

Kuliah Teori Bahasa dan Automata Program Studi Ilmu Komputer Fasilkom UI

Prepared by:

Suryana Setiawan

Review Bahasa Reguler

- Definisi Bahasa Reguler
- Ekspresi Reguler
- Teorema Kleene:
 - ∘ Eskpresi Reguler → FSM
 - ∘ FSM → Ekspresi Reguler
- Kelas-kelas ekivalen dari relasi \approx_L berjumlah berhingga.

Bahasa Reguler vs nonreguler

- Sifat-sifat tersebut bersifat positif dalam kelas bahasa regular.
- Untuk membedakan dari bahasa non-regular?
 - TIDAK dapat memenuhi definisi bahasa regular.
 - TIDAK dapat dituliskan ekspresi regulernya.
 - TIDAK dapat dibuatkan FSM untuk mengenalinya.
 - TIDAK dapat ditunjukkan keberhinggan jumlah kelas ekivalensi.
- Kalau kita TIDAK berhasil menemukan suatu FSM atau ekspresi regeuler untuk suatu bahasa, belum tentu bahasa itu non-regular.
- Ketidakberhinggaan pada banyaknya kelas ekivalensi tidak mungkin dibuktikan.

Penggunaan Sifat Untuk Non-reguler

- Bagaimana dengan Bahasa-Bahasa ini?
 - $A^n B^n = \{a^n b^n : n \ge 0\}$
 - Palindrom dengan $\Sigma = \{a, b\}$
 - $L_{AB} = \{ w \in \{a, b\}^* : \forall v \in prefix(w).(\#_a(v) \ge \#_b(v)) \}$
- secara intuitif bisa ditunjukkan mesin untuk mengenal A^nB^n memerlukan jumlah status tak berhingga, tapi tidak cukup untuk mengatakan tidak ada FSM.
- Palindrom sudah dikenal sebagai bahasa non-reguler tetapi kita tidak bisa menunjukkan Palindrom tidak memenuhi sifat-sifat tsb.
- Untuk L_{AB} bahkan mungkin kita ragu-ragu, karena intuisi kita tidak jalan.
- Kita masih memerlukan alat pembuktian lain bahwa suatu bahasa non-regular itu benar-benar non-regular!

Rencana Materi

- Sifat atau alat pembuktian itu adalah Teorema Pumping (dikenal juga dengan nama Pumping Lemma).
- Teorema Pumping adalah sifat dari bahasa regular tetapi penggunaannya adalah untuk memeriksa suatu Bahasa non-regular adalah Bahasa non-regular dengan cara proof-by-contradiction,
- Untuk suatu bahasa L:
 - Dengan asumsi *L* adalah reguler akan ditunjukkan terjadi suatu kontradiksi yang berarti *L* tidak memenuhi sifat ini, berarti juga bukan bahasa Reguler.
 - Sementara jika *L* adalah Bahasa regular, maka asumsi itu selalu mengarah pada pemenuhan Teorema Pumping.

Observasi Bahasa Reguler

- Setiap bahasa reguler L dapat diterima oleh suatu DFSM M (Ingat: |K| berhingga). Jika L adalah tak berhingga maka
 - Pasti sekurangnya terdapat satu loop di dalam *M* (pigeonhole principle).
- Setiap $w \in L$, $|w| \ge |K|$, memiliki satu atau lebih pola berulang karena dengan adanya substring y ($y \ne \varepsilon$, dan $w = xy^qz$, $q \ge 0$) yang membawa M masuk dalam loop.
 - Contoh: w = babab dengan x = ba, y = b, z = ab

Observasi Bahasa Nonreguler

- Observasi dalam slide sebelumnya tidak selalu dapat digunakan untuk memeriksa suatu bahasa L yang sembarang (yang tidak diketahui apakah ada FSM untuk menerimanya).
 - Kalau pasti ada FSM, pasti bahasa reguler!
 - Kalau pasti tidak ada, pasti bukan bahasa reguler!
- Jika tidak pasti? Asumsikan terdapat suatu FSM *M* (tapi entah seperti apa!) dengan jumlah status *k*,
 - Jika observasi itu berlaku, maka itu bahasa reguler.
 - Jika observasi tidak berlaku, bukan bahasa reguler.

