

New convex-based metamorphic relations and large scale ML model evaluation

The 37th International Conference on Testing Software and Systems
17 September 2025

Jessy COLONVAL¹ and Fabrice BOUQUET¹

¹Université Marie et Louis Pasteur, CNRS, insitut FEMTO-ST (UMR 6174), F-25000 Besancon, France

Table of contents

7

- Context
- State-of-the-art metamorphic relations
- Convex-based metamorphic relations
- Mon-convex metamorphic relations
- 5 Experimentations
- 6 Conclusion

Oracle problem

Oracle hypothesis: it's possible to determine if an output is correct

Oracle problem

Oracle hypothesis: it's possible to determine if an output is correct

In reality:

- no oracle;
- too difficult too implement.

Oracle problem

Oracle hypothesis: it's possible to determine if an output is correct

In reality:

- no oracle;
- too difficult too implement.

Machine learning models have an oracle problem!

Oracle problem

Metamorphic relations:

- No verification of each input / output;
- Verification of properties between input / output.
- Ligthen the problem of the oracle!

Table of contents

7

- Context
- State-of-the-art metamorphic relations
- Convex-based metamorphic relations
- Mon-convex metamorphic relations
- Experimentations
- Conclusion

Identity relation — MR 1

When two models have the same:

- training algorithm;
- meta-parameters;
- data sets.

Identity relation — MR 1

When two models have the same:

- training algorithm;
- meta-parameters;
- data sets.
- Outputs must be identical!

Points shuffle relation — MR 2

	attr0	attr1	class	
	2.91	0.59	0	
≯	2.14	-0.47	0	···
	:	:	:	
•	0.19	0.29	1	
···	1.12	0.95	2	₭ ····
	:	:	:	
	0.01	-1.42	3	
	3.67	2.13	3	

attr0	attr1	class
2.91	0.59	0
1.12	0.95	2
:	:	:
0.19	0.29	1
2.14	-0.47	0
:	:	:
0.01	-1.42	3
3.67	2.13	3

Points shuffle relation — MR 2

	attr0	attr1	class	
	2.91	0.59	0	
≯	2.14	-0.47	0	···
	:	:	:	
	0.19	0.29	1	\longrightarrow
···	1.12	0.95	2	₹ ·····
	:	:	:	
	0.01	-1.42	3	
	3.67	2.13	3	

attr0	attr1	class
2.91	0.59	0
1.12	0.95	2
:	:	:
0.19	0.29	1
2.14	-0.47	0
:	:	:
0.01	-1.42	3
3.67	2.13	3

Outputs must be identical!

Except when part of points are used.

Attributes shuffle — MR 3

	attr1	attr0	class
	0.59	2.91	0
_	0.95	1.12	2
~	:	i	:
	-1.42	0.01	3
	2.13	3.67	3

Attributes shuffle — MR 3

attr1	attr0	class
0.59	2.91	0
0.95	1.12	2
:	: :	:
-1.42	0.01	3
2.13	3.67	3

Except when part of attributes are used.

Transformation relation — MR 4

attr1

class

0

0

Transformation relation — MR 4

	attr0	attr1	class
	2.91	$0.59 + \alpha$	0
	2.14	$-0.47 + \alpha$	0
•	:	:	:
	0.01	$-1.42 + \alpha$	3
	3.67	$2.13 + \alpha$	3

Class permutation relation — MR 5

attr0	attr1	class
2.91	0.59	0
2.14	-0.47	0
:	:	:
0.01	-1.42	3
3.67	2.13	3

attr0	attr1	class	
2.91	0.59	5	
2.14	-0.47	5	
:	:	:	
0.01	-1.42	3	
3.67	2.13	3	

Class permutation relation — MR 5

attr0	attr1	class
2.91	0.59	5
2.14	-0.47	5
:	:	:
0.01	-1.42	3
3.67	2.13	3

Table of contents

7

- Context
- State-of-the-art metamorphic relations
- Convex-based metamorphic relations
- Mon-convex metamorphic relations
- Experimentations
- Conclusion

Convex definition

Definition

A part H of \mathbb{R}^n said to be convex if, for all pairs (x,y) of elements of H, the segment [x,y] is entirely contained within H. In other words, H is convex when $\forall x,y\in H$ and $\forall \lambda\in[0;1], \lambda x+(1-\lambda)y\in H$ [10].

