主领审签

哈尔滨工业大学(深圳)2022年秋季学期

离散数学期末试题

题 号	_	П	Ξ	四	五	六	七	总分
得分								
阅卷人								

考生须知:本次考试为闭卷考试,考试时间为120分钟,总分80分。

生名

小小

바

逃州

一、 本题得分

填空题 (每小题 2 分, 共 20 分)

- 1. 设P: 天气热,Q: 他去游泳。则命题"天气虽然热,但他没有去游泳"可符号化为 $P \wedge \sim Q$ 。
- 2. $\sim (P \Rightarrow Q) \land R$ 的主析取范式是 $\underline{P \land \sim Q \land R}$ 。
- 3. 实数集 \mathbb{R} 中的运算*定义如下: a*b=a+b+2ab,则*运算的单位元是<u>0</u>。设a有逆元,则其逆元 $a^{-1}=-\frac{a}{1+2a}$ 。
- 4. 设G是个阿贝尔群, $a,b \in G$, |a|=7, |b|=5, 则ab 的阶数是 35 。
- 5. 设G是个群,且|G|=8。则群G只可能有2,4 阶的非平凡 子群,不可能有3,5,6,7 阶的非平凡子群。

6. 下面有界格中元素a的的补元是<u>b,d</u>。

- 8. 采用全总个体域。设P(x):x长着黑头发。M(x):x是人。命题"所有的人都长着黑头发"可符号化为 $\forall x \left(M(x) \Rightarrow P(x)\right)$ 。
- 9. 在有界分配格中, 若一个元素有补元, 则补元<u>(A)</u>。(A). 必唯一 (B). 不唯一 (C). 不一定唯一
- 10. 若认为同构的群是相同的, 那么3阶群有______ 个, 4阶群有_____ 个。

		单项选择题(每小题 2 分,共 20 分)
		1. 矛盾式的否定为(C)。
		A. 矛盾式; B. 蕴含式; C. 重言式; D. 等价式。
A A 	केट कोटर	2. 设 P :今天下雨, Q : 明天下雨,这 $P \lor Q$ 表示(D)。
製密:	T	A. 今天和明天都下雨; B. 今天没有下雨;
		C. 今天和明天都不会下雨; D. 今天或明天下雨。
		2 下列勾子具合题的具(D)
		3. 下列句子是命题的是(B)。
小 小 -	: 封	A. 请把门关上!
		B. 地球外的星球上也有人。
	•	C. $x+5>6$.
		D. 下午有会码?
班号		4. 下面的语句哪一个是假命题(A)。
 I	线	A. 如果 1+2=3,则雪是黑色的。 B. 2 是素数。
		C. 如果 1+2=5, 则雪是黑色的。 D. 2+2=4。
		5. 有界分配格不一定具有(A)。
小 究		A. 互补律; B. 结合律; C. 分配律; D. 吸收律。
計		
	:	

二、 本题得分 _____

- 6. 设G是群,且|G|=6,则G最多有(C)个阶为3的子群。
 - A. 3; B. 2;
- C. 1;
- D. 0.
- 7. 在谓词演算中, 下列公式中正确的是(B)。
 - A. $\exists x \forall y \ A(x,y) \Leftrightarrow \forall y \exists x \ A(x,y)$; B. $\exists x \exists y \ A(x,y) \Leftrightarrow \exists y \exists x \ A(x,y)$;
 - C. $\exists x \forall y \ A(x,y) \Leftrightarrow \forall x \exists y \ A(x,y)$; D. $\forall x \forall y \ A(x,y) \Leftrightarrow \forall y \forall x \ B(x,y)$.
- 8. 下列公式中,含有3个命题变项P,Q,R的极大项是(A)。
 - A. $P \lor Q \lor \sim R$;

B. $\sim (P \wedge Q \vee R)$;

C. ~ $P \land \sim Q \land \sim R$;

- D. $P \wedge Q \vee R$.
- 9. 设 $\langle A, * \rangle$ 是一个代数系统,其中*是一个二元运算,使得 $\forall a,b \in A$,有 a*b=a , 则 $\langle A, * \rangle$ 是(B)。
- A. 非半群; B. 半群; C. 可交换的半群;
- D. 群。

10. 下面偏序集中能构成格是(D)。

运算题(每小题10分,共20分)

1. 构造命题公式P⇒ $((\sim P ⇔ Q) ∧ R)$ 的真值表。

P Q R	~P	\sim P \Leftrightarrow Q	$(\sim P \Leftrightarrow Q) \wedge R$	$P \Rightarrow ((\sim P \Leftrightarrow Q) \land R))$
1 1 1	0	0	0	0
1 1 0	0	0	0	0
1 0 1	0	1	1	1
1 0 0	0	1	0	0
0 1 1	1	1	1	1
0 1 0	1	1	0	1
0 0 1	1	0	0	1
0 0 0	1	0	0	1

2. 运用推理推导出你的结论。

如果甲和乙参加会议,那么丙不参加会。只有甲参加会议,丁才参加会议。乙和丙都参加会议。试问甲和丁是否参加会议?

