Semaine n° 18 : du 29 janvier au 2 février

Lundi 29 janvier

- Cours à préparer : Chapitre XVII Dérivabilité
 - Partie 1.1: Taux d'accroissement.
 - Partie 1.2 : Fonction dérivable en un point a, nombre dérivée en a; fonction dérivable sur un intervalle I; caractérisations de la dérivabilité d'une fonction en un point.
 - Partie 1.3 : Dérivabilité et dérivée d'une somme, d'un produit, d'un quotient, d'une composée de fonctions dérivables.

Mardi 30 janvier

- Cours à préparer : Chapitre XVII Dérivabilité
 - Partie 1.4: Dérivées successives d'une fonction; fonction n fois dérivable, fonction de classe \mathcal{C}^n , fonction de classe \mathcal{C}^∞ ; opérations sur les fonctions de classe \mathcal{C}^n , formule de Leibniz.
 - Partie 2.1: Extrema locaux; points critiques d'une fonction dérivable.
 - Partie 2.2 : Théorème de Rolle.
 - Partie 2.3 : Égalité et inégalités des accroissements finis ; fonctions lipschtizienne.
- Exercices à corriger en classe
 - Feuille d'exercices nº 16 : exercice 8.

Jeudi 1^{er} février

- Cours à préparer : Chapitre XVII Dérivabilité
 - Partie 2.4 : Montonie et signe de la dérivée.
 - Partie 2.5 : Théorème de la limite de la dérivée.
- Exercices à corriger en classe
 - Feuille d'exercices nº 16 : exercice 16.

Vendredi 2 février

- Cours à préparer : Chapitre XVII Dérivabilité
 - Partie 2.6 : Utilisation du théorème des accroissements finis pour l'étude de certaines suites récurrentes.
 - Partie 3 : Fonction complexe dérivable; inégalité des accroissements finis pour les fonctions complexes.
 - Partie 4.2 : Fonction convexe, fonction concave ; inégalité de Jensen ; théorème des trois pentes ; position de la courbe d'une fonction convexe par rapport à ses sécantes.

Échauffements

Mardi 30 janvier

- Soit $n \in \mathbb{N}$ et $P_n = nX^{n+2} (n+2)X^{n+1} + (n+2)X n$. Montrer que 1 est racine de P_n et déterminer son ordre de multiplicité.
- Cocher toutes les assertions vraies : Soit f une fonction de \mathbf{R} dans \mathbf{R} avec f(0) = 0. On suppose que la suite f(1/n) converge vers 0 . Laquelle des conditions suivantes permet de déduire que f est continue à droite en 0?

\Box f est bornée	\Box f est paire
\Box f est croissante	\Box c'est toujours le cas

Jeudi 1^{er} février

- Factoriser en produit de polynômes irréductibles de $\mathbb{R}[X]$ le polynôme $(X^2 X + 2)^2 + (X 2)^2$.
- Cocher toutes les assertions vraies : Soient f et g deux fonctions de classe \mathscr{C}^n sur [a,b].
 - \square Alors f+g est de classe \mathscr{C}^n sur [a,b] et $\forall x \in [a,b], (f+g)^{(n)}(x) = f^{(n)}(x) + g^{(n)}(x).$
 - \square Alors $f \times g$ est de classe \mathscr{C}^n sur [a,b] et $\forall x \in [a,b], (f \times g)^{(n)}(x) = f^{(n)}(x) \times g^{(n)}(x)$.
 - \square Alors $f \circ g$ est de classe \mathscr{C}^n sur [a,b] et $\forall x \in [a,b], \ (f \circ g)^{(n)}(x) = f^{(n)}(x) \circ g^{(n)}(x).$

Vendredi 2 février

• Trouver les racines de $2X^4 - 21X^3 + 68X^2 - 89X + 30$ sachant que deux racines ont 3 pour produit.