Ensemble Learning Attempt

Summary of Ensemble Method

- RF and SVM model are used
 - Both models are trained on 80% of 90 instances of each distribution (i.e
 0.80*90*6=432 training instances for all distribution)
 - Both models are to predict distribution on the same set of test data 20% of 90 instances of each distribution (i.e 0.20*90*6=108 training instances for all distribution)
 - The ensemble method is such that RF and SVM predict the distribution of the test data independently, and only when both models reach the same conclusion that converged prediction is accepted.

Results of Ensemble Method

- Out of 108 instances, ensemble method 'discards' 28 of them due to them not being agreed upon by both RF and SVM
- Out of the 80 converged predictions, 76 of them are correctly predicted.
- This gives an accuracy of 95%

[80 rows x 2 Converge 0 2 3 4	prediction	Actual functional outlier bimodal outlier longtail
101 103 104 105 107	longtail outlier discrete bimodal normal	longtail outlier discrete bimodal normal
[76 rows x 2 Accuracy is:	-	

Analysing what happened to the discarded pile

• Where did SVM and RF not agree on?

	Test	Random Forest		Support Vector
5	a clcXrftrim BBA.GainOffset.0 x x x	bimodal	5	longtail
9	p_open_PADS.DIG.EOF.V_x_1mA_xSE_ISO_RST	normal	9	longtail
10	p_dcspec_PADS.VOL_x_1V8_x_NFC_GPIO3_A0	longtail	10	normal
11	a vihXatt CLIF.LPDET.DIFF.SEL8 x x x	bimodal	11	discrete
17	a iccXinlXtrim.zone PMUGPADC x 0.127 x	bimodal	17	normal
23	a vihXvtx CLIF.LPDET.SE.SEL15 x x x	discrete	23	bimodal
34	p clc PADS.IILDELTA x 1V8 x NFC GPIO2 AO	bimodal	34	longtail
37	ip trim TOPDLOG-TRIMVALUE-VREF.HQ-WR.PFN2	bimodal	37	discrete
42	a clcXrftrim AGCPhase.Crx.39 x x x	discrete	42	longtail
45	p clc PADS.SIG.DELTA.EOF.V x 1mA x TX2	bimodal	45	longtail
55	p_short_PADS.DIG.V_x_1mA_xVDDA	longtail	55	normal
56	ip nvmXutil TOPDLOG-W1-TESTED-HOUR	discrete	56	normal
59	a trimXiccal CLIF.RSSI.OFFSET x x x	discrete	59	bimodal
61	p short PADS.DIG.V x 1mA x RSTN	outlier	61	longtail
62	p lkg PADS.IIL x 1V8 x NFC CLK REQ	outlier	62	bimodal
64	p_lkg_PADS.IIL_x_1V8_x_NFC_GPI01	bimodal	64	normal
65	p short PADS.DIG.EOF.V x 1mA x SE SPI MISO	outlier	65	longtail
67	a anlXlsb CLIF.VTUNE x x x	bimodal	67	normal
70	p_lkg_PADS.IILEND_x_1V8_xNFC_GPIO2_AO	longtail	70	bimodal
72	p_open_PADS.DIG.V_x_1mA_xVDDA	longtail	72	normal
83	a_clcXrftrim_AGCPhase.Crx.6_x_x_x_	discrete	83	longtail
89	a_clcXline.reg_VDDPA_x_3V65-load.530mA_x_	discrete	89	normal
90	a_anlXinl.avg.zone_PMUGPADC_x_129.255_xRMS	discrete	90	bimodal
94	a_anlXinl.avg.zone_PMUGPADC_x_257.383_xRMS	normal	94	longtail
95	a_clcXrftrim_AGCPhase.Crx.12_x_x_x_	discrete	95	longtail
96	a_vrf_SIM.CLASSB_x_40mA_xSIMVCC	bimodal	96	normal
102	ip_trim_TOPDLOG-TRIMVALUE-VREF.VDDC-WR.PFN2	bimodal	102	discrete
106	a_iccXinlXtrim.zone_PMUGPADC_x_512.639_x	bimodal	106	normal

Analysing what happened to the 4 wrong converged prediction

Could it be that this was influenced by my own unstandardised labelling?

	Test	Models Prediction	Actua	l Prediction
1	a_icc_CLIF.CLKBUF.HP.VBAT_x_VBAT.VNOM_xpost	normal	1	bimodal
63	a_clcXrftrim_AGCGain.Crx.61_x_x_x_	longtail	63	outlier
87	p_lkg_PADS.IIHEND_x_1V8_xNFC_IRQ	normal	87	bimodal
88	p_clc_PADS.DIG.DELTA.EOF.V_x_1mA_xRSTN	outlier	88	longtail

Further analysis required in Exensio

Steps Ahead

- Instead of going to a fully automated labelling process → we shid work towards minimising human intervention while not completely letting go
- For those 'discarded' pile due to the ensemble learning method
 - 1. Have an option for manual labelling instead. Even with manual labelling, the prediction provided by SVM and RF could narrow down the options for the labeller
 - [Food for thought] Maybe we could analyse which of Random Forest or Support Vector Machine is better for predicting which distribution - then for mismatched predictions, choose either RF or SVM depending on the distribution of the prediction
 - a. Eg, for one particular test instance RF predicts normal, SVM predicts bimodal. If RF is known to predict normal more accurately as compared to SVM, choose RF's prediction.
 - More importantly, these rows which both models could not agree upon could act as a warning or pre-empt to the labeller that 'hey, as a model i'm confused too.
 What do you think?'

• These discarded instances can allow labellers to zoom into and study it without compromising the accuracy of its prediction