Master's Thesis Exam Verification of the Blocking and Non-Blocking Michael-Scott Queue Algorithms

Mathias Pedersen, 201808137 Advisor: Amin Timany

Aarhus University

June 2024

- Initial goal was to prove safety of the two M&S Queues
- The project later generalised the results to apply to queues in general

- Initial goal was to prove safety of the two M&S Queues
- The project later generalised the results to apply to queues in general
- In particular, three different specifications for queues were given
 - Sequential specification
 - Useful for sequential clients
 - Concurrent specification
 - Proves safety of concurrent queues
 - Useful for some concurrent clients
 - Doesn't track queue contents
 - HOCAP-style specification
 - Stronger specification, useful for more complex clients
 - Tracks queue contents
 - Demonstrated with a PoC queue client, QueueAdd

- Initial goal was to prove safety of the two M&S Queues
- The project later generalised the results to apply to queues in general
- In particular, three different specifications for queues were given
 - Sequential specification
 - Useful for sequential clients
 - Concurrent specification
 - Proves safety of concurrent queues
 - Useful for some concurrent clients
 - Doesn't track queue contents
 - HOCAP-style specification
 - Stronger specification, useful for more complex clients
 - Tracks queue contents
 - Demonstrated with a PoC queue client, QueueAdd
- It was demonstrated that the HOCAP-style specification derives the sequential and concurrent specifications

- Initial goal was to prove safety of the two M&S Queues
- The project later generalised the results to apply to queues in general
- In particular, three different specifications for queues were given
 - Sequential specification
 - Useful for sequential clients
 - Concurrent specification
 - Proves safety of concurrent queues
 - Useful for some concurrent clients
 - Doesn't track queue contents
 - HOCAP-style specification
 - Stronger specification, useful for more complex clients
 - Tracks queue contents
 - Demonstrated with a PoC queue client, QueueAdd
- It was demonstrated that the HOCAP-style specification derives the sequential and concurrent specifications
- Implementations of the M&S Queues in HeapLang were proven to meet the three specifications
 - In particular, both version are safe

- Initial goal was to prove safety of the two M&S Queues
- The project later generalised the results to apply to queues in general
- In particular, three different specifications for queues were given
 - Sequential specification
 - Useful for sequential clients
 - Concurrent specification
 - Proves safety of concurrent queues
 - Useful for some concurrent clients
 - Doesn't track queue contents
 - HOCAP-style specification
 - Stronger specification, useful for more complex clients
 - Tracks queue contents
 - Demonstrated with a PoC queue client, QueueAdd
- It was demonstrated that the HOCAP-style specification derives the sequential and concurrent specifications
- Implementations of the M&S Queues in HeapLang were proven to meet the three specifications
 - In particular, both version are safe
- All proofs have been mechanised in the Coq proof assistant

Outline

- 1 Queue Specifications (HOCAP)
- 2 The Two-Lock Michael-Scott Queue
- Proving that the Two-Lock Michael-Scott Queue Satisfies the HOCAP-style Specification
- 4 The Lock-Free Michael-Scott Queue
- 5 Proving that the Lock-Free Michael-Scott Queue Satisfies the HOCAP-style Specification

Queue Specifications (HOCAP)

Specifications for Queues

Assumptions on Queues

- Queues consists of initialize, enqueue, and dequeue
- initialize creates an empty queue: []
- **enqueue** adds a value, v, to the beginning of the queue xs_v : $v :: xs_v$
- dequeue depends on whether queue is empty:
 - If non-empty, xs_v ++ v, remove value v at end of queue and return Some v
 - If empty, [], return None

Specifications for Queues

Assumptions on Queues

- Queues consists of initialize, enqueue, and dequeue
- initialize creates an empty queue: []
- **enqueue** adds a value, v, to the beginning of the queue xs_v : $v :: xs_v$
- dequeue depends on whether queue is empty:
 - If non-empty, $xs_v ++ v$, remove value v at end of queue and return Some v
 - If empty, [], return None

Nature of Specifications

- Specifications written in Iris, a higher order CSL
- **Expressed** in terms of *Hoare triples*: $\{P\}$ e $\{v. \Phi v\}$
- Hoare triples prove partial correctness of programs, e
- In particular: safety

HOCAP-style Specification - Abstract State RA

■ We will need a construction to allow clients to track contents of queue

HOCAP-style Specification - Abstract State RA

- We will need a construction to allow clients to track contents of queue
- Idea: have two "views" of the abstract state of the queue

Authoritative view	Fragmental view
$\gamma \Longrightarrow_{ullet} xs_{v}$	$\gamma \mapsto_{\circ} x s_{\nu}$
Owned by queue	Owned by client

HOCAP-style Specification - Abstract State RA

- We will need a construction to allow clients to track contents of queue
- Idea: have two "views" of the abstract state of the queue

Authoritative view	Fragmental view
$\gamma \mapsto_{ullet} x s_v$	$\gamma \mapsto_{\circ} xs_{v}$
Owned by queue	Owned by client

- Construction ensures:
 - authoritative and fragmental views always agree on abstract state of queue
 - views can only be updated in unison
- Implemented using the resource algebra: $Auth((FRAC \times Ag(List \ Val))^?)$
- The desirables are captured by the following lemmas

Lemmas on the Abstract State RA

$$\vdash \boxminus \exists \gamma. \ \gamma \bowtie_{\bullet} xs_{v} * \gamma \bowtie_{\circ} xs_{v}$$

$$(Abstract State Alloc)$$

$$\gamma \bowtie_{\bullet} xs'_{v} * \gamma \bowtie_{\circ} xs_{v} \vdash xs_{v} = xs'_{v}$$

$$(Abstract State Agree)$$

$$\gamma \bowtie_{\bullet} xs'_{v} * \gamma \bowtie_{\circ} xs_{v} \Rightarrow \gamma \bowtie_{\bullet} xs''_{v} * \gamma \bowtie_{\circ} xs''_{v}$$

$$(Abstract State Update)$$

- Post-condition of initialize specification gives fragmental view to clients
- Hoare triples for enqueue and dequeue are conditioned on view-shifts
- Clients must show that they can supply the fragmental view, so that the abstract (and concrete) state can be updated
- View-shifts and Hoare-triples parametrised by predicates *P* and *Q*
 - Client might have resources that need to be updated as a result of enqueue/dequeue
 - \blacksquare P is the clients resources before enqueue/dequeue and Q the resources after

Definition (HOCAP Specification)

```
\exists isQueue : Val \rightarrow Qgnames \rightarrow Prop.

\forall v_a, G. isQueue(v_a, G) \implies \Box isQueue(v_a, G)
```

- Post-condition of initialize specification gives fragmental view to clients
- Hoare triples for enqueue and dequeue are conditioned on view-shifts
- Clients must show that they can supply the fragmental view, so that the abstract (and concrete) state can be updated
- View-shifts and Hoare-triples parametrised by predicates P and Q
 - Client might have resources that need to be updated as a result of enqueue/dequeue
 - \blacksquare P is the clients resources before enqueue/dequeue and Q the resources after

