1M0520K23 (DAY-1, SECOND SESSION)

ವಿಷಯ ಸಂಕೇತ	ಸಮಯ	SESSI	SION) ಪ್ರಶ್ನೆಪತ್ರಿಕೆಯ				
M	ಮ 2.30 ರಿಂದ 3.50 ರ ವರೆಗೆ	ವರ್ಷನ್ ಕೋಡ್ A-1	^{ಕ್ರಮ} 02 ಕ್ಕೆ 0409				

ಒಟ್ಟು ಅವಧಿ	ಉತ್ತರಿಸಲು ಇರುವ ಗರಿಷ್ಟ ಅವಧಿ	ಗರಿಷ್ಟ ಅಂಕಗಳು	ಒಟ್ಟು ಪ್ರಶ್ನೆಗಳು	ನಿಮ್ಮ ಸಿಇಟಿ ಸಂಖ್ಯೆಯನ್ನು ಬರೆಯರಿ					
80 ठिक्रमांक	70 ನಿಮಿಷಗಳು	60	60	23UGE					

ಮಾಡಿ

- ಕೊಠಡಿ ಮೇಲ್ವಿಚಾರಕರಿಂದ ಈ ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯನ್ನು ನಿಮಗೆ ಮ. 2.30 ಆದ ನಂತರ ಕೊಡಲಾಗಿರುತ್ತದೆ.
- 2. ಆಭ್ಯರ್ಥಿಗಳು ಸಿಇಟಿ ಸಂಖ್ಯೆಯನ್ನು ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಪತ್ರಿಕೆಯಲ್ಲಿ ಬರೆದು ಅದಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ವೃತ್ತಗಳನ್ನು ಸಂಪೂರ್ಣವಾಗಿ ತುಂಬಿದ್ದೀರೆಂದು ಖಾತ್ರಿ ಪಡಿಸಿಕೊಳ್ಳ.
- 3. ಪ್ರಶ್ನೆಪತ್ರಿಕೆಯ ವರ್ಷನ್ ಕೋಡ್ ಅನ್ನು ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಪತ್ರಿಕೆಯಲ್ಲಿ ಬರೆದು ಅದಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ವೃತ್ತಗಳನ್ನು ಸಂಪೂರ್ಣವಾಗಿ ತುಂಬಬೇಕು.
- 4. ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯ ವರ್ಷನ್ ಕೋಡ್ ಮತ್ತು ಕ್ರಮ ಸಂಖ್ಯೆಯನ್ನು ನಾಮಿನಲ್ ರೋಲ್ ನಲ್ಲಿ ತಪ್ಪಿಲ್ಲದೆ ಬರೆಯಬೇಕು.
- ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಪತ್ರಿಕೆಯ ಕೆಳಭಾಗದ ನಗದಿತ ಹಾಗದಲ್ಲಿ ಮೂರ್ಣ ಸಹಿ ಮಾಡಬೇಕು.

ಮಾಡಬೇಡಿ

- 1. ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಪತ್ರಿಕೆಯಲ್ಲಿ ಮುದ್ರಿತವಾಗಿರುವ ಟೈಮಿಂಗ್ ಮಾರ್ಕನ್ನು ತಿದ್ದಬಾರದು / ಹಾಳುಮಾಡಬಾರದು / ಅಳಿಸಬಾರದು.
- 2. ಮೂರನೇ ಬೆಲ್ ಮ. 2.40 ಕ್ಕೆ ಆಗುತ್ತದೆ. ಅಲ್ಲಿಯವರೆಗೂ,
 - ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯ ಬಲಭಾಗದಲ್ಲಿರುವ ಸೀಲ್ ಅನ್ನು ತೆಗೆಯಬಾರದು.
 - ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯ ಒಳಗಡೆ ಇರುವ ಪ್ರಶ್ನೆಗಳನ್ನು ನೋಡಲು ಪ್ರಯತ್ನಿಸಬಾರದು ಅಥವಾ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಪತ್ರಿಕೆಯಲ್ಲಿ ಉತ್ತರಿಸಲು ಪ್ರಾರಂಭಿಸಬಾರದು.

