Inverse Scattering Without Phase Information

Alexey Agaltsov

Max Planck Institute for Solar System Research, Germany agaltsov@mps.mpg.de

Joint work with T. Hohage and R. G. Novikov

Malta - May 24, 2018

Elastic scattering by a macroscopic object

Elastic scattering by a macroscopic object

 Irradate an object by a plane wave of wave vector k

Elastic scattering by a macroscopic object

- Irradate an object by a plane wave of wave vector k
- Count particles scattered to different wave vectors I

Elastic scattering by a macroscopic object

- Irradate an object by a plane wave of wave vector k
- Count particles scattered to different wave vectors I

Inverse problem: Given the distribution of directions of scattered particles for different \mathbf{k} , recover the parameters of the object

• Quantum particle interacting with a macroscopic object:

$$-\Delta \psi + v(x)\psi = E\psi, \quad v \in L^{\infty}_{comp}(\mathbb{R}^d)$$

• Quantum particle interacting with a macroscopic object:

$$-\Delta \psi + v(x)\psi = E\psi, \quad v \in L^{\infty}_{comp}(\mathbb{R}^d)$$

Scattering amplitude:

$$\psi(r\mathbf{l}) = e^{ir\mathbf{k}\mathbf{l}} + c(d, E) \frac{e^{iEr}}{r^{(d-1)/2}} f(\mathbf{k}, \mathbf{l}) + o(r^{(d-1)/2})$$

• Quantum particle interacting with a macroscopic object:

$$-\Delta \psi + v(x)\psi = E\psi, \quad v \in L^{\infty}_{comp}(\mathbb{R}^d)$$

Scattering amplitude:

$$\psi(r\mathbf{l}) = e^{ir\mathbf{k}\mathbf{l}} + c(d, E) \frac{e^{iEr}}{r^{(d-1)/2}} f(\mathbf{k}, \mathbf{l}) + o(r^{(d-1)/2})$$

Meaning: $|f(\mathbf{k}, \mathbf{l})|^2$ is the probability density of $\mathbf{k} \to \mathbf{l}$ scattering (different. scattering cross-section) (M.Born'26 [3])

• Quantum particle interacting with a macroscopic object:

$$-\Delta \psi + v(x)\psi = E\psi, \quad v \in L^{\infty}_{comp}(\mathbb{R}^d)$$

Scattering amplitude:

$$\psi(r\mathbf{I}) = e^{ir\mathbf{k}\mathbf{I}} + c(d, E) \frac{e^{iEr}}{r^{(d-1)/2}} f(\mathbf{k}, \mathbf{I}) + o(r^{(d-1)/2})$$

Meaning: $|f(\mathbf{k}, \mathbf{l})|^2$ is the probability density of $\mathbf{k} \to \mathbf{l}$ scattering (different. scattering cross-section) (M.Born'26 [3])

Domain:
$$T_E = \{(\mathbf{k}, \mathbf{l}) \in \mathbb{R}^d \times \mathbb{R}^d, |\mathbf{k}| = |\mathbf{l}| = \sqrt{E}\}$$

• Quantum particle interacting with a macroscopic object:

$$-\Delta \psi + v(x)\psi = E\psi, \quad v \in L^{\infty}_{comp}(\mathbb{R}^d)$$

Scattering amplitude:

$$\psi(r\mathbf{I}) = e^{ir\mathbf{k}\mathbf{I}} + c(d, E) \frac{e^{iEr}}{r^{(d-1)/2}} f(\mathbf{k}, \mathbf{I}) + o(r^{(d-1)/2})$$

Meaning: $|f(\mathbf{k}, \mathbf{l})|^2$ is the probability density of $\mathbf{k} \to \mathbf{l}$ scattering (different. scattering cross-section) (M.Born'26 [3])

Domain:
$$T_E = \{(\mathbf{k}, \mathbf{l}) \in \mathbb{R}^d \times \mathbb{R}^d, |\mathbf{k}| = |\mathbf{l}| = \sqrt{E}\}$$

