Import Library

```
import pandas as pd
import numpy as np
import seaborn as sns
from matplotlib import pyplot as plt

from sklearn.feature_selection import mutual_info_regression
from sklearn.preprocessing import PolynomialFeatures
```

Import Dataset

```
In [38]: df = pd.read_csv('./feature_store/merged.csv', index_col=0)
In [39]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       Index: 1906 entries, 0 to 1909
       Data columns (total 21 columns):
        #
            Column
                                Non-Null Count Dtype
        ___
        0
            cycle id
                                1906 non-null
                                                float64
            start_weight
                                1906 non-null
                                                float64
                                1906 non-null
                                                float64
            last_weight
        3
                                1906 non-null float64
            average_weight
                                1906 non-null float64
            average_adg
        5
            fasting
                                1906 non-null
                                                bool
                                1906 non-null float64
            pond_id
        7
            measured_date
                                1906 non-null object
            morning_temperature
        8
                                1906 non-null float64
            evening_temperature 1906 non-null
        9
                                                float64
        10 morning do
                                1906 non-null float64
        11 evening_do
                                1906 non-null float64
        12 morning_salinity
                                1906 non-null float64
        13 morning pH
                                1906 non-null float64
                                1906 non-null
        14 transparency
                                                float64
        15 long_cycle
                                1906 non-null
                                                int64
                                1906 non-null float64
        16 total seed
        17 area
                                1906 non-null float64
        18 size
                                1906 non-null float64
                                1906 non-null
        19 weight
                                                float64
        20 num of harvest
                                1906 non-null
                                                float64
       dtypes: bool(1), float64(18), int64(1), object(1)
       memory usage: 314.6+ KB
In [40]: df.head()
```

Out[40]:		cycle_id	start_weight	last_weight	average_weight	average_adg	fasting	pond_id
	0	3458.0	5.23	25.18	14.428	0.270	True	12969.0
	1	3459.0	4.95	26.59	15.167	0.267	True	12996.0
	2	4038.0	5.25	16.25	10.725	0.281	True	14334.C
	3	4039.0	5.40	15.70	11.035	0.273	True	14335.C
	4	4044.0	2.77	24.76	13.033	0.256	True	14348.C

5 rows × 21 columns

Preprocessing

```
In [41]: df = df.drop(columns=["cycle_id", "pond_id", "measured_date"], axis=1)
In [42]: df['fasting'] = df['fasting'].replace({True: 1, False: 0})

/var/folders/zz/htmnld_148b1dbm4wj_hyrq80000gn/T/ipykernel_64560/232860989.p
    y:1: FutureWarning: Downcasting behavior in `replace` is deprecated and will
    be removed in a future version. To retain the old behavior, explicitly call
    `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `p
    d.set_option('future.no_silent_downcasting', True)`
    df['fasting'] = df['fasting'].replace({True: 1, False: 0})
In [43]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Index: 1906 entries, 0 to 1909
Data columns (total 18 columns):
    Column
                        Non-Null Count Dtype
____
   start_weight
                        1906 non-null float64
0
                        1906 non-null float64
    last_weight
    average_weight
2
                        1906 non-null float64
3
                        1906 non-null float64
   average adg
4
    fasting
                        1906 non-null int64
5
    morning_temperature 1906 non-null float64
    evening_temperary
morning_do
evening_do
morning_salinity
    evening temperature 1906 non-null float64
                        1906 non-null float64
7
8
                        1906 non-null float64
                        1906 non-null float64
9
10 morning_pH
                        1906 non-null float64
11 transparency
                        1906 non-null float64
12 long_cycle
                        1906 non-null int64
13 total_seed
                        1906 non-null float64
14 area
                        1906 non-null float64
15 size
                        1906 non-null float64
16 weight
                        1906 non-null float64
17 num_of_harvest
                        1906 non-null float64
dtypes: float64(16), int64(2)
memory usage: 282.9 KB
```