ಅಭ್ಯರ್ಥಿಗಳಿಗೆ ಮುಖ್ಯ ಸೂಚನೆಗಳು

- 1. ಪ್ರಶ್ನೆಗಳಲ್ಲಿ ಬಳಸಿರುವ SIGNS AND SYMBOLS ಗಳನ್ನು, ಬೇರೆ ರೀತಿಯಲ್ಲಿ ಹೇಳದ ಹೊರತು, ನಿಗದಿತ ಪಠ್ಯ ಪುಸ್ತಕದಲ್ಲಿನ ಅರ್ಥವನ್ನು ಪರಿಗಣಿಸಬೇಕು.
- 2. ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯಲ್ಲಿ ಒಟ್ಟು 60 ಪ್ರಶ್ನೆಗಳದ್ದು, ಪ್ರತಿ ಪ್ರಶ್ನೆಗೂ 4 ಬಹು ಆಯ್ಕೆ ಉತ್ತರಗಳು ಇರುತ್ತವೆ. ಪ್ರತಿ ಪ್ರಶ್ನೆಯ ಕೆಳಗೆ ಕೊಟ್ಟಿರುವ ನಾಲ್ಕು ಬಹು ಆಯ್ಕೆಯ ಉತ್ತರಗಳಲ್ಲಿ ಸರಿಯಾದ ಒಂದು ಉತ್ತರವನ್ನು ಆಯ್ಕೆ ಮಾಡಿ.
- 3. ಮೂರನೇ ಬೆಲ್ ಅಂದರೆ ಮ.2.40ರ ನಂತರ ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯ ಬಲಭಾಗದಲ್ಲಿರುವ ಸೀಲ್ ತೆಗೆದು ಈ ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯಲ್ಲಿ ಯಾವುದೇ ಮಟಗಳು ಮುದ್ರಿತವಾಗಿಲ್ಲದೇ ಇರುವುದು ಕಂಡು ಬಂದಲ್ಲಿ ಅಥವಾ ಹರಿದು ಹೋಗಿದ್ದಲ್ಲಿ ಅಥವಾ ಯಾವುದೇ ಐಟಂಗಳು ಬಿಟ್ಟುಹೋಗಿದೆಯೇ ಎಂಬುದನ್ನು ಖಚಿತಪಡಿಸಿಕೊಂಡು, ಈ ರೀತಿ ಆಗಿದ್ದರೆ ಕೂಡಲೇ ಪ್ರಶ್ನೆಪತ್ರಿಕೆಯನ್ನು ಬದಲಾಯಿಸಿಕೊಳ್ಳುವುದು ನಂತರ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಪತ್ರಿಕೆಯಲ್ಲಿ ಉತ್ತರಿಸಲು ಪ್ರಾರಂಭಿಸುವುದು.
- 4. ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯಲ್ಲಿನ ಪ್ರಶ್ನೆಗೆ ಅನುಗುಣವಾಗಿರುವ ಸರಿ ಉತ್ತರವನ್ನು ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಪತ್ರಿಕೆಯಲ್ಲಿ ಅದೇ ಕ್ರಮ ಸಂಖ್ಯೆಯ ಮುಂದೆ ನೀಡಿರುವ ಸಂಬಂಧಿಸಿದ ವೃತ್ತವನ್ನು ನೀಲಿ ಅಥವಾ ಕಮ್ಮ ಶಾಯಿಯ ಬಾಲ್ ಪಾಯಿಂಟ್ ಪೆನ್ನಾಂದ ಸಂಪೂರ್ಣ ತುಂಬುವುದು.

ಸರಿಯಾದ ಕ್ರಮ				ತಪ್ಪ	್ರಕ್ರಮಗ	ಳು Wi	RONG	MET	HODS			
CORRECT METHOD		B	©	D	A	B	©	P	A	•	•	(D)
$ \mathbf{A} \bullet \mathbf{C} \bullet \mathbf{D} $	•	lacksquare	©	(D)	A		©	(D)				

