SMAI-S25-L11: PCA and SVD

C. V. Jawahar

IIIT Hyderabad

February 11, 2025

Recap:

- Problems of interest:
 - Learn a function $y = f(\mathbf{W}, \mathbf{x})$ from the data.
 - (a) Classification (b) Regression
 - Learn Feature Transformations $\mathbf{x}' = \mathbf{W}\mathbf{x}$ or $\mathbf{x}' = f(\mathbf{W}, \mathbf{x})$
 - (a) Feature Normalization (b) PCA
- Algorithms/Approaches:
 - Nearest Neighbour Algorithm
 - Linear Classification: $sign(\mathbf{w}^T\mathbf{x})$
 - Decide as ω_1 if $P(\omega_1|\mathbf{x}) \geq P(\omega_2|\mathbf{x})$ else ω_2 .
 - Linear Regression: (a) closed form and (b) GD
- Supervised Learning:
 - Notion of Training, Validation and Testing
 - Performance Metrics
 - Low rank data matrix and SVD
 - Notion of Loss Function, (eg. MSE), Regularization.
 - Role of Optimization, Convex and non-Convex optimization
 - Closed form solution, Gradient Descent, Eigen vector solns.

Algorithm (Recap)

PCA: Algorithm

1. Input: N samples of D dimension

$$\Sigma = \frac{1}{N} \sum_{i=1}^{N} [x_i - \mu] [x_i - \mu]^T$$

- 2. Compute Covariance Matrix
- 3. Compute Eigen Values and Eigen Vectors of Covariance Matrix
- 4. Select 'd' eigen vectors corresponding to 'd' largest eigen values
- 5. Arrange them as rows of 'A' (a 'd' X 'D' matrix)
- 6. Find lower dimensional representations as: x' = Ax

Eigen face (Recap)

Eigen Faces

62 X 47 Image D = 2914; N = 1348 Vectors displayed as 2D Image

Eigen Value: Number

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

Covariance Matrix is 2914 X 2914

Eigen Value: Number

Log-scale

Note on Reconstruction

Consider a sample in two coordinate systems. Let $\mathbf{x} = [x^1, x^2, \dots, x^d]^T$

- 1. Standard basis: $\mathbf{u_1}, \mathbf{u_2}, \dots \mathbf{u_d}$
 - $\mathbf{u_i} = [0, 0, \dots, 1, \dots, 0, 0,]^T$. With '1' at the *i* th place
 - $\mathbf{x} = (\mathbf{x}^T \mathbf{u}_1) \mathbf{u}_1 + (\mathbf{x}^T \mathbf{u}_2) \mathbf{u}_2 + \ldots + (\mathbf{x}^T \mathbf{u}_d) \mathbf{u}_d$
 - $\bullet \mathbf{x} = x^1 \mathbf{u}_1 + x^2 \mathbf{u}_2 + \ldots + x^d \mathbf{u}_d$
- 2. Defined by Eigen Vectors: $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_d}$
 - $(\lambda_i, \mathbf{v}_i)$ are the eigen value and eigen vectors of the covariance matrix.
 - $\bullet \mathbf{x} = (\mathbf{x}^T \mathbf{v}_1) \mathbf{v}_1 + (\mathbf{x}^T \mathbf{v}_2) \mathbf{v}_2 + \ldots + (\mathbf{x}^T \mathbf{v}_{d'}) \mathbf{v}_{d'} + \ldots + (\mathbf{x}^T \mathbf{v}_{d}) \mathbf{v}_{d}$
 - $\mathbf{x} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_{d'} \mathbf{v}_{d'} + \ldots + \alpha_{d} \mathbf{v}_{d'}$

If we reduce to d' dimension from d, we loose some information/signal.

