Mechanizing Abstract Interpretation

Thesis Defense

David Darais
University of Maryland

Software Reliability

The Usual Story

Program

Testing

Analysis

Compiler

Operating System

The Usual Story

Testing

Analysis

Compiler

Operating System

The Reality

Program

Testing

Analysis

Compiler

Operating System

The Reality

Program

Testing

Analysis

Operating System

Security Exploit In Linux Kernel

Time \rightarrow (2009)

Time \rightarrow (2009)

Kernel Patch to Fix Exploit

Security Exploit In Linux Kernel

Time \rightarrow (2009)

Kernel Patch to Fix Exploit

Security Exploit In Linux Kernel

Time \rightarrow (2009)

Kernel Patch to Fix Exploit

Story 1: Linux Kernel Exploit

```
static unsigned int tun_chr_poll(struct file *file,
{
    struct tun_file *tfile = file->private_data;
    struct tun_struct *tun = __tun_get(tfile);
    struct sock *sk = tun->sk;
    unsigned int mask = 0;

if (!tun)
    return POLLERR;
```

-Linux 2.6.30 kernel exploit [2009]

Story 1: Linux Kernel Exploit

```
static unsigned int tun_chr_poll(struct file *file,

{

struct tun_file *tfile = file->private_data;

struct tun_struct *tun = __tun_get(tfile);

struct sock *sk = tun->sk;

unsigned int mask = 0;

The Buggy

Optimization
```

-Linux 2.6.30 kernel exploit [2009]

GCC Compiler

Program

Testing

Compiler

Operating System

GCC Compiler

Linux OS Kernel

Linux OS Kernel

Self-driving Cars
Airplanes
SpaceX
Secure Web Infr.
Pacemakers
Medical Records DB

Hardware

Self-driving Cars

Airplanes

SpaceX

Trust in Software Runs Deep

Critical Software Requires Trustworthy Tools

Trustworthy Tools are Critical Software

My Research: Tools with 0 Bugs

The Tools I Build: **Program Analyzers**(lightweight)

Difficult to Implement Correctly

The Tool I Use: Mechanized Verification (heavyweight)

Verify 0 Bugs in Program Analyzers

Usable **Trustworthy Program** Analyzers

Usable Trustworthy Program Analyzers Mechanized Verification

Usable Trustworthy Program Analyzers Mechanized **Verification** Mechanically Verified **Program Analyzers**

Problem

Building one verified analyzer is extremely difficult.

(decades for first compiler)

Assumption

Calculational and compositional methods can make analyzers easier to construct.

Research Question

How can we construct mechanically verified program analyzers using calculational and compositional methods?

Thesis

Constructing mechanically verified program analyzers via calculation and composition is *feasible* using constructive Galois connections and modular abstract interpreters.

State of the art in program analysis and mechanized verification:

Abstract interpretation: 0 bugs in analyzer design+specification

Mechanized verification: 0 bugs in analyzer implementation

~20 year old problem: how to combine these two techniques

State of the art in program analysis and mechanized verification:

Abstract interpretation: 0 bugs in analyzer design+specification

Mechanized verification: 0 bugs in analyzer implementation

~20 year old problem: how to combine these two techniques

Result: achieved mechanically verified calculational Al

Idea: new AI framework which supports mechanization

[Darais and Van Horn, ICFP '16]

State of the art in *reusable* program analyzers:

Some features easy to reuse: context and object sens.

Some features had to reuse: path and flow sens.

Challenge: achieve reuse in both implementation and proof

State of the art in *reusable* program analyzers:

Some features easy to reuse: context and object sens.

Some features had to reuse: path and flow sens.

