Distribuciones Discretas

Distribución	Función de Densidad		$oxed{Varianza} Var[X]$	Función Generadora de Momento	$\mathbb{E}[X^a]$	Notas/Uso
Bernoulli $X \sim \operatorname{Be}(p)$	$f(x) = p^{x}(1-p)^{1-x}$ $x = 0, 1; 0$	p	p(1-p)	$pe^t + (1-p)$	$\forall, a \in \mathbb{N} \mathbb{E}[X^a] = p$	p := proba. de éxito.
Binomial $X \sim \mathrm{Bi}(n,p)$	$f(x) = \binom{n}{x} p^x q^{n-x}$ $x = 0, 1,, n; 0$	np	npq	$(pe^t + q)^n$	$\mathbb{E}(X^a) = np \mathbb{E}[(Y+1)^{a-1}]$ Con Y: v.a. binomial con parámetros $n-1,p$	Número de éxitos en n ensayos. n := número de ensayos. p := proba. de éxito. q := (1 - p) := proba de fracaso.
$egin{aligned} \mathbf{Geom\acute{e}trica} \ & X \sim \mathrm{Geo}(p) \end{aligned}$	$f(x) = q^x p$ $x = 0, 1, 2; 0 \le p \le 1$ Puede ser q^{y-1} ; $y = 1, 2$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1 - qe^t}$		Número de ensayos en el que ocurre el primer éxito. $p:= \text{proba. de éxito.}$ $q:= (1-p):= \text{proba de fracaso.}$
Poisson $X \sim \text{Po}(\lambda)$	$f(x) = \frac{\lambda^x e^{-\lambda}}{x!}$ $x = 0, 1, 2,; \lambda > 0$	λ	λ	$e^{\lambda(e^t-1)}$		Número de eventos que ocurren en un intervalo de tiempo (región) con un promedio conocido. Binomial con n grande. $\lambda = np := \text{promedio conocido.}$
$ \begin{aligned} \mathbf{Binomial} \\ \mathbf{Negativa} \\ X \sim \mathrm{BN}(r) \end{aligned} $	$f(x) = {x-1 \choose r-1} p^r q^{x-r}$ $x = r, r+1, \dots$	$\frac{r}{p}$	$rac{rq}{p^2}$	$\left(\frac{p}{1 - qe^t}\right)^r$	$\frac{r}{p}\mathbb{E}[(Y-1)^{a-1}]$ Y v.a. binomial negativa con parámetros r+1,p	Número de evento en el que ocurre el r-ésimo éxito. $r:= \text{r-ésimo éxito}.$

Distribuciones Continuas

Distribución	Función de Densidad		$Varianza$ $V[X] = \sigma^2$	Función Generadora de Momento	$\mathbb{E}[X^a]$	Notas/Uso
Uniforme $X \sim \mathrm{U}(a,b)$	$f(x) = \frac{1}{b-a}$ $a \le y \le b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$		Poisson en un intervalo $[a, b]$ en el que sólo pasa 1 evento. Misma probabilidad en cada punto del intervalo
Normal $X \sim \mathrm{N}(\mu, \sigma)$	$f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2	$e^{\mu t + (t^2\sigma^2)/2}$	$\begin{cases} 0 & \text{si } a \text{ es par} \\ \sigma^a(a-1)!! & \text{O.C.} \end{cases}$	Muchos éxitos idénticos e independientes. Se busca estandarizar la función usando: $Z = N(0,1) = \frac{Y-\mu}{\sigma}$.
Gamma $X \sim \Gamma(\alpha, \beta)$	$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-x\beta}$ $0 < x < \infty$	lpha/eta	α/eta^2	$(1-\beta t)^{-\alpha}$	$\mathbb{E}(Y^a) = \frac{\beta^{\alpha} \Gamma(\alpha + a)}{\Gamma(\alpha)}$	Tiempos. $\alpha > 0$ y $\beta > 0$. Prop. $\int_0^\infty y^{\alpha-1} e^{-y/\beta} dy = \beta^\alpha \Gamma(\alpha)$ Propiedades de Gamma: $\Gamma(1) = 1$ $\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$ $\Gamma(n) = (n - 1)!$ si $(n - 1) \in \mathbb{Z}$
Exponencial $X \sim \operatorname{Exp}(\beta)$	$f(x) = \beta e^{-x\beta}$ $0 < x < \infty$	1/eta	$1/eta^2$	$(1-\beta t)^{-1}$	Misma que Gamma.	Parametro de intensidad β Parametro de media $\lambda = 1/\beta$ Caso especial de la Gamma cuando $\alpha = 1$. Geométrica en caso continuo. Propiedad de falta de memoria: Sean $a, b > 0 \Rightarrow$ $P(Y > a + b Y > a) = P(Y > b)$
Ji-Cuadrada $X \sim \chi^2(v)$	$f(x) = \frac{x^{(v/2)-1}e^{-x/2}}{2^{v/2}\Gamma(v/2)}$ $0 < x < \infty$	v	2v	$(1-2t)^{-v/2}$	Misma que Gamma.	Caso especial de la Gamma cuando $\alpha = v/2; \ \beta = 2;$ $v := \text{grados de libertad}$
Beta $X \sim \mathrm{B}(lpha,eta)$	$f(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{\beta(\alpha, \beta)}$ $0 \le x \le 1$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	No existe		Proporciones y Porcentajes $\alpha,\beta>0. \text{ Si }\alpha,\beta\in\mathbb{Z} \text{ se relaciona} $ con la binomial donde $n=\alpha+\beta-1$ y el contador comienza en α . $\beta(\alpha,\beta)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$