

FPGA-Based Parking Monitoring System

Hardware Engineering Team F

Introduction:

Objective:

- Implement a parking monitoring system using FPGA
- Use ultrasonic and infrared sensors for real-time status updates

Key Benefits:

- High efficiency and accuracy in parking management
- Real-time updates and collision prevention

Project Concept:

Description:

- Real-time monitoring of parking spaces using sensors
- FPGA processes sensor data to determine parking space status

Technologies Used:

- Field-Programmable Gate Arrays (FPGAs)
- VHSIC Hardware Description Language (VHDL)
- KiCAD for PCB design

Components:

- Ultrasonic Sensor
- Infrared Sensor
- Piezo-Buzzer
- FPGA Board Nexys A7

Functionalities:

- •Real-time surveying of parking spaces
- •Immediate display updates
- Sensor data processing
- •Status display on 7-segment displays
- •Safe Distance alert via Piezo-buzzer

VHDL Coding and Simulation:

Coding:

- Use of Finite State Machine (FSM) approach
- Modules: Sensor check, status update, warning

RTL Simulation:

- Test benches for simulation
- Verification of design specifications

```
process(clk)
begin
  if rising_edge(clk) then
    if ir_sensor_input = '1' then
       parking_status <= "1"; -- occupied
    else
       parking_status <= "0"; -- available
    end if;
    seven_segment_display <= parking_status;
    end if;
end process;</pre>
```

```
process(clk)
begin
  if rising_edge(clk) then
    distance <= ultrasonic_sensor_reading;
  if distance < threshold then
       buzzer <= '1'; -- activate buzzer
  else
       buzzer <= '0'; -- deactivate buzzer
  end if;
  end if;
end process;</pre>
```

Synthesis Design and Implementation:

Implementation:

- Successful implementation on Artix 7 FPGA
- FSM-based control of system behaviour

Results:

- Accurate status updates and collision warnings
- Efficient and safe parking management system

PCB Design:

Design Process:

- Schematics development and component
- ERC checks and corrections

Components:

- Power Supply Circuit
- Clock Circuit
- JTAG Interface
- 7-Segment Displays

Conclusion and Future Work:

Conclusion:

- High efficiency and accuracy in monitoring parking spaces
- Real-time collision prevention

Future Work:

- Integration with IoT applications
- Scalability for larger parking lots

THANKS...