多項分布を使った ベイズ的モデリング

正田 備也 masada@rikkyo.ac.jp

Contents

多項分布の復習

多項分布を使ったモデリング

多項分布の事前分布としてのディリクレ分布

多項分布のMAP推定の応用

カテゴリカル分布

- $ightharpoonup V = \{\mathsf{v}_1, \dots, \mathsf{v}_W\}$ を W 種類のアイテムの集合とする
 - 例 1. サイコロの目 (W=6)
 - 例 2. 自然言語の語彙 (W = 数千~数十万?)
- ▶ カテゴリカル分布は V 上に定義された離散確率分布
- ▶ パラメータは $\phi = (\phi_1, \dots, \phi_W)$
 - ightharpoonup アイテム $m v_{\it w}$ が出現する確率 $m \phi_{\it w}$
 - $ightharpoonup \sum_{w=1}^{W} \phi_w = 1$ を満たす

多項分布 multinomial distribution

- ▶ 複数回の独立な試行のモデリングには、多項分布を使う
- ▶ 計 n 回の試行のうち各アイテムが何回ずつ出現するか、その可能なすべての場合に確率を割り振る確率分布が多項分布
 - ▶ 次のスライド参照
- ▶ パラメータはnと $\phi = (\phi_1, \ldots, \phi_W)$
 - ▶ 試行の回数 n (観測データから決まる)
 - lacktriangle アイテム $oldsymbol{\mathsf{v}}_w$ の出現確率 ϕ_w $\left(\sum_w \phi_w = 1 \, oldsymbol{\mathsf{e}}$ 活たす $\right)$
 - ightharpoonup $\sum_{w} \phi_{w} = 1$ が満たされる

多項分布はどのような集合の上に定義されるか

- ▶ 多項分布は "計 n 回の試行のうち各アイテムが何回ずつ出現するかの、可能な全ての場合の集合"の上に定義される
- ightharpoonup W 種類のアイテムから重複を許してn 個を選ぶすべての場合にわたって確率を合計すると、1 になる
 - ightharpoonup W 種類のアイテムから重複を許してn 個を選ぶ場合の数は?
 - lacktriangleright n 個の「lacktriangleright」(仕切り)を並べる場合の数と同じ
 - 例. 「 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 」は、n=6 で、 v_1 が 2 回、 v_2 が 0 回、 v_3 が 1 回、 v_4 が 3 回、それぞれ出現する場合を表す

多項分布の確率質量関数

- ightharpoonup アイテム $m v_w$ の出現回数を c_w と書くことにする
- ト 総試行回数を n とすると、 $\sum_{w} c_{w} = n$ が成り立つ
- ▶ このとき、多項分布の確率質量関数 pmf は以下ように書ける

$$p((c_1, \dots, c_W); \boldsymbol{\phi}, n) = \frac{n!}{\prod_{w=1}^W c_w!} \prod_{w=1}^W \phi_w^{c_w}$$
 (1)

- ullet $rac{n!}{\prod_w c_w!} = rac{n!}{c_1!\cdots c_W!}$ の部分は、n 回の試行のうち、アイテム \mathbf{v}_w が c_w 回出現するような試行の列の総数をあらわしている
- ▶ 多項分布は、各アイテムの出現回数が同じで、出現順が違う だけの試行列を区別できない 6 /

Contents

多項分布の復習

多項分布を使ったモデリング

多項分布の事前分布としてのディリクレ分布

多項分布のMAP推定の応用

多項分布によるモデリングに登場する変数

- ightharpoonup アイテムの出現列を表す確率変数 $oldsymbol{x} = \{x_1, \dots, x_n\}$
 - $ightharpoonup x_i$ は、i 番目に出現したアイテムを表す確率変数
 - 例. $x_i =$ "apple" は「i 番目に出現する単語は "apple"」という意味
 - $ightharpoonup x_i$ の値はすでに観測されている(値が既知の変数)
- ightharpoonup 多項分布のパラメータ $oldsymbol{\phi} = (\phi_1, \dots, \phi_W)$
 - $lackbox{} \phi_w$ は、アイテム $lackbox{} v_w$ の出現確率を表す $\underline{\mathcal{N}}$ ラメータ
 - 例. $\phi_w = 0.0013$ は「単語 v_w の出現確率が 0.0013」という意味
 - $ightharpoonup \phi_w$ は値が未知の変数
 - ▶ この値の推定が、多項分布によるモデリングにおいて解くべき問題

