### SUMMER PROGRAMME 2021

## Solutions to exercises from Walter Rudin's $Principles\ of\ Mathematical\ Analysis$

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

## Chapter 1

# The Real and Complex Number Systems

**Exercise 1.** If r is rational  $(r \neq 0)$  and x is irrational, prove that r + x and rx are irrational. Solution. Use the fact that the field of rationals is closed under additiona and multiplication, as well as the existence of the additive inverse -r and the multiplicative inverse 1/r. If r + x and rx were rational, then both

$$(-r) + r + x = x,$$
  $(1/r)rx = x$ 

must also be rational. These are contradictions.

**Exercise 2.** Prove that there is no rational number whose square is 12.

Solution. Suppose that  $x \in \mathbb{Q}$ ,  $x^2 = 12$ , and x = p/q where  $q \neq 0$  and p and q are coprime integers. This would imply that

$$p^2 = 12q^2 = 3(2q)^2,$$

so 3 divides  $p^2$ , hence 3 divides p. Write p = 3m for some integer m, giving

$$3(2q)^2 = p^2 = (3m)^2 = 9m^2,$$
  $(2q)^2 = 3m^2.$ 

This means that 3 divides  $(2q)^2$ , hence 3 divides 2q, hence 3 divides q. This contradicts the fact that p and q are coprime, which means that there is no rational number whose square is 12.

**Exercise 3.** Prove that the axioms of multiplication in a field imply the following statements.

- (a) If  $x \neq 0$  and xy = xz, then y = z.
- (b) If  $x \neq 0$  and xy = x, then y = 1.
- (c) If  $x \neq 0$  and xy = 1, then y = 1/x.
- (d) If  $x \neq 0$  then 1/(1/x) = x.

Solution. The axioms of multiplication guarantee the existence of an element 1/x such that x(1/x) = 1. Left multiply on both sides of xy = xz, use associativity and 1w = w for all w in the field to get

$$(1/x)xy = (1/x)xz, \qquad y = z.$$

This proves (a). Setting z = 1 proves (b), and setting z = 1/x proves (c). Using x(1/x) = 1, replace x with 1/x in (c) to give

$$(1/x)(1/(1/x)) = 1,$$

then left multiply with x yielding

$$x(1/x)(1/(1/x)) = x,$$
  $1/(1/x) = x.$ 

**Exercise 4.** Let E be a non-empty subset of an ordered set; suppose that  $\alpha$  is a lower bound of E and  $\beta$  is an upper bound of E. Prove that  $\alpha \leq \beta$ .

Solution. By definition,  $\alpha \leq x$  for all  $x \in E$  and  $x \leq \beta$  for all  $\in E$ . Since E is non-empty, simply select some  $x \in E$ , whence  $\alpha \leq x \leq \beta$ . Thus, we either have  $\alpha = x = \beta$ ,  $\alpha = x < \beta$ ,  $\alpha < x = \beta$ , or  $\alpha < x < \beta$ . In the last case, transitivity gives  $\alpha < \beta$ . Hence,  $\alpha \leq \beta$ .

**Exercise 5.** Let A be a non-empty subset of the real numbers which is bounded below. Let -A be the set of all numbers -x, where  $x \in A$ . Prove that

$$\inf A = -\sup(-A).$$

Solution. Fix  $\alpha = -\sup(-A)$ . We claim that  $\alpha = \inf A$ , i.e.  $\beta \le \alpha \le x$  for all lower bounds  $\beta$  of A and for all  $x \in A$ .

First, note that  $-\alpha = \sup(-A)$ , which means that  $-\alpha \ge x$  for all  $x \in -A$ , whence  $\alpha \le -x$  for all  $-x \in A$ . However, for each  $x \in A$ , we have  $-x \in -A$  so  $\alpha \le x$  for all  $x \in A$ .

Now, let  $\beta$  be a lower bound of A. This means that  $\beta \leq x$  for all  $x \in A$ , so  $-\beta \geq -x$  for all  $x \in A$ . Again,  $-x \in -A$  for all  $x \in A$ , so  $-\beta \geq x$  for all  $x \in -A$ . This means that  $\beta$  is an upper bound of -A, which means  $-\beta \geq \sup(-A) = -\alpha$ . Thus,  $\beta \leq \alpha$ .

This proves that  $\inf A = -\sup(-A)$ .

