Lógica Computacional 1

Cláudia Nalon

 $\rm http://nalon.org$

nalon@unb.br

Universidade de Brasília Instituto de Ciências Exatas Departamento de Ciência da Computação

2024/2

1 Lógica Proposicional

1.1 Sintaxe

Definição 1. O conjunto de *símbolos lógicos* da linguagem proposicional é dado pela união dos seguintes conjuntos:

- 1. $\mathcal{P} = \{p, q, r, \dots, p_1, q_1, r_1, \dots\}$, um conjunto enumerável de símbolos;
- 2. $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\};$
- $3. \{(,)\}.$

Definição 2. Os elementos do conjunto \mathcal{P} são chamados de *símbolos proposicionais* ou *variáveis proposicionais*.

Definição 3. Os elementos do conjunto $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$ são chamados de *conectivos lógicos* ou *operadores lógicos*.

Definição 4. O símbolo "¬" é chamado de *conectivo unário*.

Definição 5. Os símbolos contidos no conjunto $\{\land, \lor, \rightarrow, \leftrightarrow\}$ são chamados de *conectivos binários*.

Definição 6. Os elementos do conjunto $\{(,)\}$ são chamados de *símbolos de pontuação*.

Definição 7. Os símbolos lógicos definem o alfabeto da linguagem proposicional.

Definição 8. Uma fórmula é qualquer sequência finita de símbolos lógicos.

Definição 9. A Linguagem Lógica Proposicional, denotada por \mathcal{L}_P , é equivalente ao seu conjunto de fórmulas bem-formadas, denotado por $\mathsf{FBF}_{\mathcal{L}_P}$, que é definido indutivamente, como se segue:

- 1. se $p \in \mathcal{P}$, então $p \in \mathsf{FBF}_{\mathcal{L}_P}$;
- 2. se $\varphi \in \mathsf{FBF}_{\mathcal{L}_P}$, então $\neg \varphi \in \mathsf{FBF}_{\mathcal{L}_P}$;
- 3. se $\varphi \in \mathsf{FBF}_{\mathcal{L}_P}$ e $\psi \in \mathsf{FBF}_{\mathcal{L}_P}$, então $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$ e $(\varphi \leftrightarrow \psi) \in \mathsf{FBF}_{\mathcal{L}_P}$.

Definição 10. Fórmulas que não são bem-formadas, isto é, que não pertencem a $\mathsf{FBF}_{\mathcal{L}_P}$, são chamadas de fórmulas mal-formadas.

Definição 11. Seja $\varphi \in \mathsf{FBF}_{\mathcal{L}_P}$. Se $\varphi \in \mathcal{P}$, então φ é chamada de fórmula atômica.

Definição 12. Seja $\varphi \in \mathsf{FBF}_{\mathcal{L}_P}$. Se $\varphi \notin \mathcal{P}$, isto é, se φ não é uma fórmula atômica, então φ é chamada de fórmula molecular.

Definição 13. Sejam φ , ψ e $\chi \in \mathsf{FBF}_{\mathcal{L}_P}$. Seja $Sub : \mathsf{FBF}_{\mathcal{L}_P} \longrightarrow 2^{\mathsf{FBF}_{\mathcal{L}_P}}$ uma função. O conjunto de subfórmulas de φ , $Sub(\varphi)$, é dado por:

- 1. se $\varphi \in \mathcal{P}$, então $Sub(\varphi) = {\varphi}$;
- 2. se φ é da forma $\neg \psi$, então $Sub(\varphi) = \{\varphi\} \cup Sub(\psi)$;
- 3. se φ é da forma $(\psi * \chi)$, onde $* \in \{\land, \lor, \rightarrow, \leftrightarrow\}$, então $Sub(\varphi) = \{\varphi\} \cup Sub(\psi) \cup Sub(\chi)$.

Definição 14. Operador Principal – Exercício

Definição 15. Subfórmulas Imediatas – Exercício

Definição 16. Comprimento – Exercício

Definição 17. Uma árvore sintática para φ , onde $\varphi \in \mathsf{FBF}_{\mathcal{L}_P}$, é constituída de uma raiz com zero ou mais filhos, dependendo da estrutura (ou seja, da forma) de φ :

- 1. se $\varphi \in \mathcal{P}$, então a raiz é rotulada por φ e tem zero filhos;
- 2. se φ é da forma $\neg \psi$, então a raiz é rotulada por \neg e tem um único filho, que é a raiz da árvore sintática de ψ :
- 3. se φ é da forma $(\psi * \chi)$, onde $* \in \{\land, \lor, \rightarrow, \leftrightarrow\}$, então a raiz é rotulada por * e tem dois filhos, onde o da esquerda é a raiz da árvore sintática de ψ e o da direita é a raiz da árvore sintática de χ .

1.2 Semântica

Definição 18. O conjunto $\mathcal{V} = \{V, F\}$ é chamado de conjunto de valores de verdade e cada um de seus elementos é chamado de valor de verdade.

Definição 19. Uma função booleana é aquela que tem apenas dois elementos em sua imagem.

Definição 20. Uma valoração booleana v_0 para os símbolos proposicionais de \mathcal{L}_P , \mathcal{P} , é uma função booleana $v_0 : \mathcal{P} \longrightarrow \mathcal{V}$.

Definição 21. Uma valoração booleana (ou interpretação) \mathbb{V} para as fórmulas bem-formadas de \mathcal{L}_P é uma função booleana \mathbb{V} : $\mathsf{FBF}_{\mathcal{L}_P} \longrightarrow \mathcal{V}$, que estende uma valoração booleana $\mathbb{V}_0 : \mathcal{P} \longrightarrow \mathcal{V}$ para símbolos proposicionais de \mathcal{L}_P , da seguinte forma (onde $\varphi, \psi \in \mathsf{FBF}_{\mathcal{L}_P}$):

- 1. $\mathbb{V}(\varphi) = \mathbb{V}_0(\varphi)$, se $\varphi \in \mathcal{P}$;
- 2. $\mathbb{V}(\neg \varphi) = V$ se, e somente se, $\mathbb{V}(\varphi) = F$;
- 3. $\mathbb{V}(\varphi \wedge \psi) = V$ se, e somente se, $\mathbb{V}(\varphi) = \mathbb{V}(\psi) = V$;
- 4. $\mathbb{V}(\varphi \vee \psi) = V$ se, e somente se, $\mathbb{V}(\varphi) = V$ ou $\mathbb{V}(\psi) = V$ ou ambos;
- 5. $\mathbb{V}(\varphi \to \psi) = V$ se, e somente se, $\mathbb{V}(\varphi) = F$ ou $\mathbb{V}(\psi) = V$ ou ambos;
- 6. $\mathbb{V}(\varphi \leftrightarrow \psi) = V$ se, e somente se, $\mathbb{V}(\varphi) = \mathbb{V}(\psi)$.

Definição 22. Seja $\varphi \in \mathsf{FBF}_{\mathcal{L}_P}$. Nós dizemos que φ é satisfatível se existe uma valoração booleana \mathbb{V} : $\mathsf{FBF}_{\mathcal{L}_P} \longrightarrow \mathcal{V}$ tal que $\mathbb{V}(\varphi) = V$. Neste caso, dizemos \mathbb{V} é um modelo para φ ou que \mathbb{V} satisfaz φ .

