# แบบเสนอโครงงานพิเศษ (ปริญญานิพนธ์)

สาขาวิชาวิศวกรรมสารสนเทศและเครือข่าย ภาควิชาเทคโนโลยีสารสนเทศ คณะเทคโนโลยีและการจัดการอุตสาหกรรม

# 1. ข้อมูลขั้นต้นของโครงงาน

### 1.1 ชื่อโครงงาน

(ภาษาไทย) แพลตฟอร์มวิศวกรรมความรู้เชิงสัมพันธ์การปรากฏร่วม (ภาษาอังกฤษ) Co-Occurrence Knowledge Engineering Platform

# 1.2 ชื่อนักศึกษาผู้ทำโครงงาน

ชื่อ-นามสกุล นายยงยุทธ ชวนขุนทด

สาขาวิชา วิศวกรรมสารสนเทศและเครือข่าย

ภาควิชา เทคโนโลยีสารสนเทศ

ภาคเรียนที่ 1 ปีการศึกษา 2568

# 1.3 ชื่ออาจารย์ที่ปรึกษา

ชื่อ-นามสกุล รองศาสตราจารย์ ดร. อนิราช มิ่งขวัญ

### 2. รายละเอียดของโครงงาน

## 2.1 ความเป็นมาและความสำคัญของปัญหา

ในยุคดิจิทัลปัจจุบัน ข้อมูลและความรู้ที่เกิดขึ้นในแต่ละวันมีปริมาณที่เพิ่มขึ้นอย่างรวดเร็ว โดยเฉพาะอย่างยิ่ง เอกสารทางวิชาการ หนังสือ และงานวิจัยต่าง ๆ ที่มีการเผยแพร่ในรูปแบบดิจิทัล เช่น ไฟล์ PDF ซึ่งเป็นแหล่ง ความรู้ที่มีคุณค่าสูง อย่างไรก็ตาม การจัดการ การวิเคราะห์ และการค้นหาความเชื่อมโยงระหว่างความรู้จาก เอกสารเหล่านี้ยังคงเป็นปัญหาที่ท้าทาย

ปัญหาหลักที่พบในปัจจุบันคือ การที่ผู้ใช้งานไม่สามารถมองเห็นภาพรวมของความสัมพันธ์และความเชื่อม โยงระหว่างแนวคิดต่าง ๆ ที่ปรากฏในเอกสารหลายฉบับได้อย่างชัดเจน การอ่านและทำความเข้าใจเอกสารแต่ละ ฉบับแยกกันทำให้เกิดการสูญเสียโอกาสในการค้นพบความรู้ใหม่ที่อาจเกิดขึ้นจากการเชื่อมโยงข้อมูลจากแหล่งที่ แตกต่างกัน

นอกจากนี้ การวิเคราะห์ความถี่ของการใช้คำและการปรากฏร่วมของความรู้ (Co-occurrence) ในเอกสาร ยังเป็นกระบวนการที่ซับซ้อนและใช้เวลามาก หากต้องทำด้วยมือหรือเครื่องมือพื้นฐาน ทำให้การสกัดความรู้และ การสร้างความเข้าใจเชิงลึกจากเอกสารเป็นไปได้ยาก ด้วยเหตุนี้ จึงจำเป็นต้องมีระบบที่สามารถแปลงเอกสารจากแหล่งต่าง ๆ ให้กลายเป็นกราฟเครือข่าย (Network Graph) ที่แสดงความสัมพันธ์และความเชื่อมโยงระหว่างแนวคิดได้อย่างชัดเจน รวมถึงสามารถสกัด ส่วนของกราฟเพื่อนำไปผสมผสานกับข้อมูลจากแหล่งอื่น ๆ เพื่อสร้างความรู้ใหม่และค้นพบความเป็นไปได้ที่ไม่ เคยมีมาก่อน ซึ่งจะช่วยเพิ่มประสิทธิภาพในการจัดการความรู้และส่งเสริมการเกิดนวัตกรรมใหม่ ๆ ในอนาคต

### 2.2 วัตถุประสงค์ของโครงงาน

- 2.2.1 เพื่อพัฒนาแพลตฟอร์มวิศวกรรมความรู้เชิงสัมพันธ์การปรากฏร่วมที่สามารถแปลงเอกสารให้กลายเป็น กราฟเครือข่ายความรู้ได้อย่างมีประสิทธิภาพ
- 2.2.2 เพื่อพัฒนาระบบวิเคราะห์การปรากฏร่วมของคำและแนวคิด (Co-occurrence Analysis) ที่สามารถระบุ ความถี่และความสัมพันธ์ระหว่างคำศัพท์ในเอกสารได้อย่างแม่นยำ
- 2.2.3 เพื่อสร้างส่วนติดต่อผู้ใช้ (User Interface) ที่ช่วยให้ผู้ใช้สามารถแสดงผลและโต้ตอบกับกราฟเครือข่าย ความรู้ได้อย่างง่ายดายและเข้าใจง่าย
- 2.2.4 เพื่อพัฒนาฟีเจอร์การจัดการส่วนของกราฟ (Graph Management) เพื่อนำไปใช้ในการสร้างกราฟเครือ ข่ายใหม่หรือผสมผสานกับข้อมูลจากแหล่งอื่น
- 2.2.5 เพื่อพัฒนาระบบการผสมผสานความรู้จากหลายแหล่งข้อมูลเพื่อค้นหาความเชื่อมโยงและสร้างความรู้ใหม่ ที่มีความเชื่อมโยงกัน
- 2.2.6 เพื่อพัฒนาระบบบูรณาการกับ Large Language Models (LLM) ที่สามารถใช้ข้อมูลจากกราฟเครือข่าย ในการปรับปรุงความแม่นยำและประสิทธิภาพของการค้นหาและสกัดความรู้

