

泰芯 AH 网桥使用说明

珠海泰芯半导体有限公司 TaiXin Semiconductor Co., Limited

保密等级	A	泰芯 AH 网桥使用说明	文件编号	
发行日期	2023-9-7	泰心 AII 內你 医用 她 另	文件版本	V1.3.4

修订记录

日期	版本	描述	修订人
2023-9-7	V1.3.4	增加自动中继的说明;	WHH
2023-4-10	V1.3.3	修改页脚;	WY
2022-10-19	V1.3.2	增加 netat 的源码的说明;	WY
2022-4-27	V1.3.1	增加中继的信号灯显示说明;	WY
2022-2-18	V1.3.0	修改 logo;	XYJ
2021-12-16	V1.2.9	修改常用 AT+命令;	WY
2021-8-17	V1.2.8	增加网口 AT+和网口 Log 的说明;	WY
2021-7-22	V1.2.7	增加漫游功能的说明;	WY
2021-6-30	V1.2.6	修改中继的描述;	WY
2021-6-23	V1.2.5	修改中继功能的说明;	WY
2021-6-22	V1.2.4	增加固件升级和中继功能的说明	WY
2021-4-30	V1.2.3	修改 IM 的使用说明;	WY
2021-2-5	V1.2.2	调整章节;	WY
2021-1-15	V1.2.1	加入 1M 的使用说明;	WY
2020-11-26	V1.2.0	更新新版网桥的接口,修改相关说明;	WY
2020-10-19	V1.1.8	修改信号强度的说明; 添加电源供电的说明;	WY
2020-10-10	V1.1.7	删除 tcptest 打流量方法,改为 iperf 打流量	XJ
2020-09-07	V1.1.6	增加配对不成功的解决方法:恢复出厂;	WY
2020-09-02	V1.1.5	增加 RSSI 的获取方法; 增加常用 AT+命令的说明; 增加操作系统说明;	WY
2020-08-26	V1.1.4	增加通信不正常的时候,定位出问题的设备的 方法	ЈНВ

珠海泰芯半导体有限公司 TaiXin Semiconductor Co., Limited

版权所有侵权必究 Copyright © 2023 by TaiXin Semiconductor All rights reserved

保密等级	A	泰芯 AH 网桥使用说明	文件编号	
发行日期	2023-9-7	条心 AII 图例 区用 见例	文件版本	V1.3.4

2020-07-28	V1.1.3	修正 rssi 单位错误	ЈНВ
2020-06-24	V1.1.2	增加 LED 信号灯的说明;增加关闭防火墙的方法;增加距离测试的特别说明;增加切换模式后回连不上的说明	ЈНВ
2020-06-24	V1.1.1	增加打流量测试方法;增加使用注意事项;增加常见故障排除	ZS
2020-05-26	V1.1.0	增加一拖多功能	ЈНВ
2020-05-11	V1.0.0	初始版本	ЈНВ

珠海泰芯半导体有限公司 TaiXin Semiconductor Co., Limited

保密等级 A 发行日期 2023-9-7

泰芯 AH 网桥使用说明

文件编号 文件版本 V1.3.4

目录

泰	芯 AH	网桥使用说明	1
修	逐订记录	₹	2
1	方案が	卜绍	1
2	使用证	兑明	3
	2.1	配对方法	3
	2.2	流量测试方法	4
		2.2.1 工具准备	4
		2.2.2 打流量测试方法	4
		2.2.3 1M 模式设置	. 11
	2.3	常用 AT+命令介绍	.11
		2.3.1 常用命令	
		2.3.2 Example	. 12
	2.4	网口工具介绍	.12
		2.4.1 Netat.exe	. 12
		2.4.2 Netlog.exe	
	2.5	固件升级功能说明	. 13
	2.6	中继功能说明	13
		2.6.1 中继网络的配置	. 14
		2.6.2 中继网络的信号指示灯	. 14
	2.7	漫游功能说明	.14
		2.7.1 漫游的配置	15
	2.8	自动中继功能说明	. 15
		2.8.1 自动中继的配置	. 15
3	使用汽	主意事项	.17
	3.1	架设位置注意事项	17
	3.2	供电注意事项	.18
		避免干扰	
4	常见古	枚障排除	.19
	4.1	无法配对	.19
	4.2	反复重启	.19
	4.3	流量异常偏低	.19
	4.4	demo 切换角色后重启回连不上	.20
	4.5	网桥显示已连接但无法正常通信	. 20
陈	录		.22
	A参	>考流量指标	. 22
		A.1 穿楼板测试	.22
		A.2 距离测试	.22

