

More about CNN's, ResNet's, and Transfer Learning

Advanced Track Workshop #4

Anonymous Feedback: <u>tinyurl.com/w21atrack4</u>

GitHub:

github.com/uclaacmai/advanced-track-winter21

Attendance Code: snowboard

Today's Contents

- Advanced ConvNet Architectures
 - Inception, ResNet, UNet
- Pretraining
- Transfer Learning

1. A Brief History of ConvNets

Adapted from <u>Illustrated: 10 CNN Architectures</u> by Raimi Karim, Towards Data Science

Convolutional Layers and ReLu

1998: LeNet-5

- Pioneers the basic architecture of a ConvNet
 - Convolutions
 - Pooling

2012: AlexNet

- Deeper + More Filters
- ReLU Activation
 - Faster training
 - Avoid vanishing gradient

AlexNet

- CNN designed by Alex Krizhevsky (University of Toronto)
- Paper titled "ImageNet Classification with Deep Convolutional Networks"
 - Won the 2012 ImageNet Large-Scale Visual Recognition Challenge
 - One of the most influential publications in Computer Vision, really pioneered the use of CNNs – been cited over 30,000 times

AlexNet Structure

- 5 convolutional layers, 3 fully-connected layers
- ReLU is applied after each convolutional/ fully-connected layer
- Dropout is applied before each of the first two fully-connected layers
- Max pooling

Convolutional Layers and ReLu

Quick Review - Basic Components of a ConvNet

- Convolution Layers
- Pooling Layers
 - Max vs. Average

ReLU Activation

1,	1,0	1,	0	0
0,×0	1,	1,0	1	0
0,1	0,0	1,1	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	8. 0.	2 S	
G.	8 8	10 %	
S.	5 57 51 54	5 S	
	68	50,35	

Convolved Feature

Convolutional Layers and ReLu

Quick Review - Basic Components of a ConvNet

Single depth slice

Max vs. Average

ReLU Activation

Image: Aphex34, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45673581

Convolutional Layers and ReLU

Quick Review - Basic Components of a ConvNet

- Convolution Layers
- Pooling Layers
 - Max vs. Average
- ReLU Activation

Code Snippet (Pytorch)

```
class my model(nn.Module):
    def init (self):
        super().__init__()
        self.conv1 = nn.Conv2d(in channels= 1, out channels=16, kernel size = 5, padding = (5//2), bias = True)
        self.relu1 = nn.LeakyReLU()
        self.conv2 = nn.Conv2d(in channels = 16, out channels = 32, kernel size = 5, padding = (5//2), bias=True)
        self.relu2 = nn.LeakyReLU()
        self.maxpool1 = nn.MaxPool2d(kernel size = 2, stride = 2)
        self.conv3 = nn.Conv2d(in channels = 32, out channels = 64, kernel size = 5, padding = (5//2), bias=True)
        self.relu3 = nn.LeakyReLU()
        self.maxpool2 = nn.MaxPool2d(kernel size = 2, stride = 2)
        self.fc1 = nn.Linear(in_features = 1024, out_features = 512)
        self.fc2 = nn.Linear(in_features = 512, out_features = 256)
        self.fc3 = nn.Linear(in_features = 256, out_features = 64)
        self.fc4 = nn.Linear(in features = 64, out features = 10)
        self.soft1 = nn.Softmax(dim = 1)
```


Code Snippet (Pytorch) continued

```
def forward(self, x):
    x = self.conv1(x)
    x = self.relu1(x)
   x = self.conv2(x)
    x = self.relu2(x)
    x = self.maxpool1(x)
    x = self.conv3(x)
   x = self.relu3(x)
   x = self.maxpool2(x)
    x = x.reshape(x.shape[0], -1)
   x = self.fcl(x)
    x = self.fc2(x)
    x = self.fc3(x)
   x = self.fc4(x)
    x = self.soft1(x)
    return x
```


Code Snippet (Tensorflow 2.0 & Keras)

```
import tensorflow as tf
cnn = tf.keras.models.Sequential()
cnn.add(tf.keras.layers.Conv2D(filters=32, kernel_size=3, activation='relu', input_shape=[64, 64, 3]))
cnn.add(tf.keras.layers.MaxPool2D(pool size=2, strides=2))
cnn.add(tf.keras.layers.Conv2D(filters=32, kernel size=3, activation='relu'))
cnn.add(tf.keras.lavers.MaxPool2D(pool size=2, strides=2))
cnn.add(tf.keras.layers.Flatten())
cnn.add(tf.keras.layers.Dense(units=128, activation='relu'))
cnn.add(tf.keras.layers.Dense(units=1, activation='sigmoid'))
cnn.compile(optimizer='adam', loss='binary crossentropy', metrics=['accuracy'])
cnn.fit(X train, y train, batch size=32, epochs=100)
y_pred = cnn.predict(X_test)
```


Poll question

What is the shape of the input and output of the first convolutional layer of the CNN from the previous slide?

