

- Forward Selection: For ward selection is an iterative method in which we start with having no feature in the model. In each iteration, we keep adding the
 feature which best improves our model till an addition of a new variable does not improve the performance of the model.
- Backward Elimination. In backward elimination, we start with all the features and removes the least significant feature at each iteration which improves
 the performance of the model. We repeat this until no improvement is observed on removal of features.
 If repeatedly creates models.
- Recursive Feature elimination. It is a greedy optimization algorithm which aims to find the best performing feature subset. It repeatedly creates models
 and keeps aside the best or the worst performing feature at each iteration. It constructs the next model with the left features until all the features are
 exhausted. It then ranks the features based on the order of their elimination.

Embedded Methods

feature which best improves our model till an addition of a new variable does not improve the performance of the model. Backward Elimination: In backward elimination, we start with all the features and removes the least significant feature at each iteration which improves

and the second control of the second second

the performance of the model. We repeat this until no improvement is observed on removal of features.

- feature which best improves our model till an addition of a new variable does not improve the performance of the model.
- Backward Elimination: In backward elimination, we start with all the features and removes the least significant feature at each iteration which improves the performance of the model. We repeat this until no improvement is observed on removal of features.
 - Recursive Feature elimination. It is a greedy optimization algorithm which aims to find the best performing feature subset. It repeatedly creates models. and keeps aside the best or the worst performing feature at each iteration. It constructs the next model with the left features until all the features are

Embedded Methods

exhausted. It then ranks the features based on the order of their elimination.

3 Recursive Feature elimination. It is a greedy optimization algorithm and it constructs the next model with and keeps aside the best or the worst performing feature at each iteration. It constructs the next model with and keeps aside the best or the worst performing feature at each iteration.

Univariate Selection

Statistical tests can be used to select those features that have the strongest relationship with the output variable.

to the realthes based on the order of their elimination. A read model with the left features until all the features are **Embedded Methods** Selecting the best subset Set of all Generate the Learning Algorithm + **Features** Subset **Performance**

Statistical tests can be used to select those features that have the strongest relationship with the output variable.

Univariate Selection

Feature Selection

3 Feature selection techniques that are easy to use and also gives good results.

- 1. Univariate Selection
- 2. Feature Importance
- 3. Correlation Matrix with Heatmap

Filter Method

Set Of All
Features

Selecting The
Best Subset

Machine
Learning
Algorithm

Performance

û	0	localh	ost:8888/	notebook:	/Medical*	%20Scien	ce/chest_xray;	/chest_xra	y/Feature%	20Selecti	ian.ipymb									ŵ	•	(
ingum	· Ka	dhal Va	• • •	www.upsc.go	v.m/ex	D Contac	tt Us - How T	ID Traff	k Domination	^_ C	CP-006 Vide	0 - 147	Sear	ch - Visu	al Stud	0	Haw to C	ustomize	96	Top 10	Ngori	2
<u> </u>	ju	pyte	r Fea	ature Se	lection	Last Chec	ckpoint. 4 hour	s ago (au	tosaved)										P	Log	gout	
File	,	Edit	View	insert	Cell	Kemel	Widgets	Help										Trusted		Pythor	13 0	
8	+	34	& 6	+ +	H Run	■ C	₩ Markdo	wift •	=													
			Ho	lvariat	a S ala	ction								K	=	to				Da	itz	1
				Univariate Selection Statistical tests can be used to select those features that have the strongest relationship with the output variable.														_				
				The scikit-learn library provides the SelectKBest class that can be used with a suite of different statistical tests to select a specific number of features. The example below uses the chi-squared (chi ²) statistical test for non-negative features to select 10 of the best features from the Mobile Price Range.															CO?			
			The o	example b ction Data	elow uses set	the chi-s	iquared (chi ^a)	statistica	test for no	n-negata	ve features t	to select 1	0 of the	best fe	satures 1	from th	e Mobil	e Price R	ange	Qe	to	Ì


```
17363 569536
         11
                px_height
         12
                pr_width
                          9810.506750
                    ram 931267.519053
         13
                             9.614878
         14
                   sc_h
         15
                             16.490319
                   SC_W
                             13.236400
         16
                 talk_time
                             0.327643
         17
                  three_g
             touch_screen
                             1.928429
                             0.422091
         19
                     wf.
In [8]: print(featureScores.nlargest(10, 'Score')) #print 10 best features
                                     Score
                     Specs
                             931267.519053
        13
        11
                 px_height
                             17363.569536
        0
            battery_power
                              14129.866576
                  px_width
        12
                              9810.586750
                 mobile_wt
                                 95.972863
                int_memdry
                                 89.839124
        15
                                 16.488319
                      SC_W
        16
                 talk_time
                                 13.236400
                        fc
                                 10.135166
        14
                                  9.614878
                      sc_h
```

