Análise de dados Ocorrências Aeronáuticas na Aviação Civil Brasileira

Tabela de ocorrências

Nome das colunas	Tipo de dados	Chave primária	Chave estrangeira	Código de identificação da ocorrência
codigo_ocorrencia	INT(11)			Código de identificação da ocorrência
classificacao	VARCHAR(30)			Classificação da ocorrência
tipo	VARCHAR(80)			Tipo da ocorrência
localidade	VARCHAR(100)			Cidade / municipio onde houve a ocorrência
	VARCHAR(3)			Estado / provincia onde houve a ocorrência
pais	VARCHAR(80)			País onde houve a ocorrência
aerodromo	VARCHAR(4)			Código ICAO do aeródromo onde houve a ocorrência
dia_ocorrencia				Data da ocorrência
horario_utc	TIME			Horário da ocorrência no padrão UTC
sera_investigada	VARCHAR(5)			Informação se a ocorrência será ou não investigada
comando_investigador	VARCHAR(15)			Comando investigador responsável pela ocorrência
status_investigacao	VARCHAR(10)			Informação se a investigação está ativa ou finalizada
numero_relatorio	VARCHAR(50)			Número de identificação do relatório final de investigação
Relatorio_publicado	VARCHAR(5)			Informação se o relatório final de investigação foi ou não publicado
dia_publicacao	DATE			Dia da publicação do relatório final de investigação
quantidade_recomendacoes				Quantidade de recomendações de segurança emitidas
aeronaves_envolvidas				Quantidade de aeronaves envolvidas na ocorrência
saida_pista				Informação se houve ou não saída de pista na ocorrência
dia_extracao	DATE			Dia da extração dos dados na base de dados do CENIPA

Tabela de aeronaves

Nome das colunas	Tipo de dados	Chave primária	Chave estrangeira	Comentários
codigo_aeronave				Código de identificação de aeronave
codigo_ocorrencia				Código de identificação de ocorrência
matricula	VARCHAR(10)			Matrícula da aeronave
codigo_operador				Código de identificação do operador
equipamento	VARCHAR(45)			Tipo da aeronave
labricante	VARCHAR(45)			Fabricante da aeronave
modelo	VARCHAR(45)			Modelo da aeronave
ipo_motor	VARCHAR(45)			
quantidade_motores				Quantidade de motores da aeronave
oeso_maximo_decolagem				Peso máximo para decolagem
quantidade_assentos				Quantidade de assentos na aeronave
ano_fabricacao				Ano de fabricação da aeronave
pais_registro	VARCHAR(80)			País de registro da aeronave
categoria_registro	VARCHAR(4)			Categoria de registro da aeronave no momento da ocorrência
categoria_aviacao	VARCHAR(15)			Categoria de aviação da aeronave no momento da ocorrência
origem_voo	VARCHAR(4)			Origem de voo da seronave
destino_voo	VARCHAR(4)			Destino de voo da aeronave
lase_operacao	VARCHAR(15)			Fase de operação da aeronave no momento da ocorrência
ípo_operacao	VARCHAR(20)			Tipo de operação da aeronave no momento da ocorrência
vivel_dano	VARCHAR(10)			Nivel do dano da aeronave
quantidade_fatalidades	INT(11)			Quantidade de fatalidades (mortos) na aeronave
Sia_extracao	DATE			Dia da estração dos dados na base de dados do CENIPA

Dados dos aeroportos

https://github.com/mwgg/Airports

Os dados dos aeroportos foram coletador e incluídos na base de dados para obter elevação, longitude e latitude.

Proporção de valores nulos e não nulos do conjunto de dados

O que é IATA?

IATA é a sigla inglesa de International Air Transport Association ou Associação Internacional de Transportes Aéreos, em português. A IATA foi criada há mais de 60 anos por um grupo de companhias aéreas, com o objetivo de representá-las em todos os assuntos relacionados à aviação.

O que é ICAO?

A ICAO (sigla em inglês para Organização da Aviação Civil Internacional) criou um código de 4 letras exclusivo para cada aeroporto, visando padronizar e facilitar a identificação. A 1ª letra designa a região ICAO (S para a América do Sul), a 2ª informa o país (B/D/I/J/N/S/W estão ### reservadas para o Brasil) e as outras duas letras completam o código do aeroporto propriamente dito. Todos os aeroportos com código começado por SB produzem METAR – informe meteorológico regular. A IATA (sigla em inglês para Associação Internacional de Transportes Aéreos) também criou um ### código de 3 letras com a mesma finalidade (nesse caso, representando destinos de companhias áreas membros da associação).

