KOMPILASI, PENYAJIAN, DAN ANALISIS DATA

OUTLINE

- 1. Kompilasi Data
- 2. Penyajian Data
- 3. Analisis Data

Kompilasi Data

Di dalam proses perencanaan, setelah dilakukan pengumpulan data dan informasi melalui kegiatan survei maka dilakukan kegiatan Kompilasi terhadap data dan informasi yang diperoleh

Kompilasi Data

Pengertian kompilasi

Kompilasi adalah kegiatan penyusunan data sedemikian rupa agar mudah dibaca, mudah dilihat kaitannya satu dengan yang lain, dan informatif

Kualitas kompilasi

Kompilasi harus implisit mempunyai bobot analisis, artinya dari kompilasi data sudah dapat terbaca kecenderungan di masa yang akan datang, yang akan sangat penting peranannya dalam proses perencanaan

Bentuk kompilasi

Kompilasi dapat disajikan dalam berbagai bentuk data dan informasi, seperti: tabel, peta, grafik, gambar, dan bagan

Data yang telah dikumpulkan, dari hasil observasi lapangan/survey/inventarisasi data untuk keperluan analisis dan penyusunan laporan. Selanjutnya diolah untuk disajikan dlam bentuk data

Penyajian Data Statisti

Dalam bentuk daftar, antara lain:

- 1. Daftar baris kolom
- Daftar kontigensi
- Daftar distribusi frekuensi

- Judul tabel: ditulis pada bagian tengah/center atas dari tabel
- Judul kolom: ditulis jelas dan singkat sebagai keterangan dari isi tabel
- 3. Penulisan Sumber pada bawah tabel

Contoh Pembuatan Tabel

Tabel 4.1 Data Rekapitulasi Asal Pengungsi dan Tempat Pengungsi Berdasarkan Kejadian Erupsi Gunungapi Agung Tahun 2017

No	Asal Pengungsi	Tempat Mengungsi	Jumlah Pengungsi
1	Kecamatan Selat	Kecamatan Selat	1.340
2	Kecamatan Kubu	Kecamatan Kubu	727
3	Kecamatan Abang dan Bebandem	Kecamatan Karangasem	96
4	Kecamatan Rendang dan Selat	Kecamatan Rendang	1.976
5	Kecamatan Bebandem	Kecamatan Bebandem	867
6	Kecamatan Bebandem dan Selat	Kecamatan Manggis	25
	TOTAL		5.031

Sumber: Badan Penanggulangan Bencana Dearah Kabupaten Karangasem, 2019

Penyajian Data Statistik

Dalam bentuk diagram, antara lain:

- Diagram batang
- Diagram garis
- 3. Diagram lambang/diagram simbol
- Diagram pastel/diagram lingkaran
 - Diagram titik

Penyajian Data Statistik

Dalam bentuk diagram, antara lain:

Diagram batang

Penyajian data dalam gambar akan lebih menjelaskan lagi persoalan secara visual. Data yang dapat divisualiasasikan dalam bentuk diagram batang, yaitu trend perubahan per tahun, jumlah penduduk setiap wilayah

Penyajian Data Statistik

Dalam bentuk diagram, antara lain:

2. Diagram garis

Penyajian data yang menggambarkan pergerakan/perubahan. Data dengan visualisasi diagram garis memiliki kemiripan dengan diagram batang. Hanya saja diagram batang tidak menunjukkan pergerakan data

Penyajian Data Statistik

Dalam bentuk diagram, antara lain:

Seringkali dipakai untuk mendapatkan gambaran kasar sesuatu hal dan sebagai alat visual orang awam

Penyajian Data Statistik

Dalam bentuk diagram, antara lain:

4. Diagram lingkaran

Diagram berbentuk lingkaran yang terbagi dalam beberapa bagian dan bagian tersebut mengandung nilai untuk masing-masing klasifikasi

Penyajian Data Statistik

Dalam bentuk diagram, antara lain:

5. Diagram titik

Diagram yang terdiri atas 2 variabel, diagramnya dapat dibuat dalam sistem sumbu koordinatdan gambarnya akan merupakan kumpulan titik-titik yang terpencar

Penyajian Data Spasial

- Penyajian data dapat dalam bentuk model spasial/peta
- Kartografi adalah mengumpulkan, menganalisa, dan menyajikan datayang diperoleh dari lapangan secara grafis dan dengan skala tertentu, sehingga terlihat jelas dan mudah dipahami
- Peta sebagai output atau produk dari proses kartografi
- Penyajian data peta dengan menggunakan simbol, garis, dan pewarnaan yang dijelaskan dalam legenda