多項分布の最尤推定

- ▶ 観測データ $x = \{x_1, \ldots, x_n\}$ はアイテムの出現の列
- ▶ 多項分布によるモデリングでは、出現順序は無視される
- lacktriangle つまり、各アイテム lacktriangle の出現回数 c_w だけが問題とされる
- ightharpoonup このとき、観測データxの尤度は、 ϕ の関数として、以下のように書ける

$$p(\boldsymbol{x}; \boldsymbol{\phi}, n) = \frac{n!}{\prod_{w=1}^{W} c_w!} \prod_{w=1}^{W} \phi_w^{c_w}$$
 (2)

- ▶ 尤度を最大化する φ の値を推定値とするのが最尤推定
 - lacktriangle 最尤推定のほかにも ϕ の値を推定する方法はある

多項分布の最尤推定の問題点

- ▶ 観測データに現れるアイテム以外のアイテムについては、 出現確率 ϕ_w がゼロと推定される
- ▶ よって、最尤推定の結果を使って未知データの確率を計算するとき、ひとつでも観測データに現れないアイテムが含まれていると、確率はゼロと算出されてしまう
 - ▶ テキストデータで言えば、out-of-vocabulary (OoV) words の問題
- ▶ ベイズ的な考え方を使うと、この問題にひとつの解決を与 えることができる

Contents

多項分布の復習

多項分布を使ったモデリング

多項分布の事前分布としてのディリクレ分布

多項分布のMAP推定の応用

ベイズ的なモデリングとは

- ▶ 統計モデルは観測データの不確かさ uncertainty を表現する
- ► だが、ベイズ的な統計モデリングでは、観測データをもとに して統計モデルのパラメータを決めること自体にも不確か さ uncertainty があると考える
- ▶ そこで、パラメータも確率変数とみなし、パラメータも確率 分布にしたがっているものとしてモデリングする
- ▶ そこで導入されるのが事前分布である
- ▶ 事前分布はパラメータがしたがう確率分布として導入される

13 / 41

多項分布を使うベイズ的モデルの"部品"

- $\mathbf{P}(\mathbf{x}|\boldsymbol{\phi})$ 観測データ $\mathbf{x} = \{x_1, \dots, x_n\}$ の尤度
 - $ightharpoonup x_i$ は i 番目に出現するアイテムを表す確率変数
 - ▶ 事前分布を使わないときは $p(x; \phi)$ と書いていた
 - ightharpoonup ベイズ的モデリングでは、 $p(oldsymbol{x}|oldsymbol{\phi})$ と、条件付き確率として書く
 - lacktriangle これは、観測変数 x_i だけでなく、 $oldsymbol{\phi}$ も確率変数となるからである
- ▶ $p(\phi; \beta)$ 多項分布のパラメータ ϕ が従う事前分布
 - β は事前分布のパラメータ
 - ▶ 事前分布のパラメータを一般にハイパーパラメータと呼ぶ
 - ▶ ここにどんな分布を使えばいいか?(以下、説明。)

多項分布の事前分布はどのような分布か

- ▶ 多項分布によるモデリングでは、W 種類のアイテムの出現 頻度 c_w をモデリングする
 - ▶ アイテムの出現順序は無視される
- ightharpoonup W 個のパラメータ ϕ_1, \ldots, ϕ_W は、いずれも非負で、和が 1
- ▶ 非負で和が1になる実数の組 $\phi = (\phi_1, \dots, \phi_W)$ は無数にある
- ▶ これら無数の組の上に、確率分布を定義したい
- ▶ 非負で和が1になる実数の組の上に定義される確率分布なら、事前分布として使える

ディリクレ分布 Dirichlet distribution

- ▶ 非負で和が1になる W 個の実数の組は無数にある
- ▶ ディリクレ分布は、それら無数の組の上に定義される確率 分布のひとつ
 - lacktriangle つまり、ディリクレ分布の台 support は W-1 次元単体 simplex
- ▶ 多項分布のパラメータがしたがう事前分布として利用できる
- ▶ ディリクレ分布の確率密度関数は

$$p(\boldsymbol{\phi}; \boldsymbol{\beta}) = \frac{\Gamma(\sum_{w=1}^{W} \beta_w)}{\prod_{w=1}^{W} \Gamma(\beta_w)} \prod_{w=1}^{W} \phi_w^{\beta_w - 1}$$
(3)

 $igsplace rac{\Gamma(\sum_{w=1}^Weta_w)}{\prod_{w=1}^W\Gamma(eta_w)}$ は規格化定数で、 $\Gamma(\cdot)$ はガンマ関数

Figure: ディリクレ分布の確率密度関数の例 (W=3)

