

PHYSICS VERANO UNI 2021

Cap. 4
TRABAJO MECANICO
CONSERVACION DE LA
EM

Prof.

NOCIONES SOBRE TRABAJO

Actividad Intelectual

Actividad Física

En general;

A toda actividad humana que nos genera un beneficio o propósito para la satisfacción de nuestras necesidades.

TRABAJO MECÁNICO

¿A que denominamos trabajo mecánico?

Es el proceso mediante el cual se transfiere movimiento mecánico a un cuerpo o sistema físico, a través de la acción de una fuerza; se producirá el desplazamiento del mismo, mientras actúa la fuerza.

CANTIDAD DE TRABAJO MECÁNICO (W)

Cantidad física que cuantifica escalarmente el Trabajo Mecánico; su unidad de medida SI, es el joule (]).

Examinemos los siguientes casos:

Para una fuerza \vec{F} constante;

Matemáticamente se evalúa;

$$\mathbf{W}_{\mathbf{A}\to\mathbf{B}}^{\mathbf{F}} = \underline{\mathcal{F}}_{\mathcal{X}}.d$$

Siendo;

: Módulo de la distancia, en

: Angulo formado entre \vec{F} y \vec{d}

1 joule: 1J = 1N mUnidad:

Casos que se presentan:

TRABAJO MOTOR Se da con la fuerza a favor de la velocidad.

RESISTENTE

TRABAJO

Se da con la fuerza en contra de la velocidad.

$$W^F_{A \to B} = -Fd$$

Se da cuando la fuerza es perpendicular con la velocidad.

TRABAJO NETO

Viene a ser la Cantidad de Trabajo Total; ya que se obtiene al sumar las cantidades de trabajo de todas las fuerzas sobre el cuerpo o sistema físico.

Matemáticamen

$$W_{A o B}^{Neto} = \sum W_{A o B}^{Fzas}$$

Para el ejemplo de la figura;

$$W_{A\rightarrow B}^{Neto} = W_{A\rightarrow B}^{F_1} + W_{A\rightarrow B}^{F_2} + W_{A\rightarrow B}^{F_3} + W_{A\rightarrow B}^{F_4}$$

2) Para una fuerza \vec{F} variable;

Para una fuerza cuyo módulo es variable o constante; pero su dirección es constante, como se describe a continuación;

Se demuestra que, la cantidad de Trabajo desarrollado por dicha fuerza, es numéricamente igual al área bajo la curva, según:

$$W_{A \to B}^F = \text{Área}$$

Tener presente que:

Es (+): Si
$$\vec{F}$$
 esta

a favor de \vec{V} . Es (-):

Si
$$\vec{F}$$
 esta

en contra de \vec{V} .

ENERGÍA

Cantidad física escalar que cuantifica la capacidad asociada a un cuerpo o sistema físico para realizar trabajo. Dicha capacidad se debe a las diversas formas de movimiento e interacción de la materia en el universo. La unidad de energía, en el SI, es el joule (J).

Energía Mecánica (E_M)

La E_M se manifiesta en las siguientes formas:

Energía Cinética (E_c)

m: masa, en (kg)

V: rapidez. en (m/s)

Ejercicio

Del grafico mostrado determine la energía cinética de la esfera si esta tiene una masa de 8kg.

Energía Potencial Elástica (E_{PE})

X X: Deformación o elongación del resorte

$$E_{PE} = \frac{Kx^2}{2}$$

k : Constante de elasticidad, en (N/m)x : deformación, en (m)

CONSERVACION DE LA EM

Ejercicio

Determine la energía potencial gravitatorio de la esfera de 4kg de masa respecto al observador que se indica

Ejercicio

Determine la energía potencial gravitatorio almacenada por un resorte es comprimido 20 cm (K = 1000 N/m)

A continuación, se muestran algunos sistemas usuales, que son conservativos de EM

Deslizamiento sobre superficie lisa.

Movimiento de un péndulo simple

Principio de Conservación de la Energía

"La energía no se crea ni se destruye, sólo se transforma"

$$E_{M(inicial)} = E_{M(final)}$$

RELACIÓN ENERGÍA - TRABAJO MECÁNICO

Nota

El trabajo de una fuerza, puede incrementar o disminuir la energía mecánica de un cuerpo

 W_{A-B}^{FNC} : Suma de las cantidades de Trabajo que realizan las Fuerzas No Conservativas (FNC)

40m/s

El bloque es arrastrado con rapidez constante de 5 m/s. Determine la cantidad de trabajo mediante F durante 3 s.

