DATE	PAGE	NO.

EXPERIMENT-8

EXPT. NO

Am: Experimental venification of the existence of discuele energy state in about according to Bohris model.

APPARATUS: A mercury filled on neon-filled Franck-Herlz lube, an oven, a control unit four power supply, and a De averent amplifier

THEORY: The Franck-Heuts experiment, parformed in 1914, is an experiment for confirming the Bohr Model of that alom. It was found that when electrons in a potential field were passed through mercury varpor they expensessed an energy lose ? ndistinct sleps , and that the newcury gave an anission line at) = 254 nm. This was due to collissions between the electrons and the mercury aloms.

hV = eV

 cathodi mechapid

Collecting plati

O->
Murcury
Varpolus

IIIIII

Fig: - Herenry filled Franck - Herty Luke

DATE

PAGE NO.

EXPT, NO.

OBSERVATIONS		DB	SE	R	VA	T	ION	20
--------------	--	----	----	---	----	---	-----	----

TABLE-1

VF = lov

Vc (V)	IA (MA)	
	- Car Vicilizada	
0.2	0.7	
0.4	01	
0.6	0.7	
0-8	0.6	
1.0	0.9	
1.2	2.1	
1.4	4.3	1
1.6	4.1	
1.8	10-4	
2.0	14.2	
2.2	18.8	
2.4	23.9	
2.6	29.3	
2.8	34.5	
3.0	39.6	
3.2	44.6	
3.4	49.6	

DATE PAGE NO.

EXPT. NO.

	3.6	Ft. 0	
	3-8	54.3	
-	4.0	58-6	
	4.2	62.2	
	4.4	64.8	
		67.3.	
	4.5	69	
	4.6	71.4	
	4.7	74.5	
	4.8	77.4	
	4.9	79.2	
	2.0	79	
	5.1	75.7	
	5.2	68.8	
	5.4	48.6	
	5.6	30 ⁻	
	5.8	21.9	
	6.0	22.4	
	6.2	27.7	
	6.4	32.1	
	6.6	37.9	
	6.8	43-6	
	7.0	49.2	
	7.2	55	

7.4	60.9	
7.6	66-4	
7.8	71.2	
8-0	75.7	
8.2	80-2	
8.4	84.5	
8.6	87.9	
8.8	90.1	
9-0	92.4	
9.1	94.3	-
9.2	96-8	
9.3	99.3	
9.4	101-1	
9.5	101.3	
9.6	99.3	
9.7		
9.8	94.5	
	87-3	
99	78.2	-
10.0	68	

DATE PAGE NO.	EXPT. NO.
TABLE 2	
EXCITATION POTENTIAL ENERGY(eV)	AVERAGE (eV)
9.5-4.9=4.6.	4.6.
Conclusion: The anwage exuita	tion potential energy of moreovery
in aloms is verified.	tion potential energy of mercury lence of discrete energy states