

AP2128

General Description

The AP2128 series are positive voltage regulator ICs fabricated by CMOS process. The AP2128 provides two kinds of output voltage operation modes for setting the output voltage. Fixed output voltage mode senses the output voltage on V_{OUT} , adjustable output voltage mode needs two resistors as a voltage divider.

The AP2128 series have features of low dropout voltage, low noise, high output voltage accuracy, and low current consumption which make them ideal for use in various battery-powered devices.

AP2128 have 1.0V, 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 3.9V, 4.2V, 4.75V, 5.2V fixed voltage versions and 0.8V to 5.5V adjustable voltage version.

AP2128 series are available in SOT-23-5 package.

Features

- Wide Operating Voltage: 2.5V to 6V
- Low Dropout Voltage:170mV@300mA for V_{OUT}=3.3V, 140mV@300mA for V_{OUT}=5.2V
- High Output Voltage Accuracy: ±2%
- High Ripple Rejection:
 68dB@ f=1kHz, 54dB@ f=10kHz
- Low Standby Current: 0.1μA
- Low Quiescent Current: 60μA Typical
- Low Output Noise: 60μVrms@V_{OUT}=0.8V
- Short Current Limit: 50mA
- Over Temperature Protection
- Compatible with Low ESR Ceramic Capacitor: $1\mu F$ for C_{IN} and C_{OUT}
- Excellent Line/Load Regulation
- Soft Start Time: 50µs
- Auto Discharge Resistance: $R_{DS(ON)}=60\Omega$

Applications

- Datacom
- Notebook Computers
- Mother Board

Figure 1. Package Type of AP2128

Pin Configuration

K Package (SOT-23-5)

Figure 2. Pin Configuration of AP2128 (Top View)

Functional Block Diagram

AP2128

Functional Block Diagram (Continued)

Adjustable Version

Figure 3. Functional Block Diagram of AP2128

AP2128

Ordering Information

Product	Package	Temperature Range	Part Number	Marking ID	Packing Type
			AP2128K- ADJTRG1	FAD	Tape & Reel
			AP2128K-1.0TRG1		Tape & Reel
			AP2128K-1.2TRG1	FAK	Tape & Reel
			AP2128K-1.5TRG1	AP2128K-1.2TRG1 FAK AP2128K-1.5TRG1 GAN	Tape & Reel
AP2128			AP2128K-1.8TRG1		Tape & Reel
			AP2128K-2.5TRG1		Tape & Reel
	SOT-23-5	-40 to 85°C	AP2128K-2.8TRG1		Tape & Reel
			AP2128K-3.0TRG1		Tape & Reel
			AP2128K-3.3TRG1 FAL	Tape & Reel	
			AP2128K-3.9TRG1	GBU	Tape & Reel
	AP2128K-4.2TRG1		AP2128K-4.2TRG1	GAZ	Tape & Reel
			AP2128K-4.75TRG1	GFZ	Tape & Reel
			AP2128K-5.2TRG1	GAV	Tape & Reel

 $BCD\ Semiconductor's\ products,\ as\ designated\ with\ "G1"\ suffix\ in\ the\ part\ number,\ are\ RoHS\ compliant\ and\ Green.$

AP2128

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit
Input Voltage	V _{IN}	6.5	V
Shutdown Input Voltage	V_{CE}	-0.3 to V _{IN} +0.3	V
Output Current	I _{OUT}	450	mA
Junction Temperature	T_{J}	150	°C
Storage Temperature Range	T _{STG}	-65 to 150	°C
Lead Temperature (Soldering, 10sec)	T_{LEAD}	260	°C
Thermal Resistance	$\theta_{ extsf{JA}}$	250	°C/W
ESD (Human Body Model)	ESD	6000	V
ESD (Machine Model)	ESD	200	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Input Voltage	V_{IN}	2.5	6	V
Operating Ambient Temperature Range	$T_{\mathbf{A}}$	-40	85	°C

AP2128

Electrical Characteristics

(AP2128-ADJ, V_{IN} min=2.5V, C_{IN} =1 μ F, C_{OUT} =1 μ F, Bold typeface applies over -40°C \leq T_A \leq 85°C, unless otherwise specified.)

