Poliedros Regulares en el 3-Toro.

Antonio Montero * Daniel Pellicer *

*PCCM, UMSNH-UNAM

 \star CCM,UNAM

XXVIII Coloquio Víctor Neumann-Lara de Teoría de las Gráficas Combinatoria y sus Aplicaciones

Morelia, Marzo 2013.

Índice:

- Introducción Histórica
- 2 Poliedros Regulares en \mathbb{E}^3
 - Poliedros Regulares Abstractos
 - Operaciones con poliedros
 - Realizaciones de Poliedros Regulares
- 3 El 3-Toro
 - 3-Toro y sus isometrías
 - Retículas de Puntos
- Poliedros Regulares en el 3-Toro
 - Poliedros Finitos
 - Poliedros de Petrie-Coxeter
- 6 Conclusiones

Los griegos conocían los Sólidos Platónicos y probaron que son todos los sólidos convexos regulares.

Los griegos conocían los Sólidos Platónicos y probaron que son todos los sólidos convexos regulares.

Poliedros de Kepler-Poinsot

Con el tiempo aparecieron más poliedros regulares:

Poliedros de Kepler-Poinsot

Con el tiempo aparecieron más poliedros regulares:

Poliedros de Petrie-Coxeter

.. y más aún...

Poliedros de Petrie-Coxeter

.. y más aún...

• En los 70's B. Grünbaum da una lista de 47 (sí ¡¡¡47!!!) poliedros regulares

- En los 70's B. Grünbaum da una lista de 47 (sí ;;;47!!!) poliedros regulares
- A principios de los 80's A. Dress describe otro poliedro y prueba que la lista de 48 poliedros regulares es completa.

- En los 70's B. Grünbaum da una lista de 47 (sí ;;;47!!!) poliedros regulares
- A principios de los 80's A. Dress describe otro poliedro y prueba que la lista de 48 poliedros regulares es completa.
- En 1982 Danzer y Schulte definen politopo abstracto.

- En los 70's B. Grünbaum da una lista de 47 (sí ¡¡¡47!!!) poliedros regulares
- A principios de los 80's A. Dress describe otro poliedro y prueba que la lista de 48 poliedros regulares es completa.
- En 1982 Danzer y Schulte definen politopo abstracto.
- En 1997 P. McMullen y E. Schulte prueban, partiendo del concepto de politopo abstracto, que la lista de Grünbaum y Dress es completa.

Índice:

- Introducción Histórica
- 2 Poliedros Regulares en \mathbb{E}^3
 - Poliedros Regulares Abstractos
 - Operaciones con poliedros
 - Realizaciones de Poliedros Regulares
- 3 El 3-Toro
 - 3-Toro y sus isometrías
 - Retículas de Puntos
- 4 Poliedros Regulares en el 3-Toro
 - Poliedros Finitos
 - Poliedros de Petrie-Coxeter
- 6 Conclusiones

Definición

Un poliedro abstracto \mathcal{P} es un conjunto parcialmente ordenado con una función de rango en $\{-1,0,1,2,3\}$.

Definición

Un poliedro abstracto \mathcal{P} es un conjunto parcialmente ordenado con una función de rango en $\{-1,0,1,2,3\}$. Llamarémos vértices, aristas y caras a los elementos de rango 0,1 y 2 respectivamente.

Definición

Un poliedro abstracto \mathcal{P} es un conjunto parcialmente ordenado con una función de rango en $\{-1,0,1,2,3\}$. Llamarémos vértices, aristas y caras a los elementos de rango 0,1 y 2 respectivamente. Una bandera es una terna (v,a,c) con v vértice, a arista y c cara donde v < a < c.

Definición

Un poliedro abstracto \mathcal{P} es un conjunto parcialmente ordenado con una función de rango en $\{-1,0,1,2,3\}$. Llamarémos vértices, aristas y caras a los elementos de rango 0, 1 y 2 respectivamente. Una bandera es una terna (v,a,c) con v vértice, a arista y c cara donde v < a < c. Además \mathcal{P} satisface un montón de propiedades.

