Institut für Informatik

Lehrstuhl für Technische Informatik Prof. Dr. Björn Scheuermann

Peer-to-Peer-Systeme WS 2015/16 Übungsblatt 4a

Besprechung am 17. Dezember 2015

Aufgabe 15

Konstruiere eine Situation, in der ein Peer ein CAN-Overlay verlässt, ohne dass sein Zuständigkeitsbereich problemlos mit dem eines anderen Peers zusammengefasst werden kann. Bei der dann notwendigen Defragmentierung soll der einfache Fall eintreten (das Nachbar-Gebiet des kleinsten von dem übernehmenden Peer verwalteten Gebietes wird also zusammenhängend von einem Peer verwaltet).

- (a) Zeichne die Aufteilung des CAN-Raumes bevor und nachdem der Peer das Overlay verlassen hat.
- (b) Zeichne die Baum-Darstellung des CAN-Raumes, nachdem der Peer das Netz verlassen hat.
- (c) Zeige Schritt für Schritt, welche Nachrichten und Aktionen notwendig werden, bis das Overlay wieder in einen konsistenten Zustand überführt ist, in dem jeder Peer genau ein Gebiet verwaltet.

Aufgabe 16

Wiederhole die vorangegangene Aufgabe, diesmal jedoch mit einer Situation, in der der komplexe Defragmentierungsfall notwendig wird.

Aufgabe 17

In einem Chord-Netzwerk sei der Wertebereich des Ringes $[0, 2^{10})$. Es nehmen zehn Peers A, \dots, J am Netzwerk teil, mit folgenden Positionen auf dem Ring:

```
A : 36, B : 129, C : 312, D : 440, E : 475, F : 560, G : 590, H : 730, I : 819, J : 910.
```

Sechs Schlüssel u, ..., z wurden in die DHT eingefügt und an folgenden Positionen abgelegt:

```
u: 317, v: 99, w: 717, x: 910, y: 202, z: 950.
```

- (a) Von welchen Peers werden die Schlüssel verwaltet?
- (b) Wie sieht die Finger-Tabelle von Peer C aus?
- (c) Welchen Weg nimmt eine Anfrage von Peer C, wenn er Schlüssel v sucht?

Aufgabe 18

Konstruiere einen "Worst-Case-Chord-Ring", in dem fünf Peers A, \dots, E und ein Schlüssel x so platziert sind, dass eine Anfrage von Peer A nach Schlüssel x durch alle anderen Peers geroutet wird.