QCM n° 9

Un peu de calcul.

Échauffement n°1 Déterminer l'ensemble (u_n) vérifiant pour tout $n \in \mathbb{N}$, $u_{n+2} + 2u_{n+1} + u_n = 4$.

Soit la suite définie par $u_0 \in \mathbb{R}$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{u_n^2 + 3}{4}$. Échauffement n°2 Déterminer le comportement de (u_n) en fonction de u_0 .

Échauffement n°3 Déterminer les limites suivantes (écrire **PAS DE LIMITE** le cas échéant).

$$\left(\frac{\ln x}{x}\right)^{\frac{1}{x}} \tag{1}$$

$$\cos\left(\frac{e^x - e^{x+1}}{2^x - x^2}\right) \xrightarrow[x \to +\infty]{} (2)$$

$$x. \left| \frac{1}{x} \right| \qquad \xrightarrow[x \to +\infty]{} \tag{3}$$

QCM - cocher une case si la phrase qui suit est correcte.
Question n°1 Soit E un ensemble muni d'une lei associative admettant un neutre. \Box Ce neutre est unique. \Box Si un élément est inversible, son inverse est unique. \Box Si un élémént est inversible à gauche, il est inversible à droite.
Question n°2
☐ Un corps est intègre.
□ Un anneau intègre est un corps.
Question n°3
☐ Toute suite monotone a une limite.
☐ Toute fonction monotone a une limite en tout point.
☐ Toute fonction monotone a une limite à droite en tout point.
$\hfill \square$ Toute fonction décroissante et minorée a une limite à droite finie en tout point.
Question n°4 Soit I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$. Soit $l, M \in \mathbb{R}$ et $a \in \overline{I}$.
\square Si une suite converge vers l et $l < M$, alors $u_n < M$.
\square Si f tend vers l en a et $l < M$, alors on a $f < M$.
\square Si f tend vers l en a et $l < M$, alors au voisinage de a on a $f < M$.
\square Si f tend vers l en a et au voisinage de a on a $f < M$, alors $l < M$.