# STOR 455 STATISTICAL METHODS I

Jan Hannig

### Exam 2

- November 2, in class
- Multiple choice 28 questions
  - Bring your own bubble sheet, pencil and calculator
  - Closed book, closed notes. No computer!
  - You can bring one regular sheet of paper with formulas.
  - Tables will be provided
- Post your questions on blackboard!

# Mileage example

- Response variable: Miles per gallon
- Explanatory variable: Speed in miles per hour
- Is the relationship linear?
- Can we use MLR to model it?

```
Obs mpg spd
data mileage;
   infile 'C:/.../mileage.txt';
                                                  22
                                                     35
                                                2 20
                                                     35
   input mpg spd;
                                                3 28
                                                     40
proc print data=mileage;
                                                4 31 40
                                                5 37 45
run;
                                                6 38 45
                                                7 41 50
                                                8 39 50
symbol1 v=dot h=.8 c=blue;
                                                9 34 55
proc reg data=mileage;
                                                10 37 55
                                                11 27 60
  model mpg = spd;
                                                12 30 60
  plot mpg * spd;
  run;
```



# Polynomial regression

- Useful when response function nonlinear
- Add quadratic, cubic or higher order terms in the model by defining squares, cubes, etc. in a data step and using these as predictors in a multiple regression

```
* creat quadratic term;
data mileage;
  set mileage;
spd2=spd*spd;
%include "C:\...
  \scatter.sas";
%scatter(data = mileage, var
  = mpg spd spd2);
proc corr data=mileage;
run;
proc reg data=mileage;
  model mpg=spd spd2;
  run;
```



10/28/10

#### Analysis of Variance

Sum of Mean Source DF Squares Square F Value Pr > F 2 483.16786 241.58393 81.03 < .0001 Model Error 26.83214 2.98135 **Corrected Total** 510.00000 11

> Root MSE 1.72666 R-Square 0.9474 Dependent Mean 32.00000 Adj R-Sq 0.9357 Coeff Var 5.39581

#### Parameter Estimates

Parameter Standard Variable DF **Estimate** Error t Value Pr > |t| 17.67703 -10.33 Intercept -182.58214 <.0001 8.98321 0.76156 11.80 <.0001 spd -0.09107 0.00799 -11.39 <.0001 spd2

# Polynomial regression II

- Multicollinearity problem
- Remedy: square centered value x of X (SAS proc standard)
- Hierarchical approach to fitting
- Derive s.d. for regression coefficient of X
- Can do this with more than one explanatory variable

```
* Centered value;
proc standard data=mileage
  out=m2 mean=0;
  var spd;
data m2; set m2;
  spd2=spd*spd;
%include "D:\Stat101\SAS
  Macro\scatter.sas";
%scatter(data = m2, var =
  mpg spd spd2);
proc reg data=m2;
  model mpg=spd spd2 /covb;
  run;
```



#### Parameter Estimates

|           | Pa | rameter  | Standard |         |         |
|-----------|----|----------|----------|---------|---------|
| Variable  | DF | Estimate | Error    | t Value | Pr >  t |
|           |    |          |          |         | • • •   |
| Intercept | 1  | 38.64063 | 0.76689  | 50.39   | <.0001  |
| spd       | 1  | 0.33143  | 0.05837  | 5.68    | 0.0003  |
| spd2      | 1  | -0.09107 | 0.00799  | -11.39  | <.0001  |

#### Covariance of Estimates

| Variable  | Intercept    | spd     | spd2         |
|-----------|--------------|---------|--------------|
| Intercept | 0.5881177145 | 0       | -0.004658358 |
| spd       | 0 0.0034     | 1072562 | 0            |
| spd2      | -0.004658358 | 0       | 0.0000638861 |

```
*Creat cubic term;
data m2; set m2;
    spd3=spd2*spd;

*Test cubic term;
proc reg data=m2;
    model mpg=spd spd2 spd3;
    test spd3;
    run;
```

Test 1 Results for Dependent Variable mpg

| Mean        |    |         |         |        |  |  |
|-------------|----|---------|---------|--------|--|--|
| Source      | DF | Square  | F Value | Pr > F |  |  |
|             |    | -       |         |        |  |  |
| Numerator   | 1  | 2.33611 | 0.76    | 0.4079 |  |  |
| Denominator | 8  | 3.06200 |         |        |  |  |

