#### Chrysafis Vogiatzis

Department of Industrial and Enterprise Systems Engineering University of Illinois at Urbana-Champaign

Lecture 32b



ISE | Industrial & Enterprise Systems Engineering GRAINGER COLLEGE OF ENGINEERING

©Chrysafis Vogiatzis. Do not distribute without permission of the author



In many practical cases, our dependent variable will need more than just one piece of information to "predict".

- Success in an exam is not only how much you've studied, but also a function of your health, mental state, rest, etc.
- The box office success of a movie is not only how good the movie is, but how much budget they've had for advertising, the recognition of the names starring and directing, etc.





- k predictor variables.
- $(x_{i1},...,x_{ik},y_i)$ , i=1,...,n: a series of n data points with provided values for  $x_1,...,x_k,y$ .
- The main idea is the same

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} + \epsilon_i$$

- $\blacksquare$   $\beta_0$ : intercept;
- $\beta_1, \beta_2, \ldots, \beta_k$ : slope for  $x_1, x_2, \ldots, x_k$ , respectively;
- $\bullet$   $\epsilon_i$ : "noise" associated with point i.
- Find the "best"  $\beta_0, \beta_1, \dots, \beta_k$  by optimizing the least squares:

$$L = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \ldots - \beta_k x_{ik})^2$$



- k predictor variables.
- $(x_{i1},...,x_{ik},y_i)$ , i=1,...,n: a series of n data points with provided values for  $x_1,...,x_k,y$ .
- The main idea is the same.

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} + \epsilon_i$$

- $\blacksquare$   $\beta_0$ : intercept;
- $\beta_1, \beta_2, \ldots, \beta_k$ : slope for  $x_1, x_2, \ldots, x_k$ , respectively;
- $\bullet$   $\epsilon_i$ : "noise" associated with point i.
- Find the "best"  $\beta_0, \beta_1, \dots, \beta_k$  by optimizing the least squares:

$$L = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \ldots - \beta_k x_{ik})^2$$





- k predictor variables.
- $(x_{i1},...,x_{ik},y_i)$ , i=1,...,n: a series of n data points with provided values for  $x_1,...,x_k,y$ .
- The main idea is the same!

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} + \epsilon_i$$

- $\blacksquare$   $\beta_0$ : intercept;
- $\beta_1, \beta_2, \ldots, \beta_k$ : slope for  $x_1, x_2, \ldots, x_k$ , respectively;
- $\bullet$   $\epsilon_i$ : "noise" associated with point i.
- Find the "best"  $\beta_0, \beta_1, \dots, \beta_k$  by optimizing the least squares:

$$L = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \ldots - \beta_k x_{ik})^2$$





- k predictor variables.
- $(x_{i1},...,x_{ik},y_i)$ , i=1,...,n: a series of n data points with provided values for  $x_1,...,x_k,y$ .
- The main idea is the same!

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} + \epsilon_i$$

- $\blacksquare$   $\beta_0$ : intercept;
- $\beta_1, \beta_2, \ldots, \beta_k$ : slope for  $x_1, x_2, \ldots, x_k$ , respectively;
- $\bullet$   $\epsilon_i$ : "noise" associated with point i.
- Find the "best"  $\beta_0, \beta_1, \ldots, \beta_k$  by optimizing the least squares:

$$L = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \ldots - \beta_k x_{ik})^2$$





### **Derivation for two predictor variables**

We need to take k + 1 derivatives:

$$\frac{\partial L}{\partial \beta_0} = 0 \implies -2 \sum_{i=1}^n \left( y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \hat{\beta}_k x_{ik} \right) = 0$$

$$\frac{\partial L}{\partial \beta_1} = 0 \implies -2 \sum_{i=1}^n \left( y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \hat{\beta}_k x_{ik} \right) x_{i1} = 0$$

$$\vdots$$

$$\frac{\partial L}{\partial \beta_k} = 0 \implies -2 \sum_{i=1}^n \left( y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \hat{\beta}_k x_{ik} \right) x_{ik} = 0$$

A system of k + 1 equations with k + 1 unknowns.





### **Matrix form**

#### Recall that we want:

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} + \epsilon_i.$$

■ Written in matrix form, we have:

$$y = X\beta + \epsilon.$$

■ Once more, we wish to find  $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k$  that minimize

$$L = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \ldots - \beta_k x_{ik})^2 = (y - X\beta)^T (y - X\beta).$$



### **Matrix form**

Recall that we want:

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} + \epsilon_i.$$

■ Written in **matrix form**, we have:

$$y = X\beta + \epsilon.$$

■ Once more, we wish to find  $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k$  that minimize

$$L = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \ldots - \beta_k x_{ik})^2 = (y - X\beta)^T (y - X\beta).$$



### **Matrix form**

Recall that we want:

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} + \epsilon_i.$$

■ Written in **matrix form**, we have:

$$y = X\beta + \epsilon.$$

■ Once more, we wish to find  $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k$  that minimize

$$L = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \ldots - \beta_k x_{ik})^2 = (y - X\beta)^T (y - X\beta).$$





We may rewrite L as:

$$L = (y - X\beta)^{T} (y - X\beta) =$$

$$= y^{T}y - \beta^{T}X^{T}y - y^{T}X\beta + \beta^{T}X^{T}X\beta =$$

$$= y^{T}y - 2\beta^{T}X^{T}y + \beta^{T}X^{T}X\beta$$

We need to take the derivative as far as vector  $\beta$  is concerned:

$$\frac{\partial L}{\partial \beta} = 0 \implies -2X^T y + 2X^T X \beta = 0 \implies X^T X \beta = X^T y.$$

$$\hat{\beta} = \left( X^T X \right)^{-1} X^T y$$



We may rewrite L as:

$$L = (y - X\beta)^{T} (y - X\beta) =$$

$$= y^{T}y - \beta^{T}X^{T}y - y^{T}X\beta + \beta^{T}X^{T}X\beta =$$

$$= y^{T}y - 2\beta^{T}X^{T}y + \beta^{T}X^{T}X\beta$$

We need to take the derivative as far as vector  $\beta$  is concerned:

$$\frac{\partial L}{\partial \beta} = 0 \implies -2X^T y + 2X^T X \beta = 0 \implies X^T X \beta = X^T y.$$

$$\hat{\beta} = \left( X^T X \right)^{-1} X^T y$$



We may rewrite *L* as:

$$L = (y - X\beta)^{T} (y - X\beta) =$$

$$= y^{T}y - \beta^{T}X^{T}y - y^{T}X\beta + \beta^{T}X^{T}X\beta =$$

$$= y^{T}y - 2\beta^{T}X^{T}y + \beta^{T}X^{T}X\beta$$

We need to take the derivative as far as vector  $\beta$  is concerned:

$$\frac{\partial L}{\partial \beta} = 0 \implies -2X^T y + 2X^T X \beta = 0 \implies X^T X \beta = X^T y.$$

$$\hat{\beta} = (X^T X)^{-1} X^T y$$



We may rewrite *L* as:

$$L = (y - X\beta)^{T} (y - X\beta) =$$

$$= y^{T}y - \beta^{T}X^{T}y - y^{T}X\beta + \beta^{T}X^{T}X\beta =$$

$$= y^{T}y - 2\beta^{T}X^{T}y + \beta^{T}X^{T}X\beta$$

We need to take the derivative as far as vector  $\beta$  is concerned:

$$\frac{\partial L}{\partial \beta} = 0 \implies -2X^T y + 2X^T X \beta = 0 \implies X^T X \beta = X^T y.$$

$$\hat{\beta} = (X^{\mathsf{T}}X)^{-1} X^{\mathsf{T}} y$$



We may rewrite *L* as:

$$L = (y - X\beta)^{T} (y - X\beta) =$$

$$= y^{T}y - \beta^{T}X^{T}y - y^{T}X\beta + \beta^{T}X^{T}X\beta =$$

$$= y^{T}y - 2\beta^{T}X^{T}y + \beta^{T}X^{T}X\beta$$

We need to take the derivative as far as vector  $\beta$  is concerned:

$$\frac{\partial L}{\partial \beta} = 0 \implies -2X^T y + 2X^T X \beta = 0 \implies X^T X \beta = X^T y.$$

$$\hat{\beta} = (X^T X)^{-1} X^T y$$





With  $\hat{\beta} = (X^T X)^{-1} X^T y$ , we can find fitted values  $\hat{y}$ :

in matrix form:

$$\hat{y} = X\hat{\beta},$$

or in scalar form:

$$\hat{y}_i = \hat{\beta}_0 + \sum_{j=1}^k \hat{\beta}_j x_{ij}$$
, for all  $i = 1, \dots, n$ .

- $\blacksquare SS_E = \sum (y_i \hat{y}_i)^2.$
- In matrix form:  $SS_E = y^T y \hat{\beta}^T X^T y$ .
- $SS_E$  comes with n k 1 degrees of freedom!





With  $\hat{\beta} = (X^T X)^{-1} X^T y$ , we can find fitted values  $\hat{y}$ :

in matrix form:

$$\hat{y} = X\hat{\beta},$$

or in scalar form:

$$\hat{y}_i = \hat{\beta}_0 + \sum_{j=1}^k \hat{\beta}_j x_{ij}$$
, for all  $i = 1, \dots, n$ .

- $SS_E = \sum (y_i \hat{y}_i)^2.$
- In matrix form:  $SS_E = y^T y \hat{\beta}^T X^T y$
- $SS_E$  comes with n k 1 degrees of freedom!





With  $\hat{\beta} = (X^T X)^{-1} X^T y$ , we can find fitted values  $\hat{y}$ :

in matrix form:

$$\hat{y} = X\hat{\beta},$$

or in scalar form:

$$\hat{y}_i = \hat{\beta}_0 + \sum_{j=1}^k \hat{\beta}_j x_{ij}$$
, for all  $i = 1, \dots, n$ .

- $SS_E = \sum (y_i \hat{y}_i)^2.$
- In matrix form:  $SS_E = y^T y \hat{\beta}^T X^T y$
- $SS_E$  comes with n k 1 degrees of freedom!





With  $\hat{\beta} = (X^T X)^{-1} X^T y$ , we can find fitted values  $\hat{y}$ :

in matrix form:

$$\hat{\mathbf{y}}=\mathbf{X}\hat{\boldsymbol{\beta}},$$

or in scalar form:

$$\hat{y}_i = \hat{\beta}_0 + \sum_{j=1}^k \hat{\beta}_j x_{ij}$$
, for all  $i = 1, \dots, n$ .

- $SS_E = \sum (y_i \hat{y}_i)^2.$
- In matrix form:  $SS_E = y^T y \hat{\beta}^T X^T y$ .
- $SS_E$  comes with n k 1 degrees of freedom!





With  $\hat{\beta} = (X^T X)^{-1} X^T y$ , we can find fitted values  $\hat{y}$ :

in matrix form:

$$\hat{y} = X\hat{\beta},$$

or in scalar form:

$$\hat{y}_i = \hat{\beta}_0 + \sum_{j=1}^k \hat{\beta}_j x_{ij}$$
, for all  $i = 1, \dots, n$ .

- $SS_E = \sum (y_i \hat{y}_i)^2.$
- In matrix form:  $SS_E = y^T y \hat{\beta}^T X^T y$ .
- $SS_E$  comes with n k 1 degrees of freedom!





As with simple linear regression, it is necessary to obtain an estimator for  $\sigma$  (the standard deviation of noise).

- Recall that for simple linear regression, we have that  $\hat{\sigma}^2 = MS_E = \frac{SS_E}{n-2}$ .
- What if we use the same logic?



#### Recall ANOVA

- $SS_T$ : still n-1 degrees of freedom.
- $SS_E$ : n k 1 degrees of freedom.
- $SS_R$ : k degrees of freedom.





As with simple linear regression, it is necessary to obtain an estimator for  $\sigma$  (the standard deviation of noise).

- Recall that for simple linear regression, we have that  $\hat{\sigma}^2 = MS_E = \frac{SS_E}{n-2}$ .
- What if we use the same logic?

$$\hat{\sigma}^2 = MS_E = \frac{SS_E}{n - k - 1}$$

#### Recall ANOVA:

- $SS_T$ : still n-1 degrees of freedom.
- $SS_E$ : n k 1 degrees of freedom.
- $SS_R$ : k degrees of freedom.





As with simple linear regression, it is necessary to obtain an estimator for  $\sigma$  (the standard deviation of noise).

- Recall that for simple linear regression, we have that  $\hat{\sigma}^2 = MS_E = \frac{SS_E}{n-2}$ .
- What if we use the same logic?

$$\hat{\sigma}^2 = MS_E = \frac{SS_E}{n - k - 1}.$$

#### Recall ANOVA:

- $SS_T$ : still n-1 degrees of freedom.
- $SS_E$ : n k 1 degrees of freedom.
- $SS_R$ : k degrees of freedom.





As with simple linear regression, it is necessary to obtain an estimator for  $\sigma$  (the standard deviation of noise).

- Recall that for simple linear regression, we have that  $\hat{\sigma}^2 = MS_E = \frac{SS_E}{n-2}$ .
- What if we use the same logic?

$$\hat{\sigma}^2 = MS_E = \frac{SS_E}{n - k - 1}.$$

#### Recall ANOVA:

- $SS_T$ : still n-1 degrees of freedom.
- $SS_E$ : n k 1 degrees of freedom.
- $SS_R$ : k degrees of freedom.





First, we want to see if our regression has any significant parts.

$$H_0: \beta_1 = \beta_2 = \ldots = \beta_k = 0$$
 vs.  $H_1: \beta_j \neq 0$ , for at least one  $j$ .

We now make the observation that **if the null hypothesis is true**, then we are comparing two population "variances" ( $MS_R$  and  $MS_E$ ) and want to see if they are significantly different.

Specifically, we want to see if we have enough evidence that  $MS_R > MS_E$ . The corresponding test statistic is:

$$F_0 = \frac{SS_R/k}{SS_E/(n-k-1)} = \frac{MS_R}{MS_E}$$



First, we want to see if our regression has any significant parts.

$$H_0: \beta_1 = \beta_2 = \ldots = \beta_k = 0$$
 vs.  $H_1: \beta_j \neq 0$ , for at least one  $j$ .

We now make the observation that if the null hypothesis is true, then we are comparing two population "variances" ( $MS_R$  and  $MS_E$ ) and want to see if they are significantly different.

Specifically, we want to see if we have enough evidence that  $MS_R > MS_E$ . The corresponding test statistic is:

$$F_0 = \frac{SS_R/k}{SS_E/(n-k-1)} = \frac{MS_R}{MS_E}$$



First, we want to see if our regression has any significant parts.

$$H_0: \beta_1 = \beta_2 = \ldots = \beta_k = 0$$
 vs.  $H_1: \beta_j \neq 0$ , for at least one  $j$ .

We now make the observation that if the null hypothesis is true, then we are comparing two population "variances" ( $MS_R$  and  $MS_E$ ) and want to see if they are significantly different.

Specifically, we want to see if we have enough evidence that  $MS_R > MS_E$ . The corresponding test statistic is:

$$F_0 = \frac{SS_R/k}{SS_E/(n-k-1)} = \frac{MS_R}{MS_E}$$



First, we want to see if our regression has any significant parts.

$$H_0: \beta_1 = \beta_2 = \ldots = \beta_k = 0$$
 vs.  $H_1: \beta_j \neq 0$ , for at least one  $j$ .

We now make the observation that **if the null hypothesis is true**, then we are comparing two population "variances" ( $MS_R$  and  $MS_E$ ) and want to see if they are significantly different.

Specifically, we want to see if we have enough evidence that  $MS_R > MS_E$ . The corresponding test statistic is:

$$F_0 = \frac{SS_R/k}{SS_E/(n-k-1)} = \frac{MS_R}{MS_E}$$



- We have already defined  $R^2 = 1 \frac{SS_E}{SS_T}$ .

$$R_{adj}^2 = 1 - \frac{SS_E/(n-k-1)}{SS_T/(n-1)}$$



- We have already defined  $R^2 = 1 \frac{SS_E}{SS_T}$ .
- Observation #1: R² will always increase or stay the same with the addition of any predictor variable.
- Observation #2: Even when that predictor variable is associated with a  $\beta_i$  that is insignificant.

$$R_{adj}^2 = 1 - \frac{SS_E/(n-k-1)}{SS_T/(n-1)}$$

- More appropriate than simple  $R^2$ .
- Does not always increase with more predictor variables.
  - Indeed, it often decreases when an insignificant variable is entered





- We have already defined  $R^2 = 1 \frac{SS_E}{SS_T}$ .
- Observation #1: R² will always increase or stay the same with the addition of any predictor variable.
- Observation #2: Even when that predictor variable is associated with a  $\beta_i$  that is insignificant.

$$R_{adj}^2 = 1 - \frac{SS_E/(n-k-1)}{SS_T/(n-1)}$$

- More appropriate than simple  $R^2$ .
- Does not always increase with more predictor variables.
  - Indeed, it often decreases when an insignificant variable is entered



- We have already defined  $R^2 = 1 \frac{SS_E}{SS_T}$ .
- Observation #1: R² will always increase or stay the same with the addition of any predictor variable.
- Observation #2: Even when that predictor variable is associated with a  $\beta_i$  that is insignificant.

$$R_{adj}^2 = 1 - \frac{SS_E/(n-k-1)}{SS_T/(n-1)}$$

- More appropriate than simple  $R^2$ .
- Does not always increase with more predictor variables.
  - Indeed, it often decreases when an insignificant variable is entered.
  - when  $H^{-}$  and  $H_{adf}^{-}$  differ a lot, this is an indicinal forms have been added





- We have already defined  $R^2 = 1 \frac{SS_E}{SS_T}$ .
- Observation #1: R² will always increase or stay the same with the addition of any predictor variable.
- Observation #2: Even when that predictor variable is associated with a  $\beta_i$  that is insignificant.

$$R_{adj}^2 = 1 - rac{SS_E/(n-k-1)}{SS_T/(n-1)}$$

- More appropriate than simple R<sup>2</sup>.
- Does not always increase with more predictor variables.
  - Indeed, it often decreases when an insignificant variable is entered.
- When  $R^2$  and  $R^2_{adj}$  differ a lot, this is an indication that insignificant terms have been added.





- We have already defined  $R^2 = 1 \frac{SS_E}{SS_T}$ .
- Observation #1: R² will always increase or stay the same with the addition of any predictor variable.
- Observation #2: Even when that predictor variable is associated with a  $\beta_i$  that is insignificant.

$$R_{adj}^2 = 1 - rac{SS_E/(n-k-1)}{SS_T/(n-1)}$$

- More appropriate than simple  $R^2$ .
- Does not always increase with more predictor variables.
  - Indeed, it often decreases when an insignificant variable is entered.
- When  $R^2$  and  $R^2_{adj}$  differ a lot, this is an indication that insignificant terms have been added.





## Bank example

### **Example**

With n = 16 data points on k = 2 predictor variables, we got a line equal to

$$\hat{y} = 1566.077 + 7.62 \cdot x_1 + 8.58 \cdot x_2.$$

Is it significant, using  $\alpha = 5\%$ ? What is  $R^2$  and how does it compare with  $R^2_{adj}$ ? You may assume that  $SS_E = \sum (y_i - \hat{y}_i)^2 = 3479$  and  $SS_R = \sum (\hat{y}_i - \overline{y})^2 = 44157$ .

### **Answer: Significant?**

- Using ANOVA,  $SS_T = SS_E + SS_R = 47636$ .
- $F_0 = \frac{MS_R}{MS_E} = \frac{SS_R/2}{SS_E/13} = 82.5.$
- Compared to  $f_{\alpha,k,n-k-1} = f_{0.05,2,13} = 3.81$ , overwhelmingly reject
- $\blacksquare R^2 = 1 \frac{SS_E}{SS_T} = 1 \frac{3479}{44157} = 0.921.$
- $\blacksquare R_{adj}^2 = 1 \frac{SS_E/(n-\kappa-1)}{SS_T/(n-1)} = 0.916.$





## Bank example

### **Example**

With n = 16 data points on k = 2 predictor variables, we got a line equal to

$$\hat{y} = 1566.077 + 7.62 \cdot x_1 + 8.58 \cdot x_2.$$

Is it significant, using  $\alpha = 5\%$ ? What is  $R^2$  and how does it compare with  $R^2_{adj}$ ? You may assume that  $SS_E = \sum (y_i - \hat{y}_i)^2 = 3479$  and  $SS_R = \sum (\hat{y}_i - \overline{y})^2 = 44157$ .

### **Answer: Significant?**

- Using ANOVA,  $SS_T = SS_E + SS_R = 47636$ .
- $F_0 = \frac{MS_R}{MS_F} = \frac{SS_R/2}{SS_F/13} = 82.5.$
- Compared to  $f_{\alpha,k,n-k-1} = f_{0.05,2,13} = 3.81$ , overwhelmingly reject.
- $\blacksquare R^2 = 1 \frac{SS_E}{SS_\tau} = 1 \frac{3479}{44157} = 0.921.$
- $R_{adj}^2 = 1 \frac{SS_E/(n-\kappa-1)}{SS_T/(n-1)} = 0.916.$





# Bank example

## **Example**

With n = 16 data points on k = 2 predictor variables, we got a line equal to

$$\hat{y} = 1566.077 + 7.62 \cdot x_1 + 8.58 \cdot x_2.$$

Is it significant, using  $\alpha = 5\%$ ? What is  $R^2$  and how does it compare with  $R^2_{adj}$ ? You may assume that  $SS_E = \sum (y_i - \hat{y}_i)^2 = 3479$  and  $SS_R = \sum (\hat{y}_i - \overline{y})^2 = 44157$ .

## **Answer: Significant?**

- Using ANOVA,  $SS_T = SS_E + SS_R = 47636$ .
- $F_0 = \frac{MS_R}{MS_F} = \frac{SS_R/2}{SS_F/13} = 82.5.$
- Compared to  $f_{\alpha,k,n-k-1} = f_{0.05,2,13} = 3.81$ , overwhelmingly reject.
- $\mathbb{R}^2 = 1 \frac{SS_E}{SS_T} = 1 3479/44157 = 0.921.$
- $R_{adj}^2 = 1 \frac{SS_E/(n-k-1)}{SS_T/(n-1)} = 0.916.$





# Bank example

## **Example**

With n = 16 data points on k = 2 predictor variables, we got a line equal to

$$\hat{y} = 1566.077 + 7.62 \cdot x_1 + 8.58 \cdot x_2.$$

Is it significant, using  $\alpha = 5\%$ ? What is  $R^2$  and how does it compare with  $R^2_{adj}$ ? You may assume that  $SS_E = \sum (y_i - \hat{y}_i)^2 = 3479$  and  $SS_R = \sum (\hat{y}_i - \overline{y})^2 = 44157$ .

## **Answer: Significant?**

- Using ANOVA,  $SS_T = SS_E + SS_R = 47636$ .
- $F_0 = \frac{MS_R}{MS_E} = \frac{SS_R/2}{SS_E/13} = 82.5.$
- Compared to  $f_{\alpha,k,n-k-1} = f_{0.05,2,13} = 3.81$ , overwhelmingly reject.
- $R^2 = 1 \frac{55\varepsilon}{SS_T} = 1 \frac{3479}{44157} = 0.921$
- $R_{adj}^2 = 1 \frac{SS_E/(n-k-1)}{SS_T/(n-1)} = 0.916.$





# Bank example

## Example

With n = 16 data points on k = 2 predictor variables, we got a line equal to

$$\hat{y} = 1566.077 + 7.62 \cdot x_1 + 8.58 \cdot x_2.$$

Is it significant, using  $\alpha = 5\%$ ? What is  $R^2$  and how does it compare with  $R^2_{adj}$ ? You may assume that  $SS_E = \sum (y_i - \hat{y}_i)^2 = 3479$  and  $SS_R = \sum (\hat{y}_i - \overline{y})^2 = 44157$ .

## **Answer: Significant?**

- Using ANOVA,  $SS_T = SS_E + SS_R = 47636$ .
- $F_0 = \frac{MS_R}{MS_E} = \frac{SS_R/2}{SS_E/13} = 82.5.$
- Compared to  $f_{\alpha,k,n-k-1} = f_{0.05,2,13} = 3.81$ , overwhelmingly reject.
- $\blacksquare$   $R^2 = 1 \frac{SS_E}{SS_T} = 1 3479/44157 = 0.921.$
- $Arr R_{adi}^2 = 1 \frac{SS_E/(n-k-1)}{SS_T/(n-1)} = 0.916.$





What if.. we are interested in whether a single coefficient is significant or not?

$$H_0: \beta_j = 0, \ H_1: \beta_j \neq 0.$$

The test statistic is the same as for simple linear regression:

$$T_0 = \frac{\hat{\beta}_j}{\sqrt{\hat{\sigma}^2 \cdot C_{jj}}}$$

- where  $C_{ij}$  is the j-th diagonal element of  $(X^TX)^{-1}$ ,
- $\blacksquare$  and  $\hat{\sigma}^2 = MS_E = \frac{SS_E}{n-k-1}$ .

Finally, reject if  $|T_0| > t_{\alpha/2,n-k-1}$ .



What if.. we are interested in whether a single coefficient is significant or not?

$$H_0: \beta_j = 0, \ H_1: \beta_j \neq 0.$$

The test statistic is the same as for simple linear regression:

$$T_0 = \frac{\hat{\beta}_j}{\sqrt{\hat{\sigma}^2 \cdot C_{jj}}}$$

- where  $C_{ij}$  is the j-th diagonal element of  $(X^TX)^{-1}$ ,
- $\blacksquare$  and  $\hat{\sigma}^2 = MS_E = \frac{SS_E}{n-k-1}$ .

Finally, reject if  $|T_0| > t_{\alpha/2, n-k-1}$ .





What if.. we are interested in whether a single coefficient is significant or not?

$$H_0: \beta_j = 0, \ H_1: \beta_j \neq 0.$$

The test statistic is the same as for simple linear regression:

$$T_0 = \frac{\hat{\beta}_j}{\sqrt{\hat{\sigma}^2 \cdot C_{jj}}}$$

- where  $C_{ij}$  is the j-th diagonal element of  $(X^TX)^{-1}$ ,
- $\blacksquare$  and  $\hat{\sigma}^2 = MS_E = \frac{SS_E}{n-k-1}$ .

Finally, reject if  $|T_0| > t_{\alpha/2,n-k-1}$ .



What if.. we are interested in whether a single coefficient is significant or not?

$$H_0: \beta_j = 0, \ H_1: \beta_j \neq 0.$$

The test statistic is the same as for simple linear regression:

$$T_0 = \frac{\hat{\beta}_j}{\sqrt{\hat{\sigma}^2 \cdot C_{jj}}}$$

- where  $C_{ij}$  is the j-th diagonal element of  $(X^TX)^{-1}$ ,
- $\blacksquare$  and  $\hat{\sigma}^2 = MS_E = \frac{SS_E}{n-k-1}$ .

Finally, reject if  $|T_0| > t_{\alpha/2,n-k-1}$ .





With n = 16 data points on k = 2 predictor variables, we got a line equal to

$$\hat{y} = 1566.077 + 7.62 \cdot x_1 + 8.58 \cdot x_2.$$

Are  $x_1$  and  $x_2$  significant, using  $\alpha = 5\%$ ? You have  $SS_E = \sum (y_i - \hat{y}_i)^2 = 3479$  and

$$\left( \boldsymbol{X}^T \boldsymbol{X} \right)^{-1} = \begin{bmatrix} 14.176 & -0.130 & -0.223 \\ -0.130 & 1.429 \cdot 10^{-3} & -4.764 \cdot 10^{-5} \\ -0.223 & -4.764 \cdot 10^{-5} & 2.222 \cdot 10^{-2} \end{bmatrix}.$$

Is the number of new loans significant? Is the number of loans outstanding significant? Use  $\alpha=0.05$ .

**Answer**: 
$$MS_E = \frac{SS_E}{n-k-1} = \frac{3479}{13} = 267.62$$
.

For 
$$x_1$$
:  $T_0 = \frac{7.62}{\sqrt{267.62 \cdot 1.429 \cdot 10^{-3}}} = 12.32$ 

For 
$$x_2$$
:  $T_0 = \frac{8.58}{\sqrt{267.62 \cdot 2.222 \cdot 10^{-2}}} = 3.52$ 

■ Contrast to  $t_{0.025,13} = 2.16$ , reject: both significant.

 $\mathbf{x}_1$  is more significant than  $x_2$ .



With n = 16 data points on k = 2 predictor variables, we got a line equal to

$$\hat{y} = 1566.077 + 7.62 \cdot x_1 + 8.58 \cdot x_2.$$

Are  $x_1$  and  $x_2$  significant, using  $\alpha = 5\%$ ? You have  $SS_E = \sum (y_i - \hat{y}_i)^2 = 3479$  and

$$\left( \boldsymbol{X}^T \boldsymbol{X} \right)^{-1} = \begin{bmatrix} 14.176 & -0.130 & -0.223 \\ -0.130 & 1.429 \cdot 10^{-3} & -4.764 \cdot 10^{-5} \\ -0.223 & -4.764 \cdot 10^{-5} & 2.222 \cdot 10^{-2} \end{bmatrix}.$$

Is the number of new loans significant? Is the number of loans outstanding significant? Use  $\alpha=0.05$ .

**Answer**: 
$$MS_E = \frac{SS_E}{n-k-1} = \frac{3479}{13} = 267.62$$
.

For 
$$x_1$$
:  $T_0 = \frac{7.62}{\sqrt{267.62 \cdot 1.429 \cdot 10^{-3}}} = 12.32$ .

For 
$$x_2$$
:  $T_0 = \frac{8.58}{\sqrt{267.62 \cdot 2.222 \cdot 10^{-2}}} = 3.52$ .

■ Contrast to  $t_{0.025,13} = 2.16$ , reject: both significant.



With n = 16 data points on k = 2 predictor variables, we got a line equal to

$$\hat{y} = 1566.077 + 7.62 \cdot x_1 + 8.58 \cdot x_2.$$

Are  $x_1$  and  $x_2$  significant, using  $\alpha = 5\%$ ? You have  $SS_E = \sum (y_i - \hat{y}_i)^2 = 3479$  and

$$\left( \boldsymbol{X}^T \boldsymbol{X} \right)^{-1} = \begin{bmatrix} 14.176 & -0.130 & -0.223 \\ -0.130 & 1.429 \cdot 10^{-3} & -4.764 \cdot 10^{-5} \\ -0.223 & -4.764 \cdot 10^{-5} & 2.222 \cdot 10^{-2} \end{bmatrix}.$$

Is the number of new loans significant? Is the number of loans outstanding significant? Use  $\alpha=0.05$ .

**Answer**: 
$$MS_E = \frac{SS_E}{n-k-1} = \frac{3479}{13} = 267.62$$
.

For 
$$x_1$$
:  $T_0 = \frac{7.62}{\sqrt{267.62 \cdot 1.429 \cdot 10^{-3}}} = 12.32$ .

For 
$$x_2$$
:  $T_0 = \frac{8.58}{\sqrt{267.62 \cdot 2.222 \cdot 10^{-2}}} = 3.52$ .

■ Contrast to  $t_{0.025,13} = 2.16$ , reject: both significant.

 $\blacksquare$   $x_1$  is more significant than  $x_2$ .



With n = 16 data points on k = 2 predictor variables, we got a line equal to

$$\hat{y} = 1566.077 + 7.62 \cdot x_1 + 8.58 \cdot x_2.$$

Are  $x_1$  and  $x_2$  significant, using  $\alpha = 5\%$ ? You have  $SS_E = \sum (y_i - \hat{y}_i)^2 = 3479$  and

$$\left( \boldsymbol{X}^T \boldsymbol{X} \right)^{-1} = \begin{bmatrix} 14.176 & -0.130 & -0.223 \\ -0.130 & 1.429 \cdot 10^{-3} & -4.764 \cdot 10^{-5} \\ -0.223 & -4.764 \cdot 10^{-5} & 2.222 \cdot 10^{-2} \end{bmatrix}.$$

Is the number of new loans significant? Is the number of loans outstanding significant? Use  $\alpha=0.05$ .

**Answer**: 
$$MS_E = \frac{SS_E}{n-k-1} = \frac{3479}{13} = 267.62$$
.

For 
$$x_1$$
:  $T_0 = \frac{7.62}{\sqrt{267.62 \cdot 1.429 \cdot 10^{-3}}} = 12.32$ .

For 
$$x_2$$
:  $T_0 = \frac{8.58}{\sqrt{267.62 \cdot 2.222 \cdot 10^{-2}}} = 3.52$ .

■ Contrast to  $t_{0.025,13} = 2.16$ , reject: both significant.



With n = 16 data points on k = 2 predictor variables, we got a line equal to

$$\hat{y} = 1566.077 + 7.62 \cdot x_1 + 8.58 \cdot x_2.$$

Are  $x_1$  and  $x_2$  significant, using  $\alpha = 5\%$ ? You have  $SS_E = \sum (y_i - \hat{y}_i)^2 = 3479$  and

$$\left( \boldsymbol{X}^T \boldsymbol{X} \right)^{-1} = \begin{bmatrix} 14.176 & -0.130 & -0.223 \\ -0.130 & 1.429 \cdot 10^{-3} & -4.764 \cdot 10^{-5} \\ -0.223 & -4.764 \cdot 10^{-5} & 2.222 \cdot 10^{-2} \end{bmatrix}.$$

Is the number of new loans significant? Is the number of loans outstanding significant? Use  $\alpha=0.05$ .

**Answer**: 
$$MS_E = \frac{SS_E}{n-k-1} = \frac{3479}{13} = 267.62$$
.

For 
$$x_1$$
:  $T_0 = \frac{7.62}{\sqrt{267.62 \cdot 1.429 \cdot 10^{-3}}} = 12.32$ .

For 
$$x_2$$
:  $T_0 = \frac{8.58}{\sqrt{267.62 \cdot 2.222 \cdot 10^{-2}}} = 3.52$ .

■ Contrast to  $t_{0.025,13} = 2.16$ , reject: both significant.

 $\blacksquare$   $x_1$  is more significant than  $x_2$ .

