SymPy Cheatsheet (http://sympy.org)

Basics

Sympy help: help(function)

Declare symbol: x = Symbol('x')

Substitution: expr.subs(old, new)

Numerical evaluation: expr.evalf()

Expanding: expr.expand()

Common denominator: ratsimp(expr)

Simplify expression: simplify(expr)

Constants

i:

π : pi e: E ∞ : oo

Τ

Numbers types

 $\begin{array}{ll} \operatorname{Integers} (\mathbb{Z}) \colon & \operatorname{Integer}(x) \\ \operatorname{Rationals} (\mathbb{Q}) \colon & \operatorname{Rational}(p, q) \\ \operatorname{Reals} (\mathbb{R}) \colon & \operatorname{Float}(x) \end{array}$

Basic funtions

Trigonometric: sin cos tan cot Cyclometric: asin acos atan acot Hyperbolic: sinh cosh tanh coth Area hyperbolic: asinh acosh atanh acoth Exponential: exp(x)Square root: sqrt(x) Logarithm $(\log_b a)$: log(a, b) Natural logarithm: log(a) Gamma $(\Gamma(x))$: gamma(x) Absolute value: abs(x)

Calculus

```
\begin{array}{lll} \lim_{x\to a} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}) \\ \lim_{x\to a_-} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_+} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_+} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_+} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_+} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_-} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_-} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_-} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_-} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_-} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_-} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_-} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_-} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_-} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_-} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_-} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_-} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_-} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_-} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_-} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_-} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_-} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_-} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_-} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_-} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_-} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_-} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}=\text{'-'}) \\ \lim_{x\to a_-} f(x) \colon & \operatorname{limit}(\mathbf{f}, \ \mathbf{x}, \ \mathbf{a}, \ \operatorname{dir}) \\ \lim_{x\to a_-} f(x) \colon & \operatorname{limit}(\mathbf{f}
```

Equations

Equation f(x) = 0: solve(f, x) System of equations: solve([f, g], [x, y]) Differential equation: dsolve(equation, f(x))

Geometry

Points: a = Point(xcoord, ycoord)
Lines: l = Line(pointA, pointB)
Circles: c = Circle(center, radius)
Triangles: t = Triangle(a, b, c)
Area: object.area
Intersection: intersection(a, b)
Checking tangency: c.is_tangent(1)

Plotting

Plot: Plot(f, [a, b]) Zoom: +/-: R/F or PgUp/PgDn or Numpad +/-Rotate X.Y axis: Arrow Keys or WASD Rotate Z axis: Q and E or Numpad 7 and 9 View XY: View XZ: F2 F3 View YZ: View Perspective: F4 Axes Visibility: F5 Axes Colors: F6 Screenshot: F8 Exit plot: ESC

Discrete math

Factorial (n!): factorial (n) Binomial coefficient $\binom{n}{k}$: binomial (n, k) Sum $(\sum_{n=a}^{b} expr)$: summation (expr, (n, a, b)) Product $(\prod_{n=a}^{b} expr)$: product (expr, (n, a, b))

Linear algebra

Printing

Python print: print latex()
Pretty print: print python()
Pretty print: pprint()

Examples

Find 100 digits of π^e :

(pi**E).n(100) Expand $(x+y)^2(x-y)(x^2+y)$: ((x + y)**2 * (x - y) * (x**2 + y)).expand() Simplify $\frac{1}{x} + \frac{x \sin x - 1}{x^2 - 1}$: simplify((1/x) + (x * sin(x) - 1)/(x**2 - 1))

Check if line passing through points (0,1) and (1,1) is tangent to circle with center at (5,5) and radius 3: Circle(Point(5,5), 3).is_tangent(Line(Point(0,1), Point(1,1)))

Find roots of $x^4 - 4x^3 + 2x^2 - x = 0$: solve(x**4 - 4*x**3 + 2*x**2 - x, x)

Solve the equations system: x + y = 4, xy = 3: solve([x + y - 4, x*y - 3], [x, y])

Calculate limit of the sequence $\sqrt[n]{n}$: limit(n**(1/n), n, oo)

Calculate left-sided limit of the function $\frac{|x|}{x}$ in 0: limit(abs(x)/x, x, 0, dir='-')

Calculate the sum $\sum_{n=0}^{100} n^2$: summation(n**2, (n, 0, 100))

Calculate the sum $\sum_{n=0}^{\infty} \frac{1}{n^2}$: summation(1/n**2, (n, 0, oo))

Calculate the integral $\int \cos^3 x \, dx$: integrate($\cos(x)**3$, x)

Calculate the integral $\int_1^\infty \frac{dx}{x^2}$: integrate(1/x**2, (x, 1, oo))

Find 10 terms of series expansion of $\frac{1}{1-2x}$ at 0: (1/(1-2*x)).series(x, 0, 10)

Solve the differential equation f''(x) + 9f(x) = 1: dsolve(f(x).diff(x, x) + 9*f(x) - 1, f(x))