Abgabe: Termine siehe unten bei den Aufgaben. Abgabe jeweils als PDF Upload in Moodle-Aufgabe

- Abzugeben sind die handschriftlichen Ausarbeitungen mit ausführlichen, nachvollziehbaren Lösungswegen.
- Schreiben Sie jede Aufgabe auf eine eigene Seite.
- Die Abgabe erfolgt im PDF-Format als Moodle-Abgabe. (Scan der Papier-Ausarbeitung oder PDF mit Tablet beschreiben)
- Eine Korrektur erfolgt nur bei Angabe der Matrikelnummer.
- Sofern nichts anderes gesagt wird, rechnen Sie bitte exakt oder auf 4 Nachkommastellen genau.

Nr.	1	2	3	Σ
Max.	15	35	50	100
Erg.				

ACHTUNG: Ersetzen Sie in den folgenden Aufgaben a jeweils durch die letzte Stelle Ihrer Matrikelnummer (Das ist die 6. Ziffer, ignorieren Sie die hintere Versionsnummer -01!). Anstelle von 0 bzw. 1 wählen Sie bitte 5 bzw. 6.

Aufgabe 1 - Abgabe Do 13.6.24 22:00 Uhr

Gegeben sind mehrere trigonometrische Funktionsvorschriften in Abhängigkeit von $n \in \mathbb{N}$

- (15 P)
- a) Geben Sie das Ergebnis der folgender trigonometrischer Funktionen in Äbhängigkeit von n an.
- b) Falls es unterschiedliche Ergebnisse in Abhängigkeit von $n \in \mathbb{N}$ gibt, geben Sie diese als Folge a_n mit expliziter Bildungsvorschrift an.

(1)
$$\sin(n \cdot \pi) = 0$$
 (2) $\cos(n \cdot 2\pi) = 0$ for all $n \in \mathbb{N}$

(1)
$$\sin(n \cdot \pi) = 0$$
 (2) $\cos(n \cdot 2\pi) = 1$ (3) $\cos(n \cdot \pi) = \begin{cases} 1 & \text{n geods} \\ -1 & \text{n ungeaute} \end{cases}$ (4) $\sin^2(n \cdot \frac{\pi}{2}) = \begin{cases} 0 & \text{n = 0} \\ 1 & \text{n = 1} \end{cases}$ (5) $\cos(n \cdot \pi) = (-1)^n$ (6) $\sin(n \cdot \pi) = (-1)^n$ (7) $\cos(n \cdot \pi) = (-1)^n$ (8) $\cos(n \cdot \pi) = (-1)^n$ (9) $\cos(n \cdot \pi) = (-1)^n$ (1) $\cos(n \cdot \pi) = (-1)^n$ (1) $\cos(n \cdot \pi) = (-1)^n$ (1) $\cos(n \cdot \pi) = (-1)^n$ (2) $\cos(n \cdot \pi) = (-1)^n$ (3) $\cos(n \cdot \pi) = (-1)^n$ (4) $\sin^2(n \cdot \frac{\pi}{2}) = (-1)^n$ (5) $\sin^2(n \cdot \frac{\pi}{2}) = (-1)^n$ (6) $\sin^2(n \cdot \pi) = (-1)^n$ (7) $\cos(n \cdot \pi) = (-1)^n$ (8) $\cos(n \cdot \pi) = (-1)^n$ (9) $\cos(n \cdot \pi) = (-1)^n$ (1) $\cos(n \cdot \pi) = (-1)^n$ (1

Aufgabe 2 - Abgabe Do 13.6.24 22:00 Uhr

a) Geben Sie den Wert bzw. die Divergenz der geometrischen Reihe für alle $q \in \mathbb{R}$ an.

$$\sum_{k=0}^{\infty} q^{k}$$

$$|q| \le 1 = \sum_{k=0}^{\infty} q^{k} = \frac{1}{1-q}$$

$$|q| \ge 1 \text{ disciple } \implies$$
(5 P)

b) Berechnen Sie den Reihenwert / -summe

$$\sum_{k=2}^{\infty} \left(\frac{(-1)^k}{a^{k+3}} + \frac{3^{k-a}}{16^{\left(\frac{k}{2}\right)}} \right) \tag{30 P}$$

Ver 12 gent bs D 18.6 Aufgabe 3 - Abgabe Do 13.6.24 22:00 Uhr

- (5P) a) Nennen Sie die Mindestbedingung sowie die möglichen Konvergenzkriterien, um zu prüfen, ob eine Reihe konvergiert oder divergiert.
- b) Haben die folgenden Reihen einen endlichen Wert oder nicht (konvergieren sie oder divergieren (40 P)
- (1) $\sum_{n=1}^{\infty} \frac{an^2-1}{n^3+a+1}$ Tipp: Majorantenkriterium
- (2) $\sum_{n=1}^{\infty} \frac{a^n}{(2n)!}$ Tipp: Quotientenkriterium
- (3) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n+a}}$ Tipp: Leibnizkriterium
- (4) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n+a}} \cdot (-1)^n$ Tipp: Grenzwertkriterium
- c) Inwiefern erlaubt dieses Wissen, den Reihenwert näherungswiese zu bestimmen?

(5P)