PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

33

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 98/					
C12N 15/82, 15/54	A2	(4	13) International Publication Date: 22 October 1998 (22.10.98)				
(21) International Application Number: PCT/US (22) International Filing Date: 9 April 1998 ((81) Designated States: AU, BR, CA, JP, KR, MX, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).					
(30) Priority Data: 60/041,815 11 April 1997 (11.04.97)	τ	IJ S	Published Without international search report and to be republished upon receipt of that report.				
(71) Applicant (for all designated States except US): C. LLC [US/US]; 1920 Fifth Street, Davis, CA 95610							
(72) Inventor; and (75) Inventor/Applicant (for US only): DEHESH, [US/US]; 521 Crownpointe Circle, Vacaville, C (US).			*				
(74) Agent: SCHWEDLER, Carl, J.; Calgene: LLC,19 Street, Davis, CA 95616 (US).	920; Fi	fth					

(54) Title: PLANT FATTY ACID SYNTHASES AND USE IN IMPROVED METHODS FOR PRODUCTION OF MEDIUM-CHAIN FATTY ACIDS

(57) Abstract

By this invention, compositions and methods of use related to β -ketoacyl-ACP synthase of special interest are synthases obtainable from *Cuphea* species. Amino acid and nucleic acid for synthase protein factors are provided, as well as methods to utilize such sequences in constructs for production of genetically engineered plants having altered fatty acid compositions. Of particular interest is the expression of synthase protein factors in conjunction with expression of plant medium-chain acyl-ACP thioesterases for production of increased levels and/or modified ratios of medium-chain fatty acids in oils of transgenic plant seeds.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	Fl	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙĒ	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	ľT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
ì							

WO 98/46776 PCT/US98/07114

PLANT FATTY ACID SYNTHASES AND USE IN IMPROVED METHODS FOR PRODUCTION OF MEDIUM-CHAIN FATTY ACIDS

INTRODUCTION

Field of Invention

5

15

20

The present invention is directed to genes encoding plant fatty acid synthase enzymes relevant to fatty acid synthesis in plants, and to methods of using such genes in combination with genes encoding plant medium-chain preferring thioesterase proteins. Such uses provide a method to increase the levels of medium-chain fatty acids that may be produced in seed oils of transgenic plants.

Background

Higher plants synthesize fatty acids via a common metabolic pathway. In developing seeds, where fatty acids attached to triglycerides are stored as a source of energy for further germination, the fatty acid synthesis pathway is located in the plastids. The first step is the formation of acetyl-ACP (acyl carrier protein) from acetyl-CoA and ACP catalyzed by a short chain preferring condensing enzyme, ß-ketoacyl-ACP synthase (KAS) III. Elongation of acetyl-ACP to 16- and 18- carbon fatty acids involves the cyclical action of the following sequence of reactions: condensation with a two-carbon unit from malonyl-ACP to form a longer ß-ketoacyl-ACP (ß-ketoacyl-ACP synthase), reduction of the

keto-function to an alcohol (ß-ketoacyl-ACP reductase), dehydration to form an enoyl-ACP (ß-hydroxyacyl-ACP dehydrase), and finally reduction of the enoyl-ACP to form the elongated saturated acyl-ACP (enoyl-ACP reductase). ß-ketoacyl-ACP synthase I (KAS I), is primarily responsible for elongation up to palmitoyl-ACP (C16:0), whereas ß-ketoacyl-ACP synthase II (KAS II) is predominantly responsible for the final elongation to stearoyl-ACP (C18:0).

10

15

20

25

Genes encoding peptide components of ß-ketoacyl-ACP synthases I and II have been cloned from a number of higher plant species, including castor (Ricinus communis) and Brassica species (USPN 5,510,255). KAS I activity was associated with a single synthase protein factor having an approximate molecular weight of 50 kD (synthase factor B) and KAS II activity was associated with a combination of two synthase protein factors, the 50 kD synthase factor B and a 46 kd protein designated synthase factor A. Cloning and sequence of a plant gene encoding a KAS III protein has been reported by Tai and Jaworski (Plant Physiol. (1993) 103:1361-1367).

The end products of plant fatty acid synthetase activities are usually 16- and 18-carbon fatty acids. There are, however, several plant families that store large amounts of 8- to 14-carbon (medium-chain) fatty acids in their oilseeds. Recent studies with Umbellularia californica (California bay), a plant that produces seed oil rich in lauric acid (12:0), have demonstrated the existence of a medium-chain-specific isozyme of acyl-ACP thioesterase

in the seed plastids. Subsequent purification of the 12:0-ACP thioesterase from Umbellularia californica led to the cloning of a thioesterase cDNA which was expressed in seeds of Arabidopsis and Brassica resulting in a substantial accumulation of lauric acid in the triglyceride pools of these transgenic seeds (USPN 5,512,482). These results and subsequent studies with medium-chain thioesterases from other plant species have confirmed the chain-length-determining role of acyl-ACP thioesterases during de novo fatty acid biosynthesis (T. Voelker (1996) Genetic Engineering, Ed. J. K. Setlow, Vol. 18, pgs. 111-133).

DESCRIPTION OF THE FIGURES

Figure 1. DNA and translated amino acid sequence of Cuphea

15 hookeriana KAS factor B clone chKAS B-2 are provided.

Figure 2. DNA and translated amino acid sequence of Cuphea hookeriana KAS factor B clone chKAS B-31-7 are provided.

Figure 3. DNA and translated amino acid sequence of Cuphea hookeriana KAS factor A clone chKAS A-2-7 are provided.

20 Figure 4. DNA and translated amino acid sequence of Cuphea hookeriana KAS factor A clone chKAS A-1-6 are provided.

Figure 5. DNA and translated amino acid sequence of Cuphea pullcherrima KAS factor B clone cpuKAS B/7-8 are provided.

Figure 6. DNA and translated amino acid sequence of Cuphea

25 pullcherrima KAS factor B clone cpuKAS B/8-7A are provided.

Figure 7. DNA and translated amino acid sequence of Cuphea pullcherrima KAS factor A clone cpuKAS A/p7-6A are provided.

Figure 8. Preliminary DNA sequence of Cuphea pullcherrima

KAS factor A clone cpuKAS A/p8-9A is provided.

- Figure 9. DNA and translated amino acid sequence of *Cuphea hookeriana* KASIII clone chKASIII-27 are provided.
- Figure 10. The activity profile for purified cpuKAS B/8-7A using various acyl-ACP substrates is provided.
- 5 Figure 11. The activity profile for purified chKAS A-2-7 and chKAS A-1-6 using various acyl-ACP substrates is provided.
 - Figure 12. The activity profile for purified castor KAS factor A using various acyl-ACP substrates is provided.
- 10 Figure 13. The activity profile for purified castor KAS factor B using various acyl-ACP substrates is provided.

 Figure 14. A graph showing the number of plants arranged according to C8:0 content for transgenic plants containing CpFatB1 versus transgenic plants containing CpFatB1 + chKAS 15 A-2-7 is provided.
 - Figure 15. Graphs showing the %C10/%C8 ratios in transgenic plants containing ChFatB2 (4804-22-357) and in plants resulting from crosses between 4804-22-357 and 5401-9 (chKAS A-2-7 plants) are provided.
- 20 Figure 16. Graphs showing the %C10 + %C8 contents in transgenic plants containing ChFatB2 (4804-22-357) and in plants resulting from crosses between 4804-22-357 and 5401-9 (chKAS A-2-7 plants) are provided.
- Figure 17. Graphs showing the %C10/%C8 ratios in transgenic

 25 plants containing ChFatB2 (4804-22-357) and in plants

 resulting from crosses between 4804-22-357 and 5413-17 (chKAS

 A-2-7 + CpFatB1 plants) are provided.
 - Figure 18. Graphs showing the %C10 + %C8 contents in transgenic plants containing ChFatB2 (4804-22-357) and in

plants resulting from crosses between 4804-22-357 and 5413-17 (chKAS A-2-7 + CpFatB1 plants) are provided.

Figure 19. Graphs showing the %C12:0 in transgenic plants containing Uc FatB1 (LA86DH186) and in plants resulting from crosses with wild type (X WT) and with lines expressing Ch KAS A-2-7.

Figure 20. Graph showing the relative proportions of C12:0 and C14:0 fatty acids in the seeds of transgenic plants containing Uc FatB1 (LA86DH186) and in plants resulting from crosses with wild type (X WT) and with lines expressing Ch KAS A-2-7.

Figure 21. Graphs showing the %C18:0 in transgenic plants containing Garm FatB1 (5266) and in seeds of plants resulting from crosses with wild type (X WT) and with lines expressing Ch KAS A-2-7.

Figure 22. The activity profile of Ch KAS A in protein extracts from transgenic plants containing Ch KAS A-2-7. Extracts were preptreated with the indicated concentrations of cerulenin.

20

15

SUMMARY OF THE INVENTION

By this invention, compositions and methods of use related to ß-ketoacyl-ACP synthase (KAS) are provided. Also of interest are methods and compositions of amino acid and nucleic acid sequences related to biologically active plant synthase(s)

In particular, genes encoding KAS protein factors A and B from Cuphea species are provided. The KAS genes are of interest for use in a variety of applications, and may be

used to provide synthase I and/or synthase II activities in transformed host cells, including bacterial cells, such as E. coli, and plant cells. Synthase activities are distinguished by the preferential activity towards longer and shorter acyl-ACPs as well as by the sensitivity towards the KAS specific inhibitor, cerulenin. Synthase protein preparations having preferential activity towards medium chain length acyl-ACPs are synthase I-type or KAS I. KAS I class is sensitive to inhibition by cerulenin at concentrations as low as 1 µM. Synthases having preferential activity towards longer chain length acyl-ACPs are synthase II-type or KAS II. The KAS enzymes of the II-type are also sensitive to cerulenin, but at higher concentrations (50µM). Synthase III-type enzymes have preferential activity towards short chain length acyl-ACPs and are insensitive to cerulenin inhibition.

10

15

20

25

Nucleic acid sequences encoding a synthase protein may be employed in nucleic acid constructs to modulate the amount of synthase activity present in the host cell, especially the relative amounts of synthase I-type, synthase II-type and synthase III-type activity when the host cell is a plant host cell. In addition, nucleic acid constructs may be designed to decrease expression of endogenous synthase in a plant cell as well. One example is the use of an antisense synthase sequence under the control of a promoter capable of expression in at-least those plant cells which normally produce the enzyme.

Of particular interest in the present invention is the coordinate expression of a synthase protein with the

expression of thioesterase proteins. For example, coordinated expression of synthase factor A and a mediumchain thioesterase provides a method for increasing the level of medium-chain fatty acids which may be harvested from transgenic plant seeds. Furthermore, coordinated expression of a synthase factor A gene with plant mediumchain thioesterase proteins also provides a method by which the ratios of various medium-chain fatty acids produced in a transgenic plant may be modified. For example, by 10 expression of a synthase factor A, it is possible to a synthase factor A, it increase the ratio of C10/C8 fatty acids which are produced in plant seed oils as the result of expression of a thioesterase having activity on C8 and C10 fatty acids.

DETAILED DESCRIPTION OF THE INVENTION

15

A plant synthase factor protein of this invention includes a sequence of amino acids or polypeptide which is required for catalyzation of a condensation reaction between an acyl-ACP having a chain length of C2 to C16 and malonyl-20 ACP in a plant host cell. A particular plant synthase factor protein may be capable of catalyzing a synthase reaction in a plant host cell (for example as a monomer or homodimer) or may be one component of a multiple peptide enzyme which is capable of catalyzing a synthase reaction in 25 a plant host cell, i.e. one peptide of a heterodimer.

Synthase-I-(KAS-I) demonstrates preferential activity towards acyl-ACPs having shorter carbon chains, C2-C14 and is sensitive to inhibition by cerulenin at concentrations of Synthase II (KAS II) demonstrates preferential 1μΜ.

activity towards acyl-ACPs having longer carbon chains, C_{14} - C_{16} , and is inhibited by concentrations of cerulenin (50 μ M). Synthase III demonstrates preferential activity towards acyl-CoAs having very short carbon chains, C_{2} to C_{6} , and is insensitive to inhibition by cerulenin.

Synthase factors A and B, and synthase III proteins obtained from medium-chain fatty acid producing plant species of the genus Cuphea are described herein. As described in the following Examples, synthase A from C. 10 hookeriana is naturally expressed at a high level and only in the seeds. C. hookeriana synthase B is expressed at low levels in all tissues examined. Expression of synthase A and synthase B factors in E. coli and purification of the resulting proteins is employed to determine activity of the 15 various synthase factors. Results of these analyses indicate that synthase factor A from Cuphea hookeriana has the greatest activity on 6:0-ACP substrates, whereas synthase factor B from Cuphea pullcherrima has greatest activity on 14:0-ACP. Similar studies with synthase factors A and B from castor demonstrate similar activity profiles between the factor B synthase proteins from Cuphea and castor. The synthase A clone from castor, however, demonstrates a preference for 14:0-ACP substrate.

Expression of a Cuphea hookeriana KAS A protein in

transgenic plant seeds which normally do not produce mediumchain fatty acids does not result in any detectable
modification of the fatty acid types and contents produced
in such seeds. However, when Cuphea hookeriana KAS A
protein is expressed in conjunction with expression of a

medium-chain acyl-ACP thioesterase capable of providing for production of C8 and C10 fatty acids in plant seed oils, increases in the levels of medium-chain fatty acids over the levels obtainable by expression of the medium-chain

5 thioesterase alone are observed. In addition, where significant amounts of C8 and C10 fatty acids are produced as the result of medium-chain thioesterase expression, co-expression of a Cuphea KAS A protein also results in an alteration of the proportion of the C8 and C10 fatty acids

10 that are obtained. For example, an increased proportion of C10 fatty acids may be obtained by co-expression of Cuphea hookeriana ChFatB2 thioesterase and a chKAS A synthase factor proteins.

Furthermore, when Cuphea hookeriana KAS A protein is expressed in conjunction with expression of a medium-chain acyl-ACP thioesterase capable of providing for production of C12 fatty acids in plant seed oils, increases in the levels of medium-chain fatty acids over the levels obtainable by expression of the medium-chain thioesterase alone are also observed. In addition, where significant amounts of C12 and C14 fatty acids are produced as the result of medium-chain thioesterase expression, co-expression of a Cuphea KAS A protein also results in an alteration of the proportion of the C12 and C14 fatty acids that are obtained. For example, an increased proportion of C12 fatty acids may be obtained by co-expression of Uc FatB1 thioesterase and a chKAS A synthase factor proteins.

15

20

25

However, when Cuphea hookeriana KAS A protein is expressed in conjunction with the expression of a long-chain

acyl-ACP thioesterase capable of providing for production of C18 and C18:1 fatty acids in plant seed oils, no effect on the production of long chain fatty acids was observed. Furthermore, when plants transformed to express a long chain acyl-ACP thioesterase from mangosteen (GarmFatAl, U.S. Patent Application No. 08/440,845), which preferentially hydrolyzes C18:0 and C18:1 fatty acyl-ACPs, are crossed with nontransformed control plants, a significant reduction in the levels of C18:0 is obtained. Similar reductions are also observed in the levels of C18:0 in the seeds of plants resulting from crosses between plants transformed to express the GarmFatAl and plants expressing the Cuphea hookeriana KAS A protein.

Thus, the instant invention provides methods of increasing and/or altering the medium-chain fatty acid 15 compositions in transgenic plant seed oils by co-expression of medium-chain acyl-ACP thioesterases with synthase factor proteins. Furthermore, various combinations of synthase factors and medium-chain thioesterases may be achieved 20 depending upon the particular fatty acids desired. For example, for increased production of C14 fatty acids, synthase protein factors may be expressed in combination with a C14 thioesterase, for example from Cuphea palustris or nutmeg may be employed (WO 96/23892). In addition, thioesterase expression may be combined with a number of different synthase factor proteins for additional effects on medium-chain fatty acid composition.

Synthases of use in the present invention include modified amino acid sequences, such as sequences which have

been mutated, truncated, increased and the like, as well as such sequences which are partially or wholly artificially synthesized. The synthase protein encoding sequences provided herein may be employed in probes for further 5 screening or used in genetic engineering constructs for transcription or transcription and translation in host cells, especially plant host cells. One skilled in the art will readily recognize that antibody preparations; nucleic acid probes (DNA and RNA) and the like may be prepared and 10 used to screen and recover synthases and/or synthase nucleic acid sequences from other sources. Typically, a homologously related nucleic acid sequence will show at least about 60% homology, and more preferably at least about 70% homology, between the R. communis synthase and the given plant synthase of interest, excluding any deletions which may be present. Homology is determined upon comparison of sequence information, nucleic acid or amino acid, or through hybridization reactions.

