Status of California Scorpionfish (*Scorpaena guttata*) Off Southern California in 2017

Melissa H. Monk¹ Xi He¹ John Budrick²

¹Southwest Fisheries Science Center, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 110 Shaffer Road, Santa Cruz, California 95060

8

10

11

12

13

14

15

²California Department of Fish and Wildlife, 350 Harbor Blvd., Belmont, California 94002

DRAFT SAFE

Disclaimer: This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by NOAA Fisheries. It does not represent and should not be construed to represent any agency determination or policy.

Status of California Scorpionfish (*Scorpaena* guttata) Off Southern California in 2017

« Contents

19	Ex	xecutive Summary	1
20		Stock	 1
21		Catches	 1
22		Data and Assessment	 5
23		Stock Biomass	 7
24		Recruitment	 10
25		Exploitation status	 12
26		Ecosystem Considerations	 15
27		Reference Points	 15
28		Management Performance	 16
29		Unresolved Problems And Major Uncertainties	 16
30		$\label{eq:Decision Table} Decision \ Table(s) \ (ground fish \ only) \ \ \dots \ \ \dots$	 16
31		Research And Data Needs	 20
32		Rebuilding Projections	 20
33	1	Introduction	21
34		1.1 Basic Information	 21
35		1.2 Map	 22
36		1.3 Life History	 22
37		1.4 Ecosystem Considerations	 22
38		1.5 Fishery Information	 22
39		1.6 Summary of Management History	 22
40		1.7 Management Performance	 25
41		1.8 Fisheries off Mexico	 25

42	2	Ass	essmen	nt .	25
43		2.1	Data		25
44			2.1.1	Commercial Fishery Landings	25
45			2.1.2	Sport Fishery Removals	25
46			2.1.3	Estimated Discards	26
47			2.1.4	Abundance Indices	26
48			2.1.5	Fishery-Independent Data: possible sources	26
49			2.1.6	Biological Parameters and Data	26
50			2.1.7	Environmental Or Ecosystem Data Included In The Assessment $\ . \ . \ .$	28
51		2.2	Histor	y Of Modeling Approaches Used For This Stock	28
52			2.2.1	Previous Assessments	28
53			2.2.2	2005 Assessment Recommendations	28
54		2.3	Model	Description	29
55			2.3.1	Transition To The Current Stock Assessment	29
56			2.3.2	Definition of Fleets and Areas	30
57			2.3.3	Summary of Data for Fleets and Areas	30
58			2.3.4	Modeling Software	30
59			2.3.5	Data Weighting	30
60			2.3.6	Priors	30
61			2.3.7	General Model Specifications	31
62			2.3.8	Estimated And Fixed Parameters	31
63		2.4	Model	Selection and Evaluation	31
64			2.4.1	Key Assumptions and Structural Choices	31
65			2.4.2	Alternate Models Considered	31
66			2.4.3	Convergence	31
67		2.5	Respon	nse To The Current STAR Panel Requests	31
68		2.6	Model	$1 \ \dots $	32
69			2.6.1	Model 1 Base Case Results	32
70			2.6.2	Model 1 Uncertainty and Sensitivity Analyses	32
71			2.6.3	Model 1 Retrospective Analysis	33
72			2.6.4	Model 1 Likelihood Profiles	33
73			2.6.5	Model 1 Harvest Control Rules (CPS only)	33
74			266	Model 1 Reference Points (groundfish only)	33

75	3	Harvest Projections and Decision Tables	33
76	4	Regional Management Considerations	33
77	5	Research Needs	34
78	6	Acknowledgments	34
79	7	Tables	35
80	8	Figures	47
81	$\mathbf{R}_{\mathbf{c}}$	eferences	

Executive Summary

executive-summary

Stock stock

This assessment reports the status of the California scorpionfish (Scorpaena guttata) resource

- in U.S. waters off the coast of the California, Oregon, and Washington using data through
- 86 2016. Etc...

 $_{
m 87}$ Catches

88 Catch figure(s) with fleets: (Figures a-c)

89 Catch table: (Table a)

Figure a: California scorpionfish landings history for the recreational fleets. $f^{ig:Exec_catch1}$

Figure b: Stacked line plot of California scorpionfish landings history for the commercial fleets.

Figure c: Stacked line plot of California scorpionfish landings history by region, north of Pt. Conception, between Pt. Conception and the U.S.-Mexico border, and Mexican waters.

Figure d: Landings history of California scorpionfish in the base model. fig:r4ss_catches

Table a: Recent California scorpionfish landings (mt) by recreational (Rec.) and commercial (Com.) fleets.

					ta	<u>ab:Exec_c</u>	atch
Year	Rec.	Rec.	Rec. Dead	Com.	Com.	Com.	Total
	Private	Party/Charter	Discards	Hook-and-line	Trawl	Gillnet	
2007	14.24	118.87	2.89	1.90	1.48	0.21	139.58
2008	8.38	89.65	2.25	2.46	0.86	0.28	103.89
2009	14.68	93.16	2.09	2.97	0.27	0.13	113.31
2010	8.07	92.55	2.03	2.99	0.18	0.14	105.97
2011	6.84	91.18	2.66	3.24	1.05	0.24	105.21
2012	6.22	107.63	2.34	3.22	0.43	0.18	120.00
2013	8.18	101.31	2.94	1.73	0.83	0.14	115.14
2014	5.88	113.83	2.93	1.03	0.13	0.04	123.82
2015	4.15	73.78	3.59	2.21	0.13	0.03	83.89
2016	3.86	64.56	3.29	2.32	0.13	0.00	74.16

Data and Assessment

data-and-assessment

California scorpionfish was assessed in 2005 (Maunder et al. 2005) using Stock Synthesis

¹² II version 1.18. This assessment uses the newest version of Stock Synthesis (3.30.0.4). The

model begins in 1916, and assumes the stock was at an unfished equilibrium that year.

Map of assessment region: (Figure e).

Figure e: Map depicting the boundaries for the base-case model. $\begin{tabular}{l} fig:assess_region_map \\ \end{tabular}$

Stock Biomass stock-biomass

- Spawning output Figure: Figure f
 Spawning output Table(s): Table b
 Relative depletion Figure: Figure g
- The estimated relative depletion level (spawning output relative to unfished spawning output) of the the base-case model in 2016 is 70.4% (~95% asymptotic interval: \pm 53.8%-87%) (Figure g).

Table b: Recent trend in beginning of the year spawning output and depletion for the base model for California scorpionfish.

			ta	b:SpawningDeplete_mod1
Year	Spawning Output	~ 95% confidence	Estimated	$\sim 95\%$ confidence
	(mt)	interval	depletion	interval
2008	1411.880	(826-1997.76)	0.821	(0.667 - 0.976)
2009	1327.280	(779.49-1875.07)	0.772	(0.628 - 0.916)
2010	1240.230	(727.54-1752.92)	0.722	(0.587 - 0.856)
2011	1188.880	(694.44-1683.32)	0.692	(0.561 - 0.823)
2012	1180.620	(686.04-1675.2)	0.687	(0.556 - 0.818)
2013	1149.250	(662.71-1635.79)	0.669	(0.541 - 0.796)
2014	1103.550	(630.12 - 1576.98)	0.642	(0.517 - 0.767)
2015	1085.150	(607.15-1563.15)	0.631	(0.504 - 0.759)
2016	1122.560	(616.11-1629.01)	0.653	(0.516 - 0.79)
2017	1209.890	(634.69-1785.09)	0.704	(0.538-0.87)

Spawning biomass (mt) with ~95% asymptotic intervals

Figure f: Time series of spawning output trajectory (circles and line; median; light broken lines: 95% credibility intervals) for the base case assessment model. fig:Spawnbio_all

Spawning depletion with ~95% asymptotic intervals

Figure g: Estimated relative depletion with approximate 95% asymptotic confidnce intervals (dashed lines) for the base case assessment model. \lceil fig:RelDeplete_all

Recruitment recruitment

Recruitment Figure: (Figure h)
Recruitment Tables: (Tables c, ?? and ??)

Table c: Recent recruitment for the base model.

tab	: R	ecri	ıit.	mο	d1

Year	Estimated	~ 95% confidence
	Recruitment (1,000s)	interval
2008	2334.67	(1188.11 - 4587.71)
2009	3043.29	(1586.6 - 5837.4)
2010	5924.02	(3274.03 - 10718.9)
2011	1919.20	(814.17 - 4524.02)
2012	466.56	(145.49 - 1496.19)
2013	6221.57	(3237.03 -
		11957.84)
2014	2427.69	(894.39 - 6589.64)
2015	7513.87	(2659.09 - 21232.2)
2016	3822.13	(796 - 18352.62)
2017	3861.95	(804.12 - 18547.73)

Age-0 recruits (1,000s) with ~95% asymptotic intervals

Figure h: Time series of estimated California scorpionfish recruitments for the base-case model with 95% confidence or credibility intervals.

105 Exploitation status

exploitation-status

- Exploitation Tables: Table d, Table ??, Table ?? Exploitation Figure: Figure i).
- A summary of California scorpionfish exploitation histories for base model is provided as Figure j.

