LOGIKA DAN ALGORITMA

DASAR - DASAR TEORI GRAF

Kelahiran Teori Graf

Sejarah Graf: masalah jembatan Königsberg (tahun 1736)

Gbr 1. Masalah Jembatan Königsberg

 $Graf\ yang\ merepresentasikan\ jembatan\ K\"{o}nigsberg:$

Simpul (*vertex*) → menyatakan daratan

Ruas (*edge*) → menyatakan jembatan

Bisakah melalui setiap jembatan tepat sekali dan kembali lagi ke tempat semula?

• Perjalanan Euler adalah :

Perjalanan dari suatu simpul kembali ke simpul tersebut dengan melalui setiap ruas tepat satu kali.

- Perjalanan Euler akan terjadi, jika:
 - Graf terhubung.
 - Banyaknya ruas yang datang pada setiap simpul adalah genap.

- Definisi Graf
 - Graf *G* (*V*, *E*), adalah koleksi atau pasangan dua himpunan
 - (1) Himpunan *V* yang elemennya disebut *simpul* atau *titik*, atau *vertex*, atau *point*, atau *node*.
 - (2) Himpunan E yang merupakan pasangan tak terurut dari simpul, disebut *ruas* atau *rusuk*, atau *sisi*, atau *edge*, atau *line*.
- Banyaknya simpul (anggota V) disebut *order* Graf G, sedangkan banyaknya ruas (anggota E) disebut *ukuran (size)* Graf G

Gbr 2. (G_1) graf sederhana, (G_2) multigraf, dan (G_3) multigraf

Pada Gbr 2, G₁ adalah graf dengan

$$V = \{1, 2, 3, 4\}$$

$$E = \{(1, 2), (1, 3), (2, 3), (2, 4), (3, 4)\}$$

G₂ adalah graf dengan

$$V = \{ 1, 2, 3, 4 \}$$

$$E = \{ (1, 2), (2, 3), (1, 3), (1, 3), (2, 4), (3, 4), (3, 4) \}$$

$$= \{ e_1, e_2, e_3, e_4, e_5, e_6, e_7 \}$$

*G*₃ adalah graf dengan

$$V = \{ 1, 2, 3, 4 \}$$

$$E = \{ (1, 2), (2, 3), (1, 3), (1, 3), (2, 4), (3, 4), (3, 4), (3, 3) \}$$

$$= \{ e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8 \}$$

- Pada G_2 , sisi $e_3 = (1, 3)$ dan sisi $e_4 = (1, 3)$ dinamakan **ruas berganda** atau **ruas sejajar** (*multiple edges* atau *paralel edges*), karena kedua sisi ini menghubungi dua buah simpul yang sama, yaitu simpul 1 dan simpul 3.
- Pada G_3 , sisi e_8 = (3, 3) dinamakan **gelung** atau **self-loop** karena ia berawal dan berakhir pada simpul yang sama.

JENIS - JENIS GRAF

- Berdasarkan ada tidaknya gelang atau sisi ganda pada suatu graf, maka graf digolongkan menjadi dua jenis:
 - 1. Graf sederhana (simple graf).

Graf yang tidak mengandung gelang maupun sisi-ganda dinamakan graf sederhana.

2. **Graf tak-sederhana** (unsimple-graf/multigraf).

Graf yang mengandung ruas ganda atau gelung dinamakan graf tak-sederhana (unsimple graf atau multigrapf).

- Berdasarkan jumlah simpul pada suatu graf, maka secara umum graf dapat digolongkan menjadi dua jenis:
 - 1. **Graf berhingga** (limited graf)

Graf berhingga adalah graf yang jumlah simpulnya, *n*, berhingga.

2. **Graf tak-berhingga** (unlimited graf)

Graf yang jumlah simpulnya, *n*, tidak berhingga banyaknya disebut **graf tak- berhingga**.

- Berdasarkan orientasi arah pada sisi, maka secara umum graf dibedakan atas 2 jenis:
 - 1. **Graf tak-berarah** (undirected graf)

Graf yang sisinya tidak mempunyai orientasi arah disebut graf tak-berarah.

2. **Graf berarah** (*directed graf* atau *digraf*)

Graf yang setiap sisinya diberikan orientasi arah disebut sebagai graf berarah. Dua buah graf pada Gbr 3 adalah graf berarah.