Penggabungan Penyajian Data dengan 2 bentuk

Contoh: Peta dan

diagram

Contoh: Peta dan

Simbol

Pengertian analisis

- Analisis adalah kajian/penyelidikan/telaah suatu peristiwa untuk mengetahui keadaan/kondisi/permasalahannya. Sebagai urutan tahapan dalam proses perencanaan, analisis adalah pengolahan dan interpretasi data dan informasi untuk menghasilkan dasar-dasar pertimbangan perencanaan dan pemecahan masalah. Menganalisis adalah menyelidiki dengan menguraikan masing-masing bagiannya
- Mengelompokan/membuat suatu urutan, memanipulasi, serta menyingkatkan data sehingga mudah untuk dibaca
- Proses berkelanjutan yang membutuhkan refleksi terus menerus terhadap data, mengajukan pertanyaan-pertanyaan analitis, dan menulis catatan singkat sepanjang penelitian

Kriteria Suatu Analisis

Dalam proses analisis, perlu mempertimbangkan 3 hal berikut ini:

Data yang tersedia

Makin lengkap dan terinci data yang digunakan maka analisispun dapat dilakukan lebih teliti

Tujuan Analisis

Tidak semua hal memerlukan analisis yang rinci sampai ke hal-hal yang sangat kecil, tergantung kebutuhan/tujuan, yang kadang-kadang cukup garis besarnya saja, tetapi tanpa mengurangi nilai analisis tersebut.

Teknik Analisis

Penggunaan atau pemilihan teknik analisis yang tepat akan membantu kehalusan analisis. Pemilihan teknik tergantung kepada kedua hal di atas

Kriteria Suatu Analisis

Simulasi digunakan sebagai penyederhanaan masalah. Penyederhanaan melalui:

Model formula matematis: Model yang menyatakan hubungan aspek perencanaan seperti hubungan matematis. Hal ini digunakan apabila masalah yang akan dianalisis mempunyai hubungan gungsi matematis

CONTOH:

- a. Analisis proyeksi penduduk
- b. Analisis kepadatan penduduk

Contoh Analisis Data

Kawasan perkotaan Amlapura sebagai Ibukota Kabupaten Karangasem yang terdiri atas Kecamatan Bebandem dan Kecamatan Karangasem. Kedua kecamatan tersebut berada pada KRB I aliran Gunungapi Agung. Seluruh wilayah di Desa Bungaya Kangin, Kecamatan Bebandem berada pada KRB I aliran Gunungapi Agung.

KRB I aliran Gunungapi Agung yang berada pada Kecamatan Karangaem, adalah Desa Karangasem, Desa Padang Kerta, dan Desa Subagan dengan proporsi persentase yang berbeda. Desa Subagan adalah wilayah di Kecamatan Karangasem yang berada pada KRB I aliran Gunungapi Agung dengan luasan terbesar, yaitu 93% dari luas keseluruhan Desa Subagan. Desa Padang Kerta yang berada pada KRB I Aliran Gunungapi luasanya adalah 85% dari luas keseluruhan Desa Padang Kerta. Desa Karangasem yang termasuk pada KRB I aliran Gunungapi Agung sebesar 42% dari luas keseluruhan Desa Karangasem

Contoh Analisis Data

Seluruh wiayah Kabupaten Karangasem berada pada kerawanan gempa bumi. KRB gempa bumi tinggi dan KRB gempa bumi menengah menyebar di sseluruh wilayah. Sedangkan KRB gempa bumi rendah terdapat di Kecamatan Rendang dan Kecamatan Selat.

Tabel 4.1 Sebaran dan Luasan KRB Gempa Bumi di Kabupaten Karangasem

KRB Gempabumi	Luas (Ha)
Kawasan Rawan Bencana Gempabumi Rendah	4386.98
Kawasan Rawan Bencana Gempabumi Menengah	37415.43
Kawasan Rawan Bencana Gempabumi Tinggi	42121.78
Bukan Kawasan Rawan Bencana Gempabumi	-
Total Luas (Ha)	83924.20

Sumber: Hasil Pengolahan Data Pusat Vulkanologi Mitigasi Bencana Geologi, 2015

Kabupaten Karangasem didominasi KRB Gempa bumi tinggi dengan luasan 50,19% dari luas Kabupaten Karangasem. KRB gempabumi tinggi di Kecamatan Manggis sebagai luasan terbesar di bandingkan Kecamatan lain dengan luas 4.642,24 Ha atau 6% dari luas keseluruhan Kabupaten Karangasem. KRB gempa bumi menengah di Kabupaten Karangasem dengan presentase luas 44,58% dari luas

keseluruhan Kabupaten Karangasem. KRB gempa bumi menengah dengan luasan terbesar adalah Kecamatan Rendang, sebesar 13% dari luas keseluruhan Kabupaten Karangasem. Sedangkan KRB gempa bumi rendah yang hanya terdapat di Kecamatan Rendang dan Kecamatan Selat, dengan luasan terbesar terdapat pada Kecamatan Selat, yaitu 2% dari luas keseluruhan Kabupaten Karangasem.