Challenge: achieve reuse in both implementation and proof

Result: compositional PA components, implementation + proofs

Idea: combine monad transformers and Galois connections

[Darais, Might and Van Horn, OOPSLA '15]

State of the art in *reusable* program analysis:

Control flow abstraction: often too imprecise

Pushdown precision: precise abstraction for control

No technique which supports compositional interpreters

State of the art in *reusable* program analysis:

Control flow abstraction: often too imprecise

Pushdown precision: precise abstraction for control

No technique which supports compositional interpreters

Result: pushdown precision for definitional interpreters

Idea: inherit precision from defining metalanguage

[Darais, Labich, Nguyễn and Van Horn, ICFP '17]

Constructive
Galois
Connections

Galois Transformers Abstracting Definitional Interpreters

Constructive Galois Connections

```
int a[3];

if (b) {x = 2} else {x = 4};

a[4 - x] = 1;
```

```
int a[3];

if (b) {x = 2} else {x = 4};

a[4 - x] = 1;
```

```
x \in \{2,4\}
```

```
int a[3];

if (b) {x = 2} else {x = 4};

a[4 - x] = 1;
```

```
x \in \{2,4\} ..... x \in [2,4]
```

```
int a[3];

if (b) {x = 2} else {x = 4};

a[4 - x] = 1;
```

```
x \in \{2,4\} ...... x \in [2,4] x \in \{2,3,4\}
```

```
int a[3];
if (b) {x = 2} else {x = 4};
a[4 - x] = 1;
```

```
\wp(\mathbb{Z}) \mathbb{Z} \times \mathbb{Z}
```

```
x \in \{2,4\} ...... x \in [2,4] x \in \{2,3,4\}
```

 $\mathbb{Z} \times \mathbb{Z}$ $\wp(\mathbb{Z})$ [2,4] {2,4} {2,3,4}

 $\mathbb{Z} \times \mathbb{Z}$

[2,4] + [5,5]

 $\mathbb{Z} \times \mathbb{Z}$

{2,3,4} **{5**} {7,8,9}

[2,4] ^ [5,5]

 $\mathbb{Z} \times \mathbb{Z}$

{2,3,4} **{5**} {7,8,9}

[2,4] [5,5] [7,9]

```
[2,4] + [5,5]
=
\alpha(\gamma([2,4]) + \gamma([5,5]))
```

$$\alpha(\gamma([2,4]) + \gamma([5,5]))$$

$$[2,4] + [5,5]$$

$$\alpha(\gamma([2,4]) + \gamma([5,5]))$$
=
 $\alpha(\{i + j | i \in \gamma([2,4]) \\ \land j \in \gamma([5,5])\})$

$$[2,4] + [5,5]$$

$$\alpha(\gamma([2,4]) + \gamma([5,5]))$$
=
 $\alpha(\{i + j \mid i \in \gamma([2,4]) \\ \land j \in \gamma([5,5]) \})$
=
 $\alpha(\{7,8,9\})$

$$[2,4] + [5,5]$$

$$[2,4] + [5,5]$$

```
\alpha(\gamma([2,4]) + \gamma([5,5]))
\alpha(\{i+j\mid i\in\gamma([2,4])
                 \wedge j \in \gamma([5,5]) })
              \alpha(\{7,8,9\})
  \alpha(\{7\}) \sqcup \alpha(\{8\}) \sqcup \alpha(\{9\})
                   [7,9]
            [2,4] + [5,5]
```

```
\alpha(\gamma([2,4]) + \gamma([5,5]))
\alpha(\{i+j\mid i\in\gamma([2,4])
                 \wedge j \in \gamma([5,5]) })
              \alpha(\{7,8,9\})
  \alpha(\{7\}) \sqcup \alpha(\{8\}) \sqcup \alpha(\{9\})
                   [7,9]
            [2,4] + [5,5]
```

```
\alpha(\gamma([w,x]) + \gamma([y,z]))
\alpha(\{i+j\mid i\in \gamma([w,x])\}
                 \land j \in \gamma([y,z]) \}
           \alpha(\{W+Y,...,X+Z\})
   \alpha(\{w+y\}) \sqcup \cdots \sqcup \alpha(\{x+z\})
               [W+Y,X+Z]
            [W,X] + [V,Z]
```

```
\alpha(\gamma([w,x]) + \gamma([y,z]))
           \alpha(\{i+j\mid i\in \gamma([w,x])\}
                           \land j \in \forall([y,z]) \}
                     \alpha(\{W+Y,...,X+Z\})
              \alpha(\{w+y\}) \sqcup \cdots \sqcup \alpha(\{x+z\})
Algorithm
                         [W+Y,X+Z]
                      [w,x] + [y,z]
```

