Efficient training & inference

Deep Learning@HSE Week {++i}, guest lecture

Yandex Research

Large problems need large models

ImageNet average over WMT

Source: https://arxiv.org/abs/1811.06965

The transformer curve

Machine Learning Supertasks

Image classification – ImageNet, JFT300M

Generative models – ImageNet(biggan), the internet

Language Models – common crawl, BERT / MLM

Machine Translation – multilingual translation

Reinforcement Learning – playstation* & steam:)

* playstation for RL: https://arxiv.org/abs/1912.06101

Meanwhile, exabytes of YouTube videos lay dormant across the web, waiting for someone who can make use of them

cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf

cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf

cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf

cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf

cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf

cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf

cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf

cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf

Advanced data parallel

arxiv.org/abs/1706.02677

Idea: get rid of the host, each gpu runs its own computation Q: why will weights be equal after such step?

Input: each device has its its own vector

Output: each device gets a sum of all vectors

Input: each device has its its own vector

Output: each device gets a sum of all vectors

Naive implementation

Input: each device has its its own vector

Output: each device gets a sum of all vectors

Q: Can we do better?

Input: each device has its its own vector

Output: each device gets a sum of all vectors

Tree-allreduce

Input: each device has its its own vector

Output: each device gets a sum of all vectors

Ring-allreduce – split data into chunks (ABCD)

Input: each device has its its own vector

Output: each device gets a sum of all vectors

Ring-allreduce – split data into chunks (ABCD)

Input: each device has its its own vector

Output: each device gets a sum of all vectors

Ring-allreduce – split data into chunks (ABCD)

Input: each device has its its own vector

Output: each device gets a sum of all vectors

Ring-allreduce – split data into chunks (ABCD)

Ring allreduce

Bonus quest: you can only send data between adjacent gpus

Ring topology

Image: graphcore ipu server

Answer & more: tinyurl.com/ring-allreduce-blog

Advanced data parallel

arxiv.org/abs/1706.02677

Idea: get rid of the host, each gpu runs its own computation Q: why will weights be equal after such step?

Advanced data parallel vs reality

arxiv.org/abs/1706.02677

Each gpu has different processing time & delays **Q:** can we improve device utilization?

HOGWILD! arxiv.org/abs/1106.5730

Idea: remove synchronization step alltogether, use parameter server

HOGWILD! arxiv.org/abs/1106.5730

Idea: remove synchronization step alltogether, use parameter server

HOGWILD! arxiv.org/abs/1106.5730

Idea: remove synchronization step alltogether, use parameter server

Q: have we lost anything by going asynchronous?

HOGWILD! arxiv.org/abs/1106.5730

Idea: remove synchronization step alltogether, use parameter server

Correction for staleness: arxiv.org/abs/1511.05950 & many others

Data-parallel Reinforcement Learning

Synchronous data-parallel: A. Stooke & P. Abbeel, 2018 tinyurl.com/gtc-parallel-rl

Asynchronous data-parallel:

Asynchronous methods for deep RL: arxiv.org/abs/1602.01783

Distributed asynchronous data-parallel:

IMPALA: arxiv.org/abs/1802.01561

R2D2: openreview.net/forum?id=r1lyTjAqYX

SEED RL: arxiv.org/abs/1910.06591

More on this on the distributed RL lecture!

</Data-parallel>

- + easy to implement
- + can scale to 100s of gpus
- + can be fault-tolerant
- model must fit in 1 gpu
- large batches aren't always good for generalization
- 2-4 GPUs & no time naive data parallel tinyurl.com/torch-data-parallel
- 4+ GPUs or multiple hosts horovod (allreduce) github.com/horovod/horovod
 - High-level distributed pytorch (allreduce): tinyurl.com/distributed-dp
- Somewhat faulty GPU/network: synchronous data parallel + drop stragglers
- Very faulty or uneven resources: asynchronous data parallel (more later)
- Efficient training with large batches: LAMB https://arxiv.org/abs/1904.00962
- Dynamically adding or removing resources: https://tinyurl.com/torch-elastic

Chapter 2: Model-parallel training

Q: What if a model is larger than GPU?

Model-parallel training

Q: What if a model is larger than GPU?

Model-parallel training

Q: What if a model is larger than GPU?

