5

10

15

20

25

30

CLAIMS

- 1. A single phase, isotropic composition comprising:
 - (1) 5 to 30% by wt. of a surfactant or surfactants for cleansing the skin;
 - (2) greater than about 2% to level of electrolyte such that upper limit will not cause isotropic composition to become biphasic or multiphasic;
 - (3) 0.5 to 7%, by wt. associative thickener;
 - (4) 0 to 15% by wt., hydrotroping compound; and
 - (5) 45 to 95% by wt. water,

wherein, said composition has viscosity upon dilution, which is greater than viscosity prior to dilution;

wherein said composition has rinse retention of greater than 30% by wt. after 10 minutes as measured by a sample retained on a test slide as function of rinsing time; and

wherein, upon dilution, said composition remains in a single phase.

- A composition according to claim 1, wherein said electrolyte is selected from the group consisting of magnesium salts, sulphate salts and chloride salts.
 - 3. A composition according to claim 1 having less than about 9% electrolyte.
 - 4. A composition according to claim 1 having less than about 6% electrolyte.
 - 5. A composition according to claim 1, comprising 1 to 5% thickener.

6.	A composition according to claim 1, comprising 0% hydrotrope and at least 2% thickener.
7.	A composition according to claim 1, wherein thickener comprises a polymer with a hydrophilic backbone modified by hydrophobic groups.
8.	A composition according to claim 7, wherein said thickener is nonionic.
9.	A composition according to claim 1, comprising 1 to 10% hydrotrope.
10.	A composition according to claim 1, wherein hydrotrope is polyalkylene glycol.