МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский Авиационный Институт» (Национальный Исследовательский Университет)

Институт: №8 «Информационные технологии и прикладная математика»

Кафедра: 806 «Вычислительная математика

и программирование»

Лабораторная работа № 5 по курсу «Криптография»

Группа: М8О-306Б-21

Студент: Н. И. Лохматов

Преподаватель: А. В. Борисов

Оценка:

Дата: 30.03.2024

ОГЛАВЛЕНИЕ

1	Тема	3
2	Задание	3
3	Теория	4
4	Ход лабораторной работы	6
5	Выводы	6

1 Тема

Подбор эллиптической кривой и поиск порядка её точки за заданное время.

2 Задание

Подобрать такую эллиптическую кривую, порядок точки которой полным перебором находится за 10 минут на ПК. Упомянуть в отчёте результаты замеров работы программы, характеристики вычислителя. Также указать какие алгоритмы и/или теоремы существуют для облегчения и ускорения решения задачи полного перебора. Рассмотреть для случая конечного простого поля Z_p.

3 Теория

Но для нас достаточно того, что эллиптическая кривая — это просто множество точек, описываемое уравнением:

$$y^2 = x^3 + ax + b$$
, где $4x^3 + 27b^2 \neq 0$

Порядок точки р на эллиптической кривой — это наименьшее положительное число n, такое что np=O, где O — "бесконечно удаленная" точка, служащая нейтральным элементом группы.

Для нахождения порядка точки методом полного перебора необходимо последовательно вычислять np для n=1,2,3,..., пока не будет найдено n, для которого np=0. Этот метод чрезвычайно ресурсоемкий для больших значений p.

Ниже в блоке теории рассмотрю теоремы и алгоритмы для ускорения решения задачи полного перебора.

Теоремы Хассе

Для эллиптической кривой над полем Zp, порядок кривой (количество точек на кривой) ограничен теоремой Xacce: $|N-(p+1)| <= 2\sqrt{p}$, где N- порядок кривой. Эта теорема позволяет сузить диапазон для поиска порядка точки.

Алгоритм Шуфа

Вычисляет порядок эллиптической кривой за полиномиальное время. Он не предназначен для нахождения порядка отдельной точки, но знание порядка кривой может помочь в этом. Алгоритм Шуфа основан на использовании полиномов деления для эллиптической кривой и применении их к вычислению порядка кривой в полиномиальное время относительно размера поля. Основная идея заключается в том, чтобы вычислить, как точки эллиптической кривой умножаются на малые простые числа, и использовать эти данные для сужения возможного порядка кривой.

Алгоритм Полларда (Полига-Хеллмана)

Алгоритм Полларда (иногда неверно называемый Поллига-Хеллманом) для ро-метода факторизации, а также его модификация для нахождения порядка элемента в группе, используют идею случайных прогулок для определения циклов и, соответственно, факторов порядка группы. Выбираются случайные точки и выполняются операции группы (например, сложение точек на эллиптической кривой), формируя "случайную прогулку" по элементам группы. Используется идея Флойда для обнаружения циклов в последовательности точек. Когда цикл найден, можно вычислить порядок (или фактор порядка) элемента.

Алгоритм Бейбиджа-Шэнкса

Алгоритм Бейбиджа-Шэнкса предназначен для нахождения логарифма в группе (в нашем контексте — порядка точки на эллиптической кривой), используя метод "встречи посередине". Этот алгоритм эффективен, когда размер группы известен и невелик. Проблема нахождения порядка разбивается на две меньшие задачи, которые решаются независимо, обычно через создание двух списков: один для "прямых" операций, другой — для "обратных". Ищется совпадение между значениями в двух списках, что позволяет вычислить искомый порядок (или логарифм) "по середине" изначальной задачи.

4 Ход лабораторной работы

Характеристики ПК (ноутбука):

Процессор AMD Ryzen 5 5500U (6 ядер, 12 потоков, базовая частота 2.1 $\Gamma\Gamma$ ц)

16 Гб оперативной памяти типа DDR4 (скорость 3200 МГц)

Работу я выполнял на языке Python. Основная идея алгоритма: выбор параметров кривой, генерация точек на ней и вычисление порядка случайной точки с последующим увеличением параметра р для поиска подходящей кривой. Программа запрашивает у пользователя параметры а, b и р для эллиптической кривой и время, в течение которого должен выполняться поиск. Затем, используя экземпляр класса EllipticCurve, программа в цикле ищет такую кривую, порядок точки которой можно вычислить в указанное время. Для этого программа увеличивает параметр р на фиксированное значение (3000) на каждой итерации, пытаясь найти подходящую кривую.

Класс EllipticCurve:

Инициализация: принимает коэффициенты a, b и p, проверяя условие несингулярности кривой.

Проверка принадлежности точки кривой: метод is_elliptic_curve используется для проверки, удовлетворяет ли точка уравнению эллиптической кривой.

Вычисление обратного элемента: метод inverse_of вычисляет обратный элемент для заданного числа в поле по модулю р, используя расширенный алгоритм Евклида.

Сложение точек на кривой: метод add_points реализует операцию сложения двух точек на эллиптической кривой.

Вычисление порядка точки: метод order_point находит порядок заданной точки путём повторного сложения точки с самой собой до тех пор, пока не будет достигнута нейтральная точка.

Шаг итерации: метод step выполняет один шаг итерации, включая генерацию точек на кривой и вычисление порядка случайно выбранной точки.

Проверка на простоту и поиск следующего простого числа: методы is_prime_number и get_next_prime_number используются для проверки чисел на простоту и поиска следующего простого числа, начиная с заданного значения.

Но из-за того, что я использовал Python, программа работала сильно дольше заданного времени. Вот ряд тестов:

Входные данные:

a: 34567

b: 22887

p: 661

Далее я вводил время 2, 4, 8, 32, 64, 128 и 256

```
# 2s => 8.49s | 1 iter
# 4s => 8.40s | 1 iter
# 8s => 8.61s | 1 iter
# 32s => 8.29s | 1 iter | 60.86s | 2 iter
# 64s => 8.22s | 1 iter | 57.68 | 2 iter | 218.48s | 3 iter
# 128s => 8.28s | 1 iter | 59.55s | 2 iter | 216.15s | 3 iter
# 256s => 8.21s | 1 iter | 57.80s | 2 iter | 215.64s | 3iter | 587.70s | 4 iter
```

При вводе 256, программа работала 587 секунд, что примерно равно 10 минутам.

Результат:

```
# y^2 = x^3 + 3878*x + 22887 % 30689
# Curve order: 30605
# Point (6284, 17343) order: 186148
# Time: 587.7021234035492 seconds
```

Найденная кривая: $y^2 = x^3 + 3878x + 22887$

5 Выводы

В ходе выполнения лабораторной работы я подобрал такую эллиптическую кривую, порядок точки которой полным перебором находится за 587 секунд. Также я описал теорему Хассе и ряд алгоритмов для оптимизации решения этой задачи.

6 Список используемой литературы

Доступно о криптографии на эллиптических кривых - https://habr.com/ru/articles/335906/