

Introduction to Modern Statistics

Wenbin Guo Bioinformatics, UCLA

wbguo@ucla.edu

2025 Winter

Notation of the slides

- Code or Pseudo-Code chunk starts with " ➤ ", e.g.
 ➤ print("Hello world!")
- Link is underlined

- Important terminology is in **bold** font
- Practice comes with

Agenda

- Day 1: Probability and Statistics basics
 - Uncertainty; Probability; Distribution
 - Descriptive statistics
- Day 2: Inference
 - Hypothesis testing and p-values
 - Permutation test and bootstrap
 - False discovery rate control
- Day 3: Modeling
 - Regression techniques
 - Model selection

Day 2: Statistical inference

Wenbin Guo Bioinformatics IDP, UCLA

> wbguo@ucla.edu 2025 Winter

Overview

Time

2-hour workshop (45min + 45min + practice/Q&A)

Topics

- ☐ Inferential statistics basics
- ☐ Hypothesis testing
- ☐ Permutation test
- □ Bootstrap
- Multiple test correction

Introduction to statistics

- ☐ Concept
- ☐ History
- □ Importance

Uncertainty

- □ Causes
- ☐ Examples in real life
- ☐ How do we react with it

Probability

- ☐ Events and sample space
- \square Probability and its properties $P(\mathbf{A}) = \frac{|\mathbf{A}|}{|\Omega|}$
- \Box Conditional probability P(**A** | **B**) = $\frac{P(AB)}{P(B)}$
- Bayes Theorem

Distributions

Category	Name	Description
Discrete	Uniform	equal probability to every integer between a and b
	Bernoulli	single trial with two possible outcomes with success rate p
	Binomial	number of successes in n independent Bernoulli trials
	Negative Binomial	number of failures before achieving r successes
	Geometric	number of trials needed to get the first success in a series of Bernoulli trials
	Hypergeometric	the number of successes in a sample of size n drawn without replacement from a population of size N containing K successes
	Poisson	number of events occurring in a fixed interval of time or space
Continuous	Uniform	equally probability to every value in an interval $[a,b]$
	Normal	bell curve center around mean μ with standard deviation σ
	t	Similar to Normal but with heavier tails
	Chi-square	models the sum of the squares of k independent standard normal variables
	F	compare variances between two groups
	Exponential	models the time between events in a Poisson process
	Beta	model proportions and probabilities

Descriptive statistics

- ☐ Tendency
- ☐ Dispersion
- ☐ Skewness
- Distribution

Inferential statistics

Use the part to learn about the whole

Inferential statistics

Draw conclusions about the population based on sample data

Typical tasks

- □ Parameter estimation
- ☐ Hypothesis testing

Given a sample $x_1,...,x_n \sim F$, how do we infer F?

Population vs samples

Use standard gaussian as an example

Population vs samples

Use standard gaussian as an example

Population vs samples

Use standard gaussian as an example

Sampling is random, so are the summary statistics (sample mean/sample variance)

Expectation and Variance

Population

Mean:

$$E(X) = \sum_{i=1}^{\infty} x_i P(x_i) = \int_{-\infty}^{+\infty} x f(x) dx$$

Variance:

$$Var(X) = E[(X - E(X))^{2}]$$

Parameter: a property of the distribution

Samples

Mean:

$$\frac{\sum_{i=1}^{n} x_i}{n}$$

Variance:

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

Statistic: a summary calculated from samples

Law of large numbers (LLN)

5.6 Theorem (The Weak Law of Large Numbers (WLLN)). If X_1, \ldots, X_n are IID, then $\overline{X}_n \xrightarrow{P} \mu$.

$$\mathbb{P}\left(|\overline{X}_n - \mu| > \epsilon\right) \le \frac{\mathbb{V}(\overline{X}_n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$$

Diffusion is an example of the law of large numbers.

