Einführung in die Geometrie und Topologie - Mitschrieb -

Vorlesung im Wintersemester 2011/2012

Sarah Lutteropp

20. Oktober 2011

Inhaltsverzeichnis

1 Homotopie und Fundamentalgruppe

Vorwort

Dies ist ein Mitschrieb der Vorlesung "Einführung in die Geometrie und Topologie" vom Wintersemester 2011/2012 am Karlsruher Institut für Technologie, die von Herrn Prof. Dr. Wilderich Tuschmann gehalten wird.

3

Kapitel 1

Homotopie und Fundamentalgruppe

Definition 1.1 (Topologischer Raum). Ein topologischer Raum X ist gegeben durch eine Menge X und ein System σ von Teilmengen von X, den so genannten offenen Mengen von X, welches unter beliebigen Vereinigungen und endlichen Durchschnitten abgeschlossen ist und X und die leere Menge \emptyset als Elemente enthält.

X Menge, $\sigma \subset \mathcal{P}(X)$:

- (1) $O_1, O_2 \in \sigma \Rightarrow O_1 \cap O_2 \in \sigma$
- (2) $O_{\alpha} \in \sigma, \alpha \in A, A \ Indexmenge \Rightarrow \bigcup_{\alpha \in A} O_{\alpha} \in \sigma$
- (3) $X, \emptyset \in \sigma$

Beispiel 1.1. $\sigma = \{X, \emptyset\} \Rightarrow (X, \sigma)$ ist topologischer Raum!

Beispiel 1.2.

$$X \ Menge, \ \sigma = \{\{x\} | x \in X\} + Axiome, \ die \ zu \ erfüllen \ sind \leadsto \tilde{\sigma}$$

 $\Rightarrow (X, \tilde{\sigma})$ ist topologischer Raum. σ ist "Basis" der Topologie $\tilde{\sigma}$.

Definition 1.2 (Metrischer Raum). Ein <u>metrischer Raum</u> X ist eine Menge X mit einer Abbildung $d: X \times X \to \mathbb{R}$, der <u>"Metrik"</u> auf X, die folgende Eigenschaften erfüllt:

- (1) d(x,y) = d(y,x) "Symmetrie"
- (2) $d(x,y) = 0 \Leftrightarrow x = y, d(x,y) \ge 0$ "Definitheit"
- (3) $d(x,z) \le d(x,y) + d(y,z)$ "Dreiecksungleichung"
- $\forall x, y, x \in X$

Definition 1.3 (stetig). Eine Abbildung $F: X \to Y$ zwischen topologischen Räumen X und Y heißt stetig, falls die F-Urbilder offener Mengen in Y offene Teilmengen von X sind.

Bemerkung 1.1. Ist (X,d) ein metrischer Raum, so sind die offenen Mengen der von der Metrik induzierten Topologie Vereinigungen von endlichen Durchschnitten von Umgebungen $U_{\epsilon}(x) := \{y \in X | d(x,y) < \epsilon\} (\epsilon > 0), und F: (X,d) \to (Y,d')$ ist stetig im obigen Sinn genau dann, falls für alle $\epsilon > 0$ ein $\delta > 0$ existiert mit $F(U_{\delta}(x)) \subset U_{\epsilon}(F(x))$.

Definition 1.4 (Homotopie). Eine <u>Homotopie</u> $H: f \simeq g$ zwischen zwei (stetigen) Abbildungen $f, g: X \to Y$ ist <u>eine</u> (stetige) Abbildung

$$H: X \times I^1 \to Y, (x,t) \mapsto H(x,t)$$

 $mit\ H(x,0) = f(x)\ und\ H(x,1) = g(x) \forall x \in X.$

TODO:BILDER

Bemerkung 1.2. H heißt auch $\underline{Homotopie}$ $\underline{von\ f\ nach\ g}$, eine solche ist also eine parametrisierte Schar von $\underline{Abbildungen\ mit\ "Anfang}$ " f und $\underline{"Ende"}$ g. f und g heißen dann homotop, in Zeichen: $f \simeq g$.

Erinnerung Sind X und Y topologische Räume, so ist eine Homotopie $H = (h_t), t \in [0, 1]$, eine parametrisierte Schar von stetigen Abbildungen $h_t \colon X \to Y$ mit Anfang h_0 und Ende h_1 . (TODO: BILD)

Definition 1.5 (homotope Abbildungen). Zwei (stetige) Abbildungen heißen homotop, in Zeichen: $f \simeq g$, falls eine Homotopie mit Anfang f und Ende g existiert.