KORELASI PEARSON

- Digunakan untuk menganalisis hubungan antara 2 variabel dengan skala interval dan atau rasio
- Syarat: data harus berdistribusi normal
- Misal: Menganalisis Hubungan berat badan dengan TB pada mahasiswa FKp UNAIR
- Langkah-langkah:
 - Lakukan uji normalitas pada variable BB dan Tb (Uji kolmogrov Smirnov jika jumlah data lebih dari 30 atau saphiro wilk jika jumlah data kurang dari 30). Karena jumlah ada 30 maka gunakan uji Kolmogorov Smirnov. Hasil uji normalitas:

One-Sample Kolmogorov-Smirnov Test

		bb	tb
N		30	30
Normal Parameters ^{a,b}	Mean	56.57	160.30
	Std. Deviation	11.776	7.349
Most Extreme Differences	Absolute	.178	.158
	Positive	.178	.106
	Negative	130	158
Test Statistic		.178	.158
Asymp. Sig. (2-tailed)		.016°	.054°

- a. Test distribution is Normal.
- b. Calculated from data.
- c. Lilliefors Significance Correction.
- 2. Jika distribusi data normal, maka lakukan uji korelasi pearson, jika tidak normal maka lakukan uji korelasi spearmen
- 3. Analisis:
- **4.** Berdasarkan hasil uji KS, diperoleh nilai signifikasi BB p=0.016<0.05, maka distribusi data TIDAK normal, sedangkan TB nilai p=0.054>0.05 maka distribusi data normal. Sehingga tdk memenuhi syarat uji korelasi pearson, sehingga selanjutnya dilakukan **uji korelasi spearmen.**

Correlations

			aa	ti)
Spearman's rho	bb	Correlation Coefficient	1.000	050
		Sig. (2-tailed)		.793
		N	30	30
	tb	Correlation Coefficient	050	1.000
		Sig. (2-tailed)	.793	
		N	30	30

5. Analisis:

Berdasarkan hasil diperoleh nilai p=0.793>0.05 yang artinya tidak terdapat hubungan BB dengan TB. STOP

Jika ada hubungan perhatikan nilai koefisien korelasi (r) dan arah hubungan (tanda positif atau negative)

Interpretasi nilai r:

0.8-1= sangat kuat

0.6-0.79=kuat

0.4-0.59=sedang

0.2-0.39=lemah

0.0-0.19=sangat lemah atau tidak ada hubungan.

Arah hubungan: Jika positif maka semakin berat BB akan semakin Tinggi TB. Jika negative: Semakin berat BB maka akan semakin turun TB dan sebaliknya.

KORELASI SPEARMEN

Hubungan dua variable dengan skala data ordinal (skor) atau skala data interval/rasio yang distribusi data tidak normal.

Misal: Menganalisis hubungan pengetahuan dengan sikap.

Correlations

			pengetahuan	sikap
Spearman's rho	pengetahuan	Correlation Coefficient	1.000	.238
		Sig. (2-tailed)		.204
		N	30	30
	sikap	Correlation Coefficient	.238	1.000
		Sig. (2-tailed)	.204	
		N	30	30

Analisis:

(Interpretasikan sendiri)

Uji chi square (X kuadrat)

1. Tabel 2x2

merokok * kanker paru Crosstabulation

		kanker paru			
			kanker paru	tidak kanker paru	Total
merokok	merokok	Count	12	3	15
		Expected Count	8.5	6.5	15.0
		% of Total	40.0%	10.0%	50.0%
	tidak merokok	Count	5	10	15
		Expected Count	8.5	6.5	15.0
		% of Total	16.7%	33.3%	50.0%
Total		Count	17	13	30
		Expected Count	17.0	13.0	30.0
		% of Total	56.7%	43.3%	100.0%

Syarat uji chi square:

- 1. Tidak boleh ada sel dengan nilai expected nol (0)
- 2. Nilai expected kurang dari 5 tidak boleh melebihi 20 persen.

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	6.652ª	1	.010		
Continuity Correction ^b	4.887	1	.027		
Likelihood Ratio	6.946	1	.008		
Fisher's Exact Test				.025	.013
Linear-by-Linear Association	6.430	1	.011		
N of Valid Cases	30				

- a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 6.50.
- b. Computed only for a 2x2 table

Analisis:

Untuk table 2x2 jika memenuhi syarat yang dibaca adalah continuity correction, jika tdk memenuhi syarat yang dibaca adalah fischer exact (2 sisi/2 tail/2 sided)

Berdasarkan hasil analisis (memenuhi syarat uji chi square) diperoleh nilai **continuity correction** test p=0.027 artinya ada hubungan pengetahuan dengan sikap.

Tabel lebih dari 2x2

peng_kat * sikap_kat Crosstabulation

			sikap	_kat	
			negatif	positif	Total
peng_kat	kurang	Count	4	3	7
		Expected Count	2.3	4.7	7.0
		% of Total	13.3%	10.0%	23.3%
	cukup	Count	3	14	17
		Expected Count	5.7	11.3	17.0
		% of Total	10.0%	46.7%	56.7%
	baik	Count	3	3	6
		Expected Count	2.0	4.0	6.0
		% of Total	10.0%	10.0%	20.0%
Total		Count	10	20	30
		Expected Count	10.0	20.0	30.0
		% of Total	33.3%	66.7%	100.0%

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)
Pearson Chi-Square	4.418 ^a	2	.110
Likelihood Ratio	4.468	2	.107
Linear-by-Linear Association	.149	1	.699
N of Valid Cases	30		

a. 4 cells (66.7%) have expected count less than 5. The minimum expected count is 2.00.

