C*-algebras, von Neumann algebras and Comparison Theory of Projections

Soumyashant Nayak

University of Pennsylvania, Philadelphia

30 Jan , 2014

Overview

- 1. Gelfand-Neumark theorem
- 2. GNS construction
- 3. Double commutant theorem
- 4. Kaplansky density theorem
- 5. Polar decomposition theorem
- 6. Comparison theorem
- 7. Type decomposition

C^* -algebras

Definition 1: A C^* -algebra is a Banach algebra $\mathfrak A$ equipped with an involution i.e. a self-map $A \to A^*$ $(A, A^* \in \mathfrak A)$, satisfying :

- $(\alpha A + B)^* = \bar{\alpha} A^* + B^*$
- $(AB)^* = B^*A^*$
- $(A^*)^* = A$
- $||A||^2 = ||A^*A||$

 $\forall A, B \in \mathfrak{A}, \alpha \in \mathbb{C}.$

Definition 2: A norm-closed self-adjoint subalgebra of $\mathcal{B}(\mathcal{H})$ (with or without I) is called a C^* -algebra.

Continuous functional calculus for self-adjoint elements

If $A \in \mathfrak{A}$ is normal i.e. $AA^* = A^*A$, then r(A) = ||A||.

Theorem 1

If A is a self-adjoint element of a C^* -algebra \mathfrak{A} , there is a unique continuous mapping $f \to f(A) : C(sp(A)) \to \mathfrak{A}$ such that f(A) has its elementary meaning when f is a polynomial.

One may deduce from the above theorem that, if $\mathfrak A$ is a C^* -algebra, $\mathscr B$ is a C^* -subalgebra of $\mathfrak A$, and $B \in \mathscr B$, then $sp_{\mathfrak A}(B) = sp_{\mathscr B}(B)$.

Theorem 2

Each element A of a C^* -algebra $\mathfrak A$ is a finite linear combination of unitary elements of $\mathfrak A$.

Theorem 3

Suppose that $\mathfrak A$ and $\mathcal B$ are C^* -algebras and ϕ is a *-homomorphism from $\mathfrak A$ into $\mathcal B$.

- (i) For each A in \mathfrak{A} , $sp(\phi(A)) \subseteq sp(A)$ and $\|\phi(A)\| \le \|A\|$; in particular, ϕ is continuous.
- (ii) If A is a self-adjoint element of $\mathfrak A$ and $f \in C(sp(A))$, then $\phi(f(A)) = f(\phi(A))$.
- (iii) If ϕ is a *-isomorphism, then $\|\phi(A)\| = \|A\|$ and $sp(\phi(A)) = sp(A)$ for each A in \mathfrak{A} , and $\phi(\mathfrak{A})$ is a C^* -subalgebra of \mathscr{B} .

Definition: A representation of a unital C^* -algebra $\mathfrak A$ on a Hilbert space $\mathscr H$ is a *-homomorphism $\pi: \mathfrak A \to \mathcal B(\mathscr H)$.

The above theorem tells us that a representation, in the algebraic sense, is automatically continuous.

Positivity

Theorem 4

If $\mathfrak A$ is a C^* -algebra and $A\in \mathfrak A$, the following conditions are equivalent :

- (i) $A = A^*, sp(A) \subset [0, \infty)$]
- (ii) $A = H^2$, for some H such that $H = H^*$.
- (iii) $A = B^*B$, for some B in \mathfrak{A} . Moreover, H is unique and is called the positive square root of A.

Such A's are said to be *positive*. The set of positive elements \mathfrak{A}^+ of \mathfrak{A} forms a positive cone.

Theorem 5

The following conditions on $\rho \in \mathfrak{A}^*$ are equivalent:

- (i) $\rho(\mathfrak{A}^+) \subset [0,\infty)$
- (ii) $\|\rho\| = \rho(I)$

Such ρ 's are called positive linear functionals.

A positive functional ρ is said to be a <u>state</u> if it is normalised so that $\rho(I) = \|\rho\| = 1$. The state space $\mathscr{S}(\mathfrak{A})$ of \mathfrak{A} is convex and weak* compact. By Krein-Milman theorem, it is the convex hull of its extreme points which are called *pure states*. The set of pure states is denoted by $\mathscr{P}(\mathfrak{A})$.

