## Hmwk9.R

## **Audrey McCombs**

Fri Nov 10 22:02:27 2017

```
#Problem 1
matfunc <- function(n,k) {</pre>
  diag(x = k, nrow = n, ncol = n)
matfunc(6,5)
##
        [,1] [,2] [,3] [,4] [,5] [,6]
## [1,]
           5
               0
                     0
                           0
## [2,]
                5
                     0
                                0
                                     0
           0
                           0
## [3,]
           0
                0
                     5
                          0
                                0
                                     0
           0 0 0 5
                                     0
## [4,]
## [5,]
           0
                0
                     0
                         0
                             5
                                     0
                                0
                                     5
                     0
                          0
## [6,]
           0
rm(list = ls())
#Problem 2
tmpFn <- function(xVec) {</pre>
  ifelse(test = xVec < 0,</pre>
      yes = ((xVec^2) + (2*xVec) + 3),
      no = ifelse(test = 0 <= xVec & xVec < 2,
          yes = (xVec + 3),
          no = ((xVec^2) + (4* xVec) - 7)))
  }
xVec \leftarrow seq(from = -3, to = 3, by = .01)
yVec <- tmpFn(xVec)</pre>
plot(xVec, yVec, xlab = "Input value", ylab = "Function output", main =
"tmpFn function", asp = 1)
```

## tmpFn function



```
rm(list = ls())
#Problem 3
gdc <- function(m,n) {</pre>
  firstm <- m
  firstn <- n
  r <- 1
  while (r != 0) {
    r <- m %% n
    m < - n
    n <- r
print(c(firstm, firstn, m))
gdc(1420,95)
## [1] 1420
               95
                      5
rm(list = ls())
#Problem 4
order.matrix <- function(mymat) {</pre>
ordvec <- sort(mymat)</pre>
indrow <- (rep(NA, length(ordvec)))</pre>
```

```
indcol <- (rep(NA, length(ordvec)))</pre>
for (i in 1:length(ordvec)) {
  rowcol <- which(mymat == ordvec[i], arr.ind = TRUE)</pre>
  indrow[i] <- rowcol[1,1]</pre>
  indcol[i] <- rowcol[1,2]</pre>
values <- data.frame(number = ordvec, rowindex = indrow, colindex = indcol)</pre>
return(values)
mymat <- matrix(rchisq(12, 1), nrow = 4)</pre>
order.matrix(mymat)
         number rowindex colindex
##
      0.1665623
## 1
                        3
                                  2
## 2 0.2657899
                        3
                                  1
                        1
                                  1
## 3 0.4045661
## 4 0.4430517
                        4
                                  1
                        1
## 5 0.5744085
                                  2
                        2
## 6 0.7288544
                                  3
## 7 0.7877767
                        4
                                  2
                        2
                                  1
## 8 0.9221183
                        3
                                  3
## 9 0.9850161
## 10 1.5887811
                        2
                                  2
## 11 3.1262032
                        1
                                  3
                                  3
## 12 4.5532919
                        4
mymat <- matrix(rchisq(20, 1), nrow = 5)</pre>
order.matrix(mymat)
##
            number rowindex colindex
## 1 0.0001931904
                           1