Feature Selection

Mutual Information

```
In [44]: target_column = 'average_adg'
In [45]: # Mendefinisikan fitur dan variabel target
    X = df.drop(target_column, axis=1) # Fitur
    y = df[target_column] # Variabel target

In [46]: # Menghitung informasi mutual
    mi = mutual_info_regression(X, y, random_state=69)

In [47]: mi_score = pd.Series(mi, index=X.columns).sort_values(ascending=False)
    print(mi_score)
```

```
average_weight
                      0.286023
last_weight
                      0.283015
size
                      0.269980
start_weight
                      0.150300
long_cycle
                      0.093424
morning_salinity
                      0.074241
num_of_harvest
                      0.072455
morning_temperature 0.061878
total seed
                      0.052857
weight
                      0.051184
evening_do
                      0.045641
morning_pH
                      0.042245
morning_do
                      0.036917
area
                      0.036127
evening temperature
                      0.015473
transparency
                      0.002977
fasting
                      0.000000
```

dtype: float64

Table Mutual Infomation

```
In [48]: mi_score_style = pd.DataFrame({'Feature': X.columns, 'Mutual Information': r
         mi_score_style = mi_score_style.sort_values(by='Mutual Information', ascendi
         mi_score_style.style.background_gradient(low=0.7, high=1.0,cmap='YlOrRd')
```

	Feature	Mutual Information
2	average_weight	0.286023
1	last_weight	0.283015
14	size	0.269980
0	start_weight	0.150300
11	long_cycle	0.093424
8	morning_salinity	0.074241
16	num_of_harvest	0.072455
4	morning_temperature	0.061878
12	total_seed	0.052857
15	weight	0.051184
7	evening_do	0.045641
9	morning_pH	0.042245
6	morning_do	0.036917
13	area	0.036127
5	evening_temperature	0.015473
10	transparency	0.002977
3	fasting	0.000000

Out[48]:

Feature Engineering

Mathematical Transformations

```
In [49]: top_features = mi_score.index[:5]
In [50]: # MEMBUAT POLYNOMIAL FEATURES

poly = PolynomialFeatures(degree=2, include_bias=False)
poly_features = poly.fit_transform(X[top_features])
poly_feature_names = poly.get_feature_names_out(top_features)
In [59]: poly_feature_names
```

<class 'pandas.core.frame.DataFrame'>

Index: 1910 entries, 0 to 713
Data columns (total 38 columns):

# 	Columns (total 38 columns):	Non-Null Count	Dtype		
0	start_weight	1906 non-null	float64		
1	last_weight	1906 non-null	float64		
2	average_weight	1906 non-null	float64		
3	average_adg	1906 non-null	float64		
4	fasting	1906 non-null	float64		
5	morning_temperature	1906 non-null	float64		
6	evening_temperature	1906 non-null	float64		
7	morning_do	1906 non-null	float64		
8	evening_do	1906 non-null	float64		
9	morning_salinity	1906 non-null	float64		
10	morning_pH	1906 non-null	float64		
11	transparency	1906 non-null	float64		
12	long_cycle	1906 non-null	float64		
13	total_seed	1906 non-null	float64		
14	area	1906 non-null	float64		
15	size	1906 non-null	float64		
16	weight	1906 non-null	float64		
17	num_of_harvest	1906 non-null	float64		
18	average_weight	1906 non-null	float64		
19	last_weight	1906 non-null	float64		
20	size	1906 non-null	float64		
21	start_weight	1906 non-null	float64		
22	long_cycle	1906 non-null	float64		
23	average_weight^2	1906 non-null	float64		
24	average_weight last_weight	1906 non-null	float64		
25	average_weight size	1906 non-null	float64		
26	average_weight start_weight	1906 non-null	float64		
27	average_weight long_cycle	1906 non-null	float64		
28	last_weight^2	1906 non-null	float64		
29	last_weight size	1906 non-null	float64		
30	last_weight start_weight	1906 non-null	float64		
31	last_weight long_cycle	1906 non-null	float64		
32	size^2	1906 non-null	float64		
33	size start_weight	1906 non-null	float64		
34	size long_cycle	1906 non-null	float64		
35	start_weight^2	1906 non-null	float64		
36	start_weight long_cycle	1906 non-null	float64		
37	long_cycle^2	1906 non-null	float64		
dtypes: float64(38)					

dtypes: float64(38) memory usage: 582.0 KB

Out[54]:		start_weight	last_weight	average_weight	average_adg	fasting	morning_tempera
	0	5.23	25.18	14.428	0.270	1.0	:
	1	4.95	26.59	15.167	0.267	1.0	:
	2	5.25	16.25	10.725	0.281	1.0	1
	3	5.40	15.70	11.035	0.273	1.0	
	4	2.77	24.76	13.033	0.256	1.0	:

5 rows × 38 columns

```
In [60]: data_with_poly_features.to_csv("./feature_store/polynomial-features.csv")
In [61]:
                 plt.figure(figsize=(20, 10))
                 correlation_matrix = poly_df.corr()
                 sns.heatmap(correlation_matrix, annot=True, fmt=".2f", cmap='coolwarm', cbar
                 plt.title('Correlation Matrix Heatmap')
                 plt.show()
                                                                            Correlation Matrix Heatmap
                                                                                             0.20
                                                                       0.39
                                                                                             0.34
              average_weight last_weight -
                                                                                                                  0.12
                                                            0.39 0.32
                   average weight size - 0.29
                                                                            0.41
                                                                                  0.18
               verage_weight start_weight -
                                            -0.10
                                                       0.04
                                                                       0.41
                                                                                             0.25
               average_weight long_cycle -
                                                  0.31
                                                                       0.18
                       last_weight^2 -
                                                  0.24
                                                                            0.25
                                                                                       0.39
                                                                       0.42
                                                  0.01
                                                                       0.04
                                                                                             0.33
                                                  -0.07
                                                                       0.55
                                                                             -0.04
                                                                                                                             -0.03
                           size^2 -
                                 -0.20
                                                                  -0.12
                                                                                             0.51
                                                                                                  -0.06
                                                                                       -0.14
                     size start_weight - 0.05
                                            0.51
                                                            0.32
                                                                  0.12
                                                                             0.51
                                                                                  -0.14
                                                                                       -0.12
                                                                                             0.29
                                                                                                  0.48
                                                                                                                                   0.55
                                                                  -0.18
                                                  -0.11
                                                            -0.14
                                                                             -0.07
                                                                                  -0.20
                                                                                             0.62
                                                                                                  -0.09
                      size long cycle -
                                                       -0.05
                      start weight^2 -
                                                       -0.01
                                                                       0.40
                                                                                  0.38
                                                                                             0.21
                                                                                                        0.15
                                                                                                                                        -0.01
                                 0.52
                                       0.23
                                            -0.06
                                                                       0.42
                                                                                             0.23
                 start_weight long_cycle -
                                                                                       0.42
                                                -0.14
                                                                       -0.08
                                                                                             0.16
                                                                                                  0.06
                                                                                                        last_weight long_cycle
                                                                                                                              start_weight^2
                                                                                                                         size
```

Conclusion

- 1. Fitur yang didapatkan
- Mutual information menghasilkan nilai mi table mutual information

- Angka Mutual Information (MI) dalam tabel tersebut mewakili seberapa banyak informasi yang dimiliki oleh setiap fitur tentang target variabel
- Target variable menggunakan fitur average adg
- Fitur-fitur yang paling informatif: [average_weight, last_weight, start_weight, size, long_cycle]. Fitur-fitur ini mungkin sangat penting untuk model prediksi Anda dan sebaiknya diprioritaskan dalam pemilihan fitur.
- Fitur dengan kontribusi informasi rendah: Fitur-fitur seperti fasting yang memiliki nilai Mutual Information sangat rendah atau nol mungkin tidak relevan dan bisa dipertimbangkan untuk diabaikan dalam model prediksi.
- Kami menggunakan 5 fitur terbaik.
- 3. Identifikasi fitur baru dari 5 fitur terbaik
- Pada proses mutual information menggunakan transformasi matematika
- Proses transform menggunakan proses perkalian antar fitur terpilih dan fitur itu sendiri.
- kemudian akan menghasilkan fitur baru seperti pada chart

github: https://github.com/sugengdcahyo/shrimp-prediction/blob/main/02-Filter%20Based%20Feature%20Selection.ipynb