Do ćwiczenia wykorzystałem perceptron (jedną warstwę)

Budowa Perceptronu

Do nauki perceptronu wykorzystałem regułę perceptronu poznaną na wykładzie:

$$w_{i+1} = w_i + \Delta w$$

$$\Delta w = \eta * (y - y') * x_i$$

Gdzie:

 w_{i+1} to kolejna waga

y – oczekiwany wynik

y' - uzyskany wynik

η – współczynnik uczenia

Algorytm był wykonywany aż do momentu gdy suma |(y-y')| dla wszystkich zestawów danych była równa zero, lub gdy ilość wykonanych treningów przekroczyła z góry ustaloną wartość.

Pomiary:

W ćwiczeniu wykonałem próby nauczenia perceptronu następujących bramek (X oznacza brak danej wejściowej):

- AND
- AND(00X1)
- AND(0XX1)
- OR
- OR(0X11)
- OR(X111)
- XOR

AND

η	Ilość iteracji
0.000001	374159
0.00001	45480
0.0001	2885
0.001	290
0.01	30
0.1	4
1	2
10	6
100	6
1000	6

AND00X1

η	Ilość iteracji
0.000001	632029
0.00001	44010
0.0001	4402
0.001	441
0.01	46
0.1	5
1	2
10	4
100	4
1000	4

AND0XX1

η	Ilość iteracji
0.000001	237698
0.00001	27396
0.0001	2741
0.001	275

0.01	29
0.1	9
1	2
10	3
100	3
1000	3

OR

η	Ilość iteracji
0.000001	758762
0.00001	72582
0.0001	8794
0.001	881
0.01	89
0.1	2
1	4
10	4
100	4
1000	4

OR0X11

η	Ilość iteracji
0.000001	246874
0.00001	76795
0.0001	4367
0.001	438
0.01	45
0.1	6
1	3
10	3
100	3
1000	3

OR0X111

η	Ilość iteracji
---	----------------

0.000001	1
0.00001	1
0.0001	1
0.001	1
0.01	1
0.1	1
1	1
10	1
100	1
1000	1

XOR

η	Ilość iteracji
0.000001	1000000 (fail)
0.00001	1000000 (fail)
0.0001	1000000 (fail)
0.001	1000000 (fail)
0.01	1000000 (fail)
0.1	1000000 (fail)
1	1000000 (fail)
10	1000000 (fail)
100	1000000 (fail)
1000	1000000 (fail)

Wnioski:

- Możliwe jest nauczenie perceptronu prostych bramek logicznych
- Bramka logiczna AND średnio uczyła się szybciej od bramki OR
- Próby w których usunięto część danych wejściowych były przeprowadzane szybciej, jednak nie można założyć, że na pewno wykonały się poprawnie
- Można zauważyć, że zbyt mały krok powoduje znaczne wydłużenie czasu nauki
- Nie jest możliwe zbudowanie bramki XOR za pomocą jednego perceptronu (XOR nie jest rozłączny liniowo)