Lecture 14: Localization

CS 344R/393R: Robotics Benjamin Kuipers

Thanks to Dieter Fox for some of his figures

Localization: "Where am I?"

- The map-building method we studied assumes that the robot knows its location.
 - Precise (x,y,θ) coordinates in the same frame of reference as the occupancy grid map.
- This assumes that odometry is accurate, which is often false.
- We will need to relocalize at each step.

Odometry-Only Tracking: 6 times around a 2m x 3m area

SLAM: Simultaneous Localization and Mapping

Alternate at each motion step:

1. Localization:

- Assume accurate map.
- Match sensor readings against the map to update location after motion.

2. Mapping:

- Assume known location in the map.
- Update map from sensor readings.

Mapping With Localization

Modeling Action and Sensing

- Action model: $P(x_t \mid x_{t-1}, u_{t-1})$
- Sensor model: $P(z_t \mid x_t)$
- What we want to know is Belief: $Bel(x_t) = P(x_t | u_1, z_2 ..., u_{t-1}, z_t)$

the posterior probability distribution of x_t , given the past history of actions and sensor inputs.

The Markov Assumption

- Given the present, the future is independent of the past.
- Given the state x_t , the observation z_t is independent of the past.

$$P(z_t | x_t) = P(z_t | x_t, u_1, z_2 ..., u_{t-1})$$

Dynamic Bayesian Network

• The well-known DBN for local SLAM.

Law of Total Probability

(marginalizing)

Discrete

Continuous case

$$\sum_{y} P(y) = 1$$

$$\sum_{y} P(y) = 1$$

$$\int p(y) dy = 1$$

$$P(x) = \sum_{y} P(x, y)$$

$$p(x) = \int p(x, y) dy$$

$$P(x) = \sum_{y} P(x \mid y)P(y) \qquad p(x) = \int p(x \mid y)p(y) \, dy$$

Bayes Law

• We can treat the denominator in Bayes Law as a normalizing constant:

$$P(x | y) = \frac{P(y | x) P(x)}{P(y)} = \eta P(y | x) P(x)$$
$$\eta = P(y)^{-1} = \frac{1}{\sum_{x} P(y | x) P(x)}$$

• We will apply it in the following form:

$$\begin{split} Bel(x_t) &= P(x_t \mid u_1, z_2 \dots, u_{t-1}, z_t) \\ &= \eta \ P(z_t \mid x_t, u_1, z_2, \dots, u_{t-1}) \ P(x_t \mid u_1, z_2, \dots, u_{t-1}) \end{split}$$

Bayes Filter

Markov Localization

$$Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_{t-1}, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$$

- $Bel(x_{t-1})$ and $Bel(x_t)$ are prior and posterior probabilities of location x.
- $P(x_t | u_{t-1}, x_{t-1})$ is the action model, giving the probability distribution over result of u_{t-1} at x_{t-1} .
- $P(z_t | x_t)$ is the sensor model, giving the probability distribution over sense images z_t at x_t .
- η is a normalization constant, ensuring that total probability mass over x_t is 1.

Markov Localization

- Evaluate $Bel(x_t)$ for every possible state x_t
- Prediction phase:

$$Bel^{-}(x_{t}) = \int P(x_{t} \mid u_{t-1}, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

- Integrate over every possible state x_{t-1} to apply the probability that action u_{t-1} could reach x_t from there.
- · Correction phase:

$$Bel(x_t) = \eta P(z_t \mid x_t) Bel^-(x_t)$$

- Weight each state x_t with likelihood of observation z_t .

Local and Global Localization

- Most localization is *local*:
 - Incrementally correct belief in position after each action.
- Global localization is more dramatic.
 - Where in the entire environment am I?
- The "kidnapped robot problem"
 - Includes detecting that I am lost.

Global Localization Movie

Future Attractions

- Sensor and action models
- Particle filtering
 - elegant, simple algorithm
 - Monte Carlo simulation