

4차 산업혁명 신산업 기술 이해

4차 산업혁명과 자율주행차

- 자율주행자동차의 정의
- 자율주행자동차의 국내외 개발 현황
- 자율주행자동차의 구성 및 원리
- ADAS 시스템
- ADAS 주요센서 소개

🔷 학습목표

- 자율주행자동차의 정의를 이해하고 설명할 수 있다.
- 자율주행자동차의 국내외 개발 현황을 비교하여 설명할 수 있다.
- 자율주행자동차의 구성 및 원리를 이해하고 설명할 수 있다.
- Name ADAS 주요 센서에 대해 설명할 수 있다.

🌣 자율주행자동차의 정의

1. 자율주행자동차의 정의

- 사전적 의미
 - 다양한 주변환경 인지 센서 즉 카메라센서, 라이더, 레이더, 초음파, GPS/INS 등을 통해 주변 환경을 인식하여 주행 경로를 자체적으로 결정하며 운전자의 개입 없이 자동차가 부분적 또는 완전히 자동화되어 스스로 주행이 가능한 자동차

2. 무인자동차와 자율주행자동차의 차이점

- ① 무인자동차
 - 사람이 타고 있지 않는 자동차
 - 군사용으로 많은 개발 진행
 - 편의 장치 없음
 - 승차감 중요하지 않음
- ② 자율주행자동차
 - 사람이 타는 것 목적
 - 다양한 편의 시설을 갖춤
 - 편안하고 안전한 주행 성능

🌣 자율주행자동차의 정의

3. 자율주행(Automated Driving) 레벨 정의

- ① 0레벨 (No Automation)
 - 자율주행 기능 없는 일반 차량
- ② 1레벨 (Driver Assistance)
 - 자동브레이크, 자동속도조절 등 운전 보조기능
- ③ 2레벨 (Partial Automation, 부분 자율주행)
 - 운전자의 상시 감독 필요

🍑 자율주행자동차의 정의

3. 자율주행(Automated Driving) 레벨 정의

- ④ 3레벨 (Conditional Automation, 조건부 자율주행)
 - 자율주행시스템이 대부분의 동적주행임무 를 수행하며 특별한 경우 운전자의 개입이 필요
 - 동적주행임무: 주행임무 중 조향, 가감속 조작, 차량 및 도로 모니터링 언제 차선변경 및 회전을 할 건지, 그리고 어떤 상황이 발생했을 때 적절한 조처를 취하는 임무 도착지 지정, 가야 할 경로 결정 임무는 포함하지 않음
- ⑤ 4레벨 (High Automation, 고도 자율주행)
 - 자율주행시스템이 대부분 동적주행 임무를 수행하며, 운전자의 개입이 필요한 경우 적절한 대응을 하지 않더라도 무리가 없는 자율주행단계
- ⑥ 5레벨 (Full Automation, 완전 자율주행)
 - 모든 주행환경과 도로상에서 자율주행시스템이 완전한 항시 자율주행기능을 수행

1. 미국

- 국방부 중심에서 완성차로 기술 개발이 확대 중
- ① 2004, 2007
 - DARPA Grand & Urban Challenge (미국 국방부의 무인 무기체계 개발을 위한 대회)
 - Grand : 미 스탠포드대학 우승
 - Urban : CMU & GM 우승
- 2 2010
 - 구글 무인 자율주행자동차 "Self Driving Car" 개발
 - 차세대 IT 융합기술 선점을 목적으로 구글 맵스와 연동하는 서비스를 구현
- ③ 2012
 - 2월, 세계 최초 네바다 주에서 무인 자율 주행을 허용

2. 유럽

영국, 스웨덴, 독일, 스페인 등 유럽 7개국

SARTRE 프로젝트 추진

Safe Road Trains for the Environment Project 보다 안전하고 편안한 주행 환경을 위해 유럽 연합(EU) 에서 기획

친환경적인 형태의 플래툰이라 불리는 로드 트레인(Road Train)으로 전화

2. 유럽

3. 일본

- 국토교통성 주관으로 자율주행자동차의 개발
 - 2012년 6월 27일, 고속도로에서 자율주행을 실현하기 위한 Auto Pilot System 위원회를 설치
 - 현재 부품업체와 공동으로 기술 개발 중

