Université du Québec à Montréal INF5130 : Algorithmique Devoir 2

Hiver 2022

Vous devez remettre vos solutions sur Moodle avant le vendredi 22 avril 2022 à 23h55 sous la forme d'un unique fichier pdf. Un retard de 24 heures au maximum sera accepté : pénalité de $\frac{m}{144}$ points, où m est le nombre de minutes de retard. La note 0 sera attribuée au-delà d'un retard de 24 heures. Le nombre total de points pour ce devoir est 100. Le devoir peut être fait en équipes de deux étudiant-e-s au maximum. Il doit être intégralement rédigé avec LèTeX.

Exercice 1 (25 points)

Utiliser l'approche dynamique présentée dans le chapitre 6 pour trouver un arbre binaire de recherche qui minimise le nombre moyen de comparaisons lors d'une recherche fructueuse parmi 6 clés ayant des probabilités de recherche données dans le tableau ci-dessous. Vous devez déterminer les matrices C et racine ainsi que l'arbre binaire associé et l'espérance du temps de recherche. Vous devez donner tous les détails de vos calculs.

k	1	2	3	4	5	6
p_k	0,1	0.25	0.05	0.12	0.18	0.3

Exercice 2 (25 points)

On considère des séquences d'ADN : 4 caractères possibles : A, T, C et G. On suppose un coût de 3 pour une insertion ou une délétion et la matrice de coût suivante.

	A	Τ	С	G
A	0	1	5	7
Т	1	0	1	2
С	5	1	0	8
G	7	2	8	0

Trouvez un alignement optimal ainsi que son son coût entre la séquence X = GACGGAGCT et la séquence Y = ATGATGCTGA. Vous devez déterminer les matrices D (des coûts) et V (des flèches) définies dans le chapitre sur la programmation dynamique (Distance de Levenshtein, pages 52 à 60).

Exercice 3 (25 points)

Dans quel ordre effectuer les tâches pour minimiser la somme des pénalités des tâches en retard ? On suppose que les tâches ont une durée de 1 et que les échéances et les pénalités sont données dans le tableau suivant.

Tâche	1	2	3	4	5	6	7	8	9	10
Échéance	4	2	1	4	3	7	6	6	5	9
Pénalité	90	80	70	60	55	50	45	30	20	10

Vous devez donner toute la séquence des insertions des tâches comme dans l'exemple 1 (pages 36 à 42) du chapitre sur les algorithmes gloutons.

Exercice 4 (25 points)

Convertissez l'instance suivante du problème SAT en une instance du problème 3-FNC-SAT :

$$\neg x_1 \wedge (x_1 \vee (x_2 \leftrightarrow (x_3 \wedge x_1))).$$

Utilisez la méthode présentée dans le chapitre sur la NP-complétude. Ne simplifiez pas l'expression initiale. Vous devez donner tous les détails des trois étapes de votre transformation.

2

Exercice 1 (25 points)

k	1	2	3	4	5	6	
p_k	0,1	0,25	0,05	0,12	0,18	0,3	

 $C[1;1] = p_1 = 0,1$

 $C[2; 2] = p_2 = 0.25$

 $C[3;3] = p_3 = 0.05$ $C[6;6] = p_6 = 0.3$

 $C[4;4] = p_4 = 0.12$

 $C[5; 5] = p_5 = 0.18$

 $C[1; 2] = \min(0 + 0.25; 0.1 + 0) + 0.1 + 0.25 = 0.45$

 $C[2;3] = \min \left(0 + 0.05 \, ; 0.25 + 0 \right) + 0.25 + 0.05 = 0.35$

 $C[3; 4] = \min(0 + 0.12; 0.05 + 0) + 0.05 + 0.12 = 0.22$ $C[4; 5] = \min(0 + 0.18; 0.12 + 0) + 0.12 + 0.18 = 0.42$

 $C[5;6] = \min\left(0 + 0.3; 0.18 + 0\right) + 0.18 + 0.3 = 0.66$

 $C[1;3] = \min(0+0.35;0.1+0.05;0.45+0)+0.1+0.25+0.05=0.55$

 $C[2;4] = \min(0+0.22;0.25+0.12;0.35+0)+0.25+0.05+0.12=0.64$

 $C[3;5] = \min \left(0 + 0.42 \, ; 0.05 + 0.18 \, ; 0.22 + 0 \right) + 0.05 + 0.12 + 0.18 = 0.57$

 $C[4;6] = \min \left(0 + 0.66 \, ; 0.12 + 0.3 \, ; 0.42 + 0 \right) + 0.12 + 0.18 + 0.3 = 1.02$

 $C[1;4] = \min \left(0 + 0.64; 0.1 + 0.22; 0.45 + 0.12; 0.55 + 0 \right) + 0.1 + 0.25 + 0.05 + 0.12 = 0.84$

 $C[2;5] = \min(0+0.57;0.25+0.42;0.35+0.18;0.64+0)+0.25+0.05+0.12+0.18=1.13$

 $C[3;6] = \min \left(0+1{,}02\,; 0{,}05+0{,}66\,; 0{,}22+0{,}3\,; 0{,}57+0 \right) + 0{,}05+0{,}12+0{,}18+0{,}3=1{,}17$

 $C[1;5] = \min \left(0+1,13;0,1+0,57;0,45+0,42;0,55+0,18;0,84+0 \right) + 0,1+0,25+0,05+0,12+0,18$

 $C[2;6] = \min \left(0+1,17; 0,25+1,02; 0,35+0,66; 0,64+0,3; 1,13+0 \right) + 0,25+0,05+0,12+0,18+0,3$ = 1.84

$$\begin{split} C[1;6] &= \min\left(0+1,\!84;0,\!1+1,\!17;0,\!45+1,\!02;0,\!55+0,\!66;0,\!84+0,\!3;1,\!37+0\right) \\ &+ 0,\!1+0,\!25+0,\!05+0,\!12+0,\!18+0,\!3=2,\!14 \end{split}$$

0 0,1 0,45 0,55 0,84 1,37 2,14 0 0,25 0,35 0,64 1,13 1,84 0,05 0,22 0,57 1,17 0 0 0,12 0,42 1,02 0 0,18 0,66 0 0.3

Matrice racine :

	0	1	2	3	4	5	6
1		1	2	2	2	2	5
2			2	2	2	4	5
3				3	4	5	5
4					4	5	5/6
5						5	6
6							6
7							

Exercice 2 (25 points)

X		G	A	С	G	G	A	G	С	Т
Y										
	0	3	6	9	12	15	18	21	24	27
A	3	6	3	6	9	12	15	18	21	24
T	6	5	6	4	7	10	13	16	19	21
G	9	6	9	7	4	7	10	13	16	19
A	12	9	6	9	7	10	7	10	13	16
T	15	12	9	7	10	9	10	9	11	13
G	18	15	12	10	7	10	13	10	13	13
C	21	18	15	12	10	13	15	13	10	13
T	24	21	18	15	13	12	14	16	13	10
G	27	24	21	18	15	13	16	14	16	13
A	30	27	24	21	18	16	13	16	19	16

Alignement optimal

Coût : 16

Barème

- 9 points pour la matrice de coût (1 point en moins par erreur)
- 9 points pour la matrice des flèches (1 point en moins par erreur, une seule flèche suffit pour les cases pouvant contenir plusieurs flèches)
- 5 points pour l'alignement
- 2 points pour son coût

Les matrices transposées (échange de X et Y) sont acceptées. Le G (troisième caractère de Y) peut être en face du quatrième ou du cinquième caractère

3

Ne pas pénaliser plusieurs fois pour une erreur qui se propage.

Arbre binaire de recherche optimal :

Espérance du temps de recherche : 2,14.

Barème :

- ullet 5 points pour la matrice C (1 point en moins par erreur)
- $\bullet\,$ 5 points pour la matrice racine (1 point en moins par erreur, un seul chiffre suffit pour le résultat situé à la ligne 4 et à la colonne 6)
- ullet 6 points pour le détail des calculs des coefficients de la matrice C
- 6 points pour l'arbre binaire de recherche optimal
- 3 points pour l'espérance du temps de recherche

Ne pas pénaliser plusieurs fois pour une erreur qui se propage.

Exercice 3 (25 points)

Tâche	1	2	3	4	5	6	7	8	9	10
Échéance	4	2	1	4	3	7	6	6	5	9
Pénalité	90	80	70	60	55	50	45	30	20	10

i				1							1	i		2		1						
d_i	1	2	3	4	5	6	7	8	9	10	1	d_i	1	2	3	4	5	6	7	8	9	10
$N_i(F)$	0	0	0	1	1	1	1	1	1	1	1	$N_i(F)$	0	1	1	2	2	2	2	2	2	2
i	3	2		1							1					4						
$\frac{t}{d_i}$	1	2	3	4	5	6	7	8	9	10	1	i	3	2		1						
$N_i(F)$	1	2	2	3	3	3	3	3	3	3	ł	d_i	1	2	3	4	5	6	7	8	9	10
1v ₁ (1·)	1			J	J	0	0	0	J		J	$N_i(F)$	1	2	2	4	4	4	4	4	4	4
				4							1					4						
i	3	2	5	1								i	3	2	5	1			6			
d_i	1	2	3	4	5	6	7	8	9	10	1	d_i	1	2	3	4	5	6	7	8	9	10
$N_i(F)$	1	2	2	4	4	4	4	4	4	4	1	$N_i(F)$	1	2	2	4	4	4	5	5	5	5
				4							1					4		8				
i	3	2	5	1		7	6					i	3	2	5	1		7	6			
d_i	1	2	3	4	5	6	7	8	9	10		d_i	1	2	3	4	5	6	7	8	9	10
$N_i(F)$	1	2	2	4	4	5	6	6	6	6	1	$N_i(F)$	1	2	2	4	4	6	7	7	7	7
				4		8										4		8				
i	3	2	5	1	9	7	6					i	3	2	5	1	9	7	6		10	
d_i	1	2	3	4	5	6	7	8	9	10		d_i	1	2	3	4	5	6	7	8	9	10
$N_i(F)$	1	2	2	4	4	6	7	7	7	7		$N_i(F)$	1	2	2	4	4	6	7	7	8	8

Ordonnancement optimal: 3 2 1 4 7 8 6 10 5 9

 $\mathbf{P\acute{e}nalit\acute{e}}:\, 55+20=75$

Barème :

- 10 points pour les 10 tableaux
- $\bullet~10$ points pour l'ordonnancement optimal
- 5 points pour la pénalité

Ne pas pénaliser plusieurs fois pour une erreur qui se propage.

 $\neg x_1 \wedge (x_1 \vee (x_2 \leftrightarrow (x_3 \wedge x_1))).$

Première étape (10 points) 5 points pour l'arbre 1 point pour chaque ϕ'_i

 $\phi'_1 = y_1$

$$\phi_2' = y_1 \leftrightarrow (y_2 \land \neg x_1)$$

$$\phi_3' = y_2 \leftrightarrow (x_1 \vee y_3)$$

$$\phi_4' = y_3 \leftrightarrow (x_2 \leftrightarrow y_4)$$

$$\phi_5' = y_4 \leftrightarrow (x_3 \land x_1)$$

Deuxième étape (12 points) $1 \text{ point pour chaque table de vérité} \\ 1 \text{ point pour chaque } \neg \phi_i'' \\ 1 \text{ point pour chaque } \phi_i''$

y_1	y_2	x_1	$y_1 \leftrightarrow (y_2 \land \neg x_1)$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

$$\phi_2' = y_1 \leftrightarrow (y_2 \land \neg x_1)$$

 $\begin{aligned} & \neg \phi_2'' = (\neg y_1 \wedge y_2 \wedge \neg x_1) \vee (y_1 \wedge \neg y_2 \wedge \neg x_1) \vee (y_1 \wedge \neg y_2 \wedge x_1) \vee (y_1 \wedge \neg y_2 \wedge x_1) \vee (y_1 \wedge y_2 \wedge x_1) \\ & \phi_2'' = (y_1 \vee \neg y_2 \vee x_1) \wedge (\neg y_1 \vee y_2 \vee x_1) \wedge (\neg y_1 \vee y_2 \vee \neg x_1) \wedge (\neg y_1 \vee \neg y_2 \vee \neg x_1) \end{aligned}$

5

Troisième étape (3 points) 2 points pour ϕ_1''' 1 point pour les autres ϕ_i'''

 $\phi_1''' = \big(y_1 \vee z_1 \vee z_2\big) \wedge \big(y_1 \vee \neg z_1 \vee z_2\big) \wedge \big(y_1 \vee z_1 \vee \neg z_2\big) \wedge \big(y_1 \vee \neg z_1 \vee \neg z_2\big)$

 $\phi_2''' = \phi_2''$ $\phi_3''' = \phi_3''$

 $\phi_4^{\prime\prime\prime} = \phi_4^{\prime}$ $\phi_4^{\prime\prime\prime} = \phi_4^{\prime}$

 $\phi_3' = y_2 \leftrightarrow (x_1 \lor y_3)$

 $\begin{array}{l} \neg\phi_3'' = (\neg y_2 \wedge \neg x_1 \wedge y_3) \vee (\neg y_2 \wedge x_1 \wedge y_3) \wedge (\neg y_2 \wedge x_1 \wedge y_3 \wedge y_3 \wedge y_3) \wedge (\neg y_2 \wedge x_1 \wedge y_3 \wedge y_3 \wedge y_3 \wedge y_3) \wedge (\neg y_2 \wedge x_1 \wedge y_3 \wedge y_3 \wedge y_3 \wedge y_3 \wedge$

y_3	x_2	y_4	$y_3 \leftrightarrow (x_2 \leftrightarrow y_4)$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

 $\phi_4' = y_3 \leftrightarrow (x_2 \leftrightarrow y_4)$

 $\begin{array}{l} -\phi_4'' = (\neg y_3 \wedge \neg x_2 \wedge \neg y_4) \vee (\neg y_3 \wedge x_2 \wedge y_4) \vee (y_3 \wedge \neg x_2 \wedge y_4) \vee (y_3 \wedge x_2 \wedge \neg y_4) \\ \phi_4'' = (y_3 \vee x_2 \vee y_4) \wedge (y_3 \vee \neg x_2 \vee \neg y_4) \wedge (\neg y_3 \vee x_2 \vee \neg y_4) \wedge (\neg y_3 \vee \neg x_2 \vee y_4) \end{array}$

y_4	x_3	x_1	$y_4 \leftrightarrow (x_3 \land x_1)$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

 $\phi_5' = y_4 \leftrightarrow (x_3 \land x_1)$

 $\neg \phi_5'' = (\neg y_4 \wedge x_3 \wedge x_1) \vee (y_4 \wedge \neg x_3 \wedge \neg x_1) \vee (y_4 \wedge \neg x_3 \wedge x_1) \vee (y_4 \wedge x_3 \wedge \neg x_1) \\ \phi_5'' = (y_4 \vee \neg x_3 \vee \neg x_1) \wedge (\neg y_4 \vee x_3 \vee x_1) \wedge (\neg y_4 \vee x_3 \vee \neg x_1) \wedge (\neg y_4 \vee \neg x_3 \vee x_1) \\ \end{pmatrix}$

6