Вводная практическая работа - Описание координат в пространстве и их преобразования (ознакомление со средой программирования в MATLAB)

Part 1 - Введение в среду и основные объекты MATLAB

Задание 1

Создать два вектора v1 и v2, а также матрицу A размера 2 x 3, значения элементов которой в зависимости от номера варианта N равны:

$$\mathbf{v1} = [N\ 2N\ 3N], \ \mathbf{v2} = [4N\ 5N\ 6N], \ \mathbf{A} = \begin{bmatrix} N & 2N & 3N \\ 3N & 2N & N \end{bmatrix}.$$

Задача 2

Вычислить значение числового выражения в зависимости от номера варианта N

$$\left\{ \frac{8,8077}{20 - \left[28,2 : \left(13,333 \cdot 0,3 + 0,0001\right)\right] \cdot 2,004} + 4,9 \right\} \cdot \frac{N}{32}$$

Задача З

a^x	Возведение в степень
sqrt(x)	Квадратный корень
exp(x)	Экспонента
log(x)	Натуральный логарифм
log10(x)	Десятичный логарифм
abs(x)	Модуль
fix(x)	Отбрасывание дробной части числа
round(x)	Округление
mod(x,y)	Остаток от деления х на у, включая знак
sign(x)	Знак числа
factor(x)	Разложение числа х на простые множители
sin(x)	Синус
asin(x)	Арксинус
cos(x)	Косинус
acos(x)	Арккосинус
tan(x)	Тангенс
atan(x)	Арктангенс

Дано x = 1,5; y = 2; z = 3.

- Рассчитайте a, b по таблице ниже, в зависимости от количества вариантов N в одном файле matlab
- Вычислите *a, b* из таблицы ниже, в зависимости от номера варианта N с отдельным файлом функций

Номер варианта	а	b
1	2	3
1	$a = \frac{z + y/(x^2 + 4)}{e^{-x-2}/(x^2 + 4)}$	$b = \frac{x}{y} (\arctan z + 1/6)$
2	$a = \frac{3.5 + e^{y-1}}{1 + x^2 y - \lg z }$	$b = \frac{(y-x)^2}{2} + \frac{ y-x ^3}{3}$
3	$a = \frac{\sqrt{ x-1 } - \sqrt[3]{ z }}{1 + \frac{x^2}{2,5} + \frac{y^2}{4}}$	$b = \frac{1 + \cos(y - 2)}{\frac{x^2}{2} + \sin^2 z}$
4	$a = z + \frac{x}{y^2 + \frac{x^2}{y + x^3/1,3}}$	$b = 1 + tg^3 \left(\frac{z}{2x + 2y} \right)$
5	$a = \frac{2,3\cos(x-1/6)}{1/2 + \sin^2 y} + z$	$b = x^y + \frac{z^2}{3 + z^2 / 5}$
6	$a = \frac{1.5 + \sin^2 z}{\left x - 2x/(1 + x^2 y^2) \right }$	$b = \cos^2\left(\arctan\frac{y}{z}\right) + \sin^2 x$

