CC Week 4

Prepared for: 7th Sem, CE, DDU

Prepared by: Niyati J. Buch

Ref. Book 1: Compiler: Principles, techniques and tools by Aho, Ullman and Sethi, 2nd Ed., Pearson Education Ref. Book 2: Advanced Compiler Design & Implementation By Steven S Muchnick

Copy Propagation

Copy propagation is a transformation that, given an assignment x ← y for some variables x and y, replaces later uses of x with uses of y, as long as intervening instructions have not changed the value of either x or y.

Example of Copy Propagation

(a) Example of a copy assignment to propagate, namely, $b \leftarrow a$ in **B1**

(b) the result of doing copy propagation on it.

Phases of Copy Propagation

- Copy propagation can reasonably be divided into local and global phases,
 - the first operating within individual basic blocks
 and
 - the latter across the entire flow- graph,
- or it can be accomplished in a single global phase.

Example 1: Basic block of 5 instructions

Position	Code Before	ACP	Code After
		Ø	
1	b ← a		b ← a
		{ ⟨b,a⟩}	
2	c ← b + 1		c ← a + 1
		$\{\langle b, a \rangle\}$	
3	d ← b		d ← a
		$\{\langle b, a \rangle, \langle d, a \rangle\}$	
4	b ← d + c		b ← a + c
		{(d,a)}	
5	b ← d		b ← a
		$\{\langle d,a\rangle,\langle b,a\rangle\}$	

- The first column shows the position
- The second column shows a basic block of five instructions before applying the ACP algorithm
- The third column shows the value of ACP at each step
- The fourth column shows the result of applying ACP
- ACP = Available Copy Propagation

Example 2

• This is the flow graph **before** copy propagation.

Position	Code Before	ACP	Code After
		0	
1	h ← g + 1		h ← g + 1
		0	

Position	Code Before	ACP	Code After
		0	
1	f←d - g		f ← d - g
		0	
2	f < a		f < a
		0	

Position	Code Before	ACP	Code After
		0	
1	b ← g * a		b ← g * a
		0	
2	h < f		h < f
		0	

Position	Code Before	ACP	Code After
		0	
1	c ← 2		c ← 2
		0	

Before local copy propagation

This is the flow graph
 before local copy propagation.

After local copy propagation

 This is the flow graph after local copy propagation.