## 2 0.0044179904
                           5
                                     1
                           1
                                     2
## 3 0.0139876989
## 4 0.0239771482
                           1
                                     3
                           2
## 5 0.0349673022
                                     4
                           4
                                     2
## 6 0.0429590343
                           4
                                     4
## 7
      0.0484625034
                           4
                                     1
## 8 0.0551572657
## 9 0.0600482125
                           2
                                     1
## 10 0.0677640266
                           4
                                     3
                           5
## 11 0.0792188237
                                     3
                           3
                                     1
## 12 0.1001339343
## 13 0.1037628103
                           1
                                     1
                           3
                                     4
## 14 0.1093666476
                           2
                                     2
## 15 0.1869270890
## 16 0.2544719847
                           3
                                     2
                           2
                                     3
## 17 0.4785152108
## 18 0.7036197419
                                     2
```

```
## 19 0.8737965178
                              5
                                         4
## 20 0.9176613976
rm(list = ls())
#Problem 5
op <- par()
#Problem 5.a
polaroid <- function(x) {</pre>
  p <- length(x)</pre>
  r \leftarrow sqrt(sum(x^2))
  theta \leftarrow \text{rep}(0, p-1)
  den \leftarrow rep(0, p-2)
  theta[1] \leftarrow acos(x[1]/r)
  den[1] \leftarrow r
  for (i in 2:(p-1)) {
    den[i] <- den[i-1] * sin(theta[i-1])</pre>
    theta[i] <- acos(x[i]/den[i])</pre>
  }
  polar <- c(r, theta)</pre>
  return(polar)
}
x \leftarrow seq(from = 0, to = 10, by = 2)
polaroid(x)
## [1] 14.8323970 1.5707963 1.4355444 1.2951535 1.1326473 0.8960554
#Problem 5.b
normalize <- function(vec) {</pre>
  den <- sqrt(sum(vec^2))</pre>
  output <- vec/den
}
#Problem 5.c
y <- matrix(rnorm(5000, mean = 0, sd = 1), nrow = 1000, ncol = 5)</pre>
zt <- apply(y, 1, normalize)</pre>
z \leftarrow t(zt)
ks.test(z,"punif",min=-1,max=1)
##
## One-sample Kolmogorov-Smirnov test
```

```
##
## data: z
## D = 0.099436, p-value < 2.2e-16
## alternative hypothesis: two-sided
hist(z)</pre>
```

## Histogram of z



#Based on the Kolmogorov-Smirnov test, the z matrix is not uniformly distributed. We can see this clearly in the histogram of values in the matrix.

```
#Problem 5.d
polarst <- apply(y, 1, polaroid)
polars <- t(polarst)

ks.test(polars[,1]^2, "pchisq", 5)

##
## One-sample Kolmogorov-Smirnov test
##
## data: polars[, 1]^2
## D = 0.026994, p-value = 0.4598
## alternative hypothesis: two-sided
boxplot(polars[,2:5])</pre>
```



```
ks.test(polars[,2], "punif", min = 0, max = 2*pi)
##
##
   One-sample Kolmogorov-Smirnov test
##
## data: polars[, 2]
## D = 0.57589, p-value < 2.2e-16
## alternative hypothesis: two-sided
ks.test(polars[,3], "punif", min = 0, max = pi)
##
##
   One-sample Kolmogorov-Smirnov test