4. 완성 차 및 부품업체 자율주행 상용화 기술 개발 현황

① BMW

- 고속도로 주행에 중점을 둔 Highly Automated Vehicle 개발
- 콘티넨탈과 공동으로 자율주행 시스템 개발, 2020년까지 상용화 계획

(2) GM

- 캐딜락 차종에서 2015년까지 부분 자율주행 자동차 생산
- 2020년까지 완전 자율주행 자동차 출시 계획

5. 글로벌 완성 차 업체들의 자율주행 자동차 관련 사업 진행 상황

① 2017년

- 테슬라: LA에서 뉴욕까지 완전 자율주행 도전 예정
- 볼보: 자율주행 시험 프로그램 'DriveMe' 일반인에게 체험시킬 계획

② 2018년

- 테슬라 : 자사 차량 완전 자율주행차로 변신
- 바이두: BMW와 함께 자율주행차 준비
- 포드: 자율주행차 100대 운용해 데이터 축적

③ 2020년

- 혼다 : 고속도로에서 완전 자율주행 가능한 차 공개
- 도요타와 푸조-시트로앵 : 완전 자율주행차 내놓기로 함
- 닛산: 완전 자율주행차 상용차 공개

5. 글로벌 완성 차 업체들의 자율주행 자동차 관련 사업 진행 상황

① 2021년

- 포드 : 운전대와 가속·브레이크 페달 없는 완전 자율주행차 출시

- BMW : 중국에서 자율주행차 출시

- 리프트: 자사 카셰어링 차량 대부분을 자율주행차로 변경

② 2025년

- BMW : 완전 자율주행 전기차 출시

③ 2030년

- 현대자동차 : 완전 자율주행차 준비 완료

6. 글로벌 자동차 및 IT 업체들의 자율주행자동차 전장 사업 진행 현황

글로벌 자동차. IT 업체들 자율주행 자동차 관련 전장 사업 진행 현황			
	현대 자동차	- 2016년 4월 차량지능화사업부 출범 - 2016년 11월 시스코와 '커넥티드카 개발 을 위한 전략적 협업 협의서' 체결	
자동차 업계	BMW	2016년 CES에서 독자적인 커넥티드카 운영 플랫폼 '오픈 모빌리티 클라우드(차량 네트워크 시스템으로 개인일정, 차량 충전 상태 등 중요 정보를 확인할 수 있는 시스템)' 발표	
	도요타	2016년 4월 마이크로소프트와 합작 으로 자동차에서 수집한 빅데이터 분석 회사 도요타 커넥티드 설립	
	포드	인텔과 음성인식, 카메라 센싱 기술, 차량 내 운전자 보행자 센싱 기술 등 개발 중	

6. 글로벌 자동차 및 IT 업체들의 자율주행자동차 전장 사업 진행 현황

글로벌 자동차. IT 업체들 자율주행 자동차 관련 전장 사업 진행 현황			
IT	삼성 전자	- 2015년 말 전장시스템 신설 - 2016년 11얼 미국 자동차 부품업체 하만 인수 발표	
	파나 소닉	- 오스트리아 자동차 부품업체 ZKW 인수 추진 - 2014년 10월 스페인 자동차 부품업체 피코사 지분 인수	
업계	퀄컴	네덜란드 차량용 반도체 기업 NXP 인수	
	애플	- 2016년 11월 자율주행자동차 기술 개발 공식화 - 2014년 '타이탄 프로젝트' 통해 자율주행자동차 개발 착수	
	구글	- 자율주행자동차 상용화를 위한 독립법인 설립 예정	

7. 국내외 글로벌 자동차 회사의 자율주행기술 개발 현황 1) 미국

① GM

- 2011년 CES에서 통신네트워크 장착 전기차 공개
- 2013년 고속도로 주행을 위한 반자동 자율주행자동차 기술 슈퍼크루즈 공개.
- 2016년 말 Chevrolet Volt에 탑재 예정(최종 미확인) 카메라, GPS센서 장착
- Cadillac CTS에도 전방위 지능형 크루즈 컨트롤, 차선이탈 경보시스템, 지능형 브레이크 보조시스템 등이 적용된 기술을 적용
- 2018년 15개 센서를 통한 주변이식 후 목적지 주행 BOSS 공개

