Diamond Price Prediction

Group:

- Mohamed Gamal
- Amira Djaiz
- Aya Abu Dabbur
- Mai Serry
- Dyaa Dwekat

Supervisor:

Saad Altamari

Content

- Introduction
- Data Loading and Exploration
- Data Visualization
- Data Cleaning
- Feature Engineering and Data Preparation
- Preparing Model
- Fine-Tuning the Model
- Submission

Structure

Introduction

Introduction

Background

 Understanding the complexities of diamond pricing, which depends on the 4Cs (Carat, Cut, Color, Clarity), is essential. These attributes interact in complex ways, making accurate price prediction a challenging task.

Objective

 Our goal is to develop a robust machine-learning model that can predict diamond prices accurately. This involves thorough data analysis and selecting the best predictive techniques.

Data Loading and Exploration

Data Loading

The first step of the project involved loading the training data.

```
df = pd.read_csv('/kaggle/input/diamond-price-prediciton-2024/train.csv')
```

Data Exploration

df.head()

	ld	carat	cut	color	clarity	depth	table	price	X	у	z
0	1	1.06	Ideal	I	SI2	61.8	57.0	4270	6.57	6.60	4.07
1	2	1.51	Premium	G	VVS2	60.9	58.0	15164	7.38	7.42	4.51
2	3	0.32	Ideal	F	VS2	61.3	56.0	828	4.43	4.41	2.71
3	4	0.53	Ideal	G	VS2	61.2	56.0	1577	5.19	5.22	3.19
4	5	0.70	Premium	Н	VVS2	61.0	57.0	2596	5.76	5.72	3.50

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 43152 entries, 0 to 43151
Data columns (total 11 columns):
            Non-Null Count
    Column
    Ιd
            43152 non-null int64
          43152 non-null float64
  carat
          43152 non-null object
  cut
 3 color
            43152 non-null object
  clarity 43152 non-null object
            43152 non-null float64
    depth
6 table 43152 non-null float64
  price 43152 non-null int64
            43152 non-null float64
            43152 non-null float64
            43152 non-null float64
dtypes: float64(6), int64(2), object(3)
memory usage: 3.6+ MB
```

Data Preprocessing

Removing Irrelevant Columns: The 'ld' column was determined to be unnecessary for our analysis and was thus removed from the dataset.

```
df_no_id = df.drop("Id", axis=1)
duplicates = df_no_id.duplicated()
num_duplicates = duplicates.sum()
num_duplicates
```

Countplot for Cut

Countplot for Clarity

Scatterplot for Carat vs. Price:

Scatterplot for Depth vs. Price:

Heatmap for Feature Correlation (for numeric features)

Data Cleaning

Data Cleaning

Handling Outliers

Data Cleaning

Feature Engineering and Data Preparation

Feature Engineering

Feature Engineering

enc_processed_df.corr()

```
price 1.000000
carat 0.922247
volume 0.909367
table 0.127605
depth -0.013130
cut -0.055436
clarity -0.146704
color -0.170819
```

Name: price, dtype: float64

enc_processed_df.head()

	carat	cut	color	clarity	depth	table	price	volume
0	1.06	4.0	1.0	1.0	61.8	57.0	4270	740.430017
1	1.51	3.0	3.0	5.0	60.9	58.0	15164	957.036622
2	0.32	4.0	4.0	3.0	61.3	56.0	828	304.412538
3	0.53	4.0	3.0	3.0	61.2	56.0	1577	432.648888
4	0.70	3.0	2.0	5.0	61.0	57.0	2596	542.129615

Data Exploration

Correlation Matrix: Calculated the correlation matrix to examine the relationships between different features.

Preparing Models

Preparing Model

Custom Transformer for Feature Engineering

We define a custom transformer CombinedAttributesAdder to generate a new feature, volume, based on the diamond dimensions:

```
from sklearn.base import BaseEstimator, TransformerMixin

x_ix, y_ix, z_ix, table_ix = [
    list(df.drop(["cut", "color", "clarity", "price"], axis=1).columns).index(col for col in ("x", "y", "z", "table")]

class CombinedAttributesAdder(BaseEstimator, TransformerMixin):
```

Preparing Model

Splitting the Data


```
from sklearn.model_selection import StratifiedShuffleSplit

split = StratifiedShuffleSplit(n_splits=10, test_size=0.2, random_state=42)

for train_index, test_index in split.split(df, df["carat_cat"]):
    train_set = df.iloc[train_index]
    test_set = df.iloc[test_index]
```

Preparing Model

Numerical Pipeline

```
num_pipeline = Pipeline([
    ('imputer', SimpleImputer(strategy="median")),
    ('attribs_adder', CombinedAttributesAdder()),
    ('std_scaler', StandardScaler()),
])
```

Full Pipeline

```
full_pipeline = ColumnTransformer([
          ("num", num_pipeline, num_attribs),
          ("cat", OrdinalEncoder(categories=[colors_cats, cuts, clarities]), cat_attribs)
])
```

Data Transformation

```
x_train_prepared = full_pipeline.fit_transform(x_train)
x_test_prepared = full_pipeline.transform(x_test)
```

```
from sklearn.linear_model import LinearRegression
linear_model=LinearRegression()
linear_model.fit(x_train_prepared,y_train)
```

LinearRegression
LinearRegression()

```
linear_model.score(x_train_prepared, y_train)
```

0.9186449950483981

Linear Regression model

We evaluate the model's performance on the training set.

```
from sklearn.metrics import mean_squared_error

lin_predic = linear_model.predict(x_train_prepared)
lin_rmse = mean_squared_error(
    y_train,
    lin_predic,
    squared=False #RMSE
)
lin_rmse
```

1133.7829679831411

Linear Regression model

Calculating RMSE on Training Data.

```
from sklearn.model_selection import cross_val_score

lin_scores = cross_val_score(
    linear_model,
    x_train_prepared,
    y_train,
    scoring ="neg_mean_squared_error",
    cv = 10
)
lin_rmse_scores = np.sqrt(-lin_scores)
print("Scores: ", lin_rmse_scores)
print("Mean: ", lin_rmse_scores.mean())
print("Standard Deviation: ", lin_rmse_scores.std())
```

Scores: [1145.17612289 1137.04199626 1101.15552983 1208.70921887 1142.37399683

1110.04639488 1143.66724006 1144.35294896 1098.31134199 1148.04160739]

Mean: 1137.887639796304

Standard Deviation: 29.93097691246276

Linear Regression model

use cross-validation to evaluate the model's performance.

```
from sklearn.tree import DecisionTreeRegressor
tree_model=DecisionTreeRegressor(random_state = 42)
tree_model.fit(x_train_prepared,y_train)
```

DecisionTreeRegressor

DecisionTreeRegressor(random_state=42)

tree_model.score(x_train_prepared, y_train)

0.9999958224864528

Decision Tree Regressorion Model

We evaluate the model's performance on the training set.

```
tree_predic = tree_model.predict(x_train_prepared)
tree_rmse = mean_squared_error(
    y_train,
    tree_predic,
    squared=False
)
tree_rmse
```

8.142529435502995

Decision Tree Regressorion Model

Calculating RMSE on Training Data.

```
tree_scores = cross_val_score(
    tree_model,
    x_train_prepared,
    y_train,
    scoring ="neg_mean_squared_error",
    cv = 10
 tree_rmse_scores = np.sqrt(-tree_scores)
 print("Scores: ", tree_rmse_scores)
 print("Mean: ", tree_rmse_scores.mean())
 print("Standard Deviation: ", tree_rmse_scores.std())
Scores: [742.84381883 703.8662325 764.20661659 697.67372586 772.21417935
757.46766405 754.37957042 720.71381911 695.87127516 730.35974988]
Mean: 733.9596651750455
Standard Deviation: 26.99672946198288
```

Decision Tree Regression Model

use cross-validation to evaluate the model's performance.

from sklearn.ensemble import RandomForestRegressor

forest_model = RandomForestRegressor(n_estimators=100, random_state=42)
forest_model.fit(x_train_prepared, y_train)

RandomForestRegressor

RandomForestRegressor(random_state=42)

forest_model.score(x_train_prepared, y_train)

0.9972230352470094

RandomForest Regressor Model

We evaluate the model's performance on the training set.

```
forest_predic = forest_model.predict(x_train_prepared)
forest_rmse = mean_squared_error(
    y_train,
    forest_predic,
    squared=False
)
forest_rmse
```

204.63439946095136

RandomForest Regressor Model

Calculating RMSE on Training Data.

```
forest_scores = cross_val_score(
    forest_model.
    x_train_prepared,
   y_train,
    scoring ="neg_mean_squared_error",
    cv = 10
  forest_rmse_scores = np.sqrt(-forest_scores)
  print("Scores: ", forest_rmse_scores)
  print("Mean: ", forest_rmse_scores.mean())
  print("Standard Deviation: ", forest_rmse_scores.std())
Scores: [563.51686332 536.22530208 575.45252782 536.89516107 558.59890765
 563.49796513 558.90275627 519.22794338 527.196818
                                               563.58505227]
Mean: 550.3099296989064
Standard Deviation: 17.82669031675242
```

RandomForest Regressor Model

use cross-validation to evaluate the model's performance.

Fine-Tuning the Model

```
from sklearn.model_selection import RandomizedSearchCV
param_distribs = {
  'n_estimators': np.random.randint(1, 200, 10),
  'max_features': np.random.randint(1, 8, 10),
forest_model_fine = RandomForestRegressor(random_state=42)
rnd_search = RandomizedSearchCV(
 forest_model_fine,
  param_distributions=param_distribs,
 n_iter=10,
 cv=5,
  scoring='neg_mean_squared_error',
  random_state=42
rnd_search.fit(x_train_prepared, y_train)
```

Fine-Tuning the Model

```
cvres = rnd_search.cv_results_
  for mean_score, params in zip(cvres["mean_test_score"], cvres["params"]):
      print(np.sqrt(-mean_score), params)
666.0574858358463 {'n_estimators': 24, 'max_features': 1}
581.8702387052098 {'n estimators': 24, 'max features': 2}
548.3524475625106 {'n_estimators': 72, 'max_features': 4}
1059.9121520738188 {'n estimators': 1, 'max features': 1}
644.1725377061641 {'n estimators': 68, 'max features': 1}
547.5641124850662 {'n estimators': 85, 'max features': 4}
564.4709532633339 {'n_estimators': 92, 'max_features': 2}
643.6625766840698 {'n_estimators': 72, 'max_features': 1}
555.1399398111733 {'n estimators': 72, 'max features': 7}
555.1399398111733 {'n_estimators': 72, 'max_features': 7}
  final_model = rnd_search.best_estimator_
  final_model
```

RandomForestRegressor(max_features=4, n_estimators=85, random_state=42)

Fine-Tuning the Model

The best-performing set of parameters is {'n_estimators': 72, 'max_features': 4} which resulted in the lowest RMSE of 548.35.

Evalute Final Model

```
# final_predictions = final_model.predict(x_test_prepared)
final_predictions = final_model.predict(x_train_prepared)

# final_mse = mean_squared_error(y_test, final_predictions)
final_mse = mean_squared_error(y_train, final_predictions)
final_rmse = np.sqrt(final_mse)
final_rmse
```

202.77888794641905

array([198.18512292, 207.27086589])

Evalute Final Model

Calculate the confidence interval for the Root Mean Square Error (RMSE) of the final model's predictions.

Submission

Submission

the first few rows of our submission file:

```
data={'Id':Id,'price':price}
sub=pd.DataFrame(data)
filename=f'mg_sub_{int(round(final_rmse))}.csv'
print(filename)
print(sub)
sub.to_csv(filename, index=False)
```

	d	price
1		839.1597
2		2905.8908
3		875.2437
4		2753.8571
5		1054.3025
10786		4347.8571
10787		4786.2605
10788		13905.1765