15

Recombinant constructs containing a nucleic acid 20 sequence encoding a synthase protein factor or nucleic acid sequences encoding a synthase protein factor and a mediumchain acyl-ACP thioesterase may be prepared by methods well known in the art. Constructs may be designed to produce synthase in either prokaryotic or eukaryotic cells. increased expression of a synthase in a plant cell, 25 particularly in conjunction with expression of medium-chain thioesterases, or decreasing the amount of endogenous synthase observed in plant cells are of special interest.

Synthase protein factors may be used, alone or in combination, to catalyze the elongating condensation reactions of fatty acid synthesis depending upon the desired result. For example, rate influencing synthase activity may reside in synthase I-type, synthase II-type, synthase III-type or in a combination of these enzymes. Furthermore, synthase activities may rely on a combination of the various synthase factors described herein.

Constructs which contain elements to provide the 10 transcription and translation of a nucleic acid sequence of interest in a host cell are "expression cassettes". Depending upon the host, the regulatory regions will vary, including regions from structural genes from viruses, plasmid or chromosomal genes, or the like. For expression in prokaryotic or eukaryotic microorganisms, particularly 15 unicellular hosts, a wide variety of constitutive or regulatable promoters may be employed. Among transcriptional initiation regions which have been described are regions from bacterial and yeast hosts, such as E. coli, B. subtilis, Saccharomyces cerevisiae, including genes such 20 as ß-galactosidase, T7 polymerase, trp-lac (tac), trp E and the like.

An expression cassette for expression of synthase in a plant cell will include, in the 5' to 3' direction of transcription, a transcription and translation initiation control regulatory region (also known as a "promoter") functional in a plant cell, a nucleic acid sequence encoding a synthase, and a transcription termination region.

Numerous transcription initiation regions are available

which provide for a wide variety of constitutive or regulatable, e.g., inducible, transcription of the desaturase structural gene. Among transcriptional initiation regions used for plants are such regions

5 associated with cauliflower mosaic viruses (35S, 19S), and structural genes such as for nopaline synthase or mannopine synthase or napin and ACP promoters, etc. The transcription/ translation initiation regions corresponding to such structural genes are found immediately 5' upstream to the respective start codons. Thus, depending upon the intended use, different promoters may be desired.

Of special interest in this invention are the use of promoters which are capable of preferentially expressing the synthase in seed tissue, in particular, at early stages of seed oil formation. Examples of such seed-specific promoters 15 include the region immediately 5' upstream of a napin or seed ACP genes such as described in USPN 5,420,034, desaturase genes such as described in Thompson et al (Proc. Nat. Acad. Sci. (1991) 88:2578-2582), or a Bce-4 gene such 20 as described in USPN 5,530,194. Alternatively, the use of the 5' regulatory region associated with the plant synthase structural gene, i.e., the region immediately 5' upstream to a plant synthase structural gene and/or the transcription termination regions found immediately 3' downstream to the plant synthase structural gene, may often be desired. general, promoters will be selected based upon their expression profile which may change given the particular application.

In addition, one may choose to provide for the transcription or transcription and translation of one or more other sequences of interest in concert with the expression or anti-sense of the synthase sequence, particularly medium-chain plant thioesterases such as described in USPN 5,512,482, to affect alterations in the amounts and/or composition of plant oils.

When one wishes to provide a plant transformed for the combined effect of more than one nucleic acid sequence of interest, a separate nucleic acid construct may be provided for each or the constructs may both be present on the same plant transformation construct. The constructs may be introduced into the host cells by the same or different methods, including the introduction of such a trait by crossing transgenic plants via traditional plant breeding methods, so long as the resulting product is a plant having both characteristics integrated into its genome.

10

15

20

25

Normally, included with the DNA construct will be a structural gene having the necessary regulatory regions for expression in a host and providing for selection of transformed cells. The gene may provide for resistance to a cytotoxic agent, e.g. antibiotic, heavy metal, toxin, etc., complementation providing prototrophy to an auxotrophic host, viral immunity or the like. Depending upon the number of different host species into which the expression construct or components thereof are introduced, one or more markers may be employed, where different conditions for selection are used for the different hosts.

The manner in which the DNA construct is introduced into the plant host is not critical to this invention. Any method which provides for efficient transformation may be employed. Various methods for plant cell transformation include the use of Ti- or Ri-plasmids, microinjection, electroporation, liposome fusion, DNA bombardment or the like. In many instances, it will be desirable to have the construct bordered on one or both sides by T-DNA, particularly having the left and right borders, more particularly the right border. This is particularly useful. when the construct uses A. tumefaciens or A. rhizogenes as a mode for transformation, although the T-DNA borders may find use with other modes of transformation.

The expression constructs may be employed with a wide variety of plant life, particularly plant life involved in the production of vegetable oils. These plants include, but are not limited to rapeseed, peanut, sunflower, safflower, cotton, soybean, corn and oilseed palm.

15

20

For transformation of plant cells using Agrobacterium, explants may be combined and incubated with the transformed Agrobacterium for sufficient time for transformation, the bacteria killed, and the plant cells cultured in an appropriate selective medium. Once callus forms, shoot formation can be encouraged by employing the appropriate plant hormones in accordance with known methods and the shoots transferred to rooting medium for regeneration of plants. The plants may then be grown to seed and the seed used to establish repetitive generations and for isolation of vegetable oils.

The invention now being generally described, it will be more readily understood by reference to the following examples which are included for purposes of illustration only and are not intended to limit the present invention.

5

10

20

25

EXAMPLES

Example 1 Cuphea KAS Factor A and B Gene Cloning

Total RNA isolated from developing seeds of Cuphea hookeriana and Cuphea pullcherrima was used for cDNA synthesis in commercial 1-based cloning vectors. For cloning each type of KAS gene, approximately 400,000-500,000 unamplified recombinant phage were plated and the plaques transferred to nitrocellulose. For KAS factor B cloning from C. hookeriana, a mixed probe containing Brassica napus KAS factor B and Ricinus communis (Castor) KAS factor B radiolabeled cDNA's was used. Similarly, a mixed probe containing Brassica napus KAS factor A and Ricinus communis KAS factor A cDNA clones was used to obtain C. hookeriana KAS factor A genes. For KASIII, a spinach KASIII cDNA clone obtained from Dr. Jan Jaworski was radiolabeled and used as a probe to isolate a KASIII clone from C. hookeriana. For KAS B and KAS A cloning from C. pullcherrima, C. hookeriana KAS B and KAS A genes chKAS B-2 and chKAS A-2-7 (see below) were radiolabeled and used as probes.

DNA sequence and translated amino acid sequence for Cuphea KAS clones are provided in Figures 1-9. Cuphea hookeriana KAS factor B clones chKAS B-2 and chKAS B-31-7

are provided in Figures 1 and 2. Neither of the clones is full length. Cuphea hookeriana KAS Factor A clones chKAS A-2-7 and chKAS A-1-6 are provided in Figures 3 and 4. chKAS A-2-7 contains the entire encoding sequence for the KAS factor protein. Based on comparison with other plant synthase proteins, the transit peptide is believed to be represented in the amino acids encoded by nucleotides 125-466. chKAS A-1-6 is not a full length clone although some transit peptide encoding sequence is present. Nucleotides—10. 1-180 represent transit peptide encoding sequence, and the mature protein encoding sequence is believed to begin at

nucleotide 181.

Cuphea pullcherrima KAS factor B clones cpuKAS B/7-8 and cpuKAS B/8-7A are provided in Figures 5 and 6. Both of 15 the clones contain the entire encoding sequences for the KAS factor B proteins. The first 35 amino acids of cpuKAS B/7-8 are believed to represent the transit peptide, with the mature protein encoding sequence beginning at nucleotide The first 39 amino acids of cpuKAS B/8-7A are believed to represent the transit peptide, with the mature protein encoding sequence beginning at nucleotide 209. Cuphea pullcherrima KAS factor A clones cpuKAS A/p7-6A and cpuKAS A-p8-9A are provided in Figures 7 and 8. Both of the clones contain the entire encoding sequences for the KAS factor A proteins. Translated amino acid sequence of cpuKAS A/p7-6A is provided. The mature protein is believed to begin at the lysine residue encoded 595-597, and the first 126 amino acids are believed to represent the transit peptide. DNA sequence of KAS A clone cpuKAS A-p8-9A is preliminary.

Further analysis will be conducted to determine final DNA sequence and reveal the amino acid sequence encoded by this gene.

DNA and translated amino acid sequence of Cuphea hookeriana KASIII clone chKASIII-27 is provided in Figure 9. The encoding sequence from nucleotides 37-144 of chKASIII-27 are believed to encode a transit peptide, and the presumed mature protein encoding sequence is from nucleotides 145-1233.

10

15

20

25

Deduced amino acid sequence of the C. hookeriana KAS factor B and KAS factor A cDNA's reveals strong homology to the Brassica napus and Ricinus communis clones previously reported. The C. hookeriana KAS factor B clone is more homologous to the Ricinus and Brassica KAS factor B clones (94% and 91% respectively) than it is to the Ricinus and Brassica KAS factor A clones (60% for both). Furthermore, the C. hookeriana KAS factor A clone is more homologous to the Ricinus and Brassica KAS factor A clones (85% and 82% respectively) than it is the Ricinus and Brassica KAS factor B clone (60% for both). The C. hookeriana KAS factor B cDNAs designated as chKAS B-2 and chKAS B-31-7 are 96% identical within the mature portion of the polypeptide. Similarly, the deduced amino acid sequence of the mature protein regions of the C. hookeriana KAS factor A clones chKAS A-2-7 and chKAS A-1-6 are 96% identical. pullcherrima KAS clones also demonstrate homology to the R. communis and Brassica napus KAS clones. The mature protein portion of all of the KAS factor A family members in the different Cuphea species are 95% identical. Similarly the

mature protein portion of the KAS factor B genes in Cuphea are also 95-97% identical with each other. However there is only approximately 60% sequence identity between KAS factor B and KAS factor A clones either within the same or different species of Cuphea.

Example 2 Levels and Patterns of Expression

To examine tissue specificity of KAS expression in Cuphea hookeriana, Northern blot analysis was conducted using total RNA-isolated from seed, root, leaf and flower tissue. Two separate but identical blots were hybridized with either chKAS B-31-7 or chKAS A-2-7 coding region probes. The data from this RNA blot analysis indicate that KAS B is expressed at a similar level in all tissues 15 examined, whereas KAS A expression is detected only in the These results also demonstrate a different level of expression for each of the synthases. KAS A is an abundant message, whereas KAS B is expressed at low levels. Furthermore, even under highly stringent hybridization 20 conditions (65_C, 0.1 X SSC, 0.5% SDS), the KAS A probe hybridizes equally well with two seed transcripts of 2.3 and The larger hybridizing band is likely the transcript of the KAS A-2-7 gene since the size of its cDNA is 2046bp, and the number of clones obtained from cDNA 25 screening corresponds well with the apparent mobility of the

mRNA and its abundance on the blot.

Example 3 Expression of Plant KAS Genes in E.coli

10

15

20

DNA fragments encoding the mature polypeptide of the Cuphea hookeriana KAS A cDNAs and the Cuphea pullcherrima KAS B cDNAs were obtained by PCR and cloned into a QIAexpress expression vector (Qiagene). Experimental conditions for maximum level of expression were determined for all of these clones and the parameters for highest level of soluble fraction were identified. Cells are grown in ECLB media containing 1M sorbitol and 2.5 mM betaine overnight and subcultured as a 1:4 dilution in the same medium. Cells are then grown for 2 hours (to approximately .6-.8 O.D.) and induced with 0.4 mM IPTG and allowed to grow for 5 more hours.

Enzyme activity of the affinity purified recombinant enzymes obtained from over-expression of the chKAS A-2-7 and cpuKAS B/8-7A clones was measured using a wide range of acyl-ACP substrates (6:0- to 16:1-ACP). The activity profile for cpuKAS B/8-7A is provided in Fig.10. The data demonstrate that the enzyme is active with all acyl-ACP substrates examined, although activity on 6:0 to 14:0-ACP substrates is substantially greater than the activity on 16:0 and 16:1 substrates.

The activity profile of the *C. hookeriana* KAS A clones

25 chKAS A-2-7 and chKAS A-1-6 is provided in Figure 11. The *C. hookeriana* KAS A clones are most active with C:6, and have the least activity with C:16:0 substrates. However, the activity of this clone on even the preferred C6:0 substrate

is 50 fold lower than the activity of the *C. pullcherrima* KAS B clones.

A fragment containing the mature protein encoding portion of a R. communis KAS factor A clone was also cloned

into a QIAexpress expression vector, expressed in E. coli and the enzyme affinity purified as described above. The activity profile for castor KAS A is provided in Figure 12.

Highest activity is observed with C14:0 substrates, although some activity is also seen with C6:0 and C16:1. In

comparison, the activity profile obtained from purified R. communis KAS factor B also using the QIAexpress expression system is provided in Figure 13. The KAS B clone demonstrates substantially higher levels of activity (10 fold and higher) than the R. communis KAS A clone. The

preference of the KAS factor B for 6:0- to 14:0-ACP substrates is consistent with the previous observations that this protein provides KAS I activity.

Example 4 KAS and TE Expression in Transgenic Seed

Dehesh et al. (1996) Plant Physiol. 110:203-210) and the chKAS A-2-7 were PCR amplified, sequenced, and cloned into a napin expression cassette. The napin/cp FatB1 and the napin/KAS A-2-7 fusions were ligated separately into the binary vector pCGN1558 (McBride and Summerfelt (Pl.Mol.Biol. (1990) .14:269-276) and transformed into A. tumefaciens, EHA101. The resulting CpFatB1 binary construct is pCGN5400 and the chKAS A-2-7 construct is pCGN5401. Agrobacterium mediated transformation of a Brassica napus canola variety

was carried out as described by Radke et al. (Theor. Appl. Genet. (1988) 75:685-694; Plant Cell Reports (1992) 11:499-505). Several transgenic events were produced for each of the pCGN5400 and pCGN5401 constructs.

A double gene construct containing a napin/cpFatB1
expression construct in combination with a napin/chKAS A-2-7
expression construct was also assembled, ligated into a
binary vector and used for co-cultivation of a canola
Brassica variety. The binary construct containing the
chFatB1 and chKAS A=2-7 expression constructs is pCGN5413.

Fatty acid analysis of 26 transgenic lines containing chKAS A-2-7 (5401 lines) showed no significant changes in the oil content or profile as compared to similar analyses of wild type canola seeds of the transformed variety.

15

20

25

Fatty acid analysis of 36 transgenic lines containing cpFatB1 (5400 lines) showed increased levels of C:8 and C:10 in transgenic seeds. The highest level of C:8 observed in a pool seed sample was 4.2 mol%. The C:10 levels were between 30 and 35% of the C:8 content. Fatty acid analysis of 25 transgenic lines containing the TE/KAS A tandem (5413 lines) demonstrated an overall increase in both C:8 and C:10 levels relative to those observed with TE containing lines (5400) alone. In lines containing the cpFatB1 construct alone, the average level of C:8 average were 1.5 mol%, whereas the C:8 average levels in TE/KAS A tandem containing lines was 2.37 mol%. The ratio of C:8 to C:10 remained constant in both populations. The number of transgenic events relative to the C:8 content are presented in Figure 14. These data show that the transgenic events with tandem TE/KAS A construct

yield more lines with higher levels of C:8 than those events with single TE construct. For example, several lines containing nearly 7 mole% C8 were obtained with the TE/KAS A pCGN5413 construct, whereas the highest C8 containing line from the pCGN5400 TE alone transformation contained 4.2 mole% C8.

Half seed analysis of the T3 generation of transgenic canola plants expressing a ChFatB2 (C. hookeriana thioesterase; Dehesh et al. (1996) The Plant Journal 9:167-172)—indicate that these plant can accumulate up to 22 weight% (33 mol%) of 8:0 and 10:0 fatty acids (4804-22-357). Segregation analysis shows that these transformants contain two loci and that they are now homozygous. Selected plants grown from these half seeds were transferred into the greenhouse and later crossed with T1 transformants that had been transformed with either Cuphea hookeriana KAS A (5401) alone or KAS A/CpFatB1 double constructs (5413).

Fatty acid analysis of several events resulting from the crosses between transgenic lines containing ChFatB2 (4804-22-357) and chKAS A-2-7 (5401-9), reveal an increase in the ratio of C:10/C:8 levels (Figure 15). This C:10/C:8 ratio in nearly all of the transgenic events containing ChFatB2 TE alone fluctuates between 3 and 6, whereas in the F1 generation of transgenic containing both the TE and the KAS A-2-7, the ratio can be as high as 22. This increase in C:10 levels is accompanied by an increase in the total C:8 and C:10 content (Figure 16). The sum of the C:8 and C:10 fatty acids in the heterozygous F1 lines is as high as those in the homozygous parent line (4804-22-357), whereas the

heterozygous lines usually contain substantially less C:8 and C:10 than the homozygous lines.