### Exercise 6. Fix b > 1.

(a) If m, n, p, q are integers, n > 0, q > 0, and r = m/n = p/q, prove that

$$(b^m)^{1/n} = (b^p)^{1/q}.$$

Hence it makes sense to define  $b^r = (b^m)^{1/n}$ .

- (b) Prove that  $b^{r+s} = b^r b^s$  if r and s are rational.
- (c) If x is real, define B(x) to be the set of all numbers  $b^t$ , where t is rational and  $t \leq x$ . Prove that

$$b^r = \sup B(r)$$
.

Hence is makes sense to define  $b^x = \sup B(x)$  for every real x.

(d) Prove that  $b^{x+y} = b^x b^y$  for all real x and y.

Solution.

(a) Write r with the common denominator s = nq, so r = mq/s = pn/s. Now, note that

$$((b^m)^{1/n})^s = (b^m)^q = b^{mq}, \qquad ((b^p)^{1/q})^s = (b^p)^n = b^{np},$$

but mq = np = rs. Setting  $b^{rs} = x$ , use Theorem 1.21 to conclude that there is a unique y such that  $y^s = x = b^{rs}$ . However, we have just verified two such y, hence

$$(b^m)^{1/n} = (b^p)^{1/q}.$$

(b) Set r = m/n, s = p/q with n > 0, q > 0. Then,

$$b^{r+s} = b^{(mq+np)/nq} = (b^{mq+np})^{1/nq} = (b^{mq}b^{np})^{1/nq}$$

The corollary of Theorem 1.21 lets us distribute the integer root over the product, giving

$$b^{r+s} = b^{mq/nq}b^{np/nq} = b^{m/n}b^{p/q} = b^rb^s$$

(c) First, we show that  $b^n - 1 \ge n(b-1)$  for all positive integers n. This is trivially true for n = 1. For n > 1, write b = 1 + a where a > 0. Hence the Binomial Theorem gives

$$b^n = (1+a)^n = 1 + na + \frac{1}{2}n(n-1)a^2 + \dots + a^n > 1 + na,$$

hence

$$b^n - 1 > na = n(b - 1).$$

Note that this inequality becomes strict for n > 1. Replacing b with  $b^{1/n} > 1$ , we have  $b - 1 > n(b^{1/n} - 1)$  for all positive integers n.

Now, given some t > 1, we can choose a positive integer n > (b-1)/(t-1), which implies  $n(t-1) > b-1 > n(b^{1/n}-1)$ , hence  $t > b^{1/n}$ .

Now, note that for all  $x \in B(r)$ ,  $x = b^t$  for some rational t. First, note that for all rational  $t \le r$ , we have  $b^t \le b^r$ . This is because if we write t and r with a common positive integer denominator, t = m/q, t = n/q, then t = n/q and t = n/q are t = n/q. Thus, t = n/q is an upper bound for t = n/q.

Next, we show that  $b^r$  is the least upper bound to B(r). Suppose that  $\alpha = \sup B(r)$ , and  $b^t \leq \alpha < b^r$  for all  $t \leq r$ . Using the previously proven inequality, find a large enough integer n such that  $b^{1/n} < b^r/\alpha$ . Thus,  $\alpha < b^{r-1/n}$ , and r - 1/n < r so  $b^{r-1/n} \in B(r)$ , which contradicts the fact that  $\alpha$  is the supremum of B(r). Hence,  $b^r$  is the least upper bound of B(r), so

$$b^r = \sup B(r)$$
.

(d) We have been given

$$b^x = \sup B(x),$$
  $b^y = \sup B^y,$   $b^{x+y} = \sup B(x+y)$ 

by definition for real x and y. Choose some rational  $t \leq x + y$ , so  $b^t \in B(x + y)$ . By choosing a rational r such that t - y < r < x and setting s = t - r, we have t = r + s and r < x, s < y. Thus,  $b^r \in B(x)$  and  $b^s \in B(y)$ , so every element  $b^t \in B(x + y)$  can be written as  $b^{r+s} = b^r b^s$ , which is the product of an element each from B(x) and B(y). Conversely, given elements  $b^r \in B(x)$  and  $b^s \in B(y)$ , we have  $r \leq x$  and  $s \leq y$  so  $t = r + s \leq x + y$ , hence  $b^{r+s} = b^t \in B(x + y)$ . Thus, we have

$$B(x + y) = \{wz : w \in B(x), z \in B(y)\}.$$

Thus, for any element  $wz \in B(x+y)$ ,  $w \in B(x)$ ,  $z \in B(y)$ , we have  $w \le \sup B(x) = b^x$  and  $z \le \sup B(y) = b^y$ , so  $wz \le b^x b^y$ . This means that  $b^x b^y$  is an upper bound of B(x+y).

