Departamento de Matemática

Universidade do Minho

Tópicos de Matemática

 $1^{\underline{o}}$  teste – 24 out 2022

Lic. em Ciências de Computação - 1º ano

| duração: | uma | hora |
|----------|-----|------|
|----------|-----|------|

Nome \_\_\_\_\_\_ Número \_\_\_\_\_

Responda no próprio enunciado, colocando uma cruz no quadrado correspondente. Cada questão está cotada com 0,8 valores numa escala de 0 a 20. Respostas erradas não têm qualquer penalização.

Em cada uma das questões seguintes, diga se é verdadeira (V) ou falsa (F) a proposição, assinalando a opção conveniente:

| 1. $2 \times 2 \neq 4$ é uma proposição e $\forall x \in \mathbb{R}, 2x = 4$ é uma condição.                                                              | V□ F□   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1. $2 \times 2 = 4$ é uma proposição ou $\forall x \in \mathbb{Z}, 2x = 4$ é uma condição.                                                                | V□ F□   |
| $1. \ 2 \times 2 \neq 4$ é uma proposição ou $2x = 4$ é uma condição.                                                                                     | V□ F□   |
| 1. $2 \times 2 = 4$ é uma proposição e $2x = 4$ é uma condição.                                                                                           | V□ F□   |
| 2. Se $2+2=5$ então $2+4=8$ .                                                                                                                             | V□ F□   |
| 2. Se $2 + 2 \neq 5$ então $2 + 4 = 8$ .                                                                                                                  | V 🗆 F 🗆 |
| 2. Se $2+2=5$ então $2+4=6$ .                                                                                                                             | V□ F□   |
| 2. Se $2 + 2 \neq 5$ então $2 + 4 \neq 8$ .                                                                                                               | V□ F□   |
| 3. Para $p$ e $q$ proposições, $p \Rightarrow \sim q$ é logicamente equivalente a $\sim p \lor \sim q$ .                                                  | V□ F□   |
| 3. Para $p$ e $q$ proposições, $\sim p \Rightarrow q$ é logicamente equivalente a $p \vee q$ .                                                            | V 🗆 F 🗆 |
| 3. Para $p$ e $q$ proposições, $p \Rightarrow \sim q$ é logicamente equivalente a $p \vee q$ .                                                            | V□ F□   |
| 3. Para $p$ e $q$ proposições, $\sim q \Rightarrow p$ é logicamente equivalente a $p \vee q$ .                                                            | V□ F□   |
| 4. Para $p$ e $q$ proposições, se $(p \lor q) \Rightarrow (q \land \sim q)$ é falsa então $p$ é falsa.                                                    | V□ F□   |
| 4. Para $p$ e $q$ proposições, se $(p \wedge q) \Rightarrow (q \wedge \sim q)$ é verdadeira então $p$ é falsa.                                            | V□ F□   |
| 4. Para $p$ e $q$ proposições, se $(p \wedge q) \Rightarrow (q \wedge \sim q)$ é falsa então $p$ é falsa.                                                 | V□ F□   |
| 4. Para $p$ e $q$ proposições, se $(p \lor q) \Rightarrow (q \land \sim q)$ é verdadeira então $p$ é falsa.                                               | V□ F□   |
| 5. A tabela de verdade da fórmula proposicional $p \wedge (q \Rightarrow \sim (r \wedge \sim p))$ tem 8 linhas e 8 colunas.                               | V□ F□   |
| 5. A tabela de verdade da fórmula proposicional $p \wedge (q \Rightarrow \sim (r \wedge \sim s))$ tem 16 linhas e 16 colunas.                             | V□ F□   |
| 5. A tabela de verdade da fórmula proposicional $p \wedge (q \Rightarrow \sim (r \wedge p))$ tem 8 linhas e 7 colunas.                                    | V□ F□   |
| 5. A tabela de verdade da fórmula proposicional $p \wedge (q \Rightarrow \sim (r \wedge \sim s))$ tem 16 linhas e 9 colunas.                              | V□ F□   |
| 6. Uma fórmula proposicional com duas proposições simples pode ser logicamente equiva-<br>lente a uma fórmula proposicional com três proposições simples. | V 🗆 F 🗆 |