Observação 1. As Definições 23 a 32 aplicam-se a ambas as linguagens lógicas a serem estudadas nesta disciplina e, mais geralmente, a quaisquer linguagens clássicas. Usaremos o símbolo $\mathcal L$ para nos referirmos a uma linguagem lógica qualquer. Denotamos por $\mathsf{FBF}_{\mathcal L}$ o conjunto de fórmulas bem-formadas da linguagem lógica $\mathcal L$.

Definição 23. Seja $\varphi \in \mathsf{FBF}_{\mathcal{L}}$. φ é falsificável se existe um modelo \mathbbm{M} para $\neg \varphi$. Neste caso, dizemos que \mathbbm{M} não satisfaz ou falsifica φ .

Definição 24. Seja $\varphi \in \mathsf{FBF}_{\mathcal{L}}$. Nós dizemos que φ é *insatisfatível* ou que é uma *contradição* se não existe um modelo para φ .

Definição 25. Seja $\varphi \in \mathsf{FBF}_{\mathcal{L}}$. Nós dizemos que φ é uma tautologia se toda interpretação é um modelo para φ .

Definição 26. Seja $\varphi \in \mathsf{FBF}_{\mathcal{L}}$. Nós dizemos que φ é uma contingência se φ é satisfatível e falsificável.

Definição 27. Seja φ e $\psi \in \mathsf{FBF}_{\mathcal{L}}$. Nós dizemos que φ e ψ são semanticamente equivalentes, denotado por φ $\mathcal{L} = \models_{\mathcal{L}} \psi$, se, para toda interpretação \mathbb{M} , temos que \mathbb{M} é um modelo para φ se, e somente se, \mathbb{M} é um modelo para ψ .

Definição 28. Seja $\Gamma \subseteq \mathsf{FBF}_{\mathcal{L}}$. Nós dizemos que Γ é *consistente* ou *satisfatível* se existe uma interpretação \mathbb{M} que satisfaz todas as fórmulas de Γ . Neste caso, dizemos que \mathbb{M} *satisfaz* Γ ou é um *modelo* para Γ .

Definição 29. Seja $\Gamma \subseteq \mathsf{FBF}_{\mathcal{L}}$. Nós dizemos que Γ é *inconsistente* ou *insatisfatível* se não existe um modelo para Γ .

Definição 30. Sejam $\Gamma \subseteq \mathsf{FBF}_{\mathcal{L}}$ e $\varphi \in \mathsf{FBF}_{\mathcal{L}}$. Nós dizemos que φ é consequência lógica de Γ , denotado por $\Gamma \models_{\mathcal{L}} \varphi$, se todo modelo para Γ também é um modelo para φ .

Definição 31. Sejam $\Gamma \subseteq \mathsf{FBF}_{\mathcal{L}}$ e $\varphi \in \mathsf{FBF}_{\mathcal{L}}$. Nós dizemos que φ é consequência lógica de Γ , denotado por $\Gamma \models_{\mathcal{L}} \varphi$, se não existe um modelo para Γ que não seja modelo para φ .

Definição 32. Seja $\varphi \in \mathsf{FBF}_{\mathcal{L}}$. Se $\emptyset \models_{\mathcal{L}} \varphi$, também denotado por $\models_{\mathcal{L}} \varphi$, nós dizemos que φ é consequência lógica do vazio ou que φ é $v\'{a}lida$.

Definição 33. A construção da tabela-verdade é definida pelo seguinte procedimento:

- 1: Gere o conjunto de todas as subfórmulas das fórmulas em Γ , obtendo SUBF;
- 2: Seja \mathcal{P}_0 o conjunto dos símbolos proposicionais aparecendo em SUBF;
- 3: Ordene lexicograficamente \mathcal{P}_0 ;
- 4: SUBF \leftarrow SUBF $-\mathcal{P}_0$
- 5: Ordene por tamanho e lexicograficamente SUBF, obtendo a lista ordenada SUBF ORDENADAS;
- 6: Seja m = |SUBF| ORDENADAS|;
- 7: Seja $n = |\mathcal{P}_0|$;
- 8: Construa uma tabela com m+n colunas e 2^n+1 linhas;
- 9: Rotule, na primeira linha, as n primeiras colunas com os símbolos de \mathcal{P}_0 ; rotule as demais colunas com as fórmulas em SUBF ORDENADAS;
- 10: $i \leftarrow n$;
- 11: enquanto i > 0 faça
- 12: Preencha a *i*-ésima coluna com $2^{(n-i)}$ V e $2^{(n-i)}$ F até a coluna acabar;
- 13: $i \leftarrow i 1$
- 14: fim enquanto
- 15: $i \leftarrow n+1$
- 16: enquanto $i \leq m + n$ faça
- 17: Preencha a *i*-ésima coluna de acordo com a Definição 21, levando-se em consideração os valores de verdade para os símbolos proposicionais ou subfórmulas imediatas da linha correspondente;
- 18: $i \leftarrow i + 1$;
- 19: fim enquanto

1.3 Formas Normais

Definição 34. Estendemos o conjunto de símbolos lógicos da linguagem proposicional acrescentando o seguinte item à Definição 1:

$$4. \{\top, \bot\}.$$

Definição 35. Os elementos do conjunto $\{\top, \bot\}$ são chamados de constantes lógicas ou conectivos nulários.

Definição 36. Estendemos o conjunto de fórmulas bem-formadas da linguagem proposicional, acrescentando o seguinte item à Definição 9:

4. se
$$\varphi \in \{\top, \bot\}$$
, então $\varphi \in \mathsf{FBF}_{\mathcal{L}_P}$.

Definição 37. Estendemos a definição de valoração booleana para fórmulas bem-formadas da lógica proposicional, conforme Definição 21, com os seguintes itens:

- 7. $\mathbb{V}(\top) = V$;
- 8. $\mathbb{V}(\perp) = F$.

Definição 38. Um *literal* é um símbolo proposicional ou sua negação.

Definição 39. Uma cláusula é uma disjunção de literais.

Definição 40. Seja $\varphi \in \mathsf{FBF}_{\mathcal{L}_P}$. Nós dizemos que φ está na Forma Normal Negada (FNN) se contém apenas os conectivos \neg , \lor e \land e o conectivo de negação é aplicado apenas a símbolos proposicionais.

Definição 41. A transformação na FNN é dada pelo seguinte procedimento:

- 1: Substitua toda subfórmula na forma $(\psi \leftrightarrow \chi)$ por $((\psi \to \chi) \land (\chi \to \psi))$;
- 2: Substitua toda subfórmula na forma $(\psi \to \chi)$ por $(\neg \psi \lor \chi)$;
- 3: Aplique as leis de De Morgan, isto é, substitua toda subfórmula na forma $\neg(\psi \land \chi)$ por $(\neg \psi \lor \neg \chi)$ e substitua toda subfórmula na forma $\neg(\psi \lor \chi)$ por $(\neg \psi \land \neg \chi)$;
- 4: Elimine duplas negações, ou seja, substitua toda subfórmula na forma $\neg\neg\psi$ por ψ .

Definição 42. A simplificação de fórmulas aplica as seguintes regras de reescrita:

- 1: Substitua toda subfórmula na forma $(\psi \lor \psi)$ por ψ ;
- 2: Substitua toda subfórmula na forma $(\psi \wedge \psi)$ por ψ ;
- 3: Substitua toda subfórmula na forma $(\psi \lor \neg \psi)$ por \top ;
- 4: Substitua toda subfórmula na forma $(\psi \land \neg \psi)$ por \bot ;
- 5: Substitua toda subfórmula na forma $(\psi \vee \top)$ por \top ;
- 6: Substitua toda subfórmula na forma $(\psi \wedge \bot)$ por \bot ;
- 7: Substitua toda subfórmula na forma $(\psi \lor \bot)$ por ψ ;
- 8: Substitua toda subfórmula na forma $(\psi \wedge \top)$ por ψ ;

Definição 43. Seja $\varphi \in \mathsf{FBF}_{\mathcal{L}_P}$. Nós dizemos que φ está na Forma Normal Conjuntiva (FNC) se é uma conjunção de cláusulas.

