Introduzione alla Realizzabilità classica di Krivine

Davide Barbarossa

Université Paris13 / Università di Roma Tre barbarossa@lipn.univ-paris13.fr https://lipn.univ-paris13.fr/ barbarossa/

XXI Congresso Unione Matematica Italiana

Corrispondenza di Curry-Howard

Dimostrazioni: Logica intuizionista minimale

Trasformazioni: $\pi \rightsquigarrow \pi'$ secondo la cut-elimination

Programmi: $\Lambda ::= x \mid \lambda xM \mid MN$

Esecuzione: $(\lambda x M)N \rightarrow_{\beta} M[N/x]$

Tipaggio

$$\overline{\Gamma, x : A \vdash x : A}$$

$$\frac{\Gamma \vdash M : A \to B \qquad \Gamma \vdash N : A}{\Gamma \vdash MN : B}$$

$$\frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x M : A \to B}$$

Cut-elimination = Esecuzione programma

Se π dimostra $\Gamma \vdash M : A$ e π' dimostra $\Gamma \vdash M' : A$, allora:

$$\pi \rightsquigarrow \pi' \Leftrightarrow M \rightarrow_{\beta} M'$$
.

Computazione più realistica: interazione con l'ambiente

$$Processo := (programma, pila)$$

(Esempio di) Esecuzione nella Krivine-Abstract-Machine: backtracking

Esempio in logica classica: la "drunk man formula"

In ogni bar non vuoto, $\exists x_0$ t.c. se x_0 è ubriaco allora sono tutti ubriachi.

Dimostrazione.

Sia x nel bar. Wlog x è ubriaco e $\exists x'$ s.t. x' non è ubriaco (altrimenti prendi $x_0 := x$). Prendi $x_0 := x'$.

"Corrispondenza" dimostrazioni classiche e programmi

λ_c -calcolo

(Programmi)
$$\Lambda_c ::= x \mid \text{callcc} \mid \kappa_\pi \mid \lambda x M \mid MN$$
 (Pile) $\Pi_c ::= M.\pi$ (Processi) $\Lambda \star \Pi := \Lambda_c \times \Pi_c$

Tipaggio

L'usuale (+ quantificatori) + la regola:

$$\overline{\Gamma \vdash \mathtt{callcc} : ((A \to B) \to A) \to A}^{\text{(Griffin)}}$$

KAM per il λ_c -calcolo

(push)
$$MN \star \pi \succ M \star N.\pi$$

(pop) $\lambda \times M \star N.\pi \succ M[N/x] \star \pi$

(save) callcc
$$\star M.\pi \succ M \star \kappa_{\pi}.\pi$$

(restore) $\kappa_{\pi} \star M.\rho \succ M \star \pi$.

Interpretazioni di realizzabilità

"Realizzare" una formula $A={
m trovare}$ un programma M che giustifica ${
m A}$

Semantica di realizzabilità

Formule a parametri:

- l'interpretazione standard $a \in \mathbb{N}$ per ogni espressione al l'ordine
- un $\mathcal{H} \in \mathscr{P}(\Pi_c)^{\mathbb{N}^k}$ per ogni variabile X al Π ordine

Si fissi un segmento iniziale \perp di $(\Lambda_c \star \Pi_c, \succ)$.

Si definiscono $\|.\|: \mathcal{F}_{\textit{par}} \to \mathscr{P}(\Pi_c)$ e $|.|: \mathcal{F}_{\textit{par}} \to \mathscr{P}(\Lambda_c)$ come segue:

$$\begin{split} \|\mathcal{H}[a]\| &:= \mathcal{H}(a) & \|\forall xA\| := \bigcup_{a \in \mathbb{N}} \|A[a/x]\| \\ \|A \to B\| &:= |A|.\|B\| & \|\forall XA\| := \bigcup_{\mathcal{H} \in \mathscr{P}(\Pi_c)^{\mathbb{N}^k}} \|A[\mathcal{H}/X]\| \\ |A| &:= \{M \in \Lambda_c \text{ t.c. } \forall \pi \in \|A\|, \ M \star \pi \in \mathbb{L}\} \end{split}$$

Si pone $M \Vdash A$ come abbreviazione di $M \in |A|$.

Fatti importanti

Teorema (Lemma di adequazione)

$$\vdash M : A \Rightarrow M \Vdash A$$

Programmi che "barano"

Per ogni $M \star \pi \in \bot$, si ha: $\kappa_{\pi} M \Vdash \bot$.

 $(\operatorname{\mathsf{con}} \perp := \forall XX)$

La realizzabilità induce modelli à la Tarski

La teoria $\{A \text{ formula t.c. } \exists M \in \text{QP} \subseteq \Lambda \text{ t.c. } M \Vdash A\}$ è coerente.

I suoi modelli sono chiamati modelli di realizzabilità.

Il modello standard come modello di realizzabilità degenere

Se $\perp \!\!\! \perp = \emptyset$ allora $\exists !$ modello di realizzabilità, ed è \mathbb{N} .

Questioni generali

Realizzare assiomi

Data una formula A, esiste un programma $M \in QP$ t.c. $M \Vdash A$?

Esempio se $\vdash M : A$; allora $M \in QP$ e $M \Vdash A$.

Esempio se A = l'assioma di scelta; allora...??!

Problema della specificazione

Dato $M \Vdash A$, in che modo M giustifica A?

Esempio (specificazione per l'identità polimorfa)

se
$$\vdash M : \forall X(X \to X)$$
 allora $M \approx \lambda xx$ (nel senso che $M \star N.\pi \succ N \star \pi \prec \lambda xx \star N.\pi$)

Esempio (Axiom of Countable Choice)

Esiste $M \in QP$ t.c. $M \Vdash ACC$

"the main function of M is to update files".

Generalizzare!

Algebre di realizzabilità

- tre insiemi Λ (programmi), Π (pile), $\Lambda \star \Pi$ (processi)
- tre applicazioni cons : $\Lambda \times \Pi \to \Pi$, cont : $\Pi \to \Lambda$, proc : $\Lambda \times \Pi \to \Lambda \star \Pi$
- "un modo per vedere le quasi-prove come programmi: $\mathrm{QP} \subseteq \Lambda_c o \Lambda$ "
- un polo $\bot \subseteq \land \star \sqcap$ saturo rispetto ad una KAM

Stesse identiche costruzioni, risultati, osservazioni,...

Estrazione di contenuto computazionale dalla matematica

- Realizzare assiomi di ZF
- Costruzione di nuovi modelli non ottenibili per forcing
- Forcing = trasformazione programmi + esecuzione "protected mode"
- Ecc...

Grazie!

Jean-Louis Krivine:

- Typed lambda-calculus in classical Zermelo-Fraenkel set theory. Archives of Mathematical Logic (2001)
- Realizability in classical logic. Lessons for PhD's at Université d'Aix-Marseille (2004)
- Realizability algebras: a program to well order ℝ. Logical Methods in Computer Science (2011)
 À propos de la théorie des démonstrations. Colloque en l'honneur de René Cori (2014).
- À propos de l'intuition en mathématiques. (2018).
- Lionel Rieg:
- On Forcing and Classical Realizability. PhD thesis in Computer Science at École Normale Supérieure de Lyon (2014) Alexandre Miquel:
- Forcing as a program transformation. LICS (2011) (short version)/MSCS (2012) (long version).