Graphic Lasso: Single layer consistency proof sketch

Jiaxin Hu

December 29, 2020

• Single layer consistency proof sketch

Now consider the single layer estimation problem. Let S be the sample covariance matrix. The objective function of the estimation is

$$Q(\Omega) = \operatorname{tr}(S\Omega) - \log |\Omega| + \lambda \sum_{j \neq j'} |\omega_{j,j'}|^{1/2}.$$
 (1)

Let Ω_0 be the true precision matrix, and Σ_0 be the true covariance matrix, where $\Sigma = \Omega_0^{-1}$. Let $\hat{\Omega}$ be the local minimizer of (1). Let $T = \{(j, j') : j \neq j', \omega_{j,j'} \neq 0\}$, and q = |T|. We assume following assumptions.

- 1. There exist two constants τ_1, τ_2 such that $0 < \tau_1 < \phi_{\min}(\Omega_0) \le \phi_{\max}(\Omega_0) < \tau_2 < \infty$, for all $p \ge 1, k = 1, ..., K$, where $\phi_{\min}(\cdot), \phi_{\max(\cdot)}$ denote the minimal and maximal eigenvalues, respectively.
- 2. There exists a constant $\tau_3 > 0$ such that $\min_{(j,j') \in T} |\omega_{0,j,j'}| \geq \tau_3$.

We want to prove the following theorem.

Theorem 0.1 (Consistency). Suppose the above assumptions hold, $\frac{(p+q)\log p}{n} = o(1)$, and there exist two positive constants Λ_1, Λ_2 such that $\Lambda_1\left\{\frac{\log p}{n}\right\}^{1/2} \leq \lambda \leq \Lambda_2\left\{\frac{(1+p/q)\log p}{n}\right\}^{1/2}$. There exists a local minimizer of (1) such that

$$\left\|\hat{\Omega} - \Omega_0\right\|_F = O_p \left[\left\{\frac{(p+q)\log p}{n}\right\}^{1/2}\right].$$

1 Follow the proof in Guo's paper

Key idea: Let $\Delta = \Omega - \Omega_0 = [\![\delta_{j,j'}]\!]$ and $G(\Delta) = Q(\Omega_0 + \Delta) - Q(\Omega_0) = Q(\Omega) - Q(\Omega_0)$. If $G(\Delta)$ has a local minimizer in a set A, then $Q(\Omega)$ has a local minimizer Ω^* such that the corresponding Δ^* falls in A. We can construct some A implies the consistency. In another word, it is sufficient to prove the existence of the local minimizer of $G(\Delta)$ in the neighborhood of $\Delta = 0$.

1.1 Proof

Proof. Note that $G(\Delta)$ is a continuous function and G(0) = 0. Let $r_n = \left\{\frac{(p+q)\log p}{n}\right\}^{1/2}$ and $\mathcal{A} = \{\|\Delta\|_F \leq Mr_n\}$ for some positive constant M. Then \mathcal{A} is a closed bounded convex set. To prove the existence of the local minimizer inside \mathcal{A} , by extreme value theorem, it is sufficient to show that $G(\Delta) > 0$ with probability tending to 1 for all Δ in the boundary $\partial \mathcal{A} = \{\|\Delta\|_F = Mr_n\}$. Thus, the local minimizer Ω^* satisfies $\|\Omega^* - \Omega_0\|_F = O_p(r_n)$.

The following proves that $G(\Delta) > 0$ with probability tending to 1.

We rewrite the function G.

$$G(\Delta) = \operatorname{tr} \{ S\Omega_0 + S\Delta \} - \log |\Omega_0 + \Delta| - \operatorname{tr} \{ S\Omega_0 \} + \log |\Omega_0|$$

$$+ \lambda \sum_{(j,j') \in T^c} |\delta_{j,j'}|^{1/2} + \lambda \sum_{(j,j') \in T} \left(|\omega_{0,j,j'} + \delta_{j,j'}|^{1/2} - |\omega_{0,j,j'}|^{1/2} \right).$$
(2)

