EQUATIONS DIFFERENTIELLES

EQUATIONS LINEAIRES DU SECOND ORDRE A COEFFICIENTS CONSTANTS

Une équation différentielle linéaire du second ordre à coefficients constants a la forme

(E):
$$ay''(t) + by'(t) + cy(t) = d(t)$$

où les nombres a, b et c sont trois réels (avec $a \neq 0$) et d une fonction définie sur un intervalle $I \subset \mathbb{R}$.

Résoudre cette équation, c'est trouver l'ensemble S de toutes les fonctions réelles y deux fois dérivables sur I telles que, pour tout $\underline{t} \in I$, l'égalité (\underline{E}) soit vérifiée.

1 Etapes de la résolution

A l'équation différentielle (E), on associe l'équation homogène (E_0) obtenue en annulant d(t) dans la partie droite de l'égalité :

$$(E_0)$$
 $ay''(t) + by'(t) + cy(t) = 0$

On note S_0 l'ensemble des solutions de (E_0) sur I. C'est un ensemble de fonctions $I \to \mathbb{R}$. Il n'est pas vide car il contient au moins la fonction nulle.

1.1 Lien les ensembles S et S_0

Le théorème suivant montre comment l'ensemble S des solutions de (E) se déduit de l'ensemble S_0 des solutions de l'équation homogène.

Théorème 1 Supposons qu'il existe $y_p \in S$ une solution particulière de (E) sur I. Soit y une fonction deux fois dérivable sur I, alors

$$y \in S \iff y - y_p \in S_0$$

Ainsi, toute solution de (E) est de la forme $y=y_p+y_0$ où y_0 est une solution de (E_0) . Et réciproquement, pour toute fonction y_0 solution de (E_0) , $y=y_p+y_0$ est une solution de (E). Ainsi

$$S = \{y_p + y_0, y_0 \in S_0\}$$

1.2 Conséquence : les étapes de la résolution

La résolution de (E) se fait en trois étapes :

- Résolution de (E_0) : on détermine S_0
- Recherche d'une solution particulière y_p
- Conclusion : $S = \{y_p + y_0, y_0 \in S_0\}$

2 Résolution de l'équation homogène

A l'équation homogène $(E_0): ay''(t)+by'(t)+cy(t)=0$ on associe l'équation caractéristique

 $(C): \qquad ar^2 + br + c = 0$

EQUATIONS DIFFERENTIELLES

EQUATIONS LINEAIRES DU SECOND ORDRE A COEFFICIENTS CONSTANTS

Théorème 2 Soit $\Delta = b^2 - 4ac$ le discriminant de l'équation caractéristique $(C) - (Si \Delta > 0)$, (C) a deux racines réelles distinctes r_1 et r_2 . Alors

$$S_0 = \left\{ \begin{array}{ccc} \mathbb{R} & \rightarrow & \mathbb{R} \\ t & \rightarrow & k_1 e^{r_1 t} + k_2 e^{r_2 t} \end{array}, (k_1, k_2) \in \mathbb{R}^2 \right\}$$

- Si $\Delta = 0$, (C) a une racine réelle double r_1 . Alors

$$S_0 = \left\{ \begin{array}{ccc} \mathbb{R} & \rightarrow & \mathbb{R} \\ t & \rightarrow & (k_1 + k_2 t) e^{r_1 t} \end{array}, (k_1, k_2) \in \mathbb{R}^2 \right\}$$

- Si Δ < 0, (C) a deux racines complexes conjuguées $r_1=\alpha+i\beta$ et $r_2=\alpha-i\beta$, où $(\alpha,\beta)\in\mathbb{R}^2$. Alors

$$S_0 = \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ t & \to & e^{\alpha t} \left(k_1 \cos(\beta t) + k_2 \sin(\beta t) \right) \end{array}, (k_1, k_2) \in \mathbb{R}^2 \right\}$$

3 Recherche d'une solution particulière

Pas de méthode générale, mais quelques cas à connaitre.

3.1 Si d est polynomial

L'équation (E) a la forme ay''(t)+by'(t)+cy(t)=P(t). Alors on peut trouver une solution particulière polynomiale : $y_p(t)=Q(t)$. On détermine le degré n de Q:

$$n = deg(Q) = \begin{vmatrix} deg(P) & \operatorname{si} c \neq 0 \\ deg(P) + 1 & \operatorname{si} c = 0 \text{ et } b \neq 0 \\ deg(P) + 2 & \operatorname{si} c = b = 0 \end{vmatrix}$$

Quand on a déterminé n, on pose $Q(t)=\alpha_n t^n+\cdots+\alpha_1 t+\alpha_0$ et on reporte cette expression dans (E). On obtient les coefficients $(\alpha_k)_{k=0,\cdots,n}$ par identification.

3.2 Si d est polynomial exponentiel

L'équation (E) a la forme $ay''(t)+by'(t)+cy(t)=P(t)e^{mt}$. On peut trouver une solution particulière de la forme : $y_p(t)=Q(t)e^{mt}$. Le report de cette expression dans (E) conduit à une équation

$$aQ''(t) + \beta Q'(t) + \gamma Q(t) = P(t)$$

et on est ramené au cas précédent. De plus, les constantes γ et β sont les valeurs de l'équation caractéristique (C) et de sa dérivée en m. Ainsi

 $\begin{array}{lll} \text{Si } m \text{ non racine de } (C), & \gamma \neq 0 & \text{donc} & \deg(Q) = \deg(P) \\ \text{Si } m \text{ racine simple de } (C), & \gamma = 0 \text{ et } \beta \neq 0 & \text{donc} & \deg(Q) = \deg(P) + 1 \\ \text{Si } m \text{ racine double de } (C), & \gamma = \beta = 0 & \text{donc} & \deg(Q) = \deg(P) + 2 \end{array}$

2

EQUATIONS DIFFERENTIELLES

EQUATIONS LINEAIRES DU SECOND ORDRE A COEFFICIENTS CONSTANTS

3.3 Théorème de superposition

Ce théorème est utile si le terme de droite d(t) peut se décomposer en la somme d'un polynôme et d'une exponentielle, ou de deux exponentielles différentes.

Théorème 3 Si y_1 et y_2 sont des solutions particulières respectivement des équations

$$\begin{vmatrix} (E_1): & ay''(t) + by'(t) + cy(t) & = & d_1(t) \\ (E_2): & ay''(t) + by'(t) + cy(t) & = & d_2(t) \end{vmatrix}$$

alors $y=y_1+y_2$ est une solution particulière de

(E):
$$ay''(t) + by'(t) + cy(t) = d_1(t) + d_2(t)$$

4 Conclusion

On conclut la résolution de (E) sur I en écrivant

$$S = \left\{ \begin{array}{ccc} I & \to & \mathbb{R} \\ t & \to & y_p(t) + y_0(t) \end{array}, y_0 \in S_0 \right\}$$