

GENERAL IMS LECTURE 4 – PIXELS AND FILTERS

Prof. Dr. Francesco Maurelli 2018-09-14

WHAT WE WILL LEARN TODAY?

- 1. Image sampling and quantization
- 2. Image histograms
- 3. Images as functions
- 4. Linear systems (filters)
- 5. Convolution and correlation

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

WHAT WE WILL LEARN TODAY?

- 1. Image sampling and quantization
- 2. Image histograms
- 3. Images as functions
- 4. Linear systems (filters)
- 5. Convolution and correlation

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

TYPES OF IMAGES

Binary

TYPES OF IMAGES

Binary

Gray Scale

TYPES OF IMAGES

Binary

Gray Scale

Color

BINARY IMAGE REPRESENTATION

GRAYSCALE IMAGE REPRESENTATION

COLOR IMAGE - ONE CHANNEL

COLOR IMAGE REPRESENTATION

IMAGES ARE SAMPLED

What happens when we zoom into the images we capture?

ERRORS DUE SAMPLING

RESOLUTION

is a **sampling** parameter, defined in dots per inch (DPI) or equivalent measures of spatial pixel density, and its standard value for recent screen technologies is 72 dpi

IMAGES ARE SAMPLED AND QUANTIZED

1. An image contains discrete number of pixels

A simple example

- Pixel value:
 - "grayscale" (or "intensity"): [0,255]

IMAGES ARE SAMPLED AND QUANTIZED

1. An image contains discrete number of pixels

- A simple example
- Pixel value:
 - "grayscale" (or "intensity"): [0,255]
 - "color"
 - RGB: [R, G, B]
 - Lab: [L, a, b]
 - HSV: [H, S, V]

[249, 215, 20

[213, 60, 67]

WHAT WE WILL LEARN TODAY?

- 1. Image sampling and quantization
- 2. Image histograms
- 3. Images as functions
- 4. Linear systems (filters)
- 5. Convolution and correlation

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

HISTOGRAM

1. Histogram of an image provides the frequency of the brightness (intensity) value in the image.

HISTOGRAM

- 1. Histogram captures the distribution of gray levels in the image.
- 2. How frequently each gray level occurs in the image

HISTOGRAM

Count: 10192 Min: 9
Mean: 133.711 Max: 255
StdDev: 55.391 Mode: 178 (180)

Count: 10192 Min: 11 Mean: 104.637 Max: 254 StdDev: 89.862 Mode: 23 (440)

HISTOGRAM – USE CASE

WHAT WE WILL LEARN TODAY?

- 1. Image sampling and quantization
- 2. Image histograms
- 3. Images as functions
- 4. Linear systems (filters)
- 5. Convolution and correlation

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

IMAGES AS DISCRETE FUNCTIONS

- Images are usually digital (discrete):
 - Sample the 2D space on a regular grid
- Represented as a matrix of integer values

					pixei			
	j							
	62	79	23	119	120	05	4	0
i	10	10	9	62	12	7 8	34	0
	10	58	197	46	46	0	0	48
Ţ	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

nival

IMAGES AS DISCRETE FUNCTIONS

Cartesian coordinates

IMAGES AS FUNCTIONS

- An Image as a function f from R^2 to R^M :
 - f(x, y) gives the **intensity** at position (x, y)
 - Defined over a rectangle, with a finite r

IMAGES AS FUNCTIONS

- An Image as a function f from R^2 to R^M :
 - f(x, y) gives the **intensity** at position (x, y)
 - Defined over a rectangle, with a finite range:

$$f: [a,b] \times [c,d] \rightarrow [0,255]$$

Domain range support

• A color image: $f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$

HISTOGRAMS ARE A TYPE OF IMAGE FUNCTION

WHAT WE WILL LEARN TODAY?

- 1. Image sampling and quantization
- 2. Image histograms
- 3. Images as functions
- 4. Linear systems (filters)
- 5. Convolution and correlation

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

Filtering:

 Forming a new image whose pixel values are transformed from original pixel values

Goals:

- Goal is to extract useful information from images, or transform images into another domain where we can modify/enhance image properties
 - Features (edges, corners, blobs...)
 - super-resolution; in-painting; de-noising

SYSTEM AND FILTERS

- 1. we define a system as a unit that converts an input function f[n,m] into an output (or response) function g[n,m], where (n,m) are the independent variables.
 - In the case for images, (n,m) represents the **spatial position in the image**.

$$f[n,m] \to \boxed{ \text{System } \mathcal{S} } \to g[n,m]$$

DE-NOISING

Super-resolution

In-painting

ANY QUESTIONS?

