Personalized medicine: Individualized Treatment Rules

Definition of Precision Medicine

- Precision medicine is a medical model that proposes the customization of healthcare, with medical decisions, practices, and/or products being tailored to the individual patient. In this model, diagnostic testing is often employed for selecting appropriate and optimal therapies based on the context of a patient's genetic content or other molecular or cellular analysis. Tools employed in precision medicine can include molecular diagnostics, imaging, and analytics/software.
- Making optimal healthcare decision for each individual patient based on this subject's context information.

Illustration Data

Table: An illustration dataset

ID	Y	A	X_1	X_2	X_3	
1	1.5	1	F	26	7.8	•••
2	1.2	2	М	28	8.2	
3	2.3	3	М	31	8.9	
4	0.9	2	F	35	9.4	
5	1.7	1	М	22	7.3	
<u>:</u>	:	:	:	:	:	٠

Research Question

Based on these data, how can we treat a new patient?

In other words, how can we learn a treatment assignment rule that, if followed by the entire population of certain patients, would lead to the best outcome on average?

Three Key Components for Precision Medicine

Context based decision learning has data in 3 components:

- X_1, X_2, \cdots, X_p is context information.
- A is a context action.
- Y is a reward.

Notes:

- This data structure differs from data for typical supervised and unsupervised learning.
- Examples on data collection for precision medicine ...

Other Examples: Car Purchase

Table: My Friends' Rating of Their First Cars

ID	Satisfaction	Car Type	Gender	Age	Mileage per Day	
1	90%	Focus	F	26	7.8	
2	85%	Corolla	М	28	8.2	
3	70%	Civic	М	31	8.9	
4	75%	Corolla	F	35	9.4	
5	60%	Civic	М	22	7.3	
<u>:</u>	:	:	:	:	:	•••

Learning from these data, what car should I purchase?

Other Examples: Business Investment

Table: Previous Commercial Investments and Returns

Case ID	Return	Туре	Month	Location	Share of Market	
1	1.2	TV	Jan	MW	12.5	
2	0.9	Radio	Oct	NE	18.2	
3	1.4	Web	Nov	WE	12.9	
4	1.3	Web	Dec	MW	10.4	
5	1.2	Radio	Feb	SE	11.3	
<u>:</u>	:	:	:	:	i:	٠.,

Learning from these data, what is our best way to invest in New England area if our product has 12% market share in this March?

Making Optimal Decision Based on Data

Broad applications, some examples:

- Treatment selection: which treatment is the best for this patient?
- Treatment transition: should we keep using the current treatment or consider an intensification?
- Business analytic: how to invest (among a few choices) to maximize the return?
- Recommendation system: which item should a system recommend to a customer to maximize profit?

All these problems are similar in terms of data format and analytic solutions. **Essentially, we focus on a problem of making the optimal decision based on data.**

So, what is a general framework to solve this?

Reinforcement Learning Framework

- This problem is a special case in reinforcement learning framework which is different from supervised learning (e.g. classification) and unsupervised learning (e.g. clustering).
- Traditional alternatives (e.g. linear regression for rewards) may not be efficient to solve these problems.
- It is connected with supervised learning methods (e.g. support vector machines).
- It can be extended to multiple stage decision making to optimize treatment sequences (e.g. dynamic treatment regimes).

Outlines

- Precision Medicine
- Support Vector Machines and Outcome Weighted Learning
- 3 Extensions: multi-treatments, ordinal treatments

Notations

- ullet There are N subjects from a large population.
- A_i is the treatment assignment (actions), where $i=1,\cdots,N$.
- Y_i is the response assuming that larger Y_i is better (rewards).
- X_i is a vector of covariates.
- (Y, A, X) is the generic random variable of $\{(Y_i, A_i, X_i)\}$.
- \mathcal{P} is the distribution of (Y, A, X).
- ullet E is the expectation with respect to \mathcal{P} .
- Population space \mathcal{X} , i.e. $X_i \in \mathcal{X}$.
- $\mathcal{D}(\cdot)$ is a treatment recommendation based on covariates, i.e. $\mathcal{D}(\cdot): \mathcal{X} \to \mathcal{A}$.
- $\mathcal{P}^{\mathcal{D}}$ is the distribution of (Y, A, X) given that $A = \mathcal{D}(X)$.