Now suppose that  $\alpha = \sup B(x+y)$  such that  $wz \leq \alpha < b^x b^y$  for all  $wz \in B(x+y)$ , where  $w \in B(x)$  and  $z \in B(y)$ . Then,  $\alpha/b^x < b^y$ , so choose  $\beta$  such that  $\alpha/b^x < \beta < b^y$ . In other words,  $\alpha/\beta < b^x$  and  $\beta < b^y$ , so we can choose rational r < x, s < y such that  $\alpha/\beta \leq b^r \in B(x)$  and  $\beta \leq b^s \in B(y)$ . Note that  $r \neq x$  and  $s \neq y$ . Thus, the product  $(\alpha/\beta)\beta = \alpha \leq b^r b^s \in B(x+y)$ . However, recall that we chose  $\alpha$  such that  $b^r b^s \leq \alpha$  for all  $b^r \in B(x)$ ,  $b^s \in B(y)$ , so we must have  $\alpha = b^r b^s$  for our choice of r and s. Now, we can choose rational r' and s' such that r < r' < x and s < s' < y, hence  $b^r < b^{r'} \in B(x)$  and  $b^s < b^{s'} \in B(y)$ . This gives  $\alpha = b^r b^s < b^{r'} b^{s'} \in B(x+y)$ , which contradicts the fact that  $\alpha$  is an upper bound. Thus,  $b^x b^y$  must be the least upper bound of B(x+y), so

$$b^{x+y} = b^x b^y.$$

**Exercise 7.** Fix b > 1, y > 0, and show the following.

- (a) For any positive integer  $n, b^n 1 \ge n(b-1)$ .
- (b) Hence,  $b 1 \ge n(b^{1/n} 1)$ .
- (c) If t > 1 and n > (b-1)/(t-1), then  $b^{1/n} < t$ .
- (d) If w is such that  $b^w < y$ , then  $b^{w+1/n} < y$  for sufficiently large n.
- (e) If  $b^w > y$ , then  $b^{w-1/n} > y$  for sufficiently large n.
- (f) Let A be the set of all w such that  $b^w < y$ , and show that  $x = \sup A$  satisfies  $b^x = y$ .
- (g) Prove that this x is unique.

Solution.

- (a) See Exercise 1 (c).
- (b) See Exercise 1 (c).
- (c) See Exercise 1 (c).
- (d) Set  $t = yb^{-w} > 1$ , and using the previous inequality, choose sufficiently large n such that  $b^{1/n} < t = yb^{-w}$ . Thus,

$$b^{w+1/n} < y.$$

(e) Set  $t = (1/y)b^w > 1$ , and using the inequality in (c), choose sufficiently large n such that  $b^{1/n} < t = (1/y)b^w$ . Thus,

$$y < b^{w-1/n}.$$

(f) Exactly one of the following must be true;  $b^x < y$ ,  $b^x = y$ ,  $b^x > y$ . If  $b^x < y$ , then  $x \in A$  by definition. Using (d), we can find sufficiently large n such that

$$b^{x+1/n} < y,$$

hence  $x < x + 1/n \in A$ , contradicting the fact that x is an upper bound of A. If  $b^x > y$ , then using (e), we can find sufficiently large n such that

$$y < b^{x-1/n}$$
,

which means that x - 1/n is also an upper bound of A, contradicting the fact that x is the lowest upper bound of A. This leaves us with  $b^x = y$ .

(g) Suppose that  $x \neq x'$ , and without loss of generality x < x'. Set x' - x = h > 0, and note that  $b^{x'} = b^{x+h} = b^x b^h$ . Now, b > 1 and h > 0, so  $b^h > 1$ . Thus,  $b^{x'} > b^x$ , which means that  $b^{x'} \neq b^x$  for  $x' \neq x$ . Thus, if  $b^x = y$ , then x is unique.

Exercise 8. Prove that no order can be defined in the complex field that turns it into an ordered field.

Solution. In an ordered field, if x > 0, then we must have -x < 0, and vice versa by Proposition 1.18. The same proposition gives that if  $x \neq 0$ , then  $x^2 > 0$ . This forces  $i^2 = -1 > 0$ . Applying the same proposition again, this forces  $(-1)^2 = 1 > 0$ , which is a contradiction because we cannot have both -1 > 0 and 1 > 0.