Algunos ejemplos:

Algunos ejemplos:

Algunos anti-ejemplos:

Algunos anti-ejemplos:

Automorfismos

Definición

• Si \mathcal{P} es un poliedro, $\phi: \mathcal{P} \to \mathcal{P}$ es un automorfismo de \mathcal{P} si ϕ es una biyección y tanto ϕ como ϕ^{-1} preservan orden, es decir, $F \leq G$ si y sólo si $\phi(F) \leq \phi(G)$.

Automorfismos

Definición

- Si \mathcal{P} es un poliedro, $\phi: \mathcal{P} \to \mathcal{P}$ es un automorfismo de \mathcal{P} si ϕ es una biyección y tanto ϕ como ϕ^{-1} preservan orden, es decir, $F \leq G$ si y sólo si $\phi(F) \leq \phi(G)$.
- Denotamos por $\Gamma(\mathcal{P})$ al grupo de automorfismos de \mathcal{P} .

Automorfismos

Poliedros Regulares

Definición

Diremos que un poliedro \mathcal{P} es regular si $\Gamma(\mathcal{P})$ actúa transitivamente en $\mathcal{F}(\mathcal{P})$, el conjunto de banderas de \mathcal{P} .

Poliedros Regulares

Teorema

Un poliedro \mathcal{P} es regular si y sólo si para alguna bandera Φ y para todo $i \in \{0, 1, 2\}$ existe un automorfismo ρ_i de \mathcal{P} tal que

$$\rho_i(\Phi) = \Phi^i.$$

Además, cada automorfismo ρ_i es una involución, es decir, $\rho_i^2 = Id$.

De manera similar a la dualidad se pueden definir otras operaciones en poliedros regulares. La idea general es, dado un poliedro regular \mathcal{Q} , construir un poliedro regular \mathcal{P} a partir de \mathcal{Q} de tal forma que $\Gamma(\mathcal{P}) = \Gamma(\mathcal{Q})$.

De manera similar a la dualidad se pueden definir otras operaciones en poliedros regulares. La idea general es, dado un poliedro regular \mathcal{Q} , construir un poliedro regular \mathcal{P} a partir de \mathcal{Q} de tal forma que $\Gamma(\mathcal{P}) = \Gamma(\mathcal{Q})$.

McMullen y Schulte prueban que un poliedro regular está totalmente determinado, salvo isomorfismo, por su grupo de automorfismos y sus generadores distinguidos.

Dualidad

$$\delta: (\sigma_0, \sigma_1, \sigma_2) \mapsto (\sigma_2, \sigma_1, \sigma_0) =: (\rho_0, \rho_1, \rho_2).$$

Dualidad

$$\delta: (\sigma_0, \sigma_1, \sigma_2) \mapsto (\sigma_2, \sigma_1, \sigma_0) =: (\rho_0, \rho_1, \rho_2).$$

Operación de Petrie:

$$\pi:(\sigma_0,\sigma_1,\sigma_2)\mapsto(\sigma_2\sigma_0,\sigma_1,\sigma_2)=:(\rho_0,\rho_1,\rho_2).$$

Dualidad

$$\delta: (\sigma_0, \sigma_1, \sigma_2) \mapsto (\sigma_2, \sigma_1, \sigma_0) =: (\rho_0, \rho_1, \rho_2).$$

Operación de Petrie:

$$\pi: (\sigma_0, \sigma_1, \sigma_2) \mapsto (\sigma_2 \sigma_0, \sigma_1, \sigma_2) =: (\rho_0, \rho_1, \rho_2).$$

Dualidad

$$\delta: (\sigma_0, \sigma_1, \sigma_2) \mapsto (\sigma_2, \sigma_1, \sigma_0) =: (\rho_0, \rho_1, \rho_2).$$

Operación de Petrie:

$$\pi: (\sigma_0, \sigma_1, \sigma_2) \mapsto (\sigma_2 \sigma_0, \sigma_1, \sigma_2) =: (\rho_0, \rho_1, \rho_2).$$

