	$\sigma^{\#1}_{1^+lphaeta}$	$\sigma^{\#2}_{1^+lphaeta}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1}^{\#1}{}_{\alpha}$	$\sigma_{1}^{\#2}{}_{\alpha}$	$\tau_{1-\alpha}^{\#1}$	τ ₁ - α
$\sigma_{1}^{\sharp 1} \dagger^{lphaeta}$	$\frac{1}{k^2(2r_1+r_5)}$	$\frac{1}{\sqrt{2} (k^2 + k^4) (2r_1 + r_5)}$	$\frac{i}{\sqrt{2} (k+k^3) (2r_1+r_5)}$	0	0	0	0
$\sigma_{1}^{\#2} \dagger^{\alpha\beta}$	$\frac{1}{\sqrt{2} (k^2 + k^4) (2 r_1 + r_5)}$	$\frac{6k^2(2r_1+r_5)+t_1}{2(k+k^3)^2(2r_1+r_5)t_1}$	$\frac{i(6k^2(2r_1+r_5)+t_1)}{2k(1+k^2)^2(2r_1+r_5)t_1}$	0	0	0	0
$ au_{1}^{\#1} \dagger^{lphaeta}$	$-\frac{i}{\sqrt{2} (k+k^3) (2r_1+r_5)}$	$-\frac{i(6k^2(2r_1+r_5)+t_1)}{2k(1+k^2)^2(2r_1+r_5)t_1}$	$\frac{6k^2(2r_1+r_5)+t_1}{2(1+k^2)^2(2r_1+r_5)t_1}$	0	0	0	0
$\sigma_{1}^{\#1}\dagger^{lpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	0	$\frac{2ik}{t_1+2k^2t_1}$
$\sigma_{1}^{\#2}\dagger^{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2(r_1+r_5)-t_1)}{(t_1+2k^2t_1)^2}$
$\tau_1^{\#1} \uparrow^{\alpha}$	0	0	0	0	0	0	0
$\tau_1^{\#2} \uparrow^{\alpha}$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2}k(2k^2(r_1+r_5)-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4 k^4 (r_1 + r_5) + 2 k^2 t_1}{(t_1 + 2 k^2 t_1)^2}$

	$\omega_{1}^{\sharp 1}{}_{lphaeta}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1^{-} \ lpha}^{\# 1}$	$\omega_{1}^{\#2}{}_{\alpha}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}\alpha$
$\omega_{1}^{\#1} \dagger^{\alpha\beta}$	$k^2 (2r_1 + r_5) + \frac{t_1}{6}$	$-\frac{t_1}{3\sqrt{2}}$	$-\frac{ikt_1}{3\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	3 12	<u>t1</u> 3	<u>i kt</u> 3	0	0	0	0
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$\frac{ikt_1}{3\sqrt{2}}$	$-\frac{1}{3}\bar{l}kt_1$	$\frac{k^2t_1}{3}$	0	0	0	0
$\omega_{1}^{\sharp 1}$ † lpha	0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	īkt ₁
$\omega_1^{\#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	- i k t ₁	0	0	0

Massive particle

Polarisations: 5

 $\frac{1}{r_1} > 0$

 $\frac{t_1}{2r_1} > 0$

Odd

Pole residue:

Square mass:

Spin:

Parity:

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$	
$\sigma_{2}^{\#1}\dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$	

	$\omega_{_{\mathrm{O}}^{+}}^{\sharp1}$	$f_{0+}^{#1}$	$f_{0+}^{#2}$	$\omega_{0}^{#1}$
$\omega_{0}^{\#1}$ †	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0+}^{#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
c#2 ı	•			

) '	, 0 ,	, 0,	ω_0	
1	$i \sqrt{2} kt_1$	0	0	
$\frac{1}{2}kt_1$	$-2 k^2 t_1$	0	0	
)	0	0	0	
)	0	0	0	

? $^?$	Quadratic pole	
	? Pole residue:	$\left \frac{1}{(2r_1 + r_5)t_1^2 p^2} > 0 \right $
?	Polarisations:	2