Definition (HOCAP Specification)

```
\exists isQueue : Val 	o Qgnames 	o Prop.

\forall v_q, G. \text{ isQueue}(v_q, G) \implies \Box \text{ isQueue}(v_q, G)

\land \quad \{\text{True}\} \text{ initialize } () \{v_q. \exists G. \text{ isQueue}(v_q, G) * G. \gamma_{Abst} \Rightarrow_{\circ} []\}
```

- Post-condition of initialize specification gives fragmental view to clients
- Hoare triples for enqueue and dequeue are conditioned on view-shifts
- Clients must show that they can supply the fragmental view, so that the abstract (and concrete) state can be updated
- View-shifts and Hoare-triples parametrised by predicates P and Q
 - Client might have resources that need to be updated as a result of enqueue/dequeue
 - P is the clients resources before enqueue/dequeue and Q the resources after

Definition (HOCAP Specification)

 \exists isQueue : $Val \rightarrow Qgnames \rightarrow Prop.$

```
 \forall v_q, G. \text{ isQueue}(v_q, G) \implies \Box \text{ isQueue}(v_q, G) 
 \land \quad \{ \text{True} \} \text{ initialize } () \{ v_q. \exists G. \text{ isQueue}(v_q, G) * G.\gamma_{Abst} \mapsto_{\bullet} [] \} 
 \land \quad \forall v_q, v, G, P, Q. \quad \left( \forall xs_v. G.\gamma_{Abst} \mapsto_{\bullet} xs_v * P \Rrightarrow_{\mathcal{E} \backslash \mathcal{N}, i \uparrow} \triangleright G.\gamma_{Abst} \mapsto_{\bullet} (v :: xs_v) * Q \right) - * 
 \{ \text{isQueue}(v_q, G) * P \} \text{ enqueue } v_q \ v \ \{ w. Q \}
```

- Post-condition of initialize specification gives fragmental view to clients
- Hoare triples for enqueue and dequeue are conditioned on view-shifts
- Clients must show that they can supply the fragmental view, so that the abstract (and concrete) state can be updated
- View-shifts and Hoare-triples parametrised by predicates P and Q
 - Client might have resources that need to be updated as a result of enqueue/dequeue
 - P is the clients resources before enqueue/dequeue and Q the resources after

Definition (HOCAP Specification)

 $\forall v_a, G. \text{ isQueue}(v_a, G) \implies \Box \text{ isQueue}(v_a, G)$

 \exists isQueue : $Val \rightarrow Qgnames \rightarrow Prop.$

$$\wedge \forall v_{q}, G, P, Q.$$

$$\begin{pmatrix} \forall xs_{v}. \ G.\gamma_{Abst} \mapsto_{\bullet} xs_{v} * P \Rightarrow_{\mathcal{E} \setminus \mathcal{N}. f} \land \\ \begin{cases} (xs_{v} = [] * G.\gamma_{Abst} \mapsto_{\bullet} xs_{v} * Q(\mathsf{None})) \\ \lor \begin{pmatrix} \exists v, xs'_{v}. xs_{v} = xs'_{v} + [v] * \\ G.\gamma_{Abst} \mapsto_{\bullet} xs'_{v} * Q(\mathsf{Some} v) \end{pmatrix} \end{pmatrix} -*$$

$$\{ \text{isQueue}(v_{\alpha}, G) * P \} \text{ degueue } v_{\alpha} \{ w. Q(w) \}$$

The Two-Lock Michael-Scott Queue

Implementation: initialize

■ The queue data structure is a linked list

```
initialize \triangleq
let node = ref(None, ref(None)) in
let H\_lock = newLock() in
let T\_lock = newLock() in
ref((ref(node), ref(node)), (H\_lock, T\_lock))
```


Implementation: initialize

- The queue data structure is a linked list
- A node x in the linked list is a triple, $x = (\ell_{\rm in}, w, \ell_{\rm out})$, with $\ell_{\rm in} \mapsto (w, \ell_{\rm out})$
- We use the following notation for nodes

$$\mathsf{in}(x) = \ell_{\mathrm{in}}$$
 $\mathsf{val}(x) = w$ $\mathsf{out}(x) = \ell_{\mathrm{out}}$

Implementation: initialize

- The queue data structure is a linked list
- A node x in the linked list is a triple, $x = (\ell_{\rm in}, w, \ell_{\rm out})$, with $\ell_{\rm in} \mapsto (w, \ell_{\rm out})$
- We use the following notation for nodes

$$\mathsf{in}(x) = \ell_{\mathrm{in}}$$
 $\mathsf{val}(x) = w$ $\mathsf{out}(x) = \ell_{\mathrm{out}}$

- The initialize function first creates an initial head node, x_{head}
- Then, a lock protecting the head pointer, and a lock protecting the tail pointer
- Finally, it creates the head and tail pointers, $\ell_{\rm head}$ and $\ell_{\rm tail}$, both pointing to $x_{\rm head}$

- The enqueue function consists of the following steps
 - I Create a new node, x_{new} , containing value to be enqueued
 - 2 Acquire the tail lock
 - 3 Add x_{new} to linked list
 - 4 Swing tail pointer to x_{new}
 - 5 Release the tail lock

```
enqueue Q value \triangleq
let node = ref (Some value, ref (None)) in
acquire(snd(snd(! Q)));
snd(!(!(snd(fst(! Q)))) \leftarrow node;
snd(fst(! Q)) \leftarrow node;
release(snd(snd(! Q)))
```

- The enqueue function consists of the following steps
 - 1 Create a new node, x_{new} , containing value to be enqueued
 - 2 Acquire the tail lock
 - 3 Add x_{new} to linked list
 - 4 Swing tail pointer to x_{new}
 - 5 Release the tail lock

```
enqueue Q value \triangleq
let node = ref (Some value, ref (None)) in
acquire(snd(snd(! Q)));
snd(!(!(snd(fst(! Q)))) \leftarrow node;
snd(fst(! Q)) \leftarrow node;
release(snd(snd(! Q)))
```


- The enqueue function consists of the following steps
 - I Create a new node, x_{new} , containing value to be enqueued
 - 2 Acquire the tail lock
 - 3 Add x_{new} to linked list
 - 4 Swing tail pointer to x_{new}
 - 5 Release the tail lock

```
enqueue Q value \triangleq
let node = ref (Some value, ref (None)) in
acquire(snd(snd(! Q)));
snd(!(!(snd(fst(! Q))))) \leftarrow node;
snd(fst(! Q)) \leftarrow node;
release(snd(snd(! Q)))
```


- The enqueue function consists of the following steps
 - I Create a new node, x_{new} , containing value to be enqueued
 - 2 Acquire the tail lock
 - 3 Add x_{new} to linked list
 - 4 Swing tail pointer to x_{new}
 - 5 Release the tail lock

```
enqueue Q value \triangleq  let node = ref (Some value, ref (None)) in acquire(snd(snd(!Q))); snd(!(!(snd(fst(!Q)))) \leftarrow node; snd(fst(!Q)) \leftarrow node; release(snd(snd(!Q)))
```