Schulte y McMullen usaron operaciones de este estilo para clasificar a los poliedros finitos en tres familias:

Schulte y McMullen usaron operaciones de este estilo para clasificar a los poliedros finitos en tres familias:

Familia del Tetraedro

$${3,3} \leftarrow \pi > {4,3}_3$$

Schulte y McMullen usaron operaciones de este estilo para clasificar a los poliedros finitos en tres familias:

Familia del Tetraedro

$${3,3} \leftarrow {\pi} > {4,3}_3$$

Familia del Octaedro

$$\{6,4\}_3 \xleftarrow{\pi} > \{3,4\} \xleftarrow{\delta} > \{4,3\} \xleftarrow{\pi} > \{6,3\}_4$$

Schulte y McMullen usaron operaciones de este estilo para clasificar a los poliedros finitos en tres familias:

Familia del Tetraedro

$$\{3,3\} \xleftarrow{\pi} \{4,3\}_3$$

Familia del Octaedro

$$\{6,4\}_3 \stackrel{\pi}{\Longleftrightarrow} \{3,4\} \stackrel{\delta}{\Longleftrightarrow} \{4,3\} \stackrel{\pi}{\Longleftrightarrow} \{6,3\}_4$$

Familia del Icosaedro

Definición

Una realización de un poliedro abstracto \mathcal{P} es una función $\beta: \mathcal{P}_0 \to \mathbb{E}^3$ donde \mathcal{P}_0 es el conjunto de vértices de \mathcal{P} de tal forma que cada automorfismo de $\Gamma(\mathcal{P})$ induce una isometría en $Aff(\beta(\mathcal{P}_0))$.

• Dada una realización, es posible recuperar la estructura del poliedro definiendo recursivamente funciones $\beta_i : \mathcal{P}_i \to \mathscr{P}(V_i)$.

- Dada una realización, es posible recuperar la estructura del poliedro definiendo recursivamente funciones $\beta_i : \mathcal{P}_i \to \mathscr{P}(V_i)$.
- Diremos que una realización β es fiel si β_i es inyectiva para toda $i \in \{-1, 0, 1, 2, 3\}.$

- Dada una realización, es posible recuperar la estructura del poliedro definiendo recursivamente funciones $\beta_i : \mathcal{P}_i \to \mathscr{P}(V_i)$.
- Diremos que una realización β es fiel si β_i es inyectiva para toda $i \in \{-1, 0, 1, 2, 3\}.$
- Diremos que β es discreta si $V = \beta(\mathcal{P}_0)$ es un conjunto discreto.

Índice:

- Introducción Histórica
- 2 Poliedros Regulares en \mathbb{E}^3
 - Poliedros Regulares Abstractos
 - Operaciones con poliedros
 - Realizaciones de Poliedros Regulares
- 3 El 3-Toro
 - 3-Toro y sus isometrías
 - Retículas de Puntos
- 4 Poliedros Regulares en el 3-Toro
 - Poliedros Finitos
 - Poliedros de Petrie-Coxeter
- 6 Conclusiones

El 3-Toro

Si $\tau=\langle t_{\vec{v}_1},t_{\vec{v}_2},t_{\vec{v}_3}\rangle$ es un grupo de traslaciones con $\vec{v}_1,\,\vec{v}_2,\,\vec{v}_3$ linealmente independientes definimos el 3-toro generado por τ como

$$\mathbb{T}^3_{\tau} = \mathbb{E}^3/\tau = \{[x]_{\tau} : x \in \mathbb{E}^3\}$$

El 3-Toro

Si $\tau=\langle t_{\vec{v}_1},t_{\vec{v}_2},t_{\vec{v}_3}\rangle$ es un grupo de traslaciones con $\vec{v}_1,\,\vec{v}_2,\,\vec{v}_3$ linealmente independientes definimos el 3-toro generado por τ como

$$\mathbb{T}_{\tau}^3 = \mathbb{E}^3/\tau = \{[x]_{\tau} : x \in \mathbb{E}^3\}$$

