

SUMMATION FORMULAE FOR q -WATSON TYPE ${}_4\phi_3$ -SERIES

^ACHUANAN WEI, ^BDIANXUAN GONG, ^C JIANBO LI

^ADepartment of Information Technology
Hainan Medical College, Haikou 571101, China

^BCollege of Sciences
Hebei Polytechnic University, Tangshan 063009, China
^CInstitute of Mathematical Sciences
Xuzhou Normal University, Xuzhou 221116, China

ABSTRACT. According to the method of series rearrangement, we establish two families of summation formulae for q -Watson type ${}_4\phi_3$ -series.

1. INTRODUCTION

For two complex numbers x and q , define the q -shifted factorial by

$$(x; q)_0 = 1 \quad \text{and} \quad (x; q)_n = \prod_{i=0}^{n-1} (1 - xq^i) \quad \text{when } n \in \mathbb{N}.$$

Its fraction form reads as

$$\left[\begin{matrix} a, & b, & \cdots, & c \\ \alpha, & \beta, & \cdots, & \gamma \end{matrix} \middle| q \right]_n = \frac{(a; q)_n (b; q)_n \cdots (c; q)_n}{(\alpha; q)_n (\beta; q)_n \cdots (\gamma; q)_n}.$$

Following Gasper and Rahman [4], the basic hypergeometric series can be defined by

$${}_{1+r}\phi_s \left[\begin{matrix} a_0, & a_1, & \cdots, & a_r \\ b_1, & b_2, & \cdots, & b_s \end{matrix} \middle| q; z \right] = \sum_{k=0}^{\infty} \left[\begin{matrix} a_0, & a_1, & \cdots, & a_r \\ b_1, & b_2, & \cdots, & b_r \end{matrix} \middle| q \right]_k z^k$$

where $\{a_i\}_{i \geq 0}$ and $\{b_j\}_{j \geq 1}$ are complex parameters such that no zero factors appear in the denominators of the summand on the right hand side. Then the q -Watson formula due to Andrews [1] and the q -Watson formula due to Jain [5, Eq. 3.17] can be stated, respectively, as follows:

$${}_4\phi_3 \left[\begin{matrix} q^{-n}, q^{1+n}a, \sqrt{c}, -\sqrt{c} \\ q\sqrt{a}, -q\sqrt{a}, c \end{matrix} \middle| q; q \right] = \begin{cases} c^s \left[\begin{matrix} q, q^2a/c \\ q^2a, qc \end{matrix} \middle| q^2 \right]_s, & n = 2s; \\ 0, & n = 1 + 2s, \end{cases} \quad (1)$$

$${}_4\phi_3 \left[\begin{matrix} a, c, q^{-n}, -q^{-n} \\ \sqrt{qac}, -\sqrt{qac}, q^{-2n} \end{matrix} \middle| q; q \right] = \left[\begin{matrix} qa, qc \\ q, qac \end{matrix} \middle| q^2 \right]_n. \quad (2)$$

Inspired by the method due to Chu [3], we shall establish the following two families of summation formulae for q -Watson type ${}_4\phi_3$ -series:

$${}_4\phi_3 \left[\begin{matrix} q^{-n}, q^{1+n}a, \sqrt{c}, -\sqrt{c} \\ q\sqrt{a}, -q\sqrt{a}, q^\varepsilon c \end{matrix} \middle| q; q \right] \quad \text{and} \quad {}_4\phi_3 \left[\begin{matrix} q^{-n}, q^{1+n}a, q^\varepsilon \sqrt{c}, -\sqrt{c} \\ q\sqrt{a}, -q\sqrt{a}, q^\varepsilon c \end{matrix} \middle| q; q \right],$$

2010 Mathematics Subject Classification: Primary 05A19 and Secondary 33D15.

Key words and phrases. Basic hypergeometric series; The terminating ${}_6\phi_5$ -series identity; Summation formulae for q -Watson type ${}_4\phi_3$ -series.

$${}_4\phi_3 \left[\begin{matrix} a, c, q^{-n}, -q^{-n} \\ \sqrt{qac}, -\sqrt{qac}, q^{\varepsilon-2n} \end{matrix} \middle| q; q \right] \quad \text{and} \quad {}_4\phi_3 \left[\begin{matrix} a, c, q^{\varepsilon-n}, -q^{-n} \\ \sqrt{qac}, -\sqrt{qac}, q^{\varepsilon-2n} \end{matrix} \middle| q; q \right]$$

where the disturbing parameter ε is a nonnegative integer throughout the paper. Eight concrete summation formulae corresponding $1 \leq \varepsilon \leq 2$ will be exhibited.

