p-adic representations and simplicial distance in Bruhat-Tits buildings

Xu Gao

March 16, 2023

University of California, Santa Cruz

*p***-ADIC REPRESENTATION**

Suppose we have a group representation

$$D_8 = \left\langle r, s \mid r^4 = s^2 = (rs)^2 = 1 \right\rangle$$

$$r \mapsto \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad s \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Entries $\in \mathbb{Q} \hookrightarrow \mathbb{Q}_p \leadsto p$ -adic representation.

1

STABLE LATTICES

• lattice = f. g. \mathbb{Z}_p -submodule L of V spanning the entire V. E.g. $L_0 = \mathbb{Z}_p \binom{1}{0} + \mathbb{Z}_p \binom{0}{1}$ is a lattice in \mathbb{Q}_p^2 .

2

STABLE LATTICES

- lattice = f. g. \mathbb{Z}_p -submodule L of V spanning the entire V. E.g. $L_0 = \mathbb{Z}_p \binom{1}{0} + \mathbb{Z}_p \binom{0}{1}$ is a lattice in \mathbb{Q}_p^2 .
- **stable lattice** = lattice stable under the action of $\rho(G)$. E.g. L_0 is a stable lattice

STABLE LATTICES

- lattice = f. g. \mathbb{Z}_p -submodule L of V spanning the entire V. E.g. $L_0 = \mathbb{Z}_p\binom{1}{0} + \mathbb{Z}_p\binom{0}{1}$ is a lattice in \mathbb{Q}_p^2 .
- **stable lattice** = lattice stable under the action of $\rho(G)$. E.g. L_0 is a stable lattice
- A stable lattice $L \sim$ a modular representation on L/pL.

E.g.
$$r \mapsto \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in GL_2(\mathbb{F}_p), s \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in GL_2(\mathbb{F}_p).$$
 Irreducible if $p \neq 2$

2

$$S(\rho)^0$$

$$\mathsf{S}(\rho)^{\mathbf{0}} \coloneqq \{\mathsf{stable\ lattices\ of}\ \rho\}/_{\mathsf{homothety}}$$

 $S(\rho)^0$

$$\mathsf{S}(\rho)^{\mathbf{0}} \coloneqq \{\mathsf{stable\ lattices\ of}\ \rho\}/_{\mathsf{homothety}}$$

E.g. in our example:

 $S(\rho)^0$

$$S(\rho)^0 := \{ \text{stable lattices of } \rho \} /_{\text{homothety}}$$

E.g. in our example:

• If
$$p \neq 2$$
, $S(\rho)^0 = \{L_0\}$.

$$S(\rho)^0$$

$$S(\rho)^0 := \{ \text{stable lattices of } \rho \} /_{\text{homothety}}$$

E.g. in our example:

• If
$$p \neq 2$$
, $S(\rho)^0 = \{L_0\}$.

• If
$$p = 2$$
, $S(\rho)^0 = \{L_0, L(1)\}$, where

$$L(\mathbf{1}) := \mathbb{Z}_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 2\mathbb{Z}_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

3

Bruhat-Tits tree

vertices := homothety classes of lattices

Bruhat-Tits tree

- vertices := homothety classes of lattices
- x, y are adjacent := $\exists L \in x, L' \in y$ such that

$$L\supset L'\supset pL$$
.

Take $[L_0]$ as the origin. $\leadsto L_k := \mathbb{Z}_p\binom{1}{0} + p^k\mathbb{Z}_p\binom{0}{1} \quad (k \in \mathbb{Z})$ Each $[L_k]$, $[L_{k+1}]$ are adjacent.

Take $[L_0]$ as the origin. $\leadsto L_k := \mathbb{Z}_p\binom{1}{0} + p^k\mathbb{Z}_p\binom{0}{1} \quad (k \in \mathbb{Z})$ Each $[L_k]$, $[L_{k+1}]$ are adjacent.

[L] and [L'] are in the same **apartment** means \exists basis e_1, e_2 such that

$$L = \mathbb{Z}_p e_1 + \mathbb{Z}_p e_2,$$

$$L' = \mathbb{Z}_p e_1 + p^k \mathbb{Z}_p e_2.$$

The vertices adjacent to $[L_0]$ are:

The vertices adjacent to $[L_0]$ are:

• $L(u) := \mathbb{Z}_p \binom{1}{u} + p\mathbb{Z}_p \binom{0}{1}$. $(u \in \mathbb{Z}_p)$ (In fact, L(u) only depends on $\overline{u} \in \mathbb{F}_p$)

The vertices adjacent to $[L_0]$ are:

- $L(u) := \mathbb{Z}_p \binom{1}{u} + p\mathbb{Z}_p \binom{0}{1}$. $(u \in \mathbb{Z}_p)$ (In fact, L(u) only depends on $\overline{u} \in \mathbb{F}_p$)
- $L(\infty) := \mathbb{Z}_p \begin{pmatrix} 0 \\ 1 \end{pmatrix} + p \mathbb{Z}_p \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

The vertices adjacent to $[L_0]$ are:

- $L(u) := \mathbb{Z}_p \binom{1}{u} + p\mathbb{Z}_p \binom{0}{1}$. $(u \in \mathbb{Z}_p)$ (In fact, L(u) only depends on $\overline{u} \in \mathbb{F}_p$)
- $L(\infty) := \mathbb{Z}_p \begin{pmatrix} 0 \\ 1 \end{pmatrix} + p \mathbb{Z}_p \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

They correspond to:

• closed points in $\mathbb{P}^1_{\mathbb{F}_p}$, and

The vertices adjacent to $[L_0]$ are:

- $L(u) := \mathbb{Z}_p \binom{1}{u} + p\mathbb{Z}_p \binom{0}{1}$. $(u \in \mathbb{Z}_p)$ (In fact, L(u) only depends on $\overline{u} \in \mathbb{F}_p$)
- $L(\infty) := \mathbb{Z}_p \begin{pmatrix} 0 \\ 1 \end{pmatrix} + p \mathbb{Z}_p \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

They correspond to:

- closed points in $\mathbb{P}^1_{\mathbb{F}_n}$, and
- vertices in the *Tits building* of $GL_2(\mathbb{Q}_p)$.

