CS420

Introduction to the Theory of Computation

Lecture 24: Undecidable problems

Tiago Cogumbreiro

Today we learn

- Decidability results
- Halting problem
- Emptiness for TM is undecidable

Section 4.2, 5.1

Decidability and Recognizability

Understanding the limits of decision problems

Implementation: algorithm that answers a decision problem, that is algorithm says YES whenever decision problem says YES.

Concept	Intuition	Example
Recognizable	Can we implement the problem?	A_{TM}
Decidable	Can we implement the problem and prove it terminates?	A_{REX}
Undecidable	Impossible to say NO without looping	A_{TM}
Unrecognizable	Impossible to say YES and NO without looping	???

Why is A_{TM} recognizable?

Decidability and Recognizability

Understanding the limits of decision problems

Concept	YES without looping	NO without looping
Recognizable	Possible	Maybe
Decidable	Possible	Possible
Undecidable	Maybe	Impossible
Unrecognizable	Impossible	Impossible

- Possible: we known an implementation (∃)
- Impossible: no implementation is possible (∀)

Warmup

```
Require Import Turing. Turing.
Lemma decidable_to_recognizable:
  forall L,
 Decidable L →
 Recognizable L.
Proof.
Admitted.
Lemma unrecognizable_to_undecidable:
 forall L,
  ~ Recognizable L →
   ~ Decidable L.
Proof.
Admitted.
```


Corollary 4.23

 \overline{A}_{TM} is unrecognizable

Corollary 4.23: \overline{A}_{TM} is unrecognizable

Done in class...

Corollary 4.18 Some languages are unrecognizable

Corollary 4.18 Some languages are unrecognizable

Proof.

Corollary 4.18 Some languages are unrecognizable

Proof. An example of an unrecognizable language is: \overline{A}_{TM}

If L is decidable, then \overline{L} is decidable

On pen-and-paper proofs

THEOREM 4.22 -----

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

In other words, a language is decidable exactly when both it and its complement are Turing-recognizable.

PROOF We have two directions to prove. First, if A is decidable, we can easily see that both A and its complement \overline{A} are Turing-recognizable. Any decidable language is Turing-recognizable, and the complement of a decidable language also is decidable.

Proof of Theorem 4.22 Taken from the book.

First, if A is decidable, we can easily see that both A and its complement A are Turing-recognizable.

- ullet A is decidable, then A is recognizable by definition.
- A is decidable, then \overline{A} is recognizable? Why?
- Any decidable language is Turing-recognizable,
 - Yes, by definition.
- and the complement of a decidable language also is decidable.
 - Why?

If $oldsymbol{L}$ is decidable, then $oldsymbol{\overline{L}}$ is decidable

- 1. Let M decide L.
- 2. Create a Turing machine that negates the result of M.

```
Definition inv M w :=
  mlet b ← Call m w in Ret (negb b).
```

- 3. Show that inv M recognizes $Inv(L) = \{w \mid M \text{ rejects } w\}$
- 4. Show that the result of inv M for any word w is the negation of running M with m, where negation of accept is reject, reject is accept, and loop is loop.
- 5. The goal is to show that inv M recognizes \overline{L} and is decidable.

What about loops? If M loops on some word w, then inv M would also loop. How is does inv M recognize \overline{L} ?

If $oldsymbol{L}$ is decidable, then $oldsymbol{\overline{L}}$ is decidable

- 1. Let M decide L.
- 2. Create a Turing machine that negates the result of M.

```
Definition inv M w := mlet b \leftarrow Call m w in Ret (negb b).
```

- 3. Show that inv M recognizes $\operatorname{Inv}(L) = \{w \mid M \text{ rejects } w\}$
- 4. Show that the result of inv M for any word w is the negation of running M with m, where negation of accept is reject, reject is accept, and loop is loop.
- 5. The goal is to show that inv M recognizes \overline{L} and is decidable.

What about loops? If M loops on some word w, then inv M would also loop. How is does inv M recognize \overline{L} ?

Recall that L is decidable, so M will never loop.

If $oldsymbol{L}$ is decidable, then $oldsymbol{\overline{L}}$ is decidable

Continuation...

