STAT 500

Multiple Linear Regression Models Grandfather Clock Example

- There were 32 antique (>100 years old) grandfather clocks sold at auction.
- Response variable: price at auction
- Two explanatory variables: age (in years) and the number of bidders

Data:

Price	Age (years)	NumBidder
$oldsymbol{Y}$	X_1	$oldsymbol{X_2}$
1235	127	13
1080	115	12
845	127	7
•	•	•
•	•	•
•	•	•
1262	168	7

SLR of **Age** on **Price**

$$\hat{Y}_i = -192.05 + 10.48 Age$$

- There is a significant linear relationship between age and price at auction (F-test p-value < 0.0001).
- Each additional year of age is associated with a mean increase in price of 10.48 dollars.
- ullet $R^2=53.24\%$ of the variation in price can be explained by the linear regression model with age.

SLR of Number of Bidders on Price

$$\hat{Y}_i = 804.91 + 54.76 NumBid$$

- There is a significant linear relationship between number of bidders and price at auction (F-test p-value=0.0252).
- Each additional additional bidder is associated with a mean increase in price of 54.76 dollars.
- ullet $R^2=15.62\%$ of the variation in price can be explained by the linear regression model with number of bidders.

With both explanatory variables in the MLR, the dimension of the design matrix X is 32×3 .

$$X = egin{bmatrix} 1 & 127 & 13 \ 1 & 115 & 12 \ 1 & 127 & 7 \ & \cdot & \cdot & \cdot \ & \cdot & \cdot & \cdot \ 1 & 168 & 7 \end{bmatrix}$$

With both explanatory variables in the MLR, the dimension of the design matrix X is 32×3 .

$$\mathbf{b} = (X^T X)^{-1} X^T \mathbf{Y} = \left[egin{array}{c} b_0 \ b_1 \ b_2 \end{array}
ight] = \left[egin{array}{c} -1338.95 \ 12.74 \ 85.95 \end{array}
ight]$$

Estimated Regression Model:

$$\hat{Y}_i = -1338.95 + 12.74 Age + 85.95 NumBid$$

Grandfather Clock Example Different Regression Analysis

$$\hat{Y}_i = -192.05 + 10.48 Age$$

$$\hat{Y}_i = 804.91 + 54.76 NumBid$$

$$\hat{Y}_i = -1338.95 + 12.74 Age + 85.95 NumBid$$

$$MS_{error}(X^TX)^{-1} = 17818 egin{bmatrix} 1.695 & -0.00773 & -0.057 \ -0.00773 & 0.0000459 & 0.0001 \ -0.057 & 0.0001 & 0.00428 \end{bmatrix}$$

$$= \begin{bmatrix} 30209 & -137.74 & -1016.58 \\ -137.74 & 0.8185 & 2.004 \\ -1016.58 & 2.004 & 76.186 \end{bmatrix}$$

Then

$$S_{b_0} = \sqrt{30209} = 173.81$$
 $S_{b_1} = \sqrt{0.8185} = 0.9047$ $S_{b_2} = \sqrt{76.186} = 8.7285$

MLR: Grandfather Clock Example Inference for β_1

 eta_1 represents the change in auction price when age is increased 1 year while the number of bidders is held constant.

A $(1-\alpha) \times 100\%$ confidence interval for β_1 :

$$b_1 \pm t_{df_{error},1-lpha/2} \ S_{b_1}$$

A 95% confidence interval is

$$12.74 \pm (2.045)(0.9047) \Rightarrow (10.89, 14.59)$$

MLR: Grandfather Clock Example Inference for β_1

Hypothesis test:

$$H_o:eta_1=0$$
 or $E(Y|X_1=x_1,X_2=x_2)=eta_0+eta_2x_2$ versus

$$H_a:eta_1
eq 0$$
 or $E(Y|X_1=x_1,X_2=x_2)=eta_0+eta_1x_1+eta_2x_2$

$$t = \frac{b_1 - 0}{S_{b_1}} = \frac{12.74}{0.9047} = 14.08$$

on 29 df with p-value < 0.0001.

