Exercises 1

- 1. (filtered colimit) commute finite limit and tensor A category I is called filtered if it satisfies the conditions below.
 - (i) I is non-empty,
 - (ii) for any i and j in I, there exists $k \in I$ and morphisms $i \to k, j \to k$,
 - (iii) for any parallel morphisms $f,g:i\Rightarrow j$, there exists a morphism $h:j\rightarrow k$ such that $h\circ f=h\circ g$.

And the functor from the filtered category to C is called the filtered system of C, and the colimit of a filtered system is called the filtered colimit.

- (a) Let $M(i) = M_i$ be a filtered system of RMod(or Set) indexed by I, Show that $\operatorname{colim}_I M_i \cong \sqcup M_i / \sim$, where $M_i \ni x \sim y \in M_j$ if there exists $k \in I, s : i \to k$ and $t : j \to k$ with M(s)(x) = M(t)(y). (Also check \sim is indeed an equivalence relation)
- (b) Let I be a filtered category and let J be a finite category. Giving a functor $F: I \times J \to R \text{Mod}$, Show that $\operatorname{colim}_I \lim_J F(i,j) \cong \lim_J \operatorname{colim}_I F(i,j)$
- 2. (a) Show that every poset (P, \leq) can be defined as a category. Figure out what are the objects and morphisms.
 - (b) Let \mathcal{N}_{\leq} be the category defined by the poset (\mathbb{N}, \leq) and let p be a prime number. Now giving two functors: $I_p: \mathcal{N}_{\leq} \to \operatorname{Ab}$ where $I_p(n) = \mathbb{Z}/p^n\mathbb{Z}$ and $I_p(n \leq m): x \in \mathbb{Z}/p^n\mathbb{Z} \mapsto p^{m-n}x \in \mathbb{Z}/p^m\mathbb{Z}$; $R_p: \mathcal{N}_{\leq}^{\operatorname{op}} \to \operatorname{Ab}$ where $R_p(n) = \mathbb{Z}/p^n\mathbb{Z}$ and $R_p(n \leq m): x \in \mathbb{Z}/p^m\mathbb{Z} \mapsto x \mod p^n \in \mathbb{Z}/p^n\mathbb{Z}$. Check these two functors are well-defined.
 - (c) Show that $\operatorname{colim}_{\mathcal{N}_{\leq}} I_p(n) = \mathbb{Z}[1/p]/\mathbb{Z}$ where $\mathbb{Z}[1/p]$ is the localization of \mathbb{Z} by $\{p^n\}$.
 - (d) Let $\lim_{\mathcal{N}_{\leq}} R_p(n) = \mathbb{Z}_p$. Show that $\operatorname{Hom}_{\operatorname{Ab}}(\mathbb{Z}_{(p)}/\mathbb{Z}, \mathbb{Z}_{(p)}/\mathbb{Z}) \cong \mathbb{Z}_p$. (Actually, the \mathbb{Z}_p here is the ring of p-adic integers.)
 - (e) Let \mathcal{N}_{\div} be the category defined by the poset $(\mathbb{N}, |)$ (i.e. the poset of divisibility). We can similarly define functors $I: mathcal N_{\div} \to \mathrm{Ab}$ and $R_p: \mathcal{N}_{\div}^\mathrm{op} \to \mathrm{Ab}$ where $I(n) = R(n) = \mathbb{Z}/n\mathbb{Z}$, etc. Show that $\mathrm{colim}_{\mathcal{N}_{\div}} I(n) \cong \mathbb{Q}/\mathbb{Z}$ and $\mathrm{lim}_{\mathcal{N}_{\div}} R(n) = \hat{\mathbb{Z}} \cong \prod_p \mathbb{Z}_p \cong \mathrm{Hom}_{\mathrm{Ab}}(\mathbb{Q}/\mathbb{Z}, \mathbb{Q}/\mathbb{Z})$. (Compare this to the fact that $\mathrm{Hom}_{\mathrm{TopGrp}}(\mathbb{R}/\mathbb{Z} \cong \mathbb{S}^1, \mathbb{S}^1) \cong \mathbb{Z}$)

3. (Yoneda lemma)

- (a) Let C be a category, and let $PSh(C) = Fun(C^{op}, Set)$. Check that we can define a functor $y: C \to PSh(C), X \mapsto Hom(-, X)$.
- (b) For $A \in \mathrm{PSh}(C)$ and and $X \in C$, show that there is a bijection $\mathrm{Hom}_{\mathrm{PSh}(C)}(y(X),A) \cong A(X)$.
- (c) Show that y is fully faithful.

4. In category RMod

- (a) Show that $-\otimes_R M$ is the left adjoint of $\operatorname{Hom}(M,-)$, use this to conclude that $-\otimes_R M$ commutes with all colimit.
- (b) Show that the filtered colimit of flat modules is again flat. In particular, the filtered colimits of finite free modules are flat. (In fact, the converse is also true.)
- (c) Show that $\mathbb{Z}/n\mathbb{Z}$ is not flat.

5. (Compact object)

(a) Let A_i be a system indexed by I in a category C and let $X \in C$, construct the natural morphism $d : \operatorname{colim}_I y(A_i) \to y(\operatorname{colim}_I A_i)$, in particular,

$$d(X) : \operatorname{colim}_I \operatorname{Hom}_C(X, A_i) \to \operatorname{Hom}_C(X, \operatorname{colim}_I A_i)$$

- (b) Let C be the category of topological space Top, and let $I = \mathcal{N}_{\leq}$ where $A_n = (-n, n) \subset \mathbb{R}$. Show that d(X) is a bijection if X is compact. What if X is not compact?
- (c) Let C be the RMod and let A_i be a filtered system. Show that d(M) are bijections for all filtered systems, iff M is finitely presented (i.e. there is a short exact sequence $R^n \to R^m \to M \to 0$ with n, m finite). (Such M is also called a compact object.)

6. (Snake lemma) Let

be a commuting diagram in RMod such that the middle two rows are exact sequences. Then there is a long exact sequence of kernels and cokernels of the form

$$0 \dashrightarrow \ker(a) \to \ker(b) \to \ker(c) \xrightarrow{\partial} \operatorname{coker}(a) \to \operatorname{coker}(b) \to \operatorname{coker}(c) \dashrightarrow 0.$$