Inverse problem: Given $|f(\mathbf{k}, \mathbf{l})|^2$ on T_E at fixed E, recover v

• Quantum particle interacting with a macroscopic object:

$$-\Delta \psi + v(x)\psi = E\psi, \quad v \in L^{\infty}_{comp}(\mathbb{R}^d)$$

Scattering amplitude:

$$\psi(r\mathbf{l}) = e^{ir\mathbf{k}\mathbf{l}} + c(d, E) \frac{e^{iEr}}{r^{(d-1)/2}} f(\mathbf{k}, \mathbf{l}) + o(r^{(d-1)/2})$$

Meaning: $|f(\mathbf{k}, \mathbf{l})|^2$ is the probability density of $\mathbf{k} \to \mathbf{l}$ scattering (different. scattering cross-section) (M.Born'26 [3])

Domain:
$$T_E = \{(\mathbf{k}, \mathbf{l}) \in \mathbb{R}^d \times \mathbb{R}^d, |\mathbf{k}| = |\mathbf{l}| = \sqrt{E}\}$$

Inverse problem: Given $|f(\mathbf{k}, \mathbf{l})|^2$ on T_E at fixed E, recover v

• K.Chadan, P.C. Sabatier'77 and references therein

• Quantum particle interacting with a macroscopic object:

$$-\Delta \psi + v(x)\psi = E\psi, \quad v \in L^{\infty}_{comp}(\mathbb{R}^d)$$

Scattering amplitude:

$$\psi(r\mathbf{l}) = e^{ir\mathbf{k}\mathbf{l}} + c(d, E) \frac{e^{iEr}}{r^{(d-1)/2}} f(\mathbf{k}, \mathbf{l}) + o(r^{(d-1)/2})$$

Meaning: $|f(\mathbf{k}, \mathbf{l})|^2$ is the probability density of $\mathbf{k} \to \mathbf{l}$ scattering (different. scattering cross-section) (M.Born'26 [3])

Domain:
$$T_E = \{ (\mathbf{k}, \mathbf{l}) \in \mathbb{R}^d \times \mathbb{R}^d, |\mathbf{k}| = |\mathbf{l}| = \sqrt{E} \}$$

Inverse problem: Given $|f(\mathbf{k}, \mathbf{l})|^2$ on T_E at fixed E, recover v

- K.Chadan, P.C. Sabatier'77 and references therein
- Similar problems: Klibanov ('14: uniq. in 3d), Klibanov-Romanov ('16: recons.), Romanov-Yamamoto('18)

• Non-uniqueness: Translating the object does not change $|f(\mathbf{k}, \mathbf{l})|^2$

- Non-uniqueness: Translating the object does not change $|f(\mathbf{k}, \mathbf{l})|^2$
- Make additional experiments with known background potentials

- Non-uniqueness: Translating the object does not change $|f(\mathbf{k}, \mathbf{l})|^2$
- Make additional experiments with known background potentials

Inverse problem: Given the distribution of directions of scattered particles for several experiments, recover the parameters of the object

- Non-uniqueness: Translating the object does not change $|f(\mathbf{k}, \mathbf{l})|^2$
- Make additional experiments with known background potentials

Inverse problem: Given the distribution of directions of scattered particles for several experiments, recover the parameters of the object

• Similar idea in 1d: Aktosun-Sacks (IP'98)

• Quantum particle in presence of a background object:

$$-\Delta\psi_j + (v(x) + w_j(x))\psi_j = E\psi_j, \quad j = 1, 2$$

• Quantum particle in presence of a background object:

$$-\Delta\psi_j + (v(x) + w_j(x))\psi_j = E\psi_j, \quad j = 1, 2$$

Scattering amplitude:

$$\psi_j(r\mathbf{l}) = e^{ir\mathbf{k}\mathbf{l}} + c(d, E) \frac{e^{iEr}}{r(d-1)/2} f_j(\mathbf{k}, \mathbf{l}) + o(r^{(d-1)/2})$$

