Time between infections vs time between symptom onset in COVID-19: implications for estimating the reproduction number

Jesse Knight^{1,2} Sharmistha Mishra^{1,2,3,4}

¹ Institute of Medical Science, University of Toronto
 ² MAP Centre for Urban Health Solutions, Unity Health Toronto
 ³ Division of Infectious Disease, Department of Medicine, University of Toronto
 ⁴ Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto

2021 June 21

CAIMS Mini-Symposium Mathematical modeling of COVID-19 transmission and mitigation strategies: efforts to end the pandemic

Outline

- ► Reproduction Number *R*
- Estimating R
- Estimating Generation Time Distribution $G(\tau)$
- Results
- Implications

$$R = 1$$
 ···

$$R_{o} = \beta \cdot C \cdot D$$

$$R_0 = \beta \cdot C \cdot D$$

 $ightharpoonup \beta$ = probability of transmission per contact

$$R_0 = \beta \cdot C \cdot D$$

- \triangleright β = probability of transmission per contact
- C = contact rate

$$R_0 = \beta \cdot C \cdot D$$

- \triangleright β = probability of transmission per contact
- ightharpoonup C = contact rate
- \triangleright D = duration of infectiousness

$$R_{o} = \beta \cdot C \cdot D$$

$$R_{e}(t) = \beta_{t} \cdot C_{t} \cdot D_{t} \cdot \hat{S}(t)$$

- \triangleright β = probability of transmission per contact
- ightharpoonup C = contact rate
- \triangleright D = duration of infectiousness

$$R_{o} = \beta \cdot C \cdot D$$

$$R_{e}(t) = \beta_{t} \cdot C_{t} \cdot D_{t} \cdot \hat{S}(t)$$

- \triangleright β = probability of transmission per contact
- C = contact rate
- \triangleright D = duration of infectiousness
- $ightharpoonup \hat{S} = \text{proportion who are susceptible}$

$$R_{o} = \beta \cdot C \cdot D$$

$$R_{e}(t) = \beta_{t} \cdot C_{t} \cdot D_{t} \cdot \hat{S}(t)$$

- \triangleright β = probability of transmission per contact
- C = contact rate
- D = duration of infectiousness
- $ightharpoonup \hat{S} = \text{proportion who are susceptible}$

R_0 for Common Diseases

Disease	Ro	Transmission
Measles	12-18	Aerosol
Chickenpox	10-12	Aerosol
Polio	5-7	Fecal-Oral
Smallpox	3-6	Droplet
HIV	1-5	Body Fluids
Seasonal Flu	1.5 – 2.5	Droplet
COVID-19	1.9-6.5 ¹	Droplet & Aerosol

Without interventions

Estimating the reproduction number of COVID-19

► Context-specific: $\beta \cdot C \cdot D$

¹Park et al. 2020

Measure of epidemic "potential"

- Measure of epidemic "potential"
- Monitor interventions

- Measure of epidemic "potential"
- Monitor interventions
- Required vaccine coverage:

$$V=1-\frac{1}{R_c}$$

Estimating *R*: 3 Methods

- Static exponential: R_o
- Renewal equation: $R_e(t)$
- Mechanistic models (not covered)

Exponential Model for Ro

$$I(t) = I_{0} \cdot e^{\alpha t}$$

- ► I = infections
- $\sim \alpha$ = exponential growth rate

Exponential Model for Ro

$$I(t) = I_{\rm o} \cdot e^{\alpha t}$$

- ► *l* = infections
- $ightharpoonup \alpha$ = exponential growth rate
- g = generation time: time between infections

Exponential Model for Ro

$$I(t) = I_{o} \cdot e^{\alpha t}$$

$$R_{o} = \frac{I(t+g)}{I(t)} = e^{\alpha g}$$

- ► *I* = infections
- $\sim \alpha$ = exponential growth rate
- g = generation time: time between infections

Exponential Model: Assumptions

Assumptions:

- Homogeneous susceptible population
- ightharpoonup Constant R_0
- ► Reported cases ∝ true cases

If longer generation time g:

- Expect slower epidemic growth
- ► Infer greater R_o

Renewal Equation for $R_e(t)$

Similar to exponential model, but with generation time *distribution*: $g \sim G(\tau)$

²Fraser 2007: Cori et al. 2013.

