Karadeniz Teknik Üniversitesi

Bilgisayar Mühendisliği Bölümü 2016-2017 Güz Yarıyılı

Sayısal Çözümleme Ara Sınav Soruları

Tarih: 17 Kasım 2016 Perşembe

1. Koordinat düzleminde hem x eksenine hem de e^x ve e^{-x} fonksiyonlarına teğet şekildeki gibi bir çember çiziliyor. Bu çemberin yarıçapını $x_0 = 0$ başlangıç değeri ve basit iterasyon yöntemini kullanarak 10^{-2} mutlak hatası ile (noktadan sonra 3 hane kullanarak) hesaplayınız. (25p)

Basit iterasyon yöntemi: Bu yöntemde f(x) fonksiyonu x = g(x) biçimine dönüştürülür. $x = x_0$

Süre: 120 dakika

başlangıç değeri ve $x_{k+1}=g(x_k)$ (k=0,1,2,...) iterasyon formülü kullanılarak sabit nokta hesaplanır. Yakınsak bir çözüm için $\mid g'(x_0) \mid < 1$ olmalıdır.

gerilimi uygulanıyor. C kondansatörü <u>yarıya</u> <u>kadar dolduğu anda</u> üzerinden geçen akımı (I_C) üst üçgen matris yöntemi ile devre öğelerine bağlı olarak hesaplayınız. (25p) **Üst üçgen matris yöntemi:** AX = B biçimindeki bir denklem sisteminin çözümü, A matrisi üst üçgen matrise dönüştürülerek (ana köşegeni altında bulunan bütün

elemanları 0 yapılarak) gerçekleştirilir.

2. Şekilde gösterilen elektrik devresine E sabit

3. Yandaki şekilde saatin tersi yönünde 30° döndürülerek çizilen sinüs işaretini $[0,\pi\sqrt{3}]$ aralığında temsil etmek üzere bir Hermite polinomu hesaplayınız. (25p)

Bilgi: Bu sinüs işaretini tanımlayan analitik ifade aşağıdaki gibi türetilebilir.

$$y\sqrt{3} - x = 2\sin((y + x\sqrt{3})/2)$$

Hermit polinomu: Bir f(x) fonksiyonunu [a,b]

aralığında temsil eden $p(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3$ biçimindeki Hermite polinomu aşağıdaki denklemler yardımıyla hesaplanır.

$$f(a) = p(a)$$
 $f(b) = p(b)$
 $f'(a) = p'(a)$ $f'(b) = p'(b)$

4. Aşağıda verilen noktalar için en küçük kareler yöntemi ile $g(x) = \frac{x}{a} + \frac{b}{x}$ biçiminde bir fonksiyon hesaplayınız. (25p)

fonksiyonu yandaki denklem sistemi yardımıyla hesaplanır.

***** Cevap 1 *****

 e^x ve e^{-x} fonksiyonlarina teğet olan çemberin merkezi y ekseni üzerinde olmalıdır. Buradan çember denklemi

$$x^2 + (y - r)^2 = r^2$$

olarak yazılabilir. Çemberin teğet noktalarını içeren üst yarısının denklemi

$$y = r + \sqrt{r^2 - x^2}$$

olacaktır. Türevi alındğında

$$y' = -\frac{x}{\sqrt{r^2 - x^2}}$$

bulunur. $y = e^{-x}$ fonksiyonunun teğet noktası x = a ise bu noktadaki türev ve fonksiyonun aldığı değer çember denklemindekilerle aynı olmalıdır.

$$-\frac{a}{\sqrt{r^2 - a^2}} = -e^{-a} = > r = a\sqrt{1 + e^{2a}}$$
 (1)

$$r + \sqrt{r^2 - a^2} = e^{-a} \tag{2}$$

Burada (1) no'lu denklemden çekilen r değeri (2) no'lu denklemde kullanılırsa

$$a\sqrt{1+e^{2a}}+ae^a=e^{-a}$$

$$a\sqrt{1+e^{2a}}=e^{-a}-ae^a$$

ve denklemin her iki tarafının karesi alınırsa

$$a^{2}(1 + e^{2a}) = e^{-2a} - 2a + a^{2}e^{2a}$$

$$e^{-2a} = 2a + a^2$$

$$a = \frac{e^{-2\alpha}}{a+2}$$

bulunur. Bu ifadeye $a_0 = 0$ başlangıç değeri ile basit iterasyon yöntemi uygulandığında, aşağıdaki tabloda gösterilen işlem adımları yardımıyla a değeri hesaplanır.

