PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-052707

(43) Date of publication of application: 25.02.1997

(51)Int.Cl.

CO1B 31/02 C30B 29/04 G11B 5/72 G11B 5/84

(21)Application number: 07-202299

(71)Applicant: KAO CORP

(22)Date of filing:

08.08.1995

(72)Inventor:

ISHIKAWA JUNKO

KITAORI NORIYUKI YOSHIDA OSAMU SASAKI KATSUMI

(54) PRODUCTION OF THIN FILM

(57)Abstract:

PROBLEM TO BE SOLVED: To improve uniformity and binding property of a compd. at the time of forming a layer of a desired compd. on a thin film.

SOLUTION: After applying the compd. having a functional group capable of reacting with the unsatd. bond, on a carbon film such as diamond-like carbon thin film having the unsatd. bond formed on a base material by an ECR plasma CVD process, etc., the compd. is irradiated with UV rays to bring both into reaction and to conbind the film and the compd.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-52707

(43)公開日 平成9年(1997)2月25日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ		技術表示箇所			
C 0 1 B 31/02	101		C01B 3	31/02	1 0 1 Z			
C30B 29/04		7202-4G	C30B 2	29/04		Z		
G11B 5/72			G11B	5/72				
5/84		7303-5D		5/84	В			
			審査請求	未讃求	請求項の数5	OL (全 4 頁	〔)	
(21)出願番号	特願平7-202299		(71)出願人	000000918				
		花王株式	会社					
(22)出願日	22)出願日 平成7年(1995)8月8日				中央区日本橋茅垣	易町1丁目14番10 ⁻	号	
			(72)発明者					
				栃木県秀	石川 准子 栃木県芳賀郡市貝町赤羽2606 花王株記			
		<u> </u>		社研究的	乔内			
			(72)発明者	北折 毋	英之			
		•		栃木県秀	芳賀郡市貝町赤 茅	图2606 花王株式:	会	
				社研究的	听内			
			(72)発明者	吉田 化	*			
				栃木県秀	芳賀郡市貝町赤 溪	阿2606 花王株式:	会	
				社研究的	近			
			(74)代理人	弁理士	古谷馨(名	小3名)		
						最終頁に統	<	

(54) 【発明の名称】 蒋膜の製造方法

(57)【要約】

【課題】 薄膜上に所望の化合物の層を形成する際に、 前記化合物の均一性と結着性をより向上させる。

【解決手段】 ECR プラズマCVD 法等により基材上に形 成された不飽和結合を有するダイヤモンドライクカーボ ン薄膜等の不飽和結合を有する炭素膜上に、該不飽和結 合と反応可能な官能基を有する化合物を塗布した後、紫 外光を照射して両者を反応させて、前記膜と前記化合物 とを結合させる。

1

【特許請求の範囲】

【請求項1】 不飽和結合を有する炭素膜に、前記不飽 和結合と反応可能な官能基を有する化合物を途布した 後、該塗布面に紫外光を照射することにより、前記化合 物を前記炭素膜に結合させて薄膜を形成することを特徴 とする薄膜の製造方法。

【請求項2】 前記炭素膜が、不飽和結合を有するダイ ヤモンドライクカーボンからなる請求項1記載の製造方 法。

【請求項3】 前記不飽和結合と反応可能な官能基を有 する化合物が、フッ化アルキル基を有する化合物である 請求項1又は2記載の薄膜の製造方法。

【請求項4】 前記紫外光の波長が400 nm以下である請 求項1~3の何れか1項記載の薄膜の製造方法。

【請求項5】 支持体上に形成された磁性層上に、不飽 和結合を有するダイヤモンドライクカーボン薄膜を形成 し、ついで該ダイヤモンドライクカーボン薄膜上にフッ 化アルキル基を有する化合物からなる潤滑剤を塗布し、 該塗布面に紫外光を照射することにより前記ダイヤモン ドライクカーボン薄膜と前記潤滑剤を結合させて前記ダ 20 イヤモンドライクカーボン薄膜上に潤滑層を形成する工 程を含むことを特徴とする磁気記録媒体の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、炭素膜上に所望の 化合物の層を形成する方法であり、より詳しくは、不飽 和結合を含む炭素膜上にこれと反応可能な官能基を有す る化合物の結合させることにより薄膜を形成する方法に 関する。

[0002]