## 2.3 ขอบเขตของการทำโครงงานพิเศษ (Scope of Special Project)

- 2.3.1 การพัฒนาระบบประมวลผลและวิเคราะห์เอกสาร เช่น PDF ที่สามารถดึงข้อความ วิเคราะห์โครงสร้าง และแยกแยะเนื้อหาสำคัญจากเอกสารได้อย่างมีประสิทธิภาพ รวมถึงการจัดการกับรูปแบบการจัดวางข้อ ความและภาษาที่หลากหลาย
- 2.3.2 การพัฒนาระบบวิเคราะห์การปรากฏร่วม (Co-occurrence Analysis) ที่สามารถ
  - 2.3.2.1 วิเคราะห์ความถี่ของคำและวลีในเอกสาร
  - 2.3.2.2 ระบุความสัมพันธ์และการปรากฏร่วมของแนวคิดต่าง ๆ
  - 2.3.2.3 คำนวณค่าความแข็งแกร่งของความเชื่อมโยงระหว่างคำหรือแนวคิด
  - 2.3.2.4 สร้างเมทริกซ์ความสัมพันธ์สำหรับการสร้างกราฟเครือข่าย
- 2.3.3 การพัฒนาระบบสร้างและจัดการกราฟเครือข่ายความรู้ (Knowledge Network Graph) ที่สามารถ
  - 2.3.3.1 แปลงข้อมูลการวิเคราะห์ให้เป็นโครงสร้างกราฟ
  - 2.3.3.2 จัดกลุ่มและจัดระเบียบโหนดและขอบเชื่อมตามความสัมพันธ์
  - 2.3.3.3 คำนวณคุณสมบัติของกราฟ เช่น ความหนาแน่น ความเป็นศูนย์กลาง
  - 2.3.3.4 สนับสนุนการแสดงผลแบบ Interactive และ Dynamic
- 2.3.4 การพัฒนาส่วนติดต่อผู้ใช้ (User Interface) ที่มีคุณสมบัติ
  - 2.3.4.1 อัปโหลดและจัดการไฟล์ PDF
  - 2.3.4.2 แสดงผลกราฟเครือข่ายแบบโต้ตอบได้
  - 2.3.4.3 เครื่องมือการค้นหาและกรองข้อมูล

- 2.3.4.4 ส่งออกผลลัพธ์ในรูปแบบต่าง ๆ (รูปภาพ, JSON, CSV)
- 2.3.5 การพัฒนาฟีเจอร์การสกัดและจัดการส่วนของกราฟ (Graph Management) ที่สามารถ
  - 2.3.5.1 เลือกและสกัดส่วนที่สนใจจากกราฟใหญ่
  - 2.3.5.2 บันทึกและจัดเก็บส่วนกราฟที่สกัดไว้
  - 2.3.5.3 ผสมผสานกราฟจากหลายแหล่งข้อมูล
  - 2.3.5.4 สร้างกราฟใหม่จากการรวมข้อมูลหลายเอกสาร
- 2.3.6 การพัฒนาระบบฐานข้อมูลสำหรับจัดเก็บข้อมูล
  - 2.3.6.1 ข้อมูลเอกสารและเมตาดาต้า
  - 2.3.6.2 ผลการวิเคราะห์และกราฟเครือข่าย
  - 2.3.6.3 ประวัติการทำงานและการแก้ไข
  - 2.3.6.4 การตั้งค่าและ Preferences ของผู้ใช้
- 2.3.7 การพัฒนาระบบบูรณาการกับ Large Language Models (LLM) ที่สามารถ
  - 2.3.7.1 แปลงข้อมูล Network Graph ให้เป็นรูปแบบที่ LLM สามารถเข้าใจและประมวลผลได้
  - 2.3.7.2 สร้างระบบ Query Interface ที่ช่วยให้ผู้ใช้สามารถสอบถามข้อมูลจากกราฟผ่าน LLM ได้
  - 2.3.7.3 พัฒนา Context-aware Search ที่ใช้ความรู้จากกราฟเครือข่ายในการปรับปรุงความแม่นยำของการ ค้นหา
  - 2.3.7.4 สร้างระบบ Knowledge Discovery ที่ใช้ LLM ในการวิเคราะห์และสกัดความรู้ใหม่จากความสัมพันธ์ ในกราฟ