Table d: Recent trend in spawning potential ratio and exploitation for California scorpionfish in the base model. Fishing intensity is (1-SPR) divided by 50% (the SPR target) and exploitation is F divided by F_{SPR} .

				tab:SPR_Exploit_mod1
Year	Fishing	~ 95% confidence	Exploitation	~ 95% confidence
	intensity	interval	rate	interval
2007	0.36	(0.21 - 0.52)	0.04	(0.02-0.06)
2008	0.31	(0.17 - 0.45)	0.03	(0.02 - 0.04)
2009	0.34	(0.19 - 0.5)	0.04	(0.02 - 0.05)
2010	0.34	(0.19 - 0.49)	0.04	(0.02 - 0.05)
2011	0.36	(0.2-0.51)	0.03	(0.02 - 0.05)
2012	0.41	(0.24 - 0.58)	0.04	(0.02 - 0.06)
2013	0.41	(0.24-0.59)	0.04	(0.02-0.06)
2014	0.45	(0.26-0.63)	0.05	(0.02-0.07)
2015	0.35	(0.19 - 0.51)	0.03	(0.02-0.05)
2016	0.32	(0.17 - 0.46)	0.02	(0.01-0.04)

Figure i: Estimated spawning potential ratio (SPR) for the base-case model. One minus SPR is plotted so that higher exploitation rates occur on the upper portion of the y-axis. The management target is plotted as a red horizontal line and values above this reflect harvests in excess of the overfishing proxy based on the SPR $_{50\%}$ harvest rate. The last year in the time series is 2016.

Figure j: Phase plot of estimated relative (1-SPR) vs. relative spawning biomass for the base case model. The relative (1-SPR) is (1-SPR) divided by 50% (the SPR target). Relative depletion is the annual spawning biomass divided by the unfished spawning biomass.

109 Ecosystem Considerations

In this assessment, ecosystem considerations were.....

111 Reference Points

reference-points

This stock assessment estimates that California scorpionfish in the base model are above the biomass target, but above the minimum stock size threshold. Add sentence about spawning output trend. The estimated relative depletion level for Model 1 in 2016 is 70.4% (~95% asymptotic interval: \pm 53.8%-87%, corresponding to an unfished spawning output of 1209.89 mt (~95% asymptotic interval: 634.69-1785.09 mt) of spawning output in the base model (Table e). Unfished age 1+ biomass was estimated to be 3780.4 mt in the base case model. The target spawning output based on the biomass target ($SB_{40\%}$) is 687.5 mt, which gives a catch of 295.1 mt. Equilibrium yield at the proxy F_{MSY} harvest rate corresponding to $SPR_{50\%}$ is 276.8 mt.

Table e: Summary of reference points and management quantities for the base case base model.

		tab:Ref_pts_mod1
Quantity	Estimate	95% Confidence
		Interval
Unfished spawning output (mt)	1718.8	(1076.9-2360.7)
Unfished age 1+ biomass (mt)	3780.4	(2208.7 - 5352.1)
Unfished recruitment (R0, thousands)	4021.4	(1722.4 - 6320.4)
Spawning output(2016 mt)	1122.6	(616.1-1629)
Depletion (2016)	0.6531	(0.5164 - 0.7898)
Reference points based on $\mathrm{SB}_{40\%}$		
Proxy spawning output $(B_{40\%})$	687.5	(430.8 - 944.3)
SPR resulting in $B_{40\%}$ ($SPR_{B40\%}$)	0.4589	(0.4589 - 0.4589)
Exploitation rate resulting in $B_{40\%}$	0.1461	(0.1305 - 0.1618)
Yield with $SPR_{B40\%}$ at $B_{40\%}$ (mt)	295.1	(150.3-440)
Reference points based on SPR proxy for MSY		
Spawning output	765.8	(479.8 - 1051.8)
SPR_{proxy}	0.5	
Exploitation rate corresponding to SPR_{proxy}	0.1267	(0.1134 - 0.1401)
Yield with SPR_{proxy} at SB_{SPR} (mt)	276.8	(141.3-412.3)
Reference points based on estimated MSY values		
Spawning output at MSY (SB_{MSY})	433.4	(262.4 - 604.3)
SPR_{MSY}	0.3256	(0.3157 - 0.3354)
Exploitation rate at MSY	0.2346	(0.2124 - 0.2568)
\overline{MSY} (mt)	333.2	(169.2-497.2)

121 Management Performance

management-performance

Management performance table: Table f

Table f: Recent trend in total catch and commercial landings (mt) relative to the management guidelines. Estimated total catch reflect the commercial landings plus the model estimated discarded biomass.

				tab:mnmgt_	perform
Year	OFL (mt;	ABC (mt)	ACL (mt; OY	Estimated	_
	ABC prior to		prior to 2011)	total catch	
	2011)			(mt)	
2007	-	-	-	-	
2008	-	-	-	-	
2009	-	-	-	-	
2010	-	-	-	-	
2011	-	-	-	-	
2012	-	-	-	-	
2013	-	-	-	-	
2014	-	-	-	-	
2015	-	-	-	-	
2016	-	-	-	-	
2017	-	-	-	-	
2018	-	-	-		

123 Unresolved Problems And Major Uncertainties

unresolved-problems-and-major-uncertainties

124 TBD after STAR panel

$_{125}$ Decision Table(s) (groundfish only)

decision-tables-groundfish-only

tab:OFL_projection

OFL projection table: Table g

Decision table(s) Table h, Table ??, Table ??

128 Yield curve: Figure \ref{fig:Yield_all}

Table g: Projections of potential OFL (mt) for each model, using the base model forecast.

Year OFL 2017 507.83

Figure k: Equilibrium yield curve for the base case model. Values are based on the 2016 fishery selectivity and with steepness fixed at... fig:Yield_all

Table h: Summary of 10-year projections beginning in 2018 for alternate states of nature based on an axis of uncertainty for the base model. Columns range over low, mid, and high states of nature, and rows range over different assumptions of catch levels. An entry of "—" indicates that the stock is driven to very low abundance under the particular scenario.

 ${\tt tab:Decision_table_mod1}$ States of nature

			Low N	M = 0.05		M 0.07	High I	M 0.09
	Year	Catch	Spawning	Depletion	Spawning	Depletion	Spawning	Depletion
			Output		Output		Output	
	2019	-	-	-	-	-	-	-
	2020	-	-	-	-	-	-	-
	2021	-	-	-	-	-	-	-
40-10 Rule,	2022	-	-	-	-	-	-	-
Low M	2023	-	-	-	-	-	-	-
	2024	-	-	-	-	-	-	-
	2025	-	-	-	-	-	-	-
	2026	-	-	-	-	-	-	-
	2027	-	-	-	-	-	-	-
	2028	-	-	-	-	-	-	-
	2019	-	-	-	-	-	-	-
	2020	-	-	-	-	-	-	-
	2021	-	-	-	-	-	-	-
40-10 Rule	2022	-	-	-	-	-	-	-
	2023	-	-	-	-	-	-	-
	2024	-	-	-	-	-	-	-
	2025	-	-	-	-	-	-	-
	2026	-	-	-	-	-	-	-
	2027	-	-	-	-	-	-	-
	2028	-	-	-	-	-	-	-
	2019	-	-	-	-	-	-	-
	2020	-	-	-	-	-	-	-
	2021	-	-	-	-	-	-	-
40-10 Rule,	2022	-	-	-	-	-	-	-
High M	2023	-	-	-	-	-	-	-
	2024	-	-	-	-	-	-	-
	2025	-	-	-	-	-	-	-
	2026	-	-	-	-	-	-	-
	2027	-	-	-	-	-	-	-
	2028	-	-	-	-	-	-	-
	2019	-	-	-	-	-	-	-
	2020	-	-	-	-	-	-	-
	2021	-	-	-	-	-	-	-
Average	2022	-	-	-	-	-	_	-
Catch	2023	-	-	-	-	-	-	-
	2024	-	-	-	-	-	_	-
	2025	-	-	-	-	-	_	-
	2026	-	-	-	-	-	-	-
	2027	-	-	-	-	-	_	-
	2028	_	_	_	_	_	_	-

Table i: Base case results summary.

