Problem 1

Let A be a local ring, M and N finitely generated A-modules.

Prove that if $M \otimes N = 0$, then M = 0 or N = 0.

[Let \mathfrak{m} be the maximal ideal, $k = A/\mathfrak{m}$ the residue field.

Let $M_k = k \otimes_A M \cong M/\mathfrak{m}M$ by Exercise 2.

By Nakayama's lemma, $M_k = 0 \Rightarrow M = 0$.

But $M \otimes_A N = 0 \Rightarrow (M \otimes_A N)_k = 0 \Rightarrow M_k \otimes_k N_k = 0 \Rightarrow M_k = 0$ or $N_k = 0$, since M_k, N_k are vector spaces over a field.]

Problem 2

Let M be a finitely generated A-module and $\phi: M \to A^n$ a surjective homomorphism. Show that $\operatorname{Ker}(\phi)$ is finitely generated.

[Let e_1, \ldots, e_n be a basis of A^n and choose $u_i \in M$ such that $\phi(u_i) = e_i$ $(1 \le i \le n)$. Show that M is the direct sum of $\text{Ker}(\phi)$ and the submodule generated by u_1, \ldots, u_n .]

Problem 3

Let \mathfrak{a} be an ideal of a ring A, and let $S = 1 + \mathfrak{a}$.

Show that $S^{-1}\mathfrak{a}$ is contained in the Jacobson radical of $S^{-1}A$.

Use this result and Nakayama's lemma to give a proof of (2.5) which does not depend on determinants.

[If $M = \mathfrak{a}M$, then $S^{-1}M = (S^{-1}\mathfrak{a})(S^{-1}M)$, hence by Nakayama we have $S^{-1}M = 0$. Now use Exercise 1.]

Problem 4

The set S_0 of all non-zero-divisors in A is a saturated multiplicatively closed subset of A. Hence the set D of zero-divisors in A is a union of prime ideals (see Chapter 1, Exercise 14). Show that every minimal prime ideal of A is contained in D. [Use Exercise 6.] The ring $S_0^{-1}A$ is called the *total ring of fractions* of A.

Prove that

- i) S_0 is the largest multiplicatively closed subset of A for which the homomorphism $A \to S_0^{-1} A$ is injective.
- ii) Every element in $S_0^{-1}A$ is either a zero-divisor or a unit.
- iii) Every ring in which every non-unit is a zero-divisor is equal to its total ring of fractions (i.e., $A \to S_0^{-1} A$ is bijective).

Problem 5

Let A be a principal entire ring, and let K be its quotient field.

Let \mathfrak{o} be a valuation ring of K containing A, and assume $\mathfrak{o} \neq K$.

Show that \mathfrak{o} is the local ring $A_{(p)}$ for some prime element p.

[This applies both to the ring \mathbb{Z} and to a polynomial ring k[X] over a field k.]

Problem 6

Let A be an entire ring, and let K be its quotient field.

Assume that every finitely generated ideal of A is principal.

Let \mathfrak{o} be a discrete valuation ring of K containing A.

Show that $\mathfrak{o} = A_{(p)}$ for some element p of A, and that p is a generator of the maximal ideal of \mathfrak{o} .