Toward a higher realizability topos (Notes)

Steve Awodey

October 6, 2024

Here are some conventions:

 \bullet For a small category $\mathbb C$ let $\widehat{\mathbb C}=[\mathbb C^{op},\mathsf{Set}]$ be the category of presheaves, and

$$y:\mathbb{C}\hookrightarrow\widehat{\mathbb{C}}$$

the Yoneda embedding.

•

1 PCAs

We review the basic definitions of partial combinatory algebras and applicative morphisms, which can be found in [?, ?]. For a partial function $f \colon X \to Y$ the notation $f x \downarrow$ means that f is defined for the argument $x \in X$. For a partial binary operation $x \cdot y$, the expression $x \cdot y \doteq u \cdot v$ means that if one side is defined then so is the other and they are equal.

Definition 1. A partial combinatory algebra (PCA) (A, \cdot, K, S) is a set A together with a partial binary operation

$$\cdot : A \times A \rightharpoonup A$$

called application, and distinguished elements $\mathsf{K},\mathsf{S} \in A,$ such that for all $x,y,z \in A,$

$$\mathsf{K} xy \doteq x \;, \qquad \mathsf{S} xy \downarrow \;, \qquad \mathsf{S} xyz \doteq (xz)(yz) \;,$$

where write xy instead of $x \cdot y$, and associate application to the left. We only consider non-trivial PCAs, satisfying $K \neq S$.

Example 2. The first Kleene Algebra \mathbb{N} is the set of natural numbers \mathbb{N} equipped with Kleene application $n \cdot m = \{n\}m$ which applies the n-th partial recursive function $\{n\}$ to m. The existence of K and S is a consequence of the s-m-n theorem [?].

2 Assemblies

Definition 3. An assembly (X, α) over a PCA \mathbb{A} is a set X together with a map $\alpha: X \to \mathcal{P}A$ such that $\alpha(x) \neq \emptyset$ for all $x \in X$. One says that the elements $a \in \alpha(x) \subseteq A$ realize the element x. Thus every element in the carrier X of the assembly is realized by (at least one) $a \in A$.

The assembly is called *partitioned* if the subsets $\alpha(x) \subseteq A$ are all singletons, so that each $x \in X$ has exactly one realizer. In that case, we may regard α as a map $\alpha: X \to A$.

A morphism of assemblies $f:(X,\alpha)\to (Y,\beta)$ is a function $f:X\to Y$ for which there is an element $\phi\in A$ such that, for all $x\in X$ and all $a\in \alpha(x)$,

$$\phi \cdot a \in \beta(f(x))$$
.

One says that " ϕ tracks f".

For partitioned assemblies, this condition reduces to

$$\phi \cdot \alpha(x) \doteq \beta(f(x)) \,,$$

which means that (the left action of) ϕ fits into a commutative diagram as follows.

$$\begin{array}{ccc} X & \xrightarrow{f} & Y \\ \underset{\alpha}{\downarrow} & & \downarrow_{\beta} \\ A & \xrightarrow{\phi \cdot (-)} & A \end{array}$$

Proposition 4. The category PAsm of partitioned assemblies has all finite limits. The category Asm of assemblies is regular and locally cartesian closed.

Proposition 5. For any partial combinatory algebra \mathbb{A} ,

1. the category of assemblies is the regular completion of the category of partitioned assemblies,

$$Asm = PAsm_{reg/lex}$$

2. the realizability topos $\mathsf{RT}(\mathbb{A})$ is the exact completion of the lex category $\mathsf{PAsm}(\mathbb{A})$, which can therefore be constructed as the exact completion of the regular category $\mathsf{Asm}(\mathbb{A})$,

$$\mathsf{RT}(\mathbb{A}) \ = \ \mathsf{Asm}(\mathbb{A})_{\mathsf{ex/reg}} \ = \ \mathsf{PAsm}_{\mathsf{ex/lex}}(\mathbb{A}) \, .$$

The effective topos $\mathcal{E}ff$ is the realizability topos of the first Kleene Algebra,

$$\mathcal{E}ff = \mathsf{RT}(\mathbb{N})$$
.