

Title of course	Signals and Systems
Responsible instructor	Prof. Dr. Martin Golz
Learning objectives	The students will get the opportunity to - Analyse typical problems of signal processing, - Comprehend integral transforms of continuous functions, - Comprehend the discrete Fourier transforms of sequences, - Comprehend and apply the discrete Fourier transform, - Comprehend and apply digital filters, - Comprehend and apply spectral estimation of stochastic signals, - Comprehend and apply time-frequency analysis, - Know some of the mathematical background issues.
Course contents	8. Introduction 9. Fourier integral 9.1. Integral transforms, Fourier kernel 9.2. Dirichlet conditions, properties 9.3. Elementary signals 9.4. Signal energy, signal power, decibel, band width 10. Fourier series 11. Convolution 12. Sampling theorem 13. Discrete Fourier transform 13.1. Properties 13.2. Discrete Walsh transform, z-transform 14. Linear, time-invariant systems 14.1. Properties 14.2. Impulse response, transfer function, Bode plot 14.3. Pole-Zero plot, stability 14.4. State space description 15. Stochastic signals 15.1. Properties 15.2. Probability density function 15.3. Wiener-Khinchin theorem, power spectral density 15.4. Cepstrum 15.5. Spectral estimation 15.6. Applications 16. Time-frequency analysis 16.1. Short-time Fourier transform 16.2. Gabor series 16.3. Wavelet transform 16.4. Applications
Teaching methods	- Frontal lectures with o Digital presentation slides,
	o Demonstration programs - Exercises held in the computer pool

	o Programming with MATLAB and signal processing
	toolbox
	o Clarification of open issues
Prerequisites	No formal requirements
	Basic knowledge in linear algebra, analysis, statistics
C	The following books are recommended:
Suggested reading	- Oppenheim (1997) Signals and systems. Prentice Hall
	- Haykin, van Veen (2003) Signals and systems. Wiley
	- Percival, Walden (2000) Wavelet methods for time series analysis.
	Cambridge University Press
Applicability	This module is an obligatory subject.
Applicating	An appropriation to similar majors is possible under stipulation of their
	examination regulations.
Workload	Total 150 hours. Attendance: 60 hours, Self-Study: 45 hours, Exam
Workfoud	Preparation 45 hours
ECTS credit points and	5 CP (Emphasis of the Grade for the final Grade 5/120)
weighting factor	
	Oral everyingtion (20 minutes)
Basis of student	Oral examination (30 minutes)
evaluation	
Time	1st Semester
	Once during the goodemic year
Frequency	Once during the academic year
Duration	One semester
Course type	Obligatory subject
Course type	
Remarks	Teaching language is English.
111111111111111111111111111111111111111	