

LICENCIATURA EN ESTADÍSTICA

Sedación en pacientes STOP-BANG positivos

Análisis de datos longitudinales

Autores: Franco Santini - Alejo Vaschetti - Andrés Roncaglia

Docentes: Cecilia Rapelli - Noelia Castellana - Luciana Magnano

Tabla de contenidos

Análisis de la parte media	14
Modelo final	17
Análisis de residuos	18

```
library(readxl)
library(dplyr)
library(tidyr)
library(ggplot2)
library(stringr)
library(GGally)
library(joineR)
library(nlme)
library(patchwork)
library(qqplotr)
theme_set(theme_bw() +
            theme(plot.title = element_text(hjust = 0.5),
                  legend.position = "bottom"))
knitr::opts_chunk$set(fig.align = "center")
# Paleta: https://coolors.co/c1f7dc-c3d2d5-bda0bc-5c4742-3a2e39
c("#c1f7dc", "#c3d2d5", "#bda0bc", "#5c4742", "#3a2e39", "#4F518C", "#4A6C6F", "#201E1F", "#EB948
 [1] "#c1f7dc" "#c3d2d5" "#bda0bc" "#5c4742" "#3a2e39" "#4F518C" "#4A6C6F"
 [8] "#201E1F" "#EB9486" "#C97B84" "#41658A" "#414073"
datos <- read_excel("Datos/bis.xlsx") |>
  mutate(grupo = factor(ifelse(grupo == 1, "MDZ", "DEX")),
         ind_mc = peso/(talla/100)^2,
         id = factor(id))
datos_largo <- datos |>
  pivot_longer(values_to = "bis", names_to = "minuto", cols = c("bis0", "bis15", "bis30", "bis45"
  mutate(minuto = as.numeric(str_remove(minuto, "bis")))
datos |>
  group_by(grupo) |>
  summarise(n = n())
# A tibble: 2 x 2
  grupo
  <fct> <int>
1 DEX
           25
2 MDZ
           23
# Variables para la regresion spline y indicadora de variabilidad no lineal
datos_largo <- datos_largo |>
  mutate(minuto_15 = ifelse(minuto >= 15, minuto - 15, 0),
         indicadora = as.factor(ifelse(minuto == 0, 1, 0)))
```

Se crea una variable indicadora la cuál modela la variabilidad del minuto 0 distinta al resto de los minutos I=1 Minuto 0 - 0 o.c

```
ggplot(datos_largo, aes(x=minuto, y = bis, group=id, color = factor(grupo))) +
  geom_point(size = 1) +
  geom_line() +
  facet_wrap(~grupo)
```



```
ggplot(datos_largo, aes(x=minuto, y = bis, color=factor(grupo), group = factor(grupo)) ) +
  geom_point(stat='summary', fun.y='mean') +
  geom_line(stat='summary', fun.y='mean', size = 1)
```


