

Secure Virtual Platform Research

OpenXT Summit

June 7, 2016

Peter A. Loscocco Trusted Systems Research National Security Agency

Trusted Systems Research

- Conduct/sponsor research into:
 - Providing information assurance for national security systems
 - Enabling safe operation in risky or compromised environments
 - Advancing cryptographic algorithms and protocols, system analysis and design methods, trust mechanisms, and understanding system behavior
- Creators of SE Linux, Xen Security Modules, Linux Kernel Integrity Monitor, and SE for Android

Our Motivation

- Desire to improve upon solid security foundation provided by SELinux
 - Minimize impact of kernel vulnerabilities
 - Minimize exposure of secrets to unauthorized components
 - Prevent unauthorized OS/configuration
 - Improve assurance of security solutions
- Desire to build assurable security solutions using commodity technology
- Support wider variety of customer environments

Secure Virtual Platform (SVP)

- Body of research conducted/sponsored by NSA to investigate how to secure systems more effectively
 - Research dating back to 2002
 - Demonstration of concepts through series of prototypes
- Explored the use of emerging hardware support for virtualization and trusted computing to
 - Address some of the limitations of SELinux systems
 - Create security architectures targeting assurance using commercial-grade components
- Targeted influence/advances in key areas rather than building complete SVP system

June 7, 2016 4

Specific Goals for SVP

- Use virtualization for security as well as functionality
- Advance Trusted Computing concepts to better meet security goals
- Create general-purpose architecture able to be applied to a variety of use cases
 - Focus on sound security architecture and proper distribution of security functionality
 - Achieve flexibility through configuration
- Enable evolution towards higher assurance
 - Investigate using security architecture to achieve greater assurance result using lesser assured components
 - Facilitate assurability by limiting assurance burden about a given component to arguments about functionality of that component
 - Overcome barriers of traditional high assurance solutions

June 7, 2016 5

SVP Strategy - Architecture

- Advance security architecture for secure virtualization system
 - Adhere to identified security principles and desired properties when assigning functionality to components
 - Analyze component interdependencies, ensuring all assumptions about self, providers and clients are sound
- Provide robustness in presence of inevitable flaws
 - Understand the attack surface of each component and the potential consequence of its complete compromise
 - Design to contain damage and/or react appropriately

SVP Strategy - Assurance

- Incorporate robust detection mechanisms to warn of component compromises, including those to the detection mechanisms
 - Minimize likelihood of effective exploitation
 - Prevent execution of sensitive operations from bad states
 - Enable appropriate response to compromises
- Apply assurance activities where most effective
 - Assurance activities focused on proving properties of architecture and its components
 - Minimize assurance burden on any given component by constructing arguments that leverage system assurance argument
 - High assurance implementations where feasible and necessary

A High-level View of the System

- Secure Hypervisor
 - Provides solid foundation leveraged to meet many system security objectives
 - SVP focused on Xen
- Virtual Platforms (VP)
 - Logical groups of Virtual Machines (VM) supporting mission or function
 - Isolates groups of components from each other
 - Supervisor VP for control plane and system-level services
 - Guest VPs for all guest-specific services

June 7, 2016 8

Secure Hypervisor Desired Properties

- Use of HW virtualization for VM isolation
- Supports DRTM to reach initial known state
- Supports IOMMU for explicit memory protections
- MAC to control VM resources and interactions
- Secure Inter-VM Communication (IVC) to support MAC over VM services
- Minimal size and function to facilitate high-assurance implementation
- Supports lightweight VMs to facilitate high-assurance VM implementations
- VM grouping to support VPs function and security

Access Control in SVP

- Discrete components enforce MAC focused at proper abstraction level
 - Components leverage MAC from others
 - Union embodies system MAC policy and helps guarantee important security properties
- XSM/Flask for VM isolation and controlled interaction
- VMs enforce MAC over objects/services they provide
 - Leverage secure IVC
- SELinux MAC for intra-VM protections

Disaggregation of Control Plane

- Isolates privileged functions in VMs
 - Targeting least privilege
 - Facilitating assurance
 - Examples: Host Storage,
 Name Service, Domain
 Building, User Interface
- Grouped in Supervisor VP
- Minimizes need for Dom0
- Feasibility demonstrated by Xoar

Measurement and Attestation (M&A)

- Detection strategy centered on M&A for total system
 - OS, User space, and Hypervisor components
 - At load and run times
 - LKIM developed to prove feasibility
 - Chained together for multi-realm attestations
 - Measures all components including M&A
- General Framework (Maat)
 - Multiple measurement agents, appraisers, and protocols
 - Local selection policy
 - Negotiated mechanisms and protocols
 - Enforces MAC internal policy

Maat M&A Service

Virtual TPMs (vTPM)

- Support TPM functionality in any VM while reserving dedicated TPM use for virtualization system
 - In SVP, vTPM manager and one vTPM per VP
 - Support M&A architecture at all layers
- Make vTPMs suitable for storage of long-term secrets
 - SVP influence in TCG
- Some specific vTPM security properties
 - Only approved images can function as vTPM
 - vTPM secrets only released to authorized vTPM
 - only vTPM can possess both secrets and keys to use
- vTPM manager domain for TPM access and vTPM data protection
- vTPM provides MAC over services and resources
 - Can support locality enforcement for multiple clients
- Technology like Intel SGX to address run-time confidentiality
- Xen vTPM good start to realizing these goals

Virtual Platforms

- Common structure for each Virtual Platform
 - Control Domain for VP booting, error handling, shutdown, and migration
 - M&A and vTPM
- Guest domain for main VP function
- Helper domains provide mutual protection for services and guest
 - E.g. Isolated devices, security services, or mission functionality

Using Trusted Computing Concepts

- Leveraging DRTM and (v)TPMs to support
 - Measurement & Attestation
 - Protection and controlled use of secrets
- Secure boot of platform
 - Each component measured at boot prior to use
 - Boot configuration constrained by owner
 - Carefully prescribed boot order enforced
 - Hypervisor, Supervisor and Guest VP components
 - Secrets and functions unlocked as component boot succeeds
 - i.e. Successful boot of vTPM Manager required for vTPM boot
 - Reliance on 3rd party attestations as use case requires
 - Supported by M&A infrastructure

A possible SVP Instance

Increasing Assurance

- Invest in high assurance implementations where needed most
 - i.e. Hypervisor or vTPM
 - Enables evolution
 - Lightweight VMs facilitate
- Assurance through sound architecture
 - Careful analysis
 - Formal modeling/proofs about properties
 - i.e. Boot process, M&A, component interactions

A Vision for OpenXT

- Already shares many SVP goals and characteristics
 - Roots in XenClient XT, an early commercial adopter of SVP concepts
- Would benefit from adopting more of the SVP Vision
 - Goal of highly configurable system
 - Adapt easily to wide variety of use cases
 - Bring common security architecture across all
 - OpenXT Core that evolves to include SVP ideas
 - Careful adherence to achieving identified component properties
 - Adopting/maturing key concepts like full system M&A and secure boot
 - Embrace assurance strategy focusing on sound security architecture
- Should become focal point for advancing system security
 - Enhanced security with virtualization and trusted computing
 - Hold OpenXT as an example of making security work
 - Encourage participation and development by those outside community to advance technologies as well as OpenXT

SVP Research Partners

- The MITRE Corporation
- Johns Hopkins University Applied Physics Lab
- Galois Inc.
 - University of Kansas
- University of British Columbia

Questions?

Peter A. Loscocco loscocco@tycho.nsa.gov NSA Trusted Systems Research