10 REASONS TO FAILURE

- 1. Poor people skill
- 2. A negative attitude
- 3. A bad fit
- 4. Lack of focus
- 5. A weak commitment
- 6. An unwillingness to change
- 7. A shortcut mind set
- 8. Relying on talent alone
- 9. A response to poor information
- 10. No goals

RADIATION TECHNIQUE

DARKROOM

- A scientific laboratory
- · Where radiography starts and ends

OCCUPATIONAL SAFETY AND HEALTH AGENCY (OSHA)

- It requires RT to wear face mask
- RATIONALE: fumes are carcinogenic

DARKROOM DISEASE

• Hypersensitivity to fumes

MAIN FUNCTION OF DARKROOM

 To prevent/protect film from exposure to white light and ionizing radiation during handling and processing

EXPOSED FILM

- 2-8 times more sensitive to subsequent exposure than unexposed film
- **RATIONALE:** it contains the latent image

LATENSIFICATION

• Increase in sensitivity after exposure to white light or ionizing radiation

IMPORTANCE OF PROCESSING ROOM

1.) LOCATION

• In proximity/near to exposure room

2.) SIZE

- 15ft x 9.5 ft or greater
- 200 radiographs/day

Wet and Dry Section

- 4 ft away from each other
- To prevent contamination of the dry section

3.) PROTECTS AGAINST RADIATION

- Darkroom can be adjacent to exposure room only if:
 - o **CONCRETE:** greater than 6 inches
 - HOLLOW BLOCKS: filled with cement
 - o **WOOD:** with 1.5 mm Pb

AUTOMATIC PROCESSOR

(24 inches/corner)

A.) TOTALLY INSIDE

- All automatic processor are located inside
- **ADVANTAGE:** jammed films can be retrieved without exposure to white light
- DISADVANTAGES:
 - Increased heat/temperature, noise and humidity/moist

B.) BULK INSIDE

- All automatic processor are located inside but the drop tray is located outside
- More advisable
- ADVANTAGES:
 - o Easy retrieval of films
 - Decreased heat/temperature, noise and humidity/moist

C.) BULK OUTSIDE

- Only the feed tray is located inside
- Used only when the darkroom is small

• **ADVANTAGES:** almost no heat, noise and humidity

• DISADVANTAGES:

- Jammed films can't be retrieved through white light
- Repeat exposure when the films are exposed

4.) VENTILLATION

• AIR CHANGES:

- o 8-10 per hour
- o Exhaust fan

• AIR MOVEMENT:

- o Air inside the darkroom
- o 15-25 ft/min
- o Fan

• STORAGE ROOM TEMPERATURE:

o 10-21 °C/50-70 °F

• DARKROOM TEMPERATURE:

- o 20 °C/67-83 °F (OLD)
- o 18-24 °C/65-85 °F (NEW)

• HUMIDITY FOR STORAGE ROOM AND DARKROOM:

- 0 40-60%
- o 30-60% (NEW FOR DR)

PSYCHROMETER

A device used to measure humidity or moisture

HYGROMETER

• A device used to measure environmental moisture

5.) CLEANLINESS

- Avoid SMOKING, EATING and DRINKING
- **RATIONALE:** to prevent artifacts

EFFICIENT DARKROOM

• Pertaining to cleanliness

Uncluttered counter tops

6.) LIGHT-TIGHT ENTRANCE

• SINGLE DOOR DARKROOM

- o The simplest type
- Need to provide a passbox
- **RATIONALE:** avoid RT in entering the darkroom

• LIGHT-LOCK DOOR/DOUBLE DOOR DARKROOM

- Used only when there is darkroom personnel exclusive in the darkroom
- o If door 1 is open, door 2 is closed

LABYRINTH/MAZE

- Zigzag type
- Used only when the darkroom is large
- RATIONALE: it requires more space

• REVOLVING DOOR

- The fast access type
- o RATIONALE: can enter and exit at the same time

PASSBOX/FILM CASSETTE TRANSFER CABINET

- Allows the film to transfer without entering the darkroom
- Has an interlocking/alarm

7.) ILLUMINATION

• WHITE LIGHT ILLUMINATION

- Overhead light
- o 2-4 fluorescent lamps
- o 48 inches/8 m²
- o PURPOSE:
 - Maintenance
 - Emergency cases
 - Cleaning

• SAFELIGHT ILLUMINATION

- o **DISTANCE:** 3-4 ft
- O WATTAGE:
 - 7.5 watts (3 ft distance)
 - 15 watts (4 ft distance)

o FILTERS:

Filters out intensity (strength) and energy (color)

AMBER FILTER

- Filters out Red, Orange and Yellow colors
- **APPEARANCE:** brownish
- For monochromatic film (blue-sensitive film)

o WRATTEN 6B FILTER

- Filters only the intensity
- For monochromatic film (blue-sensitive film)
- ALTERNATIVES: Amber filter & Kodak Mor-lite

o GBX 2 FILTER

- Filters out intensity and color (Yellow and Orange)
- For orthochromatic film (blue/green sensitive film)
- Multi-purpose filter
- APPEARANCE: red color

PANCHROMATIC FILM

- Sensitive to all visible light spectrum
- ADVANTAGE: all kinds of film can be used
- **DISADVANTAGE:** no safelight is used

CALCIUM TUNGSTATE

• For blue-sensitive film

RARE EARTH

• For green sensitive film

8.) COLORS OF WALL

- PASTEL AND LIGHT: reflectance of safelight
- **ENAMEL AND EPOXY:** easy to clean and durable
- MATTE FINISH NOT GLOSSY: it will not reflect white light
- **NEON COLOR:** prohibited
- **Bright Color vs Dark Color:** bright color is the best choice

9.) ELECTRICAL WIRING

• Should be appropriately installed

SAFELIGHT

• DIRECT SAFELIGHT

- o Fixture type safelight
- Light is distributed directly
- Most common in the hospital

INDIRECT SAFELIGHT

- Ceiling type safelight
- o Light goes up first, then reflected
- o BULB: Sodium vapor
- o **DISTANCE:** 6 ft
- DISADVANTAGE: it takes time to warm up

QUALITY CONTROL FOR THE DARKROOM AND AUTOMATIC PROCESSOR

A.) DARKROOM ENVIRONMENT

- Daily
- Maintained clean, well ventilated, organized and safe

B.) SAFELIGHT TEST

- Semi-annual
- **SAFELIGHT FOG:** greater than 0.05 OD
 - Always check the DISTANCE, WATTAGE and FILTERS used
 - **WRATTEN 6B:** >550 nm
 - o **GBX 2:** > 600 nm

o **ACCEPTABLE:** 0.04 OD

C.) AUTOMATIC PROCESSOR TEMPERATURE

- Weekly
- Greater than ± 0.3 °C/0.5 °F

D.) REPLENISHMENT RATE

- o Weekly
- \circ Within $\pm 5\%$

OXIDIZED DEVELOPER

- Old or exhausted developer
- Reducing capacity has been reduced
- Decreased the activity of developer, activator/buffer, preservative except for restrainer
- All solution should be replaced except for restrainer

RESTRAINER

• Controls the activity of the developing agent

CONTAMINATED SOLUTION

- Entire solution is ineffective
- Can't be replenished
- Should be replaced

FUNCTION OF REPLENISHMENT RATE

 Maintain or bring back the activity of chemical on its original activity or composition

E.) DEVELOPER SOLUTION pH

- Quarterly/Every 3 months/Weekly
- **NORMAL pH:** 10-11.5 or 9.6-10.6
- ALKALINIZER: Sodium hydroxide and Sodium carbonate

F.) FIXER SOLUTION

- Quarterly/Every 3 months/Weekly
- **NORMAL pH:** 4-4.5 or 4.2-4.9

• ACIDIFIER: Acetic acid and Sulfuric acid

pH RANGE

- 7-14: alkaline, base chemical
- 7: neutral, water
- 0-7: acid, acidic chemical

G.) DEVELOPER SPECIFIC GRAVITY

- Quarterly/Every 3 months/Weekly
- Not greater than 0.004

SPECIFIC GRAVITY

• The amount of water versus chemical

HYDROMETER

A device that measures specific gravity

H.) PROCESSOR CONTROL CHART MONITORING

- Daily
- Early in the morning
- After the automatic processor reached its maximum capacity or has been warmed up
- Not greater than 0.15 OD from baseline measurements
- Speed and contrast indication

FILM SENSITOMETRY

- Quantitative measurement of response of film to exposure and development
- DEVICES USED:
 - o **Sensitometer:** optical step wedge
 - o Penetrometer:
 - Aluminum step wedge
 - Alternative for sensitometer
 - Densitometer: measures the density of exposed film
 - o Step Table
 - Sensitometric strips

MEYNARD Y. CASTRO, RRT IMAGE PRODUCTION AND EVALUATION

• CONTROLS:

- Film speed
- o Film contrast
- o Film latitude
- Contrast using hydroquinone

POWER OF HYDROGEN (pH)

• Qualitative method of measuring the alkalinity or acidity of the solution

PHENIDONE

- Film speed indicator
- First to produced
- Gray shade
- $D_{min} = 1.2$
- Controls the toe of the characteristic curve

HYDROQUINONE

- Film contrast indicator
- Second to produced
- Black tones
- D_{max} = greater than 1.2
- Controls the shoulder of the characteristic curve

