Due Date : Monday., Oct. 9				Name	e:		
Due Dute. Monday, oeu y	Re	quired Home	work #1-2		·		
Lec. 1-5 through 1-8:		-			Brushle	ess DC Cor	ncepts
<i>Note</i> : Please fill in the answ	_	_					_
graphs and code used							
DC Machine Operating En	nvelopes						
1) Consider a 30hp, 2500r will be given below. So calculations. Assume th machine current based of is determined by the machine by the machine current based of t	lve using data from at the maximum ard on its rated power. S	the DC machine mature current is Similarly, assume	es datasheet, determined that the ma	using the "ho by the supply ximum applie	t resistand limit rath d armatur	ce" value for ner than the r	all rated
 a) Assume the DC supple boundary envelope (i ω axes, with torque constant at its rated (1 (which equals the arm if P does not equal the 	.e., capability curve Γ on the y-axis [in 100%) value. What a nature voltage V_a) a	e) of the drive sy N-m] and speed are the torque, sp at the four corne	stem's torque ω on the x- beed, machin rs of the ope	e-speed opera axis [in rad/s] he shaft power crating envelop	ting capal . Assume <i>P_{mech}</i> , a	oilities on a s that the fiel nd supply vo	set of T - ld flux is oltage V_s
Upper left	$T = _{N-1}$	$\omega =$	rad/s	$P_{mech} =$	kW	$V_{\rm s} =$	V
Upper right	T = N-1	$\omega = $	rad/s	$P_{mech} = $	kW	$V_S =$	V
	T = N-1						
	T = N-1			$P_{mech} = $			
b) Assume the DC supple complete operating er set of <i>T</i> - ω axes, assumachine shaft power	nvelope (i.e., capabi uming that the field	ility curve) of the flux is still cons	e drive syste tant at its rat	m's torque-spe ed value. Wha	eed opera	ting capabili torque, speed	ities on a d,
Upper left	$T = \underline{\hspace{1cm}} N$	-m ω=	rad/s	$P_{mech} = $	kW	$V_s = $	V
	$T = \underline{\hspace{1cm}} N$						
	$T = \underline{\hspace{1cm}} N$						
Lower right	$T = \underline{\hspace{1cm}} N$	-m ω=	rad/s	$P_{mech} = $	kW	$V_s = $	V
c) Replot the operating weakened. Note the n (100%) flux. Assume is the maximum value corresponding values Hint: what is consider $\omega = +3500$ rpm	the machine can ope of torque that can loof machine output red output power fo	is proportional to perate no faster the achieved at the power P_{out} , mater motoring vs. g	o the field fluman 3500rpm e extremes of the constant enerating see	ix, and the value in either dire of $+3500$ rpm and K , and suppenarios?	ue on the ction (i.e. nd -3500r bly voltag	datasheet is ± 3500 rpn, and what $= V_s$? (10 pc	for rated m). What at are the bints)
Positive torque $T = \sum_{i=1}^{n} T_i = T_i$	N-m	K =	$N-m/A$ P_0	$ut = _{}$. ₩	$V_S = $	V
Negative torque $T = \omega = -3500$ rpm	N-m	K =	N-m/A P_o	ut ⁼ 1	ζW	$V_S = $	V

Positive torque
$$T =$$
 N-m $K =$ N-m/A $P_{out} =$ kW $V_s =$ V Negative torque $T =$ N-m $K =$ N-m/A $P_{out} =$ kW $V_s =$ V

DC Machine Dynamics

- 2) Calculate the following for two 20hp DC machines, one rated at 3500rpm and the other rated at 500rpm. Use data from the DC machines datasheet on the course website, including "hot" armature resistance value for all calculations. Note the machine constant K is proportional to the field flux, and the value on the datasheet is for rated (100%) flux. Both the load moment of inertia J_L and the viscous friction coefficient B are zero unless stated otherwise. Do not neglect the machine inertia J_m .
 - a) Calculate the eigenvalues p_1 and p_2 (real or complex) for operation at rated flux and at 50% of rated flux. (8 points):

	3500rpm	Machine	500rpm	Machine
Rated (100%) Flux	$p_1 = $	1/sec	$p_1 = $	1/sec
	$p_2 = $	1/sec	$p_2 = \underline{\hspace{1cm}}$	1/sec
50% of Rated Flux	$p_1 = $	1/sec	$p_1 = $	1/sec
	$p_2 = $	1/sec	$p_2 = $	1/sec

DC Machine Dynamics using MATLAB/Simulink

This next section takes the 20hp 500rpm machine and simulates the time dynamics, thus providing an introduction to MATLAB/Simulink for modelling electric machines and drives.