Relacion cuadratica

```
ggplot(datos_largo, aes(x=minuto, y = bis, group = factor(minuto)) ) +
geom_boxplot(fill = 'steelblue') + facet_wrap(~ grupo)
```



```
datos_mdz = filter(datos, grupo == "MDZ")
datos_dex = filter(datos, grupo == "DEX")
```

```
round(cor(datos_mdz[,5:9], use = "pairwise.complete.obs"), 2)
       bis0 bis15 bis30 bis45 bis60
bis0
       1.00 0.46 0.44 0.00 -0.01
bis15 0.46 1.00 0.74 -0.23 -0.42
bis30 0.44 0.74 1.00 -0.02 -0.25
bis45 0.00 -0.23 -0.02 1.00 0.82
bis60 -0.01 -0.42 -0.25 0.82 1.00
round(cor(datos_dex[,5:9], use = "pairwise.complete.obs"), 2)
       bis0 bis15 bis30 bis45 bis60
bis0
       1.00 0.17 0.09 -0.02 0.12
bis15 0.17 1.00 0.47 0.32 -0.01
bis30 0.09 0.47 1.00 0.44 0.02
bis45 -0.02 0.32 0.44 1.00 0.68
bis60 0.12 -0.01 0.02 0.68 1.00
round(cov(datos_mdz[,5:9], use = "pairwise.complete.obs"), 2)
      bis0 bis15 bis30 bis45 bis60
      2.22 2.19 1.83 0.02 -0.05
bis0
bis15 2.19 10.29 6.68 -2.38 -4.99
bis30 1.83 6.68 7.90 -0.16 -2.67
bis45 0.02 -2.38 -0.16 10.81 10.07
bis60 -0.05 -4.99 -2.67 10.07 14.04
round(cov(datos_dex[,5:9], use = "pairwise.complete.obs"), 2)
      bis0 bis15 bis30 bis45 bis60
       1.16 0.48 0.25 -0.09 0.32
bis0
bis15 0.48 6.58 3.02 3.06 -0.04
bis30 0.25 3.02 6.18 4.05 0.10
bis45 -0.09 3.06 4.05 13.68 6.39
bis60 0.32 -0.04 0.10 6.39 6.42
Variancias distintas en el tiempo y entre grupos o solo en el tiempo Correlacion ni idea
datos_dex_est <- datos_dex |>
  mutate(bis0 = scale(bis0) ,
        bis15 = scale(bis15),
        bis30 = scale(bis30),
```

```
bis45 = scale(bis45),
                   bis60 = scale(bis60))
datos_mdz_est <- datos_mdz |>
    mutate(bis0 = scale(bis0) ,
                   bis15 = scale(bis15),
                   bis30 = scale(bis30),
                   bis45 = scale(bis45),
                   bis60 = scale(bis60))
### Sexo: Masculino
datos_mdz_est.lag1 <- cor(c(datos_mdz_est$bis0, datos_mdz_est$bis15, datos_mdz_est$bis30, datos_m
                                   c(datos_mdz_est$bis15, datos_mdz_est$bis30, datos_mdz_est$bis45, datos_mdz_est$bi
                                   use = 'na.or.complete')
datos_mdz_est.lag2 <- cor(c(datos_mdz_est$bis0, datos_mdz_est$bis15, datos_mdz_est$bis30),
                                   c(datos_mdz_est$bis30, datos_mdz_est$bis45, datos_mdz_est$bis60),
                                   use = 'na.or.complete')
datos_mdz_est.lag3 <- cor(c(datos_mdz_est$bis0, datos_mdz_est$bis15),</pre>
                                   c(datos_mdz_est$bis45, datos_mdz_est$bis60),
                                   use = 'na.or.complete')
datos_mdz_est.lag4 <- cor(c(datos_mdz_est$bis0),</pre>
                                   c(datos_mdz_est$bis60),
                                   use = 'na.or.complete')
ac_mdz <- data.frame(rezago = seq(0, 4, 1),</pre>
                                                           ac = c(1, datos_mdz_est.lag1, datos_mdz_est.lag2, datos_mdz_est.lag3,
### Sexo: Femenino
datos_dex_est.lag1 <- cor(c(datos_dex_est$bis0, datos_dex_est$bis15, datos_dex_est$bis30, dat
                                   c(datos_dex_est$bis15, datos_dex_est$bis30, datos_dex_est$bis45, datos_dex_est$bi
                                   use = 'na.or.complete')
datos_dex_est.lag2 <- cor(c(datos_dex_est$bis0, datos_dex_est$bis15, datos_dex_est$bis30),
                                   c(datos_dex_est$bis30, datos_dex_est$bis45, datos_dex_est$bis60),
                                   use = 'na.or.complete')
datos_dex_est.lag3 <- cor(c(datos_dex_est$bis0, datos_dex_est$bis15),</pre>
                                   c(datos_dex_est$bis45, datos_dex_est$bis60),
                                   use = 'na.or.complete')
datos_dex_est.lag4 <- cor(c(datos_dex_est$bis0),</pre>
                                   c(datos_dex_est$bis60),
                                   use = 'na.or.complete')
ac_dex <- data.frame(rezago = seq(0, 4, 1),</pre>
                                                           ac = c(1, datos_dex_est.lag1, datos_dex_est.lag2, datos_dex_est.lag3,
```

```
correlog <- rbind(ac_mdz, ac_dex)

ggplot(correlog, aes(x = rezago, y = ac, group = grupo, color = grupo)) +
  geom_hline(yintercept = 0, lty = "dashed") +
  geom_point(size = 2) +
  geom_line(size = 1)</pre>
```


