# Michael Zingale / Curriculum Vitæ

Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 *phone:* (631) 632-8225 *e-mail:* michael.zingale@stonybrook.edu

web: http://www.astro.sunysb.edu/mzingale/
github: zingale · ORCiD: 0000-0001-8401-030X
twitter: @Michael\_Zingale · youtube: michaelzingale

#### **Present Position:**

Jan. 2012– Associate Professor of Physics and Astronomy, Stony Brook University, Stony Brook, NY

#### Research Interests:

I am interested in developing and applying computational hydrodynamics algorithms to problems in nuclear astrophysics. A large part of this work is the development of low Mach number hydrodynamics algorithms suited toward long-time evolution in astrophysical flows. The low Mach number simulation code Maestro (developed together with collaborators at LBNL) has been applied to a variety of problems to model convection in stellar environments, including Type Ia supernovae, X-ray bursts, novae, and massive star evolution. Maestro is publicly available.

#### **Education:**

| 2000 | Ph.D. in Astronomy and Astrophysics, University of Chicago thesis: Helium Detonations on Neutron Stars advisor: Dr. J. W. Truran                                                     |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1998 | M.S. in Astronomy and Astrophysics, University of Chicago                                                                                                                            |
| 1996 | B.S. in Physics and Astronomy, University of Rochester, Magna Cum Laude thesis: Magnetohydrodynamical Wave Support of Molecular Clouds Minor in Mathematics, University of Rochester |

### **Academic Appointments:**

| 2014–     | Affiliate, Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY                                                                                                                                                                                                                                      |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2006–2011 | Assistant Professor of Physics and Astronomy, Stony Brook University                                                                                                                                                                                                                                                                  |
| 2001–2005 | Postdoctoral Researcher, SciDAC Supernova Science Center, University of California, Santa Cruz. Worked on simulations of turbulent thermonuclear flames in Type Ia supernova. Initiated a collaboration with Lawrence Berkeley Lab to apply low Mach number hydrodynamics methods to astrophysical flames. advisor: Dr. S. E. Woosley |
| 2000–2001 | Research Associate, Center for Astrophysical Thermonuclear Flashes, University of Chicago. One of the developers of the FLASH Code. Research focused on flame simulations in Type Ia supernovae. advisor: Dr. J. W. Truran                                                                                                            |

1997–2000 *Graduate student researcher*, Center for Astrophysical Thermonuclear Flashes and Department of Astronomy and Astrophysics, University of Chicago. One of the developers of the FLASH Code. *advisor:* Dr. J. W. Truran

### Honors / Awards:

| 2015–2016 | Scialog Fellow for Scialog: Time Domain Astrophysics: Stars and Explosions                                                                                                                                                                          |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2006      | Presidential Early Career Award in Science and Engineering (PECASE). Nomination through DOE NNSA.                                                                                                                                                   |
| 2006      | DOE Office of Nuclear Physics Outstanding Junior Investigator (OJI) Award for a proposal entitled: <i>Multidimensional Modeling of Astrophysical Thermonuclear Explosions</i>                                                                       |
| 2000      | Gordon Bell Award in High Performance Computing, Special Category for a paper entitled <i>High-Performance Reactive Fluid Flow Simulations Using Adaptive Mesh Refinement on Thousands of Processors</i> , Calder et al. 2000. (SC 2000 conference) |
| 2000      | Carl Sagan Award for Excellence in Teaching (Dept. of Astronomy & Astrophysics, University of Chicago)                                                                                                                                              |
| 1997      | Gregor Wentzel graduate teaching award (Dept. of Physics, University of Chicago)                                                                                                                                                                    |
| 1996      | Stoddard Prize in physics for senior thesis (University of Rochester)                                                                                                                                                                               |
| 1996      | Flagg Award for highest GPA in physics (University of Rochester)                                                                                                                                                                                    |
| 1996      | Inducted into Phi Beta Kappa honor society (University of Rochester)                                                                                                                                                                                |
| 1994      | Inducted into Sigma Pi Sigma physics honor society (University of Rochester)                                                                                                                                                                        |

### Publications:

60+ refereed publications and conference proceedings, h-index = 22 (Web of Science)

## Research Grants/Contracts as Principal Investigator:

| 2017–2022 | Department of Energy, Office of Nuclear Physics & Office of Advanced Scientific Computing Research, <i>Towards Exascale Astrophysics of Mergers and Supernovae (TEAMS)</i> (SBU subcontract through MSU, multi-institution collaboration, DE-SC0017955), Co-Is: Alan Calder, James Lattimer | \$616,000 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 2011–2013 | Department of Energy, Office of Nuclear Physics (2.5-year renewal), <i>Multidimensional Modeling of Astrophysical Thermonuclear Explosions</i> , DOE DE-FG02-06ER41448                                                                                                                      | \$253,000 |
| 2010–2011 | Contract with Lawrence Livermore National Laboratory, <i>Multi-dimensional Modeling of Nova with Realistic Nuclear Physics</i> , 2010: B589924; 2011: B593287                                                                                                                               | \$99,768  |

| 2009–2011    | Department of Energy, Office of Nuclear Physics Outstanding Junior Investigator Award (2-year renewal), <i>Multidimensional Modeling of Astrophysical Thermonuclear Explosions</i> , DOE DE-FG02-06ER41448    | \$186,000      |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 2007–2009    | Contract with Lawrence Livermore National Laboratory, <i>Verification and Validation of Radiation Hydrodynamics for Astrophysical Applications</i> , 2007: B568673; 2008: B574691; 2009 B582735               | \$150,000      |
| 2006–2009    | Department of Energy, Office of Nuclear Physics Outstanding Junior Investigator Award, <i>Multidimensional Modeling of Astrophysical Thermonuclear Explosions</i> , DOE DE-FG02-06ER41448                     | \$255,000      |
| Research Gra | ants/Contracts as Co-Investigator:                                                                                                                                                                            |                |
| 2015–2018    | Department of Energy, Office of Nuclear Physics Research in Nuclear Astrophysics: Supernovae, Compact Objects, and Algorithms, DOE DE-FG02-87ER40317, PI: James Lattimer, Co-Is: Alan Calder, Michael Zingale | \$1,100,000    |
| 2013–2015    | Department of Energy, Office of Nuclear Physics Research in Nuclear Astrophysics: Supernovae, Compact Objects, and Algorithms, DOE DE-FG02-87ER40317, PI: James Lattimer, Co-Is: Alan Calder, Michael Zingale | \$640,000      |
| 2012–2015    | NSF, White Dwarf Mergers as Progenitors of Type Ia Supernovae, AST-1211563, PI: Alan Calder, Co-Is: Doug Swesty, Michael Zingale                                                                              | \$437,643      |
| Large Compu  | iter Time Allocations:                                                                                                                                                                                        |                |
| 2018         | PI on a NERSC 2018 allocation, <i>Three-dimensional studies of white dwary star systems</i> (20.85 M MPP hours)                                                                                               | f and neutron  |
| 2018         | PI on an INCITE 2018 award for at OLCF, Approaching Exascale Monthly physical Explosions (40 Mh)                                                                                                              | dels of Astro- |
| 2017         | PI on a NERSC 2017 allocation, <i>Three-dimensional studies of white dwary star systems</i> (5 M MPP hours)                                                                                                   | f and neutron  |
| 2017         | PI on an INCITE 2017 award for the OLCF Cray XKT titan machine, <i>Exascale Models of Astrophysical Explosions</i> (45 Mh)                                                                                    | Approaching    |
| 2016         | PI on a NERSC 2016 allocation, <i>Three-dimensional studies of neutron</i> (4.6 M MPP hours)                                                                                                                  | star systems   |
| 2015–2016    | PI on an INCITE 2015 award for the OLCF Cray XK7 titan machine, Exascale Models of Astrophysical Explosions (2015: 50 Mh, 2016: 55 Mh)                                                                        | , ,            |
| 2011–2015    | Co-I on NSF PRAC for NCSA/Blue Waters, Type Ia Supernovae (9.1 M                                                                                                                                              | node hours)    |
| 2015         | PI on a NERSC 2015 allocation, <i>Three-dimensional studies of convect bursts</i> (5.9 M MPP hours)                                                                                                           | ion in X-ray   |
| 2014         | PI on a NERSC 2014 allocation, <i>Three-dimensional studies of convect bursts</i> (14 M MPP hours)                                                                                                            | ion in X-ray   |

