Дискретни структури

план на упражненията КН 1.1, зимен семестър 2023/2024

Kалоян Цветков kaloyants250gmail.com

ФМИ, СУ 2.0

Ресурси (теория и задачи) по Дискретни структури

- теория
- задачи
- ____ теория + задачи
 - сайт на Скелета (задачи от минали години)
 - записки на Мария Соскова
 - записки на Ангел Димитриев
 - лични записки (по упражненията)

Съдържание

1	Вън	ведение 4
	1.1	Съждения
	1.2	Логически операции
	1.3	Квантори
		1.3.1 За всеобщност - ∀
		1.3.2 За екзистенциалност - 🖯
	1.4	Множества и операции над тях
		1.4.1 Множества
		1.4.2 Дефиниране на множества
		1.4.3 Операции над множества
		1.4.4 мултимножество
		1.4.5 разбиване
		1.4.6 покритие
		1.4.7 разкрояване
2	Инд	дукция 11
	2.1	Стандартна индукция
	2.2	Силна индукция
3	Рел	ации 12
•	3.1	Наредена двойка
	3.2	Декартово произведение
	3.3	Релация
	3.4	Домейн и кодомейн
	3.5	Свойства
	3.3	3.5.1 рефлексивност
		3.5.2 антирефлексивност
		3.5.3 симетричност
		3.5.4 антисиметричност
		3.5.5 силна антисиметричност
		3.5.6 транзитивност
	3.6	Интерпретации
	0.0	3.6.1 Матрица
		3.6.2 Граф (диаграма на Хасе)
	3.7	Релации на еквивалентност
	٠. ،	3.7.1 Примери с модулна аритметика
		3.7.2 Модифициране на ред. на екв
		3.7.3 Брой рел. на екв
	3.8	Наредби
	J. U	r-m

		3.8.1	(Нестрога) частична наредба	15
		3.8.2	Строга частична наредба	15
		3.8.3	Линейна наредба	15
	3.9	Специ	ални елементи	15
		3.9.1	Минимален	15
		3.9.2	Най-малък	15
		3.9.3	Максимален	15
		3.9.4	Най-голям	16
		3.9.5	Пример:	16
	3.10	Затваг	ряне на релации	16
			Операции с релации	
			рефлексивно	
				16
				17
		0.10.4	транзитивно	11
4	Фун	нкции/	[/] Изброимост	18
	4.1	,	 TBa	18
	4.2		в на множество	
	4.3		е в при на при	
	4.4		та функция	19

1 Въведение

1.1 Съждения

Изреченията, съдържащи информация, която може да се оцени като вярна и невярна, наричаме **съждения**.

Частта от съждението, която приписва признак, е предикат.

Предикатът може да бъде пресметнат като верен или грешен при прилагането му върху **субект**.

Пример:

"Този химикал е син. "е вярно/грешно съждение, получено от пресмятането на предиката "Х е син. "върху субекта "този химикал".

"Съществува просто число с 100,000,000 цифри"е съждение, но не знаем как да оценим като вярно или грешно все още.

(Най-голямото открито просто число има около 23,000,000 цифри) 1

1.2 Логически операции

Дефиниции чрез вектор/таблица от стойности и на интуитивно ниво.

отрицание

 \neg

p	$\neg p$
0	1
1	0

дизюнкция

V

p	q	$p \vee q$
0	0	0
0	1	1
1	0	1
1	1	1

конюнкция

Λ

p	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

 $^{^{1}{}m K}$ ъм датата 27 октомври 2023 г.!

изключващо или

p	q	$p \oplus q$
0	0	0
0	1	1
1	0	1
1	1	0

импликация (ако ..., то ...)

 \rightarrow

p	q	$p \rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

биимпликация (еквивалентност)

p	\overline{q}	$p \leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

Свойства:

комутативност

$$p \wedge q = q \wedge p$$
 $p \vee q = q \vee p$ $p \oplus q = q \oplus p$

асоциативност

$$p \vee (q \vee r) = (p \vee B) \vee C \qquad p \wedge B) \wedge C) = (p \wedge B) \wedge C$$

дистрибутивност

$$p \vee (q \wedge r) = (p \vee q) \wedge (q \vee r) \qquad p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$$

закон за контапозицията закони на Де Морган

Нека p, q, r, s и t са следните съждения:

р: Ще разходя кучето преди обяд.

q: Сутринта ще спортувам.

r: Следобяд ще спортувам.