Parameter	Symbol	Cond	itions	Min	Тур	Max	Unit
Reference Voltage	V_{REF}	V _{IN} =2.5V 1mA≤I _{OUT} ≤300mA		0.784	0.8	0.816	V
Input Voltage	V_{IN}			2.5		6	V
Maximum Output Current	I _{OUT(MAX)}	V _{IN} =2.5V, V _{OUT} =98%×V _{OUT}		300	400		mA
Current Limit	I _{LIMIT}	V _{IN} =2.5V			450		mA
Load Regulation	ΔV_{OUT} /($\Delta I_{OUT} * V_{OUT}$)	V _{IN} =2.5V, 1mA≤I _{OUT} ≤300)mA			0.6	%/A
Line Regulation	ΔV_{OUT} /($\Delta V_{IN}^* V_{OUT}$)	V_{IN} =2.5V to 6V I_{OUT} =30mA	,			0.06	%/V
Quiescent Current	I_Q	V _{IN} =2.5V, I _{OUT}	=0mA		60	90	μΑ
Standby Current	I_{STD}	V _{IN} =2.5V, V _{SHUTDOWN} in off mode			0.1	1.0	μА
Power Supply Rejection Ratio	PSRR	Ripple 1Vp-p V _{IN} =3V	f=100Hz		68		dB
			f=1KHz		68		dB
			f=10KHz		54		dB
Output Voltage Temperature Coefficient	$(\Delta V_{OUT}/V_{OUT})$ $/\Delta T$	I _{OUT} =30mA, -4	0°C≤T _A ≤85°C		±100		ppm/°C
Short Current Limit	I _{SHORT}	V _{OUT} =0V			50		mA
Soft Start Time	t_{UP}				50		μs
RMS Output Noise	V _{NOISE}	T _A =25°C, 10Hz V _{OUT} =0.8V	≤f≤100kHz,		60		μVrms
Shutdown "High" Voltage		Shutdown input	voltage "High"	1.5		6	V
Shutdown "Low" Voltage		Shutdown input	voltage "Low"	0		0.4	V
V _{OUT} Discharge MOSFET R _{DS(ON)}		Shutdown input voltage "Low"			60		Ω
Shutdown Pull Down Resistance					3		ΜΩ
Thermal Shutdown					165		°С
Thermal Shutdown Hysteresis					30		°C
Thermal Resistance	$\theta_{ m JC}$	SOT-23-5			150		°C/W

AP2128

Electrical Characteristics (Continued)

(AP2128-1.0V/1.2V/1.5V/1.8V, V_{IN} min.=2.5V, C_{IN} =1 μ F, C_{OUT} =1 μ F, Bold typeface applies over -40 $^{\circ}$ C \leq T $_{A}$ \leq 85 $^{\circ}$ C, unless otherwise specified.)

Parameter	Symbol	Condi	tions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	V_{IN} =2.5V 1mA \leq I _{OUT} \leq 300mA		98%× V _{OUT}		102%× V _{OUT}	V
Input Voltage	V_{IN}			2.5		6	V
Maximum Output Current	I _{OUT(MAX)}	V _{IN} =2.5V, V _{OUT} =98%×V _O	UT	300	400		mA
Current Limit	I_{LIMIT}	V _{IN} =2.5V			450		mA
Load Regulation	ΔV_{OUT} /($\Delta I_{OUT*}V_{OUT}$)	V _{IN} =2.5V, 1mA≤I _{OUT} ≤300r			0.6	%/A	
Line Regulation	ΔV_{OUT} /($\Delta V_{IN}^* V_{OUT}$)	V _{IN} =2.5V to 6V I _{OUT} =30mA				0.06	%/V
		V _{OUT} =1.0V, I _{OU}	T=300mA		1400	1500	
Dropout Voltage	V_{DROP}	V_{OUT} =1.2V, I_{OU}	T=300mA		1200	1300	mV
Bropout voluge	· DROP	V_{OUT} =1.5V, I_{OU}	T=300mA		900	1000	111 V
		V _{OUT} =1.8V, I _{OUT} =300mA			600	700	
Quiescent Current	I_Q	V _{IN} =2.5V, I _{OUT} =0mA			60	90	μΑ
Standby Current	I_{STD}	V _{IN} =2.5V, V _{SHUTDOWN} in off mode			0.1	1.0	μΑ
	PSRR	Ripple 1Vp-p V _{IN} =3V	f=100Hz		68		dB
Power Supply Rejection Ratio			f=1KHz		68		dB
Rejection Ratio		VIN 3	f=10KHz		54		dB
Output Voltage Temperature Coefficient	$(\Delta V_{OUT}/V_{OUT})$ $/\Delta T$	I _{OUT} =30mA, -40	°C≤T _A ≤85°C		±100		ppm/°C
Short Current Limit	I _{SHORT}	V _{OUT} =0V			50		mA
Soft Start Time	t _{UP}				50		μs
Shutdown "High" Voltage		Shutdown input	voltage "High"	1.5		6	V
Shutdown "Low" Voltage		Shutdown input	voltage "Low"	0		0.4	V
V _{OUT} Discharge MOSFET R _{DS(ON)}		Shutdown input voltage "Low"			60		Ω
Shutdown Pull Down Resistance					3		ΜΩ
Thermal Shutdown					165		°C
Thermal Shutdown Hysteresis					30		°C
Thermal Resistance	$\theta_{ m JC}$	SOT-23-5			150		°C/W

