

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2000059323 A

(43) Date of publication of application: 25 . 02 . 00

(51) Int. CI

H04H 1/00 H04L 9/08

H04L 9/10 H04L 29/08 H04N 7/167

(21) Application number: 10224825

(22) Date of filing: 07 . 08 . 98

(30) Priority:

13 . 02 . 98 JP 10031847 01 . 06 . 98 JP 10151586

(71) Applicant:

MATSUSHITA ELECTRIC IND CO

(72) Inventor:

NISHIMURA TAKUYA IIZUKA HIROYUKI YAMADA MASAZUMI GOTO SHOICHI TAKECHI HIDEAKI **USUKI NAOJI**

(54) DIGITAL AV DATA TRANSMISSION UNIT, DIGITAL AV DATA RECEPTION UNIT, DIGITAL AV DATA TRANSMISSION/RECEPTION SYSTEM AND MEDIUM

(57) Abstract:

PROBLEM TO BE SOLVED: To appropriately perform data communication while being immune to forgery or alteration and considering the importance of data or class of a recognition method by receiving an authentication request and performing authentication based on one kind of authentication rule selected out of a means storing plural authentication rules on the side of transmission based on the discriminated result of a data importance discriminating means.

SOLUTION: When an authentication requesting means 12 receives the authentication request, a data importance discriminating means 3 discriminates the importance of AV data 2 to be transmitted and classifies them according to CGMS values. A transmission side authentication selecting means 6 sends the optimum authentication rule, which is selected out of a means 5 storing plural authentication rules on the side of transmission, to a digital AV reception unit TV9. At a digital AV transmission unit STB1, the same authentication rule as the selected certification rule is selected and a reception side authentication means 13 and a transmission side authentication means 7 mutually perform the authentication. When the authentication is

made successful, the AV data 2 to be transmitted are enciphered and transmitted while using a work key Kco16 and the received enciphered data are deciphered by a work key Kco17.

COPYRIGHT: (C)2000, JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-59323 (P2000-59323A)

(43)公開日 平成12年2月25日(2000.2.25)

(51) Int.Cl.7		酸別記号	FΙ		デー	マコード(参考)
H04H	1/00		H04H	1/00	F	
H04L	9/08		H04L	9/00	601B	
	9/10				62 1 '	
	29/08			13/00	307Z	
H04N	7/167		H04N	7/167	Z	
			審査請	求 未請求	請求項の数43 OL	(全 28 頁)

(21)出願番号 特願平10-224825

(22)出顧日 平成10年8月7日(1998.8.7)

(31)優先権主張番号 特願平10-31847

(32)優先日 平成10年2月13日(1998.2.13)

(33)優先權主張国 日本(JP)

(31)優先権主張番号 特願平10-151586

(32)優先日 平成10年6月1日(1998.6.1)

(33)優先権主張国 日本(JP)

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72)発明者 西村 拓也

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 飯塚 裕之

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 100092794

弁理士 松田 正道

最終頁に続く

(54) 【発明の名称】 デジタルAVデータ送信ユニット、デジタルAVデータ受信ユニット及び、デジタルAVデータ 送受信システム、媒体

(57)【要約】

【課題】 重要でないデータの認証に多くの時間を要したり、重要なデータであるにもかかわらずその認証が偽造や改竄に弱い。また、ユニットによって認証に必要な厳密さが異なる。

【解決手段】 データ2の重要度を判定するデータ重要性判定手段3、その判定結果に基き送信側複数認証ルール格納手段5から一種類のルールを選択する送信側認証選択手段6及び、その選択された認証ルールに基づき認証を行う送信側認証手段7を有するSTB1と、認証要求を行う認証要求手段12、送信側で選択された認証ルールと同じ認証ルールを受信側複数認証ルール格納手段14から選択する受信側認証選択手段15及び、その選択された認証ルールに基づき認証を行う受信側認証手段13を有するTV9とを備える。

【特許請求の範囲】

【請求項1】 デジタルAVデータの重要度を判定するデータ重要性判定手段と、複数種類の認証ルールを格納した送信側複数認証ルール格納手段と、認証要求を受け、前記データ重要性判定手段の判定結果に基き、前記送信側複数認証ルール格納手段から一種類のルールを選択する送信側認証選択手段と、その選択された認証ルールに基づいて認証を行う送信側認証手段とを少なくとも備えたことを特徴とするデジタルAVデータ送信ユニット。

【請求項2】 デジタルAVデータの重要度を判定するデータ重要性判定手段と、複数種類の認証ルールを格納した送信側複数認証ルール格納手段と、認証要求を受け、前記データ重要性判定手段の判定結果に基き、前記送信側複数認証ルール格納手段から一種類のルールを選択する送信側認証選択手段と、その選択された認証ルールに基づいて認証を行う送信側認証手段とを少なくとも有するデジタルAVデータ送信ユニットを通信の対象とし

前記認証の要求を行う認証要求手段と、前記送信側複数 認証ルール格納手段と同じ前記複数種類の認証ルールを 格納した受信側複数認証ルール格納手段と、前記送信側 認証選択手段で選択された所定の認証ルールと同じ認証 ルールを前記受信側複数認証ルール格納手段から選択す る受信側認証選択手段と、受信側で前記選択された認証 ルールに基づいて認証を行う受信側認証手段とを少なく とも備えたことを特徴とするデジタルAVデータ受信ユ ニット。

【請求項3】 デジタルAVデータの重要度を判定するデータ重要性判定手段と、複数種類の認証ルールを格納した送信側複数認証ルール格納手段と、認証要求を受け、前記データ重要性判定手段の判定結果に基き、前記送信側複数認証ルール格納手段から一種類のルールを選択する送信側認証選択手段と、その選択された認証ルールに基づいて認証を行う送信側認証手段とを少なくとも有するデジタルAV送信ユニットと、

前記認証の要求を行う認証要求手段と、前記送信側複数 認証ルール格納手段と同じ前記複数種類の認証ルールを 格納した受信側複数認証ルール格納手段と、前記送信側 認証選択手段で選択された所定の認証ルールと同じ認証 ルールを前記受信側複数認証ルール格納手段から選択す る受信側認証選択手段と、受信側で前記選択された認証 ルールに基づいて認証を行う受信側認証手段とを少なく とも有するデジタルAVデータ受信ユニットとを備えた ことを特徴とするデジタルAVデータ送受信システム。

【請求項4】 デジタルAVデータの重要度を判定する データ重要性判定手段と、所定の管理基準を格納した管 理基準格納手段と、認証要求を受け、前記データ重要性 判定手段の判定結果に基き、前記管理基準格納手段の前 記管理基準を参照すべきかどうか決定する管理基準参照 決定手段と、その決定された結果に従って前記管理基準を参照してそれに従い認証すべきかどうか、あるいは認証の種類を決定する認証決定手段と、その認証決定手段の決定に従って、所定の認証ルールに基づいて認証を行う認証手段とを少なくとも備えたことを特徴とするデジタルAVデータ送信ユニット。

【請求項5】 前記送信ユニットは前記受信ユニットの各機能を有し、前記受信ユニットは前記送信ユニットの各機能を有することを特徴とする請求項3記載のデジタルAVデータ送受信システム。

【請求項6】 前記受信ユニットの機能を有する送信ユニット、あるいは前記送信ユニットの機能を有する受信ユニットが三つ以上互いに接続され、デジタルAVデータを互いにやりとりできることを特徴とする請求項5記載のデジタルAVデータ送受信システム。

【請求項7】 複数種類の認証ルールを格納した送信側 複数認証ルール格納手段と、デジタルAVデータ受信ユニットが有する一種類の認証ルールについての情報を受け取るユニット認証ルール情報受信手段と、前記ユニット認証ルール情報受信手段で受信された前記認証ルールについての情報に基づき、前記デジタルAVデータ受信ユニットが有する認証ルールを、前記送信側複数認証ルール格納手段から取り出す送信側認証ルール取り出し手段と、それに基づき前記認証を行う送信側認証手段とを少なくとも備えたデジタルAV送信ユニット。

【請求項8】 複数種類の認証ルールを格納した送信側 複数認証ルール格納手段と、デジタルAVデータ受信ユニットが有する一種類の認証ルールについての情報を受 け取るユニット認証ルール情報受信手段と、前記ユニット認証ルール情報受信手段で受信された前記認証ルール についての情報に基づき、前記デジタルAVデータ受信 ユニットが有する認証ルールを、前記送信側複数認証ルール格納手段から取り出す送信側認証ルール取り出し手段と、それに基づき前記認証を行う送信側認証手段とを少なくとも有するデジタルAV送信ユニットを通信の対象とし、

前記認証の要求を行う認証要求手段と、自らの一種類の 前記認証ルールを格納する受信側認証ルール格納手段 と、前記認証ルールについての情報を送信する認証ルー ル情報送信手段と、前記送信ユニットとの間で前記認証 ルールにて認証を行う受信側認証手段とを少なくとも備 えたことを特徴とするデジタルAVデータ受信ユニット。

【請求項9】 複数種類の認証ルールを格納した送信側 複数認証ルール格納手段と、デジタルAVデータ受信ユニットが有する一種類の認証ルールについての情報を受 け取るユニット認証ルール情報受信手段と、前記ユニット認証ルール情報受信手段で受信された前記認証ルール についての情報に基づき、前記デジタルAVデータ受信 ユニットが有する認証ルールを、前記送信側複数認証ル ール格納手段から取り出す送信側認証ルール取り出し手段と、それに基づき前記認証を行う送信側認証手段とを少なくとも有するデジタルAV送信ユニットと、前記認証の要求を行う認証要求手段と、自らの一種類の前記認証ルールを格納する受信側認証ルール格納手段と、前記認証ルールについての情報を送信する認証ルール情報送信手段と、前記送信ユニットとの間で前記認証ルールにて認証を行う受信側認証手段を少なくとも有するデジタルAVデータ受信ユニットと、を備えたことを特徴とするデジタルAVデータ送受信システム。

【請求項10】 所定の管理基準を格納した管理基準格納手段と、デジタルAVデータ受信ユニットから認証要求を受けて、そのデジタルAVデータ受信ユニットの種類又は重要度に応じて、前記管理基準格納手段の前記管理基準を参照すべきかどうか決定する管理基準参照決定手段と、その決定された結果に従って前記管理基準を参照してそれに従い認証すべきかどうか、あるいは認証の種類を決定する認証決定手段と、その認証決定手段の決定に従って、所定の認証ルールに基づいて認証を行う認証手段とを少なくとも備えたことを特徴とするデジタルAV送信ユニット。

【請求項11】 前記管理基準は、不正な、あるいは正当なデジタルAVデータ受信ユニットを識別できる基準リスト(CRL)であることを特徴とする請求項4又は10に記載のデジタルAV送信ユニット。

【請求項12】前記送信ユニットに、前記受信ユニットが二つ以上接続され、前記送信ユニットとの間で、デジタルAVデータをやりとりできることを特徴とする請求項9記載のデジタルAVデータ送受信システム。

【請求項13】 複数種類の認証ルールを格納した送信 側複数認証ルール格納手段と、デジタルAVデータの重 要度を判定するデータ重要性判定手段と、前記データ重 要性判定手段の判定結果に基づき、前記送信側複数認証 ルール格納手段から一種類の認証ルールを選択する送信 側認証選択手段と、単一認証デジタルAVデータ受信ユ ニットが有する一種類の認証ルールについての情報を受 け取るユニット認証ルール情報受信手段と、前記ユニッ ト認証ルール情報受信手段で受信された前記認証ルール についての情報に基づき、前記単一認証デジタルAVデ ータ受信ユニットが有する認証ルールを、前記送信側複 数認証ルール格納手段から取り出す送信側認証取り出し 手段と、前記送信側認証選択手段又は前記送信側認証取 り出し手段から得られた認証ルールに基づき認証を行う 送信側認証手段とを少なくとも備えたことを特徴とする デジタルAVデータ送信ユニット。

【請求項14】 複数種類の認証ルールを格納した送信 側複数認証ルール格納手段と、デジタルAVデータの重 要度を判定するデータ重要性判定手段と、前記データ重 要性判定手段の判定結果に基づき、前記送信側複数認証 ルール格納手段から一種類の認証ルールを選択する送信 側認証選択手段と、単一認証デジタルAVデータ受信ユニットが有する一種類の認証ルールについての情報を受け取るユニット認証ルール情報受信手段と、前記ユニット認証ルール情報受信手段で受信された前記認証ルールについての情報に基づき、前記単一認証デジタルAVデータ受信ユニットが有する認証ルールを、前記送信側複数認証ルール格納手段から取り出す送信側認証取り出し手段と、前記送信側認証選択手段又は前記送信側認証取り出し手段から得られた認証ルールに基づき認証を行う送信側認証手段とを少なくとも有するデジタルAVデータ送信ユニットと、

前記認証の要求を行う認証要求手段と、前記送信側認証 ルール格納手段と同じ前記複数種類の認証ルールを格納 した受信側複数認証ルール格納手段と、前記送信側認証 選択手段で選択された所定の認証ルールと同じ認証ルー ルを前記受信側複数認証ルール格納手段から選択する受 信側認証選択手段と、受信側で前記選択された認証ルー ルに基づいて認証を行う受信側認証手段とを少なくとも 有する複数認証デジタルAVデータ受信ユニットと、 認証の要求を行う認証要求手段と、自らの一種類の認証 ルールを格納する受信側単一認証ルール格納手段と、前 記認証ルールについての情報を送信する認証ルール情報 送信手段と、前記デジタルAVデータ送信ユニットとの 間で前記認証ルールにて認証を行う受信側認証手段を少 なくとも有する単一認証デジタルAVデータ受信ユニッ トと、を備えたことを特徴とするデジタルAVデータ送 受信システム。

【請求項15】前記複数認証デジタルAVデータ受信ユニットは前記デジタルAVデータ送信ユニットの各機能を有し、前記デジタルAVデータ送信ユニットは前記複数認証デジタルAVデータ受信ユニットの各機能を有することを特徴とする請求項14記載のデジタルAVデータ送受信システム。

【請求項16】前記複数認証デジタルAVデータ受信ユニットの各機能を有するデジタルAVデータ送信ユニット、あるいは前記デジタルAVデータ送信ユニットの機能を有する複数認証デジタルAVデータ受信ユニットが二つ以上互いに接続され、且つ、前記単一認証デジタルAVデータ受信ユニットが二つ以上接続され、デジタルAVデータを互いにやりとりできることを特徴とする請求項15記載のデジタルAVデータ送受信システム。

【請求項17】 デジタルAVデータを、そのデータの 重要度に応じた複数のレベルで暗号化する暗号化手段 と、前記暗号化されたデジタルAVデータを受信する受 信ユニットから要求された認証を行う認証手段と、その 認証手段により認証された認証レベルを判定するレベル 判定手段と、前記受信ユニットからの、前記暗号化され たデジタルAVデータを解読するための解読情報の要求 に対して、前記判定済みの認証レベルと同等及びそれ以 下のレベルの前記解読情報を、前記受信ユニットに送信 する解説情報選択手段とを備えたことを特徴とする送信 ユニット。

【請求項18】 データの重要度に応じた複数のレベルで暗号化されたデジタルAVデータを送信する送信ユニットから受信する暗号化されたデータを解読するために必要な認証レベルを決定するレベル決定手段と、その決定された認証レベルの認証を前記送信ユニットに要求する認証手段と、前記認証レベルと同等及びそれ以下のレベルの前記暗号化データに対する解説情報を、前記送信ユニットに要求する解読情報要求手段とを備えたことを特徴とする受信ユニット。

【請求項19】 デジタルAVデータを、そのデータの 重要度に応じた複数のレベルで暗号化する暗号化手段 と、前記暗号化されたデジタルAVデータを受信する受 信ユニットから要求された認証を行う認証手段と、その 認証手段により認証された認証レベルを判定するレベル 判定手段と、前記受信ユニットからの、前記暗号化され たデジタルAVデータを解読するための解読情報の要求 に対して、前記判定済みの認証レベルと同等及びそれ以 下のレベルの前記解読情報を、前記受信ユニットに送信 する解読情報選択手段とを有する送信ユニットと、

その送信ユニットから受信する暗号化されたデータを解読するために必要な認証レベルを決定するレベル決定手段と、その決定された認証レベルの認証を前記送信ユニットに要求する認証手段と、前記認証レベルと同等及びそれ以下のレベルの解読情報を、前記送信ユニットに要求する解読情報要求手段とを有する受信ユニットとを備えたことを特徴とするデジタルAVデータ送受信システム。

【請求項20】 デジタルAVデータを、そのデータの 重要度に応じた複数のレベルで暗号化する暗号化手段 と、前記暗号化されたデジタルAVデータを受信する受 信ユニットから要求された認証を行う認証手段と、その 認証手段により認証された認証レベルを判定するレベル 判定手段と、前記受信ユニットからの、前記暗号化され たデジタルAVデータを解読するための解読情報の要求 に対して、前記判定済みの認証レベルと同等またはそれ 以下のレベルの解読情報を前記受信ユニットに送信する 解読情報選択手段とを備え、前記解読情報選択手段は、 次に前記受信ユニットから解読情報の要求があった時 に、その要求が前記判定済みの認証レベルと同等あるい はそれ以下のレベルの前記解読情報の場合は、前記認証 手続きを行わずに要求された解読情報を前記受信ユニット トに送信することを特徴とする送信ユニット。

【請求項21】 データの重要度に応じた複数のレベルで暗号化されたデジタルAVデータを送信する送信ユニットから受信する暗号化されたデータを解読するために必要な認証レベルを決定するレベル決定手段と、その決定された認証レベルの認証を前記送信ユニットに要求する認証手段と、前記認証レベルと同等またはそれ以下の

レベルの前記暗号化データに対する解読情報を前記送信 ユニットに要求する解読情報要求手段とを備え、前記解 読情報要求手段は、前記認証のレベルと同等あるいはそ れ以下のレベルの解読情報を前記送信ユニットに要求す る時は、前記認証要求を行わずに、前記解読情報の要求 を行うことを特徴とする受信ユニット。

【請求項22】 デジタルAVデータを、そのデータの 重要度に応じた複数のレベルで暗号化する暗号化手段 と、前記暗号化されたデジタルAVデータを受信する受 信ユニットから要求された認証を行う認証手段と、その 認証手段により認証された認証レベルを判定するレベル 判定手段と、前記受信ユニットからの、前記暗号化され たデジタルAVデータを解読するための解読情報の要求 に対して、前記判定済みの認証レベルと同等またはそれ 以下のレベルの解読情報を前記受信ユニットに送信する 解読情報選択手段とを有し、前記解読情報選択手段は、 次に前記受信ユニットから解読情報の要求があった時 に、その要求が前記判定済みの認証レベルと同等あるい はそれ以下のレベルの前記解読情報の場合は、前記認証 手続きを行わずに要求された解読情報を前記受信ユニット と、信する送信ユニットと、

その送信ユニットから受信する暗号化されたデータを解読するために必要な認証レベルを決定するレベル決定手段と、その決定された認証レベルの認証を前記送信ユニットに要求する認証手段と、前記認証レベルと同等またはそれ以下のレベルの解読情報を前記送信ユニットに要求する解読情報要求手段とを備え、前記解読情報要求手段は、前記認証のレベルと同等あるいはそれ以下のレベルの解読情報を前記送信ユニットに要求する時は、前記認証要求を行わずに、前記解読情報の要求を行う受信ユニットとを備えたことを特徴とするデジタルAVデータ送受信システム。

【請求項23】 受信側ユニットから送られてきた認証 要求について、認証を行い、又、その認証のレベルを判 定し、そのレベルと同等な認証方法及びそれより低いレ ベルの認証方法に対応する暗号化方法のそれぞれの解読 情報を、前記受信側ユニットからの解読情報の要求に応 じて、前記受信側ユニットへ送信することを特徴とする デジタルAVデータ送信方法。

【請求項24】 受信側ユニットから送られてきた解読情報要求について、その要求された解読情報に対応する認証のレベルを判定し、そのレベルと前記受信側ユニットとの間で過去に実行した認証のレベルとを比較し、前記判定された認証のレベルが過去の認証のレベルと同等もしくはより低いレベルの場合は、前記受信側ユニットから前記要求された解読情報を送信することを特徴とするデジタルAVデータ送信方法。

【請求項25】 複数種類の認証ルールを格納した送信 側複数認証ルール格納手段と、その送信側複数認証ルー ル格納手段から1種類の認証ルールを選択する送信側認 証選択手段と、その選択された認証ルールに基づいて認証を行う送信側認証手段とを少なくとも備えたデジタルAVデータ送信ユニットであって、

認証の要求を行い、前記送信側複数認証ルール格納手段と同じ前記複数種類の認証ルールを格納した受信側複数認証ルール格納手段から1種類の認証ルールを選択し、その選択された認証ルールに基づいて認証を行うデジタルAVデータ受信ユニットまたは、前記送信ユニットにおける認証ルールの選択は、データの重要度の判定結果に基づいて行われ、前記重要度の判定を行ったユニットが重要度の判定を行わないユニットに前記選択した認証ルールについての情報を送り、前記重要度の判定を行わないユニットは、その情報に基づいて、同じ認証ルールを選択することを特徴とするデジタルAVデータ送信ユニット。

【請求項26】 複数種類の認証ルールを格納した送信 側複数認証ルール格納手段から1種類の認証ルールを選 択し、その選択された認証ルールに基づいて認証を行う デジタルAVデータ送信ユニットに対して、認証の要求 を行う認証要求手段と、前記送信側複数認証ルール格納 手段と同じ前記複数種類の認証ルールを格納した受信側 複数認証ルール格納手段と、前記受信側複数認証ルール 格納手段から1種類の認証ルールを選択する受信側認証 選択手段と、その選択された認証ルールに基づいて認証 を行う受信側認証手段とを少なくとも備えたデジタルA Vデータ受信ユニットであって、前記送信ユニットまた は受信ユニットにおける認証ルールの選択は、データの 重要度の判定結果に基づいて行われ、前記重要度の判定 を行ったユニットが重要度の判定を行わないユニットに 前記選択した認証ルールについての情報を送り、前記重 要度の判定を行わないユニットは、その情報に基づい て、同じ認証ルールを選択することを特徴とするデジタ ルAVデータ受信ユニット。

【請求項27】 複数種類の認証ルールを格納した送信側複数認証ルール格納手段と、その送信側複数認証ルール格納手段から1種類の認証ルールを選択する送信側認証選択手段と、その選択された認証ルールに基づいて認証を行う送信側認証手段とを少なくとも有するデジタルAV送信ユニットと、

前記認証の要求を行う認証要求手段と、前記送信側複数 認証ルール格納手段と同じ前記複数種類の認証ルールを 格納した受信側複数認証ルール格納手段と、前記受信側 複数認証ルール格納手段から1種類の認証ルールを選択 する受信側認証選択手段と、その選択された認証ルール に基づいて認証を行う受信側認証手段とを少なくとも有 するデジタルAVデータ受信ユニットとを備え、前記送 信ユニットまたは受信ユニットにおける認証ルールの選 択は、データの重要度の判定結果に基づいて行われ、前 記重要度の判定を行ったユニットが重要度の判定を行わ ないユニットに前記選択した認証ルールについての情報 を送り、前記重要度の判定を行わないユニットは、その 情報に基づいて、同じ認証ルールを選択することを特徴 とするデジタルAVデータ送受信システム。

【請求項28】 複数種類の認証ルールを格納した送信側複数認証ルール格納手段と、認証の要求を行い、デジタルAVデータの重要度を判定してその判定結果に基づいて、前記送信側複数認証ルール格納手段と同じ前記複数種類の認証ルールを格納した受信側複数認証ルール格納手段から一種類の認証ルールを選択し、その選択された認証ルールに基づいて認証を行うデジタルAVデータ受信ユニットで選択される前記認証ルールと同じルールを、前記送信側複数認証ルール格納手段から選択する送信側認証選択手段と、その選択された認証ルールに基づいて認証を行う送信側認証手段とを少なくとも備えたことを特徴とするデジタルAVデータ送信ユニット。

【請求項29】 複数種類の認証ルールを格納した送信側複数認証ルール格納手段から受信側で選択される所定の認証ルールと同じ認証ルールを選択し、その選択された認証ルールに基づいて認証を行うデジタルAVデータ送信ユニットに対して、認証の要求を行う認証要求手段と、前記送信側複数認証ルール格納手段と同じ前記複数種類の認証ルールを格納した受信側複数認証ルール格納手段と、デジタルAVデータの重要度を判定するデータ重要性判定手段と、そのデータ重要性判定手段の判定結果に基づいて、前記受信側複数認証ルール格納手段と、その選択された認証ルールに基づいて認証を行う受信側認証手段とを少なくとも備えたことを特徴とするデジタルAVデータ受信ユニット。

【請求項30】 複数種類の認証ルールを格納した送信 側複数認証ルール格納手段と、その送信側複数認証ルー ル格納手段から受信側で選択される所定の認証ルールと 同じルールを選択する送信側認証選択手段と、その選択 された認証ルールに基づいて認証を行う送信側認証手段 とを少なくとも有するデジタルAV送信ユニットと、 前記認証の要求を行う認証要求手段と、前記送信側複数 認証ルール格納手段と同じ前記複数種類の認証ルールを 格納した受信側複数認証ルール格納手段と、デジタルA Vデータの重要度を判定するデータ重要性判定手段と、 そのデータ重要性判定手段の判定結果に基づいて、前記 受信側複数認証ルール格納手段から一種類のルールを選 択する受信側認証選択手段と、その選択された認証ルー ルに基づいて認証を行う受信側認証手段とを少なくとも 有するデジタルAVデータ受信ユニットとを備えたこと を特徴とするデジタルAVデータ送受信システム。

【請求項31】 複数種類の認証ルールから1種類の認証ルールを選択して認証を行う認証手段と、受信ユニットに対する所定の管理基準を格納した管理基準格納手段と、前記受信ユニットからの認証要求を受け、前記格納されている管理基準を参照することにより認証するか否

かを判定する認証判定手段とを備えたデジタルAVデータ送信ユニットであって、前記認証要求を行う受信ユニットが、前記管理基準を持てない重要度の低い認証ルールのみで認証する機能しか有しない場合に、前記受信ユニットは、外部の管理センターからその受信ユニットに対応する前記管理基準用の識別情報が付与されるものであり、前記送信ユニットの認証判定手段は、前記認証要求の際に前記識別情報を受け取り、その識別情報が不可となった場合に、前記認証を取りやめることを特徴とするデジタルAVデータ送信ユニット。

【請求項32】 受信ユニットからの認証要求を受け、管理基準格納手段に格納されている受信ユニットに対する所定の管理基準を参照することにより認証するか否かを判定する認証判定手段を有するデジタルAVデータ送信ユニットに対し、前記認証要求を行う認証要求手段と、前記管理基準を持てない重要度の低い認証ルールのみで認証する認証手段とを備え、外部の管理センターから受信ユニット自身に対応する前記管理基準用の識別情報が付与されるデジタルAVデータ受信ユニットであって、前記送信ユニットの認証判定手段は、前記認証要求の際に前記識別情報を受け取り、その識別情報が不可となった場合に、前記認証を取りやめることを特徴とするデジタルAVデータ受信ユニット。

【請求項33】 複数種類の認証ルールから1種類の認 証ルールを選択して認証を行う認証手段と、受信ユニッ トに対する所定の管理基準を格納した管理基準格納手段 と、前記受信ユニットからの認証要求を受け、前記格納 されている管理基準を参照することにより認証するか否 かを判定する認証判定手段とを有するデジタルAVデー タ送信ユニットと、その送信ユニットに対し、前記認証 要求を行う認証要求手段と、前記管理基準を持てない重 要度の低い認証ルールのみで認証する認証手段とを有 し、外部の管理センターから受信ユニット自身に対応す る前記管理基準用の識別情報が付与されるデジタルAV データ受信ユニットとを備え、前記送信ユニットの認証 判定手段は、前記認証要求の際に前記識別情報を受け取 り、その識別情報が不可となった場合に、前記認証を取 りやめることを特徴とするデジタルAVデータ送受信シ ステム。

【請求項34】 前記所定の管理基準は、不正な、あるいは正当なデジタルAVデータ受信ユニットを識別できる基準リストであり、前記識別情報が、前記受信ユニットに対応する前記管理基準用のIDおよびそのIDに対する署名であることを特徴とする請求項31記載のデジタルAVデータ送信ユニット。

【請求項35】 前記認証判定手段は、前記ID及び署名の少なくと一方が不可となった場合に、前記認証を取りやめることを特徴とする請求項34記載のデジタルAVデータ送信ユニット。

【請求項36】 前記署名は、受信ユニットそれぞれに

あらかじめ固有に付加されている識別 I Dを利用して作成されるものであることを特徴とする請求項34、または35記載のデジタルAVデータ送信ユニット。

【請求項37】 前記所定の管理基準は、不正な、あるいは正当なデジタルAVデータ受信ユニットを識別できる基準リストであり、前記識別情報が、前記受信ユニットに対応する前記管理基準用のIDおよびそのIDに対する署名であることを特徴とする請求項32記載のデジタルAVデータ受信ユニット。

