

Bitcoin price forecasting

Big Data Computing Project

A.Y. 2022 - 2023

Faculty of Ingegneria dell'informazione, informatica e statistica

Department of Informatica

Danilo Corsi

Matr. 1742375

• Introduction

- What is bitcoin?
- Goal of the project

Introduction

- What is bitcoin?
- Goal of the project

Dataset and features

- Data collection
- o Features engineering

Introduction

- What is bitcoin?
- Goal of the project

Dataset and features

- Data collection
- o Features engineering

Project pipeline

- o Data crawling / feature extraction
- o Models train / validation
- Final scores

Introduction

- What is bitcoin?
- Goal of the project

Dataset and features

- Data collection
- o Features engineering

Project pipeline

- o Data crawling / feature extraction
- Models train / validation
- Final scores

Conclusions

Introduction

• What is Bitcoin?

- Decentralized cryptocurrency
- No central bank behind it
- Relies on a network of nodes
- Transactions
 - Uses strong cryptography (validity and security)
 - Made by anyone with a Bitcoin address
 - Public ledger constantly updated

Introduction

- What is Bitcoin?
 - Decentralized cryptocurrency
 - No central bank behind it
 - Relies on a network of nodes
 - Transactions
 - Uses strong cryptography (validity and security)
 - Made by anyone with a Bitcoin address
 - Public ledger constantly updated
- Value determined by the market and the number of people using it
- Price fluctuation can be extremely unpredictable
- Prediction of Bitcoin prices can be a competitive advantage

Goal

Analyze machine learning techniques

Understand how accurately the price of Bitcoin can be predicted

Can provide added value to cryptocurrency investors and traders?

Dataset and features

- Collecting Bitcoin data:
 - Blockchain.org (for blockchain data)
 - o **Binance** and **Kraken** exchanges (for price information)
- Data organized in 15-minute time-frame
- Retrieving the most relevant information from the last four years to current days

Market price (USD)

Dataset and features

- Collecting Bitcoin data:
 - Blockchain.org (for blockchain data)
 - Binance and Kraken exchanges (for price information)
- Data organized in 15-minute time-frame
- Retrieving the most relevant information from the last four years to current days

Project pipeline

• Structure:

- 1. Data crawling / Feature engineering: retrieve and process data
- 2. Models' train / validation: different models and splitting methods
- 3. Final scores: collect results and draw conclusions

Project carried out with **Apache Spark** (during some phases I converted the Spark dataframe to a Pandas one to make some plots)

1 - Data crawling / Feature engineering: features

- Additional features
 - Next market price: next-15 minutes Bitcoin price (will be the target variable)
 - Simple moving avg: average price over a specified number of days

1 - Data crawling / Feature engineering: features

- Additional features
 - Next market price: next-15 minutes Bitcoin price (will be the target variable)
 - Simple moving avg: average price over a specified number of days

1 - Data crawling / Feature engineering: splitting

Two sets:

- o Train / Validation set: used to train and validate models
- Test set: used to perform price prediction on never-before-seen data (last 3 months of the original dataset will be used)

2 - Models train / validation: splitting methods

2 - Models train / validation: splitting methods

2 - Models train / validation: models and metrics

ML models:

- Linear Regression
- Generalized Linear Regression
- Random Forest Regressor
- Gradient Boosting Tree Regressor

Metrics:

- RMSE (Root Mean Squared Error)
- MSE (Mean Squared Error)
- MAE (Mean Absolute Error)
- MAPE (Mean Absolute Percentage Error)
- R2 (R-squared)
- Adjusted R2

2 - Models train / validation: accuracy

• "How good the models are at predicting whether the price will go up or down?"

2 - Models train / validation: accuracy

• "How good the models are at predicting whether the price will go up or down?"

3 - Final scores

- **Comparison** between final results
- **Prediction** on the test set (splitted)
- See how models' performance **changes** as time increases

RMSE per Features type

- Walk-forward splits return lower performance than Block splits and Single splits
 - Benefiting from a shorter time horizon

- Normalised features produce suboptimal results (high RMSE values)
 - Benefits varies between models

R2 per Model type (non-negative)

- Helps reduce overfitting but presents
 problems in other scenarios
- Blockchain features produces a modest improvements
 (persistent influence of price-based features)

Features

Base features

Base + most corr. features

Base + least corr. features

Base features (norm.)

Base + most corr. features (norm.)

Base + least corr. features (norm.)

R2 per Model type (non-negative)

- Helps reduce overfitting but presents
 problems in other scenarios
- Blockchain features produces a modest improvements (persistent influence of price-based features)
- Chosen features
 - **LR:** Base + most corr. (norm.)
 - GLR: Base + most corr. (norm.)
 - o **RF:** Base (no norm.)
 - GBTR: Base + least corr. (no norm.)

- Single split is the best method on which to train / validate the models
- **Hyper parameter tuning** brought some improvements
- Tree-based model returned the best results

RMSE per Model type

R2 per Model type (non-negative)

Percentage of accuracy between default and tuned model

- **Accuracy** has remained the same among (~50%)
- Probably due to the period taken into consideration being too long

Percentage of accuracy between default and tuned model

- Accuracy has remained the same among (~50%)
- Probably due to the period taken into consideration being too long

- Conclusions
 - Best splitting method: single split
 - Best models type: tree-based models

Aug 13

2023

Aug 20

Aug 27

Sep 3

Short term: [one week, fifteen days] **Short-mid term:** [one week, one month] **Long term:** three months

Aug 13

2023

Sep 10

Aug 27

Sep 10

Sep 24

Oct 8

Oct 22

Nov 5

Aug 13

2023

Aug 20

Aug 27

Sep 3

Short term: [one week, fifteen days] **Short-mid term:** [one week, one month] **Long term:** three months

Aug 13

2023

Sep 10

Aug 27

Sep 10

Sep 24

Oct 8

Oct 22

Nov 5

Short term: [one week, fifteen days] **Short-mid term:** [one week, one month] **Long term:** three months

RMSE per Dataset split

 As time taken into consideration increase also the RMSE values tends to increase (slowly)

Note

- Results were averaged
- Having more data at each dataset split
- Periods in which the models did better (short-mid term) compensated for the worst results in the last period (long term)

Short term: [one week, fifteen days] **Short-mid term:** [one week, one month] **Long term:** three months

RMSE per Dataset split

R2 per Dataset split (non-negative)

Short term: [one week, fifteen days] **Short-mid term:** [one week, one month] **Long term:** three months

Percentage of accuracy for each dataset split

- **Higher** in the short-term
- **Lower** in the long-term

Short term: [one week, fifteen days] **Short-mid term:** [one week, one month] **Long term:** three months

Percentage of accuracy for each dataset split

- **Higher** in the short-term
- **Lower** in the long-term
- Linear models have a higher accuracy than tree-based models
 - o Probably because because of the smoother curves

Conclusions

Splitting method

Better those that consider a shorter period (e.g. Single Split)

Features

- Depend on the type of model
- o **In general:** blockchain-related features brought slight improvements

Models

- Better in the short-medium term (especially tree-based models)
- As time period increase performance begins to degrade

Conclusions

Answer to the initial question

- Yes (as far as the length of the period is concerned)
- Better to consider a narrower forecast period for higher accuracy

• Future developments

- Create a sliding window on features (additional historical data can be used)
- Consider events that could influence the price
- Using deep learning approaches such as CNNs or Transformers

Thanks for the attention

Danilo Corsi

https://github.com/CorsiDanil

0