【従来の技術】基材上に薄膜を形成する技術は古くから 多種多様な方法が知られているが、電子工業、精密機械 工業、情報産業等における高度な薄膜作成法として、今 日ではいわゆる真空薄膜作成法が主流を占めている。こ の方法は、真空中で目的とする薄膜の原料化合物の粒子 を生成させて基材上に付着させることにより薄膜を形成 するものであり、蒸着法、スパッタ法、CVD 法、イオン プレーティング法等及びこれらの改良法が多数知られて いる。

【0003】真空薄膜作成法は幅広い分野で用いられて 40 の種類は限定されない。 おり、例えば磁気記録媒体の分野では、支持体上に真空 中で金属を蒸着等により付着させてなる、いわゆる金属 薄膜型の磁気記録媒体の保護層としてダイヤモンドライ クカーボンからなる薄膜を形成する手法が注目されてい る。ダイヤモンドライクカーボン薄膜は非晶質炭素膜で あり、グラファイト結合とダイヤモンド結合が混在する 構造と考えられている。そして、ダイヤモンドライクカ ーボン層を形成した後、該層上に適当な潤滑剤を塗布し て潤滑層を形成することが行なわれ、今日では潤滑剤と して特にフッ素系潤滑剤が汎用されている。

[0004]

【発明が解決しようとする課題】しかしながら、従来で は耐久性を向上させるために、よりダイヤモンドに近い ダイヤモンドライクカーボンを製造するための検討がさ れており、そのようなダイヤモンドライクカーボン薄膜 の結合様式は炭素-炭素単結合が殆どを占めている。-方、フッ素系潤滑剤をダイヤモンドライクカーボン保護 層上に塗布する場合、塗布技術の面から充分に均一な塗 布は困難であり、潤滑層が不均一に塗布されているとよ り摩擦係数が大きくなるとうい問題がある。また、潤滑 層は物理的に保護層上に塗布されているだけで、化学的 な結合は非常に弱いため、使用を繰り返すうちに潤滑剤 が離脱していって離脱した潤滑剤がヘッドに目詰まり し、出力を低下させたり或いはジッタを発生させたりす るという問題があった。このように、薄膜上に更に所望 の化合物の層を形成する場合に、単に塗布しただけでは 均一な塗布が難しく、しかも形成された層が充分に強固 なものとならないことが多く、この点を更に改良するこ とが望まれる。

2

[0005]

【課題を解決するための手段】本発明者らは上記の現状 に鑑み鋭意研究した結果、不飽和結合を有する炭素膜と 該不飽和結合と反応可能な官能基を有する化合物とを紫 外光により反応させて両者を化学的に結合させることに より、強固で均一な薄膜が形成できることを見出し、本 発明を完成するに至った。

【0006】すなわち本発明は、不飽和結合を有する炭 素膜に、前記不飽和結合と反応可能な官能基を有する化 合物を塗布した後、該塗布面に紫外光を照射することに 30 より、前記化合物を前記炭素膜に結合させて薄膜を形成 することを特徴とする薄膜の製造方法を提供するもので ある。

【0007】本発明に用いられる不飽和結合を有する炭 素膜は、不飽和結合を有するダイヤモンドライクカーボ ンからなるものが好ましい。不飽和結合の割合は、sp³ 結合と sp^2 結合の比率が sp^3/sp^2 < 9 であることが望ま しい。不飽和結合の数が少ないと官能基を有する化合物 との反応が不充分となる。なお、本発明において炭素膜 は通常、何らかの基材(支持体)上に形成されるが、そ

【0008】かかる不飽和結合を有する炭素膜は、例え ば ECRプラズマCVD 法における炭素源として、不飽和結 合、芳香環を多く含む化合物を用いることにより製造で き、特に炭素源としてはベンゼンが好適である。

【0009】本発明は、前記のような不飽和結合を有す る炭素膜上に所望の化合物を結合させて薄膜を形成する 方法であり、炭素膜の不飽和結合と結合し得る官能基を 有する化合物を用いる必要があるが、官能基の種類とし ては不飽和結合と結合し得るものであれば何れでもよ

3

[0010]

【発明の実施の形態】本発明の方法は特に、磁性層上に 形成されたダイヤモンドライクカーボン薄膜からなる保 護層上に潤滑層を形成するのに好適である。すなわち、 支持体上に形成された磁性層上に、不飽和結合を有する ダイヤモンドライクカーボン薄膜を形成し、ついで該ダ イヤモンドライクカーボン薄膜上にフッ化アルキル基を 有する化合物からなる潤滑剤を塗布し、該塗布面に紫外 光を照射することにより前記ダイヤモンドライクカーボ ン薄膜と前記潤滑剤を結合させて前記ダイヤモンドライ クカーボン薄膜上に潤滑層を形成する工程を含むことを 特徴とする磁気記録媒体の製造方法を提供することがで きる。

