La NAFABox L'Astronomie Nomade Pour Tous

(et en plus c'est gratuit!)

LE CONCEPT DE L'OPEN SOURCE (CODE SOURCE OUVERT) :

CODE ENGLOBÉ PAR UNE LICENCE QUI RESPECTE LES CRITÈRES DE L'OPEN SOURCE INITIATIVE :

- Libre distribution
- Accès aux codes sources
- Création de version alternative (fork)

ATTENTION: OPEN SOURCE ≠ GRATUIT ≠ FREEWARE

Licence GPL:

- Peut être (re)vendu
- Les versions du code modifié ou pas sont GPL
- Doit contenir l'année, le nom du titulaire et le copyright
- Une copie de la licence en anglais à côté du code

LGPL = GPL mais utilisable par un logiciel non libre.

Exemple d'INDI

- On voit qu'INDI utilise la LGPL, BSD-3 et GPL.
- Donc l'intégralité du code INDI ne peut pas être utilisé sur une solution fermé.
 Seulement la partie principale. Mais à condition de respecter les autres règles!

△ AUTHORS	First step to split indi core repo from 3rd party repo	2 years ago
☐ CMakeLists.txt	Enable fast exposure without a cmake option since this would require	11 days ago
COPYING.BSD	First step to split indi core repo from 3rd party repo	2 years ago
COPYING.GPL	First step to split indi core repo from 3rd party repo	2 years ago
COPYING.LGPL	First step to split indi core repo from 3rd party repo	2 years ago
COPYRIGHT	First step to split indi core repo from 3rd party repo	2 years ago

```
Files: 4
Copyright: 1996-1998, Patrick Reynolds
           2003-2007, Elwood C. Downey <ecdowney@clearskyinstitute.com>
           2003-2007, 2010, Jasem Mutlaq kmutlaqja@ikarustech.com>
           2003, Jason Harris <jharris@30doradus.org>
           2003, John Kielkopf <kielkopf@louisville.edu>
           2004, Francois Meyer <dulle@free.fr>
           2005, Bruce Bockius <bruceb@whiteAntelopeSoftware.com>
           2005, Douglas Philipson <dougp@intermind.net>
           2005, Gaetano Vocca <yagvoc-web@yahoo.it>
           2006-2007, Markus Wildi <markus.wildi@datacomm.ch>
License: LGPL-2.1+
Files: cmake/*
Copyright: Bryan Donlan
           Carsten Niehaus <cniehaus@gmx.de>
           2006, Alexander Neundorf < neundorf@kde.org>
           2006, Allen Winter <winter@kde.org>
           2006, 2008, 2011, Jasem Mutlaq kmutlaqja@ikarustech.com>
           2009, Geoffrey Hausheer
License: BSD-3-clause
Files: libs/webcam/ccvt c2.c
      libs/webcam/ccvt.h
      libs/webcam/ccvt misc.c
      libs/webcam/ccvt types.h
      libs/webcam/vcvt.h
      libs/webcam/videodev.h
       libs/webcam/videodev2.h
Copyright: Justin Schoeman
           2001, Tony Hague
           2002, Nemosoft Unv. <athomas@nemsoft.co.uk>
           2006, Bill Dirks <bdirks@pacbell.net>
           2010, Gerry Rozema
License: GPL-2+
Files: libs/webcam/port.*
       libs/webcam/pwc-ioctl.h
Copyright: Anders Arpteg <aa11ac@hik.se>
           Patrick Reynolds <reynolds@cs.duke.edu>
           Charles Henrich <henrich@msu.edu>
           1996-1998, Patrick Reynolds
           2001-2004, Nemosoft Unv. <athomas@nemsoft.co.uk>
           2004-2006, Luc Saillard < luc@saillard.org>
License: LGPL-2+
```

LA NAFABOX (NOMAD ASTRONOMY FOR ALL) :

Principe de base :

Aider les astronomes amateur à installer et utiliser linux pour l'astronomie tout en mettant en valeur les différents projets open source d'astronomie sous linux. Développer une solution accessible pour l'astronomie nomade.

Un seul lien: https://github.Com/patrick-81/nafabox

Les contributeurs !!

Robert Morelli, Patrick Dutoit, Laurent Rogé, Sébastien Riviere, Alphamax (WebAstro), Sébastien Durand, Gilles le Maréchal, Mathieu le Lain, Benjamin Fousse, Olivier Guéroult ... peut être vous bientôt?

NOTRE SOLUTION:

Ecrire un ensemble de script en « bash » afin d'installer automatiquement les logiciels voulu par l'utilisateur.

On essaye de rendre ces scripts compatibles avec toutes les plateformes (amd64, arm32 et arm64) à condition d'utiliser l'environnement Ubuntu.

Les scripts permettent aussi de régler le comportement du système d'exploitation afin de l'adapter à l'utilisation en nomade.

ARCHITECTURE:

- Script Pre_install : changement de langue et déclaration de l'emplacement du dossier NAFABox dans le système
- Script Install : Choix de l'installation
- Script conf : Configuration du système
- Script Base: Installation des interfaces Web, IP Indicator, outils NAFABox
- Les Softwares : Scripts d'installation par Software

LE RASPBERRY PI 4B:

Nano-ordinateur lancé pour la première fois en 2019.

