Devoir surveillé n°06: corrigé

Problème 1 — Approximations rationnelles de $\sqrt{2}$

Partie I – Deux suites

1. On va prouver par récurrence que $a_n \ge 1$ et $b_n \ge n$ pour tout $n \in \mathbb{N}$.

Initialisation Tout d'abord $a_1 = 1 \ge 1$ et $b_0 = 0 \ge 0$.

Hérédité Supposons que $a_n \ge 1$ et $b_n \ge n$ pour un certain $n \in \mathbb{N}$. Alors $a_{n+1} = a_n + 2b_b \ge 1 + 2n \ge 1$ et $b_{n+1} = a_n + b_n \ge 1 + n$.

Conclusion Pour tout $n \in \mathbb{N}$, $a_n \ge 1$ et $b_n \ge n$.

Notamment, $b_n \ge n$ pour tout $n \in \mathbb{N}$.

Remarque. On est obligé de choisir une hypothèse de récurrence faisant intervenir à la fois a_n et b_n car les relations de récurrence de l'énoncé mêlent ces deux suites.

2. Pour tout $n \in \mathbb{N}$,

$$a_{n+1}^2 - 2b_{n+1}^2 = (a_n + 2b_n)^2 - 2(a_n + b_n)^2 = -(a_n^2 - 2b_n^2)$$

La suite $(a_n^2 - 2b_n^2)$ est donc géométrique de raison -1. Puisque $a_0^2 - 2b_0^2 = 1$,

$$\forall n \in \mathbb{N}, \ a_n^2 - 2b_n^2 = (-1)^n$$

3. Soit $n \in \mathbb{N}^*$. D'après la question précédente,

$$|a_n^2 - 2b_n^2| = 1$$

De plus, on va vu que $b_n \ge n \ge 1$ donc $b_n^2 > 0$. Ainsi

$$\left|\frac{a_n^2}{b_n^2} - 2\right| = \frac{1}{b_n^2}$$

Par identité remarquable,

$$\frac{a_n^2}{b_n^2} - 2 = \left(\frac{a_b}{b_n} - \sqrt{2}\right) \left(\frac{a_b}{b_n} + \sqrt{2}\right)$$

Ainsi

$$\left|\frac{a_b}{b_n} - \sqrt{2}\right| \cdot \left|\frac{a_b}{b_n} + \sqrt{2}\right| = \frac{1}{b_n^2}$$

Mais comme $a_n \ge 1$ et $b_n \ge n \ge 1$ d'après la première question, a_n et b_n sont positifs de sorte que

$$\left|\frac{a_b}{b_n} + \sqrt{2}\right| = \frac{a_b}{b_n} + \sqrt{2} \ge \sqrt{2} \ge 1$$

On en déduit alors que

$$\left|\frac{a_b}{b_n} - \sqrt{2}\right| \le \frac{1}{b_n^2}$$

4. D'après la première question, $b_n \ge n$ donc

$$\forall n \in \mathbb{N}^*, \ \left| \frac{a_b}{b_n} - \sqrt{2} \right| \le \frac{1}{n^2}$$

ou encore

$$\forall n \in \mathbb{N}^*, \ \sqrt{2} - \frac{1}{n^2} \le \frac{a_b}{b_n} \le \sqrt{2} + \frac{1}{n^2}$$

Comme $\lim_{n\to+\infty}\frac{1}{n^2}=0$, le théorème des gendarmes montre alors que $\lim_{n\to+\infty}\frac{a_n}{b_n}=\sqrt{2}$.