【請求項38】 前記認証判定手段は、前記ID及び署名の少なくと一方が不可となった場合に、前記認証を取りやめることを特徴とする請求項37記載のデジタルAVデータ受信ユニット。

【請求項39】 前記署名は、受信ユニットそれぞれに あらかじめ固有に付加されている識別 I Dを利用して作成されるものであることを特徴とする請求項37、または38記載のデジタルAVデータ受信ユニット。

【請求項40】 前記所定の管理基準は、不正な、あるいは正当なデジタルAVデータ受信ユニットを識別できる基準リストであり、前記識別情報が、前記受信ユニットに対応する前記管理基準用のIDおよびそのIDに対する署名であることを特徴とする請求項33記載のデジタルAVデータ送受信システム。

【請求項41】 前記認証判定手段は、前記ID及び署名の少なくと一方が不可となった場合に、前記認証を取りやめることを特徴とする請求項40記載のデジタルAVデータ送受信システム。

【請求項42】 前記署名は、受信ユニットそれぞれに あらかじめ固有に付加されている識別 I Dを利用して作 成されるものであることを特徴とする請求項40、または41記載のデジタルAVデータ送受信システム。

【請求項43】 請求項1~42のいずれかに記載のユニット又はシステムもしくは送信方法が有する各構成要素もしくはステップが持つ機能の全部又は一部を実現するためのプログラムを格納したことを特徴とする媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、AV装置間において認証を行う機能を持つAVシステムに関するものである。

[0002]

【従来の技術】従来のAV装置間において認証を行うシステムについて図2と図3を用いて説明する。

【0003】まず、図2において、デジタルAVデータ送信ユニットSTB18は、公開鍵と秘密鍵20、認証手段19、デジタルインターフェースD-I/F22、暗号化手段19を備えている。その公開鍵と秘密鍵20は、認証手段19を介して、デジタルインターフェースD-I/F22に接続している。また、暗号化手段19は、公開鍵と秘密鍵20を参照することが出来、デジタ

ルインターフェース22に接続している。デジタルAVデータ受信ユニットTV23も公開鍵と秘密鍵26、認証手段25、デジタルインターフェースD-I/F24、復号化手段27を具備している。その公開鍵と秘密鍵26は認証手段25を介してデジタルインターフェースD-I/F24に接続している。また、復号化手段27は公開鍵と秘密鍵26を参照することが出来、デジタルインターフェースD-I/F24に接続している。さらにデジタルインターフェースD-I/F24は互いにデータのやり取りが出来る構成となっている。

【0004】次にデジタルAVデータ送信ユニットSTB18とデジタルAVデータ受信ユニットTV23間の動作を説明する。まず、デジタルAVデータ受信ユニットTV23間の動作を説明する。まず、デジタルAVデータ受信ユニットTV23が認証要求を出す。するとデジタルインターフェースD-I/F24を通してデジタルインターフェースD-I/F22に認証要求が到達する。デジタルインターフェースD-I/F22は認証要求を受けて認証手段19にて、公開鍵と秘密鍵20を参照して認証する。デジタルAVデータ送信ユニットSTB18にて認証されれば、暗号化手段21において、データが暗号化されて、デジタルインターフェースD-I/F22を介して、暗号化したデータが送信される。これはデジタルインターフェースD-I/F24を介して、公開鍵と秘密鍵26を参照して、復号化手段27で復号される。

【0005】このようにすると、偽造や改竄に強い機能が実現出来る。しかし、公開鍵と秘密鍵を用いた認証は多くの時間を要する。ニュースのように、あまり重要でないデータの場合、不必要に認証に時間を取られることがある。またVTRのようにコピー可能なデータしか受け取っては機器は、場合によってデジタルAVデータ受信ユニットが厳密な認証を要しないこともあり、そのような場合、時間の無駄が生じる。

【0006】次に、図3において、デジタルAV送信ユ ニットSTB28は共通鍵30、認証手段29、デジタ ルインターフェースD-I/F32、暗号化手段31を 具備している。その共通鍵30は、認証手段29を介し て、デジタルインターフェースD-I/F32に接続し ている。また、暗号化手段31は、共通鍵30を参照す ることが出来、デジタルインターフェース32に接続し ている。デジタルAVデータ受信ユニットTV33も、 共通鍵36、認証手段35、デジタルインターフェース 34、復号化手段37を具備している。その共通鍵36 は認証手段35を介してデジタルインターフェース34 に接続している。また、復号化手段37は共通鍵36を 参照することが出来、デジタルインターフェース34に 接続している。さらにデジタルインターフェース32と デジタルインターフェース34は互いにデータのやり取 りが出来る構成となっている。

【0007】次にデジタルAVデータ送信ユニットSTB28とデジタルAVデータ受信ユニットTV33間の動作を説明する。まず、デジタルAV受信ユニットTV33が認証要求を出す。するとデジタルインターフェースD-I/F34を通してデジタルAV送信ユニットSTB28を構成するデジタルインターフェースD-I/F32は認証要求を受けて認証手段29にて、共通鍵30を参照して認証する。デジタルAV送信ユニットSTB28にて認証されれば、暗号化手段31において、データが暗号化されて、デジタルインターフェースD-I/F32を介して、暗号化したデータが送信される。これはデジタルインターフェースD-I/F34を介して、共通鍵36を参照してデジタ復号化手段37で復号される。

【0008】このようにすると、短い時間でデータの認証を行うことができる。しかし、共通鍵を用いた認証は偽造や改竄に弱いので、新作の映画など著作権上重要なデータの場合、第三者にデータを無料で視聴されることがある。またTVのように受信した全てのデータを表示するために、厳密な認証を行う機器と接続した場合に対応できる必要があり、デジタルAVデータ受信ユニットが厳密な認証を要する場合があり、そのような場合重要なデータの著作権が保護されないといったことが起こりうる。

[0009]

【発明が解決しようとする課題】このように、あまり重 要でないデータの認証に多くの時間を要するという課題 や、重要なデータであるにもかかわらずその認証が偽造 や改竄に弱いという課題が存在する。また、デジタルA Vデータ受信ユニットによっては、厳密な認証を要しな いものも存在し、このようなユニットに対して厳密な認 証を行った場合、時間の無駄が生じるという課題や、逆 にデジタルAVデータ受信ユニットによっては厳密な認 証を要するものも存在し、そのようなユニットに厳密で ない認証を行った場合、著作権が守られないといった課 題が存在する。更に、不正使用の防止のために、厳密な 認証と厳密でない認証とで、暗号鍵を各々に対応して用 意した場合、厳密な認証を行って暗号鍵を取得した後 に、厳密でないデータを必要とする場合でも、改めて厳 密でない認証を行う必要がある。また、受信側が機器の 排除機能を持たない機器の場合は、送信側は不正な機器 を排除できない構成になっているという課題がある。

【0010】本発明は、このような従来の、重要でないデータの認証に多くの時間を要するという課題と、重要なデータであるにもかかわらずそのの認証が偽造や改竄に弱いという課題と、ユニットによって認証に必要な厳密さが異なるといった課題を考慮し、データの重要性や相手の装置が有する認証方法の種別などを考慮して、適切な認証方法でデータの送受信を行いうるユニット、シ

ステム等を提供することを目的とするものである。 【0011】

【課題を解決するための手段】上述した課題を解決するために、請求項1の本発明は、デジタルAVデータの重要度を判定するデータ重要性判定手段と、複数種類の認証ルールを格納した送信側複数認証ルール格納手段と、認証要求を受け、データ重要性判定手段の判定結果に基き、送信側複数認証ルール格納手段から一種類のルールを選択する送信側認証選択手段と、その選択された認証ルールに基づいて認証を行う送信側認証手段とを少なくとも備えたデジタルAVデータ送信ユニットである。

【0012】また請求項2の本発明は、デジタルAVデ ータの重要度を判定するデータ重要性判定手段と、複数 種類の認証ルールを格納した送信側複数認証ルール格納 手段と、認証要求を受け、データ重要性判定手段の判定 結果に基き、送信側複数認証ルール格納手段から一種類 のルールを選択する送信側認証選択手段と、その選択さ れた認証ルールに基づいて認証を行う送信側認証手段と を少なくとも有するデジタルAVデータ送信ユニットを 通信の対象とし、認証の要求を行う認証要求手段と、送 信側複数認証ルール格納手段と同じ複数種類の認証ルー ルを格納した受信側複数認証ルール格納手段と、送信側 認証選択手段で選択された所定の認証ルールと同じ認証 ルールを受信側複数認証ルール格納手段から選択する受 信側認証選択手段と、受信側で選択された認証ルールに 基づいて認証を行う受信側認証手段とを少なくとも備え たデジタルAVデータ受信ユニットである。

【0013】また請求項3の本発明は、デジタルAVデ ータの重要度を判定するデータ重要性判定手段と、複数 種類の認証ルールを格納した送信側複数認証ルール格納 手段と、認証要求を受け、データ重要性判定手段の判定 結果に基き、送信側複数認証ルール格納手段から一種類 のルールを選択する送信側認証選択手段と、その選択さ れた認証ルールに基づいて認証を行う送信側認証手段と を少なくとも有するデジタルAV送信ユニットと、認証 の要求を行う認証要求手段と、送信側複数認証ルール格 納手段と同じ複数種類の認証ルールを格納した受信側複 数認証ルール格納手段と、送信側認証選択手段で選択さ れた所定の認証ルールと同じ認証ルールを受信側複数認 証ルール格納手段から選択する受信側認証選択手段と、 受信側で選択された認証ルールに基づいて認証を行う受 信側認証手段とを少なくとも有するデジタルAVデータ 受信ユニットとを備えたデジタルAVデータ送受信シス テムである。

【0014】また請求項4の本発明は、デジタルAVデータの重要度を判定するデータ重要性判定手段と、所定の管理基準を格納した管理基準格納手段と、認証要求を受け、データ重要性判定手段の判定結果に基き、管理基準格納手段の管理基準を参照すべきかどうか決定する管理基準参照決定手段と、その決定された結果に従って管

理基準を参照してそれに従い認証すべきかどうか、あるいは認証の種類を決定する認証決定手段と、その認証決定手段の決定に従って、所定の認証ルールに基づいて認証を行う認証手段とを少なくとも備えたデジタルAVデータ送信ユニットである。

【0015】また請求項5の本発明は、送信ユニットは 受信ユニットの各機能を有し、受信ユニットは送信ユニットの各機能を有する請求項3記載のデジタルAVデー タ送受信システムである。

【0016】また請求項6の本発明は、受信ユニットの機能を有する送信ユニット、あるいは送信ユニットの機能を有する受信ユニットが三つ以上互いに接続され、デジタルAVデータを互いにやりとりできる請求項5記載のデジタルAVデータ送受信システムである。

【0017】また請求項7の本発明は、複数種類の認証 ルールを格納した送信側複数認証ルール格納手段と、デ ジタルAVデータ受信ユニットが有する一種類の認証ル ールについての情報を受け取るユニット認証ルール情報 受信手段と、ユニット認証ルール情報受信手段で受信さ れた認証ルールについての情報に基づき、デジタルAV データ受信ユニットが有する認証ルールを、送信側複数 認証ルール格納手段から取り出す送信側認証ルール取り 出し手段と、それに基づき認証を行う送信側認証手段と を少なくとも備えたデジタルAV送信ユニットである。 また請求項8の本発明は、複数種類の認証ルールを格納 した送信側複数認証ルール格納手段と、デジタルAVデ ータ受信ユニットが有する一種類の認証ルールについて の情報を受け取るユニット認証ルール情報受信手段と、 ユニット認証ルール情報受信手段で受信された認証ルー ルについての情報に基づき、デジタルAVデータ受信ユ ニットが有する認証ルールを、送信側複数認証ルール格 納手段から取り出す送信側認証ルール取り出し手段と、 それに基づき認証を行う送信側認証手段とを少なくとも 有するデジタルAV送信ユニットを通信の対象とし、認 証の要求を行う認証要求手段と、自らの一種類の認証ル ールを格納する受信側認証ルール格納手段と、認証ルー ルについての情報を送信する認証ルール情報送信手段 と、送信ユニットとの間で認証ルールにて認証を行う受 信側認証手段とを少なくとも備えたデジタルAVデータ 受信ユニットである。

【0018】また請求項9の本発明は、複数種類の認証ルールを格納した送信側複数認証ルール格納手段と、デジタルAVデータ受信ユニットが有する一種類の認証ルールについての情報を受け取るユニット認証ルール情報受信手段と、ユニット認証ルール情報受信手段で受信された認証ルールについての情報に基づき、デジタルAVデータ受信ユニットが有する認証ルールを、送信側複数認証ルール格納手段から取り出す送信側認証ルール取り出し手段と、それに基づき認証を行う送信側認証手段とを少なくとも有するデジタルAV送信ユニットと、認証

の要求を行う認証要求手段と、自らの一種類の認証ルールを格納する受信側認証ルール格納手段と、認証ルールについての情報を送信する認証ルール情報送信手段と、送信ユニットとの間で認証ルールにて認証を行う受信側認証手段を少なくとも有するデジタルAVデータ受信ユニットとを備えたデジタルAVデータ送受信システムである。

【0019】また請求項10の本発明は、所定の管理基準を格納した管理基準格納手段と、デジタルAVデータ受信ユニットから認証要求を受けて、そのデジタルAVデータ受信ユニットの種類又は重要度に応じて、管理基準格納手段の管理基準を参照すべきかどうか決定する管理基準を終してそれに従い認証すべきかどうか、あるいは認証の種類を決定する認証決定手段と、その認証決定手段の決定に従って、所定の認証ルールに基づいて認証を行う認証手段とを少なくとも備えたデジタルAV送信ユニットである。

【0020】また請求項11の本発明は、管理基準は、 不正な、あるいは正当なデジタルAVデータ受信ユニットを識別できる基準リスト (CRL) である請求項4又 は10に記載のデジタルAV送信ユニットである。

【0021】また請求項12の本発明は、送信ユニットに、受信ユニットが二つ以上接続され、送信ユニットとの間で、デジタルAVデータをやりとりできる請求項9記載のデジタルAVデータ送受信システムである。

【0022】また請求項13の本発明は、複数種類の認 証ルールを格納した送信側複数認証ルール格納手段と、 デジタルAVデータの重要度を判定するデータ重要性判 定手段と、データ重要性判定手段の判定結果に基づき、 送信側複数認証ルール格納手段から一種類の認証ルール を選択する送信側認証選択手段と、単一認証デジタルA Vデータ受信ユニットが有する一種類の認証ルールにつ いての情報を受け取るユニット認証ルール情報受信手段 と、ユニット認証ルール情報受信手段で受信された認証 ルールについての情報に基づき、単一認証デジタルAV データ受信ユニットが有する認証ルールを、送信側複数 認証ルール格納手段から取り出す送信側認証取り出し手 段と、送信側認証選択手段又は送信側認証取り出し手段 から得られた認証ルールに基づき認証を行う送信側認証 手段とを少なくとも備えたデジタルAVデータ送信ユニ ットである。