6. Uma fórmula proposicional com quatro proposições simples pode ser logicamente equivalente a uma fórmula proposicional com três proposições simples. V□ F□ 6. Uma fórmula proposicional com quatro proposições simples não é logicamente equivalente a uma fórmula proposicional com três proposições simples. V□ F□ 6. Uma fórmula proposicional com duas proposições simples não é logicamente equivalente a uma fórmula proposicional com três proposições simples.  $V \square F \square$ 7. Para proposições  $p, q \in r$ , o recíproco de  $(p \lor q) \Rightarrow r$  é logicamente equivalente V□ F□  $a \sim r \vee p \vee q$ . 7. Para proposições  $p, q \in r$ , o recíproco de  $(p \lor q) \Rightarrow r$  é logicamente equivalente V□ F□ a  $(r \land \sim q) \Rightarrow p$ . 7. Para proposições p, q e r, o recíproco de  $(p \lor q) \Rightarrow r$  é logicamente equivalente  $V \square F \square$  $a (r \land \sim p) \Rightarrow q.$ 7. Para proposições p, q e r, o recíproco de  $r \Rightarrow (p \lor q)$  é logicamente equivalente  $V \square F \square$  $a \sim r \Rightarrow (\sim p \land \sim q).$ 8. O contrarrecíproco de "Se está sol então vou passear e comer um gelado" é "Se não  $V \square F \square$ vou passear ou não vou comer um gelado então não está sol." 8. O contrarrecíproco de "Se está sol então vou passear e comer um gelado" é "Se não V□ F□ vou passear e não vou comer um gelado então não está sol." 8. O recíproco de "Se chove então vou ficar em casa e ler um livro" é "Se não ficar am casa e não ler um livro então não chove."  $V \square F \square$ 8. O contrarrecíproco de "Se chove então vou ficar em casa e ler um livro" é "Se não  $V \square F \square$ ficar am casa ou não ler um livro então não chove." 9. Negar que existe um único aluno que vai passar a Tópicos de Matemática é o mesmo que afirmar que todos os alunos vão passar a Tópicos de Matemática. V□ F□ 9. Negar que todos os alunos vão passar a Tópicos de Matemática é o mesmo que afirmar que existe um único aluno que não vai passar a Tópicos de Matemática.  $V \square F \square$ 9. Negar que existe um único aluno que vai passar a Tópicos de Matemática é o mesmo que afirmar que pelo menos dois alunos vão passar a Tópicos de Matemática.  $V \square F \square$ 9. Negar que todos os alunos vão passar a Tópicos de Matemática é o mesmo  $V \square F \square$ que afirmar que todos os alunos não vão passar a Tópicos de Matemática. 10. Dada a condição p(x,y), com o conjunto D como domínio de variação de x e y, a proposição " $\exists x \in D, \exists y \in D, p(x,y)$ " é logicamente equivalente à proposição " $\exists y \in D, \exists x \in D, p(x, y)$ "  $V \square F \square$ 10. Dada a condição p(x,y), com o conjunto D como domínio de variação de x e y, a proposição " $\exists x \in D, \forall y \in D, p(x,y)$ " é logicamente equivalente à proposição " $\forall y \in D, \exists x \in D, p(x, y)$ "  $V \square F \square$ 10. Dada a condição p(x,y), com o conjunto D como domínio de variação de x e y, a proposição " $\forall x \in D, \forall y \in D, p(x,y)$ " é logicamente equivalente à proposição " $\forall y \in D, \forall x \in D, p(x, y)$ " V□ F□ 10. Dada a condição p(x,y), com o conjunto D como domínio de variação de x e y, a proposição " $\forall x \in D, \exists y \in D, p(x,y)$ " é logicamente equivalente à proposição " $\exists y \in D, \forall x \in D, p(x,y)$ "



11. Se t é uma tautologia e c é uma contradição, então, para qualquer proposição p,  $(p \wedge c) \Rightarrow t$  é uma contradição.