PCA as Minimizing Reconstructing Loss

Let $\mathbf{u_1}, \dots \mathbf{u_d}$ be d orthonormal vectors. \mathbf{x} is $\sum_{i=1}^d \alpha_i \mathbf{u}_i$, where $\alpha_i = \mathbf{x}^T \mathbf{u_i}$. Problem: Find the dimension \mathbf{u} that has highest variance (or minimal reconstruction error) or minimize $\mathbf{x} - \mathbf{uu}^T \mathbf{x}$. Problem is to minimize:

$$\sum_{i=1}^{N} ||\mathbf{x}_{i} - \mathbf{u}\mathbf{u}^{T}\mathbf{x}_{i}||^{2} = \sum_{i=1}^{N} \left(\mathbf{x}_{i}^{T}\mathbf{x}_{i} + (\mathbf{u}\mathbf{u}^{T}\mathbf{x}_{i})^{T}(\mathbf{u}\mathbf{u}^{T}\mathbf{x}_{i}) - 2\mathbf{x}_{i}^{T}\mathbf{u}\mathbf{u}^{T}\mathbf{x}_{i}\right)$$

First term is positive and independent of \mathbf{u} . And $\mathbf{u}^T\mathbf{u} = 1$. Minimize:

$$\sum_{i=1}^{N} (\mathbf{x_i}^T \mathbf{u} \mathbf{u}^T \mathbf{u} \mathbf{u}^T \mathbf{x_i} - 2\mathbf{x}_i^T \mathbf{u} \mathbf{u}^T \mathbf{x}_i) = \sum_{i=1}^{N} -\mathbf{x}_i^T \mathbf{u} \mathbf{u}^T \mathbf{x}_i = \sum_{i=1}^{N} -\mathbf{u}^T \mathbf{x}_i \mathbf{x}_i^T \mathbf{u} = -\mathbf{u}^T \mathbf{\Sigma} \mathbf{u}$$

Thus the problem reduces to:

Maximize
$$\mathbf{u}^T \Sigma \mathbf{u}$$
 such that $\mathbf{u}^T \mathbf{u} = 1$

This reduces the solution as the eigen vectors corresponding to the largest eigen values.

Eigen Decomposition

Popular eigen expansion

$$\Sigma = \sum_{i=1}^d \lambda_i \mathbf{v}_i \mathbf{v}_i^T$$

tells us what variation to retain and what to approximate.

$$\Sigma = \sum_{i=1}^{d'} \lambda_i \mathbf{v}_i \mathbf{v}_i^T + \sum_{i=d'+1}^{d} \lambda_i \mathbf{v}_i \mathbf{v}_i^T$$

We chose the reduced dimension based on the eigen value spectrum. Also for a general PSD matrix

$$A = U \Lambda U^T$$

is known as the eigen decomposition.

SVD

Formally, the singular value decomposition (SVD) of an $m \times n$ real or complex matrix M is a factorization of the form

$$M = UDV^T$$

- U is $m \times n$, $U^T U = I_n$,
- D is diagonal $n \times n$ and
- V is $V^T V = V V^T = I_n$.

$$M = \sum_{i} D_{i} u_{i} v_{i}^{T}$$

SVD

Numerical Example

$$A = \left[\begin{array}{cc} \mathbf{3} & \mathbf{0} \\ \mathbf{4} & \mathbf{5} \end{array} \right]$$

Example 1

nple 1 Example 2

$$\begin{bmatrix} -3 & 1 \\ 6 & -2 \\ 6 & -2 \end{bmatrix} = \begin{bmatrix} 1/3 & 2/\sqrt{5} & 2/\sqrt{5} \\ -2/3 & 1/\sqrt{5} & 0 \\ -2/3 & 0 & 1/\sqrt{5} \end{bmatrix} \begin{bmatrix} 3\sqrt{10} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -3/\sqrt{10} & 1/\sqrt{10} \\ 1/\sqrt{10} & 3/\sqrt{10} \end{bmatrix}^T$$

$$\begin{bmatrix} -3 & 1 \\ 6 & -2 \\ 6 & -2 \end{bmatrix} = \begin{bmatrix} 1/3 \\ -2/3 \\ -2/3 \end{bmatrix} 3\sqrt{10} \begin{bmatrix} -3/\sqrt{10} \\ 1/\sqrt{10} \end{bmatrix}^T = \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix} [-3, 1]$$

$$\boldsymbol{U} = \frac{1}{\sqrt{10}} \left[\begin{array}{cc} 1 & -3 \\ 3 & 1 \end{array} \right] \qquad \boldsymbol{\Sigma} = \left[\begin{array}{cc} \sqrt{45} \\ & \sqrt{5} \end{array} \right] \qquad \boldsymbol{V} = \frac{1}{\sqrt{2}} \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right] \ .$$

$$\sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^{\mathrm{T}} + \sigma_2 \boldsymbol{u}_2 \boldsymbol{v}_2^{\mathrm{T}} = \frac{\sqrt{45}}{\sqrt{20}} \left[\begin{array}{cc} \mathbf{1} & \mathbf{1} \\ \mathbf{3} & \mathbf{3} \end{array} \right] + \frac{\sqrt{5}}{\sqrt{20}} \left[\begin{array}{cc} \mathbf{3} & -\mathbf{3} \\ -\mathbf{1} & \mathbf{1} \end{array} \right] = \left[\begin{array}{cc} 3 & 0 \\ 4 & 5 \end{array} \right] = A.$$