| 2014      | Co-I on a NERSC 2014 allocation, <i>Type Ia Supernovae and X-Ray Bursts</i> (9 M MPP hours)                                                                               |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2012–2014 | Co-I on an INCITE 2012 award for the OLCF Cray XT5, <i>Petascale Simulations of Type Ia Supernovae</i> (2012: 46 Mh; 2013: 55 Mh; 2014: 50 Mh)                            |
| 2013      | PI on XSEDE allocation on Kraken/NICS, CASTRO Simulations of Merging White Dwarfs (4.1 Mh)                                                                                |
| 2013      | Co-I on a NERSC 2013 allocation, <i>Type Ia Supernovae and X-ray Bursts</i> (3.5 M MPP hours)                                                                             |
| 2011      | Co-I on a TeraGrid allocation on the Kraken machine, <i>Thermonuclear Bursts on the Surfaces of Compact Astrophysical Objects</i> (2.1 Mh, Oct. 2011)                     |
| 2011      | Co-I on an INCITE 2011 award for the Cray XT5/ORNL machine, <i>Petascale Simulations of Type Ia Supernovae</i> (50 Mh)                                                    |
| 2010      | PI on a TeraGrid allocation on the Kraken machine, <i>Thermonuclear Bursts on the Surfaces of Compact Astrophysical Objects</i> (1 Mh; Oct. 2010)                         |
| 2010      | Co-I on an INCITE 2010 award for the Cray XT5/ORNL, <i>Multidimensional Models of Type Ia Supernovae from Ignition to Observables</i> (5 Mh initially + 20 Mh supplement) |
| 2007–2009 | Co-Investigator on an INCITE 2007 award for the Cray XT3/ORNL, First Principles Models of Type Ia Supernovae. (2007: 4 Mh; 2008: 3.5 Mh; 2009: 3 Mh)                      |
| 2006      | Co-Principal Investigator on the Leadership Computing Facility (ORNL) allocation, <i>Ignition and Flame Propagation in Type Ia Supernovae</i> . (3 Mh)                    |

## Stony Brook Physics and Astronomy Teaching Experience:

| Astronomy Today<br>(AST 100)                       | A one-credit undergraduate seminar on current astronomy topics, where students lead the discussion on current topics. (F 2010, F 2011, F 2014, F 2015)                                                                                               |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Introduction to the Solar System (AST 105)         | An overview of solar system topics (solar system dynamics, Kepler's laws, planetary processes, exoplanets,) for non-majors. (F 2007, F 2008, F 2009, F 2011, S 2014, S 2015)                                                                         |
| Astronomy (AST 203)                                | A calculus-based introduction to astronomy and astrophysics for majors, covering the basics of radiation, spectra, binary stars, stellar evolution, ISM, clusters, galaxies, and cosmology. (S 2007, S 2008, S 2009, S 2010, S 2011, S 2012, S 2017) |
| Introduction to Planetary<br>Sciences<br>(AST 205) | A calculus-based introduction to the solar system for majors covering basic solar system motion, planetary processes, exoplanets, and solar system formation. (F 2010, F 2014, F 2016)                                                               |
| Stars<br>(PHY 521)                                 | A graduate-level introduction to the physical processes inside stars, stellar structure and atmospheres, and stellar explosions. (F 2013, F 2015)                                                                                                    |

Python for Scientific Comput-

ing

(PHY 546; formerly grad

special topics)

A one-hour weekly graduate seminar that I created that introduces python and a variety of libraries (NumPy, matplotlib, SciPy, SymPy) for numerical analysis, visualization, and data processing, as well as basic software engineering practices (git/github, debugging, testing).

(S 2014, S 2015, S 2016, S 2017, S 2018)

Computational Methods in Physics and Astrophysics II (PHY 604; formerly grad special topics) A practical introduction to good development practices, orderof-accuracy, numerical differentiation, integration, interpolation, ODEs, root finding, fitting, FFTs, Monte Carlo, solving hyperbolic, elliptical, and parabolic PDEs, computational fluid dynamics, and

parallel programming, with examples in python.

(S 2013, S 2016, F 2017)

Astrophysical Fluids and

Plasmas

An introduction to hydrodynamics, fluid instabilities, applications

to astrophysics, and an introduction to MHD.

(grad special topics) (S 2018)

The Application of Simulation in Astrophysics (grad special topics)

Develop the equations of hydrodynamics, instabilities common in astrophysics, and discuss numerical methods for solving the Euler

equations (finite-volume methods, Riemann solvers, etc.)

(S 2006)

### Other Teaching Experience:

Summer University of Chicago / Department of Computer Science:

Teaching assistant for the Introduction to Programming in C class in the Computer

Science Professional Masters Program at the University of Chicago.

1997–1998 Center of Astronomical Research in Antarctica (CARA) outreach program:

Developed and taught thermodynamics, E&M, and mechanics experiments to grade 7–12 Chicago school students. Awarded the Carl Sagan teaching award.

1996–1997 Introductory Physics Teaching Assistant (University of Chicago):

Taught weekly discussion and laboratory sections. Awarded the Gregor Wentzel

teaching award.