11. Se t é uma tautologia e c é uma contradição, então, para qualquer proposição p,  $(p \lor c) \Rightarrow t$  é uma contradição.



11. Se t é uma tautologia e c é uma contradição, então, para qualquer proposição p,  $(p \lor t) \Rightarrow c$  é uma contradição.



11. Se t é uma tautologia e c é uma contradição, então, para qualquer proposição p,  $(p \wedge t) \Rightarrow c$  é uma contradição.



12. Para p(x), q(x) e r(x) condições, provar que  $p(x) \Rightarrow (q(x) \lor r(x))$  é o mesmo que provar que  $(p(x) \land \sim q(x)) \Rightarrow r(x)$ .



12. Para p(x), q(x) e r(x) condições, provar que  $p(x) \Rightarrow (q(x) \lor r(x))$  é o mesmo que provar que  $(p(x) \lor q(x)) \Rightarrow \sim r(x)$ .



12. Para p(x), q(x) e r(x) condições, provar que  $p(x) \Rightarrow (q(x) \lor r(x))$  é o mesmo que provar que  $(p(x) \land \sim r(x)) \Rightarrow q(x)$ .



12. Para p(x), q(x) e r(x) condições, provar que  $p(x) \Rightarrow (q(x) \lor r(x))$  é o mesmo que provar que  $(p(x) \lor \sim q(x)) \Rightarrow r(x)$ .



13. O seguinte argumento é válido: "Alguns artistas são geniais. Alguns artistas são pessoas criativas. Logo, algumas pessoas criativas são geniais."

| ١, |   | Е | $\Box$ |
|----|---|---|--------|
| V  | Ш | Г | Ш      |

13. O seguinte argumento é válido: "Todos os artistas são geniais. Todos os artistas são pessoas criativas. Logo, todas as pessoas criativas são geniais."

| V | F |  |
|---|---|--|
|   |   |  |

13. O seguinte argumento é válido: "Todos os artistas são geniais. Alguns artistas são pessoas criativas. Logo, algumas pessoas criativas são geniais."

13. O seguinte argumento é válido: "Alguns artistas não são geniais. Todos os artistas são pessoas criativas. Logo, algumas pessoas criativas não são geniais."

$$V \square F \square$$

14. O argumento  $\frac{ \begin{array}{c} a \lor \sim b \\ c \Rightarrow \sim a \\ \hline b \end{array} }{ \begin{array}{c} \\ c \end{array} } \text{\'e v\'alido}$ 

14. O argumento  $\frac{ \begin{array}{c} p \vee r \\ q \Rightarrow \sim r \\ \hline \frac{q}{\sim p} \end{array} } \text{\'e v\'alido}$ 



14. O argumento  $\frac{a \lor b}{\sim c \Rightarrow \sim b} = \text{é válido}$ 



14. O argumento  $\frac{ \begin{array}{c} p \lor q \\ p \Rightarrow \sim r \\ \hline r \\ \hline q \end{array}}$  é válido