##
## data: polars[, 3]
## D = 0.17876, p-value < 2.2e-16
## alternative hypothesis: two-sided
ks.test(polars[,4], "punif", min = 0, max = pi)
##
##
   One-sample Kolmogorov-Smirnov test
##
## data: polars[, 4]
## D = 0.11135, p-value = 3.403e-11
## alternative hypothesis: two-sided
ks.test(polars[,5], "punif", min = 0, max = pi)
```

```
##
   One-sample Kolmogorov-Smirnov test
##
##
## data: polars[, 5]
## D = 0.024207, p-value = 0.6012
## alternative hypothesis: two-sided
#Multiple distributions
par(mfrow = c(3,3))
for (i in 1:9) {
  y <- matrix(rnorm(5000, mean = 0, sd = 1), nrow = 1000, ncol = 5)</pre>
  zt <- apply(y, 1, normalize)</pre>
  z <- t(zt)
  polarst <- apply(y, 1, polaroid)</pre>
  polars <- t(polarst)</pre>
  boxplot(polars[,2:5])
}
```



















par(op)

```
#Problem 6

#Problem 6.a

x <-c(3.91, 4.85, 2.28, 4.06, 3.70, 4.04, 5.46, 3.53, 2.28, 1.96, 2.53, 3.88,
2.22, 3.47, 4.82, 2.46, 2.99, 2.54, 0.52, 2.50)
theta <- seq(0,10,,100)

hm <- function(theta = theta, x = 3.91) (1-cos(x - theta))/(2*pi)
loghm <- function(theta, x) (-log(2*pi)+sum(log(1-cos(x-theta)^2)))
plot(theta,sapply(theta,loghm,x),type="l",ylab="LogL of HW distribution",
xlim = c(-3.1415927, 3.1415927))</pre>
```



```
plot(theta,sapply(theta,loghm,x),type="1",ylab="LogL of HW distribution",
xlim = c(0, 10))

#Problem 6.b

optimize(function(theta) sapply(theta, loghm, x), interval = c(1,2), maximum
= T)

## $maximum
## [1] 1.326029
##

## $objective
## [1] -17.51277

#Problem 6.c
ghm <- function(theta,x) sin(x-theta)/(1-cos(x-theta))</pre>
```

```
derghm <- function(theta,x) 1/(1-cos(x-theta))</pre>
loglik <- function(fun, derf, x0, eps, nlim,...) {</pre>
 iter <- 0
 repeat {
   iter <- iter + 1
   if(iter > nlim) {
     cat(" Iteration Limit Exceeded: Current = ",iter, fill = T)
     x1 <- NA
     break
   }
   x1 \leftarrow x0 - fun(x0,...)/derf(x0,...)
   if(abs(x0 - x1) < eps||abs(fun(x1,...))<1.0e-12)
     break
   x0 < -x1
   cat("\n***** Iter. No: ", iter, " Current Iterate = ", x1, fill=T)
 }
 return(x1)
loglik(ghm, derghm, 0, 0.00001, 100, x)
## ***** Iter. No: 1 Current Iterate = 0.694991 0.9905465 -0.7588807
## 0.7946357 0.5298361 0.7823359 0.7333152 0.3787149 -0.7588807 -0.9252115
## -0.5741721 0.6731109 -0.7965655 0.3225359 0.9942155 -0.6300306 -0.1510127
## -0.5659562 -0.4968801 -0.5984721
##
## ***** Iter. No: 2 Current Iterate = 0.7683414 1.648321 -0.8614122
## 0.9180916 0.5584035 0.8981469 1.733213 0.3884072 -0.8614122 -1.178793
## -0.6115839 0.738361 -0.9212672 0.3284073 1.626262 -0.6815698 -0.1515927
## -0.6015851 -1.347351 -0.6415793
       0.7684073 1.7083712 -0.8615927 0.9184073 0.5584073 0.8984073
## [1]
## [7] 2.2855744 0.3884073 -0.8615927 -1.1815926 -0.6115927 0.7384073
## [19] -2.3037001 -0.6415927
#This found the MLE value at -0.64: the local maximum near x = 0.
 #Problem 6.d
loglik(ghm, derghm, -2.0, 0.00001, 100, x)
## ***** Iter. No: 1 Current Iterate = -1.635417 -2.536948 -1.092033
## -1.778663 -1.449314 -1.759205 -2.923388 -1.316034 -1.092033 -1.269942
## -1.016587 -1.60765 -1.118794 -1.27352 -2.511401 -1.031681 -1.038287
## -1.014822 -2.582331 -1.02247
## ***** Iter. No: 2 Current Iterate = -0.9627782 -3.429855 -0.8636267
```

```
