4) Analysis of Variance (ANOVA): Completely Randomized Designs

Vitor Kamada

January 2018

1 / 12

Adaptation vs Mutation

Fact: Strains of bacteria die if exposed to certain virus, but some survives and reproduce fast

- In 1940s, both theories predict same average numbers of resistant bacteria
- But, Mutation Theory predicts a much higher variance
- 1969 Nobel Prize in Physiology/Medicine for Luria and Delbruck

Log(Lifetime) of Resin in Integrated Circuits

Temperature (°C)									
175		19	94	213		231		250	
2.04	1.85	1.66	1.66	1.53	1.35	1.15	1.21	1.26	1.02
1.91	1.96	1.71	1.61	1.54	1.27	1.22	1.28	.83	1.09
2.00	1.88	1.42	1.55	1.38	1.26	1.17	1.17	1.08	1.06
1.92	1.90	1.76	1.66	1.31	1.38	1.16			

summary(resin) attach(resin)

Statistic	N	Mean	St. Dev.	Min	Max
temp	37	210.081	26.144	175	250
у	37	1.465	0.326	0.830	2.040

Nelson (1990)

boxplot(y~temp)

Mechanics of ANOVA

$$y_{ij} - \mu = \alpha_i + \epsilon_{ij}$$
 $y_{ij} - \bar{y}_{\bullet \bullet} = (\bar{y}_{i \bullet} - \bar{y}_{\bullet \bullet}) + (y_{ij} - \bar{y}_{i \bullet})$
 $y_{ij} - \bar{y}_{\bullet \bullet} = \hat{\alpha}_i + r_{ij}$

$$(y_{ij}-\bar{y}_{\bullet\bullet})^2=\hat{\alpha}_i^2+r_{ij}^2+2\hat{\alpha}_ir_{ij}$$

$$SS_T = SS_{Trt} + SS_E + 2\sum_{i=1}^g \sum_{j=1}^{n_i} \hat{\alpha}_i r_{ij}$$

Generic ANOVA Table

Source	DF	SS	MS	F
Treatments	g-1	SS_{Trt}	$\frac{SS_{Trt}}{g-1}$	$\frac{MS_{Trt}}{MS_E}$
Error	N-g	SS_E	SS _E N−g	

$$MS_{Trt} = \frac{1}{g-1} \sum_{i=1}^{g} \sum_{j=1}^{n_i} (\bar{y}_{i\bullet} - \bar{y}_{\bullet\bullet})^2 = \sum_{i=1}^{g} n_i \hat{\alpha}_i^2$$

$$MS_E = \frac{1}{N-g} \sum_{i=1}^{g} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i\bullet})^2 = \hat{\sigma}^2$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

6 / 12

Vitor Kamada ECO 7100 Econometrics I January 2018

ANOVA Table

```
Dummy <- with(resin,as.factor(temp))
Result <- Im(y\simDummy)
anova(Result)
 Analysis of Variance Table
 Response: y
           Df Sum Sq Mean Sq F value Pr(>F)
          4 3.5376 0.88441 96.363 < 2.2e-16 ***
 Dummy
 Residuals 32 0.2937 0.00918
```

Side-by-Side Plots

yhat <- predict(Result); alpha <- yhat - 1.465
Residuals <- resid(Result); boxplot(alpha, Residuals)</pre>

summary(Result)

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                                                    ***
(Intercept) 1.93250
                         0.03387 \quad 57.055 \quad < 2e-16
                                                    ***
Dummy194
            -0.30375
                         0.04790 -6.341 4.06e-07
                                                    ***
Dummy213 -0.55500
                         0.04790 -11.586 5.49e-13
Dummy231
                                                    $ $2.50
         -0.73821
                         0.04958 -14.889 6.13e-16
                                                    ***
Dummy250
            -0.87583
                         0.05174 - 16.928 < 2e - 16
```

Dose-Response Modeling

$$\mu + \alpha_i = f(z_i; \theta)$$

$$\mu + \alpha_i = \theta_0 + \theta_1 z_i + \theta_2 z_i^2 + \dots + \theta_{g-1} z_i^{g-1}$$

$$p1 <- lm(y\sim temp)$$

$$p2 <- lm(y\sim temp+l(temp^2))$$

$$p3 <- lm(y\sim temp+l(temp^2)+l(temp^3))$$

$$p4 <- lm(y\sim temp+l(temp^2)+l(temp^3)+l(temp^4))$$

$$stargazer(p1,p2,p3,p4, omit.stat=c("ser","f"),$$

Regression Results

	Dependent variable: Lifetime (in hours)					
	(1)	(2)	(3)	(4)		
temp	-0.012***	-0.045^{***}	-0.037	0.076		
	(0.001)	(0.011)	(0.187)	(3.750)		
I(temp^2)	•	0.0001***	0.00004	-0.001		
, ,		(0.00003)	(0.001)	(0.027)		
I(temp^3)			0.00000	0.00000		
, ,			(0.00000)	(0.0001)		
I(temp^4)			,	-0.000		
. ,				(0.00000)		
Constant	3.956***	7.418***	6.827	0.970		
	(0.139)	(1.156)	(12.987)	(195.724)		
Observations	37	37	37	37		
R^2	0.903	0.923	0.923	0.923		
Adjusted R ²	0.900	0.919	0.916	0.914		

Note:

*p<0.1; **p<0.05; ***p<0.01

anova(p1,p2,p3,p4)

Analysis of Variance Table

```
Model 1: y ~ temp

Model 2: y ~ temp + I(temp^2)

Model 3: y ~ temp + I(temp^2) + I(temp^3)

Model 4: y ~ temp + I(temp^2) + I(temp^3) + I(temp^4)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 35 0.37206

2 34 0.29372 1 0.078343 8.5361 0.006338 **

3 33 0.29370 1 0.000019 0.0020 0.964399

4 32 0.29369 1 0.000008 0.0009 0.976258

---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ''
```