[2.5+1.5 Punkte]

(a) Für c > 0 definieren wir

$$M_c := \left\{ f \in C^1([0,1]) \mid \int_0^1 |f(x)|^2 dx + \int_0^1 |f'(x)|^2 dx \le c \right\}$$

Zeigen Sie, dass \overline{M}_c kompakt ist in $(C([0,1]), \|\cdot\|_{\infty})$.

- 1. M_c,v = {f(v): f in M_C} ist relativ kompakt 2. M_c ist punktweise gleichgradig stetig

$$f_n \in \mathcal{M}_{c/} \quad f_n(x) \xrightarrow{h \to \infty} \quad \infty$$

$$\frac{f(x)-f(0)}{|x|}=f'(3)$$
 for an $3\in[0,x)$

$$\int_{\mathbb{R}^{n}} |f(x)|_{J} dx = \|f(x)\|_{J}^{2}$$

$$\frac{1}{(-1)^{-1}} = \frac{1}{(-1)^{-1}} = \frac{1}{(-1)^$$

(b) Sei V ein abgeschlossener Untervektorraum von $(C([0,1]), \|\cdot\|_{\infty})$ und es gebe ein c > 0 mit

$$\forall f \in V \,\exists \, a \in \left(\frac{1}{2}, 1\right) : |f(x) - f(y)| \le c ||f||_{\infty} ||x - y||^{a}. \tag{1}$$

Zeigen Sie, dass V endlich dimensional ist.

V ist genau dann endlichdimensional, wenn der Einheitsball B_1 relativ kompakt ist. Arzela-Ascoli: V = [0,1] ist kompakt und Y = \R ist ein Banachraum. B_1 relativ kompakt <

1. $B_1, v = \{f(v): f \text{ in } B_1\}$ ist relativ kompakt 2. B_1 ist punktweise gleichgradig stetig

$$\mathcal{B}_{1,\times} = \left\{ f(x) : f(x) \right\} \leq \sup_{x \in [0,7]} f(x) \leq 1 \quad \forall x$$

[2+2 Punkte]

Seien X, Y Banachräume. Ein Operator $T \in \mathcal{L}(X, Y)$ heißt beschränkt von unten, falls ein c > 0 existiert, sodass

$$||Tx|| \ge c||x|| \qquad \forall x \in X.$$

Zeigen Sie die folgenden Aussagen

(a) Ist $T \in \mathcal{L}(X,Y)$ von unten beschränkt, so ist im $(T) \subset Y$ abgeschlossen.

$$=) ||x_n - x_n|| \le \frac{\pi}{2} \cdot ||T(x_n - x_n)| < \frac{\pi}{2} \cdot ||Tx_n - x_n| < \frac{\pi}{2} \cdot ||Tx_n - x_n|| < \frac{\pi}{2$$

$$\lim_{n\to\infty} ||y_n - Tx|| = \lim_{n\to\infty} ||Tx_n - Tx|| = \lim_{n\to\infty} |T||x_n - x||$$

$$= T \lim_{n\to\infty} ||x_n - x|| = T(0) = 0$$

(b) Ein Operator $T \in \mathcal{L}(X, X)$ ist invertierbar genau dann, wenn T von unten beschränkt ist und im $(T) \subset Y$ dicht liegt.

Nach Korollar 3.24 ist die Umkehrabbildung stetig und somit T invertierbar.

[1.5 + 1 + 1.5 Punkte]

Sei $(H, \langle \cdot, \cdot \rangle)$ ein Hilbertraum und $T: H \to H$ ein linearer Operator.

(a) Zeigen Sie, dass T stetig ist, falls

$$\langle Tx, y \rangle = \langle x, Ty \rangle \qquad \forall \ x, y \in H.$$
 (2)

Sei außerdem x in H beliebig. Dann gilt

$$\langle \gamma_{1} \times \gamma = 0$$
:

Diese Gleichung gilt für alle x in H. Daher ist y=0. Nach Lemma 3.30 ist T damit abgeschlossen. H ist ein Hilbertraum und damit\insbesondere ein Banachraum. Daher folgt mit dem Satz vom abgeschlossenen Graphen die Stetigkeit von T.

