QUESTION BANK MAT 206 - GRAPH THEORY

MODULE 1 Questions KTU/KU Sl. Mar Month/Year ks No Consider a graph G with 4 vertices: vl, v2, v3 and v4 and the degrees 1 3 DEC17, DEC19 of vertices are 3,5,2 and 1 respectively. Is it possible to construct such a graph G? If not, why? 2 Draw a disconnected simple graph Gl with 10 vertices and 4 3 DEC17 components and also calculate the maximum number of edges possible in Gl. 3 What are the basic conditions to be satisfied for two graphs to be 6 DEC17, DEC19 isomorphic? Are the two graphs below isomorphic? Explain with valid reasons. 4 Write any two applications of graphs with sufficient explanation. 3 DEC17 Prove that the number of vertices of odd degree in a graph is 5 3 DEC18

always even.

isomorphic? Justify

6

7

3

5

DEC18, SEP2

DEC18

0

Show that in a simple graph with n vertices, the maximum number of

edges is n(n-1)/2 and the maximum degree of any vertex is n-1.

Define isomorphism between graphs? Are the two graphs below

	B W X Y Y		
8	Prove that a simple with n vertices and K components can have atmost (n-k)(n-k+1)/2 edges.	3	SEP2020, JULY 2021
9	If a connected graph G is decomposed into two subgraphs g_1 and g_2 , then prove that there must be at least one vertex common between g_1 and g_2 .	3	DEC18, JUNE 2022
10	Write a note on Konigsberg Bridge Problem	3	SEP2020
11	A graph has exactly 10 vertices, 4 vertices of degree 3, 4 vertices of degree 2 and 2 isolated vertices. How many edges does the graph have?	3	Model Question
12	19 students in a nursery school play a game each day, where they hold hands to form a circle. For how many days can they do this, with no students holding hands with the same playmates more than once? Substantiate your answer with graph theoretic concepts.	4	Model Question
13	Differentiate walk, path and circuit.	3	SEP2020
14	Using the graph classify each sequence as a walk, a path or a circuit 1. E + C + D + E 2. A + C + D + E + B + A 3. B + D + E + B + C 4. A + B + C + D + B + A	4.5	SEP2020

15	a) Define subgraphs. What are edge disjoint and vertex disjoint subgraphs? Constructive edge disjoint subgraphs of the graph G.	4	SEP 2020
16	b) Check whether the two graphs are isomorphic or not. Justify your answer.	7	SEP2020, JUNE 2022
17	Is it possible to have simple graphs with the following degree sequences? If yes, draw the graphs a)2,3,3,3,3,3,4,5 b)1,3,3,4,5,6,6 c)1,2,3,3,4,5,	5	SEP2020
18	Prove that the maximum number of edges in a simple graph with n vertices is $\frac{n(n-1)}{2}$.	3	June 2022

19	Define walk, path and circuit with examples.	3	June 2022, July 2021
20	Prove that the number of vertices of odd degree in a graph is always even.	7	June 2022
21	If a graph has exactly two vertices of odd degree, then prove that there must be a path joining these two vertices.	7	June 2022
22	What is the maximum number of edges in a simple graph with n vertices? Justify your answer.	3	JULY 2021
23	There are 25 telephones in Metropolis. Is it possible to connect them with wires so that each telephone is connected with exactly 7 others? Why?	3	JULY 2021
24	Define complete graph and complete bipartite graph. Draw a graph which is a complete graph as well as a complete bipartite graph.	7	JULY 2021
25	Define isolated vertex, pendant vertex, even vertex and odd vertex. Draw a graph that contains all the above.	7	JULY 2021

