Image Classification / Object Detection

김남범 교수

Image Classification vs Object Detection

Semantic Instance Classification Object Segmentation Segmentation + Localization Detection GRASS, CAT, DOG, DOG, CAT DOG, DOG, CAT CAT TREE, SKY Multiple Object No objects, just pixels Single Object This image is GC0 sublic domain

LSVRC

airplane

bird

cat

deer

dog

frog

horse

ship

truck

The Image Classification Challenge: 1,000 object classes 1,431,167 images

LSVRC (Imagenet)

ReLU

CNN Basic structure

GoogleNet

GoogleNet: Inception module

(a) Inception module, naïve version

(b) Inception module with dimension reductions

1x1 convolutions

3x3 max pooling

GoogleNet: Auxillary classifier

Auxiliary classifier

GoogleNet: global average pooling

(a) Fully connected layer

(b) Global average pooling layer

Model Size vs. Accuracy Comparison

Pytorch 실습

Object detection Milestones

(a) 2-Stage detector

(b) 1-Stage detector

Stage에 따른 모델분류

- Two stage detector
 - R-CNN (2014)
 - Fast R-CNN
 - Faster R-CNN
 - Mask R-CNN
- One stage detector
 - Yolo series
 - Yolo 1 Yolo9
 - SSD series
 - SSD
 - RetinaNet

R-CNN: Regions with CNN features

1. Input image

2. Extract region proposals (~2k)

3. Compute CNN features

4. Classify regions

R-CNN: Region proposal

Selective search:

- 1. Image segmentation
 - Graph-based segmentation
- 2. Merge regions
 - Greedy algorithm
- 3. Candidate object location

R-CNN: Selective search

Algorithm 1: Hierarchical Grouping Algorithm

Input: (colour) image

Output: Set of object location hypotheses L

Obtain initial regions $R = \{r_1, \dots, r_n\}$ using [13]

Initialise similarity set $S = \emptyset$

foreach Neighbouring region pair (r_i, r_j) do

Calculate similarity $s(r_i, r_j)$ $S(r_i, r_j) = a_1 s_{\text{colour}} (r_i, r_j) + a_2 s_{\text{texture}} (r_i, r_j) + a_3 s_{\text{size}} (r_i, r_j) + a_4 s_{\text{fill}} (r_i, r_j)$ $S = S \cup s(r_i, r_j)$

while $S \neq \emptyset$ do

Get highest similarity $s(r_i, r_j) = \max(S)$

Merge corresponding regions $r_t = r_i \cup r_j$

Remove similarities regarding $r_i: S = S \setminus s(r_i, r_*)$

Remove similarities regarding $r_j: S = S \setminus s(r_*, r_j)$

Calculate similarity set S_t between r_t and its neighbours

$$S = S \cup S_t$$
$$R = R \cup r_t$$

Extract object location boxes L from all regions in R

R-CNN: Feature extraction

Alexnet (2012)

R-CNN: SVM Classification

Non Maximum suppression

Sample IoU scores

R-CNN: Bounding box regression

R-CNN: Bounding box regression

$$egin{aligned} \hat{g}_x &= p_w d_x(\mathbf{p}) + p_x \ \hat{g}_y &= p_h d_y(\mathbf{p}) + p_y \ \hat{g}_w &= p_w \exp(d_w(\mathbf{p})) \ \hat{g}_h &= p_h \exp(d_h(\mathbf{p})) \end{aligned} \ t_x &= (g_x - p_x)/p_w \ t_y &= (g_y - p_y)/p_h \ t_w &= \log(g_w/p_w) \ t_h &= \log(g_h/p_h) \end{aligned}$$

Minimizing SSE loss =

$$\mathcal{L}_{ ext{reg}} = \sum_{i \in \{x,y,w,h\}} (t_i - d_i(\mathbf{p}))^2 + \lambda \|\mathbf{w}\|^2$$

Girshick et al. CVPR14.

R-CNN의 장단점

• 높은 Detection 정확도

- 2000개씩 생성된 region 이미지를 CNN Feature map 생성
 - 너무 느림
 - 이미지 한 장당 50초 소요
- End-to-End 학습이 안됨
 - CNN Feature Extractor, SVM, Bounding box regressor

R-CNN, Fast R-CNN, Faster R-CNN

R-CNN 계열 성능비교

System	Time	07 data	07 + 12 data
R-CNN	~ 50s	66.0	_
Fast R-CNN	~ 2s	66.9	70.0
Faster R-CNN	~ 198ms	69.9	73.2

Detection mAP on PASCAL VOC 2007 and 2012, with VGG-16 pre-trained on ImageNet Dataset

R-CNN Test-Time Speed

