Пусконаладочные работы систем автоматики, сигнализации и взаимосвязанных устройств

Производство пусконаладочных работ

Пусконаладочные работы по системам автоматизации следует проводить в соответствии с требованиями рабочей документации, технологического регламента, «Правил устройства электроустановок» (ПУЭ), инструкций предприятий (фирм) - изготовителей технических и программных средств, разработчиков АС, а также производственно-отраслевых нормативных документов предприятий и организаций, специализирующихся в области монтажа и наладки систем автоматизации.

Необходимую документацию заказчик должен передать наладочной организации до начала работ.

До начала работ по автономной наладке систем автоматизации заказчик должен подать на объект электропитание (другие виды энергии) по постоянной схеме и привести в работоспособное состояние всю регулирующую и запорную арматуру, на которой смонтированы исполнительные механизмы систем автоматизации, ввести в действие системы автоматического пожаротушения и сигнализации.

Необходимые отключения или переключения трубных и электрических проводок, связанные с наладкой отдельных приборов или средств автоматизации, осуществляет пусконаладочная организация.

В период автономных испытаний и комплексного опробования технологического оборудования пусконаладочная организация должна обеспечить ввод в действие систем автоматизации, необходимых для проведения испытания или опробования технологического оборудования в соответствии с проектом и техническими условиями предприятий-изготовителей.

При возникновении вынужденных перерывов между монтажными и наладочными работами по причинам, не зависящим от подрядчика, к пусконаладочным работам приступают после проверки сохранности раннее смонтированных технических средств систем автоматизации и монтажа ранее демонтированных технических средств. В этом случае акт окончания монтажных работ составляется заново на дату начала пусконаладочных работ.

Пусконаладочные работы по системам автоматизации проводятся в три стадии:

I стадия - подготовительные работы:

II стадия - автономная наладка систем автоматизации - это пусконаладочные работы «вхолостую»;

III стадия - комплексная наладка систем автоматизации - это пусконаладочные работы «под нагрузкой».

Подготовительные работы

Во время подготовительных работ изучается рабочая документация систем автоматизации, основные характеристики технических средств, состав и функции поставляемого комплектно программного обеспечения.

Для проверки приборов и средств автоматизации заказчик передает пусконаладочной организации запасные части, специальное оборудование и инструменты, калибраторы, программаторы и (или) инструментальное программное обеспечение, поставляемое комплектно с техническими средствами.

При проверке приборов и средств автоматизации проверяют соответствие основных технических характеристик аппаратуры требованиям, установленным в паспортах и инструкциях предприятий-изготовителей. Результаты проверки и регулировки фиксируют в акте или паспорте аппаратуры.

Исправные приборы и средства автоматизации после проверки по акту передают заказчику для передачи в монтаж.

Приборы и средства автоматизации разукомплектованные, без технической документации (паспорта, инструкции и т.п.), с изменениями, не отраженными в технических условиях, для проведения проверок не принимаются.

Неисправные приборы и средства автоматизации передаются заказчику для ремонта или замены.

Для подготовки систем автоматизации к работе в период комплексного опробования технологического оборудования заказчик должен передать пусконаладочной организации перечень необходимых к включению систем и график их включения.

Персонал пусконаладочной организации, выделенный для обслуживания включенных в работу систем автоматизации на период комплексного опробования, должен пройти инструктаж по технике безопасности и правилам работы на действующем предприятии. Инструктаж проводится службами заказчика в объеме, установленном отраслевыми министерствами, о проведении инструктажа должна быть сделана запись в журнале по технике безопасности.

При выполнении пусконаладочных работ на опасных производственных объектах указанный персонал должен пройти обучение и аттестацию в порядке, определенном РД 03-444.

При отсутствии конкретных требований к показателям работы систем автоматизации в рабочей документации определение таких требований осуществляется заказчиком по согласованию с пусконаладочной организацией.

Все переключения режимов работы технологического оборудования при определении реальных характеристик объекта автоматизации должен производить заказчик. Включение и выключение систем автоматизации должно фиксироваться в оперативном журнале.

