توضیحات کد: در فایل نوت بوک چندین section گذاشته ام که در اینجا توضیحات آن را شرح میدهم(ضمن اینکه از کدی که استاد در کلاس نشان دادند استفاده کردم)

-1

برای fine-tuning:

Unfreeze block 14: بلاک "block14_sepconv1" و بلاک های بعد از آن unfreeze شده اند. "block14_sepconv3" و بلاک های بعد از آن unfreeze block 12: بلاک "block12_sepconv3" و بلاک های بعد از آن unfreeze block 11 شده اند. "block11_sepconv3" و بلاک های بعد از آن unfreeze block 11

Unfreeze block 9: بلاک "block9_sepconv3" و بلاک های بعد از آن unfreeze شده اند.

-2

Xception دارای لایه های Batch normalization میباشد و طبق راهنمای سایت <u>keras.io</u> لایه های hinference دارای لایه های batch normalization باید به حالت batch normalization اجرا شوند و گرنه اپدیت بر روی وزن های غیرقابل اموزش اعمال میشود و چیزی که مدل از قبل یاد گرفته خراب میشود.

برای اینکار باید از training=False استفاده کرد. کد آن هم به صورت زیر استفاده کردم:

x = conv base(inputs, training=False)

-3

Feature_extractor 1 در قسمتی که از data augmentation استفاده نکرده ام تصاویر را فقط یکبار به شبکه Feature_extractor 1 داده ام و خروجی آن یک تسنور 2048 * 8 * 8 میباشد. سپس ان را به یک بردار شبکه conv_base داده ام و در همه ایپاک از همین بردار استفاده میشود. این کار را برای 1200 تصویر انجام داده شده. از مزایای آن سرعت بخشیدن به کار شبکه است.

Feature_extractor 2: کاری که انجام میدهد مانند Feature_extractor 1 است فقط برخلاف بالا در fine-tuning کردن در بخش unfreeze کردن در بخش conv_base اینجا conv_base داشته باشیم چه نداشته باشیم.

از earlyStop callback استفاده کردم و در ادامه بهترین دقت ها را در جدول زیر گزارش میکنم:

	Test accuracy Without augmentation and dropuot	Train accuracy Without augmentation and dropuot	Test accuracy With augmentation and dropuot	Train accuracy With augmentation and dropuot
Random initialization weights	39%	94%	7%	8%
Feature extractor 1	81%	100%	-	ı
Feature extractor 2	80%	100%	77%	92%
Fine-tuning: unfreeze block 14	82%	100%	81%	97%
Fine-tuning: unfreeze block 12	83%	100%	83%	98%
Fine-tuning: unfreeze block 11	81%	100%	84%	98%
Fine-tuning: unfreeze block 9	81%	100%	85%	99%

با توجه به نتایج جدول به نظر میرسد Data augmentation و tropout اثر مثبت خود را در gine-tuning نشان داده اند اما در قسمت الف و ب سوال باعث بهبود جواب نشده اند.

نمودار بهترین دقت روی تست:

