

NISTIR 6605

Experimental Thermal Conductivity Values for the IUPAC Round-Robin Sample of 1,1,1,2-Tetrafluoroethane (R134a)

R.A. Perkins
A. Laesecke
J. Howley
M.L.V. Ramires
A.N. Gurova
L. Cusco

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

			٠	
	•			

NISTIR 6605

Experimental Thermal Conductivity Values for the IUPAC Round-Robin Sample of 1,1,1,2-Tetrafluoroethane (R134a)

R.A. Perkins
A. Laesecke
J. Howley
M.L.V. Ramires
A.N. Gurova
L. Cusco

Physical and Chemical Properties Division Chemical Science and Technology Laboratory

December 2000

U.S. Department of Commerce
William M. Daley, Secretary

Technology Administration

Dr. Cheryl L. Shavers, Under Secretary of Commerce for Technology

National Institute of Standards and Technology

Raymond G. Kammer, Director

CONTENTS

 T S T C T R 	troduction
	List of Tables
Table 1 Table 2	· · · · · · · · · · · · · · · · · · ·
Table 3	by use of the transient hot-wire technique with anodized tantalum hot wires
Table 4	•
Table 5	Thermal conductivity of dilute R134a gas from 300 to 450 K obtained by use of the steady-state technique with anodized tantalum hot wires
Table 6	Thermal conductivity of R134a in the compressed liquid phase from 210 to 290 K obtained by use of the transient hot-wire technique with bare platinum hot wires
Table 7.	Thermal conductivity of R134a in the vapor phase from 240 to 340 K obtained by use of the transient hot-wire technique with bare platinum hot wires
Table 8.	Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires
	List of Figures
Figure 1	
Figure 2	tantalum hot wires and the correlation of Krauss et al. [1]
Figure 3	tantalum hot wires and the correlation of Krauss et al. [1]
Figure 4	inum hot wires on the vapor phase and the correlation of Krauss et al. [1] 10
Figure 5	inum hot wires on the liquid phase and the correlation of Krauss et al. [1]
Figure 6	Relative deviations between the measurements of the saturated vapor phase of the round-robin sample and the correlation of Krauss et al. [1]

Figure 7.	Relative deviations between the measurements of the saturated liquid phase of the round-	
	robin sample and the correlation of Krauss et al. [1]	14
Figure 8.	Relative deviations between the thermal conductivity measurements on the round-robin	
	sample of R134a and the simplified correlation developed here	17
Figure 9.	Relative deviations between the thermal conductivity measurements on the previous NIST	
	sample of R134a [21] and the simplified correlation developed here.	18

Experimental thermal conductivity values for the IUPAC round-robin sample of 1,1,1,2-tetrafluoroethane (R134A)

R.A. Perkins, A. Laesecke, J. Howley, M.L.V. Ramires, A.N. Gurova, L. Cusco

Physical and Chemical Properties Division Chemical Science and Technology Laboratory National Institute of Standards and Technology Boulder, Colorado 80305-3328

Experimental measurements are reported for the thermal conductivity of 1,1,1,2-tetrafluoroeth-ane (R134a). These measurements were obtained with transient and steady-state hot wires; both bare platinum and anodized tantalum hot wires were used to examine effects due to the relatively high polarity of R134a. In collaboration with the IUPAC Subcommittee on Transport Properties, the measurements cover the temperature region from 200 to 450 K at pressures to 70 MPa. Measurements were made in the subcritical vapor, compressed liquid and supercritical fluid phases. The data are compared with a wide-range correlation for the thermal conductivity of R134a that was developed under the auspices of the IUPAC Subcommittee on Transport Properties.

Key Words: correlation; data; IUPAC; R134a; round robin; 1,1,1,2-tetrafluoroethane; thermal conductivity; transient hot wire.

1. Introduction

This report is the archival record of the results of steady-state and transient hot-wire measurements on a pure sample of 1,1,1,2-tetrafluoroethane (R134a). The data are compared with a wide-range correlation for the thermal conductivity of R134a [1]. It is the seventh report describing thermal conductivity data for various fluids obtained with the transient hot-wire instruments at NIST in Boulder. These transient hot-wire instruments are highly automated and cover a wide range of fluid conditions with temperatures from 30 K to 750 K and pressures from 0.05 MPa to 70 MPa. The quantity of data obtained is so large that an electronically accessible version is necessary to facilitate use of the data. All of the hot-wire results described in this Interagency Report are available in an ASCII form at the NIST anonymous ftp site:

ftp://ftp.boulder.nist.gov/pub/fluids/NIST_Data/Hot-Wire/

The transient hot-wire instruments used in this studies have been described elsewhere [2–4]. Each of these hot-wire instruments has two hot wires of different lengths that are operated in a differential mode with a Wheatstone bridge circuit to eliminate effects due to axial conduction near the ends of the wires. The low-temperature instrument [2] used bare hot wires made from platinum 12.7 μ m in diameter. The low-temperature hot-wire cell is located in a cryostat and can be used for measurements from 30 to 340 K at pressures to 70 MPa. This low-temperature hot-wire system has been used previously to study the thermal conductivity and thermal diffusivity of oxygen [5], hydrogen [6, 7], methane [6, 8], ethane [6, 9],

methane-ethane mixtures [10, 11], propane [6, 12], nitrogen [13–15], argon [13, 16–18], nitrogen-oxygen-argon mixtures [19], neon and neon-nitrogen mixtures [20], 1,1,1,2-tetrafluoroethane (R134a) [21], and 2,2-dichloro-1,1,1-trifluoroethane (R123) [22]. The high-temperature instrument [3] can also use bare 12.7 μ m diameter hot wires made from platinum, but was assembled with anodized hot wires made from tantalum 25 μ m in diameter to electrically insulate the wires from the polar refrigerant mixtures. This high-temperature instrument has been used to study nitrogen, argon, toluene, and 1,1,1,2-tetrafluoroethane (R134a) with bare platinum hot wires. These previous measurements on the polar refrigerant R134a were made with a dc polarization voltage [4, 21] applied to the bare hot wires to minimize errors due to formation of an electrical double layer during the transient experiment. None of the present measurements were made using the polarization technique [4, 21], since no evidence of transient charging of the wires was observed during the measurements of mixtures, and the measurements with insulated tantalum hot wires are consistent with those made with bare platinum hot wires.

The sample studied here was prepared in July 1993 at the request of the Subcommittee on Transport Properties of Commission I2 of the International Union of Pure and Applied Chemistry (IUPAC) with extreme care being taken to ensure its purity. This round-robin study was initiated by IUPAC to examine the possibility that relatively large discrepancies between measurements transport properties on alternative refrigerants reported in the literature were due in part to sample impurities. The bulk round-robin sample was split into nine sample bottles to allow transport properties to be measured on the same sample at several laboratories throughout the world. Each sample bottle was cleaned by use of procedures for pharmaceutical materials and then completely evacuated prior to filling. The purity of the bulk round-robin sample was analyzed and found to be better than 99.9 % pure and was confirmed for the NIST bottle of IUPAC sample used in the present measurements. The principal impurities were R134 at a concentration of 850 ppm and water at 6 ppm.

It was desirable to study the round-robin sample by use of a wide variety of techniques and cell geometries to gain some understanding of the causes of the discrepancies and the role of impurities during measurements of transport properties. The thermal conductivity of the round-robin sample was measured in the compressed liquid by use of both bare platinum hot wires 12.7 μ m in diameter and anodized tantalum hot wires 25 μ m in diameter in a transient mode of operation. Low-density gas was measured with these bare and anodized hot wires in both transient and steady-state modes of operation. Measurements of the supercritical fluid phase were made only with the anodized tantalum hot wires. Measurements using the bare platinum hot wires are very sensitive to the polarity and electrical conduction of the R134a. The electrical conductivity of R134a increases dramatically as the concentration of water increases in the sample. The anodized tantalum wires are electrically insulated from the R134a by the thin layer of tantalum pentoxide on their surfaces, so measurements are not affected by the electrical conductivity of the sample.

The present measurements cover a wide range of the subcritical vapor and liquid as well as the supercritical gas. Figure 1 shows the range of temperatures and pressures covered by the present measurements relative to the vapor pressure curve for R134a. The figure shows regions where bare platinum hot wires and anodized tantalum hot wires were used. The figure further shows regions where transient and steady-state measurements were made.

Recorded in the tables are the run-point numbers; the pressure P_{exp} , temperature (ITS 90) T_{exp} , and the calculated density ρ_{calc} [23] of the fluid to which the thermal conductivity is assigned; the applied power per unit length of the wire Q; the experimental thermal conductivity λ_{exp} and its 2 σ uncertainty value (STAT); and the cell temperature T_{cell} , which is provided to characterize the experiment temperature rise. STAT is the uncertainty of the slope of temperature rise as a function of elapsed time, at the 2 σ level, as determined

in the data reduction program [2, 14]. STAT is a direct measure of the precision of the thermal conductivity. A STAT of 0.001, for example, corresponds to a precision of 0.1 % in thermal conductivity. The tables of steady-state hot-wire results include the start time t_{start} and end time t_{end} of the steady-state temperature rise measurement that was used to determine the thermal conductivity. Also included are the average wire temperature rise ΔT_{avg} , and the Rayleigh number N_{Ra} , which characterizes the sensitivity of the fluid to the onset of convection. Larger Rayleigh numbers indicate that convection will occur at shorter experiment times and will be more significant. Finally, the precision of the steady-state experiment is characterized by TBAND, which is the relative uncertainty in percent of the measured temperature rise, and hence the experimental thermal conductivity, at 3 σ confidence over the time interval from t_{start} to t_{end} .

Figure 1. Temperature and pressure region covered by the present measurements.

2. Transient Results With Anodized Tantalum Wires

The round-robin sample was filled into the measurement cell from the vapor phase of the sample cylinder. For liquid-phase measurements, the sample cylinder was heated to allow the sample to condense into the slightly cooler measurement cell. An air-driven diaphragm compressor was used to attain pressures of up to 70 MPa as needed in the measurement cell. Since electrical conduction and polarization are known problems with transient hot-wire measurements on alternative refrigerants, it is preferable to electrically insulate the hot wires from the refrigerant sample. An anodized layer of tantalum pentoxide on tantalum hot wires provided the electrical insulation during these measurements. The tantalum wire is relatively large (25 μ m diameter) so that it is not well suited for measurements of dilute vapor (less than 1 MPa) by use of the transient technique, where corrections for the finite wire diameter approach the magnitude of the temperature rise itself at short times. The magnitude of the correction for finite wire diameter is not a significant problem in the liquid phase if the start and end times of the transient experiment are carefully selected.

The temperature of the tantalum hot-wire cell (high-temperature apparatus [3]) was maintained with an electrically heated furnace that was controlled with feedback from a platinum resistance thermometer mounted to the outer radiation shield that enclosed the measurement cell. The cell was maintained slightly warmer at the top to supress the onset of natural convection of the R134a in the measurement cell. The densities reported in the tables were calculated using the internationally accepted Helmholtz equation of state for R134a [23]. The cell temperature was measured using a reference platinum resistance thermometer with an uncertainty of 4 mK at a level of confidence of 95 %. The cell pressure was measured with a quartz pressure transducer with an uncertainty of 0.007 MPa at a level of confidence of 95 %. The relative uncertainty (95 % level of confidence) of the reported measurements of thermal conductivity is estimated to be 0.5 % in the liquid phase and higher-density supercritical gas phases, 1 % in the vapor and gas at pressures above 1 MPa, and 3 % in the vapor and gas at pressures below 1 MPa and in the critical region.

A total of 548 measurements are reported for the compressed liquid phase of R134a in Table 2 at temperatures from 300 K to 370 K. A total of 943 measurements are reported for the subcritical vapor phase of R134a in Table 3 at temperatures from 300 K to 370 K. A total of 1420 measurements are reported for the supercritical vapor phase of R134a in Table 4 at temperatures from 390 K to 450 K. Figure 2 shows the relative deviations between these measurements and the correlation of Krauss et al. [1]. The correlation of Krauss et al. [1] underpredicts the high-temperature supercritical dilute-gas thermal conductivity data for R134a, and its calculated values are systematically low at densities from 400 kg·m⁻³ to 900 kg·m⁻³. In this region above the critical temperature, the correlation of Krauss et al. [1] was based on a single light-scattering data set that does not agree well with the present measurements. The present measurements are in good agreement with the other thermal-conductivity and light-scattering measurements on the present round-robin sample, as will be shown.

Figure 2. Relative deviations between transient thermal conductivity measurements with anodized tantalum hot wires and the correlation of Krauss et al. [1].

3. Steady-State Results With Anodized Tantalum Wires

The round-robin sample was filled into the measurement cell from the vapor phase of the sample cylinder. The sample cylinder was heated to pressurize the sample to the maximum desired pressure. The electrical conduction through the vapor sample is much less than that in high-density liquid samples, but still has the potential to cause errors in transient hot-wire measurements. Since electrical conduction and polarization are known problems with transient hot-wire measurements on alternative refrigerants, it is preferable to electrically insulate the hot wires from the refrigerant sample. An anodized layer of tantalum pentoxide on tantalum hot wires provided the electrical insulation during these measurements. The tantalum wire is relatively large (25 μ m diameter) so that it is not well suited for measurements of dilute vapor (less than 1 MPa) by use of the transient technique, where corrections for the finite wire diameter approach the magnitude of the temperature rise itself at short times. However, there are no such corrections required for steady-state measurements with the same hot wires. Thus, the steady-state technique is complementary to transient hot-wire measurements and allows studies of very-low-density vapor with relatively large hot wires.

The temperature of the tantalum hot-wire cell (high-temperature apparatus [3]) was maintained with an electrically heated furnace that was controlled with feedback from a platinum resistance thermometer mounted to the outer radiation shield that enclosed the measurement cell. The cell was maintained slightly warmer at the top to supress the onset of natural convection of the R134a in the measurement cell. The densities reported in the tables were calculated using the internationally accepted Helmholtz equation of state for R134a [23]. The cell temperature was measured using a reference platinum resistance thermometer with an uncertainty of 4 mK at a level of confidence of 95 %. The cell pressure was measured with a quartz pressure transducer with an uncertainty of 0.007 MPa at a level of confidence of 95 %. The relative uncertainty (95 % level of confidence) of the measurements of thermal conductivity with the steady-state technique is estimated to be 2 %.

A total of 338 measurements are reported for the dilute-vapor phase of R134a in Table 5 at temperatures from 300 K to 450 K. Figure 3 shows the relative deviations between these measurements and the correlation of Krauss et al. [1]. The correlation of Krauss et al. [1] underpredicts the higher-density thermal conductivity data by 5 % to 10 %.

Figure 3. Relative deviations between steady-state thermal conductivity measurements with anodized tantalum hot wires and the correlation of Krauss et al. [1].

4. Transient Results With Bare Platinum Wires

The round-robin sample was filled into the measurement cell from the vapor phase of the sample cylinder. For liquid-phase measurements, the sample cylinder was heated to allow the sample to condense into the cooler measurement cell. An air-driven diaphragm compressor was used to attain pressures of up to 70 MPa as needed in the measurement cell. Since electrical conduction and polarization are known problems with transient hot-wire measurements on alternative refrigerants, it is preferable to electrically insulate the hot wires from the refrigerant sample. These low-temperature measurements used a bare platinum wire since the round-robin sample was found to have a low electrical conductivity, and the conductivity decreases with decreasing temperature. No polarization voltage was applied during these measurements. The platinum wire is significantly smaller (12.7 μ m diameter) than the tantalum hot wire used in the high-temperature cell so that it is better suited for measurements of dilute vapor (less than 1 MPa) by use of the transient technique. The correction for finite wire diameter is reduced by about a factor of 4 since the platinum wire is about half the diameter of the tantalum wire. Extreme care must be used during selection of the start and end times of the transient experiments in the dilute vapor phase where corrections for both the finite wire radius and the influence of the outer cell wall are more significant [2, 3]. The start of the data-analysis period must be long enough to minimize the effects of the finite wire radius, while the end of this period must be selected so that there is no fluid convection and no penetration of the heated fluid region to the outer cell wall [2, 3].

The temperature of the platinum hot-wire cell (low-temperature apparatus [2]) was maintained with an electrically heated cryostat that was controlled with feedback from differential thermocouples mounted between the measurement cell and the outer radiation shield that enclosed the measurement cell. The cell was maintained slightly warmer at the top to suppress the onset of natural convection of the R134a in the cavities surrounding the hot wires. The densities reported in the tables were calculated using the internationally accepted Helmholtz equation of state for R134a [23]. The cell temperature was measured using a reference platinum resistance thermometer with an uncertainty of 4 mK at a level of confidence of 95 %. The cell pressure was measured with a quartz pressure transducer with an uncertainty of 0.007 MPa at a level of confidence of 95 %. The relative uncertainty (95 % level of confidence) of the reported measurements of thermal conductivity is estimated to be 0.5 % in the liquid phase; 1 % in the vapor and gas at pressures above 1 MPa; and, 3 % in the vapor and gas at pressures below 1 MPa and in the critical region.

A total of 293 measurements are reported for the compressed liquid phase of R134a in Table 6 at temperatures from 210 K to 290 K. A total of 417 measurements are reported for the subcritical vapor phase of R134a in Table 7 at temperatures from 240 K to 340 K. Figure 4 shows the relative deviations between these measurements in the vapor phase and the correlation of Krauss et al. [1]. Figure 5 shows the relative deviations between these measurements in the liquid phase and the correlation of Krauss et al. [1]. The correlation of Krauss et al. [1] overpredicts the low-temperature dilute-gas thermal conductivity data but does quite well for the thermal conductivity of the low-temperature compressed liquid.

Figure 4. Relative deviations between transient thermal conductivity measurements with bare platinum hot wires on the vapor phase and the correlation of Krauss et al. [1].

Figure 5. Relative deviations between transient thermal conductivity measurements with bare platinum hot wires on the liquid phase and the correlation of Krauss et al. [1].

5. Comparision With Other Measurements On The Round-Robin Sample

The plots in the previous sections show systematic deviations relative to the correlation of Krauss et al. [1]. The largest deviations occur for transient measurements of the dilute vapor, where corrections for the finite wire radius and penetration of the thermal wave to the outer boundary are large. At these low densities, the steady-state measurements are considered more reliable since corrections are not required. The transient deviations also increase at higher temperatures and at densities approaching the critical density. These deviations are likely due to problems in the background correlation of Krauss et al. [1]. In this section, the present results will be compared with other transient hot-wire measurements of thermal conductivity and with dynamic light-scattering measurements of thermal diffusivity on the same round-robin sample [24] of R134a.

The thermal conductivity of the saturated vapor phase of the round-robin sample of R134a has been measured by Assael et al. [25] with anodized-tantalum hot wires 15 μ m in diameter. The thermal diffusivity of the saturated vapor phase of the round-robin sample of R134a has been measured by Kraft and Leipertz [26] with the dynamic-light-scattering technique. These thermal diffusivity values were used to obtain estimates for the thermal conductivity with the relation $\lambda = a\rho C_p$ with the fluid density ρ and isobaric specific heat C_p calculated from the equation of state of Krauss et al. [1]. The relative deviations between the measurements of the saturated vapor phase and the correlation of Krauss et al. [1] are shown in Figure 6. The four data points obtained by use of the dynamic-light-scattering technique near 360 K are systematically 4 % lower than the other data. Since an equation of state was used to derive the thermal conductivity from the measured thermal diffusivity data, the uncertainty of the equation of state [1], about 3 to 5 % for C_p , must be considered as a potential error source. Considering this source of error, all of the hot-wire and light scattering measurements are withing their estimated mutual uncertainties for this sample of R134a. All of the transient hot-wire measurements require a temperature gradient, which can drive free-convective heat transfer as well as thermal-radiative heat transfer. The dynamic-light-scattering measurements do not require a macroscopic temperature gradient so they are free from these potential measurement errors. Agreement between light-scattering and transient hot-wire measurements near the critical point indicates that effects due to free convection and thermal radiation were not significant during the transient hot-wire measurements.

The thermal conductivity of the saturated liquid phase of the round-robin sample of R134a has been measured by Assael et al. [25] with anodized-tantalum hot wires 25 μ m in diameter, Gurova et al. [27] with bare platinum hot wires 7 μ m in diameter, and Nagasaka [28] with bare platinum hot wires 10 μ m in diameter. The thermal diffusivity of the saturated liquid phase of the round-robin sample of R134a has been measured by Kraft and Leipertz [26] with the dynamic-light-scattering technique. These thermal diffusivity values were used to obtain estimates for the thermal conductivity with the relation $\lambda = a\rho C_p$ with ρ and C_p calculated using the equation of state of Krauss et al. [1]. The relative deviations between the measurements of the saturated liquid phase and the correlation of Krauss et al. [1] are shown in Figure 7. The figure illustrates that over this temperature region, good agreement is obtained with electrically insulated, anodized tantalum hot wires (Assael et al. [25] and NIST), polarized bare platinum hot wires (Gurova et al. [27]), and bare platinum hot wires (Nagasaka [28] and NIST). Furthermore, there is good agreement, within mutual uncertainty, between transient hot-wire measureements and the dynamic-light-scattering results (Kraft and Leipertz [26]). The baseline correlation of Krauss et al. [1] seems to extrapolate well at temperatures below its lower recommended limit of 240K but is systematically low at temperatures above 340 K. It is useful to note that the same trend of systematic deviations is apparent in Figure 6 for the saturated vapor as the critical density is approached, indicating that improvements in the correlation are possible with the new data.

Figure 6. Relative deviations between the measurements of the saturated vapor phase of the round-robin sample and the correlation of Krauss et al. [1].

Figure 7. Relative deviations between the measurements of the saturated liquid phase of the round-robin sample and the correlation of Krauss et al. [1].

6. Thermal Conductivity Correlation With Simplified Crossover Theory

The baseline correlation of Krauss et al. [1] exhibits some significant deviations at temperatures above 390 K and at densities near the critical density relative to the present data. Therefore an improved correlation is developed here, based on thermodynamic properties calculated with the reference equation of state of Tilner-Roth and Baehr [23]. The thermal conductivity is assumed to be the sum of three terms:

$$\lambda(T,\rho) = \lambda_0(T) + \lambda_r(T,\rho) + \lambda_c(T,\rho). \tag{1}$$

The dilute-gas contribution is represented by a linear empirical function of temperature:

$$\lambda_0(T) = a_0 + a_1 T. \tag{2}$$

The residual contribution is an empirical polynomial in reduced density:

$$\lambda_r(T,\rho) = b_1 \left(\frac{\rho}{\rho_c}\right) + b_2 \left(\frac{\rho}{\rho_c}\right)^2 + b_3 \left(\frac{\rho}{\rho_c}\right)^3 + b_4 \left(\frac{\rho}{\rho_c}\right)^4. \tag{3}$$

The critical enhancement for thermal conductivity uses the simplified model presented by Olchowy and Sengers [29]:

$$\lambda_c(T,\rho) = \rho C_p \frac{R_0 k T}{6\pi \eta \xi} \left(\tilde{\Omega} - \tilde{\Omega}_0 \right), \tag{4}$$

where the isobaric heat capacity C_p is calculated from the equation of state of Tillner-Roth and Baehr [23], and the viscosity η is computed using the correlation of Klein et al. [30]. R_0 is a universal amplitude, and k is Boltzmann's constant. The correlation length ξ is

$$\xi = \xi_0 \left[\frac{1}{\Gamma} \left(\chi^*(T, \rho) - \chi^*(T_{ref}, \rho) \right) \right], \tag{5}$$

where the dimensionless susceptibility

$$\chi^*(T,\rho) = \frac{\rho P_c}{\rho_c^2} \left(\frac{\partial \rho}{\partial P}\right)_T \tag{6}$$

is evaluated at the temperature and density of interest and also at an arbitrary reference temperature T_{ref} , here set to 1.5 times the critical temperature. The crossover functions Ω and Ω_0 are given by

$$\Omega = \frac{2}{\pi} \left[\left(\frac{C_p - C_v}{C_p} \right) \tan^{-1}(q_d \xi) + \frac{C_v}{C_p} q_d \xi \right]$$
 (7)

and

$$\Omega_0 = \frac{2}{\pi} \left[1 - \exp\left[\frac{-1}{(q_d \xi)^{-1} + \frac{1}{3} (q_d \xi \rho_c / \rho)^2} \right] \right]. \tag{8}$$

In this model for the critical enhancement, the modified effective cutoff wave number q_d and the critical amplitudes ξ_0 and Γ are the only fluid-specific parameters. The remaining parameters are universal (although different interpretations sometimes result in slightly different numerical values) and are given in Table 1. Figure 8 shows the relative deviations of the measurements from this simplified correlation with both the transient and steady-state techniques on the round-robin sample of R134a.

The present data does not cover the higher-pressure range of the compressed liquid reported in earlier measurements on R134a at NIST [21]. Thus, these earlier measurements provide a good check of the new correlation. It was found that there was an error in the calibration of the resistance of the short hot wire as a function of temperature that affected the thermal conductivity values that were previously reported for R134a [21] at temperatures above 340 K. This calibration error has been corrected with the updated thermal conductivity values listed in Table 8. Figure 9 shows the relative deviations of the earlier measurements with the transient hot-wire technique on a different sample of R134a compared to the present correlation. The agreement is quite good, indicating that sample purity was not a problem during the previous measurements on R134a.

This correlation requires density, compressibility, specific heat, and viscosity information that can be calculated with the NIST database REFPROP 6. This thermal conductivity correlation for R134a forms the basis of REFPROP 6.01 [31]. This database should be accessed both for an implementation of this correlation and to calculate test values to validate alternative implementations of this correlation.

Table 1. Parameters in the correlation for the thermal conductivity of R134a.

Parameter	Value	Units	Interpretation
a_0	-1.05248×10^{-2}	$W \cdot m^{-1} \cdot K^{-1}$	empirical parameter
a_1	1.64602×10^{-2}	$W \cdot m^{-1} \cdot K^{-1}$	empirical parameter
b_1	3.77406×10^{-3}	$W \cdot m^{-1} \cdot K^{-1}$	empirical parameter
b_2	1.05342×10^{-2}	$W \cdot m^{-1} \cdot K^{-1}$	empirical parameter
b_3	-2.95279×10^{-3}	$W \cdot m^{-1} \cdot K^{-1}$	empirical parameter
b_4	3.04691×10^{-3}	$W \cdot m^{-1} \cdot K^{-1}$	empirical parameter
q_d	1.89202×10^9	m^{-1}	effective cutoff wave number
ξ_0	1.94×10^{-10}	m	critical amplitude
Γ	0.0496	[-]	amplitude
T_{ref}	561.411	K	arbitrary reference temperature
P_c	4059.28	kPa	critical pressure
$ ho_c$	5.017053	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	critical density
ν	0.63	[-]	universal exponent
γ	1.239	[-]	universal exponent
R_0	0.63	[-]	universal amplitude

The support of the U.S. Department of Energy, Office of Building Technologies for this work on the thermophysical properties of alternative refrigerant mixtures is gratefully acknowledged. The data presented here will be used for further development of the NIST thermophysical-property database for alternative refrigerant mixtures—REFPROP.

Figure 8. Relative deviations between the thermal conductivity measurements on the round-robin sample of R134a and the simplified correlation developed here.

Figure 9. Relative deviations between the thermal conductivity measurements on the previous NIST sample of R134a [21] and the simplified correlation developed here.

7. References

- [1] Krauss, R.; Leuttmer-Strathmann, J.; Sengers, J.V.; Stephan, K. Transport properties of 1,1,1,2-tetrafluoroethane (R134a), *Int. J. Thermophys.* 14, 951 (1993).
- [2] Roder, H.M. A transient hot wire thermal conductivity apparatus for fluids, J. Res. Nat. Bur. Stand. (U.S.) 86, 457 (1981).
- [3] Perkins, R.A.; Roder, H.M.; Nieto de Castro C.A. A high temperature transient hot-wire thermal conductivity apparatus for fluids, *J. Res. Natl. Inst. Stand. Technol. (U.S.)* **96**, 247 (1991).
- [4] Perkins, R.A.; Laesecke, A.; Nieto de Castro, C.A. Polarized transient hot-wire thermal conductivity measurements, *Fluid Phase Equilib.* **80**, 275 (1992).
- [5] Roder, H.M. The thermal conductivity values of oxygen, J. Res. Nat. Bur. Stand. (U.S.) 86, 457 (1982).
- [6] Roder, H.M. Experimental thermal conductivity values for hydrogen, methane, ethane, and propane, *Nat. Bur. Stand. Interagency Report 84-3006* (1984).
- [7] Roder, H.M. The thermal conductivity of hydrogen for temperatures between 78 and 310 K with pressures to 70 MPa, *Int. J. Thermophys.* **5**, 323 (1984).
- [8] Roder, H.M. The thermal conductivity of methane for temperatures between 110 and 310 K with pressures to 70 MPa, *Int. J. Thermophys.* **6**, 119 (1985).
- [9] Roder, H.M.; Nieto de Castro, C.A. The thermal conductivity of ethane for temperatures between 110 and 325 K at pressures to 70 MPa, *High Temp. High Press.* 17, 453 (1985).
- [10] Roder, H.M.; Friend, D.G. Experimental thermal conductivity values for mixtures of methane and ethane, *Nat. Bur. Stand. Interagency Report 85-3024* (1985).
- [11] Roder, H.M.; Friend D.G. The thermal conductivity of methane-ethane mixtures at temperatures between 140 and 330 K and at pressures to 70 MPa, *Int. J. Thermophys.* 6, 607 (1985).
- [12] Roder, H.M.; Nieto de Castro, C.A. The thermal conductivity of liquid propane, *J. Chem. Eng. Data* 17, 12 (1982).
- [13] Roder, H.M.; Perkins, R.A.; Nieto de Castro, C.A. Experimental thermal conductivity, thermal diffusivity, and specific heat values of argon and nitrogen, *Natl. Inst. Stand. Technol. Interagency Report* 88-3902 (1988).
- [14] Nieto de Castro, C.A.; Taxis, B.; Roder, H.M.; Wakeham, W.A. Thermal diffusivity measurement by the transient hot-wire technique: A reappraisal, *Int. J. Thermophys.* **9**, 293 (1988).
- [15] Perkins, R.A.; Roder, H.M.; Friend, D.G.; Nieto de Castro, C.A. The thermal conductivity and heat capacity of fluid nitrogen, *Physica* A173, 332 (1991).
- [16] Roder, H.M.; Nieto de Castro, C.A.; Mardolcar, U.V. The thermal conductivity of liquid argon for temperatures between 110 and 140 K with pressures to 70 MPa, *Int. J. Thermophys.* **8**, 521 (1987).
- [17] Roder, H.M.; Perkins, R.A.; Nieto de Castro, C.A. The thermal conductivity and heat capacity of gaseous argon, *Int. J. Thermophys.* **10**, 1141 (1989).
- [18] Perkins, R.A.; Friend, D.G.; Roder, H.M.; Nieto de Castro, C.A. Thermal conductivity surface of argon: A fresh analysis, *Int. J. Thermophys.* 12, 965 (1991).

- [19] Perkins, R.A.; Cieszkiewicz, M.T. Experimental thermal conductivity, thermal diffusivity, and specific heat values for mixtures of nitrogen, oxygen, and argon, *Natl. Inst. Stand. Technol. Interagency Report* 3961 (1991).
- [20] Perkins, R.A.; Roder, H.M. Experimental thermal conductivity and thermal diffusivity values for neon and mixtures of neon and nitrogen, *Natl. Inst. Stand. Technol. Interagency Report* 5088 (1999).
- [21] Laesecke, A.; Perkins, R.A.; Nieto de Castro, C.A. Thermal conductivity of R134a, *Fluid Phase Eq.* **80**, 263 (1992).
- [22] Laesecke, A.; Perkins, R.A.; Howley, J.B. An improved correlation for the thermal conductivity of HCFC123 (2,2-dichloro-1,1,1-trifluoroethane), *Int. J. Refrig.* 19, 231 (1996).
- [23] Tillner-Roth, R.; Baehr, H. D. An international standard formulation for the thermodynamic properties of 1,1,1,2-tetrafluoroethane(HFC-134A) for temperatures from 170 K to 455 K and pressures up to 70 MPa, *J. Phys. Chem. Ref. Data* 23, 657 (1994).
- [24] Assael, M.J.; Nagasaka, Y.; Nieto de Castro, C.A.; Perkins, R.A.; Strom, K.; Vogel, E.; Wakeham, W.A. Status of the round robin on the transport properties of R134a, *Int. J. Thermophys.* 16, 63 (1995).
- [25] Assael, M.J.; Malamataris, N.A.; Karagiannidis, L. Measurements of the thermal conductivity of refrigerants in the vapor phase, *Int. J. Thermophys.* 18, 341 (1997).
- [26] Kraft, K.; Leipertz, A. Thermal diffusivity and sound velocity of round-robin R134a, *Fluid Phase Equil.* 125, 245 (1996).
- [27] Gurova, A.N.; Mardolcar, U.V.; Nieto de Castro, C.A. The thermal conductivity of liquid 1,1,1,2-tetrafluoroethane (HFC 134a), *Int. J. Thermophys.* 18, 1077 (1997).
- [28] Nagasaka, Y. Personal communication (Keio University, Yokohama, Japan).
- [29] Olchowy, G.A.; Sengers, J.V. A simplified representation for the thermal conductivity of fluids in the critical region, *Int. J. Thermophys.* **10**, 417 (1989).
- [30] Klein, S.A.; McLinden, M.O.; Laesecke, A. An improved extended corresponding states method for estimation of viscosity of pure refrigerants and mixtures, *Int. J. Refrig.* **20**, 208 (1997).
- [31] McLinden, M.O.; Klein, S.A.; Lemmon, E.W.; Peskin, A.P. NIST thermodynamic and transport properties of refrigerants and refrigerant mixtures–REFPROP version 6.01, *Natl. Inst. Stand. Technol. SRD* no. 23, 1999.

8. Data Tables

Table 2. Thermal conductivity of R134a in the compressed liquid phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires.

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
		ure = 300 K	201.262	11.0105	0.00014	0.000	200.040
11001	2.498	0.21030	301.263	11.8137	0.08214	0.002	300.049
11002	2.497	0.21029	301.271	11.8134	0.08163	0.002	300.059
11003	2.499	0.23746	301.438	11.8074	0.08105	0.001	300.066
11004	2.497	0.23744	301.431	11.8074	0.08111	0.002	300.064
11005	2.498	0.26628	301.597	11.8014	0.08174	0.002	300.063
11006	2.498	0.26628	301.600	11.8013	0.08112	0.002	300.067
11007	2.498	0.29678	301.780	11.7946	0.08039	0.003	300.066
11008	2.497	0.29677	301.767	11.7951	0.08053	0.003	300.061
11009	2.498	0.32894	301.969	11.7876	0.08057	0.001	300.069
11010	2.499	0.32892	301.955	11.7882	0.08100	0.002	300.062
11011	2.499	0.36275	302.155	11.7808	0.08095	0.001	300.061
11012	2.499	0.36274	302.155	11.7808	0.08011	0.001	300.065
11013	2.500	0.39830	302.363	11.7731	0.08157	0.002	300.065
11014	2.501	0.39828	302.361	11.7733	0.08050	0.001	300.061
11015	2.500	0.43546	302.573	11.7653	0.08022	0.001	300.055
11016	2.498	0.43548	302.580	11.7650	0.07967	0.001	300.066
11017	2.500	0.47438	302.807	11.7566	0.08011	0.001	300.061
11018	2.498	0.47432	302.795	11.7569	0.08006	0.001	300.055
11019	2.500	0.51486	303.047	11.7476	0.08037	0.001	300.062
11020	2.501	0.51490	303.046	11.7477	0.07996	0.001	300.067
11021	2.615	0.21022	301.127	11.8254	0.08170	0.001	299.916
11022	2.613	0.21020	301.124	11.8254	0.08132	0.002	299.921
11023	2.609	0.23734	301.292	11.8190	0.08062	0.001	299.926
11024	2.608	0.23735	301.281	11.8194	0.08052	0.002	299.923
11025	2.605	0.26617	301.460	11.8127	0.08033	0.001	299.926
11026	2.602	0.26619	301.452	11.8128	0.08079	0.002	299.923
11027	2.600	0.29666	301.635	11.8059	0.08096	0.001	299.926
11028	2.598	0.29665	301.626	11.8061	0.08089	0.002	299.923
11029	2.595	0.32882	301.820	11.7988	0.08025	0.001	299.925
11030	2.595	0.32881	301.818	11.7989	0.08034	0.001	299.928
11031	2.595	0.36264	302.020	11.7914	0.07995	0.001	299.928
11032	2.593	0.36263	302.012	11.7916	0.07969	0.002	299.927
11033	2.591	0.39812	302.221	11.7837	0.07985	0.001	299.926
11034	2.588	0.39814	302.211	11.7839	0.07937	0.002	299.922
11036	2.590	0.43530	302.435	11.7757	0.07952	0.001	299.927
11037	2.591	0.47415	302.661	11.7674	0.08014	0.001	299.923
11038	2.587	0.47415	302.652	11.7675	0.08004	0.001	299.920
11039	2.583	0.51467	302.897	11.7582	0.07938	0.001	299.922
11040	2.581	0.51471	302.890	11.7583	0.07985	0.002	299.922
11041	2.132	0.21016	301.098	11.7986	0.08136	0.002	299.893

Table 2. Thermal conductivity of R134a in the compressed liquid phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	${ m W\cdot m^{-1}}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	777 _1 Tr_1	;	K
11042	2.132	0.23738	301.260	11.7926	0.08066	0.002	299.898
11043	2.133	0.26619	301.436	11.7861	0.07990	0.001	299.907
11044	2.133	0.29669	301.616	11.7794	0.08047	0.002	299.909
11045	2.134	0.32882	301.801	11.7725	0.07949	0.002	299.910
11046	2.137	0.36263	302.007	11.7649	0.07901	0.001	299.914
11048	2.135	0.43531	302.427	11.7491	0.07905	0.001	299.913
11049	2.139	0.47420	302.663	11.7404	0.07996	0.001	299.917
11050	2.137	0.51470	302.892	11.7316	0.08063	0.001	299.913
11051	1.819	0.21014	301.094	11.7804	0.08105	0.001	299.890
11052	1.818	0.23734	301.260	11.7740	0.08139	0.002	299.900
11053	1.820	0.26616	301.431	11.7677	0.08018	0.002	299.901
11054	1.822	0.29665	301.624	11.7605	0.07968	0.002	299.916
11055	1.826	0.32881	301.806	11.7539	0.08043	0.002	299.910
11057	1.824	0.39814	302.204	11.7387	0.07924	0.002	299.906
11058	1.825	0.43531	302.433	11.7300	0.07998	0.001	299.915
11059	1.827	0.47415	302.655	11.7217	0.07986	0.003	299.914
11060	1.822	0.51470	302.888	11.7126	0.07875	0.002	299.912
11061	1.492	0.21013	301.086	11.7611	0.08070	0.002	299.883
11062	1.493	0.23731	301.259	11.7546	0.08047	0.002	299.897
11064	1.493	0.29664	301.607	11.7413	0.07862	0.001	299.899
11065	1.492	0.32880	301.791	11.7342	0.07914	0.002	299.899
11066	1.494	0.36261	301.990	11.7267	0.07875	0.001	299.898
11067	1.493	0.39811	302.204	11.7184	0.07960	0.001	299.902
11068	1.495	0.43528	302.425	11.7100	0.07922	0.001	299.904
11069	1.494	0.47417	302.650	11.7014	0.07964	0.002	299.905
11070	1.495	0.51471	302.891	11.6921	0.07859	0.002	299.904
11071	1.238	0.21011	301.070	11.7462	0.07968	0.001	299.870
11072	1.239	0.23732	301.237	11.7399	0.07984	0.001	299.879
11073	1.239	0.26612	301.414	11.7331	0.08082	0.001	299.890
11074	1.240	0.29659	301.600	11.7260	0.07983	0.001	299.894
11075	1.241	0.32879	301.784	11.7190	0.07954	0.002	299.896
11076	1.242	0.36258	301.983	11.7114	0.07839	0.001	299.891
11077	1.242	0.39810	302.200	11.7030	0.07928	0.001	299.900
11080	1.245	0.51469	302.884	11.6766	0.07863	0.001	299.898
11091	0.824	0.21013	301.071	11.7206	0.07978	0.002	299.869
11092	0.824	0.23732	301.249	11.7137	0.07978	0.001	299.885
11093	0.824	0.26615	301.422	11.7069	0.07946	0.002	299.893
11094	0.823	0.29661	301.604	11.6997	0.07906	0.001	299.896
11095	0.824	0.32874	301.791	11.6925	0.08031	0.002	299.892
11096	0.824	0.36259	301.996	11.6845	0.07901	0.001	299.899
11097	0.824	0.39809	302.201	11.6764	0.07862	0.001	299.894
11098	0.824	0.43524	302.419	11.6678	0.07778	0.002	299.894
11099	0.826	0.47414	302.652	11.6587	0.07878	0.001	299.896

Table 2. Thermal conductivity of R134a in the compressed liquid phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	${ m W\cdot m^{-1}}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
11100	0.826	0.51466	302.884	11.6496	0.07866	0.001	299.891
11102	0.752	0.23727	301.233	11.7098	0.07964	0.001	299.873
11103	0.754	0.26611	301.410	11.7030	0.07920	0.001	299.882
11104	0.754	0.29657	301.585	11.6961	0.07967	0.002	299.879
11105	0.753	0.32873	301.784	11.6882	0.07991	0.001	299.888
11106	0.754	0.36257	301.978	11.6807	0.07969	0.003	299.888
11107	0.754	0.39807	302.195	11.6721	0.07812	0.002	299.893
11108	0.755	0.43523	302.412	11.6636	0.07825	0.001	299.888
Nominal	Temperat	ure = 310 K					
7031	2.730	0.21662	310.652	11.4699	0.07919	0.002	309.398
7032	2.731	0.24463	310.822	11.4633	0.07935	0.002	309.398
7033	2.728	0.27433	311.010	11.4556	0.07840	0.002	309.410
7034	2.721	0.30576	311.192	11.4479	0.07857	0.001	309.405
7035	2.719	0.33892	311.399	11.4395	0.07805	0.001	309.412
7036	2.723	0.37378	311.609	11.4314	0.07755	0.001	309.411
7037	2.725	0.41037	311.826	11.4228	0.07758	0.001	309.412
7039	2.722	0.48873	312.292	11.4039	0.07701	0.001	309.412
7040	2.721	0.53049	312.543	11.3938	0.07662	0.001	309.409
7042	2.145	0.24461	310.837	11.4212	0.07888	0.002	309.397
7043	2.147	0.27431	311.011	11.4143	0.07852	0.002	309.395
7044	2.147	0.30575	311.204	11.4065	0.07778	0.001	309.399
7045	2.142	0.33887	311.404	11.3980	0.07749	0.001	309.404
7046	2.147	0.37374	311.614	11.3898	0.07653	0.001	309.403
7047	2.146	0.41035	311.833	11.3807	0.07620	0.001	309.405
7048	2.139	0.44866	312.067	11.3706	0.07624	0.001	309.409
7049	2.144	0.48872	312.315	11.3608	0.07706	0.001	309.412
7050	2.145	0.53049	312.566	11.3505	0.07648	0.001	309.409
7051	1.559	0.21658	310.662	11.3855	0.07840	0.002	309.382
7052	1.560	0.24458	310.835	11.3784	0.07815	0.002	309.395
7053	1.562	0.27430	311.024	11.3707	0.07739	0.002	309.398
7054	1.562	0.30571	311.213	11.3628	0.07747	0.001	309.397
7055	1.564	0.33885	311.416	11.3545	0.07705	0.001	309.399
7056	1.564	0.37373	311.625	11.3457	0.07682	0.001	309.403
7057	1.565	0.41032	311.850	11.3363	0.07644	0.001	309.406
7058	1.568	0.44864	312.080	11.3268	0.07703	0.002	309.406
7059	1.569	0.48870	312.318	11.3169	0.07591	0.001	309.404
7060	1.570	0.53051	312.575	11.3061	0.07619	0.001	309.406
7061	1.292	0.21657	310.666	11.3653	0.07815	0.002	309.386
7062	1.293	0.24460	310.843	11.3578	0.07751	0.002	309.395
7063	1.294	0.27428	311.023	11.3503	0.07705	0.002	309.391
7064	1.296	0.30572	311.226	11.3419	0.07728	0.001	309.403
7065	1.296	0.33887	311.415	11.3339	0.07659	0.001	309.397
7066	1.296	0.37372	311.632	11.3247	0.07670	0.002	309.403

Table 2. Thermal conductivity of R134a in the compressed liquid phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
7069	1.295	0.48868	312.335	11.2947	0.07606	0.001	309.406
7070	1.295	0.53047	312.586	11.2839	0.07684	0.002	309.410
7072	1.204	0.24456	310.838	11.3512	0.07789	0.002	309.388
7073	1.208	0.27428	311.018	11.3439	0.07711	0.002	309.389
7074	1.211	0.30570	311.214	11.3359	0.07888	0.001	309.395
7075	1.213	0.33883	311.417	11.3274	0.07687	0.001	309.396
7076	1.215	0.37372	311.628	11.3185	0.07623	0.001	309.400
7077	1.215	0.41031	311.849	11.3092	0.07701	0.001	309.398
7078	1.214	0.44860	312.084	11.2990	0.07587	0.001	309.402
7079	1.214	0.48867	312.325	11.2886	0.07541	0.001	309.400
7080	1.214	0.53046	312.575	11.2779	0.07668	0.001	309.396
7081	1.113	0.21654	310.638	11.3527	0.07841	0.004	309.366
7082	1.113	0.24455	310.820	11.3450	0.07767	0.001	309.371
7083	1.114	0.27426	311.007	11.3372	0.07757	0.001	309.378
7084	1.114	0.30571	311.208	11.3286	0.07693	0.001	309.389
7085	1.115	0.33881	311.396	11.3206	0.07679	0.001	309.382
7086	1.114	0.37366	311.609	11.3114	0.07631	0.001	309.383
7087	1.115	0.41030	311.837	11.3018	0.07609	0.001	309.387
7088	1.116	0.44861	312.062	11.2921	0.07677	0.001	309.388
7089	1.115	0.48871	312.313	11.2813	0.07471	0.001	309.395
7090	1.115	0.53048	312.567	11.2703	0.07537	0.001	309.391
7091	0.991	0.21654	310.632	11.3436	0.07775	0.002	309.356
7092	0.993	0.24454	310.813	11.3360	0.07826	0.002	309.368
7093	0.993	0.27425	311.002	11.3279	0.07749	0.002	309.376
7094	0.993	0.30568	311.187	11.3200	0.07701	0.001	309.372
7095	0.993	0.33882	311.391	11.3113	0.07600	0.001	309.377
7096	0.993	0.37367	311.593	11.3026	0.07837	0.002	309.374
7097	0.993	0.41028	311.826	11.2925	0.07631	0.001	309.383
7098	0.993	0.44857	312.066	11.2821	0.07547	0.001	309.388
Nominal	Temperatu	re = 320 K					
7101	4.023	0.22317	320.713	11.1590	0.07530	0.002	319.383
7102	4.023	0.25203	320.902	11.1512	0.07479	0.002	319.395
7103	4.025	0.28265	321.093	11.1434	0.07504	0.002	319.396
7104	4.021	0.31499	321.285	11.1351	0.07466	0.001	319.391
7105	4.024	0.34917	321.496	11.1266	0.07428	0.001	319.392
7106	4.022	0.38507	321.717	11.1173	0.07478	0.001	319.395
7107	4.017	0.42276	321.949	11.1072	0.07432	0.001	319.391
7108	4.015	0.46225	322.198	11.0966	0.07373	0.001	319.400
7109	4.012	0.50349	322.445	11.0860	0.07383	0.001	319.395
7110	4.010	0.54654	322.719	11.0743	0.07365	0.001	319.398
7111	3.408	0.22312	320.709	11.1092	0.07473	0.002	319.377
7112	3.412	0.25199	320.898	11.1014	0.07517	0.002	319.381
7113	3.412	0.28260	321.089	11.0933	0.07423	0.001	319.384

Table 2. Thermal conductivity of R134a in the compressed liquid phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$\mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1}$		K
7114	3.413	0.31497	321.292	11.0848	0.07434	0.001	319.389
7115	3.413	0.34911	321.508	11.0755	0.07394	0.003	319.395
7116	3.411	0.38505	321.725	11.0661	0.07376	0.001	319.389
7117	3.414	0.42271	321.959	11.0563	0.07365	0.001	319.390
7118	3.413	0.46218	322.200	11.0458	0.07328	0.001	319.396
7119	3.415	0.50347	322.466	11.0345	0.07280	0.001	319.398
7120	3.417	0.54648	322.723	11.0236	0.07310	0.001	319.390
7121	2.704	0.22310	320.714	11.0488	0.07392	0.004	319.361
7122	2.701	0.25196	320.902	11.0402	0.07378	0.002	319.374
7123	2.701	0.28257	321.104	11.0313	0.07305	0.001	319.384
7124	2.703	0.31494	321.309	11.0224	0.07380	0.001	319.384
7125	2.703	0.34908	321.519	11.0131	0.07374	0.001	319.385
7126	2.702	0.38500	321.746	11.0029	0.07330	0.001	319.385
7127	2.704	0.42272	321.984	10.9924	0.07313	0.001	319.389
7128	2.704	0.46219	322.232	10.9814	0.07338	0.001	319.392
7129	2.703	0.50344	322.492	10.9697	0.07251	0.001	319.390
7130	2.706	0.54648	322.758	10.9579	0.07243	0.001	319.388
7131	1.980	0.22310	320.746	10.9816	0.07407	0.002	319.359
7132	1.982	0.25195	320.929	10.9733	0.07297	0.002	319.365
7133	1.980	0.28256	321.134	10.9637	0.07298	0.001	319.375
7134	1.981	0.31494	321.337	10.9545	0.07272	0.001	319.376
7135	1.980	0.34908	321.555	10.9443	0.07269	0.001	319.379
7136	1.980	0.38502	, 321.778	10.9340	0.07291	0.001	319.381
7138	1.984	0.46217	322.267	10.9116	0.07227	0.001	319.377
7139	1.986	0.50339	322.533	10.8994	0.07155	0.001	319.387
7140	1.987	0.54648	322.793	10.8872	0.07130	0.001	319.376
7141	1.448	0.22308	320.748	10.9303	0.07276	0.002	319.355
7142	1.446	0.25196	320.924	10.9217	0.07299	0.001	319.354
7143	1.447	0.28256	321.127	10.9123	0.07205	0.002	319.363
7144	1.449	0.31494	321.342	10.9022	0.07242	0.001	319.373
7145	1.444	0.34906	321.556	10.8915	0.07205	0.001	319.374
7146	1.449	0.38499	321.784	10.8811	0.07199	0.001	319.372
7147	1.450	0.42269	322.023	10.8697	0.07158	0.001	319.373
7148	1.448	0.46219	322.274	10.8573	0.07148	0.001	319.374
7149	1.449	0.50344	322.529	10.8452	0.07102	0.001	319.375
7150	1.451	0.54655	322.800	10.8321	0.07136	0.001	319.368
7151	1.338	0.22308	320.732	10.9201	0.07315	0.002	319.345
7152	1.336	0.25198	320.917	10.9111	0.07269	0.002	319.355
7153	1.334	0.28257	321.118	10.9013	0.07219	0.001	319.359
7154	1.337	0.31498	321.342	10.8909	0.07205	0.001	319.374
7155	1.333	0.34910	321.553	10.8804	0.07220	0.001	319.373
7156	1.332	0.38502	321.775	10.8696	0.07160	0.001	319.366
7157	1.335	0.42274	322.021	10.8579	0.07079	0.001	319.373

Table 2. Thermal conductivity of R134a in the compressed liquid phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}	
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K	
7158	1.336	0.46222	322.267	10.8461	0.07164	0.001	319.368	
7159	1.337	0.50349	322.528	10.8335	0.07114	0.001	319.371	
7160	1.337	0.54653	322.798	10.8202	0.07148	0.001	319.367	
Nomina	Nominal Temperature = 330 K							
7161	5.317	0.20167	330.258	10.8677	0.07306	0.002	329.001	
7162	5.318	0.22952	330.441	10.8599	0.07241	0.002	329.011	
7163	5.318	0.25918	330.633	10.8517	0.07147	0.002	329.016	
7164	5.321	0.29066	330.833	10.8433	0.07206	0.001	329.016	
7165	5.320	0.32392	331.047	10.8340	0.07165	0.001	329.020	
7166	5.320	0.35907	331.272	10.8243	0.07166	0.001	329.019	
7167	5.322	0.39597	331.505	10.8145	0.07191	0.001	329.020	
7168	5.323	0.43475	331.747	10.8041	0.07169	0.001	329.020	
7169	5.322	0.47537	332.008	10.7927	0.07120	0.001	329.021	
7170	5.324	0.51780	332.275	10.7813	0.07114	0.001	329.015	
7171	4.681	0.20162	330.239	10.8097	0.07185	0.002	328.982	
7172	4.683	0.22950	330.429	10.8015	0.07254	0.002	328.994	
7173	4.684	0.25913	330.621	10.7931	0.07117	0.002	328.998	
7174	4.685	0.29064	330.831	10.7839	0.07196	0.001	329.003	
7175	4.686	0.32393	331.046	10.7744	0.07178	0.001	329.008	
7176	4.687	0.35904	331.263	10.7648	0.07129	0.001	329.002	
7177	4.687	0.39599	331.504	10.7541	0.07136	0.001	329.005	
7178	4.688	0.43475	331.747	10.7433	0.07085	0.001	329.008	
7179	4.689	0.47535	332.007	10.7316	0.07074	0.001	329.005	
7180	4.686	0.51774	332.277	10.7193	0.07061	0.001	329.005	
7181	3.948	0.20160	330.225	10.7384	0.07158	0.002	328.969	
7182	3.949	0.22947	330.409	10.7300	0.07119	0.004	328.978	
7183	3.949	0.25912	330.598	10.7214	0.07108	0.001	328.969	
7184	3.950	0.29058	330.816	10.7114	0.07060	0.001	328.988	
7185	3.951	0.32390	331.025	10.7018	0.07066	0.001	328.980	
7186	3.951	0.35898	331.245	10.6916	0.06979	0.001	328.979	
7187	3.952	0.39594	331.478	10.6808	0.06946	0.001	328.985	
7188	3.953	0.43468	331.726	10.6693	0.06938	0.002	328.977	
7189	3.952	0.47529	331.992	10.6568	0.06989	0.001	328.978	
7190	3.953	0.51775	332.272	10.6437	0.06936	0.001	328.984	
7191	3.266	0.20159	330.212	10.6676	0.07093	0.002	328.955	
7192	3.267	0.22945	330.407	10.6583	0.07033	0.002	328.961	
7193	3.268	0.25914	330.596	10.6493	0.07046	0.001	328.963	
7194	3.268	0.29059	330.812	10.6388	0.07001	0.001	328.974	
7195	3.269	0.32387	331.035	10.6282	0.06993	0.001	328.978	
7196	3.270	0.35899	331.252	10.6177	0.06977	0.001	328.973	
7197	3.270	0.39592	331.491	10.6060	0.06953	0.001	328.970	
7198	3.270	0.43472	331.739	10.5939	0.06871	0.001	328.973	
7199	3.269	0.47530	332.005	10.5808	0.06946	0.001	328.974	

Table 2. Thermal conductivity of R134a in the compressed liquid phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	ρ_{calc}	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$;	K
7200	3.270	0.51774	332.287	10.5669	0.06900	0.001	328.979
7201	2.545	0.20160	330.208	10.5863	0.07009	0.002	328.942
7202	2.545	0.22945	330.402	10.5765	0.07000	0.002	328.952
7204	2.545	0.29062	330.810	10.5557	0.06898	0.001	328.961
7205	2.544	0.32387	331.029	10.5445	0.06893	0.001	328.961
7206	2.545	0.35900	331.255	10.5329	0.06900	0.001	328.965
7207	2.545	0.39594	331.501	10.5203	0.06915	0.001	328.964
7208	2.546	0.43471	331.760	10.5071	0.06853	0.002	328.969
7209	2.547	0.47531	332.031	10.4931	0.06875	0.001	328.972
7210	2.548	0.51776	332.307	10.4788	0.06847	0.001	328.972
7211	1.921	0.20157	330.274	10.5065	0.06902	0.002	328.942
7212	1.920	0.22945	330.463	10.4964	0.06927	0.001	328.950
7213	1.922	0.25911	330.661	10.4860	0.06861	0.002	328.951
7215	1.923	0.32386	331.094	10.4629	0.06849	0.002	328.961
7216	1.924	0.35899	331.329	10.4503	0.06800	0.001	328.967
7217	1.924	0.39591	331.573	10.4371	0.06816	0.001	328.965
7218	1.924	0.43468	331.836	10.4228	0.06758	0.001	328.971
7219	1.925	0.47531	332.098	10.4085	0.06787	0.001	328.964
7220	1.924	0.51775	332.378	10.3929	0.06795	0.001	328.966
7221	1.693	0.20156	330.263	10.4777	0.06909	0.002	328.935
7222	1.692	0.22942	330.460	10.4669	0.06850	0.001	328.946
7223	1.693	0.25908	330.664	10.4558	0.06838	0.002	328.956
7224	1.694	0.29055	330.874	10.4444	0.06824	0.001	328.958
7225	1.694	0.32385	331.092	10.4325	0.06825	0.001	328.956
7226	1.694	0.35898	331.330	10.4193	0.06703	0.001	328.962
7227	1.695	0.39590	331.566	10.4063	0.06853	0.001	328.957
7228	1.694	0.43466	331.821	10.3921	0.06717	0.001	328.959
7229	1.693	0.47530	332.107	10.3758	0.06750	0.001	328.967
7230	1.695	0.51771	332.382	10.3606	0.06712	0.001	328.965
Nominal	Temperatu	are = 340 K					
7231	5.956	0.18119	341.435	10.4339	0.06923	0.003	340.280
7232	5.956	0.20805	341.620	10.4253	0.06827	0.002	340.287
7233	5.957	0.23679	341.814	10.4163	0.06863	0.002	340.291
7234	5.957	0.26739	342.020	10.4067	0.06911	0.002	340.293
7235	5.959	0.29985	342.239	10.3966	0.06782	0.002	340.296
7237	5.960	0.37046	342.708	10.3747	0.06804	0.001	340.296
7238	5.960	0.40858	342.957	10.3629	0.06753	0.002	340.296
7239	5.961	0.44860	343.224	10.3503	0.06766	0.001	340.295
7240	5.962	0.49047	343.497	10.3374	0.06757	0.001	340.290
7241	5.253	0.18115	341.461	10.3507	0.06848	0.002	340.257
7242	5.253	0.20803	341.657	10.3411	0.06823	0.002	340.270
7243	5.254	0.23677	341.864	10.3312	0.06795	0.001	340.282
7244	5.255	0.26738	342.064	10.3214	0.06746	0.001	340.280

Table 2. Thermal conductivity of R134a in the compressed liquid phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$	0 1. 11	K
7245	5.255	0.29988 ·	342.287	10.3106	0.06797	0.001	340.286
7246	5.256	0.33424	342.515	10.2994	0.06678	0.002	340.285
7247	5.257	0.37044	342.762	10.2872	0.06729	0.002	340.292
7248	5.257	0.40861	343.016	10.2746	0.06704	0.001	340.285
7249	5.258	0.44857	343.283	10.2614	0.06702	0.001	340.290
7250	5.257	0.49046	343.563	10.2473	0.06716	0.001	340.290
7251	4.586	0.18114	341.463	10.2666	0.06772	0.002	340.250
7253	4.586	0.23678	341.857	10.2464	0.06680	0.001	340.272
7254	4.586	0.26736	342.059	10.2359	0.06647	0.001	340.268
7256	4.586	0.33420	342.516	10.2123	0.06646	0.001	340.274
7257	4.587	0.37044	342.759	10.1996	0.06684	0.001	340.273
7258	4.586	0.40856	343.003	10.1867	0.06640	0.001	340.262
7259	4.587	0.44857	343.283	10.1721	0.06632	0.001	340.272
7260	4.587	0.49048	343.559	10.1574	0.06645	0.002	340.276
7262	3.960	0.20801	341.647	10.1711	0.06641	0.002	340.248
7264	3.960	0.26735	342.060	10.1486	0.06586	0.001	340.263
7265	3.962	0.29985	342.283	10.1366	0.06630	0.001	340.264
7266	3.962	0.33419	342.515	10.1239	0.06573	0.001	340.258
7267	3.963	0.37042	342.767	10.1101	0.06537	0.001	340.262
7268	3.963	0.40852	343.009	10.0967	0.06517	0.002	340.262
7269	3.964	0.44854	343.288	10.0813	0.06482	0.001	340.263
7270	3.964	0.49045	343.582	10.0648	0.06560	0.001	340.265
7271	3.314	0.18110	341.457	10.0847	0.06621	0.002	340.237
7272	3.314	0.20799	341.644	10.0738	0.06481	0.003	340.244
7273	3.315	0.23675	341.864	10.0612	0.06537	0.001	340.258
7274	3.315	0.26735	342.075	10.0489	0.06491	0.001	340.258
7275	3.315	0.29983	342.298	10.0359	0.06489	0.004	340.262
7276	3.315	0.33420	342.533	10.0221	0.06556	0.001	340.261
7278	3.315	0.40855	343.038	9.9922	0.06422	0.001	340.258
7279	3.316	0.44856	343.319	9.9756	0.06437	0.001	340.262
7280	3.317	0.49044	343.612	9.9580	0.06450	0.001	340.269
7281	2.628	0.18110	341.458	9.9700	0.06402	0.002	340.230
7282	2.627	0.20800	341.657	9.9575	0.06445	0.002	340.241
7283	2.628	0.23672	341.860	9.9447	0.06442	0.002	340.244
7284	2.628	0.26733	342.080	9.9309	0.06404	0.004	340.253
7285	2.629	0.29983	342.298	9.9171	0.06356	0.001	340.250
7286	2.628	0.33419	342.535	9.9019	0.06419	0.002	340.253
7287	2.628	0.37040	342.782	9.8860	0.06311	0.001	340.245
7288	2.629	0.40854	343.049	9.8688	0.06308	0.002	340.253
7289	2.629	0.44852	343.311	9.8517	0.06518	0.003	340.254
7290	2.630	0.49044	343.618	9.8318	0.06398	0.002	340.256
7291	2.157	0.18111	341.458	9.8823	0.06386	0.002	340.220
7292	2.157	0.20798	341.652	9.8694	0.06351	0.002	340.229

Table 2. Thermal conductivity of R134a in the compressed liquid phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}			
point	MPa	${ m W\cdot m^{-1}}$	ĸ	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$\mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1}$		K			
7293	2.158	0.23673	341.860	9.8554	0.06441	0.002	340.239			
7294	2.157	0.26734	342.075	9.8407	0.06310	0.001	340.237			
7295	2.158	0.29981	342.295	9.8260	0.06374	0.002	340.235			
7297	2.158	0.37042	342.785	9.7924	0.06442	0.002	340.244			
7298	2.159	0.40857	343.063	9.7732	0.06298	0.001	340.246			
7300	2.160	0.49046	343.631	9.7333	0.06365	0.001	340.248			
Nominal Temperature = 350 K										
8001	5.167	0.13644	350.483	9.8666	0.06489	0.003	349.559			
8002	5.166	0.16017	350.657	9.8567	0.06482	0.002	349.559			
8003	5.165	0.18581	350.836	9.8464	0.06422	0.002	349.562			
8004	5.165	0.21340	351.029	9.8354	0.06354	0.002	349.568			
8005	5.165	0.24282	351.228	9.8240	0.06405	0.001	349.562			
8006	5.164	0.27421	351.448	9.8113	0.06343	0.002	349.562			
8007	5.163	0.30752	351.690	9.7972	0.06371	0.001	349.571			
8008	5.163	0.34274	351.927	9.7835	0.06382	0.001	349.567			
8009	5.162	0.37991	352.177	9.7689	0.06224	0.003	349.567			
8010	5.163	0.41902	352.460	9.7524	0.06352	0.002	349.568			
8011	4.588	0.13638	350.447	9.7697	0.06429	0.003	349.525			
8012	4.587	0.16014	350.618	9.7593	0.06320	0.002	349.534			
8013	4.587	0.18579	350.811	9.7476	0.06337	0.002	349.541			
8014	4.587	0.21335	351.003	9.7359	0.06325	0.002	349.538			
8015	4.586	0.24285	351.220	9.7226	0.06256	0.002	349.551			
8016	4.586	0.27422	351.440	9.7091	0.06259	0.002	349.547			
8017	4.587	0.30752	351.684	9.6942	0.06253	0.001	349.556			
8018	4.586	0.34276	351.929	9.6789	0.06272	0.001	349.554			
8019	4.586	0.37991	352.186	9.6630	0.06274	0.003	349.555			
8020	4.586	0.41901	352.462	9.6457	0.06230	0.001	349.549			
8021	4.048	0.13639	350.440	9.6680	0.06426	0.004	349.519			
8022	4.047	0.16015	350.613	9.6566	0.06328	0.003	349.527			
8023	4.048	0.18580	350.810	9.6441	0.06285	0.002	349.539			
8024	4.048	0.21335	351.002	9.6316	0.06245	0.001	349.536			
8025	4.048	0.24281	351.248	9.6155	0.06100	0.002	349.543			
8026	4.048	0.27421	351.470	9.6009	0.06221	0.001	349.541			
8027	4.048	0.30751	351.698	9.5857	0.06117	0.004	349.539			
8028	4.048	0.34276	351. 95 3	9.5688	0.06156	0.001	349.537			
8029	4.047	0.37993	352.225	9.5504	0.06166	0.001	349.544			
8030	4.048	0.41901	352.500	9.5320	0.06140	0.001	349.540			
8031	3.538	0.13637	350.480	9.5576	0.06192	0.003	349.519			
8032	3.538	0.15524	350.621	9.5477	0.06196	0.003	349.533			
8033	3.539	0.17531	350.766	9.5377	0.06112	0.002	349.532			
8034	3.540	0.19657	350.915	9.5275	0.06198	0.002	349.531			
8035	3.540	0.21910	351.079	9.5159	0.06243	0.002	349.539			
8036	3.538	0.24282	351.248	9.5035	0.06179	0.002	349.536			

