

Agenda

- 1 Introduction & Motivation
- 2 Data Details
- 3 Methodology
- 4 Models & Performance
- 5 Conclusion

Section 1 Introduction & Motivation

Our Achievements So Far

" 'Airbnb' has become synonymous with one of a kind travel on a global scale."

\$38 Billion

in gross booking value (GBV) in 2019 4 Million+ hosts

+7.4 Million+ listings

Timeline of COVID-19

Team Objective

- 1 Understand the **historical patterns** of the Airbnb average listing price
- Assess the impact of COVID-19 on Airbnb average listings price using various time-series methods
- Generate a **30-day average price forecast**
- Develop **insights and recommendations** that can help Airbnb stakeholders in planning and strategy

The number of commercial flights has been falling since the start of 2020 120,000 100,000 80,000 40,000 Unumber of commercial flights Seven-day moving average 20,000 Jan 15 Jan 30 Feb 14 Feb 29 Mar 15 Mar 30 Apr 14 Apr 29 SOURCE: Flightradar 24. Data as of May 5, 2020

Travel restrictions around the world

Section 2 Data Details

Data Details - Main Data Source

DATA DESCRIPTION

DATASET Inside Airbnb (7/16/2018 - 7/16/2020)

SOURCE http://insideairbnb.com/get-the-data.html

CONTEXT Inside Airbnb is an independent, non-commercial set of tools and data that

allows you to explore how Airbnb is being used in cities around the world.

CONTENT Data frequency is on daily-basis from July 16, 2018 to July 16, 2020 (722 data points).

Cleaned data includes average listing price of all available properties in Oakland, CA.]

Data Details - External Data Source

We considered **three** potential **alternative** data sources :

GDP (Nationwide)

Unemployment (Nationwide)

Housing Data (Oakland, CA)

Section 3 Methodology

Data Staging

The year of 2020 has been a disruptive one because of the outbreak of coronavirus, COVID-19.

A test was performed to find the dropping point of the data in 2020, and the date was identified as 1/13/2020. To examine the impact of the pandemic, two functions are designed:

1. Only using Pre-COVID Data

a. Data is identified to be data from 8/16/2018 to 1/13/2020

2. Using all data available

a. Data is identified to be all data available from 8/16/2018 to 7/16/2020

For two functions, the same analysis method is applied:

- A 60 days validation window is reserved to slide and test model performance
- Forecast the next 30-day average listing prices as final deliverables

Details of Predictive Modeling

6 Methods Were Developed as Candidate Models

Naive Forecast (baseline)
Holt Winters Exponential Smoothing
ARIMA
Neural Net
Linear Regression
Decision Tree

Cross-Validation of Prediction Errors

A sliding window for cross validation

Enhance the credibility and reliability of the models

Deployment of the Predictive Models

Compare patterns of the two staging methods (pre-covid v.s. covid)

Occurrence of the emergency pandemic not aligns with previous historic patterns

Section 4 Models & Performance

Naive Model

Naive Model

Uses previous actual data as the prediction of future prices. The rationale behind this method is that the future data will have a similar pattern as historical data.

Only using Pre-COVID Data

Training MAPE - 1.8, Testing MAPE - 3.03

Using all data available

Training MAPE - 2.26, Testing MAPE - 1..77

Holt Winters Exponential Smoothing

Holt Winters

The most optimal one with the multiplicative error, a damped-additive trend, and additive seasonality (MAdA)

Only using Pre-COVID Data

Training MAPE - 0.52, Testing MAPE - 1.52

Using all data available

Training MAPE - 0.68, Testing MAPE - 1.91

Arima

Arima

The PACF graph cuts off and the ACF graph slowly tails off. According to the ACF and PACF graph, we have tried:

Only using Pre-COVID Data

Training MAPE - 0.54, Testing MAPE - 1.51

- SARIMA(0,1,1)(0,1,1)[7]
- SARIMA(0,1,0)(1,1,0)[7]
- SARIMA(0,1,0)(1,1,1)[7]
- SARIMA(1,1,1)(1,1,1)[7]

Using all data available

Training MAPE - 0.62, Testing MAPE - 1.16

- SARIMA(0,1,1)(0,1,1)[7]
- SARIMA(0,1,0)(1,1,0)[7]
- SARIMA(0,1,0)(1,1,1)[7]
- SARIMA(1,1,1)(1,1,1)[7]

NNAR

Time

NNAR

NNAR is equivalent to an ARIMA model but without stationarity restrictions.

Only using Pre-COVID Data

Training MAPE - 0.1, Testing MAPE - 1.42

- NNAR(27,1,14)[365] without external variable
- NNAR(27,1,15)[365] with external variables national GDP
- NNAR(27,1,15)[365] with external variables unemployment rate
- NNAR(27,1,16)[365] with GDP and unemployment rate
- NNAR(8,1,5)[365]

Using all data available

Training MAPE - 0.3l, Testing MAPE - 4.77

- NNAR(28,1,15)[365] without external variable
- NNAR(28,1,16)[365] with external variables national GDP
- NNAR(28,1,16)[365] with external variables unemployment rate
- NNAR(28,1,16)[365] with GDP and unemployment rate
- NNAR(8,1,5)[365]

Linear Regression & Decision Tree

Linear Regression

Use external variables (GDP & Unemployment rate) as X to build linear regression model:

Only using Pre-COVID Data

MAPE - 2.15

tslm(price~trend+ur+gdp)

- tslm(price~ur+gdp)
- tslm(price~ur)
- tslm(price~gdp)

Using all data available

MAPE - 1.97

tslm(price~trend+ur+gdp)

slm(price~ur+gdp) slm(price~ur) tslm(price~gdp)

Decision Tree

Decision trees partition all possible values of the attributes into different subcategories or regions and each subcategory is assigned a value. By splitting variables we can predict the Airbnb price through a decision tree model.

Only using Pre-COVID Data

Training MAPE - 1.82 Testing MAPE - 2.07

Using all data available

Training MAPE - 1.69 Testing MAPE - 1.78

Section 5 Conclusion

Key Takeaways

Two functions

Assess the impact of COVID-19 pandemic & Predict future values on a 30-day forecasting horizon Cross-validation to smooth out variability and give a more accurate evaluation

Multiple Methods

Price-only - Naive forecasting, Holt Winters, ARIMA With external variables (GDP and Unemployment Rate) - NN, Linear Regression, Decision Tree

Best model for Forecasting

SARIMA(0,1,0)(1,1,1)[7]

A robust and accurate result with a training MAPE of 0.61% and a validation MAPE of 1.16%

Externally Collaboration with government Listers & Travellers Internally Executives & Managers Business Development

Next Steps

We're here!

Deploying the forecasting model & **Architecturing** a pipeline

- Data storage and retrieval
- **2** Frameworks and tools
- Feedback and iteration

Thank You!

