Additional Exercise

It is given that $\sin A = -\frac{12}{13}$ where $-90^\circ < A < 0^\circ$, and that $\cos B = -\frac{4}{5}$ where $180^\circ < B < 270^\circ$. Without using calculator,

- (i) find the value of sin(A + B),
- (ii) find the value of cos(A + B),
- (iii) deduce that $90^{\circ} < A + B < 180^{\circ}$,
- (iv) find the value of $\cos(\frac{B}{2})$.

Solution:

Consider the following right-angled triangles:

$$Sin A = -\frac{12}{13}$$

$$\frac{5}{4}$$
 $\sqrt{5^2-4^2} = \sqrt{9} = 3$

$$\cos B = -\frac{4}{5}$$

$$\therefore -90^{\circ} < A < 0^{\circ}$$
 (Quad. IV)

$$\therefore \quad \cos A = \frac{5}{13} \quad \begin{array}{c} (\text{cosine is} \quad S \quad A) \\ \text{positive in} \quad T \quad C) \end{array}$$

:.
$$\sin B = -\frac{3}{5}$$
 (sine is negative $\frac{S}{T}$ A in Quad. III.)

(i)
$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$
 (compound angle formula)

$$= \left(-\frac{12}{13}\right)\left(-\frac{4}{5}\right) + \left(\frac{5}{13}\right)\left(-\frac{3}{5}\right)$$

$$= \frac{48}{65} - \frac{15}{65}$$

$$= \frac{33}{65}$$

(ii)
$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$
 (compound angle formula)

$$= \left(\frac{5}{13}\right)\left(-\frac{4}{5}\right) - \left(-\frac{12}{13}\right)\left(-\frac{3}{5}\right)$$

$$= -\frac{20}{65} - \frac{36}{65}$$

$$= -\frac{56}{65}$$

In Quad. II,
$$180^{\circ} < 0 < 270^{\circ}$$
, both sine and cosine ratios are negative.

III.,
$$180^{\circ} < 0 < 270^{\circ}$$
, S A and cosine ratios are negative. \bigcirc C

:
$$Sin(A+B) > 0 & cos(A+B) < 0$$
 from (i) and (ii),

:
$$90^{\circ} < A+B < 180^{\circ}$$
 (A+B is in Quad. II)

(iv)
$$\cos^2(\frac{8}{2}) = \frac{1}{2}(1+\cos B)$$
 (Half-angle formula)

$$= \frac{1}{2}[1+(-\frac{4}{5})]$$

$$= \frac{1}{10}$$

$$\Rightarrow \cos\left(\frac{B}{2}\right) = \pm \frac{1}{10}$$

$$\therefore 90^{\circ} < \frac{8}{2} < 135^{\circ} \quad (Quod. II)$$

$$\cos\left(\frac{B}{2}\right) < 0$$
 in Quad. II

$$\therefore \cos\left(\frac{B}{2}\right) = -\frac{1}{\sqrt{10}}$$

Inverse Trigonometric Functions

In this section, we will study the inverse functions of $\sin x$, $\cos x$ and $\tan x$.

\triangleright Inverse function of $\sin x$:

Consider the graph of $y = \sin x$.

The function $g(x) = \sin x$, where $x \in \mathbb{R}$, is not one-to-one, so g(x) has no inverse.

The **principal part** of sine function is defined as $f(x) = \sin x$, where $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Then f(x) is one-to-one and therefore its inverse $f^{-1}(x)$ exists.

$$f^{-1}(x) = \sin^{-1} x$$
, for $x \in [-1, 1]$.

This is called the **inverse sine** (or **arcsine**) function, denoted by \sin^{-1} (or arcsin).

$$y = \sin^{-1} x \iff x = \sin y \text{ for } -1 \le x \le 1 \text{ and } -\frac{\pi}{2} \le y \le \frac{\pi}{2}.$$

Chapter 4

Thus, (i) $\sin(\sin^{-1} x) = x$ for $-1 \le x \le 1$.

