딥러닝팀

1팀

이수경 이승우 이은서 주혜인 홍현경

INDEX

- 1. 딥러닝 Basic
- 2. 신경망과 딥러닝
 - 3. 딥러닝의 학습
- 4. 모델 성능 향상

1

딥러닝 Basic

딥러닝 vs 머신러닝

딥러닝(Deep Learning)

인공신경망 기반의 모델로, 비정형 데이터와 정형 데이터로부터 특징 추출 및 판단까지 기계가 한 번에 수행

특징 추출(Feature Extraction)

귀의 형태 입의 구조 학습 수염 유무 분류 털의 형태 어떤 특징을 추출할 지 개발자가 알려줌 → Feature extraction 필요

딥러닝

알려주지 않아도 알아서 학습함

→ Feature extraction 필요 X

특징 추출(Feature Extraction)

귀의 형태 입의 구조 학습 수염 유무 분류 털의 형태 어떤 특징을 추출할 지 개발자가 알려줌 → Feature extraction 필요

feature extraction

데이터 별로 어떤 특징을 가지고 있는지 찾고, 알려고 특징들을 벡터로 변환하는 작업

→ Feature extraction필요 X 즉, **인간의 개입**이필요함

특징 추출(Feature Extraction)

인공신경망을 통해 알아서 인식하기 때문에 인간의 개입이 현저히 적다 어떤 특징을 추출할 지 개발자가 알려줌

→ Feature extraction 필요

딥러닝 기본 단위, perceptron

Single perceptron

딥러닝의 기본 단위로, 뇌의 신경세포에서 아이디어를 따옴

● 딥러닝 기본 단위, perceptron

XOR 문제

<mark>간단한 문제</mark>는 해결 가능하지만, <mark>복잡한 문제</mark>는 해결 불가능

● 딥러닝 기본 단위, perceptron

XOR 문제

비선형적인 모델을 활용해 해결할 수 있을 것 같다!

● 딥러닝 기본 단위

Multi-layered perceptron

입력층과 출력층 사이에 **은닉층**을 끼워넣은 구조

● 딥러닝 기본 단위

Multi-layered perceptron

은닉층을 더해 공간을 왜곡 → 비선형성 생성

● 딥러닝 기본 단위

공간왜곡

2차원에서는 어떠한 직선으로도 1과 0을 구분할 수 없다 하지만 평면을 휘어 준다면 하나의 직선으로도 분류가 가능해진다

2

신경망과 딥러닝

● 용어 정리

(1) 신경망

다층 퍼셉트론의 구조에 은닉층이 여러개 포함된 형태

● 용어 정리

(1) 신경망

다층 퍼셉트론과 마찬가지로, 3가지 층으로 구성됨

● 용어 정리

(2) 입력층 : 데이터 값이 입력되는 층

데이터의 feature가 입력값으로 들어옴

용어 정리

(3) 은닉층

입력층과 출력층 사이의 모든 layer

용어 정리

(3) 은닉층

1. 선형연산
$$\mathbf{z}^{[i]} = \sum_{i=1}^{m} X^{[i-1]} * W^{[i]} + b^{[i]}$$

2. 활성화함수 통과
$$\sigma(\mathbf{z}^{[i]}) = \mathbf{a}^{[i]} = y^{[i]}$$

3. 전달
$$y^{[i]} = x^{[i+1]}$$

🎈 용어 정리

(4) 출력층

신경망 외부로 출력 신호 전달 출력층의 **활성화 함수**가 전체 신경망의 역할 결정

(5) 가중치

이전 층과 이후 층의 결합 강도 결정 즉, 입력 값의 영향력을 결정

(6) 편향

$$\overrightarrow{b_j} = (b_1, b_2, \dots, b_n)$$

도착 layer의 각 노드에 하나씩 존재 b_j 는 w_{1j} , w_{2j} , ..., w_{mj} 에 영향을 줌 선형 회귀의 편향과 동일한 역할을 수행함

(7) 합계값(z)

