IN THE CLAIMS

Please amend claim 41.

1. (Withdrawn) A method for conveying products to a downstream conveyor,

comprising:

providing a first conveyor having a plurality of roller shafts, each roller shaft

driving at least one roller;

driving a first group of rollers shafts at a first speed;

driving a second group of roller shafts at a second speed, the second speed

being less than the first speed, the second group being downstream of and proximate to

the first group;

driving a third group of roller shafts at substantially the second speed, the third

group being downstream of and proximate to the second group; and

altering said driving of the third group relative to said driving of the second group

so as to change the spacing between adjacent products being provided to the

downstream conveyor.

2. (Withdrawn) The method of claim 1 wherein said altering includes spacing

adjacent products to a predetermined spacing.

3. (Withdrawn) The method of claim 2 wherein the predetermined spacing

corresponds to the distance between product driving lugs of the downstream conveyor.

4. (Withdrawn) The method of claim 1 which further comprises providing a

first driving motor for driving the first group, a second driving motor for driving the

second group, and a third driving motor for driving the third group.

5. (Withdrawn) The method of claim 4 wherein the second motor is a servo

motor and the third motor is a servo motor.

6. (Withdrawn) The method of claim 5 wherein the first motor is a variable

frequency motor.

7. (Withdrawn) The method of claim 1 wherein each roller shaft of each

group drives a plurality of rollers.

8. (Withdrawn) The method of claim 1 wherein each roller shaft of the first

group drives a plurality of slippable rollers.

9. (Withdrawn) The method of claim 8 wherein each roller shaft of the

second group drives a plurality of rollers which are fixed to the corresponding shaft.

10. (Withdrawn) The method of claim 8 wherein each roller shaft of the third

group drives a plurality of rollers which are fixed to the corresponding shaft.

11. (Withdrawn) The method of claim 1 wherein the first speed, second

speed, and third speed refer to the rotational speed of the corresponding group of roller

shafts.

12. (Withdrawn) The method of claim 1 wherein the first speed, second

speed, and third speed refer to the conveying path speed of the at least one roller

supported by the corresponding group of roller shafts.

13. (Withdrawn) conveyor for conveying products along a conveying path,

comprising:

a first support member extending along one side of the conveying path and

parallel to the conveying path;

a second support member extending along the opposite side of the conveying

path and parallel to the conveying path;

a first driving member supported by said first support member and extending

along a first length of said first support member, said first driving member driving at

least a first roller:

a second driving member supported by said second support member and

extending along a second length of said second support member, said second driving

member driving at least a second roller;

a third driving member supported by said first support member and extending

along a third length of said first support member, said third driving member driving at a

third roller, wherein the second length overlaps a portion of the first length and the

second length overlaps a portion of the third length;

a first means for driving said first driving member;

a second means for driving said second driving member; and

a third means for driving said third driving member.

14. (Withdrawn) The conveyor of claim 13 wherein said first driving member

drives a plurality of slippable rollers.

15. (Withdrawn) The conveyor of claim 14 wherein said second driving

member drives a plurality of fixed rollers.

16. (Withdrawn) conveyor of claim 15 wherein said third driving member

drives a plurality of fixed rollers.

17. (Withdrawn) The conveyor of claim 13 which further comprises an

electronic controller operatively coupled to said first driving means, said second driving

means, and said third driving means.

18. (Withdrawn) The conveyor of claim 17 wherein said controller operates

said second driving member and said third driving member at substantially the same

speed.

RESPONSE TO OFFICE ACTION

Serial No. 10/549,439

Attorney Docket: 17303-62825

(Withdrawn) The conveyor of claim 17 wherein said controller alters the 19.

position of said second driving member and relative to the position of said third driving

member.

(Withdrawn) The conveyor of claim 13 wherein said first driving member 20.

is a first driving chain, said second driving member is a second driving chain, and said

third driving member is a third driving chain.

(Withdrawn) The conveyor of claim 13 wherein said second driving 21.

means is a first servo motor, and said third driving means is a second servo motor.

(Withdrawn) A conveyor for conveying a product comprising: 22.

a first driving chain placed along a side of a conveying path and parallel to the

conveying path, said first chain being driven in a first manner;

a second driving chain placed along a side of the conveying path and parallel to

the conveying path, at least a portion of the length of said second driving chain

overlapping at least a portion of said first driving chain, second chain being driven in a

second manner different than the first manner; and

a roller shaft having two ends and a driving wheel proximate to one end of said

shaft; and

at lease one roller driven by said shaft, said at least one roller being adapted and

configured for conveying the product;

wherein said conveyor is adapted and configured to rotatably support said roller

shaft such that said driving wheel is capable of engaging said first chain and driving said

roller shaft in the first manner, and said conveyor is adapted and configured to rotatably

support said roller shaft such that said driving wheel is capable of engaging said second

chain and driving said roller shaft in the second manner.