Definimos la métrica e_{τ} en \mathbb{T}^{3}_{τ} por:

$$e_{\tau}\left([x]_{\tau},[y]_{\tau}\right) = \inf\left\{e(t_1(x),t_2(y)): t_1,t_2 \in \tau\right\}.$$

El problema:

Decidir para qué grupos τ generados por 3 traslaciones linealmente independientes un poliedro regular \mathcal{P} realizado en \mathbb{E}^3 tiene realización discreta en $\mathbb{T}^3_{\tau} = \mathbb{E}^3/\tau$.

El problema:

Decidir para qué grupos τ generados por 3 traslaciones linealmente independientes un poliedro regular \mathcal{P} realizado en \mathbb{E}^3 tiene realización discreta en $\mathbb{T}^3_{\tau} = \mathbb{E}^3/\tau$.

El 3-Toro

¿Cuándo se portan bien las isometrías?

Proposición

Si g es isometría de \mathbb{E}^3 , g induce una isometría \hat{g} de \mathbb{T}^3_{τ} si y sólo si $g \in \mathcal{N}(\tau)$, el normalizador de τ en $Isom(\mathbb{E}^3)$.

El 3-Toro

¿Cuándo se portan bien las isometrías?

Proposición

Si g es isometría de \mathbb{E}^3 , g induce una isometría \hat{g} de \mathbb{T}^3_{τ} si y sólo si $g \in \mathcal{N}(\tau)$, el normalizador de τ en $Isom(\mathbb{E}^3)$.

Si $\tau = \langle t_{\vec{v}_1}, t_{\vec{v}_2}, t_{\vec{v}_3} \rangle$ es un grupo generado por tres traslaciones linealmente independientes la retícula de puntos asociada a τ , denotada por Λ_{τ} , es el conjunto

$$\Lambda_{\tau} = [0]_{\tau} = \{ mv_1 + nv_2 + kv_3 : m, n, k \in \mathbb{Z} \}.$$

Ejemplos

• Si $\tau = \langle (1,0,0), (0,1,0), (0,0,1) \rangle$ entonces $\Lambda_{\tau} = \mathbb{Z}^3 = \Lambda_{(1,0,0)}$.

Ejemplos

- Si $\tau = \langle (1,0,0), (0,1,0), (0,0,1) \rangle$ entonces $\Lambda_{\tau} = \mathbb{Z}^3 = \Lambda_{(1,0,0)}$.
- Si $\tau = \langle (1,1,0), (1,0,1), (0,1,1) \rangle$ entonces $\Lambda_{\tau} = \Lambda_{(1,1,0)}$.

Ejemplos

- Si $\tau = \langle (1,0,0), (0,1,0), (0,0,1) \rangle$ entonces $\Lambda_{\tau} = \mathbb{Z}^3 = \Lambda_{(1,0,0)}$.
- Si $\tau = \langle (1, 1, 0), (1, 0, 1), (0, 1, 1) \rangle$ entonces $\Lambda_{\tau} = \Lambda_{(1,1,0)}$.
- Si $\tau = \langle (1,1,1), (2,0,0), (0,2,0) \rangle$ entonces $\Lambda_{\tau} = \Lambda_{(1,1,1)}$.

Ejemplos

- Si $\tau = \langle (1,0,0), (0,1,0), (0,0,1) \rangle$ entonces $\Lambda_{\tau} = \mathbb{Z}^3 = \Lambda_{(1,0,0)}$.
- Si $\tau = \langle (1,1,0), (1,0,1), (0,1,1) \rangle$ entonces $\Lambda_{\tau} = \Lambda_{(1,1,0)}$.
- Si $\tau = \langle (1,1,1), (2,0,0), (0,2,0) \rangle$ entonces $\Lambda_{\tau} = \Lambda_{(1,1,1)}$.

¿Cuándo las isometrías se portan bien con las retículas?

