UNSUPERVISED MACHINE LEARNING: CLUSTERING

Prof. Dr. Wilson Tarantin Junior

*A responsabilidade pela idoneidade, originalidade e licitude dos conteúdos didáticos apresentados é do professor.

Proibida a reprodução, total ou parcial, sem autorização. Lei nº 9610/98

Contextualização

- Quando aplicar a análise de cluster?
 - Quando o objetivo for agrupar as observações em grupos homogêneos internamente e heterogêneos entre si
 - <u>Dentro do grupo</u>: observações semelhantes com base nas variáveis utilizadas na análise
 - Entre grupos distintos: observações diferentes com base nas variáveis utilizadas na análise

Contextualização

- Técnica exploratória (não supervisionada)
 - A análise de agrupamentos caracteriza-se por ser uma técnica exploratória, de modo que não tem caráter preditivo para observações de fora da amostra
 - Se novas observações forem adicionadas à amostra, novos agrupamentos devem ser realizados, pois a inclusão de novas observações pode alterar a composição dos grupos
 - Se forem alteradas variáveis da análise, novos agrupamentos devem ser realizados, pois a inclusão/retirada de uma variável pode alterar os grupos

Métodos

- Analisaremos dois métodos para a obtenção de agrupamentos
 - Método Hierárquico Aglomerativo
 - A quantidade de clusters é definida ao longo da análise (passo a passo)
 - Método Não Hierárquico K-means
 - Define-se a priori quantos cluster serão formados

Método Hierárquico Aglomerativo

Tratamento inicial dos dados

- Análise das variáveis que serão estudadas
 - Antes de iniciar os procedimentos, é importante realizar uma análise das unidades de medidas das variáveis
 - Se estiverem em unidades de medidas distintas, é importante realizar a padronização das variáveis antes de iniciar a análise de cluster
 - Aplica-se o ZScore (torna variáveis com média = 0 e desvio padrão = 1)

$$ZX_{ji} = \frac{X_{ji} - \overline{X}_{j}}{s_{j}}$$

Escolhas inerentes ao método

- A análise de cluster hierárquica depende de escolhas
 - Escolha da medida de dissimilaridade (distância)
 - Refere-se à distância entre as observações, com base nas variáveis escolhidas
 - Portanto, indica o quanto as observações são diferentes entre si
 - Escolha do método de encadeamento das observações
 - Refere-se à especificação da medida de distância quando houver cluster formados

- Hierárquico aglomerativo: observações separadas → um único cluster
 - Considerando n observações, inicia-se com n clusters (estágio 0)
 - Na sequência, une-se as duas observações com menor distância (n-1 clusters)
 - Em seguida, um novo grupo é formado pela união de duas novas observações ou pela inclusão de uma observação ao cluster formado na etapa anterior (sempre pela menor distância). O método de encadeamento indica qual é a distância a ser considerada
 - Repete-se a etapa anterior n-1 vezes, ou seja, até restar somente 1 cluster
 - O dendrograma é um gráfico que permite visualizar a formação dos clusters

Medidas de dissimilaridade

- Identifica a distância entre observações
 - Distância de Minkowski: $d_{pq} = \left[\sum_{j=1}^k (|ZX_{jp} ZX_{jq}|)^m\right]^{\frac{1}{m}}$
 - Distância euclidiana: $d_{pq} = \sqrt{\sum_{j=1}^k (ZX_{jp} ZX_{jq})^2}$
 - Distância euclidiana quadrática: $d_{pq} = \sum_{j=1}^k (ZX_{jp} ZX_{jq})^2$

Medidas de dissimilaridade

- Identifica a distância entre observações
 - Distância de Manhattan (City Block): $oldsymbol{d_{pq}} = \sum_{j=1}^k |oldsymbol{Z} X_{jp} oldsymbol{Z} X_{jq}|$
 - Distância de Chebychev: $d_{pq} = max \, |ZX_{jp} ZX_{jq}|$
 - Distância de Canberra: $d_{pq} = \sum_{j=1}^k \frac{|ZX_{jp} ZX_{jq}|}{(ZX_{jp} + ZX_{jq})}$ \Rightarrow variáveis de valores positivos
 - A correlação de Pearson <u>entre as observações</u> também pode ser utilizada (mas é uma medida de semelhança, portanto ajusta-se sua interpretação)

Métodos de encadeamento

- Esquemas hierárquicos aglomerativos
 - Método de encadeamento: indica qual distância utilizar quando já existem clusters formados durante os estágios aglomerativos
 - Nearest neighbor (single linkage): privilegia menores distâncias, recomendável em casos de observações distintas
 - Furthest neigbor (complete linkage): privilegia maiores distâncias, recomendável em casos de observações parecidas
 - Between groups (average linkage): junção de grupos pela distância média entre todos os pares de observações do grupo em análise

Métodos de encadeamento

Método de Encadeamento	Ilustração	Distância (Dissimilaridade)
Único (Nearest Neighbor ou Single Linkage)	3 4	d_{23}
Completo (Furthest Neighbor ou Complete Linkage)	2	d_{15}
Médio (Between Groups ou Average Linkage)	3 4 5 5	$\frac{d_{13}\!+\!d_{14}\!+\!d_{15}\!+\!d_{23}\!+\!d_{24}\!+\!d_{25}}{6}$

Fonte: Fávero & Belfiore (2024, Capítulo 9)

Métodos de encadeamento

- Esquemas hierárquicos aglomerativos
 - Nearest neighbor (vizinho mais próximo): single linkage
 - d(MN)W = mín{dMW; dNW}
 - Furthest neighbor (vizinho mais distante): complete linkage
 - d(MN)W = máx{dMW; dNW}
 - Between groups (média das distâncias): average linkage
 - d(MN)W = média entre dMW e dNW (distância média entre todos os pares)

Quantos clusters escolher?