 $V \square F \square$ 

| 15. | Observar que $2\times 2=2^2$ é suficiente para mostrar que " $\forall x\in\mathbb{Z}, 2x=2^x$ " é uma proposição verdadeira.                                                                                                                                                                                                                                                 | V□ F□     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 15. | Observar que $2\times 2=2^2$ é suficiente para mostrar que " $\forall x\in\mathbb{Z}, 2x\neq 2^x$ " é uma proposição falsa.                                                                                                                                                                                                                                                  | V 🗆 F 🗆   |
| 15. | Observar que $2\times 3\neq 2^3$ é suficiente para mostrar que " $\forall x\in\mathbb{Z}, 2x\neq 2^x$ " é uma proposição verdadeira.                                                                                                                                                                                                                                         | V□ F□     |
| 15. | Observar que $2\times 3\neq 2^3$ é suficiente para mostrar que " $\forall x\in\mathbb{Z}, 2x=2^x$ " é uma proposição falsa.                                                                                                                                                                                                                                                  | V□ F□     |
| 16. | Dada a condição $p(n)$ , é condição suficiente para demonstrar que a proposição " $\forall n \in \mathbb{N}, p(n)$ " é verdadeira pelo Método de Indução Matemática que a condição $p(n)$ seja hereditária.                                                                                                                                                                  | V 🗆 F 🗆   |
| 16. | Dada a condição $p(n)$ , é condição necessária para demonstrar que a proposição " $\forall n \in \mathbb{N}, p(n)$ " é verdadeira pelo Método de Indução Matemática que a condição $p(n)$ seja hereditária.                                                                                                                                                                  | V 🗆 F 🗆   |
| 16. | Dada a condição $p(n)$ , para demonstrar que a proposição " $\forall n \in \mathbb{N}, p(n)$ " é verdadeira pelo Método de Indução Matemática é necessário mostrar que a condição $p(n)$ é hereditária.                                                                                                                                                                      | V□ F□     |
| 16. | Dada a condição $p(n)$ , para demonstrar que a proposição " $\forall n \in \mathbb{N}, p(n)$ " é verdadeira pelo Método de Indução Matemática basta mostrar que a condição $p(n)$ é hereditária.                                                                                                                                                                             | V□ F□     |
| 17. | A condição " $2n$ é impar" é hereditária para todo $n \in \mathbb{N}$ .                                                                                                                                                                                                                                                                                                      | V□ F□     |
| 17. | A condição " $2n+1$ é impar" é hereditária para todo $n \in \mathbb{N}$ .                                                                                                                                                                                                                                                                                                    | V□ F□     |
|     | A condição " $2n+1$ é par" é hereditária para todo $n\in\mathbb{N}$ .                                                                                                                                                                                                                                                                                                        | V□ F□     |
|     | A condição " $2n$ é par" é hereditária para todo $n \in \mathbb{N}$ .                                                                                                                                                                                                                                                                                                        | V□ F□     |
|     | im cada uma das questões seguintes, assinale a(s) opção(ões) correta(s):                                                                                                                                                                                                                                                                                                     |           |
|     | Suponha que a Maria não fala português, não fala inglês, fala francês e fala espanhol. seguintes proposições são verdadeiras?  A Maria fala português ou francês e a Maria fala inglês ou espanhol.  Se a Maria fala inglês então a Maria fala espanhol  A Maria fala francês se e só se fala inglês.  A Maria fala espanhol e se a Maria fala francês então fala português. | Quais das |
| 18. | Suponha que a Maria fala português, fala inglês, não fala francês e não fala espanhol. seguintes proposições são verdadeiras?  A Maria fala português ou francês e a Maria fala inglês ou espanhol.  Se a Maria fala inglês então a Maria fala espanhol  A Maria fala francês se e só se fala inglês.  A Maria fala espanhol e se a Maria fala francês então fala português. | Quais das |
| 18. | Suponha que a Maria não fala português, não fala inglês, fala francês e não fala espanhol. seguintes proposições são verdadeiras?  A Maria fala português ou francês e a Maria fala inglês ou espanhol.  Se a Maria fala inglês então a Maria fala espanhol  A Maria fala espanhol e se a Maria fala francês então fala português.                                           | Quais das |