## -1.348636 -0.5432575 -1.293898 -3.786495 -0.3249513 -0.8636267 -1.181708
## -0.6225734 -0.8934112 -0.9228683 -0.2740048 -3.377936 -0.6887002
## -0.2633001 -0.6132531 -2.621583 -0.6507349
## ***** Iter. No: 3 Current Iterate = 0.02438699 -4.340533 -0.8615927
## -0.5813819 0.3487038 -0.4808975 -3.963835 0.3294259 -0.8615927 -1.181593
## -0.6115929 0.1047275 -0.9215927 0.2926269 -4.319364 -0.6815927 -0.1518248
## -0.6015929 -2.621593 -0.6415928
## ***** Iter. No: 4 Current Iterate = 0.7016384 -4.572642 -0.8615927
## 0.4160982 0.5568737 0.5008239 -3.964778 0.3883732 -0.8615927 -1.181593
## -0.6115927 0.6968417 -0.9215927 0.3283997 -4.600919 -0.6815927 -0.1515927
## -0.6015927 -2.621593 -0.6415927
## ***** Iter. No: 5 Current Iterate = 0.7683577 -4.574778 -0.8615927
## 0.8975489 0.5584073 0.8880153 -3.964778 0.3884073 -0.8615927 -1.181593
## -0.6115927 0.7383954 -0.9215927 0.3284073 -4.604778 -0.6815927 -0.1515927
## -0.6015927 -2.621593 -0.6415927
## [1] 0.7684073 -4.5747780 -0.8615927 0.9184058 0.5584073 0.8984072
## [7] -3.9647780 0.3884073 -0.8615927 -1.1815927 -0.6115927 0.7384073
## [13] -0.9215927 0.3284073 -4.6047780 -0.6815927 -0.1515927 -0.6015927
## [19] -2.6215927 -0.6415927
loglik(ghm, derghm, -2.7, 0.00001, 100, x)
##
## ***** Iter. No: 1 Current Iterate = -3.021028 -3.654152 -1.735595
## -3.158951 -2.816549 -3.141092 -3.653541 -2.64684 -1.735595 -1.701372
## -1.830996 -2.992476 -1.721474 -2.587056 -3.644745 -1.798516 -2.140995
## -1.835988 -2.621673 -1.816545
##
## ***** Iter. No: 2 Current Iterate = -3.624496 -4.450133 -0.9686912
## -3.964005 -3.047801 -3.923115 -3.959777 -2.540695 -0.9686912 -1.204683
## -0.892102 -3.548247 -1.004201 -2.362849 -4.463955 -0.8997605 -1.227339
## -0.892039 -2.621593 -0.8938737
##
## ***** Iter. No: 3 Current Iterate = -4.573892 -4.574455 -0.8617973
## -4.949586 -3.49588 -4.917166 -3.964778 -2.329799 -0.8617973 -1.181595
## -0.6152569 -4.458982 -0.9216866 -1.927581 -4.604313 -0.6833192 -0.3473938
## -0.6056591 -2.621593 -0.6442603
##
## ***** Iter. No: 4 Current Iterate = -5.381973 -4.574778 -0.8615927
## -5.352952 -4.287034 -5.367922 -3.964778 -1.918949 -0.8615927 -1.181593
## -0.6115927 -5.343657 -0.9215927 -1.153284 -4.604778 -0.6815927 -0.1528414
## -0.6015927 -2.621593 -0.6415927
##
## ***** Iter. No: 5 Current Iterate = -5.514388 -4.574778 -0.8615927
## -5.364778 -5.278196 -5.384777 -3.964778 -1.178166 -0.8615927 -1.181593
## -0.6115927 -5.543425 -0.9215927 -0.1572512 -4.604778 -0.6815927 -0.1515927
```

```
## -0.6015927 -2.621593 -0.6415927
##
## ***** Iter. No: 6 Current Iterate = -5.514778 -4.574778 -0.8615927
## -5.364778 -5.710081 -5.384778 -3.964778 -0.1781749 -0.8615927 -1.181593
## -0.6115927 -5.544778 -0.9215927 0.3095397 -4.604778 -0.6815927 -0.1515927
## -0.6015927 -2.621593 -0.6415927
## [1] -5.5147780 -4.5747780 -0.8615927 -5.3647780 -5.7247774 -5.3847780
## [7] -3.9647780 0.3585766 -0.8615927 -1.1815927 -0.6115927 -5.5447780
## [13] -0.9215927   0.3284062   -4.6047780   -0.6815927   -0.1515927   -0.6015927
## [19] -2.6215927 -0.6415927
# At a starting value of -2.0, the first iteration found an MLE of -1.02,
which is a local maximum near -2.0. Later iterations found the same MLE as
with starting point of 0 (i.e., -0.64). At a starting value of 2.7, however,
the first iteration found the MLE at -1.8165, and it took more iterations to
find the MLE of -0.64. This function bounces around a lot, so it's not
surprising that the function finds local maxima and takes a while to settle.
