EXAMEN DE ÁLGEBRA

GRADO EN INGENIERÍA INFORMÁTICA Convocatoria ORDINARIA1 de 2013

Nombre: CONVALIDADOS:				DNI:	
CO		□ SÍ. Nota	PRÁCTICAS		□ Apto
		□ NO			☐ No apto

1. (10 puntos). Factorizar, calcular las raíces y sus multiplicidades, máximo común divisor y mínimo común múltiplo de

$$p(x) = 2x^4 - 2$$
 y $q(x) = 10x^6 - 20x^4 + 10x^2$

 $p(x) = 2x^4 - 2$ y $q(x) = 10x^6 - 20x^4 + 10x^2$ en $\mathbb{Z}_3[x]$, $\mathbb{Z}[x]$, $\mathbb{C}[x]$. ¿Es $5x^2 - 5$ un máximo común divisor de p(x) y q(x) en cada uno de los anillos anteriores? Razonar la respuesta.

- 2. (10 puntos). Sea $\sigma = (1 \ 2 \ 3 \ 4)$ ciclo de S_4 y H={ σ , σ^2 , σ^3 , σ^4 }
 - i) Demostrar que H es subgrupo de S₄
 - ii) ¿Es H subgrupo de A₄?
 - iii) ¿Cuántos subgrupos propios tiene H?
- 3. (10 puntos) Enunciar el teorema del número de caminos y la consecuencia necesaria para calcular el número de geodésicas. Elegir dos vértices no adyacentes de K_{3,3}, y utilizar lo anterior, para determinar el número de geodésicas y la distancia entre ellos. Estudiar si K_{3,3} es de Euler, completo y plano.
- **4.** (15 puntos). Sea $V = M_2(\mathbb{R})$ y sea U el subconjunto de V de todas las matrices simétricas con traza cero.
 - i) Comprobar que U es un subespacio vectorial y que $B = \{\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\}$ es una base de U. Calcular sus ecuaciones paramétricas e implícitas.
 - ii) Definimos en U

$$\langle A,D \rangle = Tr(AD^t)$$

- a) Calcular la matriz de Gram respecto de la base B de U.
- b) ¿Es B base ortogonal?.
- c) Calcular el ángulo que forman los dos vectores de la base B.
- d) ¿Es B unitaria? Calcular una base unitaria a partir de B.
- 5. (15 puntos) Sea $A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 0 & 3 \end{pmatrix}$ la matriz asociada a un endomorfismo en un espacio vectorial, V, respecto

de una base $B=\{v_1, v_2, v_3, v_4\}$

- a) Calcular la imagen del vector $v = v_1 + 3v_2$
- b) Calcular Ker(f) e Im(f)
- c) Clasificar f.
- d) Calcular, si es posible, una base de V respecto de la cual la matriz asociada sea diagonal.

Enunciar e incluir en cada pregunta la teoría que usemos.