(a) A convex

(b) A non-convex

How they are created?

- ▶ Using the algorithm QuickHull nD (QHull¹).
- Approximation of influence areas of classes.

Membership relation — MR 6

Hypothesis:

- Convex = one area of class.
- Point inside similar characteristics.
 - identical class.

Superposition relation — MR 7

Observations:

- Shared areas.
- ▶ Which choice will the models make? ➡ We don't choose!

Attachment relation — MR 8

Hypothesis:

- Model extrapolation.
- Nearest convex(es) similar characteristics.
 - identical class.

Limits & Robustness

Tests evaluate values:

- within the limits;
- at the limits;
- off limits.

Limits & Robustness

Tests evaluate values:

- within the limits;
- at the limits;
- off limits.

Limits & Robustness

Tests evaluate values:

- within the limits;
- at the limits;
- off limits.

- in the domain;
- borders of the domain;
- outside the domain.

Models must:

- Do not produce an error: Robustness MR 9
- Do not produce an error when the value is outside the domain: **Boundary**

Robustness — MR 10

Illustration of the use of limits

Values:

all at the limits;

Illustration of the use of limits

Values:

- all at the limits;
- only one at the limits;

Illustration of the use of limits

Values:

- all at the limits;
- only one at the limits;
- one out of limits.

Table of contents

7

- Context
- State-of-the-art metamorphic relations
- Convex-based metamorphic relations
- Non-convex metamorphic relations
- 5 Experimentations
- 6 Conclusion

Non-convex metamorphic relations

Precision relation — MR 12

(a) Data set

(b) Expected predictions

Non-convex metamorphic relations

Outliers relation — MR 13

Origin:

- added to the dataset;
- already existing.

Non-convex metamorphic relations

Outliers relation — MR 13

Origin:

- added to the dataset;
- already existing.

Models shoudn't predict them correctly!

Table of contents

7

- Context
- State-of-the-art metamorphic relations
- Convex-based metamorphic relations
- Mon-convex metamorphic relations
- Experimentations
- Conclusion

Experimentations

Synthetic data sets

Points	Attributes	Classes	Noises	Distribution	Ratio
s – 250	s – 10	b	n	ho	у
s – 250	m – 100	p – 5	y - 60%	he	n
s – 250	I – 1 000	b	y – 10%	ho	n
m – 25 000	s – 10	b	y – 60%	he	у
m – 25 000	m – 100	p – 5	y – 10%	ho	у
m – 25 000	I – 1 000	b	n	he	у
I – 125 000	s – 10	p – 5	y – 10%	he	у
I – 125 000	m – 100	b	y – 60%	ho	у
I – 125 000	m – 100	b	n	ho	у

Experimentations

Algorithms

5 paradigms:

- (1) decision trees;
- (2) support vector machines;
- (3) overall distribution of classes;
- (4) neural networks;
- ► (5) neighborhoods.

Experimentations

Results

Analysis:

- 2 failures MR 1;
- ▶ robustness ✓ ;
- too many failures -MR 5.

Table of contents

7

- Context
- State-of-the-art metamorphic relations
- 3 Convex-based metamorphic relations
- Mon-convex metamorphic relations
- Experimentations
- 6 Conclusion

Conclusion

- 5 state-of-the-art relations;
- 8 new metamorphic relations;
 - 6 based on convexes;
 - 2 not.
- evaluation of 21 algorithms with 70 276 models;
- revealed the probable existence of bugs.

Thanks for your attention!

