

Politecnico di Milano Fisica Sperimentale I

a.a. 2016-2017 - Facoltà di Ingegneria dei Sistemi

I Appello - 26/06/2017

Giustificare le risposte e scrivere in modo chiaro e leggibile. Sostituire i valori numerici solo alla fine, dopo aver ricavato le espressioni letterali. Scrivere in stampatello nome, cognome, matricola e firmare ogni foglio.

- 1. Due corpi di massa m_1 =1.5 kg ed m_2 =0.5 kg sono collegati da un filo come in figura ($\vartheta=30^\circ$). Il corpo m_1 appoggia su di una superficie liscia. Il corpo m_2 è collegato ad una molla di costante elastica k=50 N/m e lunghezza a riposo h_0 =5 cm.
 - a. Determinare la quota del blocco m_2 rispetto alla base del cuneo nella posizione di equilibrio. [$x_{eq} = 9.9 \text{ cm}$]

Il blocco m_1 viene tirato lungo il piano spostandosi verso destra rispetto alla posizione di equilibrio di una lunghezza d=5 cm. Successivamente il blocco viene rilasciato. Determinare:

- b. l'accelerazione del blocco m_1 e la tensione del filo nel momento del rilascio; [a = 5.48 N]
- c. il periodo delle oscillazioni del sistema attorno alla posizione di equilibrio; [T=1.26 s]
- d. la velocità massima (in modulo) raggiunta dalle due masse durante il moto del sistema. [$v_{max} = 0.25 \, \mathrm{m/s}$]
- 2. Per un errore progettuale due satelliti di massa m_1 =300 kg e m_2 = $m_1/2$ che percorrono orbite circolari di raggio 5 R_T , dove R_T è il raggio della Terra, si scontrano in modo completamente anelastico. I vettori velocità e quindi i piani delle due orbite formano tra loro un angolo α pari a 120°. Determinare:
 - a. le velocità dei due satelliti prima dell'urto; $[v_0 = 3535 \text{ ms}^{-1}]$
 - b. la velocità finale dei satelliti fusi assieme; $[v_F = 2040 \text{ ms}^{-1}]$
 - c. l'energia dissipata durante l'urto. [$\Delta E = 1.87 \cdot 10^9 \text{J}$]
- 3. Agli estremi di un'asta omogenea di massa M=12 kg e lunghezza L=2.5 m $(I_{asta}=\frac{1}{12}ML^2)$ sono vincolati due corpi puntiformi di massa $m_1=M/3$ e $m_2=2m_1$. L'asta può girare senza attrito attorno a un asse orizzontale fisso, passante per il suo centro O. Il sistema è mantenuto in equilibrio nella configurazione orizzontale grazie ad una molla ideale di costante elastica $k=900\,$ N/m, attaccata all'estremo in cui è posta m_2 : in questa configurazione l'asse della molla è verticale.

- a. Si determini la deformazione Δx della molla in questa configurazione. [$\Delta x = 0.044 \text{ m}$] La molla viene poi scollegata. Nell'istante in cui il sistema assume configurazione verticale si determinino:
- b. le velocità \vec{v}_1 e \vec{v}_2 delle masse m_1 ed m_2 rispettivamente; $[\vec{v}_1 = 2.47 \frac{\text{m}}{\text{s}} \hat{x}; \vec{v}_2 = -2.47 \frac{\text{m}}{\text{s}} \hat{x}]$
- c. la posizione del centro di massa; $[\vec{y}_c = -0.21 \text{ m}\hat{y}]$
- d. Il modulo dell'accelerazione $a_{\mathbb{C}}$ del centro di massa. [$\vec{a}_{\mathbb{C}}=g/12\widehat{y}$]
- 4. Un recipiente adiabatico e rigido è diviso in due parti uguali da una parete isolante. Una parte contiene n₁ moli di un gas perfetto monoatomico a temperatura T₁ = 300 K e pressione p₁ = 1 atm. L'altra parte contiene n₂ moli dello stesso gas a temperatura T₂ =500 K e p₂= 3 atm.
 - a. Si determinino la temperatura (T_F) e la pressione (p_F) nella condizione di equilibrio successiva alla rimozione della parete. [T_F =429 K; p_F = 2 atm]
 - b. Si calcoli la variazione dell'entropia dell'universo supponendo che il volume del contenitore sia 2 m³. [$\Delta S_u = 697 \text{ J/K}$]

Costanti da utilizzare negli esercizi:

massa della Terra M_T = 5.97237·10²⁴ kg raggio della Terra R_T = 6378 km costante di gravitazione universale γ = 6.67428·10⁻¹¹ m³kg⁻¹s⁻² costante dei gas R=8.314 Jmol⁻¹K⁻¹