	2008	2009	2010	2011	2012	2013	2014	2015	2016	6 2017
$1-SPR)(1-SPR_{50\%})$	0.31	0.34	0.34	0.36	0.41	0.41	0.45	0.35	0.32	
Exploitation rate	0.03	0.04	0.04	0.03	0.04	0.04	0.05	0.03	0.02	
Age 1+ biomass (mt)	3512.93	3280.86	3090.02	2944.76	3006.93	2893.02	2665.74	2758.96	2684.49	2943.31
Spawning Output	1411.9	1327.3	1240.2	1188.9	1180.6	1149.2	1103.5	1085.2	1122.6	1209.9
Ι	95% CI (826-1997.76)	(779.49-	(727.54-	(694.44-	(686.04 - 1675.2)	(662.71-	(630.12-	(607.15-	(616.11-	(634.69-
		1875.07)	1752.92)	1683.32)		1635.79)	1576.98)	1563.15)	1629.01)	1785.09)
Depletion	0.8	0.8	0.7	0.7	0.7	0.7	9.0	0.6	0.7	0.7
I	95% CI (0.667-0.976)	(0.628-0.916)	(0.587-0.856)	(0.561-0.823)	(0.556-0.818)	(0.541-0.796)	(0.517-0.767)	(0.504-0.759)	(0.516-0.79)	(0.538-0.87)
Recruits	2334.67	3043.29	5924.02	1919.20	466.56	6221.57	2427.69	7513.87	3822.13	3861.95
95% CI	(1188.11 -	(1586.6 -	(3274.03 -	(814.17 -	(145.49 -	(3237.03 -	(894.39 -	(2659.09 -	(796 - 18352.62)	(804.12 -
	4587.71)	5837.4)	10718.9)	4524.02)	1496.19)	11957.84)	6589.64)	21232.2)		18547.73)

129 Research And Data Needs

research-and-data-needs

- 130 We recommend the following research be conducted before the next assessment:
- 1. List item No. 1 in the list
- 2. List item No. 2 in the list, etc.

133 Rebuilding Projections

rebuilding-projections

1 Introduction

135

introduction

1.1 Basic Information

basic-information

California scorpionfish (*Scorpaena guttata*), also known locally as sculpin or spotted scorpionfish, originates from the Greek word for scorpionfishes and *guttata* is Latin for speckled.
California scorpionfish is a medium-bodied fish and like other species in the genus Scorpaena,
it produces a toxin in its dorsal, anal, and pectoral fin spines, which produces intense, painful
wounds (Love et al. 1987). Scorpionfish are very resistant to hooking mortality and have
shown survival under extreme conditions.

Its range extends from central California (Santa Cruz) to the Gulf of California, although within U.S. waters they are most common in the Southern California Bight (Eschmeyer et al. 1983, Love et al. 1987). The species generally inhabits rocky reefs, caves and crevices, but in certain areas and seasons it aggregates over sandy or muddy substrate (Love et al. 1987, Frey n.d.). California scorpionfish have been observed from the intertidal to 600 ft with a preferred depth range from 20-450 ft.

Males and females show different growth rates, with females growing to a larger size than males, and the sexes exhibit different length-weight relationships (Love et al. 1987). Few California scorpionfish are mature at one year old (14 cm TL). Fifty-percent of fish mature at 17-18 cm (2 years old) and all by 22 cm (4 years old) (Love et al. 1987).

California scorpionfish feed on a wide variety of mobile prey, including crabs, fishes (e.g., include northern anchovy, spotted cusk-eel), octopi, isopods and shrimp, (Taylor 1963, Quast 1968, Love et al. 1987, TuRNER et al. n.d.). The species is nocturnal, but have been observed feeding during the day. Predation on scorpionfish is believed to be low, but one individual was found in the gut of a leopard shark (Love pers comm.).

California scorpionfish utilize the "explosive breeding assemblage" reproductive mode in 157 which fish migrate to, and aggregate at traditional spawning sites for brief periods (Love 158 et al. 1987). California scorpionfish migrate to deeper waters (120-360 ft) to spawn during 159 May-August, with peak spawning occurring July. The species is oviparous, producing floating, 160 gelatinous egg masses in which the eggs are embedded in a single layer (Orton 1955), and 161 it is believed that spawning takes place just before, and perhaps after dawn, in the water 162 column (Love et al. 1987). Tagging data suggest California scorpionfish return to the same 163 spawning site, but information is not available on non-spawning season site fidelity. 164

Little is known about California scorpionfish larvae. The CalCOFI survey observed 463
California scorpionfish larvae from 1977-2000, with the majority at station close to Oxnard
(east of the Channel Islands) (Moser, H. G., R. L. Charter, P. E. Smith, D. A. Ambrose, W.
Watson et al. 2002). Higher densities of larvae have been observed in the CalCOFI stations
throughout Baja, peaking south of Punta Eugenia from July to September. The hatching

length is reported as 1.9-2.0 mm (Washington et al. n.d.) and transformation length of greater than 1.3 cm (Washington et al. n.d.) less than 2.1 cm (Moser n.d.).

1.2 Map

map

A map showing the scope of the assessment and depicting boundaries for fisheries or data collection strata is provided in Figure 1.

1.3 Life History

life-history

Ecosystem Considerations 1.4

ecosystem-considerations-1

In this assessment, ecosystem considerations were not explicitly included in the analysis. This is primarily due to a lack of relevant data and results of analyses (conducted elsewhere) that could contribute ecosystem-related quantitative information for the assessment.

1.5 Fishery Information

fishery-information

Rockfish example: The rockfish fishery off the U.S. Pacific coast first developed off California in the late 19th century as a hook-and-line fishery (Love et al. 2002). 182 The rockfish trawl fishery was established in the early 1940s, when the United States became

involved in World War II and wartime shortage of red meat created an increased demand for 184 other sources of protein (Harry and Morgan 1961, Alverson et al. 1964). Etc.... 185

Summary of Management History 1.6

summary-of-management-history

Prior to the adoption of the Pacific Coast Groundfish Fishery Management Plan (FMP) in 1982, California scorpionfish (Scorpaena quttata) was managed through a regulatory process that included the California Department of Fish and Wildlife (CDFW) along with 189 either the California State Legislature or the Fish and Game Commission (FGC) depending on the sector (recreation or commercial) and fishery. With implementation of the Pacific 191 Coast Groundfish FMP, California scorpionfish came under the management authority of the Pacific Fishery Management Council (PFMC), being incorporated, along with all genera 193 and species of the family Scorpaenidae, into a federal rockfish classification and managed as part of "Remaining Rockfish" under the larger heading of "Other Rockfish" ((Pacific Fishery 195

Management Council (Institution/Organization) 2002, 2004), Tables 31-39).

The ABCs provided by the PFMC's Groundfish Management Team (GMT) in the 1980's were based on an analysis of commercial landings from the 1960's and 1970's. For this analysis. 198 most of the rockfishes were lumped into one large group. This analysis indicated that the landings for rockfish in the Monterey-Conception area were at or near ABC levels (Pacific 200 Fishery Management Council (Institution/Organization) 1993). To keep landings within 201 these adopted harvest targets, the Pacific Coast Groundfish FMP provided the Council with 202 a variety of management tools including area closures, season closures, gear restrictions, and, 203 for the commercial sector, cumulative limits (generally for two-month periods). With the 204 implementation of a federal groundfish restricted access program in 1994, allocations of total 205 catch and cumulative limits began to be specifically set for open access (including most of 206 California's commercial fisheries that target California scorpionfish in Southern California) 207 and limited entry fisheries (Pacific Fishery Management Council (Institution/Organization) 208 2002, 2004). As a result, in the later 1990'ss as commercial landings decreased and recreational 200 harvest became a greater proportion of the available harvest. 210

Beginning in 1997, California scorpionfish was managed as part of the Sebastes complexsouth, Other Rockfish category. (Sebastes complex-south included the Eureka, Monterey, 212 and Conception areas while Sebastes complex-north included the Vancouver and Columbia 213 areas.) The PFMC's rockfish management structure changed significantly in 2000 with the 214 replacement of the Sebastes complex -north and -south areas with Minor Rockfish North 215 (now covering the Vancouver, Columbia, and Eureka areas) and Minor Rockfish South (now 216 Monterey and Conception areas only). The OY for these two groups (which continued to be 217 calculated as 0.50 of the ABC) was further divided (between north and south of 40°10′ N. 218 latitude) into nearshore, shelf, and slope rockfish categories with allocations set for Limited 219 Entry and Open Access fisheries within each of these three categories (January 4, 2000, 220 65 FR 221; (Pacific Fishery Management Council (Institution/Organization) 2002), Tables 221 54-55). Because of its depth range and southern distribution, California scorpionfish was 222 included within the Minor Rockfish South, Other Rockfish ABC and managed under the south 223 of 40°10′ N. latitude nearshore rockfish OY and trip limits ((Pacific Fishery Management Council (Institution/Organization) 2002), Table 29). 225

Along with the above changes, in 2000 the southern area divided into two separate management 226 areas at Point Lopez, 36°00′ N. latitude. This was followed in 2001 with the implementation 227 of the northern rockfish and lingcod management area between (40°10′ N. latitude) and Point 228 Conception (34°27′ N. latitude); and the southern rockfish and lingcod management area 229 between Point Conception and the U.S.- Mexico border. These were later revised starting 230 in 2004 with the northern rockfish and lingcod management area redefined as ocean waters 231 from the Oregon-California border (42°00′ N. latitude) to 40°10′ N. latitude, the central 232 rockfish and lingcod management area defined as ocean waters from 40°10′ N. latitude to 233 Point Conception, and the southern rockfish and management area continuing to be defined 234 as ocean waters from Point Conception to the U.S.-Mexico border. 235

Cowcod Conservation Areas (CCAs) also were established in 2001 to reduce fishing effort for cowcod rockfish ((Pacific Fishery Management Council (Institution/Organization) 2002),
Table 29). These areas were closed to all recreational and commercial fishing for groundfish

except for minor nearshore rockfish1 (including California scorpionfish) within waters less
than 20 fathoms. In addition, Rockfish Conservation Areas (RCAs) were established in
2003 to allow for the closure of specific area and depth ranges along the West Coast for
the purpose of reducing fishing effort for shelf and slope rockfish. The California Rockfish
Conservation Area (CRCA) was defined as those ocean waters south 40°10′ N. latitude to
the U.S.-Mexico border with different depth zones specified for the areas north and south of
Pt. Reyes (37°59.73′ N. latitude).