**Exercise 9.** Suppose z = a + bi, w = c + di. Define z < w if a < c, and also if a = c but b = d. Prove that this turns the set of all complex numbers into an ordered set. Does this ordered set have the least-upper-bound property?

Solution. First, we show that for arbitrary z=a+bi and w=c+di, exactly one of the following is true: z < w, z=w, z>w. To do this, note that the real numbers are ordered, so either a < c, a=c, or a>c. In the case a < c, we have z < w and since  $a \ne c$ ,  $z \ne w$ . Also, this excludes w < z. In the case a>c, the roles of z and w are interchanged, so z>w. In the case a=c, we note that either b < d, b=d, or b>d; when b < d, z < w and when b>d, z>w. Finally, when a=c and b=d, we have z=w.

Next, we show that transitivity holds, i.e. if z < w and w < x, then z < x. Write z = a + bi, w = c + di and x = e + fi. Note that the conditions z < w and w < x imply  $a \le c$  and  $c \le e$ . This has to be further split into four cases.

Case 1 If a < c and c < e, then a < e so z < x.

Case 2 If a = c and c < e, then a < e again so z < x.

Case 3 If a < c and c = e, then a < e again so z < x.

Case 4 If a = c and c = e, then we must have had b < d and d < f, so a = e and b < f gives z < x.

No, this ordered set does not have the least upper bound property. Consider the set of complex numbers  $S = \{a+bi: 0 < a < 1, b=0\}$ . If w=c+di is to be an upper bound of S, i.e.  $z \le w$  for all  $z \in S$ , then either z=w for some  $z \in S$  or z < w for all  $z \in S$ . The former implies that w=a+0i for some 0 < a < 1, in which case we have  $w=a+0i < (a+1)/2+0i \in S$ , a contradiction. The latter implies that  $a \le c$  for all 0 < a < 1, which forces  $1 \le c$ . If w=c+di is the least upper bound of S with 1 < c, then note that (1+c)/2+di < c+di=w is smaller upper bound of S. Otherwise, if w=1+di is the least upper bound of S, then 1+(d-1)i < 1+di=w is a smaller upper bound. This means that the set S have no least upper bound.

**Exercise 10.** Suppose z = a + bi, w = u + vi, and

$$a = \left(\frac{|w| + u}{2}\right)^{1/2}, \qquad b = \left(\frac{|w| - u}{2}\right)^{1/2}.$$

Prove that  $z^2 = w$  if  $v \ge 0$  and  $(\overline{z})^2 = w$  if  $v \le 0$ . Conclude that every complex number (with one exception) has two complex square roots.

Solution. Write

$$z^{2} = (a+bi)^{2} = a^{2} - b^{2} + 2abi,$$
  $\overline{z}^{2} = (a-bi)^{2} = a^{2} - b^{2} - 2abi.$ 

Now,

$$a^{2} - b^{2} = \frac{1}{2}(|w| + u) - \frac{1}{2}(|w| - v) = u,$$

and

$$2ab = 2\left(\frac{|w|+u}{2}\right)^{1/2} \left(\frac{|w|-u}{2}\right)^{1/2}$$
$$= 2\left(\frac{(|w|+u)(|w|-u)}{4}\right)^{1/2}$$
$$= 2\left(\frac{|w|^2-u^2}{4}\right)^{1/2}$$
$$= 2\left(\left(\frac{v}{2}\right)^2\right)^{1/2}.$$

Recall that  $(x^2)^{1/2} = x$  if  $x \ge 0$  and  $(x^2)^{1/2} = -x$  if  $x \le 0$ . Thus, when  $v \ge 0$ , we have 2ab = v and when  $v \le 0$ , we have 2ab = -v. This means that  $w = u + 2abi = z^2$  when  $v \ge 0$  and  $w = u - 2abi = (\overline{z})^2$  when  $v \le 0$ .

Note that when w=0, it has only one square root, namely 0. Otherwise, every non-zero complex number w=u+iv has two square roots, either z,-z or  $\overline{z},-\overline{z}$  depending on the sign of v.

**Exercise 11.** If z is a complex number, prove that there exists an  $r \ge 0$ , a complex number w with |w| = 1 such that z = rw. Are w and r always uniquely determined by z?