Sexo: Masculino datos_mdz_est.lag1_2 <- cor(c(datos_mdz_est\$bis15, datos_mdz_est\$bis30, datos_mdz_est\$bis45), c(datos mdz_est\$bis30, datos_mdz_est\$bis45, datos_mdz_est\$bis60), use = 'na.or.complete') datos_mdz_est.lag2_2 <- cor(c(datos_mdz_est\$bis15, datos_mdz_est\$bis30),</pre> c(datos_mdz_est\$bis45, datos_mdz_est\$bis60), use = 'na.or.complete') datos_mdz_est.lag3_2 <- cor(c(datos_mdz_est\$bis15),</pre> c(datos_mdz_est\$bis60), use = 'na.or.complete') $ac_mdz_2 \leftarrow data.frame(rezago = seq(0, 3, 1),$ ac = c(1, datos_mdz_est.lag1_2, datos_mdz_est.lag2_2, datos_mdz_est.la ### Sexo: Femenino datos_dex_est.lag1_2 <- cor(c(datos_dex_est\bis15, datos_dex_est\bis30, datos_dex_est\bis45), c(datos_dex_est\$bis30, datos_dex_est\$bis45, datos_dex_est\$bis60), use = 'na.or.complete') datos_dex_est.lag2_2 <- cor(c(datos_dex_est\$bis15, datos_dex_est\$bis30),</pre>


```
datos_largo_est <- datos_largo |>
    group_by(minuto, grupo) |>
    mutate(bis = scale(bis)) |>
    ungroup()

vgm <- variogram(datos_largo_est$id, datos_largo_est$minuto, datos_largo_est$bis)
vgm1 = data.frame(vgm$svar)</pre>
```

```
ggplot(data = vgm1, aes(x = vt, y = vv)) +
  geom_point(color = 'grey50', na.rm = TRUE) +
  stat_summary(fun = mean, geom = 'line', color = 'orangered', size = 1, na.rm = TRUE) +
  geom_hline(yintercept = vgm$sigma2) +
  scale_x_continuous("Rezago") +
  scale_y_continuous("Variograma muestral")
```


Modelo maximal para la media

$$Y_{ij} = \begin{cases} \beta_0 + b_{0i} + \beta_{1M} \cdot t_{ij} + \beta_{2M} \cdot I_i \cdot t_{ij} + \beta_{3M} \cdot t_{ij}^2 + \beta_{4M} \cdot I_i \cdot t_{ij}^2 + \epsilon_{ij} & \text{Droga proporcionada: MDZ} \\ \beta_0 + b_{0i} + \beta_{1D} \cdot t_{ij} + \beta_{2D} \cdot I_i \cdot t_{ij} + \beta_{3D} \cdot t_{ij}^2 + \beta_{4D} \cdot I_i \cdot t_{ij}^2 + \epsilon_{ij} & \text{Droga proporcionada: DEX} \end{cases}$$

Con $\epsilon_{ij} \sim \mathcal{N}(0, \Sigma)$

Posibles modelos:

- 1. Ordenada al origen aleatoria, con variabilidad distinta entre tiempo y grupo
- 2. Ordenada al origen aleatoria, con variabilidad distinta entre tiempo pero no por grupo
- 3. Ordenada al origen aleatoria, La variabilidad intra-individuo se supone que sigue un patrón de dependencia de orden 1 y variancia igual para ambos grupos
- 4. Ordenada al origen aleatoria, La variabilidad intra-individuo se supone que sigue un patrón de dependencia de orden 1 y variancia distinta para ambos grupos

```
datos_largo <- datos_largo |>
  mutate(minuto2 = minuto^2,
         tiempo = case_when(minuto == 0 ~ 1,
                            minuto == 15 \sim 2,
                            minuto == 30 \sim 3,
                            minuto == 45 \sim 4,
                            minuto == 60 \sim 5,
                            T \sim 0))
m1 <- lme(bis ~ 1 + minuto:grupo + minuto2:grupo + minuto:ind_mc:grupo + minuto2:ind_mc:grupo,
        random = ~1 | id,
        weights = varIdent(form = ~ 1 | grupo*indicadora),
        method = "REML",
        data = datos_largo)
m2 <- update(m1, weights = varIdent(form = ~ 1 | indicadora))</pre>
m3 <- update(m1, weights = NULL, correlation = corARMA(q = 1))
m4 <- update(m1, weights = NULL, correlation = corAR1(form = ~ 1 | id))
m5 <- update(m1, correlation = corGaus(form = ~ minuto | id))</pre>
summary(m1)
Linear mixed-effects model fit by REML
  Data: datos_largo
       AIC
                BIC
                       logLik
  1340.369 1388.563 -656.1846
Random effects:
 Formula: ~1 | id
        (Intercept) Residual
          0.6270561 1.301767
StdDev:
Variance function:
 Structure: Different standard deviations per stratum
 Formula: ~1 | grupo * indicadora
 Parameter estimates:
    MDZ*1
              MDZ*0
                        DEX*1
                                  DEX*0
1.0000000 3.5108922 0.7141129 2.5351987
Fixed effects: bis ~ 1 + minuto:grupo + minuto2:grupo + minuto:ind_mc:grupo +
                                                                                      minuto2:ind m
                           Value Std.Error DF t-value p-value
(Intercept)
                        97.70799 0.17922408 184 545.1722 0.0000
                        -0.44349 0.16712561 184 -2.6536 0.0087
minuto:grupoDEX
                        -0.78290 0.25668519 184 -3.0500 0.0026
minuto:grupoMDZ
                         0.00485 0.00321090 184 1.5109 0.1325
grupoDEX:minuto2
```

