ЛАБОРАТОРНА РОБОТА 6

Розріджені матриці

ТЕОРЕТИЧНИЙ МАТЕРІАЛ

Розрідженими називають матриці, більшість елементів яких дорівнюють нулю.

Способи зберігання розрідженої матриці:

1. За допомогою трьох масивів/векторів.

```
\begin{pmatrix}
2 & 0 & 0 & 0 & 8 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 5 & 0 & 0 \\
0 & 3 & 1 & 0 & 0
\end{pmatrix}

rows: \{0, 0, 2, 3, 3\}
columns: \{0, 4, 2, 1, 2\}
```

2. За допомогою одного масиву¹

```
2 0 0 0 8

0 0 0 0 0

0 0 5 0 0

0 3 1 0 0

2, 0, 0, 8, 0, 4, 5, 2, 2, 3, 3, 1, 1, 3, 2}
```

3. За допомогою масиву структур²

```
\[ \begin{pmatrix} 2 & 0 & 0 & 0 & 8 \ 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 5 & 0 & 0 \ 0 & 3 & 1 & 0 & 0 \end{pmatrix} \]
\[ \begin{pmatrix} \text{value: 2} & 2 & \text{value: 8} \ \text{row: 0} & \text{column: 4} \end{pmatrix} \]
\[ \text{value: 5} & \text{row: 2} & \text{row: 3} \ \text{column: 1} \end{pmatrix} \]
\[ \text{value: 1} & \text{row: 3} \ \text{column: 2} \end{pmatrix} \]
```

¹ Таким способом можна зберігати лише матриці, елементами яких є цілі числа.

² Метод придатний для довільних типів значень елементів матриці.

4. За допомогою зв'язного списку структур.

5. За допомогою масиву зв'язних списків, які репрезентують рядки матриці³.

ІНДИВІДУАЛЬНЕ ЗАВДАННЯ

Створити структуру для зберігання розрідженої матриці способом, вказаним у таблиці варіантів. Реалізувати виконання таких операцій над розрідженими матрицями (дії над розрідженими матрицями виконувати безпосередньо, не перетворюючи їх до звичайного вигляду):⁴

- 1) введення матриці шляхом задання ненульових значень та індексів (незалежно від порядку введення індексів);
- 2) виведення матриці у читабельному прямокутному вигляді;
- 3) перетворення звичайної матриці в розріджену;

³ Можна зберігати не тільки масив рядків, а й масив стовпців, або масиви і рядків, і стовпців.

⁴ Реалізація кожного пункту оцінюється одним балом.

- 4) перетворення розрідженої матриці в звичайну;
- 5) доступ до елемента розрідженої матриці для читання/зміни;
- 6) додавання/вилучення елемента до/з розрідженої матриці;
- 7) додавання/віднімання розріджених матриць;
- 8) транспонування розрідженої матриці;
- 9) множення розріджених матриць.

Продемонструвати реалізовані пункти на прикладі конкретних матриць.

Таблиця варіантів

Спосіб реалізації	Варіанти
Три масиви (пункт 1)	1, 6, 11, 16
Один масив (пункт 2)	2, 7, 12, 17
Масив структур (пункт 3)	3, 8, 13, 18
Зв'язний список (пункт 4)	4, 9, 14, 19
Масив зв'язних списків (пункт 5)	5, 10, 15