SAS code for MLR analysis of Grandfather Clock Example

```
/* compute the MLR with price and age and number of bidders */
proc reg data=set1;
  model price = age numbid;
  run;
```

MLR analysis for clock example

The REG Procedure
Model: MODEL1
Dependent Variable: price

Number of Observations Read	32
Number of Observations Used	32

Analysis of Variance								
Source Sum of Mean Square F Value Pr > 1								
Model	2	4283063	2141531	120.19	<.0001			
Error	29	516727	17818					
Corrected Total	31	4799790						

Root MSE	133.48467	R-Square	0.8923
Dependent Mean	1326.87500	Adj R-Sq	0.8849
Coeff Var	10.06008		

Parameter Estimates									
Variable	DF	Parameter Estimate		t Value	Pr > t	95% Confidence Limits			
Intercept	1	-1338.95134	173.80947	-7.70	<.0001	-1694.43162	-983.47106		
age	1	12.74057	0.90474	14.08	<.0001	10.89017	14.59098		
numbid	1	85.95298	8.72852	9.85	<.0001	68.10115	103.80482		

$$\hat{Y}_i = -1338.95 + 12.74 Age + 85.95 NumBid$$

- ullet Model is statistically significant in explaining Price with F=120.9 and p-value <0.0001.
- ullet $R^2=89.23\%$ of the variation in price can be explained by the multiple linear regression model with both age and number of bidders.
- ullet Given number of bidders in the model, age is statistically significant with t=14.08 and p-value <0.0001.
- ullet Given age in the model, number of bidders is statistically significant with t=9.85 and p-value <0.0001.

$$\hat{Y}_i = -1338.95 + 12.74 Age + 85.95 NumBid$$

- ullet This analysis indicates that changes in either Age (X_1) or Number of Bidders (X_2) affect the auction price.
 - Holding the number of bidders constant, a 1 year increase in age increases price by 12.74 dollars.
 - Holding age constant, a 1 additional bidder increase increases auction price by 85.95 dollars.
 - What if you change both age and number of bidders?
 - How should the intercept be interpreted?
- ullet The significance of each coefficient does not necessarily imply that the model $Y_i=eta_0+eta_1x_{i1}+eta_2x_{i2}+\epsilon_i$ is correct

Estimate the mean price of a clock when

$$X_1 = Age = 150$$
 years

$$X_2 = \text{NumBid} = 10$$

In this case

$$x^T = (1 \ 150 \ 10)$$

The least squares estimate of the mean yield under these conditions is

$$\hat{Y} = x^T b = (1 \ 150 \ 10) egin{bmatrix} -1338.95 \ 12.74 \ 85.95 \end{bmatrix} = 1431.55$$

Compute the standard error of the estimated mean

$$S_{\hat{Y}}^{2} = MS_{error}x^{T}(X^{T}X)^{-1}x$$

$$= x^{T} \left[MS_{error}(X^{T}X)^{-1} \right] x$$

$$= (1\ 150\ 10) \begin{bmatrix} 30209 & -137.74 & -1016.58 \\ -137.74 & 0.8185 & 2.004 \\ -1016.58 & 2.004 & 76.186 \end{bmatrix} \begin{bmatrix} 1 \\ 150 \\ 10 \end{bmatrix}$$

$$= 604.04$$

The standard error is $S_{\hat{Y}} = \sqrt{604.04} = 24.58$

A (1-lpha) imes 100% confidence interval for the mean price under the conditions specified by $x=(1\ 150\ 10)$ is

$$\hat{Y} \pm t_{df_{error},1-lpha/2} \; S_{\hat{Y}}$$

A 95% confidence interval is

$$1431.55 \pm (2.045)(24.58) \Rightarrow (1381.28, 1481.82)$$

Predict price of a clock to be sold at a future auction when

$$X_1 = \text{Age} = 150 \text{ years}$$

$$X_2 = \text{NumBid} = 10$$

In this case

$$x^T = (1 \ 150 \ 10)$$

The predicted value of the random error is zero and the predicted price under the conditions specified by $m{x}$ is

$$\hat{Y} \; = \; x^Tb + 0 = (1 \;\; 150 \;\; 10) \left[egin{array}{ccc} -1338.95 \ 12.74 \ 85.95 \end{array}
ight] = 1431.55$$