(ii)
$$\sin^{-1}(\sin y) = y$$
 for $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.

Graphs of $y = \sin x$ and its inverse $y = \sin^{-1} x$:

$$f(x) = \sin x$$
$$f^{-1}(x) = \sin^{-1} x$$

<u>Note</u>: $Dom(f) = Ran(f^{-1}) = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \leftarrow \text{principal range}$

 $Ran(f) = Dom(f^{-1}) = [-1, 1]$

Is $f^{-1}(x) = \sin^{-1} x$ an odd function, even function, or neither of them?

\triangleright Inverse function of $\cos x$:

Consider the graph of $y = \cos x$.

The function $g(x) = \cos x$, where $x \in \mathbb{R}$, is not one-to-one, so g(x) has no inverse.

The **principal part** of cosine function is defined as $f(x) = \cos x$, where $x \in [0, \pi]$. Then f(x) is one-to-one and therefore its inverse $f^{-1}(x)$ exists.

$$f^{-1}(x) = \cos^{-1} x$$
, for $x \in [-1, 1]$.

This is called the **inverse cosine** (or **arccosine**) function, denoted by \cos^{-1} (or arccos).

$$y = \cos^{-1} x \iff x = \cos y \text{ for } -1 \le x \le 1 \text{ and } 0 \le y \le \pi.$$

Thus, (i) $\cos(\cos^{-1} x) = x$ for $-1 \le x \le 1$.

(ii)
$$\cos^{-1}(\cos y) = y$$
 for $0 \le y \le \pi$.

Graphs of $y = \cos x$ and its inverse $y = \cos^{-1} x$:

$$f(x) = \cos x$$
$$f^{-1}(x) = \cos^{-1} x$$

Note: $Dom(f) = Ran(f^{-1}) = [0, \pi] \leftarrow \text{principal range}$

$$Ran(f) = Dom(f^{-1}) = [-1, 1]$$

Is $f^{-1}(x) = \cos^{-1} x$ an odd function, even function, or neither of them?

Neither even

\triangleright Inverse function of tan x:

The function $g(x) = \tan x$, where $x \in \mathbb{R} \setminus \left\{ \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots \right\}$, is not one-to-one, so g(x) has no inverse.

The **principal part** of tangent function is defined as $f(x) = \tan x$, where $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then f(x) is one-to-one and therefore its inverse $f^{-1}(x)$ exists.

$$f^{-1}(x) = \tan^{-1} x$$
, for $x \in \mathbb{R}$.

This is called the **inverse tangent** (or **arctangent**) function, denoted by tan^{-1} (or arctan).

$$y = \tan^{-1} x \iff x = \tan y \text{ for every real number } x \text{ and } -\frac{\pi}{2} < y < \frac{\pi}{2}.$$

Thus, (i) $\tan(\tan^{-1} x) = x$ for $x \in \mathbb{R}$.

(ii)
$$\tan^{-1}(\tan y) = y$$
 for $-\frac{\pi}{2} < y < \frac{\pi}{2}$.

Graphs of $y = \tan x$ and its inverse $y = \tan^{-1} x$:

$$f(x) = \tan x$$
$$f^{-1}(x) = \tan^{-1} x$$

Note: $Dom(f) = Ran(f^{-1}) = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \leftarrow \text{principal range}$ $Ran(f) = Dom(f^{-1}) = \mathbb{R}$

Is $f^{-1}(x) = \tan^{-1} x$ an odd function, even function, or neither of them?

Remarks:

- 1. $\sin^2 x = (\sin x)^2$, $\sin^3 x = (\sin x)^3$, etc. However, $\sin^{-1} x \neq (\sin x)^{-1} = \frac{1}{\sin x}$. (Similarly for $\cos^{-1} x$ and $\tan^{-1} x$.)
- 2. The ranges of the inverse trigonometric functions are known as the principal ranges.