#### Analysis of Variance

|                 |    | Sum of    | Mean      |         |        |
|-----------------|----|-----------|-----------|---------|--------|
| Source          | DF | Squares   | Square    | F Value | Pr > F |
|                 | _  |           |           |         |        |
| Model           | 3  | 485.50397 | 161.83466 | 52.85   | <.0001 |
| Error           | 8  | 24.49603  | 3.06200   |         |        |
| Corrected Total | 1  | 1 510.000 | 00        |         |        |

Root MSE 1.74986 R-Square 0.9520 Dependent Mean 32.00000 Adj R-Sq 0.9340 Coeff Var 5.46831

#### Parameter Estimates

|           | Pa | arameter | Standard |         |         |
|-----------|----|----------|----------|---------|---------|
| Variable  | DF | Estimate | Error    | t Value | Pr >  t |
|           |    |          |          |         |         |
| Intercept | 1  | 38.64063 | 0.77719  | 49.72   | <.0001  |
| spd       | 1  | 0.46703  | 0.16614  | 2.81    | 0.0228  |
| spd2      | 1  | -0.09107 | 0.00810  | -11.24  | <.0001  |
| spd3      | 1  | -0.00107 | 0.00123  | -0.87   | 0.4079  |

#### **Indicator Variables and Qualitative Variables**

- X<sub>i</sub> = 1 or 0 to indicate which of the two classes the ith obs. belongs to (i.e., male or female, treatment or control, etc.).
- Also called dummy variables or binary variables.
- Qualitative variable with c classes can be represented by c-1 indicator variables.
   Example: Education level (HS, College, MS, PHD)

### Interaction Models

- If model includes more than one explanatory variables, need to consider possible interaction
- Interaction: the effect of one variable depends on the value of another variable
- Reinforcement or interference
- Implementation: create cross-product in data step

# Example of interaction

- Predict yield using fertilizer and raining days (two continuous)
- Predict salary of computer professionals using education, experience and management responsibility (one binary one continuous)

#### Two continuous variables

• 
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \xi$$

• 
$$Y = \beta_0 + (\beta_1 + \beta_3 X_2)X_1 + \beta_2 X_2 + \xi$$

• 
$$Y = \beta_0 + \beta_1 X_1 + (\beta_2 + \beta_3 X_1) X_2 + \xi$$

#### One binary and one continuous variable

- X<sub>1</sub> has values 0 and 1 corresponding to two different groups
- X<sub>2</sub> is a continuous variable

• 
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \xi$$

• For 
$$X_1 = 0$$
,  $Y = \beta_0 + \beta_2 X_2 + \xi$ 

• For 
$$X_1 = 1$$
,  $Y = (\beta_0 + \beta_1) + (\beta_2 + \beta_3) X_2 + \xi$ 

10/28/10

# Power cell Example

- Response variable is the life (in cycles) of a power cell
- Explanatory variables are
  - Charge rate (3 levels)
  - Temperature (3 levels)
- This is a designed experiment
- We will use a model with polynomials and test interactions.

```
Data cell;
   infile 'C:\...
   \powercell.txt';
   input cycles rate temp;
run;

* Making scatter plot using macro;

*include "C:\...
   \scatter.sas";

*scatter(data = cell, var = cycles rate temp);
```

| cycles | rate | temp |  |
|--------|------|------|--|
| 150    | 0.6  | 10   |  |
| 86     | 1.0  | 10   |  |
| 49     | 1.4  | 10   |  |
| 288    | 0.6  | 20   |  |
| 157    | 1.0  | 20   |  |
| 131    | 1.0  | 20   |  |
| 184    | 1.0  | 20   |  |
| 109    | 1.4  | 20   |  |
| 279    | 0.6  | 30   |  |
| 235    | 1.0  | 30   |  |
| 224    | 1.4  | 30   |  |
|        |      |      |  |



```
*create second order terms;
Data cell; set cell;
  rate2=rate*rate;
  temp2=temp*temp;
  rt=rate*temp;
*fit model with interaction and
 quadratic term;
Proc reg data=cell;
   model cycles=rate temp rate2 temp2
 rt;
run;
```

#### Analysis of Variance

Sum of Mean Source DF Squares Square F Value Pr > F Model 5 55366 11073 10.57 0.0109 5 5240.43860 1048.08772 Error **Corrected Total** 60606 10

