Se også oppgaver på ekte.data.uib.no

## **0.0.1** (1PV22D1)

#programmering #prosentregning

```
startverdi = 2000
verdi = startverdi
vekstfaktor = 1.05
år = 0

while verdi < startverdi*2:
verdi = verdi*vekstfaktor
år = år + 1

print(verdi)
print(år)</pre>
```

En elev har skrevet programkoden ovenfor. Hva ønsker eleven å finne ut? Forklar hva som skjer når programmet kjøres.

## **0.0.2** (1PV22D1)

#prosentregning #statistikk #tallforståelse



Diagrammet viser antall elever ved en videregående skole de fire siste årene.

Når var det størst prosentvis økning i antall elever fra et år til det neste?

## 0.0.3

# omgjøring av enheter # standardform # proporsjonale størrelser

Det har det blitt populært å regne ut hva det koster å ta seg en dusj. Til et slikt reknestykke kan man gjøre følgende antakelser:

- Energien som kreves er energien som må til for å varme opp vannet som gikk med til dusjingen fra 7° til 35°.
- For å øke temperaturen til 1 liter vann med 1°, kreves det  $4.2 \cdot 10^3 \, \mathrm{J}.$

Ifølge vg.no var 395,41 øre/kWh den høyeste (gjennomsnittlige) strømprisen registrert i Oslo.

- a) Regn ut hva en dusj på 10 minutter ville kostet med denne prisen.
- b) Bruk internett til å finne strømprisene for din region i dag. Sjekk hva en 10 minutters dusj vil koste deg.

## 0.0.4

#algebra #modellering #andregradsfunksjon #omgjøring av enheter #proporsjonalitet

La F være summen av kreftene som virker i motsatt retning av en bils kjøreretning. Ifølge en rapport fra SINTEF kan F tilnærmes som

$$F(v) = mgC_r + \frac{1}{2}\rho v^2 D_m \qquad , \qquad v \ge 10$$

|                | betydning                                              | verdi    | enhet           |
|----------------|--------------------------------------------------------|----------|-----------------|
| $\overline{v}$ | bilens hastighet                                       | variabel | m/s             |
| m              | bilens $\mathrm{masse}^3$                              | 1409     | $ m kg \ m/s^2$ |
| g              | tyngdeakselerasjonen                                   | 9.81     | $m/s^2$         |
| $C_r$          | koeffisient for bilens rullemotstand                   | 0.015    |                 |
| ho             | tettheten til luft                                     | 1.25     | ${ m kg/m^3}$   |
| $D_m$          | koeffisient for bilens luftmotstandsareal <sup>4</sup> | 0.74     |                 |

- a) Tegn grafen til F for  $v \in [10, 35]$
- b) På intervallet gitt i oppgave a, for hvilken hastighet er det at
  - rullemotstanden gir det største bidraget til F?
  - luftmotstanden gir det største bidraget til F?

Oppgi svarene rundet av til nærmeste heltall og målt i km/h.

<sup>&</sup>lt;sup>1</sup>https://sintef.brage.unit.no/sintef-xmlui/handle/11250/2468761

<sup>&</sup>lt;sup>2</sup>Det er er her forutsatt flatt strekke, og sett vekk ifra motstand ved akselerasjon.

 $<sup>^3\</sup>mathrm{Det}$ er tatt ugangspunkt i gjennomsnittsvekten til en norsk personbil.

 $<sup>^4</sup>$ Verdien er hentet fra en.wikipedia.org/wiki/Automobile\_drag\_coefficient#Drag\_area

- c) Med "energiforbruk" mener vi her den energien som må til for å motvirke F over en viss kjørelengde. Ved konstant hastighet er energiforbruket etter kjørt lengde proporsjonal med F. På norske motorveier er  $90\,\mathrm{km/h}$  og  $110\,\mathrm{km/h}$  vanlige fartsgrenser. Hvor stor økning i energiforbruk vil en økning fra  $90\,\mathrm{km/h}$  til  $110\,\mathrm{km/h}$  innebære?
- d) Lag en funksjon  $F_1$  som gir F ut ifra bilens hastighet målt i km/h.

<sup>&</sup>lt;sup>1</sup>Den totale energimengden en bil bruker på en kjørelengde vil være høyere enn det vi har kalt "energiforbruket". Som regel vil den totale energimengden som kreves for å kjøre en strekning være høyere jo høyere hastighet man har. Slik kan man anta at differansen i energiforbruk vi finner i denne oppgaven er et minimum for den reelle differansen i total energimengde.