Hieararchical models: 1

So you're having a hard time choosing priors...

So you're having a hard time choosing priors...

- Not surprising!
- ► Takes practice

Useful tips for prior selection

- 1. Any constraints on parameter?
 - variance parameters: $\sigma > 0$
 - ▶ probabilities: $0 \le p \le 1$
 - ▶ correlations: $-1 \le \rho \le 1$

Useful tips for prior selection

- 1. Any constraints on parameter?
- 2. Prior predictive distribution:

[y]

Review: posterior predictive distribution

Distribution of predicted data, given the observations

$$[\tilde{y} \mid y]$$

Concept:

For a good model, predicted data resembles the real data

Prior predictive distribution

Distribution of predicted data, given your priors

[y]

Concept:

For *good* priors, predicted data resembles your expectations for the data

Prior predictive distribution simulations

- 1. Simulate parameter draws from prior
- 2. Simulate data using these parameters
 - ▶ how different from posterior predictive simulation?

Useful tips for prior selection

- 1. Constraints
- 2. Prior predictive distribution
- 3. Expert recommendations https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations

Useful tips for prior selection

- 1. Constraints
- 2. Prior predictive distribution
- 3. Expert recommendations
- 4. Treat the prior parameters as unknown!
 - aka use a hierarchical model

Hierarchical models: why bother?

Gall wasp example

Goal: Estimate mean number of wasps for each location

- **1.** Sample locations j = 1, ..., J
- 2. Sample galls at each location
- **3.** Gall *i* is from site *j*

The data

Sample sizes by location

Two extreme choices to estimate means

- 1. Complete pooling: all locations are the same
- 2. No pooling: locations have different means

Complete pooling

$$y_i \sim Poisson(\lambda)$$

$$log(\lambda) = \beta_0$$

Complete pooling

No pooling: locations different and independent

$$y_i \sim Poisson(\lambda_i)$$

$$log(\lambda_i) = \beta_{j[i]}$$

No pooling

Uncertainty and sample size

Which estimates do we trust?

How can we improve estimates with small n?

Gall wasp hierarchical model

$$y_i \sim \mathsf{Poisson}(\lambda_i)$$

$$\log(\lambda_i) = \alpha_0 + \alpha_{j[i]}$$

$$\alpha_j \sim \textit{Normal}(0, \sigma_\alpha)$$

Parameter interpretation

$$y_i \sim \mathsf{Poisson}(\lambda_i)$$

$$\log(\lambda_i) = \alpha_0 + \alpha_{j[i]}$$

$$\alpha_j \sim \textit{Normal}(0, \sigma_\alpha)$$

Fitting a hierarchical model

Understanding the model object

```
partial pool
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson (log)
## Formula: n_cynip ~ (1 | gall_locality)
##
     Data: d
        AIC BIC logLik deviance df.resid
##
## 4235.610 4245.846 -2115.805 4231.610 1232
## Random effects:
## Groups Name Std.Dev.
## gall_locality (Intercept) 0.4773
## Number of obs: 1234, groups: gall_locality, 13
## Fixed Effects:
## (Intercept)
## -0.1692
```

Is this a Bayesian model?

$$y_i \sim \mathsf{Poisson}(\lambda_i)$$
 $log(\lambda_i) = \alpha_0 + \alpha_{j[i]}$
 $\alpha_i \sim \mathsf{Normal}(0, \sigma_\alpha)$

Comparing estimates: which estimates were shrunk?

$$y_i \sim \mathsf{Poisson}(\lambda_i)$$

$$\log(\lambda_i) = \alpha_{j[i]}$$

$$\alpha_j \sim \textit{Normal}(\alpha_0, \sigma_\alpha)$$

Estimated distribution of intercepts

Estimated distribution of intercepts

Partial pooling: a reasonable compromise

Complete pooling: $\sigma_{\alpha}
ightarrow 0$

No pooling: $\sigma_{\alpha} \to \infty$

Partial pooling: $0 < \sigma_{\alpha} < \infty$

Hierarchical models

Why bother?

- 1. Shrinkage & partial pooling
 - sharing information among groups

Hierarchical models

Why bother?

- 1. Shrinkage & partial pooling
 - sharing information among groups

How many groups do we need to justify hierarchical modeling?

Hierarchical models

Why bother?

- 1. Shrinkage & partial pooling
- 2. Predictions for new groups

This week

Amniotes & free throws redux

