Operating system

Assignment 2

Part E

1. Consider the following processes with arrival times and burst times.	1. (Consider	the	follow	ing	processes	with	arrival	times	and	burst	tim	es
---	------	----------	-----	--------	-----	-----------	------	---------	-------	-----	-------	-----	----

Process Arrival Time Burst Time						
P1 0 5						
P2 1 3						
P3 2 6						

Calculate the average waiting time using First-Come, First-Served (FCFS) scheduling.

Answer:

Process	Arrival	Burst Time	Waiting	Completion	Turnaround
	Time		time	time	time
P1	0	5	0	5	5
P2	1	3	4	8	7
P3	2	6	6	14	12
Avg times-			3.3		8

Gantt chart

	P1	P2	Р3
0	5	8	3 14

Calculations:

Average waiting time = sum of all process waiting time / no of process

$$= 0+4+6/3$$

$$= 3.3$$

$$=5+7+12/3$$

$$= 8$$

2. Consider the following processes with arrival times and burst times:

| Process | Arrival Time | Burst Time |

|--|--|--|

| P1 | 0 | 3 |

| P2 | 1 | 5 |

| P3 | 2 | 1 |

| P4 | 3 | 4 |

Calculate the average turnaround time using Shortest Job First (SJF) scheduling.

Answers:

Process	Arrival	Burst Time	Waiting	Completion	Turnaround
	Time		time	time	time
P1	0	3	0	3	3
P2	1	5	7	13	12
P3	2	1	1	4	2
P4	3	4	1	8	5
			2.25		5.5

Gantt Chart

	P1	Р3	P4	P2	
0	3	4	8		13

Calculations:

Average waiting time = sum of all process waiting time / no of process

$$=0+7+1+1/4$$

$$= 2.25$$

$$=3+12+2+5/4$$

$$= 5.5$$

3. Consider the following processes with arrival times, burst times, and priorities (lower number indicates higher priority):

$ \ Process\ \ Arrival\ Time\ \ Burst\ Time\ \ Priority$
P1 0 6 3
P2 1 4 1
P3 2 7 4
P4 3 2 2

Calculate the average waiting time using Priority Scheduling.

Answers:

Process	Arrival Time	Burst Time	Priority	Waiting time	Completion time	Turnaround time
P1	0	6	3	0	6	6
P2	1	4	1	5	10	9
Р3	2	7	4	11	20	18
P4	3	2	2	7	13	10
average				5.75		10.75

Gantt Chart:

	P1	P2	P4	Р3
0	ϵ	5 10) 13	20

Average waiting time = sum of all process waiting time / no of process

$$=0+5+11+7/4$$

$$= 5.75$$

$$= 6+9+18+10/4$$

$$= 10.75$$

4. Consider the following processes with arrival times and burst times, and the time quantum for Round Robin scheduling is 2 units:

Process Arrival	Time Burst Time
	-
P1 0 4	

| P2 | 1 | 5 |

| P3 | 2 | 2 |

| P4 | 3 | 3 |

Calculate the average turnaround time using Round Robin scheduling.

Answer:

Process	Arrival	Burst Time	Waiting	Completion	Turnaround
	Time		time	time	time
P1	0	4	6	10	10
P2	1	5	8	14	13
P3	2	2	2	6	4
P4	3	3	7	13	10
Average			5.75		9.25

Gantt Chart:

	P1	P2	Р3	P4	P1	P2	P4	P2
0	2		4 6	8	10) 1	2 1:	3 14

calculations

Average waiting time = sum of all process waiting time / no of process

$$=6+8+2+7/4$$

$$= 5.75$$

$$= 10+13+4+10/4$$

$$= 9.25$$

5. Consider a program that uses the fork() system call to create a child process. Initially, the parent process has a variable x with a value of 5. After forking, both the parent and child processes increment the value of x by 1. What will be the final values of x in the parent and child processes after the fork() call?

Value of x will be 6