Proposición

Sean τ un grupo de traslaciones generado por 3 traslaciones linealmente independientes, $g \in Isom(\mathbb{E}^3)$. Entonces $g \in \mathcal{N}(\tau)$ si y sólo si g' preserva a Λ_{τ} .

Primera aproximación:

Estudiar retículas invariantes bajo reflexiones.

Retículas Invariantes Bajo Reflexiones

Si Λ es una retícula invariante bajo la reflexión por un plano Π que intersecta a Λ , entonces Λ tiene (a lo más) dos clases de puntos:

Retículas Invariantes Bajo Reflexiones

Si Λ es una retícula invariante bajo la reflexión por un plano Π que intersecta a Λ , entonces Λ tiene (a lo más) dos clases de puntos:

• Aquellos cuya proyección en Π es un punto de $\Lambda \cap \Pi$.

Retículas Invariantes Bajo Reflexiones

Si Λ es una retícula invariante bajo la reflexión por un plano Π que intersecta a Λ , entonces Λ tiene (a lo más) dos clases de puntos:

- Aquellos cuya proyección en Π es un punto de $\Lambda \cap \Pi$.
- Aquellos cuya proyección en Π es punto medio entre dos puntos de $\Lambda \cap \Pi$.

(a) Proyección de $\Lambda_{(1,0,0)}$ en el plano x=0.

(a) Proyección de $\Lambda_{(1,0,0)}$ en el plano x=0.

(b) Proyección de $\Lambda_{(1,0,0)}$ en el plano x=y.

(c) Proyección de $\Lambda_{(1,1,1)}$ en el plano x=0.

- (c) Proyección de $\Lambda_{(1,1,1)}$ en el plano x=0.
- (d) Proyección de $\Lambda_{(1,1,0)}$ en el plano y=0.

Índice:

- Introducción Histórica
- 2 Poliedros Regulares en \mathbb{E}^3
 - Poliedros Regulares Abstractos
 - Operaciones con poliedros
 - Realizaciones de Poliedros Regulares
- 3 El 3-Toro
 - 3-Toro y sus isometrías
 - Retículas de Puntos
- 4 Poliedros Regulares en el 3-Toro
 - Poliedros Finitos
 - Poliedros de Petrie-Coxeter
- 6 Conclusiones

Poliedros Regulares en \mathbb{T}^3_{τ} ¿Qué hemos hecho?

• Dimos un criterio algebraico para determinar cuándo un poliedro regular realizado en \mathbb{E}^3 admite realización en \mathbb{T}^3 .

Poliedros Regulares en \mathbb{T}^3_{τ} ¿Qué hemos hecho?

- Dimos un criterio algebraico para determinar cuándo un poliedro regular realizado en \mathbb{E}^3 admite realización en \mathbb{T}^3 .
- Traducimos el criterio algebraico a un criterio geométrico en términos de retículas.

Poliedros Regulares en \mathbb{T}^3_{τ}

¿Qué hemos hecho?

- Dimos un criterio algebraico para determinar cuándo un poliedro regular realizado en \mathbb{E}^3 admite realización en \mathbb{T}^3 .
- Traducimos el criterio algebraico a un criterio geométrico en términos de retículas.
- Determinamos condiciones para que una retícula quede invariante bajo una reflexión por un plano.

Poliedros Regulares Finitos en $\mathbb{T}^3_{ au}$

Si τ es un grupo generado por tres traslaciones linealmente independientes de tal forma que Λ_{τ} queda invariante bajo $\Gamma(\mathcal{T})$, entonces la proyección de Λ_{τ} al plano de reflexión de ρ_1 ve como alguna de las siguientes:

Poliedros Regulares Finitos en \mathbb{T}^3_{τ} El Tetraedro

Teorema.

Sea τ un grupo generado por tres traslaciones linealmente independientes. El tetraedro regular \mathcal{T} admite realización en \mathbb{T}^3_{τ} si y sólo si

$$\Lambda_{\tau} \in \{a\Lambda_{(1,0,0)}, b\Lambda_{(1,1,0)}, c\Lambda_{(1,1,1)} : a > 2, b > 2, c > \frac{2}{\sqrt{3}}\}.$$

Poliedros Regulares Finitos en \mathbb{T}^3_{τ}

¿Qué pasa con la familia del octaedro?

