2_11 === _13	
4	_35	SnoN_degrad2	$3_15 + \text{species}_13 \longrightarrow 3_19$	
5	_37	Smad_compNuc2	$_5 + 2 _19 \longrightarrow _9$	
6	_39	Smad2_dephosphNuc2	_1921	
7	_41	Smad2_degrad	$21 + 15 \longrightarrow \emptyset$	
8	_43	Smad7-Smurf2	_15 + _25 ==== _27	
9	_77	Rec_comp1	2 _75 _75 _79	
10	_86	Rec_comp2	_79 + 2 _84 ==== _96	
11	_103	SARA-comp2	₋ 101 + ₋ 99 ← → ₋ 105	
12	_125	Smad2_phosph	_99 _96 _129	
13	_132	Smad2_phosphSARA	$_105 \xrightarrow{-96} _129 + _101$	
14	_139	Smad2-P_transp	_12919	
15	_149	Smad_compCyt2	$_147 + 2 _129 \longrightarrow _153$	
16	_156	Smad4_transp	_147 === _5	
17	_164	Smad_compTransp2	_1539	
18	_172	Smad7_transp	_25 ⇒ _174	
19	_178	Smad7-Smurf2_transp	<u>-27</u> <u>←</u> -181	
20	_192	Rec_degrad1	$_{-}181 + _{-}96 \longrightarrow \emptyset$	
21	_194	Rec_inhib	_174+_96 === _198	
22	${\tt reaction_1}$	fluxRecII	0 → _75	

N⁰	Id	Name	Reaction Equation	SBO
23	reaction_2	fluxSara	$\emptyset \xrightarrow{\text{species}_30} _101$	
			\emptyset species_30, species_16, species_23 \longrightarrow 174	
24	reaction_3	fluxSmad7		
25	${\tt reaction_4}$	fluxSmurf2	$\emptyset \xrightarrow{\text{species}_30} \text{species}_1$	
26	reaction_5	fluxSnoN	$\emptyset \xrightarrow{\text{species}_30} \text{species}_2$	
27	${\tt reaction_6}$	fluxRecI	$\emptyset \longrightarrow _84$	
28	$reaction_7$	Smad4-SnoN	$_5 + _11 \Longrightarrow \text{species}_16$	
29	$reaction_8$	Smad2_transp	_99 ===≥ _21	
30	${\tt reaction_9}$	Rec_degrad	_96	
31	$reaction_10$	RecI_degrad	_84	
32	${\tt reaction_11}$	RecII_degrad	_75	
33	$reaction_12$	Rec_recycl	_79 2 _75	
34	$reaction_13$	fluxSmad2	$\emptyset \longrightarrow _99$	
35	$reaction_14$	fluxSmad4	$\emptyset \longrightarrow _147$	
36	$reaction_15$	Smad4_degrad	$_{-}147\longrightarrow \emptyset$	
37	$reaction_16$	SARA_degrad	$_101 \longrightarrow \emptyset$	
38	$reaction_17$	Smad2_dephospCyt	_12999	
39	$reaction_18$	SnoN_degrad	species_2 $\longrightarrow \emptyset$	
40	$reaction_19$	Smurf2_transp	_15 === species_1	
41	reaction_20	Smad2_cyt_degrad	_99	
42	reaction_21	SnoN_trans	species_2 ==== _11	
43	reaction_22	fluxSmad3	$\emptyset \longrightarrow \text{species}_3$	
44	reaction_23	Smad3_cyt_degrad	species_ $3 \longrightarrow \emptyset$	
45	$reaction_24$	Smad3_dephospCyt	species_4 → species_3	
46	reaction_25	Smad3_dephospNuc	species_18 → species_27	
47	reaction_26	Smad3_dephospNuc2	species_20 → species_17	
48	reaction_27	Smad3_phosph	species_3 $\xrightarrow{.96}$ species_4	

N₀	Id	Name	Reaction Equation	SBO
49	reaction_28	Smad3_phosphSARA	species_5 $\stackrel{.96}{\longrightarrow}$ species_4 + _101	
50	reaction_29	Smad3_degrad	species_ $17 \longrightarrow \emptyset$	
51	reaction_30	Smad3_transp	species_3 ⇒ species_17	
52	reaction_31	SARA-comp3	$101 + \text{species} = 3 \implies \text{species} = 5$	
53	reaction_32	Smad_dissoc2	species_ $19 \longrightarrow _5 + 2_21$	
54	reaction_33	Smad3-P-transp	species_4 species_20	
55	$reaction_34$	Smad_compCyt3	$_147 + 2 \text{species}_4 \longrightarrow \text{species}_6$	
56	reaction_35	Smad_compNuc3	$_{-}5 + 2 \text{ species}_20 \longrightarrow \text{species}_18$	
57	reaction_36	Smad_inhibComp3SnoN	$species_18 + 2_11 \rightleftharpoons species_21$	
58	$reaction_37$	Smad_compTransp3	species_6 → species_18	
59	reaction_38	SnoN_degrad3	species_14 → species_20	
60	reaction_39	Smad7_degrad	$_{-174} \xrightarrow{\text{species}_15} \emptyset$	
61	reaction_40	Ski_degrad	species_7 $\longrightarrow \emptyset$	
62	$reaction_41$	Ski_trans	species_7 ⇒ species_22	
63	reaction_42	fluxSki	$\emptyset \xrightarrow{\text{species}_30} \text{species}_7$	
64	reaction_43	Smurf2_degrad	species_1 $\xrightarrow{.174} \emptyset$	
65	$reaction_44$	Smad4-Ski	$_{5}$ + species_22 \Longrightarrow species_23	
66	$reaction_45$	Smad3-Ski_cyt	$species_3 + species_7 \Longrightarrow species_8$	
67	$reaction_46$	Smad7-Smurf1	species_24 + $_25 \Longrightarrow$ species_25	
68	reaction_47	fluxSmurf1	$\emptyset \xrightarrow{\text{species}_30} \text{species}_9$	
69	reaction_48	Smad_inhibComp3Ski	species_ $18 + 2$ species_ $22 \rightleftharpoons$ species_ 26	
70	reaction_49	Rec_degrad2	species_ $10 + .96 \longrightarrow \emptyset$	
71	reaction_50	Smad7-Smurf1_transp	species_25 ⇒ species_10	
72	reaction_51	Smurf1_degrad	species_9 $\xrightarrow{-174} \emptyset$	
73	reaction_52	Smurf1_transp	species_24 ⇒ species_9	
74	reaction_53	Smad3-freePromot	species_18 + species_28 ⇒ species_30	

N⁰	Id	Name	Reaction Equation	SBO
75	reaction_54	Smad2-freePromot	_9 + species_28 ⇒ species_30	
76	$reaction_55$	Smad3-SnoN-freePromot	species_21 + species_28 \Longrightarrow species_29	
77	reaction_56	Smad2-SnoN-gene	$_13 + species_28 \Longrightarrow species_29$	
78	reaction_57	Smad3-Ski-freePromot	species $26 + \text{species} 28 \Longrightarrow \text{species} 29$	
79	reaction_58	Smad_inhibComp2Ski	$_{9} + 2 \text{ species}_{22} \Longrightarrow \text{ species}_{11}$	
80	reaction_59	Smad2-Ski-gene	$species_11 + species_28 \Longrightarrow species_29$	
81	$reaction_60$	Smad4-freePromot	$species_23 + species_28 \Longrightarrow species_29$	
82	reaction_61	Smad2-Ski_cyt	$_{-}99 + \text{species}_{-}7 \Longrightarrow \text{species}_{-}12$	
83	reaction_62	Smad2-Snon	$3.19 + 3.11 \Longrightarrow \text{species}.13$	
84	reaction_63	Smad3-Snon	$3 \text{ species} 20 + 3 11 \Longrightarrow \text{ species} 14$	
85	reaction_64	Smad2-comp-degrad	_9	
86	$reaction_65$	Samd3-comp-degrad	$species_18 \longrightarrow \emptyset$	
87	$reaction_66$	fluxArkadia	$\emptyset \longrightarrow \text{species}_15$	
88	$reaction_67$	Arkadia_deg	species_ $15 \longrightarrow \emptyset$	
89	reaction_68	SnoN-deg2	species_ $13 + 3$ species_ $31 \longrightarrow 3_{19}$	
90	reaction_69	SnoN-deg3	species_ $14 + 3$ species_ $31 \longrightarrow$ species_ 20	
91	reaction_70	transArkadia	species_15 ⇒ species_31	

8.1 Reaction _29

This is an irreversible reaction of one reactant forming two products.

Name Smad_dissoc3

Reaction equation

species_27
$$\longrightarrow$$
 _5 + 2 species_17 (17)

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
species_27	Smad4_Smad3_n	

Products

Table 7: Properties of each product.

Id	Name	SBO
5	Smad4_n	
species_17	$Smad3_n$	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol}(3) \cdot \text{k1} \cdot [\text{species} 27] \tag{18}$$

Table 8: Properties of each parameter.

Id	Name	SBO Value U	Unit Constant
k1	k1	0000282 0.049	✓

8.2 Reaction _31

This is an irreversible reaction of one reactant forming one product.

Name Smad2_dephosphNuc

Reaction equation

$$_9 \longrightarrow \text{species}_19$$
 (19)

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
_9	pSmad2_Smad4_n	

Product

Table 10: Properties of each product.

	- F F	
Id	Name	SBO
species_19	Smad4_Smad2_n	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol}(_3) \cdot \text{function}_1([_9], \text{Km}, \text{V})$$
(20)

$$function_1 \, (substrate, Km, V) = \frac{V \cdot substrate}{Km + substrate} \tag{21} \label{eq:21}$$

$$function_1 \, (substrate, Km, V) = \frac{V \cdot substrate}{Km + substrate} \tag{22} \label{eq:22}$$

Table 11: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km	Km	0000027	40.00		Ø
V	V	0000186	2.34		Ø

8.3 Reaction _33

This is a reversible reaction of two reactants forming one product.

Name Smad_inhibComp2SnoN

Reaction equation

$$_9 + __11 \rightleftharpoons _13$$
 (23)

Reactants

Table 12: Properties of each reactant.

Id	Name	SBO
_9	pSmad2_Smad4_n	
_11	SnoN_n	

Product

Table 13: Properties of each product.

Id	Name	SBO
_13	pSmad2_Smad4_SnoN_n	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}(3) \cdot (k1 \cdot [9] \cdot [11]^2 - k2 \cdot [13])$$
 (24)

Table 14: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	1.6		
k2	k2	0000156	1.6		

8.4 Reaction _35

This is an irreversible reaction of two reactants forming one product.

Name SnoN_degrad2

Reaction equation

$$3_15 + \text{species}_13 \longrightarrow 3_19$$
 (25)

Reactants

Table 15: Properties of each reactant.

	T	
Id	Name	SBO
_15	Smurf2_n	
species_13	pSmad2_SnoN_n	

Product

Table 16: Properties of each product.

Id	Name	SBO
_19	pSmad2_n	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = k1 \cdot [-15]^3 \cdot [\text{species}_13]$$
 (26)

Table 17: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000356	0.232		Ø

8.5 Reaction _37

This is an irreversible reaction of two reactants forming one product.

Name Smad_compNuc2

Reaction equation

$$_5 + 2_19 \longrightarrow _9$$
 (27)

Reactants

Table 18: Properties of each reactant.

