Introduction

Monday, September 6, 2021

12:31 PM

infimum "minimize"

$$v = \inf_{x \in X} f(x)$$

- · f: R^-R objective function
- · XSR" Feasible region; XER": decision variable
- · V*: optimal value of (P)

infeasible: $X = \emptyset$, $V^* = +\infty$ by Convention

(P) feasible

 $v^* = -\infty$

e.g n=1 inf $x \leq 1$, $x \leq 0$

X = 0

~ v* 7 - 00

Def: optimal solution

$$x^* \in X \quad s.t. \quad v^* = f(x^*)$$

opt. soln. exists

e.q. n=1

inf x s.t. x >0

 $V^* = 0$, attained by $x^* = 0$

opt.soln.does not exist

e.g. n=1

inf 1/x st. x 30

v*= 0, \$x* >0

s.t. 1/x = 0.

B(\(\fi\),\(\text{\text{\$}}\)

Def: \bar{X} is a local minimizer if $\bar{X} \in X$ and $\bar{\exists} \underline{\epsilon} 70$ s.t.

 $\forall x \in X \cap B(\bar{x}, \varepsilon)$, we have

optimal Solution (global minimizer)

 $\forall x \in X \cap B(\bar{x}, \epsilon)$, we have neighborhood of $f(\bar{x}) \leq f(x)$

 $B(\bar{x}, \varepsilon) = \{x \in \mathbb{R}^n : ||x - \bar{x}|| \le \varepsilon \}$ center redius $\|V\|_2 = \left(\sum_{i=1}^n |V_i|^2\right)^{\frac{1}{2}}$

Simple Examples of (P)

inf f(x) (1) Unconstrained: X=1Rn

> If f is differentiable, then $\nabla f(x) = 0$ is a Necessary condition for optimality. $\frac{\partial T}{\partial x}$, of $f: \nabla f(x) = \begin{bmatrix} \frac{\partial T}{\partial x} \\ \frac{\partial T}{\partial x} \end{bmatrix}$

(2) Discrete: X is a discrete set; i.e., $\forall x \in X$, $\exists \epsilon > 0$ s.t. $X \cap B(x, \epsilon) = \{x\}$ e.g. X= ··[·]· is discrete

X = [0,1] is not discrete

Note: For discrete optimization problems, local optimality is meaningless! This is because every feasible Solution is a local minimizer.

(3) Linear Programming (LP) $f(x) = C_1 x_1 + C_2 x_2 + \cdots + C_n x_n = C^T x$ (linear function)

$$C = (C_1, ..., C_n)$$
 | Notation:
 $X = (X_1, ..., X_n)$ | Column vectors

X: defined by a finite number of Irnear inequalities

$$X = \{x \in \mathbb{R}^n : \alpha_i^T x \leq b_i \mid i=1,...,m\}$$
 $\alpha_i \in \mathbb{R}^n$
 $b_i \in \mathbb{R}$

 $= \{x \in \mathbb{R}^n : Ax \leq b\} \qquad A = \begin{bmatrix} -a^{\intercal} - \\ \vdots \\ -a^{\intercal} - \end{bmatrix}, b = \begin{bmatrix} b \\ \vdots \\ b \\ m \end{bmatrix}$

Note: What if we want a x = b;?

Simply consider

$$a_{i,x=b_{i}} \iff \begin{cases} a_{i,x} \leq b_{i} \\ -a_{i,x} \leq b_{i} \end{cases}$$