Definição 44. A transformação de uma fórmula φ em uma fórmula semanticamente equivalente, φ' , na Forma Normal Conjuntiva, é dada pelo seguinte procedimento:

- 1: Transforme φ na FNN;
- 2: Aplique as leis de distribuição até que a fórmula esteja na FNC.

$$\varphi \lor (\psi \land \chi) \longleftrightarrow (\varphi \lor \psi) \land (\varphi \lor \chi)$$
$$\varphi \land (\psi \lor \chi) \longleftrightarrow (\varphi \land \psi) \lor (\varphi \land \chi)$$

Definição 45. Seja $\varphi \in \mathsf{FBF}_{\mathcal{L}_P}$. Nós dizemos que φ está na Forma Normal Disjuntiva (FND) se é uma disjunção de conjunções de literais.

Definição 46. A transformação de uma fórmula φ em uma fórmula semanticamente equivalente, φ' , na Forma Normal Disjuntiva, é dada pelo seguinte procedimento:

- 1: Transforme φ na FNN;
- 2: Aplique as leis de distribuição até que a fórmula esteja na FND.

$$\varphi \lor (\psi \land \chi) \longleftrightarrow (\varphi \lor \psi) \land (\varphi \lor \chi)$$
$$\varphi \land (\psi \lor \chi) \longleftrightarrow (\varphi \land \psi) \lor (\varphi \land \chi)$$

2 Teoria de Provas

Observação 2. As definições constantes desta seção referem-se a qualquer lógica clássica \mathcal{L} .

Definição 47. Um *axioma* é uma fórmula bem-formada que representa uma proposição que é, geralmente, aceita como verdadeira.

Definição 48. Uma regra de inferência é um mecanismo para obtenção de fórmulas bem-formadas a partir de um conjunto de fórmulas bem-formadas.

Definição 49. Sejam $\Gamma = \{\gamma_1, \dots, \gamma_n\} \subseteq \mathsf{FBF}_{\mathcal{L}}, \ n \in \mathbb{N}, \ n \geq 0 \ \text{e} \ \varphi \in \mathsf{FBF}_{\mathcal{L}}.$ Regras de inferência são, normalmente, escritas da seguinte forma:

$$\begin{array}{c} \gamma_1 \\ \vdots \\ \underline{\gamma_n} \\ \overline{\varphi} \end{array}$$

onde cada $\gamma_i \in \Gamma$, $1 \le i \le n$, é chamada de premissa e φ é chamada de conclusão. A aplicação da regra de inferência a $\gamma_1, \ldots, \gamma_n$ produz φ ; nós também dizemos que φ é derivada de $\gamma_1, \ldots, \gamma_n$.

Definição 50. Um cálculo dedutivo ou método de prova é um par $\langle \mathcal{A}, \mathcal{R} \rangle$, onde \mathcal{A} é um conjunto de axiomas e \mathcal{R} é um conjunto de regras de inferência.

Exemplo 1. Um sistema axiomático correto, completo e consistente¹ para a Lógica Proposicional foi proposto por Jan Łukasiewicz, matemático polonês (21/12/1878 – 13/02/1956). O conjunto de *esquemas axiomáticos* é dado por:

A1
$$(\varphi \to (\psi \to \varphi))$$

A2 $((\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$
A3 $((\neg \varphi \to \neg \psi) \to (\psi \to \varphi))$

e as regras de inferência são:

SUB: Substituição uniforme, que nos permite trocar as variáveis metalinguísticas que compõem os esquemas axiomáticos por fórmulas bem-formadas da linguagem proposicional;

MP: De φ e $\varphi \to \psi$ infere-se ψ (Modus Ponens).

Definição 51. Sejam $\varphi \in \mathsf{FBF}_{\mathcal{L}} \ e \ \langle \mathcal{A}, \mathcal{R} \rangle$ um cálculo dedutivo. Uma prova para φ é uma sequência de fórmulas $\varphi_0, \varphi_1, \ldots, \varphi_n, \ \varphi_i \in \mathsf{FBF}_{\mathcal{L}}, \ 0 \le i \le n$, onde $\varphi = \varphi_n$ e cada $\varphi_i \in \mathcal{A}$ ou foi obtida a partir da aplicação de uma das regras de inferência em \mathcal{R} a fórmulas anteriores na sequência.

Definição 52. Sejam $\varphi \in \mathsf{FBF}_{\mathcal{L}}$, $\Gamma \subseteq \mathsf{FBF}_{\mathcal{L}}$ e $\langle \mathcal{A}, \mathcal{R} \rangle$ um cálculo dedutivo. Uma prova para φ a partir de Γ é uma sequência de fórmulas $\varphi_0, \varphi_1, \ldots, \varphi_n, \ \varphi_i \in \mathsf{FBF}_{\mathcal{L}}, \ 0 \le i \le n$, onde $\varphi = \varphi_n$ e cada $\varphi_i \in \mathcal{A} \cup \Gamma$ ou foi obtida a partir da aplicação de uma das regras de inferência em \mathcal{R} a fórmulas anteriores na sequência.

Definição 53. Sejam $\varphi \in \mathsf{FBF}_{\mathcal{L}}$, $\Gamma \subseteq \mathsf{FBF}_{\mathcal{L}}$ e $\langle \mathcal{A}, \mathcal{R} \rangle$ um cálculo dedutivo. Se existe uma sequência de fórmulas $\varphi_0, \varphi_1, \ldots, \varphi_n, \varphi_i \in \mathsf{FBF}_{\mathcal{L}}, 0 \le i \le n$, que seja uma prova para φ a partir de Γ , nós chamamos esta sequência de dedução. No caso em que $\Gamma = \emptyset$, esta sequência é chamada de demonstração.

Definição 54. Sejam $\varphi \in \mathsf{FBF}_{\mathcal{L}}$, $\Gamma \subseteq \mathsf{FBF}_{\mathcal{L}}$ e $C = \langle \mathcal{A}, \mathcal{R} \rangle$ um cálculo dedutivo. Se existe uma prova para φ a partir de Γ , nós dizemos que φ é dedutivel a partir de Γ , denotado por $\Gamma \vdash^{C}_{\mathcal{L}} \varphi$. No caso em que $\Gamma = \emptyset$, nós dizemos que φ é demonstrável ou que é um teorema, denotado por $\vdash^{C}_{\mathcal{L}} \varphi$.

¹Os conceitos de correção, completude e consistência são formalizados pelas Definições 55 a 59.

Exemplo 2. Utilizando o sistema axiomático proposto por Łukasiewicz, apresentamos abaixo a prova clássica de que $p \to p$:

- 1. $((p \to ((q \to p) \to p)) \to ((p \to (q \to p)) \to (p \to p))$ [A2, SUB φ por p, ψ por $q \to p$, χ por p]
- 2. $p \to ((q \to p) \to p)$ [A1, SUB φ por p, ψ por $q \to p$]
- 3. $((p \to (q \to p)) \to (p \to p))$ [MP, 1,2]
- 4. $p \to (q \to p)$ [A1, SUB φ por p, ψ por q]
- 5. $p \rightarrow p$ [MP, 3,4]

2.1 Propriedades Metateóricas

Observação 3. As definições constantes desta seção referem-se a uma linguagem lógica clássica \mathcal{L} .