• Quantum particle in presence of a background object:

$$-\Delta\psi_j + (v(x) + w_j(x))\psi_j = E\psi_j, \quad j = 1, 2$$

Scattering amplitude:

$$\psi_j(r\mathbf{I}) = e^{ir\mathbf{k}\mathbf{I}} + c(d, E) \frac{e^{iEr}}{r^{(d-1)/2}} f_j(\mathbf{k}, \mathbf{I}) + o(r^{(d-1)/2})$$

Inverse problem: Given $|f(\mathbf{k}, \mathbf{l})|^2$, $|f_1(\mathbf{k}, \mathbf{l})|^2$, $|f_2(\mathbf{k}, \mathbf{l})|^2$ on T_E at fixed E, recover v

Main result: Iterative reconstruction algorithm at big E

Main result: Iterative reconstruction algorithm at big E

Comparison with existing results: error for $v \in C^{\infty}_{\operatorname{comp}}$

	Phased	Phaseless
Born		
Iterative		

Main result: Iterative reconstruction algorithm at big E

	Phased	Phaseless
Born	$O(E^{-1/2})$ [3, 4]	
Iterative		

- [3] M. Born (Zeit. Physik, '26)
- [4] L.D. Faddeev (Vestnik LGU, '56)

Main result: Iterative reconstruction algorithm at big E

	Phased	Phaseless
Born	$O(E^{-1/2})$ [3, 4]	$O(E^{-1/2})$ [6, 2]
Iterative		

- [2] Agaltsov-Novikov (J. Geom. Anal., accepted)
- [3] M. Born (Zeit. Physik, '26)
- [4] L.D. Faddeev (Vestnik LGU, '56)
- [6] R.G. Novikov (J. Geom. Anal., '16)

Main result: Iterative reconstruction algorithm at big E

	Phased	Phaseless
Born	$O(E^{-1/2})$ [3, 4]	$O(E^{-1/2})$ [6, 2]
Iterative	$O(E^{-j/2})$ for j it. [5]	

- [2] Agaltsov-Novikov (J. Geom. Anal., accepted)
- [3] M. Born (Zeit. Physik, '26)
- [4] L.D. Faddeev (Vestnik LGU, '56)
- [5] R.G. Novikov (Mat. Sbornik, '15)
- [6] R.G. Novikov (J. Geom. Anal., '16)

Main result: Iterative reconstruction algorithm at big E

	Phased	Phaseless
Born	$O(E^{-1/2})$ [3, 4]	$O(E^{-1/2})$ [6, 2]
Iterative	$O(E^{-j/2})$ for j it. [5]	$O(E^{-j/2})$ for j it. [1]

- [1] Agaltsov-Hohage-Novikov (in progress)
- [2] Agaltsov-Novikov (J. Geom. Anal., accepted)
- [3] M. Born (Zeit. Physik, '26)
- [4] L.D. Faddeev (Vestnik LGU, '56)
- [5] R.G. Novikov (Mat. Sbornik, '15)
- [6] R.G. Novikov (J. Geom. Anal., '16)

• Born approximation:

$$\widehat{v}(p) = f(\mathbf{k}, \mathbf{l}) + O(E^{-\frac{1}{2}}), \quad p = \mathbf{k} - \mathbf{l}$$

Born approximation:

$$\widehat{v}(p) = f(\mathbf{k}, \mathbf{l}) + O(E^{-\frac{1}{2}}), \quad p = \mathbf{k} - \mathbf{l}$$

• Phaseless Born approximation:

$$|\widehat{v}|^2 = |f|^2 + O(E^{-\frac{1}{2}}),$$

Born approximation:

$$\widehat{v}(p) = f(\mathbf{k}, \mathbf{l}) + O(E^{-\frac{1}{2}}), \quad p = \mathbf{k} - \mathbf{l}$$

