COMP 3005: Database Management Systems

(Due: Dec. 10th, 2021 (11:59 PM))

COMP3005 Final Project Report

Instructor: Ahmed El-Roby Name: , ID:

Introduction

This is the project report for the COMP3005A Final Project for the Fall 2021 term. The group for this project consists of the following members...

Group Members

- Aaron Buitenwerf ()
- Hadi Cheaito ()
- Nabeel Warsalee (101103167)

All project files and source code can be found at the following Github repository...

1 Conceptual Design

Insert preamble about design.

Assumptions Made

In this section we list all the assumptions that were made for certain aspects of the problem statement. These assumptions reflect how we designed and organized our database for this project.

- A book can only have one publisher
- All books with same title have the same ISBN
- Assume an order can only have one of the same book (i.e., user cannot buy two copies of the same book)
- Each publisher has only one bank account
- There is only one report made per publisher

ER Diagram

The following is the Entity-Relationship Diagram created to model the entities and relationships from the provided problem statement using the assumptions we have outlined above.

2 Reduction to Relation Schemas

Here are the relation schemas gained from reducing our ER diagram into relations... (Note: Primary keys are underlined)

book(<u>isbn</u>, title, author, genre, year, price, num_pages, publisher_name, stock, percent_to_publisher) order(<u>order_id</u>, email, shipping_id, date, street_number, street_name, postal_code, city, province) books_in_order(<u>order_id</u>, <u>isbn</u>, amount)

 $customer(\underline{email}, password, name, phone, street_number, street_name, postal_code, city, province, card_number, admin)$

publisher(<u>name</u>, phone, bank_number, email, street_number, street_name, postal_code) bank_account(<u>bank_number</u>, amount)

3 Normalization of Relation Schemas

Functional Dependencies

book

isbn \rightarrow title, author, genre, year, price, num_pages, publisher_name, stock, percent_to_publisher title, author \rightarrow isbn, genre, year, price, num_pages, publisher_name, stock, percent_to_publisher

order

order_id \rightarrow email, shipping_id, date, street_number, street_name, postal_code, city, province shipping_id \rightarrow email, order_id, date, street_number, street_name, postal_code, city, province postal_code \rightarrow city, province

 $books_in_order$

order_id, isbn \rightarrow amount

customer

email, password \rightarrow name, phone, street_number, street_name, postal_code, city, province, card_number, admin

postal_code \rightarrow city, province

publisher

name \rightarrow email, phone, bank_number, street_number, street_name, postal_code email \rightarrow name, phone, bank_number, street_number, street_name, postal_code

 $bank_account$

 $bank_number \rightarrow amount$

Good Normal Form Check and Decomposition

\underline{book}

1st FD...

Closure of isbn, (isbn)+= (isbn, title, author, genre, year, price, num_pages, publisher_name, stock, percent_to_publisher)

Since the closure of isbn includes all attributes in the relation, it means isbn is a superkey for the relation and it complies with BCNF.

2nd FD...

Closure of title, author, (title, author)+ = (isbn, title, author, genre, year, price, num_pages, publisher_name, stock, percent_to_publisher)

Since the closure of (title, author) includes all attributes in the relation, it means (title, author) is a superkey for the relation and it complies with BCNF.

Since all FD's for this relation satisfy the conditions for BCNF, this table is already in BCNF. Since the table is already in BCNF and no decomposition was done, all dependencies are preserved.

\underline{order}

1st FD...

Closure of $order_id$, $(order_id) + = (order_id, email, shipping_id, date, street_number, street_name, postal_code, city, province)$

Since the closure of order_id includes all attributes in the relation, it means order_id is a superkey for the

relation and it complies with BCNF.

2nd FD...

Closure of $shipping_id$, $(shipping_id)+=(order_id, email, shipping_id, date, street_number, street_name, postal_code, city, province)$

Since the closure of shipping_id includes all attributes in the relation, it means shipping_id is a superkey for the relation and it complies with BCNF.

3rd FD...

Closure of $postal_code$, $(postal_code) + = (postal_code, city, province)$

Since the closure of postal_code does not include all attributes in the original relation, it means postal_code is not a superkey for the relation and thus violates the conditions for BCNF. We will need to decompose this relation.

Decomposition

Decompose into two new relations, order and region_order... order(order_id, email, shipping id, date, street_number, street_name) region_order(postal_code, city, province)

Now none of the functional dependencies violates BCNF since postal_code is now a superkey for the relation called region_order.

