Greedy Selfish Network Creation

Pascal Lenzner

The 8th Workshop on Internet & Network Economics (WINE 2012) 142–155.

Speaker: Joseph Chuang-Chieh Lin

Institute of Information Science Academia Sinica Taiwan

11 September 2015

- Researcher at the "Institut für Informatik, Friedrich-Schiller-Universität (Jena)".
- On Selfish Network Creation.
 Dissertation, Humboldt-University Berlin, 2014.

Outline

- Introduction
- 2 Tree Networks in SUM-GE
- 3 Non-tree Networks in SUM-GE
- Concluding remarks

Models and definitions

Motivations

- Computing a best response strategy of an agent in the network creation game: NP-hard ([Fabrikant et al. 2003]).
- Internet Service Providers (ISPs) prefer greedy refinements of their current strategy over radical re-design of the infrastructure.

Network Creation Games (NCG)

- A set of n agents V.
- The price of buying an edge: $\alpha > 0$.
- $S_v \subseteq V \setminus \{v\}$: the strategy of agent v.
- G: the induced network.

The sum model

$$c_{\nu}(G,\alpha) = \alpha |S_{\nu}| + \sum_{w \in V(G)} d_{G}(v,w).$$

• The total cost is $c(G, \alpha) = \sum_{v \in V(G)} c_v(G, \alpha)$.

- The considered operations for an agent to improve her current strategy:
 - 1 greedy augmentation: creating one new own link;
 - 2 greedy deletion: removing one own link;
 - 3 greedy swap: swapping of one own link.
- * Computing the best greedy strategy refinement for one agent:
 - $O(n^2(n+m))$ time.

A useful property

Lemma 1

In the SUM network creation game:

Agent v can NOT decrease her cost by buying one edge

 \Rightarrow buying k > 1 edges can NOT decrease agent ν 's cost.

- Assume that agent v:
 - owns q edges in (G, α) ;
 - can strictly decrease her cost by purchasing k > 1 edges e_1, \ldots, e_k ;
 - $(G, \alpha) \xrightarrow{\text{augmented by } e_1, \dots, e_k} (G^k, \alpha).$
 - has distance-cost $D \& D^k$ in $(G, \alpha) \& (G^k, \alpha)$, resp.
- $c_v(G^k, \alpha) < c_v(G, \alpha)$ • $c_v(G, \alpha) = q\alpha + D$ and $c_v(G^k, \alpha) = q\alpha + k\alpha + D^k$.
- (G^{1*}, α) : agent v has built the best possible additional edge e^* • $c_v(G^{1*}, \alpha) = a\alpha + \alpha + D^{1*} > c_v(G, \alpha)$

- Assume that agent v:
 - owns q edges in (G, α) ;
 - can strictly decrease her cost by purchasing k > 1 edges e_1, \ldots, e_k ;
 - $(G, \alpha) \xrightarrow{\text{augmented by } e_1, \dots, e_k} (G^k, \alpha).$
 - has distance-cost $D \& D^k$ in $(G, \alpha) \& (G^k, \alpha)$, resp.
- $c_{\nu}(G^k, \alpha) < c_{\nu}(G, \alpha) \Leftrightarrow k\alpha < D D^k$.
 - $c_{\nu}(G, \alpha) = q\alpha + D$ and $c_{\nu}(G^k, \alpha) = q\alpha + k\alpha + D^k$.
- (G^{1*}, α) : agent v has built the best possible additional edge e^* .
 - $c_{\nu}(G^{1^*}, \alpha) = q\alpha + \alpha + D^{1^*} \ge c_{\nu}(G, \alpha) \Leftrightarrow \alpha$

- Assume that agent *v*:
 - owns q edges in (G, α) ;
 - can strictly decrease her cost by purchasing k > 1 edges e_1, \ldots, e_k ;
 - $(G, \alpha) \xrightarrow{\text{augmented by } e_1, \dots, e_k} (G^k, \alpha).$
 - has distance-cost $D \& D^k$ in $(G, \alpha) \& (G^k, \alpha)$, resp.
- $c_{\nu}(G^k, \alpha) < c_{\nu}(G, \alpha) \Leftrightarrow k\alpha < D D^k$.
 - $c_{\nu}(G, \alpha) = q\alpha + D$ and $c_{\nu}(G^k, \alpha) = q\alpha + k\alpha + D^k$.
- (G^{1*}, α) : agent ν has built the best possible additional edge e^* .

