PARTIE ÉLECTRIQUE

La perforatrice KRUNCH utilise un Arduino Uno comme système de commande des moteurs et du vérin de perforation.

C'est le logiciel Grbl (GRBL-Punch) qui est utilisé pour fournir les déplacements de la fourche de perforation (axe X), l'avance du carton (axe Y) et le distributeur pneumatique qui actionne le vérin (poinçon).

L'implantation d'une modification dans le logiciel Grbl 0.9 permet le contrôle de position du vérin.

Le Arduino est alimenté (5 volts) par le câble USB directement par l'ordinateur qui envoie les ordres.

Les 2 moteurs pas à pas et le distributeur pneumatique sont alimentés par une alimentation indépendante de 24 volts 10 ampères. Il n'y a pas de liaison électrique entre le 5 volts et le 24 volts. Les opto-coupleurs assurent l'isolation galvanique entre la commande et les organes de puissance.

Bornes du Arduino Uno

Le Arduino Uno est souvent utilisé pour la commande d'imprimante 3D ou de petites CNC. Les bornes de ce contrôleur Arduino sont déjà attribuées par les concepteurs du Grbl.

* - Indicates input pins. Held high with internal pull-up resistors.

Attribution des bornes utilisées pour la perforatrice KRUNCH

	ARDUINO UNO	SHIELD	KRUNCH	2017
borne	appellation	Fonction GRBL	connecteur	connecteur
0	Rx	Non utilisé	P3 pin 1	-
1	Tx	Non utilisé	P3 pin 2	-
2	Step Pulse X-axis	Step Pulse moteur fourche de perforation	P3 pin 3	P7 pin 2
3	Step Pulse Y-axis	Step Pulse moteur avance carton	P3 pin 4	P6 pin 2
4	Step pulse Z-axis	Non utilisée	P3 pin 5	-
5	Direction X-axis	Direction moteur fourche de perforation	P3 pin 6	P7 pin 4
6	Direction Y-axis	Direction moteur avance carton	P3 pin 7	P6 pin 4
7	Direction Z-axis	Non utilisé	P3 pin 8	-
8	Stepper En/Disable	Stepper Enable/Disable	P2 pin 1	J1 / J2
9	Limit X-axis	Limit dépl. fourche / Fin course 1-Homing	P2 pin 2	P15 pin 3
10	Limit Y-axis	Câblée soit 1 soit 0 (pont amovible en J3)	P2 pin 3	J3
11	Limit Z-axis	Limit déplacement fourche / Fin course 2	P2 pin 4	P17 pin 3
12	Spindle Enable	Commande vérin avec GRBL-punch	P2 pin 5	P5 pin 2
13	Spindle Direction	Commande vérin optionnelle avec	P2 pin 6	P5 pin 4
	-	GRBL-punch		_
GND	GND 0 V	GND 0 V (plan de masse)	P2 pin 7	
AREF		Non utilisé	P2 pin 8	
SDA		Non utilisé	P2 pin 9	
SCL		Non utilisé	P2 pin 10	
A0	Reset/Abort*	Contrôle	P1 pin 1	P12 pin 5
A1	Feed Hold	Contrôle	P1 pin 2	P12 pin 6
A2	Cycle Start/Resume*	Contrôle	P1 pin 3	P12 pin 4
A3	Coolant Enable	Contrôle	P1 pin 4	P12 pin 2
A4	(not used/reserved)	Limite poinçon BAS avec GRBL-punch	P1 pin 5	P9 pin 3
A5	(not used/reserved)	Limite poinçon HAUT avec GRBL-punch	P1 pin 6	P8 pin 3
	-	Non utilisé	P4 pin 1	-
	-	Non utilisé	P4 pin 2	-
	RESET	Non utilisé	P4 pin 3	-
	3,3 V	Non utilisé	P4 pin 4	_
	5 V	Point test du +5 V	P4 pin 5	Vcc/ + 5V
				P10 pin 2
	GND	(plan de masse)	P4 pin 6	GND /
				P10 pin 1
	GND	(plan de masse)	P4 pin 7	GND
	Vin	Non utilisé	P4 pin 8	-

Shield KRUNCH

Un circuit imprimé adapté au Arduino Uno est enfichable directement sur le Arduino Uno par un jeu de barrettes mâles de connexions (P1, P2, P3, P4).