7. 국내외 글로벌 자동차 회사의 자율주행기술 개발 현황

1) 미국

② Delphi

- 2015년 프랑크푸르트 모터쇼에서 아우디 SO5 기반의 자율주행 프로토타입을 공개했으며, 이를 기반으로 샌프란시스코와 뉴욕간 거리(5,500km)의 대부분을 자율주행 성공
- 자율주행기술은 주로 디지털 맵핑과 표면 모델링 등의 기능이 내장된 고기능의 라이더(Lidar), 레이더 및 카메라 센서, 초음파 센서 등을 통해 구현

3 Apple

- 2014년 3월 스위스 제네바에서 Carplay 기능을 탑재한 운영체제 iOS 7.1을 공개하였다. 이 기술은 운전 중 운전자가 음성으로 명령하면 문자메시지를 읽어주거나 음악을 틀어줄 수 있으며, 목적지를 말하면 네비게이션을 통해 목적지까지 안내해주는 기술로 2014년 3월 Benz, Volvo 등에 이 기술을 실제 적용
- 2015년에 나온 애플워치는 BMW 'i앱'과 연동

④ Google

- 2010년부터 차량용 OS를 개발
- -2013년 3월 자율주행차가 80만 마일 무사고 운행 기록
- 자율주행자동차를 운행하면서 도시의 모든 정보 수집 목표 → 자율주행자동차를 통해 빅데이터의 가치와 저력을 계속 확보

(5) Microsoft

2014년 4월 자동차용 OS를 발표, 스마트폰과 연동하여 주행 을 안내하거나 인터넷, 게임, 음악 재생 등의 인포테인먼트 기술 공개

7. 국내외 글로벌 자동차 회사의 자율주행기술 개발 현황

2) 유럽

① Benz

- 차량 컨트롤 부문의 특허개발에 주력하여 관련 특허 51건 보유 → 주로 차량 및 엔진 제어, 원격 제어, 자율주행 관련 특허
- 외부환경 인식에 필요한 스테레오 카메라를 최초로 적용, 2개의 카메라와 함께 차선과 물체 인식, 요철 인식, 거리 측정 등의 다양한 기능에 활용
- 초음파 센서 장착을 통해 다양한 기능이 가능해짐
 - 능동적 주차 보조장치(Active Parking Assist)
 - 교통 표지판 보조장치(Traffic Sign Assist)
 - 적응형 브레이크 조명(Adaptive Brake Lights)
 - 능동적 사각지대 어시스트(Active Blind Spot Assist)
 - 능동적 차선유지 어시스트(Active Lane Keeping Assist)
 - 오픈 주행 시 차량 실내
 - 보온성을 높인 최첨단 보온시스템(AIRCAP) 등
- 최근 개발된 F015 Luxury in Motion에서는 자율주행모드 선택이 가능해져 GPS 오차 범위가 10cm까지 좁혀짐
- 2016년 초 디트로이트 모터쇼에서는 신형 E-Class 모델에 지능형 차선 변경기능을 탑재

② BMW

- 2007년 최첨단 GPS를 개발, 한번 주행한 길을 기억하여 자율주행 할 수 있는 무인운전시스템 공개
- 2011년 무인운전시스템 CDC(Connected Drive Connect)는 운전자의 조작 없이도 차량 운행 가능
- 독일 아우토반에서 5,000km의 주행테스트를 통과
- New 7시리즈에서는 3D센서를 통해 운전자의 동작을 인식하는 BMW 제스쳐 컨트롤 개발
- 2015년 하반기에는 스마트카 버튼으로 차가 스스로 주차하는 자율주차 기능 탑재

7. 국내외 글로벌 자동차 회사의 자율주행기술 개발 현황

2) 유럽

- 3 Audi
 - 2014년 자율주행기술인 Piloted Driving 기술이 탑재된 James 2015를 공개
 - 2009년 Audi TTS(자율주행 컨셉카)로 시속 210km의 자율주행
 - CES 2014 HMI(Human-Machine Interface) 기술 적용하고 LTE 모듈이 탑재된 Audi Connect를 공개 → 이 기술로 차내에서 비디오 시청과 게임이 가능해지고 실시간 정보에 따라 차량의 속도 제어 가능
 - 2014년 10월 독일 투어링카 마스터즈 대회에서는 17개 커브로 구성된 4.574km 코스를 시속 240km 정도의 속도로 완주. CES 2015에서는 A7 컨셉카 'Jack'을 선보이며 미국 리콘밸리에서 라스베이거스까지 900km를 무인으로 자율주행 성공