- ಈ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಪತ್ರಿಕೆಯನ್ನು ಸ್ಕ್ಯಾನ್ ಮಾಡುವ ಸ್ಟ್ಯಾನರ್ ಬಹಳ ಸೂಕ್ಷ್ಮವಾಗಿದ್ದು ಸಣ್ಣ ಗುರುತನ್ನು ಸಹ ದಾಖಲಿಸುತ್ತದೆ. ಆದ್ದರಿಂದ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಪತ್ರಿಕೆಯಲ್ಲಿ ಉತ್ತರಿಸುವಾಗ ಎಚ್ಚರಿಕೆ ವಹಿಸಿ.
- ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯಲ್ಲಿ ಕೊಟ್ಟಿರುವ ಖಾಲಿ ಜಾಗವನ್ನು ರಫ್ ಕೆಲಸಕ್ಕೆ ಉಪಯೋಗಿಸಿ. ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಪತ್ರಿಕೆಯನ್ನು ಇದಕ್ಕೆ ಉಪಯೋಗಿಸಬೇಡಿ.
- 7. ಕೊನೆಯ ಬೆಲ್ ಅಂದರೆ ಮ. 3.50 ಆದ ನಂತರ ಉತ್ತರಿಸುವುದನ್ನು ನಿಲ್ಲಿಸಿ.
- 8. ಓ,ಎಂ.ಆರ್. ಉತ್ತರ ಪತ್ರಿಕೆಯನ್ನು ಕೊಠಡಿ ಮೇಲ್ವಿಚಾರಕರಿಗೆ ಯಥಾಸ್ಥಿತಿಯಲ್ಲಿ ನೀಡಿರಿ.
- ಕೊಠಡಿ ಮೇಲ್ಟಿಚಾರಕರು ಮೇಲ್ಬಾಗದ ಹಾಳೆಯನ್ನು ಪ್ರತ್ಯೇಕಿಸಿ (ಕಚೇರಿ ಪ್ರತಿ) ತನ್ನ ವಶದಲ್ಲಿ ಇಟ್ಟುಕೊಂಡು ತಳಬದಿಯ ಯಥಾಪ್ರತಿಯನ್ನು (Candidate's Copy) ಅಭ್ಯರ್ಥಿಗಳಿಗೆ ಕೊಡುತ್ತಾರೆ.

ಸೂಚನೆ: ಕನ್ನಡ ಆವೃತ್ತಿಯ ಪ್ರಶ್ನೆಗಳಲ್ಲಿ ಉತ್ತರಿಸುವ ಅಭ್ಯರ್ಥಿಗಳಿಗೆ ಕನ್ನಡದಲ್ಲಿ ಮುದ್ರಿತವಾಗಿರುವ ಪ್ರಶ್ನೆಗಳ ಬಗ್ಗೆ ಏನಾದರೂ ಸಂದೇಹವಿದ್ದಲ್ಲಿ ಇಂಗ್ಲೀಷ್ ಆವೃತ್ತಿಯ ಪ್ರಶ್ನೆಪತ್ರಿಕೆಯನ್ನು ನೋಡಬಹುದು. ಏನಾದರೂ ವ್ಯತ್ಯಾಸ ಕಂಡುಬಂದಲ್ಲಿ ಇಂಗ್ಲೀಷ್ ಆವೃತ್ತಿಯನ್ನು ಅಂತಿಮ ಎಂದು ಪರಿಗಣಿಸಲಾಗುವುದು.

MATHEMATICS

nth term of the series 1.

$$1 + \frac{3}{7} + \frac{5}{7^2} + \frac{1}{7^2} + \dots$$
 is

- (A) $\frac{2n-1}{7^n}$ (B) $\frac{2n-1}{7^{n-1}}$
- (C) $\frac{2n+1}{7^{n-1}}$
- $(D) \frac{2n+1}{7^n}$

If $p\left(\frac{1}{q} + \frac{1}{r}\right)$, $q\left(\frac{1}{r} + \frac{1}{p}\right)$, $r\left(\frac{1}{p} + \frac{1}{q}\right)$ are in A.P., then p, q, r

(A) are in A.P.

(B) are not in A.P.

(C) are not in G.P.

(D) are in G.P.

A line passes through (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is 3.

(A) 1

(B) $\frac{1}{2}$

(C) $\frac{4}{2}$

(D) $\frac{2}{3}$

The distance between the foci of a hyperbola is 16 and its eccentricity is $\sqrt{2}$. Its equation is 4.

- (A) $2x^2 3y^2 = 7$ (B) $x^2 y^2 = 32$ (C) $y^2 x^2 = 32$ (D) $\frac{x^2}{4} \frac{y^2}{6} = 1$

If $\lim_{x \to 0} \frac{\sin(2+x) - \sin(2-x)}{x} = A \cos B$, then the values of A and B respectively are 5.

- (A) 2, 1
- (B) 2, 2
- (C) 1, 1
- (D) 1, 2

If n is even and the middle term in the expansion of $\left(x^2 + \frac{1}{x}\right)^n$ is 924 x^6 , then n is equal to 6.