ガンマ関数

▶ ガンマ関数について次の等式が成り立つ

$$\Gamma(x+1) = x\Gamma(x) \tag{4}$$

- ▶ この授業でガンマ関数について把握すべきことは式 (4) だけ
- ▶ 上式より、自然数 n について、 $\Gamma(n+1) = n!$
 - ▶ 式(4)はガンマ関数の定義から導かれるが、定義は知らなくてよい
 - ▶ ガンマ関数は実際は複素数について定義されるが、ここでは実数、 しかも正の実数を引数とする場合しか扱わない
 - ightharpoonup ディリクレ分布の規格化定数が $rac{\Gamma(\sum_{w=1}^{W}eta_{w})}{\prod_{w=1}^{W}\Gamma(eta_{w})}$ である証明は割愛する

cf. https://math.stackexchange.com/questions/207073/

Figure: ガンマ関数

ベータ分布とディリクレ分布

- ightharpoonup ベータ分布は、ディリクレ分布でW=2の場合に対応する
- ▶ アイテムの種類が2種類の場合と3種類以上の場合との対応 関係は、以下の表のとおり

アイテムが2種類の場合	アイテムが3種類以上の場合
ベルヌーイ分布	カテゴリカル分布
二項分布	多項分布
ベータ分布	ディリクレ分布

ベータ分布の二項分布に対する関係 (1/2)

ightharpoonup「二項分布をひとつ選ぶこと」 $= \lceil \phi_1$ の値を選ぶこと」

ベータ分布の二項分布に対する関係 (2/2)

▶ 「二項分布をひとつ選ぶこと」=「[0,1]上の1点を選ぶこと」

Figure: https://en.wikipedia.org/wiki/Beta_distribution

分布の分布としてのベータ分布

- ▶ ベータ分布は [0,1] (1次元単体) の上に定義される
- ▶ [0,1] 上の一点一点が、別々の二項分布に対応している 例. $0.6 \in [0,1]$ は $\phi = (0.6,0.4)$ をパラメータとする二項分布に対応
 - ▶ 2つのパラメータのうち一方を決めると他方は自動的に決まる
 - ▶ ただし、試行の総数 *n* はあらかじめ固定されているとする
- ▶ ということは、ベータ分布は二項分布の集合上に定義された分布とみなせる
 - ▶ つまり、ベータ分布は、分布の分布とみなせる

分布の分布としてのディリクレ分布

- ▶ ディリクレ分布はW 1次元単体の上に定義される
 - ▶ 1次元単体は線分、2次元単体は正三角形、3次元単体は正四面体
- ▶ W-1次元単体の一点一点が別々の多項分布に対応している
 - ▶ 多項分布の W 個のパラメータ $\phi = (\phi_1, \dots, \phi_W)$ のうち W 1 個、例えば ϕ_1 から ϕ_{W-1} を決めると、残り 1 個は決まる
 - ト よって多項分布のパラメータ $\phi = (\phi_1, \dots, \phi_W)$ の取りうる値の組のひとつひとつが、W-1 次元単体に含まれる 1 点 1 点に対応
- ▶ ということは、ディリクレ分布は多項分布の集合上に定義 された分布とみなせる
 - ▶ つまり、ディリクレ分布は、分布の分布とみなせる

多項分布を使うベイズ的モデルの"部品"

- $\mathbf{p}(\mathbf{x}|\boldsymbol{\phi})$ 観測データ $\mathbf{x} = \{x_1, \dots, x_n\}$ の尤度
 - $ightharpoonup x_i$ は i 番目に出現するアイテムを表す確率変数
 - ▶ 事前分布を使わないときは $p(x; \phi)$ と書いていた
 - lacktriangle ベイズ的モデリングでは、 $p(oldsymbol{x}|oldsymbol{\phi})$ と、条件付き確率として書く
 - lacktriangle これは、観測変数 x_i だけでなく、 $oldsymbol{\phi}$ も確率変数となるからである
- ▶ $p(\phi; \beta)$ 多項分布のパラメータ ϕ が従う事前分布
 - β は事前分布のパラメータ
 - ▶ 事前分布のパラメータを一般にハイパーパラメータと呼ぶ
 - ▶ ・・・というわけで、ここにディリクレ分布を使うことにする

事後分布 posterior distribution

$$p(\boldsymbol{\phi}|\boldsymbol{x};\boldsymbol{\beta}) \propto p(\boldsymbol{x}|\boldsymbol{\phi})p(\boldsymbol{\phi};\boldsymbol{\beta})$$
 (5)