Bemerkung 1.3. "Homotop sein" ist eine Äquivalenzrelation.

Beweis. Symmetrie: Gilt für $f, g \in C(X, Y) := \{F : X \to Y \text{ stetig }\} \ f \simeq g$ vermöge $H = (h_t), t \in [0, 1]$, so liefert $(\tilde{h_t})mit\tilde{h_t} := h_{1-t}$ eine Homotopie von g nach f, d.h. $f \simeq g \Leftrightarrow g \simeq f$.

Reflexivität: $f \simeq f$ vermöge $h_t :\equiv f \forall t \in [0,1]$

<u>Transitivität</u>: Es sei $f \simeq g$ vermöge (h_t) und ferner $g \simeq l$ vermöge (k_t) . Dann liefert $M: X \times [0,1] \to Y$ mit

$$M_t := \begin{cases} h_{2t} & 0 \le t \le \frac{1}{2} \\ k_{2t-1} & \frac{1}{2} \le t \le 1 \end{cases}$$

eine Homotopie von f nach l. Also ist $f \simeq g, g \simeq l \Rightarrow f \simeq l$.

 $^{1}I = [0,1] \subset \mathbb{R}$

(TODO:BILD)

Bemerkung 1.4. Die Äquivalenzrelation "Homotopie von Abbildungen" liefert also eine Partition von C(X,Y) in Äquivalenzklassen. Diese heißen Homotopieklassen und die Menge aller Homotopieklassen stetiger Abbildungen von X nach Y wird mit [X,Y] bezeichnet. (TODO: BILD)

Bemerkung 1.5. C(X,Y) ist im Allgemeinen <u>wiel</u> schwieriger zu verstehen als [X,Y]!

Beispiel 1.3. Je zwei stetige Abbildungen $f, g: X \to \mathbb{R}^n$ sind homotop! Denn $H(x,t) := (1-t)f(x) + t \cdot g(x)$ liefert eine Homotopie von f nach g: (TODO: BILD)

Definition 1.6. Eine stetige Abbildung $f: X \to Y$ heißt $\underline{nullhomotop}$, falls sie homotop zu einer konstanten Abbildung ist. $(TODO:B\overline{ILD})$

Korollar 1.1. Jede stetige Abbildung $f: X \to \mathbb{R}^n$ ist nullhomotop, d.h. für jeden topologischen Raum X besteht $[X, \mathbb{R}^n]$, n beliebig, nur aus einem Punkt!

Beispiel 1.4. Jeder geschlossene Weg im \mathbb{R}^2 , d.h. jede stetige Abbildung $f: [0,1] \to \mathbb{R}^2$ mit f(0) = f(1) ist nullhomotop. $[[0,1],\mathbb{R}^2]$ + gleicher Anfangs- und Endpunkt besteht nur aus einem Punkt, zum Beispiel der Äquivalenzklasse der konstanten Kurve $t \mapsto (1,0)$. (TODO: BILD) Interpretiere einen geschlossenen Weg im \mathbb{R}^2 auch als stetige Abbildung von S^1 in \mathbb{R}^2 , so gilt also $[S^1,\mathbb{R}^2]$ ist einelementig.

<u>Aber</u> $[S^1, \mathbb{R}^2 \setminus \{0\}]$ ist nichttrivial! (TODO: BILD)

Definition 1.7. Es sei (X, σ) topologischer Raum und $A \subset X$. Die auf A durch

$$\sigma \Big|_{A} := \{ U \cap A | U \in \sigma \}$$

induzierte Topologie heißt $\underline{\text{Teilraumtopologie}}$ und der dadurch gegebene topologische Raum $(A, \sigma \Big|_A)$ heißt $\underline{\text{Teilraum}}$ von (X, σ) .

Bemerkung 1.6. $B \subset A$ ist also genau dann <u>offen in A</u>, wenn B der Schnitt einer <u>in X</u> offenen Menge mit A ist.

Beispiel 1.5. $X = \mathbb{R}^2, A = S^1 = \{x \in \mathbb{R}^2 | ||x|| = 1\}$ (*TODO: BILD*)

Achtung: B ist <u>nicht</u> offen in \mathbb{R}^2 !