Os dados foram incluídos utilizando a sigla ICAO que é referente a cada aeroporto. Essa sigla pode ser encontrada na tabela aeronaves nas colunas origem voo e destino voo.

Aeroportos de origem e destino dos incidentes do conjunto de dados

É possível verificar um comportamento esperado onde a região sudeste e sul possuem maiores concentrações. Os aeroportos são mais próximos devido ao menor espaço territorial comparado ao norte e nordeste. Contudo, nenhuma grande concentração fora do normal foi detectado visualmente.

Análise Univariada

 Como esperado, aviões e helicópteros são os primeiros da lista de aeronaves com incidentes. Por serem os mais utilizados, esse resultado acaba fazendo sentido.

- O motor a pistão também chamado de motor convencional é econômico, possui grande durabilidade, leveza e baixíssimo custo de operação comparado aos demais. Isso justifica o fato de ser o motor com maior quantidade de incidentes, pois é o mais utilizado nas aeronaves.

Análise Univariada

Se somarmos as 3 principais causas de acidente chegamos a praticamente 50% das causas de acidentes

- Falha do motor = 18.45%
- Perda de controle no solo = 15.91%
- Perda de controle em voo = 15.22%

Total = 49.58%

A CONTROL NO 500.0 11.9 1 1.9 1.

Uma nuvem de palavras foi gerada para analisar os tipos de falhas. As falhas são descritas com um texto curto. As palavras controle, perda, falha, motor, colisão e obstáculo se destacaram entre todas as palavras que fazem parte da nuvem.

Análise Bivariada

Verificando-se as falhas de motor em voo, observou-se casos que consta a quantidade de motores igual a zero. Quando olha-se esses casos e atráves de uma pesquisa na internet, pode-se detectar que são aviões com assentos. Alguns exemplos foram coletados para fazer essa verificação.

Isso caracteriza-se como uma inconsistência existente na base de dados.

Avioes indiriomorores do modero cessiria 210 indiam responsaveis por 5,2% dos acidentes aéreos no Brasil nos últimos 10 anos. O modelo é o mesmo da aeronave que calu nesta sexta-feira (30) na zona norte de São Paulo.

Análise Bivariada

Os meses da baixa temporada com passagens mais baratas são março, abril e agosto. Já a alta temporada ocorre em janeiro, julho e dezembro devido as férias escolares. Entre setembro e novembro, é possível encontrar voos baratos também. O mês de junho apresenta o menor patamar de incidentes que possivelmente se deve ao número de voos neste mês.

Série temporal - Aeronaves x Mês de ocorrência

Número de passageiros aéreos cresceu 210% de 2000 a 2014, diz CNT

https://www.correiobraziliense.com.br/app/noticia/turismo/2015/11/11/interna_turismo,506012/numero-de-passageiros-aereos-cresceu-210-de-2000-a-2014-diz-cnt.shtml

Baseado nisso pode-se avaliar que o crescimento de passageiros e de aeronaves tenha gerado um crescimento nos acidentes também. A série temporal mostra um crescimento entre 2006 (início dos dados) e 2012, posteriormente um declínio até 2015.

Série temporal - Aeronaves x Ano de ocorrência

Análise Bivariada

O nível de dano dos incidentes foi analisado em relação a elevação, longitude e latitude dos aeroportos e nenhum padrão foi detectado. Mesmo considerando outras variáveis, esses valores estão nos mesmos intervalos. Talvez se tivéssemos essas informações referentes ao momento do incidente poderiam ser mais úteis do que a dos aeroportos.

Análise Multivariada

V de crammer

Utilizou-se o método V de crammer para avaliar a correlação das variáveis. Os valores não foram satisfatórios. Contudo, é importante reportar que isto foi feito.

Embora a correlação V de Cramer seja uma métrica útil para medir a associação entre variáveis categóricas, há situações em que ela pode não ser adequada ou precisa.

- Tamanho da amostra: se a amostra for muito pequena, a correlação V de Cramer pode não ser confiável. É importante lembrar que a correlação é baseada em frequências observadas, e se as frequências forem muito baixas, a correlação pode ser afetada. A base de dados possui variáveis com categorias com baixa frequência.
- Variáveis com muitas categorias: se as variáveis categóricas tiverem muitas categorias, a correlação V de Cramer pode não ser tão informativa. Isso ocorre porque a matriz de contingência pode ficar muito grande e as células com poucas observações podem prejudicar a precisão da medida. A base de dados possui muitas variáveis com grande número de categorias.

