Ecuații cu variabile separabile

O ecuație de forma

$$y' = f(x)g(y) \tag{1.1.1}$$
 unde f și g sunt funcții continue date, iar $y = y(x) \in C(I), \ I \subset \mathbb{R}$ un interval, este

funcția necunoscută, se numește **ecuație cu variabile separabile**. Pentru valori ale lui y pentru care $g(y) \neq 0$, ecuația se scrie sub forma $\frac{y'}{g(y)} = f(x)$

sau
$$\frac{\mathrm{d}y}{g(y)}=f(x)\,\mathrm{d}x$$
. Prin integrarea ambilor membri ai ecuației, se obține
$$\int \frac{\mathrm{d}y}{g(y)}=\int f(x)\,\mathrm{d}x+C,\ C\in\mathbb{R},$$

care se numeşte soluţia generală a ecuaţiei (1.1.1). Din punct de vedere geometric,

aceasta este o familie de curbe plane, care depind de constanta arbitrară C. Dacă pentru o valoare y_0 avem $g(y_0) = 0$, atunci funcția constantă $y(x) = y_0$ este, evident, soluție a ecuației (1.1.1) și se numește **soluție singulară**.

 $X_1(x)Y_1(y)\,\mathrm{d} x + X_2(x)Y_2(y)\,\mathrm{d} y = 0, \tag{1.1.2}$ unde X_1,X_2,Y_1,Y_2 sunt funcții continue date, este, de asemenea, o ecuație cu variabile separabile. Într-un domeniu în care $X_2(x)\neq 0$ și $Y_1(y)\neq 0$, ecuația se scrie

$$\frac{X_1(x)}{X_2(x)} dx + \frac{Y_2(y)}{Y_1(y)} dy = 0$$

și, integrând termen cu termen, se obține soluția generală

$$\int \frac{X_1(x)}{X_2(x)} \, \mathrm{d}x + \int \frac{Y_2(y)}{Y_1(y)} \, \mathrm{d}y = C, \ C \in \mathbb{R}.$$

Dreptele $x=x_0$ și $y=y_0$, unde $X_2(x_0)=0$ și $Y_1(y_0)=0$ sunt soluții singulare ale ecuației.

Exemplul 1.1.1 Să se integreze ecuația $(1-y) dx + x^2y^2 dy = 0$

Rezolvare: Pentru $x \neq 0$ şi $y \neq 1$, ecuația se scrie $\frac{1}{x^2} dx + \frac{y^2}{1-y} dy = 0$. Prin integrare se obține $\int \frac{1}{x^2} dx + \int \frac{y^2}{1-y} dy = C$, de unde rezultă soluția generală

$$\frac{1}{x} + \frac{y^2}{2} + y + \ln|y - 1| = C.$$

 \checkmark

x=0 și y=1 reprezintă soluții singulare ale ecuației.

Exemplul 1.1.2 Să se determine soluția problemei Cauchy $y' \cdot (x^2 - 1) \sin y = 2 \cos y$, $y(\frac{1}{2}) = \frac{\pi}{3}$.

Rezolvare: Se scrie ecuația sub forma $y' \cdot \frac{\sin y}{\cos y} = \frac{2}{x^2 - 1}$ și prin integrare se obține $-\ln|\cos y| = \ln\left|\frac{x - 1}{x + 1}\right| + \ln C$. De aici se găsește soluția generală

$$\frac{1}{\cos u} = C \cdot \frac{x-1}{x+1}, \ C \in \mathbb{R}.$$

Constanta reală C se determină astfel încât $y(\frac{1}{2}) = \frac{\pi}{3}$. Înlocuind $x = \frac{1}{2}$ şi $y = \frac{\pi}{3}$ se găseşte C = -6, deci soluția problemei Cauchy este $\cos y = -6 \cdot \frac{x+1}{x-1}$.

Exemplul 1.1.3 Să se integreze ecuația diferențială yy' + x = 0.