# 2.4 รายละเอียดของทฤษฎีที่ใช้ในการจัดทำปริญญานิพนธ์

- 2.4.1 สมมติฐาน หรือ ข้อตกลงเบื้องต้นในการจัดทำโครงงานพิเศษ (Assumption of the Study)
  - 2.4.1.1 เอกสารที่นำเข้าสู่ระบบจะอยู่ในรูปแบบ PDF เป็นต้น ฯลฯ ที่มีข้อความที่สามารถสกัดได้ (Text-extractable) และ มี คุณภาพ เพียง พอ สำหรับ การ ประมวล ผล ด้วย เทคนิค Optical Character Recognition (OCR) ในกรณีที่จำเป็น
  - 2.4.1.2 เอกสารที่ใช้ในการวิเคราะห์จะเป็นเอกสารทางวิชาการ งานวิจัย หรือเอกสารที่มีโครงสร้างและเนื้อหา ที่ชัดเจน โดยมีการใช้คำศัพท์และแนวคิดที่สามารถระบุและวิเคราะห์ความสัมพันธ์ได้
  - 2.4.1.3 ระบบจะทำงานภายใต้สมมติฐานที่ว่าการปรากฏร่วมของคำหรือแนวคิดในระยะทางที่ใกล้กันภายใน เอกสารแสดงถึงความสัมพันธ์หรือความเชื่อมโยงระหว่างแนวคิดเหล่านั้น
  - 2.4.1.4 ผู้ใช้งานระบบจะมีความรู้พื้นฐานในการตีความและวิเคราะห์กราฟเครือข่าย รวมถึงสามารถระบุความ สำคัญและความหมายของความสัมพันธ์ที่แสดงในกราฟได้
  - 2.4.1.5 ระบบจะมีประสิทธิภาพในการประมวลผลเอกสารที่มีขนาดปานกลางถึงใหญ่ โดยสมมติว่าทรัพยากร คอมพิวเตอร์ที่ใช้งานมีความสามารถเพียงพอสำหรับการประมวลผลและการแสดงผลกราฟเครือข่าย แบบโต้ตอบได้
  - 2.4.1.6 การบูรณาการกับ Large Language Models (LLM) จะช่วยปรับปรุงความแม่นยำในการระบุและจัด กลุ่มแนวคิด โดยสมมติว่า LLM จะสามารถเข้าใจบริบทและความหมายของข้อความในเอกสารได้ อย่างถูกต้อง
  - 2.4.1.7 ผลลัพธ์ที่ได้จากระบบจะมีความเชื่อถือได้และสามารถนำไปใช้ในการตัดสินใจหรือการวิจัยเพิ่มเติมได้ โดยระบบจะมีกลไกในการตรวจสอบและปรับปรุงความแม่นยำของผลการวิเคราะห์

- 2.4.1.8 การผสมผสานข้อมูลจากหลายแหล่งจะช่วยสร้างความรู้ใหม่ที่มีคุณค่า โดยสมมติว่าข้อมูลจากแหล่ง ต่าง ๆ จะมีความเข้ากันได้และสามารถรวมเข้าด้วยกันได้อย่างมีความหมาย
- 2.4.2 คำจำกัดความ (Key Word)
  - 2.4.2.1 **การปรากฏ ร่วม (Co-occurrence)** หมายถึง การที่คำหรือแนวคิดสองคำหรือมากกว่าปรากฏใน ตำแหน่งที่ใกล้เคียงกัน ภายในเอกสาร หรือ ข้อความ ซึ่งแสดงถึงความสัมพันธ์ หรือ ความ เชื่อมโยง ระหว่างแนวคิดเหล่านั้น
  - 2.4.2.2 วิศวกรรมความรู้ (Knowledge Engineering) หมายถึง กระบวนการในการสกัด จัดระเบียบ จัดเก็บ และจัดการความรู้จากแหล่งข้อมูลต่าง ๆ เพื่อให้สามารถนำไปใช้งานได้อย่างมีประสิทธิภาพ
  - 2.4.2.3 **แพลตฟอร์ม (Platform)** หมายถึง ระบบซอฟต์แวร์ที่ให้บริการและเครื่องมือครบครันสำหรับการ ดำเนินงานเฉพาะด้าน ในที่นี้คือการวิเคราะห์และจัดการความรู้เชิงสัมพันธ์
  - 2.4.2.4 **กราฟเครือข่าย (Network Graph)** หมายถึง โครงสร้างข้อมูลที่ประกอบด้วยโหนด (Nodes) และ ขอบเชื่อม (Edges) ที่แสดงความสัมพันธ์ระหว่างแนวคิดหรือเอนทิตีต่าง ๆ ในรูปแบบที่เข้าใจได้ง่าย
  - 2.4.2.5 การวิเคราะห์การปรากฏร่วม (Co-occurrence Analysis) หมายถึง เทคนิคการวิเคราะห์ข้อมูลที่ใช้ ในการระบุและวัดความถี่ของการปรากฏร่วมของคำหรือแนวคิดในข้อความ เพื่อค้นหาความสัมพันธ์ และรูปแบบต่าง ๆ
  - 2.4.2.6 **โหนด (Node)** หมายถึง จุดหรือองค์ประกอบพื้นฐานในกราฟเครือข่ายที่แทนคำ แนวคิด หรือเอนทิ ตีต่าง ๆ ที่ได้จากการวิเคราะห์เอกสาร
  - 2.4.2.7 ขอบเชื่อม (Edge) หมายถึง เส้นเชื่อมระหว่างโหนดในกราฟเครือข่ายที่แสดงความสัมพันธ์หรือความ เชื่อมโยงระหว่างแนวคิดหรือเอนทิตีต่าง ๆ รวมถึงค่าน้ำหนักที่บ่งบอกถึงความแข็งแกร่งของความ สัมพันธ์
  - 2.4.2.8 **การสกัดข้อความ (Text Extraction)** หมายถึง กระบวนการในการดึงข้อความจากเอกสารดิจิทัล เช่น ไฟล์ PDF โดยใช้เทคนิคการประมวลผลเอกสารหรือ OCR (Optical Character Recognition)
  - 2.4.2.9 **เมทริกซ์ความสัมพันธ์ (Relationship Matrix)** หมายถึง ตารางสองมิติที่แสดงค่าความแข็งแกร่งของ ความสัมพันธ์ระหว่างคำหรือแนวคิดต่าง ๆ ที่ได้จากการวิเคราะห์การปรากฏร่วม
  - 2.4.2.10 Large Language Models (LLM) หมายถึง โมเดลปัญญาประดิษฐ์ ที่ได้รับการฝึกฝนด้วยข้อมูล ข้อความขนาดใหญ่ เพื่อให้สามารถเข้าใจและประมวลผลภาษาธรรมชาติได้อย่างมีประสิทธิภาพ
  - 2.4.2.11 **การแสดงผลแบบโต้ตอบ (Interactive Visualization)** หมายถึง การแสดงผลข้อมูลในรูปแบบที่ผู้ ใช้สามารถโต้ตอบและปรับเปลี่ยนมุมมองหรือรายละเอียดได้ตามต้องการ
  - 2.4.2.12 **การจัดการส่วนของกราฟ (Graph Management)** หมายถึง ระบบที่ช่วยในการเลือก สกัด บันทึก และจัดการส่วนต่าง ๆ ของกราฟเครือข่ายเพื่อนำไปใช้งานหรือวิเคราะห์เพิ่มเติม
  - 2.4.2.13 **การค้นพบความรู้ (Knowledge Discovery)** หมายถึง กระบวนการในการค้นหาและระบุรูปแบบ ความสัมพันธ์ หรือความรู้ใหม่ที่ซ่อนอยู่ในข้อมูลขนาดใหญ่ผ่านเทคนิคการวิเคราะห์ข้อมูลต่าง ๆ