【0011】ここで用いられる潤滑剤としては、特にフ ッ化アルキル基を有する化合物からなるものが好まし く、特にパーフルオロポリエーテルからなる潤滑剤が好 ましい。パーフルオロポリエーテル系潤滑剤としては、 分子量2000~5000のものが好適であり、例えば「FOMBLI N Z DIAC」 〔カルボキシル基変性、モンテカチーニ (株)製〕、「FOMBLIN Z DOL 」〔アルコール変性、モ ンテカチーニ (株) 製] の商品名で市販されているもの が使用できる。これらの潤滑剤は、フッ素系不活性溶媒 (例えば住友スリーエム (株) 製「フロリナート」等の パーフルオロカーボン、モンテカチーニ(株)製「ガル デン」等のパーフルオロポリエーテル)、アルコール系 容媒等の適当な溶媒に溶解させた 0.001~10重量%程度 の溶液として塗布するのがよい。また、潤滑剤はそのま ま或いは適当な溶剤で希釈した後、超音波発振装置を備 えた超音波噴霧器により噴霧する方法により保護層上に 塗布することもできる。この方法はより潤滑剤の塗布を 30 【OO16】実施例2 均一にできる。

【0012】磁気記録媒体の磁性層上に形成されたダイ ヤモンドライクカーボン薄膜とパーフルオロポリエーテ ル系潤滑剤との反応について説明する。まず適当な支持 体上に磁性層を形成し、その上に不飽和結合を有するダ イヤモンドライクカーボン薄膜を形成する。このような ダイヤモンドライクカーボン薄膜は、 ECRプラズマCVD 法において、ベンゼンを炭素源として用いることにより 容易に得ることができる。ダイヤモンドライクカーボン 薄膜中の不飽和結合の割合は、sp³ 結合とsp²結合の比 率で $sp^3/sp^2 < 9$ 、特に0.25 $< sp^3/sp^2 < 4.5$ であること が望ましい。ダイヤモンドライクカーボン薄膜の厚さは 限定されないが、50~300 Åが好適である。

【0013】ついで、かかるダイヤモンドライクカーボ ン薄膜上に前記のような方法でパーフルオロポリエーテ ル系潤滑剤を塗布する。その後、紫外光を塗布面に照射 する。紫外光としては近紫外光 (波長 400~300 nm) 、 遠紫外光(波長 300~200nm)、真空紫外光(波長 200 ~1 nm) の何れを照射してもよいが、波長が400 nm以下 の紫外光を全て照射するのがよい。紫外光の照射時間は 50 【0020】実施例6

ダイヤモンドライクカーボン薄膜や潤滑剤の種類により 異なる。紫外光による反応の進行はラマンスペクトルに より確認され、潤滑剤とダイヤモンドライクカーボンと が結合していることはラマンスペクトルのベースライン (蛍光線) の傾きが小さくなることにより確認できる。 かかる反応は真空チャンバ内で実施することが望まし い。それにより磁性層の形成、ダイヤモンドライクカー ボン保護層の形成、フッ素系潤滑剤の噴霧、そして保護 層と潤滑剤の紫外光の照射による潤滑層の形成の各工程 を連続的に真空中で行なうことができる。

[0014]

(3)

【実施例】以下に本発明の実施例を説明する。しかしな がら、本発明はこれらの実施例に限定されるものではな V\

【0015】実施例1

磁性層 (コバルト製、厚さ2000Å) が形成されたPET フ ィルム(厚さ6μm)の磁性層上に、 ECRマイクロ波プ ラズマCVD 法により不飽和結合を有するダイヤモンドラ イクカーボンからなる保護層(厚さ100 Å)を形成し 20 た。ここでは原料としてベンゼンをガス化したものを用 いた。このダイヤモンドライクカーボン薄膜上に潤滑剤 であるパーフルオロポリエーテル(FOMBLINZ DIAC、モン テカチーニ(株)製)をフッ素系不活性溶媒(フロリナ ートFC-77 、住友スリーエム(株)製)で0.05重量%濃 度となるように希釈した溶液を塗布しながら400 nm以下 の紫外光を塗布面に照射した。なお、フィルムの走行速 度は3m/分であり、この速度で紫外光により潤滑剤と ダイヤモンドライクカーボンとの結合は充分に進行す る。その後フロリナートFC-77 にて洗浄を行なった。