Teorema Pumping

Jika L adalah bahasa reguler, jika dan hanya jika:

```
\exists k \geq 1 \ (\forall w \in L . (|w| \geq k \ (\exists x, y, z . (w = xyz \land /xy / \leq k \land y \neq \varepsilon \land \forall q \geq 0 . (xy^qz \in L)))))
```

• Supaya mudah dibaca/dipahami, ditulis ulang sbb:

```
\exists k \geq 1 yang mana (
\forall w \in L, yang mana |w| \geq k (
\exists x, y, z yang mana (
w = xyz, |xy| \leq k, y \neq \varepsilon, dan,
\forall q \geq 0 yang mana (xy^qz \in L)
)
```

Batasan-Batasan Teorema Pumping

- Dari observasi sebelumnya dengan mesin dengan *K*
 - k = |K|, string w dengan panjang k atau lebih,
- Terdapat suatu partisi w menjadi xyz
 - y adalah substring yang membawa M melalui siklus,
 - x prefiks dan z sufiks dari w, yang mengapit y.
- Walaupun $|xy| \le k$
 - karena tepat ada k simbol, jika |w| = k maka siklus dilalui minimal satu kali; apalagi jika jika |xy| > k.
- Asalkan $y \neq \varepsilon$
 - karena *M* deterministik, tidak ada siklus ε
- Maka berlaku $\forall q \ge 0$. $(xy^qz \in L)$.

Negasi Teorema Pumping

- "L bahasa regular iff terdapat suatu k untuk setiap_wada suatu partisi x, y, z untuk setiap qsehingga sifat pumping terpenuhi."
- Negasinya: "L bukan reguler k arena untuk setiap k ada suatu k untuk semua partisi k, k, k, k, ada suatu k dimana sifat pumping gagal terpenuhi."

```
\forall k \geq 1 yang mana (
\exists w \in L, \text{ yang mana } |w| \geq k \text{ dan}
\forall x, y, z \text{ yang mana } (
w = xyz, |xy| \leq k, y \neq \varepsilon, \text{ dan,}
\exists q \geq 0 \text{ yang mana } (xy^qz \notin L)
)
)
```

Contoh: Bahasa *A*ⁿ*B*ⁿ

- Diketahui L adalah $A^nB^n = \{a^nb^n : n \ge 0\}$.
 - "Apabila L reguler harusnya terdapat k sehingga setiap string w, dengan $|w| \ge k$, memenuhi kondisi-kondisi dalam teorema pumping."
 - Kontradiksi ditunjukkan dengan memilih suatu w agar gagal dalam pumping!
- Untuk $w = a^k b^k$, |w| = 2k, yang memenuhi syarat $|w| \ge k$
 - Adakah x, y, dan z dengan w = xyz, dimana $|xy| \le k$, $y \ne \varepsilon$, dan, $\forall q \ge 0$ selalu berlaku $xy^qz \in L$?

Contoh: Bahasa A^nB^n (lanjutan)

- Partisi x, y, dan z dengan w = xyz, dimana $|xy| \le k$, $y \ne \varepsilon$
 - Secara umum $xy = a^j$ dengan $1 \le j \le k$ dan $y = a^p$, dengan $1 \le p \le j$, sehingga $x = a^{j-p}$ dan $z = a^{k-j}b^k$

- Selanjutnya, $xy^qz = a^{j-p}(a^p)^q a^{k-j}b^k = a^{p-q}a^{k-p}b^k$
 - kita pilih q = 0, $xy^0z = a^{p.0} a^{k-p}b^k = a^{k-p}b^k$ yaitu suatu string yang bukan anggota $L \rightarrow$ suatu kontradiksi.

Contoh: Bahasa A^nB^n (coba w lain)

- Mencoba $w = a^{\lceil k/2 \rceil} b^{\lceil k/2 \rceil}$ dengan |w| = k jika k bil genap atau |w| = k+1 jika k bil ganjil.
- Jika |y| = p, berarti y dapat berupa a^p atau $a^{p-j}b^j$ atau b^p
 - Kasus $y = a^p$, dengan q = 2, menghasilkan $a^{\lceil k/2 \rceil p} (a^p)^2 b^{\lceil k/2 \rceil} = a^{\lceil k/2 \rceil + p} b^{\lceil k/2 \rceil} \notin L$
 - Kasus $y = a^{p-j}b^j$, dengan q = 2, menghasilkan $a^{\lceil k/2 \rceil p + j} (a^{p-j}b^j)^2 b^{\lceil k/2 \rceil} = a^{\lceil k/2 \rceil} b^j a^{p-j} b^{\lceil k/2 \rceil} \notin L$
 - Kasus $y = b^p$, dengan q = 2, menghasilkan $a^{\lceil k/2 \rceil} (b^p)^2 b^{\lceil k/2 \rceil p} = a^{\lceil k/2 \rceil} b^{\lceil k/2 \rceil + p} \notin L$
- Mencoba berbagai w akan tetap menghasilkan kontradiksi!