Автономная наладка автоматизированных систем

На стадии выполнения автономной наладки систем автоматизации осуществляется:

- проверка монтажа приборов и средств автоматизации на соответствие требованиям инструкций предприятий изготовителей приборов и средств автоматизации; обнаруженные дефекты монтажа приборов и средств автоматизации устраняются монтажной организацией;
- проверка правильности маркировки, подключения и фазировки электрических проводок;
 - фазировка и контроль характеристик исполнительных механизмов;
- настройка логических и временных взаимосвязей систем сигнализации, защиты, блокировки и управления; проверка правильности прохождения сигналов;
- предварительное определение характеристик объекта, расчет и настройка параметров аппаратуры систем, конфигурирование и параметрический синтез интеллектуальных датчиков, преобразователей и программно-логических устройств;
- подготовка к включению и включение в работу систем автоматизации для обеспечения индивидуального испытания технологического оборудования и корректировка параметров настройки аппаратуры систем в процессе их работы;
 - оформление производственной и технической документации.

Включение систем автоматизации в работу должно производиться только при:

- отсутствии нарушений требований к условиям эксплуатации приборов и средств автоматизации, каналов связи (по температуре, влажности и агрессивности окружающей среды и т.п.) и к технике безопасности;
- наличии минимально необходимой технологической нагрузки объекта автоматизации для определения и установки параметров настройки приборов и средств автоматизации, испытания и сдачи в эксплуатацию систем автоматизации;
- соответствии уставок срабатывания устройств приборов и средств автоматизации указанным в рабочей документации или установленным заказчиком;

- наличии у заказчика документов об окончании монтажных работ.

Комплексная наладка автоматизированных систем

Комплексная наладка систем автоматизации выполняется после полного окончания строительно-монтажных работ, приемки их рабочей комиссией согласно требованиям СНиП 12-01, настоящего стандарта и СНиП 3.05.07 на действующем оборудовании и при наличии устойчивого технологического процесса.

При комплексной наладке осуществляется:

- определение соответствия порядка отработки устройств и элементов систем сигнализации, защиты и управления алгоритмам рабочей документации с выявлением причин отказа или «ложного» срабатывания их, установка необходимых значений срабатывания позиционных устройств;
- определение соответствия пропускной способности запорно-регулирующей арматуры требованиям технологического процесса, правильности отработки выключателей;
- определение расходных характеристик регулирующих органов и приведение их к требуемой норме с помощью имеющихся в конструкции элементов настройки;
- подготовка к включению и включение в работу систем автоматизации для обеспечения комплексного опробования технологического оборудования;
- уточнение статических и динамических характеристик объекта, корректировка значений параметров настройки систем с учетом их взаимного влияния в процессе работы;
- испытание и определение пригодности систем автоматизации для обеспечения эксплуатации оборудования с производительностью, соответствующей нормам освоения проектных мощностей в начальный период;
 - анализ работы систем автоматизации в эксплуатации;
 - оформление производственной документации.

Снятие расходных характеристик и определение пропускной способности регулирующих органов следует производить при условии соответствия параметров среды в трубопроводе нормам, установленным стандартом, рабочей документацией или паспортом на регулирующую арматуру.

Корректировку установленных рабочей документацией или другой технологической документацией значений срабатывания элементов и устройств систем сигнализации и защиты следует производить только после утверждения заказчиком новых значений.

При отсутствии конкретных требований к показателям работы систем автоматизации в рабочей документации определение таких требований осуществляется заказчиком по согласованию с пусконаладочной организаций.

Объем и условия выполнения пусконаладочных работ по отдельным системам или их частям определяются в программе, разработанной пусконаладочной организацией и утвержденной заказчиком. В программу включают виды автономных или комплексных испытаний в соответствии с программами и методиками, предусмотренными в составе рабочей документации по ГОСТ 34.201. Виды испытаний и порядок их проведения принимают по ГОСТ 34.603.

