A \(\) B "und" Schnittmenge \(\) A \(\) B "oder" Vereinigungsmenge \(\) A \(\) B "entweder" \(\) - A "nicht" \(2 \) Ganze Zahlen \(2 \) Ganze Zahle	
(a·x) = var. Kosten, (a) = var. Stückkosten, (+b) = Fixkosten $a = \frac{y2-y1}{x2-x1}$ TR: [data] x,y Werte eingeben [2nd]+[data], 4\$\text{\$\line{L}\$inReg enter,enter}	$=\frac{y-y1}{x-x1} \qquad \text{offenes Intervall} \qquad \qquad (a,b)=\{x\in\mathbb{R}\mid a\leq x\leq b\} \qquad \text{oder }]a,b[$ = Lösung
Ableitungen Bsp. $y = x^3 - 2x$ / $y' = 3x^2 - 2$ / $y'' = 6x$ halboffenes Intervall [a, b] = $\{x \in \mathbb{R} \mid a \le x < b\}$ oder [a, b] Steigung = $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{df}{dx}$ (Differential quotient) $f'(x) = \frac{df}{dx} = TR$: $\frac{d}{dx}$ ($f'(x) = \frac{df}{dx} = TR$: $\frac{d}{dx}$ (F) $f'(x) = \frac{df}{dx} = TR$: $\frac{d}{dx} = TR$: \frac{d}	
$f(x) = c$ $\Rightarrow f(x) = 0x+b$ $\Rightarrow f'(x) = 0$ $f(x) = x^{\frac{7}{4}}$ \Rightarrow $f'(x)$	$= \frac{7}{4} \cdot x^{\frac{7}{4} - \frac{4}{4}} = \frac{7}{4} \cdot x^{\frac{3}{4}} \qquad \qquad f(x) = x^n \implies f'(x) = n \cdot x^{n-1}$
2	$f(x) = x^{\frac{1}{2}} = \sqrt[2]{x^1}$ $f(x) = x^{-\frac{1}{2}} = \frac{1}{\sqrt[2]{x^1}}$
$f(x) = ax + b \implies f(x) = ax + b \implies f'(x) = a$ $f(x) = x^{-2} = \frac{1}{x^2}$	$f(x) = x^{\frac{2}{3}} = \sqrt[3]{x^2}$ $f(x) = x^{-\frac{2}{3}} = \frac{1}{\sqrt[3]{x^2}}$
Steigung \Rightarrow f'(x) berechnen \Rightarrow wert für x einsetzen Nullpunkte x/y berechnen \Rightarrow f'(x) berechnen \Rightarrow mit Steigung gleichsetzen und nach C Funktion berechnen \Rightarrow y berechnen (x in f(x) einsetzen) \Rightarrow Steigung berechnen (siehe Faktorregel \Rightarrow f(x) = c · g(x) \Rightarrow f'(x) = c · g'(x) Produkteregel \Rightarrow f(x) = v(x) · w(x) \Rightarrow v(x) = x^2	l= umformen ⇒ TR: poly-solv = x_1 / x_2 ⇒ je x_1 und x_2 in $f(x)$ einsetzen = y_1 / y_2 e oben) ⇒ in ax+b, x und a eintragen und ausrechnen, differenz zwischen Resultat und y = b, $v'(x) = 2x \qquad f'(x) = v'(x) \cdot w(x) + v(x) \cdot w'(x)$
w(x) = x-1	$W'(x) = 1 \qquad f'(x) \Rightarrow 2x \cdot (x-1) + x^2 \cdot 1$
Quotientenregel \Rightarrow $f(x) = \frac{v(x)}{w(x)}$ $v(x) = 2x+1$ $w(x) = x-1$	$v'(x) = 2 f'(x) \Rightarrow \frac{v'(x) \cdot w(x) - v(x) \cdot w'(x)}{w(x)^2}$ $w'(x) = 1 f'(x) \Rightarrow \frac{2 \cdot (x-1) - (2x+1) \cdot 1}{(x-1)^2}$
Kettenregel \Rightarrow $f(u_x) = \sqrt{x^2 + 1}$ $f(u) = \sqrt{u}$ $f'(u) = u'(x) = u'(x)$	$f'(x) \implies f'(u) \cdot u'(x) (y = f(x) = f(u(x)))$ $f'(x) \implies \frac{1}{2 \cdot \sqrt{u}} \cdot 2x = \frac{x}{\sqrt{u}} = \frac{x}{\sqrt{x^2 + 1}}$ $(Bsp. \ f(x) = (x^3 + 1)^{10} = f'(x) = 10 (x^3 + 1)^9 \cdot 3x^2)$
$f'(x) = \text{const} \cdot f(x) \Rightarrow \text{const} = \frac{f'(x)}{f(x)} \Rightarrow \text{TR: [table] 2} \Rightarrow \frac{d/_{dx} (f) x}{f(x)}$	
Differential (df) $\int f'(x) = \frac{df}{dx} \implies df = f'(x_0) \cdot dx$	(angenäherte Funktionsänderung)
$\Delta f \Rightarrow Bsp. \Delta k = R$	$k_{(x_{x_0} \mp dx)} - k_{(x_0)}$ (exakte Funktionsänderung)
Exponential funktion $f(x)$ \Rightarrow $y = k \cdot a^x (y=a^x \text{ hat } \underline{\text{kein}})$ Able itungen: $f(x) = e^x$ \Rightarrow $f'(x) = e^x$ \Rightarrow $f'(x) = e^{-x} \cdot (-1)$ $f(x) = a^x$ \Rightarrow $f'(x) = \ln(a) \cdot a^x$	e Nullstelle!) nur e^x bleibt falls $e^{x+\cdots}=e^u$ und Kettenregel anwenden)
${\color{red}\textbf{Logarithmusfunktion}} \hspace{0.1cm} \hspace{0.1cm} \textbf{Exponential funktion} \hspace{0.1cm} f, \hspace{0.1cm} \textbf{Logarithmusf}$	unktion f^{-1} (Umkehrfunkton von Exponentialfunktion)
X	$f(x) = \ln(1x)$ \Rightarrow $f'(x) = \frac{1}{x} \cdot x' = \frac{1}{x} \cdot 1$
$x \cdot \ln(a)$	wenn etwas anderes wie x, Kettenregel anwenden!)
$f(x) = \lg(x)$ \Rightarrow $f'(x) = \frac{1}{x \cdot \ln(10)}$	
Basis a = 3 $y = f(x) = 3^x$ $x = f^{-1}(y) = log_3(y)$	$(\lg b^n = n \cdot \lg b)$
• • • • • • • • • • • • • • • • • • • •	10-er Logarithmus) ($\lg \sqrt[v]{b^u} = \frac{u}{v} \cdot \lg b$)
Basis a = e	natürlicher Logarithmus)