Analisis:

Untuk table lebih dari 2x2 jika memenuhi syarat yang dibaca adalah **pearson chi square**, jika tdk memenuhi syarat yang dibaca adalah **likelihood ratio** (2 sisi/2 tail/2 sided)
Berdasarkan hasil analisis diperoleh nilai p=0.107 (LIKELIHOOD RATIO) artinya tidak ada hubungan pengetahuan dengan sikap.

UJI WILCOXON DAN MANN WHITNEY

1. Uji Wilcoxon signed rank test

Uji beda 2 kelompok berpasangan (pre-post), skala data ordinal dan/atau skala data interval/rasio dengan distribusi data tidak normal Contoh:

 Apakah terdapat perbedaan tingkat pengetahuan sebelum dan setelah diberikan modul pembelajaran?

Ranks

		N	Mean Rank	Sum of Ranks
peng_post - peng_pre	Negative Ranks	5ª	4.50	22.50
	Positive Ranks	24 ^b	17.19	412.50
	Ties	1°		
	Total	30		

- a. peng_post < peng_pre
- b. peng_post > peng_pre
- c. peng_post = peng_pre
- ☐ Terdapat 5 responden dengan nilai pengetahuan lebih rendah setelah diberikan modul pembelajaran
- ☐ Terdapat 24 responden dengan nilai pengetahuan lebih tinggi setelah diberikan modul pembelajaran
- ☐ Terdapat 1 responden dengan nilai pengetahuan yang tetap sebelum dan setelah diberikan modul pembelajaran

Test Statistics^a

peng_postpeng_pre

Z	-4.218 ^b
Asymp. Sig. (2-tailed)	.000

- a. Wilcoxon Signed Ranks Test
- b. Based on negative ranks.
- \square Terdapat perbedaan tingkat pengetahuan sebelum dan setelah diberikan modul pembelajaran dengan nilai p=0.000

2. Uji mann whitney

Uji beda 2 kelompok bebas (perlakuan dan kontrol), skala data ordinal dan/atau skala data interval/rasio dengan distribusi data tidak normal Contoh:

- Apakah terdapat perbedaan tingkat pengetahuan pada kelompok intervensi dan kelompok control setelah diberikan modul pembelajaran?
- Apakah ada pengaruh modul pembelajaran terhadap tingkat pengetahuan.

Test Statistics^a

	pengetahuan _pre
Mann-Whitney U	445.500
Wilcoxon W	910.500
Z	068
Asymp. Sig. (2-tailed)	.946

a. Grouping Variable: kelp

☐ Tidak terdapat perbedaan tingkat pengetahuan antara kelp intervensi dan kelp control sebelum pemberian modul pembelajaran (p=0.946)

Prinsip:

- ☐ Jika nilai pre intervensi dan pre control = setara (p>0.05), maka utk melihat pengaruh menggunakan nilai post intervensi dan post kontrol
- ☐ Jika nilai pre intervensi dan pre control tidak setara (p<0.05), maka utk melihat pengaruh menggunakan nilai delta/selisih (post-pre)

Test Statisticsa

	pengetahuan _pos
Mann-Whitney U	153.000
Wilcoxon W	618.000
Z	-4.410
Asymp. Sig. (2-tailed)	.000

a. Grouping Variable: kelp

☐ Terdapat perbedaan tingkat pengetahuan antara kelp intervensi dan kelp control setelah pemberian modul pembelajaran (p=0.00)

Kesimpulan: Modul pembelajaran efektif meningkatkan tingkat pengetahuan (p=0.000)

Contoh jika Uji mann whitney dengan nilai delta/selisih

Test Statistics^a

	delta
Mann-Whitney U	176.000
Wilcoxon W	641.000
Z	-4.060
Asymp. Sig. (2-tailed)	.000

a. Grouping Variable: kelp

☐ Terdapat perbedaan nilai delta/selisih pengetahuan antara kelompok intervensi dan kelompok control setelah diberikan modul pembelajaran (p=0.000)

Uji Validitas & Reliabilitas

Abu Bakar

INSTRUMEN

Alat yang digunakan untuk Pengumpulan Data Penelitian

KUALITAS DATA PENELITIAN

Validitas

- Validitas adalah suatu ukuran yang menunjukkan tingkat kesahihan sesuatu instrument.
- Suatu instrumen yang sahih mempunyai validitas tinggi dan begitupula sebaliknya (Arikunto, 2006)

Realibilitas

- Reliabilitas adalah indeks yang menunjukkan sejauh mana suatu alat pengukur dapat dipercaya atau dapat diandalkan.
- Pertanyaan yang realibel berarti alat tersebut mengukur dengan tetap konsisten atau sama bila dilakukan pengukuran dua kali atau lebih terhadap karakteristik yang sama dengan menggunakan alat ukur yang sama (Budiman & Riyanto, 2013).