k	a_k	a_{k+1}	$\varepsilon = a_{k+1} - a_k $
0	0.0	0.5	0.5
1	0.5	0.147	0.353
2	0.147	0.346	0.199
3	0.346	0.212	0.134
4	0.212	0.295	0.083
5	0.295	0.241	0.054
6	0.241	0.275	0.034
7	0.275	0.253	0.022
8	0.253	0.267	0.014
9	0.267	0.258	0.009

Bu değer (1) no'lu ifadede yerine yazılarak

$$r = 0.258\sqrt{1 + e^{2*0.258}}$$

$$r = 0.421$$

bulunur.

***** Cevap 2 *****

Aşağrıdaki ilk devre sürekli durumu (kondansatörün dolduğu anı), ikinci devre ise kondansatorün yarısına kadar dolduğu zamanı göstermektedir

İlk devreden
$$V_C = \frac{2R}{3R}E - \frac{2R}{4R}E = \frac{E}{6}$$
 olacaktır.

İkinci devrede $V_C = E/12\,$ olduğu ana ait çevre denklemleri yazılırsa,

$$3Ri_{1} - 2Ri_{2} + Ri_{3} = E$$

$$-2Ri_{1} + 5Ri_{2} + Ri_{3} = -E/12 \qquad \Longrightarrow \qquad \begin{bmatrix} 3R & -2R & R \\ -24R & 60R & 12R \\ 12R & 12R & 48R \end{bmatrix} * \begin{bmatrix} i_{1} \\ i_{2} \\ i_{3} \end{bmatrix} = \begin{bmatrix} E \\ -E \end{bmatrix}$$

denklem sistemi elde edilir. Gauss-Jordan eliminasyon yöntemi ile

$$M = \begin{bmatrix} 3R & -2R & R & E \\ -24R & 60R & 12R & -E \\ 12R & 12R & 48R & -E \end{bmatrix} = \dots = \begin{bmatrix} 3R & -2R & R & E \\ 0 & 44R & 20R & 7E \\ 0 & 0 & 384R/11 & -90E/11 \end{bmatrix}$$

üst matrisine dönüştürülür. Buradan

$$i_3 = -15E/64R$$

$$i_2 = 17E/64R$$

$$i_1 = 113E/192R$$

$$i_C = i_2 + i_3 = E/32R$$

bulunur.

***** Cevap 3 *****

Grafikte, üzerinde sinüs işaretinin salınım yaptığı doğrunun denklemi

$$d(x) = tan30^o * x = \frac{x\sqrt{3}}{3}$$

ile verilir. x ekseni üzerindeki $\pi\sqrt{3}$ noktasının d(x) doğrusu üzerindeki izdüşümü $(\pi\sqrt{3},\pi)$ noktasında bulunur.

Bu noktanın orijine uzaklığı $\sqrt{(\pi\sqrt{3})^2 + \pi^2} = 2\pi$ olduğundan sinüs işaretinin bir periyodu temsil edilmek istenmektedir.

I.yol: Hermite yönteminin gerektirdiği (0,0) ve noktalarındaki türev değerlerini hesaplamak için, sinüs işaretinin x ekseni üzerindeki salınımını kullanabiliriz. $m = tan\alpha$ olan bir doğru parçası saatin tersi yönünde 30° döndürüldüğünde yeni eğimi $m = \tan (\alpha + 30^{\circ})$ olacaktır. x ekseni üzerindeki sinüs fonksiyonunun türevleri

$$m_1 = (\sin{(0)})' = \cos(0) = 1 = tan45^o$$

 $m_2 = (\sin{(2\pi)})' = \cos(2\pi) = 1 = tan45^o$
olarak hesaplanır. Bu iki eğimi (0,0) ve $(\pi\sqrt{3},\pi)$
noktalarına taşıdığımızda

$$\begin{split} m_3 &= m_4 = tan(45^o + 30^o) \\ &= \frac{tan45^o + tan30^o}{1 - tan45^o * tan30^o} \\ &= \frac{\sqrt{3}/3 + 1}{1 - \frac{\sqrt{3}}{3} * 1} = 2 + \sqrt{3} \end{split}$$

değeri elde edilir.

