LOGICKÉ SYSTÉMY

Prednáška 5, 2014-2015

Ing. Adam Jaroš, PhD - prednášky, cvičenia

Ing. Michal Chovanec -cvičenia

Katedra technickej kybernetiky

Web predmetu: http://frtk.fri.uniza.sk

OPAKOVANIE – DYNAMICKÁ NEDOKONALOSŤ STAVEBNÝCH PRVKOV

Pri návrhu číslicových logických systémov musíme zohľadniť časové parametre stavebných prvkov.

V prípade rýchlych systémov je to predovšetkým časové oneskorenie hradla alebo celého obvodu.

Časové i ďalšie parametre **získavame od výrobcu súčiastky** z katalógu (datasheets).

Jedna súčiastka môže byť vyrobená rôznymi technologickými postupmi. Pri zložitejších systémoch musíme zvážiť ich vzájomnú kompatibilitu.

Pri kombinačných obvodoch nám niekedy časové oneskorenie neprekáža. Avšak vždy s ním musíme počítať pri návrhu sekvenčných systémov.

OPAKOVANIE – VLASTNOSTI STAVEBNÝCH PRVKOV – HRADIEL

Základné vlastnosti hradiel rady 74xx

- technológia výroby (TTL, CMOS, HS-CMOS, AHS-CMOS, BiCMOS, Shottky, ...)
- rýchlosť obvodu
- rozsah napájacieho napätia (+Ucc, +Vcc, od 1.25V až 18V)
- spotreba (obvykle rastie s vyššou pracovnou frekvenciou)
- zaťažiteľnosť a vetvenie (fan-out)
- veľkosť puzdra obvodu (DIL, SOP, ...)

řada	technologie	log. úroveň (V)	rozsah Uc (V)	Ic (μ A)	tpd max (ns]	vstup	výstup
MOS 4000	Standard CMOS	5.0	3.0 ~ 18.0	20		CMOS	CMOS
74 HC	High Speed CMOS	5.0	2.0 ~ 6.0	80	21	CMOS	CMOS
74 HCT	High Speed CMOS / TTL	5.0	4.5 ~ 5.5	80	30	TTL	CMOS
74 AC	Advanced CMOS	5.0	3.0 ~ 5.5	40	6.5	CMOS	CMOS
74 ACT	Advanced CMOS / TTL	5.0	4.5 ~ 5.5	40	8.0	TTL	CMOS
74 AHC	Advanced High Speed CMOS	5.0	2.0 ~ 5.5	40	7.5	CMOS	CMOS
74 AHCT	Advanced High Speed CMOS / TTL	5.0	4.5 ~ 5.5	40	7.7	TTL	CMOS
74 BCT	BiCMOS	5.0	4.5 ~ 5.5	90 mA	6.6	TTL	TTL
74 LV	Low Voltage CMOS	3.3	2.0 ~ 5.5	20	14	LV CMOS	LV TTL
74 LVC	Low Voltage CMOS / TTL	3.3	1.65 ~ 3.6	10	4.0	LV TTL	LV CMOS
74 LS	Low Power Schottky TTL	5.0	4.75 ~ 5.25	95 mA	12	TTL	TTL
74 ALS	Advanced Low Power Schottky TTL	5.0	4.5 ~ 5.5	58mA	10	TTL	TTL
74 F	Fast TTL	5.0	4.5 ~ 5.5	120 mA	6	TTL	TTL

logická úroveň (V) jmenovitá hodnota napětí logické úrovně H

Uc (V) napájecí napětí

Ic (μA) spotřeba nezatíženého hradla tpdmax (ns) zpoždění výstupního signálu

OPAKOVANIE – ČASOVÝ PRIEBEH VÝSTUPU LOGICKÉHO HRADLA

Ideálny a reálny (zjednodušený) časový priebeh prechodu signálu cez logický člen.

Medzi významné parametre logického hradla patrí

- časové oneskorenie
- tvarové skreslenie výstupného napätia oproti ideálnemu priebehu

Logické hradlo sa správa ako dynamický systém s určitými frekvenčnými vlastnosťami.

OPAKOVANIE – ČASOVÝ PRIEBEH VÝSTUPU LOGICKÉHO HRADLA

Zmena vstupnej a výstupnej hodnoty nenastáva však okamžite ale postupne.

Výrobcovia používajú rôzne riešenia, každé ma svoje výhody a nevýhody. Jedná sa o technologickú záležitosť a s postupom času sa vlastnosti tranzistorov použitých pre zostavenie hradiel zlepšujú.

Matematický popis logického—obdĺžnikového signálu vyjadríme napr. s Fourierovým rozkladom ako súčet harmonických signálov s rozdielnou amplitúdou a fázou.

OPAKOVANIE – ČASOVÝ PRIEBEH VÝSTUPU LOGICKÉHO HRADLA

Fourierová transformácia

$$y(x) = A \cdot \sum_{n=1}^{\infty} \frac{1}{(2n-1)} \sin(2n-1) \cdot x$$

Pri návrhu logických obvodov nás zaujímajú nasledovné vlastnosti použitých hradiel—integrovaných obvodov:

- elektrické vlastnosti nám určujú spotrebu energie, napájacie napätia a prúdovú spotrebu, taktiež správanie sa vstupu (napr. impedancia) a výstupu
- prevádzkové a technické parametre predstavujú bežne rozsahy pracovných teplôt, typ a veľkosť puzdra, tvary vývodov, technológia montáže
- medzi najdôležitejšie časové parametre patrie doba nábehu, doba poklesu
 a rýchlosť logických hradiel (maximálna pracovná frekvencia, ktorú dokáže
 prenášať na výstup), zvlnenie výstupného napätia a iné.

Tieto údaje získavame od výrobcu z katalógu súčiastok.

Ukážka katalógového listu obvodu TTL rady 74xx

DM7400 Quad 2-Input NAND Gates

General Description

This device contains four independent gates each of which performs the logic NAND function.

Ordering Code:

	Order Number	Package Number	Package Description
DM7400M M14A 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0		14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow	
	DM7400N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Function Table

 $Y = \overline{AB}$

Inp	Output		
Α	A B		
L	L	Н	
L	Н	Н	
Н	L	Н	
Н	Н	L	

H = HIGH Logic Level L = LOW Logic Level

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
он	HIGH Level Output Current			-0.4	mA
OL	LOW Level Output Current			16	mA
T _A	Free Air Operating Temperature	0		70	°C

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	V _{CC} = Min, I _I = -12 mA			-1.5	V
V _{OH}	HIGH Level Output	V _{CC} = Min, I _{OH} = Max	2.4	3.4		V
	Voltage	$V_{IL} = Max$	2.4	3.4		· •
V _{OL}	LOW Level Output	V _{CC} = Min, I _{OL} = Max		0.2	0.4	v
	Voltage	V _{IH} = Min		0.2	0.4	·
I _I	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5V$			1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = Max, V_I = 2.4V$			40	μA
I _{IL}	LOW Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-1.6	mA
los	Short Circuit Output Current	V _{CC} = Max (Note 3)	-18		-55	mA
I _{CCH}	Supply Current with Outputs HIGH	V _{CC} = Max		4	8	mA
Iccl	Supply Current with Outputs LOW	V _{CC} = Max		12	22	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time.

Ukážka katalógového listu obvodu TTL rady 74xx pokračovanie

Switching Characteristics						
at V _{CC} = 5V and T _A = 25°C						
Symbol	Parameter	Conditions	Min	Max	Units	
t _{PLH}	Propagation Delay Time	C _L = 15 pF		22	ns	
	LOW-to-HIGH Level Output	$R_L = 400\Omega$			113	
t _{PHL}	Propagation Delay Time			15	ns	
	HIGH-to-LOW Level Output			.5		

detail – t_{pHL} a t_{pLH}

Integračný článok (R-C člen) – princíp (vpravo) pôsobenie integračného článku

OPAKOVANIE – HAZARD V LOGICKÝCH OBVODOCH

Hazard je také správanie kombinačného systému, ktoré vzniká v dôsledku zmien vstupných signálov (*nie je popísané Karnaughovou mapou*).

Rozpoznávame dva typy hazardov statický a dynamický.

Poznámka: Označenie vychádza z toho v akej hodnote hazard nastáva.

Podmienkou existencie dynamického hazardu v kombinačnom obvodu je prítomnosť statického hazardu.

OPAKOVANIE – HAZARD V LOGICKÝCH OBVODOCH

Statický hazard v LO

OPAKOVANIE — IDENTIFIKÁCIA HAZARDU A SPÔSOBY JEHO ODSTRÁNENIA

Zistenie prítomnosti hazardu

Existenciu statického hazardu vieme určiť z rozmiestnenia pravidelných konfigurácií v Karnaughovej mape.

