# Raport 2

### Eksploracja danych

Mikoaj Langner, Marcin Kostrzewa nr albumów: 255716, 255749

#### 2021-04-19

## Spis treści

| 4 | Zadanie 3                                      | 9 |
|---|------------------------------------------------|---|
| 3 | Zadanie 2 3.1 Wczytanie i przygotowanie danych | 6 |
| 2 | Zadanie 1                                      | 1 |
| 1 | $\mathbf{Wstp}$                                | 1 |

# 1 Wstp

Sprawozdanie zawiera rozwizanie zada z listy 2. Dotycz one zagadnie dyskretyzacji i redukcji wymiaru.

### 2 Zadanie 1

W pierwszym zadaniu mamy zbada

```
data(iris)
```

```
intervals <- c(min(iris$Petal.Length), 2, 5, max(iris$Petal.Length))
for (method in c("interval", "frequency", "cluster", "fixed")) {
  petal.length.discretized <- if (method != "fixed")
    discretize(iris$Petal.Length, method=method) else
    discretize(iris$Petal.Length, method=method, breaks=intervals)
  print(ggplot(iris, aes(Petal.Length)) +
        geom_histogram() +
        geom_vline(xintercept=attributes(petal.length.discretized)$"discretized:breaks")</pre>
```

```
ggtitle(method))
print(ggplot(iris, aes(Species, Petal.Length)) +
    geom_quasirandom(aes(col=Species)) +
    scale_color_manual(values=wes_palette("GrandBudapest1", 3)) +
    geom_hline(yintercept=attributes(petal.length.discretized)$"discretized:breaks") +
    ggtitle(method))
discretized.table <- table(petal.length.discretized, iris$Species)
matchClasses(discretized.table)
}</pre>
```

# interval





## Cases in matched pairs: 94.67 %





## Cases in matched pairs: 95.33 %





## Cases in matched pairs: 89.33 %





## Cases in matched pairs: 94.67 %

## 3 Zadanie 2

## 3.1 Wczytanie i przygotowanie danych

Teraz naszym zadaniem jest ...

Wczytajmy dane i uzupenijmy je o informacje geograficzne o wszytkich stanach.

```
data(state)
state <- as.data.frame(state.x77)
state_ <- state
state_$region <- state.region
state_$division <- state.division</pre>
```

By rozstrzygn, czy potrzebna jest normalizacja danych, przeanalizujemy wykresy pudekowe oraz wyznaczymy odchylenia standardowe i wspóczynniki zmiennoci.

```
plot_boxplot(data.frame(state, all="all"), by="all")
```



Tabela 1: Odchylenie standardowe i wspolczynnik zmienności dla zmienych

|                         | Population  | Income      | Illiteracy | Life Exp  | Murder    | HS Grad   | Frost      | Area        |
|-------------------------|-------------|-------------|------------|-----------|-----------|-----------|------------|-------------|
| Odchylenie standardowe  | 4464.491433 | 614.4699392 | 0.6095331  | 1.3423936 | 3.6915397 | 8.0769978 | 51.9808481 | 85327.29962 |
| Wspolczynnik zmiennosci | 1.051354    | 0.1385252   | 0.5209685  | 0.0189393 | 0.5003442 | 0.1520863 | 0.4976149  | 1.20628     |

p <- plot\_prcomp(state, prcomp\_args=list(scale=TRUE, center=TRUE), variance\_cap=0.8)[2]
print(p)</pre>



p <- plot\_prcomp(state, prcomp\_args=list(scale=TRUE, center=TRUE), variance\_cap=1)[1]
print(p)</pre>

% Variance Explained By Principal Components (Note: Labels indicate cumulative % explained variance)



# 4 Zadanie 3