

decsai.ugr.es

Fundamentos de Bases de Datos

Grado en Ingeniería Informática

Seminario 4: Álgebra relacional

Departamento de Ciencias de la Computación e Inteligencia Artificial

- 1. Introducción
- 2. Selección
- 3. Proyección
- 4. Composición de operadores
- 5. Producto cartesiano
- 6. Unión y diferencia
- 7. Reunión natural
- 8. Intersección
- 9. División
- 10. Eficacia en las consultas

- 1. Introducción
- 2. Selección
- 3. Proyección
- 4. Composición de operadores
- 5. Producto cartesiano
- 6. Unión y diferencia
- 7. Reunión natural
- 8. Intersección
- 9. División
- 10. Eficacia en las consultas

- Un lenguaje de consulta:
 - Permite al usuario solicitar información de la base de datos.
 - Son normalmente de más alto nivel que los lenguajes estándar de programación.
 - Pueden clasificarse en:
 - Procedimentales.
 - Declarativos.

- El usuario da instrucciones al sistema para que realice una secuencia de operaciones en la BD para calcular el resultado deseado.
 - Álgebra relacional
 - "A Relational Model of Data for Large Shared Data Banks" E. F. Codd, Communications of the ACM, Vol. 13, No. 6, June 1970, pp. 377-387.
- Lenguaje declarativo:
 - El usuario describe la información deseada sin dar un procedimiento específico para obtener esa información.
 - Cálculo relacional (Codd, 1970)
 - "Relational Completeness of Data Base Sublanguages" E.F. Codd (presented at Courant Computer Science Symposia Series 6, "Data Base Systems," New York City, N.Y., May 24th-25th, 1971). IBM Research Report RJ987 (March 6th, 1972). Republished in Randall J. Rustin (ed.), Data Base Systems: Courant Computer Science Symposia Series 6. Englewood Cliffs, N.J.: Prentice-Hall (1972).

 Las operaciones del álgebra relacional son internas dentro del conjunto de las relaciones:

- Entrada:
 - Una o más relaciones.
- Salida:
 - Una relación.

Operador	Notación
Selección	σ
Proyección	π
Unión	U
Intersección	D S GO
Diferencia	
Producto Cartesiano	×
Θ-Reunión	Mo
División	

- Clasificación de los operadores:
 - Con respecto al tipo de operador:
 - Operadores monarios:
 - Selección.
 - Proyección.
 - Operadores binarios:
 - Unión.
 - Intersección.
 - Diferencia.
 - Producto cartesiano.
 - θ-reunión.
 - División.

- Clasificación de los operadores:
 - Con respecto a su relación con el modelo relacional:
 - Operadores conjuntistas:
 - Unión.
 - Diferencia.
 - Intersección.
 - Producto.
 - Operadores relacionales:
 - Selección.
 - Proyección.
 - Θ-reunión.
 - División.

- Clasificación de los operadores:
 - Con respecto a su necesidad:
 - Operadores fundamentales (primitivos):
 - Selección.
 - Proyección.
 - Unión.
 - Diferencia.
 - Producto cartesiano.
 - Operadores no fundamentales (derivados):
 - Intersección.
 - θ-reunión.
 - División.

Operador	Notación	SQL
Selección	σ	WHERE < condición>
Proyección	π	SELECT A ₁ ,,A _n FROM
Producto cartesiano	×	FROM R ₁ ,,R _m
Unión	U	(SELECT FROM) UNION (SELECT FROM)
Diferencia	-	(SELECT FROM) MINUS (SELECT FROM)
Intersección	Λ	(SELECT FROM) INTERSECT (SELECT FROM)
Θ-Reunión	\bowtie_{Θ}	FROM R_1 <alias<sub>1> JOIN R_2 <alias<sub>2> ON (<Θ>)</alias<sub></alias<sub>
Reunión natural	\bowtie	FROM R ₁ NATURAL JOIN R ₂
División	÷	SELECT <cociente> FROM R_1 WHERE NOT EXISTS (<divisor> MINUS (SELECT <divisor> FROM <dividendo> WHERE $\Theta(<$dividendo>,R_1)))</dividendo></divisor></divisor></cociente>

Base de datos de gestión de recursos docentes en RelaX

- 1. Introducción
- 2. Selección
- 3. Proyección
- 4. Composición de operadores
- 5. Producto cartesiano
- 6. Unión y diferencia
- 7. Reunión natural
- 8. Intersección
- 9. División
- 10. Eficacia en las consultas

- Sea
 - R[A₁, ...,A_n] una relación cualquiera.
 - Θ una propiedad asociada a $\{A_1...A_n\}$
 - r una instancia de R.
- El operador Θ-selección aplicado a R obtiene aquellas tuplas de r para las que Θ es cierta.
- Notación: $\sigma_{\Theta}(R)$

Operadores relacionales	Operadores relacionales SQL	Descripción
=	=	Igual a
≠	<> ó !=	Distinto de
<	<	Menor que
>	>	Mayor que
≤	<=	Menor o igual que
≥	>=	Mayor o igual que
Operadores lógicos	Operadores lógicos SQL	Descripción
Λ	AND	AND
V	OR	OR
¬	NOT	NOT
Operadores precedencia	Operadares precedencia SQL	Descripción
()	()	Modifican la precedencia en predicados compuestos

NRP	NOM_PROF	CATEGORIA	AREA	COD_DEP
2428456	Juan Sánchez Pérez	AS	COMPUT	CCIA
24283256	Antonia Pérez Rodríguez	CU	COMPUT	CCIA
242256	Luis Pérez Pérez	TE	LENGUA	LSI
84256	Carmen Pérez Sánchez	TU	LENGUA	LSI
324256	David Pérez Jiménez	CU	ARQUIT	ATC
24256	María López Ruiz	TU	ARQUIT	ATC
2842560	José Álvarez Pérez	CE	ELECTR	ELEC
842560	Adela Pérez Sánchez	AS	ELECTR	ELEC
84560	Laura Martínez Pérez	AS	TSECAL	TESE
242560	María Gómez Sánchez	CU	TSECAL	TESE

NRP	NOM_PROF	CATEGORIA	AREA	COD_DEP
2428456	Juan Sánchez Pérez	AS	COMPUT	CCIA
24283256	Antonia Pérez Rodríguez	CU	COMPUT	CCIA
242256	Luis Pérez Pérez	TE	LENGUA	LSI
84256	Carmen Pérez Sánchez	TU	LENGUA	LSI
324256	David Pérez Jiménez	CU	ARQUIT	ATC
24256	María López Ruiz	TU	ARQUIT	ATC
2842560	José Álvarez Pérez	CE	ELECTR	ELEC
842560	Adela Pérez Sánchez	AS	ELECTR	ELEC
84560	Laura Martínez Pérez	AS	TSEÑAL	TESE
242560	María Gómez Sánchez	CU	TSEÑAL	TESE