【0023】また請求項14の本発明は、複数種類の認証ルールを格納した送信側複数認証ルール格納手段と、デジタルAVデータの重要度を判定するデータ重要性判定手段と、データ重要性判定手段の判定結果に基づき、送信側複数認証ルール格納手段から一種類の認証ルールを選択する送信側認証選択手段と、単一認証デジタルAVデータ受信ユニットが有する一種類の認証ルールについての情報を受け取るユニット認証ルール情報受信手段

と、ユニット認証ルール情報受信手段で受信された認証 ルールについての情報に基づき、単一認証デジタルAV データ受信ユニットが有する認証ルールを、送信側複数 認証ルール格納手段から取り出す送信側認証取り出し手 段と、送信側認証選択手段又は送信側認証取り出し手段 から得られた認証ルールに基づき認証を行う送信側認証 手段とを少なくとも有するデジタルAVデータ送信ユニ ットと、認証の要求を行う認証要求手段と、送信側認証 ルール格納手段と同じ複数種類の認証ルールを格納した 受信側複数認証ルール格納手段と、送信側認証選択手段 で選択された所定の認証ルールと同じ認証ルールを受信 側複数認証ルール格納手段から選択する受信側認証選択 手段と、受信側で選択された認証ルールに基づいて認証 を行う受信側認証手段とを少なくとも有する複数認証デ ジタルAVデータ受信ユニットと、認証の要求を行う認 証要求手段と、自らの一種類の認証ルールを格納する受 信側単一認証ルール格納手段と、認証ルールについての 情報を送信する認証ルール情報送信手段と、デジタルA Vデータ送信ユニットとの間で認証ルールにて認証を行 う受信側認証手段を少なくとも有する単一認証デジタル AVデータ受信ユニットとを備えたデジタルAVデータ 送受信システムである。

【0024】また請求項15の本発明は、複数認証デジタルAVデータ受信ユニットはデジタルAVデータ送信ユニットの各機能を有し、デジタルAVデータ送信ユニットは複数認証デジタルAVデータ受信ユニットの各機能を有する請求項14記載のデジタルAVデータ送受信システムである。

【0025】また請求項16の本発明は、複数認証デジタルAVデータ受信ユニットの各機能を有するデジタルAVデータ送信ユニット、あるいはデジタルAVデータ送信ユニットの機能を有する複数認証デジタルAVデータ受信ユニットが二つ以上互いに接続され、且つ、単一認証デジタルAVデータ受信ユニットが二つ以上接続され、デジタルAVデータを互いにやりとりできる請求項15記載のデジタルAVデータ送受信システムである。

【0026】請求項17の本発明は、デジタルAVデータを、そのデータの重要度に応じた複数のレベルで暗号化する暗号化手段と、暗号化されたデジタルAVデータを受信する受信ユニットから要求された認証レベルの認証を行う認証手段と、その認証手段により認証された認証レベルを判定するレベル判定手段と、認証の後、受信ユニットからの、暗号化されたデジタルAVデータを解読するための解説情報の要求に対して、判定済みの認証レベルと同等及びそれ以下のレベルの解説情報の全部、又は一部を、受信ユニットに送信する解読情報選択手段とを備えた送信ユニットである。

【0027】請求項18の本発明は、データの重要度に 応じた複数のレベルで暗号化されたデジタルAVデータ を送信する送信ユニットから受信した暗号化されたデー タを解説するために必要な認証レベルを決定するレベル 決定手段と、その決定された認証レベルの認証を送信ユニットに要求する認証手段と、送信ユニットによる認証 の後、認証レベルと同等及びそれ以下のレベルの暗号化 データに対する解説情報の全部、又は一部を、送信ユニットに要求する解説情報要求手段とを備えた受信ユニットである。

【0028】請求項19の本発明は、デジタルAVデー タを、そのデータの重要度に応じた複数のレベルで暗号 化する暗号化手段と、暗号化されたデジタルAVデータ を受信する受信ユニットから要求された認証レベルの認 証を行う認証手段と、その認証手段により認証された認 証レベルを判定するレベル判定手段と、認証の後、受信 ユニットからの、暗号化されたデジタルAVデータを解 読するための解読情報の要求に対して、判定済みの認証 レベルと同等及びそれ以下のレベルの解読情報の全部、 又は一部を、受信ユニットに送信する解読情報選択手段 とを有する送信ユニットと、その送信ユニットから受信 した暗号化されたデータを解読するために必要な認証レ ベルを決定するレベル決定手段と、その決定された認証 レベルの認証を送信ユニットに要求する認証手段と、送 信ユニットによる認証の後、認証レベルと同等及びそれ 以下のレベルの解読情報の全部、又は一部を、送信ユニ ットに要求する解読情報要求手段とを有する受信ユニッ トとを備えたデジタルAVデータ送受信システムであ

【0029】請求項20の本発明は、デジタルAVデータを、そのデータの重要度に応じた複数のレベルで暗号化する暗号化手段と、暗号化されたデジタルAVデータを受信する受信ユニットから要求された認証レベルの認証を行う認証手段と、その認証手段により認証された認証レベルを判定するレベル判定手段と、認証の後、受信ユニットからの、暗号化されたデジタルAVデータを解読するための解読情報の要求に対して、判定済みの認証レベルと同等のレベルの解読情報を受信ユニットに送信する解読情報選択手段とを備え、解読情報選択手段は、次に受信ユニットから解読情報の要求があった時に、その要求が判定済みの認証レベルと同等あるいはそれ以下のレベルの解読情報の場合は、認証手続きを省略して要求された解読情報を受信ユニットに送信する送信ユニットである。

【0030】請求項21の本発明は、データの重要度に応じた複数のレベルで暗号化されたデジタルAVデータを送信する送信ユニットから受信した暗号化されたデータを解読するために必要な認証レベルを決定するレベル決定手段と、その決定された認証レベルの認証を送信ユニットに要求する認証手段と、送信ユニットによる認証の後、認証レベルと同等のレベルの暗号化データに対する解読情報を送信ユニットに要求する解読情報要求手段とを備え、解読情報要求手段は、認証のレベルと同等あ

るいはそれ以下のレベルの解読情報を送信ユニットに要求する時は、認証要求を行わずに、解読情報の要求を行う受信ユニットである。

【0031】請求項22の本発明は、デジタルAVデー タを、そのデータの重要度に応じた複数のレベルで暗号 化する暗号化手段と、暗号化されたデジタルAVデータ を受信する受信ユニットから要求された認証レベルの認 証を行う認証手段と、その認証手段により認証された認 証レベルを判定するレベル判定手段と、認証の後、受信 ユニットからの、暗号化されたデジタルAVデータを解 読するための解読情報の要求に対して、判定済みの認証 レベルと同等のレベルの解読情報を受信ユニットに送信 する解読情報選択手段とを有し、解読情報選択手段は、 次に受信ユニットから解読情報の要求があった時に、そ の要求が判定済みの認証レベルと同等あるいはそれ以下 のレベルの解読情報の場合は、認証手続きを省略して要 求された解読情報を受信ユニットに送信する送信ユニッ トと、その送信ユニットから受信した暗号化されたデー タを解読するために必要な認証レベルを決定するレベル 決定手段と、その決定された認証レベルの認証を送信ユ ニットに要求する認証手段と、送信ユニットによる認証 の後、認証レベルと同等のレベルの解読情報を送信ユニ ットに要求する解読情報要求手段とを備え、解読情報要 求手段は、認証のレベルと同等あるいはそれ以下のレベ ルの解読情報を送信ユニットに要求する時は、認証要求 を行わずに、解読情報の要求を行うとを有する受信ユニ ットとを備えたデジタルAVデータ送受信システムであ

【0032】請求項25の本発明は、複数種類の認証ル ールを格納した送信側複数認証ルール格納手段と、その 送信側複数認証ルール格納手段から1種類の認証ルール を選択する送信側認証選択手段と、その選択された認証 ルールに基づいて認証を行う送信側認証手段とを少なく とも備えたデジタルAVデータ送信ユニットであって、 認証の要求を行い、送信側複数認証ルール格納手段と同 じ複数種類の認証ルールを格納した受信側複数認証ルー ル格納手段から1種類の認証ルールを選択し、その選択 された認証ルールに基づいて認証を行うデジタルAVデ ータ受信ユニットまたは、送信ユニットにおける認証ル ールの選択は、データの重要度の判定結果に基づいて行 われ、重要度の判定を行ったユニットが重要度の判定を 行わないユニットに選択した認証ルールについての情報 を送り、重要度の判定を行わないユニットは、その情報 に基づいて、同じ認証ルールを選択するデジタルAVデ ータ送信ユニットである。

【0033】請求項28の本発明は、複数種類の認証ルールを格納した送信側複数認証ルール格納手段と、認証の要求を行い、デジタルAVデータの重要度を判定してその判定結果に基づいて、送信側複数認証ルール格納手段と同じ複数種類の認証ルールを格納した受信側複数認

証ルール格納手段から一種類の認証ルールを選択し、その選択された認証ルールに基づいて認証を行うデジタルAVデータ受信ユニットで選択される認証ルールと同じルールを、送信側複数認証ルール格納手段から選択する送信側認証選択手段と、その選択された認証ルールに基づいて認証を行う送信側認証手段とを少なくとも備えたデジタルAVデータ送信ユニットである。

【0034】請求項31の本発明は、複数種類の認証ルールから1種類の認証ルールを選択して認証を行う認証手段と、受信ユニットに対する所定の管理基準を格納した管理基準格納手段と、受信ユニットからの認証要求を受け、格納されている管理基準を参照することにより認証するか否かを判定する認証判定手段とを備えたデジタルAVデータ送信ユニットであって、認証要求を行う受信ユニットが、管理基準を持てない重要度の低い認証ルールのみで認証する機能しか有しない場合に、受信ユニットは、外部の管理センターからその受信ユニットに対応する管理基準用の識別情報が付与されるものであり、送信ユニットの認証判定手段は、認証要求の際に識別情報を受け取り、その識別情報が不可となった場合に、認証を取りやめるデジタルAVデータ送信ユニットである。

【0035】請求項43の本発明は、請求項1~42のいずれかに記載のユニット又はシステムもしくは送信方法が有する各構成要素もしくはステップが持つ機能の全部又は一部を実現するためのプログラムを格納した媒体である。

[0036]

【発明の実施の形態】以下に本発明の実施の形態を図面 を参照して説明する。

【0037】まず、第一の実施の形態について図1を参照して説明する。

【0038】デジタルAVデータ送信ユニットSTB1 は、データ重要性判定手段3、暗号化手段4、送信側複 数認証ルール格納手段5、送信側認証選択手段6、送信 側認証手段7及びデジタルインターフェースD-I/F 8を持つ。このデータ重要性判定手段3は、データ2の 重要性を重要度に応じて複数種類に場合分けを行う手段 である。このデータの重要度はCGMSで表現されてい る。このCGMSは放送局から送られてくるデータの内 部あるいはヘッダーに存在している。 暗号化手段4は、 データ2を、認証の過程で作成されたワーク鍵Kco16 で暗号化する手段である。ワーク鍵Kco16を生成する その認証方法は後述する。送信側複数認証ルール格納手 段5は、複数種類の認証ルールを持つ手段である。例え ば、公開鍵と秘密鍵を用いた認証ルールと、共通鍵を用 いた認証ルールの2種類の認証ルールである。ここで は、公開鍵及び秘密鍵を用いた認証ルールと共通鍵を用 いた認証ルールが格納されているとして説明を進める。 送信側認証選択手段6は、送信側複数認証ルール格納手 段5が持つ複数種類の認証ルールから一種類の認証ルールを選択する手段である。この際、データ重要性判定手段3の判定の結果を参考にする。本実施の形態では、前記の重要度が高いか低いかにより、時間はかかるが偽造や改竄に強い認証ルールとして、公開鍵と秘密鍵を用いた認証ルールを選択し、時間はかからないが、偽造や改竄に弱いルールとして、共通鍵を用いた認証ルールを選択する。送信側認証手段7は、選択された認証ルールで実際にデジタルAVデータ受信ユニットTV9と認証をかわす手段である。デジタルインターフェースD-I/F8は、デジタルAVデータ受信ユニットTV9とAVデータや信号のやりとりを行う手段である。

【0039】デジタルAVデータ受信ユニットTV9 は、デジタルインターフェースD-I/F10、復号化 手段11、認証要求手段12、受信側認証手段13、受 信側複数認証ルール格納手段14、受信側認証選択手段 15を持つ。この認証要求手段12は、デジタルAVデ ータ送信ユニットSTB1に認証要求を出す手段であ る。また、受信側複数認証ルール格納手段14は、送信 側複数認証ルール格納手段5に格納された複数の認証ル ールと同じ複数の種類の認証ルールを持つ手段である。 従って本実施の形態の場合、公開鍵及び秘密鍵を用いた 認証ルールと共通鍵を用いた認証ルールを持つ。受信側 認証選択手段15は上述した受信側複数認証ルール格納 手段14から、送信側認証選択手段6で選択された認証 ルールと同じ認証ルールを選択する手段である。受信側 認証手段13は、その選択された認証ルールで、つまり デジタルAVデータ送信ユニットSTB1で選択された 認証ルールを用いて実際にデジタルAVデータ送信ユニ ットSTB1と認証を互いに交わす手段である。復号化 手段11はデジタルAVデータ送信ユニットSTB1で 暗号化され送信されてきたデジタルAVデータをワーク 鍵Kco17を用いて復号化する手段である。ワーク鍵K co17は前記受信側認証過程で生成されるもので、その 生成する方法は前記ワーク鍵Kco16を生成する方法と ともに後述する。デジタルインターフェースD-I/F 10は、送信ユニットSTB1とAVデータや信号のや りとりを行う手段である。

【0040】次に、このような本実施の形態の動作を説明する。

【0041】まず、デジタルAVデータ受信ユニットTV9を構成する、認証要求手段12が、デジタルインターフェースD-I/F10を介して、デジタルAVデータ送信ユニットSTB1に自らのIDを含めて認証要求を出す。もちろんAVデータの送信要求も出す。デジタルAVデータ送信ユニットSTB1は、デジタルインターフェースD-I/F8を介して、前記認証要求を受信する。そうするとデジタルAVデータ送信ユニットSTB1は、まずデータ重要性判定手段3で、これから送信すべきAVデータ2の重要性を判定し場合分けする。す