Α.	Input: (64, 64, 3)	Output: (62, 62, 3)
/ \ ·		Output (02, 02, 3)

B. Input: (64, 64) Output: (62, 6	52)
-----------------------------------	-----

D	Input: (64, 64)	Output: (62, 62, 32)
U.	111put. (04, 04)	Output. (02, 02, 32)

GoogLeNet / Inception

- Winner of ILSVRC 2014
- Introduces "Inception modules": Network in Network
- Parallel pipelines of convolutional layers with different filter sizes
- Auxiliary classifiers

Inception v1: Feature Size

Example from <u>Towards Data Science</u>; Images from <u>unsplash.com</u>

Problem: The size of a feature can vary from image to image

Inception v1: Feature Size

(a) Inception module, naïve version

U-Net Architecture

1x1 Convolutions: Dimension Reduction

- Why?
 - Larger Kernels (e.g. 5x5 or 3x3) are expensive if the input volume has many kernels (greater depth)
 - e.g. if the previous layer outputs a volume with depth 256 and the current layer has 5x5 with 256 kernels then there are 5 x 5 x 256 x 256 total weights

1x1 Convolutions: Dimension Reduction

How?

- A 1x1 convolution kernel maps one column (depth-wise) to one "voxel" of the output
- Using this, we can "compress" the depth of the output while preserving most of the information (i.e. an embedding)

256 depth \rightarrow 256 5x5 kernel = 1,638,400 weights

256 depth \rightarrow 64 1x1 kernel \rightarrow 256 5x5 kernel = 425,984 weights

Challenge Poll

Say we receive an input volume of spatial dimensions 1000x1000 and depth 512 to our convolutional layer. We want to reduce it's dimensions, so we use 32 filters each with a kernel size of 1x1. We then pass on our reduced volume to a convolutional layer with 256 5x5 kernels. How many weights do we end up training? (Hint: calculate the size of each filter, then multiply by the number of filters)

- a. $1000 \times 1000 \times 512 + 1 \times 1 \times 32 = 512,000,032$
- b. $32 \times 32 \times 512 + 1 \times 1 \times 32 = 524,320$
- c. $1 \times 1 \times 32 \times 32 + 5 \times 5 \times 32 \times 512 = 410,624$
- d. $1 \times 1 \times 512 \times 32 + 5 \times 5 \times 32 \times 256 = 221,184$

2. ClassificationDetectionSegmentation

What's the difference?

What's the difference?

Classification

- What is this an image of?
- Labeling images

Detection/Localization

- Where are the objects in this image?
- Labeling **regions**

Segmentation

- Which pixels does each object occupy?
- Labeling **pixels**

What's the difference?

Regular Semantic Segmentation

Label the class of each pixel

Puffin! Puffin!

Instance Segmentation

Distinguish between multiple instances of the same class

Transposed Convolution

- Convolutions and pooling reduce the width/height
 - O How do we expand this back to a per-pixel output?
- Transposed Convolutions (aka deconvolution) allows us to "upscale" the latent space
- An example next slide

Transposed Convolution

3. ResNets

Motivation

- Suppose we take a shallow network and add additional layers to increase the depth.
- If we train this model, will it perform the same, better, or worse?

Motivation

- Deeper networks have achieved better performance
- But we run into the "degradation problem"

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

Motivation

- Problems with traditional neural networks?
 - A deeper network isn't always better
- Why?
 - Vanishing gradient!!!!!!!!!
 - Information is lost the deeper you go`

ResNet: The Residual Block

The solution:
 Skip/Residual connections

ResNet: The Residual Block

 If the weights go to zero, then the layer becomes the identity mapping

ResNet: The Residual Block

In theory, this should perform at least as well as the shallow network, since the additional layer can learn weights that make it the identity function.

In practice, the extra layers seem to have trouble learning an identity mapping, but a much easier time learning a zero mapping

output laver

ResNets: other interesting applications

Neural Ordinary Differential Equations (Neural ODE's)
 This paper won the Best Paper Award at NeurIPS
 2018.

https://arxiv.org/abs/1806.07366

4. Transfer Learning

Transfer Learning: Pre-training

Training from scratch with random initialization:

- Time consuming
- Requires a lot of data

The solution?

- Use a model that was pre-trained on a different dataset as a starting point
 - We are transferring knowledge from a network trained on one dataset to another

Methods of Transfer Learning

Pre-training and fine-tuning

Train a model on one dataset and use the final trained weights as the initial weights when training on a new dataset

Freezing layers

Take a trained model and only re-train the final layers on a new dataset or replace the final layers with a new classifier.

e.g. freeze the convolutional layers and only train the fully connected layers.

Discussion Time!

- 1. What problem do residual blocks address?
- 2. How do transposed convolutions help?

Discussion Answers

https://tinyurl.com/advworksheet4

Join us at our social!

https://www.facebook.com/events/424485038663814/

Thank you all for coming!

Anonymous Feedback: <u>tinyurl.com/w21atrack4</u> Facebook Group: <u>www.facebook.com/groups/uclaacmai/</u>