Compute the standard error of the predicted price

$$S_{pred}^2 = MS_{error} + MS_{error}x^T(X^TX)^{-1}x$$

$$= MS_{error} + S_{\hat{Y}}^2$$

$$= 17818 + 604.04$$

$$= 18422.04$$

The standard error is

$$S_{pred} = \sqrt{18422.04} = 135.73$$

(1-lpha) imes 100% prediction interval for the price under the conditions specified by $x=(1\ 150\ 10)$ is

$$\hat{Y} \pm t_{dferror,1-lpha/2} \; S_{pred}$$

A 95% prediction interval is

$$1431.55 \pm (2.045)(135.73) \Rightarrow (1153.98, 1709.12)$$

(1-lpha) imes 100% simultaneous prediction region for the auction price

$$\hat{Y} \pm \sqrt{(k+1)F_{(k+1,df_{error}),1-lpha}} \; S_{pred}$$

Simultaneous 95% prediction intervals are

$$\hat{Y}\pm\sqrt{3F_{(3,29),0.95}}S_{pred}$$

 \Rightarrow

$$\hat{Y} \pm \sqrt{(3)(2.934)} S_{pred}$$

 \Rightarrow

$$\hat{Y} \pm (2.9668) S_{pred}$$

MLR: Grandfather Clock Example Effect Test for β_2 (NumBid)

Source	d.f.	SS	MS	F	p-val
Model with Age	1	2555224	2555224	34.15	< 0.0001
Error	30	2244565	74819		
corrected total	31	4799790			
Source	d.f	f. SS	MS	F	p-val
Model with Age and NumbBi	d 2	4283063	3 2 14153	l 120.1	9 < 0.000
	d 2			1 120.1	9 < 0.000

MLR: Grandfather Clock Example Effect Test for β_2 (NumBid)

- ullet Adding Number of Bidders to the SLR model with Age reduces the SS_{Error} for the model.
- \bullet For SLR with Age, $SS_{Error}=2244565$.
- ullet For MLR with Age and NumBid, $SS_{Error}=516727$.
- Difference = 2244565 516727 = 1727838.

MLR: Grandfather Clock Example Effect Test for β_2 (NumBid)

$$F = rac{(SSE_{ ext{r.model}} - SSE_{ ext{f.model}})/m}{MSE_{ ext{f.model}}}$$
 $= rac{(SSE_{ ext{SLRage}} - SSE_{ ext{MLR}})/m}{MSE_{ ext{MLR}}}$
 $= rac{1727838/1}{17818}$
 $= 96.97$
 $= 9.85^2$

$$\hat{Y}_i = -1338.95 + 12.74 Age + 85.95 NumBid$$

- This model is additive.
 - The effect of age on the price of a clock is the same for each number of bidders.
 - The effect of number of bidders on the price of a clock is the same for every value of age.

MLR with Interaction: Grandfather Clock Example

• Allows for the effect of one explanatory variable on the response variable to be different depending on the value of another explanatory variable.

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} x_{i2} + \epsilon_i$$

- Effect on Response Variable
 - The effect of increasing x_{i1} by 1 is $\beta_1 + \beta_3 x_{i2}$.
 - The effect of increasing x_{i2} by 1 is $\beta_2 + \beta_3 x_{i1}$.

