163

Chapter 5. THE FOURIER TRANSFORM ON NO.

with the understanding that $\hat{f}(0) = 2$ and $\hat{g}(0) = 1$.

with the decay of f is related 3. The following exercise illustrates the principle that the decay of f is related 3. The following properties of f.

to the continuity properties of f. o the continuous and satisfies

(a) Suppose that f is a function of moderate decrease on \mathbb{R} whose $\mathsf{Four}_{\mathsf{fer}}$ (a) Suppose that f is continuous and satisfies

transform f is continuous and satisfies

$$\hat{f}(\xi) = O\left(\frac{1}{|\xi|^{1+\alpha}}\right)$$
 as $|\xi| \to \infty$

that is, that for some $0<\alpha<1$. Prove that f satisfies a Hölder condition of $\operatorname{order}_{\mathfrak{q}_i}$

$$|f(x+h)-f(x)| \le M|h|^{\alpha}$$
 for some $M>0$ and all $x,h \in \mathbb{R}$.

(b) Let f be a continuous function on \mathbb{R} which vanishes for $|x| \ge 1$, with no $\epsilon > 0$ so that $\hat{f}(\xi) = O(1/|\xi|^{1+\epsilon})$ as $|\xi| \to \infty$. f(0) = 0, Prove that f is not of moderate decrease. In fact, there is of the origin. Prove $f(c) = O(1/|\xi|^{1+\epsilon})$ as $|\xi| \to \infty$. Let f be a common f be a

[Hint: For part (a), use the Fourier inversion formula to express f(x+h)-f(x) as an integral involving \hat{f} , and estimate this integral separately for ξ in the t_{two} ranges $|\xi| \leq 1/|h|$ and $|\xi| \geq 1/|h|$.]

very handy in many applications in analysis. Some examples are: 4. Bump functions. Examples of compactly supported functions in S(R) are

(a) Suppose a < b, and f is the function such that f(x) = 0 if $x \le a$ or $x \ge b$

$$f(x) = e^{-1/(x-a)}e^{-1/(b-x)}$$
 if $a < x < b$.

Show that f is indefinitely differentiable on \mathbb{R} .

- (b) Prove that there exists an indefinitely differentiable function F on $\mathbb R$ such that F(x)=0 if $x \le a$, F(x)=1 if $x \ge b$, and F is strictly increasing on
- (c) Let $\delta > 0$ be so small that $a + \delta < b \delta$. Show that there exists an indef $[[a+\delta,b-\delta], \text{ and } g \text{ is strictly monotonic on } [a,a+\delta] \text{ and } [b-\delta,b].$ initely differentiable function g such that g is 0 if $x \leq a$ or $x \geq b$, g is 1 or

[Hint: For (b) consider $F(x) = c \int_{-\infty}^{x} f(t) dt$ where c is an appropriate constant.]

- 5. Suppose f is continuous and of moderate decrease.
- (a) Prove that f is continuous and $\hat{f}(\xi) \to 0$ as $|\xi| \to \infty$.

s for that if $\hat{f}(\xi) = 0$ for all ξ , then f is identically 0.

by show that $\hat{f}(\xi) = \frac{1}{2} \int_{-\infty}^{\infty} [f(x) - f(x - 1/(2\xi))] e^{-2\pi i x \xi} dx$. For part (a), show that the multiplication formula $\int f(x) \hat{g}(x) dx = \int_{-\infty}^{\infty} \hat{f}(x) dx$.

for party that the multiplication formula $\int f(x)\hat{g}(x)\,dx=\int \hat{f}(y)g(y)\,dy$ for party that the multiplication formula $\int f(x)\hat{g}(x)\,dx=\int \hat{f}(y)g(y)\,dy$ for party whenever $g\in S(\mathbb{R})$.

ple function e-xx² is its own Fourier transform. Generate other functions the function of the The to a consequence \mathcal{F}_{4} To decide this, prove that $\mathcal{F}^{4}=I$. Here $\mathcal{F}(f)=\hat{f}$ the light multiples be? To decide this, prove that I is the identity. The fourier transform, $\mathcal{F}^{4}=\mathcal{F}\circ\mathcal{F}\circ\mathcal{F}\circ\mathcal{F}$, and I is the identity. the function $\mathcal{F}^4 = \mathcal{F} \circ \mathcal{F} \circ \mathcal{F}$ and $\mathcal{F}^4 = I$. Here $\mathcal{F}^{(n)}$ that must be $\mathcal{F}^4 = \mathcal{F} \circ \mathcal{F} \circ \mathcal{F} \circ \mathcal{F}$. by constant multiples \mathcal{F}_{1} and \mathcal{F}_{2} and \mathcal{F}_{3} and \mathcal{F}_{4} is the identity operator by constant transform, $\mathcal{F}_{4} = \mathcal{F}_{0} \mathcal{F}_{0} \mathcal{F}_{0} \mathcal{F}_{0}$, and \mathcal{F}_{3} is the identity operator by \mathcal{F}_{1} and \mathcal{F}_{2} is the identity operator by \mathcal{F}_{1} and \mathcal{F}_{3} is the identity operator \mathcal{F}_{3} .

 $\lim_{x\to 0} \operatorname{row}(x) \text{ (see also Problem 7)}.$ that the convolution of two functions of moderate decrease is a function that the decrease.

afmoderate decrease.

disaderate Write
$$\int f(x-y)g(y)\,dy = \int_{|y| \leq |x|/2} + \int_{|y| \geq |x|/2}.$$

the first integral $f(x-y) = O(1/(1+x^2))$ while in the second integral $\int_{|y|}^{y} dy = O(1/(1+x^2))$.

\$ Powe that f is continuous, of moderate decrease, and $\int_{-\infty}^{\infty} f(y)e^{-y^2}e^{2xy}dy = 0$

firall $x \in \mathbb{R}$, then f = 0. Hint: Consider $f * e^{-x^2}$.

9. If / is of moderate decrease, then

$$\int_{-R}^{R} \left(1 - \frac{|\xi|}{R}\right) \hat{f}(\xi) e^{2\pi i x \xi} d\xi = (f * \mathcal{F}_R)(x),$$

where the Fejér kernel on the real line is defined by

$$\mathcal{F}_R(t) = \left\{ egin{array}{ll} R \left(\dfrac{\sin \pi t R}{\pi t R}
ight)^2 & ext{if } t
eq 0, \\ R & ext{if } t = 0. \end{array}
ight.$$

with to f(x) as $R \to \infty$. This is the analogue of Fejér's theorem for Fourier him that $\{\mathcal{F}_R\}$ is a family of good kernels as $R\to\infty$, and therefore (14) tends wis in the context of the Fourier transform.

10. Below is an outline of a different proof of the Weierstrass approximation