BEST AVAILABLE COPY PATENT ABSTRACTS OF JAPAN

(11)Publication number:

62-085312

(43) Date of publication of application: 18.04.1987

(51)Int.CI.

G05F 1/67

(21)Application number : **60–225876**

(71)Applicant: TOSHIBA CORP

(22)Date of filing:

09.10.1985 (72)Invento

(72)Inventor: KANEKO KOICHI

OGAWA KIYOSHI

(54) CONTROL METHOD FOR MAXIMUM POWER OF BATTERY POWER SOURCE

(57)Abstract:

PURPOSE: To stably obtain the maximum power also with a high accuracy by changing a variation width of a voltage reference which is given to a power converter, in accordance with whether a variation quantity of an output power of a battery power source, which has been generated by a variation of this voltage reference is large or small.

CONSTITUTION: A maximum power control circuit 23 generates a voltage reference Vs*, based on a detecting value of a current detector 21 and a voltage detector 22 and supplies it to an inverter 11 being a power converter. In this case, the control circuit 23 varies the voltage reference Vs* by a prescribed variation width (Δ Vs*) each, and detects an output power P of a solar battery 10 of that time. When a variation quantity Δ P of this detecting value is in an increase direction, a direction for varying the voltage reference Vs* is maintained as it is. On the contrary, when said variation quantity is in a decrease direction, the variation direction is inverted, and also a size of a variation width Δ Vs* of the voltage reference Vs* is changed in accordance with whether the variation quantity Δ P is large or

small. By executing a control in this way, the maximum power can be obtained stably and also with a high accuracy.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

19日本国特許庁(JP)

① 特許出願公告

公 報(B2) ⑫ 特 許

平5-68722

Sint. Cl. 5

識別配号

庁内整理番号

200公告 平成5年(1993)9月29日

G 05 F 1/67

8938-5H 8938-5H A B

発明の数 1 (全5頁)

❷発明の名称 電池電源の最大電力制御方法

> 204等 顧 昭60-225876

60公 開 昭62-85312

22出 顧 昭60(1985)10月9日 ❷昭62(1987) 4月18日

@発 明 者 金 子 宏一 @発 明 者 - 111 小 清 東京都府中市東芝町 1 株式会社東芝府中工場内 東京都府中市東芝町1 株式会社東芝府中工場内

勿出 質 人 株式会社東芝

神奈川県川崎市幸区堀川町72番地

19代理 弁理士 佐藤 人 一雄

外2名

審査官

Ш 小

1

2

砂特許請求の範囲

1 最大電力が得られるとき電圧が起電力発生原 因の変化に関係なく一定であり、かつ、電流が所 定値以上大きくなつたときに電力が急激に減少す る特性を有する電池電源から電力変換装置を介し 5 て取り出される電力を最大電力に制御する方法に おいて、

前記電力変換装置へ与える電圧基準を所定の変 化幅づつ変化させて行くことにより前記電池電源 の出力電圧の各値において前配電池電源の出力電 力を検出し、この出力電力の検出値の変化量が増 加方向であれば前配電力基準を変化させる方向を そのまま維持し、逆に減少方向であれば前記変化 方向を反転させるとともに、前記変化量の大小に 15 る。 応じて前配電圧基準の変化幅の大きさを変更する ことを特徴とする電池電源の最大電力制御方法。

発明の詳細な説明

〔発明の技術分野〕

パやインパータ等で構成される電力変換装置を介 して最大電力を取り出すための電池電源の最大電 力制御方法に関する。

〔発明の技術的背景とその問題点〕

力変換装置を介して独立負荷もしくは他の電源系 統に接続されて、所定の電力を供給する給電シス

テムに広く利用されつつある。この電池電源の代 表例である太陽電池は、日射畳をパラメータとし た場合、第3図に示すような電流-電圧特性(破 線)及び電流ー電力特性(実線)をもつている。 同図において、日射量の増大に従つて電流も電力 も増大する傾向を示している。Mi、Ma、Maは 最大電力点を示し、N1、N2、N2は最大電力時の 電圧、電流を与える点である。日射量によつて最 大電力の値は大幅に異るが最大電力を与える電圧 の出力電圧を前記変化幅づつ変化させて行き、こ 10 は日射量の大小に関係なくほぼ一定である。ま た、電流がある所定値以上大きくなると電力は急 激に減少する特性を示す。太陽電池の場合、電池 電源の起電力発生原因は日射量であるので、前記 日射量の大小が起電力発生原因の変化と同義であ

