EXERCICE N°1 (Le corrigé)

Pour le baptême de son fils, Camille a confectionné des paquets de dragées. La répartition des dragées est donnée dans le tableau ci-dessous. On choisit une dragée au hasard.

Y = dragées X = couleur	Chocolat	Amandes	Total
Bleu	45	30	75
Rose	35	30	65
Total	80	60	140

1) Déterminer la probabilité d'avoir des dragées au chocolat parmi les paquets bleus.

Y = dragées X = couleur	Chocolat	Amandes	Total
Bleu	45	30	75
Rose	35	30	65
Total	80	60	140

$$p_{bleu}(chocolat) = \frac{Card (bleu \cap chocolat)}{Card (Bleu)} = \frac{45}{75} = 0,6$$

$$\frac{45}{75} = 0,6$$

La probabilité d'avoir des chocolats parmi les paquets bleus vaut 0,6.

2) Déterminer la probabilité d'avoir des paquets roses parmi les dragées aux amandes.

Y = dragées X = couleur	Chocolat	Amandes	Total
Bleu	45	30	75
Rose	35	30	65
Total	80	60	140

$$p_{Amandes}(Rose) = \frac{Card(Amandes \cap Rose)}{Card(Amandes)} = \frac{30}{60} = 0,5$$

$$\frac{30}{60} = 0,5$$

La probabilité d'avoir des paquets roses parmi les dragées aux amandes vaut 0,5.

EXERCICE N°2 (Le corrigé)

On considère deux événements A et B d'une expérience aléatoire. L'effectif de chaque événement est donné dans le tableau ci-après.

	A	\overline{A}	Total
В	45	6 (=21-15)	51 (=45+6)
\overline{B}	22 (=37-15)	15	37
Total	67 (=45+22)	21	88 (=51+37)

1) Recopier et compléter le tableau.

Voir le tableau

- 2) $Card(\overline{A})$, $Card(\overline{A} \cap \overline{B})$ et $Card(\overline{A} \cap B)$. $Card(\overline{A})=21$, $Card(\overline{A} \cap \overline{B})=15$ et $Card(\overline{A} \cap B)=6$
- 3) Calculer $p_A(\overline{B})$. Interpréter les résultats.

$$p_A(\overline{B}) = \frac{Card(A \cap \overline{B})}{Card(A)} = \frac{22}{67}$$

C'est la probabilité de ne pas réaliser l'événement B sachant que l'événement A es réalisé.

EXERCICE N°3 (Le corrigé)

A et B sont deux événements d'une expérience aléatoire comportant 100 issues possibles et vérifiant :

$$Card(A \cap B)=21$$
, $Card(A)=40$ et $Card(B)=25$.

1) Calculer $p_A(B)$.

$$p_A(B) = \frac{Card(A \cap B)}{Card(A)} = \frac{21}{40}$$

2) Calculer $p_B(A)$

$$p_B(A) = \frac{Card(A \cap B)}{Card(B)} = \frac{21}{25}$$

3) Calculer $Card(A \cup B)$

$$Card(A \cup B) = Card(A) + Card(B) - Card(A \cap B) = 40 + 25 - 21 = 44$$

4) Calculer $Card(A \cap \overline{B})$

$$Card(A \cap \overline{B}) = Card(A) - Card(A \cap B) = 40 - 21 = 19$$

EXERCICE N°4 (Le corrigé)

A et B sont deux événements d'une expérience aléatoire comportant 90 issues possibles et vérifiant :

$$Card(A \cap B)=10$$
, $Card(A)=20$ et $Card(B)=15$.

1) Calculer $Card(A \cup B)$

$$Card(A \cup B) = Card(A) + Card(B) - Card(A \cap B) = 20 + 15 - 10 = 25$$

2) Calculer $Card(A \cap \overline{B})$

$$Card(A \cap \overline{B}) = Card(A) - Card(A \cap B) = 20 - 10 = 10$$

3) Calculer $Card(\overline{A \cap B})$

$$Card(\overline{A \cap B}) = 90 - Card(A \cap B) = 90 - 10 = 80$$

4) Calculer $p_A(B)$

$$p_A(B) = \frac{Card(A \cap B)}{Card(A)} = \frac{10}{20} = 0.5$$

EXERCICE N°1

Pour le baptême de son fils, Camille a confectionné des paquets de dragées. La répartition des dragées est donnée dans le tableau ci-dessous. On choisit une dragée au hasard.

$Y = drag\acute{e}es$ X = couleur	Chocolat	Amandes	Total
Bleu	45	30	75
Rose	35	30	65
Total	80	60	140

- 1) Déterminer la probabilité d'avoir des dragées au chocolat parmi les paquets bleus.
- 2) Déterminer la probabilité d'avoir des paquets roses parmi les dragées aux amandes.

EXERCICE N°2

On considère deux événements A et B d'une expérience aléatoire. L'effectif de chaque événement est donné dans le tableau ci-après.

	A	\overline{A}	Total
В	45		
\overline{B}		15	37
Total		21	

- 1) Recopier et compléter le tableau.
- 2) $Card(\overline{A})$, $Card(\overline{A} \cap \overline{B})$ et $Card(\overline{A} \cap B)$.
- 3) Calculer $p_A(\overline{B})$. Interpréter les résultats.

EXERCICE N°3

A et B sont deux événements d'une expérience aléatoire comportant 100 issues possibles et vérifiant :

 $Card(A \cap B)=21$, Card(A)=40 et Card(B)=25.

- 1) Calculer $p_A(B)$.
- 2) Calculer $p_B(A)$
- 3) Calculer $Card(A \cup B)$
- 4) Calculer $Card(A \cap \overline{B})$

EXERCICE Nº4

A et B sont deux événements d'une expérience aléatoire comportant 90 issues possibles et vérifiant :

 $Card(A \cap B)=10$, Card(A)=20 et Card(B)=15.

- 1) Calculer $Card(A \cup B)$
- 2) Calculer $Card(A \cap \overline{B})$
- 3) Calculer $Card(\overline{A \cap B})$
- 4) Calculer $p_A(B)$