ALGORYTMY GRAFOWE

- Rozwiązania należy przesłać pod adres: kryba@amu.edu.pl
- w mailu o tytule: AGRzadanie02
- w pliku o nazwie: ***_NazwiskoImię_\%\%.py ,
 gdzie *** jest to 02a lub 02b w zależności od wyboru zadania
 oraz \%\% oznacza dzień tygodnia, w którym uczestniczyli państwo w zajęciach: pn, wt lub cz
- np. 02a_KowalskiJan_wt.py

ZADANIE 02

Proszę wykonać JEDNO z poniższych zadań (do wyboru).

UWAGA: nie należy wykorzystywać gotowych modułów do obsługi grafów. (Wykorzystywanie modułów do macierzy też jest przerostem formy nad treścią)

ZADANIE 02a

Masz plik matrixDFS.txt zawierający macierz przyległości grafu prostego. Wykorzystując algorytm DFS wyznacz wszystkie składowe spójności tego grafu prostego. Wypisz wierzchołki w kolejności rozpatrywania, liczbę składowych spójności i listy wierzchołków poszczególnych składowych spójności.

Przykładowa zawartość pliku matrixDFS.txt:

 $0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 1\; 0\; 0\; 1\; 0\; 0\; 0\; 0$ $0\ 0\ 0\ 1\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0$ $0\ 0\ 1\ 0\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0$ $0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0$ $0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0$ $0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0$ $0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 1\; 1\; 0\; 1\; 0\; 0\; 0\; 0$ $0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0$ $0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 1\; 0\; 0\; 1\; 1\; 0\; 0\; 0$ $0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 1\; 0\; 0\; 0\; 0\; 0$ 0.010000000000000000100000000000000001 $0\; 1\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 1\; 0$

Przykładowe Wyjście:

Wierzcholki w kolejności ich rozpatrywania: 0 8 7 9 11 10 12 1 14 15 2 3 4 5 6 13 Liczba składowych spojnosci: 3 Kolejne składowe: 0 8 7 9 11 10 12 1 14 15 2 3 4 5 6 13

Wskazówka: W momencie, gdy opróżni się stos, należy sprawdzić, czy są nierozpatrzone wierzchołki i zacząć DFS od pierwszego nierozpatrzonego.

ZADANIE 02b (za to zadanie można uzyskać dodatkowe punkty bonusowe)

Masz plik matrixBFS.txt zawierający macierz wag pewnego spójnego grafu prostego z wagami. Wagi krawędzi są liczbami całkowitymi dodatnimi. Korzystając z modyfikacji algorytmu BFS, wyznacz długość najkrótszych ścieżek z wierzchołka odpowiadającego pierwszemu wierszowi macierzy do wszystkich pozostałych wierzchołków (długość ścieżki jest sumą wag jej krawędzi). Podaj najkrótszą ścieżką od wierzchołka odpowiadającego pierwszemu wierszowi do wierzchołka odpowiadającego ostatniemu wierszowi. :

Przykładowa zawartość pliku matrixBFS.txt:

```
- 4 2 - - 4 - 1 2 3 2 1 - - 1 - 2 - - - 3 1 - - (Uwaga: znak '-' oznacza brak krawędzi czyli '∞') Przykładowe Wyjście:
Wierzchlek 1 jest w odleglosci: 3 od wierzcholka 0 Wierzchlek 2 jest w odleglosci: 2 od wierzcholka 0 Wierzchlek 3 jest w odleglosci: 5 od wierzcholka 0 Wierzchlek 4 jest w odleglosci: 3 od wierzcholka 0 Najkrotsza sciezka z wierzcholka 0 do 4: 0 2 4
```

Wskazówka: Należy zamienić krawędzie o wadze k na ścieżki o k krawędzich (przy tym dodać pomocnicze k-1 wierzchołków). Następnie wyznaczyć odległości wykorzystując BFS w zmodyfikowanym grafie. Do zachowania ścieżki można, na przykład, w trakcie działania BFS przy dodaniu wierzchołka zapisać poprzednik na najkrótszej ścieżce (wierzchołek, z którego dany wierzchołek został osiagniety).