- (A) 12
- (B) 10

(C) 8

(D) 14

The mean of 100 observations is 50 and their standard deviation is 5. Then the sum of 7. squares of all observations is

- (A) 250000
- (B) 50000
- (C) 255000
- (D) 252500

 $f: R \to R$ and $g: [0, \infty) \to R$ are defined by $f(x) = x^2$ and $g(x) = \sqrt{x}$. Which one of the 8. following is not true?

- (A) (fog)(2) = 2

- (B) (gof)(4) = 4 (C) (gof)(-2) = 2 (D) (fog)(-4) = 4

Let $f: R \to R$ be defined by $f(x) = 3x^2 - 5$ and $g: R \to R$ by $g(x) = \frac{x}{x^2 + 1}$ then gof is 9.

(A)
$$\frac{3x^2}{x^4 + 2x^2 - 4}$$

(A)
$$\frac{3x^2}{x^4 + 2x^2 - 4}$$
 (B) $\frac{3x^2 - 5}{9x^4 - 30x^2 + 26}$ (C) $\frac{3x^2}{9x^4 + 30x^2 - 2}$ (D) $\frac{3x^2 - 5}{9x^4 - 6x^2 + 26}$

(C)
$$\frac{3x^2}{9x^4 + 39x^2 - 2}$$

(D)
$$\frac{3x^2-5}{9x^4-6x^2+26}$$

10. Let the relation R be defined in N by aRb if 3a + 2b = 27 then R is

- (A) $\{(1, 12), (3, 9), (5, 6), (7, 3), (9, 0)\}$
- (B) $\{(1, 12), (3, 9), (5, 6), (7, 3)\}$
- (C) $\{(2, 1), (9, 3), (6, 5), (3, 7)\}$
- (D) $\left\{ \left(0, \frac{27}{2}\right), (1, 12), (3, 9), (5, 6), (7, 3) \right\}$

Let $f(x) = \sin 2x + \cos 2x$ and $g(x) = x^2 - 1$, then g(f(x)) is invertible in the domain

0

(A) $x \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ (B) $x \in \left[\frac{-\pi}{4}, \frac{\pi}{4}\right]$ (C) $x \in \left[0, \frac{\pi}{4}\right]$ (D) $x \in \left[\frac{-\pi}{8}, \frac{\pi}{8}\right]$

12. The contrapositive of the statement

"If two lines do not intersect in the same plane then they are parallel." is

- (A) If two lines are not parallel then they do not intersect in the same plane.
- (B) If two lines are not parallel then they intersect in the same plane.
- (C) If two lines are parallel then they do not intersect in the same plane.
- (D) If two lines are parallel then they intersect in the same plane.

Space For Rough Work

$$\cot^{-1}\left[\frac{\sqrt{1-\sin x}+\sqrt{1+\sin x}}{\sqrt{1-\sin x}-\sqrt{1+\sin x}}\right] \text{ where } x \in \left(0, \frac{\pi}{4}\right)$$

(A)
$$\pi - \frac{x}{3}$$

(B) $\frac{x}{2}$

(C)
$$\pi - \frac{x}{2}$$
 (D) $\frac{x}{2} - \pi$

14. If $x \begin{bmatrix} 3 \\ 2 \end{bmatrix} + y \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 15 \\ 5 \end{bmatrix}$ then the value of x and y are (A) x = -4, y = -3

(A)
$$x = -4$$
, $y = -3$
(C) $x = -4$, $y = 3$

(B)
$$x = 4$$
, $y =$
(D) $x = 4$, $y =$

(C)
$$x = -4$$
, $y = 3$ (B) $x = 4$, $y = 4$, y

15.

If A and B are two matrices such that
$$AB = B$$
 and $BA = A$ then $A^2 + B^2$

(A) AB (B) $A + B$ (C) $2BA$ (D)

(A) AB (B) A + B(C) 2 BA (D) 2 AB

16. If
$$A = \begin{bmatrix} 2-k & 2 \\ 1 & 3-k \end{bmatrix}$$
 is singular matrix, then the value of $5k - k^2$ is equal to

(A) -4
(B) 4
(C) 6
(D) -6

17. The area of a triangle with vertices $(-3, 0)$, $(3, 0)$ and $(0, k)$ is 9 sq. units, the value of k is

The area of a triangle with vertices (-3, 0), (3, 0) and (0, k) is 9 sq. units, the value of k is 17. (A) 6

(A) 6 (B) 9 (C) 3 (D) -9

18. If
$$\Delta = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$$
 and $\Delta_1 = \begin{vmatrix} 1 & 1 & 1 \\ bc & ca & ab \\ a & b & c \end{vmatrix}$ then

