

A=
$$\begin{bmatrix} 1-1/N & -1/N \\ -1/N & 1-1/N \end{bmatrix}$$
 = residualizing matrix ronk(A) = N-1

(N+1)S² = X AX gradratic form has y² (ronk(A))

t-distribution one parameter k degrees of freedom

N(0,1)

t has father tends in tails)

(more prob. in tails)

f(x) = $\frac{P(\frac{k+1}{2})}{\sqrt{k\pi}} \frac{1+x^2}{2}$

Fact: $U \sim N(0,11)$

then $U \sim V(k)$

If
$$x_n \stackrel{iid}{\sim} N(\mu, 6^2)$$
 then $\overline{X} \sim N(\mu, 6^2N)$

$$U = \frac{\overline{X} - M}{6\sqrt{N}} \sim N(0, 1)$$

$$E[u] = \frac{1}{6\sqrt{N}} (E[X] - \mu) = 0$$

$$Var(u) = \frac{1}{6^2N} Var(\overline{X}) = 1$$

$$V = \frac{N-1}{6^2} S^2 \sim \chi^2(N-1)$$
also $U \perp V$. Hence
$$\frac{U}{\sqrt{N-1}} = \frac{\overline{X} - \mu}{6\sqrt{N}} \sim t(N-1)$$

$$\frac{1}{\sqrt{N-1}} = \frac{\overline{X} - \mu}{6\sqrt{N}} \sim t(N-1)$$

Probability: Given
$$X_n$$
 iid f_q parameter.

We know $0=5$

Calalate $P(X_n = ...)$

Statistics: Given X_n iid f_q

We don't Knew O.
We want to use X1, XN to estimate O
How confident are we in our estimates.
$ex. X_n \sim N(u, 1)$
$\frac{1}{\sqrt{2}}$
Haw estimate u? X?

Exp(x) and $\lambda > 0$ Hew do I estimate λ ?

We'll work w/ families of parametrized distributions.

Eg. & N(µ,6²) when µ ∈ R, 6²>0

& Exp(x) when $\lambda > 0$ & Unif(0, θ) $\theta \in [10, 20]$

Exponential Family (one-dimensum parameta)
Assure we have a parameter $O \in C$ and
the clasa X_n iid f_g where

$$f(x) = h(x)c(\theta) \exp(T(x) \omega(\theta))$$

$$depend a dx$$

$$depend a x not 0$$

$$we call the femily of dist. an exp. family.$$

$$Ex. Poisson. $\lambda > 0$

$$\chi_{1} \times \chi_{2} \times \chi_{3} \times \chi_{4} = \chi_{1} \times \chi_{2} + \chi_{4}$$

$$\chi_{1} \times \chi_{2} \times \chi_{3} \times \chi_{4} = \chi_{1} \times \chi_{2} + \chi_{4}$$

$$f(x) = \prod_{n=1}^{N} \chi_{n}^{n} = \prod_{n=1}^{N} (\frac{1}{\chi_{n}}) \chi_{n}^{n} = \chi_{1} \times \chi_{2} + \chi_{4}$$

$$f(x) = \prod_{n=1}^{N} \chi_{n}^{n} = \prod_{n=1}^{N} (\frac{1}{\chi_{n}}) \chi_{n}^{n} = \chi_{1} \times \chi_{2} + \chi_{4}$$

$$= \prod_{n=1}^{N} (\frac{1}{\chi_{n}}) \exp(\log(\chi_{2} \times \chi_{n})) e^{-N\lambda} \qquad \log(a^{b}) = \log(a^{b}) = \log(a^{b})$$

$$= \prod_{n=1}^{N} (\frac{1}{\chi_{n}}) \exp(\chi_{1} \times \chi_{n}^{n}) e^{-N\lambda} \qquad \log(a^{b}) = \log(a^{b})$$

$$= \prod_{n=1}^{N} (\chi_{n}^{n}) \exp(\chi_{1}^{n}) e^{-N\lambda} \qquad \log(a^{b}) = \log(a^{b})$$

$$= \prod_{n=1}^{N} \chi_{n}^{n} \times \exp(\lambda) \qquad (\chi_{1} \times \chi_{2}^{n}) = \prod_{n=1}^{N} \chi_{n}^{n} \times \exp(\lambda)$$

$$= \prod_{n=1}^{N} \chi_{1}^{n} \times \chi_{1}^{n} \times \chi_{2}^{n} \times \chi_{2}^{n} = \chi_{1}^{n} \times \chi_{2}^{n} \times \chi_{2}^{n} = \chi_{1}^{n} \times \chi_{2}^{n} \times \chi_{2}^{n} = \chi_{1}^{n} \times \chi_{2}^{n} \times \chi_{2}^{n} \times \chi_{2}^{n} = \chi_{1}^{n} \times \chi_{2}^{n} \times \chi_{2}^{n} \times \chi_{2}^{n} = \chi_{1}^{n} \times \chi_{2}^{n} = \chi_{1}^{n} \times \chi_{2}^{n} \times$$$$

Theorem: If X_n iid f_0 and margaelly f_0 is an exponential family (i.e.) marginal $f_0(X) = C(0)h(X) \exp(T(X) w(0))$ then $f_0(X)$ is an exponential family. Practical advice: just check marginal of One observation. $\frac{\mathcal{E}_{X}}{f(x)} = \lambda e^{-\lambda x} \mathbf{I}(x>0)$ ((x)) h(x)