grupoMDZ:minuto2 0.00887 0.00495049 184 1.7927 0.0747 minuto:grupoDEX:ind_mc -0.00451 0.00530962 184 -0.8503 0.3962 minuto:grupoMDZ:ind_mc -0.00690 0.00829013 184 -0.8328 0.4061 grupoDEX:minuto2:ind_mc 0.00009 0.00010207 184 0.9185 0.3596 grupoMDZ:minuto2:ind_mc 0.00018 0.00015994 184 1.1079 0.2694 Correlation: (Intr) mn:DEX mn:MDZ grDEX:2 grMDZ:2 m:DEX: m:MDZ: minuto:grupoDEX -0.043 -0.033 0.001 minuto:grupoMDZ 0.027 -0.969 -0.001 grupoDEX:minuto2 grupoMDZ:minuto2 0.021 -0.001 -0.969 0.001 0.000 -0.978 0.000 0.949 minuto:grupoDEX:ind_mc 0.000 minuto:grupoMDZ:ind_mc 0.000 0.000 -0.981 0.000 0.952 0.000 0.000 -0.969 0.000 grupoDEX:minuto2:ind mc 0.000 0.948 0.000 -0.979 grupoMDZ:minuto2:ind_mc 0.000 0.000 0.951 0.000 -0.982 0.000 - 0.969gDEX:2:

minuto:grupoDEX minuto:grupoMDZ grupoDEX:minuto2 grupoMDZ:minuto2

minuto:grupoDEX:ind_mc
minuto:grupoMDZ:ind_mc
grupoDEX:minuto2:ind_mc

grupoMDZ:minuto2:ind_mc 0.000

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max -2.88075770 -0.53542709 0.01646135 0.69615036 2.25831521

Number of Observations: 240

Number of Groups: 48

summary(m2)

Linear mixed-effects model fit by REML

Data: datos_largo

AIC BIC logLik 1347.276 1388.585 -661.6381

Random effects:

Formula: ~1 | id

(Intercept) Residual StdDev: 0.7034785 1.077502

Variance function:

Structure: Different standard deviations per stratum

Formula: ~1 | indicadora

```
Parameter estimates:
       1
               Λ
1.000000 3.668516
Fixed effects: bis ~ 1 + minuto:grupo + minuto2:grupo + minuto:ind_mc:grupo +
                                                                                   minuto2:ind_m
                           Value Std.Error DF t-value p-value
                        97.68078 0.18511637 184 527.6723 0.0000
(Intercept)
minuto:grupoDEX
                        -0.44336 0.19979924 184 -2.2190 0.0277
minuto:grupoMDZ
                        -0.76211 0.22300368 184 -3.4175 0.0008
grupoDEX:minuto2
                         0.00485 0.00384286 184
                                                 1.2620 0.2085
grupoMDZ:minuto2
                         0.00862 0.00428952 184
                                                 2.0091 0.0460
minuto:grupoDEX:ind_mc -0.00448 0.00634896 184 -0.7062 0.4809
minuto:grupoMDZ:ind_mc
                        -0.00752 0.00720211 184 -1.0439 0.2979
grupoDEX:minuto2:ind_mc 0.00009 0.00012216 184
                                                 0.7642 0.4457
grupoMDZ:minuto2:ind mc 0.00018 0.00013858 184
                                                 1.3334 0.1841
 Correlation:
                        (Intr) mn:DEX mn:MDZ grDEX:2 grMDZ:2 m:DEX: m:MDZ:
minuto:grupoDEX
                        -0.038
                        -0.034 0.001
minuto:grupoMDZ
grupoDEX:minuto2
                        0.024 -0.969 -0.001
grupoMDZ:minuto2
                        0.022 -0.001 -0.969 0.001
minuto:grupoDEX:ind_mc
                        0.000 -0.979 0.000 0.949
                                                     0.000
                                                     0.951
                                                             0.000
minuto:grupoMDZ:ind_mc
                        0.000 0.000 -0.981 0.000
grupoDEX:minuto2:ind_mc
                        0.000 0.948
                                      0.000 - 0.979
                                                     0.000 -0.969 0.000
grupoMDZ:minuto2:ind_mc
                        0.000 0.000 0.951 0.000 -0.982
                                                              0.000 - 0.969
                        gDEX:2:
minuto:grupoDEX
minuto:grupoMDZ
grupoDEX:minuto2
grupoMDZ:minuto2
minuto:grupoDEX:ind_mc
minuto:grupoMDZ:ind mc
grupoDEX:minuto2:ind mc
grupoMDZ:minuto2:ind_mc 0.000
Standardized Within-Group Residuals:
       Min
                                             QЗ
                     Q1
                               Med
                                                       Max
-2.98702480 -0.58563765 0.02242197 0.66691992 2.08322068
Number of Observations: 240
Number of Groups: 48
summary(m3)
Linear mixed-effects model fit by REML
```

