作业一:数据探索性分析与预处理

May 4, 2020

姓名: 白思萌学号: 3120190975 学院: 计算机学院

1 Wine Reviews 数据集

1.1 数据准备

数据集主页: https://www.kaggle.com/zynicide/wine-reviews

首先,导入数据分析与处理所需的数据模块。

```
[1]: import pandas as pd
  import numpy as np
  import statsmodels.api as sm
  from sklearn.ensemble import RandomForestClassifier
  import warnings
  warnings.filterwarnings('ignore')
  from matplotlib import pyplot as plt
  %matplotlib inline
```

其次,导入数据。此数据集中包含两个 csv 文件,分别进行导入。其中 wine 表示本次数据集的版本 1,wine_v2 表示版本 2。版本 2 是在版本 1 的基础上进行清理并添加三个属性后的结果,可作为版本 1 清理数据的对比。

```
[2]: wine = pd.read_csv("winemag-data_first150k.csv",index_col=0)
wine_v2 = pd.read_csv("winemag-data-130k-v2.csv",index_col=0)
print (wine.shape[0],wine_v2.shape[0])
```

150930 129971

通过结果可以看出,版本2比版本1的数量减少了20959。

1.2 数据可视化和摘要

1.2.1 数据摘要

首先, 先对数据进行信息统计。

```
[3]: print('%d columms' % len(wine.columns))
    print('%d rows' % len(wine.index))
    print()
    print(wine.dtypes.value_counts())
```

10 columns 150930 rows

object 8 int64 1 float64 1 dtype: int64

数据的前5行如下所示。

[4]: wine.head(5)

[4]:		country						descri	ptior	n \	
	0	US	US This tremendous 100% varietal wine hails from								
	1	Spain	n Ripe aromas of fig, blackberry and cassis are								
	2	US	Mac	Mac Watson honors the memory of a wine once ma							
	3	US	Thi	This spent 20 months in 30% new French oak, an							
	4	France	-								
					des ⁻	ignation	points	price		province	\
	0				Martha's V	•	96	•		California	`
	1	Carodor	um S	elecció		-	96		Nort	thern Spain	
	2		Carodorum Selección Especial Reserva Special Selected Late Harvest					90.0		California	
	3		1			Reserve		65.0		Oregon	
	4				La	Brûlade	95	66.0		Provence	
			***	rion 1		rogion O		***	iety	\	
	0	у.		gion_1 Valley		region_2	Caberne		•	\	
	1	10	apa	Toro		Napa NaN		t sauvi nta de	_		
	2	Vnic	h+a								
	3	_	•	Valley	Willomott	Sonoma		ignon B Pinot			
	4	Willame		Valley Bandol	Willamette	e varrey NaN	Provenc				
	4			Dandor		IValv	FIOVEIIC	e rea b	тепа		
				W	inery						
	0				Heitz						
	1	Bodega	Carm	en Rodr	iguez						
	2			Mac	auley						
	3				Ponzi						

因此,可以分析出该数据集中包含 2 个数值属性,分别为 points 和 price 两个属性。其余 8 个为 标称属性,由于标称属性的数量较多,此处分析以 country 和 province 为例。

标称属性摘要

Domaine de la Bégude

4

定义统计函数 $Count_Nominal(column_name)$,统计标称属性中不同值的出现次数和频率,展示出现频率最高的前 10 个值。

```
[5]: def Count_Nominal(column_name):
    column = wine[column_name].value_counts()
    print('Column name:',column_name)
    print("%d different values" % len(column))
    print()
    column_df = column.to_frame()
    column_df['frequency'] = column.apply(lambda x:x / len(wine.index))
    print(column_df.iloc[:10])
    print('.....')

    plt.bar(np.arange(10),column.iloc[:10])
    plt.title(column_name)
    plt.show()
```

统计标称属性 country 如下。

```
[6]: Count_Nominal('country')
```

Column name: country 48 different values

	country	frequency
US	62397	0.413417
Italy	23478	0.155556
France	21098	0.139787
Spain	8268	0.054780
Chile	5816	0.038534
Argentina	5631	0.037309
Portugal	5322	0.035261
Australia	4957	0.032843
New Zealand	3320	0.021997
Austria	3057	0.020254

•••

统计标称属性 province 如下。

[7]: Count_Nominal('province')

