About Fall Colorings of Graphs

Saeed Shaebani

Department of Mathematical Sciences
Institute for Advanced Studies in Basic Sciences (IASBS)
P.O. Box 45195-1159, Zanjan, Iran
s_shaebani@iasbs.ac.ir

Abstract

A fall k-coloring of a graph G is a proper k-coloring of G such that each vertex of G sees all k colors on its closed neighborhood. In this paper, we answer some questions of [5] about some relations between fall colorings and some other types of graph colorings.

Keywords: Graph Colorings. Subject classification: 05C

1 Introduction

All graphs considered in this paper are finite and simple (undirected, loopless and without multiple edges). Let G = (V, E) be a graph and $k \in \mathbb{N}$ and $[k] := \{i | i \in \mathbb{N}, 1 \le i \le k\}$. A k-coloring (proper k-coloring) of G is a function $f : V \to [k]$ such that for each $1 \le i \le k$, $f^{-1}(i)$ is an independent set. We say that G is k-colorable whenever G admits a k-coloring f, in this case, we denote $f^{-1}(i)$ by V_i and call each $1 \le i \le k$, a color (of f) and each V_i , a color class (of f). The minimum integer k for which G has a k-coloring, is called the chromatic number of G and is denoted by $\chi(G)$.

Let G be a graph, f be a k-coloring of G and v be a vertex of G. The vertex v is called colorful (or color-dominating or b-dominating) if each color $1 \le i \le k$ appears on the closed neighborhood of v (f(N[v]) = [k]). The k-coloring f is said to be a fall k-coloring (of G) if each vertex of G is colorful. There are graphs G for which G has no fall k-coloring for any positive integer k. For example, C_5 (a cycle with 5 vertices) and graphs with at least one edge and one isolated vertex, have not any fall k-colorings for any positive integer k. The notation $\mathrm{Fall}(G)$ stands for the set of all positive integers k for which G has a fall k-coloring. Whenever $\mathrm{Fall}(G) \ne \emptyset$, we call $\min(\mathrm{Fall}(G))$ and $\max(\mathrm{Fall}(G))$, fall chromatic number of G and fall achromatic number of G and denote them by $\chi_f(G)$ and $\psi_f(G)$, respectively. Every fall k-coloring of a graph G is a k-coloring, hence, for every graph G with $\mathrm{Fall}(G) \ne \emptyset$, $\chi(G) \le \chi_f(G) \le \psi_f(G)$.

Let G be a graph, $k \in \mathbb{N}$ and f be a k-coloring of G. The coloring f is said to be a colorful k-coloring of G if each color class contains at least one colorful vertex. The maximum integer k for which G has a colorful k-coloring, is called the b-chromatic number of G and is denoted by $\phi(G)$ (or b(G) or $\chi_b(G)$). Every fall k-coloring of G is obviously a colorful k-coloring of G and therefore, for every graph G with $\operatorname{Fall}(G) \neq \emptyset$, $\chi(G) \leq \chi_f(G) \leq \psi_f(G) \leq \phi(G)$.

Assume that G is a graph, $k \in \mathbb{N}$ and f is a k-coloring of G and v be a vertex of G. The vertex v is called a Grundy vertex (with respect to f) if each color $1 \le i < f(v)$ appears on the neighborhood of v. The k-coloring f is called a Grundy k-coloring (of G) if each color class of G is nonempty and each vertex of G is a Grundy vertex. The maximum integer k for which G has a Grundy k-coloring, is called the Grundy chromatic number of G and is denoted by $\Gamma(G)$. Also, the k-coloring f is said to be a partial Grundy k-coloring (of G) if each color class contains at least one Grundy vertex. The maximum integer k for which G has a partial Grundy k-coloring, is called the partial Grundy chromatic number of G and is denoted by $\partial \Gamma(G)$. Every Grundy k-coloring of G is a partial Grundy k-coloring of G and every colorful k-coloring of G is a partial Grundy K-coloring of G. Also, every fall K-coloring of G is obviously a Grundy K-coloring of G and therefore, for every graph G with $Fall(G) \neq \emptyset$,

$$\chi(G) \le \chi_f(G) \le \psi_f(G) \le \begin{cases} \phi(G) \\ \Gamma(G) \end{cases} \le \partial \Gamma(G).$$