Similar results were observed in F1 generation seeds resulting from crosses performed between 4804-22-357 (ChFatB2) and the 5413-17 event (CpFatB1 and chKAS A-2-7 tandem). Levels of C:8 and C:10 in the 5413-17 line were 6.3 and 2.8 mol% respectively. Data presented in Figure 17 show that there is shift towards C:10 fatty acids as was observed with the 4804-22-357 (ChFatB2) x 5401-9 (chKAS A-2-10 7) crosses. Furthermore, Figure 18 indicates the presence of two separate populations of heterozygotes. containing approximately 9-11 weight percent C:10 + C:8 are believed to represent offspring containing a single copy of the ChFatB1 TE gene and no copies of the CpFatB1 and chKAS A 15 genes from 5413. Those plants containing approximately 15-20 weight percent C:10 + C:8 are believed to represent the heterozygotes containing a single ChFatB1 TE gene as well as the CpFatB1 and chKAS A genes from 5413. Thus, the level of the C:10 + C:8 fatty acids does not decrease to 50% of that 20 detected in parent lines when a copy of the ChKAS A gene is present.

To further characterize the chain length specificity of the Cuphea hookeriana KAS A enzyme, crosses between transgenic Brassica napus lines containing a California Bay (Umbellularia californica) 12:0 specific thioesterase, Uc FatB1 (USPN 5,344,771) and chKAS A-2-7 (5401-9) were made. Half seed analysis of transgenic plants containing Uc fatB1 have previuosly indicated that these plants can accumulate up to 52 mol% C12:0 in the seed oil of homozygous dihaploid

lines (LA86DH186). Crosses between the line LA86DH186 and untransformed control *Brassica* demonstrated a decrease in the C12:0 levels.

However, crosses between LA86DH186 and the 5401-9

5 hemizygous line led to an accumulation of up to 57 mol%

C12:0 in the seed oil of F1 progeny (Figure 19).

Interestingly, in crosses with LA86DH186 x untransformed

control line and LA86DH186 x 5401-9, levels of C14:0 in the

seeds of the F1 progeny decreased to 50% of the levels

10 obtained in homozygous LA86DH186-lines (Figure 20).

Furthermore, increases in the proportion of C12:0 fatty acid

resulted in a substantial decline in the proportions of all

the long-chain fatty acyl groups (C16:0, C18:0, C18:2, and

C18:3). These results indicate that the ChKAS A-2-7 is an

15 enzyme with substrate specificity ranging from C6:0 to

C10:0-ACP, and that its over-expression ultimately reduces

Further evidence is obtained in support of the chain length specificity of the ChKAS A-2-7 in crosses of the 5401-9 line with a transgenic line (5266) expressing an 18:1/18:0 TE from Garcinia mangostana (GarmFatA1, US patent application No. 08/440,845). Transgenic Brassica line 5266 has been shown to accumulate up to 24 mol% C18:0 in the seed oil of homozygous lines (Figure 21). However, in the seed oil of F1 progeny of crosses between 5266 and 5401-9 levels

the longer chain acyl-ACP pools.

Furthermore, levels of C16:0 generated from these crosses was similar to the levels obtained from the seed oil of nontransgenic control plants.

Example 5 In vitro Analysis of Plant KAS Enzymes

Seed extracts were prepared from developing seeds of nontransgenic controls or transgenic Brassica expressing chKAS A-2-7 as described in Slabaugh et al. (Plant Journal, 1998 in press) and Leonard et al. (Plant Journal, 1998, in press). In vitro fatty acid synthesis assays were performed as described by Post-Beittenmiller (J. Biol. Chem. (1991), 266:1858-1865). Extracts were concentrated by ammonium sulfate precipitation and desalting using P-6 columns (Bio-10 Rad, Hercules, CA). Reactions (65µ1) contained 0.1M Tris/HCl (pH 8.0), 1 mM dithiothreitol, 25 mM recombinant spinach ACP1, 1 mM NADH, 2 mM NADPH, 50 µM malonyl-CoA, 10 μM [1-14C]acetyl-CoA (50 mCi/mmol), 1mg/ml BSA, and 0.25 mg/ml seed protein. Selected seed extracts were 15 preincubated with cerulenin at 23°C for 10 min. Reaction products were separated on an 18% acrlamide gel containing 2.25M urea, electroblotted onto to nitrocellulose and quntitated by phosporimaging using Image QuaNT software (Molecular Dynamics, Sunnyvale, CA). Authentic acyl-ACPs were run in parallel, immunoblotted and finally detected by 20 anti-ACP serum to confirm fatty acid chain lengths.

The results (Figure 22) indicate that the fatty acid synthesis capabilities of transgenic Brasica (5401-9) seed extracts was greater than that obtained from in the

25 nontransgenic controls as measured by the relative abundance of C8:0- and C10:0-ACP at all time points tested. In addition, pretreatment of the extracts with cerulenin, markedly reduced the synthesis of longer chain fatty acids in both the transgenic and nontransgenic control seed

extracts. However, the extension of the spinach-ACP was much less inhibited in the seed extracts from the transgenic lines than in the seed extracts of nontransgenic control Brassica.

These data further support that Ch KAS A-2-7 is a condensing enzyme active on medium chain acyl-ACPs, and that expression of this enzyme in plants results in enlarged substrate pools to be hydrolyzed by medium-chain specific thioesterases. Furthermore, these data suggest that chKAS A-2-7 also is a cerulenin-resistant condensing enzyme.

All publications and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains.

- All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
- Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claim.

and the second of the case of the second of

MISSING UPON TIME OF PUBLICATION

- 13. The construct of Claim 5 wherein said encoding sequence is cpuKAS A/p8-9A.
- 14. The construct of Claim 5 wherein said encoding sequence is chKASIII-27.
- 15. An improved method for producing medium-chain fatty acids in transgenic plant seeds by expression of a plant medium-chain thioesterase protein heterologous to said transgenic plant,
- factor protein heterologous to said transgenic plant in conjunction with expression of said plant medium-chain thioesterase, whereby the percentage of medium-chain fatty acids produced in seeds expressing both a plant synthase factor protein and a plant medium-chain thioesterase protein is increased as compared to the percentage of medium-chain fatty acids produced in seeds expressing only said plant medium-chain thioesterase protein.
 - 16. The method of Claim 15 wherein said medium-chain thioesterase protein is a ChFatB2 protein.
- 20 17. The method of Claim 15 wherein said medium-chain thioesterase protein is a CpFatBl protein.

- 18. The method of Claim 15 wherein said medium-chain thioesterase protein is a C12 preferring thioesterase from California bay.
- 19. The method of Claim 15 wherein said plant synthase factor protein is expressed from a construct according to Claim 1.
 - 20. The method of Claim 19 wherein said synthase factor A protein is from a Cuphea species.

- 21. The method of Claim 20 wherein said Cuphea species is C. hookeriana or C. pullcherrima.
- 22. A method of altering the medium-chain fatty acid composition in plant seeds expressing a heterologous plant medium-chain preferring thioesterase, wherein said method comprises

providing for expression of a plant synthase factor protein heterologous to said transgenic plant in conjunction with expression of a plant medium-chain thioesterase protein heterologous to said transgenic plant, whereby the composition of medium-chain fatty acids produced in said seeds is modified as compared to the composition of medium-chain fatty acids produced in seeds expressing said plant medium-chain thioesterase protein in the absence of expression of said plant synthase factor protein.

23. The method of Claim 22 wherein said medium-chain thioesterase protein is a ChFatB2 protein.

- 24. The method of Claim 22 wherein said medium-chain thioesterase protein is a CpFatB1 protein.
- 25. The method of Claim 22 wherein said medium-chain thioesterase protein is a C12 preferring thioesterase from California bay.
- 26. The method of Claim 22 wherein said plant synthase factor protein is expressed from a construct according to Claim 1.
 - 27. The method of Claim 26 wherein said synthase factor A protein is from a Cuphea species.
 - 28. The method of Claim 27 wherein said Cuphea species is C. hookeriana or C. pullcherrima.

WO 98/46776 PCT/US98/07114

29. The method of Claim 22 wherein said fatty acid composition is enriched for C10 fatty acids.

30. The method of Claim 22 wherein said fatty acid composition is enriched for C12 fatty acids.

- 31. The method of Claim 22 wherein said fatty acid composition is enriched for at least one medium chain fatty acid and at least one other medium chain fatty acid is decreased.
- 32. The method of Claim 31 wherein said enriched fatty

 10 acid-is C12 and said decreased fatty acid is C14.

_							
48	96	144	192	240	288	336	384
GGC	AAG Lys	GGT Gly	CAC	GGG G1y	TCA	GCT Ala	ACT Thr
CCG	TCC	$_{\rm GGT}^{\rm GGT}$	GGT	ATG Met	$\mathtt{T}\mathtt{A}\mathtt{T}$	GCC Ala	GGC G1y
CCC	CTC	ATG Met	AAG Lys	AAC Asn	AAC Asn	GCT	GGA G1y
GAT	CGC	GGA	GAG Glu	ACA	CCA	CAT	GCT (
GTG Val	GAC	ACA Thr	ATC Ile	ATT Ile	GGC Gly	TTC (ATT (Ile ;
CTA	GCC	GGA Gly	CTT Leu	GCC	ATG Met	TGC	ATG Met
GAA Glu	GGT Gly	GTC Val	TCT	TAT	CTC . Leu 1	TAC '	CTT I
CTA	CIC	CTG	CAG Gln	CCC	GGT	AAC ASn	GAT (
GCT	GAT Asp	GTG Val	GTT Val	ATC Ile	TTT	Ser	GCT Ala
GCC	GCC Ala	GGA Gly	666 61y	TTC Phe	GAA Glu	ACT	GAG Glu
GCG Ala	CGA Arg	GCC Ala	GAC Asp	TTC	ATC Ile	GCC Ala	GGT (
GTG Val	GCA Ala	AGA Arg	TCT	CCT	GCT	TGT	CGT (
GCG Ala	TCG Ser	GAG Glu	TTC Phe	ACC	CTC	GCA Ala	CGC Arg
ACC	AAT Asn	AAG Lys	GTC Val	ATC Ile	CTG	ACT	ATC Ile
TCC	AGG Arg	GAC	ACT Thr	AAA Lys	GCC	TCC	CAT
AGC	TGC	ATC Ile	CTG	CGG	Ser	ATT Ile	AAT (Asn 1
				- ,	•		

FIGURE 1 1 OF 4

432	480	528	576	624	672	720	768
AGG	TGG	Tre	ATT	ACT Thr	AGC	GCT	ATC Ile
TGC	CCC	GTG Val	ATT Ile	ATG Met	AGT	AAT Asn	GCC
GCT	AGG	GGA Gly	000 Pro - · · -	CAC	GAG Glu	ATA Ile	AAT
GTG Val	TCT Ser	GCT	GCA	TAT Tyr	ATT Ile	TAC	ATA Ile
TTT Phe	GCC Ala	GGT	GGA Gly	GCT Ala	TGC Cys	AAT Asn	GAG
GGC G1y	ACT Thr	GAA Glu	CGA Arg	GAT Asp	TCT Ser	GTC Val	GCC
GGA Gly	CAG Gln	GGT Gly	AGA Arg	TGT Cys	TCT Ser	GAG Glu	CTC Leu RE 1 F4
TTG	CCG	ATG Met	ATG Met	Asn	GTC Val	GAA Glu	GAT CTC ASP Leu FIGURE 2 OF 4
666 G1y	GAC Asp	GTG Val	GCA Ala	ATC Ile	GGT Gly	CCT	666 61y
ATT Ile	GAT Asp	TTT Phe	CAT His	GCA Ala	CTT	TCA	GCT Ala
CCA	AAC Asn	GGT G1Y	GAA Glu	GGT Gly	GGT Gly	GTC Val	CTA
ATT Ile	AGG Arg	GAT Asp	TTG	GGA Gly	GAT Asp	66C 61y	ACT
ATC Ile	CAA	CGT Arg	AGC Ser	TTG Leu	GCT Ala	GCT Ala	TCT Ser
GCA Ala	TCT Ser	GAC Asp	GAG Glu	TAT	AGG Arg	GAT Asp	ACT
GCC	TTG	AAA Lys	ATG Met	GAG Glu	CCA	GAA Glu	GCG Ala
GAG Glu	GCT	GAT Asp	GTG Val	GCA Ala	GAT Asp	CTT	CAT
يستسد دو يسروه و رمد				: · · .			ومستهامون

TCTATGTAAT AAAACTAAGG ATTATTAATT TCCCTTTTAA TCCTGTCTCC AGTTTGAGCA	AAAACTAAGG	ATTATTAATT	TCCCTTTTAA	TCCTGTCTCC	AGTTTGAGCA	1236
TGAAATTATA	TTTATTTTAT	CTTAGAAAGG	TCAAATAAGA	ттттбттт	TGAAATTATA TTTATTTTAT CTTAGAAAGG TCAAATAAGA TTTTGTTTTA CCTCTGTAAA 1296	1296
ACTITIGITI GIATIGGAAA GGAAGIGCCG ICTCAAAAAA AAAAAAAA AA	GTATTGGAAA	GGAAGTGCCG	TCTCAAAAA	АААААААА	AA	1348

Sequence Range: 1 to 1704

40 GTG Val>		GCA Ala>		TCT Ser>	0	GAC Asp>	240	CGG Arg>	CTC Leu>		GAA Glu>
GNG		TCG	140	GAC	190	ATC		ATC Ile	AGG Arg		CTC
ACC	90	AAT Asn	•	GTC		TTA Leu		CAG Gln	0 AGG Arg	330	GCT CTC Ala Leu
30 TCC Ser		AGG Arg		GAC		AGC	230	GGC Gly	280 GAC AGG ASP Arg		AAG Lys
AGC		TGC	30	TCC	180	ATC Ile	(1)	GGC Gly	AAC		AAG Lys
TGG	80	66C 61y	13	66c 61y		GGG G1y		TTC	AAG Lys	320	666 61y
20 AGC Ser		CCG		TTC		AGC	220	AGG Arg	270 GGG Gly	(*)	GCC Ala
AAA Lys		CCC		GTA Val	170	GAG Glu	23	ACC	GAC Asp		ATT GTC
AAC Asn	10	GAT Asp	120	TCC	•	GGC Gly		CCC	ATC Ile	0	ATT Ile
10 AAA GGG , Lys Gly ,	•	GTG Val		GTC		TCC		TTC	260 TAC TYE	310	TGC Cys
AAA Lys		CTA Leu		CTC	160	CTC	210	AAG Lys	GGA Gly		TAC
ACT		GAA Glu	110	GGC Gly	1(CTC		TCC	ACG Thr		CGC
CTC	¢ 09	CTA Leu	` '	ATG Met		AAG Lys		GCT Ala	GCG Ala	300	CTC
ACC		GCT		GGC Gly		GAA Glu	200	GAC	250 AAC GCG Asn Ala		TGC
TTA Leu		GCC	100	GCC	150	TAC	0	TTC	TTC		GAT Asp
AAA Lys	20	GCG Ala	1(CGA Arg		TAT Tyr		CGC	GGA Gly	90	GAC
									•		

FIGURE 2 1/5

370 380	AGC CTC TCC AAG ATT GAT AAG GAG AGA Ser Leu Ser Lys Ile Asp Lys Glu Arg>	410 420 · · 430	GGT ATG GGT GGC CTA ACC GTC TTC TCT Gly Met Gly Gly Leu Thr Val Phe Ser>	460 470 480	AAA GGT CAC CGG AAG ATC TCC CCG Lys Gly His Arg Lys Ile Ser Pro>	520 AAC ATG GGG TCT GCT CTG CTT GCC ASD Met Glv Ser Ala Lén Len Alas	560 570	AAC TAT TCG ATT TCA ACT GCA TGT Asn Tyr Ser Ile Ser Thr Ala Cys>	610 620	GCC GCT GCC AAT CAT ATC CGC CGA Ala Ala Asn His Ile Arg Arg>	029 099 029	GGA GGA ACT GAG GCT GCA ATC ATT Gly Gly Thr Glu Ala Ala Ile Ile>	URE 2 2/5
350	TCC GAT CTC GGC GGT GAA Ser Asp Leu Gly Gly Glu	390 400	GGA GTG CTA GTT GGA ACT Gly Val Leu Val Gly Thr	440 450	GGG GTT CAG AAT CTC ATC Gly Val Gln Asn Leu Ile	TTC ATT CCC TAT GCC ATT Phe Ile Pro TVr Ala Ile	540	GAT TTG GGT CTG ATG GGC Asp Leu Gly Leu Met Gly	290	ACT TCC AAC TAC TGC TTT Thr Ser Asn Tyr Cys Phe	630 640	GAG GCT GAC CTC ATG ATT Glu Ala Asp Leu Met Ile	FIGURE 2/5
340	AAT T Asn S	m	GCT G Ala G		GAC G Asp G	TTT T		ATC G	580	GCT AC	.,	GGC G2 G1y G1	*