In summary:

- Sample mean converges to population mean as sample size increases
- LLN provides Implications for estimation and reliability

Central limit theorem (CLT)

5.8 Theorem (The Central Limit Theorem (CLT)). Let X_1, \ldots, X_n be IID with mean μ and variance σ^2 . Let $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$. Then

$$Z_n \equiv \frac{\overline{X}_n - \mu}{\sqrt{\mathbb{V}(\overline{X}_n)}} = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \leadsto Z$$

where $Z \sim N(0,1)$. In other words,

In summary:

- Distribution of sample means approaches normal distribution as sample size grows.
- CLT allows for hypothesis testing and constructing confidence interval using normal approximation.

Let's do some practice!

➤ git clone https://github.com/wbvguo/qcbio-Intro2ModernStats.git

Hypothesis testing

"To reject or not to reject, that is the question."

Wenbin Shakespeare A famous nobody

Hypothesis testing

☐ Make decision: reject/not reject

A process to determine if there is enough evidence to reject a null hypothesis

Rejection Region for Null Hypothesis

Procedure: ☐ Frame the hypothesis \circ Null hypothesis (H_0): no difference/effect, ... \circ Alternative hypothesis (H_a or H_1): there is an effect/difference, ... ☐ Choose an appropriate Test Statistics ☐ Calculate the statistical significance (*p*-value) \Box Compare to a significance level (α)

- Reject H

Let's see an example

Use gaussian distributions as an example

- ☐ Frame the hypothesis
 - \circ Null hypothesis (H_0): two group have the same mean
 - \circ Alternative hypothesis (H_a): two group have the different mean

Dashed lines indicate sample means for Group 1 (blue) and Group 2 (red)

Let's see an example

Use gaussian distributions as an example

- ☐ Frame the hypothesis
 - \circ Null hypothesis (H_0): two group have the same mean
 - \circ Alternative hypothesis (H_a): two group have the different mean
- ☐ Choose an appropriate Test Statistics: t-test
- ☐ Calculate the statistical significance (*p*-value)
- \Box Compare to a significance level (α)
- ☐ Make decision: reject/not reject

Dashed lines indicate sample means for Group 1 (blue) and Group 2 (red)

```
t.test(samples_group1, samples_group2)
```

Welch Two Sample t-test

data: samples_group1 and samples_group2
t = -1.6104, df = 93.647, p-value = 0.1107
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.7511248 0.0783784
sample estimates:
 mean of x mean of y
 -0.03567178 0.30070141

Rethink about hypothesis testing

Reject: Why our goal is to reject? not to prove?

 Proving something to be true is difficult, proving something to be false is usually easier, as long as you can find a counter-example.

Enough evidence:

• Presumption of innocence: any defendant in a criminal trial is assumed

to be innocent until they have been proven guilty

In other words, hypothesis testing is conservative, we turn to not reject unless we have enough evidence

Better Call Saul

Fail to reject == the hypothesis is true?

No, this is not a binary world

Example: Clinical Trail for new drug

A clinical trial tests whether a new drug reduces blood pressure. The *p*-value for the difference between the drug and placebo group is **0.16**—greater than the conventional **0.05** threshold.

- The absence of evidence (failing to reject the null hypothesis)
 does not prove that the drug has no effect.
- The trial might have been underpowered (small sample size), lacking the data needed to detect a true effect.

In statistics, **failing to find evidence** does not imply **evidence of no effect**—it may simply reflect study limitations.

"Absence of evidence is not evidence of absence"

Carl Edward Sagan (1934-1996)

Statistical tests

- Test mean:
 - □One group
 - ☐Two group
 - **□**Paired
 - ☐Multiple group

One-sample t-test

Two-sample t-test

Statistical tests

- Test mean:
 - □One group
 - ☐Two group
 - **□**Paired
 - ☐Multiple group
- Test variance

Test distribution

p-value

The p-value is the probability (under H_0) of observing a value of the test statistic the same as or more extreme than what was actually observed.

- a measure of the evidence against H_0
- the smaller the p-value, the stronger the evidence against H_0 .

