

Simulação de Pandemia Baseada em Agentes

Welber Henrique Rodrigues Costa

Introdução e Objetivo

Objetivo: Modelar a disseminação de uma doença infecciosa em uma população massiva.

Destaque: Comparar desempenho entre versões serial e paralela da simulação.

Motivação:

Alta complexidade computacional.

Demanda por alto desempenho e escalabilidade.

Suporte a eventos dinâmicos como vacinação em massa.

Versões da Simulação:

Processamento linear. Utilizada como referência.

Paralela (multiprocessing):

População compartilhada via RawArray. Divisão dos infectados entre processos. Suporte para 2, 4, 8 e 16 processos.

Configurações:

População: 25 milhões Infectados iniciais: 2,5 milhões

Dias simulados: 45

Vacinação em massa: 500 mil no dia 1

Principais Resultados:

Speedup: até 10.5x com 16 processos.

Tempo de execução:

Serial: 676s Paralelo: 64s

Eficiência:

Acima de 84% até 8 processos. Ponto fora da curva: 119,76% com 2 processos.

Versão	Tempo (s)	Processos	Speedup	Eficiência (%)
Serial	676.51	1	1.0	100.0
2 threads	282.44	2	2.4	119.76
4 threads	179.41	4	3.77	94.27
8 threads	99.65	8	6.79	84.86
16 threads	64.44	16	10.5	65.61