Результаты проведения пусконаладочных работ и испытаний оформляют протоколом, в который заносятся оценка работы системы, выводы и рекомендации. Реализация рекомендаций по улучшению работы систем автоматизации осуществляется заказчиком.

Сдача систем автоматизации в эксплуатацию

Передача систем автоматизации в эксплуатацию производится по согласованию с заказчиком как по отдельно налаженным системам, так и комплексно по автоматизированным установкам, узлам технологического оборудования с оформлением акта.

При сдаче систем автоматизации в эксплуатацию в полном объеме оформляется акт о приемке систем автоматизации в эксплуатацию (приложение 27).

К акту приемки в эксплуатацию систем автоматизации должна прилагаться следующая документация:

- перечень установок устройств, приборов и средств автоматизации и значений параметров настройки систем автоматического управления (регулирования);
 - программы и протоколы испытаний систем автоматизации;
- принципиальные схемы из комплекта рабочей документации автоматизации со всеми изменениями, внесенными и согласованными с заказчиком в процессе производства пусконаладочных работ (один экземпляр);
- паспорта и инструкции предприятий изготовителей приборов и средств автоматизации, дополнительная техническая документация, полученная от заказчика в процессе пусконаладочных работ.

Подразделения охраны и органы государственного пожарного надзора имеют право осуществлять надзор за качеством монтажно-наладочных работ.

Монтажно-наладочная организация должна предварительно уведомить подразделение охраны и контролирующий орган государственного пожарного надзора о начале работ на объекте по монтажу технических средств сигнализации.

Авторский надзор за производством монтажных работ осуществляется проектной организацией согласно требованиям СНиП 1.06.05-85, а технический надзор - подразделением охраны. Указания об отклонениях в процессе выполнения монтажных работ вносятся в журнал авторского надзора, если последний велся на объекте.

Технические средства сигнализации допускаются к монтажу после проведения входного контроля. Входной контроль технических средств, поставляемых заказчиком, производится заказчиком или привлекаемыми им специализированными организациями.

Не допускается производить замену одних технических средств на другие, имеющие аналогичные технические и эксплуатационные характеристики, без согласования с органами охраны и проектной организацией.

Допускается использовать при монтаже технические средства с нарушенной пломбировкой предприятия-изготовителя. В этом случае прибор пломбируется организацией, проводившей его проверку с замером основных технических параметров.

Монтаж технических средств сигнализации следует выполнять с использованием средств малой механизации, механизированного и электрофицированного инструмента и приспособлений, сокращающих применение ручного труда.

Монтаж технических средств сигнализации

Монтаж охранных и охранно-пожарных извещателей

Выбор типов охранных и охранно-пожарных извещателей, их количества, определение мест установки и методов монтажа должны определяться в соответствии с требованиями действующих нормативных документов, с учетом физико-химических свойств веществ и материалов, используемых в защищаемом помещении (объекте): видом и значимостью охраняемого объекта, принятой тактикой охраны, объектовой помеховой обстановкой, размерами и конструкцией блокируемых элементов, техническими характеристиками извещателей. При этом должно быть исключено образование непросматриваемых ("мертвых") зон.

Магнитоконтактные извещатели предназначены для блокировки на открывание дверей, окон, люков, витрин и других подвижных конструкций. Их устанавливают, как правило, в верхней части блокируемого элемента, со стороны охраняемого помещения на расстоянии 200 мм от вертикальной или горизонтальной, в зависимости от типа магнитоконтактного извещателя, линии раствора блокируемого элемента. При этом геркон извещателей предпочтительно устанавливать на неподвижной части конструкции

(плинтусе, дверной раме), а магнит - на подвижной части (двери, оконной раме). При блокировке внутренних дверей магнитоконтактные извещатели, в зависимости от типа, должны устанавливаться с внутренней стороны дверей, а при необходимости - с обеих сторон, с включением извещателей в разные шлейфы сигнализации.

