Работа 2.2

Изучение спектров атомов водорода и молекулы йода

Борисов Владимир группа 825

26 сентября 2020 г.

Теория

Атом водорода является простейшей атомной системой; для него уравнение Шредингера можно решить точно.

С одной стороны задача об относительном движении электрона и ядра может быть легко сведена к задаче о движении частицы с эффективной массой $\mu = m_e M/(m_e + M)$ в кулоновском поле $-Ze^2/r$. Однако это решение не является простым, так как длины волн спектральных линий описываются формулой

$$\frac{1}{\lambda_{mn}} = RZ^2 \left(\frac{1}{n^2} - \frac{1}{m^2} \right),\tag{1}$$

где R — константа Ридберга, а m и n — целые числа.

Физический смысл этой формулы объясняется тремя постулатами Бора:

- 1. из всех возможных с точки зрения классической физики орбит в атоме осуществляются только некоторые стационарные орбиты,при движении по которым, вопреки представлениям классической электродинамики, электрон не излучает энергии;
- 2. из всех возможных орбит в атоме осуществляются только те, для которых момент количества движения равен целому кратному величины постоянной Планка $\hbar = h/(2\pi) \, m.e.$

$$L = n\hbar \tag{2}$$

3. излучение или поглощение энергии происходит при переходе атома из одного стационарного состояния в другое, а частота излучаемого света связана с разностью энергий атома в стационарных состояниях соотношением

$$h\nu = E_2 - E_1,\tag{3}$$

 $rde\
u\ -$ частота излучаемой линии.

Из этих постулатов и кулоновского взаимодействия легко понять, какие это энергетические уровни, а именно

$$E_n = -\frac{2\pi^2 m_e e^4 Z^2}{h^2} \frac{1}{n^2} \tag{4}$$

А из формулы (4) мы легко можем определить частоты излучения.

Из рис.1 видно, что линии в спектре водорода можно расположить по сериям; для всех линий n постоянно, а m меняется от n+1 до ∞ .

В данной работе мы изучаем серию Бальмера, линии которой лежат в видимой области.

Для серии Бальмера n=2, а m=3,4,5,6. Эти линии обозначаются $H_{\alpha},H_{\beta},H_{\gamma},H_{\delta}$.

Проводя нехитрые преобразования можно вычислить, что энергия основного состояния водородоподобного атома равна

$$E = -RZ^2 (5)$$

И подобными же преобразованиями можно получить, что энергия возбужденного атома равна

$$E_n = -R\frac{Z^2}{n^2} \tag{6}$$

Поскольку по факту, у нас движение зависит от массы ядра, то имеет место так называемый *изотопический сдвиг*, то есть различие в спектральных линиях у различных ядер, легко показать, что она выражается как

$$\frac{\Delta\lambda}{\lambda} = \frac{m_e}{m_p} \frac{A_D - A_H}{A_D A_H} \approx \frac{m_e}{2M_H} \tag{7}$$

Для измерения длин волн в работе используется стеклянно-призменный монохроматорспектрометр. Основные его элементы:

- 1) Входная щель с микрометрическим винтом,
- 2) Коллиматорный объектив с микрометрическим винтом,
- 3) Спектральная призма, Поворотный столик, вращающийся при помощи вертикального микрометрического винта,
 - 4) Зрительная труба,
 - 5) Оптическая скамья.

Молекулярный спектр йода можно наблюдать при помощи

- 1) источника сплошного спектра лампу накаливания;
- 2) поглощающую среду кювету с йодом;
- 3) спектральный прибор монохроматор.

Кювета подогревается нихромовой спиралью, подключенной вместе с лампой накаливания к блоку питания, линза используется как конденсатор.

В результате подогревания кристаллы йода частично возгоняются, образуя пары с легкой фиолетовой окраской.

Ход работы

Изучение спектра атомов водорода

Для начала проведем градуировку барабана монохроматора по спектрам ртутной и неоновой ламп.