II. yol: Bu değer 30° döndürülen sinüs işaretinin analitik ifadesi yardımıyla da hesaplanabilir;

$$y\sqrt{3} - x = 2\sin((y + x\sqrt{3})/2)$$

ifadesinin türevi alındığında

$$y'\sqrt{3}-1=2((y'+\sqrt{3})/2)\cos((y+x\sqrt{3})/2)$$

bulunur. (0,0) veya $(\pi\sqrt{3},\pi)$ noktalarından biri (örneğin, ilk nokta) kullanıldığında

$$y'\sqrt{3}-1=2((y'+\sqrt{3})/2)\cos(0)$$

$$y'\sqrt{3} - 1 = y' + \sqrt{3}$$

$$y' = (\sqrt{3} + 1)/(\sqrt{3} - 1)$$

$$y' = 2 + \sqrt{3}$$

hesaplanır.

Hermite yöntemi ile

$$f(0) = 0$$

$$f(\pi\sqrt{3}) = \pi$$

$$f(0)' = 2 + \sqrt{3}$$

$$f(\pi\sqrt{3}) = 2 + \sqrt{3}$$

 $f(\pi\sqrt{3})' = 2 + \sqrt{3}$ değerleri kullanıldığında

$$p(x) = (2 + \sqrt{3})x - \frac{(6 + 2\sqrt{3})}{\pi}x^2 + \frac{(4 + 4/\sqrt{3})}{\pi^2}x^3$$
bulunacaktır.

***** Cevap 4 ***** $g(x) = \frac{x}{a} + \frac{b}{x} \text{ fonksiyonu } G(x) = xg(x) = Ax^2 + b \text{ biçimine dönüştürülmelidir } (A = 1/a).$

x	y = f(x)	Y = x * y	χ^2	χ^4	$x^2 * Y$
1	29.5	29.5	1	1	29.5
2	14.0	28.0	4	16	112.0
4	5.5	22.0	16	256	352.0
5	3.5	17.5	25	625	437.5
6	2.0	12.0	36	1296	432.0
8	-0.25	-2.0	64	4096	-128.0
10	-2.0	-20.0	100	10000	-2000
12	-3.5	-42.0	144	20736	-6048
		-45.0	390	37026	-6813

Tablodaki verileri kullanarak,

Tablodaki verileri kullanarak,
$$\begin{bmatrix} n & \sum_{i=1}^{n} x_{i}^{2} \\ \sum_{i=1}^{n} x_{i}^{2} & \sum_{i=1}^{n} x_{i}^{4} \end{bmatrix} * \begin{bmatrix} b \\ A \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} Y_{i} \\ \sum_{i=1}^{n} x_{i}^{2} Y_{i} \end{bmatrix}$$

$$\begin{bmatrix} 8 & 390 \\ 390 & 37026 \end{bmatrix} * \begin{bmatrix} b \\ a \end{bmatrix} = \begin{bmatrix} 45.0 \\ -6813 \end{bmatrix}$$

$$b = 30 \text{ ve } a = 1/A = 1/-0.5 = 2 \text{ bulunur.}$$
Buradan $g(x) = -\frac{x}{2} + \frac{30}{x} \text{ olacaktur.}$

$$b = 30$$
 ve $a = 1/A = 1/-0.5 = 2$ bulunur.

Buradan
$$g(x) = -\frac{x}{2} + \frac{30}{x}$$
 olacaktır

Karadeniz Teknik Üniversitesi

Bilgisayar Mühendisliği Bölümü 2016-2017 Güz Yarıyılı

Sayısal Cözümleme Final Sınavı

Tarih: 5 Ocak 2017 Persembe

Süre: 120 dakika

1. Ardışık tek sayıların karelerinin toplamı için Newton polinom yaklaşımını kullanarak genel bir

$$f(n) = \sum_{k=1}^{n} (2k-1)^2 = 1^2 + 3^2 + 5^2 + 7^2 + \dots + (2n-1)^2$$

formül, f(n), hesaplayınız. (25p) $f(n) = \sum_{k=1}^{n} (2k-1)^2 = 1^2 + 3^2 + 5^2 + 7^2 + \dots + (2n-1)^2$ **Newton polinomu:** $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$ noktaları bilinen bir fonksiyona ait Newton yaklaşım polinomu $[x_0, x_n]$ aralığı için aşağıdaki gibi hesaplanır.