- s: Днес времето е хубаво.
- t: Днес влажността на въздуха е ниска.

Напишете логически изрази, съответстващи са следните изречения.

- 1. Няма да разходя кучето преди обяд.
- 2. Ще разходя кучето преди обяд и следобяд ще спортувам.
- 3. Днес ще спортувам или сутринта, или следобяд.
- 4. Днес ще спортувам сутринта или следобяд.
- 5. Ако днес времето е хубаво, следобяд ще спортувам.
- 6. Необходимо условие, за да спортувам днес следобяд е, времето да е хубаво.
- 7. Достатъчно условие, за да спортувам днес е времето да е хубаво и влажността да е ниска.

1.3 Квантори

1.3.1 За всеобщност - ∀

 $\forall x \in A : P(x)$ - предикатът P се оценява като истина за всеки/за произволен елемент от множеството A.

1.3.2 За екзистенциалност - ∃

 $\exists x \in A : P(x)$ - предикатът P се оценява като истина за някой (поне 1) от всички елементи на множеството A.

Кванторите са дуални: отрицанието на единия поражда другия.

$$\neg \exists x \in A : P(x) \longleftrightarrow \forall x \in A : \neg P(x)$$
$$\neg \forall x \in A : P(x) \longleftrightarrow \exists x \in A : \neg P(x)$$

Задача 1.1. R(x) - "x е в стая <номер на стая>";

C(x) - "x следва KH";

F(x,y) - "x е приятел на y";

 \mathcal{A} а се изразят твърденията чрез квантори и предикатите R, C, F.

"Някой следва КН."

 $\exists x : C(x);$

"Всеки е приятел на себе си."

 $\forall x : F(x, x);$

"Приятелството и неприятелството са взаимни."

 $\forall x : \forall y : F(x,y) \to F(y,x); (\exists au_0 \longleftrightarrow he \ e \ heobxodumo)$

"Всеки има приятел."

 $\forall x: \exists y: F(x,y);$

"Всички в стая <номер на стая> следват KH."

 $\forall x : R(x) \to C(x);$

"Всеки в тази стая има приятел от КН, който не е в стаята."

 $\forall x : R(x) \to (\exists y : F(x,y) \land C(y) \land \neg R(y));$

"Хората в стаята, които не следват КН, имат приятел в стаята."

$$\forall x : R(x) \land \neg C(x) \rightarrow \exists y : R(y) \land F(x,y)$$

"Да нямаш приятели е достатъчно условие да не следваш КН."

$$\forall x : (\forall y : \neg F(x, y)) \rightarrow \neg C(x)$$
. (контрапозиция?)

"Двама души са приятели тогава и само тогава, когато имат общ приятел от КН."

$$\forall x : \forall y : F(x,y) \longleftrightarrow \exists z : F(x,z) \land F(y,z) \land C(x)$$

1.4 Множества и операции над тях

1.4.1 Множества

Множество - няма дефиниция; интуитивно: колекция от неща; всички математически обекти са изградени от множества.

1.4.2 Дефиниране на множества

- чрез изброяване
- чрез предикат
- празно множество: $(\exists \emptyset :) \forall x : x \notin \emptyset$.

Дефиниции за равенство на множества, подмножество, строго подмножество.

$$A = B \stackrel{def}{\longleftrightarrow} \forall x : x \in A \longleftrightarrow x \in B$$
$$A \subseteq B \stackrel{def}{\longleftrightarrow} \forall x : x \in A \to x \in B$$
$$A \subset B \stackrel{def}{\longleftrightarrow} A \subseteq B \land A \neq B$$
$$\forall A : \emptyset \subseteq A \land \emptyset \subset A$$

Примери за равни множества (повторението и редът на елементите не е от значение) и подмножества.

$$\{1, 2, \emptyset\} = \{\emptyset, 1, 2\} = \{\emptyset, \emptyset, 1, 2, 1, 1\}$$
$$\{x, 1, y\} \subseteq \{2, y, 1, 5, z, x\}$$
$$\{x, 1, y\} \subset \{2, y, 1, 5, z, x\}$$
$$\{x, 1, y, z, 5, 2\} \subseteq \{2, y, 1, 5, z, x\}$$

1.4.3 Операции над множества

таблици (за произволен елемент "смятаме" резултат спрямо предикатите $x \in A$ и $x \in B$) Аналогии с логическите операции.

