Análisis Aplicado Región de Confianza

1. Introducción

Sean $f: \mathbb{R}^n \to \mathbb{R}$ y $\hat{x} \in \mathbb{R}^n$ tales que $f \in \mathcal{C}^2(\mathbb{R}^n)$, $g = \nabla f(\hat{x}) \neq 0$ y $B = \nabla^2 f(\hat{x})$ simétrica positiva definida. El subproblema de región de confianza con radio $\Delta > 0$ es,

$$\begin{array}{ll} \text{Min} & \frac{1}{2}p^TBp + g^Tp + f(\hat{x}) \\ \text{Sujeto a} & \|p\| \leq \Delta. \end{array} \tag{1}$$

La dirección de Newton es,

$$p^N = -Bg, (2)$$

que es la única solución de

Min
$$m(p) = \frac{1}{2}p^T B p + g^T p + f(\hat{x}).$$

El punto de Cauchy, p^C , es la única solución de m(p) a lo largo de -g, es decir,

$$\operatorname{Min} \quad \frac{1}{2}(-\alpha g)^T B(-\alpha g) + g^T(-\alpha g) + f(\hat{x}), \tag{3}$$

de donde

$$p^C = -\left(\frac{g^T g}{g^T B g}\right) g.$$

2. Doblez

Lema.
$$||p^C||_2 \le ||p^N||_2$$
.

Una aproximación a la única solución de (1) es tratando de interpolar la curva de gancho por medio del esquema de doblez,

$$\begin{array}{l} \mathbf{Si} \ \|p^N\|_2 \leq \Delta \\ p^* \leftarrow p^N. \\ \mathbf{de \ otra \ manera} \\ \mathbf{Si} \ \|p^C\|_2 \geq \Delta \\ p^* \leftarrow -\Delta \frac{p^C}{\|p^c\|_2}. \\ \mathbf{de \ otra \ manera} \\ \mathbf{Sea} \ t^* \in (0,\ 1) \ \text{la \ única \ solución \ de} \\ \|p^C + t(p^N - p^C)\|_2^2 - \Delta^2 = 0. \\ \mathbf{Fin} \\ \mathbf{Fin} \end{array}$$

3. Laboratorio

Programar en Matlab

function $[ps] = doblez(B, g, \Delta)$

- % Se resuelve el probelma de región de confianza con radio $\Delta>0$
- % por medio de la ténica del doblez.
- % In
- %~Bmatriz simétrica positiva definida de $n{\bf x}n$
- % gvector columna de dimensión n
- % Δ número posiitvo.
- % Out
- % ps vector column
na de dimensión n.

Pruebe **doblez.m**, con la función de Rosenbrock en $\hat{x} = (1,5,\ 2,5)^T$ y los siguientes radios:

Δ	p_1^*	p_2^*
0.5	0.0102	-0.2193
0.25	0.0102	-0.2193
0.125	0.0464	-0.1161
0.0625	0.0593	-0.0199
0.03125	0.0296	-0.0099

