# TP558 - Tópicos avançados em aprendizado de máquina: *MobileNets*





Adrian A. C. Alanes adrian@mtel.inatel.br

# Introdução

- Desde a AlexNet (2012), as CNNs se tornaram o padrão em visão computacional. A tendência era tornar as redes mais profundas e obter mais precisão.
- VGGNet (2014): 16-19 camadas e 138 milhões de parâmetros; muito caro em termos de memória e computação.
- ResNet (2015): até 152 camadas; conexões residuais que permitem o treinamento de redes ultraprofundas com alta demanda computacional.



## Introdução

- O MobileNet (2017) aprende com essas arquiteturas, mas se concentra em outro objetivo: eficiência em dispositivos móveis.
- Enquanto o AlexNet, o VGG e o ResNet buscavam mais precisão a qualquer custo, o MobileNet aplica convoluções separáveis por profundidade para reduzir drasticamente os parâmetros e as operações e, ao mesmo tempo, manter uma boa precisão.
- Assim, ele representa uma evolução paralela à "corrida de profundidade", mas com foco na computação leve.



#### Fundamentação teórica

Em uma CNN padrão, cada filtro aplica operações (convolução) em todos os canais de entrada - como R, G, B - simultaneamente:



#### Fundamentos teóricos

Essa operação é poderosa e envolve mais cálculos e maior complexidade, além de ser altamente dispendiosa em termos de recursos computacionais.



Costo Computacional:

$$(D_K * D_K * M) * (D_F * D_F) * N = D_K^2 * M * N * D_F^2$$

#### Contexto teórico

No **MobileNet**, essa operação é dividida em duas etapas:

- Em profundidade: um filtro por canal → filtro.
- Pointwise (1×1): combinar os canais
   → mix.

Essa separação reduz drasticamente o custo computacional.



#### Contexto teórico

Convolução em profundidade: aplica um kernel independente em cada canal e apenas filtra, não combina informações entre canais.



Costo Computacional:

$$D_K * D_K * M * D_F * D_F$$

#### Contexto teórico

Convolução pontual (1×1): usa kernels 1×1 para combinar os M canais e produzir N saídas. É a etapa que mistura as informações de todos os canais.



Costo Computacional:

$$M * N * D_F * D_F$$

#### Fundamentos teóricos

A **combinação** da convolução em profundidade e da convolução pontual é chamada de **convolução separável em profundidade**.

Costo Computacional:

$$D_K^2 * M * D_F^2 + M * N * D_F^2$$

O MobileNet usa a convolução separável em profundidade 3x3, o que resulta em um custo computacional 8 a 9 vezes menor do que a convolução padrão, com uma pequena redução na precisão.

Relacion Costo Computacional:

$$\frac{Costo_{mobilenet}}{Costo_{estandar}} = \frac{1}{N} + \frac{1}{D_K^2}$$

#### Arquitetura e operação Estrutura do MobileNet v1

- CNN: camadas convolucionais padrão seguidas por BatchNorm + ReLu
- MobileNet: a rede é baseada em convoluções separáveis em profundidade em todas as camadas, exceto na primeira (conv padrão 3×3). Cada camada é seguida por BatchNorm + ReLU.



## Arquitetura e operação

#### A arquitetura inclui:

- 1 convolucional padrão inicial na inicialização:
- 13 blocos separáveis (cada um com depthwise + pointwise).
- Um pooling médio global.
- 1024 → 1000 classes totalmente conectadas.
- Softmax como classificador

Contando separadamente o depthwise e o pointwise, o MobileNetV1 tem **28 camadas** no total.