Data: datos_largo

AIC

BIC

1396.402 1437.711 -686.201

logLik

```
Random effects:
Formula: ~1 | id
         (Intercept) Residual
StdDev: 0.0002565016 3.585632
Correlation Structure: ARMA(0,1)
Formula: ~1 | id
Parameter estimate(s):
   Theta1
0.1857575
Fixed effects: bis ~ 1 + minuto:grupo + minuto2:grupo + minuto:ind_mc:grupo +
                                                                                   minuto2:ind m
                           Value Std.Error DF
                                                t-value p-value
(Intercept)
                        96.70556 0.5045555 184 191.66484 0.0000
minuto:grupoDEX
                        -0.39555 0.1927894 184 -2.05174 0.0416
minuto:grupoMDZ
                        -0.74925 0.2148063 184 -3.48804 0.0006
grupoDEX:minuto2
                         0.00414 0.0036291 184
                                                1.14143 0.2552
                        0.00837 0.0040482 184
grupoMDZ:minuto2
                                                2.06850 0.0400
minuto:grupoDEX:ind_mc -0.00420 0.0060721 184 -0.69176 0.4900
minuto:grupoMDZ:ind_mc
                        -0.00599 0.0068881 184 -0.86934 0.3858
grupoDEX:minuto2:ind_mc 0.00009 0.0001150 184
                                              0.80715 0.4206
grupoMDZ:minuto2:ind_mc 0.00016 0.0001304 184
                                                1.26089 0.2089
 Correlation:
                        (Intr) mn:DEX mn:MDZ grDEX:2 grMDZ:2 m:DEX: m:MDZ:
                        -0.138
minuto:grupoDEX
minuto:grupoMDZ
                        -0.124 0.017
grupoDEX:minuto2
                        0.085 -0.967 -0.011
grupoMDZ:minuto2
                        0.076 -0.011 -0.967 0.007
minuto:grupoDEX:ind_mc
                        0.000 -0.970 0.000 0.945
                                                     0.000
minuto:grupoMDZ:ind_mc
                                                     0.948
                                                             0.000
                        0.000 0.000 -0.974 0.000
grupoDEX:minuto2:ind mc
                        0.000 0.939 0.000 -0.976
                                                     0.000 -0.968 0.000
grupoMDZ:minuto2:ind_mc 0.000 0.000 0.944 0.000 -0.979
                                                             0.000 - 0.968
                        gDEX:2:
minuto:grupoDEX
minuto:grupoMDZ
grupoDEX:minuto2
grupoMDZ:minuto2
minuto:grupoDEX:ind_mc
minuto:grupoMDZ:ind_mc
grupoDEX:minuto2:ind_mc
grupoMDZ:minuto2:ind_mc
                       0.000
Standardized Within-Group Residuals:
       Min
                               Med
                     Q1
                                             Q3
                                                       Max
-3.05974540 -0.52178881 0.08211734 0.63989908 2.32548812
```