•
$$c_{\nu}(G^{1^*}, \alpha) = q\alpha + \alpha + D^{1^*} \ge c_{\nu}(G, \alpha) \Leftrightarrow \alpha \ge D - D^{1^*}$$
.

- Assume that agent v:
 - owns q edges in (G, α) ;
 - can strictly decrease her cost by purchasing k > 1 edges e_1, \ldots, e_k ;
 - (G, α) augmented by $e_1, \dots, e_k \rightarrow (G^k, \alpha)$.
 - has distance-cost $D \& D^k$ in $(G, \alpha) \& (G^k, \alpha)$, resp.
- $c_{\nu}(G^k, \alpha) < c_{\nu}(G, \alpha) \Leftrightarrow k\alpha < D D^k$.
 - $c_{\nu}(G, \alpha) = q\alpha + D$ and $c_{\nu}(G^{k}, \alpha) = q\alpha + k\alpha + D^{k}$.
- (G^{1*}, α) : agent ν has built the best possible additional edge e^* .
 - $c_{\nu}(G^{1^*}, \alpha) = q\alpha + \alpha + D^{1^*} \ge c_{\nu}(G, \alpha) \Leftrightarrow \alpha \ge D D^{1^*}$.

Proof of Lemma 1 (contd.):

- g^e : the decrease in distance cost for agent v if only the edge $e \in \{e_1, \dots, e_k, e^*\}$ is inserted into (G, α) .
 - $D-D^k \leq g^{e_1}+g^{e_2}+\ldots+g^{e_k}$.
- $k\alpha < D D^k \Rightarrow \alpha < \frac{D D^k}{k} \le \frac{g^{e_1} + g^{e_2} + \dots + g^{e_k}}{k}$. • $\alpha < g^{e_j}$ for some $j \in [1, k]$.
- Yet $g^{e_j} \le g^{e^*}$. $\Rightarrow \alpha < g^{e^*} = D - D^{1^*}$ (contradiction).

Tree Networks in SUM Greedy Equilibria

SUM- $GE \subseteq SUM$ -NE

Theorem 2

 $(G, \alpha) \in \mathsf{SUM}\text{-}\mathsf{GE}$ and G is a tree $\Rightarrow (G, \alpha) \in \mathsf{SUM}\text{-}\mathsf{NE}$.

11 September 2015

1-median [Kariv & Hakimi 1979]

$$\arg\min_{u\in V(G)}\sum_{w\in V(G)}d_G(u,w).$$

Lemma 2

Let (T, α) be a tree network in SUM-GE. If agent u owns edge $\{u, w\}$ in (T, α) , then w must be a 1-median of its tree in the forest $T - \{u\}$.

Corollary 1

Let $(T, \alpha) \in SUM\text{-}GE$, and let

- T^u : the forest induced by removing all edges owned by u;
- F^u : T^u withOUT the tree containing u.

Then agent u's strategy in (T, α) is the **optimal** strategy among all strategies that buy exactly one edge into each tree of F^u .

Corollary 1

Let $(T, \alpha) \in SUM\text{-}GE$, and let

- T^u : the forest induced by removing all edges owned by u;
- F^u : T^u withOUT the tree containing u.

Then agent u's strategy in (T, α) is the **optimal** strategy among all strategies that buy exactly one edge into each tree of F^u .

- $x \in V(T)$: 1-median of T.
- (G_T^u, α) : obtained by adding u and inserting edge $\{u, x\}$, where $u \notin V(T)$.
- y_1, \ldots, y_ℓ : the neighbors of x in T.
- T_{y_i} : the maximal subtree of T rooted at y_i (withOUT x).
- $S^* = \{x_1, \dots, x_k\}$: the best strategy of u buying ≥ 2 edges.

There is no subtree T_{y_i} , for $1 \le i \le \ell$, which contains ALL vertices x_1, \ldots, x_k .