(A) $\Delta_1 \neq \Delta$ (B) $\Delta_1 = \Delta$ (C) $\Delta_1 = -\Delta$ (D) $\Delta_1 = 3\Delta$

$$(A) \Delta_{1} \neq \Delta \qquad (B) \Delta_{1} = \Delta \qquad (C) \Delta_{1} = -\Delta \qquad (D) \Delta_{1} = 3\Delta$$

$$(3 \times 10^{-3} \text{ K}) = 9$$

19. If
$$\sin^{-1}\left(\frac{2a}{1+a^2}\right) + \cos^{-1}\left(\frac{1-a^2}{1+a^2}\right) = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$$
 where $a, x \in (0, 1)$ then the value of x is

(A) $\frac{2a}{1+a^2}$ (B) 0 (C) $\frac{2a}{1-a^2}$ (D) $\frac{a}{2}$

Space For Rough Work

A-1

8

(C)
$$\frac{2a}{1-a^2}$$

(D) $\frac{a}{2}$

(E) $\frac{a}{2}$

(D) $\frac{a}{2}$

(D) $\frac{a}{2}$

(E) $\frac{a}{2}$

(D) $\frac{a}{2}$

(D) $\frac{a}{2}$

(E) $\frac{a}{2}$

(D) $\frac{a}{2}$

(D) $\frac{a}{2}$

(D) $\frac{a}{2}$

(E) $\frac{a}{2}$

(D) $\frac{a}{2}$

(D) $\frac{a}{2}$

(E) $\frac{a}{2}$

(D) $\frac{a}{2}$

(D) $\frac{a}{2}$

(D) $\frac{a}{2}$

(D) $\frac{a}{2}$

(E) $\frac{a}{2}$

(D) $\frac{a}{2}$

(D) $\frac{a}{2}$

(E) $\frac{a}{2}$

(D) $\frac{a}{2}$

(D) $\frac{a}{2}$

(E) $\frac{a}{2}$

(D) $\frac{a}{2}$

(D) $\frac{a}{2}$

(D) $\frac{a}{2}$

(D) $\frac{a}{2}$

(E) $\frac{a}{2}$

(D) $\frac{a}{2}$

20. If
$$u = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$$
 and $v = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$ then $\frac{du}{dv}$ is

(A) $\frac{1-x^2}{1+x^2}$ (B) $\frac{1}{2}$ (C)

21. The function
$$f(x) = \cot x$$
 is discontinuous on every point of the set

(C) 1

(D) 2

(D) $\frac{5}{2}$

(A)
$$\left\{ x = (2n+1)\frac{\pi}{2}; n \in Z \right\}$$
 (B) $\left\{ x = n\pi; n \in Z \right\}$

(C)
$$\left\{x = \frac{n\pi}{2}; n \in Z\right\}$$
 (D) $\left\{x = 2n\pi; n \in Z\right\}$
2. If the function is $f(x) = \frac{1}{x+2}$, then the point of discontinuity of the composite function $y = f(f(x))$ is

(A)
$$\frac{2}{5}$$
 (B) $\frac{-5}{2}$ (C) $\frac{1}{2}$

23. If $y = a \sin x + b \cos x$, then $y^2 + \left(\frac{dy}{dx}\right)^2$ is a

y = f(f(x)) is

(C) constant (B) function of x
(D) function of y
24. If
$$f(x) = 1 + nx + \frac{n(n-1)}{2}x^2 + \frac{n(n-1)(n-2)}{6}x^3 + \dots + x^n$$
 then $f''(1) = 1 + nx + \frac{n(n-1)}{2}x^2 + \dots + x^n$

(A)
$$n(n-1) 2^n$$
 (B) $(n-1)2^{n-1}$ (C)

25. If
$$A = \begin{bmatrix} 1 & \tan \alpha/2 \\ -\tan \alpha/2 & 1 \end{bmatrix}$$
 and $AB = I$ then $B = \frac{1}{(A) \cos^2 \alpha/2 \cdot I}$ (B) $\cos^2 \alpha/2 \cdot A$ (C) $\sin^2 \alpha/2 \cdot A$ (D) $\cos^2 \alpha/2 \cdot A$