## 2.4.3 รายงานการค้นคว้า การศึกษา หรือการวิจัยที่เกี่ยวข้อง

### 2.4.3.1 Centroid Terms as Text Representatives

งาน วิจัย ของ Mario M. Kubek, Herwig Unger (2016) เรื่อง "Centroid Terms as Text Representatives" ได้ศึกษาเทคนิคการสร้างกราฟความรู้จากข้อความ โดยเฉพาะการใช้เทคนิค Co-occurrence Analysis ในการระบุความสัมพันธ์ระหว่างเอนทิตีต่าง ๆ การศึกษานี้ได้ชี้ให้เห็นว่า อัลกอริทึมสำหรับการจัดกลุ่มและการจำแนกข้อความตามหัวข้อนั้นอาศัยข้อมูลเกี่ยวกับระยะทาง และความคล้ายคลึงเชิงความหมาย วิธีการมานตรฐานที่อิงตามแบบจำลอง bag-of-words ในการ กำหนดข้อมูลนี้จะให้เพียงการประมาณแบบคร่าว ๆ เกี่ยวกับความเกี่ยวข้องของข้อความ นอกจากนี้ วิธีการเหล่านี้ยังไม่สามารถค้นหาคำศัพท์ที่เป็นนามธรรมหรือคำที่สามารถอธิบายเนื้อหาของข้อความ ได้อย่างครอบคลุม งานวิจัยนี้จึงได้นำเสนอวิธีการใหม่ในการกำหนดคำศูนย์กลาง (Centroid Terms) ในข้อความและการประเมินความคล้ายคลึงโดยใช้คำที่เป็นตัวแทนเหล่านั้น ซึ่งแสดงให้เห็นว่าการ วิเคราะห์การปรากฏร่วมสามารถช่วยในการค้นพบรูปแบบความสัมพันธ์ที่ซ่อนอยู่ในข้อมูลขนาดใหญ่ ได้อย่างมีประสิทธิภาพ และสามารถนำไปประยุกต์ใช้ในการพัฒนาระบบวิศวกรรมความรู้เชิงสัมพันธ์ ได้

### 2.4.3.2 Spreading activation: a fast calculation method for text centroids

งาน วิจัย ของ Mario M. Kubek, Thomas Böhme, Herwig Unger (2017) เรื่อง "Spreading activation: a fast calculation method for text centroids" ได้ นำ เสนอ เทคนิค การ คำนวณ Centroid Terms แบบใหม่ที่มีประสิทธิภาพสูง โดยใช้ Spreading Activation Algorithm ซึ่งเป็น เทคนิคที่ทำงานบนพื้นฐานของกราฟและหลักการทำงานแบบเฉพาะที่ (Local Working Principle) การศึกษานี้ชี้ให้เห็นว่า Centroids เป็นเครื่องมือที่สะดวกในการแสดงคำค้นหาและข้อความทั้งหมด ด้วยคำศัพท์เชิงบรรยายเพียงคำเดียว ซึ่งสามารถนำไปใช้ในการกำหนดความคล้ายคลึงของเนื้อหา ข้อความและการจัดกลุ่มเอกสารแบบลำดับชั้น อย่างไรก็ตาม การคำนวณตามคำจำกัดความแบบ ดั้งเดิมอาจใช้เวลามากและเป็นอุปสรรคต่อการนำไปใช้งานจริง ดังนั้น การพัฒนาอัลกอริทึมแบบ ใหม่ที่อิงตามกราฟ Co-occurrence จึงมีความสำคัญต่อการเพิ่มประสิทธิภาพการประมวลผล ซึ่ง สอดคล้องกับแนวทางที่จะใช้ในโครงงานนี้สำหรับการวิเคราะห์การปรากฏร่วมและการสร้างกราฟ เครือข่ายความรู้ที่มีประสิทธิภาพในการประมวลผลเอกสารขนาดใหญ่