Nehmen Sie nun an, dass T stattdessen die folgende Bedingung erfülle

$$\langle Tx, x \rangle \ge 0 \qquad \forall \ x \in H$$
 (3)

b) Es sei $\mathbb{K} = \mathbb{C}$. Zeigen Sie, dass T Bedingung (2) erfüllt und somit stetig ist.

$$\frac{1}{(-\langle i\times i\times \rangle)} = 2\langle (\tau_{x_{i}}i\times) + \langle \tau_{x_{i}}i\times \rangle + \langle \tau_{x_{i}}i\times \rangle$$

$$(-) \qquad -i \cdot \langle x^i | i x \rangle = 5 \left(i \langle L x^i x \rangle - i \langle L x^i x \rangle \right) \uparrow \langle x^i x \rangle$$

```
|\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \rangle| \leq |\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \rangle|
                                                    \langle \uparrow_{x_{i}}, \downarrow \rangle \downarrow \langle \downarrow_{x_{i}}, \uparrow_{x_{i}} \rangle = \langle \uparrow_{x_{i}}, -\downarrow_{x_{i}} \uparrow \langle -\downarrow_{x_{i}}, -\chi_{x_{i}} \rangle
                                                                                                                              3 < -, Tx> + <>, x> 2 < Tx, -x> - < x, -x>
(=)
                                                                                                                                                                                                                2 - < x, T x > + < x, x >
                                                                                                                                                                    \langle Tx, \times 7 \rangle = 20
        2.2. <Tx, 7> = < x, 17>
          1, 22 <T×, Y) Z < >1+y)
          re < x, T7> < Re < x, Tx+T7> + < 7, T7>+ x < 7, Tx>-hx7, Tx>
                                                                                        = Re < x+y, T (x+y)> -Px< y, Tx>
                                                                           (=) (x,Tx)+(-7,Tx)+(x,-Ty)+(-4,-Ty) Zo
                                           4 < T_{1} = ||T_{1} + y||^{2} - ||T_{2} - y||^{2} - ||T_{2} + y||^{2} + ||T_{2} - y||^{2}
4 < x_{1} + y_{2} = ||X_{1} + y||^{2} - ||X_{2} - y||^{2} - ||X_{2} + y||^{2} + ||X_{2} - y||^{2}
         \frac{21}{2} \left\langle T \times + 7/T \times + 4 \right\rangle + \left\langle \times - 7/7 \times + 7/7 
                                           [1 + x + x 11] 5 [11] x - x 11]
                                             11 T x + Ty + x + y | 2 1 + x + Ty - x - y | 2
                                  (=) < T(x+y), x+y) Z ( T(x+y), - (x+y))
+ <x+y, T(x+y)> + <-(x+y), T(x+y))
```

c)	Se	i nu	n I	K =	= R	2. 2	Zeig	gen	Si	ie,	das	s 7	st	eti	g is	st a	abe	r ir	n A	Allg	gem	eir	en	(2)	ni	cht	erf	üllt		٠	٠			۰	٠
-	-			-	-	-	- '	-	-	÷	-	-	-	-	,	-	-	-	-	-	-	-	-				_	-	-	٠	٠		٠	٠	٠
۰	۰			•	۰	•	۰	۰	۰	٠	۰	٠	٠	٠	٠	۰	۰	٠	۰	۰	٠	۰	•	•			•	۰	۰	٠	٠	٠	٠	۰	٠
0	۰			•	•	•	۰	۰	۰	۰	•	۰	۰	۰	۰	۰	۰	۰	۰	٠	۰	۰	٠				۰	۰	۰	۰	۰	۰	۰	0	۰
0	۰			•	•	•	۰	۰	۰	٠	۰	٠	۰	٠	٠	۰		٠	٠	۰	۰		•					۰	۰	٠	۰	۰	۰	0	٠
٠	۰			•	۰	۰	٠	٠	۰	٠	٠	٠	۰	٠	٠	۰	۰	٠	۰	٠	٠	0	٠	•			٠	٠	۰	۰	٠	۰	٠	0	٠
۰	٠			•	•	•	٠	۰	۰	٠	۰	٠	۰	٠	٠	٠	۰	٠	۰	۰	۰	۰	٠	•	•	•		٠	٠	٠	۰	٠	٠	۰	۰
۰	٠			•	0	•	۰	۰	۰	۰	۰	٠	۰	۰	۰	0	۰	۰	۰	۰	٠	۰	٠	•		•	٠	۰	٠	۰	۰	۰	٠	۰	۰
۰	۰			•	0	•	•	•	۰	۰	•	۰	۰	۰	۰	0	۰	•	۰	۰	۰	۰	•						۰	۰	•	۰	•	۰	۰
0	٠			۰	•	۰	۰	۰	۰	۰	۰	•	۰	٠	۰	۰		٠	۰	•	۰	۰	•	•			•	۰	۰	٠	۰	٠	۰	۰	٠
	•				•	•	•			•	•	•			•	•	•			•	•	•							•	•	•			۰	•
٠	•				•																•								٠					٠	٠
																													٠						
	۰																													٠					٠
													٠			•	٠																	٠	
۰					•				٠	٠	٠					۰	٠			۰	٠								٠	٠				۰	٠
	۰								۰			٠		٠		٠														۰					۰
	۰														0															٠					٠
	۰													٠																					
۰							٠		٠	٠	٠										٠									٠	٠			۰	٠
٠	۰									٠	٠		٠			٠				۰	۰								۰	٠					٠
۰					۰					۰					٠					۰									٠	٠				۰	٠
0	۰									۰																			۰	۰					۰
	۰											۰		٠	۰	۰														۰					۰
٠				•	•		•		٠		•		٠			۰	٠			•	•	۰												٠	
۰	٠			•	•	•	•		٠	٠	٠	٠	٠			٠	۰			۰	٠	۰							٠	٠				۰	٠
٠	•			•	•	۰	٠	٠	۰	٠	٠	٠	٠	٠	۰	٠	٠	•	۰	•	٠	٠						٠	٠	٠	٠			٠	٠
0	•				•		۰	۰	۰	0	۰	۰	۰	۰	0	۰		•	0	•	•		٠				۰	۰	٠	۰		٠	-	•	۰
٠	۰				•	•	•		۰	•	•	•	٠	٠	۰	۰	۰				۰		•						۰	٠	•	٠			٠
٠	٠			•	•	•	•	•	٠	٠	•	٠	٠	٠	٠	٠	۰	۰	٠	۰	۰	۰	•					•	٠	٠	•	٠	٠	۰	٠
۰	۰			•	۰	۰	٠	•	۰	٠	٠	٠	۰	٠	٠	۰	•	۰	٠	۰	۰	0	•					٠	۰	٠	•	٠	•	0	٠
۰	٠			•	•	۰	٠	۰	۰	۰	۰	٠	۰	٠	٠	۰	۰	۰	۰	۰	٠	۰	•				•	٠	٠	٠	٠	٠	٠	۰	٠
	۰			•	•	0	۰	•	۰	۰	۰	۰	۰	۰	0	۰	۰	۰	0	۰	۰		۰					۰	0	۰	۰	٠	۰	0	۰
۰	٠			•	•	۰	•	•	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	•	۰	۰	•					۰	۰	۰	۰	۰	•	0	۰
۰	۰	•		•	•	۰	۰	۰	۰	۰	۰	٠	۰	٠	٠	۰	۰	۰	۰	۰	۰	۰	۰		•	•		۰	۰	۰	۰	٠	۰	0	۰
۰	۰										٠										۰	•	•	•		•	•	٠	٠	٠	٠	٠	٠	٠	٠
۰																																	۰	۰	۰
۰	۰																											۰				٠	•	۰	۰
	•																																		
•																																			
	٠																																		٠
•																																		۰	٠
	۰									۰						٠				۰	۰														
۰	۰										٠										٠									٠					٠
0																													۰						
	۰																													۰					۰
0					•		٠	٠			۰						٠												٠					٠	
۰					•		٠	۰			٠					٠	٠												٠					٠	
٠	۰				•			٠	۰	٠	•		٠		٠	۰				۰	٠								۰	٠				۰	٠
0				•	•			۰		۰	•	۰	۰	۰	0	۰					۰							۰	٠	۰	٠		٠	•	۰
	۰									۰										۰	٠								۰	۰	۰			0	۰
•	•			•	•	•	۰	٠	۰	٠	۰			٠	٠	٠	۰	•	۰	•	٠		•					٠	•	۰	٠			•	۰

Aufgabe 8.4

4 Punkte

Seien $(V, \|\cdot\|_V)$, $(W, \|\cdot\|_W)$ zwei Banachräume und $T \in \mathcal{L}(V, W)$ mit $\operatorname{im}(T)$ abgeschlossen und dim $\ker(T) < \infty$. Sei $\|\cdot\|$ eine weitere Norm auf V, die von $\|\cdot\|_V$ dominiert wird, d.h. es existiert eine Konstante M > 0, sodass $\|x\| \leq M \|x\|_V$ für alle $x \in V$. Zeigen Sie, dass dann ein C > 0 existiert, sodass

$$||x||_V \le C(||Tx||_W + ||x||) \quad \forall x \in V.$$

Hinweis: Argumentieren Sie per Widerspruch und schauen Sie sich den Beweis von der offenen Abbildung noch einmal an.

$$din f(x(t)) < \infty$$

$$||x||_{V} \leq C \left(||T \times ||_{W} + ||x||\right)$$

$$\left(5-2 \times \frac{1}{||x||}, \frac{|x||}{||x||}\right) > \left(\left(\left(\left(\frac{1}{|x|}\right) + \frac{1}{||x||}\right)\right)$$

$$=) \quad \forall x \in \mathcal{B}_{\sigma}(0y) \subset \mathcal{T}(\mathcal{D}_{1}(0x))$$

$$=) \exists x''' \in \mathcal{B}_1(\omega) \text{ with } \exists x'' = \exists x =) \quad x' = x \in \ker \exists$$

$$\| \mathbf{x}^{(i)} \| = S_1$$
 $\| \mathbf{x}^{(i)} \|_{\infty} < \frac{\delta}{S_1}$