| 18. | Suponha que a Maria fala portu<br>seguintes proposições são verdad<br>A Maria fala português ou fra<br>Se a Maria fala inglês então a<br>A Maria fala francês se e só s<br>A Maria fala espanhol e se a l | leiras?<br>ncês e a Maria fala<br>Maria fala espanho<br>e fala inglês. | inglês ou espanhol.<br>I     |                          | das |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------|--------------------------|-----|
| 19. | Se $b\Rightarrow a$ é uma proposição falsa                                                                                                                                                                | a, então são verdade                                                   | eiras as proposições         | :                        |     |
|     | $\Box \ a \land \sim b$                                                                                                                                                                                   | $\square \ a \lor \sim b$                                              | $\square \sim b \lor \sim a$ | $\Box \ a \Rightarrow b$ |     |
| 19. | Se $b\Rightarrow a$ é uma proposição falsa                                                                                                                                                                | a, então são falsas a                                                  | s proposições:               |                          |     |
|     | $\Box \ a \land \sim b$                                                                                                                                                                                   | $\square \ a \lor \sim b$                                              | $\square \sim b \lor \sim a$ | $\Box \ a \Rightarrow b$ |     |
| 19. | Se $a\Rightarrow b$ é uma proposição falsa                                                                                                                                                                | a, então são falsas a                                                  | s proposições:               |                          |     |
|     | $\Box \ a \land \sim b$                                                                                                                                                                                   | $\square \ a \lor \sim b$                                              | $\square \sim b \lor \sim a$ | $\Box \ b \Rightarrow a$ |     |
| 19. | Se $a\Rightarrow b$ é uma proposição falsa                                                                                                                                                                | a, então são verdade                                                   | eiras as proposições         | :                        |     |
|     | $\Box \ a \wedge \sim b$                                                                                                                                                                                  | $\square \ a \lor \sim b$                                              | $\square \sim b \lor \sim a$ | $\Box \ b \Rightarrow a$ |     |
| 20. | A fórmula proposicional $b \lor (a \land$                                                                                                                                                                 | $\sim b)$ é logicamente                                                | equivalente a:               |                          |     |
|     | $\Box \ b \land (b \Rightarrow a)$                                                                                                                                                                        | $\Box \ b \wedge a$                                                    | $\Box a$                     | $\Box$ $b \lor a$        |     |
| 20. | A fórmula proposicional $b \wedge (a \vee$                                                                                                                                                                | $\sim b)$ é logicamente                                                | equivalente a:               |                          |     |
|     | $\Box b \wedge (b \Rightarrow a)$                                                                                                                                                                         | $\Box \ a \wedge b$                                                    | $\Box b$                     | $\Box b \lor a$          |     |
| 20. | A fórmula proposicional $a \wedge (b \vee$                                                                                                                                                                | $\sim a)$ é logicamente                                                | equivalente a:               |                          |     |
|     | $\Box \ a \land (a \Rightarrow b)$                                                                                                                                                                        | $\Box \ a \wedge b$                                                    | $\Box b$                     | $\Box \ b \lor a$        |     |
| 20. | A fórmula proposicional $a \lor (b \land$                                                                                                                                                                 | $\sim a)$ é logicamente                                                | equivalente a:               |                          |     |
|     | $\Box \ a \lor (a \Rightarrow b)$                                                                                                                                                                         |                                                                        | $\Box b$                     | $\Box \ b \vee a$        |     |
| 21. | O contrarrecíproco de "Se como  ☐ Se não fico mal disposto, não  ☐ Se não como marisco, não fico                                                                                                          | como marisco. $\Box$ (                                                 | Como marisco e não           | ·                        |     |
| 21. | A negação de "Se como marisco<br>☐ Se não fico mal disposto, com<br>☐ Se não como marisco, não fico                                                                                                       | no marisco. 🗆 Como                                                     | o marisco e não fico         | ·                        |     |
| 21. | A negação de "Se fico mal disposto, com ☐ Se não fico mal disposto, com ☐ Se como marisco, não fico ma                                                                                                    | no marisco. 🗆 Fico                                                     | mal disposto e com           |                          |     |
| 21. | O contrarrecíproco de "Se fico n<br>□ Se não fico mal disposto, com<br>□ Se como marisco, não fico ma                                                                                                     | no marisco. 🗆 Fico                                                     | mal disposto e com           |                          |     |