Id	Name	SBO
_5	Smad4_n	
_19	pSmad2_n	

Product

Table 19: Properties of each product.

Id	Name	SBO
_9	pSmad2_Smad4_n	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{vol}(.3) \cdot \text{k1} \cdot [.5] \cdot [.19]^2$$
 (28)

Table 20: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000337	255.068		\overline{Z}

8.6 Reaction _39

This is an irreversible reaction of one reactant forming one product.

 $\textbf{Name} \;\; Smad2_dephosphNuc2$

Reaction equation

$$_{-}19 \longrightarrow _{-}21$$
 (29)

Reactant

Table 21: Properties of each reactant.

Id	Name	SBO
_19	pSmad2_n	

Product

Table 22: Properties of each product.

Id	Name	SBO
_21	Smad2_n	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{vol}(3) \cdot \text{function}([19], \text{Km}, \text{V})$$
(30)

$$function_1 (substrate, Km, V) = \frac{V \cdot substrate}{Km + substrate}$$
 (31)

$$function_1 \left(substrate, Km, V \right) = \frac{V \cdot substrate}{Km + substrate} \tag{32} \label{eq:32}$$

Table 23: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km	Km	0000027	0.53		
V	V	0000186	3.51		

8.7 Reaction _41

This is an irreversible reaction of two reactants forming no product.

Name Smad2_degrad

Reaction equation

$$21 + 15 \longrightarrow \emptyset \tag{33}$$

Reactants

Table 24: Properties of each reactant.

Id	Name	SBO
21	Smad2 n	

Id	Name	SBO
_15	Smurf2_n	

Derived unit contains undeclared units

$$v_7 = \text{vol}(3) \cdot \text{k1} \cdot [21] \cdot [15] \tag{34}$$

Table 25: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000356	0.2		

8.8 Reaction _43

This is a reversible reaction of two reactants forming one product.

Name Smad7-Smurf2

Reaction equation

$$_{15} + _{25} \rightleftharpoons _{27} \tag{35}$$

Reactants

Table 26: Properties of each reactant.

Id	Name	SBO
_15	Smurf2_n	
_25	Smad7_n	

Table 27: Properties of each product.

Id	Name	SBO
_27	Smad7_Smurf2_n	

Derived unit contains undeclared units

$$v_8 = \text{vol}(.3) \cdot (\text{k1} \cdot [.15] \cdot [.25] - \text{k2} \cdot [.27])$$
 (36)

Table 28: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	2.9		\square
k2	k2	0000156	0.2		\square

8.9 Reaction _77

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Rec_comp1

Reaction equation

$$2.75 \xrightarrow{.75} .79 \tag{37}$$

Reactant

Table 29: Properties of each reactant.

Id	Name	SBO
_75	TGF_RII	

Modifier

Table 30: Properties of each modifier.

Id	Name	SBO
_75	TGF_RII	

Table 31: Properties of each product.

Id	Name	SBO
_79	TGFbeta_TGF_RII	

Derived unit contains undeclared units

$$v_9 = \text{vol}(_1) \cdot \text{function}_2(\text{parameter}_1, \text{k}, [_75], [_75])$$
 (38)

$$function_2(TGFbeta, k, s, s2) = k \cdot s \cdot s2 \cdot TGFbeta \tag{39}$$

function_2 (TGFbeta, k, s, s2) =
$$k \cdot s \cdot s2 \cdot TGFbeta$$
 (40)

Table 32: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
k	k	0000337 9.45		

8.10 Reaction _86

This is a reversible reaction of two reactants forming one product.

Name Rec_comp2

Reaction equation

$$_{-}79 + 2_{-}84 \rightleftharpoons _{-}96$$
 (41)

Reactants

Table 33: Properties of each reactant.

Id	Name	SBO
_79	TGFbeta_TGF_RII	
_84	TGF_RI	

Table 34: Properties of each product.

Id	Name	SBO
_96	Rec_active	

Derived unit contains undeclared units

$$v_{10} = \text{vol}(-1) \cdot (\text{k1} \cdot [-79] \cdot [-84]^2 - \text{k2} \cdot [-96])$$
 (42)

Table 35: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	0.033		\overline{Z}
k2	k2	0000156	0.033		\checkmark

8.11 Reaction _103

This is a reversible reaction of two reactants forming one product.

Name SARA-comp2

Reaction equation

$$_{1}01 + _{9}9 \Longrightarrow _{1}05 \tag{43}$$

Reactants

Table 36: Properties of each reactant.

Id	Name	SBO
_101	SARA	
_99	$Smad2_c$	

Table 37: Properties of each product.

Id	Name	SBO
_105	Smad2_SARA	

Derived unit contains undeclared units

$$v_{11} = \text{vol}(_1) \cdot (k1 \cdot [_101] \cdot [_99] - k2 \cdot [_105])$$
 (44)

Table 38: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	1.0		
k2	k2	0000156	0.1		

8.12 **Reaction** _125

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Smad2_phosph

Reaction equation

$$_99 \xrightarrow{_96} _129 \tag{45}$$

Reactant

Table 39: Properties of each reactant.

Id	Name	SBO
_99	Smad2_c	

Modifier

Table 40: Properties of each modifier.

Id	Name	SBO
_96	Rec_active	

Table 41: Properties of each product.

Id	Name	SBO
_129	pSmad2_c	

Derived unit contains undeclared units

$$v_{12} = \text{vol}(_1) \cdot \text{function}_3 (k, [_96], [_99], km)$$
 (46)

$$function_3(k, rec, s, km) = \frac{k \cdot rec \cdot s}{km + s}$$
 (47)

$$function_3\left(k,rec,s,km\right) = \frac{k \cdot rec \cdot s}{km + s} \tag{48}$$

Table 42: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k	k	0000025	1000.000		
km	km	0000027	0.032		\mathbf{Z}

8.13 Reaction _132

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Smad2_phosphSARA

Reaction equation

$$_{-}105 \xrightarrow{-96} _{-}129 + _{-}101$$
 (49)

Reactant

Table 43: Properties of each reactant.

Id	Name	SBO
_105	Smad2_SARA	

Modifier

Table 44: Properties of each modifier.

Id	Name	SBO
_96	Rec_active	

Products

Table 45: Properties of each product.

Id	Name	SBO
_129	pSmad2_c	
_101	SARA	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{vol}(_1) \cdot \text{function}_3 (k, [_96], [_105], km)$$
 (50)

$$function_3\left(k,rec,s,km\right) = \frac{k \cdot rec \cdot s}{km + s} \tag{51}$$

$$function_3\left(k,rec,s,km\right) = \frac{k \cdot rec \cdot s}{km + s} \tag{52}$$

Table 46: Properties of each parameter.

		*			
Id	Name	SBO	Value	Unit	Constant
k	k	0000025	3.51		
km	km	0000027	0.53		\checkmark

8.14 Reaction _139

This is an irreversible reaction of one reactant forming one product.

Name Smad2-P_transp

Reaction equation

$$_{-}129 \longrightarrow _{-}19$$
 (53)

Reactant

Table 47: Properties of each reactant.

Id	Name	SBO
_129	pSmad2_c	

Product

Table 48: Properties of each product.

Id	Name	SBO
_19	$pSmad2_n$	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = k1 \cdot [-129] \tag{54}$$

Table 49: Properties of each parameter.

Id	Name	SBO V	alue Uni	t Constant
k1	k1	0000009 1	6.6	

8.15 Reaction _149

This is an irreversible reaction of two reactants forming one product.

Name Smad_compCyt2

Reaction equation

$$_{147} + _{2}129 \longrightarrow _{153} \tag{55}$$

Reactants

Table 50: Properties of each reactant.

Id	Name	SBO
_147	Smad4_c	
_129	$pSmad2_c$	

Product

Table 51: Properties of each product.

Id	Name	SBO
_153	pSmad2_Smad4_c	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \text{vol}(-1) \cdot \text{k1} \cdot [-147] \cdot [-129]^2$$
 (56)

Table 52: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000337	1000.0		

8.16 Reaction _156

This is a reversible reaction of one reactant forming one product.

Name Smad4_transp

Reaction equation

$$_{147} \rightleftharpoons _{5}$$
 (57)

Reactant

Table 53: Properties of each reactant.

Id	Name	SBO
_147	Smad4_c	

Product

Table 54: Properties of each product.

Id	Name	SBO
_5	Smad4_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = k1 \cdot [-147] - k2 \cdot [-5]$$
 (58)

Table 55: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	0.156		
k2	k2	0000156	0.156		

8.17 Reaction _164

This is an irreversible reaction of one reactant forming one product.

Name Smad_compTransp2

Reaction equation

$$_153 \longrightarrow _9$$
 (59)

Reactant

Table 56: Properties of each reactant.

Id	Name	SBO
_153	pSmad2_Smad4_c	

Table 57: Properties of each product.

Id	Name	SBO
_9	pSmad2_Smad4_n	

Derived unit contains undeclared units

$$v_{17} = k1 \cdot [-153] \tag{60}$$

Table 58: Properties of each parameter.

Id	Name	SBO Value	Unit Constant
k1	k1	0000009 0.16	

8.18 Reaction _172

This is a reversible reaction of one reactant forming one product.

Name Smad7_transp

Reaction equation

Reactant

Table 59: Properties of each reactant.

Id	Name	SBO
_25	Smad7_n	

Table 60: Properties of each product.

Id	Name	SBO
_174	Smad7_c	

Derived unit contains undeclared units

$$v_{18} = k1 \cdot [-25] - k2 \cdot [-174]$$
 (62)

Table 61: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	0.10		
k2	k2	0000156	0.01		

8.19 Reaction _178

This is a reversible reaction of one reactant forming one product.

Name Smad7-Smurf2_transp

Reaction equation

Reactant

Table 62: Properties of each reactant.

Id	Name	SBO
_27	Smad7_Smurf2_n	

Product

Table 63: Properties of each product.

Id	Name	SBO
_181	Smad7_Smurf2_c	

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = k1 \cdot [-27] - k2 \cdot [-181]$$
 (64)

Table 64: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	1.00		lacksquare
k2	k2	0000156	0.01		

8.20 Reaction _192

This is an irreversible reaction of two reactants forming no product.

Name Rec_degrad1

Reaction equation

$$_{-}181 + _{-}96 \longrightarrow \emptyset \tag{65}$$

Reactants

Table 65: Properties of each reactant.

Id	Name	SBO
_181 _96	Smad7_Smurf2_c Rec_active	

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \operatorname{vol}(-1) \cdot k1 \cdot [-181] \cdot [-96] \tag{66}$$

Table 66: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000356	1900.0		\mathbf{Z}

8.21 Reaction _194

This is a reversible reaction of two reactants forming one product.

Name Rec_inhib

Reaction equation

$$_{174} + _{96} \rightleftharpoons _{198}$$
 (67)

Reactants

Table 67: Properties of each reactant.

Id	Name	SBO
_174	Smad7_c	
_96	Rec_active	

Product

Table 68: Properties of each product.

Id	Name	SBO
_198	Rec_Smad7	

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{vol}(_1) \cdot (\text{k1} \cdot [_174] \cdot [_96] - \text{k2} \cdot [_198])$$
 (68)

Table 69: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	8.69		$ \overline{\checkmark} $
k2	k2	0000156	0.01		\square

8.22 Reaction reaction_1

This is an irreversible reaction of no reactant forming one product.