Выключатели путевые конечные предназначены для блокировки на открывание строительных конструкций, имеющих значительные массу и линейные размеры (ворота, погрузочно-разгрузочные люки и т. п.). Выключатели следует устанавливать на наиболее массивных деталях блокируемой конструкции на кронштейнах. Корпуса или основания выключателей должны быть заземлены. Крепление выключателей на заземлённых металлических панелях не освобождает от необходимости присоединения заземляющего провода.

Поверхностные ударноконтактные извещатели предназначены для блокировки остекленных конструкций, расположенных не ближе 5 м от проезжей части улицы. Монтаж извещателей следует производить со стороны охраняемого помещения. Места расположения составных частей извещателей определяются количеством, взаимным расположением и площадью блокируемых стеклянных полотен. Крепление извещателя к поверхности стеклянного полотна производится клеем.

Блокировка остекленных конструкций алюминиевой фольгой производится при наличии на охраняемом объекте вибрационных нагрузок или автотранспортных помех. Фольгу следует наклеивать по периметру блокируемого стеклянного полотна с внутренней стороны обвязки масляной краской, лаком, грунтом. Блокировка фольгой должна обеспечивать защиту конструкций, как от разрушения стекла, так и от извлечения стекла из обвязки (либо его поворота в обвязке) без разрушения.

При блокировке проёмов из профилированного стекла или стеклоблоков, фольгу следует приклеивать через середину стеклоблока параллельно контурным линиям проёма с шагом не более 200 мм. Приклейка фольги к поверхности стекла должна производиться при положительных температурах окружающего воздуха. Соединение фольги со шлейфом сигнализации следует выполнять гибкими проводниками.

После приклеивания фольги, на неё необходимо нанести краску, при этом полоса краски должна выступать за края фольги не менее чем на 3 мм. "П" - образная наклейка фольги (только верхняя и боковые стороны обвязки) не допускается.

После выполнения всех монтажных работ по наклейке фольги на остекленные конструкции, следует с помощью омметра проверить её целостность.

При блокировке некапитальных строительных конструкций "на пролом", провод ПЭЛ, ПЭВ или аналогичный, диаметром 0,18-0,25 мм, должен прокладываться с внутренней стороны конструкций по всей площади параллельно контурным линиям и крепиться скобами с шагом крепления 200 мм. Расстояние между длинными сторонами блокирующего провода при открытом или скрытом способе прокладки должно быть не более 200 мм.

При открытом способе прокладки провод должен быть защищен от механических повреждений фанерой, оргалитом или другими аналогичными материалами.

При скрытом способе прокладки провод должен укладываться в штробы с последующей клеевой шпаклевкой и закрашиванием. Глубина и ширина штроба должна быть не менее двух диаметров прокладываемого провода.

Блокировку зарешеченных проемов следует выполнять обвиванием предварительно окрашенных горизонтальных и вертикальных прутьев двойным гибким проводом для исключения возможности закорачивания блокированных участков. Прокладываемые провода должны повторять конфигурацию решетки. После блокировки провода и решетка окрашиваются вновь.

Переход провода с одного прута решетки на другой следует производить по деревянной обвязке рамы скрытым способом. Ячейки более 200 х 100 мм и решетки из прутьев диаметром менее 10 мм блокировать указанным способом не допускается.

Монтаж емкостных, радиоволновых, ультразвуковых, оптико-электронных и комбинированных извещателей должен производиться на жестких, устойчивых к вибрации опорах (капитальные стены, колонны, столбы и т. п.), с помощью юстировочных узлов, кронштейнов или подставок и исключать возможность ложного срабатывания извещателей по этой причине.

В защищаемой зоне, а также вблизи ее на расстояниях, указанных в технической документации, не должно быть посторонних предметов, изменяющих зону чувствительности извещателей. При установке в одном помещении нескольких оптико-электронных или радиоволновых извещателей необходимо применять извещатели, имеющие разные частотные литеры.