### **Professional Development:**

2018 Software Carpentry instructor certification

student at Finite Volume Upwind and Centered Methods for Hyperbolic Conser-

vation Laws (Barcelona, Spain)

student at NASA Summer School for High Performance Computational Earth

and Space Sciences

### Stony Brook Physics and Astronomy Service:

2011–2012, Strategic Advising Committee, Dept. of Physics and Astronomy

2013-

2017– Undergraduate Research Committee, Dept. of Physics and Astronomy

| 2017                    | Tenure Committee for Astronomy colleague, Dept. of Physics and Astronomy                                 |
|-------------------------|----------------------------------------------------------------------------------------------------------|
| 2006–2007,<br>2016–2017 | Graduate Admission Committee, Dept. of Physics and Astronomy                                             |
| 2016-2017               | Examine the Graduate Exam Committee, Dept. of Physics and Astronomy                                      |
| 2013-2016               | Astronomy Open Nights coordinator, Dept. of Physics and Astronomy                                        |
| 2008, 2014–<br>2015     | Department Chair Search Committee, Dept. of Physics and Astronomy                                        |
| 2014–2015               | Three-year Reappointment Committee for Astronomy colleague, Dept. of Physics and Astronomy               |
| 2013-2014               | Undergraduate Astronomy Coordinator, Dept. of Physics and Astronomy                                      |
| 2013-2014               | Tenure Committee for Astronomy colleague, Dept. of Physics and Astronomy                                 |
| 2013-2014               | Astronomy Faculty Search Committee, Dept. of Physics and Astronomy                                       |
| 2013                    | Ad-hoc Committee for High-Energy Physics Hire, Dept. Physics and Astronomy                               |
| 2007–2012               | Colloquium Committee, Dept. of Physics and Astronomy (chair: Fall 2008, Fall 2009, Fall 2010, Fall 2011) |
| 2011                    | CESAME/Physics and Astronomy joint hire committee, Dept. of Physics and Astronomy                        |
| 2009                    | Long Range Planning Committee, Dept. of Physics and Astronomy                                            |
| 2007-2009               | Graduate Advising Committee, Dept. of Physics and Astronomy                                              |
| 2007-2008               | Astronomy Faculty Search Committee, Dept. of Physics and Astronomy                                       |
| 2006-2007               | NYCCS Faculty Search Committee (Dept. level), Dept. of Physics and Astronomy                             |
|                         |                                                                                                          |

## Stony Brook University Service:

| 2010      | Teaching Learning Technology (TLT) Advisory Committee                                     |
|-----------|-------------------------------------------------------------------------------------------|
| 2006–2009 | University Senate Committee on Computing and Communications (chair: Feb. 2008 – May 2009) |

## Professional Service:

| 2016-   | Elected to the NERSC User's Group Executive Committee (NUGEX)                                                                                                                                                                                                                                |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2014–   | OLCF User Group Executive Board (Elected to 3 year term 2014, relelected in 2017; Vice chair: 2014–2015, 2018–2019; Chair: 2015–2016;)                                                                                                                                                       |
| ongoing | Referee for Astronomy and Astrophysics, the Astrophysical Journal, Communications in Applied Mathematics and Computational Science, Computing in Science and Engineering, Journal of Computational Physics, Monthly Notices of the Royal Astronomical Society, Nature, and Nuclear Physics A |
| 2006–   | Annual <i>Astronomy Open Night</i> public outreach talks, Stony Brook (Open Night coordinator from Fall 2013–Fall 2016)                                                                                                                                                                      |
| 2016    | Reviewer for Deutsche Forschungsgemeinschaft                                                                                                                                                                                                                                                 |

| 2013, 2016          | Served on a NASA ATP grant review panel                                                                              |
|---------------------|----------------------------------------------------------------------------------------------------------------------|
| 2011, 2014,<br>2016 | External reviewer for DOE Office of Nuclear Physics                                                                  |
| 2014, 2016          | External reviewer for NSF PRAC                                                                                       |
| 2013                | External reviewer for NSF Office of Cyber Infrastructure                                                             |
| 2012                | Reviewer for the Great Lakes Consortium for Petascale Computation (2012) proposals for the NCSA Blue Waters machine. |
| 2007                | External reviewer for NASA Astrophysics Theory and Fundamental Physics Program                                       |
| 2006                | Served on NSF Astronomy and Astrophysics Program review panel                                                        |

## Meeting Organization:

| 2017      | Co-organizer of the third <i>New York Area Computational Astrophysics meeting</i> (Flatiron Institute / Center for Computational Astrophysics, Sept. 2017)                      |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2016–2017 | Member of the Program Committee for the 13th International Workshop on OpenMP (IWOMP) 2017 (Stony Brook, NY 2017)                                                               |
| 2016      | Co-organizer of the second <i>New York Area Computational Astrophysics meeting</i> (American Museum of Natural History, April 2016)                                             |
| 2015      | Scientific organizing committee for the workshop <i>GNASH</i> : <i>The anomalous metal- poor stars and convective-reactive nuclear astrophysics</i> (U. Victoria, Victoria, BC) |
| 2015      | Co-organizer of the <i>New York Area Computational Astrophysics meeting</i> (Farmingdale State College, April 2015)                                                             |
| 2014–2015 | Organizing committee for the 2015 Oak Ridge Leadership Computing Facility User Meeting                                                                                          |
| 2012–2013 | Local organizing committee for the <i>National Nuclear Physics Summer School</i> (NNPSS 2013).                                                                                  |
| 2012      | Co-convener of <i>Thermonuclear explosions: Type Ias, Novae, and X-ray bursts</i> working group at <i>Nuclear Astrophysics Town Meeting</i> (Detroit, MI)                       |

## Astrophysical Software / Other Projects:

| ongoing | Creator of the Open Astrophysics Bookshelf github organization http://open-astrophysics-bookshelf.github.io/ and author of the open text <i>Introduction to Computational Astrophysical Hydrodynamics</i> |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ongoing | Co-developer of the publicly-available low Mach number hydrodynamics code Maestro, https://amrex-astro.github.io/MAESTRO/                                                                                 |
| ongoing | Co-developer of the publicly-available compressible hydrodynamics code Castro, https://amrex-astro.github.io/Castro/                                                                                      |

ongoing Developed and distribute many simple teaching codes (advection, Eulerian com-

pressible and incompressible hydro solvers, multigrid, etc., with accompanying

notes and exercises), http://www.astro.sunysb.edu/mzingale/software/

ongoing Created a library of astronomy animations introducing basic concepts (e.g.

Kepler's laws, blackbody radiation, waves, binary star/exoplanet dynamics, etc.) as well as more advanced concepts (e.g. entropy in convection), http://zingale.github.io/astro\_animations/, also available on youtube, http://

www.youtube.com/user/michaelzingale

ongoing Creater / co-developer of the pynucastro library, https://github.com/

pynucastro/pynucastro

ongoing Contributor to the astrophysics visualization package yt

1997–2002 Original member of the FLASH Code development team

### **Guest Appointments:**

2000–2003 Guest Appointment at Argonne National Laboratory / Mathematics and Com-

puter Science Division

April 2001 Guest at the Max-Planck-Institut für Astrophysik

#### **Professional Societies:**

Member of the American Astronomical Society Member of the American Physical Society

Member of the Society for Applied and Industrial Mathematics

#### Students Advised:

PhDs advised Chris Malone (Stony Brook, PhD 2011, thesis: Multidimensional

Simulations of Convection Preceding a Type Ia X-ray Bursts)

Max Katz (Stony Brook, PhD 2016, thesis: White Dwarf Mergers on

Adaptive Meshes)

Adam Jacobs (Stony Brook, PhD 2016, thesis: *The Explosive Possibilities of Little Dwarfs: Low-Mach Number Modeling of Thin Helium* 

Shells on Sub-Chandrasekhar Mass White Dwarfs)

Masters students advised Mu-Hung Chang (Stony Brook, MA 2017, thesis: *Application of* 

