Precalculus Lecture 4 Complex Numbers

Todor Miley

https://github.com/tmilev/freecalc

2020

Outline

Complex Numbers

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein

Definition (Complex numbers)

The set of complex numbers $\ensuremath{\mathbb{C}}$ is defined as the set

$$\{a + bi | a, b - \text{real numbers}\},\$$

where the number *i* is a number for which

$$i^2 = -1$$
.

The number *i* is called the imaginary unit.

Definition (Complex numbers)

The set of complex numbers $\mathbb C$ is defined as the set

$$\{a + bi | a, b - \text{real numbers}\},\$$

where the number *i* is a number for which

$$i^2 = -1$$

The number *i* is called the imaginary unit.

$$\pm \sqrt{-1} = i.$$

Definition (Complex numbers)

The set of complex numbers $\mathbb C$ is defined as the set

$$\{a + bi | a, b - \text{real numbers}\},\$$

where the number i is a number for which

$$i^2 = -1$$
.

The number *i* is called the imaginary unit. By definition, $\pm \sqrt{-1} = i$.

Definition (Complex numbers)

The set of complex numbers \mathbb{C} is defined as the set

$$\{a + bi | a, b - \text{real numbers}\},\$$

where the number i is a number for which

$$i^2 = -1$$
.

The number *i* is called the imaginary unit. By definition, $\sqrt{-1} = i$.

Definition (Complex numbers)

The set of complex numbers \mathbb{C} is defined as the set

$$\{a + bi | a, b - \text{real numbers}\},\$$

where the number i is a number for which

$$i^2 = -1$$
.

The number *i* is called the imaginary unit. By definition, $\sqrt{-1} = i$.

$$\sqrt{-1}=i$$
.

Complex addition/subtraction

$$(a+bi)\pm(c+di)=(a\pm c)+(b\pm d)i$$

Definition (Complex numbers)

The set of complex numbers $\mathbb C$ is defined as the set

$$\{a + bi | a, b - \text{real numbers}\},\$$

where the number *i* is a number for which

$$i^2 = -1$$
.

The number *i* is called the imaginary unit. By definition, $\sqrt{-1} = i$.

Complex addition/subtraction

$$(\mathbf{a}+\mathbf{b}\mathbf{i})\pm(\mathbf{c}+\mathbf{d}\mathbf{i})=(\mathbf{a}\pm\mathbf{c})+(\mathbf{b}\pm\mathbf{d})\mathbf{i}\quad.$$

Definition (Complex numbers)

The set of complex numbers $\mathbb C$ is defined as the set

$$\{a + bi | a, b - \text{real numbers}\},\$$

where the number i is a number for which

$$i^2 = -1$$
.

The number *i* is called the imaginary unit. By definition, $\sqrt{-1} = i$.

Complex addition/subtraction

$$(a+bi)\pm(c+di)=(a\pm c)+(b\pm d)i \quad .$$

Definition (Complex numbers)

The set of complex numbers \mathbb{C} is defined as the set

$$\{a + bi | a, b - \text{real numbers}\},\$$

where the number i is a number for which

$$i^2 = -1$$
.

The number *i* is called the imaginary unit. By definition, $\sqrt{-1} = i$.

Complex addition/subtraction

$$(a + bi) \pm (c + di) = (a \pm c) + (b \pm d)i$$
.

Complex multiplication

$$(a + bi)(c + di) = ac + adi + bci + bdi^2$$

Complex Numbers Todor Milev Lecture 4 2020

Definition (Complex numbers)

The set of complex numbers $\mathbb C$ is defined as the set

$$\{a + bi | a, b - \text{real numbers}\},\$$

where the number *i* is a number for which

$$i^2 = -1$$
.

The number *i* is called the imaginary unit. By definition, $\sqrt{-1} = i$.

Complex addition/subtraction

$$(a + bi) \pm (c + di) = (a \pm c) + (b \pm d)i$$
.

