MOREAU-YOSIDA APPROXIMATION OF CONDITIONAL MINIMIZATION PROBLEMS AND ITS LIMIT PROPERTIES

P. I. Kogut UDC 519.21

For a family of conditional minimization problems $\{\langle \inf_{x \in X_{\alpha}} F^{\alpha}(x) \rangle, \alpha \in A \}$ we obtain a representation of its variational S-limits in terms of pointwise limits of Moreau-Yosida approximations. Bibliography: 4 titles

Let (X, τ) be a topological vector space with a countable local base, i.e., it has an invariant metric d_{τ} that agrees with the τ -topology. Consider in (X, τ) a net of conditional minimization problems,

$$\left\{ \left\langle \inf_{x \in X_{\alpha}} F^{\alpha}(x) \right\rangle, \alpha \in A \right\}, \tag{1}$$

and the corresponding net of functions

$$\left\{ F^{\alpha} \colon X_{\alpha} \to \overline{R} \right\}_{\alpha \in A}. \tag{2}$$

Here $\{X_{\alpha}\}_{{\alpha}\in A}$ is an arbitrary family of subsets of the space (X,τ) and A is a partially ordered set of indices with increasing order. In the sequel, any local optimization problem of the form $\langle \inf_{x\in E} F(x) \rangle$ is understood as an object defined by the pair $\langle F,E\rangle$, whereas we denote by $\inf_{x\in E} F(x)$ the least value of the function $F:X\to \overline{R}$ on the set E.

It was shown in [1] that the net of problems (1) can be put into correspondence with the so-called lower, \mathcal{P}_s , and upper, \mathcal{P}^s , S-limits that are also conditional optimization problems with the following structure:

$$(\mathcal{P}_s): \left\langle \inf_{x \in (\tau - Ls X_{\alpha})} \left(\tau - li_s F^{\alpha} \right)(x) \right\rangle, \qquad (\mathcal{P}^s): \left\langle \inf_{x \in (\tau - Li X_{\alpha})} \left(\tau - ls_s F^{\alpha} \right)(x) \right\rangle. \tag{3}$$

Here $\tau - Li X_{\alpha}$ and $\tau - Ls X_{\alpha}$ are, respectively, the lower and upper topological limit of the net of sets $\{X_{\alpha}\}_{\alpha \in A}$ and the function $\tau - li_s F^{\alpha} : (\tau - Ls X_{\alpha}) \to \overline{R}$ is the lower (and $\tau - ls_s F^{\alpha} : (\tau - Li X_{\alpha}) \to \overline{R}$ is the upper) S-limit of the functional net (2).

We say that the problem $\langle \inf_{x \in (\tau - Li X_{\alpha})} (\tau - lm_s F^{\alpha})(x) \rangle$ is the strong variational S-limit of a family of problems (1) if for every value $x \in (\tau - Li X_{\alpha})$ we have

$$\tau - li_s F^{\alpha}(x) = \tau - ls_s F^{\alpha}(x) \triangleq \tau - lm_s F^{\alpha}(x). \tag{4}$$

Correspondingly, the problem $\langle \inf_{x \in (\tau - Lm X_{\alpha})} (\tau - lm_s F^{\alpha})(x) \rangle$ is called the absolute variational S-limit if condition (4) holds and there exists a topological limit $\tau - Lm X_{\alpha}$ of the net of sets $\{X_{\alpha}\}_{\alpha \in A}$, i.e.,

$$\tau - Li X_{\alpha} = \tau - Ls X_{\alpha} \triangleq \tau - Lm X_{\alpha}.$$

The aim of this article is to show that variational S-limits of such nets, as well as topological limits of the sets $\{X_{\alpha}\}_{{\alpha}\in A}$, can be represented in terms of pointwise limits of nets of τ -continuous approximations to functions of the form (2). Assuming that each function $F^{\alpha}: X_{\alpha} \to \overline{R}$ may be undefined outside the corresponding set X_{α} , let us introduce a natural generalization of the notion of the Moreau-Yosida approximation [2, 3].

Translated from Obchyslyuval'na ta Prykladna Matematyka, No. 81, 1997, pp. 62–69. Original article submitted March 6, 1997.

Definition 1. For every value of $\alpha \in A$ and constants $\lambda > 0$ and $\beta > 0$, the function $F_{\lambda,\beta}^{\alpha}: X \to \overline{R}$ is called the Moreau-Yosida approximation of the function $F^{\alpha}: X_{\alpha} \to \overline{R}$ with degree β and index λ if

$$F_{\lambda,\beta}^{\alpha}(x) = \inf_{y \in X\alpha} \left\{ F_{\alpha}(y) + \lambda^{-1} d_{\tau}^{\beta}(x,y) \right\} \quad \text{for all } x \in X.$$
 (5)

We give the main properties of the functions $F_{\lambda,\beta}^{\alpha}$ without proof; one can check these properties by using the schemes of proofs of Theorems 9.13 and 9.15 of [4].