Let G be a graph and $k \in \mathbb{N}$ and f be a k-coloring of G. The k-coloring f is said to be a complete k-coloring (of G) if there is an edge between any two distinct color classes. The maximum integer k for which G has a complete k-coloring, is called the achromatic number of G and is denoted by $\psi(G)$. Every partial Grundy k-coloring of G is obviously a complete k-coloring of G and therefore,

$$\chi(G) \le \chi_f(G) \le \psi_f(G) \le \begin{cases} \phi(G) \\ \Gamma(G) \end{cases} \le \partial \Gamma(G) \le \psi(G).$$

The terminology fall coloring was firstly introduced in 2000 in [5] and has received attention recently, see [3],[4],[5],[8]. The colorful coloring of graphs was introduced in 1999 in [7] with the terminology b-coloring. The concept of Grundy number of graphs was introduced in 1979 in [1]. Also, achromatic number of graphs was introduced in 1970 in [6].

Let $n \in \mathbb{N}$ and for each $1 \leq i \leq n$, G_i be a graph. The graph with vertex set $\bigcup_{i=1}^{n} (\{i\} \times V(G_i))$ and edge set

$$\left[\bigcup_{i=1}^{n} \{\{(i,x),(i,y)\} | \{x,y\} \in E(G_i)\}\right] \bigcup \left[\bigcup_{1 \le i < j \le n} \{\{(i,a),(j,b)\} | a \in V(G_i), b \in V(G_j)\}\right]$$

is called the join graph of $G_1, ..., G_n$ and is denoted by $\bigvee_{i=1}^n G_i$.

Cockayne and Hedetniemi proved in 1976 in [2] (but not with the terminology "fall coloring") that if G has a fall k-coloring and H has a fall l-coloring for positive integers k and l, then, $G \bigvee H$ has a fall (k + l)-coloring.

Theorem 1. Let
$$n \in \mathbb{N} \setminus \{1\}$$
 and for each $1 \leq i \leq n$, G_i be a graph. Then, Fall $(\bigvee_{i=1}^n G_i) \neq \emptyset$ iff for each $1 \leq i \leq n$, Fall $(G_i) \neq \emptyset$.

Proof. First suppose that $\operatorname{Fall}(\bigvee_{i=1}^n G_i) \neq \emptyset$. Consider a fall k-coloring f of $\bigvee_{i=1}^n G_i$. The colors appear on $\{i\} \times V(G_i)$ form a fall $|f(\{i\} \times V(G_i))|$ -coloring of G_i (Let S be the set of colors appear on $\{i\} \times V(G_i)$ and $\alpha, \beta \in S$ and $\alpha \neq \beta$ and $x \in \{i\} \times V(G_i)$ and $f(x) = \alpha$ and suppose that none of the neighbors of x in $\{i\} \times V(G_i)$ have the color β . Since f is a fall k-coloring of $\bigvee_{i=1}^n G_i$, there exists a vertex $y \in V(\bigvee_{i=1}^n G_i)$ such that $\{x,y\} \in E(\bigvee_{i=1}^n G_i)$ and $f(y) = \beta$. On the other hand, since $\beta \in S$, there exists a vertex z in $\{i\} \times V(G_i)$ such that $\{z\} = \beta$. Since x and y are adjacent, z and z are adjacent, too. Also, z and z are adjacent, z and z are adjacent, too.

is a contradiction. Therefore, S forms a |S|-coloring of the induced subgraph of $\bigvee_{i=1}^n G_i$ on $\{i\} \times V(G_i)$ and also for G_i .) and therefore, $\operatorname{Fall}(G_i) \neq \emptyset$. Conversely, suppose that for each $1 \le i \le n$, $k_i \in \text{Fall}(G_i)$. For each $1 \le i \le n$, construct a fall k_i -coloring of the induced subgraph of $\bigvee_{i=1}^n G_i$ on $\{i\} \times V(G_i)$ with the color set $\{(\sum_{j=1}^{i-1} k_j) + 1, (\sum_{j=1}^{i-1} k_j) + 2, ..., (\sum_{j=1}^{i-1} k_j) + k_i\}$. This forms a fall $(\sum_{i=1}^n k_i)$ -coloring of $\bigvee_{i=1}^n G_i$ and therefore, Fall $(\bigvee_{i=1}^n G_i) \neq \emptyset$.

