Assignment 7 CS374

Harsh Patel(201701021) Viraj Patel(201701439)

Assigned by:

Prof. Arnab Kumar

September 26, 2019

Contents

1	Piecewise, Spline Interpolation and $y = 1/x$																			
	1.1	Equat	ion																	
	1.2	_	1																	
2	Cul	oic Spl	ine and	ł Pi	ece	wi	se	$\mathbf{L}\mathbf{i}$	ine	eai	· I	\mathbf{nt}	er	pc	ola	ıti	on	l		
	2.1	_	ion											_						
	2.2	-	1																	
3	Cul	oic Spl	ine and	l Pi	ece	wi	.se	$\mathbf{L}_{\mathbf{i}}$	ine	eai	r I	\mathbf{nt}	er	pc	ola	ti	on	1		
	3.1	_	ion											_						
	3.2		1																	
Į.	$Th\epsilon$	eory E	xercise	Que	est	ior	ıs													
	4.1	Quest	ion 1 .																	
		4.1.1																		
		4.1.2																		
	4.2	Quest	ion 2.																	
		4.2.1																		
			Graph																	
	4.3		ion 3 .																	
	1.0	4.3.1	Equati																	
		4.3.2																		
	4.4	_	_																	
	4.4																			
		4.4.1	1																	
		4.4.2	Graph						•						•				•	

1 Piecewise, Spline Interpolation and y = 1/x

X	1	2	3	4
У	1	1/2	1/3	1/4

1.1 Equation

$$S''(x) = M_j \tag{1}$$

$$S(x) = \frac{M_{j-1}}{x_j - x_{j-1}} \frac{(x_j - x)^3}{6} + \frac{M_j}{x_j - x_{j-1}} \frac{(x - x_{j-1})^3}{6} + Ax + B$$
 (2)

$$A = D - C \tag{3}$$

$$B = Cx_i - Dx_{i-1} \tag{4}$$

$$\frac{M_{j-1}}{6}(x_j - x_{j-1}) + \frac{M_j}{3}(x_{j+1} - x_{j-1}) + \frac{M_{j+1}}{6}(x_{j+1} - x_j) = \frac{y_{j+1} - y_j}{x_{j+1} - x_j} + \frac{y_j - y_{j-1}}{x_j - x_{j-1}}$$
(5)

1.2 Graph

Plot of Piecewise Linear Interpolation, Cubic Spline and y = 1/x

Plot of Error between Cubic Spline and y=1/x

2 Cubic Spline and Piecewise Linear Interpolation

X	0	1	2	2.5	3	3.5	4
у	2.5	0.5	0.5	1.5	1.5	1.125	0

2.1 Equation

$$S''(x) = M_j \tag{6}$$

$$S(x) = \frac{M_{j-1}}{x_j - x_{j-1}} \frac{(x_j - x)^3}{6} + \frac{M_j}{x_j - x_{j-1}} \frac{(x - x_{j-1})^3}{6} + Ax + B$$
 (7)

$$A = D - C \tag{8}$$

$$B = Cx_j - Dx_{j-1} \tag{9}$$

$$\frac{M_{j-1}}{6}(x_j - x_{j-1}) + \frac{M_j}{3}(x_{j+1} - x_{j-1}) + \frac{M_{j+1}}{6}(x_{j+1} - x_j) = \frac{y_{j+1} - y_j}{x_{j+1} - x_j} + \frac{y_j - y_{j-1}}{x_j - x_{j-1}}$$
(10)

2.2 Graph

Plot of Piecewise Linear Interpolation and Cubic Spline Interpolation

Plot of Error between Piecewise Linear Interpolation and Cubic Spline Interpolation

3 Cubic Spline and Piecewise Linear Interpolation

X	-0.5	0	0.25	1
У	0.73151	1	1.2684	1.718282

3.1 Equation

$$S''(x) = M_i \tag{11}$$

$$S(x) = \frac{M_{j-1}}{x_j - x_{j-1}} \frac{(x_j - x)^3}{6} + \frac{M_j}{x_j - x_{j-1}} \frac{(x - x_{j-1})^3}{6} + Ax + B \quad (12)$$

$$A = D - C \tag{13}$$

$$B = Cx_j - Dx_{j-1} (14)$$

$$\frac{M_{j-1}}{6}(x_j - x_{j-1}) + \frac{M_j}{3}(x_{j+1} - x_{j-1}) + \frac{M_{j+1}}{6}(x_{j+1} - x_j) = \frac{y_{j+1} - y_j}{x_{j+1} - x_j} + \frac{y_j - y_{j-1}}{x_j - x_{j-1}}$$
(15)