Mechanized Verification (MV)


```
Faexp^{\triangleright}[A](\lambda Y \cdot \bot) \stackrel{\triangle}{=} \bot if \gamma(\bot) = \emptyset (34)

Faexp^{\triangleright}[n]r \stackrel{\triangle}{=} n^{\triangleright}

Faexp^{\triangleright}[X]r \stackrel{\triangle}{=} r(X)

Faexp^{\triangleright}[Y]r \stackrel{\triangle}{=} Y^{\triangleright}

Faexp^{\triangleright}[u A']r \stackrel{\triangle}{=} u^{\triangleright}(Faexp^{\triangleright}[A']r)

Faexp^{\triangleright}[A_1 \triangleright A_2]r \stackrel{\triangle}{=} b^{\triangleright}(Faexp^{\triangleright}[A_1]r, Faexp^{\triangleright}[A_2]r)

parameterized by the following forward abstract operations

n^{\triangleright} = \alpha([\underline{n}]) \qquad u^{\triangleright}(p) \supseteq \alpha(\{\underline{u} v \mid v \in \gamma(p)\}) (35)

p^{\triangleright} \supseteq \alpha([\underline{n}]) \qquad b^{\triangleright}(p_1, p_2) \supseteq \alpha(\{v_1 \trianglerighteq v_2 \mid v_1 \in \gamma(p_1) \land v_2 \in \gamma(p_2)\}) (36)
```

Figure 6: Forward abstract interpretation of arithmetic expressions

-The Calculational Design of a Generic Abstract Interpreter [Cousot, 1998]

-CDGAI Errata [Cousot, 2000]

"Beware of bugs in the above code; I have only proved it correct, not tried it."

-Donald Knuth

Mechanized Verification

Certified Implementation

Verified Model

```
Spec
                   \alpha(\gamma([w,x]) + \gamma([y,z]))
          \alpha(\{i+j\mid i\in\gamma([w,x])\}
                         \land j \in \gamma([y,z]) \}
                         \alpha(\{w+y,...,x+z\})
                  \alpha(\{w+y\}) \sqcup \cdots \sqcup \alpha(\{x+z\})
Algorithm
                           [w+y,x+z]
                          [w,x] + [y,z]
```

```
Spec
                   \alpha(\gamma([w,x]) + \gamma([y,z]))
          \alpha(\{i+j\mid i\in\gamma([w,x])\}
                          \land j \in \gamma([y,z]) \}
                         \alpha(\{w+y,...,x+z\})
                  \alpha(\{w+y\}) \sqcup \cdots \sqcup \alpha(\{x+z\})
Algorithm
                           [w+y,x+z]
                          [W,X] + [y,Z]
```

Step 1:

Check These Calculations
Using a Proof Assistant

Step 1:

Check These Calculations Using a Proof Assistant

Step 2:

Extract a Certified Implementation

Step 1:

Check These Calculations Using a Proof Assistant

Step 2:

Extract a Certified Implementation

(to a human)

"This looks like an algorithm" "I know how to execute this" (to a human)

(to a machine)

"This looks like an algorithm" "I know how to execute this" (to a human)

(to a machine)

"This looks like an algorithm" "I know how to execute this" (to a human)

(to a machine)

$$\wp(\mathbb{Z})$$
 \cong \mathbb{Z}

Constructive Galois Connections

Constructive Galois Connections

$$\mathbb{Z}$$
 \mathbb{Z} \mathbb{Z}

$$\eta(i) = [i,i]$$

algorithmic content of abstraction

Constructive Galois Connections

$$\mathbb{Z}$$
 \mathbb{Z} \mathbb{Z}

defin

$$\eta(i) = [i,i]$$

Law 1

$$\alpha = \langle \eta \rangle$$

embedding algorithms

Constructive Galois Connections

detn

$$\eta(i) = [i,i]$$

Law 1

$$\alpha = \langle \eta \rangle$$

$$(\eta)(\{x\}) = (\eta(x))$$

singleton powersets compute

```
\alpha(\gamma([w,x]) + \gamma([y,z]))
\alpha(\{i+j\mid i\in \gamma([w,x])\}
                 \land j \in \gamma([y,z]) \}
           \alpha(\{W+Y,...,X+Z\})
   \alpha(\{w+y\}) \sqcup \cdots \sqcup \alpha(\{x+z\})
               [w+y,x+z]
            [W,X] + [V,Z]
```

