5 Lebesguesche Räume und Fourier-Reihen

Sei stets $\emptyset \neq X \in \mathcal{B}_d$ versehen mit $\mathcal{B}(X)$ und λ .

Ana III, 30.01.2009

5.1 Die L^p -Räume

Für $p \in [1, \infty)$ setze

$$\mathcal{L}^{p}(X) := \left\{ f : X \to \mathbb{R} \text{ messbar} : \int_{X} |f|^{p} dx < \infty \right\},$$

$$\mathcal{L}^{\infty}(X) := \left\{ f : X \to \mathbb{R} \text{ messbar}, (f.a.) \text{ beschränkt} \right\},$$

sowie für messbare $f: X \to \mathbb{R}$

$$||f||_p := \left(\int_X |f(x)|^p dx\right)^{\frac{1}{p}}, \quad 1 \le p < \infty,$$

$$||f||_{\infty} := \operatorname{ess sup}_{x \in X} |f(x)| := \inf\{c > 0 : \exists \text{ NM } N_c \text{ mit } |f(x)| \le c \ \forall x \in X \backslash N_c\}.$$

Bemerkung. Für stetige $f: X \to \mathbb{R}$ gilt $\sup_{x \in X} |f(x)| = \operatorname{ess\ sup\ } |f(x)|$. Denn sei N_c wie in der obigen Definition. Dann ist $N_c^0 = \emptyset$ (anderenfalls existiert ein $B \subset N_c$ mit $\lambda(B) > 0$, was ein Widerspruch ist). Aus $|f(x)| \le c$ für alle $x \notin N_c$ folgt mit der Stetigkeit von f, dass $|f(x)| \le c \ \forall x \in X$. Durch inf-Bildung erhält man ess $\sup_{x \in X} |f(x)| \le \sup_{x \in X} |f(x)|$. Die andere Abschätzung ist klar mit $N_c = \emptyset$.

Wenn $||f_n - f||_p \to 0 \ (n \to \infty, \ 1 \le p < \infty)$, dann sagt man " f_n gegen f im p-ten Mittel".

TODO: Bild

Interpretation der 1-Norm in Bsp 4.21. Man kann $u(t,x) \ge 0$ als Konzentration eines Stoffes zur Zeit $t \ge 0$ am Ort $x \in X$ interpretieren. Dann folgt, dass

$$\int_{X} |u(t,x)| dx = \int_{X} u(t,x) dx$$

die Gesamtmenge des Stoffes zur Zeit t beschreibt.

Beachte: $\mathcal{L}^1(X)$ ist nach Kapitel 2 ein Vektorraum. Ebenso ist $\mathcal{L}^{\infty}(X)$ ein Vektorraum, denn wenn $|f_j(x)| \leq c_j \ (\forall x \notin N_j)$, wobei N_j Nullmengen sind, und $\alpha_j \in \mathbb{R} \ (j = 1, 2)$, dann gilt

$$|\alpha_1 f_1(x) + \alpha_2 f_2(x)| \le |\alpha_1| c_1 + |\alpha_2| c_2 =: c \quad \forall x \notin N := N_1 \cup N_2 \text{ (NM)}.$$
 (*)

Dann folgt $\alpha_1 f_1 + \alpha_2 f_2 \in \mathcal{L}^{\infty}(X)$.

 $\underline{\operatorname{Zu}\,\mathcal{L}^p}$: Wenn $f\in\mathcal{L}^p(X),\ \alpha\in\mathbb{R}$, dann gilt $\alpha f\in\mathcal{L}^p(X),\ \|\alpha f\|_p=|\alpha|\cdot\|f\|_p$. (Folgt aus der Definition).

