PES University, Bangalore

(Established Under Karnataka Act 16 of 2013)

Department of Science and Humanities Engineering Mathematics - I - UE21MA101

Unit - 1: Sequences & Series: Class Work Problems (10 Hours)

1. Examine the following sequences for convergence:

i)
$$a_n = \frac{n^2 - 2n}{3n^2 + n}$$

ii)
$$a_n = 2^n$$

iii)
$$a_n = 3 + (-1)^n$$
.

- 2. Show that the sequence $x_n = \frac{3n+4}{2n+1}$ is i) monotonic decreasing; ii) bounded; and iii) tends to limit $\frac{3}{2}$.
- 3. Discuss the convergence of the series $1 \frac{1}{2} + \frac{1}{4} + \ldots + (-\frac{1}{2})^{n-1} + \ldots$
- 4. Test the convergence of the following series of positive terms:

(i)
$$\frac{1}{4.7\cdot10} + \frac{4}{7\cdot10\cdot13} + \frac{9}{10\cdot13\cdot16} + \dots \infty$$

$$(ii)\frac{\sqrt{2}-1}{3^3-1} + \frac{\sqrt{3}-1}{4^3-1} + \frac{\sqrt{4}-1}{5^3-1} + \dots \infty$$

(iii)
$$\sum_{n=1}^{\infty} \left[\sqrt{n^4 + 1} - \sqrt{n^4 - 1} \right]$$

(iv)
$$\sum_{n=1}^{\infty} \left[\sqrt[3]{n^3 + 1} - n \right]$$

$$(v)\sum_{n=1}^{\infty}\frac{\sqrt{n+1}-\sqrt{n}}{n^p}$$

(vi)
$$\sum_{n=1}^{\infty} \sqrt{\frac{3^n - 1}{2^n + 1}}$$

5. Apply the integral test to determine the convergence of the p-series: $\frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots$

1

- 6. Test the convergence of the series $\sum_{n=2}^{\infty} \frac{1}{n(log n)^p}$
- 7. Test the following series for convergence:

(i)
$$1 + \frac{2!}{2^2} + \frac{3!}{3^3} + \frac{4!}{4^3} + \dots$$

(ii)
$$1 + \frac{x}{2} + \frac{x^2}{5} + \frac{x^3}{10} + \ldots + \frac{x^n}{n^2 + 1} + \ldots$$

(iii)
$$\frac{1^2}{2} + \frac{2^2}{2^2} + \frac{3^2}{2^3} + \frac{4^2}{2^4} + \dots$$

- 8. Discuss the nature of the series $\sum_{n=1}^{\infty} \frac{n!}{(n^n)^2}$
- 9. Test the series for convergence $\frac{1^2}{4^2}+\frac{1^2\cdot 5^2}{4^2\cdot 8^2}+\frac{1^2\cdot 5^2\cdot 9^2}{4^2\cdot 8^2\cdot 12^2}+\dots$
- 10. Test the series for convergence $x + \frac{2^2x^2}{2!} + \frac{3^3x^3}{3!} + \frac{4^4x^4}{4!} + \dots$
- 11. Test the series for convergence $\sum_{n=1}^{\infty} \frac{4 \cdot 7 \cdot 10 \dots (3n+1)}{1 \cdot 2 \cdot 3 \dots n} x^n$
- 12. Discuss the nature of the following series:

(i)
$$\sum_{n=1}^{\infty} \left(\frac{n}{n+1} \right)^{n^2}$$

(ii)
$$\sum_{n=1}^{\infty} a^{n^2} x^n$$
, $a < 1$

(iii)
$$\sum_{n=1}^{\infty} \left(\frac{n+1}{n} \right)^{n^2} \cdot \frac{1}{3^n}$$

(iv)
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{\sqrt{n}}\right)^{-n^{\frac{3}{2}}}$$

13. Find the nature of the series $1 + \frac{2}{3}x + \left(\frac{3}{4}\right)^2 x^2 + \left(\frac{4}{5}\right)^3 x^3 + \dots, x > 0$

Unit - 2: Partial Differentiation: Class Work Problems (12 Hours)

