6-clustering

March 11, 2021

#

Ciencia de Datos

Víctor Muñiz Sánchez

Maestría en Cómputo Estadístico

Enero a junio 2021

0.1 k- means y métodos relacionados

[1]: <seaborn.axisgrid.FacetGrid at 0x7fb872a75a00>

0.2 k-means

```
plt.scatter(
    kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1],
    s=250, marker='*',
    c='black', edgecolor='black',
    label='centroids'
)
#plt.legend(scatterpoints=1)
plt.show()
```


0.2.1 Una pista del número de clusters. Elbow

0.2.2 clusters vs W(c), disim. dentro de clusters

0.3 Gráfico de siluetas

```
[6]: from sklearn.metrics import silhouette_score
     from sklearn.metrics import silhouette_samples, silhouette_score
     import matplotlib.cm as cm
     import numpy as np
     range_n_clusters = [2, 3, 4]
     for n_clusters in range_n_clusters:
         # Subplot (1 row, 2 columns)
         fig, (ax1, ax2) = plt.subplots(1, 2)
         fig.set_size_inches(18, 7)
         # 1st subplot es el grafico de silueta
         # Observa que, el coeficiente de silueta está en [-1,1], pero parau
      →visualizar mejor los datos
         # lo ponemos en [-0.1, 1], ya que en este ejemplo todos caen en ese rango
         ax1.set_xlim([-0.1, 1])
         # ponemos un margen de (n_clusters+1)*10 entre cada silueta individual para
         # cada cluster
         ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])
         \# instanciamos un objeto de KMeans, especificando n_clusters en el_{\sqcup}
      \hookrightarrow constructor
         # fijamos la semilla (random_state) para poder reproducir el resultado
         clusterer = KMeans(n_clusters=n_clusters, random_state=10)
         cluster_labels = clusterer.fit_predict(X)
         # el silhouette_score es el valor promedio para cada muestra (h\bar{s}_K$\_
      →en la notación de clase)
         silhouette_avg = silhouette_score(X, cluster_labels)
         print("For n_clusters =", n_clusters,
               "The average silhouette_score is :", silhouette_avg)
         # valor de silueta para cada observacion
         sample_silhouette_values = silhouette_samples(X, cluster_labels)
         y_lower = 10
         for i in range(n_clusters):
             # agregar el score silhouette scores para las observaciones que caen en
      \rightarrowel cluster i
             # y se ordenan
             ith cluster silhouette values = \
                 sample_silhouette_values[cluster_labels == i]
```

```
ith_cluster_silhouette_values.sort()
    size_cluster_i = ith_cluster_silhouette_values.shape[0]
   y_upper = y_lower + size_cluster_i
   color = cm.nipy_spectral(float(i) / n_clusters)
    ax1.fill_betweenx(np.arange(y_lower, y_upper),
                      0, ith_cluster_silhouette_values,
                      facecolor=color, edgecolor=color, alpha=0.7)
    # etiquetas de los silhouette plots
   ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
   y_lower = y_upper + 10 # 10 for the 0 samples
ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")
# pone el score average silhouette como una linea puteada en rojo
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
ax1.set_yticks([])
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
# El segundo grafico muestra los clusters formados
colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters)
ax2.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7,
            c=colors, edgecolor='k')
centers = clusterer.cluster_centers_
# grafica centroides
ax2.scatter(centers[:, 0], centers[:, 1], marker='o',
            c="white", alpha=1, s=200, edgecolor='k')
for i, c in enumerate(centers):
    ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1,
                s=50, edgecolor='k')
ax2.set_title("The visualization of the clustered data.")
ax2.set xlabel("Feature space for the 1st feature")
ax2.set_ylabel("Feature space for the 2nd feature")
plt.suptitle(("Silhouette analysis for KMeans clustering on sample data "
              "with n_clusters = %d" % n_clusters),
             fontsize=14, fontweight='bold')
```

plt.show()

For n_clusters = 2 The average silhouette_score is : 0.5848706144251782 For n_clusters = 3 The average silhouette_score is : 0.7143417887288687 For n_clusters = 4 The average silhouette_score is : 0.5768508858868746

