Югорский государственный университет Институт цифровой экономики Информатика и вычислительная техника

Отчёт по проекту E На тему «Модель дорожного движения» Вариант 9

Выполнил:

Грабовский А.С.

Группа: 1191б

г. Ханты-Мансийск 2023 г.

Оглавление

Введение3

- 2. Концептуальная модель реального процесса4
- 3. Формализация6
- 4. Компьютерная модель8
- 5. Эксперименты11

Заключение:17

Список использованных ресурсов:18

Введение

В данной работе модели строились в соответствии с вариантом. Модели были построены в программе Anylogic. AnyLogic — программное обеспечение для имитационного моделирования.

2. Концептуальная модель реального процесса

В основе модели дорожного движения используется спутниковый снимок фрагмента городской улицы (рисунок 1).

Рисунок 1 — спутниковый снимок

Снимок ориентирован так, что север расположен вверху.

Рассматривается перекрёсток улиц Мира (направление восток – запад) и улицы Калинина (север-юг). Обе улицы - с двусторонним движением, и имеют по две полосе для движения в каждом направлении.

Проблема состоит в том, что при большом времени смены сигнала светофора автомобили долгое время находятся без движения при красном сигнале светофора, из-за чего образуются пробки. Однако при излишне малом времени смены сигнала, через перекрёсток не удаётся пропустить достаточный поток и, в результате чего, снова образуются пробки.

Цель моделирования: анализ движения автомобилей на перекрёстке.

Определим следующие задачи:

- 1. Вычислить количество автомобилей в системе
- 2. Вычислить время, которое машина находится без движения
- 3. Вычислить среднюю скорость автомобиля
- 4. Вычислить Среднее время нахождения в системе
- 5. Построить гистограмму распределения времени пребывания в системе

3. Формализация

Единицей модельного времени являются минуты. Продолжительность эксперимента 1 час (60 минут).

Время между появлениями автомобилей будем считать случайной величиной.

Структурно модель будет иметь следующий вид:

Рис. 2 — структурно-функциональная схема

Модель имеет следующие входные данные:

Формальное	Сокращенное	Полное обозначение	Название
обозначение	обозначение		
	iA	intensityOfArrival	Интенсивность
V.			прибытия машин в
X ₁			единицу времени
			(количество/час)
\mathbf{x}_2	Sp	Speed	Скорость машин (км/ч)
W.	Op	Opportunity	Возможность поворотов
X 3		Opportunity	на перекрестке
X 4	TLPD	TrafficLightPhaseDur	Длительности фаз
		ation	светофора(в секундах)

Выходные данные включают следующие пункты:

Формальное	Сокращенное	Полное обозначение	Название
обозначение	обозначение		
y ₁	CiS	CarsInSystem	Количество машин в
<i>y</i> 1	CID	Carsinsystem	системе
У2	StC	StopsCountPerCar	Время, которое машина находится без движения (в минутах)
у3	aS	AverageSpeed	Средняя скорость автомобиля (в км/ч)
У4	aTiS	AverageTimeInSystem	Среднее время нахождения в системе

Табл. 1 — выходные данные эксперимента

4. Компьютерная модель

Компьютерная модель построена в среде AnyLogic. Модель имеет следующий вид:

Рис. 3 — Модель

Начальной точкой схемы, создающей автомобили с заданной интенсивностью, являются блоки CarSource.

Далее в блоках selectOutput происходит разделение потока равномерно распределяется в один из указанных поворотов (разрешённые повороты указываются во входных параметрах модели).

Блоки carMoveTo управляют движением автомобиля, заставляя его проехать на одну из указанных дорог.

Блок trafficLight отвечает за переключение светофора с заданной интенсивностью.

Блок roadNetworkDescriptor необходим для расчета времени в котором автомобиль находится без движения.

Входные параметры модели задаются в отдельной зоне, также здесь отображаются выходные параметры.

Рис. 4 — Блок входных/ выходных параметров

Выходные параметры высчитываются следующим образом:

- 1. Y_1 _all общее количество машин в системе.
- 2. Y_1 _in_time среднее количество машин, единовременно находящихся в системе.
- 3. Y₂ среднее время нахождения машины без движения.
- 4. Y₃— средняя скорость автомобиля в км/ч.
- 5. StatTimeCar среднее время нахождения в системе.

