Отчёт по лабораторной работе №1

Операционные Системы

Гибшер Кирилл Владимирович,НКАбд-01-22

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение 3.1 Техническое обеспечение	7 7 7
4	Выполнение лабораторной работы	9
5	Контрольные вопросы	17
6	Выводы	19
Сп	исок литературы	20

Список иллюстраций

4.1	Установка первичных обновлений ОС	9
4.2	Отключение SELinux	10
4.3	Установка пакета DKMS	10
4.4	Установка драйверов после полдлючения образа диска дополнений	11
4.5	Установка драйверов после полдлючения образа диска дополнений	11
4.6	Настройка раскладки, редактирование файла конфигурации	12
4.7	Настройка имени пользователя и хоста	13
4.8	Наличие pandoc в ОС	13
4.9	Установка необходимых расширений pandoc	14
4.10	Наличие TeXLive	14
4.11	Домашнее задание. Анализ последовательности загрузки системы	15
4.12	Домашнее задание. Вывод ряда информации об системе р.1	16
4.13	Домашнее задание. Вывод ряда информации об системе р.2	16

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1. Установить и настроить виртуальную машину с операционной системой Linux(Fedora).
- 2. Произвести первоначальные настройки ВМ.
- 3. Настройка хост-клавиш.
- 4. Установка обновлений ОС, после запуска виртуальной машины.
- 5. Отключение SELinux.
- 6. Установить дополнительные драйвера для VirtualBox.
- 7. Настроить раскладку клавиатуры.
- 8. Установка имени пользователя и имя хоста.
- 9. Установка ПО для создания документации.
- 10. Выполнение домашнего задания.

3 Теоретическое введение

3.1 Техническое обеспечение

Лабораторная работа подразумевает установку на виртуальную машину VirtualBox (https://www.virtualbox.org/) операционной системы Linux (дистрибутив Fedora). Выполнение работы возможно как в дисплейном классе факультета физико-математических и естественных наук РУДН, так и дома. Описание выполнения работы приведено для дисплейного класса со следующими характеристиками техники: Intel Core i3-550 3.2 GHz, 4 GB оперативной памяти, 80 GB свободного места на жёстком диске; ОС Linux Gentoo; VirtualBox версии 7.0 или новее. Для установки в виртуальную машину используется дистрибутив Linux Fedora, вариант с менеджером окон i3. При выполнении лабораторной работы на своей технике необходимо скачать необходимый образ операционной системы.

3.1.1 Соглашение об именовании

При выполнении работ следует придерживаться следующих правил именования:

Пользователь внутри виртуальной машины должен иметь имя, совпадающее с учётной записью студента, выполняющего лабораторную работу. Имя хоста вашей виртуальной машины должно совпадать с учётной записью студента, выполняющего лабораторную работу. Имя виртуальной машины должно совпадать с учётной записью студента, выполняющего лабораторную работу. В дисплейных классах вы можете посмотреть имя вашей учётной записи, набрав в терминале

необходимую команду. При установке на своей технике необходимо использовать имя вашей учётной записи дисплейных классов. Например, если студента зовут Остап Сулейманович Бендер, то его учётная запись имеет вид osbender.

4 Выполнение лабораторной работы

Так как виртуальная машина и ОС Linux Fedora были у меня установлены намного раньше, весь процесс настройки ВМ не удалось запечатлить. Таким образом, приступаю сразу к настройке ОС с автоматического обновления с помощью команды dnf install dnf-automatic и запускаю таймер с помощью команды systemctl enable –now dnf-automatic.timer (рис. [4.1]).

```
[[vegitabhere]fedora -]s audo -1
[sudo] napona pna kvgibsher:
[nonpo6yifre eae pas
[sudo] napona pna kvgibsher:
[roote]fedora -]s dnf install tonux ac
[nocephana nponepna onownawna pactrawa meragammux: 2:07:38 masag, flm 13 фem 2023 13:03:51.

flamer tune-3.na-1.fc37.x86_64 yae ycramonnem.
flamer ac-1:4.6.2a-5.fc37.x86_64 yae ycramonnem.
flamer ac-1:4.6.2a-6.fc37.x86_64 yae ycr
```

Рис. 4.1: Установка первичных обновлений ОС

Затем, так как в данном курсе мы не будем рассматривать работу с системой безопасности SELinux я отключаю его с помощью измения необходимого для работы SELinux файла config.(рис. [4.2]).

Рис. 4.2: Отключение SELinux

Затем приступаю к установке драйверов для VirtualBox, для этого открываем с помощью команды tmux терминальный мультиплексор и устанавливаем пакет DKMS. (рис. [4.3]).