(A)
$$5.05 \,\pi \,\text{cm}^2/\text{sec}$$
 (B) $5.2 \,\pi \,\text{cm}^2/\text{sec}$ (C) $0.52 \,\pi \,\text{cm}^2/\text{sec}$ (D) $27.4 \,\pi \,\text{cm}^2/\text{sec}$

(B) I or III

(B) 5

(A) 4

- The distance 's' in meters travelled by a particle in 't' seconds is given by $s = \frac{2t^3}{3} 18t + \frac{5}{3}$. 27. The acceleration when the particle comes to rest is (D) $10 \text{ m}^2/\text{sec.}$ (C) $18 \text{ m}^2/\text{sec}$. (A) $12 \text{ m}^2/\text{sec}$. (B) $3 \text{ m}^2/\text{sec}$.
- A particle moves along the curve $\frac{x^2}{16} + \frac{y^2}{4} = 1$. When the rate of change of abscissa is 4 times 28. that of its ordinate, then the quadrant in which the particle lies is (A) III or IV

(C) II or III

(C) 3

(D) II or IV

(D) 6

29. An enemy fighter jet is flying along the curve given by $y = x^2 + 2$. A soldier is placed at (3, 2) wants to shoot down the jet when it is nearest to him. Then the nearest distance is (A) 2 units (B) $\sqrt{3}$ units (C) $\sqrt{5}$ units (D) $\sqrt{6}$ units

(A) 2 units (B)
$$\sqrt{3}$$
 units (C) $\sqrt{5}$ units (D) $\sqrt{6}$ units

30.
$$\int_{2}^{8} \frac{5^{\sqrt{10-x}}}{5^{\sqrt{x}} + 5^{\sqrt{10-x}}} dx = \frac{5^{\sqrt{x}}}{5^{\sqrt{x}} + 5^{\sqrt{x}}} dx = \frac{5^{\sqrt{x}}}{5^{\sqrt{x}} + 5^{\sqrt{x}}} dx = \frac{5^{\sqrt{x}}}{5^{\sqrt{x}} + 5^{\sqrt{x}}} dx = \frac{5^{\sqrt{x}}}{5^{\sqrt{x}}} dx = \frac{5^{$$

- 31. $\int \sqrt{\csc x \sin x} \, dx =$
 - (A) $2\sqrt{\sin x} + C$ (B) $\sqrt{\sin x} + C$ (C) $\frac{2}{\sqrt{\sin x}} + C$ (D) $\frac{\sqrt{\sin x}}{2} + C$
- If f(x) and g(x) are two functions with $g(x) = x \frac{1}{x}$ and fog $f(x) = x^3 \frac{1}{x^3}$ then $f'(x) = x^3 \frac{1}{x^3}$ (A) $x^2 - \frac{1}{x^2}$ (B) $3x^2 + 3$ (C) $1 - \frac{1}{r^2}$ (D) $3x^2 + \frac{3}{x^4}$

33.
$$\int \frac{1}{1+3\sin^2 x + 8\cos^2 x} dx =$$

(A)
$$\frac{1}{6} \tan^{-1} \left(\frac{2 \tan x}{3} \right) + C$$
 (B) $\frac{1}{6} \tan^{-1} (2 \tan x) + C$

(C)
$$6 \tan^{-1} \left(\frac{2 \tan x}{3} \right) + C$$
 (D) $\tan^{-1} \left(\frac{2 \tan x}{3} \right) + C$

34.
$$\int_{-2}^{0} (x^3 + 3x^2 + 3x + 3 + (x+1)\cos(x+1)) dx =$$

$$35. \int_{0}^{\infty} \frac{x \tan x}{\sec x \cdot \csc x} \, \mathrm{d}x =$$

(A) 4

(A) $\pi/2$

(C) 1

(C)
$$\pi^2/2$$
 (D) $\pi^2/4$

(D) 3

$$36. \quad \int \sqrt{5 - 2x + x^2} \, \mathrm{d}x =$$

(A)
$$\frac{x-1}{2} \sqrt{5+2x+x^2} + 2 \log |(x-1) + \sqrt{5+2x+x^2}| + C$$

(B)
$$\frac{x-1}{2} \sqrt{5-2x+x^2} + 2 \log |(x+1) + \sqrt{x^2+2x+5}| + C$$

(B) $\pi/4$

(C)
$$\frac{x-1}{2} \sqrt{5-2x+x^2} + 2 \log |(x-1) + \sqrt{5-2x+x^2}| + C$$

(D)
$$\frac{x}{2}\sqrt{5-2x+x^2}+4\log|(x+1)+\sqrt{x^2-2x+5}|+C$$

Space For Rough Work

- 37. The area of the region bounded by the line y = x + 1, and the lines x = 3 and x = 5 is
 - (A) $\frac{11}{2}$ sq. units