| 22. |                              |                                                                 | junto de variação de $x$ e $y$ é seres humanos têm um único            |                                   |
|-----|------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------|
|     | •                            | $\exists \ \forall x \in H, \exists^1 y \in H : p(x, y)$        | $y$ ) $\square \exists^1 x \in H : \forall y \in H, p$                 | (x,y)                             |
|     |                              | $\exists \ \forall x \in H, \exists^1 y \in H : p(y, x)$        | $(x) \qquad \Box \ \exists^1 x \in H : \forall y \in H, p$             | (y,x)                             |
| 22. |                              |                                                                 | o de variação de $x$ e $y$ é o conju<br>nos têm um único progenitor."  |                                   |
|     | ]                            | $\exists \ \forall x \in H, \exists^1 y \in H : p(y,$           | $x) \qquad \Box \ \forall x \in H : \exists y \in H, p($               | (x,y)                             |
|     | ]                            | $\exists \ \forall x \in H, \exists y \in H : p(y, x)$          | $\Box \forall x \in H : \exists^1 y \in H, p($                         | (x,y)                             |
| 22. |                              |                                                                 | nto de variação de $x$ e $y$ é o o humanos têm um progenitor."         |                                   |
|     |                              | $\square \exists x \in H : \forall y \in H, p(y, x)$            | $(x) \qquad \Box \ \exists x \in H : \forall y \in H, p(x)$            | (x,y)                             |
|     |                              | $\square \ \forall x \in H, \exists y \in H : p(y, x)$          | $x) \qquad \Box \ \forall x \in H, \exists y \in H : p(x)$             | (x,y)                             |
| 22. |                              |                                                                 | nto de variação de $x$ e $y$ é o chumanos têm um progenitor."          |                                   |
|     | ]                            | $\exists \ \forall x \in H, \exists^1 y \in H : p(y,$           | $x) \qquad \Box \ \forall x \in H : \exists y \in H, p($               | (x,y)                             |
|     | ]                            | $\exists \ \forall x \in H, \exists y \in H : p(y, x)$          | $ \Box \forall x \in H : \exists^1 y \in H, p($                        | (x,y)                             |
| 23. |                              |                                                                 | to" e $q(x)$ : " $x$ passa a Tópic $st s$ ssar a Tópicos de Matemática |                                   |
|     | $\Box p(x) \Rightarrow q(x)$ | $ \Box \ q(x) \Rightarrow p(x) $                                | $\Box p(x) \Leftrightarrow q(x)$                                       | $\square p(x) \wedge q(x).$       |
| 23. |                              | condição necessária e sufic                                     | to" e $q(x)$ : " $x$ passa a Tópic iente para passar a Tópicos de      |                                   |
|     | $\Box p(x) \Rightarrow q(x)$ | $\Box \ q(x) \Rightarrow p(x)$                                  | $\Box p(x) \Leftrightarrow q(x)$                                       | $\square p(x) \wedge q(x).$       |
| 23. |                              |                                                                 | to" e $q(x)$ : " $x$ passa a Tópico tudar muito é passar a Tópico      |                                   |
|     | $\Box p(x) \Rightarrow q(x)$ | $ \Box \ q(x) \Rightarrow p(x) $                                | $\Box p(x) \Leftrightarrow q(x)$                                       | $\square \ p(x) \vee q(x).$       |
| 23. |                              |                                                                 | to" e $q(x)$ : " $x$ passa a Tópicassar a Tópicos de Matemática        |                                   |
|     | $\Box p(x) \Rightarrow q(x)$ | $ \Box \ q(x) \Rightarrow p(x) $                                | $\Box p(x) \Leftrightarrow q(x)$                                       | $\square \ p(x) \vee q(x).$       |
| 24. |                              | de $x^2 - 4 = 0 \Rightarrow (x = 2)$ nstração está feita usando | $\forall  x = -2)$ começa por "Supor o método:                         | $\text{nhamos que } x^4 - 2 = 0.$ |
|     |                              | □ do recíproco                                                  | $\square$ do contrarrecíproco                                          |                                   |
|     |                              | □ por redução ao absurd                                         | lo □ de demonstração dire                                              | eta                               |

