

## Welcome to Marketing Research!





#### **Contact**

Daniel Winkler
Teaching and Research Associate @ IMSM
Room: D2.1.548
daniel.winkler@wu.ac.at
+43 1 31336 4888

Please feel free to contact me if you have any questions!

### Join us!



#### Facebook



Institute for Interactive Marketing & Social Media - WU WIEN @wwwienimsm

### **Twitter**



€ wu.ac.at/imsm





#### **Course Goals**



### After taking this course, you will...

- ...know why analytical skills are important
- ...know what you can and cannot achieve with data analytics
- ...have a good vocabulary for data analysis
- ...know when to use which technique of data analysis
- ...have confidence in your analyses
- ...know how to implement important techniques of data analysis in R
- ...be able to conduct your own research projects
- ...be able to manually make important calculations
- ...not be afraid of numbers & statistics any more (in case you were)
- ...feel the desire to learn more about analytics



# Analytics skills become more important for marketing managers



#### Areas of fundamental change for marketing over the next 5 years

% of 581 senior marketers around the world (2014)











### Increasing investments in marketing analytics



# What percent of your marketing budget do you spend on marketing analytics (...today, ... three years from now)?

324 senior marketers around the world (2018)





 $https://cmosurvey.org/wp-content/uploads/sites/15/2018/08/The\_CMO\_Survey-Highlights\_and\_Insights\_Report-Aug-2018.pdf$ 







# Reasons for the increasing relevance of data analytics



"Marketing researchers are becoming more involved in the decision process, whereas marketing managers are becoming more involved with research." (Malhotra 2010, p.44)



#### Reasons for this trend:

- Better training of marketing managers
- The Internet and other advances in technology
- Shift in marketing research paradigm in which marketing research is being undertaken on an ongoing basis

# Data analytics skills are a valuable asset on the job market



#### Factors preventing companies from using more marketing analytics

% of 388 top marketers in the US (March 2017)





Source: The CMO survey 2017



#### **Course structure & contents**



#### **Theory**

• Introduce the concepts and methods necessary for marketing research

#### **Practice**

- Introduce the statistical software necessary to conduct marketing research analyses
- Training exercises
- Presentations





#### **Course structure & contents**



#### **Theory**

Slides & class

- 1. Introduction
- 2. Foundations of inferential statistics
- The R environment
- 4. Hypothesis testing
- 5. Analysis of variance
- 6. chi-square test
- 7. Correlation and regression

#### **Practice**

Data, R-code, online tutorial

- DataCamp exercise
- R-code available at Learn@WU
- Online tutorial available at: short.wu.ac.at/MRDA







### **Course dates**



| Date & Time                              | Room     | Content                                                        | Reading (Script)                                                                |
|------------------------------------------|----------|----------------------------------------------------------------|---------------------------------------------------------------------------------|
| 04.03.2019<br>08:30 AM – 01:00 PM        | D2.0.330 | <ul><li>Introduction</li><li>Statistical inference</li></ul>   | Getting Started (1.)<br>Summarizing d. (3.1-3.2)<br>Intro. Stat. Inference (4.) |
| 11.03.2019<br>08:30 AM - 01:00 PM        | D4.0.047 | <ul><li>Introduction to R</li><li>Hypothesis testing</li></ul> | Hypothesis t. (5.1 – 5.3.1)                                                     |
| 18.03.2019<br>08:30 AM – 01:00 PM        | D2.0.330 | <ul><li>ANOVA</li><li>χ-square test</li></ul>                  | ANOVA (5.4.3.1)<br>Chi-sq. test (5.6.2)                                         |
| 25.03.2019<br>08:30 AM - 01:00 PM        | D2.0.330 | <ul><li>Correlation</li><li>Regression (1)</li></ul>           | Correlation (6.1)<br>Regression (6.2-6.2.1)                                     |
| 01.04.2019<br>08:30 AM - 01:00 PM        | D2.0.330 | Regression (2)                                                 | Regression (6.2.2, 6.4)                                                         |
| 29.04.2019<br><b>09:00 AM</b> – 01:00 PM | TC.2.01  | Exam                                                           |                                                                                 |





### Reading



#### If anything is unclear in the online script please contact me!

The script was developed for YOU so its only effective if its clear to you and we are actively working on improvements.

