化学物质基本概念・考点・「离子方程式正误判断」

一、注意是否符合反应事实

离子反应必须符合客观事实,而命题者往往设置不符合「反应原理」的陷阱

- 1. $Fe \xrightarrow{Cl_2 \setminus Br_2} Fe^{3+}$; $Fe \xrightarrow{I_2 \setminus S \setminus H_2(\#氧化性酸)} Fe^{2+}$; 稀 $HNO_3 + \begin{cases} Fe(少量) \longrightarrow Fe^{3+} \\ Fe(过量) \longrightarrow Fe^{2+} \end{cases}$; Fe(常温) 与浓 HNO_3 发生钝化
- 2. 金属和氧化性酸(如 HNO_3 、浓 H_2SO_4)反应不放 H_2
- 3. Na 不能置换出 CuSO₄ 溶液中的 Cu (先与 H₂O 反应生成 NaOH)
- 4. 忽略氧化还原

例如: Na_2 $\stackrel{-2}{S}$ + HNO_3 \longrightarrow H_2 S \uparrow + Na $\stackrel{-2}{S}$ O_3 (\times) : $\stackrel{-2}{S}$ 有很强的还原性,遇到稀硝酸,一定会发生氧化还原反应

5. 忽略相互促进的水解反应(完全双水解)

常见的双水解的离子:

 $Al_3^+: HCO_3^-, CO_3^{2-}, HS^-, S_2^-, ClO^-, AlO_2^-$

 $\mathrm{Fe}_3^+:\mathrm{HCO}_3^-,\ \mathrm{CO}_3^{2-},\ \mathrm{ClO}^-,\ \mathrm{AlO}_2^-$

 $\mathrm{Fe_2^+}:\mathrm{AlO_2^-}$, $\mathrm{NH_4^+}$, $\mathrm{SiO_3^{2-}}$

例如: $\mathrm{Fe_3^+} + \mathrm{CO_3^{2-}}$ 不会生成 $\mathrm{Fe_2(CO_3)_3} \downarrow$,因为会发生完全双水解,应生成 $\mathrm{Fe_2(OH)_3} \downarrow + \mathrm{CO_2} \uparrow$

6. 忽略络合反应

三价铁离子和硫氰根离子反应: $Fe^{3+} + SCN^{-} \longrightarrow [Fe(SCN)]_{2}^{+}$

铜离子遇到足量的浓氨水: $Cu^{2+} + NH_3 \cdot H_2O \longrightarrow [Cu(NH_3)_4]^{2+}$

银离子遇到足量的浓氨水: $Ag^+ + NH_3 \cdot H_2O \longrightarrow [Ag(NH_3)_2]^+$

二、注意是否满足三守恒(原子守恒、电荷守恒、电子得失守恒)

检查配平是否正确

三、注意=、⇌、↑、↓是否使用恰当

1. 强电解质的电离(强酸、强碱、绝大多数盐)用「 = 」;弱电解质的电离、盐类的水解用「 ⇌ 」,盐类水解 后的产物不写

「↓」或「↑」;若两种离子相互促进水解,可以进行到底,则要写「 = 」;可逆反应要用「 ⇌ 」表示

 $Mg^{2+}+2H_2O \Longrightarrow Mg(OH)_2\downarrow +2H^+$ $(\times):Mg^{2+}$ 水解程度很弱,不足以形成沉淀,因此不标沉淀符号

2.产物中形成胶体时应备注「(胶体)」,不可写「↓」

$$\mathrm{Fe^{3+}} + 3\,\mathrm{H_2O} \stackrel{\Delta}{=} \mathrm{Fe(OH)_3}$$
(胶体) $+ 3\,\mathrm{H^{+}}$

3. NH₄ 与 OH – 反应时,若条件为浓溶液或加热,生成 NH₃ 且要注明「↑」;若为稀溶液,则生成 NH₃ · H₂O

四、注意离子的拆分是否正确

1.强酸(高中六大强酸: HClO₄、HI、HBr、HCl、HNO₃、H₂SO₄)、可溶强碱(NaOH、KOH、Ba(OH)₂)、可溶性盐的化学式

必须拆分、需要注意的是浓硝酸、浓盐酸的化学式可拆分、浓硫酸的化学式不拆分

2. 弱电解质(弱酸、弱碱、水等)、沉淀、气体、单质、弱酸的酸式酸根离子在离子方程式中都不能拆分成离子, 氧化物在水溶液

中不能拆分成 O²⁻

3. 对于微溶性的强电解质(如 $Ca(OH)_2$ 、 $CaSO_4$ 、 $MgCO_3$ 等),在反应物中是否拆分视情况而定

澄清石灰水中 $Ca(OH)_2$ 以 Ca^{2+} 、 OH^- 的形式存在,可拆成离子形式,但石灰乳为悬浊液,有大量未溶固体, $Ca(OH)_2$ 在离子方程式中不拆分。微溶物在生成物中一般不拆分,用化学式表示