2. SUMMATION FORMULAE FOR q -ANDREWS-WATSON TYPE ${}_4\phi_3$ -SERIES

2.1. Letting $a \rightarrow c/q$, $b \rightarrow q^{-k}$ and $c \rightarrow \infty$ for the terminating ${}_6\phi_5$ -series identity (cf. Gasper and Rahman [4, p. 42]):

$${}_6\phi_5 \left[\begin{matrix} a, q\sqrt{a}, -q\sqrt{a}, b, c, q^{-\varepsilon} \\ \sqrt{a}, -\sqrt{a}, qa/b, qa/c, q^{1+\varepsilon}a \end{matrix} \middle| q; \frac{q^{1+\varepsilon}a}{bc} \right] = \left[\begin{matrix} qa, qa/bc \\ qa/b, qa/c \end{matrix} \middle| q \right]_{\varepsilon}, \quad (3)$$

we obtain the following equation:

$$\sum_{i=0}^{\varepsilon} \left[\begin{matrix} k \\ i \end{matrix} \right] q^{(i+\varepsilon-1)i} c^i \left[\begin{matrix} cq^{k+i} \\ cq^i \end{matrix} \middle| q \right]_{\varepsilon-i} \frac{1-cq^{2i-1}}{1-cq^{i-1}} \left[\begin{matrix} q^{-\varepsilon} \\ q^{\varepsilon}c \end{matrix} \middle| q \right]_i = 1.$$

Then we can proceed as follows:

$$\begin{aligned} {}_4\phi_3 \left[\begin{matrix} q^{-n}, q^{1+n}a, \sqrt{c}, -\sqrt{c} \\ q\sqrt{a}, -q\sqrt{a}, q^{\varepsilon}c \end{matrix} \middle| q; q \right] &= \sum_{k=0}^n (-1)^k \left[\begin{matrix} n \\ k \end{matrix} \right] q^{(\frac{k+1}{2})-nk} \left[\begin{matrix} q^{1+n}a, \sqrt{c}, -\sqrt{c} \\ q\sqrt{a}, -q\sqrt{a}, q^{\varepsilon}c \end{matrix} \middle| q \right]_k \\ &= \sum_{k=0}^n (-1)^k \left[\begin{matrix} n \\ k \end{matrix} \right] q^{(\frac{k+1}{2})-nk} \left[\begin{matrix} q^{1+n}a, \sqrt{c}, -\sqrt{c} \\ q\sqrt{a}, -q\sqrt{a}, q^{\varepsilon}c \end{matrix} \middle| q \right]_k \\ &\times \sum_{i=0}^{\varepsilon} \left[\begin{matrix} k \\ i \end{matrix} \right] q^{(i+\varepsilon-1)i} c^i \left[\begin{matrix} cq^{k+i} \\ cq^i \end{matrix} \middle| q \right]_{\varepsilon-i} \frac{1-cq^{2i-1}}{1-cq^{i-1}} \left[\begin{matrix} q^{-\varepsilon} \\ q^{\varepsilon}c \end{matrix} \middle| q \right]_i. \end{aligned}$$