Theorem 6 (Gelfand-Neumark 1)

Suppose that $\mathfrak A$ is an **abelian** C^* -algebra and for each A in $\mathfrak A$, a complex-valued function $\hat A$ is defined throughtout $\mathscr P(\mathfrak A)$ by $\hat A(\rho)=\rho(A)$. Then $\mathscr P(\mathfrak A)$ is a compact Hausdorff space, relative to the weak* topology, and the mapping $A\to \hat A$ is a *-isomorphism onto the C^* -algebra $C(\mathscr P(\mathfrak A))$.

Continuous functional calculus for normal elements

Theorem 7

If A is a normal element of a C^* -algebra \mathfrak{A} , C(sp(A)) is the abelian C^* -algebra of all continuous complex- valued functions on sp(A), and ι in C(sp(A)) is defined by $\iota(t)=t$ ($t\in sp(A)$), then there is a unique *-isomorphism $\phi:C(sp(A))\to \mathfrak{A}$ such that $\phi(\iota)=A$. For each $f\in C(sp(A))$, $\phi(f)$ is normal, and is the limit of a sequence of polynomials in I,A,A^* . The set $\{\phi(f):f\in C(sp(A))\}$ is an abelian C^* -algebra, and is the smallest C^* -algebra of $\mathfrak A$ that contains A.

- A is self-adjoint $\Leftrightarrow sp(A) \subset \mathbb{R}$.
- A is positive $\Leftrightarrow sp(A) \subset \mathbb{R}^+$.
- A is unitary $\Leftrightarrow sp(A) \subseteq \mathbb{T}^1$.
- A is a projection $\Leftrightarrow sp(A) \subseteq \{0,1\}$.

States and representations

Let X be a compact, Hausdorff space.

- States on C(X) may be identified with probability measures μ defined on the σ -algebra \mathcal{B}_X of Borel sets in X, i.e. $\rho_{\mu}(f) = \int f d\mu$.
- C(X) is 'dense' in $L^2(\mu)$.
- The equation $\pi_{\mu}(f)(g) = fg$ defines a representation π_{μ} of C(X).

Definition Let ϕ be a representation of a C^* -algebra $\mathfrak A$ on a Hilbert space $\mathscr H$. If there is a vector $x \in \mathscr H$ for which the linear subspace

$$\phi(\mathfrak{A})x = \{\phi(A)x : A \in \mathfrak{A}\}\$$

is everywhere dense in \mathcal{H} , ϕ is described as a **cyclic** representation, and x is termed a **cyclic vector** (or **generating vector**) for ϕ .

GNS construction

Theorem 8 (Gelfand-Neumark-Segal)

If ρ is a state of a C^* -algebra $\mathfrak A$, there is a cyclic representation π_ρ of $\mathfrak A$ on a Hilbert space $\mathscr H_\rho$, and a unit cyclic vector $\mathsf x_\rho$ for π_ρ such that $\rho(\mathsf A) = \langle \pi_\rho(\mathsf A) \mathsf x_\rho, \mathsf x_\rho \rangle \ \forall \mathsf A \in \mathfrak A$

Cauchy- Schwarz inequality:

If ρ is a state of a C^* -algebra \mathfrak{A} , then $|\rho(B^*A)|^2 \leq \rho(A^*A)\rho(B^*B) \ \forall A,B \in \mathfrak{A}$. $\mathscr{L}_{\rho} = \{A \in \mathfrak{A} : \rho(A^*A) = 0\}$ is a closed left ideal in \mathfrak{A} $\mathfrak{A}/\mathscr{L}_{\rho}$ is the pre-Hilbert space with inner product $\langle A + \mathscr{L}_{\rho}, B + \mathscr{L}_{\rho} \rangle = \rho(B^*A)$. $\pi_{\rho}(A)(B + \mathscr{L}_{\rho}) = AB + \mathscr{L}_{\rho}$

Theorem 9 (Gelfand-Neumark 2)