Table 2. Thermal conductivity of R134a in the compressed liquid phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
8037	3.539	0.26778	351.443	9.4898	0.06147	0.002	349.549
8038	3.539	0.29395	351.625	9.4768	0.06106	0.001	349.542
8039	3.540	0.32136	351.816	9.4632	0.06176	0.001	349.542
8040	3.539	0.35003	352.020	9.4482	0.06112	0.001	349.544
8041	3.086	0.13637	350.469	9.4506	0.06139	0.003	349.512
8042	3.085	0.15523	350.617	9.4392	0.06218	0.003	349.521
8043	3.085	0.17529	350.775	9.4272	0.06076	0.002	349.532
8044	3.085	0.19657	350.934	9.4151	0.06098	0.002	349.539
8045	3.085	0.21908	351.087	9.4033	0.05983	0.002	349.539
8046	3.085	0.24283	351.267	9.3894	0.06066	0.002	349.546
8047	3.084	0.26777	351.443	9.3755	0.06078	0.002	349.538
8048	3.085	0.29397	351.635	9.3605	0.06046	0.001	349.542
8050	3.085	0.35002	352.036	9.3288	0.05975	0.001	349.543
8051	2.647	0.13637	350.478	9.3309	0.06037	0.003	349.515
8052	2.647	0.15521	350.616	9.3196	0.06062	0.002	349.525
8053	2.647	0.17529	350.785	9.3053	0.06011	0.002	349.538
8054	2.647	0.19658	350.936	9.2924	0.05952	0.002	349.543
8055	2.648	0.21908	351.090	9.2796	0.06009	0.003	349.534
8056	2.648	0.24280	351.266	9.2646	0.06004	0.001	349.536
8057	2.648	0.26779	351.457	9.2480	0.05941	0.002	349.546
8058	2.648	0.29396	351.641	9.2321	0.05990	0.002	349.544
8059	2.649	0.32137	351.835	9.2153	0.05953	0.002	349.539
8060	2.648	0.35005	352.044	9.1965	0.06025	0.002	349.546
Nominal	Temperati	ire = 360 K					
8061	5.737	0.14050	361.717	9.2928	0.06056	0.004	360.685
8062	5.737	0.15990	361.865	9.2832	0.05924	0.003	360.682
8063	5.737	0.18056	362.016	9.2732	0.05997	0.002	360.684
8064	5.737	0.20247	362.193	9.2613	0.06028	0.002	360.705
8065	5.738	0.22565	362.357	9.2507	0.06041	0.002	360.692
8066	5.738	0.25006	362.539	9.2386	0.05958	0.001	360.695
8067	5.739	0.27578	362.729	9.2260	0.05973	0.001	360.696
8068	5.739	0.30274	362.936	9.2121	0.05941	0.001	360.704
8069	5.740	0.33098	363.139	9.1985	0.05913	0.001	360.698
8070	5.740	0.36045	363.357	9.1836	0.05955	0.001	360.700
8071	5.327	0.14044	361.695	9.1972	0.06091	0.003	360.662
8072	5.328	0.15986	361.858	9.1858	0.05975	0.003	360.672
8073	5.328	0.18053	362.014	9.1749	0.05970	0.002	360.673
8074	5.328	0.20244	362.172	9.1637	0.05977	0.002	360.675
8075	5.329	0.22562	362.358	9.1506	0.05920	0.001	360.683
8076	5.329	0.25003	362.531	9.1384	0.05925	0.001	360.680
8077	5.329	0.27575	362.715	9.1251	0.05862	0.001	360.680
8078	5.328	0.30269	362.925	9.1098	0.05842	0.001	360.682
8079	5.328	0.33093	363.115	9.0959	0.05851	0.003	360.681

Table 2. Thermal conductivity of R134a in the compressed liquid phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
8080	5.327	0.36043	363.354	9.0783	0.05836	0.002	360.693
8081	4.885	0.14044	361.689	9.0806	0.05974	0.003	360.649
8082	4.885	0.15985	361.841	9.0691	0.05826	0.003	360.653
8083	4.886	0.18051	362.005	9.0565	0.05884	0.002	360.662
8084	4.886	0.20241	362.167	9.0442	0.05780	0.003	360.667
8085	4.886	0.22559	362.349	9.0303	0.05851	0.002	360.673
8086	4.886	0.25002	362.530	9.0161	0.05816	0.001	360.675
8087	4.887	0.27571	362.723	9.0011	0.05895	0.002	360.677
8088	4.886	0.30271	362.922	8.9852	0.05797	0.002	360.674
8089	4.886	0.33090	363.111	8.9704	0.05778	0.002	360.667
8090	4.887	0.36044	363.361	8.9505	0.05820	0.002	360.678
8091	4.548	0.14042	361.699	8.9797	0.05900	0.003	360.651
8092	4.548	0.15984	361.859	8.9665	0.05786	0.003	360.663
8093	4.548	0.18050	362.013	8.9538	0.05790	0.002	360.666
8094	4.548	0.20242	362.184	8.9394	0.05791	0.002	360.673
8095	4.548	0.22559	362.355	8.9253	0.05803	0.001	360.673
8096	4.548	0.25001	362.530	8.9104	0.05763	0.002	360.671
8097	4.549	0.27572	362.727	8.8940	0.05782	0.001	360.666
8098	4.549	0.30271	362.925	8.8771	0.05783	0.002	360.669
8099	4.549	0.33093	363.148	8.8578	0.05775	0.001	360.676
8100	4.549	0.36043	363.367	8.8387	0.05763	0.001	360.677
8101	4.122	0.14042	361.680	8.8362	0.05646	0.003	360.638
8102	4.122	0.15983	361.848	8.8208	0.05684	0.003	360.653
8103	4.122	0.18050	362.010	8.8057	0.05751	0.002	360.662
8104	4.122	0.20239	362.176	8.7904	0.05720	0.002	360.661
8105	4.123	0.22559	362.350	8.7740	0.05715	0.002	360.661
8106	4.122	0.25001	362.543	8.7554	0.05717	0.002	360.670
8107	4.122	0.27572	362.731	8.7374	0.05684	0.002	360.666
8108	4.122	0.30266	362.936	8.7175	0.05691	0.002	360.669
8109	4.123	0.33095	363.144	8.6973	0.05613	0.001	360.670
8110	4.122	0.36042	363.367	8.6750	0.05706	0.002	360.663
8111	3.687	0.14041	361.678	8.6573	0.05663	0.003	360.629
8112	3.687	0.15983	361.833	8.6406	0.05604	0.003	360.640
8113	3.686	0.18049	361.994	8.6230	0.05652	0.002	360.648
8114	3.686	0.20241	362.164	8.6043	0.05619	0.002	360.648
8115	3.687	0.22556	362.348	8.5838	0.05624	0.001	360.661
8116	3.687	0.25000	362.529	8.5635	0.05631	0.002	360.657
8117	3.686	0.27570	362.716	8.5419	0.05613	0.002	360.654
8118	3.687	0.30264	362.929	8.5174	0.05608	0.002	360.658
8119	3.686	0.33090	363.145	8.4919	0.05657	0.003	360.660
8120	3.683	0.36039	363.369	8.4633	0.05634	0.002	360.662
8121	3.251	0.14039	361.645	8.4289	0.05617	0.004	360.613
8122	3.251	0.15982	361.806	8.4071	0.05586	0.004	360.629

Table 2. Thermal conductivity of R134a in the compressed liquid phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run point	P_{cell} MPa	Q W·m ⁻¹	T_{exp} K	$\begin{array}{c} \rho_{calc} \\ \text{mol} \cdot \text{L}^{-1} \end{array}$	λ_{exp} W·m ⁻¹ ·K ⁻¹	STAT	T_{cell} K
8123	3.251	0.18047	361.973	8.3841	0.05577	0.002	360.638
8124	3.252	0.20239	362.138	8.3612	0.05544	0.002	360.634
8125	3.252	0.22556	362.316	8.3357	0.05586	0.002	360.636
8126	3.252	0.24997	362.499	8.3090	0.05588	0.002	360.642
8127	3.252	0.27567	362.697	8.2793	0.05571	0.002	360.640
8128	3.252	0.30263	362.902	8.2480	0.05602	0.002	360.643
8129	3.253	0.33088	363.113	8.2149	0.05631	0.002	360.643
8131	3.254	0.09743	361.325	8.4732	0.05641	0.005	360.619
8132	3.254	0.10952	361.426	8.4599	0.05532	0.004	360.628
8133	3.255	0.12230	361.548	8.4441	0.05590	0.003	360.641
8134	3.255	0.13579	361.640	8.4318	0.05546	0.003	360.639
8135	3.255	0.14997	361.756	8.4161	0.05564	0.002	360.649
8137	3.255	0.18046	361.996	8.3833	0.05566	0.002	360.653
8138	3.256	0.19678	362.102	8.3688	0.05550	0.003	360.644
8139	3.256	0.21380	362.227	8.3511	0.05574	0.001	360.638
8140	3.256	0.23152	362.370	8.3307	0.05573	0.002	360.649
Nominal	Temperatu	re = 370 K					
8141	5.278	0.09976	370.571	8.4627	0.05537	0.004	369.843
8142	5.278	0.11214	370.685	8.4520	0.05499	0.004	369.857
8143	5.278	0.12521	370.779	8.4429	0.05562	0.003	369.860
8144	5.278	0.13901	370.886	8.4327	0.05539	0.003	369.863
8145	5.278	0.15354	371.002	8.4216	0.05562	0.003	369.863
8146	5.278	0.16879	371.123	8.4098	0.05524	0.003	369.865
8147	5.278	0.18476	371.248	8.3977	0.05506	0.002	369.865
8148	5.278	0.20147	371.381	8.3847	0.05540	0.002	369.870
8149	5.279	0.21889	371.508	8.3721	0.05531	0.002	369.862
8150	5.279	0.23704	371.651	8.3579	0.05547	0.002	369.865
8151	5.039	0.09975	370.550	8.3576	0.05462	0.004	369.823
8152	5.039	0.11212	370.643	8.3478	0.05483	0.004	369.834
8153	5.039	0.12520	370.756	8.3360	0.05446	0.003	369.838
8154	5.038	0.13901	370.865	8.3245	0.05484	0.003	369.841
8155	5.039	0.15353	370.975	8.3130	0.05544	0.003	369.843
8156	5.039	0.16879	371.103	8.2995	0.05427	0.002	369.848
8157	5.038	0.18475	371.214	8.2874	0.05467	0.002	369.838
8158	5.038	0.20144	371.343	8.2735	0.05495	0.002	369.837
8159	5.038	0.21888	371.481	8.2584	0.05510	0.002	369.846
8160	5.038	0.23701	371.619	8.2434	0.05544	0.002	369.848
8161	4.780	0.09973	370.550	8.2237	0.05397	0.005	369.803
8162	4.780	0.11211	370.659	8.2112	0.05480	0.004	369.820
8163	4.779	0.12520	370.762	8.1989	0.05458	0.003	369.816
8164	4.779	0.13900	370.891	8.1838	0.05448	0.003	369.832
8165	4.779	0.15353	371.005	8.1702	0.05463	0.002	369.833
8166	4.779	0.16876	371.109	8.1575	0.05427	0.003	369.822

Table 2. Thermal conductivity of R134a in the compressed liquid phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
8167	4.779	0.18474	371.225	8.1438	0.05494	0.002	369.819
8168	4.779	0.20143	371.364	8.1266	0.05461	0.002	369.820
8169	4.779	0.21886	371.499	8.1101	0.05433	0.002	369.823
8170	4.779	0.23702	371.630	8.0939	0.05468	0.002	369.819
8171	4.507	0.09973	370.525	8.0584	0.05427	0.005	369.788
8172	4.507	0.11210	370.635	8.0434	0.05388	0.004	369.795
8173	4.507	0.12519	370.744	8.0287	0.05394	0.003	369.808
8174	4.507	0.13899	370.855	8.0137	0.05393	0.003	369.807
8175	4.507	0.15351	370.972	7.9975	0.05405	0.003	369.816
8176	4.507	0.16877	371.088	7.9814	0.05383	0.003	369.809
8177	4.507	0.18473	371.203	7.9652	0.05342	0.002	369.810
8178	4.507	0.20143	371.329	7.9474	0.05398	0.002	369.802
8179	4.508	0.21886	371.479	7.9259	0.05400	0.002	369.815
8180	4.508	0.23700	371.606	7.9073	0.05423	0.002	369.804
8181	4.253	0.09973	370.516	7.8622	0.05369	0.004	369.777
8182	4.253	0.11210	370.621	7.8454	0.05324	0.004	369.786
8183	4.253	0.12519	370.734	7.8266	0.05319	0.003	369.801
8184	4.254	0.13899	370.837	7.8094	0.05339	0.003	369.801
8185	4.253	0.15349	370.946	7.7908	0.05352	0.003	369.805
8186	4.253	0.16875	371.074	7.7686	0.05388	0.003	369.812
8187	4.254	0.18472	371.192	7.7481	0.05355	0.003	369.808
8188	4.254	0.20141	371.330	7.7234	0.05395	0.003	369.814
8191	3.999	0.09973	370.483	7.5948	0.05384	0.005	369.777
8192	3.999	0.11209	370.592	7.5702	0.05293	0.004	369.781
8193	3.999	0.12518	370.710	7.5431	0.05320	0.003	369.799
8194	3.999	0.13898	370.817	7.5182	0.05334	0.004	369.802
8195	3.999	0.15351	370.923	7.4928	0.05391	0.003	369.805
8196	3.999	0.16874	371.036	7.4646	0.05351	0.004	369.804
8197	4.000	0.18470	371.160	7.4336	0.05408	0.003	369.808
8201	3.917	0.09972	370.488	7.4730	0.05335	0.005	369.776
8202	3.916	0.11209	370.598	7.4435	0.05312	0.005	369.796
8203	3.917	0.12517	370.692	7.4183	0.05338	0.004	369.798
8204	3.916	0.13897	370.793	7.3895	0.05386	0.003	369.796
8205	3.917	0.15348	370.907	7.3568	0.05423	0.004	369.807
8206	3.916	0.16875	371.020	7.3218	0.05424	0.004	369.807
8211	3.914	0.05458	370.176	7.5466	0.05227	0.011	369.826
8212	3.913	0.06382	370.277	7.5218	0.05288	0.009	369.839
8213	3.913	0.07376	370.326	7.5096	0.05254	0.007	369.840
8214	3.913	0.08443	370.429	7.4831	0.05317	0.005	369.847
8215	3.914	0.09582	370.515	7.4609	0.05318	0.005	369.846
8216	3.914	0.10793	370.608	7.4358	0.05299	0.004	369.855

Table 3. Thermal conductivity of R134a in the vapor phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires.

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$;	K
		ure = 300 K					
10021	0.580	0.02960	301.479	0.2640	0.01374	0.005	300.105
10022	0.579	0.02960	301.497	0.2634	0.01378	0.006	300.108
10023	0.578	0.03584	301.831	0.2629	0.01372	0.004	300.114
10024	0.577	0.03583	301.786	0.2623	0.01379	0.005	300.112
10025	0.577	0.04267	302.132	0.2618	0.01385	0.003	300.121
10026	0.577	0.04267	302.130	0.2619	0.01381	0.004	300.120
10027	0.578	0.05010	302.486	0.2615	0.01383	0.003	300.114
10028	0.577	0.05011	302.495	0.2614	0.01389	0.004	300.121
10029	0.577	0.05815	302.871	0.2605	0.01386	0.003	300.120
10030	0.578	0.05814	302.881	0.2613	0.01388	0.004	300.121
10031	0.578	0.06679	303.289	0.2606	0.01392	0.003	300.126
10032	0.578	0.06679	303.277	0.2605	0.01399	0.003	300.115
10033	0.578	0.07604	303.725	0.2601	0.01397	0.002	300.125
10034	0.578	0.07605	303.729	0.2601	0.01399	0.003	300.122
10035	0.578	0.08590	304.199	0.2592	0.01401	0.003	300.119
10036	0.578	0.08591	304.208	0.2593	0.01400	0.003	300.123
10037	0.578	0.09639	304.701	0.2587	0.01408	0.003	300.125
10038	0.578	0.09639	304.706	0.2585	0.01406	0.003	300.123
10039	0.577	0.10748	305.224	0.2576	0.01412	0.002	300.123
10040	0.577	0.10748	305.220	0.2574	0.01411	0.003	300.112
10041	0.482	0.02960	301.550	0.2139	0.01364	0.005	300.095
10043	0.489	0.03584	301.879	0.2172	0.01358	0.004	300.116
10044	0.493	0.03584	301.881	0.2188	0.01354	0.005	300.123
10045	0.496	0.04268	302.224	0.2201	0.01361	0.003	300.123
10046	0.500	0.04268	302.218	0.2219	0.01352	0.004	300.121
10047	0.503	0.05011	302.585	0.2231	0.01373	0.003	300.123
10048	0.506	0.05011	302.584	0.2245	0.01372	0.003	300.124
10049	0.508	0.05816	302.985	0.2254	0.01377	0.003	300.131
10050	0.511	0.05815	302.985	0.2266	0.01383	0.004	300.133
10051	0.513	0.06680	303.408	0.2272	0.01378	0.002	300.131
10052	0.515	0.06680	303.405	0.2285	0.01377	0.003	300.132
10053	0.517	0.07606	303.860	0.2289	0.01392	0.003	300.134
10054	0.519	0.07606	303.860	0.2300	0.01387	0.003	300.137
10055	0.521	0.08593	304.345	0.2304	0.01399	0.003	300.141
10056	0.523	0.08593	304.339	0.2314	0.01393	0.003	300.138
10057	0.525	0.09641	304.848	0.2317	0.01407	0.004	300.142
10058	0.527	0.09642	304.854	0.2325	0.01403	0.004	300.146
10059	0.528	0.10751	305.393	0.2327	0.01401	0.003	300.147
10060	0.530	0.10751	305.387	0.2337	0.01400	0.003	300.143
10061	0.508	0.02960	301.594	0.2269	0.01373	0.005	300.143
10062	0.508	0.02961	301.598	0.2270	0.01369	0.005	300.151
10063	0.508	0.03585	301.923	0.2267	0.01360	0.005	300.159

Table 3. Thermal conductivity of R134a in the vapor phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
10064	0.509	0.03584	301.926	0.2267	0.01361	0.006	300.165
10065	0.508	0.04268	302.270	0.2263	0.01356	0.003	300.167
10066	0.508	0.04268	302.271	0.2263	0.01359	0.004	300.168
10067	0.508	0.05012	302.649	0.2258	0.01379	0.003	300.175
10068	0.508	0.05012	302.643	0.2258	0.01373	0.004	300.171
10070	0.508	0.05816	303.048	0.2253	0.01375	0.003	300.176
10071	0.508	0.06681	303.475	0.2248	0.01371	0.002	300.175
10072	0.508	0.06681	303.478	0.2248	0.01376	0.003	300.178
10073	0.508	0.07607	303.939	0.2243	0.01388	0.003	300.181
10074	0.508	0.07607	303.934	0.2243	0.01385	0.003	300.176
10075	0.508	0.08594	304.420	0.2238	0.01388	0.002	300.178
10076	0.508	0.08595	304.424	0.2238	0.01394	0.003	300.181
10077	0.508	0.09642	304.941	0.2232	0.01396	0.003	300.182
10078	0.508	0.09642	304.938	0.2232	0.01396	0.003	300.182
10079	0.508	0.10752	305.484	0.2227	0.01403	0.003	300.182
10080	0.508	0.10753	305.493	0.2226	0.01397	0.003	300.186
10081	0.349	0.02961	301.717	0.1496	0.01352	0.005	300.168
10082	0.349	0.02961	301.728	0.1496	0.01351	0.005	300.174
10083	0.349	0.03586	302.077	0.1494	0.01360	0.004	300.182
10084	0.349	0.03586	302.077	0.1495	0.01367	0.005	300.185
10085	0.349	0.04269	302.449	0.1492	0.01354	0.004	300.188
10086	0.349	0.04269	302.440	0.1493	0.01350	0.005	300.184
10087	0.349	0.05013	302.838	0.1490	0.01364	0.004	300.189
10088	0.349	0.05013	302.843	0.1490	0.01369	0.005	300.194
10089	0.349	0.05818	303.269	0.1488	0.01368	0.003	300.192
10090	0.349	0.05818	303.280	0.1488	0.01368	0.004	300.199
10091	0.349	0.06684	303.735	0.1485	0.01367	0.003	300.197
10092	0.349	0.06683	303.730	0.1485	0.01365	0.005	300.195
10093	0.349	0.07610	304.223	0.1482	0.01374	0.003	300.198
10094	0.349	0.07610	304.226	0.1482	0.01378	0.003	300.201
10095	0.349	0.08598	304.698	0.1479	0.01378	0.003	300.196
10096	0.349	0.08598	304.703	0.1479	0.01379	0.003	300.202
10097	0.349	0.09647	305.250	0.1476	0.01389	0.003	300.200
10098	0.349	0.09647	305.247	0.1476	0.01386	0.004	300.195
10099	0.349	0.10759	305.837	0.1471	0.01390	0.003	300.206
10100	0.349	0.10760	305.835	0.1472	0.01390	0.004	300.205
10101	0.214	0.02961	301.833	0.0892	0.01345	0.005	300.188
10103	0.214	0.03586	302.199	0.0891	0.01355	0.004	300.199
10105	0.215	0.04270	302.583	0.0891	0.01360	0.004	300.198
10107	0.215	0.05014	303.008	0.0889	0.01363	0.003	300.201
10109	0.214	0.05819	303.462	0.0887	0.01366	0.003	300.200
10111	0.215	0.06685	303.956	0.0886	0.01368	0.004	300.205
10113	0.215	0.07612	304.478	0.0884	0.01376	0.004	300.206

Table 3. Thermal conductivity of R134a in the vapor phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
10115	0.215	0.08601	305.030	0.0882	0.01378	0.004	300.204
10117	0.215	0.09651	305.624	0.0880	0.01385	0.003	300.206
10119	0.215	0.10763	306.247	0.0878	0.01393	0.003	300.207
10121	0.103	0.02962	301.973	0.0419	0.01349	0.006	300.199
10123	0.103	0.03586	302.372	0.0419	0.01360	0.005	300.204
10125	0.103	0.04271	302.804	0.0419	0.01362	0.005	300.210
10127	0.103	0.05016	303.257	0.0418	0.01365	0.005	300.204
10129	0.103	0.05822	303.760	0.0417	0.01361	0.004	300.206
10131	0.103	0.06689	304.298	0.0417	0.01377	0.004	300.215
10133	0.103	0.07617	304.862	0.0416	0.01379	0.004	300.212
10135	0.103	0.08607	305.463	0.0415	0.01387	0.004	300.208
10137	0.103	0.09659	306.103	0.0415	0.01389	0.004	300.207
10139	0.103	0.10773	306.773	0.0413	0.01398	0.004	300.204
Nominal	Temperatu	re = 310 K					
9003	0.865	0.03701	312.208	0.4013	0.01497	0.004	310.674
9004	0.865	0.03700	312.199	0.4013	0.01487	0.005	310.675
9005	0.865	0.04406	312.505	0.4006	0.01502	0.003	310.672
9006	0.865	0.04406	312.505	0.4005	0.01491	0.004	310.674
9007	0.865	0.05173	312.841	0.3996	0.01489	0.003	310.683
9008	0.865	0.05173	312.830	0.3996	0.01491	0.004	310.675
9009	0.865	0.06002	313.184	0.3988	0.01505	0.003	310.678
9010	0.865	0.06003	313.178	0.3988	0.01501	0.005	310.677
9011	0.865	0.06894	313.558	0.3978	0.01504	0.002	310.678
9012	0.865	0.06894	313.556	0.3978	0.01502	0.003	310.680
9013	0.865	0.07849	313.953	0.3969	0.01503	0.003	310.671
9014	0.865	0.07849	313.955	0.3969	0.01502	0.004	310.677
9015	0.865	0.08866	314.379	0.3958	0.01516	0.003	310.671
9016	0.865	0.08866	314.381	0.3959	0.01510	0.003	310.679
9017	0.865	0.09947	314.834	0.3947	0.01518	0.003	310.677
9018	0.865	0.09947	314.830	0.3949	0.01508	0.004	310.678
9019	0.865	0.11090	315.309	0.3938	0.01528	0.003	310.672
9020	0.865	0.11091	315.301	0.3938	0.01528	0.004	310.675
9021	0.658	0.03056	311.992	0.2896	0.01448	0.005	310.641
9023	0.658	0.03700	312.285	0.2888	0.01459	0.004	310.646
9024	0.658	0.03700	312.286	0.2887	0.01455	0.005	310.652
9025	0.657	0.04406	312.620	0.2880	0.01469	0.003	310.658
9026	0.657	0.04406	312.613	0.2880	0.01464	0.004	310.655
9027	0.657	0.05173	312.965	0.2875	0.01469	0.003	310.656
9028	0.657	0.05173	312.961	0.2875	0.01474	0.004	310.655
9029	0.657	0.06003	313.336	0.2869	0.01470	0.003	310.652
9030	0.657	0.06003	313.341	0.2870	0.01470	0.004	310.663
9031	0.657	0.06896	313.737	0.2864	0.01475	0.003	310.652
9032	0.657	0.06895	313.733	0.2865	0.01474	0.003	310.655

Table 3. Thermal conductivity of R134a in the vapor phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
9033	0.657	0.07851	314.164	0.2859	0.01480	0.003	310.648
9034	0.658	0.07850	314.166	0.2860	0.01475	0.004	310.656
9035	0.658	0.08868	314.624	0.2853	0.01482	0.003	310.653
9036	0.658	0.08869	314.621	0.2854	0.01483	0.003	310.652
9037	0.658	0.09950	315.110	0.2848	0.01487	0.003	310.651
9038	0.658	0.09949	315.106	0.2848	0.01483	0.004	310.655
9039	0.658	0.11095	315.617	0.2842	0.01496	0.003	310.646
9040	0.658	0.11094	315.611	0.2843	0.01487	0.005	310.651
9041	0.592	0.03056	311.994	0.2563	0.01449	0.006	310.626
9043	0.594	0.03700	312.296	0.2572	0.01456	0.004	310.630
9044	0.595	0.03699	312.290	0.2577	0.01443	0.006	310.629
9045	0.597	0.04405	312.623	0.2579	0.01467	0.004	310.632
9046	0.598	0.04404	312.615	0.2584	0.01463	0.005	310.630
9047	0.599	0.05172	312.968	0.2584	0.01467	0.003	310.625
9048	0.599	0.05172	312.965	0.2587	0.01467	0.004	310.630
9049	0.600	0.06001	313.355	0.2587	0.01468	0.003	310.635
9050	0.601	0.06001	313.351	0.2591	0.01464	0.004	310.631
9051	0.602	0.06894	313.759	0.2590	0.01471	0.003	310.628
9052	0.602	0.06893	313.756	0.2592	0.01470	0.004	310.632
9053	0.603	0.07849	314.194	0.2592	0.01473	0.003	310.627
9054	0.604	0.07849	314.187	0.2594	0.01476	0.004	310.627
9055	0.604	0.08866	314.663	0.2590	0.01482	0.003	310.629
9056	0.605	0.08867	314.654	0.2592	0.01481	0.004	310.629
9057	0.605	0.09948	315.153	0.2589	0.01485	0.003	310.628
9058	0.605	0.09949	315.144	0.2590	0.01485	0.004	310.629
9059	0.606	0.11093	315.674	0.2586	0.01493	0.003	310.630
9060	0.607	0.11092	315.668	0.2589	0.01493	0.005	310.634
9061	0.347	0.03056	312.136	0.1426	0.01438	0.005	310.597
9063	0.347	0.03700	312.481	0.1425	0.01440	0.005	310.613
9065	0.347	0.04406	312.841	0.1423	0.01434	0.004	310.613
9066	0.347	0.04406	312.845	0.1423	0.01430	0.006	310.627
9067	0.348	0.05173	313.234	0.1421	0.01447	0.004	310.615
9068	0.348	0.05174	313.240	0.1421	0.01446	0.005	310.624
9069	0.348	0.06004	313.663	0.1419	0.01455	0.004	310.623
9070	0.348	0.06004	313.653	0.1418	0.01452	0.005	310.621
9071	0.348	0.06898	314.110	0.1417	0.01447	0.004	310.619
9072	0.348	0.06896	314.102	0.1417	0.01445	0.005	310.619
9073	0.348	0.07852	314.593	0.1414	0.01462	0.003	310.618
9074	0.348	0.07853	314.588	0.1415	0.01459	0.005	310.620
9075	0.348	0.08871	315.107	0.1412	0.01464	0.003	310.618
9076	0.348	0.08871	315.102	0.1412	0.01460	0.004	310.619
9077	0.348	0.09954	315.652	0.1409	0.01474	0.003	310.622
9078	0.348	0.09954	315.653	0.1410	0.01469	0.005	310.626

Table 3. Thermal conductivity of R134a in the vapor phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	ρ_{calc}	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
9079	0.348	0.11100	316.227	0.1406	0.01473	0.003	310.622
9080	0.348	0.11100	316.214	0.1407	0.01472	0.005	310.614
9081	0.214	0.03056	312.224	0.0855	0.01445	0.006	310.590
9084	0.214	0.03699	312.595	0.0854	0.01446	0.004	310.610
9085	0.214	0.03699	312.584	0.0854	0.01442	0.006	310.608
9087	0.214	0.04405	312.983	0.0853	0.01449	0.005	310.611
9088	0.214	0.04405	312.976	0.0852	0.01447	0.007	310.612
9090	0.214	0.05173	313.405	0.0852	0.01461	0.004	310.615
9091	0.214	0.05174	313.397	0.0852	0.01452	0.006	310.617
9093	0.214	0.06004	313.853	0.0850	0.01458	0.003	310.614
9094	0.214	0.06004	313.844	0.0851	0.01456	0.005	310.612
9096	0.214	0.06897	314.342	0.0850	0.01458	0.004	310.619
9097	0.214	0.06897	314.338	0.0849	0.01457	0.006	310.620
9099	0.214	0.07854	314.856	0.0848	0.01467	0.003	310.617
9100	0.214	0.07854	314.852	0.0848	0.01463	0.005	310.617
9102	0.214	0.08874	315.390	0.0846	0.01470	0.004	310.606
9103	0.214	0.08873	315.400	0.0847	0.01468	0.006	310.619
9105	0.214	0.09957	315.981	0.0845	0.01481	0.004	310.613
9106	0.214	0.09956	315.988	0.0846	0.01475	0.005	310.623
9108	0.214	0.11103	316.603	0.0844	0.01482	0.003	310.622
9109	0.214	0.11103	316.593	0.0844	0.01482	0.005	310.617
9111	0.104	0.03056	312.378	0.0406	0.01442	0.006	310.598
9113	0.104	0.03700	312.769	0.0406	0.01454	0.006	310.610
9115	0.104	0.04406	313.188	0.0405	0.01452	0.005	310.612
9117	0.104	0.05174	313.641	0.0405	0.01457	0.004	310.613
9119	0.104	0.06005	314.127	0.0404	0.01465	0.004	310.612
9121	0.104	0.06900	314.655	0.0403	0.01473	0.004	310.614
9123	0.104	0.07857	315.217	0.0403	0.01478	0.004	310.619
9125	0.104	0.08877	315.808	0.0402	0.01485	0.004	310.618
9127	0.104	0.09962	316.439	0.0402	0.01483	0.004	310.620
9129	0.104	0.11111	317.104	0.0401	0.01497	0.004	310.617
		ire = 320 K					
12003	1.042	0.04048	322.732	0.4749	0.01583	0.003	321.140
12004	1.042	0.04539	322.875	0.4743	0.01587	0.003	321.148
12005	1.042	0.05059	323.075	0.4736	0.01598	0.003	321.146
12006	1.042	0.05608	323.286	0.4729	0.01584	0.003	321.144
12007	1.042	0.06184	323.516	0.4722	0.01600	0.002	321.147
12008	1.042	0.06790	323.754	0.4714	0.01606	0.002	321.152
12009	1.042	0.07424	323.996	0.4707	0.01608	0.002	321.150
12010	1.041	0.08087	324.252	0.4699	0.01600	0.002	321.149
12011	0.770	0.03149	322.414	0.3295	0.01545	0.004	321.124
12012	0.770	0.03584	322.622	0.3289	0.01567	0.004	321.146
12013	0.769	0.04048	322.813	0.3285	0.01552	0.004	321.141

Table 3. Thermal conductivity of R134a in the vapor phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	${ m W}\cdot{ m m}^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$\mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1}$		K
12014	0.769	0.04540	323.023	0.3280	0.01545	0.003	321.144
12015	0.769	0.05060	323.243	0.3276	0.01534	0.003	321.144
12016	0.769	0.05608	323.474	0.3271	0.01562	0.003	321.143
12017	0.769	0.06186	323.728	0.3266	0.01556	0.003	321.152
12018	0.769	0.06792	323.981	0.3263	0.01568	0.002	321.151
12019	0.768	0.07426	324.258	0.3257	0.01567	0.003	321.160
12020	0.768	0.08089	324.522	0.3253	0.01567	0.003	321.148
12021	0.674	0.03149	322.444	0.2825	0.01531	0.005	321.118
12022	0.674	0.03584	322.644	0.2825	0.01544	0.004	321.127
12023	0.674	0.04048	322.835	0.2820	0.01555	0.003	321.123
12024	0.674	0.04539	323.065	0.2816	0.01545	0.004	321.133
12025	0.673	0.05060	323.294	0.2810	0.01527	0.003	321.137
12026	0.673	0.05609	323.530	0.2809	0.01552	0.003	321.137
12027	0.674	0.06185	323.778	0.2811	0.01557	0.003	321.130
12028	0.675	0.06792	324.039	0.2812	0.01563	0.003	321.136
12029	0.675	0.07426	324.311	0.2806	0.01563	0.003	321.136
12030	0.675	0.08089	324.604	0.2801	0.01556	0.003	321.137
12031	0.494	0.03149	322.530	0.1998	0.01518	0.006	321.107
12032	0.503	0.03584	322.740	0.2039	0.01523	0.005	321.114
12033	0.638	0.04047	322.615	0.2654	0.01539	0.003	321.114
12034	0.638	0.04539	323.072	0.2648	0.01545	0.003	321.121
12035	0.638	0.05059	323.310	0.2646	0.01530	0.004	321.126
12036	0.638	0.05609	323.547	0.2643	0.01549	0.003	321.123
12037	0.638	0.06186	323.803	0.2640	0.01564	0.003	321.128
12038	0.638	0.06792	324.075	0.2636	0.01552	0.003	321.130
12039	0.638	0.07426	324.342	0.2633	0.01558	0.003	321.120
12040	0.638	0.08090	324.643	0.2630	0.01552	0.003	321.130
12041	0.485	0.03149	322.524	0.1958	0.01510	0.005	321.110
12042	0.485	0.03584	322.736	0.1956	0.01517	0.004	321.125
12043	0.485	0.04048	322.962	0.1955	0.01529	0.004	321.134
12044	0.485	0.04540	323.194	0.1953	0.01542	0.004	321.138
12045	0.485	0.05060	323.443	0.1951	0.01532	0.004	321.143
12046	0.485	0.05609	323.695	0.1949	0.01547	0.003	321.143
12047	0.485	0.06186	323.951	0.1948	0.01542	0.003	321.132
12049	0.485	0.07428	324.540	0.1943	0.01540	0.002	321.146
12051	0.350	0.03149	322.710	0.1380	0.01535	0.005	321.150
12052	0.350	0.03584	322.925	0.1379	0.01520	0.004	321.152
12053	0.350	0.04049	323.163	0.1378	0.01540	0.004	321.158
12054	0.350	0.04541	323.407	0.1377	0.01520	0.005	321.166
12055	0.350	0.05061	323.656	0.1376	0.01545	0.003	321.162
12056	0.350	0.05610	323.867	0.1376	0.01547	0.004	321.167
12057	0.350	0.06188	324.148	0.1373	0.01546	0.003	321.168
12058	0.350	0.06795	324.438	0.1372	0.01556	0.004	321.165

Table 3. Thermal conductivity of R134a in the vapor phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

						000.400	
Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K 224.545	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$	0.002	K
12059	0.350	0.07429	324.745	0.1370	0.01546	0.003	321.162
12060	0.350	0.08094	325.072	0.1369	0.01555	0.003	321.170
12061	0.208	0.03149	322.740	0.0800	0.01545	0.005	321.134
12062	0.208	0.03585	322.980	0.0799	0.01536	0.004	321.146
12063	0.208	0.04049	323.227	0.0798	0.01546	0.004	321.153
12064	0.208	0.04542	323.476	0.0798	0.01537	0.005	321.148
12065	0.208	0.05062	323.750	0.0798	0.01552	0.004	321.154
12066	0.208	0.05611	324.039	0.0797	0.01555	0.004	321.154
12067	0.208	0.06189	324.334	0.0796	0.01561	0.003	321.153
12068	0.208	0.06796	324.648	0.0795	0.01553	0.003	321.152
12070	0.208	0.08096	325.365	0.0793	0.01566	0.004	321.150
12083	0.105	0.03585	323.121	0.0398	0.01555	0.006	321.112
12085	0.105	0.04049	323.382	0.0399	0.01540	0.004	321.113
12087	0.106	0.04541	323.659	0.0399	0.01563	0.005	321.113
12089	0.106	0.05063	323.946	0.0398	0.01564	0.005	321.113
12091	0.106	0.05612	324.253	0.0399	0.01567	0.005	321.116
12093	0.106	0.06190	324.566	0.0398	0.01570	0.004	321.108
12095	0.106	0.06797	324.901	0.0398	0.01569	0.005	321.108
12097	0.106	0.07433	325.251	0.0398	0.01576	0.004	321.102
12099	0.106	0.08098	325.621	0.0397	0.01583	0.004	321.105
		are = 330 K					
13001	1.481	0.03228	331.003	0.7191	0.01714	0.005	329.940
13002	1.481	0.03674	331.161	0.7181	0.01714	0.004	329.950
13003	1.481	0.04148	331.316	0.7170	0.01743	0.004	329.948
13004	1.481	0.04652	331.482	0.7158	0.01719	0.003	329.947
13005	1.481	0.05185	331.665	0.7148	0.01744	0.003	329.953
13006	1.481	0.05747	331.845	0.7137	0.01745	0.003	329.952
13007	1.481	0.06338	332.033	0.7127	0.01742	0.003	329.942
13008	1.481	0.06959	332.244	0.7115	0.01756	0.003	329.947
13009	1.481	0.07608	332.459	0.7101	0.01757	0.003	329.944
13010	1.481	0.08286	332.675	0.7090	0.01743	0.002	329.939
13011	1.304	0.03227	330.965	0.6020	0.01704	0.005	329.870
13012	1.303	0.03673	331.131	0.6008	0.01677	0.004	329.876
13013	1.302	0.04149	331.309	0.5997	0.01705	0.003	329.889
13014	1.302	0.04653	331.487	0.5987	0.01701	0.004	329.887
13015	1.302	0.05185	331.675	0.5977	0.01690	0.003	329.886
13016	1.302	0.05747	331.874	0.5969	0.01681	0.003	329.884
13017	1.301	0.06337	332.078	0.5959	0.01711	0.003	329.881
13018	1.301	0.06959	332.376	0.5946	0.01712	0.003	329.884
13019	1.301	0.07608	332.603	0.5937	0.01713	0.003	329.881
13020	1.301	0.08288	332.843	0.5926	0.01701	0.003	329.881
13021	1.218	0.03227	331.052	0.5498	0.01656	0.005	329.831
13022	1.219	0.03673	331.229	0.5500	0.01672	0.004	329.841

Table 3. Thermal conductivity of R134a in the vapor phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$\mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1}$		K
13023	1.220	0.04148	331.398	0.5501	0.01667	0.003	329.845
13024	1.221	0.04652	331.580	0.5501	0.01665	0.004	329.846
13025	1.222	0.05185	331.774	0.5496	0.01713	0.003	329.845
13026	1.223	0.05747	331.986	0.5493	0.01692	0.004	329.853
13027	1.223	0.06338	332.198	0.5489	0.01678	0.003	329.854
13028	1.224	0.06959	332.420	0.5484	0.01681	0.002	329.852
13029	1.224	0.07608	332.652	0.5477	0.01691	0.002	329.850
13030	1.224	0.08286	332.832	0.5473	0.01696	0.003	329.849
13032	1.054	0.03673	331.228	0.4575	0.01650	0.004	329.816
13033	1.053	0.04148	331.423	0.4565	0.01644	0.004	329.828
13034	1.052	0.04652	331.612	0.4557	0.01659	0.004	329.828
13035	1.051	0.05184	331.817	0.4547	0.01653	0.003	329.825
13036	1.051	0.05746	332.033	0.4538	0.01656	0.003	329.827
13037	1.050	0.06337	332.260	0.4530	0.01665	0.003	329.827
13038	1.050	0.06958	332.500	0.4523	0.01658	0.003	329.833
13039	1.049	0.07607	332.739	0.4514	0.01655	0.002	329.825
13040	1.049	0.08287	333.002	0.4506	0.01648	0.002	329.829
13041	0.862	0.03226	331.092	0.3601	0.01619	0.005	329.793
13042	0.862	0.03673	331.274	0.3595	0.01640	0.004	329.797
13043	0.861	0.04147	331.473	0.3588	0.01623	0.004	329.806
13044	0.861	0.04652	331.680	0.3583	0.01636	0.003	329.806
13045	0.860	0.05185	331.895	0.3577	0.01607	0.003	329.809
13046	0.860	0.05747	332.121	0.3571	0.01631	0.003	329.808
13047	0.859	0.06339	332.356	0.3565	0.01646	0.003	329.807
13048	0.859	0.06959	332.604	0.3560	0.01632	0.002	329.810
13049	0.859	0.07610	332.866	0.3554	0.01633	0.002	329.810
13051	0.817	0.03229	331.172	0.3380	0.01610	0.005	329.885
13052	0.817	0.03675	331.364	0.3377	0.01645	0.004	329.894
13053	0.817	0.04151	331.560	0.3372	0.01618	0.004	329.900
13054	0.817	0.04655	331.764	0.3370	0.01639	0.003	329.895
13055	0.817	0.05189	331.991	0.3366	0.01615	0.003	329.906
13056	0.817	0.05752	332.213	0.3363	0.01631	0.003	329.898
13057	0.817	0.06343	332.458	0.3359	0.01639	0.003	329.905
13058	0.817	0.06965	332.711	0.3355	0.01641	0.003	329.905
13059	0.817	0.07615	332.982	0.3351	0.01632	0.002	329.912
13060	0.817	0.08294	333.251	0.3347	0.01637	0.003	329.905
13061	0.673	0.03228	331.169	0.2714	0.01598	0.005	329.856
13062	0.674	0.03675	331.363	0.2713	0.01614	0.004	329.860
13063	0.674	0.04150	331.567	0.2711	0.01618	0.004	329.862
13064	0.674	0.04654	331.782	0.2709	0.01621	0.003	329.868
13065	0.674	0.05188	332.017	0.2708	0.01600	0.003	329.878
13066	0.674	0.05751	332.251	0.2705	0.01627	0.003	329.876
13067	0.674	0.06342	332.504	0.2703	0.01623	0.003	329.874

Table 3. Thermal conductivity of R134a in the vapor phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
13068	0.674	0.06963	332.762	0.2700	0.01629	0.003	329.870
13069	0.675	0.07615	333.036	0.2699	0.01635	0.003	329.873
13070	0.675	0.08294	333.326	0.2696	0.01630	0.003	329.876
13071	0.669	0.03228	331.128	0.2693	0.01625	0.005	329.833
13072	0.669	0.03674	331.314	0.2693	0.01619	0.004	329.832
13073	0.670	0.04149	331.527	0.2693	0.01624	0.005	329.843
13074	0.670	0.04653	331.748	0.2692	0.01629	0.003	329.844
13075	0.671	0.05186	331.978	0.2692	0.01612	0.003	329.853
13076	0.671	0.05749	332.207	0.2691	0.01631	0.003	329.848
13077	0.671	0.06341	332.465	0.2689	0.01623	0.002	329.850
13078	0.672	0.06961	332.725	0.2688	0.01629	0.003	329.850
13079	0.673	0.07612	333.003	0.2689	0.01633	0.003	329.854
13080	0.673	0.08292	333.283	0.2688	0.01632	0.003	329.849
13081	0.550	0.03228	331.176	0.2168	0.01601	0.005	329.818
13082	0.550	0.03674	331.392	0.2166	0.01596	0.004	329.836
13083	0.550	0.04150	331.604	0.2164	0.01619	0.003	329.840
13084	0.550	0.04653	331.820	0.2163	0.01614	0.004	329.836
13085	0.550	0.05187	332.059	0.2161	0.01605	0.004	329.842
13087	0.550	0.06341	332.653	0.2156	0.01622	0.003	329.847
13088	0.550	0.06963	332.919	0.2153	0.01624	0.003	329.842
13089	0.550	0.07613	333.206	0.2152	0.01622	0.003	329.846
13090	0.550	0.08293	333.508	0.2149	0.01640	0.003	329.849
13091	0.384	0.03227	331.322	0.1473	0.01617	0.005	329.816
13092	0.384	0.03674	331.528	0.1473	0.01604	0.006	329.827
13093	0.384	0.04149	331.758	0.1471	0.01625	0.006	329.823
13094	0.384	0.04654	331.997	0.1471	0.01609	0.004	329.825
13095	0.384	0.05188	332.239	0.1469	0.01623	0.004	329.833
13096	0.384	0.05750	332.499	0.1468	0.01628	0.004	329.833
13097	0.384	0.06342	332.770	0.1467	0.01629	0.003	329.827
13098	0.384	0.06963	333.060	0.1465	0.01632	0.003	329.831
13099	0.384	0.07614	333.372	0.1464	0.01628	0.004	329.835
13100	0.384	0.08294	333.670	0.1462	0.01639	0.003	329.827
13101	0.218	0.03228	331.406	0.0815	0.01624	0.006	329.797
13103	0.218	0.03674	331.634	0.0815	0.01620	0.004	329.805
13105	0.218	0.04150	331.872	0.0815	0.01631	0.005	329.805
13107	0.218	0.04654	332.122	0.0815	0.01622	0.005	329.808
13109	0.218	0.05188	332.389	0.0814	0.01634	0.004	329.808
13111	0.218	0.05750	332.665	0.0814	0.01637	0.004	329.806
13113	0.218	0.06343	332.957	0.0813	0.01648	0.004	329.804
13115	0.218	0.06965	333.263	0.0813	0.01639	0.003	329.812
13117	0.219	0.07615	333.584	0.0812	0.01647	0.004	329.810
13119	0.219	0.08296	333.920	0.0811	0.01653	0.003	329.808
13121	0.105	0.03228	331.504	0.0388	0.01620	0.006	329.777

Table 3. Thermal conductivity of R134a in the vapor phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	ρ_{calc}	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K 221.761	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$	0.006	K
13123	0.105	0.03674	331.761	0.0388	0.01635	0.006	329.792
13125	0.105	0.04150	332.019	0.0388	0.01650	0.006	329.794
13127	0.106	0.04654	332.288	0.0388	0.01650	0.005	329.792
13129	0.106	0.05188	332.578	0.0387	0.01654	0.005	329.795
13131	0.106	0.05751	332.876	0.0387	0.01660	0.005	329.796
13133	0.106	0.06343	333.189	0.0387	0.01662	0.004	329.794
13135	0.106	0.06966	333.525	0.0386	0.01656	0.005	329.794
13137	0.106	0.07617	333.877	0.0386	0.01674	0.004	329.794
13139	0.106	0.08298	334.235	0.0386	0.01673	0.004	329.786
		ure = 340 K					
14001	1.857	0.03320	341.101	0.9253	0.01882	0.005	340.130
14002	1.857	0.03779	341.237	0.9241	0.01903	0.004	340.136
14003	1.857	0.04267	341.383	0.9227	0.01881	0.005	340.138
14004	1.857	0.04785	341.546	0.9213	0.01908	0.003	340.144
14005	1.857	0.05333	341.706	0.9198	0.01884	0.003	340.140
14006	1.857	0.05911	341.878	0.9181	0.01915	0.003	340.147
14007	1.857	0.06518	342.064	0.9163	0.01905	0.004	340.149
14008	1.857	0.07156	342.254	0.9147	0.01930	0.003	340.149
14009	1.857	0.07824	342.442	0.9131	0.01923	0.003	340.142
14010	1.857	0.08521	342.644	0.9113	0.01923	0.003	340.140
14011	1.679	0.03321	341.153	0.7935	0.01838	0.005	340.124
14012	1.679	0.03780	341.307	0.7922	0.01846	0.004	340.131
14013	1.678	0.04269	341.462	0.7909	0.01844	0.004	340.135
14014	1.678	0.04787	341.635	0.7894	0.01822	0.003	340.143
14015	1.678	0.05335	341.809	0.7881	0.01829	0.003	340.143
14016	1.677	0.05914	341.986	0.7867	0.01848	0.003	340.138
14017	1.677	0.06521	342.193	0.7851	0.01838	0.004	340.149
14018	1.676	0.07159	342.385	0.7835	0.01842	0.002	340.143
14019	1.676	0.07828	342.598	0.7820	0.01863	0.002	340.144
14020	1.675	0.08526	342.809	0.7804	0.01868	0.004	340.134
14021	1.472	0.03321	341.202	0.6598	0.01785	0.006	340.114
14022	1.471	0.03780	341.364	0.6588	0.01766	0.004	340.120
14023	1.471	0.04270	341.527	0.6577	0.01784	0.004	340.119
14024	1.470	0.04788	341.710	0.6566	0.01769	0.003	340.128
14025	1.469	0.05337	341.893	0.6555	0.01794	0.003	340.124
14026	1.469	0.05915	342.092	0.6543	0.01775	0.003	340.129
14027	1.468	0.06524	342.297	0.6531	0.01807	0.003	340.125
14028	1.468	0.07162	342.513	0.6520	0.01795	0.002	340.127
14029	1.468	0.07830	342.736	0.6508	0.01807	0.003	340.129
14030	1.467	0.08529	342.973	0.6495	0.01802	0.002	340.130
14031	1.417	0.03326	341.456	0.6267	0.01791	0.006	340.358
14032	1.417	0.03786	341.609	0.6261	0.01742	0.005	340.355
14033	1.418	0.04275	341.788	0.6256	0.01777	0.004	340.363

Table 3. Thermal conductivity of R134a in the vapor phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$\mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1}$		K
14034	1.418	0.04794	341.970	0.6249	0.01751	0.003	340.366
14035	1.418	0.05343	342.151	0.6244	0.01787	0.003	340.363
14036	1.418	0.05922	342.349	0.6237	0.01758	0.003	340.362
14037	1.419	0.06530	342.567	0.6230	0.01783	0.003	340.372
14038	1.419	0.07169	342.786	0.6222	0.01789	0.002	340.371
14039	1.419	0.07837	343.020	0.6214	0.01785	0.003	340.376
14040	1.419	0.08536	343.248	0.6207	0.01795	0.002	340.369
14041	1.207	0.03325	341.501	0.5108	0.01755	0.005	340.344
14042	1.207	0.03785	341.678	0.5101	0.01732	0.005	340.352
14043	1.207	0.04274	341.855	0.5096	0.01743	0.004	340.352
14044	1.207	0.04793	342.054	0.5090	0.01734	0.004	340.362
14045	1.207	0.05342	342.255	0.5085	0.01759	0.003	340.365
14046	1.207	0.05921	342.459	0.5079	0.01736	0.004	340.359
14047	1.207	0.06530	342.692	0.5073	0.01755	0.003	340.374
14048	1.207	0.07169	342.915	0.5068	0.01753	0.002	340.367
14049	1.207	0.07837	343.157	0.5061	0.01768	0.003	340.370
14050	1.207	0.08537	343.401	0.5055	0.01767	0.003	340.362
14051	1.114	0.03325	341.517	0.4631	0.01729	0.005	340.338
14052	1.116	0.03785	341.693	0.4636	0.01716	0.006	340.345
14053	1.118	0.04274	341.874	0.4643	0.01725	0.004	340.346
14054	1.120	0.04793	342.075	0.4648	0.01728	0.004	340.353
14055	1.123	0.05342	342.272	0.4654	0.01748	0.003	340.353
14056	1.124	0.05920	342.492	0.4658	0.01735	0.003	340.360
14057	1.126	0.06529	342.712	0.4662	0.01742	0.003	340.356
14058	1.128	0.07168	342.953	0.4667	0.01745	0.002	340.361
14059	1.130	0.07837	343.189	0.4671	0.01745	0.003	340.358
14060	1.132	0.08536	343.446	0.4675	0.01753	0.003	340.359
14061	0.874	0.03325	341.569	0.3483	0.01725	0.006	340.329
14062	0.873	0.03785	341.765	0.3476	0.01730	0.004	340.342
14063	0.873	0.04275	341.956	0.3470	0.01704	0.004	340.344
14064	0.872	0.04794	342.166	0.3463	0.01720	0.004	340.348
14065	0.872	0.05342	342.387	0.3458	0.01700	0.003	340.353
14066	0.871	0.05921	342.610	0.3452	0.01724	0.003	340.350
14067	0.871	0.06530	342.851	0.3447	0.01726	0.003	340.350
14068	0.871	0.07169	343.096	0.3442	0.01720	0.003	340.348
14069	0.870	0.07838	343.358	0.3437	0.01728	0.002	340.350
14070	0.870	0.08537	343.635	0.3432	0.01716	0.002	340.351
14071	0.637	0.03325	341.626	0.2443	0.01678	0.006	340.315
14072	0.637	0.03785	341.826	0.2440	0.01715	0.005	340.325
14073	0.637	0.04275	342.038	0.2438	0.01704	0.004	340.335
14074	0.637	0.04794	342.243	0.2437	0.01707	0.004	340.327
14075	0.637	0.05343	342.486	0.2434	0.01691	0.004	340.338
14076	0.637	0.05922	342.722	0.2433	0.01712	0.003	340.333

Table 3. Thermal conductivity of R134a in the vapor phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
14077	0.637	0.06531	342.971	0.2430	0.01720	0.003	340.335
14078	0.637	0.07170	343.233	0.2428	0.01715	0.003	340.333
14079	0.637	0.07839	343.513	0.2426	0.01728	0.003	340.339
14080	0.637	0.08539	343.802	0.2423	0.01719	0.004	340.338
14081	0.471	0.03325	341.608	0.1763	0.01719	0.006	340.298
14082	0.542	0.03785	341.806	0.2049	0.01726	0.005	340.305
14083	0.605	0.04274	342.022	0.2306	0.01707	0.004	340.312
14084	0.659	0.04793	342.242	0.2532	0.01705	0.003	340.318
14085	0.605	0.05343	342.529	0.2301	0.01706	0.005	340.321
14086	0.607	0.05922	342.777	0.2307	0.01713	0.003	340.323
14087	0.608	0.06531	343.033	0.2310	0.01711	0.003	340.324
14088	0.609	0.07171	343.298	0.2313	0.01725	0.003	340.328
14089	0.611	0.07840	343.569	0.2316	0.01718	0.003	340.319
14090	0.612	0.08539	343.859	0.2318	0.01725	0.004	340.321
14091	0.421	0.03325	341.727	0.1563	0.01706	0.006	340.293
14092	0.421	0.03785	341.937	0.1562	0.01696	0.004	340.299
14093	0.421	0.04274	342.163	0.1561	0.01719	0.005	340.309
14094	0.421	0.04793	342.399	0.1560	0.01722	0.004	340.311
14095	0.421	0.05342	342.643	0.1559	0.01727	0.003	340.313
14096	0.421	0.05922	342.903	0.1558	0.01717	0.004	340.317
14097	0.421	0.06531	343.164	0.1556	0.01727	0.003	340.310
14098	0.421	0.07171	343.453	0.1555	0.01734	0.003	340.318
14099	0.421	0.07840	343.748	0.1554	0.01722	0.003	340.315
14100	0.421	0.08540	344.048	0.1552	0.01739	0.003	340.314
14101	0.221	0.03325	341.867	0.0798	0.01761	0.006	340.301
14103	0.221	0.03785	342.100	0.0798	0.01748	0.005	340.317
14105	0.221	0.04274	342.331	0.0797	0.01741	0.005	340.314
14107	0.221	0.04793	342.586	0.0797	0.01713	0.006	340.314
14109	0.221	0.05342	342.854	0.0797	0.01743	0.004	340.319
14111	0.221	0.05922	343.134	0.0796	0.01752	0.005	340.323
14113	0.221	0.06531	343.419	0.0795	0.01751	0.005	340.316
14115	0.221	0.07171	343.728	0.0794	0.01760	0.005	340.325
14117	0.221	0.07840	344.047	0.0794	0.01752	0.005	340.324
14119	0.221	0.08541	344.379	0.0793	0.01757	0.005	340.326
14121	0.109	0.03327	342.014	0.0387	0.01752	0.006	340.341
14125	0.109	0.04278	342.537	0.0387	0.01781	0.005	340.362
14127	0.109	0.04798	342.807	0.0387	0.01768	0.005	340.360
14129	0.109	0.05348	343.103	0.0387	0.01770	0.005	340.368
14131	0.109	0.05928	343.407	0.0386	0.01764	0.004	340.363
14133	0.109	0.06538	343.719	0.0386	0.01773	0.004	340.363
14135	0.109	0.07178	344.053	0.0386	0.01766	0.004	340.369
14137	0.109	0.07848	344.380	0.0385	0.01787	0.004	340.359
14139	0.109	0.08549	344.748	0.0385	0.01787	0.004	340.365

Table 3. Thermal conductivity of R134a in the vapor phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
Nominal	Temperat	$ure = 350 \text{ K}^{\circ}$					
15002	2.441	0.03882	350.734	1.3413	0.02182	0.005	349.873
15003	2.441	0.04383	350.859	1.3388	0.02189	0.004	349.879
15005	2.442	0.05478	351.121	1.3337	0.02214	0.004	349.879
15006	2.442	0.06071	351.263	1.3308	0.02208	0.004	349.881
15007	2.442	0.06694	351.417	1.3279	0.02233	0.005	349.883
15008	2.442	0.07348	351.575	1.3248	0.02248	0.006	349.884
15009	2.442	0.08032	351.739	1.3218	0.02220	0.006	349.888
15010	2.442	0.08748	351.914	1.3186	0.02264	0.006	349.890
15011	2.354	0.03411	350.650	1.2493	0.02110	0.006	349.860
15012	2.354	0.03882	350.779	1.2472	0.02121	0.005	349.870
15013	2.354	0.04383	350.908	1.2450	0.02169	0.004	349.873
15014	2.354	0.04915	351.049	1.2428	0.02110	0.005	349.877
15015	2.354	0.05477	351.192	1.2405	0.02163	0.003	349.881
15016	2.354	0.06070	351.344	1.2380	0.02146	0.003	349.882
15017	2.354	0.06694	351.515	1.2354	0.02165	0.003	349.880
15018	2.354	0.07348	351.721	1.2321	0.02145	0.005	349.888
15019	2.354	0.08033	351.891	1.2293	0.02176	0.004	349.882
15021	2.171	0.03410	350.760	1.0815	0.02039	0.006	349.852
15022	2.171	0.03882	350.892	1.0798	0.02037	0.005	349.860
15023	2.171	0.04383	351.032	1.0782	0.02000	0.005	349.860
15024	2.171	0.04915	351.185	1.0764	0.02043	0.004	349.867
15025	2.171	0.05477	351.335	1.0748	0.02035	0.003	349.862
15026	2.171	0.06071	351.498	1.0729	0.02042	0.003	349.863
15027	2.171	0.06695	351.678	1.0708	0.02036	0.003	349.871
15028	2.171	0.07349	351.857	1.0688	0.02068	0.004	349.872
15029	2.170	0.08034	352.041	1.0667	0.02072	0.003	349.871
15030	2.170	0.08750	352.240	1.0646	0.02057	0.003	349.873
15031	1.942	0.03410	350.780	0.9075	0.01957	0.006	349.816
15032	1.942	0.03882	350.929	0.9063	0.01963	0.005	349.826
15033	1.942	0.04383	351.074	0.9053	0.01933	0.005	349.825
15034	1.942	0.04915	351.235	0.9041	0.01952	0.004	349.827
15035	1.942	0.05478	351.410	0.9027	0.01937	0.004	349.836
15036	1.942	0.06071	351.587	0.9015	0.01958	0.003	349.838
15037	1.942	0.06695	351.773	0.9000	0.01938	0.003	349.839
15038	1.942	0.07350	351.960	0.8986	0.01962	0.003	349.834
15039	1.942	0.08035	352.157	0.8972	0.01973	0.003	349.828
15040	1.942	0.08751	352.371	0.8957	0.01964	0.003	349.833
15041	1.646	0.03414	350.945	0.7184	0.01881	0.006	349.878
15042	1.646	0.03885	351.106	0.7177	0.01842	0.005	349.886
15043	1.646	0.04388	351.277	0.7170	0.01880	0.004	349.901
15044	1.646	0.04920	351.452	0.7161	0.01872	0.004	349.899
15045	1.646	0.05483	351.639	0.7153	0.01874	0.003	349.905

Table 3. Thermal conductivity of R134a in the vapor phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
15046	1.647	0.06077	351.822	0.7145	0.01854	0.003	349.899
15047	1.647	0.06701	352.020	0.7136	0.01886	0.003	349.898
15048	1.647	0.07356	352.244	0.7127	0.01895	0.003	349.910
15049	1.647	0.08042	352.459	0.7117	0.01892	0.003	349.906
15050	1.647	0.08759	352.682	0.7108	0.01889	0.002	349.902
15051	1.408	0.03413	351.007	0.5865	0.01846	0.005	349.871
15052	1.407	0.03885	351.171	0.5858	0.01808	0.005	349.873
15053	1.407	0.04387	351.360	0.5851	0.01822	0.004	349.890
15054	1.407	0.04919	351.538	0.5845	0.01819	0.004	349.892
15055	1.407	0.05482	351.731	0.5838	0.01857	0.003	349.895
15056	1.407	0.06075	351.934	0.5832	0.01822	0.003	349.897
15057	1.407	0.06700	352.141	0.5824	0.01845	0.002	349.894
15058	1.407	0.07355	352.363	0.5816	0.01848	0.002	349.896
15059	1.407	0.08042	352.593	0.5810	0.01852	0.002	349.896
15060	1.407	0.08758	352.829	0.5803	0.01859	0.003	349.891
15061	1.195	0.03413	351.051	0.4799	0.01830	0.005	349.864
15062	1.197	0.03885	351.219	0.4802	0.01804	0.005	349.869
15063	1.198	0.04387	351.404	0.4804	0.01812	0.004	349.877
15064	1.199	0.04920	351.605	0.4805	0.01805	0.004	349.886
15065	1.201	0.05483	351.794	0.4808	0.01832	0.003	349.881
15066	1.202	0.06076	352.007	0.4809	0.01806	0.004	349.883
15067	1.203	0.06701	352.225	0.4810	0.01822	0.002	349.881
15068	1.205	0.07357	352.449	0.4811	0.01834	0.002	349.873
15069	1.206	0.08043	352.704	0.4812	0.01840	0.003	349.888
15070	1.207	0.08760	352.948	0.4812	0.01830	0.003	349.882
15071	0.974	0.03413	351.102	0.3777	0.01799	0.005	349.865
15072	0.974	0.03885	351.286	0.3774	0.01805	0.005	349.874
15073	0.974	0.04387	351.488	0.3772	0.01798	0.004	349.889
15074	0.974	0.04919	351.681	0.3769	0.01800	0.004	349.883
15075	0.975	0.05482	351.895	0.3767	0.01803	0.004	349.887
15076	0.975	0.06076	352.116	0.3764	0.01809	0.003	349.886
15077	0.975	0.06701	352.354	0.3761	0.01810	0.003	349.893
15078	0.975	0.07357	352.597	0.3757	0.01807	0.002	349.893
15079	0.975	0.08043	352.851	0.3755	0.01812	0.002	349.894
15080	0.976	0.08761	353.114	0.3751	0.01798	0.002	349.890
15081	0.700	0.03413	351.211	0.2610	0.01758	0.005	349.891
15082	0.700	0.03885	351.399	0.2609	0.01794	0.004	349.892
15083	0.700	0.04387	351.607	0.2607	0.01776	0.004	349.901
15084	0.700	0.04919	351.830	0.2605	0.01798	0.003	349.909
15085	0.700	0.05482	352.052	0.2603	0.01767	0.004	349.908
15086	0.701	0.06076	352.289	0.2602	0.01802	0.003	349.912
15087	0.701	0.06701	352.534	0.2600	0.01809	0.003	349.909
15088	0.701	0.07358	352.793	0.2598	0.01803	0.003	349.913

Table 3. Thermal conductivity of R134a in the vapor phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	${ m W\cdot m^{-1}}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
15089	0.701	0.08044	353.075	0.2596	0.01813	0.003	349.922
15090	0.701	0.08762	353.355	0.2593	0.01798	0.003	349.918
15092	0.493	0.03885	351.491	0.1789	0.01784	0.004	349.896
15093	0.493	0.04387	351.702	0.1788	0.01804	0.005	349.898
15094	0.493	0.04919	351.926	0.1786	0.01815	0.004	349.901
15095	0.493	0.05483	352.167	0.1784	0.01798	0.004	349.904
15096	0.494	0.06077	352.420	0.1784	0.01814	0.003	349.905
15097	0.494	0.06702	352.677	0.1782	0.01809	0.003	349.905
15098	0.494	0.07358	352.952	0.1781	0.01819	0.003	349.906
15099	0.494	0.08045	353.229	0.1779	0.01812	0.002	349.898
15100	0.494	0.08764	353.540	0.1778	0.01818	0.003	349.910
15102	0.353	0.03884	351.528	0.1258	0.01800	0.006	349.875
15103	0.353	0.04386	351.747	0.1257	0.01817	0.005	349.877
15104	0.353	0.04919	351.979	0.1256	0.01834	0.005	349.878
15105	0.353	0.05483	352.235	0.1255	0.01834	0.004	349.881
15106	0.353	0.06077	352.499	0.1255	0.01828	0.004	349.889
15107	0.353	0.06703	352.767	0.1254	0.01832	0.004	349.880
15108	0.353	0.07359	353.050	0.1253	0.01834	0.003	349.880
15109	0.353	0.08046	353.361	0.1252	0.01820	0.003	349.890
15110	0.353	0.08765	353.656	0.1250	0.01842	0.003	349.878
15111	0.214	0.03413	351.359	0.0752	0.01849	0.005	349.848
15112	0.214	0.03884	351.571	0.0752	0.01842	0.006	349.847
15113	0.214	0.04387	351.813	0.0751	0.01857	0.005	349.857
15114	0.215	0.04920	352.073	0.0751	0.01824	0.004	349.859
15115	0.215	0.05483	352.331	0.0750	0.01860	0.004	349.853
15116	0.214	0.06078	352.606	0.0749	0.01862	0.004	349.858
15117	0.215	0.06704	352.899	0.0749	0.01854	0.004	349.855
15118	0.214	0.07361	353.204	0.0748	0.01863	0.004	349.860
15119	0.215	0.08047	353.519	0.0748	0.01847	0.004	349.861
15120	0.215	0.08766	353.843	0.0747	0.01865	0.003	349.861
15121	0.108	0.03416	351.501	0.0373	0.01854	0.006	349.877
15123	0.108	0.03888	351.759	0.0374	0.01847	0.005	349.884
15125	0.108	0.04391	352.008	0.0373	0.01877	0.006	349.889
15129	0.108	0.05489	352.548	0.0373	0.01872	0.004	349.886
15131	0.108	0.06083	352.857	0.0373	0.01875	0.004	349.894
15133	0.108	0.06709	353.167	0.0372	0.01881	0.004	349.892
15135	0.108	0.07366	353.489	0.0372	0.01866	0.003	349.889
15137	0.108	0.08054	353.835	0.0371	0.01894	0.004	349.891
15139	0.108	0.08774	354.187	0.0371	0.01891	0.004	349.889
Nominal	Temperatu	re = 360 K					
16012	2.930	0.03991	361.485	1.6642	0.02465	0.005	360.636
16013	2.930	0.04506	361.593	1.6608	0.02476	0.006	360.640
16014	2.930	0.05054	361.702	1.6573	0.02455	0.004	360.641

Table 3. Thermal conductivity of R134a in the vapor phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
16015	2.930	0.05632	361.828	1.6533	0.02499	0.005	360.647
16016	2.930	0.06240	361.954	1.6496	0.02500	0.004	360.646
16017	2.930	0.06882	362.100	1.6452	0.02501	0.005	360.657
16023	2.740	0.04506	361.711	1.4390	0.02309	0.005	360.650
16024	2.740	0.05053	361.842	1.4364	0.02286	0.004	360.652
16025	2.740	0.05631	361.978	1.4338	0.02318	0.004	360.654
16026	2.740	0.06241	362.128	1.4309	0.02293	0.003	360.661
16027	2.740	0.06881	362.221	1.4291	0.02318	0.004	360.656
16028	2.740	0.07553	362.380	1.4262	0.02335	0.004	360.662
16029	2.740	0.08257	362.542	1.4230	0.02334	0.005	360.658
16030	2.740	0.08993	362.714	1.4199	0.02360	0.004	360.660
16031	2.525	0.03507	361.496	1.2444	0.02182	0.005	360.634
16032	2.525	0.03991	361.625	1.2425	0.02156	0.005	360.644
16033	2.525	0.04507	361.764	1.2406	0.02196	0.004	360.647
16034	2.525	0.05054	361.900	1.2387	0.02167	0.004	360.651
16035	2.525	0.05632	362.049	1.2368	0.02172	0.003	360.653
16036	2.525	0.06241	362.206	1.2347	0.02173	0.003	360.656
16037	2.525	0.06881	362.368	1.2325	0.02197	0.003	360.656
16038	2.525	0.07555	362.538	1.2302	0.02181	0.004	360.657
16039	2.525	0.08258	362.720	1.2280	0.02206	0.003	360.659
16040	2.525	0.08995	362.906	1.2257	0.02218	0.003	360.659
16041	2.297	0.03507	361.546	1.0669	0.02094	0.005	360.623
16042	2.297	0.03991	361.687	1.0654	0.02081	0.005	360.631
16043	2.297	0.04507	361.823	1.0641	0.02077	0.004	360.631
16044	2.296	0.05053	361.976	1.0626	0.02097	0.003	360.634
16045	2.296	0.05632	362.139	1.0611	0.02093	0.004	360.643
16046	2.296	0.06241	362.309	1.0594	0.02100	0.003	360.645
16047	2.296	0.06883	362.479	1.0578	0.02093	0.003	360.641
16048	2.296	0.07555	362.661	1.0561	0.02093	0.003	360.640
16049	2.296	0.08260	362.864	1.0542	0.02108	0.003	360.652
16050	2.296	0.08996	363.061	1.0524	0.02109	0.002	360.647
16051	2.033	0.03509	361.609	0.8915	0.02024	0.005	360.635
16052	2.033	0.03994	361.762	0.8905	0.02031	0.004	360.646
16053	2.032	0.04510	361.913	0.8895	0.02005	0.004	360.647
16054	2.032	0.05057	362.073	0.8885	0.02024	0.004	360.650
16055	2.032	0.05636	362.244	0.8873	0.02008	0.004	360.649
16056	2.032	0.06245	362.425	0.8861	0.02033	0.003	360.652
16057	2.032	0.06887	362.622	0.8847	0.02006	0.004	360.656
16058	2.032	0.07560	362.815	0.8837	0.02030	0.002	360.655
16059	2.032	0.08265	363.027	0.8823	0.02031	0.003	360.661
16060	2.032	0.09001	363.235	0.8811	0.02038	0.003	360.653
16061	1.764	0.03509	361.692	0.7356	0.01948	0.005	360.636
16062	1.764	0.03994	361.857	0.7347	0.01976	0.004	360.650

Table 3. Thermal conductivity of R134a in the vapor phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	${ m W\cdot m^{-1}}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
16063	1.764	0.04510	362.021	0.7339	0.01976	0.004	360.655
16064	1.763	0.05056	362.202	0.7330	0.01964	0.003	360.666
16065	1.763	0.05635	362.374	0.7321	0.01972	0.003	360.659
16066	1.763	0.06245	362.577	0.7312	0.01978	0.003	360.674
16067	1.763	0.06887	362.775	0.7304	0.01968	0.003	360.673
16068	1.763	0.07560	362.986	0.7294	0.01979	0.002	360.675
16069	1.763	0.08265	363.195	0.7285	0.01979	0.002	360.668
16070	1.763	0.09002	363.426	0.7275	0.01986	0.002	360.672
16071	1.486	0.03509	361.780	0.5918	0.01937	0.005	360.652
16072	1.486	0.03993	361.953	0.5912	0.01908	0.005	360.667
16073	1.485	0.04510	362.129	0.5905	0.01934	0.003	360.670
16074	1.485	0.05057	362.313	0.5898	0.01923	0.003	360.677
16075	1.485	0.05636	362.499	0.5892	0.01936	0.002	360.676
16076	1.485	0.06246	362.705	0.5888	0.01926	0.003	360.679
16077	1.485	0.06888	362.915	0.5880	0.01949	0.003	360.681
16078	1.485	0.07562	363.136	0.5873	0.01940	0.003	360.681
16079	1.485	0.08267	363.366	0.5867	0.01946	0.002	360.679
16080	1.485	0.09004	363.614	0.5859	0.01954	0.002	360.688
16081	1.211	0.03510	361.866	0.4633	0.01916	0.005	360.661
16082	1.211	0.03994	362.038	0.4630	0.01898	0.005	360.668
16083	1.211	0.04510	362.224	0.4624	0.01895	0.004	360.679
16084	1.211	0.05058	362.416	0.4620	0.01912	0.004	360.682
16085	1.211	0.05636	362.616	0.4615	0.01919	0.003	360.683
16086	1.211	0.06246	362.827	0.4611	0.01911	0.003	360.684
16087	1.211	0.06889	363.050	0.4606	0.01919	0.003	360.684
16088	1.211	0.07563	363.285	0.4601	0.01927	0.003	360.688
16089	1.211	0.08268	363.522	0.4596	0.01930	0.002	360.689
16090	1.211	0.09005	363.778	0.4592	0.01932	0.002	360.691
16091	0.994	0.03509	361.896	0.3692	0.01912	0.005	360.649
16092	0.994	0.03994	362.082	0.3689	0.01905	0.005	360.661
16093	0.994	0.04510	362.268	0.3686	0.01887	0.004	360.661
16094	0.994	0.05057	362.478	0.3682	0.01902	0.004	360.674
16095	0.994	0.05636	362.673	0.3680	0.01914	0.003	360.665
16096	0.994	0.06247	362.904	0.3676	0.01903	0.004	360.676
16097	0.994	0.06888	363.139	0.3673	0.01910	0.003	360.680
16098	0.994	0.07562	363.370	0.3670	0.01910	0.002	360.673
16099	0.994	0.08268	363.628	0.3666	0.01917	0.002	360.679
16100	0.994	0.09006	363.893	0.3662	0.01913	0.002	360.678
16101	0.712	0.03509	361.972	0.2556	0.01900	0.005	360.654
16102	0.712	0.03994	362.159	0.2554	0.01927	0.004	360.657
16103	0.712	0.04510	362.354	0.2551	0.01918	0.004	360.657
16104	0.712	0.05057	362.563	0.2548	0.01906	0.003	360.658
16105	0.712	0.05637	362.792	0.2546	0.01884	0.003	360.667

Table 3. Thermal conductivity of R134a in the vapor phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
16106	0.712	0.06247	363.019	0.2543	0.01917	0.003	360.663
16107	0.714	0.06889	363.250	0.2551	0.01917	0.003	360.655
16108	0.715	0.07564	363.520	0.2550	0.01918	0.003	360.665
16109	0.715	0.08269	363.778	0.2548	0.01920	0.002	360.660
16110	0.715	0.09006	364.064	0.2545	0.01907	0.003	360.662
16111	0.615	0.03509	361.971	0.2180	0.01910	0.005	360.632
16112	0.615	0.03993	362.161	0.2180	0.01911	0.004	360.637
16113	0.615	0.04509	362.375	0.2180	0.01923	0.004	360.648
16114	0.616	0.05057	362.585	0.2179	0.01917	0.003	360.644
16115	0.616	0.05636	362.807	0.2179	0.01895	0.003	360.644
16116	0.616	0.06247	363.047	0.2177	0.01921	0.003	360.644
16117	0.616	0.06889	363.303	0.2176	0.01924	0.003	360.654
16118	0.617	0.07563	363.553	0.2175	0.01920	0.003	360.645
16119	0.617	0.08269	363.838	0.2174	0.01929	0.003	360.657
16120	0.617	0.09008	364.122	0.2173	0.01918	0.003	360.655
16121	0.454	0.03509	362.029	0.1582	0.01880	0.005	360.627
16123	0.454	0.03993	362.248	0.1581	0.01893	0.004	360.645
16125	0.454	0.04509	362.465	0.1580	0.01912	0.004	360.651
16127	0.455	0.05056	362.686	0.1579	0.01930	0.004	360.657
16129	0.455	0.05636	362.922	0.1579	0.01921	0.004	360.662
16131	0.455	0.06246	363.177	0.1578	0.01931	0.003	360.662
16133	0.455	0.06888	363.441	0.1576	0.01934	0.003	360.661
16135	0.455	0.07562	363.717	0.1575	0.01936	0.003	360.665
16137	0.455	0.08268	363.995	0.1574	0.01938	0.003	360.657
16139	0.455	0.09005	364.302	0.1573	0.01936	0.003	360.663
16143	0.312	0.03996	362.349	0.1071	0.01935	0.006	360.678
16145	0.312	0.04512	362.572	0.1070	0.01945	0.005	360.678
16147	0.313	0.05060	362.809	0.1069	0.01963	0.005	360.684
16149	0.312	0.05639	363.066	0.1068	0.01952	0.004	360.688
16151	0.312	0.06251	363.329	0.1067	0.01956	0.004	360.695
16153	0.313	0.06893	363.598	0.1067	0.01953	0.003	360.688
16155	0.313	0.07567	363.888	0.1066	0.01957	0.003	360.688
16157	0.313	0.08273	364.190	0.1065	0.01945	0.003	360.694
16159	0.313	0.09011	364.506	0.1064	0.01965	0.003	360.697
16161	0.213	0.03511	362.199	0.0722	0.01973	0.006	360.695
16163	0.213	0.03995	362.443	0.0722	0.01966	0.005	360.711
16165	0.213	0.04511	362.684	0.0721	0.01975	0.004	360.716
16167	0.213	0.05059	362.920	0.0721	0.01949	0.004	360.714
16169	0.213	0.05638	363.187	0.0720	0.02026	0.003	360.719
16171	0.213	0.06249	363.461	0.0720	0.01976	0.004	360.726
16173	0.213	0.06892	363.748	0.0720	0.01984	0.004	360.730
16175	0.213	0.07567	364.049	0.0719	0.01989	0.004	360.730
16177	0.213	0.08273	364.359	0.0719	0.01977	0.004	360.725

Table 3. Thermal conductivity of R134a in the vapor phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
16179	0.213	0.09011	364.685	0.0718	0.01990	0.004	360.726
16181	0.102	0.03511	362.332	0.0342	0.01986	0.006	360.705
16183	0.102	0.03996	362.579	0.0342	0.01983	0.005	360.717
16185	0.102	0.04512	362.823	0.0342	0.01998	0.004	360.712
16187	0.102	0.05060	363.098	0.0342	0.01994	0.005	360.722
16189	0.102	0.05639	363.376	0.0342	0.01998	0.004	360.722
16191	0.102	0.06251	363.670	0.0342	0.02000	0.004	360.722
16195	0.102	0.07569	364.303	0.0342	0.02002	0.003	360.729
16197	0.102	0.08275	364.642	0.0341	0.02018	0.003	360.728
16199	0.103	0.09013	364.986	0.0341	0.02019	0.003	360.721
Nominal	Temperati	ure = 370 K	***				
17011	3.486	0.03584	369.718	2.1815	0.02839	0.007	369.149
17012	3.486	0.04079	369.813	2.1757	0.02902	0.007	369.159
17013	3.486	0.04605	369.872	2.1720	0.02913	0.006	369.164
17014	3.487	0.05164	369.979	2.1659	0.02938	0.006	369.179
17015	3.487	0.05754	370.077	2.1598	0.02944	0.006	369.174
17016	3.487	0.06376	370.180	2.1538	0.02953	0.007	369.173
17022	3.333	0.04079	369.915	1.9202	0.02637	0.006	369.176
17023	3.334	0.04606	370.019	1.9164	0.02625	0.006	369.178
17024	3.333	0.05164	370.136	1.9116	0.02678	0.005	369.189
17025	3.334	0.05755	370.254	1.9072	0.02636	0.005	369.196
17026	3.334	0.06377	370.371	1.9027	0.02679	0.005	369.189
17032	3.157	0.04079	369.989	1.6954	0.02489	0.006	369.170
17033	3.156	0.04606	370.119	1.6918	0.02473	0.005	369.183
17034	3.157	0.05165	370.240	1.6888	0.02482	0.004	369.185
17035	3.157	0.05756	370.375	1.6851	0.02489	0.004	369.194
17036	3.157	0.06378	370.496	1.6823	0.02501	0.004	369.187
17037	3.157	0.07034	370.640	1.6782	0.02483	0.004	369.191
17038	3.157	0.07721	370.792	1.6744	0.02524	0.004	369.195
17039	3.157	0.08439	370.942	1.6712	0.02521	0.005	369.193
17040	3.157	0.09191	371.096	1.6672	0.02548	0.005	369.188
17041	2.961	0.03585	369.937	1.4964	0.02333	0.006	369.159
17042	2.961	0.04080	370.068	1.4939	0.02316	0.005	369.176
17043	2.961	0.04606	370.188	1.4919	0.02352	0.005	369.176
17044	2.961	0.05165	370.325	1.4889	0.02328	0.004	369.181
17045	2.961	0.05755	370.471	1.4864	0.02360	0.004	369.188
17046	2.961	0.06378	370.612	1.4837	0.02343	0.003	369.187
17047	2.961	0.07033	370.765	1.4809	0.02352	0.004	369.190
17048	2.961	0.07721	370.925	1.4783	0.02347	0.003	369.190
17049	2.961	0.08441	371.090	1.4756	0.02380	0.004	369.190
17051	2.740	0.03585	369.994	1.3060	0.02254	0.006	369.160
17052	2.740	0.04080	370.143	1.3037	0.02250	0.005	369.177
17053	2.740	0.04607	370.282	1.3019	0.02216	0.004	369.184

Table 3. Thermal conductivity of R134a in the vapor phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W \cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$\mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1}$		K
17054	2.740	0.05166	370.416	1.3001	0.02260	0.004	369.182
17055	2.739	0.05756	370.571	1.2982	0.02258	0.003	369.190
17056	2.739	0.06379	370.729	1.2960	0.02241	0.004	369.190
17057	2.739	0.07034	370.888	1.2939	0.02265	0.003	369.189
17058	2.739	0.07722	371.058	1.2919	0.02255	0.003	369.186
17059	2.739	0.08441	371.246	1.2892	0.02278	0.003	369.197
17060	2.739	0.09193	371.423	1.2871	0.02289	0.003	369.189
17062	2.512	0.04080	370.201	1.1358	0.02174	0.004	369.169
17063	2.512	0.04607	370.353	1.1342	0.02146	0.004	369.181
17064	2.512	0.05166	370.507	1.1328	0.02168	0.003	369.186
17065	2.512	0.05756	370.664	1.1314	0.02156	0.003	369.188
17066	2.511	0.06379	370.827	1.1298	0.02172	0.003	369.184
17067	2.512	0.07035	371.005	1.1282	0.02158	0.002	369.193
17068	2.512	0.07722	371.182	1.1265	0.02180	0.002	369.186
17069	2.512	0.08441	371.378	1.1245	0.02186	0.003	369.194
17070	2.512	0.09193	371.569	1.1229	0.02190	0.003	369.191
17071	2.259	0.03585	370.115	0.9732	0.02093	0.005	369.163
17072	2.258	0.04079	370.258	0.9719	0.02105	0.004	369.164
17073	2.258	0.04606	370.412	0.9709	0.02105	0.004	369.174
17074	2.258	0.05165	370.581	0.9697	0.02121	0.003	369.183
17075	2.258	0.05756	370.740	0.9685	0.02097	0.003	369.178
17076	2.258	0.06379	370.921	0.9673	0.02123	0.003	369.183
17077	2.258	0.07034	371.097	0.9661	0.02099	0.003	369.179
17078	2.258	0.07722	371.293	0.9646	0.02125	0.003	369.184
17079	2.258	0.08442	371.502	0.9634	0.02126	0.002	369.189
17080	2.258	0.09195	371.697	0.9620	0.02128	0.003	369.179
17081	1.949	0.03588	370.088	0.7969	0.02042	0.006	369.117
17082	1.949	0.04083	370.249	0.7960	0.02066	0.005	369.121
17083	1.949	0.04610	370.423	0.7951	0.02065	0.004	369.138
17084	1.949	0.05169	370.598	0.7944	0.02034	0.003	369.142
17085	1.949	0.05761	370.776	0.7935	0.02058	0.003	369.142
17086	1.949	0.06384	370.964	0.7925	0.02053	0.003	369.146
17087	1.949	0.07040	371.151	0.7918	0.02052	0.003	369.143
17088	1.949	0.07728	371.367	0.7908	0.02062	0.002	369.151
17089	1.949	0.08448	371.565	0.7900	0.02058	0.002	369.142
17090	1.949	0.09200	371.788	0.7888	0.02063	0.002	369.140
17091	1.668	0.03588	370.176	0.6536	0.02010	0.005	369.128
17092	1.668	0.04083	370.344	0.6529	0.01968	0.005	369.135
17093	1.668	0.04610	370.517	0.6524	0.02026	0.003	369.144
17094	1.668	0.05169	370.699	0.6517	0.02008	0.004	369.146
17095	1.668	0.05760	370.891	0.6512	0.02031	0.003	369.154
17096	1.668	0.06383	371.088	0.6504	0.02006	0.003	369.152
17097	1.668	0.07040	371.295	0.6497	0.02022	0.002	369.155

Table 3. Thermal conductivity of R134a in the vapor phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
17098	1.668	0.07727	371.514	0.6490	0.02018	0.002	369.158
17099	1.668	0.08449	371.734	0.6484	0.02028	0.002	369.155
17100	1.668	0.09201	371.968	0.6476	0.02023	0.002	369.151
17101	1.356	0.03587	370.254	0.5093	0.01995	0.005	369.136
17102	1.356	0.04082	370.432	0.5088	0.01992	0.005	369.147
17103	1.356	0.04609	370.608	0.5084	0.01989	0.004	369.149
17104	1.356	0.05169	370.813	0.5079	0.01969	0.003	369.164
17105	1.356	0.05760	371.008	0.5074	0.01991	0.003	369.165
17106	1.356	0.06383	371.220	0.5069	0.01988	0.003	369.168
17107	1.356	0.07040	371.436	0.5065	0.02000	0.002	369.167
17108	1.356	0.07728	371.665	0.5059	0.02001	0.002	369.171
17109	1.356	0.08449	371.908	0.5055	0.02002	0.002	369.177
17110	1.356	0.09202	372.158	0.5050	0.02009	0.002	369.175
17111	1.203	0.03587	370.304	0.4430	0.01988	0.005	369.147
17112	1.208	0.04082	370.489	0.4451	0.01981	0.004	369.158
17113	1.211	0.04610	370.671	0.4459	0.01974	0.004	369.163
17114	1.214	0.05169	370.873	0.4468	0.01974	0.004	369.174
17115	1.215	0.05760	371.072	0.4469	0.01991	0.003	369.169
17116	1.216	0.06384	371.268	0.4470	0.01982	0.003	369.163
17117	1.218	0.07040	371.511	0.4472	0.01986	0.002	369.175
17118	1.218	0.07729	371.734	0.4470	0.01993	0.002	369.171
17119	1.220	0.08449	371.971	0.4470	0.01998	0.003	369.170
17120	1.220	0.09202	372.232	0.4466	0.01999	0.002	369.173
17121	0.905	0.03587	370.379	0.3220	0.01984	0.005	369.157
17122	0.905	0.04083	370.567	0.3218	0.01987	0.004	369.163
17123	0.905	0.04609	370.754	0.3215	0.01970	0.004	369.164
17124	0.905	0.05169	370.972	0.3213	0.01987	0.004	369.176
17125	0.905	0.05760	371.187	0.3210	0.01970	0.003	369.176
17126	0.905	0.06384	371.408	0.3208	0.01999	0.003	369.174
17127	0.905	0.07040	371.643	0.3205	0.01989	0.003	369.179
17128	0.905	0.07729	371.888	0.3203	0.01996	0.003	369.177
17129	0.905	0.08450	372.145	0.3199	0.01999	0.002	369.176
17130	0.905	0.09204	372.423	0.3196	0.01987	0.002	369.183
17131	0.664	0.03587	370.435	0.2301	0.01968	0.005	369.151
17132	0.664	0.04083	370.647	0.2299	0.01998	0.005	369.168
17133	0.664	0.04609	370.851	0.2297	0.01986	0.004	369.174
17134	0.664	0.05169	371.065	0.2295	0.01998	0.004	369.175
17135	0.664	0.05761	371.292	0.2294	0.01985	0.004	369.180
17136	0.664	0.06385	371.531	0.2291	0.01999	0.003	369.180
17137	0.664 0.664	0.07041	371.776	0.2290	0.02006	0.003	369.181
17138 17139	0.664	0.07730 0.08450	372.038	0.2288	0.02005	0.003	369.188
17139	0.664	0.08450	372.301	0.2287	0.02005	0.003	369.179
1/140	0.004	0.09205	372.594	0.2284	0.01991	0.003	369.189

Table 3. Thermal conductivity of R134a in the vapor phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$\mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1}$		K
17141	0.431	0.03587	370.503	0.1459	0.01993	0.006	369.137
17143	0.431	0.04083	370.719	0.1458	0.02002	0.005	369.153
17145	0.431	0.04609	370.928	0.1457	0.02010	0.004	369.154
17147	0.431	0.05169	371.152	0.1456	0.02017	0.004	369.153
17149	0.432	0.05760	371.380	0.1455	0.02012	0.004	369.143
17151	0.432	0.06385	371.643	0.1455	0.02025	0.003	369.153
17153	0.432	0.07040	371.905	0.1454	0.02027	0.003	369.157
17155	0.432	0.07729	372.168	0.1453	0.02030	0.003	369.145
17157	0.432	0.08450	372.459	0.1452	0.02033	0.003	369.150
17159	0.432	0.09204	372.752	0.1451	0.02027	0.003	369.145
17163	0.324	0.04082	370.760	0.1083	0.02021	0.005	369.135
17165	0.324	0.04609	370.988	0.1083	0.02033	0.005	369.150
17167	0.324	0.05168	371.215	0.1083	0.02044	0.004	369.147
17169	0.324	0.05760	371.469	0.1081	0.02039	0.004	369.150
17171	0.324	0.06384	371.727	0.1081	0.02045	0.004	369.150
17173	0.324	0.07040	371.987	0.1080	0.02040	0.004	369.144
17175	0.324	0.07729	372.278	0.1080	0.02051	0.003	369.148
17177	0.324	0.08451	372.568	0.1078	0.02038	0.003	369.145
17179	0.324	0.09204	372.879	0.1078	0.02053	0.003	369.144
17181	0.209	0.03587	370.593	0.0691	0.02075	0.006	369.112
17183	0.209	0.04082	370.831	0.0691	0.02053	0.006	369.136
17185	0.209	0.04608	371.057	0.0691	0.02073	0.005	369.132
17187	0.209	0.05168	371.306	0.0690	0.02048	0.004	369.136
17189	0.209	0.05759	371.560	0.0690	0.02074	0.004	369.135
17191	0.209	0.06383	371.825	0.0689	0.02075	0.004	369.130
17193	0.209	0.07040	372.118	0.0689	0.02079	0.004	369.136
17195	0.209	0.07729	372.416	0.0689	0.02083	0.003	369.142
17197	0.209	0.08450	372.716	0.0688	0.02073	0.004	369.127
17199	0.209	0.09205	373.046	0.0688	0.02090	0.003	369.132
17201	0.211	0.03587	370.495	0.0697	0.02073	0.006	369.009
17203	0.211	0.04081	370.728	0.0698	0.02055	0.006	369.025
17205	0.211	0.04609	370.973	0.0697	0.02071	0.005	369.033
17207	0.211	0.05168	371.214	0.0697	0.02037	0.005	369.034
17209	0.211	0.05760	371.475	0.0696	0.02079	0.004	369.036
17211	0.211	0.06384	371.753	0.0695	0.02078	0.004	369.042
17213	0.211	0.07041	372.043	0.0695	0.02074	0.004	369.044
17215	0.211	0.07729	372.346	0.0694	0.02082	0.004	369.049
17217	0.211	0.08451	372.651	0.0693	0.02076	0.004	369.045
17219	0.211	0.09203	372.996	0.0693	0.02096	0.003	369.052
17221	0.103	0.03586	370.678	0.0337	0.02101	0.006	369.059
17223	0.103	0.04081	370.941	0.0337	0.02089	0.006	369.080
17225	0.103	0.04609	371.192	0.0337	0.02099	0.005	369.086
17227	0.103	0.05168	371.463	0.0337	0.02112	0.005	369.094

Table 3. Thermal conductivity of R134a in the vapor phase from 300 to 370 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
17229	0.103	0.05760	371.732	0.0337	0.02103	0.004	369.093
17231	0.103	0.06385	372.021	0.0337	0.02113	0.004	369.094
17233	0.103	0.07042	372.330	0.0336	0.02114	0.003	369.089
17235	0.103	0.07730	372.645	0.0336	0.02103	0.003	369.095
17237	0.103	0.08453	372.996	0.0336	0.02121	0.004	369.094
17239	0.103	0.09207	373.352	0.0335	0.02121	0.003	369.104

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires.

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
	Temperatu						
18001	65.668	0.26864	390.997	11.9616	0.09494	0.002	389.737
18002	65.673	0.30334	391.200	11.9581	0.09465	0.001	389.752
18003	65.679	0.34013	391.395	11.9548	0.09426	0.001	389.757
18004	65.685	0.37909	391.603	11.9512	0.09452	0.001	389.761
18005	65.691	0.42008	391.826	11.9474	0.09426	0.001	389.772
18006	65.695	0.46332	392.061	11.9433	0.09392	0.001	389.786
18007	65.697	0.50859	392.302	11.9390	0.09407	0.001	389.790
18008	65.699	0.55601	392.556	11.9345	0.09364	0.001	389.802
18009	65.699	0.60556	392.816	11.9299	0.09372	0.001	389.805
18010	65.700	0.65724	393.092	11.9249	0.09359	0.001	389.815
18011	61.114	0.26874	391.321	11.8285	0.09255	0.002	389.950
18012	61.111	0.30343	391.498	11.8251	0.09246	0.001	389.951
18013	61.107	0.34028	391.713	11.8211	0.09187	0.002	389.968
18014	61.103	0.37923	391.919	11.8171	0.09207	0.001	389.970
18015	61.099	0.42026	392.134	11.8130	0.09190	0.001	389.970
18016	61.096	0.46347	392.369	11.8086	0.09192	0.001	389.979
18017	61.092	0.50873	392.597	11.8042	0.09156	0.001	389.971
18018	61.089	0.55622	392.854	11.7994	0.09158	0.001	389.979
18019	61.085	0.60573	393.113	11.7945	0.09144	0.001	389.983
18020	61.083	0.65745	393.384	11.7894	0.09152	0.000	389.986
18021	53.223	0.26872	391.388	11.5846	0.08878	0.002	389.938
18022	53.221	0.30346	391.592	11.5805	0.08840	0.001	389.955
18023	53.217	0.34029	391.789	11.5765	0.08820	0.001	389.953
18024	53.214	0.37921	392.013	11.5720	0.08823	0.001	389.963
18025	53.211	0.42030	392.184	11.5685	0.08783	0.001	389.959
18026	53.207	0.46346	392.427	11.5636	0.08805	0.001	389.970
18027	53.205	0.50874	392.677	11.5586	0.08775	0.001	389.973
18028	53.211	0.55621	392.927	11.5538	0.08791	0.001	389.970
18029	53.219	0.60575	393.195	11.5488	0.08783	0.001	389.972
18030	53.229	0.65749	393.466	11.5437	0.08780	0.001	389.968
18031	45.385	0.26874	391.421	11.3072	0.08468	0.002	389.931
18032	45.387	0.30346	391.627	11.3029	0.08415	0.002	389.943
18033	45.389	0.34031	391.849	11.2982	0.08441	0.001	389.955
18034	45.391	0.37927	392.069	11.2936	0.08427	0.001	389.957
18035	45.391	0.42034	392.309	11.2885	0.08401	0.001	389.968
18036	45.392	0.46350	392.548	11.2835	0.08409	0.001	389.966
18037	45.394	0.50881	392.800	11.2782	0.08385	0.001	389.961
18038	45.395	0.55626	393.077	11.2723	0.08399	0.001	389.972
18039	45.396	0.60580	393.342	11.2667	0.08366	0.001	389.962
18040	45.396	0.65761	393.646	11.2602	0.08358	0.001	389.976
18041	38.949	0.26877	391.508	11.0414	0.08117	0.002	389.936
18042	38.948	0.30349	391.708	11.0368	0.08026	0.001	389.940

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	ρ_{calc}	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
18043	38.950	0.34032	391.949	11.0313	0.08066	0.001	389.962
18044	38.950	0.37928	392.128	11.0272	0.08070	0.001	389.960
18045	38.951	0.42035	392.373	11.0216	0.08047	0.001	389.962
18046	38.951	0.46357	392.623	11.0159	0.08051	0.001	389.961
18047	38.952	0.50886	392.888	11.0098	0.08013	0.001	389.963
18048	38.952	0.55633	393.168	11.0034	0.08026	0.001	389.967
18049	38.952	0.60592	393.455	10.9968	0.08024	0.001	389.966
18050	38.953	0.65766	393.754	10.9899	0.07996	0.001	389.967
18051	34.154	0.26877	391.502	10.8154	0.07812	0.001	389.922
18052	34.154	0.30351	391.728	10.8098	0.07741	0.002	389.934
18053	34.154	0.34038	391.964	10.8041	0.07781	0.001	389.945
18054	34.154	0.37932	392.201	10.7982	0.07775	0.001	389.950
18055	34.153	0.42044	392.451	10.7920	0.07765	0.001	389.950
18056	34.152	0.46361	392.706	10.7857	0.07734	0.001	389.950
18057	34.152	0.50894	392.984	10.7788	0.07741	0.001	389.954
18058	34.151	0.55641	393.270	10.7717	0.07736	0.001	389.958
18059	34.151	0.60604	393.565	10.7644	0.07721	0.001	389.957
18060	34.150	0.65772	393.873	10.7568	0.07727	0.000	389.954
18061	29.506	0.26882	391.561	10.5614	0.07529	0.001	389.909
18062	29.507	0.30352	391.781	10.5556	0.07417	0.001	389.913
18063	29.508	0.34035	392.019	10.5493	0.07473	0.001	389.920
18064	29.509	0.37933	392.268	10.5428	0.07454	0.001	389.924
18065	29.510	0.42041	392.527	10.5360	0.07478	0.001	389.929
18066	29.512	0.46364	392.794	10.5290	0.07427	0.001	389.930
18067	29.513	0.50893	393.077	10.5215	0.07545	0.002	389.929
18068	29.514	0.55641	393.384	10.5133	0.07434	0.001	389.941
18069	29.515	0.60600	393.684	10.5054	0.07430	0.000	389.932
18070	29.516	0.65773	394.014	10.4966	0.07422	0.000	389.939
18071	25.499	0.26884	391.661	10.3046	0.07239	0.001	389.925
18072	25.499	0.30365	391.866	10.2987	0.07173	0.002	389.945
18073	25.500	0.34048	392.113	10.2916	0.07165	0.001	389.955
18074	25.500	0.37943	392.362	10.2844	0.07183	0.001	389.955
18075	25.500	0.42057	392.630	10.2766	0.07193	0.001	389.957
18076	25.501	0.46375	392.909	10.2686	0.07165	0.001	389.958
18077	25.501	0.50911	393.201	10.2602	0.07181	0.001	389.962
18078	25.502	0.55665	393.508	10.2513	0.07145	0.001	389.963
18079	25.502	0.60620	393.832	10.2419	0.07152	0.001	389.968
18080	25.503	0.65805	394.152	10.2327	0.07153	0.000	389.958
18081	22.075	0.26886	391.719	10.0479	0.06929	0.002	389.946
18082	22.076	0.30366	391.967	10.0402	0.06939	0.001	389.959
18083	22.077	0.34054	392.215	10.0323	0.06928	0.001	389.966
18084	22.077	0.37949	392.480	10.0240	0.06905	0.001	389.970
18085	22.077	0.42060	392.757	10.0153	0.06919	0.001	389.977

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
18086	22.078	0.46382	393.041	10.0063	0.06914	0.001	389.974
18087	22.078	0.50915	393.306	9.9980	0.06925	0.001	389.974
18088	22.079	0.55669	393.633	9.9877	0.06901	0.001	389.981
18089	22.079	0.60632	393.957	9.9774	0.06903	0.001	389.980
18090	22.080	0.23625	391.503	10.0551	0.06967	0.002	389.976
18091	18.902	0.26887	391.763	9.7650	0.06645	0.002	389.949
18092	18.903	0.23631	391.545	9.7726	0.06693	0.002	389.957
18093	18.903	0.20581	391.347	9.7796	0.06711	0.002	389.969
18094	18.904	0.17742	391.150	9.7865	0.06676	0.003	389.966
18095	18.904	0.15113	390.980	9.7925	0.06730	0.003	389.980
18096	18.905	0.12699	390.809	9.7984	0.06762	0.003	389.977
18097	18.905	0.10491	390.643	9.8043	0.06775	0.004	389.978
18098	18.905	0.08497	390.506	9.8090	0.06758	0.007	389.982
18101	16.675	0.26889	391.820	9.5277	0.06432	0.002	389.950
18102	16.675	0.23630	391.597	9.5362	0.06501	0.002	389.959
18103	16.676	0.20580	391.396	9.5439	0.06498	0.002	389.971
18104	16.675	0.17742	391.205	9.5512	0.06448	0.003	389.983
18105	16.675	0.15115	391.022	9.5582	0.06509	0.003	389.980
18106	16.676	0.12698	390.844	9.5649	0.06533	0.004	389.983
18107	16.676	0.10492	390.687	9.5709	0.06486	0.005	389.980
18108	16.676	0.08497	390.546	9.5763	0.06573	0.006	389.974
18111	14.606	0.26882	391.866	9.2665	0.06208	0.002	389.942
18112	14.606	0.23627	391.644	9.2758	0.06275	0.002	389.955
18113	14.606	0.20578	391.440	9.2844	0.06288	0.002	389.974
18114	14.606	0.17739	391.238	9.2929	0.06264	0.002	389.973
18115	14.606	0.15113	391.040	9.3013	0.06312	0.003	389.971
18116	14.606	0.12696	390.872	9.3083	0.06290	0.003	389.979
18117	14.607	0.10490	390.717	9.3149	0.06213	0.005	389.979
18118	14.606	0.08496	390.537	9.3224	0.06313	0.006	389.974
18121	12.811	0.26886	391.909	8.9923	0.06025	0.002	389.931
18122	12.812	0.23628	391.689	9.0028	0.06065	0.001	389.951
18123	12.812	0.20578	391.468	9.0131	0.06088	0.002	389.959
18124	12.812	0.17740	391.256	9.0231	0.06104	0.002	389.963
18125	12.812	0.15112	391.066	9.0321	0.06065	0.003	389.966
18126	12.812	0.12696	390.879	9.0409	0.06107	0.003	389.963
18127	12.813	0.10490	390.714	9.0487	0.06044	0.005	389.973
18128	12.813	0.08495	390.556	9.0562	0.06079	0.006	389.969
18129	12.813	0.06712	390.430	9.0620	0.06052	0.008	389.963
18131	12.814	0.26888	391.870	8.9947	0.06029	0.002	389.937
18132	12.814	0.30364	392.147	8.9816	0.06053	0.001	389.952
18133	12.814	0.34054	392.432	8.9682	0.06037	0.001	389.966
18134	12.815	0.37953	392.716	8.9548	0.06061	0.001	389.957
18135	12.815	0.42063	393.027	8.9400	0.06012	0.001	389.963

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
18136 -	12.815	0.46391	393.348	8.9247	0.06034	0.001	389.961
18137	12.814	0.50927	393.678	8.9090	0.06038	0.001	389.957
18138	12.814	0.55685	394.032	8.8921	0.06060	0.002	389.967
18139	12.814	0.60651	394.397	8.8746	0.06078	0.002	389.965
18140	12.814	0.23627	391.655	9.0047	0.06051	0.002	389.972
18141	12.809	0.20579	391.455	9.0133	0.06040	0.002	389.959
18142	12.809	0.23003	391.642	9.0046	0.06009	0.001	389.965
18143	12.810	0.25566	391.845	8.9952	0.06076	0.002	389.977
18144	12.811	0.28261	392.046	8.9858	0.06067	0.001	389.977
18145	12.811	0.31088	392.261	8.9757	0.06004	0.001	389.980
18146	12.811	0.34056	392.483	8.9653	0.06023	0.001	389.979
18147	12.812	0.37162	392.720	8.9541	0.06021	0.001	389.982
18148	12.812	0.40399	392.963	8.9427	0.06026	0.001	389.983
18149	12.813	0.43775	393.214	8.9308	0.05942	0.002	389.985
18150	12.813	0.47288	393.482	8.9181	0.06040	0.001	389.987
18151	11.367	0.15112	391.065	8.7695	0.05968	0.003	389.950
18152	11.367	0.17199	391.247	8.7600	0.05882	0.002	389.970
18153	11.367	0.19422	391.420	8.7508	0.05851	0.003	389.972
18154	11.368	0.21778	391.608	8.7410	0.05852	0.002	389.981
18155	11.368	0.24268	391.792	8.7314	0.05838	0.001	389.974
18156	11.368	0.26896	391.997	8.7205	0.05933	0.002	389.978
18157	11.368	0.29660	392.216	8.7089	0.05832	0.001	389.985
18158	11.368	0.32556	392.436	8.6973	0.05898	0.001	389.982
18159	11.368	0.35592	392.674	8.6847	0.05931	0.002	389.987
18160	11.368	0.38761	392.907	8.6723	0.05918	0.001	389.981
18161	10.187	0.10490	390.712	8.5283	0.05740	0.005	389.948
18162	10.187	0.12239	390.874	8.5188	0.05746	0.004	389.959
18163	10.187	0.14122	391.022	8.5100	0.05748	0.003	389.965
18164	10.187	0.16140	391.188	8.5003	0.05591	0.003	389.970
18165	10.187	0.18293	391.356	8.4903	0.05785	0.002	389.971
18166	10.187	0.20582	391.539	8.4795	0.05750	0.002	389.970
18167	10.187	0.23003	391.729	8.4682	0.05778	0.002	389.977
18168	10.187	0.25563	391.936	8.4559	0.05711	0.002	389.979
18169	10.187	0.28259	392.139	8.4437	0.05704	0.002	389.970
18170	10.187	0.31092	392.363	8.4302	0.05778	0.001	389.978
18172	9.213	0.11348	390.806	8.2590	0.05516	0.003	389.946
18173	9.213	0.13165	390.966	8.2482	0.05546	0.004	389.957
18174	9.213	0.15115	391.122	8.2378	0.05567	0.003	389.961
18175	9.213	0.17201	391.286	8.2267	0.05584	0.002	389.954
18176	9.213	0.19421	391.462	8.2148	0.05592	0.002	389.958
18177	9.213	0.21777	391.652	8.2020	0.05619	0.002	389.960
18178	9.213	0.24270	391.854	8.1883	0.05498	0.002	389.967
18179	9.213	0.26895	392.066	8.1739	0.05520	0.002	389.966

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W \cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
18180	9.213	0.29659	392.280	8.1594	0.05550	0.001	389.961
18182	8.407	0.10075	390.712	7.9949	0.05376	0.005	389.949
18183	8.408	0.11789	390.877	7.9824	0.05411	0.003	389.962
18184	8.408	0.13640	391.023	7.9712	0.05387	0.003	389.957
18185	8.408	0.15622	391.179	7.9592	0.05428	0.003	389.953
18186	8.408	0.17742	391.359	7.9454	0.05473	0.002	389.961
18187	8.408	0.19997	391.549	7.9307	0.05466	0.002	389.970
18188	8.408	0.22388	391.738	7.9160	0.05461	0.002	389.965
18189	8.408	0.24914	391.947	7.8998	0.05335	0.002	389.968
18190	8.408	0.27575	392.173	7.8822	0.05404	0.002	389.978
18191	7.801	0.07756	390.522	7.7585	0.05374	0.006	389.940
18192	7.801	0.09268	390.668	7.7458	0.05323	0.005	389.952
18193	7.801	0.10916	390.819	7.7327	0.05354	0.004	389.959
18194	7.801	0.12698	390.960	7.7205	0.05252	0.003	389.955
18195	7.801	0.14615	391.138	7.7048	0.05351	0.003	389.975
18196	7.801	0.16665	391.300	7.6906	0.05309	0.002	389.966
18197	7.802	0.18853	391.491	7.6739	0.05254	0.002	389.979
18198	7.802	0.21175	391.678	7.6573	0.05321	0.002	389.973
18199	7.802	0.23633	391.885	7.6389	0.05270	0.001	389.980
18200	7.802	0.26229	392.097	7.6201	0.05389	0.003	389.979
18201	7.321	0.07399	390.515	7.5143	0.05243	0.007	389.939
18202	7.322	0.08877	390.653	7.5006	0.05195	0.005	389.954
18203	7.321	0.10492	390.798	7.4862	0.05251	0.004	389.967
18204	7.322	0.12239	390.950	7.4710	0.05186	0.003	389.965
18205	7.322	0.14121	391.110	7.4550	0.05175	0.003	389.970
18206	7.322	0.16139	391.276	7.4385	0.05175	0.002	389.963
18207	7.322	0.18293	391.436	7.4223	0.05263	0.002	389.983
18208	7.322	0.20582	391.612	7.4045	0.05237	0.002	389.971
18209	7.322	0.23004	391.812	7.3842	0.05294	0.003	389.970
18210	7.322	0.25564	392.028	7.3621	0.05285	0.004	389.977
18211	6.891	0.07398	390.483	7.2428	0.05098	0.006	389.938
18212	6.891	0.08878	390.617	7.2274	0.05087	0.005	389.946
18213	6.891	0.10490	390.751	7.2118	0.05058	0.004	389.950
18214	6.891	0.12239	390.907	7.1938	0.05153	0.003	389.956
18215	6.891	0.14121	391.068	7.1750	0.05149	0.003	389.956
18216	6.890	0.16138	391.232	7.1556	0.05126	0.003	389.950
18217	6.891	0.18290	391.429	7.1325	0.05185	0.002	389.967
18218	6.891	0.20580	391.619	7.1099	0.05108	0.003	389.968
18219	6.891	0.23005	391.824	7.0855	0.05156	0.002	389.971
18220	6.891	0.25566	392.024	7.0615	0.05230	0.005	389.962
18222	6.548	0.07758	390.489	6.9645	0.05063	0.006	389.919
18223	6.548	0.08879	390.603	6.9493	0.05025	0.005	389.929
18224	6.548	0.10077	390.703	6.9359	0.05058	0.004	389.931

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K.	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
18225	6.548	0.11351	390.821	6.9200	0.05104	0.004	389.944
18226	6.549	0.12700	390.937	6.9046	0.05115	0.003	389.943
18227	6.549	0.14124	391.052	6.8891	0.05088	0.004	389.942
18228	6.549	0.15626	391.186	6.8710	0.05018	0.004	389.949
18229	6.549	0.17202	391.313	6.8537	0.05041	0.003	389.942
18230	6.549	0.18855	391.451	6.8349	0.05103	0.003	389.941
18232	6.304	0.07758	390.526	6.7110	0.04957	0.006	389.953
18233	6.304	0.08880	390.640	6.6938	0.05045	0.005	389.960
18234	6.304	0.10076	390.739	6.6787	0.04903	0.004	389.953
18235	6.304	0.11350	390.860	6.6598	0.04944	0.004	389.963
18236	6.304	0.12699	390.974	6.6424	0.04965	0.004	389.970
18237	6.304	0.14124	391.096	6.6235	0.05021	0.003	389.967
18239	6.305	0.17201	391.360	6.5824	0.05060	0.004	389.974
18240	6.305	0.18855	391.496	6.5611	0.05027	0.005	389.973
18241	6.089	0.06380	390.385	6.4643	0.04850	0.007	389.943
18242	6.089	0.07052	390.471	6.4495	0.04973	0.007	389.963
18243	6.089	0.07758	390.562	6.4333	0.04957	0.006	389.963
18244	6.089	0.08498	390.617	6.4241	0.04956	0.005	389.966
18245	6.089	0.09272	390.690	6.4112	0.04977	0.006	389.973
18246	6.089	0.10077	390.759	6.3989	0.04813	0.005	389.973
18247	6.089	0.10917	390.841	6.3844	0.04980	0.004	389.978
18248	6.089	0.11791	390.918	6.3711	0.04964	0.004	389.979
18249	6.089	0.12698	390.996	6.3571	0.04961	0.003	389.983
18250	6.089	0.13640	391.071	6.3438	0.04952	0.004	389.978
18251	5.919	0.06056	390.391	6.2013	0.04825	0.008	389.946
18252	5.919	0.06712	390.445	6.1906	0.04826	0.008	389.951
18253	5.919	0.07401	390.504	6.1789	0.04836	0.006	389.959
18254	5.918	0.08123	390.574	6.1648	0.04905	0.005	389.970
18255	5.918	0.08879	390.646	6.1505	0.04889	0.004	389.969
18256	5.919	0.09669	390.709	6.1381	0.04917	0.004	389.967
18257	5.919	0.10492	390.790	6.1219	0.04896	0.005	389.971
18258	5.918	0.11350	390.857	6.1084	0.04948	0.004	389.972
18259	5.919	0.12240	390.939	6.0924	0.04958	0.005	389.976
18260	5.919	0.13165	391.021	6.0757	0.04968	0.004	389.976
18261	5.802	0.06056	390.342	5.9992	0.04879	0.008	389.928
18262	5.802	0.06712	390.429	5.9801	0.04785	0.007	389.943
18263	5.802	0.07400	390.505	5.9636	0.04783	0.007	389.946
18264	5.802	0.08123	390.558	5.9525	0.04823	0.005	389.950
18265	5.802	0.08878	390.620	5.9386	0.04874	0.006	389.947
18266	5.802	0.09668	390.698	5.9216	0.04912	0.005	389.957
18268	5.802	0.11349	390.837	5.8913	0.04877	0.004	389.953
18269	5.693	0.05741	390.310	5.7755	0.04748	0.008	389.918
18270	5.693	0.06380	390.379	5.7597	0.04845	0.009	389.938

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	$\overline{P_{cell}}$	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$\mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1}$		K
18271	5.693	0.07051	390.446	5.7444	0.04792	0.007	389.945
18272	5.693	0.07757	390.518	5.7270	0.04852	0.006	389.944
18273	5.693	0.08495	390.603	5.7073	0.04864	0.005	389.954
18274	5.693	0.09269	390.659	5.6945	0.04863	0.005	389.956
18275	5.693	0.10076	390.732	5.6773	0.04741	0.006	389.955
18277	5.597	0.05434	390.269	5.5543	0.04800	0.009	389.921
18278	5.597	0.06056	390.377	5.5274	0.04811	0.008	389.935
18279	5.597	0.06711	390.420	5.5168	0.04726	0.006	389.945
18280	5.597	0.07398	390.479	5.5023	0.04807	0.006	389.941
18281	5.597	0.08121	390.553	5.4841	0.04661	0.005	389.943
18282	5.597	0.08876	390.622	5.4665	0.04849	0.006	389.956
18283	5.597	0.09667	390.695	5.4488	0.04864	0.006	389.952
18284	5.597	0.10490	390.769	5.4308	0.04826	0.005	389.958
18285	5.510	0.05136	390.257	5.3224	0.04723	0.010	389.934
18286	5.510	0.05741	390.349	5.2991	0.04778	0.009	389.952
18287	5.510	0.06378	390.411	5.2829	0.04554	0.007	389.956
18288	5.510	0.07050	390.479	5.2654	0.04763	0.006	389.955
18289	5.510	0.07756	390.566	5.2430	0.04748	0.007	389.969
18290	5.510	0.08494	390.625	5.2282	0.04763	0.006	389.963
18291	5.510	0.09267	390.694	5.2105	0.04826	0.007	389.968
18292	5.510	0.10074	390.759	5.1939	0.04771	0.007	389.973
18293	5.437	0.04990	390.274	5.1003	0.04652	0.010	389.942
18294	5.437	0.05586	390.341	5.0829	0.04630	0.009	389.947
18295	5.437	0.06216	390.404	5.0658	0.04577	0.008	389.955
18296	5.437	0.06878	390.463	5.0502	0.04702	0.006	389.956
18297	5.436	0.07576	390.530	5.0318	0.04720	0.006	389.960
18298	5.437	0.08308	390.615	5.0096	0.04679	0.005	389.968
18300	5.358	0.05436	390.263	4.8508	0.04564	0.010	389.904
18301	5.358	0.06058	390.320	4.8357	0.04589	0.008	389.918
18302	5.358	0.06713	390.389	4.8171	0.04569	0.007	389.917
18303	5.358	0.07401	390.437	4.8043	0.04609	0.007	389.918
18304	5.358	0.08123	390.517	4.7835	0.04655	0.007	389.931
18305	5.287	0.04566	390.200	4.6288	0.04396	0.010	389.905
18306	5.287	0.05137	390.258	4.6134	0.04475	0.009	389.920
18307	5.287	0.05742	390.308	4.6005	0.04484	0.008	389.920
18308	5.287	0.06380	390.370	4.5845	0.04515	0.008	389.924
18309	5.287	0.07052	390.441	4.5666	0.04447	0.008	389.934
18310	5.287	0.07757	390.517	4.5476	0.04535	0.007	389.929
18312	5.223	0.04847	390.235	4.4010	0.04367	0.010	389.925
18313	5.223	0.05137	390.304	4.3840	0.04385	0.010	389.933
18314	5.223	0.05435	390.351	4.3723	0.04328	0.008	389.947
18315	5.223	0.05741	390.358	4.3711	0.04364	0.009	389.953
18316	5.223	0.06055	390.416	4.3573	0.04383	0.008	389.948

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
18317	5.224	0.06379	390.438	4.3520	0.04271	0.007	389.952
18318	5.224	0.06711	390.477	4.3428	0.04319	0.008	389.949
18319	5.224	0.07051	390.508	4.3354	0.04400	0.006	389.961
18320	5.224	0.07400	390.545	4.3268	0.04402	0.008	389.958
18321	5.140	0.04293	390.224	4.1215	0.04134	0.012	389.929
18322	5.140	0.04566	390.260	4.1135	0.04217	0.011	389.935
18323	5.140	0.04848	390.331	4.0979	0.04185	0.010	389.951
18324	5.140	0.05138	390.362	4.0912	0.04111	0.009	389.954
18325	5.140	0.05436	390.368	4.0895	0.04202	0.009	389.949
18326	5.140	0.05742	390.416	4.0794	0.04240	0.009	389.965
18327	5.140	0.06057	390.472	4.0674	0.04137	0.008	389.967
18328	5.140	0.06380	390.485	4.0645	0.04185	0.008	389.965
18329	5.140	0.06712	390.550	4.0511	0.04216	0.007	389.972
18330	5.140	0.07052	390.566	4.0479	0.04243	0.007	389.966
18331	5.060	0.04293	390.284	3.8535	0.04030	0.011	389.948
18332	5.060	0.04567	390.297	3.8510	0.04060	0.010	389.945
18333	5.060	0.04848	390.380	3.8354	0.03949	0.010	389.957
18334	5.060	0.05137	390.401	3.8316	0.04074	0.009	389.960
18335	5.060	0.05435	390.414	3.8293	0.04025	0.008	389.959
18336	5.060	0.05742	390.475	3.8177	0.03971	0.008	389.957
18337	5.060	0.06056	390.515	3.8109	0.03983	0.008	389.963
18338	5.060	0.06380	390.532	3.8078	0.04043	0.007	389.969
18339	5.060	0.06711	390.569	3.8009	0.04052	0.007	389.965
18340	5.061	0.07052	390.629	3.7905	0.04069	0.008	389.972
18341	4.967	0.04240	390.308	3.5808	0.03857	0.011	389.939
18342	4.967	0.04511	390.370	3.5714	0.03858	0.010	389.951
18343	4.967	0.04791	390.387	3.5685	0.03773	0.009	389.952
18344	4.967	0.05079	390.441	3.5604	0.03882	0.009	389.957
18345	4.967	0.05375	390.467	3.5562	0.03787	0.009	389.961
18346	4.967	0.05680	390.505	3.5504	0.03768	0.009	389.973
18347	4.967	0.05993	390.548	3.5438	0.03834	0.008	389.975
18348	4.967	0.06315	390.596	3.5371	0.03862	0.007	389.976
18349	4.967	0.06645	390.633	3.5316	0.03850	0.006	389.970
18350	4.967	0.06984	390.666	3.5268	0.03846	0.007	389.970
18351	4.865	0.04159	390.318	3.3199	0.03621	0.011	389.932
18352	4.865	0.04429	390.385	3.3114	0.03639	0.010	389.955
18353	4.865	0.04706	390.420	3.3074	0.03664	0.008	389.956
18354	4.865	0.04991	390.450	3.3037	0.03694	0.008	389.961
18355	4.865	0.05285	390.496	3.2985	0.03607	0.008	389.961
18356	4.865	0.05587	390.556	3.2912	0.03622	0.007	389.967
18357	4.865	0.05898	390.588	3.2875	0.03689	0.006	389.965
18358	4.865	0.06218	390.623	3.2834	0.03640	0.006	389.968
18359	4.865	0.06545	390.668	3.2781	0.03669	0.006	389.967

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
18360	4.865	0.06881	390.708	3.2734	0.03670	0.007	389.965
18361	4.745	0.04028	390.371	3.0550	0.03515	0.010	389.935
18362	4.745	0.04293	390.398	3.0523	0.03438	0.010	389.949
18363	4.745	0.04566	390.431	3.0497	0.03481	0.009	389.949
18364	4.745	0.04847	390.498	3.0430	0.03431	0.009	389.955
18365	4.745	0.05137	390.528	3.0402	0.03426	0.009	389.961
18366	4.745	0.05435	390.586	3.0349	0.03465	0.008	389.965
18367	4.745	0.05741	390.618	3.0320	0.03462	0.006	389.969
18368	4.745	0.06057	390.660	3.0282	0.03486	0.006	389.962
18369	4.745	0.06380	390.707	3.0239	0.03455	0.006	389.959
18370	4.745	0.06712	390.744	3.0206	0.03466	0.006	389.961
18371	4.607	0.03899	390.390	2.8014	0.03306	0.011	389.933
18372	4.606	0.04160	390.406	2.8001	0.03247	0.009	389.940
18373	4.607	0.04428	390.484	2.7950	0.03306	0.009	389.951
18374	4.606	0.04706	390.509	2.7928	0.03271	0.009	389.955
18375	4.606	0.04991	390.560	2.7891	0.03223	0.008	389.949
18376	4.606	0.05285	390.600	2.7862	0.03295	0.007	389.955
18377	4.606	0.05587	390.639	2.7835	0.03284	0.007	389.956
18378	4.606	0.05898	390.687	2.7802	0.03281	0.006	389.956
18379	4.607	0.06217	390.728	2.7777	0.03273	0.006	389.950
18380	4.606	0.06545	390.798	2.7727	0.03294	0.005	389.958
18381	4.456	0.03772	390.377	2.5692	0.03122	0.011	389.941
18382	4.456	0.04028	390.437	2.5658	0.03123	0.010	389.940
18383	4.456	0.04293	390.487	2.5632	0.03124	0.008	389.947
18384	4.456	0.04566	390.556	2.5593	0.03064	0.009	389.954
18385	4.456	0.04847	390.584	2.5579	0.03097	0.008	389.959
18386	4.456	0.05137	390.641	2.5551	0.03112	0.007	389.962
18387	4.456	0.05435	390.678	2.5530	0.03124	0.006	389.961
18388	4.456	0.05742	390.734	2.5501	0.03086	0.006	389.960
18389	4.456	0.06057	390.789	2.5471	0.03139	0.006	389.967
18390	4.456	0.06380	390.844	2.5443	0.03135	0.005	389.966
18391	4.246	0.03772	390.431	2.2940	0.02938	0.010	389.929
18392	4.246	0.04028	390.492	2.2916	0.02964	0.009	389.940
18393	4.245	0.04293	390.544	2.2894	0.02924	0.009	389.953
18394	4.245	0.04567	390.612	2.2868	0.02939	0.007	389.952
18395	4.246	0.04848	390.649	2.2854	0.02960	0.007	389.959
18396	4.246	0.05138	390.710	2.2831	0.02942	0.006	389.957
18397	4.246	0.05436	390.768	2.2809	0.02950	0.006	389.960
18398	4.245	0.05742	390.810	2.2792	0.02957	0.006	389.965
18399	4.246	0.06057	390.876	2.2768	0.02953	0.005	389.967
18400	4.246	0.06380	390.922	2.2750	0.02934	0.005	389.963
18401	4.033	0.03774	390.463	2.0607	0.02824	0.009	389.929
18402	4.033	0.04031	390.525	2.0588	0.02816	0.008	389.934

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
18403	4.033	0.04296	390.595	2.0567	0.02791	0.008	389.949
18404	4.033	0.04569	390.640	2.0554	- 0.02845	0.007	389.948
18405	4.033	0.04850	390.699	2.0538	0.02838	0.007	389.957
18406	4.033	0.05141	390.749	2.0522	0.02805	0.006	389.951
18407	4.033	0.05439	390.813	2.0505	0.02813	0.006	389.959
18408	4.033	0.05746	390.850	2.0494	0.02833	0.005	389.950
18409	4.033	0.06061	390.928	2.0470	0.02824	0.005	389.958
18410	4.033	0.06385	390.992	2.0452	0.02781	0.005	389.962
18411	3.778	0.03527	390.502	1.8220	0.02681	0.010	389.950
18412	3.778	0.03775	390.535	1.8213	0.02693	0.010	389.952
18413	3.778	0.04032	390.620	1.8195	0.02637	0.008	389.966
18414	3.778	0.04296	390.666	1.8186	0.02687	0.008	389.968
18415	3.778	0.04569	390.722	1.8175	0.02684	0.007	389.974
18416	3.778	0.04851	390.789	1.8160	0.02704	0.006	389.977
18417	3.778	0.05141	390.851	1.8147	0.02688	0.006	389.979
18418	3.779	0.05439	390.916	1.8135	0.02688	0.006	389.981
18419	3.778	0.05745	390.975	1.8122	0.02656	0.005	389.980
18420	3.779	0.06061	391.043	1.8109	0.02683	0.005	389.981
18421	3.427	0.03527	390.610	1.5426	0.02550	0.010	389.978
18422	3.426	0.03775	390.666	1.5416	0.02563	0.010	389.991
18423	3.426	0.04032	390.733	1.5407	0.02554	0.008	389.991
18424	3.426	0.04296	390.797	1.5398	0.02575	0.007	389.996
18425	3.427	0.04570	390.862	1.5389	0.02557	0.006	390.003
18426	3.426	0.04851	390.913	1.5381	0.02565	0.006	390.003
18427	3.426	0.05141	390.994	1.5369	0.02566	0.005	390.008
18428	3.426	0.05439	391.057	1.5361	0.02542	0.005	390.012
18429	3.426	0.05746	391.133	1.5350	0.02552	0.005	390.013
18430	3.426	0.06062	391.192	1.5341	0.02553	0.004	390.014
18431	3.150	0.03407	390.643	1.3534	0.02426	0.010	389.998
18432	3.150	0.03651	390.715	1.3527	0.02465	0.008	390.017
18433	3.150	0.03903	390.788	1.3518	0.02477	0.008	390.017
18434	3.150	0.04163	390.865	1.3510	0.02486	0.007	390.025
18435	3.150	0.04433	390.928	1.3504	0.02481	0.006	390.029
18436	3.150	0.04710	390.996	1.3497	0.02494	0.006	390.031
18437	3.150	0.04995	391.057	1.3490	0.02488	0.006	390.029
18438	3.150	0.05290	391.144	1.3481	0.02457	0.005	390.043
18439	3.150	0.05592	391.193	1.3476	0.02473	0.005	390.033
18440	3.150	0.05903	391.267	1.3468	0.02495	0.004	390.036
18441	2.650	0.03288	390.687	1.0582	0.02345	0.010	390.007
18442	2.649	0.03528	390.767	1.0576	0.02383	0.009	390.011
18443	2.649	0.03776	390.838	1.0570	0.02394	0.008	390.018
18444	2.649	0.04033	390.915	1.0564	0.02368	0.008	390.037
18445	2.648	0.04297	390.980	1.0558	0.02392	0.007	390.032