Барабан, ⁰	Δ Барабана, 0	λ , Å	$\Delta \lambda, \mathring{\mathrm{A}}$
636	1	4047	5
1192	1	4358	5
1857	1	4916	5
2282	1	5461	5
2461	1	5770	5
2472	1	5791	5
2506	1	5945	5
2524	1	5976	5
2552	1	6030	5
2566	1	6074	5
2592	1	6096	5
2610	1	6143	5
2622	1	6164	5
2640	1	6217	5
2674	1	6234	5
2915	1	6907	5

Таблица 1: Данные для градуировки

Погрешность барабана берется из половины цены деления, а погрешность длины волны мы берем из того факта, что при градуировке неоновой лампой спектр был частый, из-за чего были не очень хорошо различимы различные оттенки одного цвета, из-за чего берем за погрешность длины волны максимальное расстояние между соседними спектрами. Так же на график не имеет смысла наносить кресты ошибок, поскольку относительная погрешность меньше сотой процента.

Градуировка получается нелинейная, в итоге мы ее аппроксимируем полиномом

$$y = A + Bx + Cx^2 + Dx^3,$$

где
$$A = 3600 \pm 160$$
, $B = 0, 9 \pm 0, 3$, $C = (-4 \pm 2) \cdot 10^{-4}$, $D = (1, 8 \pm 0, 4) \cdot 10^{-7}$.

Далее померяем спектры водорода и, зная соответствующие длины волн получим их из графика градуировки, занесем данные в таблицу. Так же для каждого H посчитаем R_H , посчитаем среднее и занесем все в таблицу.

 R_H получаем из формулы (1), замечая, что для всех H n=2, а m=3,4,5 и Z=1 для водорода.

	7.7	7.7	7.7
	H_{γ}	H_{eta}	H_{α}
Барабан, 0	1164	1801	2801
Δ Барабан, 0	1	1	1
λ_{th} , hm	434,05	486,13	656,28
λ , hm	434	484	658
$\Delta\lambda$, hm	0,5	0,5	0,5
$\varepsilon(\lambda)$, hm	0,000115	0,004382	0,002621
$\frac{1}{4} - \frac{1}{n^2}$	0,210	0,188	0,139
R_H , 10^6 m $^{-1}$	10,972	11,02	10,94
ΔR_H , 10^6 m $^{-1}$	0,012	0,05	0,03
$H_{av}, 10^6 \text{ m}^{-1}$	10,98		
$\Delta H_{av},~10^6$ M $^{-1}$	0,03		

Таблица 2: итоговые данные измерения R_H

В итоге мы получаем, что

$$R = (10, 98 \pm 0, 03) \cdot 10^6 \text{m}^{-1}$$

$$R_{th} = 10,9737 \cdot 10^6 \text{M}^{-1}$$

В итоге получаем, что измеренная R с точностью до ошибки равна теоретической.

Проведем теперь измерения спектра йода. Определим деления барабана, отвечающие $h\nu_{1,0}, h\nu_{1,5}, h\nu_{\rm rp}$. Запишем их в таблицу. Далее вычислим различные энергии возбужденного йода и энергии диссоциации молекул в основном и возбужденном состоянии, все запишем в таблицу, как и промежуточные данные.

Так же нам понадобятся некоторые теоретические факты, такие как Для возбужденного кванта

$$h\nu_2 = (h\nu_{1,5} - h\nu_{1,0})/5$$

и для основного состояния

$$h\nu_1 = 0,027eV$$

А энергия возбуждения равна $E_A = 0,94eV$.

Так же мы знаем, что $h\nu_{\rm rp}=h\nu_e+D_2=D_1+E_a$ и $h\nu_{0,n_2}=h_e+h\nu_2\left(n_2+\frac{1}{2}\right)-1/2\nu_1$

	1,0	1,5	гр	
Барабан, ⁰	2643	2557	2011	
λ , hm	618	591	509	
$\Delta \lambda$, hm	1	1	1	
$h\nu, eV$	2,007	2,099	2,437	
$\Delta h\nu, eV$	0,003	0,004	0,005	
$h\nu_2, eV$	$0,0183 \pm 0,0001$			
$h\nu_{el}, eV$	$1,99 \pm 0,01$			
D_1, eV	$1,50 \pm 0,01$			
D_2, eV	$0,45 \pm 0,01$			

Таблица 3: Итоговая таблица для спектра йода

Вывод

Мы получили спектральные линии водорода, по которым смогли измерить постоянную Ридберга и убедились в теоретическом значении этой константы. Так же мы измерили некоторые энергии для возбуждения атома йода, которые довольно точны.