Complex multiplication

$$(a + bi)(c + di) = ac + adi + bci + bdi^2$$

Definition (Complex numbers)

The set of complex numbers \mathbb{C} is defined as the set

$$\{a + bi | a, b - \text{real numbers}\},\$$

where the number i is a number for which

$$i^2 = -1$$
.

The number *i* is called the imaginary unit. By definition, $\sqrt{-1} = i$.

Complex addition/subtraction

$$(a+bi)\pm(c+di)=(a\pm c)+(b\pm d)i \quad .$$

Complex multiplication

$$(a + bi)(c + di) = ac + adi + bci + bdi^2$$

Complex Numbers Todor Milev Lecture 4 2020

Definition (Complex numbers)

The set of complex numbers \mathbb{C} is defined as the set

$$\{a + bi | a, b - \text{real numbers}\},\$$

where the number i is a number for which

$$i^2 = -1$$
.

The number *i* is called the imaginary unit. By definition, $\sqrt{-1} = i$.

Complex addition/subtraction

$$(a+bi)\pm(c+di)=(a\pm c)+(b\pm d)i \quad .$$

Complex multiplication

$$(a + bi)(c + di) = ac + adi + bci + bdi^2$$

Complex Numbers Todor Milev Lecture 4 2020

Definition (Complex numbers)

The set of complex numbers $\mathbb C$ is defined as the set

$$\{a + bi | a, b - \text{real numbers}\},\$$

where the number *i* is a number for which

$$i^2 = -1$$
.

The number *i* is called the imaginary unit. By definition, $\sqrt{-1} = i$.

Complex addition/subtraction

$$(a+bi)\pm(c+di)=(a\pm c)+(b\pm d)i \quad .$$

Complex multiplication

$$(a+bi)(c+di) = ac+adi+bci+bdi^2 = ac+adi+bci-bdi$$

Definition (Complex numbers)

The set of complex numbers $\mathbb C$ is defined as the set

$$\{a + bi | a, b - \text{real numbers}\},\$$

where the number *i* is a number for which

$$i^2 = -1$$
.

The number *i* is called the imaginary unit. By definition, $\sqrt{-1} = i$.

Complex addition/subtraction

$$(a+bi)\pm(c+di)=(a\pm c)+(b\pm d)i \quad .$$

Complex multiplication

$$(a+bi)(c+di) = ac + adi + bci + bdi^2 = ac + adi + bci - bd$$

= $(ac - bd) + i(ad + bc)$

Definition (Complex numbers)

The set of complex numbers $\mathbb C$ is defined as the set

$$\{a + bi | a, b - \text{real numbers}\},\$$

where the number *i* is a number for which

$$i^2 = -1$$
.

The number *i* is called the imaginary unit. By definition, $\sqrt{-1} = i$.

Complex addition/subtraction

$$(a+bi)\pm(c+di)=(a\pm c)+(b\pm d)i \quad .$$

Complex multiplication

$$(a+bi)(c+di) = ac+adi+bci+bdi^2 = ac+adi+bci-bdi$$

= $(ac-bd)+i(ad+bc)$

Definition (Complex numbers)

The set of complex numbers $\mathbb C$ is defined as the set

$$\{a + bi | a, b - \text{real numbers}\},\$$

where the number *i* is a number for which

$$i^2 = -1$$
.

The number *i* is called the imaginary unit. By definition, $\sqrt{-1} = i$.

Complex addition/subtraction

$$(a+bi)\pm(c+di)=(a\pm c)+(b\pm d)i \quad .$$

Complex multiplication

$$(a+bi)(c+di) = ac + adi + bci + bdi^2 = ac + adi + bci - bdi$$

= $(ac - bd) + i(ad + bc)$

Definition (Complex numbers)

The set of complex numbers $\mathbb C$ is defined as the set

$$\{a + bi | a, b - \text{real numbers}\},\$$

where the number *i* is a number for which

$$i^2 = -1$$
.