Each C*-algebra has a faithful representation.

von Neumann algebras

Definition: Let $\mathscr{F} \subseteq \mathcal{B}(\mathscr{H})$. The commutant of \mathscr{F} is defined to be $\{A' \in \mathcal{B}(\mathscr{H}) : AA' = A'A, \ \forall A \in \mathscr{F}\}$

Theorem 10 (Double commutant theorem)

Let $\mathfrak A$ be a unital self-adjoint algebra of operators acting on the Hilbert space $\mathscr H$. Then the following are equivalent :

- (i) A is weak operator closed.
- (ii) A is strong-operator closed.
- (iii) $(\mathfrak{A}')' = \mathfrak{A}$.

Definition 1 : A von Neumann algebra $\mathscr R$ is the commutant of a unitary group representation (say π of G) on a Hilbert space $\mathscr H$ i.e.

$$\mathscr{R} = \{ A \in \mathcal{B}(\mathscr{H}) : A\pi(g) = \pi(g)A, \ \forall g \in G \}$$

Definition 2: A von Neumann algebra \mathcal{R} is a unital self-adjoint algebra which satisfies any of the equivalent conditions described in the double commutant theorem.

Theorem 11

A von Neumann algebra \mathcal{R} is a C^* -algebra which is also a dual Banach space.

Projections

von Neumann algebras contain plenty of projections. Let $\mathscr R$ be a von Neumann algebra over a Hilbert space $\mathscr H$.

- If $A \in \mathcal{R}$, the range projection $R(A) \in \mathcal{R}$.
- ullet The union and intersection of each family of projections in $\mathscr R$ lie in $\mathscr R.$

Spectral resolution

Theorem 12

If A is a self-adjoint operator acting on a Hilbert space \mathscr{H} and \mathscr{A} is an abelian von Neumann algebra containing A, there is a family $\{E_{\lambda}\}$ of projections, indexed by \mathbb{R} , in \mathscr{A} such that

- (i) $E_{\lambda} = 0$ if $\lambda < -\|A\|$, and $E_{\lambda} = I$ if $\|A\| \le \lambda$;
- (ii) $E_{\lambda} \leq E_{\lambda'}$, if $\lambda \leq \lambda'$;
- (iii) $E_{\lambda} = \bigwedge_{\lambda' > \lambda} E_{\lambda'}$;
- (iv) $AE_{\lambda} \leq \lambda E_{\lambda}$ and $\lambda (I E_{\lambda}) \leq A(I E_{\lambda})$ for each λ ;
- (v) $A = \int_{-\|A\|}^{\|A\|} \lambda dE_{\lambda}$, in the sense of norm convergence of approximating Riemann sums; and A is the norm limit of finite linear combinations with coefficients in sp(A) of orthogonal projections $E_{\lambda'} E_{\lambda}$.

Suppose $\mathscr{R}=\pi(G)'$ as in definition 1. Then $E\leftrightarrow ran(E)$ establishes a bijection $\mathscr{P}(\mathscr{R})\leftrightarrow G$ -stable subspaces of \mathscr{H} . In other words, the G-stable subspaces of \mathscr{H} are precisely the ranges of projection operators in \mathscr{R} .

The notion of unitary equivalence of subrepresentations of π translates to the so-called *Murray-von Neumann equivalence* of projections relative to \mathscr{R} . $P \sim_{\mathscr{R}} Q$ if and only if there exists an operator $V \in \mathscr{R}$ such that $P = V^*V, Q = VV^*$ (V is said to be a partial isometry with initial space ran(P) and final space ran(Q)).

One naturally defines : If $P,Q\in\mathcal{P}(\mathscr{R})$ say $P\precsim_{\mathscr{R}}Q$ if there exists $P_0\in\mathcal{P}(\mathscr{R})$ such that $P\sim_{\mathscr{R}}P_0\leq Q$ (From now on , we will use \sim instead of $\sim_{\mathscr{R}}$ when its unambiguous which von Neumann algebra is under consideration.)