Ak sa dve konfigurácie neprekrývajú, tak v zapojení vždy existuje statický hazard, ak sa zmenia príslušné vstupné premenné súčasne.

Odstránenie hazardu

- Univerzálne riešenie—odstránenie statického hazardu na výstupe—spočíva v kompenzácii oneskorenia v príslušnej vetve logickej siete a to zaradením prídavných oneskorujúcich hradiel do navrhnutej schémy.
- Špecifické riešenie spočíva v pridaní redundantnej konfigurácie v Karnaughovej mape, ktorá premostí susediace konfigurácie.

OPAKOVANIE — IDENTIFIKÁCIA HAZARDU A SPÔSOBY JEHO ODSTRÁNENIA

Príklad

Navrhnite zapojenie s logickými hradlami NAND, ktoré neobsahuje hazard.

Riešenie

Zapíšme optimálne konfigurácie úlohy z obrázku a preveďme výraz do 1. NSF.

V zapojení existuje statický hazard, čo vidieť z umiestnenia konfigurácií v Karnaughovej mape. Rozhodujúce hradlo je zakreslené oranžovou farbou.

$$y = \bar{b} \cdot \bar{c} + a \cdot b$$
$$= (\bar{b}|\bar{c})|(a|b)$$

OPAKOVANIE — IDENTIFIKÁCIA HAZARDU A SPÔSOBY JEHO ODSTRÁNENIA

Príklad

pokračovanie

- Jedným z možných riešení je oneskorenie výstupu pripojením kondenzátora s vhodnou kapacitou "oproti zemi" na výstup tohto hradla. V súčinnosti s výstupnou impedanciou hradla tak tvorí "spomaľujúci" R-C článok.
- Druhým lepším riešením by bolo zaradenie bufera na výstup tohto logického hradla, ktorý si vytvoríme z bežného hradla vhodným zapojením.
- Tretie riešenie spočíva v premostení konfigurácií v obr. 3a ďalšou konfiguráciou. Výsledok návrhu zapojenia bez hazardov je na obr ázku.

OPAKOVANIE — ČASOVÝ PRIEBEH ZMENY VÝSTUPU LOGICKEJ SIETE—SIMULÁCIA ČINNOSTI

Sledovanie zmien výstupov hradiel v zapojeniach logických obvodov je častou úlohou návrhára.

K meraniu priebehov sa používajú v súčasnosti digitálne osciloskopy, ktoré sú vybavené pamäťovými funkciami.

Zjednodušenie simulácie činnosti LO v čase

Predpokladajme pri kreslení "simulácie" činnosti logického obvodu rovnaké časové oneskorenie u všetkých hradiel.

Taktiež sa obmedzíme na hazardy spôsobené zmenou len jednej vstupnej premennej. (Predpokladáme, že bežne je to "najčastejší" prípad)

OPAKOVANIE — ČASOVÝ PRIEBEH ZMENY VÝSTUPU LOGICKEJ SIETE—SIMULÁCIA ČINNOSTI

Príklad

Zakreslite simuláciu činnosti LO (bez zapojeného kondenzátora C) tak, aby

zachytával priebeh hazardu.

Riešenie

Simulujeme zmenu len jednej vstupnej premennej v čase, ktorá spôsobuje hazard na výstupe zapojenia.

Jedná sa o vstupnú premennú b.

V aplikačnej praxi sa určité zapojenia kombinačných obvodov často opakujú, preto sa vyrábajú v podobe integrovaných obvodov – IO (angl. IC – Integrated Circuit).

Multiplexor – MUX

Demultiplexor - DEMUX

Komparátor

Kóder - CD

Dekóder - DEC

Sčítačka - plná, polovičná

Multiplexor - MUX

Funkcia: prepnutie 1 vstupu z viacerých možných (spravidla ich počet je mocnina čísla 2, t.j. 2, 4, 8 a 16) na výstup.

Multiplexor - MUX

Demultiplexor - DEMUX

Funkcia: prepínanie jediného vstupu na 1 z viac možných (spravidla ich počet je mocnina čísla 2, t.j. 2, 4, 8 a 16).