Value Function

Define

$$E^{\mathcal{D}}(Y) = \int Y d\mathcal{P}^{\mathcal{D}} = \int Y \frac{d\mathcal{P}^{\mathcal{D}}}{d\mathcal{P}} d\mathcal{P} = E\left[\frac{I\left\{A = \mathcal{D}(X)\right\}}{p(A|X)}Y\right],$$

where we use the fact that

$$\frac{d\mathcal{P}^{\mathcal{D}}}{d\mathcal{P}} = \frac{p(y|x,a)I\{a=\mathcal{D}(x)\}p(x)}{p(y|x,a)p(a|x)p(x)} = \frac{I\{a=\mathcal{D}(x)\}}{p(a|x)}.$$

Our objective is to find $\mathcal{D}(\cdot)$ to maximize the following value function:

$$\mathcal{D}_o \in \underset{\mathcal{D} \in R}{\operatorname{argmax}} E^{\mathcal{D}}(Y) = E\left[\frac{I\left\{A = \mathcal{D}(X)\right\}}{p(A|X)}Y\right],$$
 (1)

where R is a space of possible treatment recommendations.

Advantages of This Framework

- Y is able to handle binary, continuous, time to event data type.
- A is able to handle multiple treatments.
- X is able to incorporate variety of variables. For example, if X
 includes study ID, the framework can be used for meta analysis.
- P(A|X) allows treatment assignments depending on covariates. So it can handle both randomized control trials and observational studies.
- It has an objective function to evaluate different treatment assignments.

An Example to Build Intuition

Table: Example Data

ID	Y	A	X	P(A X)
1	1	1	1	0.5
2	2	1	2	0.5
	3	1	3	0.5
4	4	1	4	0.5
5	5	1	5	0.5
6	3	2	1	0.5
7	3	2	2	0.5
8	3	2	3	0.5
9	3	2	4	0.5
10	3	2	5	0.5
	3	2	5	0.5

Questions to think about: why is P(A|X)=0.5? what do the responses look like?

Which Doctor is Better

Suppose we have two doctors and each of them has a treatment rule. Which doctor is a better one?

- Doctor Adam: give patients treatment 1 if $X \ge 2$, and treatment 2 otherwise, denoted as $\mathcal{D}_A(X)$.
- Doctor Barry: give patients treatment 1 if $X \ge 3$, and treatment 2 otherwise, denoted as $\mathcal{D}_B(X)$.

Example Continued

Table: Calculation Based on Table 4

ID	Y	A	X	P(A X)	\mathcal{D}_A	\mathcal{D}_B	$\mathcal{D}_A = A$	$\mathcal{D}_B = A$
1	1	1	1	0.5	2	2	0	0
2	2	1	2	0.5	1	2	1	0
3	3	1	3	0.5	1	1	1	1
4	4	1	4	0.5	1	1	1	1
5	5	1	5	0.5	1	1	1	1
6	3	2	1	0.5	2	2	1	1
7	3	2	2	0.5	1	2	0	1
8	3	2	3	0.5	1	1	0	0
9	3	2	4	0.5	1	1	0	0
10	3	2	5	0.5	1	1	0	0

Example Continued

Doctor Adam:

$$E^{\mathcal{D}_A(Y)} = \frac{1}{10} \left(\frac{0}{0.5} \times 1 + \frac{1}{0.5} \times 2 + \frac{1}{0.5} \times 3 + \frac{1}{0.5} \times 4 + \frac{1}{0.5} \times 5 + \frac{1}{0.5} \times 3 + \frac{0}{0.5} \times 3 +$$

Doctor Barry:

$$\begin{split} E^{\mathcal{D}_B(Y)} &= \frac{1}{10} \left(\frac{0}{0.5} \times 1 + \frac{0}{0.5} \times 2 + \frac{1}{0.5} \times 3 + \frac{1}{0.5} \times 4 + \frac{1}{0.5} \times 5 + \frac{1}{0.5} \right. \\ &\quad \times 3 + \frac{1}{0.5} \times 3 + \frac{0}{0.5} \times 3 + \frac{0}{0.5} \times 3 + \frac{0}{0.5} \times 3 \right) \\ &= 3.6 \end{split}$$

Conclusion: Doctor Barry's rule is better than Doctor Adam's. Can we improve Doctor Barry's rule? How can we find the best rule?

Graphic Illustration

Individualized Treatment Recommendation

Thought Provoking Questions

- Both treatment 1 and treatment 2 have an average treatment effect as 3.0. But ITR generates average benefit value 3.6. Can algorithm beat a new molecule entity?
- Treatment 1 should not be only better than treatment 2. It has to be better with a non-trivial benefit margin. How can we handle this case?
- What if the treatment randomization ratio is not 1:1?
- What if we have multiple covariates? The rule can be complicated.
- What if we have multiple treatments?

