

CS 422: Data Mining Vijay K. Gurbani, Ph.D., Illinois Institute of Technology

Association Analysis (Rules)

CS 422 vgurbani@iit.edu

- One of the early examples of data mining.
- Interested in observing which objects occur together:
 - Grocery shopping (market-basket analysis)
 - Website visits
- Notice that we are not recommending similar items, just seeing which items co-occur.
 - Recommendation is for a later lecture.

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction. (Note: Implication means co-occurrence, not causality!)

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

$${Diaper} \rightarrow {Beer}$$

 ${Milk, Bread} \rightarrow {Eggs,Coke}$
 ${Beer, Bread} \rightarrow {Milk}$
Antecedent → Consequent

Preliminaries

Let $\mathcal{I} = \{x_1, x_2, ..., x_m\}$ be a set of elements called *items*.

A set $X \subseteq \mathcal{I}$ is called an *itemset*.

An itemset of cardinality k is called a k-itemset.

 $\mathcal{I}^{(k)}$ is the set of all k-itemsets.

Let $\mathcal{T} = \{t_1, t_2, ..., t_n\}$ be another set of elements called transaction identifiers, or tids.

A set $T \subseteq \mathcal{T}$ is called an *tidset*.

A transaction is a tuple of the form (t, X) where $t \in T$ is a unique transaction identifier, and X is an itemset.

Database Representation

A binary database **D** is a binary relation on the set of tids and items, that is, $\mathbf{D} \subseteq \mathcal{T} \times \mathcal{I}$. We say that tid $t \in \mathcal{T}$ contains item $x \in \mathcal{I}$ iff $(t, x) \in \mathbf{D}$. In other words, $(t, x) \in \mathbf{D}$ iff $x \in \mathcal{X}$ in the tuple (t, X). We say that tid t contains itemset $X = \{x_1, x_2, \dots, x_k\}$ iff $(t, x_i) \in \mathbf{D}$ for all $i = 1, 2, \dots, k$.

For a set X, we denote by 2^X the powerset of X, that is, the set of all subsets of X. Let $\mathbf{i}: 2^T \to 2^T$ be a function, defined as follows:

$$\mathbf{i}(T) = \{x \mid \forall t \in T, \ t \text{ contains } x\}$$
(8.1)

where $T \subseteq \mathcal{T}$, and $\mathbf{i}(T)$ is the set of items that are common to *all* the transactions in the tidset T. In particular, $\mathbf{i}(t)$ is the set of items contained in tid $t \in \mathcal{T}$.

Preliminaries

D	A	В	С	D	E
1	1	1	0	1	1
2	0	1	1	0	1
3	1	1	0	1	1
4	1	1	1	0	1
5	1	1	1	1	1
6	0	1	1	1	0

t	$\mathbf{i}(t)$
1	ABDE
2	BCE
3	ABDE
4	ABCE
5	ABCDE
6	BCD

X	A	В	С	D	Ε
	1	1	2	1	1
	3	2	4	3	2
t (x)	4	3	5	5	3
	4 5	4	6	6	4
		5			5
		6			

(a) Binary database

(b) Transaction database

(c) Vertical database

Figure 8.1. An example database.

Preliminaries

Support and Frequent Itemsets

The *support* of an itemset X in a dataset \mathbf{D} , denoted $sup(X, \mathbf{D})$, is the number of transactions in \mathbf{D} that contain X:

$$sup(X, \mathbf{D}) = |\{t \mid \langle t, \mathbf{i}(t) \rangle \in \mathbf{D} \text{ and } X \subseteq \mathbf{i}(t)\}| = |\mathbf{t}(X)|$$

The relative support of X is the fraction of transactions that contain X:

$$rsup(X, \mathbf{D}) = \frac{sup(X, \mathbf{D})}{|\mathbf{D}|}$$

$$sup({A,B}) = 4$$
 $rsup({A,B}) = 4/6 = 0.67$
 $sup({B}) = 6$ $rsup({B}) = 6/6 = 1.00$

D	A	В	С	D	Ε
1	1	1	0	1	1
2	0	1	1	0	1
3	1	1	0	1	1
4	1	1	1	0	1
5	1	1	1	1	1
6	0	1	1	1	0

(a) l	Binary	database
-------	--------	----------

t	$\mathbf{i}(t)$
1	ABDE
2	BCE
3	ABDE
4	ABCE
5	ABCDE
6	BCD

(b) Transaction database

Preliminaries

Support and Frequent Itemsets

The *support* of an itemset X in a dataset \mathbf{D} , denoted $sup(X, \mathbf{D})$, is the number of transactions in \mathbf{D} that contain X:

$$sup(X, \mathbf{D}) = |\{t \mid \langle t, \mathbf{i}(t) \rangle \in \mathbf{D} \text{ and } X \subseteq \mathbf{i}(t)\}| = |\mathbf{t}(X)|$$

The *relative support* of *X* is the fraction of transactions that contain *X*:

$$rsup(X, \mathbf{D}) = \frac{sup(X, \mathbf{D})}{|\mathbf{D}|}$$

$$sup({A,B}) = 4$$
 $rsup({A,B}) = 4/6 = 0.67$
 $sup({B}) = 6$ $rsup({B}) = 6/6 = 1.00$

We use \mathcal{F} to denote the set of all itemsets, and $\mathcal{F}^{(k)}$ to denote the set of k-itemsets.

