

- Uma das fontes de estudo da física é o movimento
 - Qual a velocidade que um objeto se desloca?
 - Qual o tempo de deslocamento?
- No mundo tudo está em movimento
- A classificação e comparação de movimentos é chamada de Cinemática
 - Mas, o que é exatamente medido e comparado?

- Propriedades do movimento
 - O movimento é ao longo de uma linha apenas
 - forças que impulsionam o movimento
 - É um movimento de uma partícula ou é um objeto com movimento particulado?

- Posição e deslocamento
 - Localizar um partícula significa determinar a posição da partícula em relação a algum sistema de referência

• A mudança de posição de x_1 para x_2 (Δx) - deslocamento

$$\Delta x = x_2 - x_1.$$

- O sinal do deslocamento irá indicar qual o seu sentido
- Grandeza vetorial:
 - Módulo
 - Direção
 - Sentido

- Velocidade média
 - Razão entre o deslocamento (Δx) e o intervalo de tempo (Δt)
 - unidade padrão m/s
 - Sempre tem o mesmo sinal do deslocamento (ou seja sentido)
 - Em um gráfico Posição x Tempo, será a inclinação da reta entre dois pontos

$$v_{\text{avg}} = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}.$$

- Velocidade Média Total
 - Não leva em conta o deslocamento (vetor) e sim total percorrido em um intervalo de tempo
 - m/s

$$s_{\text{avg}} = \frac{\text{total distance}}{\Delta t}$$

- Velocidade Instantânea
 - Qual a velocidade de uma partícula em um determinado instante?

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}.$$

- Aceleração
 - Quando a velocidade de uma partícula varia
 - Grandeza vetorial

Aceleração Média

$$a_{\text{avg}} = \frac{v_2 - v_1}{t_2 - t_1} = \frac{\Delta v}{\Delta t},$$

Aceleração Instantânea

$$a = \frac{dv}{dt}.$$

Aceleração

Aceleração

$$a = \frac{dv}{dt} = \frac{d}{dt} \left(\frac{dx}{dt} \right) = \frac{d^2x}{dt^2}.$$

Aceleração Constante

• Aceleração média e a instantânea são iguais, assim $(t_0=0)$:

$$a = a_{\text{avg}} = \frac{v - v_0}{t - 0} \qquad \qquad v = v_0 + at.$$

• De forma similar para a velocidade:

$$v_{\text{avg}} = \frac{x - x_0}{t - 0} \qquad \qquad x = x_0 + v_{\text{avg}}t$$

- Aceleração Constante
 - A velocidade média pode ser escrita como:

$$v_{\text{avg}} = \frac{1}{2}(v_0 + v)$$

$$v_{\text{avg}} = v_0 + \frac{1}{2}at \longrightarrow x - x_0 = v_0 t + \frac{1}{2}at^2$$

$$v = v_0 + at.$$

- Aceleração Constante
 - A velocidade média pode ser escrita como:

$$v_{\text{avg}} = \frac{1}{2}(v_0 + v)$$

$$v_{\text{avg}} = v_0 + \frac{1}{2}at \longrightarrow x - x_0 = v_0 t + \frac{1}{2}at^2$$

$$v = v_0 + at.$$

- Aceleração Constante
 - Equações de movimento (aceleração constante)

Equations for Motion with Constant Acceleration^a

Equation Number	Equation	Missing Quantity
2-11	$v = v_0 + at$	$x-x_0$
2-15	$x - x_0 = v_0 t + \frac{1}{2}at^2$	ν
2-16	$v^2 = v_0^2 + 2a(x - x_0)$	t
2-17	$x - x_0 = \frac{1}{2}(v_0 + v)t$	a
2-18	$x - x_0 = vt - \frac{1}{2}at^2$	v_0

Aceleração Constante

- Aceleração Constante
 - Reescrevendo a equação da aceleração

$$dv = a dt \implies \int dv = \int a dt \implies \int dv = a \int dt \implies v = at + C$$

$$dx = v dt \implies \int dx = \int v dt \implies \int dx = \int (v_0 + at) dt \implies \int dx = v_0 \int dt + a \int t dt \implies x = v_0 t + \frac{1}{2} a t^2 + C'$$

- Aceleração em queda livre
 - Todos objetos caem sobre a influencia da mesma aceleração g = 9,8 m/s²
 - A aceleração independe das características do objeto (massa, densidade, área, e etc)
 - Assumindo que o movimento ocorre no sentido negativo do eixo y
 - Substituir nas equações de movimento a aceleração por -g