珠海泰芯半导体有限公司 TaiXin Semiconductor Co., Limited

保密等级	A	泰芯 AH 网桥使用说明	文件编号	
发行日期	2023-9-7	泰心 AII 网们 医用 她 另	文件版本	V1.3.4

珠海泰芯半导体有限公司 TaiXin Semiconductor Co., Limited

版权所有侵权必究 Copyright © 2023 by TaiXin Semiconductor All rights reserved

1 方案介绍

下面是网桥方案 demo 的接口和 LED 说明:

图1接口说明

网桥具有以下外设:

- 1. SMA 天线座子。
- 2. 模式拨码开关,可选择 AP 或 STA。
- 3. 配对键, AP和STA同时按下进行配对。
- 4. 串口打印,用于打印调试信息。
- 5. RJ45 网口。
- 6. 调试接口,仅供开发人员使用。
- 7. 电源座子,支持 5V (1A) /12V (500mA) 输入,注意电脑的 USB 只有 5V (500mA),供不起网桥的电源,请勿用电脑 USB 供电。
- 注:老版本网桥接口略有不同,请咨询我司 FEA。

图 2 LED 说明

LED 指示灯代表的含义:

- 1. LEDO 为连接状态、电源指示灯。当插上电源后, LEDO 的红灯将会保持常亮。LEDO 的蓝灯(或绿灯)常亮代表网桥已连接。LEDO 的蓝灯(或绿灯)闪烁代表网桥成功配对。LEDO 的蓝灯(或绿灯)不亮代表网桥已断开连接。
- 2. LED1² 3 代表无线信号强度。3 个 LED 全亮的时候,代表 rssi 大于-48dBm; 2 个 LED (LED1²) 亮的时候,代表 rssi 大于-60dBm,小于-48dBm;只有 LED1 亮的时候,代表 rssi 大于-72dBm,小于-60dBm;当 3 个 LED 都不亮,但 LED0 的蓝灯(或绿灯)保持常亮时,代表 rssi 小于-72dBm。
- 3. 网桥一对多连接时, AP 方的信号强度灯无效, 因为 STA 可能有近有远。 可以查看 STA 的信号指示灯来了解信号情况。

查看打印可以获取到 rssi 信息,如下图所示:

STA3: 0:22:33:44:12:55 tx3: mcs=97 bw=8MHz snr=35 cnt=436 agg=9 data=461KB dur=137ms dut=4% cca=2180 ack=428KB(3772) drop=0KB(0) per= 7% dl rx3: mcs=7 bw=8MHz evm(avg:std)=-29:1 rssi=-49 lgc=7773 cnt=308 agg=23 data=11135KB fcsErr=0, freqDev=1791Hz, dur=31

操作系统说明:

网桥运行的不是 linux, 不支持 linux 的操作命令。

网桥本身是不带 IP 的,需要接到带 IP 的设备使用,可以把一对连接的网桥理解成一根网线。

2 使用说明

2.1 配对方法

下面以多个网桥方案 demo 为例说明使用方法:

- 1. 在上电之前,将其中一个 demo 设置为 AP,其他 demo 设置为 STA。
- 2. 插上电源。此时 LEDO 应该亮红灯,代表电源正常。
- 3. 按下 AP 和其中一个 STA 的配对键,等待 2 个 demo 的 LEDO 的蓝灯都出现 闪烁,表明 2 个 demo 已经成功配对,可以松开。(如果之前已经配对过,则可以跳过步骤 3)
- 4. 等待步骤 3 中的 2 个 demo 的 LEDO 的蓝灯(或绿灯)常亮,表明 2 个 demo 已经建立连接,网桥可以实现以太网透传的功能;如果 2 个 demo 的 LEDO 的蓝灯(或绿灯)不亮,表明 2 个 demo 没有建立连接或者连接已断开。
- 5. 如果有多个网桥方案 demo 要配对连接,则重复步骤 3~4 即可。
- 6. 如果 demo 的角色发生了变化,网桥 demo 需要重新配对,确保网桥 demo 能够正常工作。