Table 1. MobileNet Body Architecture

| Type / Stride          | Filter Shape                        | Input Size                 |
|------------------------|-------------------------------------|----------------------------|
| Conv / s2              | $3 \times 3 \times 3 \times 32$     | $224 \times 224 \times 3$  |
| Conv dw / s1           | $3 \times 3 \times 32$ dw           | $112 \times 112 \times 32$ |
| Conv / s1              | $1 \times 1 \times 32 \times 64$    | $112 \times 112 \times 32$ |
| Conv dw / s2           | $3 \times 3 \times 64 \text{ dw}$   | $112 \times 112 \times 64$ |
| Conv / s1              | $1 \times 1 \times 64 \times 128$   | $56 \times 56 \times 64$   |
| Conv dw / s1           | $3 \times 3 \times 128 \text{ dw}$  | $56 \times 56 \times 128$  |
| Conv / s1              | $1 \times 1 \times 128 \times 128$  | $56 \times 56 \times 128$  |
| Conv dw / s2           | $3 \times 3 \times 128 \text{ dw}$  | $56 \times 56 \times 128$  |
| Conv / s1              | $1 \times 1 \times 128 \times 256$  | $28 \times 28 \times 128$  |
| Conv dw / s1           | $3 \times 3 \times 256 \text{ dw}$  | $28 \times 28 \times 256$  |
| Conv / s1              | $1 \times 1 \times 256 \times 256$  | $28 \times 28 \times 256$  |
| Conv dw / s2           | $3 \times 3 \times 256 \text{ dw}$  | $28 \times 28 \times 256$  |
| Conv / s1              | $1\times1\times256\times512$        | $14 \times 14 \times 256$  |
| $5\times$ Conv dw / s1 | $3 \times 3 \times 512 \text{ dw}$  | $14 \times 14 \times 512$  |
| Conv / s1              | $1\times1\times512\times512$        | $14 \times 14 \times 512$  |
| Conv dw / s2           | $3 \times 3 \times 512 \text{ dw}$  | $14 \times 14 \times 512$  |
| Conv / s1              | $1\times1\times512\times1024$       | $7 \times 7 \times 512$    |
| Conv dw / s2           | $3 \times 3 \times 1024 \text{ dw}$ | $7 \times 7 \times 1024$   |
| Conv / s1              | $1\times1\times1024\times1024$      | $7 \times 7 \times 1024$   |
| Avg Pool / s1          | Pool 7 × 7                          | $7 \times 7 \times 1024$   |
| FC/s1                  | $1024 \times 1000$                  | $1 \times 1 \times 1024$   |
| Softmax / s1           | Classifier                          | $1 \times 1 \times 1000$   |
|                        |                                     |                            |

#### Evolução arquitetônica: v2, v3, v4

| Versão    | Inovações                                                                                                                                         | Ativações            | Aplicativos                                                                                                     |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------|
| V1 (2017) | Dividir as convoluções em etapas<br>menores ( <i>separáveis em</i><br><i>profundidade</i> ) → modelo muito<br>mais leve.                          | ReLU6                | Primeiros aplicativos móveis de visão computacional (classificação em fotos, reconhecimento básico).            |
| V2 (2018) | Blocos mais eficientes ( <i>resíduos invertidos</i> ) → fazem melhor uso das informações e melhoram a precisão sem aumentar o tamanho.            | ReLU6 + saída linear | Reconhecimento de objetos em tempo real (SSDLite), segmentação leve.                                            |
| V3 (2019) | Ajustado automaticamente para celular ( <i>NAS</i> ), adiciona atenção ao canal ( <i>SE</i> ) e ativação mais eficiente ( <i>h-swish</i> ).       | ReLU + h-swish       | Uso estendido em aplicativos<br>móveis (detecção de câmera, filtros<br>de AR, aplicativos de<br>saúde/fitness). |
| V4 (2024) | Blocos "universais" que funcionam bem em CPUs, GPUs e NPUs; adiciona atenção leve ( <i>Mobile MQA</i> ) e técnicas de aprendizado mais avançadas. | h-swish + ReLU       | Modelos mais precisos para dispositivos modernos: assistentes inteligentes, visão de drones, loT avançada.      |

#### Treinamento e otimização

O MobileNet foi treinado no TensorFlow, usando o otimizador RMSProp.  RMSProp: adapta a taxa de aprendizado a cada parâmetro, permitindo um treinamento mais estável e mais rápido.

O procedimento seguiu a mesma estratégia do InceptionV3.

