N3. Find all function $f N^*->N^*$ such that:

f(xy)+f(x)f(y)+x+y is a prime for all integers x and y

Solution:

 $f(0)^2+f(0)$ is a prime

We have f(0)=1 or f(0)=-2

If f(0) = -2:

-2-2f(x)+x is a prime, therefore -2f(x)+x-2=2 for all even x.

f(x)=(x-4)/2 for all even x.

But it is impossible for (xy-4)/2+(x-4)(y-4)/4+x+y to be a prime for all even x,y.

Therefore f(0)=1

f(y)+y+1 is a prime for y

f(1)=0 or f(1)=-1, notice that $f(-1)^2+f(1)-2$ is a prime and f(-1) is a prime

Therefore f(1)=0 and $f(-1)^2-2$ is a prime

Main claim: For all even integers x,y satisfy x<0,y<0, at least one of f(xy)+1+xy, f(y)+y+1, f(x)+x+1 is equal to 2.

Important collary: for all even x<0, at least one of f(x)+x+1 or $f(x^2)+x^2+1$ is equal to 2

Consider an even x<-1 such that f(x)+1+x is odd

We have $f(x^2)=1-x^2$

We have $f(x^3)+(1-x^2)f(x)+x+x^2$ is a prime. If $f(x^3)=1-x^3$ then f(x)=1-x, contradiction. Therefore $f(x^3)=2-x-x^2+(x^2-1)f(x)$

Therefore $f(x^4)=1-x^4$. Now with this, we induct: $f(x^{2k+1})$ is even and $f(x^{2k})=1-x^{2k}$ for all k.

Indeed, $f(x^{2k+1})+(1-x^{2k})f(x)+x^{2k}+x$ is a prime.

If $f(x^{2k+1})=1-x^{2k+1}$, by induction we have $f(x^{2k})=1-x^{2k}$, then it is easy to see that $1-x^{2k+1}+(1-x^{2k})f(x)+x^{2k}+x<2$ since f(x)>1-x, contradiction.

Therefore $f(x^{2k+1})$ is even and $f(x^{2k+2})=1-x^{2k+2}$ since f(x) and $f(x^{2k+1})$ is even. Induction complete.

We have $f(x^{2k+1})+(1-x^{2k})f(x)+x^{2k}+x$ is a prime, but it is even, therefore $f(x^{2k+1})+(1-x^{2k})f(x)+x^{2k}+x=2$ for all k.

Therefore $A(k)=(x^{2k}-1)f(x)-x^{2k}-x+3+x^{2k+1}$ is a prime for all k. Since f(x)>1-x, $\lim_{k\to\infty}A(k)=+\infty$ and consider a large k, if A(k)=p is a prime, consider A(k+p-1),

it is not a prime, contradiction.

Therefore we have f(x)=1-x for all even x<-1.

Now consider a positive integer x, we have 1-xy+f(x)(1-y)+x+y=

y(1-f(x)-x)+f(x)+x+1 is a prime for all even y<0. If f(x) is not equal to 1-x, we can choose an even y<0 such that y(1-f(x)-x)+f(x)+x+1 is not a prime.

Therefore f(x)=1-x for all positive integers x. And finally, consider an odd y<0, we have -xy+(1-x)f(y)+x+y is a prime for all even x>0. Similarly we have f(y)=1-y for all odd y<0.