Name fluxRecII

Reaction equation

$$\emptyset \longrightarrow _75$$
 (69)

Product

Table 70: Properties of each product.

Id	Name	SBO
_75	TGF_RII	

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = \text{vol}(1) \cdot \text{function}(0)$$
(70)

$$function_4(v) = v \tag{71}$$

$$function_{-}4(v) = v \tag{72}$$

Table 71: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
ν	V	0000009	0.001		Ø

8.23 Reaction reaction_2

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name fluxSara

Reaction equation

$$\emptyset \xrightarrow{\text{species}_30} _101 \tag{73}$$

Modifier

Table 72: Properties of each modifier.

Id	Name	SBO
species_30	geneProduct	

Product

Table 73: Properties of each product.

Id	Name	SBO
_101	SARA	

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = \text{vol}(_1) \cdot \text{function}_5 (k, k1, [\text{species}_30])$$
 (74)

function_5
$$(k, k1, m) = k + k1 \cdot m$$
 (75)

function_5
$$(k, k1, m) = k + k1 \cdot m$$
 (76)

Table 74: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k	k	0000153	10^{-4}		\checkmark
k1	k1	0000156	0.031		$\overline{\mathbf{Z}}$

8.24 Reaction reaction_3

This is an irreversible reaction of no reactant forming one product influenced by three modifiers.

Name fluxSmad7

Reaction equation

$$\emptyset \xrightarrow{\text{species}_30, \text{species}_16, \text{species}_23} _174$$
 (77)

Modifiers

Table 75: Properties of each modifier.

Id	Name	SBO
species_30	geneProduct	
species_16	Smad4_SnoN_n	

Id	Name	SBO
species_23	Smad4_Ski_n	

Table 76: Properties of each product.

Id	Name	SBO
_174	Smad7_c	

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = \text{vol}(_1) \cdot \text{function}_6(k,k1,[\text{species}_30],[\text{species}_16],[\text{species}_23])$$
 (78)

$$function_6\,(k,k1,m,m2,m3) = \frac{k+k1\cdot m}{1+m2+m3} \eqno(79)$$

$$function_6\,(k,k1,m,m2,m3) = \frac{k+k1\cdot m}{1+m2+m3} \tag{80} \label{80}$$

Table 77: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k	k	0000153	10^{-4}		
k1	k1	0000156	0.100		\checkmark

8.25 Reaction reaction_4

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name fluxSmurf2

Reaction equation

$$\emptyset \xrightarrow{\text{species}_30} \text{species}_1 \tag{81}$$

Modifier

Table 78: Properties of each modifier.

Id	Name	SBO
species_30	geneProduct	

Table 79: Properties of each product.

Id	Name	SBO
species_1	Smurf2_c	

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = \text{vol}(1) \cdot \text{function}(k, k1, [\text{species}30])$$
(82)

$$function_5(k,k1,m) = k + k1 \cdot m \tag{83}$$

function_5
$$(k, k1, m) = k + k1 \cdot m$$
 (84)

Table 80: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k k1	k k1	0000153 0000156	$2.28 \cdot 10^{-4} \\ 0.029$		✓

8.26 Reaction reaction_5

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name fluxSnoN

Reaction equation

$$\emptyset \xrightarrow{\text{species}_30} \text{species}_2 \tag{85}$$

Modifier

Table 81: Properties of each modifier.

Id	Name	SBO
species_30	geneProduct	

Table 82: Properties of each product.

Id	Name	SBO
species_2	SnoN_c	

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = \text{vol}(-1) \cdot \text{function}_5(k, k1, [\text{species}_30])$$
(86)

$$function_5(k,k1,m) = k + k1 \cdot m \tag{87}$$

function_5
$$(k, k1, m) = k + k1 \cdot m$$
 (88)

Table 83: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k k1	k k1	0000153 0000156			

8.27 Reaction reaction_6

This is an irreversible reaction of no reactant forming one product.

Name fluxRecI

Reaction equation

$$\emptyset \longrightarrow _84$$
 (89)

Table 84: Properties of each product.

Id	Name	SBO
_84	TGF_RI	

Derived unit contains undeclared units

$$v_{27} = \text{vol}(_1) \cdot \text{function}_4(v) \tag{90}$$

function_
$$4(v) = v$$
 (91)

$$function_{4}(v) = v (92)$$

Table 85: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
v	V	0000009	0.013		

8.28 Reaction reaction_7

This is a reversible reaction of two reactants forming one product.

Name Smad4-SnoN

Reaction equation

$$_5 + _11 \Longrightarrow \text{species}_{_16}$$
 (93)

Reactants

Table 86: Properties of each reactant.

Id	Name	SBO
_5	Smad4_n	
_11	$SnoN_n$	

Table 87: Properties of each product.

Id	Name	SBO
species_16	Smad4_SnoN_n	

Derived unit contains undeclared units

$$v_{28} = \text{vol}(3) \cdot (\text{k1} \cdot [5] \cdot [11] - \text{k2} \cdot [\text{species} \cdot 16])$$
 (94)

Table 88: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	1.000		\overline{Z}
k2	k2	0000156	0.053		\square

8.29 Reaction reaction_8

This is a reversible reaction of one reactant forming one product.

Name Smad2_transp

Reaction equation

Reactant

Table 89: Properties of each reactant.

Id	Name	SBO
_99	Smad2_c	

Table 90: Properties of each product.

Id	Name	SBO
_21	Smad2_n	

Derived unit contains undeclared units

$$v_{29} = k1 \cdot [.99] - k2 \cdot [.21] \tag{96}$$

Table 91: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	0.156		$ \mathcal{L} $
k2	k2	0000156	0.336		\mathbf{Z}

8.30 Reaction reaction_9

This is an irreversible reaction of one reactant forming no product.

Name Rec_degrad

Reaction equation

$$_{96} \longrightarrow \emptyset$$
 (97)

Reactant

Table 92: Properties of each reactant.

Id	Name	SBO
_96	Rec_active	

Kinetic Law

$$v_{30} = \operatorname{vol}(1) \cdot k1 \cdot [96] \tag{98}$$

Table 93: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000356	0.028		Ø

8.31 Reaction reaction_10

This is an irreversible reaction of one reactant forming no product.

Name RecI_degrad

Reaction equation

$$_{-}84 \longrightarrow \emptyset$$
 (99)

Reactant

Table 94: Properties of each reactant.

Id	Name	SBO
_84	TGF_RI	

Kinetic Law

Derived unit contains undeclared units

$$v_{31} = \operatorname{vol}(\underline{\ }1) \cdot k1 \cdot \underline{\ } \underline{\ } -84] \tag{100}$$

Table 95: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000356	0.028		

8.32 Reaction reaction_11

This is an irreversible reaction of one reactant forming no product.

Name RecII_degrad

Reaction equation

$$_{-}75 \longrightarrow \emptyset$$
 (101)

Reactant

Table 96: Properties of each reactant.

Id	Name	SBO
_75	TGF_RII	

Derived unit contains undeclared units

$$v_{32} = \text{vol}(_1) \cdot \text{k1} \cdot [_75]$$
 (102)

Table 97: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000356	0.028		Ø

8.33 Reaction reaction_12

This is an irreversible reaction of one reactant forming one product.

Name Rec_recycl

Reaction equation

$$_{-}79 \longrightarrow 2_{-}75$$
 (103)

Reactant

Table 98: Properties of each reactant.

Id	Name	SBO
_79	TGFbeta_TGF_RII	

Table 99: Properties of each product.

Id	Name	SBO
_75	TGF_RII	

Derived unit contains undeclared units

$$v_{33} = \operatorname{vol}(-1) \cdot k1 \cdot [-79] \tag{104}$$

Table 100: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000009	0.033		

8.34 Reaction reaction_13

This is an irreversible reaction of no reactant forming one product.

Name fluxSmad2

Reaction equation

$$\emptyset \longrightarrow _99$$
 (105)

Product

Table 101: Properties of each product.

Id	Name	SBO
_99	Smad2_c	

Kinetic Law

$$v_{34} = \text{vol}(_1) \cdot \text{function}_4(v) \tag{106}$$

$$function_4(v) = v (107)$$

$$function_{-}4(v) = v \tag{108}$$

Table 102: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
v	V	0000009	0.016		

8.35 Reaction reaction_14

This is an irreversible reaction of no reactant forming one product.

Name fluxSmad4

Reaction equation

$$\emptyset \longrightarrow _{-}147 \tag{109}$$

Product

Table 103: Properties of each product.

Id	Name	SBO
_147	Smad4_c	

Kinetic Law

Derived unit contains undeclared units

$$v_{35} = \text{vol}(_{-1}) \cdot \text{function}_{-4}(v) \tag{110}$$

$$function_4(v) = v (111)$$

$$function_{-}4(v) = v (112)$$

Table 104: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
V	v	0000009	0.012		Ø

8.36 Reaction reaction_15

This is an irreversible reaction of one reactant forming no product.

Name Smad4_degrad

Reaction equation

$$_{-}147 \longrightarrow \emptyset$$
 (113)

Reactant

Table 105: Properties of each reactant.

Id	Name	SBO
_147	Smad4_c	

Kinetic Law

Derived unit contains undeclared units

$$v_{36} = \operatorname{vol}(-1) \cdot k1 \cdot [-147] \tag{114}$$

Table 106: Properties of each parameter.

Id	Name	SBO V	alue Unit	Constant
k1	k1	0000356 0.	.127	

8.37 Reaction reaction_16

This is an irreversible reaction of one reactant forming no product.

Name SARA_degrad

Reaction equation

$$_{-}101 \longrightarrow \emptyset$$
 (115)

Reactant

Table 107: Properties of each reactant.

Id	Name	SBO
_101	SARA	

Derived unit contains undeclared units

$$v_{37} = \text{vol}(_1) \cdot \text{k1} \cdot [_101]$$
 (116)

Table 108: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000356	0.065		

8.38 Reaction reaction_17

This is an irreversible reaction of one reactant forming one product.

Name Smad2_dephospCyt

Reaction equation

$$_{129} \longrightarrow _{99}$$
 (117)

Reactant

Table 109: Properties of each reactant.

Id	Name	SBO
_129	pSmad2_c	

Product

Table 110: Properties of each product.

Id	Name	SBO
_99	Smad2_c	

Kinetic Law

$$v_{38} = \text{vol}(_1) \cdot \text{function}_1([_129], \text{Km}, \text{V})$$
(118)

$$function_1 \left(substrate, Km, V \right) = \frac{V \cdot substrate}{Km + substrate} \tag{119} \label{eq:119}$$

$$function_1 \, (substrate, Km, V) = \frac{V \cdot substrate}{Km + substrate} \tag{120} \label{eq:120}$$

Table 111: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km	Km	0000027	3.51		\overline{Z}
V	V	0000186	0.53		

8.39 Reaction reaction_18

This is an irreversible reaction of one reactant forming no product.

Name SnoN_degrad

Reaction equation

species_2
$$\longrightarrow \emptyset$$
 (121)

Reactant

Table 112: Properties of each reactant.

Id	Name	SBO
species_2	SnoN_c	

Kinetic Law

Derived unit contains undeclared units

$$v_{39} = \text{vol}(-1) \cdot \text{k1} \cdot [\text{species}_2] \tag{122}$$

Table 113: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000356	0.232		Ø

8.40 Reaction reaction_19

This is a reversible reaction of one reactant forming one product.