1	2	2
7	$a = \ln\left(y\right) \frac{1.5y}{z + x^2/4}$	$b = x - \frac{x^2}{3!} + \frac{x^5}{5!}$
8	$a = \frac{\sin(x^2 - 2y + z)}{2,6x^y}$	$b = \cos^2\left(x^2 + \frac{y}{z}\right)$
9	$a = \frac{5\cos(x - 1/6)}{0.5 + \sin^2 x}$	$b = \frac{y^2}{3 + z^2/7} - 3x$
10	$a = \frac{3.5 + \text{tg}(x^2 + y)}{\left x - 4x/(1 + xy^2) \right }$	$b = \sin^2\left(\arctan\frac{1}{z}\right)$
11	$a = \frac{2.6 + \text{tg}(x - y)}{\left x - 2x/(x^2 + y^2) \right }$	$b = x(\operatorname{tg} z + e^{x-3})$
12	$a = \ln \left \frac{y + x^2/4}{5z} \right $	$b = 1.5 + \frac{(y-x)^3}{2} + \frac{ y-x }{x}$
13	$a = \frac{\cos\left(x^3 + 2y - 2z\right)}{\operatorname{tg} y - 1,5}$	$b = \frac{1 + \sin(y - 2)}{x^2 \frac{1}{2 + \sin^2 x}}$
14	$a = \frac{5\sin(x + 1/3)}{1/2\cos x + 1}$	$b = \left(1 + \lg^2 \frac{z}{y+2}\right)$
15	$a = \frac{3 + \sin^3(x^2 + y)}{2.5 + \left x - 4x/(1 + x^2y^2) \right }$	$b = 1 + \frac{z^2}{3 + z^2 / 5}$
16	$a = \frac{\sqrt{ x-1 } - \sqrt[3]{ y }}{1.5 + x^2 + y^2}$	$b = \cos^2\left(\arctan\frac{1}{z+1}\right)$
17	$a = \frac{1.5 - e^{2-y}}{2x - \sqrt{y - \lg z}}$	$b = x + \frac{x^2}{3+z} + \frac{x^2}{5+z}$
18	$a = \frac{3.3 + y^2 + (x^2 + 2)}{e^{-0.5} + 1/(x^2 + 4)}$	$b = \cos^2\left(x^2 + \frac{y}{1+z}\right)$
19	$a = y + \frac{3.5x}{y^2 - \sqrt{\frac{x^2}{2y + x^2}}}$	$b = 2 + \frac{y^2}{3 + \frac{z^2}{1 + x}} - 3x$
20	$a = \frac{2\cos(x - 1/6)}{1/2 + \sin^2 y}$	$b = \sqrt{\sin\left(\arctan\frac{1}{x+z}\right)}$

	2	2
1	2	3
2 ¹ 1	$a = \frac{z + y/(x^2 + 4)}{e^{-x-2}/(x^2 + 4)}$	$b = \frac{x}{y} (\arctan z + 1/6)$
22	$a = \frac{3.5 + e^{y-1}}{1 + x^2 y - \lg z }$	$b = \frac{(y-x)^2}{2} + \frac{ y-x ^3}{3}$
23	$a = \frac{\sqrt{ x-1 } - \sqrt[3]{ z }}{1 + \frac{x^2}{2,5} + \frac{y^2}{4}}$	$b = \frac{1 + \cos(y - 2)}{\frac{x^2}{2} + \sin^2 z}$
24	$a = z + \frac{x}{y^2 + \frac{x^2}{y + x^3/1,3}}$	$b = 1 + tg^3 \left(\frac{z}{2x + 2y} \right)$
25	$a = \frac{2,3\cos(x-1/6)}{1/2 + \sin^2 y} + z$	$b = x^y + \frac{z^2}{3 + z^2 / 5}$
26	$a = \frac{1.5 + \sin^2 z}{\left x - 2x/(1 + x^2 y^2) \right }$	$b = \cos^2\left(\arctan\frac{y}{z}\right) + \sin^2 x$
27	$a = \ln\left(y\right) \frac{1.5y}{z + x^2/4}$	$b = x - \frac{x^2}{3!} + \frac{x^5}{5!}$
28	$a = \frac{\sin\left(x^2 - 2y + z\right)}{2.6x^y}$	$b = \cos^2\left(x^2 + \frac{y}{z}\right)$
29	$a = \frac{5\cos(x - 1/6)}{0.5 + \sin^2 x}$	$b = \frac{y^2}{3 + z^2/7} - 3x$
30	$a = \frac{3.5 + \text{tg}(x^2 + y)}{\left x - 4x/(1 + xy^2) \right }$	$b = \sin^2\left(\arctan\frac{1}{z}\right)$
31	$a = \frac{2.6 + \text{tg}(x - y)}{\left x - 2x/(x^2 + y^2) \right }$	$b = x(\operatorname{tg} z + \mathrm{e}^{x-3})$
₽ <u>2</u>	$a = \ln \left \frac{y + x^2 / 4}{5z} \right $	$b = 1.5 + \frac{(y-x)^3}{2} + \frac{ y-x }{x}$
33	$a = \frac{\cos\left(x^3 + 2y - 2z\right)}{\operatorname{tg} y - 1,5}$	$b = \frac{1 + \sin(y - 2)}{x^2 \frac{1}{2 + \sin^2 x}}$

