

Developing a Deep Learning Model for Predicting Agricultural Weather Conditions and Crop Water Requirements in Hyderabad, India Using Time Series Data

India Overview

Demographics

• Constitutional republic with 28 states, 8 union territories. Capital: New Delhi.

Cultural Heritage

 Home to diverse ethnic groups, hundreds of languages.

Historical Influence

 Islamic rule, European colonization (Portuguese, British). Independence in 1947, partitioned into India and Pakistan.

Geography and Climate:

• Tropical monsoon climate with diverse weather patterns.

Hyderabad Area

- Vibrant city in Telangana, semi-arid region.
- Diverse climatic influences affecting agriculture, economy, and daily life.

Problem Statement

Accurate weather prediction in Hyderabad.

Issues

Existing models fail to combine time series and geospatial data.

Impact

Poor agricultural planning and water management.

Advanced Need

model for reliable forecasts.

Provider

 International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)

Dataset

• Over 40 years of daily weather data (since 1978)

Parameters

Max/Min temperatures, Relative humidity (morning/afternoon),
Wind speed, Rainfall, Bright sunshine hours, Evaporation,
Radiation, Reference crop evapotranspiration (FAO56-ET)

Geospatial Data

- Longitude
- Latitude

Research Objectives

- Develop deep learning model for predicting future weather conditions.
- Identify significant seasonal and geographical variations in historical weather data
- Utilize K-means clustering for seasor classification in Hyderabad.

Research Questions

- How can a deep learning model be developed to predict future weather conditions, incorporating historical and geospatial data?
- What trends and correlations exist in the weather data over time and across different locations?
- How can seasonal variations in weather patterns in Hyderabad be effectively characterized and understood, considering the dynamic nature of climatic conditions?

Data Cleaning Process

Data Point

Seasons Clustering

There are three weather seasons in Hyderabad

Time series- Temperature

- Average Temperature shows seasonal trends
 - Apply SARIMA for machine learning analysis analysis.

Time series- Rain

- Rainfalls shows seasonal trends
 - Apply SARIMA for machine learning analysis .

Best Machine learning Model-Rainfall

- Mean Squared Error: 5.068
- This shows average squared difference between predicted and actual rainfall values.

Best Machine learning Model-Temperature

- Mean Squared Error of 0.90 in predicting rainfall
- This shows average squared difference between predicted and actual rainfall values.
- A lower MSE indicates a better fit

Deep Learning

Best Deep Learning Model for Temperature

- Model Architecture: Enhanced LSTM with three layers (100 units each) and dropout of 0.2 after each LSTM layer, followed by a dense output layer.
- **Training**: Optimized with Adam optimizer (learning rate=0.001), trained for 400 epochs, batch size of 16, and 20% validation split.

Metrics

• MSE: 1.17

• MAE: 0.83

• RMSE: 1.08

R2: 0.90

Best Deep Learning Model for Rainfall

- Model Architecture: Enhanced LSTM with three layers (100 units each), dropout of 0.2 after each LSTM layer, and a final dense layer.
- Training: Optimized with Adam optimizer (learning rate=0.001), trained for 200 epochs, batch size of 16, and 20% validation split.
- Metrics

• MSE: 4.47

• MAE: 1.37

• RMSE: 2.11

R2: 0.46

Key findings

Rainfall by Month

Peak Rainfall: June, July, August (>100 mm).

Dry Periods: Jan, Feb, Mar (minimal rainfall).

Temperature Trends

Warmer Months: Peak temperatures (up to 35°C) in May, June, July.

Cooler Months: Lower temperatures (<25°C) in Jan, Feb, Nov, Dec

Recommendations

Crop Selection: Plant heat-tolerant crops in warmer months; cooler-temperature crops in cooler months.

Irrigation: Increase frequency during warmer months; efficient systems for water management.

Planting: Sow before rains start (Apr) for rain-fed crops.

Water Conservation: Harvest rainwater during peak rainfall.

Deep Learning model for rain

- Enhanced LSTM with three layers (100 units each), dropout of 0.2 after each LSTM layer, and a final dense layer."
- Optimized with Adam optimizer (learning rate=0.001), trained for 200 epochs, batch size of 16, and 20% validation split

Deep Learning model for Temperature

- LSTM model-Three layers (100 units each) with 0.2 dropout after each LSTM layer.
- Optimized with Adam (Ir=0.001), trained 400 epochs, batch size 16, 20% validation split

Limitation of the study

Single Collection Point: Data from one location in Hyderabad may not generalize well across the region due to local weather variations and microclimates.

Temporal Variations: The model may not capture all temporal changes affecting weather patterns, like climate shifts and extreme events.

Data Quality: Accuracy is influenced by data completeness and potential biases, impacting the reliability of predictions.

Thank you