HISTORICAL BITS

1895 – photographic plates

1914 – cellulose nitrate film base

1918 – duplitized films

1924 – cellulose triacetate film base

1933 – tinted film base

1936 – direct film exposure

1940 – film suitable for both direct & indirect exposure

1958 – fast light-sensitive film

1960's – polyester film base and film for rapid processing

FILM BASE

• Foundation of the radiographic film

ARCHIVAL QUALITY

• Permanence of the image

INTENSIFYING SCREEN

- 15-20 times less radiation
- Used since beginning
- BASE: cardboard and high quality plastic (polyester)
- ADVANTAGES:
 - Reduces radiation dose
 - Decreases technical factors
- DISADVANTAGES:
 - Increased quantum mottle
 - o Blurred image

NO INTENSIFYING SCREEN

- **ADVANTAGE:** No quantum mottle
- **DISADVANTAGE:** Increases patient dose

REMNANT RADIATION

• Radiation that is not absorb by the patient and form the latent image

DUPLITIZED FILM

- Double emulsion film
- ADVANTAGES:
 - o Double the film speed
 - o Decreases patient dose
- DISADVANTAGE:
 - o Parallax effect/crossover

FACTORS THAT AFFECT FILM SPEED

• Number and size of silver halide crystals

TINTED FILM BASE

- Decreases the possibility of parallax effect/crossover
- Reduces eye fatigue and eye strain
- Increases contrast under the negatoscope

FAST LIGHT SENSITIVE FILM

- Decrease X-ray Increase Film Speed
- Increase Patient Dose Increase Image Quality – Decrease Parallax Effect
- Decrease Patient Dose Decrease Image Quality – Increase Parallax Effect

PATIENT DOSE

- Directly proportional to the image quality
- Increase IS Speed Decrease Patient Dose Decrease Image Quality – Increase Quantum Mottle

GRID

- To improve image contrast
- Increase Grid Ratio Decrease Scattered Radiation – Decrease Fog – Decrease Density – Increase mAs
- **DISADVANTAGE:** increase patient dose

AUTOMATIC PROCESSOR

1942

- PAKO
- 1st automatic processor
- Specialized hanger

1956

- EASTMAN
- Roller transport system

1965

- 1st rapid processing
- 90 secs

1987

- KONICA
- 45 secs
- Special chemicals

ELECTROMAGNETIC SPECTRUM VS VISIBLE SPECTRUM

ELECTROMAGNETIC SPECTRUM

- The range of frequencies over which an electromagnetic radiation can be propagated
- **Note:** x-ray films are more sensitive in visible light than x-rays

VISIBLE SPECTRUM

• The range of wavelength of the electromagnetic spectrum over which an unaided human eye can perceive changes as an alteration in color

SENSITIVITY

Response of x-ray film to wavelengths of visible light

SPECTRAL SENSITIVITY

• The range of wavelength of the electromagnetic radiation that the film will respond

PEAK SENSITIVITY

• The range of wavelength in which the film will exhibit its highest response

CUT-OFF SENSITIVITY

• The range of wavelength in which the film is no longer sensitive

TYPES OF FILM ACCORDING TO SPECTRAL SENSITIVITY

1.) MONOCHROMATIC FILM

- **COLOR:** Blue sensitive
- **GRAINS:** Globular
- **SCREEN PHOSPHOR:** Calcium tungstate (not specific emission)
- Sensitive to spectrum wavelength of photons

2.) ORTHOCHROMATIC

- **COLOR:** Green sensitive
- **GRAINS:** Tabular
- **SCREEN PHOSPHOR:** Rare Earth (specific emission)
- Sensitive to green light by rare earth

3.) PANCHROMATIC FILM

Sensitive to all visible light spectrum

GRAIN TECHNOLOGY

1.) GLOBULAR GRAIN

- Spherical in shape
- Has bigger volume
- For blue-sensitive film

2.) TABULAR GRAIN

- Tabletop-like structure
- Provides bigger surface
- For green sensitive film

CALCIUM TUNGSTATE

- Broad band colors (Blue, Indigo, Violet)
- LINE EMISSION: not specific emission

RARE EARTH

- **OXYBROMIDE:** Blue
- **OXYSULFIDE:** Green
- LANTHANUM: Blue
- LINE EMISSION: specific emission

LANTHANIDE

- ATOMIC #: 57-71
- **Yttrium:** 39
- Lanthanum: 57
- Gadolinium: 64

GENERAL TYPES OF FILM

1.) DIRECT EXPOSURE/NON-SCREEN

- Uses thicker emulsion
- Outdated technology

ADVANTAGES:

- Decreased parallax effect/crossover
- o Decreased quantum mottle
- o Increases image quality

• **DISADVANTAGES**:

- Increased patient dose
- Increased development time

• APPLICATION:

o Intraoral dental radiography

2.) SCREEN FILM

- Indirect exposure o
- Uses thinner emulsion
- More sensitive to light
 - o Light: 90-99%
 - o X-ray: 1-10%

• ADVANTAGES:

- Decreased patient dose
- Decreased developing time

• DISADVANTAGES:

- o Increased quantum mottle
- o Blurred image

CLASSIFICATION OF FILM ACCORDING TO USE

1.) MAMMOGRAPHIC FILM

- For breast examination
- Fine grains
- Single emulsion
- Greater detail
- High exposure dose
 - o **RATIONALE:** high mAs
- Increased patient dose Decreased parallax effect Increased detail
- Increased IS speed Decreased light emission – Decrease OD – Increased mAs

HIGH RESOLUTION INTENSIFYING SCREEN

Slow speed

2.) THERAPY LOCALIZATION FILM

- It serves as a guideline
- Wide range of exposures
- Direct exposure
- Fine grain
- **ADVANTAGE:** increase resolution
- **DISADVANTAGE:** radiation is continuously emitted

SIMULATOR

• It used in Cobalt 60

LETHAL DOSE

Dose required to kill cancer cells

TOLERANCE DOSE

• It should be greater than lethal dose

TREATMENT FOR BREAST CANCER

- Surgery mastectomy
- Radiation Therapy regional
- Chemotherapy metastases

PALLIATIVE TREATMENT

• Lengthening the life in short term basis

CURATIVE TREATMENT

Lengthening of life in long term basis

3.) DENTAL X-RAY FILM

- Intraoral Film for direct exposure
 - o Peripheral Film
 - o Bitewing/Interproximal
 - Occlusal Film
- Extraoral Film for screen-film
 - o Panoramic

4.) VIDEO FILM

- Single emulsion
- It uses multiformat camera and laser camera

5.) PHOTOFLUOROGRAPHIC

- Abreugraphy
- Manuel Diaz Abreu
- Single emulsion
- For chest x-ray examination
 - o Mass CXR
 - o PTB
 - o Lung cancer
- Miniature fluorography

6.) CINE/ROLL FILM

- Single emulsion film
- With sprocket holes
- Movie film
- Angiographic film
- Cardiac catheterization
- Width 16 mm & 35 mm
- Image − 7 x 10 mm & 24 x 35mm
- Uses tagaro viewer
- Frame Rate 30-60 frames/sec
- 100-300 rolls
- Black and white
- 35% actual images

7.) SPOT FILM

- For special procedures
- Width 100 mm
- Frame Rate 10 frames/sec

8.) COPY/DUPLICATING FILM

- Reversal film
- Single emulsion
- It uses UV lamp and light
- Black light bulb

9.) DOSIMETER/PERSONNEL MONITORING FILM

Measures radiation absorbed dose

THEMORLUMINESCENT DOSIMETER (TLD)

- Frequently used
- Monthly

- Lithium fluoride
- No dosimeter film

OPTICALLY-STIMULATED LUMINESCENCE (OSL)

- Monthly
- Aluminum oxide
- No dosimeter film

FILM BADGE

- It used dosimeter film
- Wear inside the apron

PEN DOSIMETER

- Daily exposures
- Reset

PHILIPPINE NUCLEAR RESEARCH INSTITUTE

• Where the record of exposure is submitted

10.) AUTOMATIC SERIAL CHANGER

- Serial radiography
- Angiography
- Special procedure
- Special protective coating
 - o To prevent scratches

11.) INDUSTRIAL FILM

- Mega electron volts
- High energy/radiation radiography

12.) POLAROID

- Paper-based
- Thermal paper
- DSA and UTZ

13.) LASER FILM

- No darkroom, fixer and developing solution
- Laser printing
 - o MRI
 - o CT Scan
 - o Digital Radiography

- o DSA
- Red sensitivity
- Infrared light

FILM STORAGE AND HANDLING

1.) UNEXPOSED FILM

- Stored in original packaging
- **RATIONALE:** expiration date
- Expired Film Decreased Sensitivity/Loss
 Speed Increased mAs
- Age Fog/Expired Film Loss Contrast Poor Image Quality

2.) EXPIRED FILM

- Should be discarded
- Silver recovery
 - \circ Fixer 50% Ag
 - Film 50% Ag

3.) ARCHIVAL FILM

- 5 years/10 years
- Can be sold

4.) SCRAP FILM/SPOILAGE

• 50% Ag recovery

5.) GREEN FILM

- The most precious in terms of Ag recovery
- 100% Ag recovery
- Ag remain intact

VERTICAL/EDGE/STRAIGHT/UPRIGHT

- Storage of film
- RATIONALE:
 - To prevent film to stick to one another
 - To prevent pressure artifacts

STORAGE TEMPERATURE

- 10-21 °C/50-70 °F
- 40-60% humidity

MAXIMUM STORAGE

30-45 days at 21 °C/70 °F

- Greater than 1 year at 10 °C/50 °F
- 0 °C stop film aging process
 - Film can be used but should be warm up to room temperature at 35 °C/85
- Increased Temperature rapid aging process

ENVIRONMENT

Very important to film

POSSIBLE CONSEQUENCES OF STORING UNEXPOSED FILM IN ENVIRONMENT WITH IMPROPER TEMPERATURE AND RELATIVE HUMIDITY

- Temperature too high: increased fog level
- Temperature too low: increased static discharges
- Humidity too high: increased fog level
- **Humidity too low:** increased static discharges

STATIC ARTIFACTS

• Positive artifacts (black)

NECKLACE

• Negative artifacts (white)

TEMPERATURE AND HUMIDITY

- Directly related
- Increased Temperature Increased Heat Fog
 Increased Possibility of Static Artifacts

PACKAGING OF FILM

- Photo-inert photoethylene bag or metal foil
 - **RATIONALE:** to protect film from moisture and light

FILM STORED

- Must be protected from:
 - o Heat

- Radiation
- o Chemical fumes
- o Pressure

EXPIRATION DATE

- Adhere First In First Out (FIFO)
- **RATIONALE:** to beat the expiration date

HANDLING OF FILM

- AVOID:
 - Hand cream
 - RATIONALE: finger print marks (negative density mark)
 - Rubber gloves
 - RATIONALE: static artifacts (positive density marks)
- Cotton gloves can be used

KINDS OF FOG THAT CAN AFFECT THE FILM

1.) AGE FOG – expired film

2.) CHEMICAL/DEVELOPMENT FOG

- Fumes
- Contaminated developer solution (0.1 of fixer)

DEVELOPER

• All or none phenomenon

RESTRAINER

- Prevents chemical fog
- Increased Restrainer Activity Increased Etol, Metol, Phenidone and Hydroquinone
- FUNCTIONS:
 - o Control
 - Restrain
 - o Regulate
 - o Prevent development fog

3.) SAFELIGHT FOG

Most common cause of fog

4.) HEAT FOG

• Increased Temperature – Increased Heat Fog

5.) SECONDARY RADIATION FOG

- Increased kVp Increased Scattered Radiation Increased Fog
- X-ray polyenergetic heterogenous beam
- 20-150 energy/kVp
 - o 20-70 produces scatter radiation
 - o 80-120 remnant radiation

mAs

Controls quantity, amount and number of x-rays

APPEARANCE OF FOG

Gray shades

FACTORS THAT CONTROL SCATTER RADIATION

1.) kVp

Increased kVp – Increased Scatter Radiation
 Increased Fog – Increased Density

2.) PATIENT THICKNESS, SIZE AND DENSITY

 Increased Thickness, Size and Density – Increased Scatter Radiation

3.) BEAM-RESTRICTING DEVICE/ COLLIMATOR

 Increased Collimation – Decreased Scatter Radiation

PATIENT

Main source of scatter radiation

FOG

- Non information image
- Unwanted/supplementary density

Decreased kVp – Decreased Scatter
 Radiation – Decreased Fog – Decreased
 Density – Increased mAs

POSITIVE-DENSITY ARTIFACTS

• Before processing

NEGATIVE DENSITY ARTIFACTS

• During processing

SENSITIZED MARKS

- Development tank
- Wet pressure sensitation

RADIOGRAPHIC FILM

IMAGE FORMING X-RAYS

• Those that exit the patient and interact with the image receptor

EXIT BEAM

• The x-rays that remain as the useful beam exits the patient

IMAGE RECEPTOR

• The medium that converts the x-ray beam into a visible image

RADIOGRAPHIC FILM

• **Basic Parts:** base & emulsion

• Other Parts: adhesive layer & overcoat

• **Thickness:** 150-300 μm

Manufactured in total darkness

• **Biggest Size:** 35 x 43 cm. or 14 x 17 in.

• Smallest Size: 20 x 25 cm. or 8 x 10 in.

PARTS OF RADIOGRAPHIC FILM 1.) TOPCOAT/SUPERCOAT/OVERCOAT

- A protective covering of gelatin that enclosed the emulsion
- Composition: made up of gelatin

Purpose:

- Prevent damage to sensitive emulsion layer
- Protects the emulsion from scratches, pressure & contamination
- Allows rough manipulation of x-ray film before exposure

2.) EMULSION

- The heart of the radiographic film
- Active layer
- Radiation and light sensitive
- **Size:** 3-5 or 10-20 micrometer
- Composition: silver halide crystal & gelatin
- Silver Halide Crystal: recording medium
 - o The active ingredient of the emulsion
 - Characteristic: high atomic number (Z)
- Composition:
 - o **Silver bromide:** 98% or 90-99%
 - o Silver iodide: 2% or 1-10%
- **Shapes:** tabular (mostly used), cubic, octahedral, polyhedral & irregular
- Gelatin: mechanical binder
 - o It holds the silver halide crystal uniformly dispersed in place
 - Characteristics: clear & sufficiently porous
 - Principal Function: to provide mechanical support for silver halide crystals

INCREASED ATOMIC NUMBER (Z)

- Increased the possibility of forming the latent image
- Bromide: 35 Z
- Silver: 47 Z
- **Iodide:** 53 Z
- Gelatin: 7 Z
- Polyester: 7 Z

3.) ADHESIVE/SUBSTRATUM LAYER

- A thin coating located between the emulsion & base
- Adheres one layer of the film
- **Purpose:** allows emulsion & base to maintain proper contact & integrity

4.) BASE

- Foundation or framework of the film
- **Purpose:** to provide a rigid structure onto which the emulsion can be coated
- Composition: polyester/plastic
- **Size:** 175 or 200 or 150-300 micrometer

CHARACTERISTIC OF GOOD FILM BASE

1.) SUPERIOR PHYSICAL/DIMENSIONAL STABILITY

 Maintain its size and shape without contributing to image distortion

2.) TINTED WITH BLUE DYE (1933)

- To reduce parallax effect/crossover
- To reduce eyestrain and fatigue
- Increase contrast

3.) FLEXIBLE & FRACTURE RESISTANT

• It can be snap in the viewbox/negatoscope

4.) UNIFORM LUCENCY/OPTICAL CLARITY

- In order to be seen
- Transparency should be uniform
- No unwanted pattern or shading is found on the image

5.) **SEMIRIGID**

6.) INERT TO PROCESSING CHEMICAL

• Does not change in form

7.) CHEMICAL MEMORY

- Remain flat
- 8.) NON-FLAMMABLE
- 9.) WATERPROOF

PARALLAX EFFECT

Apparent displacement of an image as seen in the radiograph

HISTORY OF FILM BASE

1.) GLASS PLATE

• The original film base

• Characteristic: fragile

2.) CELLULOSE NITRATE

Standard base

• Characteristic: flammable

3.) CELLULOSE TRIACETATE (mid-1920s)

Safety base

• Characteristic: safety base but easily torn

4.) POLYESTER (1960)

• Film base of choice

• Ethylene glycol & dimethyl terapthalate

• Characteristics:

More resistant

Superior dimensional stability

BASIC FILM TYPES ACCORDING TO CONSTRUCTION

1.) DUPLITIZE/DOUBLE EMULSION FILM

- Films that have emulsion layer coated on both sides of the film base
- Screen or non-screen type

2.) SINGLE-COATED

Films that have emulsion layer on one side only

HALATION

- Reflection of screen light transmitted through the emulsion & base
- The halo unsharpness that reduces resolution
- Produced by the light photons that has already pass through the emulsion layer for single coated film

FILM CHARACTERISTICS

1.) FILM SPEED

- Degree to which the emulsion is sensitive to x-rays/light
- The exposure required to produce an optical density of 1.0 above base fog
- Increased Film Speed Increased
 Sensitivity Increased Density Decreased
 mAs Decreased Dose

FACTORS AFFECTING FILM SPEED

- Number of silver halide crystals
- The number of sensitivity center per crystals
- The concentration of crystals in the emulsion
- The size & distribution of the crystals

FACTORS AFFECTING FILM SPEED IN INTENSIFYING SCREEN

- Type/composition of phosphor
- Thickness of phosphor
- Size of phosphor
- Reflectance used

2.) FILM CONTRAST

- Refers to the ability of the radiographic film to provide a certain level of image contrast
- The difference in OD b/n 2 areas in the image
- Inherent to film manufacturer
- High contrast emulsion good image
- Low contrast emulsion not good image

SUBJECT CONTRAST

- Differential absorption of tissue
- Controlled by RT

3.) EXPOSURE LATITUDE

- Margin of errors
- Range of exposures that produce OD within straight line region of sensitometric curve

- Inversely proportional to film contrast
- High contrast emulsion narrow latitude
 - o Few factors can be applied
 - o Near to OD required
- Low contrast emulsion wide latitude
 - o Many factors can be applied

PARTS OF THE CHARACTERISTIC CURVE

- Base plus fog
- Toe
- Shoulder
- Straight line portion

HUMAN EYE

- It has a logarithm of response to OD
- OD = $Log_{10} (I_o/I_t)$

DENSITOMETER

It measures density

4.) SPECTRAL SENSITIVITY

• It refers color of light to which particular film is most sensitive

SPECTRAL EMISSION

Color of light produced by a particular intensifying screen

5.) SPECTRAL MATCHING

• Correctly matching the sensitivity of the film to the color of emission of intensifying screen

6.) CROSSOVER

- Disadvantage of screen-film/duplitized film
- Light that has been produced by IS
- Crossover to the base and exposing the emulsion of the opposite side
- Blurred image

WAYS TO REDUCE PARALLAX EFFECT

- Tinting the film with blue dye
- Use monochromatic film
- Adding anti-crossover layer

ORTHOCHROMATIC FILM

- There is always a parallax effect
- **RATIONALE:** green is not transparent to dye

IMPORTANCE OF ADDING CROSSOVER CONTROL LAYER

- Separate layer from emulsion
- Absorb most of the crossover
- Easily dissolved in the solution