Salida (resultado):

NRP	NOM_PROF	CATEGORIA	AREA	COD_DEP
2428456	Juan Sánchez Pérez	AS	COMPUT	CCIA
842560	Adela Pérez Sánchez	AS	ELECTR	ELEC
84560	Laura Martínez Pérez	AS	TSEÑAL	TESE

NRP	NOM_PROF	CATEGORIA	AREA	COD_DEP
2428456	Juan Sánchez Pérez	AS	СОМРИТ	CCIA
24283256	Antonia Pérez Rodríguez	CU	COMPUT	CCIA
242256	Luis Pérez Pérez	TE	LENGUA	LSI
84256	Carmen Pérez Sánchez	TU	LENGUA	LSI
324256	David Pérez Jiménez	CU	ARQUIT	ATC
24256	María López Ruiz	TU	ARQUIT	ATC
2842560	José Álvarez Pérez	CE	ELECTR	ELEC
842560	Adela Pérez Sánchez	AS	ELECTR	ELEC
84560	Laura Martínez Pérez	AS	TSECAL	TESE
242560	María Gómez Sánchez	CU	TSECAL	TESE

Salida (resultado):

NRP	NOM_PROF	CATEGORIA	AREA	COD_DEP
24283256	Antonia Pérez Rodríguez	CU	COMPUT	CCIA
2842560	José Álvarez Pérez	CE	ELECTR	ELEC

- 1. Introducción
- 2. Selección
- 3. Proyección
- 4. Composición de operadores
- 5. Producto cartesiano
- 6. Unión y diferencia
- 7. Reunión natural
- 8. Intersección
- 9. División
- 10. Eficacia en las consultas

- Sea
 - R[A₁...A_n] una relación cualquiera.
 - $\{A_i...A_i\}$ un subconjunto de sus atributos.
 - r una instancia de R.
- El operador proyección sobre {A_i...A_j} aplicado a R obtiene las tuplas de r, eliminando de la tabla aquellos atributos no pertenecientes a {A_i...A_j} y suprimiendo las tuplas redundantes.
- Notación:
 - $\pi_{Ai...Aj}(R)$

nrp	nom_prof	categoria	area	cod_dep
2428456	Juan Sánchez Pérez	AS	COMPUT	CCIA
24283256	Antonia Pérez Rodríguez	CU	COMPUT	CCIA
242256	Luis Pérez Pérez	TE	LENGUA	LSI
84256	Carmen Pérez Sánchez	TU	LENGUA	LSI
324256	David Pérez Jiménez	CU	ARQUIT	ATC
24256	María López Ruiz	TU	ARQUIT	ATC
2842560	José Álvarez Pérez	CE	ELECTR	ELEC
842560	Adela Pérez Sánchez	AS	ELECTR	ELEC
84560	Laura Martínez Pérez	AS	TSEÑAL	TESE
242560	María Gómez Sánchez	CU	TSEÑAL	TESE

nrp	nom_prof	categoria
2428456	Juan Sánchez Pérez	AS
24283256	Antonia Pérez Rodríguez	CU
242256	Luis Pérez Pérez	TE
84256	Carmen Pérez Sánchez	TU
324256	David Pérez Jiménez	CU
24256	María López Ruiz	TU
2842560	José Álvarez Pérez	CE
842560	Adela Pérez Sánchez	AS
84560	Laura Martínez Pérez	AS
242560	María Gómez Sánchez	CU

- Como una proyección produce como resultado una relación:
 - Si en el resultado de una proyección aparecen tuplas repetidas se deben descartar.

 Esto suele ocurrir cuando, al proyectar, no se incluye una clave candidata en la lista de atributos.

- Ejemplo: Tabla profesores
 - Clave primaria: nrp.
 - Si proyectamos por {area,cod_dep}

area	cod_dep
COMPUT	CCIA
COMPUT	CCIA
LENGUA	LSI
LENGUA	LSI
ARQUIT	ATC
ARQUIT	ATC
ELECTR	ELEC
ELECTR	ELEC
TSEÑAL	TESE
TSEÑAL	TESE

- Como una proyección produce como resultado una relación:
 - Si en el resultado de una proyección aparecen tuplas repetidas se deben descartar.
 - Esto suele ocurrir cuando, al proyectar, no se incluye una clave candidata en la lista de atributos.
- Ejemplo: Tabla profesores
 - Clave primaria: nrp.
 - Si proyectamos por {area,cod_dep}

cod_dep
CCIA
LSI
ATC
ELEC
TESE

- 1. Introducción
- 2. Selección
- 3. Proyección
- 4. Composición de operadores
- 5. Producto cartesiano
- 6. Unión y diferencia
- 7. Reunión natural
- 8. Intersección
- 9. División
- 10. Eficacia en las consultas

Como el resultado de una operación es siempre relación, dicho resultado puede usarse como operando de otra operación.

- Obtener una lista con el NRP y el nombre de aquellos profesores que pertenecen al departamento cuyo código es ELEC:
 - $\sigma_{\text{cod_dep='ELEC'}}$ (profesores)

nrp	nom_prof	categoria	area	cod_dep
2842560	José Álvarez Pérez	CE	ELECTR	ELEC
842560	Adela Pérez Sánchez	AS	ELECTR	ELEC

• $\pi_{\text{nrp,nom_prof}}$ ($\sigma_{\text{cod_dep='ELEC'}}$ (profesores))

nrp	nom_prof			
2842560	José Álvarez Pérez			
842560	Adela Pérez <mark>Sánc</mark> hez			

- Encontrar los nombres de los profesores que no tienen categoría AS y pertenecen a las áreas de conocimiento TSEÑAL o ARQUIT:
 - Π_{nom_prof} (σ_{(categoria≠'AS')Λ(area='TSEÑAL' ∨ area='ARQUIT')} (profesores))

- Encontrar las áreas de conocimiento que tienen profesores con categoría CU o TU.
 - $\pi_{area}(\sigma_{(categoria='TU' \lor categoria='CU')}(profesores))$

- Encontrar el DNI y el nombre de aquellos alumnos que nacieron antes del 1-1-2000.
 - $\pi_{dni,nomb_alum}(\sigma_{fecha-nac < date('2000-01-01')}(alumnos))$

- Encontrar las provincias de las que vienen alumnos becados.
 - $\pi_{\text{provincia}}(\sigma_{\text{beca=True}}(\text{alumnos}))$