Rezolvare: Se scrie yy'=-x, se integrează și se obține soluția generală $\frac{y^2}{2}=-\frac{x^2}{2}+\frac{C}{2}$. Aceasta se poate scrie sub forma $x^2+y^2=C, C\in\mathbb{R}, C\geq 0$, și reprezintă o familie de cercuri, cu centrele în origine și de raze variabile.

O ecuație diferențială de forma y' = f(ax + by + c), cu $a, b, c \in \mathbb{R}$, $b \neq 0$, se reduce la o ecuație cu variabile separabile făcând substituția u = ax + by + c.

Exemplul 1.1.4 Să se integreze ecuația $y' = \cos(y - x)$.

Rezolvare: Facem substituția u = y - x. Atunci y' = u' + 1 și avem $u' + 1 = \cos u$ sau $\frac{u'}{\cos u - 1} = 1$, ceea ce dă prin integrare ctg $\frac{u}{2} = x + C$. Se obține soluția generală

$$\operatorname{ctg} \frac{y-x}{2} = x + c.$$

Soluțiile singulare se obțin din $\cos u - 1 = 0$, adică $u = 2k\pi$, $y = 2k\pi + x$, $k \in \mathbb{Z}$.

Are loc următoarea reprezentare grafică a soluțiilor, pentru diverse valori ale lui k, respectiv C.

🐿 1.1.1 Să se determine soluțiile generale ale următoarelor ecuații diferențiale:

i). $(1+x^3)y' - y = 0$

iv). $\sqrt{\frac{x}{y}} \cdot y' = x^2 + x + 1$ v). $xy' - \ln^3 x = 0$

- ii). $\sqrt{x^2 + 1} \cdot y' y = 0$ iii). $y'(y-3) - 2xy^2 = 6xy$
- vi). $y' \cos y \sin x = \sin y \cos x$
- 1.1.2 Să se determine soluțiile generale ale următoarelor ecuații diferențiale:
 - _______
 - i). $y^2 dy (1+y)(\cos x dx \sin y dy) = 0$ ii). $xe^{3x+y} dx - dy = 0$
 - ii). $xe^{-x}dx dy = 0$
- iii). $(xy^2 + x y^2 1) dx 2x^2y dy = 0$ iv). $(y^2 + 1) dx - \sqrt{x^2 + 1} (y + \sqrt{y^2 + 1}) dy = 0$
- 1.1.3 Să se rezolve următoarele probleme Cauchy:
 - i). $(2 + e^x) \cdot uv' = e^x$, u(0) = 1
 - ii). $(2 + e^{-}) \cdot yy = e^{-}, y(0) = 1$ ii). $y' \operatorname{tg} x - y \ln y = 0, y(\frac{\pi}{2}) = 2$
 - iii). $\sqrt{a^2 y^2} \, dx (a^2 + x^2) \, dy = 0, \ y(a) = 0, \ a \neq 0$
 - iii). $\sqrt{a^2 y^2} \, dx (a^2 + x^2) \, dy = 0, \ y(a) = 0, \ a \neq 0$
 - iv). $(xy x + y 1) dy = (y^2 2y) dx$, y(0) = 1
 - v). $x^2y' \cos 2y = 1$, y(1) = 0
 - vi). $(x^2 + 9) y' = (y 2) (x + \sqrt{x^2 + 9}), y(4) = 47$
- vii). $y' = 2xy \ln x$, y(e) = e
- 3 1.1.4 Găsiți curba care trece prin punctul (0,2) și pentru care panta tangentei în orice punct este egală cu triplul ordonatei în acel punct.
- 3 1.1.5 Găsiți o curbă pentru care panta tangentei într-un punct este egală cu de două ori panta dreptei care unește acel punct cu originea și care trece prin punctul (1,2).
- Ŝ 1.1.6 Se cunoaște că viteza de răcire a unui corp în aer este proporțională cu diferența dintre temperatura T a corpului și temperatura T_0 a aerului. Dacă temperatura aerului este de 10° C și un corp se răcește de la 90° la 50° în 20 de minute, la ce temperatură va ajunge în următoarele 20 de minute?
- № 1.1.7 Făcând schimbări de variabile corespunzătoare, să se determine soluţiile următoarelor ecuații:

i).
$$y' = \cos(2x + y)$$

ii). $y' = (y - x)^4$
iii). $(4x + y + 1)^2 y' - 1 = 0$
iv). $y' + 2 = \frac{2x + y}{2x + y + \sqrt{2x + y}}$
v). $y' - 2 = e^{3x - 2y}$