Interchanging the summation order, we can manipulate the last double sum as

$$\begin{aligned} {}_4\phi_3 \left[\begin{matrix} q^{-n}, q^{1+n}a, \sqrt{c}, -\sqrt{c} \\ q\sqrt{a}, -q\sqrt{a}, q^{\varepsilon}c \end{matrix} \middle| q; q \right] &= \sum_{i=0}^{\varepsilon} \left[\begin{matrix} n \\ i \end{matrix} \right] q^{(i+\varepsilon-1)i} c^i \frac{1-cq^{2i-1}}{1-cq^{i-1}} \left[\begin{matrix} q^{-\varepsilon} \\ q^{\varepsilon}c \end{matrix} \middle| q \right]_i \\ &\times \sum_{k=i}^n (-1)^k \left[\begin{matrix} n-i \\ k-i \end{matrix} \right] q^{(\frac{k+1}{2})-nk} \left[\begin{matrix} q^{1+n}a, \sqrt{c}, -\sqrt{c} \\ q\sqrt{a}, -q\sqrt{a}, q^{\varepsilon}c \end{matrix} \middle| q \right]_k. \end{aligned}$$

Shifting the summation index $k \rightarrow i+j$ for the sum on the last line, we get the relation:

$$\begin{aligned} {}_4\phi_3 \left[\begin{matrix} q^{-n}, q^{1+n}a, \sqrt{c}, -\sqrt{c} \\ q\sqrt{a}, -q\sqrt{a}, q^{\varepsilon}c \end{matrix} \middle| q; q \right] &= \sum_{i=0}^{\varepsilon} q^{(i+\varepsilon)i} c^i \left[\begin{matrix} q^{-\varepsilon}, q^{-n}, q^{1+n}a, \sqrt{c}, -\sqrt{c} \\ q, q\sqrt{a}, -q\sqrt{a}, q^{\varepsilon}c, q^{i-1}c \end{matrix} \middle| q \right]_i \\ &\times {}_4\phi_3 \left[\begin{matrix} q^{i-n}, q^{1+n+i}a, q^i\sqrt{c}, -q^i\sqrt{c} \\ q^{1+i}\sqrt{a}, -q^{1+i}\sqrt{a}, q^{2i}c \end{matrix} \middle| q; q \right]. \quad (4) \end{aligned}$$

Evaluating the ${}_4\phi_3$ -series on the last line by (1), we establish the following summation theorem.

Theorem 1. For two complex numbers $\{a, c\}$ and a nonnegative integer ε , there holds the summation formula for q -Andrews-Watson type ${}_4\phi_3$ -series:

$$\begin{aligned} {}_4\phi_3 \left[\begin{matrix} q^{-n}, q^{1+n}a, \sqrt{c}, -\sqrt{c} \\ q\sqrt{a}, -q\sqrt{a}, q^{\varepsilon}c \end{matrix} \middle| q; q \right] &= \sum_{i=0}^{\varepsilon} q^{(\varepsilon+n)i} c^{\frac{n+i}{2}} \left[\begin{matrix} q^{-\varepsilon}, q^{-n}, q^{1+n}a, \sqrt{c}, -\sqrt{c} \\ q, q\sqrt{a}, -q\sqrt{a}, q^{\varepsilon}c, q^{i-1}c \end{matrix} \middle| q \right]_i \\ &\times \left[\begin{matrix} q, q^2a/c \\ q^{2+2i}a, q^{1+2i}c \end{matrix} \middle| q^2 \right]_{\frac{n-i}{2}} \chi(n-i \equiv_2 0) \end{aligned}$$

where $n-i \equiv_2 0$ stands for the congruence relation $n-i \equiv 0 \pmod{2}$ and χ is the logical function defined by $\chi(\text{true}) = 1$ and $\chi(\text{false}) = 0$ otherwise.

Corollary 2 ($\varepsilon = 1$ in Theorem 1).

$${}_4\phi_3 \left[\begin{matrix} q^{-n}, q^{1+n}a, \sqrt{c}, -\sqrt{c} \\ q\sqrt{a}, -q\sqrt{a}, qc \end{matrix} \middle| q; q \right] = \begin{cases} c^s \left[\begin{matrix} q, q^2a/c \\ q^2a, qc \end{matrix} \middle| q^2 \right]_s, & n = 2s; \\ c^{1+s} \left[\begin{matrix} q \\ qc \end{matrix} \middle| q^2 \right]_{1+s} \left[\begin{matrix} q^2a/c \\ q^2a \end{matrix} \middle| q^2 \right]_s, & n = 1 + 2s. \end{cases}$$

Corollary 3 ($\varepsilon = 2$ in Theorem 1).