SUBSTITUTE SHEET (RULE 26)

720	AGG Arg>	GAT Asp>		TTG Leu>		GGA Gly>	0	GAT Asp>	096	GGG Gly>	ACT Thr>
	CAA	CGT		AGC	860	TTG	910	GCT		GCT	TCC
	TCT	760 AAG GAC Lys Asp	810	GAG Glu		TAT		AGG Arg		GAT Asp	0 ACT Thr
710	TTA			ATG	•	GAA Glu		CCA	950	GAA Glu	1000 GCG A(Ala T
•	GCT	GAT ASP		GTT Val	850	GCA	800	GAT Asp	01	CTG	CAT His
	AGG	TGG Trp	800	TTG	80	ATT		ACT Thr		AGT	GCT
700	TGC	750 CCG Pro		GTA Val		ATT Ile		ATG Met	0.1	AGC	990 AAT Asn
7	GCC	AGG Arg		GGA Gly		CCG Pro	890	CAT His	940	GAG Glu	ATA Ile
	GTT Val	TCA	190	GCT Ala	840	GCG Ala	w	TAT		ATT Ile	TAC
	TTC Phe	740 GCC Ala	7.5	$_{\rm GGG}$		$_{\rm GGA}^{\rm GGA}$		GCT Ala		TGC Cys	980 AAT Asn
069	GGA Gly	ACT		GAA Glu		CGA Arg	880	GAT Asp	930	TCT	GTC Val
	GGA Gly	CAG Gln		GGC Gly	830	AAA Lys	88	TGT		TCC	GAG Glu
	TTA Leu	730 GAC CCT ASP Pro	780	ATG Met	w	ATG Met		AAT		GTC Val	O GAA Glu
680	666 G1y			GTG Val		GCA		GTC Val	920	$_{\rm GGT}^{\rm GGT}$	970 CCT GAA Pro Glu
	ATT Ile	GAT Asp		TTT Phe	820	CAT His	870	GCA Ala	O	CTT Leu	TCA
	CCA	AAT Asn	70	GGT Gly	8	GAA Glu		GGT Gly		GGG G1y	GTC Val

FIGURE 2 3/5

~	AAG Lys>		CAC His>	0:	GGA Gly>	1200	GAG Glu>	GAA Glu>		TCA Ser>		GCA	
	TTC Phe	1100	GGA Gly	1150	AAG GGA Lys Gly	-	CCC	CAT His		AAC	1340		
1050	GTT Val	H	ATG ATC Met Ile	· : _ ·	ATT Ile		AAT	CAA Gln	1290	CAC		TCA AAT	
	AAG GTT Lys Val				ACA	1190	TTC	1240 CAG CAA Gin Gin	П	66C 61 <u>y</u>		GĞŢ	
	AAG	. 06	TCG	1140	GCG Ala	11	CAA Gln	AAG Lys		GGA Gly	0	CTC	
1040	ATC Ile	1090	AAG Lys	-	ATT Ile	•	AAC Asn	AAG Lys	1280	TTC Phe	1330	TTA	
ï	GCC		ACT Thr		GAA GCC Glu Ala	30	ATA Ile	AAC Asn	12	GGA Gly		TGA	
	AAT Asn		GCA Ala	1130	GAA Glu	1180	AGC	GCC		TTC Phe		CCA	
30	GAG ATA Glu Ile	1080	AAT Asn	7	CTT Leu		CCC	GTT Val	0	TCA	1320	AAG	
1030	GAG Glu		ATC Ile		$_{\rm G1y}^{\rm GGT}$		CAT	ACA Thr	1270	AAT	7	TTC	
	GCC		ACA Thr	02	$_{\rm GGG}$	1170	CTT			TCA		GCC	
	CTT Leu	1070	ATC Ile	1120	TCA		TGG	TTC Phe		ATC Ile	1310	TCA	
1020	GAT Asp	ਜ .	GAA Glu		GCA Ala		GGC Gly	lo GAA Glu	1260	GCT Ala	13	TTC	
•	666 61y		AAG Lys		${\tt GGA \atop \tt G1y}$	1160	ACC	1210 GTG GZ Val G		GTT Val		GCT	
	GCT	20	ACC	1110	CTT Leu	11	ACC Thr	TCA		AAT Asn	00	GTA Val	
10	CTT	1060	AAC Asn		TGT Cys		ATA Ile	CCA	20	GTG Val	1300	GTT Val	
			-										

AATTIGITGC TGAGACAGTG AGCTICAACT TGCAGAGCAA TITITIACAT GCCTIGICGI CGGAAGAGCG TAATACCGGG ATAGTTCCTT GATAGTTCAT TTAGGATGTT TTACTGCAAT AATCGAAGAT TATTTCCATT CTAATCCAGT CTCCGNCGAG TTTGAGAATC TATCTGTTTG TATTAGAAAG AACGAGGCAA GATTTTGTTT CATGTTTGTG TTTGTATTAC TTTCTTTTTG CCCTTGTCAA TGGCATTTAA GATAAGCTTA TAAAAAAAA AAAAAAAA AAAACTCGAG GGGGGCCCG GTACCCAATT CGCCCTATAG TGAGTCGTAT GACAATTCAC TGTCCGTCGG

FIGURE 2 5/5

	•											
09	CCGCTCTAGA ACTAGTGGAT	120	GGTCGGCTCA GCTCAGGTGT	G TGG r Trp		TCC		TCC		TGC Cys	360	GGA G1y
	ACTA		GCTC	r ACG		CGT	260	CTC	310	CCT	•	TTC
50	4GA	110	Ç.	TGT CYS	210	CCA	7	ACT		GAT Asp		CTC
	TCT		CGGC	160 TTC		GAC		AGG		CTC	- 0	TCC
			GGTC	CCT		AAC Asn		CGG	300	TGC	350	GCT
40	3000	100	TTG	TCC Ser	200	GAC	250	CGC	·W	CAA Gln		TTC
	ACTAAAGGGA ACAAAAGCTG GAGCTCCACC GCGGTGGCGG		TTCTTACTTG	150 r GCG l Ala	30	TCC		CGT Arg		TTC		GGA
0) C	0		GTT Val		TCA		TCC	0	ACC	340	AAC
30	CAC	90	BAGT	ATG Met		ACT Thr	240	CTC	290	TCC		GAT Asp
	AGCT		GGCACGAGTT	140 GCT TCT TGC Ala Ser Cys	190	CCC	N	CGC		GGA Gly		GGG G1y
20	rg G	80		14 r TCT		ATG		CTC		CGC	330	CTC
•	AAGC		BAAT	GCT Ala		TGC	0	CGG Arg	280	CTC	m	TTC
	ACAA		GCAGGAATTC	ACC Thr	180	GCA	230	AAG		TCC		CGC
10	3GA	70	3CT	130 3 GCG		GCT		CAC His		TGC	0	CAA
	AAAG(•	CCCCGGGCT	A ATG Met		GTA Val		TCC Ser	270	CAT His	32(CAG Gln
	ACT		\mathcal{L}	TCCA	170	CTC	220	CTT	(7)	TCC		AAC Asn
					•							

0.5			AAC Asn	TCT Ser		GAC
5	GTT Val	*	GAG Glu	AAG Lys		ATG Met
	GAT Asp		ATA Ile	ATC Ile	069	AGG
	CCC	06	GAG Glu	640 GAG Glu	v	GAG
\$40	GAC Asp	52	AGT Ser	GGA G1y		TCC
			ATA Ile	GCC Ala	0	AAG TTC Lys Phe
	GGC Gly		GGC Gly	330 ATT Ile	89	AAG Lys
30	CTA	580	AGT	AGA Arg		CCA
5				ACG Thr		GCC Ala
				20 CCC Pro	029	GTG Val
		370	GAC ASP	62 TTT Phe		TGG Trp
520	GTG Val	υ,	CTA Leu	CAG Gln		GGC Gly
Č	660 G1y		CTC	TCT Ser	*	GAT Asp
E		00	AAT Asn	610 TGC Cys	v	ACA
	66 61		AAC Asn	GAC Asp		TCC Ser
	ACA		TAC	TTC	650	TTT Phe
	510 520 530 540	520 530 540 * T ATG GGC GTG GTG ACT CCT CTA GGC CAT GAC CCC GAT Y Met Gly Val Val Thr Pro Leu Gly His Asp Pro Asp	530 540 GGT ATG GGC GTG GTG ACT CCT CTA GGC CAT GAC CCC GAT Gly Wet Gly Val Val Thr Pro Leu Gly His Asp Pro Asp 560 570 580 590	GGT ATG GGC GTG ACT CCT CTA GGC CAT GAC CCC GAT GIY Wet Gly Val Val Thr Pro Leu Gly His Asp Pro Asp 560 570 580 590 590 AAC AAT CTC CTA GAC GGA ATA AGT GGC ATA AGT GAG ATA AST AST Leu Leu Asp Gly Ile Ser Glu Ile	GGT ATG GGC GTG GTG ACT CCT CTA GGC CAT GAC CCC GAT G1y Met G1y Val Val Thr Pro Leu G1y His Asp Pro Asp 560 560 570 580 590 AAC AAT CTC CTA GGC ATA AGT GAG ATA AGT GAG ATA ASR ASR ASR G1y Ile Ser G1y Ile Ser G1u Ile GAC TCT CAG TTT CCC ACG AGA ATT GCC GGA GAG ATC ASP CYS Ser G1n Phe Pro Thr Arg Ile Ala G1y G1u Ile Ile Ala G1y G1u Ile	510 520 530 540 CA GGT ATG GGC GTG ACT CCT CTA GGC CAT GAC CCC GAT Thr Gly Met Gly Val Val Thr Pro Leu Gly His Asp Pro Asp 560 570 580 590 AC AAC AAT CTC CTA GAC GGA ATA AGT GGC ATA AGT GAG ATA YT Asn Asn Leu Leu Asp Gly Ile Ser Gly Ile Ser Glu Ile CGAC TGC TCT CAG TTT CCC ACG AGA ATT GCC GGA GAG ATC He Asp Cys Ser Gln Phe Pro Thr Arg Ile Ala Gly Glu Ile 660 680 680 680 680 680 680 680 680 680

FIGURE 3 2 OF 6

_	GAT Asp		TGT Cys	840	GAT Asp	TGT Cys		GAC		ACA		GAA Glu
740	GCA	790	AAG Lys	w	AGC	TTT Phe		ATG	0	GCA Ala	1030	GGC Gly
	TTA Leu	٠	AGA Arg	-	TTC Phe	CCC	930	GCA	980	GCC TGT Ala Cys		AAA Lys
	GCA Ala		AAT AAA Asn Lys	830	GTA Val	880 AGT Ser		CTT	•••••••			ATC AAA Ile Lys
730	AAA Lys	780		8	AAG Lys	ATC Ile		ATT Ile		ACT Thr	1020	ATA Ile
•	AAG Lys	•	CTC		ATG Met	AAG Lys	920	GCT	970	TCA	10	CAC
	GGC Gly		GAG Glu		GGT Gly	870 AAG Lys	92	TCC		ATA Ile		AAC
720	GCA	770	AAA Lys	820	GGC Gly	TAT Tyr		GGA Gly		TCG	0]	GCG Ala
7	ACT	7.	ATG		TTG	TCA		ATG Met	096	TAT Tyr	1010	GCT Ala
	CTG		GCG		GGA Gly	860 AGG ACT Arg Thr	910	AAT Asn	O1	AAC		AAT Asn
0	* ATG Met		GAT	810	TCC			ACA Thr		CCT		CTG
710	TAC	760	GAA	~	66C 61y	CTG		ACC	950	GGC Gly	1000	ATA Ile
	CTT		ACT		ATT Ile	GCT	006	TCT	96	ATG Met	. •	TGT Cys
	ATG Met		ATC Ile	800	CTC	850 GAA Glu	O1	TTT Phe		TGG Trp		TTC Phe
700	TTC	750	GGA Gly	8	GTT Val	ATT Ile	•	CCT Pro		GGA G1y	066	AAC Asn
	AAG Lys	£ -	GGT Gly		GGA Gly	TCC	890	GTA Val	940	TTG	on ,	AGT

FIGURE 3 3 OF 6

1080	GTT Val	AAT Asn		TTT Phe		CAT His		AGT Ser	1320	GCT Ala	TCG
ਜ	CCT	AAT Asn		CGT GAT GGA Arg Asp Gly	50	GAG Glu	1270	$_{\rm GGG}$	ä	GGA	GTC Val
	TTA	AGG Arg	1170	GAT Asp	1220	TTA	-	$_{\rm GLY}^{\rm GGT}$		GAA Glu	GGA
1070	GTT Val	1120 CAG Gln	Ä	CGT Arg		GAG		CTA	. 01	CCT Pro	1360 CAG TCC Gln Ser
10	GCC	TCA Ser		AAT Asn		GAG Glu	1260	GAA TTT Glu Phe	1310	CAC	1 CAG Gln
	GCG	TTG	09	GAC AGT Asp Ser	1210	CTT	17			CCT	GCT
	GAT	1110 CGA GCT Arg Ala	1160	GAC		CTT		GCG		GAG Glu	50 ITG Leu
1060	TCG			TGG		TTA	20	TAT Tyr	1300	ACC	13 GCC Ala
	66C 61y	TGC		CCA	1200	GTT Val	1250	ATT Ile	•	ATG	AAG Lys
	TGT GGT Cys Gly	1100 GTA GCA Val Ala	1150	AGA Arg	ਜ	GGA Gly		ACC Thr		CAC His	1340 ATA GAG Ile Glu
1050	TGT Cys			TCG		GCT		GCA Ala	1290	GCC TAC Ala Tyr	1340 ATA G Ile G
Н	CTT	TTC		GCT Ala	06	GGA Gly	1240	GGT Gly	12		TGC
	ATG	GGT Gly	1140	AAA Lys	1190	GAA Glu	• •	AGA Arg		GAC Asp	CTC
40	* GAC ATG ASP Met	1090 TTG GGA Leu Gly	H	ACC		GGA Gly		AAA Lys	08	ACT TGC Thr Cys	1330 3 ATC . Ile
1040				CCT		ATG Met	1230	AAG Lys	1280	ACT	1 GTG Val
	GCA Ala	GGT G1y	1130	GAC Asp	1180	GTG Val	12	GCA		TTC	GGT Gly

FIGURE 3 4 OF 6

										•			
	GCT		AAC		CTT Leu	1560	AGG Arg	GGC Gly		GTC Val			TCC
	TCC ACT CCT Ser Thr Pro	0.9	CAA Gln	1510	CAC CTT CTT His Leu Leu	15	ATA Ile	GAA Glu		AAG Lys		, O	
1410	TCC ACT Ser Thr	1460	GGC G1y				GCA	GAC	950	AAA CTG AAG Lys Leu Lys	- 1	1700	ASD Ser
À		• •	TTC	: :: : <u>:</u> :	GGT G1y	20	GTT CAG Val Gin	1600 CCG GAC Pro Asp	1650	AAA Lys	∴ **		CAT His
	ACT Thr		TGT	1500	ATG ATC Met Ile	1550		GAC		GAG Glu			GGC Gly
00	GCA Ala	1450	CAC	ij			GTA Val	GAA Glu	0.	AAG AAG Lys Lys		1690	TTC GGC Phe Gly
1400	CAT His	. ,	GCC Ala		TCG		GCA Ala	1590 AAT TTG Asn Leu	1640	AAG Lys		-	
	AAT GCG Asn Ala		CTC	06	ACC AAA Thr Lys	1540	GTT	15 AAT Asn		CCT			GGG Gly
	ATA AAT Ile Asn	1440	CAA GCT Gln Ala	1490	ACC		GCA Ala	ATT Ile		GGC Gly		1680	AAT TCA TTT Asn Ser Phe
1390	ATA Ile	1,			TCC		GAA Glu	0 AAT Asn	1630	GTC Val		. 16	TCA
•	AAT TAC Asn Tyr		${ t TAC}$		AAT Asn	1530	GTA Val	1580 CCA AA Pro As		CTC			AAT
		30	GAA Glu	1480	GTG Val	1	GGC	CAT		CTG		0	TCC
1380	GTA Val	1430	AAG Lys	•	AGA Arg		GGT Gly	ATC Ile	1620	AAA Lys		1670	TTG
Ä	GAC		ATC Ile		CTG	0 3	GCT Ala	.570 TGG Trp	16	GCA Ala			
	GAA Glu		GAT Asp	1470	GAG Glu	1520	GGA Gly	GGA Gly		GAT			GTC GGT Val Gly
1370	AGG	1420	GGA Gly	. 14	AGT		GGA G1y	ACA	1610	GTG Val		1660	AAG Lys