Dependency preservation

1. Check FD: order_id \rightarrow email, shipping_id, date, street_number, street_name, postal_code, city, province Start with result r = order_id

```
R_1 = (\text{order\_id}, \text{ email}, \text{ shipping\_id}, \text{ date}, \text{ street\_number}, \text{ street\_name}, \text{ postal\_code})
t = (result \cap R_1) + \cap R_1
t = (\text{order\_id}, \text{ email}, \text{ shipping\_id}, \text{ date}, \text{ street\_number}, \text{ street\_name}, \text{ postal\_code})
\text{result} = (\text{order\_id}) \cup (\text{order\_id}, \text{ email}, \text{ shipping\_id}, \text{ date}, \text{ street\_number}, \text{ street\_name}, \text{ postal\_code})
\text{result} = (\text{order\_id}, \text{ email}, \text{ shipping\_id}, \text{ date}, \text{ street\_number}, \text{ street\_name}, \text{ postal\_code})
R_2 = (\text{postal\_code}, \text{ city}, \text{ province})
t = (result \cap R_2) + \cap R_2
t = (\text{postal\_code}, \text{ province}, \text{ city})
\text{result} = (\text{order\_id}, \text{ email}, \text{ shipping\_id}, \text{ date}, \text{ street\_number}, \text{ street\_name}, \text{ postal\_code}) \cup (\text{postal\_code}, \text{ province}, \text{ city})
\text{result} = (\text{order\_id}, \text{ email}, \text{ shipping\_id}, \text{ date}, \text{ street\_number}, \text{ street\_name}, \text{ postal\_code})
```

Since result contains everything on the RHS of this FD, this dependency is preserved.

 $R_1 = (\text{order_id}, \text{email}, \text{shipping_id}, \text{date}, \text{street_number}, \text{street_name}, \text{postal_code})$

2. Check FD: shipping_id \rightarrow email, order_id, date, street_number, street_name, postal_code, city, province Start with result r = shipping_id

```
t = (result \cap R_1) + \cap R_1

t = (order\_id, email, shipping\_id, date, street\_number, street\_name, postal\_code)

result = (shipping\_id) \cup (order\_id, email, shipping\_id, date, street\_number, street\_name, postal\_code)

result = (order\_id, email, shipping\_id, date, street\_number, street\_name, postal\_code)

R_2 = (postal\_code, city, province)

t = (result \cap R_2) + \cap R_2

t = (postal\_code, province, city)

t = (order\_id, email, shipping\_id, date, street\_number, street\_name, postal\_code) \cup (postal\_code, province, city)
```

```
result = (order_id, email, shipping_id, date, street_number, street_name, postal_code)
```

Since result contains everything on the RHS of this FD, this dependency is preserved.

3. Check FD: postal_code \rightarrow city, province Start with result $r = \text{postal_code}$

```
R_1 = (\text{order\_id}, \text{ email}, \text{ shipping\_id}, \text{ date}, \text{ street\_number}, \text{ street\_name}, \text{ postal\_code})
t = (result \cap R_1) + \cap R_1
t = (\text{postal\_code})
\text{result} = (\text{postal\_code}) \cup (\text{postal\_code})
\text{result} = (\text{postal\_code}, \text{ city}, \text{ province})
t = (result \cap R_2) + \cap R_2
t = (\text{postal\_code}, \text{ province}, \text{ city})
\text{result} = (\text{postal\_code}) \cup (\text{postal\_code}, \text{ province}, \text{ city})
\text{result} = (\text{postal\_code}, \text{ province}, \text{ city})
```

Since result contains everything on the RHS of this FD, this dependency is preserved.

All three dependencies were shown to be preserved after running the dependency preservation algorithm, therefore the decomposition into BCNF for new relations book and region_order is dependency preserving.

$\underline{books_in_order}$

1st FD...

Closure of isbn, $order_id$, $(isbn, order_id) + = (isbn, order_id, amount)$

Since the closure of isbn, order_id includes all attributes in the relation, it means isbn, order_id is a superkey for the relation and it complies with BCNF.

$\underline{books_in_order}$

1st FD...

Closure of isbn, $order_id$, $(isbn, order_id) + = (isbn, order_id, amount)$

Since the closure of isbn, order_id includes all attributes in the relation, it means isbn, order_id is a superkey for the relation and it complies with BCNF.

