CT5132/CT5148 Week 12 Exercises

James McDermott

NUI Galway

Exercises

Again this week, our exercises are extracted from the lecture slides/videos, and solutions are given below.

We won't look at the exercises for ggplot, as the Data Visualisation module is coming up soon where you'll see that in much more detail.

Exercises (dplyr joins)

- Read the three data files rentals.csv, movies.csv, customers.csv, all in the data/ directory, as tibbles.
- 2 Optional: get R to read the Date column correctly. Hint: https://readr.tidyverse.org/reference/parse_datetime.html
- 3 Using a dplyr join command, create a table showing the customer name and address for every rental.
- 4 Piping the result into another join command, recreate the full original table as shown under "Before Normalisation" above.
- Notice the columns Name.x and Name.y which appear because there is a Name column in each of the Movies and Customers tables. Rename them.
- 6 Calculate the number of movies Frida watched of the Sci-fi genre.

Solutions (dplyr joins)

library(tidyverse)

```
## -- Attaching packages ------ tidyverse
## v ggplot2 3.1.0
                 v purrr 0.3.1
## v tibble 2.0.1
                    v dplyr 0.8.0.1
## v tidyr 0.8.3 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.4.0
## Warning: package 'tibble' was built under R version 3.5.2
## Warning: package 'tidyr' was built under R version 3.5.2
## Warning: package 'purrr' was built under R version 3.5.2
## Warning: package 'dplyr' was built under R version 3.5.2
## Warning: package 'stringr' was built under R version 3.5.2
## Warning: package 'forcats' was built under R version 3.5.2
```

Exercises 1 and 2:

```
rentals <- read_csv("data/rentals.csv",
                     col_types=cols(Date=col_date(
                       format="%d-%b-%Y")))
movies <- read_csv("data/movies.csv")</pre>
## Parsed with column specification:
## cols(
##
     MovieID = col double(),
##
     Name = col character(),
##
     Genre = col character()
## )
customers <- read_csv("data/customers.csv")</pre>
## Parsed with column specification:
## cols(
```

CustomerID = col double(),

Customer name and address for each rental

```
inner_join(rentals, customers, by="CustomerID")
```

```
## # A tibble: 5 \times 5
    Date MovieID CustomerID Name Address
##
## <date> <dbl>
                        <dbl> <chr> <chr>
## 1 2018-01-01 102
                            1 Bob 11, Haight St
## 2 2018-01-02 101
                            2 Frida
                                   Oxford Circus
## 3 2018-01-02 102
                            3 Carrie 99, Fifth Ave
## 4 2018-01-05 103
                            1 Bob 11, Haight St
## 5 2018-01-05 104
                          2 Frida Oxford Circus
```

Recreate original table

```
inner_join(rentals, customers, by="CustomerID") %>%
inner_join(movies, by="MovieID")
```

```
## # A tibble: 5 x 7
##
   Date MovieID CustomerID Name.x Address
                                             Name.
## <date> <dbl>
                       <dbl> <chr> <chr> <chr>
## 1 2018-01-01 102
                           1 Bob 11, Haight St Amelia
## 2 2018-01-02 101
                         2 Frida Oxford Circus The Ma
## 3 2018-01-02 102
                         3 Carrie 99, Fifth Ave Amelia
## 4 2018-01-05 103
                           1 Bob 11, Haight St Skyfa
                      2 Frida Oxford Circus Avenge
## 5 2018-01-05 104
```

Rename columns

```
t = inner_join(rentals, customers, by="CustomerID") %>%
  inner_join(movies, by="MovieID") %>%
  rename(CustomerName=Name.x, MovieTitle=Name.y)
t
```

```
## # A tibble: 5 \times 7
    Date MovieID CustomerID CustomerName Address
                                                      Mo
##
  <date> <dbl>
##
                          <dbl> <chr>
                                           <chr>
                                                      <
## 1 2018-01-01
                 102
                             1 Bob
                                           11, Haight~ Ar
## 2 2018-01-02 101
                             2 Frida
                                           Oxford Cir~ Th
## 3 2018-01-02 102
                             3 Carrie
                                           99, Fifth ~ Ar
## 4 2018-01-05 103
                             1 Bob
                                           11, Haight~ Sl
## 5 2018-01-05 104
                                           Oxford Cir~ Av
                           2 Frida
```

Filter and count

```
t %>% filter(CustomerName=="Frida", Genre=="Sci-fi") %>% count()
```

```
## # A tibble: 1 x 1

## n

## <int>

## 1 2
```

Filter and count

The following is a solution to the problem, but it requires the programmer to do all the work in their head. That's not scalable or flexible and it's error-prone, so don't do this.

```
## # A tibble: 1 x 1

## n

## <int>

## 1 2
```

Exercises

- In the mpg dataset (part of the tidyverse), calculate the mean and standard deviation of the highway fuel efficiency.
- 2 Using group_by, calculate the mean and standard deviation of the highway fuel efficiency per manufacturer.
- 3 Calculate the correlation between highway fuel efficiency and engine size.
- 4 What was the average highway fuel efficiency in 1999 and in 2008?
- **5** Carry out a two-sample independent t-test between highway fuel efficiency in 1999 and 2008 and interpret the result.
- **6** Carry out a regression on highway fuel efficency by displacement.

```
library(tidyverse)
mean(mpg$hwy)
## [1] 23.44017
sd(mpg$hwy)
## [1] 5.954643
```

```
mpg %>% group_by(manufacturer) %>%
  summarise(mean=mean(hwy), sd=sd(hwy))
    A tibble: 15 \times 3
     manufacturer
##
                           sd
                   mean
##
     <chr>
                  <dbl> <dbl>
##
   1 audi
                  26.4 2.18
##
   2 chevrolet
                   21.9 5.11
##
    3 dodge
                   17.9 3.57
    4 ford
                   19.4 3.33
##
##
    5 honda
                   32.6 2.55
                   26.9 2.18
##
    6 hyundai
##
    7 jeep
                   17.6 3.25
##
   8 land rover
                16.5 1.73
##
    9 lincoln
                   17
   10 mercury
                   18
                         1.15
```

CT5132/CT5148 Week 12 Exercises

```
cor(mpg$hwy, mpg$displ)
```

```
## [1] -0.76602
```

```
mpg %>% group_by(year) %>%
   summarise(mean=mean(hwy), sd=sd(hwy))
## # A tibble: 2 x 3
```

```
## year mean sd
## <int> <dbl> <dbl>
## 1 1999 23.4 6.08
## 2 2008 23.5 5.85
```

```
mpg1999 <- mpg %>% filter(year == 1999)
mpg2008 <- mpg %>% filter(year == 2008)
t.test(mpg1999$hwy, mpg2008$hwy)
##
   Welch Two Sample t-test
##
##
## data: mpg1999$hwy and mpg2008$hwy
## t = -0.032864, df = 231.64, p-value = 0.9738
## alternative hypothesis: true difference in means is not equ
## 95 percent confidence interval:
## -1.562854 1.511572
## sample estimates:
## mean of x mean of y
## 23.42735 23.45299
```

```
res = lm(hwy ~ displ, data=mpg)
summary(res)
##
## Call:
## lm(formula = hwy ~ displ, data = mpg)
##
## Residuals:
##
     Min 10 Median 30
                                    Max
## -7.1039 -2.1646 -0.2242 2.0589 15.0105
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 35.6977 0.7204 49.55 <2e-16 ***
        -3.5306 0.1945 -18.15 <2e-16 ***
## displ
```