Eigenschaften: \Rightarrow Der Graph von f schneidet die y-Achse im Punkt P ($0/a_0$)

⇒ Der Graph von f schneidet die x-Achse höchstens n Mal

(Eine Polynomfunktion von Grad n besitzt höchstens n Nullstellen)

 \Rightarrow Grad der Polynomfunktion ergibt sich aus höchstem Exponenten $x^{n \, (Grad \, der \, Polynomfunktion)}$

⇒ Der Graph von f schneidet bei ungeradem n die x – Achse min. einmal! (Polynomfunktion von ungeradem Grad besitzt min. eine Nullstelle!)

quadratische Funktion $f(x) = ax^2 + bx + c$ $(a \ne 0) \Rightarrow$ Polynomfunktion 2. Grades

a > 0 die Parabel ist nach oben geöffnet

a < 0 die Parabel ist nach unten geöffnet

P (0/c) die Parabel schneidet die y-Achse

Scheitelpunkt höchster bzw. tiefster Punkt der Parabel

Scheitelpunkt S

$$S_x = -\frac{b}{2a}|$$
 $S_y = c - \frac{b^2}{4a}$ resp. $\frac{4ac - b^2}{4a}$

Nullstellen $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \quad (ax^2 + bx + c = 0)$

Diskriminante $D = b^2 - 4ac$

D < 0

D > 0 zwei versch. reelle Lösungen

D = 0 eine Lösung

" 1

• Der Graph schneidet die y-Achse im Punkt P₁(0/12.5) (TR: f(0))

Nullstellen: $x_1 = -2.5$ $x_2 = 1$ $x_3 = 5$ (TR: poly-solv lokales Maximum zwischen x = -2 und x = 0 (TR: table)

• lokales Minimum zwischen x = 2 und x = 4 resp. zwischen x = 3.2 und x = 3.4

Tokales Minimum zwischen x = 2 und x = 4 resp. zwischen x = 3.2 und x = 3.4 (TR: table)