(Withdrawn) The conveyor of claim 22 which further comprises an 23.

electronic controller operatively coupled to said first chain to drive said first chain in the

first manner and operatively coupled to said second chain to drive said second chain in

the second manner, a first sensor providing a first signal corresponding to the position

of said first chain, and a second sensor providing a second signal corresponding to the

position of said second chain, wherein said controller receives said first signal and said

second signal and adjusts the position of said first chain relative to the position of said

second chain.

(Withdrawn) The conveyor of claim 22 which further comprises an infeed 24.

conveyor for receiving products from said conveyor, said infeed conveyor including a

moving conveying surface and a first sensor for providing a first signal corresponding to

the position of said moving conveying surface, and further

comprising a second sensor providing a second signal corresponding to the

position of one of said first chain or said second chain, and further comprising an

electronic controller operatively coupled to the one said chain, wherein said controller

receives said first signal and said second signal and adjusts the position of the one said

chain relative to the position of said moving conveying surface.

25. (Withdrawn) The conveyor of claim 24 wherein said first sensor is an

encoder.

26. (Withdrawn) The conveyor of claim 25 wherein said second sensor is an

optical sensor.

27. (Withdrawn) The conveyor of claim 22 wherein the conveying path has a

length, and which further comprises means for supporting said roller shaft at a location

along the length, said supporting means supporting said shaft at the location when said

driving wheel engages said first chain and supporting said shaft at the location when

said driving wheel engages said second chain.

28. (Withdrawn) The conveyor of claim 22 wherein said rollers are slippable

on said roller shaft.

29. (Withdrawn) The conveyor of claim 22 wherein said rollers are fixed on

said roller shaft.

30. (Withdrawn) conveyor of claim 22 wherein said first manner is driving by a

first motor and said second manner is driving by a second motor.

31. (Withdrawn) The conveyor of claim 30 wherein the first motor is a variable

frequency drive and the second motor is a servo drive.

32. (Withdrawn) The conveyor of claim 22 wherein said first manner is driving

at a first speed and said second manner is driving at a second speed different than the

first speed.

33. (Withdrawn) The conveyor of claim 32 wherein the ratio of the first speed

to the second speed is a substantially constant ratio.

34. (Withdrawn) The conveyor of claim 22 wherein said first manner is driving

at a first speed, and said second manner is driving at substantially the first speed and

said second manner includes a plurality of drive interruptions.

35. (Withdrawn) The conveyor of claim 34 wherein the plurality of drive

interruptions result in a plurality of positional changes of said first chain relative to said

second chain.

36. (Withdrawn) The conveyor of claim 34 wherein the second manner

includes a plurality of periodic drive delays.

37. (Withdrawn) The conveyor of claim 34 wherein the interruptions include a

period of driving at a faster speed.

38. (Withdrawn) The conveyor of claim 34 wherein the interruptions include a

period of driving at a slower speed.

39. (Withdrawn) The conveyor of claim 34 wherein the interruptions include a

period of stoppage.

40. (Withdrawn) The conveyor of claim 22 wherein the first manner is

independent of the second manner.

41. (currently amended) A conveyor for conveying a product, comprising:

a first section of roller shafts, each said shaft of said first section driving a

plurality of rollers each having an inner diameter slippable [-on-] relative to the outer

diameter of the corresponding said shaft in response to a torque imposed by

conveying the product, a first portion of said first section driving rollers which slip on

the corresponding said shaft at a first predetermined torque, a second portion of said

first section driving rollers which slip on the corresponding said shaft at a second

predetermined torque, said second torque being greater than said first torque; and

a second section of roller shafts, each said shaft of said second section driving at

least one roller having an inner diameter fixed to an outer diameter of a

corresponding shaft of said second section, said second section adapted and

configured for receiving products conveyed from said first section.

42. (Previously Presented) The conveyor of claim 41 wherein the second

portion of said first section has a length that is less than about the length of the product.

43. (Original) The conveyor of claim 42 wherein the length of the second

section is greater than about forty percent of the length of the product.

44. (Original) The conveyor of claim 41 which further comprises an infeed

conveyor and a product wrapper, said infeed conveyor receiving conveyed products

from said second section and providing the products to said product wrapper.

