Understanding Gradients

Loss = Ypredicted - Yactual

Loss = Ypredicted - Yactual

Error in the prediction for a single row of data

For a single neuron,

Gradient(Θ) = ($\partial \Theta / \partial W_1$, $\partial \Theta / \partial b_1$)

For a network,

Gradient: Tensor of all partial derivatives

Gradient: $(\partial \Theta/\partial W_1, \partial \Theta/\partial b_1, \partial \Theta/\partial W_2, \partial \Theta/\partial b_2, ..., \partial \Theta/\partial W_M, \partial \Theta/\partial b_M)$

There are many ways of calculating these gradients & PyTorch uses a way called Automatic Differentiation

This is achieved using the library called Autograd

Gradient(Θ^t)

Gradient(Θ^t)

Calculated at a specific instance t

Parameters^{t+1} = Parameters^t - learning_rate * Gradient(Ot)

Change each parameter value by deducting the respective gradient multiplied by the learning rate

Visualizing Gradient Descent

Parameters^{t+1} = Parameters^t - learning_rate * Gradient(Ot)

Change each parameter value by deducting the respective gradient multiplied by the learning rate

Visualizing Gradient Descent

Choosing the value of learning rate

If learning rate is too small then parameters take a very long time to converge

Choosing the value of learning rate

If learning rate is too small then parameters take a very long time to converge If learning rate is too big then there's a chance that parameter values will explode and never converge

Choosing the value of learning rate

Small but just right value of learning rate

