

HiNER: A Large Hindi Named Entity Recognition Dataset

Rudra Murthy², Pallab Bhattacharjee¹, Rahul Sharnagat³, Jyotsana Khatri¹, Diptesh Kanojia⁴, Pushpak Bhattacharyya¹

¹CFILT Lab, IIT Bombay, India.

²IBM IRL, Bangalore, India. ³Walmart Labs, USA.

⁴Surrey Institute for People-Centred AI, University of Surrey, United Kingdom.

¹bhattacharjee.pallabg@gmail.com, {jyotsanak, pb}@iitb.ac.in,

²rmurthyv@in.ibm.com, ³rdsharnagat@gmail.com, ⁴d.kanojia@surrey.ac.uk

Overview

Motivation

- Fundamental NLP task for a low-resource language scenario.
- Applications to multiple NLP tasks and domains for the Hindi language.
- Gold-standard dataset with human-annotated samples.

Contributions

- Hindi Named Entity Recognition (NER) dataset containing > 100k sentences and > 2 million tokens:
- Variant One: Annotated with (original) 11 NE-Tags.
- Variant Two: Annotated with (collapsed) set of three most-used tags, viz., PER, LOC, ORG.
- Comprehensive performance evaluation across various multi-lingual language models (LMs) with supporting qualitative evaluation.

Dataset statistics

	Ours	Wiki ANN	Fire 2014	IJCNLP 2008
Sentences	109146	7000	9622	21833
Tokens	2220856	41256	116103	541682
Person	37605	22959	2112	4235
Location	198282	20131	2268	4307
Organization	n 26509	14204	170	1272

 Table 1: HiNER in comparison to existing NER datasets.

Data Curation

Strategy

- Single Annotator tasked with annotating sentence-level text with 11 NER tags.
- PHP-MySQL based web-interface provided to the annotator.
- This interface utilizes a simple feed-forward neural network to make token-level NER predictions.
- Annotator is tasked with tagging untagged tokens and post-editing NE tags obtained from the neural model.

Tool and Pre-tagged Output

- Backend NER engine trained over FIRE 2013 data which provided quite erroneous suggestions.
- Annotation ambiguity resolved via discussions.

Resource Evaluation

Experiment Setup and Results

- Evaluation performed by fine-tuning over five pre-trained LMs which support the Hindi language.
- Hyperparameter tuning over **learning rates**: {1e-3, 3e-3, 5e-3, 1e-4, 3e-4, 5e-4, 1e-5, 3e-5, 5e-5, 1e-6, 3e-6, 5e-6} & **batch sizes**: {8,16,32}.
- We report mean F1-scores over 5 runs along with their standard deviation with the best hyperparameters.

	Indic-BERT	mBERT	MuRIL	XLM-R _{base}	XLM-R _{large}
Festival	9.52 ± 11.90	8.57 ± 17.14	0.00 ± 0.00	11.34 ± 14.53	46.73 ± 23.9
Game	50.05 ± 8.33	50.92 ± 20.52	40.88 ± 22.96	47.57 ± 10.63	59.63 ± 7.94
Language	89.22 ± 1.15	90.07 ± 1.13	90.08 ± 1.02	90.64 ± 0.56	91.42 ± 0.57
Literature	21.64 ± 26.12	53.56 ± 10.93	44.23 ± 22.17	40.54 ± 23.39	56.69 ± 6.32
Location	94.10 ± 0.56	93.92 ± 0.57	94.81 ± 0.37	94.07 ± 0.76	94.86 ± 0.40
Misc	56.14 ± 10.97	61.24 ± 10.99	62.84 ± 4.22	60.38 ± 12.19	67.86 ± 2.19
NUMEX	65.56 ± 3.25	67.21 ± 1.50	68.31 ± 1.77	66.72 ± 2.32	69.10 ± 0.95
Organization	76.68 ± 1.33	74.81 ± 3.10	78.26 ± 2.46	76.02 ± 2.73	78.76 ± 1.70
Person	83.65 ± 0.50	81.10 ± 1.70	84.60 ± 1.30	83.04 ± 0.86	85.14 ± 0.94
Religion	65.94 ± 3.20	68.55 ± 7.58	53.43 ± 26.74	67.70 ± 5.78	72.27 ± 2.68
TIMEX	80.20 ± 1.11	81.15 ± 1.24	81.17 ± 1.20	79.50 ± 0.85	80.63 ± 1.05
Micro	87.44 ± 0.62	87.11 ± 1.01	88.27 ± 0.92	87.36 ± 1.09	88.73 ± 0.60
Macro	62.97 ± 5.19	66.46 ± 5.93	63.51 ± 7.36	65.23 ± 6.04	73.01 ± 3.35
Weighted	87.25 ± 0.88	87.06 ± 1.28	88.27 ± 1.08	87.29 ± 1.23	88.78 ± 0.57

Test Set F1-Score (mean over 5 runs) of pre-trained LMs on our HiNER dataset with original tags.

	Indic-BERT	mBERT	MuRIL	XLM-R _{base}	XLM-R _{large}
Location	94.33 ± 0.63	94.44 ± 0.24	94.95 ± 0.25	95.07 ± 0.20	95.06 ± 0.33
Organization	78.29 ± 1.57	78.42 ± 1.13	79.87 ± 0.81	79.57 ± 0.62	80.53 ± 0.40
Person	84.70 ± 0.61	82.20 ± 0.98	85.66 ± 0.48	85.18 ± 0.66	85.34 ± 0.54
micro avg	91.37 ± 0.67	91.10 ± 0.34	92.09 ± 0.27	92.06 ± 0.27	92.20 ± 0.22
macro avg	85.77 ± 0.91	85.02 ± 0.66	86.83 ± 0.41	86.61 ± 0.40	86.98 ± 0.22
weighted avg	91.34 ± 0.71	91.08 ± 0.35	92.11 ± 0.29	92.11 ± 0.27	92.22 ± 0.22

Test Set F1-Score (mean over 5 runs) of pre-trained LMs on our HiNER dataset with collapsed tags.

Dataset Links and Documentation