During the late 1990's and early 2000's, major changes also occurred in the way that California 246 managed its nearshore fishery. The Marine Life Management Act (MLMA), which was passed 247 in 1998 by the California Legislature and enacted in 1999, required that the FGC adopt 248 an FMP for nearshore finfish. It also gave authority to the FGC to regulate commercial 240 and recreational nearshore fisheries through FMPs and provided broad authority to adopt 250 regulations for the nearshore fishery during the time prior to adoption of the nearshore finfish 251 FMP. Within this legislation, the Legislature also included commercial size limits for nine 252 nearshore species including California scorpionfish (10-inch minimum size) and a requirement 253 that commercial fishermen landing these nine nearshore species possess a nearshore permit. 254

Following adoption of the Nearshore FMP and accompanying regulations by the FGC in fall of 2002, the FGC adopted regulations in November 2002 which established a set of marine reserves around the Channel Islands in Southern California (which became effective April 2003) and adopted a nearshore restricted access program in December 2002 (which included the establishment of a Deeper Nearshore Permit) to be effective starting in the 2003 fishing year.

Although the Nearshore FMP provided for the management of the nearshore rockfish and 261 California scorpionfish, management authority for these species continued to reside with the Council. Even so, for the 2003 and subsequent fishery seasons, the State provided 263 recommendations to the Council specific to the nearshore species that followed the directives 264 set out in the Nearshore FMP. These recommendations, which the Council incorporated into 265 the 2003 management specifications, included a recalculated OY for Minor Rockfish South 266 - Nearshore, division of the Minor Rockfish South - Nearshore into three groups (shallow 267 nearshore rockfish; deeper nearshore rockfish; and California scorpionfish), and specific harvest 268 targets and recreational and commercial allocations for each of these groups. 269

Also, since the enactment of the MLMA, the Council and State in a coordinated effort developed and adopted various management specifications to keep harvest within the harvest targets, including seasonal and area closures (e.g. the CCAs; a closure of Cordell Banks to specific fishing), depth restrictions, minimum size limits, and bag limits to regulate the recreational fishery and license and permit regulations, finfish trap permits, gear restrictions, seasonal and area closures (e.g. the RCAs and CCAs; a closure of Cordell Banks to specific fishing), depth restrictions, trip limits, and minimum size imits to regulate the commercial fishery.

278 1.7 Management Performance

management-performance-1

- 279 Management performance table: (Table f)
- 280 A summary of these values as well as other base case summary results can be found in Table

281 i

282 1.8 Fisheries off Mexico

fisheries-off-mexico

²⁸³ Include if necessary.

284 2 Assessment

assessment

 $_{ exttt{285}}$ 2.1 Data

- Data used in the California scorpionfish assessment are summarized in Figure 2.
- ²⁸⁷ A description of each data source is below.

288 2.1.1 Commercial Fishery Landings

commercial-fishery-landings

- Sub-heading 1
- 290 Sub-heading 2
- 291 Sub-heading 3

292 2.1.2 Sport Fishery Removals

sport-fishery-removals

- Sub-heading 1
- 294 Sub-heading 2
- Sub-heading 3

$_{296}$ 2.1.3 Estimated Discards

estimated-discards

- Sub-heading 1
- Sub-heading 2
- Sub-heading 3

300 2.1.4 Abundance Indices

abundance-indices

- 301 Sub-heading 1
- $_{302}$ Sub-heading 2

2.1.5 Fishery-Independent Data: possible sources

fishery-independent-data-possible-sources

- Northwest Fisheries Science Center (NWFSC) slope survey
- The NWFSC slope survey was conducted annually from 1999 to 2002.
- The depth range of this survey is 100-700 fm.
- Northwest Fisheries Science Center (NWFSC) shelf-slope survey
- This survey is referred to as the "combo," conducted annually since 2003.
- The survey consistently covered depths between 30 and 700 fm.
- 310 Alaska Fisheries Science Center (AFSC) shelf survey
- The survey, often referred to as the "triennial" survey was conducted every third year between
- ³¹² 1977 and (and conducted in 2004 by the NWFSC using the same protocols). The triennial
- 313 survey trawls in depths of 30 to 275 fm.
- Partnership For Interdisciplinary Studies of Coastal Oceans (PISCO)
- 315 Blurb on species presence in PISCO surveys

316 2.1.6 Biological Parameters and Data

biological-parameters-and-data

317 Length And Age Compositions

- Include: Sample size information for length and age composition data by area, year, gear,
- market category, etc., including both the number of trips and fish sampled.
- Length compositions were provided from the following sources, with brief descriptions below:

- CDFW market category study (commercial dead fish,1996-2003)
 - CALCOM (commercial dead fish, 2013-2016)
 - CDFW onboard observer (recreational charter discards, 2003-2016)
 - Ally et al. [-@Ally1991] onboard observer study (recreational charter discards, 1984-1989)
 - California recreational sources combined (recreational charter retained catch)
 - CDFW and Ally et al. (1991) onboard observer surveys (1984-1989)
 - Collins and Crooke onboard observer survey (1975-1978)
 - MRFSS (1980-2003)
 - CRFS (2004-2014)
 - California recreational sources combined (private mode retained catch)
 - MRFSS (1980-2003)
 - CRFS (2004-2016)
 - Sanitation district trawl surveys (research, 1970-2016)
 - CSUN/VRG gillnet survey (research, 1995-2008)
 - Power plant impingement surveys (research, 1974-2016)
 - Southern California Bight trawl survey (research, 1994,1998,2003,2008,2013)
- Recreational: California MRFSS And CRFS Length Composition Data Individual fish lengths recorded by MRFSS (1980-2003) and CRFS (2004-2011) samplers were downloaded from the RecFIN website (www.recfin.org). CRFS data from 2012-2014 were obtained directly from CDFW.
- 342 Commercial: PacFIN

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

- 343 Research: NWFSC shelf-slope survey
- Research: NWFSC slope survey
- Age Structures Age data were provided from the NWFSC trawl survey from 2005-2016.
- Length-at-age was initially estimated external to the population dynamics models using the von Bertalanffy growth curve (Bertalanffy 1938), $L_i = L_{\infty}e^{(-k[t-t_0])}$, where L_i is the length (cm) at age i, t is age in years, k is rate of increase in growth, t_0 is the intercept, and L_{∞} is the asymptotic length.

350 Aging Precision And Bias

351 Weight-Length

The weight-length relationship is based on the standard power function: $W = \alpha(L^{\beta})$ where W is individual weight (kg), U is length (cm), and U are coefficients used as constants.

354 Maturity And Fecundity

Natural Mortality Hamel (2015) developed a method for combining meta-analytic ap-355 proaches to relating the natural mortality rate M to other life-history parameters such as longevity, size, growth rate and reproductive effort, to provide a prior on M. In that same 357 issue of ICESJMS, Then et al. (2015), provided an updated data set of estimates of M and 358 related life history parameters across a large number of fish species, from which to develop 359 an M estimator for fish species in general. They concluded by recommending M estimates 360 be based on maximum age alone, based on an updated Hoenig non-linear least squares 361 (nls) estimator $M = 4.899 * A_{max}^{-.916}$. The approach of basing M priors on maximum age 362 alone was one that was already being used for west coast rockfish assessments. However, in fitting the alternative model forms relating -.916M to A_{max} , Then et al. (2015) did 364 not consistently apply their transformation. In particular, in real space, one would expect substantial heteroscedasticity in both the observation and process error associated with the 366 observed relationship of M to A_{max} . Therefore, it would be reasonable to fit all models under a log transformation. This was not done. Revaluating the data used in Then et al. (2015) by 368 fitting the one-parameter A_{max} model under a log-log transformation (such that the slope is forced to be -1 in the transformed space (as in Hamel (2015)), the point estimate for M is:

$$M = \frac{5.4}{A_{max}} \tag{1}$$

The above is also the median of the prior. The prior is defined as a lognormal with mean $ln\frac{5.4}{A_{max}}$ and SE = 0.4384343. Using a maximum age of 21 the point estimate and median of the prior is 0.2545, which is used as a prior for females in the assessment model.

