# Duality in Coherent Algebras

Mark Farrell

March 2018

## Coherent Algebras

#### Definition

A coherent algebra W of order n is a subspace of  $\mathsf{Mat}_{n\times n}(\mathbb{C})$  such that:

- MN and  $M \circ N \in \overline{W}$  for all  $M, N \in \overline{W}$ .
- $\blacksquare$   $M^T \in \mathcal{W}$  for all  $M \in \mathcal{W}$ .
- $\blacksquare$   $I, J \in \mathcal{W}$ .

#### Primitive Matrices

#### Definition

An element  $M \in \mathcal{W}$  of a coherent algebra  $\mathcal{W}$  is said to be primitive if  $M^2 = M$  and  $MN \in \text{span}\{M\}$  for all  $N \in \mathcal{W}$ .

#### Schur-Primitive Matrices

#### Definition

Dually, an element  $M \in \mathcal{W}$  of a coherent algebra  $\mathcal{W}$  is said to be Schur-primitive if  $M^{\circ 2} = M$  and  $M \circ N \in \text{span}\{M\}$  for all  $N \in \mathcal{W}$ .

#### **Dual Bases**

Every coherent algebra is spanned by its set of Schur-primitive matrices.

#### **Dual Bases**

Every coherent algebra is spanned by its set of Schur-primitive matrices.

Dually, every commutative coherent algebra is spanned by its set of primitive matrices as well.

### Suppose that $\mathcal{W}$ is a commutative coherent algebra of order n.

Let  $\Gamma(W)$  denote the set of Schur-primitive matrices in W.

Dually, let  $\Lambda(W)$  denote the set of primitive matrices in W.

Suppose that  $\{A_i : 1 \leq i \leq d\}$  and  $\{E_i : 1 \leq i \leq d\}$  are orderings on  $\Gamma(W)$  and  $\Lambda(W)$ , letting  $d := \dim(W)$ .

#### Character Tables and Dual Character Tables

The matrix  $P \in \operatorname{Mat}_{d \times d}(\mathbb{C})$  such that  $A_i = \sum_{j=1}^d P_{i,j} E_j$  for all  $1 \leq i \leq d$  is said to be the character table of  $\mathcal{W}$  (under these orderings).

### Character Tables and Dual Character Tables

The matrix  $P \in \operatorname{Mat}_{d \times d}(\mathbb{C})$  such that  $A_i = \sum_{j=1}^d P_{i,j} E_j$  for all  $1 \le i \le d$  is said to be the character table of  $\mathcal{W}$  (under these orderings).

Dually, the matrix  $Q \in \operatorname{Mat}_{d \times d}(\mathbb{C})$  such that  $E_i = \sum_{j=1}^d \left(\frac{1}{n}Q_{i,j}\right)A_j$  for all  $1 \leq i \leq d$  is said to be the dual character table of  $\mathcal{W}$  (under these orderings).

### Character Tables and Dual Character Tables

The matrix  $P \in \operatorname{Mat}_{d \times d}(\mathbb{C})$  such that  $A_i = \sum_{j=1}^d P_{i,j} E_j$  for all  $1 \le i \le d$  is said to be the character table of  $\mathcal{W}$  (under these orderings).

Dually, the matrix  $Q \in \operatorname{Mat}_{d \times d}(\mathbb{C})$  such that  $E_i = \sum_{j=1}^d \left(\frac{1}{n}Q_{i,j}\right)A_j$  for all  $1 \leq i \leq d$  is said to be the dual character table of  $\mathcal{W}$  (under these orderings).

We have that  $P^{-1} = \frac{1}{n}Q$  and hence PQ = nI.



Define the trace inner product  $\langle \cdot, \cdot \rangle$  on  $\mathsf{Mat}_{d \times d}(\mathbb{C})$ :

$$\langle\cdot,\cdot
angle : \mathsf{Mat}_{d imes d}(\mathbb{C}) imes \mathsf{Mat}_{d imes d}(\mathbb{C}) o \mathbb{C}$$

$$\langle A, B \rangle := \operatorname{tr}(B^*A) = \operatorname{sum}(\overline{B} \circ A)$$

Define the trace inner product  $\langle \cdot, \cdot \rangle$  on  $\mathsf{Mat}_{d \times d}(\mathbb{C})$ :

$$\langle \cdot, \cdot \rangle : \mathsf{Mat}_{d \times d}(\mathbb{C}) \times \mathsf{Mat}_{d \times d}(\mathbb{C}) \to \mathbb{C}$$

$$\langle A,B\rangle:=\operatorname{tr}\left(B^{*}A\right)=\operatorname{sum}\left(\overline{B}\circ A\right)$$

Let  $v_i$  denote the valency of  $A_i$  and  $m_i$  denote the rank of  $E_i$  for all  $1 \leq i \leq d$ .

