

FACULTY OF HEALTH SCIENCES - SCHOOL OF MEDICINE MSc Health Statistics and Data Analytics

Linear Models

Anna-<u>Bettina</u> Haidich Associate Professor of Medical Statistics – Epidemiology haidich@auth.gr

Materials and announcements

- elearning.auth.gr
- School of Medicine
- Postgraduate Courses
- Health Statistics & Data Analytics
- Course "Linear Models"

Elearning platform (moodle)

elearning.auth

Guides ▼ Course Request ▼ Contact

Linear models

Home / My courses / Faculty of Health Sciences / School of Medicine / Postgraduate courses / Health Statistics and Data Analytics / Linear models

Activities

Assignments

Resources

Welcome to the course of Linear Models.

The course has the following tutors Anna-Bettina Haidich, Christos T Nakas, Eleni Verykouki, Konstantinos Bougioukas, Fani Apostolidou Kiouti, and Eirini Pagkalidou.

For this course we will meet in person for two weekends in January between 21-23/01/2022 and February 4-6/02/2022 and in the meantime we will be available online to answer any queries you might have. Students will also work on quizzes and exchange questions and solutions in discussion forums during this period. The final exam will be held on February 25, 2022. For more details, please refer to the course syllabus.

This course concentrates on advanced statistical questions:

- What is the relationship between the variables collected?
- · Which procedure should be employed to explore these relationships?
- What is the interpretation of the obtained statistical results?

By the end of the course the user will be able to fit the best model to describe the relationships based on the data from their study. They will also be able to interpret the results returned from diagnostic tests and evaluate the assumptions under which their model was built.

For zoom connection the link is the following:

https://authgr.zoom.us/j/94680285974?pwd=a0FsOE93ajZIU29WNGgrR3oySFpyQT09

Meeting ID: 946 8028 5974

Passcode: 364958

Course outline

Date	Hours	Topics	Tutor
21 January 2022	19:30-20:00	Outline of the course	Anna-Bettina Haidich
	20:00-21:00	Correlation – Simple Linear Regression	Konstantinos Bougioukas
	09:00-11:00	Multiple Linear Regression	Konstantinos Bougioukas
22 January 2022	11:30-13:00	Model Building in Linear Regression	Konstantinos Bougioukas
	13:30 -	IQVIA presentation	George Nikolaidis, Andreas Karabis, Konstantina Skaltsa
22 January 2022	09:00-11:00	Logistic Regression	Eleni Verykouki
23 January 2022	11:30-13:00	R Practical	Fani Apostolidou Kiouti
	13:00-15:00	ROC Analysis + R Practical	Christos T Nakas
	17:00-18:00	Cox Proportional Hazards models	Christos T Nakas
4 February 2022	18:00-19:00	R Practical	Eleni Verykouki
	19:00-21:00	Parametric Survival Analysis + R Practical	Eleni Verykouki
5 February 2022	09:00- 11:00	Poisson/Negative Binomial models/Zero Inflated models	Eleni Verykouki
0 : CD: dd: ,	11:30-15:00	R Practical	Fani Apostolidou Kiouti
6 February 2022	09:00- 11:00	Handling Missing Data – Imputation Methods	Anna-Bettina Haidich, Eirini Pagkalidou
,		Course summary + Practice	All

Grading system

Component	% of grade	When
Lecture participation through lectures and forum discussion	15%	
Quizzes	15%	
Final Exam	70%	February 25, 2022
Total	100%	

Communication

Anna-Bettina Haidich <u>haidich@auth.gr</u>

Christos T Nakas <u>cnakas@uth.gr</u>

Eleni Verykouki <u>everykouki@auth.gr</u>

Konstantinos Bougioukas <u>mpougioukas@auth.gr</u>

Fani Apostolidou-Kiouti <u>fania@auth.gr</u>

• Eirini Pagkalidou pagkalidou@auth.gr

Statistical Trends in the *Journal of the American Medical Association* and Implications for Training across the Continuum of Medical Education

Lauren D. Arnold¹*^{na}, Melissa Braganza^{2nb}, Rondek Salih^{3nc}, Graham A. Colditz¹