7.) RECIPROCITY LAW

- OD on a radiograph is proportional only to the total energy imparted to the radiographic film
- Applicable only in direct exposure, but not in screen-film

FILM SENSITOMETRY

- Quantitative measurement of the response of film to x-ray and exposure or development and processing
- Frequency:
 - Early morning when the processor reached its maximum capacity or has been warmed up

SENSITOMETER

- Optical step-wedge
- A device that produces a constant simulated, predetermined x-ray exposure
- X-ray machine is not utilized

PENETROMETER

- Aluminum step-wedge
- X-ray machine is utilized

CONTROL FILM/CONTROL BOX

- The film used
- Exclusively used for film sensitometry

AUTOMATIC PROCESSOR

Develop film

SENSITOMETRIC STRIP/STEP TABLET

- Made by exposing successive areas on a film with one exposure
- The image from least to maximum OD
- 11 or 24 strips
- D_{max} to D_{min}

DENSITOMETER/TRANSMISSION DENSITOMETER

- A device that measures the percentage of light transmittance
- Base Density/Manufacturer's Film Density: 0.14 OD
- **Light Transmitance:** 100% (0 OD), 10% (1 OD), 1% (2 OD) & 0.1% (3 OD)

GRAPHING PAPER/CONTROL CHART

- For plotting the H & D curve
- Hurter & Driffield

OPTICAL DENSITY

- Human eyes has a logarithm of response
- Noticeable
- Formula: $Log_{10} (I_i/I_t)$ or $Log_{10} (I_o/I_t)$

SENSITOMETRIC CURVE

- The product of sensitivity
- Film characteristic curve or H & D curve
- **Base Plus Fog:** lowest portion (0.18 OD)
- **Toe:** D_{min.} Phenidone
- **Shoulder:** D_{max.} Hydroquinone
- Straight Line Region: Film gamma
 - Steeper = good contrast

• Film contrast, Exposure latitude, Speed/Sensitivity, Automatic processing, Phenidone & Hydroquinone

BASE DENSITY

- The density from the manufacturer of the film
- It is inherent in the film base
- **Average:** 0.14 OD

BASE PLUS FOG

- Inherent fog cause by processing conditions
- Acceptable B+F: 0.18 OD

MINIMUM DENSITY/Dmin

- Low density & midpoint density
- The TOE of the characteristic curve
- Slightly higher than B+F density

MAXIMUM DENSITY/D_{max}

- Higher density & darkroom density
- The SHOULDER of the characteristic curve

AVERAGE GRADIENT

- Reflects the film contrast which is measured at 0.25 density units above B+F density and 2.0 density units above B+F
- The more vertical this line, the greater the film contrast

REJECT FILM ANALYSIS

- **Monthly:** a reject rate of 10% or more should be considered unacceptable
- A reject rate of 5-10% justifies continued monitoring

INTENSIFYING SCREEN

• It converts x-ray energy to light which exposes the radiographic film

- It intensifies or amplifies the energy to which they were exposed
- Advantage: decrease patient dose

LAYERS OF INTENSIFYING SCREEN 1.) PROTECTIVE COATING

- It gives physical protection to the delicate phosphor layer
- It provides a surface which can be cleaned without damaging the phosphor
- It helps prevent static
- Transparent to x-ray
- **Size:** 10-20 micrometer

2.) PHOSPHOR

- The active layer of IS
- It emits light during stimulation by x-ray
- **Size:** 50-300 micrometer or 60 mg/cm²

3.) REFLECTIVE LAYER

- Intercepts light photons headed in other direction & redirects them to the film
- Shiny Substances: Magnesium oxide & Titanium dioxide
- **Size:** 25 micrometer
- Crystal Size: 5-15 micrometer
- 2x Film Speed 2x Density ½ mAs

4.) BASE

- Made of high grade cardboard or polyester
- It provides support to the phosphor layer
- **Size:** 1000 micrometer or 1 mm

• Characteristics:

- o Rugged & moisture resistant
- Does not suffer radiation damage nor discoloration
- Chemically inert & not interact with the phosphor layer
- o Flexible but not elastic
- Does not contain impurities that would be image by x-rays

CHARACTERISTICS OF A GOOD PHOSPHOR

1.) DETECTIVE QUANTUM EFFICIENCY

 The ability of the phosphor to interact with x-ray

2.) CONVERSION EFFICIENCY

- The ability of the phosphor to convert x-ray into light
- Rare earth = high CE

3.) SPECTRAL MATCHING

• Specific color

4.) MINIMUM AFTERGLOW/LAG

• Useless but it is use in fluoroscopy

AMBIENT TEMPERATURE

- Increase temperature
- $>30^{\circ} \text{ C/85}^{\circ} \text{ F}$
- KE increases = changes color

PHOSPHOR MATERIAL

1.) CALCIUM TUNGSTATE (CaWO₄)

- Introduced by Thomas Alba Edison
- Scheelit: natural tungstate

2.) BARIUM LEAD SULFATE

- For high kVp techniques
- It was used to decrease patient dose
- Increase scatter radiation Increase fog Increase density – Decrease mAs

3.) ZINC SULFIDE

- For low kVp techniques
- It was used for high resolution image quality
- Decrease quantum mottle Increase mAs

4.) RARE EARTH CRYSTALS

- **Speed:** 1000-1200
- Increase quantum mottle Decrease mAs
- Quantum mottle: salt and pepper appearance
- **Disadvantage:** Increase quantum mottle

WILHELM CONRAD ROENTGEN

- Died in colon cancer
- Wife: Anaberta Ludwig

LUMINESCENCE

• Emission of light from the screen when stimulated by radiation

FLUORESCENCE

- The ability of phosphor to emit visible light only while expose to x-ray
- During x-ray exposure or while/promptly emitted or within 10⁻⁸
- Important to Radiography

PHOSPHORESCENCE

- Continue to emit light even after x-ray exposure
- When x-ray exposure ceases or stopped
- Somewhat after 10⁻⁸
- Delayed emission
- Important to Fluoroscopy

INTENSIFYING SCREEN PHOSPHOR MATERIAL AND THEIR RESPONSE

1.) CALCIUM TUNGSTATE (CaWO₄): BLUE

2.) RARE EARTH

- Lanthanum oxybromide: BLUE
- Yttrium tantalite: UV/BLUE/GREEN
- Gadolinium oxysulfide: GREEN

SCREEN SPEED

- The capacity of the screen to produce visible light
- Increase screen speed Increase light emission – Increase density – Decrease density

FACTORS DETERMINING SPEED OF THE SCREEN

- Type of phosphor
- Phosphor thickness
- Phosphor size
- Reflectance of the screen backing

SCREEN FACTOR

1.) THICKER PHOSPHOR LAYER

- Increase screen speed Increase quantum mottle Decrease recorded detail
- Increase screen speed Increase light emission – Increase density – Decrease mAs
 Decrease patient dose

2.) LARGE PHOSPHOR CRYSTAL SIZE

• Same as above

3.) REFLECTIVE LAYER

- 2x screen speed Increase quantum mottle –
 Decrease recorded detail
- 2x screen speed 2x light emission 2x density – Decrease mAs – Decrease patient dose

3.) ABSORBING LAYER

- Decrease screen speed Decrease quantum mottle Increase recorded detail
- Decrease screen speed Decrease light emission – Decrease density – Increase mAs – Increase patient dose

4.) DYE IN PHOSPHOR LAYER

• Same as above

INTENSIFICATION FACTOR

- Intensifying action of the screen
- A measure of screen speed
- Formula:
 - Exposure w/o screens ÷ Exposure w/ screens
- Increase IF Increase intensifying action

SPEED VALUE

- The most common method of designating screen speed
- Formula: New mAs = (Old mAs x Old Relative Speed Value) ÷ New Relative Speed Value
- Fast speed Increase light emission Decrease sitting requirement
- Slow speed Decrease light emission Increase sitting requirement
- Decrease screen speed Decrease light emission – Decrease density – Increase mAs – Increase patient dose
- Increase screen speed Increase light emission – Increase density – Decrease mAs – Decrease patient dose
- Increase crystal size Thicker phosphor Increase screen speed

INTENSIFYING SCREEN SPEED

25 – Ultra Detail

50 – Slow/High Resolution/Detailed

100 - Standard/Medium/Par

200 - Fast/High Speed

300 - Ultrafast/Hi-plus

1200 - Rare Earth

RELATIVE SPEED

- The ability of the screen to produce light and density
- **Formula:** mAs₁/mAs₂ = relative speed₂/relative speed₁

WATER TEMPERATURE

- >2.8-3.0° C/5° F than developer temperature
- If water temperature is greater than developer temperature, developer activity increases

90 SECONDS AUTOMATIC PROCESSOR

• 33.8-35° C/90-95° F

QUANTUM MOTTLE/IMAGE NOISE

- Statistical fluctuation in the quantity of x-ray photons that contributes to image per mm²
- Low x-ray photons Increase mottled/splotchy appearance

SCREEN MAINTENANCE

- Frequency: regular cleaning
- Anti-static compound/solution or 70% isoprophyl alcohol or mild/body soap
- Do not use detergent
- Cotton balls: for even cleaning
- **UV light:** to identify stain
- Compression layer/Contact felt: maintain proper screen-film contact
- Poor screen-film contact: blurry image
- Common cause: foreign matter under the skin
- Wire Mesh Test: used to evaluate proper screen-film contact

CAUSES OF POOR SCREEN-FILM CONTACT

- Worn contact felt
- Loose, bent or broken latches (lock)
- Loose, bent or broken hinges
- Warped screen cause by excessive moisture
- Warped cassette front
- Spring or cracked cassette frame
- Foreign matter under the screen (most common cause)

