TP SIM test « AmpliOp en Biplaire»

 $\begin{array}{c} Donn\acute{e}s \; Techno: \pm Vcc = \pm 5 \; V \; , \\ Tension \; d'Early \; V_a(NPN) \approx \; 140 \; V \qquad ; \; V_a \; (PNP) \approx 30V \\ Gain \; en \; courant: \; \beta(NPN) = \beta(NPN) \approx 300 \end{array}$

Avant de commencer l'analyse, il faut polariser correctement votre AmpliOp. On sait que la tension DC à la sortie doit être mise à 0 pour que push-pull fonctionne correctement. On sait aussi que c'est le circuit de contre-réaction qui fixe cette tension. On doit donc ajouter une contre-rection à l'AmpliOp (par exemple à l'aide d'une inductance et une capa infinies ex $:1e^3$) et mettre une valeur DC de l'entrée non-inverseuse à 0V. Voir TP SIM6 (AO-MOSET) et TP SIM2 du premier semestre (AO-741).

1. Réaliser le circuit sur LTSPICE. Prédire théoriquement et vérifier par simulation les caractéristiques suivantes :

- a. Les tensions et les courants de polarisation dans toutes les branches (sauf le push-pull).
- b. Les gains (boucle ouverte et basse fréquence Ex : 10Hz) suivants:

$$\frac{v_{o1}}{v_{id}}$$
; $\frac{v_{o2}}{v_{id}}$; $\frac{v_{o3}}{v_{o1}}$; $\frac{v_o}{v_{o3}}$; $\frac{v_o}{v_{id}}$ avec $v_{id} = v_{b+} - v_{b-}$

- 2. Déterminer par simulation le pole dominat f_{b0} (c.à.d pôle base fréquence). En déduire le GBW.
- 3. En analysant la réponse en phase, déterminer approximativement jusqu'à quelle fréquence l'AmpliOp se comporte-il comme un filtre d'ordre 1?.
- 4. Déterminer par simulation le pole non-dominat f_{b1} (c.à.d pôle qui vient jute après f_{bo}).
- 5. Utiliser cet Ampli-Op pour réaliser un ampli non-inverseur d'un gain de 60 dB. Prédire théoriquement et vérifier par simulation ses caractéristiques A1 (Gain boucle fermée), fb1 (pôle base fréquence). Commenter.
- 6. Utiliser cet Ampli-Op pour réaliser un ampli non-inverseur d'un gain de 40 dB. Prédire théoriquement et vérifier par simulation ses caractéristiques A2 (Gain boucle fermée), fb2 (pôle base fréquence). Commenter.

partie théorique:

Transistor UB	VE	VC	IESIC	I'B
Q. (NPN) V6-	٧2	VOZ	I,	≈ 0
CR2 CNPM V6+	vs	V01	I,	≈0
CO3 (PNP) VOZ	VCC	Voz	I,	≈o
Q4 CPNF VOZ	Voc	V01	I,	20
GS CPNP) VOI	VCC	V03	۲,	≈0
Q8 (NEW) VPO	-٧٥٤	UPO	I,	20
QCILNPN) UPO	-V 2C	νς	I,	20
QOCICNAN UPO	-100	vs	٤,	20
QOZCNAM VPO	-VLC	VOOL	I,	≈0

avec: . V6-= V6+= O[V]

· US= V6-- 4; = V6+-4; = -4; = -0. 6EV7 · VOZ= VOI = VCC-Uj= U.4 EV) · Vpo = - Vcc + 4; = -4, 4 EV] . voz = vo +u; = u; = 0.6 [v] .VOOZ = VO-4; = -0.6[V] · I = 0.25[~4] gm = \(\frac{\(\text{Tco}\)}{\(\text{UT}\)} = \(\frac{3.6[nAN]}{\(\text{N}\)}\) 96e= 2= 32.1 CMA/VJ que = Tec = 1.8 Emalv] ga= Ico = 8.3 EnANJ (sant 67)

partiz	Sinh	lation:

Rpi:

Cbc:

Cjs: BetaAC: Cbx:

BetaDC: Gm:

3.82e+02 9.11e-02

6.30e-01

1.45e+04

0.00e+00 0.00e+00

0.00e+00 3.88e+02

	Bipolar Transistors								
Name:	q1	q2	q 7	q02	q001				
Model:	bc337-25	bc337-25	bc337-25	bc337-25	bc337-25				
Ib:	9.09e-07	9.06e-07	8.31e-06	9.14e-07	9.14e-07				
Ic:	2.53e-04	2.52e-04	2.35e-03		2.53e-04				
Vbe:	5.73e-01	5.72e-01	6.30e-01		5.73e-01				
Vbc:	-4.45e+00	-4.45e+00	-4.37e+00		-3.85e+00				
Vce:	5.02e+00	5.02e+00	5.00e+00		4.43e+00				
BetaDC:	2.78e+02	2.78e+02	2.83e+02		2.77e+02				
Gm:	9.93e-03	9.89e-03	9.22e-02		9.94e-03				
Rpi:	2.83e+04	2.84e+04	3.08e+03		2.82e+04				
Rx:	5.94e+01	5.94e+01	5.58e+01		5.94e+01				
Ro:	5.78e+05	5.80e+05	6.19e+04		5.75e+05				
Cbe:	7.07e-11	7.06e-11	1.20e-10		0.00e+00				
Cbc:	2.27e-12	2.27e-12	2.28e-12		0.00e+00				
Cjs:	0.00e+00	0.00e+00	0.00e+00		0.00e+00				
BetaAC:	2.81e+02	2.81e+02	2.84e+02		2.80e+02				
Cbx:	2.72e-12	2.71e-12	2.73e-12		0.00e+00				
Ft:	2.09e+07	2.08e+07	1.18e+08		0.00e+00				
	21050101	21000101	11100100	21000101	-				
Name:	q01	q8	q3	q4	q 5				
Model:	bc337-25	bc337-25	bc327-25	bc327-25	bc327-25				
Ib:	9.14e-07	9.14e-07	-8.02e-07	-8.02e-07	-7.26e-07				
Ic:	2.53e-04	2.46e-04	-2.51e-04	-2.51e-04	-2.55e-04				
Vbe:	5.73e-01	5.73e-01	-5.54e-01	-5.54e-01	-5.51e-01				
Vbc:	-3.85e+00	0.00e+00	0.00e+00	-2.67e-03	3.82e+00				
Vce:	4.43e+00	5.73e-01	-5.54e-01	-5.51e-01	-4.37e+00				
BetaDC:	2.77e+02	2.69e+02	3.13e+02	3.13e+02	3.52e+02				
Gm:	9.94e-03	9.68e-03	9.76e-03	9.76e-03	9.93e-03				
Rpi:	2.82e+04	2.82e+04	3.34e+04	3.34e+04	3.69e+04				
Rx:	5.94e+01	5.94e+01	7.70e-01	7.70e-01	7.78e-01				
Ro:	5.75e+05	5.75e+05	1.19e+05	1.19e+05	1.32e+05				
Cbe:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00 -				
Cbc:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00				
Cjs:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00				
BetaAC:	2.80e+02	2.73e+02	3.26e+02	3.26e+02	3.67e+02				
Cbx:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00				
Ft:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00 _				
Name:	q6			Diodes					
Model:	bc327-25	Name:	d1	d2					
Ib:	-6.16e-06	Model:	d	d					
Ic:	-2.35e-03			2.47e-04	_				
Vbe:	-6.08e-01			6.19e-01					
Vbc:	4.39e+00			1.05e+02					
Vce:	-5.00e+00			0.00e+00	_				
BetaDC:	3.82e+02			0.000100					

V(vo2): V(vb-): 9.16482e-05 V(vs): V(vcc): -0.57242 4.44913 V(vol): V(vb+): 0.630077 V(vo3): V(vo): V(v00c): 9.16491e-05 -0.607785 V(vpo): V(-vcc): V(n001): -4.42734 -5 0.0111462 Ic(Q1): Ib(Q1): 0.000252588 9.08988e-07 Ie (01): -0.000253497 Ic (Q2) 0.000251687 Ib (02): 9.05771e-07 Ie(Q2): Ic(Q7): -0.000252593 0.00235172 8.31267e-06 -0.00236003 0.000252984 Ib (Q7): Ie (Q7) Ic (Q02) Ib(Q02): Ie(Q02): 9.14273e-07 -0.000253898 Ic (Q001): 0.000253045 Ib (Q001): Ie (Q001): 9.14272e-07 -0.000253959 Ic(Q01): Ib(Q01): 0.000253045 9.14272e-07 Ie (001): -0.000253959 0.000246343 9.14303e-07 Ib (Q8) : Ie(Q8): Ic(Q3): -0.000247257 -0.000250984 Ib (03): -8.01759e-07 0.000251786 -0.000250962 Ie (Q3): Ic (Q4): Ib (Q4): Ie (Q4): -8.01759e-07 0.000251764 -0.000255131 Ic (Q5): -7.25516e-07 0.000255857 Ib (Q5)

-0.00235296

-6.165e-06 0.00235913

9.16482e-14 0.000246819

0.000246819

9.09001e-07

-0.00336113

-9.05783e-07

0.00025

Ie (Q5):

Ic (Q6):

Ie (Q6): I(C1): I(D1):

I (D2):

I(I1):

I(V1): I(V2):

I(V4):

Peur les paranêtres petits signanx; 1/26= Rp; --- Operating Point --voltage voltage voltage voltage voltage voltage gue = Ro voltage voltage voltage voltage voltage voltage voltage device_current device_current device_current device_current device current device_current device_current device current device_current device current device_current device_current device_current device_current device_current device_current device_current device_current device_current device_current

device_current

partie Simulation:

partie simulation:

