

Week 3 Financial Decision making

BN2255 – Business Analytics in Practice

Topics of this presentation

- Interest rates and inflation
 - The time-value of money
- Compounding formula
- Present value and NPV

Interest and inflation

- A given amount of money is worth more now than in the future. Why?
 - future is uncertain
 - inflation
 - opportunity cost we could always take the money now, invest it and withdraw a higher amount in the future
- The value of money over time is given by the interest rate
 - $P_n = P_0^*(1+i)$, where
 - P_n is the principal at the end of the investment
 - P₀ is the starting principal (starting capital)
 - i is the interest rate for the whole investment
- When taking inflation into account:
 - Real interest rate = nominal (actual) interest rate inflation rate

Compounding formula

- For multiple time periods:
 - $P_n = P_0^*(1+i)^n$, where
 - n is number of period our starting capital is compounded
 - known as the compound interest formula, the cornerstone of financial decision-making
- Can be rearranged to derive:
 - the sum we must invest now in order to be able to withdraw a given sum after a given number of periods
 - $P_0 = P_n / ((1+i)^n)$
 - the rate of interest that will increase the starting capital to a given future sum after a given number of periods
 - $i = (P_n / P_0)^{(1/n)} -1$

Present value

- Present value: the value of a future payment in today's money
 - How much is £1000 in two year's time worth now?
 - $PV = P_x / ((1+i)^n(n_x))$
- Assumes:
 - No risk involved in waiting
 - Stable (constant) interest rates
 - No inflation (although we can accommodate a constant rate of inflation)
- PV essentially converts all payments to a common value, ie money valued in the present
- Necessary for valuating investments!

Net present value (NPV)

- Most common approach on investment valuation
- Steps:
 - Calculate the sum of the present value of all future inflows from the investment
 - Include the residual value of the investment!
 - Calculate the sum of the present value of all outflows (present and future)
 - Include the actual cost of the investment!
 - The difference of the two is the net present value of the investment
 - If positive, the investment is worthwhile; if negative, the investment should not be undertaken
- Main issue: how to derive an appropriate interest rate?
 - use cost of capital
 - the costs required to finance the investment (eg the bank's interest rate)
 - the opportunity cost of the capital (what return would we expect if we invested that amount to another project/product?)

Extra reading...

- Financial decision-making is covered in most textbooks that deal with quantitative techniques in business
- See for example:
 - Quantitative Methods for Decision Makers, Wisniewski Chapter 15
 - Quantitative Methods: for Business, Management and Finance,
 Swift & Piff Business Modelling Chapters 4
 - Quantitative Methods For Business Decisions, Curwin & Slater Chapters 19