1. Thuật toán **Prim** (ví dụ slide 41 bài Đồ thị dạng cây)

Chọn đỉnh 1 là đỉnh bắt đầu: $Y = \{1\}, T = \emptyset$

Chọn cạnh {1, 2} là cạnh có trọng số nhỏ nhất trong các cạnh: {1, 2, 4}, {1, 4, 5}

→
$$Y = \{1, 2\}, T = \{\{1, 2\}\}. |T| = 1 < 4 = Số đỉnh - 1. Tiếp tục$$

Chọn cạnh $\{2,4\}$ là cạnh có trọng số nhỏ nhất trong các cạnh: $\{1,4,5\}$, $\{2,3,7\}$, $\{2,4,3\}$

→
$$Y = \{1, 2, 4\}, T = \{\{1, 2\}, \{2, 4\}\}. |T| = 2 < 4$$

Chọn cạnh {4, 3} là cạnh có trọng số nhỏ nhất trong các cạnh: {2, 3, 7}, {4, 3, 1}, {4, 5, 4}

$$\rightarrow$$
 Y = {1, 2, 4, 3}, T = {{1, 2}, {2, 4}, {4, 3}}. |T| = 3 < 4

Chọn cạnh {4, 5} là cạnh có trọng số nhỏ nhất trong các cạnh: {3, 5, 6}, {4, 5, 4}

$$\rightarrow$$
 Y = {1, 2, 4, 3, 5}, T = {{1, 2}, {2, 4}, {4, 3}, {4, 5}}. |T| = 4. Dùng

Cây khung nhỏ nhất có chiều dài 12

2. Kruskal (ví dụ slide 49 bài Đồ thị dạng cây)

	\sim
_	(/)
_	\mathbf{x}

Sắp xếp các cạnh theo thứ tự tăng dần:

 $\{3,4,1\} \rightarrow$ chọn vì nhãn 3,4 khác nhau.

$$|T| = 1 < 4 = Số đỉnh - 1$$

 $\{1,\,4,\,3\}$ ${\color{red} \bigstar}$ chọn vì nhãn 1, 4 khác nhau. |T|=2<4

 $\{2, 4, 3\} \rightarrow$ chọn vì nhãn 2, 4 khác nhau. |T| = 3 < 4

{1, 2, 4} → không chọn vì nhãn 1, 2 giống nhau

 $\{4, 5, 5\} \rightarrow$ chọn vì nhãn 4, 5 khác nhau.

|T| = 4. Dừng. Cây khung nhỏ nhất có chiều dài 12

 ${3, 5, 6}$

Nhãn

1	2	3	4	5
1	2	3	4	5
1	2	3	3	5
1	2	1	1	5
1	1	1	1	5
1	1	1	1	1

{2, 3, 7}	

3. **Dijkstra** (ví dụ slide 70 bài Đường đi)

	S	2	3	4	5	t
T	S	2	3	4	5	t
L	0	∞	∞	∞	∞	∞
Pre	-1	-1	-1	-1	-1	-1
T		2	3	4	5	t
L	0	6	∞	4	∞	∞
Pre	-1	S	-1	S	-1	-1
Т		2	3		5	t
L	0	6	7	4	13	∞
Pre	-1	S	4	S	4	-1
T			3		5	t
L	0	6	7	4	13	∞
Pre	-1	S	4	S	4	-1
Т					5	t
L	0	6	7	4	9	9
Pre	-1	S	4	S	3	3
T						t
L	0	6	7	4	9	9
Pre	-1	S	4	S	3	3
T						
L	0	6	7	4	9	9
Pre	-1	s	4	S	3	3

Đường đi ngắn nhất từ $s \rightarrow t$: $s \rightarrow 4 \rightarrow 3 \rightarrow t$, chiều dài là 9 (Có thể nhập chung L với Pre để tiết kiệm không gian)

4. Bellman (ví dụ slide 86 bài Đường đi)

π và k	1	2	3	4	5	6
$k=0$ và $\pi =$	0	+∞	+∞	+∞	+∞	+∞
$k=1$ và $\pi =$	0	1	2	$+\infty$	$+\infty$	$+\infty$
$k=2 \text{ và } \pi =$	-1	1	2	7	1	6
$k=3$ và $\pi =$	-1	0	1	7	1	3
$k=4$ và $\pi =$	-2	0	1	4	0	3
$k=5$ và $\pi =$	-2	-1	0	4	0	2
$k=6$ và $\pi=$	-3	-1	0	3	-1	2

 $k=6=s \hat{\delta}$ đỉnh: thuật toán dừng. Do $\pi(5,i)$ và $\pi(6,i)$ không giống nhau với mọi 1 <=i<=6 nên không có đường đi ngắn nhất từ 1 đến 2 vì đi qua mạch âm