Second Order Differential Equations

Arpit Mittal

August 2023

Table of Contents

1	Introduction	2
2	The Solution	2
	2.1 Two Real Roots	2
	2.2 One Real Root	3
	2.3 Two Complex Roots	3
3	Examples	3

Calculus Primer Arpit Mittal

1 Introduction

Second-order linear differential equations are of the following form.

Second order Linear Differential Equations:

$$a(x)y''(x) + b(x)y'(x) + c(x)y(x) = d(x). (1.1)$$

In this handout, we study **homogeneous equations**, where d(x) = 0. We require constant coefficients (i.e. a(x), b(x), c(x) being constants). Several fundamental concepts in physics, such as Newton's equation and the Euler-Lagrange equations, are second-order linear differential equations. For example, the equation of motion for a system consisting of small oscillations in one dimension is mx''(t) + kx(t) = 0 which also has constant coefficients and is homogeneous. Thus, it is very important to know how to solve them.

2 The Solution

Consider an equation of the form 1.1 with constant coefficients and d(x) = 0. Let us write a(x), b(x), and c(x) as a, b, and c respectively. We reduce 1.1 into a simpler one by dividing both sides by a to get

$$y''(x) + \frac{b}{a}y'(x) + \frac{c}{a}y(x) = 0.$$
 (2.1)

For simplicity, rename b/a as p and c/a as q. Thus, we need to solve

$$y''(x) + py'(x) + qy(x) = 0.$$
 (2.2)

We use an **ansatz**, which is essentially a fancy glorified educated guess to solve the problem. Suppose that $y(x) = e^{cx}$ is a solution to the differential equation. Then, we have $y''(x) = c^2 e^{cx}$ and $y'(x) = ce^{cx}$. Plugging this into 2.2 gives

$$c^{2}e^{cx} + p \cdot ce^{cx} + qe^{cx} = e^{cx}(c^{2} + pc + q) = 0.$$

We can divide both sides by e^{cx} to get

$$c^2 + pc + q = 0.$$

This is called the **characteristic equation**. We can find c by factoring when possible and using the quadratic equation when it is not. The method from here depends on what type of roots we get and how many there are.

2.1 Two Real Roots

If there are two real roots, say, c_1, c_2 , then the general solution to the differential equation is $y(x) = Ae^{c_1x} + Be^{c_2x}$ where A, B can be any constants. We know from the ansatz that e^{c_1x} and e^{c_2x} work and it turns out that any linear combination of these terms is also a solution.

Calculus Primer Arpit Mittal

2.2 One Real Root

When there is one real root (i.e. the characteristic equation is of the form (c-k)(c-k)), then the general solution is of the form $y(x) = Ae^{kx} + Bxe^{kx}$.

2.3 Two Complex Roots

In this case, we get two complex roots z_1 and z_2 and plug them in the same way as if we had gotten two real roots to get a general solution of $y(x)=Ae^{z_1x}+Be^{z_2x}$. From here, we can use Euler's formula,

$$e^{ix} = \cos(x) + i\sin(x),$$

to simplify.

3 Examples

We compute one example of each type of solution.

Example 1: Solve the equation

$$2y''(x) + 16y'(x) + 30y(x) = 0.$$

Solution: We first divide both sides by 2 to get

$$y''(x) + 8y'(x) + 15y(x) = 0.$$

The characteristic equation we get is $(c^2 + 8c + 15) = 0$. We can factor the left hand side to get (c+5)(c+3) = 0. This implies that the solutions to the characteristic equation are c = -5 and c = -3. Thus, the general solution to the differential equation is

$$y(x) = Ae^{-5x} + Be^{-3x}.$$

Example 2: Solve the equation

$$y''(x) - 8y'(x) + 16y(x) = 0.$$

Solution: The characteristic equation is $(c^2 - 8c + 16) = 0$. We can factor the left hand side to get (c-4)(c-4) = 0 which implies that there is one real solution, namely c = 4. Thus, the general solution to the differential equation is

$$y(x) = Ae^{4x} + Bxe^{4x}.$$

Example 3: Solve the equation

$$y''(x) + 4y'(x) + 5y(x) = 0.$$

Calculus Primer Arpit Mittal

Solution: The characteristic equation is $(c^2 + 4x + 5) = 0$. We see that the discriminant of this equation is $4^2 - 4 \cdot 1 \cdot 5 < 0$ so the equation has two imaginary roots. Using the quadratic formula, we see that the roots of the equation are $z_1 = -2 + i$ and $z_2 = -2 - i$. So, the general solution to the differential equation is

$$y(x) = Ae^{(-2+i)x} + Be^{(-2-i)x}.$$

We can factor out e^{-2x} to get

$$y(x) = e^{-2x} (Ae^{ix} + B^{-ix}).$$

Applying Euler's formula to the terms in parenthesis gives

$$Ae^{ix} + B^{-ix} = A(\cos(x) + i\sin(x)) + B(\cos(-x) + i\sin(-x)).$$

We can use the trigonometric identities $\cos(-x) = \cos(x)$ and $\sin(-x) = -\sin(x)$ to get

$$Ae^{ix} + B^{-ix} = A(\cos(x) + i\sin(x)) + B(\cos(x) - i\sin(x)) = (A+B)(\cos(x)) + i(A-B)(\sin(x)).$$

We can see that A + B and A - B are also constants so we can substitute c_1 and c_2 for them respectively to get the general solution

$$y(x) = e^{-2x}(c_1 \cos(x) + ic_2 \sin(x)).$$

We leave the following example as an interesting, real-world occurring, exercise.

Example 4: Solve the differential equation for springs mentioned in the introduction. After you have done this, solve the differential equation for when damping is present: mx''(t) + cx'(t) + kx(t) = 0.