RESOLUCIÓN

Como realiza MRU, usamos:

$$d = V.t$$
$$= 5.3$$

$$\Rightarrow$$
 d= 15 m

La cantidad de trabajo está dado por:

$$W^F_{A\to B} = \pm Fd$$

Como la fuerza esta a favor de la velocidad, usamos:

$$W_{A\to B}^F = +Fd$$

Reemplazando:

$$W_{A\to B}^F = +(30N)(15m)$$

Una caja es trasladada desde A hasta B mediante una fuerza horizontal constante de módulo 30 N. Determine la cantidad de trabajo desarrollado por dicha fuerza.

RESOLUCIÓN

La cantidad de trabajo está dado por:

$$W_{A\to B}^F = \pm Fd$$

Como la fuerza esta a favor del desplazamiento; usamos:

$$W_{A\to B}^F = +Fd$$

Reemplazando:

$$W_{A\to B}^F = +(30N)(8m)$$

 $W_{A\to B}^F = +240J$

3 Er

En el instante mostrado, la esfera de 2 kg tiene una rapidez de 10 m/s. Determine su energía mecánica respecto del piso.

<u>RESOLUCIÓN</u>

Sabemos que;

$$E_{M} = E_{C} + E_{P_{G}}$$

$$E_{\mathcal{C}}=\frac{mv^2}{2}$$

$$E_C = \frac{1}{2} (2 \text{ kg}) (10 \text{ m/s})^2$$

$$E_{C} = 100 J$$

$$E_{pg} = mgh$$

$$E_{Pg} = (2 \text{ kg})(10 \text{ m/s}^2)(5\text{m})$$

$$E_{Pg} = 100 J$$

Determine el trabajo desarrollado mediante F para arrastrar la carreta horizontalmente una distancia de 15 m.

RESOLUCIÓN

$$d = 15 m$$

La cantidad de trabajo está dado por:

$$W_{A\to B}^F = \pm F_x \cdot d$$

Como la fuerza esta a favor del desplazamiento; usamos:

$$W_{A\to B}^F = +F_x.d$$

Reemplazando:

$$W_{A\to B}^F = +(20N)(15m)$$

En el sistema mostrado, la esfera tiene una rapidez de 8 m/s. Determine su energía mecánica respecto de la persona.(g = $10 \frac{m}{s^2}$)

RESOLUCIÓN

Sabiendo que;

$$E_{M} = E_{C} + E_{P_{G}}$$

$$E_C = \frac{mv^2}{2}$$

$$E_C = \frac{1}{2}(0.5 \text{ kg}) (8 \text{ m/s})^2$$

$$E_C = 16 J$$

$$E_{pg} = mgh$$

$$E_{Pg} = (0.5 \text{ kg})(10 \text{ m/s}^2)(12\text{m})$$

$$E_{Pg} = 60 J$$

 $E_{M}=76 J$

La esfera de 2 kg abandona la superficie horizontal tal como Determine muestra. se energía mecánica de la esfera respecto del piso.

AB = 4 m; g =
$$10 \frac{m}{s^2}$$

Sabiendo que;

$$E_{M}^{A} = E_{C}^{A} + E_{PG}^{A}$$

$$\mathbf{E}_{\mathsf{C}}^{A} = \frac{mv^{2}}{2}$$

$$\mathbf{E}_{\mathbf{C}}^{A} = \frac{1}{2} (2 \text{ kg}) (5 \text{ m/s})^{2}$$
 $\mathbf{E}_{\mathbf{C}}^{A} = 25 \text{ J}$

$$\mathbf{E}_{\mathbf{C}}^{A} =$$

$$\mathbf{E}_{PG}^{A} = mgh$$

$$\mathbf{E}_{PG}^{A} = (2 \text{ kg})(10 \text{ m/s}^2)(2\text{m})$$
 $\mathbf{E}_{PG}^{A} = 40 \text{ J}$

$$\mathbf{E}_{PG}^A = 40 \, \mathbf{J}$$

Determine la energía mecánica asociada al sistema esfera - resorte, en el instante mostrado, si la esfera de 2 kg tiene una rapidez de 20 m/s y el resorte de rigidez k = 1000 N/m está deformado 10 cm.(g = $10 \frac{m}{s^2}$)