- The enqueue function consists of the following steps
 - I Create a new node, x_{new} , containing value to be enqueued
 - 2 Acquire the tail lock
 - 3 Add x_{new} to linked list
 - 4 Swing tail pointer to x_{new}
 - 5 Release the tail lock
- Once a node is enqueued, its position in the linked list is fixed

```
enqueue Q value \triangleq let node = ref (Some value, ref (None)) in acquire(snd(snd(! Q))); snd(!(!(snd(fst(! Q)))) \leftarrow node; snd(fst(! Q)) \leftarrow node; release(snd(snd(! Q)))
```


- The enqueue function consists of the following steps
 - I Create a new node, x_{new} , containing value to be enqueued
 - 2 Acquire the tail lock
 - 3 Add x_{new} to linked list
 - 4 Swing tail pointer to x_{new}
 - 5 Release the tail lock
- Once a node is enqueued, its position in the linked list is fixed
- Adding and swinging not atomic → Tail node is either last or second last

```
enqueue Q value \triangleq let node = ref (Some value, ref (None)) in acquire(snd(snd(!Q))); snd(!(!(snd(fst(!Q))))) \leftarrow node; snd(fst(!Q)) \leftarrow node; release(snd(snd(!Q)))
```


- The enqueue function consists of the following steps
 - I Create a new node, x_{new} , containing value to be enqueued
 - 2 Acquire the tail lock
 - 3 Add x_{new} to linked list
 - 4 Swing tail pointer to x_{new}
 - 5 Release the tail lock
- Once a node is enqueued, its position in the linked list is fixed
- Adding and swinging not atomic → Tail node is either last or second last
- dequeue ignores tail pointer → Tail node can lag behind head node

```
enqueue Q value \triangleq
let node = ref (Some value, ref (None)) in
acquire(snd(snd(! Q)));
snd(!(!(snd(fst(! Q)))) \leftarrow node;
snd(fst(! Q)) \leftarrow node;
release(snd(snd(! Q)))
```


- The dequeue function checks if queue is empty
 - If empty, return None
 - Else, swing head pointer to new head node, and return its value

```
dequeue Q \triangleq
acquire(fst(snd(! Q)));
let node = !(fst(fst(! Q))) in
let new_head = !(snd(! node)) in
if new_head = None then
release(fst(snd(! Q)));
None
else
let value = fst(! new_head) in
fst(fst(! Q)) \leftarrow new_head;
release(fst(snd(! Q)));
value
```


- The dequeue function checks if queue is empty
 - If empty, return None
 - Else, swing head pointer to new head node, and return its value

```
dequeue Q \triangleq
acquire(fst(snd(! Q)));
let node = !(fst(fst(! Q))) in
let new_head = !(snd(! node)) in
if new_head = None then
release(fst(snd(! Q)));
None
else
let value = fst(! new_head) in
fst(fst(! Q)) \leftarrow new_head;
release(fst(snd(! Q)));
value
```


- The dequeue function checks if queue is empty
 - If empty, return None
 - Else, swing head pointer to new head node, and return its value
- Dequeued node not freed → Linked list only grows

```
dequeue Q \triangleq
acquire(fst(snd(! Q)));
let node = !(fst(fst(! Q))) in
let new_head = !(snd(! node)) in
if new_head = None then
release(fst(snd(! Q)));
None
else
let value = fst(! new_head) in
fst(fst(! Q)) \leftarrow new_head;
release(fst(snd(! Q)));
value
```


Proving that the Two-Lock Michael-Scott Queue Satisfies the HOCAP-style Specification

The isLL Predicate

- Idea: express the structure of the linked list in terms of points-to predicates
- Also captures persistent and non-persistent parts of the linked list

Definition (Linked List Predicate)

$$\begin{aligned} \text{isLL_chain}([]) \triangleq &\text{True} \\ \text{isLL_chain}([x]) \triangleq &\text{in}(x) \mapsto^{\square} (\text{val}(x), \text{out}(x)) \\ \text{isLL_chain}(x :: x' :: xs) \triangleq &\text{in}(x) \mapsto^{\square} (\text{val}(x), \text{out}(x)) * \text{out}(x') \mapsto^{\square} &\text{in}(x) * &\text{isLL_chain}(x' :: xs) \end{aligned}$$

$$isLL(x :: xs) \triangleq out(x) \mapsto None * isLL_chain(x :: xs)$$

Example

Consider the list:
$$xs = [(\ell_{3.\mathrm{in}}, w_3, \ell_{3.\mathrm{out}}); (\ell_{2.\mathrm{in}}, w_2, \ell_{2.\mathrm{out}}); (\ell_{1.\mathrm{in}}, w_1, \ell_{1.\mathrm{out}})].$$

$$isLL(xs) = \ell_{3.\mathrm{out}} \mapsto \mathsf{None} * \ell_{3.\mathrm{in}} \mapsto^{\square} (w_3, \ell_{3.\mathrm{out}}) * \ell_{2.\mathrm{out}} \mapsto^{\square} \ell_{3.\mathrm{in}} * \ell_{2.\mathrm{in}} \mapsto^{\square} (w_2, \ell_{2.\mathrm{out}}) * \ell_{1.\mathrm{out}} \mapsto^{\square} \ell_{2.\mathrm{in}} * \ell_{1.\mathrm{in}} \mapsto^{\square} (w_1, \ell_{1.\mathrm{out}})$$

$$\ell_{1.\mathrm{in}} \mapsto^{\square} (w_1, \ell_{1.\mathrm{out}}) \mapsto^{\square} \ell_{2.\mathrm{in}} \mapsto^{\square} \ell_{2.\mathrm{out}} \mapsto^{\square} \ell_{3.\mathrm{in}} \mapsto^{\square} \mathsf{None}$$

$$\mathsf{None} * \mathsf{None} * \mathsf{N$$

Invariant

- Queue predicate must be persistent (according to specification)
- Problem: the queue relies on non-persistent resources (e.g. $\ell_{\text{head}} \mapsto \text{in}(x_{\text{head}})$)
- Solution: identify an *invariant* (persistent), describing the resources

Invariant

- Queue predicate must be persistent (according to specification)
- Problem: the queue relies on non-persistent resources (e.g. $\ell_{\text{head}} \mapsto \text{in}(x_{\text{head}})$)
- Solution: identify an *invariant* (persistent), describing the resources
- Contains abstract state of queue existentially quantified as it can change

Definition (Two-Lock M&S Queue HOCAP Invariant)

$$I_{\mathsf{TLH}}(\ell_{\mathrm{head}}, \ell_{\mathrm{tail}}, G) \triangleq \exists x s_{\mathsf{v}}. \ G. \gamma_{\mathrm{Abst}} \Rightarrow_{\bullet} x s_{\mathsf{v}} *$$
 (abstract state)

