Intro to Modern Algebra: Homework #2

Due on November 2 at 9:30am

Professor Lorenz 9:30-11:00

Sam Cook

Problem 6

Which of the following subsets of $\mathbb{R}[x]$ are subrings of $\mathbb{R}[x]$.

- a All polynomials with constant term of 0_R
- b All polynomials of degree 2.

Solution

- a) This is a subring. We will show that it is a nonempty subset closed under subtraction and multiplication. First, zero is a polynomial with the constant term 0_R , so it is a nonempty subset. Next, consider polynomials $a, b \in \mathbb{R}[x]$. Then if we subtract them and 0_R , we get $(a + 0_R) (b + 0_R) = (a b) + (0_R 0_R) = a b$, and since $a, b \in R$, it is closed under subtraction. Similarly for multiplication, we get $(a + 0_R) * (b + 0_R) = (ab) + (0_R * b) + (0_R * a) + 0_R = ab$, so it is similarly closed under multiplication. Therefore, it is a subring of $\mathbb{R}[x]$.
- b) This is not a subring because it is not closed under multiplication. Consider the polynomials x^2 and $x^2 + 1$. When we multiply them, $x^2 * (x^2 + 1) = x^4 + x^2$, which is not a degree 2 polynomial, and therefore it is not closed under multiplication and cannot be a ring. Furthermore, 0_R is not of degree 2 and therefore is not in the subset.

Problem 20

Let $D: \mathbb{R}[x] \to \mathbb{R}[x]$ be the derivative map defined by

$$D(a_0 + a_1x + a_2x^2 + \dots + a_nx^n) = a_1 + 2a_x + 3a_3x^2 + \dots + na_nx^{n-1}$$

Is D a homormorphism of rings? An isomorphism?

Solution

This is neither a homomorphism of rings nor an isomorphism. We will prove this by showing D does not preserve multiplication. Consider $x^2, x^3 \in \mathbb{R}[x]$. When we multiply them, $x^2 * x^3 = x^5$. Now, we will apply D and multiply them. $D(x^2) * D(x^3) = 2x * 3x^2 = 6x^3 \neq x^5$. Therefore, D does not preserve multiplication and cannot be a homomorphic or isomorphic.

Problem 13

Prove Theorem 4.10.

Theorem 4.10

Let \mathbb{F} be a field and $a(x), b(x), c(x) \in \mathbb{F}[x]$. If a(x)|b(x)c(x) and a(x) and b(x) are relatively prime, then a(x)|c(x).

Solution

Assume \mathbb{F} be a field and $a(x), b(x), c(x) \in \mathbb{F}[x]$, a(x)|b(x)c(x), and a(x) and b(x) are relatively prime. Then $\gcd(a(x),b(x))=1$, by the definition of relatively prime. But then, by Theorem 4.8, this means that for polynomials $u(x), v(x) \in F[x]$,

$$1 = a(x)v(x) + b(x)u(x).$$

We can multiply this equation by c(x) to get that

$$c(x)a(x)v(x) + c(x)b(x)u(x) = c(x)$$

Since a(x)|b(x)c(x), there exists some $z(x)\epsilon(F)[x]$ such that a(x)z(x)=b(x)c(x). We can substitute this into the above equation to get

$$c(x)a(x)v(x) + a(x)z(x)u(x) = c(x)$$

and we can then factor out a(x) to get

$$a(x)[c(x)v(x) + z(x)u(x)] = c(x)$$

Since $c(x), v(x), z(x), u(x) \in \mathbb{F}[x], a(x) | c(x)$.

Problem 12

Express $x^4 - 4$ as a product of irreducibles in $\mathbb{Q}[x]$, $\mathbb{R}[x]$, and in $\mathbb{C}[x]$.

Solution

First, we will factor this into a product of irreducibles in $\mathbb{C}[x]$. In $\mathbb{C}[x]$,

$$x^4 - 4 = (x - i\sqrt{2})(x + i\sqrt{2})(x - 2)(x + 2)$$

These factors are all irreducible because they are all degree 1, both complex numbers and irrational numbers are in \mathbb{C}

In $\mathbb{R}[x]$,

$$x^4 - 4 = (x^2 + 2)(x + \sqrt{2})(x - \sqrt{2})$$

In this case, $(x+\sqrt{2})$ and $(x-\sqrt{2})$ are factors because they are degree 1 with coefficients in the real numbers. $(x+\sqrt{2})$ is only irreducible in $\mathbb{C}[x]$ because it has complex coefficients. In $\mathbb{Q}[x]$,

$$x^4 - 4 = (x^2 + 2)(x^2 - 2)$$

The first factor is irreducible because if it were not irreducible, it would be reducible in $\mathbb{R}[x]$. The second factor is irreducible because it only factors into polynomials with irrational coefficients, which, by definition, are not in the \mathbb{Q}

Problem 4

- a For what value of k is x-2 a factor of $x^4-5x^3+5x^2+3x+k$ in $\mathbb{O}[x]$
- b For what value of k is x + 1 a factor of $x^4 + 2x^3 3x^2 + kx + 1$ in $\mathbb{Z}_5[x]$

Solution

a) For k = -2 is (x - 2) a factor of $x^4 - 5x^3 + 5x^2 + 3x + k$. This is simply to solve for because (x - 2) is in the form of a root, so we can evaluate our polynomial at x = 2 and solve for k.

$$2^4 - 5x^3 + 5x^2 + 3x - k = 0 \Rightarrow 16 - 40 + 20 + 6 = -k \Rightarrow -2 = k$$

b) For k = 3 is x + 1 a factor of $x^4 + 2x^3 - 3x^2 + kx + 1$ in $\mathbb{Z}_5[x]$. Like in part a, since (x + 1) is in the form of a root, we can evaluate our polynomial at x = -1 and solve for k.