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run point	P_{cell} MPa	Q $W \cdot m^{-1}$	T_{exp} K	$\begin{array}{c} \rho_{calc} \\ \text{mol} \cdot \mathbf{L}^{-1} \end{array}$	λ_{exp} W·m ⁻¹ ·K ⁻¹	STAT	$T_{cell} \ ext{K}$
18446	2.648	0.04570	391.065	1.0552	0.02371	0.006	390.035
18447	2.648	0.04852	391.140	1.0545	0.02359	0.006	390.040
18448	2.648	0.05142	391.197	1.0542	0.02368	0.005	390.033
18449	2.648	0.05440	391.277	1.0536	0.02389	0.005	390.035
18450	2.648	0.05747	391.355	1.0530	0.02386	0.005	390.035
18451	2.161	0.03288	390.700	0.8120	0.02316	0.010	389.974
18452	2.160	0.03528	390.786	0.8115	0.02329	0.008	389.981
18453	2.160	0.03775	390.865	0.8111	0.02334	0.008	389.988
18454	2.160	0.04032	390.944	0.8106	0.02294	0.007	389.994
18455	2.160	0.04296	391.019	0.8103	0.02319	0.007	389.997
18456	2.160	0.04570	391.102	0.8100	0.02321	0.006	389.999.
18457	2.160	0.04851	391.182	0.8097	0.02297	0.006	390.009
18458	2.160	0.05141	391.250	0.8094	0.02322	0.005	390.001
18459	2.160	0.05440	391.344	0.8091	0.02320	0.005	390.009
18460	2.160	0.05747	391.417	0.8088	0.02324	0.004	389.997
18461	1.618	0.03172	390.755	0.5733	0.02283	0.009	389.963
18462	1.618	0.03407	390.857	0.5728	0.02249	0.008	389.969
18463	1.617	0.03651	390.926	0.5724	0.02281	0.007	389.981
18464	1.617	0.03903	391.006	0.5720	0.02278	0.007	389.985
18465	1.617	0.04164	391.083	0.5717	0.02282	0.006	389.991
18466	1.616	0.04433	391.161	0.5714	0.02260	0.006	389.984
18467	1.616	0.04711	391.249	0.5711	0.02272	0.006	389.988
18468	1.616	0.04996	391.339	0.5708	0.02289	0.005	389.999
18469	1.616	0.05291	391.414	0.5705	0.02270	0.004	389.992
18470	1.615	0.05594	391.498	0.5702	0.02275	0.004	389.989
18473	0.973	0.03289	390.908	0.3242	0.02266	0.010	389.971
18475	0.973	0.03528	390.985	0.3238	0.02259	0.008	389.967
18477	0.972	0.03776	391.058	0.3236	0.02280	0.007	389.966
18479	0.972	0.04033	391.137	0.3232	0.02271	0.007	389.965
18481	0.971	0.04297	391.221	0.3229	0.02234	0.006	389.962
18485	0.971	0.04853	391.461	0.3226	0.02276	0.006	389.974
18487	0.972	0.05142	391.561	0.3229	0.02300	0.005	389.967
18489	0.974	0.05441	391.650	0.3234	0.02260	0.005	389.967
18497	0.937	0.03060	390.851	0.3112	0.02277	0.012	389.936
18499	0.937	0.03291	390.944	0.3110	0.02307	0.010	389.943
18501	0.937	0.03531	391.010	0.3110	0.02253	0.010	389.947
18503	0.938	0.03779	391.110	0.3110	0.02258	0.007	389.949
18505	0.938	0.04035	391.187	0.3109	0.02264	0.008	389.943
18507	0.938	0.04300	391.269	0.3109	0.02266	0.008	389.942
18509	0.938	0.04573	391.365	0.3107	0.02296	0.006	389.949
18511	0.938	0.04855	391.451	0.3107	0.02281	0.006	389.945
18513	0.938	0.05145	391.549	0.3106	0.02288	0.006	389.946
18515	0.938	0.05443	391.647	0.3106	0.02218	0.006	389.952

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run point	P_{cell} MPa	Q $W \cdot m^{-1}$	T_{exp} K	$\begin{array}{c} \rho_{calc} \\ \text{mol} \cdot \text{L}^{-1} \end{array}$	λ_{exp} W·m ⁻¹ ·K ⁻¹	STAT	T_{cell} K
18521	0.771	0.03059	390.941	0.2523	0.02268	0.011	389.961
18523	0.771	0.03291	391.023	0.2523	0.02228	0.009	389.973
18525	0.771	0.03530	391.094	0.2522	0.02312	0.009	389.975
18527	0.771	0.03778	391.178	0.2520	0.02301	0.008	389.973
18529	0.771	0.04034	391.264	0.2519	0.02235	0.008	389.974
18531	0.770	0.04300	391.353	0.2517	0.02294	0.007	389.974
18533	0.770	0.04572	391.447	0.2516	0.02282	0.006	389.970
18535	0.770	0.04854	391.538	0.2516	0.02299	0.006	389.978
18541	0.679	0.03059	390.941	0.2203	0.02301	0.011	389.969
18543	0.679	0.03290	391.035	0.2204	0.02267	0.010	389.977
18545	0.679	0.03530	391.114	0.2203	0.02330	0.009	389.976
18547	0.679	0.03778	391.197	0.2204	0.02315	0.009	389.977
18549	0.680	0.04034	391.300	0.2204	0.02261	0.009	389.979
18551	0.680	0.04299	391.388	0.2205	0.02303	0.007	389.979
18553	0.681	0.04572	391.472	0.2206	0.02290	0.006	389.969
18555	0.681	0.04854	391.561	0.2206	0.02300	0.006	389.972
18561	0.638	0.02836	390.887	0.2064	0.02298	0.013	389.970
18563	0.638	0.03059	390.966	0.2065	0.02302	0.012	389.958
18565	0.639	0.03290	391.040	0.2066	0.02279	0.010	389.972
18567	0.639	0.03529	391.123	0.2066	0.02291	0.009	389.969
18569	0.639	0.03778	391.217	0.2066	0.02317	0.008	389.970
18571	0.639	0.04034	391.278	0.2067	0.02254	0.008	389.965
18573	0.640	0.04299	391.391	0.2067	0.02298	0.007	389.970
18575	0.640	0.04572	391.476	0.2068	0.02278	0.006	389.972
18582	0.533	0.02836	390.883	0.1711	0.02320	0.012	389.947
18584	0.543	0.03058	390.968	0.1743	0.02314	0.011	389.948
18586	0.552	0.03290	391.049	0.1773	0.02314	0.010	389.947
18588	0.560	0.03529	391.127	0.1799	0.02286	0.008	389.951
18590	0.615	0.03777	391.203	0.1983	0.02307	0.008	389.943
18593	0.328	0.02621	390.868	0.1035	0.02369	0.015	389.935
18595	0.328	0.02836	390.940	0.1035	0.02344	0.015	389.943
18597	0.328	0.03058	391.048	0.1036	0.02358	0.012	389.952
18599	0.328	0.03290	391.115	0.1036	0.02328	0.012	389.937
18601	0.329	0.03529	391.208	0.1036	0.02367	0.010	389.948
18603	0.329	0.03777	391.305	0.1035	0.02290	0.010	389.947
18605	0.328	0.04033	391.395	0.1035	0.02366	0.008	389.948
18607	0.329	0.04298	391.505	0.1035	0.02353	0.007	389.957
18609	0.329	0.04571	391.595	0.1035	0.02371	0.006	389.948
18615	0.232	0.02621	390.903	0.0727	0.02403	0.015	389.944
18617	0.232	0.02836	391.003	0.0727	0.02412	0.013	389.945
18619	0.232	0.03058	391.081	0.0727	0.02355	0.011	389.950
18621	0.232	0.03290	391.182	0.0727	0.02417	0.010	389.945
18623	0.232	0.03529	391.256	0.0727	0.02397	0.013	389.937

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W \cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
18625	0.232	0.03777	391.333	0.0726	0.02345	0.009	389.934
18627	0.232	0.04033	391.449	0.0727	0.02416	0.008	389.940
18629	0.232	0.04298	391.544	0.0727	0.02371	0.007	389.934
18635	0.107	0.02621	390.963	0.0333	0.02445	0.015	389.916
18637	0.107	0.02835	391.054	0.0333	0.02447	0.013	389.920
18639	0.107	0.03058	391.158	0.0333	0.02456	0.012	389.928
18641	0.108	0.03289	391.219	0.0333	0.02439	0.011	389.925
18643	0.108	0.03529	391.328	0.0333	0.02369	0.010	389.923
18645	0.108	0.03777	391.434	0.0333	0.02456	0.009	389.925
18647	0.107	0.04033	391.545	0.0333	0.02450	0.008	389.923
18649	0.108	0.04298	391.643	0.0333	0.02466	0.008	389.924
Nominal	l Temperatur						
19001	69.505	0.64887	423.088	11.5070	0.09185	0.001	419.747
19002	69.504	0.58547	422.770	11.5125	0.09193	0.001	419.754
19003	69.505	0.52531	422.465	11.5177	0.09177	0.001	419.758
19004	69.506	0.46848	422.173	11.5228	0.09182	0.001	419.762
19005	69.506	0.41487	421.903	11.5274	0.09214	0.001	419.765
19006	69.505	0.36457	421.649	11.5317	0.09218	0.001	419.767
19007	69.505	0.31751	421.399	11.5360	0.09277	0.001	419.764
19008	69.506	0.27369	421.178	11.5398	0.09328	0.002	419.769
19009	69.506	0.23318	420.967	11.5435	0.09269	0.003	419.766
19011	61.490	0.64902	423.248	11.2536	0.08797	0.001	419.752
19012	61.489	0.58558	422.918	11.2596	0.08814	0.001	419.760
19013	61.492	0.52541	422.585	11.2657	0.08793	0.001	419.766
19014	61.493	0.46854	422.281	11.2713	0.08849	0.001	419.764
19015	61.494	0.41493	421.995	11.2765	0.08858	0.001	419.769
19016	61.494	0.36461	421.738	11.2812	0.08877	0.001	419.777
19017	61.494	0.31753	421.486	11.2858	0.08885	0.001	419.776
19018	61.494	0.27375	421.248	11.2901	0.08893	0.002	419.772
19019	61.495	0.23319	421.027	11.2942	0.08953	0.002	419.775
19020	61.495	0.19592	420.828	11.2978	0.09013	0.003	419.774
19021	54.567	0.64908	423.357	11.0067	0.08466	0.001	419.745
19022	54.568	0.58561	423.020	11.0132	0.08486	0.001	419.756
19023	54.568	0.52543	422.691	11.0196	0.08482	0.001	419.762
19024	54.569	0.46853	422.387	11.0255	0.08506	0.001	419.769
19025	54.569	0.41492	422.103	11.0310	0.08508	0.001	419.780
19026	54.570	0.36460	421.813	11.0367	0.08523	0.001	419.772
19027	54.571	0.31752	421.556	11.0417	0.08501	0.002	419.775
19028	54.570	0.27372	421.317	11.0463	0.08556	0.002	419.776
19029	54.570	0.23320	421.096	11.0505	0.08587	0.002	419.780
19030	54.571	0.19592	420.893	11.0545	0.08615	0.003	419.783
19031	48.593	0.64925	423.502	10.7649	0.08167	0.001	419.744
19032	48.594	0.58574	423.152	10.7721	0.08165	0.001	419.756

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
19033	48.593	0.52556	422.819	10.7789	0.08179	0.001	419.762
19034	48.594	0.46864	422.491	10.7857	0.08189	0.001	419.762
19035	48.594	0.41497	422.202	10.7916	0.08189	0.001	419.775
19036	48.593	0.36463	421.919	10.7974	0.08214	0.001	419.780
19037	48.594	0.31759	421.638	10.8032	0.08154	0.002	419.769
19038	48.595	0.27375	421.401	10.8081	0.08255	0.002	419.782
19039	48.594	0.23321	421.173	10.8128	0.08283	0.002	419.779
19040	48.595	0.19594	420.956	10.8172	0.08235	0.003	419.784
19041	42.670	0.64935	423.598	10.4924	0.07832	0.001	419.744
19042	42.671	0.58578	423.235	10.5004	0.07840	0.001	419.755
19043	42.670	0.52557	422.894	10.5079	0.07866	0.001	419.766
19044	42.670	0.46861	422.556	10.5153	0.07856	0.001	419.766
19045	42.671	0.41497	422.236	10.5224	0.07867	0.001	419.763
19046	42.671	0.36463	421.946	10.5287	0.07861	0.001	419.768
19047	42.672	0.31756	421.669	10.5349	0.07850	0.002	419.773
19048	42.672	0.27377	421.409	10.5406	0.07909	0.002	419.773
19049	42.673	0.23320	421.172	10.5459	0.07932	0.002	419.776
19050	42.673	0.19593	420.956	10.5506	0.07868	0.003	419.783
19051	41.678	0.64918	423.627	10.4423	0.07785	0.000	419.753
19052	41.677	0.58568	423.266	10.4504	0.07783	0.001	419.762
19053	41.677	0.52547	422.910	10.4583	0.07810	0.001	419.766
19054	41.677	0.46855	422.572	10.4658	0.07800	0.001	419.764
19055	41.677	0.41491	422.259	10.4728	0.07793	0.001	419.770
19056	41.678	0.36459	421.950	10.4797	0.07813	0.001	419.763
19057	41.677	0.31753	421.679	10.4857	0.07799	0.002	419.769
19058	41.676	0.27373	421.410	10.4917	0.07870	0.002	419.764
19059	41.676	0.23319	421.175	10.4969	0.07862	0.002	419.767
19060	41.676	0.19590	420.940	10.5021	0.07813	0.003	419.762
19061	37.380	0.58597	423.352	10.2184	0.07540	0.001	419.740
19062	37.380	0.52569	422.986	10.2271	0.07529	0.001	419.740
19063	37.380	0.46880	422.643	10.2353	0.07543	0.001	419.747
19064	37.381	0.41509	422.321	10.2429	0.07534	0.001	419.751
19065	37.381	0.36477	422.034	10.2497	0.07565	0.001	419.768
19066	37.383	0.31766	421.729	10.2570	0.07521	0.002	419.757
19067	37.383	0.27381	421.470	10.2632	0.07579	0.002	419.763
19068	37.384	0.23327	421.217	10.2692	0.07602	0.002	419.759
19069	37.384	0.19596	420.990	10.2747	0.07554	0.003	419.766
19071	33.510	0.58596	423.457	9.9806	0.07297	0.001	419.775
19072	33.511	0.52572	423.080	9.9902	0.07304	0.001	419.772
19073	33.511	0.46879	422.730	9.9990	0.07261	0.001	419.782
19074	33.512	0.41512	422.397	10.0075	0.07296	0.002	419.784
19075	33.512	0.36475	422.069	10.0158	0.07316	0.001	419.775
19076	33.512	0.31766	421.780	10.0231	0.07296	0.001	419.783

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell} MPa	$\frac{Q}{\mathrm{W}\cdot\mathrm{m}^{-1}}$	T_{exp} K	$\begin{array}{c} \rho_{calc} \\ \text{mol} \cdot \text{L}^{-1} \end{array}$	λ_{exp} W·m ⁻¹ ·K ⁻¹	STAT	$\begin{array}{c c} T_{cell} \\ K \end{array}$
point		0.27382	421.499		0.07317	0.002	
19077	33.513			10.0302		0.002	419.780
19078	33.514	0.23327	421.248	10.0366	0.07329 0.07291		419.786
19079	33.514	0.19597	421.008	10.0427		0.003	419.779
19080	33.515	0.16192	420.788	10.0483	0.07337	0.003	419.778
19081	29.793	0.49698	422.993	9.7338	0.07027	0.001	419.761
19082	29.792	0.45063	422.701	9.7417	0.07015	0.001	419.767
19083	29.792	0.40658	422.430	9.7491	0.07054	0.001	419.779
19084	29.792	0.36480	422.153	9.7566	0.07048	0.001	419.774
19085	29.791	0.32533	421.895	9.7635	0.07056	0.001	419.774
19086	29.792	0.28811	421.654	9.7701	0.07038	0.001	419.775
19087	29.791	0.25315	421.429	9.7761	0.07078	0.001	419.777
19088	29.791	0.22048	421.214	9.7820	0.07068	0.002	419.777
19089	29.791	0.19007	421.010	9.7875	0.07020	0.003	419.773
19090	29.792	0.16194	420.844	9.7920	0.07082	0.003	419.782
19091	26.674	0.49693	423.084	9.4806	0.06793	0.001	419.750
19092	26.674	0.45057	422.795	9.4890	0.06795	0.001	419.764
19093	26.675	0.40653	422.502	9.4976	0.06793	0.001	419.765
19094	26.675	0.36476	422.216	9.5060	0.06825	0.001	419.761
19095	26.675	0.32529	421.957	9.5135	0.06827	0.001	419.769
19096	26.676	0.28808	421.704	9.5209	0.06787	0.001	419.762
19097	26.676	0.25315	421.472	9.5277	0.06861	0.001	419.765
19098	26.677	0.22049	421.259	9.5340	0.06865	0.002	419.767
19099	26.677	0.19007	421.057	9.5398	0.06833	0.003	419.770
19100	26.677	0.16191	420.861	9.5456	0.06870	0.003	419.769
19101	23.720	0.49701	423.185	9.2009	0.06563	0.001	419.737
19102	23.719	0.45070	422.877	9.2105	0.06539	0.001	419.749
19103	23.718	0.40662	422.585	9.2197	0.06558	0.001	419.755
19104	23.718	0.36483	422.294	9.2289	0.06562	0.001	419.755
19105	23.718	0.32532	422.028	9.2373	0.06581	0.001	419.760
19106	23.718	0.28811	421.776	9.2452	0.06560	0.001	419.767
19107	23.718	0.25314	421.531	9.2529	0.06604	0.002	419.763
19108	23.718	0.22048	421.314	9.2598	0.06605	0.002	419.773
19109	23.718	0.19005	421.088	9.2669	0.06610	0.002	419.760
19110	23.719	0.16192	420.903	9.2728	0.06585	0.003	419.763
19111	21.340	0.49695	423.293	8.9363	0.06380	0.001	419.746
19112	21.340	0.45059	422.971	8.9473	0.06369	0.001	419.752
19113	21.339	0.40655	422.665	8.9577	0.06410	0.003	419.753
19114	21.340	0.36477	422.377	8.9675	0.06363	0.001	419.760
19115	21.340	0.32530	422.093	8.9772	0.06371	0.001	419.757
19116	21.340	0.28810	421.832	8.9861	0.06377	0.001	419.758
19117	21.339	0.25316	421.576	8.9948	0.06373	0.001	419.752
19118	21.340	0.22049	421.346	9.0026	0.06418	0.002	419.756
19119	21.339	0.19008	421.139	9.0096	0.06406	0.002	419.761

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
19120	21.338	0.16193	420.922	9.0169	0.06401	0.002	419.755
19121	19.230	0.45074	423.062	8.6739	0.06199	0.001	419.749
19122	19.230	0.40668	422.758	8.6852	0.06172	0.001	419.762
19123	19.230	0.36489	422.454	8.6964	0.06176	0.001	419.763
19124	19.230	0.32539	422.158	8.7073	0.06169	0.001	419.756
19125	19.230	0.28816	421.893	8.7172	0.06169	0.001	419.760
19126	19.231	0.25321	421.634	8.7267	0.06167	0.001	419.759
19127	19.231	0.22053	421.399	8.7354	0.06175	0.002	419.767
19128	19.231	0.19010	421.175	8.7437	0.06195	0.002	419.758
19129	19.231	0.16196	420.983	8.7508	0.06214	0.003	419.770
19130	19.232	0.13606	420.797	8.7577	0.06178	0.003	419.770
19131	17.451	0.45086	423.157	8.4027	0.06021	0.001	419.766
19132	17.451	0.40676	422.827	8.4159	0.06001	0.001	419.762
19133	17.451	0.36497	422.525	8.4280	0.05988	0.001	419.773
19134	17.452	0.32542	422.242	8.4395	0.05999	0.001	419.786
19135	17.453	0.28818	421.960	8.4508	0.06004	0.001	419.782
19136	17.453	0.25325	421.696	8.4614	0.05994	0.002	419.783
19137	17.453	0.22055	421.456	8.4710	0.05990	0.002	419.789
19138	17.454	0.19012	421.230	8.4800	0.05998	0.002	419.788
19139	17.454	0.16196	421.011	8.4888	0.06001	0.003	419.784
19140	17.454	0.13607	420.829	8.4961	0.05996	0.003	419.788
19141	15.921	0.45085	423.253	8.1281	0.05881	0.002	419.767
19142	15.921	0.40676	422.924	8.1423	0.05840	0.001	419.778
19143	15.921	0.36494	422.608	8.1560	0.05818	0.001	419.782
19144	15.921	0.32541	422.302	8.1692	0.05843	0.001	419.778
19145	15.921	0.28817	422.027	8.1812	0.05806	0.001	419.790
19146	15.921	0.25321	421.755	8.1929	0.05804	0.001	419.789
19147	15.921	0.22052	421.507	8.2036	0.05819	0.002	419.791
19148	15.921	0.19010	421.274	8.2137	0.05830	0.002	419.791
19149	15.921	0.16196	421.047	8.2235	0.05806	0.003	419.784
19150	15.921	0.13605	420.847	8.2321	0.05821	0.003	419.784
19151	14.488	0.45081	423.289	7.8258	0.05715	0.002	419.720
19152	14.489	0.40670	422.953	7.8417	0.05648	0.002	419.727
19153	14.489	0.36488	422.630	7.8570	0.05647	0.001	419.735
19154	14.489	0.32536	422.316	7.8718	0.05634	0.001	419.729
19155	14.489	0.28814	422.031	7.8853	0.05633	0.001	419.737
19156	14.489	0.25319	421.756	7.8982	0.05606	0.002	419.737
19157	14.489	0.22049	421.497	7.9105	0.05631	0.002	419.739
19158	14.489	0.19008	421.256	7.9219	0.05633	0.002	419.736
19159	14.489	0.16193	421.029	7.9326	0.05612	0.003	419.733
19160	14.489	0.13604	420.832	7.9419	0.05632	0.003	419.738
19161	13.456	0.45078	423.386	7.5651	0.05590	0.002	419.732
19162	13.456	0.40668	423.041	7.5827	0.05542	0.002	419.739

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$\mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1}$		K
19163	13.456	0.36488	422.719	7.5991	0.05519	0.001	419.750
19164	13.456	0.32536	422.406	7.6150	0.05497	0.001	419.754
19165	13.457	0.28814	422.115	7.6298	0.05492	0.001	419.761
19166	13.457	0.25318	421.835	7.6441	0.05447	0.002	419.760
19167	13.457	0.22049	421.569	7.6576	0.05491	0.002	419.759
19168	13.457	0.19008	421.330	7.6698	0.05499	0.002	419.764
19169	13.457	0.16193	421.105	7.6812	0.05447	0.003	419.769
19170	13.457	0.13603	420.889	7.6922	0.05481	0.003	419.759
19172	12.577	0.36482	422.779	7.3450	0.05412	0.002	419.751
19173	12.577	0.32533	422.466	7.3620	0.05386	0.002	419.759
19174	12.577	0.28813	422.155	7.3789	0.05355	0.001	419.754
19175	12.577	0.25318	421.881	7.3939	0.05328	0.002	419.763
19176	12.577	0.22048	421.602	7.4090	0.05368	0.001	419.755
19177	12.577	0.19007	421.344	7.4231	0.05370	0.002	419.749
19178	12.577	0.16191	421.129	7.4348	0.05355	0.003	419.767
19179	12.577	0.13601	420.906	7.4469	0.05376	0.003	419.759
19180	12.577	0.11238	420.708	7.4576	0.05378	0.004	419.758
19182	11.802	0.36493	422.817	7.0867	0.05322	0.003	419.731
19183	11.802	0.32536	422.490	7.1058	0.05257	0.002	419.730
19184	11.802	0.28816	422.187	7.1234	0.05252	0.002	419.737
19185	11.802	0.25316	421.900	7.1401	0.05234	0.002	419.745
19186	11.802	0.22047	421.623	7.1563	0.05255	0.001	419.740
19187	11.802	0.19007	421.366	7.1711	0.05258	0.002	419.745
19188	11.802	0.16191	421.132	7.1847	0.05229	0.003	419.748
19189	11.802	0.13602	420.924	7.1967	0.05278	0.003	419.752
19190	11.802	0.11238	420.718	7.2087	0.05232	0.004	419.750
19192	11.117	0.36495	422.874	6.8203	0.05219	0.003	419.723
19193	11.117	0.32543	422.549	6.8406	0.05164	0.003	419.734
19194	11.116	0.28818	422.242	6.8595	0.05148	0.002	419.739
19195	11.116	0.25319	421.937	6.8784	0.05133	0.002	419.736
19196	11.116	0.22050	421.657	6.8959	0.05139	0.002	419.739
19197	11.116	0.19008	421.388	6.9126	0.05161	0.002	419.736
19198	11.116	0.16191	421.159	6.9270	0.05119	0.002	419.742
19199	11.116	0.13603	420.932	6.9410	0.05152	0.003	419.741
19201	10.279	0.40694	423.359	6.4045	0.05150	0.005	419.761
19202	10.279	0.36511	422.999	6.4288	0.05097	0.004	419.771
19203	10.279	0.32557	422.649	6.4525	0.05069	0.004	419.770
19204	10.279	0.28830	422.318	6.4750	0.05034	0.003	419.770
19205	10.279	0.25330	422.011	6.4959	0.05008	0.002	419.773
19206	10.279	0.22061	421.723	6.5154	0.04986	0.002	419.776
19207	10.279	0.19017	421.455	6.5337	0.05001	0.002	419.777
19208	10.279	0.16200	421.204	6.5509	0.04971	0.003	419.779
19209	10.279	0.13609	420.969	6.5669	0.04982	0.003	419.771

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	ρ_{calc}	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$	0.004	K
19210	10.279	0.11244	420.766	6.5807	0.04969	0.004	419.782
19212	9.981	0.36513	423.022	6.2698	0.05079	0.004	419.758
19213	9.981	0.32557	422.669	6.2946	0.05016	0.004	419.758
19215	9.982	0.25330	422.024	6.3400	0.04946	0.003	419.763
19216	9.982	0.22060	421.737	6.3602	0.04959	0.002	419.772
19217	9.981	0.19016	421.470	6.3789	0.04955	0.002	419.775
19218	9.981	0.16199	421.212	6.3972	0.04907	0.003	419.771
19219	9.981	0.13610	420.985	6.4131	0.04923	0.003	419.774
19220	9.981	0.11244	420.769	6.4284	0.04941	0.005	419.771
19222	9.604	0.36511	423.080	6.0467	0.05033	0.005	419.761
19223	9.603	0.32554	422.720	6.0728	0.04971	0.004	419.762
19224	9.603	0.28828	422.383	6.0974	0.04950	0.004	419.765
19225	9.603	0.25329	422.070	6.1202	0.04897	0.003	419.770
19226	9.603	0.22059	421.766	6.1425	0.04863	0.002	419.767
19227	9.603	0.19015	421.494	6.1625	0.04876	0.002	419.768
19228	9.603	0.16198	421.232	6.1818	0.04839	0.003	419.768
19229	9.603	0.13609	421.007	6.1984	0.04848	0.003	419.775
19230	9.603	0.11243	420.793	6.2141	0.04842	0.004	419.775
19233	9.236	0.32553	422.776	5.8321	0.04944	0.006	419.762
19234	9.236	0.28824	422.428	5.8586	0.04880	0.004	419.763
19235	9.236	0.25325	422.105	5.8832	0.04852	0.004	419.764
19236	9.237	0.22055	421.805	5.9062	0.04808	0.003	419.769
19237	9.236	0.19012	421.521	5.9278	0.04802	0.003	419.766
19238	9.236	0.16196	421.260	5.9478	0.04754	0.003	419.764
19239	9.236	0.13606	421.024	5.9660	0.04774	0.003	419.766
19240	9.236	0.11242	420.800	5.9832	0.04756	0.004	419.760
19243	8.904	0.32551	422.816	5.5913	0.04912	0.006	419.748
19244	8.904	0.28824	422.477	5.6178	0.04862	0.006	419.759
19245	8.904	0.25324	422.145	5.6439	0.04785	0.004	419.760
19246	8.904	0.22052	421.831	5.6687	0.04734	0.004	419.755
19247	8.904	0.19012	421.549	5.6912	0.04719	0.003	419.759
19248	8.904	0.16194	421.291	5.7116	0.04701	0.003	419.768
19249	8.904	0.13604	421.045	5.7312	0.04679	0.003	419.761
19250	8.904	0.11242	420.816	5.7495	0.04668	0.003	419.760
19253	8.602	0.28825	422.541	5.3757	0.04787	0.006	419.765
19254	8.602	0.25325	422.199	5.4032	0.04725	0.005	419.760
19255	8.602	0.22056	421.887	5.4283	0.04655	0.003	419.763
19256	8.602	0.19012	421.603	5.4513	0.04635	0.003	419.774
19257	8.602	0.16195	421.324	5.4740	0.04612	0.003	419.766
19258	8.602	0.13606	421.071	5.4946	0.04584	0.003	419.760
19259	8.602	0.11242	420.840	5.5136	0.04597	0.004	419.762
19260	8.602	0.09104	420.634	5.5305	0.04577	0.005	419.763
19264	8.329	0.25336	422.268	5.1638	0.04663	0.005	419.772

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
19265	8.329	0.22064	421.944	5.1901	0.04584	0.004	419.773
19266	8.329	0.19020	421.642	5.2149	0.04562	0.004	419.773
19267	8.329	0.16202	421.365	5.2379	0.04529	0.003	419.773
19268	8.329	0.13610	421.110	5.2590	0.04516	0.003	419.774
19269	8.329	0.11245	420.878	5.2783	0.04498	0.003	419.775
19270	8.329	0.09107	420.671	5.2957	0.04432	0.004	419.779
19274	8.067	0.25336	422.328	4.9178	0.04598	0.006	419.768
19275	8.067	0.22064	422.004	4.9441	0.04519	0.005	419.776
19276	8.067	0.19018	421.701	4.9690	0.04478	0.004	419.784
19277	8.067	0.16202	421.414	4.9925	0.04436	0.003	419.777
19278	8.067	0.13610	421.152	5.0142	0.04408	0.003	419.779
19279	8.067	0.11246	420.920	5.0337	0.04408	0.003	419.783
19280	8.067	0.09107	420.702	5.0519	0.04314	0.004	419.786
19284	7.830	0.25338	422.402	4.6804	0.04540	0.007	419.774
19285	7.830	0.22063	422.068	4.7069	0.04436	0.006	419.778
19286	7.830	0.19017	421.755	4.7319	0.04392	0.005	419.785
19287	7.830	0.16200	421.464	4.7557	0.04365	0.004	419.787
19288	7.830	0.13610	421.200	4.7772	0.04308	0.004	419.787
19289	7.830	0.11245	420.956	4.7974	0.04299	0.004	419.790
19290	7.830	0.09106	420.738	4.8155	0.04253	0.005	419.792
19295	7.603	0.22063	422.132	4.4692	0.04365	0.007	419.776
19296	7.603	0.19019	421.818	4.4937	0.04299	0.005	419.787
19297	7.603	0.16200	421.518	4.5171	0.04280	0.004	419.785
19298	7.603	0.13610	421.238	4.5394	0.04190	0.003	419.786
19299	7.603	0.11245	420.978	4.5600	0.04177	0.004	419.780
19300	7.603	0.09106	420.757	4.5781	0.04129	0.004	419.786
19305	7.373	0.20511	422.049	4.2334	0.04238	0.005	419.786
19306	7.373	0.17864	421.750	4.2553	0.04194	0.004	419.780
19307	7.373	0.15399	421.481	4.2753	0.04162	0.004	419.784
19308	7.373	0.13117	421.228	4.2944	0.04092	0.003	419.780
19309	7.373	0.11019	420.985	4.3129	0.04104	0.003	419.772
19310	7.373	0.09106	420.782	4.3285	0.04094	0.004	419.776
19315	7.143	0.20511	422.112	3.9843	0.04138	0.006	419.768
19316	7.143	0.17863	421.815	4.0045	0.04103	0.005	419.775
19317	7.143	0.15397	421.530	4.0239	0.04070	0.004	419.773
19318	7.143	0.13117	421.272	4.0418	0.03985	0.004	419.776
19319	7.143	0.11018	421.025	4.0593	0.03988	0.004	419.771
19320	7.143	0.09105	420.813	4.0745	0.03983	0.004	419.775
19325	6.906	0.20513	422.217	3.7291	0.04040	0.007	419.773
19326	6.906	0.17862	421.897	3.7485	0.03984	0.005	419.774
19327	6.905	0.15397	421.611	3.7659	0.03950	0.004	419.779
19328	6.906	0.13116	421.338	3.7831	0.03877	0.004	419.777
19329	6.906	0.11019	421.094	3.7986	0.03893	0.004	419.779

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
19330	6.906	0.09104	420.850	3.8142	0.03891	0.004	419.766
19335	6.672	0.20523	422.357	3.4841	0.03934	0.006	419.777
19336	6.672	0.17873	422.017	3.5023	0.03864	0.005	419.772
19337	6.672	0.15407	421.725	3.5181	0.03829	0.004	419.782
19338	6.672	0.13125	421.438	3.5339	0.03799	0.005	419.780
19339	6.672	0.11025	421.185	3.5480	0.03789	0.004	419.791
19340	6.672	0.09109	420.946	3.5616	0.03753	0.004	419.787
19345	6.421	0.20524	422.496	3.2347	0.03804	0.006	419.788
19346	6.421	0.17874	422.145	3.2508	0.03746	0.004	419.785
19347	6.421	0.15406	421.821	3.2659	0.03704	0.004	419.785
19348	6.421	0.13124	421.533	3.2795	0.03683	0.003	419.794
19349	6.421	0.11025	421.250	3.2931	0.03664	0.003	419.784
19350	6.421	0.09109	421.002	3.3052	0.03645	0.004	419.786
19354	6.147	0.20830	422.688	2.9778	0.03669	0.006	419.793
19355	6.147	0.18446	422.354	2.9906	0.03609	0.005	419.788
19356	6.147	0.16208	422.049	3.0024	0.03582	0.004	419.792
19358	6.147	0.12168	421.496	3.0243	0.03542	0.003	419.792
19359	6.147	0.10367	421.244	3.0345	0.03525	0.004	419.790
19360	6.147	0.08708	421.027	3.0434	0.03517	0.004	419.799
19363	5.846	0.20222	422.744	2.7230	0.03513	0.005	419.776
19364	5.846	0.17874	422.410	2.7334	0.03460	0.005	419.785
19365	5.846	0.15672	422.076	2.7440	0.03445	0.003	419.771
19366	5.846	0.13615	421.786	2.7534	0.03436	0.003	419.778
19367	5.846	0.11704	421.511	2.7625	0.03408	0.003	419.785
19369	5.846	0.08317	421.015	2.7788	0.03396	0.004	419.780
19370	5.846	0.06840	420.797	2.7861	0.03339	0.005	419.778
19373	5.534	0.20229	422.926	2.4761	0.03382	0.004	419.778
19374	5.534	0.17879	422.563	2.4853	0.03349	0.003	419.779
19375	5.534	0.15675	422.226	2.4940	0.03322	0.003	419.783
19376	5.534	0.13617	421.905	2.5024	0.03290	0.002	419.782
19377	5.534	0.11705	421.610	2.5102	0.03289	0.002	419.780
19379	5.531	0.08318	420.984	2.5250	0.03273	0.003	419.689
19382	5.519	0.22722	423.045	2.4615	0.03427	0.006	419.524
19383	5.519	0.20227	422.673	2.4709	0.03375	0.005	419.534
19384	5.519	0.17878	422.314	2.4800	0.03342	0.004	419.537
19385	5.518	0.15675	421.967	2.4889	0.03322	0.003	419.530
19386	5.519	0.13617	421.654	2.4971	0.03292	0.003	419.535
19387	5.519	0.11706	421.358	2.5050	0.03307	0.003	419.534
19388	5.518	0.09938	421.075	2.5124	0.03278	0.003	419.526
19391	5.206	0.22086	423.132	2.2376	0.03277	0.005	419.522
19392	5.206	0.19927	422.778	2.2448	0.03253	0.004	419.521
19393	5.206	0.17879	422.456	2.2514	0.03242	0.004	419.529
19394	5.206	0.15943	422.136	2.2581	0.03191	0.003	419.525

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
19395	5.206	0.14118	421.853	2.2641	0.03193	0.004	419.541
19396	5.206	0.12405	421.567	2.2702	0.03167	0.003	419.532
19397	5.206	0.10803	421.315	2.2756	0.03161	0.003	419.538
19398	5.206	0.09313	421.073	2.2809	0.03155	0.003	419.542
19399	5.206	0.07934	420.836	2.2862	0.03157	0.004	419.533
19401	4.834	0.22086	423.351	1.9908	0.03155	0.004	419.513
19402	4.834	0.19930	422.982	1.9968	0.03112	0.004	419.518
19403	4.834	0.17882	422.651	2.0021	0.03105	0.003	419.537
19404	4.834	0.15945	422.309	2.0078	0.03094	0.003	419.534
19405	4.834	0.14118	422.000	2.0128	0.03094	0.003	419.538
19406	4.834	0.12406	421.714	2.0176	0.03067	0.002	419.548
19407	4.834	0.10804	421.439	2.0222	0.03067	0.003	419.545
19408	4.834	0.09314	421.177	2.0267	0.03062	0.003	419.541
19409	4.834	0.07934	420.948	2.0306	0.03043	0.004	419.549
19410	4.834	0.06665	420.734	2.0343	0.03060	0.005	419.550
19411	4.437	0.22091	423.600	1.7513	0.03045	0.003	419.525
19412	4.437	0.19632	423.167	1.7566	0.03013	0.003	419.539
19413	4.437	0.17318	422.745	1.7619	0.03007	0.003	419.544
19414	4.437	0.15148	422.348	1.7670	0.02957	0.003	419.545
19415	4.437	0.13126	421.984	1.7717	0.02967	0.002	419.546
19416	4.437	0.11251	421.641	1.7760	0.02942	0.002	419.549
19417	4.437	0.09520	421.329	1.7802	0.02919	0.003	419.552
19418	4.437	0.07934	421.034	1.7840	0.02925	0.003	419.550
19419	4.437	0.06493	420.766	1.78 7 7	0.02965	0.005	419.542
19420	4.437	0.05197	420.528	1.7908	0.02963	0.007	419.554
19421	4.024	0.22103	423.854	1.5239	0.02928	0.003	419.558
19422	4.024	0.19643	423.378	1.5284	0.02932	0.003	419.559
19423	4.024	0.17326	422.927	1.5328	0.02892	0.002	419.559
19424	4.024	0.15157	422.523	1.5368	0.02880	0.002	419.571
19425	4.024	0.13134	422.129	1.5407	0.02887	0.002	419.569
19426	4.024	0.11256	421.765	1.5444	0.02885	0.002	419.572
19427	4.024	0.09525	421.442	1.5475	0.02840	0.004	419.581
19428	4.025	0.07938	421.123	1.5509	0.02860	0.004	419.574
19429	4.025	0.06497	420.850	1.5536	0.02889	0.005	419.576
19431	3.496	0.16226	422.935	1.2690	0.02813	0.002	419.555
19432	3.496	0.14640	422.615	1.2712	0.02809	0.002	419.567
19433	3.496	0.13135	422.308	1.2733	0.02810	0.003	419.571
19434	3.496	0.11713	422.017	1.2754	0.02787	0.002	419.571
19435	3.495	0.10373	421.742	1.2772	0.02788	0.002	419.574
19436	3.495	0.09115	421.483	1.2789	0.02774	0.004	419.579
19437	3.495	0.07938	421.242	1.2806	0.02775	0.003	419.580
19438	3.495	0.06843	421.020	1.2822	0.02765	0.004	419.582
19439	3.495	0.05830	420.801	1.2837	0.02750	0.006	419.580

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
19440	3.495	0.04898	420.609	1.2851	0.02761	0.006	419.576
19441	2.992	0.16228	423.147	1.0397	0.02760	0.002	419.559
19442	2.992	0.14642	422.815	1.0413	0.02742	0.002	419.573
19443	2.991	0.13138	422.475	1.0429	0.02710	0.002	419.565
19444	2.991	0.11715	422.174	1.0445	0.02736	0.002	419.576
19445	2.991	0.10373	421.886	1.0459	0.02735	0.002	419.578
19446	2.991	0.09115	421.603	1.0473	0.02729	0.003	419.578
19447	2.991	0.07939	421.346	1.0485	0.02714	0.004	419.578
19448	2.991	0.06843	421.105	1.0497	0.02686	0.004	419.581
19449	2.991	0.05830	420.878	1.0508	0.02727	0.004	419.580
19451	2.321	0.16228	423.445	0.7649	0.02694	0.001	419.571
19452	2.321	0.14641	423.086	0.7660	0.02684	0.002	419.583
19453	2.321	0.13135	422.731	0.7670	0.02690	0.002	419.587
19454	2.321	0.11714	422.402	0.7680	0.02694	0.002	419.589
19455	2.321	0.10373	422.083	0.7691	0.02670	0.003	419.592
19456	2.321	0.09115	421.781	0.7700	0.02672	0.003	419.586
19457	2.321	0.07938	421.506	0.7708	0.02636	0.004	419.585
19458	2.321	0.06844	421.240	0.7717	0.02654	0.004	419.589
19459	2.321	0.05830	421.008	0.7724	0.02657	0.005	419.590
19460	2.321	0.04897	420.786	0.7732	0.02669	0.006	419.593
19461	1.700	0.16230	423.746	0.5357	0.02691	0.002	419.580
19462	1.700	0.14644	423.341	0.5364	0.02685	0.002	419.579
19463	1.700	0.13139	422.968	0.5370	0.02673	0.002	419.586
19464	1.700	0.11716	422.612	0.5376	0.02678	0.002	419.589
19465	1.700	0.10374	422.267	0.5381	0.02662	0.003	419.588
19466	1.699	0.09115	421.951	0.5387	0.02640	0.003	419.595
19467	1.700	0.07938	421.650	0.5393	0.02644	0.004	419.589
19468	1.699	0.06843	421.380	0.5397	0.02662	0.004	419.603
19469	1.700	0.05829	421.122	0.5403	0.02639	0.005	419.593
19471	1.055	0.13635	423.374	0.3190	0.02704	0.002	419.566
19473	1.055	0.12183	422.978	0.3195	0.02703	0.002	419.572
19475	1.056	0.10813	422.602	0.3200	0.02695	0.003	419.576
19477	1.056	0.09526	422.254	0.3205	0.02683	0.003	419.580
19479	1.057	0.08322	421.912	0.3209	0.02677	0.003	419.574
19481	1.057	0.07198	421.611	0.3214	0.02626	0.005	419.581
19483	1.058	0.06158	421.320	0.3219	0.02668	0.005	419.583
19485	1.058	0.05198	421.065	0.3223	0.02640	0.005	419.584
19487	1.059	0.04320	420.819	0.3226	0.02667	0.007	419.580
19491	0.861	0.13636	423.474	0.2571	0.02730	0.002	419.557
19493	0.861	0.12184	423.079	0.2573	0.02712	0.002	419.570
19495	0.861	0.10813	422.700	0.2576	0.02698	0.006	419.576
19497	0.861	0.09526	422.335	0.2578	0.02666	0.007	419.579
19499	0.861	0.08322	421.990	0.2581	0.02715	0.004	419.578

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$\mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1}$		K
19501	0.860	0.07199	421.675	0.2583	0.02663	0.005	419.588
19503	0.861	0.06157	421.379	0.2585	0.02713	0.005	419.582
19505	0.861	0.05198	421.099	0.2588	0.02659	0.007	419.581
19511	0.700	0.13635	423.603	0.2070	0.02772	0.002	419.574
19513	0.700	0.12182	423.184	0.2073	0.02732	0.002	419.576
19515	0.700	0.10811	422.806	0.2075	0.02695	0.003	419.594
19517	0.700	0.09525	422.423	0.2077	0.02760	0.003	419.588
19519	0.701	0.08320	422.086	0.2080	0.02695	0.003	419.602
19521	0.701	0.07197	421.739	0.2082	0.02747	0.005	419.583
19523	0.701	0.06157	421.455	0.2085	0.02704	0.004	419.597
19525	0.701	0.05197	421.158	0.2088	0.02703	0.008	419.589
19531	0.488	0.13634	423.764	0.1424	0.02796	0.002	419.548
19533	0.488	0.12181	423.333	0.1425	0.02794	0.003	419.559
19535	0.488	0.10811	422.905	0.1427	0.02772	0.004	419.549
19537	0.488	0.09525	422.505	0.1429	0.02786	0.003	419.545
19539	0.488	0.08320	422.150	0.1430	0.02769	0.004	419.556
19541	0.488	0.07197	421.798	0.1431	0.02772	0.004	419.545
19543	0.488	0.06156	421.490	0.1433	0.02766	0.005	419.559
19545	0.488	0.05196	421.174	0.1434	0.02783	0.006	419.546
19551	0.264	0.13636	424.017	0.0761	0.02897	0.003	419.517
19553	0.264	0.12183	423.565	0.0762	0.02900	0.003	419.536
19555	0.264	0.10812	423.133	0.0763	0.02884	0.003	419.548
19557	0.264	0.09525	422.707	0.0764	0.02879	0.004	419.546
19559	0.264	0.08321	422.327	0.0765	0.02862	0.003	419.556
19561	0.265	0.07197	421.956	0.0766	0.02894	0.004	419.552
19563	0.265	0.06156	421.605	0.0766	0.02883	0.005	419.548
19565	0.265	0.05196	421.302	0.0767	0.02856	0.006	419.549
19571	0.085	0.11270	423.673	0.0244	0.03007	0.003	419.531
19573	0.086	0.10167	423.288	0.0244	0.02999	0.003	419.539
19575	0.086	0.09121	422.899	0.0245	0.03002	0.003	419.539
19577	0.086	0.08133	422.541	0.0245	0.02980	0.004	419.541
19579	0.086	0.07202	422.214	0.0245	0.02964	0.005	419.545
19581	0.086	0.06328	421.882	0.0245	0.03013	0.005	419.539
19583	0.086	0.05510	421.586	0.0246	0.02958	0.006	419.545
19585	0.086	0.04750	421.327	0.0246	0.02972	0.007	419.555
Nominal	l Temperatui	re = 450 K					
20001	69.267	0.69377	454.045	10.9746	0.08910	0.001	450.340
20002	69.266	0.62052	453.655	10.9811	0.08921	0.001	450.337
20003	69.265	0.55135	453.293	10.9872	0.08915	0.001	450.342
20004	69.266	0.48628	452.951	10.9929	0.08962	0.001	450.345
20005	69.265	0.42533	452.628	10.9983	0.08976	0.001	450.348
20006	69.264	0.36848	452.323	11.0034	0.09008	0.001	450.343
20007	69.263	0.31568	452.043	11.0081	0.09038	0.002	450.347

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	D	\overline{Q}	T	0 1	1	STAT	T
point	P_{cell} MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	$T_{exp} \ { m K}$	$ ho_{calc} \ \mathrm{mol} \cdot \mathrm{L}^{-1}$	$\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1}$	SIAI	$egin{array}{c} T_{cell} \ \mathrm{K} \end{array}$
20008	69.261	0.26700	451.785	11.0123	0.09090	0.002	450.350
20009	69.259	0.22239	451.765	11.0123	0.09032	0.002	450.345
20012	62.639	0.62057	453.759	10.7469	0.08614	0.003	450.345
20012	62.639	0.55138	453.382	10.7535	0.08612	0.001	450.347
20013	62.639	0.48629	453.023	10.7598	0.08643	0.001	450.345
20015	62.638	0.42530	452.691	10.7657	0.08655	0.001	450.346
20016	62.638	0.36848	452.374	10.7713	0.08686	0.001	450.345
20017	62.638	0.31568	452.093	10.7763	0.08676	0.001	450.352
20017	62.638	0.26701	451.827	10.7809	0.08768	0.001	450.354
20010	56.115	0.63719	454.005	10.4855	0.08294	0.002	450.356
20022	56.115	0.57222	453.633	10.4924	0.08307	0.001	450.351
20023	56.115	0.51089	453.283	10.4990	0.08287	0.001	450.351
20024	56.117	0.45294	452.958	10.5051	0.08327	0.001	450.364
20025	56.117	0.39855	452.649	10.5109	0.08333	0.001	450.363
20026	56.117	0.34767	452.362	10.5163	0.08343	0.001	450.365
20027	56.117	0.30027	452.092	10.5214	0.08380	0.002	450.367
20028	56.118	0.25636	451.841	10.5261	0.08440	0.002	450.360
20029	56.118	0.21591	451.616	10.5303	0.08417	0.003	450.364
20031	50.111	0.63745	454.116	10.2150	0.08003	0.001	450.361
20032	50.111	0.57246	453.754	10.2222	0.07999	0.001	450.379
20033	50.110	0.51101	453.390	10.2294	0.07985	0.001	450.378
20034	50.110	0.45310	453.054	10.2361	0.08029	0.001	450.383
20035	50.110	0.39868	452.735	10.2424	0.08045	0.001	450.385
20036	50.109	0.34777	452.449	10.2480	0.08068	0.001	450.398
20037	50.109	0.30039	452.165	10.2537	0.08071	0.002	450.400
20038	50.109	0.25643	451.896	10.2590	0.08155	0.002	450.385
20039	50.109	0.21597	451.664	10.2636	0.08135	0.003	450.397
20041	45.250	0.63737	454.267	9.9655	0.07713	0.001	450.373
20042	45.251	0.57249	453.880	9.9736	0.07719	0.001	450.380
20043	45.251	0.51099	453.516	9.9813	0.07714	0.001	450.388
20044	45.251	0.45309	453.184	9.9883	0.07752	0.001	450.405
20045	45.252	0.39868	452.853	9.9953	0.07748	0.001	450.408
20046	45.252	0.34776	452.539	10.0018	0.07781	0.001	450.401
20047	45.252	0.30035	452.255	10.0078	0.07784	0.002	450.403
20048	45.252	0.25642	451.983	10.0136	0.07804	0.002	450.404
20049	45.253	0.21596	451.746	10.0186	0.07877	0.002	450.404
20051	36.953	0.63748	454.538	9.4528	0.07211	0.001	450.373
20052	36.953	0.57254	454.130	9.4624	0.07217	0.001	450.382
20053	36.954	0.51110	453.747	9.4715	0.07226	0.001	450.393
20054	36.954	0.45313	453.374	9.4803	0.07226	0.001	450.396
20055	36.954	0.39869	453.029	9.4884	0.07229	0.001	450.401
20056	36.954	0.34778	452.705	9.4961	0.07257	0.001	450.403
20057	36.954	0.30037	452.399	9.5033	0.07209	0.002	450.402

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
20058	36.954	0.25643	452.113	9.5101	0.07303	0.002	450.404
20059	36.954	0.21596	451.868	9.5158	0.07317	0.003	450.417
20061	33.252	0.58334	454.299	9.1829	0.06969	0.001	450.392
20062	33.253	0.52127	453.899	9.1930	0.06973	0.001	450.404
20063	33.253	0.46267	453.511	9.2028	0.06946	0.001	450.405
20064	33.253	0.40765	453.161	9.2115	0.06981	0.001	450.423
20065	33.253	0.35613	452.806	9.2205	0.06986	0.001	450.413
20066	33.254	0.30813	452.488	9.2285	0.06977	0.002	450.416
20067	33.254	0.26359	452.199	9.2359	0.07008	0.002	450.420
20068	33.255	0.22253	451.913	9.2431	0.07026	0.002	450.411
20069	33.255	0.18496	451.682	9.2489	0.06989	0.003	450.425
20071	30.217	0.58331	454.423	8.9208	0.06734	0.001	450.392
20072	30.217	0.52125	454.003	8.9320	0.06736	0.001	450.399
20073	30.217	0.46268	453.605	8.9427	0.06730	0.001	450.403
20074	30.218	0.40764	453.234	8.9526	0.06759	0.001	450.407
20075	30.218	0.35612	452.881	8.9620	0.06765	0.001	450.409
20076	30.219	0.30809	452.547	8.9710	0.06774	0.001	450.405
20077	30.219	0.26355	452.249	8.9790	0.06766	0.002	450.414
20078	30.219	0.22251	451.962	8.9867	0.06818	0.002	450.409
20079	30.220	0.18494	451.709	8.9934	0.06755	0.003	450.414
20080	30.220	0.15086	451.471	8.9998	0.06821	0.003	450.414
20081	27.436	0.58353	454.521	8.6465	0.06526	0.001	450.360
20082	27.436	0.51643	454.050	8.6598	0.06527	0.001	450.363
20083	27.436	0.45347	453.613	8.6722	0.06514	0.001	450.372
20084	27.436	0.39463	453.195	8.6840	0.06543	0.001	450.373
20085	27.436	0.33988	452.816	8.6948	0.06541	0.001	450.380
20086	27.436	0.28925	452.469	8.7046	0.06524	0.002	450.387
20087	27.436	0.24269	452.142	8.7139	0.06576	0.002	450.389
20088	27.436	0.20024	451.833	8.7227	0.06577	0.002	450.380
20089	27.436	0.16188	451.562	8.7304	0.06602	0.003	450.384
20091	25.077	0.53158	454.245	8.3908	0.06342	0.001	450.372
20092	25.077	0.47238	453.824	8.4034	0.06343	0.001	450.380
20093	25.077	0.41673	453.426	8.4154	0.06344	0.001	450.388
20094	25.077	0.36461	453.052	8.4266	0.06332	0.001	450.388
20095	25.078	0.31596	452.694	8.4374	0.06343	0.001	450.388
20096	25.077	0.27083	452.368	8.4472	0.06337	0.002	450.393
20097	25.078	0.22919	452.056	8.4566	0.06354	0.002	450.382
20098	25.077	0.19102	451.783	8.4648	0.06362	0.002	450.388
20099	25.077	0.15634	451.543	8.4720	0.06433	0.003	450.398
20101	22.996	0.53155	454.361	8.1213	0.06163	0.001	450.369
20102	22.996	0.47242	453.936	8.1348	0.06159	0.001	450.385
20103	22.996	0.41676	453.525	8.1479	0.06147	0.001	450.390
20104	22.996	0.36457	453.141	8.1601	0.06141	0.001	450.398

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	0	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$ ho_{calc} \ \mathrm{mol} \cdot \mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$	51711	K
20105	22.997	0.31593	452.787	8.1714	0.06156	0.001	450.406
20106	22.997	0.27079	452.446	8.1823	0.06135	0.002	450.402
20107	22.997	0.22917	452.142	8.1920	0.06167	0.002	450.408
20108	22.998	0.19101	451.863	8.2009	0.06194	0.002	450.413
20109	22.998	0.15633	451.591	8.2096	0.06200	0.003	450.406
20111	21.178	0.53155	454.483	7.8520	0.06006	0.001	450.379
20112	21.179	0.47241	454.041	7.8668	0.05992	0.001	450.390
20113	21.179	0.41674	453.616	7.8811	0.05973	0.001	450.389
20114	21.179	0.36457	453.227	7.8942	0.05978	0.001	450.403
20115	21.179	0.31593	452.850	7.9068	0.05986	0.001	450.396
20116	21.179	0.27080	452.506	7.9184	0.05948	0.002	450.400
20117	21.180	0.22915	452.186	7.9292	0.05999	0.002	450.401
20118	21.180	0.19099	451.894	7.9390	0.06000	0.002	450.401
20119	21.180	0.15631	451.627	7.9480	0.06017	0.003	450.398
20121	19.748	0.53159	454.594	7.6116	0.05866	0.001	450.391
20122	19.748	0.47242	454.137	7.6276	0.05847	0.001	450.399
20123	19.749	0.41677	453.706	7.6428	0.05820	0.001	450.404
20124	19.749	0.36461	453.294	7.6572	0.05837	0.001	450.401
20125	19.749	0.31596	452.913	7.6707	0.05841	0.001	450.402
20126	19.749	0.27083	452.557	7.6832	0.05820	0.002	450.402
20127	19.749	0.22917	452.234	7.6946	0.05856	0.002	450.408
20128	19.749	0.19102	451.944	7.7048	0.05848	0.002	450.412
20129	19.750	0.15632	451.654	7.7150	0.05870	0.003	450.403
20131	18.198	0.48210	454.270	7.3320	0.05688	0.002	450.380
20132	18.198	0.43039	453.859	7.3471	0.05665	0.002	450.386
20133	18.198	0.38163	453.472	7.3614	0.05676	0.001	450.390
20134	18.198	0.33583	453.099	7.3752	0.05667	0.001	450.390
20135	18.198	0.29297	452.753	7.3880	0.05678	0.001	450.391
20136	18.198	0.25306	452.431	7.4000	0.05662	0.002	450.392
20137	18.198	0.21608	452.140	7.4108	0.05677	0.002	450.400
20138	18.198	0.18202	451.867	7.4209	0.05693	0.002	450.400
20139	18.198	0.15089	451.610	7.4305	0.05691	0.002	450.402
20141	16.739	0.48233	454.397	7.0106	0.05530	0.002	450.359
20142	16.739	0.43061	453.963	7.0275	0.05530	0.002	450.360
20143	16.739	0.38182	453.563	7.0430	0.05520	0.001	450.368
20144	16.739	0.33599	453.188	7.0577	0.05503	0.001	450.376
20145	16.739	0.29311	452.833	7.0715	0.05501	0.001	450.380
20146	16.739	0.25316	452.499	7.0846	0.05463	0.002	450.379
20147	16.739	0.21615	452.189	7.0967	0.05498	0.002	450.380
20148	16.739	0.18207	451.903	7.1080	0.05501	0.002	450.376
20149	16.739	0.15094	451.653	7.1178	0.05516	0.002	450.383
20150	16.739	0.12272	451.418	7.1270	0.05517	0.003	450.386
20151	15.977	0.48227	454.449	6.8225	0.05452	0.002	450.358

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
20152	15.977	0.43054	454.013	6.8399	0.05443	0.002	450.364
20153	15.977	0.38176	453.620	6.8557	0.05431	0.002	450.385
20154	15.977	0.33592	453.233	6.8712	0.05415	0.001	450.386
20155	15.977	0.29304	452.870	6.8858	0.05409	0.001	450.388
20156	15.977	0.25309	452.535	6.8994	0.05373	0.002	450.395
20157	15.978	0.21610	452.219	6.9122	0.05396	0.002	450.391
20158	15.978	0.18204	451.930	6.9239	0.05420	0.002	450.390
20159	15.978	0.15090	451.670	6.9344	0.05407	0.003	450.391
20160	15.978	0.12269	451.431	6.9441	0.05393	0.003	450.396
20161	14.968	0.48224	454.571	6.5441	0.05347	0.003	450.374
20162	14.968	0.43049	454.128	6.5625	0.05327	0.002	450.382
20163	14.968	0.38170	453.711	6.5798	0.05300	0.002	450.390
20164	14.969	0.33586	453.306	6.5968	0.05291	0.002	450.385
20165	14.968	0.29301	452.940	6.6121	0.05278	0.001	450.389
20166	14.969	0.25309	452.590	6.6268	0.05243	0.002	450.389
20167	14.969	0.21610	452.272	6.6402	0.05263	0.002	450.393
20168	14.969	0.18203	451.983	6.6523	0.05268	0.002	450.401
20169	14.969	0.15090	451.711	6.6638	0.05282	0.003	450.398
20170	14.969	0.12269	451.465	6.6743	0.05248	0.003	450.390
20171	13.931	0.39048	453.876	6.2540	0.05162	0.002	450.373
20172	13.931	0.35228	453.537	6.2686	0.05162	0.002	450.378
20173	13.932	0.316 07	453.220	6.2825	0.05138	0.002	450.384
20174	13.932	0.28186	452.921	6.2955	0.05138	0.002	450.395
20175	13.932	0.24960	452.630	6.3082	0.05098	0.002	450.390
20176	13.932	0.21934	452.366	6.3197	0.05111	0.002	450.397
20177	13.932	0.191 0 4	452.108	6.3311	0.05129	0.002	450.391
20178	13.932	0.16470	451.883	6.3409	0.05099	0.003	450.403
20179	13.932	0.14031	451.666	6.3505	0.05111	0.003	450.404
20180	13.932	0.11788	451.462	6.3595	0.05140	0.004	450.395
20181	13.349	0.39043	453.941	6.0508	0.05099	0.003	450.363
20182	13.349	0.35225	453.606	6.0657	0.05089	0.002	450.377
20183	13.349	0.31604	453.282	6.0801	0.05072	0.002	450.385
20184	13.349	0.28180	452.967	6.0941	0.05053	0.002	450.381
20185	13.349	0.24958	452.693	6.1065	0.05020	0.002	450.404
20186	13.350	0.21932	452.400	6.1196 · ·	0.05021	0.002	450.389
20187	13.350	0.19102	452.153	6.1307	0.05053	0.002	450.398
20188	13.350	0.16468	451.921	6.1411	0.05028	0.002	450.404
20189	13.350	0.14029	451.697	6.1512	0.05023	0.003	450.404
20190	13.350	0.11787	451.496	6.1603	0.05027	0.004	450.405
20191	12.743	0.39 0 36	454.029	5.8197	0.05020	0.003	450.372
20192	12.743	0.34808	453.641	5.8372	0.04998	0.002	450.379
20193	12.743	0.30826	453.280	5.8534	0.04974	0.002	450.388
20194	12.743	0.27084	452.923	5.8697	0.04947	0.002	450.382

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	ρ_{calc}	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
20195	12.743	0.23587	452.597	5.8845	0.04921	0.002	450.385
20196	12.743	0.20333	452.295	5.8983	0.04926	0.002	450.387
20197	12.743	0.17323	452.021	5.9108	0.04927	0.002	450.395
20198	12.743	0.14553	451.755	5.9230	0.04920	0.003	450.383
20199	12.743	0.12024	451.519	5.9339	0.04940	0.003	450.388
20201	12.134	0.39051	454.073	5.5672	0.04941	0.004	450.339
20202	12.134	0.34824	453.675	5.5854	0.04919	0.003	450.347
20203	12.134	0.30839	453.296	5.6028	0.04875	0.003	450.348
20204	12.134	0.27097	452.947	5.6189	0.04861	0.002	450.358
20205	12.134	0.23600	452.608	5.6346	0.04812	0.002	450.354
20206	12.134	0.20345	452.296	5.6491	0.04834	0.002	450.357
20207	12.134	0.17331	452.019	5.6619	0.04831	0.002	450.368
20208	12.134	0.14559	451.748	5.6746	0.04783	0.003	450.363
20209	12.134	0.12030	451.514	5.6856	0.04815	0.003	450.369
20211	11.700	0.39050	454.165	5.3698	0.04884	0.004	450.346
20212	11.700	0.34822	453.757	5.3886	0.04852	0.003	450.351
20213	11.700	0.30832	453.374	5.4062	0.04804	0.003	450.360
20214	11.700	0.27092	453.021	5.4226	0.04784	0.002	450.370
20215	11.700	0.23593	452.684	5.4383	0.04742	0.003	450.371
20216	11.700	0.20339	452.355	5.4537	0.04737	0.002	450.360
20217	11.700	0.17328	452.075	5.4669	0.04746	0.002	450.375
20218	11.700	0.14556	451.791	5.4802	0.04690	0.003	450.367
20219	11.701	0.12028	451.562	5.4912	0.04712	0.003	450.377
20220	11.701	0.09741	451.329	5.5022	0.04670	0.004	450.376
20222	11.192	0.34819	453.858	5.1404	0.04758	0.003	450.360
20223	11.192	0.30834	453.472	5.1582	0.04735	0.003	450.374
20224	11.192	0.27093	453.104	5.1752	0.04692	0.003	450.379
20225	11.192	0.23592	452.745	5.1920	0.04666	0.003	450.371
20226	11.192	0.20339	452.421	5.2073	0.04643	0.002	450.372
20227	11.192	0.17326	452.116	5.2216	0.04645	0.002	450.373
20228	11.192	0.14555	451.852	5.2341	0.04596	0.003	450.382
20229	11.192	0.12027	451.601	5.2461	0.04631	0.003	450.380
20232	10.749	0.34824	453.960	4.9081	0.04682	0.004	450.368
20233	10.749	0.30835	453.554	4.9266	0.04655	0.004	450.372
20234	10.749	0.27092	453.174	4.9440	0.04611	0.003	450.378
20235	10.749	0.23594	452.816	4.9606	0.04576	0.003	450.379
20236	10.749	0.20338	452.492	4.9756	0.04571	0.003	450.389
20237	10.749	0.17324	452.174	4.9905	0.04558	0.003	450.380
20238	10.749	0.14554	451.891	5.0037	0.04513	0.003	450.381
20239	10.749	0.12026	451.636	5.0158	0.04511	0.003	450.388
20240	10.749	0.09740	451.398	5.0271	0.04571	0.004	450.386
20243	10.324	0.30829	453.642	4.6912	0.04566	0.004	450.372
20244	10.324	0.27087	453.247	4.7090	0.04522	0.003	450.369

