

«Are Mutation Scores Correlated with	2018	ICSE	
Real Fault Detection?》			
《Automated Vulnerability Detection in Source Code Using Deep Representation Learning》	2018	ICMLA	
《Big Code!= Big Vocabulary- Open- Vocabulary Models for Source Code》	2020	ICSE	

What is the relation between mutants and real faults?

Table 1: Summary of studies investigating the relationship between mutants and real faults.

Author(s) [Reference]	Year	Largest Subject	Language	Considered Test Size	No Faults	Summary of Scientific Findings
Daran & Thévenod-Fosse [10]	96	1,000	С	×	12	Mutants result in failures and program data states that are similar to those produced by real faults.
Frankl et al. [14]	'97	78	Fortran, Pascal	✓	9	Fault detection probability is increasing at higher mutation score levels. The increase is non-linear.
Andrews et al. [3]	'05	5,000	С	✓	38	Mutants detection ratios are representative of fault detection ratios
Andrews et al. [4]	'06	5,000	С	×	38	Mutants detection ratios are representative of fault detection ratios
Papadakis & Malevris [37]	'10	5,000	C	×	38	1 st order mutation has higher fault detection than 2 nd order and mutant sampling. Then are significantly less equivalent 2nd order mutants than 1 st order ones.
Namin & Kakarla [28]	'11	5,000	С	\checkmark	38	There is a weak correlation between mutant detection ratios and real fault detection ratio
Just <i>et al.</i> [24]	'14	96,000	Java	×	357	There is a strong correlation between mutant detection ratios and real fault detection ratios
Shin et al. [40]	'17	96,000	Java	×	352	Distinguishing mutation adequacy criterion has higher fault detection probability than strong mutation adequacy criterion
Ramler et al. [38]	'17	60,000	Java	×	2	Mutation testing helps improving the test suites of a safety-critical industrial software system by increasing their fault detection potential.
Chekam et al. [8]	'17	83,100	С	✓	61	Mutation testing provides valuable guidance for improving test suites and revealing real faults. There is a strong connection between mutation score increase and fault detection at higher score levels.
This paper	'18	96,000	C & Java	✓	420	There is a weak correlation between mutation score and real fault detection. Despite the weak correlations, fault detection is significantly improved at the highest score levels.

Randoop、EvoSuite

- Create a large number of test suites
- Measure the criteria score such as coverage or mutation score (if test suites are size controlled) of the test suites or their size (if test suites are score controlled).
- Measure the fault detection capability of the test suites, by measuring either number or ratio of detected faults.
- Determine the test effectiveness based on one of the two following methods:
 - 1) fault detection ratios and criteria scores
 - 2) fault detection ratios at predefined score

Figure 1: Mutation Score and Test suite size of the Passing and Failing Test Suites. Failing Test Suites have higher mutation scores and suite sizes than the Passing ones.

Figure 3: Correlation between mutation score and fault detection. Correlations are relatively strong when test suite size is uncontrolled but drop significantly when test suite size is controlled.

Figure 4: Improvement on the fault detection probabilities (intervals) with test suite size controlled. The values represent the difference on the fault detection probabilities between the test suites with the highest mutation score and randomly selected ones (top 10% of test suites Vs randomly selected). We observe that mutants lead to significant fault detection improvements.

2018 ICMLA

Compiled a vast <u>dataset</u> of millions of open-source functions and labeled it with carefully-selected findings from three different static analyzers that indicate potential exploits.

Developed a fast and scalable <u>vulnerability detection tool</u> based on deep feature representation learning that directly interprets lexed source code.

not labeled

not labeled

2018 ICMLA

	labeled code snippet	code	code
	SATE IV	GitHub	Debian
Total Passing curation 'Not vulnerable' 'Vulnerable'	121,353 11,896 6,503 (55%) 5,393 (45%)	9,706,269 782,493 730,160 (93%) 52,333 (7%)	3,046,758 491,873 461,795 (94%) 30,078 (6%)

TABLE I: Total number of functions obtained from each data source, the number of valid functions remaining after removing duplicates and applying cuts, and the number of functions without and with detected vulnerabilities.

2018 ICMLA

Lable

Static analysis

Clang, Cppcheck, Flawfinder

Dynamic analysis —— take too much effort

Commit-message/bug-report tagging—— challenging, providing low-quality labels

2018 ICMLA

Fig. 1: Illustration of our convolutional neural representation-learning approach to source code classification. Input source code is lexed into a token sequence of variable length ℓ , embedded into a $\ell \times k$ representation, filtered by n convolutions of size $m \times k$, and maxpooled along the sequence length to a feature vector of fixed size n. The embedding and convolutional filters are learned by weighted cross entropy loss from fully-connected classification layers. The learned n-dimensional feature vector is used as input to a random forest classifier, which improves performance compared to the neural network classifier alone.

2018 ICMLA

Fig. 2: Precision versus recall of different ML approaches using our lexer representation on Debian and Github test data. Vulnerable functions make up 6.5% of the test data.

Fig. 3: SATE IV test data ROC, with true vulnerability labels, compared to the three static analyzers we considered. Vulnerable functions make up 43% of the test data.

2020 ICSE

OOV (Out of Vocabulary)

If identifiers were not observed in the training set, many classes of models cannot predict them, which is known as the out-of-vocabulary (OOV) problem.

2020 ICSE

LM (Language Model)

A language model (LM) estimates the probabilities of sequences of words based on a training corpus.

NLM (Natural Language Model)

- The current state-of-the-art in NLP.
- NLMs represent words in a continuous vector space, allowing the model to infer relationships between words, even if they do not appear in a specific context during training.

Difficulties with Large Vocabularies

Scalability

OOV

Rare Words

Modeling Vocabulary

2020 ICSE

Filtering the vocabulary

English、White space、Comments、String

Full token vocabularies range in the millions, and hence do not scale. OOV and frequency issues are extremely important.

Word Splitting

Word splitting is effective, but the vocabulary is still large (a million words). OOV and frequency issues are still important.

Modeling Vocabulary

2020 ICSE

3

Subword splitting

Number、Spiral、Other approach

While these strategies are effective, they do not go far enough; vocabulary stays in the hundreds of thousands range. There are still OOV issues for unseen data; most words are uncommon.

Subword splitting with BPE

BPE is an algorithm originally designed for data compression, in which bytes that are not used in the data replace the most frequently occurring byte pairs or sequences.

(S1, S2) S1S2 BPE shrinks source code vocabulary very effectively. Moreover, most of the vocabulary is frequent, improving embeddings.

Table 2: Performance of the various models (bold: best, underlined: second best).

		Java								Java Identifiers			С				hon		
MODEL	St	tatic	Dyn	amic	Maint	enance	Bugs	2	Dynami	ic	St	atic	Dyn	amic	St	tatic	Dyn	amic	
	Ent	MRR	Ent	MRR	Ent	MRR	% Ent ↓	R@1	R@10	MRR	Ent	MRR	Ent	MRR	Ent	MRR	Ent	MRR	
Small Train Code Completion											Scenarios								
n-gram	6.25	53.16	5.54	56.21	5.30	58.32	1.81	17.24	34.66	22.26	6.51	55.20	4.14	57.34	5.30	43.63	4.81	47.39	
Nested	4	-	3.65	66.66	2.94	71.43	-	37.46	56.85	43.87	=0	-	3.61	62.25	=	-	4.05	54.02	
Cache	=	-	3.43	69.09	3.32	70.23	-	40.13	59.52	46.57	-	-	2.19	75.09	<u>e</u>	-	3.22	62.27	
Nested Cache	-	-	2.57	74.55	2.23	77.04	-	49.93	<u>70.09</u>	<u>56.81</u>	-	-	2.01	76.77	-	-	2.89	65.97	
Closed NLM	4.30	62.28	3.07	71.01	_	<u></u>	1.81	30.96	49.93	37.20	4.51	60.45	3.20	72.66	3.96	81.73	3.34	84.02	
Heuristic NLM	4.46	53.95	3.34	64.05	-	=	1.04	39.54	58.37	45.28	4.82	52.30	3.67	61.43	4.29	65.42	3.56	71.35	
BPE NLM (512)	4.77	63.75	2.54	77.02	1.60	78.69	3.26	45.49	67.37	52.66	4.32	62.78	1.71	76.92	3.91	81.66	2.72	86.28	
BPE NLM (512) + cache	-	98	-	77.42	. 5	=	-	50.49	68.16	56.30	-		-	-	-	-	-	-	
BPE NLM (2048)	4.77	64.27	2.08	77.30	-	-	3.60	48.22	69.79	55.37	4.22	64.50	1.59	78.27	3.66	81.71	2.69	86.67	
BPE NLM (2048) + cache		-	-	78.29	: - :	-	-	52.44	70.12	58.30	-	: -	1 -	-	=	-	-	=	
Large Train													F	RQ1	. Pe	rfo	rma	ance	of Models
Nested Cache	<u>=</u>	_	2.49	75.02	2.17	77.38	_	52.20	72.37	59.09	=	_	1.67	84.33	_	-	1.45	71.22	
BPE NLM (512)	3.15	70.84	1.72	79.94	1.04	81.16	4.92	51.41	<u>74.13</u>	59.03	3.11	70.94	1.56	77.59	3.04	84.31	2.14	87.06	
BPE NLM (512) + cache	-	12	_	80.29	=	_	_	55.68	74.30	61.94	<u>=</u> 2	-	12	12	=	-	-	-	
BPE NLM (2048)	2.40	75.81	1.23	82.41	-	-	5.98	57.54	72.18	62.91	2.38	80.17	1.36	83.24	2.09	86.17	1.90	87.59	
BPE NLM (2048) + cache	-	-	-	83.27	-	=	-	60.74	73.76	65.49	-	W =	-	-	-	=	-	-	

- 2022 - THANK YOU

THNAK YOU