The number *i* is called the imaginary unit. By definition, $\sqrt{-1} = i$.

Complex addition/subtraction

$$(a+bi)\pm(c+di)=(a\pm c)+(b\pm d)i \quad .$$

Complex multiplication

$$(a+bi)(c+di) = ac+adi+bci+bdi^2 = ac+adi+bci-bd$$
$$= (ac-bd)+i(ad+bc)$$

Let
$$u = 2 + 3i$$
, $v = 5 - 7i$.

Example (Addition)

$$u + v =$$

Example (Subtraction)

$$u - v =$$

$$u \cdot v =$$

Let
$$u = 2 + 3i$$
, $v = 5 - 7i$.

Example (Addition)

$$u + v = (2 + 3i) + (5 - 7i) = ?$$

Example (Subtraction)

$$u - v =$$

$$u \cdot v =$$

Let
$$u = 2 + 3i$$
, $v = 5 - 7i$.

Example (Addition)

$$u + v = (2+3i) + (5-7i) = (2+5) + (3-7)i = 7-4i.$$

Example (Subtraction)

$$u - v =$$

$$u \cdot v =$$

Let
$$u = 2 + 3i$$
, $v = 5 - 7i$.

Example (Addition)

$$u + v = (2+3i) + (5-7i) = (2+5) + (3-7)i = 7-4i.$$

Example (Subtraction)

$$u - v = (2 + 3i) - (5 - 7i) =$$
?

$$u \cdot v =$$

Let
$$u = 2 + 3i$$
, $v = 5 - 7i$.

Example (Addition)

$$u + v = (2+3i) + (5-7i) = (2+5) + (3-7)i = 7-4i.$$

Example (Subtraction)

$$u - v = (2+3i) - (5-7i) = (2-5) + (3-(-7))i = -3+10i.$$

$$u \cdot v =$$

Let
$$u = 2 + 3i$$
, $v = 5 - 7i$.

Example (Addition)

$$u + v = (2+3i) + (5-7i) = (2+5) + (3-7)i = 7-4i.$$

Example (Subtraction)

$$u - v = (2+3i) - (5-7i) = (2-5) + (3-(-7))i = -3+10i.$$

$$u \cdot v = (2+3i) \cdot (5-7i)$$

Let
$$u = 2 + 3i$$
, $v = 5 - 7i$.

Example (Addition)

$$u + v = (2+3i) + (5-7i) = (2+5) + (3-7)i = 7-4i.$$

Example (Subtraction)

$$u - v = (2+3i) - (5-7i) = (2-5) + (3-(-7))i = -3+10i.$$

$$u \cdot v = (2+3i) \cdot (5-7i) = 2 \cdot 5 + 2 \cdot (-7)i + 3i \cdot 5 + 3i(-7i)$$

Let
$$u = 2 + 3i$$
, $v = 5 - 7i$.

Example (Addition)

$$u + v = (2+3i) + (5-7i) = (2+5) + (3-7)i = 7-4i.$$

Example (Subtraction)

$$u - v = (2+3i) - (5-7i) = (2-5) + (3-(-7))i = -3+10i.$$

$$u \cdot v = (2+3i) \cdot (5-7i)$$

= $2 \cdot 5 + 2 \cdot (-7)i + 3i \cdot 5 + 3i(-7i)$

Let
$$u = 2 + 3i$$
, $v = 5 - 7i$.

Example (Addition)

$$u + v = (2+3i) + (5-7i) = (2+5) + (3-7)i = 7-4i.$$

Example (Subtraction)

$$u - v = (2+3i) - (5-7i) = (2-5) + (3-(-7))i = -3+10i.$$

Example (Multiplication)

$$u \cdot v = (2 + 3i) \cdot (5 - 7i)$$

= 2 \cdot 5 + 2 \cdot (-7)i + 3i \cdot 5 + 3i(-7i)

Let
$$u = 2 + 3i$$
, $v = 5 - 7i$.