FIGURE 3 5 OF 6

V	٥
Ľ	4
C	_
V	_
•	
μ	1
۵	2
110	-
מונט	כ
TOI TOI	-

	AAAAA	AAACCACATC TCAGTATGCA AAATAAAAA AAAAAAAA AAAAAA	AAATAAAAA	TCAGTATGCA	AAACCACATC
	·	2040	2030	2020	2010
I'T'T'GAA	TTTGTAATGC ATATTTTGAA	ACATGITCGI TATCGGATCA ATGIGITTCT TCTAAGAICA	ATGTGTTTCT	TATCGGATCA	ACATGTTCGT
2000	1990	1980	1970	1960	1950
TTCGAAT	TATTITCTIC TICTTITGAG AGCTITAACC GAGGTAGICG TATTITCGAG CTTITCGAAT	GAGGTAGTCG	AGCTTTAACC	TTCTTTTGAG	TATTTTCTTC
1940	1930	1920	1910	1900	1890
TCCCTTT	TGGTGTTAAG AGATCACTGC TTGTCCCTTT	TGGTGTTAAG	GGGGATGCCA AAGATACTCC TTGCCGGTAT	AAGATACTCC	GGGGATGCCA
1880	1870	1860	1850	1840	1830
TACTCGA	GAACTCATGC ACGTTAGTAG CTTCTTATGC CTCTGAAACC GAGATAGACC GGCTACTCGA	CTCTGAAACC	CTTCTTATGC	ACGTTAGTAG	GAACTCATGC
1820	1810	1800	1790	1780	1770
GAGTCTTTGA	CCC TGC AAC TAG A AAAGAGTCTG TGGAAGCCGA GA Pro Cys Asn ***	A AAAGAGTCTG	GC AAC TAG / ys Asn ***	GCC	ATA CTA TTT Ile Leu Phe
1760	1750	0 1740	1730	1720	1710

Sequence Range: 1 to 1921

09	CTACACCTCC	120	SCTCAATCGA	180	AGTTACCACA	GGA ATG Gly Met>	**	AAT AAT Asn Asn>	320	GAT TGT Asp Cys>	370	TCC ACA Ser Thr>
50	CGGCACGAGG TCACCTCTTA CCTCGCCTGC TTCGAGCCCT GCCATGACTA CTACACCTCC	110	TCGGATCCAG GCCCATCCGC ACCACCCGCA GGCACCGGAG GCTCAATCGA	170	CTGCACAGGA A	220 GTT GTG ACT Val Val Thr	270	GTT TTC TAC Val Phe Tyr		GAG ACC TTT Glu Thr Phe	360	AAG TCT TTC Lys Ser Phe
40	TTCGAGCCCT	100	ACCACCGCA	160	GCTCTGCAAC	210 CGG CGA.GTA Arg Arg Val	260	GAC CCT GAT ASP Pro ASP	310	AGT GAG ATA Ser Glu Ile	0:	GGA GAG ATC Gly Glu Ile
30	CCTCGCCTGC	06	GCCCATCCGC	150	CCGGGGAGGC AATGGCTGTG	200 ATC AAA CAG C Ile Lys Gln A	250	CTA GGC CAT G Leu Gly His A	300	GGC ATA Gly Ile	350	ACG AGA ATT GCT G Thr Arg Ile Ala G
20	тсасстстта	80	TCGGATCCAG	140	CCGGGGAGGC	O CCA AGT Pro Ser	240	ACT CCT Thr Pro	290	GGA ACG AGT Gly Thr Ser	340	CCT
10	CGGCACGAGG	70	GCATCCTTGT	130	GCTTCCCCTT	19 AAG AAG AAG Lys Lys Lys	230	GGT GTG GTG	780	CTG CTT GAT Leu Leu Asp	330	GCT CAA TTT Ala Gln Phe

IGURE 4

420	ATG Met>	ATC Ile>		CTC Leu>		GAA Glu>	610	TTC Phe>	*	TGG Trp>	TTT Phe>
	TTC Phe	GGA G1y		GTT Val	260	ATT	61	CCT TTC Pro Phe		GGA Gly	AAC Asn
	GAC AAG Asp Lys	460 AAT GGT Asn Gly	510	GGA Gly	٥,	GCC		GTA Val		TTG	700 ACG AGT Thr Ser
410	GAC			TGC		GAT Asp		TGT Cys	650	GAC TTG Asp Leu	70 ACG Thr
•	ATG Met	ACA Thr		AAA Lys	550	AAT Asn	009	TTT Phe	Ψ	ATG Met	GCA Ala
	AGG	TTA Leu	200	AGA Arg	5.	TTC		CCC		GCA Ala	TGT
400	AAG Lys	450 GCA Ala	υ,	AAA Lys		GTA Val		AAT Asn	640	CTT	690 GCT Ala
4	TCC	AAA Lys		GAT Asp		AAG Lys	290	ATG	9	ATG Met	ACT Thr
	CTC	AAG Lys	490	CTA Leu	540	ATG Met	ш,	AAG Lys		GCT Ala	TCT Ser
	AAG Lys	440 GCC GGC Ala Gly	4	GAG Glu		GGA Gly		AAG Lys		TCA	680 TCG ATA Ser Ile
390	CCG	•		AAA Lys		GGT Gly	580	\mathtt{TAT}	630	GGA Gly	
	GCC Ala	ACT Thr		ATG Met	530	GCA ATG Ala Met	28	TCA		ATG Met	TAC
	GTG Val	430 G CTG t Leu	480	GTG Val	٠,	GCA Ala		ATT Ile		AAT Asn	o AAC Asn
380	TGG	43 ATG Met		GAT Asp		TCA		AGG Arg	620	ACA Thr	670 CCC AAC Pro Asn
••	GGT Gly	TAC		GAA Glu	0	GGC Gly	570	CTA	9	ACC	GGC Gly
	GAT Asp	CTT Leu	470	ACC	520	ATT Ile		GCC Ala		GCT Ala	ATG Met

FIGURE 4 2/6

	GTG Val>		GGA Gly>	850	ACT Thr>	006	GGG Gly>	AAA Lys>		TGC Cys>		ATT Ile>	
	GAT Asp	0 0 8	ATG	8	CCT		ATG Met	AAG Lys		ACT	1040	GTG Val	
750	GAA GCA Gļu Ala	ω	GGT Gly		GAC Asp		GTT Val	940 CAT GCA His Ala	066	TTC	70	GGA G1y	
			ATT		GCC Ala	890	TTT Phe			AGT	• • •	GCT	:
	GGC Gly	190	CCT	840	AAT Asn	•	GGA Gly	GAG Glu		GGA Gly	30	GGA Gly	
740	AGA	7	ATA Ile		AGA Arg		GAT Asp	TTA	086	GGT Gly	1030	GAT Asp	
	ATC Ile		ATC Ile		CAG Gln	880	CGT Arg	930 GAG Glu	J.	CTA Leu		CCT	
	ATA Ile	,	GTA Val	830	TCA	æ	AAT Asn	GAG		$ extbf{T}$		CAC His	
730	CAC His	780	GCG Ala	~	TTG		AGT Ser	CTA	970	GAA Glu	1020	CCT	
7	AAC Asn		GAT Asp		GCT Ala		GAC	920 A CTA	6	GCA Ala	-	GAG Glu	
	GCG Ala		TCA	820	CGA Arg	870	TGG Trp	CTA Leu		TAC Tyr		ACC Thr	
	AAT GCT Asn Ala	170	GGC G1y	88	TGC	•	CCA Pro	GTG Val		ATT Ile	1010	ATG	
720		•	GGG		GCA Ala		AGA Arg	910 GCT GGA Ala Gly	960	ACT Thr	1(CAC	
	CTG		TGC		GTT Val	860	TCA	91 GCT Ala		GCG Ala		TAC	
	ATC Ile	160	CTT	810	TTT	~	GCT Ala	GGA		GGT Gly	00	GCC	
710	TGT Cys	7(ATG Met		GGT Gly		AAA Lys	GAA Glu	950	AGA Arg	1000	GAT Asp	

SUBSTITUTE SHEET (RULE 26)

06	GAA GAC Glu Asp>	1140	ATC Ile>	TTA Leu>		GCC Ala>		TGG Trp>	0	ACC Thr>	1380	GGT Gly>
1090	GAA Glu	• •	GAT Asp	GAG Glu		GCA	1280	GGG G1y	1330	GAT ACC ASP Thr	7	GTC Val
	TCT AGG		GGA Gly	1180 AAC AAC Asn Asn	1230	GGA Gly	13	ACT Thr		GTG Val		AAG
,	TCT	1130	GCT Ala		•	CTC	•	AGG Arg		ggc	1370	ATT
1080	GTC Val	ਜ	CCA Pro	CAA Gln		CTT	0.0	GCA ATA Ala Ile	1320	GAA Glu	13	AAC Asn
	GGA G1y		ACT	GGC Gly	1220	CAC His	1270	GCA Ala	•	GAT Asp		CTG
	TCA	20	TCC	1170 TGT TTC (Cys Phe (ï	$_{\rm G1y}^{\rm GGT}$		CAG Gln		CCA Pro	20	AGA Arg
1070	CAG	1120	ACA	TGT		ATT Ile		TCA GTA GTT Ser Val Val	1310	GAA AAC Glu Asn	1360	GAG
ਜ	GCT		GCC	CAC His	01	TCA ATG Ser Met	1260	GTA Val	ਜ	GAA Glu		AAG Lys
	TTG		CAT His	1160 CTT ATC	1210					TTG		AAG Lys
09	GCT Ala	1110	GCA	CTT Leu		AAA Lys		GAA GCA GTT Glu Ala Val	00	ATT AAT Ile Asn	1350	CCT
1060	AAG		AAT Asn	GCT		TCT ACC Ser Thr	1250	GCA Ala	1300	ATT Ile	П	GGC Gly
	GAG Glu		ATA Ile	1150 TAC CAA TYr Gln	1200		17	GAA Glu		AAT Asn		GTG Val
	ATA Ile	1100	TAC	1150 TAC C2 TYr G	• •	AAT Asn		GTG Val		CCG	1340	CTC
1050	TGC	H	AAT Asn	GAG Glu		GTG Val	01	GGT Gly	1290	CAT His	13	TTG
	CTC		GTA Val	AAA Lys	1190	AAA Lys	1240	$_{\rm G1Y}^{\rm GGT}$	П	ATC Ile		AAA Lys

TGURE 4

							•							
A CTC TTC e Leu Phe>	1480	ATCAAA	1540	CATGCCCATG	1600	GGCGACACAG	1660	TTTCTGAAAT	1720	GAAGAGAACA	1780	TTTATCGCCG	1840	ATCATTGGAG
1420 TCG TCC ATA Ser Ser Ile	1470	CATGTGGGA ATTCTACTCA ATCTATCAAA	1530	CGTCTCTAGA CATGCCCATG	. 1590	AGTTTTGTGT CGGGAGCTGT AGTCGGAACC ATGACGGATT GAGTACTCAT GGCGACACAG	1650	TCCCATTTTT	1710	CTCCCTCCTT ACGGTAGTTG TACTTTCGAG CGTTTCATCG AGTCAGTGAA GAAGAGAACA	1770	TGCTCTCTAT TTTATCGCCG	1830	TTTTGTGGGT TAAAATTTGT AAAACTAGAC GACTGGTTTG TTTTCTCTTG ATCATTGGAG
1410 1420 GGG CAC AAC TCG TCC Gly His Asn Ser Ser	1460	rgrgga atrci	1520	TGAGGACTCC AGCATGTTGG TAGCTCCTTA	1580	ATGACGGATT	1640	TTGCTAGAAT TGTTAGAGCA CTATTCATTA	1700	CGTTTCATCG	1760	CCCTTTGTTT	1820	GACTGGTTTG
1400 GGG TTT GGT (Gly Phe Gly (1450	TAG GGCGTTT CATG: ***>	1510	AGCATGTTGG	1570	AGTCGGAACC	. 1630	TGTTAGAGCA	1690	TACTTTCGAG	1750	GGGCACGTAG TAACCATTTG	1810	AAAACTAGAC
TCA TTC Ser Phe	1440	AAC Asn	1500	TGAGGACTCC	1560	CGGGAGCTGT	1620		1680	ACGGTAGTTG	1740	GGGCACGTAG	1800	TAAAATTTGT
1390 TTG TCT AAT Leu Ser Asn	1430	GCC CCT TAC Ala Pro Tyr	1490	GCTGAAGTTT	1550	AGTTTTGTGT	1610	GATATACTCC	1670	CTCCCTCCTT	1730	AAGCTAACTC	1790	TTTTGTGGGT

TGURE 4

AAAAAAAA AAAAAAAA A 1920

ATGTATGGCC ATATTTGCCT TTCATTGATG ATAAAAAAA AAAAAAAA AAAAAAAA

1870

1860

1850

1910

1890

FIGURE 4 6/6

09	120	169	217	265	313	361	409	457	505
CTGGTACGCC TGCAGGTACC GGTCCGGAAT TCCCGGGTCG ACCCACGCGT CCGTCTTCCC	ACTCCGATCG TTCTTCTTCC ACCGCATCTC TTCTCTTCTC	CGCCGCC ATG CAT TCC CTC CAG TCA CCC TCC CTT CGG GCC TCC CCG CTC Met His Ser Leu Gln Ser Pro Ser Leu Arg Ala Ser Pro Leu 1	GAC CCC TTC CGC CCC AAA TCA TCC ACC GTC CGC CCC CTC CAC CGA GCA Asp Pro Phe Arg Pro Lys Ser Ser Thr Val Arg Pro Leu His Arg Ala 15	TCA ATT CCC AAC GTC CGG GCC GCT TCC CCC ACC GTC TCC GCT CCC AAG Ser Ile Pro Asn Val Arg Ala Ala Ser Pro Thr Val Ser Ala Pro Lys 35	CGC GAG ACC GAC CCC AAG AAG CGC GTC GTG ATC ACC GGA ATG GGC CTT Arg Glu Thr Asp Pro Lys Lys Arg Val Val Ile Thr Gly Met Gly Leu 50 55 60	GTC TCC GTT TTC GGC TCC GAC GTC GAT GCG TAC TAC GAC AAG CTC CTG Val Ser Val Phe Gly Ser Asp Val Asp Ala Tyr Tyr Asp Lys Leu Leu 65	TCA GGC GAG AGC GGG ATC GGC CCA ATC GAC CGC TTC GAC GCC TCC AAG Ser Gly Glu Ser Gly Ile Gly Pro Ile Asp Arg Phe Asp Ala Ser Lys 80	AGG TTC GGC GGC CAG ATT CGT GGC TTC AAC TCC ATG Arg Phe Gly Gly Gln Ile Arg Gly Phe Asn Ser Met 100	TAC ATT GAC GGC AAA AAC GAC AGG CGG CTT GAT GAT TGC CTT CGC TAC Tyr Ile Asp Gly Lys Asn Asp Arg Arg Leu Asp Asp Cys Leu Arg Tyr 120

FIGURE 5

က္	౼	ō	<i>L</i>	ហ្	m	rd	o O
553	601	649	697	745	793	841	889
r) d	rn N	£ 4	N. # O	(D. 1)	£ 3. #0	7 0	e
GCC	666 61y	CTT Leu	GCC Ala 190	ATG Met	TGC Cys	ATG Met	66C 61Y
GGT Gly	GTT Val	TCT Ser	TAT Tyr	CTG Leu 205	TAC	CTT Leu	GGA Gly
CTC Leu 140	CTG	CAA Gln	CCC	GGT Gly	AAC Asn 220	GAT Asp	TTG
GAT Asp	GTG Val 155	GTT Val	ATC Ile	CTC	TCC	GCT Ala 235	GGG G1y
GCC Ala	GGA Gly	GGG G1y 170	TTC Phe	GAA Glu	ACT Thr	GAG Glu	ATT Ile 250
GAC Asp	GCC	GAC Asp	TTC Phe 185	ATT Ile	GCC	GGT Gly	CCA
GAG Glu	AGA Arg	TCT Ser	CCT Pro	GCT Ala 200	TGT Cys	CGT Arg	ATT Ile
CTT Leu 135	GAG Glu	TTC Phe	ACC Thr	CTC	GCA Ala 215	CGC Arg	ATC Ile
TCT	AAG Lys 150	GTC Val	ATC Ile	CTG	ACT Thr	ATC Ile 230	GCA Ala
AAG Lys	GAC Asp	ACT Thr 165	AAA Lys	GCC Ala	TCC	CAT His	GCC Ala 245
AAG Lys	ATC Ile	CTG Leu	CGG Arg 180	TCT Ser	ATT Ile	AAT Asn	GAG Glu
666 G1y	AAG Lys	GGT Gly	CAC His	GGG G1y 195	TCA	GCT Ala	ACT
GCC Ala 130	TCC	GGT Gly	GGT Gly	ATG Met	TAT Tyr 210	GCT Ala	GGC G1y
GTC Val	CTC Leu 145	ATG Met	AAG Lys	AAC Asn	AAC Asn	GCT Ala 225	GGA Gly
ATT Ile	CGC Arg	GGA Gly 160	GAG Glu	ACA Thr	CCA	CAT His	GCT Ala 240
TGC	GAC	ACA Thr	ATC Ile 175	ATT Ile	GGC Gly	TTC	ATT Ile