Silhouette analysis for KMeans clustering on sample data with n_clusters = 2

Silhouette analysis for KMeans clustering on sample data with n_clusters = 3

Silhouette analysis for KMeans clustering on sample data with n_clusters = 4

0.4 k-medoids

```
[8]: from sklearn_extra.cluster import KMedoids
     kmedoids = KMedoids(n_clusters=3, random_state=0)
     kmedoids.fit(X)
     data_toy_kmed = pd.DataFrame(data_toy).assign(cl_kmed = kmedoids.labels_)
     custom_palette = ["red", "green", "blue"]
     sns.relplot(x='x1', y='x2', data = data_toy_kmed, hue='cl_kmed', height=7,_
     →palette = custom_palette,
                legend = 'brief')
     plt.title("K-medoids", fontsize=15)
     # plot the centroids
     plt.scatter(
         kmedoids.cluster_centers_[:, 0], kmedoids.cluster_centers_[:, 1],
         s=250, marker='*',
         c='black', edgecolor='black',
         label='centroids'
     )
     sns.relplot(x='x1', y='x2', data = data_toy_km, hue='cl_km', height=7, palette_
     →= custom_palette,
                legend = 'brief')
     plt.title("K-means", fontsize=15)
     # plot the centroids
     plt.scatter(
         kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1],
```

```
s=250, marker='*',
    c='black', edgecolor='black',
    label='centroids'
)

#plt.legend(scatterpoints=1)
#plt.show()
```

[8]: <matplotlib.collections.PathCollection at 0x7fb8654204c0>

0.5 Fuzzy k-means

```
[11]: from sklearn_extensions.fuzzy_kmeans import KMedians, FuzzyKMeans
# m es el parámetro de fuzyness
fuzzy_kmeans = FuzzyKMeans(k=3, m=2)
fuzzy_kmeans.fit(X)
#dir(fuzzy_kmeans)
res = pd.DataFrame(np.round(fuzzy_kmeans.fuzzy_labels_,3)).

assign(label=fuzzy_kmeans.labels_)
print(res.to_string())
```

```
0 1 2 label
0 0.017 0.954 0.028 1
1 0.184 0.111 0.704 2
2 0.002 0.001 0.997 2
```

```
3
     0.024
             0.011
                     0.965
                                  2
4
     0.026
             0.940
                     0.034
                                  1
5
     0.048
             0.043
                                  2
                     0.909
6
     0.064
             0.060
                     0.877
                                  2
7
     0.033
             0.928
                     0.039
                                  1
8
     0.958
             0.016
                     0.026
                                  0
                                  2
9
     0.075
             0.066
                     0.859
10
     0.053
             0.844
                     0.103
                                  1
11
     0.639
             0.148
                     0.212
                                  0
     0.985
                                  0
12
             0.006
                     0.010
     0.016
             0.010
                     0.974
                                  2
13
14
     0.093
             0.032
                     0.874
                                  2
     0.973
                     0.017
                                  0
15
             0.010
16
     0.982
             0.005
                     0.013
                                  0
17
     0.004
                     0.005
             0.992
                                  1
18
     0.995
             0.002
                     0.003
                                  0
19
     0.020
             0.958
                     0.022
                                  1
     0.020
                                  2
20
             0.011
                     0.969
21
     0.014
             0.963
                     0.023
                                  1
             0.028
                                  2
22
     0.031
                     0.941
                                  2
23
     0.038
             0.025
                     0.937
24
     0.958
             0.015
                     0.027
                                  0
25
     0.004
             0.989
                     0.006
                                  1
26
     0.014
             0.964
                     0.022
                                  1
27
     0.076
             0.086
                     0.837
                                  2
28
     0.822
             0.051
                     0.127
                                  0
29
     0.026
             0.947
                     0.028
                                  1
30
     0.946
                     0.040
                                  0
             0.014
31
     0.990
             0.003
                     0.006
                                  0
32
     0.939
             0.021
                     0.040
                                  0
33
     0.989
             0.003
                     0.008
                                  0
34
     0.058
             0.024
                     0.918
                                  2
35
     0.045
             0.882
                     0.073
                                  1
36
     0.039
             0.892
                     0.069
                                  1
37
     0.012
             0.971
                     0.017
                                  1
     0.018
                                  2
38
             0.010
                     0.972
                                  2
39
     0.013
             0.010
                     0.977
40
     0.749
             0.132
                     0.119
                                  0
41
     0.900
             0.044
                     0.056
                                  0
42
     0.065
             0.027
                     0.908
                                  2
     0.028
43
             0.942
                     0.030
                                  1
44
     0.004
             0.989
                     0.007
                                  1
45
     0.014
             0.967
                     0.019
                                  1
                                  0
46
     0.934
             0.017
                     0.049
47
     0.099
                                  2
             0.205
                     0.696
                                  0
48
     0.951
             0.017
                     0.032
                                  2
49
     0.026
             0.026
                     0.949
50
     0.052
             0.854
                     0.094
                                  1
```