解: P: 甲参加会议。

Q: 乙参加会议。

R: 丙参加会议。

S: 丁参加会议。

前提: $P \land Q \Rightarrow \sim R$, $S \Rightarrow P$, $Q \land R$ 。

① $Q \land R$

前提引入

② Q

①化简

3 R

①化简

前提引入

⑤ ~P

234拒取式

6 S⇒P

前提引入

⑦ ~S

50拒取式

故甲和丁都没参加会议。

开允

帅

中

小河

四、 本题得分

(5分)设G为群,且|G|=6。证明G一定有一个3阶子群。

证:设G为群,且|G|=6。 $\forall a \in G$,由拉格朗日定理的推论知,

$$|a| = 1, 2, 3, 6$$
.

若 G 中没有 6 阶元。则 G 中必有一个 3 阶元。若 G 只含有 1 阶元和 2 阶元,则 $\forall x \in G$,有 $x^2 = e$ 。这说明 G 是阿贝尔群。 取 G 中两个不同的 2 阶元 x,y。令 $H = \{e,x,y,xy\}$,则 H 是 G 的子群。但|H| = 4,|G| = 6。这与拉格朗日定理矛盾。因此, $\exists a \in G$,|a| = 3。则 $\langle a \rangle = \{e,a,a^2\}$ 是 G 的 3 阶子群。

五、 本题得分 _____

(5分)设 $G=\langle a\rangle$ 是18阶循环群。试找出G的所有子群。

解:由于18的正因子是1,2,3,6,9和18, G的所有子群为

$$\left\langle a^{\frac{18}{1}} \right\rangle = \left\langle a^{18} \right\rangle = \left\{ e \right\},$$

$$\left\langle a^{\frac{18}{2}} \right\rangle = \left\langle a^{9} \right\rangle = \left\{ e, a^{9} \right\},$$

$$\left\langle a^{\frac{18}{3}} \right\rangle = \left\langle a^{6} \right\rangle = \left\{ e, a^{6}, a^{12} \right\},$$

$$\left\langle a^{\frac{18}{6}} \right\rangle = \left\langle a^{3} \right\rangle = \left\{ e, a^{3}, a^{6}, a^{9}, a^{12}, a^{15} \right\},$$

$$\left\langle a^{\frac{18}{9}} \right\rangle = \left\langle a^{2} \right\rangle = \left\{ e, a^{2}, a^{4}, a^{6}, a^{8}, a^{10}, a^{12}, a^{14}, a^{16} \right\},$$

$$\left\langle a^{\frac{18}{18}} \right\rangle = \left\langle a \right\rangle = G \quad \circ$$

(5分)设 $A = \{1,2,3,4,6,8,9,12\}$, R为整除关系。

- 1) 画出偏序集 $\langle A, R \rangle$ 的哈斯图;
- 2) 讨论A的子集 $B=\{2,4,6\}$ 的上界,下界,最小上界,最大下界。
- 3) 讨论 A 的最大元, 最小元。

解: 1)

- 2) B的上界是12, 下界是1, 2, 最小上界是12, 最大下界是 2。
 - 3) A无最大元,最小元是1。

年夕

小小小

北北

近

七、 本题得分

(5分) 设G为阿贝尔群, 且|G|是奇数。 证明

- 1) G中没有2阶元。
- 2) 若 $a \in G$ 且 $a \neq e$,则 $a \neq a^{-1}$ 。
- 3) G中所有元素之积为单位元。

证:设G为阿贝尔群,且|G|=奇数。

若|G|=1,则结论显然。

设 $|G|=2n+1, n\geq 1$ 。由拉格朗日定理的推论知,不存在元素 $a\neq e\in G$,满足 $a^2=e$ 。于是,任给 $a\neq e$,则有 $a\neq a^{-1}$ 及 $\left(a^{-1}\right)^{-1}=a$ 。因此, $a=a^{-1}$ 是两个不同的元素,且它们总是成对出现。由于G为阿贝尔群,且 $|G|=2n+1, n\geq 1$,G中所有元素之积为

$$ea_1a_1^{-1}a_2a_2^{-1}a_3a_3^{-1}\cdots a_na_n^{-1} = e$$