Part 1. Show that inv M recognizes \overline{L}

We must show that: If M decides L and $\overline{\text{inv M}}$ recognizes $\overline{\text{Inv}}(L)$, then $\overline{\text{inv M}}$ is decidable. It is enough to show that if M decides L, then $\overline{\text{Inv}}(L)=\overline{L}$. Show proof $\overline{\text{inv_compl_equiv}}$.

Part 2. Show that inv Mis a decider

Show proof decides_to_compl.

Chapter 5: Undecidability

$HALT_{\mathsf{TM}}$: Termination of TM

Will this TM halt given this input?

(The Halting problem)

$HALT_{\mathsf{TM}}$ is undecidable

Theorem 5.1: HALT_TM loops for some input

Set-based encoding

Function-based encoding

```
HALT_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}
```

```
def HALT_TM(M,w):
   return M halts on w
```

Proof

Proof idea: Given Turing machine acc, show that acc decides A_{TM} .

```
def acc(M, w):
   if HALT_TM(M,w):
     return M(w)
   else:
     return False

UMass
Boston
```

$HALT_{\mathsf{TM}}$ is undecidable

Theorem 5.1: Proof overview

```
Definition acc (solve_HALT:input→prog) p :=
  let (M, w) := decode_mach_input p in
  mlet b ← solve_HALT p in (* HALT(M, w)*)
  if b then Call M w else Ret false.
```

Apply Thm 4.11 to (H) "acc decides A_{TM} " and reach a contradiction. To prove H:

- 1. Show that acc recognizes ${
 m A}_{TM}$
- 2. Show that acc is decidable

E_{TM} : Emptiness of TM

(Is the language of this TM empty?)

Set-based

```
E_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}
```

Function-based

```
def E_TM(M):
  return L(M) == {}
```

Proof overview: show that acc decides A_{TM}

```
def build_M1(M,w):
    def M1(x):
        if x == w:
            return M accepts w
        else:
        return False
    return M1
```

```
def acc(M, w):
   b = E_TM(build_M1(M, w))
   return not b
```

- $ullet w \in L(exttt{M1}) \iff \langle exttt{M1}
 angle
 otin E_{TM}$
- $ullet w \in L(exttt{M1}) \iff w \in L(M)_{ exttt{UMass}}$

Proof follows by contradiction.

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.

Proof follows by contradiction.

- 1. Show that E_{TM} decidable implies A_{TM} decidable.
- 2. Reach contradiction by applying Thm 4.11 to (1)

Proof follows by contradiction.

- 1. Show that E_{TM} decidable implies A_{TM} decidable.
- 2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Proof follows by contradiction.

- 1. Show that E_{TM} decidable implies A_{TM} decidable.
- 2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Let D decide E_{TM} .

1. Show that acc recognizes A_{TM}

Proof follows by contradiction.

- 1. Show that E_{TM} decidable implies A_{TM} decidable.
- 2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Let D decide E_{TM} .

- 1. Show that acc recognizes A_{TM}
 - 1. Show that $A_{\sf TM} = {
 m Acc}_D$ where ${
 m Acc}_D = \{\langle M, w \rangle \mid L({
 m M1}_{M,w})
 eq \emptyset\}$ (e_tm_a_tm_spec)

Proof follows by contradiction.

- 1. Show that E_{TM} decidable implies A_{TM} decidable.
- 2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Let D decide E_{TM} .

- 1. Show that acc recognizes A_{TM}
 - 1. Show that $A_{\sf TM} = {
 m Acc}_D$ where ${
 m Acc}_D = \{\langle M, w \rangle \mid L({
 m M1}_{M,w})
 eq \emptyset\}$ (e_tm_a_tm_spec)
 - 2. Show that acc recognizes Acc_D (E_tm_A_tm_recognizes)

Proof follows by contradiction.

- 1. Show that E_{TM} decidable implies A_{TM} decidable.
- 2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Let D decide E_{TM} .

