Hidrodinâmica

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

31 de Maio de 2021

Prof. Flaviano W. Fernandes

Sumário

- Introdução
- Vazão ou fluxo
- Lei de conservação da massa
 - Equação da continuidade
- Equação de Bernoulli
- **Aplicações**
- **Apêndice**

O que é hidrodinâmica?

Introdução •0

Dinâmica dos fluidos

Estudo dos fluidos em movimento

Sustentação da aeronave devido ao empuxo.

Chama de uma vela.

Escoamento laminar.

Escoamento

Introdução

Do ponto de vista da dificuldade de escoamento do fluido, podemos citar os escoamentos

Laminar: A velocidade das partículas em cada ponto não muda com o tempo.

Turbulento: A velocidade das partículas em cada ponto varia com o tempo.

Viscosidade

Dificuldade de escoamento do fluido

Exemplos de escoamentos laminar e turbulento.

Definição de vazão ou fluxo

Fluxo

Volume de fluido que atravessa uma seção transversal do tubo de corrente por unidade de tempo.

$$Z = \frac{Volume}{\Delta t}$$

Corollary

Pela definição de fluxo, percebe-se que a sua unidade no SI é metro cúbico por segundo (m³/s).

Vazão de um fluido que sai da abertura de um cano e enche uma piscina.

Prof. Flaviano W. Fernandes IFPR-Irati

Eguação da continuidade

Equação da continuidade baseada na Lei da conservação da matéria

Supondo uma quantidade de fluido que percorre uma distância S_1 de área A_1 no intervalo de tempo Δt , o volume ocupado por esse fluido é

$$V = \Delta S_1 A_1$$
.

Mas sabendo que $\Delta S_1 = v_1 \Delta t$, onde v_1 é a velocidade das moléculas do fluido que percorre esse espaco, temos

$$V = v_1 A_1 \Delta t$$
.

$$V = A_1 v_1 \Delta t = A_2 v_2 \Delta t$$

Fluxo que atravessa duas seções transversais.

Equação da continuidade

Equação da continuidade como Lei da conservação da matéria (continuação)

O mesmo raciocínio vale se ele atravessar a área A_2 no mesmo intervalo de tempo Δt ,

$$V = v_2 A_2 \Delta t$$
.

Supondo um fluido incompressível a massa é conservada e o volume se mantém. Sabendo que $V = Z\Delta t$ temos

$$Z\Delta t = v_1 A_1 \Delta t = v_2 A_2 \Delta t,$$

 $Z = v_1 A_1 = v_2 A_2.$

$$V = A_1 v_1 \Delta t = A_2 v_2 \Delta t$$

Fluido que atravessa um volume V no tempo Δt .

•000000

Pressão, velocidade e altura de um fluido em duas regiões distintas (continuação)

Supondo um fluido de volume V e massa m que atravessa a região 1 no intervalo de tempo Δt . O trabalho necessário para deslocá-lo a uma distância s₁ é dado por

$$au_1 = egin{array}{cccc} eta_1 & egin{array}{cccc} eta_1 & egin{array}{cccc} eta_1 & egin{array}{cccc} eta_1 & eta_1 & eta$$

Fluxo que atravessa a região 1.

O fluido a direita empurra o restante no sentido contrário impedindo o seu deslocamento, isso produz um trabalho negativo, ou seja,

$$au_2 = - egin{array}{c} rac{oldsymbol{s_2}}{oldsymbol{v_2}} rac{oldsymbol{s_2}}{oldsymbol{v_2}} \ au_2 = - oldsymbol{p_2} oldsymbol{A_2} oldsymbol{s_2} \ au_2 = - oldsymbol{p_2} oldsymbol{V}. \end{array}$$

Fluxo que atravessa as regiões 1 e 2.

Corollary

A mesma quantidade de fluido irá atravessar as regiões 1 e 2 nos intervalos ∆t.