Inverse functions of cosecant, secant and cotangent

Similarly, we use the notations csc^{-1} , sec^{-1} and cot^{-1} to denote the inverse functions of cosecant, secant and cotangent, respectively.

in rad Chapter 4

Example 15

Recall: Principal range of sin'x: [五五] [-90, 90]

Find the value of each of the following.

$$\cos^4 x : [0, \pi] [0^\circ, 180^\circ]$$

 $\tan^4 x : (-\frac{\pi}{4}, \frac{\pi}{2}) (-90^\circ, 90^\circ)$

(a)
$$\sin^{-1}\left(\frac{\sqrt{2}}{2}\right)$$

(b)
$$\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

(c)
$$\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)$$

(d)
$$\cos\left(\cos^{-1}\left(\frac{1}{4}\right)\right)$$

(e)
$$\sin^{-1}(\sin 10^{\circ})$$

(f)
$$\sin^{-1}(\sin 380^{\circ})$$

(g)
$$\sin^{-1}\left(\sin\left(-\frac{5\pi}{6}\right)\right)$$

(h)
$$\cos^{-1}\left(\cos\left(-\frac{\pi}{6}\right)\right)$$

(i)
$$\cos^{-1}(\cos 300^{\circ})$$

(j)
$$\tan^{-1}\left(\tan\frac{7\pi}{6}\right)$$

(k)
$$\sin^{-1}(\cos 390^{\circ})$$

(I)
$$\cos^{-1}\left(\sin\frac{5\pi}{4}\right)$$

Solution

(a)
$$\sin^{-1}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$$
 (in radians) or 45° (in degrees)

(b)
$$\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \frac{5\pi}{6}$$
 (in radians) or 150° (in degrees)

(c)
$$\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right) = -\frac{\pi}{6}$$
 (in radians) or -30° (in degrees)

(d)
$$\cos\left(\cos^{-1}\left(\frac{1}{4}\right)\right) = \frac{1}{4} \quad \because \frac{1}{4} \in [-1,1]$$

- (e) $\sin^{-1}(\sin 10^\circ) = 10^\circ$ (since 10° lies in the principal range $[-90^\circ, 90^\circ]$.) outside $[-90^\circ, 90^\circ]$
- (f) $\sin^{-1}(\sin 380^\circ) = \sin^{-1}(\sin(360^\circ + 20^\circ)) = \sin^{-1}(\sin(20^\circ)) = 20^\circ$

(which lies in the principal range $[-90^{\circ}, 90^{\circ}]$.)

outside $\begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix}$ g) $\sin^{-1}\left(\sin\left(-\frac{5\pi}{6}\right)\right) = \sin^{-1}\left(\sin\left(\frac{\pi}{6} - \pi\right)\right) = \sin^{-1}\left(-\sin\left(\frac{\pi}{\pi}\right) - \frac{\pi}{6}\right)\right)$ $= \sin^{-1}\left(-\sin\frac{\pi}{6}\right) = \sin^{-1}\left(\sin\left(-\frac{\pi}{6}\right)\right) = -\frac{\pi}{6}$ which lies in the principal range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.)

outside [0, π]

(h)
$$\cos^{-1}\left(\cos\left(-\frac{\pi}{6}\right)\right) = \cos^{-1}\left(\cos\left(\frac{\pi}{6}\right)\right) = \frac{\pi}{6}$$
 (which lies in the principal range $[0,\pi]$.)

(i)
$$\cos^{-1}(\cos 300^{\circ}) = \cos^{-1}(\cos(360^{\circ} - 60^{\circ})) = \cos^{-1}(\cos 60^{\circ}) = 60^{\circ}$$

S A (which lies in the principal range $[0^{\circ}, 180^{\circ}]$.)

(j)
$$\tan^{-1}\left(\tan\frac{7\pi}{6}\right) = \tan^{-1}\left(\tan\left(\pi + \frac{\pi}{6}\right)\right) = \tan^{-1}\left(\tan\left(\frac{\pi}{6}\right)\right) = \frac{\pi}{6}$$

outside $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (which lies in the principal range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.)