$$\alpha(\gamma([w,x]) + \gamma([y,z]))$$

$$\alpha(\gamma([w,x]) + \gamma([y,z]))$$

$$\alpha = \langle n \rangle$$

$$\alpha(\gamma([w,x]) + \gamma([y,z]))$$

$$\{\eta\}(\gamma([w,x]) + \gamma([y,z]))$$

```
\langle \eta \rangle (\gamma([w,x]) + \gamma([y,z]))
\{\eta\}(\{i+j\mid i\in\gamma([w,x])\})
                      \land j \in \gamma([y,z]) \}
            \{\eta\}(\{w+y,...,x+z\})
  \{\eta\}(\{w+y\}) \sqcup \cdots \sqcup \{\eta\}(\{x+z\})
```

$$(\eta)(\gamma([w,x]) \hat{+} \gamma([y,z]))$$
 $=$
 $(\eta)(\{i+j|i\in\gamma([w,x]), i\in\gamma([y,z])\})$
 $=$
 $(\eta)(\{w+y,...,x+z\})$
 $(\eta)(\{x\}) = \{\eta(x)\}$

```
\langle \eta \rangle (\gamma([w,x]) + \gamma([y,z]))
\{\eta\}(\{i+j\mid i\in\gamma([w,x])\})
                      \land j \in \gamma([y,z]) \}
            \{\eta\}(\{w+y,...,x+z\})
  \{\eta\}(\{w+y\}) \sqcup \cdots \sqcup \{\eta\}(\{x+z\})
```

```
\langle \eta \rangle (\gamma([w,x]) + \gamma([y,z]))
\{\eta\}(\{i+j\mid i\in\gamma([w,x])\})
                      \land j \in \gamma([y,z]) \}
            \{\eta\}(\{w+y,...,x+z\})
     \{\eta(w+y)\} \sqcup \cdots \sqcup \{\eta(x+z)\}
```

```
\{\eta\}(\gamma([w,x]) + \gamma([y,z]))
\{\eta\}(\{i+j\mid i\in\gamma([w,x])\})
                    \land j \in \gamma([y,z]) \}
           \{\eta\}(\{w+y,...,x+z\})
     \{\eta(w+y)\} \sqcup \cdots \sqcup \{\eta(x+z)\}
               \langle [W+y, X+Z] \rangle
              [W,X] + [V,Z]
```

The Plan

```
Spec
                   \langle \eta \rangle (\gamma([w,x]) + \gamma([y,z]))
            \langle \eta \rangle (\{ i + j \mid i \in \gamma([w,x])\})
                                \land j \in \gamma([y,z]) \}
                          (\eta)(\{w+y,...,x+z\})
                    \{\eta(w+y)\} \sqcup \cdots \sqcup \{\eta(x+z)\}
Algorithm
                              ([w+y,x+z])
                             [w,x] + [y,z]
```

Step 1: Check These **Calculations** Using a Proof Assistant

Step 2: **Extract** a Certified Implementation

```
\begin{array}{c} \alpha(\text{eval}[n]) (\rho \sharp) \\ \text{$\ell$ defn of $\alpha$} \\ = \alpha^{\text{$I$}} (\text{eval}[n] (\gamma^{\text{$R$}} (\rho \sharp))) \\ \text{$\ell$ defn of eval}[n] \\ \text{$\ell$ defn of eval}[n] \\ \text{$\ell$ defn of $-\vdash_{-}\mapsto_{-}$} \\ \text{$\ell$ a^{\text{$I$}}} (\{i\mid \rho \vdash_{n}\mapsto_{-}\}) \\ \text{$\ell$ defn of eval} \#[n] \\ \text{$\ell$ defn of eval} \#[n] \\ \text{$\ell$ eval} \#[n] (\rho \sharp) \\ \end{array}
```

```
calc.agda
• eval[ Num n ] • \rho \sharp ]
\blacktriangleright ¶ \eta * · (eval[ Num n ] *
     \cdot (\mu^{R} \cdot \rho^{\sharp}))
• [focus-right [ \cdot ] of \eta^{I} * ]
     \triangleright  ¶ \eta^{I} * \cdot (return \cdot n) \mathbb{I}
▶ { right-unit[*] }
► [pure \cdot (\eta^{I} \cdot n)]
▶ \llbracket pure \cdot eval \# \llbracket Num n \rrbracket \cdot \rho \# \rrbracket
```