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$\mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1}$		K
20245	10.325	0.23592	452.882	4.7255	0.04502	0.003	450.375
20246	10.325	0.20338	452.543	4.7410	0.04461	0.003	450.381
20247	10.325	0.17326	452.219	4.7558	0.04466	0.002	450.374
20248	10.325	0.14555	451.939	4.7687	0.04423	0.003	450.383
20249	10.325	0.12026	451.667	4.7813	0.04453	0.003	450.380
20250	10.325	0.09739	451.429	4.7926	0.04460	0.004	450.385
20253	9.895	0.30836	453.736	4.4412	0.04480	0.004	450.367
20254	9.895	0.27092	453.346	4.4581	0.04433	0.003	450.381
20255	9.895	0.23593	452.962	4.4747	0.04412	0.003	450.377
20256	9.895	0.20337	452.614	4.4900	0.04375	0.003	450.384
20257	9.895	0.17326	452.284	4.5047	0.04358	0.002	450.381
20258	9.895	0.14554	451.979	4.5183	0.04351	0.003	450.376
20259	9.895	0.12026	451.709	4.5304	0.04340	0.003	450.379
20260	9.896	0.09739	451.464	4.5415	0.04303	0.004	450.380
20263	9.500	0.28187	453.552	4.2136	0.04368	0.005	450.374
20264	9.500	0.24962	453.192	4.2284	0.04337	0.004	450.374
20265	9.500	0.21934	452.853	4.2426	0.04283	0.003	450.375
20266	9.500	0.19103	452.550	4.2554	0.04268	0.003	450.386
20267	9.500	0.16468	452.242	4.2683	0.04279	0.003	450.376
20268	9.500	0.14029	451.982	4.2793	0.04236	0.003	450.388
20269	9.500	0.11786	451.720	4.2905	0.04249	0.003	450.376
20270	9.500	0.09738	451.493	4.3003	0.04213	0.004	450.382
20273	9.115	0.28189	453.643	3.9753	0.04267	0.004	450.364
20274	9.115	0.24964	453.280	3.9892	0.04235	0.004	450.372
20275	9.115	0.21935	452.931	4.0027	0.04204	0.003	450.373
20276	9.115	0.19104	452.604	4.0155	0.04178	0.003	450.378
20277	9.115	0.16467	452.292	4.0279	0.04170	0.002	450.368
20278	9.115	0.14028	452.012	4.0390	0.04164	0.002	450.370
20279	9.115	0.11785	451.764	4.0489	0.04154	0.003	450.377
20280	9.115	0.09738	451.530	4.0584	0.04121	0.004	450.376
20282	8.718	0.28574	453.790	3.7258	0.04190	0.004	450.351
20283	8.718	0.25677	453.452	3.7377	0.04148	0.003	450.359
20284	8.718	0.22936	453.133	3.7491	0.04117	0.003	450.364
20285	8.718	0.20348	452.824	3.7602	0.04072	0.003	450.371
20286	8.718	0.17916	452.531	3.7708	0.04077	0.002	450.365
20287	8.718	0.15639	452.266	3.7804	0.04078	0.003	450.374
20288	8.718	0.13518	452.005	3.7900	0.04047	0.003	450.363
20289	8.718	0.11553	451.771	3.7986	0.04056	0.003	450.371
20290	8.718	0.09741	451.559	3.8065	0.04021	0.004	450.374
20292	8.317	0.28207	453.883	3.4772	0.04080	0.004	450.353
20293	8.317	0.24977	453.487	3.4899	0.04044	0.003	450.360
20294	8.317	0.21944	453.114	3.5019	0.04005	0.003	450.363
20295	8.317	0.19112	452.767	3.5130	0.03977	0.002	450.368

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	${ m W\cdot m^{-1}}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$\mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1}$		K
20296	8.317	0.16473	452.433	3.5239	0.03950	0.002	450.363
20297	8.317	0.14032	452.133	3.5339	0.03959	0.002	450.364
20298	8.317	0.11789	451.867	3.5428	0.03963	0.003	450.381
20299	8.317	0.09741	451.613	3.5513	0.03946	0,004	450.377
20302	7.903	0.28205	454.033	3.2237	0.03979	0.004	450.360
20303	7.903	0.24977	453.629	3.2349	0.03935	0.004	450.373
20304	7.903	0.21944	453.235	3.2460	0.03910	0.003	450.374
20305	7.903	0.19109	452.871	3.2565	0.03872	0.003	450.376
20306	7.903	0.16473	452.536	3.2661	0.03852	0.003	450.379
20307	7.903	0.14032	452.215	3.2755	0.03851	0.003	450.378
20308	7.903	0.11788	451.929	3.2838	0.03802	0.003	450.375
20309	7.903	0.09740	451.662	3.2917	0.03832	0.004	450.378
20310	7.903	0.07888	451.430	3.2987	0.03789	0.005	450.385
20311	7.387	0.24989	453.803	2.9281	0.03806	0.004	450.381
20312	7.387	0.22613	453.483	2.9356	0.03793	0.003	450.385
20313	7.387	0.20356	453.187	2.9427	0.03767	0.003	450.395
20314	7.387	0.18219	452.883	2.9500	0.03737	0.002	450.384
20315	7.387	0.16199	452.626	2.9562	0.03736	0.003	450.402
20316	7.387	0.14302	452.364	2.9626	0.03724	0.003	450.399
20317	7.387	0.12521	452.120	2.9686	0.03712	0.003	450.398
20318	7.387	0.10860	451.909	2.9739	0.03720	0.003	450.411
20319	7.387	0.09316	451.680	2.9795	0.03731	0.004	450.390
20321	7.051	0.24991	453.915	2.7365	0.03732	0.003	450.370
20322	7.051	0.22616	453.594	2.7432	0.03716	0.003	450.382
20323	7.051	0.20359	453.291	2.7496	0.03683	0.003	450.400
20324	7.051	0.18222	452.992	2.7559	0.03657	0.003	450.403
20325	7.051	0.16201	452.718	2.7619	0.03663	0.002	450.410
20326	7.052	0.14301	452.445	2.7678	0.03668	0.003	450.408
20327	7.051	0.12520	452.185	2.7733	0.03644	0.003	450.395
20329	7.051	0.09316	451.751	2.7827	0.03615	0.004	450.415
20330	7.051	0.07892	451.537	2.7875	0.03651	0.004	450.404
20331	6.615	0.24994	454.080	2.4967	0.03629	0.003	450.372
20332	6.615	0.22618	453.744	2.5026	0.03603	0.003	450.387
20333	6.615	0.20360	453.421	2.5083	0.03593	0.002	450.396
20334	6.615	0.18221	453.112	2.5139	0.03566	0.003	450.403
20335	6.615	0.16201	452.809	2.5194	0.03570	0.002	450.398
20336	6.615	0.14301	452.540	2.5243	0.03531	0.002	450.407
20337	6.615	0.12521	452.282	2.5289	0.03540	0.002	450.414
20338	6.615	0.10859	452.029	2.5336	0.03527	0.003	450.407
20339	6.615	0.09316	451.797	2.5380	0.03534	0.004	450.401
20340	6.615	0.07892	451.592	2.5417	0.03530	0.004	450.405
20341	6.154	0.24992	454.272	2.2554	0.03533	0.003	450.389
20342	6.154	0.22612	453.903	2.2608	0.03511	0.003	450.388

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
20343	6.154	0.20356	453.558	2.2658	0.03485	0.002	450.391
20344	6.154	0.18218	453.242	2.2705	0.03487	0.002	450.403
20345	6.154	0.16200	452.926	2.2753	0.03470	0.002	450.401
20346	6.154	0.14301	452.635	2.2796	0.03451	0.002	450.405
20347	6.154	0.12520	452.356	2.2838	0.03446	0.002	450.398
20348	6.154	0.10859	452.105	2.2878	0.03411	0.003	450.405
20349	6.154	0.09316	451.860	2.2915	0.03445	0.004	450.403
20351	5.642	0.21963	453.962	2.0082	0.03403	0.002	450.375
20352	5.641	0.19739	453.611	2.0124	0.03393	0.002	450.385
20353	5.641	0.17633	453.273	2.0164	0.03392	0.002	450.386
20354	5.641	0.15647	452.945	2.0204	0.03379	0.002	450.387
20355	5.641	0.13780	452.651	2.0240	0.03348	0.003	450.393
20356	5.641	0.12034	452.363	2.0275	0.03359	0.003	450.388
20357	5.641	0.10406	452.102	2.0307	0.03318	0.003	450.396
20358	5.641	0.08897	451.858	2.0338	0.03339	0.004	450.392
20360	5.641	0.06234	451.424	2.0392	0.03354	0.006	450.390
20361	5.070	0.21969	454.162	1.7422	0.03321	0.002	450.376
20362	5.070	0.19745	453.786	1.7457	0.03315	0.002	450.378
20363	5.070	0.17639	453.435	1.7491	0.03293	0.002	450.389
20364	5.070	0.15654	453.092	1.7524	0.03267	0.002	450.386
20365	5.070	0.13786	452.774	1.7554	0.03268	0.003	450.389
20366	5.071	0.12038	452.469	1.7585	0.03269	0.002	450.383
20367	5.070	0.10410	452.190	1.7611	0.03243	0.004	450.382
20368	5.071	0.08900	451.943	1.7637	0.03278	0.004	450.393
20369	5.071	0.07509	451.711	1.7659	0.03264	0.005	450.398
20371	4.598	0.21972	454.324	1.5357	0.03261	0.002	450.364
20372	4.598	0.19747	453.947	1.5385	0.03243	0.002	450.386
20373	4.598	0.17640	453.567	1.5414	0.03230	0.002	450.381
20374	4.598	0.15653	453.221	1.5440	0.03205	0.002	450.393
20375	4.598	0.13786	452.874	1.5467	0.03225	0.002	450.383
20376	4.598	0.12038	452.572	1.5489	0.03221	0.003	450.387
20377	4.598	0.10409	452.278	1.5511	0.03206	0.003	450.389
20378	4.597	0.08900	452.009	1.5531	0.03195	0.004	450.388
20379	4.597	0.07508	451.776	1.5549	0.03206	0.005	450.404
20381	3.960	0.19135	454.023	1.2769	0.03159	0.001	450.367
20382	3.960	0.17352	453.693	1.2786	0.03157	0.002	450.375
20383	3.959	0.15656	453.381	1.2803	0.03160	0.002	450.383
20384	3.959	0.14048	453.081	1.2820	0.03149	0.002	450.390
20385	3.959	0.12526	452.792	1.2837	0.03130	0.003	450.388
20386	3.959	0.11093	452.523	1.2851	0.03150	0.003	450.387
20387	3.959	0.09748	452.268	1.2864	0.03111	0.004	450.390
20388	3.959	0.08491	452.038	1.2877	0.03132	0.004	450.397
20389	3.959	0.07320	451.823	1.2889	0.03149	0.004	450.406

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$\mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1}$		K
20391	3.179	0.19138	454.283	0.9808	0.03112	0.002	450.370
20392	3.179	0.17354	453.932	0.9821	0.03108	0.002	450.378
20393	3.179	0.15657	453.605	0.9834	0.03105	0.002	450.393
20394	3.179	0.14050	453.265	0.9846	0.03075	0.002	450.379
20395	3.179	0.12528	452.976	0.9857	0.03101	0.002	450.399
20396	3.179	0.11094	452.672	0.9868	0.03087	0.002	450.388
20397	3.179	0.09749	452.409	0.9878	0.03086	0.003	450.396
20398	3.178	0.08490	452.156	0.9887	0.03097	0.004	450.399
20399	3.178	0.07320	451.924	0.9896	0.03066	0.005	450.402
20401	2.562	0.16219	453.877	0.7662	0.03077	0.002	450.379
20402	2.561	0.14580	453.539	0.7670	0.03077	0.002	450.387
20403	2.561	0.13030	453.203	0.7678	0.03069	0.002	450.387
20404	2.561	0.11566	452.902	0.7686	0.03055	0.003	450.395
20405	2.561	0.10192	452.603	0.7693	0.03064	0.003	450.392
20406	2.561	0.08904	452.338	0.7699	0.03026	0.004	450.400
20407	2.561	0.07704	452.079	0.7707	0.03081	0.004	450.396
20410	2.561	0.04624	451.410	0.7724	0.03031	0.014	450.402
20411	1.945	0.16220	454.118	0.5635	0.03088	0.002	450.398
20412	1.945	0.14581	453.753	0.5640	0.03073	0.002	450.406
20413	1.945	0.13031	453.409	0.5646	0.03040	0.002	450.414
20414	1.945	0.11568	453.093	0.5651	0.03079	0.003	450.425
20415	1.945	0.10192	452.781	0.5657	0.03060	0.003	450.423
20416	1.945	0.08904	452.486	0.5662	0.03064	0.003	450.423
20417	1.945	0.07703	452.212	0.5667	0.03062	0.005	450.417
20418	1.945	0.06590	451.964	0.5670	0.03073	0.006	450.424
20421	1.258	0.16228	454.393	0.3523	0.03116	0.002	450.406
20422	1.259	0.14587	453.999	0.3529	0.03116	0.004	450.412
20423	1.259	0.13034	453.625	0.3532	0.03090	0.004	450.415
20424	1.259	0.11569	453.273	0.3536	0.03112	0.003	450.418
20425	1.260	0.10193	452.950	0.3541	0.03096	0.003	450.430
20426	1.260	0.08906	452.630	0.3544	0.03095	0.004	450.426
20427	1.260	0.07705	452.338	0.3549	0.03119	0.004	450.425
20428	1.260	0.06591	452.059	0.3552	0.03050	0.006	450.419
20429	1.260	0.05565	451.826	0.3554	0.03075	0.007	450.425
20431	1.105	0.16226	454.458	0.3071	0.03129	0.002	450.400
20433	1.105	0.14585	454.064	0.3075	0.03130	0.002	450.410
20435	1.106	0.13033	453.688	0.3079	0.03126	0.003	450.416
20437	1.106	0.11569	453.323	0.3082	0.03113	0.003	450.416
20439	1.106	0.10194	452.986	0.3085	0.03098	0.003	450.421
20441	1.106	0.08905	452.667	0.3087	0.03111	0.004	450.424
20443	1.106	0.07705	452.376	0.3091	0.03067	0.005	450.425
20445	1.106	0.06590	452.098	0.3093	0.03082	0.005	450.424
20447	1.105	0.05564	451.849	0.3094	0.03118	0.007	450.427

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
20451	0.941	0.14588	454.140	0.2599	0.03157	0.002	450.406
20453	0.941	0.13034	453.761	0.2601	0.03153	0.002	450.417
20455	0.941	0.11569	453.385	0.2604	0.03148	0.003	450.413
20457	0.941	0.10193	453.042	0.2607	0.03121	0.004	450.420
20459	0.941	0.08905	452.716	0.2608	0.03135	0.003	450.423
20461	0.941	0.07703	452.424	0.2611	0.03070	0.004	450.427
20463	0.941	0.06590	452.126	0.2612	0.03126	0.007	450.419
20465	0.941	0.05564	451.877	0.2614	0.03129	0.007	450.426
20471	0.712	0.14589	454.269	0.1946	0.03216	0.002	450.403
20473	0.712	0.13035	453.882	0.1947	0.03208	0.003	450.421
20475	0.712	0.11571	453.499	0.1949	0.03198	0.003	450.423
20477	0.712	0.10195	453.133	0.1951	0.03191	0.004	450.413
20479	0.713	0.08906	452.797	0.1954	0.03183	0.004	450.416
20481	0.713	0.07705	452.485	0.1955	0.03132	0.005	450.418
20483	0.713	0.06591	452.195	0.1957	0.03205	0.005	450.430
20485	0.713	0.05564	451.931	0.1959	0.03160	0.007	450.430
20491	0.505	0.14589	454.433	0.1367	0.03276	0.002	450.425
20493	0.505	0.13034	454.024	0.1369	0.03276	0.003	450.434
20495	0.505	0.11569	453.630	0.1370	0.03233	0.003	450.439
20497	0.505	0.10193	453.250	0.1371	0.03274	0.003	450.438
20499	0.506	0.08905	452.900	0.1373	0.03229	0.004	450.442
20501	0.506	0.07703	452.572	0.1374	0.03235	0.006	450.435
20503	0.506	0.06589	452.258	0.1375	0.03283	0.006	450.437
20505	0.506	0.05563	451.985	0.1376	0.03246	0.007	450.443
20511	0.307	0.14587	454.625	0.0824	0.03388	0.002	450.403
20513	0.307	0.13031	454.193	0.0825	0.03382	0.003	450.417
20515	0.307	0.11568	453.770	0.0826	0.03346	0.005	450.418
20517	0.308	0.10192	453.373	0.0827	0.03362	0.004	450.415
20519	0.308	0.08904	453.001	0.0828	0.03339	0.005	450.417
20521	0.307	0.07703	452.646	0.0828	0.03369	0.004	450.411
20523	0.308	0.06589	452.325	0.0829	0.03332	0.006	450.417
20525	0.308	0.05563	452.033	0.0829	0.03319	0.007	450.421
20531	0.103	0.12056	454.283	0.0274	0.03616	0.003	450.397
20533	0.103	0.10877	453.921	0.0274	0.03583	0.004	450.411
20535	0.103	0.09761	453.571	0.0274	0.03592	0.003	450.416
20537	0.103	0.08703	453.236	0.0275	0.03568	0.004	450.414
20539	0.103	0.07708	452.914	0.0275	0.03565	0.005	450.415
20541	0.103	0.06773	452.620	0.0275	0.03508	0.007	450.413
20543	0.103	0.05899	452.328	0.0276	0.03592	0.007	450.412
20545	0.103	0.05085	452.084	0.0276	0.03605	0.008	450.418
20551	0.085	0.12057	454.355	0.0227	0.03580	0.003	450.395
20553	0.085	0.10880	453.988	0.0227	0.03590	0.003	450.408
20555	0.086	0.09761	453.625	0.0228	0.03580	0.003	450.413

Table 4. Thermal conductivity of R134a in the supercritical fluid phase from 390 to 450 K obtained by use of the transient hot-wire technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$:	K
20557	0.086	0.08704	453.283	0.0228	0.03559	0.004	450.413
20559	0.086	0.07708	452.965	0.0228	0.03576	0.005	450.425
20561	0.086	0.06773	452.654	0.0228	0.03534	0.006	450.414
20563	0.085	0.05899	452.383	0.0228	0.03583	0.007	450.430
20565	0.085	0.05085	452.103	0.0228	0.03522	0.008	450.421

Table 5. Thermal conductivity of dilute R134a gas from 300 to 450 K obtained by use of the steady-state technique with anodized tantalum hot wires.

Run	P_{cell}	\overline{Q}	T_{exp}	ρ_{calc}	λ_{exp}	TBAND	ΔT_{avg}	t_{start}	t_{end}	N_{Ra}
point		$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$	%	K	S	S	
		perature =								
9083		0.03062	311.696	0.0859	0.01453	1.140	1.974	6.56	40.00	2821.
9086	0.214	0.03707	311.905	0.0860	0.01447	0.690	2.396	6.56	40.00	3424.
9092	0.214	0.05185	312.384	0.0860	0.01441	0.550	3.359	6.56	40.00	4790.
9095	0.214	0.06018	312.651	0.0861	0.01438	0.480	3.900	6.56	40.00	5570.
9098	0.214	0.06915	312.947	0.0861	0.01436	0.450	4.481	6.56	40.00	6376.
9101	0.214	0.07875	313.251	0.0862	0.01437	0.400	5.093	6.56	40.00	7251.
9104	0.214	0.08899	313.576	0.0862	0.01438	0.380	5.740	6.56	40.00	8160.
9107	0.214	0.09986	313.917	0.0861	0.01440	2.180	6.422	4.96	40.00	9105.
9110	0.214	0.11139	314.271	0.0862	0.01445	1.010	7.126	4.96	40 .00	.0096.
9112	0.104	0.03061	311.712	0.0408	0.01429	0.800	2.015	3.36	40.00	596.
9116	0.104	0.04414	312.171	0.0409	0.01425	0.560	2.913	3.36	40.00	860.
9118	0.104	0.05185	312.424	0.0409	0.01423	0.480	3.425	3.36	40.00	1013.
9120	0.104	0.06018	312.691	0.0409	0.01422	0.520	3.975	3.36	40.00	1171.
9122	0.104	0.06914	312.992	0.0409	0.01422	0.390	4.566	3.36	40.00	1343.
9124	0.104	0.07874	313.303	0.0409	0.01422	0.370	5.198	3.36	40.00	1529.
9126	0.104	0.08900	313.646	0.0409	0.01422	1.740	5.872	3.36	40.00	1726.
9128	0.104	0.09988	313.996	0.0409	0.01423	0.360	6.584	3.36	40.00	1932.
9130		0.11142	314.358	0.0410	0.01425	0.330	7.334	3.36	40.00	2155.
		erature = :								
1		0.02968	301.219	0.0898	0.01381	0.980	2.011	6.56	40.00	3580.
10104		0.03594	301.426	0.0898	0.01375	0.800	2.441	6.56	40.00	4341.
10106		0.04280	301.669	0.0898	0.01370	0.660	2.914	6.56	40.00	5172.
10108		0.05027	301.924	0.0899	0.01369	0.650	3.420	6.56	40.00	6070.
10110		0.05834	302.191	0.0898	0.01366	0.780	3.970	6.56	40.00	7023.
10112		0.06703	302.486	0.0898	0.01366	0.450	4.554	6.56	40.00	8040.
10114		0.07635	302.792	0.0898	0.01367	1.570	5.170	4.96	40.00	9110.
10116		0.08627	303.116	0.0899	0.01372	0.800	5.813	4.96	40.00	10234.
10118		0.09682	303.457	0.0899	0.01377	1.610	6.485	3.36		11392.
10120		0.10800	303.809	0.0899	0.01381	1.470	7.198	3.36		12616.
10124		0.03594	301.460	0.0422	0.01363	0.890	2.479	3.36	40.00	879.
10128		0.05027	301.960	0.0422	0.01352	0.650	3.493	3.36	40.00	1235.
10130		0.05835	302.242	0.0423	0.01350	0.600	4.058	3.36	40.00	1435.
10132		0.06705	302.547	0.0422	0.01349	0.560	4.665	3.36	40.00	1644.
10134	0.103	0.07637	302.865	0.0423	0.01349	0.510	5.312	3.36	40.00	1875.
10138	0.103	0.09687	303.584	0.0423	0.01350	1.010	6.727	3.36	40.00	2364.
10140	0.103	0.10806	303.959	0.0423	0.01351	0.460	7.496	3.36	40.00	2633.
Nomina	al Temp	erature = 3	320 K							
12071	0.208	0.03154	322.091	0.0805	0.01520	1.080	1.946	4.96	40.00	2160.
12073	0.208	0.04055	322.367	0.0805	0.01517	0.740	2.504	6.56	40.00	2777.
12074	0.208	0.04548	322.523	0.0805	0.01516	0.650	2.808	6.56	40.00	3112.
12075	0.208	0.05070	322.677	0.0806	0.01517	0.400	3.127	6.56	40.00	3464.
12076	0.208	0.05621	322.843	0.0807	0.01515	0.610	3.468	6.56	40.00	3847.

Table 5. Thermal conductivity of dilute R134a gas from 300 to 450 K obtained by use of the steady-state technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	ρ_{calc}	λ_{exp}	TBAND	ΔT_{avg}	t_{start}	t_{end}	N_{Ra}
point		$W \cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$		%	K	S	S	
12077	0.208	0.06200	323.023	0.0806	0.01515	0.340	3.822	6.56	40.00	4231.
12079	0.208	0.07446	323.403	0.0807	0.01516	0.460	4.583	6.56	40.00	5068.
12082		0.03154	322.080	0.0401	0.01511	1.240	1.963	3.36	40.00	504.
12084		0.03590	322.222	0.0401	0.01508	0.730	2.239	3.36	40.00	575.
12086		0.04055	322.353	0.0402	0.01508	1.730	2.529	3.36	40.00	651.
12088		0.04548	322.504	0.0402	0.01507	0.530	2.837	3.36	40.00	730.
12090		0.05071	322.670	0.0402	0.01507	1.250	3.164	3.36	40.00	814.
12092		0.05621	322.846	0.0403	0.01506	0.430	3.509	3.36	40.00	906.
12094		0.06201	323.008	0.0403	0.01506	0.350	3.870	3.36	40.00	1000.
12096		0.06810	323.187	0.0403	0.01507	0.440	4.247	3.36	40.00	1094.
12098		0.07447	323.396	0.0403	0.01506	0.700	4.645	3.36	40.00	1196.
		perature =	330 K	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
13102		0.03233	330.758	0.0820	0.01609	0.990	1.885	4.96	40.00	1993.
13104	0.218	0.03680	330.903	0.0820	0.01601	0.880	2.155	6.56	40.00	2275.
13106	0.218	0.04156	331.044	0.0820	0.01599	0.700	2.435	6.56	40.00	2573.
13108	0.218	0.04661	331.188	0.0821	0.01598	0.540	2.732	6.56	40.00	2888.
13112	0.218	0.05760	331.507	0.0821	0.01595	0.720	3.377	4.96	40.00	3568.
13114	0.219	0.06354	331.676	0.0822	0.01596	1.920	3.722	4.96	40.00	3938.
13116	0.218	0.06977	331.853	0.0822	0.01594	0.350	4.090	6.56	40.00	4320.
13118	0.219	0.07630	332.045	0.0823	0.01595	0.630	4.467	4.96	40.00	4721.
13120	0.219	0.08313	332.237	0.0823	0.01593	0.530	4.867	4.96	40.00	5137.
13124	0.105	0.03679	330.896	0.0390	0.01588	0.910	2.179	3.36	40.00	486.
13126	0.105	0.04155	331.040	0.0390	0.01585	0.800	2.465	3.36	40.00	549.
13128	0.105	0.04661	331.177	0.0390	0.01582	0.850	2.770	3.36	40.00	618.
13130	0.106	0.05195	331.342	0.0391	0.01582	0.460	3.088	3.36	40.00	690.
13132	0.106	0.05760	331.511	0.0391	0.01581	1.920	3.426	3.36	40.00	764.
13136	0.106	0.06977	331.875	0.0391	0.01577	0.400	4.158	3.36	40.00	928.
13138	0.106	0.07630	332.065	0.0391	0.01577	0.260	4.548	3.36	40.00	1014.
13140	0.106	0.08312	332.270	0.0391	0.01577	0.320	4.953	3.36	40.00	1105.
Nomina	al Temp	erature = 1	340 K					· · · · ·		
14102	0.221	0.03329	341.205	0.0802	0.01697	1.230	1.842	4.96	40.00	1682.
14104	0.221	0.03789	341.318	0.0803	0.01694	0.980	2.099	4.96	40.00	1917.
14106	0.221	0.04279	341.476	0.0803	0.01686	0.790	2.380	4.96	40.00	2175.
14108	0.221	0.04799	341.625	0.0803	0.01682	0.790	2.674	4.96	40.00	2441.
14114	0.221	0.06541	342.104	0.0804	0.01680	0.740	3.643	4.96	40.00	3323.
14116	0.221	0.07183	342.279	0.0803	0.01677	0.940	4.007	4.96	40.00	3645.
14118	0.221	0.07853	342.479	0.0804	0.01675	1.420	4.382	4.96	40.00	3989.
14120	0.221	0.08555	342.678	0.0804	0.01674	0.580	4.773	4.96	40.00	4345.
14130	0.109	0.05354	341.838	0.0390	0.01655	0.380	3.042	3.36	40.00	616.
14132	0.109	0.05935	341.994	0.0390	0.01651	0.390	3.380	3.36	40.00	684.
14134	0.109	0.06546	342.171	0.0390	0.01651	1.480	3.729	3.36	40.00	753.
14138	0.109	0.07859	342.547	0.0390	0.01650	0.390	4.476	3.36	40.00	901.
14140	0.109	0.08562	342.734	0.0390	0.01652	0.320	4.871	3.36	40.00	984.

Table 5. Thermal conductivity of dilute R134a gas from 300 to 450 K obtained by use of the steady-state technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	ρ_{calc}	λ_{exp}	TBAND	ΔT_{avg}	t_{start}	t_{end}	N_{Ra}
point		$W \cdot m^{-1}$	K 250 K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$	%	K	S	S	
		perature =		0.0075	0.01700	1.100	1.005	2.26	40.00	010
15122		0.03420	350.828	0.0375	0.01783	1.190	1.805	3.36	40.00	312.
15124		0.03892	350.945	0.0375	0.01765	0.810	2.075	3.36	40.00	359.
15126	0.108	0.04396	351.084	0.0375	0.01767	1.810	2.341	3.36	40.00	405.
15128		0.04930	351.229	0.0376	0.01758	0.660	2.638	3.36	40.00	456.
15132		0.06090	351.544	0.0376	0.01747	0.420	3.279	3.36	40.00	566.
15134		0.06717	351.730	0.0376	0.01748	0.320	3.614	3.36	40.00	625.
15136	0.108	0.07375	351.909	0.0376	0.01742	0.450	3.982	3.36	40.00	687.
15138		0.08064	352.089	0.0376	0.01741	0.330	4.356	3.36	40.00	752.
15140	0.108	0.08784	352.289	0.0376	0.01739	1.460	4.748	3.36	40.00	819.
15141		0.03419	350.814	0.0776	0.01756	0.900	1.829	4.96	40.00	1428.
15143		0.04394	351.095	0.0776	0.01751	0.700	2.354	4.96	40.00	1837.
15144		0.04928	351.229	0.0776	0.01749	0.620	2.643	4.96	40.00	2060.
15146		0.06088	351.538	0.0776	0.01747	0.500	3.266	4.96	40.00	2543.
15148	0.220	0.07373	351.883	0.0776	0.01746	0.490	3.954	4.96	40.00	3073.
1	0.220	0.08061	352.071	0.0776	0.01746	0.490	4.322	4.96	40.00	3354.
15150		0.08782	352.272	0.0776	0.01745	0.420	4.707	4.96	40.00	3650.
15151	0.320	0.03419	350.799	0.1141	0.01785	1.120	1.793	6.56	40.00	3178.
15152	0.320	0.03891	350.924	0.1141	0.01778	0.950	2.047	6.56	40.00	3624.
15154	0.320	0.04927	351.209	0.1141	0.01767	0.590	2.604	8.16	40.00	4604.
15155	0.320	0.05492	351.356	0.1141	0.01765	0.680	2.902	6.56	40.00	5126.
15156	0.320	0.06088	351.502	0.1141	0.01761	0.440	3.221	8.16	40.00	5690.
15157	0.320	0.06714	351.668	0.1141	0.01762	0.680	3.548	6.56	40.00	6258.
15159	0.320	0.08061	352.020	0.1141	0.01758	1.670	4.258	6.56	40.00	7494.
15160	0.320	0.08780	352.216	0.1140	0.01756	0.450	4.639	6.56	40.00	8150.
15161	0.420	0.03419	350.762	0.1516	0.01800	1.240	1.769	9.76	40.00	5816.
15162	0.420	0.03891	350.900	0.1516	0.01791	1.350	2.021	9.76	40.00	6641.
15163	0.420	0.04394	351.027	0.1516	0.01782	0.560	2.290	9.76	40.00	7516.
15164	0.420	0.04927	351.171	0.1516	0.01777	0.970	2.570	8.16	40.00	8430.
15165	0.420	0.05492	351.327	0.1515	0.01777	0.620	2.861	8.16	40.00	9370.
15166	0.420	0.06087	351.467	0.1516	0.01775	0.480	3.169	8.16	40.00	10375.
15167	0.420	0.06714	351.639	0.1516	0.01772	0.430	3.493	8.16	40.00	11425.
	0.420		351.805	0.1515	0.01772	0.680	3.829	6.56	40.00	12505.
15169			351.973	0.1515	0.01773	0.610	4.176	6.56	40.00	13621.
15170			352.144	0.1515	0.01776	0.600	4.532	6.56	40.00	14770.
		erature =								
16124	0.454	0.03996	361.469	0.1590	0.01887	0.920	1.971	9.76	40.00	6520.
16126		0.04513	361.607	0.1591	0.01885	1.600	2.224	9.76	40.00	7362.
16128		0.05061	361.744	0.1591	0.01881	0.710	2.496	8.16	40.00	8254.
16132		0.06253	362.043	0.1592	0.01873	0.570	3.085	8.16	40.00	10194.
16138		0.08278	362.536	0.1592	0.01866	0.610	4.077	6.56		13444.
16142		0.03514	361.391	0.1077	0.01888	1.480	1.745	6.56	40.00	2488.
16146		0.04516	361.643	0.1077	0.01870	1.420	2.260	6.56	40.00	3221.
10110	0.010	0.01010	551.015	0.10,7	2.01070					

Table 5. Thermal conductivity of dilute R134a gas from 300 to 450 K obtained by use of the steady-state technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	TBAND	ΔT_{avg}	t_{start}	t_{end}	N_{Ra}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$	%	K	S	S	
16150	0.313	0.05644	361.931	0.1077	0.01860	0.540	2.836	6.56	40.00	4036.
16154	0.313	0.06900	362.252	0.1077	0.01853	0.480	3.475	6.56	40.00	4940.
16158	0.313	0.08282	362.600	0.1078	0.01849	0.480	4.173	6.56	40.00	5927.
16160	0.313	0.09022	362.796	0.1078	0.01847	0.450	4.545	6.56	40.00	6450.
16162	0.213	0.03513	361.415	0.0726	0.01870	0.940	1.765	4.96	40.00	1095.
16164	0.213	0.03997	361.547	0.0726	0.01860	0.800	2.019	4.96	40.00	1251.
16166	0.213	0.04515	361.682	0.0726	0.01855	0.710	2.285	4.96	40.00	1417.
16168	0.213	0.05063	361.826	0.0726	0.01854	0.830	2.564	4.96	40.00	1589.
16170	0.213	0.05643	361.965	0.0727	0.01845	0.780	2.871	4.96	40.00	1783.
16172	0.213	0.06255	362.137	0.0727	0.01847	0.480	3.177	4.96	40.00	1969.
16174	0.213	0.06899	362.293	0.0727	0.01845	1.820	3.507	4.96	40.00	2175.
16176	0.213	0.07574	362.487	0.0727	0.01841	0.390	3.856	4.96	40.00	2388.
16178	0.213	0.08282	362.652	0.0727	0.01840	0.820	4.218	4.96	40.00	2608.
16180	0.213	0.09021	362.845	0.0727	0.01839	0.330	4.595	4.96	40.00	2842.
16182	0.102	0.03513	361.439	0.0345	0.01848	1.480	1.789	3.36	40.00	239.
16184	0.102	0.03998	361.565	0.0344	0.01836	2.070	2.049	3.36	40.00	273.
16186	0.102	0.04515	361.702	0.0345	0.01832	0.780	2.318	3.36	40.00	309.
16192	0.102	0.06255	362.165	0.0345	0.01821	0.430	3.232	3.36	40.00	431.
16194	0.103	0.06899	362.318	0.0346	0.01820	0.370	3.566	3.36	40.00	476.
16198	0.103	0.08283	362.679	0.0346	0.01818	0.290	4.286	3.36	40.00	572.
16200	0.103	0.09022	362.874	0.0346	0.01816	0.260	4.672	3.36	40.00	623.
Nomina	al Temp	perature = 1	370 K							
17142	0.431	0.03591	370.115	0.1464	0.01982	1.030	1.692	8.16	40.00	4336.
17144	0.431	0.04086	370.232	0.1464	0.01969	0.990	1.936	8.16	40.00	4959.
17146	0.431	0.04614	370.373	0.1465	0.01962	0.910	2.192	8.16	40.00	5612.
17148	0.431	0.05174	370.499	0.1465	0.01955	1.710	2.464	8.16	40.00	6306.
17150	0.432	0.05767	370.644	0.1466	0.01946	0.780	2.755	8.16	40.00	7053.
17152		0.06392	370.789	0.1465	0.01942	0.520	3.055	8.16	40.00	7814.
17154	0.432	0.07050	370.946	0.1467	0.01938	1.160	3.371	8.16	40.00	8633.
17156		0.07740	371.114	0.1466	0.01936	0.520	3.700	8.16	40.00	9458.
17158	0.432	0.08462	371.285	0.1466	0.01934	0.800	4.043	8.16	40.00	10331.
17162	0.324	0.03590	370.108	0.1088	0.01972	1.130	1.707	6.56	40.00	2317.
17164	0.324	0.04086	370.230	0.1089	0.01956	1.040	1.957	6.56	40.00	2654.
17170	0.324	0.05766	370.652	0.1089	0.01939	0.540	2.781	6.56	40.00	3766.
17172	0.324	0.06392	370.801	0.1090	0.01936	0.530	3.085	6.56	40.00	4183.
17174	0.324	0.07049	370.956	0.1089	0.01930	0.570	3.409	6.56	40.00	4615.
17176	0.324	0.07739	371.124	0.1089	0.01928	1.140	3.744	6.56	40.00	5065.
17180	0.324	0.09217	371.479	0.1089	0.01922	0.430	4.465	6.56	40.00	6028.
17182	0.209	0.03590	370.105	0.0694	0.01961	1.380	1.721	4.96	40.00	907.
17184	0.209	0.04085	370.223	0.0694	0.01949	0.830	1.970	4.96	40.00	1039.
17186	0.209	0.04612	370.356	0.0694	0.01943	1.220	2.231	3.36	40.00	1176.
17188	0.209	0.05173	370.492	0.0694	0.01935	0.800	2.511	4.96	40.00	1324.
17192	0.209	0.06390	370.790	0.0695	0.01927	0.440	3.113	4.96	40.00	1642.

Table 5. Thermal conductivity of dilute R134a gas from 300 to 450 K obtained by use of the steady-state technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	TBAND	ΔT_{avg}	t_{start}	t_{end}	N_{Ra}
point	MPa	$W \cdot m^{-1}$	K		$W \cdot m^{-1} \cdot K^{-1}$	%	K .	S	S	
17194	0.209	0.07047	370.956	0.0695	0.01923	0.400	3.439	4.96	40.00	1813.
17196		0.07738	371.121	0.0695	0.01921	0.370	3.779	4.96	40.00	1993.
17198		0.08461	371.305	0.0695	0.01917	0.290	4.140	4.96	40.00	2179.
17200	0.209	0.09217	371.484	0.0695	0.01916	0.340	4.509	4.96	40.00	2372.
17208	0.211	0.05172	370.314	0.0701	0.01919	0.730	2.531	4.96	40.00	1362.
17210	0.211	0.05765	370.451	0.0701	0.01916	1.390	2.826	4.96	40.00	1520.
17216	0.211	0.07737	370.964	0.0701	0.01905	0.470	3.811	4.96	40.00	2045.
17218	0.211	0.08459	371.150	0.0701	0.01903	0.370	4.169	4.96	40.00	2234.
17222	0.103	0.03589	369.990	0.0339	0.01890	1.010	1.787	3.36	40.00	216.
17226	0.103	0.04612	370.236	0.0339	0.01880	0.850	2.308	1.76	40.00	279.
17228	0.103	0.05172	370.393	0.0339	0.01878	0.890	2.592	1.76	40.00	312.
17230	0.103	0.05765	370.547	0.0339	0.01877	1.020	2.890	1.76	40.00	348.
17232	0.103	0.06390	370.702	0.0339	0.01878	0.790	3.202	1.76	40.00	387.
17234	0.103	0.07048	370.869	0.0339	0.01874	1.420	3.538	1.76	40.00	426.
17236	0.103	0.07738	371.042	0.0339	0.01873	0.760	3.885	1.76	40.00	468.
17238	0.103	0.08460	371.226	0.0339	0.01872	0.770	4.250	1.76	40.00	512.
17240	0.103	0.09215	371.418	0.0340	0.01873	0.790	4.628	1.76	40.00	558.
Nomina	al Temp	erature =	390 K							
18474	0.973	0.03291	390.835	0.3249	0.02389	1.700	1.260	12.96	40.00	15869.
18476	0.972	0.03531	390.884	0.3246	0.02377	1.330	1.356	12.96	40.00	17033.
18480	0.971	0.04035	390.973	0.3242	0.02367	2.060	1.550	11.36	40.00	19409.
18482	0.971	0.04301	391.028	0.3240	0.02338	1.230	1.668	24.16	40.00	20853.
18486	0.971	0.04857	391.158	0.3239	0.02295	0.800	1.909	25.76	40.00	23839.
18488	0.974	0.05147	391.206	0.3249	0.02294	0.750	2.018	24.16	40.00	25375.
18490	0.974	0.05446	391.266	0.3249	0.02290	0.770	2.134	24.16	40.00	26817.
18498	0.937	0.03062	390.755	0.3119	0.02330	1.470	1.207	11.36	40.00	13856.
18500	0.937	0.03293	390.800	0.3119	0.02318	1.360	1.302	12.96	40.00	14947.
18502	0.937	0.03533	390.840	0.3120	0.02303	1.350	1.403	12.96	40.00	16106.
18504	0.937	0.03781	390.893	0.3120	0.02293	1.400	1.505	12.96	40.00	17273.
18506	0.938	0.04038	390.947	0.3120	0.02293	1.300	1.604	12.96	40.00	18415.
18508	0.938	0.04303	390.998	0.3120	0.02296	2.010	1.703	11.36	40.00	19547.
18514	0.938	0.05149	391.179	0.3120	0.02269	0.820	2.048	24.16	40.00	23478.
18516	0.938	0.05448	391.230	0.3122	0.02265	0.930	2.166	24.16	40.00	24853.
18522	0.771	0.03062	390.808	0.2529	0.02269	1.700	1.250	11.36	40.00	8937.
18524	0.771	0.03293	390.833	0.2529	0.02267	1.400	1.344	11.36	40.00	9612.
18526	0.771	0.03533	390.888	0.2529	0.02259	1.020	1.445	12.96	40.00	10333.
18528	0.771	0.03781	390.948	0.2529	0.02257	1.130	1.546	9.76	40.00	11044.
18530	0.771	0.04038	390.989	0.2527	0.02250	1.080	1.653	11.36		11793.
18532		0.04303	391.042	0.2526	0.02250	0.960	1.759	11.36	40.00	12538.
18538		0.02624	390.703	0.2207	0.02264	1.970	1.080	9.76	40.00	5714.
18540		0.02838	390.758	0.2208	0.02261	1.720	1.169		40.00	6186.
18542		0.03061	390.803	0.2209	0.02256	1.650	1.262		40.00	6688.
18544		0.03292	390.850	0.2210	0.02254	1.420	1.357		40.00	7195.

Table 5. Thermal conductivity of dilute R134a gas from 300 to 450 K obtained by use of the steady-state technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	TBAND	ΔT_{avg}	t_{start}	t_{end}	N_{Ra}
point	MPa	$W \cdot m^{-1}$	K		$W \cdot m^{-1} \cdot K^{-1}$	%	K	S	S	
18548	0.680	0.03780	390.954	0.2212	0.02243	0.830	1.563	11.36	40.00	8294.
18550	0.680	0.04037	391.007	0.2212	0.02236	0.930	1.673	11.36	40.00	8878.
18552	0.680	0.04302	391.040	0.2214	0.02239	1.910	1.778	9.76	40.00	9460.
18554	0.681	0.04576	391.115	0.2215	0.02237	1.000	1.891	9.76	40.00	10061.
18556	0.681	0.04858	391.178	0.2215	0.02229	1.290	2.012	9.76	40.00	10709.
18558	0.637	0.02418	390.645	0.2066	0.02281	1.980	0.990	11.36	40.00	4529.
18564	0.639	0.03061	390.801	0.2071	0.02262	1.450	1.261	11.36	40.00	5794.
18566	0.639	0.03292	390.838	0.2071	0.02258	1.430	1.357	9.76	40.00	6241.
18568	0.639	0.03532	390.889	0.2073	0.02253	1.680	1.458	9.76	40.00	6713.
18574	0.640	0.04302	391.055	0.2076	0.02241	2.150	1.781	11.36	40.00	8217.
18581	0.527	0.02623	390.700	0.1695	0.02268	1.960	1.083	8.16	40.00	3218.
18583	0.538	0.02838	390.744	0.1729	0.02263	1.800	1.173	9.76	40.00	3640.
18585	0.547	0.03061	390.795	0.1761	0.02257	1.580	1.267	9.76	40.00	4089.
18587	0.556	0.03292	390.829	0.1789	0.02258	1.940	1.361	8.16	40.00	4547.
18589	0.565	0.03532	390.912	0.1821	0.02220	2.180	1.484	16.16	40.00	5148.
18592	0.328	0.02417	390.644	0.1038	0.02247	1.910	1.011	4.96	40.00	1058.
18596	0.328	0.02837	390.736	0.1038	0.02230	1.740	1.195	4.96	40.00	1250.
18598	0.328	0.03060	390.806	0.1038	0.02224	1.550	1.293	4.96	40.00	1353.
18600	0.328	0.03292	390.835	0.1038	0.02231	1.560	1.386	4.96	40.00	1451.
18606	0.329	0.04036	390.996	0.1039	0.02221	1.170	1.706	4.96	40.00	1787.
18608	0.329	0.04301	391.054	0.1039	0.02213	1.090	1.823	4.96	40.00	1911.
18610	0.329	0.04575	391.123	0.1039	0.02212	0.880	1.940	6.56	40.00	2031.
18614	0.232	0.02417	390.666	0.0728	0.02221	2.080	1.024	4.96	40.00	512.
18620	0.232	0.03060	390.791	0.0729	0.02211	1.520	1.301	3.36	40.00	651.
18622	0.232	0.03291	390.839	0.0729	0.02213	2.000	1.398	3.36	40.00	700.
18624	0.232	0.03531	390.906	0.0730	0.02205	1.040	1.506	4.96	40.00	755.
18626	0.232	0.03779	390.944	0.0730	0.02204	1.050	1.612	4.96	40.00	808.
18628	0.232	0.04036	390.994	0.0729	0.02207	1.630	1.719	3.36	40.00	861.
18634	0.107	0.02417	390.634	0.0334	0.02209	1.940	1.030	1.76	40.00	104.
18636	0.107	0.02622	390.688	0.0334	0.02204	2.000	1.120	3.36	40.00	113.
18638	0.107	0.02837	390.733	0.0334	0.02194	1.720	1.217	1.76	40.00	123.
18644	0.108	0.03531	390.879	0.0334	0.02181	1.060	1.524	1.76	40.00	154.
18648	0.108	0.04036	390.986	0.0334	0.02175	1.060	1.746	1.76	40.00	177.
Nomina	al Temp	erature =	420 K							
19472	1.055	0.13639	421.573	0.3229	0.02548	1.070	4.651	18.20	41.00	45371.
19478	1.057	0.09529	420.905	0.3235	0.02568	0.810	3.297	18.20	41.00	32388.
19480	1.057	0.08323	420.715	0.3236	0.02561	0.650	2.907	19.84	41.00	28611.
19484	1.058	0.06158	420.342	0.3239	0.02579	1.290	2.163	8.36	41.00	21361.
19486	1.058	0.05199	420.186	0.3240	0.02565	0.850	1.846	11.64	41.00	18265.
19488	1.059	0.04320	420.038	0.3241	0.02573	1.290	1.538	11.64	41.00	15234.
19492	0.861	0.13640	421.604	0.2602	0.02596	2.240	4.701	3.44	41.00	28423.
19496	0.860	0.10817	421.168	0.2601	0.02573	1.660	3.797			22986.
19498		0.09529	420.950	0.2602	0.02562	1.340	3.375			20463.

Table 5. Thermal conductivity of dilute R134a gas from 300 to 450 K obtained by use of the steady-state technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	TBAND	ΔT_{avg}	t_{start}	t_{end}	N_{Ra}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$		$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$	%	K	S	s	100
19500	0.861	0.08324	420.760	0.2601	0.02549	1.450	2.976	8.36	41.00	18053.
19504	0.860	0.06159	420.378	0.2601	0.02547	0.830	2.222	10.00	41.00	13497.
19506	0.860	0.05199	420.203	0.2600	0.02546	0.800	1.883	10.00	41.00	11441.
19510	0.860	0.03524	419.904	0.2601	0.02547	1.490	1.284	11.64	41.00	7819.
19512	0.700	0.13639	421.716	0.2096	0.02544	0.540	4.882	6.72	41.00	18431.
19514	0.700	0.12185	421.454	0.2095	0.02537	0.590	4.387	6.72	41.00	16570.
19516	0.700	0.10815	421.232	0.2095	0.02535	1.460	3.911	6.72	41.00	14785.
19518	0.701	0.09528	421.004	0.2096	0.02528	0.720	3.464	8.36	41.00	13125.
19520	0.701	0.08323	420.792	0.2097	0.02525	0.570	3.039	8.36	41.00	11533.
19522	0.701	0.07198	420.592	0.2097	0.02526	0.570	2.634	10.00	41.00	10009.
19524	0.701	0.06157	420.413	0.2098	0.02527	0.760	2.258	8.36	41.00	8593.
19528	0.702	0.04320	420.068	0.2100	0.02530	2.050	1.590	10.00	41.00	6070.
19530	0.702	0.03523	419.919	0.2101	0.02525	1.600	1.301	8.36	41.00	4978.
19532	0.488	0.13638	421.754	0.1440	0.02515	0.410	5.028	6.72	41.00	8527.
19534	0.488	0.12185	421.489	0.1440	0.02516	0.420	4.497	6.72	41.00	7635.
19536	0.488	0.10815	421.245	0.1440	0.02514	0.460	4.000	6.72	41.00	6796.
19538	0.488	0.09527	421.010	0.1440	0.02516	0.610	3.527	6.72	41.00	5999.
19544	0.488	0.06156	420.385	0.1442	0.02520	0.890	2.284	6.72	41.00	3901.
19546	0.488	0.05197	420.204	0.1441	0.02523	0.790	1.928	6.72	41.00	3293.
19550	0.488	0.03522	419.893	0.1442	0.02528	1.340	1.306	8.36	41.00	2236.
19552	0.264	0.13639	421.789	0.0770	0.02498	1.160	5.119	5.08	41.00	2350.
19554	0.264	0.12184	421.516	0.0770	0.02497	0.450	4.577	5.08	41.00	2105.
19556	0.264	0.10814	421.268	0.0770	0.02494	0.370	4.068	5.08	41.00	1874.
19558	0.264	0.09526	421.029	0.0770	0.02493	0.840	3.587	3.44	41.00	1653.
19560	0.265	0.08321	420.799	0.0771	0.02491	0.440	3.137	5.08	41.00	1449.
19566	0.265	0.05196	420.220	0.0771	0.02489	0.890	1.962	3.44	41.00	910.
19568	0.265	0.04319	420.055	0.0772	0.02489	0.970	1.632	5.08	41.00	757.
19572	0.086	0.11268	421.386	0.0247	0.02443	0.310	4.341	1.80	41.00	196.
19574	0.086	0.10165	421.172	0.0247	0.02442	0.380	3.918	1.80	41.00	177.
19576	0.086	0.09120	420.975	0.0247	0.02441	0.390	3.517	1.80	41.00	160.
19580	0.086	0.07201	420.612	0.0247	0.02441	0.750	2.777	1.80	41.00	126.
19582	0.086	0.06327	420.440	0.0247	0.02439	0.570	2.442	1.80	41.00	111.
19584	0.086	0.05509	420.303	0.0247	0.02439	0.710	2.127	1.80	41.00	97.
19588	0.086	0.04045	420.014	0.0248	0.02439	1.390	1.562	1.80	41.00	72.
19590	0.086	0.03398	419.883	0.0247	0.02437	1.400	1.313	1.80	41.00	60.
Nomin	al Temp	erature =	450 K					-		
		0.14591	452.927	0.3104	0.02907	1.100	4.461	19.84	41.00	32230.
		0.13039	452.694	0.3104	0.02926	1.910	3.984	6.72	41.00	28831.
		0.10197	452.274	0.3104	0.02917	1.360	3.158	8.36		22878.
		0.08907	452.087	0.3104	0.02911	0.850	2.778	8.36		20141.
	1.106		451.740	0.3104	0.02908	0.790	2.077			15085.
20448		0.05565	451.585	0.3103	0.02908	1.270	1.760			12786.
			452.944	0.2622	0.02913	2.260	4.526			22672.

Table 5. Thermal conductivity of dilute R134a gas from 300 to 450 K obtained by use of the steady-state technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	TBAND	ΔT_{avg}	t_{start}	t_{end}	N_{Ra}
point	MPa	$W \cdot m^{-1}$		$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$	%	K	S	S	100
20454	0.941	0.13038	452.742	0.2622	0.02901	0.890	4.079	8.36	41.00	20443.
20456	0.941	0.11574	452.521	0.2622	0.02896	1.350	3.641	6.72	41.00	18266.
20458	0.941	0.10197	452.314	0.2622	0.02892	1.770	3.224	8.36	41.00	16185.
20460	0.941	0.08907	452.110	0.2622	0.02888	0.600	2.830	10.00	41.00	14221.
20462	0.941	0.07706	451.942	0.2621	0.02890	1.000	2.455	10.00	41.00	12334.
20466	0.941	0.05565	451.585	0.2622	0.02899	1.040	1.778	11.64	41.00	8949.
20468	0.941	0.04625	451.438	0.2622	0.02902	1.170	1.480	11.64	41.00	7454.
20470	0.941	0.03773	451.315	0.2621	0.02908	1.860	1.208	11.64	41.00	6083.
20472	0.712	0.14594	453.028	0.1962	0.02879	0.760	4.666	6.72	41.00	12552.
20474	0.712	0.13041	452.787	0.1962	0.02870	0.500	4.191	8.36	41.00	11277.
20478	0.712	0.10199	452.354	0.1963	0.02872	0.510	3.289	10.00	41.00	8874.
20480	0.713	0.08909	452.159	0.1964	0.02875	0.480	2.876	10.00	41.00	7775.
20482	0.713	0.07707	451.954	0.1964	0.02876	0.670	2.493	10.00	41.00	6746.
20488	0.713	0.04625	451.463	0.1966	0.02886	1.240	1.498	10.00	41.00	4068.
20492	0.505	0.14592	453.090	0.1379	0.02867	0.870	4.739	8.36	41.00	6062.
20494	0.505	0.13039	452.848	0.1379	0.02871	0.500	4.234	6.72	41.00	5416.
20496	0.505	0.11574	452.618	0.1379	0.02870	0.550	3.763	6.72	41.00	4822.
20498	0.505	0.10197	452.383	0.1379	0.02873	0.530	3.316	8.36	41.00	4252.
20500	0.505	0.08908	452.171	0.1380	0.02875	0.840	2.897	6.72	41.00	3719.
20504	0.506	0.06591	451.808	0.1380	0.02889	0.770	2.138	6.72	41.00	2748.
20506	0.506	0.05564	451.641	0.1380	0.02891	1.050	1.805	6.72	41.00	2322.
20510	0.506	0.03772	451.345	0.1380	0.02902	1.820	1.220	8.36	41.00	1571.
20512	0.307	0.14590	453.103	0.0831	0.02853	0.730	4.797	5.08	41.00	2148.
20514	0.307	0.13037	452.866	0.0831	0.02852	0.660	4.289	5.08	41.00	1922.
20516	0.307	0.11573	452.613	0.0832	0.02854	0.420	3.806	5.08	41.00	1708.
20518	0.307	0.10195	452.397	0.0832	0.02855	0.520	3.353	5.08	41.00	1506.
20520		0.08906	452.185	0.0832	0.02860	1.020	2.925	5.08	41.00	1316.
20524		0.06590	451.763	0.0832	0.02869	0.750	2.159	5.08	41.00	973.
20526		0.05564	451.624	0.0832	0.02882	1.810	1.815	5.08	41.00	818.
20528		0.04624	451.461	0.0832	0.02888	1.680	1.506	5.08	41.00	679.
1			452.725	0.0276	0.02783	0.540	4.078	1.80	41.00	194.
20534		0.10878	452.533	0.0276	0.02782	0.610	3.680	1.80	41.00	175.
20536		0.09760	452.348	0.0276	0.02782	0.520	3.302	1.80	41.00	158.
20538		0.08704	452.173	0.0277	0.02781	0.530	2.947	1.80	41.00	141.
20540		0.07708	452.006	0.0277	0.02778	1.080	2.612	1.80	41.00	125.
20542		0.06773	451.849	0.0277	0.02780	0.690	2.293	1.80	41.00	110.
20544		0.05899	451.711	0.0276	0.02769	2.190	2.005	1.80	41.00	96.
20546		0.05085	451.571	0.0277	0.02772	1.570	1.727	1.80	41.00	83.
20548		0.04332	451.442	0.0277	0.02766	1.440	1.474	1.80	41.00	71.
20550		0.03639	451.329	0.0277	0.02780	1.410	1.233	3.44	41.00	59.
20552		0.12059	452.747	0.0229	0.02768	2.030	4.101	1.80	41.00	134.
20554		0.10879	452.556	0.0229	0.02765	0.500	3.704	1.80	41.00	121.
20558	0.086	0.08705	452.177	0.0229	0.02764	0.550	2.964	1.80	41.00	97.

Table 5. Thermal conductivity of dilute R134a gas from 300 to 450 K obtained by use of the steady-state technique with anodized tantalum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	TBAND	ΔT_{avg}	t_{start}	t_{end}	N_{Ra}
point	MPa	$W \cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$\mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1}$	%	K	S	s	
20562	0.086	0.06773	451.872	0.0230	0.02758	1.570	2.312	1.80	41.00	76.
20564	0.086	0.05899	451.723	0.0229	0.02753	1.150	2.017	1.80	41.00	66.
20566	0.086	0.05085	451.587	0.0229	0.02754	0.870	1.738	1.80	41.00	57.
20568	0.086	0.04332	451.461	0.0230	0.02745	1.330	1.486	1.80	41.00	49.
20570	0.086	0.03639	451.336	0.0229	0.02744	1.780	1.249	1.80	41.00	41.

Table 6. Thermal conductivity of R134a in the compressed liquid phase from 210 to 290 K obtained by use of the transient hot-wire technique with bare platinum hot wires.