374 Sex ratios

2.1.7 Environmental Or Ecosystem Data Included In The Assessment environmental-or-ecosystem-data-included-in-the-assessment

2.2 History Of Modeling Approaches Used For This Stock history-of-modeling-approaches-used-for-this-stock

2.2.1 Previous Assessments

previous-assessments

78 2.2.2 2005 Assessment Recommendations

assessment-recommendations

Include: Response to STAR panel recommendations from the most recent previous assessment.

Recommendation 1: The sanitation surveys conducted to track the impact of sewage outfall provided a fishery independent index of abundance for scorpionfish. This data source should be more fully explored for other 382 near-shore species of recreational or commercial interest. Methods should 383 be developed to produce a more statistically rigorous index from the separate surveys. 385

386 387

388

389

390

391

392

384

381

STAT response: Data from all sanitation districts in southern California were obtained for this assessment. All of the data were pooled across surveys to develop one index of abundance using the delta-GLM method

Recommendation 2: An age, growth and maturity study for scorpion is needed. Although there has been previous research on scorpionfish age and growth, the available information is not appropriate for stock assessment modeling.

394 395

396

397

398

399

400

401

STAT response: Age data are available from the NWFSC trawl survey from 2005-2016. There have been no additional studies on growth or maturity for California scorpionfish since the 2005 assessment.

Recommendation 3: Location information for the historic groundfish data of all species is currently available, in hard copy form only, from the California Department of Fish and Game. Putting this information into electronic format would greatly improve the ability to assign catches of all species to specific stocks on a trip-by-trip basis.

402 403 404

405

STAT response: The location-sepcific catches referred to above have been key-punched and are available in electornic form from the SWFSC, Santa Cruz.

Recommendation 4: The SS2 model should be modified to allow for projections 406 of user-specified recruitment at user defined values. It would be most 407 helpful if the default harvest policies were then recalculated automatically 408 for these user-specified recruitments. 409

410

411

STAT response: The status of this within Stock Synthesis is unknown.

2.3Model Description

model-description

$\begin{array}{c} \textbf{Transition To The Current Stock Assessment} \\ \textbf{transition-to-the-current-stock-assessment} \end{array}$ 2.3.1

Include: Complete description of any new modeling approaches

- Below, we describe the most important changes made since the last full assessment and explain rationale for each change.:
- 1. Change No. 1. Rationale: blah blah blah.
- 2. Change No. 2. Rationale: blah blah blah.
- 3. Change No. 3. Rationale: Continue list as needed.

2.3.2 Definition of Fleets and Areas

definition-of-fleets-and-areas

- We generated data sources for each of the models. Fleets by model include:
- 422 Model Region 1 or remove this line if only one model
- 423 Commercial: The commercial fleets include...
- Recreational: The recreational fleets include...
- Research: Research derived-data include...

2.3.3 Summary of Data for Fleets and Areas

summary-of-data-for-fleets-and-areas

2.3.4 Modeling Software

modeling-software

- The STAT team used Stock Synthesis 3 version 3.30.0.4 by Dr. Richard Methot at the NWFSC.
- This most recent version was used, since it included improvements and corrections to older
- versions. The r4SS package (GitHub release number v1.27.0) was used to post-processing
- output data from Stock Synthesis.

2.3.5 Data Weighting

data-weighting

- Citation for Francis method (Francis 2011)
- Citation for Ianelli-McAllister harmonic mean method (McAllister and Ianelli 1997)

435 **2.3.6** Priors

priors

Citation for Hamel prior on natural mortality (Hamel 2015)

437 2.3.7 General Model Specifications

general-model-specifications

Model data, control, starter, and forecast files can be found in Appendices A-D.

2.3.8 Estimated And Fixed Parameters

estimated-and-fixed-parameters

A full list of all estimated and fixed parameters is provided in Tables.... Estimated and fixed parameters tables currently read in from .csv file, EXAMPLE: Table ??

442 2.4 Model Selection and Evaluation

model-selection-and-evaluation

2.4.1 Key Assumptions and Structural Choices

key-assumptions-and-structural-choices

- Include: Evidence of search for balance between model realism and parsimony.
- 445 Comparison of key model assumptions, include comparisons based on nested models (e.g.,
- asymptotic vs. domed selectivities, constant vs. time-varying selectivities).

447 2.4.2 Alternate Models Considered

alternate-models-considered

448 Include: Summary of alternate model configurations that were tried but rejected.

2.4.3 Convergence

convergence

- 450 Include: Randomization run results or other evidence of search for global best estimates.
- Convergence testing through use of dispersed starting values often requires extreme values to
- actually explore new areas of the multivariate likelihood surface. Jitter is a SS option that
- 453 generates random starting values from a normal distribution logistically transformed into
- each parameter's range (Methot 2015). Table 3 shows the results of running 100 jitters for
- each pre-STAR base model....

456 2.5 Response To The Current STAR Panel Requests

response-to-the-current-star-panel-requests

Request No. 1: Add after STAR panel.

458

Rationale: Add after STAR panel. 459 STAT Response: Add after STAR panel. 460 Request No. 2: Add after STAR panel. 461 462 Rationale: Add after STAR panel. 463 STAT Response: Add after STAR panel. Request No. 3: Add after STAR panel. 465 466 Rationale: Add after STAR panel. 467 STAT Response: Add after STAR panel. 468 Request No. 4: Example of a request that may have a list: 469 • Item No. 1 471 • Item No. 2 472 • Item No. 3, etc. 473 Rationale: Add after STAR panel. 474 **STAT Response:** Continue requests as needed. 475 Model 1 2.6 model-12.6.1 Model 1 Base Case Results model-1-base-case-results Table ?? Model 1 Uncertainty and Sensitivity Analyses 2.6.2model-1-uncertainty-and-sensitivity-analyses

Table 4

- 481 2.6.3 Model 1 Retrospective Analysis
- model-1-retrospective-analysis

482 2.6.4 Model 1 Likelihood Profiles

model-1-likelihood-profiles

2.6.5 Model 1 Harvest Control Rules (CPS only)

model-1-harvest-control-rules-cps-only

484 2.6.6 Model 1 Reference Points (groundfish only)

model-1-reference-points-groundfish-only

- Intro sentence or two....(Table 5).
- Equilibrium yield at the proxy F_{MSY} harvest rate corresponding to $SPR_{50\%}$ is 276.8 mt.
- Table e shows the full suite of estimated reference points for the northern area model and
- Figure k shows the equilibrium yield curve.

3 Harvest Projections and Decision Tables

harvest-projections-and-decision-tables

- 490 Table f
- 491 Model 1 Projections and Decision Table (groundfish only) (Table 6
- 492 Table h

496

497

498

499

500

502

503

- 493 Model 2 Projections and Decision Table (groundfish only)
- 494 Model 3 Projections and Decision Table (groundfish only)

95 4 Regional Management Considerations

regional-management-considerations

- 1. For stocks where current practice is to allocate harvests by management area, a recommended method of allocating harvests based on the distribution of biomass should be provided. The MT advisor should be consulted on the appropriate management areas for each stock.
- 2. Discuss whether a regional management approach makes sense for the species from a biological perspective.
 - 3. If there are insufficient data to analyze a regional management approach, what are the research and data needs to answer this question?

504 5 Research Needs

research-needs

- 1. Research need No. 1
- 2. Research need No. 2
- 3. Research need No. 3
- 4. etc.

509 6 Acknowledgments

acknowledgments

Include: STAR panel members and affiliations as well as names and affiliations of persons who contributed data, advice or information but were not part of the assessment team. Not required in draft assessment undergoing review.

Tables 7

tables

Table 1: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum and maximum), estimation phase (negative values indicate not estimated), status (indicates if parameters are near bounds, and prior type information (mean, SD).

No. Parameter	Value	Phase	Bounds	Status	SD	Prior (Exp.Val, SD)
1 NatM_p_1_Fem_GP_1	0.246	က	(0.01, 1)	OK	0.018	None
2 L-at_Amin_Fem_GP_1	13.874	2	(10, 30)	OK	0.563	None
3 L-at_Amax_Fem_GP_1	33.203	2	(30, 50)	OK	0.535	None
4 VonBert_K_Fem_GP_1	0.223	2	(0.05, 0.5)	OK	0.022	None
5 CV_young_Fem_GP_1	0.145	ဘ	(0.02, 0.5)	OK	0.015	None
6 CV_old_Fem_GP_1	0.111	က	(0.02, 0.75)	OK	0.006	None
7 Wtlen_1_Fem	0.000	. 5	•			None
8 Wtlen_2_Fem	3.058	ငှ	(2, 4)			None
9 Mat50%-Fem	17.188	. ن				None
10 Mat_slope_Fem	-0.466	ငှ	(-3, 3)			None
11 Eggs/kg_inter_Fem	1.000	-3				None
12 Eggs/kg_slope_wt_Fem	0.000	ç-	(-3, 3)			None
13 NatM_p_1_Mal_GP_1	-0.216	3		OK	0.037	Normal (-0.22, 99)
14 L_at_Amin_Mal_GP_1	0.230	2	(-3, 3)	OK	0.042	None
15 L-at-Amax-Mal-GP-1	-0.136	2		OK	0.018	None
16 VonBert_K_Mal_GP_1	-0.588	2		OK	0.159	None
17 CV_young_Mal_GP_1	-0.327	က	(-1, 1)	OK	0.114	None
18 CV_old_Mal_GP_1	-0.325	က	(-3, 3)	OK	0.085	None
19 Wtlen_1_Mal	0.000		(0, 1)			None
20 Wtlen_2_Mal	2.981	ਹ-	(2, 4)			None
24 CohortGrowDev	1.000		(1, 1)			None
25 FracFemale_GP_1	0.500	.4	(0.000001, 0.999999)			None
$26 \text{ SR}_{-}\text{LN}(\text{R0})$	8.299	2	(0, 31)	OK	0.292	None
27 SR_BH_steep	0.718	-2	(0.21, 0.99)			Full_Beta (0.718, 0.158)
28 SR_sigmaR	0.900	-2	(0, 2)			None
29 SR_regime	0.000	-4	(-5, 5)			None
Continued on next name						

