From Event Detection to Storytelling on Microblogs

Janani Kalyanam*

UC San Diego

Sumithra Velupillai

Mike Conway

Gert Lanckriet

UC San Diego

Research Pipeline

Interesting question

Analyze data (fit statistical models)

Collect data

Research Pipeline

Interesting question

Analyze data (fit statistical models)

How do we make sense of this?

Some tools

- Topic Modeling

- Event Detection

Some tools - limitations

- Topic Modeling - very short documents

- Event Detection - detect only the onset of events

Our focus in this work...

Our focus

- Topic Modeling (very short documents)

- Event Detection detect only the onset of events

Model

Model

Very sparse

Observation

The size of the vocabulary increases only marginally with increasing number of documents.

(Yan et. al. 2013)

Model

The term-by-term matrix $\, {f K} \,$ is relatively denser.

Model

The term-by-term matrix $\, {f K} \,$ is relatively denser.

Hence, decompose ${f K}$

Assume a set of documents arrive at every time step

$$\mathbf{K}^t pprox \mathbf{Q}^{tT} \mathbf{Q}^t$$

Assume a set of documents arrive at every time step

$$\mathbf{K}^t pprox \mathbf{Q}^{tT} \mathbf{Q}^t$$

Relate the current data to the past history

$$\mathbf{K}^t pprox \mathbf{Q}^{tT}$$

Assume a set of documents arrive at every time step

$$\mathbf{K}^t pprox \mathbf{Q}^{tT} \mathbf{Q}^t$$

Relate the current data to the past history

$$\mathbf{K}^t pprox \mathbf{Q}^{tT} \mathbf{T}^t \mathbf{Q}^{t-1}$$

$$\mathbf{K}^t pprox \mathbf{Q}^{tT} \mathbf{T}^t \mathbf{Q}^{t-1}$$
 \downarrow
top-top top-term

Quick Aside:

The "tracking matrix" - helps connect the present to the past. This will help build the "timelines" for events.

Model

$$||\mathbf{K}^t - \mathbf{Q}^{tT}\mathbf{Q}^t||_F^2 + ||\mathbf{K}^t - \mathbf{Q}^{tT}\mathbf{T}^t\mathbf{Q}^{t-1}||_F^2$$

Model

Optimization

- Collective Matrix Factorization (Singh and Gordon 2008)

- Details in the paper

- Implementation on github

https://github.com/kjanani/matrix_factorization/blob/master/matrix_factorization.py

Interesting Question

Ebola Outbreak 2014. What really happened?

Interesting Question: Goals

Ebola Outbreak 2014. What really happened?

- Want list of all events that occurred.

- How did they progress?

Tasks

- Topic Detection

- Event timelines

Topic Detection

- Estimated topics: Estimate \mathbf{Q}^t at every timestep. Each row is a distribution over words.

- Groundtruth topics: hashtags

Topic Detection Baselines

- Two baselines from the event detection literature

- A few classic topic modeling baselines (NMF, LDA e.t.c.)

Topic Detection Results

7	
v	 h
D.	

model type	model	NDCG	MAP
[Ours]	MEP	0.2027	0.0953
event	trend-detect	0.1823	0.0862
detection	o-cluster	0.1677	0.0892
topic	O-BTM	0.1745	0.091
modeling	nmf	0.1722	0.0864
	lda	0.1245	0.0589

k = 7

model type	model	NDCG	MAP
[Ours]	MEP	0.1626	0.0706
event	trend-detect	0.1502	0.0539
detection	o-cluster	0.1310	0.0534
topic	O-BTM	0.1459	0.0569
modeling	nmf	0.1306	0.0565
	lda	0.0837	0.0366

k = 10

model type	model	NDCG	MAP
[Ours]	MEP	0.1430	0.0696
event	trend-detect	0.1379	0.0667
detection	o-cluster	0.1320	0.0606
topic	O-BTM	0.1271	0.0412
modeling	nmf	0.1057	0.0463
	lda	0.0660	0.0164

Event Timelines

How to come up with *timelines* of events?

Event Timelines

How to come up with *timelines* of events?

Look at the tracking matrix \mathbf{T}^t

Tracking Matrix

$$||\mathbf{K}^t - \mathbf{Q}^{tT}\mathbf{Q}^t||_F^2 + ||\mathbf{K}^t - \mathbf{Q}^{tT}\mathbf{T}^t\mathbf{Q}^{t-1}||_F^2$$

- Tracking matrix is a square matrix of all positive entries

Tracking Matrix $||\mathbf{K}^t - \mathbf{Q}^t||_F^2 + ||\mathbf{K}^t - \mathbf{Q}^t||_F^2 + ||\mathbf{K}^t - \mathbf{Q}^t||_F^2$

- Tracking matrix is a square matrix of all positive entries
- It show how the topics have changed from $\,t\,-\,1$ to $\,t\,$
- Row-i tells how topic-i at time t is related to all the topics at time t-1

Entropy H(X)

$$H(X) := -P(x_i) \sum_{i=1}^{\infty} \log(P(x_i))$$

n

- Quantifies the amount of "randomness"

- Range [0, 2.32]

Based on Entropy

- $< 1 \rightarrow$ continuing events
- $1 \leftarrow H(X) \leftarrow 2 \rightarrow \text{evolving events}$
- $> 2 \rightarrow \text{new events}$
- Also ending events

Timeline Generation

- Look at heatmap
- Connect dots to the previous timesteps (if possible)
- Else, new events, or noise

Timeline

Example continuing events - memes

2014/10/19	kim, kardashian, married, american, died
2014/10/20	kim, kardashian, married, american, died
2014/10/21	kim, kardashian, married, american, died
2014/10/22	kim, kardashian, married, american, died
2014/10/23	kim, kardashian, married, american, died

Example of evolving events

2014/10/07
2014/10/08
2014/10/09
2014/10/10
2014/10/11
2014/10/12
2014/10/13
2014/10/14
2014/10/15
2014/10/16
2014/10/17

kidney, dialysis
thomas, eric, duncan, died, first, patient
died, patient
duncan, fever, nurse
nurse, symptoms
health, care, worker, positive
health, care, worker, protocol
nurse, dallas, nina, pham
health, care, worker, 2nd, positive
nurse, flight, ohio
virus, flight, nina, pham

Thank you!

Questions?

Social Media Era

