CSCI 6333/6315 Database Systems

Spring 2020

ASSIGNMENT 3: Functional Dependencies and Normalization

Sample Answers

For this homework assignment, consider the schema R = (A, B, C, D, E) and the following set F of functional dependencies holds on R:

$$A \to BC$$

$$CD \to E$$

$$B \to D$$

$$E \to A$$

Problem 1. Suppose that we decompose the schema R into $R_1 = (A, B, C)$ and $R_2 = (A, D, E)$. Show that this decomposition is a lossless-join decomposition with respect to F.

Answer: We only to show that the intersection of R_1 and R_2 is a superkey for either R_1 or R_2 . Since $R_1 \cap R_2 = A$, we first find the closure of A.

$$A \Rightarrow A, A \rightarrow A$$

 $\Rightarrow ABC, A \rightarrow BC$
 $\Rightarrow ABCD, B \rightarrow D$
 $\Rightarrow ABCDE, CD \rightarrow E$
Hence, $A^+ = ABCDE, A^+ \rightarrow R$.

The above proves that A is a superkey for R, so is for R_1 and R_2 . Therefore, the decomposition is lossless.

Problem 2. Suppose that we decompose the relation schema R into $R_3 = (A, B, C)$ and $R_4 = (C, D, E)$. Show that this decomposition is not a lossless-join decomposition.

Hint: Give an example of a relation r on schema R such that

$$r \neq \Pi_{A,B,C}(r) \bowtie \Pi_{C,D,E}(r)$$

Answer: We need to construct a concrete relation r so that r satisfies the given functional dependencies but the decomposition of R_3 and R_4 is not lossless. Below is the relation r:

	A	В	С	D	Е
r =	2	4	5	6	7
	20	40	5	60	70

However,

Problem 3. Compute $(BC)^{+}$.

Answer:

$$BC \Longrightarrow BC, BC \longrightarrow BC$$

 $\Longrightarrow BCD, B \longrightarrow D$
 $\Longrightarrow BCDE, CD \longrightarrow E$
 $\Longrightarrow ABCDE, E \longrightarrow A$
Hence, $(BC)^+ = ABCDE$.

Problem 4. Compute the canonical cover F_c .

Answer: We only need to consider two functional dependencies $A \to BC$ and $CD \to E$ to see whether there are any extraneous attributes in them.

First, consider $A \to BC$. Let us check whether B or C is extraneous. For B, we need to compute A^+ from

$$F' = \{A \longrightarrow C, CD \longrightarrow E, B \longrightarrow D, E \longrightarrow A\}$$
$$A \Longrightarrow A, A \longrightarrow A$$
$$\Longrightarrow AC, A \longrightarrow C$$

We have $A^+ = AC + BC$, so B is not extraneous. For C, we need to compute A^+ from

$$F' = \{A \longrightarrow B, CD \longrightarrow E, B \longrightarrow D, E \longrightarrow A\}$$

$$A \Longrightarrow A, A \longrightarrow A$$

$$\Longrightarrow AB, A \longrightarrow B$$

$$\Longrightarrow ABD, B \longrightarrow D$$

We have $A^+ = ABD + BC$, so C is not extraneous.

Second, consider $CD \to E$. Let us check whether C or D is extraneous. For C, we need to compute D^+ from the original collection F of functional dependencies.

$$D \Longrightarrow D$$
, $D \longrightarrow D$

We have $D^+ = D + E$, so C is not extraneous. For D, we need to compute C^+ from the original collection F of functional dependencies.

$$C \Rightarrow C, C \rightarrow C$$

We have $C^+ = C + E$, so D is not extraneous.

From the above analysis, none of the attributes in F is extraneous. Hence, $F_c = F$.

Problem 5. Show that the decomposition of R into $R_1 = (A, B, C)$ and $R_2 = (A, D, E)$ is not a dependency-preserving decomposition.

Answer: We project F into R_1 and R_2 to obtain $F_1 = \{A \to BC\}$ and $F_2 = \{CD \to E\}$, respectively. Now, we need to show that $(F_1 \cup F_2)^+ \neq F^+$. Since F has $B \to D$, but $B \to D$ cannot be derived from $F_1 \cup F_2$, we have $(F_1 \cup F_2)^+ \neq F^+$, hereby the decomposition is not dependency-preserving.

Problem 6. Give a lossless-join decomposition into BCNF of R.

Answer: We start with R and shall check for every <u>nontrivial</u> functional dependency $\alpha \to \beta$ in F to see α is a superkey or not. If not, we'll then decompose R.

For $A \rightarrow BC$, since $A^+ = ABCDE$, A is superkey for R.

For $CD \rightarrow E$, since $(CD)^+ = ABCDE$, CD is superkey for R.

For $B \to D$, since $B^+ = BD$, B is not superkey for R. Hence, with this functional dependency, we decompose R into $R_1 = (B, D)$ and $R_2 = (A, B, C, E)$. This decomposition is a BCNF decomposition.

Problem 7. Give a lossless-join, dependency preserving decomposition into 3NF of R.

Answer: Following the 3NF decomposition algorithm, we first find the canonical cover F_c of F. By answer to Problem 4, we have $F_c = F = \{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A\}$. Second, for functional dependency in F_c , we add a new but smaller relational schema:

$$R_1 = (A, B, C)$$
, for $A \rightarrow BC$
 $R_2 = (C, D, E)$, for $CD \rightarrow E$
 $R_3 = (B, D)$, for $B \rightarrow D$
 $R_4 = (A, E)$, for $E \rightarrow A$

We notice that A is a candidate key for R and A is contained in R_1 . We also notice that none of the four decomposed schema is a subset of another decomposed schema. Hence, R_1 , R_2 , R_3 and R_4 form a 3NF decomposition for R.