	Article Year			
Characteristics	1990 (n = 133)	2000 (n = 122)	2010 (n = 106)	p-value
Descriptive statistics	124 (93.2%)	122 (100%)	106 (100%)	-
Low-level statistical measures [†]	108 (81.2%)	116 (95.1%)	105 (99.1%)	<0.001
Morbidity & mortality	76 (57.1%)	60 (49.2%)	73 (68.9%)	0.011
ANOVA	26 (19.5%)	24 (19.7%)	18 (17.0)	0.844
Chi square	54 (40.6%)	51 (41.8%)	51 (48.1%)	0.471
Fisher exact	19 (14.3%)	18 (14.8%)	20 (18.9%)	0.583
Mantel-Haenszel	11 (8.3%)	15 (12.3%)	7 (6.6%)	0.301
Epidemiologic statistics [‡]	28 (21.1%)	34 (27.9%)	33 (31.1%)	0.190
t-test	28 (21.1%)	31 (25.4%)	28 (26.4%)	0.577
Power	7 (5.3%)	7 (5.7%)	28 (26.4%)	<0.001
p-trend	6 (4.5%)	17 (13.9%)	14 (13.2%)	0.023

	p della	G (1.574)	()	14 (15.2.70)	0.023		
Logistic regression		27 (20.3%)		42 (34.4%)		28 (26.4%)	0.039
	Simple linear regression	12 (9.0%)	17 (13.9%)	13 (12.3%)	0.460		
Poisson regression		0 (0.0%)	11 (9.0	96)	8 (7.5%)	0	0.003
	Multi-level modeling	3 (2.3%)	11 (9.0%)	34 (32.1%)	<0.001		
	Multiple comparison	7 (5.3%)	8 (6.6%)	9 (8.5%)	0.609		
	Multiple regression	32 (24.1%)	52 (42.6%)	51 (48.1%)	< 0.001		
	Man assessable test	17 /12 00()	10 /15 664	72 /71 7841	0.172		
Multiple regression		32 (24.1%)	5	2 (42.6%)	51 (48.1%)	< 0.001
	Julyival alialysis	12 (17.370)	ET (EE.170)	an facusal	~0.001		
	Cox models	10 (7.5%)	17 (13.9%)	34 (32.1%)	<0.001		
	Kanlan Meier	5 (3.8%)	13 (10.7%)	24 (22.6%)	<0.001		
Cox models		10 (7.5%)		17 (13.9%)		34 (32.1%)	< 0.001
	Transformation	9 (6.8%)	12 (9.8%)	10 (9.4%)	0.6374		

*Excludes statistics in which there were n<15 across all three years of review; includes standard deviations, standard errors, confidence intervals, and p-values; †Includes odds ratios, relative risks, attributable risks, sensitivity, and specificity.

Confounder Effect modifier

Confounding and effect modification

Confounding

- A distortion of the association between an exposure and an outcome that occurs when the study groups differ with respect to other factors that influence the outcome.
- A type of bias that can and should be adjusted for the analysis

Effect modification

- It occurs when the magnitude of the effect of the primary exposure on an outcome differs depending on the level of a third variable.
- A true biological phenomenon that should be further explored

Confounding – example

Confounding – example

Coffee	Pancreatic cancer	
consumption	Yes	No
Yes	450	200
No	300	250
Total	750 450	

OR = (450*250)/(200*300) = 1.88 95% CI: 1.48, 2.38

The odds of developing pancreatic cancer is almost **2** times higher in coffee drinkers than non coffee drinkers

Confounding – example

<u> ina</u> example

Smoking is a risk factor for developing cancer of the pancreas

	Pancreati
in	cancer
(IDO	

Yes

No

Yes	600	150
No	150	300
Total	750	450

OR = (600*300)/(150*150) = 8.00 95%CI: 6.13, 10.43

The odds of developing pancreatic cancer is 8 times higher in smokers than non-smokers