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
	Temperatur	e = 210 K					
21001	21.078	0.22637	211.137	14.8072	0.12856	0.001	210.111
21003	21.078	0.28652	211.430	14.8001	0.12825	0.001	210.118
21005	21.083	0.35374	211.743	14.7926	0.12797	0.001	210.118
21007	21.087	0.42808	212.094	14.7841	0.12788	0.002	210.119
21009	21.093	0.50951	212.470	14.7751	0.12754	0.000	210.112
21011	17.302	0.22635	211.105	14.7527	0.12744	0.001	210.075
21013	17.308	0.28651	211.396	14.7456	0.12707	0.001	210.086
21015	17.316	0.35372	211.702	14.7382	0.12675	0.001	210.073
21017	17.318	0.42802	212.065	14.7292	0.12656	0.000	210.082
21019	17.323	0.50941	212.447	14.7199	0.12630	0.000	210.077
21021	16.231	0.22634	211.084	14.7372	0.12706	0.001	210.060
21023	16.237	0.28650	211.372	14.7301	0.12674	0.001	210.064
21025	16.242	0.35372	211.689	14.7223	0.12641	0.001	210.063
21027	16.241	0.42803	212.033	14.7138	0.12623	0.001	210.056
21029	16.244	0.50945	212.427	14.7041	0.12602	0.000	210.062
21031	15.437	0.22631	211.046	14.7261	0.12683	0.001	210.039
21033	15.441	0.28645	211.337	14.7189	0.12650	0.002	210.043
21035	15.431	0.35365	211.654	14.7109	0.12612	0.001	210.037
21037	15.432	0.42793	212.008	14.7021	0.12596	0.001	210.040
21039	15.443	0.50906	212.395	14.6926	0.12577	0.000	210.043
21041	13.975	0.22547	211.017	14.7046	0.12641	0.001	210.016
21043	13.976	0.28530	211.299	14.6975	0.12591	0.001	210.015
21045	13.991	0.35205	211.629	14.6895	0.12569	0.001	210.027
21047	14.005	0.42587	211.975	14.6810	0.12547	0.001	210.020
21049	14.017	0.50672	212.359	14.6716	0.12530	0.000	210.021
21051	10.346	0.22467	210.984	14.6488	0.12508	0.001	209.990
21053	10.352	0.28432	211.271	14.6415	0.12464	0.001	209.991
21055	10.363	0.35093	211.591	14.6336	0.12440	0.001	209.988
21057	10.369	0.42457	211.951	14.6244	0.12423	0.001	209.997
21059	10.375	0.50524	212.338	14.6147	0.12405	0.000	209.997
21061	6.952	0.22412	210.966	14.5945	0.12397	0.001	209.971
21063	6.959	0.28360	211.251	14.5871	0.12348	0.001	209.971
21065	6.961	0.35005	211.571	14.5788	0.12328	0.001	209.967
21067	6.973	0.42353	211.929	14.5697	0.12306	0.000	209.970
21069	6.982	0.50401	212.313	14.5599	0.12285	0.000	209.967
21071	3.607	0.22377	210.937	14.5393	0.12274	0.001	209.945
21073	3.616	0.28319	211.227	14.5318	0.12233	0.001	209.946
21075	3.621	0.34958	211.562	14.5230	0.12203	0.001	209.956
21077	3.630	0.42296	211.908	14.5139	0.12183	0.001	209.945
21079	3.638	0.50335	212.307	14.5035	0.12161	0.000	209.949
21081	0.672	0.28632	211.225	14.4808	0.12114	0.001	209.923
21083	0.681	0.35350	211.561	14.4719	0.12091	0.001	209.931

Table 6. Thermal conductivity of R134a in the compressed liquid phase from 210 to 290 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T			STAT	T
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	T_{exp} K	$ ho_{calc} \ \mathrm{mol} \cdot \mathrm{L}^{-1}$	$\lambda_{exp} \ \mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1}$		$egin{array}{c} T_{cell} \ \mathrm{K} \end{array}$
21085	0.681	0.42779	211.930	14.4619	0.12063	0.000	209.933
21087	0.681	0.50916	212.333	14.4510	0.12034	0.000	209.933
21089	0.682	0.59766	212.767	14.4392	0.12005	0.000	209.932
21091	0.106	0.28628	211.265	14.4697	0.12107	0.001	209.911
21093	0.106	0.35346	211.600	14.4606	0.12073	0.001	209.913
21095	0.106	0.42770	211.969	14.4506	0.12052	0.000	209.919
21097	0.105	0.50908	212.371	14.4397	0.12012	0.000	209.917
21099	0.105	0.59759	212.806	14.4279	0.11986	0.000	209.916
21101	0.342	0.22121	212.353	14.4444	0.12064	0.001	210.818
21103	0.348	0.28000	212.698	14.4351	0.12037	0.002	210.850
21107	0.345	0.42675	213.561	14.4117	0.11953	0.001	210.942
21109	0.328	0.50837	214.033	14.3985	0.11927	0.000	210.986
	l Temperatu						
22001	21.838	0.24054	223.263	14.5264	0.12413	0.001	222.137
22003	21.836	0.30446	223.573	14.5189	0.12380	0.001	222.141
22005	21.837	0.37586	223.908	14.5108	0.12350	0.001	222.129
22007	21.838	0.45480	224.293	14.5016	0.12321	0.000	222.136
22009	21.841	0.54128	224.714	14.4916	0.12293	0.000	222.138
22011	19.770	0.24052	223.198	14.4951	0.12337	0.001	222.092
22013	19.762	0.30445	223.503	14.4876	0.12313	0.001	222.087
22015	19.739	0.37588	223.850	14.4788	0.12285	0.001	222.088
22017	19.749	0.45478	224.236	14.4696	0.12254	0.000	222.089
22019	19.743	0.54117	224.654	14.4593	0.12221	0.000	222.087
22021	17.303	0.24049	223.163	14.4559	0.12254	0.001	222.060
22023	17.307	0.30441	223.476	14.4483	0.12227	0.001	222.061
22025	17.309	0.37580	223.845	14.4393	0.12192	0.001	222.063
22027	17.313	0.45471	224.237	14.4297	0.12164	0.001	222.068
22029	17.306	0.54115	224.655	14.4193	0.12132	0.000	222.064
22031	15.841	0.24049	223.147	14.4321	0.12199	0.001	222.030
22033	15.839	0.30441	223.464	14.4242	0.12169	0.001	222.040
22035	15.841	0.37582	223.805	14.4158	0.12146	0.001	222.032
22037	15.847	0.45472	224.201	14.4061	0.12112	0.000	222.038
22039	15.845	0.54115	224.624	14.3956	0.12079	0.000	222.037
22041	14.976	0.24048	223.124	14.4182	0.12177	0.001	222.017
22043	14.973	0.30440	223.435	14.4104	0.12145	0.001	222.017
22045	14.979	0.37580	223.784	14.4018	0.12109	0.001	222.014
22047	14.981	0.45468	224.180	14.3920	0.12087	0.000	222.018
22049	14.982	0.54111	224.598	14.3816	0.12051	0.000	222.014
22051	11.750	0.24047	223.093	14.3638	0.12049	0.001	221.986
22053	11.753	0.30437	223.409	14.3558	0.12025	0.001	221.986
22055	11.757	0.37575	223.758	14.3470	0.11990	0.001	221.982
22057	11.765	0.45463	224.166	14.3368	0.11964	0.000	221.997
22059	11.766	0.54103	224.589	14.3261	0.11930	0.000	221.989

Table 6. Thermal conductivity of R134a in the compressed liquid phase from 210 to 290 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Ruli	D	D		T		1	STAT	T
22061 3.776	Run	P_{cell}	Q $W \cdot m^{-1}$	T_{exp}	ρ_{calc}	λ_{exp} W \cdot m ⁻¹ \cdot K ⁻¹	SIAI	T_{cell}
22063 3.781 0.30438 223.366 14.2112 0.11708 0.001 221.924 22065 3.781 0.37575 223.740 14.2012 0.11670 0.001 221.931 22067 3.788 0.45451 224.020 14.1890 0.11603 0.000 221.937 22071 0.662 0.24040 223.090 14.1579 0.11615 0.001 221.897 22073 0.661 0.37562 223.790 14.1387 0.11550 0.001 221.891 22075 0.661 0.45447 224.193 14.1276 0.11580 0.001 221.891 22077 0.661 0.45486 224.627 14.1187 0.11580 0.000 221.993 22081 5.576 0.23974 223.084 14.2527 0.11801 0.001 221.897 22081 5.584 0.30336 223.400 14.2445 0.11785 0.001 221.917 22087 5.585 0.4523 223.403 14.2124 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.001</td> <td></td>							0.001	
22065 3.781 0.37575 223.740 14.2012 0.11670 0.001 221.931 22067 3.788 0.45451 224.202 14.1890 0.11630 0.000 221.924 22069 3.790 0.54089 224.656 14.1769 0.11615 0.001 221.937 22071 0.662 0.24040 223.090 14.1579 0.11615 0.001 221.897 22075 0.661 0.37562 223.790 14.1387 0.11580 0.001 221.893 22077 0.661 0.45447 224.193 14.1276 0.11509 0.000 221.903 22081 5.576 0.23974 223.084 14.2527 0.11801 0.000 221.997 22081 5.576 0.23974 223.084 14.2527 0.11801 0.001 221.917 22083 5.584 0.30336 223.400 14.2445 0.11785 0.001 221.917 22087 5.585 0.45283 224.170 14.2242 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
22067 3.788 0.45451 224.202 14.1890 0.11630 0.000 221.924 22069 3.790 0.54089 224.656 14.1769 0.11603 0.000 221.937 22071 0.662 0.24040 223.090 14.1579 0.11615 0.001 221.891 22073 0.663 0.30427 223.408 14.1492 0.11580 0.001 221.891 22077 0.661 0.37562 223.790 14.1387 0.11550 0.001 221.903 22079 0.661 0.54086 224.627 14.1157 0.11481 0.000 221.904 22081 5.576 0.23974 223.084 14.2527 0.11801 0.001 221.917 22085 5.586 0.37437 223.765 14.2349 0.11752 0.001 221.917 22085 5.591 0.53871 224.603 14.2128 0.11682 0.000 221.925 22089 1.5991 0.53871 224.603 14.1712 </td <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1							
22069 3.790 0.54089 224.656 14.1769 0.11603 0.000 221.937 22071 0.662 0.24040 223.090 14.1579 0.11615 0.001 221.897 22073 0.663 0.30427 223.408 14.1492 0.11550 0.001 221.891 22075 0.661 0.45447 224.193 14.1276 0.11550 0.000 221.904 22079 0.661 0.45447 224.193 14.1276 0.11509 0.000 221.904 22079 0.661 0.45447 224.193 14.1276 0.1180 0.001 221.904 22087 5.576 0.23974 223.084 14.2527 0.11801 0.001 221.917 22083 5.586 0.37437 223.765 14.2349 0.11752 0.001 221.917 22087 5.585 0.46283 224.170 14.2242 0.11708 0.000 221.917 22089 5.591 0.53871 224.603 14.2128 <td>l .</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	l .							
22071 0.662 0.24040 223.090 14.1579 0.11615 0.001 221.897 22073 0.663 0.30427 223.408 14.1492 0.11580 0.001 221.891 22075 0.661 0.37562 223.790 14.1387 0.11550 0.001 221.903 22077 0.661 0.45447 224.193 14.1276 0.11509 0.000 221.904 22079 0.661 0.54086 224.627 14.1157 0.11801 0.000 221.917 22081 5.576 0.23974 223.084 14.2527 0.11801 0.001 221.917 22085 5.586 0.37437 223.765 14.2349 0.11752 0.001 221.917 22085 5.586 0.37437 223.765 14.2349 0.11708 0.001 221.917 22087 5.585 0.45283 224.170 14.2242 0.11708 0.000 221.925 22089 1.591 0.53871 224.603 14.2128 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
22073 0.663 0.30427 223.408 14.1492 0.11580 0.001 221.891 22075 0.661 0.37562 223.790 14.1387 0.11550 0.001 221.903 22077 0.661 0.45447 224.193 14.1276 0.11509 0.000 221.994 22079 0.661 0.54086 224.627 14.1157 0.11481 0.000 221.897 22081 5.576 0.23974 223.084 14.2527 0.11801 0.001 221.917 22085 5.586 0.37437 223.765 14.2349 0.11752 0.001 221.917 22087 5.585 0.45283 224.170 14.2242 0.11708 0.000 221.925 22087 5.585 0.45283 224.170 14.2242 0.11708 0.000 221.925 22087 5.581 0.45283 224.170 14.2242 0.11609 0.000 221.925 22093 1.306 0.30426 223.387 14.1625 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
22075 0.661 0.37562 223.790 14.1387 0.11550 0.001 221.903 22077 0.661 0.45447 224.193 14.1276 0.11509 0.000 221.904 22079 0.661 0.54086 224.627 14.1157 0.11481 0.000 221.917 22081 5.576 0.23974 223.084 14.2527 0.11801 0.001 221.917 22083 5.584 0.30336 223.400 14.2445 0.11785 0.001 221.917 22087 5.585 0.45283 224.170 14.2242 0.11708 0.000 221.925 22089 5.591 0.53871 224.603 14.2128 0.11682 0.000 221.925 22099 1.296 0.24037 223.363 14.1712 0.11625 0.001 221.888 22093 1.306 0.30426 223.387 14.1625 0.11601 0.001 221.888 22097 1.313 0.4549 224.159 14.1416 <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>	1							1
22077 0.661 0.45447 224.193 14.1276 0.11509 0.000 221.904 22079 0.661 0.54086 224.627 14.1157 0.11481 0.000 221.897 22081 5.576 0.23974 223.084 14.2527 0.11801 0.001 221.917 22083 5.584 0.30336 223.400 14.2445 0.11785 0.001 221.911 22085 5.586 0.37437 223.765 14.2349 0.11752 0.001 221.917 22087 5.585 0.45283 224.170 14.2242 0.11682 0.000 221.925 22091 1.296 0.24037 223.063 14.1712 0.11625 0.001 221.888 22091 1.296 0.24037 223.063 14.1712 0.11625 0.001 221.888 22091 1.306 0.30426 223.3875 14.1526 0.11601 0.001 221.887 22097 1.313 0.45449 224.159 14.1497 </td <td>l .</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>	l .							1
22079 0.661 0.54086 224.627 14.1157 0.11481 0.000 221.897 22081 5.576 0.23974 223.084 14.2527 0.11801 0.001 221.917 22083 5.584 0.30336 223.400 14.2445 0.11755 0.001 221.911 22087 5.586 0.37437 223.765 14.2349 0.11752 0.000 221.925 22087 5.585 0.45283 224.170 14.2242 0.11682 0.000 221.925 22091 1.296 0.24037 223.063 14.1712 0.11625 0.001 221.888 22093 1.306 0.30426 223.387 14.1625 0.11601 0.001 221.888 22095 1.312 0.37561 223.755 14.1526 0.11569 0.001 221.888 22095 1.313 0.45449 224.159 14.1297 0.11497 0.000 221.888 22099 1.316 0.54090 224.597 14.1297 <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1							
22081 5.576 0.23974 223.084 14.2527 0.11801 0.001 221.917 22083 5.584 0.30336 223.400 14.2445 0.11785 0.001 221.917 22085 5.586 0.37437 223.765 14.2349 0.11702 0.001 221.917 22087 5.585 0.45283 224.170 14.2242 0.11708 0.000 221.925 22089 5.591 0.53871 224.603 14.2128 0.11682 0.000 221.925 22091 1.296 0.24037 223.063 14.1712 0.11625 0.001 221.888 22093 1.306 0.30426 223.387 14.1625 0.11601 0.001 221.888 22097 1.313 0.45449 224.159 14.1416 0.11569 0.001 221.888 22097 1.313 0.45449 224.159 14.1297 0.11497 0.000 221.889 22090 1.316 0.54090 224.597 13.9793 <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1							
22083 5.584 0.30336 223.400 14.2445 0.11785 0.001 221.911 22085 5.586 0.37437 223.765 14.2349 0.11752 0.001 221.917 22087 5.585 0.45283 224.170 14.2242 0.11708 0.000 221.925 22089 5.591 0.53871 224.603 14.2128 0.11625 0.000 221.925 22091 1.296 0.24037 223.063 14.1712 0.11625 0.001 221.888 22093 1.306 0.30426 223.387 14.1625 0.11601 0.001 221.888 22095 1.312 0.37561 223.755 14.1526 0.11569 0.001 221.888 22099 1.316 0.54090 224.597 14.1297 0.11497 0.000 221.888 22099 1.316 0.54090 224.597 13.9796 0.11497 0.000 221.889 24001 26.169 0.22480 249.787 13.9793 </td <td>F .</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	F .							
22085 5.586 0.37437 223.765 14.2349 0.11752 0.001 221.917 22087 5.585 0.45283 224.170 14.2242 0.11708 0.000 221.925 22089 5.591 0.53871 224.603 14.2128 0.11682 0.000 221.925 22091 1.296 0.24037 223.063 14.1712 0.11625 0.001 221.888 22093 1.306 0.30426 223.387 14.1625 0.11601 0.001 221.888 22095 1.312 0.37561 223.755 14.1526 0.11569 0.001 221.888 22097 1.313 0.45449 224.159 14.1416 0.11528 0.000 221.889 22099 1.316 0.54090 224.597 14.1297 0.11497 0.000 221.888 24001 26.169 0.22480 249.471 13.9793 0.11569 0.001 248.381 24003 26.150 0.28453 249.4787 13.9716								
22087 5.585 0.45283 224.170 14.2242 0.11708 0.000 221.925 22089 5.91 0.53871 224.603 14.2128 0.11682 0.000 221.925 22091 1.296 0.24037 223.063 14.1712 0.11625 0.001 221.888 22093 1.306 0.30426 223.387 14.1625 0.11601 0.001 221.887 22095 1.312 0.37561 223.755 14.1526 0.11569 0.001 221.888 22097 1.313 0.45449 224.159 14.1416 0.11528 0.000 221.889 22099 1.316 0.54090 224.597 14.1297 0.11497 0.000 221.889 22099 1.316 0.54090 224.597 14.1297 0.11497 0.000 221.888 22099 1.316 0.54090 224.971 13.9793 0.11569 0.001 248.381 24001 26.169 0.22480 249.787 13.9716 <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1							
22089 5.591 0.53871 224.603 14.2128 0.11682 0.000 221.925 22091 1.296 0.24037 223.063 14.1712 0.11625 0.001 221.888 22093 1.306 0.30426 223.387 14.1625 0.11569 0.001 221.888 22097 1.313 0.45449 224.159 14.1416 0.11569 0.000 221.889 22099 1.316 0.54090 224.597 14.1297 0.11497 0.000 221.889 22099 1.316 0.54090 224.597 14.1297 0.11497 0.000 221.889 22099 1.316 0.54090 224.597 14.1297 0.11497 0.000 221.883 Nominal Temperature = 250 K 24001 26.150 0.28453 249.787 13.9793 0.11569 0.001 248.381 24003 26.150 0.28453 249.787 13.9716 0.11494 0.001 248.367 24007 26.13	1							
22091 1.296 0.24037 223.063 14.1712 0.11625 0.001 221.888 22093 1.306 0.30426 223.387 14.1625 0.11601 0.001 221.887 22095 1.312 0.37561 223.755 14.1526 0.11569 0.001 221.888 22097 1.313 0.45449 224.159 14.1297 0.11497 0.000 221.889 22099 1.316 0.54090 224.597 14.1297 0.11497 0.000 221.883 Nominal Temperature = 250 K 24001 26.169 0.22480 249.471 13.9793 0.11569 0.001 248.381 24003 26.150 0.28453 249.787 13.9716 0.11494 0.001 248.388 24005 26.132 0.35127 250.110 13.9637 0.11432 0.001 248.372 24007 26.119 0.42504 250.494 13.9442 0.1137 0.001 248.372 24011 22.9								
22093 1.306 0.30426 223.387 14.1625 0.11601 0.001 221.887 22095 1.312 0.37561 223.755 14.1526 0.11569 0.001 221.888 22097 1.313 0.45449 224.159 14.1416 0.11528 0.000 221.889 22099 1.316 0.54090 224.597 14.1297 0.11497 0.000 221.889 22099 1.316 0.54090 224.597 14.1297 0.11497 0.000 221.883 Nominal Temperature = 250 K 24001 26.169 0.22480 249.471 13.9793 0.11569 0.001 248.381 24003 26.150 0.28453 249.787 13.9716 0.11494 0.001 248.388 24005 26.132 0.35127 250.110 13.9637 0.11432 0.001 248.367 24007 26.119 0.42504 250.494 13.9544 0.11377 0.001 248.372 24011 22.901 0.22482 <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1							
22095 1.312 0.37561 223.755 14.1526 0.11569 0.001 221.888 22097 1.313 0.45449 224.159 14.1416 0.11528 0.000 221.889 22099 1.316 0.54090 224.597 14.1297 0.11497 0.000 221.883 Nominal Temperature = 250 K 24001 26.169 0.22480 249.471 13.9793 0.11569 0.001 248.381 24003 26.150 0.28453 249.787 13.9716 0.11494 0.001 248.388 24005 26.132 0.35127 250.110 13.9637 0.11432 0.001 248.388 24007 26.119 0.42504 250.494 13.9544 0.11377 0.001 248.372 24009 26.115 0.50581 250.924 13.9442 0.11383 0.000 248.381 24011 22.901 0.22482 249.433 13.9111 0.11382 0.001 248.342 24013 2								
22097 1.313 0.45449 224.159 14.1416 0.11528 0.000 221.889 22099 1.316 0.54090 224.597 14.1297 0.11497 0.000 221.883 Nominal Temperature = 250 K 24001 26.169 0.22480 249.471 13.9793 0.11569 0.001 248.381 24003 26.150 0.28453 249.787 13.9716 0.11494 0.001 248.388 24005 26.132 0.35127 250.110 13.9637 0.11432 0.001 248.367 24007 26.119 0.42504 250.494 13.9544 0.11377 0.001 248.372 24009 26.115 0.50581 250.924 13.9442 0.11383 0.000 248.381 24011 22.901 0.22482 249.433 13.9186 0.11440 0.001 248.342 24013 22.898 0.28457 249.745 13.9111 0.11382 0.001 248.334 24017	1							i e
Nominal Temperature	1							
Nominal Temperature = 250 K 24001 26.169 0.22480 249.471 13.9793 0.11569 0.001 248.381 24003 26.150 0.28453 249.787 13.9716 0.11494 0.001 248.388 24005 26.132 0.35127 250.110 13.9637 0.11432 0.001 248.367 24007 26.119 0.42504 250.494 13.9544 0.11377 0.001 248.372 24009 26.115 0.50581 250.924 13.9442 0.11383 0.000 248.381 24011 22.901 0.22482 249.433 13.9186 0.11440 0.001 248.344 24013 22.898 0.28457 249.745 13.9111 0.11382 0.001 248.342 24015 22.900 0.35132 250.081 13.9031 0.11308 0.001 248.334 24017 22.898 0.42506 250.474 13.8936 0.11270 0.001 248.339 24019 22.895 0.505	1							
24001 26.169 0.22480 249.471 13.9793 0.11569 0.001 248.381 24003 26.150 0.28453 249.787 13.9716 0.11494 0.001 248.388 24005 26.132 0.35127 250.110 13.9637 0.11432 0.001 248.367 24007 26.119 0.42504 250.494 13.9544 0.11377 0.001 248.372 24009 26.115 0.50581 250.924 13.9442 0.11383 0.000 248.381 24011 22.901 0.22482 249.433 13.9186 0.11440 0.001 248.344 24013 22.898 0.28457 249.745 13.9111 0.11382 0.001 248.342 24015 22.900 0.35132 250.081 13.9031 0.11308 0.001 248.334 24017 22.898 0.42506 250.474 13.8936 0.11270 0.001 248.336 24019 22.895 0.50583 250.895								
24003 26.150 0.28453 249.787 13.9716 0.11494 0.001 248.388 24005 26.132 0.35127 250.110 13.9637 0.11432 0.001 248.367 24007 26.119 0.42504 250.494 13.9544 0.11377 0.001 248.372 24009 26.115 0.50581 250.924 13.9442 0.11383 0.000 248.381 24011 22.901 0.22482 249.433 13.9186 0.11440 0.001 248.344 24013 22.898 0.28457 249.745 13.9111 0.11382 0.001 248.342 24015 22.900 0.35132 250.081 13.9031 0.11308 0.001 248.334 24017 22.898 0.42506 250.474 13.8936 0.11270 0.001 248.339 24019 22.895 0.50583 250.895 13.8835 0.11246 0.000 248.336 24021 20.725 0.22481 249.389				249.471	13.9793	0.11569	0.001	248.381
24005 26.132 0.35127 250.110 13.9637 0.11432 0.001 248.367 24007 26.119 0.42504 250.494 13.9544 0.11377 0.001 248.372 24009 26.115 0.50581 250.924 13.9442 0.11383 0.000 248.381 24011 22.901 0.22482 249.433 13.9186 0.11440 0.001 248.344 24013 22.898 0.28457 249.745 13.9111 0.11382 0.001 248.342 24015 22.900 0.35132 250.081 13.9031 0.11308 0.001 248.334 24017 22.898 0.42506 250.474 13.8936 0.11270 0.001 248.339 24019 22.895 0.50583 250.895 13.8835 0.11246 0.000 248.336 24021 20.725 0.22481 249.389 13.8773 0.11338 0.001 248.302 24023 20.728 0.35128 250.055								
24007 26.119 0.42504 250.494 13.9544 0.11377 0.001 248.372 24009 26.115 0.50581 250.924 13.9442 0.11383 0.000 248.381 24011 22.901 0.22482 249.433 13.9186 0.11440 0.001 248.344 24013 22.898 0.28457 249.745 13.9111 0.11382 0.001 248.342 24015 22.900 0.35132 250.081 13.9031 0.11308 0.001 248.334 24017 22.898 0.42506 250.474 13.8936 0.11270 0.001 248.339 24019 22.895 0.50583 250.895 13.8835 0.11246 0.000 248.336 24021 20.725 0.22481 249.389 13.8773 0.11338 0.001 248.302 24023 20.728 0.28455 249.713 13.8695 0.11267 0.001 248.302 24025 20.728 0.35128 250.055								
24009 26.115 0.50581 250.924 13.9442 0.11383 0.000 248.381 24011 22.901 0.22482 249.433 13.9186 0.11440 0.001 248.344 24013 22.898 0.28457 249.745 13.9111 0.11382 0.001 248.342 24015 22.900 0.35132 250.081 13.9031 0.11308 0.001 248.334 24017 22.898 0.42506 250.474 13.8936 0.11270 0.001 248.339 24019 22.895 0.50583 250.895 13.8835 0.11246 0.000 248.336 24021 20.725 0.22481 249.389 13.8773 0.11338 0.001 248.302 24023 20.728 0.28455 249.713 13.8695 0.11267 0.001 248.312 24025 20.728 0.35128 250.055 13.8612 0.11223 0.001 248.306 24027 20.731 0.42503 250.443	i							
24011 22.901 0.22482 249.433 13.9186 0.11440 0.001 248.344 24013 22.898 0.28457 249.745 13.9111 0.11382 0.001 248.342 24015 22.900 0.35132 250.081 13.9031 0.11308 0.001 248.334 24017 22.898 0.42506 250.474 13.8936 0.11270 0.001 248.339 24019 22.895 0.50583 250.895 13.8835 0.11246 0.000 248.336 24021 20.725 0.22481 249.389 13.8773 0.11338 0.001 248.302 24023 20.728 0.28455 249.713 13.8695 0.11267 0.001 248.312 24025 20.728 0.35128 250.055 13.8612 0.11223 0.001 248.306 24027 20.731 0.42503 250.443 13.8518 0.11169 0.001 248.306 24039 20.732 0.50580 250.865 13.8415 0.11158 0.000 248.285 24033 18.736								
24015 22.900 0.35132 250.081 13.9031 0.11308 0.001 248.334 24017 22.898 0.42506 250.474 13.8936 0.11270 0.001 248.339 24019 22.895 0.50583 250.895 13.8835 0.11246 0.000 248.336 24021 20.725 0.22481 249.389 13.8773 0.11338 0.001 248.302 24023 20.728 0.28455 249.713 13.8695 0.11267 0.001 248.312 24025 20.728 0.35128 250.055 13.8612 0.11223 0.001 248.306 24027 20.731 0.42503 250.443 13.8518 0.11169 0.001 248.306 24029 20.732 0.50580 250.865 13.8415 0.11158 0.000 248.303 24031 18.735 0.22480 249.367 13.8380 0.11253 0.001 248.285 24033 18.736 0.28456 249.682	İ							
24015 22.900 0.35132 250.081 13.9031 0.11308 0.001 248.334 24017 22.898 0.42506 250.474 13.8936 0.11270 0.001 248.339 24019 22.895 0.50583 250.895 13.8835 0.11246 0.000 248.336 24021 20.725 0.22481 249.389 13.8773 0.11338 0.001 248.302 24023 20.728 0.28455 249.713 13.8695 0.11267 0.001 248.312 24025 20.728 0.35128 250.055 13.8612 0.11223 0.001 248.306 24027 20.731 0.42503 250.443 13.8518 0.11169 0.001 248.306 24029 20.732 0.50580 250.865 13.8415 0.11158 0.000 248.303 24031 18.735 0.22480 249.367 13.8380 0.11253 0.001 248.285 24033 18.736 0.28456 249.682	24013	22.898	0.28457	249.745	13.9111	0.11382	0.001	248.342
24017 22.898 0.42506 250.474 13.8936 0.11270 0.001 248.339 24019 22.895 0.50583 250.895 13.8835 0.11246 0.000 248.336 24021 20.725 0.22481 249.389 13.8773 0.11338 0.001 248.302 24023 20.728 0.28455 249.713 13.8695 0.11267 0.001 248.312 24025 20.728 0.35128 250.055 13.8612 0.11223 0.001 248.306 24027 20.731 0.42503 250.443 13.8518 0.11169 0.001 248.306 24029 20.732 0.50580 250.865 13.8415 0.11158 0.000 248.303 24031 18.735 0.22480 249.367 13.8380 0.11253 0.001 248.285 24033 18.736 0.28456 249.682 13.8303 0.11168 0.001 248.285 24035 18.738 0.35128 250.037 13.8133 0.11113 0.001 248.286 24039 18.738	24015	22.900		250.081		0.11308	0.001	248.334
24021 20.725 0.22481 249.389 13.8773 0.11338 0.001 248.302 24023 20.728 0.28455 249.713 13.8695 0.11267 0.001 248.312 24025 20.728 0.35128 250.055 13.8612 0.11223 0.001 248.306 24027 20.731 0.42503 250.443 13.8518 0.11169 0.001 248.306 24029 20.732 0.50580 250.865 13.8415 0.11158 0.000 248.303 24031 18.735 0.22480 249.367 13.8380 0.11253 0.001 248.285 24033 18.736 0.28456 249.682 13.8303 0.11168 0.001 248.285 24035 18.738 0.35128 250.037 13.8216 0.11152 0.001 248.287 24037 18.738 0.42507 250.374 13.8133 0.11113 0.001 248.286 24039 18.738 0.50588 250.781 13.8032 0.11067 0.000 248.281 24043 16.732	24017	22.898	0.42506	250.474	13.8936	0.11270	0.001	248.339
24023 20.728 0.28455 249.713 13.8695 0.11267 0.001 248.312 24025 20.728 0.35128 250.055 13.8612 0.11223 0.001 248.306 24027 20.731 0.42503 250.443 13.8518 0.11169 0.001 248.306 24029 20.732 0.50580 250.865 13.8415 0.11158 0.000 248.303 24031 18.735 0.22480 249.367 13.8380 0.11253 0.001 248.285 24033 18.736 0.28456 249.682 13.8303 0.11168 0.001 248.285 24035 18.738 0.35128 250.037 13.8216 0.11152 0.001 248.287 24037 18.738 0.42507 250.374 13.8133 0.11113 0.001 248.286 24039 18.738 0.50588 250.781 13.8032 0.11067 0.000 248.281 24043 16.732 0.28448 249.718 13.7882 0.11096 0.001 248.256	24019	22.895	0.50583	250.895	13.8835	0.11246	0.000	248.336
24025 20.728 0.35128 250.055 13.8612 0.11223 0.001 248.306 24027 20.731 0.42503 250.443 13.8518 0.11169 0.001 248.306 24029 20.732 0.50580 250.865 13.8415 0.11158 0.000 248.303 24031 18.735 0.22480 249.367 13.8380 0.11253 0.001 248.285 24033 18.736 0.28456 249.682 13.8303 0.11168 0.001 248.285 24035 18.738 0.35128 250.037 13.8216 0.11152 0.001 248.287 24037 18.738 0.42507 250.374 13.8133 0.11113 0.001 248.286 24039 18.738 0.50588 250.781 13.8032 0.11067 0.000 248.281 24043 16.732 0.28448 249.718 13.7882 0.11096 0.001 248.256	24021	20.725	0.22481	249.389	13.8773	0.11338	0.001	248.302
24027 20.731 0.42503 250.443 13.8518 0.11169 0.001 248.306 24029 20.732 0.50580 250.865 13.8415 0.11158 0.000 248.303 24031 18.735 0.22480 249.367 13.8380 0.11253 0.001 248.285 24033 18.736 0.28456 249.682 13.8303 0.11168 0.001 248.285 24035 18.738 0.35128 250.037 13.8216 0.11152 0.001 248.287 24037 18.738 0.42507 250.374 13.8133 0.11113 0.001 248.286 24039 18.738 0.50588 250.781 13.8032 0.11067 0.000 248.281 24043 16.732 0.28448 249.718 13.7882 0.11096 0.001 248.256	24023	20.728	0.28455	249.713	13.8695	0.11267	0.001	248.312
24029 20.732 0.50580 250.865 13.8415 0.11158 0.000 248.303 24031 18.735 0.22480 249.367 13.8380 0.11253 0.001 248.285 24033 18.736 0.28456 249.682 13.8303 0.11168 0.001 248.285 24035 18.738 0.35128 250.037 13.8216 0.11152 0.001 248.287 24037 18.738 0.42507 250.374 13.8133 0.11113 0.001 248.286 24039 18.738 0.50588 250.781 13.8032 0.11067 0.000 248.281 24043 16.732 0.28448 249.718 13.7882 0.11096 0.001 248.256	24025	20.728	0.35128	250.055	13.8612	0.11223	0.001	248.306
24029 20.732 0.50580 250.865 13.8415 0.11158 0.000 248.303 24031 18.735 0.22480 249.367 13.8380 0.11253 0.001 248.285 24033 18.736 0.28456 249.682 13.8303 0.11168 0.001 248.285 24035 18.738 0.35128 250.037 13.8216 0.11152 0.001 248.287 24037 18.738 0.42507 250.374 13.8133 0.11113 0.001 248.286 24039 18.738 0.50588 250.781 13.8032 0.11067 0.000 248.281 24043 16.732 0.28448 249.718 13.7882 0.11096 0.001 248.256	24027	20.731	0.42503	250.443		0.11169	0.001	248.306
24033 18.736 0.28456 249.682 13.8303 0.11168 0.001 248.285 24035 18.738 0.35128 250.037 13.8216 0.11152 0.001 248.287 24037 18.738 0.42507 250.374 13.8133 0.11113 0.001 248.286 24039 18.738 0.50588 250.781 13.8032 0.11067 0.000 248.281 24043 16.732 0.28448 249.718 13.7882 0.11096 0.001 248.256	24029	20.732	0.50580	250.865			0.000	248.303
24033 18.736 0.28456 249.682 13.8303 0.11168 0.001 248.285 24035 18.738 0.35128 250.037 13.8216 0.11152 0.001 248.287 24037 18.738 0.42507 250.374 13.8133 0.11113 0.001 248.286 24039 18.738 0.50588 250.781 13.8032 0.11067 0.000 248.281 24043 16.732 0.28448 249.718 13.7882 0.11096 0.001 248.256	24031	18.735	0.22480	249.367	13.8380	0.11253	0.001	248.285
24035 18.738 0.35128 250.037 13.8216 0.11152 0.001 248.287 24037 18.738 0.42507 250.374 13.8133 0.11113 0.001 248.286 24039 18.738 0.50588 250.781 13.8032 0.11067 0.000 248.281 24043 16.732 0.28448 249.718 13.7882 0.11096 0.001 248.256	24033	18.736	0.28456	249.682	13.8303	0.11168	0.001	248.285
24039 18.738 0.50588 250.781 13.8032 0.11067 0.000 248.281 24043 16.732 0.28448 249.718 13.7882 0.11096 0.001 248.256	24035	18.738	0.35128		13.8216	0.11152	0.001	248.287
24043 16.732 0.28448 249.718 13.7882 0.11096 0.001 248.256	24037	18.738	0.42507	250.374	13.8133	0.11113	0.001	248.286
	24039	18.738	0.50588	250.781	13.8032	0.11067	0.000	248.281
24045 16.730 0.35120 250.080 13.7791 0.11056 0.001 248.265	24043	16.732	0.28448	249.718	13.7882	0.11096	0.001	248.256
	24045	16.730	0.35120	250.080	13.7791	0.11056	0.001	248.265

Table 6. Thermal conductivity of R134a in the compressed liquid phase from 210 to 290 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
24047	16.731	0.42494	250.477	13.7691	0.11034	0.001	248.264
24049	16.728	0.50571	250.894	13.7586	0.10990	0.000	248.253
24051	13.801	0.22475	249.370	13.7347	0.11034	0.002	248.225
24053	13.794	0.28449	249.704	13.7260	0.10951	0.001	248.235
24055	13.790	0.35121	250.057	13.7168	0.10941	0.001	248.229
24057	13.780	0.42494	250.456	13.7064	0.10910	0.001	248.232
24059	13.781	0.50570	250.891	13.6952	0.10866	0.000	248.232
24061	11.710	0.22475	249.346	13.6893	0.10911	0.001	248.199
24063	11.706	0.28450	249.675	13.6806	0.10849	0.001	248.204
.24065	11.705	0.35122	250.045	13.6710	0.10835	0.001	248.211
24067	11.704	0.42495	250.445	13.6605	0.10814	0.001	248.212
24069	11.697	0.50569	250.877	13.6491	0.10778	0.000	248.205
24071	8.924	0.22476	249.331	13.6262	0.10747	0.001	248.183
24073	8.915	0.28451	249.647	13.6175	0.10721	0.001	248.172
24075	8.909	0.35123	250.029	13.6072	0.10683	0.001	248.187
24077	8.903	0.42497	250.423	13.5965	0.10680	0.001	248.178
24079	8.901	0.50572	250.869	13.5845	0.10670	0.000	248.181
24081	6.076	0.22476	249.299	13.5591	0.10697	0.001	248.151
24083	6.078	0.28451	249.628	13.5501	0.10646	0.001	248.149
24085	6.077	0.35123	250.001	13.5398	0.10583	0.001	248.153
24089	6.078	0.50571	250.861	13.5162	0.10524	0.000	248.155
24091	3.859	0.22455	249.296	13.5040	0.10579	0.001	248.106
24093	3.860	0.28423	249.618	13.4950	0.10550	0.001	248.099
24095	3.862	0.35089	249.996	13.4845	0.10468	0.001	248.102
24097	3.869	0.42456	250.408	13.4730	0.10436	0.001	248.101
24099	3.873	0.50523	250.863	13.4603	0.10401	0.000	248.107
24101	2.454	0.22453	249.259	13.4690	0.10499	0.001	248.071
24103	2.457	0.28421	249.601	13.4593	0.10434	0.001	248.079
24105	2.460	0.35087	249.977	13.4487	0.10365	0.001	248.082
24107	2.466	0.42454	250.396	13.4368	0.10356	0.001	248.084
24109	2.466	0.50522	250.844	13.4240	0.10329	0.000	248.080
24111	0.623	0.22453	249.242	13.4210	0.10410	0.001	248.055
24113	0.623	0.28421	249.574	13.4114	0.10332	0.001	248.051
24115	0.623	0.35086	249.961	13.4001	0.10273	0.001	248.061
24117	0.623	0.42452	250.380	13.3878	0.10272	0.001	248.062
24119	0.628	0.50521	250.817	13.3752	0.10235	0.000	248.041
	Temperatur					0.00-	
25001	24.425	0.18807	271.144	13.4293	0.10677	0.002	270.163
25003	24.423	0.24566	271.454	13.4218	0.10640	0.001	270.154
25005	24.418	0.31087	271.822	13.4128	0.10610	0.001	270.159
25007	24.413	0.38373	272.222	13.4030	0.10567	0.001	270.157
25009	24.407	0.46423	272.674	13.3920	0.10549	0.001	270.162
25011	21.845	0.18808	271.102	13.3707	0.10552	0.002	270.129

Table 6. Thermal conductivity of R134a in the compressed liquid phase from 210 to 290 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
25013	21.843	0.24567	271.425	13.3627	0.10511	0.001	270.127
25015	21.844	0.31088	271.779	13.3540	0.10474	0.001	270.118
25017	21.840	0.38373	272.194	13.3437	0.10428	0.001	270.124
25019	21.838	0.46423	272.629	13.3329	0.10428	0.000	270.109
25021	19.168	0.18807	271.177	13.3044	0.10385	0.002	270.166
25023	19.166	0.24566	271.493	13.2964	0.10342	0.001	270.156
25025	19.169	0.31086	271.865	13.2871	0.10338	0.001	270.158
25027	19.165	0.38372	272.274	13.2767	0.10325	0.001	270.154
25029	19.169	0.46420	272.735	13.2651	0.10278	0.000	270.159
25031	16.611	0.18808	271.120	13.2417	0.10257	0.002	270.113
25033	16.618	0.24566	271.457	13.2331	0.10218	0.001	270.124
25035	16.618	0.31086	271.830	13.2235	0.10210	0.001	270.121
25037	16.622	0.38369	272.250	13.2127	0.10200	0.001	270.129
25039	16.624	0.46417	272.705	13.2010	0.10156	0.000	270.123
25041	14.521	0.18807	271.072	13.1883	0.10172	0.002	270.075
25043	14.518	0.24564	271.409	13.1793	0.10136	0.001	270.081
25045	14.509	0.31083	271.784	13.1692	0.10098	0.001	270.078
25047	14.451	0.38370	272.211	13.1563	0.10048	0.001	270.081
25049	14.469	0.46421	272.669	13.1447	0.10029	0.000	270.077
25051	14.177	0.18818	271.102	13.1783	0.10192	0.002	270.082
25053	14.174	0.24577	271.451	13.1690	0.10153	0.001	270.097
25055	14.167	0.31099	271.830	13.1587	0.10085	0.001	270.107
25057	14.167	0.38388	272.243	13.1478	0.10063	0.001	270.092
25059	14.173	0.46440	272.712	13.1355	0.10039	0.000	270.096
25061	11.868	0.18817	271.062	13.1162	0.10059	0.002	270.049
25063	11.874	0.24577	271.416	13.1067	0.10016	0.001	270.065
25065	11.880	0.31099	271.783	13.0969	0.09950	0.001	270.052
25067	11.886	0.38387	272.206	13.0855	0.09949	0.002	270.051
25069	11.895	0.46440	272.682	13.0728	0.09912	0.000	270.056
25071	9.632	0.18815	271.030	13.0530	0.09906	0.002	270.023
25073	9.635	0.24576	271.367	13.0437	0.09872	0.001	270.021
25075	9.635	0.31097	271.771	13.0324	0.09842	0.001	270.036
25077	9.637	0.38384	272.182	13.0210	0.09834	0.001	270.017
25079	9.633	0.46434	272.656	13.0076	0.09791	0.000	270.019
25081	7.449	0.18813	270.999	12.9885	0.09791	0.002	269.996
25083	7.449	0.24574	271.341	12.9787	0.09748	0.001	269.992
25085	7.452	0.31097	271.725	12.9677	0.09711	0.001	269.987
25087	7.454	0.38385	272.158	12.9553	0.09714	0.001	269.989
25089	7.459	0.46436	272.642	12.9415	0.09678	0.000	269.992
25091	5.203	0.18814	270.949	12.9192	0.09662	0.002	269.954
25093	5.204	0.24575	271.295	12.9090	0.09611	0.001	269.946
25095 25097	5.202	0.31097	271.679	12.8975	0.09598	0.001	269.940
23097	5.197	0.38386	272.123	12.8842	0.09579	0.001	269.944

Table 6. Thermal conductivity of R134a in the compressed liquid phase from 210 to 290 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T	<u> </u>	\	STAT	T
point	MPa	$W \cdot m^{-1}$	$T_{exp} \ { m K}$	$ ho_{calc} \ \mathrm{mol} \cdot \mathrm{L}^{-1}$	$\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1}$	SIAI	$egin{array}{c} T_{cell} \ \mathrm{K} \end{array}$
25099	5.200	0.46437	272.597	12.8702	0.09550	0.000	269.932
25101	3.271	0.18814	270.798	12.8598	0.09547	0.002	269.838
25103	3.272	0.24574	271.145	12.8493	0.09509	0.001	269.834
25105	3.273	0.31097	271.541	12.8373	0.09483	0.001	269.835
25111	1.796	0.13815	270.639	12.8139	0.09540	0.003	269.805
25113	1.799	0.18810	270.871	12.8068	0.09420	0.002	269.805
25115	1.798	0.24563	271.226	12.7957	0.09400	0.001	269.805
25117	1.797	0.31084	271.627	12.7831	0.09382	0.001	269.805
25119	1.795	0.38369	272.079	12.7688	0.09362	0.002	269.812
25121	0.622	0.13818	270.525	12.7756	0.09482	0.002	269.776
25123	0.624	0.18809	270.845	12.7655	0.09359	0.002	269.781
25125	0.622	0.24564	271.191	12.7544	0.09335	0.001	269.773
25127	0.622	0.31084	271.602	12.7414	0.09311	0.001	269.778
25129	0.623	0.38368	272.058	12.7268	0.09294	0.001	269.787
25131	0.623	0.13817	270.499	12.7765	0.09498	0.003	269.758
25133	0.623	0.18809	270.804	12.7668	0.09354	0.002	269.753
25135	0.623	0.24565	271.159	12.7555	0.09340	0.001	269.753
25137	0.623	0.31085	271.558	12.7428	0.09313	0.001	269.750
25139	0.623	0.38369	272.014	12.7282	0.09294	0.001	269.756
Nominal	Temperatur	re = 290 K					
26001	25.651	0.14876	290.748	12.9844	0.10096	0.002	289.952
26003	25.651	0.20247	291.058	12.9768	0.10020	0.002	289.945
26005	25.651	0.26438	291.434	12.9676	0.09978	0.001	289.961
26007	25.649	0.33451	291.839	12.9577	0.09961	0.001	289.956
26009	25.647	0.41283	292.289	12.9467	0.09935	0.000	289.949
26012	22.351	0.14874	290.685	12.8963	0.09939	0.002	289.883
26014	22.351	0.20243	290.998	12.8884	0.09840	0.001	289.876
26016	22.350	0.26433	291.363	12.8791	0.09795	0.001	289.875
26018	22.351	0.33444	291.779	12.8687	0.09755	0.001	289.875
26020	22.351	0.41277	292.242	12.8570	0.09759	0.000	289.870
26022	19.063	0.14873	290.624	12.8029	0.09751	0.002	289.833
26024	19.070	0.20243	290.940	12.7948	0.09674	0.001	289.818
26026	19.066	0.26434	291.312	12.7850	0.09597	0.001	289.820
26028	19.068	0.33437	291.801	12.7723	0.09572	0.001	289.815
26030	19.068	0.41271	292.245	12.7606	0.09584	0.000	289.818
26032	16.104	0.14871	290.599	12.7125	0.09612	0.002	289.773
26034	16.100	0.20240	290.920	12.7037	0.09513	0.001	289.765
26036	16.098	0.26430	291.291	12.6936	0.09449	0.001	289.760
26038	16.094	0.33441	291.717	12.6819	0.09399	0.001	289.758
26040	16.093	0.41273	292.194	12.6690	0.09403	0.000	289.756
26042	14.510	0.14872	290.570	12.6618	0.09562	0.002	289.725
26044	14.508	0.20239	290.885	12.6530	0.09429	0.001	289.711
26046	14.507	0.26426	291.265	12.6425	0.09304	0.002	289.710

Table 6. Thermal conductivity of R134a in the compressed liquid phase from 210 to 290 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
26048	14.507	0.33437	291.706	12.6303	0.09316	0.001	289.719
26050	14.506	0.41266	292.181	12.6170	0.09311	0.000	289.713
26052	12.393	0.14867	290.521	12.5917	0.09385	0.002	289.660
26054	12.391	0.20236	290.871	12.5817	0.09316	0.001	289.676
26056	12.388	0.26424	291.235	12.5712	0.09220	0.001	289.655
26058	12.386	0.33433	291.682	12.5584	0.09209	0.001	289.662
26060	12.385	0.41261	292.162	12.5446	0.09190	0.000	289.657
26062	10.300	0.14867	290.448	12.5194	0.09268	0.002	289.600
26064	10.298	0.20235	290.786	12.5094	0.09163	0.001	289.602
26066	10.300	0.26423	291.181	12.4978	0.09116	0.001	289.612
26068	10.300	0.33431	291.629	12.4846	0.09093	0.001	289.615
26070	10.300	0.41259	292.114	12.4703	0.09070	0.000	289.605
26072	7.572	0.14867	290.401	12.4172	0.09080	0.002	289.562
26074	7.572	0.20234	290.758	12.4062	0.09004	0.001	289.552
26076	7.570	0.26421	291.155	12.3938	0.08924	0.001	289.558
26078	7.574	0.33429	291.592	12.3805	0.08918	0.001	289.546
26080	7.575	0.41249	292.132	12.3638	0.08930	0.000	289.554
26082	5.402	0.14866	290.376	12.3292	0.08921	0.002	289.501
26084	5.407	0.20232	290.726	12.3182	0.08841	0.001	289.498
26086	5.407	0.26417	291.120	12.3056	0.08741	0.001	289.493
26088	5.409	0.33420	291.571	12.2911	0.08769	0.001	289.491
26092	3.305	0.10325	289.989	12.2501	0.08874	0.003	289.436
26094	3.304	0.14867	290.299	12.2397	0.08756	0.002	289.439
26096	3.305	0.20229	290.674	12.2271	0.08802	0.003	289.448
26098	3.302	0.26411	291.080	12.2133	0.08614	0.001	289.434
26100	3.301	0.33415	291.552	12.1974	0.08631	0.001	289.439
26104	2.435	0.14864	290.289	12.1998	0.08707	0.002	289.416
26106	2.436	0.20227	290.627	12.1883	0.08607	0.001	289.396
26108	2.441	0.26412	291.036	12.1745	0.08577	0.001	289.396
26110	2.440	0.33416	291.509	12.1581	0.08561	0.001	289.408
26112	0.652	0.14860	290.281	12.1130	0.08594	0.002	289.362
26114	0.653	0.20224	290.635	12.1004	0.08464	0.001	289.357
26116	0.653	0.26408	291.056	12.0852	0.08456	0.001	289.367
26118	0.652	0.33410	291.519	12.0685	0.08442	0.001	289.360
26120	0.646	0.41235	292.023	12.0500	0.08459	0.000	289.344
26122	0.638	0.14861	290.240	12.1138	0.08606	0.002	289.333
26124	0.640	0.20226	290.595	12.1012	0.08491	0.001	289.329
26126	0.642	0.26410	290.999	12.0868	0.08455	0.001	289.322
26128	0.643	0.33414	291.472	12.0697	0.08446	0.001	289.327
26130	0.644	0.41236	291.986	12.0512	0.08464	0.000	289.320

Table 7. Thermal conductivity of R134a in the vapor phase from 240 to 340 K obtained by use of the transient hot-wire technique with bare platinum hot wires.

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
Nominal	Temperatur	e = 240 K					·
27151	0.026	0.01354	241.210	0.0129	0.00821	0.007	239.942
27153	0.025	0.01639	241.499	0.0126	0.00810	0.005	239.925
27155	0.025	0.01950	241.852	0.0126	0.00819	0.004	239.940
27157	0.025	0.02289	242.213	0.0124	0.00821	0.003	239.936
27159	0.025	0.02654	242.600	0.0124	0.00821	0.003	239.935
27163	0.034	0.01638	241.437	0.0171	0.00837	0.005	239.883
27165	0.034	0.01950	241.752	0.0171	0.00843	0.005	239.872
27167	0.034	0.02288	242.092	0.0172	0.00850	0.004	239.864
27169	0.034	0.02654	242.463	0.0172	0.00852	0.004	239.861
Nominal '	Temperatur	e = 250 K					
27221	0.031	0.01416	251.337	0.0149	0.00882	0.007	250.114
27223	0.030	0.01714	251.619	0.0147	0.00900	0.005	250.105
27225	0.030	0.02039	251.962	0.0146	0.00899	0.005	250.118
27227	0.030	0.02393	252.302	0.0144	0.00901	0.004	250.113
27229	0.030	0.02775	252.657	0.0142	0.00902	0.003	250.096
27231	0.040	0.01415	251.285	0.0197	0.00899	0.006	250.085
27233	0.041	0.01712	251.570	0.0197	0.00927	0.006	250.081
27235	0.041	0.02038	251.871	0.0197	0.00922	0.005	250.068
27237	0.041	0.02391	252.206	0.0197	0.00925	0.004	250.060
27239	0.041	0.02773	252.568	0.0197	0.00933	0.004	250.065
27241	0.055	0.01415	251.177	0.0269	0.00928	0.008	250.036
27243	0.055	0.01712	251.442	0.0270	0.00924	0.007	250.027
27245	0.055	0.02038	251.744	0.0270	0.00931	0.005	250.018
27247	0.055	0.02391	252.081	0.0270	0.00933	0.005	250.031
27251	0.070	0.01414	251.097	0.0343	0.00925	0.008	249.981
27253	0.070	0.01712	251.388	0.0344	0.00923	0.006	250.003
27255	0.070	0.02037	251.680	0.0344	0.00927	0.006	249.997
27257	0.070	0.02390	251.981	0.0344	0.00932	0.005	249.977
27259	0.070	0.02772	252.315	0.0344	0.00942	0.005	249.971
27261	0.077	0.01414	251.066	0.0381	0.00918	0.008	249.949
27263	0.078	0.01711	251.346	0.0383	0.00926	0.006	249.952
27265	0.078	0.02037	251.615	0.0384	0.00926	0.006	249.930
27267	0.078	0.02390	251.941	0.0383	0.00913	0.006	249.938
27269	0.078	0.02772	252.276	0.0382	0.00931	0.005	249.932
27273	0.085	0.01712	251.269	0.0423	0.00907	0.006	249.912
27275	0.085	0.02037	251.555	0.0423	0.00895	0.005	249.908
27277	0.085	0.02390	251.860	0.0421	0.00906	0.006	249.898
27279	0.085	0.02772	252.189	0.0421	0.00911	0.005	249.894
27281	0.095	0.01414	250.925	0.0471	0.00835	0.008	249.876
27283	0.094	0.01712	251.194	0.0469	0.00850	0.008	249.881
27285	0.094	0.02037	251.481	0.0469	0.00838	0.007	249.882
27287	0.094	0.02390	251.790	0.0467	0.00861	0.007	249.885

Table 7. Thermal conductivity of R134a in the vapor phase from 240 to 340 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
27289	0.094	0.02772	252.096	0.0467	0.00867	0.007	249.855
27301	0.047	0.01415	251.169	0.0227	0.00935	0.007	249.991
27303	0.046	0.01712	251.461	0.0225	0.00920	0.006	249.994
27305	0.046	0.02037	251.759	0.0224	0.00921	0.005	249.986
27307	0.046	0.02391	252.094	0.0223	0.00931	0.004	249.981
27309	0.046	0.02773	252.451	0.0222	0.00938	0.004	249.981
27311	0.086	0.01415	251.034	0.0429	0.00905	0.008	249.938
27313	0.086	0.01712	251.287	0.0427	0.00912	0.007	249.924
27315	0.086	0.02037	251.601	0.0425	0.00894	0.007	249.948
27317	0.086	0.02390	251.902	0.0424	0.00912	0.006	249.931
27319	0.086	0.02772	252.241	0.0423	0.00916	0.005	249.937
Nominal '	Temperatur	e = 260 K					
27351	0.031	0.01475	261.270	0.0144	0.00942	0.007	260.049
27353	0.031	0.01785	261.542	0.0145	0.00947	0.005	260.034
27355	0.031	0.02124	261.870	0.0145	0.00954	0.004	260.048
27357	0.031	0.02493	262.205	0.0145	0.00957	0.003	260.041
27359	0.031	0.02891	262.578	0.0145	0.00958	0.003	260.052
27363	0.080	0.01785	261.356	0.0379	0.01009	0.007	260.006
27365	0.080	0.02124	261.620	0.0377	0.01015	0.006	259.982
27367	0.080	0.02492	261.965	0.0376	0.01022	0.005	260.015
27369	0.079	0.02890	262.272	0.0374	0.01019	0.004	259.992
27371	0.102	0.01474	261.041	0.0489	0.00997	0.007	259.983
27373	0.102	0.01782	261.295	0.0488	0.01001	0.006	259.977
27375	0.101	0.02123	261.576	0.0483	0.01005	0.005	259.967
27377	0.100	0.02492	261.855	0.0476	0.01016	0.005	259.948
27379	0.101	0.02890	262.188	0.0478	0.01019	0.004	259.959
27383	0.115	0.01785	261.244	0.0550	0.01001	0.006	259.923
27385	0.114	0.02124	261.535	0.0547	0.00998	0.005	259.935
27387	0.114	0.02492	261.804	0.0545	0.01011	0.005	259.907
27389	0.114	0.02890	262.137	0.0544	0.01014	0.004	259.914
27391	0.128	0.01475	260.914	0.0617	0.00991	0.007	259.889
27393	0.128	0.01784	261.155	0.0615	0.00986	0.006	259.879
27395	0.127	0.02123	261.430	0.0612	0.00990	0.006	259.880
27397	0.127	0.02491	261.704	0.0610	0.01001	0.005	259.858
27399	0.126	0.02889	262.037	0.0606	0.01006	0.004	259.871
27403	0.144	0.01784	261.130	0.0696	0.00960	0.006	259.842
27405	0.143	0.02123	261.381	0.0694	0.00964	0.006	259.824
27407	0.143	0.02491	261.691	0.0692	0.00973	0.005	259.843
27409	0.143	0.02888	261.985	0.0690	0.00979	0.005	259.824
27421	0.069	0.01474	260.860	0.0326	0.01013	0.008	259.756
27423	0.068	0.01784	261.148	0.0320	0.01023	0.006	259.774
27425	0.067	0.02122	261.413	0.0313	0.01003	0.005	259.745
27427	0.065	0.02490	261.729	0.0306	0.01016	0.004	259.734

Table 7. Thermal conductivity of R134a in the vapor phase from 240 to 340 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	${ m W\cdot m^{-1}}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
27429	0.064	0.02888	262.086	0.0299	0.01019	0.004	259.743
27431	0.049	0.01473	260.933	0.0229	0.00997	0.007	259.739
27433	0.048	0.01782	261.197	0.0225	0.00996	0.006	259.722
27435	0.047	0.02121	261.522	0.0219	0.00988	0.005	259.733
27437	0.046	0.02489	261.830	0.0217	0.00997	0.004	259.710
27439	0.046	0.02883	262.186	0.0214	0.01002	0.004	259.714
Nominal '	Temperature	e = 270 K					
27451	0.030	0.01534	271.121	0.0135	0.01003	0.006	269.927
27453	0.030	0.01855	271.393	0.0133	0.00996	0.005	269.912
27455	0.030	0.02205	271.700	0.0132	0.00997	0.004	269.912
27457	0.030	0.02584	272.019	0.0132	0.01001	0.003	269.899
27459	0.028	0.03004	272.400	0.0123	0.00977	0.002	269.912
27461	0.054	0.01533	271.039	0.0243	0.01067	0.007	269.884
27463	0.053	0.01854	271.292	0.0240	0.01074	0.005	269.868
27465	0.053	0.02206	271.573	0.0238	0.01073	0.005	269.855
27467	0.053	0.02589	271.909	0.0237	0.01080	0.004	269.872
27469	0.053	0.03002	272.255	0.0236	0.01086	0.003	269.878
27471	0.075	0.01533	270.935	0.0342	0.01051	0.007	269.848
27473	0.075	0.01855	271.169	0.0339	0.01084	0.005	269.820
27475	0.075	0.02207	271.459	0.0337	0.01092	0.005	269.825
27477	0.074	0.02589	271.753	0.0336	0.01095	0.004	269.811
27479	0.074	0.03002	272.083	0.0335	0.01100	0.004	269.813
27481	0.099	0.01533	270.852	0.0454	0.01061	0.007	269.766
27483	0.099	0.01854	271.115	0.0452	0.01085	0.005	269.771
27485	0.099	0.02206	271.386	0.0451	0.01093	0.005	269.765
27487	0.099	0.02589	271.698	0.0450	0.01099	0.004	269.776
27489	0.099	0.03002	271.994	0.0449	0.01104	0.004	269.753
27491	0.123	0.01533	270.762	0.0567	0.01059	0.007	269.724
27493	0.122	0.01854	271.014	0.0562	0.01092	0.006	269.723
27495	0.121	0.02207	271.278	0.0558	0.01092	0.005	269.714
27497	0.121	0.02589	271.570	0.0556	0.01097	0.004	269.716
27499	0.121	0.03002	271.880	0.0555	0.01101	0.004	269.710
27501	0.027	0.01533	271.352	0.0119	0.00988	0.006	270.100
27503	0.025	0.01856	271.643	0.0111	0.00976	0.005	270.090
27505	0.023	0.02208	271.973	0.0104	0.00964	0.004	270.093
27507	0.022	0.02591	272.321	0.0097	0.00947	0.004	270.086
27509	0.021	0.03004	272.679	0.0093	0.00938	0.003	270.068
27511	0.142	0.01535	271.012	0.0657	0.01100	0.007	270.033
27513	0.141	0.01857	271.262	0.0653	0.01082	0.006	270.027
27515	0.140	0.02209	271.509	0.0649	0.01091	0.005	270.013
27517	0.140	0.02592	271.821	0.0645	0.01100	0.004	270.034
27519	0.139	0.03006	272.106	0.0642	0.01103	0.004	270.011
27521	0.167	0.01535	270.880	0.0778	0.01094	0.007	269.958

Table 7. Thermal conductivity of R134a in the vapor phase from 240 to 340 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
27523	0.166	0.01857	271.127	0.0774	0.01081	0.006	269.959
27525	0.165	0.02210	271.418	0.0770	0.01089	0.005	269.979
27527	0.165	0.02592	271.683	0.0768	0.01097	0.004	269.962
27529	0.165	0.03006	271.966	0.0766	0.01100	0.004	269.945
27531	0.195	0.01534	270.849	0.0919	0.01087	0.007	269.905
27533	0.194	0.01856	271.106	0.0914	0.01075	0.006	269.925
27535	0.194	0.02208	271.333	0.0911	0.01082	0.005	269.893
27537	0.193	0.02591	271.612	0.0909	0.01087	0.004	269.897
27539	0.193	0.03004	271.911	0.0906	0.01093	0.004	269.898
27541	0.221	0.01534	270.749	0.1054	0.01045	0.008	269.865
27543	0.221	0.01856	270.974	0.1052	0.01051	0.006	269.862
27545	0.221	0.02208	271.224	0.1050	0.01050	0.005	269.859
27547	0.221	0.02591	271.495	0.1048	0.01060	0.005	269.860
27549	0.221	0.03004	271.784	0.1046	0.01063	0.005	269.857
Nominal '	Temperature	e = 290 K					
27563	0.023	0.02002	291.669	0.0094	0.01221	0.008	290.168
27565	0.023	0.02382	291.961	0.0094	0.01205	0.007	290.150
27567	0.023	0.02794	292.305	0.0094	0.01226	0.006	290.153
27569	0.023	0.03240	292.666	0.0094	0.01229	0.006	290.155
27573	0.039	0.02002	291.545	0.0164	0.01252	0.007	290.125
27575	0.039	0.02382	291.852	0.0164	0.01259	0.006	290.135
27577	0.039	0.02794	292.175	0.0164	0.01262	0.005	290.139
27579	0.039	0.03240	292.523	0.0162	0.01266	0.005	290.141
27581	0.066	0.01654	291.192	0.0275	0.01251	0.008	290.116
27583	0.066	0.02002	291.449	0.0275	0.01265	0.007	290.118
27585	0.066	0.02382	291.755	0.0275	0.01265	0.006	290.130
27587	0.066	0.02794	292.040	0.0275	0.01272	0.005	290.112
27589	0.066	0.03240	292.360	0.0274	0.01279	0.005	290.099
27591	0.143	0.01655	291.070	0.0611	0.01268	0.008	290.097
27593	0.143	0.02002	291.303	0.0611	0.01265	0.006	290.089
27595	0.143	0.02382	291.581	0.0610	0.01260	0.005	290.099
27597	0.143	0.02794	291.879	0.0609	0.01266	0.004	290.116
27599	0.143	0.03240	292.172	0.0609	0.01274	0.004	290.104
27601	0.220	0.01655	290.997	0.0955	0.01272	0.008	290.086
27603	0.220	0.02002	291.231	0.0955	0.01271	0.006	290.087
27605	0.220	0.02382	291.475	0.0954	0.01262	0.005	290.086
27607	0.220	0.02794	291.745	0.0953	0.01267	0.004	290.084
27609	0.220	0.03240	292.038	0.0952	0.01272	0.004	290.087
27611	0.280	0.01654	290.981	0.1238	0.01277	0.008	290.089
27613	0.280	0.02002	291.186	0.1237	0.01269	0.006	290.065
27615	0.280	0.02381	291.448	0.1235	0.01261	0.005	290.085
27617	0.280	0.02794	291.681	0.1234	0.01268	0.004	290.062
27619	0.280	0.03240	291.969	0.1233	0.01271	0.004	290.065

Table 7. Thermal conductivity of R134a in the vapor phase from 240 to 340 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	ĸ	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$\mathrm{W}\cdot\mathrm{m}^{-1'}\cdot\mathrm{K}^{-1}$		K
27621	0.346	0.01654	290.920	0.1558	0.01266	0.008	290.058
27623	0.346	0.02002	291.146	0.1557	0.01271	0.006	290.067
27625	0.346	0.02381	291.377	0.1555	0.01266	0.005	290.068
27627	0.346	0.02794	291.628	0.1553	0.01267	0.004	290.067
27629	0.346	0.03240	291.908	0.1551	0.01269	0.004	290.070
27631	0.423	0.01654	290.871	0.1945	0.01257	0.008	290.060
27633	0.423	0.02002	291.078	0.1945	0.01254	0.007	290.054
27635	0.423	0.02381	291.289	0.1943	0.01257	0.005	290.042
27637	0.423	0.02794	291.570	0.1941	0.01253	0.004	290.077
27639	0.423	0.03239	291.809	0.1937	0.01262	0.004	290.052
27641	0.470	0.01654	290.829	0.2195	0.01216	0.008	290.045
27643	0.470	0.02002	291.048	0.2193	0.01215	0.006	290.053
27645	0.470	0.02381	291.263	0.2190	0.01223	0.006	290.054
27647	0.470	0.02794	291.490	0.2187	0.01217	0.005	290.042
27649	0.470	0.03240	291.771	0.2184	0.01223	0.004	290.064
Nominal '	Temperature	e = 300 K					
27651	0.074	0.01714	301.103	0.0298	0.01352	0.008	300.058
27653	0.074	0.02073	301.369	0.0299	0.01365	0.007	300.070
27655	0.074	0.02466	301.658	0.0299	0.01361	0.006	300.083
27657	0.074	0.02893	301.932	0.0299	0.01365	0.005	300.056
27659	0.074	0.03355	302.252	0.0299	0.01369	0.005	300.056
27661	0.144	0.01714	300.968	0.0591	0.01359	0.008	300.027
27663	0.144	0.02073	301.215	0.0590	0.01351	0.006	300.030
27665	0.144	0.02467	301.475	0.0590	0.01354	0.005	300.031
27667	0.144	0.02894	301.750	0.0589	0.01353	0.004	300.027
27669	0.144	0.03355	302.051	0.0589	0.01361	0.004	300.027
27671	0.212	0.01714	300.876	0.0884	0.01353	0.008	300.000
27673	0.212	0.02073	301.097	0.0882	0.01348	0.006	299.985
27675	0.212	0.02467	301.350	0.0882	0.01349	0.005	299.986
27677	0.212	0.02894	301.602	0.0881	0.01352	0.004	299.976
27679	0.212	0.03355	301.919	0.0880	0.01358	0.004	300.003
27681	0.289	0.01713	300.820	0.1226	0.01349	0.008	299.948
27683	0.289	0.02072	301.061	0.1225	0.01345	0.006	299.961
27685	0.289	0.02465	301.286	0.1225	0.01345	0.005	299.954
27687	0.289	0.02892	301.537	0.1224	0.01348	0.004	299.946
27689	0.289	0.03353	301.808	0.1223	0.01357	0.004	299.944
27691	0.348	0.01712	300.713	0.1498	0.01346	0.007	299.858
27693	0.348	0.02071	300.921	0.1497	0.01341	0.006	299.855
27695	0.348	0.02464	301.156	0.1495	0.01349	0.005	299.851
27697	0.348	0.02891	301.401	0.1494	0.01348	0.004	299.851
27699	0.348	0.03352	301.665	0.1492	0.01356	0.004	299.847
27701	0.417	0.01712	300.634	0.1830	0.01355	0.008	299.825
27703	0.418	0.02071	300.826	0.1828	0.01334	0.007	299.810

Table 7. Thermal conductivity of R134a in the vapor phase from 240 to 340 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$	51711	K
27705	0.417	0.02464	301.046	0.1826	0.01349	0.005	299.807
27707	0.417	0.02891	301.282	0.1823	0.01346	0.004	299.796
27709	0.417	0.03352	301.538	0.1821	0.01357	0.003	299.793
27711	0.490	0.01712	300.553	0.2186	0.01360	0.008	299.766
27713	0.489	0.02072	300.768	0.2183	0.01338	0.006	299.773
27715	0.489	0.02464	300.979	0.2181	0.01351	0.005	299.771
27717	0.489	0.02891	301.224	0.2178	0.01353	0.004	299.772
27719	0.489	0.03352	301.478	0.2175	0.01358	0.003	299.774
27721	0.566	0.01712	300.530	0.2578	0.01354	0.008	299.736
27723	0.566	0.02071	300.760	0.2575	0.01336	0.006	299.758
27725	0.566	0.02464	300.941	0.2573	0.01351	0.005	299.733
27727	0.565	0.02890	301.182	0.2569	0.01348	0.004	299.739
27729	0.565	0.03351	301.419	0.2565	0.01359	0.004	299.731
27731	0.611	0.01712	300.470	0.2821	0.01341	0.007	299.705
27733	0.610	0.02071	300.670	0.2814	0.01325	0.006	299.714
27735	0.609	0.02464	300.870	0.2807	0.01337	0.005	299.700
27737	0.609	0.02891	301.101	0.2801	0.01336	0.004	299.704
27739	0.608	0.03352	301.356	0.2794	0.01347	0.004	299.716
Nominal '	Temperature	e = 311 K					
27741	0.076	0.01772	311.077	0.0296	0.01442	0.008	310.071
27743	0.076	0.02144	311.318	0.0296	0.01445	0.006	310.061
27745	0.076	0.02550	311.593	0.0296	0.01455	0.005	310.063
27747	0.075	0.02992	311.887	0.0295	0.01460	0.005	310.065
27749	0.075	0.03469	312.201	0.0294	0.01465	0.005	310.064
27751	0.185	0.01772	310.957	0.0739	0.01434	0.008	310.037
27753	0.185	0.02144	311.171	0.0739	0.01444	0.006	310.019
27755	0.185	0.02550	311.426	0.0738	0.01442	0.005	310.033
27757	0.185	0.02992	311.694	0.0737	0.01448	0.004	310.025
27759	0.185	0.03469	311.970	0.0737	0.01451	0.004	310.016
27761	0.282	0.01772	310.850	0.1151	0.01430	0.007	309.963
27763	0.282	0.02144	311.076	0.1150	0.01439	0.006	309.972
27765	0.282	0.02550	311.319	0.1148	0.01443	0.005	309.981
27767	0.282	0.02992	311.572	0.1147	0.01441	0.004	309.981
27769	0.282	0.03469	311.825	0.1145	0.01446	0.004	309.957
27771	0.382	0.01772	310.778	0.1589	0.01422	0.007	309.960
27773	0.382	0.02143	310.983	0.1589	0.01433	0.006	309.948
27775	0.382	0.02550	311.183	0.1587	0.01446	0.005	309.927
27777	0.382	0.02991	311.440	0.1586	0.01443	0.004	309.930
27779	0.382	0.03468	311.679	0.1584	0.01446	0.003	309.915
27781	0.491	0.01772	310.684	0.2090	0.01435	0.008	309.896
27783 27785	0.491 0.491	0.02143	310.902	0.2088	0.01429	0.005	309.914
27787	0.491	0.02550 0.02991	311.102	0.2086 0.2084	0.01442 0.01442	0.005	309.897 309.894
21181	0.491	0.02991	311.335	0.2084	0.01442	0.004	309.894