Name Smurf2_transp

Reaction equation

$$_{15} \Longrightarrow \text{species}_{1}$$
 (123)

Reactant

Table 114: Properties of each reactant.

Id	Name	SBO
_15	Smurf2_n	

Product

Table 115: Properties of each product.

Id	Name	SBO
species_1	Smurf2_c	

Kinetic Law

Derived unit contains undeclared units

$$v_{40} = k1 \cdot [-15] - k2 \cdot [\text{species}_{-1}]$$
 (124)

Table 116: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	0.233		
k2	k2	0000156	1.806		\mathbf{Z}

8.41 Reaction reaction_20

This is an irreversible reaction of one reactant forming no product.

Name Smad2_cyt_degrad

Reaction equation

$$_{99}\longrightarrow\emptyset \tag{125}$$

Reactant

Table 117: Properties of each reactant.

Id	Name	SBO
_99	Smad2_c	

Derived unit contains undeclared units

$$v_{41} = \operatorname{vol}(1) \cdot k1 \cdot [99] \tag{126}$$

Table 118: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
k1	k1	0000356 0.2		Ø

8.42 Reaction reaction_21

This is a reversible reaction of one reactant forming one product.

Name SnoN_trans

Reaction equation

species_2
$$\rightleftharpoons$$
 _11 (127)

Reactant

Table 119: Properties of each reactant.

Id	Name	SBO
species_2	SnoN_c	

Table 120: Properties of each product.

Id	Name	SBO
_11	SnoN_n	

Derived unit contains undeclared units

$$v_{42} = k1 \cdot [\text{species}_2] - k2 \cdot [-11]$$
 (128)

Table 121: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	0.1		
k2	k2	0000156	0.2		\square

8.43 Reaction reaction_22

This is an irreversible reaction of no reactant forming one product.

Name fluxSmad3

Reaction equation

$$\emptyset \longrightarrow \text{species}_3$$
 (129)

Product

Table 122: Properties of each product.

Id	Name	SBO
species_3	Smad3_c	

Kinetic Law

$$v_{43} = \text{vol}(-1) \cdot \text{function}_{-4}(v) \tag{130}$$

function_
$$4(v) = v$$
 (131)

$$function_{4}(v) = v (132)$$

Table 123: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
v	v	0000009	0.045		

8.44 Reaction reaction_23

This is an irreversible reaction of one reactant forming no product.

Name Smad3_cyt_degrad

Reaction equation

species_3
$$\longrightarrow \emptyset$$
 (133)

Reactant

Table 124: Properties of each reactant.

Id	Name	SBO
species_3	Smad3_c	

Kinetic Law

Derived unit contains undeclared units

$$v_{44} = \text{vol}(\underline{1}) \cdot \text{k1} \cdot [\text{species}\underline{3}] \tag{134}$$

Table 125: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
k1	k1	0000356 0.2		

8.45 Reaction reaction_24

This is an irreversible reaction of one reactant forming one product.

Name Smad3_dephospCyt

$$species_4 \longrightarrow species_3$$
 (135)

Table 126: Properties of each reactant.

Id	Name	SBO
species_4	pSmad3_c	

Product

Table 127: Properties of each product.

Id	Name	SBO
species_3	Smad3_c	

Kinetic Law

Derived unit contains undeclared units

$$v_{45} = \text{vol}(1) \cdot \text{function}([\text{species}, 4], \text{Km}, \text{V})$$
 (136)

$$function_1 (substrate, Km, V) = \frac{V \cdot substrate}{Km + substrate}$$
 (137)

$$function_1 \, (substrate, Km, V) = \frac{V \cdot substrate}{Km + substrate} \tag{138} \label{eq:138}$$

Table 128: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km	Km	0000027	3.51		\overline{Z}
V	V	0000186	0.53		

8.46 Reaction reaction_25

This is an irreversible reaction of one reactant forming one product.

Name Smad3_dephospNuc

$$species_18 \longrightarrow species_27$$
 (139)

Table 129: Properties of each reactant.

	P	
Id	Name	SBO
species_18	pSmad3_Smad4_n	

Product

Table 130: Properties of each product.

Tuble 150. Troperties of each product.					
Id	Name	SBO			
species_27	Smad4_Smad3_n				

Kinetic Law

Derived unit contains undeclared units

$$v_{46} = \text{vol}(3) \cdot \text{function}([\text{species} 18], \text{Km}, \text{V})$$
(140)

$$function_1 (substrate, Km, V) = \frac{V \cdot substrate}{Km + substrate}$$
 (141)

$$function_1 \, (substrate, Km, V) = \frac{V \cdot substrate}{Km + substrate} \tag{142} \label{eq:142}$$

Table 131: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km	Km	0000027	40.00		\overline{Z}
V	V	0000186	2.34		$ \overline{\mathscr{L}} $

8.47 Reaction reaction_26

This is an irreversible reaction of one reactant forming one product.

Name Smad3_dephospNuc2

$$species_20 \longrightarrow species_17$$
 (143)

Table 132: Properties of each reactant.

Id	Name	SBO
species_20	pSmad3_n	

Product

Table 133: Properties of each product.

Id	Name	SBO
species_17	$Smad3_n$	

Kinetic Law

Derived unit contains undeclared units

$$v_{47} = \text{vol}(3) \cdot \text{function}([\text{species}], \text{Km}, \text{V})$$
 (144)

$$function_1 (substrate, Km, V) = \frac{V \cdot substrate}{Km + substrate}$$
 (145)

$$function_1 (substrate, Km, V) = \frac{V \cdot substrate}{Km + substrate}$$
 (146)

Table 134: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km	Km	0000027	0.53		\overline{Z}
V	V	0000186	3.51		

8.48 Reaction reaction_27

This is an irreversible reaction of one reactant forming one product influenced by one modifier. **Name** Smad3_phosph

species_3
$$\stackrel{.96}{\longrightarrow}$$
 species_4 (147)

Table 135: Properties of each reactant.

Id	Name	SBO
species_3	Smad3_c	

Modifier

Table 136: Properties of each modifier.

Id	Name	SBO
_96	Rec_active	

Product

Table 137: Properties of each product.

Id	Name	SBO
species_4	pSmad3_c	

Kinetic Law

$$v_{48} = \text{vol}(_1) \cdot \text{function}_3 (k, [_96], [\text{species}_3], km)$$
 (148)

$$function_3\left(k,rec,s,km\right) = \frac{k \cdot rec \cdot s}{km + s} \tag{149}$$

$$function_3\left(k,rec,s,km\right) = \frac{k \cdot rec \cdot s}{km + s} \tag{150}$$

Table 138: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k	k	0000025	1000.000		
km	km	0000027	0.032		$ \overline{\mathcal{L}} $

8.49 Reaction reaction_28

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name Smad3_phosphSARA

Reaction equation

species_5
$$\xrightarrow{.96}$$
 species_4 + _101 (151)

Reactant

Table 139: Properties of each reactant.

Id	Name	SBO
species_5	Smad3_SARA	

Modifier

Table 140: Properties of each modifier.

Id	Name	SBO
_96	Rec_active	

Products

Table 141: Properties of each product.

Id	Name	SBO
species_4 _101	pSmad3_c SARA	

Kinetic Law

$$v_{49} = \text{vol}(_1) \cdot \text{function}_3 (k, [_96], [\text{species}_5], km)$$
 (152)

$$function_3\left(k,rec,s,km\right) = \frac{k \cdot rec \cdot s}{km+s} \tag{153}$$

$$function_3\left(k,rec,s,km\right) = \frac{k \cdot rec \cdot s}{km + s} \tag{154}$$

Table 142: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k	k	0000025	3.51		
km	km	0000027	0.53		$ \overline{\mathcal{L}} $

8.50 Reaction reaction_29

This is an irreversible reaction of one reactant forming no product.

Name Smad3_degrad

Reaction equation

species_
$$17 \longrightarrow \emptyset$$
 (155)

Reactant

Table 143: Properties of each reactant.

Id	Name	SBO
species_17	Smad3_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{50} = \text{vol}(3) \cdot \text{k1} \cdot [\text{species}17] \tag{156}$$

Table 144: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000356	0.2		lacksquare

8.51 Reaction reaction_30

This is a reversible reaction of one reactant forming one product.

Name Smad3_transp

Reaction equation

$$species_3 \Longrightarrow species_17$$
 (157)

Reactant

Table 145: Properties of each reactant.

Id	Name	SBO
species_3	Smad3_c	

Product

Table 146: Properties of each product.

Id	Name	SBO
species_17	$Smad3_n$	

Kinetic Law

Derived unit contains undeclared units

$$v_{51} = k1 \cdot [\text{species}_3] - k2 \cdot [\text{species}_17]$$
 (158)

Table 147: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	0.156		$ \mathbf{Z} $
k2	k2	0000156	0.336		\mathbf{Z}

8.52 Reaction reaction_31

This is a reversible reaction of two reactants forming one product.

Name SARA-comp3

Reaction equation

$$_101 + \text{species}_3 \Longrightarrow \text{species}_5$$
 (159)

Reactants

Table 148: Properties of each reactant.

Id	Name	SBO
_101	SARA	
species_3	Smad3_c	

Table 149: Properties of each product.

Id	Name	SBO
species_5	Smad3_SARA	

Kinetic Law

Derived unit contains undeclared units

$$v_{52} = \text{vol}(_1) \cdot (\text{k1} \cdot [_101] \cdot [\text{species}_3] - \text{k2} \cdot [\text{species}_5])$$
 (160)

Table 150: Properties of each parameter.

Id	Name	SBO V	/alue	Unit	Constant
k1	k1	0000153	1.0		lacksquare
k2	k2	0000156	0.1		\square

8.53 Reaction reaction_32

This is an irreversible reaction of one reactant forming two products.

Name Smad_dissoc2

Reaction equation

species_
$$19 \longrightarrow .5 + 2.21$$
 (161)

Reactant

Table 151: Properties of each reactant.

Id	Name	SBO
species_19	Smad4_Smad2_n	

Table 152: Properties of each product.

Id	Name	SBO
_5	Smad4_n	
_21	Smad2_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{53} = \text{vol}(3) \cdot \text{k1} \cdot [\text{species} 19] \tag{162}$$

Table 153: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000282	0.049		Ø

8.54 Reaction reaction_33

This is an irreversible reaction of one reactant forming one product.

Name Smad3-P-transp

Reaction equation

$$species_4 \longrightarrow species_20$$
 (163)

Reactant

Table 154: Properties of each reactant.

Id	Name	SBO
species_4	pSmad3_c	

Table 155: Properties of each product.

		1
Id	Name	SBO
species_20	pSmad3_n	

Derived unit contains undeclared units

$$v_{54} = k1 \cdot [\text{species_4}] \tag{164}$$

Table 156: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
k1	k1	0000009 16.6		Ø

8.55 Reaction reaction_34

This is an irreversible reaction of two reactants forming one product.

Name Smad_compCyt3

Reaction equation

$$_147 + 2 \text{ species}_4 \longrightarrow \text{ species}_6$$
 (165)

Reactants

Table 157: Properties of each reactant.

Id	Name	SBO
_147	Smad4_c	
species_4	pSmad3_c	

Table 158: Properties of each product.

