Studenckie Koło Naukowe Math4You Wydział Informatyki Politechniki Białostockiej

Zbiory przybliżone Polska szkoła sztucznej inteligencji

Jan Gromko

22 kwietnia 2017 r.

Plan referatu

Wprowadzenie

Czym są zbiory przybliżone – historia i idea Możliwości, zalety, zastosowania Podstawowe pojęcia

Historia i idea

- ► Teoria zaproponowana w 1982 r. przez prof. Zdzisława Pawlaka.
- Wprowadzona jako nowe matematyczne podejście do pojęć nieostrych i metoda analizy danych.

Możliwości

- Szukanie zależności między danymi,
- ► redukcja zbiorów danych,
- ▶ określenie wagi danych,
- ► generowanie reguł decyzyjnych.

Zalety

- Teoria ZP nie wymaga założeń na temat danych, takich jak prawdopodobieństwo czy rozmytość,
- ► szybkie algorytmy analizy danych,
- łatwa interpretacja wyników,
- matematyczna prostota.

Zastosowania

- ► Medycyna,
- ► farmakologia,
- ▶ bankowość,
- ► lingwistyka,
- rozpoznawanie mowy,
- ▶ ochrona środowiska,
- bazy danych.

Podstawy

Zbioru przybliżonego (niedefiniowalnego) nie można jednoznacznie scharakteryzować na podstawie własności jego elementów, dlatego też w teorii ZP wprowadzone zostały pojęcia *dolnego* i *górnego przybliżenia zbioru* – w ten sposób zbiór przybliżony można scharakteryzować za pomocą dwóch zbiorów definiowalnych, czyli dolnego i górnego przybliżenia.

Podstawowe pojęcia

Dolne przybliżenie

Wszystkie te elementy, które można jednoznacznie zaklasyfikować do danego zbioru, według posiadanej wiedzy na ich temat.

Górne przybliżenie

Wszystkie te elementy, których przynależności do danego zbioru nie można wykluczyć.

Pacjent	Ból głowy	Ból mięśni	Ból mięśni Temperatura	
1	nie	tak	podwyższona	tak
2	tak	nie	nie podwyższona	
3	tak	tak	wysoka	tak
4	nie	tak normalna		nie
5	tak	nie podwyższona		nie
6	nie	nie	wysoka	tak

Tabela 1. Tablica decyzyjna przykładowego zbioru.

Ból głowy, ból mięśni, tempeartura – atrybuty warunkowe Grypa – atrybut decyzyjny

Problem:

Znaleźć zależność między występowaniem/niewystępowaniem grypy a symptomami występującymi u pacjentów, czyli znaleźć zależność między atrybutem decyzyjnym a wartościami atrybutów warunkowych, opisujących poszczególne obiekty.

Pacjent	Ból głowy	Ból mięśni	Temperatura	Grypa
2	tak	nie	podwyższona	tak
5	tak	nie	podwyższona	nie

Tabela 2. Sprzeczne informacje w zbiorze – przypadki, których nie można jednoznacznie sklasyfikować.

W oparciu o posiadane dane, można stwierdzić, że:

- ► {1,3,6} to zbiór przypadków, które (na podstawie atrybutów warunkowych) możemy *jednoznacznie* zaklasyfikować do grupy pacjentów chorych na grypę.
- ► {1,2,3,5,6} to zbiór przypadków, które *mogą* być zakwalifikowanie jako pacjenci chorzy na grypę
- ► {2,5} to zbiór przypadków, które nie mogą być jednoznacznie zaklasyfikowane jako pacjenci, którzy są lub nie są chorzy na grypę.

	1	2	3	4	5	6
1	Ø	_	_	_	_	_
2	Ø	Ø	_	_	_	_
3	Ø	Ø	Ø	_	_	_
4	t	g, m, t	g, t	Ø	_	_
5	g, m	Ø	m, t	Ø	Ø	_
6	Ø	Ø	Ø	m, t	g, t	Ø

Tabela 3. Macierz rozróżnialności przykładowego zbioru.

Pacjent	Ból głowy	Ból mięśni	ól mięśni Temperatura	
1	nie	tak	podwyższona	tak
2	tak	nie podwyższona		tak
3	tak	tak	wysoka	tak
4	nie	tak	normalna	nie
5	tak	nie	podwyższona	nie
6	nie	nie	wysoka	tak

Tabela 4. Tablica decyzyjna przykładowego zbioru.

Redukcja

Czy można zredukować zbiór pod względem atrybutów w ten sposób, by zachowana była rozróżnialność elementów z oryginalnego zbioru?

Macierz rozróżnialności – oryginalny zbiór

	1	2	3	4	5	6
1	Ø	_	_	_	_	_
2	Ø	Ø	_	_	_	_
3	Ø	Ø	Ø	_	_	_
4	t	g, m, t	g, t	Ø	_	_
5	g, m	Ø	m, t	Ø	Ø	_
6	Ø	Ø	Ø	m, t	g, t	Ø

Tabela 5. Macierz rozróżnialności.

Macierz rozróżnialności – redukcja

	1	2	3	4	5	6
1	Ø	_	_	_	_	_
2	Ø	Ø	_	_	_	_
3	Ø	Ø	Ø	_	_	_
4	t	g, t	g, t	Ø	_	_
5	g	Ø	t	Ø	Ø	_
6	Ø	Ø	Ø	t	g, t	Ø

Tabela 6. Macierz rozróżnialności po redukcji.

Podstawowe pojęcia

Rysunek 1. Przykładowy zbiór.

Dolne przybliżenie

Rysunek 2. Dolne przybliżenie zbioru.

Obszar brzegowy

Rysunek 3. Obszar brzegowy zbioru.

Górne przybliżenie

Rysunek 4. Górne przybliżenie zbioru.

Bibliografia

- [1] Zdzisław Pawlak
 Zbiory przybliżone nowa matematyczna metoda analizy danych
- [2] Leszek Rutkowski

 Metody i techniki sztucznej inteligencji