Рис. 4.3: Установка пакета DKMS

В меню виртуальной машины подключаем образ диска дополнений гостевой ОС и наблюдаем за установкой драйверов. (рис. [4.4]).

```
VirtualBox Guest Additions installation
                                                                     Q
Verifying archive integrity... All good.
Jncompressing VirtualBox 6.1.30 Guest Additions for Linux......
/irtualBox Guest Additions installer
 emoving installed version 6.1.30 of VirtualBox Guest Additions...
Copying additional installer modules ...
Installing additional modules ..
/irtualBox Guest Additions: Starting.
/irtualBox Guest Additions: Building the VirtualBox Guest Additions kernel
odules. This may take a while.
irtualBox Guest Additions: To build modules for other installed kernels, run
'irtualBox Guest Additions: /sbin/rcvboxadd quicksetup <version>
irtualBox Guest Additions: or
'irtualBox Guest Additions: /sbin/rcvboxadd quicksetup all
irtualBox Guest Additions: Building the modules for kernel
.1.10-200.fc37.x86_64.
/irtualBox Guest Additions: Look at /var/log/vboxadd-setup.log to find out what
ValueError: File context for /opt/VBoxGuestAdditions-6.1.30/other/mount.vboxsf a
lready defined
irtualBox Guest Additions: Running kernel modules will not be replaced until
the system is restarted
ress Return to close this window...
```

Рис. 4.4: Установка драйверов после полдлючения образа диска дополнений

Затем подмонтируем диск, с помощью команды mount /dev/sr0 /media, и загрузим еще пакет драйверов.Затем перезагрузим систему. (рис. [4.5]).

Рис. 4.5: Установка драйверов после полдлючения образа диска дополнений

Приступим к настройке раскладки клавиатуры и сделаем это с помощью редактирования конфигурационный файла /etc/X11/xorg.conf.d/00-keyboard.conf и вновь перезапустим систему. (рис. [4.6]).

Рис. 4.6: Настройка раскладки, редактирование файла конфигурации

Хоть я и изначально установил правильное имя хоста и пользователя, для самопроверки я еще раз проведу данную операцию только через терминал. С помощью команд показанных на скриншоте, я проверил и убедился, что все настроено согласно соглашению об наименовании. (рис. [4.7]).

Рис. 4.7: Настройка имени пользователя и хоста

Так как pandoc был устанавлен у меня раннее на скриншоте показано его наличие в моей ОС. (рис. [4.8]).

Рис. 4.8: Наличие pandoc в ОС

Но необходимых для курса расширений у меня нет, поэтому провожу установку данных расширений. (рис. [4.9]).

Рис. 4.9: Установка необходимых расширений pandoc

Так как ситуация с TexLive у меня такая же как и pandoc и у меня он уже установлен в подтверждение я привожу скриншот ниже, на котором показано завершение установки TexLive. (рис. [4.10]).

Рис. 4.10: Наличие TeXLive

Далее приступаю к выполнению домашнего задания и начинаю с того, что дождитесь загрузки графического окружения и открываю терминал. В окне терми-

нала провожу анализ последовательность загрузки системы, выполнив команду dmesg. (рис. [4.11]).

Рис. 4.11: Домашнее задание. Анализ последовательности загрузки системы

Далее с помощью необходимых команд я получаю следующую информацию: Версия ядра Linux, частота процессора, модель процессора, объём доступной оперативной памяти, тип обнаруженного гипервизора, тип файловой системы корневого раздела и последовательность монтирования файловых систем. (рис. [4.12]).

```
Tree processors that the process of the process of
```

Рис. 4.12: Домашнее задание. Вывод ряда информации об системе р.1

Последний пункт - информация об последовательности монтирования файловых систем. (рис. [4.13]).

```
| Part |
```

Рис. 4.13: Домашнее задание. Вывод ряда информации об системе р.2

5 Контрольные вопросы

1. Какую информацию содержит учётная запись пользователя?

УЗ содержить информацию о имени пользователя, о пароле, индетификационном номере , индетификационном номере группы пользователя. Также содержит информацию о домашнем каталоге и о командном интерпретаторе пользователя.

2. Укажите команды терминала и приведите примеры:

для получения справки по команде используется man, например man ls для перемещения по файловой системе cd, cd/home для просмотра содержимого каталога; ls, ls/etc для определения объёма каталога; du, du/kvgibsher для создания/удаления каталогов/файлов; mkdir, mkdir/work, touch 1.txt, rm 1.txt, для задания определённых прав на файл/каталог; chmod + x имя файла/каталога для просмотра истории команд. history

3. Что такое файловая система? Приведите примеры с краткой характеристикой. Файловая система - Порядок, определяющий способ организации, хранения и именования данных на носителях информации в компьютерах, а также в другом электронном оборудовании: цифровых фотоаппаратах, мобильных телефонах и т. п. Файловая система определяет формат содержимого и способ физического хранения информации, которую принято группировать в виде файлов. Конкретная файловая система определяет размер имен файлов (и каталогов), максимальный возможный размер файла

и раздела, набор атрибутов файла. Некоторые файловые системы предоставляют сервисные возможности, например, разграничение доступа или шифрование файлов.

Файловая система NTFS - Отличительные свойства данной файловой системы: поддержка больших файлов и дисков, низкий уровень фрагментации, поддержка длинных символьных имен, контроль доступа к каталогам и отдельным файлам.

XFS - высокопроизводительная файловая система. Плюсы: высокая скорость работы с большими файлами, отложенное выделение места, увеличение разделова на лету и незначительный размер служебной информации.

- 4. Как посмотреть, какие файловые системы подмонтированы в ОС? С помощью команды mount
- 5. Как удалить зависший процесс? с помощью команды kill

6 Выводы

Таким образом, благодаря данной лабораторной работе я приобрел практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Список литературы

- 1. Лекция учетные записи в Linux [электронный ресурс] Режим доступа:https://intuit.ru/studies/courses/23/23/lecture/27143
- 2. Файловая система [электронный ресурс] Режим доступа:https://ru.wikipedia.org/wiki/Файловая_система
- 3. Примеры файловых систем [электронный ресурс] Режим доступа:https://studfile.net/preview/9106985/page:8/