Sept. 2010 Rev. 2.0

AP2128

Electrical Characteristics (Continued)

 $(AP2128-2.5V/2.8V/3.0V/3.3V/3.9V/4.2V/4.75V,\ V_{IN}=V_{OUT}+1V;\ AP2128-5.2V,\ V_{IN}=6V,\ C_{IN}=1\mu F,\ C_{OUT}=1\mu F,\ Bold\ type-face\ applies\ over\ -40^{\circ}C\leq T_{A}\leq 85^{\circ}C,\ unless\ otherwise\ specified.)$

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Output Voltage	V _{OUT}	$V_{IN}=V_{OUT}+1V$ $1mA \le I_{OUT} \le 300mA$		98%× V _{OUT}		102%× V _{OUT}	V
Input Voltage	V _{IN}			2.5		6	V
Maximum Output Current	I _{OUT(MAX)}	V _{IN} -V _{OUT} =1V, V _{OUT} =98%×V _{OU}	JT	300	400		mA
Current Limit	I _{LIMIT}	V _{IN} -V _{OUT} =1V			450		mA
Load Regulation	ΔV_{OUT} /($\Delta I_{OUT} * V_{OUT}$)	V_{IN} - V_{OUT} =1 V , 1 $\text{mA} \le I_{\text{OUT}} \le 300 \text{r}$	nA			0.6	%/A
Line Regulation	ΔV_{OUT} /($\Delta V_{IN}^* V_{OUT}$)	V_{OUT} +0.5 $V \le V_{IN} \le 6V$, I_{OUT} =30mA				0.06	%/V
Dropout Voltage	$ m V_{DROP}$	V _{OUT} =2.5V, 2.8V, 3.0V, 3.3V, 3.9V, 4.2V, I _{OUT} =300mA			170	300	mV
Bropout voluge	, DKOL	V _{OUT} =4.75V and 5.2V, I _{OUT} =300mA			140	300	III V
Quiescent Current	I_Q	V _{IN} =V _{OUT} +1V, I _{OUT} =0mA			60	90	μΑ
Standby Current	I _{STD}	$V_{IN}=V_{OUT}+1V,$ $V_{\overline{SHUTDOWN}}$ in off mode			0.1	1.0	μА
		AP2128-2.5V to 4.2V, Ripple 1Vp-p	f=100Hz		68		
			f=1KHz		68		
		$V_{IN} = V_{OUT} + 1V$	f=10KHz		54		
		AP2128-4.75V, Ripple 0.5Vp-p	f=100Hz		63		
Power Supply Rejection Ratio	PSRR		f=1KHz		63		dB
		$V_{IN}=V_{OUT}+1V$	f=10KHz		45		
		AP2128-5.2V , Ripple 0.5Vp-p V _{IN} =6V	f=100Hz		63		
			f=1KHz		63		
			f=10KHz		45		
Output Voltage Temperature Coefficient	$(\Delta V_{OUT}/V_{OUT})$ $/\Delta T$	I _{OUT} =30mA, -40°C≤T _A ≤85°C			±100		ppm/oC
Short Current Limit	I _{SHORT}	V _{OUT} =0V			50		mA

AP2128

Electrical Characteristics (Continued)