Key observation [Kariv & Hakimi 1979]

 $x \in V(T)$ is a 1-median of tree T iff $|V(T_{v_i})| < n/2$ for all i

There is no subtree T_{y_i} , for $1 \le i \le \ell$, which contains ALL vertices x_1, \ldots, x_k .

Key observation [Kariv & Hakimi 1979]

 $x \in V(T)$ is a 1-median of tree T iff $|V(T_{y_i})| \le n/2$ for all i.

- * S_u^1 : agent u's best strategy that buys ≥ 2 edges including one edge towards x.
- $\star S_u^2$: agent u's best strategy that buys ≥ 2 edges, but none of them towards x.

Let $x_j := \operatorname{arg\,min}_{v \in S^2_n} d_T(v, x)$.

If S_u^2 yields less cost for agent u than strategy S_u^1 , then x_j can NOT be a leaf of G_T^u .

- * S_u^1 : agent u's best strategy that buys ≥ 2 edges including one edge towards x.
- \star S_u^2 : agent u's best strategy that buys ≥ 2 edges, but none of them towards x.

Let $x_j := \operatorname{arg\,min}_{v \in S^2_n} d_T(v, x)$.

If S_u^2 yields less cost for agent u than strategy S_u^1 , then x_i can NOT be a leaf of G_T^u .

Proof of Theorem 2

Theorem 2

 $(G, \alpha) \in \mathsf{SUM}\text{-}\mathsf{GE}$ and G is a tree $\Rightarrow (G, \alpha) \in \mathsf{SUM}\text{-}\mathsf{NE}$.

We show that:

- an agent u can decrease her cost by a strategy-change in $(\mathcal{T}, \alpha) \in \mathsf{SUM}\text{-}\mathsf{GE}$
 - $\Rightarrow \exists$ an agent z who can decrease her cost by a greedy strategy-change.

Assume that u cannot decrease her cost by a greedy strategy-change, but by an arbitrary one.

- S^* : u's best possible arbitrary strategy.
 - Choose the one which buys the least number of edges.
- The only way u can possibly decrease her cost:
 removing j owned edges and building k edges simultaneously
 (k > j by Corollary 1).
 - u can NOT remove any owned edge withOUT purchasing edges.
 - u can NOT decrease her cost by purchasing k > 0 additional edges.

- Among the k new edges, none of them has an endpoint in T* (by Lemma 1).
- Removing j = 3 owned edges and building k = 4 edges of u simultaneously...
- By the pigeonhole principle, there must be a tree T_q in F^u where u buys ≥ 2 edges with strategy S^* .

- $x \in V(T_q)$: u has a unique edge $\{u, x\}$ of T connecting u to T_q .
- x_a: the new strategy of u which has minimum distance to x.
- By Lemma 3, ∃ x_b located at a different subtree (say rooted at y₂) different from the one where x_a is.
- x_a must not be a leaf node (by Lemma 4).
- $\exists z$, a neighbor of x_a : $d_T(z,x) > d_T(x_a,x)$.
- z can buy the edge {z, x_b}
 (imitating what u does).

- $x \in V(T_q)$: u has a unique edge $\{u, x\}$ of T connecting u to T_q .
- x_a: the new strategy of u which has minimum distance to x.
- By Lemma 3, ∃ x_b located at a different subtree (say rooted at y₂) different from the one where x_a is.
- x_a must not be a leaf node (by Lemma 4).
- $\exists z$, a neighbor of x_a : $d_T(z,x) > d_T(x_a,x)$.
- z can buy the edge $\{z, x_b\}$ (imitating what u does).

- $x \in V(T_q)$: u has a unique edge $\{u, x\}$ of T connecting u to T_q .
- x_a: the new strategy of u which has minimum distance to x.
- By Lemma 3, ∃ x_b located at a different subtree (say rooted at y₂) different from the one where x_a is.
- x_a must not be a leaf node (by Lemma 4).
- $\exists z$, a neighbor of x_a : $d_T(z,x) > d_T(x_a,x)$
- z can buy the edge $\{z, x_b\}$ (imitating what u does).

