Deconvoluting Convolutions

DATA SCIENCE MEETUP

APRIL 2018

Topics

The 2018 Data Science Bowl

Puppy bowl

- Image processing basics
- The simple approach

Superbowl

- Feature detection basics
- The U-Net approach

Performance

Presented by
Booz | Allen | Hamilton & kaggle*

Competition metric:Intersection of the Union

Competition goal: Separate mask for each nucleus

Competition challenges

Variety of colors, microscopy types

Variety of sizes and scales

Different background tissue / nuclei types

Overlapping nuclei

Small training set (~700)

Errors in training set

Topics

The 2018 Data Science Bowl

Puppy bowl

- Image processing basics
- The simple approach

Superbowl

- Feature detection basics
- The U-Net approach

Performance

Image: Intensity data with meaningful order

One cell from train image

Image: Intensity data with meaningful order

One cell from train image

Data with 3 color channels

Image: Intensity data with meaningful order

One cell from train image

Data sorted along rows

Topics

The 2018 Data Science Bowl

Puppy bowl

- Image processing basics
- The simple approach

Superbowl

- Feature detection basics
- The U-Net approach

Performance

kaggle Search kaggle Q Competitions Datasets Kernels Discussion Learn ••• 🌵 🌋

Stephen Bailey Teaching notebook for total imaging newbies

352 voters

last run 2 months ago · Python notebook · 18866 views using data from 2018 Data Science Bowl · ● Public

 ${\color{red}Notebook} \quad \textbf{Code} \quad \textbf{Data} \ (1) \quad \textbf{Output} \ (1) \quad \textbf{Comments} \ (46) \quad \textbf{Log} \quad \textbf{Versions} \ (14) \quad \textbf{Forks} \ (118) \quad \textbf{Options} \quad \textbf{Fork} \ \textbf{Notebook}$

Edit No

Tags

Add Tag

Notebook

This kernel will implement classical image techniques and will hopefully serve as a useful primer to people who have never worked with image data before. Ultimately, we will develop a simple pipeline using scipy and numpy (and a little bit of

Competition challenges

Small training set (~700)

Variety of colors, microscopy types

Variety of sizes and scales

Different background tissue

Overlapping nuclei

Competition challenges

- Small training set (~700)
- Variety of colors, microscopy types
- Variety of sizes and scales
- Different background tissue
- **Overlapping nuclei**

Step one: Convert to grayscale image.

Step one: Convert to grayscale image.

Step two: Threshold background

Assume there are two pixel types in the image:

- Nuclei
- Background.

Step three: Separate individual objects

Step four: Post-process individual objects

Eliminate tiny objects

Label #1 Size: (14, 39)

Label #2

Label #4 Size: (29, 28)

Label #5 Size: (1, 1)

Label #6 Size: (1, 1)

Step four: Post-process individual objects

Eliminate tiny objects

Open connected objects

Topics

The 2018 Data Science Bowl

Puppy bowl

- Image processing basics
- The simple approach

Superbowl

- Feature detection basics
- The U-Net approach

Performance

Humans recognize objects from patterns

https://www.youtube.com/watch?v=IOHayh06LJ4

Convolution: Weighting an image by a pattern.

Horizontal Edges 3 x 3

1	0	-1
1	0	-1
1	0	-1

Convolution sums the element-wise product of an image window and filter

Image Window

5	4	3
5	4	3
5	4	3

Filter

1	0	-1
1	0	-1
1	0	-1

A separate convolution is performed for each pixel.

output

input

A separate

convolution is

performed for each pixel.

Results: Horizontal Edges

1	0	-1
1	0	-1
1	0	-1

Results: Vertical Edges

1	1	1
0	0	0
-1	-1	-1

Results: Mean Filter

1	1	1
1	1	1
1	1	1

Convolve image with multiple filters

Input

Convolve image with many filters

- Horiz. edges
- Vert. edges
- Diag. edges
- Flat areas
- Smooth areas
- High color
- ...

Convolutional neural networks

Don't impose filter weights... learn them!

Horizontal Edges 3 x 3

1	0	-1
1	0	-1
1	0	-1

Conv2D Weights [0] 3 x 3

1.2	-0.3	-1.3
1.8	0.1	-1.6
1.1	0.2	-0.4

Forward Propagation $\mathbf{Z}_1 = s(\mathbf{X} * \mathbf{W}_1)$ $\mathbf{Z}_2 \ \mathbf{U}_2^1$ W, PREDICTED TARGET LABEL LABEL **PROBABILITIES** IMAGE Cost SOFT-MAX CONVOLUTION HIDDEN **OUTPUT LAYER** IMAGE MASKS LAYER Computation **Backward Propagation**

Rule of thumb: Layers get more compact but deeper.

