Video Compression Standards (II)

A/Prof. Jian Zhang

NICTA & CSE UNSW COMP9519 Multimedia Systems S2 2009

jzhang@cse.unsw.edu.au

Tutorial 2 : Image/video Coding Techniques

NICTA

Basic Transform coding *Tutorial 2*

- Discrete Cosine Transform
 - For a 2-D input block U, the transform coefficients can be found as $Y = CUC^T$
 - The inverse transform can be found as $Y = CUC^T$
 - The NxN discrete cosine transform matrix C=c(k,n) is defined as:

$$c(k,n) = \begin{cases} \frac{1}{\sqrt{N}} & for \ k = 0 \ and \ 0 \le n \le N-1, \\ \sqrt{\frac{2}{N}} \cos \frac{\pi (2n+1)k}{2N} & for \ 1 \le k \le N-1 \ and \ 0 \le n \le N-1. \end{cases}$$

Basic Transform coding *Tutorial 2*

• The distribution of 2-D DCT Coefficients

Ref: H. Wu

THE UNIVERSITY OF NEW SOUTH WALES

JPEG DCT-Based Encoding Tutorial 2

COMP9519 Multimedia Systems - Lecture 4 - Slide 5 - J Zhang

Coding of DCT Coefficients (DC)

Tutorial 2

 DC coefficient is coded differentially as (size, amplitude). There are 12 size categories

ΔDC_i	$=DC_{i}$	$-DC_i$
-3	36	39

Size: 2	
-3	00
-2	01
2	10
3	11

[Coeff] Size [Code] Length 0 00 2+0010 3+12.3 011 3+24 7 100 3+3 8...15 101 3+416..31 110 3+532..63 1110 4+6 64..127 11110 5+7 128 255 111110 6+8256..511 1111110 7+9 512..1023 10 11111110 8 + 101024..2047 11 111111110 9+11

Final code:01100

COMP9519 Multimedia Systems - Lecture 4 - Slide 6 - J Zhang

Coding of DCT Coefficients (AC)

Tutorial 2

- Level is further divided into (Size Categories, Amplitude).
- Run and size are then combined and coded as a single event (2D VLC)
 - An 8-bit code 'RRRRSSSS' is used to represent the nonzero coefficients
 - The SSSS is defined as size categories from 1 to 11
 - The RRRR is defined as run-length of zeros in the zig-zag scan or number of zeros before a nonzero coefficient
 - The composite value of RRRRSSSS is then Huffman coded

Ex: 1) RRRRSSS=11110000 represents 15 run '0' coef. and followed by a '0' coef.

- 2) Multiple symbols used for run-length of '0' coef. exceeds 15
- 3) RRRRSSS=00000000 represents end-of-block (EOB)

Coding of DCT Coefficients (AC)

Tutorial 2

Zig-Zag scan

THE UNIVERSITY OF NEW SOUTH WALES

COMP9519 Multimedia Systems - Lecture 4 - Slide 8 - J Zhang

COMP9519 Multimedia Systems – Lecture 4 – Slide 7 – J Zhang

Block Based Motion Estimation

Tutorial 2

Block base search

Current Frame

16x16 -- Macroblock

COMP9519 Multimedia Systems - Lecture 4 - Slide 10 - J Zhang

Block Based Motion Estimation

Tutorial 2

Block base search

COMP9519 Multimedia Systems - Lecture 4 - Slide 11 - J Zhang THE UNIVERSITY OF NEW SOUTH WALES

Block Based Motion Estimation

Tutorial 2

Block base search

COMP9519 Multimedia Systems - Lecture 4 - Slide 12 - J Zhang

Digital Video Coding (DVC) Structure

- Hybrid MC/DPCM/DCT Tutorial 2

Codec = encoder/decoder

 Scalable video coding means the ability to achieve more than one video resolution or quality simultaneously.

COMP9519 Multimedia Systems - Lecture 4 - Slide 14 - J Zhang

THE UNIVERSITY OF NEW SOUTH WALES

COMP9519 Multimedia Systems – Lecture 4 – Slide 13 – J Zhang

4.1 Digital Video Coding (DVC) Standards— MPEG-2 Scalability

- Spatial Scalability
 - A spatially scalable coder operates by filtering and decimating a video sequence to a smaller size prior to coding.
 - An up-sampled version of this coded base layer representation is then available as a predicator for the enhanced layer
 - As prediction is performed in the spatial domain, the coding at the base layer can take any other standards including (MPEG-1 or H.261).
 - This is an important feature to address compatibility in layered codec

4.1 Digital Video Coding (DVC) Standards— MPEG-2 Scalability

• Spatial Scalability - Spatial Scalability Codec

4.1 Digital Video Coding (DVC) Standards— MPEG-2 Scalability

- Spatial Scalability Types
 - Progress to progress
 - Progress to interlaced
 - Interlaced to progress
 - Interlaced to interlaced

4.1 Digital Video Coding (DVC) Standards— MPEG-2 Scalability

COMP9519 Multimedia Systems - Lecture 4 - Slide 18 - J Zhang

4.1 Digital Video Coding (DVC) Standards— MPEG-2 Scalability

4.1 Digital Video Coding (DVC) Standards— MPEG-2 Scalability

- Data partitioning
 - Data partitioning permits a video bitstream to be divided into two separate bitstreams
 - The BL contains the more info. including address and control info. as well as lower order DCT coef.
 - The HL contains the rest info. of the bitstream
 - The syntax elements in BL are indicated by proprity breakpoint (PBP)
 - Some syntax elements in BL are redundant in HL to facilitate error recovery
 - It has the advantage to introduce almost no additional overhead
 - The disadvantage of this scheme: considerable drift occurs if only the BL is available to a decoder.