5. Soit $n \in \mathbb{N}$. Alors

$$a_{n+2} = a_{n+1} + 2b_{n+1} = a_{n+1} + 2(a_n + b_n) = a_{n+1} + 2a_n + 2b_n = a_{n+1} + 2a_n + a_{n+1} - a_n = 2a_{n+1} + a_n + a_{n+1} - a_n + a_{n+$$

6. Le polynôme caractéristique associé à la relation de récurrence suivie par les suites (a_n) et (b_n) est $X^2 - 2X - 1$. Ses racines sont $1 + \sqrt{2}$ et $1 - \sqrt{2}$. Il existe donc des réels $\alpha, \beta, \gamma, \delta$ tels que pour tout $n \in \mathbb{N}$,

$$a_n = \alpha (1 + \sqrt{2})^n + \beta (1 - \sqrt{2})^n$$

 $b_n = \gamma (1 + \sqrt{2})^n + \delta (1 - \sqrt{2})^n$

On sait que $a_0 = 1$ et $a_1 = a_0 + 2b_0 = 1$ donc $\alpha + \beta = 1$ et $\alpha(1 + \sqrt{2}) + \beta(1 - \sqrt{2}) = 1$ puis $\alpha = \beta = \frac{1}{2}$. De même, on sait que $b_0 = 0$ et $b_1 = a_0 + b_0 = 1$ donc $\gamma + \delta = 0$ et $\gamma(1 + \sqrt{2}) + \delta(1 - \sqrt{2}) = 1$ puis $\gamma = \frac{1}{2\sqrt{2}}$ et $\delta = -\frac{1}{2\sqrt{2}}$.

Finalement, pour tout $n \in \mathbb{N}$,

$$\begin{split} a_n &= \frac{1}{2}(1+\sqrt{2})^n + \frac{1}{2}(1-\sqrt{2})^n \\ b_n &= \frac{1}{2\sqrt{2}}(1+\sqrt{2})^n - \frac{1}{2\sqrt{2}}(1-\sqrt{2})^n \end{split}$$

7. Par commodité, posons $\varphi = 1 + \sqrt{2}$ et $\psi = 1 - \sqrt{2}$. Ainsi

$$a_n = \frac{1}{2}\varphi^n + \frac{1}{2}\psi^n$$

$$b_n = \frac{1}{2\sqrt{2}}\varphi^n - \frac{1}{2\sqrt{2}}\psi^n$$

Puisque $\varphi > 1$, $\lim_{n \to +\infty} \varphi^n = +\infty$ et puisque $|\psi| < 1$, $\lim_{n \to +\infty} \psi^n = 0$. Par conséquent,

$$a_n \sim \frac{1}{2} \varphi^n$$
 et $b_n \sim \frac{1}{2\sqrt{2}} \varphi^n$

Finalement

$$\frac{a_n}{b_n} \underset{n \to +\infty}{\sim} \frac{\frac{1}{2} \varphi^n}{\frac{1}{2\sqrt{2}} \varphi^n} = \sqrt{2}$$

de sorte que $\lim_{n\to+\infty} \frac{a_n}{b_n} = \sqrt{2}$.

8. Remarquons que

$$\frac{a_n}{b_n} - \sqrt{2} = \frac{a_n - b_n \sqrt{2}}{b_n} = \frac{\psi^n}{b_n}$$

On a déjà vu que $b_n \sim \frac{1}{2\sqrt{2}} \psi^n$ donc

$$\frac{a_n}{b_n} - \sqrt{2} \underset{n \to +\infty}{\sim} 2\sqrt{2} \left(\frac{\psi}{\phi}\right)^n$$

Or

$$\frac{\psi}{\Phi} = \frac{1 - \sqrt{2}}{1 + \sqrt{2}} = \frac{(1 - \sqrt{2})^2}{(1 + \sqrt{2})(1 - \sqrt{2})} = 2\sqrt{2} - 3$$

donc on obtient bien

$$\frac{a_n}{b_n} - \sqrt{2} \underset{n \to +\infty}{\sim} 2\sqrt{2} \left(2\sqrt{2} - 3\right)^n$$

Partie II - Algorithme de Babylone

- 9. Récurrence évidente.
- **10.** Tout d'abord, $u_0 = 2 \ge \sqrt{2}$ et pour $n \in \mathbb{N}^*$

$$u_n - \sqrt{2} = \frac{u_{n-1}}{2} + \frac{1}{u_{n-1}} - \sqrt{2} = \frac{u_{n-1}^2 - 2u_{n-1}\sqrt{2} + 2}{2u_{n-1}} = \frac{(u_{n-1} - \sqrt{2})^2}{2u_{n-1}} \ge 0$$

La suite (u_n) est donc bien minorée par $\sqrt{2}$.