#Problem 7 - Go Galton!
  #Problem 7.a
men <- rnorm(n = 100, mean = 125, sd = 25)
women \leftarrow rnorm(n = 100, mean = 125, sd = 15)
t0 <- data.frame(M = men, W = women)
head(t0)
##
             М
## 1 94.18540 142.2488
## 2 98.84936 112.6996
## 3 103.38450 121.5094
## 4 185.52787 119.4877
## 5 145.68981 119.1958
## 6 93.34521 139.0001
  #Problem 7.b
permute <- function(t0, iter) {</pre>
  t <- as.list(rep(NA, iter))
  output <- as.list(rep(NA, iter))</pre>
  ttemp <- t0
  for (i in 1:iter) {
    t[[i]] <- data.frame(M = sample(x = ttemp$M, 100), W = ttemp$W)
    output[[i]] <- apply(t[[i]], 1, mean)
    ttemp <- data.frame(M = output[[i]], W = output[[i]])</pre>
  }
  return(output)
}
  #Problem 7.c
library(ggplot2)
```

```
## Warning: package 'ggplot2' was built under R version 3.2.5
library(reshape2)
## Warning: package 'reshape2' was built under R version 3.2.5
heights <- permute(t0, 9)</pre>
heights <- as.data.frame(heights)</pre>
names(heights) <- paste("G", 1:9, sep = "")</pre>
head(heights)
                    G2
                              G3
                                       G4
                                                G5
                                                          G6
## 1 135.8820 136.1448 137.6520 129.1269 125.2955 125.6155 124.9099 124.7827
## 2 116.8171 115.3775 112.4821 118.9764 118.8376 123.0381 124.2781 124.9299
## 3 118.8127 127.7004 129.5418 126.7541 127.3588 124.2797 124.1995 124.2551
## 4 112.0907 122.3789 119.9758 120.4831 128.1408 128.5821 127.7421 127.9181
## 5 123.5298 125.8862 121.2932 123.3369 122.2617 121.9554 123.9541 124.9214
## 6 121.1923 121.1923 120.8602 126.5974 125.4531 126.4668 126.6820 126.0116
##
           G9
## 1 126.1103
## 2 125.1944
## 3 125.1173
## 4 125.3302
## 5 126.4198
## 6 125.7347
heights <- melt(heights)</pre>
## No id variables; using all as measure variables
names(heights) <- c("gen", "height")</pre>
head(heights)
##
     gen
           height
## 1 G1 135.8820
## 2 G1 116.8171
## 3 G1 118.8127
## 4 G1 112.0907
## 5 G1 123.5298
## 6 G1 121.1923
ggplot(heights, aes(x=height)) + geom_histogram(binwidth = 1) + facet_wrap(~
gen)
```



```
#Problem 8
  #Problem 8.a
prettyvec <- function(filename) {</pre>
  iris <- readLines(con = filename)</pre>
  iris <- iris[-c(1:2, length(iris))] #remove first 2 lines and blank last</pre>
line
  indices <- grep(pattern = "\\s", iris)</pre>
  iris <- iris[-c(indices-1)] #remove blank lines</pre>
  indices <- grep(pattern = "\\s", iris)</pre>
  final <- as.list(rep(NA, length(indices)))</pre>
  for (i in 1:length(indices)) {
    grpsize <- strsplit(x = iris[indices[i]], split = "=")</pre>
    final[[i]] <- rep(i-1, grpsize[[1]][2])
  }
  finalvec <- unlist(final)</pre>
  iris <- iris[-c(indices)]</pre>
  finaldf <- as.data.frame(cbind(finalvec, iris))</pre>
  names(finaldf) <- c("group", "observation")</pre>
```

```
return(finaldf)
}
  #Problem 8.b
prettyvec("Iris1.out")
##
       group observation
## 1
                       100
            0
                       102
## 2
            0
## 3
            0
                       103
## 4
            0
                       104
## 5
            0
                       105
            0
                       107
## 6
## 7
            0
                       108
## 8
            0
                       109
## 9
            0
                       110
            0
## 10
                       111
## 11
            0
                       112