SIMPLICIAL DISTANCE

Suppose e_1, e_2 is a basis of L_0 and

$$L_r:=\mathbb{Z}_pe_1+p^r\mathbb{Z}_pe_2$$

Then $d([L_r], [L_0]) = r$:

$$L_0 - L_1 - \cdots - L_n$$

SIMPLICIAL DISTANCE

Conversely, if

$$d(x, [L_0]) = r,$$

then there is a basis e_1 , e_2 of L_0 and $L \in x$ such that

$$L = \mathbb{Z}_p e_1 + p^r \mathbb{Z}_p e_2$$

Identify $GL_2(\mathbb{Z}_p)$ with $Aut(L_0)$ via a basis

Identify $GL_2(\mathbb{Z}_p)$ with $Aut(L_0)$ via a basis Then by the previous, the fixed-point subset of the **principal congruence subgroup**

$$P_r := I_2 + p^r \operatorname{Mar}_{2 \times 2}(\mathbb{Z}_p)$$

is the simplicial ball of radius r.

THE FIXED-POINT SUBSET

For
$$\rho\colon G\to \mathrm{GL}_2(\mathbb{Q}_p)$$
 a p -adic representation,
$${\bf S}(\rho):=\text{fixed-point subset of } \rho(G).$$

THE FIXED-POINT SUBSET

For
$$\rho\colon G\to \mathrm{GL}_2(\mathbb{Q}_p)$$
 a p -adic representation,
$$\mathbf{S}(\rho):=\text{fixed-point subset of }\rho(G).$$

• $S(\rho)$ is connected: Indeed, if $[L_0], [L_r] \in S(\rho)^0$, then for any 0 < i < r and $g \in \rho(G)$,

$$g.e_1 \in L_r \subset L_i$$
, $g.p^ie_2 \in p^iL_0 \subset L_i$.

Hence, $g.L_i = L_i$.

THE FIXED-POINT SUBSET

For
$$\rho\colon G\to \mathrm{GL}_2(\mathbb{Q}_p)$$
 a p -adic representation,
$${\bf S}(\rho):=\text{fixed-point subset of } \rho(G).$$

- $S(\rho)$ is connected:
- $S(\rho)$ is in some B(r): Since $\mathbb{Z}_p[\rho(G)]$ contain some P_r .

We have seen $[L_0] \in S(\rho)$.

We have seen $[L_0] \in S(\rho)$.

• Among L(x) $(x \in \mathbb{P}^1_{\mathbb{F}_p})$, we see that

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} . L(x) = L(x) \iff 2x \equiv 0 \pmod{p}.$$

We have seen $[L_0] \in S(\rho)$.

• Among L(x) $(x \in \mathbb{P}^1_{\mathbb{F}_p})$, we see that

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} . L(x) = L(x) \iff 2x \equiv 0 \pmod{p}.$$

• Hence, when $p \neq 2$, none of L(x) is stale.

We have seen $[L_0] \in S(\rho)$.

• Among L(x) $(x \in \mathbb{P}^1_{\mathbb{F}_p})$, we see that

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} . L(x) = L(x) \iff 2x \equiv 0 \pmod{p}.$$

- Hence, when $p \neq 2$, none of L(x) is stale.
- Therefore, $S(\rho)^0 = \{[L_0]\}.$

• When p = 2, we have

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} . L(x) = L(x) \iff x^2 + 1 \equiv 0 \pmod{2}.$$

• When p = 2, we have

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} . L(x) = L(x) \iff x^2 + 1 \equiv 0 \pmod{2}.$$

• Hence, [L(1)] is the only stable vertex adjacent to $[L_0]$.

• When p = 2, we have

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} . L(x) = L(x) \iff x^2 + 1 \equiv 0 \pmod{2}.$$

- Hence, [L(1)] is the only stable vertex adjacent to $[L_0]$.
- But $\mathbb{Z}_2[\rho(D_8)]$ contains P_1 . Hence, $S(\rho) \subset B(1)$.

• When p = 2, we have

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} . L(x) = L(x) \iff x^2 + 1 \equiv 0 \pmod{2}.$$

- Hence, [L(1)] is the only stable vertex adjacent to $[L_0]$.
- But $\mathbb{Z}_2[\rho(D_8)]$ contains P_1 . Hence, $S(\rho) \subset B(1)$.
- Therefore, $S(\rho)^0 = \{[L_0], [L(1)]\}$

EXTENSION

 K/Q_2 totally ramified extension.

 K/Q_2 totally ramified extension.

 K/Q_2 totally ramified extension.

$$\lim_{K/\mathbb{Q}_2 \text{t.r.}} \frac{\log_2 \bigl| S(\rho \otimes_{\mathbb{Q}_2} K)^0 \bigr|}{[K:\mathbb{Q}_2]} = \frac{1}{2}.$$