

Jan Meier

Seminar: Experimental Methods in Atomic Physics
May, 8th 2007

Overview

- Antimatter and CPT theorie
 - what is antimatter?
 - what physics does it follow to?
- First observations of antimatter
- Natural sources of antimatter
- Artificial sources of antimatter and experiments with antihydrogen
 - PS210, E862 (first detections of \overline{H})
 - ATHENA, ATRAP (spatial and velocity distribution and temperature measurements)
 - ALPHA (trapping of H̄)
 - AEGIS (gravity measurement)

Antimatter and CPT theorie

Prediction of antimatter

1928 - Paul Dirac (Nobel prize 1933)

Dirac equation of a free electron

$$\left(i\hbar\frac{\partial}{\partial t} + i\hbar c\,\vec{\hat{\alpha}}\cdot\vec{\nabla} - \hat{\beta}m_e c^2\right)\vec{\Psi}(\vec{r},t) = \vec{0}$$

solution delivers two energy eigenvalues:

$$E_{\pm} = \pm \sqrt{c^2 |\vec{p}|^2 + m_e^2 c^4}$$

Does negative enery eigenvalue have physical meaning?

$$\hat{\beta} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

$$\vec{\hat{lpha}} = egin{pmatrix} \hat{lpha}_x \\ \hat{lpha}_y \\ \hat{lpha}_z \end{pmatrix}$$

$$\hat{\alpha}_x = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

$$\hat{\alpha}_{x} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \qquad \hat{\alpha}_{y} = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix} \qquad \hat{\alpha}_{z} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$$

$$\hat{\alpha}_z = \begin{vmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{vmatrix}$$

Dirac interpretation

1949 Feynman-Stückelberg interpretation

- Positron is a particle (not a "hole")
- Positron is a (positively charged) electron, travelling backwards in time

CPT-Theory

Transformations C, P and T:

C (charge conjugation)
$$q \rightarrow -q$$
; $B \rightarrow -B$...

P (parity inversion)
$$\vec{x} \rightarrow -\vec{x}$$

T (time inversion)
$$t \rightarrow -t$$

CPT transformation:

$$f(q, \vec{x}, t) \rightarrow f(-q, -\vec{x}, -t)$$

CPT Symmetry

A CPT transformation transforms a particle into its corresponding anti-particle

⇒ Standard Model:

For every particle type there is a corresponding antiparticle type

(some electrically neutral bosons, like Z^0 , γ and $\eta_c^=$ are their own antiparticles)

CPT invariance

under certain conditions, relativistic quantum field theories say:

Physics (i.g. all physical laws, equations, processes) is invariant under CPT transformations

Prospect of H spectroscopy

The most precise CPT Tests

Violation of CPT invariance

Historical: P (theory:Lee,Yang; Exp.:Wu), CP violations (J.H. Christenson)

```
(C.S. Wu et al., Phys. Rev. 105 (1957) 1413)
(J.H. Christenson et al., Phys. Rev. Lett. 13 (1964) 138)
```

- String theory
- Kostelecky (standard model extension)

•

Matter-antimatter asymmetry

possible explanations:

- CPT violation, breaking of Baryon number conservation
- CP violation, breaking of Baryon number conservation, out of equilibrium situation

First observations of antimatter

First detection of antimatter

1932 - Carl Anderson (Nobel prize 1936)

secondary cosmic rays

cloud chamber

From particle track:

$$q_{Positron} < +2e$$

$$m_{Positron} < 20 m_e$$

"Positron" (e⁺)

(C.D. Anderson, Phys. Rev. 43 (1933) 491)

Further detections of antiparticles

- 1955 <u>antiproton</u> at Lawrence Berkeley National Laboratory (Chamberlain, Sergé, Wiegand, Ypsilantis)
- 1956 antineutron (B. Cork)

Natural sources of antimatter

• Beta(plus)-decay

$$^{22}_{11}Na \rightarrow ^{22}_{10}Ne + e^{+} + \nu_{e}$$

secondary cosmic rays

$$e^+,\mu^+,\pi$$

Is there antimatter in (primary) cosmic rays?

1998 - AMS-01

ten day flight on Discovery

"prototype" $m \sim 3 \text{ tons}$

No evidence for primary antimatter!