> このような特性を持つ太陽電池から電力を有効 に取り出すための電池電源の最大電力の制御の方 法には従来から主として2つの方法がある。

第1の方法は、最大出力点は日射量の変化に対 本発明は、太陽電池などの電池電源からチョツ 20 しほぼ定電圧特性を示すことを利用して、太陽電 他の出力電圧を定電圧に制御する方法である。し かし、ある条件下で設定された電圧基準のままで は、条件の変化、例えば電池温度の変化などがあ ると第3図に示す電流の変動により電圧が大きく 近年、電池電原はチョツパやインパータ等の電 25 変動する領域で制御することになる場合も生じ、 安定した制御が行えないという欠点がある。

第2の方法は、上記定電圧制御の欠点を補うべ

く、太陽電池の最大出力点を常に追従して行く制 御方法である。この制御方法は、太陽電池を相異 なる2点で動作させてその出力電力を比較しなが ら電池の動作点が最大出力点になるように制御す る方法である。

第4図は、この第2の方法を適用して電池電源 から最大電力を取り出す装置の一例を示す。同図 において、太陽電池10の直流出力はインパータ 11により交流に変換されて連系リアクトル12 0の出力電流、電圧は各々電流検出器21,22 で検出され、その検出値Is、VsはA/D変換器、 マイクロコンピユータ、D/A変換器等で構成さ れる最大電力制御回路23に入力される。この最 大電力制御回路23は入力データの記憶機能、論 15 の精度及び安定性が低下してしまう。 理演算機能、判断機能等を備え、後述するアルゴ リズムに従つて電圧基準Vs*を演算しその値を出 力する。電圧基準Vs*は電圧検出値Vsと比較さ れ、その偏差は誤差増幅器24により増幅されて ゲート制御回路25に入力される。このゲート制 20 御回路25は誤差増幅器24からの前記偏差に応 じてこの偏差が零になるようにインパータ11の ゲート位相を制御する。

ここで最大電力制御回路23の動作アルゴリズ ムを第5図を参照して説明する。太陽電池は前述 25 したように一定の日射量、温度の下では同図に示 すような電流一電圧特性(破線)及び電流一電力 特性(実線)を有している。この太陽電池の動作 領域は、電流を増大させると電圧が比較的緩かに 滅少する領域と大きく滅少する領域とに区分する 30 ことができる。太陽電池を動作させる場合、常 時、最大電力点Mで動作させることが理想であ る。このために本回路23は次のようなアルゴリ ズムに従つて電圧基準Vs*を設定する。まず、設 電圧検出値Vs(零えば開放電圧) と同じに設定 し、所定のサンプリング周期で電圧基準Vs*を一 定の変化幅AVs*で減少させて行く。この間、電 力は図中矢印Aの方向に増加して行く。このまま 大電力点Mを越え矢印Cのように減少を開始す る。そこで、この電力の減少を検出して、今度は 電圧基準Vs*を一定幅で増加する方向へ移動させ て行く。電圧基準Vs*を増加し続けると電力は矢

印Dのように増加するがやがて矢印Bのように減 少を開始する。そこでこの減少を検出して再び電 圧基準Vs*を減少させる方向へ変化させる。以上 の動作を繰り返することにより、電圧基準Vs*は 5 最大電力点Mの近傍を往復することとなる。

しかしながら、上記のように電圧基準Vs*を一 定の変化幅ΔVs*で増減させることは、次の欠点 を有することになる。即ち、変化幅ΔVs*を小さ な値にすれば最大電力点Mでの振れ幅が小さくな を介して電力系統13へ供給される。太陽電池1 10 り、最大電力制御の精度を高めることができる が、日射量の急変等による特性の変動に対する追 従速度が遅くなつてしまう。また、変化幅ΔVs* を大きな値にすれば追従速度は速められるが、最 大電力点Mでの振れ幅が大きくなり最大電力制御