 $(AP2128-2.5V/2.8V/3.0V/3.3V/3.9V/4.2V/4.75V,\ V_{IN}\!\!=\!\!V_{OUT}\!\!+\!\!1V;\ AP2128-5.2V,\ V_{IN}\!\!=\!\!6V,\ C_{IN}\!\!=\!\!1\mu\text{F},\ C_{OUT}\!\!=\!\!1\mu\text{F},\ Bold\ type-face\ applies\ over\ -40^{\circ}\text{C}\!\!\leq\!\! T_{A}\!\!\leq\!\!85^{\circ}\text{C},\ unless\ otherwise\ specified.)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Soft Start Time	t _{UP}			50		μs
Shutdown "High" Voltage		Shutdown input voltage "High"	1.5		6	V
Shutdown "Low" Voltage		Shutdown input voltage "Low"	0		0.4	V
V _{OUT} Discharge MOSFET R _{DS(ON)}		Shutdown input voltage "Low"		60		Ω
Shutdown Pull Down Resistance				3		ΜΩ
Thermal Shutdown				165		°C
Thermal Shutdown Hysteresis				30		°C
Thermal Resistance	θ_{JC}	SOT-23-5		150		°C/W

Typical Performance Characteristics

Figure 4. Output Voltage vs. Output Current

Figure 5. Output Voltage vs. Output Current

Figure 7. Output Voltage vs. Output Current

Figure 8. Dropout Voltage vs. Output Current

Figure 9. Dropout Voltage vs. Output Current

Figure 10. Dropout Voltage vs. Case Temperature

Figure 11. Dropout Voltage vs. Case Temperature

Figure 12. Quiescent Current vs. Output Current

Figure 13. Quiescent Current vs. Output Current

Figure 14. Quiescent Current vs. Output Current

Figure 15. Quiescent Current vs. Case Temperature

Figure 16. Quiescent Current vs. Case Temperature

Figure 17. Quiescent Current vs. Case Temperature

Figure 18. Quiescent Current vs. Input Voltage

Figure 19. Quiescent Current vs. Input Voltage

Figure 20. Quiescent Current vs. Input Voltage

Figure 21. Output Voltage vs. Case Temperature

Figure 23. Output Voltage vs. Case Temperature

Figure 24. Short Current vs. Case Temperature

Figure 25. Short Current vs. Case Temperature

Figure 26. Output Voltage vs. Input Voltage (I_{OUT}=0mA) Figure 27. Output Voltage vs. Input Voltage (I_{OUT}=300mA)

Figure 28. Output Voltage vs. Input Voltage

Figure 29. Output Voltage vs. Input Voltage

Figure 30. Power Dissipation vs. Case Temperature

 $\label{eq:conditions} Figure 31. \ Load \ Transient \\ (Conditions: C_{IN}=C_{OUT}=1\mu F, \ V_{IN}=2.5V, \ V_{OUT}=0.8V, \\ I_{OUT}=10mA \ to \ 300mA)$

 $\label{eq:conditions} Figure 32. \ Load Transient \\ (Conditions: C_{IN}=C_{OUT}=1 \mu F, \ V_{IN}=4.4 V, \ V_{OUT}=3.3 V \\ I_{OUT}=10 mA \ to \ 300 mA)$

 $\label{eq:conditions} Figure 33. Line Transient \\ (Conditions: I_{OUT}=30mA, C_{IN}=C_{OUT}=1\mu F, \\ V_{IN}=2.5 \ to \ 3.5V, V_{OUT}=0.8V)$

 $\label{eq:Figure 34. Line Transient}$ (Conditions: I_OUT=30mA, C_IN=C_OUT=1 μ F, V_IN=4 to 5V, V_OUT=3.3V)

 $\label{eq:figure 35.} Figure 35. Soft Start Time $$ (Conditions: I_{OUT}=0mA, C_{IN}=C_{OUT}=1\mu F, $$ V_{\overline{Shutdown}}=0 \ to \ 2V, \ V_{OUT}=3.3V) $$$

 $\label{eq:figure 36.} Figure 36. Soft Start Time \\ (Conditions: I_{OUT}=0mA, C_{IN}=C_{OUT}=1\mu F, \\ V_{\overline{Shutdown}}=0 \ to \ 2V, V_{OUT}=0.8V) \\$

Figure 37. PSRR vs. Frequency

Figure 38. PSRR vs. Frequency

Figure 39. PSRR vs. Frequency

Typical Application

 $V_{OUT} = 0.8(1 + R1/R2) V$

Figure 40. Typical Application of AP2128

AP2128

Mechanical Dimensions

SOT-23-5 Unit: mm(inch)

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788