Setze wie in Ana2 $p' := \frac{p}{p-1}$, wenn $1 , <math>1' := \infty$, $\infty' = 1$. Dann gilt $\frac{1}{p} + \frac{1}{p'} = 1$ $\forall p[1,\infty]$.

$$p' = p \Leftrightarrow p = 2, \quad p \in [1, 2) \Leftrightarrow p' \in (2, \infty], \ p'' = p.$$

Satz 5.1. Sei $p \in [1, \infty]$. Dann gelten

a) <u>Höder-Ungleichung</u>: Für $f \in \mathcal{L}^p(X)$, $g \in \mathcal{L}^{p'}(X)$ gelten $fg \in \mathcal{L}^1(X)$ und

$$||fg||_1 = \int |fg|dx \le ||f||_p \cdot ||g||_{p'} \stackrel{p \in (1,\infty)}{=} \left(\int |f|^p dx \right)^{\frac{1}{p}} \cdot \left(\int |g|^{p'} dx \right)^{\frac{1}{p'}}.$$

 $(F\ddot{u}r\ p=p'=2\ ist\ dies\ die\ Cauchy-Schwarz-Ungleichung.)$

b) Minkowski-Ungleichung: Für $f, g \in \mathcal{L}^p(X)$ gilt $f + g \in \mathcal{L}^p(X)$ und

$$||f + g||_p \le ||f||_p + ||g||_p.$$

Ferner ist $\mathcal{L}^p(X)$ ein Vektorraum.

Beweis. fg, $|f + g|^p$ sind messbar $(p < \infty)$.

a) $\underline{p=1}$: Dann folgt $g \in \mathcal{L}^{\infty}(X) \Rightarrow \exists$ Nullmenge N, c > 0 mit $|g(x)| \leq c \ (\forall x \notin N)$. Setze $\tilde{g} := \mathbf{1}_{X \setminus N} \cdot g$. Dann gilt

$$\int |fg|dx \stackrel{\text{Lem}}{=} \stackrel{3.5}{=} \int |f| \cdot \underbrace{|\tilde{g}|}_{\leq c} dx \leq c \cdot ||f||_{1}.$$

Infimumbildung über alle c liefert die Behauptung. Genauso für $p = \infty$.

 $1 : Wenn <math>||f||_p = 0$. oder $||g||_{p'} = 0$, dann $|f|^p = 0$ (f.ü.) oder $|g|^{p'} = 0$ (f.ü.) (Lem 2.18). Dann folgt f = 0 (f.ü.) oder g = 0 (f.ü.). Also fg = 0 (f.ü.), womit wir fertig sind.

Anderenfalls liefert die Young'sche Ungleichung (Ana
2 Beweis von Satz 1.19) für festes $x \in X$:

$$\frac{|f(x)|}{\|f\|_p} \cdot \frac{|g(x)|}{\|g(x)\|_{p'}} \le \frac{1}{p} \cdot \frac{|f(x)|^p}{\|f\|_p^p} + \frac{1}{p'} \cdot \frac{|g(x)|^{p'}}{\|g(x)\|_{p'}^{p'}}.$$

Integralbildung auf beiden Seiten liefert

$$\int |f| \cdot |g| dx = \frac{1}{p} \cdot \frac{1}{\|f\|_p^p} \cdot \underbrace{\int |f(x)|^p dx}_{=\|f\|_p^p} + \frac{1}{p'} \cdot \frac{1}{\|g\|_{p'}^{p'}} \cdot \|g\|_{p'}^{p'} = \frac{1}{p} + \frac{1}{p'} = 1.$$

Daraus folgt $fg \in \mathcal{L}^{1}(X), \|fg\|_{1} \leq \|f\|_{p} \cdot \|g\|_{p'}$.

b) $\underline{p=1}$: Kapitel 2. $p=\infty$: Die Behauptung folgt mit Infimumbildung über c_1, c_2 in (*) mit $\alpha_1=\alpha_2=1$.

Sei $p \in (1, \infty)$. Dann gilt

$$\int |f + g|^p dx = \|f + g\|_p^p = \int |f + g| \cdot |f + g|^{p-1} dx$$

$$\leq \int |f| \cdot |f + g|^{p-1} dx + \int |g| \cdot |f + g|^{p-1} dx$$

$$\stackrel{\text{H\"older}}{\leq} \|f\|_p \cdot \left(\int |f + g|^{(p-1)p'} dx \right)^{\frac{1}{p'}}$$

$$+ \|g\|_p \cdot \left(\int |f + g|^p dx \right)^{\frac{p-1}{p}}$$

$$= (\|f\|_p + \|g\|_p) \cdot \|f + g\|_p^{p-1}$$

Damit folgt $||f + g||_p \le ||f||_p + ||g||_p$. Dass $f + g \in \mathcal{L}^p(X)$ gilt, folgt aus $|f + g|^p \le (|f| + |g|)^p \stackrel{\text{H\"older}}{\le} 2^p \cdot (|f|^p + |g|^p)$, was integrierbar ist.

