Linear combinations

Textbook: Section 1.3

Definition 1.3.1

1. Let V be a vector space and $\{\vec{v}_1, \ldots, \vec{v}_k\}$ be a collection of vectors in V. A linear combination of vectors $\vec{v}_1, \ldots, \vec{v}_k$ in S with coefficients $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ is a sum

$$\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \dots + \alpha_k \vec{v}_k$$

- 2. A linear combination where all coefficients are zero is called trivial.
- 3. To abbreviate a linear combination as above, we may write

$$\sum_{i=1}^{k} \alpha_i \vec{v}_i$$

Notice that this is the most arbitrary vector we can build with the vectors $\vec{v}_1, \dots \vec{v}_k$ available in S.

Example

1. Polynomials in $\mathcal{P}_3(\mathbb{R})$ are linear combinations of the monomials $\{1, x, x^2\}$.

2. Let $\vec{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \vec{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\vec{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ be the standard vectors in \mathbb{R}^3 . Observe that every posible vector in \mathbb{R}^3 of the form $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ is a linear combination of these standard vectors.

Definition 1.3.1 (continued)

Let V be a vector space and $S = \{\vec{v}_1, \dots, \vec{v}_k\}$ be a collection of vectors in V. The set of all linear combinations of vectors in S is called the *span of* S and denoted

$$\operatorname{span}\{S\} = \operatorname{span}\{\vec{v}_1, \dots, \vec{v}_k\}$$

By convention, span $\{\emptyset\} = \{\vec{0}\}.$

Example

1.

$$\mathcal{P}_2(\mathbb{R}) = \operatorname{span}\{1, x, x^2\}$$

2.

$$\operatorname{Mat}_2(\mathbb{R}) = \operatorname{span}\{$$
?

Discussion

Let $R = \{\vec{v}_1, \dots, \vec{v}_k\}$ and $S = \{\vec{v}_1, \dots, \vec{v}_k, \vec{v}_{k+1}, \dots, \vec{v}_{k+m}\}$ be two collections of vectors in a vector space V such that R is contained in S. Show that span $\{R\}$ is contained in span $\{S\}$.

Theorem 1.3.4

Show that for any vector space V and collection of vectors $S = \{\vec{v}_1, \dots, \vec{v}_k\}$ in V

$$\operatorname{span}\{S\}\subseteq V$$

is a subspace of V.

Proof.

Discussion

Does the set of polynomials $\{1-2x^2\ ,\ x^2+x\ ,\ x^3-3x^2\ ,\ 1\}$ span $\mathcal{P}_3(\mathbb{R})$?

Linear Independence

Textbook: Section 1.4

Prelude

We have seen that a vector space can have different spanning sets, for example:

$$\mathbb{R}^2 = \operatorname{span}\left\{ \begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix} \right\}$$
$$\mathbb{R}^2 = \operatorname{span}\left\{ \begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} -1\\1 \end{pmatrix}, \begin{pmatrix} 2\\0 \end{pmatrix} \right\}$$

How do these two spans differ?

Definition 1.4.2

Let $S = {\vec{v}_1, \dots, \vec{v}_k}$ be a collection of vectors in a vector space V.

1. The collection of vectors is called linearly independent if only the trivial linear combination of the vectors in S is equal to zero.

That is,

$$\alpha_1 \vec{v}_1 + \dots + \alpha_k \vec{v}_k = \vec{0}$$

only for the coefficients $\alpha_1 = \alpha_2 = \cdots = \alpha_k = 0$.

2. In he opposite case, when there does exist a nontrivial combination of the vectors in S which is zero, we call the collection $linearly\ dependent$.

Intuition

When does a linear combinatin of vectors equal to zero? It means that the concatenation of 'arrows' representing the vectors results in a loop.

Moreover, such a loop is trivial if it is just a point, i.e. no interior area.

Example

- 1. The collection of polynomials $\{1+x, 1-x, 1+2x\}$ in $\mathcal{P}_1(\mathbb{R})$ is linearly dependent
- 2. The collection of monomials $\{1\ ,\ x\ ,\ x^2\}$ in $\mathcal{P}_2(\mathbb{R})$ is linearly independet

Discussion

Decide if the following collections of vectors is linearly independent or dependent.

- 1. todo
- 2. todo
- 3. todo

Lemma

If $\{\vec{v}_1, \dots, \vec{v}_k\}$ is a linearly dependent collection of vectors in a vector space V, there exists an index $j \in \{1, \dots, k\}$ such that

- 1. $\vec{v}_j \in \text{span}\{\vec{v}_1, \dots, \vec{v}_{j-1}\}$
- 2. $\operatorname{span}\{\vec{v}_1, \dots, \hat{\vec{v}_j}, \dots, \vec{v}_k\} = \operatorname{span}\{\vec{v}_1, \dots, \vec{v}_k\}$

Proof.

Example

More examples?!

Theorem

Let $S = \{\vec{v}_1, \dots, \vec{v}_k\}$ be a collection of vectors in a vector space V.

Then S is linearly independent if and only if every vector in span $\{S\}$ has a unique representation as a linear combination.

That is, if and only if S is linearly independent, we have that

$$\alpha_1 \vec{v}_1 + \dots + \alpha_k \vec{v}_k = \beta_1 \vec{v}_1 + \dots + \beta_k \vec{v}_k$$

is equivalent with $\alpha_i = \beta_i$ for all $i \in \{1, \dots, k\}$.

Proof.

Theorem (Extend & Reduce)

Given \dots

True or False? (Theorems from above might be helpful)

 \qed If S is an independent collection of vectors and $R\subseteq S,$ then R is also independent.