Propositions 1. Let (X, d_{τ}) be a metric space. Then for any function $F^{\alpha}: X_{\alpha} \to \overline{R}$, its Moreau-Yosida approximation $F^{\alpha}_{\lambda,\beta}: X \to \overline{R}$, for $\lambda > 0$ and $\beta > 0$, is the greatest function from $Q: X \to \overline{R}$ satisfying the following conditions:

- (a) $Q(x) \leq F^{\alpha}(x)$ for all $x \in X_{\alpha}$;
- (b) Q is Hölder continuous with degree β and factor λ^{-1} , i.e., for all $x, y \in X$, we have

$$Q(x) \le Q(y) + \lambda^{-1} d_{\tau}^{\beta}(x, y).$$

Proposition 2. Let (X, d_{τ}) be a metric space and $F^{\alpha}: X_{\alpha} \to [0, \infty]$ be an arbitrary nonnegative function. Let x_0 be any point of X such that $F_{\lambda,\beta}^{\alpha}(x_0) \leq M$, where $M \geq 0$, $\lambda > 0$, and $\beta > 0$. Then there exists a constant $c = c(M, \lambda, \beta, r)$ such that

$$F_{\lambda,\beta}^{\alpha}(x) - F_{\lambda,\beta}^{\alpha}(y) \le c \cdot d_{\tau}(x,y)$$

for all $x, y \in X$ that satisfy the conditions $d_{\tau}(x, x_0) \leq r$, $d_{\tau}(y, x_0) \leq r$.

The following results reflect the possibility of a unique representation of lower semicontinuous functions $F^{\alpha}: X_{\alpha} \to \overline{R}$ in terms of their Moreau-Yosida approximations.

Lemma 1. Let (X,τ) be a metrizable topological space and $F^{\alpha}: X_{\alpha} \to [0,\infty]$ be an arbitrary function satisfying the condition $F^{\alpha} \not\equiv \infty$. Then, for all $\beta > 0$, we have

$$\sup_{\lambda>0} F_{\lambda,\beta}^{\alpha}(x) = \lim_{\lambda\downarrow 0} F_{\lambda,\beta}^{\alpha}(x) = \operatorname{sc}^{-} F^{\alpha}(x) \quad \text{for all } x \in \operatorname{cl}_{\tau} X_{\alpha}, \tag{6}$$

where $\operatorname{sc}^- F^{\alpha} : \operatorname{cl}_{\tau} X_{\alpha} \to [0, \infty]$ is a lower semicontinuous regularization of the function $F^{\alpha} : X_{\alpha} \to [0, \infty]$ and $\operatorname{cl}_{\tau} X_{\alpha}$ is the closure of its domain.

Proof. Using identity (5), we have for all $y \in X_{\alpha}$

$$F_{\lambda,\beta}^{\alpha}(x) \le F_{\alpha}(y) + \lambda^{-1} d_{\tau}^{\beta}(x,y).$$

By setting x = y, we get

$$F_{\lambda,\beta}^{\alpha}(x) \le F^{\alpha}(x) \quad \text{for all } x \in X_{\alpha}.$$
 (7)

Since this identity holds for all $\lambda > 0$, we get, by passing in (17) to a τ -lower semicontinuous regularization,

$$\operatorname{sc}^{-} \sup_{\lambda>0} F_{\lambda,\beta}^{\alpha}(x) \leq \operatorname{sc}^{-} F^{\alpha}(x) \quad \text{for all } x \in \operatorname{cl}_{\tau} X_{\alpha}.$$

The functions $F^{\alpha}_{\lambda,\beta}$ are τ -continuous, hence the function $\sup_{\lambda>0} F^{\alpha}_{\lambda,\beta}(x)$ is τ -lower semicontinuous. Consequently, we get from the above that $\sup_{\lambda>0} F^{\alpha}_{\lambda,\beta}(x) \leq \operatorname{sc}^- F^{\alpha}(x)$ for all $x \in \operatorname{cl}_{\tau} X_{\alpha}$. Let us prove the converse inequality, i.e., that

$$\sup_{\lambda>0} F_{\lambda,\beta}^{\alpha}(x) \ge \operatorname{sc}^{-} F^{\alpha}(x) \quad \text{for all } x \in \operatorname{cl}_{\tau} X_{\alpha}. \tag{8}$$

