编译原理第四次作业

by qq

- (1) 习题4.9, 并分别给出 (a) 和 (b) 两个语法制导定义的属性栈代码实现(非yacc代码)。
 - 4.9 用 S 的综合属性 val 给出下面文法中 S 产生的二进制数的值。例如,输入 101.101 时, S. val=5.625。

$$S \to L, L \mid L$$

$$L \to LB \mid B$$

$$B \to 0 \mid 1$$

- (a) 仅用综合属性决定 S. val。
- (b) 用 L 属性定义决定 S.val。在该定义中,B 的唯一综合属性是 c(还需要继承属性),它给出由 B 产生的位对最终值的贡献。例如,101.101 的最前一位和最后一位对值 5.625 的贡献分别是 4 和 0.125。

(a)

引入L的综合属性length,用来表示L所推出的二进制串长度。除此之外,各文法符号都有一个综合属性val,表示文法符号所推出二进制串的值。写出语法制导定义如下:

产生式	语义规则
$S o L_1.L_2$	$S.val = L_1.val + L_2.val/2^{L_2.length}$
S o L	S.val = L.val
$L \to L_1 B$	$L.val = L_1.val imes 2 + B.val; L.length = L_1.length + 1$
L o B	L.val = B.val; L.length = 1
B o 0	B.val=0
B o 1	B.val=1

根据语法制导定义,写出属性栈代码如下:

序生式 属性核代码
$$S \rightarrow L_1.\,L_2$$
 $Stack[ntop].\,val = Stack[top-2].\,val + Stack[top].\,val/2^{Stack[top].length}$ $S \rightarrow L$ $L \rightarrow L_1B$ $Stack[ntop].\,val = Stack[top-1].\,val \times 2 + Stack[top].\,val;$ $Stack[ntop].\,length = Stack[top-1].\,length + 1$ $L \rightarrow B$ $Stack[ntop].\,length = 1$ $B \rightarrow 0$ $Stack[ntop].\,val = 0$ $Stack[ntop].\,val = 1$ $Stack[ntop].\,val = 1$

(b)

引入L、R、B的继承属性weight,分别表示L的最右一位权重、R的最左一位权重、B所在位的权重。同时,每个文法符号都有综合属性val(为了方便大家阅读,没有使用题目给的综合属性名称B.c),表示文法符号所推出二进制串的值乘以它们的权重。写出语法制导定义如下:

产生式	语义规则
S o L.R	L.weight=1; R.weight=0.5; S.val=L.val+R.val
S o L	L.weight=1; S.val=L.val
$L \to L_1 B$	$L_1. weight = L. weight imes 2; B. weight = L. weight; L. val = L_1. val + B. val$
L o B	B.weight = L.weight; L.val = B.val
$R o BR_1$	$B.\ weight=R.\ weight; R_1.\ weight=R.\ weight/2; R.\ val=B.\ val+R_1.\ val$
R o B	B.weight = R.weight; R.val = B.val
B o 0	B.val=0
B o 1	$B \ val = B \ weight$

