МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по лабораторной работе №8
по дисциплине «Организация ЭВМ и систем»
Тема: Обработка вещественных чисел. Программирование
математического сопроцессора.

Студент гр. 1381	Мелькумянц Д.А.
Преподаватель	Ефремов М.А.

Санкт-Петербург 2022

Цель работы.

Разработать подпрограмму на языке Ассемблера, обеспечивающую вычисление заданной математической функции с использованием математического сопроцессора.

Задание.

Подпрограмма должна вызываться из головной программы. При этом должны быть обеспечены заданный способ вызова и обмен параметрами.

Выполнить трансляцию программы с подготовкой ее ассемблерной версии и отладочной информации. Для выбранного контрольного набора исходных данных прогнать программу под управлением отладчика. При этом для каждой команды сопроцессора следует фиксировать содержимое используемых ячеек памяти, регистров ЦП и численных регистров сопроцессора до и после выполнения этой команды. Проверить корректность выполнения вычислений для нескольких наборов исходных данных.

Выполнение работы.

С помощью головной программы производится считывание исходных данных. После ввода данных в переменную res запишется результат функции POLY, где описан ассемблерный блок. В стэк математического сопроцессора записывает x, далее в еsi заносится массив констант, в еdi заносится количество констант. После чего заносится в стэк математического сопроцессора заносится 0.0. Происходит проверка на нулевое количество констант. Далее в цикле horner верхний элемент стэка домножаем на второй элемент стека, а потом добавляем константу к верхушки стэка. После окончания цикла в переменную у записывается значение верхушки стэка и возвращается значение функции.

Входные данные: X = 1.432, n = 3, 1.942, 3.421, 0.424

Таблица 1 — Результат прогона программы main в отладчике, начиная с момента вызова ассемблерного блока.

Символическ ий код	Содержимое регистров и ячеек памяти	
команды	До выполнения	После выполнения
Fld x	eip = 00152435 $st0 = 0$ $stat = 0100$ $tags = ffff$	eip = 00152438 st0 = 1.4319999999999999999 stat = 3900 tags = 3fff
Mov esi, con	eip = 00152438 esi = 004FFC58	eip = 0015243B esi = 00C93FD8
Mov edi, n	eip = 0015243B edi = 00C93FD8	eip = 0015243E edi = 00000003
fldz	eip = 0015243E st0 = 1.431999999999999999 st1 = 0 stat = 3900 tags = 3fff	eip = 00152440 st0 = 0 st1 = 1.431999999999999999 stat = 3100 tags = 1fff
test e di,edi	eip = 00152440 PE = 1 PL = 0	eip = 00152442 PE = 1 PL = 1
je c_end	eip = 00152442	eip = 00152444
mov ecx,edi	eip = 00152444 ecx = 00000000	eip = 00152446 $ecx = 00000003$
fmul st,st(1)	eip = 00152446	eip = 0015244C

fadd qword ptr	eip = 0015244C	eip = 0015244C
[ecx*8 + esi-8]	st0 = 4.2399999999999998	st0 = 4.23999999999999999999999999999999999999
	tags = 1fff	tags = 0fff
loop horner	eip = 0015244C	eip = 00152446
	rex = 00000003	ecx = 00000002
fmul st,st(1)	eip = 00152446	eip = 00152448
	st0 =4.2399999999999998	st0 =6.0716799999999999
	stat = 3 1 0 0	stat = 3120
fadd qword ptr	eip = 00152448	eip = 0015244C
[ecx*8 + esi-8]	st0 =6.071679999999999	st0 =4.0281679999999999
	stat = 3120	stat = 3320
loop horner	eip = 0015244C	eip = 00152446
	ecx = 00000002	ecx = 00000001
fmul st,st(1)	eip = 00152446	eip = 00152448
	st0 =4.0281679999999999	st0 =5.7683365759999993
	stat = 3320	stat = 3120
fadd qword ptr	eip = 00152448	eip = 0015244C
[ecx*8 + esi-8]	st0 =5.7683365759999993	st0 =7.7103365759999995
	stat = 3120	stat = 3320
loop horner	eip = 0015244C	eip = 0015244E
	ecx = 00000001	ecx = 00000000
fstp y	eip = 0015244E	Eip = 00152451
	st0 = 7.7103365759999995	st0 = 1.43199999999999999999999999999999999999

st1 = 1.431999999999999	st1 = 0
stat = 3320	st7 = 7.7103365759999995
tags = 0fff	stat = 3920
	tags = 3fff

Вывод.

Получены навыки работы со специальными инструкциями Ассемблера для чисел с плавающей запятой. Разработана программа на ЯВУ, которая вычисляет значение полинома.

Приложение А

Исходный код программы

```
Название файла: Source.cpp
#include <iostream>
#include <fstream>
#include <random>
double POLY(double x, int n, double* con){
           double y;
           _asm {
                       fld x;
                       mov esi, con
                       mov edi, n
                       fldz
                       test edi, edi
                                  jz c_end
                       mov ecx, edi
                       horner:
                                   fmul st, st(1)
                                   fadd qword ptr[ecx * 8 + esi - 8]
                                   loop horner
                       c_end:
                                   fstp y;
           return y;
}
int main() {
           system("chcp 1251 > nul");
           setlocale(LC_CTYPE, "rus");
           double x;
           std::cout << "Введите х: ";
           std::cin >> x;
           int n;
           std::cout << "Введите количетсво констант: ";
           std::cin >> n;
           double* con = new double[n];
           double s;
           std::cout << "Введите константы: ";
           for (int i = 0; i < n; i++) {
                       std::cin >> con[i];
           }
```

```
//double res = POLY(x, n, con);
double res = POLY(x, n, con);
std::cout << "Результат: " << res;
delete[] con;
}
```