# **MELBOURNE**

**HOUSING PRICES** 

**Predicting Housing Prices in Melbourne, Australia** 

Presented by Usman Shaikh







# **Dataset:** Melbourne housing clearance data from Jan 2016

Source: <a href="https://www.kaggle.com/anthonypino/melbourne-housing-market">https://www.kaggle.com/anthonypino/melbourne-housing-market</a>



## **Exploratory Analysis: Understanding the Dataset – I**



- ☐ Bulk of the housing prices in Melbourne Australia fall between 0 to 1.5 Million Dollars with a mean value of \$1,092,902.
- ☐ Most places have 3 rooms and are located at a mean distance of 11.19 Kilometers from the Central Business District.
- ☐ Most properties are located with in a range of 18 Kilometers from Central Business District (CBD).

# **Exploratory Analysis: Understanding the Dataset – II**



- ☐ The common number of Bathrooms per property appears to be 1 followed by 2 car spaces.
- ☐ The Land size of most properties fall between 0 to 2,500 Square Meters, with over 90% of the values falling under 1,000 Square Meters.

# **Exploratory Analysis: Understanding the Dataset – III**



- ☐ The building area for most of the properties fall between 50 and 200 Square Meters with a mean value of 149.30
- ☐ The housing construction shows a gradual rising trend over the years with a mean value year of 1965.
- ☐ The housing market witnessed increased amount of construction in mid seventy's , late 90's followed by 2000's.

## Relationship between Price and other Factors – I







- ☐ The housing prices appear to increase with the number of rooms but starts to fall after 5 rooms
- ☐ Likewise the price appears to rise with fall in distance with highest values for properties located in a 5 to 6 Km radius from CBD.
- ☐ Region wise South Metro is closest to the Central Business District and appears to be most expensive followed by East Metro.

# **Relationship between Price and other Factors – II**



- ☐ The housing prices appear to increase with the number of Bathrooms however price starts to fall after a number of 3 Bathrooms.
- ☐ Majority of the land size falls under 1500 Square Meters and the price is highest around 1000 Square Meters.
- ☐ The price is highest for 4 car spaces however it starts to fall once it reaches four car spaces

## Relationship between Price and other Factors - III





- ☐ There appears to be a correlation between Price and Building Area, 0.51 to be precise on a scale of -1 to 1
- ☐ The priciest properties seem to be built in early 1900's, late 90's and 2000's, as population in those years appear more dense.
- □ Price analysis show that homes with 3 bedrooms, 2 bathrooms, 2 car spaces, land size of 1000 Sqm, building area of 300 Sqm built in early 1900's, late 90's and 2000's appear to be of higher price.
- ☐ Similarly as distance increases from the Central Business District land size and building area increase with decrease in price.

## **Correlation HEAT MAP – Understanding influence of factors on each other and Price**



- ☐ Rooms and Bedroom2 appear highly correlated **0.96** followed by Bathroom and Bedroom2 **0.63**
- □ Rooms and Bathroom: **0.62**, Building Area and Rooms:**0.61**, followed by Building Area and Bathroom: **0.55** and **0.51** for Building Area and Price.
- ☐ Building Area and Bedroom2 not included in Machine Learning Model

# **Analysis by Regions**

To simplify analysis and visualizations city regions have been assigned abbreviated names as follows.

1. Northern Metropolitan: N Metro

2. Western Metropolitan: W Metro

3. Southern Metropolitan: **S Metro** 

4. Eastern Metropolitan: **E Metro** 

5. South-Eastern Metropolitan: **SE Metro** 

6. Northern Victoria: N Vic

7. Eastern Victoria: E Vic

8. Western Victoria: W Vic



## Mean Values - Analysis by Regions - I







- ☐ The regions closest to CBD including N Metro, S Metro, E Metro appear to have a higher price with 50's, 70's and 90's construction.
- ☐ Where as regions with higher distance appear to have newer construction and lower price for example North Victoria.

## Mean Values – Analysis by Regions – II



- ☐ Regions closer to the CBD appear to have less land size and building but higher no of rooms (Apartment buildings)
- ☐ Where as regions such as North and East Victoria which are located at a distance have higher land size and building area with higher number of rooms

## Mean Values – Analysis by Regions – III





- ☐ Regions closer to CBD like North, South and West Metro are expensive with less land and building size and have fewer car spaces.
- ☐ Whereas farther regions like North and West Victoria considering higher land and building size have more car spaces
- □ No of Bathrooms is correlated with rooms **0.62**. From previous analysis it can be inferred that for a property with three rooms there are 1.5 to two Bathrooms available.

# Price Analysis using Box Plots – I



- ☐ The prices of homes appear to be higher followed by town homes and then units.
- ☐ South Metro region closest to CBD appears to have the highest price followed by E and SE Metro regions.

# **Price Analysis using Box Plots – II**



- ☐ Properties with higher no of car spaces and Bathrooms appear to be costly.
- ☐ Whereas properties with 3 car spaces and 3 Bathrooms have median values of approximately 1 to 1.5 Million Dollars

## **Problem Statement**

As analyzed and discussed in exploratory analysis the home prices in Melbourne depend upon several different factors.

The purpose of this project is to identify the following.

- ☐ Discover important factors which drive prices in the Melbourne housing market.
- ☐ Explore relationship between different factors and their relationship with price.
- ☐ Analyze the most significant factors that impact housing prices
- Prepare a Model based upon identified factors and accurately predict housing prices.
- ☐ Compare Models for accuracy
  - Our Target or Dependent variable for this analysis will be Price.
  - Where as important features will be selected using a machine learning algorithm.







