

Team Name: WEnovate

Team Leader Name: Dharini Kavya

Problem Statement: Designing a chain of thought based LLM system for solving complex spatial analysis tasks through intelligent geoprocessing orchestration.

Team Members

Team Leader: Team Member-1:

Name: Dharini Kavya Name: M Dinesh Kumar

College: Vels Institute of Science, College: Vels Institute of Science, Technology and Advanced Studies Technology and Advanced Studies

Team Member-2: Team Member-3:

Name: K Gayathri Name: K Sridharan

College: Vels Institute of Science, College: Vels Institute of Science, Technology and Advanced Studies Technology and Advanced Studies

Brief about the Idea:

"Bot that thinks, learns, and collaborates like a geospatial scientist—automating national-scale mapping with audit-ready precision."

This project proposes a next-generation AI system that leverages multi-agent Large Language Models (LLMs) and advanced geoprocessing tools to automate and optimize complex spatial analysis tasks. Unlike traditional GIS tools or basic LLM-based solutions, this system introduces a modular, intelligent, and self-improving framework that transforms natural language queries into accurate, transparent, and executable geospatial workflows. Key features include:

A multi-agent LLM architecture for task decomposition, data handling, tool selection, and error correction.

Uncertainty-aware reasoning using Bayesian deep learning to flag unreliable outputs.

A **self-optimizing workflow engine** powered by reinforcement learning and dynamic tool switching.

Real-time multi-source geodata fusion from satellites, OSM, and IoT sensors.

Explainable AI (XAI) outputs with visual Chain-of-Thought reasoning and confidence scores.

The system is built for **high-stakes applications** like disaster response, agricultural planning, and urban development. With seamless integration of tools like GDAL, QGIS, CuPy, and LangChain, the solution offers an **adaptive**, **auditable**, **and scalable platform** for national-level geospatial intelligence and decision-making.we would like to name it as "**GeoBot**"

Opportunity should be able to explain the following:

How will it be able to solve the problem?

Demo Problems:

For Flood Modeling:

Current: 3-5 days manual workflow

ightarrow **Our Solution**: 18 min autonomous

analysis with:

Automatic CRS harmonization

Missing data imputation

Confidence-bound risk maps

For Agriculture:

Current: Static zoning

→ **Our Solution**: Dynamic planning

with:

Live IMD weather integration

Soil health predictions

Climate adaptation suggestions

USP of the proposed solution

Only system combining:

Multi-agent LLMs + Bayesian AI + Reinforcement Learning.

Works like a human team:

Plans \rightarrow Executes \rightarrow Learns \rightarrow Improves.

Made for India's needs:

Bhuvan integration, multilingual queries, low-bandwidth edge mode.

How different is it from any of the other existing ideas?

Feature	Traditional GIS	LLM Assistants (GeoChatGPT)	Cloud Platforms (GEE)	Al-GeoBot
Reasoning	Manual	Single LLM	Rules-based	Multi-agent CoT LLMs
Learning	Static	Static	Static	Self-improving (RL)
Data Handling	Local Files	Limited APIs	Platform-locked	Any Source + Real- time IoT
Accuracy	Expert- dependent	72-78%	80-85%	89% (Uncertainty- aware)
Speed	Days	Hours	Minutes	Minutes + Auto- optimized
Explainability	Manual Docs	Basic CoT	None	Interactive XAI Reports

List of features offered by the solution

- Multi-Agent Geo-Reasoning
 - * 4 specialized AI agents work like a GIS dream team why: *63% fewer errors than single-LLM systems *Human-like task breakdown
- Smart Uncertainty Mapping
 - * Flags low-confidence zones with probability scoresareas *10x faster than cloud-base
 - why: * Critical for disaster response planning* Audit-ready risk assessments.
- Self-Learning Workflows
 - * Improves after every execution via reinforcement learning Execute → Analyze Errors → Update Model → Improve

GeoBot Core (multi-Agents) Task Decomposer: Identifies needs: DEM, slope, rainfall, road network Data Retrieval: Gets: NASADEM (30m) + IMD rainfall + BRO roads Tool Selector: Chooses: GRASS r.slope + QGIS Weighted Overlay Error Handler: Corrects: BRO roads topology errors

Real-Time Data Fusion

- * Can Blend Bhuvan, OSM, and live IoT feeds why: *No more manual data stitching * Always uses latest inputs
- Explainable Al Reports
- Edge-Ready Deployment
 - * Works offline in remote areas
 - * 10x faster than cloud-based tools

Process flow diagram or Use-case diagram

Wireframes/Mock diagrams of the proposed solution (optional)

Architecture diagram of the proposed solution

System Architecture

Technologies to be used in the solution:

Component	Technology Used	Why?
Natural Language Processing	Mistral-7B + LLaMA-3 (fine-tuned)	Balances accuracy & speed
Geoprocessing	GeoPandas, Rasterio, WhiteboxTools	Lightweight, Python-native
Data Sources	Bhuvan API, OSM, IMD raingauge data	Open, real-time, India-specific
Uncertainty Quantification	Bayesian Neural Networks (Pyro)	Flags low-confidence zones
UI	Streamlit + Kepler.gl	Easy deployment, interactive
	· ·	maps
Edge Deployment	NVIDIA Jetson Orin	Field-ready, low-latency

Estimated implementation cost (optional):

BH RATIYA NTARIKSH HAC CATHON 2025

THANK YOU