Pipelining

GPipe: arxiv.org/abs/1811.06965 – good starting point, *not* the 1st paper

Idea: split data into micro-batches and form a pipeline (right)

model size: O(n)

Gradients

throughput: O(n) – with caveats

Pipelining

GPipe: arxiv.org/abs/1811.06965 – good starting point, *not* the 1st paper

Idea: split data into micro-batches and form a pipeline (right)

Pipeline-parallel training

PipeDream: arxiv.org/abs/1806.03377

Idea: apply gradients with every microbatch for maximum throughput

Also neat:

- Automatically partition layers to GPUs via dynamic programming
- Store k past weight versions to reduce gradient staleness
- Aims at high latency

</Model-parallel>

- + model larger than GPU
- + faster for small
- * typical size: 2-8 gpus
- model partitioning is tricky
- latency is critical, go buy nvlink except for PipeDream

Tutorials:

- Simple pipelining in PyTorch tinyurl.com/pytorch-pipelining
- Distributed model-parallel with torch RPC https://tinyurl.com/torch-rpc
- Advanced but still in active development github.com/microsoft/DeepSpeed

Virtual batch / virtual pipeline

ёж, открой доску

Case study: DeepSpeed

Source: microsoft

Chapter 3: What about inference?

Three kinds of efficiency:

Throughput samples/second

Three kinds of efficiency:

Throughput samples/second

Latency ms@percentile

- + relatively easy to deploy
- + you control model & inference
- + clients don't run compute

- + relatively easy to deploy
- + you control model & inference
- + clients don't run compute
- you pay for each inference
- clients can't work offline
- network latency

Which is the most important?

?

- + relatively easy to deploy
- + you control model & inference
- + clients don't run compute
- you pay for each inference
- clients can't work offline
- network latency

Priorities:

Note: smaller model = you can fit more models in the same memory

- + relatively easy to deploy
- + you control model & inference
- + clients don't run compute
- you pay for each inference
- clients can't work offline
- network latency

- Group inputs into batches (e.g. by length) improves throughput at the cost of latency
- Multiple servers with load balancing improves throughput at the cost of your budget:)

- Group inputs into batches (e.g. by length) improves throughput at the cost of latency
- Multiple servers with load balancing improves throughput at the cost of your budget:)

Popular frameworks:

priorities

TensorFlow Serving

efficiency ≪ developer time

TensorRT Inference Server (Triton)

efficiency ≈ developer time

Custom model-dependent code

efficiency ≫ developer time

Scenario 2: local inference

Preload model onto a dedicated device, infer locally using that device

Typical use cases:

- Parallel speech recognition
- "Smart" cameras
- Autonomous drones
- Self-driving cars

Priorities:

Scenario 3: web/smartphone app

 Load model weights on the fly and infer locally Model size is critical for both you and the user

Scenario 3: web/smartphone app

- Load model weights on the fly and infer locally Model size is critical for both you and the user
- Autonomous machine translation (tinyurl.com/yandex-translate-app)
- Pix2pix demo in a browser (https://affinelayer.com/pixsrv)
- Priorities: (i) ____ (ii) ____

Scenario 3: web/smartphone app

- Load model weights on the fly and infer locally Model size is critical for both you and the user
- Autonomous machine translation (tinyurl.com/yandex-translate-app)
- Pix2pix demo in a browser (https://affinelayer.com/pixsrv)
- Priorities: (a) ____ (b) ____
- Popular frameworks:
 - TensorFlow.js
 - CoreML
 - 🖺 NNAPI

Platform
All modern browsers
iOS devices
Android devices

Chapter 4: how do I compress my model?

Distillation...
Heard that word before?

First, get the best performing model regardless of size

Then, train a more compact model to approximate it!

Student architecture choices:

Naïve: same but smaller, less layers / hidden units e.g. DistillBERT: https://arxiv.org/pdf/1910.01108.pdf

Same as BERT-base, but with *half as many layers* (and ≈1.5 times faster)

Model	# param. (Millions)	Inf. time (seconds)
ELMo	180	895
BERT-base	110	668
DistilBERT	66	410

Model	Score	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STS-B	WNLI
ELMo	68.7	44.1	68.6	76.6	71.1	86.2	53.4	91.5	70.4	56.3
BERT-base	79.5	56.3	86.7	88.6	91.8	89.6	69.3	92.7	89.0	53.5
DistilBERT	77.0	51.3	82.2	87.5	89.2	88.5	59.9	91.3	86.9	56.3

Student architecture choices:

Naïve: same but smaller, less layers / hidden units

Factorized: product of smaller matrices or tensors

Student architecture choices:

Naïve: same but smaller, less layers / hidden units

Factorized: product of smaller matrices or tensors

Student architecture choices:

Naïve: same but smaller, less layers / hidden units

Factorized: product of smaller matrices or tensors

Sparse: only a small (random) subset of weights are nonzero

Student architecture choices:

Naïve: same but smaller, less layers / hidden units

Factorized: product of smaller matrices or tensors

Sparse: only a small (random) subset of weights are nonzero

Q: how to store sparse weights?