2009 - 2012 AMS-02

three years on ISS

 $m \sim 7 \text{ tons}$

Goal: detection of He, \overline{He} and heavier nuclea

Artificial sources of antimatter and experiments with \overline{H}

antiproton production

principle (since 1954):

particle-antiparticle pairs like \bar{p} ,p

 \bar{p} intensity 10^7

PS210 Experiment (1995 first H detection)

PS (Proton Synchrotron) at CERN

PS210 at LEAR (Low Energy Antiproton Ring) p = 1.94GeV/c

11 H detected!

e-,e+ pair creation is a <u>rare</u> process

- only if \bar{p} , Z get close
- two photon collision

 \overline{H} production only if rel. energy \overline{p} , e+ < 13.7 eV

probability = 0.000 000 000 000 000 01 %

E862 at Fermilab (1996)

AD (Antiproton Decelerator) (since July 2000)

deceleration and cooling $p_{\bar{p}}$: 3.5 -> 0.1 GeV/c

- ATHENA (2002) (\overline{H} detection by detector)
- ATRAP (2002) (H
 detection by reionization)

The ATHENA experiment

positron production

Antiproton capturing

Antiproton positron mixing

"Mixing trap": nested potential with **both** positive and negative ions

• production of several million \overline{H} between 2002 and 2004

H detection

CsI crystal calorimeter

Si strips to "follow the path"

Discriminate Antihydrogen Annihilation from background of Antiproton annihilation and Positron annihilation

Good spatial resolution (< 1 cm) of vertex for

- Antiproton Annihilation (≥ 2 prongs)
- Positron Annihlation (2 x 511 keV γ)

Time coincidence (~ 1 μsec) High rate capability

ATHENA measurements

Measurement of the spatial distribution of \overline{H} in dependence of e^+ plasma temperature

model:

- spatial distribution is independent of e⁺ plasma temperature
- H is not emitted isotropically

temperature measurement

Model:

- -Recombining \bar{p} rotate with e⁺ plasma; isotropically produced \bar{H} propagates with momentum of \bar{p}
- -using two temperatures to describe nonequilibrium conditions
- -spatial distribution measurement provides temperature ratio

from measurement:
$$T_{\overline{p}}^{para} = (10 \pm 2) T_{\overline{p}}^{perp}$$

$$\begin{array}{c} \text{Cold mixing} \\ T_{\overline{p}}^{\parallel} = T_{\overline{p}}^{\parallel} = 15K \\ T_{\overline{p}}^{\parallel} = 10x(T_{\overline{p}}^{\perp} = 15K) \\ T_{\overline{p}}^{\parallel} = 2.3x(T_{\overline{p}}^{\parallel} > 1000K) \\ T_{\overline{p}}^{\parallel} = 2.3x(T_{\overline{p}}^{\parallel} > 1000K) \\ \end{array}$$

$$\begin{array}{c} \text{With} \quad T_{\overline{p}}^{perp} \geq 15K \\ \text{temperature} \\ \end{array}$$

$$\Rightarrow T_{\overline{p}}^{para} \geq 150K$$

$$\Rightarrow T_{\overline{p}}^{para} \geq 150K$$

 \bar{p} and e⁺ are not in thermal equilibrium i.g. cooling rate is much lower than recombination rate!

Temperature measurement at ATRAP

Measurement of velocity distribution:

- Oscillating field (at radiofrequencies)
- Ionization probability in oscillating field is higher for slower \overline{H}
- detection of ionized \overline{H} (antiprotons)

Best fit for : $\overline{E}_{kin} = 200 \text{meV}$

corresponds to $T_{\overline{H}} = 2400 \text{K}$

(G. Gabrielse, Phys. Rev. Lett. 93 (2004) 073401)

The ALPHA Project (since 2006, successor to ATHENA)

- •Goal: <u>Trapping H</u> for spectroscopy!
- •Since \overline{H} is neutral it can not be trapped in a Penning trap!
- •Other method: using magn. momentum of \overline{H}
- •But: How deep is such a trap? How hot is \overline{H} allowed to be?

Summary:

- ATRAP:
 - $-T_{\overline{H}} \approx 2400 \text{ K}$
- ATHENA:
 - $-T_{\overline{H}} \ge 150 \text{ K}$

H trapping with magn. quadrupole

$$|\vec{B}_r|$$

$$|\vec{B}| = \sqrt{B_{sol}^2 + B_r^2}$$

$$\Rightarrow \Delta \vec{B} = \sqrt{B_{sol}^2 + B_r^2} - B_{sol}$$

AEGIS project (planned to be in AD)

Goal: direct measurement of \mathbf{g} for $\overline{\mathbf{H}}$

In AEGIS: With two gratings and position dependent detector

Precision: ~1%

conclusion

- Low temperatures needed for trapping \overline{H} and to
 - do spectroscopy experiments (CPT test; precision 10¹³!!!)
 - test gravity for antimatter
- Temperatures still to high for trapping!
- Challange: Cooling of negative ions (\bar{p}) to build \bar{H} at very low temperatures (~mK)
- Futher cooling of \overline{H} with lasercooling (if convenient lasersystems are developed)

Thank You for Your attention!