Definição 55. Sejam $\varphi \in \mathsf{FBF}_{\mathcal{L}}, \ \Gamma \subseteq \mathsf{FBF}_{\mathcal{L}} \ e \ C = \langle \mathcal{A}, \mathcal{R} \rangle$ um cálculo dedutivo. Nós dizemos que C é fortemente correto se $\Gamma \vdash^{C}_{\mathcal{L}} \varphi$, então $\Gamma \models_{\mathcal{L}} \varphi$.

Definição 56. Sejam $\varphi \in \mathsf{FBF}_{\mathcal{L}}$ e $C = \langle \mathcal{A}, \mathcal{R} \rangle$ um cálculo dedutivo. Nós dizemos que C é fracamente correto se $\vdash^{C}_{\mathcal{L}} \varphi$, então $\models_{\mathcal{L}} \varphi$.

Definição 57. Sejam $\varphi \in \mathsf{FBF}_{\mathcal{L}}$, $\Gamma \subseteq \mathsf{FBF}_{\mathcal{L}}$ e $C = \langle \mathcal{A}, \mathcal{R} \rangle$ um cálculo dedutivo. Nós dizemos que C é consistente se não existe φ tal que Γ é satisfatível e $\Gamma \vdash^{C}_{\mathcal{L}} \varphi$ e $\Gamma \vdash^{C}_{\mathcal{L}} \neg \varphi$.

Definição 58. Sejam $\varphi \in \mathsf{FBF}_{\mathcal{L}}, \ \Gamma \subseteq \mathsf{FBF}_{\mathcal{L}} \ \mathrm{e} \ C = \langle \mathcal{A}, \mathcal{R} \rangle$ um cálculo dedutivo. Nós dizemos que C é fortemente completo se $\Gamma \models_{\mathcal{L}} \varphi$, então $\Gamma \vdash^{C}_{\mathcal{L}} \varphi$.

Definição 59. Sejam $\varphi \in \mathsf{FBF}_{\mathcal{L}}$ e $C = \langle \mathcal{A}, \mathcal{R} \rangle$ um cálculo dedutivo. Nós dizemos que C é fracamente completo se $\models_{\mathcal{L}} \varphi$, então $\vdash^{C}_{\mathcal{L}} \varphi$.

3 Tableaux Proposicional

Definição 60. Seja $\varphi \in \mathsf{FBF}_{\mathcal{L}_P}$ uma fórmula molecular. Nós dizemos que φ é uma fórmula conjuntiva se for semanticamente equivalente a uma fórmula cujo operador principal é \wedge .

Definição 61. Seja $\varphi \in \mathsf{FBF}_{\mathcal{L}_P}$ uma fórmula molecular. Nós dizemos que φ é uma fórmula disjuntiva se for semanticamente equivalente a uma fórmula cujo operador principal é \vee .

Definição 62. O cálculo dedutivo baseado em tableaux é o par $T = \langle \emptyset, \mathcal{R} \rangle$, onde $\mathcal{R} = \mathcal{R}_{\alpha} \cup \mathcal{R}_{\beta}$ e \mathcal{R}_{α} é o conjunto de regras aplicadas a fórmulas conjuntivas e a fórmulas da forma $\neg \neg \varphi$ (onde $\varphi \in \mathsf{FBF}_{\mathcal{L}_P}$) e \mathcal{R}_{β} é o conjunto de regras aplicadas a fórmulas disjuntivas, conforme Tabela 1.

\mathcal{D}	\mathcal{D} .		
\mathcal{R}_{lpha}	\mathcal{R}_eta		
$(\varphi \land \psi)$	$(\varphi \lor \psi)$		
$\psi \psi$	$\varphi \mid \psi$		
$ \begin{array}{c cccc} \neg(\varphi & \vee & \psi) \\ \hline \neg\varphi \\ \neg\psi \end{array} $	$\frac{\neg(\varphi \land \psi)}{\neg \varphi \mid \neg \psi}$		
$ \begin{array}{ccc} \neg(\varphi & \rightarrow & \psi) \\ \hline \varphi \\ \neg\psi \end{array} $	$\frac{(\varphi \rightarrow \psi)}{\neg \varphi \mid \psi}$		
$ \begin{array}{ccc} (\varphi & \leftrightarrow & \psi) \\ \hline \varphi \to \psi \\ \psi \to \varphi \end{array} $	$ \frac{\neg(\varphi \leftrightarrow \psi)}{\neg(\varphi \to \psi)} \neg(\psi \to \varphi) $		
$\frac{\neg\neg\varphi}{\varphi}$			

Tabela 1: Regras de Inferência para T

Definição 63. Sejam $\varphi \in \mathsf{FBF}_{\mathcal{L}_P}$, $\Gamma \subseteq \mathsf{FBF}_{\mathcal{L}_P}$ e $T = \langle \emptyset, \mathcal{R} \rangle$ o cálculo dedutivo baseado em tableaux. Uma árvore de prova para φ a partir de Γ é uma árvore onde os nós são rotulados por fórmulas em Γ, por $\neg \varphi$ e por fórmulas derivadas destas fórmulas pela aplicação das regras em \mathcal{R} .

Definição 64. A construção da árvore de prova para $\varphi \in \mathsf{FBF}_{\mathcal{L}_P}$ a partir de $\Gamma \subseteq \mathsf{FBF}_{\mathcal{L}_P}$ é dada pelo seguinte procedimento:

```
1: Seja n = |\Gamma|;
```

- 2: para $i=1; i \leq n$ faça
- 3: Crie um nó na árvore e rotule com i, γ_i , [premissa];
- 4: fim para
- 5: Crie um nó na árvore e rotule com i, $\neg \varphi$, [negação da conclusão];
- 6: para todo ramo h na árvore faça
- 7: **enquanto** regras de inferência puderem ser aplicadas a h faça
- 8: Escolha um nó rotulado por $j \in \psi$ a que não foi aplicada nenhuma regra;
- 9: se ψ é uma fórmula conjuntiva então
 - Crie dois nós em h e rotule cada um com um dos dois números na sequência da numeração para h com as possíveis derivações a partir de ψ e $[\alpha, j]$;
- 11: senão

10:

13:

- 12: se ψ é a dupla negação então
 - Crie um nó em h e rotule-o com o primeiro número na sequência da numeração para h, acrescentando a possível derivação a partir de ψ e $[\alpha, j]$;

- 14: senão
- 15: Crie dois nós e rotule cada um com o mesmo número na sequência da numeração para h com as possíveis derivações a partir de ψ e $[\beta, j]$; bifurque h e coloque um nó em h e outro na bifurcação gerada;
- 16: fim se
 17: fim se
 18: fim enquanto

19: fim para

Observação 4. As Definições 65 a 67 referem-se a ambas as linguagens lógicas estudadas nesta disciplina.

Definição 65. Sejam $\varphi \in \mathsf{FBF}_{\mathcal{L}}$, $\Gamma \subseteq \mathsf{FBF}_{\mathcal{L}}$, $T = \langle \emptyset, \mathcal{R} \rangle$ o cálculo dedutivo baseado em tableaux e A uma árvore de prova para φ a partir de Γ . Uma haste de A está fechada se ela contiver uma fórmula e sua negação. Caso contrário, a haste está aberta.