## 12
            0
                       114
## 13
                       115
            0
## 14
            0
                       116
## 15
            0
                       117
## 16
            0
                       118
## 17
            0
                       120
## 18
            0
                       122
## 19
            0
                       124
## 20
            0
                       125
## 21
            0
                       128
## 22
                       129
            0
## 23
            0
                       130
## 24
            0
                       131
## 25
            0
                       132
## 26
            0
                       134
## 27
            0
                       135
## 28
            0
                       136
## 29
                       137
            0
## 30
            0
                       139
## 31
            0
                       140
## 32
            0
                       141
## 33
            0
                       143
## 34
            0
                       144
## 35
                       145
            0
## 36
            0
                       147
## 37
            0
                       148
## 38
            1
                         0
## 39
            1
                         1
## 40
            1
                         2
## 41
            1
                         3
## 42
            1
                         4
                         5
## 43
            1
```

| #: | # 4 | 44 | 1 | 6  |
|----|-----|----|---|----|
| #: | # 4 | 45 | 1 | 7  |
| #: | # 4 | 46 | 1 | 8  |
| #: | # 4 | 47 | 1 | 9  |
| #: | # 4 | 48 | 1 | 10 |
| #: | # 4 | 49 | 1 | 11 |
| #: | # 5 | 50 | 1 | 12 |
| #: | # 5 | 51 | 1 | 13 |
| #: | # 5 | 52 | 1 | 14 |
| #: | # 5 | 53 | 1 | 15 |
| #: | # 5 | 54 | 1 | 16 |
| #: | # 5 | 55 | 1 | 17 |
| #: | # 5 | 56 | 1 | 18 |
| #: | # 5 | 57 | 1 | 19 |
|    | # 5 |    | 1 | 20 |
|    | # 5 |    | 1 | 21 |
|    | # 6 |    | 1 | 22 |
|    | # 6 |    | 1 | 23 |
|    | # 6 |    | 1 | 24 |
|    | # 6 |    | 1 | 25 |
|    | # 6 |    | 1 | 26 |
|    | # 6 |    | 1 | 27 |
|    | # 6 |    | 1 | 28 |
|    | # 6 |    | 1 | 29 |
|    | # 6 |    | 1 | 30 |
|    | # 6 |    | 1 | 31 |
|    | # 7 |    | 1 | 32 |
|    | # 7 |    | 1 | 33 |
|    | # 7 |    | 1 | 34 |
|    | # 7 |    | 1 | 35 |
|    | # 7 |    | 1 | 36 |
|    | # 7 |    | 1 | 37 |
|    | # 7 |    | 1 | 38 |
|    | # 7 |    | 1 | 39 |
|    | # 7 |    | 1 | 40 |
|    | # 7 |    | 1 | 41 |
|    | # 8 |    | 1 | 42 |
|    | # 8 |    | 1 | 43 |
|    | # 8 |    | 1 | 44 |
|    | # 8 |    | 1 | 45 |
|    | # 8 |    | 1 | 46 |
|    | # 8 |    | 1 | 47 |
|    | # 8 |    | 1 | 48 |
|    | # 8 |    | 1 | 49 |
|    | # 8 |    | 2 | 50 |
|    | # 8 |    | 2 | 51 |
|    | # 9 |    | 2 | 52 |
|    | # 9 |    | 2 | 53 |
|    | # 9 |    | 2 | 54 |
| #7 | # 9 | 93 | 2 | 55 |
|    |     |    |   |    |

| ## | 94    | 2 | 56  |
|----|-------|---|-----|
| ## | 95    | 2 | 57  |
|    | 96    | 2 | 58  |
|    | 97    | 2 | 59  |
|    | 98    | 2 | 60  |
|    | 99    | 2 | 61  |
|    | 100   | 2 | 62  |
|    | 101   | 2 | 63  |
|    | 101   | 2 | 64  |
|    | 102   | 2 |     |
|    |       |   | 65  |
|    | 104   | 2 | 66  |
|    | 105   | 2 | 67  |
|    | 106   | 2 | 68  |
|    | 107   | 2 | 69  |
|    | 108   | 2 | 70  |
|    | 109   | 2 | 71  |
|    | 110   | 2 | 72  |
|    | 111   | 2 | 73  |
|    | : 112 | 2 | 74  |
|    | : 113 | 2 | 75  |
