SYDNEY TECHNICAL HIGH SCHOOL

(Est 1911 - celebrating 50 years at Bexley)

Mathematics

YEAR 11 YEARLY EXAMINATION PRELIMINARY HSC ASSESSMENT TASK 3 SEPTEMBER 2006

General Instructions

- Working time allowed 120 minutes.
- Write using black or blue pen.
- Approved calculators may be used.
- All necessary working should be shown.
- Start each question on a new page.
- Attempt all questions.
- Questions are of equal value.
- Full marks may not be awarded if working is poorly set out or difficult to read.

N	4	M	\mathbf{E}	:				

Question 1	Question 2	Question 3	Question 4	Question 5	Question 6	Question 7	TOTAL

Question 1 (13 marks)

Marks

a) Solve
$$x^2 - 5x + 6 = 0$$

b) Simplify
$$\frac{2x-5}{2} - \frac{2x-1}{5}$$

c) Find
$$\frac{d}{dt}(5t^3+1)$$

d) Simplify
$$\sqrt{128} + \sqrt{2}$$

f) Find the gradient of the curve
$$y = x^2 - 4x$$
 at the point $(1, -3)$.

g) i) Write down the discriminant of
$$2x^2 - 3x + k$$

ii) For what values of
$$k$$
 is the expression $2x^2 - 3x + k$ positive for all values of x ?

Question 2 (13 marks) (Start a new page)

Marks

a) Evaluate $\sqrt{\frac{284.6}{8.3 \times 6.2}}$ correct to 2 significant figures.

2

b) Solve $\tan \theta = 0.3$ for $0 \le \theta \le 360^{\circ}$

2

giving answers correct to the nearest degree

c) The price of an item increases from \$1.50 to \$3.60.

2

What percentage increase is this?

d) Solve $|x-3| \le 10$

2

e) State the domain of the function $y = 4\sqrt{x-5}$

1

f) If α and β are the roots of the equation $x^2 - 2x - 7 = 0$

find the value of i) $\alpha + \beta$

1

ii) $\alpha \times \beta$

1

iii) $\alpha^3 \beta + \alpha \beta^3$

Question 3 (13 marks) (Start a new page)

Marks

- a) If $\frac{2}{2-\sqrt{3}} = a + \sqrt{b}$ find the value of a and b given they are both rational.
- b) Find the perpendicular distance from the point (2,3)to the line 3x + y + 2 = 0.
- c) The diagram below shows the points A(-2,4), B(6,2) and C(-4,-4)

i) Calculate the length of the interval BC.

1

ii) Find the gradient of the line BC.

1

iii) Find the coordinates of M, the midpoint of BC.

1

iv) Show that the equation of l, the perpendicular

2

bisector of BC is 5x + 3y - 2 = 0.

v) Show that *l* passes through A.

- 1
- vi) What does the result in part v) tell us about triangle ABC.
- 1

vii) Hence or otherwise find the area of triangle ABC.

Question 4 (13 marks) (Start a new page)

Marks

a) Find the minimum value of $x^2 - 4x + 14$

2

b) On a number plane sketch the region described by $y \ge 4x - x^2$

2

c)

ABC is a right angled triangle in which $\angle ACB = 90^{\circ}$.

2

Triangle CDB is isosceles, in which CB=DB.

$$\angle AEC = 68^{\circ}$$
 and $\angle EBD = 90^{\circ}$.

Find $\angle DCB$, giving reasons.

d) Differentiate the following

i)
$$\frac{5}{x^2}$$

1

ii)
$$\sqrt{2x+7}$$

2

iii)
$$\frac{2x-1}{x+1}$$

2

iv)
$$3x^2(x-2)^4$$

Question 5 (13 marks) (Start a new page)

Marks

a) Evaluate
$$\lim_{x \to 4} \frac{x^2 + 2x - 24}{x - 4}$$

2

b)

In the diagram above, AE is parallel to BC, $\angle BCD = 25^{\circ}$, $\angle BDC = 40^{\circ}$ and $\angle EAC = 65^{\circ}$.

3

Copy the diagram onto your answer sheet and show that triangle *ABC* is isosceles.

c) Find the equation of the normal to $y = x^3 - 6x - 2$

3

at the point (1, -7)

d) Simplify
$$\frac{1+\cos\theta}{1-\sin\theta} \div \frac{1+\sin\theta}{1-\cos\theta}$$

3

e) If
$$f(x) = x(x+1)(x+2)$$

2

find in simplest terms an expression for f(x+1) - f(x)

Question 6 (13 marks) (Start a new page)

Marks

- a) The quadratic expression Q(x) is given by $Q(x) = x^2 (2+k)x + 4$.
 - i) For what values of k is x = -2 a root of Q(x) = 0.

2

ii) For what value of k does Q(x) = 0 have real roots.

