### Introduction to Structural Causal Models

Daniel Saggau

May 2021

### Motivation



@marketoonist.com

### Introduction

Table 1: (Pearl 2012)

| Association-based Concepts | Causal Concepts         |
|----------------------------|-------------------------|
| Correlation                | Randomization           |
| Regression                 | Confounding             |
| Conditional Independence   | Disturbance             |
| Likelihood                 | Error Terms             |
| Odds Ratio                 | Structural Coefficients |
| Propensity Score           | Spurious Correlation    |

#### Table of Contents

- Foundations of SCMs
  - Assumptions
  - Comparing Causal Tools
- Pearl's Causal Hierachy
  - Prediction
  - Intervention
  - Counterfactuals
- Graphical Models
- Causality and Time

### Seminar Topics

- Topic 1: Structural Causal Models
- Topic 2: Linking d-separation with (conditional) independence & Causal Structure Learning
- Topic 3: do-calculus: estimating the effect of interventions & counterfactuals
- Topic 4: Rubin's Potential Outcome Framework & Causal Trees
- Topic 5: Algorithmic Recourse
- Topic 6: Causal Interpretation of Black-Box Models

## Foundations of SCMs (1)

- Flexible simulations for higher order problems (intervention, counterfactual)
- based on (elementary) 'noise'/latent variables
- Graphical visualization via directed acyclic graph
- Nonparametric SEM
- System of equations with functions

## Foundations of SCMs (2)

- **Assignments** ':=' (non-symmetric)
- algebraic equation '=' (symmetry)
- Error in Regression: Omittable outside factor
- Error in SCM: Latent (influential) factor that is pivotal for the model

$$C := N_c$$
$$E := f_E(C, N_E)$$

Source: Peters, Janzing, and Schölkopf (2017)

### Assumptions - Independence

- Noise terms independent  $(N_c, N_e)$
- Mechanisms independent (other variables invariant)(local changes)
- Change in distribution stems from change in mechanism
- Causal Markov Condition

### **Differences**

#### SEM:

- Conflict whether to use graphs or not and to use parameters in SEM
- SEM is a parametric model used in applied sciences

#### BCN:

- A Bayesian causal network (BCN) use conditional probabilities instead of functions
- Every SCM has the same information as respective probabilistic model + more (DGP)
- Computationally less efficient and cannot cast counterfactuals

#### **Potential Outcome Framework:**

- PO is mostly equivalent but has not graphical framework
- SCMs can derive potential outcomes but PO cannot derive SCMs

#### Table of Contents

- Foundations of SCMs
  - Assumptions
  - Comparing Causal Tools
- Pearl's Causal Hierachy
  - Prediction
  - Intervention
  - Counterfactuals
- Graphical Models
- Causality and Time

### Pearls Causal Hierachy

Table 2: Pearls Hierarchy of Causation (2009)

| Method                          | Action              | Example                     | Usage                           |
|---------------------------------|---------------------|-----------------------------|---------------------------------|
| Association $P(a b)$            | Co-occurrence       | What happened               | (Un-)Supervised ML,<br>BN, Reg. |
| Intervention $P(a do(b), c)$    | Do-<br>manipulation | What happens if             | CBN,MDP,RL                      |
| Counterfactual $P(a_b a^i,b^i)$ | Hypotheticals       | What would have happened if | SCM ,PO                         |

#### Intervention

- Mathematical Tool: do-calculus
- The do-calculus enables us to study the manipulation of parent nodes (direct effect)
- Atomic intervention: where we set a variable to a constant
- Policy intervention: we specify a different function for an equation
- CBN, MDP and reinforcement learning model intervention.

## Example Intevention (1)

#### **Atomic Intervention:**

• replacing function with a constant

$$C_1 := f_{c_1}(p, N_{c_1}) \rightarrow C_1 := 600$$

$$C_2 := f_{c_2}(a, N_{c_2})$$

$$E := f_E(C_1, C_2, N_E)$$

## Example Intevention (2)

#### **Policy Intervention:**

replacing function with a different conditional probability

$$C_1 := f_{c_1}(p, N_{c_1}) \rightarrow C_1 := f(\pi)$$

$$C_2 := f_{c_2}(a, N_{c_2})$$

$$E := f_E(C_1, C_2, N_E)$$

#### Counterfactuals

- Missing data problem in PO framework
- SCM Process is described as follows:
- lacktriangle Abduction: Cast probability P(u) as conditional probability  $P(u|\epsilon)$
- **b** Action: Exchange (X = x)
- **O** Prediction: Compute (Y = y)

### Assumptions

- **SUTVA** 'The treatment that one unit receives does not change the effect of treatment for any other unit.'
- **Consistency** The outcome Y agrees with the potential outcome corresponding to the treatment indicator.'
- **Ignorability** The potential outcomes are conditionally independent of treatment given some set of de-confounding variables. (perfect RCT)
- First tow hold for Counterfactuals in SCM
- third not testable but can check via backdoor criterion in SCM
- Source: (Hardt and Recht 2021)