Column name: province 455 different values

	province	frequency
California	44508	0.294892
Washington	9750	0.064599
Tuscany	7281	0.048241
Bordeaux	6111	0.040489
Northern Spain	4892	0.032412
Mendoza Province	4742	0.031419
Oregon	4589	0.030405
Burgundy	4308	0.028543
Piedmont	4093	0.027119
Veneto	3962	0.026251

•••

数值属性摘要

首先,对数值属性的缺失值个数进行统计。

```
[8]: print('points:',wine['points'].isnull().sum())
print('price:',wine['price'].isnull().sum())
```

points: 0
price: 13695

从结果中,可得出,数值属性 points 缺失值个数为 0, price 缺失值个数为 13695。

其次,对 points 和 price 两个属性进行统计,统计其有效值数量、平均值、标准差、最小值、第一个四分位数、中位数、第二个四分位数以及最大值。结果如下所示。

[9]: wine.describe()

```
[9]:
                    points
                                    price
            150930.000000
                            137235.000000
     count
                87.888418
                                33.131482
     mean
     std
                 3.222392
                                36.322536
     min
                80.000000
                                 4.000000
     25%
                86.000000
                                16.000000
     50%
                88.00000
                                24.000000
     75%
                90.000000
                                40.000000
               100.000000
                              2300.000000
     max
```

1.2.2 数据可视化

直方图与 Q-Q 图——数据分布

定义函数 Distribution(column_name),对数值属性值的出现次数进行直方图的绘制,并将其进行标准化为均值为 0,方差为 1 的分布,将标准正态分布作为参考一起绘制 Q-Q 图,用于观测数据的分布情况。

```
[10]: def Distribution(column_name):
    column = wine[column_name].dropna()
    plt.hist(column, 40)
    plt.title(column_name)
    plt.show()

column = (column - column.mean()) / column.std()
    fig = sm.qqplot(column,line = '45')
    plt.title('Q-Q plot')
    plt.show()
```

数值属性 points 的直方图和 Q-Q 图结果如下。

[11]: Distribution('points')

从直方图以及 Q-Q 图可观察到,属性 points 的数据模态为单峰,分布近似满足正态分布。数值属性 price 的直方图和 Q-Q 图结果如下。

[12]: Distribution('price')

从直方图以及 Q-Q 图可观察到,属性 price 的数据分布不满足正态分布。

盒图——离群点

定义函数 Boxplot(column_name), 为数值属性进行盒图的绘制,用于观测是否存在离群点。

```
[13]: def Boxplot(column_name):
    column = wine[column_name].dropna()
    column.plot.box(title = column_name)
    plt.grid(linestyle="--",alpha = 0.3)
    plt.show()
```

数值属性 points 的盒图结果如下。

[14]: Boxplot('points')

从盒图可观察到,属性 points 的数据存在 4 个离群点。

数值属性 price 的盒图结果如下。

[15]: Boxplot('price')

从盒图可观察到,属性 price 的数据值多数较小,但也存在着较少的大数值。大数值为离群点。

1.3 数据缺失的处理

对于数据缺失的处理,首先统计每一个属性的缺失值数量。

[16]: wine.isna().sum()

[16]:	country	5
	description	0
	designation	45735
	points	0
	price	13695
	province	5
	region_1	25060
	region_2	89977
	variety	0
	winery	0
	dtvpe: int64	

从结果中,我们可以观察到,其中 designation 和 region 信息缺失值较多。

对于 designation 信息的缺失,推测可能是由于某些葡萄园信息不明确,产生了缺失现象。

对于 region,从数据集说明中可以得知是葡萄种植地信息,往往因为没有更具体的区域信息,从而导致 region_2 是空白的,这一点在说明中已经明确,因此此处对 region 信息缺失的原因不做研究。

price 信息也有 13695 个缺失值,可能是某种遗漏问题导致的,也有可能是信息的不完备导致的。country 和 province 信息缺失较少,因此推测是由于遗漏问题所导致的。

首先定义函数 Show_Nominal(column,column_name) 和 Show_Numerical(column,column_name) 分别用于展示标称属性和数值属性的数据信息。

```
[17]: def Show_Nominal(column,column_name):
    column = column.value_counts()
    column_df = column.to_frame()
    column_df['frequency'] = column.apply(lambda x:x / len(wine.index))
    print(column_df.iloc[:10])
    print('.....')

    plt.bar(np.arange(10),column.iloc[:10])
    plt.title(column_name)
    plt.show()
```

```
def Show_Numerical(column,column_name):
    print(wine[column_name].describe())

    column = wine[column_name]
    plt.hist(column,40)
    plt.title(column_name)
    plt.show()
    column = (column - column.mean()) / column.std()
    fig = sm.qqplot(column,line = '45')
    plt.title('Q-Q plot')
    plt.show()
```