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

Burada, a_k $(k = 0,1,2,...,n)$ katsayıları sonlu farklar tablosu oluşturularak belirlenir.

$$a_k = f[x_0, x_1, ..., x_k] = \frac{f[x_1, x_2, ..., x_k] - f[x_0, x_1, ..., x_{k-1}]}{x_k - x_0}$$

2. Aşağıdaki tabloda 5 noktası verilen f(x) ve g(x) fonksiyonları ile h(x) fonksiyonu arasında $f(x) * g(x) = \int h(x) dx$ esitliği bulunmaktadır.

/ 0 (/					
x	1	2	3	4	5
f(x)	2	5	10	18	K
g(x)	20	12	8	4	1

h(x) fonksiyonunun köklerinden birinin x = 3 noktasında olabilmesi için f(5) = K değerini aşağıda verilen formüllerden uygun olan(lar)ını seçerek hesaplayınız. (25p)

Geri, merkezi ve ileri yön farklar formülleri:

$$f'(x_0) = \frac{3f[x_0 - 4h] - 16f[x_0 - 3h] + 36f[x_0 - 2h] - 48f[x_0 - h] + 25f[x_0]}{12h}$$

$$f'(x_0) = \frac{f[x_0 - 2h] - 8f[x_0 - h] + 8f[x_0 + h] - f[x_0 + 2h]}{12h}$$

$$f'(x_0) = \frac{-25f[x_0] + 48f[x_0 + h] - 36f[x_0 + 2h] + 16f[x_0 + 3h] - 3f[x_0 + 4h]}{12h}$$

3. Yandaki şekilde, $G(\overline{x}, \overline{y})$ noktası $x^4 - 4x^2 + y^2 = 0$ eğrisinin x ekseni ile sınırladığı bölgenin ağırlık merkezini göstermektedir. Simpson kuralını h = 1/4ile kullanarak \overline{x} ve \overline{y} değerlerini hesaplayınız. (25p)

Hatırlatma: Bir f(x) fonksiyonunun [a, b] aralığında x ekseni ile sınırladığı bölgenin ağırlık merkezi, $G(\overline{x}, \overline{y})$, aşağıdaki ifadelerle hesaplanır

$$\overline{x} = \frac{S_y}{S} = \frac{\int_a^b x f(x) dx}{\int_a^b f(x) dx} \qquad \overline{y} = \frac{S_x}{S} = \frac{\int_a^b [f(x)]^2 dx}{2 \int_a^b f(x) dx}$$

Simpson kuralı: Bir f(x) fonksiyonunun [a, b] aralığında sayısal entegrali, seçilen noktalar arasındaki uzaklık h birim olmak üzere aşağıdaki gibi hesaplanır.

$$I = \frac{h}{3}(f[a] + 4(f[a+h] + f[a+3h] + \dots) + 2(f[a+2h] + f[a+4h] + \dots) + f[b])$$

4. Şekilde gösterilen, E sabit geriliminin uygulandığı elektrik devresinde ana koldan geçen akımın analitik ifadesini devre öğelerine bağlı olarak Picard iterasyonu ile hesaplayınız. (25p)

Picard İterasyonu: y' = F(x, y) diferansiyel denkleminin çözümü $y_0 = f(x_0)$ başlangıç değerini kullanarak aşağıda verilen Picard iterasyonu ile herhangi bir terime kadar hesaplanabilir.

$$Y_0(x) = y_0$$

$$Y_{n+1}(x) = y_0 + \int_{x_0}^x F(t, Y_n(t)) dt, \quad n \ge 0$$

2016-2017 Sayısal Çözümleme Final Cevapları

***** Cevap 1 *****

 $f(n) = \sum_{k=1}^{n} (2k-1)^2$ fonksiyonuna uygun bir polinomu hesaplarken n=1,2,...,6 değerlerine ait (1,1), (2,10), (3,35), (4,54), (5,165), (6,286) noktalarını kullanabiliriz. Polinomu belirlerken kullanılması gereken nokta sayısı, sonlu farklar tablosunda sadece 0 değerlerinden oluşan bir sütunun ortaya çıkmasına bağlıdır. Böyle bir sütunu oluşturacak biçimde nokta sayısı artırılabilir. Newton yönteminin uygulanmasında ihtiyaç duyulan a_k (k=0,1,2,...,n) katsayılarının hesabı aşağıda gösterilmiştir. $f^{(4)}(n)$ sütunu 0 değerlerine sahip olduğundan polinomun derecesinin 3 olacağına dikkat ediniz. Burada, 6 yerine 5 noktanın kullanımı ile de aynı polinom bulunabilir.

