

4. Modulators and Demodulators

- 4.1 Baseband Modulators
- 4.2 Bandpass Modulators
- 4.3 Modulator Signal
- 4.4 Demodulator

4. Modulators and Demodulators

• Baseband modulators are devices that turn your bit stream into a waveform centered around 0 Hz

• NRZ modulator (NRZ-L)

• NRZ modulator (NRZ-L)

• RZ Modulators (Unipolar RZ)

• RZ Modulators (Bipolar RZ)

• RZ Modulators (RZ-AMI)

• RZ Modulators (RZ-AMI)

Manchester Coding

Manchester Coding

• Bandwidth considerations

(a)

this range

• Bandwidth considerations

• Bandwidth considerations

- A bandpass modulator takes incoming bits and outputs a waveform centered around frequency ω_c
- This is the modulator you want to use when your communication channel will provide safe passage to frequencies around ω_c

$$s(t) = A\cos(\omega t + \theta)$$

- Amplitude Shift-Keying modulators (ASK)
- This refers to the modulators that, given the input bits, create the waveform $s(t)=A\cos(\omega t+\theta)$

where the input bits are stuffed in the amplitude (A).

• We'll start with the simplest of the ASK modulators, called *Binary ASK* or *B-ASK* for short.

• 4-ASK

Input bits	Output waveform	Output waveform (shorthand form)
00	$s_0(t) = -3A \cos \omega_c t$, $iT \le t < (i+1)T$	–3A cos $\omega_{\rm c}$ t · π (t–iT)
O1	$s_1(t) = -A \cos \omega_c t$, $iT \le t < (i+1)T$	–A cos $\omega_{_{\!\scriptscriptstyle C}}$ t · π (t–iT)
10	$s_2(t) = A \cos \omega_c t$, $iT \le t < (i+1)T$	A cos $\omega_{_{\!\scriptscriptstyle C}}$ t · π (t-iT)
11	s₃(t) = 3A cos ωct, iT≤t<(i+1)T	3A cos $\omega_{\rm c}$ t · π (t-iT)

• 8-ASK

Input bits	Output waveform	Output waveform (shorthand form)	
000	$s_0(t) = -7A \cos \omega_c t$, $iT \le t < (i+1)T$	–7A cos ω_{c} t · π (t–iT)	
001	$s_1(t) = -5A \cos \omega_c t$, $iT \le t < (i+1)T$	–5A cos ω_{c} t · π (t–iT)	
010	$s_2(t) = -3A \cos \omega_c t$, iT $\leq t < (i+1)T$	–3A cos ω_{c} t · π (t–iT)	
O11	$s_3(t) = -A \cos \omega_c t$, $iT \le t < (i+1)T$	–A cos $\omega_{_{\scriptscriptstyle C}}$ t · π (t–iT)	
100	s₄(t) = A cos ωct, iT≤t<(i+1)T	A cos $\omega_{_{\scriptscriptstyle C}}$ t · π (t–iT)	
101	$s_5(t) = 3A \cos \omega_c t$, $iT \le t < (i+1)T$	3A cos $\omega_{_{\scriptscriptstyle C}}$ t · π (t-iT)	
110	$s_6(t) = 5A \cos \omega_c t$, $iT \le t < (i+1)T$	5A cos $\omega_{_{\! c}}$ t · π (t–iT)	
111	s ₇ (t) = 7A cos ω _c t, iT≤t<(i+1)T	7A cos ω_{c} t · π (t–iT)	

- Frequency Shift-Keying modulators (FSK)
- As the name suggests, here we stuff the information bits into the frequency.
- We'll look at the simplest first, which is *BFSK* (*binary FSK*).

• Frequency Shift-Keying modulators (FSK)

	Input bits	Output waveform	Output waveform (shorthand)
BFSK	0	$s_0(t) = A cos((\omega_c + \Delta \omega_0)t), iT \le t < (i+1)T$	A cos $((\boldsymbol{\omega}_{c}^{+\Delta}\boldsymbol{\omega}_{0}^{-})t)\cdot\boldsymbol{\pi}$ (t-iT)
	1	$s_1(t) = A cos((\omega_c + \Delta \omega_1)t), iT \le t < (i+1)T$	A cos $((\boldsymbol{\omega}_{_{\text{\tiny C}}} + {^{\!\Delta}\boldsymbol{\omega}_{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $
4-FSK	00	$s_0(t) = A cos((\omega_c + \Delta \omega_0)t), iT \le t < (i+1)T$	A cos $((\boldsymbol{\omega}_{_{\mathrm{C}}}^{} + {}^{\Delta}\boldsymbol{\omega}_{_{\mathrm{O}}}^{}) t) \cdot \boldsymbol{\pi} \; (t - i T)$
	O1	$s_1(t) = A cos((\omega_c + \Delta \omega_1)t), iT \le t < (i+1)T$	A cos $((\boldsymbol{\omega}_{_{\text{\tiny C}}} + {^{\!\Delta}} \boldsymbol{\omega}_{_{\! \! 1}}) $ t $) \cdot \boldsymbol{\pi} \ (\text{t-iT})$
	10	$s_2(t) = A cos((\omega_c + \Delta \omega_2)t), iT \le t < (i+1)T$	A cos $((\boldsymbol{\omega}_{_{\mathrm{C}}} + {^{\Delta}}\boldsymbol{\omega}_{_{2}}) t) \cdot \boldsymbol{\pi} \; (t - iT)$
	11	$s_3(t) = A cos((\omega_c + \Delta \omega_3)t), iT \le t < (i+1)T$	A cos $((\boldsymbol{\omega}_{_{\mathrm{C}}} + {}^{\Delta}\boldsymbol{\omega}_{_{3}})t) \cdot \boldsymbol{\pi} \; (t - iT)$

- Phase Shift-Keying modulators (PSK)
- With these, input bits are mapped into output waveforms of the form $s(t)=A\cos(\omega t+\theta)$

and the information bits are stuffed in the phase θ .

• Phase Shift-Keying modulators (PSK)

Input bits	Output waveform	Output waveform (shorthand form)
0	$s_0(t) = A \cos(\omega_c t + 0^\circ), iT \le t < (i+1)T$	A cos $(\omega_{c}t+0^{\circ})\cdot\pi$ $(t-iT)$
1	s₁(t) = A cos (ωct+180°), iT≤t<(i+1)T	A cos (ω_{c} t+180°) · π (t-iT)
00	$s_0(t) = A \cos(\omega_c t + 0^\circ), iT \le t < (i+1)T$	A cos $(\omega_{_{\text{c}}}\text{t+0°})\cdot\pi$ (t-iT)
O1	$s_1(t) = A \cos(\omega_c t + 90^\circ), iT \le t < (i+1)T$	A cos (ω_{c} t+90°) · π (t-iT)
10	s₂(t) = A cos (ωct+180°), iT≤t<(i+1)T	A cos (ω_{c} t+180°) · π (t-iT)
11	$s_3(t) = A \cos(\omega_c t + 270^\circ), iT \le t < (i+1)T$	A cos (ω_{c} t+270°) · π (t-iT)
	O 1 00 00 01 10	0 $s_0(t) = A \cos(\omega_c t + 0^\circ), iT \le t < (i+1)T$ 1 $s_1(t) = A \cos(\omega_c t + 180^\circ), iT \le t < (i+1)T$ 00 $s_0(t) = A \cos(\omega_c t + 0^\circ), iT \le t < (i+1)T$ 01 $s_1(t) = A \cos(\omega_c t + 90^\circ), iT \le t < (i+1)T$ 10 $s_2(t) = A \cos(\omega_c t + 180^\circ), iT \le t < (i+1)T$

• Phase Shift-Keying modulators (PSK)

	Input bits	Output waveform	Output waveform (shorthand form)
8-PSK	000	$s_0(t) = A \cos(\omega_c t + 0^\circ), iT \le t < (i+1)T$	
	001	$s_1(t) = A \cos(\omega_c t + 45^\circ)$, iT $\leq t < (i+1)T$	
	010	s₂(t) = A cos (ωct+90°), iT≤t<(i+1)T	
	O11	$s_3(t) = A \cos(\omega_c t + 135^\circ), iT \le t < (i+1)T$	
	100	$s_4(t) = A \cos(\omega_c t + 180^\circ), iT \le t < (i+1)T$	
	101	$s_5(t) = A \cos (\omega_c t + 225^\circ), iT \le t < (i+1)T$	
	110	$s_6(t) = A \cos(\omega_c t + 270^\circ), iT \le t < (i+1)T$	
	111	$s_7(t) = A \cos(\omega_c t + 315^\circ), iT \le t < (i+1)T$	
		ENT E010000 D' '1 1 0 ' 1'	4.00

Representing points and signals

Representing points and signals

Representing points and signals

orthonormal basis

$$s_{1}(t) = s_{11}\varphi_{1}(t) + s_{12}\varphi_{2}(t) + \dots + s_{1N}\varphi_{N}(t)$$

$$\dots$$

$$s_{M}(t) = s_{M1}\varphi_{1}(t) + s_{M2}\varphi_{2}(t) + \dots + s_{MN}\varphi_{N}(t)$$

$$s_{ij} = \int_{-\infty}^{\infty} s_{i}(t)\varphi_{j}(t)dt = 0, i \neq j$$

$$s_{ij} = \int_{-\infty}^{\infty} \varphi_{i}(t)\varphi_{j}(t)dt = 1$$

$$s_{ij} = \int_{-\infty}^{\infty} s_{i}(t)\varphi_{j}(t)dt$$

orthonormal basis

$$\int_{-\infty}^{\infty} \varphi_i(t) \varphi_j(t) dt = 0, i \neq j$$

$$\int_{-\infty}^{\infty} \varphi_j(t) \varphi_j(t) dt = 1$$

orthonormal basis

$$s_{1}(t) = s_{11}\varphi_{1}(t) + s_{12}\varphi_{2}(t) + \dots + s_{1N}\varphi_{N}(t)$$

$$\dots$$

$$s_{ij} = \int_{-\infty}^{\infty} s_{i}(t)\varphi_{j}(t)dt$$

$$s_{M}(t) = s_{M1}\varphi_{1}(t) + s_{M2}\varphi_{2}(t) + \dots + s_{MN}\varphi_{N}(t)$$

orthonormal basis

$$s_{1}(t) = 2\phi_{1}(t) + 0\phi_{2}(t)$$

$$s_{11} = \int_{-\infty}^{\infty} s_{1}(t)\phi_{1}(t)dt = 2$$

$$s_{12} = \int_{-\infty}^{\infty} s_{1}(t)\phi_{2}(t)dt = 0$$

orthonormal basis

$$s_{21} = \int_{-\infty}^{\infty} s_{2}(t)\phi_{1}(t)dt = 1$$

$$s_{22} = \int_{-\infty}^{\infty} s_{2}(t)\phi_{1}(t)dt = 1$$

$$s_{22} = \int_{-\infty}^{\infty} s_{2}(t)\phi_{2}(t)dt = 1$$

• Gram-Schmidt orthogonalization procedure

(1) To get
$$\phi_1(t)$$
, just compute
$$\phi_1(t) = \frac{s_1(t)}{\sqrt{E_1}}$$

where $E_1 = \int_{-\infty}^{\infty} s_1(t) s_1(t) dt$.

(2) To get $\phi_2(t)$, compute

$$\phi_2(t) = \frac{\theta_2(t)}{\sqrt{E_{\theta 2}}}$$

where $\theta_2(t) = s_2(t) - s_{21}\phi_1(t)$ and $E_{\theta_2} = \int_{-\infty}^{\infty} \theta_2(t)\theta_2(t)dt$.

• Gram-Schmidt orthogonalization procedure

(3) To get
$$\phi_3(t)$$
, just compute
$$\phi_3(t) = \frac{\theta_3(t)}{\sqrt{E_{\theta 3}}}$$
where $\theta_3(t) = s_3(t) - s_{31}\phi_1(t) - s_{32}\phi_2(t)$
and $E_{\theta 3} = \int_{-\infty}^{\infty} \theta_3(t)\theta_3(t)dt$.

(4) Keep going, up to $\phi_M(t)$, and if you get $\phi_k(t) = 0$ along the way, just throw that one out, because you don't need it.

• Representing Modulated Signals : 4 - PSK

	Input bits	Output waveforms			
4-PSK	00	$S_{O}(t) = A \cos (\omega_{c}t + O^{\circ})\pi(t - iT)$	=	A $\cos(\omega_{_{\scriptscriptstyle C}}t)\cdot\pi(t\text{-iT})$	+ O
	O1	$S_1(t) = A \cos(\omega_c t + 90^\circ) \cdot \pi(t - iT)$	=	Ο	– A $sin(\omega_{_{\scriptscriptstyle C}}t)\cdot\pi(t\text{-iT})$
	10	$S_2(t) = A \cos(\omega_c t + 180^\circ) \cdot \pi(t - iT)$	=	-A $cos(\omega_{_{\! C}}t)\cdot \pi(t\text{-iT})$	+ O
	11	$S_3(t) = A \cos(\omega_c t + 270^\circ) \cdot \pi(t-iT)$	=	Ο	+ A $sin(\omega_c t) \cdot \pi(t-iT)$

• Representing Modulated Signals : 4 - PSK

• Representing Modulated Signals : 8 - PSK

	Input bits	Output waveforms			
8-PSK	000	$S_0(t) = A \cos(\omega_c t + 0^\circ) \cdot \pi(t - iT)$	=	A $cos(\omega_{_{\scriptscriptstyle C}}t)\cdot\pi(t\text{-iT})$	+ 0
	001	$S_1(t) = A \cos(\omega_c t + 45^\circ) \cdot \pi(t - iT)$	=	$\frac{A}{\sqrt{2}}\cos(\boldsymbol{\omega}_{c}t)\cdot\boldsymbol{\pi}(t-iT)$	$-\frac{A}{\sqrt{2}}\text{sin}(\boldsymbol{\omega}_{_{\! c}}t)\cdot\boldsymbol{\pi}(t\text{-iT})$
	010	$S_2(t) = A \cos(\omega_c t + 90^\circ) \cdot \pi(t - iT)$	=	Ο	- A $sin(\omega_{_{\! C}}t) \cdot \pi(t-iT)$
	O11	$S_3(t) = A \cos(\omega_c t + 135^\circ) \cdot \pi(t - iT)$	=	$\frac{-A}{\sqrt{2}}\cos(\omega_{_{\text{C}}}t)\cdot\pi(t-iT)$	$-\frac{A}{\sqrt{2}}\text{sin}(\omega_{c}t)\cdot\pi(t-iT)$

• Representing Modulated Signals: 8 - PSK

100
$$S_4(t) = A \cos(\omega_c t + 180^\circ) \cdot \pi(t - iT) = -A \cos(\omega_c t) \cdot \pi(t - iT) + 0$$

101 $S_5(t) = A \cos(\omega_c t + 225^\circ) \cdot \pi(t - iT) = \frac{-A}{\sqrt{2}} \cos(\omega_c t) \cdot \pi(t - iT) + \frac{A}{\sqrt{2}} \sin(\omega_c t) \cdot \pi(t - iT)$
110 $S_6(t) = A \cos(\omega_c t + 270^\circ) \cdot \pi(t - iT) = 0 + A \sin(\omega_c t) \cdot \pi(t - iT)$
111 $S_7(t) = A \cos(\omega_c t + 315^\circ) \cdot \pi(t - iT) = \frac{A}{\sqrt{2}} \cos(\omega_c t) \cdot \pi(t - iT) + \frac{A}{\sqrt{2}} \sin(\omega_c t) \cdot \pi(t - iT)$

• Representing Modulated Signals : ASK

	Output waveform	Output waveform represented on orthonormal basis
BASK	s _o (t)	$S_0 = S_{01} = -A\sqrt{\frac{1}{2}}$
	S ₁ (t)	$S_1 = S_{11} = A\sqrt{\frac{1}{2}}$
4-ASK	$S_0(t)$	$S_0 = S_{01} = -3A\sqrt{1/2}$
	S ₁ (t)	$S_1 = S_{11} = -A\sqrt{1/2}$
	S ₂ (t)	$S_2 = S_{21} = A \sqrt{\frac{1}{2}}$
	s ₃ (t)	$S_3 = S_{31} = 3A\sqrt{1/2}$

EN 5012223 : Digital Communication 4-38

• Representing Modulated Signals : ASK

8-ASK	s _o (t)	$S_0 = S_{01} = -7A\sqrt{\frac{1}{2}}$
	$S_1(t)$	$S_1 = S_{11} = -5A\sqrt{\frac{1}{2}}$
	s ₂ (t)	$S_2 = S_{21} = -3A\sqrt{\frac{1}{2}}$
	s ₃ (t)	$S_3 = S_{31} = -A \sqrt{\frac{1}{2}}$
	$S_4(t)$	$S_4 = S_{41} = A \sqrt{\frac{1}{2}}$
	s ₅ (t)	$S_5 = S_{51} = 3A\sqrt{\frac{1}{2}}$
	s ₆ (t)	$S_6 = S_{61} = 5A\sqrt{\frac{1}{2}}$
	S ₇ (t)	$S_7 = S_{71} = 7A\sqrt{1/2}$

- Representing Modulated Signals : QAM
- The information bits are stuffed into both the phase (θ) and the amplitude (A) of the cosine waveform. That is, a typical output waveform for QAM looks like this

$$s_j(t) = A_j \cos(\omega_c t + \theta_j) \cdot \pi(t - iT)$$

we can rewrite this as

$$s_i(t) = A_i \cos(\theta_i) \cos(\omega_c t) \cdot \pi(t - iT) - A_i \sin(\theta_i) \sin(\omega_c t) \cdot \pi(t - iT)$$

- Representing Modulated Signals : QAM
- Using the orthonormal basis as

$$s_j(t) = s_{j1}\phi_1(t) + s_{j2}\phi_2(t)$$

where

$$\phi_1(t) = +\sqrt{2/T}\cos(\omega_c t) \cdot \pi(t - iT)$$

$$\phi_2(t) = -\sqrt{2/T}\sin(\omega_c t) \cdot \pi(t - iT)$$

• Representing Modulated Signals : QAM

$$s_j(t) \leftrightarrow \underline{s}_j = (s_{j1}, s_{j2}) = (A_j \sqrt{T/2} \cos \theta_j, A_j \sqrt{T/2} \sin \theta_j)$$

Φ2	<u>2</u> (t)
	$(A_j\sqrt{(T/2)}\cos\theta_j, A_j\sqrt{(T/2)}\sin\theta_j)$
	represents s _j (t)
	φ ₁ (t)

EN 5012223 : Digital Communication 4-42

• Representing Modulated Signals: 16 - QAM

EN 5012223 : Digital Communication 4-43

• The demodulator is a device that gets the signal sent across the channel and turns it back into bits.

- The key to building a good demodulator is to minimize the effects of noise and give the highest probability of guessing the correct sent signal.
- This will make sure that the bits that leave the demodulator (receiver side) are as close as possible to the bits that come into the modulator (transmitter side).

•
$$r(t) = s_m(t) + \eta(t)$$

•
$$r(t) = r_1\phi_1(t) + r_2\phi_2(t) + \dots + r_N\phi_N(t)$$

$$r_{1} = \int r(t)\varphi_{1}(t)dt$$

$$r_{1} = \int (s_{m}(t) + \eta(t))\varphi_{1}(t)dt$$

$$r_{1} = \int s_{m}(t)\varphi_{1}(t)dt + \int \eta(t)\varphi_{1}(t)dt$$

$$r_{1} = s_{m1} + \eta_{1}$$

$$r_{2} = s_{m2} + \eta_{2} \qquad r_{3} = \int r(t)\varphi_{3}(t)dt$$

$$r_{3} = \int (s_{m}(t) + \eta(t))\varphi_{3}(t)dt$$

$$r_{3} = \int s_{m}(t)\varphi_{3}(t)dt + \int \eta(t)\varphi_{3}(t)dt$$

$$r_{3} = \int (s_{m1}\varphi_{1}(t) + s_{m2}\varphi_{2}(t))\varphi_{3}(t)dt + \int \eta(t)\varphi_{3}(t)dt$$

$$r_{3} = s_{m1}\int \varphi_{1}(t)\varphi_{3}(t)dt + s_{m2}\int \varphi_{2}(t)\varphi_{3}(t)dt + \int \eta(t)\varphi_{3}(t)dt$$

Correlator receiver front end