Thus, in our transaction database shown above,

$$\mathcal{F}^{(3)} = \{\text{BCE, BCD}\}\$$

 $\mathcal{F}^{(4)} = \{\text{ABDE}\}\$

$$\mathcal{F}^{(5)} = \{ABCDE\}$$

D	A	В	С	D	Ε
1	1	1	0	1	1
2	0	1	1	0	1
3	1	1	0	1	1
4	1	1	1	0	1
5	1	1	1	1	1
6	0	1	1	1	0

(a)	Rinary	database
(4	, Dinai y	database

(b) Transaction database

Preliminaries

Support and Frequent Itemsets

The *support* of an itemset X in a dataset \mathbf{D} , denoted $sup(X, \mathbf{D})$, is the number of transactions in \mathbf{D} that contain X:

$$sup(X, \mathbf{D}) = |\{t \mid \langle t, \mathbf{i}(t) \rangle \in \mathbf{D} \text{ and } X \subseteq \mathbf{i}(t)\}| = |\mathbf{t}(X)|$$

The *relative support* of *X* is the fraction of transactions that contain *X*:

$$rsup(X, \mathbf{D}) = \frac{sup(X, \mathbf{D})}{|\mathbf{D}|}$$

$$sup({A,B}) = 4$$
 $rsup({A,B}) = 4/6 = 0.67$
 $sup({B}) = 6$ $rsup({B}) = 6/6 = 1.00$

We use \mathcal{F} to denote the set of all itemsets, and $\mathcal{F}^{(k)}$ to denote the set of k-itemsets.

Thus, in our transaction database shown above,

$$\mathcal{F}^{(3)} = \{ BCE, BCD \}$$

$$\mathcal{F}^{(4)} = \{ABDE\}$$

$$\mathcal{F}^{(5)} = \{ABCDE\}$$

D	A	В	С	D	Ε
1	1	1	0	1	1
2	0	1	1	0	1
3	1	1	0	1	1
4	1	1	1	0	1
5	1	1	1	1	1
6	0	1	1	1	0

(a)	Binary	database
-----	--------	----------

t	$\mathbf{i}(t)$
1	ABDE
2	BCE
3	ABDE
4	ABCE
5	ABCDE
6	BCD

(b) Transaction database

The itemset mining problem:

Given a minimum support threshold (minsup), find all itemsets X, s.t. sup(X) >= minsup.

Can be expressed as absolute, sup(.), or relative, rsup(.)

Preliminaries

Frequent itemsets: An itemset X is frequent if $sup(X) \ge minsup$, where minsup is a user specified minimum support threshold. (If minsup is a fraction, then relative support is implied.)

Example	le: Let <i>r</i>	minsup =	3 (in rela	ative s	upport ter	m,
minsup	= 0.5);	show all	such fre	equent	itemsets.	

D	A	B	С	D	E
1	1	1	0	1	1
2	0	1	1	0	1
3	1	1	0	1	1
4	1	1	1	0	1
5	1	1	1	1	1
6	0	1	1	1	0

(a) Binary database

t	$\mathbf{i}(t)$
1	ABDE
2	BCE
3	ABDE
4	ABCE
5	ABCDE
6	BCD

(b) Transaction database

Total possible subsets: $2^{|I|}$ (exponential; before hand we do not know how many k-itemsets we will end up having.)

Turns out, it is 19. The set of all 19 frequent *k*-itemsets grouped by their support value is:

Table 8.1. Frequent itemsets with minsup = 3

sup	itemsets
6	B
5	E,BE
4	A, C, D, AB, AE, BC, BD, ABE
3	AD, CE, DE, ABD, ADE, BCE, BDE, ABDE

$$\mathcal{F}^{(1)} = \{A, B, C, D, E\}$$

$$\mathcal{F}^{(2)} = \{AB, AD, AE, BC, BD, BE, CE, DE\}$$

$$\mathcal{F}^{(3)} = \{ABD, ABE, ADE, BCE, BDE\}$$

$$\mathcal{F}^{(4)} = \{ABDE\}$$

Preliminaries

Frequent itemsets: An itemset X is frequent if $sup(X) \ge minsup$, where minsup is a user specified minimum support threshold. (If minsup is a fraction, then relative support is implied.)

Example: Let minsup = 3 (in relative support term, minsup = 0.5); show all such frequent itemsets.