Since it was originally stated as required literature in the syllabus you can also use Andy Field's Discovering Statistics using R!

- The suggested chapters are:
  - 1-7
  - 9-10
  - 18
- However, this is **NOT** required to master the exam



### **Grading**



| Component                                                                                                                                              | Weight         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| DataCamp Exercises                                                                                                                                     | 4 x 2.5% = 10% |
| Assignments (best 3 count):  1) Statistical Inference 2) Introduction to R & Hypothesis testing 3) ANOVA & χ-square test 4) Correlation and Regression | 3 x 10% = 30%  |
| Exam (min. 30%)                                                                                                                                        | 60%            |

- → Overall minimum for a passing grade is 60%
- → Please solve the assignments individually (have a look at WU guidelines on plagiarism - they apply to all coursework!)



#### **Schedule**



- This course is worth 4 ECTS-credits
- Which means 4x25h = 100h of work
- ~25h you will spend in class
- The exam is 56 days (or 40 weekdays) from today
- So you should spend 75/56 ~ 1h 20min per day (75/40 ~ 1h 50min per Weekday) working on this course outside of class
- I spend this much time preparing & teaching
- So I ask you to spend this much time learning about marketing research!

# Introduction

- → What is data?
- · Categorical data
- **Continuous data**

## The marketing research process



#### **Problem** definition

What is the problem?

- Identify and clarify information needs
- Identify problems that can be solved with information from market research
- Define research problem, questions, and objectives
- Confirm information value

#### Research design

How can we solve the problem?

#### Decide on:

- Information needed
- Data sources (primary vs. secondary)
- Research approaches (qual. vs. quant.)
- Measurement & scaling procedures
- Ouestionnaire/ experimental design
- Sampling plan
- Plan of data analysis

#### **Data** collection

How can we obtain the required data?

- Collect data according to the research design (survey, observation, experiment)
- Internal execution or employ an external firm
- Definition of timelines (in particular for external service providers)

#### **Analyze** data

What are the results & implications?

### Identify recipients

Report

findings

What are the

implications?

- Define the type of result processing (e.g., presentation, report)
- Define communication contents
- Identify the level of detail (e.g., methods)
- Formulate conclusions
- Prepare finalized report
- Monitoring of the use of results

Definition of the final

analysis (in particular

for external service

Infer answers and

Analyze data

subjectively

providers)

implications

statistically or

products of data







### Levels of measurement



### Categorical (Non-metric | Qualitative)

- Nominal (e.g., ID numbers, eye color)
- Ordinal (e.g., education, height {tall, medium, short})

### Continuous (Metric | Quantitative)

- Interval (e.g., calendar dates, temperature in Celsius and Fahrenheit)
- Ratio (e.g., age, mass, length, temperature in Kelvin)



# Levels of measurement: Categorical (non-metric) variables



**Nominal** 

- Numbers only serve as labels for identification and categorization
- Numbers do not reflect the amount of the characteristic possessed by the objects
- Called "binary" for two categories
- Only permissible operation is counting

E.g., Starting numbers in a race







/

ΤТ

3

**Ordinal** 

- Numbers indicate the relative position of objects
- But not the magnitude of difference between them
- Besides counting, less than/greater than relations are possible
- Also statistics based on centiles, e.g. percentile, quartile, median

E.g., Order of boats in finish







1st place

2nd place

3rd place







# Levels of measurement: Continuous (metric) variables



Interval

- Differences between objects can be compared (equal intervals)
- But zero point is arbitrary
- Not meaningful to take ratios of scale values
- In addition, statistics such as range, mean, and standard deviation can be computed

E.g., Performance rating on a 0 to 10 scale







9.6

8.4

4.2

Ratio

- Possesses all properties of nominal, ordinal and interval scales
- Has an absolute zero point
- Meaningful to compute ratios of scale values
- All statistical techniques can be applied to ratio data

E.g., Time to finish in minutes







7.1

14.2

15.2

 $http://wwwa.jura.uni-tuebingen.de/{\sim}s-krp2/Rennen2013/CIMG9891.htm$ 







# Scales types and permissible statistics



|             | Scale    | Level of                                       | Marketing example                                      | Permissible statistics              |                                                                                   |
|-------------|----------|------------------------------------------------|--------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------|
|             |          | information [allowed operators]                |                                                        | Descriptive                         | Inferential                                                                       |
|             | Nominal  | Description<br>(counting)<br>[=,≠]             | Gender, classification of retail outlet types          | Cell count,<br>mode,<br>percentages | Chi-square test, binomial test                                                    |
| )<br>)<br>) | Ordinal  | Order among categories (ranking) [=,≠,<,>]     | Rank order of favorite<br>TV program                   | Percentile,<br>median               | Rank order correlation,<br>non-parametric tests (e.g.,<br>Wilcoxon)               |
| )<br>)<br>) | Interval | Distance (equal intervals) [=,≠,<,>, +,-]      | Attitudes, opinions                                    | Mean, standard deviation            | Correlations, parametric tests (e.g., <i>t</i> -tests), ANOVA, regression, factor |
| ;<br>)<br>) | Ratio    | Origin (meaningful zero) [=,≠,<,>,<br>+,-,*,/] | Income, sales, market<br>share, willingness-to-<br>pay |                                     | analysis                                                                          |

- → Permissible inferential statistics depend on whether the scale is used as the dependent or as the independent variable
- → For a detailed overview see: <a href="https://stats.idre.ucla.edu/other/mult-pkg/whatstat/">https://stats.idre.ucla.edu/other/mult-pkg/whatstat/</a>







Categorical

Continuous

# Introduction

- What is data?
- Categorical data
- **Continuous data**

### Frequency Distribution - The Data



| > 1 |                 | :("ipaddress", "ex |               |      | knowledge", | "group")] |
|-----|-----------------|--------------------|---------------|------|-------------|-----------|
|     | ipaddress       | experience overal  | l_knowledge g | roup |             |           |
| 1   | 188.23.190.194  | 3                  | 2             | 1    |             |           |
| 2   | 93.10.250.2     | 3                  | 2             | 1    |             |           |
| 3   | 91.0.18.86      | 3                  | 2             | 2    |             |           |
| 4   | 37.116.255.55   | 1                  | 3             | 1    |             |           |
| 5   | 178.165.131.208 | 1                  | 3             | 1    |             |           |
| 6   | 212.28.68.81    | 3                  | 1             | 1    |             |           |
| 7   | 83.7.80.55      | 1                  | 3             | 1    |             |           |
| 8   | 213.147.160.138 | 3                  | 1             | 2    |             |           |
| 9   | 80.110.91.14    | 3                  | 2             | 1    |             |           |
| 10  | 93.229.85.17    | 1                  | 2             | 1    |             |           |
| 11  | 178.115.131.225 | 1                  | 2             | 2    |             |           |
| 12  | 62.178.118.68   | 1                  | 2             | 2    |             |           |
| 13  | 62.46.39.117    | 1                  | 2             | 1    |             |           |
| 14  | 92.231.231.64   | 2                  | 2             | 2    |             |           |
| 15  | 77.119.129.58   | 4                  | 2             | 2    |             |           |
| 16  | 80.110.92.227   | 1                  | 2             | 1    |             |           |
| 17  | 93.44.84.39     | 1                  | 2             | 1    |             |           |
| 18  | 121.102.95.180  | 3                  | 2             | 2    |             |           |
| 19  | 89.104.11.34    | 3                  | 2             | 1    |             |           |
| 20  | 80.109.54.154   | 1                  | 1             | 2    |             |           |
| 21  | 82.218.163.42   | 1                  | 2             | 1    |             |           |
| 22  | 88.128.80.105   | 1                  | 4             | 2    |             |           |
| 23  | 213.225.0.210   | 1                  | 2             | 1    |             |           |
| 24  | 90.110.104.106  | 4                  | 2             | 1    |             |           |
| 25  | 213.225.8.16    | 1                  | 2             | 2    |             |           |
| 26  | 62.46.232.14    | 1                  | 2             | 2    |             |           |
| 27  | 80.110.104.238  | 3                  | 2             | 2    |             |           |
| 28  | 178.190.73.145  | 1                  | 2             | 1    |             |           |
| 29  | 91.141.0.1      | 1                  | 2             | 1    |             |           |
| 30  | 46.125.250.96   | 2                  | 4             | 2    |             |           |