PRINSIP INSTRUMEN

VALID;

Mengukur apa yg seharusnya diukur

- Syarat: (1) Relevan Isi
 - (2) Relevan Cara & Sasaran

RELIABEL;

Andal, hasil sama pada pengulangan

- Syarat: (1) Bahasa yg mudah dimengerti
 - (2) Jelas sesuai kemampuan responden
 - (3) Perlu penekanan & pengulangan
 - (4) Standarisasi

UJI VALIDITAS & RELIABILITAS

Alat; (standarisasi, uji kir, kalibrasi, dll)

Isi / Instruksi-instruksi;

- Repeated Measure; diberi pertanyaan, diulang.... Apakah masih konsisten?.
- One Shot; diukur sekali, hasilnya dibandingkan dg hasil pertanyaan lain

One Shot....

- **Prinsip:** menguji butir-butir pertanyaan dalam sebuah angket, faktor, konstrak.
- **Prosedur;** uji validitas (masing-masing butir), uji reliabilitas (faktor secara bersamaan).
- Contoh....(saat uji coba)

Bagaimana Kita tau Relevan atau Tidak

- Lakukan Uji Validitas;
 - Uji Coba Kuesioner
 - Uji Statistik
 - Perbaiki yang Tidak Valid
 - Uji Coba lagi
 - Perbaiki lagi, dst......
- Lakukan uji Reliabilitas;
 - Dilakukan bila pertanyaan sudah valid

Syarat Soal; valid & reliabel, ttp...

- Jika soal yang tidak valid dibuang maka hasil dari validitas soal yang lain belum tentu valid kembali, dan jika dilanjutkan dengan reliablitas belum tentu menjadi reliabel.
- Saran: sebaiknya soal diperbaiki dan diberi penjelasan bahwa dikembangkan sendiri dari teori yang dipelajari.

Uji dengan korelasi *Product Moment*

- Valid apabila nilai korelasi tiap-tiap pertanyaan tersebut signifikan, maka apabila r hitung lebih besar dari r tabel atau > (0,444) dengan tingkat kemaknaan 5% (Arikunto, 2006). Yang lain menyebutkan lebihdari atau 0,25- 0,30 (Dahlan, 2010; Kusnendi, 2008). Bila kurang dibuang atau perbaiki ??????
- Realibel apabila Jika nilai r alpha lebih besar dari konstanta (0,6), dengan tingkat kemaknaan 5% (0,05) tersebut reliabel (Budiman & Riyanto, 2013).

korelasi *Product Moment;* SPSS

- Klik Analyze.
- Pilih Scale.
- Pilih Reliability Analysis
- Masukkan semua variabel ke dalam kotak Items (hanya variabel yang akan diuji saja).
- Klik Deskriptives for, pilih (Item, Scale, Scale if item deleted).
- Klik continue.
- Klik OK.

korelasi *Product Moment;* SPSS

- Bacanya yaitu:
- Valid, nilai r hasil dapat dilihat pada kolom Corrected item-Total Correlation.
- Realibel dapat dilihat pada kolom Cronbach's Alpha.

Item-Total Statistics

	Scale Mean if Item Scale Variance if Corrected Item Deleted Total Correlation		Cronbach's Alpha if Item Deleted	
p1	23.00	50.211	.977	.942
p2	23.00	50.211	.977	.942
р3	23.40	59.200	.318	.969
p4	23.00	50.211	.977	.942
p5	23.15	52.976	.931	.945
p6	23.00	50.211	.977	.942
p7	23.00	50.211	.977	.942
p8	23.00	50.211	.977	.942
p9	23.15	52.976	.931	.945
p10	23.15	61.713	.137	.976

Reliability Statistics

Cronbach's Alpha	N of Items
.996	8

Uji dengan Pearsons Correlation

- Valid apabila α (nilai signifikansi)< 0,05 dan r (nilai korelasinya) minimal > 0,60.
- Valid apabila α (nilai signifikansi)< 0,05 dan r (nilai korelasinya) minimal < 0,60. perbaiki
- Valid apabila α (nilai signifikansi)> 0,05 dan r (nilai korelasinya) minimal < 0,60. buang????

 Realibel apabila nilai Alpha cronbach > 0,60 (Budiman & Riyanto, 2013).

Validitas Pearsons korelasi; SPSS

- Klik Analyze.
- Pilih Correlate.
- Pilih Bivariate
- Masukkan semua variabel ke dalam kotak Items (hanya variabel yang akan diuji, termasuk nilai Total dari variabel yang di uji).
- Klik OK.

Validitas Pearsons korelasi; SPSS

- Bacanya yaitu:
- Valid, nilai r hasil dapat dilihat pada kolom belakang sendiri atau paling bawa (kolom TOTAL).
- Realibel dapat dilihat pada kolom Cronbach's Alpha.

