Tweedie

Parametrisation

The Tweedie distribution¹ is a compond Poisson-Gamma model, where

$$Y = \sum_{i=1}^{N} X_i,$$

and $\{X_i\}$ are iid Gamma variables with parameter (α, γ) so that the mean of X_i is $\alpha \gamma$ and variance $\alpha \gamma^2$, and N is (independent) Poisson with mean λ . Since N can be 0 with a positive probability, then the Tweedie distribution have a singleton in zero and is continuous for y > 0.

We will use the following reparametersation

$$\mu = \lambda \alpha \gamma, \qquad p = \frac{\alpha + 2}{\alpha + 1}, \qquad \frac{\phi}{w} = \frac{\lambda^{1-p} (\alpha \gamma)^{2-p}}{2-p}$$

where w > 0 is a fixed scaling, so the mean of Y is $\mu > 0$, variance is $\frac{\phi}{w}\mu^p$ where $1 , and <math>\phi$ is a dispersion parameter.

Link-function

The linkfunction is given as

$$\log(\mu) = \eta$$

where η is the linear predictor.

Hyperparameters

The hyperparameters are $\theta = (\theta_1, \theta_2)$, where

$$p = 1 + \frac{\exp(\theta_1)}{1 + \exp(\theta_1)}, \qquad 1$$

and

$$\phi = \exp(\theta_2), \qquad \phi > 0$$

The priors are given on (θ_1, θ_2) .

Specification

- family = tweedie
- ullet Required arguments: y (and optional w through option scale)

Hyperparameter spesification and default values

doc Tweedie distribution

hyper

theta1

hyperid 102101 name p

¹This documentation follows the notation in Likelihood-based and Bayesian methods for Tweedie compound Poisson linear mixed models, by Yanwei Zhang, Stat Comput (2013) 23:743-757, DOI 10.1007/s11222-012-9343-7

```
short.name p
         initial 0
         fixed FALSE
         prior normal
         param 0 10
         to.theta function(x, interval = c(1.0, 2.0)) log(-(interval[1] - x) / (interval[2] - x)
         from.theta function(x, interval = c(1.0, 2.0)) interval[1] + (interval[2] - interval
     theta2
         hyperid 102201
         name dispersion
         short.name phi
         initial 0
         fixed FALSE
         prior loggamma
         param 1 0.1
         to.theta function(x) log(x)
         from.theta function(x) exp(x)
status experimental
survival FALSE
discrete FALSE
link default log
pdf tweedie
Example
In the following example we estimate the parameters in a simulated example.
library(tweedie)
library(INLA)
n <- 300
x \leftarrow rnorm(n, sd = 0.3)
eta <- 1 + x
mu <- exp(eta)</pre>
p < -1.32
phi <- 2.0
y <- numeric(n)
for(i in 1:n) {
    y[i] <- rtweedie(1, xi = p, mu = mu[i], phi = phi)
r \leftarrow inla(y ~1 + x,
          data = data.frame(y, x),
          family = "tweedie")
summary(r)
```

Notes

This distribution is experimental, and changes will occur.