11. Pour tout $n \in \mathbb{N}$,

$$u_{n+1} - u_n = \frac{1}{u_n} - \frac{u_n}{2} = \frac{2 - u_n^2}{2u_n}$$

Or d'après la question précédente, $u_n \ge \sqrt{2}$ pour tout $n \in \mathbb{N}$. Par conséquent, $u_{n+1} - u_n \le 0$ pour tout $n \in \mathbb{N}$ i.e. (u_n) est décroissante.

- **12.** Comme (u_n) est décroissante et minorée par $\sqrt{2}$, elle converge vers une limite $\ell \geq \sqrt{2} > 0$. On a également $\lim_{n \to +\infty} u_{n+1} = \ell$ et, comme $\ell \neq 0$, $\lim_{n \to +\infty} \frac{u_n}{2} + \frac{1}{u_n} = \frac{\ell}{2} + \frac{1}{\ell}$. Par unicité de la limite, $\ell = \frac{\ell}{2} + \frac{1}{\ell}$ et donc $\ell^2 = 2$ et enfin $\ell = \sqrt{2}$ car $\ell > 0$. Finalement, (u_n) converge vers $\sqrt{2}$.
- **13.** Pour tout $n \in \mathbb{N}$,

$$v_{n+1} = \frac{u_{n+1} - \sqrt{2}}{u_{n+1} + \sqrt{2}} = \frac{\frac{u_n}{2} + \frac{1}{u_n} - \sqrt{2}}{\frac{u_n}{2} + \frac{1}{u_n} + \sqrt{2}} = \frac{u_n^2 + 2 - 2u_n\sqrt{2}}{u_n^2 + 2 + 2u_n\sqrt{2}} = \frac{(u_n - \sqrt{2})^2}{(u_n + \sqrt{2})^2} = v_n^2$$

On en déduit par récurrence que $v_n=v_0^{2^n}$ pour tout $n\in\mathbb{N}$. De plus,

$$v_0 = \frac{u_0 - \sqrt{2}}{u_0 + \sqrt{2}} = \frac{2 - \sqrt{2}}{2 + \sqrt{2}} = 3 - 2\sqrt{2}$$

Ainsi, pour tout $n \in \mathbb{N}$,

$$v_n = (3 - 2\sqrt{2})^{2^n}$$

- **14.** Remarquons que $u_n \sqrt{2} = (u_n + \sqrt{2})v_n$. Comme la suite $(u_n + \sqrt{2})$ converge, elle est bornée. On en déduit que $u_n \sqrt{2} = \mathcal{O}(v_n)$ i.e. $u_n \sqrt{2} = \mathcal{O}(K^{2^n})$ avec $K = 3 2\sqrt{2} \in [0, 1[$.
- 15. On rappelle que

$$\frac{a_n}{b_n} - \sqrt{2} \underset{n \to +\infty}{\sim} 2\sqrt{2} \left(2\sqrt{2} - 3\right)^n$$

et que

$$u_n - \sqrt{2} = \mathcal{O}(K^{2^n})$$

Mais en posant $q = 3 - 2\sqrt{2}$, on a $K^{2^n} = o(q^n)$. En effet, par croissances comparées, $n = o(2^n)$ de sorte que

$$\ln\left(\frac{\mathrm{K}^{2^n}}{q^n}\right) = 2^n \ln(\mathrm{K}) - n \ln(q) \underset{n \to +\infty}{\sim} 2^n \ln(\mathrm{K})$$

Mais comme K \in]0, 1[, $\ln(K) < 0$ et donc $\lim_{n \to +\infty} 2^n \ln(K) = -\infty$ puis

$$\lim_{n \to +\infty} \ln \left(\frac{\mathbf{K}^{2^n}}{q^n} \right) = -\infty$$

et enfin

$$\lim_{n \to +\infty} \frac{K^{2^n}}{q^n} = 0$$

On a donc bien $K^{2^n} = o(q^n)$ et alors

$$u_n - \sqrt{2} = o(\frac{a_n}{b_n} - \sqrt{2})$$

La suite (u_n) converge donc plus rapidement vers $\sqrt{2}$ que la suite $\left(\frac{a_n}{b_n}\right)$.

