0.1 Formy różniczkowe

(czyli o uprawianiu analizy na powierzchni balonika albo kartki)

Niech $M \subset \mathbb{R}^n$ - taki, że dla każdego punktu $p \in M$ istnieje otoczenie otwarte $U \subset M$

Przykład 1. (sfera, obwarzanek, itd., okrąg), (stożek - nie ok!), (taka ósemka co się przecina - też nie)

Definicja 1. Niech U - zbiór otwarty $\subset M$ i niech odwzorowanie $\varphi: U \to \mathbb{R}^n$ takie, że φ - klasy \mathcal{C}^1 , (czasami \mathcal{C}^∞), φ^{-1} - klasy \mathcal{C}^1 , (czasami \mathcal{C}^∞) nazywamy mapą. Uwaga: mapa <u>nie musi</u> pokrywać całego zbioru M.

Wyobraźmy sobie, że mamy jakiś zbiór M. Połowa tego zbioru to niech będzie U_1 , i ono się przecina z U_2 . U_1 i U_2 możemy rozłożyć na prostokąty w \mathbb{R}^2 . Co się stanie z punktami mapowanymi do obu U?

Definicja 2. $(U^1, \varphi^1), (U^2, \varphi^2)$ - mapy na M. U_1 i U_2 nazywamy zgodnymi jeżeli a) $U_1 \cap U_2 = \phi$ albo odwzorowanie $\varphi_2 \circ \varphi_1^{-1} : \varphi_1(U_1 \cap U_2) \to \varphi_2(U_2 \cap U_1)$ jest bijekcją (klasy powiedzmy sobie $\mathcal{C}^1, \mathcal{C}^\infty$)

"../img/"fig_49.png

Rysunek 1: $M = \{(x, y) : x^2 + y^2 = 1^2\}$

Przykład 2.

$$\begin{split} &U_1 = \left\{ (x,y) \in M, y > 0 \right\}, \quad \varphi_1 : (x,y) \in U_1 \to x \\ &U_2 = \left\{ (x,y) \in M, x > 0 \right\}, \quad \varphi_2 : (x,y) \in U_2 \to y \\ &U_3 = \left\{ (x,y) \in M, y < 0 \right\}, \quad \varphi_3 : (x,y) \in U_3 \to x \\ &U_4 = \left\{ (x,y) \in M, x < 0 \right\}, \quad \varphi_4 : (x,y) \in U_4 \to y. \end{split}$$

 U_1 i U_3 oraz U_2 i U_4 są zgodne. Czy zgodne są U_1 i U_2 ? Czyli chcemy zbadać odwzorowanie $\varphi_1(U_1\cap U_2)\to \varphi_2(U_1\cap U_2)$, ale $\varphi_1(x,y)\in U_1\to x$. Czyli $\varphi_1^{-1}(x)\to \left(x,\sqrt{1-x^2}\right)$, czyli $\varphi_2(\varphi_1^{-1}(x)=\varphi_2((x,\sqrt{1-x^2}))=\sqrt{1-x^2}$. Zatem czy $\varphi_2\circ\varphi_1^{-1}(x)=\sqrt{1-x^2}$ przerzuca $]0,1[\to]0,1[$ jest różniczkowalne? Odpowiedź: na zbiorze]0,1[jest.

Definicja 3. Kolekcję zgodnych map nazywamy atlasem. Zbiór M wraz z atlasem, który pokrywa cały M nazywamy **rozmaitością** (ang. manifold).