Examen de calculabilité et complexité

M1 informatique – 3h

Le 12 janvier 2010

La qualité de la rédaction et de la présentation sera prise en compte dans l'évaluation. Le barème est donné à titre indicatif.

Exercice 1 – Vrai ou faux?

(4 points)

Les affirmations suivantes sont-elles vraies ou fausses? Ne justifiez pas vos réponses. On comptera $+\frac{1}{3}$ point par bonne réponse, $-\frac{1}{3}$ point par mauvaise réponse, et 0 pour une absence de réponse. Si le total est négatif, on donnera 0 à l'exercice.

- 1. L'union de deux ensembles récursifs est encore récursive.
- 2. Si A et B sont des langages indécidables, alors $A \cap B$ est indécidable.
- 3. Si A est un langage indécidable, alors cA est indécidable.
- 4. Le complémentaire d'un ensemble fini est décidable.
- 5. Tout ensemble récursivement énumérable est décidable.
- 6. Le complémentaire d'un ensemble récursivement énumérable est récursivement énumérable.
- 7. Il existe des langages A et B, où A est infini et B fini, tels que $A \leq_m B$.
- 8. Si $A \subseteq B$ et B décidable, alors A décidable.
- 9. Une réduction est une fonction injective.
- 10. On sait simuler une machine de Turing non déterministe par une machine de Turing déterministe avec une perte de temps quadratique.
- 11. Le problème SAT est décidable.
- 12. On peut décider le problème Clique en espace exponentiel.

Exercise 2 (3 points)

- 1. Soit A un langage indécidable. Le langage $B = \{n : \exists x \in A, |x| \geq n\}$, où n est un entier codé en binaire, est-il décidable?
- 2. Soit A un langage récursivement énumérable. Montrer que si pour tout n, A contient exactement un mot de taille n, alors A est décidable.

Exercice 3 (3 points)

- 1. Décrire une machine de Turing déterministe M, fonctionnant en espace logarithmique, qui reconnaît le langage $A = \{a^ib^ja^{i+j} : i,j \geq 0\}$. (Attention, quand il s'agit de compter l'espace, le ruban d'entrée est en lecture seule)
 - Note : on ne demande pas la description complète de la machine mais seulement son principe de fonctionnement détaillé.
- 2. Quelle est la complexité en temps de M?
- 3. Donnez la plus petite classe de complexité vue en cours dans laquelle vous pouvez placer le langage A.

Exercice 4 (4 points)

On rappelle que ES (Ensemble Stable) est le problème NP-complet suivant :

- Donnée : un graphe non orienté G = (V, E) et un entier k;
- Question : existe-t-il un sous-ensemble de V stable de taille k (appelé aussi sous-ensemble "indépendant", c'est-à-dire k sommets n'ayant aucune arête entre eux)?

On définit les deux problèmes suivants

CS (Couverture par Sommets):

- Donnée : un graphe non orienté G = (V, E) et un entier k;
- Question : existe-t-il un sous-ensemble de V de taille k couvrant toutes les arêtes de G (c'est-à-dire k sommets tels que chaque arête ait l'une de ses extrémités parmi eux)?

ED (Ensemble Dominant):

- Donnée : un graphe non orienté G = (V, E) et un entier k;
- Question : existe-t-il un sous-ensemble de V dominant de taille k (c'est-à-dire k sommets u_1, \ldots, u_k tels que pour tout autre sommet v, il existe i tel que $(u_i, v) \in E$)?
- 1. Montrer que le problème CS est NP-complet. Pour cela, on pourra s'intéresser au complémentaire d'un ensemble stable.
- 2. Montrer que le problème ED est NP-complet. On pourra donner une réduction de CS en construisant un nouveau graphe dont l'ensemble des sommets est $V \cup E$.

Exercice 5 (6 points)

Soit $\Sigma = \{0,1\}$ un alphabet à deux symboles. Un langage A sur l'alphabet Σ est unaire si $A \subseteq \{0\}^*$ (c'est-à-dire que les mots de A ne contiennent que des zéros). Le but de ce problème est de montrer le résultat suivant :

S'il existe un problème unaire NP-difficile, alors P = NP.

Supposons A unaire et NP-difficile : nous allons montrer que SAT \in P. Puisque A est NP-difficile, il existe une réduction polynomiale f de SAT à A.

Soit $\phi(x_1,\ldots,x_n)$ une instance de SAT : nous devons décider en temps polynomial si $\phi \in SAT$.

- 1. Que dire de ϕ si $f(\phi) \notin \{0\}^*$?
- 2. Pour une formule $\psi(x_1,\ldots,x_n)$, on désigne par ψ_0 la formule $\psi_0(x_2,\ldots,x_n)=\psi(0,x_2,\ldots,x_n)$ et par ψ_1 la formule $\psi_1(x_2,\ldots,x_n)=\psi(1,x_2,\ldots,x_n)$.

Montrer que $\phi \in SAT$ ssi $[\phi_0 \in SAT$ ou $\phi_1 \in SAT]$.

Pour simplifier, pour toute formule ψ on suppose que la taille $|\psi_0|$ (respectivement $|\psi_1|$) du codage de ψ_0 (resp. ψ_1) est égale à la taille $|\psi|$ du codage de ψ .

3. Tout au long de l'algorithme pour SAT que l'on cherche à décrire, on maintiendra un ensemble de formules booléennes. On appellera Φ_i cet ensemble à l'étape $i \leq n$. Au départ, on a $\Phi_0 = \{\phi\}$.

On définit alors Φ_{i+1} par la procédure suivante :

```
\begin{split} & - \Phi_{i+1} \leftarrow \emptyset \\ & - I \leftarrow \emptyset \\ & - Pour \ \text{tout} \ \psi \in \Phi_i \ \text{faire} \\ & - u \leftarrow f(\psi_0) \\ & - \text{Si} \ u \in \{0\}^* \ \text{et} \ u \not\in I \ \text{alors} \\ & - I \leftarrow I \cup \{u\} \\ & - \Phi_{i+1} \leftarrow \Phi_{i+1} \cup \{\psi_0\} \\ & - u \leftarrow f(\psi_1) \\ & - \text{Si} \ u \in \{0\}^* \ \text{et} \ u \not\in I \ \text{alors} \\ & - I \leftarrow I \cup \{u\} \\ & - \Phi_{i+1} \leftarrow \Phi_{i+1} \cup \{\psi_1\} \end{split}
```

Remarquer qu'on élimine une variable à chaque fois : l'ensemble Φ_i contient des formules à n-i variables. Il y aura ainsi n étapes.

Pour tout i, montrer que $\phi \in SAT$ si et seulement s'il existe $\psi \in \Phi_i$ satisfaisable.

- 4. Montrer qu'il existe un polynôme p(n) tel que pour tout $i, |\Phi_i| \leq p(|\phi|)$ (ce polynôme dépend de la réduction f).
- 5. Conclure que SAT $\in P$.

- Renvoyer Φ_{i+1}