Solution 1

- 1. La fonction f est continue et strictement croissante sur \mathbb{R}_+^* . De plus, $\lim_{0^+} f = -\infty$ et $\lim_{+\infty} f = +\infty$ donc f est une bijection de $]0, +\infty[$ sur $]-\infty, +\infty[$, c'est-à-dire de \mathbb{R}_+^* sur \mathbb{R} .
- 2. f^{-1} est de même sens de variation que f, c'est-à-dire strictement croissante. Puisque $\lim_{0+} f = -\infty$ et $\lim_{+\infty} f = +\infty$, $\lim_{-\infty} f^{-1} = 0^+$ et $\lim_{+\infty} f^{-1} = +\infty$.

Remarque. Plus rigoureusement, f^{-1} est strictement croissante donc elle admet des limites en $-\infty$ et $+\infty$. De plus,

$$\lim_{t \to \infty} f^{-1} = \inf_{\mathbb{R}} f^{-1} = 0$$
$$\lim_{t \to \infty} f^{-1} = \sup_{\mathbb{R}} f^{-1} = +\infty$$

- 3. Soit $n \in \mathbb{N}^*$. Alors n admet un unique antécédent par f dans \mathbb{R}_+^* car f est une bijection de \mathbb{R}_+^* sur \mathbb{R} . Ainsi l'équation f(x) = n admet une unique solution sur \mathbb{R}_+^* .
- **4.** La question précédente montre en fait que $x_n = f^{-1}(n)$. Puisque f^{-1} est croissante, pour tout $n \in \mathbb{N}^*$, $f^{-1}(n) \le f^{-1}(n+1)$ i.e. $x_n \le x_{n+1}$. La suite (x_n) est donc croissante.
- **5.** Puisque $\lim_{n\to\infty} f^{-1} = +\infty$ et que $x_n = f^{-1}(n)$ pour tout $n \in \mathbb{N}^*$, $\lim_{n\to+\infty} x_n = +\infty$.
- **6.** Pour tout $n \in \mathbb{N}^*$, $n = x_n + \ln(x_n)$. Or $\ln(u) = o(u)$ et $\lim_{n \to +\infty} x_n = +\infty$ donc $\ln(x_n) = o(x_n)$. Ainsi $x_n + \ln(x_n) = x_n + o(x_n)$ ou encore $x_n + \ln(x_n) \sim x_n$. Finalement, $x_n \sim n$.
- 7. Soit $n \in \mathbb{N}^*$.

$$x_{n+1} - x_n = (n+1 - \ln(x_{n+1}) - (n - \ln(x_n))) = 1 - \ln\left(\frac{x_{n+1}}{x_n}\right)$$

Or $x_n \underset{n \to +\infty}{\sim} n$ et $x_{n+1} \underset{n \to +\infty}{\sim} n+1 \underset{n \to +\infty}{\sim} n$ donc $\frac{x_{n+1}}{x_n} \underset{n \to +\infty}{\sim} 1$. Ainsi $\lim_{n \to +\infty} \frac{x_{n+1}}{x_n} = 1$ puis $\lim_{n \to +\infty} \ln \left(\frac{x_{n+1}}{x_n} \right) = 0$. Finalement, $\lim_{n \to +\infty} x_{n+1} - x_n = 1$.