3) Build the block diagram below of an unloaded DC machine in Simulink. Save the filename as "HW 02 DC Machine Sim.slx" (4 points)

Description:

We are exciting the DC machine armature terminals with a step in voltage and evaluating what the resultant speed of the machine is.

Helpful tips:

- The variable names (e.g., pm_Lp, pm_Rp) you choose must be consistent with what you defined in your MATLAB script... shown later.
- Please see the Appendix on where to find the blocks and how to populate the block with the correct parameters.
- If you see red highlights around your gain and unit step blocks, that's ok. It is because these variables have not been defined yet. When you run the corresponding MATLAB script, the variables will be defined, and these red error highlights will go away.
- 4) Open the test script "HW 02 DC Machine ScriptRunner.m."
 - a) Replace the eigenvalues with what you got in part 2a for the 20hp 500 rpm machine:

b) Run the script.

The test script runs two cases of the DC machine: (i) nominal operating conditions and (ii) field weakening with 50% rated flux.

The purpose is to demonstrate how field weakening can affect DC machine transients.

Full description of machine parameters:

```
% Based off a 20hp, 500 rpm DC machine
                           % machine constant
Kp run01 = 4.35;
                               (100% rated flux)
Kp_run02 = 0.5*Kp_run01;
                           % field-weakened machine constant
                           %
                               (50% rated flux)
pm Rp = 1.2*0.168;
                           % [Ohms] Hot resistance
                         % [H] DC machine inductance
pm_{pm} = 0.013;
pm_Jp = 1.34*1.355;
                          % [kg*m^2] Moment of inertia
                  % [N*m/(rad/s)] Damping coefficient
pm \ bp = 1e-4;
pm Ke = Kp run01; % [V/(rad/s)] machine constant (BEMF)
pm Kt = Kp_run01; % [N*m/A] machine constant (torque)
```

The machine is excited with a 5V voltage step.
If you built the Simulink block diagram correctly and named the file properly, the script should run without further modification.
5) Screenshot the plot of the time domain waveforms involving speed here. (6 points)
6) Screenshot the plot of your DC machine eigenvalues here. (2 points)
7) For both scenarios, demonstrate how the time domain waveforms give the same information as the complex plane plot of the eigenvalues of the DC Machine in terms of overshoot. (16 points)
8) Using both the plot of eigenvalues and time domain waveforms, choose one metric (e.g., natural frequency, overshoot) and describe how the speed response compares between the two operating cases of the DC machine. (4 points)

Brushless DC Machine Concepts

- 9) Name three advantages and two disadvantages of using a brushless DC machine instead of a brushed DC machine. Attach your answer on a separate sheet. (10 points):
- 10) Why does a brushless DC machine have a trapezoidal back-emf? Explain using physical concepts how it is implemented in the internal construction of the machine. Write your answer using words and diagrams on a separate sheet. Note: you do not need to mathematically model how the construction gives rise to the trapezoidal emf waveform. (10 points):
- 11) On the right-hand column of the table, indicate whether the description applies to a brushed DC machine (BDC), a brushless DC machine (BLDC), neither, or both. Assume that the machine is operating as a motor (10 points).

Externally supplied current is AC	
Externally supplied current is DC	
Externally supplied voltage is AC	
Externally supplied voltage is DC	
Electrical to mechanical energy converter	
Field is stationary	
Field spins	
Can use permanent magnets	
Requires electronic commutator	

Appendix for Hints

To find these Simulink blocks, click on the "Library Browser" icon.

