In [3]: import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

In [4]: df=pd.read_csv(r"C:\Users\Admin\Desktop\class\student mark prediction\student_in

In [5]: df.head()

 Out[5]:
 study_hours
 student_marks

 0
 6.83
 78.50

 1
 6.56
 76.74

 2
 NaN
 78.68

 3
 5.67
 71.82

8.67

84.19

In [6]: df.tail()

4

Out[6]: study_hours

	study_hours	student_marks
195	7.53	81.67
196	8.56	84.68
197	8.94	86.75
198	6.60	78.05
199	8.35	83.50

In [7]: df.describe()

Out[7]: study_hours student_marks

count 195.000000 200.00000		y =	student_marks
	count	195.000000	200.00000
mean 6.995949 77.93375	mean	6.995949	77.93375
std 1.253060 4.92570	std	1.253060	4.92570
min 5.010000 68.57000	min	5.010000	68.57000
25% 5.775000 73.38500	25%	5.775000	73.38500
50% 7.120000 77.71000	50%	7.120000	77.71000
75% 8.085000 82.32000	75%	8.085000	82.32000
max 8.990000 86.99000	max	8.990000	86.99000

In [8]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 200 entries, 0 to 199
        Data columns (total 2 columns):
         # Column
                            Non-Null Count Dtype
                            -----
             study hours
                            195 non-null
         0
                                            float64
             student_marks 200 non-null
                                            float64
         1
        dtypes: float64(2)
        memory usage: 3.3 KB
 In [9]: df.isnull().sum()
 Out[9]: study_hours
                           5
          student_marks
                           0
          dtype: int64
In [10]:
         df.mean()
Out[10]: study_hours
                            6.995949
          student_marks
                           77.933750
          dtype: float64
In [11]: df=df.fillna(df.mean())
In [12]:
Out[12]:
               study_hours student_marks
            0
                  6.830000
                                   78.50
                  6.560000
                                   76.74
            2
                  6.995949
                                   78.68
                  5.670000
                                   71.82
            4
                  8.670000
                                   84.19
          195
                  7.530000
                                   81.67
          196
                  8.560000
                                   84.68
          197
                  8.940000
                                   86.75
          198
                  6.600000
                                   78.05
          199
                  8.350000
                                   83.50
         200 rows × 2 columns
In [13]:
        df.isnull().sum()
Out[13]: study_hours
                           0
          student marks
                           0
          dtype: int64
In [14]: x=df.drop('student_marks',axis='columns')
         y=df.drop('study_hours',axis='columns')
```

In [15]: x

Out[15]:	study_hours		
	0	6.830000	
	1	6.560000	
	2	6.995949	
	3	5.670000	
	4	8.670000	
	•••		
	195	7.530000	
	196	8.560000	
	197	8.940000	
	198	6.600000	
	199	8.350000	

200 rows × 1 columns

In [16]: y

Out[16]: student_marks

	3 ta a c
0	78.50
1	76.74
2	78.68
3	71.82
4	84.19
•••	
195	81.67
196	84.68
197	86.75
198	78.05
199	83.50

200 rows × 1 columns

```
In [17]: from sklearn.model_selection import train_test_split
    x_train, x_test,y_train,y_test = train_test_split(x,y, test_size = 0.2,random_st
    print("shape of x_train = ", x_train.shape)
    print("shape of y_train = ", y_train.shape)
```

```
print("shape of x_test = ", x_test.shape)
print("shape of y_test = ", y_test.shape)

shape of x_train = (160, 1)
shape of y_train = (160, 1)
shape of x_test = (40, 1)
shape of y_test = (40, 1)
```

In [18]: x_train

_			-	0.7	
() (111	- 1	1	X I	0
\cup	u.	니	ж.	O	0

	study_hours
134	6.51
66	7.86
26	6.51
113	7.95
168	7.95
•••	
67	8.26
192	8.71
117	8.83
47	5.01
172	7.35

160 rows × 1 columns

In [19]: x_test

Out

[19]:		study_hours
	18	8.410000
	170	5.190000
	107	5.720000
	98	8.880000
	177	5.790000
	182	8.660000
	5	7.550000
	146	7.990000
	12	7.750000
	152	8.080000
	61	7.260000
	125	8.750000
	180	6.970000
	154	6.930000
	80	8.340000
	7	8.990000
	33	8.780000
	130	5.640000
	37	7.190000
	74	7.310000
	183	8.610000
	145	8.950000
	45	6.180000
	159	7.860000
	60	5.490000
	123	7.620000
	179	7.260000
	185	8.050000
	122	6.995949
	44	8.090000
	16	6.360000
	55	8.690000
	150	5.390000

	stı	ıdy	ho	urs
--	-----	-----	----	-----

111	6.370000
22	5.050000
189	7.260000
129	6.330000
4	8.670000
83	6.010000
106	5.340000

In [20]: **y_train**

_		-		_	-	
\cap	14-		7	a	- 1	
L/L			_	r)	- 1	_

	student_marks
134	78.39
66	81.25
26	74.75
113	80.86
168	82.68
•••	
67	81.70
192	84.03
117	85.04
47	70.11
172	77.78

160 rows × 1 columns

In [21]: y_test

Out[21]:	student_mark	S
	18 82.5	0
1	70 71.1	8
1	07 73.2	5
	98 83.6	4
1	77 73.6	4
1	82 86.9	9
	5 81.1	8
1	46 82.7	5
	12 79.5	0
1	52 81.7	0
	61 79.4	1
1	25 85.9	5
1	80 77.1	9
1	54 78.4	5
	80 84.0	0
	7 85.4	6
	33 84.3	5
1	30 73.1	9
	37 78.2	1
	74 77.5	9
1	83 83.8	7
1	45 85.1	5
	45 72.9	6
1	59 80.7	2
	60 73.6	1
1	23 79.5	3
1	79 78.1	7
1	85 79.6	3
1	22 76.8	3
	44 82.3	8
	16 76.0	4
	55 85.4	8
1	50 71.8	7

student_marks

5.04
0.67
9.87
1.49
4.19
5.36
2.10

In [22]: from sklearn.linear_model import LinearRegression
lr = LinearRegression()

In [23]: lr

Out[23]:

LinearRegression

LinearRegression()

In [24]: lr.fit(x_train,y_train)

Out[24]:

LinearRegression

LinearRegression()

In [25]: lr.coef_

Out[25]: array([[3.93037294]])

In [26]: lr.intercept_

Out[26]: array([50.45063632])

In [27]: m=3.93 c=50.44 y=m*10+c y

Out[27]: 89.7400000000001

In [28]: y = m * 11 + c y

Out[28]: 93.67

In [29]: lr.predict([[11]]).round(2)

C:\Users\Admin\AppData\Roaming\Python\Python312\site-packages\sklearn\utils\valid