обединение

$$A \cup B := \{x | x \in A \lor x \in B\}$$

сечение

$$A\cap B:=\{x|x\in A\wedge x\in B\}$$

разлика

$$A \backslash B := \{x | x \in A \land x \not \in B\}$$

симетрична разлика

$$A\Delta B:=\{x|x\in A\oplus x\in B\}$$

Доказателтво ,че:

•
$$A\Delta B = (A \cup B) \setminus (A \cap B)$$

A	B	$A \cup B$	$A \cap B$	$A \cup B \setminus (A \cap B)$	$A\Delta B$
0	0	0	0	0	0
0	1	1	0	1	1
1	0	1	0	1	1
1	1	1	1	0	0

$$\implies \forall x : x \in (A \cup B) \setminus (A \cap B) \leftrightarrow x \in A\Delta B \implies (A \cup B) \setminus (B \cap A) = A\Delta B$$

•
$$A\Delta B = (A\backslash B) \cup (B\backslash A)$$
.

A	B	$A \backslash B$	$B \backslash A$	$(A \backslash B) \cup (A \backslash B)$	$A\Delta B$
0	0	0	0	0	0
0	1	0	1	1	1
1	0	1	0	1	1
1	1	0	0	0	0

$$\implies \forall x: x \in (A \backslash B) \cup (A \backslash B) \leftrightarrow x \in A \Delta B \implies (A \backslash B) \cup (A \backslash B) = A \Delta B$$

Допълнение на множество

Универсално множество - съдържа всички разглеждани множества; определя се от контекста.

$$\overline{A} := U \backslash A; \qquad \overline{\overline{A}} = A.$$

Свойства:

• комутативност

$$A \cap B = B \cap A$$
 $A \cup B = B \cup A$ $A \triangle B = B \triangle A$

• асоциативност

$$A \cup (B \cup C) = (A \cup B) \cup C \qquad A \cap (B \cap C) = (A \cap B) \cap C$$

Обединение на няколко множества: $\bigcup_{i \in I} A_i := \{x | \exists i \in I : x \in A_i\}$

Сечение на няколко множества: $\bigcap_{i \in I} A_i := \{x | \forall i \in I : x \in A_i\}$

• дистрибутивност

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \qquad A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

празно множество

$$A \cup \emptyset = A$$
 $A \cap \emptyset = \emptyset$ $A \setminus \emptyset = A$

закони на Де Морган

$$\overline{A \cap B} = \overline{A} \cup \overline{B} \qquad \overline{A \cup B} = \overline{A} \cap \overline{B}$$

степенно множество

$$\mathcal{P}(A) = 2^A := \{x | x \subseteq A\}$$

Примери за степенни множества.

$$\mathcal{P}(\{1,2,3\}) = \{\emptyset, \{1\} \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}\}$$

$$\mathcal{P}(\{\emptyset, \{1,2\}, 7\}) = \{\emptyset, \{\emptyset\} \{\{1,2\}\}, \{7\}, \{\emptyset, \{1,2\}\}, \{\emptyset, 7\}, \{\{1,2\}, 7\}, \{\emptyset, \{1,2\}, 7\}\}\}$$

Задача 1.2. Вярно ли е, че

$$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C) \ (ne)$$
$$(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C) \ (\partial a)$$

1.4.4 мултимножество

Множество, в което броя на повторенията на елементите е от значение.

$$\{1,3,3,2,1\}=\{1,2,3\}\,$$
 разглеждани като множества $\{1,3,3,2,1\}
eq \{1,2,3\}\,$ разглеждани като мултимножества