### 2.4.3.3 Enhancing Retrieval-Augmented Generation Systems by Text-Representing Centroid

การ ศึกษา ของ Yanakorn Ruamsuk, Anirach Mingkhawn, Herwig Unger (2025) เรื่อง "Enhancing Retrieval-Augmented Generation Systems by Text-Representing Centroid" ได้ นำเสนอแนวทางใหม่ในการปรับปรุงระบบ Retrieval-Augmented Generation (RAG) โดยการบู รณาการเทคนิค Text-Representing Centroid (TRC) เพื่อแก้ไขข้อจำกัดของฐานข้อมูลเวกเตอร์แบบ ดั้งเดิม วิธีการนี้สามารถรักษาความสัมพันธ์เชิงโครงสร้างและปรับตัวตามความซับซ้อนของเนื้อหา ส่งผลให้การค้นคืนข้อมูลมีประสิทธิภาพและความแม่นยำที่สูงขึ้น การมีส่วนสนับสนุนที่สำคัญได้แก่ การสร้างกราฟขั้นสูง อัลกอริทึมการให้คะแนนความเกี่ยวข้อง และการตรวจสอบความถูกต้องอย่าง ครอบคลุม พร้อมการอภิปรายเกี่ยวกับการประยุกต์ใช้ที่เป็นไปได้และการวิจัยในอนาคต หลักฐานเชิง ประจักษ์แสดงให้เห็นว่าเทคนิค TRC สามารถบรรลุอัตราความสำเร็จ 75 เปอร์เซ็นต์จากคำถาม 100 ข้อ ซึ่งมีประสิทธิภาพเหนือกว่าวิธีการเวกเตอร์แบบดั้งเดิม การศึกษานี้มีความเกี่ยวข้องโดยตรงกับ โครงงานที่เสนอ เนื่องจากแสดงให้เห็นถึงความเป็นไปได้ในการใช้เทคนิค Co-occurrence Analysis และ Centroid-based Methods ในการพัฒนาระบบวิศวกรรมความรู้ที่มีประสิทธิภาพสูง

# 2.4.4 เนื้อหา เหตุผล และทฤษฎีที่สำคัญ

โครงงาน Co-Occurrence Knowledge Engineering Platform นี้มีพื้นฐานทางทฤษฎีที่แข็งแกร่งและ เหตุผลที่ชัดเจนในการพัฒนา โดยอาศัยหลักการทางวิศวกรรมความรู้และเทคนิคการวิเคราะห์ข้อมูลขั้นสูง หลายแนวทาง

## เหตุผลในการพัฒนาโครงงาน

ในยุคสารสนเทศปัจจุบัน ปริมาณข้อมูลและเอกสารดิจิทัลเพิ่มขึ้นอย่างรวดเร็ว แต่การจัดการและ การค้นหาความเชื่อมโยงระหว่างความรู้จากแหล่งต่าง ๆ ยังคงเป็นความท้าทายสำคัญ ผู้ใช้งานส่วนใหญ่ ไม่สามารถมองเห็นภาพรวมของความสัมพันธ์ระหว่างแนวคิดที่ปรากฏในเอกสารหลายฉบับได้อย่างชัดเจน การวิเคราะห์การปรากฏร่วม (Co-occurrence Analysis) แบบดั้งเดิมใช้เวลามากและซับซ้อน ดังนั้น จึง จำเป็นต้องมีระบบที่สามารถแปลงเอกสารให้เป็นกราฟเครือข่ายความรู้ที่เข้าใจได้ง่าย และสามารถผสม ผสานข้อมูลจากหลายแหล่งเพื่อสร้างความรู้ใหม่

# ทฤษฎีพื้นฐานที่ใช้ในการพัฒนา

# 1. ทฤษฎีการปรากฏร่วม (Co-occurrence Theory)

หลักการพื้นฐานของการวิเคราะห์การปรากฏร่วมอิงตามสมมติฐานที่ว่า คำหรือแนวคิดที่ปรากฏใกล้ กันในข้อความมักจะมีความสัมพันธ์หรือความเชื่อมโยงกัน ทฤษฎีนี้ได้รับการสนับสนุนจากงานวิจัยของ Mario M. Kubek et al. (2016, 2017) ที่แสดงให้เห็นว่าการวิเคราะห์ Centroid Terms และ Spreading Activation Algorithm สามารถช่วยในการระบุความสัมพันธ์เชิงความหมายได้อย่างมีประสิทธิภาพ

## 2. ทฤษฎีกราฟและเครือข่าย (Graph Theory and Network Theory)

การแสดงความรู้ในรูปแบบกราฟเครือข่ายอิงตามทฤษฎีกราฟ ซึ่งประกอบด้วยโหนด (Nodes) แทน แนวคิดหรือเอนทิตี และขอบเชื่อม (Edges) แทนความสัมพันธ์ ทฤษฎีนี้ช่วยให้สามารถคำนวณคุณสมบัติ ต่าง ๆ ของเครือข่าย เช่น ความหนาแน่น (Density) ความเป็นศูนย์กลาง (Centrality) และการจัดกลุ่ม (Clustering) ซึ่งมีความสำคัญต่อการวิเคราะห์และการค้นพบความรู้

# 3. ทฤษฎีการประมวลผลภาษาธรรมชาติ (Natural Language Processing Theory)

การสกัดข้อความและการวิเคราะห์เนื้อหาจากเอกสาร PDF อาศัยหลักการของ NLP รวมถึงเทคนิค Tokenization, Part-of-Speech Tagging, Named Entity Recognition และ Semantic Analysis เพื่อให้ สามารถระบุและแยกแยะแนวคิดสำคัญได้อย่างแม่นยำ

