

Inteligência Artificial
Prof. Luiz Antonio Ferraro Mathias

Aula 07
Sistemas Nebulosos

Conceito de Lógica Difusa (Fuzzy)

A Lógica difusa (fuzzy) é uma lógica multivalorada capaz de capturar informações vagas, em geral descritas em uma linguagem natural e convertê-las para um formato numérico, de fácil manipulação pelos computadores de hoje em dia. A representação depende não apenas do conceito, mas também do contexto em que está sendo usada. Esta lógica pode ainda ser definida como a lógica que suporta os modos de raciocínio que são aproximados, ao invés de exatos, como estamos acostumados a trabalhar.

A Lógica Difusa foi desenvolvida por Lofti A. Zadeh da Universidade da Califórnia em Berkeley na década de 60 e combina lógica multivalorada, teoria probabilística, IA e RNA para poder representar o pensamento humano, ou seja, ligar a linguística e a inteligência humana, pois muitos conceitos são, melhor definidos, por palavras do que pela matemática.

Objetivo da Lógica Difusa

A lógica difusa objetiva fazer com que as decisões tomadas pela máquina se aproximem cada vez mais das decisões humanas, principalmente ao trabalhar com uma grande variedade de informações vagas e incertas, as quais podem ser traduzidas por expressões do tipo: a maioria, mais ou menos, talvez etc. Antes do surgimento da lógica fuzzy essas informações não tinham como ser processadas. Ela vem sendo aplicada nas seguintes áreas: Análise de dados, Construção de sistemas especialistas, Controle e otimização, Reconhecimento de padrões etc.

Ela baseia-se em palavras e não em números, ou seja, os valores verdades são expressos linguisticamente. Por exemplo: baixo, médio, alto, e outros usados para definir estados de uma variável. Possui vários modificadores de predicado como por exemplo: muito, mais ou menos, pouco, bastante, médio etc.

Possui também um amplo conjunto de quantificadores, como por exemplo: poucos, vários, em torno de, usualmente. Faz usos das probabilidades linguísticas, como por exemplo: provável, improvável, que são interpretados como números fuzzy e manipulados pela sua aritmética; e manuseia todos os valores entre 0 e 1, tomando estes, como um limite apenas.

Objetivo da Lógica Difusa

É baseada em teoria dos conjuntos Fuzzy (este conjunto é formado por valores de 0 até 1), demonstrando o quanto um elemento pertence a um determinado conjunto através de seu grau de pertinência. Este grau pode ser obtido através de um cálculo, no qual são retornados valores entre 0 (não pertence) e 1 (pertence totalmente). A diferença da teoria do conjunto fuzzy para a teoria dos conjuntos clássica é justamente que para o fuzzy seus conjuntos de pertinência possuem valor de 0 a 1, já na clássica o valor só pode ser 0 ou 1.

A Lógica Fuzzy apresenta as seguintes características em relação a outras técnicas de controle:

- a) Robusta porque não requer entradas precisas;
- b) Modificada facilmente pois é baseada em regras;
- c) Controle de sistemas não-lineares sem modelo matemático;
- d) Solução mais rápida e barata em alguns casos.
- e) Implementável facilmente em microprocessadores.

Variáveis linguísticas

As variáveis linguísticas expressam os valores estipulados aos conjuntos Fuzzy, como por exemplo, na altura os valores linguísticos são: alto, médio e baixo. Esses valores podem ser formados a partir de uma sentença de uma linguagem específica como "muito baixa", neste caso os valores seriam somados a partir do "muito" e "baixa" formando assim um valor composto. As categorias de termos linguísticos envolvem:

- a) Termos primários: nomes do conjunto universo como alto, médio e baixo;
- b) Conectivos Lógicos: São operações entre conjuntos utilizando "Não", "E" e "OU", "mas", "porém". Exemplo: ele é leve, mas não alto, equivale a: peso leve E altura média;
- c) Modificadores: Serve para unir dois termos linguísticos como, por exemplo: muito alto junta-se o conjunto muito com o alto;
- d) Delimitadores: ficam entre parênteses.

Raciocínio Fuzzy

Todos os conjuntos de valores e regras utilizadas na lógica Fuzzy são elaborados pelo especialista humano, que determina todos os limites dos conjuntos a serem utilizados. O raciocínio Fuzzy é baseado em 3 etapas: fuzzificação, Inferência e Desfuzzificação, que serão explicados a seguir.

Fuzzificação

O papel da fuzzificação é o de transformar um dado numérico em uma variável linguística através de umafunção de pertinência, determinando assim em qual conjunto Fuzzy o valor "fuzzificado" mais se enquadra. Vamos nos utilizar de um exemplo de peso e altura que ao final da lógica fuzzy irá nos retornar se o indivíduo deverá emagrecer, engordar, ou não fazer nada e o valor, para chegar no peso ideal. Para o peso temos 3 conjuntos Fuzzy: leve, médio e pesado; para a altura teremos 3 conjuntos Fuzzy: alto, médio e baixo. Supondo que o valor de entrada seja para peso seja 43 kg e altura 1,70 cm. Abaixo podemos verificar a tabela de limites de cada conjunto de peso e altura.

LIMITES DOS CONJUNTOS			
	Leve	Medio	Pesado
MIN	20	40	80
MED	40	80	120
MAX	60	100	140

LIMITES DOS CONJUNTOS ALTURA			
	Baixo	Medio	Alto
MIN	1,4	1,6	1,8
MED	1,5	1,7	1,9
MAX	1,7	1,8	2

Fuzzificação

Na tabela abaixo temos a tabela de peso e altura e suas respectivas pertinências, o dado de entrada que utilizamos como exemplo estão em destaque, podendo observar que o valor de peso 43 kg possui pertinência 0,85 para leve e 0,075 para médio. Já a altura 1,70 possui grau de pertinência 1 para médio.

Tabela Peso				
LIMITES	leve	medio	pesado	
20	0	0	0	
40	1	0	0	
60	0	0,5	0	
80	0	1	0	
100	0	0	0,5	
120	0	0	1	
140	0	0	0	
43	0,85	0,075	0	

Tabela Altura			
LIMITES	baixo	medio	alto
1,4	0	0	0
1,5	1	0	0
1,6	0,5	0	0
1,7	0	1	0
1,8	0	0	0
1,9	0	0	1
2	0	0	0
1,7	0	1	0

Fuzzificação

Iremos encontrar o valor de pertinência para cada conjunto através da fórmula abaixo, esta é utilizada quando se trabalha com a função de pertinência triangular:

$$\mu(x) = \max(\min(X-LI/M-LI,LM-X/LM-M),0)$$

Inserindo o valor de exemplo na fórmula citada acima:

$$\mu Leve(43) = max(min(43 - 20/40 - 20, 60 - 43/60 - 40),0) = 0.85$$

Fuzzificação

Função de pertinência triangular

Uma função de pertinência triangular depende de 3 parâmetros escalares [a,b,c], onde [a] e [c] possuem grau de pertinência igual a 0 (zero) e [b] possui grau de pertinência igual a 1 (um), significando que a e c não pertencem ao grupo e b pertence totalmente. Com esses 3 valores [a,b,c] formamos um triângulo, conforme podemos ver na

figura abaixo.

Função de pertinência triangular

Nesta etapa tivemos como resultado os valores de pertinência para peso leve= 0,85e peso médio = 0,075,0 resultado para altura média = 1. Estes dados obtidos são chamados de valores "fuzzificados" que serão analisados na próxima etapa.

Inferência (Método de Inferência de Mandani min)

O processo de inferência (derivação de conclusão lógica de premissa conhecida ou verdadeira) recebe o dado "fuzzificado" que será processado de acordo com as regras especificadas pelo especialista humano. Esta etapa pode ser considerada como o coração da lógica Fuzzy. As etapas de "fuzzificação" e "defuzzificação" consistem em: a primeira recebe o valor de entrada e o transformarem um número "fuzzificado" como já verificamos acima; a segunda transforma esses valores "fuzzificados" em resultados de saída para que a pessoa que irá receber o retorno da informação obtida após todo processo da lógica possa entender.

Existem dois procedimentos para realização da inferência, Modus Ponens Generalizado (MPG) e Modus Tollens Generalizado (MTG).

- a) O MPG tem a regra: se x é A então y é B, ela permite implicar valor se x é A então y é B.
- b) O MTG tem a regra: se x é A então y é B, ela permite implicar valor se y é B então x é A. Abaixo seguem dois exemplos para melhor entendimento.

Exemplos:

MPG: MTG:

Se não tiver dinheiro, então não saio. Se o tempo não está bom, então está chovendo.

Não tenho dinheiro. Está chovendo.

Então não saio. Então o tempo não está bom

Inferência (Método de Inferência de Mandani min)

Ambos os procedimentos possuem estruturas lógicas similares, porém o MPG permite encontrar o valor do antecedente já o MPG encontra o procedente. Desta forma escolhemos para nosso trabalho o procedimento MPG.

Utilizamos a mesma fórmula de pertinência triangular da etapa de fuzzificação para achar a função de pertinência de B': $\mu(x) = \max (\min (X - LI / M - LI , LM - X / LM - M), 0)$.

A relação μ(x,y) é determinada por uma operação de implicação fuzzy, para isso utilizaremos Mandani min (min (μA(x) , μB(y))) . Cada regra estipulada pelo especialista humano possui uma estrutura: "se; então; condição", a condição será chamada de valor de saída e para isso precisamos de um novo conjunto de valores para cada condição. Utilizando do exemplo para melhor entendimento podemos ter a seguinte regra: se peso é leve e altura é baixa então condição é normal.

O especialista humano irá definir os valores desses conjuntos de condições (também chamado de estado). A figura abaixo demonstra os valores de saída (estado) para nosso exemplo.

Inferência (Método de Inferência de Mandani min)

Após determinar os conjuntos de saída podemos ver na tabela abaixo um conjunto de regras do estilo "se-então.

	REGRA	
REGRAS	DISPARADA	MINIMO
se peso é leve e altura é baixo entao condicao é normal SENAO;	0	0
se peso é leve e altura é mediano entao condicao é magro SENAO;	2	0,85
se peso é leve e altura é alto entao condição é magrelo senao;	0	0
se peso é médio e altura é baixo entao condicao é gordo senao	0	0
se peso é medio e altura é mediano entao condicao é normal senao;	5	0,075
se peso é médio e altura é alto entao condicao é magro senao	0	0
se peso é pesado e altura é baixo entao condicao é obeso senao;	0	0
se peso é pesado e altura é mediano entao condicao é gordo senao;	0	0
se peso é pesado e altura é alto entao condiçao é normal	0	0

Podemos observar pela tabela que após os dados fuzzificados foram disparadas as regras 2 e 5. Para melhor entendimento vamos analisar agora somente a regra 2, utilizando o MPG teremos:

Se x é A1 e h é A2 Então y é B

Onde x representa o peso, h a altura, y estado.

Para A1 conforme a regra 2 o valor será "leve" com grau de pertinência 0,85. A2 será "médio" com grau de pertinência 1. Lembrando que o valor do grau de pertinência de A1 foi retirado do cálculo de pertinência fuzzificação para o peso e A2 da altura. B representa "magro", mas ainda não temos o seu grau de pertinência, que será obtido posteriormente. Ou seja:

Se peso (X) é leve(A1) e altura (h) é médio(A2) Então y é Magro (B)

Inferência (Método de Inferência de Mandani min)

Como foi utilizado no MPG o "E", será utilizado o menor valor, pois ele representa o mínimo. Neste caso utilizaremos o valor 0,85. Abaixo vamos inserir o valor na fórmula para melhor entendimento de como o valor 0,85 foi extraído:

Se peso (X) é leve (A1)(cujo valor é: 0,85) e altura (h)(cujo valor é:1) é médio(A2) Então y é Magro (B). Logo o valor de peso "leve" é inferior ao de altura "médio", sendo assim ele será utilizado.

Utilizaremos a fórmula de Mandani min para determinar a relação de implicação, com a seguinte fórmula:

Min (μ A(X), μ B(Y))

Podemos observar na figura a seguir que este conjunto representa os limites dos conjuntos identificados na inferência: Magro e Normal, somando os dois grupos temos como menor valor o -5 e maior valor 15, vamos então pegar os números que estão dentro deste limite (iremos implementar de 1 em 1 o intervalo para este conjunto, porém, quanto menor o intervalo mais preciso fica o resultado). Com isso conseguimos encontrar o conjunto universo [-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15].

Inferência (Método de Inferência de Mandani min) 1,00 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 -25 -20 -15 -10 -5 0 5 10 15 20 25

Defuzzificação (método da média dos máximos)

Esta etapa processará a variável da inferência transformando-a em uma variável linguística. O método da média dos máximos retorna o ponto que possui maior grau de pertinência. Por existir mais de um ponto de pertinência de valor máximo, para não pegar um valor aleatório e somado o conjunto é tirada a média desse conjunto. Utiliza-se a fórmula:

$$u^* = \sum_{m=1}^{M} \frac{u_m}{M}$$

A partir do conjunto universo na inferência [-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15], Primeiramente calculamos a média deste conjunto, soma-se todos os valores do conjunto obtido e extrai a média (no caso deste exemplo será 5), após encontrarmos o valor da média pega-se os próximos 4 valores que estão posicionados acima do valor da média, (conforme nosso exemplo pegaremos o 5 por ser a média e mais 3 valores que estão acima dele no conjunto obtido que será o 6, 7 e 8). Após isto pegaremos estes 4 valores que encontramos (5,6,7,8) e inserimos na fórmula, como podemos ver no exemplo a seguir:

Defuzzificação (método da média dos máximos)

$$5+6+7+8 = 6,5$$

4

Assim finalizamos o raciocínio Fuzzy. Teremos então como saída para o usuário que o indivíduo deverá engordar 6,5kg.