Poliedros Regulares Finitos en \mathbb{T}^3_{τ} El Octaedro y el Cubo

Teorema

Sea τ un grupo de generado por tres traslaciones linealmente independientes. El octaedro regular admite realización en \mathbb{T}^3_{τ} si y sólo si

$$\Lambda_{\tau} \in \{a\Lambda_{(1,0,0)}, b\Lambda_{(1,1,0)}, c\Lambda_{(1,1,1)} : a > 2, b > 1c > 1\}.$$

Poliedros Regulares Finitos en $\mathbb{T}^3_{ au}$ El Octaedro y el Cubo

Teorema

Sea τ un grupo de generado por tres traslaciones linealmente independientes. El octaedro regular admite realización en \mathbb{T}^3_{τ} si y sólo si

$$\Lambda_{\tau} \in \{a\Lambda_{(1,0,0)}, b\Lambda_{(1,1,0)}, c\Lambda_{(1,1,1)} : a > 2, b > 1c > 1\}.$$

Corolario

Sea τ un grupo de generado por tres traslaciones linealmente independientes. El cubo $\mathcal C$ admite realización en $\mathbb T^3_{\tau}$ si y sólo si

$$\Lambda_{\tau} \in \{a\Lambda_{(1,0,0)}, b\Lambda_{(1,1,0)}, c\Lambda_{(1,1,1)} : a > 2, b > 2, c > 2\}.$$

Poliedros Regulares Finitos en \mathbb{T}^3_{τ} (1) el icosaedro?

Teorema

Sea τ un grupo generado por 3 traslaciones linealmente independientes. Si G es un grupo de isometrías de \mathbb{E}^3 que deja invariante a Λ_{τ} , entonces G no tiene rotaciones de orden distinto a 2, 3, 4 o 6.

Poliedros Regulares Finitos en \mathbb{T}^3_{τ} ¿Y el icosaedro?

Teorema

Sea τ un grupo generado por 3 traslaciones linealmente independientes. Si G es un grupo de isometrías de \mathbb{E}^3 que deja invariante a Λ_{τ} , entonces G no tiene rotaciones de orden distinto a 2, 3, 4 o 6.

Teorema

Si \mathcal{P} es un poliedro de la familia del icosaedro, entonces no existe τ , un grupo generado por 3 traslaciones linealmente independientes, de tal forma que \mathcal{P} tenga realización en \mathbb{T}^3_{τ} .

Poliedros de Petrie-Coxeter en \mathbb{T}^3_{τ}

Poliedros de Petrie-Coxeter en \mathbb{T}^3_{τ} {4,6|4} y {6,4|4}

Teorema

Sea τ un grupo de generado por tres traslaciones linealmente independientes. El poliedro $\{4,6|4\}$ admite realización en \mathbb{T}^3_{τ} si y sólo si

$$\Lambda_{\tau} \in \{4a\Lambda_{(1,0,0)}, 4b\Lambda_{(1,1,0)}, 2c\Lambda_{(1,1,1)} : a, b, c \in \mathbb{Z}\}.$$

Poliedros de Petrie-Coxeter en \mathbb{T}^3_{τ} {4,6|4} y {6,4|4}

Teorema

Sea τ un grupo de generado por tres traslaciones linealmente independientes. El poliedro $\{4,6|4\}$ admite realización en \mathbb{T}^3_{τ} si y sólo si

$$\Lambda_{\tau} \in \{4a\Lambda_{(1,0,0)}, 4b\Lambda_{(1,1,0)}, 2c\Lambda_{(1,1,1)} : a, b, c \in \mathbb{Z}\}.$$