1. If
$$u = x^2 tan^{-1}(\frac{y}{x}) - y^2 tan^{-1}(\frac{x}{y})$$
, show that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x} = \frac{x^2 - y^2}{x^2 + y^2}$

2. Find the value of n so that $v = r^n(3\cos^2\theta - 1)$ satisfies the equation:

$$\frac{\partial}{\partial r} \left(r^2 \frac{\partial v}{\partial r} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial v}{\partial \theta} \right) = 0.$$

3. Find $\frac{df}{dt}$ at t = 0, where

(i)
$$f(x,y) = x\cos y + e^x \sin y, x = t^2 + 1, y = t^3 + t.$$

(ii)
$$f(x, y, z) = x^3 + xz^2 + y^3 + xyz, x = e^t, y = cost, z = t^3$$
. Answer: (i) $\frac{df}{dt} = e$; (ii) $\frac{df}{dt} = 3$

4. If
$$u=f(x-y,y-z,z-x)$$
, show that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$.

5. If
$$u = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$$
, show that $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0$.

6. If
$$u = x^2y$$
 and $x^2 + xy + y^2 = 1$, find $\frac{du}{dx}$
Answer: $\frac{du}{dx} = 2xy + x^2\left(\frac{-2x-y}{x+2y}\right)$

7. If
$$x^y + y^x = c$$
, where c is a constant, find $\frac{dy}{dx}$
Answer: $\frac{dy}{dx} = \frac{-(yx^{y-1} + y^x log y)}{(x^y log x + xy^{x-1})}$

8. If
$$x^2 + y^2 + z^2 = a^2$$
, find $\frac{\partial z}{\partial x}$ and $\frac{\partial y}{\partial x}$ at $(1, -1, 2)$.
Answer: $\frac{\partial z}{\partial x} = -\frac{1}{2}$; $\frac{\partial y}{\partial x} = 1$

9. Verify Euler's theorem for the following functions:

(i)
$$u = y^n log\left(\frac{x}{y}\right)$$

(ii)
$$u = cos^{-1}\left(\frac{x}{y}\right) + tan^{-1}\left(\frac{y}{x}\right)$$

10. If
$$u = \left(\sqrt{x^4 + y^4}\right) tan^{-1}(\frac{y}{x})$$
, prove the following:

i)
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2u$$

ii)
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} + x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 4u$$

11. If
$$u=x^3sin^{-1}(\frac{y}{x})+x^4tan^{-1}(\frac{y}{x})$$
, find the value of $x^2\frac{\partial^2 u}{\partial x^2}+2xy\frac{\partial^2 u}{\partial x\partial y}+y^2\frac{\partial^2 u}{\partial y^2}+x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}$ at $x=1,y=1$. Answer: $\frac{17\pi}{2}$

12. If
$$u = e^{\left(\frac{x^3 + y^3}{3x + 4y}\right)}$$
, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 2ulogu$.

13. Find the Taylor's series expansion of $e^x cos y$ about the point $x = 1, y = \frac{\pi}{4}$.

Answer: $\frac{e}{\sqrt{2}} \left[1 + (x - 1) - (y - \frac{\pi}{4}) + \frac{(x - 1)^2}{2!} - (x - 1)(y - \frac{\pi}{4}) - \frac{(y - \frac{\pi}{4})^2}{2!} + \ldots \right]$

14. Expand $e^{ax}sinby$ about origin upto 3^{rd} degree terms. **Answer:** $(by + abxy) + \frac{1}{6}(3a^2bx^2y - b^3y^3) + \dots$

15. Expand log(1+x-y) upto third degree terms about the origin. **Answer:** $log(1+x-y) = (x-y) - \frac{1}{2}(x-y)^2 + \frac{1}{3}(x-y)^3 + \dots$

16. Compute $tan^{-1}\left(\frac{0.9}{1.1}\right)$ approximately. **Answer:** $tan^{-1}\left(\frac{0.9}{1.1}\right) = 0.685$

17. Find the maximum and minimum values of the function $u(x,y) = x^3 + y^3 - 3x - 12y + 20$ **Answer:** u is maximum at (-1,-2) and the maximum value is 38. u is minimum at (1,2) and the minimum value is 2; and (-1,2) & (1,-2) are the saddle points.

