Federation of Community Networking Testbeds

Master Thesis

Gerard Marin Nogueras

Supervisor KTH: Johan Montelius

Supervisor UPC: Leandro Navarro

25th June 2014, Barcelona

Outline

- 1. Objective
- 2. Methodology
- 3. Federation
 - Definition
 - Pros and cons
 - Challenges
- 4. Context
 - Projects (Confine and Fed4FIRE)
 - Community-Lab
- 5. SFA
 - Basic concepts
 - Federation standard

6. Federation of C-Lab

- Design (SFA Wrapper)
- Technical details
- Possibilities and limitations
- Evaluation
- 7. Demo
 - jFed and C-Lab wrapper
- 8. Conclusions
 - Summary
 - Future work

Objective

Federation of Community Networking testbeds

Interoperability across experimental testbeds:

 Develop a federation tool for Community-Lab testbed that enables federation with other testbeds.

Methodology

- Analysis
- Design
- Implementation
- Testing
- Validation
- Operation
- Documentation

Definition

"A model for the establishment of a large scale and diverse infrastructure by the interconnection of multiple independent administrative domains" [1]

- Multiple independent systems working together: Interoperability
- Creation of a richer environment
- Applied on FIRE: cloud, testbeds

^[1] Pan-European testbed and experimental facility federation – architecture refinement and implementation, Sebastian Wahle, Bogdan Harjoc, Konrad Campowsky, Thomas Magedanz, and Anastasius Gavras (2010)

Pros and Cons

- Creation of heterogeneous infrastructure
- Cost reduction by sharing of resources
- Scalability, sustainability of distributed systems
- Need for standards
- Accountability
- Trust, Central authority

Challenges

- Adaptation to standards
- Mapping of testbed-specific concepts
- Users management
- Resource management

Projects

Community Networks Testbed for the future Internet:

Community-Lab testbed

Federation of FIRE facilities

Community-Lab (C-Lab)

- Nodes from Community Networks
- Research Devices
- Controller and Registry
- Pull strategy
- Eventually consistent
- REST API
- Dashboard
- CONFINE Object
 Resource Mapper (ORM)
- Based on SFA

Slice-based Facility Architecture

"Architectural model for testbeds that enables the sharing of resources and the federation"

- PlanetLab project
- Components, slivers, slices
- Managers: Aggregate, Slice
- Registry (database)
- Authorities (domains)
- Credentials (users, slices)
- Resource description: RSpec (XML)

Federation standard

- Central authority (credential issuer)
- Multiple AMs trust central authority
- Slice registered in Central Authority
- Slivers created in multiple AMs

Design

- C-Lab as a federated facility in Fed4FIRE
- Resource allocation procedure (resources available for the federation)
- SFA as federation standard
- All facilities expose a SFA Aggregate Manager interface
- Need of SFA-compliant interface in Community-Lab

Development of a C-Lab SFA Wrapper: software layer on top of the testbed that exposes a SFA AM standard interface

Adapts, wraps

Technical details (1)

- C-Lab SFA Wrapper based on SFAWrap
- SFAWrap: free open-source software that allows to federate testbeds through SFA
 - Generic part (servers, creds, rspecs...)
 - Testbed-specific part (driver)
- Testbed-specific part adapts the testbed API to the SFA model

Technical details (2)

- Use of Confine-ORM
 (Python library) to interact
 with the testbed REST API
- SFA AM v3
- GENI RSpec v3 (standard RSpec)

Discussion

Wrapper exposes a **SFA AM interface** & **trusts** the Fed4FIRE **authority**

- Interact with the testbed through a SFA client tool (generic)
- Create slivers in C-Lab for slices from Fed4FIRE authority
- Federation in resource allocation achieved
- Standard RSpec: impossibility to map specific features of C-Lab slivers
- Anonymous usage (Sfawrap user in C-Lab)
- C-Lab sliver access: join Management Network overlay (tinc software)

Evaluation

Behaviour rather than Performance

- **jFed**: SFA client application in Java (iMinds, Fed4FIRE)
 - Probe, Automated-tests
- Reference Experiment: automated interaction with C-Lab wrapper
 - Reproduce typical use case (with experiment deployment)
 - jFed framework (Java)
- Automated Tests Fed4FIRE: for deployed wrappers
 - Periodic validation tests
 - "health" monitoring

jFed with C-Lab SFA Wrapper

jFed Probe

- 1. Login Fed4FIRE account certificate
- Get userCredential
- Register new Slice and get SliceCredential

Fed4FIRE Authority

4. Create new sliver in C-Lab for the slice

C-Lab Wrapper

Summary

- Importance of FIRE facilities federation
- SFA as standard federation (testbeds, Fed4FIRE)
- SFA Wrapper for Community-Lab testbed
 - Operational status: It works!
 - Limitations: rspec, tinc, anonymous usage

Future work

- C-Lab RSpec
- New federation scenarios (multiple controllers, other testbeds)

References

Pan-European testbed and experimental facility federation – architecture refinement and implementation, Sebastian Wahle, Bogdan Harjoc, Konrad Campowsky, Thomas Magedanz, and Anastasius Gavras, 2010.

A case for research with and on community networks, Bart Braem et al. ACM SIGCOMM Computer Communication Review, July 2013.

Slice-based facility architecture, Larry Peterson et al. Draft version, 2009.

Federation of Community Networking Testbeds

Master Thesis

Gerard Marin Nogueras

Supervisor KTH: Johan Montelius

Supervisor UPC: Leandro Navarro

25th June 2014, Barcelona