(k)
$$\sin^{-1}(\cos 390^{\circ}) = \sin^{-1}(\cos(360^{\circ} + 30^{\circ})) = \sin^{-1}(\cos(30^{\circ}))$$

$$= \sin^{-1}(\cos(90^{\circ} - 60^{\circ})) = \sin^{-1}(\sin(60^{\circ})) = 60^{\circ}$$
odd changed (which lies in the principal range $[-90^{\circ}, 90^{\circ}]$.)
$$\frac{\text{S}[A]}{\text{T}[C]} \text{ within } [0, \pi]$$
(I) $\cos^{-1}\left(\sin\frac{5\pi}{4}\right) = \cos^{-1}\left(\sin\left(\frac{\pi}{2}\right) + \frac{3\pi}{4}\right)\right) = \cos^{-1}\left(\cos\left(\frac{3\pi}{4}\right)\right) = \frac{3\pi}{4}$
(which lies in the principal range $[0, \pi]$.)

Exercise:

Find the following, if they exist. (Note: In this example, the angles are measured in radians.)

- (a) $\cos^{-1}(\cos 4)$
- (b) $\cos(\cos^{-1}4)$
- (c) $\sin^{-1}(\sin 4)$
- (d) Sin (sin-1 4)
- (e) tan-1 (tan 4)
- (f) tan(tan-14)

Solution:

(a)
$$\cos^{-1}(\cos 4) = \pi - (4-\pi)$$

= $2\pi - 4$

- (b) $Cos(cos^{-1}4)$ does not exist, since the domain of $cos^{-1}x$ is [-1,1] and $4 \notin [-1,1]$.
- (c) $\sin^{-1}(\sin 4) = -(4-\pi)$ = $\pi - 4$

(d) $\sin(\sin^{-1}4)$ does not exist, since the domain of $\sin^{-1}x$ is [-1,1] and $4 \notin [-1,1]$.

(e)
$$\tan^{-1}(\tan 4) = 4 - \pi$$

$$\frac{1}{2\pi} = \frac{1}{2\pi}$$

$$\frac{1}{4-\pi}$$

$$\frac{1}{4-\pi}$$

$$\frac{1}{4-\pi}$$

$$\frac{1}{4-\pi}$$

$$\frac{1}{4-\pi}$$

$$\frac{1}{4-\pi}$$

$$(f) \quad \tan(\tan^{-1}4) = 4$$

Additional Ex: Find the following.

Ans: (i)
$$\cos^{-1}(\cos 2) = 2$$

(ii)
$$\sin^{-1}(\sin 2) = \pi - 2$$

(iii)
$$\tan^{3}(\tan 2) = 2-\pi$$

General Solutions of Trigonometric Equations

Sine function: all possible solutions

Find the general solution of $\sin x = \frac{1}{2}$.

 $\alpha = \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$ (: the principal range of $\alpha = \sin^{-1}(x)$ is $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$.)

The solutions of $\sin x = \frac{1}{2}$ in $[0, 2\pi]$ are Consider an interval with length 2π (period of $\sin x$)

$$x = \alpha = \frac{\pi}{6}$$
 and $x = \pi - \alpha = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$.

Since $y = \sin x$ is periodic with period 2π , scalar multiple of period)

$$x = \frac{\pi}{6} + (2\pi)m$$
 and $x = \pi - \frac{\pi}{6} + (2\pi)m$,

where $m \in \mathbb{Z}$, are also solutions of $\sin x = \frac{1}{2}$.

Chapter 4

Semester A, 2020-21
$$\xrightarrow{\text{twhen even}}$$
 MA1200 Calculus and Basic Linear Algebra I That is, $x = (2m) \pi + \frac{\pi}{6}$ and $x = (2m+1) \pi - \frac{\pi}{6}$, where $m \in \mathbb{Z}$. \therefore The **general solution** of the equation $\sin x = \frac{1}{2}$ is

Combine 2 cases
$$x = n\pi + (-1)^n \cdot \alpha$$
, where $n \in \mathbb{Z}$ and $\alpha = \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$. That is, $x = n\pi + (-1)^n \cdot \frac{\pi}{6}$, where $n \in \mathbb{Z}$.

$$(-1)^n = \begin{cases} -1 & \text{if } n \text{ is odd} \\ 1 & \text{if } n \text{ is even} \end{cases}$$

Cosine function:

Find the general solution of $\cos x = \frac{1}{\sqrt{2}}$.

