CM096

17 de Abril de 2019

	Q:	1	2	3	4	5	6	Tot
Nome:	P:	20	20	15	25	20	15	11
	N:							
Questão 1								20
Considere um sistema de ponto flutuante $\pm 0.mantisse$ $E \in \{-3, -2, \dots, 3, 4\}.$								sas e
(a) 6 Quais são o maior e menor positivos representa	dos n	esse	siste	ma?				
(b) 7 Escreva o número 74 nesse sistema, truncando.								
(c) 7 Escreva o número 4.625 nesse sistema, truncano	do.							
Questão 2	aprox ndo 4	cimaç casa olocar	ção p is sig ndo 1	ara o nifica	zero ativas	dess s (em	sa fui nota	nção ação
$oxed{k} oxed{x_k} oxed{f(x_k)}$	f'	(x_k)			Err	О		
0								
1 2								
3								
(b) 5 Porque a velocidade de convergência é lenta?								
Questão 3 Estime $\sqrt{2}$ usando interpolação pelo método de diferença 4 casas significativas. $ \frac{x \mid 1.690 \mid 1.960 \mid 2.250}{\sqrt{x} \mid 1.300 \mid 1.400 \mid 1.500} $	as div	vidid <u>80</u>					 oaixo	15 o, e a
Questão 4	• • • • •							25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.300 0.341							

- (a) 15 Encontre uma aproximação para f(1.2) usando interpolação com polinômios de Lagrange (por Neville ou não). Use 6 casas **decimais**.
- (b) 10 Calcule um limitante para o erro absoluto dessa aproximação, sabendo que $f(x) = x \ln x$, e verifique que o erro absoluto realmente satisfaz esse limitante.

Questão 5
Considere o seguinte método para encontrar um zero da função f :
1. Dado intervalo $[a_0, b_0]$ tal que $f(a_0)f(b_0) < 0$. Faça $k = 0$;
2. Defina $\sigma_k = (b_k - a_k) \times 0.1;$
3. Escolha $x_k \in [a_k + \sigma_k, b_k - \sigma_k];$
4. Se $f(x_k) = 0$, então FIM.
5. Se $f(x_k)f(a_k) < 0$, defina $a_{k+1} = a_k$ e $b_{k+1} = x_k$;
6. Senão, defina $a_{k+1} = x_k e b_{k+1} = b_k$.
7. Volte ao passo 2
Mostre que se f é contínua e a hipótese inicial no passo 1 é satisfeita, então o método gera uma sequência $\{x_k\}$ tal que ou algum x_k é zero de f e o algoritmo para, ou a sequência converge para um zero de f .
Questão 6
Considere a integral $\int_0^3 e^{-x^2} dx$. Aproxime essa integral pelos método de Simpson repetido
usando 6 intervalos. Üse 4 casas decimais.