Task 1:

Design of the analog computer of the different system

E.g., automobile suspension system

Also try it for the different differential equation as discussed in class.

Task 2:

Determine the value of Pi using the Monte Carlo technique.

(Try it changing the number of sample and compare the errors.)

Determine the value of integration using the Monte Carlo technique.

(Try it for at least 2 examples)

Task 3:

Generate random numbers and perform the uniformity test using Kolmogorov-Smirnov test with a level of significance α =0.05.

(Perform the test for N=10, 15 and 20.)

Kolmogorov- Smirnov test table:

Degrees of Freedom (N)	$D_{0.10}$	D _{0.05}	D _{0.01}
1	0.950	0.975	0.995
2	0.776	0.842	0.929
3	0.642	0.708	0.828
4	0.564	0.624	0.733
5	0.510	0.565	0.669
6	0.470	0.521	0.618
7	0.438	0.486	0.577
8	0.411	0.457	0.543
9	0.388	0.432	0.514
10	0.368	0.410	0.490
11	0.352	0.391	0.468
12	0.338	0.375	0.450
13	0.325	0.361	0.433
14	0.314	0.349	0.418
15	0.304	0.338	0.404
16	0.295	0.328	0.392
17	0.286	0.318	0.381
18	0.278	0.309	0.371
19	0.272	0.301	0.363
20	0.264	0.294	0.356
25	0.24	0.27	0.32
30	0.22	0.24	0.29
35	0.21	0.23	0.27
Over	1.22	1.36	1.63
35	JN	JN	<u> </u>

Task 4 : Generate random numbers and perform Chi-Square test with $\alpha\text{=}0.05.$

(Take 100 sample of random numbers and perform test for 2 sets of data.)

Percentage Points of the Chi-Square Distribution

Degrees of	Probability of a larger value of x ²									
Freedom	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01	
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63	
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21	
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34	
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28	
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09	
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81	
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48	
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09	
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67	
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.21	
11	3.053	4.575	5.578	7.584	10.341	13.70	17.28	19.68	24.72	
12	3.571	5.226	6.304	8.438	11.340	14.85	18.55	21.03	26.22	
13	4.107	5.892	7.042	9.299	12.340	15.98	19.81	22.36	27.69	
14	4.660	6.571	7.790	10.165	13.339	17.12	21.06	23.68	29.14	
15	5.229	7.261	8.547	11.037	14.339	18.25	22.31	25.00	30.58	
16	5.812	7.962	9.312	11.912	15.338	19.37	23.54	26.30	32.00	
17	6.408	8.672	10.085	12.792	16.338	20.49	24.77	27.59	33.41	
18	7.015	9.390	10.865	13.675	17.338	21.60	25.99	28.87	34.80	
19	7.633	10.117	11.651	14.562	18.338	22.72	27.20	30.14	36.19	
20	8.260	10.851	12.443	15.452	19.337	23.83	28.41	31.41	37.57	
22	9.542	12.338	14.041	17.240	21.337	26.04	30.81	33.92	40.29	
24	10.856	13.848	15.659	19.037	23.337	28.24	33.20	36.42	42.98	
26	12.198	15.379	17.292	20.843	25.336	30.43	35.56	38.89	45.64	
28	13.565	16.928	18.939	22.657	27.336	32.62	37.92	41.34	48.28	
30	14.953	18.493	20.599	24.478	29.336	34.80	40.26	43.77	50.89	
40	22.164	26.509	29.051	33.660	39.335	45.62	51.80	55.76	63.69	
50	27.707	34.764	37.689	42.942	49.335	56.33	63.17	67.50	76.15	
60	37.485	43.188	46.459	52.294	59.335	66.98	74.40	79.08	88.38	

Task 5: Generate random numbers and perform the run test (based on runs up and down) to test whether the hypothesis of independence can be accepted or rejected where α =0.05.

(Generate 40 sample of random numbers and perform test for 2 sets of data.)

Use the critical value $Z_{\alpha/2}$ =1.96.

Task 6: Generate random numbers and perform the run test (based on runs above and below mean) to test whether the hypothesis of independence can be accepted or rejected where α =0.05.

(Generate 40 sample of random numbers and perform test for 2 sets of data.)

Use the critical value $Z_{\alpha/2}$ =1.96.