Solution. Write z = a + bi, and if  $z \neq 0$  define

$$r = \sqrt{a^2 + b^2},$$
  $w = z/r = \frac{a}{\sqrt{a^2 + b^2}} + \frac{bi}{\sqrt{a^2 + b^2}}.$ 

If z = 0, simply take r = 0 and w = 1. Thus, z = rw.

When  $z \neq 0$ , this choice is unique, since z = rw forces |z| = |rw| = |r||w| = r, hence  $r = |z| = \sqrt{a^2 + b^2}$  and w = z/r. Otherwise for z = 0, we can choose any w (say  $w = \pm 1$ ) as long as r = 0.

**Exercise 12.** If  $z_1, \ldots, z_n$  are complex, prove that

$$|z_1 + z_2 + \dots + z_n| \le |z_1| + |z_2| + \dots + |z_n|.$$

Solution. We prove this by induction. The case n=1 is trivially true. For n=2, see Theorem 1.33. If this holds for some  $n \geq 1$ , then use the n=2 case on  $z_1 + \cdots + z_n$  and  $z_{n+1}$ , then the induction hypothesis to get

$$|z_1 + \dots + z_n + z_{n+1}| \le |z_1 + \dots + z_n| + |z_{n+1}| \le |z_1| + \dots + |z_n| + |z_{n+1}|.$$

This proves the desired statement by induction.

**Exercise 13.** If x and y are complex, prove that

$$||x| - |y|| < |x - y|.$$

Solution. Use the triangle inequality to write

$$|x| = |x - y + y| \le |x - y| + |y|,$$
  $|y| = |y - x + x| \le |x - y| + |x|.$ 

Thus, if |x| > |y|, then  $||x| - |y|| = |x| - |y| \le |x - y|$  by the first inequality. If |x| < |y|, then  $||x| - |y|| = |y| - |x| \le |x - y|$  by the second inequality. If |x| = |y|, then ||x| - |y|| = 0, so the inequality holds trivially.

**Exercise 14.** If z is a complex number such that |z|=1, that is, such that  $z\overline{z}=1$ , compute

$$|1+z|^2 + |1-z|^2$$
.

Solution. Write z = a + bi, so  $a^2 + b^2 = 1$ . Now,  $|1 + z|^2 = (a + 1)^2 + b^2$ , and  $|1 - z|^2 = (a - 1)^2 + b^2$ . Adding,

$$|1 + z|^2 + |1 - z|^2 = 2(a^2 + b^2 + 1) + 2a - 2a = 4.$$

Exercise 15. Under what conditions does equality hold in the Schwarz inequality? Solution. In Theorem 1.35, recall that

$$A = \sum |a_i|^2, \qquad B = \sum |b_i|^2, \quad C = \sum a_i \overline{b_i},$$

and the desired inequality was  $AB \ge C^2$  If B = 0, then all  $b_i = 0$  so equality holds. Otherwise, we concluded that with B > 0,

$$\sum |Ba_i - Cb_i|^2 = B(AB - |C|^2) \ge 0.$$

Here, equality means  $AB = |C|^2$ , so every  $|Ba_i - Cb_i| = 0$ , hence  $a_i = (C/B)b_i$  for all i.

**Exercise 16.** Suppose  $k \geq 3$ ,  $x, y \in \mathbb{R}^k$ , |x - y| = d > 0 and r > 0. Prove the following.

(a) If 2r > d, then there are infinitely many  $z \in \mathbb{R}^k$  such that

$$|\boldsymbol{z} - \boldsymbol{x}| = |\boldsymbol{z} - \boldsymbol{y}| = r.$$

- (b) If 2r = d, there is exactly one such z.
- (c) If 2r < d, there is no such z.

Solution. Note that by translating all the variables x' = x - y, y' = 0, our system of equations looks identical, with |x' - y'| = d and the solutions are related by z' = z - y. Thus, we may instead consider the system |x| = d,

$$|z - x| = |z| = r.$$

Consider an arbitrary solution z and write  $v = z - \frac{1}{2}x$ . Now,

$$|z|^2 = (\frac{1}{2}x + v) \cdot (\frac{1}{2}x + v) = \frac{1}{4}|x|^2 + |v|^2 + x \cdot v.$$

Also,

$$|z - x|^2 = (-\frac{1}{2}x + v) \cdot (-\frac{1}{2}x + v) = \frac{1}{4}|x|^2 + |v|^2 - x \cdot v.$$

Adding the above equations gives

$$|z|^2 + |z - x|^2 = \frac{1}{2}|x|^2 + 2|v|^2, \qquad |v|^2 = r^2 - \frac{d^2}{4}.$$

Subtracting the two equations gives  $\mathbf{v} \cdot \mathbf{x} = 0$ .