Typically,

p-value	evidence
< .01	very strong evidence against H_0
.0105	strong evidence against H_0
.0510	weak evidence against H_0
> .1	little or no evidence against H_0

True or false?

- large p-value is strong evidence in favor of H_0 .
 - False
- The *p*-value is the probability that the null hypothesis is true
 - False
- p = 0.05 means there's a 95% chance H_0 is true
 - False

p-value distribution when H_0 is true

$$Pr(P < p) = Pr(F^{-1}(P) < F^{-1}(p))$$

$$= Pr(T < t)$$

$$\equiv p;$$

p-value follows uniform distribution under the Null

Can use this rationale to diagnostic

- Histogram of p-values
- Quantile-Quantile plot (QQ plot)

Examine *p*-value distribution

Decision errors

We use statistics to make decisions

Decision errors

But the decisions can be wrong...

- ☐ Reject the null when it's true
- ☐ Fail to reject the null when it's not true

Decision errors and asymmetry classification

Put one type of error under control while minimizing the other one

Permutation and Bootstrap

Computer Age Statistical Inference

Permutation test

Resampling without replacement

- ☐ Define the hypothesis
- Define the test statistics
- □ Randomly permute the data
- ☐ Calculate the test statistics for each permutation
- □ Compare the observed test statistics with the permuted test statistic distribution

$$p = \frac{\sum_{i=1}^{B} I(\Delta \theta^{(i)} > t)}{B}$$

Take sex_discrimination data as an example

Table 11.1: Summary results for the sex discrimination study.

	decision		
sex	promoted	not promoted	Total
male	21	3	24
female	14	10	24
Total	35	13	48

We can clearly see that %promotion is higher in male population, but how to get the significance?

Take sex_discrimination data as an example

Repeat the shuffling many times

Take sex_discrimination data as an example

Pros: □ **Distribution-free**: No assumptions about data distribution (non-parametric); Works well with skewed or non-normal data. □ Flexible: Applicable to a wide range of test statistics (mean, median, correlation, etc.). **Easy to implement**: Simple concept based on resampling. Cons: □Computationally intensive: Requires a large number of resamples for accurate *p*-values, especially with large datasets. □Randomization required: Assumes data can be randomly shuffled **Limited interpretability**: p-values are purely empirical, with no direct parameter estimation

Resampling with replacement

One-sample bootstrap

Confidence interval with bootstrapping

Two-sample bootstrap

Multiple testing correction

False positives are a nightmare; false negatives are a tragedy.

Threshold on *p*-values for significant discoveries

Remember that *p*-value is uniform distributed under the null, small *p*-values can arise due to chance

False discovery rate

Genes with p-value < 0.05 which are actually not significant, it was just by chance that they got p-value < 0.05

$$FDR = \frac{False positives}{All significant results}$$

All significant genes (p-value < 0.05)

THE FALSE DISCOVERY RATE (FDR) IS THE PROPORTION OF FALSE POSITIVES AMONG ALL SIGNIFICANT RESULTS

Test 20 objects to see if they are associated with beach

p-value adjustment method

• Bonferroni correction: reject H_0 if $p_i \leq \frac{\alpha}{m}$

• Benjamini-Hochberg procedure (one of the most cited stats paper, ~114k)

Step 1: Considering we have m p-values, each obtained from a single test: $p_1, p_2, ..., p_m$, we order the p-values in increasing order:

$$p_{(1)} \le p_{(2)} \le \dots \le p_{(m-1)} \le p_{(m)}$$

and denote their corresponding null hypotheses as:

$$H_{(1)}, H_{(2)}, ..., H_{(m-1)}, H_{(m)}$$

Step 2: Find integer k as the largest i such that: $p_{(i)} \leq \frac{i}{m} \alpha$. Then we reject all $H_{(i)}$ for which $i \leq k$.

Comparison

Significance threshold:

p-adj < 0.05

0.05 * 15 = 0.75 objects falsely significant (falsely associated with the beach)

Association with the beach

Significant
Not significant

--- False positive

Let's do some practice!

Thanks

Q & A