Advanced Astronautics (SESA3039)

Introduction

Slide 2

- F2F lecture: Content of the week and "big picture"
 - Monday 13:00 in 35/1001Tuesday 15:00 in 35/1001
 - recorded, uploaded to Panopto
 - Slides available on BB
 - Questions welcome
 - You may want to look at the in-depth videos beforehand
- Tutorial sessions
 - Tuesdays 16:00 in 35/1001
 - Q&A on Problem Sheets
 - Tutors on hand for questions

- Pre-recorded Material
 - Filling in details from lectures
 - More in depth coverage of topics
 - fully examinable material
 - Videos and lecture notes on BB

- Quiz: 16/12
 - similar to tutorial sheet questions
 - numerical answers
 - same rules as other quizzes

Problem sheet & Tutorials

Problem Sheet

- Covers full 4 weeks of material
- Attempt questions on material of each week
- Additional questions available in textbooks

Tutorial

- Tuesdays 16:00 in 35/1001
- Suggested in groups, self-organized
- Active learning session: prepare by attempting problem sheet
- Demonstrators available to help with questions
- 1 problem solved together (let me know preference 1 day before)

Chapter 4 Roadmap

Slide 4

Week 8: Orbital Motion

- Math Basics
- Spherical Trigonometry
- Keplerian Motion from First Principles

- Week 10: Orbit Representation
 - Coordinates
 - Dates & Times
 - Orbital Elements

- Week 9: Orbit Properties
 - Constants of Motion
 - Eccentricity Vector
 - Conic Sections

- Week 11: Time Dependence
 - Eccentric Anomaly
 - Hyperbolic Anomaly
 - Kepler's Equations

Orbital Mechanics for Engineering Students \leftarrow

Curtis, H.

Butterworth-Heinemann, 2013. ISBN-13 978-0123747785

Orbital Mechanics

Chobotov, V.

AIAA Education Series, 2002 ISBN-13 978-1563475375

Fundamentals of Astrodynamics and Applications

Vallado, D. A.

Springer, 2007 ISBN-13 978-0387718316

An Introduction to the Mathematics and Methods of Astrodynamics

Battin, R. H.

AIAA Education Series, 1999 ISBN-13 978-1563473425

Satellite Orbits: Models, Methods and Applications

Montenbruck, O. and Gill, E.

Springer, 2011 ISBN-13 978-3540672807 Subjective observations:

- good introductory textbook
- very explicit mathematical derivations
- copious amount of worked examples
- not as complete as others
- not as useful as a reference

Chapter 4 will follow this textbook closely.

Available as free full text with Soton Login from publisher!

https://www.sciencedirect.com/book/9780080977478/orbital-mechanics-for-engineering-students

Orbital Mechanics for Engineering Students

Curtis, H.

Butterworth-Heinemann, 2013. ISBN-13 978-0123747785

Orbital Mechanics

Chobotov, V.

AIAA Education Series, 2002 ISBN-13 978-1563475375

Fundamentals of Astrodynamics and Applications

Vallado, D. A.

Springer, 2007 ISBN-13 978-0387718316

An Introduction to the Mathematics and Methods of Astrodynamics

Battin, R. H.

AIAA Education Series, 1999 ISBN-13 978-1563473425

Satellite Orbits: Models, Methods and Applications

Montenbruck, O. and Gill, E.

Springer, 2011 ISBN-13 978-3540672807

Subjective observations:

- wide range of topics covered
- mathematical derivations often challenging
- written as an expert text, not an introductory text
- includes references to research papers

eBook available at:

https://ebookcentral.proquest.com/lib/
soton-ebooks/detail.action?docID=3111521

Orbital Mechanics for Engineering Students

Curtis, H.

Butterworth-Heinemann, 2013. ISBN-13 978-0123747785

Orbital Mechanics

Chobotov, V.

AIAA Education Series, 2002 ISBN-13 978-1563475375

Fundamentals of Astrodynamics and Applications

Vallado, D. A.

Springer, 2007 ISBN-13 978-0387718316

An Introduction to the Mathematics and Methods of Astrodynamics

Battin, R. H.

AIAA Education Series, 1999 ISBN-13 978-1563473425

Satellite Orbits: Models, Methods and Applications

Montenbruck, O. and Gill, E.

Springer, 2011 ISBN-13 978-3540672807

Subjective observations:

- good and quite readable, complete textbook
- understandable mathematical derivations
- focus on numerical implementation of algorithms (including code in various languages)
- also useful as a reference

Author worked on SGP4, the US airforce standard orbit propagator for NORAD TLEs.

