STIR (blueprint)

 ${\bf Least Authority}$

April 8, 2025

Chapter 1

The Reed-Solomon Code

Definition 1.1 (Error-Correcting Code). An error-correcting code of length n over an alphabet Σ is a subset $\mathcal{C} \subseteq \Sigma^n$. The code \mathcal{C} is called a linear code if $\Sigma = \mathbb{F}$ is a finite field and \mathcal{C} is a subspace of \mathbb{F}^n .

Definition 1.2 (Reed-Solomon Code). The Reed-Solomon code over finite field \mathbb{F} , evaluation domain $\mathcal{L} \subseteq \mathbb{F}$ and degree $d \in \mathbb{N}$ is the set of evaluations (over \mathcal{L}) of univariate polynomials (over \mathbb{F}) of degree less than d:

$$\mathrm{RS}[\mathbb{F},\mathcal{L},d] := \ \big\{\, f: \mathcal{L} \to \mathbb{F} \ \big| \ \exists \, \hat{f} \in \mathbb{F}^{< d}[X] \ such \ that \ \forall x \in \mathcal{L}, \ f(x) = \hat{f}(x) \big\}.$$

The rate of $RS[\mathbb{F}, \mathcal{L}, d]$ is $\rho := \frac{d}{|\mathcal{L}|}$.

Given a code $\mathcal{C} := \text{RS}[\mathbb{F}, \mathcal{L}, d]$ and a function $f : \mathcal{L} \to \mathbb{F}$, we sometimes use $\hat{f} \in \mathbb{F}^{< d}[X]$ to denote a nearest polynomial to f on \mathcal{L} (breaking ties arbitrarily).

Remark 1.3. Note that the evaluation domain $\mathcal{L} \subseteq \mathbb{F}$ is a non-empty set.

Definition 1.4. For a Reed-Solomon code $\mathcal{C} := RS[\mathbb{F}, \mathcal{L}, d]$, parameter $\delta \in [0, 1]$, and a function $f : \mathcal{L} \to \mathbb{F}$, let List (f, d, δ) denote the list of codewords in \mathcal{C} whose relative Hamming distance from f is at most δ . We say that \mathcal{C} is (δ, d) -list decodable if

$$|\mathsf{List}(f,d,\delta)| < |L|$$
 for every function f .

The Johnson bound provides an upper bound on the list size of this Reed-Solomon code:

Theorem 1.5 (Johnson bound). The Reed-Solomon code $\mathrm{RS}[\mathbb{F},\mathcal{L},d]$ is $(1-\sqrt{\rho}-\eta,\frac{1}{2\eta\rho})$ -list-decodable for every $\eta\in(0,1-\sqrt{\rho})$, where $\rho:=\frac{d}{|\mathcal{L}|}$ is the rate of the code.