

Résumé du cours précédent

- Couche Liaison 2eme partie
- Réseaux à diffusion

E.Lochin

ISAE-SUPAERO

- On sait comment transmettre un message de façon fiable entre deux machines physiquement reliées par un cable
- Que se passe-t-il si le médium est partagé?

Réseaux à diffusion

Exemple 1 Réseau sans fil

- Plusieurs machines se partagent un même canal de communication
- Réseau à medium partagé
- Canaux à accès multiple

Exemple 1

Réseau sans fil

Exemple 2
Réseau local (LAN)

- Chaque station fait office d'emetteur et de récepteur
- Chacune a une portée radio
- Si deux machines émettent en même temps, interférences

A émet vers B. C,hors de portée de A, croit qu'il peut émettre vers B

Exemple 2

Réseau local (LAN)

Fonctions MAC

- Machines reliées par des hub
- Un hub se contente de transmettre un message reçu sur un port vers chacun des autres ports (souvent en l'amplifiant)
- Si une machine envoie un message, toutes les autres le reçoivent
- Le hub fonctionne au niveau de la couche 1 (physique)
- Si le hub reçoit deux messages en même temps, il y a collision
- Adressage des machines
- Gestion du temps de parole (ex : Assemblée Nationale)

- La couche liaison est divisée en deux sous-couches
 - Sous-couche d'accès au canal (Medium Access Control), dépendante de la couche physique
 - Sous-couche indépendante de la couche physique (Logical Link Control)
- Chaque interface d'une machine dispose d'une adresse différente, codée en dur (i.e. obtenue par la compagnie auprès de l'IEEE)
- Adresse LAN ou encore Adresse MAC

Contenu Modèle formel

- Protocoles
- La pratique
- Connecter des réseaux

- N machines qui veulent communiquer . . .
- ... par un unique medium
- Si deux trames sont transmises simultanément, il y a collision
- Chaque équipement peut détecter une collision
- Optionnel : On peut écouter le canal pour savoir si quelque chose est en train d'être émis

Contenu Protocole multi-canaux

- Protocoles
 - Multiplexage
 - Sans écoute de porteuse
 - Avec écoute de la porteuse
- 2 La pratique
 - Ethernet
 - Réseau sans fil
- Connecter des réseaux

- - ullet Assimiler le canal à N canaux (un par machine)
 - Solution en couche physique

Plusieurs méthodes

- Diviser le temps en N parties (TDMA)
- N fréquences différentes pour chacune des machines (FDMA)
- N codes différents pour chacune des machines (CDMA)

Contenu Protocoles aléatoire : ALOHA

- Protocoles
 - Multiplexage
 - Sans écoute de porteuse
 - Avec écoute de la porteuse
- 2 La pratique
 - Ethernet
 - Réseau sans fil
- Connecter des réseaux

- Chaque machine émet quand elle veut
- Si elle repère une collision, elle attend un temps aléatoire puis réémet

Utilisation du canal:

- Si une seule machine communique: 100%
- Si toutes communiquent : 18% (quelque soit le nombre de machines)

- Le temps est divisé en slot
- Chaque machine émet au début d'un slot
- Si elle repère une collision, elle attend un temps aléatoire puis réémet

Utilisation du canal:

- Si une seule machine communique : 100%
- Si toutes communiquent: 37%

- Protocoles
 - Multiplexage
 - Sans écoute de porteuse
 - Avec écoute de la porteuse
- La pratique
 - Ethernet
 - Réseau sans fil
- Connecter des réseaux

Sondage Token Ring

Système centralisé

- Un noeud arbitre A
- A dit successivement aux autres noeuds quand ils peuvent parler et pour combien de messages
- A utilise la porteuse pour savoir quand il autorise le noeud suivant à parler

Utilisé par IBM. Décentralisé

- Topologie en anneau reliant des machines
- Une seule machine, qui possède un jeton peut parler
- Chaque machine relaie le message à la machine suivante
- La machine avec le jeton se charge de jeter elle-même le message qu'elle a envoyé

Priorités pour décider qui peut parler

Architecture en anneau n'est plus utilisée sur Ethernet mais toujours pour FDDI

Ecoute de la porteuse	Ecoute de la porteuse			
	Α	В	С	D

- Si on détecte un message, on ne fait rien
- Sinon, on émet

Problème?