RESOLUCIÓN

$$\mathbf{E}_{\mathbf{M}}^{A} = \mathbf{E}_{\mathbf{C}}^{A} + \mathbf{E}_{\mathbf{PG}}^{A} + \mathbf{E}_{\mathbf{PE}}^{A}$$

$$\mathbf{E}_{\mathbf{C}}^{A} = \frac{mv^{2}}{2}$$
 $\mathbf{E}_{\mathbf{C}}^{A} = \frac{1}{2}(2 \text{ kg}) (20 \text{ m/s})^{2} \implies \mathbf{E}_{\mathbf{C}}^{A} = 400 \text{ J}$

$$\mathbf{E}_{PG}^{A} = mgh$$
 $\mathbf{E}_{PG}^{A} = (2 \text{ kg})(10 \text{ m/s}^2)(10 \text{ m})$ $\mathbf{E}_{PG}^{A} = 200 \text{ J}$

$$\mathbf{E}_{PE}^{A} = \frac{mv^{2}}{2}$$
 $\mathbf{E}_{PE}^{A} = \frac{1}{2}(1000N/m)(0.1m)^{2}$ $\mathbf{E}_{PE}^{A} = 5 \text{ J}$

 $E_{\rm M}^A=605\,{\rm J}$

El bloque de 4 kg es lanzado en A con una rapidez de 2 m/s sobre la superficie horizontal lisa. Determine la máxima deformación del resorte de rigidez. (k = 100 N/m)

RESOLUCIÓN

Por Conservación de EM:

$$E_{M}^{B} = E_{M}^{C}$$

$$E_C^B = E_{PE}^C$$

Reemplazando datos:

$$\frac{1}{2}$$
. 4. $2^2 = \frac{1}{2}$. 100. (X)²

X = 0.4 m = 40 cm

9

Un niño inicia su movimiento en la parte superior de un tobogán de 15 m de longitud, tal como se muestra. Determine la rapidez con la que llega a la parte más baja del tobogán. Desprecie el rozamiento.(g = $10 \frac{m}{c^2}$)

RESOLUCIÓN

Por Conservación de EM:

$$E_{M}^{A} = E_{M}^{B}$$

$$E_{PG}^{A} = E_{C}^{B}$$

Reemplazando datos:

$$m. 10.9 = \frac{1}{2}.m. (V)^2$$

 $V = 6\sqrt{5} \text{ m/s}$

Una moneda es soltada en el punto A sobre la superficie lisa. Determine la rapidez con la que llega a la superficie horizontal.(g = $10 \frac{m}{c^2}$)

RESOLUCIÓN

Reemplazando datos:

$$m. 10.0,8 = \frac{1}{2}.m. (V)^2$$

V = 4 m/s

Determine la rapidez con la que la esfera impacta en el lago. (g = $10 \frac{m}{s^2}$)

RESOLUCIÓN

Reemplazando datos:

$$\frac{1}{2}$$
. m. $(5)^2 + m$. $10.30 = \frac{1}{2}$. m. $(V)^2$

V = 25 m/s

Una esfera es lanzada con una rapidez de 10 m/s en A. Determine la máxima altura que alcanza respecto al punto más bajo de su trayectoria. Considere superficie lisa.

Por Conservación de EM:

$$E_{M}^{A} = E_{M}^{B}$$

Reemplazando datos:

$$\frac{1}{2}$$
. m. $(10)^2$ = m. 10 . $(h-1)$

Debido a la fuerza F el bloque presenta una rapidez de 20 m/s. Determine a qué altura presenta dicha rapidez. (g = $10 \frac{m}{s^2}$)

RESOLUCIÓN

El joven desplaza al bloque liso de 4 kg a partir de la posición mostrada. Si la rapidez del bloque cuando pasa por B es 2 m/s, determine la cantidad de trabajo que realiza el joven sobre el bloque desde A hasta B.

RESOLUCIÓN

Al ser la fuerza F de dirección variable y de valor desconocido, es conveniente usar la Relación **W&EM**;

$$W_{A\to B}^{\mathrm{F}} = E_M^{final} - E_M^{inicial}$$

$$W_{A\to B}^{\mathrm{F}} = E_{\mathrm{C}}^{\mathrm{B}} - 0J$$

Reemplazando datos: $W_{A\rightarrow B}^{\rm F} = \frac{1}{2}.4.(2)^2 - 0$

$$W_{A \to B}^{\mathrm{F}} = \mathbf{8} \mathbf{J}$$

El bloque de 8 kg es lanzado como se muestra. Si la rapidez del bloque cuando pasa por B es 3 m/s, determine la cantidad de trabajo realizado mediante la fuerza de rozamiento desde A hasta B. (g = $10 \frac{m}{c^2}$)

Usando la Relación W&EM;

$$W_{A\to B}^{fk} = E_M^{final} - E_M^{inicial}$$

$$\longrightarrow W_{A \to B}^{fk} = E_{C}^{B} + E_{PG}^{B} - E_{C}^{A}$$

Reemplazando datos:

$$W_{A\to B}^{fk} = \frac{1}{2}.8.(3)^2 + 8.10.0,25 - \frac{1}{2}.8.(4)^2$$

$$W_{A \rightarrow B}^{fk} = -8 J$$