Matematyka dyskretna Relacje

Adam Gregosiewicz

10 listopada 2022 r.

Relacje

Definicja (Relacja)

Dowolny podzbiór zbioru $X \times Y$ nazywamy **relacją dwuargumentową**.

Relacje

Definicja (Relacja)

Dowolny podzbiór zbioru $X \times Y$ nazywamy **relacją dwuargumentową**.

Jeżeli $R \subset X \times Y$ i $(x, y) \in R$, to mówimy, że elementy x i y są ze sobą w relacji R i piszemy xRy.

Niech $R \subset X \times X$ będzie relacją. Mówimy, że jest ona

→ zwrotna, gdy

$$\bigwedge xRx$$
,

Niech $R \subset X \times X$ będzie relacją. Mówimy, że jest ona

→ zwrotna, gdy

$$\bigwedge_{x} xRx$$
,

→ symetryczna, gdy

$$\bigwedge (xRy \Rightarrow yRx),$$

Niech $R \subset X \times X$ będzie relacją. Mówimy, że jest ona

→ zwrotna, gdy

$$\bigwedge_{x} xRx$$
,

→ symetryczna, gdy

$$\bigwedge_{x,y} (xRy \Rightarrow yRx),$$

 \rightsquigarrow antysymetryczna, gdy

$$\bigwedge_{x,y}(xRy\wedge yRx)\Rightarrow x=y,$$

Niech $R \subset X \times X$ będzie relacją. Mówimy, że jest ona

→ zwrotna, gdy

$$\bigwedge_{x} xRx$$

→ symetryczna, gdy

$$\bigwedge_{x,y} (xRy \Rightarrow yRx),$$

→ antysymetryczna, gdy

$$\bigwedge_{x,y} (xRy \wedge yRx) \Rightarrow x = y,$$

→ przechodnia, gdy

$$\bigwedge_{X} (xRy \wedge yRz) \Rightarrow xRz,$$

Niech $R \subset X \times X$ będzie relacją. Mówimy, że jest ona

$$\bigwedge_{x} xRx$$
,

→ symetryczna, gdy

$$\bigwedge_{x,y} (xRy \Rightarrow yRx),$$

→ antysymetryczna, gdy

$$\bigwedge_{x,y} (xRy \wedge yRx) \Rightarrow x = y,$$

 $\rightsquigarrow \quad \textbf{przechodnia}, \ \textbf{gdy}$

$$\bigwedge_{X,Y,Z} (xRy \wedge yRz) \Rightarrow xRz,$$

→ spójna, gdy

$$\bigwedge_{x,y} (xRy \vee yRx).$$

Przykład

Niech R będzie relacją w $\mathbb Z$ zdefiniowaną następująco

$$xRy \iff 4|(y-x).$$

Przykład

Niech R będzie relacją w $\mathbb Z$ zdefiniowaną następująco

$$xRy \iff 4|(y-x).$$

Czy jest to relacja zwrotna, symetryczna, antysymetryczna, przechodnia, spójna?

Przykład

Niech R będzie relacją w $\mathbb Z$ zdefiniowaną następująco

$$xRy \iff 4|(y-x).$$

Czy jest to relacja zwrotna, symetryczna, antysymetryczna, przechodnia, spójna?

Jest zwrotna, symetryczna i przechodnia.

Niech $R \subset X \times X$ będzie relacją w X.

Niech $R \subset X \times X$ będzie relacją w X.

Definicja (Porządek częściowy)

Jeżeli relacja jest zwrotna, antysymetryczna i przechodnia, to nazywamy ją relacją **częściowo porządkującą**, a zbiór *X* **częściowo uporządkowanym**.

Niech $R \subset X \times X$ będzie relacją w X.

Definicja (Porządek częściowy)

Jeżeli relacja jest zwrotna, antysymetryczna i przechodnia, to nazywamy ją relacją częściowo porządkującą, a zbiór *X* częściowo uporządkowanym.

Definicja (Porządek liniowy/całkowity)

Jeżeli relacja jest zwrotna, antysymetryczna, przechodnia i spójna, to nazywamy ją relacją **liniowo porządkującą**, a zbiór *X* **liniowo uporządkowanym**.

Jeżeli R jest relacją porządku, to często zamiast xRy piszemy

$$x \prec y$$
.

Mówimy w tym przypadku, że x poprzedza y lub y następuje po x.

Jeżeli R jest relacją porządku, to często zamiast xRy piszemy

$$x \prec y$$
.

Mówimy w tym przypadku, że x poprzedza y lub y następuje po x.

Jeżeli $x \prec y$ lub $y \prec x$ to mówimy, że elementy x i y są porównywalne.