Ecoute de la porteuse

- space

Avec détection des collisions

CSMA/CD

Carrier-Sense Multiple Access / Collision Detection

- On teste si le canal est vide
- On envoie la trame
- Si on détecte une collision, on arrête d'envoyer et on envoie un signal de collision
- On attend avant de la renvoyer

Attente exponentielle : Lors du n-ème réenvoie de la trame, on attend un temps compris entre 0 et 2ⁿ (limité à 1024)

Contenu Contenu Protocoles Avec écoute de la porteuse La pratique La pratique Ethernet Connecter des réseaux

Ethernet Adresse

ifconfig eth0

Trame IEEE 802.3

Link encap:Ethernet HWaddr 00:11:D8:8D:51:F9 eth0 [snip] UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 TX packets:94686301 errors:0 dropped:0 overruns:0 frame:0
TX packets:82880491 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:400469386 (381.9 MiB) TX bytes:3207666956 (2.9 GiB) Interrupt:4

- Adresse sur 2⁴⁸ bits
- Dans l'exemple 00:11:D8:8D:51:F9
- Mais seulement 2⁴⁶ adresses potentielles
 - Un bit pour adresses globales/locales
 - Autre bit pour le multicast

Certaines adresses ont des significations précises :

• FF:FF:FF:FF:FF Broadcast (destiné à toutes les machines)

Flag	Destination	Source	Type	Données	CRC

6 • Une trame Ethernet transporte au maximum 1500 octets (Maximum Transfer Unit (MTU))

2

46-1500

Au minimum 46 caractères

6

8

Taille max de 1518 (sans compter le Flag)

- CSMA/CD
- Unité : le bit time (bt) : temps pour envoyer un bit
- 100 Mb/s \Rightarrow 1 bt = 10 ns

Protocole d'accès au canal

- Attente minimum de 96 bt avant d'envoyer une trame, et de 512 bt avant de la réenvoyer
- Mesure de la tension dans le cable pour repérer trames et collisions

- Protocoles
 - Multipleyage
 - Sans écoute de porteuse
 - Avec écoute de la porteuse
- 2 La pratique
 - Etherr
 - Réseau sans fil
- Connecter des réseaux

- CSMA/CA (Collision Avoidance)
- Difficulté d'émettre et recevoir en même temps
- Pas moyen de détecter les collisions, ni si le message est arrivé
- ACK du destinataire

802.11

- On prévient qu'on va transmettre, et pendant combien de temps
- Trame fragmentée pour ajouter des CRC
- Deux modes : AdHoc et BSS

Contenu

- Protocoles
- La pratique
- Connecter des réseaux

- Machines reliées par des hub
- Un hub se contente de transmettre un message reçu sur un port vers chacun des autres ports (souvent en l'amplifiant)
- Si une machine envoie un message, toutes les autres le reçoivent
- Le hub fonctionne au niveau de la couche 1 (physique)
- Si le hub reçoit deux messages en même temps, il y a collision

Commutateurs/Ponts Switch, Bridge Commutateurs/Ponts Table

- Le switch fonctionne au niveau de la couche 2 (liaison)
- Lorsqu'il reçoit un paquet, le switch ne l'envoie que là où se trouve la machine destinataire
- Le switch possède une table disant, pour chaque adresse MAC, sur quel port rediriger le paquet
- Le switch utilise CSMA/CD pour envoyer les paquets
- Attention, un switch n'a pas d'adresse MAC

brtcl showmacs br

port	no mac addr	ageing timer
1	00:c0:ff:ee:00:00	16.64
1	0a:ba:d0:ba:be:00	0.51
2	ca:fe:d0:0d:00:00	0.42
3	00:00:de:ad:be:ef	13.37

Commutateurs/Ponts

Table

Lab: Hub vs Commutateur

- Table vide au début
- Quand on reçoit un paquet d'une adresse MAC inconnue, on l'ajoute dans la table
- Quand on reçoit un paquet vers une adresse MAC inconnue, on l'envoie sur tous les ports
- Quand on reçoit un paquet vers l'adresse MAC située sur le port i depuis le port i, on le supprime

Voir sur LMS pour ce lab avec CORE

Remerciements

Ce cours trouve sa source dans beaucoup d'autres et notamment les slides d'Emmanuel Jeandel, de Jim Kurose et Keith Ross, ... et j'en oublie certainement. Merci à eux.