3) 일본

- ① Toyota
 - 2013년 1월 자율주행모델인 AASRV(Advanced Active Safety Research Vehicle)을 공개하고, 고속도로에서 자동주행지원 (AHDA: Automated Highway Driving Assist)이 가능한 자율주행 자동차를 5년 이내에 출시
 - 차량 카메라로 수집한 영상과 GPS데이터를 활용해 오차 5cm 내 지도를 만드는 지도자동생성시스템을 2020년까지 상용화 목표

7. 국내외 글로벌 자동차 회사의 자율주행기술 개발 현황

3) 일본

- ② Nissan
 - 2018년 다차선 고속도로의 자동운전 상용화
 - 2020년 교차로를 포함한 일반도로의 자동운전기술 도입
 - 향후 4년 동안 자율주행기술이 탑재된 자동차를 개발 계획

(3) Honda

- 2014년 9월 미국 디트로이트 ITS(Intelligent Transportation Society of America) World Congress에서 Aura RLX 세단모델에 자율주행기술을 적용 시연
- 2020년까지 고속도로에서 차선을 변경하고 주행할 수 있는 자율주행차를 상용화할 계획을 가지고 있음

3) 한국

① 현대차

- 2015년 CES에서 소개한 신형 소나타에서 운전자 음성으로 동걸기, 주차장에서 자동차 찾기, 전조등 켜기, 경적울림, 긴급 출동 서비스 호출 등의 기술 공개
- 2017년 CES에서 아이오닉 차량 기반의 자율주행 주야간 성공
- 최근에 개발된 제네시스 EQ900에는 고속도로 및 도심 자율주행, 혼잡주간주행 지원, 선행차량 추종 자율주행 기술 등이 장착 → 2020년부터 통합 자율주행기능이 상용화될 예정

② 기아차

- 2014년 부산국제모터쇼에서 운전자의 조작없이 차량이 다양한 자율제어로 주행이 가능한 자율주행시스템 탑재 기술을 K9을 통해 공개
- CES 2014에서 전기차 전용 텔레매틱스 시스템과 운전자의 편의성을 향상시킨 인포테인먼트 및 안전 분야 차세대 신기술 공개

7. 국내외 글로벌 자동차 회사의 자율주행기술 개발 현황

5) 기타

- ① Volvo (중국 지리자동차가 인수)
 - IntelliSafe Auto Pilot 이라는 자율주행기술을 개발, 설정된 경로 구간 중 자율주행 구간을 차량 스스로 설정하여 설정된 구간에 진입하면 운전자가 원할 때 자율주행이 작동
 - Drive-Me프로젝트를 통해 자율주행기술 및 인포테인먼트 기술을 적용한 100대의 XC90차량을 스웨덴 고텐버그시에서 실제 주행할 계획
 - 2014년 9월 터치스크린 콘트롤 콘솔, 도로 이탈 보호 시스템, 교차로 추돌 감지 및 긴급제동시스템 등이 포함된 All New XC90을 출시
- ② QNX (2010년 블랙베리가 인수)
 - 임베디드 OS와 미들웨어 등을 전문으로 하는 캐나다 회사로 텔레메틱스, 인포테인먼트, 차량 OS 시장의 50% 이상을 차지
 - Ford의 SYNC3 시스템을 비롯한 40여개 자동차회사의 시스템에 적용: 현대자동차도 QNX에서 개발한 기술을 제네시스 EQ900에 탑재하였으며, Benz S-Class Coupe, AudiTT, BMW Mini 등도 QNX를 선택, 누적 6,000만대 이상에서 채택
 - ONX는 주력인 텔레매틱스와 인포테인먼트 뿐만 아니라 ADAS까지 지원하면서 안정적인 OS운영을 원하는 고급차량의 니즈 만족

🌣 자율주행자동차의 구성 및 원리

1. 자율주행자동차 주요 구성 요소 및 역할

① GPS

- 위성항법장치
- 단독으로 쓰이기 보다는 정확한 차량 위치를 추출하기 위해 고도계, 타이어 각속도계, 자이로스코프(각속도 측정), 속도계 등과 결합하여 사용

② 초음파센서

- 초음파를 송수신하여 차량 근방에 있는 장애물의 위치를 측정하며, 자동주차시스템의 센서로 사용되어 주차 시 연석 및 주변 차량을 검지하여 주차공간을 찾는데 사용

