

|          |  | Subject Code: KCS402 |  |  |  |  |  |  |  |  |  |  |  |
|----------|--|----------------------|--|--|--|--|--|--|--|--|--|--|--|
| Roll No: |  |                      |  |  |  |  |  |  |  |  |  |  |  |

Printed Page: 1 of 2

# BTECH (SEM IV) THEORY EXAMINATION 2021-22 THEORY OF AUTOMATA AND FORMAL LANGUAGES

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If you require any missing data, then choose suitably.

#### **SECTION A**

| 1. | Attempt all questions in brief. | 2x10 = 20 |
|----|---------------------------------|-----------|
|----|---------------------------------|-----------|

| Q.no | Questions                                                          | Marks | CO |
|------|--------------------------------------------------------------------|-------|----|
| (a)  | Define Alphabet and String in Automata Theory.                     | 2     | 2  |
| (b)  | Give the definition of Deterministic Finite Automaton (DFA).       | 2     | 1  |
| (c)  | Explain in brief about the Kleen's Theorem.                        | 2     | 2  |
| (d)  | Define Context Free Grammar (CFG).                                 | 2     | 1  |
| (e)  | Write the Context Free Grammar (CFG) for regular expression (0+1)* | 2     | 3  |
| (f)  | What are Right Linear grammar and Left Linear grammars?            | 2     | 3  |
| (g)  | Discuss briefly about the Push Down Automata (PDA).                | 2     | 4  |
| (h)  | What do you mean by Two stack Pushdown Automata?                   | 2     | 4  |
| (i)  | What do you mean by basic Turing Machine Model?                    | 2     | 5  |
| (j)  | What do you understand by the Halting Problem?                     | 2     | 5  |

#### **SECTION B**

### 2. Attempt any *three* of the following:

| Q.no | Questions                                                                 | Marks | CO |
|------|---------------------------------------------------------------------------|-------|----|
| (a)  | Explain in detail about the Turing Church's Thesis and Recursively        | 10    | 5  |
|      | Enumerable languages.                                                     |       |    |
| (b)  | Prove that the Compliment, Homomorphism, Inverse Homomorphism,            | 10    | 2  |
|      | and Closure of a Regular Language is also Regular.                        |       |    |
| (c)  | Give the Complete description about the Chomsky Hierarchy.                | 10    | 3  |
| (d)  | Convert the grammar $S \to aAA$ , $A \to a  aS  bS$ to a PDA that accepts | 10    | 4  |
|      | the same language by Empty stack.                                         |       |    |
| (e)  | Grammar G is given with the production S->aSS A->b. Compute the           | 10    | 1  |
|      | string w= aababbb with the Left most and Right most derivation Tree.      |       |    |

#### SECTION C

### 3. Attempt any *one* part of the following: 10x1 = 10

| Q.no | Questions                                                    | Marks | CO |
|------|--------------------------------------------------------------|-------|----|
| (a)  | Write short notes on following.                              | 10    | 5  |
|      | i) Turing Machine as Computer of Integer Functions           |       |    |
|      | ii) Universal Turing machine                                 |       |    |
| (b)  | Explain in detail about the Pumping Lemma and application of | 10    | 2  |
|      | Pumping Lemma for Regular Languages.                         |       |    |

4. Attempt any *one* part of the following: 10x1 = 10

| Q.no | Questions                                                          | Marks | CO |
|------|--------------------------------------------------------------------|-------|----|
| (a)  | Construct a Non Deterministic Finite Automation (NFA) for the      | 10    | 1  |
|      | language L which accepts all the strings in which the third symbol |       |    |
|      | from right end is always 'a' over $\Sigma = \{a, b\}$ .            |       |    |
| (b)  | Explain in detail about the Myhill-Nerode theorem using suitable   | 10    | 3  |
|      | example.                                                           |       |    |



Roll No: Subject Code: KCS402

# BTECH (SEM IV) THEORY EXAMINATION 2021-22 THEORY OF AUTOMATA AND FORMAL LANGUAGES

5. Attempt any *one* part of the following:

10x1 = 10

Printed Page: 2 of 2

| Q.no | Questions                                                                    | Marks | CO |
|------|------------------------------------------------------------------------------|-------|----|
| (a)  | Prove that the following Language $L = \{a^nb^n: n \ge 0\}$ is not a regular | 10    | 4  |
|      | language.                                                                    |       |    |
| (b)  | Design a Turing Machine for the language L. Where, $L=\{a^nb^nc^n n\geq 1\}$ | 10    | 5  |

6. Attempt any *one* part of the following: 10x1 = 10

| Attem | pt any one part of the following:                            | 10X1 - 10 |    |
|-------|--------------------------------------------------------------|-----------|----|
| Q.no  | Questions                                                    | Marks     | CO |
| (a)   | Prove that the Compliment, Homomorphism, Closure and Inverse | 10        | 2  |
|       | Homomorphism of a Regular language is also Regular.          |           |    |
| (b)   | Minimize the given DFA shown below (Figure A).               | 10        | 1  |
|       | b 1 0 0,1  o 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1             |           | 2  |

7. Attempt any *one* part of the following:

10x1 = 10

| Q.no | Questions                                                        | Marks | CO |
|------|------------------------------------------------------------------|-------|----|
| (a)  | Explain in detail about the following.                           | 10    | 4  |
|      | i) Closure properties of Regular Languages                       |       |    |
|      | ii) Decidability- Decision properties of Regular Languages       |       |    |
| (b)  | Check whether the grammar is ambiguous or not.                   | 10    | 3  |
|      | R-> R+R/ RR/ R*/ $a$ / $b$ / $c$ . Obtain the string $w = a+b*c$ |       |    |