Определение 1. Пусть функция f определена в некоторой окрестности U точки a. Для каждой точки $b \in U$, $b \neq a$, рассмотрим cekyuyo: прямую $l_b = k_b x + c_b$, проходящую через точки (a, f(a)) и (b, f(b)) (напишите её уравнение). Если существует предельная прямая $l = (\lim_{b \to a} k_b)x + (\lim_{b \to a} c_b)$ для семейства прямых l_b при $b \to a$, то она называется $kacame \ nbox{ord} b$ к графику f в точке a.

Задача 1 $^{\oslash}$. Напишите уравнение касательной к графику дифференцируемой функции f(x) в точке x_0 .

Задача 2 $^{\varnothing}$. Найдите касательную к параболе $y=\frac{x^2-3x+3}{3}$, параллельную прямой y=x.

Задача 3 $^{\varnothing}$. Докажите, что отрезок любой касательной к графику функции y=1/x, концы которого расположены на осях координат, делится точкой касания пополам.

Задача 4. Под каким углом пересекаются кривые: **a)** $y = x^2$ и $x = y^2$; **б)** $y = \sin x$ и $y = \cos x$? (Угол между кривыми в точке их пересечения — это угол между касательными к кривым в этой точке.)

Задача 5. Докажите, что касательная к гиперболе $xy = a^2$ образует с осями координат треугольник постоянной площади.

Задача 6°. **а)** Напишите уравнение касательной к окружности $x^2 + y^2 = 1$ в её точке (a, b). **6)** Докажите, что эта касательная перпендикулярна радиусу, проведённому в точку (a, b).

Задача 7. В каком наибольшем конечном числе точек прямая может касаться синусоиды?

Задача 8. Найдите геометрическое место точек, из которых парабола $y=x^2$ видна под прямым углом. (Угол, под которым видна парабола из данной точки — это угол между касательными к параболе, проведёнными из этой точки).

Задача 9*. Пусть функция f дифференцируема на \mathbb{R} , точка A плоскости не лежит на графике функции f, и M — такая точка графика функции f, что расстояние AM минимально. Докажите, что отрезок AM перпендикулярен касательной к графику f в точке M.

Задача 10. Параллельный пучок лучей, падающий на параболу $y=x^2$ по вертикали сверху, отражается от неё по закону «угол падения равен углу отражения». Докажите, что все лучи этого пучка после первого отражения пройдут через одну и ту же точку, и найдите эту точку (она называется «фокусом» параболы).

Задача 11*. Дана гипербола y=1/x, пусть F_1 и F_2 — точки $(\sqrt{2};\sqrt{2})$ и $(-\sqrt{2};-\sqrt{2})$ (её фокусы). Докажите, что поток лучей из точечного источника света F_1 , отразившись от гиперболы, предстанет стороннему наблюдателю как поток лучей от точечного источника в F_2 .

Задача 12*. Докажите, что любая касательная к гиперболе y=1/x образует равные по величине углы с двумя прямыми, одна из которых проходит через точку касания и точку $(\sqrt{2};\sqrt{2})$, а другая — через точку касания и точку $(-\sqrt{2};-\sqrt{2})$.

Задача 13*. Существует ли окружность, пересекающая параболу $y = x^2$ ровно в двух точках так, что в одной из этих точек у параболы и окружности есть общая касательная, а в другой — нет?

Задача 14*. а) Из точки A проведены касательные AB и AC к эллипсу с фокусами F_1 и F_2 . Докажите, что $\angle F_1AB = \angle F_2AC$. б) Докажите, что луч, выпущенный из внутренней точки эллипса, отражаясь от зеркальных стенок эллипса, будет всегда касаться некоторого другого эллипса или гиперболы, если он не проходит через фокусы эллипса и не летает по одной прямой.

1	2	3	$\begin{array}{ c c } 4 \\ a \end{array}$	4 6	5	6 a	6 6	7	8	9	10	11	12	13	14 a	14 6