If $\sup_{\lambda>0} F_{\lambda,\beta}^{\alpha}(x) = +\infty$ at a chosen point $x \in \operatorname{cl}_{\tau} X_{\alpha}$, then relation (18) is obvious. Let $\sup_{\lambda>0} F_{\lambda,\beta}^{\alpha}(x) < \infty$ $+\infty$. Since the function F^{α} is bounded on X_{α} from below, for every $\lambda > 0$ one can find an element $x_{\lambda} \in X_{\alpha}$ such that $F_{\lambda,\beta}^{\alpha}(x) \leq F^{\alpha}(x_{\lambda}) + \lambda^{-1}d_{\tau}^{\beta}(x,x_{\lambda}) \leq F_{\lambda,\beta}^{\alpha}(x) + \lambda$. Hence,

$$F^{\alpha}(x_{\lambda}) + \lambda^{-1} d_{\tau}^{\beta}(x, x_{\lambda}) \le \sup_{\lambda > 0} F_{\lambda, \beta}^{\alpha}(x) + \lambda, \tag{9}$$

and thus $d_{\tau}^{\beta}\left(x,x_{\lambda}\right)\leq\lambda\sup_{\lambda>0}F_{\lambda,\beta}^{\alpha}(x)+\lambda^{2},$ i.e., $d_{\tau}\left(x,x_{\lambda}\right)\rightarrow0$ as $\lambda\rightarrow0.$

Since in a metrizable space (X, τ) , the τ -closure of the set X_{α} coincides with its d_{τ} -closure, it follows from the above that $x_{\lambda} \to x$, where $x \in \operatorname{cl}_{\tau} X_{\alpha}$. Since $\sup_{\lambda>0} F_{\lambda,\beta}^{\alpha}(x) + \lambda \geq F^{\alpha}(x_{\lambda})$, the relation (8) is obtained by passing to limit as $\lambda \downarrow 0$. This proves that the identity $\sup_{\lambda>0} F_{\lambda,\beta}^{\alpha}(x) = \mathrm{sc}^{-} F^{\alpha}(x)$ holds on the set $\operatorname{cl}_{\tau} X_{\alpha}$. Note that the mapping $\lambda \to F_{\lambda,\beta}^{\alpha}(x)$ is monotone increasing for every fixed value of x. Hence, $\sup_{\lambda>0} F_{\lambda,\beta}^{\alpha}(x) = \lim_{\lambda\downarrow 0} F_{\lambda,\beta}^{\alpha}(x)$. \square

Corollary 1. Let X_{α} be a subset of a metrizable topological space (X,τ) and $F^{\alpha}: X_{\alpha} \to [0,\infty]$ be an arbitrary bounded function. Then for any $\beta > 0$, we have $\operatorname{Dom}(\sup_{\lambda > 0} F_{\lambda,\beta}^{\alpha}) = \operatorname{cl}_{\tau} X_{\alpha}$, where $\operatorname{Dom}(f) = \operatorname{cl}_{\tau} X_{\alpha}$ $\{x \in X : f(x) < +\infty\}.$

Proof. By Lemma 1, $\sup_{\lambda>0} F_{\lambda,\beta}^{\alpha}(x) = \operatorname{sc}^{-} F^{\alpha}(x)$ for all $x \in \operatorname{cl}_{\tau} X \alpha$. Since the function $F^{\alpha}: X_{\alpha} \to [0,\infty]$ is bounded, its τ -lower semicontinuous regularization sc⁻ $F^{\alpha}(x)$ is also continuous. Consequently,

$$\sup_{\lambda>0} F_{\lambda,\beta}^{\alpha}(x) < +\infty$$

for all $x \in \operatorname{cl}_{\tau} X_{\alpha}$, and hence, $\operatorname{cl}_{\tau} X_{\alpha} \subseteq \operatorname{Dom}(\sup_{\lambda>0} F_{\lambda,\beta}^{\alpha})$. Consider an arbitrary element x such that $x \notin \operatorname{cl}_{\tau} X_{\alpha}$. The function F^{α} is nonnegative, hence for every value of $\lambda > 0$ there exists an element $x_{\lambda} \in X_{\alpha}$ such that $F_{\lambda,\beta}^{\alpha}(x) \leq F^{\alpha}(x_{\lambda}) + \lambda^{-1} d_{\tau}^{\beta}(x,x_{\lambda}) \leq F_{\lambda,\beta}^{\alpha}(x) + \lambda$. Consequently, $F_{\lambda,\beta}^{\alpha}(x) \geq \lambda^{-1} d_{\tau}^{\beta}(x,x_{\lambda}) - \lambda$. Since $\liminf_{\lambda\downarrow 0} d_{\tau}^{\beta}(x,x_{\lambda}) > 0$, we find that $\sup_{\lambda>0} F_{\lambda,\beta}^{\alpha}(x) = +\infty$. Hence, for the chosen element x, we have the inclusion $x \notin \text{Dom}(\sup_{\lambda>0} F_{\lambda,\beta}^{\alpha})$. Thus the equality $\text{cl}_{\tau} X_{\alpha} = \text{Dom}(\sup_{\lambda>0} F_{\lambda,\beta}^{\alpha})$ is proved. \square

The following result shows that it is possible to represent S-limits of nets of nonnegative functions in terms of the corresponding Moreau-Yosida approximations.