Beispiel 5.2. Sei $X = [1, \infty)$ und $f(x) = x^{-\alpha}$, $g(x) = x^{-\beta}$ für Konstanten $\alpha, \beta > 0$. Dann $f \in \mathcal{L}^p(X) \Leftrightarrow \int_1^\infty x^{-\alpha p} dx < \infty \Leftrightarrow \alpha p > 1 \Leftrightarrow \alpha > \frac{1}{p}, g \in \mathcal{L}^{p'}(X) \Leftrightarrow \beta > \frac{1}{p'}, fg \in \mathcal{L}^1(X) \Leftrightarrow \alpha + \beta > 1$, wobei $p \in (1, \infty)$.

Korollar 5.3. Sei $\lambda(X) < \infty$. Dann $\mathcal{L}^q(X) \subset \mathcal{L}^p(X)$ für alle $1 \leq p \leq q \leq \infty$ und $||f||_p \leq \lambda(X)^{\frac{1}{p} - \frac{1}{q}} \cdot ||f||_q \ (\forall f \in \mathcal{L}^q(X))$. Mit p = 1 folgt

$$\left(\frac{1}{\lambda(X)} \cdot \int_X |f| dx\right)^q \le \frac{1}{\lambda(X)} \cdot \int_X |f|^q dx.$$

Also folgt aus $f_n \to f$ bezüglich der q-Norm, dass auch $f_n \to f$ bezüglich der p-Norm. (Ersetze f durch $f_n - f$)

Beweis. Für q=p und $p=\infty$ ist die Aussage klar. Sei $p< q<\infty,\, f\in\mathcal{L}^q(X)$. Dann gilt für $r:=\frac{p}{q}\in(1,\infty)\Rightarrow r'=\frac{q}{q-p},\, \frac{1}{r'}=1-\frac{p}{q}$ (*):

$$\int_X |f|^p dx = \int_X 1 \cdot |f|^p \overset{\text{Hoelder}}{\underset{\text{mit } r}{\leq}} \left(\int_X \left(1^{r'} \right) dx \right)^{\frac{1}{r'}} \cdot \left(\int_X |f|^{pr} \right)^{\frac{1}{r}}.$$

Damit folgt

$$\int_X |f|^p dx \le \lambda(X)^{1-\frac{p}{q}} \cdot \left(\int_X |f|^q dx\right)^{\frac{p}{q}} \underset{\text{Vor.}}{\operatorname{nach}} \infty.$$

Durch die Abschätzung mit der p-ten Wurzel folgt dann die Behauptung.

Beispiel 5.4. a) Sei $X=(0,1], f(x)=x^{-\alpha}$ für eine Konstante $\alpha>0$. Dann gilt

$$f \in \mathcal{L}^p((0,1]) \Leftrightarrow \int_0^1 x^{-\alpha p} dx < \infty \Leftrightarrow \alpha p < 1 \Leftrightarrow a < \frac{1}{p}.$$

Damit gilt $f(x) = x^{-\frac{1}{p}}$ und mit p < q liegt f in $\mathcal{L}^p(X)$, aber nicht in $\mathcal{L}^q(X)$. Also gilt $\mathcal{L}^q \subsetneq \mathcal{L}^p(X)$.

b) Wenn $\lambda(X) < \infty$, dann gibt es keine Inklusion zwischen $\mathcal{L}^p(X)$ und $\mathcal{L}^q(X)$ (bezüglich λ).