Sl. No	Questions	Mar ks	KTU/KU Month/Year
1	Consider the graph G given below:	3	DEC17
	Define Federation In Constitution Federal Income Cons		
2	Define Euler graph. Is G an Euler? If yes, write an Euler line from G	5	DEC17
2	What is the necessary and sufficient condition for a graph to be Euler? And also prove it.	3	DECIT
3	Define Hamiltonian circuits and paths with examples. Find out thenumber of edge-disjoint Hamiltonian circuits possible in a completegraphwith five vertices.	5	DEC 17SEP20 20
4	StateTravelling-Sales man Problem and how TSP solution is related with Hamiltonian Circuits?	5	SEP2020, JULY 2021
5	Define Hamiltonian circuits and path with examples. Find out the number of edge disjoint Hamiltonian circuits possible in a complete graph with five vertices.	3	SEP2020

6	Differentiate between symmetric and asymmetric digraphs with examples and draw a complete symmetric digraph of four vertices.	4	DEC19
7	Differentiate between complete symmetric and complete asymmetric graph with an example each.	4	DEC17
8	Consider a complete graph G with 11 vertices. a) Find the maximum number of edges possible in G. b) Find the number of edge-disjoint Hamiltonian circuits in G	4	DEC18
9	A connected graph G is a Euler graph if and only if it can be decomposed into circuits.	6	DEC18
10	The total number of different ,not edge disjoint, Hamiltonian circuits in a complete graph of n vertices is (n-1)!/2. Prove.	6	DEC19
11	Explain digraphs and binary relation on digraphs.	4	SEP2020
12	Explain arbitrarily traceable graphs with suitable examples.	4	SEP2020
13	Draw a graph which is Eulerian but not Hamiltonian	3	June 2022
14	Distinguish between strongly connected digraphs and weakly connected graphs with examples.	3	June 2022
15	In a complete graph with n vertices, prove that there are $\frac{n-1}{2}$ edge-disjoint Hamiltonian circuits, if n is an odd number ≥ 3 .	7	June 2022, July 2021
16	 1)For a binary relation "is greater than" on the set X= {3.4,7,5,8} i) Draw the digraph representing the above relation ii) Write its relation matrix 2)Define equivalence digraph with an example 	7	June 2022

17	Prove that a connected graph G is an Euler graph if and only if all vertices of G are of even degree.	7	June 2022
18	Define Hamiltonian circuit and Hamiltonian path. Give an example for each. Also draw a graph that has a Hamiltonian path but not a Hamiltonian circuit.	7	June 2022
19	Show that all vertices of an Euler graph G are of even degree	3	July 2021
20	Explain strongly connected and weakly connected graphs with the help of examples.	3	July 2021
21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	July 2021
22	Find the union, intersection and ring sum of the above graphs. For which values of m, n is the complete graph Km,n an Euler graph? Justify your answer.	7	July 2021

Sl. No	Questions	Mar ks	KTU/KU Month/Year
1	Find the number of possible labeled trees that can be constructed with 50 vertices.	2	DEC18
2	Consider a binary tree with four weighted pendent vertices. Let their weights be 0.5, 0.12, 0.13 and 0.11. Construct a binary tree with minimum weighted path length.	3	DEC18

			T
3	Define spanning tree. Show that the edges forming a spanning tree in a planar graph G correspond to the edges forming a set of chords in the dual G*.	5	DEC18
4	Draw the flow chart of the spanning tree algorithm and also clearly mark the five conditions to be tested in connection with the spanning tree construction in the flowchart.	6	DEC18
5	Prove that all trees will have either one or more centers.	3	Model Question
6	What is the eccentricity of a node? How is it used in finding the center of a graph? Explain with examples.	3	Model Question
7	Show that a connected graph of n vertices and n edges has n-1tree branches and e-n+1 chords.	5	Model Question
8	Find the number of edges and vertices of a graph G if its rank and nullity are 6 and 8 respectively. Define rank and nullity of a graph G.	6	Model Question
9	Define a rooted binary tree with an example. Draw all trees of n labeled vertices forn = 3 and n=4.	5	SEP2020
10	Define rooted binary tree. Find the path length of the following tre	4	SEP2020