なわちCGMSの値が11なら重要度は高く、そのデー タは表示のみ可能であり、コピーすることは禁止され る。また、CGMSの値が10の場合は一回のみコピー 可能であり、比較的重要なデータである。またCGMS が00の場合は自由に視聴ないしはコピーして使用して よいので、重要でないデータと言える。またCGMSが 01となるAVデータは存在しない。このCGMSの値 によりデータの重要度の場合分けがなされる。この結果 は送信側認証選択手段6に送られ、送信側複数認証ルー ル格納手段5から最適な認証ルールが選択される。 すな わち、最新の映画など重要なデータの場合には、時間が かかるが、偽造や改竄に強い、公開鍵と秘密鍵を用いる 認証ルールが選択される。また、ニュースのような重要 でないデータの場合には、時間はかからないが、偽造や 改竄に弱い、共通鍵を用いる認証ルールが選択される。 更にその選択情報は、送信側認証手段7に送られ、デジ タルインターフェースD-I/F8を介して、デジタル AV受信ユニットTV9に送られる。デジタルAV受信 ユニットTV9においては、受信側認証選択手段15 が、その選択情報を利用して受信側複数認証ルール格納 手段14から、デジタルAVデータ送信ユニットSTB 1で選択された認証ルールと同じ認証ルールを選択す る。従って選択されている認証ルールは送信側と受信側 とで同じになる。そこで、受信側認証手段13と送信側 認証手段7とは互いに、デジタルインタフェースD-I **/F10およびデジタルインタフェースD-I/F8を** 介して、認証を行う。認証が成功すれば、後述するよう にして送信側にワーク鍵Kco16、また受信側にワーク 鍵Kco17が生成される。送信すべきデータ2は生成さ れたワーク鍵Kco16を用いて、暗号化手段4で暗号化 される。そのあと、デジタルインターフェースD-I/ F8を介して、デジタルAVデータ受信ユニットTV9 に暗号化データとして送信される。デジタルインターフ ェースD-I/F10を介して暗号化されたデータは、 ワーク鍵Kco17を用いて、復号化手段11にて復号化 され、データ101になる。これはデータ2と同一のデ ータであり、デジタルAVデータ送信ユニットSTB1 から、デジタルAVデータ受信ユニットTV9にデータ が送信されたことになる。

【0042】最後に、デジタルAVデータ受信ユニット TV9は、ディスプレイ装置の画面にそのデータを表示 する。このようにして、データの重要性が高い時は、時 間はかかるが、偽造や改竄に強い認証手段が用いられ、 またデータの重要性が低い時は、時間はかからないが、 偽造や改竄に弱い認証ルールが用いられる。

【0043】次に前述したようにデジタルAVデータ受信ユニットTV9からデジタル送信ユニットSTB1に認証要求が出たときの認証のやりとりを示し、その結果ワーク鍵Kcoを生成する実施の形態を図4と図5を参照して説明する。

【0044】まず、図4に示すごとき、公開鍵と秘密鍵 による認証を行う場合である。この場合受信側は秘密鍵 Sbと公開鍵Pbを持つ。また送信側は秘密鍵Saと公 開鍵Paを持つ。まずステップ1で受信側が乱数Bを発 生する。受信側は自己の認識番号であるIDbと乱数B を自らの秘密鍵Sbで暗号化した暗号文Sb(B)を送 信側に送る。送信側は受信側の認識番号IDbから検索 して受信側の公開鍵Pbを入手する。ステップ8で入手 した公開鍵Pbで暗号文Sb (B)を復号化する。その 結果ステップ9のごとく乱数Bが得られる。さらに、送 信側は、ステップ10のごとく乱数Aを発生する。乱数 AとBは送信側の秘密鍵Saで暗号化され暗号文Sa (A, B)が作成される。送信側は暗号文Sa(A, B) と自己の認識番号 I Da を受信側に送信する。受信 側は暗号文Sa(A, B)と送信側の認識番号IDaを 受け取る。受信側は、送信側の認識番号IDaから検索 して送信側の公開鍵Paを入手し、ステップ2のごと く、Paで暗号文Sa(A,B)を復号化する。ここ で、暗号文Sa(A,B)から受信側にはステップ1で 送った乱数Bと全く同一の乱数Bが得られ、偽造や改竄 が行われてないことが受信側にわかる。もし前記2つの 乱数が異なっていれば、偽造や改竄が行われたことがわ かり不正な相手がいることがわかる。但し、この場合 は、公開鍵Pa, Pbは正当な者にしか入手できないよ うになっているものとする。次に受信側はステップ3の ごとく、受信側の秘密鍵Sbで乱数Aを暗号化し、暗号 文Sb(A)を作成する。Sb(A)は送信側に送ら れ、ステップ11のごとく既に送信側で持っている、受 信側の公開鍵Pbで暗号文Sb(A)を復号化する。ス テップ10で発生した、乱数Bとステップ11で復号化 した乱数Bは全く同一であれば、偽造や改竄が行われて いないことが送信側にわかる。もし前記2つの乱数が異 なっていれば、偽造や改竄が行われたことがわかり不正

【0045】今、受信側と送信側でやりとりした乱数A とBは偽造や改竄が行われていないとすると、受信側と 送信側以外の第3者には乱数AとBは秘密の乱数であ る。そこで送信側で、ステップ12のごとく、乱数Aと Bを用いて鍵Kabを作成する。同じくステップ4のご とく受信側で乱数AとBを用いて鍵Kabを作成する。 前記2つのKabは全く同一のものであり共通鍵となっ ている。次に送信側でステップ13のごとく鍵Kexを作 成する。これを共通鍵Kabで暗号化し、暗号文Kab (Kex)を作成して、受信側に送る。受信側はステップ 5のごとく共通鍵Kabで暗号文Kab (Kex)を復号 化してKexを得、その結果、受信側が得た鍵Kexと送信 側にある鍵Kexは全く同一であり、共通鍵となる。次に 送信側でステップ14のごとく鍵Kcoを作成する。鍵K coは共通鍵Kexで暗号化され、暗号文Kex(Kco)とし て、受信側に送られる。受信側では、ステップ6のごと

な相手がいることがわかる。

く共通鍵Kexで暗号文Kex(Kco)を復号化し、ステップ7のごとくKcoを得る。送信側にある鍵Kcoと受信側にあるKcoは全く同一で、共通鍵となっている。以上が公開鍵と秘密鍵による認証の過程で得られたワーク鍵Kcoである。

【0046】次に図5に示すごとき、共通鍵による認証 を行う場合の説明をする。この場合、送信側と受信側は 共通鍵Sを持つ。なお、この共通鍵は正当な者にしか与 えられていない。まず,受信側でステップ15のごとく 2個の乱数A1, A2を発生し、共通鍵Sで暗号化し、 暗号文S(A1A2)を作成し、送信側へ送る。送信側 ではステップ20のごとく共通鍵Sで暗号文S(A1A 2) を復号化する。そうすると、ステップ21のごとく 乱数A1と乱数A2が得られる。送信側は乱数A2を受 信側に送る。受信側はステップ16のごとく2つの乱数 A1とA2を持つことになる。ステップ15で発生した 乱数A2とステップ16で送信側から受け取った乱数A 2が全く同じであれば、送信側で偽造や改竄が行われて いないことがわかる。もし、上記2つの乱数が異なって いれば偽造や改竄が行われたことになり認証は失敗す る。次に送信側はステップ22のごとく乱数B1とB2 を発生し、暗号化して、暗号文S (B1B2) を受信側 に送る。受信側はステップ17のごとく共通鍵Sを用い て暗号文S(B1B2)を復号化する。すると、ステッ プ18のごとく乱数B1とB2が得られる。受信側は乱 数B2を送信側に送る。送信側はステップ23のごとく 乱数B1とB2を持つことになる。ステップ22で発生 した乱数と、ステップ23で受信側から受け取った乱数 B2が同じであれば、受信側に、偽造や改竄が行われて いないことがわかり、認証は成功する。もし、上記2つ の乱数が異なっていれば、偽造や改竄が行われたことに なり認証は失敗である。

【0047】ここまでで、認証が成功しているとすると、乱数A1と乱数B1は送信側と受信側以外の第3者には秘密の乱数である。送信側ではステップ24のごとく乱数A1と乱数B1から鍵Kcoを作成する。一方受信側では、ステップ19のごとく乱数A1と乱数B1から鍵Kcoを作成する。送信側にある鍵Kcoと受信側にある鍵Kcoは全く同一であり、共通鍵となっている。以上が共通鍵による認証の過程で得られたワーク鍵Kcoである。

【0048】なお、本発明において、選択する認証ルールの種類は、前記公開鍵及び秘密鍵と共通鍵との2種類に限らず、その他の種類でもよく、更に3種類以上の異なる認証ルールを使用するものであってもよい。

【0049】また、本実施の形態の変形例として、デジタルAVデータ送信ユニット1はデジタルAV受信ユニット9と同じ機能を有し、また、デジタルAVデータ受信ユニット9はデジタルAV送信ユニット1と同じ機能を有するようになっていてもよい。以後それらのユニット

のことを、デジタルAVデータ送受信ユニットと呼ぶ。 またそれらの送受信ユニットが3台以上が互いに接続されていてもよい。

【0050】次に本発明の第二の実施の形態について図6を参照して説明する。

【0051】本実施の形態では、第一の実施の形態がデータの重要度に応じて認証ルールを変えていたのに対して、デジタルAVデータ受信ユニットVTR45が有する認証ルールの種類によって、認証ルールを選択するところが、相違点である。

【0052】デジタルAVデータ送信ユニットSTB3 8は、送信側複数認証ルール格納手段41等を持つ。送 信側複数認証ルール格納手段41は、複数種類の認証ル ールを持つ手段である。これは第一の実施の形態で説明 したごとく、例えば、公開鍵と秘密鍵を用いた認証ルー ルと、共通鍵を用いた認証ルールである。ここでは、公 開鍵及び秘密鍵を用いた認証ルールと共通鍵を用いた認 証ルールが格納されているとして説明を進める。ユニッ ト認証ルール情報受信手段42は、デジタルAVデータ 受信ユニットVTR45から送られて来た認証ルールに 関連する情報を受信する手段である。送信側認証取り出 し手段53は、その認証ルールに関連する情報に基づい て、送信側複数認証ルール格納手段41から所定の認証 ルールを取り出し、送信側認証手段43に渡す手段であ る。送信側認証手段43は、デジタルAV受信ユニット VTR45と互いに認証を交わす手段である。暗号化手 段40は、第一の実施の形態で説明したごとく、認証を 交わした結果生成されたワーク鍵Kco53により、デー タ39を暗号化する手段である。デジタルインターフェ ースD-U/F44は、デジタルAVデータ受信ユニッ トVTR45とデータや信号のやりとりをする手段であ る。

【0053】デジタルAVデータ受信ユニットVTR4 5は、受信側認証ルール格納手段49等を持つ。この受 信側認証ルール格納手段49は、第一の実施の形態で説 明した場合とは違って、一種類の認証ルールのみ格納す る手段である。例えば、公開鍵と秘密鍵を用いた認証ル ール、あるいは共通鍵を用いた認証ルールのような認証 ルールがある。ここで、受信側認証ルール格納手段49 に格納されている認証ルールはデジタルAVデータ受信 ユニットVTR45の装置の性質あるいは重要度によっ て、あらかじめ決められている。すなわちデータの再利 用を予定しないTVなどのユニットには時間はかかる が、偽造や改竄に強い認証ルールが格納されており、ま たデータのコピーを前提とするVTRのようなユニット には、時間はかからないが、偽造や改竄に弱い認証ルー ルが格納されている。これによって、AVデータの著作 権を守ることができる。本実施の形態では デジタルA Vデータ受信ユニットVTR45はVTRであるので、 受信側認証ルール格納手段49は共通鍵を持つものとし

て説明をする。認証ルール情報送信手段50は、デジタルAVデータ受信ユニットVTR45が受信側認証ルール格納手段49に有する共通鍵による認証ルールに関連する情報を送信する手段である。受信側認証手段51は、デジタルAV送信ユニットSTB38と互いに認証を交わす手段である。復号化手段47は、第一の実施の形態で説明したごとく、認証を交わした結果生成されたワーク鍵Kco54により、暗号化されたデータを復号化する手段である。

【0054】次にこのような本実施の形態の動作を説明する。

【0055】まず、デジタルAVデータ受信ユニットV TR45を構成する、認証要求手段48がデジタルイン ターフェースD-I/F46を介して、デジタルAVデ ータ送信ユニットSTB38に認証要求を出す。デジタ ルAVデータ送信ユニットSTB38は、デジタルイン ターフェースD-I/F44を介して、前記認証要求を 受信する。また同時に、認証ルール情報送信手段50 が、受信側認証ルール格納手段49を参照し、格納され ている認証ルール、つまり共通鍵による認証ルールに関 する情報を取り出す。例えば、その共通鍵による認証ル ールを示す識別子を、デジタルインターフェースD-I /F46を介して、デジタルAVデータ送信ユニットS TB38に送る。ユニット認証ルール情報受信手段42 が、デジタルAVデータ受信ユニットVTR45から送 られてきた認証ルールに関する情報、つまり共通鍵によ る認証ルールの識別子を、デジタルインターフェースD -I/F44を介して、受け取る。さらに、この認証ル ールの識別子は、送信側認証ルール取り出し手段55に 渡され、送信側複数認証ルール格納手段41から、その 認証ルールに関する情報に応じた認証ルール、つまり共 通鍵による認証ルールを取り出す。その後、取り出され た共通鍵による認証ルールは、送信側認証手段43に渡 される。その後、送信側認証手段43と受信側認証手段 51は互いに、デジタルインターフェースD-I/F4 4とD-I/F46を介して、認証を交わす。認証が成 功すれば、その結果、第一の実施の形態で説明したごと く、送信側にワーク鍵Kco53、受信側にワーク鍵Kco 54が生成される。データ39は暗号化手段40にてワ ーク鍵Kco53により暗号化される。暗号化されたデー タはデジタルインターフェースD-I/F44を介し て、デジタルAV受信ユニットVTR45に送られる。 デジタルインターフェースD-I/F46を介して暗号 化されたデータは、復号化手段47に送られ、ワーク鍵 Kco54を用いて復号化され、データ52が得られる。 【0056】なお、本発明において、送信側の認証ルー ルの種類は、前記共通鍵に限らず、公開鍵及び秘密鍵、 またその他の種類でもよく、更に3種類以上の異なる認 証ルールを使用するものであってもよい。