A força da gravidade é conservativa, de modo que as energias potenciais do fluido nas regiões 1 e 2,

$$E_{p_1} = mgh_1$$

 $E_{p_2} = mgh_2$.

As energias cinéticas que estão associadas ao movimento nas regiões 1 e 2 são

$$E_{c_1} = \frac{1}{2} m v_1^2,$$

$$E_{c_2} = \frac{1}{2} m v_2^2.$$

Fluxo que atravessa as regiões 1 e 2.

Se não houver perdas de energia, a energia mecânica do fluido permanece inalterada, de modo que o trabalho total realizado deve ser igual a variação das energias cinéticas e potenciais,

$$au_1 + au_2 = \Delta E_m = \Delta E_c + \Delta E_p,$$

mas

Introdução

$$\Delta E_c = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2,$$

$$\Delta E_p = mgh_2 - mgh_1,$$

portanto

$$\tau_{1} + \tau_{2} = \left(\frac{1}{2}mv_{2}^{2} - \frac{1}{2}mv_{1}^{2}\right) + \frac{\Delta E_{p}}{+ (mgh_{2} - mgh_{1})},$$

$$\tau_{1} + \tau_{2} = \frac{1}{2}mv_{2}^{2} + mgh_{2} - \frac{1}{2}mv_{1}^{2} - mgh_{1},$$

$$\tau_{1} + \tau_{2} = \frac{1}{2}mv_{2}^{2} + mgh_{2} - \left(\frac{1}{2}mv_{1}^{2} + mgh_{1}\right).$$

Separando os termos da região 1 da região 2 temos a equação

$$au_1 + rac{1}{2}mv_1^2 + mgh_1 = - au_2 + rac{1}{2}mv_2^2 + \ + mgh_2.$$

Mas mostramos que

$$au_1 = p_1 V,$$
 $au_2 = -p_2 V.$

Substituindo na equação acima temos

$$otag egin{aligned}
otag _1 V + rac{1}{2} m v_1^2 + m g h_1 &= - \left(- rac{p_2 V}{2} V
ight) + \\
otag + rac{1}{2} m v_2^2 + m g h_2,
otag \end{aligned}$$

mas sabemos que $V = \frac{m}{a}$,

$$p_1 \frac{m}{\rho} + \frac{1}{2} m v_1^2 + m g h_1 = p_2 \frac{m}{\rho} + \frac{1}{2} m v_2^2 + m g h_2, \ rac{p_1}{
ho} + rac{v_1^2}{2} + g h_1 = rac{p_2}{
ho} + rac{v_2^2}{2} + g h_2.$$

Equação de Bernoulli

Para um fluido não viscoso com escoamento laminar a soma das parcelas hidrostáticas e hidrodinâmicas é a mesma em cada ponto do fluido, no qual vale a equação

$$\frac{p_1}{\rho} + gh_1 + \frac{v_1^2}{2} = \frac{p_2}{\rho} + gh_2 + \frac{v_2^2}{2} = \cdots,$$
 $\frac{p}{\rho} + gh + \frac{v^2}{2} = \text{constante}.$

Corollary

A equação de Bernoulli corresponde na hidrodinâmica à Lei de conservação da energia na mecânica.

Analisando os termos da equação de Bernoulli

Supondo a densidade constante ao longo de todo o fluido, podemos multiplicar todos os termos da equação por ρ e obter a relação

$$\frac{\rho}{\rho} + \rho gh + \rho \frac{v^2}{2} = \text{constante}.$$
Lei de Stevin

Corollary

Parcela hidrostática ($p + \rho gh$): Corresponde a pressão hidrostática no fluido; Parcela fluidodinâmica $\left(\rho \frac{v^2}{2}\right)$: Corresponde a pressão hidrodinâmica;

Se o fluido está em repouso $\frac{\rho v^2}{2} = 0$ temos a Lei de Stevin.