- 1. Introducción
- 2. Selección
- 3. Proyección
- 4. Composición de operadores
- 5. Producto cartesiano
- 6. Unión y diferencia
- 7. Reunión natural
- 8. Intersección
- 9. División
- 10. Eficacia en las consultas

- Definición:
 - Sean
 - $R[A_1..A_n]$ y $S[B_1..B_m]$ dos relaciones cualesquiera.
 - r y s dos instancias de las mismas.
 - El producto cartesiano de ambas instancias está formado por todas las tuplas resultantes de concatenar cada tupla de r con cada tupla de s.
 - Notación:
 - $R \times S$

Seminario 4: Álgebra relacional

Producto cartesiano

A	В		
a_1	b_1		
a ₂	b_2		
a ₃	b ₃		

B x b₁ b₂ b₂

 d_1

A B D

a₁ b₁ d₁
a₁ b₂ d₂
a₂ b₂ d₁
a₂ b₂ d₂
a₃ b₃ d₁
a₃ b₃ d₂

- Propiedad 1:
 - Sean
 - $-R[A_1..A_n]$ y S[B₁..B_m] dos relaciones cualesquiera.
 - $-W = R \times S$
 - Entonces
 - $-W[A_1..A_n,B_1..B_m]$ esquema(W) = esquema(R) U esquema(S)

- Propiedad 2:

- Sean
 - $-R[A_1..A_n]$ y $S[B_1..B_m]$ dos relaciones cualesquiera.
 - $-W = R \times S$
 - Sean r y s instancias de R y S respectivamente y w la correspondiente instancia de W.
- Entonces:

$$card(w) = card(r) \times card(s)$$

- Ahora interviene más de una relación.
- Puede ocurrir que haya ambigüedad a la hora de referenciar atributos en las operaciones.
- Solución:
 - Anteponer un prefijo al nombre del atributo para indicar la tabla a la que nos referimos:
 - profesor.nrp
 - grupos.nrp

- Puede ocurrir incluso que una misma relación aparezca más de una vez en la consulta.
- Operador de redefinición:
 - Sean
 - − R[A₁, ...A_n] una relación cualquiera.
 - r una instancia de R.
 - El operador redefinición (ρ) aplicado a R nos permite asignar un nuevo nombre a R.
 - Notación:
 - $\rho(R) = S \circ \rho S(R)$ nos permite referirnos a R como S
 - Se dice entonces que S es un alias de R.

Consideremos nuestra base de datos de ejemplo y supongamos que deseamos saber, para cada departamento, el nombre de su director.

Paso 1: profesores × departamentos

nrp	nom_prof	catg.	area.	cod_dep	cod_dep	nom_dep	director
2428456	Juan Sánchez Pérez	AS	COMPUT	CCIA	CCIA	Ciencias de la Computación	24283256
24283256	Antonia Pérez Rodríguez	CU	COMPUT	CCIA	CCIA	Ciencias de la Computación	24283256
242256	Luis Pérez Pérez	TE	LENGUA	LSI	CCIA	Ciencias de la Computación	24283256
84256	Carmen Pérez Sánchez	TU	LENGUA	LSI	CCIA	Ciencias de la Computación	24283256
324256	David Pérez Jiménez	CU	ARQUIT	ATC	CCIA	Ciencias de la Computación	24283256
24256	María López Ruiz	TU	ARQUIT	ATC	CCIA	Ciencias de la Computación	24283256
2842560	José Álvarez Pérez	CE	ELECTR	ELEC	CCIA	Ciencias de la Computación	24283256
842560	Adela Pérez Sánchez	AS	ELECTR	ELEC	CCIA	Ciencias de la Computación	24283256
84560	Luis Martínez Pérez	AS	TSECAL	TESE	CCIA	Ciencias de la Computación	24283256
242560	María Gómez Sánchez	CU	TSECAL	TESE	CCIA	Ciencias de la Computación	24283256
84256	Carmen Pérez Sánchez	TU	LENGUA	LSI	CCIA	Ciencias de la Computación	84256
					 ///		
324256	David Pérez Jiménez	CU	ARQUIT	ATC	ATC	Arquitectura de Computadores	324256
				.4.//			
2842560	José Álvarez Pérez	CE	ELECTR	ELEC	ELEC	Electrónica	2842560
2428456	Juan Sánchez Pérez	AS	COMPUT	CCIA	TESE	Teoría de la Señal	84560
84560	Luis Martínez Pérez	AS	TSECAL	TESE	TESE	Teoría de la Señal	84560
242256	Luis Pérez Pérez	TE	LENGUA	LSI	TESE	Teoría de la Señal	84560
84256	Carmen Pérez Sánchez	TU	LENGUA	LSI	TESE	Teoría de la Señal	84560
324256	David Pérez Jiménez	CU	ARQUIT	ATC	TESE	Teoría de la Señal	84560
24256	María López Ruiz	TU	ARQUIT	ATC	TESE	Teoría de la Señal	84560
2842560	José Álvarez Pérez	CE	ELECTR	ELEC	TESE	Teoría de la Señal	84560
842560	Adela Pérez Sánchez	AS	ELECTR	ELEC	TESE	Teoría de la Señal	84560
84560	Laura Martínez Pérez	AS	TSECAL	TESE	TESE	Teoría de la Señal	84560
242560	María Gómez Sánchez	CU	TSECAL	TESE	TESE	Teoría de la Señal	84560

Consideremos nuestra base de datos de ejemplo y supongamos que deseamos saber, para cada departamento, el nombre de su director.

Paso 2: $\sigma_{director=nrp}$ (profesores × departamentos)