1.3.1 删除缺失值

此处,以标称属性 designation 为例,分别展示删除前和删除后的结果。

```
[19]: designation = wine['designation']
    Show_Nominal(designation, 'designation')
    delete = designation.dropna()
    Show_Nominal(delete, 'designation')
```

	designation	frequency
Reserve	2752	0.018234
Reserva	1810	0.011992
Estate	1571	0.010409
Barrel sample	1326	0.008786
Riserva	754	0.004996
Barrel Sample	639	0.004234
Brut	624	0.004134
Crianza	503	0.003333
Estate Grown	449	0.002975

Estate Bottled 396 0.002624

•••

	designation	irequency
Reserve	2752	0.018234
Reserva	1810	0.011992
Estate	1571	0.010409
Barrel sample	1326	0.008786
Riserva	754	0.004996
Barrel Sample	639	0.004234
Brut	624	0.004134
Crianza	503	0.003333
Estate Grown	449	0.002975
Estate Bottled	396	0.002624

•••

从结果中可以看出,对缺失值的删除对整体数据集未产生影响,因此对于 designation 属性的数据 缺失而言,删除处理是可行的。

```
[20]: designation = wine['designation']
  delete = designation.dropna()
  print (wine.shape[0],delete.shape[0])
```

150930 105195

再来对比一下删除前后的数据数量,可明显观察到删除后的数量要小于原数据集中版本 2 的数据数量,因此认为数据集作者对于版本 1 缺失数据的处理并非仅仅对其进行删除。

1.3.2 用最高频率值来填补缺失值

此处,以数值属性 price 为例,分别展示用最高频率值填补前和填补后的结果。

```
[21]: price = wine['price']
   Show_Numerical(price, 'price')
   add = price.fillna(price.mode()[0])
   Show_Numerical(add, 'price')
```

count	137235.000000
mean	33.131482
std	36.322536
min	4.000000
25%	16.000000

50% 24.000000 75% 40.000000 max 2300.000000

Name: price, dtype: float64

count	1	37235.0	00000	
mean		33.1	31482	
std		36.3	22536	
min		4.0	00000	
25%		16.0	00000	
50%		24.0	00000	
75%		40.0	00000	
max		2300.0	00000	
3.7				

Name: price, dtype: float64

从结果中可以看出,用最高频率值填补缺失值对整体数据集未产生影响,因此对于 price 属性的数据缺失而言,用最高频率值的填补处理是可行的。

1.3.3 通过属性的相关关系来填补缺失值

这里,以标称属性 country 和 province 为例。经之前的分析,country 和 province 存在着 5 个缺失值,进一步分析发现二者是同时存在着缺失的。通过属性分析,发现 designation 和二者有着属性相关关系,可通过 designation 数据值推断出 country 和 province 的数据值。

```
[22]: wine['country']=wine['country'].fillna('null')
wine['province']=wine['province'].fillna('null')
wine[wine['country'].isin(['null'])]
```

