

TOPIC 1. DNA-seq: techniques

Sanger sequencing. 2nd and 3rd generation sequencing techniques: 454, Illumina, SOLiD, IonTorrent, Oxford-Nanopore, PacBio.

Omics Techniques Bachelor's Degree in Bioinformatics Sònia Casillas, UAB

Name different sequencing platforms

Sanger sequencing method

1. DNA amplification

Sanger sequencing method

2. Sequencing reaction

3. Capillary electrophoresis

(1 read/capillary)

Size fragment + Fluorescence detection polyacrilamide gen

RESULT OF SANGER SEQUENCING

- Long reads (500-1000 bp)
- Low throughput (96 reactions/run)

Figure 1. Shendure and Ji (2008) Nature Biotechnology 26: 1135-1145.

PMC22-T46 AAAGC

Trace data

Large sequencing facilities

The quest for the \$1,000 genome

Falling fast

In the first few years after the end of the Human Genome Project, the cost of genome sequencing roughly followed Moore's law, which predicts exponential declines in computing costs. After 2007, sequencing costs dropped precipitously.

Next generation sequencing (NGS) methods

Next generation sequencing instruments can generate as much data in one day as several hundred Sanger DNA capillary sequencers!

Common characteristics of NGS methods

- 1. Cell-free preparation of sequencing library
- 2. Solid-phase amplification
- Massively parallel sequencing reaction of each DNA fragment independently
- Direct sequencing without need of electrophoresis

MASSIVELY
PARALLEL
SEQUENCING

454/Roche – Pirosequencing

 DNA fragmentation and adapter ligation

Figures 1 and 2. Shendure and Ji (2008) Nature Biotechnology 26: 1135-1145.

454/Roche – Pirosequencing

3. Distribution in individual wells

4. Pirosequencing

Figure 3. Metzker (2010) Nature Reviews Genetics 11: 31-46.

Figure 1. England and Pettersson (2005) Nature Methods 2: Application Note

Illumina – Reversible terminators

 DNA fragmentation and adapter ligation

Solid-phase amplification and cluster generation by bridge PCR

Illumina – Reversible terminators

Figure 2. Metzker (2010) Nature Reviews Genetics 11: 31-46.

QUIZ

GGATGAGGGCACC

Ion Torrent – Proton detection

- Emulsion PCR within water-in-oil microdroplets
- Real-time sequencing by using a semiconductor plate to count proton release during DNA synthesis

Ion Torrent – Proton detection

- Normal nucleotides (not labelled) flow sequentially through the chip.
- The incorporation of one nucleotide released one proton (pH change). This is detected by the semi-conductor plate, which converts the chemical information into digital information.
- No optical machines are needed (no scanning, fluorescence, laser excitation, ...)

Comparison of different sequencing methods

Table 1. Comparison of high-throughput sequencing technologies available

2	Throughput	Length	Quality	Costs	Applications	Main sources of errors
Sanger	6 Mb/day	800 nt	10 ⁻⁴ -10 ⁻⁵	~500 \$ /Mb	Small sample sizes, genomes/ scaffolds, InDels/SNPs, long haplotypes, low complexity regions, etc.	Polymerase/amplification, low intensities/missing ter- mination variants, contami- nant sequences
454/Roche	750 Mb/day	400 nt	10 ⁻³ –10 ⁻⁴	~20\$/Mb	Complex genomes, SNPs, structural variation, indexed samples, small RNA+, mRNAs+, etc.	Amplification, mixed beads, intensity thresholding, homopolymers, phasing, neighbor interference
Illumina	5,000 Mb/day	100 nt	10 ⁻² –10 ⁻³	~0.50\$/Mb	Complex genomes, counting (SAGE, CNV ChIP, small RNA), mRNAs, InDels/homopolymers, structural variation, bisulfite data, indexing, SNPs ⁺ , etc.	Amplification, mixed clusters/neighbor interference, phasing, base labeling
SOLID	5,000 Mb/day	50 nt	10 ⁻² –10 ⁻³	~0.50\$/Mb	Complex small genomes, counting (SAGE, ChIP, small RNA, CNV), SNPs, mRNAs, structural variation, indexing, etc.	Amplification, mixed beads, phasing, signal decline, neighbor interference
Helicos	5,000 Mb/day	32 nt	10 ⁻²	<0.50\$/Mb	Non-amplifiable samples, counting (SAGE, ChIP, small RNA), etc.	Polymerase, low intensities/thresholding, molecule loss/termination

Figure 1. Kircher and Kelso (2010) Bioessays 32: 524-536.

Challenges of NGS methods

- Increase read length
- Improve sequence accuracy
- Single-molecule sequencing (no amplification)
- De-novo assembly of complex genomes
- Sequencing of complex regions

PACIFIC BIOSCIENCES Pacific Biosciences – Real-time sequencing

- **Real-time** monitoring of **single-molecule** sequencing as it occurs with an immobilized DNA polymerase (Single Molecule Real Time -SMRTtechnology)
- Read length avg. ~10-15 kb, up to ~50 kb, but error rate is ~15%

Oxford Nanopore technology

Base identification through differences in conductance of nucleic acid molecules driven through a nanopore

- Single-molecule sequencing (no amplification needed)
 - Very long read lengths
 - High throughput
 - Electrical base detection (no optics)

MinION Mobile Sequencing

Comparison of different NGS platforms

