

FACULTÉ DES SCIENCES ET DE GÉNIE
DÉPARTEMENT DE GÉNIE ÉLECTRIQUE ET DE GÉNIE INFORMATIQUE

GEL-2001 Analyse de signaux Jérôme Genest

Examen partiel

Date: Mercredi le 21 octobre 2009

Durée: de 13h30 à 15h20

Salle: PLT-3775

Cet examen vaut 40% de la note finale.

Remarques:

- i) L'utilisation d'une calculatrice est permise.
- ii) Aucun document n'est permis durant l'examen.
- iii) Seule la liste des formules fournie à la fin du questionnaire est permise.
- iv) Votre carte d'identité doit être placée sur votre bureau en conformité avec le règlement de la Faculté.

Problème 1 (12 points)

$$f_p(t) = \begin{cases} 0 & \tau/2 < t < -1\\ 1 + t^2 & -1 \le t \le 1\\ 0 & 1 < t < \tau/2 \end{cases}$$

 $f_p(t)$ est périodique avec une période $\tau > 2$.

- a) Calculez la Transformation de Fourier (TF) de la fonction périodique $f_p(t)$ ci-haut.
- b) Quel est le taux de décroissance asymptotique de la TF $f_p(t)$, pourquoi ?
- c) Cela change-t-il si $\tau=2,$ pourquoi ?
- d) Quelle est l'énergie du signal $f_p(t)$?
- e) Quelle est la puissance signal $f_p(t)$?

Problème 2 (8 points)

- a) Calculez et tracez la TF (en module et en phase) de $\mathrm{Tri}(t-3)$
- b) Calculez et tracez la TF (en module et en phase) de Tri(t/5)
- c) Calculez et tracez la TF (en module et en phase) de $\mathrm{Tri}((t-3)/5)$
- d) Calculez et tracez la TF (en module et en phase) de $\cos(10t)$ Tri(t).

Problème 3 (10 points)

Soit un train d'impulsions subissant un glissement de phase:

$$g(t) = \delta_{T_r}(t) \times e^{j\omega_c t}$$

Où $\omega_r = 2\pi/T_r$ est la fréquence de répétition des impulsions et ω_c est la fréquence de glissement (nommée en anglais "Carrier-envelope offset frequency").

Vous pouvez supposer que $\omega_c < \omega_r$.

- a) Calculez et tracez $G(\omega)$, la TF de g(t)
- b) Est-ce que g(t) est un signal réel ? Quelle conséquence cela a-t-il sur $G(\omega)$.
- c) Est-ce que g(t) est nécessairement un signal périodique ? Sur quoi vous basez-vous pour étayer votre réponse ?
 - Indice: Essayez $\omega_r = \pi$ et $\omega_c = 1$.
 - Essayez aussi avec $\omega_r = 3$ et $\omega_c = 1$.
- d) Quelle est la période de |g(t)|?

Problème 4 (10 points)

a) Trouvez la transformée de Fourier de:

$$f(t) = \frac{t^2}{a^2 + t^2}$$

b) Quelle est l'aire sour la courbe de $F(\omega) \iff f(t)$.

Examen Partiel

Fonction	Transformée de Fourier
f(t)	$F(\omega)$
F(t)	$2\pi f(-\omega)$
f(t+a)	$e^{ja\omega}F(\omega)$
f(at)	$\frac{1}{ a }F\left(\frac{\omega}{a}\right)$
$e^{jbt}f(t)$	$F(\omega - b)$
$t^n f(t)$	$(j)^n \frac{d^n}{d\omega^n} F(\omega)$
$\frac{d^n}{dt^n}f(t)$	$\left(j\omega\right)^nF(\omega)$
$\operatorname{Rect}(t/\tau)$ (1)	$ au \operatorname{Sa}(\omega au/2)$
$\operatorname{Tri}\left(t/ au ight)$ (2)	$ au \operatorname{Sa}^2\left(\omega au/2\right)$
δ(<i>t</i>)	1
1	2πδ(ω)
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
U(<i>t</i>)	$1/j\omega + \pi\delta(\omega)$
Sgn(t)	$2/j\omega$
$\delta_{T_0}(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT_0)$	$\omega_0 \sum_{n=-\infty}^{+\infty} \delta(\omega - n\omega_0)$
$e^{-eta t} \mathrm{U}(t)$	$\frac{1}{\beta + j\omega}$
$e^{-eta t }$	$\frac{2\beta}{\beta^2 + \omega^2}$

rectangle de hauteur un, centré $_2$ Tri $\left(\frac{t-t_0}{\tau}\right)$ sur $t=t_0$, et de longueur τ.

$$_{2} \operatorname{Tri}\left(\frac{t-t_{0}}{\tau}\right)$$

triangle de hauteur un, centré sur $t=t_0$, avec un base de longueur 2τ .