Lecture 5: Data Representation

Announcements

- Project I due in one week
 - July 13th, 11:55pm
- Make sure to ask questions on Sakai
- Additional TA
 - Info will be posted within the next dat

Decimal Numbers

- Base 10
- 10 different digits:
 - {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
- Numbers written as $d_n \dots d_2 d_1 d_0$
- The decimal value is $\sum_{i=0}^{n} d_i \times 10^i$
- Example:

$$= 5(10^4) + 4(10^3) + 3(10^2) + 7(10^1) + 2(10^0)$$

$$= 5(10000) + 4(1000) + 3(100) + 7(10) + 2(1)$$

Binary Numbers

- Base 2
- 2 different digits: {0, I}
- Numbers written as $d_n \dots d_2 d_1 d_0$
- The decimal value is $\sum_{i=0}^{n} d_i \times 2^i$
- Example:

10110101

$$= 1 (27) + 0(26) + 1(25) + 1(24) + 0(23) + 1(22) + 0(21) + 1(20)$$

$$= 1 (128) + 0(64) + 1(32) + 1(16) + 0(8) + 1(4) + 0(2) + 1(1)$$

$$= 181$$

- Binary Representation is used in computers
 - Easy to represent using switches (on/off)
 - Manipulation by digital logic in hardware
 - Each digit is known as a bit and I byte consists of 8 bits

Hexadecimal Numbers

- Base 16
- 16 different digits:
 - {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}
 - First 10 digits are the same as in decimal
 - Last 6 (values 10-15) are the first 6 letters in alphabet
- Numbers written as $d_n \dots d_2 d_1 d_0$
- The decimal value is $\sum_{i=0}^{n} d_i \times 16^i$
- Example: FFA9= $15(16^3) + 15(16^2) + 10(16^1) + 9(16^0)$ = 15(4096) + 15(256) + 10(16) + 9(1)= 65440
- Used as binary representation can be too verbose
- Hexadecimals typically prefixed with "0x" (ex. 0xFFF)
- Each hex digit is 4 bits long

Numbering Systems

System	Base	Digits
Binary	2	0 1
Octal	8	01234567
Decimal	10	0123456789
Hexadecimal	16	0123456789ABCDEF

- What is the range of value that can be represented with I byte (8 bits)
- Binary: 00000000₂ 11111111₂
- Decimal: 0₁₀ 255₁₀
- Hexadecimal: 00₁₆ FF₁₆

Bit Patterns from N Bits

Number of Bits	Number of Patterns	Number of Patterns as Power of Two
1	2	2 ¹
2	4	2 ²
3	8	2 ³
4	16	2 ⁴

- Number of possible patterns with N bits = 2^N
- How many patterns can be formed with
 - 10 bits? $= 2^{10} = 1024$
 - 20 bits? = $2^{20} = 2^{10} * 2^{10} = 1048576$
 - 30 bits? = $2^{30} = 2^{10} * 2^{20} = 1073741824$
 - 40 bits? = $2^{40} = 2^{10} * 2^{30} = 1.0995116e+12$
 - 50 bits? = $2^{50} = 2^{10} \cdot 2^{40} = 1.1258999e + 15$
 - 60 bits? = $2^{60} = 2^{10} \cdot 2^{50} = 1.1529215e + 18$

Unsigned Integers

- Given a 4 bytes, what is the range of unsigned integers can we represent?
- Recall I byte = 8 Bits
- 8 bits = 28 different values
- 4 bytes = $2^{(8 \times 4)}$ = 2^{32} = 4294967296 different values
- We can represent 0 to 2^{32} I
- Range: 0 to 4294967295

Negative Integers

- How can we represent negative integers using binary representation?
 - 9_{10} negated = -9_{10}
 - 1001_2 negated = -1001_2 ?
- Unfortunately a computer can only holds 0's and 1's
- Suppose you want to represent an equal number of positive and negative integers with 3 bits
 - 2³=8 possible patterns
 - 4 positive and 4 negative numbers
- Solution: Use I bit to represent the sign

Sign Magnitude

- Use the leftmost bit to indicate the sign
- The remaining bits indicate the magnitude

- 3-bit register
 - Represent numbers in the range $[-(2^{n-1}-1), 2^{n-1}-1]$

000	001	010	011	100	101	110	111
0	1	2	3	-0	-1	-2	-3

Sign Magnitude (Issues)

- There are some problems with using simple sign magnitude for signed integers
- Have two zeros
 - 100 (-0) and 000 (+0)
- Inconvenient for arithmetic computations

- Binary addition does not work if numbers have unlike signs
 - Would need a special subtraction algorithm
- Another solution: One's complement

One's Complement

 Represent negative numbers by complementing its positive counterpart

•
$$\overline{N} = (2^n - 1) - N$$

- *n* is the number of bits
- Nis a positive integer
- \overline{N} is -N in 1's complement
- Similar to inverting each bit of the n-bit binary number

- 3-bits register
 - Represent numbers in range [-(2ⁿ⁻¹-1), 2ⁿ⁻¹-1]

000	001	010	011	100	101	110	111
0	1	2	3	-3	-2	-1	-0

One's Compliment (Benefits and Issues)

- Benefit: Binary addition works with end-around carry
 - End-around carry = add any resulting carry back into the resulting sum

```
010 2

+ 110 + -1

000 ← Not the correct answer

1 ← Add carry

1 ← Correct answer
```