FIGURE 5

					•		
937	985	1033	1081	1129	1176	1224	1272
ACT Thr 270	GAA Glu	CGA Arg	GAT	TCT Ser	GTC Val 350	GCC Ala	AAA Lys
CAG Gln	GGT G1y 285	AAA Lys	TGT Cys	TCC	GAG Glu	CTC Leu 365	ATC Ile
CCT Pro	ATG Met	ATG Met 300	AAC Asn	GTC Val	GAA Glu	GAT	GAT ASP 380
GAC	GTG Val	GCA Ala	ATC Ile 315	GGT G1X	CCT Pro	GGG G1Y	AAG Lys
GAT Asp	TTT Phe	CAT	GCA Ala	CTC Leu 330	TCA	GCT Ala	ACA Thr
AAC Asn 265	GGT	GAA Glu	GGT G1y	GGT Gly	GTC Val 345	CTA	AAC Asn
AGG Arg	GAT Asp 280	TTG	GGA G1y	GAT Asp	GGC G1y	ACT Thr 360	AAG Lys
CAA	CGT Arg	AGC Ser 295	TTG	GCT Ala	GCT	TCT Ser	TTC Phe 375
TCT	GAC Asp	GAG Glu	TAT TYT 310	AGG Arg	GAT Asp	ACT	GTT Val
CTG	AAA Lys	CTG	GAG Glu	CCA Pro 325	GAA Glu	GCG	AAG Lys
GCT Ala 260	GAT Asp	GTG Val	GCA Ala	GAC Asp	CTT Leu 340	CAT His	AAG Lys
AGG Arg	TGG Trp 275	TTG Leu	ATT	ACT	AGC	GCT Ala 355	ATC Ile
TGC	CCC	GTG Val 290	ATT Ile	ATG	AGT Ser	AAT Asn	GCC Ala 370
GCT	AGG Arg	GGA G1y	CCT Pro 305	CAC	GAG Glu	ATA Ile	AAT Asn
GTG Val	TCT Ser	GCT	GCA Ala	TAT TYr 320	ATT Ile	TAC	ATA Ile
TTT Phe 255	GCC	GGT G1Y	GGA Gly	GCT	TGC Cys 335	AAT Asn	GAG Glu

1320	1368	1416	1464	1512	1569	1629	1689	1712
ATT AAT GCA ACT AAG TCA ATG ATC GGA CAC TGT CTT GGA GCC TCT GGA Ile Asn Ala Thr Lys Ser Met Ile Gly His Cys Leu Gly Ala Ser Gly 395	GGT CTT GAA GCT ATA GCG ACT ATT AAG GGA ATA AAC ACC GGC TGG CTT Gly Leu Glu Ala Ile Ala Thr Ile Lys Gly Ile Asn Thr Gly Trp Leu 400	CAT CCC AGC ATT AAT CAA TTC AAT CCT GAG CCA TCC GTG GAG TTC GAC His Pro Ser Ile Asn Gln Phe Asn Pro Glu Pro Ser Val Glu Phe Asp 415	ACT GTT GCC AAC AAG AAG CAG CAA CAC GAA GTT AAT GTT GCG ATC TCG Thr Val Ala Asn Lys Lys Gln Gln His Glu Val Asn Val Ala Ile Ser 435	AAT TCA TTT GGA TTC GGA GGC CAC AAC TCA GTC GTG GCT TTC TCG GCT Asn Ser Phe Gly Phe Gly Gly His Asn Ser Val Val Ala Phe Ser Ala 450	TTC AAG CCA TGA TTACC CATTTCACAA GGCACTTGTC ATTGAGAGTA CGGTTGTTCG Phe Lys Pro 465	TCAAACCCAT TTAGGATACT GTTCTATGTA AAAAAAGTA AGGATTATCA CTTTCCCTTC	TAATCCTGTC TCCAGTTTGA GAATGAAATT ATATTTATTT TAAAAAAAAA	GGCCGCTCTA GAGGATCCAA GCT

FIGURE 5

FIGURE 6 1/5

FIGURE 6 2/5

	CAG Gln	450	CGG Arg		GCT		AAG Lys	GTC Val		ATC Ile	069	CTG
400	GGC Gly	7	GAC Asp		AAG Lys		GAT Asp	590 CTA ACT Leu Thr	640	AAG Lys	w	GCG Ala
	GCC		AAC Asn		AAG Lys	540	ATT Ile	55 CTA Leu		CGG Arg	•	TCT
	TTC	440	AAG Lys	490	GGC AAG	u,	AAG Lys	GGC		CAC	0	GGG G1y
390	AGG Arg	44	GGC Gly		GCC		TCC	GGT Gly	630	$_{\rm GLy}^{\rm GGT}$	680	ATG Met
,	ACC		GAC Asp		GTC Val	530	CTC	580 ATG Met	v	AAA Lys		AAC Asn
	CCC		ATC Ile	480	ATT Ile	53	TCC	GGT Gly		GAG Glu		ACA Thr
380	TTC	430	TAC Tyr	7	TGC		CAA Gln	ACC Thr	620	ATC Ile	670	ATT
ñ	AAA Lys		GGC Gly		TAC		GGC Gly	570 GGA G1y	9	CTC		GCC Ala
	TCC		ACG Thr	470	CGC Arg	520	GCC Ala	GTT Val		AAT Asn		TAT Tyr
	GCT Ala	420	GCG Ala	47	CTC		CTC	CTA		CAG Gln	* 099	ATT CCA Ile Pro
370	GAC Asp	4	AAC Asn		TGC Cys		GAT ASP	60 GTG Val	610	GTT Val	v	ATT Ile
	TTC Phe		TTC Phe		GAT Asp	510	GCC Ala	560 GGA G Gly Va		GGG		TTC Phe
	CGC Arg	410	GGC Gly	460	GAC	u)	GAC Asp	GCC		GAC	0	TTT Phe
360	GAC Asp	4.7	CGT Arg		CTC		GAA Glu	AGG Arg	009	TCT	650	CCG
	ATC Ile		ATC Ile		CGG Arg	200	CTC	550 GAG Glu	y	TTC		TCC

SUBSTITUTE SHEET (RULE 26)

FIGURE 6 3/5

	ACT Thr		ATC Ile	GCG		TCT	930	GAC Asp		GAG Glu		TAT
•	TCA		CAT His	30 GCT Ala	880	TTA	01,	AAG Lys		ATG Met		GAA Glu
	ATT Ile	780	GCC AAT Ala Asn	830 GAG GCT Glu Ala		GCT Ala		GAT Asp		TTG GTT Leu Val	1020	GCA
7,30	Ser	, ,	GCC	ACT	: -:	TGC AGG Cys Arg	920	CCG TGG Pro Trp	9,70	TTG	7.	ATT GCA Tle Ala
	TAT Tyr		GCC	GGA Gly	870	TGC Cys	6	CCG Pro		GTA Val		ATT Ile
	AAC Asn	770	GCT Ala	820 GGA G1y	w	GCC Ala		AGG Arg		GGA Gly	9	CCG
720	CCA	7.	TAT Tyr	GCT		GTT Val		TCA	096	GCT	1010	GCG Ala
•	GGC		TTT Phe	ATT Ile	860	TTC	910	GCC Ala	01	GGG G1y		GGA Gly
	ATG Met		TGC Cys	810 ATG Met	8	GGA Gly		ACT Thr		GAA Glu		CGG
710	CTG	760	TAC Tyr	CTG Leu		GGA Gly		GAT CCT CAG Asp Pro Gln	950	ATG GGT Met Gly	1000	AAA Lys
7.	$_{\rm GLY}^{\rm GGT}$		AAC Asn	GAC Asp		TTA	006	CCT	6			ATG
	TTG		TCC	800 GAG GCT Glu Ala	850	GGT	0 1	GAT Asp		GTG Val		GCA Ala
	ATC GAT Ile Asp	750	ACT Thr	80 GAG Glu		ATT Ile		GAT Asp		TTT Phe	066	CAT His
700		•	GCT Ala	GGT Gly		CCA	06	AAT Asn	940	GGC Gly		GAG Glu
	GCC		${f TGT}$	CGA	840	ATT Ile	. 8	AGG Arg	ė	GAT Asp		TTG Leu
	CTT	740	GCA	790 CGC Arg	w	GTC Val		CAA		CGT Arg	980	AGC

AGG Arg		GAT Asp	1170	ACT Thr		GTT Val		ATC Ile	ATT Ile		AAT Asn
1070 GAT CCA ASP Pro	1120	GAA Glu	1	GCG Ala		AAA Lys		ATG	1310 GCA ACC Ala Thr	1360	TTT Phe
107 GAT ASP	•	CTC		CAT His		AAG Lys	1260	TCA		-	CAA Gln
ACT Thr		AGT	09	GCT Ala	1210	ATT Ile	H	AAG Lys	ATC Ile		CCC AGC ATT AAT Pro Ser Ile Asn
ATG Met	1110	AGC	1160	AAT Asn	, ,	GCC		ACT Thr	GCC	1350	ATT Ile
1060 CAT His	Ħ	GAG Glu		ATA Ile		AAT Asn	20	AAT GCA Asn Ala	1300 CTT GAA GCC Leu Glu Ala	H	AGC
TAT Tyr		ATT Ile		TAC	1200	GAG ATA AAT Glu Ile Asn	1250				CCC
GCT	00	TGC	1150	AAT	Ä	GAG		ATC Ile	GGT G1y	10	CAT His
1050 TGT GAT Cys Asp	1100	TCG		GAG GTC Glu Val		GCC		GAA ATC AAA Glu Ile Lys	1290 TCA GGA Ser Gly	1340	CTT (Leu]
10 TGT Cys		TCC		GAG Glu	06	GAT CTT (Asp Leu	1240	ATC Ile			TGG Trp
AAC Asn		GTC	1140	CCT GAA Pro Glu	1190	GAT Asp			GCA		GGC Gly
1040 GCA GTC Ala Val	1090	GGT	Н			${\tt GGG}\\ {\tt G1}{\tt Y}$		AAG Lys	1280 CTT GGA GCA Leu Gly Ala	1330	ACC Thr
		CTT		TCA		GCT Ala	1230	ACC		•	ACC
GGT Gly		GGG G1y	30	GTC Val	1180	CTT	1	AAC Asn	TGT Cys		ATA Ile
GGA Gly	1080	GAT Asp	1130	GGG G1y	• •	ACT		AAG Lys	CAC	1320	GGA Gly
1030 TTG Leu	Ħ	GCT Ala		GCC		TCT Ser	1220	TTC	1270 GGA Gly	ਹੌਂ	AAG Lys

160KE 0

1410	G CAG CAA s Gln Gln		A GGG CAC Y Gly His	1510	ATTCT ACTTGGTTCA	1570	TAAATGCCTT	.1630	AGCCATTTAG	1690	CTCTGATTTA	1750	GTTATTTAAG		CT
1400	AAC AAA AAG Asn Lys Lys	1450	GGA TTT GGA Gly Phe Gly	1500	TGA * * *	1560	AGCAATTTTT	1620	AGTTCCTCGA AGCCATTTAG	1680	TAAATCTAGT	1740	TGTTGTCAAT	1800	ATCCAGCTTA
1390	AAC ACT GTT GCC Asn Thr Val Ala	1440	AAT TCT TTT Asn Ser Phe	1490	TTC AAG CCA Phe Lys Pro	1550	AAATGCACAC CAGTTGCTGA GATAGGGCTT CAACTTGCAG AGCAATTTTT TAAATGCCTT	1610	GTCCTTTGAT	1670	ATTCCCATTT	1730	TGTATTAGAA AGACCAATGA AAGATTTTGT GTCATGTTTG TGTTGTCAAT GTTATTTAAG	1790	ATAAAGCAAA AAAAAAAA AAGGGGGGCC GCTCTAGAGG ATCCAGCTTA CT
	GAC TTC AAC ASP ASP ASP	1430	GCT ATC TCG Ala Ile Ser	1480	TTC TCA GCT Phe Ser Ala	1540	GATAGGGCTT	1600	GAATAGGTCG	1660	TACTGTAATA ATCGAAGATG	1720	AAGATTTTGT	1780	AAGGGCGGCC
1380	TCG GTG Ser Val	()	AAC GTC Asn Val	1470	GTG GCA Val Ala	1530	CAGTTGCTGA	1590	CGTAATACCG	1650		1710	AGACCAATGA	1770	AAAAAAAAA
1370	CCC GAG CCA Pro Glu Pro	1420	CAT GAA GTG His Glu Val	1460	AAC TCG GTT Asn Ser Val	1520	AAATGCACAC	1580	GTCGGAAGAG	1640	GATGATGTTT	1700	TGTATTAGAA	1760	ATAAAGCAAA

FIGURE 6 5/5

Sequence Range: 1 to 2369

	CATAAAAGAG	120	CTTCGATTCA TTACCATACC	180	ATTCCGCTGA TCCATTTTCC GCCTTTTCCG GGTCTTTCAT CCCAAAGGGT ATCCTTTTCT	TCC Ser>	280	TCT Ser>	330	CCT Pro>		CTA Leu>
	CATA		rtac(ATCC	230 GCC TCT Ala Ser	75	ATG		TCT		CCA
20		110	ICA 3	170	3GT 1	GCC Ala		TGC		TCC	370	GCC
	GCGT	•••	CGAT		AAAG(GCC		GCC	320	TCC ATC Ser Ile	3	TGC
	CCGGAATTCC CGGGTCGACC CACGCGTCCG				CCC	220 CCTCCA ATG CCT Met Pro	270	GCC	,	TCC		CAA
40	GACC	100	ICAT	160	PCAT	22 ATG Met		CTT		CCG CCT Pro Pro		CTC TCC Leu Ser
	GGTC		CCTT		ICTT.	rcca		CTC	310		360	
0	S C G	0	C C	0	G G		260	TGG Trp	Θ	CTT		ATT Ile
30	ATTC	90	CCAC	150	ľľCC(210 AGTTC	••	ACG		CCT Pro		CGG Arg
	CGGA		3006		CCTT	210 CAGTCAGTTC		TGT Cys		TCC GAC Ser Asp	350	CGC CGC Arg Arg
20		80	AA T	140	ည		250	CCT CTC Pro Leu	300	TCC	•••	CGC
	ACCG		ATCG.	ਜ	l'T'T'	2 AAGG	23			CCC		TCC
	AGGT		ATCC		rcca'	200 CTCAAAGGGT		TCC		CAC	340	CTC
10	TGC	70	999	130	rga '			GCT	290	TTC	ň	CGC
	GTACGCCTGC AGGTACCGGT		AGAGAGGG ATCCATCGAA TGCGGCCACC CTCCTTTCAT	•	೧೮ઉ೮	190 ATCCTATCTT	240	CTC	••	ACC TCC Thr Ser		CGA Arg
	GTA		AGA		ATT	ATC		CTG		ACC		CGC Arg

FIGURE 7

1.