51	0.054	0.024	0.923	2
52	0.019	0.013	0.967	2
53	0.012	0.973	0.014	1
54	0.007	0.983	0.010	1
55	0.993	0.002	0.005	0
56	0.067	0.043	0.890	2
57	0.051	0.849	0.100	1
58	0.871	0.029	0.100	0
59 60	0.016	0.014	0.970	2
60 61	0.933 0.706	0.022	0.045	0
62	0.708	0.072	0.222	0
63	0.994	0.002	0.001	0
64	0.010	0.002	0.982	2
65	0.651	0.099	0.250	0
66	0.004	0.003	0.994	2
67	0.069	0.813	0.119	1
68	0.240	0.058	0.702	2
69	0.141	0.053	0.806	2
70	0.067	0.092	0.841	2
71	0.039	0.913	0.049	1
72	0.011	0.973	0.016	1
73	0.101	0.045	0.854	2
74	0.025	0.942	0.032	1
75	0.001	0.001	0.998	2
76	0.035	0.037	0.928	2
77	0.916	0.036	0.048	0
78	0.973	0.008	0.019	0
79	0.003	0.002	0.995	2
80 81	0.007	0.984	0.009	1
82	0.019 0.136	0.961 0.067	0.021	1 2
83	0.130	0.007	0.730	2
84	0.003	0.939	0.039	1
85	0.052	0.853	0.095	1
86	0.011	0.973	0.016	1
87	0.989	0.003	0.007	0
88	0.928	0.021	0.051	0
89	0.032	0.929	0.038	1
90	0.018	0.960	0.022	1
91	0.003	0.002	0.994	2
92	0.044	0.907	0.049	1
93	0.033	0.018	0.949	2
94	0.009	0.981	0.010	1
95	0.089	0.160	0.752	2
96	0.974	0.009	0.017	0
97	0.950	0.016	0.035	0
98	0.034	0.932	0.035	1

00	0.039	0.890	0.071	1
99				1
100	0.013	0.969	0.017	1
101	0.010	0.974	0.016	1
102	0.881	0.033	0.085	0
103	0.008	0.982	0.010	1
104	0.021	0.955	0.024	1
105	0.004	0.003	0.994	2
106	0.994	0.002	0.004	0
107	0.047	0.056	0.897	2
108	0.003	0.002	0.996	2
109	0.055	0.023	0.922	2
110	0.960	0.011	0.029	0
111	0.008	0.005	0.986	2
112	0.003	0.993	0.004	1
113	0.974	0.008	0.018	0
114	0.054	0.034	0.912	2
115	0.918	0.029	0.053	0
116	0.002	0.001	0.997	2
117	0.038	0.042	0.920	2
118	0.976	0.008	0.016	0
119	0.993	0.002	0.005	0
120	0.042	0.021	0.936	2
121	0.016	0.959	0.025	1
122	0.024	0.011	0.965	2
123	0.106	0.036	0.858	2
124	0.057	0.837	0.105	1
125	0.009	0.978	0.013	1
126	0.973	0.010	0.017	0
127	0.020	0.958	0.022	1
128	0.945	0.019	0.036	0
129	0.989	0.004	0.007	0
130	0.989	0.004	0.008	0
131	0.928	0.020	0.052	0
132	0.031	0.934	0.035	1
133	0.978	0.008	0.014	0
134	0.956	0.012	0.032	0
135	0.711	0.146	0.143	0
136	0.147	0.088	0.765	2
137	0.984	0.006	0.010	0
138	0.034	0.919	0.047	1
139	0.982	0.007	0.011	0
140	0.017	0.015	0.968	2
141	0.024	0.022	0.954	2
142	0.061	0.879	0.060	1
143	0.005	0.987	0.007	1
144	0.826	0.038	0.136	0
145	0.945	0.020	0.034	0
146	0.907	0.025	0.068	0
	- / / -			J

```
147 0.925 0.032 0.044
     148 0.018 0.960 0.022
                                   1
     149 0.047 0.906 0.046
                                   1
[10]: data_toy_fkm = pd.DataFrame(data_toy).assign(cl_fkm = fuzzy_kmeans.labels_)
     custom_palette = ["red", "green", "blue"]
     sns.relplot(x='x1', y='x2', data = data_toy_fkm, hue='cl_fkm', height=7,__
      →palette = custom_palette,
                legend = 'brief')
     # plot the centroids
     plt.scatter(
         fuzzy_kmeans.cluster_centers_[:, 0], fuzzy_kmeans.cluster_centers_[:, 1],
         s=250, marker='*',
         c='black', edgecolor='black',
         label='centroids'
     #plt.legend(scatterpoints=1)
     plt.show()
```