$$Z^{[i]} = \sum_{k=0}^{n} (x_k^{[i-1]} w_k^{[i]}) + b^{[i]}$$

각 입력값(x), 가중치(w)의 곱을 합하고 편향(b)를 더하여 하나의 합계값(z)으로 만든다

● 활성화 함수

활성화 함수

입력 신호의 총합이 어떻게 활성화를 일으키는지를 결정

은닉층 - 선형결합을 거친 값을 통과시켜 다음 층 노드의 입력값이 됨 **출력층** - 입력 신호의 총합을 어떤 모양으로 출력할지 결정

ex) sigmoid, tanh, ReLU, Softmax, Identity

● 활성화 함수

(1) Sigmoid Function

0부터 1사이의 모든 실수를 출력값으로 가짐

$$S(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$

- 미분 가능 ----역전파 가능
- 비선형 함수 - - 변수 간의 복잡한 관계 설명 가능

● 활성화 함수

(1) Sigmoid Function

0부터 1사이의 모든 실수를 출력값으로 가짐

But, S(x) -x의 중심값 ¹→ 학습이 느려짐 1 + e^{-x²} e^x + 1 □분 최대값 0.25 → 기울기 소실 문제

- 미분 가능 ----- 역전파 가능
- 비선형 함수 ----- 변수 간의 복잡한 관계 설명 가능

(2) tanh

중심값이 0 → sigmoid보다 빠른 학습 속도 그러나 기울기 소실 문제 완전히 해결하지 못함

(3) ReLU

ReLU의 도함수

$$y = \begin{cases} 0 & (x \le 0) \\ 1 & (x > 0) \end{cases}$$

우와 엄청 간단하다~^

미분 값이 0 또는 1이므로 안정적인 학습 가능 기울기 소실 문제 어느 정도 해결 가능

(4) Softmax

다중 분류 문제 해결에 사용

출력층의 모든 노드를 Softmax에 넣으면 각 노드의 예측 값이 0과 1 사이의 실수로 나타남

(4) Softmax

다중 분류 문제 해결에 사용

출력층의 모든 노드를 Softmax에 넣으면 각 노드의 확률 값이 0과 1 사이의 실수로 나타남

(5) Identity Function

회귀 문제의 출력층에 사용됨 합계값(입력값)을 그대로 출력

2 신경망과 딥러닝

• 손실함수

손실함수

y와 \hat{y} 의 차이를 계산하는 함수 y와 \hat{y} 의 차이를 최소화하는 방향으로 학습 진행

모델의 목적 (문제)

분류 문제

교차 엔트로피 오차 Cross Entropy Error, CEE 회귀 문제

오차 제곱합 Sum of Squares Error, SEE

(1) 교차 엔트로피 오차 (CEE)

ex) iris data

	Setosa	versicolor
Sample 1	0	0
Sample 2	0	1
Sample 3	1	0
Sample 4	1	0
Sample 5	0	0
Sample 6	0	1

$$E = \sum_{k=1}^{N} y_k (-\log \widehat{y_k})$$

0과 1로 이루어진 실제 값 vs 0과 1 사이의 실수인 예측 값

예측 값과 실제 값, 두 분포의 차이를 나타내는 척도 분류 문제의 손실함수로 사용 • 손실함수

(2) 오차 제곱합 (SSE)

$$E = \frac{1}{2} \sum_{k=1}^{N} (\widehat{y}_k - y_k)^2$$

회귀 문제의 손실함수로 사용됨

3

딥러닝의 학습

역전파 (Back Propagation)

역전파란 무엇일까?

순전파 과정에서 얻은 오차를 줄이기 위해 앞 층으로 오차의 편미분 값을 전달해주며 모델이 파라미터를 학습할 수 있도록 하는 과정

역전파 (Back Propagation)

역전파란 무엇일까?

순전파 과정에서 얻은 오차를 줄이기 위해 앞 층으로 오차의 기울기 값을 전달해주며

모델이 파라미터를 학습할 수 있도록 하는 과정

역전파 (Back Propagation)

역전파의 계산

역전파 (Back Propagation)

역전파의 계산

역전파 (Back Propagation)

역전파의 계산

역전파 (Back Propagation)

역전파란 무엇일까?

최적화 (Optimizer)

역전파 시, 파라미터를 업데이트 하는 방식을 Optimizer라고 함다양한 optimizer가 있지만, 가장 기본적인 것들에 대해 알아보자!

최적화 (Optimizer)

- Batch size: 배치 학습에서 한번에 학습할 데이터 수
- Epoch: 전체 데이터셋에 대한 1회 학습
- Iteration: 1 epoch에서 가중치 갱신이 이루어지는 횟수

ex. 100 obs를 Batch size=5으로 1 epoch 학습 → 20 iteration

최적화 (Optimizer)

경사 하강법 (Gradient Descent)

오차에 대한 기울기를 활용하여 손실 함수의 최솟값을 찾아 감

최적화 (Optimizer)

경사 하강법 (Gradient Descent)

오차에 대한 비중이 큰 값일수록 많이 업데이트됨 학습률은 0.1, 0.01과 같이 사용자가 정한 값임

최적화 (Optimizer)

경사 하강법 (Gradient Descent)

한 번의 학습에 전체 데이터를 이용함. (배치 사이즈 = # of rows) 속도는 느리지만 안정적으로 최적값을 향해 나아감.

최적화 (Optimizer)

확률적 경사 하강법 (Stochastic Gradient Descent ,SGD)

한 번의 학습에 한 개의 데이터만 사용함 (배치 사이즈 = 1) 하나의 데이터마다 학습이 이루어지므로 각 데이터에 민감하게 반응함. 학습 속도가 빠르다는 장점이 있음.

최적화 (Optimizer)

미니배치 경사 하강법

(Mini-batch gradient descent, MSGD)

경사 하강법과 확률적 경사 하강법의 중간지점 미니배치는 배치 사이즈만큼의 데이터를 학습에 이용함.

배치 사이즈에 따라 모델의 학습 속도와 일반화 정도가 달라짐.