SAS code for MLR analysis of Grandfather Clock Example

```
/* compute the MLR with price and age and number of bidders */
data set1;
  infile 'clocks.csv' dlm = ',' firstobs = 2;
  input age numbid price;
  agexnumbid=age*numbid;
  cagexcnumbid=(age-144.9375)*(numbid-9.53125);
run;

proc reg data=set1 ;
  model price = age numbid agexnumbid ;
  run;
```

The REG Procedure

Dependent Variable: price

Number of Observations Read	32
Number of Observations Used	32

Analysis of Variance								
Source	DF	Sum of Squares		F Value	Pr > F			
Model	3	4578427	1526142	193.04	<.0001			
Error	28	221362	7905.79047					
Corrected Total	31	4799790						

Root MSE	88.91451	R-Square	0.9539
Dependent Mean	1326.87500	Adj R-Sq	0.9489
Coeff Var	6.70105		

Parameter Estimates								
Variable	Parameter Standard DF Estimate Error t Value Pr > t Standard Limits							
Intercept	1	320.45799	295.14128	1.09	0.2868	-284.11152	925.02751	
age	1	0.87814	2.03216	0.43	0.6690	-3.28454	5.04083	
numbid	1	-93.26482	29.89162	-3.12	0.0042	-154.49502	-32.03462	
agexnumbid	1	1.29785	0.21233	6.11	<.0001	0.86290	1.73279	

Test for Significance of Interaction Term

- T-test: t = 6.11, p-value < 0.0001.
- Effect test:
 - For MLR with Age and NumBid, $SS_{Error} = 516727$.
 - For MLR with Age and NumBid and interaction, SS_{Error} = 221362.

Test for Significance of Interaction Term

 \bullet The partial F-test:

$$F = rac{(SSE_{ ext{r.model}} - SSE_{ ext{f.model}})/m}{MSE_{ ext{f.model}}}$$
 $= rac{(516727 - 221362)/1}{7905.79}$
 $= 37.36$
 $= 6.11^2$

Interaction Term is statistically significant in model.

Tests for Component Explanatory Variables

- Do not perform significance tests for component explanatory variables when corresponding interaction terms exist in the model.
- These tests no longer have any meaning.
 - Test for significance of variable given the other variables in the model.
 - The component variable is already in the model through its presence in the interaction term.
 - Cannot separate significance of component variable from its interaction term.

Alternative Parameterization of Interaction Term

$$\begin{array}{lll} Y_i & = & \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 (x_{i1} - \bar{x}_1)(x_{i2} - \bar{x}_2) + \epsilon_i \\ \\ & = & \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} x_{i2} - \beta_3 x_{i1} \bar{x}_2 - \beta_3 x_{i2} \bar{x}_1 + \beta_3 \bar{x}_1 \bar{x}_2 + \epsilon_i \\ \\ & = & \beta_0 + \beta_3 \bar{x}_1 \bar{x}_2 + (\beta_1 - \beta_3 \bar{x}_2) x_{i1} + (\beta_2 - \beta_3 \bar{x}_1) x_{i2} + \beta_3 x_{i1} x_{i2} + \epsilon_i \end{array}$$

SAS code for MLR analysis of Grandfather Clock Example

```
/* compute the MLR with price and age and number of bidders */
proc reg data=set1;
  model price = age numbid cagexcnumbid / p clm cli clb;
  run;
```

The REG Procedure

Dependent Variable: price

Number of Observations Read	32
Number of Observations Used	32

Analysis of Variance								
Source	DF	Sum of Squares		F Value	Pr > F			
Model	3	4578427	1526142	193.04	<.0001			
Error	28	221362	7905.79047					
Corrected Total	31	4799790						

Root MSE	88.91451	R-Square	0.9539
Dependent Mean	1326.87500	Adj R-Sq	0.9489
Coeff Var	6.70105		

Parameter Estimates									
Variable	DF	Parameter Estimate			Pr > t	95% Confidence Limits			
Intercept	1	-1472.43236	117.81657	-12.50	<.0001	-1713.76866	-1231.09606		
age	1	13.24824	0.60835	21.78	<.0001	12.00209	14.49438		
numbid	1	94.84170	5.99320	15.82	<.0001	82.56519	107.11822		
cagexcnumbid	1	1.29785	0.21233	6.11	<.0001	0.86290	1.73279		

Alternative Parameterization of Interaction Term

- Estimated coefficient for interaction term does not change.
- Estimated coefficients for intercept and component explanatory variables change.
 - Different std. errors, t-test statistics and p-values.
- Correlation between component explanatory variables and interaction term is reduced.