FILM CASSETTE

CASSETTE FRONT

- Low atomic number
- No x-ray interaction (radiolucent)
- **Composition:** Bakelite/Carbon fiber

LEAD FOIL

• Absorbs backscatter radiation

CASSETTE BACK

- Steal of light weight of metal
- Composition: Magnesium/Magnesium

PHOTOTIMER CASSETTE

- Radiolucent back to permit the radiation reaching the film to continue in the AEC
- No lead foil

GURNEY-MOTT THEORY

- Before exposure, silver halide (AgBr & AgI) is suspended in gelatin in the emulsion layer
- Sensitivity specks (latent image center) exist as a physical imperfection
- Exposure to x-ray and light ionizes the silver halide
- Negative charged electrons and positive charge silver ion float freely in the emulsion gelatin
- Sensitivity specks trap electrons
- Each trapped electron attracts a silver ion
- Silver clamps around the sensitivity specks
 - o 4-10 silver atom pairs

GURNEY-MOTT THEORY

- The only accepted theory in the explanation of photographic effect
- Indicates that x-rays and visible light cause ionization of the atoms in the crystal
- Ionized crystal are said to be exposed

MITCHELL THEORY

Modern theory

SENSITIVITY CENTER

- Physical imperfection in the lattice of the emulsion layer that occurs during the film manufacturing process
- Latent image center or the focal point

SILVER SULFIDE

 A chemical contaminant responsible for the physical imperfection of the silver halide crystal

TYPES OF IMPERFECTION

1.) POINT DEFECT

Occur when silver ions moves out from the cubical lattice formation

2.) SENSITIVITY SPECK/CENTER

 Occurs when silver ions are trapped because of chemical impurities in the gelatin

3.) LATENT IMAGE CENTER

Refers to clumping or grouping of silver ions

4.) FRANKEL DEFECT

- Physical imperfection
- Consists of interstitial silver ions and silver ion vacancies

IMAGE PROCESSING

1.) LATENT/POTENTIAL IMAGE

 Refers to the image that exists on film after it has been exposed but before it has been processed

2.) VISIBLE/MANIFEST IMAGE

- Black metallic silver
- Exists on film after exposure and processing

DEVELOPMENT OF VISUAL IMAGE

- "Without interaction, there is no development"
- The developer provides electrons for the reduction of the SHC
 - By giving up electrons, the developer is oxidized
 - o By gaining electrons, the SH is reduced
- REDOX = EUR/OPE (Electrons are Used in Reduction; Oxidation Produces Electrons)

PROCESSING OF RADIOGRAPH 1.) DEVELOPER

- Convert latent image to visible image
- To amplify the amount of metallic silver on the film by increasing the number of silver
- To reduce the exposed SHC into metallic silver

A. REDUCING AGENTS

- Elon/Metol/Phenidone/Hydroquinone
- Reduced exposed AgBr crystals to black metallic Ag
- Metol (Manual) & Phenidone (Automatic)
 - Build up detail quickly in 1st half of the development process
 - Speed indicator
 - o Rapid reducing
 - o 1.2 OD
- Hydroquinone
 - Builds up contrast slowly during development period
 - Principal component
 - o Contrast indicator
 - o Sensitive to light and temperature
 - o **PQ:** for automatic processing
 - o MQ: for manual processing

B. ACTIVATOR/ALKALINIZER/BUFFERING AGENT/ACCELERATOR/WETTING AGENT

- Sodium hydroxide/bicarbonate & Potassium hydroxide/bicarbonate
- Maintain alkalinity
- Provides necessary alkaline medium
- Swells gelatin emulsion so that reducing agents can attack AgBr crystals
- pH = 9-6-10-6 or 10-11.5 or 10-12

C. RESTRAINER

- Sodium bromide/iodide or Potassium bromide/iodide
- Decreases activity of developing agent
- **REGULATOR:** controls activity of reducing agents
- **ANTI-FOGGANT:** tends to prevent fog
- **STARTER SOLUTION:** first to take effect to reduce developer activity

D. PRESERVATIVE/CYCON

- Same with fixer
- Prevent rapid oxidation of the reducing agent
- Reacts with QUINONE (by produce of Hydroquinone which is a dye), capable of staining the film and form colorless compound called HYDROQUINONE MONOSULFATE
- **STABILIZER:** to promote equilibrium of chemicals
- ANTI-OXIDANT: prevents internal oxidation
- pH = 3-4 (Preservative, Restrainer & Hardener)

E. SOLVENT

- Drinking water
- Not tap water
 - o It creates artifacts

OTHER COMPONENTS

1.) HARDENER/TANNING AGENTS

- Dialdehyde/Glutaraldehyde
- For automatic processing only
- Added for developer solution to prevent swelling of emulsion
- Reduces film transportation problems & preventing damage to the emulsion
- **Developer:** weak/temporary hardener

• **Fixer:** strong/permanent hardener

2.) BENZOTHIOSOLE

- An organic restrainer which added to PQ developer
 - Prevent action of phenidone on the unexposed crystals, since phenidone is not restrained by bromide
- 1956: first roller transport system uses hardener

3.) SEQUESTERING AGENTS

- Prevent precipitation of calcium sludge
- Oily substance & precipitate of aluminum
- **EDTA:** sodium salt of Ethylene Diamine Tetra Acetic Acid
- CALGON: sodium hexametaphosphate
- **CHELATES:** boric acid/salts

4.) WETTING AGENTS

- Sodium hydroxide/carbonate
- Stimulate uniform development

5.) ANTIFROTHANT/ANTI-FOAMING

- Prevent bubble formation in the solution
- Prevents aerial and external oxidation
 - Closefitting lids
 - Mixing paddle
 - Hose should not be used

6.) FUNGICIDES

- **Fungi:** develop in complete darkness and moisture
- Virus, bacteria & protozoa

7.) BUFFER

- **Developer:** Sodium hydroxide/carbonate
- Fixer: Acetic acid/Sulfuric acid
- Maintains pH value of the solution

OXIDIZED DEVELOPER

- Old or exhausted developer
- Decrease reducing property (aerial/chemical oxidation)

- Product of developing as increased monosulfate
- All agent's activity are decreased, except for Restraining Agent

REPLENISHMENT

• Physical and chemical means of maintaining the level of processing solution

REPLENISHER

- A solution containing more reducing agents, activator and preservative but without restrainer to maintain chemical activity of the processing solution to the original & in proper dilution with water
- MQ Replenisher: without restrainer
- PQ Replenisher: with restrainer (BENZOTHIOSOLE)

FLOOD VOLUME REPLENISHMENT SYSTEM

• 25-50 pcs of 14x14 or 14x17 films developed/day

MICROSWITCH

- A device located at the entrance of the automatic processor which controls the replenishment rate of processing chemicals
- Replenishment rate are normally established on the basis how much chemistry is required per 14 in of film travel
- **Developer:** 60-70 cc or 4-5 mL/in
- **Fixer:** 100-110 cc or 6-8 mL/in
- 14x14 or 14x17 in: replenishment occurs
- 8x10 in: no replenishment occurs
- Oxidized developer: many big films are developed

 Overreplenishment: many big films are developed; increases density

FLOOD/TIMED/STANDBY/TITUS REPLENISHMENT SYSTEM

- Donald Titus of Kodak
- Replenish every 10 mins or 1 hour
- <25-50 14 in films
- No microswitch but with timer
- Many films are replenished

SUPERADDITIVITY/SYNEGISM

 Activity of each individual component of reducing agent in solution is less that the activity when two components are combined

CLASSIFICATION OF DEVELOPER

1.) MO DEVELOPER

• Elon/metol-hydroquinone developer

2.) PQ DEVELOPER

- Phenidone-hydroquinone developer
- 15 times more superadditivity than MQ developer combination

FACTORS AFFECTING DEVELOPMENT TIME

- Temperature of the solution:
 - Increase temperature Increase activity Decrease time of development
- Size of film:
 - o Big film size Longer DT
- Size of grains of the film:
 - Larger/thicker SHC Increase development time (Same as direct exposure)
- **Agitation:** circulation system

Increase agitation – Increase interaction – Shorter DT

• Exhaustion of the developer:

 Decrease developer activity – Longer DT

2.) FIXING

- STOP BATH/SHORT STOP/ACID RINSE BATH
- 1% of acetic acid

• PRIMARY:

- Removes, dissolves & clears away silver halide from film
- To permanent the image

• SECONDARY:

- To stop development process
- o To further hardens the emulsion
- It serves to clear the film of the undeveloped crystals, forming a Ag complex of thiosulfate technically called MONOARGENTO-DI-THIOSULFURIC ACID

A. CLEARING AGENT/FIXING AGENT

- Sodium thiosulfate (Manual Processing)
- Ammonium thiosulfate/hypo (Automatic Processing)
- Dissolves unexposed AgBr crystals, thereby producing a permanent visible image
- Oxidized developer: strong ammonia odor
- Hyporetention/Thiosulfate retention:
 - o Silver sulfide stain
 - Pale yellow or brown color (brown stain)

WASHING

- Very important to archival quality
- Prevent hyporetention

THIO

- Function is to dissolve silver
- Thio silver sulfate: Ag enter to thio
- Hyporetention

HYPOKIT

- A chemical that is dropped to the film
- Presence of thiosulfate = changes color
- Many thiosulfate = brown color
- Chemical used = acetic acid, silver nitrate & solvent