🌣 자율주행자동차의 구성 및 원리

1. 자율주행자동차 주요 구성 요소 및 역할

③ 중앙컴퓨터

- 장착된 센서로부터 측정된 다양한 정보를 분석하여 주행 경로 결정
- 경로를 추종하기 위한 명령조향각, 속도 제어를 위한 명령 토크값들을 계산함
- 각각 조향 액츄에이터, 가감속 액츄에이터에 입력하는 역할

④ 레이더(Radar)

- Radio 파(밀리미터 파)를 쏘고 반사된 파를 이용하여 근처 차량의 위치를 측정하며, 적응형 차간거리제어시스템에 이미 사용 중

⑤ 비디오 카메라

- 차선, 교통신호등, 표지판, 도로상의 장애물, 보행자 감지 및 타 차량 트래킹 수행

⑥ 라이더(Lidar)

- 주변에 레이저를 쏘고 반사된 펄스를 수신기에서 측정하여 주변 물체와의 거리 측정 및 차선 표시, 도로 연석 등을 감지하는 역할

🥸 자율주행자동차의 구성 및 원리

2. 자율주행자동차용 센서 장착 예시

- 2007년 미국방성(DARPA) 주최, Urban Challenge 대회(복잡한 도심지역에서의 자율주행 경진대회)에서 2등에 입상한 스탠포 드대와 폭스바겐 연구진으로 구성된 Junior 팀에서 제작
- 주변장애물 등을 검지하기 위해 5개의 laser scanner (제조사:IBEO, Riegl, Sick, and Velodyne)
- applanix사의 GPS 통합 INS 시스템 (Applanix POS LV 420)
- BOSCH사의 5개의 레이더
- 인텔사의 2개의 Quad core 컴퓨터 시스템

🌣 자율주행자동차의 구성 및 원리

3. 자율주행시스템 동작의 흐름제어

① 센싱/인지

- 경로탐색(디지털지도)
- V2X(차량간통신, 인프라통신)
- ADAS 센서(카메라,라이더, 레이더, 초음파 등)
- 고정지물 인식
- 경로탐색(차로, 차선, 횡단보도, 터널, 고가 등)
- 변동 지물 및 이동물체 인식 (차량, 보행자, 신호등, 사고차량 등)

② 판단

- 주행상황 판단 및 주행전 결정 (차선변경, 추월, 좌/우회전, 정차 등)
- 주행경로 생성 (목표궤적, 목표속도, 전방타깃 등)

③ 제어

- 차량제어(목표 조향각, 토크, 목표 가감속)
- 엔진 가감속, 조향

🌣 ADAS 시스템

1. 자율주행차 가능하게 하는 주요 기술들

2. 주요 ADAS 시스템

- ① 종방향 ADAS
 - Adaptive Cruise Control: 운전자 지정 속도에 따라 전방 차량과의 거리 유지 주행
 - Autonomous Emergency Braking : 충돌 위험 시 비상제동을 통해 충돌 회피 및 완화
 - High Beam Assist : 맞은편 혹은 선행차량의 광원을 인식, 자동으로 점등/소등 수행
 - Traffic Sign Recognition: 교통 표지판 인식 (속도제한, 방향 전환, 추월 등)

🥸 ADAS 시스템

2. 주요 ADAS 시스템

- ② 횡방향 ADAS
 - Lane Keeping Assist System : 흰선·중앙선 등을 센서로 인식, 차선을 유지하거나 경고 수행
 - Automatic Parking : 초음파 센서를 이용, 주차 공간을 탐색하여 주차지원 수행
 - Lane Change Assist : 사이드 미러의 사각지대에 있는 차량 또는 접근하는 차량 감지하여

고선 념년 기년 기상 년 차선변경보조

- Rear Cross Traffic Alert : 주차 공간에서 후진할 때 주변에 접근하는 차량 및 이동 물체 감지

1) 차선유지지원 시스템

- ① 전방차선인식
 - 영상처리를 통한 전방차선 인식
 - 도로영상 입력
 - 차선 강조하는 필터링 연산
 - 차선 Candidate Point 추출
 - Candidate Point를 이용하여 전방차선 인식
- ② 도로파라메터 계산
 - 전방차선 인식 결과값을 이용하여 도로 파라메타 계산
 - 이탈거리(ds) 계산, 도로폭(W) 계산, 이탈각 계산
 도로곡률반경(R=1/p) 계산, 카메라 틸트각
 - 알고리즘 평가법 및 평가 환경 구축
- ② 시스템 레벨 적용
 - 도로 파라메타를 이용하여 EPS(Electric Power Steering :
 전자조향시스템), 엑츄에이터 (ECU, Electronic Control Unit :
 전자제어장치)에 명령토크 및 명령 조향각 계산하여 입력시킴
 - Lane Departure Warning
 (차선 이탈 경보, 차선 유지 지원 시스템, 차선 이탈 방지)