34	$a = \frac{5\sin(x+1/3)}{1/2\cos x + 1}$	$b = \left(1 + \lg^2 \frac{z}{y+2}\right)$
35	$a = \frac{3 + \sin^3(x^2 + y)}{2,5 + \left x - 4x/(1 + x^2y^2) \right }$	$b = 1 + \frac{z^2}{3 + z^2 / 5}$
36	$a = \frac{\sqrt{ x-1 } - \sqrt[3]{ y }}{1.5 + x^2 + y^2}$	$b = \cos^2\left(\arctan\frac{1}{z+1}\right)$
37	$a = \frac{1.5 - e^{2-y}}{2x - \sqrt{y - \lg z}}$	$b = x + \frac{x^2}{3+z} + \frac{x^2}{5+z}$
38	$a = \frac{3.3 + y^2 + (x^2 + 2)}{e^{-0.5} + 1/(x^2 + 4)}$	$b = \cos^2\left(x^2 + \frac{y}{1+z}\right)$
39	$a = y + \frac{3.5x}{y^2 - \sqrt{\frac{x^2}{2y + x^2}}}$	$b = 2 + \frac{y^2}{3 + \frac{z^2}{1 + x}} - 3x$
40	$a = \frac{2\cos(x - 1/6)}{1/2 + \sin^2 y}$	$b = \sqrt{\sin\left(\arctan\frac{1}{x+z}\right)}$
41	$a = \frac{z + y/(x^2 + 4)}{e^{-x-2}/(x^2 + 4)}$	$b = \frac{x}{y} (\arctan z + 1/6)$
42	$a = \frac{3.5 + e^{y-1}}{1 + x^2 y - \lg z }$	$b = \frac{(y-x)^2}{2} + \frac{ y-x ^3}{3}$
43	$a = \frac{\sqrt{ x-1 } - \sqrt[3]{ z }}{1 + \frac{x^2}{2,5} + \frac{y^2}{4}}$	$b = \frac{1 + \cos(y - 2)}{\frac{x^2}{2} + \sin^2 z}$
44	$a = z + \frac{x}{y^2 + \frac{x^2}{y + x^3/1,3}}$	$b = 1 + tg^3 \left(\frac{z}{2x + 2y} \right)$
45	$a = \frac{2,3\cos(x-1/6)}{1/2 + \sin^2 y} + z$	$b = x^y + \frac{z^2}{3 + z^2 / 5}$

Часть 2. Операции с матрицами в среде MATLAB

Задание 1

- Создайте вектор-строку P, значения которого равны N, (N + 10), (N 20), (N 30), (N + 4)
- Создайте матрицу M1 в зависимости от номера варианта N

$$\mathbf{M1} = \begin{bmatrix} N-2 & N+5 & N-3 \\ N-20 & N+10 & N-1 \\ N+2 & N-12 & N-5 \end{bmatrix}$$

Задача 2

Создайте матрицу M2 размерами 5 x 5, используя функцию randn. Присвоить в зависимости от номера варианта ниже элементу матрицы, расположенному на пересечении n -й строки и m -го столбца, значение, равное номеру варианта N; найти для матрицы M2 минимальное значение для n -й строки и максимальное значение для m -го столбца.

строка	Вариант				
1 1	1	2	3	4	5
2	6	7	8	9	10
3	11	12	13	14	15
4	16	17	18	19	20
5	21	22	23	24	25
	1	2	3	4	5
	столбец				
строка			Вариант		
1	26	27	28	29	30
2	31	32	33	34	35
3	36	37	38	39	40
4	41	42	43	44	45
5	46	47	48	49	50
	1	2	3	4	5
	столбец				

Часть 3 - Графические графики в среде MATLAB

Задание 1

Построить график функции для заданного варианта задачи (вариант см. в таблице ниже). Добавьте заголовки осей и заголовок к диаграмме. Включите программный код и результирующий график функции в файл отчета.