[22]:		country						description	on \	
	1133	null	Delic	cate whit	e flowe	ers and a	spin of 1	Lemon pee		
	1440	null	A ble	end of 60	% Syral	n, 30% Cab	ernet Sau	vignon a		
	68226	null	${\tt From}$	first sn	iff to	last, the	nose nev	ver makes		
	113016	null	From	first sn	iff to	last, the	nose nev	ver makes		
	135696	null	${\tt From}$	first sn	iff to	last, the	nose nev	ver makes		
		design	ation	points	price	province	region_1	region_2	variety	\
	1133	Aski	tikos	90	17.0	null	NaN	NaN	Assyrtiko	
	1440		Shah	90	30.0	null	NaN	NaN	Red Blend	
	68226	Piedra	Feliz	81	15.0	null	NaN	NaN	Pinot Noir	

```
113016 Piedra Feliz
                                 81
                                      15.0
                                                null
                                                          NaN
                                                                    NaN
                                                                         Pinot Noir
      135696 Piedra Feliz
                                      15.0
                                                                         Pinot Noir
                                 81
                                                null
                                                          {\tt NaN}
                                                                    NaN
                 winery
      1133
               Tsililis
      1440
              Büyülübağ
      68226
                Chilcas
      113016
                Chilcas
      135696
                Chilcas
[23]: wine.loc[1133,'country']='Greece'
      wine.loc[1133,'province']='Greece'
      wine.loc[1440,'country']='US'
      wine.loc[1440,'province']='Washington'
      wine.loc[68226,'country']='Chile'
      wine.loc[68226,'province']='Maule Valley'
      wine.loc[113016,'country']='Chile'
      wine.loc[113016,'province']='Maule Valley'
      wine.loc[135696,'country']='Chile'
      wine.loc[135696,'province']='Maule Valley'
      wine.iloc[1133]
[23]: country
                                                                   Greece
                      Delicate white flowers and a spin of lemon pee...
      description
                                                               Askitikos
      designation
                                                                       90
      points
      price
                                                                       17
                                                                   Greece
      province
      region_1
                                                                      NaN
      region_2
                                                                      NaN
      variety
                                                               Assyrtiko
                                                                 Tsililis
      winery
      Name: 1133, dtype: object
[24]: wine.iloc[1440]
[24]: country
                                                                       US
                      A blend of 60% Syrah, 30% Cabernet Sauvignon a...
      description
                                                                     Shah
      designation
                                                                       90
      points
                                                                       30
      price
                                                              Washington
      province
      region_1
                                                                      NaN
      region_2
                                                                      NaN
      variety
                                                               Red Blend
                                                               Büyülübağ
      winery
```

Name: 1440, dtype: object

[25]: wine.iloc[68226]

[25]: country Chile description From first sniff to last, the nose never makes... designation Piedra Feliz points 81 15 price province Maule Valley region_1 NaN region_2 NaN Pinot Noir variety Chilcas winery

Name: 68226, dtype: object

Name: 113016, dtype: object

[26]: wine.iloc[113016]

[26]: country Chile description From first sniff to last, the nose never makes... Piedra Feliz designation points 81 price 15 province Maule Valley NaN region_1 NaN region_2 Pinot Noir variety Chilcas winery

[27]: wine.iloc[135696]

[27]: country Chile description From first sniff to last, the nose never makes... designation Piedra Feliz 81 points price 15 province Maule Valley region_1 NaN NaN region_2 Pinot Noir variety Chilcas winery Name: 135696, dtype: object

从上面的结果可以得知,已经将这五条记录根据属性关系做了填补工作,此时 country 和 province 属性的数据值缺失值为 0。

```
[28]: print('country:',wine['country'].isnull().sum())
print('province:',wine['province'].isnull().sum())
```

country: 0
province: 0

接着,进行对比分析,填补后的属性频率是否发生变化。

```
[29]: country = wine['country']
Show_Nominal(country,'country')
```

	country	frequency
US	62398	0.413423
Italy	23478	0.155556
France	21098	0.139787
Spain	8268	0.054780
Chile	5819	0.038554
Argentina	5631	0.037309
Portugal	5322	0.035261
Australia	4957	0.032843
New Zealand	3320	0.021997
Austria	3057	0.020254

•••

与上文中处理之前标称属性 country 的统计结果相比较,未有明显变化。因此,通过属性的相关关系来进行填补操作是可行的。

1.3.4 通过数据对象之间的相似性来填补缺失值

此处使用随机森林填补数值属性 price 的缺失值。根据评分 points 信息实现对 price 的预测,从而进行缺失值的填补。

```
[30]: forest=pd.DataFrame(pd.read_csv('winemag-data_first150k.csv'))
    known_price = forest[forest['price'].notnull()]
    unknown_price = forest[forest['price'].isnull()]
    x = known_price[['points']]
    y = known_price[['price']]
    t_x = unknown_price[['points']]
    fc=RandomForestClassifier()
    fc.fit(x,y)
    pr=fc.predict(t_x)
    forest.loc[forest.price.isnull(),'price'] = pr
```

```
[31]: price = wine['price']
Show_Numerical(price,'price')
```

count	137235.000000
mean	33.131482
std	36.322536
min	4.000000
25%	16.000000
50%	24.000000
75%	40.000000
max	2300.000000