🍑 ADAS 시스템

2. 주요 ADAS 시스템

2) 자동긴급제동시스템(AEB)

- 레이더와 전방 카메라를 이용해 주행 경로상의 차량과 보행자 를 인식
- 인식된 전방 물체와의 거리, 상대 속도, 횡 위치 등의 정보를 수 집해 충돌 가능성이 있으면 운전자에게 경보를 내려 위험 상황 을 알려 중
- 위험 정도가 높다고 판단되면 긴급 제동해 사고를 회피하거나 피해를 경감시켜 중
- Radar와 Stereo-Camera 센서를 융합 사용

① 전방 카메라

- 차량에 대해서100m, 보행자는 약 40m까지 인식
- 상대 거리, 상대 속도, 물체의 속성 등의 정보 제공
- 거리나 속도는 정확하게 인식 (상대 거리, 횡 위치 및 상대 속도 등)
- 검지된 물체가 무엇인지 구분하는 성능은 취약함

② 레이더

- 전방 차량은 약 180m, 보행자는 약 50m 범위까지 인식
- 상대 거리, 상대 속도, 상대 가속도 등의 정보 제공
- 물체가 무엇인지 구분하는 능력은 레이더 센서보다 훨씬 우수
- 거리, 속도 등을 파악하는 능력은 떨어짐

🌣 ADAS 시스템

2. 주요 ADAS 시스템

3) 자동주차시스템(APAS)

- ① 차량 전후 측면에 장착한 초음파센서로 거리 측정
- ② 주차공간과 장애물 위치 정보 입력
- ③ 측정한 주차 공간 정보를 바탕으로 충돌 가능성을 점검
- ④ 주차가 가능한지 결정한 다음 주차 궤적을 계산
- ⑤ 운전대를 어떤 방향으로 돌려 차를 움직이고 전진 또는 후진이 필요한지, 평행 또는 수직으로 차를 움직여야 하는지 파악하여 실행
- ⑥ 초음파 센서를 이용해 정확하게 차량이 주차공간에 위치해 있 는지 마지막으로 세부 조정을 하여 차량을 이동

🌣 ADAS 시스템

2. 주요 ADAS 시스템

4) 적응형차간거리제어(ACC)

- ① 일정 속도 제어
 - 전장에 선행차량이 없는 경우

- ② 감속
 - 선행차량이 존재하며 속도가 자차에서 세팅 된 속도보다 상대적 으로 저속인 경우

- ③ 일정 Headway Time 유지
 - 선행차량이 존재하며 일정한 속도로 주행 하는 경우 설정된 Headway Time 유지, 즉 안전거리확보

- ④ 가속
 - 선행차량이 차선 변경으로 선행차량이 없는 경우 미리 설정된 순항속도로 복귀하기 위해 가속

🍑 ADAS 시스템

2. 주요 ADAS 시스템

4) 적응형차간거리제어(ACC)

- 레이더 센서는 전방 주행 차량과의 거리를 측정
- 거리 정보 및 자차의 속도를 바탕으로 엔진제어모듈에서 가속이 필요한 경우 적절한 가속 토크제어
- 브레이크 제어모듈에서 감속이 필요한 경우 적절한 브레이크 압 제어를 수행하여 운전자가 설정한 차간거리 및 순항 속도를 유지하도록 차량의 속도를 제어

5) 후측방 정보 및 충돌 회피 시스템

- 차량 외부 사각지대의 다른 차량 및 장애물을 감지해 운전자에 게 경고하는 시스템
- 뒷 범퍼 좌우 두 개의 레이더 센서가 후측방 접근 차량을 감지, 차량의 속도와 위치를 측정해 아웃사이드 미러에 경보