実施例1において、パーフルオロポリエーテルとして 「FOMBLIN Z DEAL」(モンテカチーニ(株)製)を用 い、その他は実施例1と同様にしてダイヤモンドライク カーボン薄膜と潤滑剤とを反応させた。

【0017】実施例3

実施例1において、パーフルオロポリエーテルとして 「FOMBLIN Z DOL 」(モンテカチーニ(株)製)を用 い、その他は実施例1と同様にしてダイヤモンドライク カーボン薄膜と潤滑剤とを反応させた。

40 【0018】実施例4

実施例1において、パーフルオロポリエーテルとして 「FOMBLIN AM 2001」(モンテカチーニ(株)製)を用 い、その他は実施例1と同様にしてダイヤモンドライク カーボン薄膜と潤滑剤とを反応させた。

【0019】実施例5

実施例1において、パーフルオロポリエーテルとして 「FOMBLIN Z DISOC 」 (モンテカチーニ (株) 製) を用 い、その他は実施例1と同様にしてダイヤモンドライク カーボン薄膜と潤滑剤とを反応させた。

5

実施例1において、パーフルオロポリエーテルとして 「デムナムSH」(ダイキン(株)製)を用い、その他は 実施例1と同様にしてダイヤモンドライクカーボン薄膜 と潤滑剤とを反応させた。

【0021】実施例7

実施例1において、パーフルオロポリエーテルとして 「デムナムSP」(ダイキン(株)製)を用い、その他は 実施例1と同様にしてダイヤモンドライクカーボン薄膜 と潤滑剤とを反応させた。

【0022】比較例1

実施例1において、パーフルオロポリエーテルを塗布し た後、紫外光を照射せずに洗浄を行なった。

【0023】比較例2

実施例2において、パーフルオロポリエーテルを塗布し た後、紫外光を照射せずに洗浄を行なった。

【0024】<性能評価>上記実施例1~7及び比較例 1~2により得られた、磁性層、ダイヤモンドライクカ ーボン保護層及びフッ素系潤滑層が形成されたフィルム を巻き取った後、常法により、カーボンブラックとバイ ンダー樹脂(塩化ビニル系樹脂とウレタンプレポリマ 一)とからなる厚さ5000Åのバックコート層をベースフ

特開平9-52707

6

ィルムの磁性層と反対の面に形成した。得られたフィル ムを8mm巾に裁断し、カセットケースにローディングし 8mmカセットテープを得た。この8mmカセットテープ 、を、市販8mmVTR を改造した測定システムにセットし、 ジッターメーターによりジッター (ns) を測定し、また 下記の方法で再生出力の経時変化をそれぞれ測定した。 これらの結果を表1に示す。

<再生出力の経時変化>再生出力の経時変化は下記A~ Cの3つのパターンにより測定した。

- 10 (A) テスト用映像信号を記録し、巻戻し、再生した時 の出力の経時変化を測定した。
 - (B)(A)の後、引き続きテープを巻戻し、ヘッドク リーニングした後、再生した時の出力の経時変化を測定 した。
 - (C) (B) の後、引き続きテープを巻戻し、ヘッドク リーニングした後、再生し、途中で一旦再生を停止した 時の出力(C₁)の経時変化と、次いで再度ヘッドクリ ーニングした後、その位置から引き続き残りを再生した 時の出力(C₂)の経時変化を測定した。

20 [0025]

【表 1】

Į.						Doute (dPa)		Cの出力 (dBm)				
		ジッタ (ns)	Aの出力 (dBm)			Bの出力(dBm)			C』の出力		C₂の出力	
			10秒後	40秒後	70秒後	10秒後	40秒後	70秒後	10秒後	40秒後	10秒後	40秒後
	1	60	-11	-11	-11	-11	-12	-11	-10	-11	-10	-10
	2	62	-12	-12	-13	-12	-12	-12	-12	-13	-12	-12
実施	3	59	-11	-12	-12	-12	-12	-12	-12	-12	-12	-12
	4	60	-11	-12	-11	-10	-11	-11	-11	-11	-11	-11
	5	63	-12	-12	-12	-11	-11	-12	-11	-12	-12_	-12
例	6	63	-11	-12	-13	-11	-11	-12	-11	-12	-11	-12
	7	61	-12	-13	-13	-12	-13	-13	-13	-13	-13	-13
比	1	73	-12	-15	-20	-12	-16	-20	— 12	-16	-12	—15
比較例	2	72	-11	- 15	-22	-11	-14	-21	-11	-16	-11	-15

フロントページの続き

(72)発明者 佐々木 克己

栃木県芳賀郡市貝町赤羽2606 花王株式会 社研究所内