Non Linear Programming: Homework 1

vishvAs vAsuki

January 27, 2010

1 1: 2.1: Convex combinations of points in a convex set

1.1 To prove

Let C be a convex set. Show that convex combinations of any number of points is also in C.

1.2 Proof by induction

1.2.1 Notation

Below, we assume that $x_i \in C, t_i \geq 0$.

1.2.2 Base case

By definition, if C is a convex set, for $t_1 + t_2 = 1$, $t_1x_1 + t_2x_2 \in C$.

1.2.3 Induction

Assume that, for some $k \geq 2$, $\sum_{i=1}^k t_i = 1$, $\sum_{i=1}^k t_i x_i \in C$ for any set of k points in C. Then, we will show that, if $\sum_{i=1}^{k+1} t_i = 1$, $\sum_{i=1}^{k+1} t_i x_i \in C$ for any set of k+1 points in C.

points in C. $\sum_{i=1}^{k+1} t_i x_i = \frac{\sum_{i=1}^k t_i}{\sum_{i=1}^k t_i} \sum_{i=1}^k t_i x_i + t_{k+1} x_{k+1}. \text{ But, by our inductive assumption, as } (\sum_{i=1}^k t_i)^{-1} \sum_{i=1}^k t_i x_i \text{ is some } x' \in C. \text{ So, } \sum_{i=1}^{k+1} t_i x_i = (\sum_{i=1}^k t_i) x' + t_{k+1} x_{k+1} \in C, \text{ again by our inductive assumption.}$

2 2: 2.5: Distance between hyperplanes

Take 2 parallel hyperplanes: $\{x \in R^n : a^T x = b_1\}$, $\{x \in R^n : a^T x = b_2\}$. The vector a is perpendicular to both planes, so the distance should be measured along this vector. Considering the point along a which lies on these planes, we see that the distance from the origin of these planes is $\frac{b_i}{\|a\|}$. So, the distance between these planes is $(\|a\|^{-1}|b_1 - b_2|)$.

3 3: 2.6: containment of halfspaces

Consider halfspaces $H_1 = \left\{ x \in \mathbb{R}^n : a_1^T x \leq b_1 \right\}, H_2 = \left\{ x \in \mathbb{R}^n : a_2^T x \leq b_2 \right\},$ with $a_i \neq 0$.

3.1 Condition for containment

By geometric intuition, we see that one halfspace contains the other only if the hyperplanes defining the halfspaces are parallel. a_i is the vector which is perpendicular to the hyperplane defining halfspace H_i . So, for hyperplanes to be parallel, a_1, a_2 should be collinear; ie: $a_1 = ka_2$ for some scalar k. Furthermore, both half spaces should lie on the same side of the defining hyperplanes. To ensure this, we need the additional condition that $sign(b_1b_2) = sign(k)$.

3.2 Condition for equality

For two halfspaces to be equal, they should contain each other. So, the **conditions mentioned earlier should hold**. As the hyperplane defining both halfspaces is exactly the same, we need the following condition to ensure that these hyperplanes are of equal distance from the origin: $\frac{b_1}{\|a_1\|} = \frac{b_2}{\|a_2\|}$. Using the condition that $a_1 = ka_2$, we can state this as: $\frac{b_1}{b_2} = k$.

4 4: CVX installation proof

```
CVX_{\sqcup}version_{\sqcup}1.2_{\sqcup}(build_{\sqcup}711)
MATLAB_version_7.5_(R2007b)_on_GLNXA64
Executed_on_2010/1/13,_19:24:54
Solving_a_randomly-generated_CVX_problem:
norm(A*x-b,1):
\square ans \square 21.5652
Optimal_vector:
{\scriptstyle \sqcup \sqcup \sqcup \bot} x_{\sqcup \sqcup \sqcup \sqcup \sqcup} =_{\sqcup} [{\scriptstyle \sqcup \sqcup} 0.0854_{\sqcup \sqcup} 0.1064_{\sqcup \sqcup} 0.6850_{\sqcup} - 0.0390
[0.5163_{\cup \cup} 0.0453_{\cup} - 0.2020_{\cup \cup} 0.0034_{\cup \cup} 0.0739_{\cup \cup} 0.0875_{\cup}]
Residual _vector:
\Box \Box A * x - b \Box = \Box [\Box \Box 1.7350 \Box \Box 2.8750 \Box \Box 0.4650 \Box \Box 1.4400]
___0.0000__0.1517_]
Equality constraints:
Lagrange\_multiplier\_for\_C*x==d:
cvxtest.m_{\square}finished_{\square}successfully.
```