Continued on next page

Table 1: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum and maximum), estimation phase (negative values indicate not estimated), status (indicates if parameters are near bounds, and prior type information (mean, SD).

					i	į	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
No.	Parameter	Value	$_{ m Phase}$	Bounds	Status	SD	Prior (Exp. Val, SD)
30	SR_autocorr	0.000	-3	(0, 0.5)			None
134	InitF_seas_1_flt_1ComHL	0.000	-	(0, 1)			Normal (0.01, 1000)
135	$LnQ_base_RecPR(4)$	-8.721	-	(-15, 15)			None
136	$Q_{-extraSD_{-}RecPR(4)}$	0.006	4	(0.0001, 1)	ГО	0.014	None
137	$LnQ_base_RecPC(5)$	-10.639		(-15, 15)			None
138	$Q_{-extraSD_RecPC(5)}$	0.386	4	(0.0001, 1)	OK	0.057	None
139	$LnQ_base_Sanitation(7)$	-10.885		(-15, 15)			None
140	$Q_{-extraSD_Sanitation(7)}$	0.218	4	(0.0001, 1)	OK	0.047	None
141	$LnQ_{-base_{-}NWFSCTrawl(8)}$	-1.480		(-15, 15)			None
142	Q_extraSD_NWFSCTrawl(8)	0.250	4	(0.0001, 1)	OK	0.145	None
143	$LnQ_base_SCBSurvey(11)$	-12.854		(-15, 15)			None
144	$Q_{-extraSD_SCBSurvey(11)}$	0.177	4	(0.0001, 1)	OK	0.143	None
145	$LnQ_{-}base_{-}RecPCOBR(12)$	-8.945		(-15, 15)			None
146	$Q_{-extraSD_{-}RecPCOBR(12)}$	0.093	2	(0.0001, 1)	OK	0.032	None
147	$SizeSel_1-ComHL(1)$	39.749	4	(13, 44)	OK	2.095	None
148	$SizeSel_P2_ComHL(1)$	15.000	ငှ	(-10, 16)			None
149	$SizeSel_{-}P3_ComHL(1)$	4.713	4	(-1, 10)	OK	0.191	None
150	$SizeSel_P4_ComHL(1)$	15.000	ငှ	(-1, 16)			None
151	$SizeSel_{-}P5_ComHL(1)$	-17.448	ಬ	(-25, -1)	OK	103.065	None
152	$SizeSel_{-}P6_{-}ComHL(1)$	10.000	ç-	(-5, 11)			None
153	$SizeSel_1-ComNet(2)$	1.000	-2	(1, 45)			None
154	$SizeSel_{-}P2_{-}ComNet(2)$	45.000	ç-	(1, 45)			None
155	$SizeSel_1-ComTrawl(3)$	1.000	-2	(1, 45)			None
156	SizeSel_P2_ComTrawl(3)	45.000	ç-	(1, 45)			None
157	$SizeSel_P1_RecPR(4)$	35.320	4	(13, 44)	OK	0.736	None
158	SizeSelP2RecPR(4)	15.000	-3 -3	(-10, 16)			None
159	$SizeSel_P3RecPR(4)$	4.105	4	(-1, 10)	OK	0.101	None
Cont	Continued on next page						

Continued on next page

Table 1: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum and maximum), estimation phase (negative values indicate not estimated), status (indicates if parameters are near bounds, and prior type information (mean, SD).

No.	Parameter	Value	Phase	Bounds	Status	SD	Prior (Exp. Val, SD)
160	SizeSel_P4_RecPR(4)	15.000	-3	(-1, 16)			None
161	SizeSel_P5_RecPR(4)	-6.188	ಬ	(-25, -1)	OK	0.343	None
162	SizeSel_P6_RecPR(4)	10.000	ç-	(-5, 11)			None
163	SizeSelP1RecPC(5)	39.414	4	(13, 44)	OK	1.052	None
164	$SizeSel_P2_RecPC(5)$	15.000	-3	(-10, 16)			None
165	$SizeSel_P3_RecPC(5)$	4.264	4	(-1, 10)	OK	0.114	None
166	SizeSelP4RecPC(5)	15.000	-3				None
167	$SizeSel_P5_RecPC(5)$	-7.030	ರ	(-25, -1)	OK	0.362	None
168	$SizeSel_Be_RecPC(5)$	10.000	-3	(-5, 11)			None
169	$SizeSel_P1_RecDD(6)$	24.506	4	(13, 44)	OK	0.020	None
170	$SizeSel_P2_RecDD(6)$	-12.531	3	(-15, 16)	OK	43.212	None
171	$SizeSel_{-}P3_{-}RecDD(6)$	1.508	4	(-1, 10)	OK	0.235	None
172	$SizeSel_4-RecDD(6)$	-12.601	3	(-20, 5)	OK	35.327	None
173	$SizeSel_{-}P5_{-}RecDD(6)$	-1.723	ರ	(-25, 3)	OK	0.187	None
174	$SizeSel_RecDD(6)$	-1.932	3	(-5, 11)	OK	0.181	None
175	$SizeSel_{-}P1_{-}Sanitation(7)$	26.150	4	(13, 44)	OK	0.499	None
176	SizeSel_P2_Sanitation(7)	15.000	-3	(-10, 16)			None
177	SizeSel_P3_Sanitation(7)	3.462	4	(-1, 10)	OK	0.128	None
178	SizeSel_P4_Sanitation(7)	15.000	-3	(-1, 16)			None
179	SizeSel_P5_Sanitation(7)	-3.595	4	(-25, 5)	OK	0.497	None
180	SizeSel_P6_Sanitation(7)	10.000	-3	(-5, 11)			None
181	SizeSel_P1_NWFSCTrawl(8)	26.815	4	(13, 44)	OK	2.433	None
182	SizeSel_P2_NWFSCTrawl(8)	15.000	-3	(-10, 16)			None
183	SizeSel_P3_NWFSCTrawl(8)	4.173	4	(-1, 10)	OK	1.047	None
184	SizeSel_P4_NWFSCTrawl(8)	15.000	-3	(-1, 16)			None
185	SizeSel_P5_NWFSCTrawl(8)	-2.000	4	(-25, 5)	OK	2.252	None
186	SizeSel_P6_NWFSCTrawl(8)	10.000	ç-	(-5, 11)			None
Conti	Continued on next page						

Continued on next page

Table 1: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum and maximum), estimation phase (negative values indicate not estimated), status (indicates if parameters are near bounds, and prior type information (mean, SD).

No.	Parameter	Value	Phase	Bounds	Status	SD	Prior (Exp.Val, SD)
187	SizeSel_P1_GillnetSurvey(9)	1.000	-2	(1, 45)			None
188	SizeSel_P2_GillnetSurvey(9)	45.000	-3	(1, 45)			None
189	$SizeSel_{1}Impingement(10)$	1.000	-2	(1, 45)			None
190	$SizeSel_P2_Impingement(10)$	45.000	-3	(1, 45)			None
191	$SizeSel_P1_SCBSurvey(11)$	21.519	4	(13, 44)	OK	2.011	None
192	$SizeSel_P2_SCBSurvey(11)$	15.000	ç-	(-10, 16)			None
193	$SizeSel_P3_SCBSurvey(11)$	2.216	4	(-1, 10)	OK	1.182	None
194	$SizeSel_P4_SCBSurvey(11)$	15.000	-3	(-1, 16)			None
195	$SizeSel_{-}P5_SCBSurvey(11)$	-2.987	ರ	(-25, -1)	OK	1.329	None
196	$SizeSel_B6_SCBSurvey(11)$	10.000	-3	(-5, 11)			None
197	$SizeSel_P1_RecPCOBR(12)$	1.000	-2	(1, 45)			None
198	SizeSel_P2_RecPCOBR(12)	45.000	-3	(1, 45)			None
199	SizeSel_P1_ComHL(1)_BLK1repl_1999	28.986	4	(13, 44)	OK	0.284	None
200	SizeSel_P3_ComHL(1)_BLK1repl_1999	2.099	4	(-1, 10)	OK	0.124	None
201	SizeSel_P1_RecPR(4)_BLK1repl_1999	28.199	4	(13, 44)	OK	0.220	None
202	$SizeSel_P3_RecPR(4)_BLK1repl_1999$	1.870	4	(-1, 10)	OK	0.120	None
203	$SizeSel_P1_RecPC(5)_BLK1repl_1999$	35.289	4	(13, 44)	OK	0.369	None
204	SizeSel_P3_RecPC(5)_BLK1repl_1999	3.355	4	(-1, 10)	OK	0.074	None
Ψ_	_tab:model_params						

39

Table 2: Summary of the biomass/abundance time series used in the stock assessment.

							tab:I	ndex_summary
Region	ID	Fleet	Years	Name	Fishery	Filtering	Method	Endorsed
					ind.			
WA	1	4	1981-	Dockside	No	trip, area,	delta-GLM	\overline{SSC}
			2014	CPUE		month,	(bin-	
						Stephens-	gamma)	
						MacCall	0 /	
_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_
-	-	-	-	-	-	-	=	-
-	-	-	-	-	-	-	-	-

Table 3: Results from 100 jitters from each of the three models.

tab:jitter

Status	Model.1	Model.2	Model.3
Returned to base case	-	-	-
Found local minimum	-	-	-
Found better solution	-	-	-
Error in likelihood	-	-	-
Total	100	100	100

Table 5: Time-series of population estimates from the base-case model.