# 4. ทฤษฎีการเรียนรู้ของเครื่อง (Machine Learning และ Deep Learning Theory)

การบูรณาการกับ Large Language Models (LLM) อาศัยหลักการของ Deep Learning และ Transformer Architecture เพื่อปรับปรุงความแม่นยำในการระบุความสัมพันธ์และการทำ Semantic Reasoning งานวิจัยของ Yanakorn Ruamsuk et al. (2025) แสดงให้เห็นว่าการใช้ Text-Representing Centroid ร่วมกับ LLM สามารถบรรลุอัตราความสำเร็จ 75 เปอร์เซ็นต์ในการตอบคำถาม

# 5. ทฤษฎีการจัดการฐานข้อมูล (Database Management Theory)

การจัดเก็บและจัดการข้อมูลกราฟอาศัยหลักการของ Graph Database และ NoSQL Database เพื่อรองรับการประมวลผลข้อมูลเชิงสัมพันธ์ที่ซับซ้อนและการ Query แบบ Real-time

#### 2.5 วิธีดำเนินการจัดทำโครงงานพิเศษ

การพัฒนาแพลตฟอร์ม Co-Occurrence Knowledge Engineering Platform จะดำเนินการโดยใช้แนวทางการ พัฒนาระบบแบบครบวงจร (Full-Stack Development) ร่วมกับเทคโนโลยีคลาวด์และเครื่องมือออกแบบสมัย ใหม่ เพื่อให้ได้ระบบที่มีประสิทธิภาพ ปลอดภัย และใช้งานง่าย

#### วิธีการดำเนินการหลัก

### 2.5.1 การพัฒนาระบบบนคลาวด์เซิร์ฟเวอร์

- 2.5.1.1 ใช้คลาวด์เซิร์ฟเวอร์เป็นสภาพแวดล้อมหลักในการ Host โครงงาน
- 2.5.1.2 ติดตั้งและกำหนดค่าระบบปฏิบัติการ Linux (Server) สำหรับการประมวลผล
- 2.5.1.3 ปรับแต่งสภาพแวดล้อมสำหรับการพัฒนา TypeScript, Go และฐานข้อมูล

#### 2.5.2 การออกแบบ User Interface และ User Experience

- 2.5.2.1 ใช้เครื่องมือ Figma ในการออกแบบ Wireframes และ Mockups ทั้งหมด
- 2.5.2.2 สร้าง Design System ที่สอดคล้องกับการใช้งานของ Knowledge Engineering Platform
- 2.5.2.3 ออกแบบ Interactive Prototypes สำหรับการแสดงผลกราฟเครือข่าย
- 2.5.2.4 ทดสอบ Usability และปรับปรุงการออกแบบตามผลการทดสอบ
- 2.5.2.5 สร้าง Responsive Design เพื่อรองรับการใช้งานบนอุปกรณ์ต่าง ๆ

### 2.5.3 การพัฒนาระบบจำลองและการทดสอบ

- 2.5.3.1 สร้างระบบจำลองการวิเคราะห์ Co-occurrence ด้วยข้อมูลตัวอย่าง
- 2.5.3.2 พัฒนา Proof of Concept สำหรับการสร้างกราฟเครือข่ายจากเอกสาร PDF
- 2.5.3.3 สร้างและทดสอบการบูรณาการกับ Large Language Models (LLM)

### 2.5.4 การสร้างเอกสารและข้อกำหนดระบบ

- 2.5.4.1 จัดทำเอกสาร System Requirements และ Functional Specifications
- 2.5.4.2 สร้าง API Documentation สำหรับการใช้งานระบบ
- 2.5.4.3 เขียน User Manual และ Administrator Guide
- 2.5.4.4 จัดทำเอกสาร Technical Architecture และ Database Schema
- 2.5.4.5 สร้าง Test Cases และ Test Plans สำหรับการทดสอบระบบ

### 2.5.5 การสร้างสภาพแวดล้อมความปลอดภัย

- 2.5.5.1 ติดตั้งและกำหนดค่า VPN Server สำหรับการเชื่อมต่อที่ปลอดภัย
- 2.5.5.2 สร้าง Private Network สำหรับการเข้าถึงฐานข้อมูลและทรัพยากรภายใน
- 2.5.5.3 ปรับแต่งระบบ Firewall และ Security Groups สำหรับการควบคุมการเข้าถึง
- 2.5.5.4 ใช้ SSL/TLS Certificates สำหรับการเข้ารหัสข้อมูล

#### 2.5.6 การพัฒนาและการทดสอบระบบ

- 2.5.6.1 สร้าง CI/CD Pipeline สำหรับการ Deploy และ Testing อัตโนมัติ
- 2.5.6.2 ทดสอบระบบด้วย Unit Testing, Integration Testing และ End-to-End Testing
- 2.5.6.3 ประเมินประสิทธิภาพระบบด้วย Performance Testing และ Load Testing
- 2.5.6.4 ทดสอบความปลอดภัยด้วย Security Testing และ Penetration Testing

### สถานที่ดำเนินการ

### 2.5.7 สถานที่หลักในการพัฒนา

- 2.5.7.1 ห้องปฏิบัติการคอมพิวเตอร์ ภาควิชาเทคโนโลยีสารสนเทศ คณะเทคโนโลยีและการจัดการอุตสาห-กรรม สำหรับการพัฒนาและทดสอบระบบ
- 2.5.7.2 ห้องส่วนตัวที่มีการเชื่อมต่ออินเทอร์เน็ตความเร็วสูง สำหรับการพัฒนาและการออกแบบ
- 2.5.7.3 คลาวด์เซิร์ฟเวอร์ สำหรับการ Host และ Deploy ระบบ