Gbr 3 (a) graf berarah, (b) graf-ganda berarah

TERMINOLOGI GRAF

• Subgraf dan Komplemen Subgraf

Misalkan G = (V, E) adalah sebuah graf. $G_1 = (V_1, E_1)$ adalah **subgraf** (*subgraf*) dari G jika $V_1 \subseteq V$ dan $E_1 \subseteq E$.

Komplemen dari subgraf G_1 terhadap graf G adalah graf G_2 = (V_2 , E_2) sedemikian sehingga E_2 = E - E_1 dan V_2 adalah himpunan simpul yang anggota-anggota E_2 bersisian dengannya.

• Subgraf yang Direntang (Spanning Subgraf)

Apabila $\underline{E'}$ mengandung semua ruas di \underline{E} yang kedua ujungnya di $\underline{V'}$, maka $\underline{G'}$ adalah Subgraf yang dibentuk oleh $\underline{V'}$ (**Spanning Subgraph**)

Contoh:

• Derajat (Degree)

Derajat suatu simpul d(v) adalah banyaknya ruas yang menghubungkan suatu simpul.

Sedangkan Derajat Graf G adalah jumlah derajat semua simpul Graf G.

graf
$$G_1$$
 : $d(1) = d(4) = 2$
 $d(2) = d(3) = 3$

graf
$$G_3$$
: $d(5) = 0$ \rightarrow simpul terpencil / simpul terisolasi $d(4) = 1$ \rightarrow simpul bergantung / simpul akhir

graf
$$G_2$$
 : $d(1) = 3$ \rightarrow bersisian dengan ruas ganda $d(3) = 4$ \rightarrow bersisian dengan self-loop (derajat sebuah self-loop = 2)

Jumlah derajat semua simpul Graf (derajat Graf) = dua kali banyaknya ruas Graf (size/ukuran Graf).

• Ketetanggaan (Adjacent)

Dua buah simpul dikatakan bertetangga bila keduanya terhubung langsung.

graf G_1 : simpul 1 bertetangga dengan simpul 2 dan 3, simpul 1 tidak bertetangga dengan simpul 4.

• Bersisian (*Incidency*)

Untuk sembarang ruas $e = (v_i, v_k)$ dikatakan :

e bersisian dengan simpul v_j , atau e bersisian dengan simpul v_k

graf G_1 : ruas (2, 3) bersisian dengan simpul 2 dan simpul 3, ruas (2, 4) bersisian dengan simpul 2 dan simpul 4, tetapi ruas (1, 2) tidak bersisian dengan simpul 4.

• Simpul Terpencil (*Isolated Vertex*)

Simpul terpencil ialah simpul yang tidak mempunyai sisi yang bersisian dengannya. graf G_3 : simpul 5 adalah simpul terpencil.

• Graf Kosong (null graf atau empty graf)

Graf yang himpunan sisinya merupakan himpunan kosong (N_n). Graf N_5 :

OPERASI GRAF

$$G1 = (E1,V1)$$
 , $G2 = (E2,V2)$

- 1. Gabungan G1 \cup G2 adalah graf dgn himpunan ruasnya E1 \cup E2.
- 2. Irisan G1 \cap G2 adalah graf dgn himpunan ruasnya **E1** \cap **E2**.
- 3. Selisih G1 G2 adalah graf dgn himpunan ruasnya **E1 E2**.
- 4. Selisih G2 G1 adalah graf dgn himpunan ruasnya **E2 E1**.
- 5. Penjumlahan ring G1 \oplus G2 adalah graf dgn himpunan ruasnya (E1 \cup E2) (E1 \cap E2) atau (E1 E2) \cup (E2 E1).

Contoh:

G1 ⊕ **G**2

DEKOMPOSISI

Suatu graf G dikatakan dikomposisikan menjadi K dan L bila G = $K \cup L$ dan $K \cap L = \emptyset$ Contoh :

PENGHAPUSAN (DELETION)

Penghapusan dapat dilakukan pada simpul ataupun ruas.

1) Penghapusan Simpul.

Notasinya : G – $\{V\}$

Contoh:

Penghapusan Simpul V2

2) Penghapusan Ruas.

Notasinya : $G - \{e\}$

Contoh:

PEMENDEKKAN (SHORTING)

Pemendekan/Shorting adalah menghapus simpul yang dihubungkan oleh 2 ruas (simpul berderajat 2), lalu menghubungkan titik-titik ujung yang lain dari kedua ruas tersebut.

