アルゴリズム対策・演習

アルゴリズム演習

これまで学んだ疑似言語を使った演習

疑似言語で記述されたプログラムを読取る演習です。

疑似言語で書かれたプログラムの<mark>穴埋め問題で演習</mark>します。 いろいろなアルゴリズムがありますが、他人が書いたプログラムを 読取ることで、プログラミング、アルゴリズムを理解して下さい。

演習の進め方

- ①演習の回答フォームである「プログラミングシート」をダウンロード Classroom→授業→ITマネジメント・ストラテジ→3学期 第9週 講義資料 → 「プログラミングシート」をダウンロード
- ②「プログラミングシート」を開きパワーポイントで回答を編集して作る

- ③確認用のデータ表に値(数値)を入れて処理を確認する
- ④結果を確認出来たら、解説資料を「表示」→「閲覧表示」で画面に表示して、解説プレゼン願います。(Meetを使いスライドに表示)

演習①

[問題]

うるう年判定: 与えられた年号が、うるう年かどうかを判定する関数

プログラムの穴埋め練習をしましょう。 次に示すのは、引数 Year がうるう年かどうかを判定して、

その結果を true または false の戻り値で返す IsLeapYear 関数のプログラムです。

a と b に入れる正しい答えを、解答群の中から選んでください。

○論理型関数: IsLeapYear(整数型: Year)

○論理型: Ans

· Return Ans

[ヒント:うるう年の定義]

- ①西暦が4で割り切れる
- ②西暦が100で割切れない
- ③西暦が400で割切れる

a に関する解答群

- 7 Year % 4 = 0 and Year % 100 = 07 Year % 4 = 0 and Year % 100 = 0
- year % 4 = 0 and Year % 100 ≠ 0
- Year % 4 ≠ 0 and Year % 100 ≠ 0

bに関する解答群

- 7 Year % 200 = 0
- 1 Year % 200 ≠ 0
- 7 Year % 400 = 0
- Year % 400 ≠ 0

演習①解説

下記の「a」「b」に命令を記述、右の表の結果記述

Year	Ans
2104	
2105	
2200	
2400	

演習②

最大値抽出: 配列データの中から値 が最大値の値を求める 関数

[問題]

プログラムの穴埋め練習をしましょう。次に示すのは、要素数 Length 個の配列 A[]の最大値を戻り値として返す Max 関数のプログラムです。配列の添え字は、Øから始まるとします。

[a], [b] に入れる正しい答えを、解答群の中から選んでください。

○整数型:Max(整数型:A[],整数型:Length)

○整数型:Ans, i ·Ans ← A[0]

A[] 3

[例題]

34 | 78 | 56 | 90 | 12

· Return Ans

aに関する解答群

7 i:0, i < Length, 1

1 i:0, i ≤ Length, 1

ゥ i:1, i < Length, 1

1:1, i ≤ Length, 1

bに関する解答群

7 ·A[Ans] ← i

ウ , · A[i] ← Ans

 $\forall i \leftarrow A[Ans]$ $\pm \cdot Ans \leftarrow A[i]$

©2022 Island Consultant Ltd,

演習②解説

下記の「a」「b」に命令を記述、右の表の結果記述

[例題]

A[] 34 78 56 90 12

Ans	i	A [i]
	不定	不定

演習③

線形探索: 指定された値が、 配列データの中に存 在するか求める関数

[問題]

プログラムの穴埋め練習をしましょう。次に示すのは、要素数数 Length 個の配列 A[]の中から X を線形探索し、見つかった場合は要素番号を、見つからなかった場合は - 1を返す。SeqSearch 関数のプログラムです。配列の添え字は、0 から始まるとします。

a . b に入れる正しい答えを、解答群の中から選んでください。

- ○整数型関数:SeqSearch(整数型:A[], 整数型:Length, 整数型:X)
- ○整数型: Pos, i
- · Pas ← -1

AF 7 FF

A[] 55 11 77 33 66 44

22

[例題]

X:66

aに関する解答群

7 i:0, i < Length and Pos = -1, 1

1 i:0, i ≦ Length and Pos = -1, 1

7 i:0, i < Length and Pos \neq -1, 1

⊥ i:0, i ≦ Length and Pos ≠ −1, 1

bに関する解答群

ア · Pos ← X イ · Pos ← i ゥ · Pos ← A[X]

©2022 Island Consultant Ltd.