*Spectral Deferred Correction for 1-D Astrophysical Detonation)* 

current grad students Maria Guadalupe Barrios Sazo (Stony Brook, current student, work-

ing on Castro MHD simulations of merging white dwarfs)

undergraduate (long term) Max Katz (REU student at Stony Brook, summer 2010, worked on

generating initial models with the MESA code)

Adam Siegel (Stony Brook, BS 2011, worked on flame modeling)

Ryan Orvedahl (Stony Brook, BS 2013, worked on Maestro algo-

rithm issues and particle analysis)

## References:

references available upon request

# Michael Zingale / Publications and Talks

#### **Refereed Publications**

- 47. Turbulence-driven thermal and kinetic energy in the atmospheres of hot Jupiters,
  - T. Ryu, M. Zingale, & R. Perna
  - 2018, submitted to Monthly Notices of the Royal Astronomical Society
- 46. pynucastro: an interface to nuclear reaction rates and code generator for reaction network equations,
  - D. E. Willcox & M. Zingale
  - 2018, Journal of Open Source Software, 3 (23), 588; DOI: https://doi.org/10.21105/joss.00588
- 45. Observatory science with eXTP,
  - J. J. M. in 't Zand et al.
  - 2018, accepted to Science China Physics, Mechanics & Astronomy
- 44. Meeting the Challenges of Modeling Astrophysical Thermonuclear Explosions: Castro, Maestro, and the AMReX Astrophysics Suite,
  - M. Zingale, A. S. Almgren, M. G. Barrios Sazo, V. E. Beckner, J. B. Bell, B. Friesen, A. M. Jacobs, M. P. Katz, C. M. Malone, A. J. Nonaka, D. E. Willcox, & W. Zhang
  - 2018, Journal of Physics: Conference Series, 1031, 1, p. 012024
- 43. The OLCF GPU Hackathon Series: The Story Behind Advancing Scientific Applications with a Sustained Impact,
  - S. Chandrasekaren, G. Juckeland, M. Otten, M. Lin, J. E. Stone, M. Zingale, & F. Foertter 2018, Computing in Science and Engineering, 20, 4, 95–106
- 42. Toward Simulating Black Widow Binaries with Castro,
  - P. Karpov, M. Barrios Sazo, M. Zingale, W. Zhang, & A. C. Calder
  - 2017, Journal of Computational Science Education, 8, 25–29
- 41. Review: White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics,
  - A. Arcones, D. Bardayan, T. Beers, L. Berstein, J. Blackmon, M. Bronson, A. Brown, E. Brown, C. Brune, A. Champagne, A. Chieffi, A. Couture, P. Danielewicz, R. Diehl, M. El-Eid, J. Escher, B. Fields, C. Frohlich, F. Herwig, W. R. Hix, C. Iliadis, W. Lynch, G. McLaughlin, B. Meyer, A. Mezzacappa, F. Nunes, B. O'Shea, M. Prakash, B. Pritychenko, S. Reddy, E. Rehm, G. Rogachev, R. Rutledge, H. Schatz, M. Smith, I. Stairs, A. Steiner, T. Strohmayer, F. Timmes, D. Townsley, M. Wiescher, R. Zegers, & M. Zingale
  - 2017, Progress in Particle and Nuclear Physics, 94, 1

40. Low Mach Number Modeling of Convection in Helium Shells on Sub-Chandrasekhar White Dwarfs II: Bulk Properties of Simple Models,

A. M. Jacobs, M. Zingale, A. Nonaka, A. S. Almgren, & J. B. Bell 2016, ApJ, 827, 84

- Double White Dwarf Mergers on Adaptive Meshes I. Methodology and Code Verification,
   M. P. Katz, M. Zingale, A. C. Calder, F. D. Swesty, A. S. Almgren, W. Zhang
   2016, ApJ, 819, 94
- 38. Comparisons of Two- and Three-Dimensional Convection in Type I X-ray Bursts M. Zingale, C. M. Malone, A. Nonaka, A. S. Almgren, & J. B. Bell 2015, ApJ, 807, 60
- On the Piecewise Parabolic Method for Compressible Flow with Stellar Equations of State,
   M. Zingale & M. P. Katz
   2015, ApJS, 216, 31
- 36. pyro: A teaching code for computational astrophysical hydrodynamics,M. Zingale2014, Astronomy & Computing, 6, 52
- 35. Multidimensional Modeling of Type I X-ray Bursts. II. Two-Dimensional Convection in a Mixed H/He Accretor,
  - C. M. Malone, M. Zingale, A. Nonaka, A. S. Almgren, & J. B. Bell 2014, ApJ, 788, 115
- 34. The Deflagration Stage of Chandrasekhar Mass Models For Type Ia Supernovae: I. Early Evolution, C. M. Malone, A. Nonaka, S. E. Woosley, A. S. Almgren, J. B. Bell, S. Dong, & M. Zingale 2014, ApJ, 782, 11
- Low-Mach Number Modeling of Core Convection in Massive Stars,
   C. Gilet, A. S. Almgren, J. B. Bell, A. Nonaka, S. E. Woosley, & M. Zingale
   2013, ApJ, 773, 137
- 32. Low Mach Number Modeling of Convection in Helium Shells on Sub-Chandrasekhar White Dwarfs. I. Methodology,
  - M. Zingale, A. Nonaka, A. S. Almgren, J. B. Bell, C. M. Malone, & R. J. Orvedahl 2013, ApJ, 764, 97

- 31. High-Resolution Simulations of Convection Preceding Ignition in Type Ia Supernovae Using Adaptive Mesh Refinement,
  - A. Nonaka, A. J. Aspden, M. Zingale, A. S. Almgren, J. B. Bell, & S. E. Woosley 2012, ApJ, 745, 73
- 30. The Convective Phase Preceding Type Ia Supernovae,
  - M. Zingale, A. Nonaka, A. S. Almgren, J. B. Bell, C. M. Malone, & S. E. Woosley 2011, ApJ, 740, 8
- 29. Multidimensional Modeling of Type I X-ray Bursts. I. Two-Dimensional Convection Prior to the Outburst of a Pure He Accretor,
  - C. M. Malone, A. Nonaka, A. S. Almgren, J. B. Bell, & M. Zingale 2011, ApJ, 728, 118
- 28. CASTRO: A New Compressible Astrophysical Solver. I. Hydrodynamics and Self-Gravity,
  - A. S. Almgren, V. E. Beckner, J. B. Bell, M. S. Day, L. H. Howell, C. C. Joggerst, M. J. Lijewski, A. Nonaka, M. Singer, & M. Zingale 2010, ApJ, 715, 1221
- MAESTRO: An Adaptive Low Mach Number Hydrodynamics Algorithm for Stellar Flows,
   A. Nonaka, A. S. Almgren, J. B. Bell, M. J. Lijewski, C. Malone, & M. Zingale
   2010, ApJS, 188, 358
- Low Mach Number Modeling of Type Ia Supernovae. IV. White Dwarf Convection,
   M. Zingale, A. S. Almgren, J. B. Bell, A. Nonaka, & S. E. Woosley
   2009, ApJ, 704, 196
- A New Low Mach Number Approach in Astrophysics,
   A. S. Almgren, J. B. Bell, A. Nonaka, & M. Zingale
   2009, CiSE, 11, 24
- 24. Turbulence-Flame Interactions in Type Ia Supernovae,
  - A. J. Aspden, J. B. Bell, M. S. Day, S. E. Woosley, & M. Zingale 2008, ApJ, 689, 1173
- Low Mach Number Modeling of Type Ia Supernovae. III. Reactions,
   A. S. Almgren, J. B. Bell, A. Nonaka, & M. Zingale
   2008, ApJ 684, 449
- Propagation of the First Flames in Type Ia Supernovae,
   M. Zingale and L. J. Dursi
   2007, ApJ, 656, 333

