LINEAR REGRESSION VII

11.18.2020

HOMEWORK 5

* due FRIDAY!!!

RECAP

- * np.linalg.lstsq numpy function that does least squares regression (often bad)
- * R² measures how good a regression model is
- * in-set vs. out-of-set model evaluation
- * regularized (ridge) regression

RECAP: THE PROBLEM

- * Load a dataset containing data from 442 diabetes patients
 - * for each patient there are 10 features (e.g. age, sex, bmi, etc.)
 - * and 1 outcome ("disease progression after one year")
- * We'll be using linear regression to predict disease progression from the 10 features

LINEAR REGRESSION LAB

- * If you want to following along, pull the latest version of the ndap-fa2020 repository from github
 - * https://github.com/alexhuth/ndap-fa2020/
- * Then see 35-linear_regression-6/35-regression-demos.ipynb
- * Today we're picking up where we left off on Monday (see 36-linear_regression-7)

WHY IS RIDGE REGRESSION CHANGING THE PATTERN OF WEIGHTS INSTEAD OF JUST MAKING THE WEIGHTS SMALLER?

$$Err(\beta) = \sum_{t=1}^{I} (y_t - x_t \beta)^2$$

(as penalty)

L2 Regularization:
$$Err(\beta) = \sum_{t=1}^{T} (y_t - x_t \beta)^2 + \lambda \beta^2$$
 (as penalty)

L2 Regularization:
$$Err(\beta) = \sum_{t=1}^{T} (y_t - x_t \beta)^2 + \lambda \beta^2$$
 (as penalty)

$$y_t = x_{1,t}\beta_1 + x_{2,t}\beta_2$$

$$y_t = x_{1,t}\beta_1 + x_{2,t}\beta_2$$

loss ridge penalty

$$y_t = x_{1,t}\beta_1 + x_{2,t}\beta_2$$

loss
ridge
penalty
total

REGRESSION TAKEAWAYS

- * You want to predict one thing (y) from other things (x1, x2, etc.)? Regression!
- * Regression works best if it's regularized
- * You've seen **ridge regression**, but there are many others!
 - * Tikhonov regression, sparse regression (LASSO), elastic net regression, etc.

END