$$\begin{aligned} {}_4\phi_3 \left[\begin{matrix} q^{-n}, q^{1+n}a, \sqrt{c}, -\sqrt{c} \\ q\sqrt{a}, -q\sqrt{a}, q^2c \end{matrix} \middle| q; q \right] \\ = \begin{cases} \left\{ 1 + \frac{q^2c(1-c)(1-q^{2s})(1-q^{1+2s}a)}{(1-q^2c)(1-q^{1+2s}c)(1-q^{2s}a/c)} \right\} c^s \left[\begin{matrix} q, q^2a/c \\ q^2a, qc \end{matrix} \middle| q^2 \right]_s, & n = 2s; \\ \frac{1-q^2}{1-q^2c} c^{1+s} \left[\begin{matrix} q^3, q^2a/c \\ q^2a, q^3c \end{matrix} \middle| q^2 \right]_s, & n = 1 + 2s. \end{cases} \end{aligned}$$

2.2. Letting $a \rightarrow c/q$, $b \rightarrow q^{-k}$ and $c \rightarrow \sqrt{c}$ for (3), we attain the following equation:

$$\begin{aligned} \sum_{i=0}^{\varepsilon} (-1)^i q^{\varepsilon+(i)_2} c^{\frac{i-\varepsilon}{2}} \frac{1-cq^{2i-1}}{1-cq^{i+\varepsilon-1}} \left[\begin{matrix} q^{-\varepsilon} \\ q \end{matrix} \middle| q \right]_i \left[\begin{matrix} q^{1-\varepsilon}/\sqrt{c} \\ q^{2-\varepsilon-i}/c \end{matrix} \middle| q \right]_{\varepsilon} \\ \times \frac{< q^k; q >_i < cq^{k+\varepsilon-1}; q >_{\varepsilon-i}}{(q^k \sqrt{c}; q)_{\varepsilon}} = 1 \end{aligned}$$

where we have used the symbol:

$$< x; q >_0 = 1 \quad \text{and} \quad < x; q >_n = \prod_{i=0}^{n-1} (1 - xq^{-i}) \quad \text{when } n \in \mathbb{N}.$$

Then we can proceed as follows:

$$\begin{aligned} {}_4\phi_3 \left[\begin{matrix} q^{-n}, q^{1+n}a, q^{\varepsilon}\sqrt{c}, -\sqrt{c} \\ q\sqrt{a}, -q\sqrt{a}, q^{\varepsilon}c \end{matrix} \middle| q; q \right] &= \sum_{k=0}^n \left[\begin{matrix} q^{-n}, q^{1+n}a, q^{\varepsilon}\sqrt{c}, -\sqrt{c} \\ q, q\sqrt{a}, -q\sqrt{a}, q^{\varepsilon}c \end{matrix} \middle| q; q \right]_k q^k \\ &= \sum_{k=0}^n \left[\begin{matrix} q^{-n}, q^{1+n}a, q^{\varepsilon}\sqrt{c}, -\sqrt{c} \\ q, q\sqrt{a}, -q\sqrt{a}, q^{\varepsilon}c \end{matrix} \middle| q; q \right]_k q^k \sum_{i=0}^{\varepsilon} (-1)^i q^{\varepsilon+(i)_2} c^{\frac{i-\varepsilon}{2}} \frac{1-cq^{2i-1}}{1-cq^{i+\varepsilon-1}} \\ &\times \left[\begin{matrix} q^{-\varepsilon} \\ q \end{matrix} \middle| q \right]_i \left[\begin{matrix} q^{1-\varepsilon}/\sqrt{c} \\ q^{2-\varepsilon-i}/c \end{matrix} \middle| q \right]_{\varepsilon} \frac{< q^k; q >_i < cq^{k+\varepsilon-1}; q >_{\varepsilon-i}}{(q^k \sqrt{c}; q)_{\varepsilon}}. \end{aligned}$$

