МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №4 по дисциплине «Программирование»

Тема: Обзор стандартной библиотеки

Студент гр. 9304	 Мохаммед А.А.
Преподаватель	 Чайка К.В.

Санкт-Петербург 2019

Цель работы.

Познакомиться с некоторыми функциями стандартной библиотеки.

Задание.

Напишите программу, на вход которой подается массив целых чисел длины 1000, при этом число 0 либо встречается один раз, либо не встречается. Программа должна совершать следующие действия:

- •отсортировать массив, используя алгоритм быстрой сортировки (см. функции стандартной библиотеки)
- •определить, присутствует ли в массиве число **0**, используя алгоритм двоичного поиска (для реализации алгоритма двоичного поиска используйте функцию стандартной библиотеки)
- •посчитать время, за которое совершен поиск числа 0, используя при этом функцию стандартной библиотеки
- •вывести строку "exists", если ноль в массиве есть и "doesn't exist" в противном случае
- •вывести время, за которое был совершен двоичный поиск
- •определить, присутствует ли в массиве число 0, используя перебор всех чисел массива
- •посчитать время, за которое совершен поиск числа **0** перебором, используя при этом функцию стандартной библиотеки
- •вывести строку "exists", если **0** в массиве есть и "doesn't exist" в противном случае
- •вывести время, за которое была совершен поиск перебором.

Основные теоретические положения.

Стандартной библиотекой языка Си (также известная как libc, crt) называется часть стандарта ANSI С, посвященная заголовочным файлам и библиотечным подпрограммам. Является описанием реализации общих операций, таких как обработка ввода-вывода и строк, в языке программирования Си. Стандартная библиотека языка Си — это описание программного интерфейса, а не настоящая библиотека, пригодная для использования в процессе компиляции.

Стандартная библиотека ANSI Си состоит из 24 заголовочных файлов, каждый из которых можно подключать к программному проекту при помощи одной директивы. Каждый заголовочный файл содержит объявления одной или более функций, определения типов данных и макросы.

Существует не одна реализация стандартной библиотеки: так, например, стандартная библиотека для систем Linux (GNU Libc) включает функции, которые могут быть недоступны в других реализациях.

Выполнение работы.

Разработанный алгоритм решает поставленную задачу, используя функции стандартной библиотеки. Алгоритм составлен следующим образом:

- 1) Программа считывает элементы статического массива длины 1000:
- 2) Сортирует элементы введённого массива, используя библиотечную функцию qsort. Для сравнения двух элементов массива написана функция-компаратор.
- 3) Сохраняет в переменную start время, прошедшее с запуска программы, с помощью функции clock стандартной библиотеки;

- 4) Производит бинарный поиск нуля в массиве, сохраняя его адрес в переменную ptr, после чего выводит сообщение «exists», если ноль найден, и «doesn't exist», если ноль не найден;
- 5) Сохраняет в переменную end время с запуска программы и выводит разность времён end и start, делённую на макрос CLOCKS_PER_SEC (количество машинных тактов в секунду для данной машины), т. е. Время в секундах;
- 6) Ищет ноль в массиве перебором всех его элементов, при этом аналогично замеряя время, потребовавшееся для этого, и выводит сообщение «exists» или «doesn't exist» в зависимости от результата поиска, а также затраченное время.

Тестирование.

Результаты тестирования программы (для длины массива N=10) представлены в табл. 1.

Таблица 1 – Результаты тестирования

№ п/п	Входные данные	Выходные данные	Комментарии	
1.	-10 216 -17 0 2 33 7 80 -9 1	exists	Получен ожидаемый	
		0.000000	результат. Здесь и далее	
		exists	время на перебор 10	
		0.000000	элементов оказалось	
			слишком незначительным,	
			чтобы разность end и start	
			была отлична от 0. На	
			моём компьютере время,	
			не равное 0, выводится	
			при N > 10000; в	
			проверяющей системе	
			stepik — уже при N = 1000	
2.	-100 -15 10 -20 -5 -70 -8	doesn't exist	Получен ожидаемый	
	-78 -8 -1	0.000000	результат.	

		doesn't exist		
		0.000000		
3.	1234567890	exists	Получен	ожидаемый
		0.000000	результат.	
		exists		
		0.000000		

Выводы.

В ходе лабораторной работы была написана программа, выполняющая поиск определённого элемента (нуля) в массиве целых чисел и замеряющая ушедшее на это время с использованием функций стандартной библиотеки.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.c

```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define N 1000
void fill arr(int* ptr, int 1) {
    for (int i = 0; i < 1; i++) {
        scanf("%d", ptr + i); }}
int int cmp(const void* x, const void* y) {
    x = *((int*)x);
    y = *((int*)y);
    if (x == y) return 0;
    if (x < y) return -1;
    if (x > y) return 1;}
int main(){
  int arr[N];
  fill arr(arr, N);
  int zero = 0;
  qsort(arr, N, sizeof(int), int cmp);
  clock_t start = clock();
  int* ptr = (int*)bsearch(&zero, arr, N, sizeof(int), int cmp);
  clock t end = clock();
  if (ptr) puts("exists");
  else puts("doesn't exist");
  printf("%lf\n", (end - start)/(double)CLOCKS_PER_SEC);
  start = clock();
  for (int i = 0; i < N; i++) {
      if (arr[i] == 0){
         puts("exists");
         break; }
      if(i == N-1)puts("doesn't exist");}
  end = clock();
  printf("%lf\n", (end - start)/(double)CLOCKS PER SEC);
  return 0;
}
```