Example (Addition)

$$u + v = (2+3i) + (5-7i) = (2+5) + (3-7)i = 7-4i.$$

Example (Subtraction)

$$u - v = (2+3i) - (5-7i) = (2-5) + (3-(-7))i = -3+10i.$$

$$u \cdot v = (2+3i) \cdot (5-7i)$$

= 2 \cdot 5 + 2 \cdot (-7)i + 3i \cdot 5 + \frac{3i(-7i)}{2}

Let
$$u = 2 + 3i$$
, $v = 5 - 7i$.

Example (Addition)

$$u + v = (2+3i) + (5-7i) = (2+5) + (3-7)i = 7-4i.$$

Example (Subtraction)

$$u - v = (2+3i) - (5-7i) = (2-5) + (3-(-7))i = -3+10i.$$

Example (Multiplication)

$$u \cdot v = (2+3i) \cdot (5-7i)$$

= $2 \cdot 5 + 2 \cdot (-7)i + 3i \cdot 5 + 3i(-7i)$
= $10 - 14i + 15i - 21i^2$

Let
$$u = 2 + 3i$$
, $v = 5 - 7i$.

Example (Addition)

$$u + v = (2+3i) + (5-7i) = (2+5) + (3-7)i = 7-4i.$$

Example (Subtraction)

$$u - v = (2+3i) - (5-7i) = (2-5) + (3-(-7))i = -3+10i.$$

Example (Multiplication)

$$u \cdot v = (2+3i) \cdot (5-7i)$$

= $2 \cdot 5 + 2 \cdot (-7)i + 3i \cdot 5 + 3i(-7i)$
= $10 - 14i + 15i - 21i^2$

Let
$$u = 2 + 3i$$
, $v = 5 - 7i$.

Example (Addition)

$$u + v = (2+3i) + (5-7i) = (2+5) + (3-7)i = 7-4i.$$

Example (Subtraction)

$$u - v = (2+3i) - (5-7i) = (2-5) + (3-(-7))i = -3+10i.$$

Example (Multiplication)

$$u \cdot v = (2+3i) \cdot (5-7i)$$

= $2 \cdot 5 + 2 \cdot (-7)i + 3i \cdot 5 + 3i(-7i)$
= $10 - 14i + 15i - 21i^2$

Let
$$u = 2 + 3i$$
, $v = 5 - 7i$.

Example (Addition)

$$u + v = (2+3i) + (5-7i) = (2+5) + (3-7)i = 7-4i.$$

Example (Subtraction)

$$u - v = (2+3i) - (5-7i) = (2-5) + (3-(-7))i = -3+10i.$$

Example (Multiplication)

$$u \cdot v = (2+3i) \cdot (5-7i)$$

= $2 \cdot 5 + 2 \cdot (-7)i + 3i \cdot 5 + 3i(-7i)$
= $10 - 14i + 15i - 21i^2$

Let
$$u = 2 + 3i$$
, $v = 5 - 7i$.

Example (Addition)

$$u + v = (2+3i) + (5-7i) = (2+5) + (3-7)i = 7-4i.$$

Example (Subtraction)

$$u - v = (2+3i) - (5-7i) = (2-5) + (3-(-7))i = -3+10i.$$

Example (Multiplication)

$$u \cdot v = (2+3i) \cdot (5-7i)$$

$$= 2 \cdot 5 + 2 \cdot (-7)i + 3i \cdot 5 + 3i(-7i)$$

$$= 10 - 14i + 15i - 21i^{2}$$

$$= 10 + i - (-21)$$

Let
$$u = 2 + 3i$$
, $v = 5 - 7i$.