Монтаж поверхностных пьезоэлектрических извещателей, предназначенных для блокировки потолочных перекрытий, полов и стен помещений от пролома молотком, ломом или другим тяжелым предметом, производится в местах, защищенных от механических повреждений и доступа посторонних лиц из расчета 75-100% охвата охраняемой площади. При этом должно учитываться количество находящихся в охраняемом помещении ценностей.

При монтаже извещателей, блокирующих оконные и дверные проемы в деревянной обвязке, следует применять, как правило, скрытую их установку. (В строго обоснованных случаях допускаются отступления от данного правила).

Монтаж пожарных извещателей

Размещение и монтаж автоматических тепловых, дымовых, световых и ручных пожарных извещателей должны производиться в соответствии с проектом, требованиями СНиП 2.04.09-84, технологическими картами и инструкциями.

Монтаж приемно-контрольных приборов, сигнально-пусковых устройств и оповещателей

При размещении приемно-контрольных приборов (ПКП) и сигнально- пусковых устройств (СПУ) должны быть учтены требования СНиП 2.04.09-84.

Установка ПКП малой информационной емкости (до 5 шлейфов сигнализации) должна производиться:

- при наличии специально выделенного помещения на высоте, удобной для обслуживания;
 - при отсутствии специально выделенного помещения на высоте не менее 2,2м.

Установка ПКП в местах, доступных для посторонних лиц, например, в торговых залах предприятий торговли, должна производиться в запираемых металлических шкафах, конструкция которых не влияет на работоспособность приборов.

Если по требованиям пожарной безопасности не допускается устанавливать ПКП непосредственно в помещении, оборудованном средствами сигнализации, то ПКП устанавливаются вне помещения в запираемых металлических шкафах или ящиках, блокируемых на открывание.

Установка ПКП средней и большой информационной емкости и СПУ должна производиться в выделенных помещениях: на столе, стене или специальной конструкции, на высоте удобной для обслуживания, но не менее 1 м от уровня пола.

Не допускается установка ПКП:

- в сгораемых шкафах; на расстоянии менее 1 м от отопительных систем;
- во взрывоопасных помещениях;
- в помещениях пыльных и особо сырых, а также содержащих пары кислот и агрессивных газов.

Световые и звуковые оповещатели, как правило, должны устанавливаться в удобных для визуального и звукового контроля местах (межоконные и межвитринные пространства, тамбуры выходных дверей).

Допускается установка звукового оповещателя на наружном фасаде здания в металлическом кожухе на высоте не менее 2,5 м от уровня земли.

При наличии на объекте нескольких ПКП, световой оповещатель подключается к каждому прибору, а звуковой оповещатель допускается делать общим.

Монтаж технических средств для охраны периметра и территории объекта.

Технические средства для охраны периметра и территории объекта должны обеспечивать: заданный режим охраны; надежность в работе и отсутствие ложных сигналов тревоги от воздействия метеорологических факторов и других помех; невозможность преодоления системы охраны; одновременный прием сигналов тревоги с любого блокированного участка с определением места нарушения.

Для охраны периметра и территории объекта следует применять: устройства контроля прохода, оптико-электронные, радиоволновые, электроконтактные извещатели, охранное освещение, звуковые оповещатели, а при необходимости - телевизионные установки, средства радио- и телефонной связи.

В состав технических средств охраны следует включать также световое табло с мнемосхемой охраняемого периметра, которое должно находиться в помещении охраны.

Для контроля прохода рабочих и служащих с охраняемой территории объекта, в зависимости от численности работающих и режимности объекта, следует использовать турникеты типа "вертушка" или автоматизированные устройства.

Размещение и монтаж на объекте автоматизированных устройств контроля прохода должны обеспечивать выполнение требований СНиП 2.01.02-85.

Средства периметральной сигнализации размещаются на ограждении, в зоне отторжения или в различных сочетаниях. Провода питания и сигнальные кабели к средствам сигнализации должны, как правило, прокладываться скрытым способом.

При монтаже конкретных средств периметральной сигнализации объектов должны учитываться: ширина и рельеф выделенной зоны отторжения, наличие в ней или в непосредственной близости от неё растительности, метеорологические условия местности.