Interchanging the summation order, we can reformulate the last double sum as

$$\begin{aligned} {}_4\phi_3 \left[\begin{matrix} q^{-n}, q^{1+n}a, q^{\varepsilon}\sqrt{c}, -\sqrt{c} \\ q\sqrt{a}, -q\sqrt{a}, q^{\varepsilon}c \end{matrix} \middle| q; q \right] &= \sum_{i=0}^{\varepsilon} (-1)^i q^{\varepsilon+(i)_2} c^{\frac{i-\varepsilon}{2}} \frac{1-cq^{2i-1}}{1-cq^{i+\varepsilon-1}} \\ &\times \left[\begin{matrix} q^{-\varepsilon} \\ q \end{matrix} \middle| q \right]_i \left[\begin{matrix} q^{1-\varepsilon}/\sqrt{c} \\ q^{2-\varepsilon-i}/c \end{matrix} \middle| q \right]_{\varepsilon} \\ &\times \sum_{k=i}^n \left[\begin{matrix} q^{-n}, q^{1+n}a, q^{\varepsilon}\sqrt{c}, -\sqrt{c} \\ q, q\sqrt{a}, -q\sqrt{a}, q^{\varepsilon}c \end{matrix} \middle| q; q \right]_k q^k \frac{< q^k; q >_i < cq^{k+\varepsilon-1}; q >_{\varepsilon-i}}{(q^k \sqrt{c}; q)_{\varepsilon}}. \end{aligned}$$

Shifting the summation index $k \rightarrow i+j$ for the sum on the last line, we achieve the relation:

$$\begin{aligned} {}_4\phi_3 \left[\begin{matrix} q^{-n}, q^{1+n}a, q^{\varepsilon}\sqrt{c}, -\sqrt{c} \\ q\sqrt{a}, -q\sqrt{a}, q^{\varepsilon}c \end{matrix} \middle| q; q \right] \\ = \sum_{i=0}^{\varepsilon} (-1)^i q^{\varepsilon i + (\frac{i+1}{2})} c^{\frac{i}{2}} \left[\begin{matrix} q^{-\varepsilon}, q^{-n}, q^{1+n}a, \sqrt{c}, -\sqrt{c} \\ q, q\sqrt{a}, -q\sqrt{a}, q^{\varepsilon}c, q^{i-1}c \end{matrix} \middle| q \right]_i \\ \times {}_4\phi_3 \left[\begin{matrix} q^{i-n}, q^{1+n+i}a, q^i\sqrt{c}, -q^i\sqrt{c} \\ q^{1+i}\sqrt{a}, -q^{1+i}\sqrt{a}, q^{2i}c \end{matrix} \middle| q; q \right]. \end{aligned} \tag{5}$$

Evaluating the ${}_4\phi_3$ -series on the last line by (1), we found the following summation theorem.

Theorem 4. *For two complex numbers $\{a, c\}$ and a nonnegative integer ε , there holds the summation formula for q -Andrews-Watson type ${}_4\phi_3$ -series:*

$$\begin{aligned} {}_4\phi_3 & \left[\begin{matrix} q^{-n}, q^{1+n}a, q^\varepsilon \sqrt{c}, -\sqrt{c} \\ q\sqrt{a}, -q\sqrt{a}, q^\varepsilon c \end{matrix} \middle| q; q \right] \\ &= \sum_{i=0}^{\varepsilon} (-1)^i q^{(\varepsilon+n)i - \binom{i}{2}} c^{\frac{n}{2}} \left[\begin{matrix} q^{-\varepsilon}, q^{-n}, q^{1+n}a, \sqrt{c}, -\sqrt{c} \\ q, q\sqrt{a}, -q\sqrt{a}, q^\varepsilon c, q^{i-1}c \end{matrix} \middle| q \right]_i \\ &\quad \times \left[\begin{matrix} q, q^2a/c \\ q^{2+2i}a, q^{1+2i}c \end{matrix} \middle| q^2 \right]_{\frac{n-i}{2}} \chi(n-i \equiv 0). \end{aligned}$$

Corollary 5 ($\varepsilon = 1$ in Theorem 4).

