Presentation

Minsu Kim, Alona Muzikansky, Ariane Stark, Jadey Wu

Introduction

Introduction text here

• Demographic information

- Patient physiological attributes
- IBS_POST: coronary heart disease in recen weeks before admission to hospital
 - 0: there was no CHD
 - 1: extertional angina pectoris
 - 2: unstable angina pectoris
- DLIT_AG: duration of arterial hypertension
 - 0: there was no arterial hypertension
 - 1: one year
 - 2: two years
 - 3: three years
 - 4: four years
 - 5: five years
 - 6: 6-10 years
 - 7: more than 10 years

- SIM_GIPERT: systematic hypertension; 0 no, 1 yes
- endocr_01: diabetes mellitus in the anamnesis; 0 no, 1 yes
- endocr_02: obesity in the anamnesis; 0 no, 1 yes
- ZSN: chronic heart failure; 0 no, 1 yes

Ariane: Analysis of Sex and Chronic Heart Failure: Overview

Question: Is there an association between sex and chronic heart failure?

```
Chronic Heart Failure
Sex No Yes
Female 353 149
Male 699 179
```

Analysis of Sex and Chronic Heart Failure: Tests

Pearson χ^2 Test of Independence:

$$p-value = 0.00012$$

Likelihood Ratio Test of Independence:

G

14.93905

$$p$$
-value = 0.00011

Analysis of Age(Continuous) and Chronic Heart Failure: Overview

Question: Is there an association between age and chronic heart failure?

Analysis of Age(Continuous) and Chronic Heart Failure: Summary Statistics

	Chronic	Heart Fail	ure
	No	Yes	
Min.	26	38	
1st Qu.	53	58	
Median	61	65	
Mean	60.4258	36 64.51220	
3rd Qu.	68.00	71.25	
Max	92	92	

Analysis of Age(Continuous) and Chronic Heart Failure: Test

Analysis was done using a two sided Wilcoxon Rank Sum Test to test if there is a difference in Chronic Heart Failure outcome across age.

W

136546.5

p-value = 1e-08

Analysis of Age(Categorical) and Chronic Heart Failure: Overview

Question: Is there an association between age(decade) and chronic heart failure?

```
Chronic Heart Failure
```

```
Age No Yes

20s 3 0

30s 44 2

40s 114 24

50s 294 67

60s 365 126

70s 197 86

80s 32 22

90s 3 1
```

Analysis of Age(Categorical) and Chronic Heart Failure: Test

Pearson χ^2 Test of Independence:

X-squared 35.41942

p-value = 1e-05

Likelihood Ratio Test of Independence:

(

38.86163

p-value = 2.08e-06

Alona

Alona

Minsu

Minsu

Jadey

Secondary analysis - modeling the relationship between death outcome and selected variables

- The dataset includes one variable indicating the causes of lethal outcome for the patients
 - LET IS: causes of lethal outcome
 - 0: survive
 - 1: cardiogenic edema
 - 2: pulmonary edema
 - 3: myocardial rupture
 - 4: progress of congestive heart failure
 - 5: thromboembolism
 - 6: asystole
 - 7: ventricular fibrillation
- Build a logistic regression model to predict death of the patients by turning LET_IS to a binary variable "death"
- Build model with multimonial response to investigate the cause of death

Secondary analysis - modeling the relationship between death outcome and selected variables

- Full model contains continuous variables AGE, DLIT_AG, categorical variables SEX, IBS_POST, SIM_GIPERT, endocr_01, endocr_02, and the interaction terms between AGE and all the other variables.
- Used stepwise step() to select the best model.
- The best model selected:

$$log\frac{\pi_i}{1-\pi_i} = -6.018 + 0.058 \times AGE + 0.073 \times I(IBS = 1) + 0.696 \times I(IBS = 2) + 0.726 \times I(SIM = 1) + 0.476 \times I(endocr01 = 1) + 1.081 \times I(endocr02 = 1)$$

- All selected predictors increase the probability of death.
 - exp(beta_age) = 1.06
 - $OR(IBS_POST = 1 \text{ vs. } IBS_POST = 0) = 1.08 \text{ (p} = 0.77 > 0.5)$
 - $OR(IBS_POST = 2 \text{ vs. } IBS_POST = 0) = 2.01$
 - OR(hypertension vs. non hypertension) = 2.07 (p = 0.065 > 0.5)
 - OR(diabetes vs. non diabetes) = 1.61
 - OR(obese vs. not obese) = 2.95

- Goodness of fit check with Hosmer-Lemeshow test by grouping the observations into 20 groups. The test statistic is 0.4291, indicating an adequate fit of the model to the dataset.
- Plotted the predicted value against the observed value of the 20 groups. Overall the dots follow the diagonal.

• Fit baseline category logit model on cause of death. Used predictors selected in the previous analysis.

$$log \frac{\pi_j(x)}{\pi_J(x)} = \beta_{0j} + \beta_{1j} \times AGE + \beta_{2j} \times I(IBS = 1) + \beta_{3j} \times I(IBS = 2) + \beta_{4j} \times I(SIM = 1) + \beta_{5j} \times I(endocr01 = 1) + \beta_{6j} \times I(endocr02 = 1), j = 1, ..., 6$$

where J= cardiogenic shock, j=1 pulmonary edema, 2 myocardial rupture, 3 progress of congestive heart failure, 4 thromboembolism, 5 asystole, 6 ventricular fibrillation

```
multi.mod <- multinom(LET_IS ~ AGE + as.factor(IBS_POST) + as
## # weights: 56 (42 variable)
## initial value 371 668838</pre>
```

```
## initial value 371.668838

## iter 10 value 312.126386

## iter 20 value 300.807784

## iter 30 value 300.010607

## iter 40 value 299.933289

## iter 50 value 299 931699
```

```
AGE IBS POST = 1 IBS POST = 2 SIM GIPE
##
    intercept
## 2 -5.208477 0.05003237 0.4172287 -0.2605801 -14.8803
## 3 -2.662446 0.04515371 -0.8725386 -1.3250667 -0.012
## 4 -3.189649 0.02970654 -0.3969242 -0.7216065 0.0040
## 5 1.046965 -0.03766681 -0.2262002 -1.5074724 -16.165
## 6 -2.551705 0.03088585 -2.0391936 -1.3081214 -16.883
## 7 2.872844 -0.05676433 -0.5333366 -0.2875964
                                                  0.2570
##
    endocr 02 = 1
## 2 -14.0286129
## 3 0.6681173
## 4 -15.2277093
## 5
   -16.3110403
    0.7648381
## 6
## 7 -15.7083009
```

Estimated $exp(\beta_{ij})$:

```
##
       intercept AGE IBS_POST = 1 IBS_POST = 2 SIM GIPI
                                        0.7706045 3.4482
## 2 0.005469998 1.0513051 1.5177496
## 3 0.069777345 1.0461887 0.4178893
                                        0.2657852
                                                   9.8748
    0.041186340 1.0301522 0.6723850
                                        0.4859709
                                                   1.0040
## 4
## 5 2.848990047 0.9630338 0.7975584
                                        0.2214691
                                                   9.5399
## 6 0.077948656 1.0313678 0.1301336
                                        0.2703274
                                                   4.6510
## 7 17.687253718 0.9448167 0.5866443
                                        0.7500642
                                                   1.2930
    endocr 02 = 1
##
## 2 8.080734e-07
## 3 1.950562e+00
## 4 2.436071e-07
## 5 8.245276e-08
```

6 2.148646e+00 ## 7 1.506509e-07