Basic Science Concept List

bioliteracy.net

)101	interacy.net	m1 0
Cou	ırse title:	
Insti	itution:	
Year	nester: r: ructor:	
Are	e you / where you	
teac It w thou	The instructor of the course A teaching assistant in the course A student taking the course alle not exhaustive (and we would appreciate it if you were them and they are not listed), the list will enable you ching assistants and your students, which concepts you will also enable your teaching assistants (and students) ught you covered.	u to make explicit to yourself, your intend to cover.

We would very much like to get a copy of your list, since this list can be more informative than the typical syllabus. Please mail or email it to us at M.W. Klymkowsky, MCDB, UC Boulder Boulder, CO 890309-0347

CONCEPT STATEMENT AREA			Not
CONCEPT STATEMENT AREA	omphosized	mentioned	
	emphasized	mentioned	covered
Science and its methods 10 statements			
Science and its methods – 10 statements		L	L.
1. Science is a social endeavor that depends on a			
community of scientists who accept its 'rules'			
2. The preparation of results for publication, their review,			
and the response of the scientific community are integral			
parts of the scientific process.			
3. To be valid, an experiment generally must include			
both positive and negative controls.			
4. A positive control checks to see whether reagents and			
methods used produce the expected effects – whether			
they work. A negative control checks to see if the			
experimental effect observed is due to a single well-			
defined change in the system.			
5. Scientific questions are generally based on a working			
hypothesis. Questions are framed, if possible, to provide			
an unambiguous yes/no answer that could either disprove			
or be consistent with the hypothesis.			
6. If a question cannot be answered unambiguously, it			
needs to be reformulated. Often it must be simplified.			
7. To be useful, a published experiment must be			
described accurately enough, i.e. the conditions, the			
reagents used, etc., so that others can repeat it to verify			
the results.			
8. Fruitful hypotheses are generally either revised or			
extended; they rarely remain constant.			
9. As a hypothesis gains confirmation and is extended, it			
may become a well-established theory. Theories may be			
modified, or subsumed by other more generally			
applicable or accurate theories, but are rarely abandoned			
in toto.			
10. The more accurately measurements can be made, the			
more rigorously a hypothesis can be tested.			
Experimental Savvy – 9 statements			
1 177'-1			
1. Without positive and negative controls, experimental			
results are almost always uninterpretable.			
2. An well designed hypothesis leads to clear and distinct			
predictions that can be validated or disproven by			
experimental observation.			
3. Unconscious bias can enter many types of			
experiments; it can be best controlled for through the use			
of 'double-blind' experimental protocols and placebo-			
controls.			

4. The ability to reproduce an experiment is key; an		
experiment that cannot be reproduced cannot be		
interpreted.		
5. Investigators must honestly report their methods,		
observations and interpretation so that other can		
reproduce them.		
6. Keeping of a legible, well-dated, and complete record		
of experiments is important not only in terms of enabling		
others to reproduce or reconstruct previous experiments,		
but in establishing the priority of specific discoveries.		
7. Work performed in a lab, either University, public or		
private sector, is the property of the lab, not the		
investigator (this needs to be stated more accurately).		
8. To withhold information that clearly argues against		
the conclusions of an experimental study is as dishonest		
as fabricating data that supports the desired conclusion.		
9. Failure to acknowledge the contributions of others,		
whether past workers or co-workers is plagiarism.		