Beispiel. $p=1, \ X=[1,\infty)$. Dann ist $f(x)=\frac{1}{x}$ in $\mathcal{L}^q(X) \ \forall q>1$, aber $f\notin \mathcal{L}^1(X)$. Ferner liegt $g(x)=\mathbf{1}_{[1,2)}(x)\cdot (2-x)^{-\frac{1}{q}}$ nicht in $\mathcal{L}^q(X)$, aber in $\mathcal{L}^1(X)$.

Satz 5.5 (Majorisierte Konvergenz). Seien $1 \leq p < \infty$, $f_n \in \mathcal{L}^p(X)$, $f: X \to \mathbb{R}$ messbar, $f_n \xrightarrow{n \to \infty} f$ $(f.\ddot{u}.)$, $|f_n|^p \leq g$ $(f.\ddot{u}.)$ für alle $n \in \mathbb{N}$ und ein $g \in \mathcal{L}^p(X)$. Dann gelten $f \in \mathcal{L}^p(X)$ und $||f - f_n||_p \to 0$ $(n \to \infty)$.

Beweis. p=1: Satz von Lebesgue. Sei also p>1. Dann gilt $|f|^p \leq g$ $(f.\ddot{u}.)$ und $|f(x)-f_n(x)|^p \leq (f(x)+g(x))^p \leq (2 \cdot g(x)^{\frac{1}{p}})^p = 2^p \cdot g(x)$ (f.a.) x. Ferner gilt $|f-f_n|^p \xrightarrow{n\to\infty} 0$, $(f.\ddot{u}.)$. Lebesgue angewendet auf $|f-f_n|^p$ liefert $||f-f_n||^p = \int_X |f-f_n|^p dx \to 0$. Dass $f \in \mathcal{L}^p(X)$ gilt, folgt aus $|f|^p \leq g$ $(f.\ddot{u}.)$.

Beispiel. Sei $f_n = n \cdot \mathbf{1}_{[0,\frac{1}{n})}, \ X = \mathbb{R}, \ p \in [1,\infty)$. Dann folgt $f_n \in \mathcal{L}^p(X)$ und $f_n \to 0$ punktweise. Aber es gilt $||f_n||_p = n^{1-\frac{1}{p}} \to 0$. (Vergleiche Bem 3.11)

Ana III, 02.02.2009

Ab jetzt sei stets $1 \le p < \infty$.

Es ergibt sich folgendes Problem:

$$\left(\int_X |f|^p\right)^{\frac{1}{p}} = \|f\|_p = 0 \Leftrightarrow |f|^p = 0 \ (f.\ddot{u}.) \Leftrightarrow f = 0 \ (f.\ddot{u}.).$$

Also ist die Normeigenschaft (N1) verletzt ((N2) und (N3) gelten allerdings in \mathcal{L}^p). Damit ist $\|\cdot\|_p$ ist keine Norm auf \mathcal{L}^p .

Ausweg: Definiere

$$\mathcal{N} := \{ f : X \to \mathbb{R} : f \text{ messbar}, f = 0 (f.\ddot{u}.) \}.$$

Dann ist \mathcal{N} ein Untervektorraum von \mathcal{L}^p . Wir setzen

$$L^{p} := \mathcal{L}^{p} / \mathcal{N} \text{TODO} = \{ \hat{f} = f + \mathcal{N} : f \in \mathcal{L}^{p}(X) \}.$$
 (5.1)

Aus der Linearen Algebra wissen wir, dass auch L^p ein Vektorraum ist (bezüglich der kanonischen Verknüpfungen.) Beachte:

$$\hat{f} = \hat{g} \Leftrightarrow f = g \ (f.\ddot{u}.) \ \forall f \in \hat{f}, \ g \in \hat{g}.$$

Für $\hat{f} \in L^1$ definiere

$$\int_{X} \hat{f} dx := \int_{X} f(x) dx \tag{5.2}$$

für einen beliebigen Repräsentanten $f \in \hat{f}$. Mit Lem 3.5 folgt, dass (5.2) repräsentantenunabhängig ist, denn sei g ein weiterer Repräsentant von \hat{f} , d.h. $\hat{f} = \hat{g}$, dann gilt f = g ($f.\ddot{u}$.).