|    | 114   | 2 | 76  |
|    | 115   | 2 | 77  |
|    | 116   | 2 | 78  |
| ## | 117   | 2 | 79  |
| ## | 118   | 2 | 80  |
| ## | : 119 | 2 | 81  |
| ## | 120   | 2 | 82  |
| ## | 121   | 2 | 83  |
|    | 122   | 2 | 84  |
|    | 123   | 2 | 85  |
|    | 124   | 2 | 86  |
|    | 125   | 2 | 87  |
|    | 126   | 2 | 88  |
|    | 127   | 2 | 89  |
|    | 128   | 2 | 90  |
|    | 129   | 2 | 91  |
|    | : 130 | 2 | 92  |
|    | : 131 | 2 | 93  |
|    | : 131 | 2 | 94  |
|    | : 132 | 2 | 95  |
|    | : 134 | 2 | 96  |
|    |       | 2 | 97  |
|    | 135   |   |     |
|    | 136   | 2 | 98  |
|    | 137   | 2 | 99  |
|    | 138   |   | 101 |
|    | 139   |   | 106 |
|    | 140   |   | 113 |
|    | 141   |   | 119 |
|    | 142   |   | 121 |
| ## | 143   | 2 | 123 |
|    |       |   |     |

```
126
## 144
            2
## 145
            2
                        127
## 146
            2
                        133
## 147
            2
                        138
## 148
            2
                        142
## 149
            2
                        146
            2
## 150
                        149
prettyvec("Iris2.out")
##
        group observation
## 1
            0
                         50
## 2
                         51
            0
## 3
            0
                         52
                         53
## 4
            0
## 5
            0
                         54
                         55
## 6
            0
## 7
            0
                         56
## 8
            0
                         57
## 9
            0
                         58
## 10
            0
                         59
## 11
            0
                         60
## 12
                         61
## 13
            0
                         62
## 14
                         63
            0
## 15
            0
                         64
## 16
                         65
            0
## 17
            0
                         66
## 18
            0
                         67
## 19
            0
                         68
## 20
            0
                         69
## 21
                         70
            0
## 22
                         71
            0
## 23
            0
                         72
## 24
            0
                         73
## 25
            0
                         74
## 26
            0
                         75
## 27
            0
                         76
## 28
            0
                         77
## 29
                         78
            0
## 30
            0
                         79
## 31
            0
                         80
## 32
            0
                         81
## 33
            0
                         82
## 34
            0
                         83
## 35
            0
                         84
## 36
            0
                         85
## 37
            0
                         86
            0
                         87
## 38
## 39
            0
                         88
```

| ## | 40   | 0 | 89  |
|----|------|---|-----|
|    | 41   | 0 | 90  |
|    | 42   | 0 | 91  |
|    | 43   | 0 | 92  |
|    | 44   | 0 | 93  |
|    | 45   | 0 | 94  |
|    | 46   | 0 | 95  |
|    | 47   | 0 | 96  |
|    | 48   | 0 | 97  |
|    | : 49 | 0 | 98  |
|    | : 50 | 0 | 99  |
| ## | 51   | 0 | 100 |
|    | 52   | 0 | 101 |
| ## | : 53 | 0 | 102 |
|    | 54   | 0 | 103 |
|    | : 55 | 0 | 104 |
| ## | 56   | 0 | 105 |