Также отображается 3D модель:

Рис. 5 — 3D окно

5. Эксперименты

5.1 Эксперимент 1

Провести простой эксперимент

- 1. Подсчитать значения выходных данных Y=(y1,...,y4).
- 2. Построить гистограмму распределения времени пребывания в системе

Данные эксперимента, согласно варианту 1:

Формально	Полное	Описание	Входные
е обозначение	обозначение		данные
X_1	intensityOfArri	Интенсивно	N - 1000
	val	сть прибытия	S - 940
		машин в единицу	E - 1020
		времени	W - 1160
		(количество/час)	
X_2	Speed	Скорость	35
	_	машин (км/ч)	
X_3	Opportunity	Возможнос	1
		ть поворотов на	
		перекрестке	
X_4	TrafficLightPh	Длительнос	20/4/20/4
	aseDur ation	ти фаз	
		светофора(в	
		секундах)	

Результаты эксперимента:

Формально	Полное	Описание	Выходные
е обозначение	обозначение		данные
\mathbf{Y}_1	CarsInSystem	Количество	1276 – всего
		машин в системе	53 – в среднем
\mathbf{Y}_2	StopsCountPerCar	Время, которое	0.8
		машина	
		находится без	
		движения (в	
		минутах)	
\mathbf{Y}_3	AverageSpeed	Средняя скорость	10.165
		автомобиля (в	
		км/ч)	
Y_4	AverageTimeInSystem	Среднее время	2.617
		нахождения в	
		системе	

Рис. 1 — время проезда перекрестка автомобилем

Рис. 2 — гистограмма распределения времени пребывания в системе

Вывод: Исходя из полученных данных следует, что работа светофора оптимальная.

5.2.1 Эксперимент 2

Задачи:

Проведите изменение параметра x_1 в диапазоне $x_1S:h1: x_1F$, где x_1S- начальное значение параметра, h_1 — шаг, с которым происходит изменения параметра, x_1F — конечное значение параметра. Для каждого из экспериментов постройте график и проанализируйте, как изменение параметра x_1 влияет на среднее нахождения времени агентов в системе? Оставить остальные входные из задания 1.

Данные эксперимента:

Формально	Полное	Описание	Входные
е обозначение	обозначение		данные
X_1	intensityOfArrival	Интенсивность	960/100/1460
		прибытия машин	
		в единицу	
		времени	
		(количество/час)	
X_2	Speed	Скорость машин	35
		(KM/Y)	
X ₃	Opportunity	Возможность	1
		поворотов на	
		перекрестке	
X_4	TrafficLightPhaseDur	Длительности фаз	20/4/20/4
	ation	светофора(в	
		секундах)	

$X_2 = 960$:

Рис. 6 — время проезда перекрестка автомобилем

$X_2 = 1060$:

Рис. 7 — время проезда перекрестка автомобилем

$X_2 = 1160$:

Рис. 8 — время проезда перекрестка автомобилем

$X_2 = 1260$:

Рис. 9 — время проезда перекрестка автомобилем

$X_2 = 1360$:

Рис. 10 — время проезда перекрестка автомобилем

$X_2 = 1460$:

Рис. 11 — время проезда перекрестка автомобилем

Вывод: С увеличением интенсивности прибытия машин в единицу времени, среднее количество машин в системе увеличивается.

5.2.2 Эксперимент 3

Задачи:

1. Изменить вероятности поворотов на перекрестке, чтобы уменьшить среднее время, которое машина находится без движения, вполовину от получившегося в задании 1;

Данные эксперимента:

Формально	Полное	Описание	Входные
е обозначение	обозначение		данные
X_1	intensityOfArrival	Интенсивность	N – 1000
		прибытия машин	S - 940
		в единицу	E - 1020
		времени	W - 1160
		(количество/час)	
X_2	Speed	Скорость машин	35
		(KM/Y)	
X_3	Opportunity	Возможность	n
		поворотов на	
		перекрестке	
X_4	TrafficLightPhaseDur	Длительности фаз	20/4/20/4
	ation	светофора(в	
		секундах)	

Значение в задании 1 $y_2 = 0.8$

Проведя эксперимент, пришли к значению y_2 при следующих значениях x_3 (показано на рисунке 12).

Рис. 12 — входные данные

Заключение:

В ходе выполнения лабораторной работы была построена модель дорожного движения.

После построения модели были выполнены эксперименты, содержащиеся в индивидуальном варианте, приведено системно-динамическое представление модели, составлен список входных и выходных параметров.

Также цель, поставленная в начале работы, была выполнена.

Список использованных ресурсов:

1.Eluniver : [Электронный ресурс] :

https://eluniver.ugrasu.ru/course/view.php?id=5202

2.Справка AnyLogic : [Электронный ресурс] :

https://help.anylogic.ru/index.jsp?topic=%2Fcom.anylogic.help%2Fhtml%2Fpmtutorial%2Fbank-model.html