Ce « shield » redistribue les liaisons sur des connecteurs (P5, P6, P7, P12, P8, P9, P15, P17).

- P5 pour la commande du vérin
- P6 pour la commande du moteur d'avance du carton (axe Y)
- P7 pour la commande du moteur d'avance fourche (axe X)
- P12 pour les commandes de contrôle
- P8 pour le capteur de détection poinçon HAUT
- P9 pour le capteur de détection poinçon BAS
- P15 pour le capteur fin de course 1 et Homing du moteur avance fourche (axe X)
- P17 pour le capteur fin de course 2 du moteur avance fourche (axe X)

Des points de mesure sont disponibles :

- P10 pour contrôle du 5 volts
- P13, P14, P16, P18 pour contrôle des signaux des détecteurs

Des barrettes sont présentes :

- J3 pour programmer limit Y-axis à 1 ou à 0 (pas de pont = 1 pull-up, pont présent = 0)
- J1 pour câbler (avec pont) ou ne pas câbler (pas de pont) le signal Stepper Enable/Disable

Remarque : Si les circuits imprimés n'ont pas les trous métallisés, il faut souder des « strap » dans les « via ». Les connecteurs à 6 pins doivent être **coudés** pour pouvoir souder les bornes des 2 côtés.

Schéma global du shield KRUNCH

Attention:

Si le circuit imprimé n'est pas réalisé avec les trous métallisés, il faut souder les liaisons sur les divers passages d'une face à l'autre (via) et les connecteurs 6 pins : P5, P6, P7, P12 doivent être coudés. Ainsi les soudures peuvent être réalisées des 2 côtés.

Les résistances R1 et R2 ne sont pas soudées. L'Arduino possède en interne des pull-up sur ces bornes là (Digital IO).

Les résistances R3 et R4 sont soudées car les entrées A4 et A5 de l'Arduino n'ont pas de pull-up.

C'est bien limit-Z qui est utilisée comme fin de course 2 de l'axe X.

Comme limit-Y n'est pas utilisée, selon la logique des capteurs, il faut câbler (0 logique) ou ne pas câbler (1 logique par le pull up du Arduino) le pont sur J3.

Le condensateur de découplage C₁ peut prendre n'importe quelle valeur (par exemple 0,1 μF). Ce condensateur n'est pas visible sur l'image du shield KRUNCH. Il est soudé côté « bottom view » environ au niveau de l'indication P13.

Si les capteurs poinçon Haut et poinçon Bas sont des capteurs magnétiques : collecteur ouvert, ces entrées A4 et A5 doivent être équipées d'un pull up de $10 \text{ k}\Omega$ pour garantir le niveau HAUT (l'Arduino n'a pas de pull up internes sur ces entrées analogiques).

SCHÉMA SHIELD grand format :

Circuit imprimé du shield KRUNCH

Circuit double face : Bottom view :

Top view:

Les liaisons aux drivers des moteurs

Pour la commande des moteurs pas à pas, 2 contrôleurs sont utilisés. Ce sont des TB6560, achetés directement en Chine (banggood.com réf. 92 16 04).

Les entrées opto-couplées sur barrettes à vis sont rapportées par des picots sur un petit circuit imprimé recevant un connecteur 6 pins compatible avec le shield KRUNCH.

Top view:

Autre version simple face

Les liaisons sont assurées par des câbles plats (6 fils), et les connecteurs possèdent des détrompeurs.

MOTEURS: avance fourche et avance carton

Attention version pour TB6560

Les liaisons aux drivers des moteurs version TB6600

Pour la commande des moteurs pas à pas, 2 contrôleurs avec plus de courant peuvent être utilisés. Ce sont des TB66000, achetés directement en Chine (banggood.com réf. 98 19 97).

Interface TB6600 pour moteur pas à pas Réglages de 0,5 A à 3,5 A (4 A en peak)

Alimentation : 9 à 40 V Réglages pas : 1 à $1/32^{\text{ème}}$

Le refroidissement est facilité par un grand radiateur et par fixation sur le châssis.

Les entrées opto-couplées sur barrettes à vis sont rapportées par des picots sur un petit circuit imprimé, différent du précédent, recevant un connecteur 6 pins compatible avec le shield KRUNCH.