3.2 Graph

Plot of Piecewise Linear Interpolation and Cubic Spline Interpolation

Plot of Error between Cubic Spline and Piecewise Linear

Plot of Cubic Spline and $y = e^x - x^3$

Plot of Error between Cubic Spline and $y = e^x - x^3$

4 Theory Exercise Questions

4.1 Question 1

X	0	1	2
У	1	1	5

4.1.1 Equation

$$S''(x) = M_i \tag{16}$$

$$S(x) = \frac{M_{j-1}}{x_j - x_{j-1}} \frac{(x_j - x)^3}{6} + \frac{M_j}{x_j - x_{j-1}} \frac{(x - x_{j-1})^3}{6} + Ax + B \quad (17)$$

$$A = D - C \tag{18}$$

$$B = Cx_i - Dx_{i-1} \tag{19}$$

$$\frac{M_{j-1}}{6}(x_j - x_{j-1}) + \frac{M_j}{3}(x_{j+1} - x_{j-1}) + \frac{M_{j+1}}{6}(x_{j+1} - x_j) = \frac{y_{j+1} - y_j}{x_{j+1} - x_j} + \frac{y_j - y_{j-1}}{x_j - x_{j-1}}$$
(20)

4.1.2 Graph

Plot of Newton Divided Difference and Cubic Spline Interpolation

Plot of Error between Cubic Spline and Newton Divided Difference

4.2 Question 2

X	1	2	3	4	5
У	3	1	2	3	2

4.2.1 Equation

$$S''(x) = M_i \tag{21}$$

$$S(x) = \frac{M_{j-1}}{x_j - x_{j-1}} \frac{(x_j - x)^3}{6} + \frac{M_j}{x_j - x_{j-1}} \frac{(x - x_{j-1})^3}{6} + Ax + B \quad (22)$$

$$A = D - C \tag{23}$$

$$B = Cx_i - Dx_{i-1} \tag{24}$$

$$\frac{M_{j-1}}{6}(x_j - x_{j-1}) + \frac{M_j}{3}(x_{j+1} - x_{j-1}) + \frac{M_{j+1}}{6}(x_{j+1} - x_j) = \frac{y_{j+1} - y_j}{x_{j+1} - x_j} + \frac{y_j - y_{j-1}}{x_j - x_{j-1}}$$
(25)

4.2.2 Graph

Plot of Piecewise Linear Interpolation and Cubic Spline Interpolation

Plot of Error between Cubic Spline and Piecewise Linear

4.3 Question 3

X	0	0.5	1	2	3
У	0	0.25	1	-1	-1

4.3.1 Equation

$$S''(x) = M_i \tag{26}$$

$$S(x) = \frac{M_{j-1}}{x_j - x_{j-1}} \frac{(x_j - x)^3}{6} + \frac{M_j}{x_j - x_{j-1}} \frac{(x - x_{j-1})^3}{6} + Ax + B \quad (27)$$

$$A = D - C \tag{28}$$

$$B = Cx_i - Dx_{i-1} \tag{29}$$

$$\frac{M_{j-1}}{6}(x_j - x_{j-1}) + \frac{M_j}{3}(x_{j+1} - x_{j-1}) + \frac{M_{j+1}}{6}(x_{j+1} - x_j) = \frac{y_{j+1} - y_j}{x_{j+1} - x_j} + \frac{y_j - y_{j-1}}{x_j - x_{j-1}}$$
(30)

4.3.2 Graph

Plot of Piecewise Linear Interpolation and Cubic Spline Interpolation

Plot of Error between Cubic Spline and Piecewise Linear

4.4 Question 4

X	0	1	2	2.5	3	4
У	1.4	0.6	1	0.65	0.6	1

4.4.1 Equation

$$S''(x) = M_i \tag{31}$$

$$S(x) = \frac{M_{j-1}}{x_j - x_{j-1}} \frac{(x_j - x)^3}{6} + \frac{M_j}{x_j - x_{j-1}} \frac{(x - x_{j-1})^3}{6} + Ax + B \quad (32)$$

$$A = D - C \tag{33}$$

$$B = Cx_i - Dx_{i-1} \tag{34}$$

$$\frac{M_{j-1}}{6}(x_j - x_{j-1}) + \frac{M_j}{3}(x_{j+1} - x_{j-1}) + \frac{M_{j+1}}{6}(x_{j+1} - x_j) = \frac{y_{j+1} - y_j}{x_{j+1} - x_j} + \frac{y_j - y_{j-1}}{x_j - x_{j-1}}$$
(35)

4.4.2 Graph

Plot of Piecewise Linear Interpolation and Cubic Spline Interpolation

Plot of Error between Cubic Spline and Piecewise Linear