Przykłady

- ightharpoonup Relacja \leqslant jest relacją całkowicie porządkującą w \mathbb{R} .
- ightarrow Relacja podzielności \mid jest relacją częściowego porządku w $\mathbb{N}.$
- Relacja inkluzji \subset jest relacją częściowego porządku w zbiorze potęgowym 2^A ustalonego zbioru A.

Zawężenie porządku

Jeżeli \prec jest relacją porządku w X oraz $Y \subset X$, to \prec (zawężona do Y) jest również relacją porządku w Y.

Niech \prec będzie relacją porządku w X oraz $Y \subset X$.

Element $x \in Y$ nazywamy **elementem maksymalnym** w Y, jeżeli nie poprzedza on żadnego innego elementu zbioru Y, to znaczy

$$\neg \bigvee_{y \in Y} (y \neq x \land x \prec y).$$

 \sim Element $x \in Y$ nazywamy **elementem minimalnym** w Y, jeżeli nie poprzedza go żaden inny element zbioru Y, to znaczy

$$\neg \bigvee_{y \in Y} (y \neq x \land y \prec x).$$

Niech $X=\mathbb{R}$ będzie zbiorem uporządkowanym przez relację \leqslant oraz

$$Y = (0, 1).$$

Niech $X=\mathbb{R}$ będzie zbiorem uporządkowanym przez relację \leqslant oraz

$$Y = (0, 1).$$

- → Elementem minimalnym Y jest 0.
- → Zbiór Y nie posiada elementu maksymalnego.

Niech $X=\mathbb{N}$ będzie zbiorem uporządkowanym przez relację podzielności | oraz

$$Y = \{2^n : n \in \mathbb{N}\} \cup \{3^n : n \in \mathbb{N}\} \cup \{5\}.$$

Niech $X=\mathbb{N}$ będzie zbiorem uporządkowanym przez relację podzielności | oraz

$$Y = \{2^n : n \in \mathbb{N}\} \cup \{3^n : n \in \mathbb{N}\} \cup \{5\}.$$

- → Elementami minimalnymi Y są 2, 3 i 5.
- \hookrightarrow Elementem maksymalnym Y jest 5.

Niech \prec będzie relacją porządku w X oraz $Y \subset X$.

Element $x \in Y$ nazywamy elementem największym w Y, jeżeli następuje po wszystkich elementach zbioru Y, to znaczy

$$\bigwedge_{y\in Y}y\prec x.$$

 \sim Element $x \in Y$ nazywamy **elementem najmniejszym** w Y, jeżeli poprzedza wszystkie elementy zbioru Y, to znaczy

$$\bigwedge_{y\in Y} x \prec y.$$

Niech $X=\mathbb{R}$ będzie zbiorem uporządkowanym przez relację \leqslant oraz

$$Y = (0, 1).$$

Niech $X=\mathbb{R}$ będzie zbiorem uporządkowanym przez relację \leqslant oraz

$$Y = (0, 1).$$

- → Elementem najmniejszym Y jest 0.
- → Zbiór Y nie posiada elementu największego.

Niech $X=\mathbb{N}$ będzie zbiorem uporządkowanym przez relację podzielności | oraz

$$Y = \{2^n : n \in \mathbb{N}\} \cup \{3^n : n \in \mathbb{N}\} \cup \{5\}.$$

Niech $X=\mathbb{N}$ będzie zbiorem uporządkowanym przez relację podzielności | oraz

$$Y = \{2^n : n \in \mathbb{N}\} \cup \{3^n : n \in \mathbb{N}\} \cup \{5\}.$$

- → Zbiór Y nie posiada elementu najmniejszego.
- Zbiór Y nie posiada elementu największego.

Własności elementów wyróżnionych

W zbiorze uporządkowanym może istnieć więcej niż jeden element minimalny i więcej niż jeden element maksymalny.

Własności elementów wyróżnionych

- W zbiorze uporządkowanym może istnieć więcej niż jeden element minimalny i więcej niż jeden element maksymalny.
- → W zbiorze uporządkowanym istnieje co najwyżej jeden element największy oraz co najwyżej jeden element najmniejszy.

Własności elementów wyróżnionych

- W zbiorze uporządkowanym może istnieć więcej niż jeden element minimalny i więcej niż jeden element maksymalny.
- W zbiorze uporządkowanym istnieje co najwyżej jeden element największy oraz co najwyżej jeden element najmniejszy.
- Jeżeli w zbiorze uporządkowanym istnieje element największy (najmniejszy), to jest on jedyny i jest jednocześnie jedynym elementem maksymalnym (minimalnym).