当步骤 4 完成后,网桥方案 demo 会保存连接信息,会在下次重新上电后或 断线后重新回连。

配对后灯的状态如图 3 所示。

图 3 配对 ok 状态

2.2 流量测试方法

2.2.1工具准备

- 带有线网口的 windows 电脑两台(如果没有有线网口, usb 转接有线网口也可以)
- 网线两条
- 按照配对方法一节配对成功的泰芯网桥一对(包含主机,天线,5v供电)
- jperf(联系泰芯 FAE 提供)

2.2.2打流量测试方法

2.2.2.1 第一步,用网线连接电脑和网桥

用一条网线连接一台电脑和网桥 用第二条网线连接另一台电脑和网桥

2.2.2.2 第二步 给两台电脑配置有线网络 ip 地址

打开 控制面板\网络和 Internet\网络和共享中心 点击 以太网 如下图

点击 internet 协议版本 选项, 并点击 属性 如下图

配置有线网 IP 地址如下图, 例如其中一台电脑配置成 10.10.10.156, 另一台电脑配置成 10.10.10.10.123

2.2.2.3 第三步 暂时关闭防火墙

使用 iperf 作为流量测试方法,要关闭防火墙,否则会导致流量测试无法进行。

下面只说明 windows 自带的防火墙的关闭方法,其他安全软件的防火墙,请自行寻找关闭方法:

1. Win+R调出运行界面,输入cmd,然后按下回车

2. 在弹出的 cmd 界面中,输入 Firewall.cpl,然后按下回车

3. 在弹出的防火墙页面中,点击"启用或关闭 Windows Defender 防火墙" 选项

4. 在弹出的"自定义设置"页面中,全部选择"关闭 Windows Defender 防火墙"选项,然后点击确定

5. 等待流量测试完成后,可以在步骤4的页面中,重新打开防火墙即可。

2.2.2.4 第四步 运行 jperf 打流量

1. tcp 测试:

在第一台电脑(ip 地址为 10.10.10.156, 网桥是 ap 模式)运行 jperf。 transport layer options 选择 tcp(默认为 tcp)。

Choose iperf mode:server,即作为服务端。

然后点击 run iperf。

在第二台电脑(ip 地址为 10.10.10.123, 网桥是 sta 模式)运行 jperf。 transport layer options 选择 tcp(默认为 tcp)。

Choose iperf mode :client,即作为客户端。Server adress 输入另一台电脑的 ip,即 10.10.10.156。Port 5001 为默认端口号,服务端和客户端保持一致即可。

可在 Application layer options 的 transmit 项修改流量测试时长(例如: 600 seconds). 在 output format 项选择流量单位(例如: Mbits)。

然后点击 run iperf。

2. udp 测试

步骤与tcp测试一样,第一台电脑运行jperf,在transport layer options 选择udp。

Choose iperf mode :server,即作为服务端,然后点击 run iperf。

在第二台电脑运行 jperf, 在 transport layer options 选择 udp。

Choose iperf mode: client,即作为客户端,将 udp bandwidth设置为100(默认是1)。Server adress 输入另一台电脑的 ip。Port 5001为默认端口号,服务端和客户端保持一致,然后点击 run iperf。观察 server 端的流量数据即可。

目前网桥设计是 sta 往 ap 方向流量优先,如果调换流量方向为 ap 往 sta 方向,得到流量会略小一些。

2.2.31M 模式设置

在 snv 版本 11371 之前,如果工作到 1M 模式,需要将 tx_bw 设置为 1M, bss_bw 设置为 2M。请参考 2.3.2 小节。在此版本之后,直接设置 $bss_bw=1$ 即可。

在 1M 模式下,如果用 MCS2/1/0/10,需要将 MTU 设置为 300byte。 ifconfig hg0 mtu 300 ifconfig eth2 mtu 300

2.3 常用 AT+命令介绍

AT+命令是泰芯 AH 方案定义的一套调试指令,通过 UART 串口通信,串口波特率为 115200; AT+不区分大小写;

2.3.1 常用命令

- 1. AT+CHAN_LIST,设定工作信道的中心频率,单位 100kHz,频率范围参考模组规格书;
- 2. AT+BSS_BW,设定信道的带宽,单位MHz,可选为2/4/8;
- 3. AT+TX_MCS,设定发送信号的 MCS,可选值为 0^{\sim} 7 和 255,如果设定为 0^{\sim} 7 中的值表示选择固定的一档 MCS,如果设定为 255 则为自动调整:
- 4. AT+SSID,设定SSID。

上面命令掉电会保存。

2.3.2 Example

测试项目:

8M 带宽 MCS2, 测试命令序列:

- 1. AT+CHAN_LIST=9080, 9160, 9240 //设置中心频点为 908M/916M/924M
- 2. AT+BSS BW=8 //设置 bw 为 8M;
- 3. AT+TX MCS=2 //设置 tx mcs 为 2;
- 4. AT+SSID=hgic ah test

2.4 网口工具介绍

对于串口使用不方便的场景,泰芯提供两个基于网口的工具方便客户进行参数配置(netat. exe)和查看 log(netlog. exe)。注意这两个工具都要在网桥固件版本 12954 之后才能工作。下面分别介绍使用说明。

2.4.1 Netat.exe

需要用 AT+命令进行网桥参数配置的时候,可以用 netat. exe。

用网线连接网桥设备和 PC。双击运行,输入 pc 的 IP 地址,会显示连到的 device 的 mac。

如果只连一个设备, 会 auto select device 1。

```
select ipaddr for bind:10.10.10.151
---- Discover 1 Device ----
1: fa-de-09-8a-9b-38
>:auto select device 1
```

如果通过交换机连了几个设备,可以通过输入数字选择设备

```
1>:
---- Discover 3 Device ----
1: f6-de-09-9b-a7-60
2: f6-de-09-60-96-60
3: f6-de-09-99-6f-60

1>:2
select device 2
2>:3
默认选择第一台设备,输入数字可以切换选择其他设备
select device 3
```

选择设备后,输入 AT 命令,则执行 AT 命令,用法和串口一致。如果需要 netat 的源码,用于 linux 集成相关功能,请联系 FAE 获取: libnetat. C。

2.4.2 **Netlog.exe**

需要用网线查看网桥的调试 log 时,可以用 net log. exe。

用网线连接网桥设备和 PC。双击运行 net log. exe,输入 pc 的 IP 地址,自动打印 log。只会显示网线连的 device 的 log。使用时注意不要用交换机连多个 device。

2.5 固件升级功能说明

老版本固件(SVN 10000之前)升级的话需要用 OTA 工具升级,具体请咨询 FAE:

新版本固件(SVN 10000之后)升级,除了OTA工具,还可以用UART升级(at+fwupg),具体请咨询FAE。

2.6 中继功能说明

固件版本 1.3.4.x 后支持网桥中继功能。中继节点是 APSTA 模式。中继的级数限制为一级,中继一级时流量会减少一半,延时也会大一倍,例如 8M 带宽下,中继一级,流量峰值就只有 8Mbps 左右了。

注意,中继节点的配对按键和角色按键无效了。

2.6.1中继网络的配置

2.6.1.1 角色的配置

- 1, AP 和 STA 节点建议用角色按键选择角色:
- 2,中继节点的角色按键失效了,只能用串口 AT+命令选择角色: AT+MODE=APSTA。

2.6.1.2 **SSID** 的配置

没有中继节点的网桥网络,AP和 STA之间可以通过按配对按键实现配对;有中继节点的网桥网络,要通过配置 SSID 才能实现配对,设置方法如下:

- 1, AP: 设置 SSID, 例如 AT+SSID=AH AP;
- 2,中继:设置 R_SSID 用来跟上一级节点(即 AP)连接,例如 AT+R_SSID=AH_AP; 设置 SSID 用来跟下一级节点(即 STA)连接,例如 AT+SSID=AH REPEATER;
 - 3, STA: 设置 SSID 用来跟中继节点连接,例如 AT+SSID=AH REPEATER;

2.6.1.3 密钥的设置

如果不开启加密, AT+KEYMGMT=NONE, 就可以不设置密钥;

如果开启加密,AT+KEYMGMT=WPA-PSK,则每个节点都要设置密钥(64 个 hex 字符),请参考《AT 指令开发指南》:

- 1, AP: 设置 PSK, 命令为 AT+PSK=xxx1 (一个 64 个 hex 字符);
- 2,中继:设置 R_PSK 用来跟上一级节点(即 AP)连接,例如 AT+R_PSK=xxx1;设置 PSK 用来跟下一级节点(即 STA)连接,例如 AT+PSK=xxx2(另一个 64 个 hex 字符);
 - 3, STA: 设置 PSK 用来跟中继节点连接, 例如 AT+PSK=xxx2;

2.6.2中继网络的信号指示灯

中继模式下,STA 信号灯显示的是到中继的信号强度,中继显示的是到 AP 的信号强度。如果 AP 只连接一个中继,则显示中继的信号强度,若 AP 连接两个设备则全部信号灯亮。

2.7漫游功能说明

固件版本 1.3.4.x 后支持网桥漫游功能。

2.7.1漫游的配置

2.7.1.1 **SSID** 的配置

漫游网络中 AP 的 SSID 可以按全字匹配,也可以按模糊匹配来设置。

全字匹配: 所有 AP 的 SSID 设置成同 1 个 SSID, SSID 长度不限制,不超过 32 个字符即可。STA 也都设置成这个 SSID。

模糊匹配:不同 AP 的 SSID 后面 3 个字符不同。SSID 总长度要大于 8 个字符,由共通字符串(位于 SSID 的串首)和 3 个字符的 ID(位于串尾)来组成。例如共通字符串为 HUGE_IC_AH, 那么可以设置 AP1 的 SSID 为 HUGE_IC_AH001, AP2 的 SSID 为 HUGE_IC_AH002,以此类推。STA 的 SSID 要设置成跟其中的一个 AP 的 SSID 一致。

2.7.1.2 密钥的设置

建议打开加密(AT+KEYMGMT=WPA-PSK)。 漫游网络中,所有 AP 和 STA 的密钥,要设置成一致。例如: AT+PSK=baa58569a9edd7c3a55e446bc658ef76a7173d023d256786832474d737756a82 请参考《AT 指令开发指南》。

2.7.1.3 漫游模式使能

STA 节点需要使能漫游模式(AT+ROAM=1)。

2.8 自动中继功能说明

自动中继是利用中继+漫游功能实现的,就是除了AP节点,其他的节点都配置成中继,并且把漫游功能打开,就可以自动实现远处节点通过其他节点中继到AP,不需要固定某个节点为中继节点。

2.8.1自动中继的配置

2.8.1.1 **SSID** 的配置

为了能根据距离自动漫游切换至中继设备,建议将 SSID 设置成同 1 个 SSID,长度不限制,不超过 32 个字符即可。设置方法如下:

AP: 设置 SSID, 例如 AT+SSID=HUGE IC AHOO1;

中继 1: 设置 R SSID 用来跟上一级节点 (即 AP)连接,例如:

AT+R_SSID=HUGE_IC_AH001; 设置 SSID 用来跟下一级节点(即中继2)连接,例如: AT+SSID=HUGE_IC_AH001;

中继 2: 设置 R_SSID 用来跟上一级节点(即中继 1)连接,例如: AT+R_SSID=HUGE_IC_AH001;设置 SSID 用来跟下一级节点(即中继 n-1)连接,例如: AT+SSID=HUGE_IC_AH001;

.

中继 n:设置 SSID 用来跟中继 n-1 连接,例如 AT+R_SSID=HUGE_IC_AHO01;

2.8.1.2 密钥的配置

建议打开加密(AT+KEYMGMT=WPA-PSK),并将所有 AP 和 APSTA 的密钥设置成一样的。例如:

AT+PSK=baa58569a9edd7c3a55e446bc658ef76a7173d023d256786832474d737 756a82 详请参考《AT 指令开发指南》。

如果关闭加密(AT+KEYMGMT=NONE)需要所有设备都关闭加密。

2.8.1.3 漫游的配置

中继设备都需要使能漫游模式(AT+ROAM=1)

3 使用注意事项

3.1 架设位置注意事项

- 建议使用支架将网桥架高至 1.5 米以上,以排除人员走动对天线传播 路线的干扰;
- 不要将网桥过分靠近墙体,过分靠近将会影响天线的性能;
- 部分天线本身不支持弯折,如果天线上贴有"不可弯折"标签,请不要弯折
- 不要将网桥放得太近,建议保持1米以上距离以防止信号过强。

远距离时需要将网桥架告,原因是 900mhz/700mhz 无线电菲涅尔区相对 2.4Ghz 菲涅尔区更高。下图给出 700mhz 和 2.4Ghz 的菲涅尔区计算结果比较。

菲涅尔区计算链接

https://lunaw.cn/wifical/?from=groupmessage

3.2 供电注意事项

网桥支持 5v 和 12v 供电。

供电线电阻要求小于 0.2 欧姆,简单说就是越粗越好,太细的供电线可能导致压降过大导致网桥工作不正常。

注意电脑的 USB 只有 5V(500mA),供不起网桥的电源,请勿用电脑 USB 供电。

3.3 避免干扰

如果测试环境中存在高功率的干扰信号,也会严重影响通信性能。如果有频谱仪,请测量工作频率 700~1000mhz 的频率空口状况。下图给出 900mhz 附近存在明显大功率干扰的情况,使用的是便携式频谱仪。

4 常见故障排除

4.1 无法配对

检查模式键(见第一章的网桥方案 demo 的实物图片)是否正确,正确的方法是有且只有一个网桥处于 AP 模式,其余一个或多个网桥应处于 STA 模式。

如果始终无法配对,可以尝试恢复出厂设置(利用 OTA 工具的恢复出厂功能),然后再进行配对。注意,恢复出厂设置后,以前保持的配对信息都会丢失。

4.2 反复重启

检查网桥供电电压是否正常,例如供电线是否太细,压降太大。

4.3 流量异常偏低

请参考使用注意事项章节。

4.4 demo 切换角色后重启回连不上

我们网桥 demo 支持工作模式 (AP/STA) 热切换。当网桥 demo 的角色切换后, 网桥自动重启。

这是需要注意的是,如果之前是 AP 的 demo,如果已经配对过 1 个以上的其他网桥 demo,则切换角色重启后,该网桥 demo 只会回连保存的第 1 个网桥 demo。这种时候很容易出现回连不上的问题(切换后的网桥 demo 实际上是有发起回连的,但是并不一定是回连客户所认为的那个网桥 demo)。

因此,我们要求 demo 切换角色后,需要重新配对,确保网桥后续的正常工作。

4.5网桥显示已连接但无法正常通信

遇到这个问题的时候,可以按照如下步骤进行问题定位:

- 1. 首先判断以太网连接是否正常。如果网桥的 RJ45 的 LED 没有亮,则说明以太网连接不正常,可以尝试更换网线,或者检查与网桥连接的设备是否正常。
- 2. 以太网连接正常,但是通信不正常。这种情况下,可以用交换机替换网桥,定位出问题的地方:
 - a) 确定复现问题的条件。如网桥和连接的设备上电顺序、网线拔插顺序等。
 - b) 我司的网桥本质上是传输数据有延迟的交换机,因此可以使用交换 机替换网桥,判断出问题的地方。这里推荐使用纯透传的交换机(如 水星的 SG105M 交换机)。下图以 NVR 和摄像头为例,展示了交换机 替换网桥的方法:

c) 完成交换机替换网桥后,使用步骤 a 的中复现问题条件(如交换机 和连接设备上电顺序、网桥拔插顺序等),观察是否依然存在通信 不正常的情况。如果使用交换机后依然出现通信不正常的问题,则 说明有问题的不是网桥,而是与网桥连接的设备。反之出现问题的 是网桥,这时需要联系我司 FAE。

附录

A 参考流量指标

A.1 穿楼板测试

测试地点: 泰芯办公楼。一台网桥固定放在1楼楼梯间, 另一台移动

A.2 距离测试

直线距离(m)	evm	tx mcs	rx mcs	bgrssi	rssi	平均流量(KB/s)	频点 (MHz)
300	-28~-29	6 [~] 7	6 [~] 7	-95 [~] -97	-59 [~] -61	1849	890
600	-19	1	1~3	-95 [~] -96	-68~-69	slave 端举高后有 630KB/s	906

1200	-20 [~] -21	0~1	1~4	-94 [~] -95		slave 端举高后有 808KB/s,slave 端放下后大概有 500KB/s	906
------	----------------------	-----	-----	----------------------	--	--	-----

特别说明:该距离测试是在淇澳大桥上进行的,300m和600m的位置均位于桥上,1200m的位置则是 ap 和 sta 能够隔海相望。因此测试看到1200m的流量会有可能高于600m处的流量。

