Физика Вариант 4

При расчетах принять:

Модуль ускорения свободного падения $g = 10 \text{ м/c}^2$	Скорость света в вакууме $c = 3 \cdot 10^8 \text{ м/c}$
Постоянная Авогадро $N_A = 6.02 \cdot 10^{23} \text{ моль}^{-1}$	Постоянная Больцмана $k = 1,38 \cdot 10^{-23} \text{Дж/K}$
Электрическая постоянная $\varepsilon_0 = 8.85 \cdot 10^{-12} \frac{\Phi}{M}$; $\frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \frac{H \cdot M^2}{K\pi^2}$	Элементарный заряд $e = 1,6 \cdot 10^{-19} \text{ Кл}$
Универсальная газовая постоянная $R = 8,31 \frac{\mathcal{A} \times \mathcal{C}}{MOЛь \cdot K}$	Гравитационная постоянная $G = 6,67 \cdot 10^{-11} \frac{H \cdot m^2}{\kappa z^2}$
1 эВ = 1,6·10 ⁻¹⁹ Дж π = 3,14; $\sqrt{2}$ = 1,41; $\sqrt{3}$ = 1,73; $\sqrt{5}$ = 2,24	Постоянная Планка $h = 6,63 \cdot 10^{-34} \text{Дж} \cdot \text{с}$

Множители и приставки для образования десятичных кратных и дольных единиц.

Множитель	10^{12}	10^{9}	10^{6}	10^{3}	10^{-2}	10^{-3}	10^{-6}	10^{-9}	10^{-12}
Приставка	тера	гига	мега	кило	санти	милли	микро	нано	пико
Обозначение приставки	T	Γ	M	К	c	M	МК	Н	П

Часть А

	овощей, собранных учатаблице:	ащимися с	едьмых и	восьмых кл	пассов, прив	едена в	2) 7 «Б»; 3) 7 «В»; 4) 8 «А»;
	Класс	7 «A»	7 «Б»	7 «B»	8 «A»	8 «Б»	5) 8 «Б».
	Масса собранных овощей	608 кг	0,97 т	1283 кг	8,27·10 ⁵ r	7,22·10 ² кг	c) s (2).
	Победителем в сборе о	вощей ока	зался клас	ec:			
A 2	График зависимости п материальной точки, дви на эту ось от времени t и момент времени t ₁ = 6 с точки на ось Ох равна:	1) -2 m/c ² ; 2) -1 m/c ² ; 3) 0 m/c ² ; 4) 1 m/c ² ; 5) 2 m/c ² .					
A3	Тело движется по состоящей из двух ду линейной скорости о тел центростремительного у связаны соотношением:	1) $a_{C} = a_{A} = a_{B}$; 2) $a_{C} = a_{A} < a_{B}$; 3) $a_{C} > a_{A} > a_{B}$; 4) $a_{C} < a_{A} = a_{B}$; 5) $a_{C} > a_{A} = a_{B}$;					
A4	На книгу, лежащую на стизменилась сила, действу 1) не изменилась; 2) уменьшилась в 2 раза;	1) 1; 2) 2; 3) 3; 4) 4; 5) 5.					
A5	Чему равен модуль из вертикально на горизон скорость сразу после уда	1) 0 Kr·m/c; 2) 0,5 Kr·m/c; 3) 1,0 Kr·m/c; 4) 1,1 Kr·m/c; 5) 1,5 Kr·m/c.					
A 6	На какой высоте над пов $m = 3$ кг, равна $F = 15$ Н?					а тело массой	1) 1260 км; 2) 1540 км; 3) 1950 км; 4) 2620 км; 5) 3230 км.

