Whisper

It is a toolkit can do:

English transcription

- Ask not what your country can do for ...
- Ask not what your country can do for ...

Any-to-English speech translation

- FI rápido zorro marrón salta sobre ...
- The quick brown fox jumps over ...

Non-English transcription

- ♥ 언덕 위에 올라 내려다보면 너무나 넓고 넓은 ...
- 언덕 위에 올라 내려다보면 너무나 넓고 넓은

No speech

- (background music playing)
- Ø

Overview

Context

Paper Title

"Robust Speech Recognition by Large Scale Weak Supervision"

Key Feature

- Generalization capabilities
- Transfer setting in zero-shot
- No need for fine-tuning

Problem

- Unsupervised models: need fine-tuning to be truly effective
- · Supervised models: robust but not enough

Approach

- Scaling weakly supervised speech recognition the next order of magnitude to 680,000 hours of labeled audio data
- Without any need for fine-tuning
- The dataset is a global affair

Architecture

Overview of Architecture

Discussion Question #1

How does Whisper handle multitasking?

Discussion Question #2

Why does Whisper use basic Transformers for its model?

Model Variants

Model	Layers	Width	Heads	Parameters
Tiny	4	384	6	39M
Base	6	512	8	74M
Small	12	768	12	244M
Medium	24	1024	16	769M
Large	32	1280	20	1550M

Performance Metrics

- 1. Remove any phrases between matching brackets ([,]).
- 2. Remove any phrases between matching parentheses ((,)).
- 3. Remove any of the following words: hmm, mm, mhm, mmm, uh, um
- 4. Remove whitespace characters that comes before an apostrophe '
- 5. Convert standard or informal contracted forms of English into the original form.
- 6. Remove commas (,) between digits
- 7. Remove periods (.) not followed by numbers
- 8. Remove symbols as well as diacritics from the text, where symbols are the cl starting with M, S, or P, except period, percent, and currency symbols that may t
- 9. Detect any numeric expressions of numbers and currencies and replace with a for thousand dollars" \rightarrow "\$10000".
- 10. Convert British spellings into American spellings.
- 11. Remove remaining symbols that are not part of any numeric expressions.
- 12. Replace any successive whitespace characters with a space.

Pseudocode

Algorithm 1 Whisper 1: Class: Whisper 2: Parent Class: nn.Module 3: **procedure** Initialization(dims (ModelDimensions)) Initialize dims Create encoder using AudioEncoder with: 5: n_mels 6: n_audio_ctx 7: n_audio_state 8: n_audio_head 9: 10: n_audio_layer Create decoder using TextDecoder with: 11: n_vocab 12: n_text_ctx 13: n_text_state 14: n_text_head 15: n_text_layer 16:

- Define all_heads as a tensor of zeros of shape (n_text_layer, n_text_head). 17:
- Set the last half of *all_heads* to True. 18:
- Register alignment_heads as a buffer with the sparse version of all_heads. Make it 19: persistent.
- 20: end procedure

Algorithm 2 AudioEncoder

- Class: AudioEncoder
 Parent Class: nn.Module
 procedure Initialization(n_mels, n_ctx, n_state, n_head, n_layer)
- 4: Initialize parent class
- 5: Create conv1 with parameters n_mels, n_state
- 6: Create conv2 with parameters n_state , n_state
- 7: Register buffer positional_embedding using sinusoids function
- 8: Define blocks as a list of ResidualAttentionBlock with length n_layer
- 9: Define ln_post as LayerNorm with n_state
- 10: end procedure
- 11: **procedure** FORWARD(x (Tensor))