Name: price, dtype: float64

对数值属性 price 进行结果统计,与上文结果进行对比,未发现明显区别,因此认为通过相似性来进行填补是可行的。

2 Chicago Building Violations 数据集

2.1 数据准备

数据集主页: https://www.kaggle.com/chicago/chicago-building-violations 此数据集中包含 1 个 csv 文件, 对数据进行导入。

[32]: building = pd.read_csv("building-violations.csv")
print(building.shape[0])

1677788

通过数据的输出,可表明 csv 文件数据导入成功,共包含 1677788 个数据项。

2.2 数据可视化和摘要

2.2.1 数据摘要

首先, 先对数据进行信息统计。

```
[33]: print('%d columns' % len(building.columns))
      print('%d rows' % len(building.index))
      print()
      print(building.dtypes.value_counts())
     32 columns
     1677788 rows
     object
                19
     float64
                 9
     int64
     dtype: int64
     数据的前 5 行如下所示。
[34]: building.head(5)
[34]:
              ID VIOLATION LAST MODIFIED DATE
                                                        VIOLATION DATE \
      0 6392482
                      2019-12-04T12:40:09.000
                                               2019-12-04T00:00:00.000
      1 6392480
                      2019-12-04T12:40:09.000
                                               2019-12-04T00:00:00.000
      2 6392335
                      2019-12-04T14:00:12.000
                                               2019-12-04T00:00:00.000
      3 6391883
                      2019-12-04T08:32:01.000
                                               2019-12-04T00:00:00.000
      4 6392369
                      2019-12-04T14:14:24.000
                                               2019-12-04T00:00:00.000
        VIOLATION CODE VIOLATION STATUS VIOLATION STATUS DATE
      0
              CN196019
                                   OPEN
                                                           NaN
      1
              CN061014
                                   OPEN
                                                           NaN
      2
              CN138106
                                   OPEN
                                                           NaN
      3
              CN197039
                                   OPEN
                                                           NaN
      4
              CN065034
                                   OPEN
                                                           NaN
           VIOLATION DESCRIPTION
                                   VIOLATION LOCATION \
      0
               NO POSTED ADDRESS OTHER
                                                :OTHER
      1
            REPAIR EXTERIOR WALL
                                  OTHER
                                                :OTHER
            STOP/REMOVE NUISANCE
                                  OTHER
                                                :OTHER
      3 RELOCATE SMOKE DETECTOR
                                       INTERIOR:003:
      4
             REPAIR WINDOW SILLS
                                  OTHER
                                                :OTHER
                              VIOLATION INSPECTOR COMMENTS \
      0
          BUILDING ADRESSES - INCOMPLETE WITH MISSING #'S.
        WEST AND SOUTH ELEVATIONS / EXTERIOR WALLS - M...
      1
      2
                               YARD AREA; ABANDON VEHICLE.
      3
             HALLWAY - SMOKE DETECTOR - 4FT BELOW CEILING.
                           EAST WINDOW SILLS; OPEN JOINTS.
      4
                                       VIOLATION ORDINANCE ...
                                                                 SSA
                                                                       LATITUDE \
      O Post address of building in conspicuous place ... ...
                                                               NaN 41.749169
      1 Failed to maintain the exterior walls of a bui... ...
                                                               NaN
                                                                    41.749169
```

```
2
                Remove and stop nuisance. (7-28-060) ... NaN 41.711751
3 Relocate improperly installed smoke detectors... ... 25.0 41.844521
4 Failed to maintain window sill in good repair ... ... NaN 41.753908
   LONGITUDE
                                                       LOCATION \
0 -87.602551 {'latitude': '41.749169067345306', 'human_addr...
1 -87.602551 {'latitude': '41.749169067345306', 'human addr...
2 -87.537842 {'latitude': '41.71175105491413', 'human_addre...
3 -87.712416 {'latitude': '41.84452110252742', 'human addre...
4 -87.562784 {'latitude': '41.75390787131238', 'human addre...
  Community Areas Zip Codes Boundaries - ZIP Codes Census Tracts Wards \
0
             40.0
                    21546.0
                                              61.0
                                                            247.0 35.0
1
             40.0
                    21546.0
                                              61.0
                                                            247.0 35.0
             49.0 21202.0
2
                                              25.0
                                                            528.0 47.0
3
             32.0 21569.0
                                              57.0
                                                            755.0 28.0
             39.0 22538.0
                                              24.0
                                                            246.0 37.0
 Historical Wards 2003-2015
0
                         9.0
                         9.0
1
2
                        47.0
3
                        14.0
                        43.0
```

[5 rows x 32 columns]

因此,可以分析出该数据集中包含 13 个数值属性,经分析后将 LATITUDE 和 LONGITUDE 作为分析对象,其他数值型属性均为编号类型,不具有分析意义。其余 19 个为标称属性。由于标称属性的数量较多,此处分析以 STREET DIRECTION 和 STREET TYPE 为例。

标称属性摘要

定义统计函数 Count_Nominal(column_name,number),统计标称属性中不同值的出现次数和频率,展示出现频率最高的前 10 个值。

```
[35]: def Count_Nominal(column_name,number):
    column = building[column_name].value_counts()
    print('Column name:',column_name)
    print("%d different values" % len(column))
    print()
    column_df = column.to_frame()
    column_df['frequency'] = column.apply(lambda x:x / len(building.index))
    print(column_df.iloc[:number])
    print('.....')

    plt.bar(np.arange(number),column.iloc[:number])
    plt.title(column_name)
```

plt.show()

统计标称属性 STREET DIRECTION 如下。

[36]: Count_Nominal('STREET DIRECTION',4)

Column name: STREET DIRECTION

4 different values

	STREET	DIRECTION	frequency
S		683917	0.407630
W		500418	0.298261
N		395246	0.235576
Ε		98207	0.058534

•••

STREET DIRECTION 700000 600000 500000 400000 300000 200000 100000 0 -0.50.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

统计标称属性 STREET TYPE 如下。

[37]: Count_Nominal('STREET TYPE',10)

Column name: STREET TYPE 14 different values

AVE 940725 frequency ST 523743 0.312163

BLVD	59536	0.035485
PL	57665	0.034370
RD	41100	0.024497
DR	27145	0.016179
PKWY	6605	0.003937
CT	3287	0.001959
TER	2222	0.001324
HWY	1559	0.000929

•••

数值属性摘要

首先,对数值属性的缺失值个数进行统计。

```
[38]: print('LATITUDE:',building['LATITUDE'].isnull().sum())
print('LONGITUDE:',building['LONGITUDE'].isnull().sum())
```

LATITUDE: 1510 LONGITUDE: 1510

从结果中,可得出,数值属性 LATITUDE 和 LONGITUDE 缺失值个数均为 1510。

其次,对 LATITUDE 和 LONGITUDE 两个属性进行统计,统计其有效值数量、平均值、标准差、最小值、第一个四分位数、中位数、第二个四分位数以及最大值。结果如下所示。

```
[39]: print(building['LATITUDE'].describe()) print()
```

print(building['LONGITUDE'].describe())

```
mean
         4.184566e+01
std
         8.742421e-02
         4.164467e+01
min
25%
         4.177090e+01
50%
         4.185400e+01
75%
         4.191350e+01
max
         4.202269e+01
Name: LATITUDE, dtype: float64
         1.676278e+06
count
mean
        -8.767266e+01
std
        5.760184e-02
        -8.791444e+01
min
25%
        -8.771392e+01
50%
        -8.766985e+01
75%
        -8.763288e+01
        -8.752468e+01
max
Name: LONGITUDE, dtype: float64
```

1.676278e+06

count

2.2.2 数据可视化

直方图与 Q-Q 图——数据分布

定义函数 Distribution(column_name),对数值属性值的出现次数进行直方图的绘制,并将其进行标准化为均值为 0,方差为 1 的分布,将标准正态分布作为参考一起绘制 Q-Q 图,用于观测数据的分布情况。

```
[40]: def Distribution(column_name):
    column = building[column_name].dropna()
    plt.hist(column, 40)
    plt.title(column_name)
    plt.show()

column = (column - column.mean()) / column.std()
    fig = sm.qqplot(column,line = '45')
    plt.title('Q-Q plot')
    plt.show()
```

数值属性 LATITUDE 的直方图和 Q-Q 图结果如下。

```
[41]: Distribution('LATITUDE')
```


从直方图以及 Q-Q 图可观察到,属性 LATITUDE 的数据模态为双峰,分布近似满足正态分布。

[42]: Distribution('LONGITUDE')

从直方图以及 Q-Q 图可观察到,属性 LONGITUDE 的数据模态为单峰,分布近似满足正态分布。 盒图——离群点

定义函数 Boxplot(column_name), 为数值属性进行盒图的绘制,用于观测是否存在离群点。

```
[43]: def Boxplot(column_name):
    column = building[column_name].dropna()
    column.plot.box(title = column_name)
    plt.grid(linestyle="--",alpha = 0.3)
    plt.show()
```

数值属性 LATITUDE 的盒图结果如下。

[44]: Boxplot('LATITUDE')

从盒图可观察到,属性 LATITUDE 的数据不存在离群点。

数值属性 LONGITUDE 的盒图结果如下。

[45]: Boxplot('LONGITUDE')

从盒图可观察到,属性 LONGITUDE 的数据值存在着较多的小数值离群点

2.3 数据缺失的处理

对于数据缺失的处理,首先统计每一个属性的缺失值数量。

[46]	building.isna().sum()	
[46] :	: ID	0
	VIOLATION LAST MODIFIED DATE	0
	VIOLATION DATE	0
	VIOLATION CODE	0
	VIOLATION STATUS	0
	VIOLATION STATUS DATE	1036199
	VIOLATION DESCRIPTION	10768
	VIOLATION LOCATION	897282
	VIOLATION INSPECTOR COMMENTS	175463
	VIOLATION ORDINANCE	47581
	INSPECTOR ID	0
	INSPECTION NUMBER	0
	INSPECTION STATUS	16
	INSPECTION WAIVED	0
	INSPECTION CATEGORY	0
	DEPARTMENT BUREAU	0
	ADDRESS	0

```
STREET NUMBER
                                        0
STREET DIRECTION
                                        0
STREET NAME
                                        0
                                    13541
STREET TYPE
PROPERTY GROUP
                                        0
                                  1356267
SSA
LATITUDE
                                     1510
LONGITUDE
                                     1510
LOCATION
                                     1510
Community Areas
                                    2279
Zip Codes
                                     1510
Boundaries - ZIP Codes
                                     2279
Census Tracts
                                     1545
Wards
                                     2279
Historical Wards 2003-2015
                                     2279
dtype: int64
```

从结果中,我们可以观察到,从 LATITUDE 开始一直到 Historical Wards 2003-2015,这些数据的 缺失数量较为接近,进一步观察后发现大部分是一起缺失的,因此可能是信息的不完备导致的。在此,以几个比较有意义的属性作为分析对象。

首 先 定 义 函 数 Show_Nominal(pd,column,column_name,number) 和 Show_Numerical(pd,column,column_name) 分别用于展示标称属性和数值属性的数据信息。

```
[48]: def Show_Numerical(pd,column,column_name):
    print(pd[column_name].describe())

    column = pd[column_name]
    plt.hist(column,40)
    plt.title(column_name)
    plt.show()
    column = (column - column.mean()) / column.std()
    fig = sm.qqplot(column,line = '45')
    plt.title('Q-Q plot')
    plt.show()
```

2.3.1 删除缺失值

此处,标称属性 INSPECTION STATUS 仅缺失了 16 个数据值,因此以其为例,分别展示删除前和删除后的结果。

```
[49]: INSPE_STATUS = building['INSPECTION STATUS']
Show_Nominal(building,INSPE_STATUS,'INSPECTION STATUS',4)
delete = INSPE_STATUS.dropna()
Show_Nominal(building,delete,'INSPECTION STATUS',4)
```

	INSPECTION STATUS	frequency
FAILED	1159758	0.691242
PASSED	293076	0.174680
CLOSED	224784	0.133976
HOLD	154	0.000092

•••

INSPECTION STATUS 1200000 -1000000 000008 600000 400000 200000 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 -0.5

	INSPECTION STATUS	frequency
FAILED	1159758	0.691242
PASSED	293076	0.174680
CLOSED	224784	0.133976
HOLD	154	0.000092

••

从结果中可以看出,对缺失值的删除对整体数据集未产生影响,因此对于 INSPECTION STATUS 属性的数据缺失而言,删除处理是可行的。

2.3.2 用最高频率值来填补缺失值

此处,以数值属性 LATITUDE 为例,分别展示用最高频率值填补前和填补后的结果。

```
[50]: LATITUDE = building['LATITUDE']
Show_Numerical(building,LATITUDE,'LATITUDE')
add = LATITUDE.fillna(LATITUDE.mode()[0])
Show_Numerical(building,add,'LATITUDE')
```

count 1.676278e+06 4.184566e+01 mean std 8.742421e-02 4.164467e+01 min 4.177090e+01 25% 50% 4.185400e+01 75% 4.191350e+01 max 4.202269e+01