Hyperblen | $y = x^{-n} = \frac{1}{x^n}$ | n gerade \Rightarrow Hyperbel im pos. Bereich, n ungerade \Rightarrow Hyperbel im neg. Bereich |

def. Asymptote ⇒ Gerade, der sich der Graph von f gegen das Unendliche hin beliebig ändert

keine reelle Lösung ($\sqrt{<0}$) = keine Lösung

horizontale Asymptote
$$\Rightarrow \frac{4x....}{2x....} \Rightarrow 2 \mid \underline{\text{keine}} \text{ horiz. Asymptote} \Rightarrow \frac{.x^2....}{.x....} \mid x\text{-Achse = Asymptote} \Rightarrow \frac{.x...}{.x^2...}$$

vertikale Asymptote $\Rightarrow \frac{4x....}{2x+3} \Rightarrow 2 \cdot -1,5 + 3 = 0 \Rightarrow -1.5 \mid \text{(Brüche gleichnamig machen = 2 + } \frac{4}{x} = \frac{2x+4}{x} \text{)}$

Engelfunktionen | $Y(x) = \frac{a \cdot X + b}{X + c}$ | $a \Rightarrow$ horizontale Asymtote, $X \Rightarrow x$ - Wert (Y = Einkommen), $Y \Rightarrow y$ - Wert (C = Konsum) |

 $c \Rightarrow kann man berechnen wenn man einen beliebigen Punkt der Funktion für x / y einsetzt$

$$c = \frac{a \cdot X + b - Y \cdot X}{Y}$$
 b \Rightarrow wenn $a \cdot X + b = 0$, ist $Y = 0$ ($\frac{0}{X + c} = 0$) | bei $Y = 0$ x-Wert (vom Punkt wo $y = 0$) einsetzen (X)

Zinsformeln | $K_n = K_0 \cdot (1 + \frac{p}{100})^n$ | $K_0 = \text{Anfangskapital (Kapital zum Zeitpunkt 0) / PV present value (Barwert)}$ $K_n = K_0 \cdot (1 + i)^n$ | $K_N = \text{Kapital nach n Jahren / FV future value}$

 $1+i = \sqrt[n]{\frac{K_n}{K_0}} \qquad \qquad p = \text{Jahreszinsfuss}$ $n = log_{(1+i)} \cdot (\frac{K_n}{K_0}) \qquad \qquad n = \text{Anzahl Jahre}$

 $K_0 = \frac{K_n}{(1+i)^n} = K_n \cdot (1+i)^{-n}$ i = interest rate i = $\frac{p}{100}$

Potenzfunktionen | $y = a \cdot x^n$ (Potenfunktion n-ten Grades)

n gerade Beispiele: $f_1: x \rightarrow y = x^2$ $f_2: x \rightarrow y = x^4$

n ungerade Beispiele: $f_1: x \to y = x^3$ $f_2: x \to y = x^5$

Algebra | $a^{m} \cdot a^{n} = a^{m+n}$ $(a+b)^{2} = a^{2} + 2ab + b^{2}$ $\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ $\log(a \cdot b) = \log(a) + \log(b)$ $\log(a \cdot b)^{n} = a^{n} \cdot b^{n}$ $(a-b)^{2} = a^{2} - 2ab + b^{2}$ $a \cdot \sqrt[n]{b} = \sqrt[n]{a^{n} \cdot b}$ $\log\frac{a}{b} = \log(a) - \log(b)$ $\log\frac{a}{b} = \log(a) - \log(b)$

Monotonie

- eine Funktion die überall eine positive Steigung besitzt, wächst auch überall streng monoton (1) und umgekehrt

wenn $x_2 > x_1$ gilt: streng monoton steigend $\uparrow \Rightarrow f(x_2) > f(x_1)$ | $f'(x) > 0 \Rightarrow f$ ist streng monoton wachsend $(f \uparrow)$ streng monoton fallend $\downarrow \Rightarrow f(x_2) < f(x_1)$ | $f'(x) < 0 \Rightarrow f$ ist streng monoton fallend $(f \downarrow)$

Krümmungsverhalten

 $f''(x) > 0 \Rightarrow f' \text{ ist streng monoton wachsend } (f \uparrow) \Leftrightarrow f \text{ ist konvex gekrümmt}$ $f''(x) < 0 \Rightarrow f' \text{ ist streng monoton fallend } (f \downarrow) \Leftrightarrow f \text{ ist konkav gekrümmt}$