Analysis results: how ITR creates more value.

This data analysis shows how ITR creates additional value for patients. We have 1978 patients from two treatment arms, and 2 important biomarkers are selected from 35 biomarkers.

Table: HbA1c Reduction Before and After Following ITR. Patients with baseline fasting insulin $\geq 61.12 \mathrm{pmol/L}$ and baseline HbA1c $\geq 8.1\%$ (A_o^1) are recommended to take Pioglitazone, otherwise (A_o^0) patients are recommended to take Gliclazide. After following ITR, the overall HbA1c reduction changes from -1.287% to -1.473%. Notes: ITR is our proposed method which is referred to as Individualized Treatment Recommendation.

	Origina	al	Follow ITR			
	-1.287	7	-1.473			
	Gliclazide Pioglitazone			Gliclazide	Pioglitazone	
Mean	-1.271	-1.303	A_o^1	-1.394	-1.864	
	-1.2/1		A_o^0	-1.19	-0.932	

Key Insights on Solving ITR

Three connections:

- Maximization and minimization of the value function.
- Classification and loss functions.
- ITR and weighted classifications.

From Maximization to Minimization

Original objective function (Qian and Murphy, 2011)

$$\mathcal{D}_o \in \underset{\mathcal{D} \in R}{\operatorname{argmax}} E^{\mathcal{D}}(Y) = E\left[\frac{I\left\{A = \mathcal{D}(X)\right\}}{p(A|X)}Y\right].$$
 (2)

Making connections:

$$E\left\{\frac{Y}{p(A|X)}\right\} - E\left[\frac{I\left\{A = \mathcal{D}(X)\right\}}{p(A|X)}Y\right] = E\left[\frac{I\left\{A \neq \mathcal{D}(X)\right\}}{p(A|X)}Y\right]$$

New objective function:

$$\mathcal{D}_o \in \underset{\mathcal{D} \in R}{\operatorname{argmin}} E^{\mathcal{D}}(Y) = E\left[\frac{I\left\{A \neq \mathcal{D}(X)\right\}}{p(A|X)}Y\right].$$
 (3)

Empirical Evaluation

Objective function:

$$\mathcal{D}_o \in \underset{\mathcal{D} \in R}{\operatorname{argmin}} E^{\mathcal{D}}(Y) = E\left[\frac{I\left\{A \neq \mathcal{D}(X)\right\}}{p(A|X)}Y\right].$$

When we have data, we can evaluate the objective function as, Empirical evaluation:

$$D_o = \underset{D \in R}{\operatorname{argmin}} n^{-1} \sum_{i=1}^n \frac{Y_i}{p(A_i|X_i)} I\{A_i \neq \mathcal{D}(X_i)\}.$$
 (4)

Classification Problems

A classification problem is to train a rule $\mathcal{D}(X)$ on a dataset to predict new subject membership. A simple dataset can be as below,

Table: An illustration dataset

ID	A	X_1	X_2	X_3	• • •
1	1	F	26	7.8	
2	2	М	28	8.2	
3	1	М	31	8.9	
4	3	F	35	9.4	
5	1	М	22	7.3	
:	:	:	:	:	٠

Classification and Loss Function

Roughly speaking, A good classifier has smaller errors (we will add regularization later).

Classification objective function

$$D_o = \operatorname*{argmin}_{D \in R} n^{-1} \sum_{i=1}^n I\{A_i \neq \mathcal{D}(X_i)\}.$$

Compare our ITR objective function below ITR objective function

$$D_o = \operatorname*{argmin}_{D \in R} n^{-1} \sum_{i=1}^n \frac{Y_i}{p(A_i|X_i)} I\left\{A_i \neq \mathcal{D}(X_i)\right\}.$$

Important Implications and Next Steps

- We can solve the original reinforcement learning problem (ITR) as a weighted supervised learning problems (Zhao et al., 2012).
- There are vast amount of methods and literatures on solving classification problems, in particular for binary classifications.
- With some modifications, we can leverage these existing algorithms to develop our ITR algorithms.
- We will focus on the Support Vector Machine (SVM). However, many other classifiers can be tailored for this.

