Perceptron

Carlo Cena

1 Introduction

A perceptron assumes that the data is linearly separable (there exists one hyperplane separating different type of samples without errors). It is therefor able to solve binary problems.

2 Algorithm

Let's define
$$\boldsymbol{w} = \begin{pmatrix} w_1 \\ \vdots \\ w_n \\ b \end{pmatrix}$$
 and $\boldsymbol{X} = \begin{pmatrix} \boldsymbol{x}_1 \\ \vdots \\ \boldsymbol{x}_m \\ 1 \end{pmatrix}$ such that $sign(\boldsymbol{w}^\intercal \boldsymbol{x}_i)$ is equal to the

predicted class for x_i , consequently a class label will be either 1 or -1.

Therefor, we can say that if $y_i(\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x}_i) > 0$ then features' vector \boldsymbol{x}_i is classified correctly.

The weights' vector \boldsymbol{w} will be updated until all of the x_i are classified correctly $(y_i(\boldsymbol{w}^{\intercal}\boldsymbol{x}_i) > 0, \forall i)$.

2.1 Pseudocode

```
Set w = 0

repeat

if y_i(w^{\mathsf{T}}x_i) \le 0 then

w \longleftarrow w + y_ix_i

end if

until y_i(w^{\mathsf{T}}x_i) > 0, \forall i
```