EECS 388: Introduction to Computer Security

Network Attacks and Defenses, Part I: Networking Concepts

Feb 18, 2015

1

Circuit and Packet Switching

- · Circuit switching
 - Legacy phone network
 - Single route through sequence of hardware devices established when two nodes start communication
 - Data sent along route
 - Route maintained until communication ends

- Packet switching
 - Internet
 - Data split into packets
 - Packets transported independently through network
 - Each packet handled on a best efforts basis
 - Packets may follow different routes

Network Layers

- Network models typically use a stack of layers
 - Higher layers use the services of lower layers via encapsulation
 - A layer can be implemented in hardware or software
 - The bottom-most layer must be in hardware
- A network device may implement several layers
- A communication channel between two nodes is established for each layer
 - Actual channel at the bottom layer
 - Virtual channel at higher layers

7

Reference Models

OSI Model Application Presentation Internet Model Internet Protocol Suite FTP, HTTP Session Application TCP, UDP Transport Transport IP (ICMP) Network Internet ARP, RARP Link Net. Interface **Not Specified** Physical Physical

Protocols

- A protocol defines the rules for communication between computers
- Protocols are broadly classified as connectionless and connection oriented
- Connectionless protocol
 - Sends data out as soon as there is enough data to be transmitted
 - E.g., user datagram protocol (UDP)
- Connection-oriented protocol
 - Provides a reliable connection stream between two nodes
 - Consists of set up, transmission, and tear down phases
 - Creates virtual circuit-switched network
 - E.g., transmission control protocol (TCP)

Encapsulation

- A packet typically consists of
 - Control information for addressing the packet: header and footer
 - Data: payload
- A network protocol N1 can use the services of another network protocol N2
 - A packet p1 of N1 is encapsulated into a packet p2 of N2
 - The payload of p2 is p1
 - The control information of p2 is derived from that of p1

Network Interfaces

- Network interface: device connecting a computer to a network
 - Ethernet card
 - WiFi adapter
- A computer may have multiple network interfaces
- Packets transmitted between network interfaces
- Most local area networks, (including Ethernet and WiFi) broadcast frames
- In regular mode, each network interface gets the frames intended for it
- Traffic sniffing can be accomplished by configuring the network interface to read all frames (promiscuous mode)

MAC Addresses

- Most network interfaces come with a predefined MAC address
- A MAC address is a 48-bit number usually represented in hex
 - E.g., 00-1A-92-D4-BF-86
- The first three octets of any MAC address are IEEE-assigned Organizationally Unique Identifiers
 - E.g., Cisco 00-1A-A1, D-Link 00-1B-11, ASUSTek 00-1A-92
- The next three can be assigned by organizations as they please, with uniqueness being the only constraint
- Organizations can utilize MAC addresses to identify computers on their network
- MAC address can be reconfigured by network interface driver software

15

Switch

- A switch is a common network device
 - Operates at the link layer
 - Has multiple ports, each connected to a computer
- Operation of a switch
 - Learn the MAC address of each computer connected to it
 - Forward frames only to the destination computer

Combining Switches • Switches can be arranged into a tree • Each port learns the MAC addresses of the machines in the segment (subtree) connected to it • Fragments to unknown MAC addresses are broadcast • Frames to MAC addresses in the same segment as the sender are ignored

Internet Protocol

- Connectionless
 - Each packet is transported independently from other packets
- Unreliable
 - Delivery on a best effort basis
 - No acknowledgments

- Packets may be lost, reordered, corrupted, or duplicated
- IP packets
 - Encapsulate TCP and UDP packets
 - Encapsulated into link-layer frames

> Fragmentation information Transport layer protocol information (e.g., TCP)

IP Addressing

- IP address used to route datagrams through network.
- IPv4 32 bit address, IPv6 128 bit address.
- Divided into two parts: network and host.
- Network part: Used to route packets. (ZIP code)
- Host part: Used to identify an individual host. (House number)
- Usually represented in dotted decimal notation: 141.211.144.212
- Each number represents 8 bits: 0-255.

Decimal representation of Internet addresses

23

Classless Interdomain Routing (CIDR)

- Allow division between network and host portion on any bit boundary.
 - More efficient use of address space.
 - Allows division/aggregation of sub-assignments.
- Networks now identified by network address and the length of the network portion: 141.213.8.0/24
- Hosts identified by address and network mask: 141.213.8.1, 255.255.255.0.
- WHY? Rapid depletion of class B address space and poor utilization of the assigned address space

10			
IP	SU	pn	ets

CIDR prefix length	Subnet Mask	Number of hosts
/8	255.0.0.0	2^{24}
/9	255.128.0.0	2^{23}
/10	255.192.0.0	2^{22}
/24	255.255.255.0	$2^8 = 256$
/25	255.255.255.128	$2^7 = 128$
/26	255.255.255.192	$2^6 = 64$
/27	255.255.255.224	$2^5 = 32$
/28	255.255.255.240	$2^4 = 16$
/29	255.255.255.248	$2^3 = 8$
/30	255.255.255.252	$2^2 = 4$

Special IP addresses

Prefix	Suffix	Type of Address	Purpose	
all-0s	all-0s	this computer	used during bootstrap	
network	all-0s	network	identifies a network	
network	all-1s	directed broadcast	broadcast on a specified net	
all-1s	all-1s	limited broadcast	broadcast on a local net	
127	any	loopback	testing	

IP Address Space and ICANN

- Hosts on the internet must have unique IP addresses
- Internet Corporation for Assigned Names and Numbers
 - International nonprofit organization
 - Incorporated in the US
 - Allocates IP address space
 - Manages top-level domains
- Historical bias in favor of US corporations and nonprofit organizations

- Examples
 - 003/8 May 94 General Electric
 - 009/8 Aug 92 IBM
 - 012/8 Jun 95 AT&T Bell Labs
 - 013/8 Sep 91 Xerox Corporation
 - 015/8 Jul 94 Hewlett-Packard
 - 017/8 Jul 92 Apple Computer
 - 018/8 Jan 94 MIT
 - 019/8 May 95 Ford Motor
 - 040/8 Jun 94 Eli Lily
 - 043/8 Jan 91 Japan Inet
 - 044/8 Jul 92 Amateur Radio Digital
 - 047/8 Jan 91 Bell-Northern Res.
 - 048/8 May 95 Prudential Securities
 - 054/8 Mar 92 Merck
 - 055/8 Apr 95 Boeing
 - 056/8 Jun 94 U.S. Postal Service

27

How To Bootstrap an End Host?

- What local DNS server to use?
- What IP address the host should use?
- How to send packets to remote destinations?

Avoiding Manual Configuration

- Dynamic Host Configuration Protocol (DHCP)
 - End host learns how to send packets
 - Learn IP address, DNS servers, and gateway
- Address Resolution Protocol (ARP)
 - Others learn how to send packets to the end host
 - Learn mapping between IP & interface addresses

Problem: IP Address Exhaustion

- IPv4 Addresses are 32 bits wide: ~3.7Bn usable addresses
- All devices on the Internet require an address
- Given Internet growth rate, addresses have been diminishing fast...

Solution Strategies

- Under address scarcity, how do we continue to support Internet growth?
- Three ways of mitigating exhaustion of a scarce resource:
 - Sharing:
 - Share addresses in time via Dynamic Host Configuration Protocol (DHCP)
 - · Share addresses in port space via, e.g. Carrier-grade NAT (CGN)
 - More efficient utilization:
 - Stricter policy for new address allocations
 - Reallocation of unused or otherwise reclaimed addresses
 - Address markets for the efficient distribution of addresses
 - Transition to another resource:
 - Replace IPv4 with IPv6, which provides the ultimate long-term solution with a practically inexhaustible address space

31

Network Address Translation

- Introduced in the early 90s to alleviate IPv4 address space congestion
- Relies on translating addresses in an internal network, to an external address that is used for communication to and from the outside world
- NAT is usually implemented by placing a router in between the internal private network and the public network.
- Saves IP address space since not every terminal needs a globally unique IP address, only an organizationally unique one
- While NAT should really be transparent to all high level services, this is sadly not true because a lot of high level communication uses things on IP

Translation • Router has a pool of private addresses 192.168.10.0/24 private realm global realm s=192.168.10.237 s=128.148.36.179 d=128.148.36.11 d=128.148.36.11 s=128.148.36.11 s=128.148.36.11 d=192.168.10.237 d=128.148.36.179 128.148.36.11 192.168.10.237 NAT route 33

What is the Internet?

What's the Internet: "nuts and bolts" view

- millions of connected computing devices: hosts, end-systems
 - PCs workstations, servers
 - PDAs phones, toastersrunning network apps
- communication links
 - fiber, copper, radio, satellite
 - transmission rate = bandwidth
- routers: forward packets (chunks of data)

37

What's the Internet: "nuts and bolts" view

- protocols control sending, receiving of msgs
 - e.g., TCP, IP, HTTP, FTP, PPP
- Internet: "network of networks"
 - loosely hierarchical
 - public Internet versus private intranet
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

What's the Internet: a service view

- communication infrastructure enables distributed applications:
 - Web, email, games, ecommerce, database., voting, file (MP3) sharing
- communication services provided to apps:
 - connectionless
 - connection-oriented

39

Internet design

- Put the intelligence in the end hosts and keep the network simple.
 - Packet switched instead of circuit switched.
 - Best effort delivery.
 - Force transport layer to deal with delay and loss.
- Reliable in the face of failures.
 - No session state on routers.
 - Allows routers to be added and removed without causing large disturbances.

- The Internet is a collection of autonomous systems.
- AS: A set of routers and networks under the same administrative control.
- Inter-domain vs. intra-domain routing.

Internet structure: network of networks

- "Tier-2" ISPs: smaller (often regional) ISPs
 - Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs

Connection-oriented service

<u>Goal:</u> data transfer between end systems

- handshaking: setup (prepare for) data transfer ahead of time
 - Hello, hello back human protocol
 - set up "state" in two communicating hosts
- TCP Transmission Control Protocol
 - Internet's connection-oriented service

TCP service [RFC 793]

- Byte-steam abstraction: reliably delivering a stream of bytes from S to R
- reliable, in-order byte-stream data transfer
 - loss: acknowledgements and retransmissions
- · flow control:
 - sender won't overwhelm receiver
- congestion control:
 - senders "slow down sending rate" when network congested

49

Network edge: connectionless service

Goal: data transfer between end systems

- Goal is same as before!
- No handshaking
- No connection state maintained on end hosts
- UDP User Datagram Protocol [RFC 768]: Internet's connectionless service
 - unreliable data transfer
 - no flow control
 - no congestion control

Apps using TCP:

 HTTP (Web), FTP (file transfer), Telnet (remote login), SMTP (email)

Apps using UDP:

 streaming media, teleconferencing, DNS, Internet telephony

IP Routing

- A router bridges two or more networks
 - Operates at the network layer
 - Maintains tables to forward packets to the appropriate network
 - Forwarding decisions based solely on the destination address
- Routing table
 - Maps ranges of addresses to LANs or other gateway routers

Internet inter-AS routing: BGP

- BGP (Border Gateway Protocol): the de facto standard
- BGP provides each AS a means to:
 - 1. Obtain subnet reachability information from neighboring ASs.
 - 2. Propagate the reachability information to all routers internal to the AS.
 - 3. Determine "good" routes to subnets based on reachability information and policy.
- Allows a subnet to advertise its existence to rest of the Internet: "I am here"

53

54

BGP basics

- Pairs of routers (BGP peers) exchange routing info over semi-permanent TCP connections: BGP sessions
- Note that BGP sessions do not correspond to physical links.
- When AS2 advertises a prefix to AS1, AS2 is promising it will forward any datagrams destined to that prefix towards the prefix.
 - AS2 can aggregate prefixes in its advertisement

DNS: Domain Name System

People: many identifiers:

- SSN, name, passport #

Internet hosts, routers:

- IP address (32 bit) used for addressing datagrams
- "name", e.g., www.eecs.umich.edu - used by humans

Q: map between IP addresses and name?

Domain Name System:

- distributed database implemented in hierarchy of many name servers
- application-layer protocol host, routers, name servers to communicate to resolve names (address/name translation)
 - note: core Internet function, implemented as applicationlayer protocol
 - complexity at network's "edge"

55

DNS name servers

Why not centralize DNS?

- · single point of failure
- traffic volume
- · distant centralized database
- Maintenance

doesn't scale!

Record Type	Million Queries	Percentage
A	1,220	70.4%
AAAA	206	11.9%
MX	152	8.8%
DS	69	4.0%
NS	25	1.4%
ANY	19	1.1%
TXT	18	1.0%
SOA	6	0.4%
A6	5	0.3%
SPF	4	0.3%
Other	8	0.5%
Total	1,732	

Table 8: Top 10 Resource Records Requested

 no server has all name-to-IP address mappings

local name servers:

- each ISP, company has local (default) name server
- host DNS query first goes to local name server

authoritative name server:

- for a host: stores that host's IP address, name
- can perform name/address translation for that host's name

DNS Caching (con'd) Step 3: use cached results rather than querying the ANS Local NS Local Machine 1 Application Resolver Resolver cache cache query Local Machine 2 Application Resolver answer cache Step 4: Evict cache entries upon ttl expiration 63