The proof of the following obvious theorem has omitted for the sake of brevity.

Theorem 2. Let $n \in \mathbb{N} \setminus \{1\}$ and for each $1 \le i \le n$, G_i be a graph. Then, 1) If for each $1 \leq i \leq n$, Fall $(G_i) \neq \emptyset$, then, Fall $(\bigvee_{i=1}^n G_i) = \sum_{i=1}^n \operatorname{Fall}(G_i) :=$ $\{a_1 + ... + a_n | a_1 \in \text{Fall}(G_1), ..., a_n \in \text{Fall}(G_n)\}\$ and $\chi_f(\bigvee_{i=1}^n G_i) = \sum_{i=1}^n \chi_f(G_i)$ $and \ \psi_f(\bigvee_{i=1}^n G_i) = \sum_{i=1}^n \psi_f(G_i).$ $2) \ \chi(\bigvee_{i=1}^n G_i) = \sum_{i=1}^n \chi(G_i).$ $3) \ \phi(\bigvee_{i=1}^n G_i) = \sum_{i=1}^n \phi(G_i).$ $4) \ \Gamma(\bigvee_{i=1}^n G_i) = \sum_{i=1}^n \Gamma(G_i).$ $5) \ \partial\Gamma(\bigvee_{i=1}^n G_i) = \sum_{i=1}^n \partial\Gamma(G_i).$ $6) \ \psi(\bigvee_{i=1}^n G_i) = \sum_{i=1}^n \psi(G_i).$

In [5], Dunbar, et al. asked the following questions.

- 1*) whether or not there exists a graph G with $\operatorname{Fall}(G) \neq \emptyset$ which satisfies $\chi_f(G) - \chi(G) \geq 3$? They noticed that $\chi_f(C_4 \square C_5) = 4$ and $\chi(C_4 \square C_5) = 3$, also, $\chi_f(C_5 \Box C_5) = 5 \text{ and } \chi(C_5 \Box C_5) = 3.$
 - 2*) Can $\chi_f(G) \chi(G)$ be arbitrarily large?
- 3*) Does there exist a graph G with Fall(G) $\neq \emptyset$ which satisfies $\chi(G) < \chi_f(G) <$ $\psi_f(G) < \phi(G) < \partial \Gamma(G) < \psi(G)$?

Since $\chi_f(C_4 \square C_5) = 4$ and $\chi(C_4 \square C_5) = 3$, Theorem 2 implies that For each $n \in \mathbb{N}, \ \chi_f(\bigvee_{i=1}^n (C_4 \square C_5)) - \chi(\bigvee_{i=1}^n (C_4 \square C_5)) = 4n - 3n = n \text{ and this gives an}$ affirmative answer to the problems 1^* and 2^* .

Also, the Theorem 2 and the following theorem, give an affirmative answer to all 3 questions immediately.

Theorem 3. For each integer $\varepsilon > 0$, there exists a graph G with $Fall(G) \neq \emptyset$ which the minimum of $\chi_f(G) - \chi(G)$, $\psi_f(G) - \chi_f(G)$, $(\delta(G) + 1) - \psi_f(G)$, $\Gamma(G) - \psi_f(G)$, $\phi(G) - \psi_f(G)$, $(\Delta(G) + 1) - \partial \Gamma(G)$, $\psi(G) - \partial \Gamma(G)$, $\partial \Gamma(G) - \Gamma(G)$ is greater than ε .

Proof. Let $\varepsilon > 2$ be an arbitrary integer and let's follow the following steps. Step1) Set $G_1 := \bigvee_{i=1}^{\varepsilon+1} (C_4 \square C_5)$. As stated above, $\chi_f(G_1) - \chi(G_1) = \varepsilon + 1$.

Step2) Set $G_2 := K_{\varepsilon+3,\varepsilon+3} - ($ an arbitrary 1 - factor). One can easily observe that $\psi_f(G_2) - \chi_f(G_2) = (\varepsilon + 3) - 2 = \varepsilon + 1$.