Modèle utiliser: Raspberry Pi 4B 4 ou 8Go

<u>Poids</u>: 45g

Taille: 9x6x2cm

Consommation moyenne: 3 à 4W (en 5V)

Connecteurs: Port 1Gbit/s Ethernet, 2x USB 2.0, 2xUSB3.0, 40GPIO, 2xmicro HDMI, 1

jack, wifi, Bluetooth, alim USB-C 5V, connecteur caméra et connecteur écran.

Système: Ubuntu Server 20.04 ou Ubuntu Mate 20.04

Type: ARM64 ou ARM32

<u>Mémoire</u>: Sur carte micro SD(simple) ou disque USB 3.0(rapide et fiable)

Coût : 84€ (8Go), 61€ (4Go) + 6€ (boitier) + 9€ (alim) + 6€ (câble HDMI) + 20€ (carte 64Go de qualité) = 110 à 130€

LA NANOPI-M4:

Nano-ordinateur lancé pour la première fois en 2018.

Modèle utiliser: Nanopi-M4 4Go, Nanopi-M4V2 4Go, NanoPC

Poids: 48g

Taille: 9x6x2cm

<u>Consommation moyenne</u>: 4 à 8W (en 5V)

<u>Connecteurs</u>: Port 1Gbit/s Ethernet, 2x USB 2.0, 4xUSB3.0, 40GPIO, 1xHDMI, 1 jack, wifi, Bluetooth(avec antenne externe), alim USB-C 5V, connecteur caméra et connecteur écran.

Système: Armbian 20.04 ou friendlycore-lite-focal (20.04)

Type: ARM64

<u>Mémoire</u>: Sur carte micro SD(simple) ou disque USB 3.0(rapide et fiable)ou EMMC (rapide et fiable et simple)

Coût : 50\$(4Go) + 28\$ (boitier+radiateur) + 18\$ (alim) + 6€ (câble HDMI) + 20€ (carte 64Go de qualité) (+12v->5v 4\$)= 150\$/€

LES AUTRES PLATEFORME :

Ordinateur portable ou Fixe

Modèle utiliser : toute sorte

Poids: xx

Taille: xxx

Consommation moyenne: 10/20 à ++++

<u>Connecteurs</u>: plein de connecteurs

Système: Ubuntu, Ubuntu Mate (recommandé), Xubuntu, Lubuntu, Kubuntu,...

<u>Type</u>: AMD64 ou X86_64

<u>Mémoire</u>: disque dur ou SSD

Coût: 400 euros à xxx

LES AUTRES « BOX » :

Les payantes :

- **StellarMate (IKARUS):** 49\$ ou 229\$ > Système complet + pilote via Appli Android.
- AsiAir (ZWO): 320€(Pro), 380€(Plus) → Système pilotable via Appli Android + Hub d'alimentation 12Vpilotable, verrouiller sur les produit ZWO Attention l'AsiAir, jusqu'à preuve du contraire viole au moins une licences international Open Source
- **StarMaster (QHYCCD)**: 542€ → utilise le système StellarMate OS + pilotage via application QHYCCD+Hub d'alimentation
- Atikbase (ATIK): 322€ → ST4+Focuser+Hub alim, Utilise StellarMate OS

Les Gratuites :

- Astroberry: Système complet pour Raspberry, accès au source
- AstroPi 3 : Système complet pour Raspberry, accès au source
- EasyAstroBox : Système complet pour Raspberry
- ...

LES LOGICIELS DE CONTRÔLE

- IP-Indicator
- X11VNC
- BrowsePy
- NoVNC
- MobIndi
- DDServer (qdslrdashboard)
- Stellarium
- Linguider

- OnStep
- CCDCiel
- Carte du ciel
- Oacatpture
- Planetary Imager
- ASTAP
- Stellar Solver
- AstroLiveStaking
- ALS

LE NOYAUX PRINCIPALE : INDI/EKOS/KSTARS

LOGICIEL POUR LE TRAITEMENT

INSTALLATION DE LA NAFABOX (PRE_INSTALL)

```
nafabox@nafabox-VirtualBox:~$ git clone https://github.com/Patrick-81/NAFABox.git
Clonage dans 'NAFABox'...
remote: Enumerating objects: 3315, done.
remote: Counting objects: 100% (233/233), done.
remote: Compressing objects: 100% (219/219), done.
remote: Total 3315 (delta 135), reused 77 (delta 14), pack-reused 3082
Réception d'objets: 100% (3315/3315), 6.30 Mio | 15.58 Mio/s, fait.
Résolution des deltas: 100% (2277/2277), fait.
nafabox@nafabox-VirtualBox:~$ cd NAFABox/
nafabox@nafabox-VirtualBox:~\NAFABox$ ./Pre_Install.sh
```


Installation de Yad pour les interfaces graphique Déclaration d'une variable système pour indiquer l'emplacement des dossiers NAFABox. Proposition d'installer la langue française si besoin!

Attention : il faut fermer puis réouvrir le terminal ou carrément mieux, vous redémarrer !

