Youngsoo Baek, Yunran Chen, and Brian Kundinger

# Association Between Mice Connectome and Behavioral Indices

Youngsoo Baek, Yunran Chen, and Brian Kundinger

Youngsoo Baek, Yunran Chen, and Brian Kundinger

#### Background

- Behavioral variables of interest mainly include NormSWTime (normalized time to reach target) and RI\_T2, RI\_T3 (recognition indices)
- **Connectomes** are a collection of white matter fiber tracts that connect different regions of the brain.
- Can be thought of as a weighted undirected graph with 332 vertices
- Goal: Study the possible relationship between behavioral variables and mice connectomes

Youngsoo Baek, Yunran Chen, and Brian Kundinger

#### Data Processing

- Need to match mice across different datasets (Connectomes, NOR, MWM)
- MWM has several mice with multiple "runno" identifiers (eg N54716/N54915), but most of these can be matched with unique connectome
- One mouse "N54891/N54900LRspecific" and another with runno "NA" are unidentifiable, and removed from analysis.
- Once Connectomes are matched with entries in MWM, we use Animal ID to match with NOR
- After cleaning, we conduct analysis with 38 mice

Youngsoo Baek, Yunran Chen, and Brian Kundinger

### Visualizing Connectomes

 Sparsity of connectomes + small between-mice variation regarding sparse entries



Youngsoo Baek, Yunran Chen, and Brian Kundinger

### Visualizing Connectomes

 Apparent clusterings of graph nodes do not coincide with known compartments



Youngsoo Baek, Yunran Chen, and Brian Kundinger

#### Approaches to Analysis

- Exploratory techniques to explore connectomes matrices in a lower dimension 

  PCA and CCA (canonical correlation analysis)
- Clustering, both between graphs and of nodes within graphs (community detection) are important ways to summarise connectomes
- Beta regression to study association, both within behavioral variables and between behavioral variables and summaries of connectomes

Youngsoo Baek, Yunran Chen, and Brian Kundinger

# Canonical Correlation Analysis (CCA)

- Analogue to PCA in high-dimensional settings
- Goal: For  $X_1,\ldots,X_n\in\mathbb{R}^p$  and  $Y_1,\ldots,Y_n\in\mathbb{R}^q$ , want to estimate the covariance matrix  $\Sigma_{X,Y}$
- Through SVD, find vectors  $a \in \mathbb{R}^q$  and  $b \in \mathbb{R}^p$  maximizing  $Corr[a^TX, b^TY]$  subject to orthogonality constraints

Youngsoo Baek, Yunran Chen, and Brian Kundinger

#### PCA and CCA

- Canonical Correlation Analysis (CCA): Explore how brain connectomes and behaviorial traits co-vary in a similar way
- Preprocessing using PCA: keep the within subdivision connectomes (38  $\times$  2107) and apply PCA to reduce dimension to (38  $\times$  35)
- There may exist correlation between PCs and traits.



Youngsoo Baek, Yunran Chen, and Brian Kundinger

#### **CCA** Results

- (Left) Correlation between traits/PCs and first/second CCA mode
- (Right) The subdivision of top 100 ROIs loading in PC13
- pooltime may co-vary with PC13
- pooltime may mostly relate to the isocoritex region positively, relate to the hindbrain region negatively



Youngsoo Baek, Yunran Chen, and Brian Kundinger

## Pool time and Connectomes in isocortex

- Female, old, genotype(0), arranged based on values of small pool time (from small to large)
- More active connections between ROIs may relate to larger pool time.



Youngsoo Baek, Yunran Chen, and Brian Kundinger

## Pool time and Connectomes in hindbrain

- Female, old, genotype(0), arranged based on values of small pool time (from small to large)
- Less active connections between ROIs may relate to larger pool time.



Youngsoo Baek, Yunran Chen, and Brian Kundinger

#### Method: Beta Regression

• Suppose  $Y_i \sim Beta(a, b)$ . Then

$$f(y|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} y^{a-1} (1-y)^{b-1}$$

• We reparameterize for mean  $\mu = \frac{a}{a+b}$ , and precision  $\phi = a+b$ 

$$f(y|\mu,\phi) = \frac{\Gamma(\mu)}{\Gamma(\mu\phi)\Gamma((1-\mu)\phi)} y^{\mu\phi-1} (1-y)^{(1-\mu)\phi-1}$$

• Then we model  $g(\mu_i) = x_i^T \beta \implies \mu_i = g^{-1}(x_i^T \beta)$  for some link function  $g:(0,1) \to \mathbb{R}$ .