Eigen vs SVD

We know that:

• Eigen Decomposition of Symmetric Matrix S

$$\mathbf{S} = \mathbf{Q} \wedge \mathbf{Q}^T = \sum_{i=1}^n \lambda_i \mathbf{q}_i \mathbf{q}_i^T$$

SVD of A

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T = \sum_{i=1}^n d_i \mathbf{u}_i \mathbf{v}_i^T$$

• The non-zero singular values of M (found on the diagonal entries of D) are the square roots of the non-zero eigenvalues of both M^TM and MM^T .

Low Rank Approximation using SVD

Problem: Given a matrix **A**, find its low rank (k) approximation.

- **1** Find SVD of **A** as $A \rightarrow UDV^T$
- $oldsymbol{ ilde{Q}}$ Make all singular values beyond k in ${\sf D}$ as zero to obtain \hat{D}
- 3 Reconstruct k rank matrix

$$\hat{A} \leftarrow U \hat{D} V^T$$

Latent Semantic Indexing (LSI)

Consider a term document matrix $(N \times d)$ where there are N documents and d is the vocabulary size. We argued that this matrix is often low-rank in practice.

Consider a collection of documents from "Technology" and "Food".

- How many "concepts" topics are there? How do we find them?
- How do we handle words like "apple" which may have multiple meaning?

LSI

C	d_1	d_2	d_3	d_4	d_5	d_6
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

U	1	2	3	4	5
ship	-0.44	-0.30	0.00	0.00	0.00
boat	-0.13	-0.33	0.00	0.00	0.00
ocean	-0.48	-0.51	0.00	0.00	0.00
wood	-0.70	0.35	0.00	0.00	0.00
tree	-0.26	0.65	0.00	0.00	0.00

V^T	d_1	d_2	d_3	d_4	d_5	d_6
1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
2	-0.29	-0.53	-0.19	0.63	0.22	0.41
3	0.00	0.00	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.00	0.00

Σ	1	2	3	4	5
		0.00			
2	0.00	1.59	0.00	0.00	0.00
3	0.00	0.00	1.28	0.00	0.00
4	0.00	0.00	0.00	1.00	0.00
5	0.00	0.00	0.00	0.00	0.39

Σ_2	1	2	3	4	5
1	2.16	0.00	0.00	0.00	0.00
2	0.00	1.59	0.00	0.00	0.00
3	0.00	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.00

LSI: Why and How LSI works?

C	d_1	d_2	d_3	d_4	d_5	d_6
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

				d_4		
ship	0.85	0.52	0.28	0.13	0.21	-0.08
boat	0.36	0.36	0.16	0.13 -0.20	-0.02	-0.18
ocean	1.01	0.72	0.36	-0.04 1.03	0.16	-0.21
wood	0.97	0.12	0.20	1.03	0.62	0.41
tree	0.12	-0.39	-0.08	0.90	0.41	0.49

• How close are document d_2 and d_3 in the original and new space?

If $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$, Find the SVD of \mathbf{A}^{-1} .

• What is left and right inverse of a matrix? How do we compute using SVD?

If $\mathbf{A} = UDV^T$.

- What are the eigen values and eigen vectors of AA^T?
- What are the eigen values and eigen vectors of A^TA ?

Consider a matrix A formed by first 25 integers in row order $1, \ldots, 25$. Find a rank-1 and rank-2 approximation of A. What is the error in this approximation? (use an online SVD tool for computing SVD)

(based on the LSI example) We have a large number of documents. They are represented in a Term Document Matrix. Given a query document, find the most semantically similar document. Given matrix $\bf A$ is a term document matrix (with columns as document d_1, d_2, d_3 etc.). Given a new document as $[1,0,1,0,0]^T$, find the cosine similarity with all the six documents and find the nearest document in the latent space of dimension 2 as well as 1.

Hint: map query and documents as $d^T U_k D_K^{-1}$