Instituto Superior de Engenharia de Coimbra DEPARTAMENTO DE FÍSICA E MATEMÁTICA

ANÁLISE MATEMÁTICA I - Engenharia Informática 2022-23

4.2 Integrais impróprios

Aulas TP+P: Folha 5

Integrais em intervalos não limitados e/ou de funções não limitadas

- Integral **indefinido** (= primitiva): $\int f(x) dx$
- Integral **definido**: $\int_a^b f(x) dx$ é um integral definido se:
 - i) $D_{int} = [a, b] \subseteq D_f$;
 - ii) $D_{int} = [a, b]$ é limitado;
 - iii) f(x) é contínua no $D_{int} = [a, b]$ ou, pelo menos, o conjunto de pontos onde a função não é contínua ou não está definida é finito e a função é **limitada** (ie, os limites laterais nesses pontos são finitos).

Nota: Toda a função contínua num intervalo fechado e limitado [a, b] é também limitada.

- Integral **impróprio**: $\int_a^b f(x) dx$ é um integral impróprio se:
 - i) $D_{int} = [a, b] \subseteq D_f;$
 - ii) $D_{int} = [a, b]$ NÃO é limitado. $\longrightarrow \int_{-\infty}^{b} f(x) dx$, $\int_{a}^{+\infty} f(x) dx$ ou $\int_{-\infty}^{+\infty} f(x) dx$
 - iii) o conjunto de pontos de $D_{int}=[a,b]$ onde a função não é contínua ou não está definida é finito, mas a função NÃO é limitada. $\longrightarrow \lim_{x\to c} f(x)=\infty$, em algum c no intervalo [a,b]
- 1. Considere as funções $f(x) = \frac{1}{\sqrt{x}}$ e $g(x) = \frac{1}{x^2}$.

(a) Classifique, justificando, os seguintes integrais:

(I)
$$\int_{-2}^{-1} f(x) dx$$
; (II) $\int_{0}^{1} f(x) dx$; (III) $\int_{1}^{2} f(x) dx$; (IV) $\int_{1}^{+\infty} f(x) dx$; (V) $\int_{0}^{+\infty} f(x) dx$.

- (b) Determine, justificando, a natureza do integral impróprio de 1ª espécie.
- (c) Determine, justificando, a natureza do integral impróprio de 2^a espécie.
- (d) Determine, justificando, a natureza do integral impróprio de 3ª espécie.
- (e) Repita as alíneas (a)-(d), relativamente à função g(x).

2. Considere o seguinte gráfico, da função $f(x) = \frac{x-5}{x^2-25}$.

(a) Classifique, justificando, os seguintes integrais:

(I)
$$\int_{-\pi}^{0} \frac{x-5}{x^2-25} dx$$
;

(II)
$$\int_{5}^{10} \frac{x-5}{x^2-25} dx$$
;

(I)
$$\int_{-5}^{0} \frac{x-5}{x^2-25} dx$$
; (II) $\int_{5}^{10} \frac{x-5}{x^2-25} dx$; (III) $\int_{10}^{+\infty} \frac{x-5}{x^2-25} dx$.

- (b) No que se segue, note que $\int \frac{x-5}{x^2-25} dx = \ln|x+5| + c$, $c \in \mathbb{R}$.
 - i. Determine, justificando, a natureza do integral impróprio de 1ª espécie.
 - ii. Determine, justificando, a natureza do integral impróprio de 2ª espécie.
- 3. Considere a região $\mathcal{A} = \{(x,y) \in \mathbb{R}^2 : y \leq e^{-x} \land x \geq (y-1)^2 \land y \geq 0\}$.
 - (a) Represente graficamente a região A.
 - (b) Explicite, usando integrais, uma expressão que defina a área de $\mathcal A$.
 - (c) O que pode concluir relativamente à medida identificada na alínea anterior?
- 4. Considere o integral $\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} dx$.
 - (a) Determine a natureza do integral.
 - (b) Prove que o integral representa o comprimento da semi-circunferência de centro na origem e raio 1.