Example (Addition)

$$u + v = (2+3i) + (5-7i) = (2+5) + (3-7)i = 7-4i.$$

Example (Subtraction)

$$u - v = (2+3i) - (5-7i) = (2-5) + (3-(-7))i = -3+10i.$$

Example (Multiplication)

$$u \cdot v = (2+3i) \cdot (5-7i)$$

$$= 2 \cdot 5 + 2 \cdot (-7)i + 3i \cdot 5 + 3i(-7i)$$

$$= 10 - 14i + 15i - 21i^{2}$$

$$= 10 + i - (-21)$$

Let
$$u = 2 + 3i$$
, $v = 5 - 7i$.

Example (Addition)

$$u + v = (2+3i) + (5-7i) = (2+5) + (3-7)i = 7-4i.$$

Example (Subtraction)

$$u - v = (2+3i) - (5-7i) = (2-5) + (3-(-7))i = -3+10i.$$

Example (Multiplication)

$$u \cdot v = (2+3i) \cdot (5-7i)$$

$$= 2 \cdot 5 + 2 \cdot (-7)i + 3i \cdot 5 + 3i(-7i)$$

$$= 10 - 14i + 15i - 21i^{2}$$

$$= 10 + i - (-21)$$

$$= 31 + i$$

Example (Complex multiplication)

Multiply
$$u = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$
 by $v = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$. $u \cdot v$

Example (Complex multiplication)

Multiply
$$u = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$
 by $v = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$.
$$u \cdot v = \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \cdot \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)$$

Example (Complex multiplication)

Multiply
$$u = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$
 by $v = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$.
$$u \cdot v = \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \cdot \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)$$

Example (Complex multiplication)

Multiply
$$u = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$
 by $v = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$.

$$u \cdot v = \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \cdot \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)$$

$$= \frac{\sqrt{2}^2}{2^2} - \frac{\sqrt{2}^2}{2^2}i + \frac{\sqrt{2}^2}{2^2}i - \frac{\sqrt{2}^2}{2^2}i^2$$

Example (Complex multiplication)

Multiply
$$u = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$
 by $v = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$.

$$u \cdot v = \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \cdot \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)$$

$$= \frac{\sqrt{2}^2}{2^2} - \frac{\sqrt{2}^2}{2^2}i + \frac{\sqrt{2}^2}{2^2}i - \frac{\sqrt{2}^2}{2^2}i^2$$

Example (Complex multiplication)

Multiply
$$u = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$
 by $v = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$.

$$u \cdot v = \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \cdot \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)$$

$$= \frac{\sqrt{2}^2}{2^2} - \frac{\sqrt{2}^2}{2^2}i + \frac{\sqrt{2}^2}{2^2}i - \frac{\sqrt{2}^2}{2^2}i^2$$

Example (Complex multiplication)

Multiply
$$u = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$
 by $v = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$.

$$u \cdot v = \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \cdot \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)$$

$$= \frac{\sqrt{2}^2}{2^2} - \frac{\sqrt{2}^2}{2^2}i + \frac{\sqrt{2}^2}{2^2}i - \frac{\sqrt{2}^2}{2^2}i^2$$

Example (Complex multiplication)

Multiply
$$u = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$
 by $v = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$.
$$u \cdot v = \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \cdot \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)$$

$$= \frac{\sqrt{2}^2}{2^2} - \frac{\sqrt{2}^2}{2^2}i + \frac{\sqrt{2}^2}{2^2}i - \frac{\sqrt{2}^2}{2^2}i^2$$

Example (Complex multiplication)

Multiply
$$u = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$
 by $v = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$.
$$u \cdot v = \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \cdot \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)$$

$$= \frac{\sqrt{2}^2}{2^2} - \frac{\sqrt{2}^2}{2^2}i + \frac{\sqrt{2}^2}{2^2}i - \frac{\sqrt{2}^2}{2^2}i^2$$

$$= \frac{2}{4} - \frac{2}{4}(-1)$$

Example (Complex multiplication)

