■ 適用範囲

当仕様書は低損失チップ積層セラミックコンデンサ(≤100Vdc)に適用します。 当製品は、リフローはんだ専用品です。

1.適用用途:

- ・民生機器:家電機器・AV機器・通信機器・情報機器・事務機器・家庭用ロボット機器といった民生機器、かつ、その機能が人命及び財産の保護に直接的にかかわらない機器に使用できる製品
- ・産業機器:基地局・製造機器・工業用ロボット機器・計測機器といった産業機器で、かつ、その機能が人命及び財産の保護に直接的にかかわらない機器に使用できる製品
- ・インプラント除く医療機器[GHTF A/B/C]: 国際分類クラスGHTF Class AまたはClass Bの医療機器(その機能が人命及び財産の保護に直接的にかかわらない機器)、または国際分類クラスGHTF Class Cのインプラントを除く医療機器(その不具合が人体へのリスクが比較的高いと考えられる機器)に使用できる製品
- ・自動車用インフォテインメント/コンフォート機器:カーナビ・カーオーディオといった特に人命に直接的にかかわらない自動車用機器で、かつ、その構造・装置・性能が安全確保もしくは環境保全上の技術基準を満たすよう特に法律上要求されていない機器に使用できる製品
- 2.適用外用途: 当仕様書の「用途の限定」に書かれている用途

参考図

このデータは2023年12月27日現在のものです。

記載内容について、改良のため予告なく変更することや、供給を停止することがございます。ご注文に際しては、納入仕様書をご要求いただきご確認ください。また、当商品のご使用にあたっては、ご使用上の注意も必ずご覧ください。

<ご参考>当社WEBサイトをご活用ください。

セラミックコンデンサについて詳しくは製品情報ページをご参照ください。 <u>→ セラミックコンデンサ製品情報</u>

各種データは製品検索より直接入手いただくことが可能です。 → 製品検索(SMD)

■ 弊社品番構成

(例) GJM ①シリーズ 15 ②寸法(L×W) 5 ③寸法(T) 5C ④温度特性 1H ⑤定格電圧

4R7 ⑥静電容量 び静電容量 許容差 B01 ⑧個別仕様 D ⑨包装仕様

■ 外形および寸法

図:寸法

サイズコード: 1005M(0402)

(単位:mm)

② L ② W		③ T	е	g
1.0+/-0.05	0.5+/-0.05	0.5+/-0.05	0.15 to 0.35	0.3 min.

■ 定格

④温度特性 [5C](公規	格記号:[COG(EIA)])	⑤定格電圧	⑥静電容量	⑦静電容量	使用温度範囲	実装方法	
静電容量変化率 または 温度係数	適用温度範囲	基準温度	少处伯电压	◎肝电台 重	許容差	区历/四/支电四		
0+/-30 ppm/℃	25 to 125℃	25℃	DC 50V	4.7pF	+/-0.05pF	-55 to 125℃	リフロー	

⑧個別仕様:弊社管理番号を表します。

■ 包装形態

9包装仕様	包装仕様	標準梱包数量			
D	φ180mm リール 紙 テープ W8P2	10000 個/リール			
W	φ180mm リール 紙 テープ W8P1	20000 個/リール			
J	φ330mm リール 紙 テープ W8P2	50000 個/リール			
V	φ330mm リール 紙 テープ W8P1	100000 個/リール			

■ 性能·試験方法

No	項目	規 格 値	試験条件(参考規格:JIS C 5101規格群, IEC60384シリーズ)						
1	定格電圧	定格表による。	連続して使用できる最大印加電圧 但し、交流と直流が重畳される場合は、ピークツーピークまたはゼロツーピークの大きい方の値が定格電圧以内						
2	外観	著しい異常のないこと。	目視						
3	寸法	寸法表による。	寸法測定器を使用する。						
4	耐電圧	異常なく耐えること。	測定箇所 端子間 試験電圧 定格電圧×300% 印加時間 1s to 5s 充放電電流 50mA以下						
5	絶縁抵抗(常温)	10000ΜΩ以上	測定温度 常温 測定箇所 端子間 測定電圧 定格電圧 充電時間 1min 充放電電流 50mA以下						
6	静電容量	定格表による。	測定温度 常温 測定周波数 1.0+/-0.1MHz 測定電圧 0.5 to 5.0Vrms						
7	Qまたは誘電正接(D.F.)	Q≥400+20C C:公称静電容量(pF)	測定温度 常温 測定周波数 1.0+/-0.1MHz 測定電圧 0.5 to 5.0Vrms						
8		電圧印加なし 静電容量温度係数の公称値は定格表による。 但し、基準温度以下の静電容量変化率は表Aに規定の範囲内にある。 静電容量のずれ:+/-0.2%,+/-0.05pFのいずれか大きい値以内	か 静電容量のずれ 段階温度 *電圧印加なし> 段階 温度(℃)						
9	固着性	端子電極のはく離及びその他の異常がないこと。	取り付け方法 試料を試験基板にはんだ付けする。 加圧力 5N 保持時間 10+/-1s 加圧方向 試験基板に並行で試料側面に対して垂直						