										,	
	GTC Val>	TCC Ser>	520	CGG Arg>	570	CTG Leu>		CAG Gln>		CAT His>	ATA Ile>
	CIC	470 ACA Thr	22	CAC	•	GCT Ala		AAA Lys		GGC Gly	10 GGC G1y
420	ACC	TAT	•	CGC AGG Arg Arg	•	GTG Val	. 0	ATC Ile	· 099	CTA	AGT Ser
. • 	CAT	TAC		CGC	560	GCC	. 61	AGT		CCT	ACG
	TTC Phe	460 TGAC SASP	510	ACC	.,	ATG Met		CCA Pro		ACT Thr	700 GAT GGA ASP Gly
410	AGT	46 CAT His		ACC		GCA		AAG Lys	650	GTG Val	
7	TCC	TGC Cys		CGC Arg	550	GAG Glu	009	AAG Lys	•	GTG Val	CTT
	GGA G1y	CCC	200	CCC ATT (Pro Ile)	55	AGG Arg		AAG Lys		GGT Gly	CTG
400	CGC Arg	450 GAG Glu	u,	CCC		TCC		ACA Thr	640	GGA ATG Gly Met	690 AAT Asn
4	CTC	TTC		AGA Arg		CCT Pro	290	ACC Thr	9	GGA Gly	AAT Asn
	GCC	TGC Cys	490	TCC Ser	540	TCC	u,	GTT Val		ACT	TAC
	TCC	440 GCC Ala	4.9	GGA Gly		GCT Ala		GAA Glu		GTG Val	680 GTT TTC Val Phe
390	TCC	CTC		TTC		CGA Arg	280	CAG Gln	630	GTT Val	GTT Val
	GCT	TAC		TTG	230	AAT Asn	28	GAA Glu		GTA Val	GAT Asp
	TCT	430 ACC TCT Thr Ser	480	TCC	n)	CTC		CCT		CGA Arg	CCT
380	CCT	430 ACC TO Thr Se		GCA		AGG Arg		CAA Gln	620	CGG Arg	670 GAC CCT ASP Pro

FIGURE 7

160	GCT Ala>	810	CTC Leu>		AAG Lys>		CTA Leu>	ATG Met>	00	AAG Lys>	1050	GCT Ala>
7(ATT Ile		AAG Lys		GGC Gly		GAG Glu	50 GGA Gly	1000	AAG Lys	Н	TCA
	AGA Arg		CCG	850	GCT Ala	900	AAA Lys	g GGT G1Y		TAT Tyr	-	GGA Gly
	ACG Thr	800	GCC	80 .	ACC		ATG Met	ATG Met		TCA	1040	ATG Met
750	CCT	w	GTG Val		CTG		GTG Val	940 TCA GCA Ser Ala	066	ATT Ile	10	AAT Asn
	TTT Phe		TGG Trp		ATG Met	890	GAT Asp	940 TCA G		AGG Arg		GCT ACC ACA Ala Thr Thr
	CAA Gln	790	GGT Gly	840	TAC	w	GAA Glu	GGC Gly		CTA Leu	0	ACC
740	GCT	7.5	GAT		CTA		ACC Thr	ATT Ile	086	GCC	1030	
	TGT		ACA Thr		ATG Met	0	ATC Ile	930 CTC Leu	O	GAA Glu		TTC Phe
	GAT Asp		TCC	830	TTC Phe	880	GGA Gly	GTT Val		ATT Ile		CCT Pro
730	TTT Phe	780	TTC Phe	ω	AAG Lys		$_{\rm GGT}$	GGA Gly	0	GCC	1020	GTA Val
7.3	ACC		TCT		GAC Asp		GAT Asp	920 TGC Cys	970	GAT Asp	П	TGT Cys
	GAG Glu		AAG Lys	820	ATG Met	870	ACA Thr	9 AAA Lys		AAT Asn		TTT Phe
	ATA Ile	170	ATC Ile	8	AGG Arg		TTA	AGA Arg		TTC Phe	1010	
720	GAG Glu	(-	GAG Glu		AAG Lys		GCA Ala	.0 AAA Lys	960	GTA Val	10	AAT CCC Asn Pro
	AGC		GGA Gly		TCT	860	AAA Lys	910 GAT AAA ASP LYS		AAG Lys		ATG

FIGURE 7 3/7

										•			
	TCT Ser>		CAT His>	GCG Ala>	01	TTG Leu>	1290	AGT Ser>		CTA Leu>		GAA Glu>	
	ATA Ile		AAC Asn	1190 A GAT r Asp	1240	GCT		GAC		CTA Leu		GCA	=
0.	TAC TCG Tyr Ser	1140	GCG Ala	1190 TCA GAT Ser Asp		CĞA Arg		TGG	0	CTA	1380	TAC Tyr	
1090	TAC	. 	GCT	GGC Gly	• • •	TGC	1280	CCA, TGG Pro Trp	1330	GTG		ATT Ile	7 -
	AAC Asn		AAT	50 GGG G1y	1230	GCA Ala	12	AGA		GGA G1y		ACT	
	CCC	1130	ATG Met	1180 TGC GGG Cys Gly	П	GTT Val		TCA		GCT Ala	1370	GCG	-
1080	ATG GGG (Met Gly)	11	TGT ATA Cys Ile	CTT Leu		GGT TTT Gly Phe	0,	GCT	1320	GAA GGA GCT Glu Gly Ala	H	GGT Gly	7
. •	ATG Met		TGT Cys	ATG	1220	GGA GGT TTT Gly Gly Phe	1270	AAA GCT Lys Ala	(-1			AAA AGA Lys Arg	FIGURE
		0 2	AAC TTT Asn Phe	1170 GAT GTG ASP Val	17			ACT Thr		666	90	AAA Lys	FIG
1070	GGA Gly	1120		1 GAT Asp		ATG Met		CCT	1310	ATG Met	1360	AAG Lys	
1(TTG		AGT	GCA Ala	01	GGT Gly	1260	GAC Asp	ä	GTT Val		GCA Ala	
	GAC ASP		ACG Thr	1160 GGC GAA Gly Glu	1210	ATT Ile	, ,	TCC		$ extsf{T}$	٠	CAT His	
20	GCA ATG Ala Met	1110	TGT GCA Cys Ala			CCT		AAT Asn	00	GAT GGA Asp Gly	1350	GAG Glu	
1060	-	,	-	aga Arg		ATA Ile	1250	AGA	1300		••	TTG	
	CTT Leu		GCT Ala	1150 ATA ATC Ile Ile	1200	ATC Ile	ਜ.	CAG		CGT Arg		GAG Glu	
	ATG Met	1100	ACT	1150 ATA A' Ile I	17	GTA Val		TCC		AAT	1340	GAG Glu	

CCT Pro>	0	TTG GCT Leu Ala>	1530	GCC Ala>		CAC His>		ATG Met>	GTA Val>	0 2	GAA Glu>
1430 ACC GAG Thr Glu	1480	TTG Leu	-	CAT		GCT CTT ATC Ala Leu Ile		GAG TTA AAA GTT AAT TCA ACC AAA TCA ATG Glu Leu Lys Val Asn Ser Thr Lys Ser Met;	1670 GTT TCA Val Ser	1720	ATT AAT TTG Ile Asn Leu
ACC Thr		GCT Ala		AAT GCC Asn Ala	0.0	CTT Leu	1620	AAA Lys	1 GTT Val		AAT Asn
ATG Met		AAG Lys	1520	AAT Asn	1570	GCT	٠.	ACC Thr	3CA Ala		ATT Ile
1420 TAC CAC Tyr His	1470	GAG	1.	ATA Ile		CAA Gln		TCA	1660 GTG GAA Val Glu	1710	CCG AAT Pro Asn
1420 TAC C2 TYY H:		ATA Ile		TAC Tyr		AAA GAG TAC Lys Glu Tyr	1610	AAT Asn	16(GTG Val	•	CCG
GCC Ala		TGC	0.	AAT Asn	1560	GAG Glu	1(GTT Val	GGT Gly		CAT
GAT Asp	1460	CTC	1510	GTA AAT Val Asn	F 1	AAA Lys		AAA Lys	GGT G1y	1700	TGG ATC (Trp Ile)
1410 ACT TGC GAT GCC Thr Cys Asp Ala	14	ATT Ile		GAC		ATC Ile	00	TTA	1650 GCA GCC Ala Ala	H	TGG Trp
ACT Thr		GTG Val		GAA Glu	1550	GAT Asp	1600	GAG Glu	1 GCA Ala		ACT GGG Thr Gly
TTC	0.0	GGA Gly	1500	AGG	H	GGA Gly		AGA Arg	GGA Gly	90	ACT Thr
1400 GGG AGT Gly Ser	1450	GCT	П	TCT		GCT Ala		GGC CAA AAC AGA Gly Gln Asn Arg	1640 CTT CTC Leu Leu	1690	AGG Arg
14 GGG G1Y		GGA Gly		GTC	0	CCG	1590	CAA Gln			GCA ATA A
GGT Gly		GAT Asp	1490	GGA Gly	1540	ACT Thr	***		CAC His		GCA
0 CTA Leu	1440	CCT	14	TCA Ser		TCC		TTC	1630 ATT GGT Ile Gly	1680	cAG Gln
1390 TTT C	П	CAC		CAG Gln		ACA	1580	TGT	1630 ATT GO Ile G	T -1	GTT Val

FIGURE 7 5/7

	•														
1770	AAG AAG Lys Lys>		TTT GGT Phe Gly>	1870	GTTTCCGTGT	1930	GTTGGTAGCT	1990	GAACCATGAC	2050	GTAGAGCAAT	2110	GTTGTACTTT	2170	CACGTAGTAA
1760	GTG GGT CCT Val Gly Pro	1810	TCA TTT GGG Ser Phe Gly	1860	ATC TAG GAC Ile ***>	1920	ACTCCAGCAT GTTGGTAGCT	1980	CTAGACATGC CCATGAGTTT TGTGTCCGGA GCTTTAGTCG GAACCATGAC	2040	CACTIGATAT ACTCCTIGCT AGAATIGITG	2100	CCTTGCAATA GTTGTACTTT	2160	CGAGCTTTTC ATCGAGTCAG TGAAGAAGAG AACAAAGCTG TTAACTCGGG CACGTAGTAA
1750	AAA TTG CTC Lys Leu Leu	1800	AAG GTC GGT TTG TCT AAT TCA Lys Val Gly Leu Ser Asn Ser	1850	GCC CCT TAC Ala Pro Tyr	1910		1970	TGTGTCCGGA	2030	ACTCCTTGCT	2090	AAATCTCCCT	2150.	AACAAAGCTG
	SAT ACA ASP Thr	1790	GCC GGT T S Val Gly L	1840	CTC TTC Leu Phe	1900	TCAAAGCTGA	1960	CCATGAGTTT	2020	CACTTGATAT	2080	TTTTTCTCTG	2140	TGAAGAAGAG
1740	GAA GGC GTG C	1780	AAC GTT Asn Val	1830	TCG TCC ATA Ser Ser Ile	1890	GTGGAATTCT ACTCAACATA TCAAAGCTGA AGTTTTGAGG	. 1950	CTAGACATGC	2010	CTCATGGCGA	2070	TCATATTTT	2130	ATCGAGTCAG
1730	AAC CCA GAT Asn Pro Asp	17	GAG AGA CTG Glu Arg Leu	820	GGG CAC AAC Gly His Asn	1880	GTGGAATTCT	1940	CCTTACGTCT	2000	GGATTGAGTA	2060	ATTCATTATC	2120	CGAGCTTTTC

IGURE / 6/7

				CTCTAGAGG	2360 AGGCCGCCG CICTAGAGG
AAAAAAAAA	AAAAAAAAA	AAAAAAAAA	ааааааааа	TGGAAATAAA AAAAAAAA AAAAAAAAA AAAAAAAA AAAAAA	TGGAAATAAA
2350	2340	2330	2320	2310	2300
ATGTATGTTT	TAATTGGGGR	TTCTCATTGA	TTGGTTTGTT	AACTAGAAGA CTGGTTTAGA TTGGTTTGTT TTCTCATTGA TAATTGGGGR ATGTATGTTT	AACTAGAAGA
2290	2280	2270	2260	2250	2240
AAATTTGTAA	TGTGGTTTTA	ATCACCGTTT	TCTCTATTTC	CCATITIGCCC TITGTITIGC TCTCTATITC ATCACCGTTT TGTGGTTTTA AAATTTGTAA	CCATTTGCCC
2230	2220	2210	2200	2190	2180

FIGURE 7

Sequence Range: 1 to 2374

09*	CACACCAAAC	120	ACAGACAGAC	180	TCTTCGATTC	240	TCCCAAAGGG	300	CCTGCCGCCT	360	TCTACCTCCT	420	CTCTCCCGCC	480	CGCGGATCCA
. 20	-A-CNTGGTC CGGAATTCCC GGGTCGACCC ACGCGTCCGC GACGCCAACC CACACCAAAC	110	TTCCTCAGCT TCTCTTCTCA AGACGGACGC CATTGGCAGC AGACAGACAG ACAGACAGAC	170	CCTCCTTTCA TCTTCGATTC	230	GGGTCTTTCA TCCCAAAGGG	290	TATCCTTTTC TATCCTATCT TCTCAAAGGG TCAGTCAGTT CCCTCCAATG	350	сесстесате	410	CGACCCTCTT CCGCCTTCCA TCTCCTCTCC TCGCCGACGC CTCTCCCGCC	470	CICCGCCCIC CGCGGAICCA
40	ACGCGTCCGC	100	CATTGGCAGC	160	CCATAAAAGA GAGAGAGG GATCCATCGA ATGCGGCCAC	220	CGCCTTTTCC	280	TCAGTCAGTT	340	CTCTGTACGT GGCTCCTTGC	400	TCTCCTCTCC	460	GCCGGATTCT CTCCCAATGC GCCCCACTAC CTTCTGCTTC
30	GGGTCGACCC	06	AGACGGACGC	150	GATCCATCGA	210	ATCCATTTTC	270	TCTCAAAGGG	330	CTCTGTACGT	390	CCGCCTTCCA	450	GCCCCACTAC
20	CGGAATTCCC	80	TCTCTTCTCA	140	GAGAGAGAGG	200	CATTCCGCTG	260	TATCCTATCT	320	CGCTTCCCCT	380		440	CTCCCAATGC
10	-A-CNTGGTC	70	TTCCTCAGCT	130	CCATAAAAGA	190	ATTACCATAC	250	TATCCTTTTC	310	CTTCCCTGCT	370	TCCACCCCTC	430	GCCGGATTCT

FIGURE 8 1/5

CTCATTGGCT CAGCAATGGG	CTCATTGGCT	ATAAAAGAAA ATGCGGAGTT		AAAGAGCTAG	AGATGTGATG
1020	1010	1000	066	980	970
GAATCACCGA	ACAGATGGTG	GAAAGCATTA	TACATGCTGA CTGCTGGCAA GAAAGCATTA ACAGATGGTG GAATCACCGA		GTTCATGCTA
096	950	940	930	920	910
GGATGGACAA	CTCTCTAAGA	GGCCCCGAAG	ATGGTTGGGT	GATCAAGTCT TTCTCCACAG ATGGTTGGGT GGCCCCGAAG CTCTCTAAGA GGATGGACAA	GATCAAGTCT
0006	068	880	870	860	850
TTGCTGGAGA	CCTACGAGAA	TGCTCAATTT	CCTTTGATTG	TGGCATAAGC GAGATAGAGA CCTTTGATTG TGCTCAATTT CCTACGAGAA	TGGCATAAGC
840	830	820	810	800	790
ATGGAACGAG	TTTCTACAAT AATCTGCTTG ATGGAACGAG	TTTCTACAAT	ACCTGATGTT	GIGACTCCTC TAGGCCATGA ACCTGATGTT	GIGACTCCTC
780	1770	160	750	740	730
TTGTGACTGG AATGGGTGTG		CGGCGAGTAG	TATCAAACAG	ACCACAAAGA AGAAGCCAAG TATCAAACAG	ACCACAAAGA
720	710	700	069	089	670
ACAGGAAGTT	TGCAACCTGA	GCCGTGGCTC	CCCTTCCAGG GGAGGCAATG GCCGTGGCTC TGCAACCTGA ACAGGAAGTT		ATCGAGCTTC
* 099	650	640	630	620	610
CGGAGGCTCA	ccgcaggcac	TTCGCACCAC	CTIGITCGGA TCCAGACCCA TTCGCACCAC CCGCAGGCAC CGGAGGCTCA		CATCCGCATC
*	590	580	570	260	550
GACTACTATA	GCCCTGCCAT	CCTGCTTCGA	TCTTACCTCG	GTTTCCATAC CCTCGTCACC TCTTACCTCG CCTGCTTCGA GCCCTGCCAT GACTACTATA	GTTTCCATAC
540	530	520	510	200	490