- ▶ ベイズ的モデリングは、事後分布を求めることを課題とする
- ト 事後分布はモデルパラメータ ϕ が従う確率分布で、観測 データ x が所与の条件付き確率分布
- ▶ 事後分布は、式 (5) のように、ベイズ則によって観測データ の尤度 $p(\boldsymbol{x}|\boldsymbol{\phi})$ と事前分布 $p(\boldsymbol{\phi};\boldsymbol{\beta})$ とから導き出される
 - ▶ 事後分布 $p(\phi|\mathbf{x}; \boldsymbol{\beta})$ は、パラメータが取りうる値の全てについて、 それぞれがどのくらいありえそうかを表している

事後分布を求めることと最尤推定との一つの違い

ト 最尤推定は、データ尤度 $p(x|\phi)$ をパラメータ ϕ の関数とみなして最大化することで、 ϕ の値をひとつに決める

$$\arg\max_{\boldsymbol{\phi}} p(\boldsymbol{x}|\boldsymbol{\phi})$$

▶ 一方、ベイズ的なモデリングでは、パラメータ ϕ が取りうる全ての値について、各々どのくらいありえそうかを表している事後分布 $p(\phi|x;\beta)$ を、求める

$$p(\boldsymbol{\phi}|\boldsymbol{x};\boldsymbol{\beta}) \propto p(\boldsymbol{x}|\boldsymbol{\phi})p(\boldsymbol{\phi};\boldsymbol{\beta})$$

事後分布の直感的な意味

$$p(\boldsymbol{\phi}|\boldsymbol{x};\boldsymbol{\beta}) \propto p(\boldsymbol{x}|\boldsymbol{\phi})p(\boldsymbol{\phi};\boldsymbol{\beta})$$
 (6)

- ト 上の式は、事前分布 $p(\phi; \beta)$ が尤度 $p(x|\phi)$ によって重み付けし直されて事後分布になる、という式
- lackbox ϕ が尤度 $p(oldsymbol{x}|\phi)$ を大きくするような値だと、右辺において それだけ大きな値が掛け算される
- ightharpoons よって、左辺の事後分布で ϕ がそのような値を取る確率は大

共役事前分布 conjugate prior distribution

- ▶ 共役事前分布とは、事後分布を事前分布と同じ種類の分布 にするような事前分布のことをいう
- ightharpoonup 例えば、データ尤度 $p(m{x}|m{\phi})$ が多項分布で表されているとき、 事前分布としてディリクレ分布を用いると、事後分布も ディリクレ分布となる
- ▶ つまり、ディリクレ分布は共役事前分布である
- ▶ このため、多項分布を使ってベイズ的なモデリングをする とき、ディリクレ分布を事前分布に使うことが多い
 - ▶ ディリクレ分布以外の分布を事前分布として使うこともある
 - ▶ 例えば、logit-normal distribution を使うことがある

問題5-1

- ▶ ディリクレ分布が共役事前分布であることを示せ
- ► ヒント:尤度が多項分布を使って表されるとき、 事前分布をディリクレ分布にすると、事後分布も ディリクレ分布になることを示せばよい

$$p(\boldsymbol{x}|\boldsymbol{\phi})p(\boldsymbol{\phi};\boldsymbol{\beta}) = \frac{n!}{\prod_{w} c_{w}!} \prod_{w} \phi_{w}^{c_{w}} \times \frac{\Gamma(\sum_{w} \beta_{w})}{\prod_{w} \Gamma(\beta_{w})} \prod_{w} \phi_{w}^{\beta_{w}-1} \propto \prod_{w} \phi_{w}^{c_{w}+\beta_{w}-1}$$
$$p(\boldsymbol{\phi}|\boldsymbol{x};\boldsymbol{\beta}) \propto p(\boldsymbol{x}|\boldsymbol{\phi})p(\boldsymbol{\phi};\boldsymbol{\beta}) \, \, \boldsymbol{\xi} \, \boldsymbol{\mathfrak{I}} \, \boldsymbol{\mathfrak{I}} \, .$$

 $p(\boldsymbol{\phi}|\boldsymbol{x};\boldsymbol{\beta}) \propto \prod \phi_w^{c_w + \beta_w - 1}$

$$\int_{\{m{\phi}:\sum_{w},\;m{\phi}_{w}=1\}} \prod \phi_{w}^{c_{w}+eta_{w}-1} dm{\phi} = rac{\prod_{w} \Gamma(c_{w}+eta_{w})}{\Gamma(n+\sum_{w}eta_{w})}$$

$$p(\boldsymbol{\phi}|\boldsymbol{x};\boldsymbol{\beta}) = \frac{\Gamma(n + \sum_{w} \beta_{w})}{\prod_{w} \Gamma(c_{w} + \beta_{w})} \prod \phi_{w}^{c_{w} + \beta_{w} - 1}$$

$$\prod_{w} \Gamma(c_w + \rho_w) = \frac{1}{w}$$

(9)