Theorem 1. Let (X, τ) be a metrizable topological space, $\{X_{\alpha}\}_{{\alpha}\in A}$ be a family of its τ -open subsets such that $\tau - Li X_{\alpha} \neq \emptyset$, and $\{F^{\alpha}: X_{\alpha} \to [0, +\infty]\}_{\alpha \in A}$ be an arbitrary net of functions each of which admits a continuation to the τ -closure of the corresponding subset X_{α} . Then for every value of $\beta > 0$, we have

$$(\tau - li_s F^{\alpha})(x) = \sup_{\lambda > 0} \liminf_{\alpha \in A} F^{\alpha}_{\lambda,\beta}(x), \tag{10}$$

$$(\tau - li_s F^{\alpha})(x) = \sup_{\lambda > 0} \liminf_{\alpha \in A} F^{\alpha}_{\lambda, \beta}(x),$$

$$(\tau - li_s F^{\alpha})(x) = \sup_{\lambda > 0} \limsup_{\alpha \in A} F^{\alpha}_{\lambda, \beta}(x).$$
(11)

We prove only identity (10), since the proof of the second relation is analogous. Let x be an arbitrary element from $\tau - Ls X_{\alpha}$. Introduce the following notation:

$$F_s(x) = (\tau - li_s F^{\alpha})(x), \qquad H_s(x) = \sup_{\lambda > 0} \liminf_{\alpha \in A} \inf_{y \in X_{\alpha}} \left\{ F_{\alpha}(y) + \lambda^{-1} d_{\tau}^{\beta}(x, y) \right\}.$$

Let a number $t \in R$ be such that $t < F_s(x)$. Using properties of S-limits, we see that the function $F_s(x)$ is the lower S-limit of the net

$$\{F^{\alpha}: \operatorname{cl}_{\tau} X_{\alpha} \to [0, +\infty]\}_{\alpha \in A}$$
.

Let $\mathcal{N}_{\tau}(x)$ be a filter of all τ -open neighborhoods of the point x. Therefore, one can find a neighborhood $U \in \mathcal{N}_{\tau}(x)$ such that

$$t < \liminf_{\substack{\alpha \in A \\ \operatorname{cl}_{\tau} X_{\alpha} \cap U \neq \varnothing}} \inf_{y \in \operatorname{cl}_{\tau} X_{\alpha} \cap U} F^{\alpha}(y).$$

Let the number $\lambda > 0$ be such that $d_{\tau}^{\beta}(x,y) > t \cdot \lambda$ for all $y \in \operatorname{cl}_{\tau} X_{\alpha} \setminus U$. Then

$$t < \liminf_{\substack{\alpha \in A \\ \operatorname{cl}_{\tau} X_{\alpha} \cap U \neq \emptyset}} \inf_{y \in \operatorname{cl}_{\tau} X_{\alpha} \cap U} \left(F_{\alpha}(y) + \lambda^{-1} d_{\tau}^{\beta}(x, y) \right) \liminf_{\substack{\alpha \in A \\ \operatorname{cl}_{\tau} X_{\alpha} \cap U \neq \emptyset}} \inf_{y \in \operatorname{cl}_{\tau} X_{\alpha}} \left(F_{\alpha}(y) + \lambda^{-1} d_{\tau}^{\beta}(x, y) \right). \tag{12}$$

Consider those values of $\alpha \in A' \subset A$ for which $\operatorname{cl}_{\tau} X_{\alpha} \cap U = \emptyset$. It is clear that for these α , the chosen point $x \in \tau - Ls X_{\alpha}$ does not belong to the set X_{α} , and hence,

$$\lim_{\lambda\downarrow 0}\inf_{y\in\operatorname{cl}_{\tau}X_{\alpha}}\left\{F_{\alpha}(y)+\lambda^{-1}d_{\tau}^{\beta}(x,y)\right\}=+\infty$$

for all $\alpha \in A$. Thus, there exists $\lambda^0 > 0$ such that

$$\liminf_{\substack{\alpha \in A \\ \operatorname{cl}_{\tau} X_{\alpha} \cap U \neq \varnothing}} \inf_{y \in \operatorname{cl}_{\tau} X_{\alpha}} \left\{ F_{\alpha}(y) + \lambda^{-1} d_{\tau}^{\beta}(x,y) \right\} = \liminf_{\alpha \in A} \inf_{y \in \operatorname{cl}_{\tau} X_{\alpha}} \left\{ F_{\alpha}(y) + \lambda^{-1} d_{\tau}^{\beta}(x,y) \right\}$$