Outlines

- Precision Medicine
- Support Vector Machines and Outcome Weighted Learning
- 3 Extensions: multi-treatments, ordinal treatments

Classification

- Observe a collection of i.i.d. training data $(X_1, a_1), (X_2, a_2), \ldots, (X_n, a_n)$ from \mathcal{P} .
- Covariates (inputs, features, prediction variables): $X_i = (X_{i1}, \dots, X_{ip})$
- Response variable (class label, output):

$$a_i \in \{c_1, c_2, \dots, c_K\}.$$

• We want to build a model $\mathcal{D}(X)$ (using the training data), so that when seeing a new input vector X, we can predict the output \hat{a} .

Classification Errors and Loss Function

• Loss function (0/1):

$$L\{A, \mathcal{D}(X)\} = \begin{cases} 0 & \text{if } A = \mathcal{D}(X) \\ 1 & \text{if } A \neq \mathcal{D}(X) \end{cases}$$

Misclassification error

$$R(\mathcal{D}) = E_{\mathcal{P}}L\{A, \mathcal{D}(X)\}$$

= $P_{\mathcal{P}}[I\{A \neq \mathcal{D}(X)\}].$

• For binary class case, Bayes optimal classifier $(A \in \{-1,1\})$:

$$\mathcal{D}^*(X_i) = \underset{\mathcal{D}}{\operatorname{argmin}} R(\mathcal{D})$$
$$= \operatorname{sgn} \left\{ \Pr(A = 1 | X = X_i) - \Pr(A = -1 | X = X_i) \right\}.$$

• Bayes error: $R(\mathcal{D}^*)$.

Binary Large-Margin Classifier

- $a \in \{\pm 1\}$; Estimate f(X) with classification rule $\operatorname{sgn}\{f(X)\}: \mathbb{R}^d \to \{\pm 1\}$, $\hat{a} = +1$ if $f(X) \geq 0$ and $\hat{y} = -1$ if f(X) < 0.
- $A_i f(X_i)$: functional margin.
- Correction classification if $A_i f(X_i) > 0$.
- The 0-1 loss: $I\{A_i f(X_i) \le 0\}$.

Support Vector Machine (SVM)

Linearly separable: Find $f(X) = \beta_0 + X^{\top}\beta$ to separate two groups of points.

Note:

• red cross $\longleftrightarrow +1$; blue circle $\longleftrightarrow -1$.

Which one is the best?

SVM: Maximum Separation

Maximum Margin Classifier

Goal: Separate two classes and maximizes the distance to the closest points from either class (Vapnik 1996)

- Unique solutions
- Better classification performance on the training data

maximize
$$\gamma$$

subject to $A_i(\beta_0 + X_i^{\top}\beta) \ge \gamma$, $\|\beta\| = 1$.

All the points are at least a signed distance γ from the decision boundary

- Maximize the minimum distance
- Need constraint $\|\beta\| = 1$

Equivalent Problem

Try to get rid of the constraint $\|\beta\|=1$

$$\frac{1}{\|\beta\|} A_i(X_i^{\top} \beta + \beta_0) \ge \gamma,$$

or equivalently

$$A_i(X_i^{\top}\beta + \beta_0) \ge \gamma \|\beta\|$$

Any positively scaled (β, β_0) also satisfies this inequality. We set $\|\beta\| = \frac{1}{\gamma}$. Then the objective function $\gamma = 1/\|\beta\|$, and

$$\begin{split} & \underset{\beta,\beta_0}{minimize} & & \frac{1}{2}\|\beta\| \\ & \text{subject to} & & A_i(X_i^\top\beta+\beta_0) \geq 1, \quad \forall i=1,...,n. \end{split}$$

Linear SVM for perfectly separable cases.

Note: by definition $1/\|\beta\|$ is the width of margin.

Optimal Hyperplane of SVM

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}\|\beta\|^2 \\ \text{subject to} & A_i(\langle\beta,X_i\rangle+\beta_0)-1\geq 0, \quad \forall i=1,2,\cdots,n. \end{array}$$

Lagrange function is :

$$L_P(\beta, \beta_0, \alpha) = \frac{1}{2} \|\beta\|^2 - \sum_{i=1}^n \alpha_i \{ A_i(\langle \beta, X_i \rangle + \beta_0) - 1 \}$$

• For any fixed α :

$$\begin{cases} \frac{\partial L(\beta,\beta_0,\alpha)}{\partial \beta_j} = 0, & j = 1,2,\cdots,p \\ \frac{\partial L(\beta,\beta_0,\alpha)}{\partial \beta_0} = 0 \end{cases} \implies \begin{cases} \beta = \sum_{i=1}^n \alpha_i A_i X_i \\ 0 = \sum_{i=1}^n \alpha_i A_i \end{cases}$$

The Dual Problem

maximize
$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j A_i A_j \langle X_i, X_j \rangle$$
 subject to
$$\alpha_i \geq 0, \quad i = 1, 2, \cdots, n$$

$$\sum_{i=1}^n \alpha_i A_i = 0.$$

This optimization is a quadratic programming problem and can be solved using classical optimization software. We are going to provide details on implementation in the R hands on example.

