M6. CNN for NLU

[Recall] Convolution 연산

1,	1 _{×0}	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4	

Convolved Feature

• n x m 크기의 필터가 데이터를 돌며 지역적인 정보를 가공해 feature 추출

[Recall] Max pooling

• a x b 지역 내에서 최대값만을 가지고 오는 연산

2 dimensional convolution layer은 사용해 문장 representation 은 생성하는 방법

- 이미지른 처리하듯 텍스트른 처리하는 방식
- 위치 무관하게 문장의 득징을 뽑아내어 분류
- 병렬처리가 가능해 속도가 빠름

Convolutional Neural Networks for Sentence Classification (Yoon Kim, 2014)

^{**} 위의 예시는 token에 대해 convolution을 적용했지만, character 단위로 적용하는 character CNN도 가능함.

CNN for NLU 6.1 개념

** Max Pooling은 동해 하나의 필터당 하나의 feature만이 남고, 인풋의 길이와 상관 없이 처리가 가능해짐.

CNN for NLU 6.1 개념

NLU 태스크 적용 실험

Convolutional Neural Networks for Sentence Classification (Yoon Kim, 2014)

Data	클래스 개수	데이터 수	단어 개수	정확도	설명
MR	2	10,662	18,765	81.5%	양화 리뷰 긍/부정 분류
STT-1	5	11,855	17,836	48.0%	리뷰륻 매우긍정/긍정/중립/부정/매우부정 분류
STT-2	2	9,613	16,185	87.2%	SST1 데이터륻 긍/부정만 분류하는 태스크
Subj	2	10,000	21,323	93.4%	문장이 주관적인지 객관적인지 분류하는 태스크
TREC	6	5952	9,592	93.6%	질문은 사람/ 지역/ 숫자/ 정보 등 6가지로 분류
CR	2	3775	5,340	84.3%	제품의 Customer Review를 긍/부정 분류

- CNN 필터 윈도우 크기 = 3, 4, 5
- CNN feature map 사이즈 = 각각 100 feature 생성

NLU를 위한 CNN 연산과 친해지기

미니 실습3_CNN과 친해지기.ipynb

NLU를 위한 CNN 연산과 친해지기

```
POOL_SIZE1 = SEQ_LEN - KERNEL_SIZE1 + 1

print("CNN applied size for kernel {} => {}".format(KERNEL_SIZE1, cnn_applied1.shape))

print("Pooling size for kernel {} => {}".format(KERNEL_SIZE1, POOL_SIZE1))

max_pool_applied1 = MaxPool1D(pool_size = POOL_SIZE1)(cnn_applied1)

print(max_pool_applied1.shape)
```


CNN은 사용하여 감성분석 모델 학습하기

실습_4_CNN_for_NLU.ipynb

CNN은 사용하여 감성분석 모델 학습하기

• 데이터 : 네이버 영화리뷰 (https://github.com/e9t/nsmc)

개봉영화	평점		
저 산 너머		****	8.41
	어벤져스: 인피니티 워	****	8.96
	그렇다. 토르는 신이엿다 내년까지 살아가야 할 이유가 생겼습니 이 영화의 최고의 빌런은 번역가다.	나	
1917		****	8.88
트롤: 월드	투어	****	8.91

- 네이버 영화 평점 크롤팅 데이터 20만 건
- 평점 1-4 댓글 = 부정
- 평점 9-10 댓글 = 긍정 으토 라벨딩

- 학습 목표 :
 - CNN을 사용한 자연어 분석 모델을 이해한다.
 - TF Keras를 이용해 모델을 구축하고, 학습 및 추론할 수 있다.