Indicații și răspunsuri

[1.1.1] i)
$$y = C(x+1)^{1/3} (x^2 - x + 1)^{-1/6} e^{\frac{\sqrt{3}}{2} \arctan \frac{2x-1}{\sqrt{3}}}, C \in \mathbb{R};$$
 ii) $y = C(x+1)^{1/3} (x^2 - x + 1)^{-1/6} e^{\frac{\sqrt{3}}{2} \arctan \frac{2x-1}{\sqrt{3}}}, C \in \mathbb{R};$ ii) $y = C(x+1)^{1/3} (x^2 - x + 1)^{-1/6} e^{\frac{\sqrt{3}}{2} \arctan \frac{2x-1}{\sqrt{3}}}, C \in \mathbb{R};$ ii) $y = C(x+1)^{1/3} (x^2 - x + 1)^{-1/6} e^{\frac{\sqrt{3}}{2} \arctan \frac{2x-1}{\sqrt{3}}}, C \in \mathbb{R};$ ii) $y = C(x+1)^{1/3} (x^2 - x + 1)^{-1/6} e^{\frac{\sqrt{3}}{2} \arctan \frac{2x-1}{\sqrt{3}}}, C \in \mathbb{R};$ iii) $y = C(x+1)^{1/3} (x^2 - x + 1)^{-1/6} e^{\frac{\sqrt{3}}{2} \arctan \frac{2x-1}{\sqrt{3}}}, C \in \mathbb{R};$ iii) $y = C(x+1)^{1/3} (x^2 - x + 1)^{-1/6} e^{\frac{\sqrt{3}}{2} \arctan \frac{2x-1}{\sqrt{3}}}, C \in \mathbb{R};$ iii) $y = C(x+1)^{1/3} (x^2 - x + 1)^{-1/6} e^{\frac{\sqrt{3}}{2} \arctan \frac{2x-1}{\sqrt{3}}}, C \in \mathbb{R};$ iii) $y = C(x+1)^{1/3} (x^2 - x + 1)^{-1/6} e^{\frac{\sqrt{3}}{2} \arctan \frac{2x-1}{\sqrt{3}}}, C \in \mathbb{R};$ iii) $y = C(x+1)^{1/3} (x^2 - x + 1)^{-1/6} e^{\frac{\sqrt{3}}{2} \arctan \frac{2x-1}{\sqrt{3}}}, C \in \mathbb{R};$ iii) $y = C(x+1)^{1/3} (x^2 - x + 1)^{-1/6} e^{\frac{\sqrt{3}}{2} \arctan \frac{2x-1}{\sqrt{3}}}, C \in \mathbb{R};$ iii) $y = C(x+1)^{1/3} (x^2 - x + 1)^{-1/6} e^{\frac{\sqrt{3}}{2} \arctan \frac{2x-1}{\sqrt{3}}}, C \in \mathbb{R};$ iii) $y = C(x+1)^{1/3} (x^2 - x + 1)^{-1/6} e^{\frac{\sqrt{3}}{2} \arctan \frac{2x-1}{\sqrt{3}}}, C \in \mathbb{R};$ iii) $y = C(x+1)^{1/3} (x^2 - x + 1)^{-1/6} e^{\frac{\sqrt{3}}{2} \arctan \frac{2x-1}{\sqrt{3}}}, C \in \mathbb{R};$ iii) $y = C(x+1)^{1/3} (x^2 - x + 1)^{-1/6} e^{\frac{\sqrt{3}}{2} \arctan \frac{2x-1}{\sqrt{3}}}, C \in \mathbb{R};$ iii) $y = C(x+1)^{1/3} (x^2 - x + 1)^{-1/6} e^{\frac{\sqrt{3}}{2} \arctan \frac{2x-1}{\sqrt{3}}}, C \in \mathbb{R};$ iii) $y = C(x+1)^{1/3} (x^2 - x + 1)^{-1/6} e^{\frac{\sqrt{3}}{2} \arctan \frac{2x-1}{\sqrt{3}}}, C \in \mathbb{R};$ iii) $y = C(x+1)^{1/3} (x^2 - x + 1)^{-1/6} e^{\frac{\sqrt{3}}{2} \arctan \frac{2x-1}{\sqrt{3}}}, C \in \mathbb{R};$ iii) $y = C(x+1)^{1/3} (x^2 - x + 1)^{-1/6} e^{\frac{\sqrt{3}}{2} \arctan \frac{2x-1}{\sqrt{3}}}, C \in \mathbb{R};$ iii) $y = C(x+1)^{1/3} (x^2 - x + 1)^{-1/6} e^{\frac{\sqrt{3}}{2} \arctan \frac{2x-1}{\sqrt{3}}}, C \in \mathbb{R};$ iii) $y = C(x+1)^{1/3} (x^2 - x + 1)^{-1/6} e^{\frac{\sqrt{3}}{2} \arctan \frac{2x-1}{\sqrt{3}}}, C \in \mathbb{R};$ iii) $y = C(x+1)^{1/3} (x^2 - x + 1)^{-1/6} e^{\frac{\sqrt{3}}{2} \arctan \frac{2x-1}{\sqrt{3}}}, C \in \mathbb{R};$

