Anteprima domanda: A1.1 7/26/21, 13:14

Domanda **1**Risposta non ancora data

Non valutata

1. Argomenti procedurali in Scheme

Dati tre interi non negativi i, j, n, con $0 \le i + j \le n$, la procedura seqs restituisce la lista di tutte le possibili stringhe di lunghezza n composte dai caratteri 'a', 'b', 'c' e contenenti esattamente i caratteri 'a', j caratteri 'b' e i rimanenti 'c'.

Esempi:

```
(seqs 0 0 3) -> ("ccc")
(seqs 1 1 3) -> ("abc" "acb" "bac" "bca" "cab" "cba")
```

1.1. Completa la definizione della procedura seqs.

```
(define seqs
 (lambda (i j n) ; i, j, n: interi non negativi t.c. 0 \le i+j \le n
       (x (if (= i 0) null (seqs (- i 1) j (- n 1))))
       (y (if (= j 0) null (seqs i (- j 1) (- n 1))))
       (z (if
                                                        null
                                                                                                                                ))
    (if (= n 0)
       (list "")
       (append
        (map
                                                                                                                   x)
        (map
        (map
       )))
  ))
```

Ricomincia	Salva	Inserisci le	risposte esatte	Invia e termina	Chiudi anteprima
Informazioni tecn	iche ?				
Esporta la domar	nda nel form	ato Moodle XM	<u>L</u>		
<u>Opzion</u>	<u>i per il</u>	tentativo	<u>)</u>		
Comportame	nto della do	manda ?	Feedback di	fferito	\$
Punteggio ma	assimo				
0					
			Ricomincia	con queste opzioni	

Minimizza tutto

Anteprima domanda: Q1.2 7/26/21, 13:16

Anteprima domanda: A2.1 7/26/21, 13:16

Domanda **1**Risposta non

ancora data Non valutata

2. Correttezza dei programmi ricorsivi

In relazione alla procedura *ufo* definita come segue per una rappresentazione binaria dell'argomento che inizia sempre con il bit più significativo uguale a 1 (una variante della versione discussa in classe):

(define ufo

si può dimostrare per induzione sulla lunghezza $n \ge 2$ della sequenza s di bit che per ogni stringa della forma $s = "1100 \dots 0"$, cioè con due bit '1' all'inizio seguiti da n-2 occorrenze di '0', si ha che:

```
(ufo s) \to 2^{n-1} + 1
```

2.1. In relazione alla dimostrazione impostata in questi termini:

• Formalizza la proprietà che esprime il caso / i casi base:

Assumendo come ipotesi induttiva che per una certa stringa $t = "1100 \dots 0"$ di lunghezza $k \ge 2$ si abbia:

(ufo
$$t$$
) $\to 2^{k-1} + 1$

• Formalizza la proprietà da dimostrare come passo induttivo:

[Nella formalizzazione puoi eventualmente utilizzare il simbolo ^ per l'elevamento a potenza, <= al posto di ≤ e così via.]

Ricomincia Salva Inserisci le risposte esatte Invia e termina Chiudi anteprima

Informazioni tecniche ? _ >

Esporta la domanda nel formato Moodle XML

Minimizza tutto

Anteprima domanda: Q2.2 7/26/21, 13:18

Anteprima domanda: B2.1 7/26/21, 13:17

Domanda 1

Risposta non ancora data Non valutata

2. Correttezza dei programmi ricorsivi

In relazione alla procedura ufo definita come segue per una rappresentazione binaria dell'argomento che inizia sempre con il bit più significativo uguale a 1 (una variante della versione discussa in classe):

(define ufo

```
(lambda (bin) ; bin è una stringa di 0/1 che inizia con il bit '1' (bit più significativo = 1)
 (let (
      (k (- (string-length bin) 1))
  (cond ((= k \ 0); bin = "1"
       ((char=? (string-ref bin k) #\0)
       (- (* 2 (ufo (substring bin 0 k))) 1))
       (+ (* 2 (ufo (substring bin 0 k))) 1))
       ))
 ))
```

si può dimostrare per induzione sulla lunghezza $n \ge 2$ della sequenza s di bit che per ogni stringa della forma $s = "1011 \dots 1"$, cioè con i primi due bit "10" all'inizio seguiti da *n-2* occorrenze di '1', si ha che:

```
(ufo s) \rightarrow 2^{n-1} - 1
```

2.1. In relazione alla dimostrazione impostata in questi termini:

• Formalizza la proprietà che esprime il caso / i casi base:

Assumendo come ipotesi induttiva che per una certa stringa $t = "1011 \dots 1"$ di lunghezza $k \ge 2$ si abbia:

(ufo
$$t$$
) $\rightarrow 2^{k-1} - 1$

• Formalizza la proprietà da dimostrare come passo induttivo:

[Nella formalizzazione puoi eventualmente utilizzare il simbolo ^ per l'elevamento a potenza, <= al posto di ≤ e così via.]