n	$f[x_n]$	$f[x_{n-1},x_n]$	$f[x_{n-2}, x_{n-1}, x_n]$		
1	1				
2	10	9			
3	35	25	8		
4	54	49	12	4/3	
5	165	81	16	4/3	0
6	286	121	20	4/3	0

Bu katsayılar ($a_0 = 1$, $a_1 = 9$, $a_2 = 8$, $a_3 = 4/3$) ile

$$f(n) = 1 + 9(x - 1) + 8(x - 1)(x - 2) + (4/3)(x - 1)(x - 2)(x - 3) = \frac{n(4n^2 - 1)}{3}$$
 polinomu hesaplanır.

***** Cevap 2 *****

Fonksiyonlar arasındaki ilişkiden

$$f(x) * g(x) = \int h(x)dx$$

$$f(x)' * g(x) + f(x) * g(x)' = h(x)$$

eşitliği türetilebilir. h(3) = 0 olarak verildiği için x = 3 noktasındaki türevlerden yararlanabiliriz. Merkezi farklar formülü ile

$$f(3)' = \frac{f[1] - 8f[2] + 8f[4] - f[5]}{12h} = \frac{2 - 8 * 5 + 8 * 18 - K}{12 * 1} = \frac{106 - K}{12}$$

$$g(3)' = \frac{g[1] - 8g[2] + 8g[4] - g[5]}{12h} = \frac{20 - 8 * 12 + 8 * 4 - 1}{12 * 1} = -\frac{15}{4}$$

türevleri hesaplanır. Yukarıdaki eşitlik yardımı ile

$$f(3)' * g(3) + f(3) * g(3)' = h(3)$$

$$\frac{106 - K}{12} * 8 - \frac{15}{4} * 10 = 0$$

$$106 - K = \frac{12}{8} * \frac{15}{4} * 10 = \frac{225}{4}$$

$$K = 49.75$$

bulunur.

***** Cevap 3 *****

Fonksiyonun analitik ifadesinden

$$x^{4} - 4x^{2} + y^{2} = 0$$
$$y = f(x) = \sqrt{4x^{2} - x^{4}}$$

yazılabilir. Ağırlık merkezinin hesabında S, S_x ve S_y değerlerine ihtiyaç vardır. Bu değerlerin hesabı, h = 1/4 olduğundan [0,2] aralığı için 9 nokta kullanılarak aşağıda gösterilmiştir.

х	0	1/4	2/4	3/4	4/4	5/4	6/4	7/4	8/4
f(x)	0	$\sqrt{63}/16$	$\sqrt{15}/4$	$\sqrt{495}/16$	$\sqrt{3}$	$\sqrt{975}/16$	$\sqrt{63}/4$	$\sqrt{735}/16$	0

xf(x)	0	$\sqrt{63}/64$	$\sqrt{15}/8$	$\sqrt{4455}/64$	$\sqrt{3}$	$\sqrt{24375}/64$	$\sqrt{567}/8$	$\sqrt{36015}/64$	0
$[f(x)]^2$	0	63/256	15/16	495/256	3	975/256	63/16	735/256	0

$$S = \frac{h}{3}(f[0] + 4(f[1/4] + f[3/4] + \cdots) + 2(f[2/4] + f[4/4] + \cdots) + f[8/4])$$

$$S = \frac{1/4}{3}(0 + 4(\sqrt{63}/16 + \sqrt{495}/16 + \sqrt{975}/16 + \sqrt{735}/16) + 2(\sqrt{15}/4 + \sqrt{3} + \sqrt{63}/4) + 0)$$

$$S = 2.625$$

$$\begin{split} S_y &= \frac{h}{3}(g[0] + 4(g[1/4] + g[3/4] + \cdots) + 2(g[2/4] + g[4/4] + \cdots) + g[8/4]) \\ S_y &= \frac{\frac{1}{4}}{3}(0 + 4(\sqrt{63}/64 + \sqrt{4455}/64 + \sqrt{24375}/64 + \sqrt{36015}/64) + 2(\sqrt{15}/8 + \sqrt{3} + \sqrt{567}/8) + 0) \\ S_y &= 3.035 \end{split}$$

$$S_x = \frac{h}{3}(h[0] + 4(h[1/4] + h[3/4] + \cdots) + 2(h[2/4] + h[4/4] + \cdots) + h[8/4])$$

$$S_x = \frac{1/4}{3}(0 + 4(63/256 + 495/256 + 975/256 + 735/256) + 2(15/16 + 3 + 63/16) + 0)$$

$$S_x = 4.265$$

Buradan ağırlık merkezinin koordinatı

$$\overline{x} = \frac{S_y}{S} = \frac{3.056}{2.625} = 1.164$$

$$\overline{y} = \frac{S_x}{2S} = \frac{4.265}{2 * 2.625} = 0.812$$

olacaktır.