4.1 Digital Video Coding (DVC) Standards— MPEG-2 Scalability

Data partitioning

THE UNIVERSITY OF NEW SOUTH WALE

COMP9519 Multimedia Systems – Lecture 4 – Slide 21 – J Zhang

4.1 Digital Video Coding (DVC) Standards— MPEG-2 Scalability

• Data partitioning – bitstream example (PBP = 64)

Quant DC Scale Coefi	DCT Coeff DCT Coeff I Run/Level Run/Level Pair 1 Pair 2	Punt seed FOR	DC DCT Coeff Run/Level Pair 1	ЕОВ	
-------------------------	---	---------------	-------------------------------------	-----	--

COMP9519 Multimedia Systems – Lecture 4 – Slide 22 – J Zhang

4.1 Digital Video Coding (DVC) Standards— MPEG-2 Scalability

Data partitioning

Priority Break Point	Definition
65	All data at sequence, GOP, Pic and slice layers
66	PBP=65 plus MB data to MB type
67	PBP=66 plus data to MB motion Vectors
0	PBP=67 plus MB data from CBP to DC (or 1st non-zero) Coeff.
1	PBP=0 plus to first coeff. Following DC to first non-zero coeff after the first coeff. in the scan order
2	PBP=0 plus up to first non-zero coeff after the 2 nd coeff in the scan order
j	PBP=0 plus to first non-zero coeff after the jth coeff in the scan order

- Video Coding and Communication
 - MPEG-4 standard: video part -- content based video coding scheme
 - To enable all these content-based functionalities, MPEG-4 relies on a revolutionary, content based representation of audiovisual objects.
 - As opposed to classical rectangular video (eg: MPEG1/2), MPEG-4 treats a scene as a composition of several objects that are separately encoded and decoded
 - The scalability at the object or content level enables to distribute the available bit-rate among the objects in the scene
 - Visually, more important objects are allocated more bits.
 - Encoded once and automatically played out at different rates with acceptable quality for the communication environment and bandwidth at hand.

4.2 MPEG-4 Visual Standard

Access and manipulation of arbitrarily shaped images

Ref: Thomas Sikora

Object Based MPEG-4 Video Verification Model

- In MPEG-4, scenes are composed of different objects to enable contentbased functionalities.
- 2. Flexible coding of video objects
- 3. Coding of a "Video Object Plane" (VOP) Layer

COMP9519 Multimedia Systems - Lecture 4 - Slide 25 - J Zhang

4.2 MPEG-4 Visual Standard

Video Object Planes (VOP's)

Ref: Thomas Sikora

Original

Binary Segmentation Mask

The binary segmentation Mask is to extract the back/fore-ground layers

Ref: MPEG-4 AKIYO testing video sequence

COMP9519 Multimedia Systems - Lecture 4 - Slide 26 - J Zhang

4.2 MPEG-4 Visual Standard

• Decomposition into VOP's

Background Layer VOP

Foreground Layer VOP

The overlapping VOP's brining the opportunity to do the manipulation of Scene content

4.2 MPEG-4 Visual Standard

Video Object Plane" layered coding

4.2 MPEG-4 Visual Standard

DCT-Based Approach for Coding VOP's

Ref: Thomas Sikora

Block diagram of the basic MPEG-4 hybrid DPCM/transform codec structure

COMP9519 Multimedia Systems - Lecture 4 - Slide 29 - J Zhang

4.2 MPEG-4 Visual Standard

• Coding of a "Video Object Plane"

Ref: Thomas Sikora

COMP9519 Multimedia Systems - Lecture 4 - Slide 30 - J Zhang

4.2 MPEG-4 Visual Standard

Previous Frame

Background Padding for Motion Compensation

Padded background

Current Frame

4.2 MPEG-4 Visual Standard

4.3 Introduction to H.264 Video **Coding Standard**

- It started from the ITU-T H.26L Project (Long term)
- It aims to improve the coding efficiency up to 50% compared to MPEG-4 video coding standard
- In Dec. 2001, MPEG and ITU-T experts set up joint video team (JVT) to focus on this new standard.
- The final version of the standard has been approved by ITU-T 2003. H.264 video coding standard or MPEG-4 Part 10.
- The new technical approaches:
 - An Adaptive deblocking loop filter to remove the artifacts
 - Multiple frame for ME/MC
 - Predication in Intra mode
 - Integer transform
 - Optimized rate control strategy (my opinion)

COMP9519 Multimedia Systems - Lecture 4 - Slide 33 - J Zhang

4.3 Video Codec Structure of H.264 (H.26L TML-8 Design Part 1 of 4)

- Hybrid of DPCM/MC/Trans coding as in Prior standards. Common elements include:
 - 16x16 macroblocks
 - Conventional sampling of chrominance and association of luminance and chrominance data
 - Block motion displacement
 - Motion vectors over picture boundaries
 - Variable block-size motion
 - Block transforms (not DCT, wavelets or fractals)
 - Scalar quantization (weighted)

Video Codec Structure of H.264

COMP9519 Multimedia Systems - Lecture 4 - Slide 34 - J Zhang

THE UNIVERSITY OF NEW SOUTH WALES

4.3 H.264: Motion Compensation **Accuracy**

4.3 H.264: Multiple Reference Frames

NICTA

- Motion Compensation:
 - Multiple reference pictures (per H.263++ Annex U)
 - B picture prediction weighting
 - New "SP" transition pictures for sequence switching
 - Various block sizes and shapes for motion compensation (7 segmentations of the macroblock: 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, 4x4)
 - 1/4 sample (sort of per MPEG-4) and 1/8 sample accuracy motion

COMP9519 Multimedia Systems - Lecture 4 - Slide 38 - J Zhang