8. a. Soit $n \in \mathbb{N} \setminus \{0, 1\}$. Remarquons que $n - x_n = \ln(x_n)$ donc

$$u_n - 1 = \frac{\ln(x_n)}{\ln(n)} - 1 = \frac{\ln(x_n) - \ln(n)}{\ln(n)} = \frac{\ln(x_n/n)}{\ln(n)}$$

- **b.** On sait que $x_n \underset{n \to +\infty}{\sim} n$ donc $\lim_{n \to +\infty} \frac{x_n}{n} = 1$ puis $\lim_{n \to +\infty} \ln(x_n/n) = 0$. Par ailleurs, $\lim_{n \to +\infty} \ln(n) = +\infty$. Par opérations, $\lim_{n \to +\infty} \frac{\ln(x_n/n)}{\ln(n)} = 0$. Ainsi $\lim_{n \to +\infty} u_n 1 = 0$ puis $\lim_{n \to +\infty} u_n = 1$.
- c. La question précédente montre que $u_n = 1 + o(1)$. On en déduit successivement que

$$\frac{n-x_n}{\ln(n)} = 1 + o(1)$$

puis que

$$n - x_n = \ln(n) + o(\ln(n))$$

ensuite que

$$x_n = n - \ln(n) + o(\ln(n))$$

et enfin que

$$\frac{x_n}{n} = 1 - \frac{\ln(n)}{n} + o\left(\frac{\ln(n)}{n}\right)$$

Puisque $\ln(1+u) = u + o(u)$ et que $\lim_{n \to +\infty} \frac{\ln(n)}{n} = 0$,

$$\ln(x_n/n) = -\frac{\ln(n)}{n} + o\left(\frac{\ln(n)}{n}\right)$$

ou encore que

$$\ln(x_n/n) \sim_{n \to +\infty} -\frac{\ln(n)}{n}$$

Ainsi

$$1 - u_n = -\frac{\ln(x_n/n)}{\ln(n)} \underset{n \to +\infty}{\sim} \frac{1}{n}$$

9. Puisque $u_n=\frac{n-x_n}{\ln(n)}$ pour $n\in\mathbb{N}\setminus\{0,1\}$, la question précédente montre que

$$1 - \frac{n - x_n}{\ln(n)} = \frac{1}{n} + o\left(\frac{1}{n}\right)$$

On déduit successivement que

$$\frac{x_n - n}{\ln(n)} = -1 + \frac{1}{n} + o\left(\frac{1}{n}\right)$$

puis que

$$x_n - n = \lim_{n \to +\infty} -\ln(n) + \frac{\ln(n)}{n} + o\left(\frac{\ln(n)}{n}\right)$$

et enfin que

$$x_n = n - \ln(n) + \frac{\ln(n)}{n} + o\left(\frac{\ln(n)}{n}\right)$$

Solution 2

- **1.** Soit $x \in [0, 1]$. Alors $\sqrt{x} \in [0, 1]$ donc $f(x) = 1 \sqrt{x} \in [0, 1]$.
- 2. On procède par récurrence. Tout d'abord, $u_0 \in [0,1]$. Supposons que $u_n \in [0,1]$ pour un certain $n \in \mathbb{N}$. Alors $u_{n+1} = f(u_n) \in [0,1]$ d'après la question précédente.
- 3. f est clairement décroissante sur [0,1] à valeurs dans [0,1]. On en déduit que $f \circ f$ est croissante sur [0,1].
- **4.** Pour $x \in [0, 1]$,

$$f(x) = x$$

$$\iff \qquad \sqrt{x} = 1 - x$$

$$\iff \qquad x = (1 - x)^2 \qquad \text{car les membres de l'égalité précédente sont positifs}$$

$$\iff \qquad x^2 - 3x + 1 = 0$$

Les racines du trinôme précédent sont $\frac{3-\sqrt{5}}{2}$ et $\frac{3+\sqrt{5}}{2}$. La première racine appartient à l'intervalle [0,1] puisque $1 \le \sqrt{5} \le 3$ mais la seconde racine n'appartient pas à l'intervalle [0,1] car $\sqrt{5} > 1$. Finalement, l'unique point fixe de f sur [0,1] est $\alpha = \frac{3-\sqrt{5}}{2}$.