Invariant

- Queue predicate must be persistent (according to specification)
- Problem: the queue relies on non-persistent resources (e.g. $\ell_{\text{head}} \mapsto \text{in}(x_{\text{head}})$)
- Solution: identify an invariant (persistent), describing the resources
- Contains abstract state of queue existentially quantified as it can change
- Defines structure of the concrete linked list, xs

Definition (Two-Lock M&S Queue HOCAP Invariant)

```
\begin{split} \mathsf{I}_{\mathsf{TLH}}(\ell_{\mathrm{head}},\ell_{\mathrm{tail}},G) &\triangleq \exists x s_v. \ G.\gamma_{\mathrm{Abst}} \mapsto_{\bullet} x s_v * \\ &\exists x s, x s_{\mathrm{queue}}, x s_{\mathrm{old}}, x_{\mathrm{head}}, x_{\mathrm{tail}}. \\ &x s = x s_{\mathrm{queue}} + + [x_{\mathrm{head}}] + + x s_{\mathrm{old}} * \\ &\text{isLL}(x s) * \end{split}  (concrete state)
```

Invariant

- Queue predicate must be persistent (according to specification)
- Problem: the queue relies on non-persistent resources (e.g. $\ell_{\text{head}} \mapsto \text{in}(x_{\text{head}})$)
- Solution: identify an invariant (persistent), describing the resources
- Contains abstract state of queue existentially quantified as it can change
- Defines structure of the concrete linked list, xs
- Asserts relation between abstract state and concrete state

Definition (Two-Lock M&S Queue HOCAP Invariant)

```
\begin{split} \mathsf{I}_{\mathsf{TLH}}(\ell_{\mathrm{head}},\ell_{\mathrm{tail}},G) &\triangleq \exists xs_v.\ G.\gamma_{\mathrm{Abst}} \mapsto_{\bullet} xs_v * \\ &\exists xs, xs_{\mathrm{queue}}, xs_{\mathrm{old}}, x_{\mathrm{head}}, x_{\mathrm{tail}}. \end{split} \tag{concrete state} \\ &xs = xs_{\mathrm{queue}} + + [x_{\mathrm{head}}] + + xs_{\mathrm{old}} * \\ &\mathrm{isLL}(xs) * \\ &\mathrm{projVal}(xs_{\mathrm{queue}}) = \mathrm{wrapSome}(xs_v) * \end{split}
```

Invariant

- Queue predicate must be persistent (according to specification)
- Problem: the queue relies on non-persistent resources (e.g. $\ell_{\text{head}} \mapsto \text{in}(x_{\text{head}})$)
- Solution: identify an *invariant* (persistent), describing the resources
- Contains abstract state of queue existentially quantified as it can change
- Defines structure of the concrete linked list, xs
- Asserts relation between abstract state and concrete state
- Identifies possible queue states: Static, Enqueue, Dequeue, and Both
 - Two locks → Four queue states
 - Invariant describes the queue resources in each state
 - See next slide

Definition (Two-Lock M&S Queue HOCAP Invariant)

```
\begin{split} \mathsf{I}_{\mathsf{TLH}}(\ell_{\mathrm{head}},\ell_{\mathrm{tail}},G) &\triangleq \exists xs_v.\ G.\gamma_{\mathrm{Abst}} \Rightarrow_{\bullet} xs_v * \\ &\exists xs, xs_{\mathrm{queue}}, xs_{\mathrm{old}}, x_{\mathrm{head}}, x_{\mathrm{tail}}. \end{split} \tag{concrete state} \\ &xs = xs_{\mathrm{queue}} + + \left[x_{\mathrm{head}}\right] + + xs_{\mathrm{old}} * \\ &\mathrm{isLL}(xs) * \\ &\mathrm{projVal}(xs_{\mathrm{queue}}) = \mathsf{wrapSome}(xs_v) * \\ &\dots \end{split}
```

Invariant (Queue States)

- Idea: the enqueueing thread keeps half of tail pointer between invariant openings
- Guarantees that the pointer is not updated (full pointer needed for update)
- Similarly for the dequeueing thread
- **Enqueue** and **Both** also captures "gap" between adding x_{new} and swinging ℓ_{tail}
- Tokens used to reason about which state queue is in

Definition (Two-Lock M&S Queue HOCAP Invariant - continued)

Queue Predicate

■ We now define the queue predicate in terms of our invariant

Definition (Two-Lock M&S Queue - isQueue Predicate)

$$\begin{split} \text{isQueue}(\textit{v}_q,\textit{G}) \triangleq & \exists \ell_{\text{queue}}, \ell_{\text{head}}, \ell_{\text{tail}} \in \textit{Loc}. \ \exists \textit{h}_{\text{lock}}, \textit{t}_{\text{lock}} \in \textit{Val}. \\ & \textit{v}_q = \ell_{\text{queue}} * \ell_{\text{queue}} \mapsto^{\square} \big((\ell_{\text{head}}, \ell_{\text{tail}}), (\textit{h}_{\text{lock}}, \textit{t}_{\text{lock}}) \big) * \\ & \boxed{\mathsf{I}_{\mathsf{TLH}}(\ell_{\text{head}}, \ell_{\text{tail}}, \textit{G})}^{\mathcal{N}.\textit{queue}} * \\ & \text{isLock}(\textit{G}.\gamma_{\text{Hlock}}, \textit{h}_{\text{lock}}, \mathsf{TokD} \ \textit{G}) * \\ & \text{isLock}(\textit{G}.\gamma_{\text{Tlock}}, \textit{t}_{\text{lock}}, \mathsf{TokE} \ \textit{G}) \end{split}$$

Queue Predicate

■ We now define the queue predicate in terms of our invariant

Definition (Two-Lock M&S Queue - isQueue Predicate)

$$\begin{split} \text{isQueue}(\textit{v}_q,\textit{G}) \triangleq & \exists \ell_{\text{queue}}, \ell_{\text{head}}, \ell_{\text{tail}} \in \textit{Loc.} \ \exists \textit{h}_{\text{lock}}, \textit{t}_{\text{lock}} \in \textit{Val.} \\ & \textit{v}_q = \ell_{\text{queue}} * \ell_{\text{queue}} \mapsto^{\square} \left((\ell_{\text{head}}, \ell_{\text{tail}}), (\textit{h}_{\text{lock}}, \textit{t}_{\text{lock}}) \right) * \\ & \boxed{|\mathsf{I}_{\mathsf{TLH}}(\ell_{\text{head}}, \ell_{\text{tail}}, \textit{G})|}^{\mathcal{N}.\textit{queue}} * \\ & \text{isLock}(\textit{G}.\gamma_{\text{Hlock}}, \textit{h}_{\text{lock}}, \mathsf{TokD} \ \textit{G}) * \\ & \text{isLock}(\textit{G}.\gamma_{\text{Tlock}}, \textit{t}_{\text{lock}}, \mathsf{TokE} \ \textit{G}) \end{split}$$