Venturímetro

Supondo um escoamento horizontal ($h_1 = h_2$) temos pela equação de Bernoulli

$$p_1 + \rho g h_1 + \frac{\rho v_1^2}{2} = p_2 + \rho g h_2 + \frac{\rho v_2^2}{2},$$

$$p_1 - p_2 = \frac{\rho v_2^2}{2} - \frac{\rho v_1^2}{2}.$$

Pela Lei de Stevin podemos dizer que a variação de pressão entre as regiões 1 e 2 vale

$$p_1 - p_2 = \rho_{Ha}gh$$

Tubo de Venturi.

Venturímetro (continuação)

Pela equação da continuidade temos

$$v_2=\left(\frac{A_1}{A_2}\right)v_1.$$

Substituindo temos

$$\frac{\rho_{Hg}gh}{\rho_1 - \rho_2} = \frac{\rho}{2} \frac{\frac{A_1}{A_2}v_1}{2} - \frac{\rho v_1^2}{2},$$

$$v_1^2 = 2gh \frac{\rho_{Hg}}{\rho} \frac{A_2^2}{A_1^2 - A_2^2}.$$

Tubo de Venturi.

Transformar um número em notação científica

Corollary

- Passo 1: Escrever o número incluindo a vírgula.
- Passo 2: Andar com a vírgula até que somente reste um número diferente de zero no lado esquerdo.
- Passo 3: Colocar no expoente da potência de 10 o número de casas decimais que tivemos que "andar"com a vírgula. Se ao andar com a vírgula o valor do número diminuiu, o expoente ficará positivo, se aumentou o expoente ficará negativo.

Exemplo

6 590 000 000 000 000, $0 = 6.59 \times 10^{15}$

Conversão de unidades em uma dimensão

$$1~\text{mm} = 1 \times 10^{(-1)\times 2}~\text{dm} \rightarrow 1 \times 10^{-2}~\text{dm}$$

$$2,5 \text{ kg} = 2,5 \times 10^{(1) \times 6} \text{ mg} \rightarrow 2,5 \times 10^{6} \text{ mg}$$

$$10 \text{ ms} = 10 \times 10^{(-1) \times 3} \text{ s} \rightarrow 10 \times 10^{-3} \text{ s}$$

Prof. Flaviano W. Fernandes

Conversão de unidades em duas dimensões

$$1 \text{ mm}^2 = 1 \times 10^{(-2) \times 2} \text{ dm}^2 \rightarrow 1 \times 10^{-4} \text{ dm}^2$$

$$2,5 \text{ m}^2 = 2,5 \times 10^{(2) \times 3} \text{ mm}^2 \rightarrow 2,5 \times 10^6 \text{ mm}^2$$

$$10 \text{ ms}^2 = 10 \times 10^{(-2) \times 3} \text{ s}^2 \rightarrow 10 \times 10^{-6} \text{ s}^2$$

$$1 \text{ mm}^3 = 1 \times 10^{(-3) \times 2} \text{ dm}^3 \rightarrow 1 \times 10^{-6} \text{ dm}^3$$

$$2,5 \text{ m}^3 = 2,5 \times 10^{(3) \times 3} \text{ mm}^3 \rightarrow 2,5 \times 10^9 \text{ mm}^3$$

$$2.5 \text{ km}^3 = 2.5 \times 10^{(3) \times 6} \text{ mm}^3 \rightarrow 2.5 \times 10^{18} \text{ mm}^3$$

Alfabeto grego

Alfa Α α В Beta Gama Delta Δ **Epsílon** Ε ϵ, ε Zeta Eta Н Θ Teta lota K Capa ĸ Lambda λ Mi Μ μ

Ni Ν ν Csi ômicron 0 Ρi П π Rô ρ Sigma σ Tau Ípsilon 7) Fi Φ ϕ, φ Qui χ Psi Ψ ψ Ômega Ω ω

Referências e observações¹

A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.1, 2.ed., São Paulo, Scipione (2016)

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.