Projet Micro: Robot pilotable par IR

ENSSAT – Université de Rennes 1 LSI1 – 2014 / 2015

Courtay Antoine Veyrat Nicolas

Objectifs du Projet

- Développer une application complexe
 - Utilisation de nombreux périphériques
 - Partage du travail entre étudiants
 - Obligation de structurer l'application
- Utilisation d'une chaine de développement croisée (cible ARM tournant sur un PC)
 - Compilateur, éditeur de lien
 - Simulateur
 - Debugger sur la carte
- Intégration et validation sur la carte

Plateforme Robot + Plateforme Télécommande

- Plateforme Robot
 - Affichage Etat (LCD)
 - Détection obstacle (Capteurs)
 - Réception des commandes (IR)
 - Commande trajectoire (PWM et Roues codeuses)

- Plateforme Télécommande
 - Affichage et Saisie Informations (Console Putty)
 - Emission des commandes (IR)
 - Bip sur émission commande (Haut Parleur)

Plateforme Robot

Ecran LCD (1)

(2)

- (USART) Encodeur (CAP)
- (3) Servomoteur
 - (PWM)
- (CAP) Récepteur IR (4)

- MicroRupteur Gauche (5) (INT)
- Détecteur Infrarouge (ADC) (6)
- MicroRupteur Droit (INT)

Antoine Courtay 18/03/2015

Plateforme Télécommande

- (1) Haut Parleur
- (2) Terminal (USART)
- (3) Emetteur IR (Timer)

Antoine Courtay 18/03/2015 6

Haut Parleur

- Haut Parleur
 - Génération Signal Carré à une fréquence → TIMER
 - TIMER pour la période de la note

Terminal

Affichage des informations vers un terminal

Saisie d'un parcours dans le terminal (Exemple)

Ava	ncer 30cm	(A, 30)
-----	-----------	---------

- Virage Droite 90° (D, 90)
- Avancer 50cm (A, 50)
- Virage Gauche 45° (G, 45)
- Avancer 20 cm (A, 20)

- Exemple de saisie: A 30 D 90 A 50 G 45 A 20
- Chaine max de 16 éléments soit 16 octets

Emetteur Infra Rouge

- Construire un message IR contenant les 16 octets d'info du parcours
- Modulation à 36kHz selon le protocole suivant:

Antoine Courtay 18/03/2015 10

Emetteur Infra Rouge

Périphériques

- 1 Timer pour générer la modulation
- 1 Timer pour compter la durée de la modulation ou non modulation

Timings à respecter:

- Header:
 - Modulation à 36kHz pendant 9000μs
 - Mise à 0 pendant 4500μs
- Transmission d'un bit à 1
 - Modulation à 36kHz pendant 600μs
 - Mise à 0 pendant 1000μs
- Transmission d'un bit à 0
 - Modulation à 36kHz pendant 600μs
 - Mise à 0 pendant 2000µs
- Transmission de la Fin de trame
 - Modulation à 36kHz pendant 600μs
 - Mise à 0 pendant 40000μs

Plateforme Robot: Périphériques

Récepteur Infra Rouge

- Décoder le message IR contenant les 16 octets d'info du parcours
 - Démodulateur TSOP1736
- Périphériques
 - 1 Timer en Mode Capture

TSOP1736

Servo Moteurs

- ServoMoteurs
 - Génération d'une commande PWM → TIMER

Hitec HSR-1422CR

Vitesse Max Arrière

Vitesse Nulle

Vitesse Max Avant

Encodeur + Fourche Optique

- Encodeur + Fourche Optique
- Signal de sortie sur entrée Timer Mode Capture
 - 1 tour complet → 44 Fronts
 - Simulation par un GBF

Détection d'obstacle: MicroRupteurs + InfraRouge

- MicroRupteurs Gauche et Droite
 - Signal sur entrée Interruption externe (Front descendant)
 - Simulation par un Bouton Poussoir

- Détecteur Proximité à InfraRouge
 - Signal sur entrée ADC (Analog to Digital Conversion)
 - Simulation par une alimentation réglable

Ecran LCD

- Ecran LCD
 - Piloté par une liaison série RS232 (USART)
 - Protocole Commandes/Données

Partage des taches

Chef de projet: Intégration + Menu + Moniteur de taches

Tache 1: LCD + Terminal

Tache 2: Servomoteur + Encodeur

Tache 3: Détection obstacle

Tache 4: Emission IR + Génération Son

Tache 5: Réception IR + Génération Son

Equipes de 6 étudiants

Programmation structurée

- Découpe en:
 - Taches matérielles (sous interruption)
 - Taches logicielles (hors interruption)
- Modularité du code
 - Partage possible
- Aspect temps réel
- Plus généralement, le main peut être écrit comme un scheduler de taches.

Programme Principal

Organisation des fichiers

- Découpe propre de tout le code en fichier aux noms connus de tous:
 - main.c: programme principal et déclaration des variables globales
 - global.h: déclaration des noms des variables globales comme
 « extern » pour insérer dans les autres fichiers
 - constantes.h: contient les #define de toutes les constantes utilisées dans l'application
 - Etc . A vous de vous organiser

Importation et Exportation des variables

- Une variable globale:
 - Est déclarée au début du fichier main.c
 - int x;
 - Est importée dans les autres fichiers qui veulent l'utiliser
 - extern int x; Ou bien
 - #include "global.h"; aVec global.h contenant extern int x;
- C'est l'éditeur de lien qui « fait le lien » entre les codes (c'est-à-dire remplace x par son adresse finale)
- L'équipe doit définir les variables globales de son projet

Importation et Exportation des fonctions

- Des procédures ou fonctions sont définies dans différents fichiers
 - lpc17xx_uart.c par exemple pour l'utilisation de l'UART
- Les prototypes sont défini dans un fichier .h
 - lpc17xx_uart.h par exemple pour l'utilisation de l'UART
- Le fichier .h est inclus au début des fichiers qui en ont besoin
- C'est l'éditeur de lien qui « fait le lien » entre les codes
- L'équipe doit se mettre d'accord sur le prototype des procédures et fonctions réalisées par chaque étudiant

Méthodologie de développement

- Chaque étudiant doit développer un code qui lui permet de tester la fonctionnalité qui lui a été confiée
- Il doit penser à écrire des fonctions ou procédures facilitant l'intégration finale
- Il doit les concevoir, les compiler, les simuler le plus possible, puis les tester sur la carte
- Ensuite seulement elles seront intégrées à l'ensemble du programme

Gestion du projet

- Organisation de l'équipe:
 - Partage des taches
 - Un chef de projet
- Échéancier:
 - Le projet s'étend de maintenant jusqu'à fin mai
 - Vous devez anticiper le travail et ne pas attendre la fin pour investir dans le projet en plus des séances
 - Un rapport intermédiaire est demandé après 3 séances pour voir si vous êtes sur la bonne voie
 - Un rapport final par équipe et une évaluation individuelle serviront à la notation