nrp	nom_prof	catg.	area.	cod_dep	cod_dep	nom_dep	director
2428456	Juan Sánchez Pérez	AS	COMPUT	CCIA	CCIA	Ciencias de la Computación	24283256
24283256	Antonia Pérez Rodríguez	CU	COMPUT	CCIA	CCIA	Ciencias de la Computación	24283256
242256	Luis Pérez Pérez	TE	LENGUA	LSI	CCIA	Ciencias de la Computación	24283256
84256	Carmen Pérez Sánchez	TU	LENGUA	LSI	CCIA	Ciencias de la Computación	24283256
324256	David Pérez Jiménez	CU	ARQUIT	ATC	CCIA	Ciencias de la Computación	24283256
24256	María López Ruiz	TU	ARQUIT	ATC	CCIA	Ciencias de la Computación	24283256
2842560	José Álvarez Pérez	CE	ELECTR	ELEC	CCIA	Ciencias de la Computación	24283256
842560	Adela Pérez Sánchez	AS	ELECTR	ELEC	CCIA	Ciencias de la Computación	24283256
84560	Luis Martínez Pérez	AS	TSECAL	TESE	CCIA	Ciencias de la Computación	24283256
242560	María Gómez Sánchez	CU	TSECAL	TESE	CCIA	Ciencias de la Computación	24283256
84256	Carmen Pérez Sánchez	TU	LENGUA	LSI	CCIA	Ciencias de la Computación	84256
					/ ///		
324256	David Pérez Jiménez	CU	ARQUIT	ATC	ATC	Arquitectura de Computadores	324256
					/,//		
2842560	José Álvarez Pérez	CE	ELECTR	ELEC	ELEC	Electrónica	2842560
2428456	Juan Sánchez Pérez	AS	COMPUT	CCIA	TESE	Teoría de la Señal	84560
84560	Laura Martínez Pérez	AS	TSECAL	TESE	TESE	Teoría de la Señal	84560
242256	Luis Pérez Pérez	TE	LENGUA	LSI	TESE	Teoría de la Señal	84560
84256	Carmen Pérez Sánchez	TU	LENGUA	LSI	TESE	Teoría de la Señal	84560
324256	David Pérez Jiménez	CU	ARQUIT	ATC	TESE	Teoría de la Señal	84560
24256	María López Ruiz	TU	ARQUIT	ATC	TESE	Teoría de la Señal	84560
2842560	José Álvarez Pérez	CE	ELECTR	ELEC	TESE	Teoría de la Señal	84560
842560	Adela Pérez Sánchez	AS	ELECTR	ELEC	TESE	Teoría de la Señal	84560
84560	Luis Martínez Pérez	AS	TSECAL	TESE	TESE	Teoría de la Señal	84560
242560	María Gómez Sánchez	CU	TSECAL	TESE	TESE	Teoría de la Señal	84560

nrp	nom_prof	catg.	area.	cod_dep	cod_dep	nom_dep	director
24283256	Antonia Pérez Rodríguez	CU	СОМРИТ	CCIA	CCIA	Ciencias de la Computación	24283256
84256	Carmen Pérez Sánchez	TU	LENGUA	LSI	LSI	Lenguajes y Sistemas	84256
324256	David Pérez Jiménez	CU	ARQUIT	ATC	ATC	Arquitectura de Computadores	324256
2842560	José Álvarez Pérez	CE	ELECTR	ELEC	ELEC	Electrónica	2842560
84560	Laura Martínez Pérez	AS	TSECAL	TESE	TESE	Teoría de la Señal	84560

Paso 3: $\pi_{\text{nom_prof,nom_dep}}(\sigma_{\text{director=nrp}} \text{ (profesores} \times \text{departamentos)})$

nom_prof	nom_dep	
Antonia Pérez Rodríguez	Ciencias de la Computación	
Carmen Pérez Sánchez	Lenguajes y Sistemas	
David Pérez Jiménez	Arquitectura de Computadores	
José Álvarez Pérez	Electrónica	
Laura Martínez Pérez	Teoría de la Señal	

- Obtener, para cada profesor, su NRP, su nombre y el nombre del departamento al que pertenece.
 - $\pi_{\text{nrp,nom_prof,nom_dep}}(\sigma_{\text{departamentos.cod_dep=profesores.cod_dep}})$ (departamentos × profesores))
- Obtener el DNI y el nombre de aquellos alumnos matriculados de la asignatura de código BDI que son becarios.
 - $\pi_{\text{alumnos.dni,nomb_alum}}(\sigma_{\text{(alumnos.dni=matriculas.dni)} \land \text{(beca=True)} \land \text{(cod_asig='BDI')}$ (alumnos × matriculas))
 - $\pi_{\text{alumnos.dni,nomb_alum}}(\sigma_{\text{alumnos.dni=matriculas.dni}})$ $(\sigma_{\text{beca=True}}(\text{alumnos}) \times \sigma_{\text{cod asig='BDI'}}(\text{matriculas})))$
- Encontrar la lista de los profesores (NRP y nombre) que imparten la asignatura BDI.
 - $\pi_{\text{grupos.nrp,nom_pro}}(\sigma_{\text{profesores.nrp=grupos.nrp}})$ (profesores × $\sigma_{\text{cod asig='BDI'}}(\text{grupos})))$

- Encontrar los códigos de las asignaturas de las que está matriculada la alumna de nombre 'Laura Martínez Pérez'.
 - $\Pi_{cod_asig}(\sigma_{alumnos.dni=matriculas.dni})$ (matriculas × $\sigma_{nomb_alum='Laura\ Martinez\ P\'erez'}$ (alumnos)))
- Encontrar los nombres de los profesores con categoría CU o TU que pertenecen al departamento de nombre Electrónica.
 - $\Pi_{\text{nom_prof}} (\sigma_{\text{profesores.cod_dep=departamentos.cod_dep}} (\sigma_{\text{categoria='CU'Vcategoria='TU'}} (\text{profesores}) \times \sigma_{\text{nom_dep='Electrónica'}} (\text{departamentos})))$
- Encontrar los nombres de las asignaturas de las que está matriculada la alumna 'Laura Martínez Pérez'.
 - $\begin{array}{ll} & \Pi_{nomb_asig}(\sigma_{alumnos.dni=matriculas.dni\land matriculas.cod_asig=asignaturas.cod_asig} \\ & (matriculas \times \sigma_{nomb_alum='Laura\ Martinez\ P\'erez'}(alumnos) \times \\ & asignaturas)) \end{array}$

- Encontrar los nombres de los profesores que imparten prácticas en la asignatura Bases de Datos. Entendemos que los grupos de prácticas son los grupos de tipo 'Práctica'.
 - $\pi_{\text{nom_prof}}$ ($\sigma_{\text{profesores.nrp=grupos.nrp} \land \text{grupos.cod_asig=asignaturas.cod_asig}}$ ($\sigma_{\text{tipo='Práctica'}}$ (grupos) × $\sigma_{\text{nomb_asig='Bases de Datos'}}$ (asignaturas) × profesores))
- Encontrar el nombre y el DNI de aquellos alumnos cuya provincia es Almería y que están matriculados de alguna asignatura de primer curso.
 - $\Pi_{\text{matriculas.dni,nomb_alum}}(\sigma_{\text{alumnos.dni=matriculas.dni} \land \text{matriculas.cod_asig=asignatur} } \\ \text{as.cod_asig} \\ \text{(matriculas} \times \sigma_{\text{provincia='Almeria'}}(\text{alumnos}) \times \sigma_{\text{curso=1}}(\text{asignaturas})))$

- Encontrar los nombres de los profesores que pertenecen a la misma área de conocimiento que María López Ruiz.
 - $\pi_{profes.nom_prof}$ ($\sigma_{profesores.area=profes.area}$ ($\sigma_{profesores.nom_prof='María López Ruiz'}$ (profesores) x ρ profes (profesores)))
- Encontrar el DNI y el nombre de aquellos alumnos de edad mayor o igual que la de la alumna 'Laura Martínez Pérez'.
 - $\pi_{\text{alu.dni,alu.nomb_alum}}(\sigma_{\text{alumnos.fecha_nac}})$ ($\sigma_{\text{alumnos.nomb_alum='Laura Martinez Pérez'}}(\text{alumnos}) \times \rho \text{ alu (alumnos)}))$
- Encontrar aquellas asignaturas optativas que están en cursos superiores a la asignatura de nombre 'Bases de Datos'.
 - $\pi_{asis.nomb_asig}(\sigma_{asignaturas.curso < asis.curso}(\sigma_{asignaturas.nomb_asig='Bases\ de\ Datos'})$ $(asignaturas) \times \sigma_{asis.caracter='Optativa'}(\rho\ asis\ (asignaturas))))$

- 1. Introducción
- 2. Selección
- 3. Proyección
- 4. Composición de operadores
- 5. Producto cartesiano
- 6. Unión y diferencia
- 7. Reunión natural
- 8. Intersección
- 9. División
- 10. Eficacia en las consultas

- Unión:
 - Sean
 - $R[A_1..A_n]$ y $S[B_1..B_n]$ dos relaciones tales que $\{A_1..A_n\} \equiv \{B_1...B_n\}$.
 - r y s instancias de R y S.
 - El operador unión aplicado sobre R y S es el resultado de hacer la unión de r y s como conjuntos de tuplas.
 - Notación:

R U S

- Sean
 - $R[A_1..A_n]$ y $S[B_1..B_n]$ dos relaciones tales que $\{A_1..A_n\} \equiv \{B_1...B_n\}$.
 - r y s instancias de R y S.
- El operador diferencia aplicado sobre R y S es el resultado de hacer la diferencia de r y s como conjuntos de tuplas.
- Notación:

R-S

Unión

R

Α	В	С
a ₁	b_1	c_{1}
a ₂	b ₂	c ₂
a_3	b_1	c_{1}
a ₄	b ₁	c_{1}
a_4	b ₂	C ₂

S

Α	В	С
a_1	b ₁	c_{1}
a_2	b ₂	C ₂
a_3	b ₂	C ₂
a ₄	b ₂	C ₂
a ₁	b ₂	C ₂

 $R \cup S$

Α	В	С
a ₁	b ₁	C ₁
a ₂	b ₂	C ₂
a_3	b ₁	c_{1}
a_4	b ₁	c_{1}
a_4	b ₂	C ₂
a ₃	b ₂	C ₂
a_1	b ₂	C ₂

Diferencia

R

Α	В	С
a_{1}	b_1	c_{1}
a_2	b ₂	C ₂
a_3	b_1	c_{1}
a_4	b_1	c_{1}
a ₄	b ₂	C ₂

Α	В	С
a_1	b_1	c_{1}
a ₂	b ₂	C ₂
a ₃	b ₂	C ₂
a ₄	b ₂	C ₂
a ₁	b ₂	C ₂

R-S

Α	В	С
a_3	b_1	c_{1}
a_4	b_1	c_{1}

- Encontrar las asignaturas de segundo ciclo; es decir, aquellas cuyo curso sea 4 ó 5.
 - $\sigma_{(curso=4 \ V \ curso=5)}(asignaturas)$
 - $\sigma_{curso=4}$ (asignaturas) U $\sigma_{curso=5}$ (asignaturas)
- Encontrar aquellos profesores que sean de categoría TU y no pertenezcan al área de conocimiento COMPUT.
 - $\sigma_{categoria='TU' \land \neg(area='COMPUT')}(profesores)$
 - $\sigma_{\text{categoria}='TU'}(\text{profesores}) \sigma_{\text{area}='COMPUT'}(\text{profesores})$

- Encontrar los códigos de aquellas asignaturas en las que no hay matriculado ningún alumno.
 - $\Pi_{\text{cod_asig}}(\text{asignaturas}) \pi_{\text{cod_asig}}(\text{matriculas})$
- Encontrar los alumnos más jóvenes de la base de datos; es decir, aquellos cuya fecha de nacimiento es la mayor entre las de todos los alumnos.
 - $\begin{array}{ll} & \pi_{alumnos.dni,alumnos.nomb_alum}(alumnos) \\ & \pi_{alumnos.dni,alumnos.nomb_alum} \left(\sigma_{alumnos.fecha_nac < alu.fecha_nac}(alumnos \times \rho \ alu \ (alumnos)) \right) \end{array}$
- Encontrar las asignaturas que sólo tienen un profesor.
 - $\Pi_{\text{cod asig}}(\text{grupos})$ –

 $\pi_{\text{grupos.cod_asig}}(\sigma_{\text{grupos.cod_asig=gru.cod_asig} \land \text{grupos.nrp} <> \text{gru.nrp}} (\text{grupos} \times \rho \text{ gru})))$

- Encontrar los códigos de aquellas asignaturas que, o bien son de segundo ciclo, o bien no tienen matriculado ningún alumno.
 - $\pi_{cod_asig}(\sigma_{(curso=4 \ V \ curso=5)}(asignaturas)) \ U$ $(\pi_{cod_asig}(asignaturas) - \pi_{cod_asig}(matriculas))$

- 1. Introducción
- 2. Selección
- 3. Proyección
- 4. Composición de operadores
- 5. Producto cartesiano
- 6. Unión y diferencia
- 7. Reunión natural
- 8. Intersección
- 9. División
- 10. Eficacia en las consultas

- Sea:
 - $R[A_1..A_n]$ y $S[B_1..B_m]$ dos relaciones cualesquiera.
 - O una propiedad que implica a atributos de ambas relaciones.
 - r y s dos instancias de las mismas.
- Entonces la Θ-Reunión de R y S equivale a

$$\sigma_{\Theta}(R \times S)$$

Notación:

$$R \bowtie_{\Theta} S$$

profesores $\bowtie_{director=nrp}$ departamentos = $\sigma_{director=nrp}$ (profesores × departamentos)

nrp	nom_prof	catg.	area.	cod_dep	cod_dep	nom_dep	director
24283256	Antonia Pérez	CU	COMPUT	CCIA	CCIA	Ciencias de la	24283256
24203230	Rodríguez	CO	COMPO	CCIA	CCIA	Computación	24263230
84256	Carmen Pérez	TU	LENGUA	LSI	LSI	Lenguajes y Sistemas	84256
04230	Sánchez TO LENGUA LSI LSI	Lenguajes y Sistemas	04230				
324256	David Pérez Jiménez	CU	ARQUIT	ATC	ATC	Arquitectura de	324256
324230	David Perez Jimenez	CO	ARQUII	AIC	AIC	Computadores	324230
2842560	José Álvarez Pérez	CE	ELECTR	ELEC	ELEC	Electrónica	2842560
84560	Laura Martínez Pérez	AS	TSECAL	TESE	TESE	Teoría de la Señal	84560