Definição 66. Sejam $\varphi \in \mathsf{FBF}_{\mathcal{L}}$, $\Gamma \subseteq \mathsf{FBF}_{\mathcal{L}}$, $T = \langle \emptyset, \mathcal{R} \rangle$ o cálculo dedutivo baseado em tableaux e A uma árvore de prova para φ a partir de Γ . Se todas as hastes de A estiverem fechadas, então a árvore está fechada. Caso contrário, a árvore está aberta.

Definição 67. Sejam $\varphi \in \mathsf{FBF}_{\mathcal{L}}$, $\Gamma \subseteq \mathsf{FBF}_{\mathcal{L}}$ e $T = \langle \emptyset, \mathcal{R} \rangle$ o cálculo dedutivo baseado em tableaux. Nós dizemos que $\Gamma \vdash_{\mathcal{L}}^T \varphi$ se existe uma árvore de prova fechada para φ a partir de Γ .

3.1 Resultados Metateóricos – Tableaux Proposicional

Lema 1 (da Correção do Cálculo Dedutivo Baseado em Tableaux). Sejam α e β em $\mathsf{FBF}_{\mathcal{L}_P}$ tais que α seja uma fórmula conjuntiva ou a dupla-negação e β uma fórmula disjuntiva. Seja $\Gamma \subseteq \mathsf{FBF}_{\mathcal{L}_P}$. Se Γ é consistente, então:

- 1. se $\alpha \in \Gamma$, então $\Gamma \cup \{\alpha_1\}$ e $\Gamma \cup \{\alpha_2\}$ são consistentes;
- 2. se $\beta \in \Gamma$, então $\Gamma \cup \{\beta_1\}$ e/ou $\Gamma \cup \{\beta_2\}$ são consistentes.

onde α_i e β_i , i=1,2, são as conclusões obtidas de α e β a partir da aplicação das regras em \mathcal{R}_{α} e \mathcal{R}_{β} , respectivamente.

Prova. Suponha que Γ seja consistente. Pela Definição 28, isto significa que existe pelo menos uma valoração booleana $\mathbb V$ tal que $\mathbb V$ atribui V a todos os elementos de Γ .

- 1. Suponha que $\alpha \in \Gamma$. Se \mathbb{V} atribui V a todos os elementos de Γ , então \mathbb{V} atribui V a α .
 - (a) Se α é da forma $(\varphi \wedge \psi)$ e v atribui V a α , então v $(\varphi \wedge \psi) = V$. Pela Definição 21, Item 3, $v(\varphi) = V$ e $v(\psi) = V$.

Se $\mathbb V$ atribui V a todos os elementos de Γ e a φ , $\mathbb V$ atribui V a todos os elementos de $\Gamma \cup \{\varphi\}$. Pela Definição 28, $\Gamma \cup \{\varphi\}$ é consistente.

Se \mathbb{V} atribui V a todos os elementos de Γ e a ψ , \mathbb{V} atribui V a todos os elementos de $\Gamma \cup \{\psi\}$. Pela Definição 28, $\Gamma \cup \{\psi\}$ é consistente.

- (b) Demais casos, exercício.
- 2. Suponha que $\beta \in \Gamma$. Se v atribui V a todos os elementos de Γ , então v atribui V a β .

- (a) Se β é da forma $(\varphi \lor \psi)$ e \mathbb{V} atribui V a β , então $\mathbb{V}(\varphi \lor \psi) = V$. Pela Definição 21, Item 4, $\mathbb{V}(\varphi) = V \text{ e/ou } \mathbb{V}(\psi) = V.$
 - Se v atribui V a todos os elementos de Γ e a φ e/ou ψ , v atribui V a todos os elementos de $\Gamma \cup \{\varphi\}$ e/ou $\Gamma \cup \{\psi\}$. Pela Definição 28, $\Gamma \cup \{\varphi\}$ é consistente e/ou $\Gamma \cup \{\psi\}$ é consistente.
- (b) Demais casos, exercício.

Metateorema 1 (da Correção do Cálculo Dedutivo Baseado em Tableaux). Sejam $\Gamma \subseteq \mathsf{FBF}_{\mathcal{L}_P}$ e $\varphi \in \mathsf{FBF}_{\mathcal{L}_P}$. Se $\Gamma \vdash_{\mathcal{L}_P}^T \varphi$, então $\Gamma \models_{\mathcal{L}_P} \varphi$.

Prova. Supor que $\Gamma \vdash_{\mathcal{L}_P}^T \varphi$, mas que $\Gamma \not\models_{\mathcal{L}_P} \varphi$.

Se $\Gamma \vdash_{\mathcal{L}_P}^T \varphi$, pela Definição 67, existe uma árvore de prova fechada para φ a partir de Γ . Isto quer dizer que a árvore cuja construção foi iniciada a partir de todas as fórmulas de Γ e $\neg \varphi$ apresenta contradições em todas as hastes. Ou seja, todas as hastes são inconsistentes.

Se $\Gamma \not\models_{\mathcal{L}_{\mathcal{P}}} \varphi$, então, pela Definição 30, existe pelo menos uma valoração booleana $\mathbb V$ tal que $\mathbb V$ satisfaz Γ e v não satisfaz φ . Pela Definição 28, v atribui V a todos os elementos de Γ ; pela Definição 23, v atribui Fa φ . Logo, pela Definição 21, Item 2, $\mathbb{V}(\neg \varphi) = V$. Pela Definição 28, $\Gamma \cup \{\neg \varphi\}$ é consistente.

Portanto, se aplicarmos uma das regras em \mathcal{R}_{α} a $\Gamma \cup \{\neg \varphi\}$, obteremos dois nós α_1 e α_2 . Pelo Lema 1, $\Gamma \cup \{\neg \varphi\} \cup \{\alpha_1, \alpha_2\}$ é consistente. Logo, a haste que contém as fórmulas em $\Gamma \cup \{\neg \varphi\} \cup \{\alpha_1, \alpha_2\}$ é consistente.

Analogamente, se aplicarmos uma das regras em \mathcal{R}_{β} a $\Gamma \cup \{\neg \varphi\}$, obteremos dois nós β_1 e β_2 . Pelo Lema 1, $\Gamma \cup \{\neg \varphi\} \cup \{\beta_1\}$ é consistente e/ou $\Gamma \cup \{\neg \varphi\} \cup \{\beta_2\}$ é consistente. Logo, pelo menos uma das hastes, a que contém as fórmulas em $\Gamma \cup \{\neg \varphi\} \cup \{\beta_1\}$ é consistente ou a que contém as fórmulas em $\Gamma \cup \{\neg \varphi\} \cup \{\beta_1\}$ é consistente (ou ambas).

Se continuarmos aplicando as regras em \mathcal{R}_{α} e \mathcal{R}_{β} à árvore assim obtida, a árvore final conterá pelo menos uma haste consistente. Mas isto quer dizer que existe pelo menos uma haste que não contém contradições, o que é um absurdo, pois $\Gamma \vdash_{\mathcal{L}_P}^T \varphi$. Logo, a afirmação de que $\Gamma \not\models_{\mathcal{L}_P} \varphi$ é falsa, ou seja, $\Gamma \models_{\mathcal{L}_P} \varphi$.

Metateorema 2 (da Consistência do Cálculo Baseado em Tableaux). Não existe $\varphi \in \mathsf{FBF}_{\mathcal{L}_P}$ tal que $\vdash_{\mathcal{L}_P}^T \varphi$ $e \vdash_{\mathcal{L}_P}^T \neg \varphi$.