21. Low Mach Number Modeling of Type Ia Supernovae. II. Energy Evolution,

A. S. Almgren, J. B. Bell, C. A. Rendleman, & M. Zingale 2006, ApJ, 649, 927

20. Low Mach Number Modeling of Type Ia Supernovae. I. Hydrodynamics,

A. S. Almgren, J. B. Bell, C. A. Rendleman, & M. Zingale 2006, ApJ, 637, 922

19. Three-Dimensional Numerical Simulations of Rayleigh-Taylor Unstable Flames in Type Ia Supernovae.

M. Zingale, S. E. Woosley, C. A. Rendleman, M. S. Day, & J. B. Bell 2005, ApJ, 632, 1021

18. Validating an Astrophysical Simulation Codes,

A. C. Calder, L. J. Dursi, B. Fryxell, T. Plewa, V. G. Weirs, T. Dupont, H. F. Robey, R. P. Drake, B. A. Remington, G. Dimonte, J. Hayes, J. M. Stone, P. M. Ricker, F. X. Timmes, M. Zingale, & K. Olson

2004, CiSE, 6, 10

17. Direct Numerical Simulations of Type Ia Supernovae Flames II: The Rayleigh-Taylor Instability,

J. B. Bell, M. S. Day, C. A. Rendleman, S. E. Woosley, & M. Zingale 2004, ApJ, 608, 883

16. Direct Numerical Simulations of Type Ia Supernovae Flames I: The Landau-Darrieus Instability,

J. B. Bell, M. S. Day, C. A. Rendleman, S. E. Woosley, & M. Zingale 2004, ApJ, 606, 1029

15. On the Nonlinear Evolution of Wind-driven Gravity Waves,

A. Alexakis, A. C. Calder, L. J. Dursi, R. Rosner, J. W. Truran, B. Fryxell, M. Zingale, F. X. Timmes, K. Olson, & P. Ricker

2004, Phys. of Fluids, 16, 9, 3256

14. Adaptive Low Mach Number Simulations of Nuclear Flames,

J. B. Bell, M. S. Day, C. A. Rendleman, S. E. Woosley, & M. Zingale 2004, JCP, 195, 2, 677

13. A Comparative Study of the Turbulent Rayleigh-Taylor Instability Using High-Resolution Three-Dimensional Numerical Simulations: The Alpha-Group Collaboration,

G. Dimonte, D. L. Youngs, A. Dimits, S. Weber, M. Marinak, S. Wunsch, C. Garasi, A. Robinson, M. J. Andrews, P. Ramaprabhu, A. C. Calder, B. Fryxell, J. Biello, L. Dursi, P. MacNeice, K. Olson, P. Ricker, R. Rosner, F. Timmes, H. Tufo, Y.-N. Young, & M. Zingale

2004, Phys. of Fluids, 16, 5, 1668

12. On Heavy Element Enrichment in Classical Novae,

A. Alexakis, A. C. Calder, A. Heger, E. F. Brown, L. J. Dursi, J. W. Truran, R. Rosner, D. Q. Lamb, F. X. Timmes, B. Fryxell, M. Zingale, P. M. Ricker, & K. Olson

2004, ApJ, 602, 931

11. Morphology of Rising Hydrodynamic and Magneto-hydrodynamic Bubbles from Numerical Simulations,

K. Robinson, L. J. Dursi, P. M. Ricker, R. Rosner, A. C. Calder, M. Zingale, T. Linde, A. Caceres, B. Fryxell, K. Olson, K. Riley, A. Siegel, J. W. Truran, & N. Vladimirova

2004, ApJ, 601, 621

10. Parallel netCDF: A High-Performance Scientific I/O Interface,

J. Li, W,-k. Laio, A. Choudhary, R. Ross, R. Thakur, R., W. Gropp, R. Latham, A. Siegel, B. Gallagher, & M. Zingale

2003, technical paper, SC2003

9. The Response of Astrophysical Thermonuclear Flames to Curvature and Stretch,

L. J. Dursi, M. Zingale, A. Calder, B. Fryxell, F. X. Timmes, N. Vladimirova, R. Rosner, A. Caceres, D. Q. Lamb, K. Olson, P. M. Ricker, K. Riley, A. Siegel, & J. W. Truran

2003, ApJ, 595, 955

8. Mapping Initial Hydrostatic Models in Godunov Codes,

M. Zingale, L. J. Dursi, J. ZuHone, A. C. Calder, B. Fryxell, T. Plewa, J. W. Truran, A. Caceres, K. Olson, P. M. Ricker, K. Riley, R. Rosner, A. Siegel, F. X. Timmes, & N. Vladimirova

2002, ApJS, 143, 539

7. On Validating an Astrophysical Simulation Code,

A. C. Calder, B. Fryxell, T. Plewa, R. Rosner, L. J. Dursi, V. G. Weirs, T. Dupont, H. F. Robey, J. O. Kane, B. A. Remington, R. P. Drake, G. Dimonte, M. Zingale, F. X. Timmes, K. Olson, P. Ricker, P. MacNeice, & H. M. Tufo

2002, ApJS, 142, 201

6. A Case Study in Application I/O on Linux Clusters,

R. Ross, D. Nurmi, A. Cheng, & M. Zingale

2001, technical paper, SC2001

5. Helium Detonations on Neutron Stars,

M. Zingale, F. X. Timmes, B. Fryxell, D. Q. Lamb, K. Olson, A. C. Calder, L. J. Dursi, P. Ricker, R. Rosner, P. MacNeice, & H. Tufo

2001, ApJS, 133, 195

4. High-Performance Reactive Fluid Flow Simulations Using Adaptive Mesh Refinement on Thousands of Processors,

A. C. Calder, B. C. Curtis, L. J. Dursi, B. Fryxell, G. Henry, P. MacNeice, K. Olson, P. Ricker, R. Rosner, F. X. Timmes, H. M. Tufo, J. W. Truran, & M. Zingale

2000, Gordon Bell Prize winner/Special category, technical paper, SC2000

3. On the Cellular Structure of Carbon Detonations,

F. X. Timmes, M. Zingale, K. Olson, B. Fryxell, P. Ricker, A. C. Calder, L. J. Dursi, J. W. Truran, & R. Rosner

2000, ApJ, 543, 938

2. FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes,

B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. MacNeice, R. Rosner, & H. Tufo

2000, ApJS, 131, 273

1. Flash Code: Studying Astrophysical Thermonuclear Flashes,

R. Rosner, A. Calder, J. Dursi, B. Fryxell, D. Q. Lamb, J. C. Niemeyer, K. Olson, P. Ricker, F. X. Timmes, J. Truran, H. Tufo, Y. Young, M. Zingale, E. Lusk, & R. Stevens 2000, CiSE, 2, 33