Prevents internal oxidation

Maintains equilibrium of the chemical in the

- Prevent aerial oxidation of fixing agent
- Prevent decomposition and precipitation of sulphur from the thiosulfate fixing agent
- Responsible in removing silver to thio
- Oxidized developer: increase monosulfate
- Oxidized fixer: increase sulfurization

AMMONIUM THIOSULFATE VS SODIUM THIOSULFATE

- **Ammonium:** for automatic processing; better than sodium
 - Fixes the film more rapidly than Na thiosulfate when present equivalent concentration
- **Sodium:** for manual processing

B. NEUTRALIZER/ACTIVATOR/ACIDIFIER /BUFFERING AGENT

- Acetic acid/Sulfuric acid
- Provides an acid medium and neutralized the developer carried over on the film
- To activate Thio to enter and get Ag
 - It will not function when the medium is not acid
- pH = 4.2-4.9
- Increase carryover of alkaline from developer
- **Alkaline:** low H⁺ high OH; potential hydrogen
- **Acid:** high H⁺ low OH⁻

C. PRESERVATIVE / STABILIZER / CYCON / ANTI-OXIDANT

• Sodium sulfite/Potassium sulfite

D. HARDENER / STRONG HARDENER / TANNING AGENT / PERMANENT AGENT

- Potassium aluminium/Chromium aluminium/Alum chloride
- Major component
- Raises temperature at which gelatin softens
- Prevents too much absorption of water by gelatin
- Makes the film less susceptible to physical change
- Increase temperature, aluminium enters

E. SOLVENT

Water

SEQUESTERING/BUFFERING AGENT

- Boric acid/salts
 - An anti-sludging agent which delay precipitation of Al hydroxide (alkaline)
 - Increases pH
- Hyponeutralizer
 - Solution used between fixing stage and the final washing cycle to decrease the washing time of the film to prevent hyporetention
- Clearing

- The process by which the fixing agent acts on the unexposed to form soluble complexes which eventually diffuses out of the film into fixing solution
- Fixing Time = 2x Clearing Time (OLD)
- Fixing Time = Clearing Time + Hardening Time (NEW)

3.) WASHING

- Removes residual processing (thio) and Ag salts from the radiograph
- Water
- < 2.8° C/5° F of developer temperature
- **MAIN FUNCTION:** to stabilize developer temperature
- Change = 0.3° C
- Important to archival quality to prevent hyporetention

4.) DRYING

- Final process
- Removes 85-90% of moisture from the film so that it can be handle easily and stored while maintaining quality of the diagnostic image
- 10-15% remaining
- Consuming more electricity (60-80% electrical consumption)
- Rationale:
 - o Filament = 1500-2500 W
 - Air blower = 100-300 cu-ft/min

TEMPERATURE CONTROL

- Tempering system
- Increase and decrease in developing temperature can adversely affect the quality of radiographic image
- $90 \text{ secs} = 33.8 35^{\circ} \text{ C}/93 95^{\circ} \text{ F}$

GROSS CONTROL TEMPERATURE/WARM WATER PROCESSOR

- Used HOT WATER
- Affected by WATER-MIXING VALVE, a device that interconnect the incoming hot and cold water

FINE CONTROL/THERMOSTATICALLY-CONTROLLED TEMPERATURE PROCESSOR

- Uses COLD WATER
- Occurs within the developer tank itself through a thermostatically-controlled heating element by means of heat exchanger
- Thermostat: controls temperature
- Heating element or heat exchanger or metal tube
- More advisable than gross control temperature

PROCESSING SYSTEM TANKS

- Automatic processor has 3 tanks
- 1.) Developer Tank
- 2.) Fixer Tank
- 3.) Water Tank

CASCADE COMPARTMENT

• 2 wash tank

AUTOMATIC PROCESSOR

- A device that has roller transport system
- A device that comprises chemical tanks
- A dryer system for processing of radiographic film

PROCESSING CYCLE/DRY-TO-DROP TIME

- Time to process a single piece of film
- 45 seconds to 3.5 minutes

PROCESSING CAPACITY

 Number of film that can be processed per hour

TRANSPORT SYSTEM

1.) VERTICAL TRANSPORT SYSTEM

- Used in automatic processor
- Advance the film through different stages
- All rollers & feed tray

A. ENTRANCE ROLLER

- Grab the film
- Covered with corrugated rubber (rubberized)
- Plexi glass, Polyester & Phenolic

B. TRANSPORT/PLANETARY ROLLER

- Vehicle transport
- Moves the film through the chemical tanks and dryer
- Size: 1 inch

C. TURNAROUND/SOLAR/MASTER

ROLLER

- Bottom of the roller assembly
- Turns the film from moving down the transport assembly to moving up the assembly

D. CROSSOVER ROLLER

- Moves the film from one tank to another
- From fixer to developer

E. SQUEEGEE ROLLER

Specialized rubber area

GUIDE PLATES

- Slightly curved metal plates
- Properly guide the leading edge of the moving film through

MOTOR DRIVE

- An electric motor
- Provides power for the roller assembly to transport the film through the processor
- On/off switch provides electric power

- **Disadvantage:** stand by control
 - An electric circuit that shuts off power to the roller assembly
- Belt and pulley

RADIOGRAPHIC APPEARANCE

DECREASE IN DENSITY

- Developer exhausted
- Developer underreplenishment
- Processor running too fast
- Low developer temperature
- Developer improperly mix

INCREASE IN DENSITY

- Developer overreplenishment
- Increase developer temperature
- Light leak in processor
- Developer improperly mixed

PINKISH/DICHROIC STAIN

- Contamination of developer by fixer (chemical fog)
- Developer or fixer underreplenishment

BROWN STAIN/THIOSULFATE

Inadequate washing

EMULSION REMOVED BY DEVELOPER

• Insufficient hardener in developer

MILKY APPEARANCE

- Fixer exhausted
- Inadequate washing

STREAKS

- Dirty processor rollers
- Inadequate washing and drying

ALTERNATIVE PROCESSING METHODS

1.) RAPID PROCESSING

- 30 seconds
- Useful for angiography, special procedure, surgery & emergency room
- More concentrated chemicals
- Higher developer and fixer temperature

2.) EXTENDED PROCESSING

- 3 minutes
- Mammography
- For single emulsion only
- Advantages: greater image contrast & lower patient dose
- **Disadvantage:** longer dry-to-drop time

3.) DAYLIGHT PROCESSING

- 2 minutes
- Receive film in 15 seconds
- Uses microprocessor
- Advantages: no darkroom required & speed

RADIOGRAPHIC ARTIFACTS

Unwanted image

POSITIVE DENSITY ARTIFACT

- Radiolucent appearance
- Halfmoon marks: bending & kinking of film
- Scratching/Abrasion: fingernail/scratch
- Static discharge: sliding films over flat surface
- **Fogging:** exposure to white light, ionizing radiation, heat, safelight fog & expired film
- Density outside collimation area: offfocused/off-skin radiation

NEGATIVE DENSITY ARTIFACT

- Radiopaque appearance
- Finger print: moisture on finger transferred to the film before exposure

- Scratches/Abrasions: scrapping or removing emulsion
- Foreign objects: some unintended object in the imaging chain
- Non-specific decrease: dirty screens or cassette

SILVER RECOVERY

1.) PRECIPITATION OF THE SILVER

- Oldest form of silver recovery
- Chemical precipitation
- Involves chemical reaction
- Ag in fixer solution is precipitated as Ag sulphide by adding Na sulphide to the solution

2.) METALLIC REPLACEMENT / DISPLACEMENT

- Used of aluminum steel wool
- Cartridge
- Least expensive and simplest

3.) ELECTROLYTIC RECOVERY UNITS

- Most common
- An electric current is passed through an ionized solution
- Two electrodes: Anode (Carbon) & Cathode (Stain-steel)
- Ag is retrieved in the cathode

TROY OZ

Unit of silver recovery

USE OF SILVER RECOVERY

1.) Photographic Industry: 30%

2.) Electric Industry: 20%

3.) Sterling Industry: 15%

RADIOGRAPHY

Used of ionizing radiation

RADIOGRAPH

• Image produced with good quality

TECHNICAL COMPETENCY

- Operation of the control panel
- Selection of appropriate accessories
- Use of terminologies in evaluation of radiograph
- Measurement
- Evaluation of result

CHARACTERISTIC OF RADIOGRAPH

- Exposure factor is adequate
- Adequate penetration
- Sufficient density and contrast
- Field size selection is appropriate
- No motion
 - o Voluntary: good communication
 - o **Involuntary:** decrease exposure time

KILOVOLTAGE PEAK (kVp)

- Controls energy of the beam
- Penetrating ability
- Accelerates the electron
- Wavelength of photon
- Affects blackening of film by 15% rule
- Affects the production of scattered radiation
- Controls radiographic contrast
- Affects exposure to patient

MILLIAMPERAGE (mA)

- Number of electrons
- Number of x-ray photons
- Blackening
- Influences focal spot blooming
 - Increase actual focal spot size when the tube current is increased

• Length of exposures

 Number of photons exposing the patient with mA-timer relationship

DISTANCE

- **FFD/SID:** distance from the focal spot to the recording medium
- Affects blackening of film
- Inverse square law

RADIOGRAPHIC QUALITY

A. PHOTOGRAPHIC ASPECT/VISIBILITY

- **Density:** overall blackening of the film
- Contrast: variation in the density level that makes detail visible

B. GEOMETRIC ASPECT/SHARPNESS

- **Definition:** clarity and sharpness of structural lines
- **Distortion:** undesired change in the size and shape of the anatomic part

RADIOGRAPHIC DENSITY

- Determines the amount of density on finished radiograph
- Acceptable Range: 0.25-2.0 OD
- Directly related to mAs