(発明の目的)

本発明は上記に鑑みなされたもので、上記第2 の最大電力制御方法において、電池電源の出力電 力をその最大電力に精度良くかつ安定に制御する ことができるとともに、条件の変化等による電池 特性の変動に対しても速かに追従することが可能 な電池電源の出力電力制御方法を提供することを 目的とする。

〔発明の概要〕

上記目的を達成するため、本発明は電力変換装 置へ与える電圧基準の変化幅を、この電圧基準の 変化により生じた電池電源の出力電力の変化量の 大小に応じて変更するようにしたものである。 〔発明の実施例〕

以下、第1.2図を参照し本発明に係る電池電 源の出力電圧制御方法の一実施例について説明す る。

本実施例は第4図に示したものと同様の装置に よつて第5図に示したものと同様の特性を持つ太 定の初期においては、電圧基準Vs*を太陽電池の 35 陽電池の出力電力を制御する場合において本発明 を適用した一実施例である。第1図は本実施例の フローチャートを示し、この処理は全て最大電力 制御回路23の内部でなされるものである。

第1図に示すように、最大電力制御の開始後ま 電圧基準Vs*の減少を続けると、やがて電力は最 40 ず初期設定処理(ステップ 1)が行われる。この 処理では、電流検出器21及び電圧検出器22か らの電流検出値Is及び電圧検出値Vsが読み込ま れ、これらの値から現在の太陽電池10の出力電 力Psが演算される。また、電圧検出値Vsと同じ

値が電圧基準Vs*として初期設定されて誤差増幅 器24へ出力されるとともに、この電圧基準Vs* を減少方向へ変化させるモードを示すフラグが立 てられる。

この初期設定処理が完了した後は、所定のサン プリング周期毎に繰り返される以下のルーチンが 開始される。

まず、旧データ記憶及び新データ読み込み処理 (ステップ2) が行われる。この処理では、前サ ンプリング時において読み込まれた電圧検出値 10 Vs'と演算された出力電力Ps'とが内部メモリに記 憶される。また、電流検出器21及び電圧検出器 22からの現在の電流検出値Is及び電圧検出値 Vsが読み込まれる。次に、電力演算処理(ステ 在の電流検出値Is及び電圧検出値Vsに基づいて 現在の出力電力Psが演算される。

次に電圧基準変化幅演算処理 4 が行われる。こ の処理では、内部メモリから前サンプリング時の 出力電力Ps'が読み出され、この値と先程演算さ 20 れた現在の出力電力Psの値との差、つまり電力。 変化量ΔPsが演算され、この電力変化量ΔPsに基 づいて電力基準Vs*が設定される。

この変化幅Vs*は例えば第2図に示されるよう ΔPsの絶対値が所定値ΔPiより小さい場合には、 変化幅ΔVs*は電力変化量ΔPsに比例して設定さ れる。また、前配絶対値が所定値ΔPıより大きい 場合には、変化幅ΔVs*は一定値±ΔVs;*に設定 化量ΔPsの正負と同一に設定される。この場合、 変化幅ΔVs*の正は電圧基準Vs*の変化方向(増 加、減少) のモードがそのまま維持されることを 示し、負はこのモードの反転、つまり現在減少モ ードであるならば増加モードへ切り換えられるこ 35 なりその安定化を図ることができる。 とを意味する。尚、以下の説明において単に変化 幅ΔVs*と言う場合にはその絶対値を指すことと する。

この電圧基準変化幅設定処理が終了すると、次 こでは、前記フラグから現在減少モードにあるの か増加モードにあるのかが判断されるとともに、 先程設定された変化幅ΔVs*の正負から現在のモ ードをそのまま維持するか反転させるかが判断さ