Extremwerte

relatives (lokales) Maximum / Minimum ⇒ an einer bestimmten Stelle absolutes (globales) Maximum / Minimum ⇒ höchster / tiefster Punkt im gesamten Definitionsbereich

wenn $f'(x_0) = 0$ gilt: ein realtives **Minimum**, wenn ausserdem gilt: ein realtives **Maximum** wenn ausserdem gilt:

ein realtives **Maximum** wenn ausserdem gilt: $f''(x_m) < 0$ (zweite Ableitung!!) $f(x) = \frac{1}{6}x^3 - \frac{1}{6}x^2 + 2x + 3 \implies f'(x) = 0.5x^2 - 2.5x + 2 = 0$ / sationäre Stellen, x = 1, x = 4 (poly-solv)

f''(1) = 1 - 2.5 = < 0 \Rightarrow f(x) hat ein relatives Maximum an der Stelle x=1 f''(4) = 4 - 2.5 = > 0 \Rightarrow f(x) hat ein relatives Minimum an der Stelle x=4

 $(x_{max} = f_{(x_m)})$ Einheit (bspw. ME) nicht vergessen!

Wendepunkte

Wendepunkt = Nahtstelle zw. konvexem und konkavem Funktionsbereich (Wechsel Linkskrümmung / Rechtskrümmung oder umgekehrt)

Wendepunkt von f = relative Extrema von f'

- ⇒ in einem konkav / konvex Wendepunkt ist f' minimal
- ⇒ in einem konvex / konkav Wendepunkt ist f' maximal

f hat einen Wendepunkt wenn gilt:

 $f''(x_w) = 0$ und zusätzlich

 $f'''(x_w) \neq 0$

 \Rightarrow konkav / konvex - Wendepunkt $f''(x_w) = 0$ und $f'''(x_w) > 0$

 \Rightarrow konvex / konkav - Wendepunkt $f''(x_w) = 0$ und $f'''(x_w) < 0$

Bsp. $f(x) = \frac{1}{24}x^4 - \frac{1}{3}x^3 + \frac{3}{4}x^2 + 1 \implies f'(x) = \frac{1}{6}x^3 - x^2 + \frac{3}{2}x$ $f''(x) = 0.5 x^2 - 2x + 1.5$ $\Rightarrow 0.5 x^2 - 2x + 1.5 = 0 / x = 1, x = 3 \text{ (poly-solv)}$ f'''(x) = x - 2 $f'''(1) = 1 - 2 = < 0 \implies \text{konvex-konkaver Wendepunkt bei } x = 1$ $f'''(3) = 3 - 2 = > 0 \implies \text{konkav-konvexer Wendepunkt bei } x = 3$

Bemerkung 6.2.35: Ein Wendepunkt mit waagerechter Tangente (siehe Abb. 6.2.34, dritte Spalte) heißt **Sattelpunkt (auch: Stufenpunkt, Terassenpunkt).

f fällt mit negativer, abnehmender Stei-

gungsrate (nimmt stärker ab als linear)

f wächst degressiv (oder unterlinear)

(mit abnehmender positiver Steigungsrate)

Ausserdem ist f'(3) = 0. Der Wendepunkt bei X = 3 ist also ein Sattelpunkt.

Lineare Gleichungssysteme \Rightarrow TR: sys-solv

Funktionsgleichung = ?

Bsp. $K_{(x)} = ax^3 + bx^2 + cx + d$ 1. \Rightarrow Fixkosten betragen 16 GE

2. \Rightarrow Gesamtkosten bei Produktion von 1 ME betragen 38 GE

3. \Rightarrow Gesamtkosten bei Produktion von 4 ME betragen 56 GE

4. \Rightarrow Grenzkosten bei Produktion von 1 ME betragen 15 GE/ME $K'_{(x)} = 3ax^2 + 2bx^1 + c$ 1. \Rightarrow $K_{(f)} = K_{(0)} = 16$ \Rightarrow d = 16

2. \Rightarrow $K_{(1)} = 38$ \Rightarrow a1³ + b1² + c1 + d = 38

3. \Rightarrow $K_{(4)} = 56$ \Rightarrow a4³ + b4² + c4 + d = 56

4. \Rightarrow $K'_{(1)} = 15$ \Rightarrow 3a1² + 2b1¹ + c = 15

1a + 1b + 1c = 22 | 64a + 16b + 4c = 40 | $\Rightarrow K_{(x)} = x^3 - 9x^2 + 30x + 16$ | 3a + 2b + 1c = 15 | (wenn bsp. c fehlt c =0 in TR eingeben!)

⇒ 16 für d einsetzen