Primal vs. Dual

- Minimize L_P with respect to primal variables β_0, β
- Maximize L_D with respect to dual variables α_i
- Maximizing the dual is often a simpler convex QP than the primal, in particular when $p\gg n.$

Recovering the Optimal Hyperplane

- The optimizer of the dual: α^*
- β^* is given by:

$$\beta^* = \sum_{i=1}^n \alpha_i^* A_i X_i.$$

- β_0^* ???
- Decision function:

$$f(\mathbf{x}) = \langle \beta^*, X \rangle + \beta_0^*.$$

Classification rule:

$$sgn\{f(X)\}.$$

Support Vectors

The KKT conditions imply,

$$\alpha_i^* \left\{ A_i (\beta_0^* + X_i^\top \beta^*) - 1 \right\} = 0.$$

These imply

- If $A_i f^*(X_i) > 1$, then $\alpha_i^* = 0$.
- If $\alpha_i^* > 0$, then $A_i f^*(X_i) = 1$, or in other words, X_i is on the boundary of the "slab".
- The solution β^* is defined in terms of a linear combination of the support points.

Geometric Interpretation: Support Vectors

The *i*-th point is called a support vector if $\alpha_i > 0$

The *i*-th point is a support vector $\Longrightarrow A_i(\langle \beta^*, X_i \rangle + \beta_0) = 1 \Longrightarrow \beta_0^* = \dots$

General Case for SVM

ullet Nonseparable: "zero"-error not attainable \to "slack variables" $\{\xi_i\}_{i=1}^n$

where C>0 is a tuning parameter.

The Dual Problem for SVM

Substituting into the Lagrange primal, we obtain the Lagrange dual problem as

minimize
$$L_D(\alpha) = \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j A_i A_j \langle X_i, X_j \rangle - \sum_{i=1}^n \alpha_i$$
 subject to
$$0 \le \alpha_i \le C, \quad i = 1, 2, \cdots, n$$

$$\sum_{i=1}^n \alpha_i A_i = 0.$$

- Can be solved by quadratic programming.
- Recover β : $\beta = \sum_{i=1}^n \alpha_i A_i X_i$; For given β , β_0 can be solved using KKT conditions or Linear Programming (LP).

Support Vectors

- $\alpha_i = 0 \rightarrow A_i f(X_i) > 1$; not needed in constructing f(X). Support vectors:
- $0 < \alpha_i < C \rightarrow A_i f(X_i) = 1$ (Solve β_0).
- $\alpha_i = C \to A_i f(X_i) < 1$.
- Outliers are SVs!

Reformulation of SVM Optimization

SVM solves

$$minimize_{\beta_0,\beta_1} \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \ell_{\text{SVM}} \{A_i f(X_i)\}.$$

- $\ell_{\text{SVM}}(u) = (1-u)_+$ (Hinge Loss).
- Nonlinear learning can be achieved by basis expansion or kernel learning.
- Kernel Trick: Replace $\langle X_i,X_j\rangle$ by $K(X_i,X_j)$ and $f(X)=\sum_{i=1}^n A_i\alpha_iK(X_i,X)+\beta_0.$

Loss Functions

To estimate the classifier (threshold), $\operatorname{sgn}\{\Pr(A=1|X)-\Pr(A=-1|X)\}$

- 0-1 Loss: $\ell\{A, f(X)\} = I\{Af(X) < 0\}.$
- Hinge Loss: $\ell\{A, f(X)\} = \{1 Af(X)\}_+$
- Deviance Loss: $\ell\{A, f(X)\} = \log[1 + \exp\{-Af(X)\}]$

Classification and Loss Function

Roughly speaking, a good classifier has smaller errors (will add regularization later).