(B) 10 sq. units

(C) 7 sq. units

- (D) $\frac{7}{2}$ sq. units
- 38. If a curve passes through the point (1, 1) and at any point (x, y) on the curve, the product of the slope of its tangent and x co-ordinate of the point is equal to the y co-ordinate of the point, then the curve also passes through the point
 - (A) (-1, 2)
- (B) (2, 2)
- (C) $(\sqrt{3}, 0)$
- (D) (3, 0)

39. The degree of the differential equation

$$1 + \left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^2 = \sqrt[3]{\frac{d^2y}{dx^2} + 1} \text{ is}$$

(A) 1

(B) 6

(C) 2

(D) 3

- **40.** If $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$ then
 - (A) \vec{a} and \vec{b} are coincident.

- (B) \vec{a} and \vec{b} are perpendicular.
- (C) Inclined to each other at 60°.
- (D) \vec{a} and \vec{b} are parallel.
- **41.** The component of \hat{i} in the direction of the vector $\hat{i} + \hat{j} + 2\hat{k}$ is
 - (A) $6\sqrt{6}$
- (B) $\sqrt{6}$
- (C) $\frac{\sqrt{6}}{6}$
- (D) 6
- 42. In the interval $(0, \pi/2)$, area lying between the curves $y = \tan x$ and $y = \cot x$ and the X-axis is

Space For Rough Work

(A) 4 log 2 sq. units

(B) 3 log 2 sq. units

(C) log 2 sq. units

(D) 2 log 2 sq. units

43. If
$$\vec{a} + 2 \vec{b} + 3 \vec{c} = \vec{0}$$
 and

(A) $\sqrt{33}$

(A) (2, 6, -4)

(C) 7x - 9y - z - 5 = 0

46.

47.

48.

$$(\vec{a} \times \vec{b}) + (\vec{b} \times \vec{c}) + (\vec{c} \times \vec{a}) = \lambda (\vec{b} \times \vec{c})$$

then the value of λ is count to

then the value of
$$\lambda$$
 is equal to
(A) 4 (B) 2

(A) 4 (B) 2 (C) 6
4. If a line makes an apple
$$a \in \mathbb{Z}$$

If a line makes an angle of
$$\frac{\pi}{3}$$
 with each X and Y axis then the acute angle made by Z-axis is

(D) 3

(A)
$$\frac{\pi}{2}$$
 (B) $\frac{\pi}{6}$ (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{3}$

The length of perpendicular drawn from the point (3, -1, 11) to the line
$$\frac{x}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$
 is (A) $\sqrt{33}$ (B) $\sqrt{66}$ (C) $\sqrt{53}$ (D) $\sqrt{29}$

(C)
$$\sqrt{53}$$
 (D) $\sqrt{29}$

The equation of the plane through the points
$$(2, 1, 0)$$
, $(3, 2, -2)$ and $(3, 1, 7)$ is
(A) $6x - 3y + 2z - 7 = 0$
(B) $3x - 2y + 6z - 27 = 0$
(C) $7x - 9y - z - 5 = 0$

(D) (2, -6, -4)

The equation of the plane through the (A)
$$6x - 3y + 2z - 7 = 0$$

(C) $7x - 9y - z - 5 = 0$

(B) (-2, 6, -4)

(C)
$$7x - 9y - z - 5 = 0$$

(B) $3x - 2y + 6z - 27 = 0$
(D) $2x - 3y + 4z - 27 = 0$
The point of intersection of the line $x + 1 = \frac{y + 3}{3} = \frac{-z + 2}{2}$ with the plane $3x + 4y + 5z = 10$

If
$$(2, 3, -1)$$
 is the foot of the perpendicular from $(4, 2, 1)$ to a plane, then the equation of the plane is

(A) $2x - y + 2z = 0$

(B) $2x - y + 2z + 1 = 0$

(C) $2x + y + 2z - 5 = 0$

(D) $2x + y + 2z - 1 = 0$

49.
$$|\overrightarrow{a} \times \overrightarrow{b}|^2 + |\overrightarrow{a} \cdot \overrightarrow{b}|^2 = 144$$
 and $|\overrightarrow{a}| = 4$ then $|\overrightarrow{b}|$ is equal to

