Problem 1.

Prove or disprove that the logical operators exclusive or, NAND and NOR are associative.

Solution

Part (a)

To determine if XOR is associative we need to see if $(A \otimes B) \otimes C = A \otimes (B \otimes C)$.

$\mid A$	$\mid B \mid$	C	$A \otimes B$	$B \otimes C$	$(A \otimes B) \otimes C$	$A\otimes (B\otimes C)$
F	F	F	F	F	F	F
F	F	T	F	T	T	T
$\mid F \mid$	T	F	T	T	T	T
$\mid F \mid$	$\mid T \mid$	$\mid T \mid$	T	F	F	F
T	\overline{F}	\overline{F}	T	F	T	T
$\mid T$	F	T	T	T	F	F
$\mid T$	$\mid T \mid$	F	F	T	F	$\mid F \mid$
T	T	T	F	F	T	T

They are equivalent for all values of A, B, and C so XOR is associative.

Part (b)

To determine if NAND is associative we need to see if $(A \uparrow B) \uparrow C = A \uparrow (B \uparrow C)$.

A	$\mid B \mid$	$\mid C$	$A \uparrow B$	$B \uparrow C$	$(A \uparrow B) \uparrow C$	$A \uparrow (B \uparrow C)$
F	F	F	T	T	T	T
F	F	T	T	T	F	T
F	T	F	T	T	T	T
F	T	T	T	F	F	T
T	F	F	T	T	T	\overline{F}
T	F	T	T	T	F	F
T	T	F	F	T	T	F
T	T	T	F	F	T	T

They are not equivalent for all values of A, B, and C so NAND is not associative.

Part (c)

To determine if NOR is associative we need to see if $(A \downarrow B) \downarrow C = A \downarrow (B \downarrow C)$.

$\mid A$	$\mid B \mid$	$\mid C$	$A \downarrow B$	$B \downarrow C$	$(A \downarrow B) \downarrow C$	$A \downarrow (B \downarrow C)$
\overline{F}	F	F	T	T	F	F
$\mid F \mid$	F	T	T	F	F	T
F	T	F	F	F	T	T
F	T	T	F	F	F	T
T	F	F	F	T	T	F
$\mid T$	F	T	F	F	F	F
$\mid T$	T	F	F	F	T	F
T	T	T	F	F	F	F

They are not equivalent for all values of A, B, and C so NOR is not associative.

Problem 2.

Let

$$S_i = \left\{ x \in R \mid 1 < x < 1 + \frac{1}{i} \text{ for all positive integers } i \right\}$$

- (a) Are the sets S_1, S_2, S_3, \ldots mutually disjoint? Explain.
- (b) $\bigcup_{i=1}^{\infty} S_i = ?$
- (c) $\bigcap_{i=1}^{\infty} S_i = ?$

Solution

Part (a)

The sets are not mutually disjoint. For example $1.5 \in S_1$ and $1.5 \in S_2$.

Part (b)

For every set S_i , $S_i \subseteq S_1$. Therefore their union is equal to S_1 .

Part (c)

The intersection of the sets is $= \emptyset$. As *i* approaches infinity, in order for a number *x* to be a member of S_i it would have to satisfy the condition $1 < x < 1 + \frac{1}{\infty}$. This is equivalent to saying that 1 < x < 1 which is clearly not possible to satisfy.

Problem 3.

Let A and B be two finite sets. Let $\mathcal{P}(X)$ denote the power set of the set X. Prove or disprove the following:

- (a) If $A \subseteq B$, then $\mathcal{P}(A) \subseteq \mathcal{P}(B)$
- (b) If $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, then $A \subseteq B$

Solution

Part (a)

 $A \subseteq B$ so any subset of A is also a subset of B. So for any $S \in \mathcal{P}(A)$, $S \in \mathcal{P}(B)$ and by definition of a subset $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

Part (b)

 $A \subseteq A$ so we know that $A \in \mathcal{P}(A)$. $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ so therefore $A \in \mathcal{P}(B)$. Thus by the definition of the power set $A \subseteq B$.

Problem 4.

For any sets A, B, C, and D, prove that if $A \subseteq B$ and $C \subseteq D$, then $A \times C \subseteq B \times D$, where $X \times Y$ denotes the Cartesian product of the sets X and Y.

Solution

Let (a,c) represent any given element in $A \times C$ where $a \in A$ and $c \in C$. For every element $a \in A \Rightarrow a \in B$ by the definition of a subset. Similarly for every element $c \in C \Rightarrow c \in D$. Therefore for any $(a,c) \in A \times C$ there exists an element $(b,d) \in B \times D$ such that a = b and c = d. Thus $A \times C \subseteq B \times D$.

Problem 5.

Represent the common form of the following argument using letters to stand for a component sentence, and fill in the blanks so that the argument in part (b) has the same logical form as the argument in part (a).

- (a) If all computer programs contain errors, then this program contains an error. This program does not contain an error.