Multiply
$$u = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$
 by $v = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$.
$$u \cdot v = \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \cdot \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)$$

$$= \frac{\sqrt{2}^2}{2^2} - \frac{\sqrt{2}^2}{2^2}i + \frac{\sqrt{2}^2}{2^2}i - \frac{\sqrt{2}^2}{2^2}i^2$$

$$= \frac{2}{4} - \frac{2}{4}(-1)$$

Example (Complex multiplication)

Multiply
$$u = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$
 by $v = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$.
$$u \cdot v = \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \cdot \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)$$

$$= \frac{\sqrt{2}^2}{2^2} - \frac{\sqrt{2}^2}{2^2}i + \frac{\sqrt{2}^2}{2^2}i - \frac{\sqrt{2}^2}{2^2}i^2$$

$$= \frac{2}{4} - \frac{2}{4}(-1)$$

Example (Complex multiplication)

Multiply
$$u = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$
 by $v = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$.
$$u \cdot v = \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \cdot \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)$$

$$= \frac{\sqrt{2}^2}{2^2} - \frac{\sqrt{2}^2}{2^2}i + \frac{\sqrt{2}^2}{2^2}i - \frac{\sqrt{2}^2}{2^2}i^2$$

$$= \frac{2}{4} - \frac{2}{4}(-1)$$

$$= \frac{1}{2} + \frac{1}{2}$$

Example (Complex multiplication)

Multiply
$$u = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$
 by $v = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$.
$$u \cdot v = \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \cdot \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)$$

$$= \frac{\sqrt{2}^2}{2^2} - \frac{\sqrt{2}^2}{2^2}i + \frac{\sqrt{2}^2}{2^2}i - \frac{\sqrt{2}^2}{2^2}i^2$$

$$= \frac{2}{4} - \frac{2}{4}(-1)$$

$$= \frac{1}{2} + \frac{1}{2}$$

Example (Complex multiplication)

Multiply
$$u = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$
 by $v = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$.
$$u \cdot v = \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \cdot \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)$$

$$= \frac{\sqrt{2}^2}{2^2} - \frac{\sqrt{2}^2}{2^2}i + \frac{\sqrt{2}^2}{2^2}i - \frac{\sqrt{2}^2}{2^2}i^2$$

$$= \frac{2}{4} - \frac{2}{4}(-1)$$

$$= \frac{1}{2} + \frac{1}{2}$$

Example (Complex multiplication)

Multiply
$$u = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$
 by $v = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$.
$$u \cdot v = \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \cdot \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)$$

$$= \frac{\sqrt{2}^2}{2^2} - \frac{\sqrt{2}^2}{2^2}i + \frac{\sqrt{2}^2}{2^2}i - \frac{\sqrt{2}^2}{2^2}i^2$$

$$= \frac{2}{4} - \frac{2}{4}(-1)$$

$$= \frac{1}{2} + \frac{1}{2}$$

$$= 1$$

Review of the basic types of numbers

• An integer, or whole number, is one of the numbers:

$$\ldots, -2, -1, 0, 1, 2, \ldots$$

Review of the basic types of numbers

• An integer, or whole number, is one of the numbers:

$$\ldots, -2, -1, 0, 1, 2, \ldots$$

• A rational number is the quotient of two integers, for example:

$$\frac{1}{2}$$

$$\frac{2}{-3} = -\frac{2}{3}$$

$$\frac{8}{12} = \frac{4}{6} = \frac{2}{3}$$
.

