Tensorflow Object Detection API Walkthrough

Topics

Intro

Install packages

Prepare dataset

Training

Evaluation

Intro

open source framework presented by Google

built on top of TensorFlow

covers constructing, training and evaluating object detection models

Task: localizing and identifying multiple objects in a single image

https://github.com/tensorflow/models/tree/master/research/object_detection

Intro

off-the-shelf pre-trained models from computer vision challenges

Train (fine tune) your own model with customized dataset

Intro

Object detection(bounding boxes) & segmentation (object outline)

DOG, DOG, CAT

DOG, DOG, CAT

Only convolutional, no recurrent neural nets

Installation - TensorFlow GPU

Python & pip

tensorflow-gpu,

C:\> pip3 install --upgrade tensorflow-gpu

https://www.tensorflow.org/install/install_windows

From Nvidia: CUDA (GPU driver included), cuDNN

Note: use versions required by tensorflow, not the latest version!

https://developer.nvidia.com/cuda-toolkit-archive

https://developer.nvidia.com/cudnn

Installation - Object Detection API

Download repository from GitHub and unzip to local directory

https://github.com/tensorflow/models/tree/master/research

Install python packages

```
pip install Cython
pip install pillow
pip install lxml
pip install jupyter
pip install matplotlib
```

Installation - Object Detection API

Protobuf Compilation (convert protocols to python files)

Download protoc.exe v3.4.0 from https://github.com/google/protobuf/releases

```
# From tensorflow/models/research/
protoc object_detection/protos/*.proto --python_out=.
```

COCO API installation (some evaluation metrics come from this API)

Install GitHub for desktop, Visual C++ 2015 build tools, then run

```
$ pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI
```

*Original COCO API has no support on Windows machines

Installation - Object Detection API

Add Libraries to PYTHONPATH as system variables

C:\Users\Tuocheng\models-master\research
C:\Users\Tuocheng\models-master\research\slim

Testing the Installation

python object_detection/builders/model_builder_test.py

models / research / object_detection / object_detection_tutorial.ipynb

Prepare Dataset

Convert pictures and annotations (labels) into TFrecord (.record files)

Label objects using Microsoft VoTT (visual object tagging tool)

https://github.com/Microsoft/VoTT/releases

Prepare Dataset

Export

Cancel

When all pictures labeled, export tags in Pascal VOC format

Images are automatically splitted into train/validation sets, modify if necessary

Convert dataset folder into TFrecords using modified scripts in API

Training

Choose a pre-trained model from the Model Zoo

Use ssd mobilenet model for faster detection speed

Use faster_rcnn model for better performance

Model name	Speed (ms)	COCO mAP[^1]	Outputs
ssd_mobilenet_v1_coco	30	21	Boxes
ssd_mobilenet_v2_coco	31	22	Boxes
ssdlite_mobilenet_v2_coco	27	22	Boxes
ssd_inception_v2_coco	42	24	Boxes
faster_rcnn_inception_v2_coco	58	28	Boxes
faster_rcnn_resnet50_coco	89	30	Boxes
faster_rcnn_resnet50_lowproposals_coco	64		Boxes
rfcn_resnet101_coco	92	30	Boxes
faster_rcnn_resnet101_coco	106	32	Boxes

Training - Tune the parameters in configuration file

A skeleton configuration file is shown below:

```
model {
(... Add model config here...)
train config : {
(... Add train config here...)
train input reader: {
(... Add train input configuration here...)
eval config: {
eval input reader: {
(... Add eval input configuration here...)
```

```
Model config
```

Image resizer, box predictor, feature extractor, loss...

*** Must change num_classes suited to your dataset

Train config

Batch size, optimizer, learning rate, input preprocessing...

*** Provide path of fine tune checkpoint (pre-trained model)

Eval config

Set of metrics used for evaluation, mAP as default

Input readers

*** Path of train/eval dataset TFrecords and label mapping

Training

Run python script from command line

With path of training checkpoints and config file

```
INFO:tensorflow:Restoring parameters from C:/ssd_model/model.ckpt
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Starting Session.
INFO:tensorflow:Saving checkpoint to path C:\best_10\fold4\demo\model.ckpt
INFO:tensorflow:Starting Queues.
INFO:tensorflow:global step/sec: 0
INFO:tensorflow:Recording summary at step 0.
INFO:tensorflow:global step 1: loss = 13.6294 (20.515 sec/step)
INFO:tensorflow:global step 2: loss = 10.9286 (1.937 sec/step)
INFO:tensorflow:global step 3: loss = 10.3585 (1.906 sec/step)
INFO:tensorflow:global step 4: loss = 9.3087 (1.922 sec/step)
INFO:tensorflow:global step 5: loss = 8.7222 (2.031 sec/step)
INFO:tensorflow:global step 6: loss = 8.4649 (1.906 sec/step)
INFO:tensorflow:global step 7: loss = 8.6662 (1.906 sec/step)
INFO:tensorflow:global step 8: loss = 8.7053 (1.875 sec/step)
INFO:tensorflow:global step 9: loss = 7.5724 (1.890 sec/step)
INFO:tensorflow:global step 10: loss = 7.0564 (1.828 sec/step)
INFO:tensorflow:global step 11: loss = 6.6012 (1.906 sec/step)
INFO:tensorflow:global step 12: loss = 6.2580 (1.875 sec/step)
INFO:tensorflow:global step 13: loss = 6.6885 (1.953 sec/step)
INFO:tensorflow:global step 14: loss = 7.7189 (1.891 sec/step)
INFO:tensorflow:global step 15: loss = 7.7209 (1.906 sec/step)
INFO:tensorflow:global step 16: loss = 6.3769 (1.891 sec/step)
INFO:tensorflow:global step 17: loss = 5.7438 (1.828 sec/step)
INFO:tensorflow:global step 18: loss = 5.5889 (1.890 sec/step)
INFO:tensorflow:global step 19: loss = 5.4214 (1.859 sec/step)
INFO:tensorflow:global step 20: loss = 5.8326 (1.797 sec/step)
INFO:tensorflow:global step 21: loss = 5.4545 (1.937 sec/step)
INFO:tensorflow:global step 22: loss = 4.6640 (1.844 sec/step)
```

Training

Use TensorBoard to monitor the training progress

tensorboard -logdir=D:\best_10\fold1\train_fr

LearningRate/LearningRate/learning_rate

Losses/Loss/classification_loss

Losses/Loss/localization_loss

Losses/Losses/regularization_loss

Evaluate

Run python script from command line

With path of train & eval checkpoints and config file

```
Example usage:
     ./eval \
         --logtostderr \
         --checkpoint dir=path/to/checkpoint dir \
         --eval dir=path/to/eval dir \
         --pipeline_config_path=pipeline_config.pbtxt
Example usage:
    ./eval \
        --logtostderr \
        --checkpoint dir=path/to/checkpoint dir \
        --eval_dir=path/to/eval_dir \
        --eval config path=eval config.pbtxt \
        --model config path=model config.pbtxt \
        --input config path=eval input config.pbtxt
```

```
creating index...
index created!
INFO:tensorflow:Loading and preparing annotation results...
INFO:tensorflow:Loading and preparing annotation results...
INFO:tensorflow:DONE (t=0.00s)
INFO:tensorflow:DONE (t=0.00s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=0.06s).
Accumulating evaluation results...
DONE (t=0.03s).
 Average Precision
                    (AP) @[ IoU=0.50:0.95
                                             area=
                                                     a11
                                                            maxDets=100
                                                                          = 0.000
                    (AP) @[ IoU=0.50
                                             area=
                                                     a11
                                                            maxDets=100
                                                                          = 0.000
 Average Precision
                        @ IoU=0.75
 Average Precision
                                                     a11
                                                            maxDets=100
                                             area=
                                                                          = 0.000
                            IoU=0.50:0.95
                                             area= small
                                                            maxDets=100
                                                                          = 0.000
 Average Precision
                         @[ IoU=0.50:0.95
                                             area=medium
                                                            maxDets=100
                                                                          = 0.000
 Average Precision
 Average Precision
                         @[ IoU=0.50:0.95
                                             area= large
                                                            maxDets=100
                                                                          = 0.000
                         @ IoU=0.50:0.95
 Average Recall
                                             area=
                                                     all
                                                            maxDets= 1
                                                                          = 0.000
                         @[ IoU=0.50:0.95
 Average Recall
                                             area=
                                                     all
                                                           maxDets= 10
                                                                          = 0.000
 Average Recall
                         @[ IoU=0.50:0.95
                                             area=
                                                     all
                                                            maxDets=100
                                                                          = 0.000
                         @[ IoU=0.50:0.95
 Average Recall
                                             area= small
                                                            maxDets=100
                                                                          = 0.000
                         @[ IoU=0.50:0.95
 Average Recall
                                             area=medium
                                                            maxDets=100
                                                                          = 0.000
                            IoU=0.50:0.95
 Average Recall
                                             area= large
                                                           maxDets=100
                                                                          = 0.000
```

Evaluate

Use TensorBoard to monitor the evaluations

tensorboard —logdir=D:\best_10\fold1\eval_fr

http://image-net.org/challenges/talks/2016/ECCV2016_workshop_presentation_detection_segmentation.

DetectionBoxes_Precision/mAP@.50IOU

DetectionBoxes_Precision/mAP@.75IOU

image-7 step 13,076

Sat Jun 02 2018 07:46:28 GMT+0000 (Coordinated Universal Time)

step 25,000

Sat Jun 02 2018 13:21:27 GMT+0000 (Coordinated Universal Time)

Freeze trained graph

Run python script from command line

models / research / object_detection / export_inference_graph.py

```
Example Usage:
python export_inference_graph \
    --input type image tensor \
    --pipeline_config_path path/to/ssd_inception_v2.config \
    --trained checkpoint prefix path/to/model.ckpt \
    --output_directory path/to/exported_model_directory
The expected output would be in the directory
path/to/exported model directory (which is created if it does not exist)
with contents:
 - graph.pbtxt
 - model.ckpt.data-00000-of-00001
 - model.ckpt.info
 - model.ckpt.meta
 - frozen inference graph.pb
+ saved model (a directory)
```

Output

For each picture, detection result output as a python dict

Coordinates of Detection Boxs [X_min, Y_min, X_max, Y_max]

Index of detection class

List of detection scores

Q&A

Many incompatibility issues between software packages and versions,

Stackoverflow and github issue reporting page usually have solutions

Model config samples usually work fine as they come from challenges

No need to mess up with parameters unless you clearly understand the outcome

Set learning rate suitable to your dataset to gain optimal training efficiency

Need multiple trails to gain insights, but grid search is time consuming.