18. Find the shortest distance from origin to the surface $xyz^2 = 2$.

Answer: 2

19. A scope probe in the shape of ellipsoid $4x^2+y^2+4z^2=16$ enters the earth atmosphere and its surface begins to heat. After one hour the temperature at the point (x,y,z) is on the surface is $T(x,y,z)=8x^2+4yz-16z+600$. Find the hottest point on the probe surface. **Answer:** $\pm \frac{4}{3}, -\frac{4}{3}, -\frac{4}{3}$

20. Find the minimum value of $f(x, y, z) = x^2 + y^2 + z^2$ subject to $xy + yz + zx = 3a^2$. Answer: Minimum value of $f(x, y, z) = 3a^2$.

PES University, Bangalore

(Established Under Karnataka Act 16 of 2013)

Department of Science and Humanities Engineering Mathematics - I - UE21MA141A

Unit - 3: Ordinary Differential Equations: Class Work Problems (12 Hours)

1. Solve the equation $y^4 dx = (x^{-\frac{3}{4}} - y^3 x) dy$

Answer: $(xy)^{\frac{7}{4}} = -\frac{7}{5}y^{-\frac{5}{4}} + c$.

2. Solve the differential equation $y' + 4xy + xy^3 = 0$.

Answer: $y = (ce^{4x^2} - \frac{1}{4})^{-\frac{1}{2}}$

3. Solve the differential equation $\frac{dy}{dx} - y = y^2(sinx + cosx)$

Answer: $y = \frac{1}{ce^{-x} - sinx}$

4. Check the equation $(3x^2 + 2e^y)dx + (2xe^y + 3y^2)dy = 0$ for exactness. If it is exact, find the solution.

Answer: The given equation is exact and the solution is $x^3 + 2xe^y + y^3 = c$.

5. Solve $(2xy\cos x^2 - 2xy + 1)dx + (\sin x^2 - x^2 + 3)dy = 0$.

Answer: $y sin x^2 - x^2 y + x + 3y = c$.

6. Determine for what values of a and b, the following differential equation is exact and obtain the general solution of the exact equation $(y+x^3)dx + (ax+by^3)dy = 0$.

Answer: a=1 and the solution is $xy + \frac{x^4}{4} + \frac{by^4}{4} = c$ for all b; and c is the arbitrary constant.

7. Solve the differential equation $(5x^3 + 12x^2 + 6y^2)dx + 6xydy = 0$.

Answer: $x^5 + 3x^4 + 3x^2y^2 = c$.

8. Solve the differential equation $(xy + y^2)dx + (x + 2y - 1)dy = 0$.

Answer: $e^{x}(xy - y + y^{2}) = c$.

9. Solve the differential equation $(3x^2y^3e^y + y^3 + y^2)dx + (x^3y^3e^y - xy)dy = 0$.

Answer: $x^3 e^y + x + \frac{x}{y} = c$.

10. Solve the differential equation $(\frac{y}{x} \cdot secy - tany)dx + (secy \cdot log x - x)dy = 0$.

Answer: ylogx - xsiny = c.

11. Solve the differential equation $(2xy + x^2)y' = 3y^2 + 2xy$.

Answer: $\frac{x^3}{y(x+y)} = c$.

12. Solve the differential equation (xysinxy + cosxy)ydx + (xysinxy - cosxy)xdy = 0.

1

Answer: $\frac{xsecxy}{y} = c$.

13. Find the orthogonal trajectories of the hyperbolas $x^2 - y^2 = c$.

Answer: xy = c.

14. Find the orthogonal trajectories of the family of curves $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$, where λ is a parameter.

Answer: $x^2 + y^2 - 2a^2 log x = c$.

- 15. Show that the one parameter family of curves $y^2 = 4c(c+x)$ are self orthogonal.
- 16. Find the orthogonal trajectories of the family of curves:

(i) $r^2 = csin(2\theta)$ and (ii) $r = c(sec\theta + tan\theta)$.

Answer: (i) $r^2 = c^* cos(2\theta)$ and (ii) $r = c^* e^{-sin\theta}$.

17. Solve $p^3 + 2xp^2 - p^2y^2 - 2xy^2p = 0$.

Answer: $(y-c)(y+x^2-c)(\frac{1}{y}+x+c)=0.$

18. Solve p(p + y) = x(x + y).

Answer: $(y - \frac{x^2}{2} - c)(e^x(x + y - 1) - c) = 0.$

19. Solve $x^2(\frac{dy}{dx})^4 + 2x\frac{dy}{dx} - y = 0$.

Answer: $y = c^4 + 2c\sqrt{x}$.

20. Solve $y = xp^2 + p$.

Answer: $x = \frac{1}{(1-p)^2}(log p - p + c)$ and $y = \frac{p^2}{(1-p)^2}(log p - p + c)$

21. Solve $y = 2px + y^2p^3$.

Answer: $y^2 = 2cx + c^3$.

22. Solve $y = p^2y + 2px$.

Answer: $y^2 = c^2 + 2cx$.

23. If the temperature of the air is $30^{0}C$ and a metal ball cools from $100^{0}C$ to $70^{0}C$ in 15 minutes, find how long will it take for the metal ball to reach a temperature of $40^{0}C$.

Answer: $k \approx 0.0373$ and $t = 52.17 \approx 52.2$. Thus, we conclude that it will take 52.2 minutes for the metal ball to reach a temperature of $40^{0}C$.

- 24. A bottle of mineral water at a room temperature of 72^0F is kept in a refrigerator where the temperature is 44^0F . After half an hour, water cooled to 61^0F .
 - (i) What is the temperature of the mineral water in another half an hour?
 - (ii) How long will it take to cool to $50^0 F$?

Answer: (i) $k \approx 0.0166$ and $(T)_{t=60} \approx 54.3$. Thus the temperature of the mineral water after another half an hour is $54.3^{\circ}F$.

(ii) We have to find t when T = 50.

 $t\approx 92.8$. Thus we conclude that it will take 93 minutes (about one and half hours) for the cooling of the mineral water to 50^0F .

2

Unit - 4: Higher Order Differential Equations: Class Work Problems (12 Hours)

1. Solve the differential equation $4y'''' - 12y^{'''} - y^{''} + 27y^{'} - 18y = 0$.

Answer: $y(x) = c_1 e^x + c_2 e^{2x} + c_3 e^{\frac{-3x}{2}} + c_4 e^{\frac{3x}{2}}$.

2. Solve the initial value problem:

y''' - 6y'' + 11y' - 6y = 0; y(0) = 0, y'(0) = -4, y''(0) = -18.

Answer: The constants $c_1 = 1$; $c_2 = 2$; $c_3 = -3$ and $y(x) = e^x + 2e^{2x} - 3e^{3x}$.

3. Solve $y'' + 2y' + y = 2e^{3x}$.

Answer: $y(x) = (c_1 + c_2 x)e^{-x} + \frac{e^{3x}}{2}$.

4. Solve $y''' - 2y'' - 5y' + 6y = 2e^x + 4e^{3x} + 7e^{-2x} + 8e^{2x} + 15$.

Answer: $y(x) = c_1 e^x + c_2 e^{3x} + c_3 e^{-2x} - \frac{1}{2} x e^x + \frac{2}{5} x e^{3x} + \frac{7}{15} x e^{-2x} - 2 e^{2x} + \frac{15}{6}$.

5. Solve $y'' + 4y = \sin 3x + \cos 2x$.

Answer: $y(x) = c_1 cos2x + c_2 sin2x - \frac{1}{5} sin3x + \frac{x}{4} sin2x$.

6. Solve $y'' + 5y' - 6y = \sin 4x \cdot \sin x$.

Answer: $y(x) = c_1 e^x + c_2 e^{-6x} + \frac{1}{2} \left[\frac{\sin 3x - \cos 3x}{30} + \frac{31\cos 5x - 25\sin 5x}{1586} \right].$

7. Solve $y'' - y = 2x^4 - 3x + 1$.

Answer: $y(x) = c_1 e^x + c_2 e^{-x} - [2x^4 + 24x^2 - 3x + 49].$

8. Solve $y''' - y = x^5 + 3x^4 - 2x^3$.

Answer: $y(x) = c_1 e^x + e^{-\frac{x}{2}} \left[c_2 \cos \frac{\sqrt{3}}{2} x + c_3 \sin \frac{\sqrt{3}}{2} x \right] - \left[x^5 + 3x^4 - 2x^3 + 60x^2 + 72x + 12 \right].$

9. Solve $y'''' - y = cosx \cdot coshx$.

Answer: $y(x) = c_1 e^x + c_2 e^{-x} + c_3 \cos x + c_4 \sin x - \frac{1}{5} \cos x \cdot \cosh x$.

10. Solve $y''' - 7y' - 6y = e^{2x}(1+x)$.

Answer: $y(x) = c_1 e^{-x} + c_2 e^{-2x} + c_3 e^{3x} - \frac{e^{2x}}{12} \left[x + \frac{17}{12} \right].$

11. Solve $x^3 \frac{d^3y}{dx^3} + 3x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = x + logx$. Answer: $y(x) = \frac{c_1}{x} + \sqrt{x} \left[c_2 cos \frac{\sqrt{3}}{2} logx + c_3 sin \frac{\sqrt{3}}{2} logx \right] + \frac{x}{2} + logx$.

12. $2x\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - \frac{y}{x} = 5 - \frac{\sin(\log x)}{x^2}$.

Answer: $y(x) = \frac{c_1}{x} + c_2 \sqrt{x} + \frac{5}{2}x - \frac{1}{13} \left[\frac{3\cos(\log x) - 2\sin(\log x)}{x} \right].$

13. Solve $(2x+5)^2 \frac{d^2y}{dx^2} - 6(2x+5)\frac{dy}{dx} + 8y = 6x$. Answer: $y(x) = c_1(2x+5)^{2+\sqrt{2}} + c_2(2x+5)^{2-\sqrt{2}} - \frac{3}{4}(2x+5) - \frac{15}{8}$.

14. Solve $(3x-2)^2 \frac{d^2y}{dx^2} - 3(3x-2)\frac{dy}{dx} = 9(3x-2)\sin(\log(3x-2))$.

Answer: $y(x) = c_1 + c_2(3x - 2)^2 - \frac{1}{2}(3x - 2)sin(log(3x - 2))$

15. Find the general solution of the equation $y'' + 3y' + 2y = 2e^x$ using the method of variation of parameters.

Answer: $y(x) = c_1 e^{-x} + c_2 e^{-2x} + \frac{1}{2} e^x$.

16. Find the general solution of the equation y'' + 16y = 32sec2x using the method of variation of parameters.

Answer: $y(x) = c_1 cos4x + c_2 sin4x + 8cos2x - 4sin4x \cdot log(sec2x + tan2x).$

17. Find the general solution of the equation $y'' - y = 2(1 - e^{-2x})^{-\frac{1}{2}}$ using the method of variation of parameters.

Answer: $y(x) = c_1 e^x + c_2 e^{-x} - e^x \cdot \sin^{-1}(e^{-x}) - (e^{2x} - 1)^{\frac{1}{2}} e^{-x}$.

18. A voltage $E = E_0 e^{-at}$, where E_0 and a are constants is applied at time t > 0 to an LR circuit of inductance L and resistance R. Find the charge and current at time t > 0, given that the circuit carries no charge and no current at time t = 0.

Answer: $q = \frac{E_0}{a - \frac{R}{L}} \left[\frac{1}{R} (1 - e^{-\left(\frac{R}{L}\right)t}) - \frac{1}{aL} (1 - e^{-at}) \right]$, which is the charge at time t > 0; and $i = \frac{E_0}{L\left(a - \frac{R}{L}\right)} \left[e^{-\left(\frac{R}{L}\right)t} - e^{-at} \right]$, which is the current at time t > 0.

19. At time t > 0, an e.m.f of voltage $E = E_0(1 - cost)$, where E_0 is a constant is applied to an LRC circuit for which L = R = C = 1. Initially, there is no charge or current in the circuit. Find the charge and current at time t > 0.

Answer: $q=E_0\left[e^{-\frac{t}{2}}\left[\frac{1}{\sqrt{3}}sin\frac{\sqrt{3}}{2}t-cos\frac{\sqrt{3}}{2}t\right]+(1-sint)\right]$, which is the charge at time t>0; and $i=E_0\left[e^{-\frac{t}{2}}\left[cos\frac{\sqrt{3}}{2}t+\frac{1}{2}(\sqrt{3}-\frac{1}{\sqrt{3}})sin\frac{\sqrt{3}}{2}t\right]-cost\right]$, which is the current at time t>0.

20. A body weighing 4.9 kg is hung from a spring. A pull of 10 kg weight will stretch the spring to 5 cm. The body is pulled down 6 cm below the static equilibrium position and then released. Find the displacement (x) of the body from its equilibrium position at time t seconds; the maximum velocity; and the period of oscillation.

Answer: Displacement $x = 0.06 \cos 20t$; maximum velocity is 1.2 m/sec; and the period of oscillation is 0.314 sec.

PES University, Bangalore

(Established Under Karnataka Act 16 of 2013)

Department of Science and Humanities Engineering Mathematics - I - UE21MA141A

Unit - 5: Special Functions: Class Work Problems (10 Hours)

Beta and Gamma functions:

Prove the following standard results.

1. $\beta(m,n) = \beta(n,m)$

2.
$$\beta(m,n) = 2 \int_0^{\frac{\pi}{2}} \sin^{2m-1}\theta \cdot \cos^{2n-1}\theta d\theta = 2 \int_0^{\frac{\pi}{2}} \sin^{2n-1}\theta \cdot \cos^{2m-1}\theta d\theta$$

3.
$$\int_0^{\frac{\pi}{2}} sin^m \theta \cdot cos^n \theta = \frac{1}{2}\beta\left(\frac{m+1}{2}, \frac{n+1}{2}\right), m > -1, n > -1.$$

4.
$$\beta(m,n) = \int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx$$

5. Relationship between Beta and Gamma functions: $\beta(m,n)=\frac{\Gamma(m)\cdot\Gamma(n)}{\Gamma(m+n)}, m>0; n>0.$

6.
$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$

7. Given that
$$\int_0^\infty \frac{x^{p-1}}{1+x} dx = \frac{\pi}{\sin p\pi}$$
, show that $\Gamma(p) \cdot \Gamma(1-p) = \frac{\pi}{\sin p\pi}$, $0 .$

Problems on Beta and Gamma functions:

1. Evaluate
$$\int_0^\infty \sqrt{x} \cdot e^{-x^2} dx$$
. Answer: $\frac{1}{2}\Gamma\left(\frac{3}{4}\right)$

2. Evaluate
$$\int_0^\infty e^{-x^3} dx$$
. Answer: $\frac{1}{3}\Gamma\left(\frac{1}{3}\right)$

3. Using Beta and Gamma functions, evaluate the integral $\int_{-1}^{1} (1-x^2)^n dx$, where n is a positive integer. **Answer**: $\frac{2^{2n+1}(n!)^2}{(2n+1)!}$

4. Evaluate
$$\int_{0}^{\infty} (x^2 + 4)e^{-2x^2} dx$$
. Answer: $\frac{17\sqrt{\pi}}{8\sqrt{2}}$

5. Evaluate
$$\int_0^\infty 2^{-9x^2} dx$$
 using the Gamma function. Answer: $\frac{1}{6} \sqrt{\frac{\pi}{\ln 2}}$

6. Evaluate
$$\int_0^{\frac{\pi}{2}} \frac{\sqrt[3]{sin^8x}}{\sqrt{cosx}} dx$$
. Answer: $\frac{60}{13} \frac{\Gamma(\frac{5}{6}) \cdot \Gamma(\frac{1}{4})}{\Gamma(\frac{1}{12})}$

7.
$$\int_0^2 (8-x^3)^{-\frac{1}{3}} dx$$
. Answer: $\frac{2\pi}{3\sqrt{3}}$

8.
$$\int_0^a x^4 \sqrt{a^2 - x^2} dx$$
. Answer: $\frac{\pi a^6}{32}$

9. Evaluate
$$\int_0^3 \frac{x^{\frac{3}{2}}}{\sqrt{3-x}} \times \int_0^1 \frac{dx}{\sqrt{1-x^{\frac{1}{4}}}}$$
. Answer: $\frac{432\pi}{35}$

10. Evaluate
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (\cos\theta + \sin\theta)^{\frac{1}{3}}$$
. Answer: $\frac{6\sqrt{\pi}}{2^{\frac{5}{6}}} \frac{\Gamma(\frac{2}{3})}{\Gamma(\frac{1}{6})}$

Special Functions:

1. Bessel's Differential Equation and Bessel Functions: Obtain the series solution of Bessel's differential equation

$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + (x^{2} - v^{2})y = 0$$

of order v, where v is a non-negative real number.

2. Prove that $J_{-n}(x) = (-1)^n J_n(x)$, where n is a positive integer.

Derivatives of Bessel functions:

- 3. Prove that $[x^{v}J_{v}(x)]' = x^{v}J_{v-1}(x)$
- 4. Prove that $[x^{-v}J_v(x)]' = -x^{-v}J_{v+1}(x)$

Recurrence relations:

Bessel's function of the first kind satisfies the following recurrence relations:

- 5. Prove that $xJ'_{v}(x) = xJ_{v-1}(x) vJ_{v}(x)$
- 6. Prove that $xJ'_{v}(x) = vJ_{v}(x) xJ_{v+1}(x)$
- 7. Prove that $2J'_{v}(x) = J_{v-1}(x) J_{v+1}(x)$
- 8. Prove that $2vJ_v(x) = x [J_{v-1}(x) + J_{v+1}(x)]$

Note: Prove the recurrence relations {Problem.3 - Problem.8} using the definition of Bessel function.

Problems:

2

9. Express $J_4(x)$ in terms of $J_0(x)$ and $J_1(x)$.

Answer:
$$J_4(x) = \left(\frac{48}{x^3} - \frac{8}{x}\right) J_1(x) + \left(1 - \frac{24}{x^2}\right) J_0(x)$$
.

10. Express $J_{\frac{5}{2}}(x)$ and $J_{-\frac{5}{2}}(x)$ in terms sine and cosine functions, where $J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}}sinx$ and $J_{-\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}}cosx$.

$$\textbf{Answer: } J_{\frac{5}{2}}(x) = \sqrt{\frac{2}{\pi x}} \left[sinx \left(\frac{3-x^2}{x^2} \right) - \frac{3cosx}{x} \right]; J_{-\frac{5}{2}}(x) = \sqrt{\frac{2}{\pi x}} \left[\frac{3sinx}{x} + \left(\frac{3-x^2}{x^2} \right) cosx \right].$$

- 11. Evaluate (i) $\int J_3(x)dx$; (ii) $\int x^4 J_1(x)dx$. Answer: (i) $c - J_2(x) - \frac{2}{x}J_1(x)$; (ii) $(8x^2 - x^4)J_0(x) + (4x^3 - 16x)J_1(x)$.
- 12. Generating function for Bessel function $J_n(x)$: Obtain the generating function for Bessel's function as $e^{\frac{1}{2}x\left(t-\frac{1}{t}\right)}$.
- 13. Orthogonality of Bessel function: Prove that $\int_0^a x J_n(\alpha x) J_n(\beta x) := \begin{cases} 0 & \text{if } \alpha \neq \beta \\ \frac{a^2}{2} J_{n+1}^2(a\alpha) & \text{if } \alpha = \beta \end{cases},$ where α and β are the roots of $J_n(ax) = 0$.
- 14. Establish the **Jacobi series**:
 - i) $cos(xcos\theta) = J_0 2J_2cos2\theta + 2J_4cos4\theta \dots$
 - ii) $sin(xcos\theta) = 2[J_1cos\theta J_3cos3\theta + J_5cos5\theta ...];$ and hence prove that $J_0^2 + 2J_1^2 + 2J_2^2 + 2J_3^2 + ... = 1.$
- 15. **Bessel's integral formula**: Prove that $J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(n\theta x\sin\theta) d\theta$, where n is a positive integer.