# Finance Quantitative

Modèlisation du Smile

Le groupe de travail

Version: 11 févr. 2023

In this problem set, use the functions GBSOption and GBSGreeks from the fOptions library. Verify that you understand all the arguments, in particular the notion of "cost of carry".

#### Data

The spot is S = 110. We observe the following prices for calls and puts on an asset paying a continuous dividend.

## Questions

#### Dividend yield and risk-free rate

Using the Call-Put parity, estimate by linear regression the implied risk-free rate (r) and dividend yield (d).

• Using the functions above, write a function that computes the implied volatility of a Vanilla option. The function should have the following signature:

where:

p price of the option

sigma an optional initial value for the volatility

maxiter an optional maximum number of iterations

tol an optional tolerance for the error  $|g(\sigma)|$ .

- Test the accuracy of your procedure on options that are deep in the money and deep out of the money, and report the results of your tests.
- Compute the implied volatility of the calls and puts in the data set.
- Fit a quadratic function to the call and put implied volatilities (one function for the calls, one for the puts), and plot actual vs. fitted data. Interpret the results.

| Strike | Call   | Put    |
|--------|--------|--------|
| 70     | 38.496 | 0.017  |
| 75     | 33.656 | 0.055  |
| 80     | 28.863 | 0.143  |
| 85     | 24.193 | 0.336  |
| 90     | 19.722 | 0.736  |
| 95     | 15.493 | 1.395  |
| 100    | 11.704 | 2.499  |
| 105    | 8.529  | 4.213  |
| 110    | 5.851  | 6.390  |
| 115    | 3.831  | 9.279  |
| 120    | 2.372  | 12.702 |
| 125    | 1.374  | 16.542 |
| 130    | 0.768  | 20.823 |
| 135    | 0.414  | 25.315 |
| 140    | 0.208  | 29.994 |
| 145    | 0.093  | 34.765 |
| 150    | 0.049  | 39.594 |
| 155    | 0.020  | 44.445 |
| 160    | 0.008  | 49.309 |

## Breeden-Litzenberger formula

Compute the implied density of  $S_T$  using the Breeden-Litzenberger formula. Estimate

$$\frac{\partial^2 f}{\partial K^2}$$

by finite difference. Remember that now  $\sigma$  is a function of strike. Plot the implied distribution and compare to the distribution implicit in the standard Black-Scholes model. Interpret your observations.

#### Shimko's Model

Compute the implied distribution of  $S_T$  using Shimko's model and the quadratic smile function estimated above. Plot this distribution and compare with the result of the Breeden-Litzenberger formula. Interpret your observations.

### Pricing a digital call

Recall that a digital call with strike K pays one euro if  $S_T \geq K$ , and nothing otherwise.

Using the implied density computed above, compute the price of a digital call by numerical integration.

Perform this calculation for strikes ranging from 80 to 140. Compare with the price obtained using a log-normal distribution for  $S_T$ . Interpret your observations.