Review of the basic types of numbers

• An integer, or whole number, is one of the numbers:

$$\ldots, -2, -1, 0, 1, 2, \ldots$$

• A rational number is the quotient of two integers, for example:

$$\frac{1}{2}$$
, $\frac{2}{-3} = -\frac{2}{3}$, $\frac{8}{12} = \frac{4}{6} = \frac{2}{3}$

• A real number measures the location of a point on the real line:

$$\sqrt{2}$$
 π
 e
 -1

Review of the basic types of numbers

• An integer, or whole number, is one of the numbers:

$$\ldots, -2, -1, 0, 1, 2, \ldots$$

• A rational number is the quotient of two integers, for example:

$$\frac{1}{2}$$
, $\frac{2}{-3} = -\frac{2}{3}$, $\frac{8}{12} = \frac{4}{6} = \frac{2}{3}$

• A real number measures the location of a point on the real line:

$$\sqrt{2} = 1.414213562373095048801688724209698...$$
 π
 e

Review of the basic types of numbers

• An integer, or whole number, is one of the numbers:

$$\ldots, -2, -1, 0, 1, 2, \ldots$$

• A rational number is the quotient of two integers, for example:

$$\frac{1}{2}$$
, $\frac{2}{-3} = -\frac{2}{3}$, $\frac{8}{12} = \frac{4}{6} = \frac{2}{3}$

• A real number measures the location of a point on the real line:

```
\sqrt{2} = 1.414213562373095048801688724209698...

\pi = 3.141592653589793238462643383279502...

e
-1
```


Review of the basic types of numbers

• An integer, or whole number, is one of the numbers:

$$\ldots, -2, -1, 0, 1, 2, \ldots$$

• A rational number is the quotient of two integers, for example:

$$\frac{1}{2}$$
, $\frac{2}{-3} = -\frac{2}{3}$, $\frac{8}{12} = \frac{4}{6} = \frac{2}{3}$

• A real number measures the location of a point on the real line:

```
\sqrt{2} = 1.414213562373095048801688724209698...
\pi = 3.141592653589793238462643383279502...
e = 2.718281828459045235360287471352662...
```


Review of the basic types of numbers

• An integer, or whole number, is one of the numbers:

$$\ldots, -2, -1, 0, 1, 2, \ldots$$

• A rational number is the quotient of two integers, for example:

$$\frac{1}{2}$$
, $\frac{2}{-3} = -\frac{2}{3}$, $\frac{8}{12} = \frac{4}{6} = \frac{2}{3}$

• A real number measures the location of a point on the real line:

```
\sqrt{2} = 1.414213562373095048801688724209698...

\pi = 3.141592653589793238462643383279502...

e = 2.718281828459045235360287471352662...
```


Review of the basic types of numbers

• An integer, or whole number, is one of the numbers:

$$\ldots, -2, -1, 0, 1, 2, \ldots$$

• A rational number is the quotient of two integers, for example:

$$\frac{1}{2}$$
, $\frac{2}{-3} = -\frac{2}{3}$, $\frac{8}{12} = \frac{4}{6} = \frac{2}{3}$. A real number measures the location of a point on the real line.

• A real number measures the location of a point on the real line:

$$\sqrt{2}$$
 = 1.414213562373095048801688724209698...
 π = 3.141592653589793238462643383279502...
 e = 2.718281828459045235360287471352662...

• A number is complex if it equals a + bi with a, b- real, $\sqrt{-1} = i$: 2 + 3i. $1+\sqrt{2}i$

Review of the basic types of numbers

• An integer, or whole number, is one of the numbers:

$$\ldots, -2, -1, 0, 1, 2, \ldots$$

• A rational number is the quotient of two integers, for example:

$$\frac{1}{2}$$
, $\frac{2}{-3} = -\frac{2}{3}$, $\frac{8}{12} = \frac{4}{6} = \frac{2}{3}$

• A real number measures the location of a point on the real line:

$$\sqrt{2}$$
 = 1.414213562373095048801688724209698...
 π = 3.141592653589793238462643383279502...
 e = 2.718281828459045235360287471352662...

• A number is complex if it equals a + bi with a, b- real, $\sqrt{-1} = i$: 2 + 3i. -i. $1 + \sqrt{2}i$

• Geometric interpretation of complex numbers: beyond our scope.