Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	5
1.2 Описание выходных данных	6
2 МЕТОД РЕШЕНИЯ	7
3 ОПИСАНИЕ АЛГОРИТМОВ	8
3.1 Алгоритм метода calculation класса Arifmetik	8
3.2 Алгоритм метода calculate класса Arifmetik	9
3.3 Алгоритм метода get_result класса Arifmetik	9
3.4 Алгоритм функции main	10
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	11
5 КОД ПРОГРАММЫ	15
5.1 Файл Arifmetik.cpp	15
5.2 Файл Arifmetik.h	16
5.3 Файл main.cpp	16
6 ТЕСТИРОВАНИЕ	18
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	19

1 ПОСТАНОВКА ЗАДАЧИ

Создать объект, который вычисляет значение целочисленного арифметического выражения.

Операция деления заменена на операцию вычисления целочисленного остатка.

Объект обладает следующей функциональностью:

- выполняет первую операцию выражения, в качестве параметров передается первый целочисленный параметр, символ операции (+,-,*,%), второй целочисленный параметр;
- вычисляет вторую и далее операцию, в качестве параметров передается символ операции (+,-,*,%), второй целочисленный параметр;
 - возвращает значение вычисленного выражения.

Написать программу, которая обязательно вводит значения и выполняет первую операцию.

Далее, в цикле осуществляет ввод очередной операции и значения второго аргумента.

Если на месте операции введен символ «С», то программа завершает работу, иначе выполняет очередную операцию и выводит результат каждой третьей операции.

1.1 Описание входных данных

Первая строка:

«целое число в десятичном формате» «символ операции» «целое число в десятичном формате»

Последующие строки:

«символ операции» «целое число в десятичном формате»

В последней строке:

C

1.2 Описание выходных данных

Первая строка, с первой позиции:

«значение выражения»

Последующие строки, с первой позиции:

«значение выражения»

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект obj класса Arifmetik предназначен для ;
- функция main для Основная функция;
- Объект стандартного ввода/вывода cin/cout;
- Оператор множественного выбора;
- Цикл с предусловием;
- Условный оператор.

Класс Arifmetik:

- свойства/поля:
 - о поле Полученный результат:
 - наименование result;
 - тип int;
 - модификатор доступа private;
- функционал:
 - о метод calculation Вычисление первой операции между целочисленными переменными;
 - о метод calculate Вычисление последующих операций между целочисленными переменными;
 - о метод get_result Вывод полученного результата после выполнения всех операций.

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм метода calculation класса Arifmetik

Функционал: Вычисление первой операции между целочисленными переменными.

Параметры: нет.

. нет.

Возвращаемое значение: Нет.

Алгоритм метода представлен в таблице 1.

Таблица 1 – Алгоритм метода calculation класса Arifmetik

N₂	Предикат	Действия	N₂
			перехода
1	Знак операции "+"	Подсчёт х + у и присваивания этого значения	Ø
		переменой result	
			2
2	Знак операции "-"	Подсчёт х - у и присваивания этого значения	Ø
		переменной result	
			3
3	Знак операции "*"	Подсчёт х * у и присваивания этого значения	Ø
		переменной result	
			4
4	Знак операции "%"	Подсчёт х % у и присваивания этого значения	Ø
		переменной result	
			Ø

3.2 Алгоритм метода calculate класса Arifmetik

Функционал: Вычисление последующих операций между целочисленными переменными.

Параметры: нет.

Возвращаемое значение: Нет.

Алгоритм метода представлен в таблице 2.

Таблица 2 – Алгоритм метода calculate класса Arifmetik

N₂	Предикат	Действия	No
			перехода
1	Знак операции "+"	Прибавления значения result к переменной у	Ø
			2
2	Знак операции "-"	Вычитание значение у из переменной result	Ø
			3
3	Знак операции "*"	Умножение result на у	Ø
			4
4	Знак операции "%"	Целочисленное деление переменной result на у	Ø
			Ø

3.3 Алгоритм метода get_result класса Arifmetik

Функционал: Вывод полученного результата после выполнения всех операций.

Параметры: нет.

Возвращаемое значение: Целое.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода get_result класса Arifmetik

N₂	Предикат	Действия	N₂
			перехода
1		Возвращает значение целочисленной переменной result	Ø

3.4 Алгоритм функции main

Функционал: Основная функция.

Параметры: Отсутствуют.

Возвращаемое значение: Целое.

Алгоритм функции представлен в таблице 4.

Таблица 4 – Алгоритм функции таіп

N₂	Предикат	Действия	
1		Объявление целочисленных переменных х, у	2
2		Объявление символьной переменной symbol	
3		Объявление и иницилизация целочисленной перемееной count = 1	
4		Создание объекта obj класса Arifmetik	
5		Ввод значения x, symbol, y	
6		Выполнение метода calculation(int x, char symbol, 7 int y)	
7	True	Инкрементация переменной count	
		Возвращение значения result	
8		Ввод значения переменой symbol, y	
9		Выполение метода calculate	
10		1	
11	symbol = 'C'	Завершение цикла	Ø
			12
12	count % 3 == 0	Вывод result	
			7

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-4.

Рисунок 1 – Блок-схема алгоритма

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

Рисунок 4 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл Arifmetik.cpp

Листинг 1 – Arifmetik.cpp

```
#include "Arifmetik.h"
void Arifmetik::calculation(int x, char symbol, int y)
  switch(symbol)
  case('+'):
        result = x + y;
        break;
  case('-'):
        result = x - y;
        break;
  case('*'):
        result = x * y;
        break;
  case('%'):
        result = x \% y;
        break;
  default:
        break;
  }
}
void Arifmetik::calculate(char symbol, int y)
  switch(symbol)
  case('+'):
        result += y;
        break;
  case('-'):
        result -= y;
        break;
  case('*'):
        result *= y;
        break;
  case('%'):
        result %= y;
        break;
```

5.2 Файл Arifmetik.h

Листинг 2 – Arifmetik.h

```
#ifndef __ARIFMETIK__H
  #define __ARIFMETIK__H
  #include <iostream>

using namespace std;

class Arifmetik
  {
  private:
     int result = 0;
  public:
     void calculation(int x, char symbol, int y);
     void calculate(char symbol, int y);
     int get_result();
  };

#endif
```

5.3 Файл таіп.срр

Листинг 3 – таіп.срр

```
#include <stdlib.h>
#include <stdio.h>
#include "Arifmetik.h"

int main()
{
   int x,y;
   char symbol;
   int count = 1;
```

```
Arifmetik obj;
   cin >> x >> symbol >> y;
   obj.calculation(x,symbol,y);
  while(true)
   {
      count++;
      cin >> symbol >> y;
if(symbol == 'C')
         break;
      }
      obj.calculate(symbol,y);
      if(count%3==0)
      {
         cout << obj.get_result()<< endl;</pre>
      }
   return(0);
}
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 5.

Таблица 5 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
2 - 3 -3 -3 -3 C	-7	-7
1 + 1 +1 +1 +1 C	4	4
2 - 3 -3 -3 -3 -3 -3 -3 -3 C	-7 -16	-7 -16

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).