Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 08.07.2016

Arbeitszeit: 120 min

Name:							
Vorname(n):							
Matrikelnumme	er:						Note
							1
	Aufgabe	1	2	3	4	\sum	
	erreichbare Punkte	11	10	9	10	40	
	erreichte Punkte						
$\mathbf{Bitte}\;$							
tragen Sie	e Name, Vorname und	Matrik	ælnumr	ner auf	dem D	eckbla	tt ein,
rechnen S	ie die Aufgaben auf se	eparatei	n Blätte	ern, ni	cht auf	dem A	ingabeblatt,
beginnen	Sie für eine neue Aufg	gabe im	mer au	ch eine	neue S	eite,	
geben Sie	auf jedem Blatt den I	Namen	sowie d	lie Mat	rikelnu	mmer a	an,
begründe	n Sie Ihre Antworten a	ausführ	lich und	1			
kreuzen S antreten l	ie hier an, an welchem könnten:	der fol	genden	Termin	ne Sie z	ur mür	ıdlichen Prüfunş
	Fr., 15.07.2016	□ Mo.,	18.07.	2016		Di., 19	0.07.2016

- 1. In dieser Aufgabe wird der Regelkreis aus Abbildung 1 mit dem P-Regler $K_p \in \mathbb{R}$ betrachtet. Der eingerahmte Bereich markiert die zeitkontinuierliche Strecke Σ mit dem Eingang u, dem Ausgang $\mathbf{y} = [y_1, y_2]^{\mathrm{T}}$ und den reellen Konstanten $K_1 > 0$ und $K_2 > 0$.
- 3 P.|

11 P.

a) Wählen Sie einen geeigneten Zustandsvektor $\mathbf{x} = [x_1, x_2, x_3, x_4]^{\mathrm{T}}$ und bestimmen Sie das zeitkontinuierliche Modell der Strecke Σ in der Form

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u$$
$$\mathbf{y} = \mathbf{C}\mathbf{x}.$$

- b) Berechnen Sie die Eigenwerte der Matrix **A**. Ist das System global asymptotisch stabil?
- c) Die Beschreibung des Eingangs-/Ausgangsverhaltens der Strecke Σ erfolgt in dieser Teilaufgabe im Laplacebereich anhand der beiden Übertragungsfunktionen G_{u,y_1} bzw. G_{u,y_2} vom Eingang u zu den Ausgängen y_1 bzw. y_2 . Bearbeiten Sie dazu die folgenden Teilaufgaben:
 - i. Berechnen Sie die Übertragungsfunktionen G_{u,y_1} bzw. G_{u,y_2} für die betrachtete Strecke Σ .

Hinweis: Diese Aufgabe kann sowohl anhand des Blockschaltbildes im Laplace Bereich als auch mithilfe des Zustandsraummodells gelöst werden. Beachten Sie dabei die dünn besetzte Matrix **C** sowie den Vektor **b**.

ii. Nehmen Sie G_{u,y_1} bzw. G_{u,y_2} als gegeben an und zeichnen Sie ein Blockschaltbild des geschlossenen Regelkreises im Laplacebereich. Leiten Sie daraus die Übertragungsfunktion T_{r,y_1} des geschlossenen Regelkreises für $K_p \to \infty$ her.

Abbildung 1: Regelkreis zu Aufgabe 1

- 2. Bearbeiten Sie die folgenden Teilaufgaben:
 - a) Gegeben ist ein LTI-System der Form 4P.

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}.\tag{1}$$

10 P.

2 P.

4 P.

- i. Geben Sie ein Beispiel für ein System der Form (1) mit $\dim(\mathbf{x}) = 3$ ohne 2P.| Ruhelage an.
- ii. Nehmen Sie nun an, das System hätte 2P.
 - A. eine einzige Ruhelage.
 - B. unendlich viele Ruhelagen.

Geben Sie die notwendigen Eigenschaften von \mathbf{A},\mathbf{B} und \mathbf{u}_R an.

b) Betrachtet wird das eingangsaffine System

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} + \mathbf{g},\tag{2}$$

mit der Eingangsgröße \mathbf{u} und dem konstanten Vektor $\mathbf{g} \neq \mathbf{0}$. Geben Sie die Tranformationsvorschrift für $\boldsymbol{\xi}$ an, um das System (2) mit der Ruhelage $\mathbf{x}_R \neq \mathbf{0}$ und $\mathbf{u}_R = \mathbf{0}$ in ein System der Form

$$\dot{\boldsymbol{\xi}} = \bar{\mathbf{A}}\boldsymbol{\xi} + \bar{\mathbf{B}}\mathbf{u},\tag{3}$$

mit $\xi_R = 0$, $\mathbf{u}_R = 0$ zu überführen. Geben Sie auch die Zusammenhänge zwischen $\bar{\mathbf{A}}, \bar{\mathbf{B}}$ und \mathbf{A}, \mathbf{B} an.