• **Descida de gradiente assíncrona:** vários processadores treinam em paralelo e atualizam os parâmetros sem esperar que todos eles terminem.

Todas as variantes do MobileNet podem ser treinadas com a configuração básica.

• Resultados diferentes ao alterar apenas os hiperparâmetros ( $\alpha$  e  $\rho$ ).

#### Treinamento e otimização

# Regularização na MobileNet

- Usa menos regularização do que as redes maiores.
- Não usa técnicas adicionais, como suavização de rótulos ou cabeças laterais.

#### Aumento de dados

• Foram aplicadas transformações mais simples: recorte moderado, sem distorções agressivas.

# Decaimento de peso (regularização L2)

• Pouco ou nenhum aplicado a filtros de profundidade, porque eles já têm poucos parâmetros.

#### Função de ativação

• Todas as camadas convolucionais foram seguidas por ReLU (Rectified Linear Unit), que introduz a não linearidade e acelera o treinamento.

# Hiperparâmetro α (*Multiplicador de largura*)

- **Definição:**  $\alpha \in (0,1]$  reduz uniformemente os canais de entrada e saída em todas as camadas convolucionais.
- Efeito: ao reduzir os canais, o custo e os parâmetros diminuem aproximadamente com  $\alpha^2$ , o que torna o MobileNet adaptável a diferentes níveis de eficiência.

Costo Computacional:

$$D_K^2 * (\alpha M) * D_F^2 + (\alpha M) * (\alpha N) * D_F^2$$

| Width Multiplier   | ImageNet Million |           | Million    |
|--------------------|------------------|-----------|------------|
|                    | Accuracy         | Mult-Adds | Parameters |
| 1.0 MobileNet-224  | 70.6%            | 569       | 4.2        |
| 0.75 MobileNet-224 | 68.4%            | 325       | 2.6        |
| 0.5 MobileNet-224  | 63.7%            | 149       | 1.3        |
| 0.25 MobileNet-224 | 50.6%            | 41        | 0.5        |

Table 6. MobileNet Width Multiplier

# Hiperparâmetro ρ (*Multiplicador de resolução*)

- **Definição:** reduz a resolução espacial da imagem de entrada e de todos os mapas de recursos internos da rede.
- **Efeito:** como o custo da convolução depende do tamanho espacial Df, ao reduzir a resolução, o número de operações diminui em aproximadamente  $\rho^2$ .

Costo Computacional:

$$D_K^2 * M * (\rho D_F^2) + M * N * (\rho D_F^2)$$

| Resolution        | 7. MobileNe<br>ImageNet | Million   | Million    |  |
|-------------------|-------------------------|-----------|------------|--|
|                   | Accuracy                | Mult-Adds | Parameters |  |
| 1.0 MobileNet-224 | 70.6%                   | 569       | 4.2        |  |
| 1.0 MobileNet-192 | 69.1%                   | 418       | 4.2        |  |
| 1.0 MobileNet-160 | 67.2%                   | 290       | 4.2        |  |
| 1.0 MobileNet-128 | 64.4%                   | 186       | 4.2        |  |

#### Vantagens

- ✓ Redução de cálculo ≈8-9× com conv. separável em profundidade.
- ✓ Modelo muito mais leve (~4,2 milhões de parâmetros).
- ✓ Bom desempenho no ImageNet com baixo custo.
- $\checkmark$  Escalável com  $\alpha$  (multiplicador de largura).
- Escalável com ρ (multiplicador de resolução).
- Compatível com bibliotecas otimizadas (GEMM).
- ✓ Ideal para sistemas móveis, de IoT e incorporados.

#### Desvantagens



Menor precisão do que arquiteturas maiores.



Dependência de convoluções 1×1: embora eficientes, elas representam 95% do cálculo e 75% dos parâmetros → tornam-se o gargalo.



Extremidade pesada totalmente conectada: concentra grande parte dos parâmetros restantes.



Rápida degradação da precisão com a redução excessiva de  $\alpha$  ou  $\rho$ .



Menor generalização em tarefas complexas (detecção/segmentação) em comparação com modelos mais profundos.



