

遨游"视"界 做你所想 Explore World, Do What You Want

The Need for Dynamic Protocol Optimization Darren Ng / Akamai

2019.08.23

遨游"视"界 做你所想 Explore World, Do What You Want

2019.12.13-14

出品: Leive Vide Stack

成为讲师: speaker@livevideostack.com

成为志愿者: volunteer@livevideostack.com

赞助、商务合作: kathy@livevideostack.com

Our Adventure Awaits

Congestion Control

Dynamic Protocol Optimization (DPO)

What does network performance mean to you?

Network Performance Optimization

Metrics

- 1. Startup Time
- 2. Rebuffering
- 3. Bitrate (Video Definition)
- 4. Video Lag

- 1. Total download time
- 2. Cross traffic quality
- 3. Latency (Live gaming)

Network Performance is Complicated

北京 2019

遨游"视"界 做你所想 Explore World, Do What You Want

Network

Influences of Network Performance

遨游"视"界 做你所想 Explore World, Do What You Want

Server	Network	Client
CharacteristicsCPUMemoryOS	TopologyMiddle DevicesBuffers	CharacteristicsCPUMemoryOS
Network Bandwidth (1G/10G/100G)		
Network Technology (Mobile / WiFi / Ethernet)		
Data Availability / Application Performance		
Network Congestion		
Network Protocols		
···		

TCP Congestion Control

Server Outstanding Data Limit = min(

```
available data, // Server side application

congestion window, // Server side TCP stack / hardware

client receive window) // Receiver TCP stack / hardware
```


TCP Congestion Control

 Congestion Control is TCP/IP's attempt to match performance with available network bandwidth.

TCP Congestion Control Algorithms

Loss Based

- Cubic
- Reno
- QDK

Packet loss is interpreted as network congestion.

RTT/Delay Based

- FastTCP
- BBR

Increase in flow latency / queuing is a signal of network congestion.

Does One Protocol Fit All?

TCP Congestion Control - Loss

北京 2019

遨游"视"界 做你所想 Explore World, Do What You Want

1% Loss

30_{ms} Latency

0ms Jitter

10 MB File 10 Mbps Capacity

Average Throughput: 2.8 Mbps

TCP Congestion Control - Loss

遨游"视"界 做你所想 Explore World, Do What You Want

FastTCP

1% Loss

30ms Latency

Oms Jitter

10 MB File10 Mbps Capacity

Average Throughput: 9.1 Mbps

TCP Congestion Control – Jitter

遨游"视"界 做你所想 Explore World, Do What You Want

Reno

0% Loss

30ms Latency

20ms Jitter

10 MB File100 Mbps Capacity

Average Throughput: 26.9 Mbps

TCP Congestion Control – Jitter

│ 遨游"视"界 做你所想 │ Explore World, Do What You Want

FastTCP

0% Loss

30ms Latency

20ms Jitter

10 MB File100 Mbps Capacity

Average Throughput: 5.4 Mbps

TCP Congestion Control – Jitter

遨游"视"界 做你所想 Explore World, Do What You Want

BBR

0% Loss

30ms Latency

20ms Jitter

10 MB File100 Mbps Capacity

Average Throughput: 51 Mbps

Protocol Performance Varies

Asia-Pacific Mobile Carrier

- Average goodput spread
 - 33% (Fast -> QDK)
 - 4.4 Mbps+ difference

Protocol Performance Varies

Asia-Pacific Network Provider

- Average goodput spread
 - 12% (BBR -> Fast)
 - 2.4 Mbps+ difference

Does One Protocol Fit All?

No

Dynamic Protocol Optimization (DPO) Overview

北京 2019

遨游"视"界 做你所想 Explore World, Do What You Want

Machine Learning

Automatically evaluating models and flow characteristics for optimal network performance.

Congestion Control Toolkit

Support for present (5) and future congestion control algorithms.

Analytics Framework

Gather performance metrics throughout Akamai's network.

Create models for Machine Learning.

Machine Learning

遨游"视"界 做你所想 Explore World, Do What You Want

A Definition:

Capability of a machine to improve its own performance by automatically "learning" from a dataset.

Example:

Model Training

Optimizing goodput

Input Signals

Delivery Type	Network Type
Latency	 Geolocation
Time of Day	• +15 others

Output:

DPO – Where are we?

Dynamic Protocol Optimization (DPO) is needed to create a better network experience.

Using machine learning, DPO aims to pair a more optimal Congestion Control algorithm given the network conditions.

Under development.

遨游"视"界 做你所想 Explore World, Do What You Want

Thank you