В зависимости от назначения, периметральные оптико-электронные извещатели должны устанавливаться:

на прямолинейных участках вдоль основного ограждения, стены;

в зоне отторжения, не имеющей построек, кустарника, деревьев и других предметов, перекрывающих луч.

При размещении периметральных радиоволновых извещателей над ограждением периметра охраняемого участка или вдоль него необходимо исключить возникновение непросматриваемых ("мертвых") зон.

Технические средства охранного телевидения следует размещать по рабочим чертежам проекта после проверки и определения пригодности всех приборов и блоков путем предварительного испытания на настроечных кабелях, поставляемых предприятием-изготовителем.

При размещении приборов передающей стороны должны выполняться следующие условия:

- телевизионную передающую камеру располагают в пределах прямой видимости наблюдаемого объекта так, чтобы в поле зрения объектива не попадало прямое освещение постороннего источника света;
- вблизи камеры не должно быть больших магнитных масс и сильных источников электрических полей;
- к приборам передающей стороны должен быть обеспечен свободный и безопасный доступ обслуживающему персоналу.

Приемная часть охранного телевидения размещается в помещении охраны с соблюдением требований технической документации предприятия-изготовителя.

Сеть охранного освещения по периметру должна выполняться отдельно от сети наружного освещения и разделяться на самостоятельные участки. Тип светильников, их размещение и схема управления освещением должны соответствовать ТПР 9-88 ГПКИ "Спецавтоматика" г. Новосибирск.

Охранное освещение должно обеспечивать:

- необходимую равномерную освещенность зоны отторжения с расчетом, чтобы светоточки от светильников перекрывались и образовывали сплошную полосу шириной 3-4 м:
- возможность автоматического включения освещения на одном участке или всем периметре при срабатывании охранной сигнализации;
- возможность управления освещением включение любого участка или всего периметра.

Светильники охранного освещения должны устанавливаться в непосредственной близости к линии ограждения внутри территории в местах удобных и безопасных для обслуживания.

Для передачи мощных звуковых сигналов при срабатывании охранных извещателей следует применять звонки, ревуны, сирены, усилители, громкоговорители. Для обеспечения направленности команд следует применять рупорные громкоговорители.

Аппаратуру устройств радиооповещения и телефонной связи необходимо устанавливать согласно расположению и привязкам, указанным в проекте.

Требования пожарной безопасности при монтаже технических средств сигнализации в пожароопасных зонах

Технические средства сигнализации, работающие от сети переменного тока, как правило, должны устанавливаться вне пожароопасных зон. Установка средств в пожароопасных зонах должна соответствовать требованиям ПУЭ.

При монтаже ПКП и СПУ открыто на несгораемых вертикальных строительных основаниях или в закрывающемся несгораемом шкафу, должен быть обеспечен естественный теплообмен. Вентиляционные отверстия шкафа выполняются в виде жалюзи.

При монтаже ПКП и СПУ, охранных и охранно-пожарных извещателей или их отдельных блоков на горючих основаниях (деревянная стена, монтажный щит из дерева или ДСП толщиной не менее 10 мм), необходимо применять огнезащитный листовой материал (металл толщиной не менее 1 мм, асбоцемент, гетинакс, текстолит, стеклопластик толщиной не менее 10 мм), закрывающий монтажную поверхность под прибором, или специальный металлический щиток по ГОСТ 9413-78, ГОСТ 8709-82. При этом листовой материал должен выступать за контуры установленного на нем прибора не менее чем на 100 мм.

При монтаже нескольких ПКП в ряд должны соблюдаться следующие расстояния:

- между ПКП в ряду не менее 50 мм;
- между рядами ПКП не менее 200 мм.

Расстояние от открыто смонтированных ПКП, СПУ и извещателей, работающих от сети переменного тока, до расположенных в непосредственной близости горючих материалов или веществ (за исключением монтажной поверхности, согласно п.4.3. настоящих правил), должно быть не менее 600 мм.