> Root MSE 32.37418 R-Square 0.9135 Dependent Mean 172.00000 Adj R-Sq 0.8271 Coeff Var 18.82220

#### Parameter Estimates

|           | Р   | 'arameter  | Standard  |         |         |
|-----------|-----|------------|-----------|---------|---------|
| Variable  | DF  | Estimate   | Error     | t Value | Pr >  t |
|           |     |            |           |         |         |
| Intercept | : 1 | 337.72149  | 149.9616  | 3 2.25  | 0.0741  |
| rate      |     | -539.51754 | 268.86033 | -2.01   | 0.1011  |
| temp      | 1   | 8.91711    | 9.18249   | 0.97    | 0.3761  |
| rate2     | 1   | 171.21711  | 127.12550 | 1.35    | 0.2359  |
| temp2     | 1   | -0.10605   | 0.20340   | -0.52   | 0.6244  |
| rt        | 1   | 2.87500    | 4.04677   | 0.71 0  | .5092   |

```
* Standardize rate
                        Data c2; set c2;
  and temp;
                          srate2=srate*srate;
Data c2;
                          stemp2=stemp*stemp;
   set cell;
                          srt=srate*stemp;
   srate=rate;
                        *test quadratic terms
  stemp=temp;
                          and interaction;
   keep cycles srate
                        Proc reg data=c2;
  stemp;
                          model cycles=srate
                          stemp srate2 stemp2
Proc standard data=c2
                          srt;
   out=c2 mean=0
                          test srate2,
  std=1;
                          stemp2, srt;
   var srate stemp;
                        run;
```

```
Analysis of Variance
                   Sum of
                                Mean
                                    Square F Value Pr > F
Source
                DF
                       Squares
                       55366
                                  11073
Model
                                           10.57 0.0109
Error
                   5240.43860
                                 1048.08772
Corrected Total
                          60606
                   10
       Root MSE
                       32.37418 R-Square 0.9135
       Dependent Mean
                         172.00000 Adj R-Sq 0.8271
       Coeff Var
                      18.82220
                Parameter Estimates
              Parameter
                           Standard
                                Error t Value Pr > |t|
  Variable
            DF
                   Estimate
                 162.84211
                              16.60761
                                          9.81
                                                 0.0002
  Intercept
  srate
                -43.24831
                             10.23762
                                        -4.22
                                                0.0083
  stemp
                 58.48205
                              10.23762
                                          5.71
                                                 0.0023
  srate2
                 16.43684
                             12.20405
                                                0.2359
                                          1.35
                  -6.36316
                              12.20405
                                         -0.52
                                                 0.6244
  stemp2
                6.90000
                            9.71225
                                      0.71
                                              0.5092
  srt
        Test 1 Results for Dependent Variable cycles
                       Mean
                   DF
     Source
                          Square F Value Pr > F
                                      0.78 0.5527
                         819.96491
     Numerator
                        1048.08772
     Denominator
```

#### Insurance Company Example

- Innovation in the insurance industry adopted at different speed by different firms.
- Y: number of months for an insurance company to adopt an innovation.
- X<sub>1</sub>: the size of the firm in terms of total assets (a continuous variable).
- X<sub>2</sub>: the type of the firm: stock or mutual (a qualitative or categorical variable)

#### Insurance Company Example

- X<sub>2</sub> (the type of firm) equals 0 for a mutual fund and 1 for a stock fund.
- Q1: Do larger companies adopt innovation faster or slower?
- Q2: Do stock firms adopt the innovation slower or faster than mutual firms?
- Does answer to Q1 depend on the type or the firm? Does answer to Q2 depend on the size?