- Sean
 - R[A₁..A_n] y S[B₁..B_m] dos relaciones tales que existen $\{A_i...A_j\} \subseteq \{A_1..A_n\}$ y $\{B_i...B_j\} \subseteq \{B_1..B_m\}$ de forma que $\forall k \in \{i..j\}$, $A_k = B_k$
 - r y s dos instancias de las mismas.
- Entonces la reunión natural de R y S equivale a:

$$\pi_{(\{A1..An\}\{B1..Bm\})-\{Ai...Aj\}}(\sigma_{(R.Ai=S.Ai)\wedge...\wedge(R.Aj=S.Aj)}(R\times S))$$

Notación:

R M S

Seminario 4: Álgebra relacional Reunión natural

A	В	С	
a ₁	b_1	C ₁	
a ₂	b ₂	C ₂	M
a ₃	b_1	C ₁	
a ₄	b_1	C ₁	
a_4	b_2	C ₂	

В	С	D	E
b_1	C_1	d_1	e_1
b ₂	C ₂	d_2	e_2
b_1	c_1	d_1	e ₃
b_1	c_3	d_3	e_1
b_1	c_{2}	d_2	e_1

A	В	С	D	Е
a_1	b_1	C_1	d_1	e_1
a_1	b_1	C_1	d_1	e_3
a ₂	b_2	C ₂	d_2	e_2
a_3	b_1	C_1	d_1	e_1
a_3	b_1	C_1	d_1	e_3
a_4	b_1	C_1	d_1	e_1
a ₄	b_1	C_1	d_1	e_3
a_4	b_2	C_2	d_2	e_2

- Obtener, para cada profesor, su NRP, su nombre y el nombre del departamento al que pertenece.
 - $\pi_{\text{nrp,nom_prof,nom_dep}}(\sigma_{\text{departamentos.cod_dep=profesores.cod_dep}} \\ (\text{departamentos} \times \text{profesores}))$
 - $\pi_{\text{nrp,nom_prof,nom dep}}$ (departamentos \bowtie profesores)
- Obtener el DNI y el nombre de aquellos alumnos matriculados de la asignatura de código BDI que son becarios.
 - $\pi_{\text{alumnos.dni,nomb_alum}}(\sigma_{\text{alumnos.dni=matriculas.dni}})$ $(\sigma_{\text{beca=True}}(\text{alumnos}) \times \sigma_{\text{cod_asig='BDI'}}(\text{matriculas})))$
 - $\pi_{\text{alumnos.dni,nomb_alum}}(\sigma_{\text{beca=True}}(\text{alumnos}) \bowtie \sigma_{\text{cod_asig='BDI'}}(\text{matriculas}))$

- Encontrar la lista de los profesores (NRP y nombre) que imparten la asignatura BDI.
 - $\pi_{grupos.nrp,nom_prof}(\sigma_{profesores.nrp=grupos.nrp})$ (profesores × $\sigma_{cod\ asig='BDI'}(grupos)))$
 - $\pi_{\text{nrp,nom prof}}$ (profesores $\bowtie \sigma_{\text{cod asig='BDI'}}$ (grupos))
- Encontrar los códigos de las asignaturas de las que está matriculada la alumna de nombre 'Laura Martínez Pérez'.
 - $\Pi_{\text{cod_asig}}(\sigma_{\text{alumnos.dni=matriculas.dni}})$ (matriculas × $\sigma_{\text{nomb_alum='Laura Martinez Pérez'}}$ (alumnos)))
 - $\Pi_{\text{cod_asig}}$ (matriculas $\bowtie \sigma_{\text{nomb_alum='Laura Martínez Pérez'}}$ (alumnos))

- Ejemplos

 Encontrar los nombros
- Encontrar los nombres de los profesores con categoría CU o TU que pertenecen al departamento de nombre Electrónica.
 - $\begin{array}{ll} & \Pi_{nom_prof} \left(\sigma_{profesores.cod_dep=departamentos.cod_dep} \right. \\ & \left(\sigma_{categoria='CU'\ \lor} \right. \\ & \left. categoria='TU' \left(profesores \right) \times \sigma_{nom_dep='Electrónica'} \left(departamentos \right) \right) \right) \end{array}$
 - $\Pi_{\text{nom_prof}}$ ($\sigma_{\text{categoria='CU' V categoria='TU'}}$ (profesores) \bowtie $\sigma_{\text{nom_dep='Electrónica'}}$ (departamentos))

- Encontrar los nombres de las asignaturas de las que está matriculada la alumna 'Laura Martínez Pérez'.
 - $\Pi_{\text{nomb_asig}}(\sigma_{\text{alumnos.dni=matriculas.dni}} \land \text{matriculas.cod_asig=asignaturas.cod_asig}$ (matriculas × $\sigma_{\text{nomb_alum='Laura Martínez Pérez'}}(\text{alumnos}) \times \text{asignaturas}))$
 - Π_{nomb_asig}(matriculas ⋈ σ_{nomb_alum='Laura Martínez Pérez'}(alumnos) ⋈ asignaturas)

- Encontrar los nombres de los profesores que imparten prácticas en la asignatura Bases de Datos. Entendemos que los grupos de prácticas son los grupos de tipo 'Práctica'.
 - $\Pi_{\text{nom_prof}}$ ($\sigma_{\text{profesores.nrp=grupos.nrp}} \wedge \text{grupos.cod_asig=asignaturas.cod_asig}$ ($\sigma_{\text{tipo='Práctica'}}(\text{grupos}) \times \sigma_{\text{nomb_asig='Bases de Datos'}}$ (asignaturas) × profesores))
 - $\Pi_{\text{nom_prof}}$ ($\sigma_{\text{tipo='Práctica'}}$ (grupos) $\bowtie \sigma_{\text{nomb_asig='Bases de Datos'}}$ (asignaturas) \bowtie profesores)