$$S \rightarrow \{L. \ weight = 1\}$$

$$L. \ \{R. \ weight = 0.5\}$$

$$R \ \{S. \ val = L. \ val + R. \ val\}$$

$$S \rightarrow \{L. \ weight = 1\}$$

$$L \ \{S. \ val = L. \ val\}$$

$$L \rightarrow \{L_1. \ weight = L. \ weight \times 2\}$$

$$L_1 \ \{B. \ weight = L. \ weight\}$$

$$B \ \{L. \ val = L_1. \ val + B. \ val\}$$

$$L \rightarrow \{B. \ weight = L. \ weight\}$$

$$B \ \{L. \ val = B. \ val\}$$

$$R \rightarrow \{B. \ weight = R. \ weight\}$$

$$R \ \{R. \ val = B. \ val + R_1. \ val\}$$

$$R \rightarrow \{B. \ weight = R. \ weight\}$$

$$R \ \{R. \ val = B. \ val\}$$

$$R \rightarrow \{B. \ weight = R. \ weight\}$$

$$R \ \{R. \ val = B. \ val\}$$

$$R \rightarrow \{B. \ val = B. \ val\}$$

$$R \rightarrow \{B. \ val = B. \ val\}$$

$$R \rightarrow \{B. \ val = B. \ val\}$$

$$R \rightarrow \{B. \ val = B. \ val\}$$

引入标记非终结符M, N, P, Q, T, 改写翻译方案,并写出相应的属性栈代码:

```
翻译方案
                                                                                         属性栈代码
 S \rightarrow M \{L. weight = M. s\}
      L.N \{R.weight = N.s\}
      R\left\{S.\,val = L.\,val + R.\,val\right\} \qquad \quad Stack[ntop] = Stack[top - 3] + Stack[top]
M \rightarrow \epsilon \{M. s = 1\}
                                                                                 Stack[ntop] = 1
N \rightarrow \epsilon \{N.s = 0.5\}
                                                                               Stack[ntop] = 0.5
S \rightarrow M \{L. weight = M. s\}
      L \{S. val = L. val\}
                                                                      Stack[ntop] = Stack[top]
L \rightarrow \{P. i = L. weight\}
      P\{L_1. weight = P. s\}
      L_1 \{Q. i = L. weight\}
      Q \{B. weight = Q. s\}
      B\left\{L.\,val=L_1.\,val+B.\,val\right\}
                                              Stack[ntop] = Stack[top - 2] + Stack[top]
P \rightarrow \epsilon \{P. s = P. i \times 2\}
                                                                 Stack[ntop] = Stack[top] \times 2
Q \rightarrow \epsilon \{Q. s = Q. i\}
                                                                 Stack[ntop] = Stack[top - 2]
L \rightarrow \{B. weight = L. weight\}
      B\{L.val = B.val\}
R \rightarrow \{B. weight = R. weight\}
      B\{T.i = R.weight\}
      T \{R_1. weight = T. s\}
      R_1 \{R. val = B. val + R_1. val\} Stack[ntop] = Stack[top - 2] + Stack[top]
T \rightarrow \epsilon \{T. s = T. i/2\}
                                                              Stack[ntop] = Stack[top - 1]/2
R \rightarrow \{B. weight = R. weight\}
      B\{R. val = B. val\}
B \rightarrow 0 \{B. val = 0\}
                                                                                 Stack[ntop] = 0
                                                                 Stack[ntop] = Stack[top - 1]
B \rightarrow 1 \{B. val = B. weight\}
```

解析: 所有文法符号的继承属性weight,均存放在归约这个文法符号时的句柄下面,即属性栈上对应标记非终结符的位置。(见郑老师讲义lec7 39~48页)

什么时候需要引入标记非终结符?

- 1. 当同一个文法符号继承属性存放的位置不固定时,可引入标记非终结符,在标记非终结符的位置存放继承属性。比如这道题文法符号的继承属性weight,都存放在属性栈上对应前一个文法符号的位置。
- 2. 当继承属性的值不是综合属性的复写拷贝,而是综合属性的函数时。比如这道题的" $L\to L_1B$ "产生式,由于 $L_1.weight=L.weight imes 2$,需要引入标记非终结符P。

当上述两种情况都不存在时,就可以不引入标记非终结符。比如这道题的" $R \to B$ "产生式。

L.weight存放在属性栈上对应前一个文法符号的位置(标红的位置)

$$S \rightarrow ML.NR$$

$$S \rightarrow ML$$

$$L \rightarrow PL_1QB$$

R. weight 存放在属性栈上对应前一个文法符号的位置

B. weight也存放在属性栈上对应前一个文法符号的位置

 $L \rightarrow B$ $R \rightarrow BTR_1$ B. weight = L. weight (或 R. weight), $B \rightarrow B$ 因为 $L(\vec{S}, R)$ 的一个文法符号的属性栈已经存放 3L. weight (或 R. weight), 所以无需 3L标记非终结符

例如R→BTR1归约前:

分析栈 属性栈

Řı
T
В
NST
;
'

Ri. val
$T.s(R_1.weight)$
B.val
N.s或T.s(R.weight)
;

例如在输入串为10.01的时候,分析栈和属性栈的变化如下:

输入串	分析栈	属性栈	归约产生式	属性栈代码
10.01				
10.01	M	1	$M o \epsilon$	Stack[ntop]=1
10.01	MP	$1\ 2$	$P ightarrow \epsilon$	Stack[ntop] = Stack[top] imes 2
0.01	MP1	12_		
0.01	MPB	$1\; 2\; 2$	B o 1	Stack[ntop] = Stack[top-1]
0.01	MPL	$1\; 2\; 2$	L o B	
0.01	MPLQ	$1\; 2\; 2\; 1$	$Q o \epsilon$	Stack[ntop] = Stack[top-2]
.01	MPLQ0	$1\; 2\; 2\; 1\; _$		
.01	MPLQB	$1\; 2\; 2\; 1\; 0$	B o 0	Stack[ntop]=0
.01	ML	$1\ 2$	$L \to PL_1QB$	Stack[ntop] = Stack[top-2] + Stack[top]
01	ML.	$1\ 2$ _		
01	ML.N	$12 - \frac{1}{2}$	$N o \epsilon$	Stack[ntop]=0.5
1	ML.N0	$1\ 2\ _\ \frac{1}{2}\ _$		
1	ML.NB	$1\ 2\ _\ \frac{1}{2}\ 0$	B o 0	Stack[ntop]=0
1	ML.NBT	$12 - \frac{1}{2}0\frac{1}{4}$	$T ightarrow \epsilon$	Stack[ntop] = Stack[top-1]/2
	ML.NBT1	$1\ 2\ _\ \frac{1}{2}\ 0\ \frac{1}{4}\ _$		
	ML.NBTB	$12 - \frac{1}{2}0\frac{1}{4}\frac{1}{4}$	B o 1	Stack[ntop] = Stack[top-1]
	ML.NBTR	$12 - \frac{1}{2}0\frac{1}{4}\frac{1}{4}$	R o B	
	ML.NR	$12 - \frac{1}{2} \frac{1}{4}$	$R o BTR_1$	Stack[ntop] = Stack[top-2] + Stack[top]
	S	$\frac{9}{4}$	S o ML.NR	Stack[ntop] = Stack[top - 3] + Stack[top]

(2) 习题4.12, 并分别给出 (a) 和 (b) 两个翻译方案的属性栈代码实现 (非yacc代码)。

4.12 文法如下: $S \rightarrow (L) \mid a$ $L \rightarrow L, S \mid S$

- (a) 写一个翻译方案,它输出每个a的嵌套深度。例如,对于句子(a,(a,a)),输出的结果是1 2 2。
- (b) 写一个翻译方案,它打印出每个 a 在句子中是第几个字符。例如,当句子是(a,(a,(a, a),(a)))时,打印的结果是2 5 8 10 14。

(a)

引入继承属性depth,写出翻译方案:

$$S' \rightarrow \{S. \, depth = 0\}S$$

 $S \rightarrow (\{L. \, depth = S. \, depth + 1\}L)$
 $S \rightarrow a\{print(S. \, depth)\}$
 $L \rightarrow \{L_1. \, depth = L. \, depth\}L_1, \{S. \, depth = L. \, depth\}S$
 $L \rightarrow \{S. \, depth = L. \, depth\}S$

引入标记非终结符M, N, O, 写出属性栈代码:

翻译方案 属性栈代码 $S' \rightarrow M\{S. depth = M. s\}S$ $M \to \epsilon \{M. s = 0\}$ Stack[ntop] = 0 $S \rightarrow (\{N. i = S. depth\})$ $N\{L. depth = N. s\}L$ $N
ightarrow \epsilon \{N.\, s=N.\, i+1\}$ Stack[ntop] = Stack[top - 1] + 1 $S \rightarrow a\{print(S.\,depth)\}$ print(Stack[top - 1]) $L \rightarrow \{L_1. depth = L. depth\}$ $L_1, \{O. i = L. depth\}$ $O\{S. depth = O. s\}S$ $O \rightarrow \epsilon \{O. s = O. i\}$

Stack[ntop] = Stack[top - 2]

(b)

before是继承属性,表示文法符号前的字符数; out是综合属性,表示这个文法符号推出的字符总 数。写出翻译方案:

 $L \rightarrow \{S. \, depth = L. \, depth\} S$

$$S' \rightarrow \{S. \, before = 0\}S$$
 $S \rightarrow (\{L. \, before = S. \, before + 1\}$
 $L)\{S. \, out = L. \, out + 2\}$
 $S \rightarrow a\{print(S. \, before + 1); S. \, out = 1\}$
 $L \rightarrow \{L_1. \, before = L. \, before\}$
 $L_1, \{S. \, before = L_1. \, before + L_1. \, out + 1\}$
 $S\{L. \, out = L_1. \, out + 1 + S. \, out\}$
 $L \rightarrow \{S. \, before = L. \, before\}S\{L. \, out = S. \, out\}$

引入标记非终结符M, N, O, 写出属性栈代码:

翻译方案 属性栈代码 $S' \rightarrow M\{S. before = M. s\}S$ Stack[ntop] = 0 $M \rightarrow \epsilon \{M. s = 0\}$ $S \rightarrow (\{N.i = S.before\})$ $N\{L.before = N.s\}$ L) $\{S.out = L.out + 2\}$ Stack[ntop] = Stack[top - 1] + 2 $N \rightarrow \epsilon \{N. s = N. i + 1\}$ Stack[ntop] = Stack[top - 1] + 1 $S \rightarrow a\{print(S.before + 1);$ print(Stack[top-1]+1)S.out = 1Stack[ntop] = 1 $L \rightarrow \{L_1. before = L. before\}$ $L_1, \{O. i = L_1. before + L_1. out + 1\}$ $O\{S. before = O. s\}$ Stack[ntop] = Stack[top - 3] + 1 + Stack[top] $S\{L. out = L_1. out + 1 + S. out\}$ $O \rightarrow \epsilon \{O. s = O. i\}$ Stack[ntop] = Stack[top - 2] + Stack[top - 1] + 1 $L \rightarrow \{S. before = L. before\}$ $S\{L.out = S.out\}$

(3) 第七讲 语法制导翻译第34页的翻译方案,在输入串是 (id+id)*id 时的输出结果。

$$E\rightarrow E+T \{ print("1") \}$$

 $E\rightarrow T \{ print("2") \}$
 $T\rightarrow T*F \{ print("3") \}$
 $T\rightarrow F \{ print("4") \}$
 $F\rightarrow (E) \{ print("5") \}$
 $F\rightarrow id \{ print("6") \}$

输出结果为64264154632,分析过程如下:

输入串 分析栈 归约产生式 输出
$$(id+id)*id$$
 $id+id)*id$ $(id+id)*id$ $(id+id)*id$ $(id+id)*id$ $(id+id)*id$ $(F-F)+id$ $6+id)*id$ $(F-F)+id$ $(F$

即最右推导次序的逆序:

$$E \Rightarrow_{rm} T \Rightarrow_{rm} T * F \Rightarrow_{rm} T * id \Rightarrow_{rm} F * id \Rightarrow_{rm} (E) * id \Rightarrow_{rm} (E+T) * id \Rightarrow_{rm} (E+F) * id \Rightarrow_{rm} (E+id) * id \Rightarrow_{rm} (T+id) * id \Rightarrow_{rm} (F+id) * id \Rightarrow_{rm} (id+id) * id$$

(4) 针对习题4.12中的文法:

$$S \rightarrow (L) \mid a$$

 $L \rightarrow L, S \mid S$

(4.1) 参考第五讲 自顶向下分析的第57-58页内容,给出相应的递归下降语法分析函数;

```
void s()
{
    if(lookahead == '(')
    {
        match('(');
        L();
        match(')');
    }
    else if(lookahead == 'a')
        match('a');
    else
```

(4.2) 在 (4.1) 基础上, 分别给出习题4.3(a)和习题4.12(a)的 (递归下降) 预测翻译器。

(4.2)-4.3(a)

引入综合属性val,表示文法符号所推出字符串的括号对数,写出翻译方案:

```
S' 
ightharpoonup S\{print(S. val)\}\

S 
ightharpoonup (L)\{S. val = L. val + 1\}

S 
ightharpoonup a \{S. val = 0\}

L 
ightharpoonup L_1, S\{L. val = L_1. val + S. val\}

L 
ightharpoonup S\{L. val = S. val\}
```

将综合属性val作为函数的返回值,设计递归下降预测翻译器:

```
void s'()
{
  print(S());
int S()
   int val;
   if(lookahead == '(')
       match('(');
       val = L() + 1;
       match(')');
   else if(lookahead == 'a')
       match('a');
       val = 0;
   }
   else
      error();
   return val;
}
int L()
   int val;
   val = S(); //非递归产生式的分析
   while(lookahead == ',')
       match(',');
       val += S(); //递归产生式的分析
    return val;
```

}

(4.2)-4.12(a)

可直接使用第(2)小题的翻译方案:

```
S' \rightarrow \{S. depth = 0\}S

S \rightarrow (\{L. depth = S. depth + 1\}L)

S \rightarrow a\{print(S. depth)\}

L \rightarrow \{L_1. depth = L. depth\}L_1, \{S. depth = L. depth\}S

L \rightarrow \{S. depth = L. depth\}S
```

将继承属性depth作为函数的参数,设计递归下降预测翻译器:

```
void S'()
{
   S(0);
}
void S(int depth)
   if(lookahead == '(')
       match('(');
       L(depth + 1);
       match(')');
   }
   else if(lookahead == 'a')
       match('a');
       print(depth);
   }
   else
       error();
}
void L(int depth)
   S(depth); //非递归产生式的分析
   while(lookahead == ',')
       match(',');
       S(depth); //递归产生式的分析
   }
}
```

参考资料:

- 1. 2023秋季学期课程习题答案
- 2. https://blog.csdn.net/weixin 56462041/article/details/129015814

尽管我反复核查,笔误可能也难以避免。如果大家有疑惑,请向我反馈,我会尽快答复。