

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Tarea 1

Variable Compleja - MAT2705 Fecha de Entrega: 2019-09-06

${\bf \acute{I}ndice}$

Problema 1	1
Problema 2	1
Problema 3	2
Problema 4	4
Problema 5	4
Problema 6	5
Problema 7	6

Problema 1:

Demuestre que toda transformación de Möbius no constante puede representarse como

$$\frac{az+b}{cz+d} \quad \text{con } ad-bc=1$$

Solución problema 1: Sea f una transformación de Möbius, entonces existen $a, b, c, d \in \mathbb{C}$ tal que $f(z) = \frac{az+b}{cz+d}$, luego sea $e^2 = ad - bc$, se reescribe $f(z) = \frac{a/ez+b/e}{c/ez+d/e}$, y se nota que con eso se tiene lo pedido.

Problema 2:

Encuentre una transformación de Möbius que lleva 1+i a 0, 2 a ∞ y 0 a i-1, y encuentre la imágen de $\{|z-1|<1\}$ bajo esta transformación.

Solución problema 2: Se nota que usando la primera y la segunda condición se tiene la siguiente transformación:

$$k \cdot \frac{z - (1+i)}{z - 2}$$

Agregando la tercera, se llega a que k=2i, por lo que la transformación $\frac{2iz+(2-2i)}{z-2}$ da lo pedido.

Para ver la imágen de la transformación por conexidad es suficiente ver tres puntos en el borde la región, estos son 1 + i, 2 y 0, con ellos se nota que nos dan la siguiente región:

Figura 1: Imagén de la transformación

Problema 3:

- (a) Demuestre que las siguientes funciones son armónicas y determine su conjugado armónico en D.
 - (I) $u(x,y) = \exp(x)\sin y$ en $D = \mathbb{C}$;
 - (II) $u(x,y) = \sinh x \cos y$ en $D = \mathbb{C}$;
 - (III) $u(x,y) = \frac{y}{x^2+y^2}$ en $D = \mathbb{C} \setminus (-\infty, 0]$.
- (b) Se define $u(z) = \Im(z^{-2})$ para $z \neq 0$ y u(0) = 0.
 - (I) Demuestre que todas las derivadas parciales de u existen en todo \mathbb{C} .
 - (II) Demuestre que $\Delta u = 0$.
 - (III) Demuestre que $\frac{\partial^2 u}{\partial x \partial y}$ no existe en (0,0).
 - (IV) Demuestre que u no posee conjugado armónico en \mathbb{C} .

Solución problema 3:

(a) (I) Se ve que $\frac{\partial^2 u}{\partial x^2} = \exp(x) \sin y$ y que $\frac{\partial^2 u}{\partial y^2} = -\exp(x) \sin y$, por lo que $\Delta u = 0$. Usando las condiciones de Cauchy-Riemann se tiene lo siguiente:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = \exp(x) \sin y$$
$$-\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} = -\exp(x) \cos y$$

Esto se resuelve integrando correspondientemente y viendo las constantes, y se llega a que $v(x, y) = -\exp(x)\cos y + C$.

(II) Se ve que $\frac{\partial^2 u}{\partial x^2} = \sinh x \cos y$ y que $\frac{\partial^2 u}{\partial y^2} = -\sinh x \cos y$, por lo que $\Delta u = 0$. Usando las condiciones de Cauchy-Riemann se tiene lo siguiente:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = \cosh x \cos y$$
$$-\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} = \sinh x \sin y$$

Esto se resuelve integrando correspondientemente y viendo las constantes, y se llega a que $v(x, y) = \cosh x \sin y + C$.

2

(III) Se ve que $\frac{\partial^2 u}{\partial x^2} = -\frac{2y(y^2 - 3x^2)}{(y^2 + x^2)^3}$ y que $\frac{\partial^2 u}{\partial y^2} = \frac{2y(y^2 - 3x^2)}{(x^2 + y^2)^3}$, por lo que $\Delta u = 0$. Usando las condiciones de Cauchy-Riemann se tiene lo siguiente:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = -\frac{2yx}{(x^2 + y^2)^2}$$
$$-\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} = -\frac{x^2 - y^2}{(x^2 + y^2)^2}$$

Esto se resuelve integrando correspondientemente y viendo las constantes, y se llega a que $v(x,y) = \frac{x}{x^2+y^2} + C$.

- (b) Se nota que $u(x,y) = -\frac{2xy}{(x^2+y^2)^2}$ y que u(0,0) = 0, lo cual es simétrico entre x e y (i.e. u(x,y) = u(y,x))
 - (I) Para $x, y \neq 0$ es claro que existen, por lo que se ven los siguientes límites:

$$\lim_{\Delta x \to 0} \frac{u(\Delta x, 0) - u(0, 0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{0 - 0}{\Delta x} = 0$$

Con lo que se tiene que existe $\partial_x u$ en todo \mathbb{C} , luego por simetría se tiene que $\partial_y x$ existe en todo \mathbb{C} .

(II) Se calculan las segundas derivadas en todo punto (excepto (0,0))

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{-2y(-3x^2 + y^2)}{(x^2 + y^2)^3} \right) = \frac{24xy(y^2 - x^2)}{(x^2 + y^2)^4}$$
$$\frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{-2x(-3y^2 + x^2)}{(x^2 + y^2)^3} \right) = \frac{24xy(x^2 - y^2)}{(x^2 + y^2)^4}$$

Por lo que claramente $\Delta u = 0$, ahora para el (0,0), se ven los límites por definición:

$$\lim_{\Delta x \to 0} \frac{\partial_x(\Delta x, 0) - \partial_x u(0, 0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{0 - 0}{\Delta x} = 0$$

Y de nuevo por simetría se tiene que $\partial_x^2 u(0,0) = \partial_y^2 u(0,0) = 0$, por lo que $\Delta u = 0$ para todo $z \in \mathbb{C}$

(III) Se ve el siguiente límite:

$$\lim_{\Delta x \to 0} \frac{\partial_y(\Delta x, 0) - \partial_y(0, 0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{-2\Delta x^3}{\Delta x^6} - 0}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2}{\Delta x^4}$$

Claramente el límite no existe, por lo que u no es \mathbb{C}^2

(IV) Se asume que existe v conjugado armónico de u, luego f(z) = u + iv es analítica,

por lo que $f \in \mathcal{C}^{\infty}$, por lo que $u \in \mathcal{C}^{\infty}$, pero $\partial_x yu(0,0)$ no existe. Por lo que no existe v conjugado armónico de u.

Problema 4:

Sea $n \in \mathbb{N}$ y $\lambda = \rho_0 \exp(i\varphi_0)$. Encuentre el módulo máximo de $z^n + \lambda$ en $\{|z| \leq r\}$.

Solución problema 4: Es claro que $|z^n + \lambda| \le r^n + |\rho_0|$, sea $z = r \exp(i\varphi/n)$, se nota que |z| = r, luego $|z^n + \lambda| = r^n + |\rho_0|$, por lo que se tiene el máximo.

Problema 5:

Considere las curvas $C_R^{\delta} = \{R \exp(\theta) : \theta \in [\delta, \pi - \delta]\}, C_R^+ = \{z : |z| = R, \Im(z) > 0\}.C_R^- = \{z : |z| = R, \Im(z) < 0\}$ y $L_{(a,b)} = [a,b]$.

- (a) Calcule $\int_{C_R^+ \cup C_\varepsilon^+ \cup L_{(-R,-\varepsilon)} \cup L_{(\varepsilon,R)}} \frac{\exp(iz)}{z^n} dz$.
- (b) Calcule $\int_{C_R^+ \cup C_\varepsilon^- \cup L_{(-R,-\varepsilon)} \cup L_{(\varepsilon,R)}} \frac{\exp(iz)}{z^n} dz$.
- (c) Demuestre que $\left| \int_{C_R^{\delta}} \frac{\exp(iz)}{z} dz \right| \le 2\pi \exp(-R\sin(\delta)).$
- (d) Demuestre que $\left| \int_{C_R^+ \setminus C_R^\delta} \frac{\exp(iz)}{z} \, \mathrm{d}z \right| \le 2\delta$.
- (e) Demuestre que $\lim_{\varepsilon \to 0} \int_{C_{\varepsilon}^+} \frac{\exp(iz)}{z} dz = 2\pi i$.
- (f) Utilice lo anterior para calcular $\int_0^\infty \frac{\sin t}{t} dt$.

Solución problema 5:

- (a) Se nota que $\frac{\exp(iz)}{z^n}$ es analítica fuera del 0, por lo que por la formula de Cauchy se tiene que la integral es 0.
- (b)
- (c)
- (d)
- (e)

(f) Se recuerda que $I_n = \int_{C_R^+ \cup C_\varepsilon^+ \cup L_{(-R,-\varepsilon)} \cup L_{(\varepsilon,R)}} \frac{\exp(iz)}{z^n} dz = 0$, pero más aún $I_1 = \int_{C_R^+} \frac{\exp(iz)}{z} dz + \int_{L_{\varepsilon,R}} \frac{\exp(iz)}{z} dz + \int_{L_{-R,-\varepsilon}} \frac{\exp(iz)}{z} dz + \int_{C_\varepsilon^+} \frac{\exp(iz)}{z} dz$, se nota que si $\Im(z) = 0$ entonces $\exp(iz)/z = i\sin(z)/z$ por la formula de Euler, y usando una sustitución se tiene lo siguiente:

$$\left| I_1 - \left(2 \int_{L_{(\varepsilon,R)}} i \sin(t) / t \, \mathrm{d}t - \int_{C_{\varepsilon}^+} \frac{\exp(iz)}{z} \, \mathrm{d}z \right) \right| = \left| \int_{C_R^+} \frac{\exp(iz)}{z} \, \mathrm{d}z \right| / \lim_{\varepsilon \to 0}$$

$$2 \left| \int_{L_{(0,R)}} \sin(t) / t \, \mathrm{d}t - \pi \right| \le \left| \int_{C_R^{\delta}} \frac{\exp(iz)}{z} \, \mathrm{d}z \right| + \left| \int_{C_R^+ \setminus C_R^{\delta}} \frac{\exp(iz)}{z} \, \mathrm{d}z \right|$$

$$\le 2\delta + 2\pi \exp(-R \sin \delta)$$

Se nota que $\forall \delta \in (0, \pi)$ se tiene que $\lim_{R \to \infty} \exp(-R \sin \delta) = 0$, por lo que se δ arbitrariamente pequeño y se toma el límite $R \to \infty$ y se llega a lo siguiente:

$$\left| \int_0^\infty \sin(t)/t \, \mathrm{d}t - \pi \right| \le 0$$

Por lo que $\int_0^\infty \sin(t)/t \, dt = \pi$

Problema 6:

- (a) Demuestre que si una función armónica u esta definida en todo $\mathbb C$ y es uniformemente acotada, entonces es constante.
- (b) Suponga que w_0 y w_1 son dos números complejos que no están sobre la misma recta (es decir, son l.i. como vectores). Una función f se dice doblemente periódica con periodos w_1 y w_2 si $f(z+w_1)=f(z+w_2)=f(z)$ para todo z. Demuestre que si $f:\mathbb{C}\to\mathbb{C}$ es analítica y doble periódica (con periodos w_1 y w_2), entonces es constante.

Solución problema 6:

(a) Como u es acotada, s.p.d.g se tiene que $\Im(u) > 0, \Re(u) > 0$, luego sean $x, y \in \mathbb{C}$ distintos entre sí, sea d = |x - y| y sea R > d,por propiedad del valor medio se tiene lo siguiente:

$$\pi R^2 u(x) = \iint_{B(x,R)} u \, \mathrm{d}A \tag{1}$$

Se ve la parte real de la identidad anterior:

$$\Re(\pi R^2 u(x)) = \Re(\iint_{B(x,R)} u \, dA)$$

$$\leq \Re(\iint_{B(y,R+d)} u \, dA) \qquad \leq \Re(\pi (R+d)^2 u(y))$$

Luego, se tiene que $\Re(u(x)) \leq \Re(\frac{(R+d)^2}{R^2}u(y))$, con $R \to \infty$ se tiene que $\Re(u(x)) \leq \Re(u(y))$. Análogamente se tiene que $\Re(u(y)) \leq \Re(u(x))$, por lo que $\Re(u(x)) = \Re(u(y))$. Análogamente se tiene lo mismo para la parte imaginaria, por lo que u(x) = u(y), como u, x son arbitrarios se tiene que $\forall x, y \in \mathbb{C}u(x) = u(y)$, en otras palabras, u es constante.

(b) Se define $\Omega \subset \mathbb{C}$ el conjunto delimitado por el cuadrilátero con vertices en $0, w_1, w_2$ y en $w_1 + w_2$, luego es claro que Ω es un compacto. Se nota que si f es analítica, entonces específicamente es continua, por lo que por teorema de valor extremo f es acotada en Ω , luego como f es doble periódica, se nota que si es acotada en Ω es acotada en todo \mathbb{C} . Luego, como f analítica, $f \in \mathcal{C}^{\infty}$, por lo que específicamente $f \in \mathcal{C}^2$, por lo que sus componentes también, teniéndose así que $\partial_{xy}u = \partial_{yx}u$ y similarmente con v, por lo que con las condiciones de Cauchy-Riemann se tiene lo siguiente:

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$
$$= \frac{\partial^2 v}{\partial x \partial y} - \frac{\partial^2 v}{\partial y \partial x}$$
$$= 0$$

Por lo que por 6.a) se tiene que f es constante.

Problema 7:

Sea $h:[a,b] \to \mathbb{R}$ continua. Se define la función

$$H(z) = \int_{a}^{b} h(t) \exp(-itz) dt.$$

Demuestre que H es analítica.

Solución problema 7: Sea $g(t) = \frac{\exp(-itz) - \exp(-itz_0)}{z - z_0} - (-it \exp(-itz_0))$, con $z, z_0 \in \mathbb{C}$ distintos entre sí, se nota que para $z \to z_0$ se tiene que $g \to 0$ uniformemente con $t \in [a, b]$,

más aún como g es continua en [a, b] esta alcanza su máximo y su mínimo por teorema de valor extremo. Usando lo anterior se ven las siguientes expresiones:

$$\left| \frac{H(z) - H(z_0)}{z - z_0} - \int_a^b h(t)(-itz_0 \exp(-itz_0) dt) \right| = \left| \int_a^b h(t) \cdot g(t) dt \right|$$

$$\leq \int_a^b |h(t)| |g(t)| dt$$

$$\leq \int_a^b |h(t)| |g(\gamma)| dt$$

$$\leq c_h \cdot |g(\gamma)|$$

Donde γ es el valor que maximiza |g| y c_h es una constante que depende de la función h, como $g \to 0$ con $z \to z_0$, se tiene que H es analítica y se tiene su derivada.