Answers to 1.4 exercises

1.4 Exercise 1

1.	a)	decreases
		proton number increases
		shielding stays the same
		so attraction to nucleus increases

- b) increases
 proton number increases
 shielding stays the same
 so attraction to nucleus increases
 so more energy required to remove electron
- c) increases
 proton number increases
 shielding stays the same
 so ability to attract electrons in a covalent bond increases
- d) increases
 size of ions decreases
 and charge on ions increases
 so attraction between ions and delocalised electrons increases
 so more energy is required to separate them
- e) increases number of delocalised electrons per atom increases so more electrons are free to move
- 2. a) Si has a giant covalent structure every Si atom attached to 4 others by covalent bonds the covalent bonds are strong so a lot of energy is required to break them
 - b) P is simple molecular
 Van der Waal's forces between P molecules are weaker
 Than covalent bonds between Si atoms
 So much less energy is required to break them
 - c) Phosphorus contains P molecules which have a smaller surface area and less electrons than the S molecules in sulphur so the Van der Waal's forces are weaker in phosphorus and less energy is required to overcome them
 - d) Chlorine contains Cl molecules
 which have a smaller surface area and less electrons
 than the S molecules in sulphur
 but a larger surface area and more electrons
 than the Ar atoms in argon
 so the energy required to separate Cl molecules is greater
 than the energy needed to separated Ar atoms but less
 than the energy needed to separated S molecules

e) neither silicon or sulphur contain ions or free electrons