### **Conference Proceedings**

24. The LOFT mission concept: a status update,

M. Feroci et al.

2016, Proc. SPIE 9905, Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 99051R, July 25, 2016

23. Understanding Ignition in Type Ia Supernovae,

M. Zingale, A. Jacobs, A. S. Almgren, J. B. Bell, A. Nonaka, C. Malone, & S. Woosley

2015, extended abstract for the  $25^{\rm th}$  International Colloquium on the Dynamics of Explosions and Reactive Systems, Leeds, UK, Aug. 2–7, 2015

22. Low Mach Number Modeling of Stratified Flows,

A. S. Almgren, J. B. Bell, A. Nonaka, & M. Zingale

2014, in Finite Volumes for Complex Applications VII: Methods, Theoretical Aspects—FVCA 7, Berlin, June 2014, ed. Fuhrmann, J., Ohlberger, M., & Rohde, C., 3-âĂŞ15

Proceedings of the FVCA7 - The International Symposium of Finite Volumes for Complex Applications VII Berlin, June 15–20, 2014

21. From Convection to Explosion: End-to-End Simulation of Type Ia Supernovae,

A. Nonaka, A. S. Almgren, J. B. Bell, H. Ma, S. E. Woosley, & M. Zingale

- 2011, Proceedings of SciDAC 2011, Denver, CO, July 10–14, 2011, http://press.mcs.anl.gov/scidac2011/
- 20. MAESTRO, CASTRO, and SEDONA Petascale Codes for Astrophysical Applications,
  - A. Almgren, J. Bell, D. Kasen, M. Lijewski, A. Nonaka, P. Nugent, C. Rendlement, R. Thomas, & M. Zingale
  - 2010, Proceedings of the 2010 Scientific Discovery through Advanced Computing (SciDAC) Conference. Chattanooga, Tennessee, July 11–15, 2010. Oak Ridge National Laboratory. http://computing.ornl.gov/workshops/scidac2010/
- 19. Type Ia Supernovae: Advances in Large Scale Simulation,
  - H. Ma, M. Zingale, S. E. Woosley, A. J. Aspden, J. B. Bell, A. S. Almgren, A. Nonaka, & S. Dong
  - 2010, Proceedings of the 2010 Scientific Discovery through Advanced Computing (SciDAC) Conference. Chattanooga, Tennessee, July 11–15, 2010. Oak Ridge National Laboratory. http://computing.ornl.gov/workshops/scidac2010/
- 18. Type Ia Supernovae: Advances in Large Scale Simulation,
  - S. E. Woosley, A. S. Almgren, A. J. Aspden, J. B. Bell, D. Kasen, A. R. Kerstein, H. Ma, A. Nonaka, & M. Zingale
  - 2009, Proceedings of SciDAC 2009, Journal of Physics: Conference Series, 180, 012023.
- 17. Astrophysical Applications of the Maestro Code,
  - M. Zingale, A. S. Almgren, J. B. Bell, C. M. Malone, & A. Nonaka
  - 2008, Proceedings of SciDAC 2008, Journal of Physics: Conference Series, 125, 012013.
- 16. Type Ia supernovae,
  - S. E. Woosley, A. Almgren, J. B. Bell, G. Glatzmaier, D. Kasen, A. R. Kerstein, H. Ma, P. Nugent, F. Röpke, V. Sankaran, & M. Zingale
  - 2007, Proceedings of SciDAC 2007, Journal of Physics: Conference Series, 78, 012081.
- 15. MAESTRO: A Low Mach Number Stellar Hydrodynamics Code,
  - A. S. Almgren, J. B. Bell, & M. Zingale
  - 2007, Proceedings of SciDAC 2007, Journal of Physics: Conference Series, 78, 012085.
- 14. New Approaches for Modeling Type Ia Supernovae,
  - M. Zingale, A. S. Almgren, J. B. Bell, M. S. Day, C. A. Rendleman, & S. E. Woosley 2006, Proceedings of SciDAC 2006, Journal of Physics: Conference Series, 46, 385.
- 13. Efficiency Gains from Time Refinement on AMR Meshes and Explicit Timestepping,
  - L. J. Dursi & M. Zingale
  - 2005, Adaptive Mesh Refinement—Theory and Applications, Proceedings of the Chicago Workshop on Adaptive Mesh Refinement Methods, Sept. 3–5, 2003 Series: Lecture Notes

- in Computational Science and Engineering, Vol. 41 Plewa, Tomasz; Linde, Timur; Weirs, V. Gregory (Eds.) 2005, XIV, 554
- 12. The Physics of Flames in Type Ia Supernovae,
  - M. Zingale, S. E. Woosley, J. B. Bell, M. S. Day, & C. A. Rendleman
  - 2005, Proceedings of SciDAC 2005, Journal of Physics: Conference Series, 16, 405.
- 11. Simulations of Rising Hydrodynamic and Magnetohydrodynamic Bubbles,
  - P. M. Ricker, K. Robinson, L. J. Dursi, R. Rosner, A. C. Calder, M. Zingale, J. W. Truran, T. Linde, A. Caceres, B. Fryxell, K. Olson, K. Riley, K, A. Siegel, & N. Vladimirova
  - 2004, Proceedings of The Riddle of Cooling Flows in Galaxies and Clusters of Galaxies, held in Charlottesville, VA, May 31–June 4, 2003, Eds. T. Reiprich, J. Kempner, and N. Soker.
- 10. Investigations of Pointwise Ignition of Helium Deflagrations on Neutron Stars,
  - M. Zingale, S. E. Woosley, A. Cumming, A. Calder, L. J. Dursi, B. Fryxell, K. Olson, P. Ricker, R. Rosner, & F. X. Timmes
  - 2002, 3D Stellar Evolution, ASP Conference Proceedings, Vol. 293, 22–26 July 2002 at UC Davis, Livermore, CA, Ed. by S. Turcotte, S. C. Keller, & R. M. Cavallo.
- 9. Onset of Convection on a Pre-Runaway White Dwarf,
  - L. J. Dursi, A. C. Calder, A. Alexakis, J. W. Truran, M. Zingale, B. Fryxell, P. Ricker, F. X. Timmes, & K. Olson
  - 2002, Classical Nova Explosions: International Conference on Classical Nova Explosions. AIP Conference Proceedings, Vol. 637. Sitges, Spain, 20–24 May, 2002. Edited by M. Hernanz & J. Jose
- 8. Mixing by Non-linear Gravity Wave Breaking on a White Dwarf Surface,
  - A. C. Calder, A. Alexakis, L. J. Dursi, R. Rosner, J. W. Truran, B. Fryxell, P. Ricker, M. Zingale, K. Olson, F. X. Timmes, & P. MacNeice
  - 2002, Classical Nova Explosions: International Conference on Classical Nova Explosions. AIP Conference Proceedings, Vol. 637. Sitges, Spain, 20–24 May, 2002. Edited by M. Hernanz & J. Jose
- 7. Mixing by Wave Breaking at the Surface of a White Dwarf,
  - J. W. Truran, A. Alexakis, A. C. Calder, L. J. Dursi, M. Zingale, B. Fryxell, P. Ricker, F. X. Timmes, K. Olson, & R. Rosner
  - 2002, Proceedings of the 11th Workshop on "Nuclear Astrophysics", Ringberg Castle, Tegernsee, Germany, February 11–16, 2002 / Wolfgang Hillebrandt and Ewald MÄijller (Eds.). MPA/P13, Garching b. München, Germany: Max-Planck-Institut für Astrophysik, 186.
- 6. Numerical Simulations of Thermonuclear Flashes on Neutron Stars,
  - B. Fryxell, M. Zingale, F. X. Timmes, D. Q. Lamb, K. Olson, A. C. Calder, L. J. Dursi, P. Ricker, R. Rosner, J. W. Truran, P. MacNeice, & H. Tufo
  - 2001, Nuclear Physics A, 688, 172.