Kaplansky density theorem

Theorem 13 (Kaplansky)

Let \mathscr{A} and \mathscr{B} be *-subalgebras of $\mathscr{B}(\mathscr{H})$ and denote by \mathscr{A}_1 and \mathscr{B}_1 respectively their unit balls. Suppose that $\mathscr{A} \subseteq \mathscr{B}$ and \mathscr{A} is strong -operator dense in \mathscr{B} . Then \mathscr{A}_1 is strong operator dense in \mathscr{B}_1 .

A family \mathscr{F} of bounded operators on a Hilbert space \mathscr{H} is said to act topologically irreducibly when (0) and \mathscr{H} are the only (closed) stable spaces under \mathscr{F} . If (0) and \mathscr{H} are the only linear manifolds (not necessarily closed) in \mathscr{H} stable under \mathscr{F} , we say that \mathscr{F} acts algebraically irreducibly.

Theorem 14

If the C^* -algebra $\mathfrak A$ acts topologically irreducibly on the Hilbert space $\mathscr H$, then it acts algebraically irreducibly.

Polar decomposition theorem

Theorem 15 (Polar decomposition theorem)

If T is a bounded operator on the Hilbert space \mathscr{H} , there is a partial isometry V with initial space the closure $\operatorname{ran}(T^*)$ of the range of T^* and final space $\operatorname{ran}(T)$ such that $T = V(T^*T)^{\frac{1}{2}} = (TT^*)^{\frac{1}{2}}V$. If T = WH with H positive and W a partial isometry whose initial space is $\operatorname{ran}(H)$, then $H = (T^*T)^{\frac{1}{2}}$ and W = V. If neither T nor T^* annihilates a non-zero vector, then V is a unitary operator.

If \mathscr{R} is a von Neumann algebra and $T \in \mathscr{R}$, then $R(T) \sim R(T^*)$.

Definition: The **central carrier** of an element A of a von Neumann algebra \mathcal{R} , denoted by C_A , is the smallest projection Q in $\mathcal{C} = \mathcal{R} \cap \mathcal{R}'$ (center of \mathcal{R}) for which QA = A.

$$C_A = [\{RAx : R \in \mathcal{R}, x \in \mathcal{H}\}]$$

Let E, F be projections in \mathcal{R} .

- (i) If $E \lesssim F$, then $C_E \leq C_F$.
- (ii) If $E \sim F$, then $C_E = C_F$.
- (iii) Two projections E and F in a von Neumann algebra \mathscr{R} have non-zero equivalent subprojections if and only if $C_E C_F \neq 0$.

 \lesssim is a partial ordering on the equivalence classes of $\mathcal{P}(\mathscr{R})$. (Schroeder-Bernstein)

Theorem 16 (Comparison theorem)

Suppose that E and F are projections in \mathscr{R} . Then there exist unique projections P,Q,R in the center \mathscr{C} such that P+Q+R=I, $PE \sim PF, Q_0E \prec Q_0F$ for each projection Q_0 in \mathscr{C} such that Q_0 is a nonzero central subprojection of Q and $R_0F \prec R_0E$ for each projection R_0 in \mathscr{C} such that R_0 is a nonzero central subprojection of R.

Definition : A factor \mathcal{M} is a von Neumann algebra whose center is $\{\lambda I:\lambda\in\mathbb{C}\}.$

 \lesssim is a total ordering on the equivalence classes of $\mathcal{P}(\mathcal{R})$ if \mathcal{R} is a factor.

A projection E in \mathcal{R} is said to be

- (i) <u>finite</u> if there is no projection E_0 in $\mathscr R$ such that $E \sim E_0 < E$;
- (ii) infinite if it is not finite;
- (iii) properly infinite if QE is infinite for each projection Q in $\mathscr C$ such that $0 < Q \le C_E$, and $E \ne 0$.

Definition: A projection E in a von Neumann algebra \mathscr{R} is said to be an **abelian projection** in \mathscr{R} when $E\mathscr{R}E$ is abelian. A projection in \mathscr{R} is abelian if and only if it is minimal in the class of projections in \mathscr{R} with the same central carrier.

