計算機構成論

Lecture 1 イントロダクション: コンピュータシステムの概要

> 2023年度春学期 情報理工学部 Rクラス担当 越智裕之

内容

- 情報関係で働く人には常識である用語の確認
- ・ プログラム実行の仕組み(の概要と関連基礎用語)
- ・ コンピュータの構成要素
- 計算機構成論の重要性

コンピュータの利用形態の分類とその特徴(1/2)

- Personal computers (パーソナル・コンピュータ)
 - General purpose, variety of software
 - Subject to cost/performance tradeoff

- Server (サーバー)
 - Network based
 - High capacity, performance, reliability
 - Range from small servers to building sized

コンピュータの利用形態の分類とその特徴(2/2)

- Supercomputers (スーパーコンピュータ)
 - High-end scientific and engineering calculations
 - Highest capability but represent a small fraction of the overall computer market
- Embedded computers (組み込みコンピュータ)
 - Hidden as components of systems
 - Stringent power/performance/cost constraints

コンピュータの利用形態に関してクイズ:空欄を埋めよ

それぞれの違いを端的に述べよ

ポストPC時代(1/2)

ポストPC時代(2/2)

- Personal Mobile Device (PMD)
 - Battery operated
 - Connects to the Internet
 - Hundreds of dollars
 - Smart phones, tablets, electronic glasses
- Cloud computing
 - Warehouse Scale Computers (WSC)
 - Software as a Service (SaaS)
 - Portion of software run on a PMD and a portion run in the Cloud
 - Amazon and Google

単位の表し方

Roadrunner (2008) 初めて1ペタFLOPSを突破

FLOPS =

以下の国際単位系は常識です。なんでしょうか?

メモリの容量の数え方 (1/2)

1 Tバイトは慣習上1,099,511,627,776バイト=2の何乗? Why? 10¹²は2進数でいうと大体何桁ぐらいだろうか? 1 Mバイトは慣習上 バイト

Note: 計算機では2進数が使われる。10進数ではない!

メモリの容量の数え方 (2/2)

2^x vs. 10^y のあいまいさをなくすための表記

教科書(英語版) 図1.2

Decimal term	Abbreviation	Value	Binary term	Abbreviation	Value	% Larger
kilobyte	KB	10 ³	kibibyte	KiB	210	2%
megabyte	MB	10 ⁶	mebibyte	MiB	220	5%
gigabyte	GB	109	gibibyte	GiB	230	7%
terabyte	TB	1012	tebibyte	TiB	240	10%
petabyte	PB	1015	pebibyte	PiB	250	13%
exabyte	EB	1018	exbibyte	EiB	260	15%
zettabyte	ZB	1021	zebibyte	ZiB	270	18%
yottabyte	YB	1024	yobibyte	YiB	280	21%

内容

- ・ 情報関係で働く人には常識である用語の確認
- ・ プログラム実行の仕組み(の概要と関連基礎用語)
- コンピュータの構成要素
- 計算機構成論の重要性

プログラム実行の裏側

- Application software
 - Written in high-level language
- System software
 - Compiler: translates HLL code to machine code
 - Operating System: service code
 - Handling input/output
 - Managing memory and storage
 - Scheduling tasks & sharing resources
- Hardware
 - Processor, memory, I/O controllers

C言語のプログラム実行の裏側

下線つきの用語は全て理解すべし

プログラム実行の概要:英語で用語の確認

- 高水準言語
 - Level of abstraction closer to problem domain
 - Provides for productivity and portability
- アセンブリ言語
 - Textual representation of instructions
- 機械語
 - Binary digits (bits)
 - Encoded instructions and data

演習問題A:

自分の言葉で自分が理解したことをまとめてみてください. 後 日の講義で詳しくやりますが

高水準プログラミング言語がどのように実行されるかを、 アセンブラ、アセンブリ言語、機械語という用語を用いて 説明せよ。

内容

- 情報関係で働く人には常識である用語の確認
- ・ プログラム実行の仕組み(の概要と関連基礎用語)
- コンピュータの構成要素
- 計算機構成論の重要性

Opening the Box (Apple iPad)

Inside the Processor

• Apple A5

コンピュータの仕組み(1/2)

一般的なコンピュータの内部構造

コンピュータの仕組み(2/2)

一般的なコンピュータの内部構造

5つの構成要素:教科書の説明方法

入力、出力、記憶、データパス、制御 プロセッサ

Inside the Processor (CPU)

- Datapath: performs operations on data
- Control: sequences datapath, memory, ...
- Cache memory
 - Small fast SRAM memory for immediate access to data

今は理解できなくてもOK: 詳しくは後期

図4.1の一部

R命令

今は理解できなくてもOK: 詳しくは後期

図4.1の一部

データの格納場所

- Volatile main memory (<u>揮発性メモリ</u>)
 - Loses instructions and data when power off
- Non-volatile memory (<u>不揮発性メモリ</u>)
 - Magnetic disk
 - Flash memory
 - Optical disk (CDROM, DVD)

アクセス時間と記憶の階層:次ページの問題 詳しく知りたい方は下巻参照

記憶の階層

アクセス時間

演習問題B

SRAM.	DRAM.	磁気ディスクについて、

- 1. どれが揮発性か、不揮発性か?
- 2. 速度の速い順に並べるとっ
- 3. ビットあたりのコストの高い順に並べると?
- 4. 典型的なそれぞれの使い方は?

*SRAM. DRAMは何の略か?また、頭文字SとDの意味する特徴は?

内容

- ・ 情報関係で働く人には常識である用語の確認
- ・ プログラム実行の仕組み(の概要と関連基礎用語)
- コンピュータの構成要素
- 計算機構成論の重要性

抽象化

- ・"抽象化"は設計の複雑さを解消
 - ・下位の層の詳細を隠蔽
- <u>Instruction set architecture (ISA) 命令セット・アーキテクチャ</u>
 - ハードウエアとソフトウエアの<u>インターフェース</u>
- アプリケーション・バイナリ・インターフェース
 - ・基本命令セットとOSが提供するシステムの機能

演習問題: 次のページを見ながら具体例を考えよ

Cでプログラムを書く人は、
printfの
printfが
プログラムが書ける.アセンブリ言語でOSの機能を実装する人は、
を知らなくても、addの
addが
のSが書ける。かっていれば
のSが書ける。を知っていれば
のSが書ける。

再掲

C言語のプログラム実行の裏側

下線つきの用語は全て理解すべし

計算機構成論は重要!

- ・アーキテクチャ=ハードウェアとソフトウェアのインタフェース
- •たとえ、ソフトを開発する場合でも知っておくべき
- •"情報"と名の付く学士号を持っていて知らないと恥ずかしい
- ・階層の下を勉強するのは重要! 学生時代に勉強しておくべき

Lec. 1での要チェック用語集

```
アプリケーション・ソフトウェア
デスクトップコンピュータ
                   コンパイラ
サーバーコンピュータ
                  システム・ソフトウェア
スーパーコンピュータ
                  アセンブラ
組み込みコンピュータ
                  ハードウェア
OS
                  高水準言語 High-Level Programming Language
FLOPS
                   アセンブリ言語 Assembly language
ペタ
                  機械語 Machine language
テラ
                   プログラム内蔵方式
ギガ
                  SRAM
メガ
                  DRAM
キロ
                  磁気ディスク
ミリ
                  キャッシュ
マイクロ
                  主記憶(1次記憶)
ナノ
                   2次記憶
ピコ
                  揮発性メモリ
フェムト
                  不揮発性メモリ
```