1. (10 points) Consider the function

$$f(x,y) = \ln\left(\frac{y}{x}\right).$$

Compute

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y}$$

and

$$x^2 \frac{\partial^2 f}{\partial x^2} - y^2 \frac{\partial^2 f}{\partial y^2}.$$

2. (2 points) Below is a contour plot of a function g(x,y) over the region of points (x,y) with $-3 \le x \le 1$ and $-2 \le y \le 2$, with the dashed line y = 0 drawn over it.

Figure 1: A contour plot for a function g(x, y)

For the points labeled P, Q, R, determine the if each of $g_x(P), g_y(Q), g_x(R)$, and $g_y(R)$ is positive, negative, or 0.

3. (2 points) Which compositions of the function

$$f(x,y) = (x^2 + y^2, x^2 - y^2)$$
 and $g(x,y,z) = (xy,xz)$

are possible?

- a) $f \circ g$ is defined, but $g \circ f$ is not.
- b) $g \circ f$ is defined, but $f \circ g$ is not.
- c) Both $f \circ g$ and $g \circ f$ are defined.
- d) Neither $f \circ g$ nor $g \circ f$ is defined.

4. (3 points) Consider a function f(x,y) satisfying

$$\left| \frac{\partial f}{\partial x}(a,b) \right| \neq \left| \frac{\partial f}{\partial x}(-a,-b) \right|$$

for all $(a,b) \in \mathbf{R}^2$. Which contour plot is most likely to correspond to f(x,y)?

Note that the contour plots below all have uniform increments in f-values: the gaps between f-values for successive level curves are the same.

5. (3 points) The line of best fit for a collection of data points $(x_1, y_1), \ldots, (x_{100}, y_{100})$ is

$$y = -4x + 30.$$

Suppose the x-coordinates and the y-coordinates have the same mean, i.e. $\bar{x} = \bar{y}$. What is \bar{x} ?

- a) 0
- b) 6
- c) 7.5
- d) 30
- e) -10