- → Arranged in a grid ("Matrix")
- → Each row is an observation
- → Each column a variable ("vector")
- → Value in cell [i,j] is the answer to the i-th question given by the jth participant of the survey
  - e.g. test\_data[6, 3] = 1 test\_data[1, 2] = 3
- → In R we can use both indices and names of rows/columns
- Matrices have 2 indices and vectors have one index
   e.g. x[i]: i-th element of vector x

# **Frequency distribution**



| Value label  | Value | Frequency (N) | Percentage | Cumulative percentage |
|--------------|-------|---------------|------------|-----------------------|
| None         | 1     | 10            | 18.18      | 18.18                 |
| Basic        | 2     | 32            | 58.18      | 76.36                 |
| Intermediate | 3     | 9             | 16.36      | 92.73                 |
| Advanced     | 4     | 4             | 7.27       | 100.00                |
| Proficient   | 5     | 0             | 0          | 100.00                |
| Total        |       | 55            | 100.0      |                       |

The frequency distribution shows how many time each score occurs

# Bar charts for categorical data



| Value label  | Value | Frequency (N) |
|--------------|-------|---------------|
| None         | 1     | 10            |
| Basic        | 2     | 32            |
| Intermediate | 3     | 9             |
| Advanced     | 4     | 4             |
| Proficient   | 5     | 0             |
| Total        |       | 55            |







# Continuous variables

# Introduction

- What is data?
- Categorical data
- Continuous data

# Visualization in a histogram



| >  | head(adv | /_data, 30) |
|----|----------|-------------|
|    | sales    | advertising |
| 1  | 133553   | 1841        |
| 2  | 119778   | 1782        |
| 3  | 147097   | 1782        |
| 4  | 55589    | 573         |
| 5  | 109886   | 1877        |
| 6  | 150285   | 1907        |
| 7  | 108779   | 1719        |
| 8  | 142993   | 2069        |
| 9  | 87877    | 938         |
| 10 | 106663   | 1544        |
| 11 | 105976   | 1096        |
| 12 | 96569    | 1087        |
| 13 | 128616   | 1853        |
| 14 | 104664   | 1072        |
| 15 | 122913   | 1263        |
| 16 | 125959   | 1481        |
| 17 | 140737   | 1743        |
| 18 | 126234   | 1405        |
| 19 | 95547    | 1337        |
| 20 | 163220   | 2126        |
| 21 | 123908   | 1558        |
| 22 | 117765   | 1344        |
| 23 | 117213   | 1391        |
| 24 | 125994   | 2299        |
| 25 | 96809    | 1433        |
| 26 | 82472    | 981         |
| 27 | 164035   | 1962        |
| 28 | 136468   | 1707        |
| 29 | 132531   | 1588        |
| 30 | 87896    | 412         |



### **Measures of location**



| Statistic | Description                                                                                                                              | Definition                                                                                                                         |  |  |  |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Mean      | <ul> <li>The average</li> <li>Sum up all elements and divide<br/>by the number of elements</li> </ul>                                    | $\frac{1}{X} = \frac{\sum_{i=1}^{n} X_{i}}{n}$ $X_{i}: \text{Observed value of the variable X}$ $n: \text{number of observations}$ |  |  |  |  |
| Mode      | <ul><li>Value that occurs most frequently</li><li>Highest peak of the distribution</li></ul>                                             |                                                                                                                                    |  |  |  |  |
| Median    | <ul> <li>Middle value when the data are<br/>arranged in ascending or<br/>descending order</li> <li>50<sup>th</sup> percentile</li> </ul> |                                                                                                                                    |  |  |  |  |

# **Measures of dispersion**



| Statistic              | Description                                                                | Definition                                                                     |
|------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Range                  | The difference between the<br>largest and smallest values in<br>the sample | $Range = X_{largest} - X_{smallest}$                                           |
| Interquartile<br>range | ■ The range of the middle 50% of scores                                    | lower 25% Interquartile range upper 25%  22 40 53 57 93 98 103 108 116 121 252 |
| Variance               | ■ The mean squared deviation of all the values of the mean                 | $s^{2} = \frac{1}{n-1} * \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$                 |
| Standard<br>deviation  | ■ The square root of the variance                                          | $s_x = \sqrt{s^2}$                                                             |





# Measures of dispersion





### **In-class exercise**



A sample of 10 adults was asked to report the number of hours they spent on the Internet the previous month.