- 1. Show that acc recognizes A_{TM}
 - 1. Show that $A_{\sf TM} = {
 m Acc}_D$ where ${
 m Acc}_D = \{\langle M, w \rangle \mid L({
 m M1}_{M,w})
 eq \emptyset\}$ (e_tm_a_tm_spec)
 - 2. Show that acc recognizes Acc_D (E_tm_A_tm_recognizes)
- 2. Show that acc is a decider (decider_E_tm_A_tm)

Part 1.1: Show that $A_{\mathsf{TM}} = \mathrm{Acc}_D$ where $\mathrm{Acc}_D = \{\langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset\}$

Theorem not_empty_to_accept

1. Show that: If $L(\mathtt{M1}_{M,w}) \neq \emptyset$, then M accepts w.

Part 1.1: Show that $A_{\mathsf{TM}} = \mathrm{Acc}_D$ where $\mathrm{Acc}_D = \{\langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

- 1. Show that: If $L(\mathtt{M1}_{M,w}) \neq \emptyset$, then M accepts w.
 - \circ Case analysis on running M with input w:

Part 1.1: Show that $A_{\mathsf{TM}} = \mathrm{Acc}_D$ where $\mathrm{Acc}_D = \{\langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

- 1. Show that: If $L(\mathtt{M1}_{M,w}) \neq \emptyset$, then M accepts w.
 - \circ Case analysis on running M with input w:
 - ullet Case (a) M accepts w: use assumption to conclude

Part 1.1: Show that $A_{\mathsf{TM}} = \mathrm{Acc}_D$ where $\mathrm{Acc}_D = \{\langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset\}$

- 1. Show that: If $L(\mathtt{M1}_{M,w}) \neq \emptyset$, then M accepts w.
 - \circ Case analysis on running M with input w:
 - lacktriangle Case (a) M accepts w: use assumption to conclude
 - Case (b) M rejects w: we can conclude that $L(\mathtt{M1}_{M,w}) = \emptyset$ from (b)

Part 1.1: Show that $A_{\mathsf{TM}} = \mathrm{Acc}_D$ where $\mathrm{Acc}_D = \{\langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset\}$

- 1. Show that: If $L(\mathtt{M1}_{M,w}) \neq \emptyset$, then M accepts w.
 - \circ Case analysis on running M with input w:
 - lacktriangle Case (a) M accepts w: use assumption to conclude
 - lacksquare Case (b) M rejects w: we can conclude that $L(\mathtt{M1}_{M,w})=\emptyset$ from (b)
 - Case (c) M loops with w: same as above

Part 1.1: Show that $A_{\mathsf{TM}} = \mathrm{Acc}_D$ where $\mathrm{Acc}_D = \{\langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(\mathtt{M1}_{M,w}) \neq \emptyset$.

Part 1.1: Show that $A_{\mathsf{TM}} = \mathrm{Acc}_D$ where $\mathrm{Acc}_D = \{\langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

- 2. Show that: If M accepts w, then $L(\mathtt{M1}_{M,w}) \neq \emptyset$.
 - 1. Proof follows by contradiction: assume $L(\mathtt{M1}_{M,w}) = \emptyset$.

Part 1.1: Show that $A_{\mathsf{TM}} = \mathrm{Acc}_D$ where $\mathrm{Acc}_D = \{\langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

- 2. Show that: If M accepts w, then $L(\mathtt{M1}_{M,w}) \neq \emptyset$.
 - 1. Proof follows by contradiction: assume $L(\mathtt{M1}_{M,w}) = \emptyset$.
 - 2. We know that $\mathtt{M1}_{M,w}$ does not accept w from (2.1)

Part 1.1: Show that $A_{\mathsf{TM}} = \mathrm{Acc}_D$ where $\mathrm{Acc}_D = \{\langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

- 2. Show that: If M accepts w, then $L(\mathtt{M1}_{M,w}) \neq \emptyset$.
 - 1. Proof follows by contradiction: assume $L(\mathtt{M1}_{M,w}) = \emptyset$.
 - 2. We know that $\mathtt{M1}_{M,w}$ does not accept w from (2.1)
 - 3. To contradict 2.2, we show that $\mathtt{M1}_{M,w}$ accepts w

Part 1.1: Show that $A_{\mathsf{TM}} = \mathrm{Acc}_D$ where $\mathrm{Acc}_D = \{\langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset\}$

- 2. Show that: If M accepts w, then $L(\mathtt{M1}_{M,w}) \neq \emptyset$.
 - 1. Proof follows by contradiction: assume $L(\mathtt{M1}_{M,w}) = \emptyset$.
 - 2. We know that $\mathtt{M1}_{M,w}$ does not accept w from (2.1)
 - 3. To contradict 2.2, we show that $\mathtt{M1}_{M,w}$ accepts w
 - 1. Since x=w and (2.1), then $\mathtt{M1}_{M,w}$ accepts w