45. (Cancelled)

46. (Withdrawn) A method for conveying products, comprising:

providing a slippable roller conveying section, a second conveying section, and a

third conveying section;

conveying a plurality of products at a first speed by the slippable roller conveying

section:

accumulating the plurality of products;

receiving the accumulated products from the slippable roller conveying section

onto the second conveying section at a second speed less than the first speed;

transporting the accumulated products from the second conveying section onto

the third conveying section; and

providing the accumulated products from the third conveying section in a

predetermined spacing.

47 (Withdrawn) The method of claim 46 wherein the products are provided

from the third conveying section in a first predetermined spacing, and which further

comprises spacing the products on the second conveying section to a second

predetermined pattern.

48. (Withdrawn) The method of claim 47 wherein the second predetermined

pattern is for adjacent products to touch one another.

49. (Withdrawn) The method of claim 47 wherein the second predetermined

pattern is for adjacent products to be separated from one another by roughly equivalent

predetermined gaps.

50. (Withdrawn) The method of claim 46 wherein the second conveying

section is a fixed roller conveying section.

51 (Withdrawn) The method of claim 46 wherein said transporting is at

substantially the second speed.

52. (Withdrawn) The method of claim 46 wherein said accumulating is at least

partly on the slippable roller conveying section.

53. (Withdrawn) The method of claim 46 which further comprises providing a

wrapping station having product spacing requirements, and the predetermined spacing

is consistent with the spacing requirements.

54 (Withdrawn) The method of claim 53 which further comprises sensing a

position of the wrapping station and controlling the operation of the third conveying

section in response to the signal.

55. (Withdrawn) The method of claim 54 wherein the wrapping station

includes a belt and the sensed position is the position of the belt.

56. (Previously Presented) The conveyor of claim 44 wherein said infeed

conveyor has a conveying surface and which further comprises:

an electronic controller for controlling the speed of said second section; and

a sensor providing to said controller a signal corresponding to the position of the

conveying surface of said infeed conveyor;

wherein said controller controls the speed of said second section in response to

the signal.

57. (Previously Presented) The conveyor of claim 41 which further comprises:

a first means for driving said first portion;

a second means for driving said second portion;

a third means for driving said second section;

and an electronic controller operatively coupled to first driving means, said

second driving means, and said third driving means.

58. (Previously Presented) The conveyor of claim 57 wherein said controller

operates said second portion and said second section at substantially the same speed.

59. (Previously Presented) The conveyor of claim 41 which further

comprises means for stopping a product on said second portion of said first section.

60. (Previously Presented) The conveyor of claim 59 wherein said stopping

means is a product stop that blocks products on the conveyor.

61. (Previously Presented) The conveyor of claim 59 wherein said stopping

means includes a brake for stopping rotation of a plurality of slippable rollers.

62. (Previously Presented) The conveyor of claim 59 wherein said stopping

means includes pressing on the product from above.

63. (Previously Presented) The conveyor of claim 41 wherein the conveying

speed of the second section is about the same as the conveying speed of the second

portion.

(Previously Presented) The conveyor of claim 41 wherein the conveying 64.

speed of the first portion is greater than the conveying speed of the second portion.

(Previously Presented) The conveyor of claim 41 wherein the conveying 65.

speed of said second section is less than the conveying speed of said first section.

(Previously Presented) The conveyor of claim 57 which further comprises 66.

an infeed conveyor and a product wrapper, said infeed conveyor receiving product from

said second section;

wherein said electronic controller adjusts said second driving means relative to

said third driving means so as to change the spacing between adjacent products being

provided to said infeed conveyor.

(Previously Presented) The conveyor of claim 41 which further comprises: 67.

a first driving chain placed along a side of the conveying path and parallel to the

conveying path, said first chain driving said first portion of said first section;

a second driving chain placed along a side of the conveying path and parallel to

the conveying path, at least a portion of the length of said second driving chain

overlapping at least a portion of said first driving chain, said second chain driving said

second portion of said first section; and

wherein at least one said roller shaft of said first section has two ends and a

driving wheel proximate to one end of said shaft; and said conveyor is adapted and

configured to rotatably support said one roller shaft such that said driving wheel is

capable of engaging said first chain along the overlapping portion of the length and

driving said one roller shaft, and said conveyor is adapted and configured to rotatably

support said one roller shaft such that said driving wheel is capable of engaging said

second chain along the overlapping portion of the length and driving said one roller

shaft.

RESPONSE TO OFFICE ACTION Serial No. 10/549,439