

MA 102: Linear Algebra, Integral Transforms & Special Functions

Tutorial Sheet - 6

Second Semester of the Academic Year 2023-2024

Notation : Field \mathbb{F} is \mathbb{R} or \mathbb{C} .

- 1. Let $T: \mathbb{R}^2(\mathbb{R}) \to \mathbb{R}^3(\mathbb{R})$ be defined by $T(a_1, a_2) = (a_1 a_2, a_1, 2a_1 + a_2)$. Let β be the standard basis for \mathbb{R}^2 and $\gamma = \{(1, 1, 0), (0, 1, 1), (2, 2, 3)\}$ is a basis for \mathbb{R}^3 . Determine the matrix representation $[T]_{\beta}^{\gamma}$ of the linear transformation T. If $\alpha = \{(1, 2), (2, 3)\}$ is a given basis of \mathbb{R}^2 , then find $[T]_{\alpha}^{\gamma}$.
- 2. Suppose $T: \mathbb{R}^2(\mathbb{R}) \to \mathbb{R}^2(\mathbb{R})$ be the linear transformation such that T(1,0) = (1,4) and T(1,1) = (2,5). Then find T(2,3).
- 3. Prove that there exist a linear transformation $T: \mathbb{R}^2(\mathbb{R}) \to \mathbb{R}^3(\mathbb{R})$ such that T(1,1) = (1,0,2), T(2,3) = (1,-1,4). Then find the T(8,11).
- 4. (a) Give an example of linear transformation that is one one but not onto.
 - (b) Give an example of linear transformation that is onto but not one-one.
- 5. Let $T: P_3(\mathbb{R}) \to P_2(\mathbb{R})$ be the linear transformation defined by T(f(x)) = f'(x). Let β and γ be the standard ordered bases for $P_3(\mathbb{R})$ and $P_2(\mathbb{R})$, respectively. Then find $[T]_{\beta}^{\gamma}$.
- 6. Let V and W be vector space over the field \mathbb{F} and $T, U : V \to W$ be two linear transformations. Then prove that:
 - (a) T + U is a linear transformation.
 - (b) αT is a linear transformation for any $\alpha \in \mathbb{F}$.
- 7. Using the operations of addition and scalar multiplication of linear transformations in the previous problem, show that the collection of all linear transformations $\mathcal{L}(V, W)$ from the vector space V to W is a vector space over \mathbb{F} .
- 8. Show that $\{T \in \mathcal{L}(\mathbb{R}^5, \mathbb{R}^4) : \text{dim null } T > 2\}$ is not a subspace of $\mathcal{L}(\mathbb{R}^5, \mathbb{R}^4)$.
- 9. Let V, W and Z be vector spaces over the same field \mathbb{F} , and let $T:V\to W$ and $U:W\to Z$ be linear. Then $U\circ T:V\to Z$ is linear.
- 10. Let T be a linear operator on \mathbb{R}^3 , defined by T(x,y,z)=(2y+z,x-4z,3x-6z).
 - (a) Find $[T]_B^B$, where $B = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}.$
 - (b) Verify that $[T]_B^B[v]_B = [T(v)]_B$ for any $v \in \mathbb{R}^3$.
- 11. Suppose V and W are finite-dimensional vector spaces over the field \mathbb{F} and $T \in \mathcal{L}(V, W)$. Prove that dim range T = 1 if and only if there exist a basis β of V and a basis γ of W such that with respect to these bases, all entries of $[T]^{\gamma}_{\beta}$ equal to 1.
- 12. Suppose V is a finite-dimensional vector space, U is a subspace of V, and $S \in \mathcal{L}(U, V)$. Prove that there exists an invertible linear map T from V to itself such that Tu = Su for every $u \in U$ if and only if S is injective.
- 13. Suppose V is finite-dimensional and $S, T, U \in \mathcal{L}(V, V)$ and STU = I. Show that T is invertible and that $T^{-1} = US$.
- 14. For the following linear transformations T, determine whether T is invertible and justify your answer: (i) $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (3x - 2z, y, 3x + 4y).
 - (ii) $T: M_{2\times 2}(\mathbb{R}) \to P_2(\mathbb{R})$ defined by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + 2bx + (c+d)x^2$.

****** END ******