Поиск Абелевых строк наибольшей длины

И. Збань Научный руководитель: В. Аксёнов

6 июня 2017 г.

Постановка задачи

Задача: Нахождение наибольшей общей Абелевой подстроки (НОАП) и поиск Абелевых подквадратов.

Постановка задачи

Задача: Нахождение наибольшей общей Абелевой подстроки (НОАП) и поиск Абелевых подквадратов.

Две строки Абелево эквививалентны, если одна строка получается из другой перестановкой сммволов.

Постановка задачи

Задача: Нахождение наибольшей общей Абелевой подстроки (НОАП) и поиск Абелевых подквадратов.

Две строки Абелево эквививалентны, если одна строка получается из другой перестановкой сммволов.

Абелев подквадрат — подстрока, представимая как конкатенация двух Абелево эквивалентных строк.

Мотивация

▶ Быстроразвивающаяся область, много публикаций за последнее время

Мотивация

- ▶ Быстроразвивающаяся область, много публикаций за последнее время
- Актуальность: подзадачи в бионформатике (gene clusters),
 фильтры в задаче поиска образца с ошибками

Мотивация

- ▶ Быстроразвивающаяся область, много публикаций за последнее время
- Актуальность: подзадачи в бионформатике (gene clusters),
 фильтры в задаче поиска образца с ошибками
- ▶ Близость с известной задачей 3SUM

Содержание работы,

В работе выполнены следующие части:

► Реализация и оценка эффективности теоретического алгоритма для решения 3SUM+ для монотонных множеств на примере задачи о числе абелевых подквадратов

Содержание работы

В работе выполнены следующие части:

- ▶ Реализация и оценка эффективности теоретического алгоритма для решения 3SUM+ для монотонных множеств на примере задачи о числе абелевых подквадратов
- Анализ задачи НОАП для бинарного алфавита

Содержание работы

В работе выполнены следующие части:

- ▶ Реализация и оценка эффективности теоретического алгоритма для решения 3SUM+ для монотонных множеств на примере задачи о числе абелевых подквадратов
- Анализ задачи НОАП для бинарного алфавита
- ▶ Решение задачи НОАП для произвольного алфавита

Подсчёт числа Абелевых подквадратов

Задача о числе Абелевых подквадратов сводится к $3SUM^+$ (A+B=C)

Подсчёт числа Абелевых подквадратов

Задача о числе Абелевых подквадратов сводится к $3SUM^+$ (A+B=C)

$$A = B = \{(c_a(i), c_b(i))\}, C = \{2 \cdot c_a(i), 2 \cdot c_b(i)\}$$

где $c_a(i), c_b(i)$ — число букв a и b на префиксе длины i

Подсчёт числа Абелевых подквадратов

Задача о числе Абелевых подквадратов сводится к $3SUM^+$ (A+B=C)

$$A = B = \{(c_a(i), c_b(i))\}, C = \{2 \cdot c_a(i), 2 \cdot c_b(i)\}$$

где $c_a(i), c_b(i)$ — число букв a и b на префиксе длины i

и число подстрок —
$$(\#3SUM^+(A, B, C) - (n+1))/2$$

Сравнение алгоритмов на простой строке

Картиночка на которой видно, что квадрат работает быстро, а 1.86 — медленно

Сравнение алгоритмов на случайном тесте

Картиночка, на которой видно, что квадрат работает быстро, а 1.86 — оооочень медленно

НОАП на бинарном алфавите

График зависимости НОАП двух случайных бинарных строк от n, длины строк. Сгенерирован путем усреднения результата за 10^4 испытаний.

НОАП на бинарном алфавите

В работе доказана оценка сверху, что матождание длины НОАП двух случайных бинарных строк ограничена сверху линейной функцией с коэффициентом меньше единицы. Тем самым опровергнуто гипотеза из первоисточника

В работе предлагается сведение задачи к 3SUM, лучшее решение которой на данный момент имеет асимптотику $\mathcal{O}(n^{1.86})$.

НОАП на произвольном алфавите

Был разработан алгоритм решения НОАП на произвольном алфавите за $\mathcal{O}(n^2\log\sigma)$ времени и $\mathcal{O}(n)$ памяти.

Сравнение алгоритмов решения НОАП

Год	Авторы	Время	Память
2015	Кто-то	$\mathcal{O}(n^2\sigma)$	$\mathcal{O}(n\sigma)$
2016	Кто-то	$\mathcal{O}(n^2\sigma)$	$\mathcal{O}(n)$
2016	SPIRE	$\mathcal{O}(n^2 \log^2 n \log^* n)$	$\mathcal{O}(n\log^2 n)$
2017	Я	$\mathcal{O}(\mathit{n}^2\log\sigma)$	$\mathcal{O}(n)$

Краткое описание алгоритма

Идея — построить персистентный массив вектора Парея для строки-конкатенации обеих данных строк, посчитать некий хеш от каждого корня, и проверить, были ли одинаковые версии, соответствующие обеим строкам

Схема вычисления хеша

Тут какая-то непонятная картинка

Вопросы?

Спасибо за внимание.