durée: 2h

Exercice 1 (20 points).

Pour tout entier $k \ge 2$, on considère la suite $(S_k(n))_{n\ge 2}$ définie par :

$$S_k(n) = \sum_{i=1}^n i^k$$

On note aussi, $X_1, X_2, ..., X_n$ des variables aléatoires indépendantes suivant la loi uniforme sur $\{1,, n\}$. On pose $U_k = \text{Min}(X_1, ..., X_k)$.

Dans la suite k désigne un entier fixé supérieur ou égal à 2.

- 1. Rappeler les valeurs de $S_1(n)$ et $S_2(n)$ pour tout entier $n \ge 2$.
- 2. Donner $E(X_1)$. Montrer que $V(X_1) = \frac{(n+1)(n-1)}{12}$.
- 3. Déterminer à l'aide d'une somme de Riemann, la limite de la suite $(\frac{S_k(n)}{n^{k+1}})$ lorsque n tend vers $+\infty$, en fonction de l'entier fixé k.
- 4. Soit X une variable aléatoire à valeurs dans $\{1, ..., n\}$.
 - (a) Soit $i \in \mathbb{N}^*$. Exprimer P(X = i) en fonction de $P(X \ge i)$ et $P(X \ge i+1)$.
 - (b) En déduire que :

$$E(X) = \sum_{i=1}^{n} P(X \geqslant i).$$

(c) Montrer également que l'on a :

$$E(X^{2}) = \sum_{i=1}^{n} (2i - 1)P(X \ge i)$$

- 5. (a) Soit $i \in \{1,...,n\}$. Justifier que $P(U_k \geqslant i) = (\frac{n-i+1}{n})^k$.
 - (b) Déduire des questions précédents que $E(U_k) = \frac{S_k(n)}{n^k}$.
 - (c) Donner un équivalent de $E(U_k)$ lorsque n tend vers l'infini.
- 6. Démontrer que $E(U_k^2) = \frac{2n+1}{n^k} S_k(n) \frac{2}{n^k} S_{k+1}(n)$.
- 7. En déduire que $V(U_k) \underset{n \to +\infty}{\sim} \frac{k}{(k+1)^2(k+2)} n^2$.

Exercice 2 (20 points).

Un joueur lance 100 fois de suite une pièce de monnaie donnant pile avec probabilité p, avec $p \in]0,1[$. Pour $N \in \{2,...,100\}$, on note X_N la variable aléatoire éale au nombre de fois , au cours des N premiers lancers, que deux résultats consécutifs ont été différents.

Autrement dit, X_N est égal au nombre de "changements" au cours des N premiers lancers.

Par-exemple, si les 9 premiers lancers sont les suivants :

PPFPFFFPP

Alors
$$X_2 = 0$$
, $X_3 = 1$, $X_4 = 2$, $X_5 = 3$, $X_6 = 3$, $X_7 = 3$ $X_8 = 4$, $X_9 = 4$.

1. Justifier que pour tout $N \in \{2, ..., 100\}, X_N$ est à valeurs dans $\{0..., N-1\}$.

On pose, pour tout $k \in \{1, ..., 100\}$:

 $A_k =$ "on obtient Pile au k-ième lancer".

Dans les questions 3) et 4), on se servira de ces évènements.

- 2. Les évènements A_k sont évidemment indépendants. Dire ce que cela signifie d'après le cours.
- 3. Montrer que X_2 suit la loi de Bernoulli de paramètre 2p(1-p). Quelle est son espérance?
- 4. Déterminer la loi de X_3 .
- 5. Soit $N \in \{2, ..., 100\}$. Montrer que $P(X_N = 0) = p^N + (1 p)^N$.
- 6. Pour tout $k \in \{3,...,100\}$, on définit la variable aléatoire Y_k par :

$$Y_k = X_k - X_{k-1}.$$

On pose également $Y_2 = X_2$.

- (a) Justifier sans calcul que , pour tout $k \in \{2,...100\},\, Y_k$ suit la même loi que $X_2.$
- (b) Soit $N \in \{2,...,100\}$. Exprimer X_n à l'aide des Y_k . En déduire $E(X_N)$.
- 7. (a) Soit $k \in \{3, ...99\}$. Calculer $P((Y_k = 1) \cap (Y_{k+1} = 1))$. En déduire que , si $p \neq \frac{1}{2}$, alors Y_k et Y_{k+1} ne sont pas indépendantes.
 - (b) On admet que si $p=\frac{1}{2}$, alors toutes les variables Y_k sont indépendantes. Soit $N \in \{2,...,100\}$. Déterminer sans calculs la loi de X_N .