• Phaseless Born approximation:

$$|\hat{v}|^2 = |f|^2 + O(E^{-\frac{1}{2}}),$$

$$|\hat{v} + \hat{w}_1|^2 = |f_1|^2 + O(E^{-\frac{1}{2}}),$$

$$|\hat{v} + \hat{w}_2|^2 = |f_2|^2 + O(E^{-\frac{1}{2}}).$$

Born approximation:

$$\widehat{v}(p) = f(\mathbf{k}, \mathbf{l}) + O(E^{-\frac{1}{2}}), \quad p = \mathbf{k} - \mathbf{l}$$

• Phaseless Born approximation:

$$|\hat{v}|^2 = |f|^2 + O(E^{-\frac{1}{2}}),$$

$$|\hat{v} + \hat{w}_1|^2 = |f_1|^2 + O(E^{-\frac{1}{2}}),$$

$$|\hat{v} + \hat{w}_2|^2 = |f_2|^2 + O(E^{-\frac{1}{2}}).$$

$$\implies \begin{pmatrix} \operatorname{Re} \widehat{w}_1 & \operatorname{Im} \widehat{w}_1 \\ \operatorname{Re} \widehat{w}_2 & \operatorname{Im} \widehat{w}_2 \end{pmatrix} \begin{pmatrix} \operatorname{Re} \widehat{v} \\ \operatorname{Im} \widehat{v} \end{pmatrix} = \begin{pmatrix} |f_1|^2 - |f|^2 - |\widehat{w}_1|^2 \\ |f_2|^2 - |f|^2 - |\widehat{w}_2|^2 \end{pmatrix} + O(E^{-\frac{1}{2}})$$

Born approximation:

$$\widehat{v}(p) = f(\mathbf{k}, \mathbf{l}) + O(E^{-\frac{1}{2}}), \quad p = \mathbf{k} - \mathbf{l}$$

• Phaseless Born approximation:

$$\begin{split} |\widehat{v}|^2 &= |f|^2 + O(E^{-\frac{1}{2}}), \\ |\widehat{v} + \widehat{w}_1|^2 &= |f_1|^2 + O(E^{-\frac{1}{2}}), \\ |\widehat{v} + \widehat{w}_2|^2 &= |f_2|^2 + O(E^{-\frac{1}{2}}). \end{split}$$

$$\implies \begin{pmatrix} \operatorname{Re} \widehat{w}_1 & \operatorname{Im} \widehat{w}_1 \\ \operatorname{Re} \widehat{w}_2 & \operatorname{Im} \widehat{w}_2 \end{pmatrix} \begin{pmatrix} \operatorname{Re} \widehat{v} \\ \operatorname{Im} \widehat{v} \end{pmatrix} = \begin{pmatrix} |f_1|^2 - |f|^2 - |\widehat{w}_1|^2 \\ |f_2|^2 - |f|^2 - |\widehat{w}_2|^2 \end{pmatrix} + O(E^{-\frac{1}{2}})$$

[6] Drop $O(E^{-\frac{1}{2}})$ and use this to define $\operatorname{Re} \widehat{v}_E^*$, $\operatorname{Im} \widehat{v}_E^*$

Born approximation:

$$\widehat{\mathbf{v}}(p) = f(\mathbf{k}, \mathbf{l}) + O(E^{-\frac{1}{2}}), \quad p = \mathbf{k} - \mathbf{l}$$

• Phaseless Born approximation:

$$|\widehat{v}|^2 = |f|^2 + O(E^{-\frac{1}{2}}),$$

$$|\widehat{v} + \widehat{w}_1|^2 = |f_1|^2 + O(E^{-\frac{1}{2}}),$$

$$|\widehat{v} + \widehat{w}_2|^2 = |f_2|^2 + O(E^{-\frac{1}{2}}).$$

$$\implies \begin{pmatrix} \operatorname{Re} \widehat{w}_1 & \operatorname{Im} \widehat{w}_1 \\ \operatorname{Re} \widehat{w}_2 & \operatorname{Im} \widehat{w}_2 \end{pmatrix} \begin{pmatrix} \operatorname{Re} \widehat{v} \\ \operatorname{Im} \widehat{v} \end{pmatrix} = \begin{pmatrix} |f_1|^2 - |f|^2 - |\widehat{w}_1|^2 \\ |f_2|^2 - |f|^2 - |\widehat{w}_2|^2 \end{pmatrix} + O(E^{-\frac{1}{2}})$$