A7	Шарик массой $m=200$ г падает с высоты $h=20$ м с начальной скоростью, равной нулю. Какова его кинетическая энергия E_{κ} в момент перед ударом о землю, если потеря энергии за счёт сопротивления воздуха составила $E=4$ Дж?	1) 8 Дж; 2) 16 Дж; 3) 24 Дж; 4) 36 Дж; 5) 40 Дж.
A8	Теплоход переходит из устья Волги в солёное Каспийское море. Установите соответствие между физической величиной и её изменением. А. Сила Архимеда Б. Объём погружённой части В. Сила тяжести 3) Не изменится	1) A3 Б2 B3; 2) A3 Б1 B2; 3) A1 Б2 B3; 4) A3 Б2 B1; 5) A2 Б1 B3.
A9	Какое физическое явление лежит в основе проветривания помещения при открытой форточке?	 испарение; излучение; конвекция; конденсация; кристаллизация.
A10	На рисунке приведён график зависимости давления неизменной массы газа от температуры. Изменения происходят в направлении, указанном стрелкой. Какой процесс происходит с газом на участке <i>AB</i> ? 1) изотермическое расширение; 2) изотермическое сжатие; 3) изохорное нагревание; 4) изобарное расширение; 5) изобарное сжатие.	1) 1; 2) 2; 3) 3; 4) 4; 5) 5.
A11	1 моль идеального одноатомного газа участвует в процессе 1 \rightarrow 2 (см. рис.). Выберите ответ с правильным соотношением изменения внутренней энергии ΔU газа и работы A газа в этом процессе $p_0 = \frac{1}{\sqrt{1 - V_0}}$	1) $\Delta U = 0$; A > 0; 2) $\Delta U = 0$; A < 0; 3) $\Delta U > 0$; A = 0; 4) $\Delta U < 0$; A = 0; 5) $\Delta U < 0$; A > 0.
A12	На электроплите мощностью $P=1,2$ кВт нагревают $V=2$ л воды, взятой при $t_1=15^{\circ}\mathrm{C}$. КПД плитки $\eta=80\%$. Сколько времени τ будет длиться процесс нагревания воды до температуры $t_2=91^{\circ}\mathrm{C}$, если удельная теплоёмкость воды $\mathrm{c}=4200~\mathrm{Дж/(kr^{\circ}\mathrm{C})}$, плотность воды $\mathrm{\rho}=1000~\mathrm{kr/m}^3$.	1) 700 c; 2) 665 c; 3) 630 c; 4) 595 c; 5) 525 c.
A13	Какой заряд нельзя сообщить стеклянной палочке при электризации об асбест?	1) 1,6 ·10 ⁻²⁰ Кл; 2) 4,8 ·10 ⁻¹⁹ Кл; 3) 1,6 ·10 ⁻¹⁷ Кл; 4) 3,2 ·10 ⁻¹⁵ Кл; 5) 4,8 ·10 ⁻¹³ Кл.
A14	В цепи показанной на рисунке $R_1 = 2$ Ом, $R_2 = 6$ Ом, $R_3 = 4$ Ом. Определите силу тока I_3 , проходящего через резистор R_3 , если шкала амперметра проградуирована в амперах.	1) 2,75 A; 2) 5,5 A; 3) 8,25 A; 4) 11,0 A; 5) 16,5 A.
A15	Если в плоском заряженном и не отключенном от источника тока конденсаторе, энергия которого W_0 , расстояние между обкладками уменьшить в 4 раза, то изменение энергии ΔW конденсатора будет равно:	1) $\Delta W = 4W_0$; 2) $\Delta W = 3W_0$; 3) $\Delta W = -3W_0$; 4) $\Delta W = -4W_0$.
A16	Электродвигатель трамвая, коэффициент полезного действия которого $\eta=60$ %, работает под напряжением $U=0,60$ кВ и потребляет силу тока $I=40$ А. Если на горизонтальном участке пути трамвай движется равномерно со скоростью, модуль которой $\upsilon=9,6$ м/с, то модуль развиваемой трамваем силы тяги $F_{\scriptscriptstyle T}$ равен:	1) 2,5 κH; 2) 2,0 κH; 3) 1,8 κH; 4) 1,5 κH; 5) 1,2 κH.

A17	длинным прямолинейным проводником с током в точке А (см. рис.), обозначено цифрой:	11; 12; 13; 14; 15.
A18	Груз массой $m = 640$ г, подвешенный на невесомой пружине, совершает гармонические колебания, амплитуда которых $A = 0.050$ м. Если модуль максимальной скорости груза $v_{\text{max}} = 1.0 \text{ м/c}$, то жесткость k пружины равна:	1) 200 H/m; 2) 256 H/m; 3) 270 H/m;
	екорости груза от т,о м/с, то жесткость к пружиты равна.	4) 324 H/m; 5) 344 H/m.
A19	Луч света падает на поверхность земли под углом $\alpha = 30^\circ$ к горизонту. Если луч,	1) 15°;
	отражённый от плоского зеркала стал распространяться вертикально вверх, то угол ф	2) 30°;
	между плоскостью зеркала и горизонтом равен:	3) 45°;
		4) 60 °;
1.20	N 1010 ²⁰ 1	5) 75°.
A20	Источник монохроматического света испускает ежесекундно $N = 1,0\cdot 10^{20}$ фотонов с	1) 34 BT
	длиной волны $\lambda = 3,3 \cdot 10^{-7}$ м. Мощность Р излучения равна:	2) 40 BT
		3) 46 BT
		4) 57 B _T
		5) 60 BT

Часть В

B1.