■ The queue predicate is persistent, as all its constituents are

Queue Predicate

■ We now define the queue predicate in terms of our invariant

Definition (Two-Lock M&S Queue - isQueue Predicate)

$$\begin{split} \mathsf{isQueue}(\textit{v}_q,\textit{G}) \triangleq & \exists \ell_{\mathrm{queue}}, \ell_{\mathrm{head}}, \ell_{\mathrm{tail}} \in \textit{Loc.} \ \exists \textit{h}_{\mathrm{lock}}, \textit{t}_{\mathrm{lock}} \in \textit{Val.} \\ & \textit{v}_q = \ell_{\mathrm{queue}} * \ell_{\mathrm{queue}} \mapsto^{\square} \left((\ell_{\mathrm{head}}, \ell_{\mathrm{tail}}), (\textit{h}_{\mathrm{lock}}, \textit{t}_{\mathrm{lock}}) \right) * \\ & \boxed{\mathsf{I}_{\mathsf{TLH}}(\ell_{\mathrm{head}}, \ell_{\mathrm{tail}}, \textit{G})}^{\mathcal{N}.\textit{queue}} * \\ & \mathsf{isLock}(\textit{G}.\gamma_{\mathrm{Hlock}}, \textit{h}_{\mathrm{lock}}, \mathsf{TokD} \ \textit{G}) * \\ & \mathsf{isLock}(\textit{G}.\gamma_{\mathrm{Tlock}}, \textit{t}_{\mathrm{lock}}, \mathsf{TokE} \ \textit{G}) \end{split}$$

- The queue predicate is persistent, as all its constituents are
- Proving that Two-Lock M&S Queue satisfies the HOCAP-style specification then consists of proving the Hoare triples for initialize, enqueue, and dequeue
- We here focus on enqueue

$$\forall v_q, v, G, P, Q. \quad (\forall xs_v. \ G.\gamma_{\mathrm{Abst}} \mapsto_{\bullet} xs_v * P \Rrightarrow_{\mathcal{E} \setminus \mathcal{N}.i\uparrow} \triangleright G.\gamma_{\mathrm{Abst}} \mapsto_{\bullet} (v :: xs_v) * Q) \twoheadrightarrow \{ \mathrm{isQueue}(v_q, G) * P \} \text{ enqueue } v_q \ v \ \{w.Q\}$$

```
\forall v_q, v, G, P, Q. \quad (\forall xs_v. \ G.\gamma_{Abst} \Rightarrow_{\bullet} xs_v * P \Rightarrow_{\mathcal{E} \setminus \mathcal{N}.i\uparrow} \triangleright G.\gamma_{Abst} \Rightarrow_{\bullet} (v :: xs_v) * Q) \twoheadrightarrow
                                      \{isQueue(v_a, G) * P\} enqueue v_a v \{w.Q\}
```

- $\begin{array}{l} \bullet \ \ v_q = \ell_{\mathrm{queue}} * \ell_{\mathrm{queue}} \mapsto^{\Box} ((\ell_{\mathrm{head}}, \ell_{\mathrm{tail}}), (\mathit{h}_{\mathrm{lock}}, \mathit{t}_{\mathrm{lock}})) \\ \bullet \ \ [\mathsf{I}_{\mathsf{TLH}}(\ell_{\mathrm{head}}, \ell_{\mathrm{tail}}, \mathcal{G})]^{\mathcal{N}.\mathit{queue}} \end{array}$
- isLock($G.\gamma_{Tlock}$, t_{lock} , TokE G)

```
\forall v_q, v, G, P, Q. \ (\forall xs_v. G. \gamma_{Abst} \Rightarrow_{\bullet} xs_v * P \Rightarrow_{\mathcal{E} \setminus \mathcal{N}, j\uparrow} \triangleright G. \gamma_{Abst} \Rightarrow_{\bullet} (v :: xs_v) * Q) \twoheadrightarrow
                                    {isQueue(v_a, G) * P} enqueue v_a v {w.Q}
(Proof)
```

- $\begin{array}{l} \bullet \ \ v_q = \ell_{\mathrm{queue}} * \ell_{\mathrm{queue}} \mapsto^{\Box} ((\ell_{\mathrm{head}}, \ell_{\mathrm{tail}}), (\mathit{h}_{\mathrm{lock}}, \mathit{t}_{\mathrm{lock}})) \\ \bullet \ \ [\mathsf{I}_{\mathsf{TLH}}(\ell_{\mathrm{head}}, \ell_{\mathrm{tail}}, \mathcal{G})]^{\mathcal{N}.\mathit{queue}} \end{array}$
- isLock($G.\gamma_{Tlock}$, t_{lock} , TokE G)

```
{P}
  let node = ref (Some v, ref (None)) in
  acquire(snd(snd(! v_a)));
  e_t = !(\operatorname{snd}(\operatorname{fst}(! v_a)))
  snd(!(e_t)) \leftarrow node;
  snd(fst(! v_a)) \leftarrow node;
  release(snd(snd(! v_a)))
{Q}
```

```
\forall v_q, v, G, P, Q. \ (\forall xs_v. G. \gamma_{Abst} \Rightarrow_{\bullet} xs_v * P \Rightarrow_{\mathcal{E} \setminus \mathcal{N}, j\uparrow} \triangleright G. \gamma_{Abst} \Rightarrow_{\bullet} (v :: xs_v) * Q) \twoheadrightarrow
                                    {isQueue(v_a, G) * P} enqueue v_a v {w.Q}
(Proof)
```

- $\begin{array}{l} \bullet \ \ v_q = \ell_{\mathrm{queue}} * \ell_{\mathrm{queue}} \mapsto^{\square} ((\ell_{\mathrm{head}}, \ell_{\mathrm{tail}}), (\mathit{h}_{\mathrm{lock}}, \mathit{t}_{\mathrm{lock}})) \\ \bullet \ \ \left[\mathsf{I}_{\mathsf{TLH}}(\ell_{\mathrm{head}}, \ell_{\mathrm{tail}}, \mathit{G})\right]^{\mathcal{N}.\mathit{queue}} \end{array}$
- isLock($G.\gamma_{Tlock}$, t_{lock} , TokE G)

```
{P}
  let node = ref(Some v, ref(None)) in (create node x_{new})
\{P * \operatorname{out}(x_{\text{new}}) \mapsto \operatorname{None}\}
  acquire(snd(snd(! v_a)));
  e_t = !(\operatorname{snd}(\operatorname{fst}(! v_a)))
  snd(!(e_t)) \leftarrow node;
  snd(fst(!v_a)) \leftarrow node;
  release(snd(snd(! v_a)))
{Q}
```

```
\forall v_q, v, G, P, Q. \quad (\forall xs_v. \ G.\gamma_{Abst} \Rightarrow_{\bullet} xs_v * P \Rightarrow_{\mathcal{E} \setminus \mathcal{N}.i\uparrow} \triangleright G.\gamma_{Abst} \Rightarrow_{\bullet} (v :: xs_v) * Q) \twoheadrightarrow
                                     {isQueue(v_a, G) * P} enqueue v_a v {w.Q}
(Proof)
```