1.4.5 разбиване

$$F=\{A_i|i\in I\}$$
 е разбиване на $A \stackrel{def}{\longleftrightarrow} Vi\in I: A_i
eq \emptyset$
$$\bigcup_{i\in I} A_i = A$$

$$\forall i,j\in I: i
eq j
ightarrow A_i \cap A_j = \emptyset$$

 $\{S\}$ разбиване ли е на S? (да $\longleftrightarrow S \neq \emptyset$)

1.4.6 покритие

$$F=\{A_i|i\in I\}$$
 е покритие на $A \stackrel{def}{\longleftrightarrow} Yi\in I: A_i
eq \emptyset$
$$A\subseteq \bigcup_{i\in I}A_i$$

1.4.7 разкрояване

$$F=\{A_i|i\in I\}$$
 е разкрояване на $A\overset{def}{\longleftrightarrow}$ $\forall i\in I:A_i\neq\emptyset$
$$\bigcup_{i\in I}A_i\subseteq A$$
 $\forall i,j\in I:i\neq j\to A_i\cap A_j=\emptyset$

2 Индукция

Плочки домино:

Бутнали сме първата плочка и знаем, че ако падне n-тата ще падне и n+1-вата. Тогава ще паднат всички плочки.

2.1 Стандартна индукция

$$P(0) \land (\forall n \in \mathbb{N} : (P(n) \to P(n+1))) \to \forall n \in \mathbb{N} : P(n)$$

Принцип на индукцията

- Проверяваме верността на твърдението за n = 0 (P(0));
- Допускаме, че твърдението е вярно за някое n (P(n));
- Доказваме, че твърдението е вярно и за n+1 $(P(n) \to P(n+1)).$
- Тогава $\forall n \geq 0 : P(n)$.

Задача 2.1. Да се докаже, че $|2^A| = 2^{|A|}$.

Упътване:.
$$|A| = n + 1 \ge 1 \implies |A \setminus \{a\}| = n \ge 0 \implies |2^{A \setminus \{a\}}| = 2^n$$

 \implies Подмножествата на A не съдържащи а са 2^n . Подмножествата на A са тези, несъдържащи a, и същите, обединени c $\{a\}$ \implies

$$\mathcal{P}(A) = \{x | x \subseteq A \land a \notin x\} \cup \{x | x \subseteq A \land a \in x\}$$

 $|\mathcal{P}(A)| = |\{x | x \subseteq A \land a \notin x\}| + |\{x | x \subseteq A \land a \in x\}|$ (since they have no intersection)

$$|\mathcal{P}(A)| = |\mathcal{P}(A \setminus \{a\})| + |\{x | x \in \mathcal{P}(A \setminus \{a\}) \land a \in x\}|$$

 $me \ ca \ 2.2^n = 2^{n+1}.$

Обобщен принцип на индукцията

$$P(n_0) \land (\forall n \ge n_0 : (P(n) \to P(n+1))) \to \forall n \ge n_0 : P(n)$$

- Проверяваме верността на твърдението за $n = n_0$ $(P(n_0));$
- Допускаме, че твърдението е вярно за някое n (P(n));
- Доказваме, че твърдението е вярно и за n+1 $(P(n) \to P(n+1)).$
- Тогава $\forall n \geq n_0 : P(n)$.

2.2 Силна индукция

$$P(0) \land (\forall n \in \mathbb{N} : ((\forall k \le n : P(k)) \to P(n+1))) \to \forall n \in \mathbb{N} : P(n)$$

3 Релации

3.1 Наредена двойка

$$(a,b) \stackrel{\text{def}}{=} \{a, \{a,b\}\}\$$
$$(a,b) = (c,d) \leftrightarrow a = c \land b = d$$

3.2 Декартово произведение

$$A \times B \stackrel{\mathrm{def}}{=} \{ (a, b) \mid a \in A \land b \in B \}$$

Пример:

$$\{1, 3, 5\} \times \{2, 4\} = \{(1, 2), (1, 4), (3, 2), (3, 4), (5, 2), (5, 4)\}\$$
 $\emptyset \times \{0, 2\} = \emptyset$

няма комутативност: $A \times B \neq B \times A$

Мощност на декартово произведение: $|A \times B| = |A|.|B|$ (доказателство с индукция по |A|)

3.3 Релация

релация е всяко подможество на декартово произведение

 $R \subseteq A_1 \times A_2 \times ... \times A_n$ - n-местна релация

при n=2: бинарна релация $R\subseteq A\times A$ - бинарна релация над A Пример за 3-местна релация:

 $(a,b,c) \in R \stackrel{def}{\Longleftrightarrow} a,b,c$ са страни на триъгълник.