[6] Drop $O(E^{-\frac{1}{2}})$ and use this to define $\operatorname{Re} \widehat{v}_E^*$, $\operatorname{Im} \widehat{v}_E^*$

Result: [2] For optimal w_1 , w_2 one has $v = v_E^* + O(E^{-\frac{1}{2}})$

Setup: Given an approximation v_E^* such that $v = v_E^* + O(E^{-\alpha})$, find a better approximation v_E^{**}

Setup: Given an approximation v_E^* such that $v = v_E^* + O(E^{-\alpha})$, find a better approximation v_E^{**}

• Born approximation with a background: [5]

$$\widehat{\mathbf{v}}(p) - \widehat{\mathbf{v}}_{E}^{*}(p) = f(\mathbf{k}, \mathbf{l}) - f_{E}^{*}(\mathbf{k}, \mathbf{l}) + O(E^{-\alpha - \frac{1}{2}}), \ p = \mathbf{k} - \mathbf{l}$$

Setup: Given an approximation v_E^* such that $v = v_E^* + O(E^{-\alpha})$, find a better approximation v_E^{**}

• Born approximation with a background: [5]

$$\widehat{v}(p) - \widehat{v}_E^*(p) = f(\mathbf{k}, \mathbf{l}) - f_E^*(\mathbf{k}, \mathbf{l}) + O(E^{-\alpha - \frac{1}{2}}), \ p = \mathbf{k} - \mathbf{l}$$

$$\Rightarrow \begin{pmatrix} \operatorname{Re}(f_{E,1}^* - f_E^*) & \operatorname{Im}(f_{E,1}^* - f_E^*) \\ \operatorname{Re}(f_{E,2}^* - f_E^*) & \operatorname{Im}(f_{E,2}^* - f_E^*) \end{pmatrix} \begin{pmatrix} \operatorname{Re} f \\ \operatorname{Im} f \end{pmatrix} = \begin{pmatrix} |f_1|^2 - |f|^2 - |f_E^* - f_{E,1}^*|^2 \\ |f_2|^2 - |f|^2 - |f_E^* - f_{E,2}^*|^2 \end{pmatrix} + O(E^{-\alpha - \frac{1}{2}})$$

Setup: Given an approximation v_E^* such that $v = v_E^* + O(E^{-\alpha})$, find a better approximation v_E^{**}

• Born approximation with a background: [5]

$$\widehat{\mathbf{v}}(p) - \widehat{\mathbf{v}}_E^*(p) = f(\mathbf{k}, \mathbf{l}) - f_E^*(\mathbf{k}, \mathbf{l}) + O(E^{-\alpha - \frac{1}{2}}), \ p = \mathbf{k} - \mathbf{l}$$

$$\Rightarrow \begin{pmatrix} \operatorname{Re}(f_{E,1}^* - f_E^*) & \operatorname{Im}(f_{E,1}^* - f_E^*) \\ \operatorname{Re}(f_{E,2}^* - f_E^*) & \operatorname{Im}(f_{E,2}^* - f_E^*) \end{pmatrix} \begin{pmatrix} \operatorname{Re} f \\ \operatorname{Im} f \end{pmatrix} = \begin{pmatrix} |f_1|^2 - |f|^2 - |f_E^* - f_{E,1}^*|^2 \\ |f_2|^2 - |f|^2 - |f_E^* - f_{E,2}^*|^2 \end{pmatrix} + O(E^{-\alpha - \frac{1}{2}})$$

[1] Drop $O(E^{-\alpha-\frac{1}{2}})$ and use this to define $\operatorname{Re} f_{\mathsf{ap}}$, $\operatorname{Im} f_{\mathsf{ap}}$

Setup: Given an approximation v_E^* such that $v = v_E^* + O(E^{-\alpha})$, find a better approximation v_E^{**}