Prova. Supor que existe $\varphi \in \mathsf{FBF}_{\mathcal{L}_P}$ tal que $\vdash^T_{\mathcal{L}_P} \varphi$ e $\vdash^T_{\mathcal{L}_P} \neg \varphi$. Pelo Metateorema 1, tomando $\Gamma = \emptyset$, temos que $\models_{\mathcal{L}_P} \varphi$ e $\models_{\mathcal{L}_P} \neg \varphi$. Ou seja, pela Definição 32, para toda valoração booleana \mathbb{V} temos que $\mathbb{V}(\varphi) = V$ e $\mathbb{V}(\neg \varphi) = V$. Pela Definição 21, Item 2, isto é um absurdo. Logo, não existe $\varphi \in \mathsf{FBF}_{\mathcal{L}_P}$ tal que $\vdash_{\mathcal{L}_P}^T \varphi$ e $\vdash_{\mathcal{L}_P}^T \neg \varphi$.

Lema 2 (da Completude do Cálculo Baseado em Tableaux). Selecione H uma haste aberta do tableau na qual todas as aplicações das regras em \mathcal{R}_{α} e \mathcal{R}_{β} foram feitas. Seja v uma valoração booleana tal que v(p) = V se, e somente se, $p \in H$, onde $p \in \mathcal{P}$. Então:

- 1. Se $\varphi \in H$, então $\mathbb{V}(\varphi) = V$;
- 2. Se $\neg \varphi \in H$, então $\mathbb{V}(\varphi) = F$.

Prova. A prova é por indução na estrutura da fórmula.

Caso Base: Se $\varphi \in \mathcal{P}$, então, por definição, $v(\varphi) = V$.

Hipótese de Indução Suponha que $v(\varphi) = V$ se $COMP(\varphi) \le n$.

Passo da Indução As fórmulas que ocorrem em H estão em uma das seguintes formas $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi)$ ou $\neg \varphi$. A prova é feita para cada um dos casos.

- 1. Se $(\varphi \wedge \psi)$ ocorre em H, H está aberta e as regras em em \mathcal{R}_{α} e \mathcal{R}_{β} foram aplicadas à exaustão, então φ ocorre em H e ψ ocorre em H. Pela Hipótese de Indução, porque $COMP(\varphi) < COMP(\varphi \wedge \psi)$, temos que $v(\varphi) = V$. Analogamente, pela Hipótese de Indução, porque $COMP(\psi) < COMP(\varphi \wedge \psi)$, temos que $v(\psi) = V$. Pela Definição 21, Item 3, $v(\varphi \wedge \psi) = V$.
- 2. Demais casos, exercício.

Metateorema 3 (da Completude do Cálculo Baseado em Tableaux). Sejam $\Gamma \subseteq \mathsf{FBF}_{\mathcal{L}_P}$ e $\varphi \in \mathsf{FBF}_{\mathcal{L}_P}$. Se $\Gamma \models_{\mathcal{L}_P} \varphi$, então $\Gamma \vdash_{\mathcal{L}_P}^T \varphi$.

Prova. Supor que $\Gamma \models_{\mathcal{L}_P} \varphi$, mas $\Gamma \not\vdash_{\mathcal{L}_P}^T \varphi$.

Se $\Gamma \not\vdash_{\mathcal{L}_P}^T \varphi$, pela Definição 67, então existe pelo menos uma haste aberta na árvore de prova para φ a partir de Γ . Seja H tal haste. Faça $\mathbb{v}(p) = V$ se, e somente se, $p \in H$, $p \in \mathcal{P}$. Conforme o Lema 2, \mathbb{v} atribuirá V a todas as fórmulas bem-formadas que ocorrerem em H. Logo, \mathbb{v} atribui V a todos os elementos de Γ e a $\neg \varphi$. Pela Definição 28, \mathbb{v} satisfaz Γ . Pela Definição 21, Item 2, $\mathbb{v}(\varphi) = F$. Pela Definição 23, \mathbb{v} não satisfaz φ . Pela Definição 30, φ não é consequência lógica de Γ , o que contradiz com a nossa suposição inicial de que $\Gamma \models_{\mathcal{L}_P} \varphi$.

Portanto, $\Gamma \not\vdash_{\mathcal{L}_P}^T \varphi$ é falsa, ou seja, $\Gamma \vdash_{\mathcal{L}_P}^T \varphi$.

4 Resolução

Definição 68. O cálculo dedutivo baseado no princípio da resolução é um par $Res = \langle \emptyset, \mathcal{R} \rangle$, onde R é um conjunto unitário contendo a regra:

$$\begin{array}{c|ccc} D & \vee & l \\ D' & \vee & \neg l \\ \hline D & \vee & D' \end{array}$$

e onde D e D' são cláusulas (possivelmente vazias) e l é um literal. As premissas, ou seja, as cláusulas acima da linha de derivação são chamadas cláusulas-pai e a fórmula derivada é chamada de resolvente. Os literais l e $\neg l$ são chamados literais complementares. Duas cláusulas podem ser resolvidas se contêm literais complementares.

Definição 69. O método baseado em resolução é aplicado de acordo com o seguinte procedimento: Seja Γ_0 um conjunto de cláusulas.

- 1: Seja $\Gamma_i = \Gamma_0$
- 2: repita
- 3: Selecione c_1 e $c_2 \in \Gamma_i$ tais que $l \in c_1$, $\neg l \in c_2$, onde l é um literal e c_1 e c_2 não tenham sido previamente resolvidas
- 4: calcule o resolvente r
- 5: Faça $\Gamma_{i+1} = \Gamma_i \cup \{r\}$
- 6: **até** $\square \in \Gamma$ ou $\Gamma_{i+1} = \Gamma_i$

Definição 70. Sejam $\Gamma = \{\gamma_1, \dots, \gamma_n\} \subset \mathsf{FBF}_{\mathcal{L}_P} \ \text{e } Res = \langle \emptyset, \mathcal{R} \rangle$ o cálculo dedutivo baseado em resolução binária. Nós dizemos que $\Gamma \vdash^{Res}_{\mathcal{L}_P} \varphi$ se o método de resolução, aplicado à transformação na FNC de $\gamma_1 \land \dots \land \gamma_n \land \neg \varphi$, derivar a cláusula vazia.

Definição 71. O seguinte procedimento aprimora a aplicação do método baseado em resolução: Seja Γ_0 um conjunto de cláusulas.

```
1: Seja \Gamma_i = \Gamma_0

2: repita
3: Selecione c_1 e c_2 \in \Gamma_i tais que l \in c_1, \neg l \in c_2, onde l é um literal e c_1 e c_2 não tenham sido previamente resolvidas
4: calcule o resolvente r
5: se não((r é tautologia) ou (r \in \Gamma_i)) então
6: Faça \Gamma_{i+1} = \Gamma_i \cup \{r\}
7: fim se
8: até \square \in \Gamma_0 ou \Gamma_{i+1} = \Gamma_i
```

5 Lógica de Primeira-Ordem

5.1 Sintaxe

Definição 72. O conjunto de símbolos lógicos da Linguagem de Primeira-Ordem é dado pela união dos seguintes conjuntos:

```
1. \mathcal{P} = \{P^{n_P}, Q^{n_Q}, R^{n_R}, \dots, P_1^{n_{P_1}}, Q_1^{n_{Q_1}}, R_1^{n_{R_1}}, \dots\};

2. \mathcal{F} = \{f^{n_f}, g^{n_g}, h^{n_h}, \dots, f_1^{n_{f_1}}, g_1^{n_{g_1}}, h_1^{n_{h_1}}, \dots\};

3. \mathcal{C} = \{a, b, c, \dots, a_1, b_1, c_1, \dots\};

4. \mathcal{V} = \{x, y, z, \dots, x_1, y_1, z_1, \dots\};

5. \{\forall, \exists\}

6. \{\neg, \lor, \land, \rightarrow, \leftrightarrow\};

7. (e).
```

Definição 73. Os elementos do conjunto \mathcal{P} são chamados símbolos predicativos.