Renewal Equation for $R_e(t)$

Similar to exponential model, but with generation time *distribution*: $g \sim G(\tau)$

$$I(t) = R_e(t) \int_{t_0}^t I(t-\tau)G(\tau)d\tau$$

- ► I(t h) = infections τ days ago
- $ightharpoonup G(\tau)$ = infectiousness τ days since infection
- $ightharpoonup t_0 = t w$, integration window

²Fraser 2007; Cori et al. 2013.

Renewal Equation for $R_e(t)$

Similar to exponential model, but with generation time *distribution*: $g \sim G(\tau)$

$$I(t) = R_e(t) \int_{t_0}^{t} I(t - \tau)G(\tau)d\tau$$

$$R_e(t) = I(t) \left[\int_{t_0}^{t} I(t - \tau)G(\tau)d\tau \right]^{-1}$$

- ► I(t h) = infections τ days ago
- $G(\tau)$ = infectiousness τ days since infection
- $ightharpoonup t_0 = t w$, integration window

github.com/mishra-lab/covid-r

²Fraser 2007; Cori et al. 2013.

Assumptions:

- Same as exponential
- ightharpoonup Constant R_e over each window

Assumptions:

- Same as exponential
- ightharpoonup Constant R_e over each window

 $Moving\,window \to R_e(t)$

$R_e(t)$: Examples

Estimating the reproduction number of COVID-19

³Cori et al. 2013. github.com/mishra-lab/covid-r

Infectiousness: Serial Interval $S(\tau)$

1. Known case-pairs:

	Sympto	Symptom Onset	
Pair	Infector	Infectee	
1	2020-01-01	2020-01-07	
2	2020-01-04	2020-01-14	
3	2020-01-05	2020-01-09	
4	2020-01-02	2020-01-15	
5	2020-01-08	2020-01-12	
6	2020-01-12	2020-01-23	
	•	•	

Infectiousness: Serial Interval $S(\tau)$

1. Known case-pairs:

Sympto	m Onset
Infector	Infectee
2020-01-01	2020-01-07
2020-01-04	2020-01-14
2020-01-05	2020-01-09
2020-01-02	2020-01-15
2020-01-08	2020-01-12
2020-01-12	2020-01-23
	2020-01-01 2020-01-04 2020-01-05 2020-01-02 2020-01-08

2. Fit a distribution:

Infectiousness: Serial Interval vs Generation Time

Infectiousness: Serial Interval vs Generation Time

Serial Interval

Infectiousness: Serial Interval vs Generation Time

Generation Time

Infectiousness: Serial Interval vs Generation Time

Incubation Period i

Infectiousness: Serial Interval vs Generation Time

Incubation Period i + 1

Infectiousness: Serial Interval vs Generation Time

Random variables:

$$g_i = [f_{i+1} - f_i] \sim G(\tau)$$

$$s_i = [s_{i+1} - s_i] \sim S(\tau)$$

$$h_i = [s_i - f_i] \sim H(\tau)$$

⁴Hogg et al. 2005.

Random variables:

$$g_{i} = [f_{i+1} - f_{i}] \sim G(\tau)$$

$$s_{i} = [s_{i+1} - s_{i}] \sim S(\tau)$$

$$h_{i} = [s_{i} - f_{i}] \sim H(\tau)$$

$$s_{i} = g_{i} + h_{i+1} - h_{i}$$

Random variables:

$$g_{i} = [f_{i+1} - f_{i}] \sim G(\tau)$$

$$s_{i} = [s_{i+1} - s_{i}] \sim S(\tau)$$

$$h_{i} = [s_{i} - f_{i}] \sim H(\tau)$$

$$s_{i} = g_{i} + h_{i+1} - h_{i}$$

$$\sim G(\tau) * H(\tau) * H(-\tau)$$

where * is convolution.