I Pos ← A[i]

演習③解説

下記の「a」「b」に命令を記述、右の表の結果記述

[例題]

A[] 55 11 77 33 66 44 22

X:66

C整数型関数:SeqSearch(整数型:A[], 整数型:Length, 整数型:X)

C整数型: Pos, i

· Pas ← -1

· Return Pos

Pos	i	A[i]
	不定	不定

演習④

[問題]

バブルソート: 指定された配列データ を昇順(小さい順)に並べ 替えをする関数 プログラムの穴埋め練習をしましょう。次に示すのは、要素数 Length 個の配列 A[]を昇順でパブルソートする BubbleSort 関数のプログラムです。 a ~ c に入れる正しい答えを、解答群の中から選んでください。

OBubbleSort(整数型:A[],整数型:Length)

aに関する解答群

- 7 Num:0, Num < (Length 1), 1 1 Num:0, Num < (Length + 1), 1
- ウ Num:0, Num < (Length 1), -1
- w Minto Minto (Cranto 1 %)
- 工 Num:0, Num < (Length + 1), -1

bに関する解答群

- 7 Pos:Length 1, Pos < Num, 1
- √ Pos: Length 1, Pos > Num, 1
- ウ Pos:Length 1, Pos < Num, -1
- エ Pos:Length = 1, Pos > Num, -1

cに関する解答群

- 7 ·A[Pos] ← Temp
- $A \cdot A[Pos] \leftarrow A[Pos 1]$
- ウ ·A[Pos 1] ← Temp
- $x \cdot A[Pos 1] \leftarrow A[Pos]$

演習(4) 解說

下記の「a~c」に命令を記述、右の表の結果記述

- OBubbleSort(整数型:A[], 整数型:Length)
- ○整数型:Num, Pos, Temp

[例題]

Num	Pos	A [0]	A [1]	A [2]	A [3]	A [4]
不定	不定	55	11	44	33	22

演習⑤

[問題]

2進数の乗算: ヒットの論理シフト(右、 左)を使って2進数の掛け 算を行う関数

[ヒント:] (B & 1) 命令動作の例

В	00000101
1	0000001
AND(&)結果	0000001

[例題]

00001010

ら選んでください。

C整数型関数:BinMul(整数型:A, 整数型:B)

C整数型:Ans

. Ans ← 0

· Return Ans

aに関する解答群

ア A = 0

1 A ≠ 0

ウ B = 0

I B ≠ 0

Ans

00000000

b. cに関する解答群 (順不同)

ア · Aを左へ1ビット論理シフトする

ウ ・Bを左へ1ビット鈴理シフトする

イ ・Aを右へ1ビット論理シフトする

エ ・Bを右へ1ビット論理シフトする

©2022 Island Consultant Ltd,

B

00000101

演習⑤ 解説

下記の「a~C」に命令を記述、右の表の結果記述

- ○整数型関数:BinMul(整数型:A,整数型:B)
- ○整数型:Ans
- · Ans ← 0

· Return Ans

[例題]

Α	В	Ans
00001010	00000101	00000000

[ヒント:] (B & 1) 命令動作の例

В	00000101
1	0000001
AND(&)結果	0000001

©2022 Island Consultant Ltd,

アルゴリズム対策・演習

疑似言語とアルゴリズム演習

以上をもって3学期終了!!

引き続き4学期も担当しますので、宜しくお願いします。