Tango Bäume

Andreas Windorfer

24. Oktober 2020

Übersicht

Binärer Suchbaum

Dynamische Optimalität

Tango Baum

Binärer Suchbaum •000

0000

Übersicht

Dynamische Optimalität

access(k) Operation

Parameter / Rückgabe

- Parameter k: Schlüssel im BST (Schlüsselmenge K)
- Rückgabe: Knoten mit Schlüssel k

access(k) Operation

Einschränkungen

Ein Zeiger p (berührter Knoten) in die Struktur:

- Setze p auf ein Kind von p
- Setze p auf den Elternknoten von p
- Rotationen

access(k) Operation

Einschränkungen

Ein Zeiger p (berührter Knoten) in die Struktur:

- Setze p auf ein Kind von p
- Setze p auf den Elternknoten von p
- Rotationen

Berechnung der Kosten

Einheitskosten von "1".

Zugriffsfolgen

Zugriffsfolgen

- $X = x_1, x_2, ..., x_m$, mit $\forall i \in \{1, 2, ..., m\} : x_i \in K$
- $access(x_1)$, $access(x_2)$, ..., $access(x_m)$

Zugriffsfolgen

Zugriffsfolgen

- $X = x_1, x_2, ..., x_m$, mit $\forall i \in \{1, 2, ..., m\} : x_i \in K$
- $access(x_1)$, $access(x_2)$, ..., $access(x_m)$

dynamische BST

Anpassung der Struktur

Kostenrechnung

Anzahl der Einzelschritte + m

dynamisch Optimal

OPT(X)

Niedrigste Kosten zum Ausführen von X

dynamisch Optimal

OPT(X)

Niedrigste Kosten zum Ausführen von X

dynamisch Optimal

BST mit Kosten von O(OPT(X)), für beliebige X

c-competitive

BST mit Kosten von $O(c \cdot OPT(X))$, für beliebige X

Tango Baum

Eigenschaten

- Aus BSTs bestehender BST
- $\log(\log(n))$ -competitive

Literatur

Erik D. Demaine, Dion. Harmon, John. Iacono, and Mihai. Patrascu. Dynamic optimality-almost. SIAM Journal on Computing, 37(1):240 251, 2007.

Interleave Lower Bound

Motivation

- Berechnung einer unteren Schranke zu OPT (X)
- Beweis der $\log(\log(n))$ -competitiveness

Lower Bound Tree

Definition

Zu
$$X = x_1, x_2, ..., x_m$$
 und $K = \{k \in \mathbb{N} | k \text{ ist in } X \text{ enthalten}\}$

Lower Bound Tree

Definition

Zu $X = x_1, x_2, ..., x_m$ und $K = \{k \in \mathbb{N} | k \text{ ist in } X \text{ enthalten} \}$ ist der komplette BST P mit der Schlüsselmenge K der LBT.

Beispiel LBT

Abbildung: Der Lower Bound Tree zur Zugriffsfolge 1, 2, ..., 14.

Lower Bound Tree

Linke Region eines Kontens v

Schlüssel des linken Teilbaumes von v und key(v)

Linke Region eines Kontens v

Schlüssel des rechten Teilbaumes von v

Interleave durch v

 x_{i-1} liegt in der linken Region und x_i in der rechten, oder umgekehrt.

Lower Bound Tree

inScore(X, v)

Anzahl der Interleaves durch v

$$IB(X) = \sum_{u \in U} inScore(X, u)$$

 T_0 Startzustand, T_i nach ausführen von access x_i .

 T_0 Startzustand, T_i nach ausführen von access x_i . $i \in {0, 1, ...}m$

Zu jedem Knoten u aus P, mit nicht leerer rechter Region, existiert ein transition point in T_i

Sei v der Transition Point zu u und T_j

- 1. Im Pfad von der Wurzel zu *v* ist ein Knoten mit einem Schlüssel aus der linken Region von *u* enthalten.
- 2. Im Pfad von der Wurzel zu *v* ist ein Knoten mit einem Schlüssel aus der rechten Region von *u* enthalten.
- 3. Kein anderer Knoten mit kleinerer Tiefe erfüllt die Eigenschaften eins und zwei.

Sei U die Menge der Knoten in P mit einer nicht leeren rechten Region.

- Lemma 1: Es gibt zu jedem Knoten $u \in U$ genau einen transition point in T_i .
- Lemma 2: Wird ein transition point nicht berührt, so ist er noch immer der transition point des selben Knotens.
- Lemma 3: Ein Knoten kann nicht der transition point mehrerer Knoten sein.

