Algorithms

Sorting (Ch. 7)

Morgan Ericsson

Today

- » Sorting
- » Simple sorts: Selection, Insert, Bubble, Shell
- » Merge
- » Quick
- » Specialized
 - » Radix

Sorting

Preliminaries

- » We consider comparison-based sorting
 - » I.e., Comparable and compareTo in Java
- » To keep it simple, we generally assume int
 - » But we can sort any type that is comparable
- » and arrays (Python lists)
 - » But we obviously sort linked structures

Total order

- » A total order is a binary relation ≤ that satisfies
 - » Antisymmetry: if $v \le w$ and $w \le v$, then v = w
 - » Transitivity: if $v \le w$ and $w \le x$, then $v \le x$
 - » Totality: either $v \le w$ or $w \le v$ or both
- » Standard order for, e.g., natural or real numbers

6

A sorted list

- » Total order holds
- » So, if [a, b, c, d] is sorted, ...
- $a \le b \le c \le d$ should hold

Check if sorted

```
1 def is_sorted(l:list[int]) -> bool:
2   for i in range(1, len(l)):
3     if l[i - 1] > l[i]:
4      return False
5   return True
```

Testing it

```
import random

land i
```

Some sorting terminology

- » In-place: the list is sorted in-place, i.e., it does not require any additional storage to sort the list
- » Stable: Elements with the same value maintains their relative order

Simple algorithms

Selection sort

- » Simple idea: in iteration i, find the index of the smallest remaining entry
- » Swap the element at index i and the smallest value

Selection sort

Iteration 0: find the smallest element in [0, 8] and swap with index 0

Iteration 1: find the smallest element in [1, 8] and swap with index 1

Iteration 2: find the smallest element in [2, 8] and swap with index 2

Iteration 3: find the smallest element in [3, 8] and swap with index 3

Iterations 4 to 6

Iteration 7: find the smallest element in [7, 8] and swap with index 7

Implementation

Testing it

```
1 lst = random.sample(range(1, 1_001), k=20)
2
3 assert is_sorted(lst) == False
4 selection_sort(lst)
5 assert is_sorted(lst) == True
```

Analysis

- » In-place and unstable
 - \sim Consider [4, 3, 4', 1]
- $(n-1) + (n-2) + ... + 1 + 0 \sim n^2 / 2$ compares and n swaps
- » Insensitive to input, $O(n^2)$ whether sorted or completely random
- » Minimal data movement

Insert sort

- » In iteration i, swap the value at index i with each larger entry to its left
- » So, move the value at index i to the correct place

Insert sort

Iteration 2: move 8 left while the elements are larger. In this case, do nothing

Iteration 3: move 4 left while the elements are larger. Swaps 4 and 8.

Iteration 4: move 5 left while the elements are larger. Swaps 5 and 8.

Iteration 5: move 9 left while the elements are larger. In this case, do nothing

Implementation

Testing it

```
1 lst = random.sample(range(1, 1_001), k=20)
2
3 assert is_sorted(lst) == False
4 insert_sort(lst)
5 assert is_sorted(lst) == True
```

Analysis

- » In-place and stable
- » Depends on input
 - > If sorted, n-1 compares and 0 exchanges
 - » If descending order, ~ $0.5 \cdot n^2$ compares and exchanges
 - » Average case, same but 0.25
- » Still $O(n^2)$, but runs in linear time if partially sorted

Bubble sort

- » Iterate over the list, compare pairs, and swap if left is smaller than right
- » Keep iterating until there are no swaps

Bubble sort

Implementation

Testing it

```
1 lst = random.sample(range(1, 1_001), k=20)
2
3 assert is_sorted(lst) == False
4 bubble_sort(lst)
5 assert is_sorted(lst) == True
```

Analysis

- » In-place and stable
- » Similar to insert sort
 - » Depends on input, if almost sorted, linear
- \rightarrow So, $O(n^2)$

- » Move elements more than one position at a time
- » h-sorting
- » if h is 4
 - \rightarrow Check lst[h] < lst[h + 4]
- » Shellsort
 - » h-sort the array with decreasing values of h
 - » 13 sort, 4 sort, 1 sort

- » We use insertion sort with stride h
- » Big increments, small subarray
- » Small increments, nearly in order

Algorithms/ Sorting 31

8

Which sequence of h?

- » Any should work, but there are better and worse
- » Powers of two is bad (only even until 1)
- > 3x 1 is ok
 - » Performs reasonably well and is easy to compute
- » There are better sequences

Implementation

```
1 def shellsort(l:list[int]) -> None:
2 	 h, n = 1, len(1)
3 while h < n // 3:
h = 3 * h + 1
   while h >= 1:
       for i in range(h, n):
         j = i
8
        while j \ge h and l[j] < l[j - h]:
          l[j], l[j - h] = l[j - h], l[j]
10
11
        j -= h
12 h = h // 3
```

Testing it

```
1 lst = random.sample(range(1, 1_001), k=20)
2
3 assert is_sorted(lst) == False
4 shellsort(lst)
5 assert is_sorted(lst) == True
```

Analysis

- » Quite difficult, depends on the sequence
 - » And we do not know enough about it
- \rightarrow Bad sequence, $O(n^2)$
- » Good sequence, $O(n^{\frac{4}{3}})$
- \rightarrow Ours, $O(n^{\frac{3}{2}})$

What does this mean?

In practice?

In practice?

bubble : $2.540e - 08 \cdot x^{2.089}$

insert: $2.605e - 08 \cdot x^{2.046}$

selection: $6.772e - 09 \cdot x^{2.139}$

In practice

Mergesort

Mergesort

- » Simple idea
 - » Split the list in half
 - » (Merge)Sort both halves (recursively)
 - » Merge the two sorted lists
- » Divide and conquer

Merge

- » We can merge two sorted lists in O(m + n), where m and n are the sizes of the two lists
- » Advance pointers in the two lists independently
- » Pick the smallest and add to the merged list

Merge

Implementation

```
1 class MergeSort:
     def merge(self, a:list[int], tmp:list[int], \
               lo:int, mid:int, hi:int) -> None:
       for k in range(lo, hi+1):
        tmp[k] = a[k]
      i, j = lo, mid + 1
       for k in range(lo, hi+1):
       if i > mid:
10
       a[k] = tmp[j]
        j += 1
11
  elif j > hi:
12
       a[k] = tmp[i]
13
         i += 1
14
   elif tmp[j] < tmp[i]:</pre>
15
16
        a[k] = tmp[j]
         j += 1
17
18 else:
         a[k] = tmp[i]
19
         i += 1
20
```

Testing it

```
1 lst = [17, 31, 32, 50, 65, 86, 16, 31, 49, 52, 55,
2 tmp = [0] * len(lst)
3 ms = MergeSort()
4 ms._merge(lst, tmp, 0, len(lst) // 2 - 1, len(lst)
5 assert is_sorted(lst) == True
```

Sorting

- » When is a random list sorted?
 - » When it has 1 (or 0) elements
- » Divide lists until they have one element
- » Then merge them together in sorted order

Mergesort

Implementation

```
1 from fastcore.basics import patch
 2
 3 @patch
 4 def sort(self:MergeSort, a:list[int], tmp:list[int], \
             lo:int, hi:int) -> None:
  if hi <= lo:
    return
    mid = lo + (hi - lo) // 2
10
    self. sort(a, tmp, lo, mid)
    self. sort(a, tmp, mid+1, hi)
11
    self. merge(a, tmp, lo, mid, hi)
12
13
14 @patch
15 def sort(self:MergeSort, a:list[int]) -> None:
16 tmp = [0] * len(a)
17 self. sort(a, tmp, 0, len(a) -1)
```

Testing it

```
1 lst = [29, 56, 31, 62, 87, 25, 52, 94]
2 ms = MergeSort()
3 ms.sort(lst)
4 assert is_sorted(lst) == True
```

Analysis

Analysis

- » Not in place, but can be
- » Stable
- » Almost perfect in terms or comparisons
- \rightarrow O(n log n)

In practice

Quicksort

Algorithms/ Sorting

55

Quicksort

- » Divide and conquer, just like Mergesort
- » Split the input into two smaller parts
- » But split around a pivot value and ensure that
 - » Values to the left are not greater than ...
 - » .. and values to the right not less than the pivot
- » Avoids the merge step

Quicksort

Implementation

```
1 class Quicksort:
     def partition(self, a:list[int], lo:int, hi:int) -> int:
      i, j = lo, hi + 1
   while True:
      i += 1
  while a[i] < a[lo]:</pre>
       if i == hi: break
         i += 1
10
        j -= 1
11
12 while a[lo] < a[j]:
13
      if j == lo: break
          j -= 1
14
15
     if i >= j: break
16
17
        a[i], a[j] = a[j], a[i]
18
      a[lo], a[j] = a[j], a[lo]
19
      return j
20
```

Partition

Implementation

```
1 @patch
2 def sort(self:Quicksort, a:list[int], \
             lo:int, hi:int) -> None:
4 if hi <= lo:
      return
 6  j = self. partition(a, lo, hi)
 7 self. sort(a, lo, j - 1)
     self. sort(a, j + 1, hi)
10 @patch
11 def sort(self:Quicksort, a:list[int]) -> None:
12 self. sort(a, 0, len(a) - 1)
```

Partition and sort

Analysis

- » In-place, not stable
- » ~ n log n average case
- $\sim n^2 / 2$ worst case

Worst case?

Improving the worst case?

- » The worst case is extremely rare
- » Ideally, we want the pivot to be the median
 - \rightarrow Too expensive to compute (O(n))
- » We can shuffle
- » Or approximate the median from [lo, mid, hi]

Implementation

```
1 @patch
2 def sort(self:Quicksort, a:list[int]) -> None:
3   random.shuffle(a)
4   self._sort(a, 0, len(a) - 1)
```

Does it matter in reality?

Random arrays

Does it matter in reality?

Worst case

Does it matter in reality?

Worst and average case (shuffle)

Heap vs merge vs quick

Radix sort

"Counting" sorts

- » We know that comparison-based sort is $\Omega(n \log n)$
- » We can reduce this if we avoid comparing
- » But how can we sort without comparing?
 - » We can count...

Illustrating the idea

Implementation

```
1 def bucketsort(a:list[int], mx:int) -> None:
     n = len(a)
    cnt, aux = [0] * (mx + 1), [0] * n
    for i in range(n):
       cnt[a[i] + 1] += 1
     for i in range(mx):
       cnt[i+1] += cnt[i]
10
11
    for i in range(n):
12
    aux[cnt[a[i]]] = a[i]
13
       cnt[a[i]] += 1
14
15 for i in range(n):
a[i] = aux[i]
```

Testing

```
1 lst = random.choices(range(0, 10), k=10)
2 print(lst)
3 print(sorted(lst))
4 bucketsort(lst, 10)
5 print(lst)

[3, 8, 1, 9, 6, 2, 2, 0, 9, 5]
[0, 1, 2, 2, 3, 5, 6, 8, 9, 9]
[0, 1, 2, 2, 3, 5, 6, 8, 9, 9]
```

Extending to characters/strings

- » We can use the same idea to sort a list of strings
- » We just to it character per character
- » To keep it simple, we assume fixed length strings
- » And 8-bit characters

Illustrating the idea

Implementation

```
1 def radixsort(a:list[str]) -> None:
     n, W = len(a), len(a[0])
     aux = [0] * n
     for d in range(W-1, -1, -1):
       cnt = [0] * (256 + 1)
 6
       for i in range(n):
         cnt[ord(a[i][d]) + 1] += 1
10
       for i in range(256):
11
12
         cnt[i+1] += cnt[i]
13
14
       for i in range(n):
15
         aux[cnt[ord(a[i][d])]] = a[i]
         cnt[ord(a[i][d])] += 1
16
17
       for i in range(n):
18
19
         a[i] = aux[i]
```

Testing it

['bac', 'bfe', 'cad', 'cbf', 'ece', 'eee', 'fdb', 'ffd']

Analysis

- » Not in-place, must be stable
- » String length · number of strings
 - \rightarrow O(w · n)
- » Linear for short strings
- » Can be effective for sorting, e.g., "personnummer" (strings with 12 digits)

Reading instructions

Reading instructions

» Ch. 7.1 - 7.11