| 24. | Uma demonstração de $x^2-4=0 \Rightarrow (x=2 \lor x=-2)$ começa por "Suponhamos que $x\neq 2$ e $x\neq -2$ ". A demonstração está feita usando o método:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|     | $\Box$ do recíproco $\Box$ do contrarrecíproco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|     | $\square$ por redução ao absurdo $\square$ de demonstração direta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 24. | Uma demonstração de $x^2-1=0 \Rightarrow (x=1 \lor x=-1)$ começa por "Suponhamos que $x^2-1=0$ e $x\neq -1$ e $x\neq 1$ ". A demonstração está feita usando o método:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|     | $\Box$ do recíproco $\Box$ do contrarrecíproco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|     | $\square$ por redução ao absurdo $\square$ de demonstração direta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 24. | Uma demonstração de $x^2-1=0 \Rightarrow (x=1 \lor x=-1)$ começa por "Suponhamos que $x \ne 1$ e $x \ne -1$ ". A demonstração está feita usando o método:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|     | $\square$ do recíproco $\square$ do contrarrecíproco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|     | $\square$ por redução ao absurdo $\square$ de demonstração direta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 25. | Para mostrar que, para todo o natural $n \geq 2$ , $\sum_{k=1}^n (2k-1) = n^2$ pelo método de Indução Matemática,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|     | começa-se por verificar o caso base, observando que:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|     | $\Box \ 2 \times 1 - 1 = 1^2$ $\Box \ 2 \times 2 - 1 = 2^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|     | $\Box (2 \times 1 - 1) + (2 \times 2 - 1) = 2^{2} \qquad \Box (2 \times 1 - 1) + (2 \times 2 - 1) = 1^{2} + 2^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 25. | Para mostrar que, para todo o natural $n \geq 2$ , $\sum_{k=1}^n (2k) = n^2 + n$ pelo método de Indução Matemática,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|     | começa-se por verificar o caso base, observando que:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|     | $\Box \ 2 \times 1 = 1^2 + 1$ $\Box \ 2 \times 2 = 2^2 + 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 25. | Para mostrar que, para todo o natural $n \geq 2$ , $\sum_{k=0}^{n} (2k-1)^3 = 2n^4 - n^2$ pelo método de Indução                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     | Matemática, começa-se por verificar o caso base, observando que:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     | $\Box (2 \times 1 - 1)^3 = 2 \times 1^4 - 1^2 \qquad \Box (2 \times 2 - 1)^3 = 2 \times 2^4 - 2^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|     | $\square (2 \times 1 - 1)^3 + (2 \times 2 - 1)^3 = 2 \times 2^4 - 2^2 \qquad \square (2 \times 1 - 1)^3 + (2 \times 2 - 1)^3 = (2 \times 1^4 - 1^2) + (2 \times 2^4 - 2^2) $ |  |  |  |
| 25. | Para mostrar que, para todo o natural $n \geq 2$ , $\sum_{k=1}^n (2k-3) = n(n-2)$ pelo método de Indução                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|     | Matemática, começa-se por verificar o caso base, observando que:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     | $\Box \ 2 \times 1 - 3 = 1 \times (1 - 2)$ $\Box \ 2 \times 2 - 3 = 2 \times (2 - 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|     | $ \Box (2 \times 1 - 3) + (2 \times 2 - 3) = 2 \times (2 - 2) $ $ \Box (2 \times 1 - 3) + (2 \times 2 - 3) = 1 \times (1 - 2) + 2 \times (2 - 2) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |