Задача А. Проверочная работа по математике. 5 класс.

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Инструкция по выполнению заданий проверочной работы

На выполнение работы по математике отводится один урок (не более 45 минут). Работа состоит из одной части и включает в себя 7 заданий.

Ответы на задания запишите в поля ответов в тексте работы. Если Вы хотите изменить ответ, зачеркните его и запишите рядом новый.

При выполнении работы не разрешается пользоваться учебниками, рабочими тетрадями, справочниками, калькулятором.

При необходимости можно пользоваться черновиком. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. В целях экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения работы у Вас останется время, то Вы сможете вернуться к пропущенным заданиям.

Работа, содержащая хотя бы один зачеркнутый или неверный ответ, оценивается в ноль баллов (неудовлетворительно). Ученики, получившие оценку неудовлетворительно, навсегда лишаются возможности посещать занятия кружка Т-Поколение.

Желаем успеха!

На вход подается целое число n ($1 \le n \le 10^{18}$), которое используется в качестве параметра в каждой задаче. Ответ на каждую задачу следует выводить по модулю 998 244 353.

1. $1 + 2 + \ldots + n = ?$

2. $1^2 + 2^2 + \ldots + n^2 = ?$

3. $1^3 + 2^3 + \ldots + n^3 = ?$

4. $1 + 22 + \ldots + 22^{n-1} = ?$

5. $1 + 2 \cdot 22 + 3 \cdot 22^2 + \ldots + n \cdot 22^{n-1} = ?$

6. $1 + 4 \cdot 22 + 9 \cdot 22^2 + \ldots + n^2 \cdot 22^{n-1} = ?$

7. Сколько существует строк длины n, состоящих из символов a, b, c, d, которые **не содержат** подстрок-палиндромов длины больше 1?

стандартный ввод	стандартный вывод
1	1
	1
	1
	1
	1
	1
	4
2	3
	5
	9
	23
	45
	89
	12
4096	8390656
	953505770
	926870658
	372284118
	301215450
	106615586
	866069042
	000009042

Задача В. Проверочная работа по математике. 6 класс.

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Инструкция по выполнению заданий проверочной работы

На выполнение работы по математике отводится один урок (не более 45 минут). Работа состоит из одной части и включает в себя 6 заданий.

Ответы на задания запишите в поля ответов в тексте работы. Если Вы хотите изменить ответ, зачеркните его и запишите рядом новый.

При выполнении работы не разрешается пользоваться учебниками, рабочими тетрадями, справочниками, калькулятором.

При необходимости можно пользоваться черновиком. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. В целях экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения работы у Вас останется время, то Вы сможете вернуться к пропущенным заданиям.

Работа, содержащая хотя бы один зачеркнутый или неверный ответ, оценивается в ноль баллов (неудовлетворительно). Ученики, получившие оценку неудовлетворительно, навсегда лишаются возможности посещать занятия кружка Т-Поколение.

Желаем успеха!

На вход подается целое число n ($1 \le n \le 10^6$), которое используется в качестве параметра в каждой задаче. Сумма элементов пустого множества полагается равной нулю.

Во задачах 1-6 требуется вычислить $Q=S_1\oplus\ldots\oplus S_n$. Где S_n вычисляется по модулю $998\,244\,353$ и зависит от номера задачи.

1.
$$S_n = \binom{n}{0} + \binom{n+1}{1} + \binom{n+2}{2} + \ldots + \binom{2n}{n}$$

2.
$$S_n = \binom{n}{0}^2 + \binom{n}{1}^2 + \binom{n}{2}^2 + \ldots + \binom{n}{n}^2$$

3.
$$S_n = 1 \cdot \binom{n}{1} + 4 \cdot \binom{n}{2} + \ldots + n^2 \cdot \binom{n}{n}$$

4.
$$S_n = \binom{n}{0} + \binom{n}{2} \cdot n^2 + \binom{n}{4} \cdot n^4 + \dots + \binom{n}{2k} \cdot n^{2k}, \ k = \left\lfloor \frac{1}{2}n \right\rfloor$$

5. S_n равно количеству строк длины 3n, которые состоят из n символов a, n символов b и n символов c, при этом никакой символ a не идет позже символа c.

стандартный ввод	стандартный вывод
1	3
	2
	1
	1
	3
2	9
	4
	7
	4
	12
50	661894489
	400480500
	71993274
	143591024
	685773800

Задача С. Проверочная работа по математике. 7 класс.

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Инструкция по выполнению заданий проверочной работы

На выполнение работы по математике отводится один урок (не более 45 минут). Работа состоит из одной части и включает в себя 5 заданий.

Ответы на задания запишите в поля ответов в тексте работы. Если Вы хотите изменить ответ, зачеркните его и запишите рядом новый.

При выполнении работы не разрешается пользоваться учебниками, рабочими тетрадями, справочниками, калькулятором.

При необходимости можно пользоваться черновиком. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. В целях экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения работы у Вас останется время, то Вы сможете вернуться к пропущенным заданиям.

Работа, содержащая хотя бы один зачеркнутый или неверный ответ, оценивается в ноль баллов (неудовлетворительно). Ученики, получившие оценку неудовлетворительно, навсегда лишаются возможности посещать занятия кружка Т-Поколение.

Желаем успеха!

На вход подается пара целых чисел n и m ($1 \le n, m \le 10^6$), которые используются в качестве параметров в каждой задаче. Ответ на задачи 1-4 следует выводить по модулю $998\,244\,353$.

- 1. Сколько существует способов расставить n девочек и n мальчиков в ряд так, чтобы на любом префиксе девочек было не меньше, чем мальчиков?
- 2. Сколько существует способов расставить n девочек и m мальчиков в ряд так, чтобы на любом префиксе девочек было не меньше, чем мальчиков?
- 3. Просуммируйте по всем $\Pi C \Pi$ длины 2n количество циклических сдвигов, которые тоже являются $\Pi C \Pi$.
- 4. Для всех скобочных последовательностей длины (2n+1) (необязательно правильных) найдите максимальное значение k, где k это количество циклических сдвигов, которые заканчиваются на закрывающую скобку и первые 2n символов, которых образуют ПСП.

стандартный ввод	стандартный вывод
1 1	1
	1
	1
	1
3 2	5
	5
	9
	1

Задача D. Проверочная работа по математике. 9 класс.

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Инструкция по выполнению заданий проверочной работы

На выполнение работы по математике отводится один урок (не более 45 минут). Работа состоит из одной частей и включает в себя 5 заданий.

Ответы на задания запишите в поля ответов в тексте работы. Если Вы хотите изменить ответ, зачеркните его и запишите рядом новый.

При выполнении работы не разрешается пользоваться учебниками, рабочими тетрадями, справочниками, калькулятором.

При необходимости можно пользоваться черновиком. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. В целях экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения работы у Вас останется время, то Вы сможете вернуться к пропущенным заданиям

Работа, содержащая хотя бы один зачеркнутый или неверный ответ оценивается в ноль баллов (неудовлетворительно). Ученики, получившие оценку неудовлетворительно навсегда лишаются возможности посещать занятия кружка Т-Поколение.

Желаем успеха!

На вход подаются целые числа $n, m, k \ (1 \le n, m, k \le 10^6)$, которые используются в качестве параметров в каждом задании. Сумма элементов пустого множества полагается равной нулю.

Ответы на задания 1,3,4 требуется вывести по модулю 998 244 353

- 1. Есть n пронумерованных воздушных шаров, которые надо раскрасить в m цветов так, чтобы каждый цвет встречался хотя бы один раз. Выведите количество способов раскрасить шарики.
- 2. Посчитайте количество чисел от 1 до 10^{18} , которые не взаимно просты с m.
- 3. Есть n красных, n синих и n белых автомобилей. Сколько есть способов выбрать среди них m автомобилей так, чтобы среди них встретился хотя бы один красный, хотя бы один синий и хотя бы один белый автомобиль. Все 3n автомобилей считаются различными.
- 4. Вычислите количество способов разбить число n в упорядоченную сумму k слагаемых, где каждое слагаемое это число от 0 до m.
- 5. Есть параллелепипед $n \times m \times k$, состоящий из единичных кубов. Прямая проходит из одного угла этого параллелепипеда в другой. Считается, что прямая проткнула кубик, если она содержит хотя бы одну его внутреннюю точку. Вычислите количество кубиков, которые протыкает эта прямая.

стандартный ввод	стандартный вывод
1 1 1	1
	0
	0
	1
	1
438 848 366	0
	509433962264150943
	650704968
	206093802
	1644
179552 2172 137560	109598106
	668508287292817680
	196983206
	921012905
	317112

Задача Е. КИТ — Карточная Игра на Троих

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Андрей, Ваня и Серёжа решили сыграть в Карточную Игру на Троих (сокращённо КИТ). Правила у этой игры простые:

- В начале у каждого из трёх игроков есть стопка карт. В стопке Андрея изначально N карт, в стопке Вани M карт, в стопке Серёжи K карт. На каждой из карт написана одна из букв A, B или C. Карты внутри каждой стопки не переупорядочиваются, т. е. лежат в таком порядке, в каком были изначально.
- Игроки ходят по очереди, Андрей ходит первым.
- Если у игрока, чья очередь ходить в данный момент, стопка карт не пустая, то из неё достаётся верхняя карта. Затем ход переходит тому игроку, чьё имя начинается на букву, написанную на вытянутой карте (A Андрею, B Ване, C Серёже). Вытянутая карта после этого выбрасывается, т. е. не возвращается в стопку.
- Если же у текущего игрока стопка карт пустая, то игра заканчивается, и победителем считается текущий игрок.

Среди всех возможных 3^{N+M+K} начальных состояний игры (все возможные буквы на всех возможных картах), в скольких из них Андрей победит?

Так как ответ может быть очень большим, посчитайте его по модулю $10^9 + 7$.

Формат входных данных

В единственной строке входных данных даются три числа N, M, K, разделённые пробелом $(1 \le N, M, K \le 3 \cdot 10^5)$

Формат выходных данных

Выведите одно число — количество начальных состояний игры, при которых Андрей побеждает, по модулю $10^9 + 7$

Примеры

стандартный ввод	стандартный вывод
1 1 1	17
4 2 2	1227
1000 1000 1000	261790852

Замечание

В первом примере входных данных есть 17 начальных состояний, при которых Андрей побеждает:

- \bullet 9 состояний, когда у Андрея на карте написана A
- ullet 3 состояния, когда у Андрея на карте B и у Вани на карте A
- \bullet 1 состояние, когда у Андрея на карте B, у Вани -C, у Серёжи -A
- \bullet 3 состояния, когда у Андрея на карте C и у Серёжи на карте A
- 1 состояние, когда у Андрея на карте C, у Серёжи B, у Вани A

Задача F. Префиксный пузырёк

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дана перестановка $P = (P_1, P_2, \dots, P_N)$ чисел $(1, 2, \dots, N)$

Рассмотрим следующую операцию k(k = 2, 3, ..., N) на перестановке.

• Операция k: для $i=1,2,\ldots,k-1$ в таком порядке, если $P_i>P_{i+1}$, поменять местами P_i и P_{i+1} .

Также дана неубывающая последовательность $A = (A_1, A_2, \dots, A_M)(2 \leqslant A_i \leqslant N)$ длины M.

Для каждого $i=1,2,\ldots,M$ найдите количество инверсий в перестановке P после выполнения операций A_1,A_2,\ldots,A_i в таком порядке.

Количество инверсий в последовательности $x = (x_1, x_2, \dots, x_n$ длины n — это количество пар $(i, j)(1 \le i < j \le n)$ таких что $x_i > x_j$.

Формат входных данных

В первой строке даётся натуральное число $N(1 \le N \le 2 \cdot 10^5)$.

Во второй строке даётся N различных натуральных чисел через пробел, i-е число равно $P_i(1\leqslant P_i\leqslant N)$. Гарантируется, что P — перестановка.

В третьей строке даётся натуральное число $M(1 \le M \le 2 \cdot 10^5)$.

В четвёртой строке даётся M натуральных чисел через пробел, i-е число равно $A_i (2 \leqslant A_i \leqslant M)$. Гарантируется, что $A_i \leqslant A_{i+1}$ для $i=1,2,\ldots,M-1$.

Формат выходных данных

Выведите M строк. В k-й строке должен быть ответ на задачу для i=k.

Примеры

стандартный ввод	стандартный вывод
6	3
3 2 4 1 6 5	1
2	
4 6	
20	117
12 14 16 8 7 15 19 6 18 5 13 9 10 17	116
4 1 11 20 2 3	113
15	110
3 4 6 8 8 9 10 12 13 15 18 18 19 19 20	108
	105
	103
	99
	94
	87
	79
	72
	65
	58
	51

Замечание

В первом примере входных данных сначала выполняется операция 4. Во время неё P меняется следующим образом: $(3,2,4,1,6,5) \rightarrow (2,3,4,1,6,5) \rightarrow (2,3,4,1,6,5) \rightarrow (2,3,1,4,6,5) \rightarrow (2,3,1,4,6,5)$. Количество инверсий теперь равно 3.

Далее выполняется операция 6, после чего P сий равно 1.	, превращается в $(2,1,3,4,5,6)$, и количество инвер-

Задача $G.\ K$ обменов

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана строка S длины N, состоящая из символов A, B и C.

Разрешается выполнять следующую операцию от 0 до K раз включительно:

 \bullet Выбрать две различные позиции в S и поменять местами символы на них.

Найдите количество различных строк, которые можно получить по итогу операций, по модулю 998244353.

Формат входных данных

В первой строке даются два натуральных числа N, K через пробел $(1 \le N \le 250000, 1 \le K \le 100)$

Во второй строке даётся строка S. Гарантируется, что её длина равна N, и что она состоит только из символов A,B,C.

Формат выходных данных

Выведите искомое количество по модулю 998244353.

Примеры

стандартный ввод	стандартный вывод
3 1	4
ABC	
3 2	6
ABC	
4 5	1
AAAA	
30 10	42981885
CACCABAABBABABBCBBCAAACAAACCCA	

Замечание

В первом примере входных данных могут быть получены следующие строки:

- \bullet S = ABC сделали ноль операций
- \bullet S = BAC поменяли местами первый и второй символ
- \bullet S = CBA поменяли местами первый и третий символ
- S = ACB поменяли местами второй и третий символ

Задача H. BBQ

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Снук устраивает еще одну барбекю-вечеринку.

На этот раз он приготовит одну порцию барбекю.

У него есть запас из n упаковок барбекю, i-я упаковка барбекю содержит один шампур, a_i кусочков говядины и b_i кусочков зеленого перца. Все шампуры в этих упаковках разные и различимые, в то время как все кусочки говядины и все кусочки зеленого перца, соответственно, неразличимы.

Чтобы приготовить барбекю, он выбирает две упаковки барбекю, извлекает все содержимое из выбранных упаковок, то есть два шампура и несколько кусочков говядины или зеленого перца. (Оставшиеся упаковки барбекю не будут использованы.) Затем все эти кусочки еды нанизываются сразу на два шампура в произвольном порядке.