- $x \in V(T_q)$: u has a unique edge $\{u, x\}$ of T connecting u to T_q .
- x_a: the new strategy of u which has minimum distance to x.
- By Lemma 3, $\exists x_b$ located at a different subtree (say rooted at y_2) different from the one where x_a is.
- x_a must not be a leaf node (by Lemma 4).
- $\exists z$, a neighbor of x_a : $d_T(z,x) > d_T(x_a,x)$.
- z can buy the edge $\{z, x_b\}$ (imitating what u does).

- $x \in V(T_q)$: u has a unique edge $\{u, x\}$ of T connecting u to T_q .
- x_a: the new strategy of u which has minimum distance to x.
- By Lemma 3, ∃ x_b located at a different subtree (say rooted at y₂) different from the one where x_a is.
- x_a must not be a leaf node (by Lemma 4).
- $\exists z$, a neighbor of x_a : $d_T(z,x) > d_T(x_a,x)$.
- z can buy the edge $\{z, x_b\}$ (imitating what u does).

Non-Tree Networks in SUM Greedy Equilibria

The negative result

Theorem 3

There is a network in SUM-GE which is NOT in $\beta\text{-approximate SUM-NE}$ for $\beta<\frac{3}{2}.$

- A special family of graphs $\{G_k \mid k=1,2,\ldots\}$.
 - $V(G_k) = \{u, w, x, y_1, \dots, y_k\} \cup \{z_i^j \mid 1 \leq i, j \leq k\}.;$
 - u owns edges towards y_1, \ldots, y_k ;
 - w owns edges towards x and u;
 - each z_i^j owns an edge to x and y_i ;
 - y_1, \ldots, y_k form a clique (edge-ownership: arbitrary).
- First, we show that $(G_k, k+1) \in SUM\text{-}GE$.

- A special family of graphs $\{G_k \mid k=1,2,\ldots\}$.
 - $V(G_k) = \{u, w, x, y_1, \dots, y_k\} \cup \{z_i^j \mid 1 \leq i, j \leq k\}$.;
 - u owns edges towards y_1, \ldots, y_k ;
 - w owns edges towards x and u;
 - each z_i^j owns an edge to x and y_i ;
 - y_1, \ldots, y_k form a clique (edge-ownership: arbitrary).
- First, we show that $(G_k, k+1) \in SUM\text{-}GE$.

- No agent can buy an edge to decrease her cost.
 - G_k has diameter 2 & $\alpha = k+1 > 1$.
- Swapping any own edge cannot decrease one's cost either.
 - The number of neighbors stays the same.
- How about edge removals?

- No agent can buy an edge to decrease her cost.
 - G_k has diameter 2 & $\alpha = k+1 > 1$.
- Swapping any own edge cannot decrease one's cost either.
 - The number of neighbors stays the same.
- How about edge removals?

- No agent can buy an edge to decrease her cost.
 - G_k has diameter 2 & $\alpha = k+1 > 1$.
- Swapping any own edge cannot decrease one's cost either.
 - The number of neighbors stays the same.
- How about edge removals?

- No agent can buy an edge to decrease her cost.
 - G_k has diameter 2 & $\alpha = k+1 > 1$.
- Swapping any own edge cannot decrease one's cost either.
 - The number of neighbors stays the same.
- How about edge removals?

- No agent can buy an edge to decrease her cost.
 - G_k has diameter 2 & $\alpha = k+1 > 1$.
- Swapping any own edge cannot decrease one's cost either.
 - The number of neighbors stays the same.
- How about edge removals?

• For *u*:

- Deleting $\{u, y_i\}$ increases u's distance to y_i, z_i^1, \dots, z_i^k by one.
- For y_i's
 - Deleting $\{y_i, y_j\}$ increases y_i 's distance to $y_j, z_j^1, \ldots, z_j^{\kappa}$ by one.
- Similarly we can prove the case for w and all z_i's.

- For *u*:
 - Deleting $\{u, y_i\}$ increases u's distance to y_i, z_i^1, \dots, z_i^k by one.
- For y_i 's:
 - Deleting $\{y_i, y_j\}$ increases y_i 's distance to $y_j, z_j^1, \ldots, z_j^k$ by one.
- ullet Similarly we can prove the case for w and all z_i^j 's.