### Results are given:

| Observations           | 1 | 2 | 3  | 4 | 5  | 6  | 7 | 8 | 9 | 10 |
|------------------------|---|---|----|---|----|----|---|---|---|----|
| Time spent on Internet | 0 | 7 | 12 | 0 | 33 | 14 | 8 | 0 | 9 | 22 |

# **Statistical Inference**

- \*Samples vs. Population
- Randomness & Probability
- **Confidence Intervals**

### Statistical inference



- One important goal in marketing is to calculate statistics (e.g., mean, proportion) and use them to estimate the corresponding true population values.
- Statistical inference is the process of generalizing the sample results to the population results.



# **Samples vs. Populations**



| Variable           | Sample statistic                                  | Population parameter                               |
|--------------------|---------------------------------------------------|----------------------------------------------------|
| Size               | n                                                 | N                                                  |
| Mean               | $ar{x} = rac{1}{n} \sum_{i=1}^n x_i$             | $\mu = rac{1}{N} \sum_{i=1}^N x_i$                |
| Variance           | $s^2 = rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2$ | $\sigma^2 = rac{1}{N} \sum_{i=1}^N (x_i - \mu)^2$ |
| Standard deviation | $s=\sqrt{s^2}$                                    | $\sigma=\sqrt{\sigma^2}$                           |
| Standard error     | $SE_{ar{x}}=rac{s}{\sqrt{n}}$                    | $\sigma_{ar{x}}=rac{\sigma}{\sqrt{n}}$            |

## Samples vs. populations



### > Sample statistics

 Mean and SD describe only the sample from which they were calculated

### Population parameters

 Mean and SD are intended to describe the entire population (very rare in marketing)

### Sample to Population

 Mean and SD are obtained from a sample, but are used to estimate the mean and SD of the population (very common in marketing)



# **Statistical Inference**

- Samples vs. Population
- \* Randomness & Probability
- **Confidence Intervals**

# Random = An event with an unknown outcome



Even though you may know all **possible** outcomes for an event (e.g., dice rolls: 1 through 6, coins: heads or tails), you never know which of those outcomes will occur



- Random = An event with an unknown outcome
- Lots of random events over time = Probability





Outcomes from a multitude of random events will converge on some expected value - even when the individual outcomes are random (Law of Large Numbers)

Radziwill, N.M. (2015): Statistics (The Easier Way) With R, Lapis Lucera.



#### **Random Variables & Probability Distributions**



- Random Variable: Outcome we express as a number
  - e.g. Number of heads when flipping a coin
  - e.g. Avg. Music listening time per week

#### Probability distribution:

Assigns probability to each possible value of a random variable

- e.g. p(heads) = 50% and p(tails) = 50% for a fair coin
- e.g. p(listening hours <10) = 70% and p(listening hours  $\ge$  10) = 30%
- Many random variables (approx.) follow known probability distributions
  - e.g. coin toss → binomial distribution
  - e.g. listening time → gamma distribution (?)
    - Technically gamma is defined from 0 to infinity but infinity hours?
- If you are very interested



#### An example:



You own a marketing firm in Vienna specialized in online media. A new streaming service, Pear Music, wants to enter the Austrian market. In order to do so they want to assess the market of cool kids so naturally they look at WU. Initially they just want to assess the market and know **how much music is consumed at WU?** 



### The population



#### Histogram of listening times

Population mean ( $\mu$ ) = 49. 93; population standard deviation ( $\sigma$ ) = 10. 02



- Example: music listening times of students
- Assume we have information of every student (population)
- The population mean and standard deviation are known