These conditions on v are necessary and sufficient to generate solutions  $z = \frac{1}{2}x + v$ .

(a) Pick a unit vector  $\hat{\boldsymbol{v}}$  perpendicular to  $\boldsymbol{x}$ , i.e.  $\hat{\boldsymbol{v}} \cdot \boldsymbol{x} = 0$ . Note that the components satisfy

$$v_1x_1 + \dots + v_kx_k = 0.$$

Since d > 0, we have  $x \neq 0$ , so without loss of generality let  $x_1 \neq 0$ . Then we have

$$v_1 = -\frac{1}{x_1}(v_2x_2 + \dots + v_kx_k).$$

Therefore, we may choose the components  $v_2, \ldots, v_k$  arbitrarily. For example, fix  $v_2 = 1$ , vary  $v_3 = 0, 1, 2, \ldots$  and vary the remaining components arbitrarily, then normalize. All of the generated unit vectors are distinct, because the ratio of components  $v_2$  and  $v_3$  is different in each case. Thus, we have generated infinitely many unit vectors  $\hat{\boldsymbol{v}}$  this way.

Now define the real number  $v \ge 0$ ,  $v^2 = r^2 - d^2/4$ . Then, all the vectors  $\mathbf{z} = \frac{1}{2}\mathbf{x} + \mathbf{v}$  are solutions, where  $\mathbf{v} = v\hat{\mathbf{v}}$ .

(b) We have  $|\mathbf{x}| = d = 2r$ , which means

$$|\mathbf{v}|^2 = r^2 - \frac{1}{4}(2r)^2 = 0,$$

forcing |v| = 0, v = 0. Thus, there is only one solution, namely  $z = \frac{1}{2}x$ .

(c) When 2r < d

$$|\mathbf{v}|^2 = r^2 - \frac{d^2}{4} < 0,$$

which is impossible. Thus, there are no solutions z of this system.

Note that when k=2, we can only generate 2 unit vectors  $\hat{\boldsymbol{v}}$  such that  $\hat{\boldsymbol{v}} \cdot \boldsymbol{x} = 0$ . Note that

$$v_1x_1 + v_2x_2 = 0,$$
  $v_1 = -\frac{v_2x_2}{x_1},$   $v_1^2 = 1 - v_2^2.$ 

Thus, there are only two solutions, when 2r > d. When k = 1, it is impossible to get a non-zero real v satisfying vx = 0, yet we require  $v^2 = r^2 - d^2/4 > 0$  when 2r > d, so there are no solutions.

The remaining parts (b) and (c) remain identical for k = 1, 2.

#### Exercise 17. Prove that

$$|x + y|^2 + |x - y|^2 = 2|x|^2 + 2|y|^2$$

if  $x, y \in \mathbb{R}^k$ . Interpret this geometrically, as a statement about parallelograms.

Solution. Calculate

$$|x + y|^2 = (x + y) \cdot (x + y) = |x|^2 + |y|^2 + 2x \cdot y,$$

$$|x - y|^2 = (x - y) \cdot (x - y) = |x|^2 + |y|^2 - 2x \cdot y$$

Adding the two gives the desired equation.

If we interpret x and y to be two adjacent legs of a parallelogram, then x + y and x - y represent its diagonals. Thus, the sum of squares of the diagonals of a parallelogram is equal to twice the sum of squares of two adjacent sides.

**Exercise 18.** If  $k \geq 2$  and  $\boldsymbol{x} \in \mathbb{R}^k$ , prove that there exists  $\boldsymbol{y} \in \mathbb{R}^k$  such that  $\boldsymbol{y} \neq \boldsymbol{0}$  but  $\boldsymbol{x} \cdot \boldsymbol{y} = 0$ . Is this also true if k = 1?

