ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION **DURATION: 1 HOUR 30 MINUTES** WINTER SEMESTER, 2016-2017 FULL MARKS: 75

Phy 4141: Physics

Programmable calculators are not allowed. Do not write anything on the question paper. There are 4 (four) questions. Answer any 3 (three) of them.

		Figures in the right margin indicate marks.
		7
1.	a)	Discuss charge and matter in electrostatics. With the help of a suitable example show that the charge is quantized and conserved.
	b)	charge is quantized and conserved. State and explain Coulomb's law. Describe Millikan's Oil drop experiment to measure the
		Value of the elementary charge e. Three small balls, each of mass 10 gm, are suspended separately from a common point by silk threads, each 1.0 meter long. The balls are identically charged and hang at corners of an equilateral triangle 0.1 meter long on a side. What is the charge on each ball?
2.		State and explain Gauss's law in electrostatics. Discuss the nature of electric flux Φ_E and the α
•	_b)	magnetic flux Φ_B . Apply Gauss's law to calculate the electric field (i) at a distance r in front of a sheet of charge of surface charge density σ and (ii) for points a short distance above the surface of a
	c)	charged conductor of surface charge density σ . What is an electric dipole? Discuss what happens when an electric dipole is placed in turn in a dc electric field E, and an ac electric field $E = E_0 \sin \omega t$ ($\omega = 2\pi f$). An electric dipole consists of two opposite charges of magnitude $q = 1.0 \times 10^{-6}$ coulomb separated by $d = 2.0$ cm. The dipole is placed in an external field $E = 1.0 \times 10^{-6}$ nt/coul. Calculate the maximum torque exerted by the field on the dipole.
3.	a)	Discuss Ether hypothesis. What is the nature of Ether medium according to this hypothesis? Why was this hypothesis proven to be wrong?
	b)	Describe Michelson-Morley experiment. How did Michelson and Morley convincingly proved that the speed of Light in free space has the constant value $c = 3.0 \times 10^8$ m/s, and that there is no preferred universal frame of reference?
	c)	A spacecraft which is 5.0 m in length is travelling out of earth at a speed of 0.85 c towards a planet far away. What will be the length of the spacecraft measured by an observer on earth?
4.	a)	Discuss the particle properties of wave. Describe how an electron is regarded as a particle 7
	b)	and also a wave. Discuss photo-electric effect. Draw a neat circuit diagram to explain the working of a photo- electric device. What are the experimental observations of this device and how do they support the quantum nature of light? Draw photoelectron current vs retarding potential (frequency= constant) curve, and photoelectron vs retarding potential(Light intensity)
	-,	=constant) curves. The threshold frequency for photo-electric emission in copper is 1.1 x 10 ¹⁵ sec ⁻¹ . Find the maximum energy of the photoelectrons (in joules and in electron volts) when light of frequency 1.5 x 10 ¹⁵ sec ⁻¹ is directed on a copper surface.