6) High Beam Assist 시스템

■ 윈드쉴드에 장착된 카메라가 대항 차를 인식하여 자동으로 빔 패턴을 조절하여 상대 차와의 시각적 안전성을 확보해 줌

1. ADAS 시스템에 따른 적용 센서

2. ADAS 시스템 주행 환경 인지 센서 별 주요 특징

- ① 카메라
 - 인간의 눈과 같이 다양한 사물을 한번에 인지할 수 있음
 - 날씨 조건에 민감함
- ② 레이더 (Radar)
 - 장거리 탐지 능력/저해상도
 - 날씨 조건에 상대적으로 자유로움
- ③ 레이저 스캐닝(Lidar)
 - 고가, 감지 범위가 넒음(스캐너의 경우 360도 감지 가능)
 - 날씨 조건에 민감하여, 정밀도가 높음
- ④ 초음파센서
 - 저가, 감지 거리가 짧음
 - 날씨 조건에 민감함

2. ADAS 시스템 주행 환경 인지 센서 별 주요 특징

1) Radar

- 레이더
 - 전파를 발사해 돌아오는 전파의 소요 시간과 주파수 편이를 측정해 주변 사물과의 거리와 속도를 탐지하는 장치
- ADAS를 위한 레이더의 기능
 - 적응형차간거리시스템(ACC)
 - 긴급제동시스템(AEB),
 - 사각지대경보시스템(BSD) 등
- 레이더는 측정 거리와 측정 각도를 동시에 늘리는 것이 어렵기 때문에 ADAS 기능에 따라 장거리용 레이더와 중/단거리용 레이다로 나누어 적용
- 장거리 레이더 : 앞차와의 간격을 자동으로 조절하는 ACC의 경우 적용
- 중/단거리 레이더 : AEB와 BSD에 적용

2) Lidar

- 기본적인 원리는 레이더와 같음
- 레이더 : 수신에 전자파를 사용
- 라이더 : 고출력의 펄스 레이저를 이용해 거리 정보를 획득
- 차량용 라이더 : 주로 905nm 파장의 레이저 빔을 사용하는데, 퍼지지 않고 나아가는 직진성이 강해 레이더 대비 정밀한 위치 정보를 획득할 수 있음

2. ADAS 시스템 주행 환경 인지 센서 별 주요 특징

3) Radar vs Lidar

	장점	단점
R A D A R	 Directing Ranging, 상대적인 속도 측정 상대적인 속도 측정의 구분 때문에 Object Grouping이 용이 환경조건에 영향을 많이 안 받음 차량에 장착이 용이 Scaning RADAR에서는 High Angular Resolution 	 제한된 Horizontal Resolution과 Vertical Resolution의 Missing 가격이 비쌈
L I D A R	 High Angular Accuracy의 넓은 시야 높은 Resolution, 정확도 눈 보호를 제외하면 Bandwidth의 제한이 없음 	 RADAR보다 Ranging 영역이 짧음 Missing Direct Relative Speed Measuring 차량에 장착이 어려움 환경조건에 영향을 많이 받음 Missing Vertical Resolution

2. ADAS 시스템 주행 환경 인지 센서 별 주요 특징

4) 적외선센서 (Infrared Sensor)

영상	Object에 대해 Gray Level로 Display	
Detect	Warm Object (Vehicle, Pedestrians)	
구성	 Optics (Lenses, Shutters) 많은 Sensor 또는 Pixel로 구성된 Heat sensitive Aperture 	
Sensor	Temperature-Sensitive Resistor을 이용한 Micro Bolometer을 사용	
Temperature resolution	0.1° or Better	
장점	환경 조건의 영향을 덜 받음Passive Night Vision Capability	
단점	 Remperature Stabilization 때문에 Periodicre-Calibratio이 필요 Limited Resolution 차량에 장착이 힘듦 가격이 비쌈 	

2. ADAS 시스템 주행 환경 인지 센서 별 주요 특징

5) 초음파 센서 (Ultraasonic Sesor)

동작원리	Object로부터 반사되어 오는 Ultrasonic의 감지로 측정		
적용범위	Object와의 거리 측정, Object의 속도 측정		
	Pulse Ultrasonic Sensor	Pulse Ultrasound Wave를 보내서 Object의 존재와 그 거리를 측정	
Sensor의 종류	Continuous Wave Ultrasonic Sensor	특정 주파수의 Continuous Ultrasonic Wave를 Output으로 내보냄 (Doppler-Effect)	
측정가능거리	10m 이하		
특성	Collision Avoidance System에 사용		
장점	 튼튼함 작고, 매우 가격이 저렴		
단점	 짧은 측정 거리 늦은 응답 시간 Resolution이 환경에 영향을 많이 받음 		