Komparátor

Funkcia: porovnanie dvoch n-bitových čísiel. Plná verzia komparátora obsahuje všetky tri výstupy, viď. obrázok. V praxi však často používame len jediný výstup komparátora.

Komparátor

zapojenie 4-bitového úplného komparátora

Kóder - CD

Funkcia: prevod kódu 1 z N (spravidla ich počet je mocnina čísla 2, t.j. 2, 4, 8 a 16 alebo práve 10 t.j. BCD resp. 9-klávesnica bez "nuly") najčastejšie na binárne číslo.

Sčítačka

Viac bitová sčítačka vytvorená z plnej jednobitovej sčítačky

PREDNÁŠKA 5

Embedded Linux

Témy prednášky:

- 1) Sekvenčné systémy automaty
- 2) Úvod do sekvenčných systémov základné pojmy
- 3) Metódy popisu a návrhu automatov
- 4) Moorov a Mealyho automat matematický popis
- 5) Stavová a výstupná funkcia
- 6) Grafický zápis automatu, tabuľka prechodov, výstupná funkcia
- 7) Štruktúra Moorovho a Mealyho automatu (spätná väzba)

SEKVENČNÉ SYSTÉMY

- V predchádzajúcich štyroch prednáškach sme si ukázali všetky potrebné aspekty návrhu kombinačných logických systémov.
- V reálnych úlohách existuje stále mnoho prípadov, kedy logický systém musí reagovať na vstupné podnety s ohľadom na predošlé vstupy, t.j. jeho predchádzajúci stav.
- Predchádzajúci stav je definovaný ako postupnosť zmien logických signálov na vstupe logického systému od určitého času (napr. od vykonania "resetu").
- Takého logické systémy, ktoré vykazujú pamäťové správanie nazývame sekvenčné systémy alebo často len automaty.

POPIS SPRÁVANIA SA SEKVENČNÝCH SYSTÉMOV

- Činnosť automatu bežne zapisujeme v podobe orientovaného grafu.
- Klasické spôsoby zápisu správania sekvenčného systému – Moorov a Mealyho automat. Petriho siete.
- Mealyho automat je zovšeobecnením postupu, ktorý navrhol Moore. Mealyho zápis automatu má obvykle menší počet stavov.
- Budeme sa zaoberať výhradne návrhom konečných deterministických automatov na báze číslicových logických obvodov.

AUTOMAT MOORE — MATEMATICKÁ FORMULÁCIA

- Moorov aparát. Správanie sekvenčného systému zapíšeme pomocou dvoch stavových rovníc.
- \star Prvá rovnica je **stavová prechodová funkcia**, ktorá určuje stav v čase $t + \tau$.
- Druhá je funkcia výstupného priradenia, skrátene výstupná funkcia a určuje hodnotu výstupu automatu v čase t.

$$S_{(t+\tau)} = \delta(S_{(t)}, x_{(t)}) \approx S_{t+\tau} = \delta(S_t, x_t) \approx S^* = \delta(S, x)$$
$$y_{(t)} = \lambda(S_{(t)}) \approx y_t = \lambda(S_t) \approx y = \lambda(S)$$

kde:

- S_t stav v čase t, pričom S_0 stav v čase t = O (v čase "nula"), množina stavov S_i je konečná, S^- stav v čase v čase t + τ (nový stav),
- x_t vstup v čase t,
- δ , λ kombinačné siete, deterministické funkcie (na rovnaký vstup), dostaneme vždy rovnaký výstup),
- τ predstavuje časový interval zmien stavu automatu; *takt hodín*.

AUTOMAT MEALY — MATEMATICKÁ FORMULÁCIA

- Mealyho aparát. Správanie sekvenčného systému zapíšeme pomocou dvoch stavových rovníc.
- Stavová prechodová funkcia určuje stav v čase t + τ.
- Funkcia výstupného priradenia—výstupná funkcia určuje hodnotu výstupu automatu v čase t.

$$S_{t+\tau} = \delta(S_t, x_t)$$
$$y_t = \lambda(S_t, x_t)$$

Zmena oproti Moorovmu automatu je vo výstupnej funkcii.

PRÍKLADY A POROVNANIE AUTOMATOV

Porovnanie **ekvivalentných** automatov, ktoré popisujú rovnakú úlohu.