【OO57】また、デジタルAVデータ受信ユニットは

2台あり、その一つは共通鍵による認証ルールのみ有し、他の一つは公開鍵及び秘密鍵のみを有するものであってもよい。さらに3台以上のデジタルAVデータ受信ユニットであってもよい。

【0058】次に本発明の第三の実施の形態について図7を参照して説明する。

【0059】第一の実施の形態がデータの重要度に応じて認証ルールを変えていたのに対し、また、第二の実施の形態がデジタルAVデータ受信ユニットの種類によって認証ルールを変えていたのに対し、本実施の形態では、データの重要度とデジタルAV受信ユニットの種類の両方で認証ルールを決めるところが特徴である。

【0060】本実施の形態では、デジタルAVデータ送信ユニットSTB56と、複数認証デジタルAVデータ受信ユニットTV65と、単一認証デジタルAVデータ受信ユニットVTR72の三種類のユニットを扱う。デジタルAVデータ受信ユニットSTB56は複数認証デジタルAVデータ受信ユニットTV65と単一認証デジタルAVデータ受信ユニットVTR72にデータを送信するユニットである。複数認証デジタルAVデータ受信ユニットTV65に対しては、デジタルAVデータ送信ユニットSTB56に対しては、デジタルAVデータ送信コニットSTB56においてデータの重要度により複数種類の認証ルールを選択して、そのデータを送信する。また、単一認証デジタルAVデータ受信ユニットVTR72は自らの持つ一つの認証ルールを用いてデジタルAVデータ送信ユニットSTB56とで認証を行うユニットである。

【0061】デジタルAVデータ送信ユニットSTB5 6は、データ重要性判定手段57を持つ。これは、デー タ82の重要性を重要度に応じて複数種類の場合分けを 行う手段である。この重要度は第一の実施の形態で説明 したごとくCGMSで表現されている。このCGMSは 放送局から送られてくるデータの内部あるいはヘッダー に存在している。暗号化手段64は、データ82を認証 の過程で作成されたワーク鍵Kco79で暗号化する手段 である。ワーク鍵Kco79を生成する過程は第一の実施 の形態で説明した。送信側複数認証ルール格納手段63 は、複数種類の認証ルールを持つ。例えば、公開鍵と秘 密鍵を用いた認証ルールや、共通鍵を用いた認証ルール である。ここでは、公開鍵及び秘密鍵を用いた認証ルー ルと共通鍵を用いた認証ルールが格納されているとして 説明を進める。送信側認証選択手段59は、送信側複数 認証ルール格納手段63が持つ複数種類の認証ルールか ら一種類の認証ルールを選択する手段である。この時、 データ重要性判定手段57の場合分けの結果を参考にす る。第一の実施の形態のごとく、本実施の形態では、前 記の重要度が高いか低いかにより、時間はかかるが偽造 や改竄に強い認証ルールとして、公開鍵と秘密鍵を用い た認証ルールを選択し、また、時間はかからないが、偽 造や改竄に弱い認証ルールとして、共通鍵を用いた認証 ルールを選択する。ユニット認証ルール情報受信手段60は、単一認証デジタルAVデータ受信ユニットVTR72から送られて来た認証ルールに関する情報を受信する手段である。送信側認証ルール取り出し手段58は、認証ルールに関連する情報に基づいて、送信側複数認証ルール格納手段63から所定の認証ルールを取り出し、送信側認証手段61に渡す手段である。送信側認証手段61は、実際に複数認証デジタルAVデータ受信ユニットVTR72と認証を交わす手段である。デジタルインターフェースD-I/F62は、複数認証デジタルAVデータ受信ユニットTV65や単一認証デジタルAVデータ受信ユニットTV65や単一認証デジタルAVデータ受信ユニットTV65や単一認証デジタルAVデータ受信ユニットVTR72とAVデータや信号をやりとりする手段である。

【0062】複数認証デジタルAVデータ受信ユニット TV65は、認証要求手段67を持つ。これは、デジタ ルAVデータ送信ユニットSTB56に認証要求を出す 手段である。また、受信側複数認証ルール格納手段68 は、送信側複数認証ルール格納手段63と同じ複数種類 の認証ルールを持つ。従って本実施の形態の場合、公開 鍵及び秘密鍵を用いた認証ルールと共通鍵を用いた認証 ルールがある。受信側認証選択手段69は、受信側複数 認証ルール格納手段68から、送信側認証選択手段59 で選択された認証ルールと同じ認証ルールを選択する手 段である。受信側認証手段70は、その選択された認証 ルールで、つまりデジタルAVデータ送信ユニットST B56で選択された認証ルールを用いて実際にデジタル AVデータ送信ユニットSTB56と認証を互いに交わ す手段である。復号化手段66は、デジタルAVデータ 送信ユニットSTB56で暗号化されたデジタルAVデ ータをワーク鍵Kco80を用いて復号化する手段であ る。ワーク鍵Kco80は前記認証過程で生成されるもの で、その生成する方法は前記ワーク鍵Kco79とともに 第一の実施の形態で説明した。デジタルインターフェー スD-I/F71は、デジタルAVデータ送信ユニット STB56とAVデータや信号のやりとりを行う手段で ある。

【0063】単一認証デジタルAVデータ受信ユニットVTR72は、受信側認証ルール格納手段75を持つ。これは、前述したごとく一種類の認証ルールのみ格納する手段である。例えば、公開鍵と秘密鍵を用いた認証ルール、あるいは共通鍵を用いた認証ルールのような認証ルールがある。ここで、受信側認証ルール格納手段75に格納されている認証ルールは単一認証デジタルAVデータ受信ユニットVTR72の装置の種類や、重要度によって、あらかじめ決められている。ここでは、受信側認証ルール格納手段75が共通鍵を持つものとして説明をする。認証ルール情報送信手段76は、単一認証デジタルAVデータ受信ユニットVTR72が受信側認証ルール格納手段75に有する共通鍵による認証ルールに関

連する情報を送信する手段である。受信側認証手段77は、デジタルAVデータ送信ユニットSTB56と互いに認証を交わす手段である。復号化手段73は、第一の実施の形態で説明したごとく、認証を交わした結果生成されたワーク鍵Kco81により、暗号化されたデータを復号化する手段である。

【0064】次にこのような本実施の形態の動作を説明する。まず、はじめに複数認証デジタルAVデータ受信ユニットTV65かまたは単一認証デジタルAVデータ 受信ユニット72が認証要求を出す。デジタルAVデータ送信ユニットSTB56はどのユニットから認証要求が送られて来たのかを判断する。

【0065】以下、まず複数認証デジタルAVデータ受信ユニットTV65から認証要求が来た場合を説明し、 次に単一認証デジタルAVデータ受信ユニットVTR7 2から認証要求が来た場合の説明を行う。

【0066】第一に、前述したように複数認証デジタル AVデータ受信ユニットTV65を構成する、認証要求 手段67が、デジタルインターフェースD-I/F71 を介して、デジタルAVデータ送信ユニットSTB56 に自らのIDを含めて認証要求を出す。デジタルAVデ ータ送信ユニットSTB56は、デジタルインターフェ ースD-I/F62を介して、前記認証要求を受信す る。そうするとデジタルAVデータ送信ユニットSTB 56は、まずデータ重要性判定手段57で、これから送 信すべきデータ82の重要性を判定し場合分けする。こ の結果は送信側認証選択手段59に送られ、送信側複数 認証ルール格納手段63から最適な認証ルールが選択さ れる。すなわち、重要なデータの場合には、公開鍵と秘 密鍵を用いる認証ルールが選択される。また、重要でな いデータの場合には、共通鍵を用いる認証ルールが選択 される。更にその選択情報は、送信側認証手段61に送 られ、デジタルインターフェースD-I/F62を介し て、複数認証デジタルAVデータ受信ユニットTV65 に送られる。複数認証デジタルAVデータ受信ユニット TV65においては、受信側認証選択手段69が、その 選択情報を利用して受信側複数認証ルール格納手段68 からデジタルAVデータ送信ユニットSTB56で選択 された認証ルールと同じ認証ルールを選択する。従って 選択されている認証ルールは送信側と受信側とで同じに なる。受信側認証手段70と送信側認証手段61とは互 いに、デジタルインターフェースD-I/F71および デジタルインターフェースD-I/F62を介して、認 証を行う。認証が成功すれば、第一の実施の形態で詳述 したごとく、送信側にワーク鍵Kco79、また受信側に ワーク鍵Kco80が生成される。送信すべきデータ82 は生成されたワーク鍵Kco79を用いて、暗号化手段6 4 で暗号化される。そのあと、デジタルインターフェー スD-I/F62を介して、複数認証デジタルAVデー タ受信ユニットTV65に暗号化されたデータとして送 信される。デジタルインターフェースD-I/F71を介して暗号化されたデータは、ワーク鍵Kco80を用いて、復号化手段66にて復号化され、データ83になる。これはデータ82と同一のデータであり、デジタルAVデータ送信ユニットSTB56から、複数認証デジタルAVデータ受信ユニットTV65にデータが送信されたことになる。このようにして、データの重要性が高い時は、時間はかかるが、偽造や改竄に強い認証ルールが用いられ、またデータの重要性が低い時は、時間はかからないが、偽造や改竄に弱い認証ルールが用いられる。

【0067】次に単一認証デジタルAVデータ受信ユニ ットVTR72から認証要求が来た場合の動作の説明を 行う。まず、単一認証デジタルAVデータ受信ユニット VTR72を構成する、認証要求手段74がデジタルイ ンターフェースD-I/F78を介して、デジタルAV データ送信ユニットSTB56に認証要求を出す。デジ タルAVデータ送信ユニットSTB56は、デジタルイ ンターフェースDーI/F62を介して、前記認証要求 を受信する。同時に認証ルール情報送信手段76が、受 信側認証ルール格納手段75を参照し、格納されている 認証ルール、つまり共通鍵による認証ルールに関する情 報を取り出す。例えば、その共通鍵による認証ルールを 示す識別子を、デジタルインターフェースD-I/F7 8を介して、デジタルAVデータ送信ユニットSTB5 6に送る。ユニット認証ルール情報受信手段60が、単 一認証デジタルAVデータ受信ユニットVTR72から 送られてきた認証ルールに関する情報、つまり共通鍵に よる認証ルールの識別子を、デジタルインターフェース D-I/F62を介して、受け取り、さらにこの認証ル ールの識別子は、送信側認証ルール取り出し手段58に 渡される。送信側認証ルール取り出し手段58は、送信 側複数認証ルール格納手段63から、その認証ルールに 関する情報に応じた認証ルール、つまり共通鍵による認 証ルールを取り出し、送信側認証手段61に渡す。送信 側認証手段61と受信側認証手段77は互いに、デジタ ルインターフェースD-I/F62とD-I/F78を 介して、認証を交わす。認証が成功すれば、その結果、 第一の実施の形態で詳述したごとく、送信側にワーク鍵 Kco79、受信側にワーク鍵Kco81が生成される。認 証の結果ワーク鍵が生成される過程は、第一の実施の形 態で詳述した。

【0068】データ82は暗号化手段64にてワーク鍵 Kco79により暗号化される。暗号化されたデータはデジタルインターフェースD-I/F62を介して、単一 認証デジタルAVデータ受信ユニットVTR72に送られる。デジタルインターフェースD-I/F78を介して受信した暗号化されたデータは、復号化手段73に送られ、ワーク鍵Kco81を用いて復号化され、データ84が得られる。これはデータ82と同一のデータであ

り、デジタルAVデータ送信ユニットSTB56から、 単一認証デジタルAVデータ受信ユニットVTR72に データが送信されたことになる。

【0069】次に、本発明の第四の実施の形態を説明する。

【0070】本実施の形態では、デジタルAVデータ受信ユニットが正当なものか不正なものかを調べて作成しておいた管理基準(CRL)を利用するものである。そのCRLの作成の仕方は、例えば、消費者が購入した販売店が発行した登録カードを元に作成する方法等が考えれれる。

【0071】図8は、その管理基準を放送局から送られてくるデジタルAVデータの重要度に応じて、その管理 基準を参照するかどうか決定するものである。

【0072】デジタルAV送信ユニットSTB93は、放送局から送られてくるデジタルAVデータの重要度に応じて、データの重要性を判定する、データ重要性判定手段86を有する。また、データの重要度に応じて管理基準格納手段88に格納されている管理基準情報(CRL)を参照するかどうかを判定する、管理基準参照決定手段87を有する。また、前記決定結果に従って、認証を行うかどうかを決定する、認証決定手段89を有する。また、実際にデジタルAVデータ受信ユニットTV92と認証を交わす、認証手段90は、デジタルインターフェースD-I/F91を介して、デジタルAVデータ受信ユニットTV92に接続している。

【0073】次に本実施の形態の動作を説明する。ま ず、放送局から送られてくるデジタルAVデータ85 は、データ重要性判定手段86で、重要性を判定され る。その結果は、管理基準参照決定手段87に渡され、 管理基準格納手段88に格納されている情報を参照すべ きかどうかが決定される。例えば、新作の映画等の場合 は重要なので、管理基準情報を参照すると決定する。ま た、ニュース等の場合は重要でないので、管理基準情報 を参照しないと決定する。さらに認証決定手段89で、 前記管理基準参照決定手段87の判定決定に従って、認 証すべきかどうか決定される。すなわち、デジタルAV データ受信ユニットTV92が、デジタルAVデータ8 5を受信するのに正当な機器か不当な機器かを、管理基 準格納手段88に格納されている管理基準情報で判断さ れる。正当であると判断されれば、次の認証手段90 で、デジタルインターフェースD-I/F91を介し て、デジタルAV受信ユニットTV92と認証が交わさ れる。不当と判断されればその時点で、デジタルAVデ ータ受信ユニットTV92との認証は交わされず、デー タ85の送信はされない。

【0074】他方、図9は上述した管理基準を、デジタルAVデータ受信ユニットの装置の種類、あるいは重要度に応じて、その管理基準を参照するかどうか決定する

ものである。

【0075】デジタルAVデータ送信ユニットSTB94は、デジタルAVデータ受信ユニットVTR100の装置の種類あるいは、重要度に応じて、その管理基準格納手段96を参照すべきかどうかを決定する、管理基準を照決定手段97は、認証するかどうかを決定する。管理基準格納手段96は、デジタルAVデータ受信ユニットVTR100がデジタルAVデータを受信するのに正当な機器か正当でない機器かの情報が格納されている。認証手段98は、デジタルインターフェースD-I/F99を介して、デジタルAVデータ受信ユニットVTR100と認証を行う。