- For *u*:
 - Deleting $\{u, y_i\}$ increases u's distance to y_i, z_i^1, \dots, z_i^k by one.
- For y_i 's:
 - \bullet Deleting $\{y_i,y_j\}$ increases y_i 's distance to y_j,z_j^1,\dots,z_j^k by one.
- Similarly we can prove the case for w and all z_i^j 's.

- For *u*:
 - Deleting $\{u, y_i\}$ increases u's distance to y_i, z_i^1, \dots, z_i^k by one.
- For y_i 's:
 - Deleting $\{y_i,y_j\}$ increases y_i 's distance to y_j,z_j^1,\ldots,z_j^k by one.
- Similarly we can prove the case for w and all z_i^j 's.

- For *u*:
 - Deleting $\{u, y_i\}$ increases u's distance to y_i, z_i^1, \dots, z_i^k by one.
- For y_i's:
 - Deleting $\{y_i, y_j\}$ increases y_i 's distance to y_j, z_j^1, \dots, z_j^k by one.
- Similarly we can prove the case for w and all z_i^j 's.

- Now, consider a strategy-change of u: $S_u = \{y_1, \dots, y_k\} \rightsquigarrow S_u^* = \{x\}$.
- Easy to check that no other S'_u iwth $|S'_u| \leq 1$ outperforms S_u^* .
- Adding any edge $\{u, y_i\}$ decreases the cost by k+1 $(=\alpha)$
 - Adding an edge towards z_i^j is even worse.
- By Lemma 1, even more edges cannot decrease u's cost

- Now, consider a strategy-change of u: $S_u = \{y_1, \dots, y_k\} \rightsquigarrow S_u^* = \{x\}$.
- ullet Easy to check that no other S_u' iwth $|S_u'| \leq 1$ outperforms S_u^* .
- Adding any edge $\{u, y_i\}$ decreases the cost by $k + 1 \ (= \alpha)$
 - Adding an edge towards z_i^j is even worse.
- By Lemma 1, even more edges cannot decrease u's cos

- Now, consider a strategy-change of u: $S_u = \{y_1, \dots, y_k\} \rightsquigarrow S_u^* = \{x\}$.
- ullet Easy to check that no other S_u' iwth $|S_u'| \leq 1$ outperforms S_u^* .
- Adding any edge $\{u, y_i\}$ decreases the cost by $k + 1 (= \alpha)$.
 - Adding an edge towards z_i^j is even worse...
- By Lemma 1, even more edges cannot decrease u's cost

- Now, consider a strategy-change of u: $S_u = \{y_1, \dots, y_k\} \rightsquigarrow S_u^* = \{x\}$.
- ullet Easy to check that no other S_u' iwth $|S_u'| \leq 1$ outperforms S_u^* .
- Adding any edge $\{u, y_i\}$ decreases the cost by k + 1 (= α).
 - Adding an edge towards z_i^j is even worse...
- By Lemma 1, even more edges cannot decrease u's cost.

- Now, consider a strategy-change of u: $S_u = \{y_1, \dots, y_k\} \rightsquigarrow S_u^* = \{x\}$.
- ullet Easy to check that no other S_u' iwth $|S_u'| \leq 1$ outperforms S_u^* .
- Adding any edge $\{u, y_i\}$ decreases the cost by k + 1 (= α).
 - Adding an edge towards z_i^j is even worse...
- By Lemma 1, even more edges cannot decrease u's cost.

- S_u is agent u's best possible strategy not buying an edge towards x (proof omitted).
- $c(S_u, k)$: agent u's cost in $(G_k, k+1)$; $c(S_u^*, k)$: agent u's cost in $(G_k^*, k+1)$.

- S_u is agent u's best possible strategy not buying an edge towards x (proof omitted).
- $c(S_u, k)$: agent u's cost in $(G_k, k+1)$; $c(S_u^*, k)$: agent u's cost in $(G_k^*, k+1)$.