- Esquemas hierárquicos aglomerativos
 - Como critério para a escolha do número final de clusters em uma análise, podese adotar o tamanho dos saltos de distância para a incorporação seguinte
 - Saltos muito elevados podem indicar o agrupamento de observações com características mais distintas, isto é, há a união de observações mais distintas
 - Comparar dendrogramas obtidos por diferentes métodos de encadeamento

Análise dos agrupamentos

- Quais variáveis contribuem?
 - Após a clusterização, é importante comparar se a variabilidade dentro do grupo é menor do que a variabilidade entre grupos com base nas variáveis da análise
 - Aplica-se um teste F para análise de variância: $F = \frac{Variabilidade\ entre\ grupos}{Variabilidade\ dentro\ dos\ grupos}$
 - Graus de liberdade no numerador: K 1
 - Graus de liberdade no denominador: n K

K = nº de clusters n = tamanho da amostra

• É possível analisar quais variáveis mais contribuíram para a formação de pelo menos um dos clusters: maiores valores da estatística F (em conjunto com a significância)

Método Não Hierárquico K-means

Tratamento inicial dos dados

- Análise das variáveis que serão estudadas
 - Também é importante realizar a análise das unidades de medidas das variáveis para a aplicação do K-means
 - Se estiverem em unidades de medidas distintas, é fundamental padronizar as variáveis antes de iniciar a análise
 - Padronização pelo ZScore (variáveis com média = 0 e desvio padrão = 1)

$$ZX_{ji} = \frac{X_{ji} - \overline{X}_{j}}{s_{i}}$$

- Esquema não hierárquico K-means
 - A <u>quantidade K de clusters é escolhida a priori</u> e é usada como base para a identificação dos centros de aglomeração, de modo que as observações são arbitrariamente alocadas aos K clusters para o cálculo dos centroides iniciais
 - Nas etapas seguintes, as observações vão sendo comparadas pela proximidade aos centroides dos outros clusters. Se houver realocação a outro cluster por estar mais próxima, os centroides são recalculados (em ambos os clusters)
 - Trata-se de um processo iterativo

- Esquema não hierárquico K-means
 - O procedimento K-means encerra-se quando não for possível realocar qualquer observação por estar mais próxima do centroide de outro cluster: indica que a soma dos quadrados de cada observação até o centro do cluster alocada foi minimizada
 - A soma total dos quadrados dentro dos clusters pode ser representada por:

$$SS = \sum_{k=1}^{k} \sum_{x_i \in C_k} (x_i - \mu_k)^2$$

Representa a solução do K-means

Não ocorrerão outras realocações, pois não há observações que estejam mais próximas dos centroides de outros clusters

Fonte: Fávero & Belfiore (2024, Capítulo 9)

Identificação da quantidade de clusters

- Técnicas para a identificação da quantidade de clusters no K-means
 - Método de Elbow: calcula-se a soma total dos quadrados dentro dos clusters (WCSS) para várias opções de K (quantidade de clusters). No gráfico, busca-se a dobra ("cotovelo"), ou seja, o ponto a partir do qual a diminuição na WCSS não é mais tão expressiva, mesmo aumentando a quantidade de clusters
 - Método da Silhueta: para cada observação, calcula-se: (b) sua distância média para o cluster mais próximo onde não esteja alocada; (a) sua distância média dentro do cluster onde está alocada

$$silhueta = \frac{(b-a)}{\max(a,b)}$$

Quanto mais próximo de 1, melhor a clusterização. Quanto mais próximo de -1, pior!

 Em seguida, calcula-se o coeficiente de silhueta médio para todas as observações. O procedimento é realizado para várias opções de K

Considerações

- Alguns aspectos relevantes
 - A análise de cluster é bastante sensível à presença de outliers
 - Quando há variáveis categóricas, pode aplicar a Análise de Correspondência
 - O output do método hierárquico pode ser utilizado como input no método não hierárquico para a identificação inicial da quantidade de clusters
 - O método não hierárquico k-means pode ser aplicado em amostras maiores

Referência

Fávero, Luiz Paulo; Belfiore, Patrícia. (2024). Manual de análise de dados: estatística e machine learning com Excel[®], SPSS[®], Stata[®], R[®] e Python[®]. 2 ed. Rio de Janeiro: LTC.

OBRIGADO!

<u>linkedin.com/in/wilson-tarantin-junior-359476190</u>