Correlation

Correlation: A **correlation** is a linear relationship between two variables. Correlation measures the linear association between two variables. Example:

- Is there any relationship between height and shoe size
- Number of cigarettes smoked per day and lung cancer.
- Supply and demand.

Scatter diagram: The basic idea of correlation analysis is to report the association between two variables. A Scatter Diagram is a chart that portrays the relationship between two variables.

X	2	4	6	8	10	12
Y	5	10	8	12	11	14

Fig: Scatter plot

Coefficient of correlation: The Coefficient of Correlation (r) is a measure of the strength of the linear relationship between two variables.

• Karl Pearson's coefficient of correlation: We calculate the Karl Pearson's coefficient of correlation from the following formula:

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 \sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

Properties of Correlation coefficient:

- A correlation coefficient varies from -1 to +1
- -1 indicating a perfect negative relationship (one increase while other decrease),
- 0 indicating no relationship
- +1 indicating a perfect positive relationship.

- 1 - TM

- The size of the correlation indicates the strength of the relationship; for example, the correlation coefficient -0.89 indicates a stronger relationship than a coefficient of +0.60.
- The closer to 1, the stronger the positive linear relationship
- The closer to 0, the weaker any positive linear relationship

Correlation Coefficient Interpretation:

Coefficient	Strength of	
Range	Relationship	
0.00 - 0.20	Very Low	
0.21 - 0.40	Low	
0.41- 0.60	Moderate	
0.60 - 0.80	High Moderate	
0.81- 1.00	Very High	

Scatter Plots of Data with Various Correlation Coefficients

- 2 - TM

Problem: Mr. Johnson is concerned about the cost to students of textbooks. He believes there is a relationship between the number of pages in the text and the selling price of the book. To provide insight into the problem he selects a sample of eight textbooks currently on sale in the bookstore. Compute the correlation coefficient.

Book	Page(x)	Price(\$)(y)
Introduction to History	500	84
Basic Algebra	700	75
Business Management	800	99
Introduction to		
Sociology	600	72

- a)Draw Scatter diagram
- b) Determine the coefficient of correlation
- c) Interpret the result.

Solution:

a) Scatter diagram:

b) Here,

We know

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{2600}{4} = 650$$

$$\overline{y} = \frac{\sum_{i=1}^{n} y_i}{n} = \frac{330}{4} = 82.5$$

- 3 - TM

X	у	$(x_i - \overline{x})$	$(y_i - \overline{y})$	$(x_i - \overline{x})^2$	$(y_i - \overline{y})^2$	$(x_i - \overline{x})(y_i - \overline{y})$
500	84	-150	1.5	22500	2.25	-225
700	75	50	-7.5	2500	56.25	-375
800	99	150	16.5	22500	272.25	2475
600	72	-50	-10.5	2500	110.25	525
				$\sum_{i=1}^{n} \left(x_i - \overline{x} \right)^2 = 50000$	$\sum_{i=1}^{n} \left(y_i - \overline{y} \right)^2 = 441$	$\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = 2400$

Now,

From the correlation coefficient

$$r = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2 \sum_{i=1}^{n} (Y_i - \overline{Y})^2}}$$
$$= \frac{2400}{\sqrt{50000 * 441}}$$

= 0.511

c) **Interpretation:** The correlation between the number of pages and the selling price of the book is 0.511. This indicates a moderate association between the variable.

- 4 - TM