حمعية أصدقاء الرياضيات

ASSOCIATION DES AMIS DE MATHEMATIQUES

DEVOIR DE MATHS

Niveau: 7C Durée: 4h Proposé le 30 Janvier 2015 de 8h à 12h

Exercice 1 (4 points)

Soit $\theta \in \left[0, \frac{\pi}{2}\right]$ et $E(\theta)$ l'équation : $z^2 - (3+i)ze^{i\theta} + 2(1+i)e^{2i\theta} = 0$.

- 1° a) Résoudre $E(\theta)$, on note z'et z'' les solutions telles que |z'| > |z''|.
- b) Mettre sous forme exponentielle le nombre z".
- 2° Le plan complexe est rapporté à un repère orthonormé $(\mathbf{O}; \vec{\mathbf{u}}, \vec{\mathbf{v}})$. On considère les ponts $\mathbf{A}, \mathbf{B}, \mathbf{C}$ d'affixes respectives $2e^{i\theta}$, $(1+i)e^{i\theta}$, $ie^{i\theta}$.
- a) Montrer que les droites (OA),(OC) d'une part et(BO),(BA) d'autre part sont perpendiculaires.
- b) Pour $\theta \in \left[0, \frac{\pi}{2}\right]$, placer les points A,B,C.
- c) Montrer que OABC est un trapèze rectangle.
- d) Montrer que l'aire du quadrilatère **OABC** est indépendante de θ.

Exercice 2 (4 points)

Soit **p** un nombre premier supérieur ou égal à 7. On pose $\mathbf{n} = \mathbf{p}^4 - 1$.

- 1° a) Montrer que l'on a : $\mathbf{p} \equiv \mathbf{1} \begin{bmatrix} 3 \end{bmatrix}$ ou $\mathbf{p} \equiv -\mathbf{1} \begin{bmatrix} 3 \end{bmatrix}$. b) En déduire que \mathbf{n} est divisible par $\mathbf{3}$.
- 2° a) Vérifier que **p** est impair. En justifier qu'il existe un entier naturel **k** tel que $p^2 1 = 4k(k+1)$.
- b) En déduire que **n** est divisible par **16**.
- 3° a) Quel sont les restes possibles de p modulo 5 ?
- b) En déduire que 5 divise n.
- c) Soit **a** et **b** deux entiers naturels premiers entre eux. Montrer que si **a** et **b** divisent **c** alors **ab** divise **c**.
- d) En déduire que **240** divise **n**. www.amimath.mr

Exercice 3 (6 points)

Soit **g** la fonction définie sur $[0; +\infty[$ par $\mathbf{g}(\mathbf{x}) = \mathbf{x}^2(\mathbf{x}+2)$. 1° Dresser le tableau de variations de **g** sur $[0; +\infty[$.

- 2° Démontrer que l'équation g(x) = 4 admet, sur $[0; +\infty[$, une unique solution α dont on donnera une valeur approchée à 10⁻¹.
- 3° En déduire la résolution de l'inéquation g(x) > 4 sur $[0; +\infty[$.

Partie B

la fonction définie sur \mathbb{R}^* par $\mathbf{f}(\mathbf{x}) = \frac{\sqrt{\mathbf{x}^2 + 2}}{\mathbf{x}} + \mathbf{x}$ et (C_f) sa courbe représentative dans un repère orthonormal (unité 1 cm).

 1° Etudier la parité de ${\bf f}$.

2° Déterminer
$$\lim_{x\to 0^+} f(x)$$
 et $\lim_{x\to +\infty} f(x)$, en déduire $\lim_{x\to 0^-} f(x)$ et $\lim_{x\to -\infty} f(x)$.

Peut-on en déduire une ou plusieurs droites asymptotes à la courbe (C_f)?

- 3° Démontrer que la droite (D) d'équation y=x+1 est asymptote à la courbe (C_f) en $+\infty$, en déduire l'équation d'une droite asymptote à (C_f) en $-\infty$.
- 4° a) Démontrer que \mathbf{f} est dérivable sur les intervalles $]-\infty$; 0[et]0; $+\infty[$ puis que $\mathbf{f}'(\mathbf{x}) = \frac{\sqrt{g(\mathbf{x}^2)-2}}{\frac{1}{2}\sqrt{2}\sqrt{2}}]$.
- b) Déduire de la partie A que f'(x) > 0 sur $\sqrt{\alpha}$; $+\infty$.
- c) En déduire les variations de f sur 0; $+\infty$ puis sur \mathbb{R}^* . Dresser le tableau de variations complet de f sur \mathbb{R}^* .

www.amimath

- 5° Déterminer une équation de la tangente (T) à (C_t) au point d'abscisse $\sqrt{2}$.
- 6° Tracer la courbe (C_t) en vous aidant de tous les renseignements obtenus précédemment.

Exercice 4 (6 points)

On considère la fonction
$$\mathbf{f}$$
 définie sur $\mathbf{I} = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ par :
$$\begin{cases} \mathbf{f}(\mathbf{x}) = \frac{1 - \sin \mathbf{x}}{\cos \mathbf{x}}; \ \mathbf{x} \neq \frac{\pi}{2} \\ \mathbf{f}(\frac{\pi}{2}) = \mathbf{0} \end{cases}$$

- 1° a) Montrer que **f** est continue à gauche de $\frac{\pi}{2}$
- b) Montrer que \mathbf{f} est dérivable à gauche de $\frac{\pi}{2}$ et déterminer $\mathbf{f}_{\mathbf{g}}$ ($\frac{\pi}{2}$).
- 2° a) Montrer que pour tout $x \in I$, on a : $f'(x) = \frac{-1}{1 + \sin x}$.
- b) Montrer que **f** est une bijection de **I** sur un intervalle **J** à déterminer. On note g la fonction réciproque de f. Calculer g(0) et g(1).
 - c) Montrer que l'équation f(x) = x admet une solution unique α tel que : $\frac{\pi}{6} < \alpha < \frac{\pi}{4}$. www.amimath.i
- d) Tracer les courbes (C_f) , (C_g) .
- 3° a) Montrer que $\forall x \in I$, $(f(x))^2 = \frac{1 \sin x}{1 + \sin x}$. Exprimer $\sin x$ en fonction $de(f(x))^2$.
- b) Montrer que g est dérivable sur J et que g'(x) = $\frac{-2}{1 + v^2}$.
- 4° Soit **h** la fonction sur [0,1] par : $h(x) = g(x) g\left(\frac{1+x}{1-x}\right)$ pour $x \in [0,1[$ et $h(1) = \frac{\pi}{2}$.
- a) Montrer que h est continue sur de [0,1]. When M is the M is the
- b) Montrer que \mathbf{h} est dérivable sur [0,1] et calculer $\mathbf{h'(x)}$. En déduire l'expression de $\mathbf{h(x)}$.
- $5^{\circ} \text{ On considère la suite} \left(u_{n}\right) \text{définie par}: \ u_{n} = \frac{1}{n} \sum_{k=n}^{n} g \left(\alpha + \frac{1}{n+k}\right) \text{ pour } n \in \mathbb{N}^{*} \,.$
- a) Montrer que pour tout $n \in \mathbb{N}^*$, $\frac{n+1}{n}g\left(\alpha + \frac{1}{n}\right) \le u_n \le \frac{n+1}{n}g\left(\alpha + \frac{1}{2n}\right)$.
- b) En déduire que (\mathbf{u}_n) est convergente vers α .

7C

Fin