Métodos Estatísticos Básicos

Aula 9 - Variáveis aleatórias

Prof. Regis Augusto Ely

Departamento de Economia Universidade Federal de Pelotas (UFPel)

Junho de 2014

Definições

- ▶ Variável aleatória: seja E um experimento e Ω um espaço amostral associado ao experimento E. Uma função X, que associa a cada elemento $\omega \in \Omega$ um número real $X(\omega)$, é uma variável aleatória.
- Duas interpretações:
 - 1. Realizamos o experimento E, que dá o resultado $\omega \in \Omega$, e a seguir calculamos o número $X(\omega)$;
 - 2. O número $X(\omega)$ é pensado como o próprio resultado do experimento, e a imagem de $X(\omega)$, denotada R_X , torna-se o espaço amostral.
- ▶ Obs: lembre da definição de função.
 - 1. $\forall \omega \in \Omega, \exists y \in \mathbb{R} \text{ tal que } X(\omega) = y;$
 - 2. $\forall y, z \in \mathbb{R} \text{ com } X(\omega) = y \text{ e } X(\omega) = z, \text{ temos } y = z.$

Exemplos de variáveis aleatórias

Exemplo

No experimento de lançar duas moedas e observar os resultados, temos $\Omega=(H,H),(H,T),(T,H),(T,T)$. Podemos definir a variável aleatória X como sendo o número de caras obtidas, de modo que X(H,H)=2, X(H,T)=X(T,H)=1 e X(T,T)=0. Note que ao aplicar a função X alteramos o experimento.

Exemplo

Considere o experimento de lançar 3 moedas e observar a descrição detalhada de como e onde as moedas pousaram. Poderíamos avaliar:

- 1. $X(\omega) = n^{\circ}$ de caras que aparecem;
- 2. $Y(\omega) = \text{distancia máxima entre 2 moedas quaisquer};$
- 3. $Z(\omega) = \text{distância mínima das moedas da borda da mesa.}$

Variável aleatória e experimento

- Podemos incluir a avaliação de $X(\omega)$ na descrição do nosso experimento, de modo que $R_X = \{0, 1, 2, 3\}$ (ex. 2.1) é o nosso novo espaço amostral.
- ▶ Podemos também relacionar certos eventos $A \subseteq \Omega$ a eventos de R_X . Seja $B \subseteq R_X$, podemos definir A como $A = \{\omega \in \Omega | X(\omega) \in B\}$. Dizemos então que A e B são equivalentes.

Variáveis aleatórias discretas

- Se o conjunto imagem $X(\Omega)$, que descreve a variável aleatória X, for finito ou infinito enumerável, dizemos que X é uma variável aleatória discreta.
- ▶ A função de probabilidade de uma variável aleatória discreta X é uma função que associa para cada resultado $x_1, x_2, ... ∈ X$, um número $p(x_i) = P(X = x_i)$, tal que:
 - 1. $p(x_i) \ge 0$ para todo i;
 - 2. $\sum_{i=1}^{\infty} p(x_i) = 1$.
- ► Chamamos p de probabilidade, e a coleção de pares $[x_i, p(x_i)]$ para i = 1, 2, ... de distribuição de probabilidade de X.

Variáveis aleatórias discretas

- ▶ Seja $B \subseteq X(\Omega)$ tal que $B = \{x_{i1}, x_{i2}, ...\}$, então $P(B) = P[\omega|X(\omega) \in B] = P[\omega|X(\omega) = x_{ij}, j = 1, 2, ...] = \sum_{i=1}^{\infty} p(x_{ij})$.
- ▶ Ou seja, a probabilidade de um evento *B* é igual a soma das probabilidades dos resultados individuais associados a *B*.

Distribuição de Bernoulli

- ► Considere um experimento E e seja A algum evento associado a E. Defina P(A) = p e $P(\bar{A}) = 1 p$. Considere a variável aleatória: X = 0, se $\omega \notin A$ (fracasso), ou X = 1, se $\omega \in A$ (sucesso).
- Qual a função de probabilidade desta variável aleatória?
- ▶ Distribuição de Bernoulli: $P(X = k) = p^k(1-p)^{1-k}$ para $k \in 0, 1$.

Distribuição binomial

- Agora considere que repetimos esse experimento n vezes, e suponha que P(A) permaneça a mesma para todas as repetições.
- ▶ O espaço amostral será formado por todas as sequências possíveis $\{a_1, a_2, ..., a_n\}$, onde cada a_i pertence a A ou \bar{A} .
- A variável aleatória X = nº de elementos favoráveis a A (ou número de sucessos), terá valores possíveis que vão de 0 até n. Mas o número total de formas de se obter k sucessos em n repetições do experimento é (ⁿ_k). A função de probabilidade de X será:
- ▶ **Distribuição binomial:** $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$ para k = 0, 1, ..., n.
- ➤ Obs: note que para utilizarmos a distribuição binomial, as n repetições do experimento devem ser independentes, de modo que consideramos todos os resultados possíveis igualmente.