Define the trace inner product  $\langle \cdot, \cdot \rangle$  on  $\mathsf{Mat}_{d \times d}(\mathbb{C})$ :

$$\langle \cdot, \cdot 
angle : \mathsf{Mat}_{d imes d}(\mathbb{C}) imes \mathsf{Mat}_{d imes d}(\mathbb{C}) o \mathbb{C}$$

$$\langle A, B \rangle := \operatorname{tr}(B^*A) = \operatorname{sum}(\overline{B} \circ A)$$

Let  $v_i$  denote the valency of  $A_i$  and  $m_i$  denote the rank of  $E_i$  for all  $1 \le i \le d$ .

$$\implies v_j Q_{i,j} = \langle E_i, A_j \rangle = m_i P_{j,i} \text{ for all } 1 \leq i, j \leq d.$$



Define the trace inner product  $\langle \cdot, \cdot \rangle$  on  $\mathsf{Mat}_{d \times d}(\mathbb{C})$ :

$$\langle\cdot,\cdot
angle:\mathsf{Mat}_{d imes d}(\mathbb{C}) imes\mathsf{Mat}_{d imes d}(\mathbb{C}) o\mathbb{C}$$

$$\langle A,B\rangle:=\operatorname{tr}\left(B^{*}A\right)=\operatorname{sum}\left(\overline{B}\circ A\right)$$

Let  $v_i$  denote the valency of  $A_i$  and  $m_i$  denote the rank of  $E_i$  for all  $1 \le i \le d$ .

$$\implies v_j Q_{i,j} = \langle E_i, A_j \rangle = m_i P_{j,i} \text{ for all } 1 \leq i,j \leq d.$$

Hence  $Q = R \circ P^T$  where  $R \in \operatorname{Mat}_{d \times d}(\mathbb{C})$  and  $R_{i,j} := \frac{m_i}{v_j}$  for all 1 < i, j < d.



### Intersection Numbers and Dual Intersection Numbers

There is a set of numbers  $\{p_{i,j}(k): 1 \leq i, j, k \leq d\}$  such that  $A_iA_j = \sum_{k=1}^d p_{i,j}(k)A_k$  for all  $1 \leq i, j \leq d$ .

These are said to be the intersection numbers of W.

### Intersection Numbers and Dual Intersection Numbers

Dually, there is a set of numbers  $\{q_{i,j}(k): 1 \leq i, j, k \leq d\}$  such that  $E_i \circ E_j = \sum\limits_{k=1}^d \left(\frac{1}{n} q_{i,j}(k)\right) E_k$  for all  $1 \leq i, j \leq d$ .

These are said to be the dual intersection numbers of  $\mathcal{W}$  (or Krein numbers of  $\mathcal{W}$ ).

### Intersection Numbers and Dual Intersection Numbers

The intersection numbers of  $\mathcal{W}$  are non-negative integers.

The dual intersection numbers of  ${\cal W}$  are non-negative real numbers.

# **Duality Mappings**

#### Definition

A duality mapping between (commutative) coherent algebras W and X of order n is a linear isomorphism  $T: W \to X$  such that:

- $T(MN) = T(M) \circ T(N)$  for all  $M, N \in \mathcal{W}$ .
- $T(M \circ N) = \frac{1}{n}T(M)T(N)$  for all  $M, N \in \mathcal{W}$ .

# **Duality Mappings**

There is a duality mapping between commutative coherent algebras  $\mathcal{X}$  and  $\mathcal{Y}$  of dimension d if and only if:

- If  $p_{i,j}(k) = q_{i,j}(k)$  for all  $1 \le i, j, k \le d$ , where  $\{p_{i,j}(k) : 1 \le i, j, k \le d\}$  are the intersection numbers of  $\mathcal{X}$ 
  - and  $\{q_{i,j}(k): 1 \leq i, j, k \leq d\}$  are the dual intersection numbers of  $\mathcal{Y}$ .
- **2** There is a character table P of  $\mathcal X$  and dual character table Q of  $\mathcal Y$  such that  $\overline{P}=Q$ .



A (commutative) coherent algebra  $\mathcal{W}$  is said to be metric if  $\mathcal{W} = \operatorname{span}\{I, A, A^2, \cdots\}$  for some Schur-primitive matrix  $A \in \mathcal{W}$ .

A (commutative) coherent algebra  $\mathcal{W}$  is said to be metric if  $\mathcal{W} = \operatorname{span}\{I, A, A^2, \cdots\}$  for some Schur-primitive matrix  $A \in \mathcal{W}$ .

Dually, a (commutative) coherent algebra  $\mathcal{W}$  is said to be cometric if  $\mathcal{W} = \operatorname{span}\{J, E, E^{\circ 2}, \cdots\}$  for some primitive matrix  $E \in \mathcal{W}$ .

A (commutative) coherent algebra  $\mathcal{W}$  is said to be metric if  $\mathcal{W} = \operatorname{span}\{I, A, A^2, \dots\}$  for some Schur-primitive matrix  $A \in \mathcal{W}$ .

Dually, a (commutative) coherent algebra  $\mathcal{W}$  is said to be cometric if  $\mathcal{W} = \operatorname{span}\{J, E, E^{\circ 2}, \cdots\}$  for some primitive matrix  $E \in \mathcal{W}$ .