- Encontrar el nombre y el DNI de aquellos alumnos cuya provincia es Almería y que están matriculados de alguna asignatura de primer curso.
 - $\begin{array}{ll} & \pi_{dni,nomb_alum}(\sigma_{alumnos.dni=matriculas.dni} \wedge matriculas.cod_asig=asignaturas.cod_asig\\ & (matriculas \times \sigma_{provincia='Almeria'}(alumnos) \times \sigma_{curso=1}(asignaturas))) \end{array}$
 - $\pi_{dni,nomb_alum}$ (matriculas $\bowtie \sigma_{provincia='Almeria'}$ (alumnos) $\bowtie \sigma_{curso=1}$ (asignaturas))

- 1. Introducción
- 2. Selección
- 3. Proyección
- 4. Composición de operadores
- 5. Producto cartesiano
- 6. Unión y diferencia
- 7. Reunión natural
- 8. Intersección
- 9. División
- 10. Eficacia en las consultas

- Definición
 - Sean:
 - $R[A_1..A_n]$ y $S[B_1..B_n]$ dos relaciones tales que $\{A_1..A_n\} \equiv \{B_1...B_n\}$.
 - r y s instancias de R y S.
 - El operador intersección aplicado sobre R y S es el resultado de hacer la intersección de r y s como conjuntos de tuplas.
 - Notación:

 $R \cap S$

Intersección

A	В	C
a_1	b_1	c_1
a_2	<i>b</i> ₂	c_2
<i>a</i> ₃	b_1	c_1
a_4	b_1	c_1
a_4	b_2	c_2

A	В	C
a_1	b_1	c_1
a_2	b_2	c_2
<i>a</i> ₃	<i>b</i> ₂	c_2
a_4	<i>b</i> ₂	c_2
a_1	<i>b</i> ₂	c_2

S

- Encontrar los alumnos becarios que vienen de Almería.
 - $\sigma_{beca=True \ \Lambda \ provincia='Almeria'}(alumnos)$
 - $\sigma_{beca=True}(alumnos) \cap \sigma_{provincia='Almeria'}(alumnos)$
- Encontrar las asignaturas optativas de segundo ciclo, es decir, aquellas cuyo curso sea 4 ó 5.
 - σ_{caracter='Optativa' Λ (curso=4 V curso=5)}(asignaturas)
 - $\sigma_{caracter='Optativa'}(asignaturas) \cap (\sigma_{curso=4}(asignaturas) \cup \sigma_{curso=5}(asignaturas))$

- Encontrar los profesores que tienen categoría 'TU' o 'CU' y dan clase en asignaturas de segundo ciclo.
 - $\pi_{\text{nrp,nom_prof}}(\sigma_{\text{categoria='TU' V categoria='CU'}}(\text{profesores})) \cap \pi_{\text{profesores.nrp,profesores.nom_prof}}((\text{profesores})) \bowtie (\text{grupos}) \bowtie \sigma_{\text{curso=4 V curso=5}}(\text{asignaturas}))$

- Sean R y S relaciones cualquiera y r y s dos instancias de las mismas.
- Se verifica que:

•
$$R \cap S = R - (R - S)$$

Intersección

Α	В	С
a_{1}	b_1	c_{1}
a ₂	b ₂	C ₂
a_3	b ₂	C ₂
a ₄	b ₂	C ₂
a ₁	b ₂	C ₂
	a ₁ a ₂ a ₃ a ₄	 a₁ b₂ a₃ b₂ a₄ b₂

R - S	Α	В	С
	a_3	b_1	c_{1}
	a_4	b_1	c_{1}

?	Α	В	С
	a_1	b_1	c_{1}
	a_2	b ₂	c_2
	a ₃	b ₁	C ₁
	a ₄	b ₁	C ₁
	a_4	b ₂	C ₂

	_	_	_
R - S	Α	В	С
	a_3	b_1	C ₁
	a ₄	b ₁	C ₁

R - (R - S)	Α	В	С
$R \cap S$	a_1	b_1	c_1
1(113	a_2	b ₂	c_2
	a_{4}	b ₂	c_2

- 1. Introducción
- 2. Selección
- 3. Proyección
- 4. Composición de operadores
- 5. Producto cartesiano
- 6. Unión y diferencia
- 7. Reunión natural
- 8. Intersección
- 9. División
- 10. Eficacia en las consultas

- Problemas de la representación mediante dominios atómicos:
 - Consultas relacionadas con la conexión de un elemento de un conjunto con todos los elementos de otro:
 - Encontrar los alumnos que están matriculados de todas las asignaturas de primer curso.
 - Encontrar las asignaturas en las que dan clase todos los profesores del área 'COMPUT' que sean de categoría 'CU'.
 - Encontrar los profesores que dan clase a todos los grupos de la asignatura de código 'BDI'.
 - Encontrar las aulas que están ocupadas todos los días de la semana.

- Sean:
 - $\blacksquare R[A_1..A_n,B_1..B_m] y S[B_1..B_m]$
 - y las instancias r y s.
- La división de R con respecto a S es la instancia w de una relación W[A₁..A_n], que verifica:
 - $\forall u \in w ; \forall v \in s$ $\exists t \in r | t[A_1..A_n] = u , t[B_1..B_m] = v$
- NotaciónR ÷ S

A	В	C	D
a_1	b_1	C_1	d_1
a_1	b_1	C ₁	d ₂
a_1	b_1	C ₃	d ₃
a_2	b ₂	C ₂	d ₂
a_2	b ₂	C ₂	d ₃
a_3	b ₃	C ₃	d_1
a_3	b ₃	C ₃	d ₂

D	=	A	В	C
d_1		a_1	b_1	C_1
d_2		a ₃	b_3	C ₃

A	В	С	D
a_1	b_1	c_{1}	d_1
a_1	b ₁	c_{1}	d_2
a_1	b_1	c ₃	d ₃
a ₂	b ₂	c_2	d ₂
a ₂	b ₂	c_2	d ₃
a_3	b ₃	C ₃	d_1
a_3	b ₃	C ₃	d_2
a_1	b_1	c_{1}	d_5

$$\begin{array}{c|cc} \mathbf{C} & \mathbf{D} \\ \mathbf{c}_2 & \mathbf{d}_2 \\ \mathbf{c}_2 & \mathbf{d}_3 \end{array}$$

$$\begin{array}{c|c} A & B \\ \hline a_2 & b_2 \end{array}$$

- Encontrar el nombre y el DNI de los alumnos que están matriculados de todas las asignaturas de primer curso.
 - 1. Obtenemos los DNI de los alumnos matriculados en todas las de primer curso:
 - Divisor:
 - $\Pi_{\text{cod_asig}}(\sigma_{\text{curso=1}}(\text{asignaturas}))$
 - Dividendo:
 - $\pi_{dni,cod\ asig}(matriculas)$
 - División = Dividendo ÷ Divisor
 - $\pi_{dni,cod_asig}(matriculas) \div \pi_{cod_asig}(\sigma_{curso=1}(asignaturas))$
 - 2. Falta reunir con alumnos para mostrar el resultado solicitado (también los nombres):
 - $\pi_{\text{alumnos.dni,alumnos.nomb_alum}}$ (alumnos $\pi_{\text{dni,cod_asig}}$ (matriculas) ÷ $\pi_{\text{cod_asig}}$ ($\sigma_{\text{curso=1}}$ (asignaturas)))

