[Total No. of Questions: 8]

F.E. (Semester - II) (Revised in 2007-08) Examination, May/June 2011 **BASIC ELECTRONIC ENGINEERING**

Duration: 3 Hours

Total Marks: 100

Instructions: 1)

Attempt five questions, choosing at least one from each Module.

Assume any additional data, if necessary. 2)

[2] A silicon diode passes current of 100mA at 1V. Determine its bulks resistance. b) What would be its ac resistance for direct current of 0.1 mA. [4]

Explain the origin of depletion layer capacitance & diffusion capacitance and the c) importance of each. [6]

Explain with circuit diagram the details of drawing the load line & determing the d) point of operation on the diode characteristics. [8]

Show how that the zener diode can be used as voltage regulator. *Q2*) a)

[3]

What is the principle of voltage doubling & hence multiplication. b)

[5]

Derive an expression for a ripple factor in a full wave rectifier with resistive load. c)

[6]

Sketch the circuit of a positive shunt clipper. Show input & output waveform, d) and briefly explain. [6]

MODULE - II

Q3) a) Explain the basic transistor construction.

[6]

Calculate the values of collector current & emitter current for a transistor with b) $\alpha_{dc}=0.98$ and $I_{CBO}=5\mu A.$ The base current is measured as $100\mu A.$ [6]

Draw the circuit diagram of an NPN junction transistor CE configuration & c) describe the static input & output characteristics. Also define active & saturation region of a CE transistor. [8]

[2]

[6]

Q4) a) Determine the value of V_{CE} for a given circuit:

- b) What is the need for biasing a transistor.
- c) What three factors contribute to thermal instability. [6]
- d) Determine R_B & R_c for the given circuit.

 Data given: hFE 250, $I_{csat} = 10 \text{mA}$ Transistor Q1 Silicon make

MODULE - III

Q5) a) For an N-channel JFET,
$$I_{DSS} = 8.7 \text{mA}$$
, $V_p = -3 \text{V}$, $V_{GS} = -1 \text{V}$. [6] Determine I_D , $g_{mo} \& g_m$.

- b) In general, comment on the polarity of the various voltages & direction of the currents for an n-channel JFET versus a p-channel FET. [6]
- c) Explain the operation of an n-channel depletion type MOSFET. Sketch the device drain & transfer characteristics & explain their shape. [8]

Q6) a) For the circuit shown, Determine
$$V_{GS}$$
, I_{D} & V_{DS} .

Given $V_{DD} = 15V$, $V_{GS} = 1.5V$, $I_{DSS} = 15$ mA, $V_{D} = -4V$

b) Draw & explain the biasing circuit of an enhancement mode MOSFET. [6]

PEO

c) In an N-channel JFET biased by voltage divider method, calculate the value of RS to give operating point $I_D = 4$ mA & $V_{DS} = 8V$ [8]

Given: $V_{DD} = 25V$, $RG_1 = 1.2 \text{ M}\Omega$, $RG_2 = 0.6 \text{ M}\Omega$.

JFET parameter : $I_{DSS} = 12 \text{ mA}$, $V_p = -4 \text{V}$.

MODULE - IV

- Q7) a) What is an oscillator? How it differ from an Amplifier. [5]
 b) Explain feedback concept with the aid of simple block diagram. [5]
 c) Draw a basic OP-AMP with two imputs & one output. Describe double ended
 - operation. [5]
 d) Explain the basic biasing construction & characteristics of photo diode. [5]
- Q8) a) Explain basic diagram of CRT. [5]
 - b) Describe the basic behavior of SCR using the two transistor equivalent circuit.[7]
 - c) Briefly explain how diodes, resistors & capacitors are fabricated in monolithic integrated circuit. [8]