A von Neumann algebra ${\mathscr R}$ is said to be :

- (i) **type I** if it has an abelian projection with central carrier I of **type** I_n if I is the sum of n equivalent abelian projections.
- (ii) **type II** if it has no non-zero abelian projection but has a finite projection with central carrier I of type II_1 if I is finite of type II_{∞} if I is properly infinite.
- (iii) **type III** if it has no non-zero finite projections.

Theorem 17 (Type decomposition)

If \mathscr{R} is a von Neumann algebra acting on a Hilbert space \mathscr{H} , there are (mutually orthogonal) central projections P_n , n not exceeding dim \mathscr{H} , $P_{c_1}, P_{c_{\infty}}$ and P_{∞} , with sum I, maximal with respect to the properties that $\mathscr{R}P_n$ is of type I_n or $P_n=0$, $\mathscr{R}P_{c_1}$ is of type II_1 or $P_{c_1}=0$, $\mathscr{R}P_{c_{\infty}}$ is of type II_{∞} or $P_{c_{\infty}}=0$, and $\mathscr{R}P_{\infty}$ is of type III or $P_{\infty}=0$.

A factor \mathcal{M} is either of type I_n , or II_1 , or II_{∞} , or III.

Theorem 18

If \mathcal{M} is a factor of type I_n , then \mathcal{M} is *-isomorphic to $\mathcal{B}(\mathcal{H})$, where \mathcal{H} has dimension n.

Examples of type II_1 factors :

Let G be a discrete group with unit element e, and \mathscr{H} denote the Hilbert space $l_2(G)$.

Define
$$x * y(g_0) := \sum_{g \in G} x(g_0 g^{-1}) y(g)$$
.

Denote by x_g the function on G that takes the value 1 at g and 0 at other elements of G.

$$(x * x_g)(g_0) = x(g_0g^{-1})$$
 and $(x_g * x)(g_0) = x(g^{-1}g_0)$.

Lemma 19

If $T \in \mathcal{B}(\mathcal{H}), x \in \mathcal{H}$, and $\langle Tx_g, x_h \rangle = \langle x * x_g, x_h \rangle$ for all g and h in G, then $T = L_x$.

Theorem 20

If x and y in $l_2(G)$ are such that L_x and L_y are bounded operators on $l_2(G)$, then

- (i) $L_x + L_y = L_{x+y}$, $aL_x = L_{ax}$, $L_xL_y = L_{x*y}$, $L_x^* = L_{x*}$ where $x^*(g) = \overline{x(g^{-1})}$, $L_{x_e} = I$ and x = y if $L_x = L_y$;
- (ii) the sets $\mathcal{L}_G := \{L_x : x \in l_2(G), L_x \in \mathcal{B}(l_2(G))\}$ and $\mathcal{R}_G := \{R_x : x \in l_2(G), R_x \in \mathcal{B}(l_2(G))\}$ are von Neumann algebras such that $\mathcal{L}'_G = \mathcal{R}_G$;
- (iii) $\{L_{x_g}: g \in G\}$ generates \mathcal{L}_G and $\{R_{x_g}: g \in G\}$ generates \mathcal{R}_G as von Neumann algebras; and L_{x_g} , R_{x_g} are unitary operators.

$$\langle L_x L_y x_g, x_g \rangle = \langle L_y L_x x_g, x_g \rangle$$

Proposition 21

The von Neumann algebras \mathcal{L}_G and \mathcal{R}_G are finite.

Theorem 22

If G is a group with unit e and the conjugacy class (g) of each element g different from e is infinite, then \mathcal{L}_G and \mathcal{R}_G are factors of type II_1 when $G \neq e$.

 \mathscr{F}_n , the free (non-abelian group on n generators ($n \geq 2$) and an infinity of generators is permissible) and Π , the group of permutations of the integers that leave fixed all but a finite set of integers, are examples of groups that satisfy the infinite-conjugacy-class condition above (*i.c.c. groups*).

References:

- Fundamentals of the Theory of Operator Algebras Vol. I Richard Kadison, John Ringrose
- Fundamentals of the Theory of Operator Algebras Vol. II Richard Kadison, John Ringrose
- Lecture Notes on Von Neumann Algebras John Ringrose