Ако |A| = n, то колко са бинарните релации над $A(2^n)$

3.4 Домейн и кодомейн

$$dom\left(R\right)=\{a|\exists b\in A:(a,b)\in R\}$$
 - домейн $range\left(R\right)=\{b|\exists a\in A:(a,b)\in R\}$ - кодомейн, range

3.5 Свойства

$$R \subseteq A \times A$$

3.5.1 рефлексивност

$$\forall a \in A : (a, a) \in R$$

3.5.2 антирефлексивност

$$\forall a \in A : (a, a) \notin R$$

3.5.3 симетричност

$$\forall a, b \in A : (a, b) \in R \to (b, a) \in R$$

3.5.4 антисиметричност

$$\forall a,b \in A: a \neq b \rightarrow ((a,b) \in R \rightarrow (b,a) \not\in R)$$
 (възможно е да има и несравними елементи) \longleftrightarrow $\forall a,b \in A: (a,b) \in R \land (b,a) \in R \rightarrow a = b$

$$\forall a, b \in A : (a, b) \in R \oplus (b, a) \in R$$

3.5.6 транзитивност

$$\forall a, b, c \in A : (a, b) \in R \land (b, c) \in R \rightarrow (a, c) \in R$$

3.6 Интерпретации

$$R = \{(1, 2), (1, 3), (1, 4), (3, 1), (2, 4), (3, 3), (2, 5), (5, 4), (5, 2)\}$$

3.6.1 Матрица

	1	2	3	4	5	6
1		X	X	х		
2				х	х	
3	х		Х			
4						
5		X		х		
6						

3.6.2 Граф (диаграма на Хасе)

Интерпретация на свойствата с матрица и граф.

Задача 3.1. Какви свойства притежават релациите:

- $R \subseteq \mathbb{R} \times \mathbb{R}, R = \{(a, b) | a b \in \mathbb{Z}\}$
- $R \subseteq \mathbb{R} \times \mathbb{R} : \{(a,b) | a+b \ge 5\}$
- $R \subseteq 2^{\mathbb{N}} \times 2^{\mathbb{N}}, R = \{(a, b) | a \cap b \neq \emptyset\}$
- $R \subseteq \{0, 1, 2\}^2, R = \{(a, b) | a + b \ge 5\}$

3.7 Релации на еквивалентност

R е релация на еквивалентност $\stackrel{def}{\longleftrightarrow} R$ е рефлексивна, симетрична и транзитивна. Примери: равенство на числа, еднаквост и подобие на триъгълници.

$$[x]_{R} \stackrel{\mathrm{def}}{=} \{ y | (x, y) \in R \}$$

Теорема: (лекции и изпит)

$$R \subseteq A \times A$$

$$F_R:=\{[x]_R\,|x\in A\}\,$$
е разбиване на A

3.7.1 Примери с модулна аритметика

$$R \subseteq \mathbb{N} \times \mathbb{N}$$

$$aRb \leftrightarrow 4 \mid a-b$$

Да се докаже, че R е релация на еквивалентност. $R \subseteq \mathbb{Z} \times \mathbb{Z}$

$$xRy \leftrightarrow 2 \mid 2x - 5y$$

Да се докаже, че R е релация на еквивалентност.

3.7.2 Модифициране на рел. на екв.

Нека R_1, R_2 са релации на еквивалентност над A. Релации на еквивалентност ли са релациите:

- $R_1 \cup R_2$ (не)
- $R_1 \cap R_2$ (да)
- $R_1 \Delta R_2$ (не)

3.7.3 Брой рел. на екв.

