PROBLEM SET 10.7

1-8 APPLICATION: MASS DISTRIBUTION

Find the total mass of a mass distribution of density σ in a region T in space.

1.
$$\sigma = x^2 + y^2 + z^2$$
, T the box $|x| \le 4$, $|y| \le 1$, $0 \le z \le 2$

2.
$$\sigma = xyz$$
, T the box $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$

3.
$$\sigma = e^{-x-y-z}$$
, $T: 0 \le x \le 1 - y$, $0 \le y \le 1$, $0 \le z \le 2$

4.
$$\sigma$$
 as in Prob. 3, T the tetrahedron with vertices $(0, 0, 0)$, $(3, 0, 0)$, $(0, 3, 0)$, $(0, 0, 3)$

5.
$$\sigma = \sin 2x \cos 2y$$
, $T: 0 \le x \le \frac{1}{4}\pi$, $\frac{1}{4}\pi - x \le y \le \frac{1}{4}\pi$, $0 \le z \le 6$

6.
$$\sigma = x^2y^2z^2$$
, T the cylindrical region $x^2 + z^2 \le 16$, $|y| \le 4$

7.
$$\sigma = \arctan(y/x)$$
, $T: x^2 + y^2 + z^2 \le a^2$, $z \ge 0$

8.
$$\sigma = x^2 + y^2$$
, *T* as in Prob. 7

458

9–18 APPLICATION OF THE DIVERGENCE THEOREM

Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dA$ by the divergence

theorem. Show the details.

9.
$$F = [x^2, 0, z^2]$$
, S the surface of the box $|x| \le 1$, $|y| \le 3$, $0 \le z \le 2$

- 10. Solve Prob. 9 by direct integration.
- 11. $\mathbf{F} = [e^x, e^y, e^z]$, S the surface of the cube $|x| \le 1$, $|y| \le 1$, $|z| \le 1$

12.
$$\mathbf{F} = [x^3 - y^3, y^3 - z^3, z^3 - x^3], S$$
 the surface of $x^2 + y^2 + z^2 \le 25, z \ge 0$

- 13. $\mathbf{F} = [\sin y, \cos x, \cos z]$, S, the surface of $x^2 + y^2 \le 4$, $|z| \le 2$ (a cylinder and two disks!)
- **14.** F as in Prob. 13, S the surface of $x^2 + y^2 \le 9$, $0 \le z \le 2$

CHAP. 10 Vector Integral Calculus. Integral Theorems

- **15.** $\mathbf{F} = [2x^2, \frac{1}{2}y^2, \sin \pi z]$, *S* the surface of the tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)
- **16.** $\mathbf{F} = [\cosh x, z, y], S \text{ as in Prob. 15}$
- 17. $\mathbf{F} = [x^2, y^2, z^2]$, S the surface of the cone $x^2 + y^2 \le z^2$, $0 \le z \le h$
- **18.** F = [xy, yz, zx], S the surface of the cone $x^2 + y^2 \le 4z^2$, $0 \le z \le 2$

19–23 APPLICATION: MOMENT OF INERTIA

Given a mass of density 1 in a region T of space, find the moment of intertia about the x-axis

$$I_x = \iiint_T (y^2 + z^2) \, dx \, dy \, dz.$$

- 19. The box $-a \le x \le a$, $-b \le y \le b$, $-c \le z \le c$
- **20.** The ball $x^2 + y^2 + z^2 \le a^2$
- **21.** The cylinder $y^2 + z^2 \le a^2$, $0 \le x \le h$
- 22. The paraboloid $y^2 + z^2 \le x$, $0 \le x \le h$
- 23. The cone $y^2 + z^2 \le x^2$, $0 \le x \le h$
- **24.** Why is I_x in Prob. 23 for large h larger than I_x in Prob. 22 (and the same h)? Why is it smaller for h = 1? Give physical reason.
- 25. Show that for a solid of revolution, $I_x = \frac{\pi}{2} \int_0^h r^4(x) dx$. Solve Probs. 20–23 by this formula.