ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/283498953

ChemMater 24 2604 SI

DATASET · NOVEMBER 2015

READS

4

3 AUTHORS, INCLUDING:

Dongwook Kim Kyonggi University

47 PUBLICATIONS 1,856 CITATIONS

SEE PROFILE

Lingyun Zhu

National Center for Nanoscience and Techno...

42 PUBLICATIONS 541 CITATIONS

SEE PROFILE

Supporting Information

Electronic structure of carbazole-based phosphine oxides as ambipolar host materials for deep blue electrophosphorescence:

A Density Functional Theory study

Dongwook Kim,*,†, Lingyun Zhu,† and Jean-Luc Brédas*,†,#

[†]School of Chemistry and Biochemistry & Center for Organic Photonics and Electronics

Georgia Institute of Technology

Atlanta, Georgia 30332-0400

[‡]Department of Chemistry

Kyonggi University

San 94-6 Iui-Dong, Yeongtong-Gu, Suwon 443-760, Korea

E-mails: dongwook-kim@kyonggi.ac.kr, jean-luc.bredas@chemistry.gatech.edu

^{*}Authors to whom correspondence should be addressed.

[#] Also affiliated with: Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Table S1. DFT/B3LYP-calculated frontier molecular orbital energies of pCBZ and hosts 1-3.^a

	pCBZ	1	2	3
LUMO+2	-0.54	-0.95	-0.99/-0.99	-1.03/-1.03/-1.02
LUMO+1	-0.66	-1.07	-1.26	-1.44
LUMO	-0.86	-1.23	-1.37	-1.45
НОМО	-5.50	-5.61	-5.64/-5.67	-5.67/-5.71/-5.72
НОМО-1	-5.86	-5.96	-6.00/-6.00	-6.03/-6.04/-6.04

^a All the values are in eV.

Table S2. Comparison of experimental and computational HOMO and LUMO energy values for hosts 1-3.^a

	1	2	3			
	LU	JMO				
Koopmans' theorem ^b	-1.23	-1.37	-1.45			
ΔSCF^b	-0.16	-0.43	-0.55			
Expt.	-2.6 ^c	-2.19 ^e	-1.67 ^g			
НОМО						
Koopmans' theorem ^b	-5.61	-5.64	-5.67			
ΔSCF^b	7.10	6.88	6.86			
Expt.	-6.2 ^d	-5.76 ^f	-5.25 ^g			

^a All the values are in eV. Computation results were obtained from DFT calculations using the B3LYP functional and SV(P) basis set. ^b Koopmans' theorem corresponds to HOMO/LUMO energy values and ΔSCF to IPs/EAs. ^{c,e-g} Experimental data were obtained via cyclic voltammetry. ^c The value is determined from reduction potential measured in DMF; see Ref. 1. ^d Estimated from reduction potential and optical band gap. Ref. 1. ^e Data obtained on the basis of reduction potential measurement in THF from Ref. 2. ^f Oxidation potential value in CH₂Cl₂. Ref. 2. ^g Oxidation/reduction potentials estimated in CH₂Cl₂; see Ref. 3.

Figure S1. Evolution of the frontier molecular orbital (FMO) energis as a function of the number of carbazole (CBZ) units in the host. The closed symbols correspond to the FMOs of hosts **1-3** and the open symbols, to those of the carbazole-only systems where the triphenylphosphoryl group is removed and all carbazole units are capped with H atoms.

Figure S2. Illustration of frontier molecular orbitals of N-phenylcarbazole and hosts **1-3** in the ground state. Note that, for hosts **2** and **3**, HOMO/HOMO-1/LUMO+2 denote a set of doubly and triply (quasi-)degenerate molecular orbitals, respectively; see Table S1.

Figure S3. Illustration of the HOMOs in the ground-state (left) and cation-state (right) geometries of hosts 2 and 3. Note that the HOMOs in the cation state of hosts 2 and 3 are localized within a single carbazole unit, while those in the neutral ground state are delocalized, which illustrates the broken-symmetry effect in the cation.

Reference

- 1. Sapochak, L. S.; Padmaperuma, A. B.; Vecchi, P. A.; Cai, X.; Burrows, P. E. *Proc. SPIE* **2007**, *6655*, 65506.
- 2. Chou, H.-H.; Cheng, C.-H. Adv. Mater. 2010, 22, 2468.
- 3. Ding, J.; Wang, Q.; Zhao, L.; Ma, D.; Wang, L.; Jing, X.; Wang, F. J. Mater. Chem. **2010**, 20, 8126.