Rule of thumb: Filters become sensitive to higher level features in deeper layers

Layer 2

Layer 3

Rule of thumb: Use a pre-built architecture

Topics

The 2018 Data Science Bowl

Puppy bowl

- Image processing basics
- The simple approach

Superbowl

- Feature detection basics
- The U-Net approach

Performance

Convolutions

- 3 x 3 Filter Size
- "Valid" padding

Max Pooling

Up-convolutions

Convolutions

- 3 x 3 Filter Size
- "Valid" padding

Max Pooling

Up-convolutions

1	3	2	9
7	4	1	5
8	5	2	з
4	2	1	4

Convolutions

- 3 x 3 Filter Size
- "Valid" padding

Max Pooling

Up-convolutions

1	m	2	9
7	4	1	5
8	5	2	3
4	2	1	4

7	9
8	

Convolutions change depth, Pooling changes height / width

Convolutions

- 3 x 3 Filter Size
- "Valid" padding

Max Pooling

Up-convolutions

Contraction Path

Layer	Area	Depth
Input	572 ²	1
Conv1	570 ²	64
Conv2	568 ²	64
MaxPool1	284 ²	64
Conv3	282 ²	128
Conv4	280 ²	128
MaxPool2	140 ²	128

Basin

Layer	Area	Depth
MaxPool4	32 ²	512
Conv9	30^{2}	1024
Conv10	28 ²	1024
UpConv1	56 ²	512

Expansion Path

Layer	Area	Depth
UpConv3	200 ²	256
Conv15	198 ²	128
Conv16	196 ²	128
UpConv4	392 ²	128
Conv17	390 ²	64
Conv18	388 ²	64
Output	388 ²	2

Skip Connections

Crops and copies information from earlier in the network to deeper layers Allows final resolution to remain high

Kjetil Åmdal-Sævik Keras U-Net starter - LB 0.277

last run 3 months ago · Python notebook · 63592 views using data from 2018 Data Science Bowl · ● Public

Notebook Code Data (1) Output (2) Comments (126) Log Versions (8) Forks (465)

Fork Notebook

1 You are currently viewing an old version of this script (7/8). View the latest version.

Tags

Notebook

```
# Build U-Net model
inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS))
s = Lambda(lambda x: x / 255) (inputs)
c1 = Conv2D(8, (3, 3), activation='relu', padding='same') (s)
c1 = Conv2D(8, (3, 3), activation='relu', padding='same') (c1)
p1 = MaxPooling2D((2, 2)) (c1)
c2 = Conv2D(16, (3, 3), activation='relu', padding='same') (p1)
c2 = Conv2D(16, (3, 3), activation='relu', padding='same') (c2)
p2 = MaxPooling2D((2, 2)) (c2)
```

Topics

The 2018 Data Science Bowl

Puppy bowl

- Image processing basics
- The simple approach

Superbowl

- Feature detection basics
- The U-Net approach

Performance

Model performance (0.0 - 0.6)

Approach	Mean Average Precision
1. Vanilla image processing	0.20 - 0.28
2. Vanilla U-Net	0.25 - 0.42
3. Vanilla Mask R-CNN	0.37 - 0.50
4. U-Net + Deep Watershed	0.45 - 0.55
5. Winning model	~ 0.65

Insight 1: Data augmentation is critical.

- 1. Add gaussian noise
- 2. Color to gray
- 3. Contrast and brightness
- 4. Random crop
- 5. Mosaics
- 6. Random rotate

Insight 2: Neural networks don't do it all.

Output of models was treated as "candidate nuclei"... still need to post-process data!

 e.g., Use morphological features such as solidity, circularity, convexity, area, neighbors median, count, etc. to calculate "predicted IOU" for each mask.

Insight 3: Pick the right target...

Insight 3: Pick the right target...

Insight 3: Pick the right target...

For further reference...

- 1. Coursera's Deep learning specialization
- 2. <u>"U-Net: Convolutional Networks for Biomedical Image</u> <u>Segmentation"</u> by Ronneberger, Fischer and Brox
- 3. Kaggle's Data Science Bowl 2018
 - 1. <u>1st Place Solution</u> from *ods.ai*
 - 2. 4th Place U-Net + Watershed from *Nuclear Vision*
 - 3. <u>11th Place Open Solution from Zheng Li</u>