Correlations

	-		_	
		total		
VAR00001	Pearson Correlation	.915**		\/_I:_I
	Sig. (2-tailed)	.000	フ	Valid
	N	13		
VAR00002	Pearson Correlation	.269		T: - - - - -
	Sig. (2-tailed)	.374	7	Tidak Valid
	N	13		
VAR00003	Pearson Correlation	.594 *		
	Sig. (2-tailed)	.032		
	N	13		

^{**.} Correlation is significant at the 0.01 level (2-tailed).

^{*.} Correlation is significant at the 0.05 level (2-tailed).

Reabilitas Pearsons korelasi; SPSS

- Klik Analyze.
- Pilih Scale.
- Pilih Reliability Analysis
- Masukkan semua variabel ke dalam kotak Items (hanya variabel yang akan diuji saja) INGAT !!! TIDAK termasuk nilai Total dari variabel yang di uji.
- Klik OK.

Case Processing Summary

		N	%
Cases	Valid	13	100.0
	Excludeda	0	.0
	Total	13	100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items
.845	18

Multivariat

Structural Equation Modeling (SEM)

Covariance based : Lisrel, AMOS

Variance based : Graph PLS, Smart PLS

Validitas dan realibilitas riset kualitatif

- Dalam istilah qualitatif adalah keabsahan data kualitatif.
- Jenis keabsahan data:
 - 1. Dependability (ketergantungan)
 - 2. Confirmability (keterbukaan)
 - 3. Credibility (Keterpercayaan)
 - 4. Transferability (keteralihan)

Hirarki keabsahan

1. Dependability

- Memperlihatkan konsistensi hasil temuan (oleh peneliti & waktu yang berbeda)
- Ukuran kesamaam:
 - Stabilitas (waktu berbeda, jawaban sama)
 - Konsistensi (interview script sesuai jwban Informan)
 - Ekuivalensi (bentuk pertanyaan lain, tp artinya sama).
- Untuk mendapatkan:
 - Analisis data terstruktur dan interpretasi baik.
 - Triangulasi
 - Merefleksikan ke journal

2. Confirmability

- Hasil temuan merefleksikan fokus dari pertanyaan penelitian dan tidak mengandung bias.
- Peningkatan confirmability:
 - Triangulasi
 - Merefleksikan pada jurnal terkait
 - Peer review
 - Konsultasi ahli
 - Konfirmasi denga partisipan.

3. Credibility

- Menjelaskan nilai kebenaran dari data yang dihasilkan termasuk proses analisis data tersebut dari penelitian yang dilakukan.
- Cara memperoleh keakuratan:
 - Memperbanyak waktu bersama partisipan
 - Melibatkan diri dalam aktivitas harian
 - Selalu melakukan konfirmasi dan klarifikasi
 - Triangulasi

4. Transferability

- Seberapa mampu suatu hasil penelitian kualitatif dapat diaplikasikan dan dialihkan pada keadaan atau konteks lain atau kelompok atau partisipan lainnya (Generalisai)
- Cara meningkatkan:
 - Teknik pengambilan sampel
 - Membuat diskripsi yang berarti
 - Merefleksikan pada jurnal terkait

Strategi memperoleh keabsahan

- Memperpanjang waktu dalam membina hubungan partisipan-peneliti (terlibat langsung dalam berbagai kegiatan)
- Membuat rekam jejak (proposal- penyajian)
- Melakukan feedback partisipan
- Membuat deskripsi padat (Thick description)
- Melakukan triangulasi (data, peneliti, teori, dan metodologi.

LATIHAN

PEMILIHAN TEKNIK ANALISIS/UJI STATISTIK

TUJUAN	JUMLAH	BEBAS/	STATISTIKA	STATISTIKA NON PARAMETRIK			
ANALISIS	SAMPEL/ KLP	BERHUBUNGAN	PARAMETRIK	Analisis Data Semikuantitatif	Analisis Data Kualitatif/Kategori		
	1		Uji t satu sampel (Goodness of Fit t test)	Kolmogorov- Smirnov satu sampel	Chi Square satu sampel		
KOMPARASI		Bebas	Uji t 2 sampel bebas	Wilcoxon-Mann Whitney test	Chi Square Fisher's exact test		
	2	Berpasangan	Uji t data berpasangan (<i>Paired t test</i>)	Wilcoxon Signed Rank test	Mc Nemar test		
	>2	Bebas	Anova satu arah (Oneway anova)	Kruskal-Wallis test	Chi Square		
	<i>></i> 2	Berhubungan	Anova sama subyek	Anova Friedman	Cochran's Q		
HUBUNGAN	S	IMETRIS	Product Moment dari Pearson (Korelasi Pearson)	Korelasi Spearman	Uji Asosiasi : •Koefisien Kontingensi •Koefisien Phi •Koefisien Kappa •Koefisien Lambda, dll		
	SEB	AB-AKIBAT	Regresi Linier	Regresi Ordinal	Regresi Logistik		

UJI NORMALITAS

Uji Normalitas adalah sebuah uji yang dilakukan dengan tujuan untuk menilai sebaran data pada sebuah kelompok data atau variable (DATA INTERVAL DAN RASIO), apakah sebaran data tersebut berdistribusi normal ataukah tidak.