Number of Observations: 240

Number of Groups: 48

```
anova(m1, m2)
   Model df
                  AIC
                           BIC
                                           Test L.Ratio p-value
                                  logLik
       1 14 1340.369 1388.563 -656.1846
m1
       2 12 1347.276 1388.585 -661.6381 1 vs 2 10.90705 0.0043
m2
anova(m1, m2, m3, m4, m5)
   Model df
                  AIC
                           BIC
                                  logLik
                                           Test L.Ratio p-value
       1 14 1340.369 1388.563 -656.1846
m1
m2
       2 12 1347.276 1388.585 -661.6381 1 vs 2 10.90705 0.0043
mЗ
       3 12 1396.402 1437.711 -686.2010
       4 12 1397.728 1439.037 -686.8642
m4
       5 15 1328.521 1380.158 -649.2607 4 vs 5 75.20703 <.0001
m5
# Nos quedamos con el modelo 7
spline_1 <- lme(bis ~ 1 + minuto:grupo + minuto_15:grupo + minuto:ind_mc:grupo + minuto_15:ind_mc
        random = ~1|id,
        weights = varIdent(form = ~ 1 | grupo*indicadora),
        method = "REML",
        data = datos_largo)
spline 2 <- update(spline 1, weights = varIdent(form = ~ 1 | indicadora))</pre>
spline_3 <- update(spline_1, weights = varIdent(form = ~ 1 | indicadora), correlation = corARMA(q
spline_4 <- update(spline_1, weights = varIdent(form = ~ 1 | indicadora), correlation = corAR1(form = ~ 1 | indicadora)</pre>
spline_5 <- update(spline_2, correlation = corGaus(form = ~ minuto | id))</pre>
anova(spline_1, spline_2, spline_3, spline_4, spline_5)
         Model df
                        AIC
                                 BIC
                                        logLik
                                                  Test L.Ratio p-value
             1 14 1202.229 1250.423 -587.1147
spline_1
             2 12 1200.653 1241.962 -588.3264 1 vs 2 2.42354 0.2977
spline_2
spline_3
             3 13 1155.473 1200.224 -564.7362 2 vs 3 47.18038 <.0001
spline_4
             4 13 1153.764 1198.515 -563.8820
spline_5
             5 13 1153.233 1197.984 -563.6163
predicciones <- predict(spline_5, datos_largo) # Predicciones con el modelo spline</pre>
predicciones2 <- predict(m5, datos_largo) # Predicciones con el modelo cuadratico</pre>
```

```
# Grafico con las predicciones
(ggplot(datos_largo |> mutate(predicciones = predicciones), aes(x=minuto, y = predicciones, col
    geom_point(stat='summary', fun.y='mean') +
    geom_line(stat='summary', fun.y='mean', size = 1)) +
(ggplot(datos_largo |> mutate(predicciones = predicciones2), aes(x=minuto, y = predicciones, co
    geom_point(stat='summary', fun.y='mean') +
    geom_line(stat='summary', fun.y='mean', size = 1)) +
(ggplot(datos_largo, aes(x=minuto, y = bis, color=factor(grupo), group = factor(grupo))) +
    geom_point(stat='summary', fun.y='mean') +
    geom_line(stat='summary', fun.y='mean', size = 1))
```


Análisis de la parte media

$$\begin{cases} Y_{ij} = \beta_0 + b_{0i} + \beta_{1M} \cdot t_{ij} + \beta_{2M} \cdot I_i \cdot t_{ij} + \beta_{3M} \cdot (t_{ij} - 15)_+ + \beta_{4M} \cdot I_i \cdot (t_{ij} - 15)_+ + \epsilon_{ij} & \text{Droga proporcionada: } \mathbf{I}_{ij} = \beta_0 + b_{0i} + \beta_{1D} \cdot t_{ij} + \beta_{2D} \cdot I_i \cdot t_{ij} + \beta_{3D} \cdot (t_{ij} - 15)_+ + \beta_{4D} \cdot I_i \cdot (t_{ij} - 15)_+ + \epsilon_{ij} & \text{Droga proporcionada: } \mathbf{I}_{ij} = \mathbf{I$$

• El efecto del indice de masa corporal sobre la profundidad de la hipnosis es el mismo para ambos tratamientos durante todo el estudio

$$H_0)_{\beta_{4M} = \beta_{4D}}^{\beta_{2M} = \beta_{2D}} \Rightarrow H_0)_{\beta_{4M} - \beta_{4D} = 0}^{\beta_{2M} - \beta_{2D} = 0}$$

```
spline_5_1 <- update(spline_5, method = "ML") # Modelo saturado
spline_5_2 <- update(spline_5_1, fixed = bis ~ 1 + minuto:grupo + minuto_15:grupo + minuto:ind_mc
anova(spline_5_1, spline_5_2)</pre>
```

```
Model df
                         AIC
                                  BIC
                                          logLik
                                                   Test
                                                        L.Ratio p-value
               1 13 1089.872 1135.120 -531.9360
spline 5 1
spline 5 2
               2 11 1086.582 1124.869 -532.2911 1 vs 2 0.7101416 0.7011
Lt = matrix(c(0,0,0,0,0,1,-1,0,0,
             0,0,0,0,0,0,0,1,-1), byrow = T, nrow = 2)
anova(spline_5_1, L = Lt)
F-test for linear combination(s)
  minuto:grupoDEX:ind_mc minuto:grupoMDZ:ind_mc grupoDEX:minuto_15:ind_mc
1
                                              -1
2
                       0
                                               0
                                                                          1
  grupoMDZ:minuto_15:ind_mc
1
2
                         -1
                F-value p-value
  numDF denDF
          184 0.3467599 0.7074
```

El efecto del indice de masa corporal sobre la profundidad de la hipnosis es el mismo para ambos tratamientos durante todo el estudio

