Deep Learning Model for Enhanced Joint Classification of Parkinson's and Alzheimer's Diseases from Challenging Datasets

Student	Mr. Iddy R. Swalehe							
	MSc Communications and Network Engineering							
	Department of Electronics and Telecommunications Engineering,							
	College of Information and Communication Technologies, University of							
	Dar es Salaam							
Supervisors Dr. Angelina Z. Misso & Prof. Baraka J. Maiseli								
	Department of Electronics and Telecommunications Engineering,							
	College of Information and Communication Technologies, University of							
	Dar es Salaam							
	Prof. Xiaoxiao Wang							
	Centers for Biomedical Engineering, University of Science and							
	Technology of China, Hefei, PR China							
Correspondence	Prof. Baraka Maiseli							
	Email: <u>baraka.maiseli@udsm.ac.tz</u>							
	Mobile: +255 762251260							

CHALLENGE

Overlapping features between Parkinson's and Alzheimer's diseases in brain regions, posing a challenge for doctors to accurately make diagnostic decisions during analysis of medical images.

PROBLEM STATEMENT

Parkinson's and Alzheimer's diseases are life-threating diseases that, annually, cause millions of deaths worldwide. The widely used traditional practice to diagnose these neurological diseases involves manual intervention, a time-consuming and relatively inaccurate approach. In essence, Parkinson's and Alzheimer's diseases are characterized by overlapping features that can hardly be distinguished. This challenge has invited resea rchers to devise advanced methods, including those based on deep learning, to effectively classify salient features of the diseases. Concerned by the challenge and continuing efforts by researchers, we have developed a deep learning model that generates promising classification results, outperforming the existing classical models.

MAIN OBJECTIVE

Our research project aims to enhance the performance of classifying Parkinson's and Alzheimer's diseases. This aim will generally be achieved by devising effective deep learning models that can more accurately classify the diseases.

SPECIFIC OBJECTIVES

Establishment	of	requirements	for	joint	classification	between	Parkinson's	and
Alzheimer's dis								

- ☐ Development of a deep learning model for a joint classification of the diseases;
- ☐ Performance evaluation of the proposed model.

SIGNIFICANCE

Our study can positively impact the medical field by improving the traditional practice of diagnosing Parkinson's and Alzheimer's diseases.

METHODOLOGY

The following methodologies were followed to generate results:

- ☐ Dataset collection from online credible sources; dataset pre-processing;
- ☐ Design and training of a deep learning model without transfer learning from pre-trained models;
- ☐ Simulation of the designed model on the JupyterLab using Python;
- □ Evaluation of the model using performance metrics: accuracy, sensitivity, specificity, precision, and F1-score.

RESULTS

Dataset characteristics:

✓ Dataset format: PNG

✓ Dataset modality: MRI, PET

✓ Dataset source: Kaggle for MRI, ADNI and PPMI for PET

✓ Dataset size: 7,367(MRI), 7329(PET)

OUTPUTS

• Deep learning model and algorithm for joint classification of Parkinson's and Alzheimer's diseases;

OUTCOMES

This research project has the following prospective outcomes:

- o Improved experience and increased efficiency of doctors in diagnosis of Parkinson's and Alzheimer's diseases;
- Reduced time and improved convenience in generating diagnostic classification results of Parkinson's and Alzheimer's diseases:
- o Improved accuracy of classification results;
- o Improved quality of delivery of medical services to patients with Parkinson's and Alzheimer's diseases.

CONCLUSION

The proposed model generates outstanding results with competitive performance values of accuracy, sensitivity, specificity, precision, and F1-Score against exiting research works.