Confounding - maple

OR = (500*300)/(250*150) = 4.00 95%CI: 3.12, 5.13

Coffee consumption was **4** times more likely in smokers than in non-smokers

Coffee drinkin & Pancreatic cancer king

association between coffee drinking and cancer of the pancreas

ases	Controls
400	100
200	50

OR

1.00

0.68, 1.46

Non-smokers	Cases	Controls	OR
Coffee	50	100	1.00
No coffee	100	200	0.66, 1.52

Stratified OR with the Mantel-Haenszel method: 1.00

Crude OR: 1.88

Confounding

- Confounding is the situation where an association between an exposure and an outcome is entirely or partially due to another exposure (called the confounder).
 - Positive confounding
- stronger association (Crude OR > adjusted OR)
- Negative confounding

weaker association (Crude OR < adjusted OR)

Three conditions must be satisfied:

- it must be associated with the exposure of interest
- it must be a risk factor for the outcome of interest
- It must not be on the causal pathway

Controlling for it

- In the design phase of the study
 - Randomization
 - Minimization
 - Matching
- In the analysis phase of the study
 - Stratification
 - Multivariable models

Effect modification

- Effect modification occurs when the effect of an exposure is different among different subgroups (e.g. gender, race)
- In statistics, it is synonym with interaction
- The crude estimate of the association (e.g. odds ratio) is expected to lay between the estimates of the odds ratio for the stratum-specific estimates

Why do we care about it?

- To define high-risk subgroups for preventive actions
- To increase precision of effect estimation by taking into account groups that may be affected differently
- To increase the ability to compare across studies that have different proportions of effect-modifying groups
- To aid in developing a causal hypotheses for the disease

Handling effect modification

- Designing the study
 - Collect information on potential effect modifiers.
 - Power the study to test potential effect modifiers a priori
 - Don't match on a potentially important effect modifier
- Analyzing the study
 - Stratification and report stratum specific estimates
 - Multivariable models test for interaction

Diabetes & CHD

	CHD	No CHD	OR
Diabetes	25	170	3.4
No diabetes	95	2194	

The odds of CHD is 3.4 times higher in patients with diabetes than no diabetes

Crude OR: 3.4

95%CI: 2.13, 5.42

Effect modification

Diabetes & CHD

Females	CHD	No CHD	OR
Diabetes	13	93	6.66
No diabetes	25	1191	3.30, 13.45

Males	CHD	No CHD	OR
Diabetes	12	77	2.23
No diabetes	70	1003	1.16, 4.30

Crude OR: 3.4

Confounding or effect modification?

Confounding

- The crude estimator (e.g. RR, OR) is outside the range of the two stratum-specific estimators
- A confounder changes the estimate of the risk by 10% or more in the adjusted analysis compared to the unadjusted
- Mantel-Haenszel stratified analysis or multivariable analysis

Effect modification

- The crude estimator (e.g. RR, OR) is closer to a weighted average of the stratum-specific estimators
- The two stratum-specific estimators differ from each other
- Separate analysis by subgroup or multivariable analysis with the interaction term

Multivariable models

Multivariable models

Dependent variable

continuous

linear regression

binary

logistic regression

• Time to event

Cox proportional hazards regression

Counts

Poisson regression

- Independent variable
 - continuous/categorical

Multivariable models

• Data (y)= Fitted model ($b_0+b_1x_1+....+b_\rho x_\rho=\hat{y}$) + residuals (ϵ)

•
$$\varepsilon = y - \hat{y}$$
 (error) <- residuals

Approximation

Multiple regression

Income=b₀+b₁*years education+b₂*seniority

Steps for model building

1. Define and Design

- Construct research questions
- Define the study design
 - Experimental or observational
 - Simple or stratified randomization
 - Potential confounders and control variables
 - Longitudinal or repeated measurements on a study unit
- Variable selection and measurement defined
 - Continuous or categorical variables
- Write an analysis plan
- Calculate sample size estimations

Steps for model building

2. Prepare and explore

- Collect, code, enter and clean data
- Create new variables
- Run univariate and bivariate Statistics
- Run an initial model

3. Refine the model

- Refine predictors and check model fit
 - Test interactions
 - Drop non significant control variables
- Test assumptions
- Check for and resolve data issues
- Interpret results

Goal of the Model?

Prediction

Minimize prediction error rather than causal interpretation

Evaluating a predictor of primary interest

Have to account for confounding or effect modifiers

Identifying the important independent predictors of an outcome

Most difficult false-positive associations, potential complexity and not a single best model

Have a nice start!