Id	Name	SBO
species_6	pSmad3_Smad4_c	

Derived unit contains undeclared units

$$v_{55} = \text{vol}(\underline{1}) \cdot \text{k1} \cdot \underline{[147]} \cdot [\text{species}\underline{4}]^2$$
 (166)

Table 159: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000337	1000.0		

8.56 Reaction reaction_35

This is an irreversible reaction of two reactants forming one product.

Name Smad_compNuc3

Reaction equation

$$_5 + 2 \text{ species}_20 \longrightarrow \text{ species}_18$$
 (167)

Reactants

Table 160: Properties of each reactant.

Id	Name	SBO
_5	Smad4_n	
species_20	pSmad3_n	

Product

Table 161: Properties of each product.

Id	Name	SBO
species_18	pSmad3_Smad4_n	

Kinetic Law

$$v_{56} = \text{vol}(.3) \cdot \text{k1} \cdot [.5] \cdot [\text{species}.20]^2$$
 (168)

Table 162: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000337	255.068		

8.57 Reaction reaction_36

This is a reversible reaction of two reactants forming one product.

Name Smad_inhibComp3SnoN

Reaction equation

$$species_18 + 2_11 \Longrightarrow species_21$$
 (169)

Reactants

Table 163: Properties of each reactant.

Id	Name	SBO
species_18	pSmad3_Smad4_n SnoN_n	

Product

Table 164: Properties of each product.

rusie is in Properties of each product.				
Id	Name	SBO		
species_21	pSmad3_Smad4_SnoN_n	-		

Kinetic Law

$$v_{57} = \text{vol}(3) \cdot (k1 \cdot [\text{species} 18] \cdot [11]^2 - k2 \cdot [\text{species} 21])$$
 (170)

Table 165: Properties of each parameter.

Id	Name	SBO Val	ue Unit	Constant
k1	k1	0000153 1.0	5	$ \overline{\checkmark} $
k2	k2	0000156 1.0	5	\checkmark

8.58 Reaction reaction_37

This is an irreversible reaction of one reactant forming one product.

Name Smad_compTransp3

Reaction equation

$$species_{-}6 \longrightarrow species_{-}18$$
 (171)

Reactant

Table 166: Properties of each reactant.

	Ι	
Id	Name	SBO
species_6	pSmad3_Smad4_c	

Product

Table 167: Properties of each product.

	1 1	
Id	Name	SBO
species_18	pSmad3_Smad4_n	Į

Kinetic Law

Derived unit contains undeclared units

$$v_{58} = k1 \cdot [\text{species_6}] \tag{172}$$

Table 168: Properties of each parameter.

Id	Name	SBO Va	alue Unit	Constant
k1	k1	0000337 0	.16	lacksquare

8.59 Reaction reaction_38

This is an irreversible reaction of one reactant forming one product.

Name SnoN_degrad3

Reaction equation

$$species_14 \longrightarrow species_20$$
 (173)

Reactant

Table 169: Properties of each reactant.

Id	Name	SBO
species_14	pSmad3_SnoN_n	

Product

Table 170: Properties of each product.

Id	Name	SBO
species_20	pSmad3_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{59} = k1 \cdot [\text{species}_14] \tag{174}$$

Table 171: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000356	0.232		

8.60 Reaction reaction_39

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Smad7_degrad

Reaction equation

$$_{174} \xrightarrow{\text{species}_15} \emptyset \tag{175}$$

Reactant

Table 172: Properties of each reactant.

Id	Name	SBO
_174	Smad7_c	

Modifier

Table 173: Properties of each modifier.

Id	Name	SBO
species_15	Arkadia_c	

Kinetic Law

Derived unit contains undeclared units

$$v_{60} = \text{vol}(-1) \cdot \text{function}(k_1, [-174], [\text{species}(-15]))$$
 (176)

function_7 (k1, substrate, modifier) =
$$k1 \cdot \text{substrate} \cdot (1 + \text{modifier})$$
 (177)

function_7 (k1, substrate, modifier) =
$$k1 \cdot \text{substrate} \cdot (1 + \text{modifier})$$
 (178)

Table 174: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
k1	k1	0000356 0.1		

8.61 Reaction reaction_40

This is an irreversible reaction of one reactant forming no product.

Name Ski_degrad

Reaction equation

$$species_{-}7 \longrightarrow \emptyset$$
 (179)

Reactant

Table 175: Properties of each reactant.

Id	Name	SBO
species_7	Ski_c	

Derived unit contains undeclared units

$$v_{61} = \text{vol}(_1) \cdot \text{k1} \cdot [\text{species}_7]$$
 (180)

Table 176: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000356	0.232		Ø

8.62 Reaction reaction_41

This is a reversible reaction of one reactant forming one product.

Name Ski_trans

Reaction equation

$$species_7 \rightleftharpoons species_22$$
 (181)

Reactant

Table 177: Properties of each reactant.

Id	Name	SBO
species_7	Ski_c	

Table 178: Properties of each product.

Id	Name	SBO
species_22	Ski_n	

Derived unit contains undeclared units

$$v_{62} = k1 \cdot [\text{species_7}] - k2 \cdot [\text{species_22}]$$
 (182)

Table 179: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	0.1		\square
k2	k2	0000156	0.2		\mathbf{Z}

8.63 Reaction reaction_42

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name fluxSki

Reaction equation

$$\emptyset \xrightarrow{\text{species}_30} \text{species}_7 \tag{183}$$

Modifier

Table 180: Properties of each modifier.

Id	Name	SBO
species_30	geneProduct	

Product

Table 181: Properties of each product.

Id	Name	SBO
species_7	Ski_c	

Kinetic Law

$$v_{63} = \text{vol}(1) \cdot \text{function}(k, k1, [\text{species}30])$$
(184)

function_5
$$(k, k1, m) = k + k1 \cdot m$$
 (185)

function_5
$$(k, k1, m) = k + k1 \cdot m$$
 (186)

Table 182: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k	k	0000153 0000156			<u> </u>
k1	k1	0000136	3.3 · 10		✓

8.64 Reaction reaction_43

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Smurf2_degrad

Reaction equation

species_1
$$\xrightarrow{-174} \emptyset$$
 (187)

Reactant

Table 183: Properties of each reactant.

Id	Name	SBO
species_1	Smurf2_c	

Modifier

Table 184: Properties of each modifier.

Id	Name	SBO
_174	Smad7_c	

Kinetic Law

$$v_{64} = \text{vol}(_1) \cdot \text{function}_7 (k1, [\text{species}_1], [_174])$$
 (188)

function_7 (k1, substrate, modifier) =
$$k1 \cdot \text{substrate} \cdot (1 + \text{modifier})$$
 (189)

function_7 (k1, substrate, modifier) =
$$k1 \cdot \text{substrate} \cdot (1 + \text{modifier})$$
 (190)

Table 185: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000356	0.05		

8.65 Reaction reaction_44

This is a reversible reaction of two reactants forming one product.

Name Smad4-Ski

Reaction equation

$$_5 + \text{species}_22 \Longrightarrow \text{species}_23$$
 (191)

Reactants

Table 186: Properties of each reactant.

Id	Name	SBO
_5	Smad4_n	
species_22	Ski_n	

Product

Table 187: Properties of each product.

Id	Name	SBO
species_23	Smad4_Ski_n	

Kinetic Law

72

$$v_{65} = \text{vol}(3) \cdot (\text{k1} \cdot [5] \cdot [\text{species} 2] - \text{k2} \cdot [\text{species} 2])$$

$$(192)$$

Table 188: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	1.000		\overline{Z}
k2	k2	0000156	0.053		

8.66 Reaction reaction_45

This is a reversible reaction of two reactants forming one product.

Name Smad3-Ski_cyt

Reaction equation

$$species_3 + species_7 \Longrightarrow species_8$$
 (193)

Reactants

Table 189: Properties of each reactant.

Id	Name	SBO
species_3 species_7		

Product

Table 190: Properties of each product.

Id	Name	SBO
species_8	Smad3_Ski_c	

Kinetic Law

Derived unit contains undeclared units

$$v_{66} = vol(_{-}1) \cdot (k1 \cdot [species_{-}3] \cdot [species_{-}7] - k2 \cdot [species_{-}8])$$
 (194)

Table 191: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	0.1		\overline{Z}
k2	k2	0000156	0.1		\checkmark

8.67 Reaction reaction_46

This is a reversible reaction of two reactants forming one product.

Name Smad7-Smurf1

Reaction equation

$$species_24 + 25 \Longrightarrow species_25$$
 (195)

Reactants

Table 192: Properties of each reactant.

Id	Name	SBO
species_24 _25	Smurf1_n Smad7_n	

Product

Table 193: Properties of each product.

Id	Name	SBO
species_25	Smad7_Smurf1_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{67} = \text{vol}(3) \cdot (\text{k1} \cdot [\text{species}24] \cdot [25] - \text{k2} \cdot [\text{species}25])$$
 (196)

Table 194: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
k1	k1	0000153 2.9		\overline{Z}
k2	k2	0000156 0.2		

8.68 Reaction reaction_47

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name fluxSmurf1

Reaction equation

$$\emptyset \xrightarrow{\text{species}_30} \text{species}_9 \tag{197}$$

Modifier

Table 195: Properties of each modifier.

Id	Name	SBO
species_30	geneProduct	

Product

Table 196: Properties of each product.

Id	Name	SBO
species_9	Smurf1_c	

Kinetic Law

Derived unit contains undeclared units

$$v_{68} = \text{vol}(_1) \cdot \text{function}_5 (k, k1, [\text{species}_30])$$
 (198)

function_5
$$(k, k1, m) = k + k1 \cdot m$$
 (199)

function_5
$$(k, k1, m) = k + k1 \cdot m$$
 (200)

Table 197: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k	k	0000153	10^{-4}		
k1	k1	0000156	0.002		\checkmark

8.69 Reaction reaction_48

This is a reversible reaction of two reactants forming one product.

Name Smad_inhibComp3Ski

Reaction equation

$$species_18 + 2 species_22 \Longrightarrow species_26$$
 (201)

Reactants

Table 198: Properties of each reactant.

Id	Name	SBO
species_18 species_22	pSmad3_Smad4_n Ski_n	

Product

Table 199: Properties of each product.

Id	Name	SBO
species_26	pSmad3_Smad4_Ski_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{69} = \text{vol}(3) \cdot (\text{k1} \cdot [\text{species} 18] \cdot [\text{species} 22]^2 - \text{k2} \cdot [\text{species} 26])$$
 (202)

Table 200: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	1.6		
k2	k2	0000156	1.6		

8.70 Reaction reaction_49

This is an irreversible reaction of two reactants forming no product.

Name Rec_degrad2

Reaction equation

$$species_10 + _96 \longrightarrow \emptyset$$
 (203)

Reactants

Table 201: Properties of each reactant.

Id	Name	SBO
species_10 _96	Smad7_Smurf1_c Rec_active	

Kinetic Law

Derived unit contains undeclared units

$$v_{70} = \text{vol}(_1) \cdot \text{k1} \cdot [\text{species}_10] \cdot [_96]$$
 (204)

Table 202: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	0000356 1900.0	Ø

8.71 Reaction reaction_50

This is a reversible reaction of one reactant forming one product.

Name Smad7-Smurf1_transp

Reaction equation

$$species_25 \Longrightarrow species_10$$
 (205)

Reactant

Table 203: Properties of each reactant.

Id	Name	SBO
species_25	Smad7_Smurf1_n	

Product

Table 204: Properties of each product.

