Hoops Longwing Data Analysis

Zane Billings

15 November 2019

In order to start analyzing the Hoops' Longwing sample data, we will first load the tidyverse package suite. After loading the packages we need, we can use readr::read_csv() to load in the data. But, notice the imported data frame has a useless column at the beginning, which we can easily remove manually.

```
library(tidyverse)
butterfly <- read_csv("hoops_longwing_study.csv")
butterfly <- butterfly[ , -1]</pre>
```

Now that we have the data imported, we can go ahead and take a quick look at the summary and structure.

summary(butterfly)

```
##
     wing_length
                       wing_width
                                             age
                                                         num_offspring
##
           : 7.46
                                                                : 8.00
    Min.
                     Min.
                            : 2.730
                                       Min.
                                               : 2.00
                                                         Min.
    1st Qu.:14.19
                     1st Qu.: 6.670
                                       1st Qu.:12.00
                                                         1st Qu.:24.00
##
    Median :16.78
                     Median: 8.135
                                       Median :19.00
                                                         Median :28.00
##
    Mean
            :20.24
                             : 8.748
                                               :22.68
                                                                :27.84
                     Mean
                                       Mean
                                                         Mean
##
    3rd Qu.:26.74
                     3rd Qu.:10.910
                                       3rd Qu.:31.00
                                                         3rd Qu.:32.00
    Max.
            :42.18
                     Max.
                             :17.390
                                       Max.
                                               :61.00
                                                         Max.
                                                                :39.00
##
    feeding_range
                        color_peak
                                         num_mates
                                                          avg_scale_size
    Min.
            :-0.250
                              :357.9
                                               :-2.000
##
                      Min.
                                       Min.
                                                         Min.
                                                                 :18.27
##
    1st Qu.: 2.640
                      1st Qu.:385.9
                                       1st Qu.: 3.000
                                                          1st Qu.:28.02
    Median : 3.510
                      Median :392.0
                                       Median : 5.000
                                                          Median :32.39
           : 5.997
                              :392.0
                                               : 6.212
                                                          Mean
                                                                 :38.43
##
    Mean
                      Mean
                                       Mean
##
    3rd Qu.: 5.990
                      3rd Qu.:398.1
                                       3rd Qu.: 9.000
                                                          3rd Qu.:48.60
##
                                                                 :89.43
    Max.
            :69.880
                      Max.
                              :428.3
                                       Max.
                                               :21.000
                                                          Max.
##
    antenna_length
                       num_spots
                                        population
                                                            dispersal_distance
##
    Min.
            :0.350
                     Min.
                             : 2.000
                                       Length: 10000
                                                            Min.
                                                                    :21.84
                     1st Qu.: 4.000
##
    1st Qu.:3.140
                                       Class : character
                                                            1st Qu.:24.15
##
    Median :3.850
                     Median : 6.000
                                       Mode :character
                                                            Median :24.67
                            : 5.755
##
    Mean
            :4.375
                     Mean
                                                            Mean
                                                                    :24.67
##
    3rd Qu.:5.800
                     3rd Qu.: 7.000
                                                            3rd Qu.:25.19
##
    Max.
            :7.670
                             :18.000
                                                            Max.
                                                                   :27.79
                     Max.
     body_length
##
                       sample id
##
            : 1.000
                      Length: 10000
    Min.
##
    1st Qu.: 5.100
                      Class : character
##
    Median : 6.450
                      Mode : character
    Mean
            : 6.773
##
    3rd Qu.: 8.480
    Max.
            :14.590
str(butterfly)
```

```
## Classes 'tbl_df', 'tbl' and 'data.frame': 10000 obs. of 14 variables:
## $ wing_length : num 14.1 24.5 21.3 16.2 15.5 ...
## $ wing_width : num 6.56 11 8.15 5.84 6.72 ...
## $ age : num 40 38 25 13 43 9 36 23 37 26 ...
## $ num_offspring : num 33 33 29 23 35 20 35 29 33 30 ...
```

```
## $ feeding_range
                      : num 10.78 8.58 3.86 3.14 13.07 ...
## $ color_peak
                      : num 402 387 373 407 399 ...
## $ num mates
                     : num 48843811307...
## $ avg_scale_size : num 27.7 41.6 36.2 34.1 29.8 ...
## $ antenna_length
                      : num 3.05 5.48 4.85 3.68 3.57 5.76 6.29 2.05 2.49 5.54 ...
## $ num spots
                      : num 7 4 6 8 7 4 4 9 10 4 ...
## $ population
                      : chr "Ternate" "Tidore" "Kayoa" "Ternate" ...
## $ dispersal_distance: num 25.7 24.3 23.1 25.9 25.2 ...
##
   $ body length
                      : num
                             6.91 8.16 7.03 3.56 7.12 8.42 8.19 5.02 4.36 9.86 ...
                      : chr "Ter_00001_ZW" "Tid_00002_ZW" "Kay_00003_ZB" "Ter_00004_ZW" ...
## $ sample_id
```