Jenis uji: jika data < 30 menggunakan uji saphiro wilk

Jika data <= 30 menggunakan uji Kolmogorov smirnov

Keputusan:

p>=0.05 data berdistribusi normal

p<0.05 data tidak berdistribusi normal

Tests of Normality

	Kolm	ogorov-Smim	ov ^a	Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
Pre_TD_P	.230	10	.143	.933	10	.479	
Post_TD_P	.282	10	.023	.890	10	.172	
Pre_Nadi_P	.249	10	.080	.858	10	.072	
Post_Nadi_P	.371	10	.000	.737	10	.002	
Pre_TD_K	.233	10	.133	.904	10	.245	
Post_TD_K	.236	10	.123	.887	10	.157	
Pre_Nadi_K	.228	10	.149	.902	10	.232	
Post_Nadi_K	.270	10	.037	.890	10	.170	

a. Lilliefors Significance Correction

Dst
Uji beda Pre-post TD pada kelp perlakuan: uji paired t test
Uji beda pre-post Nadi pada kelp perlakuan: uji Wilcoxon signed rank test
Dst

Pre TD sistolik pada kelompok Perlakuan: p=0.479 maka berdistribusi normal

UJI PAIRED T TEST

Digunakan untuk uji beda pada sampel berpasangan (pre-post), dengan skala data interval dan atau rasio berdistribusi normal.

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Post_TD_P	124.00	10	8.433	2.667
	Pre_TD_P	158.00	10	11.353	3.590
Pair 2	Post_TD_K	135.00	10	11.785	3.727
	Pre_TD_K	154.00	10	9.661	3.055
Pair 3	Post_Nadi_K	87.60	10	2.271	.718
	Pre_Nadi_K	91.80	10	5.493	1.737

Analisis deskriptif: (Lengkapi)

	Paired Samples Test									
Paired Differences										
	95% Confidence Interval of the Std. Error Difference									
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)	
Pair 1	Post_TD_P - Pre_TD_P	-34.000	5.164	1.633	-37.694	-30.306	-20.821	9	.000	
Pair 2	Post_TD_K - Pre_TD_K	-19.000	12.867	4.069	-28.204	-9.796	-4.670	9	.001	
Pair 3	Post_Nadi_K - Pre_Nadi_K	-4.200	4.290	1.356	-7.269	-1.131	-3.096	9	.013	

Analisis:

- 1. Terdapat perbedaan TD sebelum dan setelah perlakuan pada kelp perlakuan, p=0.000
- 2. Terdapat perbedaan TD sebelum dan setelah perlakuan pada kelp kontrol, p=0.001
- 3. Terdapat perbedaan Nadi sebelum dan setelah perlakuan pada kelp kontrol, p=0.013

Test Statistics ^a						
	Post_Nadi_P - Pre_Nadi_P					
Z	-2.812 ^b					
Asymp. Sig. (2-tailed)	.005					
a. Wilcoxon Signed Ranks Test						
b. Based on positive ranks.						

Terdapat perbedaan Nadi sebelum dan setelah perlakuan pada kelp perlakuan, p=0.005

INDEPENDENT T-TEST

Uji beda 2 kelompok bebas (perlakuan-kontrol) dengan skala data interval dan atau rasio dengan data berdistribusi normal.

	Independent Samples Test									
	Levene's Test for Equality of Variances						t-test for Equality	of Means		
		_					Mean	Std. Error	95% Confidence Interval of the Difference	
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
Pre_TD	Equal variances assumed	.022	.884	.849	18	.407	4.000	4.714	-5.904	13.904
	Equal variances not assumed			.849	17.551	.408	4.000	4.714	-5.922	13.922
Pre_nadi	Equal variances assumed	.262	.615	.194	18	.848	.500	2.577	-4.914	5.914
	Equal variances not assumed			.194	17.852	.848	.500	2.577	-4.917	5.917

Analisis:

- 1. Tidak ada beda tekanan darah antara kelp perlakuan dan kelp kontrol sebelum perlakuan, p=0.407
- 2. Tidak ada beda nadi antara kelp perlakuan dan kelp kontrol sebelum perlakuan, p=0.848

Karena tidak ada perbedaan TD maupun Nadi (p>=0.05) sebelum perlakuan maka yang dibandingkan untuk menilai pengaruh intervensi ada nilai post dibandingkan nilai post.

Jika terdapat perbedaan TD maupun Nadi sebelum perlakuan (p<0.05) maka yang dibandingkan adalah nilai delta/selisih dengan nilai delta/selisih (post-pre)

Independent Samples Test

		Levene's Test Varia			t-testfor Equality of Means					
							Mean	Std. Error	95% Confidence Differ	rence
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
Post_TD	Equal variances assumed	.705	.412	-2.400	18	.027	-11.000	4.583	-20.628	-1.372
	Equal variances not assumed			-2.400	16.302	.029	-11.000	4.583	-20.700	-1.300

Analisis:

1. Terdapat perbedaan tekanan darah antara kelp perlakuan dan kelp kontrol setelah perlakuan, p=0.027

Mengapa memilih yang p=0.027 bukan yang p=0.029?