Orbital Mechanics for Engineering Students

Curtis, H.

Butterworth-Heinemann, 2013. ISBN-13 978-0123747785

Orbital Mechanics

Chobotov, V.

AIAA Education Series, 2002 ISBN-13 978-1563475375

Fundamentals of Astrodynamics and Applications

Vallado, D. A.

Springer, 2007 ISBN-13 978-0387718316

An Introduction to the Mathematics and Methods of Astrodynamics

Battin, R. H.

AIAA Education Series, 1999 ISBN-13 978-1563473425

Satellite Orbits: Models, Methods and Applications

Montenbruck, O. and Gill, E.

Springer, 2011 ISBN-13 978-3540672807

Subjective observations:

- most complete reference on the subject
- sometimes challenging mathematical derivations
- written by a mathematician!
- includes many exercises
- extremely useful as a reference

Author wrote the Apollo mission guidance computer code.

eBook available at:

https://ebookcentral.proquest.com/lib/
soton-ebooks/detail.action?docID=3111476

Check out his MIT lecture
"A Funny Thing Happened on the
Way to the Moon" for some history
of the early NASA program on YT:
http://y2u.be/ieiEoTo8-XY

Orbital Mechanics for Engineering Students

Curtis, H.

Butterworth-Heinemann, 2013. ISBN-13 978-0123747785

Orbital Mechanics

Chobotov, V.

AIAA Education Series, 2002 ISBN-13 978-1563475375

Fundamentals of Astrodynamics and Applications

Vallado, D. A.

Springer, 2007 ISBN-13 978-0387718316

An Introduction to the Mathematics and Methods of Astrodynamics

Battin, R. H.

AIAA Education Series, 1999 ISBN-13 978-1563473425

Satellite Orbits: Models, Methods and Applications

Montenbruck, O. and Gill, E.

Springer, 2011 ISBN-13 978-3540672807

Subjective observations:

- focused specifically on satellites
- quite readable, few long derivations
- includes numerical and practical engineering considerations
- good textbook and reference on its limited subset of the subject

Mathematical Concepts

Learning outcomes

- Recall basic concepts of vector algebra
 - Vector identities
 - Coordinate representation

Relate Kinematics and Dynamics in different frames

- Accelerating reference frames
- Equations of motion in accelerating reference frames

- Apply trigonometry to problems on the sphere
 - Trigonometric identities on the sphere

Inque per many lation al culato vector many lation wedel

Vector Algebra & Mechanics

see Chapter 4 Video Lecture 1

Spherical Trigonometry

see also Chapter 4 Video Lecture 2

- Euclidean geometry is in flat space
- In curved space Euclidean properties generally do not hold
- Sphere is a simple curved space relevant in orbital mechanics and astronomy

- Line segment: shortest path between two points
 - Is it unique?
 - How often can different lines intersect?
 - How often do parallel lines intersect
 - How many lines are needed for a polygon?

Geometry in curved space

AER ASTRO

here ne define

as great

- Euclidean geometry is in flat space
- In curved space Euclidean properties generally do not hold
- Sphere is a simple curved space relevant in orbital mechanics and astronomy

- Line segment: shortest path between two points
 - Is it unique?
 - How often can different lines intersect?
 - How often do parallel lines intersect
 - How many lines are needed for a polygon?

Spherical Geometry

- Great circle: circle on a plane including the center point of the sphere
- Line: segment of a great circle
- Polygon: closed loop of line segments on sphere surface

2023/2024

Spherical Triangles

Notation:

- Vertices and angles (in rad) at vertices denoted by capitals: A, B, C
- Angles are between tangent vectors to great circles, or equivalently between planes containing the great circles
- Sides and the angles (in rad) at sphere center denoted by lower case a, b, c
- Assuming a unit sphere (!) a, b, c are also lengths of sides (chords)

Spherical trigonometry

Three distinct great circles form a triangle

Given angle A and side lengths b, c what is the missing length a?

Planar case: law of cosines:

$$c^2 = a^2 + b^2 - 2ab\cos(\gamma)$$

But: planar trigonometry not true on sphere!

Question

How many spherical triangles are there in this picture?