11	Prove that a tree with n vertices has n-1edges.	5	Model
			Question
12	Prove that the distance between vertices of a connected graph is	5	Model
	a metric.		Question
13	Write an algorithm for finding the shortest spanning	6	Model
	tree(Kruskalalgorithm)		Question
14	List down any two properties of trees and also prove the theorem:	6	Model
	A graph is a tree if and only if it is minimally connected.		Question
15	Let G= (V,E) be a connected graph, and let T:=(V, S) be a spanning	4	DEC17
	tree of G. Let $e = (a, b)$ be an edge of G not in T. Prove that, for any		
	edge f on the path from a to b in T, (V, (Su{e}) -{f}) is another spanning tree for G.		
16	· •	5	DEC17
10	Define spanning trees. Consider the graph G given below and obtainany three spanning trees from G. Calculate the number of	3	DEC17
	distinct spanning trees possible from acomplete graph with n vertices.		
17	Prove that there is one and only one path between every pair of	3	June 2022
	vertices in a tree.		
18	Draw all unlabelled trees with 5 vertices.	3	June 2022
19	Prove that every tree has either one or two centers	7	June 2022, July 2021

20	Apply Kruskal's algorithm to find the minimal spanning tree for the following weighted graph.	7	June 2022
21	For any spanning tree of a connected graph with n vertices and e edges, prove that there are n-1 tree branches and e-n+1 chords. For the following graph find two spanning trees and hence show that an edge that is a branch of one spanning treecan be a chord with respect to another spanning tree of same graph.	7	June 2022
22	Use Dijkstra's algorithm to find the shortest path for the following weighted digraph and find the shortest distance from vertex a to other vertices.	7	June 2022, July 2021

23	Prove that a connected graph G with n vertices and n-1 edges is a tree.	3	July 2021
24	How many labelled trees are there with n vertices? Draw all labelled trees with 3 vertices.	3	July 2021
25	Prove that a binary tree with n vertices has (n+1)/2 pendant vertices.	7	July 2021
26	Using Prims algorithm, find a minimal spanning tree for the following graph. B 10 C A D E E	7	July 2021

Sl. No	Questions	Mar ks	KTU/KU Month/Year
1	Prove the statement: Every cut set in a connected graph G must also contain atleast one branch of every spanning tree of G	3	DEC17
2	List down the properties stating the relationship between the edges of graph G and its dual G	3	DEC17
3	Define a cutset. Find any four sets from graph G given below and also	5	DEC17

	Find the edge connectivity of G.		
	e1 e5 e9 e8 e4		
4	Draw two Kuratowski's graphs and also prove that Kuratowask's first the graph is nonplanar using appropriate inequality.	4	DEC17
5	Draw a geometric dual(G*) of G given and also write about the relationship between a planar graph G and its dual G*	6	DEC18
6	Prove the statement "Every circuit has an even number of edges in common with any cut-set".	4	DEC18
7	Define edge connectivity and vertex connectivity.	3	Model Question
8	Show that a vertex v in a connected graph G is a cut vertex if there exist two vertices x and y in such that every path between x and y passes through v.	5	Model Question
9	State and prove Cayley's theorem.	9	Model Question
10	Prove that : A graph has a dual if and only if it is planar.	7	Model Question

11	Prove that: The complete graph of five vertices is nonplanar.	6	Model
			Question
12	Write a short note on Connectivity and separability.	5	Model
			Question
13	Prove that the edge connectivity of a graph cannot exceed the degree of the vertex with the smallest degree in G.	3	June 2022
14	Define planar graph and non-planar graph with examples.	3	June 2022
15	Illustrate the statement: "The ring sum of any two cut-sets in a graph is either a third cut-set or an edge disjoint union of cut-sets", in the following graph.	7	June 2022
16	Define edge connectivity, vertex connectivity separable and non-separable graph. Give an example for each.	7	June 2022
17	Prove that the complete graph on 5 vertices is non-planar	7	June 2022
18	Draw the geometric dual of the following graph	7	June 2022
19	Define planar graphs. Is K4, the complete graph with 4 vertices, a planar graph? Justify	3	July 2021
20	Define fundamental circuits and fundamental cut-sets.	3	July 2021