Für das Integral in (5.2) gelten die bekannten Regeln. Somit ist $\|\hat{f}\|_p := \|f\|_p$ für ein beliebiges $f \in \hat{f}$ wohldefiniert. Vorsicht: $\hat{f} \mapsto f(x)$ für einen Repräsentanten $f \in \hat{f}$ und ein $x \in X$ definiert keine Abbildung von $L^p(X)$ nach $\mathbb{R}!$.

Nun: $\|\hat{f}\|_p = 0 \Rightarrow f \in \mathcal{N}$ für jeden Repräsentanten $f \in \hat{f} \Rightarrow \hat{f} = 0$. Weiter seien $\hat{f}, \hat{g} \in L^p(X)$ mit Repräsentanten f, g, sowie $\alpha \in \mathbb{R}$. Dann gelten

•
$$\|\alpha \hat{f}\|_p \stackrel{\text{Def.}}{=} \|\alpha f\|_p = |\alpha| \cdot \|f\|_p \stackrel{\text{Def.}}{=} |\alpha| \cdot \|\hat{f}\|_p$$

•
$$||f + g||_p \stackrel{\text{Def.}}{=} ||f + g||_p \stackrel{\text{Satz 5.1b}}{\leq} ||f||_p + ||g||_p \stackrel{\text{Def}}{=} ||\hat{f}||_p + ||\hat{g}||_p.$$

Also definiert $\|\cdot\|_p$ eine Norm auf $L^p(X)$.

Seien $\hat{f}, \hat{g}, \hat{h} \in L^2(X)$ und $\alpha, \beta \in \mathbb{R}$. Nach Hoelder existiert für beliebige Repräsentanten $f \in \hat{f}, g \in \hat{g}$

$$(\hat{f}|\hat{g}) = \int_{X} f(x) \cdot g(x) dx. \tag{5.3}$$

Es gelten

$$|(\hat{f}|\hat{g})| \le \int_{X} |fg| dx \stackrel{\text{Hoelder}}{\le} ||f||_{2} \cdot ||f||_{2} \stackrel{\text{Def.}}{=} ||\hat{f}||_{p} \cdot ||\hat{g}||_{p},$$
 (5.4)

$$(\hat{f}|\hat{g}) = (\hat{g}|\hat{f}),$$

$$(\alpha \hat{f} + \beta \hat{h}|\hat{g}) = \alpha(\hat{f}|\hat{h}) + \beta(\hat{h}|\hat{g})$$
(5.5)

und

$$(\hat{f}|\hat{f}) = \int_{X} |f(x)|^2 dx = ||f||_2^2 = ||\hat{f}||_2^2.$$
 (5.6)

Damit ist $(\cdot|\cdot)$ ein Skalarprodukt auf dem reellen Vektorraum $L^2(X)$ mit zugehöriger Norm $\|\cdot\|_2 = \sqrt{(\cdot|\cdot)}$.

Definition. Ein Banachraum, dessen Norm wie in (5.6) von einem Skalarprodukt induziert wird, heißt Hilbertraum.

Bemerkung. Setze $\infty^p := \infty$. Dann ist die Abbildung $\varphi : [0, \infty] \to [0, \infty], x \mapsto x^p$ messbar, da $\varphi^{-1}([a, \infty]) = [a^{\frac{1}{p}}, \infty] \in \overline{\mathcal{B}}_1 \ (\forall a \geq 0).$

Theorem 5.6 (Riesz/Fischer). Sei $(f_n)_{n\in\mathbb{N}}\subset\mathcal{L}^p(X)$, $1\leq p<\infty$ eine Cauchy-Folge bezüglich der p-Norm. Dann gibt es ein $f\in\mathcal{L}^p(X)$ und eine Teilfolge $(n_j)_{j\in\mathbb{N}}$, sodass $||f_n-f||_p\xrightarrow{n\to\infty}0$ und $f_{n_j}\xrightarrow{j\to\infty}f$ $(f.\ddot{u}.)$. Ferner ist $L^p(X)$ ein Banachraum und $L^2(X)$ ist ein Hilbertraum.