Ricomincia Salva Inserisci le risposte esatte Invia e termina Chiudi anteprima

Informazioni tecniche ? _ >

Esporta la domanda nel formato Moodle XML

Minimizza tutto

Anteprima domanda: Q2.2 7/26/21, 13:18

Anteprima domanda: A3.1 7/26/21, 13:19

Domanda **1**Risposta non ancora data
Non valutata

3. Memoization

Una sequenza s di double si definisce smorzantesi (damping) se ogni suo elemento ha un valore che ricade strettamente all'interno dell'intervallo delimitato dai due elementi precedenti, quando ci sono entrambi. Formalmente:

```
min(s[i-2], s[i-1]) < s[i] < max(s[i-2], s[i-1]) per i \ge 2.
```

Data una sequenza s, rappresentata da un array di double, il seguente programma ricorsivo in Java determina la lunghezza della sottosequenza smorzantesi più lunga di s ($llds = length \ of \ the \ longest \ damping \ subsequence$):

3.1. Completa il programma riportato qui sotto, che applica una tecnica top-down di memoization per rendere più efficiente la computazione ricorsiva avviata da *Ilds*. Assumi a tal fine che la procedura *initStruct* (metodo statico) inizializzi correttamente la struttura di supporto per registrare i valori delle computazioni ricorsive effettuate.

```
public static int llds( double[] s ) {
 int n = s.length;
                         mem = initStruct( n );
 return IldsRec( s, 0, n, n, mem );
private static int lldsRec( double[] s, int i, int j, int k,
                                                                                 mem ) {
 if ( mem
                                    == UNKNOWN ) {
  int n = s.length;
  if (i == n) {
   mem
  } else if (
                                     ш
           ((\mathsf{Math.min}(s[j],s[k]) < s[i]) \; \&\& \; (s[i] < \mathsf{Math.max}(s[j],s[k]))) \;) \; \{
   mem
  } else {
   mem
 }}
 return mem
private static final int UNKNOWN = -1;
```

Anteprima domanda: Q3.2 7/26/21, 13:20

Domanda 1 Risposta non ancora data	3. Memoization					
Punteggio max.: 1,00	3.2. Definisci oppor applica la tecnica di		statico initStruct u	utilizzato per inizializzar	e la struttura di suppo	rto relativa al programma che
	Soluzione:					
						<i>I</i>
Ricomincia	Salva Inserisci le	e risposte esatte	Invia e termina	Chiudi anteprima		
Informazioni tecnich	<u>e</u>					
	nel formato Moodle X					Minimizza tutt
	per il tentativ o della domanda ?	Feedback diffe	arito.	*		
Punteggio mass	simo	i eedback dille	ento			
1		Diagrainaia	n avecto onzioni	<u>ا</u>		
			n queste opzioni	J		
Opzioni de Se corretto	<u>di visualizza</u> :					
Punteggio		Visualizzato	ŷ			
	ollo volutariari	Visualizza pun	teggio e max.	*		
Cifre decimali n	elie valu(azioni	2 🛊				

Anteprima domanda: A4.1 7/26/21, 13:21

Domanda **1**Risposta non

ancora data Non valutata

4. Ricorsione e iterazione

Dato l'albero di Huffman specifico per un particolare documento, il seguente programma ricorsivo permette di calcolare il numero complessivo di bit della codifica di Huffman di quel documento:

```
public static int huffmanSize( Node root ) {
    return huffmanSizeRec( root, 0 );
}
private static int huffmanSizeRec( Node n, int d ) {
    if ( n.isLeaf() ) {
        return d * n.weight();
    } else {
        return huffmanSizeRec( n.left(), d+1 ) + huffmanSizeRec( n.right(), d+1 );
    }
}
```

4.1. Completa la procedura impostata qui sotto per trasformare la computazione ricorsiva di *huffmanSizeRec* in una computazione iterativa, utilizzando uno stack di *Frame*.

Ricomincia Salva Inserisci le risposte esatte Invia e termina Chiudi anteprima

Esporta la domanda nel formato Moodle XML

Indiani nar il tantativa

Minimizza tutto

https://elearning.uniud.it/moodle/question/preview.php?id=554314&courseid=3136

Anteprima domanda: Q4.2 7/26/21, 13:23