Niech \prec będzie relacją porządku w X oraz $Y \subset X$.

 \leadsto Element $x \in X$ nazywamy ograniczeniem górnym zbioru Y, jeżeli

$$\bigwedge_{y\in Y}y\prec x.$$

Niech \prec będzie relacją porządku w X oraz $Y \subset X$.

ightharpoonup Element $x \in X$ nazywamy ograniczeniem górnym zbioru Y, jeżeli

$$\bigwedge_{y\in Y}y\prec x.$$

 \leadsto Element $x \in X$ nazywamy **ograniczeniem dolnym** zbioru Y, jeżeli

$$\bigwedge_{v\in Y} x \prec y.$$

Niech \prec będzie relacją porządku w X oraz $Y \subset X$.

 \leadsto Element $x \in X$ nazywamy **ograniczeniem górnym** zbioru Y, jeżeli

$$\bigwedge_{y\in Y}y\prec x.$$

 \leadsto Element $x \in X$ nazywamy **ograniczeniem dolnym** zbioru Y, jeżeli

$$\bigwedge_{y\in Y} x \prec y.$$

✓ Jeżeli istnieje najmniejsze ograniczenie górne zbioru Y, to nazywamy je kresem górnym zbioru Y.

Niech \prec będzie relacją porządku w X oraz $Y \subset X$.

 \rightarrow Element $x \in X$ nazywamy **ograniczeniem górnym** zbioru Y, jeżeli

$$\bigwedge_{y\in Y}y\prec x.$$

 \rightarrow Element $x \in X$ nazywamy **ograniczeniem dolnym** zbioru Y, jeżeli

$$\bigwedge_{y\in Y} x \prec y.$$

- → Jeżeli istnieje najmniejsze ograniczenie górne zbioru Y, to nazywamy je kresem górnym zbioru Y.
- → Jeżeli istnieje największe ograniczenie dolne zbioru Y, to nazywamy je kresem dolnym zbioru Y.

Niech $X=\mathbb{R}$ będzie zbiorem uporządkowanym przez relację \leqslant oraz

$$Y = (0, 1).$$

Kresy zbioru

Niech $X=\mathbb{R}$ będzie zbiorem uporządkowanym przez relację \leqslant oraz

$$Y = (0, 1).$$

- \rightarrow Zbiorem ograniczeń dolnych Y jest zbiór $(-\infty, 0)$.
- \rightarrow Zbiorem ograniczeń górnych Y jest zbiór $(1, +\infty)$.
- → Kresem górnym zbioru Y jest 1.

Kresy zbioru

Niech $X=\mathbb{N}$ będzie zbiorem uporządkowanym przez relację podzielności | oraz

$$Y = \{2^n : n \in \mathbb{N}\} \cup \{3^n : n \in \mathbb{N}\} \cup \{5\}.$$

Kresy zbioru

Niech $X=\mathbb{N}$ będzie zbiorem uporządkowanym przez relację podzielności oraz

$$Y = \{2^n : n \in \mathbb{N}\} \cup \{3^n : n \in \mathbb{N}\} \cup \{5\}.$$

- → Zbiorem ograniczeń dolnych jest {1}.
- → Zbiór Y nie ma ograniczeń górnych.
- → Kresem dolnym zbioru Y jest 1.
- → Zbiór Y nie ma kresu dolnego.

Własności elementów wyróżnionych

- W niepustym i **skończonym** podzbiorze Y zbioru uporządkowanego (X, \prec) istnieje co najmniej jeden element maksymalny i co najmniej jeden element minimalny.
- Jeżeli w niepustym i **skończonym** podzbiorze Y zbioru uporządkowanego (X, \prec) istnieje dokładnie jeden element maksymalny (minimalny), to jest on jednocześnie elementem największym (najmniejszym) i kresem górnym (dolnym) zbioru Y.

Własności kresów

Jeżeli w zbiorze uporządkowanym Y istnieje kres górny (dolny), to nie musi on być elementem zbioru Y.

Własności kresów

- Jeżeli w zbiorze uporządkowanym Y istnieje kres górny (dolny), to nie musi on być elementem zbioru Y.
- → W dowolnym zbiorze uporządkowanym Y może istnieć co najwyżej jeden kres góry (dolny).

Relacje równoważności

Definicja (Relacja równoważności)

Relację zwrotną, symetryczną i przechodnią nazywamy **relacją równoważności.**

Relacje równoważności

Definicja (Relacja równoważności)

Relację zwrotną, symetryczną i przechodnią nazywamy **relacją równoważności**.

