HOME Virtual Intership CREDIT Program

CREDIT SCORING

CREATED BY ERLANDO REGITA

BACKGROUND

As a data science intern at Home Credit, I was assigned to make a credit risk analysis and credit scoring. My objective here is to make a good prediction model that can classify whether the clients are having payment difficulties or not.

- build a prediction model with good ROC-AUC score (>0.7) and good KS-Statistic score (>0.3)
- build credit score (score card) each borrower and treshold ecommendation list

DATASET OVERVIEW

- This datasets is about client application record for credit loans
- The dataset consists of 121 features and 0.37 million records training dataset and 120 features + 38k record testing dataset
- There are 50 features containing >20% missing values, we dropped it and did missing values imputation for the rest features
- The target feature is labelled as client's payment difficulties, 1 stands for the client with payment difficulties.
- Target feature is highly imbalanced (91:9), we handled with SMOTE technique
- We only used training application dataset for modeling, we will only use additional dataset for gaining insights

- Data preprocessing: dropped unused features, missing values imputation, datetime feature engineering, and feature encoding
- Feature Selection: using Weight of Evidence and Information Values
- Feature encoding and feature binning
- Split for training and testing
- Handling imbalanced target feature
- We got 79 features ready to be training in machine learning model

CREDIT SCORE MODELING

We found that logistic regression is the most proper algorithm in this case, and the result are

ROC-AUC SCORE

After tuning hyperparameter, we got 0.72 AUC Score

KS STATISTIC

And we got a 0.33 KS Statistic score, which is good because generally with >0.7 AUC score and > 0.3 KS Statistic in risk modelling are categorized as a good model

CREDIT SCORE

*Glimpse of credit score using FICO scale

ID	CREDIT SCORE
429673	533
261440	623
389176	663

Full Credit Score FICO Scale Records

*Glimpse of credit score using 0-100 scale

ID	CREDIT SCORE
227506	0.56
138480	0.53
389176	0.52

Full Credit Score 100 Scale Records

BUSINESS INSIGHT

Ratio of Male/Female Car Owners who Have Payment Difficulties

- Gender and Car Ownership are the top 3 important features, demographically male with care ownership have a higher probability to be clients with payment difficulties
- We suggest marketing department to target female clients and/or male prospective clients with no car ownership and personalized campaign with demographic information related to next recommendation

BUSINESS INSIGHT

- Client with no children and have >4 children are the top 6 important features
- Our recommendation in marketing department, focus on client with less children and aware with client that have either no children or too many children
- It's make sense when family with no burdency and with too many burdency to have payment difficulties

BUSINESS INSIGHT

Price of the Goods for Which the Loan is Given

- Client with amount price for loans < 300k and >900k are top 10 feature importance
- Our recommendation marketing in department, between those range because it has lower probability to have payment difficulties
- Company should aware with too little amount goods price and/or with too high amount goods of price.

HOME Virtual Intership CREDIT Program

THANK YOU

