

Welcome

TA201A Manufacturing Processes

Week-1

02 Aug, 2022

2022-2023 Semester-I

Lecture 1
Introduction to the Course

Acknowledgement Prof Vivek Verma, Dr. Sudhanshu S Singh and previous instructors

Instructor In-Charge:

Dr. Niraj Mohan Chawake

Materials Science & Engineering

Office: Faculty Building 412-A

Phone: 2181

Email: nchawake@iitk.ac.in

Lecture: Tuesday 09:00 - 09:50 (venue L20)

Lab: Monday-Friday 14:00 - 16:50 (Venue- Engineering Metallurgy Lab)

Lab In-charge: Mr. Anil Kr. Verma Ph. 7978; Email: akumarv@iitk.ac.in

Website:

https://hello.iitk.ac.in/node/3242

Day	Sections	Tutor	Email	Phone
Monday	C3, C4, C15, C16	Dr. Niraj M. Chawake	nchawake@	2181
Tuesday	C8, C9, C11, C20	Dr. Srinu Gangolu	srinu@	
Wednesday	C5, C6, C7, C18	Dr. Sudhanshu S. Singh	sudhanss@	6908
Thursday	C1, C2, C14, C17	Prof. Vivek Verma	vverma@	6527
Friday	C10, C12, C13, C19	Dr. Shikhar Misra	shikharm@	2257

- If your name or the section is not in the list
 - Please contact UG office to know your section
- Check with your departmental friends and try to come for the lab sessions

Teaching Assistants

Day	Roll No.	Name	Mobile no.	Email
Manday	21106033	V S S Manoj Kumar G	9030665844	mkumarg21@
Monday	18106261	Ajay Singh	8810647604	ajaysgh@
	21206261	Md Irfan Ali		irfanali21@
Tuesday	21106029	Satyam Shukla	7292882136/ 9918405672	skshukla21@
	21106031	Swastika Paul	9933744971	swastikap21@
Wednesday	21106028	Satabhisha Ghosh	8336857136/ 8777474679	sghosh21@
Th	21106287	Kunal Kishore	9113366358	kunalk21@
Thursday	21106288	Rajneesh Pandey	7000123327	rajneeshp21@
Feidor	18106268	Kaushal Shakya	8446774162	kashakya@
Friday	21106280	Shubham Jaiswal	7588779816	shubhampj21@
Following TA	s will be used	I for attendance and other job	bs related to the course.	
	21106286	Divanshu Kumar (Theory)	8008950284	divanshuk21@
	20106271	Murli Manohar (Theory)	9149973498	murlimhr20@
	18206267	Sandeep Kumar Sahni	7392848010	ssahni@

Theory: 40 % weightage of the total

#Midsem Exam : 40 % of Theory (Tutors + Instructor)

*Endsem Exam : 60 % of Theory (Tutors + Instructor)

Lab: 60% weightage of the total

Weekly lab quiz : 10% of lab (TAs + Lab In-charge)

Weekly Job : 10% of lab (Tas + Lab In-charge)

Lab examination : 20% of lab (Tutors + Lab In-charge)

Project Report : 10% of lab (Tutors + Lab In-charge + Instructor)

Project evaluation : 50% of lab (Tutors + Lab In-charge + Instructor)

Theory

- There will be a total of 11 lectures starting from 02 August 2022
- Attending 9 lectures or more will awarded 5% extra marks to theory component (unless scored 100%).

Attendance will be biometric and gates will be closed by 9:05 AM.

Labs

- Those attending all the labs will earn 5% extra marks in the lab component.
- No make-up lab will be provided for cultural/ sports activities or casual leaves.
- If you attend less than 10 labs, you will be deregistered from the course or will be awarded 'F' if the last date for deregistration is over.
- All the lab turns from E1 to E6 are mandatory. The only exception is medical emergency which must be approved by SUGC.
- Only SUGC approved medical cases will be given a makeup lab and any other kind of absence will automatically result in deregistration from the course.
- Absence from project turns (P1-P6) will invite a penalty of 10 marks in the project assuming that project is of 60 Marks (will be prorated appropriately).

Pass Percentage: 40%

- Endsem exam and contribution to Group Project are mandatory components of the course
- No makeup for the Midsem exam

- You must attend the lab as per schedule for your section only (Section change request has to be made to UG office)
- Safety
 - ✓ Appropriate dress/shoes (see manual)
 - ✓ Safety wears (gloves/shield/apron/eye-protection etc.)
 - ✓ Phones not allowed
- Bring lab manual on every turn
- Professional
 - ✓ Time, safety, courtesy, preparedness etc.