Solution. If  $\mathbf{x} = \mathbf{0}$ , then any non-zero vector in  $\mathbf{y} \in \mathbb{R}^k$  satisfies  $\mathbf{x} \cdot \mathbf{y} = 0$ . Otherwise,  $\mathbf{x} = (x_1, x_2, \dots, x_k) \neq \mathbf{0}$  so without loss of generality let the component  $x_1 \neq 0$ . Set

$$\mathbf{y} = (-x_2, x_1, 0, \dots, 0) \in \mathbb{R}^k,$$

so

$$\mathbf{x} \cdot \mathbf{y} = x_1(-x_2) + x_2(x_1) + 0 + \dots + 0 = 0.$$

This is clearly not possible in  $\mathbb{R}$  unless x=0, because the product of any two non-zero real numbers is also non-zero.

**Exercise 19.** Suppose  $a, b \in \mathbb{R}^k$ . Find  $c \in \mathbb{R}^k$  such that

$$|\boldsymbol{x} - \boldsymbol{a}| = 2|\boldsymbol{x} - \boldsymbol{b}|$$

if and only if |x - c| = r.

Solution. Write x' = x - a, b' = b - a, c' = c - a, so we want to find c' such that

$$|\boldsymbol{x}'| = 2|\boldsymbol{x}' - \boldsymbol{b}'|$$

if and only if |x' - c'| = r.

Write  $x' = \frac{4}{3}b' + r$ . Then

$$|x'|^2 = \frac{16}{9}|b'|^2 + |r|^2 + \frac{8}{3}b' \cdot r,$$

and

$$|x' - b'|^2 = |\frac{1}{3}b' + r|^2 = \frac{1}{9}|b'|^2 + |r|^2 + \frac{2}{3}b' \cdot r.$$

Using  $|\mathbf{x}'|^2 = 4|\mathbf{x}' - \mathbf{b}'|^2$ , we have

$$\frac{12}{9}|\mathbf{b}'|^2 = 3|\mathbf{r}|^2, \qquad |\mathbf{r}| = \frac{2}{3}|\mathbf{b}'|.$$

Thus,  $|\mathbf{x}' - \frac{4}{3}\mathbf{b}'| = \frac{2}{3}|\mathbf{b}'|$ , which is both necessary and sufficient. This means that  $\mathbf{c}' = \frac{4}{3}\mathbf{b}'$  and  $r = \frac{2}{3}|\mathbf{b}'|$ . Translating everything back by  $\mathbf{a}$ , we have

$$c = \frac{4}{3}b - \frac{1}{3}a, \qquad r = \frac{2}{3}|b - a|.$$

**Exercise 20.** With reference to the Appendix, suppose that property (III) were omitted from the definition of a cut. Keep the same definitions of order and addition. Show that the resulting ordered set has the least-upper-bound property, that addition satisfies axioms (A1) to (A4) (with a slightly different zero-element!) but that (A5) fails.

Solution. We define a cut as any set  $\alpha \subset \mathbb{Q}$  with the following properties.

- (I)  $\alpha$  is not empty,  $\alpha \neq \mathbb{Q}$ .
- (II) If  $p \in \alpha$ ,  $q \in \mathbb{Q}$ , and q < p, then  $q \in \alpha$ .

Property (III) used to state that if  $p \in \alpha$ , then p < r for some  $r \in \alpha$ , which meant that  $\alpha$  had no maximal element. Property (II) implies that if  $p \in \alpha$  and  $q \notin \alpha$ , then p < q (take the contrapositive, and note that  $p \neq q$ ). It also implies that if  $r \notin \alpha$  and r < s, then  $s \notin \alpha$  ( $s \in \alpha$  would have forced  $r \in \alpha$ ).

Call the set of all these cuts  $\mathbb{R}'$ . Like before, the order  $\alpha < \beta$  is defined to mean  $\alpha \subset \beta$ , for  $\alpha, \beta \in \mathbb{R}'$ . Again,  $\mathbb{R}'$  has the least upper bound property.

To see this, let A be any non-empty subset of  $\mathbb{R}'$  bounded above by  $\beta \in \mathbb{R}'$ , and let  $\gamma$  be the union of all  $\alpha \in A$ . Thus,  $p \in \gamma$  if and only if  $p \in \alpha$  for some  $\alpha \in A$ . To verify that  $\gamma$  is indeed a cut, note that A is non-empty so there is at least one element  $\alpha_0 \in A$  which is non-empty, so  $\alpha_0 \subset \gamma$  with  $\gamma$  non-empty. Also,  $\gamma \subset \beta$  since  $\beta$  being an upper bound means that  $\alpha < \beta$  for all  $\alpha \in A$ , which in turn means  $\alpha \subset \beta$  for all  $\alpha \in A$ , hence  $\gamma = \bigcup_{\alpha \in A} \alpha \subset \beta$ . This verifies property (I). To verify property (II), pick  $p \in \gamma$ , and suppose that  $p \in \alpha_1$  for some  $\alpha \in A$ . If  $q \in \mathbb{Q}$  with q < p, this gives  $q \in \alpha_1$ , hence  $q \in \gamma$ . Thus,  $\gamma$  is indeed a cut, i.e.  $\gamma \in \mathbb{R}'$ .