Если тело, двигаясь равноускоренно из состояния покоя, за десятую секунду проходит путь $s_1 = 38$ м, то

D 1.	за тринадцатую секунду движения оно пройдёт путь s_2 , равный м.
B2.	Автомобиль массой $m=1,2$ т, двигаясь равноускоренно из состояния покоя по горизонтальной дороге, в конце пятой секунды движения развивает мощность $P=96$ кВт. Если сопротивлением движению автомобиля пренебречь, то за промежуток времени $\Delta t=5$ с автомобиль проходит путь s, равный м.
В3.	Модуль максимально допустимой скорости, которую может развить автомобиль, чтобы его не занесло на повороте горизонтальной дороги, $\upsilon = 12$ м/с. Если коэффициент трения покоя колес о дорогу $\mu = 0.36$, то радиус R закругления дороги равен м.
B4.	Тело массой $m=300$ г, подвешенное на легком резиновом шнуре, равномерно вращается по окружности в горизонтальной плоскости. Шнур во время движения груза образует угол $\alpha=60^\circ$ с вертикалью. Если потенциальная энергия упругой деформации шнура $\Pi=90$ мДж, то жесткость k шнура равна k
B5.	В баллоне при температуре $t=6.0$ °C находится смесь, состоящая из водорода ($M_1=2.0$ г/моль) массой $m_1=4.0$ г и кислорода ($M_2=32.0$ г/моль) массой $m_2=32$ г. Если плотность смеси газов $\rho=0.44$ кг/м 3 , то давление p смеси равно кПа.
В6.	В герметично закрытом полиэтиленовом пакете находится воздух при температуре $t=24$ °C и давлении равном атмосферному $p_0=1,0\cdot10^5$ Па. Если при опускании пакета в воду ($\rho=1\cdot10^3$ кг/м³) на глубине $h=19$ м его объём уменьшится втрое, то температура t_1 на этой глубине равна °C.
В7.	В теплоизолированный сосуд, содержащий воду (c = 4200 Дж/(кг·°С)) массой m при температуре $t = 14$ °С впускают водяной ($L = 2,26 \cdot 10^6$ Дж/кг) пар массой $m_1 = 1,3$ кг при температуре $t_1 = 100$ °С. После установления теплового равновесия температура воды в сосуде $t_2 = 40$ °С. Если теплоёмкость сосуда пренебрежимо мала, то начальная масса m воды в сосуде равна кг.
B8.	В открытый контейнер поместили $m_0=1,5$ г изотопа полония $^{210}_{84}Po$. Затем контейнер герметично закрыли. Изотоп полония радиоактивен и претерпевает альфа-распад (4_2He) с периодом полураспада примерно $T=140$ дней, превращаясь в стабильный изотоп свинца. Через $t=40$ недель давление внутри контейнера составило $p=1,4\cdot10^5$ Па. Атмосферное давление $p_0=1,0\cdot10^5$ Па. Если температура внутри контейнера поддерживалась постоянной и равной $t_1=45$ °C, то объём V контейнера равен cm^3 .

В9.	В электрической цепи, схема которой приведена на рисунке, сопротивления резисторов $R_1 = 20$ Ом, $R_2 = 20$ Ом, $R_3 = 10$ Ом и $R_4 = 50$ Ом. Если напряжение на клеммах источника тока $U = 24$ В, то идеальный вольтметр покажет напряжение U_V равное В.
B10.	Идеальный колебательный контур состоит из катушки индуктивностью $L=11$ мк Γ н и плоского воздушного ($\epsilon=1$) конденсатора, расстояние между обкладками которого $d=9,0$ мм. Если частота свободных электромагнитных колебаний в контуре $\nu=2,8\cdot10^7$ Γ ц, то площадь S каждой из обкладок конденсатора равна cm^2 .
B11.	В однородном магнитном поле, силовые линии которого вертикальны, а модуль индукции $B=0.5$ Тл, на двух параллельных невесомых проводящих нитях подвешен горизонтально расположенный проводник длиной $l=0.2$ м и массой $m=0.05$ кг. Если под действием силы Ампера проводник отклонился так, что нити образуют с вертикалью угол $\alpha=45^\circ$, то сила тока I в проводнике равна А.
B12.	Ход светового луча AB (падающего) и BC (преломленного) относительно главной оптической оси C_1C_2 тонкой линзы показан на рисунке. Фокусное расстояние F линзы, равно см.

Физика подготовка к ЦТ Вариант 4

Ответы

Подготовка к ПТ В – 4

подготовка	νщι	L								
№ задачи	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
№ ответа	3	5	2	5	5	4	4	1	3	1
№ задачи	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20
№ ответа	2	2	1	4	2	4	4	2	2	5

№ задачи	B1	B2	В3	B4	B5	В6	В7	В8	B9	B10	B11	B12
№ ответа	50	50	40	200	85	14	30	354	8	30	5	20