No RHO, implica mismo cambio en el IMC

spline_5_2

spline_5_3

$$\begin{cases} Y_{ij} = \beta_0 + b_{0i} + \beta_{1M} \cdot t_{ij} + \beta_2 \cdot I_i \cdot t_{ij} + \beta_{3M} \cdot (t_{ij} - 15)_+ + \beta_4 \cdot I_i \cdot (t_{ij} - 15)_+ + \epsilon_{ij} \\ Y_{ij} = \beta_0 + b_{0i} + \beta_{1D} \cdot t_{ij} + \beta_2 \cdot I_i \cdot t_{ij} + \beta_{3D} \cdot (t_{ij} - 15)_+ + \beta_4 \cdot I_i \cdot (t_{ij} - 15)_+ + \epsilon_{ij} \end{cases}$$
 Droga proporcionada: MD2 Droga proporcionada: DE3

• El efecto de las drogas en el cambio sobre la profundidad de la hipnosis es el mismo durante todo el estudio

$$H_0)_{\beta_{3M} \,=\, \beta_{3D}}^{\beta_{1M} \,=\, \beta_{1D}} \Rightarrow H_0)_{\beta_{3M} \,-\, \beta_{3D} \,=\, 0}^{\beta_{1M} \,-\, \beta_{1D} \,=\, 0}$$

```
spline_5_3 <- update(spline_5_2, fixed = bis ~ 1 + minuto + minuto_15 + minuto:ind_mc + minuto_15
anova(spline_5_2, spline_5_3)

Model df AIC BIC logLik Test L.Ratio p-value</pre>
```

2 9 1162.118 1193.444 -572.0592 1 vs 2 79.53609 <.0001

1 11 1086.582 1124.869 -532.2911

Rechazamos, por lo tanto El efecto de las drogas en el cambio sobre la profundidad de la hipnosis no es el mismo durante todo el estudio

• El efecto de las drogas en el cambio sobre la profundidad de la hipnosis es el mismo durante al inicio del estudio

```
spline_5_4 <- update(spline_5_2, fixed = bis ~ 1 + minuto + minuto_15:grupo + minuto:ind_mc + min
anova(spline_5_2, spline_5_4)
                                  BIC
           Model df
                         AIC
                                         logLik
                                                  Test L.Ratio p-value
spline_5_2
               1 11 1086.582 1124.869 -532.2911
               2 10 1158.396 1193.202 -569.1978 1 vs 2 73.81347 <.0001
spline 5 4
Lt = matrix(c(0,1,-1,0,0,0,0), byrow = T, nrow = 1)
anova(spline_5_2, L = Lt)
F-test for linear combination(s)
minuto:grupoDEX minuto:grupoMDZ
  numDF denDF F-value p-value
```

No rechazamos por lo tanto si es diferente al principio del estudio

186 89.57634 <.0001

1

• El efecto de las drogas en el cambio sobre la profundidad de la hipnosis es el mismo a partir de los 15 minutos del estudio

```
spline_5_5 <- update(spline_5_2, fixed = bis ~ 1 + minuto:grupo + minuto_15 + minuto:ind_mc + min
anova(spline_5_2, spline_5_5)</pre>
```

```
Model df AIC BIC logLik Test L.Ratio p-value spline_5_2 1 11 1086.582 1124.869 -532.2911 spline_5_5 2 10 1143.621 1178.428 -561.8106 1 vs 2 59.03889 <.0001
```

No rechazamos por lo tanto si es diferente a los 15 minutos del estudio

• El efecto del idice corporal en el cambio sobre la profundidad de la hipnosis es el mismo a lo largo del estudio

```
spline_5_6 <- update(spline_5_2, fixed = bis ~ 1 + minuto:grupo + minuto_15:grupo)
anova(spline_5_2, spline_5_6)</pre>
```

```
Lt = matrix(c(0,1,-1,1,-1,0,0), byrow = T, nrow = 1)
anova(spline_5_2, L = Lt)
```

```
F-test for linear combination(s)
minuto:grupoDEX minuto:grupoMDZ grupoDEX:minuto_15 grupoMDZ:minuto_15

1 -1 1 -1
numDF denDF F-value p-value
1 1 186 17.32459 <.0001
```

Rechazamos El efecto del idice corporal en el cambio sobre la profundidad de la hipnosis es difiere a lo largo del estudio

Modelo final

$$\begin{cases} Y_{ij} = \beta_0 + b_{0i} + \beta_{1M} \cdot t_{ij} + \beta_2 \cdot I_i \cdot t_{ij} + \beta_{3M} \cdot (t_{ij} - 15)_+ + \beta_4 \cdot I_i \cdot (t_{ij} - 15)_+ + \epsilon_{ij} \\ Y_{ij} = \beta_0 + b_{0i} + \beta_{1D} \cdot t_{ij} + \beta_2 \cdot I_i \cdot t_{ij} + \beta_{3D} \cdot (t_{ij} - 15)_+ + \beta_4 \cdot I_i \cdot (t_{ij} - 15)_+ + \epsilon_{ij} \end{cases}$$
 Droga proporcionada: MDZ Droga proporcionada: DEZ

