Digital Electronics

Experiment 2

Name: Ayush Jain

SAP ID: 60004200132

Div: B1

Branch: Computer Engineering

AIM: To implement the logic functions i.e. AND, OR, NOT, Ex-OR, Ex- NOR and a logical expression with the help of NAND and NOR universal gates respectively.

NAND as AND gate

THEORY: A NAND produces complement of AND gate. So, if the output of a NAND gate is inverted, overall output will be that of an AND gate.

$$Y = ((A.B)')'$$

$$Y = (A.B)$$

Input		Output
Α	В	F = A.B
0	0	0
0	1	0
1	0	0
1	1	1

OUTPUT:

NAND as AND gate with inputs 1 and 1

NAND as AND gate with inputs 1 and 0

NAND as OR gate

THEORY: From DeMorgan's theorems:

$$(A.B)' = A' + B'$$

$$(A'.B')' = A'' + B'' = A + B$$

So, give the inverted inputs to a NAND gate, obtain OR operation at output.

À	В	X = A+B
0	0	0
0	1	1
1	0	1
1	1	1

NAND as OR gate with inputs 1 and 0

NAND as OR gate with inputs 0 and 0

NAND as X-OR gate

THEORY: The output of a two input Ex-OR gate is shown by: Y = A'B + AB'. This can be achieved with the logic diagram shown in the left side.

Gate No.	Inputs	Output
1	A, B	(AB)'
2	A, (AB)'	(A (AB)')'
3	(AB)', B	(B (AB)')'
4	(A (AB)')', (B (AB)')' A'B + AB'	

Now the ouput from gate no. 4 is the overall output of the configuration.

$$Y = ((A (AB)')' (B (AB)')')'$$

$$= (A(AB)')'' + (B(AB)')''$$

$$= (A(AB)') + (B(AB)')$$

$$= (A(A' + B)') + (B(A' + B)')$$

$$= (AA' + AB') + (BA' + BB')$$

$$= (0 + AB' + BA' + 0)$$

$$= AB' + BA'$$

$$\Rightarrow Y = AB' + A'B$$

А	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

OUTPUT:

NAND as X-OR gate with inputs 1 and 0

NAND as X-OR gate with inputs 0 and 0

NAND as NOT gate

NAND as NOT gate with input 1

NAND as NOT gate with input 0

NOR as AND gate

THEORY: From DeMorgan's theorems:

(A+B)' = A'B'

(A'+B')' = A''B'' = AB

So, give the inverted inputs to a NOR gate, obtain AND operation at output.

Input		Output
Α	В	F = A.B
0	0	0
0	1	0
1	0	0
1	1	1

NOR as AND gate with inputs 1 and 1

NOR as AND gate with inputs 1 and 0

NOR as OR gate

THEORY: A NOR produces complement of OR gate. So, if the output of a NOR gate is inverted, overall output will be that of an OR gate.

$$Y = ((A+B)')'$$
 $Y = (A+B)$

A	В	X = A+B
0	0	0
0	1	1
1	0	1
1	1	1

NOR as OR gate with inputs 1 and 0

NOR as OR gate with inputs 0 and 0

NOR as X-OR gate

THEORY: Ex-OR gate is actually Ex-NOR gate followed by NOT gate. So give the output of Ex-NOR gate to a NOT gate, overall output is that of an Ex-OR gate. Y = A'B + AB'

А	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

NOR as X-OR gate with inputs 1 and 0

NOR as X-OR gate with inputs 0 and 0

NOR as NOT gate

NOR as NOT gate with input 0

NOR as NOT gate with input 1