- Strictly adhere to lab timings:
- ✓ <u>For practice session:</u> A short-quiz at the start of the lab and that will be used for attendance for the first 5 turns. Go through lab-manual and videos on the link (provided by me) for preparation.
- ✓ For project Lab: Initial attendance (at sharp 2 PM) at the beginning of lab session. Final attendance while showing the work done.
- Attendance in lab is compulsory. Missing 2 lab turn lead to F-grade

Lab/Project Turns

- Practice turns (5):
 First to Fifth week
 - √ Five groups each day

- Practical laboratory examination & Drawing submission (1 turn)
- Project (6 turns)
- Project Evaluation (1 turn)

Lab Turn	Experiments	Group Project
E-1	Moulding and Casting	
E-2	Sheet-Metal Forming	Project group formation
E-3	Welding Process	Bring a minimum of three project ideas along with the rough sketch. One project idea will be finalized on this turn
E-4	Brazing	Discussion on a finalized project with proper drawing as per engineering norms, including parts drawing (with numbering and materials)
E-5	Object Fabrication	A final discussion on drawing and process (Bring complete report)
LE-1	Lab Exam (Students will be given a task that need perform on the same day)	Final drawing submission.
P-1		
P-2		
P-3		Project
P-4		
P-5 P-6		
P-7		Project Evaluation

- Moving parts in the project will be given extra credit during evaluation.
- Size of the project: 40 cm × 40 cm × 40 cm (strictly to be followed)
 and Total weight for casting objects should not exceed 1.5 kg.
 Play with aluminium and cast iron per project.
- Oversize/overweight project will affect your final evaluation.
- The Total Project Weight not exceeded 5 Kg.
- External color/paint can NOT be used. Don't polish/grind cast component used in your project.

Recommended Readings

- Fundamentals of Modern Manufacturing: Materials, Processes and Systems, Mikell P. Groover
- Fundamentals of Manufacturing Processes, G.K. Lal and S.K. Choudhury
- Materials & Processes in Manufacturing, E. P. DeGarmo, J.T. Black and R. Kohser
- Manufacturing Engineering and Technology, S. Kalpakjian
- E.P. DeGarmo: Materials and Processes in Manufacturing, Macmillan

- There are several courses at NPTEL website
- □ https://nptel.ac.in/courses/112106153
- □ https://nptel.ac.in/courses/112107144
- https://onlinecourses.nptel.ac.in/noc22_me28/preview
- https://archive.nptel.ac.in/courses/112/107/112107077/
- □ https://nptel.ac.in/courses/112104122

Some earlier projects from your seniors

Some earlier projects from your seniors

Some earlier projects from your seniors

Objectives of the course

To discuss and demonstrate fundamental manufacturing process:

- Casting/ solidification
- Metal working processes
- Welding and heat treatment
- Various Powder metallurgical processing routes and to discuss the mechanisms of sintering metallic and ceramic solids
- Plastic injection moulding
- Brazing Process

Objectives of the course

- At the end of this course, whenever you look at a component, you should start asking questions like:
 - ✓ How to manufacture this Engineering Product?
 - √ What material was used for this product?
 - ✓ What are other materials that can be used?
 - ✓ What process was used?
 - ✓ What are other Processes that can be used?
 - ✓ What are the deciding factors for Q2-Q5?
- Hands-on experience: Project
- Project will test Your Craftsmanship

Lecture No.	Topic
1/2	Introduction to Course and Introduction to manufacturing:
2, 3, 4	Engineering Materials: Engineering materials - classification Structure of materials Types of materials Properties of materials Microstructure-property interrelationship
5, 6	Casting/ Solidification: Classifications of casting processes Patterns, Core making, Gating system Solidification of pure metals and alloys, shrinkage, gas solubility Riser design Investment casting Casting defects

Lecture No.	Topic
7, 8	Joining processes: Fusion welding: Arc (MMAW, SAW, SMAW), Gas welding and resistance welding Fusion zone, Heat affected zone (HAZ) Brazing and Soldering Solid state welding processes Thermit welding
9, 10	Deformation processes: Engineering stress-strain curve Effect of temperature on the workability Extrusion (direct and indirect) Rolling - classification, roll camber, defects Forging (open and closed-die) Wire drawing Defects and Sheet-metal forming
11	Powder Metallurgy Plastic Injection Moulding

Q Search Quora

What's the point of courses like TA201 and TA202 in IIT Kanpur?

Manufacturing... Historical perspective

Thomas Newcomen

Steam engine to pump water out

Ransom E. Olds Assembly Line

Robots

Toyoto

Rethink Robotics

5000 BCE

Wheel

1712 James Watt

1901

1926

1948

2009

Industrial revolution

Televox

Lean

manufacturing

Delhi Iron Pilar

The Rustless Wonder

Late Prof R Balasubramaniam MSE, IIT Kanpur

We have lost the manufacturing process

 \odot

A picture is worth a thousand words

WHY REINVENT THE WHEEL WHEN YOU DON'T HAVE TO?