3. 자율주행자동차 전망

■ 2020년 전체 자동차 시장의 2%인 2000억달러를 차지한 뒤 2035년까지 1조2000억달러에 달할 것으로 추정

3. 자율주행자동차 전망

	2015년	2017년	2020년
목표	범 정부 지원 체계 구축	평창올림픽 시범 운행	3단계 일부 사용화
정부 지원	시험운행 (법·기준· 보험)	- 차선표기 수치지형도 - 고속도로 테스트 베드 - 보안 기술 개발	- 기준, 보험, 리콜・검사 - 차선정보, GPS(전국)
이벤트	3단계 개발 착수(완성차)	자율주행차 시범서비스	- 자율주행차 생산·판매

- 국내에서도 국토교통부와 산업통상자원부 주도로 자율주행 자동차 특구 마련 예정
- 자율주행 자동차 기술을 미래 신성장동력으로 꼽은 덕분이며, 관계부처는 올해 안에 자율주행 자동차 시범 운행을 위한 특구와 전용 구역을 확보할 예정

1. 자율주행자동차정의

- 주변 환경을 인식하여 주행 경로를 자체적으로 결정하며 운전자의 개입 없이 자동차가 부분적 또는 완전히 자동화되어 스스로 주행이 가능한 자동차
- 사람이 타고 있지 않는 무인자동차는 편의장치 등이 없고 승차감이 중요하지 않은 반면, 자율주행자동차는 사람이 타는 것을 목적으로 다양한 편의시실 및 안전한 주행 성능을 갖추고 있음
- 미국자동차학회에서 2014년 발행한 국제표준(J3016)에 의하면 자율주행 수준은 6단계(0~5단계)로 분류

2. 자율주행자동차의 국내외 개발 현황

- 미국 국방부 중심으로 IT, 완성차로 기술 개발 확대
- 유럽 EU 중심으로 완성차, 부품업체 공동으로 기술 개발
- 일본 국토교통성 중심으로 완성차, 부품업체 공동으로 기술 개발
- 한국 OEM/부품사의 장기적 전략 미비로 국내 대응 미흡

3. 자율주행자동차의 구성 및 원리

- GPS(위성항법장치): 정확한 차량 위치를 추출하기 위해 다른 시스템과 결합하여 사용
- Lidar : 주변 물체와의 거리 측정 및 차선 표시나 도로 연석 등 감지
- Video Camera : 차선, 교통 신호등, 표지판, 도로상의 장애물, 보행자 감지
- Radar : 밀리미터파를 쏘고 반사된 파를 이용하여 근처 차량의 위치 측정
- 초음파센서 : 초음파를 송수신하여 차량 근방에 있는 장애물의 위치 측정
- 중앙컴퓨터: 장착된 센서로부터 측정된 다양한 정보를 분석하여 주행 경로 결정 및 명령 토크값 계산

4. ADAS 시스템

- 차선유지지원시스템: 전방 차선 인식, 도로파라메터 계산, 시스템 레벨 적용
- 자동긴급제동시스템: 레이더와 전방 카메라를 이용해 주행 경로상의 차량과 보행자 인식하여 충돌 가능성이 있을 시 운전자에게 경보 또는 위험 정도 높을 시 긴급 제동
- 자동주차시스템: 초음파센서로 측정한 주차 공간 정보를 바탕으로 주차 궤적 계산 후 운전대 실행하여 주차

4. ADAS 시스템

- 적응형차간거리제어 : 일정속도 제어, 감속, 일정 거리 유지, 가속
- 후측방 경보 및 충돌회피 시스템: 차량 외부 사각지대의 다른 차량 및 장애물을 감지해 운전자에게 경고
- High Beam Assist 시스템 : 윈드쉴드에 장착된 카메라가 대항차를 인식하여 상대차와의 안전성 확보

5. ADAS 시스템 주요 센서

- Radar : 장거리 탐지 능력이 있고 날씨 조건에 상대적으로 자유로우나, 저해상도
- Lidar : 감지범위가 넓고(스캐너의 경우 360도 감지 가능)
 정밀도가 높으나, 고가이고 날씨 조건에 민감함
- 카메라 : 인간의 눈과 같이 다양한 사물을 한번에 인지할 수
 있으나 날씨 조건에 민감함
- 초음파센서: 감지 거리가 짧고, 날씨 조건에 민감하나 저가임