Description of blocks used:

Name	Location	Description	
Gain	Commonly Used Blocks	Looks like a triangle.	
		*	
		Gain	
		Represents multiplication by a constant.	
		Double-click on the block to change parameters.	
		Block Parameters: Gain4	
		-⇒ Gain	
		Element-wise gain (y = K.*u) or matrix gain (y = K*u or y = u*K).	
		Main Signal Attributes Parameter Attributes Gain:	
		1/pm_Lp :	
		Multiplication: Element-wise(K.*u) ▼	
Integrator	Continuous	Represents the 1/s Laplace term	
_		\\	
		1 3	
		Integrator	
Sum	Commonly	Y •. ▶	
	Used Blocks	~	
		Sum	
		Double-click on the block to change how many input terminals are	
		required.	X
		Block Parameters: Sum1	^
		Sum	
		Add or subtract inputs. Specify one of the following: a) character vector containing + or - for each input port, for spacer	
		between ports (e.g. ++ - ++)	
		b) scalar, >= 1, specifies the number of input ports to be summed.	
		When there is only one input port, add or subtract elements over all dimensions or one specified dimension	
		antensions of one specifica afficiation	
		Main Signal Attributes	
		Icon shape: round	-]
		List of signs:	
		+	

		Or put successive sum blocks to get the proper addition and subtraction.
Step	Sources	Represents a step function.
		Step Change the step height and time at which the step occurs by double
		clicking on the block.
		Block Parameters: Voltage
		Step
		Outpula step.
		Main Signal Attributes
		Step time:
		0
		Initial value:
		0
		Final value:
		▲ Vstep :
		Sample time:
		▲ Ts_sim
		☑ Interpret vector parameters as 1-D
		☑ Enable zero-crossing detection
		OK Cancel Help Apply
Scope	Sinks	Scope
		Plots a selected Simulink signal/waveform. Double click on the scope after running the model to view said waveform.
To workspace	Sinks	simout To Workspace
		Takes a certain Simulink signal/waveform to MATLAB workspace for post-processing
		Double-click on the block and change to match these parameters.

To Workspace Write input to specified timeseries, array, or structure in a workspace. For menu-based simulation, data is written in the MATLAB base workspace. Data is not available until the simulation is stopped or paused. To log a bus signal, use "Timeseries" save format. Parameters Variable name: Omega Limit data points to last: inf Decimation: 1 Save format: Timeseries Log fixed-point data as a fi object Sample time (-1 for inherited):	 	
Write input to specified timeseries, array, or structure in a workspace. For menu-based simulation, data is written in the MATLAB base workspace. Data is not available until the simulation is stopped or paused. To log a bus signal, use "Timeseries" save format. Parameters Variable name: Omega Limit data points to last: inf Decimation: 1 Save format: Timeseries Log fixed-point data as a fi object	Block Parameters: To Workspace	\times
menu-based simulation, data is written in the MATLAB base workspace. Data is not available until the simulation is stopped or paused. To log a bus signal, use "Timeseries" save format. Parameters Variable name: Omega Limit data points to last: inf Decimation: 1 Save format: Timeseries Log fixed-point data as a fi object	To Workspace	
Parameters Variable name: Omega Limit data points to last: inf Decimation: 1 Save format: Timeseries Log fixed-point data as a fi object	menu-based simulation, data is written in the MATLAB base workspace.	or
Variable name: Omega Limit data points to last: inf Decimation: 1 Save format: Timeseries ✓ Log fixed-point data as a fi object	To log a bus signal, use "Timeseries" save format.	
Omega Limit data points to last: inf Decimation: 1 Save format: Timeseries Log fixed-point data as a fi object	Parameters	
Limit data points to last: inf Decimation: 1 Save format: Timeseries Log fixed-point data as a fi object	Variable name:	
inf Decimation: 1 Save format: Timeseries ✓ Log fixed-point data as a fi object	Omega	
Decimation: 1 Save format: Timeseries ✓ Log fixed-point data as a fi object	Limit data points to last:	
Save format: Timeseries ▼ Log fixed-point data as a fi object	inf	
Save format: Timeseries ✓ Log fixed-point data as a fi object	Decimation:	
✓ Log fixed-point data as a fi object	1	
	Save format: Timeseries	•
Sample time (-1 for inherited):	✓ Log fixed-point data as a fi object	
Sample and (1 for interted).	Sample time (-1 for inherited):	
▲ Ts_sim	▲ Ts_sim	