$${}_4\phi_3 \left[\begin{matrix} q^{-n}, q^{1+n}a, q\sqrt{c}, -\sqrt{c} \\ q\sqrt{a}, -q\sqrt{a}, qc \end{matrix} \middle| q; q \right] = \begin{cases} c^s \left[\begin{matrix} q, q^2a/c \\ q^2a, qc \end{matrix} \middle| q^2 \right]_s, & n = 2s; \\ -c^{\frac{1}{2}+s} \left[\begin{matrix} q \\ qc \end{matrix} \middle| q^2 \right]_{1+s} \left[\begin{matrix} q^2a/c \\ q^2a \end{matrix} \middle| q^2 \right]_s, & n = 1 + 2s. \end{cases}$$

Corollary 6 ($\varepsilon = 2$ in Theorem 4).

$$\begin{aligned} {}_4\phi_3 & \left[\begin{matrix} q^{-n}, q^{1+n}a, q^2\sqrt{c}, -\sqrt{c} \\ q\sqrt{a}, -q\sqrt{a}, q^2c \end{matrix} \middle| q; q \right] \\ &= \begin{cases} \left\{ 1 + \frac{q(1-c)(1-q^{2s})(1-q^{1+2s}a)}{(1-q^2c)(1-q^{1+2s}c)(1-q^{2s}a/c)} \right\} c^s \left[\begin{matrix} q, q^2a/c \\ q^2a, qc \end{matrix} \middle| q^2 \right]_s, & n = 2s; \\ \frac{q^2-1}{1-q^2c} c^{\frac{1}{2}+s} \left[\begin{matrix} q^3, q^2a/c \\ q^2a, q^3c \end{matrix} \middle| q^2 \right]_s, & n = 1 + 2s. \end{cases} \end{aligned}$$

3. SUMMATION FORMULAE FOR q -JAIN-WATSON TYPE ${}_4\phi_3$ -SERIES

3.1. Performing the replacement $a \rightarrow aq^{-1-n}$ for (4), we have

$$\begin{aligned} {}_4\phi_3 & \left[\begin{matrix} q^{-n}, a, \sqrt{c}, -\sqrt{c} \\ \sqrt{q^{1-n}a}, -\sqrt{q^{1-n}a}, q^\varepsilon c \end{matrix} \middle| q; q \right] = \sum_{i=0}^{\varepsilon} q^{(i+\varepsilon)i} c^i \left[\begin{matrix} q^{-\varepsilon}, q^{-n}, a, \sqrt{c}, -\sqrt{c} \\ q, \sqrt{q^{1-n}a}, -\sqrt{q^{1-n}a}, q^\varepsilon c, q^{i-1}c \end{matrix} \middle| q \right]_i \\ &\quad \times {}_4\phi_3 \left[\begin{matrix} q^{i-n}, q^i a, q^i \sqrt{c}, -q^i \sqrt{c} \\ q^i \sqrt{q^{1-n}a}, -q^i \sqrt{q^{1-n}a}, q^{2i}c \end{matrix} \middle| q; q \right]. \end{aligned}$$

Employing the substitutions $c \rightarrow q^{-2n}$ and $q^{-n} \rightarrow c$ for the last equation, we obtain the following relation:

$$\begin{aligned} {}_4\phi_3 & \left[\begin{matrix} a, c, q^{-n}, -q^{-n} \\ \sqrt{qac}, -\sqrt{qac}, q^{\varepsilon-2n} \end{matrix} \middle| q; q \right] = \sum_{i=0}^{\varepsilon} q^{(i+\varepsilon-2n)i} \left[\begin{matrix} q^{-\varepsilon}, q^{-n}, -q^{-n}, a, c \\ q, \sqrt{qac}, -\sqrt{qac}, q^{\varepsilon-2n}, q^{i-1-2n} \end{matrix} \middle| q \right]_i \\ &\quad \times {}_4\phi_3 \left[\begin{matrix} q^i a, q^i c, q^{i-n}, -q^{i-n} \\ q^i \sqrt{qac}, -q^i \sqrt{qac}, q^{2i-2n} \end{matrix} \middle| q; q \right]. \end{aligned}$$

Evaluating the ${}_4\phi_3$ -series on the last line by (2), we establish the following summation theorem.