4. 可溶性多元弱酸的酸式酸根离子(如 HCO_3^- 、 HSO_3^- 、 HS^- 、 $HC_2O_4^-$ 、 $H_2PO_4^-$ 、 $HPO_4^2^-$ 等),一律保留酸式酸根离子的形式

例如在水溶液中 HSO_3^- 写成 H^+ 、 SO_3^{2-} 是错误的。值得注意的是 HSO_4^- 在水溶液中要拆分成 H^+ 、 SO_4^{2-}

五、注意是否漏写离子反应

判断离子方程式的书写正误时, 要仔细审题, 细心检查是否忽略了其他反应

 $CuSO_4$ 溶 液 和 $Ba(OH)_2$ 溶 液 反 ϖ : $Ba^{2+} + SO_4^{2-} = BaSO_4 \downarrow$ (×): 忽 略 了 $Cu^{2+} + 2OH^- = Cu(OH)_2 \downarrow$

六、注意是否符合反应的「量」

注意离子方程式是否符合题设条件的要求,如过量、少量、等物质的量、一定浓度和体积混合以及滴加顺序对反应 产物的影响

I与量有关的复分解反应

1. 向 $NH_4Al(SO_4)_2$ 溶液中滴 $Ba(OH)_2$ 溶液使 SO_4^{2-} 恰好完全沉淀,离子方程式为: $NH_4^+ + Al^{3+} + 2\,SO_4^{2-} + 2\,Ba^{2+} + 4\,OH^- = NH_3 \cdot H_2O + Al(OH)_3 \downarrow + 2\,BaSO_4 \downarrow \quad (\checkmark)$

- 1. 由 SO₄²⁻ + Ba²⁺=BaSO₄ ↓ 进行配平得出由 1 份 NH₄Al(SO₄)₂ 溶液 和 2 份 Ba(OH)₂ 溶液
- 2. 由 Al³⁺ + 3 OH⁻ =Al(OH)₃ ↓ 和 NH₄⁺ + OH⁻ =NH₃ · H₂O 可知,优先反应 Al³⁺,生成 1 份 Al(OH)₃
- 3. 还剩余 1 % OH $^-$,与 NH $_4^+$ 反应,生成 1 % NH $_3$ · H $_2$ O
- 2. 向 $NH_4Al(SO_4)_2$ 溶液滴入过量的 NaOH 溶液: $NH_4^+ + Al^{3+} + 5OH^- = AlO_2^- + NH_3 \cdot H_2O + 2H_2O$ ($\sqrt{}$)
 - 1. 优先反应 1 份 Al³⁺ + 3 OH⁻ =Al(OH)₃ ↓
 - 2. 其次反应 1 份 $NH_4^+ + OH^- = NH_3 \cdot H_2O$
 - 3. 最后反应 1 份 $Al(OH)_3 + OH^- = AlO_2^- + 2H_2O$
- 3. 向 NH₄Fe(SO₄)₂ 饱和溶液中滴加几滴(少量)NaOH 溶液: Fe³⁺ + 3 OH⁻ =Fe(OH)₃ ↓ $(\sqrt{})$

由 NH $_4^+$ + OH $^-$ =NH $_3$ · H $_2$ O 和 Fe $^{3+}$ + 3 OH $^-$ =Fe(OH) $_3$ ↓ ,Fe $^{3+}$ 优先反应

II CO₂ 少量与过量的比较

考虑反应物酸性与 H_2CO_3 、 HCO_3^- 的酸性强弱比较

酸性大小: H₂CO₃(CO₂ + H₂O)>HClO>Ph-OH>HCO₃

- 1. 将少量的 CO_2 通入 NaClO 溶液中: $2ClO^- + CO_2 + H_2O = 2HClO + CO_3^{2-}$ (×)
 - 1. $\mathrm{H_2CO_3}$ 电离出的第一个 $\mathrm{H^+}$ 用于制备 HClO , $\mathrm{ClO^-} + \mathrm{CO_2} + \mathrm{H_2O} = \mathrm{HClO} + \mathrm{HCO_3^-}$
 - 2. HCO_3^- 电离出的 H^+ 无法制备次氯酸($ClO^- + HCO_3^- \neq HClO + CO_3^{2-}$,弱酸不可制强酸)
- 2. 将少量的 CO_2 通入苯酚钠溶液中: $2C_6H_5O^- + CO_2 + H_2O = 2C_6H_5OH + CO_3^2$ (×)
 - 1. H_2CO_3 电离出的第一个 H^+ 用于制备 C_6H_5OH , $C_6H_5O^- + CO_2 + H_2O = C_6H_5OH + HCO_3^-$
 - 2. HCO_3^- 电离出的 H^+ 无法制备苯酚($C_6H_5O^- + HCO_3^- \neq C_6H_5OH + CO_3^{2-}$,弱酸不可制强酸)
- 3. $\mathrm{Na_2S}$ 溶液吸收少量 $\mathrm{CO_2}: \mathrm{S^{2-}} + \mathrm{CO_2} + \mathrm{H_2O} = \mathrm{CO_3^{2-}} + \mathrm{H_2S} \uparrow$ (\times) [已知: $K_{a1}(\mathrm{H_2CO_3}) > K_{a1}(\mathrm{H_2S}) > K_{a2}(\mathrm{H_2CO_3})$]

```
1. 由 K_{a1}(\mathrm{H_2CO_3}) > K_{a1}(\mathrm{H_2S}) > K_{a2}(\mathrm{HS^-}), \mathrm{H_2CO_3} 电离出的第一个 \mathrm{H^+} 可参与反应: \mathrm{S^{2-} + CO_2 + H_2O = HS^- + HCO_3^-}
```

2. 由
$$K_{a1}({\rm H_2S})>K_{a2}({\rm H_2CO_3})$$
 , ${\rm HCO_3^-}$ 电 离 出 的 ${\rm H^+}$ 不 参 与 反 应 (${\rm HS^-}+{\rm HCO_3^-}\neq{\rm CO_3^{2-}}+{\rm H_2S}\uparrow$)

III SO₂ 的少量与过量

SO_2 的性质:

1. 酸性: $SO_2 + H_2O \rightleftharpoons H_2SO_3$

2. 还原性: $\overset{+4}{\mathrm{S}}\mathrm{O}_2 \overset{\text{氧化剂}}{\longrightarrow} \overset{+6}{\mathrm{S}}\mathrm{O}_4^{2-}$

3. 氧化性: $\overset{+4}{\mathrm{S}}\mathrm{O}_2 + \mathrm{H}_2\overset{-2}{\mathrm{S}} \longrightarrow \overset{0}{\mathrm{S}}$

1. 用过量氨水吸收工业尾气中的 $SO_2: 2NH_3 \cdot H_2O + SO_2 = 2NH_4^+ + SO_3^{2-} + H_2O \quad (\sqrt{})$

- 1. SO₂ 溶于水视为 H₂SO₃
- 2. 过量氨水中和 H₂SO₃ 电离出的所有 H⁺

2. 将过量的 SO_2 通入次氯酸钠溶液中: $ClO^- + SO_2 + H_2O = Cl^- + SO_4^{2-} + 2H^+$ ($\sqrt{}$)

- **1.** 少量的 ClO⁻ 视为 1 份, SO₂ 溶于水视为 H₂ SO₃
- 2. ClO^- 为氧化剂, H_2SO_3 为还原剂

3. 将少量的 SO_2 通入次氯酸钠溶液中: $ClO^- + SO_2 + H_2O = Cl^- + SO_4^{2-} + 2H^+$ (×)

- 1. H⁺与 ClO⁻ 不能共存,发生反应 H⁺ + ClO⁻ =HClO
- 2. $3 \text{ ClO}^- + \text{SO}_2 + \text{H}_2 \text{O} = \text{Cl}^- + \text{SO}_4^{2-} + 2 \text{ HClO}$

4. 向 $Ba(ClO)_2$ 溶液中通入少量 $SO:SO_2+Ba^{2+}+2$ $ClO^-+H_2O=BaSO_3\downarrow+2$ HClO (×)

1.
$$SO_2 + H_2O = SO_4^{2-} + H^+$$

2.
$$\mathrm{Ba^{2+}} + \mathrm{SO_4^{2-}} = \mathrm{BaSO_4} \downarrow$$

3.
$$\mathrm{H^{+}} + \mathrm{ClO^{-}} = \mathrm{HClO}$$

综上: $SO_2 + 3ClO^- + Ba^{2+} + H_2O = BaSO_4 \downarrow + Cl^- + 2HClO$

5. 向过量 SO_2 溶液通入 K_2S 溶液: $2\,SO_2 + 2\,H_2O + S^{2-} = 2\,HSO_3^- + H_2S$ (×)

$$\overset{+4}{\mathrm{S}}\mathrm{O}_2 + \mathrm{H}_2\overset{-2}{\mathrm{S}} \longrightarrow \overset{0}{\mathrm{S}}$$