SEMINAR 5+6

1) Să se rezolve, folosind metoda lui Gauss, sistemele de ecuații:

a)
$$\begin{cases} x_1 + x_2 + 2x_3 = -1 \\ 2x_1 - x_2 + 2x_3 = -4 \text{ (în } \mathbb{R}^3\text{);} \\ 4x_1 + x_2 + 4x_3 = -2 \end{cases} \text{ b) } \begin{cases} 3x_1 + 4x_2 + x_3 + 2x_4 = 3 \\ 6x_1 + 8x_2 + 2x_3 + 5x_4 = 7 \text{ (în } \mathbb{R}^4\text{);} \\ 9x_1 + 12x_2 + 3x_3 + 10x_4 = 13 \end{cases}$$
c)
$$\begin{cases} x_1 + x_2 - 3x_3 = -1 \\ 2x_1 + x_2 - 2x_3 = 1 \\ x_1 + x_2 + x_3 = 3 \end{cases} \text{ (în } \mathbb{R}^3\text{).}$$

2) Să se discute după parametrul real α compatibilitatea sistemelor de mai jos, apoi să se rezolve:

a)
$$\begin{cases} 5x_1 - 3x_2 + 2x_3 + 4x_4 = 3 \\ 4x_1 - 2x_2 + 3x_3 + 7x_4 = 1 \\ 8x_1 - 6x_2 - x_3 - 5x_4 = 9 \\ 7x_1 - 3x_2 + 7x_3 + 17x_4 = \alpha \end{cases}$$
, b)
$$\begin{cases} 2x_1 - x_2 + 3x_3 + 4x_4 = 5 \\ 4x_1 - 2x_2 + 5x_3 + 6x_4 = 7 \\ 6x_1 - 3x_2 + 7x_3 + 8x_4 = 9 \end{cases}$$
;
$$\alpha x_1 - 4x_2 + 9x_3 + 10x_4 = 11$$

c)
$$\begin{cases} \alpha x_1 + x_2 + x_3 = 1 \\ x_1 + \alpha x_2 + x_3 = 1 \\ x_1 + x_2 + \alpha x_3 = 1 \end{cases}$$
.

3) Să se rezolve umătoarele ecuații matriceale

a)
$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} X = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
; b) $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} X = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$;
c) $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} X = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$; d) $X \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \end{pmatrix}$;
e) $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} X = \begin{pmatrix} 4 \\ 3 \\ 2 \\ 1 \end{pmatrix}$.

4) Sunt inversabile următoarele matrici? În caz afirmativ, să se determine inversele lor:

1