Now, we claim that  $\gamma = \sup A$ . Clearly, for any  $\alpha \in A$ , we have  $\alpha \subset \gamma$  by definition to  $\alpha \leq \gamma$  for all  $\alpha \in A$ , meaning  $\gamma$  is an upper bound of A. Now suppose that  $\delta \in \mathbb{R}'$ , and  $\delta < \gamma$ . This means that  $\delta$  is a proper subset of  $\gamma$ , so there is some  $p \in \gamma$  such that  $\notin \delta$ . However, we must have  $p \in \alpha_1$  for some  $\alpha_1 \in A$ , so  $\alpha$  cannot be a proper subset of  $\delta$ , meaning that  $\delta$  is not an upper bound of A. Thus,  $\gamma$  is the least upper bound of A.

Like before, for  $\alpha, \beta \in \mathbb{R}'$ , define addition  $\alpha + \beta$  as the set of sums r + s with  $r \in \alpha$ ,  $s \in \beta$ . We must now verify the axioms of addition.

- (A1) We demand closure, which is easily seen because  $\alpha + \beta$  is a non-empty proper subset of  $\mathbb{Q}$ , and if  $p \in \alpha + \beta$ , then we must be able to write p = r + s for some  $r \in \alpha$ ,  $s \in \beta$ . Now if  $q \in \mathbb{Q}$  and q < p, then  $q s , so <math>q s \in \alpha$ , hence  $q = (q s) + s \in \alpha + \beta$ .
- (A2) We demand commutativity, which follows trivially.  $\alpha + \beta = \beta + \alpha$ , both being the set of r + s = s + r with  $r \in \alpha$ ,  $s \in \beta$ .
- (A3) We demand associativity, which follows again from the associativity of the rational numbers. Note that if  $\alpha, \beta, \gamma \in \mathbb{R}'$ , with  $r \in s \in \beta$ ,  $t \in \gamma$ , then r + (s + t) = (r + s) + t.
- (A4) Here, select  $0' = \{r \in \mathbb{Q} : r \leq 0\}$ . To show that for any  $\alpha \in \mathbb{R}'$ ,  $0' + \alpha = \alpha$ , note that  $0' + \alpha$  is the set of all rational numbers r + s with  $r \leq 0$  and  $s \in \alpha$ , so  $r + s \leq s \in \alpha$  hence  $0' + \alpha \subseteq \alpha$ . Now, if  $s \in \alpha$ , then  $0 + s \in 0' + \alpha$  since  $0 \in 0'$  and  $s \in \alpha$ , so  $\alpha \subseteq 0' + \alpha$ . This proves  $0' + \alpha = \alpha$ .
- (A5) We demand the existence of an additive inverse  $-\alpha$  for every  $\alpha$ , such that  $\alpha + (-\alpha) = 0'$ . This fails with the choice  $\alpha = 0^* = \{r \in \mathbb{Q} : r < 0\}$ . Note that if  $0^* + (-0^*) = 0'$ , we require  $r + s \le 0$  for all  $r \in 0^*$ ,  $s \in -0^*$ . There must also be some  $r_0 \in 0^*$ ,  $s_0 \in -0^*$  such that  $r_0 + s_0 = 0$ . Since  $r_0 \in 0^*$ ,  $r_0 < 0$ , so  $s_0 = -r_0 > 0$ . Now, note that  $-s_0/2 < 0$  so  $-s_0/2 \in 0^*$ , but the sum  $(-s_0/2) + s_0 = s_0/2 > 0$ , which is a contradiction.

In addition, note that  $0^*$  does not serve as a zero element, since  $0^* + 0' = 0'$ , not  $0^*$ . Furthermore, there is no choice of a zero element, say  $\alpha_0$ , which makes (A1-4) hold as well as (A5), since our choice of the zero element 0' is forced (we have already shown that  $0' + \alpha_0 = \alpha_0$ , not 0' if  $\alpha_0 \neq 0'$ ; the field axioms imply that the zero element once found is unique).