3

- **b)** Find a quadratic equation which has roots $1 + \sqrt{3}$ and $1 \sqrt{3}$.
 - Express your answer in the form $ax^2 + bx + c = 0$ where a, b and c are real.
- c) Find the coordinates of the point on the curve $y = x^2 + 6x + 2$ at which the tangent to the curve is parallel to the line y = 2x + 3.
- 3

- d) A triangle has sides of length 8 cm, 11 cm and 16 cm.
 - i) Find the size of the largest angle (nearest degree)

- 2
- ii) Find the area of the triangle (correct to 1 decimal place)
- 1

Question 7 (13 marks) (Start a new page)

Marks

a) Solve
$$x^6 + 7x^3 - 8 = 0$$

3

b) Find the values of A, B and C if

3

$$3x^2 - 7x + 5 \equiv Ax(x-1) + Bx + C$$

c)

Given that BE = 30 metres find the length of AC (correct to 1 decimal place)

3

d) The roots of the equation $ax^2 + bx + c = 0$ differ by 4.

Show that
$$b^2 = 4ac + 16a^2$$

Student's Name/Nº:				
d, -10 € x-3 € 10				
-7 ≤ x ≤ 13				
e. domain or 35				
f. 1) x+B=2				
11) dB = -7				
111) & B (2 + B)				
= 2B[(d+B) - 22B]				
= -7 [2 - 2 - 7]				
= - 126				
Q3 2+F3				
$\frac{2}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}}$				
= 4+253 +-3				
4-3				
) = 4+253				
= 4+ J12				
:. a=4 b=12				
b. 2×3 + 3×1 + 2				
d= \(\frac{3^2 + 1^2}{3} \)				
= 11 viib				
= 110				

c. i)
$$d = \sqrt{(6-4)^2 + (2-4)^2}$$

= $\sqrt{136}$ units

$$\frac{Q4}{a} = \frac{4}{2}$$

$$m = \frac{1-4}{6-4}$$

$$\frac{1}{10} = \frac{2^{2} - 4 \cdot 2 + 14}{10}$$

$$m)$$
 $M = \begin{pmatrix} 1 \end{pmatrix}$

$$y+1 = -\frac{5}{3}(x-1)$$

$$3y +3 = -5x +5$$

ii)
$$(2 \times +7)$$

$$=\frac{3}{(2+1)^2}$$

$$= \sqrt{9+25}$$

$$=$$
 $\sqrt{34}$

her's Name: Student's Name/N°	*
<u>.5</u>	<u> </u>
a. $\frac{(x-4)(x+6)}{x-4}$	- \
a. m 2-4	a.i) sub x=-2
	(-2) - (2+k)(-2) +4 =0
= 10	8+++2k=0
	2k=-12
b. < ACB = 65° (alternate angles, AE BC)	k=-6
< ABC = 65° (exterior ongle equal sum of	
two remote intervir angles)	18. ii) real routs => 0≥ 0
DABC 15 1505 celes (two equal angles)	(2+k)2-4×4 >0
	k2+4k+4-16 >0
c. $y' = 3x^2 - 6$	k2+4k-12 >0
when a = 1	(k+6)(k-2) >0
$m_{T} = -3$	k ≤ -6, k > 2
, m = 3 b	, ∠+β= 2
•	d\$ =-2
$\therefore y + 7 = \frac{1}{3}(x - 1)$	•
	$(x^2-2x-2=0)$
2-34-22=0	
	y' = 2x + 6
d. 1+600 x 1-600	•
	2x 46 = 2
	22 = -4
1 - Sn-0	スマ・ひ
	· point (-2,-6)
<u>Sin'0</u> Cos'0	
	a. i) $GsA = \frac{8^2 + 11^2 - 16^2}{2 \times 8 \times 11}$
2 Tx 0	6×8×H
e. f(x+1) - f(x)	∴ A = 114°
= (241) (2+2) (2+3) - 24(2+1) (2+2)	

ncher's Name: Student's Nam	ıe/N⁰:
Q7_	
a. $(x^3 + 8)(x^3 - 1) = 0$	$\alpha = \frac{1}{2} \left(\frac{b}{a} + 4 \right) \text{from}$
	sb. into (2)
$x^2 - 8$, $x^2 = 1$, ,
x=-1, $x=1$	(
	$-\frac{1}{2}\left(\frac{b}{a}+4\right)\left(\frac{-b}{2a}-2+4\right)$
b. 3x ² -7x +5	
$= A_{x}(x-1) + B_{x+c}$	$-\frac{1}{2}\left(\frac{b}{a}+4\right)\left(\frac{-b}{2a}+2\right)=\frac{c}{a}$
= Ax2 - Ax + Bx + C	$-\frac{1}{2}\left(-\frac{b^2}{2a^2}+\frac{2b}{a}-\frac{4b}{2c}+8\right)$
∴ A = 3	
C = 5	$\frac{-b^2}{2a^2} + \frac{2b}{2} - \frac{4b}{2a} + 8 = \frac{1}{2}$
B-A = -7	
∴ B=-4	$-b^2 + 16a^2 = -4ac$
	∴ b2 = 4ac + 16a2
C. AB = 30 Sin 32° Sin 116°	
, Sin 32° Sin 116°	
:. AB = 17.6877	
AC _ AB	
Sin 32° Sin 108°	
∴ Ac = 9.9 m	
a. let roots equal a, x + 4	`
$\therefore 2a + 4 = -\frac{b}{a} \qquad (1)$	
م (ط + 4) = ² (او)	