Yr	Total	Spawning	Depletion	Age-0	Total catch	Relative ex-	SPR
	biomass	biomass		recruits	(mt)	ploitation	
	(mt)	(mt)				rate	
1916	3764	1719	1.00	4022	4	0.00	0.99
1917	3745	1717	1.00	4022	8	0.00	0.99
1918	3723	1713	1.00	4021	13	0.00	0.98
1919	3728	1707	0.99	4020	12	0.00	0.98
1920	3708	1703	0.99	4019	16	0.00	0.97
1921	3663	1697	0.99	4018	26	0.01	0.96
1922	3694	1686	0.98	4015	19	0.01	0.97
1923	3658	1681	0.98	4014	27	0.01	0.96
1924	3567	1673	0.97	4013	49	0.01	0.92
1925	3376	1654	0.96	4008	101	0.03	0.85
1926	3561	1611	0.94	3998	49	0.01	0.92
1927	3549	1603	0.93	3996	51	0.01	0.92
1928	3578	1594	0.93	3995	44	0.01	0.93
1929	3555	1592	0.93	3995	49	0.01	0.92
1930	3589	1586	0.92	3994	41	0.01	0.93
1931	3581	1586	0.92	3995	43	0.01	0.93
1932	3590	1585	0.92	3996	41	0.01	0.93
1933	3630	1586	0.92	3997	32	0.01	0.94
1934	3624	1591	0.93	4000	33	0.01	0.94
1935	3619	1595	0.93	4003	35	0.01	0.94
1936	3537	1597	0.93	4006	54	0.02	0.91
1937	3491	1589	0.92	4006	65	0.02	0.89
1938	3449	1577	0.92	4005	76	0.02	0.88
1939	3498	1561	0.91	4005	62	0.02	0.90
1940	3509	1554	0.90	4007	59	0.02	0.90
1941	3575	1551	0.90	4010	43	0.01	0.93
1942	3681	1557	0.91	4017	20	0.01	0.96
1943	3700	1575	0.92	4029	16	0.00	0.97
1944	3665	1592	0.93	4041	24	0.01	0.96
1945	3586	1603	0.93	4052	42	0.01	0.93
1946	3490	1603	0.93	4062	66	0.02	0.89
1947	3461	1591	0.93	4070	74	0.02	0.88
1948	3348	1576	0.92	4080	107	0.03	0.84
1949	3386	1547	0.90	4087	93	0.03	0.85
1950	3368	1532	0.89	4100	97	0.03	0.85
1951	3475	1517	0.88	4115	67	0.02	0.89
1952	3501	1522	0.89	4156	61	0.02	0.90
1953	3450	1531	0.89	4218	74	0.02	0.88
1954	3412	1534	0.89	4226	84	0.02	0.86
1955	3475	1533	0.89	4263	67	0.02	0.89

Table 5: Time-series of population estimates from the base-case model.

Yr	Total	Spawning	Depletion	Age-0	Total catch	Relative ex-	SPR
	biomass	biomass	_	recruits	(mt)	ploitation	
	(mt)	(mt)			,	rate	
1956	3494	1544	0.90	4313	63	0.02	0.89
1957	3577	1557	0.91	4367	43	0.01	0.92
1958	3596	1582	0.92	4431	39	0.01	0.93
1959	3661	1608	0.94	4524	25	0.01	0.96
1960	3670	1641	0.95	4698	24	0.01	0.96
1961	3644	1674	0.97	4990	31	0.01	0.95
1962	3570	1706	0.99	5212	50	0.01	0.92
1963	3492	1734	1.01	5535	72	0.02	0.89
1964	3445	1759	1.02	6391	87	0.02	0.87
1965	3452	1793	1.04	7533	85	0.02	0.87
1966	3443	1856	1.08	8524	89	0.02	0.87
1967	3503	1956	1.14	4618	73	0.02	0.89
1968	3465	2081	1.21	2678	87	0.02	0.88
1969	3485	2146	1.25	1552	84	0.02	0.89
1970	3440	2119	1.23	974	103	0.02	0.87
1971	3478	1992	1.16	849	92	0.02	0.88
1972	3499	1809	1.05	648	82	0.02	0.89
1973	3453	1600	0.93	728	95	0.03	0.87
1974	3344	1374	0.80	1064	122	0.04	0.84
1975	3278	1148	0.67	6362	128	0.05	0.81
1976	3456	978	0.57	15965	66	0.03	0.88
1977	3341	1012	0.59	3790	88	0.03	0.83
1978	3425	1228	0.71	9023	62	0.02	0.87
1979	3269	1496	0.87	1534	100	0.03	0.81
1980	3193	1706	0.99	856	131	0.03	0.78
1981	3278	1778	1.03	891	118	0.03	0.81
1982	3304	1724	1.00	2100	119	0.03	0.82
1983	3506	1588	0.92	5316	64	0.02	0.89
1984	3474	1476	0.86	6742	73	0.02	0.88
1985	3417	1423	0.83	12359	87	0.03	0.86
1986	3449	1478	0.86	2011	76	0.02	0.87
1987	3430	1637	0.95	1038	79	0.02	0.87
1988	3063	1740	1.01	959	204	0.05	0.74
1989	3140	1660	0.97	618	175	0.05	0.76
1990	3001	1512	0.88	858	229	0.07	0.72
1991	2942	1289	0.75	1433	241	0.09	0.70
1992	3200	1054	0.61	15257	126	0.05	0.79
1993	3258	980	0.57	2527	102	0.03	0.81
1994	2920	1095	0.64	15750	188	0.06	0.69
1995	3053	1266	0.74	1927	143	0.04	0.73

Table 5: Time-series of population estimates from the base-case model.

Yr	Total	Spawning	Depletion	Age-0	Total catch	Relative ex-	SPR
	biomass	biomass		recruits	(mt)	ploitation	
	(mt)	(mt)				rate	
1996	3092	1535	0.89	3795	140	0.04	0.75
1997	3146	1731	1.01	9011	141	0.03	0.76
1998	3147	1839	1.07	3079	160	0.04	0.77
1999	3060	1910	1.11	9011	228	0.05	0.72
2000	3218	1913	1.11	2555	168	0.04	0.78
2001	3150	1945	1.13	3020	203	0.05	0.76
2002	3328	1905	1.11	5369	130	0.03	0.83
2003	3420	1861	1.08	1486	103	0.02	0.86
2004	3578	1811	1.05	2377	55	0.01	0.92
2005	3519	1746	1.02	3973	76	0.02	0.89
2006	3332	1646	0.96	3186	149	0.04	0.82
2007	3337	1517	0.88	2231	139	0.04	0.82
2008	3411	1412	0.82	2335	103	0.03	0.85
2009	3362	1327	0.77	3043	113	0.04	0.83
2010	3368	1240	0.72	5924	105	0.04	0.83
2011	3351	1189	0.69	1919	105	0.03	0.82
2012	3283	1181	0.69	467	121	0.04	0.79
2013	3277	1149	0.67	6222	115	0.04	0.79
2014	3236	1104	0.64	2428	124	0.05	0.78
2015	3359	1085	0.63	7514	84	0.03	0.82
2016	3403	1123	0.65	3822			

tab:Timeseries_mod1

Table 4: Sensitivity of the base model to dropping or down-weighting data sources and alternative assumptions about growth.