- $\begin{array}{l} \bullet \ \ v_q = \ell_{\mathrm{queue}} * \ell_{\mathrm{queue}} \mapsto^{\square} ((\ell_{\mathrm{head}}, \ell_{\mathrm{tail}}), (\mathit{h}_{\mathrm{lock}}, \mathit{t}_{\mathrm{lock}})) \\ \bullet \ \ \left[\mathsf{I}_{\mathsf{TLH}}(\ell_{\mathrm{head}}, \ell_{\mathrm{tail}}, \mathit{G})\right]^{\mathcal{N}.\mathit{queue}} \end{array}$
- isLock($G.\gamma_{Tlock}$, t_{lock} , TokE G)

```
{P}
   let node = ref(Some v, ref(None)) in (create node x_{new})
\{P * \operatorname{out}(x_{\text{new}}) \mapsto \operatorname{None}\}
   acquire(snd(snd(!v_a))); (acquire tail lock)
\{P * \operatorname{out}(x_{\text{new}}) \mapsto \operatorname{None} * \operatorname{TokE} G\}
   e_t = !(\operatorname{snd}(\operatorname{fst}(! v_a)))
   snd(!(e_t)) \leftarrow node;
   snd(fst(!v_a)) \leftarrow node;
   release(snd(snd(! v_a)))
{Q}
```

```
\forall v_q, v, G, P, Q. \ (\forall xs_v. G. \gamma_{Abst} \Rightarrow_{\bullet} xs_v * P \Rightarrow_{\mathcal{E} \setminus \mathcal{N}, j\uparrow} \triangleright G. \gamma_{Abst} \Rightarrow_{\bullet} (v :: xs_v) * Q) \twoheadrightarrow
                                    {isQueue(v_a, G) * P} enqueue v_a v {w.Q}
(Proof)
```

- $\begin{array}{l} \bullet \ \ v_q = \ell_{\mathrm{queue}} * \ell_{\mathrm{queue}} \mapsto^{\square} ((\ell_{\mathrm{head}}, \ell_{\mathrm{tail}}), (\mathit{h}_{\mathrm{lock}}, \mathit{t}_{\mathrm{lock}})) \\ \bullet \ \ \left[\mathsf{I}_{\mathsf{TLH}}(\ell_{\mathrm{head}}, \ell_{\mathrm{tail}}, \mathit{G})\right]^{\mathcal{N}.\mathit{queue}} \end{array}$
- isLock($G.\gamma_{Tlock}$, t_{lock} , TokE G)

```
{P}
   let node = ref(Some v, ref(None)) in (create node x_{new})
\{P * \operatorname{out}(x_{\text{new}}) \mapsto \operatorname{None}\}
   acquire(snd(snd(!v_a))); (acquire tail lock)
\{P * \operatorname{out}(x_{\text{new}}) \mapsto \operatorname{None} * \operatorname{TokE} G\}
   e_t = !(snd(fst(!v_q))) (find current tail, x_{tail}. I_{TLH}: Static/Dequeue \rightarrow Enqueue/Both (before))
\{P * \operatorname{out}(x_{\text{new}}) \mapsto \operatorname{None} * \ell_{\text{tail}} \mapsto \frac{1}{2} \operatorname{in}(x_{\text{tail}}) * \operatorname{TokNE} G * \operatorname{TokAfter} G\}
   snd(!(e_t)) \leftarrow node;
   snd(fst(!v_a)) \leftarrow node;
   release(snd(snd(! v_a)))
{Q}
```

```
\forall v_q, v, G, P, Q. \quad (\forall x s_v. \ G. \gamma_{Abst} \Rightarrow_{\bullet} x s_v * P \Rightarrow_{\mathcal{E} \setminus \mathcal{N}.i \uparrow} \triangleright G. \gamma_{Abst} \Rightarrow_{\bullet} (v :: x s_v) * Q) \twoheadrightarrow
                                     {isQueue(v_a, G) * P} enqueue v_a v {w.Q}
(Proof)
```

- $\begin{array}{l} \bullet \ \ v_q = \ell_{\mathrm{queue}} * \ell_{\mathrm{queue}} \mapsto^{\square} ((\ell_{\mathrm{head}}, \ell_{\mathrm{tail}}), (\mathit{h}_{\mathrm{lock}}, \mathit{t}_{\mathrm{lock}})) \\ \bullet \ \ \left[\mathsf{I}_{\mathsf{TLH}}(\ell_{\mathrm{head}}, \ell_{\mathrm{tail}}, \mathit{G})\right]^{\mathcal{N}.\mathit{queue}} \end{array}$
- isLock($G.\gamma_{Tlock}$, t_{lock} , TokE G)

```
{P}
    let node = ref(Some v, ref(None)) in (create node x_{new})
\{P * \operatorname{out}(x_{\text{new}}) \mapsto \operatorname{None}\}
    acquire(snd(snd(!v_a))); (acquire tail lock)
\{P * \operatorname{out}(x_{\text{new}}) \mapsto \operatorname{None} * \operatorname{TokE} G\}
    e_t = !(snd(fst(!v_q))) (find current tail, x_{tail}. I_{TLH}: Static/Dequeue \rightarrow Enqueue/Both (before))
\{P * \operatorname{out}(x_{\text{new}}) \mapsto \operatorname{None} * \ell_{\text{tail}} \mapsto \frac{1}{2} \operatorname{in}(x_{\text{tail}}) * \operatorname{TokNE} G * \operatorname{TokAfter} G\}
    \mathsf{snd}(!(e_t)) \leftarrow \mathsf{node}; \pmod{\mathsf{x}_{\text{tail}}} \text{ point to } \mathsf{x}_{\text{new}}. \ \mathsf{VS}. \ \mathsf{I}_{\mathsf{TLH}}: \mathsf{Enqueue/Both} \ (\mathsf{before}) \rightarrow \mathsf{Enqueue/Both} \ (\mathsf{after}))
\{Q * \ell_{tail} \mapsto \frac{1}{2} \operatorname{in}(x_{tail}) * \operatorname{TokNE} G * \operatorname{TokBefore} G\}
    snd(fst(! v_a)) \leftarrow node;
    release(snd(snd(! v_a)))
{Q}
```

```
\forall v_q, v, G, P, Q. \quad (\forall x s_v. \ G. \gamma_{Abst} \Rightarrow_{\bullet} x s_v * P \Rightarrow_{\mathcal{E} \setminus \mathcal{N}.i \uparrow} \triangleright G. \gamma_{Abst} \Rightarrow_{\bullet} (v :: x s_v) * Q) \twoheadrightarrow
                                     {isQueue(v_a, G) * P} enqueue v_a v {w.Q}
(Proof)
```