 Therefore, it is not the case that all computer programs contain errors.
- (b) If ..., then ...

2 is not odd.

Therefore, it is not the case that all prime numbers are odd.

Solution

- (b) should be written as
 - If all prime numbers are odd, then 2 is odd 2 is not odd.

 Therefore, it is not the case that all prime numbers are odd.

Problem 6.

Write the following statements in symbolic form using the symbols \neg , \wedge , \vee and the indicated letters to represent component statements.

- (a) Juan is a math major but not a computer science major. (m = "Juan is a math major", c = "Juan is a computer science major")
- (b) Let h = "John is healthy," w = "John is wealthy," and s = "John is wise." John is not wealthy but he is healthy and wise.
- (c) John is wealthy, but he is not both healthy and wise.
- (d) Either Olga will go out for tennis or she will go out for track but not both. (n = "Olga will go out for tennis," k = "Olga will go out for track")

Solution

Part (a)

 $(m \wedge \neg c)$

Part (b)

 $\neg w \land (h \land s)$

Part (c)

 $w \wedge \neg (h \wedge s)$

Part (d)

 $(n \lor k) \land \neg (n \land k)$

Problem 7.

Are the following two statements logically equivalent? Justify your answers using truth tables and include a few words of explanation:

- (a) $\neg (p \land q)$ and $\neg p \land \neg q$
- (b) $(p \lor q) \lor (p \land r)$ and $(p \lor q) \land r$
- (c) $\neg (p \lor q)$ and $\neg p \land \neg q)$

Solution

Part (a)

p	q	$\neg p$	$\neg q$	$p \wedge q$	$\neg (p \land q)$	$ \neg p \land \neg q $
F	F	T	T	F	T	T
F	T	T	F	F	T	F
$\mid T$	F	F	T	F	T	F
T	$\mid T \mid$	F	F	T	F	F

From the table we can see that $\neg(p \land q)$ does not have the same truth value as $\neg p \land \neg q$ for all truth values of p and q. Therefore the two statements are not logically equivalent.

Part (b)

p	q	r	$p \lor q$	$p \lor r$	$(p \lor q) \lor (p \lor r)$	$((p \lor q) \lor r)$
F	F	F	F	F	F	F
F	F	T	F	T	T	T
F	T	F	T	F	T	T
F	T	T	T	T	T	T
T	F	F	T	T	T	T
T	F	T	T	T	T	T
T	T	F	T	T	T	T
T	T	T	T	T	T	T

For all possible combinations of truth values for p, q, and r the expressions $(p \lor q) \lor (p \land r)$ and $(p \lor q) \land r$ have the same overall truth value. Thus they are logically equivalent.

Part (c)

p	$\mid q \mid$	$\neg p$	$\neg q$	$p \lor q$	$\neg (p \lor q)$	$\neg p \land \neg q$
F		T	_	F	T	T
F	T	T	F	T	F	F
_	F	_	T	T	F	F
T	T	F	F	T	F	F

For all possible combinations of truth values for p and q, the expressions $\neg(p \lor q)$ and $\neg p \land \neg q)$ have the same resulting overall truth value. Thus they are logically equivalent.

Problem 8.

Use De Morgan's laws to write negations for the following statements:

- (a) Sam is an orange belt and Dave is a red belt.
- (b) The train is late or my watch is fast.

Solution

Part (a)

Let p = "Sam is and orange belt" and q = "Dave is a red belt." Then the sentence can be written in the form $p \land q$. De Morgan's laws tell us that $\neg(p \land q)$ is equivalent to $\neg p \lor \neg q$, or in english: "Sam is not an orange belt or Dave is not a red belt."

Part (b)

Let p = "The train is late" and q = "My watch is fast." Then the sentence can be written in the form $p \lor q$. De Morgan's laws tell us that $\neg (p \lor q)$ is equivalent to $\neg p \land \neg q$, or in english: "The train is not late and my watch is not fast."

Problem 9.

Determine if the following statement forms are logically equivalent: (Use any method that you would like)

$$p \implies (q \implies r) \text{ and } (p \implies q) \implies r$$

Solution

p	q	r	$p \Rightarrow q$	$q \Rightarrow r$	$p \Rightarrow (q \Rightarrow r)$	$(p \Rightarrow q) \Rightarrow r$
F	F	F	T	T	T	F
F	F	T	T	T	T	T
F	T	F	T	F	T	F
F	T	T	T	T	T	T
T	F	F	F	T	T	T
$\mid T$	F	T	F	T	T	T
$\mid T$	T	F	T	F	F	F
$\mid T$	T	T	T	T	T	T

From the above table we can see that the overall truth values of the expressions $p \implies (q \implies r)$ and $(p \implies q) \implies r$ are not the same for all possible combinations of truth values for p, q, and r. In particular they differe for the cases when p, q, and r are all false and when p and r are false and q is true. Thus the two expressions are not logically equivalent.