1. (**1p**) Care din următoarele variante este o sortare topologică pentru următorul graf? Justificați.

- a) 2, 1, 4, 5, 3, 7, 6
- b) 4, 5, 2, 1, 3, 7, 6
- c) 2, 4, 5, 1, 3, 7, 6
- d) 1, 2, 3, 5, 6, 7, 4
- 2. (**1p**) Care dintre următoarele afirmații sunt adevărate? Justificați (complexitatea algoritmilor studiați se presupune cunoscută, nu trebuie demonstrată în justificare)
 - a) Putem testa în timp O(n+m) dacă un graf neorientat cu n vârfuri și m muchii este bipartit.
 - b) Un graf neorientat conex care conține cel puțin un ciclu are minim 3 arbori parțiali diferiți
 - c) Pentru un graf neorientat ponderat care nu are circuite negative (dar poate avea muchii cu cost negativ) putem calcula distanțele între oricare două vârfuri în $O(n^3)$.
 - d) Pentru a testa dacă un graf este eulerian este suficient să testăm dacă toate vârfurile au grad par.
- **3.** (**1p**) a) Fie G un graf cu gradul maxim al unui vârf 7. Care este numărul maxim de culori folosite de algoritmul Greedy de colorare a vârfurilor lui G prezentat la curs, dacă vârfurile sunt considerate în ordine descrescătoare după grad (Largest First)? Justificați.
- b) Exemplificați (cu explicații) algoritmul Greedy de colorare cu vârfurile considerate în ordine descrescătoare după grad (Largest First) pentru graful din figura alăturată.

4. (1,5p) Definiți noțiunile de flux, tăietură minimă și lanț nesaturat/drum de creștere. Ilustrați pașii algoritmului Ford-Fulkerson pentru rețeaua din figura următoare (unde pe un arc e sunt trecute valorile f(e)/c(e) reprezentând flux/capacitate), pornind de la fluxul indicat și alegând la fiecare pas un s-t lanț f-nesaturat de lungime minimă (algoritmul Edmonds-Karp). Indicați o tăietură (s-t tăietură) minimă în rețeaua (se vor indica vârfurile din bipartiție, arcele directe, arcele inverse). Mai există și o altă s-t tăietură minimă în această rețea? Justificați răspunsurile

5. (**2p**) Fie G = (V, E, w) un graf orientat ponderat, cu ponderi numere întregi și s un vârf în G. Consideram algoritmul lui Bellman Ford descris în următorul pseudocod:

```
pentru fiecare uEV executa
    d[u] = infinit; tata[u]=0
d[s] = 0
pentru i = 1, |V|-1 executa
    pentru fiecare uv E E executa
        daca d[u]+w(u,v)<d[v] atunci
        d[v] = d[u]+w(u,v)
        tata[v] = u</pre>
```

Considerăm graful următor.

La finalul execuției pseudocodului de mai sus pentru acest graf, s=1 și arcele considerate in ordinea (1,2), (3,2) (2,3), (2,4) vectorul d are elementele 0, -2, -1, 0 iar vectorul tata este 0, 3, 2, 2

Adăugați în pseudocod instrucțiunile necesare pentru ca algoritmul să testeze existența unui circuit cu cost negativ în graf accesibil din s (=pentru care există un drum de la s la un vârf al său) și, în caz afirmativ, să afișeze unul, și ilustrați-le pe graful dat ca exemplu (cu explicații).

6. (**1p**) Este corect următorul algoritm de determinare a unui arbore parțial de cost minim al unui graf conex ponderat G = (V, E, w)? Justificați (fără a apela în justificare la modul de funcționare al altor algoritmi; rezultatele folosite trebuie demonstrate și trebuie explicat modul în care se folosesc)

T=G

Cat timp T contine cicluri

- 1. Alege C un ciclu elementar de cost minim în T
- 2. Alege e o muchie de cost maxim in C
- 3. T = T-e (elimina e din T)
- 7. (1,5p).a) Indicați fețele hărții următoare și gradul fiecărei fețe.

b) Fie M = (V, E, F) o hartă conexă bipartită cu $n = |V| \ge 4$.

Arătați că $m = |E| \le 2n - 4$, $|F| \le n - 2$.

c) Pentru orice n≥ 4 arătați că există o hartă conexă bipartită cu n vârfuri și 2n - 4 muchii.