Classical GCs

```
A: poset \alpha : A \nearrow B
```

B : poset γ : B → A

Classical GCs

```
A: poset \alpha : A \nearrow B
B: poset \gamma : B \nearrow A
```

```
A: poset \eta: A \nearrow \wp(B)
B: poset \mu: B \nearrow \wp(A)
```

```
A: poset \eta: A \nearrow B

B: poset \mu: B \nearrow \wp(A)
```

```
A: poset \eta: A \nearrow B

B: poset \mu: B \nearrow \wp(A)
```

```
A: poset \eta: A \nearrow B
B: poset \mu: B \nearrow \wp(A)
```

```
ret \sqsubseteq \mu \otimes \{\eta\} \land \{\eta\} \otimes \mu \sqsubseteq \text{ret}

ret(n) \subseteq \mu^*(r) \Leftrightarrow \{\eta\}^*(n) \subseteq \text{ret}(r)
```

Classical GCs

adjunction in category of posets (adjoints are mono. functions)

Constructive GCs

biadjunction in category of posets enriched over \wp -Kleisli (adjoints are mono. \wp -monadic functions)

Constructive Galois Connections

- ✓ First theory to support both calculation and extraction
- ✓ Soundness and completeness w.r.t. classical GCs
- √ Two case studies: calculational AI and gradual typing
- Only (constr.) equivalent to subset of classical GCs
- × Same limitations as classical GCs ($\frac{1}{2}\alpha$ for some γ)

Constructive
Galois
Connections

Galois Transformers Abstracting Definitional Interpreters

```
0: int x y;
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

```
0: int x y;
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

Flow-insensitive

```
0: int x y;
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

```
N \in \{-, 0, +\}
x \in \{0, +\}
y \in \{-, 0, +\}

UNSAFE: \{100/N\}
UNSAFE: \{100/x\}
```

Flow-insensitive

```
0: int x y;
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

```
4: x \in \{0, +\}
4.T: N \in \{-, +\}
5.F: x \in \{0, +\}

N, y \in \{-, 0, +\}

UNSAFE: \{100/x\}
```

Flow-sensitive

```
results : loc → (var → ℘({-,0,+}))
```

```
0: int x y;
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

```
4: NE{-,+}, xE{0}
4: NE{0}, xE{+}

NE{-,+}, yE{-,0,+}
NE{0}, yE{0,+}
```

Path-sensitive

Precision Performance

Insight

```
results: var \mapsto \wp(\{-,0,+\})

results: loc \mapsto (var \mapsto \wp(\{-,0,+\}))

results: loc \mapsto \wp(var \mapsto \wp(\{-,0,+\}))
```

```
Single Monadic FI, FS and PS
Analyzer Abstraction Monads
```

 \mathcal{C} : loc × store \rightarrow loc × store

 \mathcal{C} : loc \times store \rightarrow loc \times store

 $A : loc \times store \rightarrow \wp(loc \times store)$

 \mathcal{C} : loc × store \rightarrow loc × store

 $A : loc \times store \rightarrow \wp(loc \times store)$

C: loc × store \rightarrow loc × store

 \mathcal{A} : loc × store# $\rightarrow \wp(loc × store#)$

analyzer = lfp X. X U $\mathcal{A}^*(X)$ U {\langle \lambda \tau \rangle \rangle \lambda \lambda \rangle \rangle \rangle \lambda \rangle \ra

Flow Sensitive

$$\Sigma = loc \rightarrow store #$$

$$\Sigma = \wp(loc) \times store \#$$

 $\mathcal{M} : loc \rightarrow m(loc)$

$$\mathcal{M}: loc \rightarrow m(loc)$$

Path Sensitive

$$m(A) = store# \rightarrow A \mapsto \wp(store#)$$

Flow Sensitive

$$m(A) := store # \rightarrow A \mapsto store #$$

$$m(A) = store# \rightarrow \wp(A) \times store#$$

$$\mathcal{M} : loc \rightarrow m(loc)$$

Path Sensitive

$$m(A) = (S[store #] \circ ND)(ID)(A)$$

Flow Sensitive

$$m(A) = FS[store#](ID)(A)$$

$$m(A) = (ND \circ S[store \#])(ID)(A)$$

Collecting Semantics Path Sensitive Flow Sensitive

+

Monadic Interpreter

One Monadic Interpreter Must Be Monotonic Must Recover Collecting Semantics

Galois Transformers

- ✓ Flow sensitive and path sensitive precision
- ✓ Compositional end-to-end correctness proofs
- ✓ Implemented in Haskell and available on Github
- Not whole story for path-sensitive refinement
- Naive fixpoint strategies

Constructive
Galois
Connections

Galois Tranformers

