# Derivadas

### Cálculo

http://synergy.vision/

## Contenido

| LA DERIVADA                    | 2 |
|--------------------------------|---|
| TÉCNICAS BASICAS DE DERIVACIÓN | 3 |



#### LA DERIVADA

En los problemas del 1 al 9, hallar la derivada de la función en el punto a indicado.

1. 
$$f(x) = 2$$
 en  $a = 1$ 

**2.** 
$$g(x) = x$$
 en  $a = 3$ 

**3.** 
$$h(x) = 3x$$
 en  $a = 2$ 

**4.** 
$$f(x) = 4x - 1$$
 en  $a = 2$ 

5. 
$$q(x) = 2x^2 - 5$$
 en  $a = -1$ 

**6.** 
$$h(x) = \frac{3}{x}$$
 en  $= -2$ 

7. 
$$f(x) = 3x^2 - 5$$
 en  $a = -1$ 

8. 
$$g(x) = x + \frac{1}{x}$$
 en  $a = 2$ 

9. 
$$h(x) = x^3 + 2$$
 en  $a = -1$ 

10. Probar que la siguiente función es diferenciable en 0:

$$f(x) = \begin{cases} x^2 & si \quad x \le 0 \\ 0 & si \quad x > 0 \end{cases}$$

11. Probar que la siguiente función no es diferenciable en 0:

$$f(x) = \begin{cases} 1 + x & si \quad x \le 0 \\ 1 - x & si \quad x > 0 \end{cases}$$

12. Hallar los valores de a y b para que sea diferenciable en 1:

$$f(x) = \begin{cases} ax + b & si \quad x < 1\\ \sqrt[3]{x} & si \quad x \ge 1 \end{cases}$$

En los problemas del 13 al 21, hallar la derivada de la función indicada.

**13.** 
$$f(x) = 2$$

**14.** 
$$q(x) = x$$

**15.** 
$$h(x) = 3x$$

**16.** 
$$f(x) = 4x - 1$$

17. 
$$q(x) = 2x^2 - 5$$

18. 
$$h(x) = \frac{3}{x}$$



**19.** 
$$f(x) = 3x^2 - 5$$

**20.** 
$$g(x) = x + \frac{1}{x}$$

**21.** 
$$h(x) = x^3 + 2$$

- 22. Dada la función  $f(x) = x^3 + x^2$ 
  - a. Hallar la pendiente de la recta tangente al gráfico de f en el punto donde x=1.
- b. Hallar la recta tangente al gráfico de f en el punto donde x = 1.
- c. Hallar la recta normal al gráfico de f en el punto donde x = 1.
- 23. Dada la función  $g(x) = \sqrt{x-3}$
- a. Hallar la pendiente de la recta tangente al gráfico de g en el punto donde x=12
- b. Hallar la recta tangente al gráfico de g en el punto donde x = 12.
- c. Hallar la recta normal al gráfico de g en el punto donde x = 12.
- **24.** Dada la función  $h(x) = \frac{1}{2}x^2 x + 7$ 
  - a. Hallar su función derivada.
  - b. ¿En qué punto del gráfico de h la tangente es paralela a la recta y = 3x + 6?.
  - c. Hallar la recta tangente al gráfico de h en el punto encontrado en la parte b.
- 25. Dada la función  $f(x) = \sqrt{2x+1}$
- a. Hallar la función derivada de f.
- b. Una tangente al gráfico de f tiene por pendiente 1/2. Hallar una ecuación de esta tangente.

#### TÉCNICAS BASICAS DE DERIVACIÓN

En los problemas del 1 al 38, hallar la derivada de la función indicada. Las letas a,b,c y d son constantes.

$$1. \ y = 4x^2 - 6x + 1$$

**2.** 
$$y = 1 - \frac{x}{3} + \frac{x^6}{6}$$

3. 
$$y = 0.5x^4 - 0.3x^2 + 2.5x$$

**4.** 
$$u = y^{10} - \frac{3y^8}{4} + 0,4y^3 + 0,1$$

5. 
$$s = 2t^{-5} + \frac{t^3}{3} - 0, 3t^{-2}$$
.



**6.** 
$$z = \frac{1}{3y} - \frac{3}{y^2} + 2$$

7. 
$$f(x) = 3x^{5/6} - 4x^{-2/3} - 10$$

8. 
$$g(x) = ax^5 - bx^{-4} + cx^{3/2} + d$$

9. 
$$y = -\frac{2x^6}{3a}$$

10. 
$$z = \frac{x^3}{a+b} + \frac{x^5}{a-b} - x$$

11. 
$$z = \frac{t^3 - bt^2 - 3}{6}$$

12. 
$$y = 4\sqrt{x - \frac{3}{2x^2}} + \sqrt{3}$$

13. 
$$z = \sqrt[3]{t} - \frac{1}{\sqrt[3]{t}}$$

**14.** 
$$u = \frac{\sqrt{3}}{2\sqrt{x}} - \frac{5}{3\sqrt[3]{x^2}} + \sqrt[3]{3}$$

**15.** 
$$y = (5x^4 - 4x^5)(3x^2 + 2x^3)$$

16. 
$$y = x^3 e^x$$

17. 
$$y = \sqrt{x}e^x$$

**18.** 
$$y = x^e + e^x$$

**19.** 
$$y = (x-1)(x-2)(x-3)$$

**20.** 
$$y = \frac{1}{3}(2x^3 - 1)(3x^2 - 2)(6x - 5)$$

**21.** 
$$z = \sqrt{t(t^4 - 1)(t^6 - 2)}$$

**22.** 
$$y = (\sqrt{x-1})(\sqrt{x}+1)$$

**23.** 
$$u = 2\sqrt{x}(x^2 - \sqrt{x} + \sqrt{5})$$

**24.** 
$$y = (\sqrt{x} - 3)(\frac{2}{x} - 1)$$

**25.** 
$$y = \frac{3}{x-9}$$

**26.** 
$$y = \frac{x}{x-8}$$

**27.** 
$$y = \frac{x+3}{x-3}$$

28. 
$$z = \frac{t}{t^2+1}$$

**29.** 
$$u = \frac{2t^3+1}{t-1}$$

30. 
$$y = \frac{x^3 - 2x}{x^2 + x + 1}$$

31. 
$$y = \frac{ax^2 + bx + c}{x}$$



$$32. \ y = \frac{ax^2 + bx + c}{\sqrt{x}}$$

33. 
$$y = \frac{ax^2 + b}{\sqrt{a^2 + b^2}}$$

**34.** 
$$y = \frac{x^2+1}{x^2-1} - (x-1)(x^2-1)$$

35. 
$$y = \frac{1}{(x-1)(x-3)}$$

36.