Ch 7.2-7.3: Step Functions and Basis Functions

Lecture 21 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Mon, Nov 7, 2022

Announcements

Last time:

- 7.1 Polynomial regression
- 7.2 Step functions

This lecture:

- 7.2 Step functions
- 7.3 Basis functions

Announcements:

• Vote tomorrow if you're elligible!

2/21

r. Munch (MSU-CMSE) Mon, Nov 7, 2022

Section 1

Last time

Polynomial regression

Replace linear model

$$y_i = \beta_0 + \beta_1 x_1 + \varepsilon_i$$

with

$$y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_i^2 + \dots + \beta_d x_i^d + \varepsilon_i$$

Example with wage data

$$-184.1542 + 21.24552 * age + -0.56386 * age^2 + 0.00681 * age^3 + -3e - 05 * age^4$$

Munch (MSU-CMSE) Mon, Nov 7, 2022

Section 2

Step Functions

Step functions

$$I(X < c)$$
 $I(c_1 \le X < c_2)$ $I(c \le X)$

Dr. Munch (MSU-CMSE)

More on step function setup

$$C_0(X) = I(X < c_1),$$

$$C_1(X) = I(c_1 \le X < c_2),$$

$$C_2(X) = I(c_2 \le X < c_3),$$

$$\vdots$$

$$C_{K-1}(X) = I(c_{K-1} \le X < c_K),$$

$$C_K(X) = I(c_K \le X),$$

Dr. Munch (MSU-CMSE)

Step function: Learned model

$$y_i = \beta_0 + \beta_1 C_1(x_i) + \beta_2 C_2(x_i) + \cdots + \beta_K C_K(x_i) + \varepsilon_i$$

Example

Given knots $c_1 = 3$, $c_2 = 5$, $c_3 = 7$, determine the entries in the columns for $C_i(X)$ in the below matrix.

Х	$C_0(X)$	$C_1(X)$	$C_2(X)$	$C_3(X)$
1				
2				
3				
4				
5				

Х	$C_0(X)$	$C_1(X)$	$C_2(X)$	$C_3(X)$
6				
7				
8				
9				
10				

Draw the function

My code doing regression on the step function input returned the function.

$$f(X) = -1 + 3C_1(X) + 4C_2(X) - 2C_3(X).$$

Fill in the table of values, then draw this function below.

X	F(X)	X	F(X)	-5					
1		6		4					
2		7		3					
				2					
3		8		1.					
4		9		0 1 2	3 4	5 6	7 8	10	
				-1					
5		10		-2					
				.2					

Dr. Munch (MSU-CMSE)

Step function: Learned model

$$y_i = \beta_0 + \beta_1 C_1(x_i) + \beta_2 C_2(x_i) + \cdots + \beta_K C_K(x_i) + \varepsilon_i$$

Draw the function

Back to the wage data set

Dr. Munch (MSU-CMSE) Mon, Nov 7, 2022

Step function example

Section 3

Classification versions

r. Munch (MSU-CMSE) Mon, Nov 7, 2022

Classification version: Polynomial regression

$$\Pr(y_i > 250 \mid x_i) = \frac{\exp(\beta_0 + \beta_1 x_i + \dots + \beta_d x_i^d)}{1 + \exp(\beta_0 + \beta_1 x_i + \dots + \beta_d x_i^d)}$$

Classification version: Step functions

$$\Pr(y_i > 250 \mid x_i) = \frac{\exp(\beta_0 + \beta_1 C_1(x_i) + \beta_2 C_2(x_i) + \dots + \beta_K C_K(x_i))}{1 + \exp(\beta_0 + \beta_1 C_1(x_i) + \beta_2 C_2(x_i) + \dots + \beta_K C_K(x_i))}$$

Dr. Munch (MSU-CMSE)

Computation in the jupyter notebook


```
1 from sklearn.linear model import LogisticRegression
In [591:
             v = np.arrav(df.wage>250) #<--- this makes sure I
                                              just have true/false input
             clf = LogisticRegression(random state=48824)
             clf.fit(df steps dummies,y)
Out[59]: LogisticRegression(random state=48824)
             f = clf.predict proba(t dummies)
           plt.plot(t,f[:,1])
         (100.2)
Out[56]: [<matplotlib.lines.Line2D at 0x7fc2b938bb50>]
          0.035
          0.030
          0.025
          0.020
          0.010
```

r. Munch (MSU-CMSE) Mon, Nov 7, 2022 18 / 21

A few more comments on step functions

r. Munch (MSU-CMSE) Mon, Nov 7, 2022

Basis Functions Setup

Polynomial and piecewise-constant regression models are special cases of a *basis function* approach.

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \cdots + \beta_K b_K(x_i) + \varepsilon_i$$

r. Munch (MSU-CMSE) Mon, Nov 7, 2022

Next time

20	F	Nov 4	Polynomial & Step Functions.	7.1,7.2	
21	М	Nov 7	Step Functions	7.2	
22	W	Nov 9	Basis functions, Regression Splines	7.3,7.4	
23	F	Nov 11	Decision Trees 8.1 HW		HW #7 Due
24	М	Nov 14	Ensemble methods	8.2	
25	W	Nov 16	Maximal Margin Classifier	9.1	
26	F	Nov 18	SVC	9.2	HW #8 Due
27	М	Nov 21	SVM	9.3, 9.4, 9.5	
28	W	Nov 23	Single layer NN	10.1	
	F	Nov 25	No class - Thanksgiving		
29	М	Nov 28	Multi Layer NN	10.2 HW #9 I	
30	W	Nov 30	CNN	10.3	
31	F	Dec 2	Unsupervised Learning & Clustering	12.1, 12.4	
32	М	Dec 5	More Clustering	12.4	HW #10 Due
	W	Dec 7	Review		
	F	Dec 9	Midterm #3	Bring your cheat sheet and non-internet-connected calculator	

Or. Munch (MSU-CMSE) Mon, Nov 7, 2022