

Conception Fonctionnelle vs
Conception Architecturale

Rappel

Abstraction

1. Description Fonctionnelle

- 1. Liste exhaustive des entrées et des sorties du système
- 2. Découpage par fonction sous système (HW/SW)
- 3. Spécification haut niveau (modélisation, approche algorithmique, mathématique)

2. Description Architecturale

1. Conception unitaire (sous système)

Test et validation

- Sur carte (bread board)
- Par simulation (LTSpice, Emulateur)
- 2. Intégration des sous-systèmes
- 3. Alimentation électrique
- 4. Driver logiciel

Abstraction

Description Fonctionnelle

Flow Chart

Switch *2

LCD SCREEN

Gyro/Accel

Equation

Output = f(Input)

Modélisation

Utilisation de modèle générique théorique

Description Architecturale

Choix de composant

Choix de cible

Choix de langage

Simulation

Utilisation de modèle constructeur

Difficultés

- Multiplication des outils
- Hétérogénéité des environnements
- Co-design Hard-Soft

Architecture

Architecture

Conception de carte (HW/SW)

- Conception unitaire
 - (HW) Simulation de fonction analogique
 - (SW) Programmation de driver logiciel

- Conception circuit imprimé
 - Saisie de schéma
 - Placement
 - Routage

- Alimentation électrique
 - Liste des tensions nécessaires
 - Bilan de puissance
 - Dimensionnement de l'alimentation

Architecture – Conception unitaire HW

LTSpice

Simulation de circuit

- Spice est un logiciel libre, sans interface graphique, de simulation de circuits électroniques, à partir de modèle plus ou moins complexe de composants.
- Dans le cadre de ce cours, nous utiliserons le logiciel LTSpice proposé par l'ex société Linear Technologie. (Analog Device)

Il a pour avantage d'être gratuit, de posséder une interface graphique et des librairies de composant conséquentes

LTSpice

- Prise en main LTSpice
 - Diviseur de tension
 - Filtre
 - Montage avec Transistor NPN

Raccourcis utiles édition de schéma

- F2: Blibliothèque de composants
- F3: Fil
- CTRL-R: Rotate
- SUPPR: Suppression
- Clic droit: Configuration composant

LTSpice

Exercice

- Amplificateur inverseur
 - Retrouver la fonction de transfert
 - Simulation #1
 - Trouver R1 et R2 pour un gain de 5
 - Simuler avec un modèle d'AOP "idéal"
 - Ve = cste
 - Simulation #2
 - Simuler avec un modèle d'AOP "idéal"
 - Ve = signal périodique
 - Simulation #3
 - Simuler avec un modèle d'AOP "réel"

Architecture – Conception de circuit imprimé

Interconnections des composants

Niveau macro: De la "bread bord" au circuit imprimé

Intégration des composants

Niveau micro: Circuits intégrés

- Boitier
 - TO-92
 - SOIC 8
 - SOT23
 - BGA
 - QFN
 - ..

Les principaux circuits numériques intégrés

- CPU Microprocesseur
- MCU Microcontrôleur (cpu + périphériques)
- GPU Processeur graphique
- DSP Processeur traitement de signal

- CPLD Circuit numérique reconfigurable
- FPGA Circuit numérique reconfigurable

Reconfigurable (hardware)

Programmable (software)