Destinado ao hardware de 2017: as versões posteriores (V2, V3) superam-no claramente em termos de precisão e eficiência.

#### Exemplo(s) de aplicativo

Projeto / Tarefa Descrição do projeto Principais resultados



Substituiu o Inception V3 pelo MobileNet v1 para classificar a localização de fotos.

Parâmetros reduzidos: 52M → 13M e precisão semelhante.

**Atributos faciais** 

O MobileNet v1 foi milhões usado como aluno de parâmetros, um modelo grande alcançando (≈75 milhões de precisão parâmetros). semelhante

MobileNet v1: 4
foi milhões de
de parâmetros,
ide alcançando uma
de precisão média
semelhante à do
modelo grande.





Photo CC-BY-NC by edwin.11

(b)





Photo CC-BY-NC by jonathanfh



# Exemplo(s) de aplicativo(s)

**Objetivo:** treinar o MobileNetV1 do zero em *Cats vs Dogs.* 

#### Metodologia:

- Conjunto de dados: treinar 2000, avaliar 800, testar 200
- Aumento de dados: flips, rotações, recorte, jitter, cutout
- Modelo: MobileNetV1 (Convs separáveis em profundidade, ReLU6, Dropout=0,5, BatchNorm)
- Otimizador: RMSProp + Decaimento de peso
- Estratégia: parada antecipada + agendador de LR

#### **Principais resultados:**

- Precisão da validação ≈ 80%.
- Precisão do teste ≈ 78-82%.
- Parâmetros: ~4,2M (~16 MB em disco)

# Exemplo(s) de aplicação



# Exemplo(s) de aplicação







# Comparação com outros algoritmos

 O MobileNetV1 foi projetado para oferecer um equilíbrio entre eficiência computacional e precisão, o que o diferencia de arquiteturas maiores. Embora sacrifique um pouco da precisão, sua principal contribuição é a redução drástica de parâmetros e operações, o que o torna viável em dispositivos móveis e sistemas incorporados.

| Arquitetura                     | Precisão Top-1 | Parâmetros (M) | Operações<br>(Mult-Adds) | Ano  |
|---------------------------------|----------------|----------------|--------------------------|------|
| VGG16                           | 71.5%          | 138 M          | 15.3 B                   | 2014 |
| ResNet-50                       | 76.0%          | 25.6 M         | 3.8 B                    | 2015 |
| Inception V3                    | 78.0%          | 23.2 M         | 5.7 B                    | 2015 |
| MobileNetV1<br>(α=1, 224×224)   | 70.6%          | 4.2 M          | 569 M                    | 2017 |
| MobileNetV1<br>(α=0,5, 160×160) | 60-63%         | 1.3 M          | 150 M                    | 2017 |

# Dúvidas?

#### Referências

- Howard, A. et al. (2017). MobileNets: redes neurais convolucionais eficientes para aplicativos de visão móvel. arXiv:1704.04861.
- Simonyan, K. & Zisserman, A. (2014). Redes convolucionais muito profundas para reconhecimento de imagens em grande escala (VGG). arXiv:1409.1556.
- He, K. et al. (2015). Aprendizagem residual profunda para reconhecimento de imagens (ResNet). arXiv:1512.03385.
- Tan, M. & Le, Q. (2019). EfficientNet: repensando o dimensionamento de modelos para redes neurais convolucionais. arXiv:1905.11946.
- Sandler, M. et al. (2018). MobileNetV2: resíduos invertidos e gargalos lineares. arXiv:1801.04381.
- Howard, A. et al. (2019). Searching for MobileNetV3. arXiv:1905.02244.
- Qin, D. et al. (2024). MobileNetV4: Modelos universais para o ecossistema móvel. arXiv:2404.10518.

# Obrigado!

#### Links

- Github: <a href="https://github.com/aadlrei/TP">https://github.com/aadlrei/TP</a> 558-Topicos-Avancados-em-Aprendizado-de-Maquina.git
- Questionário: <a href="https://forms.gle/5NGvwrwecRrspMH36">https://forms.gle/5NGvwrwecRrspMH36</a>