# **Machine Learning Models**

- □ For this project we will be using two different algorithms, Random Forest and Multiple Linear Regression in order to predict price of housing in Melbourne Australia.
- Random forest is an ensemble learning method for classification and regression which builds multiple decision trees and merges them together to get a more accurate and stable prediction.
- **Multiple Linear Regression** is used to explain the relationship between one continuous dependent variable and two or more independent variables.
  - In present scenario our dependent variable is Price whereas the multiple independent variables include distance, land size,
    building area, room etc.
- Reason for choosing the models:
  - ✓ Random Forest The dataset appears to have large no of variables. The algorithm will help us identify most important features.
    - No of original variables 21
    - No of extended variables 229
  - ✓ Multiple Linear Regression The algorithm will tell how much does our dependent variable *Price* changes with an amount of change in the independent variables.



#### **Model Parameters and Results**

#### **☐** Model Parameters

Variables: 212

n\_estimators: 250

max\_depth: 15

#### **☐** Model results

Random Forest: 212 Variables

R<sup>2</sup> Train: 0.9662708569930585

R<sup>2</sup> Test: 0.8078177350596782

Mean Absolute Error: 171398.5471691893

Mean Squared Error: 94793273740.64745

Root Mean Squared Error: 307885.16323565744



#### Random Forest Results with Max & Min Features

#### Random Forest: 212 Variables

■ Train Accuracy - R<sup>2</sup>: 0.9662708569930585

■ **Test Accuracy - R<sup>2</sup>**: 0.8078177350596782

Mean Absolute Error: 171398.5471691893

Mean Squared Error: 94793273740.64745

Root Mean Squared Error: 307885.16323565744

#### Random Forest: 22 Variables

■ Train Accuracy - R<sup>2</sup>: 0.9677837765735764

■ Test Accuracy - R<sup>2</sup>: 0.8047399497892608

Mean Absolute Error: 174401.20392445527

Mean Squared Error: 96311381260.84035

Root Mean Squared Error: 310340.7502421175



- 1. Rooms
- 2. Distance
- 3. Bathroom
- 4. Car
- 5. Landsize
- 6. BuildingArea
- 7. YearBuilt
- 8. Type\_h
- 9. Type\_u
- 10. Postcode 30160
- 11. Postcode 30540
- 12. Postcode\_31010
- 13. Postcode\_31280
- 14. Postcode\_31430
- 15. Postcode\_31700
- 16. Postcode\_31860
- 17. Postcode\_31880
- 18. Postcode\_31950
- 19. Postcode 32060
- 20. Regionname E Metro
- 21. Regionname S Metro
- 22. Regionname\_SE Metro

## Random Forest Results Actual Vs. Predicted Values





## **Linear Regression using Important Features**

- 1. Rooms
- 2. Distance
- 3. Bathroom
- 4. Car
- 5. Landsize
- 6. YearBuilt
- 7. Type\_h
- 8. Type\_t
- 9. Type\_u
- 10. Regionname\_N Metro
- 11. Regionname\_S Metro
- 12. Regionname\_SE Metro
- 13. Regionname W Metro
- 14. Regionname\_N Vic
- 15. Regionname\_W Vic
- 16. Regionname\_E Vic

#### ☐ Linear Regression

#### Linear Regression: 16 Variables

- Train Accuracy R<sup>2</sup>: 0.6202410353433015
- **Test Accuracy R<sup>2</sup>**: 0.6068245415946455
- Intercept: 5985283.630972797
- Mean Absolute Error: 279719.61707274447
- Mean Squared Error: 193932509164.13568
- Root Mean Squared Error: 440377.6892215768

|    | Variables           | Coefficient Estimate |
|----|---------------------|----------------------|
| 0  | Regionname_E Vic    | 596619.124946        |
| 1  | Regionname_S Metro  | 526268.527683        |
| 2  | Regionname_SE Metro | 463700.727390        |
| 3  | Regionname_N Vic    | 331481.918438        |
| 4  | Regionname_E Metro  | 248955.731742        |
| 5  | Bathroom            | 233409.021030        |
| 6  | Type_h              | 207884.319893        |
| 7  | Rooms               | 172711.992977        |
| 8  | Regionname_W Vic    | 171434.528418        |
| 9  | Car                 | 51259.354077         |
| 10 | Type_t              | 7623.116522          |
| 11 | Landsize            | 24.594512            |
| 12 | YearBuilt           | -2945.909631         |
| 13 | Distance            | -39451.159089        |
| 14 | Regionname_W Metro  | -54597.998791        |
| 15 | Type_u              | -215507.436416       |

# **Linear Regression Actual Vs. Predicted Values**





# **Multiple Linear Regression Actual Vs. Predicted Values**



# **FINDINGS**

- ☐ Most important factors impacting price of housing in Melbourne are ranked as follows.
  - 1. Rooms
  - 2. Distance
  - 3. Bathroom
  - 4. Car
  - 5. Landsize
  - 6. BuildingArea
  - 7. YearBuilt
  - 8. Type\_h
  - 9. Type\_u
  - 10. Regionname\_S Metro



#### **CONCLUSION**

- E Vic, N Vic, W Vic appear to have cheaper price, larger distance, larger land size, more car space with 80's and 90's construction.
  E Metro, N Metro, S Metro appears to have higher price, short distance, less land size, slightly less car space and 50's, 60's construction
  SE Metro appears to be expensive located at a distance with 2 car spaces and mid 70's construction.
  W Vic appears cheapest in price, 3<sup>rd</sup> largest in distance, small land size, larger building area, more number of rooms, car spaces and less bathrooms.
- ☐ The supervised learning model appears to have high variance and low bias.