for all $0 < \lambda < \lambda^0$. Since

$$\liminf_{\alpha \in A} \inf_{y \in \operatorname{cl}_{\tau} X_{\alpha}} \left\{ F_{\alpha}(y) + \lambda^{-1} d_{\tau}^{\beta}(x,y) \right\} \leq \liminf_{\alpha \in A} \inf_{y \in X_{\alpha}} \left\{ F_{\alpha}(y) + \lambda^{-1} d_{\tau}^{\beta}(x,y) \right\} = \liminf_{\alpha \in A} F_{\lambda,\beta}^{\alpha}(x),$$

using (12) we get that $t < \liminf_{\alpha \in A} F_{\lambda,\beta}^{\alpha}(x) \le H_s(x)$. Since the latter relation holds for all $t < F_s(x)$, the inequality

$$F_s(x) \le H_s(x) \tag{13}$$

is proved.

Let us now prove an inequality converse to (13). Let $\varepsilon > 0$ be an arbitrary fixed number. Since the metric d_{τ} is continuous on X, for a chosen point x there exists a neighborhood $U \in \mathcal{N}_{\tau}(x)$ such that $d_{\tau}^{\beta}(x,y) < \varepsilon$ for all $y \in U$. Hence, for every $\alpha \in A$ satisfying $X_{\alpha} \cap U \neq \emptyset$, we can write

$$\inf_{y\in X_{\alpha}}\left\{F_{\alpha}(y)+\lambda^{-1}d_{\tau}^{\beta}(x,y)\right\}\leq \inf_{y\in X_{\alpha}\cap U}\left\{F_{\alpha}(y)+\lambda^{-1}d_{\tau}^{\beta}(x,y)\right\}\leq \inf_{y\in X_{\alpha}\cap U}F^{\alpha}(y)+\varepsilon.$$

Then

$$\liminf_{\alpha \in A} F_{\lambda,\beta}^{\alpha}(x) \leq \liminf_{\substack{\alpha \in A \\ X_{\alpha} \cap U \neq \varnothing}} \inf_{y \in X_{\alpha} \cap U} F^{\alpha}(y) \leq F_{s}(x) + \varepsilon.$$

This inequality holds for any $\lambda > 0$ and $\varepsilon > 0$, so that we get

$$H_s(x) \le F_s(x). \tag{14}$$

Thus, since the point $x \in \tau - Ls X_{\alpha}$ was chosen arbitrarily, relations (13)–(14) yield equality (10).

The following theorem gives an analytical representation for topological limits of an arbitrary net of subsets of a metrizable topological space.

Theorem 2. Let (X,τ) be a metrizable topological space, $\{X_{\alpha}\}_{{\alpha}\in A}$ be a family of its subsets, and

$$\{F^{\alpha}: X_{\alpha} \to [0, +\infty)\}_{\alpha \in A}$$

be an arbitrary equibounded (i.e., uniformly bounded) net of functions. Then

$$\tau - Li X_{\alpha} = \text{Dom} \left(\sup_{\lambda > 0} \limsup_{\alpha \in A} F_{\lambda, \beta}^{\alpha} \right), \tag{15}$$

$$\tau - Ls X_{\alpha} = \text{Dom} \left(\sup_{\lambda > 0} \liminf_{\alpha \in A} F_{\lambda,\beta}^{\alpha} \right), \tag{16}$$

where $\beta > 0$ is an arbitrary constant and Dom(f) is an effective set of functions $f: X \to \overline{R}$.

Proof. Since the net of functions,

$$\{F^{\alpha}: X_{\alpha} \to [0, +\infty)\}_{\alpha \in A}$$

is equibounded, there exists a constant c>0 such that $F^{\alpha}(x)\leq c$ for all $x\in X_{\alpha}$ and for all $\alpha\in A$. Thus the lower and upper S-limits of the net will also be bounded functions. Hence, using (10)–(11) we get

$$\tau - Li X_{\alpha} \subseteq \operatorname{Dom} \left(\sup_{\lambda > 0} \limsup_{\alpha \in A} F_{\lambda, \beta}^{\alpha} \right), \tag{17}$$

$$\tau - Ls X_{\alpha} \subseteq \operatorname{Dom} \left(\sup_{\lambda > 0} \liminf_{\alpha \in A} F_{\lambda, \beta}^{\alpha} \right). \tag{18}$$

$$\tau - Ls X_{\alpha} \subseteq \operatorname{Dom} \left(\sup_{\lambda > 0} \liminf_{\alpha \in A} F_{\lambda, \beta}^{\alpha} \right). \tag{18}$$