The only real change we need to make is to convert the **population** variable into a factor, since the functions provided in **readr** do not coerce strings to factors by default.

```
butterfly$population <- as.factor(butterfly$population)
summary(butterfly$population)</pre>
```

```
## Kayoa Ternate Tidore
## 1322 5486 3192
```

So, now we can start exploring our data. Let's start by making histograms of all the numeric data.


```
# An alternative way to view the data
butterfly %>%
  select(-population) %>%
  gather(key = "field", value = "value", -"sample_id") %>%
  ggplot(aes(x = value)) +
  geom_density(adjust = 2) +
  facet_wrap(~field, scales = "free")
```


Now we have one categorical variable, so let's look at all of our data stratified by the population value.

```
butterfly %>%
  gather(key = "field", value = "value", -c(sample_id, population)) %>%
  ggplot(aes(x = population, y = value, fill = population)) +
  geom_violin(adjust = 2) +
  facet_wrap(~field, scales = "free") +
  theme(legend.position = "bottom")
```


Now, using the GGally package, we can also make a scatterplot matrix like we did with graphics::pairs(). library(GGally)

```
butterfly[1:100, 1:6] %>%
   ggpairs(aes(alpha = 0.2))
```


As you can probably see, this visualization is not ideal when we have a lot of data.

Let's try a correlation table as well. However, note that while a correlation table can give us a good sense of linaer relationships, we lose any information we had about nonlinear relationships, which we have to examine visually if we don't have a hypothesis about their existence.

```
library(pander)
butterfly %>%
  select(-c(sample_id, population)) %>%
  cor() %>%
  pander
```

Table 1: Table continues below

	$wing_length$	$wing_width$	age	num_offspring
wing_length	1	0.9226	-0.001907	-0.002996
${f wing_width}$	0.9226	1	0.001328	-0.001489
age	-0.001907	0.001328	1	0.9413
${f num_offspring}$	-0.002996	-0.001489	0.9413	1
${f feeding_range}$	-0.004469	-0.00217	0.8559	0.7075
color_peak	0.01542	0.02052	0.00448	0.0009257
${f num_mates}$	0.9495	0.8747	-0.002376	-0.003543
${f avg_scale_size}$	0.9799	0.903	0.000683	-0.0002265
${f antenna_length}$	0.9906	0.9143	-0.002996	-0.00398
$\operatorname{num_spots}$	-0.8294	-0.9372	0.00375	0.005168
${f dispersal_distance}$	0.01612	0.02096	0.0007418	-0.003065
body_length	0.8823	0.8511	-0.0002991	-0.002555

Table 2: Table continues below

	${\rm feeding_range}$	$color_peak$	num_mates
wing_length	-0.004469	0.01542	0.9495
$\mathbf{wing_width}$	-0.00217	0.02052	0.8747
age	0.8559	0.00448	-0.002376
${f num_offspring}$	0.7075	0.0009257	-0.003543
${f feeding_range}$	1	0.01034	-0.004402
color_peak	0.01034	1	0.009925
$\operatorname{num_mates}$	-0.004402	0.009925	1
${ m avg_scale_size}$	-0.001537	0.01469	0.942
${f antenna_length}$	-0.005578	0.01548	0.9281
$\operatorname{num_spots}$	0.005558	-0.01968	-0.769
${f dispersal_distance}$	0.006433	0.9468	0.01057
${\bf body_length}$	-0.0007702	0.01103	0.837

Table 3: Table continues below

	avg_scale_size	antenna_length	num_spots
$-$ wing_length	0.9799	0.9906	-0.8294
${f wing_width}$	0.903	0.9143	-0.9372
age	0.000683	-0.002996	0.00375
${f num_offspring}$	-0.0002265	-0.00398	0.005168
${f feeding_range}$	-0.001537	-0.005578	0.005558
color	0.01469	0.01548	-0.01968
$\operatorname{num_mates}$	0.942	0.9281	-0.769
${f avg_scale_size}$	1	0.9554	-0.7921
${f antenna_length}$	0.9554	1	-0.8447
$\mathbf{num_spots}$	-0.7921	-0.8447	1
${f dispersal_distance}$	0.01492	0.01626	-0.02037
${\bf body_length}$	0.8639	0.875	-0.7775

	dispersal_distance	body_length
wing_length	0.01612	0.8823
$\mathbf{wing_width}$	0.02096	0.8511
\mathbf{age}	0.0007418	-0.0002991
${f num_offspring}$	-0.003065	-0.002555
${f feeding_range}$	0.006433	-0.0007702
color_peak	0.9468	0.01103
num_mates	0.01057	0.837
${ m avg_scale_size}$	0.01492	0.8639
${f antenna_length}$	0.01626	0.875
$\mathbf{num_spots}$	-0.02037	-0.7775
${f dispersal_distance}$	1	0.01044
$\operatorname{body_length}$	0.01044	1