Beweis. 1) Zweite Behauptung: Wenn $(\hat{f}_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge in $L^p(X)$ ist, dann gilt für Repräsentanten $f_n\in\hat{f}_n$

$$\forall \epsilon > 0 \exists N_{\epsilon} \in \mathbb{N} : \|\hat{f}_n - \hat{f}_m\|_p = \|f_n - f_m\|_p \le \epsilon \ (\forall n, m \ge N_{\epsilon}).$$

Damit ist $(f_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge in $\mathcal{L}^p(X)$. Nach der ersten Behauptung existiert dann ein $f\in\mathcal{L}^p(X)$, sodass

$$\|\hat{f}_n - \hat{f}\|_p = \|f_n - f\|_p \xrightarrow{n \to \infty} 0.$$

Also ist $L^p(X)$ ein Banachraum und $L^2(X)$ ist ein Hilbertraum.

2) Sei nun $(f_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge in $\mathcal{L}^p(X)$. Wähle (mittels $e_j:=2^{-j}$) eine Teilfolge $(n_j)_{j\in\mathbb{N}}$ mit

$$||f_l - f_{n_j}||_p \le \epsilon = 2^{-j}, \ \forall l \ge n_j$$
 (*)

Setze $g_j := f_{n_j+1} - f_{n_j}$ für $j \in \mathbb{N}$. Sei $N \in \mathbb{N}$. Dann gilt

$$s_{N} := \left(\int_{X} \left(\sum_{j=1}^{N} |g_{j}(x)| \right)^{p} dx \right)^{\frac{1}{p}} = \left\| \sum_{j=1}^{N} |g_{j}| \right\|_{p} \overset{\text{Satz 5.1b}}{\leq} \sum_{j=1}^{N} \|g_{j}\|_{p}$$

$$\stackrel{(*)}{\leq} \sum_{j=1}^{N} 2^{-j} \leq 1 \quad (\forall N \in \mathbb{N}).$$

Damit gilt

$$\int_{X} \left(\sum_{j=1}^{\infty} |g_{j}(X)| \right)^{p} dx = \int_{X} \lim_{N \to \infty} \left(\sum_{j=1}^{N} |g_{j}(x)| \right)^{p} dx$$

$$=:g(x) \text{ messbar}$$

$$\stackrel{\text{Fatou}}{\leq} \lim_{N \to \infty} \int_{X} \left(\sum_{j=1}^{N} |g_{j}| \right)^{p} dx \leq 1.$$

Also liegt $g \in \mathcal{L}^p(X)$ und somit existiert eine Nullmenge N mit $g(x)^p < \infty \ \forall x \notin N$ ($\Leftrightarrow g(x) < \infty \ \forall x \notin N$) (wegen Kor 2.24). Mit unserem Wissen aus Ana1 folgt

$$\exists \sum_{j=1}^{\infty} g_j(x) \in \mathbb{R} \quad (\forall x \notin N).$$

Weiter gilt

$$\sum_{j=1}^{m-1} g_j = f_{n_m} - f_{n_1} \quad (\forall m \in \mathbb{N}).$$
 (**)

Daraus folgt

$$\exists \lim_{m \to \infty} f_{n_m}(x) =: f(x) \in \mathbb{R}, \ \forall x \notin N.$$

Setze $f(x) := 0 \ \forall x \in \mathbb{N}$. Dann ist $f: X \to \mathbb{R}$ messbar und $f_{n_m} \xrightarrow{m \to \infty} f$ (f.ü.). Ferner gilt

$$|f_{n_m}| \stackrel{(**)}{\leq} |f_{n_1}| + \sum_{j=1}^{m-1} |g_j| \leq |f_{n_1}| + g =: h,$$

wobei $h \in \mathcal{L}^p(X), m \in \mathbb{N}$.

