

Aula 1- Condicionamento de Sinais

Prof. Danilo Reis

Avaliação:

- 40% Prova;
 - 3 provas por bimestre;
 - Nota maior das duas;
- 30% Notas laboratórios(equipes 2-3);
- 30% Projeto Final (equipes 2-3).

Histórico máquinas automáticas

- China antiga
- Heron de Alexandria (10-70 DC)(Dispositivos automaticos/ Vapor e agua);
- Telegrafo (1 dispositivo com sinais elétricos)

Primeiras Máquinas Automáticas

Máquinas Automática Evolução das Tecnologias

- Hidráulica/ vapor / mecânica (antiguidade)
- Mecânica/ Vapor (Revolução Industrial)
- Eletromecânica (Inicio seculo 20);
- Eletrônica (Segunda guerra mundial);
- Nanotecnologia (Inicio seculo 21);
- Biológica;

Diagrama conceitual de um sistema de Controle abstrato

É um dispositivo ou conjunto de dispositivos com a finalidade de gerenciar, comandar, dirigir ou regular o comportamento de outros dispositivos ou sistemas físicos.

Sensores

Um **sensor** é um <u>dispositivo</u> que responde a um estímulo físico de maneira específica e mensurável

Tipos sensores:

- Térmicos;
- Mecânicos;
- Óticos

Sensores Térmicos

- RTD (Resistor Temperature Detectors)
- Termistores (Resistores feitos com semi-condutores)
- Termopares;
- Sensores em circuitos integrados

Sensores Mecânicos

- Sensores de deslocamento e de posição;
 - Potenciométrico
 - Capacitivo
 - Indutivo
 - Relutância variável
- Sensores de Nível
 - Mecânico
 - Elétrico
 - Ultrasônico
 - pressão
- Sensores de Tensão (strain gauge)
 - Tração
 - o Compressão
 - Cisão
- Sensores de Movimento
 - Velocidade
 - Aceleração

Sensores óticos

Módulo Aquisição de Dados

Módulo responsável por adquirir, formatar e converter os dados gerados pelos sensores para um formato que possa ser tratado pelo módulo de controlador.

Módulo de Controle

Módulo responsável gerar as entradas para os módulos atuadores calculando estes valores utilizando um algoritmo pré-definido e tendo como entrada os dados informados pelo módulo de aquisição de dados, e valores configurados no controlador.

Módulo Atuador

Módulo atuador é responsável por interagir diretamente com o sistema ou dispositivo a ser controlado. Esta interação pode ser de diversas formas tais como: mecânica; térmica; elétrica; química ou qualquer meio que modifique o sistema controlado na direção do estado desejado pelo controlador.

Sinal elétrico

Pode-se entender a expressão sinal elétrico de duas maneiras:

- Tomando-se dois pontos carregados eletricamente, chamase **sinal elétrico** a variação na<u>diferença de potencial</u> (ou tensão) entre estes pontos no decorrer do tempo;
- Analisando a <u>corrente</u> que passa por um condutor, chamamos de **sinal elétrico** a variação da corrente no decorrer do tempo.

Características do sinal

- Amplitude(valor médio, valor máximo, valor eficaz);
- Frequência(Frequência máxima, mínima);
- Fase;

O que é um condicionamento de sinal

.É o processo de adaptar o sinal gerado pelos sensores permitindo que o mesmo possa ser tratado pelo módulo de controle.

Categorias de Condicionamento de Sinais

- Mudança de nível;
- Linearização;
- Conversão;
- Isolação;
- Filtragem;
- Casamento de Impedância;

Mudança de Nível

- Atenuar ou amplificar sinal
- Pontos relevantes:
 - Impedância de entrada do amplificador
 - Resposta em frequência

Linearização

- Sensores com características não lineares;
- Passam por amplificadores não lineares para gerar uma saída linear;

Exemplo:

Figura 4.2) Exemplo de uma saída não linear de um sensor

Figura 4.3) Saida linearizada

Conversão

O sinal proveniente do sensor deve ser convertido em um outro formato. Isto é, converte um tipo de variação eleúrica e outra. Por exemplo :

- Converter um sisnal analógico em um sinal digital tipo PWM;
- Quando o sensor esta a uma distância razoavel pode-se fazer uma modulação do sinal AM/FM;
- Formatar para um padrão pre-definido;

Isolação

- .A isolação se faz necessária por vários motivos:
- A tensão no sensor é muito maior que o valor máximo tolerável no circuito de condicionamento;
- Proteção elétrica do circuito de condicionamento (opto-acopladores);
- -Não alterar o valor da medida no sensor, alguns sensores são muito sensíveis, deste modo, a entrada do circuito de condicionamento deve ter uma impedância muito elevada para não influenciar na medida do sensor;

Filtragem

A filtragem de sinais é especialmente importante nos sistemas digitais para filtrar as frequências das harmonicas superiores derivadas do processo de amostragem (frequências de Nysquist), ou filtros anti-aliasing;

Outro fator importante são ruídos do ambientes que devem ser filtrados para evitar interferência na medida dos sinais. Este ruídos são da rede (60 Hz), ruídos de comutação de motores e etc.

Casamento de Impedância

.Este tipo de condicionamento de sinal é relevante principalmente quando a impedância de saída do sensor combinada com a impedância de entrada do condicionador podem gerar erros na medida do sinal. Normalmente este tipo de categoria é importante quando o sinal de entrada tem frequência elevada.

Referências