$\underline{customer}$

1st FD...

Closure of email, password, (email, password)+ = (email, password, name, phone, $street_number$, $street_name$, $postal_code$, city, province, $card_number$, admin)

Since the closure of email, password includes all attributes in the relation, it means email, password is a superkey for the relation and it complies with BCNF.

$2nd\ FD...$

```
Closure of postal\_code, (postal\_code) + = (postal\_code, city, province)
```

Since the closure of postal_code does not include all attributes in the original relation, it means postal_code is not a superkey for the relation and thus violates the conditions for BCNF. We will need to decompose this relation.

Decomposition

```
Decompose into two new relations, order and region_order...
```

 $customer(\underline{email}, password, name, phone, street_number, street_name, postal_code, card_number, admin) \\ region_customer(postal_code, city, province)$

Now none of the functional dependencies violates BCNF since postal_code is now a superkey for the relation called region_customer.

Dependency preservation

1. Check FD: email, password \rightarrow name, phone, street_number, street_name, postal_code, city, province, card_number, admin Start with result r = (email, password)

 $R_1 = (\text{email, password, name, phone, street_number, street_name, postal_code, card_number, admin)$ $t = (result \cap R_1) + \cap R_1$ $t = (\text{email, password, name, phone, street_number, street_name, postal_code, card_number, admin)$ $\text{result} = (\text{email, password}) \cup (\text{email, password, name, phone, street_number, street_name, postal_code, card_number, admin)}$ $\text{result} = (\text{email, password, name, phone, street_number, street_name, postal_code, card_number, admin)}$ $R_2 = (\text{postal_code, city, province})$ $t = (result \cap R_2) + \cap R_2$ $t = (\text{postal_code, province, city})$ $\text{result} = (\text{email, password, name, phone, street_number, street_name, postal_code, card_number, admin})$

∪ (postal_code, province, city)
result = (email, password, name, phone, street_number, street_name, postal_code, card_number, admin)

Since result contains everything on the RHS of this FD, this dependency is preserved.

2. Check FD: postal_code \rightarrow city, province Start with result r= postal_code

```
R_1 = (\text{email}, \text{ password}, \text{ name}, \text{ phone}, \text{ street\_number}, \text{ street\_name}, \text{ postal\_code}, \text{ card\_number}, \text{ admin})
t = (result \cap R_1) + \cap R_1
t = (\text{postal\_code})
\text{result} = (\text{postal\_code}) \cup (\text{postal\_code})
\text{result} = (\text{postal\_code}, \text{ city}, \text{ province})
t = (result \cap R_2) + \cap R_2
t = (\text{postal\_code}, \text{ province}, \text{ city})
\text{result} = (\text{postal\_code}) \cup (\text{postal\_code}, \text{ province}, \text{ city})
\text{result} = (\text{postal\_code}, \text{ province}, \text{ city})
\text{result} = (\text{postal\_code}, \text{ province}, \text{ city})
```

Since result contains everything on the RHS of this FD, this dependency is preserved.

Both dependencies were shown to be preserved after running the dependency preservation algorithm, therefore the decomposition into BCNF for new relations book and region_order is dependency preserving.

publisher

1st FD...

Closure of name, (name)+= (name, phone, bank_number, email, street_number, street_name, postal_code) Since the closure of name includes all attributes in the relation, it means name is a superkey for the relation and it complies with BCNF.

2nd FD...

Closure of email, (email)+= (name, phone, bank_number, email, street_number, street_name, postal_code) Since the closure of email includes all attributes in the relation, it means email is a superkey for the relation and it complies with BCNF. Since all FD's for this relation satisfy the conditions for BCNF, this table is already in BCNF. Since the table is already in BCNF and no decomposition was done, all dependencies are preserved.

$\underline{bank_account}$

1st FD...

Closure of $bank_number$, $(bank_number) + = (bank_number$, amount)

Since the closure of bank_number includes all attributes in the relation, it means bank_number is a superkey for the relation and it complies with BCNF.

Since all FD's for this relation satisfy the conditions for BCNF, this table is already in BCNF. Since the table is already in BCNF and no decomposition was done, all dependencies are preserved.

4 Database Schema Diagram

The following is the Schema Diagram created to model schemas gained from our ER diagram and after normalization.