Label	Base	Harmonic	Drop	Drop	Down-	Free size	Free CV	$\operatorname{External}$
	(Francis weights)	mean weights	index	ages	$\begin{array}{c} \text{weight} \\ \text{lengths} \end{array}$	Age0	Amin	growth
${ m TOTAL_like}$		1			ı	ı		1
Catch_like	1	1	1	ı	1	ı	1	1
Equil_catch_like	ı	ı	,	ı	ı	ı	ı	1
Survey_like	1	1	1	ı	1	ı	1	1
Length_comp_like	ı	1	1	ı	1	ı	ı	1
Age_comp_like	ı	ı	1	ı	1	ı	ı	1
Parm_priors_like	1	1	1	1	1	ı	1	1
SSB_Unfished_thousand_mt	1	1	1	1	1	1	1	1
TotBio_Unfished	ı	1	ı	ı	1	ı	ı	1
SmryBio_Unfished	ı	1	1	1	1	ı	ı	1
Recr_Unfished_billions	1	ı	1	ı	1	ı	1	1
SSB_Btgt_thousand_mt	1	1	1	ı	1	ı	1	1
${ m SPR_Btgt}$	1	1	1	1	1	1	1	1
Fstd_Btgt	1	1	ı	1	1	ı	ı	1
TotYield_Btgt_thousand_mt	ı	ı	1	ı	ı	ı	ı	1
SSB_SPRtgt_thousand_mt	ı	1	1	ı	1	ı	ı	1
${ m Fstd_SPRtgt}$	ı	ı	1	ı	,	ı	ı	ı
TotYield_SPRtgt_thousand_mt	ı	ı	ı	ı	1	ı	ı	ı
SSB_MSY_thousand_mt	1	1	1	ı	1	ı	1	1
SPR_MSY	1	ı	1	ı	1	ı	1	1
Fstd_MSY	ı	ı	1	ı	1	ı	ı	1
TotYield_MSY_thousand_mt	ı	ı	1	ı	1	ı	ı	1
RetYield_MSY	1	ı	1	ı	1	ı	1	1
Bratio_2015	1	1	ı	ı	1	ı	1	1
$F_{-}2015$	ı	1	ı	ı	ı	ı	ı	1
SPRratio_2015	1	1	1	1	1	1	1	1
Recr_2015	1	1	ı	1	1	ı	ı	1
Recr_Virgin_billions	ı	1	,	ı	ı	ı	ı	1
L_at_Amin_Fem_GP_1	1	1	1	1	1	1	1	1
L_at_Amax_Fem_GP_1	1	ı	1	ı	1	ı	1	1
VonBert_K_Fem_GP_1	ı	1	1	ı	1	ı	ı	1
CV_young_Fem_GP_1	1	1	1	1	1	ı	1	1
)								

Table 6: Projection of potential OFL, spawning biomass, and depletion for the base case model.

					tab:Forecast_mod1
Yr	OFL	ACL landings	Age 5+	Spawning	Depletion
	contriubtion	(mt)	biomass (mt)	Biomass (mt)	
	(mt)				
2017	507.83	507.83	3053.30	1209.89	0.70

514 8 Figures

figures

Figure 1: Map showing the state boundary lines for management of the recreational fishing fleets. CRFS Districts 1-6 in California are presented as well as the WDFW Recreational Management Areas in Washington. Florence, OR is shown as a potential location of model stratification.

Data by type and year

Figure 2: Summary of data sources used in the base model. fig:data_plot

Length comps, retained, ComHL

Length (cm)

Figure 3: Length comps, retained, ComHL fig:mod1_1_comp_lenfit_flt1mkt2

Pearson residuals, retained, ComHL (max=7.96)

Figure 4: Pearson residuals, retained, ComHL (max=7.96)
Closed bubbles are positive residuals (observed > expected) and open bubbles are negative residuals (observed < expected). | fig:mod1_2_comp_lenfit_residsflt1mkt2

N-EffN comparison, Length comps, retained, ComHL

 $\label{eq:figure 5: N_EffN comparison, Length comps, retained, ComHL fig: mod1_3_comp_lenfit_satisfies the comparison of the comps of the comps of the comparison of the comps of the co$

Figure 6: Francis data weighting method TA1.8: ComHL Suggested sample size adjustment (with 95% interval) for len data from ComHL: 0.197 (0.1179_1.1745) For more info, see Francis, R.I.C.C. (2011). Data weighting in statistical fisheries stock assessment models. Can. J. Fish. Aquat. Sci. 68: 1124_1138.

Length comps, retained, ComNet

Length (cm)

Figure 7: Length comps, retained, ComNet | fig:mod1_5_comp_lenfit_flt2mkt2

references

- Alverson, D.L., Pruter, a T., and Ronholt, L.L. 1964. A Study of Demersal Fishes and Fisheries of the Northeastern Pacific Ocean. Institute of Fisheries, University of British Columbia.
- Bertalanffy, L. von. 1938. A quantitative theory of organic growth. Human Biology **10**: 181–213.
- Eschmeyer, W.N., Herald, E., and Hammann, H. 1983. A field guide to Pacific coast fishes of North America. Houghton Mifflin Company, Boston, MA.
- Francis, R. 2011. Data weighting in statistical fisheries stock assessment models. Canadian Journal of Fisheries and Aquatic Sciencies **68**: 1124–1138.
- Frey, H. (n.d.). California's living marine resources and their utilization. California Department of Fish; Game, Sacramento, CA.
- Hamel, O. 2015. A method for calculating a meta-analytical prior for the natural mortality rate using multiple life history correlates. ICES Journal of Marine Science **72**: 62–69.
- Harry, G., and Morgan, A. 1961. History of the trawl fishery, 1884-1961. Oregon Fish Commission Research Briefs 19: 5–26.
- Love, M., Yoklavich, M., and Thorsteinson, L. 2002. The rockfishes of the northeast Pacific.
 University of California Press, Berkeley, CA, USA.
- Love, M.S., Axell, B., Morris, P., Collins, R., and Brooks~-, A. 1987. Life history and fishery of the California scorpionfish, *Scorpaena guttata*, within the Southern California Bight. Fishery Bulletin **85**: 99–116.
- Maunder, M.N., Barnes, T., Aseltine-Neilson, D., and MacCall, A.D. 2005. The status of California scorpionfish (*Sorpaena guttata*) off southern California in 2004. Pacific Fishery Management Council, Portland, OR.
- McAllister, M.K., and Ianelli, J.N. 1997. Bayesian stock assessment using catch-age data and the sampling importance resampling algorithm. Canadian Journal of Fisheries and Aquatic Sciences **54**(2): 284–300.
- Methot, R.D. 2015. User manual for Stock Synthesis model version 3.24s. NOAA Fisheries,
 US Department of Commerce.
- Moser, H. (n.d.). Scorpaenidae *Scorpaena guttata*. *In* CalCOFI atlas 33: The early stages of the fishes in the california current region. pp. 788–789.
- Moser, H. G., R. L. Charter, P. E. Smith, D. A. Ambrose, W. Watson, S.R., Charter, and Sandknop, E.M. 2002. Atlas 35: Distributional atlas of fish larvae and eggs from Manta

- (surface) samples collected on CalCOFI surveys from 1977 to 2000. California Cooperative Oceanic Fisheries Investigations.
- Orton, G. 1955. Early developmental stages of the California scorpionfish, *Scorpaena guttata*. Copeia: 210–214.
- Pacific Fishery Management Council (Institution/Organization). 1993. The Pacific Coast Groundfish Fishery Management Plan: Fishery Management Plan for the California, Oregon,
- and Washington Groundfish Fishery as Amended Through Amendment 7. Pacific Fishery
- Management Council, Portland, OR.
- Pacific Fishery Management Council (Institution/Organization). 2002. Status of the Pacific
- 557 Coast Groundfish Fishery Through 2001 and Acceptable Biological Catches for 2002: Stock
- Assessment and Fishery Evaluation. Pacific Fishery Management Council, Portland, OR.
- Pacific Fishery Management Council (Institution/Organization). 2004. Pacific Coast Ground-
- 560 fish Fishery Management Plan: Fishery Management Plan for the California, Oregon, and
- 561 Washington Groundfish Fishery as Amended Through Amendment 17. Pacific Fishery
- Management Council, Portland, OR.
- Quast, J. 1968. Observations on the food of the kelp-bed fishes. California Department of Fish and Game Fish Bulletin (139): 109–142.
- Taylor, P. 1963. The venom and ecology of the California scorpionfish, Scorpaena guttata Girard. PhD Thesis, University of California San Diego.
- Then, A., Hoenig, J., Hall, N., and Hewitt, D. 2015. Evaluating the predictive performance
- of empirical estimators of natural mortality rate using information on over 200 fish species.
- ⁵⁶⁹ ICES Journal of Marine Science **72**: 82–92.
- Turner, C.H., Ebert, E.E., and Given, R.R. (n.d.). Man-mae reef ecology. California Department of Fish and Game Fish Bulletin **146**: 221.
- ⁵⁷² Washington, B., Moser, H.G., Laroche, W.A., and W. J. Richards, J. (n.d.). Scorpaeniformes:
- development. In Ontogeny and systematics of fishes, american society of ichthyologists and
- herpetologists special publication 1. Edited by H. G., A.W. Moser, W. J. Richards, D. M.
- ⁵⁷⁵ Cohen, M. P. Fahay, J. Kendall, and S.L. Richardson. pp. 405–428.