

Verification & Implementation of SoC Design Design Constraints and STA

Chun-Zhang Chen, Ph.D.

June 25-29, 2018

SDC and STA

Design Constraints and Design Performance

"The faster, the better!"

"An integrated design methodology for logic synthesis and TTM"

Performance/Clock GHz → SDC/RTL2Gate

 \rightarrow SDC/STA \rightarrow STA/SI \rightarrow SSTA

Clock Performance at Intel

	Year			2010	2011	2012	2013	2014	2015	2016	2017	2020	2025	
	Area	Max. ASIC chip size per litho technology, mm²		858	858	858	858	858	858	858	858	858	858	
		MPU/ASIC (M1) 1/2 Pitch, nm		45	38	32	27	24	21	18.9	16.9	11.9	6.7	
	Power	High performance w. heatsink, W		146	161	158	149	152	143	130	130	130	Inten. blank	
	, 6,116,1	Vdd (high performance), V		0.97	0.90	0.87	0.85	0.82	0.80	0.77	0.75	0.68	0.59	
В	Performance	On-chip local clock, GHz		5.875*	3.744	3.894	4.050	4.211	4.380	4.555	4.737	5.329	6.483	
P			nctions per chip illion transistors)	10,323	14,599	20,646	29,198	36,787	46,348	58,395	73,573	147,147	467,162	
	11/19/00	Pentinum 4			1.4 GHz				42,000,000			0.13 um		
	01/07/02 08/26/02		Pentinum 4		2.2 GHz			55,000,000		0	0.13 um			
			Pentinum 4		2.8 GHz				> 55,000,000		0	0.13 um		
	06/2003	Prescott			4.7 GHz			330,000,000		0	0.09 um			
	'05-'10		??		? >5 GHz			> 500,000,000		0	< 0.09 um			

Today's Synthesis Challenges

Performance & Capacity

- GigaGates
- GigaHertz
- Top-Down
- Hierarchical

Predictability

- Relative
- Up to HLS
- Down to P&R
- Run to Run
- Power

Turnaround Time

- ECO Complexity
- P&R Handoff
- Time to Market
- Formal Verification

Low Power

- Intent
- Analysis
- Simulation
- Verification
- Multi-Vt
- DVFS

To Meet Synthesis Goals

	Functional	Electrical	Physical	
IP	ChipWare design IP library	Support for multiple libraries	Insertion of specific Low- Power & DFT IP (level shifters, ATPG engines, etc.)	
SoC	Global Synthesis: Optimize for timing, area, and power in single pass, RTL& System Verilog support, design Intent capture,	Multi-VT, Multi-Supply Synthesis High Speed Logic Synthesis Low Power Synthesis	RTL Compiler with Physical: Physical-Aware congestion analysis, timing, clock gating, DFT, etc.	
	Convergence Co Automation Logic Design and Verification Representation Convergence Converge	Convergence Participation Parti	Convergence Seco Automation	

SDC and STA

- Performance and Timing
- Logic Synthesis and WLM
- SDC and STA
- SDC and Clock
- Discussion

Timing Optimization Restructuring and IPO

图6-38 IPO中的单元尺寸挑选法

图6-39 IPO中复制单元法

Timing Optimization Using Physical Synthesis

- Timing Opt during synthesis
- Timing Opt during implementation
- Timing Opt using Physical Synthesis

图6-40 IPO中的缓冲器法

Wire Load Models

- SWLMs, statistical, are based on averages over many similar designs using the same or similar physical libraries.
- SWLMs, structural, use information about neighboring nets, rather than just fanout and module size information.
- CWLMs, custom, are based on the current design after placement and routing, but before the current iteration of replacement synthesis.

```
wire load("WLM1")
                             ;---->R per unit length
 resistance:
                 0.0006
                             :----> C per unit length
                 0.0001
 capacitance:
                             :----> Area per unit length
                  0.1
 area:
                             ;----> Used for linear extrapolation
 slope
                             ; -----> at fanout "1" length of the wire is 0.002
 fanout length(1, 0.002)
fanout length(2, 0.006);
fanout length(3, 0.009);
fanout length(4, 0.015);
fanout length(5, 0.020);
                              -----> at fanout "7" length of the wire is 0.028
fanout length(7, 0.028);
fanout length(8, 0.030);
fanout length(9, 0.035);
fanout length(10, 0.040);
```

