STA2002 Assignment 5

Chen Ang (118010009)

1

	# of Concussions					
	0	1	2	≥3	Total	
Soccer	45(59.91)	25(17.06)	11(8.34)	10(5.69)	91	
N-S Athletes	68(63.20)	15(18.00)	8(8.80)	5(6.00)	96	
Non-athletes	45(34.89)	5(0.94)	3(4.86)	0(3.31)	53	
Total	158	45	22	15	240	

Numbers in parentheses are the expected frequency counts under null hypothesis, with estimators

$$\begin{split} \hat{p}_0 &= 158/240 = 0.6583 \\ \hat{p}_1 &= 45/240 = 0.1875 \\ \hat{p}_2 &= 22/240 = 0.0917 \\ \hat{p}_{>3} &= 15/240 = 0.0625 \end{split}$$

The degree of freedom for the chi-square distribution is

$$(3-1)(4-1)=6$$

Compute the test statistic:

$$t=22.029>\chi^2_{.05}(6)=12.592$$

Hence we reject homogeneity at 5%.

2

	Writing Surface				
		1	2	3	$ar{\mathbf{X}}_{\mathbf{row}}$
	1	709,659	713,726	$652.5 \\ 660,645$	685.333
Brand	2	$676.5 \\ 668,685$	722,740	692,720	704.500
of Pen	3	659,685	$675.0 \\ 666,684$	678,750	687.000
	4	698,650	704,666	686,733	689.500
	$ar{\mathbf{X}}_{\mathbf{col}}$	676.625	702.625	695.500	691.583

The number overset in each cell is the mean of the cell.

(a)

	SS	df	MS	F
Row	1387.50	3	462.50	0.676
Column	2888.08	2	1444.04	2.109
Interaction	8100.25	6	1350.04	1.912
Error	8216.00	12	684.67	
Total	20591.83	23		

(b)

For row effect,

$$F_{\text{row}} = 0.676 < F_{0.05}(3, 12) = 3.49$$

Hence we fail to reject the row null hypothesis at 5%.

(c)

For column effect,

$$F_{
m col} = 2.109 < F_{0.05}(2,12) = 3.89$$

Hence we fail to reject the column null hypothesis at 5%.

(d)

For interaction,

$$F_{\rm int} = 1.912 < F_{0.05}(6, 12) = 3.00$$

Hence we fail to reject the interaction null hypothesis at 5% as well.

3

(a)

Using Excel,

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Treatment	2.5E+09	2	1.3E+09	338.384	0	2.99602
Error	1.2E+11	31428	3765705			
Total	1.2E+11	31430				

(b)

The realized test statistic can be read off the table:

$$f = 338.384 > F_{0.05}(2, 31428) = 2.996$$

Here the degrees of freedom of the F distribution are m-1=3-1=2, for three groups of weathers, and n-m=31430-2=31428, for the in-group error.

As the test statistic suggests, we reject the hypothesis of equal means of traffic volume for three weather groups at 5%.