EE1101 Signals and Systems JAN—MAY 2019 Tutorial 3: Extra Questions

- 1. Find the fundamental period of the signal $x(t) = \sin\left(\frac{3\pi}{5}t\right)$. Let x[n] be obtained from x(t) by sampling at $t = nT_s$ where (a) $T_s = 1$ sec, (b) $T_s = 5$ sec, and (c) $T_s = 1/\pi$ sec. Determine whether x[n] is periodic for each case. If so, find its fundamental period.
- 2. Let $y_1[n] = x[2n]$ and $y_2[n] = x[n/2], n \text{ even}$ = 0, n odd

If x[n] is periodic, are $y_1[n]$ and $y_2[n]$ periodic? If so, find their fundamental period.

- 3. Consider a time-invariant system with input x(t) and output y(t). Show that if x(t) is periodic with period T, y(t) is also periodic.
- 4. The impulse response to an LTI system is given as,

$$h(t) = \begin{cases} 2e^{-t}, & 0 \le t < 3\\ 0, & t \ge 3. \end{cases}$$

Find the response to an input,

$$i(t) = \begin{cases} 4u(t), & 0 \le t < 2\\ 0, & t \ge 2. \end{cases}$$

- 5. (Oppenheim Basic Problem 2.6) Compute and plot the convolution y[n] = x[n] * h[n], where $x[n] = (\frac{1}{3})^{-n}u[-n-1]$ and h[n] = u[n-1].
- 6. Let $x(t) = 1, 0 \le t < 1$ and zero elsewhere. And, let $h(t) = x\left(\frac{t}{\alpha}\right)$, with $0 < \alpha \le 1$.
 - (a) Plot $y(t) = x(t) \star h(t)$, where \star denotes convolution operation.
 - (b) Plot the first derivative of y(t).
 - (c) What should be the value of α such that the first derivative of y(t) contains exactly three discontinuities?

—— END ——