https://www.koreatech.ac.kr/kor/Main.do

Chapter 1 - 1

What is semiconductor?

Bandgap

E-k diagram

Chapter 1 - 2

기술개발의 개요

기술 개발 내용 (음극 소재 개발)

∘ SiOx계 음극소재 개발

- (1) SiOx 매트릭스의 일부를 소프트 카본으로 치환하여 율속특성과 초기효율을 향상시키고,
- (2) 카본의 균일분산을 통해 부피팽창을 저감하여 수명특성을 향상시키며, 고가의 CVD공정을 탈피하여
- (3) 저가 탄소 전구체와 나노탄소물질을 함께코팅/탄화함으로써 충전속도와 수명특성을 향상

COURSE SCHEDULE

	Topics
1	General Intro, Atomic bonding
2	Structures of Metals & Ceramics 1
3	Quantum mechanics
4	Hydrogen atom
5	Electronic structure of atoms
6	Hydride bonding
7	Wave function of crystals

Materials Science & Engineering

Course Objective...

Introduce fundamental concepts in Materials Science & Engineering

You will learn about:

- material structures
- how structure dictates properties
- · how processing can change structure

This course will help you to:

- · use materials properly
- realize new design opportunities with materials

Chapter 1 - 5

COURSE MATERIALS (with text)

Required text:

Fundamentals of Materials Science and Engineering,
 W.D. Callister, Jr. and D.G. Rethwisch, 5th edition,
 Wiley

Chapter 1 - Introduction

- What is materials science?
- · Why should we know about it?
- · Materials drive our society
 - Stone Age
 - Bronze Age
 - Iron Age
 - Now?
 - · Silicon Age?
 - Polymer Age?

Chapter 1 - 7

Example – Hip Implant

With age or certain illnesses joints deteriorate.
 Particularly those with large loads (such as hip).

Adapted from Fig. 22.25, Callister 7e.

Example – Hip Implant

- mechanical strength (many cycles)
- good lubricity
- biocompatibility

Pelvis: 골반 Acetabulum: 관골구 Femur: 대퇴골

Example – Hip Implant

Structure, Processing, & Properties

 Properties depend on structure ex: hardness vs structure of steel

 Structure can be changed by processing ex: structure vs cooling rate of steel

Structure, Processing, & Properties

Types of Materials

- Metals:
 - Strong, ductile
 - High thermal & electrical conductivity
 - Opaque, reflective.
- Polymers/plastics: Covalent bonding → sharing of e's
 - Soft, ductile, low strength, low density
 - Thermal & electrical insulators
 - Optically translucent or transparent.
- Ceramics: ionic bonding (refractory) compounds of metallic & non-metallic elements (oxides, carbides, nitrides, sulfides)
 - Brittle, glassy, elastic
 - Non-conducting (insulators)

The Materials Selection Process

- Pick Application

 Determine required Properties

 Properties: mechanical, electrical, thermal,
 magnetic, optical, deteriorative.
- Properties
 — Identify candidate Material(s)
 Material: structure, composition.
- Material
 — Identify required Processing
 Processing: changes structure and overall shape ex: casting, sintering, vapor deposition, doping forming, joining, annealing.

Chapter 1 - 15

ELECTRICAL

• Electrical Resistivity of Copper:

- Adding "impurity" atoms to Cu increases resistivity.
- Deforming Cu increases resistivity.

THERMAL

- · Space Shuttle Tiles:
 - -- Silica fiber insulation offers low heat conduction.

Adapted from Fig. 19.4W, Callister 6e. (Courtesy of Lockheed Aerospace Ceramics Systems, Sunnyvale, CA) (Note: "W" denotes fig. is on CD-ROM.)

- Thermal Conductivity of Copper:
 - -- It decreases when you add zinc!

Adapted from Fig. 17.4, Callister & Rethwisch 4e. (Fig. 17.4 is adapted from Metals Handbook: Properties and Selection: Nonferrous alloys and Pure Metals, Vol. 2, 9th ed., H. Baker, (Managing Editor), American Society for Metals, 1979, p. 315.)

Chapter 1 - 17

MAGNETIC

- Magnetic Storage:
 - -- Recording medium is magnetized by recording head.

Fig. 18.23, Callister & Rethwisch 4e.

- Magnetic Permeability
 - vs. Composition:
 - -- Adding 3 atomic % Si makes Fe a better recording medium!

Adapted from C.R. Barrett, W.D. Nix, and A.S. Tetelman, *The Principles of Engineering Materials*, Fig. 1-7(a), p. 9, 1973. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey.

OPTICAL

- Transmittance:
 - -- Aluminum oxide may be transparent, translucent, or opaque depending on the material's structure (i.e., single crystal vs. polycrystal, and degree of porosity).

Chapter 1 - 19

DETERIORATIVE

- Stress & Saltwater...
 - -- causes cracks!

Adapted from Fig. 16.21, Callister & Rethwisch 4e. (from Marine Corrosion, Causes, and Prevention, John Wiley and Sons, Inc., 1975.)

· Heat treatment: slows crack speed in salt water!

Adapted from Fig. 11.20(b), R.W. Hertzberg, "Deformation and Fracture Mechanics of Engineering Materials" (4th ed.), p. 505, John Wiley and Sons, 1996. (Original source: Markus O. Speidel, Brown Boveri Co.)

SUMMARY

Course Goals:

- · Use the right material for the job.
- Understand the relation between properties, structure, and processing.
- Recognize new design opportunities offered by materials selection.

Chapter 1 - 21

Select one of the following modern items and determines its specific properties, materials, processes.

- · Cell phone
- Digital camera batteries
- Cell phone display
- Solar cells
- Wind turbine blades
- Automobile bodies
- Sports equipment