Exercise 6. Let μ be a nonzero finite Borel measure on \mathbb{R} , and let $F : \mathbb{R} \to \mathbb{R}$ be the function defined by $F(x) = \mu((-\infty, x])$. Define a function g on the interval $(0, \lim_{x\to +\infty} F(x))$ by

$$g(x) = \inf \left\{ t \in \mathbb{R} : F(t) \ge x \right\}.$$

- 1. Show that g is nondecreasing, finite valued, and Borel measurable.
- 2. Show that $\mu = \lambda g^{-1}$. (Hint: start by showing that $\mu(B) = \lambda \left(g^{-1}(B)\right)$ when B has the form $(-\infty, b]$.)

Proof.

1. g is non-decreasing: let $0 < x < y < \lim_{t \to \infty} F$, we have for all t in \mathbb{R} $F(t) \ge y \implies F(t) \ge x$, so $\{t \in \mathbb{R} \mid F(t) \ge y\} \subset \{t \in \mathbb{R} \mid F(t) \ge x\}$. As g(x) and g(y) are the infimums of these sets, $g(x) \le g(y)$.

g is finite-valued: F is non-negative, non-decreasing, right-continuous, and $\lim_{-\infty} F = 0$ (Proposition 1.3.9). Further, μ being finite, F is bounded and $\lim_{+\infty} F = \mu(\mathbb{R})$. Let x be in $(0, \mu(\mathbb{R}))$, there exists t_0 in \mathbb{R} such that $F(t_0) \geq x$ (since $\mu(\mathbb{R}) = \lim_{+\infty} F$ and μ is non-zero), so $\{t \in \mathbb{R} \mid F(t) \geq x\}$ is non empty. Also, there exists t_1 in \mathbb{R} such that $0 \leq F(t_1) \leq x$ (since $0 = \lim_{-\infty} F$), so $\{t \in \mathbb{R} \mid F(t) \geq x\}$ has a lower bound in \mathbb{R} , and therefore an infimum in \mathbb{R} , so g(x) is finite for all x in $(0, \mu(\mathbb{R}))$.

g is Borel-measurable: as g is non-decreasing on the interval $(0, \mu(\mathbb{R}))$, it is Borel-measurable on this interval.

2. Let (F_n) be a non-decreasing series of non-negative, non-decreasing, right-continuous simple functions such that for all $x \in \mathbb{R}$, $\lim_{n\to\infty} F_n(x) = F(x)$. For each n, define on $(0, \lim_{t\to\infty} F_n)$ a function g_n by $g_n(x) = \inf\{t \in \mathbb{R} \mid F_n(t) \geq x\}$. Each F_n has the same properties as F, which implies that each g_n has the same properties as g (listed in the preceding point).

Further, since the F_n are right-continuous and non-decreasing, for each $x \in \mathbb{R}$, $\{t \in \mathbb{R} \mid F_n(t) = x\}$ is an interval. This allows us to write $F_n(x) = \sum_{i=0}^{K_n} F_n(a_i) \chi_{[a_i, a_{i+1})}$.

From the above, we deduce that on each interval $[F(a_i), F(a_{i+1})), g_n$ is constant, equal to a_i .

Let $b \in \mathbb{R}$, we write, for the biggest i such that $F_n(a_i) \leq F_n(b)$:

$$F_n(b) = (F_n(b) - F_n(a_i)) + (F_n(a_i) - F_n(a_{i-1}))$$

$$+ \dots + (F_n(a_1) - F_n(a_0)) + (F_n(a_0) - 0)$$

$$F_n(b) = (F_n(b) - F_n(a_i)) + \lambda(\{x \in \mathbb{R} \mid g_n(x) = a_i\})$$

$$+ \dots + \lambda(\{x \in \mathbb{R} \mid g_n(x) = a_0\}) + (F(a_0) - 0)$$

Let $\epsilon > 0$. Since F_n is simple, there exists k such that $0 \le k \le K_n$ and $F_n(b) = F_n(a_k)$. And since $\lim_{-\infty} F = 0$, we can choose n such that $0 \le F_n(a_0) < \epsilon$. By convergence of $(F_n(b))$ to F(b), we can, by increasing n as necessary, also have $|F_n(b) - F(b)| < \epsilon$. Combining the above, we get

$$\left| F(b) - \sum_{i=0}^{k} \lambda \left(\{ x \in \mathbb{R} \mid g_n(x) = a_i \} \right) \right| \le 2\epsilon$$

Noting that g_n only takes the discrete values a_i , the above inequality can be rewritten as

$$\left| F(b) - \lambda \left(g_n^{-1} \left(-\infty, b \right] \right) \right| \le 2\epsilon$$

Since the g_n are non-decreasing, for each $n \in \mathbb{N}$ and each $x \in (0, \lim_{+\infty} F_n)$, $g_{n+1}(x) \leq b \implies g_n(x) \leq b$, from which we get $g_{n+1}^{-1}(-\infty, b] \subset g_n^{-1}(-\infty, b] \subset g_0^{-1}(-\infty, b] \subset (0, \lim_{+\infty} F)$, and this limit is a finite real number. From the above, we conclude that

$$\lim_{n \to +\infty} \lambda \left(g_n^{-1}(-\infty, b] \right) = \lambda \left(\bigcap_{n=0}^{+\infty} g_n^{-1}(-\infty, b] \right)$$

With our previous notation $F_n(b) = F_n(a_k)$, the simplicity of F_n implies that $a_k = g_n(F_n(b))$. Note that for n fixed in \mathbb{N} , $(g_k \circ F_n(b))_{k \geq n}$ is a non-decreasing sequence converging to $g(F_n(b))$ (since $F_n(b)$ is in the domain of every g_n and the $g_n(x)$ are non-decreasing, simply converging to g(x)). $(g \circ F_n(b))_{n \in \mathbb{N}}$ is also a non-decreasing sequence, converging to g(F(b-)).

Note that $g(F(b-)) \leq b$, since $F(b-) \leq F(b)$. If F is left-continuous at b, then g(F(b-)) = g(F(b)) = b. Otherwise, let us take x_0 such that $F(b-) < x_0 < F(b)$. By definition of g, we have $g(x_0) = b$. However, g is right-continuous at every point in its domain, so $g(F(b-)) = g(x_0) = b$. This allows us to deduce that

$$\bigcap_{n\in\mathbb{N}}g_n^{-1}(-\infty,b]=g^{-1}(-\infty,b]$$

from which we conclude that $\mu(-\infty, b] = \lambda(g^{-1}(-\infty, b])$ Finally, we note that for any Borel set B,

$$\lambda(g^{-1}B) = \int_{\mathbb{R}} \chi_{g^{-1}B} \, \mathrm{d}\lambda = \int_{\mathbb{R}} \chi_B \circ g \, \mathrm{d}\lambda = \int_B \, \mathrm{d}(\lambda g^{-1}) = \lambda g^{-1}(B)$$

Thus the measures μ and λg^{-1} agree on the open sets $(-\infty, b]$ for any $b \in \mathbb{R}$. Therefore they agree on the σ -algebra generated by these open sets, which is the Borel σ -algebra. μ and λg^{-1} are therefore equal on $\mathscr{B}(\mathbb{R})$.