Name: LATITUDE, dtype: float64

count 1.676278e+06

mean 4.184566e+01 std 8.742421e-02 min 4.164467e+01 25% 4.177090e+01 50% 4.185400e+01 75% 4.191350e+01 max 4.202269e+01

Name: LATITUDE, dtype: float64

从结果中可以看出,用最高频率值填补缺失值对整体数据集未产生影响,因此对于 LATITUDE 属性的数据缺失而言,用最高频率值的填补处理是可行的。

2.3.3 通过属性的相关关系来填补缺失值

这里,以标称属性 STREET TYPE 为例。经之前的分析,STREET TYPE 存在着 13541 个缺失值,通过属性分析,发现与 STREET NAME 有着属性相关关系,可通过 STREET NAME 数据值推断出 STREET TYPE 的数据值。因此,在进行人工处理后,得到了新的 csv 文件,验证缺失值个数为 0。

```
[51]: building_add = pd.read_csv("building-violations_add.csv")
building_add['STREET TYPE'].isna().sum()
```

[51]: 0

接着,进行对比分析,填补后的属性频率是否发生变化。

[52]: INSPE_STATUS = building['STREET TYPE']
Show_Nominal(building,INSPE_STATUS,'STREET TYPE',10)
INSPE_STATUS_ADD = building_add['STREET TYPE']
Show_Nominal(building_add,INSPE_STATUS_ADD,'STREET TYPE',10)

```
STREET TYPE frequency
AVE 940725 0.560694
ST 523743 0.312163
```

BLVD	59536	0.035485
PL	57665	0.034370
RD	41100	0.024497
DR	27145	0.016179
PKWY	6605	0.003937
CT	3287	0.001959
TER	2222	0.001324
HWY	1559	0.000929

•••

	STREET TYPE	frequency
AVE	589897	0.562570
ST	329906	0.314623
PL	38675	0.036883
BLVD	35972	0.034306
RD	25704	0.024513
DR	17894	0.017065
PKWY	4650	0.004435
CT	2261	0.002156
TER	1167	0.001113
HWY	801	0.000764

37

添加前后标称属性 STREET TYPE 的统计结果相比较,未有明显变化。因此,通过属性的相关关系来进行填补操作是可行的。

2.3.4 通过数据对象之间的相似性来填补缺失值

此处使用随机森林填补数值属性 LATITUDE 的缺失值。根据 INSPECTION NUMBER 信息实现对 LATITUDE 的预测,从而进行缺失值的填补。由于数据集过大而无法进行操作,因此取前 150000 个数据作为此次处理对象。

[53]: building_small = building.head(150000)
print (building_small.shape[0])

150000

[54]: building_small['LATITUDE'].isna().sum()

[54]: 113

展示这 150000 个数据中数值属性 LATITUDE 的分布情况。

[55]: Show_Numerical(building_small,building_small['LATITUDE'],'LATITUDE')

count 149887.000000
mean 41.836063
std 0.086293
min 41.644702

25% 41.763480 50% 41.838064 75% 41.902579 max 42.022639

Name: LATITUDE, dtype: float64

对这其中 113 个空值使用随机森林进行填补,并展示填补后的数据分布情况。

```
[56]: forest=pd.DataFrame(building_small)
known = forest[forest['LATITUDE'].notnull()]
unknown = forest[forest['LATITUDE'].isnull()]
x = known[['INSPECTION NUMBER']]
y = known[['LATITUDE']]
t_x = unknown[['INSPECTION NUMBER']]
fc=RandomForestClassifier()
fc.fit(x,y.astype('int'))
pr=fc.predict(t_x)
forest.loc[forest.LATITUDE.isnull(),'LATITUDE'] = pr
Show_Numerical(building_small,building_small['LATITUDE'],'LATITUDE')
```

```
150000.000000
count
              41.835433
mean
std
              0.089258
min
              41.000000
25%
              41.763354
50%
              41.837979
75%
              41.902524
              42.022639
max
```

Name: LATITUDE, dtype: float64

与之前的结果相比较,变动较大。因此对于此数据集中的 LATITUDE 属性而言,使用随机森林进

行填补缺失值是不合适的,因为数据集中不存在可作为预测根据的属性。