- 5. Quenching Processes in Flame-Vortex Interactions,
  - M. Zingale, J. C. Niemeyer, F. X. Timmes, L. J.Dursi, A. C. Calder, B. Fryxell, D. Q. Lamb, K. Olson, P. Ricker, R. Rosner, J. W. Truran, & P. MacNeice
  - 2001, 20th Texas Symposium on Relativistic Astrophysics, Austin, Texas, 10–15 Dec. 2000, Melville, NY: AIP Conference Proceedings, Vol. 586. Edited by J. C. Wheeler & H. Martel, also AIP Conference Series 586, 490–492.
- 4. Simulations of Astrophysical Fluid Instabilities,
  - A. C. Calder, B. Fryxell, R. Rosner, L. J. Dursi, K. Olson, P. M. Ricker, F. X. Timmes, M. Zingale, P. MacNeice, & H. M. Tufo
  - 2001, 20th Texas Symposium on Relativistic Astrophysics, Austin, Texas, 10–15 Dec. 2000, Melville, NY: AIP Conference Proceedings, Vol. 586. Edited by J. C. Wheeler & H. Martel.
- 3. Adaptive Mesh Simulations Of Astrophysical Detonations Using the ASCI Flash Code,
  - B. Fryxell, A. C. Calder, L. J. Dursi, D. Q. Lamb, P. MacNeice, K. Olson, P. M. Ricker, R. Rosner, F. X. Timmes, J. W. Truran, H. M. Tufo, & M. Zingale
  - Proceedings of the VII International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2000), Fermilab, October 16–20, 2000.
- 2. Large-Scale Simulations of Clusters of Galaxies,
  - P. M. Ricker, A. C. Calder, L. J. Dursi, B. Fryxell, D. Q. Lamb, P. MacNeice, K. Olson, R. Rosner, F. X. Timmes, J. W. Truran, H. M. Tufo, & M. Zingale
  - Proceedings of the VII International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2000), Fermilab, October 16–20, 2000.
- 1. Helium Detonations on Neutron Stars,
  - B. Fryxell, M. Zingale, F. X. Timmes, D. Q. Lamb, K. Olson, A. C. Calder, L. J. Dursi, P. Ricker, R. Rosner, J. W. Truran, P. MacNeice, & H. Tufo
  - Proceedings of the 10th Workshop on "Nuclear Astrophysics", Ringberg Castle, Tegernsee, Germany, March 20–25 2000.

### White Papers

- 4. The Importance of Computation in Astronomy Education,
  - M. Zingale, F. X. Timmes, R. Fisher, & B. W. O'Shea
  - white paper submitted to the AAS Education Taskforce call (https://aas.org/posts/opportunity/2016/04/aas-task-force-education-begins-its-work)
- 3. White Paper on Nuclear Astrophysics,
  - A. Arcones, D. Bardayan, T. Beers, L. Berstein, J. Blackmon, M. Bronson, A. Brown, E. Brown, C. Brune, A. Champagne, A. Chieffi, A. Couture, P. Danielewicz, R. Diehl, M. El-Eid, J. Escher, B. Fields, C. Frohlich, F. Herwig, W. R. Hix, C. Iliadis, W. Lynch, G. McLaughlin, B. Meyer, A. Mezzacappa, F. Nunes, B. O'Shea, M. Prakash, B. Pritychenko, S. Reddy, E. Rehm,

- G. Rogachev, R. Rutledge, H. Schatz, M. Smith, I. Stairs, A. Steiner, T. Strohmayer, F. Timmes, D. Townsley, M. Wiescher, R. Zegers, & M. Zingale
- 2016, Community white paper based on 2012 JINA Town Meeting in Detroit, MI, and 2014 APS Town Meeting in College Station, TX
- 2. Modeling Astrophysical Explosions with Sustained Exascale Computing,
  - M. Zingale, A. C. Calder, C. M. Malone, & F. X. Timmes
  - 2015, Response to RFI NOT-GM-15-122: Science Drivers Requiring Capable Exascale High Performance Computing
- 1. The LOFT perspective on neutron star thermonuclear bursts,
  - J. J. M. in 't Zand, D. Altamirano, D. R. Ballantyne, S. Bhattacharyya, E. F. Brown, Y. Cavecchi, D. Chakrabarty, J. Chenevez, A. Cumming, N. Degenaar, M. Falanga, D. K. Galloway, A. Heger, J. José, L. Keek, M. Méndez, S. Mahmoodifar, M. Linares, C. M. Malone, M. C. Miller, F. B. S. Paerels, J. Poutanen, A. Różańska, H. Schatz, M. Serino, V. F. Suleimanov, T. E. Strohmayer, F.-K. Thielemann, A. L. Watts, N. N. Weinberg, S. E. Woosley, W. Yu, S. Zhang, & M. Zingale
  - 2015, White Paper in Support of the Mission Concept of the Large Observatory For x-ray Timing

### Invited Lectures / Seminars / Colloquia

- Invited talk at AstroNum 2018—13th International Conference on Numerical Modeling of Space Plasma Flows, Panama City, Florida, Modeling X-ray Bursts with the AMReX Astrophysics Suite
   Seminar at LLNL High Energy Density Science Center, LLNL, Modeling Stellar Explosions with the AMReX Astrophysics Suite
   Seminar at Computational Science Initiative, BNL, The AMReX Astrophysics Suite: Simulating the Stars at the Exascale
- 06/30/2017 Invited talk at AstroNum 2017—12th International Conference on Numerical Modeling of Space Plasma Flows, St. Malo, France, Computational Challenges of Modeling X-ray Bursts and Type Ia Supernovae
- 06/02/2017 Invited participant / overview talk at Stellar Hydro Days, Univesity of Victoria, Modeling Stellar Convection and Explosions with Maestro, Castro, and the BoxLib/AMReX Astrophysics Suite
- 04/05/2017 Astronomy Seminar at Michigan State University, Computational Challenges of Modeling X-ray Bursts and Type Ia Supernovae
- 02/23/2017 Seminar at Stony Brook Institute for Advanced Computational Science, Computational Challenges of Modeling X-ray Bursts and Type Ia Supernovae
- 06/15/2016 Case study talk at DOE Nuclear Physics / ASCR Exascale Requirements Review, Gaithersburg, MD, *Thermonuclear Transients*
- 04/29/2016 Seminar at Oak Ridge National Laboratory, Modeling Stellar Explosions with Maestro, Castro, and the BoxLib Astrophysics Suite

