Graphes

Évaluation N°1 - 30 Septembre 2019

(durée 1H00 - Seul matériel autorisé = 1 feuille A4 Recto Verso - Barême indicatif)

	(duree 1H00 - Seul materiel autorise = 1 leunie A4 Recto-verso - Bareine indicatil)						
NOM		Prénom		Filière			

1- (1pt) VRAI ou FAUX? Un graphe simple non orienté dont tous les sommets sont de degré 2 est un cycle. Justifiez.	FAUX il peut contenir plusieurs cycles
2- (1pt) Étant donné un graphe simple non orienté G , combien y a-t'il d'arêtes dans un stable à p sommets de G ?	0
3- (1pt) Étant donné un graphe simple non orienté G , combien y a-t'il d'arêtes dans une clique à p sommets de G ?	$p \times (p-1)/2$
4- (1pt) Dessinez en utilisant le moins d'arêtes possibles un graphe d'ordre 7 dont la plus grande clique soit de taille 4 et le plus grand stable de taille 3. Décrivez la clique et un des stables maximum.	A B E G C I G C I G E
5- (1pt) On considère qu'un parcours en profondeur d'abord dans un graphe G a visité un sommet x avec p et q comme dates de pré et post-visite respectives. Donnez l'information la plus précise que l'on peut en déduire sur le nombre de descendants de x dans G .	$ D(x) \geq (q-p-1)/2 + 1 \ (x est son propre descendant, il peut y en avoir plus car on les a peut-être déjà vu depuis un sommets visité avant x.)$

Soit $G_1 = (X_1, U_1)$ le graphe orienté dont le dictionnaire des successes

eurs est :	$x \in X_1$	A	В	С	D	Е	F
curs est.	D±()	DCF	0	D	0	/	D

Solit $G_1 = (X_1, C_1)$ is graphic oriente dont le dictionnaire des successeurs est . $\boxed{\Gamma^+(x) \mid B, C, E \mid C \mid D \mid C \mid / \mid B}$							
6- (1pt) Donnez tous les cycles élémentaires de G_1 s'ils existent.	ABC et CD						
7 (1-t) Desires an analy Charlest							
7- (1pt) Dessinez un graphe G_1' résultant de la suppression de tous les cycles de G_1 en enlevant le minimum d'arcs. Vous choisirez IMPERATIVEMENT les arcs à enlever par ordre alphabétique (par exemple (B, D) est avant (C,A)).	on enlève AB et CD F D						

On appelle centroïde d'un graphe d'ordre n un sommet tel qu'en le supprimant les composantes connexes restantes sont toutes de tailles inférieures ou égales à n/2.

restantes sont toutes de tames imerieures ou egales a $n/2$.					
8- (1pt) Donnez tous les centroïdes de G_1' s'ils existent.	C tout seul				

On considère le graphe G_2 suivant :

x	A	В	С	D	Е	F	G	Н	I	J
$\Gamma^{+}(x)$	E,G,I	D,E	Н	B,H,F	G	$_{\mathrm{B,D,H,J}}$	E	С	C,E,F	D

9- (1pt) Donnez le dictionnaire sommets/prédécesseurs de G_2 .	$rac{x}{\Gamma^{-}(x)}$	A B / D, F	C H, I	D	E A, B, G, I	F D, I	G A, E	H C, D, F	I A	$\frac{J}{F}$
10- (0.5pt) Peut-on décomposer G_2 en niveaux, si oui combien (décrivez-les) sinon pourquoi?	non il e	xiste des	s circu	ıits exei	mple EGE	2				
11- (2pts) Dessinez l'arborescence obtenue par un parcours en profondeur d'abord depuis le sommet A (en cas de choix les sommets seront pris IMPÉRATIVEMENT par ordre alphabétique), vous noterez les dates de début (pré-visite) et de fin de traitement (post-visite) des sommets.	1_20 (A)	E 61 (I	9	→ G 4 7-10 → C 11118 F F	8 12 12 (I	9 1) 15 3) 17	1:	314 D		
12- (3pts) Donnez le nombre de composantes f—connexes de G_2 et décrivez l'ensemble des sommets de chaque composante.	Kosaraj $\widehat{\mathbf{A}}$ $5: \{A\}$	ju :] (I)	liste DFJ	post-vi	B	eroissa)	ante=.	AIFJBD	СН	EG
13- (1pt) Dessinez le graphe réduit de G_2 mis en niveaux.	N0	$ \begin{array}{c} N1 \\ \hline \overline{l} \end{array} $		N2 →B	N	3 7)				

On considère le graphe G_3 suivant :

14- (0.5pt) Combien d'arêtes doit avoir un	
arbre à 6 sommets?	5 = n - 1
15- (2.5pts) Listez les arêtes d'un Arbre	(PP) (10) (PP) (PO) (PP)
Couvrant de Poids Minimum (ACPM) de	(EF)(AC)(BF)(BC)(DE)
G_3 .	
16- (0.5pt) Quel est le poids de cet arbre	
couvrant?	40
17- (1pt) L'arbre couvrant de poids mini-	
mum pour G_3 est-il unique? Justifiez.	non on aurait pu prendre AB à la place de BC.