Therefore, in order to prove (15), it is sufficient to show that for all $x \in X \setminus \tau - Li X_{\alpha}$, the following condition holds:

$$x \notin \text{Dom}\left(\sup_{\lambda>0} \liminf_{\alpha \in A} F_{\lambda,\beta}^{\alpha}\right).$$
 (19)

Let x be an arbitrary element of $x \setminus \tau - Li X_{\alpha}$. Then for every neighborhood $U \in \mathcal{N}_{\tau}(x)$ there exists a subnet $\{Y_{\gamma}\}_{{\gamma}\in\Lambda}$ of the net $\{X_{\alpha}\}_{{\alpha}\in A}$ such that $U\cap Y_{\gamma}=\varnothing$ for all $\gamma\in\Lambda$. Since the functions F^{α} are nonnegative and bounded, for every fixed $\lambda>0$ there exist elements $x_{\lambda}^{\alpha}\in X_{\alpha}$ satisfying the relation $F_{\lambda,\beta}^{\alpha}(x) \leq F^{\alpha}(x_{\lambda}^{\alpha}) + \lambda^{-1}d_{\tau}^{\beta}(x,x_{\lambda}^{\alpha}) \leq F_{\lambda,\beta}^{\alpha}(x) + \lambda$, whence we find that

$$F_{\lambda\beta}^{\alpha}(x) \ge \lambda^{-1} d_{\tau}^{\beta}(x, x_{\lambda}^{\alpha}) - \lambda. \tag{20}$$

Let $\{y_{\lambda}^{\gamma}\}_{\gamma \in \Lambda}$ be a subnet of the net $\{x_{\lambda}^{\alpha}\}_{\alpha \in A}$ corresponding to the choice of $\{Y_{\gamma}\}_{\gamma \in \Lambda}$. Then (20) implies the obvious inequality

$$\limsup_{\alpha \in A} F_{\lambda,\beta}^{\alpha}(x) \geq \lambda^{-1} \limsup_{\alpha \in A} d_{\tau}^{\beta}\left(x,x_{\lambda}^{\alpha}\right) - \lambda \geq \lambda^{-1} \limsup_{\gamma \in \Lambda} d_{\tau}^{\beta}\left(x,y_{\lambda}^{\gamma}\right) - \lambda.$$

Since $U \cap Y_{\gamma} = \emptyset$, one can find a constant c > 0 such that $d_{\tau}^{\beta}(y, y_{\lambda}^{\gamma})$ for all $y \in U$ and $\gamma \in \Lambda$. Consequently,

$$\limsup_{\alpha \in A} F_{\lambda,\beta}^{\alpha}(x) \ge \lambda^{-1} c - \lambda,$$

whence we find that $\sup_{\lambda>0} \limsup_{\alpha\in A} F_{\lambda,\beta}^{\alpha}(x) = +\infty$, i.e., inclusion (19) holds. Thus, inequality (15) is proved.

Let us now prove relation (16). Let x be an arbitrary element of $X \setminus \tau - Ls X_{\alpha}$. Then there exists a neighborhood $U \in \mathcal{N}_{\tau}(x)$ and $\mu \in A$ such that $U \cap X_{\alpha} = \emptyset$ for all $\alpha \geq \mu$. Thus it follows from (20) that $\lim \inf_{\alpha \in A} F_{\lambda,\beta}^{\alpha}(x) \geq \lambda^{-1} \lim \inf_{\alpha \in A} d_{\tau}^{\beta}(x, x_{\lambda}^{\alpha}) - \lambda, \text{ where elements of the net } \left\{x_{\lambda}^{\alpha}\right\}_{\alpha \in A} \text{ satisfy the condition } x_{\lambda}^{\alpha} \in X_{\alpha} \text{ for all } \alpha \in A. \text{ Since } U \cap X_{\alpha} = \emptyset \text{ for all } \alpha \geq \mu, \text{ one can find a constant } c > 0 \text{ such that } d_{\tau}(y, x_{\lambda}^{\alpha}) \geq c > 0 \text{ for all } y \in U \text{ and } \alpha \geq \mu. \text{ Thus, } \lim \inf_{\alpha \in A} F_{\lambda,\beta}^{\alpha}(x) \geq \lambda^{-1}c - \lambda, \text{ whence we have the } d_{\tau}(y, x_{\lambda}^{\alpha}) \geq c > 0 \text{ for all } y \in U \text{ and } \alpha \geq \mu.$ obvious relation

$$\sup_{\lambda>0} \liminf_{\alpha \in A} F_{\lambda,\beta}^{\alpha}(x) = +\infty.$$

Thus, for all elements $x \notin X \setminus \tau - Ls X_{\alpha}$, the condition $x \notin \text{Dom}(\sup_{\lambda > 0} \liminf_{\alpha \in A} F_{\lambda,\beta}^{\alpha})$ holds. Consequently, using inclusion (18), we get identity (16). \Box

Remark 1. As follows from the above theorem, relations (15)-(16) hold for an arbitrary equibounded net of functions

$$\{F^{\alpha}: X_{\alpha} \to [0, +\infty)\}_{\alpha \in A}$$
.