Corolario

Sea τ un grupo de generado por tres traslaciones linealmente independientes. El poliedro $\{6,4|4\}$ admite realización en \mathbb{T}^3_{τ} si y sólo si

$$\Lambda_{\tau} \in \{4a\Lambda_{(1,0,0)}, 4b\Lambda_{(1,1,0)}, 2c\Lambda_{(1,1,1)} : a, b, c \in \mathbb{Z}\}.$$

Poliedros de Petrie-Coxeter en \mathbb{T}^3_{τ} $_{\{6,6|3\}}$

Teorema

Sea τ un grupo de generado por tres traslaciones linealmente independientes. El poliedro $\{6,6|3\}$ admite realización en \mathbb{T}^3_{τ} si y sólo si

$$\Lambda_{\tau} \in \{8a\Lambda_{(1,0,0)}, 4b\Lambda_{(1,1,0)}, 8c\Lambda_{(1,1,1)} : a, b, c \in \mathbb{Z}\}.$$

Índice:

- Introducción Histórica
- 2 Poliedros Regulares en \mathbb{E}^3
 - Poliedros Regulares Abstractos
 - Operaciones con poliedros
 - Realizaciones de Poliedros Regulares
- 3 El 3-Toro
 - 3-Toro y sus isometrías
 - Retículas de Puntos
- Poliedros Regulares en el 3-Toro
 - Poliedros Finitos
 - Poliedros de Petrie-Coxeter
- Conclusiones

¿Qué hicimos?

• Abordamos el problema de determinar aquellos grupos τ generados por tres traslaciones linealmente independientes para los cuales, un poliedro realizado en \mathbb{E}^3 , admite realización en \mathbb{T}^3_{τ} .

¿Qué hicimos?

- Abordamos el problema de determinar aquellos grupos τ generados por tres traslaciones linealmente independientes para los cuales, un poliedro realizado en \mathbb{E}^3 , admite realización en \mathbb{T}^3_{τ} .
- Estudiamos las retículas Λ_{τ} asociadas a los grupos τ , las cuales nos permitieron, por medio de análisis geométrico, determinar condiciones para que los poliedros fueran realizados.

¿Qué hicimos?

• Clasificamos los grupos τ para todos los poliedros finitos, así como para los poliedros de Petrie-Coxeter obteniendo los siguientes resultados:

¿Qué hicimos?

- Clasificamos los grupos τ para todos los poliedros finitos, así como para los poliedros de Petrie-Coxeter obteniendo los siguientes resultados:
 - ▶ Un poliedro de la familia del tetraedro, de la familia del octaedro o de la familia de alguno de los poliedros de Petrie-Coxeter admite realización en \mathbb{T}^3_{τ} si y sólo si Λ_{τ} es $a\Lambda_{(1,0,0)}$, $b\Lambda_{(1,1,0)}$ o $c\Lambda_{(1,1,1)}$ para algunos parámetros a, b y c que dependen de las coordenadas de los vértices del poliedro.

¿Qué hicimos?

- Clasificamos los grupos τ para todos los poliedros finitos, así como para los poliedros de Petrie-Coxeter obteniendo los siguientes resultados:
 - ▶ Un poliedro de la familia del tetraedro, de la familia del octaedro o de la familia de alguno de los poliedros de Petrie-Coxeter admite realización en \mathbb{T}_{τ}^3 si y sólo si Λ_{τ} es $a\Lambda_{(1,0,0)}$, $b\Lambda_{(1,1,0)}$ o $c\Lambda_{(1,1,1)}$ para algunos parámetros a, b y c que dependen de las coordenadas de los vértices del poliedro.
 - No existe grupo τ de tal forma que un poliedro de la familia del icosaedro tenga realización en \mathbb{T}^3_{τ} .

¿Qué queda por hacer?

• Completar las lista de los 48.

¿Qué queda por hacer?

- Completar las lista de los 48.
- Completar la lista saltándose la realización en \mathbb{E}^3 .

¿Qué queda por hacer?

- Completar las lista de los 48.
- Completar la lista saltándose la realización en \mathbb{E}^3 .
- Explorar otras 3-variedades.

¡Gracias!