FACTORS AFFECTING DENSITY

- Controlling factor: mAs
- kVp, Distance, Grids, Film Screen Speed, Collimation, Anatomic Part, Anode Heel Effect, Reciprocity Law, Generator Output, Filtration & Film Processing

FACTORS TO REMEMBER IN DENSITY

• **Increase mAs:** great density

TIME (s)

- Fastest screen film combination: great density
- Lowest grid ratio: great density
- **Direct exposure technique:** least density
- Shortest distance: great density
- Longest time: great density
- **Highest kVp:** great density
- Smallest area of collimation: least density

INFLUENCING FACTORS

- 15% kVp rule
- **Increase Density:** original kVp + 15%
- **Decrease Density:** original kVp –15%
- **Maintain Density:** original kVp + 15%, mAs ÷ 2
- **Decrease Patient Dose:** original kVp + 15% and mAs ÷ 2
- Increase Image Quality: original kVp –
 15% and mAs x 2

ANODE HEEL EFFECT

- Used long FFD and shortest/smallest field size
- Anode Side: 75%
- Cathode Side: 120%
- **Difference:** 45%

INVERSE SQUARE LAW

• Intensity of x-ray is inversely proportional to the square of distance

RECIPROCITY LAW

- States that OD on a radiograph is proportional only to the total energy imparted to the radiographic film
- Accurate only on direct exposure
- Fails in screen-film

RADIOGRAPHIC CONTRAST

- To make detail visible
- Attenuation and differential absorption

TYPES OF CONTRAST

1.) SUBJECT CONTRAST

- Differential absorption of adjacent structures
- Affects by kVp, tissue composition & CM

2.) FILM CONTRAST

- Inherent in the film base
- Affects by film (IR), film type & direct/IS exposure

CHARACTERISTIC OF CONTRAST SCALE 1.) SHORT SCALE

- Few number of useful densities on the radiograph
- Abrupt change from one density to another
- High contrast, more contrast & narrow latitude
- Low kVp technique

2.) LONG SCALE

- Large number of useful densities on the radiograph
- Little change from one density to another
- Low contrast, less contrast & wider latitude
- High kVp technique

HIGH kVp	LOW kVp
Long scale contrast	Short scale contrast
Low contrast	High contrast
Less contrast	More contrast
Wide latitude	Narrow latitude

CONTRAST

- **Influencing factor:** kVp
- Grids, Collimation, OID, CM, Processing & Air-gap Technique

CASTS

- **Fiber glass:** no increase in exposure factor
- Wet Plaster: increase mAs 3x
 Dry Plaster: increase mAs 2x

SPLINTS

- **Fiber glass:** no increase in factor
- Inflatable (Air): no increase in factor
- Wood, Aluminum & Plastic: increase exposure if they are in the path of primary beam

PATHOLOGY

1.) ADDITIVE DISEASES

- Increases absorption characteristic
- Increase kVp
- Aortic aneurysm, Ascites, Atelectasis,
 Cirrhosis, Hypertrophy, Metastases, Pleural effusion, Pneumonia & Sclerosis

2.) DESTRUCTIVE DISEASES

- Decreases absorption characteristic
- Decrease kVp
- Active TB, Atrophy, Bowel obstruction,
 Cancer, Degenerative arthritis, Emphysema,
 Osteoporosis & Pneumothorax

RADIOGRAPHIC DEFINITION/RECORDED DETAIL

- Clarity and sharpness
- Umbra: true image
- **Penumbra:** geometric unsharpness; the blurred areas around the umbra

DISTORTION

- Used to removed superimposition
- Magnification:
 - Distortion in size

Increase FFD – Decrease OFD –
 Decrease magnification

• Foreshortening/Elongation:

- o Irregular magnification
- Distortion in shape
- o Affected by CR part-film alignment

RELATIONSHIPS

- Increase mAs Increase Density
- Decrease mAs Decrease Density
- Increase kVp Increase Density Decrease Contrast
- Decrease kVp Decrease Density Increase Contrast
- Increase SID Decrease Density Increase Detail – Decrease Distortion
- Decrease SID Increase Density Decrease Detail – Increase Distortion
- Increase OID Decrease Density Increase Contrast – Decrease Detail – Increase Distortion
- Decrease OID Increase Density –
 Decrease Contrast Increase Detail –
 Decrease Distortion
- Increase Grid Ratio Decrease Density Increase Contrast
- Decrease Grid Ratio Increase Density Decrease Contrast
- Increase Film-Screen Speed Increase Density –Decrease Detail
- Decrease Film-Screen Speed Decrease Density – Increase Detail
- Increase Collimation Decrease Density Increase Contrast
- Decrease Collimation Increase Density Decrease Contrast
- Increase Focal Spot Size Decrease Detail
- Decrease Focal Spot Size Increase Detail
- Increase CR Angle Decrease Density Decrease Detail – Increase Distortion

CONTROL OF SCATTER RADIATION

PRODUCTION OF SCATTER RADIATION

TWO TYPES OF X-RAYS RESPONSIBLE FOR THE OPTICAL DENSITY & CONTRAST ON A RADIOGRAPH

- **1.)** X-rays that pass through the patient without interacting
- **2.)** X-rays that are scattered within the patient through Compton interaction

REMNANT X-RAYS

• X-rays that exit from the patient

IMAGE-FORMING X-RAYS

• X-rays that exit & interact with the image receptor

PROPER COLLIMATION

- Effects:
 - Less scatter radiation
 - o Reduces patient dose
 - Improves contrast resolution

THREE FACTORS CONTRIBUTE TO INCREASED SCATTER RADIATION

- 1.) kVp
- 2.) Field Size
- 3.) Patient Thickness

kVp

- Increase kVp: increases scattered radiation
 - Rationale: the relative number that undergo Compton interaction increases
 - o **Result:** reduced image contrast
- **Decreased kVp:** decreases scattered radiation
 - o Results:
 - Minimum scatter radiation
 - Improved image contrast
 - Increased patient dose
 - Due to increased mAs

TAKE NOTE:

• Approximately 1% of x-rays incident on the patient reach the image receptor

FIELD SIZE

- Increase Field Size: increases scatter radiation
- Reduce Scatter Radiation: lowers radiographic optical density
 - Effect: increased radiographic technique to increase OD

PATIENT THICKNESS

- Increased Thickness: increases scattered radiation
 - **Rationale:** more x-rays undergo multiple scattering
- Compression Paddle:
 - Used to reduce scatter radiation to the image receptor
- Compression of anatomy:
 - o Improves spatial resolution & contrast resolution
 - Lowers patient dose
 - Important to mammography

CONTROL OF SCATTER RADIATION

CONTRAST

- One of the most important characteristics of image quality
- The visible difference between light & dark areas on an image
- The degree of difference in OD between areas of a radiographic image

CONTRAST RESOLUTION

The ability to image & distinguish soft tissues

EFFECT OF SCATTER RADIATION ON IMAGE CONTRAST

- **High Contrast:** use of only transmitted & unattenuated x-rays
 - o **Appearance:** sharp image
- **No Contrast:** use of only scattered x-rays

- o **Appearance:** dull gray image
- **Moderate Contrast:** use of both transmitted & scattered x-rays

DEVICES THAT REDUCED SCATTERED RADIATION

- 1.) Beam Restrictors
- 2.) Grids

BEAM RESTRICTION

- Purpose:
 - Limiting patient exposure
 - o Reducing scattered radiation

BEAM RESTRICTORS

1.) APERTURE DIAPHRAGM

- Simplest type
- A flat piece of lead that has hole in it

2.) CONE/CYLINDER

- Modification of aperture diaphragm
- Has an extended flange attached to it

3.) COLLIMATOR

- Best type
- Useful and accepted type of beam-restricting device

4.) AUTOMATIC COLLIMATOR

- Positive beam limiting devices (PBL)
- Automatically limits the size and shape of primary beam to the size and shape of the IR

RESTRICTING THE PRIMARY BEAM		
Increased	Result	
COLLIMATION	Decreased patient dose	
	Decreased scattered radiation	
	Increased radiographic contrast	
	Decreased radiation density	
FIELD SIZE	Increased patient dose	
	Increased scattered radiation	
	Decreased radiographic contrast	
	Increased radiation density	

RADIOGRAPHIC GRID

- Device used to reduce the intensity of scatter radiation in the remnant x-ray beam
- **Principal Function:** to improve image contrast
- **Secondary function:** to absorb scattered radiation
- Used when:
 - o Anatomical part >10 cm
 - o >60 kVp is used
- Advantage: improved image contrast
- Disadvantages:
 - o Higher technical factors used
 - High patient dose
- **Position:** between the patient & IR

GRID CONSTRUCTION

1.) GRID STRIPS/LINES

- Radiopaque material
- **Purpose:** it absorbs scattered radiation
- **Composition:** lead (Pb)
 - Advantages:
 - Easy to shape
 - Inexpensive
 - High atomic number
 - High mass density
- Characteristics: thin & high absorption properties
- Size: 50 μm wide

2.) INTERSPACE MATERIAL

- Radiolucent material
- **Purpose:** to maintain a precise separation between the delicate lead strip of the grid
- Compositions:
 - o Aluminum (Al)
 - Advantages Over Fiber:
 - High atomic number
 - Produces less visible grid lines
 - Nonhygroscopic: does not absorb moisture
 - Easier to manufacture

- Disadvantages Over Fiber:
 - Increases absorption of primary beam
 - **Results:** higher mAs & higher patient dose
- Plastic fiber
 - More preferred than Al
- Size: 350 μm wide

THREE IMPORTANT GRID DIMENSIONS

- 1.) Grid Strip Thickness (T)
- **2.)** Interspace Material Width (D)
- 3.) Grid Height (h)