Definição 74. Os elementos do conjunto \mathcal{F} são chamados símbolos funcionais.

Definição 75. Os elementos do conjunto \mathcal{C} são chamados constantes.

Definição 76. Os elementos do conjunto \mathcal{V} são chamados *variáveis*.

Definição 77. Os elementos do conjunto $\{\forall, \exists\}$ são operadores ou conectivos unários chamados de quantificadores. O quantificador universal é denotado por \forall e o quantificador existencial é denotado por \exists .

Definição 78. A aridade de um símbolo predicativo ou de um símbolo funcional é o número fixo de seus argumentos. A aridade de um símbolo predicativo ou funcional é indicada pelo índice superior.

Observação 5. Símbolos predicativos e funcionais têm número fixo de argumentos (aridade). Note também que:

- Símbolos predicativos de aridade zero referem-se a proposições;
- Símbolos funcionais de aridade zero referem-se a indivíduos.

Definição 79. O conjunto de termos \mathcal{T} da Linguagem de Primeira-Ordem é definido indutivamente:

- 1. Se $t \in \mathcal{V} \cup \mathcal{C}$, então $t \in \mathcal{T}$;
- 2. Se $f^n \in \mathcal{F}$ e $t_1, \ldots, t_n \in \mathcal{T}$, então $f(t_1, \ldots, t_n) \in \mathcal{T}$.

Definição 80. A Linguagem de Primeira-Ordem, denotada por \mathcal{L}_{PO} , é dada pelo conjunto de suas fórmulas bem-formadas, denotado por $\mathsf{FBF}_{\mathcal{L}_{PO}}$, o qual é obtido indutivamente por:

- $P^n(t_1,\ldots,t_n) \in \mathsf{FBF}_{\mathcal{L}_{PO}}$, onde $P^n \in \mathcal{P}$, para $t_i \in \mathcal{T}$, $0 \le i \le n$, $n \in \mathbb{N}$;
- se $\varphi, \psi \in \mathsf{FBF}_{\mathcal{L}_{PO}}$ e $x \in \mathcal{V}$, então $\neg \varphi$, $(\varphi \lor \psi)$, $(\varphi \land \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi)$, $\forall x \varphi \in \mathsf{FBF}_{\mathcal{L}_{PO}}$.

Observação 6. Parênteses podem ser omitidos, se a leitura não for ambígua. A precedência dos operadores é dada por: $\neg, \forall, \exists, \land, \lor, \rightarrow e \leftrightarrow$.

Definição 81. Uma árvore sintática para φ , onde $\varphi \in \mathsf{FBF}_{\mathcal{L}_{PO}}$, é constituída de uma raiz com zero ou mais filhos, dependendo da estrutura (ou seja, da forma) de φ :

- 1. se t é um termo da forma u^0 , então a árvore sintática tem raiz rotulada por u^0 e tem zero filhos;
- 2. se t é um termo da forma $u^n(t_1, \ldots, t_n)$, n > 0, então a raiz é rotulada por u^n e tem n filhos, que são as raízes das árvores sintáticas para cada um dos termos t_1, \ldots, t_n ;
- 3. se φ é da forma $P^n(t_1, \ldots, t_n)$, então a raiz é rotulada por P^n e tem n filhos, que são raízes das árvores sintáticas para cada um dos termos t_1, \ldots, t_n ;
- 4. se φ é da forma $*\psi$, onde $*\in \{\neg, \forall x, \exists x\}$, para algum $x\in \mathcal{V}$, então a raiz é rotulada por * e tem um único filho, que é a raiz da árvore sintática de ψ ;
- 5. se φ é da forma $(\psi * \chi)$, onde $* \in \{ \land, \lor, \rightarrow, \leftrightarrow \}$, então a raiz é rotulada por * e tem dois filhos, onde o da esquerda é a raiz da árvore sintática de ψ e o da direita é a raiz da árvore sintática de χ .

Definição 82. Sejam $x \in \mathcal{V}$ e $\varphi \in \mathsf{FBF}_{\mathcal{L}_{PO}}$. O escopo de $\forall x \text{ (ou } \exists x)$ na fórmula $\forall x \varphi \text{ (ou } \exists x \varphi)$ é φ , exceto por subfórmulas de φ na forma $\forall x \psi$ ou $\exists x \psi$.

Definição 83. Sejam $x \in \mathcal{V}$ e $\varphi \in \mathsf{FBF}_{\mathcal{L}_{PO}}$. A ocorrência de uma variável x em uma fórmula bem-formada $\forall x \varphi$ ou $\exists x \varphi$ é liqada se x ocorrer em φ .

Definição 84. Sejam $x \in \mathcal{V}$ e $\varphi \in \mathsf{FBF}_{\mathcal{L}_{PO}}$. A ocorrência de uma variável x em uma fórmula φ é *livre* se esta ocorrência de x não for ligada em qualquer subfórmula de φ .

Definição 85. Uma sentença é uma fórmula sem variáveis livres.

Definição 86. Sejam $t \in \mathcal{T}$, $x \in \mathcal{V}$ e $\varphi \in \mathsf{FBF}_{\mathcal{L}_{PO}}$. Nós denotamos por $\varphi[t \setminus x]$ o resultado da substituição de todas as ocorrências livres de x em φ por t.

Definição 87. Sejam $t \in \mathcal{T}$, $x \in \mathcal{V}$ e $\varphi \in \mathsf{FBF}_{\mathcal{L}_{PO}}$. Nós dizemos que t é livre para a variável x na fórmula φ se as variáveis em t não se tornarem ligadas em $\varphi[t \setminus x]$.

5.2 Semântica

Definição 88. Uma interpretação M para o par $(\mathcal{P}, \mathcal{F})$ consiste de:

- um conjunto não-vazio \mathcal{A} (universo);
- uma função $f^{\mathbb{M}}: A^n \longrightarrow A$, para cada símbolo funcional $f^n \in \mathcal{F}$;
- um subconjunto $P^{\mathbb{M}} \subseteq A^n$, para cada símbolo predicativo $P^n \in \mathcal{P}$.

Definição 89. A função de avaliação v para uma interpretação $\mathbb{M} = (\mathcal{A}, \{f^{\mathbb{M}}\}_{f \in \mathcal{F}}, \{P^{\mathbb{M}}\}_{P \in \mathcal{P}})$ para $(\mathcal{P}, \mathcal{F})$ é o mapeamento de variáveis a valores do universo $v : \mathcal{V} \longrightarrow \mathcal{A}$.