21	Define cut-set. Prove that every circuit in G has an even number of edges in common with any cut-set.	8	July 2021
22	Construct the geometric dual of the graph below	6	July 2021
23	Prove that a connected planar graph with n vertices and e edges has e-n+2 regions.	9	July 2021
24	Let G be a connected graph and e an edge of G. Show that e is a cut- edge if and only if e belongs to every spanning tree.	5	July 2021

Sl. No	Questions	Mar ks	KTU/KU Month/Year
1	Derive the relationship between incidence matrix, fundamental circuit matrix and fundamental cut-set matrix representations of a graph.	10	Model Question
2	Write any two matrix representations of a graph.	10	Model Question
3	Prove that if B is a circuit matrix of a connected graph G with e edges and n vertices, rank of B = e-n+1	5	Model Question
4	List down any four properties of the adjacency matrix.	4	DEC18
5	Construct an adjacency matrix(x) for the following graph and also mention how the concept of edge sequences is described with X ³ .	6	DEC18

6	Define vertex connectivity and Edge connectivity.	4	Model
			Question
7	Two graphs Gl and G2 are isomorphic if and only if their incidence matrices A(Gl) and A(G2) differ only by permutation of rows and Columns	6	DEC17
8	Let A and B be, respectively, the circuit matrix and incidence matrix of a self-loop-free graph G. Prove that AxB ^T =0(mod2)	4	DEC17
9	Explain circuit matrix and its properties.	5	Model Question
10	Let B and A be the circuit matrix and incidence matrix whose columns are arranged using the same order of edges. Show that every row of B is orthogonal to every row A.	5	Model Question
11	Write the properties of the incidence matrix.	5	Model Question
12	Explain cutest matrix and path matrix.	5	Model Question
13	Define adjacency matrix and construct a graph from the following \[\begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \end{pmatrix} \] adjacency matrix:	4	DEC17
	A 2 E 3 D B 3 C C		

14	Write the Dijkstra's shortest path algorithm. Apply this algorithm to find the shortes tpath between vland v6.	10	DEC17
15	Write the Dijkstra's Shortest Path Algorithm and apply this algorithm to find the shortest path between a and z.	6	DEC17
16	Write an algorithm to find the connectedness and components of a graph and analyze the complexity of the algorithm	10	Model Question
17	Explain Floydwarshall algorithm with suitable examples.	10	SEP2020
18	Prove that the chromatic polynomial of a complete graph with 4 vertices is $\lambda(\lambda-1)(\lambda-2)(\lambda-3)$.	3	June 2022
19	For the following graph find the i. Incidence matrix ii. Path matrix between v2 and v5 iii. Circuit matrix	7	June 2022

		1	
	b d t b d v ₅		
20	Draw a connected graph and show that the rank of its incidence matrix is one less than the number of vertices.	7	June 2022
21	Prove that every tree with two or more vertices is 2-chromatic	7	June 2022
22	Prove that a covering g of a graph is minimal if and only if g contains no path of length three or more.	7	June 2022
23	Construct the adjacency matrix and incidence matrix of the graph	3	July 2021
24	Define chromatic number. What is the chromatic number of a tree with two or more vertices?	3	July 2021
25	Explain four colour problem using the concept of chromatic number.	5	July 2021
26	Let B and A be the circuit matrix and the incidence matrix of a graph G which is free from loops, whose columns are arranged using the same order of edges. Show that ABT=BAT=0 (mod 2).	9	July 2021
27	Show that chromatic polynomial of a tree with n vertices is $P_n(\lambda) = \lambda(\lambda - 1)^{n-1}$	7	July 2021
28	Define path matrix of a graph. Find the path matrix $P(x, y)$ for the graph below.	7	July 2021

29	Construct the adjacency matrix and incidence matrix of the graph .	3	July 2021
30	Write the adjacency matrix for the following graph. V ₂ V ₃	3	June 2022
31	Write an algorithm for the shortest path between all pairs of vertices	7	SEP2020
32	Write an algorithm for Depth-first search on a graph	9	Model Question
33	Explain planarity with examples.	5	SEP20