Classification objective function

$$D_o = \operatorname*{argmin}_{D \in R} n^{-1} \sum_{i=1}^n I\{A_i \neq \mathcal{D}(X_i)\}.$$

If we compare our ITR objective function as below, ITR objective function

$$D_o = \operatorname*{argmin}_{D \in R} n^{-1} \sum_{i=1}^n \frac{Y_i}{p(A_i|X_i)} I\left\{A_i \neq \mathcal{D}(X_i)\right\}.$$

ITR.SVM

ITR objective function

$$D_o = \operatorname*{argmin}_{D \in R} n^{-1} \sum_{i=1}^n \frac{Y_i}{p(A_i|X_i)} I\{A_i \neq \mathcal{D}(X_i)\}.$$

ITR.SVM

$$D_o = \operatorname*{argmin}_{D \in R} n^{-1} \sum_{i=1}^n \frac{Y_i}{p(A_i|X_i)} \ell\{A_i, f(X_i)\} + \frac{\lambda}{2} \|f\|_{\mathcal{H}_K}^2.$$

R package: DTRlearn (function: Olearning_Single)

Outlines

- Precision Medicine
- 2 Support Vector Machines and Outcome Weighted Learning
- 3 Extensions: multi-treatments, ordinal treatments

Multicategory Angle-Based Classification (ABC)

- A simplex based classification structure
- Advantages of ABC (Zhang and Liu, Biometrika, 2014)
 - ► General structure: binary → multicategory
 - Clear geometric interpretation
 - ► Free of sum-to-zero constraint ⇒ faster computational speed
 - Theoretical advantages
 - Numerically competitive

Illustration of $\{W_i\}$ When k=2,3,4.

Remark: When k=3, $\{W_i, i=1,2,3\}$ are the vertices of an equilateral triangle, and when k=4, $\{W_i, i=1,2,3,4\}$ are the vertices of a regular tetrahedron.

Angle Based Classifier

- Let W_j represent class j.
- Our method is to map x to $\hat{f}(x) \in \mathbb{R}^{k-1}$.
- \mathcal{A} is the class spaces as $\mathcal{A} = \{1, 2, \dots, k\}$, and $a_i \in \mathcal{A}$ which is the class membership of subject i.
- We predict \hat{a} to be the class whose corresponding angle is the smallest, i.e. $\hat{a} = \arg\min_{j} \angle(W_j, \hat{f})$, where $\angle(\cdot, \cdot)$ denotes the angle between two vectors.
- Minimizing the angle is equivalent to maximize $\langle f(x_i), W_{a_i} \rangle$.

Angle Based Classifier Illustration

- k=2. $W_1=1$ and $W_2=-1$.
- k=3 (equilateral triangle), $W_1=\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right), W_2=\left(\frac{\sqrt{3}-1}{2\sqrt{2}},-\frac{\sqrt{3}+1}{2\sqrt{2}}\right), W_3=\left(-\frac{\sqrt{3}+1}{2\sqrt{2}},\frac{\sqrt{3}-1}{2\sqrt{2}}\right).$
- k=4 (regular tetrahedron), $W_1=\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right), W_2=\left(\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right), W_3=\left(-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right), W_4=-\left(\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right).$

Angle Based Classifier

With ℓ a convex monotone decreasing function, we have our angle based classifier as,

$$\underset{f \in F}{minimize} \frac{1}{n} \sum_{i=1}^{n} \ell\{\langle f(x_i), W_{a_i} \rangle\} + \lambda J(f). \tag{5}$$

Example (k=2)

For a binary case, i.e. k=2, $\langle f(x_i), W_{a_i} \rangle = af(x_i)$,

- When $\ell(\cdot)$ is a deviance loss, $\ell(z) = \log\{1 + \exp(-z)\}$, equation (5) is a logistic regression.
- When $\ell(\cdot)$ is a hinge loss, $\ell(z)=(1-z)_+$, equation (5) is the support vector machine.

ITR.ABC

Original objective function,

$$D_o = \operatorname*{argmin}_{D \in R} n^{-1} \sum_{i=1}^n \frac{Y_i}{p(A_i|X_i)} I\{A_i \neq \mathcal{D}(X_i)\}.$$

ITR.ABC objective function (Zhang et al., 2017),

$$\underset{f \in F}{minimize} \frac{1}{n} \sum_{i=1}^{n} \frac{Y_i}{\Pr(A_i | X_i)} \ell\{\langle f(x_i), W_{a_i} \rangle\} + \lambda J(f).$$

Ordinal Extension (multiple treatments have a natural order): Chen et al. (2017)