【0076】次に本実施の形態の動作を説明する。ま ず、デジタルAVデータ受信ユニットVTR100が、 デジタルインターフェースD-I/F99を介して、管 理基準参照決定手段95に機器情報を送る。これを受け て、管理基準参照決定手段95は、管理基準格納手段9 6に格納されている情報を参照すべきかどうかを決定す る。管理基準格納手段96を参照すると決定された場合 は、認証決定手段97は、まず、管理基準格納手段96 を参照して、デジタルAVデータ受信ユニットがデータ を受信するのに正当な機器か、不正な機器かを判定す る。ここで、正当な機器と判定されれば、次の認証手段 98にて、デジタルインターフェースD-I/F99を 介して、デジタルAVデータ受信ユニットと認証を開始 する。デジタルAVデータ受信ユニットがデータを受信 するのに不正な機器と判定された場合は、認証は行われ ず、データの送信も行われない。

【0077】なお、上記実施の形態では、STBを送信ユニットとして説明してきたが、VTRで録画したデータを再生する際には、VTRが送信ユニットとなる。この際CGMSが入力時「1回コピー可」であれば「コピー不可」に書きかえられて出力される。ここで、データの重要度としては、元の入力時における重要度と考えるべきであり、「1回コピー可」と同様の認証ルールを使うこともできる。このように「1回コピーの結果コピー不可となったデータ」と「元からコピー不可のデータ」を見分ける必要がある際には、前述した、存在しないCGMS値01を前者の区別用に割り当てることもできる

【0078】次に本発明の第五の実施の形態について説明する。

【0079】図10は、本発明の第五の実施の形態についての概略図である。本実施の形態では、認証手続きのレベル2段階、コンテンツの重要度、すなわち、解読情報としての暗号鍵を3種類としている。図10において、デジタルAVデータ送受信システムは、送信ユニット111と、それに接続された受信ユニット130により構成されている。

【0080】送信ユニット111は、コンテンツ重要度 が異なるデータA、Bを各々異なる暗号鍵Kcoで暗号化 する暗号化手段A, B112, 113と、暗号化用の例 えば、copy_never (テープ等に記録してはい けないコンテンツ) 用Kco、copy_once (一度 だけ記録してもよいコンテンツ) 用Kco、no_mor e_copy(これ以上コピーしてはならないコンテン ツ)用Kcoを記憶するKco記憶手段114と、受信ユニ ット130に渡す、'Exchange_Key'と呼 ばれるcopy_never用、copy_once 用、no_more_copy用の各暗号鍵Kexを発生 するKex発生手段115と、その発生した各Kexを記憶 するKex記憶手段116と、暗号化用鍵Kcoを所定の関 数により算出する時に用いる種を発生する種発生手段1 17と、その発生した種を記憶する種記憶手段118 と、Kex記憶手段116からのKexと種記憶手段118 からの種を用いて、関数Kco=f(種、Kex)によりK coを算出するKco算出手段119と、受信ユニット13 0に対して認証手続きを実行する認証手段121と、受 信ユニット130の認証済みのレベルを判定する等の処 理を行うレベル判定手段122と、受信ユニット130 からの種要求に対して応答する種要求コマンド応答手段 120と、データの送受信を行うデジタルインターフェ ース(D-I/F) 123により構成されている。ここ で、種要求コマンド応答手段120及び認証手段121 の一部などが解読情報選択手段を構成している。

【0081】また、受信ユニット130は、データの送 受信を行うデジタルインターフェース (D-I/F) 1 31と、受信した暗号化デジタルAVデータのコンテン ツの重要度に応じて、要求する認証のレベルを決定する 要求レベル決定手段134と、その決定された要求レベ ルで、送信ユニット111に認証を要求し、必要な暗号 鍵Kexを取得する認証手段133と、その取得したKex を記憶するKex記憶手段137と、種の要求コマンドを 発行し、種を送信ユニット111から取得する種要求コ マンド発行手段135と、その取得した種とKex記憶手 段137に記憶されたKexとを用いて、送信ユニット1 11と同一の関数Kco=f (種、Kex) によりKcoを算 出するKco算出手段136と、その算出したKcoにより 暗号化データを復号する復号化手段132により構成さ れている。ここで、種要求コマンド発行手段135及び 認証手段133の一部などが解読情報要求手段を構成し

【0082】次に、上記実施の形態のデジタルAVデータ送受信システムの動作について、図面を参照しながら説明する。

【0083】図11において、まず、受信ユニット130では、要求レベル決定手段134が受信データのコンテンツ重要度に基づいて要求する認証のレベルを決定し、認証手段133に渡す。認証手段133はD-I/

F131を介して送信ユニットに認証要求を出す。ここでは、一番高いレベルの認証を要求するものとする。送信ユニット111では、D-I/F123を介して受け取った認証要求に基づいて認証処理を行う。認証の方法については、例えば前述した実施の形態で説明した方法等により行うことができ、このとき送信ユニット、受信ユニットともに共有の共通鍵Kabが得られる。又、このときの認証済みのレベルがレベル判定手段122に渡される。

【0084】次に、認証が完了してその通知が受信ユニット130に送信されると、認証手段133は、認証レベルが最高であることから、送信ユニット111に対して全てのレベルのKexを要求する。ここでは、Kexのレベルとして、高い順にcopy_never用(Kex1)、copy_once用(Kex2)、no_more_copy用(Kex3)の3種類とする。

【0085】送信ユニット111では、レベル判定手段122が、認証手段121から受けた要求レベルを認証済みレベルに基づいて判定し、渡せるか否かの判定と、渡せる場合は、要求のあったKex(このときは、Kex1、Kex2、Kex3)を両者が共有するKabで暗号化して、認証手段121を通じて受信ユニット130に送信する。受信ユニット130では、認証手段133が暗号化されたKab(Kex1、Kex2、Kex3)を自身の持つKabで復号してKex記憶手段137に記憶する。

【0086】一方、Kex発生手段115が発生した各レベルのKex、すなわち、Kex1、Kex2、Kex3は、Kex記憶手段116に記憶され、種発生手段117が発生した種は、種記憶手段118に記憶されている。又、Kex記憶手段116に記憶された各Kexと、種記憶手段118に記憶された種とを用いて、Kco算出手段119が各Kco、すなわち、copy_never用(Kcol)、copy_once用(Kco2)、no_more_copy用(Kco3)を算出してKco記憶手段114に記憶している。更に、暗号化手段A,B112,113は、各データのコンテンツの重要度に対応したKcoを用いてデジタルAVデータを暗号化して受信ユニット130に送信する。

【0087】受信ユニット130では、種要求コマンド発行手段135が種要求コマンドを送信ユニット111に送信する。そうすると、送信ユニット111では、種要求コマンド応答手段120が、種記憶手段118から種を取り出し受信ユニット130に送信する。ここで、図の種記憶手段118に現在の種及び次の種とあるのは、暗号化用のKcoを刻々と変更しているためである。【0088】次に、受信ユニット130では、種要求コマンド発行手段135が送信ユニット111から受け取った種と、Kex記憶手段に記憶している復号化するデータのレベルに対応するKexとを用いて、Kco算出手段136は、送信ユニット111と同一の関数(この関数

は、送信ユニット及び受信ユニットが予め持っており、第3者は入手できないものとする)によりKcoを算出する。復号化手段132はこの算出されたKcoを用いて暗号化されたデジタルAVデータを通常のデジタルAVデータに復号する。ここで、利用するデータが、コンテンツ重要度の高いデータ1 (例えば、映画など) から低いデータ2 (例えば、スポーツ番組など) に変化、あるいは変更する場合は、最初に受け取った各Kexの中から、必要なKexを選択してKcoを算出して用いることができるので、新たな認証手続きは勿論、Kexの要求もする必要が無い。

【0089】前述の方法は、認証手続きに続いて入手可能な全てのKexを一度に取得する方法であったが、図1 2に示すような方法を用いてもよい。

【0090】図12において、まず、受信ユニット130では、要求レベル決定手段134が受信データのコンテンツ重要度に基づいて要求する認証のレベルを決定し、認証手段133に渡す。認証手段133はD-I/F131を介して送信ユニットに認証要求を出す。ここでは、一番高いレベルの認証を要求するものとする。送信ユニット111では、D-I/F123を介して受け取った認証要求に基づいて認証処理を行う。認証の方法については、例えば前述した実施の形態で説明した方法等により行うことができ、このとき送信ユニット、受信ユニットともに共有の共通鍵Kabが得られる。又、このときの認証済みのレベルがレベル判定手段122に渡される。

【0091】次に、認証が完了してその通知が受信ユニット130に送信されると、認証手段133は、送信ユニット111に対して認証レベルが一番高いKexを要求する。ここでは、Kexのレベルとして、高い順にcopy_never用(Kex1)、copy_once用(Kex2)、no_more_copy用(Kex3)の3種類とする。

【0092】送信ユニット111では、レベル判定手段122が、認証手段121から受けた要求レベルを認証済みレベルに基づいて判定し、渡せるか否かの判定と、渡せる場合は、要求のあったKex(このときは、Kexl)を両者が共有するKabで暗号化して、認証手段121を通じて受信ユニット130に送信する。受信ユニット130では、認証手段133が暗号化されたKab(Kexl)を自身の持つKabで復号してKex記憶手段137に記憶する。

【0093】次に、受信ユニット130では、種要求コマンド発行手段135が種要求コマンドを送信ユニット111に送信する。そうすると、送信ユニット111では、種要求コマンド応答手段120が、種記憶手段118から種を取り出し受信ユニット130に送信する。

【0094】種を受信した受信ユニット130では、種要求コマンド発行手段135が送信ユニット111から

受け取った種と、Kex記憶手段に記憶している復号化するデータのレベルに対応するKex(Kex1)とを用いて、Kco算出手段136は、送信ユニット111と同一の関数(この関数は、送信ユニット及び受信ユニットが予め持っており、第3者は入手できないものとする)によりKco(Kcol)を算出する。復号化手段132はこの算出されたKcolを用いて暗号化されたデジタルAVデータを通常のデジタルAVデータに復号する。ここで、利用するデータが、コンテンツ重要度の高いデータ1から低いデータ2に変化、あるいは変更する場合は、別のKex(図ではKex2)を送信ユニット111に対して要求する。

【0095】送信ユニット111では、レベル判定手段122が認証手段121を介して、要求されたKexのレベルを認証済みのレベルに基づいて判定し、認証済みレベルと同等か、あるいはそれより低いレベルの要求であれば、要求されたKex(Kex2)をKabで暗号化して受信ユニット130に送信する。

【0096】ここで、受信ユニット130が、最初の認証要求を行って認証が完了した場合に、その認証済みのレベル (認証済みのレベルのうち最高のレベルのものでよい)を記憶しておき、次回からのKexの要求に対しては、その記憶した認証済みのレベルから所望するKexが認証無しに入手可能が否かを、例えば認証手段133で判断して入手可能であればKexを要求するようにしてもよい。このとき、入手不可能である場合は、更に、新たな高いレベルの認証を行うようにすればよい。従って、要求レベル決定手段134で、デジタルAVデータのコンテンツ重要度に基づいて決定された要求レベルが、記憶されている過去の認証済みレベルと同等かあるいはそれ以下のレベルである場合に、認証手段133から所望のKexを要求する。

【0097】また、送信ユニット111側については、もし、認証要求がなくKexの要求があって、要求された Kexが送信不可と判定された場合に、新たな認証が必要 である旨の情報を受信ユニット130側に通知する方法 としてもよい。

【0098】受信ユニット130では、認証手段133がKab (Kex2)を復号してKex配憶手段137に記憶し、Kco算出手段136がそのKex2及び種を用いてKco2を算出してデータを復号する。この方法によると、1度あるレベルでの認証が済んでいれば、そのレベルと同等か、あるいはそれ以下のレベルのKexを取得する場合、新たに認証手続きを行う必要が無いので、時間のかかる認証手続きの回数を減少することになる。

【0099】ところで、従来のように、コンテンツの重要度の異なるAVデータを利用したい場合に、その都度認証手続きを行う方法では、受信ユニットが多数接続されているときは、認証要求の頻度が増大する。しかしながら、認証要求のための通信は、例えば、IEEE13

94BUS規格のようなアイソクロナスデータ通信とアシンクロナスデータ通信とを用いるものでは、本来データの通信帯域に使う帯域の一部を用いて行っているため、時間のかかる認証要求の頻度が増大することは好ましくない。従って、本実施の形態によれば、受信ユニットの台数が増えても、基本的には1受信ユニットについて1回の認証手続きで済むので、認証要求による不都合が生じない。

【0100】なお、上記第五の実施の形態では、認証手続きのレベルを2段階としたが、これに限定されるものではない。

【0101】また、上記第五の実施の形態では、コンテンツの重要度のレベルを3種類としたが、これに限定されるものではない。例えば、copy_free(何度でも記録してよいコンテンツ)のレベルを加えて4種類としてもよいし、それ以上の種類としてもよい。

【0102】また、上記第五の実施の形態では、種と暗号鍵とを用いて関数により暗号化用の鍵を算出する方法により実現する構成としたが、これに限らず、他の実施の形態で説明した方法を用いた構成に適用してもよい。

【0103】また、上記第五の実施の形態では、受信中のデータの重要度を見て、要求するKexの種類を決定しているが、予め自分が受信する可能性のある全てのKexを取得しておいてもよい。

【0104】また、上記第五の実施の形態では、認証を行った後に、受信ユニットがKexの要求を行うとしたが、これに限定されない。例えば、認証要求をする際に、同時に自分が受け取りたいKexの種類を送信ユニットに対して申請し、認証が完了した時点で、送信ユニットが自動的に要求されたKexを受信ユニットに送信してもよい。

【0105】また、上記第五の実施の形態では、データの重要度に応じて暗号鍵を替える方法であったが、これに限らず、データの種類等に応じて暗号鍵を替えるようにしてもよい。その場合は、認証のレベルとデータの種類(すなわち、暗号鍵)を対応させておく必要がある。

【0106】次に本発明の第六の実施の形態について説明する。

【0107】図13は、本発明の第六の実施の形態についての概略図である。本実施の形態は、Full認証とRestricted認証(以下,Rest認証と略称する)機能を備えたデジタルAVデータ送信ユニット140には、Rest認証機能のみを持つデジタルAVデータ受信ユニット150及びFull認証とRest認証の両機能を備えたデジタルAVデータ受信ユニット160が接続されているものとする。ここで、Full認証とは、例えば公開鍵と秘密鍵とを用いた高レベルの認証方法であり、Rest認証とは、例えば共通鍵を用いた通常の認証方法を示すものとする。