### 2.5.8 สภาพแวดล้อมการทำงาน

- 2.5.8.1 ระบบพัฒนาบนเครื่อง Local Development Environment (macOS/Linux)
- 2.5.8.2 ระบบทดสอบบน Staging Environment ในคลาวด์เซิร์ฟเวอร์
- 2.5.8.3 ระบบจริงบน Production Environment ที่มีการรักษาความปลอดภัยสูง
- 2.5.8.4 ระบบการออกแบบบน Figma Cloud Platform

#### 2.6 แผนกิจกรรมและตารางเวลาในการจัดทำ

#### 2.6.1 แผนกิจกรรมหลักและระยะเวลา

ตารางที่ 1: แผนการดำเนินงานภาคการศึกษาที่ 1

| ขั้นตอนการดำเนินการ           |   | ก.ค. |   |   |   | ส.ค. |   |   |   | ก. | ย. |   | ต.ค. |   |   |   |
|-------------------------------|---|------|---|---|---|------|---|---|---|----|----|---|------|---|---|---|
|                               | 1 | 2    | 3 | 4 | 1 | 2    | 3 | 4 | 1 | 2  | 3  | 4 | 1    | 2 | 3 | 4 |
| 1) วางแผนการพัฒนา             |   |      |   |   |   |      |   |   |   |    |    |   |      |   |   |   |
| 2) เก็บ Requirement           |   |      |   |   |   |      |   |   |   |    |    |   |      |   |   |   |
| 3) ออกแบบ UI และ UX           |   |      |   |   |   |      |   |   |   |    |    |   |      |   |   |   |
| 4) ออกแบบสถาปัตยกรรมซอฟต์แวร์ |   |      |   |   |   |      |   |   |   |    |    |   |      |   |   |   |
| 5) พัฒนาระบบส่วนแกนหลัก       |   |      |   |   |   |      |   |   |   |    |    |   |      |   |   |   |

ตารางที่ 2: แผนการดำเนินงานภาคการศึกษาที่ 2

| ขั้นตอนการดำเนินการ        | ธ.ค. |   |   |   | ม.ค. |   |   |   | ก.พ. |   |   |   | มี.ค. |   |   |   |
|----------------------------|------|---|---|---|------|---|---|---|------|---|---|---|-------|---|---|---|
|                            | 1    | 2 | 3 | 4 | 1    | 2 | 3 | 4 | 1    | 2 | 3 | 4 | 1     | 2 | 3 | 4 |
| 6) ทดสอบระบบส่วนแกนหลัก    |      |   |   |   |      |   |   |   |      |   |   |   |       |   |   |   |
| 7) ทดสอบความปลอดภัยของระบบ |      |   |   |   |      |   |   |   |      |   |   |   |       |   |   |   |
| 8) ทดสอบสภาพแวดล้อมจริง    |      |   |   |   |      |   |   |   |      |   |   |   |       |   |   |   |
| 9) จัดทำเอกสารแพลตฟอร์ม    |      |   |   |   |      |   |   |   |      |   |   |   |       |   |   |   |
| 10) ส่งมอบแพลตฟอร์ม        |      |   |   |   |      |   |   |   |      |   |   |   |       |   |   |   |

# 2.6.2 แผนภูมิขั้นตอนการจัดทำโครงงานพิเศษ โดยละเอียด

การพัฒนาแพลตฟอร์ม Co-Occurrence Knowledge Engineering Platform จะดำเนินการตามผังงานที่มีการ แบ่งขั้นตอนและกิจกรรมอย่างชัดเจน พร้อมทั้งกำหนดอัตราส่วนของแต่ละกิจกรรมเป็นร้อยละเพื่อการติดตาม ความก้าวหน้าอย่างมีประสิทธิภาพ

### ผังงานการดำเนินงาน (Development Flow Chart)

## Phase 1: การวางแผนและวิเคราะห์ (Planning & Analysis Phase) - 15% ของโครงงานทั้งหมด

#### 1.1 การวางแผนการพัฒนา (5%)

- 1.1.1 กำหนดขอบเขตโครงงานและวัตถุประสงค์
- 1.1.2 วิเคราะห์ความเป็นไปได้ทางเทคนิค (Technical Feasibility)
- 1.1.3 จัดทำ Project Charter และ Timeline
- 1.1.4 กำหนดทรัพยากรและงบประมาณ

# 1.2 การเก็บความต้องการ (Requirements Gathering) (10%)

- 1.2.1 วิเคราะห์ Functional Requirements
- 1.2.2 วิเคราะห์ Non-Functional Requirements
- 1.2.3 สร้าง Use Case Diagrams และ User Stories
- 1.2.4 กำหนด Acceptance Criteria สำหรับแต่ละฟีเจอร์
- 1.2.5 วิเคราะห์ข้อจำกัดและความเสี่ยง

# Phase 2: การออกแบบระบบ (System Design Phase) - 25% ของโครงงานทั้งหมด

#### 2.1 การออกแบบ UI และ UX (12%)

- 2.1.1 สร้าง User Persona และ User Journey Mapping
- 2.1.2 ออกแบบ Wireframes และ Mockups ด้วย Figma
- 2.1.3 สร้าง Interactive Prototypes
- 2.1.4 ทดสอบ Usability และปรับปรุงการออกแบบ
- 2.1.5 สร้าง Design System และ Component Library

### 2.2 การออกแบบสถาปัตยกรรมซอฟต์แวร์ (13%)

- 2.2.1 ออกแบบ System Architecture และ Component Diagram
- 2.2.2 ออกแบบ Database Schema และ Data Model
- 2.2.3 ออกแบบ API Architecture และ Endpoints
- 2.2.4 ออกแบบ Security Architecture และ Authentication
- 2.2.5 ออกแบบ Deployment Architecture และ Infrastructure
- 2.2.6 สร้าง Technical Specifications Document

