Année : 2024/2025	mini DS	2bac sm
M. Ouikrim	Fkih Ben Salh	biranzarane

- a. Montrer que f réalise une bijection de I vers un ensemble J que l'on déterminera.
- b. Déterminer $f^{-1}(x)$ pour $x \in J$.
- ② Soit $\lambda \in]-\infty, -5]$.
 - a. Montrer que l'équation $\frac{x^3}{3} \frac{5}{2}x^2 + 6x + \lambda = 0$ admet une solution unique α dans \mathbb{R} .
 - b. En déduire le signe de $\frac{x^3}{3} \frac{5}{2}x^2 + 6x + \lambda \operatorname{sur} \mathbb{R}$.

$$\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ |f(x) - f(y)| \le \arctan(|x - y|).$$

Montrer que $f(\mathbb{R})$ est un intervalle.

- ① Soit $f(x) = \left(1 \frac{1}{\tan(x)}\right)^3$ définie sur $I = \left]0, \frac{\pi}{2}\right[$.
 - a. Montrer que f réalise une bijection de I vers un ensemble J que l'on déterminera.
 - b. Déterminer $f^{-1}(x)$ pour $x \in J$.
- ② Soit $\lambda \in]-\infty, -5]$.
 - a. Montrer que l'équation $\frac{x^3}{3} \frac{5}{2}x^2 + 6x + \lambda = 0$ admet une solution unique α dans $\mathbb R$.
 - b. En déduire le signe de $\frac{x^3}{3} \frac{5}{2}x^2 + 6x + \lambda \operatorname{sur} \mathbb{R}$.

$$\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ |f(x) - f(y)| \le \arctan(|x - y|).$$

Montrer que $f(\mathbb{R})$ est un intervalle.

- - a. Montrer que f réalise une bijection de I vers un ensemble J que l'on déterminera.
 - b. Déterminer $f^{-1}(x)$ pour $x \in J$.
- ② Soit $\lambda \in]-\infty, -5]$.
 - a. Montrer que l'équation $\frac{x^3}{3} \frac{5}{2}x^2 + 6x + \lambda = 0$ admet une solution unique α dans $\mathbb R$. b. En déduire le signe de $\frac{x^3}{3} \frac{5}{2}x^2 + 6x + \lambda$ sur $\mathbb R$.
- ③ Soit f une fonction définie sur \mathbb{R} telle que :

$$\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ |f(x) - f(y)| \le \arctan(|x - y|).$$

Montrer que $f(\mathbb{R})$ est un intervalle.