Group 41

TSIU03 - First Presentation

Niklas Blomqvist, Philip Johansson, Matteus Laurent, Johan Levinsson, Oscar Petersson, Erik Peyronson

October 15, 2015

About the Project

- Audio processing
- Keyboard controlled
- VGA-compliant GUI
 - Settings
 - Signal status Pre- and Post-processing

First Layer of Modules

Keyboard

- ▶ PS/2 keyboard, one hot encoded
- Volume and Balance adjustment, Mute
- Scan codes passed into a '1'-set shift register
 - Once the startbit is shifted out, the 3:rd byte is checked
 - Compare with expected values

KEY	MAKE	BREAK	kb_input	Function
U ARROW	E0,75	E0,F0,75	00001	Volume Increase
L ARROW	E0,6B	E0,F0,6B	00010	Balance Bias Left
D ARROW	E0,72	E0,F0,72	00100	Volume Decrease
R ARROW	E0,74	E0,F0,74	01000	Balance Bias Right
END	E0,69	E0,F0,69	10000	Mute Volume

Snd_Driver

Identical function as the one in Lab 4 (Vol_Bal replaces Application)

Vol_Bal (1)

- Sub-module Current_Vol_Bal holds current values for volume, balance and mute
- Sub-module Adjustment

$$A_{new} = A_{old} \cdot (1/\sqrt{2})^n$$

Vol_Bal (2)

- ▶ Decremental adjustment of the output (volume: 0 to (-30) dB, balance: 5 linear steps of bias per channel)
- ► "Mute" blanks A_{new} values to {L/R}DAC

Analysis

- Low pass filtering
- ► Forward control signals to VGA_driver

Name	Туре	Description
lrsel	input	Channel select
{L,R}ADC	input	Left/Right audio input channel
{L,R}DAC	input	Left/Right audio output channel
$\{L,R\}$ new_bar	output	Bar amplitude, post-processing
{L,R}bar	output	Bar amplitude, pre-processing

Analysis

ightharpoonup 100 ms saturation time, k is worked out accordingly

$$\frac{1}{10} \text{ s} = 2^k \cdot \frac{1}{48800} \Rightarrow 2^k = 4880 \approx 2^{12} \Rightarrow k = 12$$

VGA-driver

- ▶ Similar to Lab 3
- New sub-modules: Bar_{Tender,Mixer}

VGA-driver

Name Type		Description
volume_input Input		A 4-bit input containing vol. info.
balance_input	Input	A 4-bit input containing bal. info.
{L,R}bar	Input	An 8-bit input containing input signal level
{L,R}new_bar Input		An 8-bit input containing manipulated in-
		put signal level
vsync	Output	Control signal for reading the analysis reg-
		isters

Bar_Tender

- Creates rendering control signal render_bars for bar graphs (volume, balance, signal strength pre- and post-processing)
- Background pre-filled bars are blanked out downwards

Bar_Mixer

Acts as a multiplexer blanking/enabling bar fill through the control signal render_bars.