- Issue: Still have two zeros
 - III(-0) and 000 (+0)

Two's Complement

- Represent negative numbers by complementing its positive counterpart with respect to 2^n
 - $\overline{N} = 2^n N$
 - *n* is the number of bits
 - *N* is a positive integer
 - \overline{N} is -N in 1's complement
- Simply one's complement plus one
 - I. Invert each bit
 - 2. Add I
- 3-bit register
 - Represent numbers in range [-2ⁿ⁻¹, 2ⁿ⁻¹-1]

000	001	010	011	100	101	110	111
0	1	2	3	-4	-3	-2	-1

Notice one more negative integer can be represented than positive integers

Two's Complement

- Benefits
 - Only one zero (000)
 - One more negative number can be represented
 - Arithmetic still works
- Given a two's complement n-bit value written as $d_{n-1}d_n \dots d_1d_0$
 - Decimal value is interpreted as $-d_{n-1}2^{n-1} + \sum_{i=0}^{n-2} d_i 2^i$
 - Works for both positive and negative numbers

Signed Integers

- Two's complement is the standard and most common way to represent signed integers
- Integer size on 32-bit and 64-bit architecture
 - 4 bytes
- What range of values by a 4 byte int?
 - 4 bytes = 32 bits
 - Represent numbers in range [-2ⁿ⁻¹, 2ⁿ⁻¹-1]
 - 4 byte int can represent [-2³²⁻¹, 2³²⁻¹-1]
 - -2147483648 to 2147483647

Floating Point Numbers

- Real numbers (a number that contains a fractional part)
- How do we represent real numbers in an integer computer?
 - Integers written in decimal form
 - E.g. I, 10, 100, 1000, 10000, 12456897, etc.
 - Can also be written in scientific notation
 - E.g. 1×10^4 , 1.2456897×10^7
 - What about binary numbers?
 - Works the same way: $0b100 = 0b1 \times 2^2$
- Scientific notation gives a natural way for thinking about floating point numbers
 - $0.25 = 2.5 \times 10^{-1} = 0 \text{b} 1 \times 2^{-2}$
- How are floating point numbers stored in computers?

IEEE floating point standard

- Most computers follow IEEE 754 standard
- Data is split up into three sections:

S	ехр	mantissa
---	-----	----------

- s: sign field determines if the number is negative (s=1)
- exp: exponent
- mantissa: fractional number in binary
- Value = $(-1)^S \times 2^E \times F$
 - $E = \exp (2^{(k-1)}-1)$ where k is the number exp bits
 - F = I.<mantissa> or 0.<mantissa> (we'll see later on)
 - (2^(k-1)-1) is what's known as the bias

Floating Point in C

- Three precisions
 - Single precision (32-bits) (float)
 - Double precision (64-bits) (double)
 - Extended precision (80-bit) (long double)
- 32-bit single (type float)
 - I bit for sign, 8 bits for exponent, 23 bits for fraction
 - Have 2 zero's
 - Range is approximately -10³⁸ to 10³⁸
- 64-bit double precision (type double)
 - I bit for sign, I I bits for exponent, 52 bits for fraction
 - Majority of new bits for fraction
 - Allows for higher precision
 - Range is approximately -10³⁰⁸ to 10³⁰⁸

Floating Point Numerical Values

- Three different cases
- Normalized values
 - When exp is not all 0s or not all 1s
 - $E = \exp (2^{(k-1)}-1)$
 - F = I.<mantissa>
- Denormalized Values
 - When exp is 0
 - $E = I (2^{(k-1)}-I) -> (e.g for float: I 127 = -126)$
 - F = 0.<mantissa>
 - Represents 0 and values very close to 0
- Special Values
 - When exp all I's
 - When mantissa is all 0's
 - Positive or negative Infinity $(\pm \infty)$ depending on sign
 - Else when mantissa is not all 0's
 - NaN = Not a number

Converting Floating Point To Decimal

- Recall: Single precision (32-bits) (float)
 - I bit for sign, 8 bits for exponent, 23 bits for fraction
- Recall: Value = $(-1)^S \times 2^E \times F$
 - Where $E = \exp (2^{(k-1)}-1)$ and F = 1.<manitissa>
- Example:

10000011	01010100000000000000001
	1

- S = I, so negative number
- $E = 131 (2^{8-1}-1) = 131 127 = 4$

- = -10101.01100000000000000001
- $\bullet = -21.37500095367431640625$

Converting Decimal to Floating Point

- Convert 5.625 to 32-bit floating point
- Convert decimal to binary
 - Note: $2^{-1} = 0.5$, $2^{-2} = 0.25$, $2^{-3} = 0.125$
 - 5.625 = 101.101
 - $101.101 = 1.01101 \times 2^2$
- Add bias to get exp
 - \bullet 2 + |27 = |29
 - 129 in binary = 10000001
- Positive value so signed bit is 0
- We get S=0, E=10000001, M=01101

0 10000001 01101000000000	0000000
---------------------------	---------

Rounding in Floating Point

- Round to the nearest number
- Example:
 - Assume 4 bit mantissa
 - 1.10011001
 - Which one is closer? 1.1001 or 1.1010?
 - Round up to 1.1010 because it's closer
- What happens if tie?
 - Round to even number number
- Example:
 - 1.10011
 - If we round down we get an odd number 1.1001
 - Round up to even number 1.1010
 - 1.10001
 - If we round up we get 1.1001 which is not even
 - Round down to even number 1.1000