- Encontrar las asignaturas en las que dan clase todos los profesores del área 'COMPUT' que sean de categoría 'CU'.
- Divisor:
 - π_{nrp} ($\sigma_{area='COMPUT' \land categoria='CU'}$ (profesores))
- Dividendo:
 - $\Pi_{\text{cod asig,nrp}}$ (grupos)
- División:
 - $\Pi_{\text{cod asig,nrp}}$ (grupos) ÷ π_{nrp} ($\sigma_{\text{area='COMPUT'} \land \text{categoria='CU'}}$ (profesores))

- Encontrar los profesores que dan clase a todos los grupos de la asignatura de código 'BDI'.
 - $\pi_{\text{nrp,cod_grup,tipo,cod_asig}}(\text{grupos}) \div$ $\pi_{\text{cod_grup,tipo,cod_asig}}(\sigma_{\text{cod_asig='BDI'}}(\text{grupos}))$
- Encontrar las aulas que están ocupadas todos los días de la semana en los que se imparte alguna clase.
 - $\pi_{cod\ aula,dia}(clase) \div \pi_{dia}(clase)$
- Encontrar aquellas aulas que están ocupadas todos los días y todas las horas en las que se imparte alguna clase.
 - $\Pi_{\text{cod_aula,dia,hora}}(\text{clase}) \div \pi_{\text{dia,hora}}(\text{clase})$

- Encontrar los días y horas en los que no hay aulas libres; es decir, los días y las horas en los que hay clase en todas las aulas.
 - $\pi_{dia,hora,cod\ aula}(clase) \div \pi_{cod\ aula}(aulas)$
- Encontrar las áreas de conocimiento en las que hay profesores de todas las categorías.
 - $\pi_{\text{area,categoria}}(\text{profesores}) \div \pi_{\text{categoria}}(\text{profesores})$
- Encontrar los departamentos que tienen profesores de todas las categorías.
 - $\Pi_{\text{cod dep,categoria}}(\text{profesores}) \div \pi_{\text{categoria}}(\text{profesores})$

- Sean:
 - $\blacksquare R[A_1..A_n,B_1..B_m] y S[B_1..B_m]$
 - y las instancias r y s.
- Entonces
 - $r \div s = \prod_{A1..An} (r) \prod_{A1..An} ((\prod_{A1..An} (r) \times s) r)$

División

A	В	С	D
a_1	b_1	C ₁	d_1
a_1	b_1	C_1	d_2
a_1	b_1	C ₃	d_3
a_2	b_2	C ₂	d_2
a ₂	b ₂	C ₂	d_3
a_3	b_3	C ₃	d_1
a_3	b_3	C ₃	d_2

D	=	A	В	С
d_1		a_1	b_1	C_1
d_2		a_3	b_3	C ₃

División

D

 d_1

 d_2

 d_1

 d_2

 d_1

 d_2

 d_1

 d_2

 C_1

 C_1

C₃

C₃

 \mathbf{C}_2

 \mathbf{C}_2

C₃

C₃

*

A	В	C	D
a_1	b_1	C ₁	d_1
a_1	b_1	C_1	d_2
a ₁	b_1	C ₃	d_3
a ₂	b ₂	C_2	d_2
a ₂	b ₂	C ₂	d ₃
a_3	b_3	C ₃	d_1
a ₃	b_3	C ₃	d_2

	D	=	A	В
C	1 ₁		a_1	b_1
C	12		a_1	b_1
			a_1	b_1
			a_1	b_1
			a_2	b ₂
			a_2	b_2
			a ₃	b_3

 a_3

 b_3

A	В	С	D
a_1	b_1	C ₁	d_1
a_1	b_1	C ₁	d ₂
a_1	b_1	C ₃	d_1
a_1	b_1	C ₃	d_2
a ₂	b ₂	c ₂	d_1
a ₂	b ₂	C ₂	d ₂
a ₃	b ₃	C ₃	d_1
a ₃	b ₃	C ₃	d ₂

A	В	C	D
a_1	b_1	C ₁	d_1
a_1	b_1	C ₁	d ₂
a_1	b_1	C ₃	d ₃
a ₂	b ₂	C ₂	d ₂
a ₂	b ₂	C ₂	d ₃
a ₃	b ₃	C ₃	d_1
a_3	b ₃	C ₃	d ₂

$$R \div S = \prod_{A,B,C} (R) - \prod_{A,B,C} ((\prod_{A,B,C} (R) \times S) - R)$$

A	В	С
a_1	b_1	C_1
a ₁	b ₁	C ₃
a ₂	b ₂	C ₂
a ₃	b_3	C ₃

A	В	C	D
a ₁	b ₁	C ₃	d_1
a_1	b_1	C ₃	d_2
a ₂	b ₂	C ₂	d_1
// *			

- 1. Introducción
- 2. Selección
- 3. Proyección
- 4. Composición de operadores
- 5. Producto cartesiano
- 6. Unión y diferencia
- 7. Reunión natural
- 8. Intersección
- 9. División
- 10. Eficacia en las consultas

- Con álgebra relacional:
 - A cada expresión le corresponde una única tabla.
 - Cada consulta puede resolverse con más de una expresión:
 - Hay que elegir en términos de eficiencia.
 - Ejemplo:
 - σ_{beca=True Λ provincia='Almeria'} (alumnos)
 - $\sigma_{beca=True}(alumnos) \cap \sigma_{provincia='Almeria'}(alumnos)$

- En un SGBD hay un componente que se encarga de paliar los efectos de consultas poco eficientes:
 - Optimizador de consultas.
- Existen algunas reglas básicas:
 - Algunos ejemplos:
 - Selecciones, cuanto antes: Limitan el número de tuplas.
 - Proyecciones, cuanto antes: Limitan el tamaño de las tuplas.
 - Normalmente:
 - Los SGBDs no publican sus estrategias de optimización.
 - Ventaja competitiva.

Seminario 4: Álgebra relacional Fundamentos de Bases de Datos

