1 Page 8 P a g e

light on the wall at a point 3 metres from the point directly opposite the lighthouse as shown below. light on the lighthouse is rotating at 4 revolutions per second. Determine the exact speed of the dot of Consider a lighthouse that is 50 metres away from the shore. On the shore is a long brick wall. The Q6 (5 marks) (4.1.1, 4.2.2)

Mathematics Department Perth Modern

NO classpads nor calculators!

Note: All part questions worth more than 2 marks require working to obtain full marks.

Formula sheet provided:	səχ		
Task weighting:	0ī	%	
Marks available:	0 /	—— wsrks	
sməti ltens:		er, and up	nts, templates, notes on one unfolded sheet of to three calculators approved for use in the WACE
Standard items:			referred), pencils (including coloured), sharpener, pe, eraser, ruler, highlighters
Materials required:	NO cla	uou spedss	calculators
Number of questions:		 9	
Time allowed for this tasl		07	snim
Ізгк type:	Kespor	əsı	
Student name:			Теасһег пате:

Specialist Year 12 Test Three 2022 Course

Mathematics Department Perth Modern

Q1 (3 & 3= 6 marks) (3.3.9-3.3.10)

a) Solve the following set of linear equations.

$$3x - 2y + z = -8$$

$$x + 2y - 3z = -14$$

$$2x + y - z = -9$$

b) Consider the system below,

$$3x - 2y + z = p$$

$$x + 2y - 3z = -14$$

$$2x + y + qz = -9$$

Determine the values of p & q such that there are:

- i) ii) iii) Unique solution
- Infinite solutions
- No solutions.

Mathematics Department

Q4 (4 marks) (4.2.1)

If y^z - $\sin x = 1 - 5y$, determine $\frac{dy}{x} \approx \frac{d^2y}{x^2}$ in terms of $x \approx y$ only.

Q2 (2, 2, 2 & 3 = 9 marks) (3.3.11, 3.3.13)

. The particle is initially at

 $A \text{ particle moves such that at time t seconds the velocity is the origin.}$

- a) The position vector at time t=1 second.
- b) The acceleration of the particle at $^{\mathfrak{l}}=1$ second.
- c) The speed of the particle at t =2 seconds.
- d) The time(s) when the velocity is perpendicular to the acceleration.

 $1 + x = u \quad xb \frac{\overline{X}}{1 + x}$ (6 Determine the following integrals: Q5 (3 & 4 = 7 marks) (4.2.1) Mathematics Department Perth Modern

Q3 (4, 3 & 2 = 9 marks) (3.3.12, 3.3.13, 3.3.15)

Consider a particle that is projected from the top of a cliff of height 30 metres with a speed of u metres per second at an angle of α to the horizontal. Assume that the acceleration is constant at $10 \, m/\, s^2$ towards the centre of the Earth. Let the origin of cartesian axes be at the base of the cliff as shown below with the appropriate unit vectors $i \, \& \, j$.

$$\ddot{r} = \begin{pmatrix} 0 \\ -10 \end{pmatrix} m / s^2$$

a) Using vector integration, show how to derive the position vector r at time t seconds in terms of $u \otimes \alpha$. Show all steps.

4 | Page

Perth Modern

(X) to be determined where the particle hits the floor from the base of the cliff.

5 | Page