On Multiphase-Linear Ranking Functions

Amir M. Ben-Amram and Samir Genaim

May 13, 2020

Single Path Linear Constraint Loop Example

while
$$(x \ge -z)$$
 do $x' = x + y$, $y' = y + z$, $z' = z - 1$

Let
$$B = (-1, 0, 1)$$
, $\mathbf{x} = (x, y, z)^T$, $\mathbf{b} = 0$.
Let $\mathbf{x}'' = (x, y, z, x', y', z')$,

$$A = \begin{bmatrix} 1 & 1 & 0 - 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 \end{bmatrix}$$
 (1)

and $\mathbf{c} = (0, 0, 1)^T$

Definition (SLC)

while
$$(B\mathbf{x} \leq \mathbf{b})$$
 do $A\begin{pmatrix} \mathbf{x} \\ \mathbf{x}' \end{pmatrix} \leq \mathbf{c}$

$$A'' = \begin{pmatrix} B & 0 \\ A \end{pmatrix} \qquad \qquad \mathbf{c}'' = \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix}$$

 $A''\mathbf{x}'' < \mathbf{c}''$

Ranking Functions

Definition (Single Linear Ranking Function(LRF))

$$f(x_1,...,x_n) = a_1x_1 + ... a_nx_n + a_0$$
, such that

- ▶ $f(\mathbf{x}) \ge 0$ for any \mathbf{x} satisfies the loop constraints.
- $f(\mathbf{x}) f(\mathbf{x}') \ge 1$ for any transition from \mathbf{x} to \mathbf{x}' .

Example

while
$$(x-1>0)$$
do $x'=x-5$

LRF: f(x) = ax + b.

$$ax + b \ge 0 \Rightarrow x \ge -\frac{b}{a} = 1.$$

►
$$ax + b - (ax' + b) = a(x - x') = 5a \Rightarrow 5a \ge 1$$

A possible SLRF: f(x) = x - 1

We can define a binary relation $\mathbf{x}\succeq\mathbf{x}'$ iff $f(\mathbf{x})-f(\mathbf{x}')\geq 1$ and $f(\mathbf{x})>0$

Limitation of SLRF

while
$$(q > 0)$$
do $q' = q - y, y' = y + 1$

Assume there is a LRF for this loop, say $f(q,y) = a_1q + a_2y + b$

$$f(q,y) - f(q',y') = a_1y + a_2$$

Since y is not bounded, we cannot guarantee $\Delta f(q,y,q',y')>0$ The loop does not has a SLRF, however, it does terminate. We still wish to use q for ranking function, but to distinguish different "phase" of q base on either $y\geq 0$ or y<0

Nested RF

Definition (Nested Ranking Function)

A tuple $\langle f_1,\dots,f_d\rangle$ is a nested ranking function for T if the following requirements are satisfied for all $\mathbf{x}''\in T$

$$f_d(\mathbf{x}) \ge 0$$

 $(\Delta f_i(\mathbf{x}'') - 1) + f_{i-1}(\mathbf{x}) \ge 0$ for all $i = 1, \dots, d$.

Let
$$f_0 = 0$$
.

Example: Nested RF

$$f_d(\mathbf{x}) \ge 0$$

$$(\Delta f_i(\mathbf{x}'') - 1) + f_{i-1}(\mathbf{x}) \ge 0 \qquad \text{for all } i = 1, \dots, d.$$

while
$$(q > 0)$$
do $q' = q - y, y' = y + 1$

▶ Above loop has Nested RF $\langle 1-y, q+1 \rangle$

Linear Loop Program

Definition

A linear loop program LOOP(x, x') is a binary relation defined by a formula with the free variables x and x' of the form

$$\bigvee_{i \in I} \left(A_i \begin{pmatrix} x \\ x' \end{pmatrix} \le b_i \land C_i \begin{pmatrix} x \\ x' \end{pmatrix} < d_i \right)$$

for some finite index set I.

Example

while
$$(q > 0)\{\text{if } (y > 0): q' = q - y - 1; \text{else } : q' = q + y - 1\}$$

can be represented by

$$(q > 0 \land y > 0 \land y' = y \land q' = q - y - 1)$$

 $\forall (q > 0 \land y < 0 \land y' = y \land q' = q + y - 1)$

Limitation of Nested RF

Example

while
$$(q>0 \lor y>0)$$

$$\{\text{if } (y>0): y'=y-1; q'=q; \text{else } : q'=q-1\}$$

This program does not have a nested ranking function for we require $f_d \ge 0$ but the guard is $q > 0 \lor y > 0$.

Howerver, this loop does terminate. Then we use a "multi-phase" ranking function $\langle y,q\rangle$ to prove the termination.

$$f_d(\mathbf{x}) \ge 0$$

 $(\Delta f_i(\mathbf{x}'') - 1) + f_{i-1}(\mathbf{x}) \ge 0$ for all $i = 1, \dots, d$.

Multiphase Ranking Function

Definition

Given a set of transitions $T\subseteq \mathbb{Q}^{2n}$, we say $\langle f_1,\ldots,f_d\rangle$ is a multiphase ranking function for T if for every $\mathbf{x}''\in T$, there is an index $i\in [1,d]$, s.t.

$$\forall j \le i . \Delta f_j(\mathbf{x}'') \ge 1,$$

$$f_i(\mathbf{x}) \ge 0,$$

$$\forall j < i . \qquad f_j(\mathbf{x}) \le 0.$$

We say that \mathbf{x}'' is ranked by f_i (for the minimal).

Example: Multiphase Ranking Function

while
$$(x > -z)$$
do $x' = x + y, y' = y + z, z = z - 1$

Attempt to use a ranking function that has several phases: $\langle z+1,y+1,x\rangle$

x	y	z	z+1	y+1	x
1	1	1	2	2	1
2	2	0	1	3	2
4	2	-1	0	3	4
6	1	-2	-1	2	6
7	-1	-3	-2	0	7
6	-4	-4	-3	-3	6
2	-8	-5	-4	-7	2
-6	-13	-6	-5	-12	-6

Example: Multiphase Ranking Function

while
$$(x>-z)$$
do $x'=x+y, y'=y+z, z'=z-1$
$$\langle z+1, y+1, x \rangle$$

 \mathbf{x}'' is ranked by f_k when i=k. In this example, $f_1(x,y,z)=z+1,\ f_2(x,y,z)=y+1$ and $f_3(x,y,z)=x$

M⊕RF to Nested RF

Theorem (1)

If Q has a $M\Phi RF$ of depth d, then it has a nested ranking function of depth at most d.

$\mathsf{BM}\Phi\mathsf{RF}(\mathbb{Q})\in\mathsf{PTIME}$

Theorem (2)

 $BM\Phi RF(\mathbb{Q}) \in PTIME$.

Proof.

Leike et al..Ranking Templates for Linear Loops.

LLRF

Intuition: remind binary relation $\mathbf{x}\succeq\mathbf{x}'$ iff $f(\mathbf{x})-f(\mathbf{x}')\geq 1$ and $f(\mathbf{x})\geq 0.$

Generalize it into several phases using lexicographical order of ranking functions.

$$\langle f_1, f_2, \dots, f_d \rangle$$

 $(2, 3, 1, 3) \ge (2, 1, 5, 4)$

Definition (LLRF)

Given a set of transitions T we say that $\langle f_1, f_2, \dots, f_d \rangle$ is a LLRF (of depth d) for T if for every $\mathbf{x}'' \in T$ there is an index i such that

$$\forall j < i \cdot \Delta f_j(\mathbf{x''}) \ge 0,$$

 $\Delta f_i(\mathbf{x''}) \ge 1,$
 $f_i(\mathbf{x}) \ge 0,$

A LLRF is weak if ..

Weak LLRF to M⊕RF

Theorem (3)

If Q has a weak LLRF of depth d, it has a $M\Phi$ RF of depth d.

Weak LLRF: Integer to Rational

Theorem (4)

Let $\langle f_1, \ldots, f_d \rangle$ be a weak LLRF for $I(\mathcal{Q})$. Then there are constants c_1, \ldots, c_d such that $\langle f_1 + c_1, \ldots, f_d + c_d \rangle$ is a weak LLRF for \mathcal{Q}_I (over the rationals).

The Depth of a $M\Phi RF$

Idea: pre-compute the depth d for M Φ RF synthesis.

Theorem (5)

For integer B > 0, the following loop Q_B

while
$$(x \ge 1, y \ge 1, x \ge y, 2^B y \ge x)$$
 do $x' = 2x, y' = 3y$

needs at least B+1 components in any M Φ RF.

Proof.

Define $R_I = \{(2^i c, c, 2^{i+1} c, 3c) \mid c \geq 1\}$ and note that for $i \in [0, B]$, we have $R_i \in \mathcal{Q}_B$.

Assume the loop has a M Φ RF with depth B, then it is obvious that there are R_i and $R_j, i \neq j$ that are ranked by the same phase f_k , w.l.o.g., assume j > i and $f_k(x,y) = a_1x + a_2y + a_0$, we have

Proof of Theorem (5)

$$\begin{aligned} j > i \text{ and } f_k(x,y) &= a_1 x + a_2 y + a_0 \\ f_k(2^i,1) - f_k(2^{i+1},3) &= -a_1 2^i - a_2 2 > 0 \\ f_k(2^j,1) - f_k(2^{j+1},3) &= -a_1 2^j - a_2 2 > 0 \\ f_k(2^i,1) - f_k(0,0) &= a_1 2^i + a_2 &\geq 0 \\ f_k(2^j,1) - f_k(0,0) &= a_1 2^j + a_2 &\geq 0 \end{aligned}$$

$$j>i$$

$$a_12^{i-1}>0\Rightarrow a_1>0$$

$$a_1(2^i-2^{j-1})>0\Rightarrow i+1>j\Rightarrow i\geq j.$$
 Contradiction.

Iteration Bounds from M⊕RFs

Example

while
$$(x \ge 0)$$
do $x' = x + y, y' = y - 1$

M
$$\Phi$$
RF: $\langle y+1,x\rangle$

When start from $x = x_0$ and $y = y_0...$

$$x_0 + \frac{y_0(y_0+1)}{2} - 1$$

Iteration Bounds from M⊕RFs

Overview: Given a SLC loop and a corresponding M Φ RF $\tau = \langle f_1, \dots, f_d \rangle$.

- ▶ $F_k(t)$: the value of f_k after iteration t.
- ▶ $UB_k(t)$: bound for f_k . For $t > T_k$, $UB_k(T_k)$ becomes negative.
- ▶ *T_k*: an upper bound on the time in which the *k*-th phase ends.
- ▶ The whole loop must terminate before $\max_k T_k$ iterations.

 \mathbf{x}_t be te state after iteration t. Define $F_k(t) = f_k(\mathbf{x}_t)$. Let $M = \max(f_1(\mathbf{x}_0), \dots, f_k(\mathbf{x}_0))$

Iteration Bounds from M⊕RFs

Lemma (4)

For all $k \in [1,d]$, there are $\mu_1,\ldots,\mu_{k-2} \geq 0$ and $\mu_{k-1} > 0$ such that $\mathbf{x}'' \in \mathcal{Q} \rightarrow \mu_1 f_1(\mathbf{x}) + \cdots + \mu_{k-1} f_{k-1}(\mathbf{x}) + (\Delta f_k(\mathbf{x}'') - 1) \geq 0$.

Lemma (5)

For all $k \in [1,d]$, there are constants $c_k,d_k>0$ such that $F_k(t) \leq c_k M t^{k-1} - d_k t^k$, for all $t \geq 1$.

Theorem (6)

An SLC loop that has a M Φ RF terminates in a number of iterations bounded by $O(||\mathbf{x}_0||_{\infty})$