【0108】図13において、デジタルAVデータ送信

ユニット140は、データを暗号化する暗号化手段14 1、Full認証用のルールを格納するFull認証格 納手段143、Rest認証用のルールを格納するRe s t 認証格納手段142、管理基準としてのCRL (C ertification RevocationLi s t:不正機器の排除を行うための不正機器リスト)を 格納するCRL格納手段144、受信ユニットからの認 証要求を受けて認証ルールを選択する送信側認証選択手 段147、その送信側認証選択手段147の選択結果に 応じて、Full認証とRest認証を切り替える切替 手段148、切り替えられて選択された認証ルールによ り受信ユニットとの間で認証を行う認証手段146、及 び受信ユニットとの間で暗号化データや認証要求など情 報のやり取りを行うD-I/F(デジタルインターフェ ース)145から構成されている。CRLは入力データ に付加されて新しい内容に随時更新される。

【0109】一方、デジタルAVデータ受信ユニット150は、送信ユニットとの間で暗号化データや認証要求など情報のやり取りを行うD-I/F151、送信ユニットから受信した暗号化データを復号化する復号化手段152、送信ユニットに対して認証要求を行う認証要求手段153、及びRest認証ルールにより認証を行う認証手段154から構成されている。

【0110】また、デジタルAVデータ受信ユニット160は、送信ユニットとの間で暗号化データや認証要求など情報のやり取りを行うD-I/F161、送信ユニットから受信した暗号化データを復号化する復号化手段162、送信ユニットに対して認証要求を行う認証要求手段163、Full認証用のルールを格納するFull認証格納手段166、Rest認証用のルールを格納するRest認証格納手段165、認証要求手段163からの指示により認証ルールを切り替える切替手段167、及び切り替えられ選択された認証ルールにより認証を行う認証手段164から構成されている。

【0111】次に、上記実施の形態の動作について図面を参照しながら説明する。

【0112】まず、前述のCRLは、管理センターから 送られてくるが、入手するには、Full認証の機能を 利用する。そのため、Rest認証機能のみを持つ機器 では、CRLを入手できない。従って、Rest認証機 能のみを持つ機器側は、CRLチェックによる機器排除 を行えない。ここで、送信ユニット及び受信ユニットが ともにFull認証及びRest認証機能を有する場合 について、CRLチェックを用いた手順を説明する。

【0113】図15は、図4に示した公開鍵及び秘密鍵による認証方法に、CRLチェックを付加したものである。

【0114】図15において、送信側には、管理センター(ライセンス機構)からそのユニットの識別用のID a、及びそのIDaに対する署名Aが送られ、受信側に は、管理センターからそのユニットの職別用のIDb、 及びそのIDbに対する署名Bが送られているものとす る。また、この場合受信側は秘密鍵Sbと公開鍵Pbを 持つ。また送信側は秘密鍵Saと公開鍵Paを持つ。

【0115】まず、ステップ41で受信側が乱数Bを発 生する。受信側は自己の認識番号であるIDb及び署名 Bと、乱数Bを自らの秘密鍵Sbで暗号化した暗号文S b (B) を送信側に送る。送信側は受信側の認識番号 I Dbから検索して受信側の公開鍵Pbを入手する。 ステ ップ49で、入手した公開鍵Pbで暗号文Sb (B)を 復号化する。その結果ステップ50のごとく乱数Bが得 られる。さらに、送信側は、ステップ51で、受信側の IDbに対してCRLチェックを行う。すなわち、ID bがCRLに無いかどうかを調べ、無ければステップ5 2で乱数Aを発生する。CRLに有れば不正機器である として認証を中止する。ステップ52で、乱数AとBは 送信側の秘密鍵Saで暗号化され暗号文Sa(A, B) が作成される。送信側は暗号文Sa(A,B)と自己の 認職番号IDaを受信側に送信する。受信側は、暗号文 Sa(A, B)と送信側の認識番号IDaを受け取り、 送信側の認識番号IDaから検索して送信側の公開鍵P aを入手し、ステップ42のごとく、Paで暗号文Sa (A, B) を復号化する。ここで、暗号文Sa(A, B) から受信側にはステップ41で送った乱数Bと全く 同一の乱数Bが得られ、偽造や改竄が行われてないこと が受信側にわかる。もし前記2つの乱数が異なっていれ ば、偽造や改竄が行われたことがわかり不正な相手がい ることがわかる。但し、この場合は、公開鍵Pa, Pb は正当な者にしか入手できないようになっているものと する。次に受信側はステップ43のごとく、受信側の秘 密鍵Sbで乱数Aを暗号化し、暗号文Sb(A)を作成 する。Sb(A)は送信側に送られ、ステップ53のご とく既に送信側で持っている、受信側の公開鍵Pbで暗 号文Sb(A)を復号化する。ステップ52で発生し た、乱数Aとステップ53で復号化した乱数Aが全く同 一であれば、偽造や改竄が行われていないことが送信側 にわかる。もし前記2つの乱数が異なっていれば、偽造 や改竄が行われたことがわかり不正な相手がいることが

【0116】一方、受信側は、ステップ44で送信側のIDaに対してCRLチェックを行う。そして、IDaがCRLに有れば認証を中止し、無ければ次のステップに移る。今、送信側及び受信側でのCRLチェックの結果が異常が無く、受信側と送信側でやりとりした乱数AとBは偽造や改竄が行われていないとすると、受信側と送信側以外の第3者には乱数AとBは秘密の乱数である。そこで送信側で、ステップ54のごとく、乱数AとBを用いて鍵Kabを作成する。同じくステップ45のごとく受信側で乱数AとBを用いて鍵Kabを作成する。前記2つのKabは全く同一のものであり共通鍵と

わかる。

なっている。次に送信側でステップ55のごとく鍵Kexを作成する。これを共通鍵Kabで暗号化し、暗号文Kab(Kex)を作成して、受信側に送る。受信側はステップ46のごとく共通鍵Kabで暗号文Kab(Kex)を復号化してKexを得、その結果、受信側が得た鍵Kexと送信側にある鍵Kexは全く同一であり、共通鍵となる。次に送信側でステップ56のごとく鍵Kcoを作成する。鍵Kcoは共通鍵Kexで暗号化され、暗号文Kex(Kco)として、受信側に送られる。受信側では、ステップ47のごとく共通鍵Kexで暗号文Kex(Kco)を復号化し、ステップ48のごとくKcoを得る。送信側にある鍵Kcoと受信側にあるKcoは全く同一で、共通鍵となっている。以上が公開鍵と秘密鍵による認証の過程で得られたワーク鍵Kcoである。

【0117】上記説明では、CRLチェックをステップ52の乱数Aの発生の前に行ったが、IDb受信後であれば、どこで行ってもよい。規格上はKABを作成するステップ54の後に行う。

【0118】次に、受信側がRest認証機能のみの場合について説明する。この共通鍵による認証を行う場合は、前述したような方法を用いることはできない。そこで、受信側にそのユニットに対するCRL用のIDとそのIDを用いて作成された署名を付与し、送信側でCRLを利用する方法を用いる。

【0119】図14において、受信側には、管理センタ 一から受信ユニットのIDb及び署名Bが与えられ、送 信側と受信側は共通鍵Sを持つ。なお、この共通鍵は正 当な者にしか与えられていない。まず、受信側でステッ プ30のごとく2個の乱数A1, A2を発生し、共通鍵 Sで暗号化し、暗号文S (A1A2)を作成し、IDb 及び署名Bとともに送信側へ送る。送信側ではステップ 35のごとく共通鍵Sで暗号文S (A1A2)を復号化 する。そして、受信側のIDbに対してCRLチェック を行う。また、署名Bもチェックする。このとき、CR Lチェック及び署名Bのチェックのどちらか一方でも異 常が有る場合は、認証を中止する。CRLチェック及び 署名Bのチェックの結果が両方とも正常であれば、ステ ップ37のごとく乱数A1と乱数A2が得られる。送信 側は乱数A2を受信側に送る。受信側はステップ31の ごとく2つの乱数A1とA2を持つことになる。ステッ プ30で発生した乱数A2とステップ31で送信側から 受け取った乱数A2が全く同じであれば、送信側で偽造 や改竄が行われていないことがわかる。もし、上記2つ の乱数が異なっていれば偽造や改竄が行われたことにな り認証は失敗する。次に送信側はステップ38のごとく 乱数B1とB2を発生し、暗号化して、暗号文S (B1 B2) を受信側に送る。受信側はステップ32のごとく 共通鍵Sを用いて暗号文S (B1B2)を復号化する。 すると、ステップ33のごとく乱数B1とB2が得られ る。受信側は乱数B2を送信側に送る。送信側はステッ プ39のごとく乱数B1とB2を持つことになる。ステップ38で発生した乱数B2と、ステップ39で受信側から受け取った乱数B2が同じであれば、受信側に、偽造や改竄が行われていないことがわかり、認証は成功する。もし、上記2つの乱数が異なっていれば、偽造や改竄が行われたことになり認証は失敗である。

【0120】ここまでで、認証が成功しているとすると、乱数A1と乱数B1は送信側と受信側以外の第3者には秘密の乱数である。送信側ではステップ40のごとくIDb及び乱数A1と乱数B1から鍵Kcoを作成する。一方受信側では、ステップ34のごとくIDb及び乱数A1と乱数B1から鍵Kcoを作成する。送信側にある鍵Kcoと受信側にある鍵Kcoと受信側にある鍵Kcoは全く同一であり、共通鍵となっている。以上が共通鍵による認証の過程で得られたワーク鍵Kcoである。この方法によれば、IDbと署名Bが対応しているので、IDbが盗まれて送信側でのCRLチェックがパスしても、署名Bによるチェックで不正使用が防止できる。

【0121】ここで、CRL用のIDは、例えば40ビットのデバイスIDを使用する。これにより、Full認証、Rest認証に関わらずすべての1394CPデバイスが40ビットのデバイスIDを持つことになる。【0122】なお、上記の説明では、管理センターでの署名の作成を、IDを用いて作成したが、このIDは管理センターが任意に決めるものである。さらに、安全性を高めるために、機器を製作する時に予め機器毎に埋め込まれる機器固有の識別子であるNUIDを用いる。すなわち、受信側は管理センターに申請する際に、その機器のNUIDを知らせ、管理センターは、そのNUIDとCRL用のIDを用いて署名を作成し、CRL用のIDと署名を受信側に付与する。

【0123】また、上記実施の形態では、認証ルールの 種類をFullとRestの2種類としたが、認証ルー ルの種類はこれに限定されるものではなく、3種類以上 であっても、受信側がCRLを持てない機器構成の場合 は、前述と同様に適用可能である。

【0124】また、本発明の各構成要素は、それぞれの機能を実現する専用のハード回路、機器等で実現しても、あるいは、コンピュータを利用してソフトウェア的に実現してもかまわない。

【0125】また、本発明をコンピュータで実現する場合、それらの各構成要素の機能の全部又は一部を実現するためのプログラムを格納した媒体も本発明に属する。 【0126】

【発明の効果】以上説明したところから明らかなように、本発明は、重要でないデータの認証に多くの時間を要せず、重要なデータに関しては、その認証が偽造や改竄に強くまた、ユニットによって認証に必要な厳密さを変えることによって、データの重要性や相手の装置が有する認証方法の種別などを考慮して、適切な認証方法で

データの送受信を行いうるユニット、システム等を提供 することができる。

【0127】また、本発明は、コンテンツの重要度に応じた複数種類の解読情報を得る場合に、認証回数を減少することができるという利点がある。

【0128】また、本発明は、排除機能を持たない受信機器であっても、送信側で機器の排除を行うことが可能となる。

【図面の簡単な説明】

- 【図1】本発明の第一の実施の形態についての概略図
- 【図2】従来技術について示す概略図
- 【図3】従来技術について示す概略図
- 【図4】本発明の実施の形態のうち認証方法に関するブロック図
- 【図5】本発明の実施の形態のうち認証方法に関するブロック図
- 【図6】本発明の第二の実施の形態についての概略図
- 【図7】本発明の第三の実施の形態についての概略図
- 【図8】本発明の第四の実施の形態についての概略図
- 【図9】本発明の第四の実施の形態についての概略図
- 【図10】本発明の第五の実施の形態についての概略図
- 【図11】同第五の実施の形態における手順方法の一例
- 【図12】同第五の実施の形態における手順方法の別の
- 【図13】本発明の第六の実施の形態についての概略図
- 【図14】同第六の実施の形態における手順方法の一例
- 【図15】送信側及び受信側両方でCRLチェックを行う場合の手順方法の一例を示す図

【符号の説明】

1 STB

一例を示す図

- 3 データ重要性判定手段
- 5 送信側複数認証ルール格納手段
- 6 送信側認証選択手段
- 7 送信側認証手段
- 9 TV
- 13 受信側認証手段
- 14 受信側複数認証ルール格納手段
- 15 受信側認証選択手段
- 18 STB
- 19 認証手段
- 20 公開鍵/秘密鍵
- 23 TV
- 25 認証手段
- 26 公開鍵/秘密鍵
- 28 STB

- 29 認証手段
- 30 共通鍵
- 33 TV
- 35 認証手段
- 36 共通鍵
- 38 STB
- 41 送信側複数認証ルール格納手段
- 42 ユニット認証ルール情報受信手段
- 43 送信側認証手段
- 45 VTR
- 48 認証要求手段
- 49 受信側認証ルール格納手段
- 50 認証ルール情報送信手段
- 51 受信側認証手段
- 55 送信側認証ルール取り出し手段
- 56 STB
- 57 データ重要性判定手段
- 58 送信側認証ルール取り出し手段
- 59 送信側認証選択手段
- 60 ユニット認証ルール情報受信手段
- 61 送信側認証手段
- 63 送信側複数認証ルール格納手段
- 65 TV
- 67 認証要求手段
- 68 受信側複数認証ルール格納手段
- 69 受信側認証選択手段
- 70 受信側認証手段
- 72 VTR
- 74 認証要求手段
- 75 受信側認証ルール格納手段
- 76 認証ルール情報送信手段
- 77 受信側認証手段
- 86 データ重要性判定手段
- 87 管理基準参照決定手段
- 88 管理基準格納手段
- 89 認証決定手段
- 90 認証手段
- 92 TV
- 93 STB
- 94 STB
- 95 管理基準参照決定手段
- 96 管理基準格納手段
- 97 認証決定手段
- 98 認証手段
- 100 VTR
- 144 CRL格納手段

【図1】

【図2】

【図3】

【図5】

【図6】

【図8】

【図7】

【図9】

【図10】

【図13】

【図14】

【図15】

フロントページの続き

(72)発明者 山田 正純 大阪府門真市大字門真1006番地 松下電器 産業株式会社内

(72) 発明者 後藤 昌一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 武知 秀明 大阪府門真市大字門真1006番地 松下電器 産業株式会社内

(72)発明者 臼木 直司 大阪府門真市大字門真1006番地 松下電器 産業株式会社内