TOSHIBA HN1L02FU

TOSHIBA FIELD EFFECT TRANSISTOR SILICON N CHANNEL MOS TYPE SILICON P CHANNEL MOS TYPE

HN1L02FU

HIGH SPEED SWITCHING APPLICATIONS

ANAROG SWITCH APPLICATIONS

Q1, Q2 COMMON

- 2.5V Gate Drive
- Low Threshold Voltage

$$Q1: V_{th} = 0.5 \sim 1.5 V$$
 $Q2: V_{th} = -0.5 \sim -1.5 V$

- High Speed
- Small Package

Q1 MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Drain-Source Voltage	$V_{ m DS}$	20	V
Gate-Source Voltage	v_{GSS}	10	V
Drain Current	I_{D}	50	mA

Q2 MAXIMUM RATINGS ($Ta = 25^{\circ}C$)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Drain-Source Voltage	$v_{ m DS}$	-20	V
Gate-Source Voltage	v_{GSS}	_7	v
Drain Current	$I_{\mathbf{D}}$	-50	mA

MAXIMUM RATINGS (Q1, Q2 COMMON) (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Drain Power Dissipation	P _D ₩	200	mW
Channel Temperature	$\mathrm{T_{ch}}$	150	$^{\circ}\mathrm{C}$
Storage Temperature Range	$T_{ m stg}$	$-55 \sim 150$	$^{\circ}\mathrm{C}$

* Total Rating

Weight: 6.8mg

MARKING

EQUIVALENT CIRCUIT (TOP VIEW)

961001EAA2

[●] TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

Q1 ELECTRICAL CHARACTERISTICS (Ta = 25°C)

CHARACT	TERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Gate Leakage Cu	urrent	$I_{ m GSS}$	$V_{GS} = 10V, V_{DS} = 0$			1	μ A
Drain-Source Bre Voltage	eakdown	V (BR) DSS	$I_{D} = 100 \mu A, V_{GS} = 0$	20	_	_	V
Drain Cut-off Cu	ırrent	${ m I}_{ m DSS}$	$V_{DS} = 20V, V_{GS} = 0$	_	_	1	μ A
Gate Threshold	Voltage	$ m V_{th}$	$V_{DS} = 3V, I_D = 0.1 mA$	0.5	_	1.5	V
Forward Transfe	r Admittance	$ Y_{fs} $	V_{DS} =3V, I_{D} =10mA	20		_	mS
Drain-Source ON	N Resistance	R _{DS} (ON)	$I_D = 10 \text{mA}, V_{GS} = 2.5 \text{V}$	_	20	40	Ω
Input Capacitance		$\mathrm{c}_{\mathrm{iss}}$	V_{DS} =3V, V_{GS} =0, f=1MHz	_	5.5	_	pF
Reverse Transfer Capacitance		$\mathrm{C}_{\mathrm{rss}}$	V_{DS} =3V, V_{GS} =0, f=1MHz	-	1.6	_	pF
Output Capacitance		C_{oss}	V_{DS} =3V, V_{GS} =0, f =1MHz	_	6.5	_	pF
Switching Time	Turn-on Time	t _{on}	$V_{DD} = 3V, I_{D} = 10mA, V_{GS} = 0 \sim 2.5V$	_	0.14	_	μs
	Turn-off Time	t _{off}	$V_{DD} = 3V, I_{D} = 10mA, V_{GS} = 0 \sim 2.5V$	_	0.14	_	μs

Q2 ELECTRICAL CHARACTERISTICS (Ta = 25°C)

CHARACT	ERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Gate Leakage Cı	ırrent	I_{GSS}	$V_{GS} = -7V, V_{DS} = 0$	_		-1	μ A
Drain-Source Bre Voltage	eakdown	V (BR) DSS	$I_D = -100 \mu A, V_{GS} = 0$	-20	_	_	V
Drain Cut-off Cu	ırrent	${ m I}_{ m DSS}$	$V_{DS} = -20V, V_{GS} = 0$		_	-1	μ A
Gate Threshold	Voltage	$ m V_{th}$	$V_{DS} = -3V, I_{D} = -0.1mA$	-0.5	_	-1.5	V
Forward Transfe	r Admittance	$ Y_{fs} $	$V_{DS} = -3V, I_D = -10mA$	15	_	_	mS
Drain-Source ON	Resistance	R _{DS} (ON)	$I_D = -10 \text{mA}, V_{GS} = -2.5 \text{V}$		20	40	Ω
Input Capacitance		$\mathrm{c}_{\mathrm{iss}}$	$V_{\mathrm{DS}} = -3\mathrm{V}, \ \mathrm{V}_{\mathrm{GS}} = 0, \ \mathrm{f} = 1\mathrm{MHz}$	_	10.4	_	pF
Reverse Transfer Capacitance		$\mathrm{c}_{\mathrm{rss}}$	$V_{\mathrm{DS}} = -3\mathrm{V}, \ \mathrm{V}_{\mathrm{GS}} = 0, \ \mathrm{f} = 1\mathrm{MHz}$	_	2.8	_	pF
Output Capacitance		C_{oss}	$V_{\mathrm{DS}} = -3\mathrm{V}, \ \mathrm{V}_{\mathrm{GS}} = 0, \\ \mathrm{f} = 1\mathrm{MHz}$	_	8.4	_	pF
Switching Time	Turn-on Time	t _{on}	$V_{DD} = -3V, I_D = -10mA, V_{GS} = 0 \sim -2.5V$	_	0.15	_	μs
	Turn-off Time	t _{off}	$V_{DD} = -3V, I_{D} = -10mA, V_{GS} = 0 \sim -2.5V$	_	0.13	_	μs

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 The information contained herein is subject to change without notice.

Q1 (Nch MOS FET)
SWITCHING TIME TEST CIRCUIT

(mA)

 $^{\rm IDR}$

DRAIN REVERSE CURRENT

Q1 (Nch MOS FET)

Q2 (Pch MOS FET) SWITCHING TIME TEST CIRCUIT

Q2 (Pch MOS FET)

(Q1, Q2 COMMON)

* : Total Rating