Definicja (Klasa abstrakcji)

Klasą abstrakcji elementu x względem relacji \sim w X nazywamy zbiór

$$[x] := \{ y \in X \colon y \sim x \}.$$

Relacje równoważności

Definicja (Relacja równoważności)

Relację zwrotną, symetryczną i przechodnią nazywamy **relacją równoważności**.

Definicja (Klasa abstrakcji)

Klasą abstrakcji elementu x względem relacji \sim w X nazywamy zbiór

$$[x] := \{ y \in X \colon y \sim x \}.$$

Zbiór wszystkich klas abstrakcji nazywamy **zbiorem ilorazowym** i oznaczamy (X/\sim) .

Relacje równowazności

Niech $X=\mathbb{Z}$, a relacja \sim będzie zdefiniowana jako

$$a \sim b \iff 3|(a-b).$$

Na przykład

$$1\sim 10, \qquad -3\sim 0, \qquad 11\sim 2.$$

Relacje równowazności

Niech $X=\mathbb{Z}$, a relacja \sim będzie zdefiniowana jako

$$a \sim b \iff 3|(a-b).$$

Na przykład

$$1\sim 10, \qquad -3\sim 0, \qquad 11\sim 2.$$

Jest to relacja równoważności.

Relacje równowazności

Niech $X=\mathbb{Z}$, a relacja \sim będzie zdefiniowana jako

$$a \sim b \iff 3|(a-b).$$

Na przykład

$$1\sim 10, \qquad -3\sim 0, \qquad 11\sim 2.$$

Jest to relacja równoważności.

Klasami abstrakcji są zbiory

$$[0] = \{\dots, -6, -3, 0, 3, 6, \dots\},\$$
$$[1] = \{\dots, -5, -2, 1, 4, 5, \dots\},\$$
$$[2] = \{\dots, -4, -1, 2, 5, 8, \dots\}.$$

Zasada abstrakcji

Twierdzenie (Zasada abstrakcji)

Jeżeli ∼ jest relacją równoważności w zbiorze X, to

- → wszystkie klasy abstrakcji są niepuste,
- \leadsto każdy element $x \in X$ należy do pewnej klasy abstrakcji,
- dwie klasy abstrakcji są albo równe, albo nie mają elementów wspólnych.

Niech $\mathbb{N}_0:=\mathbb{N}\cup\{0\}$, a \sim niech będzie relacją w zbiorze $\mathbb{N}_0\times\mathbb{N}_0$ zdefiniowaną następująco:

$$(m,n) \sim (a,b) \iff m+b=a+n.$$

Niech $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$, a \sim niech będzie relacją w zbiorze $\mathbb{N}_0 \times \mathbb{N}_0$ zdefiniowaną następująco:

$$(m,n) \sim (a,b) \iff m+b=a+n.$$

Jest to relacja równoważności.

Niech $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$, a \sim niech będzie relacją w zbiorze $\mathbb{N}_0 \times \mathbb{N}_0$ zdefiniowaną następująco:

$$(m,n) \sim (a,b) \iff m+b=a+n.$$

Jest to relacja równoważności.

Czym jest zbiór ilorazowy?

Niech $\mathbb{N}_0:=\mathbb{N}\cup\{0\}$, a \sim niech będzie relacją w zbiorze $\mathbb{N}_0\times\mathbb{N}_0$ zdefiniowaną następująco:

$$(m,n) \sim (a,b) \iff m+b=a+n.$$

Jest to relacja równoważności.

Czym jest zbiór ilorazowy?

Relację R w zbiorze $X \times Y$ spełniającą warunki

Relację R w zbiorze $X \times Y$ spełniającą warunki

$$\stackrel{\leadsto}{\longrightarrow} \bigwedge_{x \in X} \bigvee_{y \in Y} xRy,$$

Relację R w zbiorze $X \times Y$ spełniającą warunki

$$\longrightarrow \bigwedge_{x \in X} \bigvee_{y \in Y} xRy,$$

$$\longrightarrow \bigwedge_{x \in X} \bigwedge_{y,z \in Y} [xRy \land xRz] \Rightarrow (y = z)$$

Relację R w zbiorze $X \times Y$ spełniającą warunki

nazywamy funkcją.

Relację R w zbiorze $X \times Y$ spełniającą warunki

nazywamy funkcją.

Relacje, które są funkcjami, najczęściej oznaczamy przez f,g,h,\ldots zamiast R i piszemy

$$y = f(x)$$

zamiast xfy.

Relację R w zbiorze $X \times Y$ spełniającą warunki

nazywamy funkcją.

Relacje, które są funkcjami, najczęściej oznaczamy przez f,g,h,\ldots zamiast R i piszemy

$$y = f(x)$$

zamiast xfy.

Funkcja to nie wzór!