⁴Hogg et al. 2005.

Random variables:

$$g_{i} = [f_{i+1} - f_{i}] \sim G(\tau)$$

$$s_{i} = [s_{i+1} - s_{i}] \sim S(\tau)$$

$$h_{i} = [s_{i} - f_{i}] \sim H(\tau)$$

$$s_{i} = g_{i} + h_{i+1} - h_{i}$$

$$\sim G(\tau) * H(\tau) * H(-\tau)$$

where * is convolution. Thus:

$$G(\tau) = \left[S(\tau) *^{-1} H(\tau) \right] *^{-1} H(-\tau)$$

github.com/mishra-lab/covid-r

⁴Hogg et al. 2005.

Practical Deconvolution

- ► True deconvolution: unstable
- Solution: assume parametric $\hat{G}(\tau)$:

$$\hat{G}(\tau \mid \theta) \sim Gamma(\tau \mid \theta)$$

Practical Deconvolution

- ► True deconvolution: unstable
- Solution: assume parametric $\hat{G}(\tau)$:

$$\hat{G}(\tau \mid \theta) \sim Gamma(\tau \mid \theta)$$

 \triangleright Estimate θ to minimize:

$$D_{KL}\Big(S(\tau)\,\Big\|\,\hat{S}(\tau\mid\theta)\Big),\quad \hat{S}(\tau\mid\theta)=\hat{G}(\tau\mid\theta)*H(\tau)*H(-\tau)$$

Estimating $G(\tau)$: Data

What is the Generation Time distribution for COVID-19?

Serial interval: Du et al. (2020), N = 468

$$S(\tau) \sim \text{Norm} (\mu = 3.96, \sigma = 4.75)$$

Incubation period: Lauer et al. (2020), N = 181

$$H(\tau) \sim \text{Gamma} (\alpha = 5.81, \beta = 0.95)$$

COVID-19 & Pre-symptomatic Transmission

- ▶ Pre-symptomatic transmission \rightarrow $S(\tau)$ can be negative
- ► However: $G(\tau)$ must be non-negative

COVID-19 & Pre-symptomatic Transmission

- ▶ Pre-symptomatic transmission \rightarrow $S(\tau)$ can be negative
- ► However: $G(\tau)$ must be non-negative

Popular R package EpiEstim

- Estimates $R_e(t)$ by renewal equation
- ► Input: "serial interval", but must be non-negative

Estimating $R_e(t)$: Data

What is the potential bias in $R_e(t)$ using $S(\tau)$ vs $G(\tau)$?

ightharpoonup I(t): covid-19 in GTA during March–April 2020

github.com/mishra-lab/covid-r

Estimating the reproduction number of COVID-19

Estimating $R_e(t)$: Data

What is the potential bias in $R_e(t)$ using $S(\tau)$ vs $G(\tau)$?

- ► I(t): COVID-19 in GTA during March—April 2020
- $ightharpoonup G(\tau)$: "recovered"
- \triangleright $S(\tau)$: from literature:

Norm (
$$\mu = 3.96, \sigma = 4.75$$
)

• Gamma (
$$\alpha = 3.62, \beta = 1.42$$
)

$$\triangleright$$
 LogN ($\mu = 4.7, \sigma = 2.9$)

Du et al. (2020)

Zhang et al. (2020)

Nishiura et al. (2020)

Mishiura et al. (2020)

Negative permitting

Non-Negative

Non-Negative

⁵Knight et al. 2020.

$$\hat{G}(\tau \mid \alpha, \beta)$$

~ Gamma ($\alpha = 1.63, \beta = 2.50$)

- ► mean: 4.08 ≈ 3.98
- ► SD: 3.19 < 4.75

Generation Time vs Serial Interval Distributions

Ref.	Dist.	Mean	SD
Du	$S(\tau)$	3.96	4.75
Zhang	S(au)	5.1	2.7
Nishiura	S(au)	4.7	2.9
(this)	G(au)	4.08	3.19

COVID-19 Infections I(t) in GTA

Compared to $G(\tau)$:

Compared to $G(\tau)$:

Non-Negative $S(\tau)$: **overestimate** $R_e(t)$ due to: larger mean

Compared to $G(\tau)$:

- Non-Negative $S(\tau)$: **overestimate** $R_e(t)$ due to: larger mean
- Negative-Permitting $S(\tau)$: underestimate $R_e(t)$ due to: larger variance

- 1. Characterized generation time distribution for COVID-19
- ► Generation time = distribution of infectiousness (after exposure)

- 1. Characterized generation time distribution for COVID-19
- ► Generation time = distribution of infectiousness (after exposure)
- **2.** New method to infer $G(\tau)$ from $S(\tau)$
- Applicable to other infections

- 1. Characterized generation time distribution for COVID-19
- ► Generation time = distribution of infectiousness (after exposure)
- **2.** New method to infer $G(\tau)$ from $S(\tau)$
- Applicable to other infections
- 3. Illustrated potential bias in $R_e(t)$ using $S(\tau)$ vs $G(\tau)$
- Non-negative $S(\tau)$: overestimate $R_e(t)$
- Negative-permitting $S(\tau)$: underestimate $R_e(t)$

Assumed independent distributions $G(\tau)$, $S(\tau)$, $H(\tau)$

- ► Assumed independent distributions $G(\tau)$, $S(\tau)$, $H(\tau)$
- Parametric approximations

However: useful for meta-analyses

- Assumed independent distributions $G(\tau)$, $S(\tau)$, $H(\tau)$
- Parametric approximations
 However: useful for meta-analyses
- ► No uncertainty analysis / confidence intervals

Thanks

Canada Graduate Scholarship–D

Ontario Early Researcher Award

Support

Kristy Yiu, Linwei Wang, Huiting Ma, David Landsman, Unity Health Toronto David Champredon, University of Western Ontario Elena Aruffo, Jude Dzevela Kong, CAIMS 2021 Mini Symposium Organizers

References

- Cori, Anne et al. (Nov. 2013). "A new framework and software to estimate time-varying reproduction numbers during epidemics". In: American Journal of Epidemiology 178.9, pp. 1505–1512.
- Du, Zhanwei et al. (Mar. 2020). "Serial Interval of COVID-19 among Publicly Reported Confirmed Cases". In: Emerging infectious diseases 26.6, pp. 1341–1343.
- Fraser, Christophe (Aug. 2007). "Estimating individual and household reproduction numbers in an emerging epidemic". In: PLoS ONE 2.8, e758.
- Hogg, Robert V, Joseph McKean, and Allen T Craig (2005). Introduction to mathematical statistics. Pearson Education.
- Knight, Jesse and Sharmistha Mishra (2020). "Estimating effective reproduction number using generation time versus serial interval, with application to COVID-19 in the Greater Toronto Area, Canada". In: Infectious Disease Modelling 5, pp. 889–896.
- Lauer, Stephen A. et al. (Mar. 2020). "The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application". In: Annals of Internal Medicine 172.9, pp. 577–582.
- Nishiura, Hiroshi, Natalie M. Linton, and Andrei R. Akhmetzhanov (Apr. 2020). "Serial interval of novel coronavirus (COVID-19) infections". In: International Journal of Infectious Diseases 93, pp. 284–286.
- Park, Minah et al. (2020). "A Systematic Review of COVID-19 Epidemiology Based on Current Evidence". In: Journal of Clinical Medicine 9.4, p. 967.
- Zhang, Juanjuan et al. (2020). "Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei province, China: a descriptive and modelling study". In: The Lancet Infectious Diseases 20.7, pp. 793–802.

Preliminary Uncertainty Analysis

Likelihood of α , β for $\hat{G}(\tau)$ from "deconvolution"