## Phase 3: การพัฒนาระบบ (Development Phase) - 40% ของโครงงานทั้งหมด

#### 3.1 การพัฒนาระบบส่วนแกนหลัก (Core System Development) (40%)

#### 3.1.1 Backend Development (20%)

- 3.1.1.1 สร้าง API สำหรับการอัปโหลดและประมวลผล PDF (4%)
- 3.1.1.2 พัฒนาระบบ Co-occurrence Analysis Engine (6%)
- 3.1.1.3 สร้างระบบ Graph Generation และ Management (5%)
- 3.1.1.4 พัฒนาระบบ Database และ Data Storage (3%)
- 3.1.1.5 บูรณาการกับ Large Language Models (LLM) (2%)

### 3.1.2 Frontend Development (15%)

- 3.1.2.1 สร้าง Dashboard และ Main Interface (4%)
- 3.1.2.2 พัฒนา File Upload และ Management System (3%)
- 3.1.2.3 สร้าง Interactive Graph Visualization (5%)
- 3.1.2.4 พัฒนา Search และ Filter Components (2%)
- 3.1.2.5 สร้าง Export และ Share Features (1%)

#### 3.1.3 Integration และ API Development (5%)

- 3.1.3.1 Integration Testing ระหว่าง Frontend และ Backend (2%)
- 3.1.3.2 สร้าง RESTful API Documentation (1%)
- 3.1.3.3 พัฒนา Error Handling และ Logging System (1%)
- 3.1.3.4 Optimization และ Performance Tuning (1%)

# Phase 4: การทดสอบระบบ (Testing Phase) - 15% ของโครงงานทั้งหมด

#### 4.1 การทดสอบระบบส่วนแกนหลัก (8%)

- 4.1.1 Unit Testing สำหรับแต่ละ Component (2%)
- 4.1.2 Integration Testing สำหรับระบบทั้งหมด (3%)
- 4.1.3 Performance Testing และ Load Testing (2%)
- 4.1.4 Functional Testing และ User Acceptance Testing (1%)

#### 4.2 การทดสอบความปลอดภัยของระบบ (4%)

- 4.2.1 Security Testing และ Vulnerability Assessment (2%)
- 4.2.2 Authentication และ Authorization Testing (1%)
- 4.2.3 Data Protection และ Privacy Testing (1%)

### 4.3 การทดสอบสภาพแวดล้อมจริง (3%)

- 4.3.1 Deployment Testing บน Production Environment (1%)
- 4.3.2 End-to-End Testing กับข้อมูลจริง (1%)
- 4.3.3 User Experience Testing และ Feedback Collection (1%)

## Phase 5: การจัดทำเอกสารและส่งมอบ (Documentation & Delivery Phase) - 5% ของโครงงานทั้งหมด

### 5.1 การจัดทำเอกสารแพลตฟอร์ม (3%)

- 5.1.1 เขียน User Manual และ Administrator Guide (1%)
- 5.1.2 สร้าง API Documentation และ Technical Guide (1%)
- 5.1.3 จัดทำ Installation Guide และ Troubleshooting (0.5%)
- 5.1.4 สร้าง Video Tutorial และ Demo Materials (0.5%)

### 5.2 การส่งมอบแพลตฟอร์ม (2%)

- 5.2.1 Final System Testing และ Quality Assurance (0.5%)
- 5.2.2 Knowledge Transfer และ Training Session (0.5%)
- 5.2.3 Project Handover และ Final Presentation (0.5%)
- 5.2.4 Post-Implementation Support Planning (0.5%)

## การติดตามความก้าวหน้า (Progress Monitoring)

การประเมินความก้าวหน้าจะดำเนินการโดยใช้ระบบ Milestone-based Tracking ซึ่งแบ่งการประเมิน ออกเป็น:

### 5.3 Weekly Progress Review (รายสัปดาห์)

- 5.3.1 ตรวจสอบความก้าวหน้าตาม Timeline ที่กำหนด
- 5.3.2 ประเมินคุณภาพของงานที่ส่งมอบในแต่ละ Phase
- 5.3.3 ระบุและแก้ไข Issues หรือ Blockers ที่เกิดขึ้น
- 5.3.4 ปรับปรุง Plan หากจำเป็น

#### 5.4 Phase Gate Reviews (รายเฟส)

- 5.4.1 การประเมินผลลัพธ์ที่ได้จากแต่ละ Phase
- 5.4.2 การตรวจสอบคุณภาพตาม Acceptance Criteria
- 5.4.3 การอนุมัติให้ดำเนินการใน Phase ถัดไป
- 5.4.4 การจัดทำ Lessons Learned สำหรับปรับปรุงในอนาคต

### สรุปการแบ่งสัดส่วนงาน

• การวางแผนและวิเคราะห์: 15%

• การออกแบบระบบ: 25%

• การพัฒนาระบบ: 40%

• การทดสอบระบบ: 15%

• การจัดทำเอกสารและส่งมอบ: 5%

การแบ่งสัดส่วนดังกล่าวช่วยให้สามารถติดตามความก้าวหน้าได้อย่างแม่นยำ และสามารถประเมินได้ว่า โครงงานดำเนินไปตามแผนที่วางไว้หรือไม่ รวมถึงช่วยในการจัดสรรทรัพยากรและเวลาให้เหมาะสมกับความ สำคัญของแต่ละขั้นตอน

## 2.7 ทรัพยากรที่ต้องใช้ในการจัดทำโครงงานพิเศษ