Wire Load Model Flow

图6-4: WLM在物理实施流程中的应用

T1=synthesis, T2=read SWLM, T3=pre-placement opt, T4=placement; T5=post-place opt, T6=global routing, T7=detail routing, T8=generate CWLM Reference: Andrew B. Kahng and Stefanus Mantik

SDC and STA

- Performance and Timing
- Logic Synthesis and WLM
- SDC and STA
- SDC and Clock
- Discussion

The Basic: Timing Path and Timing Check

图6-20 时序路径中的时序检查

Static Timing Analysis

setup and hold

图6-24 分析hold 时序

Standard Design Constraints - SDC

表 6-3 设计约束类别 (SDC 1.4版本)

设计环境约束:	时序约束:	set_false_path	
set_drive	create_clock	set_max_delay	
set_driving_cell	create_generated_clock	set_multicycle_path	
set_fanout_load	set_clock_latency		
set_input_transition	set_clock_transition	必须的8条时序约束:	
set_load	set_clock_uncertainty	create_clock	
set_port_fanout_number	set_disable_timing	set_clock_uncertainty	
	set_input_delay	set_input_delay	
设计规则约束:	set_max_time_borrow	set_output_delay	
set_max_capacitance	set_output_delay	set_load	
set_max_fanout	set_propagated_clock	set_driving_cell	
set_max_transition		set_operating_conditions	
	时序特例:	set_wire_load_model	

The Timing Path

图6-18 时序的起点、终点和时序路径

Timing Path in Current Design of Interest

图6-19 时序路径的同步关系

Static Timing Analysis types of timing path and definition

图6-25 时序路径的类型

表6-4 时序类型与时序要求的定义 类型 定义要求

R2R: 时钟

I2R: 时钟、数据到达时间

R2O: 时钟、输出延迟

根据同步输入与输出的

延迟分配时序要求

18 (SUMMER 2018 UCAS, Beijing) Al-Big Data & SoC Design

120:

Types of Timing Paths – R2R (Reg to Reg)

图6-26 时序路径的setup和hold分类分析R2R

Types of Timing Paths – I2R (Input to Reg)

- Input_delay = clk_to_q + combo1
- Setup requirement:

clk_launch_edge + max_Input_delay + max_combo2 =< clk_capture_edge - R2setup

Hold requirement:

图6-27 时序路径的setup和hold分类分析I2R

Types of Timing Paths – R2O (Reg to Output)

```
ext_delay1 = external_cell + ext_net_delay + setupR2
ext_delay2 = holdR2 - min_external_cell - min_ext_net_delay
```

- Setup requirement:clk_launch_edge + clk_to_q + max_combo1 =< clk_capture_edge ext_delay1
- Hold requirement:

图6-28 时序路径的setup和hold分类分析R2O

Static Timing Analysis – I2O (Input and Output)

图6-30 输入输出环境参数

Input and Output Delays

 Use the following SDC commands to constrain input and output ports. External delays are not applicable to clock ports even if applied.

```
set_input_delay -clock clk1 0.2 [all_inputs]
set_output_delay -clock clk2 0.4 [all_outputs]
```


Types of Timing Paths – I2O (Input to Output)

- Input to output timing paths should always be set with respect to a clock
- Yet, since they contain combinational logic only they aren't associated with any clocks
 - Setup requirement:

clk_launch_edge + max_input_delay + max_Combo_delay =< clk_capture_edge - max_out_delay

Hold requirement:

clk_launch_edge + min_input_delay + min_combo_delay >= previous_capture_edge + min_out_delay

