Contents

Regression vs Classification	1
Linear Models	1
Parameter Estimation	3
Maximum Likelihood Estimation	3
Bayesian Estimation	3
MAP Estimation	3
MAP vs Maximum Likelihood Estimation	4

Regression vs Classification

In classification we have

- Vector \vec{x} of m observed features $x^{(1)}, x^{(2)}, \dots, m^{(m)}$, e.g. blood pressure, age, cholestrol
- Label Y we are tyring to predict, a finite set of possible values, e.g. heart condition
- Model: Assumed statistic relationship between features \vec{x} are label Y

Alternatively Y is a continuous valued random variable, so may be real-valued and:

- Prediction is now usually referred to as **regression** (rather than classification)
- Quantity Y is often referred to as the **output** or **dependent variable** (rather than the label)

Linear Models

Linear models are very popular for regression as easy to work with

- Assume a linear relationship between observed features vector \vec{x} and dependent variables Y

$$Y = \sum_{i=1}^{m} \Theta^{(i)} x^{(i)} + M$$

where $\vec{\Theta}$ is a vector of unknown (random) parameters and M is random "noise"

- Vector $\vec{\Theta}$ is unknown and we want to estimate it
- To estimate $\vec{\Theta}$ we need some **training data**, i.e.
 - A set of observations consisting of pairs of values $(\vec{x}_1, Y_1), (\vec{x}_2, Y_2), \dots, (\vec{x}_n, Y_n)$
 - We assume that $Y_1 \sum_{i=1}^m \Theta^{(i)} x_1^{(i)} + M_1$ where M_1 is noise, $Y_2 = \sum_{i=1}^m \Theta^{(i)} x_2^{(i)} + M_2$, etc.
 - Observe that $\vec{\Theta}$ is the same for every pair of observations but that noise M_1, M_2 , etc. varies
- Plus the prior distributions of Θ and M. For now we will assume:
 - M is Gaussian with mean 0 and variance 1, $\Theta^{(i)} \sim N(0, \lambda)$ (recall Y is a Normal random variables $Y \sim N(\mu, \sigma^2)$ when it has PDF $f_Y(y) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(y-\mu)^2}{2\sigma^2}}$)

Example: generalised linear model

• Suppose have single input x and output is

$$Y = \Theta^{(1)}x + \Theta^{(2)}x^2 + \dots + \Theta^{(m)}s^m + M, M \sim N(0, 1), \Theta^{(i)} \sim N(0, \lambda)$$

- Define feature vector \vec{Z} with $z^{(1)} = x, z^{(2)} = x^2, \dots, z^{(m)} = x^m$
- Using this vector the model is

$$Y = \sum_{i=1}^{m} \Theta^{(i)} z^{(i)} + M$$

Although model is nonlinear in x it is linear in \vec{z} . These new \vec{z} can be computed given input x, so its known.

There's another way to write linear model in terms of PDFs.

- Previous used $Y = \vec{\Theta}x + M, M \sim N(0, 1), \Theta^{(i)} \sim N(0, \lambda)$
- Given $\vec{\Theta} = \vec{\theta}$, then $Y \sum_{i=1}^{m} \theta^{(i)} x^{(i)} = M \sim N(0,1)$ i.e.

$$f_{Y\mid X, \vec{\Theta}}(y\mid x, \vec{\theta}) = \frac{1}{\sqrt{2\pi}} \exp(-(y - \sum_{i=1}^{m} \theta^{(i)} x^{(i)})^2 / 2)$$

- Note that we have to use PDF rather than PMF since Y is a continuous RV
- Model also assumes $\Theta^{(i)} \sim N(0, \lambda)$ i.e.

$$f_{\Theta^{(i)}}(\theta) \propto \exp(-\theta^2/2\lambda)$$

• $f_{Y|X \vec{\Theta}}(y \mid x, \vec{\theta})$ and $f_{\Theta^{(i)}}(\theta^{(i)})$ fully describe the linear model

Parameter Estimation

Recall Bayes Rule for PDFs

$$f_{\Theta|D}(\vec{\Theta} \mid d) = \frac{f_{D|\Theta}(d \mid \vec{\theta} f_{\Theta}(\vec{\theta}))}{f_{D}(d)}$$

• Likelihood: $f_{D|\Theta}(d \mid \vec{\theta})$

Maximum Likelihood Estimation

Select the value $\vec{\theta}$ which maximises likelihood $f_{D|\Theta}(d \mid \vec{\theta})$

•
$$Y = \sum_{i=1}^m \Theta^{(i)} x^{(i)} + M, M \sim N(0,1), \Theta^{(i)} \sim N(0,\lambda)$$

• Conditioned on $\vec{\Theta} = \vec{\theta}$ we have

$$f_{D|\Theta}(d \mid \vec{\theta}) \propto L(\theta) = \exp(-\sum_{i=1}^{n} (y_j - \sum_{i=1}^{m} \theta^{(i)} x_j^{(i)})^2 / 2)$$

dropping the normalising constant as it doesn't matter here

• Take log (giving the "log-likelihood"):

$$\log f_{D|\Theta}(d \mid \vec{\theta}) \propto \log L(\theta) = -\frac{1}{2} \sum_{i=1}^{n} (y_j - \sum_{i=1}^{m} \theta^{(i)} x_j^{(i)})^2$$

- We want to select $\vec{\theta}$ to maximise $\log L(\vec{\theta})$ i.e. the minimise $\sum_{j=1}^{n} (y_j \vec{\theta})$ $\sum_{i=1}^m \theta^{(i)} x_j^{(i)})^2$
- Called the "least squares" estimate, for obvious reasons

Bayesian Estimation

- Estimate the posterier $f_{\Theta|D}(\theta \mid d)$, rather than the likelihood $f_{D|\theta}(d \mid \theta)$
- A distribution rather than just a singple value

MAP Estimation

- Maximum a porteriori (MAP) estimation
- Selection θ that maximises posterior $f_{\Theta|D}(\theta \mid d)$ (back to a single value rather than a distribution)
- Runs into trouble is distribution has > 1 peak

• Map estimate:

$$\theta = \frac{\sum_{j=1}^{n} y_j x_j}{\frac{1}{\lambda} + \sum_{j=1}^{n} x_j^2}$$

- May estimate depends on our choice of λ
 - Remember that this value reflects our prior belief of the distribution of parameter Θ , $f_{\Theta}(\theta) \propto \exp(-\theta^2/2\lambda)$
- When $\lambda=0$ then we are saying that we are *certain* Θ is 0 $(\theta=\frac{\sum_{j=1}^n y_j x_j}{\frac{1}{\lambda}+\sum_{j=1}^n x_j^2}\to 0 \text{ as } \lambda\to 0)$
- When λ is very large we are saying that we know very little about the value of Θ prior to making the observations
- MAP estimate is then close to the maximum likelihood estimate

MAP vs Maximum Likelihood Estimation

Difference between MAP and ML really kicks in when we only have a small number of observations, yet still need to make a prediction. Our prior beliefs are then especially important.

- But as number N of observations grows, impact of prior on posterior tends to decline
- Remember two interpretations of probability, as frequency and belief respectively
- Important when we need to make a decision with limited data