***** Cevap 4 *****

Sekildeki devreye bağlı olarak aşağıdaki 3 denklem yazılabilir.

$$V_L = L I'_L$$
 (1)
 $V_L = E - RI$ (2)
 $V_L = 2R(I - I_L)$ (3)

$$V_I = E - RI \tag{2}$$

$$V_L = 2R(I - I_L) \tag{3}$$

(2) ve (3) no'lu denklemlerden

$$E - RI = 2R(I - I_L)$$

$$I_L = \frac{3I}{2} - \frac{E}{2R}$$

elde edilir. (1) ve (2) no'lu denklemler ile

$$E - RI = L I'_{L} = L \left(\frac{3I}{2} - \frac{E}{2R}\right)' = \frac{3L}{2}I'$$

yazılarak

$$I' = \frac{2}{3L}(E - RI)$$

bulunur. Başlangıç değeri, bobin elemanı açık devre olduğundan I(0) = E/3R olacaktır. Picard iterasyonu ile

$$F(t,I) = \frac{2}{3L}(E - RI)$$

$$I_0(t) = E/3R$$

$$I_{1}(t) = y_{0} + \int_{0}^{t} F(t, I_{0}(x)) dx = \frac{E}{3R} + \int_{0}^{t} \frac{2}{3L} (E - RI_{0}(x)) dx = \frac{E}{3R} + \int_{0}^{t} \frac{2}{3L} (E - R\frac{E}{3R}) dx = \frac{E}{3R} + \frac{4E}{9L} t$$

$$I_{2}(t) = y_{0} + \int_{0}^{t} F(t, I_{1}(x)) dx = \frac{E}{3R} + \int_{0}^{t} \frac{2}{3L} (E - RI_{1}(x)) dx = \frac{E}{3R} + \int_{0}^{t} \frac{2}{3L} (E - R\left(\frac{E}{3R} + \frac{4E}{9L}x\right)) dx$$

$$= \frac{E}{3R} + \frac{4E}{9L} t - \frac{8ER}{54L^{2}} t^{2}$$

$$I_{3}(t) = y_{0} + \int_{0}^{t} F(t, I_{2}(x)) dx = \frac{E}{3R} + \int_{0}^{t} \frac{2}{3L} (E - RI_{2}(x)) dx$$

$$= \frac{E}{3R} + \int_{0}^{t} \frac{2}{3L} \left(E - R\left(\frac{E}{3R} + \frac{4E}{9L}x - \frac{8ER}{54L^{2}}x^{2}\right)\right) dx = \frac{E}{3R} + \frac{4E}{9L} t - \frac{8ER}{54L^{2}} t^{2} + \frac{16ER^{2}}{486L^{3}} t^{3}$$

$$I_n(t) = \frac{E}{3R} + \frac{4E}{9L}t - \frac{8ER}{54L^2}t^2 + \dots + (-1)^{n+1}\frac{2E}{3R}\frac{1}{n!}\left(\frac{2R}{3L}t\right)^n$$

$$I_n(t) = \frac{E}{3R} + \frac{2E}{3R} \left[\frac{2R}{3L} t - \frac{4R^2}{18L^2} t^2 + \dots + (-1)^{n+1} \frac{1}{n!} \left(\frac{2R}{3L} t \right)^n \right]$$

bulunur. x = 2R/3L ile

$$I_n(t) = \frac{E}{3R} + \frac{2E}{3R} \left[x - \frac{x^2}{2} + \dots + (-1)^{n+1} \frac{x^n}{n!} \right]$$

$$I(t) = \lim_{n \to \infty} I_n(t) = \frac{E}{3R} + \frac{2E}{3R} (1 - e^{-x})$$

$$I(t) = \frac{E}{R} \left(1 - \frac{2}{3} e^{-x} \right)$$

$$I(t) = \frac{E}{R} \left(1 - \frac{2}{3} e^{-\frac{2R}{3L}t} \right)$$

ifadesine ulaşılır.