- $\begin{array}{l} \bullet \ \ v_q = \ell_{\mathrm{queue}} * \ell_{\mathrm{queue}} \mapsto^{\square} ((\ell_{\mathrm{head}}, \ell_{\mathrm{tail}}), (\mathit{h}_{\mathrm{lock}}, \mathit{t}_{\mathrm{lock}})) \\ \bullet \ \ \left[\mathsf{I}_{\mathsf{TLH}}(\ell_{\mathrm{head}}, \ell_{\mathrm{tail}}, \mathit{G})\right]^{\mathcal{N}.\mathit{queue}} \end{array}$
- isLock($G.\gamma_{Tlock}$, t_{lock} , TokE G)

```
{P}
   let node = ref(Some v, ref(None)) in (create node x_{new})
\{P * \operatorname{out}(x_{\text{new}}) \mapsto \operatorname{None}\}
   acquire(snd(snd(!v_a))); (acquire tail lock)
\{P * \operatorname{out}(x_{\text{new}}) \mapsto \operatorname{None} * \operatorname{TokE} G\}
    e_t = !(snd(fst(!v_q))) (find current tail, x_{tail}. I_{TLH}: Static/Dequeue \rightarrow Enqueue/Both (before))
\{P * \operatorname{out}(x_{\text{new}}) \mapsto \operatorname{None} * \ell_{\text{tail}} \mapsto \frac{1}{2} \operatorname{in}(x_{\text{tail}}) * \operatorname{TokNE} G * \operatorname{TokAfter} G\}
   \mathsf{snd}(!(e_t)) \leftarrow \mathsf{node}; \pmod{\mathsf{x}_{\text{tail}}} \text{ point to } \mathsf{x}_{\text{new}}. \ \mathsf{VS}. \ \mathsf{I}_{\mathsf{TLH}}: \mathsf{Enqueue/Both} \ (\mathsf{before}) \rightarrow \mathsf{Enqueue/Both} \ (\mathsf{after}))
\{Q * \ell_{tail} \mapsto \stackrel{\stackrel{\perp}{2}}{=} in(x_{tail}) * TokNE G * TokBefore G\}
   snd(fst(!v_a)) \leftarrow node; (swing tail pointer to x_{new}. I_{TLH}: Enqueue/Both (after) \rightarrow Static/Dequeue)
\{Q * TokE G\}
   release(snd(snd(! v_a)))
{Q}
```

```
\forall v_q, v, G, P, Q. \quad (\forall x s_v. \ G. \gamma_{Abst} \Rightarrow_{\bullet} x s_v * P \Rightarrow_{\mathcal{E} \setminus \mathcal{N}.i \uparrow} \triangleright G. \gamma_{Abst} \Rightarrow_{\bullet} (v :: x s_v) * Q) \twoheadrightarrow
                                     {isQueue(v_a, G) * P} enqueue v_a v {w.Q}
(Proof)
```

- $\begin{array}{l} \bullet \ \ v_q = \ell_{\mathrm{queue}} * \ell_{\mathrm{queue}} \mapsto^{\square} \big((\ell_{\mathrm{head}}, \ell_{\mathrm{tail}}), (\mathit{h}_{\mathrm{lock}}, \mathit{t}_{\mathrm{lock}}) \big) \\ \bullet \ \ \overline{|\mathsf{I}_{\mathsf{TLH}}(\ell_{\mathrm{head}}, \ell_{\mathrm{tail}}, \mathit{G})|}^{\mathcal{N}.\mathit{queue}} \end{array}$
- isLock($G.\gamma_{Tlock}$, t_{lock} , TokE G)

```
{P}
   let node = ref(Some v, ref(None)) in (create node x_{new})
\{P * \operatorname{out}(x_{\text{new}}) \mapsto \operatorname{None}\}
   acquire(snd(snd(!v_a))); (acquire tail lock)
\{P * \operatorname{out}(x_{\text{new}}) \mapsto \operatorname{None} * \operatorname{TokE} G\}
   e_t = !(snd(fst(!v_q))) (find current tail, x_{tail}. I_{TLH}: Static/Dequeue \rightarrow Enqueue/Both (before))
\{P * \operatorname{out}(x_{\text{new}}) \mapsto \operatorname{None} * \ell_{\text{tail}} \mapsto \frac{1}{2} \operatorname{in}(x_{\text{tail}}) * \operatorname{TokNE} G * \operatorname{TokAfter} G\}
   \mathsf{snd}(!(e_t)) \leftarrow \mathsf{node}; \pmod{\mathsf{x}_{\text{tail}}} \text{ point to } \mathsf{x}_{\text{new}}. \ \mathsf{VS}. \ \mathsf{I}_{\mathsf{TLH}}: \mathsf{Enqueue/Both} \ (\mathsf{before}) \rightarrow \mathsf{Enqueue/Both} \ (\mathsf{after}))
\{Q * \ell_{tail} \mapsto \stackrel{\stackrel{\perp}{2}}{=} in(x_{tail}) * TokNE G * TokBefore G\}
   snd(fst(!v_q)) \leftarrow node; (swing tail pointer to x_{new}. I_{TLH}: Enqueue/Both (after) \rightarrow Static/Dequeue)
\{Q * TokE G\}
   release(snd(snd(!v_a))) (release tail lock)
{ Q }
```

The Lock-Free Michael-Scott Queue

Implementation (Consistency-Check Free)

- Queue data structure is still a linked list
- The lock-free versions of initialize, enqueue, and dequeue perform the same manipulations of the linked list as two-lock versions
- Difference is how the manipulations take place

Implementation (Consistency-Check Free)

- Queue data structure is still a linked list
- The lock-free versions of initialize, enqueue, and dequeue perform the same manipulations of the linked list as two-lock versions
- Difference is how the manipulations take place now with CAS instructions
- Ensures no overwrites of enqueued nodes, and no node dequeued twice

```
initialize \triangleq
let node = ref (None, ref (None)) in ref (ref (node), ref (node))
enqueue Q value \triangleq
let node = ref (Some value, ref (None)) in (rec loop\_=
let tail = !(snd(! Q)) in let next = !(snd(! tail)) in if next = None then if CAS (snd(! tail)) next node then CAS (snd(! Q)) tail node else loop () else CAS (snd(! Q)) tail next; loop ()
```

```
dequeue Q \triangleq
  (rec loop_ =
     let head = !(fst(! Q)) in
     let tail = !(snd(!Q)) in
     let next = !(snd(! head)) in
     if head = tail then
       if next = None then
          None
        else
          CAS(snd(! Q)) tail next; loop ()
     else
       let value = fst(! next) in
       if CAS (fst(! Q)) head next then
          value
        else loop ()
     )()
```