Spherical Trigonometry

Cosine Rules

$$\cos a = \cos b \cos c + \sin b \sin c \cos A$$

 $\cos b = \cos c \cos a + \sin c \sin a \cos B$
 $\cos c = \cos a \cos b + \sin a \sin b \cos C$

Complementary Cosine Rules

$$\cos A = -\cos B \cos C + \sin B \sin C \cos a,$$

 $\cos B = -\cos C \cos A + \sin C \sin A \cos b,$
 $\cos C = -\cos A \cos B + \sin A \sin B \cos c.$

Sine Rules

$$\frac{\sin A}{\sin a} = \frac{\sin B}{\sin b} = \frac{\sin C}{\sin c}$$

Wikipedia $\sin c$ CAREFUL WITH QUADRANT DISAMBIGUATION!

Distances on a sphere

One application: distances on a sphere (e.g. Earth):

- Points located by latitude and longitude
- Prime meridian = 0 longitude
- Equator = 0 latitude

Question: given two points on Earth, what's the shortest distance between them?

$$\Phi_1, \lambda_1$$

$$\Phi_2, \lambda_2$$

$$d = ???$$

One application: distances on a sphere (e.g. Earth):

Points located by latitude and longitude

Prime meridian = 0 longitude

Equator = 0 latitude

Question: given two points ~ the shortest distance h

$$d = ???$$

Key words & Further Reading

- Cross products, vector identities, triple product
- Dynamics, Newton's law, inertial frame, accelerating frame, rotating frame, fictitious forces
- Ordinary Differential Equations, initial value problem, initial conditions
- trigonometry, law of sines, law of cosines, spherical trigonometry, distance on a sphere, latitude & longitude

Further reading

Curtis, Chapter 1

Also:

- Chobotov, Chapter 1
- Batin, Chapter 2

Orbits from First Principles

Learning outcomes

- State solution of bound orbital motion of light satellite around a heavy primary
- Derive the correct solution for the unperturbed two body problem in inertial and non-inertial reference frames
- Quantify the accuracy of restricted 2BP
- Discuss the notion that the Earth orbits around the Sun

Recap: Bound Orbits

Previous lectures (Astronautics, Physics)

Equation of motion:

$$\ddot{\vec{x}} = -\frac{GM}{|\vec{x}|^3} \vec{x} = -\frac{\mu}{|\vec{x}|^3} \vec{x} \qquad \text{central force problem}$$
 Shape of solution:

Shape of solution:

$$r(\theta) = \frac{p}{1 + e\cos(\theta)}$$

Z=vector to centre of way

conic section

Geometry of bounded 2BP motion

Which one is 2BP motion?

Radius of objects proportional to mass

Reference frames

• All of these were 2BP motion!

Motion can be viewed from different reference frames

• Bonus question: which ones were inertial frames?

The only non-inertial frame!

Reference frames

Reference frames

Back to Basics: First Principles

Back to Basics: First Principles

Advanced Astronautics (SESA 3039) © Dr. Alexander Wittig 2023/2024 Slide 32

Full solution to 2BP

After some math: Motion splits in two

Center of mass: moves uniformly

of himmined"

Relative distance: moves on conic section

$$\vec{x}_{cm} = \frac{m_1 \vec{x}_1 + m_2 \vec{x}_2}{m_1 + m_2}$$

$$\ddot{\vec{x}}_{cm} = \vec{0}$$

$$\vec{d} = \vec{x}_2 - \vec{x}_1$$

$$\ddot{\vec{d}} = -\frac{\mu}{|\vec{d}|^3} \vec{d}$$

Observations:

- Both bodies on ellipses around barycenter
- Heavy mass moves closer to barycenter than light mass

If
$$m_1 \gg m_2$$
:
$$\mu \approx G m_1$$

$$\vec{x}_{cm} \approx \vec{x}_1$$

Restricted Two-Body Problem

Dey: satellite and Earth

$$\vec{x}_1 = \vec{x}_{cm} - \frac{m_2}{m_1 + m_2} \vec{d}$$

$$\vec{x}_2 = \vec{x}_{cm} + \frac{m_1}{m_1 + m_2} \vec{d}$$

$$\mu = G(m_1 + m_2)$$

mass ratio: 1/2

mass ratio: 1/20

Md99 MH10 1-200

mass ratio: 1/200

Full 2BP separates

Center of mass (barycenter) moves along line at constant velocity

Relative motion: moves on conic section

This holds for 2,3, 4,5...

Barycentric frame is inertial

- Both bodies orbit barycenter
- Large mass ratio: heavy body ≈ barycenter (restricted 2BP)

Advanced Astronautics (SESA3039)

