A Hydraulic Powered Ankle-Foot Prosthesis with Adjustable Nonlinear Stiffness

Bowen Li, Yulong Xiong, and Qitao Huang School of Mechatronic Engineering, Harbin Institute of Technology, China 🔝: Huangqitao@hit.edu.cn

INTRODUCTION

- Hvdraulic systems have been used in prosthetics, primarily relying on damping to offer support, absorb shocks, and enhance biomechanical performance^[1,2]. However, elastic elements outperform damping elements in energy efficiency[3] and are better suited for the design of compact powered prosthetic feet.
- This study presents a novel hydraulic-powered ankle-foot prosthesis that uses the stiffness of hydraulic components to realize serial elastic actuation (SEA). This stiffness behavior replicates the ankle's quasi-stiffness and enables tunable stiffness, thereby improving walking efficiency.

METHODS Assistive Pressure accumulator Diaphragm Hydraulio accumulator Motor & pump Hydraulic schematic Joint load Output shaft Motor group Preload adjustable Nonlinear spring (Diaphragm linear spring mechanism Ankle joint hydraulic cylinde (Assistive accumulator) accumulator) Prosthesis structural design Equivalent mechanical schematic

Actuation & Mechanics

- Hydraulic cylinder with pin-slot mechanism
- Diaphragm accumulator provides nonlinear stiffness
 - Achieved a Series Elastic Actuator (SEA)
 - Stiffness tunable via preload adjustment

Control Strategy

- Stance phase
 - Segmented admittance controller
 - Switched via a finite state machine
 - Designed for bodyweight 75 kg, 1 m/s walking
- Swing phase: Position control

Experimental Setup

- Bypass orthosis simulating transtibial amputation

RESULTS

Kinematics & Kinetics

- Joint motion and torque patterns aligned with healthy ankle
- Adequate support, push-off and foot clearance

Output Performance

- Peak torque: 98 Nm (vs. human 103 Nm)
- Range of motion: [-9°, 9°] (vs. human [-15°, 10°])
- Peak angular velocity: 146°/s (vs. human 230°/s)
- Peak power: 112 W (vs. human 150 W)
- Net positive work: 6 J

Energy Efficiency

- Diaphragm accumulator reduced:
 - Motor peak power by 53%
 - Motor peak speed by 48%
- Achieved SEA, and enabled spring-like actuator behavior

• Advantage over Other Devices

Outperforms existing powered hydraulic prostheses in mass, peak power, and net positive work

CONCLUSION

- The proposed hydraulic ankle-foot prosthesis demonstrates biomechanical performance close to a healthy limb in joint torque, power, and quasi-stiffness.
- Its compact design, lightweight, and power output outperform comparable hydraulic powered prosthetic feet. Demonstrates strong potential for practical, energy-efficient lower-limb assistance.
- Future work will explore:
 - Performance across various gait modes
 - Implementation of real-time variable stiffness control
- [1] Tian Yu, Andrew R Plummer, Pejman Iravani, Jawaad Bhatti, Saeed Zahedi, and David Moser. The design, control, and testing of anintegrated electrohydrostatic powered ankle prosthesis. IEEE/ASME Trans-actions on Mechatronics, 24(3):1011-1022, 2019.
- [2] Xinyu Tian, Shaoping Wang, Xingjian Wang, Dengpeng Dong, and Yuwei Zhang. Design and control of a compliant electro-hydrostatic-powered ankle prosthesis. IEEE/ASME Transactions on Mechatronics, 27(5):2429–2439, 2021.
- [3] Mahdy Eslamy, Martin Grimmer, Stephan Rinderknecht, and An-dre Seyfarth. Does it pay to have a damper in a powered ankle prosthesis? a power-energy perspective. In 2013 IEEE 13th International Conferenceon Rehabilitation Robotics (ICORR), pages 1-8. IEEE, 2013.

