NEURAL DATA ANALYSIS

ALEXANDER ECKER, PHILIPP BERENS, MATTHIAS BETHGE

COMPUTATIONAL VISION AND NEUROSCIENCE GROUP

INFORMATION THEORY AND ENTROPY ESTIMATION

TASK 9

INFORMATION THEORY

UNCERTAINTY

Entropy

Discrete!!!

$$H[X] = -\sum_{x \in X} p(x) \log_2 p(x)$$

Examples:

- Entropy of a coin (bernoulli distribution)
- Entropy of K equally like outcomes

Average number of binary questions:

$$H[X] \le n \le H[X] + 1$$

CONDITIONAL ENTROPY

MUTUAL INFORMATION

$$I[X,Y] = H[X] - H[X|Y]$$

Reduction in uncertainty about the stimulus after observing a spike train

$$I[X,Y] = H[Y] - H[Y|X]$$

Reduction in uncertainty about which spike train will be observed knowing the stimulus

INFORMATION THEORY IN NEUROSCIENCE

Copyrighted Material

Quantitative framework

Ideal observer

Information need not be used by organism

Difficulity in estimation

Copyrighted Material

ESTIMATING ENTROPY

Spike trains as short discrete sequences of spike or no spike 0101001100

$$x \in \mathbb{Z}_2^{10}$$

M = 1024 states

$$p(X)=\frac{1}{M}=\frac{1}{1024}$$

$$H[X] = 10 bits$$

ESTIMATING ENTROPY

Observe $x_1, x_2, x_3, ..., x_N$

Count how often

$$f_1 = \#[x_i == 0000000000]$$

 $f_2 = \#[x_i == 0000000001]$

$$\widehat{p}(X) = \left[\frac{f_1}{N}, \frac{f_2}{N}, \dots, \frac{f_{1024}}{N}\right]$$

Unobserved symbols!

Maximum likelihood estimator

$$\widehat{H}_{ML} = -\sum_{x} \widehat{p}(x) \log \widehat{p}(x)$$

BIAS OF PLUG-IN ESTIMATOR

EFFECT ON MUTUAL INFORMATION

$$I[X,Y] = H[Y] - H[Y|X]$$

- H[Y]: for the overall spike train distribution P(Y) we pool over all stimuli -> bias small
- H[Y|X]: for estimating the stimulus-conditional spike train distribution P(Y|X), we have much less data -> bias large
- Overall: Overestimate I[X, Y]!

MILLER MADDOW CORRECTION

One can show (Taylor expansion):

$$Bias = -\frac{d-1}{2n} + O(n^2)$$

Bias-corrected estimator:

$$H_{MM} = H_{ML} + \frac{\widehat{d} - 1}{2n}$$
 $\widehat{d} = \#[\widehat{p} > 0]$

MM ESTIMATOR

JACKKNIFE ESTIMATOR

Resampling method useful for variance or bias estimation

$$\widehat{H}_{JK} = N\widehat{H}_{ML} - (N - 1) \widehat{H}_{ML}^{(.)}$$

$$\widehat{H}_{ML}^{(.)} = \langle H_{ML}^{\setminus i} \rangle$$

Reduces bias by an order of magnitude

JACKNIFE ESTIMATOR

COVERAGE ADJUSTED ESTIMATOR

S is set of observed symbols

$$H[X] = -\sum_{x \in S} P(x) \log P(x) - \sum_{x \notin S} P(x) \log P(x)$$

Inflated summands

$$x \in S: \widehat{P}(x) > P(x)$$

Unobserved summands

$$x \notin S: \widehat{P}(x) = 0$$

Adjust for both

COVERAGE ADJUSTED ESTIMATOR

Shrink estimate of P for observed symbols:

$$C = 1 - \frac{\#f_i = 1}{N}$$

$$\widehat{P}_C = \widehat{P} * C$$

Inflate contribution for rare words:

$$\widehat{H}_{CA} = -\sum_{x} \frac{\widehat{P}_{C}(x) \log \widehat{P}_{C}(x)}{1 - \left(1 - \widehat{P}_{C}(x)\right)^{N}}$$

Equivalent to regularized estimate of P

CAE ESTIMATOR

OTHER OPTIONS

Estimating entropy from discrete observations?

BEST UPPER BOUNDS

LINKS

http://www.nowozin.net/sebastian/blog/estimating-discrete-entropy-part-1.html

http://www.nowozin.net/sebastian/blog/estimating-discrete-entropy-part-2.html

http://www.nowozin.net/sebastian/blog/estimating-discrete-entropy-part-3.html

https://memming.wordpress.com/2014/02/09/a-guide-to-discrete-entropy-estimators/

http://theory.stanford.edu/~valiant/papers/nips_full.pdf