## 蓝桥杯交流群: 706887917

## 1、按键扫描

按键扫描函数 Key\_Read()放在定时器中进行扫描,10ms 执行一次,即 10ms 读取一次 I/O 状态,进行一次键值编码。读取到的键值是<mark>瞬态</mark>的,只能反映按键 此刻的状态,无法反映按下按键抬起按键的稳定过程。

## 2、按键消抖

- ●三行代码第一行: Key\_Val = Key\_Read(); 读取 10ms 更新一次的 I/O 电平状态,并存储在变量 Key Val,可以理解为临时按键值。
- ●三行代码第三行: Key\_Old = Key\_Val;, Key\_Old 为静态局部变量,**离开函数**,**值仍保留**: 数据存储在静态存储区,在程序整个运行期间都不释放,且只能在该函数中调用。将这次读取到的临时按键值 Key\_Val 更新到 Key\_Old 中,作为下一次的旧的按键值; 概括说 Key Val 与 Key Old 为相差 10ms 的临时按键值。
- ●三行代码第二行: Key\_Down = Key\_Val & (Key\_Old ^ Key\_Val);两个位操作:按位与,按位异或。
- ○首先  $Key_0ld ^ Key_Val$  位操作针对二进制,二进制与十进制一 一对应。按位异或:相同为 0,不同为 1。由下图可知: $Key_0ld$  与  $Key_Val$  可能出现的情况:(假设按下的是按键 4)

Key\_Old=0, Key\_Val=0 未按下 。Key\_Old ^ Key\_Val=0

Key\_Old=0, Key\_Val=4 按下过程中。Key\_Old ^ Key Val=0100=4

Key\_Old=4, Key\_Val=4 按下稳定期间。 Key\_Old ^ Key\_Val=0000

Key\_0ld=4, Key\_Val=0 抬起过程中。 Key\_0ld ^ Key\_Val=0100=4 再次说明由于是用定时器扫描,Key\_0ld 与 Key\_Val 的按键值相差 10ms,不可能出现 Key\_0ld=4, Key\_Val=6 两个按键值的情况。

oKey Old ^ Key Val 的运算结果再&上 Key Val

| Key_Old | Key_Val | 对应的按键过程 | Key_Old ^ Key_Val | Key_Down |
|---------|---------|---------|-------------------|----------|
| 0       | 0       | 未按下     | 0                 | 0        |
| 0       | 4       | 按下过程中   | 0100 (4)          | 4        |
| 4       | 4       | 按下稳定期间  | 0                 | 0        |
| 4       | 0       | 抬起过程中   | 0100 (4)          | 0        |

所以由上表可知: <mark>三行代码第二行</mark> Key\_Down = Key\_Val & (Key\_Old ^ Key\_Val); 最后的运算结果 Key\_Down 只有在按键按下的过程中为按键值,持续时间大约 10ms。

●可以在原有三行代码的基础上再增加一行,来判断按键抬起的过程 Key Up = ~Key Val & (Key Old ^ Key Val);



| 按键过程   | Key_Down | Key_Up  |  |
|--------|----------|---------|--|
| 未按下    | 0        | 0       |  |
| 按下过程中  | 相应的按键值   | 0       |  |
| 按下稳定期间 | 0        | 0       |  |
| 抬起过程中  | 0        | 抬起前的按键值 |  |

所以可以将 Key\_Down 与 Key\_Up 理解为临时值,只在按下或抬起过程中不为 0,又 **按键的扫描** Key\_Read() 采用定时器进行扫描。10ms 扫描一次,数据 10ms 更新一次。