## 1 The Hájek Central Limit Theorem for Simple Random Sampling without Replacement

Suppose we are given a sequence of finite populations, on each of which is defined an  $\mathbb{R}$ -valued population characteristic. Suppose on each of the finite populations, we use SRSWOR (of fixed sample size) to select a sample, observe the values of the corresponding population characteristics on the selected elements, and use the Horvitz-Thompson estimator for the population mean. We seek to determine a necessary and sufficient condition for the (associated sequence of) "standardized deviations from the mean" of the Horvitz-Thompson estimator for population mean to converge in distribution to the standard Gaussian distribution.

## Theorem 1.1

Suppose we have the following:

- Let  $\{U_{\nu}\}_{\nu\in\mathbb{N}}$  be a sequence of finite populations, and  $N_{\nu}=|U_{\nu}|$  be the population size of  $U_{\nu}$ . Let the elements of  $U_{\nu}$  be indexed by  $1,2,3,\ldots,N_{\nu}$ .
- For each  $\nu \in \mathbb{N}$ , let  $y^{(\nu)}: U_{\nu} \longrightarrow \mathbb{R}$  be an  $\mathbb{R}$ -valued population characteristic. For each  $i \in U_{\nu}$ , let  $y_i^{(\nu)}$  denote  $y^{(\nu)}(i)$ , the value of  $y^{(\nu)}$  evaluated at the  $i^{\text{th}}$  element of  $U_{\nu}$ .
- For each  $\nu \in \mathbb{N}$ , let  $n_{\nu} \in \{1, 2, 3, ..., N_{\nu}\}$  be given, and let  $\mathcal{S}_{\nu}$  be the set of all  $n_{\nu}$ -element subsets of  $U_{\nu}$ . Let  $\mathcal{S}_{\nu}$  be endowed with the uniform probability function, namely

$$P(s) = \frac{1}{\binom{N_{\nu}}{n_{\nu}}}, \text{ for each } s \in \mathcal{S}_{\nu}.$$

• For each  $\nu \in \mathbb{N}$ , let  $\widehat{\overline{Y}}_{\nu} : \mathcal{S}_{\nu} \longrightarrow \mathbb{R}$  be the random variable defined as follows:

$$\widehat{\overline{Y}}_{\nu}(s) := \frac{1}{n_{\nu}} \sum_{i \in s} y_i^{(\nu)}, \text{ for each } s \in \mathcal{S}_{\nu}$$

Let

$$\mu_{\nu} := E\left[\widehat{\overline{Y}}_{\nu}\right] = \frac{1}{N_{\nu}} \sum_{i \in U_{\nu}} y_{i}^{(\nu)} \text{ and } \sigma_{\nu}^{2} := \operatorname{Var}\left[\widehat{\overline{Y}}_{\nu}\right] = \left(1 - \frac{n_{\nu}}{N_{\nu}}\right) \frac{S_{\nu}^{2}}{n_{\nu}},$$

where

$$S_{\nu}^{2} := \frac{1}{N_{\nu} - 1} \sum_{i \in U_{\nu}} \left( y_{i}^{(\nu)} - \mu_{\nu} \right)^{2}$$

• For each  $\nu \in \mathbb{N}$  and each  $\delta > 0$  define:

$$U_{\nu}(\delta) := \left\{ i \in U_{\nu} \mid |y_i^{(\nu)} - \mu_{\nu}| > \delta \sqrt{\sigma_{\nu}^2} \right\} \subset U_{\nu}.$$

Suppose  $n_{\nu} \longrightarrow \infty$  and  $N_{\nu} - n_{\nu} \longrightarrow \infty$ . Then

$$\lim_{\nu \to \infty} P \left\{ s \in \mathcal{S}_{\nu} \mid \frac{\widehat{\overline{Y}}_{\nu}(s) - \mu_{\nu}}{\sqrt{\sigma_{\nu}^{2}}} < x \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^{2}/2} dt$$

if and only if

$$\lim_{\nu \to \infty} \frac{\sum\limits_{i \in U_{\nu}(\delta)} \left( y_i^{(\nu)} - \mu_{\nu} \right)^2}{\sum\limits_{i \in U_{\nu}} \left( y_i^{(\nu)} - \mu_{\nu} \right)^2} = 0, \text{ for every } \delta > 0.$$

## Large Sample Theory for Finite Population Sampling

Study Notes March 22, 2015 Kenneth Chu

## References

- [1] HÁJEK, J. Limiting distributions in simple random sampling from a finite population. Publication of the Mathematical Institute of the Hungarian Academy of Sciences 5 (1960), 361–374.
- [2] LOHR, S. L. Sampling: Design and Analysis, first ed. Duxbury Press, 1999.
- [3] VALLIANT, R., DORFMAN, A. H., AND ROYALL, R. M. Finite Population Sampling and Inference, first ed. John-Wiley & Sons, 2000.