

Learning Stage 3: Making Better Decisions

- ▶ Chapter 14
 - ▶ Effects of Inflation
- ▶ Chapter 15 *not covered in this course
 - ▶ Cost Estimation and Indirect Cost Allocation
- ▶ Chapter 16
 - Depreciation Methods
- ▶ Chapter 17
 - ▶ After-Tax Economic Analysis
- ▶ Chapter 18
 - Sensitivity Analysis and Staged Decisions
- ▶ Chapter 19
 - More on Variation and Decision Making under Risk

LEARNING OUTCOMES

- Purpose:
 - Use depreciation or depletion methods to reduce the book value of a capital investment in an asset or natural resource.
- 1. Understand basic terms of asset depreciation
- 2. Apply straight line and SYD methods of depreciation
- 3. Apply DB and DDB methods of depreciation; switch between DDB and SL methods
- 4. Apply MACRS method of depreciation
- 5. Apply Unit-of-Production (UOP) Depreciation
- 6. Explain depletion and apply cost depletion & percentage depletion methods

١ 🔻

Engineering Economics

Depreciation Terminology

- Depreciation:
 - Book (noncash) method to represent decrease in value of a tangible asset over time
 - E.g., equipment, computers, vehicles, buildings, and machinery
 - depreciation amount is not an actual cash flow
- ▶ Depreciation is a tax-allowed deduction included
 - in tax calculations in virtually all industrialized countries.
 - depreciation lowers income taxes via
 - Taxes = (income deductions) (tax rate)
- ▶ Two types of depreciation:
 - ▶ Book dep.: used for internal accounting to track value of assets or property over its life using any method
 - ▶ Tax dep.: used to determine taxes due based on tax laws
 - In USA only, it must be calculated using MACRS (Modified Accelerated Cost Recovery System)

Common Depreciation Terms

- First cost P or unadjusted basis B: Total installed cost of asset
- ▶ Book value BV_t: Remaining undepreciated capital investment in year t
- Recovery period n: Depreciable life of asset in years
- Market value MV: Amount realizable if asset is sold on an open market
- ▶ Salvage value S: Estimated trade-in or MV at end of asset's useful life
- Depreciation rate (recovery rate) d_t: Fraction of first cost or basis removed each year t
- Personal property: Possessions of company used to conduct business
 - two types of property: the income-producing and tangible possessions
- Real property: Real estate and all improvements (land is not depreciable)
- ▶ Half-year convention:
 - Assumes assets are placed in service or disposed of in midyear

6

Engineering Economics

Straight Line (SL) Depreciation

- ▶ Straight Line (SL) Depreciation
 - ▶ Book value decreases linearly with time

$$D_{t} = \frac{B - S}{n}$$

Where:

 D_t = annual depreciation charge

t = year

B = first cost or unadjusted basis

S = salvage value

n = recovery period

$$BV_t = B - tD_t$$

Where: $BV_t = book$ value after t years

SL depreciation rate is constant for each year: $d = d_t = 1/n$

Example: SL Depreciation

- An argon gas processor has a first cost of \$20,000 with a \$5,000 salvage value after 5 years.
 - ▶ Find (a) D₃ and (b) BV₃ for year three. (c) Plot book value vs. time.

Solution: a)
$$D_3 = (B - S)/n$$

= $(20,000 - 5,000)/5$
= $$3,000$

b)
$$BV_3 = B - tD_t$$

= 20,000 - 3(3,000)
= \$11,000

٧

Engineering Economics

Sum-of-Years-Digits (SYD) Depreciation

- ▶ The SYD method:
 - ▶ Depreciation in the first year is the largest and it will be decreased through the life of the asset.

$$D_t = \frac{\text{depreciable years remaining}}{\text{sum of years digits}} \text{ (basis - salvage value)}$$

$$D_t = \frac{n-t+1}{\text{SUM}} (B-S)$$

• where SUM is the sum of the digits 1 through n

$$SUM = \sum_{j=1}^{j=n} j = \frac{n(n+1)}{2}$$

 $BV_t = B - \frac{t(n - t/2 + 0.5)}{SUM} (B-S)$

▶ The rate of depreciation decreases each year as

$$d_t = \frac{n-t+1}{\text{SUM}}$$

> /

Example for SYD (1)

- ➤ Calculate the SYD depreciation charges and book values for an electro-optics equipment with B = \$80,000, S = \$10,000, and an 10-year recovery period
- Solution
 - The sum of the year's digits: SUM = 10*11/2 = 55,
 - $D_1 = 10/55 * (80,000 10,000) = 12,727$
 - $D_2 = 9/55 * (80,000 10,000) = 11,455$
 - $D_3 = 8/55 * (80,000 10,000) = 8,909$
 - •
 - $D_{10} = 1/55 * (80,000 10,000) = 1,273$

٩

Declining Balance (DB) and Double Declining Balance (DDB) Depreciation

- It is determined by multiplying BV at beginning of year by fixed percentage d
 - Max rate for d is twice straight line rate (DDB), i.e., $d \le 2/n$
 - ▶ The rate for d in Declining Balance is 1/n
 - ▶ Cannot depreciate below salvage value
- Depreciation for year t is obtained by:

```
\begin{split} D_t &= dB(1-d)^{t-1} = dBV_{t-1} \\ \text{Where: } D_t &= \text{depreciation for year t} \\ d &= \text{uniform depreciation rate (2/n for DDB)} \end{split}
```

B = first cost or unadjusted basis $BV_{t-1} = book value at end of previous year$

- ▶ Book value for year t: $BV_t = B(1 d)^t$
- Implied $d = 1 (S/B)^{1/n}$, if $BV_n = SV$

11 Engineering Economics

Example: Double Declining Balance (DDB)

- A depreciable construction truck has a first cost of \$20,000 with a \$4,000 salvage value after 5 years. Find
 - (a) depreciation, and
 - (b) book value after 3 years using DDB depreciation.

Solution: (a)
$$d = 2/n = 2/5 = 0.4$$

 $D_3 = dB(1-d)^{t-1}$
 $= 0.4(20,000)(1-0.40)^{3-1} = 2880

(b)
$$BV_3 = B(1 - d)^t$$

= 20,000(1 - 0.4)³ = \$4320

11

Spreadsheet Functions for Depreciation

- ▶ Straight line function:
 - ▶ SLN(B, S, n)
- Sum of years digit
 - ▶ SYD(B, S, n, t)
- ▶ Declining balance function:
 - \rightarrow DB(B, S, n, t)
- ▶ Double declining balance function:
 - ▶ DDB(B, S, n, t, d)

Note: It is better to use the DDB function for DB and DDB depreciation.

DDB function checks for BV < S and is more accurate than the DB function.

11

Engineering Economics

Switching Between Depreciation Methods

▶ Switch between methods to maximize PW of depreciation

$$PW_{D} = \sum_{t=1}^{t=n} D_{t} (P/F, i\%, t)$$

- A switch from DDB to SL in latter part of life is usually better
- ▶ Can switch only one time during recovery period
- ▶ Procedure to switch from DDB to SL:
 - ▶ Each year t compute DDB and SL depreciation using the relations

$$D_{DDB} = d(BV_{t-1})$$
 and $D_{SL} = BV_{t-1} / (n - t + 1)$

- Select larger depreciation amount, i.e., $D_t = max[D_{DDB}, D_{SL}]$
- ▶ If required, calculate PW_D

Alternatively, use spreadsheet function VDB(B,S,n,start_t,end_t) to determine D,

١٤

Example 16.3

- A company has purchased a new ore grading unit for \$80,000.
 - ▶ The unit has an anticipated life of 10 years and a salvage value of \$10,000.
 - ▶ Use the DB and DDB methods to compare the schedule of depreciation and book values for each year.
 - ▶ Solve by hand and by spreadsheet.
 - ▶ Solution: implied DB depreciation rate

$$d = 1 - \left(\frac{10,000}{80,000}\right)^{1/10} = 0.1877$$

• Depreciation rate for DDB: 2/n = 0.2

10

Engineering Economics

Example 16.3

	Declining Balance, \$		Double Declining Balance, \$	
Year t	Dt	BV _t	Dt	BV _t
0	=	80,000	=	80,000
1	15,016	64,984	16,000	64,000
2	12,197	52,787	12,800	51,200
3	9,908	42,879	10,240	40,960
4	8,048	34,831	8,192	32,768
5	6,538	28,293	6,554	26,214
6	5,311	22,982	5,243	20,972
7	4,314	18,668	4,194	16,777
8	3,504	15,164	3,355	13,422
9	2,846	12,318	2,684	10,737
10	2,318	10,000	737	10,000

▶ Please note calculation of D_{10} and BV_{10} for the two methods:

 $D_{10} = 12,318*0.188 = 2,409$ $BV_{10} = 12,318 - 2,409 = 9,909 < SV$ $D_{10} = 10,737*0.2 = 2,074$ $BV_{10} = 10,737 - 2,074 = 8,663 < SV$

11

Example for DDB when $BV_n \le SV_{(1)}$

- An 11-year life machine can be purchased \$138,000 now with salvage value of \$28,000.
 - Calculate depreciation charges and book values during its life using DDB method.
- Solution
 - d = 2/n = 2/11 = 0.182
 - \rightarrow BV₁₁ = P (1 d)¹¹ = 138000 (1 0.182)¹¹ = 15145 < 28000 = SV
 - ▶ So we need to switch between the DDB and the SL method

14

Example 1	for DDB	when B	$V_n <$	SV (2)
-----------	---------	--------	---------	------	----

V	D	F1-:F1-B	Darley DV	
Year t	Depreciation D _t	Formula in Excel D _t	Book value BV _t	
0			138,000	
1	25,116	=DDB(138000;28000;11; 1)	112,884	
2	20,545	=DDB(138000;28000;11; 2)	92,339	
3	16,806	=DDB(138000;28000;11; 3)	75,533	
4	13,747	=DDB(138000;28000;11;4)	61,786	
5	11,245	=DDB(138000;28000;11; 5)	50,541	
6	9,199	=DDB(138000;28000;11; 6)	41,342	
7	7,524	=DDB(138000;28000;11; 7)	33,818	
8	6,155	=DDB(138000;28000;11; 8)	27,663 < 28,000	
8	5,818		28,000	
9	0		28,000	
10	0		28,000	
- 11	0		28,000	
19 Engineering Economics				

Example for DDB when $BV_n > SV_{(1)}$

- ▶ A 5-year life asset can be purchased \$900 now with salvage value of \$30.
 - ▶ Calculate depreciation charges and book values during its life using DDB method.
- Solution
 - d = 2/n = 2/5 = 0.40
 - ▶ BV₅ = P $(1 d)^5$ = 900 $(1 0.40)^5$ = 70 > 30 = SV
 - So we need to switch between the DDB and the SL method
 - ▶ Determine the switching time to maximize PW of depreciations

۲.

Example for DDB when $BV_n > SV_{(2)}$

		- 11	·
540	D _{DDB} for year t	Book value BV _t	D _{SL} for year t
0		900	
I	360	540	174
2	216	324	127.5
3	130	194	98
4	78 → 82	I I 6 → 112	82
5	46 → 82	$70 \rightarrow 30$	86

=VDB(900;30;5;4;5;2;FALSE) = 82

- VDB(cost, salvage, life, start_period, end_period, [factor], [no_switch])
 - ▶ VDB: variable declining balance.
 - It returns depreciation of an asset for any partial periods, using the DDB method or some other method.
 - ▶ No_switch A logical value specifying whether to switch to SL method when $D_{SL} > D_{DDB}$.
 - ☐ If no_switch is FALSE or omitted, Excel switches to SL when required.

11

Engineering Economics

MACRS Depreciation (1)

- ▶ Required method to use for tax depreciation in USA only
- Originally developed to offer accelerated depreciation for economic growth

$$\mathbf{D_t} = \mathbf{d_t} \mathbf{B}$$
 Where: $\mathbf{D_t} = \text{depreciation charge for year t}$ $\mathbf{B} = \text{first cost or unadjusted basis}$ $\mathbf{d_t} = \text{depreciation rate for year t (decimal)}$

▶ Get value for d₁ from IRS table for MACRS rates

$$\mathbf{BV_t} = \mathbf{B} - \sum_{i=1}^{j=t} \mathbf{D_j}$$
 Where: $\mathbf{D_j} = \text{depreciation in year j}$ $\sum_{j=1}^{t} \mathbf{D_j} = \text{all depreciation through year t}$

11

MACRS Depreciation (2)

- Always depreciates to zero;
 - i.e., no salvage value is considered
- ▶ Incorporates switching from DDB to SL depreciation
- Standardized recovery periods (n) are tabulated
 - n = 3, 5, 7, 10, 15, or 20 years for personal property (e.g., equipment/ vehicles)
 - n = 27.5 or 39 years for real property (e.g., rental property or structures)
- ▶ MACRS recovery time is always n+1 years;
 - half-year convention assumes purchase in midyear
- ▶ No special spreadsheet function;

Example: MACRS Depreciation

A finishing machine has a first cost of \$20,000 with a \$5,000 salvage value after 5 years. Using MACRS, find (a) D and (b) BV for year 3.

Solution:

(a) From table,
$$d_3 = 19.20$$

 $D_3 = 20,000(0.1920)$
= \$3,840

(b)
$$BV_3 = 20,000 - 20,000(0.20 + 0.32 + 0.1920)$$

= \$5,760

Note: Salvage value S = \$5,000 is not used by MACRS and $BV_6 = 0$

10

Engineering Economics

Unit-of-Production (UOP) Depreciation

- Depreciation based on usage of equipment, not time
- Depreciation for year t obtained by relation

$$\mathbf{D_t} = \frac{\text{actual usage for year t}}{\text{expected total lifetime usage}} (\mathbf{B} - \mathbf{S})$$

- **Example:** A new mixer is expected to process 4 million yd³ of concrete over 10-year life time.
 - ▶ Determine depreciation for year 1 when 400,000 yd³ is processed. Cost of mixer was \$175,000 with no salvage expected.
- Solution: $D_1 = \frac{400,000}{4,000,000} (175,000 0) = $17,500$

17

Engineering Economics

Depletion Methods

- Depletion: book (noncash) method to represent decreasing value of natural resources
- ▶ Two methods: cost depletion (CD) & percentage depletion (PD)
- Cost depletion: Based on level of activity to remove a natural resource
 - ► Calculation: Multiply factor CD_t by amount of resource removed ► Where: CD_t = first cost / resource capacity
 - ▶ Total depletion can not exceed first cost of the resource
- Percentage depletion: Based on gross income (GI) from a resource
 - ▶ Calculation: Multiply GI by standardized rate (%) from table
 - ► Annual depletion can not exceed 50% of company's taxable income (TI)
- Tax-allowed depletion amount for year t:

Depletion = $\begin{cases} \max[\text{CDA}_t, \text{PDA}_t] & \text{if PDA}_t \leq 50\% \text{ of TI}_t \\ \max[\text{CDA}_t, 50\% \text{ of TI}_t] & \text{if PDA}_t < 50\% \text{ of TI}_t \end{cases}$

Example: Cost and Percentage Depletion

- A mine purchased for \$3.5 million has a total expected yield of one million ounces of silver (i.e., total capacity of mine: 1 million ounces)
 - ▶ Determine the depletion charge in year 4 when 300,000 ounces are mined and sold for \$30 per ounce using
 - (a) cost depletion, (b) percentage depletion (c) Which is larger for year 4?
- ▶ Solution: Let depletion amounts equal CDA₄ and PDA₄
 - (a) Factor, $CD_4 = 3,500,000/1,000,000 = \3.50 per ounce $CDA_4 = 3.50(300,000) = \$1,050,000$
 - (b) Percentage depletion rate for silver mines is 0.15 $PDA_4 = (0.15)(300,000)(30) = \$1,350,000$
 - ▶ (c) Claim percentage depletion amount, if it \leq 50% of TI

79

Engineering Economics

Summary of Important Points

- ▶ Two types for depreciation: tax and book
- Classical methods are straight line and declining balance
- In USA only, MACRS method is required for tax depreciation
- Determine MACRS recovery period using either GDS or ADS
- Switching between methods is allowed;
 - MACRS switches automatically from DDB to SL to maximize write-off
- Depletion (instead of depreciation) used for natural resources
- ▶ Two methods of depletion:
 - cost (amount resource removed × CD_t factor) and percentage (gross income × tabulated %)

٣

Engineering Economics