Youngsoo Baek, Yunran Chen, and Brian Kundinger

#### Method: Beta Regression

Beta regression also allows us to model heteroskedastic variance

$$g_2(\phi) = z_i^T \gamma$$

for covariates  $z_i$  and regression coefficient vector  $\gamma$ 

 Convert discrete "Day" variable into continuous "time" variable to capture change in variance over the course of the experiment

Youngsoo Baek, Yunran Chen, and Brian Kundinger

# Method: Beta Regression (NormSWTime)

- When modeling NormSWTime, many values take on 0 or 1, which causes problems (think of logit function)
- No continuous mapping from [0,1] (Closed Set)  $\to \mathbb{R}$  (Open Set)
- Remove observations where Pool Time < 60 but NormSWTime = 0
- Remove probe trials, all have Pool Time = 60 (not useful)
- Remove mouse with zero RI on trial 3
- Apply the following transformation for the remainders (Smithson and Verkuilen, 2006):

$$y^* = \frac{y(n-1) + .5}{n}$$

Youngsoo Baek, Yunran Chen, and Brian Kundinger

### Beta Regression: Results

Formula : NormSWTime  $\sim$  time + RI<sub>T3</sub>|time



Youngsoo Baek, Yunran Chen, and Brian Kundinger

### Beta Regression: Results

| component              | term             | estimate               | p.value |
|------------------------|------------------|------------------------|---------|
| precision<br>precision | (Intercept) time | 0.0517465<br>0.0728208 |         |

Youngsoo Baek, Yunran Chen, and Brian Kundinger

### Beta Regression: Results

 ${\sf NormSWTime} \sim {\sf time} \, + \, {\sf Isocortex} \, \, {\sf Summary} \, \, {\sf Statistics} \, \, | {\sf time} \,$ 



Youngsoo Baek, Yunran Chen, and Brian Kundinger

#### Beta Regression: Remarks

- Need more accurate clustering tool and knowledge of network summary statistics for this method to provide meaningful results
- Increase in response variable precision over time indicates all have more similar NormSWTime at the end than at the beginning
- Perhaps Connectome effects might not increase with time, but rather decrease with time

Youngsoo Baek, Yunran Chen, and Brian Kundinger

#### Mice Grouping

- Explored methods to cluster the different mice connectomes (graph clustering), and to cluster the vertices within a graph (community detection)
- Rather than identify clusters within the networks, we attempt to cluster the mice by characteristics in the connectome data
- Identify clusters within each connectome through Louvain community detection
- Calculate pairwise Normalized Mutual Informormation (NMI, measure of similarity between two network community structures), compile into "distance matrix"
- Use hierarchical clustering to divide mice into 4 groups.
   Use group membership as regressors.

Youngsoo Baek, Yunran Chen, and Brian Kundinger

#### Mice Grouping

#### **Cluster Dendrogram**



 Method not successful, NMI scores are too similar across the mice.

Youngsoo Baek, Yunran Chen, and Brian Kundinger

#### On Community Detection

- Standard search algorithms (e.g., igraph's greedy search based on modularity) often yields unsatisfying results
- Cannot merge information from different mice into clustering

Youngsoo Baek, Yunran Chen, and Brian Kundinger

#### On Community Detection

- A simple mixture membership model (Newman and Leicht, 2007) can detect latent structures that do not necessarily align with the known compartment
- EM algorithm can be used to estimate the posterior modes / MLEs for membership probabilities  $(\pi_r)$ , and connection probabilities between each community r and node i  $(\theta_{ri})$
- Problem: EM implementation became numerically unstable and too sensitive to initialization

Youngsoo Baek, Yunran Chen, and Brian Kundinger

# Beta Regression of Behavioral Responses on Connectomes

- For now, simply sum over the fiber counts belonging to the same compartments (332-dim.  $\rightarrow$  8-dim.)
- Stack the diagonal / lower triangular entries of connectomes matrices, which become our covariates (p = 8(8+1)/2 = 36)
- Taken apart separately, no individual compartment entries seem to have significant association with behavioral variables
- Problem: How to systematically induce strong shrinkage?

Youngsoo Baek, Yunran Chen, and Brian Kundinger

#### Discussion

- Exploring ways to better summarise connectomes will be interesting with more time
- Connectomes matrices may serve as better covariates for modeling second order structure of different response variables
- More structure that induces strong shrinkage is needed in tensor regression model

Youngsoo Baek, Yunran Chen, and Brian Kundinger

#### Reference

- "Mixture models and exploratory analysis in networks," Newman, M. E. J. and Leight, E. A. PNAS, 104(23), 2007.
- Smith S M, Nichols T E, Vidaurre D, et al. A
   positive-negative mode of population covariation links brain
   connectivity, demographics and behavior[J]. Nature
   neuroscience, 2015, 18(11): 1565.
- "A better lemon squeezer? Maximum-likelihood regression with Beta-distributed dependent variables," Smithson, M. and Verkuilen, J. Psychological Methods, 11, 2006.