

Thapar Institute of Engineering & Technology (Deemed to be University)

Bhadson Road, Patiala, Punjab, Pin-147004

Contact No.: +91-175-2393201 Email: info@thapar.edu Engineering Design Project-II (UTA 024)

THAPAR INSTITUTE
OF ENGINEERING & TECHNOLOGY
(Deemed to be University)

Engineering Design Project-II (UTA 024) Buggy Lab

Dr. Amit Mishra

August 9, 2020

Index

- Objective
- Transmitter Circuit schematic diagram
- Component list
- Design Specification and selection of components
- Programming of ATtiny-45
- Transmitter Circuit on PCB
- Transmitter Circuit testing
- References

Objective

Design and testing of transmitter circuit which generates rectangular pulses of specific pulse width for IR emitter corresponding to each Gantry.

- ❖To solder IR transmitter circuit on a general purpose PCB.
- ❖To write a Program and upload it on the Attiny-45 based microcontroller through Arduino boot-loader circuit.
- To test the output pulses on CRO generated through IR transmitter circuit.

Transmitter circuit

Component List

Sr. no	Component	Count	specification
1	Microcontroller	01	ATtiny-45
2	Voltage regulator	01	7805
3	LED	01	Any colour
4	Resistor	01	330Ω
5	Capacitors	02	10 pf, 1μf
6	Male Header connector	03	
7	DC hattery	01	9V Hi-Watt Battery, Battery Clip Connector
8	PCB (small piece)	01	General purpose

August 9, 2020 6

Capacitors

Male Header connector

Design Specification and selection of components

- **Selection criterion for voltage regulator.**
- **Selection of a microcontroller**

Selection criterion of Voltage Regulator

August 9, 2020

7800/7900 Voltage Regulator Variants

PARAMETER	IC NUMBER	MIN	MAX	UNIT	
nput voltage	7805	7	25	V	
	7808	10.5	25	V	
	7810	12.5	28	V	
	7812	14.5	30	V	
	7815	17.5	30	V	
	7824	27	38	V	

August 9, 2020 10

\$pecifications for 7800 Series Voltage Regulator

PARAMETER & CONDITIONS	MIN	TYPICAL	MAX	UNIT
Output voltage @ 25°C	4.8	5.0	5.2	٧
Output voltage 0°C to 125°C	4.75		5.25	٧
Input voltage regulation @° 25°C Vı = 7V to 25V		3	100	mV
Ripple rejection, Vi 8V to 18V f=120Hz	62	78		dB
Output voltage regulation, lo 5mA to 1.5A		15	100	mV
Output resistance, f=1kHz		0.017		Ω
Peak output current @25°C		2.2		Α

August 9, 2020 11

 C_{in} is required; if regulator is located an appreciable distance from power supply filter. Typical range of value vary from 0.33 μ F to 10 pF.

 C_0 is needed for stability; however, it does improve transient response. Values of less than $0.1 \, \mu F$ could cause instability.

Voltage regulator using LM 7805

1

Selection criterion of Microcontroller

August 9, 2020 Image Source: Google 14

Microcontroller options available

❖ 8051 microcontroller

❖ PIC microcontroller

* ATtiny-AVR (Atmel tiny-Alf-Egil Bogen Vegard Wollan RISC)

* Arduino-ATmega328

Parameter	Microcontrollers				
	8051	PIC	AVR (ATtiny)	ARM (Arduino- ATmega328)	
Architecture type	Harvard	Harvard	Harvard	von Neumann	
Word size	8 bit	8 bit	8 bit	16 and /or 32 bit	
Memory space	128 byte	Less than 128 byte	Between 256 bytes to 32KB	SRAM:2 KB, EEPROM: 1KB, Flash memory:32 KB	
Clock cycle required for Execution per instruction	Multiple clock cycles	Multiple clock cycles	single clock cycle	single clock cycle	
Power supply voltage	5V	5V	1.8 to 5V	3.3 V	

[•]Harvard architecture: separate space for RAM and program memory

[•]von Neumann architecture: program and RAM in the same space

Selection criterion of Microcontroller

8051 microcontroller

Arduino-ATmega328

PIC microcontroller

Attiny-45

Image Source: Google

Continued...

Drawbacks of Using an Arduino

* First, compared to the microcontroller IC itself, Arduino boards are very large. This makes it difficult to integrate or embed Arduino boards into projects.

Second, Arduino boards are **relatively expensive**, compared to the cost of building a custom board with a microcontroller IC and associated

passive components.

ATtiny45 PU20 Technical Specifications

- Low current consumption 300uA in use & 0.1uA in sleep mode on 1.8V.
- ♦ Operating voltage as low as 1.8V DC to 5.5V DC max.
- **❖**Total six analog I/O pins
- ❖built in 4 Kbytes of flash memory
- ❖built in 256b of SRAM
- ❖Built in 256b of EEPROM
- Circuitry contains 32 Registers
- **❖**Universal Serial Interface feature

August 9, 2020

Image Source: Google

Programming of ATtiny-45 using Boot loader/Shield circuit for transmitter module

August 9, 2020

PWM generation using ATtiny45

```
void loop() {
                     8 VCC
                                      digitalWrite(gantryPin1,HIGH);
                      PB2
                                      digitalWrite(gantryPin2,HIGH);
                      PB1
                                      digitalWrite(gantryPin3,HIGH);
                     5 PB0
         GND 4
                                      digitalWrite(gantryPin4,HIGH);
const int gantryPin1 = 0;
                                      delayMicroseconds(1000);
const int gantryPin2 = 2;
const int gantryPin3 = 4;
                                      digitalWrite(gantryPin1,LOW);
const int gantryPin4 = 3;
                                      delayMicroseconds(1000);
                                      digitalWrite(gantryPin2,LOW);
void setup() {
                                      delayMicroseconds(1000);
pinMode(gantryPin1,OUTPUT);
                                      digitalWrite(gantryPin3,LOW);
pinMode(gantryPin2,OUTPUT);
                                      delayMicroseconds(1000);
pinMode(gantryPin3,OUTPUT);
                                      digitalWrite(gantryPin4,LOW);
pinMode(gantryPin4,OUTPUT);
                                      delayMicroseconds(1000);
```

August 9, 2020

1

Transmitter circuit on PCB

August 9, 2020 Image Source: Google 21

Transmitter circuit on PCB

Transmitter circuit with Attiny-45 and Gantry

Transmitter circuit Testing

Testing: Transmitter Circuit

Gantry-1

Gantry-2

Gantry-3

References

- https://www.onsemi.com/pub/Collateral/NCP7800-D.PDF
- https://www.electronics-notes.com/articles/analogue_circuits/powersupply-electronics/7805-7812-voltage-regulator.php
- http://ww1.microchip.com/downloads/en/devicedoc/atmel-2586-avr-8-bit-microcontroller-attiny25-attiny45-attiny85_datasheet-summary.pdf
- https://maker.pro/custom/tutorial/attiny-microcontrollers-alow-cost-arduino-alternative

August 9, 2020 28

Thanks !

August 9, 2020 29