Contoh:

pemendekan terhadap simpul A dan C

KETERHUBUNGAN

• Perjalanan (Walk)

Perjalanan atau walk pada suatu Graf G adalah barisan simpul dan ruas bergantiganti

 v_1 , e_1 , v_2 , e_2 , ..., e_{n-1} , $v_n \rightarrow$ ruas e_i menghubungkan v_i dan v_{i+1} dapat hanya ditulis barisan ruas atau barisan simpul saja.

$$e_1, e_2, ..., e_{n-1}$$
 atau $v_1, v_2, ..., v_{n-1}, v_n$

Dalam hal ini, v₁ disebut simpul awal, dan v_n disebut simpul akhir.

Perjalanan disebut perjalanan tertutup bila $v_1 = v_n$, sedangkan Perjalanan disebut perjalanan tebuka yang menghubungkan v_1 dan v_n . **Panjang Perjalanan** adalah banyaknya ruas dalam barisan tersebut.

• Lintasan (Trail)

Lintasan adalah Walk dengan semua ruas dalam barisan adalah berbeda.

• Jalur (Path)

Jalur adalah Walk yang semua simpul dalam barisan adalah berbeda.

• Sirkuit (*Cycle*)

Lintasan yang berawal dan berakhir pada simpul yang sama disebut **sirkuit** atau **siklus**. **Panjang sirkuit** adalah jumlah ruas dalam sirkuit tersebut.

Graf yang tidak mengandung sirkuit disebut acyclic.

Contoh:

Suatu graf G disebut terhubung jika untuk setiap simpul dari graf terdapat jalur yang menghubungkan kedua simpul tersebut.

Subgraf terhubung suatu graf disebut komponen dari G bila subgraf tersebut tidak terkandung dalam subgraf terhubung lain yang lebih besar.

Contoh:

Gambar : Graf G

Rank (G) =
$$n - K$$

Nullity (G) = $e - (n - k)$

Dimana: n: Order graf G

e : Size graf G

K: banyaknya komponen graf G

Jarak antara 2 simpul dalam graf G adalah panjang jalur terpendek antara ke 2 simpul tersebut.

Diameter suatu graf terhubung G adalah maksimum jarak antara simpul G.

Jarak maksimum dalam graf G adalah 3 (yaitu antara A – G atau B - G ataupun C - G), jadi diameter = 3

GRAF BERLABEL

Graf berlabel/ berbobot adalah graf yang setiap ruasnya mempunyai nilai/bobot berupa bilangan non negatif.

Contoh:

ISOMORFISMA

Dua buah graf atau lebih yang mempunyai jumlah ruas, simpul, dan derajat yang sama. Contoh :

HOMOMORFISMA

Dua buah graf aau lebih yang penggambarannya sama, tetapi jumlah ruas dan simpulnya berbeda.

Contoh:

BEBERAPA GRAF SEDERHANA KHUSUS

a. Graf Lengkap (Complete Graph)

Graf lengkap ialah graf sederhana yang setiap simpulnya mempunyai sisi ke semua simpul lainnya. Graf lengkap dengan n buah simpul dilambangkan dengan K_n . Jumlah sisi pada graf lengkap yang terdiri dari n buah simpul adalah n(n-1)/2.

b. Graf Lingkaran

Graf lingkaran adalah graf sederhana yang setiap simpulnya berderajat dua. Graf lingkaran dengan n simpul dilambangkan dengan C_n .

c. Graf Teratur (Regular Graphs)

Graf yang setiap simpulnya mempunyai derajat yang sama disebut **graf teratur**. Apabila derajat setiap simpul adalah r, maka graf tersebut disebut sebagai graf teratur derajat r. Jumlah sisi pada graf teratur adalah nr/2.

d. Graf Bipartisi (Bipartite Graph)

Graf G yang himpunan simpulnya dapat dipisah menjadi dua himpunan bagian V_1 dan V_2 , sedemikian sehingga setiap sisi pada G menghubungkan sebuah simpul di V_1 ke sebuah simpul di V_2 disebut **graf bipartisi** dan dinyatakan sebagai $G(V_1, V_2)$. Dilambangkan K_{MN} .

e. Graf Platonik

Graf yang berasal dari penggambaran bangun ruang, dimana titik sudut merupakan simpul, dan rusuk meruakan ruas.