Use of Rolling

Pipes

Manufacturing ????

- Manufacture is derived from the Latin words
 - Manus (hand) & Factus (make)

Definition:

The application of physical and chemical processes to alter the geometries/shape, properties and appearance of a starting material in order to make and assemble it into a product.

- What is Manufacturing?
 - ✓ Making and assembling of goods & articles
 - ✓ Shaping & treating materials to perform desirable functions

Manufacturing... producing wealth?

List of c	ountries by manufacturin	g output	
Rank	Country or region	Millions of \$US	Year
	<u>World</u>	13,739,251	2019
1	<u>China</u>	3,853,808	2020
2	<u>United States</u>	2,269,200	2020
3	<u>Japan</u>	1,027,967	2018
4	Germany	678,292	2020
5	South Korea	406,756	2020
<mark>6</mark>	India	<mark>365,030</mark>	<mark>2020</mark>
7	<u>Italy</u>	280,436	2020
8	<u>France</u>	241,715	2020
9	<u>United Kingdom</u>	227,144	2020
10	<u>Indonesia</u>	210,396	2020
11	<u>Russia</u>	196,649	2020
12	<u>Mexico</u>	185,080	2020
13	<u>Canada</u>	159,724	2017
14	<u>Ireland</u>	153,311	2020
15	<u>Spain</u>	143,052	2020
16	<u>Brazil</u>	141,149	2020
17	<u>Turkey</u>	135,596	2020
18	<u>Switzerland</u>	133,766	2020
19	<u>Thailand</u>	126,596	2020
20	<u>Netherlands</u>	99,940	2020

Wikipedia

Classification of Manufacturing Processes

Processing Operation

- Alters shape, physical properties, or appearance of a material to add value
- Three categories of processing operations:
 - Shaping operations alter the geometry of the starting work material
 - <u>Property-enhancing operations</u> improve physical properties without changing shape
 - <u>Surface processing operations</u> to clean, treat, coat, or deposit material on exterior surface of the work.

Shaping Process

- Solidification processes starting material is a heated liquid or semi-fluid
- Particulate processing Starting material consists of powders
- Deformation processes starting material is a ductile solid (commonly metal)
- Material removal processes starting material is a ductile or brittle solid

Property Enhancing Process

- Performed to improve mechanical or physical properties of work material
 - Heat treatment of metals and glasses
 - Sintering of powdered metals and ceramics
- Part shape is not altered, except unintentionally
 - Unintentional warping of a heat treated part

Surface Processing Operations

- Operation is carried out only on the surface
- No change in shape and size is intended
 - Sand blasting
 - Case-hardening
 - Coating and deposition processes (eg. chromium plating)

Assembly Operations

- Join two or more components to create a new entity
- Two types are
 - Permanent (eg. welding)
 - Mechanically fastened (eg. threaded fasteners)

RIVETING OF SHEET METAL

WORK IS SET IN PRE MADE HOLES

ENERGY FROM DIE COMPRESSION FORMS RIVET

Automotive Industry

Top 20 motor vehicle producing countries (2021)

Country	Motor vehicle production (uni
China	26,082,220
USA	9,167,214
Japan	7,846,955
India	4,399,112
South Korea	3,462,404
Germany †	3,308,692
Mexico	3,145,653
Brazil	2,248,253
Spain	2,098,133
Thailand	1,685,705
Russia	1,566,317
France †	1,351,308
Turkey	1,276,140
Indonesia	1,121,967
Canada	1,115,002
Czech Republic	1,111,432
Slovakia	1,000,000
United Kingdom	932,488
Iran	894,298
Italy	795,856

Where does India stand in automotive industry?

Largest TRACTOR manufacturer

Largest TWO WHEELER manufacturer

2nd Largest **BUS** manufacturer

3rd Largest **HEAVY TRUCK** manufacturer

4th Largest CAR manufacturer

6th Largest COMMERCIAL VEHICLE manufacturer

ACMA: Automotive Component Manufacturers Association of India

SIAM: Society of Indian Automobile Manufacturers

Export from India

Vehicles Exported From India

Maruti - Alto

Maruti - A Star

Tata - Indica

Mahindra - Bolero

Hyundai - i10

Hyundai - EON

Hyundai - i20

Nissan - Micra

Volkswagon - Polo

Bajaj Auto - Pulsar

Hero MotoCorp - Splendor

(Illustrative List) 12

Export from India

Vehicles Exported From India

Mahindra - Maxx

Mahindra - Alfa

Mahindra - Gio

Piaggio - Ape

Bajaj - Auto

Tata - Magic

Tata

Mahindra

Ashok Leyland
(Illustrative List)