Колко са релациите на еквивалентност над $A = \{1, 2, 3, 4\}$? (брой разбивания на 4-елементно множество)

3.8 Наредби

3.8.1 (Нестрога) частична наредба

R е частична наредба, когато е рефлексивна, антисиметрична и транзитивна.

Примери: \geq , \leq , \subseteq .

3.8.2 Строга частична наредба

R е строга частична наредба, когато е антирефлексивна, антисиметрична и транзитивна.

Примери: $>, <, \subset$.

3.8.3 Линейна наредба

R е линейна (пълна) наредба, когато е рефлексивна, силно антисиметрична и транзитивна.

Въпрос 3.1. Колко елемента има линейна наредба над n-елементно множество? $\left(\frac{n^2+n}{2}\right)$

3.9 Специални елементи

$$R \subseteq A \times A$$

3.9.1 Минимален

aе минимален $\stackrel{def}{\longleftrightarrow} \forall b \in A: b \neq a \to (b,a) \not \in R$

след обръщане на кванторите - "няма по-малък от него".

3.9.2 Най-малък

$$a$$
 е най-малък $\stackrel{def}{\longleftrightarrow} \forall b \in A: b \neq a \to (a,b) \in R$

"по-малък от всички други"

3.9.3 Максимален

$$a$$
 е максимален $\stackrel{def}{\longleftrightarrow} \forall b \in A : b \neq a \to (a,b) \not\in R$

след обръщане на кванторите - "няма по-голям от него".

Въпрос 3.2. Възможно ли е да има 0,1,>1 минимален/максимален елемент в частична наредба? (0 - не (ако R е частична наредба, то R има минимален и максимален елемент (теорема)), 1 - да, 2 - да)

A в линейна? (0 - не (линейната наредба е и частична), 1 - ∂a , 2 - не)

3.9.4 Най-голям

$$a$$
 е най-голям $\stackrel{def}{\longleftrightarrow} \forall b \in A : b \neq a \to (b,a) \in R$

"по-голям от всички други"

Въпрос 3.3. Възможно ли е да има повече от 1 най-малък/най-голям елемент в наредба? (не)

3.9.5 Пример:

Да се посочат минимални, максимални, най-големи и най-малки елементи

	1	2	3	$\mid 4 \mid$	5	6	7	8
1			X	X				X
2	X	X	Х	X	X	X	X	X
3							X	
4				х			Х	
5								
6					х			X
7						х		X
8								

(При наличие на най-малък/най-голям, наличието на друг минимален/максимален е изключено.)

3.10 Затваряне на релации

3.10.1 Операции с релации

- Обратна релация: $R^{-1} = \{(b, a) \mid (a, b) \in R\}$
- Допълнение на релация: $\overline{R} = \{(a,b) \mid (a,b) \not\in R\}$
- Композиция на релации: $S \circ R = \{(a,c) \mid \exists b \in A : (a,b) \in R \land (b,c) \in S\}$ $R \subseteq A \times A$

3.10.2 рефлексивно

$$refl(R) = R \cup \{(a, a) | a \in A\}$$

3.10.3 симетрично

$$sym(R) = R \cup R^{-1}$$

3.10.4 транзитивно

$$R^1=R; R^n=R\circ R^{n-1}$$
 при $n>1$ $trans(R)=\bigcup_{n\in\mathbb{N}^+}R^n$

Да се намери рефлексивното, симетричното и транзитивното затваряне на $R = \{(0,1), (0,2), (3,4), (3,5), (4,5), (6,7)\}$

(Получаваме релация на еквивалентност с класове $\mathcal{F}_R = \{\{0,1,2\},\{3,4,5\},\{6,7\}\}$)

Задача 3.2. Да се докаже, че релацията | - "дели"е частична наредба над \mathbb{N} . Да се посочат (или да се докаже, че такива няма) най-голям, най-малък, минимален и максимален елемент.

Задача 3.3 (свеждане до умножение на матрици). $He\kappa a |A| = n$.

 $He\kappa a\ S = \{x | xA\}.$

 $Heкa\ R \subseteq S \times S.$

 $R_1RR_2 \stackrel{\overline{def}}{\longleftrightarrow} R_1 \circ R_2 = R_2 \circ R_1$. Релация на еквивалентност ли е R? Докажете.