(7)

(8)

34 / 41

(10)

最大事後確率推定(MAP推定)

▶ 事後確率を最大化する φ の値をモデルパラメータの推定値 とする推定方法を、最大事後確率推定という

$$\hat{\boldsymbol{\phi}}_{MAP} = \arg\max_{\boldsymbol{\phi}} p(\boldsymbol{\phi}|\boldsymbol{x}; \boldsymbol{\beta})$$
 (11)

- ▶ MAP 推定と略される(MAP; maximum a posteriori)
- ► 下記の最尤推定と同様、モデルパラメータ ϕ の値をひとつ 選ぶ推定方法

$$\hat{\phi}_{\mathsf{ML}} = \underset{\phi}{\operatorname{arg\,max}} p(\boldsymbol{x}; \boldsymbol{\phi}) \tag{12}$$

多項分布の MAP 推定

▶ 観測データのモデルが多項分布で、ディリクレ分布が事前 分布のとき、MAP推定が与える解は

$$\hat{\phi}_w = \frac{c_w + \beta_w - 1}{\sum_w (c_w + \beta_w - 1)}$$
 (13)

- ▶ 問:なぜこうなるか、示せ
- ightharpoonup アイテムの実際の出現頻度ではなく、 $eta_w 1$ 回だけ下駄を履かせた出現頻度で確率を計算していることになる
 - ▶ 単語の出現確率を求めるとき、このように下駄を履かせた回数を 代わりに使うことを、スムージング smoothing という

Contents

多項分布の復習

多項分布を使ったモデリング

多項分布の事前分布としてのディリクレ分布

多項分布のMAP推定の応用

情報検索 information retrieval

- ▶ たくさんの文書を持っている
- ▶ それらの文書をクエリに適合する(relevant な)順にソート
 - ▶ 情報検索とは、このようなことをすること
- ▶ どう実装すればいい?
- ▶ 実装例
 - ▶ ひとつひとつの文書について別々に単語出現確率 φ をMAP 推定
 - ightharpoons 推定された ho を使って、クエリの生成確率を計算
 - ▶ この生成確率を高くする順に文書をソート

文書をランキングするための計算

- ト述の MAP 推定は、検索対象の文書群のうち d 番目の文書 について単語 v_w の出現確率を $\hat{\phi}_{d,w} = \frac{c_{d,w} + \beta_w 1}{\sum_{m} (c_{d,w} + \beta_w 1)}$ と与える
 - ト たとえ v_w が文書 d に現れない単語であっても、つまり $c_{d,w}=0$ であっても、 $\beta_w>1$ ならば確率がゼロにならないことに注意
- ightharpoonup この単語確率によってクエリ x_q が生成される確率は:

$$p(\boldsymbol{x}_{q}|\hat{\phi}_{d}) = \frac{n_{q}!}{\prod_{w} c_{q,w}!} \prod_{w} \left(\frac{c_{d,w} + \beta_{w} - 1}{\sum_{w} (c_{d,w} + \beta_{w} - 1)} \right)^{c_{q,w}}$$
(14)

- $ightharpoonup c_{a,w}$ はクエリにおける単語 ho_w の出現頻度
- $igspace p(oldsymbol{x}_q|\hat{\phi}_d)$ の降順に、文書をソートすればよい

背景確率を使ったスムージング

- MAP 推定によると d 番目の文書における単語 v_w の出現確率は $\hat{\phi}_{d,w} = \frac{c_{d,w} + \beta_w 1}{\sum_{w} (c_{d,w} + \beta_w 1)}$ である
- ▶ 実際には、コーパス全体における単語 v_w の出現確率 p_w を使って、 β_w-1 の部分を λp_w で置き換えることが多い
 - $lacktriangleright p_w$ のことを背景確率 background probability と呼んだりする
- ト つまり、 $\hat{\phi}_{d,w} = rac{c_{d,w} + \lambda p_w}{c_d + \lambda}$ とする
 - $lackbox{lack} c_d \equiv \sum_w c_{d,w}$ は d 番目の文書の長さ
- ▶ λは検証用クエリの検索性能を見ながらチューニングする

 $\pmb{\mathsf{Cf.}} \quad \mathsf{https://nlp.stanford.edu/IR-book/html/htmledition/estimating-the-query-generation-probability-1.html}$