If there is a duality mapping on a coherent algebra  $\mathcal W$ , then  $\mathcal W$  is metric if and only if it is cometric.



Coherent algebras that are both metric and symmetric can be identified with the adjacency algebras of distance-regular graphs.

Coherent algebras that are both metric and symmetric can be identified with the adjacency algebras of distance-regular graphs.

The eigenvalue multiplicities of a distance-regular graph are the valencies of its distance-graphs if there is a duality mapping on its adjacency algebra.

## Self-Dual Coherent Algebras

#### Definition

A (commutative) coherent algebra  $\mathcal{W}$  is said to be (formally) self-dual if there is a character table P for  $\mathcal{W}$  with dual character table  $\overline{P}$ .

## Finite Groups and Coherent Algebras

Suppose that G is a finite group of order n.

Let  $L^2(G)$  denote the space of complex-valued functions on G.

Define  $M_f \in \operatorname{Mat}_{G \times G}(\mathbb{C})$  as  $(M_f)_{x,y} := f(x^{-1}y)$  for all  $x, y \in G$ .

We have that  $M_f M_g = M_{f \star g}$  for all  $f, g \in L^2(G)$  with convolution  $f \star g$ .

# Finite Groups and Coherent Algebras

Additionally, define  $A_g \in \operatorname{Mat}_{G \times G}(\mathbb{C})$  as  $(A_g)_{x,y} = xy^{-1}$  for all  $x, y \in G$  and  $g \in G$ .

The coherent algebra  $\mathcal{W}_G := \operatorname{span}\{A_g : g \in G\}$ 

 $=\{M_f:f\in L^2(G)\}$  can be identified with the group ring of G.

Refer to  $W_G$  as the group coherent algebra of G.



# Self-Dual Coherent Algebras from Finite Abelian Groups

Assume that G is abelian.

Let  $X(G) \subseteq L^2(G)$  denote the set of irreducible characters of G.

Then 
$$W_G = \operatorname{span}\left\{\frac{1}{n}M_\chi: \chi \in X(G)\right\}$$

where  $\left\{\frac{1}{n}M_{\chi}:\chi\in X(G)\right\}$  is the set of primitive matrices in  $\mathcal{W}_{G}$ .

# Self-Dual Coherent Algebras from Finite Abelian Groups

A character table for  $W_G$  can be identified with a character table for G in the usual sense.

There is an ordering  $\{\chi_x : x \in G\}$  on X(G) such that  $\chi_x(y) = \chi_y(x)$  for all  $x, y \in G$ ,

since G can be decomposed as a direct product of finite cyclic groups.

There is then a character table P for  $W_G$  such that  $P\overline{P}=nI$ , since X(G) forms an orthonormal basis for  $L^2(G)$  as well.

Hence  $W_G$  is self-dual.



#### Fourier Transforms

#### Definition

A Fourier transform on a (commutative) coherent algebra  $\mathcal{W}$  of order n is a duality mapping  $\mathcal{T}: \mathcal{W} \to \mathcal{W}$  such that:

■  $T^{-1}(M) = \frac{1}{n}T(M)$  for all Schur-primitive matrices  $M \in \mathcal{W}$ .

#### Fourier Transforms

A Fourier transform on the group coherent algebra  $W_G$  of a finite abelian group G can be identified with a Fourier transform on the space  $L^2(G)$  of complex-valued functions on G.

## Fourier Transforms and Self-Dual Coherent Algebras

There is a Fourier transform on a (commutative) coherent algebra  $\mathcal{W}$  if and only if there is a character table P of  $\mathcal{W}$  such that dual character table of  $\mathcal{W}$  is  $\overline{P}$ .

## Strongly-Regular Graphs

Suppose that G is a (connected) strongly-regular graph of order n and valency k.

$$\implies P := \begin{pmatrix} 1 & 1 & 1 \\ k & \lambda & \mu \\ n-1-k & -1-\lambda & -1-\mu \end{pmatrix}$$

is a character table for  $\mathcal{A}$  for some  $\lambda, \mu \in \mathbb{R}$ 

and 
$$Q := \begin{pmatrix} 1 & 1 & 1 \\ j & \left(\frac{j}{k}\right)\lambda & \left(\frac{j}{n-1-k}\right)(-1-\lambda) \\ n-1-j & \left(\frac{n-1-j}{k}\right)\mu & \left(\frac{n-1-j}{n-1-k}\right)-1-\mu \end{pmatrix}$$

is the dual character table of A relative to P for some  $j \in \mathbb{N}$ .



# Strongly-Regular Graphs

#### Proposition

The adjacency algebra of G is self-dual if G is an  $SRG(\cdot, \cdot, \lambda, \lambda + 1)$  for some  $\lambda \geq 0$ .

### More Self-Dual Coherent Algebras

The adjacency algebras of (connected) self-complementary strongly-regular graphs are self-dual.

## More Self-Dual Coherent Algebras

The adjacency algebras of (connected) self-complementary strongly-regular graphs are self-dual.

The adjacency algebras of Hamming graphs are self-dual coherent algebras.

Is it possible to classify the self-dual distance-regular graphs?