CS5222 Assignment 1

Chapter 1

- P6. This elementary problem begins to explore propagation delay and transmission delay, two central concepts in data networking. Consider two hosts, A and B, connected by a single link of rate *R* bps. Suppose that the two hosts are separated by *m* meters, and suppose the propagation speed along the link is *s* meters/sec. Host A is to send a packet of size *L* bits to Host B.
 - a. Express the propagation delay, d_{prop} , in terms of m and s.
 - b. Determine the transmission time of the packet, $d_{\rm trans}$, in terms of L and R.
 - Ignoring processing and queuing delays, obtain an expression for the endto-end delay.
 - d. Suppose Host A begins to transmit the packet at time t = 0. At time $t = d_{trans}$, where is the last bit of the packet?
 - e. Suppose d_{prop} is greater than d_{trans} . At time $t = d_{trans}$, where is the first bit of the packet?
 - f. Suppose d_{prop} is less than d_{trans} . At time $t = d_{trans}$, where is the first bit of the packet?
 - g. Suppose $s = 2.5 \cdot 10^8$, L = 120 bits, and R = 56 kbps. Find the distance m so that d_{prop} equals d_{trans} .

- P31. In modern packet-switched networks, including the Internet, the source host segments long, application-layer messages (for example, an image or a music file) into smaller packets and sends the packets into the network. The receiver then reassembles the packets back into the original message. We refer to this process as *message segmentation*. Figure 1.27 illustrates the end-to-end transport of a message with and without message segmentation. Consider a message that is $8 \cdot 10^6$ bits long that is to be sent from source to destination in Figure 1.27. Suppose each link in the figure is 2 Mbps. Ignore propagation, queuing, and processing delays.
 - a. Consider sending the message from source to destination without message segmentation. How long does it take to move the message from the source host to the first packet switch? Keeping in mind that each switch uses store-and-forward packet switching, what is the total time to move the message from source host to destination host?
 - b. Now suppose that the message is segmented into 800 packets, with each packet being 10,000 bits long. How long does it take to move the first packet from source host to the first switch? When the first packet is being sent from the first switch to the second switch, the second packet is being sent from the source host to the first switch. At what time will the second packet be fully received at the first switch?
 - c. How long does it take to move the file from source host to destination host when message segmentation is used? Compare this result with your answer in part (a) and comment.
 - d. In addition to reducing delay, what are reasons to use message segmentation?
 - e. Discuss the drawbacks of message segmentation.

Figure 1.27 • End-to-end message transport: (a) without message segmentation; (b) with message segmentation

Question. WhatsApp and WeChat are smartphone real-time messaging systems. After doing some research on the Internet, for each of these systems, write one paragraph to briefly describe the protocols they use.