Moorov automat

- jednoduchšie vytvoríme
- často viac stavov

Mealyho automat

- náročnejší návrh (obvykle vychádzame z Moorovho)
- menší počet stavov

PRÍKLAD – DOPRAVNÝ PÁS

Príklad

Majme dopravníkový pás, po ktorom prechádzajú dva typy výrobkov v dostatočnej vzdialenosti od seba.

Dlhý a krátky výrobok prechádzajú cez dva snímače (vždy prechádza len jeden výrobok pred snímačmi).

Zakreslite Moorov a Mealyho automat, ktorý správne rozpozná typ výrobku.

PRÍKLAD – DOPRAVNÝ PÁS

Riešenie

Začneme s Moorovým automatom.

Začíname voľbou podmienok a výstupnej hodnoty pre *počiatočný stav* S_0 .

Ten si zvolíme ako kľudový stav-pred snímačmi neprechádza žiadny výrobok (podmienka A=0, B=0).

Výstupná hodnota Ž (žiadny výrobok, t.j. K=0, D=0) je zapísaná vo vnútri stavu.

Zmena nastáva pri prechode niektorého výrobku cez snímač A. Vzhľadom na ďalší vývoj zmien musíme vytvoriť nový stav – S₁. Zakreslíme obe podmienky.

Takýmto spôsobom, kedy pre každú zmenu snímačov zakreslíme nový stav získame prvotný návrh automatu.

PRÍKLAD – DOPRAVNÝ PÁS

Riešenie

Mealyho automat—jeho prvotný zápis vytvoríme prekreslením z Moorovho automatu.

Jediná zmena je v zápise symbolu výstupnej hodnoty priamo za podmienku (vstupný symbol).

Postupnou *redukciou počtu stavov* možno zapísať riešenie úlohy.

Návrh automatu je mnohokrát nejednoznačný.
Je to tvorivá, kreatívna činnosť.

ZMENY STAVOV AUTOMATU V ČASE

Zmeny v automate—prechody medzi stavmi *prebiehajú v čase*. Nový stav je určený *stavovou funkciou*.

Pre d'alšie spracovanie orientovaného grafu automatu ho zapisujeme v tabuľkovej reprezentácii.

Tabuľkový zápis automatu

- pozostáva z dvoch častí—prechodovej a výstupnej tabuľky
- Moorov a Mealyho automat sa líšia len v zápise výstupnej časti, blok λ

Príklad

Zapíšte do tabuľky Moorov automat.

Riešenie

- **Prechodová časť** popisuje zmenu stavu logického systému a podmienky, pri ktorých k nemu dochádza. Má toľko riadkov, koľko máme stavov. Má toľko stĺpcov, koľko je možností vstupných signálov (symbolov). Blok δ .
- Výstupná časť priraďuje výstupný symbol (hodnotu) príslušnému stavu. Blok λ. Často používame v tejto fáze symbolický zápis.

Príklad

Zapíšte do tabuľky oba Mealyho automaty.

Riešenie (Mealy, 1. automat)

- f x **Prechodová časť** popisuje zmenu stavu, *blok* δ
- × **Výstupná časť** priraďuje výstupný symbol, *blok λ*. Symbolický zápis.

Riešenie

(pokračovanie)

Výstupná časť priraďuje výstupný symbol, blok λ. Symbolický zápis zakódovanie výstupných symbolov.

Riešenie (Mealy, 2. automat)

- f x **Prechodová časť** popisuje zmenu stavu, *blok* δ
- Výstupná časť priraďuje výstupný symbol, blok λ. Symbolický zápis.

Symbolický zápis—zakódovanie výstupného symbolu. Výstupné symboly — Ž, K a D zakódujeme podobne ako v predošlom prípade (1. automat).

PREPIS AUTOMATU NA LOGICKÝ SYSTÉM

Doposial' sme popisovali správanie automatu a to formou *orientovaného grafu* alebo *tabuliek*.

Ako však vyzerá bloková schéma automatu?

Vychádzame z matematického zápisu Moorovho a Mealyho automatu.

$$S_{(t+\tau)} = \delta(S_{(t)}, x_{(t)}) \approx S_{t+\tau} = \delta(S_t, x_t) \approx S^* = \delta(S, x)$$
$$y_{(t)} = \lambda(S_{(t)}) \approx y_t = \lambda(S_t) \approx y = \lambda(S)$$

$$S_{t+\tau} = \delta(S_t, x_t)$$
$$y_t = \lambda(S_t, x_t)$$