(C) 4

(C) (2, 6, 4)

(B) 12

(D) 3

(A) 8

- If A and B are events such that $P(A) = \frac{1}{4}$, $P(A/B) = \frac{1}{2}$ and $P(B/A) = \frac{2}{3}$ then P(B) is **50.**
 - (A) $\frac{2}{3}$

- (B) $\frac{1}{6}$
- (C) $\frac{1}{2}$
- (D) $\frac{1}{2}$
- 51. A bag contains 2n + 1 coins. It is known that n of these coins have head on both sides whereas the other n + 1 coins are fair. One coin is selected at random and tossed. If the probability that toss results in heads is $\frac{31}{42}$, then the value of n is
 - (A) 8

(B) 5

- (C) 10
- (D) 6
- 52. Let A = $\{x, y, z, u\}$ and B = $\{a, b\}$. A function $f : A \rightarrow B$ is selected randomly. The probability that the function is an onto function is
 - (A) $\frac{5}{8}$

- (B) $\frac{7}{9}$
- (C) $\frac{1}{25}$
- (D) $\frac{1}{9}$
- The shaded region in the figure given is the solution of which of the inequations? 53.

- (A) $x + y \ge 7$, $2x 3y + 6 \ge 0$, $x \ge 0$, $y \ge 0$
- (B) $x + y \le 7$, $2x 3y + 6 \ge 0$, $x \ge 0$, $y \ge 0$
- (C) $x + y \le 7, 2x 3y + 6 \le 0, x \ge 0, y \ge 0$
- (D) $x + y \ge 7$, $2x 3y + 6 \le 0$, $x \ge 0$, $y \ge 0$

Space For Rough Work

N(AIA) 1

54. If f(x) = ax + b, where a and b are integers, f(-1) = -5 and f(3) = 3 then a and b a_{re} respectively

(C) 2, 3

(D) 2, -3

54. If
$$f(x) = ax + b$$
, where a and 5 m respectively

(A) 0, 2

(B) -3, -1

(C) 2, 3

(D) 2, -3

55. The value of
$$e^{\log_{10} \tan 1^{\circ} + \log_{10} \tan 2^{\circ} + \log_{10} \tan 3^{\circ} + ... + \log_{10} \tan 89^{\circ}}$$
 is

(A) $\frac{1}{2}$ (B) 0 (C) 1

(D) 0

(D) $\frac{2}{\sqrt{2}}$

(D) $\frac{a}{r} \ge \frac{b}{r}$

(A)
$$\frac{1}{e}$$
 (B) 0 (C) 1

(A) $\frac{1}{e}$ isin² 14° sin² 66° tan 135° $\sin^2 14$ °

56. The value of
$$\begin{vmatrix} \sin^2 14^\circ & \sin^2 66^\circ & \tan 135^\circ \\ \sin^2 66^\circ & \tan 135^\circ & \sin^2 14^\circ \\ \tan 135^\circ & \sin^2 14^\circ & \sin^2 66^\circ \end{vmatrix}$$
 is

(A) 1 (B) -1 (C) 2

57. The modulus of the complex number
$$\frac{(1+i)^2 (1+3i)}{(2-6i) (2-2i)}$$
 is

(A) $\frac{1}{\sqrt{2}}$ (B) $\frac{4}{\sqrt{2}}$ (C) $\frac{\sqrt{2}}{4}$

58. Given that a, b and x are real numbers and
$$a < b$$
, $x < 0$ then
$$(A) \frac{a}{b} < \frac{b}{a}$$

$$(B) \frac{a}{b} > \frac{b}{a}$$

$$(C) \frac{a}{b} < \frac{b}{a}$$

(A)
$$\frac{a}{x} < \frac{b}{x}$$
 (B) $\frac{a}{x} > \frac{b}{x}$ (C) $\frac{a}{x} \le \frac{b}{x}$

the remaining. The number of possible ways is
(A)
$${}^6C_3 \times {}^4P_2$$
 (B) ${}^6C_3 \times {}^4C_2$ (C) ${}^6P_3 \times {}^4C_2$ (D) ${}^6P_3 \times {}^4P_2$

60. Which of the following is an empty set ?

(A)
$$\{x : x^2 - 9 = 0, x \in R\}$$

(B) $\{x : x^2 - 1 = 0, x \in R\}$

(C) $\{x : x^2 = x + 2, x \in R\}$

(D) $\{x : x^2 + 1 = 0, x \in R\}$