BykovDS 01112024-161136

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2.3	0.460	-167.8	12.606	79.1	0.037	57.9	0.257	-83.1
2.4	0.461	-169.8	12.059	77.6	0.038	58.0	0.251	-85.0
2.5	0.463	-171.7	11.579	76.3	0.039	57.9	0.246	-87.0
2.6	0.466	-173.5	11.106	74.9	0.040	57.9	0.241	-89.1
2.7	0.467	-175.1	10.688	73.7	0.042	57.9	0.238	-91.0
2.8	0.468	-176.6	10.275	72.5	0.043	57.9	0.234	-92.9
2.9	0.470	-178.1	9.920	71.4	0.044	57.8	0.232	-94.6
3.0	0.473	-179.5	9.569	70.2	0.045	57.8	0.230	-96.3
3.1	0.473	179.2	9.284	69.3	0.047	57.7	0.229	-97.5
3.2	0.474	177.9	9.002	68.2	0.048	57.5	0.227	-98.8
3.3	0.476	176.6	8.722	67.2	0.049	57.4	0.226	-100.0

и частоты $f_{\mbox{\tiny H}}=2.5$ ГГц, $f_{\mbox{\tiny B}}=3.1$ ГГц.

Найти неравномерность усиления в полосе $f_{\scriptscriptstyle \rm H}...f_{\scriptscriptstyle \rm B}$, используя рисунок 1.

Рисунок 1 – Частотная характеристика усиления

- 1) 1.9 дБ
- 2) 3.2 дБ
- 3) 0.5 дБ
- 4) 1 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.513	-108.7	25.561	111.9	0.025	52.0	0.545	-53.3
2.1	0.472	-152.3	13.427	85.6	0.036	51.1	0.328	-74.6
3.2	0.476	-174.4	8.821	70.4	0.048	52.0	0.266	-92.6
4.3	0.489	171.0	6.548	58.2	0.061	51.1	0.242	-103.9
5.4	0.497	160.1	5.133	47.1	0.076	48.8	0.217	-114.1
6.5	0.513	147.3	4.281	35.9	0.090	43.4	0.191	-129.5
8.6	0.595	128.1	3.105	14.9	0.118	33.0	0.136	167.9

Найти точку (см. рисунок 2), соответствующую s_{22} на частоте 6.5 ГГц.

Рисунок 2 — Кривые s_{11} и s_{22}

- 1) A
- 2) B
- 3) C
- 4) D

Найти точку (см. рисунок 3), соответствующую коэффициенту отражения от нормированного импеданса $z=0.97{+}1.69\mathrm{i}$.

Рисунок 3 — Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Задан двухполюсник на рисунке 4, причём R1 = 49.58 Om.

Рисунок 4 – Двухполюсник

Найти полуокружность (см. рисунок 5), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 5 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.557	164.3	5.587	74.3	0.050	58.2	0.270	-42.2
1.4	0.568	150.0	4.012	63.6	0.066	57.4	0.256	-46.9
1.8	0.594	138.0	3.104	53.2	0.082	54.8	0.246	-53.9
2.2	0.616	127.5	2.526	43.8	0.098	51.5	0.238	-62.4
2.6	0.647	117.5	2.122	34.8	0.112	47.8	0.229	-72.4
3.0	0.674	108.9	1.818	26.1	0.126	43.9	0.220	-83.8
3.4	0.700	101.2	1.584	18.4	0.139	40.2	0.217	-96.2
3.8	0.724	94.5	1.398	10.9	0.151	36.3	0.218	-109.5
4.2	0.748	88.4	1.242	3.6	0.162	32.5	0.225	-122.8

и частоты $f_{\mbox{\tiny H}}=1.4$ $\Gamma\Gamma\mbox{\scriptsize II},\,f_{\mbox{\tiny B}}=3.8$ $\Gamma\Gamma\mbox{\tiny II}.$

Найти обратные потери по выходу на $f_{\scriptscriptstyle \mathrm{H}}.$

- 1) 6.6 дБ
- 2) 11.8 дБ
- 3) 13.2 дБ
- 4) 5.9 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2.8	0.366	165.1	4.673	64.9	0.090	62.5	0.171	-91.5
3.0	0.369	162.4	4.344	62.9	0.096	61.6	0.167	-95.0
3.5	0.375	156.7	3.707	57.7	0.110	58.9	0.159	-102.4
4.0	0.380	151.1	3.239	52.7	0.125	55.9	0.154	-108.8
4.5	0.388	146.3	2.880	47.8	0.140	52.8	0.145	-114.6
5.0	0.393	142.2	2.599	43.2	0.154	49.5	0.135	-120.4
5.5	0.398	137.8	2.371	38.3	0.168	46.2	0.121	-126.9
6.0	0.406	132.7	2.181	33.6	0.181	42.9	0.103	-135.0
6.5	0.418	127.4	2.017	28.9	0.194	39.4	0.088	-148.8
7.0	0.433	121.7	1.872	24.0	0.207	36.0	0.073	-167.0
7.5	0.455	117.7	1.746	19.5	0.219	32.6	0.070	167.2

и частоты $f_{\scriptscriptstyle \rm H}=4.5~\Gamma\Gamma$ ц, $f_{\scriptscriptstyle \rm B}=6.5~\Gamma\Gamma$ ц. **Найти** модуль s_{22} в дБ на частоте $f_{\scriptscriptstyle \rm H}$.

- 1) -8.2 дБ
- 2) 9.2 дБ
- 3) -17.1 дБ
- 4) -16.8 дБ