Context

Setup Consider data $\mathcal{X} \subseteq \mathbb{R}^d$, labels $\mathcal{Y} \subseteq \mathbb{R}$ and a classifier $f: \mathcal{X} \mapsto \mathcal{Y}$. We approximate f by \hat{f} using n labelled data $(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_n, y_n) \in \mathcal{X}_0 \times \mathcal{Y}, \, \mathcal{X}_0 \subset \mathcal{X}$.

Bias-variance tradeoff For $y = f(\boldsymbol{x}) + \epsilon$, $\epsilon \sim \mathrm{N}(0, \sigma^2)$, $\mathrm{E}([y - \hat{f}(\boldsymbol{x})]^2) = [\mathrm{Bias}(\hat{f}(\boldsymbol{x}))]^2 + \mathrm{var}(\hat{f}(\boldsymbol{x})) + \sigma^2,$ $\mathrm{Bias}(\hat{f}(\boldsymbol{x})) = \mathrm{E}(\hat{f}(\boldsymbol{x})) - f(\boldsymbol{x}),$ $\mathrm{var}(\hat{f}(\boldsymbol{x})) = \mathrm{E}([\hat{f}(\boldsymbol{x}) - \mathrm{E}(\hat{f}(\boldsymbol{x}))]^2).$

1 Naive Bayes $\mathcal{Y} = \{0, 1\}$

$$\hat{f}(\boldsymbol{x}) = \arg\max_{y \in \mathcal{Y}} \left(P(Y = y) \prod_{j=1}^{d} P(X_j = x_j | Y = y) \right)$$

Training $\mathcal{O}(nd)$

- Compute the class prior P(Y = y) from \mathcal{X}_0 .
- Choose a model for each $P(X_i = x_i | Y = y)$.
- Use the closed-form for the MLE to find the parameters for each $P(X_j = x_j | Y = y)$.

Classifying $\mathcal{O}(d)$ Evaluate $\hat{f}(x)$.

2 k-NNs $\mathcal{Y} = \{0, 1\}$

$$\hat{f}(\boldsymbol{x}) = \text{label}\left(\arg\min_{1 \leq i \leq n} d_{\boldsymbol{W}}(\boldsymbol{x}, \boldsymbol{x}_i)\right) \quad (k = 1)$$

Training $\mathcal{O}(nd^2s + n\log(n)d)$

- Find distance $d_{\mathbf{W}}(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i \mathbf{x}_j)^T \mathbf{W} (\mathbf{x}_i \mathbf{x}_j)$, with s steps of BFGS, that best separates the data.
- Choose k. Find medians to produce k-d trees.

Classifying $\mathcal{O}(\log(n)d)$ Evaluate $\hat{f}(x)$.

3 Perceptron $\mathcal{Y} = \{-1, 1\}$

$$\hat{f}(\boldsymbol{x}) = \operatorname{sign}\left(\boldsymbol{w}^T \boldsymbol{x} + w_0\right)$$

Training $\mathcal{O}(ndP)$, with $P = \max_{1 \le i \le n} \|\boldsymbol{x}_i\|^2 / \gamma^2$ (margin γ)

- Initialize $\mathbf{w} = \mathbf{0}$ and $w_0 = 0$.
- For k = 1, 2, ...,
 - if there is $x_i \in \mathcal{X}_0$ such that

$$\operatorname{sign}\left(\boldsymbol{w}^T\boldsymbol{x}_i + w_0\right) \neq y_i,$$

set $\mathbf{w} = \mathbf{w} + y_i \mathbf{x}_i$ and $w_0 = w_0 + y_i$.

Classifying $\mathcal{O}(d)$ Evaluate $\hat{f}(\boldsymbol{x})$.

4 Kernel perceptron $\mathcal{Y} = \{-1, 1\}$

$$\hat{f}(\boldsymbol{x}) = \operatorname{sign}\left(\sum_{i=1}^{n} \alpha_i y_i K(\boldsymbol{x}_i, \boldsymbol{x})\right)$$

Training $\mathcal{O}(ndP)$, with $P = \max_{1 \le i \le n} \|\boldsymbol{x}_i\|^2/\gamma^2$ (margin γ)

- Choose K. (Perceptron is $K(\boldsymbol{x}, \boldsymbol{y}) = (1 + \boldsymbol{x}^T \boldsymbol{y})$.)
- Initialize $\alpha = 0$.
- For $k = 1, 2, \dots$,
 - set $\alpha_i = \alpha_i + 1$ if there is $\boldsymbol{x}_i \in \mathcal{X}_0$ such that

$$\operatorname{sign}\left(\sum_{j=1}^n \alpha_j y_j K(\boldsymbol{x}_j, \boldsymbol{x}_i)\right) \neq y_i.$$

Classifying $\mathcal{O}(nd)$ Evaluate $\hat{f}(\boldsymbol{x})$.

5 SVMs $\mathcal{Y} = \{-1, 1\}$

$$\hat{f}(\boldsymbol{x}) = \operatorname{sign}\left(\boldsymbol{w}^T \boldsymbol{x} + w_0\right)$$

Training Minimize, with s steps of PGD,

$$J(\boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{w}\|^2,$$

such that $y_i(\boldsymbol{w}^T\boldsymbol{x}_i + w_0) \geq 1, 1 \leq i \leq n$.

Classifying $\mathcal{O}(d)$ Evaluate $\hat{f}(x)$.

6 Kernel SVMs $\mathcal{Y} = \{-1, 1\}$

$$\hat{f}(\boldsymbol{x}) = \operatorname{sign}\left(\sum_{i=1}^{n} \alpha_i y_i K(\boldsymbol{x}_i, \boldsymbol{x}) + w_0\right)$$

Training

- Choose K. (SVMs is $K(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{x}^T \boldsymbol{y}$.)
- Maximize, with s steps of SQP,

$$J(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j K(\boldsymbol{x}_j, \boldsymbol{x}_i),$$

such that
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
 and $\alpha_i \geq 0, 1 \leq i \leq n$.

• For
$$i$$
 with $\alpha_i \neq 0$, $w_0 = y_i - \sum_{i=1}^n \alpha_j y_j K(\boldsymbol{x}_j, \boldsymbol{x}_i)$.

Classifying $\mathcal{O}(nd)$ Evaluate $\hat{f}(x)$.

7 Logistic regression $\mathcal{Y} = [0, 1]$

$$\hat{f}(\boldsymbol{x}) = \frac{1}{1 + e^{-(\boldsymbol{w}^T \boldsymbol{x} + w_0)}}$$

Training $\mathcal{O}(nd^3s)$ MLE Newton's method (s steps).

Classifying $\mathcal{O}(d)$ Evaluate $\hat{f}(\boldsymbol{x})$.

8 Shallow networks $\mathcal{Y} = [0, 1]$

$$\hat{f}(\boldsymbol{x}) = \sigma^{(2)} \left(\boldsymbol{w}^{(2)T} \sigma^{(1)} \left(\boldsymbol{W}^{(1)T} \boldsymbol{x} + \boldsymbol{w}_0^{(1)} \right) + w_0^{(2)} \right)$$

Note that $\boldsymbol{w}_0^{(1)}$ is $N \times 1$, $\boldsymbol{W}^{(1)}$ is $d \times N$ and $\boldsymbol{w}^{(2)}$ is $N \times 1$.

Training $\mathcal{O}(ndNs)$

• Minimize, with s steps of GD,

$$J\left(\boldsymbol{w}_{0}^{(1)}, \boldsymbol{W}^{(1)}, w_{0}^{(2)}, \boldsymbol{w}^{(2)}\right) = \frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, \hat{f}(\boldsymbol{x}_{i})\right).$$

• A popular choice for $L(y, \hat{y})$ is the cross entropy,

$$L(y, \hat{y}) = -(y \log \hat{y} + (1 - y) \log(1 - \hat{y})),$$

$$dL(y, \hat{y}) = \frac{\hat{y} - y}{\hat{y}(1 - \hat{y})}.$$

• Group the training data into a $n \times d$ matrix X and the labels into a $1 \times n$ vector y. Forward:

$$\begin{split} & \boldsymbol{Z}_{N \times n}^{(1)} = \boldsymbol{W}_{N \times d}^{(1)T} \boldsymbol{X}^T + \operatorname{repmat} \big(\boldsymbol{w}_0^{(1)} \big), \\ & \boldsymbol{A}_{N \times n}^{(1)} = \sigma^{(1)} \big(\boldsymbol{Z}_{N \times n}^{(1)} \big), \\ & \boldsymbol{Z}_{1 \times n}^{(2)} = \boldsymbol{w}_{1 \times N}^{(2)T} \boldsymbol{A}_{N \times n}^{(1)} + \operatorname{repmat} \big(\boldsymbol{w}_0^{(2)} \big), \\ & \boldsymbol{A}_{1 \times n}^{(2)} = \hat{\boldsymbol{y}} = \sigma^{(2)} \big(\boldsymbol{Z}_{1 \times n}^{(2)} \big). \end{split}$$

• Backward:

$$\begin{split} & d\boldsymbol{A}^{(2)}_{1\times n} = dL\big(\boldsymbol{y}, \boldsymbol{A}^{(2)}\big), \\ & d\boldsymbol{Z}^{(2)}_{1\times n} = d\boldsymbol{A}^{(2)}_{1\times n} * d\sigma^{(2)}\big(\boldsymbol{Z}^{(2)}_{1\times n}\big), \\ & d\boldsymbol{W}^{(2)}_{N\times 1} = \frac{1}{n} \boldsymbol{A}^{(1)}_{N\times n} d\boldsymbol{Z}^{(2)T}_{N\times 1}, \ d\boldsymbol{w}^{(2)}_{0} = \frac{1}{n} \operatorname{sum}\big(d\boldsymbol{Z}^{(2)}\big), \\ & d\boldsymbol{A}^{(1)}_{N\times n} = \boldsymbol{W}^{(2)}_{N\times 1} d\boldsymbol{Z}^{(2)}_{1\times n}, \\ & d\boldsymbol{Z}^{(1)}_{N\times n} = d\boldsymbol{A}^{(1)}_{N\times n} * d\sigma^{(1)}\big(\boldsymbol{Z}^{(1)}_{N\times n}\big), \\ & d\boldsymbol{W}^{(1)}_{N\times n} = \frac{1}{n} \boldsymbol{X}^{T}_{N\times n} d\boldsymbol{Z}^{(1)T}_{N\times n}, \ d\boldsymbol{w}^{(1)}_{0} = \frac{1}{n} \operatorname{sum}\big(d\boldsymbol{Z}^{(1)}_{N\times n}\big). \end{split}$$

Classifying $\mathcal{O}(dN)$ Evaluate $\hat{f}(\boldsymbol{x})$.

9 Deep networks $\mathcal{Y} = [0, 1]$

$$\hat{f}(\boldsymbol{x}) = \sigma^{(L+1)} \left(\boldsymbol{W}^{(L+1)T} \sigma^{(L)} \Big(\dots \Big) + \boldsymbol{W}_0^{(L+1)} \right)$$

Note that $\boldsymbol{W}_0^{(\ell)}$ is $N^{(\ell)} \times 1$ and $\boldsymbol{W}^{(\ell)}$ is $N^{(\ell-1)} \times N^{(\ell)}$ with $N^{(0)} = d$ and $N^{(L+1)} = 1$.

Training $\mathcal{O}(nN^2Ls)$ Cost for $N^{(\ell)}=N\approx d,\, 1\leq \ell\leq L.$

• Minimize, with s steps of GD,

$$J\left(\boldsymbol{W}_{0}^{(\ell)},\boldsymbol{W}^{(\ell)}\right) = \frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, \hat{f}(\boldsymbol{x}_{i})\right).$$

• Forward $(1 \le \ell \le L + 1)$:

$$\begin{split} & \underline{\boldsymbol{Z}}^{(\ell)}_{N^{(\ell)} \times n} = \underbrace{\boldsymbol{W}^{(\ell)T}}_{N^{(\ell)} \times N^{(\ell-1)}} \underline{\boldsymbol{A}}^{(\ell-1)}_{N^{(\ell-1)} \times n} + \operatorname{repmat} \left(\underline{\boldsymbol{W}}_{0}^{(\ell)} \right), \\ & \underline{\boldsymbol{A}}^{(\ell)}_{N^{(\ell)} \times n} = \sigma^{(\ell)} \Big(\underline{\boldsymbol{Z}}^{(\ell)}_{N^{(\ell)} \times n} \Big). \end{split}$$

Note that $\mathbf{A}^{(0)} = \mathbf{X}^T$ and $\mathbf{A}^{(L+1)} = \hat{\mathbf{y}}$.

• Backward $(1 \le \ell \le L + 1)$:

$$\begin{split} & \boldsymbol{d}\boldsymbol{A}^{(\ell)} = \boldsymbol{W}^{(\ell+1)} \, \boldsymbol{d}\boldsymbol{Z}^{(\ell+1)}, \\ & \boldsymbol{N}^{(\ell)} \times \boldsymbol{n} = \boldsymbol{N}^{(\ell)} \times \boldsymbol{N}^{(\ell+1)} \, \boldsymbol{N}^{(\ell+1)} \times \boldsymbol{n}, \\ & \boldsymbol{d}\boldsymbol{Z}^{(\ell)} = \boldsymbol{d}\boldsymbol{A}^{(\ell)} * \boldsymbol{d}\boldsymbol{\sigma}^{(\ell)} \big(\boldsymbol{Z}^{(\ell)}\big), \\ & \boldsymbol{d}\boldsymbol{W}^{(\ell)} \times \boldsymbol{n} = \frac{1}{n} \boldsymbol{A}^{(\ell-1)} \, \boldsymbol{d}\boldsymbol{Z}^{(\ell)T}, \\ & \boldsymbol{N}^{(\ell-1)} \times \boldsymbol{N}^{(\ell)} = \frac{1}{n} \boldsymbol{N}^{(\ell-1)} \times \boldsymbol{n} \cdot \boldsymbol{n} \times \boldsymbol{N}^{(\ell)}, \\ & \boldsymbol{d}\boldsymbol{W}^{(\ell)} = \frac{1}{n} \operatorname{sum} \big(\boldsymbol{d}\boldsymbol{Z}^{(\ell)}\big), \\ & \boldsymbol{N}^{(\ell)} \times \boldsymbol{n} & \boldsymbol{N}^{(\ell)} \times \boldsymbol{n}, \end{split}$$

except for $\ell = L + 1$ where $dA^{(L+1)} = dL(y, A^{(L+1)})$.

Classifying $\mathcal{O}(N^2L)$ Evaluate $\hat{f}(x)$.

10 Decision trees

$$\hat{f}(\boldsymbol{x}) = \text{label}(C(\boldsymbol{x}))$$

Training Find feature and threshold that maximize

$$u(C) - (p_L u(C_L) + p_R u(C_R), \ u(C) = -\sum_{y \in \mathcal{Y}} p_y \log p_y.$$

Classifying $\mathcal{O}(\log(n)d)$ Evaluate $\hat{f}(\boldsymbol{x})$.

11 Random forests

2

$$\hat{f}(\boldsymbol{x}) = \frac{1}{T} \sum_{t=1}^{T} \text{label}(C_t(\boldsymbol{x}))$$

Training Sample T times, with replacement, m < n training examples from \mathcal{X}_0 to construct T decision trees.

Classifying $\mathcal{O}(\log(n)dT)$ Evaluate $\hat{f}(x)$.