Therefore, in order to find the lower and upper topological limits of an arbitrary family of subspaces $\{X_{\alpha}\}_{\alpha\in A}$ of a metrizable topological space, one can use the following representation:

$$\tau - Li X_{\alpha} = \operatorname{Dom} \left(\sup_{\lambda > 0} \limsup_{\alpha \in A} \inf_{y \in X_{\alpha}} \left(c + \lambda^{-1} d_{\tau}^{\beta}(x, y) \right) \right),$$

$$\tau - Ls X_{\alpha} = \operatorname{Dom} \left(\sup_{\lambda > 0} \liminf_{\alpha \in A} \inf_{y \in X_{\alpha}} \left(c + \lambda^{-1} d_{\tau}^{\beta}(x, y) \right) \right),$$
(21)

where c > 0 and $\beta > 0$ are arbitrary constants.

Thus, a net of sets $\{X_{\alpha}\}_{{\alpha}\in A}$ has a topological limit if for an arbitrary $\lambda>0$ and some c>0 and $\beta>0$, the sequence

$$\left\{\inf_{y\in X_{\alpha}}\left(c+\lambda^{-1}d_{\tau}^{\beta}(x,y)\right)\right\}_{\alpha\in A}$$

of real numbers has a limit at every point of X and there exists at least one point $x \in X$ such that

$$\sup_{\lambda>0} \lim_{\alpha \in A} \inf_{y \in X_{\alpha}} \left(c + \lambda^{-1} d_{\tau}^{\beta}(x, y) \right) < +\infty.$$

In this case, the topological limit can be represented as

$$\tau - Lm X_{\alpha} = \operatorname{Dom} \left(\sup_{\lambda > 0} \lim_{\alpha \in A} \inf_{y \in X_{\alpha}} \left(c + \lambda^{-1} d_{\tau}^{\beta}(x, y) \right) \right).$$

Remark 2. According to the above results, the following representations hold for the lower and upper variational S-limits of a net of minimization problems (1) in a metrizable space (X, τ) :

$$\begin{split} \mathcal{P}_s &: \left\langle \inf_{x \in (\tau - Ls \, X_\alpha)} F_s(x) \right\rangle \\ &= \left\langle \inf_{\sup_{\lambda > 0 \text{ $\lim \inf_{\alpha \in A} \inf_{y \in X_\alpha} \left(c + \lambda^{-1} d_\tau^\beta(x, y)\right)$}} \left(\sup_{\lambda > 0 } \liminf_{\alpha \in A} \inf_{y \in X_\alpha} \left\{ F_\alpha(y) + \lambda^{-1} d_\tau^\beta(x, y) \right\} \right) \right\rangle, \end{split}$$

$$\mathcal{P}^{s}: \left\langle \inf_{x \in (\tau - Li X_{\alpha})} F^{s}(x) \right\rangle$$

$$= \left\langle \inf_{\sup_{\lambda > 0 \text{ lim sup}_{\alpha \in A} \text{ inf}_{y \in X_{\alpha}} \left(c + \lambda^{-1} d_{\tau}^{\beta}(x, y)\right)} \left(\sup_{\lambda > 0 \text{ lim sup} \atop \alpha \in A} \inf_{y \in X_{\alpha}} \left\{ F_{\alpha}(y) + \lambda^{-1} d_{\tau}^{\beta}(x, y) \right\} \right) \right\rangle,$$

where c > 0 and $\beta > 0$ are arbitrary constants.

Theorem 3. Let (X, τ) be a metrizable topological space,

$$\{F^{\alpha}: X_{\alpha} \to [0, +\infty)\}_{\alpha \in A}$$

be an equibounded net of functions, and $F: E \to [0, +\infty)$ be a lower semicontinuous function with the nonempty domain

$$E = \operatorname{Dom}\left(\sup_{\lambda>0} \limsup_{\alpha \in A} \inf_{y \in X_{\alpha}} \left(c + \lambda^{-1} d_{\tau}^{\beta}(x, y)\right)\right)$$

(here c>0 and $\beta>0$ are certain constants). Then the following conditions are equivalent:

- (a) $\langle \inf_{x \in E} F(x) \rangle$ is a strong variational S-limit of the net of conditional minimization problems (1);
- (b) for every $j \in N$ and all $x \in E$, the following relation holds:

$$\inf_{y\in E}\left(F(y)+\lambda_j^{-1}d_\tau^\beta(x,y)\right)=\lim_{\alpha\in A}\inf_{y\in X_\alpha}\left(F^\alpha(y)+\lambda_j^{-1}d_\tau^\beta(x,y)\right),$$

where $\{\lambda_j\}_{j\in\mathbb{N}}$ is a monotone decreasing sequence of positive numbers.