Задача 3.4. Нека $R \subseteq A \times A$ е рефлексивна и транзитивна релация.

 $He\kappa a \sim \subseteq A \times A : a \sim b \leftrightarrow aRb \wedge bRa.$

Докажете, че \sim е релация на еквивалентност.

 $F := \{ [x]_{\sim} \mid x \in A \}$

 $\langle \subseteq F \times F : [a]_{\sim} \langle [b]_{\sim} \leftrightarrow \exists x \in [a]_{\sim} \exists y \in [b]_{\sim} : xRy$

Да се докаже, че \langle е частична наредба.

4 Функции/Изброимост

$$f$$
 е (тотална) функция $\stackrel{def}{\longleftrightarrow} f \subseteq A \times B \wedge \forall a \in A: \exists! b \in B: (a,b) \in f$ (точно 1 образ)
$$f(x) = y \longleftrightarrow (x,y) \in f$$

$$f$$
 е частична функция $\stackrel{def}{\longleftrightarrow}$
$$f \subseteq A \times B \wedge \forall a \in A: \forall b_1 \in B: \forall b_2 \in B: (a,b_1) \in f \wedge (a,b_2) \in f \implies b_1 = b_2$$
 (най-много 1 образ)
$$f$$
 е функция и $f \subseteq A \times B$ - записваме $f: A \longrightarrow B$

Въпрос 4.1. Кои са релациите на еквивалентност $R \subseteq A \times A$, които са функции?

Упътване:. Допускаме, че R има клас на еквивалентност с поне 2 елемента $a \neq b \implies aRb \land aRa \implies a = b \implies npomusopevue \implies само идентитетт е релация на еквивалентност и функция едновременно.$

4.1 Свойства

$$f:A\longrightarrow B$$

- инекция: $\forall a_1 \in A : \forall a_2 \in A : a_1 \neq a_2 \longrightarrow f(a_1) \neq f(a_2)$ f е инекция $\longrightarrow |A| \leq |B|$ (необходимо условие за инекция) Примери: $f : \mathbb{R} \longrightarrow \mathbb{R}; f(x) = x \backslash 2^x$ са инекции Примери: $f : \mathbb{R} \longrightarrow \mathbb{R}; f(x) = x^2 \backslash sin(x) \backslash x^2 3x + 2$ не са инекции
- сюрекция: $\forall b \in B : \exists a \in A : f(a) = b$ f е сюрекция $\longrightarrow |A| \ge |B|$ Примери: $f : \mathbb{R} \longrightarrow \mathbb{R}; f(x) = x$ $f : \mathbb{R} \longrightarrow (0,1); f(x) = \frac{1}{x}$ са сюрекции Примери: $f : \mathbb{R} \longrightarrow \mathbb{R}; f(x) = x^2 \backslash \sin(x) \backslash x^2 3x + 2$ не са сюрекции
- биекция инекция и сюрекция (необходимо условие за сюрекция) $\forall b \in B: \exists ! a \in A: f(a) = b$ f е биекция $\longrightarrow |A| = |B|$ (необходимо условие за биекция) Примери: $f: \mathbb{R} \longrightarrow \mathbb{R}; f(x) = x^{2n+1}$ е биекции $\forall n \in \mathbb{N}$

Ако има инекция $A \longrightarrow B$, то има сюрекция $B \longrightarrow A$.

4.2 Образ на множество

Нека
$$f:A\longrightarrow B$$
 и $X\subseteq A$ $f(X)=\{f(x)|x\in X\}$

4.3 Композиция

Нека
$$f: A \longrightarrow B, g: B \longrightarrow C$$

 $g \circ f: A \longrightarrow C, (g \circ f)(x) = g(f(x))$

4.4 Обратна функция

Нека
$$f:A\longrightarrow B$$
 е биекция (при инекция обратната функция е частична). $f^{-1}:B\longrightarrow A,\ f^{-1}(y)=x\stackrel{def}{\longleftrightarrow}f(x)=y$

to be continued...