图6-29 时序路径的setup和hold分类分析I2O

Static Timing Analysis – Exceptions Multi Clock Cycle

图6-32 多个时钟周期内时序路径的setup和hold的特例分析

Static Timing Analysis – Exceptions

Examples of Multi Clock Cycle

图6-32 多个时钟周期内时序路径的setup和hold的特例分析

图6-33 多个时钟周期内时序路径的setup和hold的特例分析

Static Timing Analysis – Exceptions

False Path and Max Delay

图6-34 功能虚假路径特例

图6-35 最大延时路径特例一

图6-36 最大延时路径特例二

SDC and STA

- Performance and Timing
- Logic Synthesis and WLM
- SDC and STA
- SDC and Clock
- Discussion

Static Timing Analysis - Single Clock Cycle

图6-31 单个时钟周期内时序路径的setup和hold的惯例分析

Defining Clock Domains

- •When the clocks are defined in different clock domains, then
 - The clocks will not be considered as synchronous.
 (The timing report will show async for the clocks.)
 - The compiler will place functional false paths between the clock domains automatically.

```
define_clock -period 10000 -name 100MHz -domain clocka
  [find / -port clka]

define_clock -period 20000 -name 50MHz -domain clockb
  [find / -port clkb]
```

 There is no SDC equivalent command for setting clock domains. You have to specify functional false paths between asynchronous clocks in your design.

Design Constraints

Frequently used commands (clocks)

- ocreate_clock
 - [port_pin_list] [-name clock_name] [-period period_value] [-waveform edge_list]

- create_generated_clock
 - [-name] -source [(-divide_by | -multiply_by [-duty_cycle]) [-invert]] [-edges {edge1, edge2, edge3} [-edge_shift {shift1, shift2, shift3}] pin_list

Defining a Clock

 Use the create_clock SDC command to define clock objects and their associated details such as a clock waveform.

```
create_clock -period 1 -name 1GHz [get_ports CLK]
```

Encounter RTL Compiler (RC) Equivalent

```
define clock -period 1000 -name 1GHz [find / -port CLK]
```

● Note the difference in units: RC period 1000 ps = DC period 1 ns

Defining Clock Uncertainty

Set the clock uncertainty using the following SDC command:

```
set_clock_uncertainty -setup 0.08 -hold 0.07 [get_clocks
   CLK1]
```

RC Equivalent

```
set_attr clock_setup_uncertainty 80 [find / -clock CLK1]
set_attr clock_hold_uncertainty 70 [find / -clock CLK1]
```


Setting Clock Slew

•To set the slew (transition) times in ideal mode, use the following SDC commands:

```
set_clock_transition 0.038 -rise [get_clocks CLK1]
set_clock_transition 0.025 -fall [get_clocks CLK1]
```

RC Equivalent

```
set_attribute slew {0 0 38 25} [find / -clock
CLK1]
```


Modeling Clock Latency

Set the clock latency for the setup (late) violations using the following SDC command:

```
set_clock_latency 0.08 -late [get_clocks CLK1]
set_clock_latency 0.02 -source -late [get_clocks CLK1]
```

RC Equivalent

```
set_attr clock_network_late_latency {80} [find / -clock CLK1]
set_attr clock_source_late_latency {20} [find / -clock CLK1]
```


Modeling Virtual Clocks

 A virtual clock is a clock object that is not associated with any source in the design.

```
create clock -period 2 -name vclock1
```

RC Equivalent

```
define_clock -period 2000 -name vclock1
```

- You can create as many clock objects as required. Use the create_clock command, and specify a clock name for each virtual clock.
- Use these clocks in the design to specify the timing for a combinational logic block.

SDC and STA

- Performance and Timing
- Logic Synthesis and WLM
- SDC and STA
- SDC and Clock
- Discussion

Advanced Clock/Timing Topics

Latches and D-Flip-Flops

- Latch-Based Clock
 - Timing Borrow

DDRx Clock

- Memory Clocks
 - DDRx Clock vs I/O Bus Clock
 - LPDDR Clocks
 - GDDR Clocks

Summary

- SDC/STA is/executed in FED and BED
 - Analysis procedure is similar but w/ different assumptions
- All Clocks in BED are set to "propagated"
- STA in BED is associated with real extracted RC data
- SI does not happen in FEB
 - SI is an engineering thing in BED