- **5.** Puisque $20 \le 25$, $5 \le \frac{25}{4}$ puis $\sqrt{5} \le \frac{5}{2}$ puis $\alpha = \frac{3-\sqrt{5}}{2} \ge \frac{1}{4} = u_0$.
- 6. On procède par récurrence. Tout d'abord, $u_0 \le \alpha$. Supposons $u_{2n} \le \alpha$ pour un certain $n \in \mathbb{N}$. Alors par croissance de $f \circ f$ sur [0,1],

$$f \circ f(u_{2n}) \le f \circ f(\alpha)$$

c'est-à-dire

$$u_{2n+2} \le \alpha$$

On en déduit que $u_{2n} \le \alpha$ pour tout $n \in \mathbb{N}$.

7. On a $u_0 = \frac{1}{4}$ puis $u_1 = \frac{1}{2}$ et enfin $u_2 = 1 - \frac{1}{\sqrt{2}}$. Puisque $8 \le 9$, $\frac{1}{2} \le \frac{9}{16}$ puis $\frac{1}{\sqrt{2}} \le \frac{3}{4}$ et enfin $u_2 = 1 - \frac{1}{\sqrt{2}} \ge \frac{1}{4} = u_0$. Supposons maintenant que $u_{2n} \le u_{2n+2}$ pour un certain $n \in \mathbb{N}$. Par croissance de $f \circ f$, $u_{2n+2} = f \circ f(u_{2n}) \le f \circ f(u_{2n+2}) = u_{2n+4}$. Par récurrence, on a donc $u_{2n} \le u_{2n+2}$ pour tout $n \in \mathbb{N}$. Ainsi (u_{2n}) est croissante. La suite (u_{2n}) est croissante et majorée par α donc elle converge.

8. Soit $x \in [0, 1]$.

$$f \circ f(x) = x$$

$$\Leftrightarrow 1 - \sqrt{1 - \sqrt{x}} = x$$

$$\Leftrightarrow 1 - x = \sqrt{1 - \sqrt{x}}$$

$$\Leftrightarrow (1 - x)^2 = 1 - \sqrt{x} \quad \text{car les membres de l'égalité précédente sont positifs}$$

$$\Leftrightarrow \sqrt{x} = 1 - (1 - x)^2$$

$$\Leftrightarrow \sqrt{x} = x(2 - x)$$

$$\Leftrightarrow x = x^2(2 - x)^2 \quad \text{car les membres de l'égalité précédente sont positifs}$$

$$\Leftrightarrow x^2(2 - x)^2 - x = 0$$

$$\Leftrightarrow x(x(2 - x)^2 - 1) = 0$$

$$\Leftrightarrow x(x^3 - 4x^2 + 4x - 1) = 0$$

$$\Leftrightarrow x(x - 1)(x^2 - 3x + 1) = 0$$

Or on a vu précédemment que α est la seule racine du trinôme $x^2 - 3x + 1$ dans l'intervalle [0, 1]. On en déduit que les points fixes de $f \circ f$ sur [0, 1] sont $0, \alpha$ et 1.

9. f est continue sur [0,1] à valeurs dans [0,1] donc $f \circ f$ est continue sur [0,1]. De plus, $u_{2n+2} = f \circ f(u_{2n})$ et $u_{2n} \in [0,1]$ pour tout $n \in \mathbb{N}$ donc la suite (u_{2n}) converge vers un point fixe de $f \circ f$ sur [0,1], à savoir $0, \alpha$ ou 1. Or (u_{2n}) est croissante et majorée par α donc $u_0 \le u_{2n} \le \alpha$ pour tout $n \in \mathbb{N}$. Sa limite ℓ vérifie donc $u_0 \le \ell \le \alpha$. A fortiori, $0 < \ell \le \alpha$. Puisque ℓ est un point fixe de $f \circ f, \ell = \alpha$. Enfin, $u_{2n+1} = f(u_{2n})$ pour tout $n \in \mathbb{N}$ et f est continue sur [0,1] donc (u_{2n+1}) converge vers $f(\alpha) = \alpha$. Puisque les suites (u_{2n}) et (u_{2n+1}) convergent toutes les deux vers α , la suite (u_n) converge également vers α .