the prime there produces the product of the control of the control

CLAIMS

What is claimed is:

5 1. A truncated glial cell line-derived neurotrophic factor (GDNF) protein product having an amino adid sequence

X-[Cys41-Cys133]-Y

wherein

[Cys⁴¹-Cys¹³³] represents the amino acid sequence of Cys⁴¹ through 10 Cys¹³³ as depicted in Figure 1 (SEQ ID NO 2);

Y represents the carboxy terminal group of Cys¹³³ or a carboxy-terminus amino acid residue of Ile¹³⁴; and

X represents a methionylated or nonmethionylated amine group of Cys⁴¹ or amino-terminus amino acid esidue(s) selected from the group:

15

G RG NRG KNRG (SEQ ID NO:3) GKNRG (SEQ ID NO:4) RGKNRG (SEQ ID NO:5) QRGKNRG (SEQ ID NO:6) GQRGKNRG (SEQ ID NO:7) RGQRGKNRG (SEQ ID NO:8) RRGQRGKNRG (SEQ ID NO:9) RRGQRGKNRG (SEQ ID NO:10) RRGQRGKNRG (SEQ ID NO:11) KG RRGQRGKNRG (SEQ ID NO:12) GKG RRGORGKNRG (SEQ ID NO:13) **RGKG** SRGKG RRGQRGKNRG (SEQ ID NO:14) REGREENER (SEQ ID NO:15) NSRGKG RRGQRGKNRG (SEQ ID NO:16) **ENSRGKG** REGORGENERG (SEQ ID NO:17) PENSRGKG RROGRIGHT (SEQ ID NO:18) NPENSRGKG RRGORGKNRG (SEQ ID NO:19) ANPENSRGKG RRGORGKNRG (SEQ ID NO:20) **ANPENSRGKG**

i				
,	\ AA	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:21)
	AAA	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:22)
	QAAA	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:23)
	\ RQAAA	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:24)
	\ NRQAAA	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:25)
	RVRQAAA	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:26)
	ERNRQAAA	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:27)
	RERNR	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:28)
	rrernro h aa	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:29)
P	RRERNRQA	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:30)
LP	RRERNRQAA	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:31)
VLP	RRERNRQAAA	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:32)
AVLP	RRERNRQAAA	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:33)
MAVLP	RRERNRQAAA	NPENSRGKG	RRGQRGKNRG	(SEQ ID NO:34)
QMAVLP	RRERNRQAAA	AVPENSRGKG	RRGQRGKNRG	(SEQ ID NO:35)
KQMAVLP	RRERNRQAAA	AMPENSRGKG	RRGQRGKNRG	(SEQ ID NO:36)
DKQMAVLP	RRERNRQAAA	anpenergkg	RRGQRGKNRG	(SEQ ID NO:37) and
PDKQMAVLP	RRERNRQAAA	ANDENSHCKG	RRGQRGKNRG	(SEQ ID NO:38)
		1 \ 7 \		

and addition, substitution and internal deletion variants and derivatives thereof.

- 2. A truncated GDNF protein product according to Claim 1, wherein X = RQAAA ANPENSRGKG RRGQRGKNRG (SEQ ID NO:24) or a variant thereof.
 - 3. A truncated GDNF protein product according to Claim 1, wherein X = NPENSRGKG RRGQRGKNRG (SEQ ID NO: 18) or a variant thereof.
- 1 0 4. A truncated GDNF protein product according to Claim 1, wherein X = PENSRGKG RRGQRGKNRG (SEQ ID NO:17) or a variant thereof.
 - 5. A truncated GDNF protein product according to Claim 1, wherein X = SRGKG RRGQRGKNRG (SEQ ID NO:14) or a variant/thereof.
 - 6. A truncated GDNF protein product according to Claim 1, wherein X = RGQRGKNRG (SEQ ID NO:8) or a variant thereof.

15

- 7. A truncated GDNF protein product according to Claim 1, wherein X = GQRGKNRG (SEQ ID NO:7) or a variant thereof.
- 8. A truncated GDNF protein product according to Claim 1, wherein X = 5 KNRG (SEQ ID NQ:3) or a variant thereof.
 - 9. A truncated DNF protein product according to Claim 1, wherein X = NRG or a variant thereof.
- 10 10. A truncated GDNF protein product according to Claims 1 through 9, wherein said amino acid sequence is glycosylated.
 - 11. A truncated GDN protein product according to Claims 1 through 9, wherein said amino acid sequence is nonglycosylated.
 - 12. A truncated GDNF protein product according to Claim 1, wherein said derivative is an X-[Cys⁴¹-Cys¹³³]-Y amino acid sequence conjugated to a water soluble polymer.
- 20 13. A polynucleotide encoding a truncated GDNF protein according to Claim 1.
 - 14. A polynucleotide according to Claim 13, comprising a portion of the sequence as set forth in Figure 1.
- 25 15. A polynucleotide according to Claim 13, comprising a portion of the sequence as set forth in Figure 3.
 - 16. A polynucleotide according to Claim 13, comprising a portion of the sequence as set forth in Figure 4.
 - 17. A polynucleotide according to Claim 13, comprising the sequence as set forth in Figure 5.
- 18. A polynucleotide according to Claim 13 comprising the sequence as set 35 forth in Figure 6.

25

- 19. A polynucleotide according to Claim 13, comprising the sequence as set forth in Figure 7.
- 20. A vector, comprising a polynucleotide of Claim 13 operatively linked to an expression control sequence.
 - 21. A prokaryotic or eukaryotic host cell transformed or transfected with a polynucleotide of Claim 13.
- 10 22. A method for producing a truncated GDNF protein, comprising growing host cells of Claim 21 in a suitable nutrient medium and, optionally, isolating said truncated GDNF from said cells or said nutrient medium.
- 23. A method for producing a truncated GDNF protein according to Claim 22, wherein said host cells are *E. coli*.
 - 24. A method for producing a truncated GDNF protein according to Claim 22, wherein said host cells are Chinese hamster ovary cells.
- 20 25. A method for the production of a truncated glial cell line-derived neurotrophic factor (GDNF) protein comprising the steps of:
 - (a) culturing a prokaryotic or eukaryotic host cell transformed or transfected with a vector of Claim 20;
 - (b) maintaining said host cell under conditions allowing the expression of truncated GDNF protein by said host cell; and
 - (c) optionally isolating the truncated GDNF protein expressed by said host cell.
- 26. A truncated GDNF protein which is the recombinant expression product of a prokaryotic or eukaryotic host cell containing an exogenous polynucleotide of Claim 13.
 - 27. A pharmaceutical composition comprising a truncated GDNF protein product according to Claim 1 in association with a pharmaceutically acceptable vehicle.

- 28. A pharmaceutical composition comprising a truncated GDNF protein, produced in accordance with the method of Claim 22 in association with a pharmaceutically acceptable vehicle.
- 5 29. A pharmaceutical composition comprising a truncated GDNF protein, produced in accordance with the method of Claim 25 in association with a pharmaceutically acceptable vehicle.
- 30. A method of treating Parkinson's Disease comprising administering to a patient the pharmaceutical composition of Claim 27.
 - 31. A method of treating Parkinson's Disease comprising administering to a patient a polynucleotide sequence of Claim 13 to provide *in vivo* production of said truncated GDNF protein.
 - 32. A method of treating Parkinson's Disease comprising implanting in a patient a cell transformed with a polynucleotide sequence of Claim 13 to provide in vivo production of said truncated GDNF protein.
- 20 33. A glial cell line-derived neurotrophic factor (GDNF) composition, comprising a mature GDNF protein and one or more truncated GDNF proteins, wherein said mature GDNF protein has a molecular weight of approximately 44 kDa, and wherein said truncated GDNF protein(s) has a molecular weight of approximately 29 to 40 kDa.
 - 34. A GDNF composition according to Claim 33, comprising at least two species of truncated GDNF protein wherein a first species has a molecular weight of approximately 36 kDa and a second species has a molecular weight of approximately 40 kDa.
 - 35. A GDNF composition according to Claim 34, wherein said second truncated GDNF species having a molecular weight of approximately 40 kDa is a heterodimer of a mature GDNF monomer having a molecular weight of approximately 22 kDa and a truncated GDNF monomer having a molecular weight of approximately 18 kDa.

ŢŲ

25

30

His state that that the first will had that # 17 4 h 17 4 Ų C Ü

- 36. A truncated GDNF protein isolated from the GDNF composition of Claim 33 and having a molecular weight of approximately 29 to 40 kDa.
- A truncated GDNF protein isolated from the GDNF composition of 37. Claim 33 and having a molecular weight of approximately 29 to 36 kDa.
 - A truncated GDNF protein derived from a mature GDNF protein expressed 38. by a recombinantly modified bacterial or mammalian cell, said truncated GDNF protein having an amino acid sequence

10

5

wherein

[Cys⁴¹-Cys¹³³] represents the amino acid sequence of Cys⁴¹ through Cys¹³³ as depicted in Figure 1 (SEQ\D NO 2);

Y represents the carboxy terminal group of Cys¹³³ or a carboxy-

terminus amino acid residue of Ile134; and 15

> X represents an amine group of dys41 or amino-terminus amino acid residue(s) selected from the group:

> > G

RG

NRG

KNRG (SEQ ID NO:3)

GKNRG (SEQ ID NO:4)

RGKNRG (SEQ ID NO:5)

QRGKNRG (SEQ ID NO:6)

GQRQKNRG (SEQ ID NO:7)

RGQRGRINRG (SEQ ID NO:8)

RRGQRGKNRG (SEQ ID NO:9)

RRGQRGKNIRG (SEQ ID NO:10)

RRGQRGKNR (SEQ ID NO:11) KG

RRGQRGKNRG (SEQ ID NO:12) GKG

RRGQRGKNRG (SEQ ID NO:13) **RGKG**

RRGQRGKNRG (SEQ ID NO:14) SRGKG

RRGORGKNRG (SEQ ID NO:15) NSRGKG

RRGORGKNRG (SEQ ID NO:16) **ENSRGKG**

RRGQRGKNRG (SEQ\ID NO:17) PENSRGKG

A-357 - 89 -

	.			
	1	NPENSRGKG	RRGQRGKNRG	(SEQ ID NO:18)
	- 1	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:19)
	\ A	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:20)
	\ AA	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:21)
	AAA	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:22)
	QAAA	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:23)
	RQAAA	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:24)
	NRQAA	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:25)
	RNRQAAA	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:26)
	ERNRQAAA	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:27)
	RERNRQAAA	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:28)
	RRERNRQAAA	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:29)
P	RRERNRQAAA	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:30)
LP	RRERNRQAAA	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:31)
VLP	RRERNRQAAA	ANDENSRGKG	RRGQRGKNRG	(SEQ ID NO:32)
AVLP	RRERNRQAAA	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:33)
MAVLP	RRERNRQAAA	ANDENSROKG	RRGQRGKNRG	(SEQ ID NO:34)
QMAVLP	RRERNRQAAA	ANDENSREEG	RRGQRGKNRG	(SEQ ID NO:35)
KQMAVLP	RRERNRQAAA	ANPENSRGK	RRGQRGKNRG	(SEQ ID NO:36)
DKQMAVLP	RRERNRQAAA	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:37) and
PDKQMAVLP	RRERNRQAAA	ANPENSRGKG	RRGQRGKNRG	(SEQ ID NO:38)

and addition, substitution and internal deletion variants thereof.

39. A truncated GDNF protein according to Claim 38, wherein X is selected from the group consisting of:

G

NRG
KNRG (SEQ ID NO:3)
GKNRG (SEQ ID NO:4)
RGKNRG (SEQ ID NO:5)
QRGKNRG (SEQ ID NO:6)
GQRGKNRG (SEQ ID NO:7)
RGQRGKNRG (SEQ ID NO:8) and

RRGQRGKNRG (SEQ D NO:9)

5

10

and variants thereof.

- 40. A truncated GDNF protein according to Claim 38, wherein mature GDNF protein is expressed by a recombinantly modified bacterial cell and said truncated GDNF protein is produced *in vitro* or *in vivo*.
- 41. A method of preparing a pharmaceutical composition wherein a therapeutically effective amount of a truncated GDNF protein product according to Claim 1 is mixed with one or more pharmaceutically acceptable vehicles.
- 42. The use of a truncated ONF protein product according to Claim 1 for treating damage to the nervous system caused by disease or injury.
- 43. The use of a truncated GDNF protein product according to Claim 42 for treating Parkinson's disease.
 - 44. The use of a truncated GDNF protein product according to Claim 1 for the preparation of a pharmaceutical composition for treating damage to the nervous system caused by disease or injury.