Id	Name	SBO
species_10	Smad7_Smurf1_c	

Derived unit contains undeclared units

$$v_{71} = k1 \cdot [\text{species}_25] - k2 \cdot [\text{species}_10]$$
 (206)

Table 205: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	1.00		\overline{Z}
k2	k2	0000156	0.01		\mathbf{Z}

8.72 Reaction reaction_51

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Smurf1_degrad

Reaction equation

species_9
$$\xrightarrow{-174} \emptyset$$
 (207)

Reactant

Table 206: Properties of each reactant.

Id	Name	SBO
species_9	Smurf1_c	

Modifier

Table 207: Properties of each modifier.

Id	Name	SBO
_174	Smad7_c	

Derived unit contains undeclared units

$$v_{72} = \text{vol}(_1) \cdot \text{function}_7(\text{k1}, [\text{species}_9], [_174])$$
 (208)

$$function_7 (k1, substrate, modifier) = k1 \cdot substrate \cdot (1 + modifier)$$
 (209)

function_7 (k1, substrate, modifier) =
$$k1 \cdot \text{substrate} \cdot (1 + \text{modifier})$$
 (210)

Table 208: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000356	0.5		

8.73 Reaction reaction_52

This is a reversible reaction of one reactant forming one product.

Name Smurf1_transp

Reaction equation

$$species_24 \Longrightarrow species_9$$
 (211)

Reactant

Table 209: Properties of each reactant.

Id	Name	SBO
species_24	$Smurf1_n$	

Product

Table 210: Properties of each product.

Id	Name	SBO
species_9	Smurf1_c	

Derived unit contains undeclared units

$$v_{73} = k1 \cdot [\text{species}_24] - k2 \cdot [\text{species}_9]$$
 (212)

Table 211: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	0.05		\square
k2	k2	0000156	3.00		\mathbf{Z}

8.74 Reaction reaction_53

This is a reversible reaction of two reactants forming one product.

Name Smad3-freePromot

Reaction equation

$$species_18 + species_28 \Longrightarrow species_30$$
 (213)

Reactants

Table 212: Properties of each reactant.

Id	Name	SBO
-	pSmad3_Smad4_n freePromoters	

Product

Table 213: Properties of each product.

Id	Name	SBO
species_30	geneProduct	

Kinetic Law

Derived unit contains undeclared units

$$v_{74} = \text{vol}(3) \cdot (\text{k1} \cdot [\text{species} \cdot 18] \cdot [\text{species} \cdot 28] - \text{k2} \cdot [\text{species} \cdot 30])$$
 (214)

Table 214: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	0.463		
k2	k2	0000156	0.102		

8.75 Reaction reaction_54

This is a reversible reaction of two reactants forming one product.

Name Smad2-freePromot

Reaction equation

$$_9 + \text{species}_28 \Longrightarrow \text{species}_30$$
 (215)

Reactants

Table 215: Properties of each reactant.

Id	Name	SBO
_9 species_28	pSmad2_Smad4_n freePromoters	

Product

Table 216: Properties of each product.

Id	Name	SBO
species_30	geneProduct	

Kinetic Law

Derived unit contains undeclared units

$$v_{75} = \text{vol}(3) \cdot (\text{k1} \cdot [9] \cdot [\text{species} 28] - \text{k2} \cdot [\text{species} 30])$$
 (216)

Table 217: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	0.463		$ \mathbf{Z} $
k2	k2	0000156	0.102		\checkmark

8.76 Reaction reaction_55

This is a reversible reaction of two reactants forming one product.

Name Smad3-SnoN-freePromot

Reaction equation

$$species_21 + species_28 \Longrightarrow species_29$$
 (217)

Reactants

Table 218: Properties of each reactant.

Id	Name	SBO
-	pSmad3_Smad4_SnoN_n freePromoters	

Product

Table 219: Properties of each product.

Id	Name	SBO
species_29	inactivePromoters	

Kinetic Law

Derived unit contains undeclared units

$$v_{76} = \text{vol}(3) \cdot (\text{k1} \cdot [\text{species}21] \cdot [\text{species}28] - \text{k2} \cdot [\text{species}29])$$
 (218)

Table 220: Properties of each parameter.

Id	Name	SBO Value	Unit Constant
k1 k2	k1	0000153 0.2 0000156 0.2	
KZ	KΖ	0000130 0.2	

8.77 Reaction reaction_56

This is a reversible reaction of two reactants forming one product.

Name Smad2-SnoN-gene

Reaction equation

$$_13 + \text{species}_28 \Longrightarrow \text{species}_29$$
 (219)

Reactants

Table 221: Properties of each reactant.

Id	Name	SBO
_13 species_28	pSmad2_Smad4_SnoN_n freePromoters	

Product

Table 222: Properties of each product.

Id	Name	SBO
species_29	inactivePromoters	

Kinetic Law

Derived unit contains undeclared units

$$v_{77} = \text{vol}(_3) \cdot (\text{k1} \cdot [_13] \cdot [\text{species}_28] - \text{k2} \cdot [\text{species}_29])$$
 (220)

Table 223: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	0.2		\overline{Z}
k2	k2	0000156	0.2		$\overline{\mathbf{Z}}$

8.78 Reaction reaction_57

This is a reversible reaction of two reactants forming one product.

Name Smad3-Ski-freePromot

Reaction equation

$$species_26 + species_28 \Longrightarrow species_29$$
 (221)

Reactants

Table 224: Properties of each reactant.

Id	Name	SBO
-	pSmad3_Smad4_Ski_n freePromoters	

Product

Table 225: Properties of each product.

Id	Name	SBO
species_29	inactivePromoters	

Kinetic Law

Derived unit contains undeclared units

$$v_{78} = \text{vol}(3) \cdot (\text{k1} \cdot [\text{species} 26] \cdot [\text{species} 28] - \text{k2} \cdot [\text{species} 29])$$
 (222)

Table 226: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	0.2		\overline{Z}
k2	k2	0000156	0.2		

8.79 Reaction reaction_58

This is a reversible reaction of two reactants forming one product.

Name Smad_inhibComp2Ski

Reaction equation

$$_{9} + 2 \text{ species}_{22} \Longrightarrow \text{ species}_{11}$$
 (223)

Reactants

Table 227: Properties of each reactant.

	I	
Id	Name	SBO
_9 species_22	pSmad2_Smad4_n Ski_n	

Table 228: Properties of each product.

Id	Name	SBO
species_11	pSmad2_Smad4_Ski_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{79} = k1 \cdot [-9] \cdot [\text{species}.22]^2 - k2 \cdot [\text{species}.11]$$
 (224)

Table 229: Properties of each parameter.

Id	Name	SBO Val	lue Unit	Constant
k1	k1	0000153 1.	.6	
k2	k2	0000156 1.	.6	

8.80 Reaction reaction_59

This is a reversible reaction of two reactants forming one product.

Name Smad2-Ski-gene

Reaction equation

$$species_11 + species_28 \Longrightarrow species_29$$
 (225)

Reactants

Table 230: Properties of each reactant

	Table 250. I roperties of each reactant.				
Id		Name	SBO		
sp	ecies_11	pSmad2_Smad4_Ski_n			

Id	Name	SBO
species_28	freePromoters	

Table 231: Properties of each product.

Tuble 251: 1 toperties of each product.				
Id	Name	SBO		
species_29	inactivePromoters			

Kinetic Law

Derived unit contains undeclared units

$$v_{80} = k1 \cdot [\text{species}_11] \cdot [\text{species}_28] - k2 \cdot [\text{species}_29]$$
 (226)

Table 232: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	0.2		\overline{Z}
k2	k2	0000156	0.2		$\overline{\mathbf{Z}}$

8.81 Reaction reaction_60

This is a reversible reaction of two reactants forming one product.

Name Smad4-freePromot

Reaction equation

$$species_23 + species_28 \Longrightarrow species_29$$
 (227)

Reactants

Table 233: Properties of each reactant.

Id	Name	SBO
species_23	Smad4_Ski_n	
species_28	freePromoters	

Table 234: Properties of each product.

Tueste Ze il Troperines er euen producti				
Id	Name	SBO		
species_29	inactivePromoters			

Kinetic Law

Derived unit contains undeclared units

$$v_{81} = \text{vol}(\underline{3}) \cdot (\text{k1} \cdot [\text{species}\underline{23}] \cdot [\text{species}\underline{28}] - \text{k2} \cdot [\text{species}\underline{29}])$$
 (228)

Table 235: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	0.1		
k2	k2	0000156	0.1		\checkmark

8.82 Reaction reaction_61

This is a reversible reaction of two reactants forming one product.

Name Smad2-Ski_cyt

Reaction equation

$$_{99} + \text{species}_{7} \Longrightarrow \text{species}_{12}$$
 (229)

Reactants

Table 236: Properties of each reactant.

Id	Name	SBO
_99	Smad2_c	
$species_{-}7$	Ski_c	

Product

Table 237: Properties of each product.

Tueste ze // Treperines er euen producti					
Id	Name	SBO			
species_12	Smad2_Ski_c				

Derived unit contains undeclared units

$$v_{82} = \text{vol}(_1) \cdot (\text{k1} \cdot [_99] \cdot [\text{species}_7] - \text{k2} \cdot [\text{species}_12])$$
 (230)

Table 238: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000153	0.1		$ \overline{\checkmark} $
k2	k2	0000156	0.1		

8.83 Reaction reaction_62

This is a reversible reaction of two reactants forming one product.

Name Smad2-Snon

Reaction equation

$$3_19 + 3_11 \Longrightarrow \text{species}_13$$
 (231)

Reactants

Table 239: Properties of each reactant.

Id	Name	SBO
_19	pSmad2_n	
_11	$SnoN_n$	

Product

Table 240: Properties of each product.

Id	Name	SBO
species_13	pSmad2_SnoN_n	

Derived unit contains undeclared units

$$v_{83} = k1 \cdot [-19]^3 \cdot [-11]^3 - k2 \cdot [\text{species}_{-13}]$$
 (232)

Table 241: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	0000153 1.0	
k2	K2	0000156 1.0	$\overline{\mathbf{Z}}$

8.84 Reaction reaction_63

This is a reversible reaction of two reactants forming one product.

Name Smad3-Snon

Reaction equation

$$3 \text{ species}_20 + 3_11 \Longrightarrow \text{ species}_14$$
 (233)

Reactants

Table 242: Properties of each reactant.

Id	Name	SBO
species_20 _11	pSmad3_n SnoN_n	

Product

Table 243: Properties of each product.

	1	
Id	Name	SBO
species_14	pSmad3_SnoN_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{84} = k1 \cdot [\text{species}_20]^3 \cdot [_11]^3 - k2 \cdot [\text{species}_14]$$
 (234)

Table 244: Properties of each parameter.

Id	Name	SBO '	Value	Unit	Constant
k1	k1	0000153	1.0		$ \overline{\checkmark} $
k2	k2	0000156	1.0		

8.85 Reaction reaction_64

This is an irreversible reaction of one reactant forming no product.

Name Smad2-comp-degrad

Reaction equation

$$_9 \longrightarrow \emptyset$$
 (235)

Reactant

Table 245: Properties of each reactant.

Id	Name	SBO
_9	pSmad2_Smad4_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{85} = \operatorname{vol}(3) \cdot k1 \cdot [9] \tag{236}$$

Table 246: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000356	0.005		lacksquare

8.86 Reaction reaction_65

This is an irreversible reaction of one reactant forming no product.

