Zero-shot Sequence Labeling: Transferring Knowledge from Sentences to Tokens

NAACL 2018

Jie Zhou 2020/01/07

Task

1. Sentiment Detection

They may have a SuperBowl in Dallas, but Dallas ain't winning a SuperBowl.

Not with that quarterback and owner.

@S4NYC @RasmussenPoll

Sentence Level: Negative

Token Level: None

Task

1. Sentiment Detection

They may have a SuperBowl in Dallas, but Dallas ain't winning a SuperBowl.

Not with that quarterback and owner.

@S4NYC @RasmussenPoll

Sentence Level: Negative

Token Level: None

2. FCE Error Detection

3. Uncertainty Detection ("either ... or ...", "whether")

Motivation

- Visualization techniques
 - Attention
 - Gradient

How to infer **token-level** labels for **binary** sequence tagging problems, using networks trained **only** on **sentence-level** labels?

Observation

- Attention-based methods better than gradient-based methods
- sometimes even rivaling the supervised oracle network

Model

Word Representation

$$\overrightarrow{h_i} = LSTM(w_i, \overrightarrow{h_{i-1}})$$

$$\overleftarrow{h_i} = LSTM(w_i, \overleftarrow{h_{i+1}})$$

$$\widetilde{h}_i = [\overrightarrow{h}_i; \overleftarrow{h}_i] \qquad h_i = tanh(W_h \widetilde{h}_i + b_h)$$

Weight

$$e_i = tanh(W_e h_i + b_e)$$

$$\widetilde{e_i} = W_{\widetilde{e}}e_i + b_{\widetilde{e}}$$

$$a_i = rac{exp(\widetilde{e_i})}{\sum_{k=1}^{N} exp(\widetilde{e_k})}$$

Basic

Logistic
$$\widetilde{a_i} = \sigma(\widetilde{e_i})$$
 $a_i = \frac{\widetilde{a_i}}{\sum_{k=1}^N \widetilde{a_k}}$ Ours

Classification

$$c = \sum_{i=1}^{N} a_i h_i$$

$$d = tanh(W_d c + b_d)$$

$$y = \sigma(W_y d + b_y)$$

$$L_1 = \sum_{j} (y^{(j)} - \tilde{y}^{(j)})^2$$

Construct loss functions

$$L_2 = \sum_{j} (\min_{i} (\widetilde{a_i}) - 0)^2$$

$$L_3 = \sum_{j} (\max_{i} (\widetilde{a_i}) - \widetilde{y}^{(j)})^2$$

min_i(a_i): the min value of a_i max_i(a_i): the max value of a_i

Alternative Methods

Gradient

$$g_i = \frac{\partial L_1}{\partial w_i}\Big|_{(y^*,y)}$$

- Relative Frequency Baseline
- Supervised Sequence Labeling

Experiment

	CoNLL 2010					FCE				
	Sent F_1	MAP	P	R	F_1	Sent F_1	MAP	P	R	F_1
Supervised	_	96.54	78.92	79.41	79.08	_	59.13	49.15	26.96	34.76
Relative freq	_	81.78	15.94	79.98	26.59	_	37.75	14.37	86.36	24.63
LSTM-LAST-BP	84.42	77.90	7.16	66.64	12.92	85.10	46.12	29.49	16.07	20.80
LSTM-ATTN-BP	84.94	80.38	9.13	71.42	16.18	85.14	44.52	27.62	17.81	21.65
LSTM-ATTN-SW	84.94	87.86	77.48	69.54	73.26	85.14	47.79	28.04	29.91	28.27

Experiment

	SemEval Negative				SemEval Positive					
	Sent F_1	MAP	P	R	F_1	Sent F_1	MAP	P	R	F_1
Supervised	_	67.70	31.79	44.66	37.02	_	67.41	36.27	50.71	42.24
Relative freq	_	44.15	17.39	15.67	16.48	_	47.64	13.39	54.69	21.51
LSTM-LAST-BP	53.65	43.02	8.33	28.41	12.88	70.83	49.06	17.66	35.06	23.48
LSTM-ATTN-BP	55.83	50.96	11.55	31.54	16.90	71.26	53.89	23.45	34.53	27.92
LSTM-ATTN-SW	55.83	54.37	29.41	14.40	19.23	71.26	56.45	37.19	25.96	30.45

Thanks!