Конструктивное исполнение стационарных световых и звуковых оповещателей, работающих от сети переменного тока, должно быть не ниже 1P2X согласно требованиям ГОСТ 14254-80.

Монтаж данных световых и звуковых оповещателей, допускается только с помощью негорючей стандартной арматуры.

При установке световых оповещателей, работающих от сети переменного тока внутри помещения, выбор места установки производится в соответствии с п. 4.5. настоящих правил. При этом расстояние от колбы лампы до деревянных потолка, стены, оконной рамы должно быть не менее 50 мм.

При монтаже одного или нескольких световых оповещателей в непосредственной близости от ПКП или СПУ, расстояние между ними, а также самими оповещателями должно быть не менее $50~\mathrm{mm}$.

При монтаже световых оповещателей внутри помещения не допускается использовать лампы накаливания мощностью более 25 Вт.

Специальные требования при монтаже технических средств сигнализации во взрывоопасных зонах

Монтаж технических средств сигнализации во взрывоопасных зонах должен производиться в строгом соответствии с проектом, выполненным специализированной проектной организацией, и с требованиями ПУЭ.

Технические средства сигнализации (за исключением извещателей, включенных в искробезопасные цепи), предназначенные для монтажа во взрывоопасных зонах, должны в зависимости от классов взрывоопасных зон иметь исполнение, отвечающее требованиям главы 7.3. ПУЭ. При этом взрывозащищенные технические средства сигнализации должны по взрывозащите соответствовать категории и группе взрывоопасных смесей, могущих образовываться в зоне и иметь соответствующую маркировку по взрывозащите. Взрывозащищенные технические средства сигнализации, предназначенные по своему исполнению для использования во взрывоопасной зоне определенной категории и группы, допускается устанавливать во взрывоопасной зоне менее опасной категории и группы.

Серийно выпускаемые охранные извещатели, удовлетворяющие требованиям соответствующих технических условий или ГОСТ, не имеющие собственного источника питания, а также не обладающие индуктивностью или емкостью, допускается устанавливать во взрывоопасных зонах при условии включения их в искробезопасные цепи (шлейфы) приемно-контрольных приборов, имеющих соответствующую маркировку по взрывозащите.

Перед монтажом технические средства, предназначенные для установки во взрывоопасных зонах, и технические средства, искробезопасные цепи которых заходят во взрывоопасные зоны, должны быть тщательно осмотрены с целью проверки наличия маркировки по взрывозащите, предупредительных надписей, пломб, заземляющих устройств, отсутствия повреждения оболочек.

Не допускается устанавливать технические средства с обнаруженными дефектами.

Монтаж технических средств сигнализации следует производить согласно требованиям раздела 3 настоящих правил.

Прокладку кабелей и проводов, а также заземление и зануление технических средств сигнализации во взрывоопасных зонах следует выполнять в соответствии с требованиями проекта, СНиП 2.04.09-84, СНиП 3.05.08-85 и ПУЭ.

При сдаче в эксплуатацию технических средств сигнализации во взрывоопасных зонах рабочая комиссия должна проверить:

- соответствие установленных взрывозащищенных приборов, устройств и смонтированных проводов и кабелей проекту;
- правильность выполнения вводов проводов и кабелей в электрооборудование и надежность их контактных соединений путем осмотра при снятых крышках вводных устройств или аппаратов;
 - наличие заводских заглушек на неиспользованных отверстиях вводных устройств;
 - наличие разделительных уплотнений в электропроводке после монтажа;

– соответствие схемы внешних соединений, длины и марок соединительных кабелей, величины подводимого напряжения монтажно-эксплуатационной инструкции, прилагаемой к приборам и устройствам, имеющим искробезопасное исполнение.

Электроснабжение технических средств сигнализации

Обеспечение электроснабжением технических средств сигнализации должно соответствовать 1-й категории согласно "Правил устройства электроустановок" (ПУЭ). На действующих объектах, при отсутствии технической возможности выполнения данного условия, допускается категория электроснабжения технических средств сигнализации, соответствующая категории электроснабжения объекта.