Step3) Set
$$G_3 := K_{(\varepsilon+2,\varepsilon+2)}$$
. Then, $(\delta(G_3)+1)-\psi_f(G_3) = ((\varepsilon+2)+1)-2 = \varepsilon+1$.

Step4) Let $P_{\varepsilon+3}$ be a path with $\varepsilon+3$ vertices. Add $\varepsilon+2$ pendant vertices to each of its vertices and denote the new graph by G_4 . It is readily seen that $\phi(G_4) - \psi_f(G_4) \ge (\varepsilon+3) - 2 = \varepsilon+1$.

Step5) Let T(1) be the tree with only one vertex and for each $k \geq 1$, T(k+1) be the graph obtained by adding a new pendant vertex to each vertex of T(k). $T(\varepsilon+3)$ is a tree which its Grundy number is $\varepsilon+3$ and $\psi_f(T(\varepsilon+3)) \leq \delta(T(\varepsilon+3))+1 \leq 2$. Hence, if we set $G_5 := T(\varepsilon+3)$, then, $\Gamma(G_5) - \psi_f(G_5) = \varepsilon+1$.

Step6) Let G_6 be the graph obtained by adding i-2 pendant vertices to each vertex $v_i(3 \le i \le \varepsilon + 5)$ of the path $v_1v_2 \dots v_{\varepsilon+5}$. Obviously, $\partial\Gamma(G_6) \ge \varepsilon + 5$ and $\Gamma(G_6) \le 4$. So, $\partial\Gamma(G_6) - \Gamma(G_6) \ge \varepsilon + 1$.

Step7) Set
$$G_7 := K_{\varepsilon+2,\varepsilon+2}$$
. $(\Delta(G_7) + 1) - \partial \Gamma(G_7) = (\varepsilon + 3) - 2 = \varepsilon + 1$.

Step8) Set $G_8 := P_{\underline{(\varepsilon+4)(\varepsilon+3)}}$. Obviously, $\psi(G_8) \ge \varepsilon + 4$ and $\partial \Gamma(G_8) \le \triangle(G_8) + 1 \le 3$. Hence, $\psi(G_8) - \partial \Gamma(G_8) \ge \varepsilon + 1$.

Step9) Set $G := \bigvee_{i=1}^8 G_i$. For each $1 \le i \le 8$, Fall $(G_i) \ne \emptyset$. Hence, by Theorem 2, the fact that $\delta(\bigvee_{i=1}^8 G_i) \ge \sum_{i=1}^8 \delta(G_i)$, and $\Delta(\bigvee_{i=1}^8 G_i) \ge \sum_{i=1}^8 \Delta(G_i)$, G_9 is a suitable graph for this theorem and also for questions 1^* , 2^* and 3^* .

References

[1] C. A. Christen, S. M. Selkow, Some perfect coloring properties of graphs, J. $Combin.\ Theory\ B\ 27(1979),\ 49-59.$

[2] E. J. Cockayne, S. T. Hedetniemi, Disjoint independent dominating sets in graphs, *Discrete Mathematics* **15**(1976), 213-222.

[3] W. Dong and B. G. Xu. Fall colorings of Cartesian product graphs and regular graphs. J. Nanjing Norm. Univ. Nat. Sci. Ed., 27(3):17–21, 2004.

[4] N. Drake, R. Laskar, J. Lyle, Independent domatic partitioning or fall coloring of strongly chordal graphs. *Congr. Numer.*, 172:149–159, 2005. 36th Southeastern International Conference on Combinatorics, Graph Theory, and Computing.

[5] J. E. Dunbar, S. M. Hedetniemi, S. T. Hedetniemi, D. P. Jacobs, J. Knisely, R. C. Laskar, D. F. Rall, Fall colorings of graphs, J. Combin. Math. Combin. Comput 33(2000), 257-273. papers in honor of Ernest J. Cockayne.

[6] F. Harary, S. Hedetniemi, The achromatic number of a graph, *J. Combin. Theory* 8(1970), 154-161.

- [7] R. W. Irving, D. F. Manlove, The b-chromatic number of a graph, *Discrete Applied Mathematics* **91**(1999), 127-141.
- [8] R. Laskar, J. Lyle, Fall coloring of bipartite graphs and cartesian products of graphs, *Discrete Applied Mathematics* **157**(2009), 330-338.