 $\alpha = \cos^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$ (: the principal range of $\alpha = \cos^{-1}(x)$ is $0 \le \alpha \le \pi$.)

The solutions of $\cos x = \frac{1}{\sqrt{2}}$ in $(-\pi, \pi]$ are

$$x = \alpha = \frac{\pi}{4}$$
 and $x = -\alpha = -\frac{\pi}{4}$ (: $\cos(-x) = \cos x$).

Since
$$y=\cos x$$
 is periodic with period 2π , scalar multiple of period $x=\frac{\pi}{4}+(2\pi)n=2n\pi+\frac{\pi}{4}$ and $x=-\frac{\pi}{4}+(2\pi)n=2n\pi-\frac{\pi}{4}$,

where $n \in \mathbb{Z}$, are also solutions of $\cos x = \frac{1}{\sqrt{2}}$.

Semester A, 2020-21

Chapter 4

 \therefore The **general solution** of the equation $\cos x = \frac{1}{\sqrt{2}}$ is

$$x = 2n\pi \pm \alpha$$
 , where $n \in \mathbb{Z}$ and $\alpha = \cos^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$ (since $0 \le \alpha \le \pi$).

That is, $x=2n\pi\pm\frac{\pi}{4}$, where $n\in\mathbb{Z}$.

Tangent function:

Find the general solution of $\tan x = \sqrt{3}$.

 $\alpha = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3}$ (: the principal range of $\alpha = \tan^{-1}(x)$ is $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$.)

The solution of $\tan x = \sqrt{3}$ in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is Consider an interval with length π (period of $\tan x$) $x = \alpha = \frac{\pi}{2}$.

Since $y = \tan x$ is periodic with period π ,

$$x = n\pi + \frac{\pi}{3},$$

where $n \in \mathbb{Z}$, are also solutions of $\tan x = \sqrt{3}$.

 \therefore The **general solution** of the equation $\tan x = \sqrt{3}$ is

$$x = n\pi + \alpha$$
 , where $n \in \mathbb{Z}$ and $\alpha = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3}$ (since $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$).

That is, $x = n\pi + \frac{\pi}{3}$, where $n \in \mathbb{Z}$.

The results are summarized on the next page.

Summary & Memorize *

ightharpoonup The **general solution** of $\sin x = k$ (where $-1 \le k \le 1$) is

$$x = n\pi + (-1)^n \alpha,$$

for $n \in \mathbb{Z}$, where $\alpha = \sin^{-1} k$ and $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$.

ightharpoonup The **general solution** of $\cos x = k$ (where $-1 \le k \le 1$) is

$$x=2n\pi\pm\alpha,$$

for $n \in \mathbb{Z}$, where $\alpha = \cos^{-1} k$ and $0 \le \alpha \le \pi$.

ightharpoonup The general solution of $\tan x = k$ (where $k \in \mathbb{R}$) is

$$x = n\pi + \alpha$$

for $n \in \mathbb{Z}$, where $\alpha = \tan^{-1} k$ and $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$.

all possible solutions

express this equation in terms of one trigo. function

Find, in radians, the general solution of the equation $\sin \theta + \cos \theta = 0$, and give all the values of θ which lie between 0 and 2π .

Solution

$$\sin \theta + \cos \theta = 0 \implies \sin \theta = -\cos \theta \implies \frac{\sin \theta}{\cos \theta} = -1 \implies \tan \theta = -1$$

... The general solution of the equation is

$$\theta = n\pi + \alpha$$
,

where $\alpha = \tan^{-1}(-1) = -\frac{\pi}{4}$ and $n \in \mathbb{Z}$,

i.e.
$$\theta = n\pi - \frac{\pi}{4}$$
 for $n \in \mathbb{Z}$.

