Name	
Using Newton's Second Law to Find the Force of Friction From Flipping Physics https://www.flippingphysics.com/second-law-friction.html	
How do they find the acceleration of the hockey puck?	
What is the problem with the first free-body diagram they draw?	
Draw the correct <i>free-body diagram</i> for the hockey puck:	
Why is the acceleration positive even though the puck is slowing down?	

Solve each of the "Replica Problems" based on the problem in the video. The method of solving the problem is *very similar*.

$$a = \frac{v_f - v_i}{\Delta t}$$

Original Problem

You slide a 56-gram street hockey puck on a wooden board.

The graph of its velocity as a function of time is shown.

What is the magnitude of the force of friction between the puck and the wooden board?

Replica Problem #1

You slide a 48-gram street hockey puck on a wooden board.

[Don't forget to convert the mass to grams!

Its initial velocity is 4 m/s and its final velocity is 0 after a time of 3 seconds.

[Find the *acceleration* with these numbers!]

What is the magnitude of the force of friction between the puck and the wooden board?

Replica Problem #2

You slide a 62-gram street hockey puck on a wooden board.

Its initial velocity is 5 m/s and its final velocity is 2 m/s after a time of 4 seconds.

What is the magnitude of the force of friction between the puck and the wooden board?