NPDE PG02 实验报告

刘行 PB22000150

2025年10月3日

1 问题描述

本实验研究一维对流方程的初值问题:

$$\begin{cases} u_t = u_x, & -\infty < x < \infty, \quad t > 0, \\ u(x, 0) = \sin(2\pi x), & -\infty < x < \infty \end{cases}$$

该方程描述了一个以单位速度向右传播的波动过程, 其物理意义可以解释为波在介质中的传播. 方程的精确解为 $u(x,t) = \sin(2\pi(x+t))$, 这可以通过特征线方法验证.

2 数值方法

为了数值求解该偏微分方程, 我们采用有限差分方法, 分别实现了三种不同的空间离散格式.

2.1 方案 A: 前差近似

前差格式在空间上采用前向差分近似导数:

$$u_x \approx \frac{u_{j+1}^n - u_j^n}{\Delta x}$$

时间上采用显式欧拉方法, 得到迭代格式:

$$v_j^{n+1} = v_j^n + \frac{\Delta t}{\Delta x} (v_{j+1}^n - v_j^n)$$

该格式的 CFL 稳定性条件为 $\frac{\Delta t}{\Delta x} \leq 1$.

2.2 方案 B: 中心差近似

中心差格式在空间上采用中心差分近似导数:

$$u_x \approx \frac{u_{j+1}^n - u_{j-1}^n}{2\Delta x}$$

结合显式时间离散,得到迭代格式:

$$v_j^{n+1} = v_j^n + \frac{\Delta t}{2\Delta x} (v_{j+1}^n - v_{j-1}^n)$$

对于纯对流方程,中心差格式理论上是无条件不稳定的.

2.3 方案 C: 后差近似

后差格式在空间上采用后向差分近似导数:

$$u_x \approx \frac{u_j^n - u_{j-1}^n}{\Lambda x}$$

相应的迭代格式为:

$$v_j^{n+1} = v_j^n + \frac{\Delta t}{\Delta x} (v_j^n - v_{j-1}^n)$$

对于方程 $u_t = u_x$, 后差格式也是无条件不稳定的.

3 数值实验结果

3.1 初始参数测试

首先采用 $\Delta x = 0.02$, 分别测试 $\Delta t = 0.01$ 和 $\Delta t = 0.03$ 的情况. 数值结果如下:

测试案例	方案	Δt	CFL 数	L2 误差	最大误差
test 1	A	0.01	0.5	4.100489×10^{-2}	5.742160×10^{-2}
	В	0.01	0.5	4.354955×10^{-2}	6.092561×10^{-2}
	\mathbf{C}	0.01	0.5	3.298081×10^6	1.147511×10^7
test 2	A	0.03	1.5	4.334540×10^{-2}	6.075086×10^{-2}
	В	0.03	1.5	1.369424×10^{-1}	1.918264×10^{-1}
	\mathbf{C}	0.03	1.5	4.056187×10^3	1.767405×10^4

表 1: 初始参数测试结果 ($\Delta x = 0.02$)

(a) $\Delta x = 0.02$, $\Delta t = 0.01$ 时的数值解与精确解比较

(b) $\Delta x = 0.02$, $\Delta t = 0.03$ 时的数值解与精确解比较

从结果可以看出, 方案 C 在两种情况下都出现了严重的数值不稳定, 误差达到 10^3 - 10^7 量级, 这与理论预测的后差格式无条件不稳定相符.

然而, 当 CFL 数大于 1 时 (测试 2), 理论上方案 A 应该不稳定, 方案 B 应该表现出更强的不稳定性, 但实际误差相对较小. 这可能是因为计算时间较短, 不稳定性没有充分发展.

3.2 减小步长测试

为了进一步验证数值方法的稳定性, 我们减小空间和时间的步长, 采用 $\Delta x = 0.002$, 分别测试 $\Delta t = 0.001$ 和 $\Delta t = 0.003$ 的情况.

测试案例	方案	Δt	CFL 数	L2 误差	最大误差
test 1	A	0.001	0.5	4.178342×10^{-3}	5.904302×10^{-3}
	В	0.001	0.5	1.130479×10^{-2}	3.612149×10^{-2}
	\mathbf{C}	0.001	0.5	1.110162×10^{86}	6.815202×10^{86}
test 2	A	0.003	1.5	2.399847×10^{13}	7.477785×10^{13}
	В	0.003	1.5	1.041390×10^9	3.857626×10^9
	\mathbf{C}	0.003	1.5	1.091222×10^{56}	8.341998×10^{56}

表 2: 减小步长测试结果 ($\Delta x = 0.002$)

(a) $\Delta x = 0.002$, $\Delta t = 0.001$ 时的数值解与精确解比较

(b) $\Delta x = 0.002$, $\Delta t = 0.003$ 时的数值解与精确解比较

在减小步长的测试中,数值不稳定性更加明显地表现出来:

- 1. 当 CFL 数等于 0.5 时, 方案 A 和 B 的误差较小, 但方案 C 仍然完全 发散.
- 2. 当 CFL 数等于 1.5 时, 所有方案均表现出极端的不稳定性, 误差达到 10^9 - 10^{86} 量级.
- 3. 方案 A 在 CFL 数大于 1 时确实表现出不稳定性, 验证了其 CFL 稳定性条件.
- 4. 方案 B 和 C 在两种 CFL 数下都不稳定, 验证了它们对于纯对流方程的无条件不稳定性.

4 结论

通过本实验, 我们得到以下主要结论:

- 1. 对于方程 $u_t = u_x$, 前差格式 (方案 A) 在 CFL 条件 $\Delta t/\Delta x \leq 1$ 满足时是稳定的, 否则会出现数值不稳定.
- 2. 中心差格式 (方案 B) 和后差格式 (方案 C) 对于纯对流方程都是无条件不稳定的, 这与理论分析一致.
- 3. 在初始参数测试中,由于计算时间较短和初值光滑,不稳定性没有充分发展,导致方案 A 和 B 在 CFL 数大于 1 时的误差相对较小.
- 4. 通过减小步长的进一步测试, 所有格式的稳定性特性都得到了更清晰的验证.
- 5. 数值实验的结果基本符合理论预测, 验证了不同差分格式的稳定性特性.

本实验强调了在选择数值方法时考虑稳定性条件的重要性,以及通过数值实验验证理论分析的必要性.