9.186054

pc

10

Feature importance gives you a score for each feature of your data, the higher the score more important or relevant is the feature towards your output variable. Feature importance is an inbuilt class that comes with Tree Based Classifiers, we will be using Extra Tree Classifier for extracting the top 10 features for the

dataset in [9]: from sklearn.ensemble import ExtraTreesClassifier import matplotlib.pyplot as plt

O localhost/8888/notebooks/Medical%20Science/chest_xray/chest_xray/Feature%20Selection.jpynb

model = ExtraTreesClassifier() model.fit(X,y) C:\Users\krish.naik\AppData\Local\Continuum\anaconda3\envs\myenv\lib\site-packages\sklearn\ensemble\forest.py:246: FutureWarnin

g: The default value of n estimators will change from 10 in version 0.20 to 100 in 0.22. "10 in version 0.20 to 100 in 0.22.", FutureWarning) Out[9]: ExtraTreesClassifier(bootstrap-False, class_weight=None, criterion='gimi', max depth-None, max features-'auto', max leaf_nodes-None, min_impurity_decrease+0.0, min_impurity_split=None, min samples leaf+1, min samples split+2, min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=None,

oob score-False, random state-None, verbose-0, warm_start-False)

```
g: The default value of n estimators will change from 10 in version 0.20 to 100 in 0.22.
          "18 in version 8.28 to 188 in 8.22.", futureHarning)
Out[9]: ExtraTreesClassifier(bootstrap=False, class_weight=None, criterion='gini',
                   max_depth=None, max_features='auto', max_leaf_nodes=None,
                   min impurity decrease=0.0, min impurity split=None,
                   min_samples_leaf=1, min_samples_split=2,
                   min weight fraction leaf-0.0, n estimators-10, n jobs-None,
                   oob_score-false, random_state-None, verbose-0, warm_start-false)
```

In [10]: print(model.feature_importances_) Muse inbuilt class feature importances of tree based classifiers

[0.05851702 0.02017399 0.02964452 0.01554391 0.03512978 0.01980382 0.03361452 0.03199869 0.03715415 0.03173022 0.03503685 0.04884264

(i) localhost8888/notebooks/Medical%20Science/chest_xray/chest_xray/Feature%20Selection.ipvnb

⚠ ① localhos	t8888/notebooks/Medical%20Science/chest_xray/chest_xray/Feature%20Selection.ipynb	☆ (
ngam - Kadhal Va	🚱 www.upsc.gov.in/ex 🔢 Contact Us - How T 🔟 Traffic Domination [CP-006 Video - 147 🐉 Search - Visual Stud 💍 How to Custom	ize 36 Top 10 Ai
📜 jupyter	Feature Selection Last Checkpoint: 4 hours ago: (autosaved)	🦺 Legov
File Edit	View Insert Cell Kernel Widgets Help	ted Python 3
5 + > 6	To the of the transfer of the code to the	
	Feature importance gives you a score for each feature of your data, the higher the score more important or relevant is the feature towards you	r output variable
	Feature importance is an inbuilt class that comes with Tree Based Classifiers, we will be using Extra Tree Classifier for extracting the top 10 fe dataset	atures for the
In [9]:	<pre>from sklearn.ensemble import ExtraTreesClassifier import matplotlib.pyplot as plt model = ExtraTreesClassifier() model.fit(X,y)</pre>	
	C:\Users\krish.naik\AppData\Local\Continuum\anaconda3\envs\myenv\lib\site-packages\sklearn\ensemble\forest.py:246: g: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22. "10 in version 0.20 to 100 in 0.22.", Futuresarring)	Futurelamin
Out[9]:	<pre>ExtraTreesClassifier(bootstrap=False, class_weight=None, criterion='gini',</pre>	
In [10]:	print(model.feature_importances_) #use inbuilt class feature_importances of tree based classifiers	
	[0.05851702 0.02017399 0.02964452 0.01554391 0.03512978 0.01980382 0.01361452 0.0 199869 0.03715415 0.03173022 0.03503685 0.04884264 0.05099096 0.39904948 0.03242739 0.03439766 0.0342445 0.01444038 0.01571493 0.02153659]	
In [11]:	#plot graph of feature importances for better visualization feat importances = pd.Series(model.feature importances , index=X.columns)	==