Сколько различных способов есть у Снука, чтобы приготовить барбекю? Два способа приготовления барбекю различаются, если и только если наборы использованных шампуров различны или порядки кусочков еды различны. Поскольку это число может быть чрезвычайно большим, найдите его по модулю 10^9+7 .

Формат входных данных

Первая строка содержит целое число $n \ (1 \le n \le 200\,000)$.

Следующие n строк содержат пары $a_i, b_i \ (1 \le a_i, b_i \le 2\,000)$

Формат выходных данных

Выведите количество различных способов, которыми Снук может приготовить порцию барбекю, по модулю $10^9 + 7$.

стандартный ввод	стандартный вывод
3	26
1 1	
1 1	
2 1	

Задача І. Резонансные частоты

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

В солнечной системе в далеком будущем люди смогли заселить n планет (включая искусственно созданные), между которыми для экстренных случаев они наладили радиосвязь.

Радиосвязь представляет собой набор из m односторонних каналов связи, i-й канал передает информацию из планеты с номером v в планету с номером u, при этом работая на частоте i. В силу жесткой иерархии планет в построенной системе радиосвязи нет циклов.

Потом случилось страшное — людей нашли пришельцы, которые стали посылать свои сигналы в солнечную систему на частоте x. Таким образом некоторые пути передачи информации начали резонировать с сигналами пришельцев.

Пусть какой-то путь проходит через вершины v_1, v_2, \ldots, v_k $(k \ge 2)$ и пару вершин (v_i, v_{i+1}) соединяет ребро e_i . Тогда такой путь резонирует с сигналом, если наибольший общий делитель чисел e_1, \ldots, e_{k-1} в точности равен x.

Люди хотят понять, какое количество путей подверглось угрозе, но вычисления оказались слишком громоздки. Поэтому они просят вас помочь спасти человечество и вычислить количество резонирующих путей по модулю 10^9+7 .

Формат входных данных

В первой строке заданы три числа n, m, x — количество планет, количество каналов радиосвязи и частота сигнала пришельцев.

В последующих m строках указано по паре чисел v_i и u_i — концы i-го канала радиосвязи.

$$2 \leqslant n \leqslant 10^{5}$$
$$1 \leqslant m \leqslant 10^{5}$$
$$1 \leqslant x \leqslant m$$
$$1 \leqslant v, u \leqslant n$$

Примеры

стандартный ввод	стандартный вывод
5 5 1	4
1 2	
2 5	
2 4	
5 3	
1 3	
5 5 2	2
1 2	
2 5	
2 4	
5 3	
1 3	

Замечание

В первом примере подходят пути, проходящие по вершинам [1,2], [1,2,4], [1,2,5], [1,2,5,3]. Во втором примере подходят только пути [2,5] и [2,5,3].

Задача Ј. Черепашка

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Черепашка хочет добраться из клетки (1,1) в клетку (n,m). За один ход из клетки (x,y) она может попасть в клетки (x,y+1) или (x+1,y).

Но есть одна проблема — на доске, где гуляет черепашка, так же живут k злых зайцев, а именно i-й заяц живет в клетке (x_i, y_i) . Черепашка не хочет видеться с зайцами, поэтому избегает этих клеток.

Вычислите количество способов построить маршрут для черепашки так, чтобы он не проходил через клетки, где живут зайцы.

Формат входных данных

В первой строке указано число t ($1 \le t \le 100$) — количество наборов входных данных.

В первой строке каждого набора указаны числа $n, m, k \ (1 \le n, m \le 10^5, 1 \le k \le 5\,000).$

В следующих k строках указаны пары чисел $x_i, y_i \ (1 \leqslant x_i \leqslant n, 1 \leqslant y_i \leqslant m).$

Гарантируется, что сумма k по всем наборам входных данных не превосходит 5 000.

Формат выходных данных

Для каждого набора входных данных выведите ответ на задачу по модулю 998 244 353.