```
1: function id(x : any) → any
2: return x
3: function main() → void
4: var y ≔ id(1)
5: print("Y")
6: var z ≔ id(2)
7: print("Z")
```

```
1: function id(x : any) → any
2: return x
3: function main()
4: var y ≔ id(1)
5: print("Y")
6: var z ≔ id(2)
7: print("Z")
```

```
1: function id(x : any) → any
2: return x
3: function main()
4: var y ≔ id(1)
5: print("Y")
6: var z ≔ id(2)
7: print("Z")
```

```
1: function id(x : any) → any
2: return x
3: function main()
4: var y ≔ id(1)
5: print("Y")
6: var z ≔ id(2)
7: print("Z")
```

```
1: function id(x : any) → any
2: return x
3: function main()
4: var y = id(1)
5: print("Y")
6: var z = id(2)
7: print("Z")
```

Pushdown Precision

Reps *et al* 1995

Earl Diss 2012

Vardoulakis Diss 2012

Johnson and Van Horn 2014

> Gilray *et al* 2016

Doesn't support HO control

Dyck State Graphs

"Big"CFA

Instrumented AAM

Instrumented AAM

Definitional Interpreters

- Modeled features vs inherited features
- (e.g., Reynolds' inherited CBV and CBN)
- Things often modeled in Abstract Interpreters
 - Control (continuations)
 - Fixpoints

Definitional Interpreters

- Modeled features vs inherited features
- (e.g., Reynolds' inherited CBV and CBN)
- Things often modeled in Abstract Interpreters
 - Control (continuations)
 - Fixpoints

Idea: Inherit from metalanguage $\mathcal{E}[\cdot]$: exp \rightarrow env \times store \rightarrow (val \times env \times store)

```
\mathcal{E}[\cdot]: exp \rightarrow env \times store \rightarrow (val \times env \times store)
```

```
\mathcal{E}[\mathbf{if}(e_1)\{e_2\}\{e_3\}](\rho,\sigma) = \mathbf{match} \ \mathcal{E}[e_1](\rho,\sigma)
| \langle \mathsf{true} , \sigma' \rangle \Rightarrow \mathcal{E}[e_2](\rho,\sigma')
| \langle \mathsf{false},\sigma' \rangle \Rightarrow \mathcal{E}[e_3](\rho,\sigma')
```

```
\mathcal{E}[\cdot]: exp \rightarrow env \times store \rightarrow (val \times env \times store)
```

```
\mathcal{E}[\mathbf{if}(e_1)\{e_2\}\{e_3\}](\rho,\sigma) = \mathbf{match} \ \mathcal{E}[e_1](\rho,\sigma)
| \langle \mathsf{true}, \sigma' \rangle \Rightarrow \mathcal{E}[e_2](\rho,\sigma')
| \langle \mathsf{false}, \sigma' \rangle \Rightarrow \mathcal{E}[e_3](\rho,\sigma')
```

No explicit model for control (continuations). It's inherited from the metalanguage.

$$\mathcal{E}[\cdot]: \exp \rightarrow m(\text{val})$$

Step 1 Monadic Interpreter

