Carbon dioxide emission from organic soil amended with straw and wood chips

Félix L'Heureux Bilodeau¹; Jacynthe Dessureault-Rompré¹; Alain N. Rousseau²

¹Université Laval, ²INRS

1. INTRODUCTION

- In North America, a large proportion of vegetables is grown on drained **organic soils**.
- Drainage of these soils favors peat mineralization and contribute in part to annual soil losses of 1 to 5 cm and CO₂ emissions.
- One potential conservation strategy is addition of plant-based amendments to compensate for carbon losses.

Objective

Quantify the effect of different types and rates of biomass amendments to organic soils on CO₂ emissions.

Figure 1. Degradation of cultivated organic soils

2. MATERIALS AND METHODS

- Experiments took place in a greenhouse (Québec).
- Organic soils sampled using PVC pipes (h : 65 cm, \emptyset : 25 cm).
- Closed static chambers with infrared gas analyzers used to measure **CO**₂ **fluxes** over a **9-week** period .
- Factorial design: four different biomass species (birch, willow, miscanthus and switchgrass), two different amendment rates (6% and 20 % v/v), two controls without amendment (intact and disturbed).

Figure 2. Wood chip (birch or willow)

Figure 3. Columns in greenhouse

Figure 4. Straw (miscanthus or switchgrass)

3. RESULTS

Figure 5. CO_2 fluxes over the 9-week sampling period for different treatments (means \pm standard deviation, n = 3). The statistical results for each factor were: Bloc p = 0.031, Treatment p = 0.003, Week p = 5.06E-10, Treatment : Week p = 0.689.

Table 1. Annual carbon loss by linear extrapolation according to degree-days (standard deviation in parenthesis) and balance

TREATMENTS	Carbon loss (Mg C-CO ₂ /ha/yr) • Values followed by the same letter are not significantly different. Holm significant difference at 0.05	biomass	Amended carbon (MgC/ha/yr)	Carbon balance (MgC/ha/yr)
Without amendment				
Intact	4.9 (0.3) a	0	0	- 4.9
disturbed	5.2 (0.7) a	0	0	- 5.2
6% amendment				
Birch	7.2 (0.4) bcd	12.4	6.0	- 1.2
Willow	6.5 (0.5) bef	11.4	5.3	- 1.2
Miscanthus	6.0 (2.0) ab	4.7	2.1	- 3.8
Panicum	6.3 (2.2) a	5.5	2.5	- 3.8
20 % amendment				
Birch	8.4 (1.1) a	28.9	13.9	+ 5.5
Willow	7.4 (1.0) de	26.8	12.5	+ 5.1
Miscanthus	6.2 (0.7) ace	11.1	5.0	- 1.2
Panicum	5.9 (1.1) af	13.0	5.8	0.0

4. CONCLUSION

- Amendment of around 13 Mg per hectare per year of either straw or wood chips would be sufficient to compensate carbon losses caused by organic matter mineralization.
- Results show that this strategy can **contribute to soil conservation** and thus, **sustaining valuable land resources** for vegetable production in Québec.

<u>Acknowledgements</u>

- Jean Caron
- Diane Bulot
- CRSNG
- And all assistants and JDR-lab teams