Math 131A Homework 3

Jiaping Zeng

8/20/2020

10.9 Let $s_1 = 1$ and $s_{n+1} = (\frac{n}{n+1})s_n^2$ for $n \ge 1$.

(a) Find s_2 , s_3 and s_4 .

$$s_2 = \frac{1}{2} \cdot 1 = \frac{1}{2}$$

$$s_3 = \frac{2}{3} \cdot \frac{1}{4} = \frac{1}{6}$$

$$s_3 = \frac{3}{4} \cdot \frac{1}{36} = \frac{1}{48}$$

(b) Show $\lim s_n$ exists. Since $\frac{n}{n+1} < 1$ and $s_n^2 < s_n$ for all $n \ge 1$, $\frac{n}{n+1} s_n^2 < 1 \cdot s_n \implies s_{n+1} \le s_n$ for all $n \ge 1$. Therefore (s_n) is monotone and decreasing. Then, since (s_n) is decreasing, s_1 is an upper bound of the set and therefore (s_n) is bounded above. In addition, s_{n+1} is never negative because $n \leq 1 \implies \frac{n}{n+1} > 0$ and $s_n^2 \geq 0$. Therefore 0 is an lower bound of the set and (s_n) is bounded below. Then $\lim s_n$ exists by Theorem 10.2.

(c) Prove $\lim s_n = 0$.

Let $s = \lim s_n$, then $s = \lim s_{n+1} = \lim \left(\frac{n}{n+1}\right)s_n^2 = \lim \left(\frac{n}{n+1}\right) \cdot \lim s_n^2 = \lim s_n^2 = s^2 \implies s = s^2$ s^2 . Then we have s=0 or s=1. However, since $s_1=1$ is an upper bound and (s_n) is strictly decreasing as shown in part (b), $s \neq 1$. Therefore $s = 0 = \lim s_n$.

11.2 Consider the sequences defined as follows:

$$a_n = (-1)^n$$
, $b_n = \frac{1}{n}$, $c_n = n^2$, $d_n = \frac{6n+4}{7n-3}$.

1

- (a) For each sequence, give an example of a monotone subsequence.
- (b) For each sequence, give its set of subsequential limits.
- (c) For each sequence, give its lim sup and lim inf.
- (d) Which of the sequences converge? diverge to $+\infty$? diverge to $-\infty$?
- (e) Which of the sequences is bounded?

11.5 Let (q_n) be an enumeration of all the rationals in the interval (0,1].

- (a) Give the set of subsequential limits for (q_n) .
- (b) Give the values of $\lim \sup q_n$ and $\lim \inf q_n$.

- 12.2 Prove $\limsup |s_n| = 0$ if and only if $\lim s_n = 0$.
- 12.4 Show $\limsup (s_n + t_n) \le \limsup s_n + \limsup t_n$ for bounded sequences (s_n) and (t_n) .
- 12.9 (a) Prove that if $\lim s_n = \infty$ and $\lim \inf t_n > 0$, then $\lim s_n t_n = +\infty$.
 - (b) Prove that if $\limsup s_n = +\infty$ and $\liminf t_n > 0$, then $\limsup s_n t_n = +\infty$.
 - (c) Observe that Exercise 12.7 is the special case of (b) where $t_n = k$ for all $n \in \mathbb{N}$.
- 12.10 Prove (s_n) is bounded if and only if $\limsup |s_n| < +\infty$.
- 12.12 Let (s_n) be a sequence of nonnegative numbers, and for each n define $\sigma_n = \frac{1}{n}(s_1 + s_2 + \ldots + s_n)$.
 - (a) Show

 $\lim \inf s_n \leq \lim \inf \sigma_n \leq \lim \sup \sigma_n \leq \lim \sup s_n.$

- (b) Show that if $\lim s_n$ exists, then $\lim \sigma_n$ exists and $\lim \sigma_n = \lim s_n$.
- (c) Give an example where $\lim \sigma_n$ exists, but $\lim s_n$ does not exist.
- 14.5 Suppose $\sum a_n = A$ and $\sum b_n = B$ where A and B are real numbers. Use limit theorems to quickly prove the following.
 - (a) $\sum (a_n + b_n) = A + B$. Proof:
 - (b) $\sum ka_n = kA$ for $k \in \mathbb{R}$.
 - (c) Is $\sum a_n b_n = AB$ a reasonable conjuncture? Discuss.
- P1 Let (s_n) be the sequence

$$s_n = \frac{n^2 + 1}{n^2 + 2n} \sin n.$$

Prove that (s_n) has a convergent subsequence.

- P2 Let (s_n) be a sequence that contains every integer. Prove that there is a subsequence of (s_n) which diverges to $-\infty$.
- P3 Suppose (s_n) is a sequence and (t_k) is a subsequence of (s_n) such that (t_k) converges. Prove that $\lim_{k \to \infty} t_k \leq \lim_{n \to \infty} \sup_{n \to \infty} s_n$.
- P4 For each series, determine whether the series (1) converges to a real number, (2) diverges to $+\infty$, (3) diverges to $-\infty$, or (4) none of these. Prove your answers.
 - (a) $\sum_{n=1}^{\infty} \frac{\cos^2(n)}{n^2}$
 - (b) $\sum_{n=1}^{\infty} \frac{n-1}{n^2}$
 - (c) $\sum_{n=1}^{\infty} (-1)^n$
 - (d) $\sum_{n=1}^{\infty} \frac{n+1}{n^3-1}$