```
ation.py:2739: UserWarning: X does not have valid feature names, but LinearRegres
        sion was fitted with feature names
          warnings.warn(
Out[29]: array([[93.68]])
In [30]: y_pred=lr.predict(x_test)
         y_pred
Out[30]: array([[83.50507271],
                 [70.84927186],
                 [72.93236952],
                 [85.35234799],
                 [73.20749562],
                 [84.48766595],
                 [80.12495199],
                 [81.85431608],
                 [80.91102657],
                 [82.20804964],
                 [78.98514384],
                 [84.84139951],
                 [77.84533568],
                 [77.68812077],
                 [83.22994661],
                 [85.78468901],
                 [84.9593107],
                 [72.61793968],
                 [78.71001773],
                 [79.18166248],
                 [84.2911473],
                 [85.6274741],
                 [74.74034107],
                 [81.3433676],
                 [72.02838374],
                 [80.40007809],
                 [78.98514384],
                 [82.09013845],
                 [77.94732382],
                 [82.24735337],
                 [75.44780819],
                 [84.60557713],
                 [71.63534645],
                 [75.48711192],
                 [70.29901965],
                 [78.98514384],
                 [75.32989701],
                 [84.52696967],
                 [74.07217767],
                 [71.4388278 ]])
         pd.DataFrame(np.c_[x_test, y_test, y_pred], columns = ["study_hours", "student_m"
In [31]:
```

\cap	u.	+	Г	2	1	7	
0	и	L	L	\mathcal{L}	Α.	J	۰

	study_hours	student_marks_original	student_marks_predicted
0	8.410000	82.50	83.505073
1	5.190000	71.18	70.849272
2	5.720000	73.25	72.932370
3	8.880000	83.64	85.352348
4	5.790000	73.64	73.207496
5	8.660000	86.99	84.487666
6	7.550000	81.18	80.124952
7	7.990000	82.75	81.854316
8	7.750000	79.50	80.911027
9	8.080000	81.70	82.208050
10	7.260000	79.41	78.985144
11	8.750000	85.95	84.841400
12	6.970000	77.19	77.845336
13	6.930000	78.45	77.688121
14	8.340000	84.00	83.229947
15	8.990000	85.46	85.784689
16	8.780000	84.35	84.959311
17	5.640000	73.19	72.617940
18	7.190000	78.21	78.710018
19	7.310000	77.59	79.181662
20	8.610000	83.87	84.291147
21	8.950000	85.15	85.627474
22	6.180000	72.96	74.740341
23	7.860000	80.72	81.343368
24	5.490000	73.61	72.028384
25	7.620000	79.53	80.400078
26	7.260000	78.17	78.985144
27	8.050000	79.63	82.090138
28	6.995949	76.83	77.947324
29	8.090000	82.38	82.247353
30	6.360000	76.04	75.447808
31	8.690000	85.48	84.605577
32	5.390000	71.87	71.635346

	study_hours	student_marks_original	student_marks_predicted
33	6.370000	75.04	75.487112
34	5.050000	70.67	70.299020
35	7.260000	79.87	78.985144
36	6.330000	74.49	75.329897
37	8.670000	84.19	84.526970
38	6.010000	75.36	74.072178
39	5.340000	72.10	71.438828

In [32]: lr

Out[32]: v LinearRegression ()

In [33]: lr.score(x_test,y_test)

Out[33]: 0.9521841793508594

In [34]: lr.score(x_train,y_train)

Out[34]: 0.9584528455152638

In [35]: plt.scatter(x_train,y_train)

Out[35]: <matplotlib.collections.PathCollection at 0x1a031ccda30>


```
In [36]:
         plt.scatter(x_train,y_train)
         plt.plot(x_train,lr.predict(x_train),color='r')
Out[36]: [<matplotlib.lines.Line2D at 0x1a031d28dd0>]
        87.5
         85.0
        82.5
         80.0
         77.5
         75.0
         72.5
        70.0
                                                                         8.5
                5.0
                        5.5
                                6.0
                                        6.5
                                                7.0
                                                        7.5
                                                                8.0
                                                                                 9.0
In [37]: lr
Out[37]:
          ▼ LinearRegression
         LinearRegression()
In [38]:
         import joblib
         joblib.dump(lr,'desktop.pkl')
Out[38]: ['desktop.pkl']
In [39]:
         pwd
          'C:\\Users\\Admin'
Out[39]:
 In [ ]:
 In [ ]:
```