D	A	В	С	D	E
1	1	1	0	1	1
2	0	1	1	0	1
3	1	1	0	1	1
4	1	1	1	0	1
5	1	1	1	1	1
6	0	1	1	1	0

(a) Binary	database
------------	----------

t	$\mathbf{i}(t)$
1	ABDE
2	BCE
3	ABDE
4	ABCE
5	ABCDE
6	BCD

(b) Transaction database

Total possible subsets: $2^{|I|}$ (exponential; before hand we do not know how many k-itemsets we will end up having.)

Turns out, it is 19. The set of all 19 frequent k-itemsets grouped by their

support value is:

Table 8.1. Frequent itemsets with minsup = 3

sup	itemsets
6	В
5	E,BE
4	A, C, D, AB, AE, BC, BD, ABE
3	AD, CE, DE, ABD, ADE, BCE, BDE, ABDE

Question: How do we generate all itemsets that are frequent? (i.e., have a support of at least *minsup* = 3?)

$$\mathcal{F}^{(1)} = \{A, B, C, \overline{D, E}\}$$

$$\mathcal{F}^{(2)} = \{AB, AD, AE, BC, BD, BE, CE, DE\}$$

$$\mathcal{F}^{(3)} = \{ABD, ABE, ADE, BCE, BDE\}$$

$$\mathcal{F}^{(4)} = \{ABDE\}$$

Question: How do we generate all itemsets that are frequent? (i.e., have a support of at least *minsup* = 3?)

```
Naive algorithm:

\forall x \subseteq I

compute\_support(x)

if (sup(x) \ge minsup)

print x, sup(x)
```

Question: How do we generate all itemsets that are frequent? (i.e., have a support of at least *minsup* = 3?)

Naive algorithm:

 $A X \subseteq I$

compute_support(x) if $(\sup(x) \ge \min\sup(x))$ print x, $\sup(x)$

Subset enumeration to generate candidates.
 We do not know yet whether the itemset is frequent or not until we compute support, hence
 ▶ it is a candidate.

Question: How do we generate all itemsets that are frequent? (i.e., have a support of at least *minsup* = 3?)

Naive algorithm:

$$A X \subseteq I$$

compute_support(x) if $(sup(x) \ge minsup)$ print x, sup(x)

Subset enumeration to generate candidates.
 We do not know yet whether the itemset is frequent or not until we compute support, hence
 ▶ it is a candidate.

► Here is where we go to the dataset and compute support, *for each itemset*.

Question: How do we generate all itemsets that are frequent? (i.e., have a support of at least *minsup* = 3?)

Naive algorithm:

$$\forall x \subseteq I$$

compute_support(x)

if (sup(x) ≥ minsup)

print x, sup(x)

Subset enumeration to generate candidates.
 We do not know yet whether the itemset is frequent or not until we compute support, hence
 ▶ it is a candidate.

► Here is where we go to the dataset and compute support, *for each itemset*.

Computational complexity:

$$O(2^{|I|} * |D| * |I|)$$

Enumeration Support computation

Frequent Itemset Generation: Brute Force Method

Itemset lattice for $\mathcal{I} = \{A, B, C, D, E\}$. There are $2^{|\mathcal{I}|} = 32$ possible itemsets. The brute force method explores the entire itemset

search space, regardless of minsup. If minsup = 3, then the brute-force search method would output the set of frequent itemsets shown below.

Table 8.1. Frequent itemsets with minsup = 3

sup	itemsets
6	В
5	E,BE
4	A, C, D, AB, AE, BC, BD, ABE
3	AD, CE, DE, ABD, ADE, BCE, BDE, ABDE

Frequent Itemset Generation: Brute Force Method

ALGORITHM 8.1. Algorithm BRUTEFORCE

```
BRUTEFORCE (D, \mathcal{I}, minsup):

1 \mathcal{F} \leftarrow \emptyset // set of frequent itemsets

2 foreach X \subseteq \mathcal{I} do

3 |sup(X) \leftarrow \text{COMPUTESUPPORT}(X, \mathbf{D})

4 |ifsup(X) \geq minsup \text{ then}

5 |\mathcal{F} \leftarrow \mathcal{F} \cup \{(X, sup(X))\}

6 return \mathcal{F}

COMPUTESUPPORT (X, \mathbf{D}):

7 sup(X) \leftarrow 0

8 foreach \langle t, \mathbf{i}(t) \rangle \in \mathbf{D} do

9 |if X \subseteq \mathbf{i}(t) \text{ then}

10 |sup(X) \leftarrow sup(X) + 1

11 return sup(X)
```

Frequent Itemset Generation: Brute Force Method

ALGORITHM 8.1. Algorithm BRUTEFORCE

```
1 \mathcal{F} \leftarrow \emptyset // set of frequent itemsets
      sup(X) \leftarrow COMPUTESUPPORT(X, \mathbf{D})
    if sup(X) \ge minsup then
     \Big[ \mathcal{F} \leftarrow \mathcal{F} \cup \big\{ (X, sup(X)) \big\} 
  COMPUTESUPPORT (X, \mathbf{D}):
```