Properties of Inconsistency Measures for Databases

Hernan Razo Samantha Berg Christopher Anthony

Introduction

- The study focuses on the inconsistency in databases.
- The Measures used to quantify inconsistencies in databases.
- Properties of inconsistency measures.
- Proposes a new measure of inconsistency.
- Verified the new measure using Case study of HoloClean System.

Integrity Constraints and Inconsistent Databases

Integrity Constraints:

The columns in databases have certain set of rules that must be followed. Simple example:
 A column for contact number should not have characters.

Inconsistent Databases

- A database that violates the integrity constraints is said to be inconsistent.
- Same data exists in different formats in different tables.

Why Inconsistency in Databases?

There can be various reasons for inconsistency in a database:

- Data Generation
- Data Integration
- Imprecise Data
- Difference in integrity constraints across databases.

Measuring Inconsistency of a Database

The Inconsistency Measures are as below:

- I_d: Drastic Measure
- I_i: Problematic Tuples
- I_M: Minimal Inconsistent Subsets
- I_{MC}: Maximum consistent subsets
- I_R: Minimal tuples to remove to satisfy constraints

Properties of Inconsistency Measures

- Positivity: Positive only if the database is inconsistent
- Monotonicity: Strict constraints cannot reduce inconsistency
- Continuity: Single operation has limited impact on inconsistency
- Progression: We can always find an operation that reduces inconsistency
- Computational Complexity of the Measure

Proposed Measure

- The new measure is a linear relaxation of the Measure I_R (the minimal number of tuples to be removed to satisfy the minimum constraints)
- The ILP of I_p is used with a change in the second equation.
- In the first equation, we ensure that for every Minimal inconsistent subset that violate the constraint we remove at least one tuple to resolve the violation.
- The result of the ILP is the value of the measure I_R.

Minimize:
$$\sum_{i \in ids(D)} x_i \cdot \kappa(\langle -i \rangle(\cdot), D) \text{ subj. to:}$$

$$\forall E \in \mathsf{MI}_{\Sigma}(D): \sum_{i \in ids(E)} x_i \geq 1 \tag{1}$$

$$\forall i \in ids(D): x_i \in \{0, 1\} \tag{2}$$

Proposed Measure

- In the second equation x_i is 0 or 1 based on which the tuple is removed or kept: $x_i = 1$: remove the tuple $x_i = 0$: keep the tuple.
- The second equation is changed to 0 <= x_i <= 1
- In the New Measure the second condition is replaced with a new condition " $\forall i \in ids(D) : 0 \le xi \le 1$ " it allows to use any value between 0 and 1 for the variable.

Experimental Study

8 Datasets are used for the experiment and random noise is added to it using one of the two algorithms:

- Constraint Oriented Noise (CONoise)
 - Randomly Select a Constraint
 - Randomly Select 2 tuples from the Database
 - Modify value in one of the tuples to violate constraints
 - Random Noise (RNoise)
 - Randomly select a database cell.
 - Change its value to another value from the active domain or to a typo.

Experimental Study

- In each iteration one tuple or cell is changed.
- After modifying the databases the Measure values are then computed for the databases.

Comparing Measure Values for Noise added with CONoise

Comparing Measure Values for Noise added with RNoise

Case Study HoloClean

- The HoloClean system is a cleaning system that the authors treated as a Blackbox to further strengthen their findings.
- The HoloClean system features one-shot automatic. The system was simulated by providing 1 constraint at a time.
- The measure was computed after every step.
- It was observed that I_{d} and I_{p} fall short of effectively indicating progress. Contrarily, the other measures, particularly I_{R} and $\mathcal{I}_{\mathcal{R}_{p}}^{lin}$ are able to capture the reduction in the inconsistency level, and show an almost linear decay as desired.