Theorem 7. *For two complex numbers $\{a, c\}$ and a nonnegative integer ε with $0 \leq \varepsilon \leq n$, there holds the summation formula for q -Jain-Watson type ${}_4\phi_3$ -series:*

$$\begin{aligned} {}_4\phi_3 & \left[\begin{matrix} a, c, q^{-n}, -q^{-n} \\ \sqrt{qac}, -\sqrt{qac}, q^{\varepsilon-2n} \end{matrix} \middle| q; q \right] = \sum_{i=0}^{\varepsilon} q^{(i+\varepsilon-2n)i} \left[\begin{matrix} q^{-\varepsilon}, q^{-n}, -q^{-n}, a, c \\ q, \sqrt{qac}, -\sqrt{qac}, q^{\varepsilon-2n}, q^{i-1-2n} \end{matrix} \middle| q \right]_i \\ &\quad \times \left[\begin{matrix} q^{1+i}a, q^{1+i}c \\ q, q^{1+2i}ac \end{matrix} \middle| q^2 \right]_{n-i}. \end{aligned}$$

Corollary 8 ($\varepsilon = 1$ in Theorem 7: $n \geq 1$).

$${}_4\phi_3 \left[\begin{matrix} a, c, q^{-n}, -q^{-n} \\ \sqrt{qac}, -\sqrt{qac}, q^{1-2n} \end{matrix} \middle| q; q \right] = \left[\begin{matrix} qa, qc \\ q, qac \end{matrix} \middle| q^2 \right]_n + \left[\begin{matrix} a, c \\ q, qac \end{matrix} \middle| q^2 \right]_n.$$

Corollary 9 ($\varepsilon = 2$ in Theorem 7: $n \geq 2$).

$$\begin{aligned} {}_4\phi_3 \left[\begin{matrix} a, c, q^{-n}, -q^{-n} \\ \sqrt{qac}, -\sqrt{qac}, q^{2-2n} \end{matrix} \middle| q; q \right] &= \frac{(1+q)(1-q^{1-2n})}{1-q^{2-2n}} \left[\begin{matrix} a, c \\ q, qac \end{matrix} \middle| q^2 \right]_n \\ &+ \left\{ 1 + \frac{q(1-a)(1-c)(1-q^{-2n})}{(1-q^{2-2n})(1-aq^{2n-1})(1-cq^{2n-1})} \right\} \left[\begin{matrix} qa, qc \\ q, qac \end{matrix} \middle| q^2 \right]_n. \end{aligned}$$

3.2. Performing the replacement $a \rightarrow aq^{-1-n}$ for (5), we have

$$\begin{aligned} {}_4\phi_3 \left[\begin{matrix} q^{-n}, a, q^\varepsilon \sqrt{c}, -\sqrt{c} \\ \sqrt{q^{1-n}a}, -\sqrt{q^{1-n}a}, q^\varepsilon c \end{matrix} \middle| q; q \right] \\ = \sum_{i=0}^{\varepsilon} (-1)^i q^{\varepsilon i + \binom{i+1}{2}} c^{\frac{i}{2}} \left[\begin{matrix} q^{-\varepsilon}, q^{-n}, a, \sqrt{c}, -\sqrt{c} \\ q, \sqrt{q^{1-n}a}, -\sqrt{q^{1-n}a}, q^\varepsilon c, q^{i-1}c \end{matrix} \middle| q \right]_i \\ \times {}_4\phi_3 \left[\begin{matrix} q^{i-n}, q^i a, q^i \sqrt{c}, -q^i \sqrt{c} \\ q^i \sqrt{q^{1-n}a}, -q^i \sqrt{q^{1-n}a}, q^{2i} c \end{matrix} \middle| q; q \right]. \end{aligned}$$

Employing the substitutions $c \rightarrow q^{-2n}$ and $q^{-n} \rightarrow c$ for the last equation, we get the following relation:

$$\begin{aligned} {}_4\phi_3 \left[\begin{matrix} a, c, q^{\varepsilon-n}, -q^{-n} \\ \sqrt{qac}, -\sqrt{qac}, q^{\varepsilon-2n} \end{matrix} \middle| q; q \right] \\ = \sum_{i=0}^{\varepsilon} (-1)^i q^{(\varepsilon-n)i + \binom{i+1}{2}} \left[\begin{matrix} q^{-\varepsilon}, q^{-n}, -q^{-n}, a, c \\ q, \sqrt{qac}, -\sqrt{qac}, q^{\varepsilon-2n}, q^{i-1-2n} \end{matrix} \middle| q \right]_i \\ \times {}_4\phi_3 \left[\begin{matrix} q^i a, q^i c, q^{i-n}, -q^{i-n} \\ q^i \sqrt{qac}, -q^i \sqrt{qac}, q^{2i-2n} \end{matrix} \middle| q; q \right]. \end{aligned}$$

Evaluating the ${}_4\phi_3$ -series on the last line by (2), we found the following summation theorem.