최적화 (Optimizer)

미니배치 경사 하강법

(Mini-batch gradient descent, MSGD)

배치 사이즈 = m 인 경우,

1 epoch당 #'s of rows / m 만큼의
파라미터 업데이트가 발생함
옆의 경우 100 / 10 = 10번의
파라미터 업데이트 발생

● 문제점

국소 최적해 (local optima)

Global 한 최적해가 존재하지만 여기에 도달하지 못한 채, 부분적인 최솟값에서 학습이 멈추는 문제

● 문제점

국소 최적해 (local optima)

하지만 현실에서는 잘 일어나지 않는 문제임.

대부분의 데이터는 고차원의 데이터이므로, 모든 W들이 국소 최적해에 동시에 있어야 하기 때문

● 문제점

안장점 (Saddle point)

고차원 함수에서 기울기가 0이 되는 지점이 방향에 따라 최대값이면서 동시에 최소값이 되는 문제

함수의 차원이 높아질수록 안장점이 많을 확률이 큼.

● 문제점

평지 (Plateau)

기울기가 0에 가까운 지점이 길게 늘어져 있어 파라미터 업데이트가 거의 되지 않음 학습 시간이 길어지는 원인이 됨

• 다양한 최적화 알고리즘

이런 현실적인 문제점들을 개선하기 위한 여러 최적화 알고리즘들이 개발됨

4

모델 성능 향상

Overfitting이란?

Overfitting

학습 데이터의 지엽적인 특성까지 학습하여 새로운 데이터 입력 시 제대로 반응하지 못하는 상태

Overfitting이란?

Overfitting

학습 데이터의 지엽적인 특성까지 학습하여

일반화 능력이 떨어져 학습데이터 이외의 새로운 데이터를 잘 예측

Overfitting이란?

우리의 목표는 어떤 데이터를 주어도 균등한 성능을 내는 <mark>일반화</mark>된 모델을 만드는 것

● 모델 성능 향상

1. 데이터 수, 모델 구조

데이터 증강(augmentation): 데이터 수 확보 Ex) 좌우반전, 자르기, 밝기 조절 등

모델 구조 (파라미터 줄이기) 단순화 → 노드 개수, layer 개수 조절

● 모델 성능 향상

2. Dropout

: 모든 노드를 사용하지 않고, **일정 비율**의 노드를 이용해 학습함

학습에 사용되는 모델의 구조는 단순하지만, 전체 모델의 구조는 적당히 복잡해서 성능에 좋음

● 모델 성능 향상

3. Regularization

:모델이 복잡해질수록 손실함수의 값 커지도록 만들어줌

$$cost = \frac{1}{n} \sum_{i=1}^{n} L(\widehat{y}_i, y_i) + \frac{\lambda}{2} |w|(1)$$

(1) L1 Regularization

$$cost = \frac{1}{n}i = 1nL(widehaty_i, y_i) + \frac{\lambda}{2}|w|^2$$

(2) L2 Regularization

특정 가중치가 과도하게 커지지 않도록 방지 이상치의 영향을 감소→ 일반화에 적합

● 더 알아보기

기울기 소실 문제

층이 깊은 심층신경망에서 역전파시 활성화 함수의 gradient가 입력층으로 전달되는 과정에서 점점 작아져 가중치가 업데이트 되지 않는 것

● 더 알아보기

기울기 소실 문제

기존에 사용하던 sigmoid 함수의 미분 값은 최대 0.25이고, 이 작은 값이 역전파를 하며 최소 수십 번 곱해지자 전해지는 값이 결국 사라지게 됨

• 더 알아보기

가중치 초기화

:가중치의 초기값 범위를 최적의 가중치 범위에 근사하게 설정

$$r = \sqrt{\frac{3}{n_{in}}}[LeCun1998] \qquad \qquad r = \sqrt{\frac{1}{n_{in}}}[LeCun1998]$$

$$r = \sqrt{\frac{6}{n_{in} + n_{out}}}[Glorot2010] \qquad \qquad r = \sqrt{\frac{2}{n_{in} + n_{out}}}[Glorot2010]$$

$$r = \sqrt{\frac{6}{n_{in}}}[KaimingHe2015] \qquad \qquad r = \sqrt{\frac{2}{n_{in}}}[KaimingHe2015]$$
 Uniform distribution gaussian distribution

가중치 초기화를 최적의 가중치 범위에 가깝게 하면 더욱 빠른 학습이 이루어짐
∴ 위의 r을 이용하여 (-r, r) 범위로 초기화를 하는 것이 권장됨

● 더 알아보기

Normalization: Feature Scaling

Normalization 이란?

- 값의 범위(scale)를 0~1 사이의 값으로 바꾸는 것
- 학습 전에 scaling해야 함

• 더 알아보기

Normalization: Feature Scaling

변수 간의 scale에 큰 차이가 나면, scale이 큰 feature가 그렇지 못한 feature에 비해 학습 알고리즘에 큰 영향을 끼치게 됨

• 더 알아보기

Normalization

ex, Min-max scaler

$$X_{new} = \frac{(X - X_{min})}{(X_{max} - X_{min})}$$

학습 전에 feature 값의 범위를 0~1 사이로 바꾸는 scaler 이를 통해 local optima에 빠질 가능성을 감소 시켜주기도 함

THANK YOU