# Import the Data

```
Obs Months size type
data insu;
   infile 'C:\...
                               1 17 151 0
  \Ch08ta02.txt';
                               2 26 92
                               3 21 175 0
   input y x1 x2;
                               4 30 31
   label y = 'Months'
                               5 22 104 0
          x1 = 'Size'
                                     277 0
                              7 12
                                    210 0
          x2 = 'Firm
                               8 19
                                    120 0
  Indicator';
                               9 4
                                     290
                               10 16
                                    238 0
                               11 28
                                     164 1
proc print data=insu;
                                    272 1
                               12 15
run;
                               13 11
                                    295 1
                               14 38
                                    68 1
                               15 31 85 1
proc reg data = insu;
                               16 21
                                    224 1
                                    166 1
                               17 20
  model y = x1 x2/clb;
                               18 13
                                    305 1
run;
                               19 3
                                    124 1
                                     246 1
                               20 4
```

### Plot the Data

```
* plot the data;
proc reg data = insu1
  noprint;
  model y = z1;
  output out = temp1 p =
    p1;
run;
proc reg data = temp1
  noprint;
  model y = z2;
  output out=temp p= p2;
run;
```

```
symbol1 c=red v=circle;
symbol2 c=blue v=dot
  i=none;
symbol3 i=join v=none
  c=red;
symbol4 i=join v=none
  c=blue;
axis1 order=(0 to 350 by
  50) label=('Size of
  Firm');
axis2 label=(angle = 90
  'Months Elapsed');
proc gplot data = temp;
  p2*z2<sup>†</sup> / overlay haxis =
  axis1 vaxis=axis2;
run;
```



10/28/10

```
* fit the model;
data insu;
  set insu;
  x1x2 = x1*x2;
run
proc reg data = insu;
  model y = x1 x2 /clb;
run;
```

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 1504.41333 752.20667 72.50 <.0001

Error 17 176.38667 10.37569

Corrected Total 19 1680.80000

Root MSE 3.22113 R-Square 0.8951 Dependent Mean 19.40000 Adj R-Sq 0.8827

Coeff Var 16.60377

#### Parameter Estimates

Parameter Standard

Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 33.87407 1.81386 18.68 <.0001 x1 Size 1 -0.10174 0.00889 -11.44 <.0001 x2 Firm Indicator 1 8.05547 1.45911 5.52 <.0001

Parameter Estimates

Variable Label DF 95% Confidence Limits

Intercept Intercept 1 30.04716 37.70098 x1 Size 1 -0.12050 -0.08298

x2 Firm Indicator 1 4.97703 11.13391

#### Interpretation of Coefficients

- $Y = 33.87 0.10X_1 + 8.06 X_2$
- For both stock firms and mutual firms, larger firms adopt innovation faster. One more million dollar in assets corresponds to 0.1 month faster in adopting innovations.
- For firms of similar size, stock firms adopt innovations about 8 months later than mutual firms.

#### **Check Interaction**

• If the linear relationship between Y and  $X_1$  depends on the type  $X_2$ , we say there are interaction between  $X_1$  and  $X_2$ .

• 
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \xi$$

• For 
$$X_1 = 0$$
,  $Y = \beta_0 + \beta_2 X_2 + \xi$ 

• For 
$$X_1 = 1$$
,  $Y = (\beta_0 + \beta_1) + (\beta_2 + \beta_3) X_2 + \xi$ 

```
* fit the model and test interaction;
data insu;
  set insu;
  x1x2 = x1*x2;
run;
proc reg data = insu;
  model y = x1 x2 x1x2;
  test x1x2;
run;
```

#### Analysis of Variance

```
Sum of
                                  Mean
                                      Square F Value Pr > F
  Source
                  DF
                         Squares
                                                 45.49 < .0001
  Model
                     1504.41904
                                    501.47301
  Error
                      176.38096
                                    11.02381
                     19 1680.80000
  Corrected Total
                  Parameter Estimates
                                  Standard
                     Parameter
Variable
                     DF
         Label
                            Estimate
                                         Error t Value Pr > |t|
Intercept Intercept
                       1
                            33.83837
                                        2.44065
                                                  13.86
                                                           <.0001
        Size
                         -0.10153
                                     0.01305
                                               -7.78
                                                       <.0001
x1
x2
                                                  2.23
        Firm Indicator
                            8.13125
                                        3.65405
                                                         0.0408
                   1 -0.00041714
                                      0.01833
                                                -0.02
x1x2
                                                        0.9821
               Test 1 Results for Dependent Variable y
                         Mean
       Source
                     DF
                            Square F Value Pr > F
                            0.00571
                                       0.00 0.9821
        Numerator
```

11.02381

16

Denominator

# Constrained regression

- We may want to put a linear constraint on the regression coefficients, e.g.  $\beta_1 = 1$ , or  $\beta_1 = \beta_2$
- Method I: redefine explanatory variables in data step
- Method II: use the RESTRICT statement in proc reg