```
\mathcal{E}[\cdot]: \exp \rightarrow m(\text{val})
```

```
\mathcal{E}[\mathbf{if}(e_1)\{e_2\}\{e_3\}] \coloneqq \mathbf{do}
v \leftarrow \mathcal{E}[e_1]
\mathbf{match} \ v \mid \mathbf{true} \Rightarrow \mathcal{E}[e_2]
\mid \mathbf{false} \Rightarrow \mathcal{E}[e_3]
```

Step 1 Monadic Interpreter

$$\mathcal{E}[\cdot]$$
 : exp \rightarrow (exp \rightarrow $m(val)$) \rightarrow $m(val)$

Step 2
Unfixed Recursion

```
\mathcal{E}[\cdot] : \exp \rightarrow (\exp \rightarrow m(\text{val})) \rightarrow m(\text{val})
\mathcal{E}[\mathbf{if}(e_1)\{e_2\}\{e_3\}](\mathcal{E}') \coloneqq \mathbf{do}
v \leftarrow \mathcal{E}'[e_1]]
\mathbf{match} \ v \mid \text{true} \Rightarrow \mathcal{E}'[e_2]
\mid \text{false} \Rightarrow \mathcal{E}'[e_3]
```

Step 2
Unfixed Recursion

```
\mathcal{E}[\cdot]] : \exp \rightarrow (\exp \rightarrow m^{\sharp}(val)) \rightarrow m^{\sharp}(val)
```

```
\mathcal{E}[\mathbf{if}(e_1)\{e_2\}\{e_3\}](\mathcal{E}') \coloneqq \mathbf{do}
v \leftarrow \mathcal{E}'[e_1]
\mathbf{match} \ v \mid \mathbf{true} \Rightarrow \mathcal{E}'[e_2]
\mid \mathbf{false} \Rightarrow \mathcal{E}'[e_3]
```

Step 3
Abstract Monad

```
\mathcal{E}[\cdot]] : \exp \rightarrow (\exp \rightarrow m^{\sharp}(\text{val})) \rightarrow m^{\sharp}(\text{val})
```

$$Y(\lambda \mathcal{E}'.\lambda e.\mathcal{E}[e](\mathcal{E}'))$$
 Abstract Evaluator (Doesn't Terminate)

$$\mathcal{E}[\![\cdot]\!] : \exp \rightarrow (\exp \rightarrow m^{\sharp}(\text{val})) \rightarrow m^{\sharp}(\text{val})$$

$$Y(\lambda \mathcal{E}'.\lambda e.\mathcal{E}[e](\mathcal{E}'))$$

Abstract Evaluator (Doesn't Terminate)

$$CY(\lambda \mathcal{E}'.\lambda e.\mathcal{E}[e](\mathcal{E}'))$$

Caching Evaluator (Terminates)

Pushdown Precision

Formalism

$$\rho, \tau \vdash e, \sigma \downarrow V, \sigma$$

Evaluation

$$\rho, \tau \vdash e, \sigma \uparrow \langle e, \rho, \tau, \sigma \rangle$$

Reachability

Formalism

$$\rho, \tau \vdash e, \sigma \downarrow v, \sigma$$

Evaluation

```
\rho, \tau \vdash e, \sigma \uparrow \langle e, \rho, \tau, \sigma \rangle
```

Reachability

$$[e](\rho,\tau,\sigma) = \{\langle v,\sigma'' \rangle \mid \rho,\tau \vdash e,\sigma \uparrow \langle e',\rho',\tau',\sigma' \rangle \\ \wedge \rho',\tau' \vdash e',\sigma' \downarrow \langle v,\sigma'' \rangle \}$$

Definitional Abstract Interpreters

- ✓ Compositional program analyzers
- ✓ Formalized w.r.t. big-step reachability semantics
- ✓ Pushdown precision inherited from metalanguage
- ✓ Implemented in Racket and available on Github
- Naive caching algorithm (could be improved)
- Monadic, open-recursive interpreters

Usable Trustworthy Program Analysis Mechanized Verification **MVPA**

Thesis

Constructing mechanically verified program analyzers via calculation and composition is *feasible* using constructive Galois connections and modular abstract interpreters.

Constructive Galois Connections

Galois Tranformers

Abstracting Definitional Interpreters

Mechanization + Calculation Compositional Path-sens. + Flow-sens.

Compositional Interpreters
+
Pushdown
Precision