Student architecture choices:

Naïve: same but smaller, less layers / hidden units

Factorized: product of smaller matrices or tensors

Sparse: only a small (random) subset of weights are nonzero

Storage: only store random seed and nonzero weights.

Compute: sparse matrix multiply

Student architecture choices:

Naïve: same but smaller, less layers / hidden units

Factorized: product of smaller matrices or tensors

Sparse: only a small fraction of weights are nonzero

Read more: https://openreview.net/pdf?id=_zx8Oka09eF

Also: factorized embeddings https://arxiv.org/abs/1901.10787

Also also: small-world sparse weights graphs for RNNs

https://tinyurl.com/openai-blocksparse

Student architecture choices:

Naïve: same but smaller, less layers / hidden units

Factorized: product of smaller matrices or tensors

Sparse: only a small fraction of weights are nonzero

Read more: https://openreview.net/pdf?id=_zx8Oka09eF

Also: factorized embeddings https://arxiv.org/abs/1901.10787

Also also: https://tinyurl.com/openai-blocksparse

More distillation tricks:

Ensemble distillation

Dropout distillation

Co-distillation

https://arxiv.org/abs/1702.01802

http://proceedings.mlr.press/v48/bulo16.pdf

https://arxiv.org/abs/1804.03235

Compression by quantization

INT8

8 BITS

Basic quantization

Consider weights as a distribution

Basic quantization

Compute a grid of percentiles

Basic quantization

percentiles (32-bit)

Index (4- or 8-bit) of nearest percentile for each weight

Store each weight as its nearest percentile

High-dimensional case

Quantize entire vectors as K-means

Quantization Example

 $quantizer = KMeans(n_clusters=7).fit(X)$

Images: Jeremy Jordan

OPQ, AQ, LSQ

Product Quantization Split vectors into chunks, quantize each chunk separately

Orthogonal Product Quantization
First run orthogonal transform, then product quantization
http://kaiminghe.com/publications/cvpr13opq.pdf

More:

Additive Quantization Local Search Quantization https://tinyurl.com/babenko-aq-pdf https://tinyurl.com/martinez-lsq-pdf

Images: Jeremy Jordan

Do we really need every layer all the time?

3) More layers!

- 1) Positive
- 2) Negative
- 3) More layers!

Adaptive Computation Time

block of residual units

Origina ACTI (for RNN) https://arxiv.org/abs/1603.08983

Spatial ACT (conv) https://tinyurl.com/sact-pdf ACT Transformers https://arxiv.org/abs/1807.03819

Compression by sparsification

Do we really need all D by D weights?

Compression by pruning

Do we really need all D by D weights?

Magnitude pruning

Drop ~5% smallest weights from each layer every 1000 steps (and keep training)

Reminds you of something?

Magnitude pruning

Drop ~5% smallest weights from each layer every 1000 steps (and keep training)

Reminds you of something?
See ML course, Optimal Brain Damage

Pruning with L₀ regularization

Add a special regularizer that encourages dropping unnecessary weights

Whiteboard time!

Read more: https://arxiv.org/abs/1712.01312 Alternative: https://arxiv.org/abs/1701.05369

Which one works best?

Transformer BLEU

Source https://arxiv.org/abs/1902.09574

Pruning with L₀ regularization

Add a special regularizer that encourages dropping unnecessary weights

Whiteboard time!

Pruning with L₀ regularization

Add a special regularizer that encourages dropping unnecessary weights

Can prune

- individual weights
- Individual neurons
- attention heads
- entire layers!

$$\lambda = 0.01$$

Pruning heads: https://lena-voita.github.io/posts/acl19_heads.html

Compression by sparsification

Как ужимать: prune/sparsify можно сразу учить sparse (openai + та статья)

что умеет: только model size

Фенкс, Квестионы?