6

れ、負の場合にはモードを反転させるべく前記フ ラグの切り換えが行われる。このようにして、減 少モード又は増加モードのいずれかが決定される と、次に電圧基準設定処理(ステップ6)が行わ れる。この処理では、前サンプリング時の電圧基 準Vs*′に先程設定された変化幅ΔVsが加算又は 減算されて新たな電圧基準Vs*が設定される。つ まり、先程決定されたモードが減少モードならば 前回の電圧基準Vs*′に変化幅ΔVs*が減算され、 また、増加モードならば前回の電圧基準Vs*′に 変化幅ΔVs*が加算されて新たな電圧基準Vs*が 設定される。このようにして設定された電圧基準 Vs*は誤差増幅器 2 4 へ出力される。

以上のようなルーチンが繰り返されることによ ップ3) が行われ、ここでは先程説み込まれた現 15 り、第5図に矢印A, Dで示すように、太陽電池 10の動作点はその出力電力Psが増加する方向 へ移動させられて行き、最終的には最大電力点M を中心として左右に振れることになる。その際 に、この動作点の振れ幅を定める変化幅ΔVs*は 前述したように電力変化量ΔPsが大きければ大き く、電力変化量ΔPsが小さければ小さく設定され るため、最大電力点Mの近傍における前配動作点 の振れ幅は極めて小さくなり、よつて最大電力を 精度良くかつ安定に得ることができることにな な関係に従つて設定される。つまり、電力変化量 25 る。また、日射量や電池温度の急変等によつて電 池特性が変化し、前記動作点が最大電力点Mから 大きくずれてしまつた場合には、電力変化量ΔP が大きいので電圧基準Vs*の変化幅ΔVs*も大き い値になり、前記動作点は速い応答速度で最大電 される。変化幅 ΔVs*の正負については、電圧変 30 力点Mへ向うことになる。更に、日射量が少なく なつて太陽電池 1 0 の動作が電圧基準Vs*の変化 に対して不安定な領域に入つた場合には、電力変 化量ΔPsが小さくなるため、電圧基準Vs*の変化 幅ΔVs*も小さくなつて電池電圧の変動が小さく

尚、上記実施例では、第2図に示したように電 圧基準Vs*の変化幅ΔVs*を電力変化量ΔPsに比 例して変化させる方法を取り上げたが、これに準 ずる他の関数で変化させても同様の効果が得られ にモード判断処理(ステツブ 5)が行われる。こ 40 ることは勿論である。また、本実施例では電池電 顔に太陽電池を用いた場合を説明したが、同様の 特性を有する電源、例えば燃料電池などを用いて も同様の効果を得ることができる。燃料の電池場 合、電池電源の起電力発生原因は、燃料(水素、

7

チタン、メタノール等)と燃焼剤(酸素又は空 気) との化学反応であり、この起電力発生原因の 変化は燃料及び燃焼剤の電気化学的な反応量の大 小や速度に起因している。

〔発明の効果〕

以上説明したように、本発明によれば電池電源 の出力電圧を変化させて行く電池の動作点を最大 電力点に一致させる際に、前記出力電圧の変化幅 を電力変化量に応じて変更するようにしているの で、条件の急変等により上記動作点が最大電力点 10 から離れてしまつた場合には速い応答速度で上記 追従がなされるとともに、最大電力点近傍におい ては精密な追従がなされるので安定かつ精度良く 最大電力を得ることが可能となる。

図面の簡単な説明

第1図は本発明に係る電池電源の最大電力制御 方法の一実施例を示すフローチャート、第2図は 同実施例における電力変化量と電圧基準の変化幅 5 との関係を示す図、第3図は太陽電池の特性図、 第4図は太陽電池から最大電力を取り出す装置の 一例を示すブロック線図、第5図は同装置による 最大電力制御の概要を説明するための太陽電池の 特性図である。

8

10……太陽電池、11……インバータ、12 ······連系リアクトル、13……電力系統、21… …電流検出器、22……電圧検出器、23……最 大電力制御回路、24……誤差增幅器、25…… ゲート制御回路。

-22 -25

aVs1*

第4図

第3図

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
\square image cut off at top, bottom or sides
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
\square COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☑ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потупр

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.