- $\lim_{k \to \infty} \frac{c(S_u, k)}{c(S_u^*, k)} = \lim_{k \to \infty} \frac{k\alpha + k + 1 + 2(k^2 + 1)}{\alpha + 2 + 2k^2 + 3k} = \lim_{k \to \infty} \frac{3k^2 + 2k + 3}{2k^2 + 4k + 3} = \frac{3}{2}.$
- For any $\beta < \frac{3}{2}$, there is a k' such that $c(S_u, k') > \beta \cdot c(S_u^*, k')$ \Rightarrow SUM-GE($G_{k'}, k' + 1$) is not a β -approximate SUM-NE for $\beta < 1$

- $\lim_{k \to \infty} \frac{c(S_u, k)}{c(S_u^*, k)} = \lim_{k \to \infty} \frac{k\alpha + k + 1 + 2(k^2 + 1)}{\alpha + 2 + 2k^2 + 3k} = \lim_{k \to \infty} \frac{3k^2 + 2k + 3}{2k^2 + 4k + 3} = \frac{3}{2}.$
- For any $\beta < \frac{3}{2}$, there is a k' such that $c(S_u, k') > \beta \cdot c(S_u^*, k')$ \triangleright SUM-GE $(G_{k'}, k' + 1)$ is not a β -approximate SUM-NE for $\beta < \frac{3}{2}$.

Good news

Theorem 4

Every network in SUM-GE is in 3-approximate SUM-NE.

 Proof: providing a "locality gap preserving" reduction to the Uncapacitated Metric Facility Location problem (UMFL).

- (G', α) : all edges owned by u are removed.
- Z: the set of vertices which own an edge towards u.
- $S := \{U \mid U \subseteq (V(G') \setminus \{u\} \text{ and } U \cap Z = \emptyset\}.$
 - u's strategies in (G', α) (not including multi-edges or self-loop).
- $F = C = V(G') \setminus \{u\}$ (F: facilities; C: clients).
 - The opening cost is $\mathbf{0}$ for each $f \in Z \cap F$, others have opening cost α .
- For every $i, j \in F \cup C$, $d_{ij} = d_{G'}(i, j) + 1$.

11 September 2015

- Any strategy $S \in \mathcal{S}$ of agent u in (G', α) corresponds to the solution of the UMFL instance I(G').
 - Exactly the facilities in $F_S = S \cup Z$ are opened
 - All clients are assigned to their nearest open facility.
- Every solution $F' = X \cup Z$, where $X \subseteq F \setminus Z$, for instance I(G') corresponds to agent u's strategy $X \in S$ in (G', α) .

- Any strategy $S \in \mathcal{S}$ of agent u in (G', α) corresponds to the solution of the UMFL instance I(G').
 - Exactly the facilities in $F_S = S \cup Z$ are opened
 - All clients are assigned to their nearest open facility.
- Every solution $F' = X \cup Z$, where $X \subseteq F \setminus Z$, for instance I(G') corresponds to agent u's strategy $X \in S$ in (G', α) .

- (G_5, α) : the network (G', α) where u has bought all edges towards $v \in S$.
- $cost(F_S)$: the cost of the solution F_S to instance I(G').

$$c_{u}(G_{S},\alpha) = \alpha|S| + \sum_{w \in V(G_{S}) \setminus \{u\}} \left(1 + \min_{x \in S \cup Z} d_{G'}(x,w)\right)$$

$$= \alpha|S| + 0|Z| + \sum_{w \in V(G_{S}) \setminus \{u\}} \min_{x \in S \cup Z} d_{xw}$$

$$= \alpha|F_{S} \setminus Z| + 0|Z| + \sum_{w \in C} \min_{x \in F_{S}} d_{xw} = cost(F_{S}).$$

Claim

If agent u plays $S \in \mathcal{S}$ and cannot decrease her cost by buying, deleting or swapping *one* edge in (G_S, α) , then the cost of the corresponding solution to instance I(G') cannot be strictly decreased by opening, closing or swapping *one* facility.

 Any UMFL solution that cannot be improved by opening, closing or swapping one facility is a 3-approximation of the optimal solution.

[Arya et al. SIAM J. Comput. 2004].

Concluding remarks

Concluding remarks

- PoA or PoS in SUM-GE?
- On dynamics in Selfish Network Creation (SPAA 2013).

Thank you.

Start (Kobe City Hall)

