

Predicting moisture content and bulk density of various grains from their dielectric properties

Zeenat Islam*, Dr. Hussein Gharakhani+, Dr. Samir Trabelsi§

* Department of Computer Science and Engineering,

+Department of Agricultural and Biological Engineering

§USDA-Agricultural Research Service

Problem Statement

- Moisture content of grains is a critical variable in the buy-sell process to monitor quality production and crop analysis.
- Water's polar nature leads to correlate microwave frequencies and dielectric properties of moisture-containing materials.
- These properties can contribute to calculate moisture content of grains using calibration equations and non-destructive 'free-space' transmission techniques.
- Nevertheless, there are errors associated with calibration-based methods which can be further reduced.

The main objective of this investigation is to use machine learning and Al-based algorithms to predict moisture content from the dielectric properties measured at a given frequency.

Objectives

Here are the three situations that have been explored:

- 1. Frequency and bulk density are known.
 - Input: Dielectric properties, Frequency and bulk density
 - Output: Moisture content
- 2. Frequency is known. Bulk density is unknown.
 - Input: Dielectric properties, Frequency
 - Output: Moisture content and bulk density
- 3. Frequency is known. Bulk density is unknown.
 - Input: Dielectric properties and Frequency
 - Output: Moisture content

Overview of work done

- 1. Literature review
- 2. Selection of ML/AI based algorithm
- 3. Dataset pre-processing
- 4. Workstation setup to incorporate GPU usage
- 5. Implementation
- 6. Experiments with variants of model
- 7. Poster preparation

Literature Review

- Measurement Techniques of dielectric properties
 - Free-space method
 - Non-destructive and non-contact method
 - Calibration techniques
 - Useful for microwave frequencies > 3GHz, where ionic conductivity has no effect and there are no bound-water-related relaxations
- Prediction-based approaches
 - ANN (Bartley et al, 1998)
 - PCA-SVR (Julrat, Trabelsi, 2021)
 - DNN with Batch Normalization (Zhang et al, 2020)

Selection of algorithm

- Deep Neural Networks (DNNs)
 - More hidden layers compared to ANNs
 - Existing works
 have added batch
 normalization after
 each hidden layer
 - Our findings: Results were better without it

Fig: Schematic used in [1]

[1] Zhang, J., Du, D., Bao, Y., Wang, J., & Wei, Z. (2020). Development of multifrequency-swept microwave sensing system for moisture measurement of sweet corn with deep neural network. *IEEE Transactions on Instrumentation and Measurement*, 69(9), 6446-6454.

Dataset preprocessing

- Missing data handled, e.g.

- Dataset converted to one file per grain type
 - Features:
 - Variety
 - Frequency
 - Depth (cm)
 - Moisture Content
 - Density
 - Attenuation
 - Phase
 - Phase (corrected)
 - Permittivity (real)
 - Permittivity (imaginary)

Visualising the dataset

- Wheat (806) Sorghum (399)
- Oats (485)
- Soybeans (571)
- Barley (366)
- Corn (1339)

- A larger value indicates stronger correlation
- Observation:

Weaker correlation of Bulk Density with dielectric properties

Methodology

Model Variants explored

I: Prediction of ONE target

(Moisture Content or Bulk Density)

II: Prediction of TWO targets

(Moisture Content + Bulk Density) : Separate Output Layers

III: Prediction of TWO targets

(Moisture Content + Bulk Density) : Single Output Layer

Running models with different parameters

- Train-test ratio
- # of hidden layers
- # of units per hidden layer
- Batch Normalisation
- Optimizer
- Learning Rate
- # of epochs
- Batch size
- Value of k in k-cross validation

Model variants explored

Objective I: Prediction of ONE target (Moisture Content OR Bulk Density)

- Different models for each target
- Parameters varied to get model with:
 - Highest R-squared value
 - Lowest RMSE

Results of best model for CORN

Model variants explored

Objective II: Prediction of TWO targets (Moisture Content + Bulk Density) - SEPARATE output layers

- ONE model for two targets
- Parameters varied to get model with:
 - Highest R-squared value
 - Lowest RMSE

Results of best model for CORN

Model variants explored

Objective III: Prediction of TWO targets (Moisture Content + Bulk Density) - SINGLE output layer

- ONE model for two targets
- Parameters varied to get model with:
 - Highest R-squared value
 - Lowest RMSE

Results of best model for CORN

Results

- R² values (predicted vs actual values) ranged from:
 - ▶ 0.95 to 0.991 for Moisture Content prediction
 - ▶ 0.835 to 0.958 for Bulk Density prediction
- RMSE ranged from:
 - ▶ 0.739 to 1.875 for Moisture Content prediction
 - ▶ 0.0192 to 0.0693 for Bulk Density prediction
- Inference time ranged from 24ms to 59ms
- OATS performed best in terms of both outputs
- SORGHUM performed worst for both outputs

Future Work

- For future work, we will compare our DNN models' performance against SVR and Random Forests.
- We have planned to publish this research work as a journal paper.