- 1. / ist der kleinste Schlüssel der linken Region
- 2. r ist der größte Schlüssel der rechten Region

- 1. / ist der kleinste Schlüssel der linken Region
- 2. r ist der größte Schlüssel der rechten Region
- 3. der Teilbaum mit der Wurzel u enthält genau die Schlüssel aus $K_I^r = \{k \in K | k \in [I, r]\}$

- 1. / ist der kleinste Schlüssel der linken Region
- 2. r ist der größte Schlüssel der rechten Region
- 3. der Teilbaum mit der Wurzel u enthält genau die Schlüssel aus $K_{I}^{r} = \{k \in K | k \in [I, r]\}$
- 4. v_l ist der Vorfahre der Schlüssel der linken Region
- 5. v_r ist der Vorfahre der Schlüssel der rechten Region
- 6. w ist der gemeinsame Vorfahre dieser Schlüssel

- 1. / ist der kleinste Schlüssel der linken Region
- 2. r ist der größte Schlüssel der rechten Region

- 1. / ist der kleinste Schlüssel der linken Region
- 2. r ist der größte Schlüssel der rechten Region
- 3. der Teilbaum mit der Wurzel u enthält genau die Schlüssel aus $K_I^r = \{k \in K | k \in [I, r]\}$

- 1. / ist der kleinste Schlüssel der linken Region
- 2. r ist der größte Schlüssel der rechten Region
- 3. der Teilbaum mit der Wurzel u enthält genau die Schlüssel aus $K_I^r = \{k \in K | k \in [I, r]\}$
- 4. v_I ist der Vorfahre der Schlüssel der linken Region
- 5. v_r ist der Vorfahre der Schlüssel der rechten Region
- 6. w ist der gemeinsame Vorfahre dieser Schlüssel
- 7. $w = v_l$ bzw. $w = v_r$
- 8. Transition point ist v_r bzw. v_l

Transition Point Zuordnung

Abbildung: Links ein Lower Bound Tree, rechts ein BST

Satz Interleave Lower Bound

Sei $X = x_0, x_1, ..., x_m$ eine Zugriffsfolge und n die Anzahl der Knoten im zu X erstellten Lower Bound Tree Y. Dann gilt $OPT(X) \geq IB(X)/2 - n$.

Beweis Interleave Lower Bound

- 1. Zählen der Berührungen von Transition Points
- 2. Die Anzahl der Berührungen kann für jeden Knoten einzeln bestimmt werden. (Lemma 5.1 und 5.3)

- 1. Zählen der Berührungen von Transition Points
- 2. Die Anzahl der Berührungen kann für jeden Knoten einzeln bestimmt werden. (Lemma 5.1 und 5.3)
- 3. Betrachteter Knoten $u. X_I^{r'} = x_{i_0}, x_{i_1}, ..., x_{i_n}$ bilden
- 4. inScore(X, u) = p

- 1. Zählen der Berührungen von Transition Points
- 2. Die Anzahl der Berührungen kann für jeden Knoten einzeln bestimmt werden. (Lemma 5.1 und 5.3)
- 3. Betrachteter Knoten $u. X_I^{r'} = x_{i_0}, x_{i_1}, ..., x_{i_n}$ bilden
- **4**. inScore(X, u) = p
- 5. Sei $q \in \mathbb{N}$ mit $1 \le q \le \lfloor p/2 \rfloor$

- 1. Zählen der Berührungen von Transition Points
- 2. Die Anzahl der Berührungen kann für jeden Knoten einzeln bestimmt werden. (Lemma 5.1 und 5.3)
- 3. Betrachteter Knoten $u. X_i^{r'} = x_{i_0}, x_{i_1}, ..., x_{i_p}$ bilden
- 4. inScore(X, u) = p
- 5. Sei $q \in \mathbb{N}$ mit $1 < q < \lfloor p/2 \rfloor$
- 6. Es folgen mindestens $|p/2| \ge p/2 1$ Berührungen des transition points von u

- 1. Zählen der Berührungen von Transition Points
- 2. Die Anzahl der Berührungen kann für jeden Knoten einzeln bestimmt werden. (Lemma 5.1 und 5.3)
- 3. Betrachteter Knoten $u. X_I^{r'} = x_{i_0}, x_{i_1}, ..., x_{i_n}$ bilden
- 4. inScore(X, u) = p
- 5. Sei $q \in \mathbb{N}$ mit $1 < q < \lfloor p/2 \rfloor$
- 6. Es folgen mindestens $|p/2| \ge p/2 1$ Berührungen des transition points von u
- 7. IB(X)/2 |U| > IB(X)/2 n

Erweiterte Knoten:

1. depth

2. minDepth

3. maxDepth

preferred childs

preferred childs

preferred paths

$$P_1 = (8, 4, 2, 1)$$

 $P_2 = (3)$
 $P_3 = (6, 7)$

Hilfsbäume

access Operation

Suche findet im HB mit der Tango Baum Wurzel satt.

Anforderungen an die DS der Hilfsbäume

- 1. $h = O(\log(n))$
- 2. concatenate (HB H_1 , Knoten v, HB H_2) Zusammenführen von T_1 und T_2 . Laufzeit $O(\log(n))$
- 3. split (Schlüssel k) Zerteilen der eigenen Struktur. Laufzeit $O(\log(n))$

concatenate ($HB H_1$, Knoten v, $HB H_2$)

split (Schlüssel k)

Hilfsoperationen für access

- 1. join (HB T_1 , HB T_2) Vereinigen von T_1 und T_2
- 2. cut (depth d) Zerteilen der eigenen Struktur beim Knoten mit Tiefe d

cut Operation

join Operation

access Operation

- 1. IB(X) Interleaves führen zu IB(X) Wechsel bei preferred children von links nach rechts, oder umgekehrt.
- 2. maximal *n* zusätzliche Wechsel bei preferred children, durch Erstzugriffe in Teilbäume

- 1. IB(X) Interleaves führen zu IB(X) Wechsel bei preferred children von links nach rechts, oder umgekehrt.
- 2. maximal n zusätzliche Wechsel bei preferred children, durch Erstzugriffe in Teilbäume
- 3. Das ergibt maximal IB(X) + n Wechsel bei preferred children

- 1. IB(X) Interleaves führen zu IB(X) Wechsel bei preferred children von links nach rechts, oder umgekehrt.
- 2. maximal *n* zusätzliche Wechsel bei preferred children, durch Erstzugriffe in Teilbäume
- 3. Das ergibt maximal IB(X) + n Wechsel bei preferred children
- 4. Es wird maximal IB(X) + n + 1 mal an der Wurzel des Tango Baumes gestartet.
- 5. Für die Höhe eines Hilfsbaumes gilt $O(\log(\log(n)))$

- 1. IB(X) Interleaves führen zu IB(X) Wechsel bei preferred children von links nach rechts, oder umgekehrt.
- 2. maximal *n* zusätzliche Wechsel bei preferred children, durch Erstzugriffe in Teilbäume
- 3. Das ergibt maximal IB(X) + n Wechsel bei preferred children
- 4. Es wird maximal IB(X) + n + 1 mal an der Wurzel des Tango Baumes gestartet.
- 5. Für die Höhe eines Hilfsbaumes gilt $O(\log(\log(n)))$
- 6. $O((IB(X) + n + m)(1 + \log(\log(n))))$

- 1. IB(X) Interleaves führen zu IB(X) Wechsel bei preferred children von links nach rechts, oder umgekehrt.
- 2. maximal n zusätzliche Wechsel bei preferred children, durch Erstzugriffe in Teilbäume
- 3. Das ergibt maximal IB(X) + n Wechsel bei preferred children
- 4. Es wird maximal IB(X) + n + 1 mal an der Wurzel des Tango Baumes gestartet.
- 5. Für die Höhe eines Hilfsbaumes gilt $O(\log(\log(n)))$
- 6. $O((IB(X) + n + m)(1 + \log(\log(n))))$
- 7. $O((OPT(X) + n)(1 + \log(\log(n))))$, mit OPT(X) > IB(X)/2 - n

Einzelne Access Operation:

1. $\Theta(\log(n))$ Wechsel bei preferred children

Einzelne Access Operation:

- 1. $\Theta(\log(n))$ Wechsel bei preferred children
- 2. $O(\log(n)(\log(\log(n)) + 1))$

Einzelne Access Operation:

- 1. $\Theta(\log(n))$ Wechsel bei preferred children
- 2. $O(\log(n)(\log(\log(n)) + 1))$
- 3. Balancierte BSTs erreichen $O(\log(n))$