ECE/CS 6524 HW2 Math Problem

For the math problems, you can submit your scanned hand-written answers (please make sure they are clear to read), or electronic version. Please submit a **PDF** file of math problems independent from the coding part. At the end, you will submit:

- (i) Your solutions to the math problems (PDF file, name format: Assiment2_Math_[YOUR VT PID])
- (ii) Your code (zip file, including .ipynb and all other codes you used for the coding part. No data. Name format: Assignment 2 Code [YOUR PID NUMBER].zip)
- (iii) Your notebook (PDF file, name format: Assignment 2 NB [YOUR PID NUMBER].pdf)

1 Understanding Convolutional Neural Network Basics [10 pts]

This portion ¹ of the assignment is to build your intuition and understanding the basics of convolutional neural networks - namely how convolutional neural layers learn feature maps and how max pooling works - by manually simulating these. This part of the assignment has to be submitted independently.

For questions 1-3, consider the $(5 \times 5 \times 2)$ input with values in $\{-1,0,1\}$ and the corresponding $(3 \times 3 \times 1)$ filter shown in Figure 1.

(As in PyTorch, we refer to this single filter as being $(3 \times 3 \times 1)$ despite having two sub-filters, because it would produce an output with 1 channel. In a case where the input had 4 channels, the filter would have 4 sub-filters but still be $(3 \times 3 \times 1)$.)

- 1. [3 pts] In the provided area in Figure 2, fill in the values resulting from applying a convolutional layer to the input with zero-padding and a stride of 1. Calculate these numbers before any activation function is applied. If there are any unused cells after completing the process in the provided tables, place an \times in them. You can assume a bias of 0. The Output Feature Map will be a combination of the Filtered inputs, as in the Stanford example.
- 2. [2 pts] Think about what ideal 3×3 patch (values in range [-1, 1]) from each of the input channels would maximally activate (i.e. maximizing the output) the corresponding 3×3 filter. Fill in these maximally activating patches in Figure 3. If there are any cells for which the input values don't matter, place an \times in them.
- 3. [1 pt] Spatial pooling: Using your output feature map in question 1, apply max-pooling using a $[2 \times 2]$ kernel with a stride of 1. Fill in your result in Figure 4.
- 4. [4 pts] Number of learnable parameters. Suppose we had the following architecture:

$$inputs \rightarrow conv1 \rightarrow conv2 \rightarrow conv3 \rightarrow maxpool \rightarrow fc1 \rightarrow fc2,$$

where all convs have a stride of 1 and no zero-padding. Conv1 has a kernel size of $[8 \times 8]$ with 12 output channels, conv2 has a $[8 \times 8]$ kernel with 10 output channels, conv3 has a $[6 \times 6]$ kernel with 8 output channels, and maxpool has a $[3 \times 3]$ kernel.

If ReLU is the activation function between each layer and the inputs are $[512 \times 512]$ greyscale images, what are:

 $^{^{1}}$ This problem is inspired by Garrison W. Cottrell 's CSE 253 at UCSD

Input Features Filter 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Figure 1: Input and Filter

Figure 2: Question1

Figure 3: Max Activation

Max Pooled

Figure 4: Max Pooling

- (i) The number of input channels to conv1, conv2 and conv3, respectively? [2 pts]
- (ii) In order to add a fully-connected layer following the maxpool (stride = 1) layer, we need to reshape the convolutional outputs to feed them into this hidden layer. Based on this architecture, what will the incoming dimensions to **fc1** be? Show your work. [2 pts]

Logistic Regression: (10 Marks)

- 2. Logistic regression for two-class classification:
 - N pairs of data points: (\mathbf{x}_i, C_i) , i = 1, ..., N, where \mathbf{x}_i is the feature vector, and C_i is the binary class label (i.e. C_i is either 0 or 1).
 - Logistic regression is a (special) linear classifier: $y_i = \beta_1^T x_i + \beta_0$, but y_i is interpreted as log-odds, i.e., $y_i = \log(p / (1 p))$, where the probability of class 1 ($C_i = 1$) is p, and the probability of class 0 ($C_i = 0$) is 1 p. The prediction is based on sigmoid(y_i) = 1/[1+exp(y_i)]; if sigmoid(y_i) >= 0.5, x_i is predicted as a data sample from class 1; otherwise, class 0
 - The likelihood function is: $\pi_{i=1,...,N} (p(\mathbf{x}_i))^{Ci} (1-p(\mathbf{x}_i))^{(1-Ci)}$, where $p(\mathbf{x}_i)$ is the probability of \mathbf{x}_i from class 1.

Prove that:

- 1. The **log-likelihood** function can be rewritten/formulated as: $\sum_{i=1,...,N} \{C_i(\beta_1^T \mathbf{x}_i + \beta_0) \log[1 + \exp(\beta_1^T \mathbf{x}_i + \beta_0)]\}$
- 2. **Compute the gradient** of the log-likelihood function.