Номер варианта	Функция	Диапазон изменения х	Шаг изменения х
1	$Y = -\sin(x/2)$	0°÷360°	10°
2	$Y = 13x^2$	0 ÷ 24	8
3	$Y = \cos(4x - 60^{\circ})$	0°÷180°	5°
4	v _ 1	-1 ÷ 3	0,5
5	$Y = \frac{x+44}{x-23}$	−8 ÷ 8	2
6	x-23 $Y = (3x^2+43)$	0 ÷ 40	4
7	Y = tg(x) - 1	0°÷90°	2°
8	$Y = \frac{x}{x - 31}$ $Y = (x^3 - x)$	-10 ÷ 30	5
9	$Y = (x^3 - x)$	0 ÷ 200	20
10	$Y = \sin(4x - 45^{\circ})$	0-180°	2°
11	$Y = \sin(3x + 60^\circ)$	0-360°	4°
12	$Y=1-e^{5x}$	0-5	0,1
13	$Y = \sin(5x)$	0-360°	4°
14	$Y = tg(x + 30^{\circ})$	0°÷90°	2°
15	$Y = \cos(5x - 15^{\circ})$	0-180°	1°
16	$Y = \frac{2x}{x + 100}$	-80 ÷ 80	10
17	$X + 100$ $Y = 1 - e^{2x}$	0-5	0,1
18	$Y = 1 - x^2$	0-1	0,01
19	$Y = 1 + e^{4x}$	0-5	0,1
20	$Y = \cos(4x)$	0-360°	2°

21	$Y = -\sin\left(\frac{x}{2}\right)$	0°÷360°	10°
22	$Y = 13x^{2}$	0 ÷ 24	8
23	$Y = \cos(4x - 60^{\circ})$	0°÷180°	5°
24	v 1	-1 ÷ 3	0,5
25	$Y = \frac{x+4}{x+4}$ $Y = \frac{x+44}{x-23}$ $Y = (3x^2+43)$	-8 ÷ 8	2
26	$Y = (3x^2 + 43)$	0 ÷ 40	4
27	$Y = \operatorname{tg}(x) - 1$	0°÷90°	2°
28	$Y = \frac{x}{x - 31}$ $Y = (x^3 - x)$	-10 ÷ 30	5
29	$Y = (x^3 - x)$	0 ÷ 200	20
30	$Y = \sin(4x - 45^{\circ})$	0-180°	2°
31	$Y = \sin(3x + 60^\circ)$	0-360°	4 °
32	$Y=1-e^{5x}$	0–5	0,1
33	$Y = \sin(5x)$	0-360°	4°
34	$Y = tg(x + 30^{\circ})$	0°÷90°	2°
35	$Y = \cos(5x - 15^{\circ})$	0-180°	1°
36	$\mathbf{v} = 2x$	−80 ÷ 80	10
37	$Y = \frac{1}{x + 100}$ $Y = 1 - e^{2x}$	0–5	0,1
38	$Y = 1 - x^2$	0-1	0,01
39	$Y = 1 + e^{4x}$	0-5	0,1
40	$Y = \cos(4x)$	0-360°	2°
41	$Y = -\sin(x/2)$	0°÷360°	10°
42	$Y = 13x^{2}$	0 ÷ 24	8
43	$Y = \cos(4x - 60^{\circ})$	0°÷180°	5°
44	_v 1	-1 ÷ 3	0,5
45	$Y = \frac{x+4}{x+4}$ $Y = \frac{x+44}{x-23}$	-8 ÷ 8	2

Часть 4 – Привести к одной системе координат

Задание 1

{B} повернуто относительно {A} вокруг Z_A на 45 градусов, и смещено на 8 единиц по X_A и на 4 единицы по Y_A . ВР равен [1.0, 2.0, 3.0]. Найти A Р

Задание 2

Решить предыдущую задачу для случая если {B} повернуто относительно {A} вокруг X_A на 30 градусов, вокруг Y_A на 60 градусов, вокруг Z_A на 45 градусов, и смещено на 8 единиц по X_A и на 4 единицы по Y_A . ВР равен [1.0, 2.0, 3.0]. Найти A Р