03/08/2019 Quarter car model

Mathematical model for quarter car with passive suspension

The model is derived by applying Newton's Second Law to the two masses. In ordinary differential equations, the model is:

$$f(t) = c v_s(t) - c v_u(t) + k y_s(t) - k y_u(t)$$
 (1)

$$h(t) = f(t) - k_t y_u(t) + k_t y_r(t)$$
 (2)

$$\frac{dy_s(t)}{dt} = v_s(t) \tag{3}$$

$$\frac{dy_s(t)}{dt} = v_s(t)$$

$$\frac{dy_u(t)}{dt} = v_u(t)$$
(3)

$$\frac{dv_s(t)}{dt} = \frac{1}{m_s m_u + (m_s + m_u) b} (-(m_u + b) f(t) + b h(t))$$
 (5)

$$\frac{dv_u(t)}{dt} = \frac{1}{m_s m_u + (m_s + m_u) b} (-b f(t) + (m_s + b) h(t))$$
 (6)

After applying Euler's forward method, the equations become the following.

Equations (7)-(12) are what you need for simulation.

$$f(t) = c v_s(t) - c v_u(t) + k y_s(t) - k y_u(t)$$
 (7)

$$h(t) = f(t) - k_t y_u(t) + k_t y_r(t)$$
 (8)

$$y_s(t+\Delta) = y_s(t) + v_s(t) \Delta \tag{9}$$

$$y_u(t+\Delta) = y_u(t) + v_u(t) \Delta \tag{10}$$

$$v_s(t+\Delta) = v_s(t) + \left[\frac{(-(m_u+b)f(t)+bh(t))}{m_s m_u + (m_s + m_u)b}\right] \Delta$$
 (11)

$$v_{u}(t+\Delta) = v_{u}(t) + \left[\frac{(-b f(t) + (m_{s} + b) h(t))}{m_{s} m_{u} + (m_{s} + m_{u}) b} \right] \Delta$$
 (12)