Table 7. Thermal conductivity of R134a in the vapor phase from 240 to 340 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
27789	0.491	0.03468	311.596	0.2081	0.01452	0.004	309.901
27791	0.600	0.01771	310.626	0.2622	0.01450	0.007	309.865
27793	0.600	0.02143	310.791	0.2620	0.01434	0.005	309.845
27795	0.601	0.02549	311.029	0.2618	0.01450	0.005	309.868
27797	0.601	0.02990	311.237	0.2617	0.01455	0.003	309.844
27799	0.601	0.03468	311.465	0.2615	0.01460	0.003	309.838
27801	0.660	0.01771	310.487	0.2927	0.01453	0.008	309.770
27803	0.658	0.02142	310.692	0.2912	0.01455	0.006	309.781
27805	0.656	0.02548	310.879	0.2903	0.01454	0.005	309.763
27807	0.656	0.02990	311.082	0.2896	0.01460	0.004	309.749
27809	0.655	0.03467	311.310	0.2890	0.01466	0.003	309.746
27811	0.655	0.01770	310.754	0.2896	0.01446	0.007	309.951
27813	0.654	0.02142	310.833	0.2890	0.01451	0.005	309.906
27815	0.655	0.02548	310.974	0.2893	0.01457	0.004	309.868
27817	0.655	0.02991	311.071	0.2893	0.01466	0.004	309.767
27819	0.655	0.03468	311.225	0.2892	0.01466	0.003	309.719
27821	0.791	0.01770	310.656	0.3625	0.01469	0.007	309.938
27823	0.790	0.02142	310.859	0.3614	0.01454	0.006	309.949
27825	0.788	0.02549	311.032	0.3605	0.01463	0.005	309.924
27827	0.787	0.02990	311.233	0.3593	0.01465	0.004	309.914
27829	0.786	0.03467	311.451	0.3581	0.01464	0.003	309.905
Nominal '	Temperature	e = 320 K					
27831	0.084	0.01830	321.022	0.0320	0.01580	0.008	320.0434
27833	0.084	0.02214	321.251	0.0320	0.01570	0.007	320.0310
27835	0.084	0.02634	321.525	0.0320	0.01565	0.006	320.0438
27837	0.084	0.03090	321.781	0.0319	0.01564	0.005	320.0140
27839	0.084	0.03583	322.107	0.0319	0.01563	0.004	320.0320
27841	0.181	0.01831	320.860	0.0700	0.01552	0.008	319.9484
27843	0.181	0.02214	321.093	0.0699	0.01548	0.006	319.9504
27845	0.181	0.02634	321.326	0.0699	0.01539	0.005	319.9383
27847	0.182	0.03090	321.568	0.0699	0.01541	0.004	319.9197
27849	0.181	0.03583	321.860	0.0698	0.01543	0.004	319.9303
27851	0.283	0.01830	320.728	0.1113	0.01545	0.007	319.8892
27853	0.283	0.02214	320.937	0.1111	0.01534	0.006	319.8818
27855	0.283	0.02634	321.175	0.1110	0.01533	0.005	319.8761
27857	0.283	0.03090	321.409	0.1109	0.01535	0.004	319.8523
27859	0.283	0.03582	321.696	0.1108	0.01535	0.004	319.8717
27861	0.404	0.01830	320.643	0.1621	0.01540	0.007	319.8246
27863	0.404	0.02214	320.842	0.1619	0.01517	0.006	319.8308
27865	0.404	0.02634	321.075	0.1617	0.01533	0.005	319.8295
27867	0.404	0.03090	321.309	0.1615	0.01528	0.004	319.8311
27869	0.404	0.03582	321.524	0.1614	0.01531	0.003	319.7904
27871	0.489	0.01830	320.542	0.1993	0.01550	0.008	319.7611

Table 7. Thermal conductivity of R134a in the vapor phase from 240 to 340 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
27873	0.489	0.02213	320.758	0.1991	0.01512	0.006	319.7833
27875	0.489	0.02633	320.966	0.1989	0.01531	0.005	319.7694
27877	0.489	0.03089	321.165	0.1988	0.01528	0.004	319.7376
27879	0.489	0.03582	321.415	0.1986	0.01535	0.003	319.7342
27881	0.603	0.01832	320.845	0.2509	0.01556	0.008	320.1096
27883	0.603	0.02216	321.028	0.2507	0.01547	0.006	320.0884
27885	0.603	0.02636	321.272	0.2505	0.01545	0.005	320.0943
27887	0.603	0.03092	321.500	0.2501	0.01541	0.004	320.0965
27889	0.603	0.03585	321.705	0.2500	0.01543	0.003	320.0630
27891	0.749	0.01832	320.690	0.3219	0.01562	0.008	320.0142
27893	0.749	0.02216	320.873	0.3217	0.01554	0.006	320.0136
27895	0.749	0.02636	321.049	0.3214	0.01555	0.005	319.9902
27897	0.749	0.03092	321.257	0.3211	0.01554	0.004	319.9844
27899	0.749	0.03586	321.493	0.3208	0.01555	0.003	319.9880
27901	0.852	0.01831	320.594	0.3752	0.01578	0.007	319.9378
27903	0.852	0.02215	320.766	0.3747	0.01561	0.006	319.9202
27905	0.852	0.02635	320.972	0.3741	0.01565	0.005	319.9381
27907	0.852	0.03091	321.158	0.3737	0.01561	0.004	319.9132
27909	0.852	0.03584	321.366	0.3732	0.01562	0.003	319.8998
27911	0.981	0.01831	320.481	0.4458	0.01579	0.007	319.8585
27913	0.980	0.02214	320.671	0.4450	0.01565	0.006	319.8666
27915	0.980	0.02634	320.817	0.4446	0.01566	0.005	319.8300
27917	0.980	0.03090	321.029	0.4439	0.01580	0.004	319.8420
27919	0.980	0.03583	321.242	0.4434	0.01572	0.003	319.8425
27921	1.118	0.01830	320.436	0.5280	0.01557	0.008	319.7645
27923	1.118	0.02214	320.581	0.5274	0.01562	0.006	319.7450
27925	1.118	0.02633	320.771	0.5265	0.01573	0.006	319.7514
27927	1.118	0.03089	320.941	0.5259	0.01560	0.004	319.7301
27929	1.118	0.03582	321.150	0.5251	0.01562	0.004	319.7380
	Temperature						
27931	0.078	0.01891	331.157	0.0288	0.01690	0.008	330.162
27933	0.078	0.02286	331.375	0.0288	0.01671	0.006	330.152
27935	0.078	0.02720	331.619	0.0287	0.01685	0.005	330.137
27937	0.078	0.03190	331.882	0.0287	0.01687	0.005	330.123
27939	0.078	0.03699	332.181	0.0287	0.01684	0.005	330.125
27941	0.223	0.01890	330.941	0.0838	0.01641	0.008	330.087
27943	0.223	0.02286	331.128	0.0837	0.01641	0.006	330.052
27945	0.223	0.02719	331.352	0.0837	0.01652	0.005	330.045
27947	0.223	0.03190	331.587	0.0836	0.01649	0.004	330.027
27949	0.223	0.03699	331.844	0.0835	0.01651	0.004	330.015
27951	0.349	0.01890	330.764	0.1334	0.01627	0.007	329.957
27953	0.349	0.02286	330.968	0.1334	0.01614	0.006	329.961
27955	0.349	0.02719	331.176	0.1334	0.01638	0.005	329.948

Table 7. Thermal conductivity of R134a in the vapor phase from 240 to 340 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W \cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
27957	0.349	0.03190	331.398	0.1334	0.01634	0.004	329.931
27959	0.349	0.03698	331.659	0.1332	0.01641	0.003	329.933
27961	0.496	0.01889	330.653	0.1944	0.01631	0.007	329.875
27963	0.496	0.02284	330.833	0.1942	0.01612	0.006	329.872
27965	0.496	0.02718	331.047	0.1941	0.01624	0.005	329.871
27967	0.496	0.03188	331.227	0.1940	0.01634	0.004	329.818
27969	0.496	0.03696	331.497	0.1938	0.01635	0.003	329.848
27971	0.641	0.01888	330.516	0.2576	0.01633	0.008	329.786
27973	0.641	0.02284	330.687	0.2575	0.01631	0.006	329.773
27975	0.641	0.02717	330.861	0.2572	0.01645	0.005	329.754
27977	0.642	0.03187	331.088	0.2573	0.01636	0.004	329.753
27979	0.642	0.03695	331.308	0.2573	0.01631	0.003	329.736
27981	0.788	0.01888	330.791	0.3249	0.01653	0.007	330.061
27983	0.788	0.02285	330.995	0.3245	0.01639	0.006	330.072
27985	0.788	0.02718	331.176	0.3242	0.01644	0.004	330.063
27987	0.788	0.03189	331.363	0.3240	0.01643	0.004	330.043
27989	0.788	0.03698	331.589	0.3239	0.01643	0.003	330.038
27991	0.918	0.01890	330.582	0.3885	0.01657	0.008	329.937
27993	0.916	0.02285	330.769	0.3871	0.01646	0.006	329.945
27995	0.915	0.02719	330.936	0.3863	0.01652	0.005	329.922
27997	0.914	0.03190	331.118	0.3858	0.01654	0.003	329.902
27999	0.915	0.03699	331.349	0.3854	0.01653	0.003	329.915
28002	1.049	0.01887	330.412	0.4574	0.01684	0.008	329.744
28004	1.048	0.02283	330.569	0.4560	0.01668	0.006	329.733
28006	1.046	0.02716	330.706	0.4546	0.01675	0.005	329.696
28008	1.044	0.03187	330.924	0.4530	0.01670	0.004	329.707
28010	1.042	0.03695	331.099	0.4516	0.01668	0.003	329.677
28012	1.169	0.01892	331.345	0.5206	0.01710	0.008	330.697
28014	1.167	0.02289	331.513	0.5188	0.01689	0.007	330.698
28016	1.165	0.02724	331.657	0.5173	0.01697	0.005	330.662
28018	1.164	0.03196	331.851	0.5161	0.01695	0.004	330.662
28020	1.164	0.03706	332.029	0.5156	0.01694	0.003	330.638
28022	1.277	0.01891	331.137	0.5851	0.01717	0.009	330.521
28024	1.268	0.02288	331.261	0.5789	0.01657	0.006	330.487
28026	1.261	0.02723	331.457	0.5738	0.01663	0.005	330.499
28028	1.256	0.03195	331.639	0.5701	0.01717	0.004	330.498
28030	1.252	0.03705	331.834	0.5674	0.01709	0.003	330.490
Nominal	Temperature	e = 340 K					
28034	0.144	0.02215	341.135	0.0516	0.01739	0.007	340.100
28036	0.144	0.02635	341.331	0.0515	0.01766	0.006	340.067
28038	0.144	0.03092	341.561	0.0515	0.01774	0.005	340.067
28040	0.144	0.03585	341.785	0.0515	0.01776	0.004	340.030
28044	0.303	0.02214	340.899	0.1113	0.01736	0.007	339.937

Table 7. Thermal conductivity of R134a in the vapor phase from 240 to 340 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
28046	0.303	0.02635	341.088	0.1112	0.01741	0.005	339.918
28048	0.303	0.03092	341.290	0.1111	0.01746	0.005	339.899
28050	0.303	0.03585	341.503	0.1110	0.01744	0.004	339.870
28052	0.430	0.01831	340.849	0.1604	0.01726	0.009	340.063
28054	0.430	0.02214	341.003	0.1603	0.01686	0.007	340.029
28056	0.430	0.02635	341.188	0.1602	0.01740	0.005	340.019
28058	0.430	0.03091	341.400	0.1601	0.01732	0.004	340.010
28060	0.430	0.03584	341.618	0.1600	0.01729	0.004	339.996
28062	0.590	0.01831	340.542	0.2257	0.01725	0.009	339.878
28064	0.590	0.02215	340.729	0.2255	0.01724	0.007	339.890
28066	0.590	0.02635	340.883	0.2253	0.01717	0.006	339.861
28068	0.590	0.03092	341.079	0.2252	0.01727	0.005	339.845
28070	0.590	0.03585	341.303	0.2250	0.01721	0.004	339.847
28072	0.698	0.01830	340.886	0.2709	0.01740	0.009	340.129
28074	0.696	0.02214	341.048	0.2702	0.01709	0.007	340.116
28076	0.695	0.02635	341.203	0.2692	0.01733	0.006	340.084
28078	0.693	0.03091	341.396	0.2682	0.01721	0.004	340.080
28080	0.691	0.03585	341.568	0.2675	0.01721	0.004	340.039
28082	1.166	0.01832	340.824	0.4912	0.01775	0.009	340.186
28084	1.171	0.02216	340.968	0.4936	0.01781	0.007	340.177
28086	1.175	0.02636	341.120	0.4950	0.01763	0.006	340.155
28088	1.177	0.03093	341.296	0.4958	0.01771	0.005	340.149
28090	1.179	0.03586	341.484	0.4964	0.01756	0.004	340.144
28092	0.921	0.01832	340.862	0.3710	0.01751	0.010	340.180
28094	0.918	0.02216	341.039	0.3693	0.01753	0.007	340.187
28096	0.915	0.02636	341.214	0.3677	0.01744	0.006	340.180
28098	0.913	0.03092	341.381	0.3662	0.01744	0.004	340.160
28100	0.910	0.03585	341.561	0.3649	0.01740	0.004	340.133
28106	1.372	0.02636	341.124	0.6022	0.01776	0.006	340.197
28108	1.363	0.03092	341.310	0.5963	0.01789	0.004	340.200
28110	1.358	0.03585	341.483	0.5927	0.01798	0.004	340.186
28114	1.527	0.02217	340.917	0.6954	0.01840	0.007	340.214
28116	1.527	0.02637	341.037	0.6946	0.01821	0.005	340.182
28118	1.527	0.03094	341.220	0.6939	0.01826	0.004	340.200
28120	1.528	0.03587	341.370	0.6932	0.01828	0.004	340.167
28122	1.743	0.01833	340.712	0.8419	0.01904	0.009	340.199
28124	1.743	0.02216	340.878	0.8402	0.01877	0.008	340.228
28126	1.743	0.02637	340.987	0.8393	0.01884	0.006	340.188
28128	1.743	0.03094	341.132	0.8381	0.01886	0.004	340.179
28130	1.742	0.03587	341.293	0.8367	0.01883	0.004	340.173

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires.

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
Nominal	Temperature						
3001	66.793	0.72103	203.937	15.5148	0.14490	0.000	200.842
3002	66.774	0.63355	203.562	15.5225	0.14513	0.000	200.843
3003	66.756	0.55190	203.213	15.5297	0.14531	0.000	200.843
3004	66.742	0.47629	202.884	15.5365	0.14562	0.000	200.842
3005	48.051	0.63311	203.669	15.3215	0.14030	0.000	200.884
3006	48.042	0.55163	203.315	15.3292	0.14057	0.000	200.887
3007	48.035	0.47594	202.979	15.3366	0.14084	0.000	200.887
3008	47.961	0.40590	202.668	15.3427	0.14118	0.000	200.889
3009	27.447	0.63255	203.803	15.0703	0.13437	0.000	200.919
3010	27.445	0.55128	203.428	15.0792	0.13474	0.000	200.917
3011	27.443	0.47571	203.079	15.0874	0.13504	0.000	200.918
3012	27.441	0.40571	202.758	15.0950	0.13549	0.000	200.918
3013	2.263	0.63249	203.937	14.7038	0.12605	0.000	200.879
3014	2.265	0.55125	203.545	14.7143	0.12639	0.000	200.880
3015	2.267	0.47567	203.178	14.7241	0.12689	0.000	200.882
3016	2.267	0.40571	202.834	14.7333	0.12731	0.000	200.881
3017	66.465	0.71885	204.246	15.5050	0.14426	0.000	201.179
3018	66.448	0.63207	203.866	15.5128	0.14447	0.000	201.177
3019	66.430	0.55093	203.519	15.5199	0.14469	0.000	201.176
3020	66.238	0.47545	203.198	15.5248	0.14485	0.000	201.179
3021	47.973	0.63237	204.004	15.3132	0.13981	0.000	201.204
3022	47.970	0.55117	203.647	15.3210	0.14011	0.000	201.206
3023	47.966	0.47562	203.308	15.3285	0.14031	0.000	201.207
3024	47.906	0.40567	203.001	15.3347	0.14058	0.000	201.207
3025	27.514	0.63262	204.113	15.0638	0.13408	0.000	201.212
3026	27.518	0.55137	203.737	15.0728	0.13439	0.000	201.210
3027	27.518	0.47580	203.393	15.0810	0.13466	0.000	201.213
3028	27.457	0.40582	203.064	15.0880	0.13488	0.000	201.213
3029	2.312	0.63289	204.247	14.6963	0.12580	0.000	201.198
3030	2.330	0.55161	203.854	14.7071	0.12610	0.000	201.199
3031	2.352	0.47601	203.481	14.7174	0.12657	0.000	201.199
3032	2.374	0.40597	203.141	14.7268	0.12688	0.000	201.198
	Temperature						
4001	66.738	0.69549	222.658	15.1288	0.13901	0.000	219.576
4002	66.728	0.60631	222.257	15.1368	0.13925	0.000	219.576
4003	66.723	0.52330	221.886	15.1442	0.13980	0.002	219.575
4004	66.630	0.44639	221.539	15.1502	0.13986	0.000	219.576
4005	49.781	0.67362	222.739	14.9277	0.13105	0.000	219.579
4006	49.779	0.59809	222.313	14.9368	0.13485	0.000	219.582
4007	49.782	0.51644	221.939	14.9448	0.13522	0.000	219.583
4008	49.775	0.44056	221.590	14.9521	0.13553	0.000	219.585
4009	32.644	0.68673	222.803	14.6987	0.12929	0.000	219.576

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
4010	32.637	0.59864	222.389	14.7080	0.12953	0.000	219.578
4011	32.624	0.51661	221.998	14.7168	0.12986	0.000	219.579
4012	32.613	0.44066	221.637	14.7249	0.13015	0.000	219.580
4013	15.940	0.59869	222.535	14.4492	0.12362	0.000	219.576
4014	15.940	0.51665	222.133	14.4591	0.12394	0.000	219.576
4015	15.940	0.44062	221.751	14.4686	0.12424	0.000	219.576
4016	15.938	0.37065	221.410	14.4770	0.12481	0.002	219.577
4017	1.316	0.59696	222.574	14.1851	0.11877	0.000	219.544
4018	1.316	0.51186	222.155	14.1965	0.11825	0.000	219.545
4021	1.296	0.60821	222.820	14.1780	0.11699	0.000	219.684
4022	1.293	0.52491	222.386	14.1898	0.11740	0.000	219.684
4023	1.292	0.44777	221.986	14.2007	0.11768	0.000	219.686
4024	1.293	0.37672	221.614	14.2108	0.11811	0.000	219.684
4025	65.888	0.69708	222.801	15.1164	0.13912	0.000	219.691
4026	65.834	0.60768	222.401	15.1239	0.13950	0.000	219.690
4027	65.774	0.52446	222.030	15.1307	0.14000	0.000	219.692
4028	65.711	0.44742	221.683	15.1370	0.14052	0.000	219.692
4029	49.759	0.69717	222.895	14.9241	0.13448	0.000	219.704
4030	49.754	0.60778	222.484	14.9328	0.13483	0.000	219.704
4031	49.746	0.52457	222.098	14.9409	0.13536	0.000	219.704
4032	49.741	0.44748	221.737	14.9486	0.13586	0.000	219.700
4033	32.339	0.69737	223.015	14.6895	0.12895	0.000	219.694
4034	32.333	0.60794	222.585	14.6992	0.12939	0.000	219.697
4035	32.348	0.52466	222.202	14.7082	0.12991	0.000	219.696
4036	32.348	0.44750	221.816	14.7170	0.13035	0.000	219.696
4037	15.799	0.60813	222.687	14.4431	0.12342	0.000	219.693
4038	15.794	0.52483	222.269	14.4533	0.12392	0.000	219.693
4039	15.791	0.44771	221.885	14.4628	0.12437	0.001	219.692
4040	15.786	0.37672	221.530	14.4715	0.12503	0.001	219.692
4041	1.309	0.60838	222.807	14.1786	0.11750	0.000	219.689
4042	1.312	0.52500	222.377	14.1904	0.11801	0.000	219.691
4043	1.310	0.44782	221.975	14.2013	0.11840	0.000	219.691
4044	1.309	0.37680	221.610	14.2112	0.11905	0.001	219.692
	Temperature				0.12211		222.006
5001	68.219	0.65667	242.130	14.7604	0.13311	0.000	239.096
5002	68.214	0.56730	241.671	14.7693	0.13445	0.000	239.075
5003	68.197	0.48373	241.287	14.7766	0.13484	0.001	239.074
5004	68.179	0.40733	240.925	14.7834	0.13557	0.001	239.070
5005	51.427	0.65123	242.210	14.5406	0.12739	0.000	239.069
5006	51.422	0.55793	241.791	14.5492	0.12628	0.000	239.071
5007	51.415	0.48332	241.375	14.5577	0.12947	0.000	239.071
5008	51.412	0.40694	241.008	14.5653	0.13010	0.001	239.071
5009	34.890	0.66852	242.345	14.2921	0.12282	0.000	239.034

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Dun	D	0	T		1	CTAT	T
Run point	P_{cell} MPa	$V \over W \cdot m^{-1}$	$T_{exp} \ { m K}$	$\begin{array}{c} ho_{calc} \ m mol \cdot L^{-1} \end{array}$	$egin{array}{c} \lambda_{exp} \ \mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1} \end{array}$	STAT	$egin{array}{c} T_{cell} \ \mathrm{K} \end{array}$
5010	34.876	0.57714	241.888	14.3020	0.12323	0.000	239.034
5011	34.864	0.49238	241.458	14.3115	0.12364	0.000	239.034
5011	34.847	0.41441	241.069	14.3119	0.12392	0.000	239.033
5013	17.892	0.56215	241.969	14.0040	0.11533	0.001	239.031
5013	17.895	0.48306	241.517	14.0152	0.11702	0.000	239.027
5015	17.899	0.40653	241.119	14.0251	0.11747	0.000	239.022
5016	17.904	0.33659	240.749	14.0343	0.11805	0.001	239.024
5017	1.336	0.55737	242.160	13.6427	0.10782	0.000	239.037
5018	1.336	0.48002	241.688	13.6560	0.10702	0.000	239.038
5019	1.336	0.40512	241.258	13.6682	0.11057	0.000	239.035
5020	1.336	0.33533	240.868	13.6792	0.11104	0.001	239.034
5021	67.838	0.65183	242.094	14.7564	0.13311	0.000	239.108
5022	67.854	0.56306	241.689	14.7645	0.13317	0.000	239.108
5023	67.848	0.48037	241.304	14.7720	0.13336	0.000	239.108
5024	67.858	0.40468	240.956	14.7789	0.13366	0.000	239.107
5025	50.956	0.65332	242.221	14.5338	0.12797	0.000	239.100
5026	50.943	0.56418	241.798	14.5424	0.12796	0.000	239.102
5027	50.931	0.48199	241.402	14.5505	0.12824	0.000	239.103
5028	50.922	0.40593	241.035	14.5580	0.12873	0.000	239.104
5029	34.013	0.65366	242.364	14.2776	0.12209	0.000	239.107
5030	34.006	0.56503	241.928	14.2872	0.12196	0.000	239.108
5031	34.002	0.48280	241.512	14.2965	0.12236	0.000	239.108
5032	33.993	0.40644	241.130	14.3049	0.12269	0.000	239.110
5033	17.134	0.56266	242.035	13.9878	0.11554	0.000	239.105
5034	17.130	0.47964	241.601	13.9984	0.11580	0.000	239.105
5035	17.123	0.40388	241.202	14.0082	0.11602	0.000	239.105
5036	17.116	0.33435	240.837	14.0171	0.11625	0.000	239.106
5037	1.338	0.57579	242.256	13.6400	0.10808	0.000	239.076
5038	1.338	0.49134	241.780	13.6535	0.10846	0.000	239.076
5039	1.343	0.41358	241.348	13.6658	0.10888	0.000	239.076
5040	1.343	0.34243	240.950	13.6771	0.10919	0.000	239.074
Nominal	Temperature	= 263 K					
1001	64.296	0.72460	263.853	14.2889	0.12548	0.000	260.331
1002	64.284	0.62559	263.364	14.2981	0.12589	0.000	260.330
1003	64.278	0.53416	262.918	14.3066	0.12643	0.000	260.329
1004	64.271	0.44976	262.499	14.3146	0.12683	0.001	260.325
1005	50.597	0.72557	263.997	14.0803	0.12075	0.000	260.335
1006	50.594	0.62639	263.493	14.0906	0.12120	0.000	260.336
1007	50.594	0.53453	263.026	14.1002	0.12172	0.000	260.335
1008	50.592	0.44988	262.598	14.1089	0.12210	0.001	260.334
1009	39.120	0.62656	263.592	13.8958	0.11662	0.000	260.334
1010	39.121	0.53465	263.114	13.9062	0.11719	0.000	260.334
1011	39.119	0.44997	262.668	13.9158	0.11776	0.001	260.334

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	${ m W\cdot m^{-1}}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
1012	39.117	0.37265	262.261	13.9246	0.11839	0.001	260.333
1013	25.636	0.62728	263.733	13.6328	0.11099	0.000	260.316
1014	25.636	0.53529	263.226	13.6448	0.11159	0.000	260.312
1015	25.636	0.45053	262.760	13.6559	0.11188	0.001	260.311
1016	25.637	0.37311	262.336	13.6659	0.11251	0.001	260.310
1017	13.648	0.62736	263.856	13.3558	0.10532	0.000	260.307
1018	13.653	0.53533	263.327	13.3698	0.10587	0.000	260.305
1019	13.658	0.45056	262.840	13.3827	0.10636	0.001	260.305
1020	13.660	0.37313	262.397	13.3943	0.10694	0.001	260.305
1021	2.129	0.62745	264.057	13.0266	0.09890	0.000	260.311
1022	2.133	0.53540	263.506	13.0433	0.09942	0.000	260.313
1023	2.133	0.45062	262.997	13.0586	0.10002	0.000	260.316
1024	2.139	0.37318	262.525	13.0729	0.10050	0.001	260.311
1025	65.430	0.72669	264.183	14.2985	0.12493	0.000	260.648
1026	65.425	0.62741	263.692	14.3079	0.12530	0.000	260.647
1027	65.425	0.53539	263.241	14.3165	0.12549	0.000	260.645
1028	65.423	0.45064	262.829	14.3244	0.12572	0.001	260.645
1029	50.641	0.72679	264.310	14.0747	0.11983	0.000	260.648
1030	50.641	0.62742	263.801	14.0850	0.12016	0.000	260.647
1031	50.638	0.53537	263.335	14.0945	0.12045	0.000	260.647
1032	50.637	0.45067	262.906	14.1033	0.12083	0.001	260.646
1033	39.755	0.62778	263.916	13.9000	0.11590	0.000	260.653
1034	39.757	0.53570	263.439	13.9104	0.11629	0.000	260.655
1035	39.760	0.45091	262.995	13.9200	0.11671	0.001	260.654
1036	39.760	0.37337	262.587	13.9289	0.11701	0.001	260.653
1037	25.996	0.62781	264.061	13.6325	0.10987	0.000	260.655
1038	25.994	0.53576	263.554	13.6445	0.11046	0.000	260.653
1039	25.985	0.45090	263.095	13.6552	0.11079	0.000	260.656
1040	25.984	0.37340	262.670	13.6652	0.11113	0.001	260.656
1041	13.596	0.62792	264.211	13.3451	0.10433	0.000	260.652
1042	13.595	0.53581	2 63.683	13.3590	0.10474	0.000	260.654
1043	13.592	0.45101	263.200	13.3716	0.10505	0.000	260.652
1044	13.593	0.37347	262.755	13.3833	0.10545	0.001	260.651
1045	2.115	0.62805	264.413	13.0154	0.09811	0.000	260.678
1046	2.113	0.53588	263.854	13.0322	0.09852	0.000	260.676
1047	2.102	0.45099	263.342	13.0473	0.09887	0.002	260.677
1048	2.102	0.37344	262.878	13.0612	0.09904	0.001	260.678
	Temperature						
2001	67.741	0.67757	283.647	13.9645	0.12087	0.000	280.256
2002	67.741	0.57826	283.147	13.9738	0.12134	0.000	280.258
2003	67.740	0.48681	282.676	13.9826	0.12196	0.001	280.255
2004	67.747	0.40315	282.250	13.9907	0.12263	0.001	280.253
2005	55.600	0.67765	283.794	13.7649	0.11621	0.000	280.256

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
2006	55.598	0.57832	283.269	13.7753	0.11690	0.000	280.255
2007	55.598	0.48681	282.788	13.7848	0.11748	0.001	280.253
2008	55.600	0.40319	282.348	13.7935	0.11821	0.001	280.249
2009	41.705	0.67759	283.914	13.5061	0.11040	0.000	280.246
2010	41.698	0.57830	283.365	13.5177	0.11136	0.000	280.243
2011	41.698	0.48683	282.862	13.5285	0.11199	0.000	280.242
2012	41.698	0.40321	282.404	13.5383	0.11268	0.001	280.240
2013	30.078	0.57829	283.533	13.2654	0.10611	0.000	280.248
2014	30.082	0.48679	283.011	13.2776	0.10678	0.000	280.248
2015	30.082	0.40316	282.536	13.2886	0.10728	0.001	280.249
2016	30.084	0.32740	282.100	13.2988	0.10809	0.001	280.246
2017	18.668	0.57825	283.672	12.9722	0.10040	0.000	280.247
2018	18.668	0.48677	283.124	12.9863	0.10103	0.000	280.243
2019	18.667	0.40316	282.626	12.9992	0.10158	0.001	280.245
2020	18.665	0.32742	282.172	13.0109	0.10228	0.001	280.243
2021	10.049	0.57822	283.824	12.7033	0.09545	0.000	280.257
2022	10.052	0.48681	283.253	12.7199	0.09603	0.001	280.255
2023	10.055	0.40316	282.730	12.7350	0.09673	0.001	280.254
2024	10.042	0.32747	282.257	12.7482	0.09748	0.001	280.252
2025	1.952	0.57821	284.009	12.3899	0.09002	0.000	280.252
2026	1.952	0.48677	283.408	12.4099	0.09072	0.000	280.249
2027	1.956	0.40315	282.857	12.4283	0.09135	0.001	280.247
2028	1.956	0.32746	282.362	12.4446	0.09209	0.001	280.246
2029	66.293	0.67725	283.650	13.9421	0.11932	0.000	280.233
2030	66.300	0.57803	283.137	13.9518	0.11956	0.000	280.230
2031	66.321	0.48661	282.672	13.9609	0.11978	0.000	280.230
2032	66.343	0.40300	282.241	13.9693	0.12004	0.001	280.225
2033	56.149	0.67716	283.703	13.7761	0.11933	0.000	280.288
2034	56.149	0.57791	283.196	13.7861	0.11956	0.000	280.289
2035	56.164	0.48647	282.726	13.7956	0.11979	0.000	280.289
2036	56.174	0.40292	282.299	13.8042	0.12008	0.001	280.287
2037	42.559	0.67706	283.784	13.5258	0.11918	0.000	280.341
2038	42.598	0.57778	283.278	13.5374	0.11945	0.000	280.342
2039	42.638	0.48639	282.806	13.5482	0.11959	0.001	280.339
2040	42.682	0.40284	282.376	13.5582	0.11992	0.001	280.337
2041	54.807	0.67690	283.866	13.7498	0.11505	0.000	280.346
2042	54.804	0.57772	283.344	13.7601	0.11547	0.000	280.347
2043	54.804	0.48632	282.858	13.7698	0.11574	0.000	280.343
2044	54.804	0.40275	282.419	13.7785	0.11590	0.001	280.344
2045	41.707	0.67673	284.034	13.5036	0.10999	0.000	280.360
2046	41.712	0.57753	283.490	13.5153	0.11030	0.000	280.360
2047	41.717	0.48614	282.989	13.5262	0.11051	0.000	280.360
2048	41.717	0.40267	282.528	13.5360	0.11075	0.001	280.358

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
2049	30.043	0.57744	283.621	13.2625	0.10516	0.000	280.360
2050	30.051	0.48610	283.100	13.2748	0.10543	0.000	280.362
2051	30.051	0.40261	282.619	13.2860	0.10557	0.001	280.360
2052	30.054	0.32701	282.183	13.2962	0.10589	0.001	280.354
2053	18.616	0.57739	283.787	12.9677	0.09939	0.000	280.348
2054	18.621	0.48606	283.236	12.9821	0.09971	0.000	280.345
2055	18.621	0.40255	282.738	12.9950	0.09992	0.001	280.347
2056	18.621	0.32692	282.287	13.0067	0.10012	0.001	280.348
2057	10.101	0.57760	283.924	12.7022	0.09403	0.000	280.353
2058	10.097	0.48591	283.352	12.7185	0.09467	0.000	280.352
2059	10.093	0.40247	282.825	12.7336	0.09505	0.000	280.350
2060	10.088	0.32688	282.357	12.7469	0.09533	0.001	280.351
2061	1.692	0.57709	284.084	12.3761	0.08874	0.000	280.344
2062	1.699	0.48583	283.484	12.3965	0.08919	0.000	280.347
2063	1.710	0.40241	282.932	12.4153	0.08967	0.000	280.346
2064	1.719	0.32682	282.436	12.4322	0.08993	0.001	280.342
	Temperature						
6001	69.055	0.72104	303.402	13.6203	0.11589	0.000	299.632
6002	69.040	0.61551	302.837	13.6304	0.11636	0.000	299.629
6003	69.031	0.51824	302.323	13.6397	0.11679	0.000	299.629
6004	69.026	0.42930	301.852	13.6482	0.11713	0.000	299.623
6005	57.032	0.61523	302.944	13.4146	0.11138	0.000	299.615
6006	57.022	0.51807	302.401	13.4250	0.11221	0.000	299.613
6007	57.020	0.42903	301.916	13.4344	0.11247	0.000	299.612
6008	57.015	0.34848	301.471	13.4430	0.11388	0.001	299.608
6009	44.958	0.61489	303.063	13.1675	0.10662	0.000	299.605
6010	44.955	0.51770	302.510	13.1791	0.10690	0.000	299.604
6011	44.950	0.42882	302.002	13.1896	0.10758	0.000	299.604
6012	44.945	0.34833	301.540	13.1992	0.10856	0.001	299.600
6013	33.700	0.61475	303.226	12.8985	0.10147	0.000	299.610
6014	33.693	0.51744	302.641	12.9117	0.10180	0.000	299.605
6015	33.688	0.42858	302.113	12.9237	0.10246	0.000	299.607
6016	33.683	0.34809	301.630	12.9346	0.10334	0.000	299.604
6018	23.732	0.53576	302.891	12.6283	0.09672	0.000	299.586
6018	23.738	0.46264	302.435	12.6400	0.09697	0.000	299.585
6019	23.744	0.39492	302.011 301.623	12.6509	0.09723	0.000 0.000	299.581 299.582
6020	23.754 15.311	0.33251 0.54374		12.6610	0.09800 0.09137	0.000	299.582
6021 6022	15.311	0.34374	303.063 302.578	12.3404 12.3540	0.09137	0.000	299.554
6023	15.308	0.40962	302.378	12.3540	0.09161	0.000	299.558
6024	15.308	0.40093	302.136	12.3004	0.09213	0.000	299.551
6026	9.371	0.33763	301.713	12.3782	0.09239	0.000	299.551
6027	9.371	0.43436	302.449	12.1181	0.08730	0.000	299.557
0027	9.363	0.50654	302.001	12.1320	0.00019	0.000	299.331

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
6028	9.377	0.30803	301.589	12.1452	0.08887	0.001	299.557
6029	5.246	0.50577	303.031	11.9010	0.08440	0.000	299.552
6030	5.243	0.43444	302.529	11.9182	0.08470	0.000	299.550
6031	5.243	0.36859	302.068	11.9340	0.08508	0.000	299.548
6032	5.243	0.30803	301.646	11.9485	0.08585	0.000	299.548
6033	0.751	0.43432	302.624	11.6547	0.08097	0.000	299.550
6034	0.747	0.36851	302.149	11.6732	0.08150	0.000	299.550
6035	0.746	0.30800	301.708	11.6905	0.08210	0.000	299.547
6036	0.746	0.25291	301.316	11.7058	0.08305	0.000	299.548
6037	70.006	0.72959	303.284	13.6384	0.11484	0.000	299.478
6038	70.006	0.62276	302.719	13.6487	0.11501	0.000	299.479
6039	70.006	0.52423	302.197	13.6583	0.11485	0.000	299.476
6040	70.001	0.43420	301.715	13.6670	0.11519	0.000	299.471
6041	56.743	0.62252	302.873	13.4105	0.10992	0.000	299.509
6042	56.741	0.52407	302.330	13.4211	0.11021	0.000	299.507
6043	56.739	0.43409	301.830	13.4308	0.11039	0.000	299.503
6044	56.739	0.35256	301.384	13.4395	0.11056	0.000	299.503
6045	44.305	0.62230	303.035	13.1538	0.10455	0.000	299.516
6046	44.304	0.52398	302.469	13.1657	0.10476	0.000	299.516
6047	44.300	0.43402	301.952	13.1766	0.10494	0.000	299.516
6048	44.300	0.35252	301.486	13.1864	0.10527	0.000	299.513
6049	33.898	0.62239	303.177	12.9047	0.09965	0.000	299.523
6050	33.898	0.52396	302.586	12.9182	0.10006	0.000	299.521
6051	33.898	0.43395	302.044	12.9306	0.10029	0.000	299.518
6052	33.896	0.35229	301.553	12.9418	0.10049	0.000	299.512
6053	24.201	0.54251	302.859	12.6433	0.09481	0.000	299.516
6054	24.198	0.46850	302.393	12.6550	0.09516	0.000	299.510
6055	24.195	0.39987	301.959	12.6658	0.09525	0.000	299.510
6056	24.188	0.33665	301.565	12.6755	0.09562	0.000	299.507
6057	15.698	0.54114	302.984	12.3569	0.09027	0.000	299.527
6058	15.695	0.46718	302.502	12.3704	0.09039	0.000	299.525
6059	15.693	0.39887	302.053	12.3829	0.09054	0.000	299.523
6060	15.692	0.33596	301.639	12.3945	0.09084	0.000	299.521
6061	9.571	0.50215	302.841	12.1146	0.08651	0.000	299.493
6062	9.571	0.43118	302.359	12.1297	0.08637	0.002	299.489
6063	9.571	0.36581	301.919	12.1434	0.08655	0.000	299.488
6064	9.572	0.30578	301.508	12.1562	0.08706	0.000	299.487
6065	5.214	0.50110	302.967	11.9016	0.08320	0.000	299.504
6066	5.218	0.43038	302.474	11.9188	0.08316	0.000	299.504
6067	5.220	0.36510	302.015	11.9347	0.08370	0.000	299.500
6068	5.223	0.30511	301.591	11.9493	0.08363	0.000	299.497
6069	0.832	0.30812	301.655	11.6980	0.08059	0.000	299.490
6070	0.840	0.27987	301.463	11.7060	0.08088	0.000	299.489

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
6071	0.831	0.25294	301.259	11.7134	0.08090	0.000	299.488
6072	0.825	0.22736	301.067	11.7206	0.08104	0.000	299.479
7001	0.608	0.05846	302.792	0.2772	0.01430	0.002	299.654
7002	0.608	0.04652	302.148	0.2782	0.01415	0.002	299.647
7003	0.609	0.03598	301.569	0.2795	0.01414	0.002	299.648
7004	0.610	0.02677	301.057	0.2807	0.01421	0.003	299.644
7005	0.363	0.05748	303.007	0.1552	0.01406	0.002	299.604
7006	0.363	0.04582	302.294	0.1561	0.01371	0.002	299.600
7007	0.363	0.03541	301.673	0.1562	0.01400	0.002	299.599
.7008	0.361	0.02634	301.120	0.1559	0.01403	0.003	299.592
7009	0.253	0.05745	303.140	0.1055	0.01405	0.002	299.563
7010	0.252	0.04576	302.402	0.1055	0.01397	0.002	299.563
7001	0.252	0.03538	301.749	0.1058	0.01385	0.002	299.561
7012	0.251	0.02632	301.170	0.1057	0.01397	0.003	299.559
7013	0.122	0.05742	303.406	0.0496	0.01415	0.002	299.526
7013	0.122	0.04572	302.613	0.0497	0.01404	0.003	299.523
7015	0.122	0.03535	301.903	0.0498	0.01389	0.003	299.523
7016	0.122	0.02631	301.277	0.0500	0.01394	0.004	299.517
Nominal '	Temperature	e = 243 K					
8001	0.047	0.02873	243.886	0.0238	0.00942	0.002	241.064
8002	0.047	0.02490	243.505	0.0239	0.00938	0.002	241.063
8003	0.047	0.02135	243.155	0.0239	0.00936	0.002	241.064
8004	0.047	0.01807	242.819	0.0239	0.00934	0.003	241.059
Nominal '	Temperature	e = 252 K					
9001	0.040	0.03374	253.106	0.0194	0.00992	0.002	249.889
9002	0.040	0.02954	252.697	0.0194	0.00997	0.002	249.882
9003	0.040	0.02563	252.318	0.0195	0.00990	0.002	249.884
9004	0.040	0.02199	251.965	0.0195	0.00996	0.003	249.883
9005	0.084	0.03371	252.862	0.0415	0.01007	0.002	249.859
9006	0.084	0.02954	252.492	0.0416	0.01009	0.003	249.862
9007	0.084	0.02563	252.142	0.0416	0.01004	0.003	249.863
9008	0.084	0.02199	251.805	0.0417	0.01003	0.003	249.861
Nominal '	Temperature	e = 262 K					
10001	0.142	0.03969	262.652	0.0683	0.01088	0.002	259.508
10002	0.142	0.03505	262.291	0.0684	0.01086	0.002	259.512
10003	0.142	0.03070	261.946	0.0685	0.01080	0.002	259.513
10004	0.142	0.02664	261.612	0.0686	0.01085	0.003	259.511
10005	0.068	0.03974	262.921	0.0320	0.01087	0.002	259.497
10006	0.068	0.03509	262.531	0.0321	0.01084	0.002	259.503
10007	0.068	0.03074	262.154	0.0321	0.01081	0.002	259.502
10008	0.068	0.02666	261.800	0.0322	0.01081	0.002	259.500
Nominal 7	Temperature	e = 273 K					
11001	0.247	0.04683	273.193	0.1176	0.01170	0.002	269.881

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	ĸ	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
11002	0.247	0.04166	272.819	0.1178	0.01169	0.002	269.880
11003	0.247	0.03679	272.467	0.1180	0.01170	0.002	269.882
11004	0.247	0.03219	272.138	0.1182	0.01166	0.002	269.883
11005	0.166	0.04681	273.392	0.0767	0.01171	0.002	269.862
11006	0.166	0.04163	273.000	0.0769	0.01172	0.002	269.863
11007	0.166	0.03676	272.623	0.0770	0.01169	0.002	269.859
11008	0.166	0.03218	272.268	0.0771	0.01168	0.002	269.859
11009	0.090	0.04680	273.609	0.0404	0.01178	0.003	269.835
11010	0.090	0.04162	273.191	0.0405	0.01177	0.003	269.837
11011	0.090	0.03674	272.798	0.0406	0.01173	0.003	269.839
11012	0.090	0.03217	272.424	0.0406	0.01166	0.003	269.839
Nominal '	Temperature	e = 282 K					
12001	0.357	0.04872	283.016	0.1673	0.01259	0.002	279.916
12002	0.357	0.04319	282.659	0.1676	0.01259	0.002	279.915
12003	0.358	0.03803	282.323	0.1687	0.01254	0.002	279.915
12004	0.358	0.03317	282.003	0.1690	0.01263	0.002	279.914
12005	0.285	0.04801	283.066	0.1309	0.01257	0.002	279.900
12006	0.285	0.04262	282.705	0.1311	0.01259	0.002	279.901
12007	0.285	0.03753	282.352	0.1313	0.01260	0.003	279.900
12009	0.221	0.04862	283.250	0.0994	0.01253	0.002	279.879
12010	0.221	0.04324	282.878	0.0996	0.01252	0.002	279.879
12011	0.221	0.03818	282.519	0.0997	0.01252	0.002	279.878
12012	0.221	0.03343	282.186	0.0999	0.01250	0.003	279.876
12013	0.133	0.04865	283.420	0.0584	0.01247	0.011	279.840
12014	0.133	0.04326	283.017	0.0585	0.01253	0.002	279.840
12015	0.133	0.03817	282.648	0.0586	0.01251	0.003	279.844
12016	0.133	0.03341	282.290	0.0587	0.01250	0.002	279.843
Nominal 7	Temperature	e = 292 K					
13001	0.498	0.05039	292.756	0.2323	0.01343	0.002	289.851
13002	0.498	0.04483	292.438	0.2327	0.01342	0.002	289.855
13003	0.498	0.03959	292.130	0.2331	0.01336	0.002	289.851
13004	0.498	0.03468	291.832	0.2335	0.01341	0.002	289.853
13005	0.391	0.05097	292.881	0.1767	0.01341	0.002	289.799
13006	0.391	0.04529	292.534	0.1770	0.01340	0.002	289.794
13007	0.391	0.03995	292.206	0.1773	0.01330	0.002	289.793
13008	0.391	0.03495	291.893	0.1775	0.01335	0.002	289.790
13009	0.296	0.05073	292.972	0.1301	0.01321	0.024	289.767
13010	0.296	0.04512	292.609	0.1303	0.01331	0.002	289.764
13011	0.296	0.03982	292.265	0.1305	0.01332	0.003	289.760
13012	0.296	0.03487	291.946	0.1307	0.01327	0.002	289.759
13013	0.147	0.05057	293.191	0.0623	0.01334	0.002	289.668
13014	0.147	0.04498	292.795	0.0624	0.01335	0.002	289.667
13015	0.147	0.03973	292.430	0.0625	0.01322	0.003	289.664

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
13016	0.147	0.03483	292.085	0.0626	0.01332	0.003	289.663
Nominal '	Temperatur	e = 303 K					
16001	0.631	0.07556	303.720	0.2881	0.01384	0.004	299.732
16002	0.631	0.06412	303.111	0.2891	0.01377	0.007	299.734
16003	0.631	0.05358	302.556	0.2900	0.01358	0.006	299.729
16004	0.631	0.04403	302.043	0.2908	0.01348	0.008	299.724
16005	0.621	0.07558	303.760	0.2825	0.01414	0.004	299.716
16006	0.622	0.06414	303.141	0.2841	0.01403	0.005	299.712
16007	0.622	0.05360	302.582	0.2850	0.01397	0.006	299.715
16008	0.623	0.04401	302.066	0.2862	0.01399	0.009	299.717
16009	0.557	0.07537	303.862	0.2492	0.01381	0.004	299.717
-16009	0.572	0.07552	303.849	0.2565	0.01415	0.004	299.725
16010	0.561	0.06405	303.233	0.2520	0.01409	0.005	299.717
16011	0.564	0.05357	302.662	0.2541	0.01405	0.006	299.725
16012	0.567	0.04400	302.130	0.2565	0.01408	0.008	299.720
16013	0.434	0.07558	304.077	0.1878	0.01408	0.004	299.732
16014	0.434	0.06412	303.416	0.1884	0.01403	0.005	299.726
16015	0.434	0.05359	302.806	0.1889	0.01397	0.006	299.720
16016	0.434	0.04403	302.266	0.1894	0.01406	0.008	299.733
16017	0.342	0.07557	304.228	0.1448	0.01408	0.004	299.728
16018	0.342	0.06409	303.554	0.1452	0.01399	0.005	299.730
16019	0.342	0.05359	302.926	0.1456	0.01395	0.006	299.729
16020	0.342	0.04398	302.354	0.1459	0.01392	0.008	299.729
16021	0.227	0.07551	304.447	0.0938	0.01406	0.004	299.725
16022	0.227	0.06406	303.724	0.0940	0.01404	0.005	299.723
16023	0.227	0.05357	303.079	0.0943	0.01400	0.006	299.725
16024	0.227	0.04399	302.479	0.0945	0.01400	0.008	299.724
Nominal 7	Temperature	e = 313 K					
17001	0.849	0.07882	313.638	0.3887	0.01495	0.004	309.935
17002	0.849	0.06681	313.068	0.3901	0.01474	0.005	309.932
17003	0.849	0.05583	312.556	0.3913	0.01453	0.007	309.937
17004	0.849	0.04583	312.079	0.3924	0.01436	0.009	309.935
17005	0.811	0.07843	313.668	0.3673	0.01528	0.004	309.885
17006	0.809	0.06657	313.109	0.3675	0.01520	0.005	309.895
17007	0.808	0.05563	312.561	0.3683	0.01520	0.006	309.876
17008	0.808	0.04569	312.086	0.3689	0.01520	0.008	309.883
17009	0.731	0.07845	313.786	0.3244	0.01521	0.004	309.894
17010	0.731	0.06653	313.177	0.3254	0.01517	0.005	309.878
17011	0.731	0.05562	312.639	0.3264	0.01516	0.006	309.879
17012	0.731	0.04569	312.183	0.3272	0.01514	0.009	309.918
17013	0.657	0.07835	313.892	0.2863	0.01507	0.004	309.906
17014	0.657	0.06648	313.285	0.2869	0.01505	0.005	309.900
17015	0.657	0.05558	312.727	0.2877	0.01503	0.007	309.900

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
17016	0.656	0.04565	312.229	0.2881	0.01507	0.010	309.904
17017	0.582	0.07833	314.012	0.2492	0.01498	0.004	309.918
17018	0.582	0.06645	313.396	0.2499	0.01499	0.005	309.917
17019	0.582	0.05558	312.825	0.2506	0.01492	0.006	309.920
17020	0.582	0.04567	312.311	0.2512	0.01500	0.009	309.926
17021	0.463	0.07895	314.252	0.1927	0.01510	0.004	310.014
17022	0.466	0.06695	313.606	0.1950	0.01520	0.005	310.013
17023	0.470	0.05597	313.016	0.1970	0.01508	0.006	310.018
17024	0.474	0.04597	312.477	0.1993	0.01515	0.009	310.017
17025	0.308	0.07839	314.457	0.1244	0.01501	0.004	309.975
17026	0.308	0.06649	313.762	0.1248	0.01493	0.005	309.964
17027	0.308	0.05562	313.136	0.1251	0.01515	0.026	309.962
17028	0.308	0.04568	312.563	0.1253	0.01497	0.009	309.957
17029	0.201	0.07832	314.552	0.0794	0.01500	0.004	309.875
17030	0.201	0.06643	313.839	0.0796	0.01498	0.005	309.867
17031	0.201	0.05554	313.190	0.0798	0.01491	0.006	309.871
17032	0.201	0.04562	312.599	0.0799	0.01498	0.008	309.869
Nominal	Temperature	e = 323 K					
18001	1.126	0.08163	323.517	0.5217	0.01646	0.004	320.083
18002	1.125	0.06922	323.012	0.5227	0.01651	0.005	320.099
18003	1.124	0.05788	322.530	0.5240	0.01645	0.006	320.095
18004	1.123	0.04754	322.088	0.5252	0.01636	0.009	320.090
18005	0.897	0.08112	323.803	0.3919	0.01618	0.004	320.079
18006	0.897	0.06876	323.237	0.3931	0.01620	0.005	320.076
18007	0.900	0.05755	322.714	0.3960	0.01612	0.007	320.075
18008	0.901	0.04724	322.245	0.3974	0.01607	0.009	320.083
18009	1.066	0.08107	323.622	0.4858	0.01644	0.004	320.092
18010	1.067	0.06875	323.081	0.4879	0.01640	0.005	320.093
18011	1.067	0.05747	322.590	0.4895	0.01638	0.007	320.093
18012	1.067	0.04723	322.136	0.4913	0.01632	0.009	320.084
18013	0.986	0.08103	323.708	0.4404	0.01623	0.004	320.084
18014	0.986	0.06877	323.172	0.4414	0.01627	0.005	320.097
18015	0.986	0.05749	322.660	0.4428	0.01626	0.006	320.091
18016	0.986	0.04720	322.202	0.4440	0.01624	0.009	320.093
18017	0.785	0.08097	323.758	0.3346	0.01598	0.004	319.906
18018	0.784	0.06867	323.168	0.3353	0.01598	0.005	319.899
18019	0.783	0.05742	322.638	0.3358	0.01596	0.007	319.901
18020	0.782	0.04719	322.137	0.3361	0.01591	0.008	319.893
18021	0.702	0.08154	324.150	0.2936	0.01591	0.004	320.167
18022	0.702	0.06917	323.546	0.2944	0.01582	0.005	320.166
18023	0.703	0.05784	322.948	0.2956	0.01603	0.009	320.166
18024	0.703	0.04748	322.450	0.2966	0.01602	0.010	320.163
18025	0.603	0.08102	324.069	0.2473	0.01587	0.004	320.024

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$:		K
18026	0.603	0.06872	323.454	0.2480	0.01584	0.005	320.023
18027	0.603	0.05749	322.892	0.2486	0.01583	0.006	320.018
18028	0.603	0.04723	322.379	0.2492	0.01576	0.008	320.018
18029	0.484	0.08083	324.254	0.1941	0.01576	0.004	320.058
18030	0.484	0.06856	323.616	0.1946	0.01576	0.005	320.054
18031	0.484	0.05729	323.053	0.1950	0.01568	0.007	320.058
18032	0.484	0.04704	322.478	0.1955	0.01568	0.009	320.026
18033	0.367	0.08073	324.330	0.1443	0.01575	0.004	319.980
18034	0.367	0.06849	323.681	0.1446	0.01572	0.005	319.988
18035	0.367	0.05727	323.078	0.1450	0.01567	0.006	319.985
18036	0.368	0.04704	322.528	0.1455	0.01579	0.009	319.985
18037	0.256	0.08063	324.519	0.0988	0.01577	0.004	319.995
18038	0.257	0.06843	323.835	0.0993	0.01575	0.005	319.995
18039	0.257	0.05721	323.206	0.0996	0.01577	0.007	319.991
18040	0.258	0.04699	322.638	0.1000	0.01562	0.009	319.995
	Temperature						
19005	1.439	0.08319	331.937	0.6844	0.01790	0.004	328.655
19006	1.438	0.07060	331.434	0.6867	0.01793	0.006	328.653
19007	1.437	0.05910	330.981	0.6883	0.01792	0.007	328.653
19008	1.437	0.04852	330.571	0.6906	0.01787	0.009	328.664
19009	1.368	0.08314	332.003	0.6378	0.01765	0.004	328.653
19010	1.368	0.07055	331.500	0.6398	0.01774	0.005	328.661
19011	1.367	0.05899	331.025	0.6416	0.01761	0.007	328.650
19012	1.367	0.04849	330.594	0.6437	0.01757	0.009	328.648
19013	1.284	0.08310	332.067	0.5853	0.01740	0.004	328.632
19014	1.283	0.07054	331.553	0.5866	0.01735	0.005	328.632
19015	1.282	0.05905	331.076	0.5881	0.01748	0.007	328.637
19016	1.281	0.04850	330.646	0.5890	0.01733	0.009	328.641
19017	1.211	0.08384	332.726	0.5398	0.01742	0.004	329.180
19018	1.210	0.07115	332.238	0.5411	0.01732	0.005	329.232
19019	1.209	0.05948	331.767	0.5424	0.01716	0.006	329.254
19020	1.209	0.04885	331.007	0.5446	0.01708	0.009	328.950
19021	1.105	0.08383	332.545	0.4815	0.01714	0.004	328.897
19022	1.105	0.07115	331.804	0.4836	0.01714	0.005	328.708
19023	1.105	0.05948	331.630	0.4841	0.01700	0.007	329.044
19024	1.105	0.04885	331.133	0.4855	0.01705	0.009	329.013
19025	1.043	0.08383	332.544	0.4483	0.01704	0.004	328.835
19026	1.042	0.07116	331.724	0.4500	0.01694	0.005	328.582
19027	1.042	0.05949	331.457	0.4507	0.01712	0.007	328.829
19028	1.041	0.04885	331.155	0.4511	0.01696	0.009	329.000
19029	0.946	0.08382	332.697	0.3985	0.01703	0.004	328.907
19030	0.946	0.07111	332.119	0.3997	0.01694	0.005	328.901
19031	0.947	0.05945	331.592	0.4011	0.01691	0.006	328.905

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
19032	0.947	0.04883	331.116	0.4021	0.01687	0.009	328.908
19033	0.835	0.08378	332.799	0.3439	0.01692	0.004	328.904
19034	0.833	0.07109	332.204	0.3442	0.01681	0.005	328.895
19035	0.832	0.05942	331.672	0.3445	0.01676	0.006	328.905
19036	0.830	0.04883	331.175	0.3441	0.01681	0.008	328.901
19037	0.742	0.08376	332.896	0.3003	0.01680	0.004	328.925
19038	0.742	0.07110	332.285	0.3014	0.01681	0.005	328.914
19039	0.742	0.05944	331.716	0.3022	0.01672	0.006	328.899
19040	0.742	0.04884	331.203	0.3029	0.01673	0.008	328.895
19041	0.637	0.08382	332.875	0.2531	0.01678	0.004	328.785
19042	0.637	0.07113	332.254	0.2538	0.01684	0.005	328.785
19043	0.636	0.05947	331.702	0.2538	0.01654	0.006	328.788
19044	0.639	0.04883	331.165	0.2561	0.01666	0.008	328.784
19045	0.499	0.08374	332.911	0.1937	0.01674	0.004	328.668
19046	0.499	0.07107	332.266	0.1942	0.01671	0.005	328.666
19047	0.499	0.05945	331.671	0.1947	0.01671	0.007	328.663
19048	0.499	0.04885	331.128	0.1954	0.01662	0.008	328.655
19049	0.388	0.08365	333.042	0.1480	0.01676	0.004	328.653
19050	0.388	0.07107	332.390	0.1486	0.01684	0.005	328.666
19051	0.388	0.05943	331.791	0.1489	0.01679	0.006	328.674
19052	0.388	0.04883	331.235	0.1492	0.01680	0.009	328.675
19053	0.263	0.08381	333.208	0.0986	0.01688	0.004	328.626
19054	0.264	0.07113	332.494	0.0991	0.01689	0.005	328.606
19055	0.264	0.05947	331.861	0.0993	0.01682	0.007	328.610
19056	0.265	0.04882	331.272	0.0998	0.01679	0.009	328.602
	Temperature						
20001	1.780	0.08646	342.006	0.8588	0.01930	0.004	338.944
20002	1.779	0.07339	341.541	0.8614	0.01933	0.006	338.942
20003	1.778	0.06134	341.114	0.8642	0.01930	0.007	338.945
20004	1.778	0.05038	340.728	0.8673	0.01931	0.010	338.950
20005	1.728	0.08647	342.117	0.8208	0.01908	0.005	338.996
20006	1.728	0.07336	341.630	0.8242	0.01903	0.005	338.985
20007	1.728	0.06132	341.192	0.8273	0.01902	0.007	338.983
20008	1.728	0.05036	340.800	0.8301	0.01891	0.019	338.987
20009	1.658	0.08633	342.167	0.7726	0.01908	0.004	339.020
20010	1.658	0.07329	341.696	0.7755	0.01909	0.005	339.029
20011	1.658	0.06126	341.257	0.7782	0.01910	0.007	339.030
20012	1.658	0.05025	340.859	0.7807	0.01891	0.010	339.030
20013	1.587	0.08600	342.232	0.7258	0.01880	0.004	339.016
20014	1.587	0.07298	341.747	0.7284	0.01870	0.005	339.018
20015	1.586	0.06104	341.302	0.7304	0.01872	0.007	339.020
20016	1.586	0.05014	340.900	0.7326	0.01871	0.010	339.024
20017	1.519	0.08593	342.297	0.6832	0.01857	0.004	339.015

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W \cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$\mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1}$		K
20018	1.519	0.07291	341.804	0.6855	0.01841	0.005	339.019
20019	1.519	0.06098	341.340	0.6878	0.01856	0.007	339.013
20020	1.518	0.05010	340.920	0.6894	0.01862	0.009	339.013
20021	1.432	0.08624	342.355	0.6313	0.01852	0.004	339.002
20022	1.431	0.07325	341.849	0.6330	0.01842	0.005	339.003
20023	1.431	0.06125	341.384	0.6349	0.01850	0.007	339.003
20024	1.431	0.05032	340.955	0.6368	0.01843	0.009	339.001
20025	1.349	0.08640	342.525	0.5836	0.01812	0.004	339.056
20026	1.349	0.07329	342.007	0.5854	0.01814	0.005	339.060
20027	1.349	0.06127	341.524	0.5872	0.01802	0.007	339.063
20028	1.349	0.05032	341.070	0.5888	0.01796	0.009	339.051
20029	1.253	0.08648	342.647	0.5313	0.01793	0.004	339.087
20030	1.251	0.07346	342.086	0.5323	0.01788	0.005	339.062
20031	1.251	0.06139	341.585	0.5338	0.01784	0.007	339.062
20032	1.251	0.05042	341.129	0.5352	0.01788	0.008	339.059
20033	1.173	0.08643	342.685	0.4898	0.01780	0.004	339.061
20034	1.172	0.07336	342.139	0.4909	0.01788	0.005	339.063
20035	1.172	0.06134	341.627	0.4919	0.01775	0.006	339.058
20036	1.171	0.05037	341.166	0.4928	0.01767	0.008	339.055
20037	1.059	0.08557	342.689	0.4333	0.01782	0.004	339.028
20038	1.061	0.07271	342.154	0.4354	0.01778	0.005	339.037
20039	1.062	0.06089	341.647	0.4368	0.01774	0.007	339.038
20040	1.063	0.05005	341.179	0.4382	0.01787	0.009	339.041
20041	0.949	0.08572	342.776	0.3805	0.01771	0.004	339.018
20042	0.948	0.07259	342.219	0.3812	0.01768	0.006	339.025
20043	0.948	0.06084	341.695	0.3821	0.01765	0.007	339.021
20044	0.947	0.05001	341.218	0.3827	0.01768	0.008	339.023
20045	0.828	0.08555	342.854	0.3256	0.01757	0.004	338.994
20046	0.828	0.07267	342.268	0.3261	0.01761	0.005	338.993
20047	0.827	0.06083	341.735	0.3266	0.01762	0.006	338.994
20048	0.827	0.05001	341.244	0.3273	0.01760	0.008	338.992
20049	0.754	0.08450	342.911	0.2927	0.01774	0.004	339.038
20050	0.753	0.07281	342.337	0.2931	0.01783	0.005	339.038
20051	0.752	0.06091	341.798	0.2935	0.01788	0.007	339.033
20052	0.752	0.05016	341.315	0.2941	0.01789	0.008	339.042
20053	0.636	0.08579	343.021	0.2428	0.01789	0.004	339.025
20054	0.636	0.07306	342.441	0.2430	0.01781	0.005	339.038
20055	0.636	0.06118	341.890	0.2436	0.01791	0.007	339.042
20056	0.635	0.04965	341.377	0.2435	0.01774	0.009	339.039
-20053	0.635	0.08552	343.045	0.2419	0.01784	0.004	339.040
-20054	0.634	0.07288	342.444	0.2422	0.01783	0.005	339.034
-20055	0.633	0.06109	341.884	0.2425	0.01785	0.007	339.033
-20056	0.633	0.05021	341.381	0.2430	0.01782	0.009	339.041

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$\mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1}$		K
20058	0.524	0.07149	342.515	0.1972	0.01768	0.005	339.045
20059	0.527	0.06049	341.935	0.1987	0.01787	0.007	339.033
20060	0.530	0.04988	341.435	0.2001	0.01776	0.009	339.033
-20057	0.534	0.08438	343.075	0.2007	0.01802	0.004	339.033
-20058	0.536	0.07186	342.488	0.2019	0.01784	0.005	339.031
-20059	0.539	0.06046	341.966	0.2034	0.01760	0.007	339.038
-20060	0.542	0.05034	341.440	0.2051	0.01783	0.009	339.032
-20061	0.394	0.08074	343.293	0.1449	0.01694	0.005	339.035
-20062	0.394	0.07182	342.628	0.1455	0.01780	0.005	339.028
-20063	0.395	0.06051	342.064	0.1461	0.01778	0.007	339.028
-20064	0.395	0.04990	341.530	0.1463	0.01784	0.009	339.027
20061	0.395	0.08386	343.284	0.1454	0.01757	0.004	339.037
20062	0.395	0.07239	342.654	0.1458	0.01785	0.005	339.040
20063	0.395	0.06070	342.079	0.1460	0.01773	0.006	339.036
20064	0.395	0.05002	341.544	0.1463	0.01781	0.009	339.039
20065	0.275	0.08019	343.556	0.0996	0.01661	0.004	339.027
20067	0.275	0.06022	342.147	0.1001	0.01809	0.007	339.035
-20065	0.275	0.08367	343.424	0.0997	0.01777	0.004	339.025
-20066	0.275	0.07181	342.795	0.0999	0.01807	0.006	339.035
-20067	0.276	0.06036	342.210	0.1003	0.01777	0.007	339.032
-20069	0.741	0.08182	343.058	0.2869	0.01686	0.004	339.129
-20070	0.741	0.07078	342.345	0.2878	0.01767	0.005	339.139
-20071	0.741	0.05915	341.936	0.2885	0.01715	0.007	339.135
-20072	0.741	0.04788	341.464	0.2891	0.01654	0.009	339.131
Nominal 7	Temperature	e = 352 K					
30001	2.398	0.07660	352.206	1.2676	0.02162	0.006	350.011
30002	2.398	0.06555	351.883	1.2731	0.02160	0.008	350.023
30003	2.398	0.05214	351.488	1.2801	0.02145	0.010	350.019
30004	2.398	0.04027	351.158	1.2860	0.02170	0.015	350.028
30005	2.365	0.07659	352.240	1.2341	0.02144	0.006	350.019
30006	2.365	0.06551	351.914	1.2392	0.02138	0.008	350.012
30007	2.365	0.05213	351.533	1.2454	0.02128	0.010	350.029
30008	2.365	0.03752	351.106	1.2525	0.02144	0.016	350.035
30009	2.326	0.07656	352.317	1.1964	0.02122	0.006	350.040
30010	2.326	0.06554	351.978	1.2013	0.02118	0.008	350.038
30011	2.325	0.05214	351.575	1.2067	0.02116	0.011	350.041
30012	2.324	0.03754	351.143	1.2126	0.02123	0.016	350.044
30013	2.274	0.07662	352.362	1.1494	0.02093	0.006	350.045
30014	2.273	0.06554	352.031	1.1532	0.02084	0.007	350.054
30015	2.273	0.05216	351.631	1.1585	0.02085	0.010	350.062
30016	2.273	0.03755	351.170	1.1648	0.02087	0.015	350.051
30017	2.223	0.07662	352.419	1.1050	0.02063	0.006	350.050
30018	2.223	0.06554	352.070	1.1091	0.02065	0.008	350.052