Name Samd3-comp-degrad

Reaction equation

$$species_{-}18 \longrightarrow \emptyset$$
 (237)

Reactant

Table 247: Properties of each reactant.

Id	Name	SBO
species_18	pSmad3_Smad4_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{86} = \text{vol}(3) \cdot \text{k1} \cdot [\text{species} 18] \tag{238}$$

Table 248: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000356	0.005		

8.87 Reaction reaction_66

This is an irreversible reaction of no reactant forming one product.

Name fluxArkadia

Reaction equation

$$\emptyset \longrightarrow \text{species}_15$$
 (239)

Product

Table 249: Properties of each product.

Id	Name	SBO
species_15	Arkadia_c	

Kinetic Law

Derived unit contains undeclared units

$$v_{87} = \text{vol}(_1) \cdot \text{function}_4(v)$$
 (240)

$$function_4(v) = v (241)$$

$$function_{4}(v) = v (242)$$

Table 250: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
v	v	$0000009 2 \cdot 10^{-5}$	Ø

8.88 Reaction reaction_67

This is an irreversible reaction of one reactant forming no product.

Name Arkadia_deg

Reaction equation

$$species_{-}15 \longrightarrow \emptyset$$
 (243)

Reactant

Table 251: Properties of each reactant.

Id	Name	SBO
species_15	Arkadia_c	

Kinetic Law

Derived unit contains undeclared units

$$v_{88} = \text{vol}(1) \cdot \text{k1} \cdot [\text{species} 15] \tag{244}$$

Table 252: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
k1	k1	0000356 0.1		\square

8.89 Reaction reaction_68

This is an irreversible reaction of two reactants forming one product.

Name SnoN-deg2

Reaction equation

species_
$$13 + 3$$
 species_ $31 \longrightarrow 3_{-}19$ (245)

Reactants

Table 253: Properties of each reactant.

Id	Name	SBO
species_13 species_31	pSmad2_SnoN_n Arkadia_n	

Product

Table 254: Properties of each product.

Id	Name	SBO
_19	pSmad2_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{89} = k1 \cdot [\text{species}_13] \cdot [\text{species}_31]^3 \tag{246}$$

Table 255: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
k1	k1	0000356 0.1		

8.90 Reaction reaction_69

This is an irreversible reaction of two reactants forming one product.

Name SnoN-deg3

Reaction equation

$$species_14 + 3 species_31 \longrightarrow species_20$$
 (247)

Reactants

Table 256: Properties of each reactant.

Id	Name	SBO
species_14 species_31	pSmad3_SnoN_n Arkadia_n	

Product

Table 257: Properties of each product.

Id	Name	SBO
species_20	pSmad3_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{90} = k1 \cdot [\text{species}_{14}] \cdot [\text{species}_{31}]^3 \tag{248}$$

Table 258: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
k1	k1	0000356 0.1		

8.91 Reaction reaction_70

This is a reversible reaction of one reactant forming one product.

Name transArkadia

Reaction equation

$$species_15 \Longrightarrow species_31$$
 (249)

Reactant

Table 259: Properties of each reactant.

Id	Name	SBO
species_15	Arkadia_c	

Table 260: Properties of each product.

Id	Name	SBO
species_31	Arkadia_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{91} = k1 \cdot [\text{species}_15] - k2 \cdot [\text{species}_31]$$
 (250)

Table 261: Properties of each parameter.

Id	Name	SBO Value	Unit Constant
k1	k1	0000153 0.1	
k2	k2	0000156 0.1	

9 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

9.1 Species _75

Name TGF_RII

SBO:0000252 polypeptide chain

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in five reactions (as a reactant in _77, reaction_11 and as a product in reaction_1, reaction_12 and as a modifier in _77).

$$\frac{\mathrm{d}}{\mathrm{d}t} - 75 = v_{22} + 2 v_{33} - 2 v_9 - v_{32} \tag{251}$$

9.2 Species _79

Name TGFbeta_TGF_RII

SBO:0000296 macromolecular complex

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in _86, reaction_12 and as a product in _77).

$$\frac{\mathrm{d}}{\mathrm{d}t} - 79 = |v_9| - |v_{10}| - |v_{33}| \tag{252}$$

9.3 Species _84

Name TGF_RI

SBO:0000252 polypeptide chain

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in _86, reaction_10 and as a product in reaction_6).

$$\frac{\mathrm{d}}{\mathrm{d}t} - 84 = |v_{27}| - 2|v_{10}| - |v_{31}| \tag{253}$$

9.4 Species _96

Name Rec_active

SBO:0000247 simple chemical

Initial concentration $0 \, \mu mol \cdot l^{-1}$

This species takes part in nine reactions (as a reactant in _192, _194, reaction_9, reaction_49 and as a product in _86 and as a modifier in _125, _132, reaction_27, reaction_28).

$$\frac{\mathrm{d}}{\mathrm{d}t} - 96 = |v_{10}| - |v_{20}| - |v_{21}| - |v_{30}| - |v_{70}| \tag{254}$$

9.5 Species _99

Name Smad2_c

SBO:0000252 polypeptide chain

Initial concentration $0 \, \mu mol \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in _103, _125, reaction_8, reaction_20, reaction_61 and as a product in reaction_13, reaction_17).

$$\frac{\mathrm{d}}{\mathrm{d}t} - 99 = |v_{34}| + |v_{38}| - |v_{11}| - |v_{12}| - |v_{29}| - |v_{41}| - |v_{82}| \tag{255}$$

9.6 Species _101

Name SARA

SBO:0000252 polypeptide chain

Initial concentration $0 \, \mu \text{mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in _103, reaction_16, reaction_31 and as a product in _132, reaction_2, reaction_28).

$$\frac{\mathrm{d}}{\mathrm{d}t} - 101 = |v_{13}| + |v_{23}| + |v_{49}| - |v_{11}| - |v_{37}| - |v_{52}| \tag{256}$$

9.7 Species _105

Name Smad2_SARA

SBO:0000296 macromolecular complex

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in _132 and as a product in _103).

$$\frac{\mathrm{d}}{\mathrm{d}t} - 105 = |v_{11}| - |v_{13}| \tag{257}$$

9.8 Species _129

Name pSmad2_c

SBO:0000252 polypeptide chain

Initial concentration $0 \, \mu mol \cdot l^{-1}$

This species takes part in five reactions (as a reactant in _139, _149, reaction_17 and as a product in _125, _132).

$$\frac{\mathrm{d}}{\mathrm{d}t} - 129 = |v_{12}| + |v_{13}| - |v_{14}| - 2|v_{15}| - |v_{38}| \tag{258}$$

9.9 Species _147

Name Smad4_c

SBO:0000252 polypeptide chain

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in five reactions (as a reactant in _149, _156, reaction_15, reaction_34 and as a product in reaction_14).

$$\frac{\mathrm{d}}{\mathrm{d}t} - 147 = |v_{35}| - |v_{15}| - |v_{16}| - |v_{36}| - |v_{55}| \tag{259}$$

9.10 Species _153

Name pSmad2_Smad4_c

SBO:0000296 macromolecular complex

Initial concentration $0 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in _164 and as a product in _149).

$$\frac{\mathrm{d}}{\mathrm{d}t} - 153 = |v_{15}| - |v_{17}| \tag{260}$$

9.11 Species _174

Name Smad7_c

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ } \mu\text{mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in _194, reaction_39 and as a product in _172, reaction_3 and as a modifier in reaction_43, reaction_51).

$$\frac{\mathrm{d}}{\mathrm{d}t} - 174 = |v_{18}| + |v_{24}| - |v_{21}| - |v_{60}| \tag{261}$$

9.12 Species _181

Name Smad7_Smurf2_c

SBO:0000296 macromolecular complex

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in _192 and as a product in _178).

$$\frac{\mathrm{d}}{\mathrm{d}t} - 181 = |v_{19}| - |v_{20}| \tag{262}$$

9.13 Species _198

Name Rec_Smad7

SBO:0000296 macromolecular complex

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a product in _194).

$$\frac{d}{dt} - 198 = |v_{21}| \tag{263}$$

9.14 Species species_1

Name Smurf2_c

SBO:0000252 polypeptide chain

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_43 and as a product in reaction_4, reaction_19).

$$\frac{d}{dt} \text{species}_{-1} = |v_{25}| + |v_{40}| - |v_{64}| \tag{264}$$

9.15 Species species_2

Name SnoN_c

SBO:0000252 polypeptide chain

Initial concentration $0 \, \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_18, reaction_21 and as a product in reaction_5).

$$\frac{d}{dt} \text{species} 2 = |v_{26}| - |v_{39}| - |v_{42}| \tag{265}$$

9.16 Species species_3

Name Smad3_c

SBO:0000252 polypeptide chain

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in reaction_23, reaction_27, reaction_30, reaction_31, reaction_45 and as a product in reaction_22, reaction_24).

$$\frac{d}{dt} \text{species}_{3} = v_{43} + v_{45} - v_{44} - v_{48} - v_{51} - v_{52} - v_{66}$$
 (266)

9.17 Species species_4

Name pSmad3_c

SBO:0000252 polypeptide chain

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in five reactions (as a reactant in reaction_24, reaction_33, reaction_34 and as a product in reaction_27, reaction_28).

$$\frac{d}{dt} \text{species} = 4 = |v_{48}| + |v_{49}| - |v_{45}| - |v_{54}| - 2|v_{55}|$$
(267)

9.18 Species species_5

Name Smad3_SARA

SBO:0000296 macromolecular complex

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_28 and as a product in reaction_31).

$$\frac{d}{dt}$$
 species_5 = $|v_{52} - v_{49}|$ (268)

9.19 Species species_6

Name pSmad3_Smad4_c

SBO:0000296 macromolecular complex

Initial concentration $0 \, \mu \text{mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_37 and as a product in reaction_34).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{6} = |v_{55}| - |v_{58}| \tag{269}$$

9.20 Species species_7

Name Ski_c

SBO:0000252 polypeptide chain

Initial concentration $0 \, \mu mol \cdot l^{-1}$

This species takes part in five reactions (as a reactant in reaction_40, reaction_41, reaction_45, reaction_61 and as a product in reaction_42).

$$\frac{d}{dt} \text{species}_{7} = v_{63} - v_{61} - v_{62} - v_{66} - v_{82}$$
 (270)

9.21 Species species_8

Name Smad3_Ski_c

SBO:0000296 macromolecular complex

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a product in reaction_45).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{8} = v_{66} \tag{271}$$

9.22 Species species_9

Name Smurf1_c

SBO:0000252 polypeptide chain

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_51 and as a product in reaction_47, reaction_52).

$$\frac{d}{dt} \text{species}_{9} = |v_{68}| + |v_{73}| - |v_{72}| \tag{272}$$

9.23 Species species_10

Name Smad7_Smurf1_c

SBO:0000296 macromolecular complex

Initial concentration $0 \, \mu \text{mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_49 and as a product in reaction_50).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{-}10 = v_{71} - v_{70} \tag{273}$$

9.24 Species species_11

Name pSmad2_Smad4_Ski_n

SBO:0000296 macromolecular complex

Initial concentration $0 \, \mu \text{mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_59 and as a product in reaction_58).

$$\frac{d}{dt} \text{species}_{-11} = |v_{79}| - |v_{80}| \tag{274}$$

9.25 Species species_12

Name Smad2_Ski_c

SBO:0000296 macromolecular complex

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a product in reaction_61).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{12} = |v_{82}| \tag{275}$$