Catatan:

Cek nilai uji levene test, jika p>=0.05 maka varians homogen sehingga nilai p yang diambil adalah yang untuk *equal variaces assumed*

Jika uji levene test, jika p<0.05 maka varians heterogen sehingga nilai p yang diambil adalah yang untuk *equal variaces not assumed*

Test Statistics ^a

	Post_nadi
Mann-Whitney U	15.500
Wilcoxon W	70.500
Z	-2.660
Asymp. Sig. (2-tailed)	.008
Exact Sig. [2*(1-tailed Sig.)]	.007 ^b

a. Grouping Variable: KELP

b. Not corrected for ties.

Analisis:

1. Terdapat perbedaan Nadi antara kelp perlakuan dan kelp kontrol setelah perlakuan, p=0.08

LATIHAN ANOVA 1 ARAH (ONE WAY ANOVA) DAN KRUSKAL WALLIS

ANOVA 1 ARAH

Uji statistic yang digunakan untuk menilai perbedaan lebih dari 2 kelompok bagi variable dengan skala data interval/rasio

Syarat:

• Data berdistribusi normal: saphiro wilk/KS

• Varians homogen: levene test

Kalo syarat tidak terpenuhi, maka diuji dengan kruskall wallis.

Langkah:

1. Uji normalitas

Tests of Normality							
	Kolmogorov-Smimov ^a Shapiro-Wilk						
	KELP	Statistic df Sig. Statistic df Sig.					
TD_sistolik	perlakuan1	.230	10	.143	.933	10	.479
	perlakuan2	.233	10	.133	.904	10	.245
	standar	.297	10	.013	.868	10	.095

a. Lilliefors Significance Correction

Analisis:

Jika data berdistribusi normal, lanjut cek homogenitas data.

Jika data berdistribusi tidak normal, stop, pindah ke uji kruskall wallis

2. Uji homogenitas:

	Test of Homogeneity of Variances							
		Levene Statistic	dfl	df2	Sig.			
TD_sistolik	Based on Mean	.017	2	27	.983			
	Based on Median	.065	2	27	.937			
	Based on Median and with adjusted df	.065	2	23.485	.937			
	Based on trimmed mean	.021	2	27	.979			

Analisis:

p=0.983>0.05, varians homogen

Jika varians data homogen, lanjut ke uji Anova.

Jika varians data tidak homogen, pindah ke uji kruskall wallis

krn memenuhi syarat: distribusi data normal dan varians homogen, maka lanjut ke uji ANOVA 1 ARAH

3. Uji anova

	Descriptives							
TD_sistolik								
					95% Confidence Interval for Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
perlakuan1	10	158.00	11.353	3.590	149.88	166.12	140	180
perlakuan2	10	154.00	9.661	3.055	147.09	160.91	140	170
standar	10	155.00	9.718	3.073	148.05	161.95	140	170
Total	30	155.67	10.063	1.837	151.91	159.42	140	180

Analisis:

ANOVA							
TD_sistolik							
	Sum of Squares	df	Mean Square	F	Sig.		
Between Groups	86.667	2	43.333	.411	.667		
Within Groups	2850.000	27	105.556				
Total	2936.667	29					

Analisis: p=0.667, tidak beda, STOP

Jika p<0.05, ada beda, maka lanjut cek POST HOC TEST

Multiple Comparisons

Dependent Variable: TD_sistolik ···

		Mean Difference (I-			95% Confidence	e Interval
perlakuan1	perlakuan2	4.000	4.595	.392	-5.43	13.43
	standar	3.000	4.595	.519	-6.43	12.43
perlakuan2	perlakuan1	-4.000	4.595	.392	-13.43	5.43
	standar	-1.000	4.595	.829	-10.43	8.43
standar	perlakuan1	-3.000	4.595	.519	-12.43	6.43
	perlakuan2	1.000	4.595	.829	-8.43	10.43

KRUSKALL WALLIS

Uji statistic yang digunakan untuk menilai perbedaan lebih dari 2 kelompok bagi variable dengan skala data ORDINAL atau data interval/rasio yang tidak berdistribusi normal/varians tidak homogen

Test Statistics ^{a,b}							
pengetahuan							
Kruskal-Wallis H 1.258							
df 2							
Asymp. Sig533							
^{a.} Kruskal Wallis Test							
b. Grouping Variable: KELP							

Analisis:

p=0.533, tidak ada hubungan, STOP

Jika p<0.05 berarti ada beda, maka lanjut cek peda setiap pasang kelompok.

Lanjut, post hoc test seperti pada anova atau jika fasilitas tidak tersedia, di uji lanjut dengan uji mann whitney u test.