

Topics in OncoScan: Somatic Mutations

2014-03 Carsten Bruckner

AGENDA

- What are somatic mutations
- How to review results
- Factors affecting data quality

Basic concepts (thanks Wikipedia!)

- Somatic mutation: acquired (not inherited) mutation not usually transmitted to descendants
- Oncogene: gene that has the potential to cause cancer. In tumor cells, they are often mutated or expressed at high levels.
- Tumor suppressor gene: gene that protects a cell from one step on the path to cancer. Loss-of-function mutations can play a role in formation of tumor cells.

Somatic Mutation Example

BRAF V600E Wild Type	catcgagatttcActgtagctagaccaa
BRAF V600E Mutant	catcgagatttcTctgtagctagaccaa

Single Base substitution from A to T leads to the activation of the BRAF oncogene.

~90% of BRAF reported mutation events are V600E. This makes it a juicy target for drug development: The downstream protein made by this oncogene is targeted by a drug vemurafenib.

~85% of OncoScan SM are single base changes, with the remainder being multiple base substitutions, insertions, deletions

OncoGene BRAF

- BRAFv600E (predictive in melanoma)
 - Zelboraf® (vemurafenib) is a BRAF inhibitor that is able to block the function of the V600E-mutated BRAF protein
 - · Vemurafenib received FDA approval for the treatment of latestage melanoma on August 17, 2011, [2] Health Canada approval on February 15, 2012[3] and on February 20, 2012, the European Commission approved vemurafenib as a monotherapy for the treatment of adult patients with BRAF V600 mutation positive unresectable or metastatic melanoma, the most aggressive form of skin cancer.

Somatic mutation panel

- 64 probesets respond to 74 mutations
- 9 genes BRAF, KRAS, EGFR, IDH1, IDH2, PTEN, PIK3CA, NRAS, TP53
- Concordance with orthogonal methods observed for multiple somatic mutations
- Tool provided for visualization of mutant call versus reference (wild type)

Sensitivity

- Sensitivity claim validated by spike-in studies (oligos with mutant spiked in at various mutant % levels in normal FFPE DNA)
- Majority of mutations were detected at 20% sensitivity
- In real world samples, there were examples of detection down to ~10%

Distribution of 74 mutations by gene

Somatic probe design with mutation in gap fill position

Description	type or probeset		Hom strand	Coding strand
KRASp.G12	wild	tgaatataaacttgtggtagttggagctgGtggcgtaggcaagagtgccttgacgatac	R	-2
KRASp.G12Vc.35G>T	mutant	tgaatataaacttgtggtagttggagctgTtggcgtaggcaagagtgccttgacgatac	R	- 0
KRASp.G12Dc.35G>A	mutant	tgaatataaacttgtggtagttggagctgAtggcgtaggcaagagtgccttgacgatac	R	
KRAS:p.G12D/V:c.35G>A/T	93107489A	TGTGGTAGTTGGAGCTG TGGCGTAGGCAAGAGTG	R	-
		Molecular Inversion Probe		

- The dNTP fills in the gap fill position
- When the G>A or G>T mutation is present, the signal in the AT channel signal increases
- In general, the MIP design and readout channel are chosen so that MIP shouldn't amplify if mutant not present

8

Some data for 4 somatic mutation probesets 24 samples/probeset: Which have mutation?

When mutant present, signal increases

Add wild-type signal distribution from .SOM_REF_MODEL

Mutation Score normalizes signal across markers

Apply MutScore thresholds to assign calls

4 MutScore calling threshold bins, probesets assigned to bin based on apparent sensitivity to mutation

Competitive annealing model

Some markers show MutScore trend vs ndSNPQC, and vs input mass

EGFR:p.L858R:c.2573T>G

Example customer study (each data point a sample)

ndSNPQC bin

 Perhaps MIPs for some markers more likely to have secondary annealing events, leading to increased background signal

You have a bunch of "High confidence" calls. Now what?

- For "in bounds" samples,
 - IF there are 0-2 real mutations per tumor sample out of these 64 measurements,
 - product specification targets a specificity of 99% (1 of 100 measurements is allowed to be false positive call),
- ...perhaps half of "High confidence" somatic calls can be false positives.
- Somatic calling algorithm is "single sample": it doesn't leverage information from other samples to set calling thresholds
 - By viewing somatic mutation data across samples, can sometimes make better calls to correct for any batch effects
- So....you should use Somatic Mutation Viewer to get a better feel for the data, and possibly re-call some measurements

Review-only analysis pipeline

(partnership with BioDiscovery)

Somatic Mutation Viewer

Switch to Marker View

Sort Marker Information table by High Confidence Count

Could edit and save changes to OSCHP file

Could edit and save changes to OSCHP file

Edit-SOM-results analysis pipeline

(partnership with BioDiscovery)

NEX 2: export CN results to txt

Factors affecting the false positive rate (or: Why so many "High confidence" calls?)

- Some markers with calling thresholds closer to MutScore=0 will have higher false positive rate
- Sample QC metrics like MAPD and ndSNPQC are "out of bounds" (ndSNPQC<26 or MAPD>0.3)
 - Chip signal too weak
 - Insufficient DNA mass or poor quality DNA
 - Reagent Lot issues
- Sample QC metrics are "in bounds"
 - Some markers have more MutScore variability across data sets and/or reagent lots
 - Recommend using Somatic Mutation Viewer to review and adjust calling thresholds as needed, and confirm calls

Summary

- ndSNPQC more important for SM than CN
- when ndSNPQC is out of bounds SM calls are not reliable
- Good practice to examine calls in the viewer
 - You will observe that data quality improves with higher ndSNPQC eg., the number of lower confidence calls disappear