Lagrangian density

$-t_1 \ \omega_{_{\prime}}^{\ \alpha\prime} \ \omega_{_{\kappa\alpha}}^{\ \kappa} - \frac{1}{3} t_1 \ \omega_{_{\prime}}^{\ \kappa\lambda} \ \omega_{_{\kappa\lambda}}^{\ \prime} + \frac{1}{3} t_1 \ \omega_{_{\kappa\lambda}}^{\ \prime} \ \omega_{_{\kappa\lambda}}^{\ \prime} - r_5 \ \partial_{_{\prime}} \omega_{_{\kappa}}^{\kappa\lambda} \ \partial^{\prime} \omega_{_{\lambda}}^{\ \alpha} -$
$\frac{2}{3} r_1 \partial^{\beta} \omega^{\theta \alpha}_{\kappa} \partial_{\theta} \omega_{\alpha \beta}^{\kappa} - \frac{2}{3} r_1 \partial_{\theta} \omega_{\alpha \beta}^{\kappa} \partial_{\kappa} \omega^{\alpha \beta \theta} + \frac{2}{3} r_1 \partial_{\theta} \omega_{\alpha \beta}^{\kappa} \partial_{\kappa} \omega^{\theta \alpha \beta} -$
$r_5 \partial_\alpha \omega_{\lambda \ \theta}^{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} + r_5 \partial_\theta \omega_{\lambda \ \alpha}^{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} - r_5 \partial_\alpha \omega_{\lambda \ \theta}^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} +$
$2 r_5 \partial_{\theta} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} - \frac{1}{3} t_1 \partial^{\alpha} f_{\theta \kappa} \partial^{\kappa} f_{\alpha}^{\theta} - \frac{2}{3} t_1 \partial^{\alpha} f_{\kappa \theta} \partial^{\kappa} f_{\alpha}^{\theta} -$
$\frac{1}{3} t_1 \partial^{\alpha} f^{\lambda}_{\kappa} \partial^{\kappa} f_{\alpha\lambda} + t_1 \omega_{\kappa\alpha}^{\alpha} \partial^{\kappa} f'_{i} + t_1 \omega_{\kappa\lambda}^{\lambda} \partial^{\kappa} f'_{i} + 2 t_1 \partial^{\alpha} f_{\kappa\alpha} \partial^{\kappa} f'_{i} -$
$t_1 \partial_{\kappa} f^{\lambda}_{\ \lambda} \partial^{\kappa} f^{\prime}_{\ \prime} + \tfrac{1}{3} t_1 \omega_{\prime \theta \kappa} \partial^{\kappa} f^{\prime \theta} + \tfrac{4}{3} t_1 \omega_{\prime \kappa \theta} \partial^{\kappa} f^{\prime \theta} - \tfrac{1}{3} t_1 \omega_{\theta \prime \kappa} \partial^{\kappa} f^{\prime \theta} +$
$\frac{2}{3} t_1 \omega_{\theta \kappa \iota} \partial^{\kappa} f^{\iota \theta} - t_1 \omega_{\iota \alpha}^{\ \alpha} \partial^{\kappa} f^{\prime}_{\ \kappa} - t_1 \omega_{\iota \lambda}^{\ \lambda} \partial^{\kappa} f^{\prime}_{\ \kappa} + \frac{1}{3} t_1 \partial^{\alpha} f^{\lambda}_{\ \kappa} \partial^{\kappa} f_{\lambda \alpha} +$
$\frac{1}{3} t_1 \partial_{\kappa} f_{\theta}^{\lambda} \partial^{\kappa} f_{\lambda}^{\theta} + \frac{2}{3} t_1 \partial_{\kappa} f_{\theta}^{\lambda} \partial^{\kappa} f_{\lambda}^{\theta} - t_1 \partial^{\alpha} f_{\alpha}^{\lambda} \partial^{\kappa} f_{\lambda\kappa} +$
$\frac{2}{3} r_1 \partial_{\kappa} \omega^{\alpha\beta\theta} \partial^{\kappa} \omega_{\alpha\beta\theta} - \frac{2}{3} r_1 \partial_{\kappa} \omega^{\theta\alpha\beta} \partial^{\kappa} \omega_{\alpha\beta\theta} + \frac{2}{3} r_1 \partial^{\beta} \omega_{i}^{\alpha\lambda} \partial_{\lambda} \omega_{\alpha\beta}^{i} -$
$\frac{8}{3} r_1 \partial^{\beta} \omega_{I}^{\lambda \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{I} + r_5 \partial_{\alpha} \omega_{\lambda}^{\alpha}{}_{\theta} \partial^{\lambda} \omega_{\kappa}^{\theta \kappa} - r_5 \partial_{\theta} \omega_{\lambda}^{\alpha}{}_{\alpha} \partial^{\lambda} \omega_{\kappa}^{\theta \kappa}$
Added source term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$

0

0 0 0

Source constraints

 $\tau_{0^{+}}^{\#1} - 2 \, i \, k \, \sigma_{0^{+}}^{\#1} == 0$

 $\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} = 0 \quad 3$

 $\tau_{1^{+}}^{\#1\,\alpha\beta} + i\,k\,\,\sigma_{1^{+}}^{\#2\,\alpha\beta} == 0 \quad 3$

 $\tau_{2+}^{\#1\,\alpha\beta} - 2\,i\,k\,\,\sigma_{2+}^{\#1\,\alpha\beta} == 0$

17

SO(3) irreps

 $\overline{\sigma_{0}^{\#1}} == 0$

 $\tau_{0^{+}}^{\#2} == 0$

 $\tau_1^{\#1\alpha} == 0$

Total #:

 $\omega_2^{\#1} \dagger^{\alpha\beta\chi}$

$$r_1 < 0 \&\& r_5 > -2 r_1 \&\& t_1 > 0$$

 $\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

0

0

 $k^2 r_1 + \frac{t_1}{2}$