

Para colocar na placa de prototipagem

Entradas:

- ck: clock interno (disponível) da placa;
- rst: botão de apertar (push botton);
- ck_man: botão de apertar (push botton);
- switches (10): d[3..0], v[2..0], w[1..0], ctrl_mux

Saídas:

- cki: ponto decimal do display de q[3..0];
- ha[6..0], hb[6..0]: display 7-degmentos);
- N,Z,C,B,V: leds verdes;

Especificação do Contador

Projeto de um contador síncrono de 4 bits com 4 configurações de operação:

W1	W0	Operação	
0	0	Mantém a saída inalterada (keep)	
0	1	Incrementa o contador +1 (up counter)	
1	0	Decrementa o contador -1 (down counter)	
1	1	Carrega a entrada D (4 bits) do contador (load)	

Especificação da ULA

Projeto de uma unidade lógica e aritmética (**ULA**) de 4 bits com 8 operações conforme a tabela abaixo:

V2	V1	V0	Operação
0	0	0	Passa X (S = X)
0	0	1	X AND Y
0	1	0	X OR Y
0	1	1	NOT (X)
1	0	0	NEG (X)
1	0	1	(ADD) X + Y (soma em complemento de 2)
1	1	0	(SUB) X – Y (subtração em complemento de 2)
1	1	1	(SHL X) Deslocamento à esquerda (x2) - shift left (X)

^{*} X e Y são vetores de 4 bits, assim como a saída S.

Devem ser gerados os seguintes sinais de condição (flags):

Z (zero), N (negativo), C (carry), B (borrow) e V (overflow).

Obs.: As operações NEG e SUB, em complemento de 2, podem ser construídos a partir de um somador: X - Y = X + NOT(Y) + 1. Portanto, é possível ter apenas um somador de 4 bits na ULA para realizar as 3 operações. Essa otimização será considerada na avaliação do trabalho.

Entrega:

• Entregar, em arquivo único compactado, todos os arquivos BDF e BSF envolvidos (não inclua outros arquivos).