Exemplo de distribuição binomial

Exemplo

Qual a probabilidade de obtermos menos de 3 caras em 5 lançamentos de uma moeda justa?

$$P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)$$

 $P(X < 3) = {5 \choose 0}(1/2)^{0}(1/2)^{5} + {5 \choose 1}(1/2)^{1}(1/2)^{4} + {5 \choose 2}(1/2)^{2}(1/2)^{3}$
 $P(X < 3) = 1/32 + 5(1/32) + 10(1/32) = 1/2$

▶ Ver exemplos 4.8, 4.9, e 4.10 das págs 78 e 80.

Variáveis aleatórias contínuas

- Se a imagem da variável aleatória X gerar um conjunto infinito não-enumerável de valores, substituímos p definida somente para x₁, x₂, ... por uma função f definida para todos os valores de x.
- Variável aleatória contínua: X é uma variável aleatória contínua se existir uma função f, denominada função densidade de probabilidade (fdp) de X que satisfaça:
 - 1. $f(x) \ge 0$ para todo x;
 - $2. \int_{-\infty}^{+\infty} f(x) dx = 1;$
 - 3. Para quaisquer $a, b \text{ com } -\infty < a < b < \infty$, teremos $P(a \le x \le b) = \int_a^b f(x) dx$.

Função de Distribuição Acumulada

- Seja X uma variável aleatória discreta ou contínua. A função de distribuição acumulada (fd) de X é F(x) = P(x ≤ x).
- Devemos ter:
 - 1. Se X for uma variável aleatória discreta $F(x) = \sum_j p(x_j)$ para todo j tal que $x_i \leq x$
 - 2. Se X for uma variável aleatória contínua com fdp f, $F(x) = \int_{-\infty}^{x} f(s) ds$

Exemplo

Seja X uma variável aleatória contínua com fdp f(x)=2x para 0 < x < 1 e igual a zero para quaisquer outros valores valores de x. Nesse caso, a função de distribuição acumulada será dada por:

$$F(x) = \begin{cases} 0 & \text{se } x \le 0\\ \int_0^x 2s ds = x^2 & \text{se } 0 < x \le 1\\ 1 & \text{se } x > 1 \end{cases}$$

Função de Distribuição Acumulada

Propriedades da função de distribuição acumulada:

- 1. A função F é não-decrescente, ou seja, se $x_1 \le x_2$, teremos $F(x_1) \le F(x_2)$.
- 2. $\lim_{x \to -\infty} F(x) = 0$ e $\lim_{x \to \infty} F(x) = 1$.
- 3. $f(x) = \frac{dF(x)}{dx}$ para todo X no qual F é derivável.
- 4. Se X é variável aleatória discreta com valores $x_1, x_2, ...$ tais que $x_1 < x_2 < ...$; então $p(x_i) = p(X = x_i) = F(x_i) F(x_{i-1})$

Exemplo

Suponha que uma variável aleatória contínua tenha fd dada por:

$$F(x) = \begin{cases} 0 \text{ se } x \le 0\\ 1 - e^{-x} \text{ se } x > 0 \end{cases}$$

Nesse caso, $F'(x) = e^{-x}$ para x > 0, e a fdp será $f(x) = e^{-x}$ para x > 0, e zero para quaisquer outros valores.

Distribuição Uniforme

- Seja X uma variável aleatória contínua que tem valores no intervalo [a, b], no qual a e b sejam ambos finitos. Então X é uniformemente distribuída sobre o intervalo [a, b].
- ▶ Se X for uniformemente distribuída, então terá fdp dada por:

$$f(x) = \begin{cases} \frac{1}{b-a} \text{ se } a \le x \le b\\ 0 \text{ caso contrário} \end{cases}$$

Exemplo

Um ponto é escolhido ao acaso no segmento de reta [0,2]. Qual a probabilidade de que o ponto esteja entre 1 e 3/2?

$$f(x) = \frac{1}{2}$$
 para $0 < x < 2$. Logo, $P(1 \le x \le 3/2) = \int_1^{3/2} \frac{1}{2} = \frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} \cdot 1$ Assim, $P(1 \le x \le 3/2) = \frac{1}{4}$.

Distribuição Uniforme

 Em geral a função de distribuição acumulada de uma variável aleatória uniformemente distribuída será:

$$F(x) = \begin{cases} 0 \text{ se } x < a \\ \frac{x-a}{b-a} \text{ se } a \le x < b \\ 1 \text{ se } x > b \end{cases}$$