When n = 1, $\theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$.

When
$$n = 2$$
, $\theta = 2\pi - \frac{\pi}{4} = \frac{7\pi}{4}$.

 \therefore The solutions of the equation which lie between 0 and 2π are

$$\theta = \frac{3\pi}{4}$$
 and $\theta = \frac{7\pi}{4}$

Find, in radians, the general solution of the equation $2 \sin 5x = -1$.

Solution

$$2\sin 5x = -1 \implies \sin 5x = -\frac{1}{2}$$

... The general solution of the equation is

$$5x = n\pi + (-1)^n \alpha,$$

where $\alpha = \sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$ and $n \in \mathbb{Z}$.

That is,
$$x = \frac{n\pi}{5} + \frac{(-1)^n \left(-\frac{\pi}{6}\right)}{5} = \frac{n\pi}{5} + (-1)^n \left(-\frac{\pi}{30}\right)$$
 for $n \in \mathbb{Z}$

Find the general solution of the equation $\sin x = \cos 2x$.

Solution By using the **Double angle formula**, we have

$$\cos 2x = \cos^2 x - \sin^2 x = (1 - \sin^2 x) - \sin^2 x = 1 - 2\sin^2 x.$$
Then $\sin x = \cos 2x \implies \sin x = 1 - 2\sin^2 x$

$$\Rightarrow 2\sin^2 x + \sin x - 1 = 0 \qquad \text{quadratic equation in } \sin x$$

$$\Rightarrow (2\sin x - 1)(\sin x + 1) = 0$$

$$\Rightarrow 2\sin x - 1 = 0 \qquad \text{or} \qquad \sin x + 1 = 0$$

$$\Rightarrow \sin x = \frac{1}{2} \qquad \text{or} \qquad \sin x = -1$$

... The general solution of the equation is

$$x=n\pi+(-1)^n\ \alpha_1,\quad \text{where}\ \ \alpha_1=\sin^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}\ ,\quad \text{for}\ \ n\in\mathbb{Z},$$
 and
$$x=n\pi+(-1)^n\ \alpha_2,\quad \text{where}\ \ \alpha_2=\sin^{-1}(-1)=-\frac{\pi}{2}\ ,\quad \text{for}\ \ n\in\mathbb{Z}.$$
 That is,
$$\boxed{x=n\pi+(-1)^n\left(\frac{\pi}{6}\right)}\quad \text{or}\quad \boxed{x=n\pi+(-1)^n\left(-\frac{\pi}{2}\right)},\quad \text{for}\ \ n\in\mathbb{Z}.$$

Find the general solution of the equation $2 \sin^2 4x + 3 \cos 4x = 3$.

Solution

$$2\sin^2 4x + 3\cos 4x = 3$$

$$\Rightarrow$$
 2(1 - cos² 4x) + 3 cos 4x = 3

$$\Rightarrow$$
 2 cos² 4x - 3 cos 4x + 1 = 0

$$\Rightarrow (2\cos 4x - 1)(\cos 4x - 1) = 0$$

$$\Rightarrow$$
 2 cos 4x - 1 = 0 or cos 4x - 1 = 0

$$\Rightarrow \cos 4x = \frac{1}{2}$$
 or $\cos 4x = 1$

... The general solution of the equation is

$$4x = 2n\pi \pm \alpha_1$$
, where $\alpha_1 = \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$, for $n \in \mathbb{Z}$,

and $4x = 2n\pi \pm \alpha_2$, where $\alpha_2 = \cos^{-1}(1) = 0$, for $n \in \mathbb{Z}$.

That is,
$$x = \frac{2n\pi \pm \frac{\pi}{3}}{4} = \frac{n\pi}{2} \pm \frac{\pi}{12}$$
 or $x = \frac{2n\pi \pm 0}{4} = \frac{n\pi}{2}$, for $n \in \mathbb{Z}$.