 $\triangleright x$ is the mel spectrogram of the audio

- 12: $x \leftarrow \text{Apply GELU}$ activation after passing through conv1
- 13: $x \leftarrow \text{Apply GELU activation after passing through } conv2$
- 14: Permute dimensions of x
- 15: Assert shape of x matches $positional_embedding$
- 16: Add $positional_embedding$ to x
- 17: **for** each block in *blocks* **do**
- 18: $x \leftarrow \text{Apply block to } x$
- 19: end for
- 20: $x \leftarrow \text{Apply } ln_post \text{ to } x$
- 21: return x
- 22: end procedure


```
Algorithm 3 TextDecoder
 1: Class: TextDecoder
 2: Parent Class: nn.Module
 3: procedure Initialization(n\_vocab, n\_ctx, n\_state, n\_head, n\_layer)
       Initialize parent class
 4:
        Create token\_embedding with parameters n\_vocab, n\_state
 5:
       Initialize positional_embedding with size n_{-}ctx \times n_{-}state
 6:
 7:
       Define blocks as a list of Residual Attention Block with cross attention, length n-layer
       Define ln as LayerNorm with n\_state
 8:
       Create a mask mask with size n_ctx \times n_ctx and set upper triangle to -\infty
 9:
       Register buffer mask
10:
11: end procedure
12: procedure FORWARD(x (Tensor), xa (Tensor), kv_cache (Optional[dict])) \triangleright x is the text tokens,
    xa is the encoded audio features
13:
       if kv_cache exists then
           offset \leftarrow shape of the first value in kv\_cache
14:
       else
15:
           offset \leftarrow 0
16:
       end if
17:
       Update x with token\_embedding and positional\_embedding based on offset
18:
       Convert x to the same dtype as xa
19:
       for each block in blocks do
20:
           x \leftarrow \text{Apply block to } x, xa \text{ with } mask \text{ and } kv\_cache
21:
       end for
22:
       x \leftarrow \text{Apply } ln \text{ to } x
23:
       Calculate logits using x and the transpose of token_embedding weight
24:
        Convert logits to float type
25:
26:
       return logits
```

Empirical Results

27: end procedure

Close the gap to human robustness

· Lack of Robustness in Supervised Models

Human-Like Robustness

As good as human being?

Code demonstration

https://colab.research.google.com/drive/1M8zNZ24IGcf05j-u53y73D-OhOv6z0I0?usp=drive_link#scrollTo=j9UgVYrod4SB

Critical Analysis

Were there any errors?

- The predictions may include texts that are not actually spoken in the audio input
- · Lower accuracy on low-resource and/or low-discoverability languages or languages
- Prone to generating repetitive texts

Broader Impact

We hope Whisper's high accuracy and ease of use will allow developers to add voice interfaces to a much wider set of applications. However

it also raises dual-use concerns.

Seek for more?

Research Index of OpenAl

Mar 14, 2023	GPT-4	Read paper 🗷
Sep 21, 2022	Introducing Whisper	Read paper 🗷
Apr 13, 2022	Hierarchical text-conditional image generation with CLIP latents	Read paper 🗷
Jan 27, 2022	Aligning language models to follow instructions	Read paper 7
Sep 23, 2021	Summarizing books with human feedback	
Jul 7, 2021	Evaluating large language models trained on code	Read paper 🗷
Mar 4, 2021	Multimodal neurons in artificial neural networks	Read paper 🗷
Jan 5, 2021	DALL-E: Creating images from text	
Jan 5, 2021	CLIP: Connecting text and images	Read paper 🗷
Sep 4, 2020	Learning to summarize with human feedback	Read paper 🗷
Jun 17, 2020	Image GPT	Read paper 🗷
May 28, 2020	Language models are few-shot learners	Read paper 🗷
Apr 30, 2020	Jukebox	Read paper 🗷
Oct 15, 2019	Solving Rubik's Cube with a robot hand	Read paper 🗷
Sep 17, 2019	Emergent tool use from multi-agent interaction	Read paper 🗷
Apr 25, 2019	MuseNet	

Link: https://openai.com/research?contentTypes=milestone

Repository

Resource Links

- 1. Paper: https://cdn.openai.com/papers/whisper.pdf
- 2. Code: https://github.com/openai/whisper
- 3. Model Card: https://github.com/openai/whisper/blob/main/model-card.md
- 4. Introducing Whisper: https://openai.com/research/whisper
- 5. Hugging Face Community https://huggingface.co/openai/whisper-large

Citation For paper

- Chan et al. Simply mix all available speech recognition data to train one large neural network.
- Galvez et al. The people's speech: A large-scale diverse english speech recognition dataset for commercial usage.
- Chen et al. Gigaspeech: An evolving, multi-domain asr corpus with 10,000 hours of transcribed audio.
- Baevski et al. wav2vec 2.0: A framework for self-supervised learning of speech representations.
- Baevski er al. Unsupervised speech recognition. Advances in Neural Information Processing Systems
- Zhang et al. BigSSL: Exploring the frontier of large-scale semi-supervised learning for automatic speech recognition.