Definição 90. O valor de um termo t em uma interpretação \mathbbm{M} é relativo à função de avaliação v e é definido indutivamente:

$$t^{\mathbb{M},v} = \begin{cases} v(t) & \text{se } t \in \mathcal{V} \\ f^{\mathbb{M},v}(t_1^{\mathbb{M},v},\dots,t_n^{\mathbb{M},v}) & \text{se } t = f(t_1,\dots,t_n) \end{cases}$$

Definição 91. Sejam $\mathbb{M} = (\mathcal{A}, \{f^{\mathbb{M}}\}_{f \in \mathcal{F}}, \{P^{\mathbb{M}}\}_{P \in \mathcal{P}})$ uma interpretação para $(\mathcal{P}, \mathcal{F})$, v uma função de avaliação, $x \in \mathcal{V}$ e φ, ψ em $\mathsf{FBF}_{\mathcal{L}_{PO}}$:

- 1. $\mathbb{M} \models_v P(t_1, \dots, t_n)$ se, e somente se, $(t_1^{\mathbb{M}, v}, \dots, t_n^{\mathbb{M}, v}) \in P^{\mathbb{M}}$;
- 2. $\mathbb{M} \models_v \neg \varphi$ se, e somente se, $\mathbb{M} \not\models_v \varphi$;
- 3. $\mathbb{M} \models_v \varphi \land \psi$ se, e somente se, $\mathbb{M} \models_v \varphi$ e $\mathbb{M} \models_v \psi$;
- 4. $\mathbb{M} \models_v \varphi \lor \psi$ se, e somente se, $\mathbb{M} \models_v \varphi$ ou $\mathbb{M} \models_v \psi$ ou ambos; ;
- 5. $\mathbb{M} \models_v \varphi \to \psi$ se, e somente se, $\mathbb{M} \models_v \neg \varphi \lor \psi$;
- 6. $\mathbb{M} \models_v \forall x \varphi$ se, e somente se, $\mathbb{M} \models_v \varphi[a \backslash x]$ para todo $a \in \mathcal{A}$;
- 7. $\mathbb{M} \models_v \exists x \varphi$ se, e somente se, $\mathbb{M} \models_v \varphi[a \setminus x]$ para algum $a \in \mathcal{A}$.

Lema 3. Seja M uma interpretação. Se φ é uma sentença, então

$$\mathbb{M}\models_v\varphi\iff\mathbb{M}\models_{v'}\varphi$$

para todas as funções de avaliação $v \in v'$.

Definição 92. Uma fórmula φ é satisfatível se existir uma interpretação \mathbb{M} e função de avaliação v tal que $\mathbb{M}_v \models \varphi$. Neste caso, dizemos que \mathbb{M}_v satisfaz φ ouque \mathbb{M}_v é um modelo para φ .

Definição 93. Uma sentença φ é satisfatível se existir uma interpretação \mathbb{M} tal que $\mathbb{M} \models \varphi$. Neste caso, dizemos que \mathbb{M} satisfaz φ ou é um modelo para φ .

Observação 7. Satisfatibilidade, tautologia, contradição, contingência, equivalência semântica, consistência de conjuntos, consequência lógica e validade já foram definidos.

\mathcal{R}_{γ}		\mathcal{R}_{δ}		
	$\forall x \varphi$	$\neg \exists x \varphi$	$\exists x \varphi$	$\neg \forall x \varphi$
	$\varphi[t \backslash x]$	$\neg \varphi[t \backslash x]$	$\varphi[t \backslash x]$	$\neg \varphi[t \backslash x]$
	onde $t \in \mathcal{T}$	onde $t \in \mathcal{T}$	onde $t \in \mathcal{C}$	onde $t \in \mathcal{C}$
	contém constantes	contém constantes	t é constante nova	t é constante nova

Tabela 2: Regras de Inferência em \mathcal{R}_{γ} e \mathcal{R}_{δ} para T.

6 Tableaux para Lógica de Primeira-Ordem

Definição 94. Uma fórmula é universalmente quantificada se for semanticamente equivalente a uma fórmula da forma $\forall x \varphi$, com $x \in \mathcal{V}$ e $\varphi \in \mathsf{FBF}_{\mathcal{L}_{PQ}}$.

Definição 95. Uma fórmula é existencialmente quantificada se for semanticamente equivalente a uma fórmula da forma $\exists x \varphi$, com $x \in \mathcal{V}$ e $\varphi \in \mathsf{FBF}_{\mathcal{L}_{PO}}$.

Definição 96. O cálculo dedutivo baseado em tableaux é o par $T = \langle \emptyset, \mathcal{R} \rangle$, onde $\mathcal{R} = \mathcal{R}_{\alpha} \cup \mathcal{R}_{\beta} \cup \mathcal{R}_{\gamma} \cup \mathcal{R}_{\delta}$. \mathcal{R}_{α} é o conjunto de regras aplicadas a fórmulas conjuntivas e a fórmulas da forma $\neg \neg \varphi$ (onde $\varphi \in \mathsf{FBF}_{\mathcal{L}_{PO}}$). \mathcal{R}_{β} é o conjunto de regras aplicadas a fórmulas disjuntivas. \mathcal{R}_{α} e \mathcal{R}_{β} são dados na Tabela 1. \mathcal{R}_{γ} é o conjunto de regras aplicadas a fórmulas universalmente quantificadas e \mathcal{R}_{δ} é o conjunto de regras aplicadas a fórmulas existencialmente quantificadas, conforme Tabela 2.

Definição 97. A construção da árvore de prova para um conjunto de fórmulas $\Gamma \subseteq \mathsf{FBF}_{\mathcal{L}_{PO}}$ e uma fórmula $\varphi \in \mathsf{FBF}_{\mathcal{L}_{PO}}$ é dada pelo seguinte procedimento:

```
1: Seja n = |\Gamma|;
2: para i=1; i \leq n faça
      Crie um nó na árvore e rotule com i, \gamma_i, [premissa];
5: Crie um nó na árvore e rotule com i, \neg \varphi, [negação da conclusão];
   para todo ramo h na árvore faça
      enquanto regras de inferência puderem ser aplicadas a h faça
7:
8:
        se Existe um nó rotulado por j e \psi, onde \psi existencialmente quantificada então
           Crie um nó em h e rotule-o com o primeiro número na sequência da numeração para h, acrescen-
9:
           tando a possível derivação a partir de \psi e [\delta, j, [t \setminus x]];
10:
           se Existe um nó rotulado por j e \psi, onde \psi universalmente quantificada então
11:
12:
             Crie um nó em h e rotule-o com o primeiro número na sequência da numeração para h, acres-
             centando a possível derivação a partir de \psi e [\gamma, j, [t \setminus x]];
           senão
13:
             Escolha um nó rotulado por j e \psi:
14:
             se \psi é uma fórmula conjuntiva então
15:
                Crie dois nós em h e rotule-os com um dos dois números na sequência da numeração para h,
16:
                as possíveis derivações a partir de \psi e [\alpha, j];
17:
```

se ψ é a dupla negação então

18:

```
Crie um nó em h e rotule-o com o primeiro número na sequência da numeração para h,
19:
                  acrescentando a possível derivação a partir de \psi e [\alpha,j];
               senão
20:
                  Crie dois nós e rotule-os com o mesmo número na sequência da numeração para h, com
21:
                  as possíveis derivações a partir de \psi e [\beta, j]; bifurque h e coloque um nó em h e outro na
                  bifurcação gerada;
                _{
m fim} se
22:
23:
             fim se
24:
           {\rm fim} \,\, {\rm se}
        fim se
25:
      fim enquanto
26:
27: fim para
```

Observação 8. As definições de haste aberta, haste fechada, árvore aberta, árvore fechada e dedução são as mesmas do Tableaux para a Lógica Proposicional.