

DoExercises:

esercizi per il corso di Probabilità e Statistica

Esercizi Soluzioni Riepilogo Voti

Luca Prigione

2024-05-27	Soluzione all'esercizio del 2024-05-16
2024-05-24	creato per luca.prigione
2024-05-23	Soluzione all'esercizio del 2024-05-16
2024-05-22	creato per luca.prigione
2024-05-21	Si supponga che il numero di molecole di sodio in 1 ml di acqua minerale sia descritto da una v.a. di
2024-05-20	Poisson con media 200 . Lo strumento con cui analizziamo quest'acqua può ricevere solo multipli interi positivi di 1 ml (capacità della pipetta con cui viene caricato).
2024-05-17	Quesiti e soluzioni
2024-05-16	Quesito 1
2024-05-15	Determinare la probabilità che 10 ml di acqua contengano più di $2000\mathrm{molecole}$, utilizzando l'approssimazione normale (Teorema Limite Centrale) e la correzione di continuità.
2024-05-14	Ricordiamo che la somma di v.a. X_i di Poisson di parametro λ è una variabile di Poisson con parametro
2024-05-13	dato dalla somma dei parametri, i.e. $\sum\limits_{i=1}^{n} X_i$ è poissoniana di parametro $n\lambda$.
2024-05-10	Sia X_{10} la v.a. che indica il numero di molecole di sodio in 10 ml di acqua. Per la riproducibilità della Poisson, X_{10} è una v.a. di Poisson di parametro 2000 (infatti stiamo sommando 10 v.a di Poisson di parametro 200). Quindi abbiamo $\mathbb{E}[X_{10}] = \mathbb{V}ar(X_{10}) = 2000$.
2024-05-09	Dobbiamo calcolare
2024-05-08	$P(X_{10}>2000)=1-P(X_{10}\leq 2000).$
2024-05-07	Allora, usando l'approssimazione con TLC e la correzione di continuità si ha
2024-05-06	$1-P(X_{10} \leq 2000) = 1-P\left(rac{X_{10}-2000}{\sqrt{2000}} \leq rac{(2000+0.5)-2000}{\sqrt{2000}} ight) pprox 1-\phi\left(rac{(2000+0.5)-2000}{\sqrt{2000}} ight)$
2024-05-03	 La risposta corretta è: 0.4955398 La risposta inserita è: 0.4955398 che corrisponde a 0.4955398
2024-05-02	
2024-04-30	Quesito 2.
2024-04-29	Qual è l'errore assoluto (ossia la differenza in valore assoluto) tra la probabilità ottenuta con l'approssimazione calcolata al quesito 1 e il valore esatto? (Nella risposta si diano almeno 3 cifre decimali significative.)
2024-04-24	
2024-04-23	Dobbiamo confrontare la soluzione del quesito 1 con il valore del complementare della funzione di ripartizione della v.a. di Poisson X_{10} calcolata in 2000 , $P(X_{10}>2000)=1-F_{X_{10}}(2000)$. Possiamo, come al solito, usare per questo la funzione in R ppois . Per concludere, sottraiamo al valore esatto ottenuto quello approssimato calcolato al quesito 1, e prendiamone il valore assoluto.
2024-04-22	

• La risposta corretta è: 0.0014865

2024-04-19
2024-04-18
2024-04-17
2024-04-16
2024-04-15
2024-04-10
2024-04-09
2024-04-08
2024-04-05
2024-04-04
2024-04-03
2024-04-02
2024-03-28
2024-03-27
2024-03-26
2024-03-25
2024-03-22
2024-03-21
2024-03-20
2024-03-19
2024-03-18
2024-03-15
2024-03-14
2024-03-13
2024-03-12

- La risposta inserita è: 0.0014865
- che corrisponde a 0.0014865

Quesito 3

Determinare la minima quantità di ml di acqua da analizzare nello strumento affinché la probabilità che ci siano almeno 2400 molecole di sodio sia non inferiore a 0.77, utilizzando l'approssimazione normale e la correzione di continuità.

Suggerimento: qnorm(p, mean=0, sd=1) calcola il quantile corrispondente alla probabilità p secondo la distribuzione normale standard.

Sia X_n la v.a. che indica il numero di molecole di sodio in n ml di acqua, allora X_n è una v.a. di Poisson di parametro n*200

Dobbiamo quindi determinare n in modo che si verifichi $P(X_n \geq 2400) \geq 0.77$. Utilizzando l'approssimazione normale e la correzione di continuità, abbiamo

$$\begin{split} 0.77 &\leq P(X_n \geq 2400) = P(X_n > 2400 - 0.5) = \\ &= P\left(\frac{X_n - n \cdot 200}{\sqrt{n \cdot 200}} > \frac{(2400 - 0.5) - n \cdot 200}{\sqrt{n \cdot 200}}\right) \\ &\approx 1 - \Phi\left(\frac{(2400 - 0.5) - n \cdot 200}{\sqrt{n \cdot 200}}\right), \end{split}$$

da cui segue

$$\Phi\left(\frac{(2400-0.5)-n\cdot 200}{\sqrt{n\cdot 200}}\right) \leq 0.23 \Leftrightarrow \frac{(2400-0.5)-n\cdot 200}{\sqrt{n\cdot 200}} \leq \Phi^{-1}(0.23).$$

Come suggerito, possiamo quindi usare quorm per calcolarci $\Phi^{-1}(0.23)$, dopodiché risolvendo la disuguaglianza si ottiene $n\geq 12.1798308$, ossia $n\geq 13$, dal momento che il macchinario può prendere solo un numero intero positivo di ml.

- La risposta corretta è: 13
- La risposta inserita è: 13
- che corrisponde a 13