FIGURE 8 2/5

1080	AGAAGATGAA	1140	CAATGGACTT	1200	ACTTTTGTAT	1260	GCGGGGGCTC	1320	CTTTGTCCCA	1380	AGTAATCGTG ATGGATTTGT	1440	TATGGGGGAA GGAGCTGGAG TGCTACTACT AGAGGAGTTG GAGCATGCAA AGAAAAGAGG	1500	ACCACATGAC
1070	ATTTCATATA	1130	GCTATGCTTG	1190	GCAACGAGTA	1250	TAATCAGAGG CGAAGCAGAT GTGATGCTTT GCGGGGGCTC	1310	GCATGCCGAG	1370	AGTAATCGTG	1430	GAGCATGCAA	1490	TGCGATGCCT
1060	AGCCCTAAGG	1120	TATGGGATCA	1180	TACTGCTTGT	1240	CGAAGCAGAT	1300	AGGTTTTGTT	1360	GACCCTACTA AAGCTTCAAG ACCATGGGAC	1420	AGAGGAGTTG	1480	GAGTTTCACT
1050	ATGCCATTGA	1110	CTACCACAAA	1170	ACTCGATATC	1230	TAATCAGAGG	1290	TTGGTATGGG	1350	AAGCTTCAAG	1410	TGCTACTACT	1470	TTCTAGGTGG
1040	TGGAATGAAG GTATTCAATG ATGCCATTGA AGCCCTAAGG ATTTCATATA AGAAGATGAA	1100	TCCCTTTTGT GTACCTTTCG CTACCACAAA TATGGGATCA GCTATGCTTG	1160	GGGCCCAACT ACTCGATATC TACTGCTTGT	1220	GCGAACCATA	1280	AGATGCGGTA ATCATACCTA TTGGTATGGG AGGTTTTGTT	1340	GACCCTACTA	1400	GGAGCTGGAG	1460	TGCGACTATT TACGCAGAAT TTCTAGGTGG GAGTTTCACT TGCGATGCCT ACCACATGAC
1030	TGGAATGAAG	1090	TCCCTTTTGT	1150	GGGATGGATG	1210	AATGAATGCT	1270	AGATGCGGTA	1330	GAGAAATTCC	1390	TATGGGGGAA	1450	TGCGACTATT

FIGURE 8 3/5

*	TGGCTCAGTC	1620	CICCGGCIGG	1680	CAAAACAGAG AGTTAAAAGT	1740	TGGAAGCAGT	1800	TGGAAAACCC	1860	TGAACGTTAA	1920	TCTTCGCCCC	1980	GAAGTTTTGA	2040	GGACTCCAGC ATGTTGGTAG CTCCTTACGT CTCTAGACAT GCCCATGAGT TTTGTGTCCG
••	GAGAAGGCTT	1610	GCCACATCCA CTCCGGCTGG	1 1670		1730	ессеетеете	1790	ААТАТТААТТ	1850	AAGGAGAGAC	1910	TCGTCCATAC	1970	TATCAAAGCT	2030	GCCCATGAGT
	TCTCTGCATA	1600	AAATGCCCAT	1660	CTGTTTCGGC	1720	TCTCGGAGCA	1780	GATCCATCCG	1840	GGGTCCTAAG	1900	TTGGGTTTGG TGGGCACAAC	1960	CTACTCAACA	2020	CTCTAGACAT
	CTGGAGTGAT TCTCTGCATA GAGAAGGCTT TGGCTCAGTC	1590	TAAATTACAT	1650	CTCTTATCCA	1710	TTGGTCACCT	1770	GGACTGGGTG	1830	AATTGCTCGT	1890	TTGGGTTTGG	1950	GTGTGGAATT	2010	CTCCTTACGT
	CCTGATGGAG	1580	AGGGAAGACG TAAATTACAT	1640	AGATATCAAA GAGTACCAAG CTCTTATCCA CTGTTTCGGC	1700	TAATICAACC AAAICAAIGA IIGGICACCI ICICGGAGCA GCCGGIGGIG IGGAAGCAGI	1760	CAGGCAATAA GGACTGGGTG GATCCATCCG AATATTAATT TGGAAAACCC	1820	GTGGATACAA AATTGCTCGT GGGTCCTAAG AAGGAGAGAC TGAACGTTAA	1880	TCTAATTCAT	1940	TTACATCTAG GACGTTTCGT GTGTGGAATT CTACTCAACA TATCAAAGCT	2000	ATGTTGGTAG
1	CGAGCCTCAC	1570	AGGAGTCTCT	1630	AGATATCAAA	1690	TAATTCAACC	1750	TTCAGTAGTT	1810	AGATGAAGGC	1870	GGTCGGTTTG	1930	TTACATCTAG	1990	GGACTCCAGC

FIGURE 8

	+44T2 	ATCC	2370 GCTCTAGAGG	2350 2360 2370 AAAAAAAA AAGGCGGCC GCTCTAGAGG ATCC	2350 AAAAAAAAA
TTTTCTCAAA	GATTGGTTTG	GACTGGTTTA	AAAACTAGAA	TITGIGGITI TAAAATITGI AAAACTAGAA GACTGGITTA GATTGGTTTG TITTCTCAAA	TTTGTGGTTT
2340	2330	2320	2310	2300	2290
TCATCACCGT	GCTCTCTATT	CCTTTGTTTT	AACCATTTGC	TGTTAACTCG GGCACGTAGT AACCATTTGC CCTTTGTTTT GCTCTCTATT TCATCACCGT	TGTTAACTCG
2280	2270	2260	2250	2240	2230
AGAACAAAGC	AGTGAAGAAG	TCATCGAGTC	TTCGAGCTTT	CTCCTTGCAA TAGTTGTACT TTCGAGCTTT TCATCGAGTC AGTGAAGAAG AGAACAAAGC	CTCCTTGCAA
2220	2210	2200	2190	2180	2170
TGAAATCTCC	TTTTTTTCTC TGAAATCTCC	TCTCATATTT	TGGTAGAGCA ATATTCATTA TCTCATATTT	TGGTAGAGCA	CTAGAATTGT
2160	2150	2140	2130	2120	2110
ATACTCCTTG	GACACTTGAT	TACTCATGGC	ACGGATTGAG	GAGCTTTAGT CGGAACCATG ACGGATTGAG TACTCATGGC GACACTTGAT ATACTCCTTG	GAGCTTTAGT
2100	2090	2080	2070	2060	2050

IGURE 8

Sequence Range: 1 to 1580

GGG Gly>	100	TCG Ser>	150	GTG Val>		GAT Asp>		TCT Ser>	AAA Lys>	340	CGC Arg>	
50 TCT Ser	1(CAT His		AGG		GGT		GGA Gly	290 GCT Ala	3,4	ATC Ile	
GCA		CAG Gln		AAA Lys	190	TTG	240	ATT Ile	CTT		GGG G1y	-
AAT Asn		ACT Thr	140	TCC	13	TCT Ser		TTA Leu	GAT ASD		ACG	
40 ATG GCG Met Ala	90	GCA	177	GTC		CAG Gln		AAA Lys	10 GAT ASP	330	CGA Arg	
ATG Met		AGG Arg		TTT		AGG Arg	230	TGC	280 AAT GAT Asn Asp		GTC Val	
rese		CTG AGA Leu Arg	130	GAG Glu	180	GAC	(1)	GGA Gly	TCA		ACT Thr	
) r GCJ	80	CTG	13	TCG		TCT		AGA Arg	GTC Val	320	ATT Ile	
10 CCTGAATCGG ATTCAAGAGA GAGTTTCGTT GCTGGG		GCC		TCC		GAT Asp	0	AGT Ser	270 CAA Gln	(7)	TGG Trp	FIGURE 9 1/5
4GTT"		CCT		TCT	170	CAG Gln	220	GTG Val	CTT Leu		GAA Glu	TGUI
20 GA G2	20	GTT Val	120	GGA Gly		GTT Val		CTT	GCT	310	GAT Asp	-
; AAGA(TCA		CGT Arg		GCC		AGG Arg	260 CCA Pro	31	AAT Asn	
\TTC2		TCT		TCT	160	AGT Ser	210	CCG	2 ATA Ile		ACC Thr	
10 36G 7		CTG GGT Leu Gly	110	TCG	16	TGT Cys		TCG	GCT		GAC	
3AAT(60	CTG	•	TCA		TGC		CGC Arg	TCT Ser	300	GTC Val	
CCT		TTT Phe		ATT Ile		TTT Phe	200	TCT	250 GGT T(ATT Ile	

390	GCA TCA Ala Ser>		GAT Asp>		GGC Gly>	TTG Leu>	. 0	GTC Val>	630	GTG Val>		GGA Gly>		
•			AAT Asn		TTC	530 CCT Pro	580	TTA Leu		CTA		CGG		
.•	TTA	. 0	GCA	480	CTT	5 AAT Asn		GGT Gly		ATT	. 0	GAT		
380	AAT Asn	43	GAC	.: :	GAC	AAG Lys		TTG	620	AAT	029	ACC		, (i
(1)	ACA Thr		GTA		GAG Glu	520 C AAA S Lys	570	GTG Val	Ψ	AAC Asn	,	TGG		
	CTT		CAG Gln	470	CCT	52 TGC Cys		TTT Phe		\mathbf{rrr}		GAC Asp		
370	AGT	420	GCA Ala	7	ACC Thr	GGC Gly		GGA G1y	0.	GGT G1y	*	GTT Val		
3,7	GAT Asp		ATG Met		TCT	CTT	260	AGT	610	GGG		TAT		
	AAA Lys		GAG Glu	460	ACT Thr	510 GCA Ala		TGC		GGT Gly		CGG Arg	RE 9	
	GGT Gly	410	CTA Leu	46	TGT Cys	AAA Lys		GCA		AGA Arg	650	TCT Ser	FIGURE	2/5
360	TCA	•	GCT Ala		ATG Met	TCG	550	GCT	009	ATT Ile		CTT Leu	. ==	I
	CTC		AAA Lys		TTG	500 ATA Ile	55	ACC Thr		CAC		TCT		
	GTT Val	400	AGG Arg	450	GTT Val	CAG Gln		ATT Ile		TGC Cys	640	GAT		
350	AGG Arg	4	GCA Ala		ATG	CCT		GAC	590	GCT	9	GCT Ala		
• •	CGA Arg		GCA		GAT Asp	490 T GCT r Ala	540	TAC	u ,	GCT		GGT Gly		
	AAC Asn		GAG Glu	440	GTG Val	49 AGT Ser		TCT		TCA		ATT Ile		

SUBSTITUTE SHEET (RULE 26)

	TCA Ser>	GAT Asp>	820	GTT Val>	870	AGG Arg>		CGC Arg>		AAG Lys>	GCA Ala>
	CAG Gln	770 AGC Ser	8	GAA Glu		CCA		TTC		$_{ m GGA}$	CAG Gln
720	GTG Val	CAT		GAT Asp		CCA	0]	GTA Val	960	CTT	1010 CAT CAG His Gln
	GTG Val	TTG		GAA Glu	098	GAT TTT CCA Asp Phe Pro	910	GAG GTA Glu Val	-	GCA	CTT Leu
	GGA GCT GTA Gly Ala Val	760 TTT GAT TTG (Phe Asp Leu	810	AAA Lys	w	GAT Asp		AAA Lys		TCA	ပ္ ဥ
710	GCT Ala	7. TTT Phe		ATC Ile		AGA Arg		$_{\rm G1y}^{\rm GGT}$	950	GAA Glu	1000 TTG CT Leu Le
•		GCT		GCA Ala	850	ATC Ile	006	AAC	Oi	ATC Ile	TGG
	GCT Ala	rrr Phe	800	GCT Ala	8	TCC		ATG		TCA	GAC Asp
700	GCT	750 CTC Leu	w	AAA Lys		$\frac{\text{GGG}}{\text{G1y}}$		CAA	940	CAG Gln	990 ATC Ile
7(GAT Asp	GGG Gly		CTA Leu		AAT Asn	890	ATC Ile	96	CCT Pro	AAC Asn
	GGA Gly	GAT Asp	190	CAT His	840	CAT	w	TGC		GTG Val	ICC Ser
	TTT Phe	740 GAG GAA Glu Glu	7.5	AGG Arg		GGA G1y		TCT		CGC TCT Arg Ser	980 GGA Gly
069	CTC			CAA Gln		CTG	880	TAC	930	CGC	AAT Asn
	ATT Ile	GCT Ala		$_{\rm GGG}$	830	AAA GCC CTG Lys Ala Leu	88	TCA		TGC	CTT Leu
	${\tt TGT}$	730 TGT GAT Cys Asp	780	GAT Asp	w	-		TCT		GCT	0 GGT G1y
680	ACA Thr	73 TGT Cys		GGA G1y		GAT Asp		CGT Arg	920	TTT Phe	970 GCC GC Ala G

FIGURE 9

							•						
1060	CCT CAA Pro Gln>	1110	GCG GCA Ala Ala>		GTG AAG Val Lys>		ACA TGG Thr Trp>	1260	ATT ATC AGG TGG GGA TAA GACTGAA GCCGAGCCAG CACTGCAGCTIle Ile Arg Trp Gly ***>	1320	TCCTCTCAAA CCGATGTTTC ACGAAATTTT GCTTCCATGA CCANAAAAAG AAGAAGTCAG	1380	CTTCATCACA TIGCCCTITIT ICGITCCCCT
			AGT Ser	0	GGA AAT GTG Gly Asn Val	1200	GGA CTC ACA Gly Leu Thr	. 09	AG CZ	10	AG A	1370	TiT TC
••	CTA GAG GTT Leu Glu Val	1100	ACT Thr	1150		ਜ -		1250	3AGCC	1310	NAAAA	13	CCTT
1050	CTA	ਜ	AAC Asn		CCC TTG GCA CTA GAC GAA GCT GTG AGG AGT Pro Leu Ala Leu Asp Glu Ala Val Arg Ser		GCC		900		CCA		TTG
	CGT		$_{\rm GGG}$		AGG Arg	1190	TTT GGC Phe Gly	1240	TGAA	1300	ATGA	1360	CACA
	ACA	1090	AAT TAC Asn Tyr	1140	GTG Val	1			GAC		TTCC		TCAT
1040	GTA GCA A	10	AAT		GCT		GGA G1y		TAA	0	T GC		
∺	GTA Val		GCA		GAA Glu	80	ACC GCA Thr Ala	1230	GGA Gly	1290	ATTT	1350	ACGA'
	GAT GCA Asp Ala		ATC TCA AAC TTG Ile Ser Asn Leu	1130	CTA GAC Leu Asp	1180	GCA ACC GCA Ala Thr Ala		TGG		CGAA		ACGACACGAT
1030	ATT GAT Ile Asp	1080	AAC	1	CTA		GCA		AGG Arg	1280	TC A	1340	AC A
10			TCA		GCA		GTG ATT Val Ile	1220	ATC Ile	12	TGTT	13	AGCA
	ATC Ile		ATC Ile	1120	TTG	1170	GTG Val	1			ccga		AGCA
	CAG AGG Gln Arg	1070	ATT	11	CCC Pro		CAC His		GCT	1270	AAA	1330	TCTTTTATGG AGCAAGCAAC
1020	CAG Gln	Н	CGA		ATT		GGT	1210	TCT	Н	TCTC		TTTA
	AAT Asn		GAA Glu	. =	TCC	1160	CCG	12	GGT G1y		TCC		TCT

FIGURE 9

				1570 1580 AAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAA	1570 AAAAAAAAA
AAAAAAAAA	AAAAAAAAA	TTTGCTAAAA	ATGTTTATAT	GAGATGACAG CATAAACATC ATGTTTATAT TTTGCTAAAA AAAAAAAAA AAAAAAAAA	GAGATGACAG
1560	1550	1540	1530	1520	1510
CGGGACATTG	CATTTTGTCT	GCTTTTACTT	TAATTGTTCA	TAAGTTATTT GTTTCTTGTT TAATTGTTCA GCTTTTACTT CATTTTGTCT CGGGACATTG	TAAGTTATTT
1500	1490	1480	1470	1460	1450
TTGTCCCCAA	ATAGTTTCTT	TACAATACCC	TTGCTGACAA	TITCCATTAG ITTGATGATT TIGCTGACAA TACAATACCC ATAGITTCTT ITGICCCAA	TTTCCATTAG
1440	1430	1420	1410	1400	1390

FIGURE 9 5/5

FIGURE 10

FIGURE 11

FIGURE 12

E328013-28

FIGURE 13

FIGURE 45

FIGURE 15

FIGURE 15 2/2

SUBSTITUTE SHEET (RULE 26)

FIGURE 17 1/2

FIGURE 17

FIGURE 18 1/2

SUBSTITUTE SHEET (RULE 26)

Number of independent events

10

59/66

20

9

12:0 levels (w%)

FIGURE 19 1/3

FIGURE 19 3/3 SUBSTITUTE SHEET (RULE 26)

Number of independent events

12:0 levels (w%)

FIGURE 19 2/3.

SUBSTITUTE SHEET (RULE 26)

FIGURE 20

18:0 levels (w%)

.EIGHRE --21-1/3

18:0 levels (w%)

10

FIGURE 21. 2/3

Number of independent events

FIGURE 21 3/3

FIGURE 22

This Page Blank (uspto)