Politechnika Świętokrzyska Wydział Elektrotechniki, Automatyki i Informatyki

Oprogramowanie dydaktyczne do testowania działania wybranych metod dla modeli szeregów czasowych na różnych zbiorach danych

Dyplomant:

Mateusz Godlewski Informatyka II stopień

Promotor:

dr inż. Andrzej Kułakowski

Kielce 2021

Cel pracy

Celem pracy było zaprojektowanie oraz stworzenie oprogramowania dydaktycznego, umożliwiającego testowanie działania metod statystycznych oraz eksploracyjnych na wybranych szeregach czasowych.

Plan prezentacji

- Pojęcie szeregu czasowego
- Metody statystyczne oraz eksploracyjne
- Prezentacja oprogramowania dydaktycznego
- Możliwości dalszego rozwoju
- Podsumowanie

Definicja

Ciąg uporządkowanych obserwacji dokonanych w różnych momentach na zmiennej charakteryzującej pewna jednostkę lub zbiorowość.

Przykład

Właściwości

Właściwości szeregów czasowych:

- tendencję rozwojową;
- wahania okresowe;
- wahania cyklu koniunkturalnego;
- wahania przypadkowe.

Właściwości

Tendencja rozwojowa

Właściwości

Wahania okresowe

Właściwości

Wahania cyklu koniunkturalnego

Właściwości

Wahania przypadkowe

Metody statystyczne

- Wyznaczanie wartości minimalnych, maksymalnych oraz średniej arytmetycznej;
- Wyznaczenie odchylenia standardowego;
- Wyznaczenie mediany;
- Wyznaczanie wartości poszczególnego kwantyla;
- Wyznaczanie wartości interkwartyla.

Metody eksploracyjne

Wyznaczenie przyszłych wartości szeregów czasowych za pomocą metod predykcyjnych takich jak:

- Model autoregresyjny;
- Średnia ruchoma;
- Zintegrowany model autoregresyjny ze średnią ruchomą.

Metody eksploracyjne - model autoregresyjny (AR)

$$X_{t} = C + \sum_{i=1}^{p} \varphi_{i} X_{t-i} + \varepsilon_{t}$$

gdzie:

- o t liczba obserwacji;
- o X_t wartość szeregu czasowego dla obserwacji t;
- o $\varphi_1, ..., \varphi_p$ parametry modelu;
- o *C* stała (dla uproszczenia formuły, często pomijana);
- o ε_t szum biały.

Metody eksploracyjne - średnia ruchoma (MA)

$$MA = \frac{p_0 + p_1 + \dots + p_{n-1}}{n}$$

gdzie:

- o n liczba obserwacji
- o p_n poszczególna obserwacja

Metody eksploracyjne - metoda ARIMA

$$Y_c = C + \emptyset_1 Y_{t-1} + ... + \emptyset_p Y_{t-p} + \theta_1 e_{t-1} + ... + \theta_q e_{t-q} + e_t$$

gdzie:

- o Y_t = zmienna objaśniana w dziedzinie czasu;
- o C = stała (dla uproszczenia formuły, często pomijana);
- o ∅ = współczynnik każdego parametru p;
- o θ = współczynnik każdego parametru q;
- o e_t = szum biały.

dydaktycznego

Prezentacja oprogramowania

Strona główna

Widok analizy statystycznej

Widok analizy statystycznej cd.

Widok analizy eksploracyjnej - prognoza metodą AR

Wyniki prognozy modelu AR

Kryterium doboru rządu predykcji	Kryterium Informacyjne Akaike'a
Rząd predykcji	16
llość trenowanych obserwacji	380
Wartość RMSE - błędu średniokwadratowego	17.568628622993064

Widok analizy eksploracyjnej - prognoza metodą ARIMA

Wyniki prognozy metodą ARIMA

Ilość trenowanych obserwacji	379
Parametr p	10
Parametr d	1
Parametr q	2
Błąd prognozy modelu według kryterium AIC	2914.1215425536197
Bląd prognozy modelu według kryterium BIC	2969.2470494247736
Błąd prognozy modelu według kryterium HQIC	2935.997782030747

Możliwości dalszego rozwoju

Możliwości dalszego rozwoju

- Wykrywanie właściwości szeregów czasowych
- Stworzenie interaktywnych wykresów
- Poszerzenie funkcjonalności o większą liczbę metod predykcyjnych

Podsumowanie

Oprogramowanie dydaktyczne do testowania działania wybranych metod dla modeli szeregów czasowych na różnych zbiorach danych

- Prosty oraz intuicyjny interfejs użytkownika
- Możliwość wykorzystania dowolnego szeregu czasowego
- Analiza statystyczna szeregu czasowego
- Prognoza przyszłych wartości szeregu

Dyplomant:

Mateusz Godlewski

Informatyka II stopień

Promotor:

dr inż. Andrzej Kułakowski

Literatura

- https://mfiles.pl/pl/index.php/Szereg_czasowy
- https://en.wikipedia.org/wiki/Autoregressive_model
- https://pl.wikipedia.org/wiki/%C5%9Arednia_ruchoma
- https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average