COL351: Analysis and Design of Algorithms

Tutorial Sheet - 7

October 8, 2022

Question 1 Design a divide-and-conquer algorithm to merge k sorted arrays, each with n elements, into a single sorted array of kn elements. What is the time complexity of this algorithm, in terms of k and n?

Question 2 You are given an n-node complete binary tree T of height h, so $n = 2^h - 1$. The nodes of T are labelled with distinct real numbers. A node in T is a local minimum if its label is smaller than the label of its neighbours. Device an algorithm to find a local minimum of T in $O(\log n)$ time.

Question 3 Given an n sized array A, the *Inversion Count* of A is the number of pairs (i, j) such that A[i] > A[j] and i < j. So if A is already sorted, then the inversion count is 0, but if A is sorted in the reverse order, the inversion count is nC_2 . Design a divide-and-conquer algorithm to compute *Inversion Count* of an array A of size n in $O(n \log n)$ time.

Hint: Use ideas from Merge Sort.

Question 4 Show that the randomized quick sort can be implemented by just using O(1) extra space.

Hint: See next page.

Question 5 Analyze the time complexity to compute Median of a list using Medians-of-Median algorithm (covered in Lecture 24) when the chunk size is (i) 3, and (ii) 7.

Implementation of Randomized Quick Sort

Algorithm 1: Randomized-Quick-Sort(A, L, R)

- 1 if $(R \leq L)$ then Return;
- 2 $q \leftarrow \text{Random-index-from-interval}([L, R])$

 $/\star$ Pivot is A[q] $\star/$

- $s k \leftarrow Partition(A, L, R, q);$
- 4 Randomized-Quick-Sort(A, L, k 1);
- 5 Randomized-Quick-Sort(A, k + 1, R);

Algorithm 2: Partition(A, L, R, q)

- 1 $k \leftarrow L + \text{(No. of elements in } A[L, R] \text{ smaller than } A[q]);$
- 2 Swap(A, q, k)

/* Put pivot at correct index */

- 3 while (L < k < R) do
- 4 | while (A[L] < A[k]) do L = L + 1;
- s | **while** $(A[k] \leq A[R])$ **do** R = R 1;
- if (L < k < R) then Swap(A, L, R);
- 7 end
- 8 Return k;