| 03/17/2016 | Talk at the 18th Workshop on Nuclear Astrophysics, Ringberg Castle, Tegernsee, Germany, Models of convection in X-ray bursts and pre-SNe Ia white dwarfs                                                                                                                                    |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 02/26/2016 | Seminar at the U. S. Naval Research Laboratory, <i>Computational Challenges of Modeling X-ray Bursts and Type Ia Supernovae</i>                                                                                                                                                             |
| 08/02/2015 | Invited talk at the <i>International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS)</i> , Leeds, UK, Understanding Ignition in Type Ia Supernovae                                                                                                                   |
| 06/22/2015 | Invited talk at the OLCF User's Meeting, ORNL, Oak Ridge, TN, Computation Challenges of Modeling Astrophysical Explosions                                                                                                                                                                   |
| 06/03/2015 | Invited talk at the Fifty One Ergs meeting, NCSU, Modeling the Early Phases of Type Ia Supernovae                                                                                                                                                                                           |
| 05/24/2015 | "Setting the Stage" talk on <i>Stellar Hydrodynamics</i> at the JINA <i>GNASH: The anomalous metal-poor stars and convective-reactive nuclear astrophysics</i> workshop, Victoria, BC, Canada, http://jina-cee.phys.uvic.ca/gnash-workshop/talks-and-contributions/monday/setting-the-stage |
| 04/08/2015 | Seminar at U Mass Darthmouth, <i>Algorithmic Developments for Modeling Stellar Explosions</i>                                                                                                                                                                                               |
| 01/15/2015 | CCS-2 Seminar at Los Alamos National Laboratory, <i>The Challenges of Modeling Type Ia Supernovae and X-ray Bursts</i>                                                                                                                                                                      |
| 09/15/2014 | Invited talk at the <i>Type Ia Supernovae: progenitors, explosions, and cosmology</i> conference, Chicago, IL, <i>Modeling the Early Phases of SNe Ia</i> , https://kicp-workshops.uchicago.edu/sn2014/presentations.php                                                                    |
| 04/30/2014 | Invited presentation at Large Scale Computing and Storage Requirements for Nuclear Physics (NP): Target 2017 meeting, Convection in X-ray Bursts                                                                                                                                            |
| 02/28/2014 | Astronomy Seminar at the Center for Cosmology and Particle Physics, New York University, <i>Modeling Convective Burning in Type Ia Supernovae and X-ray Bursts</i>                                                                                                                          |
| 09/27/2013 | Nuclear Theory Seminar at Brookhaven National Lab, Modeling Convective Burning in Type Ia Supernovae and X-ray Bursts                                                                                                                                                                       |
| 07/09/2013 | Seminar at the Flash Center, University of Chicago, <i>Modeling Convective Burning in Type Ia Supernovae and X-ray Bursts</i>                                                                                                                                                               |
| 10/10/2012 | Astro Computation working group at 2012 Nuclear Astrophysics Town Meeting, Thermonuclear Driven Events                                                                                                                                                                                      |
| 04/04/2012 | Nuclear Astrophysics Seminar at Ohio University entitled <i>The Challenges of Modeling Explosive Phenomena</i>                                                                                                                                                                              |
| 07/28/2010 | Invited talk at the Lorentz Center Workshop on <i>X-ray Bursts and Burst Oscillations</i> entitled <i>The Algorithmic Challenges of Multidimensional Models of X-ray Bursts</i> , http://www.lorentzcenter.nl/lc/web/2010/408/info.php3?wsid=408                                            |
| 05/13/2010 | Joint NRAO / UVa Dept. of Astronomy Colloquium (Charlottesville, VA) entitled <i>Modeling Convection and Ignition in Type Ia Supernovae</i>                                                                                                                                                 |
| 03/31/2010 | Center for the Study of Cosmic Evolution Seminar, Dept. of Physics and Astronomy, Michigan State University (E. Lansing, MI), entitled: <i>Modeling Convection and Ignition in Type Ia Supernovae</i>                                                                                       |

| 05/12/2009 | Astronomy Seminar at the American Museum of Natural History (New York, NY), entitled: <i>Modeling Convection and Ignition in Type Ia Supernovae</i>                                                           |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 09/30/2008 | Astronomy Seminar at the Institute for Advanced Studies (Princeton, NJ), entitled: <i>New Methods for Modeling Type Ia Supernovae</i>                                                                         |
| 07/15/2008 | Invited Poster at the <i>SciDAC 2008</i> conference (Seattle, WA), entitled: <i>Astrophysical Applications of the Maestro Code</i> (with co-authors: A. S. Almgren, J. B. Bell, C. M. Malone, & A. J. Nonaka) |
| 04/06/2007 | Astronomy Seminar at Rutgers University (New Brunswick, NJ), entitled: <i>The Challenges of Modeling Type Ia Supernova</i>                                                                                    |
| 10/31/2006 | Astronomy Colloquia at McGill University (Montreal, CA), entitled: <i>Understanding Type Ia Supernovae</i>                                                                                                    |
| 06/27/2006 | Invited talk at the <i>SciDAC</i> 2006 conference (Denver, CO), entitled: <i>The Challenges of Modeling Type Ia Supernovae</i>                                                                                |
| 10/03/2005 | T-13 Seminar, Los Alamos National Laboratory, entitled: <i>Simulations of Thermonuclear Flames in Type Ia Supernovae</i>                                                                                      |
| 06/26/2005 | Invited poster at the <i>SciDAC</i> 2005 conference (San Francisco, CA), <i>The Physics of Thermonuclear Flames in Type Ia Supernovae</i>                                                                     |
| 03/01/2005 | Astronomy Seminar at SUNY Stony Brook, Flame Instabilities in Type Ia Supernovae                                                                                                                              |
| 02/23/2005 | N Division Seminar, Lawrence Livermore National Laboratory, <i>Flame Instabilities in Type Ia Supernovae</i>                                                                                                  |
| 12/17/2003 | Astrophysics Seminar, Institute for Advanced Study, Princeton, NJ, Flame Instabilities in Type Ia Supernovae                                                                                                  |

### **Popular Press Features**

How Stars Explode, Forbes.com, Oct. 1, 2009

(http://www.forbes.com/2009/09/30/supernovae-universe-science-technology-breakthroughs-stars.html)

*Unveiled: The First Full 3-D Model of a Star Going Supernova*, Popular Science Online, Sept. 24, 2009 (http://www.popsci.com/military-aviation-amp-space/article/2009-09/first-3-d-models-white-dwarf-supernova)

Flash Upon a Neutron Star, American Scientist, Sept.-Oct. 2000, vol. 88, no. 5, p. 400.

### **Popular Press Mentions**

Stars Go Kaboom, Spilling Cosmic Secrets, Science News, 2009, Vol. 176, #4 (Aug. 15, 2009) (see also http://www.sciencenews.org/view/feature/id/46029/title/Stars\_go\_kaboom,\_spilling\_cosmic\_secrets)

Supernova explosion simulated in exquisite detail, New Scientist Online, July 2006 (http://www.newscientist.com/article/dn9604-supernova-explosion-simulated-in-exquisite-detail.html)

*Life-or-Death Question: How Supernovas Happen?* NY Times, Nov. 9, 2004.

Physics Today cover, Feb. 2002.