Top view: Bottom view:

Pour driver moteur TB6600

Les liaisons sont assurées par des câbles plats (6 fils), et les connecteurs possèdent des détrompeurs.

MOTEURS: avance fourche et avance carton

Attention version pour driver TB6600

Moteurs avance fourche et avance carton

Moteur NEMA 23

Banggood.com ID Produit 116 26 62

à CHF 50,57

La description:

Nema 23 CCaroline du Nord Stepper Moteur DC 24-48V 3Nm moteur pas à pas pour pièces CCaroline du Nord

C'est le modèle le plus fort pour le moteur pas cher Nema 23, il est de 1,8 degrés. Angle d'inclinaeston (200 pas / révolution).

Chaque phase tracent 4.2A, permettant un couple de maintien de 3.0Nm (425oz.in).

Spécification:

Référence fabricant: 23HS45-4204S Source d'alimentation: DC 24-48V Type de moteur: Etape bipolaire Angle d'étape: 1,8 degrés Couple de retenue: 3.0Nm (425oz.in)

Courant / phase assigné: 4.2A Résesttance de phase: 0.90hms Inductance: 3,8mH +/- 20% (1KHz)

Raccordement: Noir (A+), Vert (A-), Rouge (B+), Bleu (B-)

Tailles:

Taille du cadre: 57 x 57mm Longueur du corps: 113mm Diamètre de l'arbre: 10mm Longueur de l'arbre: 24 mm D-cut Longueur: 20mm Nombre de prospects: 4 Longueur du fil: 400mm

Dimensions du produit: 2,2 x 2,2 x 4,5 pouces

Attention:

Assurez-vous que le moteur se connecte à un régulateur de courant constant ou à un variateur avant de tester le moteur. La connexion du moteur directement à une alimentation électrique détruira le moteur.

Interface distributeur pneumatique

Circuit imprimé simple face :

Remarque : les 2 bornes marquées NC sont liées aux bornes 5 et 6 mais ne sont pas utilisées.

Vue globale

Les capteurs des fins de course sont équipés de fourche opto. Il est aussi possible d'utiliser des capteurs magnétiques à effet Hall (poinçon HAUT et BAS).

Les capteurs fins de course

Il faut paramétrer le Grbl selon le niveau logique des capteurs en fin de course.

Attention selon la provenance, les attributions des bornes diffèrent. Si le capteur est celui de droite, il faudra câbler un connecteur à 4 bornes sur ce côté du câble de liaison à 3 fils et distribuer correctement les signaux. En fin de course : niveau HAUT.

Perforatrice KRUNCH

Il est aussi possible d'utiliser des capteurs magnétiques à effet Hall avec l'association d'un aimant permanent fixé sur la partie mobile. En fin de course : niveau BAS.

La plupart des vérins sont équipés d'un aimant interne. Le vérin peut être équipé de 2 capteurs magnétiques livrés avec le vérin. Les capteurs se fixent dans des rainures prévues :

Bien que prévu pour fonctionner de 10 à 30 Volts, à 5 V ils fonctionnent parfaitement.

Drivers TB6560

Les entrées optocouplées sont reliées au moyen d'un circuit imprimé équipé d'une barrette mâle au pas de 2,56 mm. Un picot sur 2 est retiré. Ce circuit imprimé est équipé d'un connecteur 6 pôles avec détrompeur. C'est ainsi que s'effectue la liaison au shield du Arduino.

L'alimentation ainsi que les moteurs sont reliés par les bornes à vis.

Le paramétrage du module TB6560 pour la perforatrice est le suivant :

Drivers TB6600

Les entrées optocouplées sont reliées au moyen d'un circuit imprimé équipé d'une barrette mâle au pas de 2,56 mm. Un picot sur 2 est retiré. Ce circuit imprimé est équipé d'un connecteur 6 pôles avec détrompeur. C'est ainsi que s'effectue la liaison au shield du Arduino.

L'alimentation ainsi que les moteurs sont reliés par les bornes à vis.

Le paramétrage du module TB6600 pour la perforatrice est le suivant :

Le paramétrage du module TB6600 pour la perforatrice est le suivant :

Remarque : Lorsque le micro pas est doublé, il convient aussi de doubler le nombre de step/mm dans le paramétrage du Arduino : \$100 et \$101.