Proof. Note that, by Remark 1, the set E coincides with the lower topological limit $\tau - Li X_{\alpha}$. Let us prove the implication (a) \Rightarrow (b). Suppose condition (a) holds. Then the function $F: E \to [0, +\infty)$ is the S-limit of the net of functions $\{F^{\alpha}: X_{\alpha} \to [0, +\infty)\}_{\alpha \in A}$. Since the S-limit is stable with respect to τ -continuous perturbations (see, for example, [4] Proposition 6.20), for fixed values of $\lambda_j > 0$ and $\beta > 0$ the function $F(y) + \lambda_j^{-1} d_{\tau}^{\beta}(x, y)$ is the S-limit of the net

$$\left\{ F^{\alpha}(y) + \lambda_j^{-1} d_{\tau}^{\beta}(x, y) \right\}_{\alpha \in A}; \tag{22}$$

here $y \in E$. On the other hand, net (22) is τ -equicoercive for every value of $x \in X$. Consequently, condition (b) is a direct consequence of Theorem 4 of [1]. Thus, the implication (a) \Rightarrow (b) is proved.

Let us prove the converse. Suppose that condition (b) holds. By Theorem 1, the relation

$$\left(\tau - li_s F^{\alpha}\right)(x) = \left(\tau - ls_s F^{\alpha}\right)(x) = \sup_{j \in N} \inf_{y \in (\tau - Li X_{\alpha})} \left(F(y) + \lambda_j^{-1} d_{\tau}^{\beta}(x, y)\right)$$

holds on the set $\tau - Li X_{\alpha}$. By the conditions of the theorem, the function $F: (\tau - Li X_{\alpha}) \to [0, \infty)$ is τ -lower semicontinuous. Hence, according to Lemma 1, we can write

$$F(x) = \sup_{j \in N} \inf_{y \in (\tau - Li X_{\alpha})} \left(F(y) + \lambda_j^{-1} d_{\tau}^{\beta}(x, y) \right).$$

Therefore, for all $x \in (\tau - Li X_{\alpha})$ the relation

$$F(x) = (\tau - li_s F^{\alpha})(x) = (\tau - ls_s F^{\alpha})(x)$$

holds.

Thus the function F is the S-limit of the net

$${F^{\alpha}: X_{\alpha} \to [0, +\infty)}_{\alpha \in A}$$

whence $\langle \inf_{x \in E} F(x) \rangle$ is the strong variational S-limit of the family of optimization problems (1). This proves the converse implication, (b) \Rightarrow (a). \square

Corollary. If the set E in the theorem can be represented as

$$E = \operatorname{Dom}\left(\sup_{\lambda > 0} \lim_{\alpha \in A} \inf_{y \in X_{\alpha}} \left(c + \lambda^{-1} d_{\tau}^{\beta}(x, y)\right)\right),\,$$

then, by Remark 1, the following statements are equivalent:

- (a) for a net of conditional optimization problems (1), there exists an absolute variational S-limit, and it can be represented as $\langle \inf_{x \in E} F(x) \rangle$;
- (b) for every $j \in N$ and all $x \in E$, the following relation holds:

$$\inf_{y\in E}\left(F(y)+\lambda_j^{-1}d_\tau^\beta(x,y)\right)=\lim_{\alpha\in A}\inf_{y\in X_\alpha}\left(F^\alpha(y)+\lambda_j^{-1}d_\tau^\beta(x,y)\right),$$

where $\{\lambda_j\}_{j\in\mathbb{N}}$ is a decreasing to zero monotone sequence of positive numbers.

REFERENCES

- P. I. Kogut, "Variational S-convergence of minimization problems. Part I. Definitions and main properties," Probl. Upravlen. Inf., No. 5, 29-43 (1996).
- 2. J. J. Moreau, "Proximite et dualite dans un espace hilbertien," Bull. Soc. Mat. France, 93, 273-299 (1965).
- 3. R. T. Rockafellar, "Characterization of the subdifferentials of convex functions," *Pacific J. Math.*, 17, 497–510 (1966).
- 4. G. Dal Maso, Introduction to Gamma-Convergence, Birkhauser, Boston (1993).