Clustering

Part II

Restriction of Cluster Shapes

Limitations of K-Means: Part I

Cluster boundaries equidistant to centers

Limitations of K-Means: Part II

Can't model covariances well

Limitations of K-Means: Part III

Only simple cluster shapes

Local Optima: Part I

Local Optima: Part II

Local Optima: Part III

K-Means Optimization Objective

 μ_k = cluster centroid k ($\mu_k \in \mathbb{R}^n$)

 $\mu_{c^{(i)}}$ = cluster centroid of cluster to which example $\boldsymbol{x}^{(i)}$ has been assigned

Optimization objective:

$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

$$\min_{\substack{c^{(1)}, \dots, c^{(m)}, \\ \mu_1, \dots, \mu_K}} J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K)$$

Random Initialization: Part II

```
For i = 1 to 100 {  \text{Randomly initialize K-means.}   \text{Run K-means. Get} c^{(1)}, \ldots, c^{(m)}, \mu_1, \ldots, \mu_K \text{ .}   \text{Compute cost function (distortion)}   J(c^{(1)}, \ldots, c^{(m)}, \mu_1, \ldots, \mu_K)   \}
```

Pick clustering that gave lowest cost $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$

Choosing the Value of K: Part I

Choosing the Value of K: Part II

Elbow method:

Choosing the Value of K: Part III

Sometimes, you're running K-means to get clusters to use for some later/downstream purpose. Evaluate K-means based on a metric for how well it performs for that later purpose.