#### Table of Contents

- Foundations of SCMs
  - Assumptions
  - Comparing Causal Tools
- Pearl's Causal Hierachy
  - Prediction
  - Intervention
  - Counterfactuals
- Graphical Models
- Causality and Time

### Graphical Tools

- Nodes -> Variables (endogenous/exogenous)
- Edges -> relationship (equations)
- Parents/Ancestors/Descendants
- No need to specify exact parametric shape
- Focus on acyclical structures (DAG)
- Estimation back door criterion
- Test theoretical model structure via causal algorithms to detect structure in data (IC/PC Algo.)
- More information: (Morgan and Winship 2014)

## Undirected/Semidirected Graph



Figure 1: Undirected graph



Figure 2: Semi-directed graph

### Graphical Illustration - Probabilisitic Model



Figure 3: Probabilistic Model

### Graphical Illustration - Structural Causal Model



Figure 4: Structural Causal Model

#### Table of Contents

- Foundations of SCMs
  - Assumptions
  - Comparing Causal Tools
- Pearl's Causal Hierarchy
  - Prediction
  - Intervention
  - Counterfactuals
- Graphical Models
- Causality and Time

### Causal Modelling with Differential Equations

- Time in Social Sciences: Often Vague
- Time in Physical Sciences: Mechanical via Differential equations
- dependence on prior time point and change in time contribute to the value at time point

Initial Value:

$$\mathbf{x}(t_0) = \mathbf{x}_0$$

Derivative of function x with respect to time t:

$$\frac{d\mathbf{x}}{dt} = f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^d$$

Value of Function at time t + dt:

$$\mathbf{x}(t+dt) = \mathbf{x}(t) + dt \cdot f(\mathbf{x}(t))$$

## Graphical Overview

| model                        | IID setting | changing<br>distributions | counter-<br>factual<br>questions | physical<br>insight |
|------------------------------|-------------|---------------------------|----------------------------------|---------------------|
| mechanistic<br>model         | Y           | Y                         | Y                                | Y                   |
| structural<br>causal model   | Y           | Y                         | Y                                | N                   |
| causal<br>graphical<br>model | Y           | Y                         | N                                | N                   |
| statistical<br>model         | Y           | N                         | N                                | N                   |

Source: (Peters, Janzing, and Schölkopf 2017)

### Concluding Remarks

- Association-based learning is easy to model because of lower information neccessary
- but not always appropriate in high stake settings
- SCM as simulator for causal modelling based on noise variables
- SCMs entail a lot of information (DGP, intervention distribution)
- BUT: "Garbage in, Garbage out"
- Computational advantage casting causal model as assignments
- Enables modelling of higher order concepts like counterfactuals
- Extensions through differential equations for concise modelling of time

#### Dos and Do nots

#### If you...

- ..only have conditional probabilities
- ..are only interested in association
- ..have very limited knowledge of your actual underlying structure
- ightarrow you should probably go for a probabilistic model, association based model or a model based on conditional probabilities

#### But if you

- ..have an understanding of underlying relationships in the data
- ..are dealing with high stake settings
- ..want to simulate different interventions
- $\rightarrow$  you could probably go for a SCM

#### References

- Hardt, Moritz, and Benjamin Recht. 2021. Patterns, Predictions, and Actions: A Story about Machine Learning. https://mlstory.org. http://arxiv.org/abs/2102.05242.
- Morgan, Stephen L., and Christopher Winship. 2014. Counterfactuals and Causal Inference: Methods and Principles for Social Research. 2nd ed. Analytical Methods for Social Research. Cambridge University Press. https://doi.org/10.1017/CBO9781107587991.
- Pearl, Judea. 2012. "The Causal Foundations of Structural Equation Modeling." CALIFORNIA UNIV LOS ANGELES DEPT OF COMPUTER SCIENCE.
- Peters, Jonas, Dominik Janzing, and Bernhard Schölkopf. 2017. Elements of Causal Inference: Foundations and Learning Algorithms. Adaptive Computation and Machine Learning Series. Cambridge, Massachuestts: The MIT Press.

# Appendix

| Method          | CBN                                                                                                                                 | SCM                                                                                        |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Prediction      | <ul><li> Unstable</li><li> Volatile to parameter changes</li><li> Re-Estimate entire model</li></ul>                                | <ul> <li>Stable</li> <li>More Natural Specification</li> <li>Only estimate Δ CM</li> </ul> |
| Intervention    | <ul> <li>Costly for Non-Markovian Models</li> <li>Unstable(Nature CP)</li> <li>Only generic estimates(Δ CP)</li> </ul>              | <ul><li>Pot. Cyclic Representation</li><li>Stable</li><li>Context specific</li></ul>       |
| Counterfactuals | $ \begin{array}{c} \cdot \ \textbf{Impossible} \\ \cdot \ \text{no information on latent} \\ \text{factors}(\epsilon) \end{array} $ | Possible Inclusion of latent factors                                                       |

### Questions:

Thank you so much for your time!

If you have any questions contact me via:

- Mattermost: daniel.saggau
- Email: daniel.saggau@campus.lmu.de