3

GJM1555C1H4R7WB01-01A

■ 性能·試験方法

No :	項目		規 格 値		試験条件(参考規格:JIS C 5101規格群, IEC60384シリーズ)
10 振動		外観 静電容量 Qまたは誘電正接	著しい異常のないこと。 初期規格値を満足すること。 初期規格値を満足すること。	取り付け方法 振動の種類 振動時間 全振幅 振動方向及び時間	試料を試験基板にはんだ付けする。 単振動 10Hz to 55Hz to 10Hz 1min 1.5mm 互いに垂直なる3方向に2hずつ計6h
11 耐プリント材	板曲げ性	外観 静電容量変化率	著しい異常のないこと。 +/-0.5pF以内	取り付け方法 加圧方法 たわみ量 保持時間	試料を試験基板にリフローはんだ付けする。 図2による。 1mm 5+/-1s
12 はんだ付け	t [†] 性	端子電極の95%以上に	刃れ目なくはんだが付着していること。	試験条件 フラックス 予熱条件 はんだ種類 試験温度 試験時間	はんだ槽法 ロジンエタノール 25(mass)%溶液 80℃ to 120℃、10s to 30s Sn-3.0Ag-0.5Cu(無鉛はんだ) 245+/-5℃ 2+/-0.5s
13 はんだ耐熱	秋性	外観 静電容量変化率 Qまたは誘電正接 絶縁抵抗 耐電圧	著しい異常のないこと。 +/-0.25pF以内 初期規格値を満足すること。 初期規格値を満足すること。 異常なく耐えること。	試験条件 はんだ種類 試験温度 試験時間 予熱温度 予熱時間 後処理	はんだ槽法 Sn-3.0Ag-0.5Cu(無鉛はんだ) 270+/-5℃ 10+/-0.5s 120℃ to 150℃ 1 min 放置のみ:室温に24+/-2h放置し測定
14 温度急変		外観 静電容量変化率 Qまたは誘電正接 絶縁抵抗 耐電圧	著しい異常のないこと。 +/-0.25pF以内 初期規格値を満足すること。 初期規格値を満足すること。 異常なく耐えること。	取り付け方法 サイクル数 温度サイクル	試料を試験基板にはんだ付けする。 5サイクル 段階 温度(℃) 時間(min)
15 高温高湿(外観 静電容量変化率 Qまたは誘電正接 絶縁抵抗	著しい異常のないこと。 +/-0.75pF以内 Q≥100+10C/3 C:公称静電容量(pF) 500MΩ以上	後処理 取り付け方法 試験温度 試験温度 試験時間 試験電圧 充放電電流 後処理	放置のみ:室温に24+/-2h放置し測定 試料を試験基板にはんだ付けする。 40+/-2℃ 90%RH to 95%RH 500+/-12h 定格電圧 50mA以下 放置のみ:室温に24+/-2h放置し測定

muRata

■ 性能・試験方法

No	項目		規 格 値		試験条件(参考規格:JIS C 5101規格群, IEC60384シリーズ)				
16 耐久		外観 静電容量変化率 Qまたは誘電正接 絶縁抵抗	著しい異常のないこと。 +/-0.3pF以内 Q≥200+10C C:公称静電容量(pF) 1000MΩ以上	取り付け方法 試験温度 試験時間 試験電圧 充放電電流 後処理	試料を試験基板にはんだ付けする。 最高使用温度+/-3℃ 1000+/-12h 定格電圧×200% 50mA以下 放置のみ:室温に24+/-2h放置し測定				
17 ESR	8	300mΩ以下		測定温度 測定周波数 測定器	常温 1.0+/-0.2GHz BOONTON 34A相当				

5

GJM1555C1H4R7WB01-01A

表A 基準温度と各温度との間の静電容量変化率 (単位:%)

特性	-5!	5℃	-30	o℃	-10℃			
14 IT	最高値	最低値	最高値	最低値	最高値	最低値		
5C	0.58	-0.24	0.4	-0.17	0.25	-0.11		

耐プリント板曲げ性 ・試験用基板

材質	JIS C 6484	プリント配線板用銅張積層板(ガラス布基材エポキシ樹脂)

厚さ 0.8mm 銅はく厚さ 0.035mm

はんだ種類 Sn-3.0Ag-0.5Cu(無鉛はんだ)

・ランド寸法

形式		寸法(mm))
115177	a	b	С
GJM15	0.4	1.5	0.5

耐プリント板曲げ性以外

・試験用基板 材質 JIS C 6484 プリント配線板用銅張積層板(ガラス布基材エポキシ樹脂)

厚さ 1.6mm または 0.8mm

銅は〈厚さ 0.035mm

はんだ種類 Sn-3.0Ag-0.5Cu(無鉛はんだ)

・ランド寸法

形式		寸法(mm)	
1010	a	b	С
GJM15	0.4	1.5	0.5

■包装方法(テーピング包装)

1. 包装個数 (個/リール)

		φ180mm リール(W8P2)	φ180mm リール(W8P1)	φ330mm リール(W8P2)	φ330mm リール(W8P1)	
形式		紙 テープ	紙 テープ	紙 テープ	紙 テープ	
		包装記号:D	包装記号:W	包装記号:J	包装記号:V	
GJM15 5		10000	20000	50000	100000	

2. テーピング寸法図 (単位:mm)

(1)GJM15(W8P2 包装記号: D/J)

形式	4		寸法(チップ)		۸	R	C	D	E	F	e	ш	1	V	М
ハシュ	.0	L	W	Т	А	P	C			'	G	"	J	^	1*1
GJM15	5	1.0+/-0.05	0.5+/-0.05	0.5+/-0.05	0.65(Typ.)	1.15(Typ.)	8.0+/-0.3	3.5+/-0.05	1.75+/-0.1	2.0+/-0.05	2.0+/-0.05	4.0+/-0.1	φ1.5+0.1/-0	0.8 max.	0.05 max.

(2)GJM15(W8P1 包装記号: V/W)

形式		寸法(チップ)		Λ	R	В	D	_	_	C	п	1	V	
かれ		Г	W	Т	A		C	D	_		G		J	K
GJM15	5	1.0+/-0.05	0.5+/-0.05	0.5+/-0.05	0.65(Typ.)	1.15(Typ.)	8.0+/-0.3	3.5+/-0.05	1.75+/-0.1	1.0+/-0.05	1.0+/-0.05	4.0+/-0.1	φ1.5+0.1/-0	0.8 max.

GJM1555C1H4R7WB01-01A

muRata

■包装方法 (テーピング包装)

3. リール寸法図 (単位:mm)

リール	Α	В	С	D	Е	W	W1
φ180mm Reel	φ180+0/-3.0	φ50 min.	φ13+/-0.2	φ21+/-0.8	2.0+/-0.5	14.4 max.	8.4+1.5
φ330mm Reel	φ330+/-2.0	φ50 min.	φ13+/-0.2	φ21+/-0.8	2.0+/-0.5	14.4 max.	8.4+1.5

muRata

■包装方法(テーピング包装)

4. テープには、下図のように、リーダー部及び空部を設けています。 またテーピングは、右巻きとします。(テープの端を手前に取り出したとき、送り穴が右側となります。)

- 5. 送り穴ピッチの累積許容差:+/-0.3mm/10ピッチ
- 6. テープの中のチップは、トップテープをテープに張り付けることにより封入されています。 チップの封入された状態は2.テーピング寸法図を参照ください。
- 7. リーダーテープの先端の5ピッチ以上は、トップテープとキャリアテープの張り付けは行いません。
- 8. キャリアテープ及びトップテープにはつなぎ目がありません。
- 9. キャビティ内部にはバリがありません。
- 10. トップテープ引張り強度 破断強度 5N以上 ボトムテープ引張り強度 破断強度 5N以上(紙テープ:ボトムテープ有り品のみ)
- 11. リールは、樹脂製を使用し外観及び寸法は3.リール寸法図のとおりとします。尚、材料及び寸法については、改良のため、変更されることがあります。
- 12. トップテープの剥離強度は、0.1N to 0.6Nです。このときの剥離方法は下図のとおりです。

剥離速度:300mm/min

13. リールの外側には、ラベルを貼り付け、貴社品番、弊社品番、弊社名、出荷検査番号及び数量を表示します。

■用途の限定

当仕様書に記載の製品は、当仕様書内で個別に記載の適用用途向けに設計・製造されたものであり、高度な性能・機能・品質・管理・安全性が要求される本注意書き末尾①から⑪までの用途への適合性・性能発揮・品質等を保証するものではありませんので、 当仕様書記載の適用用途に従ってご使用ください。

万が一、当仕様書記載の適用用途以外の用途でご使用された場合、又は以下の①から⑪までの用途でご使用された場合(別途当仕様書内に用途記載があるものは除く*)には、弊社は当該使用によって生じた不測の事故その他の損害に関する一切の責任を 負いかねますのでご注意ください。

①航空機器 ②宇宙機器 ③海底機器 ④発電所制御機器 ⑤医療機器 ⑥輸送機器 ⑦交通用信号機器 ⑧防災/防犯機器 ⑨産業用情報処理機器 ⑩燃焼/爆発制御機 ⑪その他上記機器と同等の機器

当仕様書に記載の適用用途以外の用途に対応した製品については、お客様とお取引のある弊社営業窓口・代理店・商社、またはお問い合わせフォーム(https://www.murata.com/contactform)までお問い合わせください。
*製品によっては、①から⑪までの用途向けに設計・製造される場合があり、それらは弊社カタログ、仕様書、データシート等に個別で用途を記載しております。

■保管·使用環境

- 1. チップ積層セラミックコンデンサ(以下コンデンサと呼ぶ)を保管する場合、条件によって性能に影響を与える場合がありますので製品納入後は速やかに使用してください。
- 1-1. コンデンサの保管条件は、室内温度5 ~ 40℃、相対湿度20 ~ 70%となりますが、保管温度は30℃以下を推奨します。 高温高湿環境下での保管、または、長期間の保管では、包装材料の劣化が起こりますので、納入後6ヶ月を超える場合は、包装状態やマウンティングなどを確認の上、使用してください。 また、端子電極の酸化も起こりますので、納入後1年を超える場合は、はんだ付け性も確認の上、使用してください。
- 1-2. 大気中または雰囲気中の有害ガスによって、端子電極のはんだ付け性の劣化など信頼性を著しく低下させる可能性があります。 コンデンサは、腐食性ガス(硫化水素、二酸化イオウ、塩素、アンモニアなど)の雰囲気を避けて保管してください。
- 1-3. 直射日光による端子電極の光化学変化や急激な湿度変化による結露から、はんだ付け性の劣化や性能劣化にいたる場合があります。コンデンサは、直射日光や結露する場所に保管しないでください。

■定格上の注意

1. 温度変化によるコンデンサの特性

- 1. コンデンサは温度変化によって、電気的特性が変化します。
- 1-1. コンデンサには、温度依存性を持った誘電体磁器を使用しているので、使用温度範囲が広い場合は、静電容量が大幅に変化する場合があります。静電容量を確保するためには、次のことを確認してください。
 - (1) 実動作使用温度範囲を狭めて、温度による静電容量変化率をおさえてください。
 - (2) 温度特性は、周囲温度が定格温度以下であっても、温度が変化すると、静電容量も変化する場合があります。 高誘電率系コンデンサを時定数回路など静電容量許容範囲の狭い回路に使用される場合には、温度特性を十分に考慮いただき、実使用条件、および実機にて、諸特性を十分にご確認ください。

2. 静電容量測定

- 1. コンデンサは、その静電容量を得るために測定条件が規定されています。
- 1-1. 静電容量の大きなコンデンサの場合、測定器によって、コンデンサに設定した測定電圧が印加されず、測定結果の値が低く表示されることがあります。コンデンサに所定の測定電圧が印加されているか確認してください。
- 1-2. 高誘電率系コンデンサは、交流電圧によって静電容量が変化します。コンデンサの静電容量測定は、規定の測定条件にて実施してください。

3. 印加電圧

- 1. コンデンサには、定格電圧を設定しています。
- 1-1. コンデンサの端子間に印加される電圧は、定格電圧以下としてください。
 - (1) 直流電圧に交流成分が重畳されている場合は、尖頭電圧の和(Zero-to-peak 電圧)を定格電圧以下にしてください。交流電圧またはパルス電圧の場合は、尖頭電圧の和(Peak-to-peak 電圧)を定格電圧以下にしてください。 (2) 機器の通常の使用状態における印加電圧の他に、異常電圧(サージ電圧、静電気、スイッチON-OFF時のパルスなど)の印加の可能性についても確認し、定格電圧以下にしてください。

直流電圧で定格電圧が規定されているコンデンサに印加される電圧の例

드께타	世派电圧 (足指电圧が発足されているコンナングに中が10年上の内)							
直流電圧	直流+交流成分	交流電圧	パルス電圧					
E	E J o	E 0	E Jo					

(E:最大可能印加電圧=DC 定格電圧)

1-2. 過電圧が印加された場合

コンデンサに過電圧が印加されると、誘電体の絶縁破壊による電気的ショートが発生する場合があります。なお、不具合にいたるまでの時間は、印加電圧および周囲温度によって異なります。

4. 印加電圧の種類および自己発熱温度

- 1. 交流電圧またはパルス電圧が連続印加され、コンデンサに大きな電流が流れるような使用条件かを確認してください。 直流定格電圧品を交流電圧回路またはパルス電圧回路で使用する場合、交流電流またはパルス電流が流れるため、自己発熱を確認してください。 コンデンサの表面温度は、自己発熱による温度上昇分も含み使用温度上限以内になるように確認してください。 コンデンサを高周波電圧またはパルス電圧で使用すると、誘電体損失により発熱することがあります。
- < 定格電圧DC100V以下に適用 >

雰囲気温度25℃の状態で測定した時、コンデンサ本体の自己発熱が20℃以内となるような負荷内でご使用ください。

5. 直流電圧特性および交流電圧特性

- 1. 高誘電率系コンデンサは、直流電圧印加によって静電容量が変化します。 使用前には、この直流電圧特性を考慮して、コンデンサを選定してください。
- 1-1. コンデンサには、電圧依存性を持った誘電体磁器を使用しているので、直流印加電圧が高い場合は、静電容量が大幅に変化する場合があります。 そのため、静電容量を確保するためには、次のことを確認してください。
 - (1) 印加電圧による静電容量変化が許容範囲にあるか、または制限されない用途であるか確認してください。
 - (2) 直流電圧特性は、印加電圧が定格電圧以下であっても、電圧が高くなるにつれ、静電容量の変化率も大きく(減少)なります。 高誘電率系コンデンサを、時定数回路など許容範囲の狭い静電容量を必要とする回路に使用される場合には、電圧特性を十分に考慮いただき、 実使用条件、および実機にて、諸特性を十分にご確認ください。
- 高誘電率系コンデンサは、印加される交流電圧によって静電容量が変化します。 使用する前には、この交流電圧特性を考慮して、コンデンサを選定してください。

GJM1555C1H4R7WB01-01A 13

muRata

muRata

6. 静電容量の経時変化

1. 高誘電率コンデンサには、静電容量の経時変化(エージング特性)があります。 時定数回路などに使用する場合は、経時変化(エージング特性)を十分に考慮いただき、実使用条件、および実機にて、諸特性を十分にご確認ください。

7. 振動または衝撃

1. 振動または衝撃の種類もしくはそのレベルまたは共振の発生有無の確認が必要になります。共振が発生しない取り付けまたはコンデンサの端子に衝撃が加わらないような取り付けが必要になります。

3. 実装後の基板の積み重ね保管または取り扱い時に、基板の角がコンデンサにあたり、その衝撃で破損やクラックが発生し、耐電圧不良や絶縁抵抗の低下などにいたる場合もあります。

■実装 トの注意

1. 部品配置

- 1. コンデンサを基板にはんだ付けした後の工程または取り扱い中に基板が曲がると、コンデンサに割れが発生することがあります。基板のたわみに対して極力ストレスが加わらないようにコンデンサ配置を確認する必要があります。
- 1-1. 基板のそり・たわみに対して極力ストレスが加わらないような部品配置にしてください。

[基板ブレイク近辺でのコンデンサ配置]

基板分割でのストレスを軽減するために下記に示す対応策を実施することが有効です。

下記に示す3つの対策をすべて実施することがベストですが、ストレスを軽減するために可能な限りの対策を実施ください。

対策内容	ストレスの大小
(1) 基板分割面に対する部品の配置方向を平行方向とする。	A > D *1
(2) 基板分割部にスリットを入れる。	A > B
(3) 基板分割面から部品の実装位置を離す。	A > C

^{*1} 上記の関係は、手割はカットラインに対して垂直に応力がかかることが前提です。 ディスクカット機などの場合は、応力が斜めにかかり、A>Dの関係が成り立ちません。

ネジ穴近辺にコンデンサを配置すると、ネジ締め時に発生する基板たわみの影響を受ける可能性があります。 ネジ穴から極力離れた位置に配置してください。

ネジ穴

В

スリット

00000

D

ミシン目

00000

Α

2. 実装前の確認

- 1. 機器に組み込んだコンデンサを取り外して、再使用することはできません。
- 2. コンデンサは、印加される電圧によって静電容量が変化するため、使用する直流、交流電圧によって静電容量の確認が必要になります。
- 3. コンデンサに過度な機械的衝撃が加わるか確認が必要になります。
- 4. コンデンサの静電容量、定格電圧、特性などを確認してから取り付ける必要があります。
- 5. 長期保管したコンデンサははんだ付け性を確認の上、使用する必要があります。
- 6. 長期放置した高誘電率系コンデンサは、経時変化により静電容量が低下している場合がありますので、静電容量を確認する前に熱処理をする必要があります。

3. 実装機の調整

- 1. コンデンサを基板に実装する場合は、コンデンサ本体に次のような過度の衝撃荷重が加わらないことを確認する必要があります。あらかじめ実使用条件、および実機にて実装性の確認をしてください。
- 1-1. 吸着ノズルの下死点が低すぎる場合は、実装時、コンデンサに過大な力が加わり、割れの原因となるので、次のことを守ってください。
 - (1) 吸着ノズルの下死点は、基板のそりを矯正して、基板上面に設定し調整してください。

2. 吸着ノズルと吸着機構に、ごみ、ほこりなどが入ると、ノズルが滑らかに動かず実装時にコンデンサへ過大な力が加わり、チップ割れの原因となります。
また、位置決め爪が摩耗してくると、位置決め時にコンデンサへ加わる力が一定でなくなり、かけの原因となります。吸着ノズル、位置決め爪の保守、点検および交換は定期的に行ってください。

4-1. はんだ取り付け: リフローはんだ付け

- 1. コンデンサへ急激に熱を加えると、内部で大きな温度差による歪みが生じて、クラックの発生や耐基板曲げ性低下の原因となります。 コンデンサのダメージを軽減するためにコンデンサおよび取り付け基板に必ず予熱を行ってください。 予熱の条件は、はんだ温度とコンデンサ表面温度の温度差ΔTが表1の範囲内となるようにしてください。 ΔTが小さくなるほどコンデンサへの影響も小さくなります。また、チップ立ち、ずれ現象の防止にもなります。
- 2. はんだ付け直後に洗浄液に浸せきする際は、予熱温度差と同じように、冷却温度差が表1のΔΤを満足するように空冷過程を設けてください。

表1 許容温度差 ΛΤ

シリーズ	チップ寸法(L/W)コード	温度差
GJM	01/02/03/15	ΔΤ≦190℃

推奨条件

項目	無鉛はんだ
ピーク温度	240 to 260℃
雰囲気	大気もしくはN ₂

無鉛はんだ: Sn-3.0Ag-0.5Cu

- 3. コンデンサがはんだメーカの推奨するリフローピーク温度より低い温度で実装された場合、下記の品質不具合が発生する可能性があります。 コンデンサへのリフロー温度が低下しない様、周辺部品の配置やリフロー温度の設定などをご検討ください。 事前に実装評価を行い、下記不具合の発生が無いことをご確認下さい。
 - ・はんだ濡れ性の低下
 - はんだボイドの発生
 - ・ウィスカの発生
 - 接合強度の低下
 - ・セルフアライメント性の低下
 - ・ツームストンやシフティングの発生
- 4. 適正はんだ盛り量
- 4-1. はんだ塗布厚が過剰になると、リフローはんだ付け時のはんだ盛り量が過多となり、基板より機械的・熱的ストレスを受けやすく、チップ割れの原因となります。
- 4-2. はんだ塗布厚が過小になると、外部電極固着力不足を生じ、チップ脱落の原因となります。
- 4-3. はんだが滑らかに端面部まで上がっていることを確認してください。

基板反転

反転時に基板に異常な機械的衝撃が加わらないようにしてください。

GJM1555C1H4R7WB01-01A 17

muRata

「リフローはんだ付け標準条件]

「リフローはんだ付け許容温度、時間]

はんだ付けが繰り返される場合は、 累積時間が上記時間を超えないようご注意ください。

4-2. はんだ取り付け: フローはんだ付け

当製品はフローはんだ付けをしないでください。

4-3. はんだ取り付け: はんだ付け部の修正

コンデンサへ急激に熱を加えると、内部で大きな温度差による歪みが生じて、クラック発生の原因となります。また、基板予熱温度やはんだフィレット形状によって、機械的・熱的ストレスを受けやすくなり、クラックの原因となります。 はんだ量やフィレット形状は、1.基板設計や下記3.適正はんだ盛り量をご参照ください。

1. はんだコテを用いた修正

- 1-1. コンデンサのダメージを軽減するためにコンデンサおよび取り付け基板に必ず予熱を行ってください。予熱温度が表3の範囲となるようにしてください。予熱用加熱器具としては、ホットプレート、熱風式プルーター等があります。
- 1-2. はんだ取り付け後は徐冷を行ってください。
- 1-3. コテ修正はできるだけ短時間で作業してください。コテあて時間が長すぎる場合、端子電極のはんだクワレの発生につながる可能性があり、固着力低下などの原因となります。

\overline{x}	

シリーズ	チップ寸法(L/W)コード	コテ先温度	予熱温度	温度差	雰囲気
GJM	03/15	350℃以下	150℃以上	ΔΤ≦190℃	大気

^{*}無鉛はんだ: Sn-3.0Ag-0.5Cu

2. スポットヒーターを用いた修正

はんだコテによる局所加熱と比較し、スポットヒーターによる熱風加熱は、部品および基板が全体的に加熱されるため、熱衝撃が緩和される傾向にあります。また、高密度実装基板の場合、部品へ直接はんだコテが触れる心配も回避することができます。

- 2-1. スポットヒーターの熱風出口から部品までの距離が近すぎる場合、熱衝撃により、クラックが発生する場合があります。そのため、表4の条件を目安としてください。
- 2-2. はんだフィレット形状を適正にするために、図1に示す方向角度で熱風を当てることを推奨します。

表4

17.1	
距離	5mm以上
熱風当て角度	45° ※図1
熱風温度	400℃以下
当て時間	10s以内(チップ(L×W):1.0×0.5mm以下)

3. 適正はんだ盛り量

- 3-1. はんだが滑らかに端面部まで上がっていることを確認してください。 はんだ付け時のはんだ盛り量が過多となった場合、基板より機械的・熱的ストレスを受けやすく、チップ割れの原因となります。 はんだ盛り量が過小になると、外部電極固着力不足を生じ、チップ脱落の原因となります。
- 3-2. コテ先形状φ3mm以下をご使用ください。また、コンデンサ自体にコテ先が触れないように実施してください。
- 3-3. はんだの種類は線径φ0.5mm以下(ヤニ入り糸はんだ)をご使用ください。

^{*}コテ先温度および予熱温度内で△Tを管理してください。

5. 洗浄

超音波洗浄の際、出力が大きすぎると基板が共振し、基板の振動によりチップクラックやはんだ割れの原因となります。必ず、事前に実洗浄装置を用いて洗浄を行い、コンデンサの品質を確認してください。

6. 防湿処理 (適用:GJM011およびGJM022 定格電圧100V品)

マイグレーションの発生やフラックス残渣による劣化を防止するため、樹脂コーティングなどの防湿処理を行ってください。

7. 基板検査

- 1. 実装後の基板でコンデンサを検査する際は、サポートピンや専用ジグでの基板の固定の有無を確認する必要があります。
- 1-1. テストプローブなどの圧力で基板がたわまないようにしてください。テストプローブの押し力により、基板がたわんでチップクラック、または、はんだ割れの原因となりますので、基板がたわまないよう基板裏面にサポートピンを設けてください。 サポートピンは極力テストプローブに近づけてください。
- 1-2. 接触時の衝撃で基板が振動しないようにしてください。

8. 基板分割

- 1. コンデンサを含む部品を実装後、基板分割作業の際には、基板にたわみやひねりなどのストレスを与えないように注意してください。
- 1-1. 基板を分割する際に、基板に右の図に示すようなたわみやひねりなどのストレスを与えると、コンデンサにクラックが発生する場合があります。 クラックが入ったコンデンサは絶縁抵抗が低下し、ショートにいたる可能性があります。極カストレスを加えないようにしてください。

- 2. 基板分割時は、事前に確認してください。
- 2-1. 基板を分割する際には、できるだけ基板に機械的ストレスが加わらないようにするため、手割りを避け、次の図に示す基板分割ジグまたは基板分割装置(ディスクカットやルータカットなど)を使用してください。 下表および次項に注意事項についてまとめています。

基板分割方式	手割	(1) 基板分割ジグ	基板分割装置		
至极力部分式	ニッパ割	(1) 至収力計ファ	(2) ディスクカット	(3) ルータカット	
基板へのストレスの大きさ	大	中	中	小	
推奨	×	△*	△*	0	
注意事項	手割、ニッパ割は大きな ストレスが加わります。 その他の方法をご使用ください。	・基板ハンドリング ・基板折り曲げ方向 ・コンデンサの配置	・基板ハンドリング・スリットの配置・V溝の設計・ブレードの配置・ブレードのライフ管理	基板ハンドリング	

^{*}基板分割ジグやディスクカットをお使いの場合、下記の注意点を守っていただかないと大きな基板たわみストレスが発生し、コンデンサにクラックが入ります。 可能であればルータカットをご使用ください。

(1) 基板分割ジグの例

【片面実装の場合】

基板分割ジグの概要を次に示します。推奨事例として、ジグに近い部分を持ち、コンデンサが実装されている方向に折ることで部品実装位置のストレスを最小にすることができます。 また、避けたい事例として、ジグから遠い部分を持ち、コンデンサが実装されていない方向に基板を折ることで 部品実装位置に大きなストレスが加わり、コンデンサにクラック発生のリスクが高くなります。

【両面実装の場合】

基板の両面に部品が実装されているため、上記の方法では、クラック発生のリスクを回避できません。このため、下記の対策を実施して部品にストレスが加わらないようにしてください。

(対策)

- ①ルータカット機の導入を検討してください。ルータカット機の導入が難しい場合は、下記の対策を実施してください。(1.部品配置の項参照)
- ②基板分割面に対して平行に部品を実装してください。
- ③基板分割面近くに部品を実装する場合は、部品近くの分割位置をスリットとしてください。
- ④基板分割位置より、部品の実装位置を離してください。

(2) ディスクカットの例

ディスクカット装置の概要を示します。また、原理図のように基板のV溝に支え刃とカット刃を沿うように合わせて、基板を分割します。下記の場合、基板たわみストレスが加わりコンデンサにクラックが発生する原因となります。

- ①上下の刃が、上下、左右、前後にずれるなど、調整が適切でない場合
- ② V 溝の角度が低い、V 溝の深さが浅い、V 溝が上下でずれている場合
- Ⅴ溝の深さが深すぎるとハンドリング時に破断する恐れがありますのでV溝の深さは基材の強度を考慮した上で適切に設計してください。

[V溝の設計]									
V溝設計の推奨事例	避けたい事例								
V /科政司 0万定关争/万	左右ずれ	角度が低い	深さが浅い	深さが深い					

(3) ルータカットの例

ルータカット装置では、高速回転するルータによって切削加工を行います。切削加工では基板がたわまないため基板へのストレスを抑えて基板分割を行うことができます。 ルータカット装置へ基板を組み付ける時および取り 外し時に、基板がたわまないように取り扱いください。

9. 組み付け作業

1. ハンドリング

コンデンサ実装後の基板を片手で取り扱うと基板たわみを生じる可能性があります。両手で基板の端をしっかり持って取り扱いください。

コンデンサ実装後の基板を落下させてしまった場合、コンデンサにクラックが入る可能性があります。

落下した基板上のコンデンサは品質が損なわれている恐れがありますので使用しないでください。

2. その他部品の取付

2-1. その他部品の実装

片面にコンデンサ実装後、裏面にその他部品を実装する際には下記の点に注意してください。

吸着ノズル下死点の設定が低すぎる場合、裏面(下面)の実装済みコンデンサに基板たわみストレスが加わり、コンデンサにクラックが入る可能性があります。

- ・ノズル下死点を基板反り矯正後に基板上面に設定してください。

2-2. リード部品等の基板差し込み時

挿入部品(トランス、ICなど)の基板差し込み時に基板がたわむとクラックやはんだ割れの原因となります。下記の点に注意してください。

- ・リード挿入部の差し込み用穴を大きくし、挿入時の基板への応力を小さくしてください。
- ・サポートピンや専用ジグで基板を固定してください。
- ・基板が反らないように基板の下側より支持してください。基板のサポートピンを使用する場合、各々のサポートピンの高さに違いがないことを定期的に確認してください。

2-3. ソケットやコネクタ等の差し込み/抜き取り時

ソケットやコネクタ等の差し込み/抜き取りによる基板たわみが生じる可能性があります。ソケットやコネクタ等の差し込み/抜き取り時に基板が反らないような作業を設定してください。

2-4. ビス/ネジ締め時

シールド板の基板取り付けや、基板のシャーシへの取り付けの際のビス締めなどによって基板たわみを生じる可能性があります。下記の点に注意して作業を設定してください。

- ・基板が反らないような作業を設定してください。
- ・トルクの設定できるドライバーを使用し、ネジの締めすぎを防止してください。
- ・リフロー実装後などで基板が反ったりすることがあります。この基板をネジ締め時に強制的に平坦にすることでチップに応力を発生させることがあるのでご注意ください。

■その他

1. 機器稼動中

- 1-1. 機器稼動中は、コンデンサに直接触れないでください。
- 1-2. コンデンサの端子間を導電体でショートさせないでください。また、酸、アルカリ水溶液などの導電性溶液を、コンデンサにかけないでください。
- 1-3. コンデンサを取り付けたセットの設置環境および移動環境を確認し、次の環境下では、機器は使用しないでください。
 - (1) コンデンサに、水分または油がかかる環境。
 - (2) コンデンサに、直接日光が当る環境。
 - (3) コンデンサに、オゾン、紫外線および放射線が照射される環境。
 - (4) 腐食性ガス (硫化水素、二酸化イオウ、塩素、アンモニアなど) に晒される環境。
 - (5) 振動または衝撃条件がコンデンサのカタログまたは納入仕様書に規定の値を超える環境。
 - (6) 結露するような環境の変化。
- 1-4. 結露する環境下でご使用になる場合は、防湿対策を施してご使用ください。

2. その他

- 2-1. 万一の場合
 - (1) コンデンサが異常に発熱したり、発煙、発火および異臭が発生した場合、すぐに機器の主電源を切って使用を中止してください。 コンデンサが異常に発熱したり、発煙、発火および異臭が発生した場合、電源から電力を供給し続けると、さらに、拡大する場合があります。
 - (2) 異常発生直後に、コンデンサの近くに顔や手を近づけないでください。コンデンサが高温になった場合、やけどの原因になります。
- 2-2. 廃棄

コンデンサを廃棄する場合は、産業廃棄物処理業者に廃棄品を渡し、焼却埋立処理を行ってください。

- 2-3. 回路設計
 - (1) フェールセーフ機能の付加
 - / 三 落下や基板たわみによりクラックが入ったコンデンサは絶縁抵抗低下を起こし、ショートにいたる可能性があります。 万一、コンデンサがショートした場合に感電、発煙、発火の恐れがある回路でお使いの場合には、二次災害防止のためにヒューズなどのフェールセーフ機能を必ず設置してください。
 - (2) 当シリーズは、安全規格認定品ではありません。安全規格用途には使用しないでください。
- 2-4. 備考

記載内容を逸脱して当製品を使用しますと最悪の場合ショートにいたり発煙・破片の飛散等を起こすことがあります。上述の諸注意事項は代表的なもので、特殊な実装条件については当社にお問い合わせください。 使用条件は、組み立て後のコンデンサの信頼性を左右しますので最適条件を設定してください。当資料に記載されている特性グラフや関連データは、参考値であり保証値ではありません。

使用上の注意

■定格上の注意

1. 使用環境温度

- 1. コンデンサには、使用温度範囲が設定されています。
- 1-1. 使用温度は、機器内の温度分布および季節的な温度変動要因も考慮し、それに応じた使用温度範囲の製品を選定する必要があります。
- 1-2. コンデンサは自己発熱する場合があります。コンデンサの表面温度は、自己発熱分を含み、最高使用温度以下にする必要があります。

2. 周囲環境での腐食性ガスおよび溶剤

- 1. コンデンサには、周囲環境に対して制限があります。
- 1-1. 水または塩水がかかると回路的にショートします。また、端子が腐食したり水分が内部素子へ侵入することによって寿命が短くなったり、コンデンサの故障となる場合があります。
- 1-2. コンデンサの端子部が結露すると、上記と同様の現象が発生する場合があります。
- 1-3. 腐食性ガス(硫化水素、二酸化イオウ、塩素、アンモニアなど)や溶剤の揮発ガスに長期に晒されると、端子電極の酸化や腐食などによって特性劣化または絶縁劣化から破壊にいたる場合があります。

3. 圧電現象

1. 高誘電率系コンデンサを交流回路またはパルス回路で使用する場合、圧電現象(または電歪現象ともいう)により、ノイズや音が発生する場合があります。また、コンデンサに振動や衝撃を加えるとノイズが発生する場合があります。

■実装上の注意

1. 基板設計

- 1. 基板パターン構成
- 1-1. コンデンサは部品本体が直接基板に実装されるため、基板のストレスを受けやすくなります。 はんだ付け時にはんだ盛り量が過多となった場合は、機械的、熱的ストレスをよく受けやすく割れの原因となります。 基板設計時には、はんだ盛り量過多にならないようパターン形状・寸法について配慮し設計してください。
- 1-2. 基板の材質、構造によってチップへの応力は異なります。実装に用いる基板とチップとの熱膨張係数が大きく異なる場合、熱膨張・収縮によりチップ割れの原因となります。 ガラスフッ素基板、単層のガラスエポキシ基板に搭載される場合も、同様な理由によりチップ割れの原因となる可能性があります。
- 1-3. 小型のコンデンサに置き換える場合は、ランドサイズだけ変更するとクラック発生のリスクが高くなりますので、ランドサイズに加え、配線幅・配線方向・銅箔厚にも配慮し設計してください。

パターン分割による改善事例

GJM1555C1H4R7WB01-01A 25

2. ランド寸法

以下の表のランド寸法を参考に、実機にて適正値を確認してください。

表1 リフローはんだ付け用ランド寸法例

10/0/C13V	17 JOL (10/10/11) 17 JOL 18/10/11 17 JOL 18/10/10/11 17 JOL 18/10/11 17 JOL 18/10/10/11 17 JOL 18/10/10/10/10/10/10/10/10/10/10/10/10/10/							
シリーズ	チップ寸法 (L/W)コード	チップ(L×W) (寸法公差)	a	b	С			
GJM	01	0.25×0.125	0.10 to 0.11	0.07 to 0.12	0.125 to 0.145			
GJM	02	0.4×0.2	0.16 to 0.2	0.12 to 0.18	0.2 to 0.23			
GJM	03	0.6×0.3 (±0.03)	0.2 to 0.25	0.2 to 0.3	0.25 to 0.35			
GJM	15	1.0×0.5 (±0.05)	0.3 to 0.5	0.35 to 0.45	0.4 to 0.6			

(単位:mm)

3. 基板設計

作業をする上で基板の大きさや材質により、発生するひずみ量が大きくなりますので基板設計時に注意してください。

[基板厚み、長さ、幅などのひずみ量との関係]

ε: 基板中央のひずみ量 (μst)

L :支点間距離(mm)

w : 基板幅 (mm) h : 基板厚み (mm)

E : 基板の弾性率 (N/m²=Pa)

Y:たわみ量 (mm)

P:荷重(N)

荷重が一定の場合、下記の関係が成り立ちます。

- ・支点問距離(L)が大きいほど、ひずみ量は大きくなります。
- →支点間距離は、小さくしてください。
- ・弾性率(E)が小さいほど、ひずみ量は大きくなります。
- →弾性率は、大きくしてください。
- ・基板幅()が小さいほど、ひずみ量は大きくなります。
- →基板幅は、大きくしてください。
- 基板厚み(か)が小さいほど、ひずみ量は大きくなります。
- →基板厚みを大きくしてください。

基板厚みは、2乗で効くため、ひずみ量への影響が大きくなります。

2. リフローはんだ付け

はんだペースト中のフラックスには、活性剤としてハロゲン系物質や有機酸が含まれています。 酸性の強いフラックスは、コンデンサを腐食し性能を劣化させることがあります。実装後の品質を確認の上、使用してください。

3. 洗浄

- 1. 洗浄用溶剤は、必ず実洗浄装置を用いて洗浄試験を行い、品質を確認の上選定してください。
- 2. 洗浄が不適切な場合は、フラックスの残渣またはその他の異物がコンデンサに付着し、コンデンサの性能(特に絶縁抵抗)を劣化させる場合があります。

4. コーティング

- 1. コーティング樹脂やモールド樹脂の熱膨張収縮係数は、必ずしもコンデンサの熱膨張収縮係数とは一致しないため、コーティングまたはモールドの硬化処理過程および硬化後の温度変化(熱膨張収縮)によってコンデンサに異常な力が加わり、 特性または性能が変化したりコンデンサを破損(割れ、外装樹脂のはく離など)させ、絶縁抵抗低下や耐電圧不良にいたる場合があります。 また、コンデンサをモールドする樹脂量が多い場合は、樹脂硬化時の収縮応力によりコンデンサにクラックが発生する可能性があるので、樹脂硬化時の収縮応力の小さいものを使用してください。
- 2. コーティング材料やモールド材料には、耐湿性を悪化させるものもあるので、十分確認の上、使用してください。 また、湿度の高いところで吸湿性のよい樹脂を使用すると吸湿によるコンデンサの絶縁抵抗劣化になるので、吸湿性の小さいものを使用してください。
- 3. コーティング材にハロゲン系物質や有機酸が含まれている場合があり、種類によってはチップが腐食することがあります。酸性の強いものは使用しないでください。

■その他

1. 輸送

- 1. コンデンサを輸送する場合、条件によって性能に影響を与える場合があります。
- 1-1. 輸送中、テープ、バルクケースなどの包装形態のものも含め、極端な温度、湿度および機械的な力に対してコンデンサを保護してください。
 - •機械的条件

輸送は、箱が変形せず、また、内部包装物に直接力が伝わらない方法で行ってください。

- 1-2. コンデンサに過度の振動、衝撃、圧力を加えないでください。
 - (1) コンデンサの本体はセラミックスなので、過度の機械的衝撃や圧力が加わると、破損やクラックが発生する場合があります。
 - (2) コンデンサ表面に鋭利なもの(エアドライバー、はんだコテ、ピンセット、シャーシのエッジなど)が強く当るとショートなどにいたる場合があります。
- 1-3. 落下などによって、過度の衝撃が加わったコンデンサは使用しないでください。 落下したコンデンサは、すでに品質が損なわれている場合が多く、故障危険率が高くなる場合があります。

2. 実機での特性評価

- 1. ご使用に際しては、完成品の性能や規格値に問題がないことを実機にて評価してください。
- 2. 高誘電率系のセラミックコンデンサの静電容量には電圧依存性や温度依存性があるため、実機内での使用条件によっては静電容量が変化する場合があります。 よってコンデンサの静電容量値に影響を受けるもれ電流やノイズ吸収性などの諸特性を必ず実機にて評価してください。
- 3. また、実機のインダクタンス分により所定のサージを超える電圧がコンデンサに印加されることもあるため、必要に応じ、実機にて耐サージ性の評価を実施してください。

∕♪ お願い

- 1. ご使用に際しては、貴社製品に実装された状態で必ず評価してください。
- 2. 当製品を納入仕様書の記載内容を逸脱して使用しないでください。
- 3. 当社は、仕様書、図面その他の技術資料には、取引に関する契約事項を記載することは適切でないものと存じております。 従って、もし、貴社が作成されたこれら技術資料に、品質保証、PL、工業所有権等にかかわる弊社の責任の範囲に関する記載がある場合は、当該記載は無効とさせていただきます。 これらの事項につきましては、別途取引基本契約書等においてお申し越しいただきたくお願いします。