Щит электропитания, устанавливаемый вне охраняемого помещения, должен размещаться в запираемом металлическом шкафу и должен быть заблокирован на открывание.

Аккумуляторные батареи, как правило, размещаются в специальных аккумуляторных помещениях на стеллажах, выполняемых в соответствии с требованиями ГОСТ 1226-82, или на полках шкафа, стойких к воздействию агрессивных сред.

Свинцовые аккумуляторы емкостью не более 72 А.ч и щелочные аккумуляторные батареи емкостью не более 100 А.ч и напряжением до 60 В могут устанавливаться в общих производственных невзрыво- и непожароопасных помещениях в металлических шкафах с обособленной приточно-вытяжной вентиляцией.

Аккумуляторные установки должны быть оборудованы в соответствии с требованиями главы 1V-4 ПУЭ.

Монтаж электропроводок технических средств сигнализации

Монтаж электропроводок технических средств сигнализации должен выполняться в соответствии с проектом (актом обследования), типовыми проектными решениями и с учетом требований СНиП 2.04.09-84, СНиП 3.05.06-85, ПУЭ, ВСН 600-81, "Общей инструкции по строительству линейных сооружений городских телефонных сетей", "Инструкции по монтажу сооружений и устройств связи, радиовещания и телевидения".

Соединения и ответвления проводов и кабелей должны производиться в соединительных или распределительных коробках способом пайки или с помощью винтов.

Прокладка незащищенных проводов и кабелей через помещения, которые не подлежат защите, должна производиться скрытым способом или в металлических тонкостенных трубах.

При прокладке скрытым способом провода и кабели сигнализации должны быть проложены в отдельной штробе.

Прокладка проводов и кабелей по стенам внутри охраняемых зданий должна производиться на расстоянии не менее 0,1 м от потолка и, как правило, на высоте не менее 2,2 м от пола. При прокладке проводов и кабелей на высоте менее 2,2 м от пола должна быть предусмотрена их защита от механических повреждений.

Заземление технических средств сигнализации

Технические средства сигнализации должны быть заземлены.

Устройства заземления (зануления) должны выполняться в соответствии с требованиями СНиП 3.05.06-85, ПУЭ, технической документации предприятий-изготовителей.

Пусконаладочные работы при установке технических средств сигнализации

Пусконаладочные работы должны выполняться монтажно-наладочной организацией в соответствии с требованиями СНиП 3.05.06-85.

Для проведения пусконаладочных работ заказчик должен:

- согласовать с монтажно-наладочной организацией сроки выполнения работ, предусмотренные в общем графике;
 - обеспечить наличие источников электроснабжения;
 - обеспечить общие условия безопасности труда.

До начала пусконаладочных работ в процессе производства монтажных работ должны быть проведены индивидуальные испытания (настройка, регулировка, юстировка) приемно-контрольных приборов, сигнально-пусковых устройств, извещателей и т. п. в соответствии с техническими описаниями, инструкциями, ПУЭ.

Производство пусконаладочных работ осуществляется в три этапа:

- подготовительные работы;
- наладочные работы;
- комплексная наладка технических средств.

На этапе выполнения подготовительных работ должны быть:

- изучены эксплуатационные документы на технические средства сигнализации;
- оборудованы необходимым инвентарем и вспомогательной оснасткой рабочие места наладчиков.

На этапах наладочных работ и комплексной наладки должна производиться корректировка ранее проведенной регулировки технических средств, в том числе: доведение параметров настройки до значений, при которых технические средства могут быть использованы в эксплуатации; вывод аппаратуры на рабочий режим, проверка взаимодействия всех ее элементов в режимах "Тревога", "Пожар", "Неисправность" и т. д.

Пусконаладочные работы считаются законченными после получения предусмотренных проектом и технической документацией параметров и режимов, обеспечивающих устойчивую и стабильную работу технических средств (без ложных сигналов тревоги).