

Politechnika Opolska

LABORATORIUM

Technika Mikroprocesorowa

KIERUNEK STUDIÓW:	AiR Ns		Rok studiów:		Ш
SEMESTR:	VI	Rok akademicki:		2019/	2020

	Temat ćwiczenia:	
Program wykorzystujący przerwania		

	Projekt wykonali:					
Nazwisko i imię:		Nazwisko i imię:				
1.	Szymon Słaboń	2.	Rychel Konrad			
3.	Syguła Dariusz	4.				

Ocena:	Data:	Uwagi:

Wstęp

Postawione przed nami zadanie polegało a napisaniu kodu do mikrokontrolera MSP-EXP430G2 firmy Texas Instruments. Ćwiczenie polegało na stworzeniu programu operującego na tzw. instrukcjach przerwania.

Opis programu

Po uruchomieniu programu zaświeca się dioda, która miga z określoną częstotliwością. Po wciśnięciu przycisku miga ona dalej ale zaświeca się również druga, która gaśnie po puszczeniu przycisku.

Na początku programu widzimy definiowanie diod i przycisku, później przypisywanie ich do wejść i wyjść. Po tym następuje przypisanie przycisku jako elementu wykonawczego przerwań. Przerwania nie są domyślnie obsługiwane w języku C, najpierw więc trzeba uruchomić ich wykonywanie. Do tego służ funkcja __bis_SR_register(GIE). Następująca po niej pętla odpowiada za miganie diody na początku programu z określoną częstotliwością. Po wciśnięciu przycisku zostaje wykonana funkcja przerwania i zaświeca się druga dioda. Po puszczeniu przycisku następuje zresetowanie flagi przerwania i przerwanie tej funkcji.

Skrypt programu:

```
#include <msp430.h>
#define SW BIT3
                                           // Przycisk -> P1.3
#define RED_LED_BIT0
                                       // Czerwony LED-> P1.0
#define GREEN LED BIT6
                                        // Zielony LED -> P1.0
void main(void) {
  WDTCTL = WDTPW | WDTHOLD;
                                          // Zatrzymywanie Watchdog timer'a
  P1DIR |= GREEN_LED + RED_LED;
                                            // Klasyczne definiowanie
  P1OUT |= RED_LED;
  P1DIR &= ~SW;
  P1REN |= SW;
  P1OUT |= SW;
  P1IES &= ~SW;
                                                   // Zerowanie flagi przerwań
  P1IE |= SW;
                                           // Włączanie obsługi przerwań
  __bis_SR_register( GIE);
                                            // Odblokowanie obsługi przerwań
  while(1)
      P1OUT ^= RED LED:
                                                   // Przełaczanie czerwonej diody
      _delay_cycles(32000);
                                                   // Opóźnienie przełaczania
   };
}
// Funkcja przerwania
#pragma vector=PORT1_VECTOR
  _interrupt void Port_1(void)
  P1OUT ^= GREEN LED;
                                                // Przełączanie zielonej diody
  P1IFG &= ~SW:
                                                   // Zerowanie flagi przerwania
  __bic_SR_register_on_exit( LPM4_bits );
                                                          // Zakończenie funkcji przerwania
}
```