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
30019	2.223	0.05213	351.658	1.1146	0.02060	0.010	350.048
30021	2.163	0.07664	352.468	1.0561	0.02043	0.006	350.046
30022	2.163	0.06554	352.127	1.0597	0.02038	0.007	350.052
30023	2.163	0.05215	351.686	1.0644	0.02038	0.010	350.048
30024	2.163	0.03754	351.228	1.0694	0.02049	0.016	350.056
30025	2.107	0.07662	352.517	1.0121	0.02013	0.006	350.049
30026	2.107	0.06555	352.162	1.0154	0.02016	0.007	350.044
30027	2.107	0.05214	351.731	1.0196	0.02024	0.009	350.049
30028	2.107	0.03754	351.255	1.0243	0.02005	0.016	350.050
30029	2.041	0.07660	352.563	0.9634	0.01995	0.006	350.033
30030	2.041	0.06555	352.204	0.9660	0.01990	0.007	350.043
30031	2.041	0.05215	351.754	0.9699	0.01988	0.010	350.036
30032	2.041	0.03754	351.268	0.9741	0.01972	0.016	350.040
30033	1.977	0.07662	352.617	0.9178	0.01968	0.006	350.040
30035	1.977	0.05216	351.793	0.9237	0.01970	0.010	350.035
30036	1.977	0.03754	351.292	0.9276	0.01973	0.015	350.036
30037	1.914	0.07662	352.695	0.8744	0.01953	0.005	350.066
30038	1.914	0.06553	352.317	0.8770	0.01953	0.006	350.064
30040	1.914	0.03754	351.345	0.8838	0.01947	0.015	350.068
-30039	1.914	0.05214	351.846	0.8803	0.01949	0.009	350.058
30041	1.823	0.07660	352.743	0.8157	0.01931	0.005	350.046
30042	1.822	0.06553	352.353	0.8177	0.01929	0.007	350.049
30043	1.822	0.05212	351.884	0.8205	0.01927	0.009	350.056
30044	1.822	0.03753	351.363	0.8237	0.01929	0.016	350.043
30045	1.764	0.07659	352.786	0.7792	0.01914	0.005	350.043
30046	1.763	0.06552	352.382	0.7810	0.01916	0.006	350.050
30047	1.763	0.05213	351.907	0.7832	0.01906	0.009	350.043
30048	1.763	0.03752	351.382	0.7861	0.01893	0.015	350.047
-30048	1.762	0.03753	351.371	0.7858	0.01904	0.014	350.037
30049	1.688	0.07659	352.845	0.7334	0.01898	0.005	350.048
30050	1.687	0.06554	352.422	0.7350	0.01901	0.006	350.043
30051	1.687	0.05214	351.953	0.7373	0.01894	0.009	350.054
30052	1.686	0.03754	351.399	0.7397	0.01900	0.015	350.038
30053	1.610	0.07659	352.894	0.6890	0.01885	0.005	350.042
30054	1.610	0.06555	352.485	0.6908	0.01885	0.006	350.052
30055	1.610	0.05216	351.985	0.6930	0.01881	0.009	350.053
30056	1.610	0.03753	351.443	0.6954	0.01870	0.015	350.057
30057	1.504	0.07661	352.958	0.6306	0.01870	0.005	350.046
30058	1.504	0.06552	352.531	0.6322	0.01870	0.006	350.053
30059	1.503	0.05214	352.036	0.6337	0.01859	0.009	350.059
30060	1.503	0.03751	351.475	0.6358	0.01858	0.014	350.055
30061	1.414	0.07656	353.024	0.5832	0.01857	0.005	350.047
30062	1.413	0.06554	352.575	0.5843	0.01851	0.007	350.042

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
30063	1.413	0.05215	352.054	0.5856	0.01846	0.009	350.043
30064	1.411	0.03755	351.486	0.5865	0.01842	0.014	350.040
30065	1.340	0.07659	353.067	0.5456	0.01851	0.005	350.054
30067	1.338	0.05214	352.100	0.5474	0.01831	0.009	350.053
30068	1.338	0.03754	351.517	0.5488	0.01845	0.014	350.048
-30066	1.336	0.06552	352.629	0.5449	0.01845	0.007	350.049
30069	1.202	0.07658	353.145	0.4780	0.01839	0.005	350.044
30070	1.196	0.06552	352.699	0.4763	0.01828	0.006	350.048
30071	1.195	0.05213	352.152	0.4773	0.01827	0.009	350.047
30072	1.194	0.03753	351.556	0.4780	0.01809	0.014	350.045
30073	1.225	0.07661	353.173	0.4890	0.01843	0.005	350.090
30074	1.225	0.06553	352.712	0.4904	0.01833	0.007	350.092
30075	1.227	0.05216	352.176	0.4924	0.01837	0.009	350.092
30076	1.227	0.03755	351.598	0.4941	0.01824	0.014	350.099
30077	1.125	0.07663	353.222	0.4421	0.01838	0.005	350.078
30078	1.125	0.06555	352.757	0.4431	0.01837	0.006	350.077
30079	1.125	0.05215	352.217	0.4442	0.01819	0.009	350.083
30080	1.126	0.03754	351.615	0.4458	0.01804	0.014	350.080
30081	1.008	0.07279	353.125	0.3893	0.01819	0.006	350.070
30082	1.008	0.06206	352.676	0.3901	0.01819	0.007	350.072
30083	1.007	0.04902	352.127	0.3907	0.01810	0.009	350.078
30084	1.007	0.03492	351.533	0.3917	0.01819	0.016	350.071
30085	0.903	0.06915	353.009	0.3439	0.01815	0.006	350.050
30086	0.903	0.05866	352.568	0.3445	0.01814	0.008	350.060
30087	0.903	0.04903	352.153	0.3452	0.01803	0.010	350.059
30088	0.903	0.03490	351.535	0.3461	0.01813	0.016	350.056
30089	0.786	0.06912	353.051	0.2944	0.01809	0.006	350.031
30090	0.784	0.05865	352.611	0.2941	0.01809	0.008	350.041
30091	0.784	0.04902	352.190	0.2946	0.01790	0.010	350.041
30092	0.784	0.03488	351.569	0.2953	0.01812	0.015	350.040
30093	0.686	0.06550	352.970	0.2534	0.01807	0.006	350.032
30094	0.685	0.05533	352.512	0.2536	0.01810	0.008	350.019
30095	0.684	0.04601	352.083	0.2537	0.01810	0.011	350.027
30096	0.684	0.03238	351.461	0.2541	0.01785	0.018	350.030
30097	0.543	0.06555	353.109	0.1970	0.01816	0.006	350.076
30098	0.543	0.05535	352.645	0.1973	0.01821	0.008	350.074
30099	0.543	0.04602	352.198	0.1976	0.01812	0.010	350.067
30100	0.543	0.03238	351.562	0.1981	0.01791	0.017	350.072
30101	0.422	0.06206	353.025	0.1510	0.01826	0.007	350.061
30102	0.422	0.05213	352.545	0.1512	0.01824	0.009	350.062
30103	0.422	0.04310	352.103	0.1515	0.01812	0.012	350.062
30104	0.422	0.02994	351.480	0.1518	0.01807	0.021	350.058
30105	0.273	0.06206	353.157	0.0960	0.01842	0.007	350.054

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
30106	0.273	0.05215	352.655	0.0961	0.01840	0.009	350.051
30107	0.273	0.04310	352.210	0.0962	0.01834	0.012	350.056
30108	0.273	0.02994	351.548	0.0964	0.01826	0.020	350.062
	Temperatur						
22001	2.942	0.08752	362.928	1.6352	0.02634	0.008	360.830
22002	2.942	0.07425	362.621	1.6440	0.02639	0.009	360.846
22003	2.942	0.06207	362.304	1.6533	0.02637	0.011	360.835
22004	2.942	0.05098	362.038	1.6613	0.02629	0.021	360.842
22005	2.898	0.09696	363.257	1.5749	0.02579	0.007	360.849
22006	2.898	0.08299	362.895	1.5840	0.02579	0.008	360.843
22007	2.898	0.07006	362.573	1.5924	0.02581	0.009	360.849
22008	2.899	0.05826	362.278	1.6010	0.02576	0.012	360.849
22009	2.867	0.09698	363.308	1.5388	0.02545	0.007	360.854
22010	2.867	0.08299	362.950	1.5472	0.02544	0.008	360.854
22011	2.868	0.07008	362.599	1.5564	0.02542	0.009	360.840
22012	2.868	0.05827	362.305	1.5636	0.02562	0.011	360.851
22013	2.831	0.09697	363.347	1.4988	0.02513	0.007	360.843
22014	2.831	0.08299	362.987	1.5066	0.02503	0.007	360.850
22015	2.831	0.07006	362.654	1.5140	0.02503	0.009	360.856
22016	2.831	0.05826	362.344	1.5217	0.02514	0.011	360.854
22017	2.795	0.09699	363.379	1.4613	0.02478	0.006	360.831
22018	2.796	0.08296	363.009	1.4694	0.02459	0.007	360.834
22019	2.796	0.07007	362.667	1.4765	0.02470	0.009	360.838
22020	2.796	0.05827	362.337	1.4834	0.02474	0.011	360.826
22021	2.745	0.09695	363.435	1.4110	0.02429	0.006	360.825
22022	2.745	0.08295	363.050	1.4180	0.02440	0.008	360.823
22023	2.745	0.07005	362.708	1.4244	0.02423	0.009	360.829
22024	2.746	0.05825	362.368	1.4315	0.02428	0.010	360.817
22025	2.702	0.09698	363.465	1.3703	0.02404	0.006	360.808
22026	2.703	0.08293	363.087	1.3772	0.02395	0.007	360.813
22027	2.703	0.07007	362.727	1.3834	0.02395	0.009	360.810
22028	2.703	0.05823	362.390	1.3893	0.02387	0.011	360.808
22029	2.660	0.09696	363.470	1.3315	0.02426	0.006	360.799
22030	2.658	0.08295	363.118	1.3358	0.02360	0.007	360.798
22031	2.593	0.07005	362.744	1.2840	0.02373	0.008	360.790
22032	2.657	0.05827	362.410	1.3460	0.02364	0.011	360.791
-22029	2.656	0.09694	363.500	1.3282	0.02373	0.006	360.788
22033	2.600	0.09692	363.548	1.2787	0.02342	0.006	360.776
22034	2.600	0.08299	363.141	1.2844	0.02333	0.007	360.775
22035	2.599	0.07009	362.775	1.2891	0.02322	0.008	360.780
22036	2.599	0.05826	362.425	1.2942	0.02345	0.010	360.770
22037	2.549	0.09693	363.599	1.2362	0.02307	0.005	360.777
22038	2.549	0.08296	363.180	1.2416	0.02296	0.006	360.768

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
22039	2.549	0.07006	362.801	1.2466	0.02305	0.008	360.768
22040	2.549	0.05829	362.450	1.2507	0.02300	0.010	360.767
22041	2.490	0.09692	363.764	1.1874	0.02276	0.005	360.893
22042	2.491	0.08295	363.348	1.1927	0.02276	0.007	360.897
22043	2.491	0.07006	362.970	1.1972	0.02277	0.008	360.907
22044	2.491	0.05826	362.610	1.2016	0.02288	0.010	360.899
22045	2.435	0.09692	363.809	1.1446	0.02246	0.005	360.887
22046	2.435	0.08296	363.392	1.1490	0.02253	0.006	360.896
22047	2.435	0.07007	362.997	1.1538	0.02245	0.007	360.894
22048	2.435	0.05826	362.642	1.1577	0.02242	0.009	360.899
22049	2.385	0.09693	363.853	1.1075	0.02226	0.005	360.883
22050	2.385	0.08294	363.416	1.1123	0.02228	0.006	360.881
22051	2.386	0.07003	363.023	1.1168	0.02222	0.008	360.889
22052	2.386	0.05825	362.658	1.1205	0.02239	0.010	360.884
22053	2.309	0.09691	363.912	1.0536	0.02197	0.005	360.879
22055	2.309	0.08294	363.479	1.0574	0.02202	0.006	360.889
22055	2.309	0.07003	363.071	1.0615	0.02198	0.007	360.884
22056	2.309	0.05822	362.687	1.0650	0.02202	0.010	360.880
22057	2.255	0.09689	363.954	1.0167	0.02183	0.005	360.877
22058	2.255	0.08293	363.503	1.0204	0.02187	0.006	360.876
22059	2.256	0.07003	363.092	1.0243	0.02188	0.007	360.877
22060	2.256	0.05824	362.722	1.0274	0.02185	0.010	360.884
22061	2.165	0.09694	364.014	0.9580	0.02157	0.005	360.867
22062	2.165	0.08295	363.552	0.9614	0.02156	0.006	360.865
22063	2.165	0.07004	363.128	0.9645	0.02147	0.007	360.862
22064	2.166	0.05823	362.748	0.9677	0.02140	0.009	360.867
22065	2.107	0.09689	364.026	0.9214	0.02138	0.005	360.837
22066	2.107	0.08292	363.576	0.9244	0.02137	0.006	360.848
22067	2.108	0.07004	363.144	0.9278	0.02138	0.008	360.843
22068	2.108	0.05823	362.752	0.9304	0.02139	0.009	360.846
22069	2.033	0.09687	364.074	0.8759	0.02119	0.005	360.827
22070	2.033	0.08291	363.598	0.8792	0.02119	0.006	360.829
22071	2.034	0.07001	363.167	0.8822	0.02110	0.007	360.826
22072	2.034	0.05822	362.770	0.8847	0.02105	0.009	360.829
22073	1.945	0.09689	364.132	0.8246	0.02096	0.005	360.824
22074	1.945	0.08291	363.649	0.8272	0.02095	0.006	360.820
22075	1.946	0.07005	363.209	0.8300	0.02099	0.007	360.828
22076	1.946	0.05823	362.801	0.8322	0.02083	0.009	360.823
22077	1.852	0.09691	364.177	0.7724	0.02073	0.005	360.810
22078	1.852	0.08292	363.690	0.7744	0.02075	0.005	360.808
22079	1.852	0.07002	363.246	0.7765	0.02078	0.007	360.815
22080	1.851	0.05821	362.828	0.7782	0.02065	0.009	360.810
22081	1.778	0.09688	364.218	0.7320	0.02067	0.005	360.798

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
22082	1.778	0.08290	363.728	0.7341	0.02059	0.006	360.804
22083	1.778	0.07001	363.266	0.7361	0.02050	0.007	360.797
22084	1.778	0.05822	362.843	0.7379	0.02046	0.009	360.798
22085	1.693	0.09687	364.260	0.6873	0.02049	0.005	360.779
22086	1.692	0.08290	363.760	0.6889	0.02039	0.006	360.786
22087	1.692	0.07006	363.297	0.6904	0.02049	0.007	360.784
22088	1.692	0.05824	362.867	0.6920	0.02034	0.009	360.783
22089	1.600	0.09692	364.304	0.6400	0.02077	0.005	360.811
22090	1.600	0.08297	363.803	0.6417	0.02076	0.006	360.810
22091	1.601	0.07005	363.340	0.6436	0.02067	0.007	360.819
22092	1.601	0.05823	362.918	0.6454	0.02067	0.009	360.822
22093	1.493	0.09693	364.370	0.5872	0.02060	0.005	360.807
22094	1.493	0.08296	363.844	0.5888	0.02062	0.006	360.798
22095	1.493	0.07004	363.367	0.5902	0.02055	0.007	360.797
22096	1.493	0.05821	362.937	0.5915	0.02052	0.009	360.801
22097	1.373	0.09687	364.463	0.5308	0.02010	0.005	360.776
22098	1.373	0.08292	363.900	0.5323	0.02057	0.006	360.784
22099	1.373	0.07006	363.409	0.5335	0.02045	0.007	360.783
22100	1.373	0.05824	362.970	0.5347	0.02033	0.009	360.788
22101	1.271	0.09662	364.470	0.4843	0.02021	0.005	360.767
22102	1.270	0.08257	363.943	0.4852	0.02012	0.006	360.770
22103	1.270	0.06972	363.452	0.4860	0.02014	0.007	360.776
22104	1.269	0.05798	362.999	0.4867	0.02010	0.009	360.773
22105	1.180	0.09635	364.501	0.4440	0.01995	0.005	360.745
22106	1.180	0.08241	363.955	0.4453	0.02007	0.005	360.735
22107	1.181	0.06961	363.455	0.4466	0.02006	0.006	360.736
22108	1.181	0.05787	362.992	0.4475	0.02006	0.008	360.736
22109	1.076	0.09620	364.558	0.3995	0.01996	0.005	360.726
22110	1.081	0.08230	363.991	0.4026	0.01990	0.006	360.717
22111	1.085	0.06954	363.486	0.4052	0.01989	0.006	360.728
22112	1.088	0.05782	363.009	0.4073	0.01997	0.009	360.716
22113	0.953	0.09626	364.631	0.3483	0.01997	0.005	360.715
22114	0.954	0.08234	364.067	0.3496	0.01988	0.005	360.715
22115	0.955	0.06956	363.548	0.3506	0.01985	0.006	360.718
22116	0.956	0.05786	363.066	0.3516	0.01988	0.009	360.716
22117	0.823	0.09630	364.710	0.2960	0.01988	0.005	360.700
22118	0.823	0.08233	364.137	0.2966	0.01983	0.005	360.700
22119	0.823	0.06956	363.594	0.2972	0.01983	0.007	360.694
22120	0.823	0.05785	363.108	0.2978	0.01981	0.009	360.696
22121	0.697	0.09630	364.805	0.2471	0.01990	0.005	360.696
22122	0.697	0.08237	364.211	0.2476	0.01983	0.005	360.691
22123	0.696	0.06959	363.662	0.2479	0.01978	0.007	360.690
22124	0.696	0.05788	363.160	0.2481	0.01984	0.009	360.690

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
22125	0.564	0.09691	365.016	0.1968	0.02030	0.005	360.782
22126	0.567	0.08294	364.401	0.1984	0.02015	0.005	360.781
22127	0.572	0.07007	363.827	0.2004	0.02017	0.007	360.777
22128	0.575	0.05826	363.322	0.2020	0.02012	0.009	360.784
22130	0.422	0.08293	364.576	0.1452	0.01992	0.006	360.778
22131	0.422	0.07005	363.942	0.1457	0.02022	0.007	360.769
22132	0.423	0.05826	363.395	0.1462	0.02030	0.008	360.762
22133	0.290	0.09692	365.309	0.0981	0.02045	0.005	360.752
22134	0.290	0.08271	364.662	0.0985	0.02037	0.006	360.753
22135	0.290	0.06982	364.062	0.0987	0.02028	0.007	360.756
22136	0.290	0.05806	363.500	0.0988	0.02032	0.009	360.752
Nominal	Temperature	e = 303 K					
14001	67.798	0.76262	303.660	13.5943	0.11255	0.001	299.584
14002	67.797	0.64142	303.009	13.6063	0.11263	0.001	299.584
14003	67.796	0.53119	302.407	13.6174	0.11313	0.001	299.576
14004	67.796	0.43141	301.872	13.6272	0.11322	0.002	299.576
14005	53.471	0.76230	303.730	13.3303	0.10667	0.001	299.471
14006	53.473	0.64135	303.046	13.3440	0.10696	0.001	299.462
14007	53.476	0.53088	302.430	13.3563	0.10728	0.001	299.467
14008	53.477	0.43111	301.864	13.3676	0.10770	0.002	299.463
14009	41.965	0.76206	303.835	13.0844	0.10163	0.001	299.392
14010	41.968	0.64143	303.132	13.0996	0.10215	0.001	299.398
14011	41.970	0.53092	302.485	13.1135	0.10234	0.001	299.397
14012	41.973	0.43115	301.898	13.1262	0.10264	0.002	299.395
14013	31.974	0.64195	303.241	12.8533	0.09750	0.001	299.352
14014	31.979	0.53120	302.572	12.8690	0.09761	0.001	299.361
14015	31.982	0.43135	301.964	12.8832	0.09835	0.002	299.360
14016	31.986	0.34175	301.418	12.8960	0.09841	0.002	299.358
14017	22.129	0.64133	303.385	12.5657	0.09242	0.001	299.315
14018	22.132	0.53092	302.683	12.5839	0.09270	0.001	299.317
14019	22.135	0.43115	302.049	12.6003	0.09286	0.002	299.321
14020	22.139	0.34165	301.478	12.6152	0.09354	0.002	299.321
14021	14.153	0.64164	303.540	12.2828	0.08790	0.001	299.296
14022	14.156	0.53115	302.801	12.3042	0.08823	0.001	299.287
14023	14.160	0.43123	302.146	12.3232	0.08836	0.002	299.300
14024	14.164	0.34155	301.555	12.3403	0.08881	0.002	299.303
14025	8.476	0.64168	303.679	12.0385	0.08418	0.001	299.277
14026	8.480	0.53104	302.920	12.0630	0.08447	0.001	299.287
14027	8.483	0.43114	302.239	12.0849	0.08482	0.001	299.292
14028	8.486	0.34166	301.624	12.1046	0.08524	0.002	299.293
14029	4.401	0.64174	303.825	11.8278	0.08111	0.001	299.290
14030	4.404	0.53119	303.043	11.8558	0.08138	0.001	299.297
14031	4.406	0.43128	302.333	11.8809	0.08192	0.002	299.300

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$\mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1}$		K
14032	4.408	0.34158	301.698	11.9033	0.08227	0.002	299.300
14033	0.743	0.53138	303.131	11.6341	0.07855	0.002	299.276
14034	0.742	0.43128	302.404	11.6628	0.07900	0.001	299.282
14035	0.742	0.34175	301.754	11.6884	0.07932	0.002	299.289
14036	0.741	0.26254	301.179	11.7109	0.07995	0.003	299.290
14037	65.821	0.76234	303.642	13.5606	0.11164	0.001	299.537
14038	65.819	0.64136	302.981	13.5728	0.11135	0.001	299.531
14039	65.816	0.53101	302.384	13.5839	0.11158	0.001	299.532
14040	65.814	0.43139	301.842	13.5939	0.11173	0.002	299.528
14041	52.788	0.76209	303.703	13.3173	0.10623	0.001	299.428
14042	52.788	0.64132	303.024	13.3309	0.10613	0.001	299.431
14043	52.789	0.53111	302.402	13.3433	0.10663	0.001	299.430
14044	52.789	0.43118	301.834	13.3547	0.10711	0.002	299.435
14045	41.685	0.76140	303.812	13.0785	0.10120	0.001	299.361
14046	41.687	0.64145	303.102	13.0938	0.10169	0.001	299.365
14047	41.688	0.53103	302.453	13.1078	0.10185	0.001	299.362
14048	41.689	0.43117	301.874	13.1203	0.10187	0.002	299.369
14049	31.979	0.64122	303.207	12.8542	0.09720	0.001	299.316
14050	31.981	0.53100	302.544	12.8697	0.09732	0.001	299.329
14051	31.981	0.43121	301.941	12.8837	0.09767	0.002	299.334
14052	31.983	0.34167	301.403	12.8963	0.09778	0.003	299.340
14053	21.670	0.64115	303.374	12.5514	0.09188	0.001	299.297
14054	21.681	0.53121	302.670	12.5700	0.09217	0.001	299.298
14055	21.687	0.43109	302.057	12.5860	0.09217	0.002	299.324
14056	21.691	0.34175	301.474	12.6012	0.09244	0.002	299.315
14057	14.102	0.64113	303.530	12.2811	0.08766	0.001	299.285
14058	14.107	0.53073	302.800	12.3023	0.08780	0.001	299.287
14059	14.108	0.43111	302.134	12.3216	0.08804	0.002	299.289
14060	14.111	0.34158	301.548	12.3385	0.08793	0.002	299.300
14061	8.485	0.64137	303.694	12.0384	0.08392	0.001	299.292
14062	8.487	0.53104	302.927	12.0631	0.08421	0.001	299.293
14063	8.488	0.43119	302.239	12.0851	0.08453	0.002	299.293
14064	8.490	0.34162	301.626	12.1047	0.08472	0.002	299.296
14065	4.385	0.64134	303.821	11.8271	0.08088	0.001	299.286
14066	4.386	0.53107	303.044	11.8547	0.08127	0.001	299.299
14067	4.388	0.43127	302.333	11.8799	0.08161	0.001	299.303
14068	4.390	0.34179	301.701	11.9022	0.08167	0.002	299.306
14069	0.737	0.53111	303.152	11.6328	0.07833	0.001	299.294
14070	0.736	0.43114	302.421	11.6618	0.07869	0.001	299.299
14071	0.736	0.34161	301.763	11.6877	0.07870	0.002	299.297
14072	0.736	0.26245	301.198	11.7098	0.07898	0.004	299.312
	Temperature						
15001	66.884	0.68404	322.665	13.2284	0.10695	0.001	318.848

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
15002	66.882	0.56657	321.995	13.2407	0.10712	0.001	318.842
15003	66.880	0.46024	321.395	13.2517	0.10762	0.002	318.840
15004	66.878	0.36465	320.852	13.2616	0.10813	0.002	318.832
15005	56.229	0.68402	322.694	13.0132	0.10285	0.001	318.738
15006	56.228	0.56671	322.013	13.0265	0.10314	0.001	318.743
15007	56.228	0.46005	321.389	13.0386	0.10348	0.002	318.735
15008	56.226	0.36465	320.832	13.0495	0.10362	0.003	318.737
15009	45.498	0.68353	322.774	12.7655	0.09789	0.001	318.652
15010	45.496	0.56625	322.070	12.7803	0.09825	0.001	318.660
15011	45.494	0.45994	321.414	12.7940	0.09833	0.002	318.648
15012	45.493	0.36468	320.845	12.8060	0.09855	0.003	318.660
15013	35.267	0.56670	322.166	12.5064	0.09338	0.001	318.605
15014	35.268	0.46028	321.499	12.5218	0.09354	0.002	318.613
15015	35.268	0.36469	320.903	12.5355	0.09411	0.002	318.616
15016	35.269	0.28038	320.362	12.5479	0.09466	0.003	318.611
15017	27.483	0.56682	322.292	12.2608	0.08939	0.002	318.592
15018	27.487	0.45996	321.591	12.2784	0.08957	0.002	318.588
15019	27.487	0.36458	320.963	12.2941	0.08984	0.002	318.590
15020	27.488	0.28026	320.411	12.3079	0.09038	0.003	318.594
15021	20.265	0.56628	322.425	11.9915	0.08515	0.001	318.567
15022	20.265	0.45991	321.696	12.0116	0.08544	0.001	318.570
15023	20.267	0.36455	321.046	12.0296	0.08557	0.002	318.577
15024	20.269	0.28020	320.476	12.0453	0.08591	0.003	318.583
15025	14.120	0.56656	322.586	11.7135	0.08119	0.001	318.570
15026	14.123	0.45993	321.831	11.7369	0.08149	0.001	318.577
15027	14.126	0.36464	321.155	11.7578	0.08176	0.002	318.584
15028	14.128	0.28018	320.557	11.7762	0.08203	0.003	318.585
15029	9.264	0.56630	322.730	11.4441	0.07761	0.001	318.565
15030	9.266	0.45989	321.956	11.4711	0.07783	0.001	318.584
15031	9.270	0.36436	321.248	11.4959	0.07821	0.002	318.583
15032	9.271	0.27999	320.629	11.5172	0.07880	0.003	318.584
15033	5.054	0.56611	322.901	11.1502	0.07391	0.001	318.578
15033	5.056	0.45969	322.083	11.1832	0.07439	0.001	318.581
15035	5.059	0.36433	321.356	11.2124	0.07482	0.002	318.586
15036	5.061	0.28003	320.710	11.2382	0.07520	0.003	318.586
15037	1.650	0.56636	323.103	10.8376	0.07061	0.001	318.614
15038	1.650	0.45996	322.242	10.8789	0.07104	0.001	318.612
15039	1.650	0.36456	321.487	10.9148	0.07149	0.002	318.620
15040	1.650	0.28018	320.822	10.9460	0.07163	0.003	318.624
15041	67.427	0.68392	322.381	13.2439	0.10724	0.001	318.572
15042	67.428	0.56639	321.722	13.2560	0.10722	0.001	318.571
15043	67.429	0.46000	321.125	13.2670	0.10766	0.002	318.574
15044	67.430	0.36434	320.595	13.2767	0.10763	0.003	318.574

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
15045	56.133	0.68475	322.473	13.0154	0.10275	0.001	318.514
15046	56.138	0.56672	321.795	13.0288	0.10296	0.001	318.525
15047	56.141	0.46013	321.181	13.0409	0.10309	0.002	318.527
15048	56.144	0.36465	320.623	13.0518	0.10323	0.002	318.522
15049	45.336	0.68389	322.616	12.7649	0.09776	0.001	318.484
15050	45.330	0.56657	321.909	12.7796	0.09811	0.001	318.491
15051	45.323	0.45986	321.267	12.7930	0.09825	0.002	318.495
15052	45.313	0.36454	320.691	12.8048	0.09843	0.002	318.501
15053	35.262	0.56634	322.033	12.5093	0.09339	0.001	318.464
15054	35.257	0.45988	321.365	12.5246	0.09340	0.002	318.472
15055	35.252	0.36448	320.754	12.5384	0.09364	0.002	318.465
15056	35.251	0.28015	320.234	12.5503	0.09380	0.003	318.479
15057	27.551	0.56656	322.174	12.2661	0.08933	0.001	318.465
15058	27.546	0.46002	321.473	12.2834	0.08938	0.001	318.466
15059	27.546	0.36453	320.850	12.2989	0.08952	0.002	318.473
15060	27.547	0.28021	320.292	12.3128	0.08970	0.003	318.471
15061	20.362	0.56626	322.319	11.9983	0.08511	0.001	318.461
15062	20.360	0.46004	321.593	12.0182	0.08524	0.001	318.463
15063	20.362	0.36444	320.945	12.0361	0.08549	0.002	318.469
15064	20.362	0.27996	320.371	12.0519	0.08566	0.003	318.472
15065	14.050	0.56603	322.487	11.7131	0.08082	0.001	318.467
15066	14.051	0.45967	321.739	11.7362	0.08103	0.001	318.480
15067	14.052	0.36435	321.060	11.7571	0.08119	0.002	318.483
15068	14.052	0.27995	320.454	11.7757	0.08174	0.003	318.479
15069	9.019	0.56646	322.641	11.4323	0.07729	0.001	318.462
15070	9.020	0.45982	321.852	11.4600	0.07738	0.001	318.468
15071	9.022	0.36456	321.156	11.4843	0.07776	0.002	318.481
15072	9.022	0.28018	320.535	11.5058	0.07810	0.003	318.482
15073	5.408	0.56686	322.786	11.1819	0.07444	0.002	318.475
15074	5.411	0.45990	321.967	11.2145	0.07448	0.001	318.474
15075	5.414	0.36461	321.243	11.2432	0.07486	0.002	318.483
15076	5.414	0.28024	320.607	11.2680	0.07525	0.003	318.492
15078	1.827	0.46010	322.095	10.9036	0.07118	0.001	318.474
15079	1.830	0.36457	321.345	10.9390	0.07149	0.002	318.481
15080	1.833	0.28022	320.676	10.9704	0.07179	0.003	318.482
	Temperature						
15001	66.977	0.72855	343.131	12.8567	0.10335	0.001	338.901
15002	66.966	0.60327	342.389	12.8700	0.10309	0.001	338.890
15003	66.947	0.48937	341.715	12.8818	0.10295	0.002	338.876
15004	66.935	0.38826	341.107	12.8927	0.10302	0.002	338.862
15005	57.426	0.72922	343.179	12.6426	0.09980	0.001	338.797
15006	57.420	0.60365	342.424	12.6570	0.09938	0.001	338.798
15007	57.415	0.49025	341.735	12.6702	0.09904	0.002	338.792

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	ĸ	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
15008	57.411	0.38869	341.119	12.6820	0.09908	0.002	338.793
15009	47.116	0.72799	343.303	12.3778	0.09482	0.001	338.726
15010	47.110	0.60311	342.509	12.3941	0.09462	0.001	338.727
15011	47.106	0.48979	341.804	12.4087	0.09391	0.002	338.734
15012	47.100	0.38834	341.161	12.4220	0.09443	0.002	338.732
15013	38.452	0.60315	342.652	12.1366	0.09048	0.001	338.708
15014	38.451	0.49002	341.912	12.1532	0.09016	0.001	338.713
15015	38.450	0.38834	341.248	12.1682	0.08999	0.002	338.716
15016	38.448	0.29841	340.659	12.1814	0.08964	0.003	338.716
15017	30.698	0.60311	342.798	11.8663	0.08601	0.001	338.690
15018	30.695	0.48995	342.033	11.8851	0.08596	0.003	338.700
15019	30.693	0.38825	341.330	11.9023	0.08590	0.002	338.695
15020	30.692	0.29845	340.726	11.9171	0.08620	0.003	338.705
15021	24.263	0.60299	342.963	11.5999	0.08206	0.001	338.687
15022	24.263	0.48985	342.159	11.6217	0.08207	0.003	338.693
15023	24.263	0.38849	341.433	11.6413	0.08229	0.002	338.694
15024	24.263	0.29852	340.793	11.6585	0.08239	0.003	338.692
15025	18.547	0.60347	343.142	11.3153	0.07836	0.001	338.689
15026	18.546	0.49009	342.298	11.3406	0.07767	0.001	338.693
15027	18.546	0.38847	341.551	11.3630	0.07817	0.002	338.700
15028	18.545	0.29864	340.892	11.3827	0.07862	0.003	338.703
15029	14.714	0.49029	342.421	11.1146	0.07544	0.001	338.704
15030	14.714	0.38849	341.646	11.1400	0.07496	0.002	338.706
15031	14.714	0.29865	340.967	11.1623	0.07558	0.003	338.714
15032	14.714	0.22049	340.379	11.1816	0.07625	0.004	338.719
15033	10.556	0.49047	342.560	10.8166	0.07184	0.001	338.699
15034	10.556	0.38871	341.777	10.8460	0.07205	0.002	338.721
15035	10.556	0.29865	341.066	10.8726	0.07228	0.002	338.722
15036	10.556	0.22049	340.441	10.8959	0.07246	0.004	338.717
15037	7.301	0.49019	342.719	10.5189	0.06863	0.001	338.721
15038	7.302	0.38855	341.887	10.5551	0.06908	0.002	338.727
15039	7.303	0.29874	341.164	10.5864	0.06942	0.002	338.738
15040	7.304	0.22056	340.530	10.6136	0.06943	0.004	338.743
15041	4.871	0.49015	342.866	10.2313	0.06610	0.001	338.742
15042	4.871	0.38862	342.004	10.2752	0.06637	0.002	338.745
15043	4.871	0.29878	341.240	10.3136	0.06649	0.002	338.745
15044	4.871	0.22063	340.590	10.3461	0.06709	0.004	338.754
15045	3.278	0.49253	343.234	9.9731	0.06454	0.001	339.011
15046	3.280	0.39007	342.358	10.0256	0.06454	0.001	339.021
15047	3.282	0.30027	341.558	10.0727	0.06503	0.002	339.009
15048	3.285	0.22139	340.893	10.1115	0.06523	0.003	339.020
15049	2.027	0.49219	343.292	9.7270	0.06248	0.001	338.983
15050	2.029	0.38967	342.395	9.7909	0.06271	0.002	338.993

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
15051	2.031	0.29969	341.594	9.8468	0.06304	0.002	338.992
15052	2.032	0.22132	340.908	9.8934	0.06349	0.004	338.998
23001	66.776	0.39501	343.403	12.8476	0.10135	0.002	341.105
23002	66.776	0.49850	343.999	12.8367	0.10244	0.001	341.094
23003	66.775	0.61367	344.680	12.8243	0.10222	0.001	341.103
23004	66.773	0.74095	345.429	12.8106	0.10205	0.001	341.106
23005	48.689	0.39504	343.502	12.4163	0.09429	0.002	341.034
23006	48.694	0.49853	344.151	12.4031	0.09379	0.001	341.033
23007	48.694	0.61378	344.878	12.3881	0.09393	0.001	341.033
23008	48.696	0.74106	345.681	12.3716	0.09385	0.001	341.035
23009	32.083	0.30363	343.015	11.9121	0.08526	0.003	340.956
23010	32.083	0.39493	343.647	11.8968	0.08577	0.002	340.968
23011	32.084	0.49840	344.353	11.8797	0.08508	0.001	340.972
23012	32.085	0.61371	345.152	11.8603	0.08523	0.001	340.974
23013	20.346	0.30346	343.154	11.4090	0.07894	0.002	340.947
23014	20.347	0.39494	343.826	11.3895	0.07832	0.001	340.945
23015	20.344	0.49833	344.580	11.3674	0.07813	0.001	340.935
23016	20.339	0.61349	345.453	11.3417	0.07829	0.001	340.952
23017	11.625	0.22415	342.677	10.8945	0.07256	0.003	340.927
23018	11.624	0.30356	343.296	10.8720	0.07246	0.002	340.924
23019	11.624	0.39496	344.033	10.8451	0.07196	0.001	340.936
23020	11.624	0.49833	344.859	10.8149	0.07165	0.001	340.939
23021	5.896	0.22431	342.943	10.3552	0.06706	0.003	341.084
23022	5.897	0.30387	343.605	10.3237	0.06693	0.002	341.077
23024	5.900	0.49873	345.255	10.2440	0.06611	0.001	341.075
23023	5.902	0.39534	344.377	10.2871	0.06648	0.001	341.076
23025	2.250	0.22435	342.993	9.7959	0.06244	0.003	341.030
23026	2.251	0.30381	343.693	9.7474	0.06218	0.002	341.030
23027	2.252	0.39531	344.516	9.6891	0.06196	0.001	341.033
23028	2.252	0.49869	345.444	9.6211	0.06155	0.001	341.031
24001	68.197	0.74088	345.458	12.8403	0.10324	0.002	341.152
24002	68.200	0.61361	344.683	12.8544	0.10283	0.001	341.132
24003	68.203	0.49833	344.018	12.8664	0.10281	0.001	341.135
24004	68.205	0.39497	343.407	12.8775	0.10242	0.002	341.129
24005	49.350	0.74112	345.624	12.3905	0.09533	0.001	340.988
24006	49.353	0.61382	344.818	12.4071	0.09474	0.001	340.988
24007	49.355	0.49853	344.100	12.4218	0.09448	0.001	340.997
24008	49.356	0.39510	343.453	12.4351	0.09450	0.002	340.993
24009	32.623	0.61448	345.098	11.8814	0.08619	0.001	340.937
24010	32.627	0.49898	344.337	11.8999	0.08608	0.001	340.962
24011	32.630	0.39546	343.625	11.9172	0.08595	0.002	340.958
24012	32.632	0.30395	343.008	11.9321	0.08613	0.003	340.962
24013	20.411	0.61455	345.383	11.3474	0.07878	0.001	340.890

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
24014	20.411	0.49895	344.542	11.3720	0.07856	0.001	340.899
24015	20.411	0.39557	343.793	11.3937	0.07869	0.002	340.910
24016	20.411	0.30397	343.117	11.4133	0.07859	0.003	340.907
24017	11.781	0.49913	344.792	10.8295	0.07205	0.001	340.865
24018	11.784	0.39557	343.973	10.8595	0.07217	0.001	340.877
24019	11.786	0.30401	343.259	10.8854	0.07247	0.002	340.887
24020	11.786	0.22447	342.644	10.9077	0.07282	0.003	340.896
24021	6.033	0.49916	345.021	10.2720	0.06622	0.001	340.847
24022	6.032	0.39568	344.162	10.3132	0.06672	0.001	340.867
24023	6.031	0.30406	343.396	10.3496	0.06700	0.002	340.874
24024	6.031	0.22447	342.738	10.3807	0.06724	0.004	340.881
24025	2.397	0.49917	345.248	9.6690	0.06135	0.001	340.841
24026	2.397	0.39555	344.324	9.7348	0.06197	0.001	340.848
24027	2.397	0.30406	343.518	9.7904	0.06231	0.002	340.862
24028	2.397	0.22446	342.814	9.8380	0.06282	0.003	340.858
Nominal	Temperature						
27001	66.454	0.75995	371.242	12.3363	0.09582	0.001	366.570
27002	66.457	0.63484	370.467	12.3504	0.09550	0.001	366.576
27003	66.460	0.52111	369.760	12.3632	0.09567	0.001	366.576
27004	66.462	0.41814	369.131	12.3746	0.09555	0.002	366.581
27005	66.446	0.75995	371.221	12.3365	0.09647	0.001	366.566
27006	66.442	0.63481	370.436	12.3506	0.09626	0.001	366.555
27007	66.437	0.52089	369.744	12.3629	0.09573	0.001	366.568
27008	66.433	0.41806	369.114	12.3742	0.09557	0.002	366.567
27010	66.356	0.63480	370.429	12.3486	0.09644	0.001	366.548
27011	68.232	0.52093	369.734	12.4061	0.09607	0.001	366.550
27012	66.349	0.41809	369.094	12.3725	0.09571	0.002	366.549
27013	65.854	0.75977	371.287	12.3208	0.10055	0.002	366.626
27014	65.855	0.63455	370.520	12.3347	0.09924	0.002	366.632
27015	65.868	0.52075	369.837	12.3474	0.09776	0.002	366.645
27016	65.874	0.41829	369.207	12.3590	0.09705	0.002	366.651
27017	65.837	0.68324	370.918	12.3271	0.10001	0.003	366.620
27018	65.895	0.57622	370.164	12.3422	0.10029	0.002	366.635
27019	65.895	0.46800	369.501	12.3542	0.09825	0.002	366.630
27020	65.897	0.37081	368.906	12.3650	0.09668	0.002	366.632
27022	50.644	0.57657	370.323	11.9242	0.09570	0.003	366.562
27023	50.632	0.46814	369.630	11.9379	0.09271	0.002	366.571
27024	50.621	0.37092	369.001	11.9503	0.09041	0.002	366.570
27030	35.348	0.14728	367.605	11.4472	0.08188	0.007	366.568
27029	35.345	0.21073	368.064	11.4362	0.08190	0.004	366.576
27028	35.343	0.28538	368.587	11.4236	0.08262	0.003	366.567
27027	35.340	0.37142	369.207	11.4088	0.08390	0.003	366.573
27026	35.340	0.46869	369.888	11.3925	0.08671	0.003	366.570

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	ρ_{calc}	λ_{exp}	STAT	T_{cell}
point	MPa	$W \cdot m^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
27025	35.339	0.57719	370.639	11.3746	0.08998	0.005	366.562
28001	66.281	0.37147	368.896	12.3745	0.09937	0.003	366.628
28002	66.264	0.28546	368.362	12.3837	0.09738	0.003	366.622
28003	66.248	0.21085	367.889	12.3918	0.09708	0.005	366.613
28004	66.233	0.14744	367.514	12.3982	0.09670	0.009	366.627
28005	50.751	0.28542	368.418	11.9661	0.09110	0.003	366.541
28006	50.747	0.21073	367.922	11.9760	0.09010	0.005	366.548
28007	50.744	0.14732	367.505	11.9843	0.09039	0.008	366.549
28008	50.743	0.09524	367.143	11.9916	0.09101	0.016	366.548
28009	36.210	0.24655	368.545	11.4599	0.08385	0.004	366.811
28010	36.214	0.17757	367.887	11.4755	0.08286	0.005	366.641
28011	36.214	0.11981	367.472	11.4853	0.08285	0.010	366.649
28012	36.217	0.07338	367.141	11.4932	0.08354	0.021	366.649
28013	24.812	0.21064	368.173	10.9317	0.07653	0.004	366.572
28014	24.815	0.14717	367.690	10.9454	0.07586	0.007	366.575
28015	24.827	0.09523	367.293	10.9573	0.07609	0.013	366.573
28016	24.833	0.05444	366.994	10.9660	0.07871	0.033	366.586
28017	17.327	0.21065	368.227	10.4359	0.07083	0.004	366.512
28018	17.327	0.14724	367.709	10.4535	0.07001	0.006	366.519
28029	17.330	0.09516	367.303	10.4674	0.07072	0.013	366.530
28020	17.330	0.05442	366.946	10.4795	0.07164	0.028	366.528
28021	11.638	0.20369	368.258	9.8906	0.06464	0.004	366.494
28022	11.641	0.14151	367.721	9.9139	0.06482	0.006	366.498
28023	11.640	0.09059	367.266	9.9332	0.06545	0.012	366.500
28024	11.643	0.05096	366.921	9.9482	0.06647	0.028	366.510
28025	8.253	0.20373	368.344	9.3987	0.06063	0.003	366.481
28026	8.256	0.14151	367.778	9.4302	0.06069	0.006	366.501
28027	8.258	0.09058	367.314	9.4555	0.06151	0.011	366.501
28028	8.260	0.05096	366.933	9.4764	0.06286	0.028	366.499
28029	5.781	0.20373	368.452	8.8227	0.05687	0.003	366.499
28030	5.785	0.14720	367.929	8.8641	0.05712	0.005	366.524
28031	5.786	0.09056	367.365	8.9072	0.05716	0.011	366.518
28032	5.786	0.05097	366.988	8.9356	0.05843	0.027	366.524
28033	4.435	0.20366	368.491	8.2677	0.05402	0.033	366.487
28034	4.435	0.14150	367.872	8.3399	0.05459	0.005	366.500
28035	4.433	0.09065	367.368	8.3961	0.05503	0.011	366.501
28036	4.433	0.05098	366.965	8.4403	0.05521	0.026	366.499
28037	3.641	0.19049	368.293	7.5983	0.05360	0.003	366.473
28038	3.641	0.13049	367.715	7.7375	0.05359	0.006	366.475
28039	3.641	0.08183	367.248	7.8360	0.05350	0.012	366.485
28040	3.641	0.04444	366.874	7.9090	0.05402	0.029	366.485
25001	67.799	0.76216	371.282	12.3681	0.10236	0.001	366.679
25003	67.801	0.52232	369.829	12.3942	0.10039	0.002	366.672

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	- $ -$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
25004	67.799	0.41926	369.210	12.4052	0.10022	0.002	366.672
25005	67.884	0.82895	371.666	12.3633	0.10245	0.002	366.661
25006	67.886	0.69787	370.884	12.3773	0.10114	0.001	366.668
25007	67.886	0.57790	370.169	12.3901	0.10026	0.001	366.673
25008	67.887	0.46926	369.494	12.4022	0.09988	0.002	366.654
25009	47.966	0.69789	371.163	11.8232	0.09301	0.001	366.562
25011	47.971	0.46925	369.674	11.8543	0.09087	0.002	366.575
25012	47.972	0.37192	369.025	11.8678	0.08993	0.002	366.565
25014	33.978	0.57761	370.662	11.3162	0.08137	0.001	366.527
25015	33.981	0.46920	369.884	11.3352	0.08115	0.001	366.530
25016	33.984	0.37180	369.193	11.3521	0.08115	0.002	366.536
25017	23.599	0.57733	370.918	10.7825	0.07441	0.001	366.465
25018	23.597	0.46883	370.080	10.8067	0.07418	0.001	366.475
25019	23.596	0.37151	369.347	10.8279	0.07393	0.002	366.487
25020	23.596	0.28539	368.678	10.8473	0.07409	0.003	366.492
25021	17.200	0.57713	371.193	10.3244	0.06891	0.001	366.477
25022	17.197	0.46885	370.313	10.3545	0.06901	0.002	366.493
25023	17.195	0.37163	369.513	10.3817	0.06924	0.002	366.490
25024	17.193	0.28553	368.816	10.4053	0.06943	0.002	366.500
25025	11.050	0.57679	371.666	9.6658	0.06285	0.001	366.606
25026	11.051	0.46851	370.701	9.7097	0.06309	0.001	366.606
25027	11.051	0.37135	369.837	9.7486	0.06326	0.001	366.600
25028	11.051	0.28541	369.076	9.7827	0.06363	0.002	366.602
25029	7.486	0.52096	371.425	9.0645	0.05847	0.001	366.587
25030	7.486	0.41827	370.454	9.1248	0.05890	0.001	366.592
25031	7.486	0.32675	369.589	9.1777	0.05900	0.002	366.579
25032	7.485	0.24659	368.842	9.2226	0.05924	0.003	366.587
25033	5.570	0.52167	371.623	8.4833	0.05560	0.001	366.616
25034	5.571	0.41885	370.616	8.5734	0.05579	0.001	366.620
25035	5.571	0.32727	369.730	8.6497	0.05614	0.002	366.617
25036	5.572	0.24688	368.948	8.7154	0.05637	0.002	366.619
25037	4.339	0.52180	371.704	7.7388	0.05444	0.004	366.581
25038	4.339	0.41901	370.668	7.9081	0.05372	0.002	366.574
25039	4.339	0.32742	369.762	8.0413	0.05381	0.002	366.585
25040	4.340	0.24692	368.967	8.1496	0.05393	0.002	366.581
26001	68.356	0.76104	371.250	12.3820	0.09884	0.001	366.629
26002	68.354	0.63550	370.492	12.3955	0.09769	0.001	366.641
26003	68.355	0.52165	369.788	12.4080	0.09746	0.001	366.633
26004	68.356	0.41867	369.162	12.4192	0.09714	0.002	366.635
26004	68.271	0.76074	371.225	12.3804	0.09687	0.001	366.610
26005	68.265	0.63555	370.460	12.3939	0.09678	0.002	366.608
26007	68.261	0.52159	369.763	12.4062	0.09693	0.001	366.612
26008	68.256	0.41860	369.126	12.4175	0.09695	0.002	366.598

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
26009	68.130	0.76090	371.206	12.3774	0.09702	0.001	366.586
29010	68.132	0.63554	370.432	12.3913	0.09691	0.001	366.585
26011	68.130	0.52139	369.738	12.4036	0.09687	0.001	366.584
26012	68.129	0.41837	369.109	12.4148	0.09677	0.002	366.577
26013	67.985	0.76055	371.241	12.3733	0.09624	0.001	366.622
26014	67.986	0.63506	370.446	12.3876	0.09645	0.001	366.598
26015	67.985	0.52110	369.753	12.3999	0.09640	0.001	366.597
26016	67.986	0.41832	369.117	12.4113	0.09676	0.002	366.590
26017	50.674	0.69629	371.045	11.9105	0.08851	0.002	366.492
26018	50.676	0.57650	370.273	11.9262	0.08858	0.001	366.511
26019	50.679	0.46828	369.568	11.9406	0.08887	0.001	366.513
26020	50.683	0.37111	368.923	11.9538	0.08885	0.002	366.507
26021	36.217	0.69708	371.414	11.3926	0.08093	0.001	366.491
26022	36.221	0.57712	370.556	11.4130	0.08130	0.001	366.494
26023	36.224	0.46875	369.795	11.4310	0.08154	0.001	366.496
26024	36.226	0.37150	369.105	11.4474	0.08148	0.002	366.497
26025	25.458	0.57713	370.829	10.8935	0.07474	0.001	366.450
26026	25.462	0.46868	369.997	10.9169	0.07484	0.001	366.453
26027	25.464	0.37147	369.262	10.9375	0.07517	0.002	366.463
26028	25.466	0.28537	368.624	10.9554	0.07524	0.003	366.471
26029	17.496	0.57688	371.127	10.3510	0.06876	0.001	366.446
26030	17.500	0.46866	370.251	10.3811	0.06903	0.001	366.453
26031	17.503	0.37148	369.461	10.4081	0.06940	0.002	366.458
26032	17.508	0.28547	368.774	10.4317	0.06954	0.002	366.474
26033	11.997	0.57671	371.445	9.7971	0.06367	0.001	366.459
26034	12.002	0.46849	370.514	9.8376	0.06390	0.001	366.472
26035	12.004	0.37125	369.659	9.8743	0.06422	0.001	366.472
26036	12.009	0.28530	368.922	9.9060	0.06447	0.002	366.478
26037	8.319	0.52061	371.213	9.2512	0.05939	0.001	366.451
26038	8.321	0.41798	370.262	9.3051	0.05978	0.001	366.456
26039	8.324	0.32671	369.428	9.3520	0.06002	0.002	366.467
26040	8.327	0.24646	368.701	9.3924	0.06043	0.003	366.471
26041	5.903	0.52057	371.399	8.6266	0.05587	0.001	366.439
26042	5.903	0.41795	370.417	8.7065	0.05616	0.001	366.448
26043	5.903	0.32652	369.548	8.7752	0.05640	0.002	366.454
26044	5.903	0.24637	368.785	8.8342	0.05674	0.002	366.457
26045	4.453	0.52061	371.565	7.8646	0.05334	0.002	366.453
26046	4.453	0.41792	370.535	8.0154	0.05347	0.001	366.454
26047	4.453	0.32665	369.626	8.1376	0.05376	0.002	366.459
26048	4.453	0.24638	368.855	8.2338	0.05396	0.002	366.473
26049	3.716	0.28514	369.218	7.4700	0.05388	0.003	366.481
26051	3.717	0.24641	368.846	7.5741	0.05340	0.003	366.483
26051	3.717	0.21047	368.493	7.6610	0.05333	0.004	366.484

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	ρ_{calc}	$\lambda_{exp} \ \mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1}$	STAT	T_{cell}
point 26052	MPa 2.717	$\frac{\mathrm{W}\cdot\mathrm{m}^{-1}}{0.17742}$	K 260.177	$\frac{\text{mol} \cdot \text{L}^{-1}}{7.7325}$		0.004	K
	3.717	0.17743	368.177	7.7325	0.05316	0.004	366.480
	Temperature		202.050	11.0007	0.00706	0.004	201.059
29001	65.693	0.30909	393.959	11.9087	0.09796	0.004	391.958
29002	65.700	0.23317	393.449	11.9180	0.09651	0.005	391.955
29003	65.704	0.16793	393.041	11.9254	0.09516	0.008	391.963
29004	65.708	0.11333	392.683	11.9319	0.09669	0.014	391.961
29005	65.715	0.30902	393.935	11.9097	0.09885	0.004	391.955
29006	65.722	0.26979	393.690	11.9143	0.09692	0.004 0.004	391.952
29007 29008	49.765 49.776	0.26971 0.23322	393.766 393.513	11.4185 11.4240	0.09014 0.08882	0.004	391.881 391.883
29008		0.23322	393.255	11.4240	0.08857	0.005	391.883
	49.783						391.883
29010	49.788	0.16792	393.052 392.668	11.4339	0.08782	0.007 0.013	391.892
29011 29012	49.792	0.11335 0.06944	392.008	11.4418	0.08866	0.013	391.893
	49.797		392.389 393.588	11.4477	0.09067 0.08288	0.027	391.901
29013	37.248	0.23319 0.19932		10.9149		0.005	391.838
29014 29015	37.260 37.272	0.19932	393.346 392.889	10.9211 10.9324	0.08065 0.08035	0.003	391.846
29013	37.272 37.275	0.13937	392.889	10.9324	0.08097	0.008	391.804
29010	37.273	0.09009	392.341	10.9408	0.08496	0.010	391.865
29017	27.799	0.03148	393.436	10.4056	0.07506	0.005	391.803
29018	27.799	0.19922	393.430	10.4030	0.07431	0.005	391.828
29019	27.810	0.10800	393.166	10.4151	0.07409	0.000	391.847
29020	27.813	0.11342	392.734	10.4255	0.07595	0.011	391.847
29021	20.717	0.00932	393.393	9.8778	0.06843	0.025	391.831
29023	20.717	0.18021	392.891	9.8945	0.06773	0.009	391.842
29024	20.719	0.12330	392.493	9.9076	0.06855	0.007	391.842
29025	20.720	0.07743	393.088	9.8881	0.06809	0.007	391.847
29020	20.721	0.09912	392.699	9.9011	0.06785	0.012	391.852
29028	15.662	0.05512	393.365	9.3436	0.06278	0.005	391.832
29030	15.664	0.13388	393.049	9.3565	0.06260	0.007	391.839
29030	15.666	0.10371	392.773	9.3679	0.06277	0.011	391.837
29031	15.668	0.07736	392.523	9.3781	0.06361	0.017	391.840
29032	12.203	0.16794	393.425	8.8095	0.05830	0.005	391.813
29032	12.203	0.10754	393.102	8.8257	0.05837	0.007	391.826
29032	12.203	0.10367	392.808	8.8403	0.05807	0.010	391.821
29034	12.203	0.10307	392.556	8.8528	0.05859	0.016	391.821
29035 29036	9.771	0.16786	393.477	8.2466	0.05458	0.005	391.787
29037	9.770	0.13389	393.128	8.2687	0.05455	0.007	391.791
29037	9.770	0.10369	392.836	8.2871	0.05479	0.010	391.799
29039	9.768	0.10305	392.565	8.3040	0.05508	0.014	391.799
29039	8.158	0.16782	393.541	7.6613	0.05157	0.004	391.776
29040	8.157	0.10782	393.180	7.6915	0.05187	0.004	391.770
29041	8.157	0.10361	392.869	7.7175	0.05167	0.009	391.793

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
29043	8.156	0.07731	392.586	7.7409	0.05216	0.014	391.796
29044	7.085	0.16198	393.535	7.0316	0.04869	0.039	391.784
29045	7.085	0.13388	393.214	7.0681	0.04934	0.006	391.793
29046	7.085	0.10373	392.902	7.1039	0.04955	0.009	391.801
29047	7.084	0.07736	392.610	7.1366	0.04964	0.013	391.802
29048	6.471	0.16195	393.656	6.4222	0.04793	0.004	391.888
29049	6.471	0.15611	393.603	6.4303	0.04753	0.034	391.893
29050	6.471	0.11828	393.171	6.4961	0.04788	0.006	391.896
29051	6.471	0.10371	393.012	6.5209	0.04794	0.008	391.889
29052	6.471	0.07737	392.710	6.5663	0.04792	0.013	391.888
29053	6.031	0.15615	393.587	5.7670	0.04695	0.005	391.866
29054	6.031	0.13927	393.394	5.8045	0.04680	0.006	391.866
29055	6.031	0.12337	393.212	5.8399	0.04641	0.006	391.866
29056	6.031	0.10842	393.044	5.8725	0.04592	0.007	391.864
29057	6.031	0.09446	392.891	5.9022	0.04624	0.009	391.865
29058	6.031	0.08146	392.757	5.9281	0.04645	0.012	391.876
29059	6.031	0.06938	392.608	5.9570	0.04662	0.014	391.865
29060	6.031	0.05830	392.494	5.9789	0.04586	0.018	391.871
29061	5.756	0.14475	393.479	5.1952	0.04465	0.006	391.851
29062	5.756	0.12859	393.298	5.2348	0.04486	0.006	391.851
29063	5.756	0.11329	393.112	5.2758	0.04474	0.007	391.853
29064	5.756	0.09902	392.955	5.3105	0.04481	0.008	391.851
29065	5.755	0.08571	392.801	5.3434	0.04464	0.010	391.855
29066	5.755	0.07334	392.650	5.3770	0.04462	0.013	391.848
29067	5.755	0.06192	392.526	5.4048	0.04458	0.017	391.851
29068	5.755	0.05149	392.407	5.4315	0.04465	0.021	391.854
29069	5 .5 56	0.13379	393.445	4.6754	0.04214	0.005	391.844
29070	5.556	0.11827	393.247	4.7191	0.04202	0.006	391.843
29071	5.556	0.10368	393.070	4.7584	0.04239	0.008	391.846
29072	5.556	0.09002	392.915	4.7935	0.04211	0.009	391.859
29073	5.556	0.07734	392.758	4.8293	0.04259	0.011	391.860
29074	5.556	0.06563	392.632	4.8585	0.04253	0.014	391.865
29075	5.556	0.05485	392.488	4.8920	0.04268	0.019	391.864
29076	5.556	0.04505	392.357	4.9227	0.04314	0.026	391.851
29077	5.405	0.12345	393.434	4.2508	0.03966	0.006	391.848
29078	5.405	0.10851	393.225	4.2923	0.03974	0.007	391.847
29079	5.405	0.09455	393.041	4.3298	0.03975	0.008	391.847
29080	5.404	0.08152	392.878	4.3618	0.03988	0.010	391.849
29081	5.404	0.06943	392.729	4.3935	0.03981	0.012	391.853
29082	5.404	0.05834	392.567	4.4286	0.03996	0.017	391.840
29083	5.404	0.04824	392.427	4.4593	0.04079	0.022	391.838
29084	5.404	0.03907	392.320	4.4830	0.04052	0.029	391.849
29085	5.255	0.11335	393.400	3.8507	0.03718	0.006	391.828

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	\overline{Q}	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$\mathrm{W}\cdot\mathrm{m}^{-1}$	K	$\text{mol} \cdot \text{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
29086	5.255	0.09909	393.196	3.8841	0.03731	0.007	391.830
29087	5.255	0.08575	393.015	3.9130	0.03717	0.009	391.840
29088	5.255	0.07336	392.836	3.9439	0.03 75 9	0.011	391.839
29089	5.255	0.06195	392.693	3.9694	0.03773	0.014	391.848
29090	5.255	0.05151	392.532	3.9987	0.03753	0.019	391.843
29091	5.255	0.04202	392.396	4.0238	0.03860	0.025	391.837
29092	5.255	0.03350	392.267	4.0484	0.03857	0.037	391.841
29093	5.076	0.10370	393.423	3.4204	0.03468	0.006	391.829
29094	5.076	0.09007	393.217	3.4450	0.03464	0.008	391.828
29095	5.076	0.07738	393.011	3.4703	0.03484	0.009	391.832
29096	5.076	0.06564	392.831	3.4916	0.03492	0.012	391.834
29097	5.075	0.05491	392.663	3.5118	0.03512	0.016	391.836
29098	5.075	0.04507	392.498	3.5322	0.03552	0.021	391.834
29099	4.914	0.09899	393.475	3.0929	0.03244	0.006	391.825
29100	4.914	0.08569	393. 2 66	3.1100	0.03265	0.008	391.841
29101	4.913	0.07335	393.052	3.1282	0.03268	0.009	391.839
29102	4.913	0.06195	392.864	3.1456	0.03297	0.012	391.835
29103	4.913	0.05152	392.678	3.1632	0.03311	0.017	391.835
29104	4.912	0.04201	392.519	3.1774	0.03363	0.023	391.836
29105	4.677	0.09899	393.728	2.6946	0.03063	0.006	391.886
29106	4.676	0.08570	393.4 7 0	2.7085	0.03058	0.007	391.885
29107	4.676	0.07331	393.245	2.7219	0.03057	0.009	391.890
29108	4.675	0.06193	393.028	2.7339	0.03078	0.011	391.895
29109	4.675	0.05151	392.828	2.7462	0.03082	0.016	391.887
29110	4.675	0.04201	392.663	2.7565	0.03077	0.020	391.897
29111	4.404	0.07733	393.461	2.3592	0.02879	0.008	391.875
29112	4.404	0.06564	393.217	2.3689	0.02878	0.010	391.877
29113	4.404	0.05487	392.987	2.3781	0.02867	0.013	391.878
29114	4.404	0.04508	392.796	2.3859	0.02885	0.017	391.877
29115	3.955	0.07738	393.664	1.9056	0.02649	0.007	391.859
29116	3.954	0.06563	393.384	1.9113	0.02631	0.009	391.855
29117	3.954	0.05487	393.133	1.9164	0.02660	0.012	391.864
29118	3.953	0.04504	392.907	1.9210	0.02648	0.015	391.865
29119	3.361	0.07733	393.903	1.4540	0.02459	0.007	391.856
29120	3.360	0.06561	393.598	1.4568	0.02441	0.008	391.862
29121	3.359	0.05486	393.307	1.4599	0.02449	0.011	391.861
29122	3.358	0.04506	393.038	1.4623	0.02440	0.015	391.863
29124	2.541	0.06565	393.906	0.9818	0.02313	0.008	391.937
29125	2.541	0.05489	393.572	0.9836	0.02310	0.010	391.926
29126	2.541	0.04510	393.275	0.9853	0.02324	0.022	391.928
29128	2.342	0.06565	393.953	0.8836	0.02289	0.008	391.923
29129	2.342	0.05491	393.610	0.8852	0.02296	0.010	391.925
29130	2.342	0.04510	393.318	0.8866	0.02290	0.014	391.929

Table 8. Thermal conductivity for a different sample of R134a from 200 to 393 K obtained by use of the transient hot-wire technique with bare platinum hot wires. (continued)

Run	P_{cell}	Q	T_{exp}	$ ho_{calc}$	λ_{exp}	STAT	T_{cell}
point	MPa	$ m W\cdot m^{-1}$	K	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	$W \cdot m^{-1} \cdot K^{-1}$		K
29132	2.108	0.06570	394.023	0.7745	0.02276	0.008	391.934
29133	2.108	0.05490	393.674	0.7758	0.02265	0.010	391.933
29134	2.108	0.04508	393.360	0.7770	0.02282	0.014	391.933
29135	1.907	0.07738	394.462	0.6845	0.02248	0.006	391.936
29137	1.907	0.05490	393.720	0.6868	0.02249	0.010	391.936
29138	1.907	0.04509	393.410	0.6877	0.02251	0.014	391.944
29139	1.669	0.07737	394.505	0.5848	0.02245	0.006	391.890
29141	1.666	0.05486	393.754	0.5855	0.02224	0.010	391.899
29142	1.664	0.04507	393.427	0.5855	0.02218	0.013	391.914
29143	1.419	0.07740	394.634	0.4852	0.02232	0.006	391.936