Theorem 10. For two complex numbers $\{a, c\}$ and a nonnegative integer ε with $0 \leq \varepsilon \leq n$, there holds the summation formula for q -Jain-Watson type ${}_4\phi_3$ -series:

$$\begin{aligned} {}_4\phi_3 \left[\begin{matrix} a, c, q^{\varepsilon-n}, -q^{-n} \\ \sqrt{qac}, -\sqrt{qac}, q^{\varepsilon-2n} \end{matrix} \middle| q; q \right] \\ = \sum_{i=0}^{\varepsilon} (-1)^i q^{(\varepsilon-n)i + \binom{i+1}{2}} \left[\begin{matrix} q^{-\varepsilon}, q^{-n}, -q^{-n}, a, c \\ q, \sqrt{qac}, -\sqrt{qac}, q^{\varepsilon-2n}, q^{i-1-2n} \end{matrix} \middle| q \right]_i \\ \times \left[\begin{matrix} q^{1+i} a, q^{1+i} c \\ q, q^{1+2i} ac \end{matrix} \middle| q^2 \right]_{n-i}. \end{aligned}$$

Corollary 11 ($\varepsilon = 1$ in Theorem 10: $n \geq 1$).

$${}_4\phi_3 \left[\begin{matrix} a, c, q^{1-n}, -q^{-n} \\ \sqrt{qac}, -\sqrt{qac}, q^{1-2n} \end{matrix} \middle| q; q \right] = \left[\begin{matrix} qa, qc \\ q, qac \end{matrix} \middle| q^2 \right]_n - q^n \left[\begin{matrix} a, c \\ q, qac \end{matrix} \middle| q^2 \right]_n.$$

Corollary 12 ($\varepsilon = 2$ in Theorem 10: $n \geq 2$).

$$\begin{aligned} {}_4\phi_3 \left[\begin{matrix} a, c, q^{-n}, -q^{-n} \\ \sqrt{qac}, -\sqrt{qac}, q^{2-2n} \end{matrix} \middle| q; q \right] &= \frac{(1+q)(1-q^{2n-1})}{q^{n-1} - q^{1-n}} \left[\begin{matrix} a, c \\ q, qac \end{matrix} \middle| q^2 \right]_n \\ &+ \left\{ 1 - \frac{(1-a)(1-c)(1-q^{2n})}{(1-q^{2-2n})(1-aq^{2n-1})(1-cq^{2n-1})} \right\} \left[\begin{matrix} qa, qc \\ q, qac \end{matrix} \middle| q^2 \right]_n. \end{aligned}$$

With the change of ε , more concrete formulae could be derived from Theorems 1, 4, 7 and 10. Considering that the resulting identities will become complicated, we shall not display them one by one. Altough Chu [3] gave more formulae for hypergeometric series, we end our paper in the present form because of the restriction of basic hypergeometric series.

REFERENCES

- [1] G.E. Andrews, On q -analogues of the Watson and Whipple summations, SIAM J. Math. Anal. 7(1976), 332-336.
- [2] G.E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, Cambridge, 2000.
- [3] W. Chu, Analytical formulae for extended ${}_3F_2$ -series of Watson-Whipple-Dixon with two extra integer parameters, Math. Comp. 81(2012), 467-479.
- [4] G. Gasper, M. Rahman, Basic Hypergeometric Series (2nd edition), Cambridge University Press, Cambridge, 2004.
- [5] V.K. Jain, Some transformations of basic hypergeometric functions. II, SIAM J. MATH. Anal. 12(1981), 957-961.