Análisis de residuos

```
resid.2 <- data.frame(datos_largo,</pre>
                      pred = fitted(spline_5_2),
                      resid_m = resid(spline_5_2, type = 'p', level = 0),
                      resid_c = resid(spline_5_2, type = 'p', level = 1),
                      resid_me = scale(resid(spline_5_2, type = 'r', level = 0)),
                      resid_ce = scale(resid(spline_5_2, type = 'r', level = 1)),
                      resid_m_chol = resid(spline_5_2, type = 'n', level = 0))
# Homocedasticidad
ggplot(data = resid.2) +
  geom_point(aes(x = pred, y = resid_c), color = 'steelblue') +
  geom_hline(yintercept = 0) +
  geom_hline(yintercept = c(-3, 3), linetype = 2) +
  theme_light() +
  scale_x_continuous("Valores predichos") +
  scale_y_continuous("Residuos estandarizados", breaks = seq(-3, 3, 1)) +
  labs(title = "Residuos estandarizados vs valores predichos") +
  theme(plot.title = element_text(size = 15))
```

Residuos estandarizados vs valores predichos


```
# Estructura de correlación
vgm = variogram(resid.2$id, resid.2$minuto, resid.2$resid_m_chol)
vgm1 = data.frame(vgm$svar)
```

```
ggplot(data = vgm1, aes(x = vt, y = vv)) +
geom_point(color = 'grey50') +
geom_hline(yintercept = 1) +
geom_smooth(method = "loess", se = F, ) +
theme_light() +
scale_y_continuous("Variograma muestral", breaks = seq(0, 10, 1)) +
labs(title = "Variograma muestral") +
theme(plot.title = element_text(size = 15))
```

Variograma muestral

Gráfico probabilistico normal de los residuos condicionales


```
# Linealidad

ggplot(data = resid.2, aes(x = minuto, y = resid_m)) +
    geom_point(color = 'steelblue', alpha = 0.5) +
    geom_hline(yintercept = 0) +
    theme_light() +
    scale_x_continuous("Valores predichos") +
    scale_y_continuous("Residuos marginales estandarizados", breaks = seq(-10, 10, 1)) +
    labs(title = "Residuos marginales estandarizados vs tiempo") +
    theme(plot.title = element_text(size = 15))
```

Residuos marginales estandarizados vs tiempo


```
# Presencia de outliers
# Outliers
resid.2 = mutate(resid.2, obs = 1:nrow(datos_largo))
ggplot(data = resid.2) +
    geom_point(aes(x = obs, y = resid_m), color = 'steelblue') +
    geom_hline(yintercept = 0) +
    geom_hline(yintercept = c(-3, 3), lty = "dashed") +
    geom_point(data = resid.2 |> filter(resid_m < -3), aes(x = obs, y = resid_m), color = "firebric"
theme_light() +
    scale_x_continuous("Observación") +
    scale_y_continuous("Residuos marginales estandarizados", breaks = seq(-6, 6, 1)) +
    labs(title = "Residuos marginales estandarizados vs tiempo") +
    theme(plot.title = element_text(size = 15))</pre>
```

Residuos marginales estandarizados vs tiempo


```
ggplot(data = resid.2) +
  geom_point(aes(x = obs, y = resid_ce), color = 'steelblue') +
  geom_hline(yintercept = 0) +
  geom_hline(yintercept = c(-3, 3), lty = "dashed") +
  theme_light() +
  scale_x_continuous("Observación") +
  scale_y_continuous("Residuos condicinales estandarizados", breaks = seq(-6, 6, 1)) +
  labs(title = "Residuos condicionales estandarizados vs tiempo") +
  theme(plot.title = element_text(size = 15))
```

Residuos condicionales estandarizados vs tiempo


```
# Outliers en Invididuos
D = getVarCov(spline_5_2, type="random.effects")
Mi = mahalanobis(ranef(spline_5_2), 0, D)
Mi = data.frame(id = datos_largo$id, Mi)

ggplot(data = Mi) +
    geom_point(aes(x = id, y = Mi), color = 'steelblue') +
    geom_hline(yintercept = 0) +
    theme_light() +

# scale_x_continuous("Individuo") +
    scale_y_continuous("Distancia de Mahalanobis") + #, breaks = seq(-6, 6, 1)) +
    labs(title = "Distancia de Mahalanobis vs id") +
    theme(plot.title = element_text(size = 15))
```

Distancia de Mahalanobis vs id

Mi |> filter(Mi > 0.6)

id Mi

1 3 0.77087112 13 0.7708711

3 22 0.7708711

4 32 0.7708711

5 42 0.7708711