SYDNEY TECHNICAL HIGH SCHOOL

Year 12 Mathematics Extension 1

HSC Course

Assessment 3

June, 2016

Time allowed: 90 minutes

General Instructions:

- Marks for each question are indicated on the question.
- · Approved calculators may be used
- All necessary working should be shown
- Full marks may not be awarded for careless work or illegible writing
- Begin each question on a new page
- Write using black or blue pen
- All answers are to be in the writing booklet provided
- A BOSTES Reference Sheet is provided with this Examination. Please do not write on it.

Section 1 Multiple Choice Questions 1-5 5 Marks

Section II Questions 6-11 60 Marks

PART A: (5 Marks) Use the multiple choice answer sheet at the front of your Answer Booklet.

All questions are worth 1 mark

 $tan^{-1}(\sqrt{3}) =$

A. $\frac{\pi}{6}$ B. $\frac{\pi}{3}$ C. $-\frac{\pi}{3}$ D. $-\frac{\pi}{6}$

 $log_8128 =$

A. e^{128} B. 16 C. $\frac{3}{7}$ D. $\frac{7}{3}$

 $\sin(\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)) =$

A. $-\frac{1}{2}$ B. $\frac{1}{2}$ C. $-\frac{\pi}{6}$ D. $\frac{\pi}{6}$

 $\frac{d}{dx} (log_2 3x) =$

A. $\frac{3}{x \ln 2}$ B. $\frac{3 \ln 2}{x}$ C. $\frac{1}{x \ln 2}$ D. $\frac{\ln 2}{x}$

 $\tan(\cos^{-1}x) =$ 5

A. $\frac{\sqrt{1-x^2}}{x}$ B. $\frac{-\sqrt{1-x^2}}{x}$ C. $\frac{x}{\sqrt{1-x^2}}$ D $\frac{-x}{\sqrt{1-x^2}}$

PART B

(START EACH QUESTION ON A NEW PAGE)

QUESTION 6: (10 Marks)

		Marks	
(a)	Find indefinite integrals of:	3	
	(i) $\frac{1}{x^2+9}$ (ii) $\frac{1}{1-3x}$ (iii) tan^2x		
	Find: (i) $\frac{d}{dx} \left(\frac{lnx}{x} \right)$ (ii) $\frac{d}{dx} e^{sinx}$	2	
(c)	Find the exact value of $\int_0^2 \frac{2 dx}{\sqrt{4-x^2}}$	2	
(d)	Find the second derivative of e^{x^3}	3	

QUESTION 7: (10 Marks) Start a New Page

(a)	(i)	Find the largest Domain, containing the point (4, 4) for which $f(x) = (x-2)^2$ has	1
		an inverse function	_

(ii) Sketch $y = f^{-1}(x)$ where $f^{-1}(x)$ is the inverse function defined in part (i)

Marks

(iii) State the Domain and Range of $f^{-1}(x)$

(b) Sketch the graph of $y = 2\cos^{-1}\frac{x}{2}$

- (c) (i) Using one set of axes, neatly sketch the graphs of $y = e^x$ and $y = e^{-x}$.
 - (ii) On the same set of axes, use part (i) to sketch $y = \frac{1}{2}(e^x + e^{-x})$ (clearly label this graph)

QUESTION 8: (10 Marks) Start a New Page

Marks

(a) Solve for x: ln(x + 1) = 5, giving your answer correct to 3 dec. places

--- 2...

1

(b) The area under $y = \frac{1}{\sqrt{4+x^2}}$ and between the lines x = 0 and $x = 2\sqrt{3}$ is rotated about the x-axis.

3

Find the exact volume of the solid formed.

(

(c) (i) Find $\frac{dy}{dx}$ if $y = x \tan^{-1} x$

1

(ii) Hence show that $\int_0^1 \tan^{-1}x \ dx = \frac{\pi}{4} - \frac{1}{2} \ln 2$

3

(d) (i) Find $\frac{d}{dx} \{ sin^{-1}x + cos^{-1}x \}$

1

(ii) What does this imply about the value of the expression $sin^{-1}x + cos^{-1}x$ as x varies over the Domain $-1 \le x \le 1$?

(

QUESTION 9: (10 Marks) Start a New Page

Marks

(a) Show that $\frac{d}{dx} \ln \left(\frac{\sqrt{x-1}}{x} \right) = \frac{2-x}{2x(x-1)}$

2

(b) The radius of a balloon which is deflating slowly, is decreasing at a rate of 2 cm per minute.

3

At what rate is the volume decreasing when the radius is 10 cm? (Give your answer in terms of π)

(**NOTE:** The volume of a sphere is given by $V = \frac{4}{3}\pi r^3$)

(c) Find $\int \frac{1}{\sqrt{9-4x^2}} dx$

2

(d) Show that $tan^{-1} \propto + tan^{-1}\beta = tan^{-1}(\frac{\alpha + \beta}{1 - \alpha\beta})$ For $0 < \alpha < 1$ and $0 < \beta < 1$ 3

QUESTION 10: (10 Marks) Start a New Page

- (a) Find the derivative of 5^x
- (b) (i) Show that $1 + \frac{1}{2x-1} = \frac{2x}{2x-1}$
 - (ii) Hence find $\int \frac{x}{2x-1} dx$
- (c) Find $\int \cot x \, dx$
- (d) (i) Find $\frac{d}{dx} ln\{x + \sqrt{x^2 1}\}$
 - (ii) Hence, or otherwise, find $\int_1^3 \frac{1}{\sqrt{x^2-1}} dx$, leaving your answer in exact form.

QUESTION 11: (10 Marks) Start a New Page

Marks

You are given the curve $y = \frac{x}{x^2 + 1}$

(i) Show that this is an odd function.

1

(ii) Show that the curve has turning points at $(1, \frac{1}{2})$ and $(-1, -\frac{1}{2})$ and describe their nature

3

You do not need to find any inflexion points.

(ii) Evaluate $\lim_{x \to 1} \left(\frac{x}{x^2 + 1} \right)$

1

(iii) Sketch the curve, showing all the information you have just found above

2

(iv) Find the area under this curve and between the lines x = 1 and x = 2.

1

(iv) With reference to your sketch, and your answer to part (iv) above, explain why

2

$$\ln\left(\frac{5}{2}\right) < 1$$

END OF THE EXAMINATION

SOLUTIVAS				
1/B 2/D 3/B 4/C	5/ A			
Overnou 6:				
(a) (i) /3 tan' /3 +k (ii) -3/n (1-3~)+k	1 mark cook			
(iii) Stor 2 do = St (secx-1) do	(no penathy fer			
= tan-x tk	no "k")			
(b) (i) $\frac{x \cdot /x - 10x}{x^2} = \frac{1 - 10x}{x^2}$	1 for either			
(ii) coore	1 MARU			
(c) $2\sin^{-12}2$ = $2\sin^{-1}-2\sin^{-1}0$	I for integral			
(1) = 3 = y	1 mark			
(d) $y' = 3x^{2}e^{x^{2}}$	(MARK			
$y'' = e^{x^{3}}.6x + 3x^{2}.3x^{2}e^{x^{2}}$ $= 3xe^{x^{3}}[2+3x^{2}]$	2 morks			

QUESTION 10:	,
(a) $\frac{d}{dx}(5^{-}) = (10.5)5^{+}$	I MARK
(b) (i) $1+\frac{1}{2n-1}=\frac{2x-1}{2n-1}$	IMARK
$= \frac{2\pi}{2x-1}$ (ii) $\int \frac{2\pi}{2x-1} dx = \frac{1}{2} \int \frac{2\pi}{2x-1} dx$	
1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- 1 fur this
= 1/2 + 1/4 (2x-1)	+ I MARK (no penally
(c) $\int \cot x dx = \int \frac{\cosh x}{\sin x} dx$	< I for realising
= logsian + k	& I for ons ver
(d) (i) 1 + 1/2. 7x (n2-1)-1/2	
1 + 2. (n-1)	€ 1 mark
$n + \sqrt{n^2 - 1}$	1)
$= (x^2 - 1)^{1/2} [(x^2 - 1)^{1/2} + x]$	
n + (x2-1	MARK
= (2-1)-1/2	,
100 3 1 1 0 1 3 3 3 3 3 3 3 3 3 3 3 3 3	Y
(ii) $\int_{\sqrt{x^{2}-1}}^{1} du = \ln \{x+\sqrt{x^{2}-1}\} $	4 1 for realizing
= 10 (3+18)-10(1+0)	,
=(10 (3+(8)) I for either on war
1, (3+252	1

	Overway 11:		
	$(i) f(a) = \frac{q}{a^2 + 1}$	IMARK	
	$f(-\alpha) = \frac{-\alpha}{(-\alpha)+1}$		
	= -f(a) :: ODD		
ŀ	1.0		
	$\frac{(11)}{dx} = \frac{(x^2+1)^2 - x \cdot 2x}{(x^2+1)^2}$		
	~ v		
	$= \left(\frac{1-\kappa}{2^{2}+1} \right)^{2}$		
	At T. 1.3 do/d =0		
		1 for each point = 2	
	$\begin{cases} x = 1 & \text{or } x = -1 \\ y = \frac{1}{2} & \text{grade} \end{cases}$	=2	
	, u	1 for identification	
	$\frac{x_{1} \circ x_{1}}{y''_{1} + 1 \circ x'_{2}} = \frac{x_{1} - x_{1} \cdot x_{1}}{y''_{1} - 1 \circ x_{2}} = \frac{x_{1} - x_{1} \cdot x_{2}}{y''_{1} - 1 \circ x_{2}} = \frac{x_{1} - x_{1} \cdot x_{2}}{y''_{1} - 1 \circ x_{2}} = \frac{x_{1} - x_{2} \cdot x_{1}}{y''_{1} - 1 \circ x_{2}} = \frac{x_{1} - x_{2}}{y''_{1} - 1 \circ x_{2}} = \frac{x_{1} - x_{2}}{y'_{1} - 1 \circ x_{2}} = x_$		
	: max of (1,1/2) min at (-1,-12)		
	$\frac{\left(\frac{1}{1}\right)}{2} \lim_{n \to \infty} \left(\frac{2}{n^2 + 1}\right) = 0$	I MARK	
	. Av.		
	(iii) y	2 MARKS	
		KETPOINTS: both T.P.1	
	2 /h	both assymptotes.	
	2		
	(iv) $\int_{x^2+1}^{x^2+1} dn = \frac{1}{2} \ln(x^2+1) I$,		
	=(2/0(5)-1/2/0(2)	7 1 for either	
!	$= (\frac{1}{2} \ln (5) - \frac{1}{2} \ln (2)$ $= \frac{1}{2} \ln (\frac{5}{2})$	7	
	(1) The ara of the do Hed tectorsle) maru	
	above is 2 in which is greate than the actual onea) ' '	
	1e 1/2 > 1/2 In (5/2)	1 MARK	
	· 1 / / \		

·· 10(5/2) <1

s & .