c) Betrachtet wird die Übertragungsfunktion

 $G(s) = \frac{(s^2 - 1)(s + 3)^2}{(s^2 + 3s + 2)(s^2 + 7s + 12)}.$

- i. Ist die Übertragungsfunktion sprungfähig? Begründen Sie Ihre Antwort. 0.5 P.|
- ii. Ist das System minimalphasig? Begründen Sie Ihre Antwort.

 0.5 P.|
- iii. Ist die Übertragungsfunktion realisierbar? Begründen Sie Ihre Antwort. 0.5 P.
- iv. Berechnen Sie den Verstärkungsfaktor sowie die Sprungantwort bei t=0.
- v. Zeichnen Sie alle Pole und Nullstellen von G(s) in das beigefügte Diagramm ein. 0.5 P.
- vi. Welche Stabilitätsaussage können Sie für ein System mit der Übertragungsfunktion G(s) treffen? Begründen Sie Ihre Antwort.

Abbildung 2: Vorlage Pol-Nullstellen-Diagramm zu Aufgabe 2

3. In dieser Aufgabe wird das zeitdiskrete LTI-System

$$\mathbf{x}_{k+1} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -\frac{1}{2} \\ 0 & 1 & 1 \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u_k$$

$$y_k = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \mathbf{x}_k$$
(4)

in Kombination mit einem Zustandsregelgesetz der Form $u_k = \mathbf{k}^T \mathbf{x}_k$ betrachtet, wobei für den Rückführvektor

$$\mathbf{k} = [2, -1, \alpha]^{\mathrm{T}}, \quad \alpha \in \mathbb{R}$$

gilt.

- a) Berechnen Sie die Eigenwerte der Dynamikmatrix des Systems (4). Ist das 1.5 P.| System vollständig erreichbar bzw. vollständig beobachtbar?
- b) Bestimmen Sie den Wertebereich von $\alpha \in \mathbb{R}$ so, dass der geschlossene Kreis 1.5 P.| stabil ist.
- c) Die Realisierung des Zustandsregelgesetzes erfolgt in dieser Teilaufgabe in der Form $u_k = \mathbf{k}^T \hat{\mathbf{x}}_k$, wobei der Schätzwert $\hat{\mathbf{x}}$ des Systemzustands von einem Beobachter generiert wird. Bearbeiten Sie dazu die folgenden Teilaufgaben:
 - i. Entwerfen Sie einen trivialen Beobachter und berechnen Sie die Dynamikmatrix des Beobachtungsfehlers $\mathbf{e} = \hat{\mathbf{x}} \mathbf{x}$.
 - ii. Ist die Kombination aus Zustandsregler und trivialem Beobachter stabil? 3P.| Begründen Sie Ihre Antwort anhand der Dynamikmatrix des erweiterten Systems mit dem Zustand $[\mathbf{x}^T, \mathbf{e}^T]$.
 - iii. Entwerfen Sie einen vollständigen Luenberger-Beobachter. Berechnen Sie die Beobachterverstärkung $\hat{\mathbf{k}}$ so, dass sämtliche Eigenwerte der Beobachterfehlerdynamik an der Stelle $\frac{1}{2}$ in der komplexen Ebene zu liegen kommen.

4. Für die folgende Aufgabe wird ein lineares zeitinvariantes autonomes System mit $\dim(\mathbf{x}) = 2$ betrachtet. Bei den gegebenen Anfangszuständen

$$\mathbf{x}_{0,1} = \begin{bmatrix} 1\\0 \end{bmatrix}, \quad \mathbf{x}_{0,2} = \begin{bmatrix} 0\\1 \end{bmatrix} \tag{5}$$

10 P.

zeigen sich am Ausgang die entsprechenden Signale

$$y_1(t) = \sin(t) + \cos(t), \quad y_2(t) = \sin(t) - \cos(t).$$
 (6)

- a) Berechnen Sie den Ausgangsvektor ${f c}$ des Systems. 2 P.
- b) Berechnen Sie die Dynamikmatrix **A** des Systems. 7 P.|
- c) Geben Sie die Eigenwerte des Systems an.