### Taking samples from the population



#### Distribution of listening times in four different samples









- In reality, we only have access to one sample (say, 100 students)
- We use this sample to generalize to the population
- However, each sample will be different, so there is uncertainty about how close our sample statistic actually is to the population parameter of interest





### Sampling distribution





- Assume that we would be able to repeatedly take random samples, consisting of 100 students each, from the population
- When we plot a histogram of all sample means that we would get, this tells us something about the distribution of means that we could potentially aet
- The mean of this distribution is (in the limit) the same as the population mean
- The distribution of sample means follows a normal distribution
- It follows that the sample mean is a good estimate of the population mean







### Central limit theorem



#### Distribution of sample means from gamma population



#### **Central Limit Theorem:**

the distribution of a sample mean will be approximately normal, provided the sample size is sufficiently large (e.g., >40)







# **#DEMO**

### Standard error of the mean



#### Distribution of sample means from gamma population

count

500

250 -



Again, the standard error would tell us something about the precision of our estimate

24

20

means

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

$$\sigma_{\bar{x}} = \frac{14.15}{\sqrt{100}} = 1.40$$





count

40

20

means

### Two types of variation





### Using what we actually know



- So far we have assumed to know the population standard deviation ( $\sigma$ )
- This an unrealistic assumption since we do not know the entire population
- The best guess for the population standard deviation we have is the sample standard deviation (s)
- Thus, the **standard error**  $(\sigma_x)$  of the mean is usually estimated from the sample standard deviation:

$$\sigma_{\bar{x}} \approx SE_{\bar{x}} = \frac{s}{\sqrt{n}}$$







## Question



#### **Natural variation**

(random sample)



 $\bar{X} = 21.70, s = 15.88$ 

- Say, you wanted to guess the **listening time** of a new student
- What would be your guess?
- How certain are you?

# **Statistical Inference**

- Samples vs. Population
- Randomness & Probability
- **→ Confidence Intervals**

#### Point estimate vs. interval estimate



- We measure statistics from samples in order to determine parameters of populations
- The average value from your sample only provides a **guess** of what the real population parameter is
- The next time you collect the same size sample, you could get a different average (that's perfectly normal → sampling variation)
- **Point estimate**: Report the average from our sample: The average listening time is 19.79 hours
- ➤ Interval estimate: We are 95% confident that the true listening time is between 18.59 hours and 24.81 hours.



### The Big Question



- Given our (one) sample and what we just learned about the theoretical distribution of sample means, within which range will the population mean likely be?
- We need:
  - ✓ An estimate for the population mean → Sample mean
  - A margin of error for the estimate that indicates the range
    - We have:
      - Sample standard deviation (s)
      - Sample size (n)
- Using the t-distribution we can assign the probability of observing a certain range of values

 The range of values around the sample mean that contains the population mean most likely depends on

EQUIS

Thanks to the Central Limit

follow a t-distribution (Normal

distribution with sample estimate

Theorem we know that all sample means combined

for standard deviation)

AACSB



#### **Confidence Interval**



- What does most likely mean?
  - By convention 95% → if we choose this range, in 95% of the samples the population mean is captured within it.
  - But you can argue for a different value e.g. 99% (we will discuss the choices later when talking about hypothesis testing)
  - I personally have never seen serious work with a confidence interval below 90%

#### **Confidence Interval**



- The area under any probability density integrates (really just a fancy sum) to 1
- The graph on the right is scaleds.t. mean = 0 and SE = 1
- That is useful to be able to use the same distribution to calculate the CI all the time
- We just scale it to our sample using mean and SE

 $\bar{x} \pm t \times SE_{\bar{x}} \rightarrow t \approx 2 \text{ for } 95 \% CI$ 

In R use e.g.
qt(c(0.025,0.975), n-1)
or go to:



http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf



### Interpretation of confidence intervals



For a certain percentage of times (e.g., 95%), the true value of the population mean will fall within these limits (⇒ confidence level).

"If we'd collected 100 samples, calculated the mean and then calculated a confidence interval for that mean, then for 95 of these samples, the confidence intervals we constructed would contain the true value of the mean in the population."

Field, A. et al. (2012). Discovering Statistics Using R. Sage.

http://rpsychologist.com/d3/CI/





