Presented by: Hyungeun Lee

Last Updated: October 12th, 2022

Table of Contents

- Why ML for molecules?
- Molecule dataset
- Term Project Description
- Conclusion

Why ML for molecules?

- Lately, research on predicting molecular properties using ML has been actively conducted.
- It reduces the computational cost required for predicting molecular properties

Why ML for molecules?

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2} + V\Psi$$

Training & Inference

- 12k stable small organic molecules made up of CHONF.
- This dataset contains some small amino acids
 - e.g) glycine, alanine, as well as nucleobases cytosine, uracil, and thymine
- This dataset provides dipole moment μ , which is one of quantum chemical properties calculated at the DFT/B3LYP/6-31G(2df, p) level of theory.

μ	D	Dipole moment
α	a_0^3	Isotropic polarizability
ϵ_{HOMO}	Ha	Energy of HOMO
ϵ_{LUMO}	Ha	Energy of LUMO
$\epsilon_{\sf gap}$	Ha	Gap ($\varepsilon_{\text{LUMO}}$ – $\varepsilon_{\text{HOMO}}$)
⟨R²⟩	a_0^2	Electronic spatial extent
zpve	Ha	Zero point vibrational energy
Uo	Ha	Internal energy at o K
U	Ha	Internal energy at 298.15 K
Н	Ha	Enthalpy at 298.15 K
G	Ha	Free energy at 298.15 K
C _v	<u>cal</u> molK	Heat capacity at 298.15 K

Training Data Attributes:

Atom type (CHNOF)

Scalar properties (target values)

XYZ coordinates of atoms

Bond(Edge) index

Bond(Edge) type

SMILES string

+ α (Hand-crafted features)

Test Data Attributes:

Atom type (CHNOF)

XYZ coordinates of atoms

Bond(Edge) index

Bond(Edge) type

SMILES string

+ α (Hand-crafted features)

Atom type:

 $\mathbb{N} = \{C, H, N, O, F\}$ ———— mapping into Atomic number $\{6, 1, 7, 8, 9\}$

• Scalar properties (Target values):

(see Table 1)

XYZ coordinates of atoms:

 $X \in \mathbb{R}^{|\mathcal{V}| \times 3}$ matrix, where $|\mathcal{V}|$ is the number of atoms

Bond(Edge) index

The bond index is defined by [2, $2x|\mathcal{E}|$], which represents all edges from \mathcal{V}_i to \mathcal{V}_j .

Bond(Edge) type

The bond type is defined as a string.

e.g) "SINGLE", "DOUBLE", "TRIPLE", "AROMATIC"

SMILES string

e.g) "CCc1c(non1)CO"

Term Project Description

- 과제 제출 파일 형식
 - Kaggle: .csv with correct form
 - 보고서: .pdf
- 과제 제출 기한:
 - Kaggle: ~2022.12.14 (수) 23:59
 - 보고서: ~2022.12.18(일) 23:59
- 제출 플랫폼 (링크):
 - Kaggle: https://www.kaggle.com/t/4791bb471a804f4098ccf38036b4de44
 - 보고서: LMS
- Kaggle 리더보드 평가 Metric

Mean absolute error(MAE)
$$MAE = \frac{1}{N} \sum_{j=1}^{N} |y_j - \hat{y}_j|$$

Conclusion

We have introduced molecule dataset.

• This dataset enable us to train with molecule data as graph and inference quantum molecular properties within merely milliseconds.

e.g) dipole moment (μ)

 To make your model perform well, you can use hand-crafted features, such as SBF, RBF. (optional)

Q&A