9.26 Species species_13

Name pSmad2_SnoN_n

SBO:0000296 macromolecular complex

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in _35, reaction_68 and as a product in reaction_62).

$$\frac{d}{dt} \text{species}_{13} = |v_{83}| - |v_{4}| - |v_{89}| \tag{276}$$

9.27 Species species_14

Name pSmad3_SnoN_n

SBO:0000296 macromolecular complex

Initial concentration $0 \, \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_38, reaction_69 and as a product in reaction_63).

$$\frac{d}{dt} \text{species}_{14} = |v_{84}| - |v_{59}| - |v_{90}| \tag{277}$$

9.28 Species species_15

Name Arkadia_c

SBO:0000252 polypeptide chain

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in four reactions (as a reactant in reaction_67, reaction_70 and as a product in reaction_66 and as a modifier in reaction_39).

$$\frac{d}{dt} \text{species}_{15} = |v_{87} - v_{88}| - |v_{91}| \tag{278}$$

9.29 Species _5

Name Smad4_n

SBO:0000252 polypeptide chain

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in _37, reaction_7, reaction_35, reaction_44 and as a product in _29, _156, reaction_32).

$$\frac{\mathrm{d}}{\mathrm{d}t} \cdot 5 = |v_1| + |v_{16}| + |v_{53}| - |v_5| - |v_{28}| - |v_{56}| - |v_{65}| \tag{279}$$

9.30 Species _9

Name pSmad2_Smad4_n

SBO:0000296 macromolecular complex

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in _31, _33, reaction_54, reaction_58, reaction_64 and as a product in _37, _164).

$$\frac{d}{dt} - 9 = |v_5| + |v_{17}| - |v_2| - |v_3| - |v_{75}| - |v_{79}| - |v_{85}|$$
(280)

9.31 Species _11

Name SnoN_n

SBO:0000252 polypeptide chain

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in six reactions (as a reactant in _33, reaction_7, reaction_36, reaction_62, reaction_63 and as a product in reaction_21).

$$\frac{d}{dt} - 11 = |v_{42}| - 2|v_3| - |v_{28}| - 2|v_{57}| - 3|v_{83}| - 3|v_{84}|$$
 (281)

9.32 Species _13

Name pSmad2_Smad4_SnoN_n

SBO:0000296 macromolecular complex

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_56 and as a product in _33).

$$\frac{d}{dt} - 13 = |v_3| - |v_{77}| \tag{282}$$

9.33 Species _15

Name Smurf2_n

SBO:0000252 polypeptide chain

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in four reactions (as a reactant in _35, _41, _43, reaction_19).

$$\frac{\mathrm{d}}{\mathrm{d}t} - 15 = -3 v_4 - |v_7| - |v_8| - |v_{40}| \tag{283}$$

9.34 Species _19

Name pSmad2_n

SBO:0000252 polypeptide chain

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in six reactions (as a reactant in _37, _39, reaction_62 and as a product in _35, _139, reaction_68).

$$\frac{d}{dt} - 19 = 3 v_4 + v_{14} + 3 v_{89} - 2 v_5 - v_6 - 3 v_{83}$$
 (284)

9.35 Species _21

Name Smad2_n

SBO:0000252 polypeptide chain

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in four reactions (as a reactant in _41 and as a product in _39, reaction_8, reaction_32).

$$\frac{\mathrm{d}}{\mathrm{d}t} \cdot 21 = |v_6| + |v_{29}| + 2|v_{53}| - |v_7| \tag{285}$$

9.36 Species _25

Name Smad7_n

SBO:0000252 polypeptide chain

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in _43, _172, reaction_46).

$$\frac{\mathrm{d}}{\mathrm{d}t} \cdot 25 = -|v_8| - |v_{18}| - |v_{67}| \tag{286}$$

9.37 Species _27

Name Smad7_Smurf2_n

SBO:0000296 macromolecular complex

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in _178 and as a product in _43).

$$\frac{d}{dt} \cdot 27 = |v_8| - |v_{19}| \tag{287}$$

9.38 Species species_16

Name Smad4_SnoN_n

SBO:0000296 macromolecular complex

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a product in reaction_7 and as a modifier in reaction_3).

$$\frac{d}{dt} \text{species}_{-16} = v_{28} \tag{288}$$

9.39 Species species_17

Name Smad3_n

SBO:0000252 polypeptide chain

Initial concentration $0 \, \mu \text{mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in reaction_29 and as a product in _29, reaction_26, reaction_30).

$$\frac{d}{dt} \text{species}_{17} = 2 v_1 + v_{47} + v_{51} - v_{50}$$
 (289)

9.40 Species species_18

Name pSmad3_Smad4_n

SBO:0000296 macromolecular complex

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in reaction_25, reaction_36, reaction_48, reaction_53, reaction_65 and as a product in reaction_35, reaction_37).

$$\frac{d}{dt} \text{species}_{18} = v_{56} + v_{58} - v_{46} - v_{57} - v_{69} - v_{74} - v_{86}$$
(290)

9.41 Species species_19

Name Smad4_Smad2_n

SBO:0000296 macromolecular complex

Initial concentration $0 \, \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_32 and as a product in _31).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{1}9 = v_2 - v_{53} \tag{291}$$

9.42 Species species_20

Name pSmad3_n

SBO:0000252 polypeptide chain

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in six reactions (as a reactant in reaction_26, reaction_35, reaction_63 and as a product in reaction_33, reaction_38, reaction_69).

$$\frac{d}{dt} \text{species} 20 = v_{54} + v_{59} + v_{90} - v_{47} - 2 v_{56} - 3 v_{84}$$
 (292)

9.43 Species species_21

Name pSmad3_Smad4_SnoN_n

SBO:0000296 macromolecular complex

Initial concentration $0 \, \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_55 and as a product in reaction_36).

$$\frac{d}{dt} \text{species}_2 21 = |v_{57}| - |v_{76}| \tag{293}$$

9.44 Species species_22

Name Ski_n

SBO:0000252 polypeptide chain

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in four reactions (as a reactant in reaction_44, reaction_48, reaction_58 and as a product in reaction_41).

$$\frac{d}{dt} \text{species}_{22} = |v_{62}| - |v_{65}| - 2|v_{69}| - 2|v_{79}|$$
(294)

9.45 Species species_23

Name Smad4_Ski_n

SBO:0000252 polypeptide chain

Initial concentration $0 \, \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_60 and as a product in reaction_44 and as a modifier in reaction_3).

$$\frac{d}{dt}$$
 species $23 = |v_{65}| - |v_{81}|$ (295)

9.46 Species species 24

Name Smurf1_n

SBO:0000252 polypeptide chain

Initial concentration $0 \, \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_46, reaction_52).

$$\frac{d}{dt} \text{species} 24 = -|v_{67}| - |v_{73}| \tag{296}$$

9.47 Species species_25

Name Smad7_Smurf1_n

SBO:0000296 macromolecular complex

Initial concentration $0 \, \mu \text{mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_50 and as a product in reaction_46).

$$\frac{d}{dt}$$
 species_25 = $|v_{67}| - |v_{71}|$ (297)

9.48 Species species_26

Name pSmad3_Smad4_Ski_n

SBO:0000296 macromolecular complex

Initial concentration $0 \, \mu \text{mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_57 and as a product in reaction_48).

$$\frac{d}{dt} \text{species}.26 = |v_{69}| - |v_{78}| \tag{298}$$

9.49 Species species_27

Name Smad4_Smad3_n

SBO:0000296 macromolecular complex

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in _29 and as a product in reaction_25).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{27} = v_{46} - v_{1} \tag{299}$$

9.50 Species species_28

Name freePromoters

SBO:0000252 polypeptide chain

Initial concentration $0.099999951844375 \ \mu mol \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in reaction_53, reaction_54, reaction_55, reaction_56, reaction_57, reaction_59, reaction_60).

$$\frac{d}{dt} \text{species}_2 28 = -v_{74} - |v_{75}| - |v_{76}| - |v_{77}| - |v_{78}| - |v_{80}| - |v_{81}|$$
(300)

9.51 Species species 29

Name inactivePromoters

SBO:0000252 polypeptide chain

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in five reactions (as a product in reaction_55, reaction_56, reaction_57, reaction_59, reaction_60).

$$\frac{d}{dt} \text{species} 29 = |v_{76}| + |v_{77}| + |v_{78}| + |v_{80}| + |v_{81}|$$
(301)

9.52 Species species_30

Name geneProduct

SBO:0000236 physical entity representation

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in eight reactions (as a product in reaction_53, reaction_54 and as a modifier in reaction_2, reaction_3, reaction_4, reaction_5, reaction_42, reaction_47).

$$\frac{d}{dt} \text{species}_{30} = |v_{74}| + |v_{75}| \tag{302}$$

9.53 Species species_31

Name Arkadia_n

SBO:0000252 polypeptide chain

Initial concentration $0 \ \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_68, reaction_69 and as a product in reaction_70).

$$\frac{d}{dt} \text{species}_{31} = |v_{91}| - 3 v_{89} - 3 v_{90}$$
 (303)

A Glossary of Systems Biology Ontology Terms

- **SBO:0000009 kinetic constant:** Numerical parameter that quantifies the velocity of a chemical reaction
- **SBO:0000025** catalytic rate constant: Numerical parameter that quantifies the velocity of an enzymatic reaction
- **SBO:0000027** Michaelis constant: Substrate concentration at which the velocity of reaction is half its maximum. Michaelis constant is an experimental parameter. According to the underlying molecular mechanism it can be interpreted differently in terms of microscopic constants
- **SBO:0000153 forward rate constant:** Numerical parameter that quantifies the forward velocity of a chemical reaction. This parameter encompasses all the contributions to the velocity except the quantity of the reactants
- **SBO:0000156 reverse rate constant:** Numerical parameter that quantifies the forward velocity of a chemical reaction. This parameter encompasses all the contributions to the velocity except the quantity of the reactants.
- **SBO:0000186** maximal velocity: Limiting maximal velocity of an enzymatic reaction, reached when the substrate is in large excess and all the enzyme is complexed.
- SBO:0000196 concentration of an entity pool: The amount of an entity per unit of volume.
- **SBO:0000236 physical entity representation:** Representation of an entity that may participate in an interaction, a process or relationship of significance.
- **SBO:0000247** simple chemical: Simple, non-repetitive chemical entity
- **SBO:0000252 polypeptide chain:** Naturally occurring macromolecule formed by the repetition of amino-acid residues linked by peptidic bonds. A polypeptide chain is synthesized by the ribosome. CHEBI:1654

- **SBO:0000282 dissociation constant:** Equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex falls apart into its component molecules, or when a salt splits up into its component ions. The dissociation constant is usually denoted Kd and is the inverse of the affinity constant.
- **SBO:0000290 physical compartment:** Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions
- **SBO:0000296** macromolecular complex: Non-covalent complex of one or more macromolecules and zero or more simple chemicals
- **SBO:0000337** association constant: Equilibrium constant that measures the propensity of two objects to assemble (associate) reversibly into a larger component. The association constant is usually denoted Ka and is the inverse of the dissociation constant.
- **SBO:0000356 decay constant:** Kinetic constant characterising a mono-exponential decay. It is the inverse of the mean lifetime of the continuant being decayed. Its unit is "per tim".

SBML2LATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany