Homework 1, Math 401

due on January 13, 2020

Before you start, please read the syllabus carefully.

- 1. Given (G, \cdot) a group. Prove the following:
 - (a) There exists a unique element $e \in G$ such that $e \cdot a = a \cdot e = a$ for any element $a \in G$. (*)We call this element identity
 - (b) For any element $a \in G$, there exists a unique $b \in G$ such that $a \cdot b = b \cdot a = e$. (*)We call this element *inverse* of a, and denote it by a^{-1}
 - (c) If $a \cdot c = b \cdot c$, then a = b (cancellation law)
 - (d) $(a^{-1})^{-1} = a$
 - (e) $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$
- 2. Given $(R, +, \cdot)$ a ring. We will denote the identity with respect to "+" by 0, and the identity respect to "." by 1, the inverse of $a \in R$ with respect to "+" by -a. Prove the following:
 - (a) $0 \cdot a = a \cdot 0 = 0$
 - (b) $-a = (-1) \cdot a$
 - (c) -(-a) = a
- 3. Prove the following:
 - (a) $(\mathbb{Z}, +, \times)$ forms a ring.
 - (b) $(\mathbb{R}, +, \times)$ forms a ring.
 - (c) $(\mathbb{Q}, +, \times)$ forms a ring.
 - (d) $(\mathbb{C}, +, \times)$ forms a ring.

Here + and \times are interpreted as the usual addition and multiplication for each set. \mathbb{Z} means integers, \mathbb{R} means real numbers, \mathbb{Q} means rational numbers, \mathbb{C} means complex numbers.

- 4. Prove that $(M_{n\times n}(\mathbb{R}), +, \times)$ forms a ring. Here $M_{n\times n}(\mathbb{R})$ is the set of all *n*-by-*n* matrices over real numbers \mathbb{R} . Here + and \times are interpreted as the usual addition and multiplication for matrices.
- 5. Determine whether:
 - (a) $(\mathbb{Z}\setminus\{0\},\times)$ forms a group?
 - (b) $(\mathbb{R}\setminus\{0\},\times)$ forms a group?

- (c) $(\mathbb{Q}\setminus\{0\},\times)$ forms a group?
- (d) $(\mathbb{C}\setminus\{0\},\times)$ forms a group?

If yes, give a proof; if no, explain why.

- 6. Determine whether:
 - (a) $(M_{n\times n}(\mathbb{R})\setminus\{0\},\times)$ forms a group?
 - (b) $(M_{n\times n}(\mathbb{Z})\setminus\{0\},\times)$ forms a group?

Here 0 means zero matrix. If yes, give a proof; if no, explain why.

(**Bonus**): If no, come up with a set of matrices that forms a group with respect to usual multiplication for matrices.

- 7. Given $(R, +, \cdot)$ a ring. Do we have cancellation law for \cdot , i.e, if $a \cdot c = b \cdot c$, do we have a = b? If yes, give a proof; if no, explain why.
- 8. Given $(R, +, \cdot)$ a ring. Show that if there exists an inverse of 0 with respect to "·", i.e., if there exists $x \in R$ such that $x \cdot 0 = 0 \cdot x = 1$, then R contains only one element.

 (*)We say that such a ring is *trivial*. This exercise shows why we do not have $\frac{a}{0}$.

Answer:

Since $x \cdot 0 = 0 \cdot x = 0$, we have 0 = 1. For all element $y \in R$, we have $y = y \cdot 1 = y \cdot 0 = 0$. Therefore there is only one element in R.

Remark:

In order to define $\frac{a}{0}$, we need to first find a multiplicative inverse 0^{-1} of 0, and then define $\frac{a}{0} := a \cdot 0^{-1}$. Question 8 determines that we should not be able to find any multiplicative inverse of 0 at all, unless in a very extreme situation. Thus, there is no way to talk about $\frac{a}{0}$.