Consistency Checks and Prophecies

- Original implementation has consistency checks to deal with ABA problem
- Creates complications when proving adherence to HOCAP-style specification
- In dequeue, the point at which to apply the view-shift (to update P to Q) depends on whether queue is empty and result of future consistency check
- Prophecies allow us to reason about future computations (e.g. consistency check)

```
initialize ≜
  let node = ref(None, ref(None)) in
  ref (ref (node), ref (node))
enqueue Q value \triangleq
  let node = ref (Some value, ref (None)) in
  (rec loop_ =
    let tail = !(snd(! Q)) in
    let next = !(snd(! tail)) in
    if tail = !(snd(!Q)) then
       if next = None then
          if CAS (snd(! tail)) next node then
            CAS (snd(! Q)) tail node
          else loop ()
       else CAS (snd(! Q)) tail next; loop ()
     else loop ()
  )()
```

```
dequeue Q \triangleq
  (rec loop_{-} =
     let head = !(fst(! Q)) in
     let tail = !(snd(!Q)) in
     let p = \text{newproph in}
     let next = !(snd(! head)) in
     if head = Resolve(!(fst(!Q)), p, ()) then
       if head = tail then
          if next = None then
            None
           else
            CAS(snd(! Q)) tail next; loop ()
        else
          let value = fst(! next) in
          if CAS (fst(! Q)) head next then
             value
           else loop ()
     else loop ()
     )()
```

Proving that the Lock-Free Michael-Scott Queue Satisfies the HOCAP-style Specification

- The queue relies on some important properties to function correctly:
 - The set of nodes reachable from a particular node only grows
 - The head and tail are only moved forward in the linked list
 - The tail cannot lag behind the head (unlike in the two-lock version)

- The queue relies on some important properties to function correctly:
 - The set of nodes reachable from a particular node only grows
 - The head and tail are only moved forward in the linked list
 - The tail cannot lag behind the head (unlike in the two-lock version)
- We capture all these properties with a notion of *reachability*
- Consists of a concrete and abstract version of reachability

- The queue relies on some important properties to function correctly:
 - The set of nodes reachable from a particular node only grows
 - The head and tail are only moved forward in the linked list
 - The tail cannot lag behind the head (unlike in the two-lock version)
- We capture all these properties with a notion of *reachability*
- Consists of a concrete and abstract version of reachability

Concrete Reachability

■ Concrete reachability essentially captures a section of the linked list (á la isLL)

- The queue relies on some important properties to function correctly:
 - The set of nodes reachable from a particular node only grows
 - The head and tail are only moved forward in the linked list
 - The tail cannot lag behind the head (unlike in the two-lock version)
- We capture all these properties with a notion of *reachability*
- Consists of a concrete and abstract version of reachability

Concrete Reachability

- Concrete reachability essentially captures a section of the linked list (á la isLL)
- The proposition $x_n \rightsquigarrow x_m$ asserts that x_n can reach x_m through the linked list

- The queue relies on some important properties to function correctly:
 - The set of nodes reachable from a particular node only grows
 - The head and tail are only moved forward in the linked list
 - The tail cannot lag behind the head (unlike in the two-lock version)
- We capture all these properties with a notion of *reachability*
- Consists of a concrete and abstract version of reachability

Concrete Reachability

- Concrete reachability essentially captures a section of the linked list (á la isLL)
- The proposition $x_n \rightsquigarrow x_m$ asserts that x_n can reach x_m through the linked list
- Defined inductively as follows

$$x_n \rightsquigarrow x_m \stackrel{\triangle}{=} \mathsf{in}(x_n) \mapsto^{\square} (\mathsf{val}(x_n), \mathsf{out}(x_n)) * (x_n = x_m \vee \exists x_p. \mathsf{out}(x_n) \mapsto^{\square} \mathsf{in}(x_p) * x_p \rightsquigarrow x_m)$$

- The queue relies on some important properties to function correctly:
 - The set of nodes reachable from a particular node only grows
 - The head and tail are only moved forward in the linked list
 - The tail cannot lag behind the head (unlike in the two-lock version)
- We capture all these properties with a notion of *reachability*
- Consists of a concrete and abstract version of reachability

Concrete Reachability

- Concrete reachability essentially captures a section of the linked list (á la isLL)
- The proposition $x_n \rightsquigarrow x_m$ asserts that x_n can reach x_m through the linked list
- Defined inductively as follows

$$x_n \rightsquigarrow x_m \triangleq \mathsf{in}(x_n) \mapsto^{\square} (\mathsf{val}(x_n), \mathsf{out}(x_n)) * (x_n = x_m \lor \exists x_p. \mathsf{out}(x_n) \mapsto^{\square} \mathsf{in}(x_p) * x_p \rightsquigarrow x_m)$$

Concrete reachability is reflexive and transitive

Abstract Reachability

Abstract reachability is concerned with tracking specific types of nodes, such as the head node, the tail node, and the last node

Abstract Reachability

- Abstract reachability is concerned with tracking specific types of nodes, such as the head node, the tail node, and the last node
- lacktriangle Tracked using ghost names, e.g. γ_{Head} , γ_{Tail} , and γ_{Last}
 - lacksquare Implemented using the resource algebra $\operatorname{Auth}(\mathcal{P}(\textit{Node}))$

Abstract Reachability

- Abstract reachability is concerned with tracking specific types of nodes, such as the head node, the tail node, and the last node
- Implemented using the resource algebra $\operatorname{AUTH}(\mathcal{P}(\textit{Node}))$
- Defined in two parts: Abstract Points-to $(\gamma \rightarrowtail x)$ and Abstract Reach $(x \dashrightarrow \gamma)$
- For instance, $\gamma_{Tail} \rightarrow x_n$ means that the current tail node is x_n

■ Tracked using ghost names, e.g. $\gamma_{\rm Head}$, $\gamma_{\rm Tail}$, and $\gamma_{\rm Last}$

■ And $x_m \dashrightarrow \gamma_{\mathrm{Tail}}$ means that node x_m can always reach the tail node

Abstract Reachability

- Abstract reachability is concerned with tracking specific types of nodes, such as the head node, the tail node, and the last node
- Tracked using ghost names, e.g. $\gamma_{\rm Head}$, $\gamma_{\rm Tail}$, and $\gamma_{\rm Last}$ Implemented using the resource algebra ${\rm Auth}(\mathcal{P}(\textit{Node}))$
- Defined in two parts: Abstract Points-to $(\gamma \rightarrowtail x)$ and Abstract Reach $(x \dashrightarrow \gamma)$
- For instance, $\gamma_{Tail} \rightarrow x_n$ means that the current tail node is x_n
- And $x_m \dashrightarrow \gamma_{\mathrm{Tail}}$ means that node x_m can always reach the tail node

Lemmas for Reachability (simplified)

$$x \rightsquigarrow x \Rrightarrow \exists \gamma. \ \gamma \rightarrowtail x$$
 (Abs Reach Alloc)
 $x_n \dashrightarrow \gamma_m * \gamma_m \rightarrowtail x_m \twoheadrightarrow x_n \leadsto x_m$ (Abs Reach Concr)
 $x_n \leadsto x_m * \gamma_m \rightarrowtail x_m \Rrightarrow x_n \dashrightarrow \gamma_m$ (Abs Reach Abs)
 $\gamma_m \rightarrowtail x_m * x_m \leadsto x_o \Rrightarrow \gamma_m \rightarrowtail x_o$ (Abs Reach Advance)