GUSTAVE BUCKY (1913)

- He invented stationary grid
- He demonstrated the technique for reducing the amount of scatter radiation that reaches the IR

GRID SURFACE X-RAY ABSORPTION

% X-ray = $\frac{\text{width of grid strip}}{\text{width of grid strip} + \text{width of interspace}} \times 100$

GRID CONTRUCTION CAN BE DESCRIBED BY:

1.) GRID RATIO

- The height of the grid divided by the interspace width
- **Formula:** grid ratio = h/D
 - \circ h = the height of the lead strips
 - \circ D = the distance between lead strips
- High Ratio Grid:
 - Advantage Over Low Ratio Grid:
 - More effective in cleaning up scatter radiation
 - **Rationale:** angle of deviation is smaller
 - o **Disadvantage:** increases patient dose
- **General Radiography:** 8:1 to 10:1
- Mammography: 4:1 to 5:1

2.) GRID FREQUENCY

• The number of grid strips per centimeter or inches

- **High Frequency:** less distinct grid lines on a radiograph
- Range: 25-45 lines/cm or 60/110 lines/inch

Grid Frequency = $\frac{10,000 \text{ } \mu\text{m/cm}}{(\text{T+D}) \text{ } \mu\text{m/linepair}}$

- T = grid strips thickness/width
- D = interspace width
- High Frequency Grids:
 - o Requires radiographic technique
 - o **Result:** higher patient radiation dose

GRID PERFORMANCE

1.) CONTRAST IMPROVEMENT FACTOR

- Ratio of radiographic contrast with a grid to that without a grid
- Best measure of how well a grid performs
- **Purpose:** measures improvement in image quality when grids are used
- Symbol: k

k = image contrast with grid
image contrast without grid

- **Most Grids:** k=1.5-2.5
- **k=1:** no improvement
- Use of Grid: double the image contrast
- **High Grid Ratio:** high k

2.) BUCKY/GRID FACTOR

- Ratio of incident radiation to transmitted radiation through a grid
- Ratio of patient dose with & without a grid
- Purpose:
 - To measure how much of an increase in technique will be required compared with nongrid exposure
 - Indicates how large an increase in patient dose will accompany the use of a particular grid
- Symbol: B

B = incident remnant x-rays transmitted image-forming x-rays

ransmitted image-forming x-ray

patient dose with grid

B

patient dose without grid

=

- Higher Grid Ratio: higher Bucky factor
 - Rationale: penetration of scatter radiation becomes less likely
- **Increasing kVp:** increases Bucky factor
 - Rationale: more scatter radiation is produced & it has more difficult time of penetration
- Increased Bucky Factor:
 - o Effects:
 - Increase radiographic technique
 - Increase patient dose

GRID PATTERN

 Refers to the linear pattern of the lead lines of a grid

TWO TYPES OF GRID PATTERN

1.) LINEAR/PARALLEL GRID

- Simplest type
- It has lead lines that run into one direction
- It cleans up scatter radiation in one direction
- Grid Strips: parallel
- Most popular in terms of grid pattern
 - **Rationale:** allows angulation of the x-ray tube
- Advantage: easiest to manufacture
- Disadvantage: grid cutoff
 - o Occur at: short SID & large area IR
- Optical Density: decreases toward the edge of IR

2.) CROSSED/CROSS-HATCHED GRID

- It is fabricated by sandwiching two parallel grids together
- It has lead lines that run at right angle to one another
- Grid Strips: perpendicular
- Advantages:
 - Not too difficult to manufacture
 - Not excessively expensive
- Disadvantages:
 - o Grid cutoff
 - o Critical grid positioning
 - Tilt table techniques

- Possible only if x-ray tube & the table are properly aligned
- Exposure technique required is substantial
 - **Result:** higher patient dose

• Advantages Over Parallel Grid:

- More efficient in cleaning up scatter radiation
- Higher contrast improvement factor than parallel grid with twice grid ratio
- Advantage increases with increasing kVp

TAKENOTE!!!

 The main disadvantage of parallel & crossed grids is grid cutoff

GRID FOCUS

Refers to the orientation of the lead lines to one another

TWO TYPES OF GRID FOCUS

1.) FOCUSED GRID

- Grid Strips: parallel to primary x-ray path
- **Purpose:** to minimize grid cutoff
- Advantage: reduce grid cutoff
- Disadvantages:
 - Difficult to manufacture
 - Geometric limitations
 - Intended focal distance
 - Side of the grid should face the x-ray tube
- Characteristics: same with parallel grid but exhibit no grid cut off

2.) PARALLEL/NON-FOCUSED GRID

- **Grid Strips:** parallel to one another
- **Applications:** fluoroscopy & mobile imaging

TYPES OF GRIDS

1.) WAFER GRID

- Matches the size of cassette
- Use by placing on top of the image receptor

2.) GRID CASSETTE

 An image receptor that has a grid permanently mounted to its front surface

3.) GRID CAP

- It contains a permanently mounted grid
- It allows the image receptor to slide behind it

GRID CUTOFF

- The undesirable absorption of primary x-ray by the grid
- Cause: improper grid position
- Primary Radiographic Effects:
 - Further reduction in the number of photons reaching the IR
 - o Decrease in radiographic density
- Most common to parallel grid
- **Distance To Grid Cutoff:** SID ÷ Grid ratio

TYPES OF GRID CUTOFF ERRORS (GRID PROBLEMS)

CENTRAL RAY

• The x-ray that travels along the center of the useful x-ray beam

1.) OFF-LEVEL GRID

- Occurs when the x-ray beam is angled across the lead strips
- Only problem in parallel & crossed grid
- Central Ray: not perpendicular to the grid
- **Cause:** improperly positioned x-ray tube & grid
- Results:
 - Grid cutoff across image
 - Underexposed
 - o Light image (low OD)

2.) OFF-CENTER GRID

- Occurs when the central ray of the x-ray beam is not aligned from side to side with the center of focused grid
- Problem in focused grid
- Also called lateral decentering
- Central Ray: perpendicular to the grid
- Causes:

- Improperly positioned x-ray tube
- Grid is shifted laterally (lateral decentering)

• Results:

- o Partial grid cutoff across image
- o Underexposed
- o Light image (low OD)

3.) OFF-FOCUS GRID

- Occurs when using an SID outside of the recommended focal range
- Problem in focused grid
- Cause: improper focal distance
- Effect: grid cutoff toward edge of image
- **Proper Focal Distance:** more important with high ratio
 - Rationale: less positioning latitude than low ratio grid

4.) UPSIDE-DOWN GRID

- Occurs when a focused grid is place upside down on the image receptor
- Problem in focused grid
- Cause: improperly positioned grid
- **Effect:** severe/complete grid cutoff toward edge of image

5.) OFF-CENTER, OFF FOCUS GRID

- Most common improper grid position
- **Effect:** grid cutoff on one side of image

GRID LINES

- The images made when primary x-rays are absorbed within the grid strips
- **Visibility:** directly related to the width of the grid strips

HOLLIS E. POTTER (1920)

• He invented the moving grid

MOVING GRID

- A Potter-Bucky diaphragm or Bucky
- **Grid Used:** focused grids
- Advantage: minimize grid lines
- Disadvantages:
 - Requires bulky mechanism
 - **Effect:** subject to failure

- Increase distance between the patient & IR
 - Effect: unwanted increase in magnification & image blur (undetectable)
- Introduce motion into cassetteholding device
 - **Effect:** additional image blur (undetectable)

TWO BASIC TYPES OF MOVING GRID 1.) RECIPROCATING

- A moving that is motor-driven back and forth several times during x-ray exposure
- **Total Drive Distance:** approximately 2 cm

2.) OSCILLATING

- The grid oscillates in a circular fashion around grid frame
- Coming to rest after 20-30 seconds

GRID SELECTION

- Depends of Three Interrelated Factors:
 - \circ kVp
 - o Degree of cleanup
 - Patient dose
- Focused Grid: most commonly used
 - Considerations: must have properly adjusted
 - SID indicator
 - STD indicator
 - Collimators
- Higher Ratio Grid:
 - o For high kVp technique
 - o Increase cleanup
 - Increase patient dose
- **8:1 Grid Ratio:** used when kVp is below 90
- **Above 8:1 Grid Ratio:** used when kVp is above 90

APPROXIMATE CHANGE IN		
RADIOGRAPHIC TECHNIQUE FOR		
STANDARD GRIDS		
Grid Ratio	mAs Increase	
No grid	x 1	

5:1	x 2
6:1	x 3
8:1	x 4
10:1 or 12:1	x 5
16:1	х б

PATIENT DOSE

- **Moving Grid:** 15% more radiation to patient than stationary grid
- **High- kVp & High-ratio Grid:** lower patient dose than low-kVp & low-grid ratio

GRID SELECTION FACTORS

- 1.) Patient dose increases with increasing grid ratio
- 2.) High-ratio grids are used for high-kVp
- **3.)** Patient dose at high kVp is less than that at low kVp

AIR-GAP TECHNIQUE

- An alternative to the use of radiographic grids
- **IR Distance:** 10-15 cm from the patient
- Advantages:
 - o Reduces scatter radiation
 - o Enhances image contrast
- Disadvantages:
 - o Image magnification
 - Focal-spot blur
- Applications:
 - Chest radiography
 - From 180 to 300 cm SID
 - Effects: little magnification & sharper image
 - Cerebral angiography

⊕ THE END ⊕

"BOARD EXAM is a matter of PREPARATION. If you FAIL to prepare, you PREPARE to fail" 04/12/14