Please Reload Terminal and Run Install.sh nafabox@nafabox-VirtualBox:~/NAFABox\$

INSTALLATION DE LA NAFABOX (INSTALL)

- Default: installation sans interface graphique, pas le choix sur les logiciels. Installation pour un bureau graphique. Installe Ksart, Indi, phd2, utilitaire NAFABox, bureau a distance, gestion a distance, partage de fichier
- Server: Installation sans interface graphique, pas de choix sur les logiciels. Installe Ksart, Indi, utilitaire NAFABox, gestion a distance, partage de fichier
- Custom: installation AVEC interface graphique, CHOIX sur les logiciels.

Les images NAFABox sont installées avec le mode « Default »

INSTALLATION DE LA NAFABOX (INSTALL)

- Installation ou non de l'interface graphique Ubuntu Mate
- Changement du HostName : Nom sur le réseau
- Choix de la Time Zone
- Choix du mot de passe pour les interfaces VNC (+ confirmation)

Enter Le mot de passe VNC pour votre BOX :
Enter VNC password:
Verify password:
Write password to /home/nafabox/.vnc/passwd? [y]/n y

INSTALLATION DE LA NAFABOX (INSTALL)

UTILISATION DES IMAGES NAFABOX:

- Pour chaque version de la NAFABox ou à la demande une image toute prête pour Raspberry Pi 4B est publiée.
- Installé via le mode « default »
- Besoin de micro de 32go
- Besoin de flasher l'image via Balena Etcher ou Raspberry Pi Imager (tout les 2 multiplateforme)
- Besoin d'étendre la partition via Gparted (tuto : https://www.Youtube.Com/watch?V=r-nzfkvl0b4&t=3s)
 une fois dans le Raspberry Pi
- Utilisateur : nafa, HostName : Nafabox, Mots de Passe : nafa1234

UTILISATION DE LA NAFABOX

- Interface Web accessible via l'IP de la machine dans le navigateur (ou le HostName si supporté par votre réseaux)
- Accès au outil de remote : bureau à distance, interface INDI, Interface de contrôle, Interface INDI, Partage de fichier et Mobindi.
- Accès à la température, charge processeur, fonction de remise à l'heure. Possibilité d'éteindre et de redémarrer la NAFABox.
- Mais aussi Nomachine (5000), X11VNC (5900),
 TightVNC(5901), Webdav (443), ddserver(4757) et Apache2 (8080)

UTILISATION DE LA NAFABOX

Site: https://github.com/dragonlost/NAFABox-hardware

Mise à disposition des fichiers de fabrication (BOM, Gerber, POS), des schémas, du plan de montage,...

La carte de Base (v1):

- Ventilateur 5V Noctua 40x40 PWM
- RTC DS3132 + Pile 2132 3V remplaçable

La carte d'Alimentation (v5):

- Entrée XT30 (15A max en 9V à 18V)
- Entrée/Sortie d'alimentation (entre 9 et 18V) via bornier
- Entrée d'alim custom (~6A max) via bornier
- Protection inversion de courant d'entrée sur XT30 et Bornier
- 4 sortie pilotable (~5A) via la carte relais ou via interrupteur ou toujours ON. Sortie Jack DC 5,5/2,1
- Convertisseur 5V (optionnel) 3 à 5A.
- Capteur de courant tension sur les sorties
- Protection surcharge via fusible réarmable auto.
- Sortie alim custom, 12V, 5V pour les autres cartes

La carte relais (v3):

- 4 Mosfets pilotés en ON/OFF via les GPIO du Raspberry Pi (~5A par Mosfet.
- Emplacement pour Driver moteur format Pololu et configuration des micro-pas fixe via jumper
- Conecteur DB9 compatible motofocus/usb focus
- 4 led d'état
- Interfacable avec la carte alim
- Bornier d'entrée sortie pour le contrôle d'allumage

La carte RES (v2):

- Circuit de contrôle PWM pour 2 résistances chauffante en RCA ou USB indépendante
- Connecteur GPS via UART
- Connecteur BME280 via I2C
- Entrée d'alimentation Jack DC pour tension de résistance custom
- Compatible avec l'UART de la NanoPi M4

open source hardware

Modélisation d'un boitier pour l'impression 3D à partir des modèles 3D Kicad des cartes NAFABox.

Mise à disposition du STEP, des STEP et STL séparément

D'AUTRE HARDWARE OPEN SOURCE

CAM86/87

TeenAstro et OnStep

Et plein d'autres

LA NAFABOX DANS LE FUTUR!!! *

La version 3.4:

- Introduction de ASAP et StellarSolver
- Introduction de ALS
- Passage à Ubuntu 20.04LTS/20.10
- Abandon de la Tinkerboard pour le RPI4B (4 et 8 Go)
- Nouvelle Interface Web
- Nouveau Logo
- Nouveau fond d'écran
- Ajout de plus de doc
- Simplification de la gestion des versions des logiciels sans PPA
- Ajout de TightVNC

POUR DISCUTER SUR LA NAFABOX

Pseudo: Dragonlost

Forum:

https://www.webastro.net/