(a)	The	source of solar energy is the Sun.	
	Tick	the box next to those resources for which the Sun is also the source of energy.	
		coal	
		geothermal	
		hydroelectric	
		nuclear	
		wind	[2]
(b)	Fig.	4.1 shows a solar water-heating panel on the roof of a house.	
		copper tubes, painted black	
		d water flows into the copper tubes, which are heated by solar radiation. Hot water flo of the tubes and is stored in a tank.	ws
	(i)	Explain why the tubes are made of copper and are painted black.	
			[2]
	(ii)	In 5.0 s, 0.019 kg of water flows through the tubes. The temperature of the water increase from 20 °C to 72 °C. The specific heat capacity of water is 4200 J/(kg °C).	es
		Calculate the thermal energy gained by the water in 5.0 s.	

thermal energy =[3]

Calculate the power of the solar radiation incident on the panel.	
power =	[2]
[Tota	al: 9]

(iii) The efficiency of the solar panel is 70%.

A tr	ain h	as a total mass of 7.5 × 10 ⁵ kg.
(a)		e train accelerates from rest at a constant rate along a straight, horizontal track. eaches a speed of 24 m/s in 60 s.
	Cal	culate
	(i)	the train's acceleration,
		acceleration =[2]
	(ii)	the resultant force acting on the train.
		force =[2]
(b)		train now travels with a constant speed of 24 m/s along a straight, horizontal track. total force opposing the motion due to friction and air resistance is 7.2 × 10 ⁴ N.
	(i)	By considering the work done by the train's engine in 1.0s, calculate its output power.
		power =[2]

2

at be increased to maintain the	engine must I	wer of the train's	Explain why the speed of 24 m/s.
[3]			
[Total: 9]			

(ii) The train begins to travel up a slope.

3			nt wishes to work out how much power she uses to lift her body when climbing a stairs.
			y mass is 60 kg and the vertical height of the stairs is 3.0 m. She takes 12s to walk tairs.
	(a)	Cal	culate
		(i)	the work done in raising her body mass as she climbs the stairs,
			work -
			work =[2]
		(ii)	the output power she develops when raising her body mass.
			power = [2]
	(b)	At t	he top of the stairs she has gravitational potential energy.
			scribe the energy transformations taking place as she walks back down the stairs I stops at the bottom.
			[2]
			[Total: 6]

4 Fig. 2.1 shows a track for a model car.

Fig. 2.1

The car has no power supply, but can run down a sloping track due to its weight.

(a) The car is released at Q. It comes to rest just before it reaches S and rolls back.

(1)	comes to rest.
	[2]
(ii)	Explain in terms of energy transformations why the car, starting at Q, cannot pass S.
	[1]

(b) A second car, of mass 0.12 kg, is released from P. It continues until it runs off the track at T.

Calculate the maximum speed that the car could have at T assuming friction in the car is negligible.

speed =	[3
opood	 L

[Total: 6]

5 An electric pump is used to raise water from a well, as shown in Fig. 3.1.

Fig. 3.1

(a)		e pump does work in raising the water. State an equation that could be used to culate the work done in raising the water.
		[2]
(b)		water is raised through a vertical distance of 8.0 m. The weight of water raised in s is 100 N.
	(i)	Calculate the work done in raising the water in this time.
	(ii)	work done =[1] Calculate the power the pump uses to raise the water.
	(iii)	power =[1] The energy transferred by the pump to the water is greater than your answer to (i). Suggest what the additional energy is used for.
		[1]

6 Fig. 3.1 shows water falling over a dam.

Fig. 3.1

(a) The vertical height that the water falls is 7.0 m. Calculate the potential energy lost by 1.0 kg of water during the fall.

ı	potential	eneray	=	 [2	1
ı	potoritiai	Cilcigy	_	 L <u>~</u>	1

(b) Assuming all this potential energy loss is changed to kinetic energy of the water, calculate the speed of the water, in the vertical direction, at the end of the fall.

[Total : 6]

7 Fig. 2.1 shows a simple pendulum that swings backwards and forwards between P and Q.

Fig. 2.1

(a)	The	time taken for the pendulum to swing from P to Q is approximately 0.5 s.
	Des	scribe how you would determine this time as accurately as possible.
		[2]
(b)	(i)	State the two vertical forces acting on the pendulum bob when it is at position R.
		1
		2
	(ii)	The pendulum bob moves along the arc of a circle. State the direction of the resultant of the two forces in (i).
		[1]
(c)	The than	mass of the bob is $0.2\mathrm{kg}$. During the swing it moves so that P is $0.05\mathrm{m}$ higher n R.
	Cal	culate the increase in potential energy of the pendulum bob between R and P.

potential energy =[2]