

NATIONAL INSTITUTE OF TECHNOLOGY, ROURKELA -769008 MID-SEMESTER EXAMINATION

SESSION: 2022-2023 (autumn) B. Tech. 5th Semester

Subject Code: CE3401 Subject: Water Resources Engineering Dept. Code: CE No. of Pages: 01 (One) Full Marks: 60 Duration: 2 Hours

	of Pages: 01 (On	.e)				ruii ivi	arks: 60				טנ	iration: 2	
Q. No	Particulars (Answer any Rive questions)												Ma rks
1.	The mass curve of rainfall in a storm of total duration 90 minutes is given below. (a) Drawn hyetograph of the storm at 10 minutes time step. (b) Plot the maximum intensity-duration curve this storm. (c) Plot the maximum depth-duration curve for the storm.												12
	Time(Minutes	s) 0	10	20	30	40	50	60	70	80	90		
	Cumulative Rainfall (mm	0	2.1	6.3	14.5	21.7	27.9	33.0	35.	1 36.2	2 37.0		
2.	A one-day rainfall of 20.0 cm at a place X was found to have a period of 100 years. Calculate the probability that a one-day rainfall of magnitude equal to or larger than 20.0 cm: (i) Will not occur at station X during the next 50 years. (ii) Will occur in the next year.												12
3.	Determine the best values of the parameters of Horton's infiltration capacity equation following data pertaining to infiltration tests on a soil using double ring infiltrometer. Time since 5 10 15 25 40 60 75 90 110											for the	12
	start(minutes))			13	23		00			110	130	
	Cumulative Infiltration (n		1.0	36.0	47.6	56.9	63.8	69.8	74.8	79.3	87.0	92.0	
4.	The mass curve of an isolated storm in a 500ha watershed is as follows:												12
	Time from start (h)	0	2	4	6		8	10	12	14	16	18	
	Cumulative Rainfall (cm)	0	0.8	2.6	2.8	4	.1	7.3	10.8	11.8	12.4	12.6	
	If the direct runoff produced by the storm is measured at the outlet of the watershed as 0.34M estimate the phi–index of the storm and duration of rainfall excess.												
5.	With neat sketch describe the horizontal-axis and vertical-axis current meters. What is two-step method of discharge measurement and two-point method of velocity measurement?												
6.	The stage-discarge data of a river are given below. Establish the stage-discharge relationship the discharge for a given stage. Assume the value of stage for zero discharge as 35.00m. Also the discharge corresponding to stage values of 42.50m and 48.50m respectively.												12
	Stage (m) Disc		charge (m ³ /s)		Stage (m)		Discharge (m ³ /s)		Stag	Stage (m)		Discharge (m³/s)	
	35.91		89		43.53		2800			49.05		6800	
	36.90 37.92		230 360		44.40 45.40		3800 4560		_	49.55 49.68		6900 6950	
	39.07	4	469		46.43		5305				37	- *	
	41.00 798			48.0	48.02 5900								