• Born approximation with a background: [5]

$$\widehat{v}(p) - \widehat{v}_E^*(p) = f(\mathbf{k}, \mathbf{l}) - f_E^*(\mathbf{k}, \mathbf{l}) + O(E^{-\alpha - \frac{1}{2}}), \ p = \mathbf{k} - \mathbf{l}$$

$$\Rightarrow \begin{pmatrix} \operatorname{Re}(f_{E,1}^* - f_E^*) & \operatorname{Im}(f_{E,1}^* - f_E^*) \\ \operatorname{Re}(f_{E,2}^* - f_E^*) & \operatorname{Im}(f_{E,2}^* - f_E^*) \end{pmatrix} \begin{pmatrix} \operatorname{Re} f \\ \operatorname{Im} f \end{pmatrix} = \begin{pmatrix} |f_1|^2 - |f|^2 - |f_E^* - f_{E,1}^*|^2 \\ |f_2|^2 - |f|^2 - |f_E^* - f_{E,2}^*|^2 \end{pmatrix} + O(E^{-\alpha - \frac{1}{2}})$$

- [1] Drop $O(E^{-\alpha-\frac{1}{2}})$ and use this to define $\operatorname{Re} f_{\mathsf{ap}}$, $\operatorname{Im} f_{\mathsf{ap}}$
- [1] Put $\widehat{v}_E^{**} = (\widehat{v}_E^* + f_{\sf ap} f_E^*) imes {\sf appropriate_cutoff}$

II. Main result – Iterative step

Setup: Given an approximation v_E^* such that $v = v_E^* + O(E^{-\alpha})$, find a better approximation v_E^{**}

• Born approximation with a background: [5]

$$\widehat{v}(p) - \widehat{v}_{E}^{*}(p) = f(\mathbf{k}, \mathbf{l}) - f_{E}^{*}(\mathbf{k}, \mathbf{l}) + O(E^{-\alpha - \frac{1}{2}}), \ p = \mathbf{k} - \mathbf{l}$$

$$\Rightarrow \begin{pmatrix} \operatorname{Re}(f_{E,1}^* - f_E^*) & \operatorname{Im}(f_{E,1}^* - f_E^*) \\ \operatorname{Re}(f_{E,2}^* - f_E^*) & \operatorname{Im}(f_{E,2}^* - f_E^*) \end{pmatrix} \begin{pmatrix} \operatorname{Re} f \\ \operatorname{Im} f \end{pmatrix} = \begin{pmatrix} |f_1|^2 - |f|^2 - |f_E^* - f_{E,1}^*|^2 \\ |f_2|^2 - |f|^2 - |f_E^* - f_{E,2}^*|^2 \end{pmatrix} + O(E^{-\alpha - \frac{1}{2}})$$

- [1] Drop $O(E^{-\alpha-\frac{1}{2}})$ and use this to define $\operatorname{Re} f_{\mathsf{ap}}$, $\operatorname{Im} f_{\mathsf{ap}}$
- [1] Put $\widehat{v}_E^{**} = (\widehat{v}_E^* + f_{\sf ap} f_E^*) imes {\sf appropriate_cutoff}$

Result: [1] For optimal w_1 , w_2 one has $v = v_E^{**} + O(E^{-\alpha - \frac{1}{2}})$

Unknown potential and background potentials:

Data: Simulate the scattering experiment by Poisson data for a given total number N_p of particles registered by 256 detectors for each $\bf k$ and 32 different $\bf k$

Data: Simulate the scattering experiment by Poisson data for a given total number N_p of particles registered by 256 detectors for each ${\bf k}$ and 32 different ${\bf k}$

L^{∞} errors in percents:

Born approximation

$N_packslash E$	5 ²	10^{2}	15^{2}
10 ⁷	35	10	7.4
10 ⁸	35	10	7.4
10^{9}	35	10	7.5

Data: Simulate the scattering experiment by Poisson data for a given total number N_p of particles registered by 256 detectors for each ${\bf k}$ and 32 different ${\bf k}$

L^{∞} errors in percents:

Born approximation

$N_{\rho}ackslash E$	5 ²	10^{2}	15^{2}
10 ⁷	35	10	7.4
10 ⁸	35	10	7.4
10 ⁹	35	10	7.5

Our method

$N_{p}ackslash E$			15 ²
10^{7}	32	6.2	5.1
10 ⁸	25	6.2 3.4	2.3
10^{9}	24	1.5	1.3

Data: Simulate the scattering experiment by Poisson data for a given total number N_p of particles registered by 256 detectors for each \mathbf{k} and 32 different \mathbf{k}

L^{∞} errors in percents:

Born approximation

$N_{\rho}ackslash E$	5 ²	10^{2}	15^{2}
10 ⁷	35	10	7.4
10 ⁸	35	10	7.4
10^{9}	35	10	7.5

Our method

$N_{p}ackslash E$	5 ²	10^{2}	15^{2}
10 ⁷	32	6.2	5.1
10 ⁸	25	3.4	2.3
10 ⁹	24	1.5	1.3

Our method+NewtonCG

$N_packslash E$	5 ²	10^{2}	15^{2}
10 ⁷	28	3.4	3.4
10 ⁸	23	1.8	1.6
10^{9}	22	1.3	0.83

Nonsmooth potential:

Exact potential

Nonsmooth potential:

Exact potential

Born approximation

Nonsmooth potential:

Exact potential Born approximation

-0.5

0.5

-0.5

0.5

Our method

	our method	NewtonCG
global convergence	yes	no

	our method	NewtonCG
global convergence	yes	no
asymptotically exact	$E o +\infty$	potentially

	our method	NewtonCG
global convergence	yes	no
asymptotically exact	$E o +\infty$	potentially
black-box direct solver	yes	no

	our method	NewtonCG
global convergence	yes	no
asymptotically exact	$E o +\infty$	potentially
black-box direct solver	yes	no
reference exec. time	1s	23s

	our method	NewtonCG
global convergence	yes	no
asymptotically exact	$E o +\infty$	potentially
black-box direct solver	yes	no
reference exec. time	1s	23s
stopping rule	no	yes

• Born approximation formula

$$\widehat{\mathbf{v}}(p) = f(\mathbf{k}, \mathbf{l}) + O(E^{-\frac{1}{2}}), \quad p = \mathbf{k} - \mathbf{l}$$

$$(\mathbf{k}, \mathbf{l}) \in T_E \implies p \in B_{2\sqrt{E}}$$

• Born approximation formula

$$\widehat{\mathbf{v}}(p) = f(\mathbf{k}, \mathbf{l}) + O(E^{-\frac{1}{2}}), \quad p = \mathbf{k} - \mathbf{l}$$

 $(\mathbf{k}, \mathbf{l}) \in T_E \implies p \in B_{2\sqrt{E}}$

• **Ewald sphere:** given n_1 , n_2 uniform inc., meas. directions:

$$\mathcal{E}_{n_1,n_2} = \{ p = \mathbf{k} - \mathbf{l} \mid \mathbf{k} : \text{inc. direction}, \mathbf{l} : \text{meas. direction} \}$$

Born approximation formula

$$\widehat{v}(p) = f(\mathbf{k}, \mathbf{l}) + O(E^{-\frac{1}{2}}), \quad p = \mathbf{k} - \mathbf{l}$$

 $(\mathbf{k}, \mathbf{l}) \in T_E \implies p \in B_{2\sqrt{E}}$

• **Ewald sphere:** given n_1 , n_2 uniform inc., meas. directions:

$$\mathcal{E}_{\textit{n}_{1},\textit{n}_{2}} = \{\textit{p} = \textbf{k} - \textbf{I} \mid \textbf{k} : \text{inc. direction}, \textbf{I} : \text{meas. direction}\}$$

$$n_1 = 6$$
, $n_2 = 10$

• Born approximation formula

$$\widehat{\mathbf{v}}(p) = f(\mathbf{k}, \mathbf{l}) + O(E^{-\frac{1}{2}}), \quad p = \mathbf{k} - \mathbf{l}$$