- **vi)** $\sin y = C \sin x$:
- **1.1.2** i) $\frac{y^2}{2} y + \ln(y+1) \cos y = \sin x + C$; ii) $e^{-y} \frac{1}{9}e^{3x}(1-3x) + C = 0$; iii) $\overline{u^2 - C}xe^{\frac{1}{x}} - 1$: iv) $\sqrt{u^2 + 1}(y + \sqrt{u^2 + 1}) = C(x + \sqrt{x^2 + 1})$.

1.1.3 i) $y^2 = 1 + 2 \ln \frac{2 + e^x}{3}$; ii) $y = 2^{\sin x}$; iii) $\arcsin \frac{y}{a} = \frac{1}{a} \left(\arctan \frac{x}{a} - \frac{\pi}{4}\right)$; iv) $y(y-2) = -(x+1)^2$; **v)** $tgy = 2 - \frac{2}{x}$; **vi)** $y = 2 + \sqrt{x^2 + 9}(x + \sqrt{x^2 + 9})$; **vii)**

- $\ln |y| = x^2 \ln |x| \frac{x^2 + e^2}{2} + 1.$
- **1.1.4** Avem problema Cauchy y' = 3y, y(0) = 2 cu soluția $y(x) = 2e^{3x}$. $y' = 2 \cdot \frac{y}{x}$, y(1) = 2, de unde $y(x) = 2x^2$. 1.1.5
- Notând T(t) temperatura corpului la momentul t avem $T'(t) = k(T(t) T_0)$, $\overline{\text{cu }k}$ constanta de proportionalitate. Soluția generală este $T(t) = Ce^{kt} + T_0$. Din
- condițiile $T(0) = 90^{\circ}$, $T(20) = 50^{\circ}$ se găsesc $C = 80^{\circ}$, $e^{20k} = \frac{1}{2}$ și deci $T(40) = 30^{\circ}$.
- **1.1.7** i) z = 2x + y, $y = 2 \arctan \left[\sqrt{3} \operatorname{tg} \left(\frac{\sqrt{3}}{2} x + C \right) \right] 2x$; ii) z = y x, $\ln \left| \frac{y x 1}{y x + 1} \right| x 1$ $2 \arctan(y-x) = 4x + C$; **iii)** $2y - \arctan(8x + 2y + 2) = C$; **iv)** $x + y + 2\sqrt{2x + y} = C$; v) $4x - 2y - \ln(2e^{3x-2y} - 1) = C$.