$$(-1)^4 + 2(-1)^3 - 3(-1)^2 + k(-1) + 1 = 0 \Rightarrow 1 - 2 - 3 - k + 1 = 0 \Rightarrow 2 = k + 5 \Rightarrow k = 3$$

Problem 5

Show that $x - 1_F$ divides $a_n x^n + ... + a_2 x^2 + a_1 x + a_0$ in $\mathbb{F}[x]$ if and only if $a_0 + ... + a_n = 0_F$. Solution

 \Rightarrow Assume that $x-1_F$ divides $a_nx^n+\ldots+a_2x^2+a_1x+a_0$ in $\mathbb{F}[x]$. Then 1_F is a root of $a_nx^n+\ldots+a_2x^2+a_1x+a_0$, so this means that $a_n1^n+\ldots+a_21^2+a_1+a_0=0$. Since 1 to any power is 1, this simplifies to $a_n+\ldots+a_2+a_1+a_0=0$

 \Leftarrow This proof is simply the above proof in reverse. Assume that $a_0 + ... + a_n = 0_F$ in $\mathbb{F}[x]$. This can be rewritten as $a_0 1 + ... + a_n 1 = 0_F$, or $a_0 1^0 + ... + a_n 1^n = 0_F$. This is the form of a polynomial root evaluated at 1, so x - 1 is a factor.

Problem 14

a Suppose $r, s \in \mathbb{F}$ are roots of $ax^2 + bx + c \in \mathbb{F}[x]$ (with $a \neq 0_F$). Use the Factor Theorem to show that $r + s = -a^{-1}b$ and $rs = a^{-1}c$.

Solution

Assume $r, s \in \mathbb{F}$ are roots of $ax^2 + bx + c \in \mathbb{F}[x], a \neq 0_F$. Then, by the Factor Theorem,

$$ax^{2} + bx + c = (x - r)(x - s)q(x)$$

We know that $q(x) = 1_F$, because $ax^2 + bx + c$ is degree 2, and we already have two factors. We can express $ax^2 + bx + c$ as it's equivilent monic associate by multiplying by a^{-1} . We then have

$$a^{-1}ax^{2} + a^{-1}bx + a^{-1}c = (x - r)(x - s)$$

Now, we can multiply the two factors together to get

$$x^{2} + a^{-1}bx + a^{-1}c = x^{2} - (r - s)x + rs$$

Therefore, since polynomials are equivalent when all of their coefficients are equivealent, we have that $a^{-1}b = r - s$, or $-a^{-1}b = r + s$, and $a^{-1}c = rs$.

Problem 18

Let $\varphi : \mathbb{C} \to \mathbb{C}$ be an isomorphism of rings such that $\varphi(a) = a$ for each $a \in \mathbb{Q}$ Suppose $r \in \mathbb{C}$ is a root of $f(x) \in \mathbb{Q}[x]$. Prove that $\varphi(r)$ is also a root of f(x).

Solution

Since f is a polynomial, we can express it as

$$a_0 + a_1 x + \cdots + a_n x^n$$

Now, r is a root, so we can add r to our polynomial by writing it as

$$a_0 + a_1 r + \dots + a_n r^n = 0$$

We can apply φ to the entire equation,

$$\varphi(a_0 + a_1r + \dots + a_nr^n) = \varphi(0)$$

and since it is an isomorphism of rings, it preserves addition and 0, so

$$a_0 + a_1 \varphi(r) + \dots + a_n \varphi(r^n) = 0$$

This is the definition of roots of an equation, and therefore, $\varphi(r)$ is also a root of f.

Problem 19

We say that $a \in \mathbb{F}$ is a multiple root of $f(x) \in \mathbb{F}[x]$ if $(x-a)^k$ is a factor of f(x) for some $k \geq 2$.

- a Prove that $a \in \mathbb{R}$ is a multiple root of $f(x) \in \mathbb{R}[x]$ if and only if a is a root of both f(x) and f'(x).
- b If $f(x) \in \mathbb{R}$ and if f(x) is relatively prime to f'(x), prove that f(x) has no multiple root in \mathbb{R}

Solution

a)

 \Rightarrow Assume that $a \in \mathbb{R}$ is a multiple root of $f(x) \in \mathbb{R}[x]$. By definition of a multiple root, $(x-a)^k$ is a factor of $f, k \geq 2$, and we can write $f(x) = (x-a)^k * g(x)$ for some $g(x) \in \mathbb{F}[x]$. If we differentiate this function, since $k \geq 2$,

$$f'(x) = k(x-a)^{k-1}g(x) + g'(x)(x-a)^k$$

$$f'(x) = (x-a)[k(x-a)^{k-2}g(x) + g'(x)(x-a)^{k-1}]$$

Therefore, x - a is a factor of f'(x), the derivative of f(x), and a is a root of f'(x).

 \Leftarrow Assume that a is a root of both f(x) and f'(x). Then we can represent f(x) and f'(x) as

$$f(x) = (x - a)g(x)$$
$$f'(x) = (x - a)h(x)$$

for some $g(x), h(x) \in \mathbb{F}[x]$. We can differntiate the first equation as

$$f'(x) = (x - a)g'(x) + g(x)$$

which we can then substitute into the equation above for f'(x) to get

$$(x - a)h(x) = (x - a)g'(x) + g(x)$$
$$(x - a)h(x) - (x - a)g'(x) = g(x)$$
$$(x - a)[h(x) - g'(x)] = g(x)$$

Finally, we can substitute this equation for g(x) into our first equation and show that

$$f(x) = (x - a) * (x - a)[h(x) - g'(x)]$$

$$f(x) = (x - a)^{2}[h(x) - g'(x)]$$

Therefore, a is a multiple root of f(x).