 $(\mathbf{k}, \mathbf{l}) \in T_E \implies p \in B_{2\sqrt{E}}$

• **Ewald sphere:** given n_1 , n_2 uniform inc., meas. directions:

$$\mathcal{E}_{n_1,n_2} = \{ p = \mathbf{k} - \mathbf{l} \mid \mathbf{k} : \text{inc. direction}, \mathbf{l} : \text{meas. direction} \}$$

• Inverse Fourier transform:

$$v(x) = \int_{\mathbb{R}^2} e^{-ipx} \widehat{v}(p) dp$$

• Inverse Fourier transform:

$$v(x) = \int_{\mathbb{R}^2} e^{-ipx} \widehat{v}(p) dp$$

• Approximation by a Riemann's sum:

$$v(x) \approx \sum_{p \in \mathcal{E}_{n_1,n_2}} e^{-ipx} \widehat{v}(p) w(p),$$

• Inverse Fourier transform:

$$v(x) = \int_{\mathbb{R}^2} e^{-ipx} \widehat{v}(p) dp$$

• Approximation by a Riemann's sum:

$$v(x) \approx \sum_{p \in \mathcal{E}_{n_1,n_2}} e^{-ipx} \widehat{v}(p) w(p),$$

 NFFT: J.Keiner, S.Kunis, D.Potts (ACM Trans. Math. Software'09)

• Inverse Fourier transform:

$$v(x) = \int_{\mathbb{R}^2} e^{-ipx} \widehat{v}(p) dp$$

• Approximation by a Riemann's sum:

$$v(x) \approx \sum_{p \in \mathcal{E}_{p}, p_0} e^{-ipx} \widehat{v}(p) w(p),$$

 NFFT: J.Keiner, S.Kunis, D.Potts (ACM Trans. Math. Software'09)

Question: How to subdivide $B_{2\sqrt{E}}$ in cells with nodes at \mathcal{E}_{n_1,n_2} ?

Voronoi diagram:

Voronoi diagram:

$$n_1 = 8$$
, $n_2 = 10$

Established results:

• Iterative algorithm for phaseless inverse potential scattering

Established results:

- Iterative algorithm for phaseless inverse potential scattering
- Estimates of reconstruction errors

Established results:

- Iterative algorithm for phaseless inverse potential scattering
- Estimates of reconstruction errors

How and why to use it?

 Find an approximation using our method and then feed it to NewtonCG

Established results:

- Iterative algorithm for phaseless inverse potential scattering
- Estimates of reconstruction errors

How and why to use it?

- Find an approximation using our method and then feed it to NewtonCG
- Much faster and more precise than standard methods

Established results:

- Iterative algorithm for phaseless inverse potential scattering
- Estimates of reconstruction errors

How and why to use it?

- Find an approximation using our method and then feed it to NewtonCG
- Much faster and more precise than standard methods

Limitations:

Convergence at small E

References

- [1] A. D. Agaltsov, T. Hohage, and R. G. Novikov. "An iterative approach to monochromatic phaseless inverse scattering". In: (). in preparation.
- [2] A. D. Agaltsov and R. G. Novikov. "Error estimates for phaseless inverse scattering in the Born approximation at high energies". In: *The Journal of Geometric Analysis* (). accepted. ISSN: 1050-6926. DOI: 10.1007/s12220-017-9872-6.
- [3] M. Born. "Quantenmechanik der Stoßvorgänge". In: Zeitschrift für Physik 38.11 (1926), pp. 803–827.
- [4] L. D. Faddeev. "Uniqueness of the solution of the inverse scattering problem". In: Vest. Leningrad Univ. 7 (1956). (in Russian), pp. 126–130.
- [5] R. G. Novikov. "An iterative approach to non-overdetermined inverse scattering at fixed energy". In: Sbornik: Mathematics 206.1 (2015), pp. 120–134.
- [6] R. G. Novikov. "Explicit formulas and global uniqueness for phaseless inverse scattering in multidimensions". In: The Journal of Geometric Analysis 26.1 (2016), pp. 346–359.