| ## | 57   | 0 | 106 |
| ## | 58   | 0 | 107 |
| ## | : 59 | 0 | 108 |
| ## | 60   | 0 | 109 |
| ## | 61   | 0 | 110 |
| ## | 62   | 0 | 111 |
| ## | 63   | 0 | 112 |
| ## | 64   | 0 | 113 |
| ## | 65   | 0 | 114 |
| ## | 66   | 0 | 115 |
|    | 67   | 0 | 116 |
|    | 68   | 0 | 117 |
|    | 69   | 0 | 118 |
|    | 70   | 0 | 119 |
|    | 71   | 0 | 120 |
|    | 72   | 0 | 121 |
|    | : 73 | 0 | 122 |
|    | 74   | 0 | 123 |
|    | : 75 | 0 | 124 |
|    | 76   | 0 | 125 |
|    | 77   | 0 | 126 |
|    | 78   | 0 | 127 |
|    | 79   | 0 | 128 |
|    | 80   | 0 | 129 |
|    | 81   | 0 | 130 |
|    | 82   | 0 | 131 |
|    | 83   | 0 | 132 |
|    | 84   | 0 | 133 |
|    | 85   | 0 | 134 |
|    | 86   | 0 | 135 |
|    | 87   | 0 | 136 |
|    | 88   | 0 | 137 |
| ## | 89   | 0 | 138 |
|    |      |   |     |

| ## | ŧ 90            | 0 | 139 |
|----|-----------------|---|-----|
| ## | <sup>‡</sup> 91 | 0 | 140 |
| ## | ÷ 92            | 0 | 141 |
| ## | ÷ 93            | 0 | 142 |
| ## | <sup>‡</sup> 94 | 0 | 143 |
| ## | ÷ 95            | 0 | 144 |
| ## | <sup>‡</sup> 96 | 0 | 145 |
| ## | <b>9</b> 7      | 0 | 146 |
| ## | 98              | 0 | 147 |
| ## | 99              | 0 | 148 |
| ## | 100             | 0 | 149 |
| ## | 101             | 1 | 0   |
| ## | 102             | 1 | 1   |
| ## | <b>103</b>      | 1 | 2   |
| ## | 104             | 1 | 3   |
| ## | <b>1</b> 05     | 1 | 4   |
| ## | 106             | 1 | 5   |
|    | 107             | 1 | 6   |
| ## | 108             | 1 | 7   |
| ## | 109             | 1 | 8   |
| ## | 110             | 1 | 9   |
| ## | 111             | 1 | 10  |
| ## | 112             | 1 | 11  |
| ## | 113             | 1 | 12  |
| ## | 114             | 1 | 13  |
| ## | 115             | 1 | 14  |
| ## | 116             | 1 | 15  |
|    | 117             | 1 | 16  |
|    | 118             | 1 | 17  |
|    | 119             | 1 | 18  |
|    | 120             | 1 | 19  |
|    | 121             | 1 | 20  |
|    | 122             | 1 | 21  |
|    | 123             | 1 | 22  |
|    | 124             | 1 | 23  |
|    | 125             | 1 | 24  |
|    | 126             | 1 | 25  |
|    | 127             | 1 | 26  |
|    | 128             | 1 | 27  |
|    | 129             | 1 | 28  |
|    | 130             | 1 | 29  |
|    | 131             | 1 | 30  |
|    | 132             | 1 | 31  |
|    | 133             | 1 | 32  |
|    | 134             | 1 | 33  |
|    | 135             | 1 | 34  |
|    | 136             | 1 | 35  |
|    | 137             | 1 | 36  |
|    | 138             | 1 | 37  |
| ## | 139             | 1 | 38  |
|    |                 |   |     |

| ## | 140<br>141 | 1   | <ul><li>39</li><li>40</li></ul> |
|----|------------|-----|---------------------------------|
|    |            | 1   | 40                              |
| ## |            |     | TO                              |
|    | 142        | 1   | 41                              |
| ## | 143        | 1   | 42                              |
| ## | 144        | 1   | 43                              |
| ## | 145        | 1   | 44                              |
| ## | 146        | 1   | 45                              |
| ## | 147        | 1   | 46                              |
| ## | 148        | 1   | 47                              |
| ## | 149        | 1   | 48                              |
| ## | 150        | 1   | 49                              |
| ## | :          | 149 | 149 1                           |