Mit Satz 5.5 folgt dann $f \in \mathcal{L}^p(X)$ und $||f_{n_m} - f||_p \xrightarrow{m \to \infty} 0$. Für $\epsilon > 0$ wähle m mit $2^{-m} \le \epsilon$ und $||f - f_{n_m}||_p \le \epsilon$. Sei $l \ge n_m =: N_{\epsilon}$. Dann gilt

$$||f_l - f||_p \le ||f_l - f_{n_m}||_p + ||f_{n_m} - f||_p \stackrel{(*)}{\le} 2\epsilon.$$

Beispiel 5.7. Sei $X = [0, 1], I_n = [0, 1], [0, \frac{1}{2}), [\frac{1}{2}, 1), [\frac{1}{4}, \frac{1}{2}), \dots$ Setze $f_n := \mathbf{1}_{I_n}$. Damit $||f_n||_p = \lambda(I_n)^{\frac{1}{p}} \xrightarrow{n \to \infty} 0$.

Aber: $\forall x \in [0, 1] \exists$ eine Teilfolge $(n_j)_{j \in \mathbb{N}}$ mit $f_{n_j}(x) = 1 \nrightarrow 0 \ (j \to \infty)$. Also gilt $f_n(x) \nrightarrow 0$ $(n \to \infty)$ für jedes $x \in [0, 1]$.

Also folgt aus Konvergenz $f_n \xrightarrow{n \to \infty} f$ in $\mathcal{L}^p(X)$ <u>nicht</u> die punktweise Konvergenz $f_n \xrightarrow{n \to \infty} f$ in \mathbb{R} .

Korollar 5.8. Seien $\hat{f}_n \in L^p(X) \cap L^q(X)$, $1 \leq p, q < \infty$ und $\hat{f}_n \xrightarrow{n \to \infty} \hat{f}$ in $L^p(X)$, $\hat{f}_n \xrightarrow{n \to \infty} \hat{g}$ in $L^q(X)$. Dann gilt f = g (f.ü.) für alle Repräsentanten $f \in \hat{f}$ und $g \in \hat{g}$, also $\hat{f} = \hat{g} \in L^p(X) \cap L^q(X)$.

Beweis. Seien f, g, h Repräsentanten von $\hat{f}, \hat{g}, \hat{h}$. Dann folgt mit Thm 5.6, dass Teilfolgen $(n_m), (n_{m_l})$ und Nullmengen N_1, N_2 existieren, sodass

 $f_{n_m}(x) \xrightarrow{m \to \infty} f(x) \ \forall x \notin N_1, \ f_{n_{m_l}} \xrightarrow{l \to \infty} \ \forall x \notin N_2.$ Daraus folgt, dass $f(x) = g(x) \ \forall x \notin N_1 \cup N_2$ gilt, wobei $N_1 \cup N_2$ selbst auch eine Nullmenge ist.

Bemerkung 5.9. Die Abbildung $J: \mathcal{L}^p(X) \cap C(X) \to L^p(X), \ Jf = \hat{f}$ ist injektiv und linear. Wir identifizieren deshalb $\mathcal{L}^p(X) \cap C(X)$ mit dem neuen Teilraum $L^p(X)$.

Beweis. Seien $f,g \in \mathcal{L}^p(X) \cap C(X)$ mit $\hat{f} = \hat{g}$. Dann folgt, dass eine Nullmenge N exsitiert, sodass $f(x) = g(x) \ \forall x \notin N$. Sei $y \in N$. Dann existiert $x_n \notin N$ mit $x_n \xrightarrow{n \to \infty} y$ (da $N^0 = \emptyset$). Aus der Stetigkeit von f und g folgt f(y) = g(y).

Im Folgenden schreiben wir f statt \hat{f} und identifizieren $L^p(x)$ mit $\mathcal{L}^p(X)$.

Bemerkung 5.10. Stetig sind

- a) $L^p(X) \to \mathbb{R}$, $f \mapsto ||f||_p$. (Gilt in jedem normierten Vektorraum)
- b) $L^1(X) \to \mathbb{R}, \ f \mapsto \int_X f(x) dx$, denn, wenn $f_n \xrightarrow{n \to \infty} f$ in L^1 , dann gilt

$$\left| \int_X f_n dx - \int_X f dx \right| \le \int_X |f_n - f| dx = \|f_n - f\|_1 \xrightarrow{n \to \infty} 0.$$

c) $L^2(X) \times L^2(X) \to \mathbb{R}, (f,g) \mapsto (f|g)$ (Beweis siehe Übung).