Análise Multivariada

Correlação de Pearson

Foi realizado o encoding das variáveis categóricas e posteriormente verificada a correlação de Pearson.

Os resultados se mostraram mais coerentes, contudo, alguns testes de hipóteses foram realizados posteriormente para avaliar algumas situações.

A correlação de Spearman foi verificada e apresentou coeficientes um pouco mais altos para as correlações.

Testes de hipóteses

Como não foi fornecida a informação se a base de dados trata-se de toda a população de incidentes de aeronaves ou se é uma amostra, optou-se por realizar os testes de hipóteses. Optou-se por esse teste por ser recomendado para variáveis categóricas, a base de dados possui variáveis categóricas em grande parte.

Hipóteses

- Primeira hipótese: Existe associação entre categoria e a classificação do acidente.
- Segunda hipótese: Existe associação entre o ano de fabricação e a classificação do acidente.
- Terceira hipótese: Existe associação entre o tipo de operação e o tipo de dano.
- Quarta hipótese: Existe associação entre o tipo de operação e o nível de dano. 🦼
- Quinta hipótese: Existe associação entre o fabricante e o nível de dano.
- Sexta hipótese: Existe associação entre o fabricante e a classificação do acidente.

Foi utilizado o teste qui-quadrado para estas hipóteses.

chi2: 248.9196748335234

Valor de p: 4.703422789056981e-47

A hipótese nula foi rejeitada

A categoria de aviação possui influência na classificação do acidente

chi2: 94.43149108541286 Valor de p: 0.05485450079751537 A hipótese alternativa foi rejeitada Não existe associação entre o ano de fabricação a a classificação do acidente.

chi2: 1308.5202241345419 Valor de p: 3.5432081501226214e-101 A hipótese nula foi rejeitada Existe associação entre o tipo de operação e o tipo de dano.

chi2: 371.7280993827219

Valor de p: 4.640908314436517e-64

A hipótese nula foi rejeitada

Existe associação entre o tipo de operação e o nível de dano.

chi2: 663.9552805104454 Valor de p: 3.695231225195525e-21 A hipótese nula foi rejeitada Existe associação entre o fabricante e o nível de dano.

chi2: 333.8182364016943 Valor de p: 1.6916751859575533e-22 A hipótese nula foi rejeitada Existe associação entre o fabricante e a classificação do acidente.

Conclusões

Inconsistências:

• Existe aeronaves de pequeno e grande porte que constam como não possuírem assentos. Ao pesquisar alguns desses modelos na internet, comprovouse que isso não é verdade.

Constatações:

- As 3 principais causas de acidente somadas chegam a praticamente 50% dos incidentes.
- Ao longo dos anos a quantidade de viagens de avião cresceu e por consequência os desastres.
- O mês de junho possui queda nas viagens segundo informações coletadas e isso se refletiu no gráfico de séries temporais dos incidentes.
- A distribuição de acidentes considerando os locais de destino e origem dos voos, não demonstraram nenhuma alta concentração em local específico no mapa.

Resumo das hipóteses:

- Primeira hipótese: Existe associação entre categoria e a classificação do acidente. (CONFIRMADA)
- Segunda hipótese: Existe associação entre o ano de fabricação e a classificação do acidente. (REJEITADA)
- Terceira hipótese: Existe associação entre o tipo de operação e o tipo de dano. (CONFIRMADA)
- Quarta hipótese: Existe associação entre o tipo de operação e o nível de dano. (CONFIRMADA)
- Quinta hipótese: Existe associação entre o fabricante e o nível de dano. (CONFIRMADA)
- Sexta hipótese: Existe associação entre o fabricante e a classificação do acidente. (CONFIRMADA)

Mesmo as variáveis tendo apresentado baixa correlação de Pearson ou Spearman, elas ainda podem apresentar associação significativa de acordo com o teste do qui-quadrado. Isso ocorre porque o teste do qui-quadrado leva em consideração a frequência de ocorrência conjunta das variáveis em questão, enquanto a correlação de Pearson ou Spearman avalia apenas a relação linear e não-linear entre elas.

Informações relacionadas a manutenção das aeronaves e sobre os voos que não sofreram acidente poderiam contribuir para enriquecer a análise dos dados.