MANOJ KUMAR - 2048015

R-Laboratory 10 12/04/2021

d))

1.Load the necessary packages for clustering.

```
library(tidyverse) # data manipulation
## - Attaching packages -
                                ——— tidyverse 1.3.0 —
## / ggplot2 3.3.3 / purrr 0.3.4
## ✓ tibble 3.0.3

√ dplyr 1.0.4
## / tidyr 1.1.1
                     ✓ stringr 1.4.0
## / readr 1.4.0
                      ✓ forcats 0.5.1
## - Conflicts -
                         ----- tidyverse_conflicts() ---
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(cluster) # clustering algorithms
library(factoextra) # clustering visualization
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve
3WBa
library(dendextend) # for comparing two dendrograms
##
## Welcome to dendextend version 1.14.0
## Type citation('dendextend') for how to cite the package.
## Type browseVignettes(package = 'dendextend') for the package vignette.
## The github page is: https://github.com/talgalili/dendextend/
## Suggestions and bug-reports can be submitted at: https://github.com/talgalili/dend
extend/issues
## Or contact: <tal.galili@gmail.com>
##
##
   To suppress this message use: suppressPackageStartupMessages(library(dendexten
```

```
##
## Attaching package: 'dendextend'

## The following object is masked from 'package:stats':
##
## cutree

library(corrplot) # corrplot
```

```
## corrplot 0.84 loaded
```

2. Remove the unnecessary data.

df <- USArrests
df</pre>

	Murder <dbl></dbl>	Assault <int></int>		U	rbanF <i< th=""><th>Pop nt></th><th></th><th>Rape <dbl></dbl></th></i<>	Pop nt>		Rape <dbl></dbl>
Alabama	13.2	236				58		21.2
Alaska	10.0	263				48		44.5
Arizona	8.1	294				80		31.0
Arkansas	8.8	190				50		19.5
California	9.0	276				91		40.6
Colorado	7.9	204				78		38.7
Connecticut	3.3	110				77		11.1
Delaware	5.9	238				72		15.8
Florida	15.4	335				80		31.9
Georgia	17.4	211				60		25.8
1-10 of 50 rows		Previous	1	2	3	4	5	Next

```
df <- na.omit(df)</pre>
```

```
# Compute correlation matrix

res <- cor(df)
corrplot(res, type = "upper", order = "hclust", tl.col = "black", tl.srt = 45)</pre>
```


3. Scale/Standardise the data.

```
df <- scale(df)
head(df)
##
                 Murder
                          Assault
                                    UrbanPop
## Alabama
             1.24256408 0.7828393 -0.5209066 -0.003416473
## Alaska
             0.50786248 1.1068225 -1.2117642 2.484202941
             0.07163341 1.4788032 0.9989801 1.042878388
## Arizona
## Arkansas
             0.23234938 0.2308680 -1.0735927 -0.184916602
## California 0.27826823 1.2628144 1.7589234 2.067820292
## Colorado
             0.02571456 0.3988593 0.8608085 1.864967207
```

4.Perform Agglomerative Hierarchical Clustering by computing dissimilarity values and perform any hierarchical clustering method like complete linkage and then plot the dendogram.

```
# Dissimilarity matrix
d <- dist(df, method = "euclidean")

# Hierarchical clustering using Complete Linkage
hc1 <- hclust(d, method = "complete")

# Plot the obtained dendrogram
plot(hc1, cex = 0.6, hang = -1)</pre>
```

Cluster Dendrogram

d hclust (*, "complete")

```
# Compute with agnes
hc2 <- agnes(df, method = "complete")

# Agglomerative coefficient
hc2$ac</pre>
```

[1] 0.8531583

```
# methods to assess
m <- c( "average", "single", "complete", "ward")
names(m) <- c( "average", "single", "complete", "ward")

# function to compute coefficient
ac <- function(x) {
   agnes(df, method = x)$ac
}

map_dbl(m, ac)</pre>
```

```
## average single complete ward
## 0.7379371 0.6276128 0.8531583 0.9346210
```

```
hc3 <- agnes(df, method = "ward")
pltree(hc3, cex = 0.6, hang = -1, main = "Dendrogram of agnes - ward")</pre>
```

Dendrogram of agnes - ward

df agnes (*, "ward")

```
hc3 <- agnes(df, method = "single")
pltree(hc3, cex = 0.6, hang = -1, main = "Dendrogram of agnes - single")</pre>
```

Dendrogram of agnes - single

df agnes (*, "single")

```
hc3 <- agnes(df, method = "average")
pltree(hc3, cex = 0.6, hang = -1, main = "Dendrogram of agnes - average")</pre>
```

Dendrogram of agnes - average

df agnes (*, "average")

Sub-Group

```
# Ward's method
hc5 <- hclust(d, method = "ward.D2" )

# Cut tree into 4 groups
sub_grp <- cutree(hc5, k = 5)

# Number of members in each cluster
table(sub_grp)</pre>
```

```
## sub_grp
## 1 2 3 4 5
## 7 12 4 15 12
```

```
plot(hc5, cex = 0.6)
rect.hclust(hc5, k = 5, border = 2:5)
```

Cluster Dendrogram

d hclust (*, "ward.D2")

```
fviz_cluster(list(data = df, cluster = sub_grp))
```


5. Determine optimal number of clusters

```
# Elbow Method
fviz_nbclust(df, FUN = hcut, method = "wss")
```



```
# Average Silhouette Method
fviz_nbclust(df, FUN = hcut, method = "silhouette")
```



```
# Gap Statistic Method
gap_stat <- clusGap(df, FUN = hcut, nstart = 25, K.max = 10, B = 50)
fviz_gap_stat(gap_stat)</pre>
```