Consider the function $f(t) = \log |\Omega_0 + t\Delta|$. By Taylor expansion with integral form remainder, we have

$$f(t) - f(0) = \frac{\partial}{\partial t} f(t)|_{t=0} t + \int_0^t \frac{\partial^2}{2\partial t^2} f(t)|_{t=v} (t-v) dv,$$

where

$$\frac{\partial}{\partial t} f(t)|_{t=0} = \frac{\partial}{\partial t} |\Omega_0 + t\Delta| \frac{1}{|\Omega_0 + t\Delta|} = \operatorname{tr} \left((\Omega_0 + t\Delta)^{-1} \Delta \right) = \operatorname{tr}(\Sigma_0 \Delta),$$

$$\frac{\partial^2}{\partial t^2} f(t)|_{t=v} = \frac{\partial}{\partial t} \operatorname{tr} \left((\Omega_0 + t\Delta)^{-1} \Delta \right)|_{t=v} = (\tilde{\Delta})^T (\Omega_0 + v\Delta)^{-1} \otimes (\Omega_0 + v\Delta)^{-1} \tilde{\Delta},$$

 $\tilde{\Delta} \in \mathbb{R}^{p^2}$ is the vectorization of Δ , and \otimes is the Kronecker product of two matrices. Plug the Taylor expansion of f(1) at t=0 into the equation (2). Now, we decompose G by four parts

$$G(\Delta) = I_1 + I_2 + I_3 + I_4,\tag{3}$$

where

$$I_{1} = \operatorname{tr} ((S - \Sigma_{0})\Delta),$$

$$I_{2} = (\tilde{\Delta})^{T} \int_{0}^{1} (1 - v)(\Omega_{0} + v\Delta)^{-1} \otimes (\Omega_{0} + v\Delta)^{-1} dv \tilde{\Delta},$$

$$I_{3} = \lambda \sum_{(j,j') \in T^{c}} |\delta_{j,j'}|^{1/2},$$

$$I_{4} = \lambda \sum_{(j,j') \in T} (|\omega_{0,j,j'} + \delta_{j,j'}|^{1/2} - |\omega_{0,j,j'}|^{1/2}).$$

Let Δ^+ be the diagonal matrix with the same diagonal of Δ , $\Delta^- = \Delta - \Delta^+$, and Δ_T denote the matrix Δ with all elements outside the index set T replaced by 0. Note that $|\cdot|_1$ is not the L_1 for matrix but the L_1 for vector, i.e., $|\Delta|_1 = \sum_{ij} |\delta_{ij}|$.

By Guo et al. and Rothman et al., with probability tending to 1, we have the bound

$$|I_1| \leq I_{1,1} + I_{1,2},$$

where

$$I_{1,1} = C_1 \sqrt{\frac{\log p}{n}} |\Delta_T^-|_1 + C_2 \sqrt{\frac{p \log p}{n}} \|\Delta^+\|_F,$$

$$I_{1,2} = C_1 \sqrt{\frac{\log p}{n}} |\Delta_{T^c}^-|_1,$$

and C_1, C_2 are two positive constants. By applying the bound $|\Delta_T^-|_1 \le q^{1/2} \|\Delta_T^-\|_F$, we know that

$$I_{1,1} \le (C_1 + C_2) \sqrt{\frac{(p+q)\log p}{n}} \|\Delta\|_F \le (C_1 + C_2) \sqrt{\frac{(p+q)\log p}{n}} Mr_n = M(C_1 + C_2) \frac{(p+q)\log p}{n}.$$

Rewrite I_3 , and we notice that for r_n small enough we have $I_3 \geq \lambda |\Delta_{T^c}^-|_1$. Then,

$$I_3 - I_{1,2} \ge \left(\lambda - C_1 \sqrt{\frac{\log p}{n}}\right) |\Delta_{T^c}^-|_1 \ge (\Lambda_1 - C_1) \sqrt{\frac{\log p}{n}} |\Delta_{T^c}^-|_1 \ge 0,$$

where the second inequality follows the assumption that $\lambda \geq \Lambda_1 \sqrt{\frac{\log p}{n}}$ and Λ_1 is large enough. Next, by Guo et al. and Rothman et al., I_2 can be lower bounded as following.

$$I_2 \ge \|\Delta\|_F^2 \phi_{\min} \left(\int_0^1 (1-v)(\Omega_0 + v\Delta)^{-1} \otimes (\Omega_0 + v\Delta)^{-1} dv \right) \ge \frac{1}{4\tau_2^2} \|\Delta\|_F^2.$$

The specific steps for the second inequality is in Rothman et al..

Now, we consider the term I_4 . By triangle inequality we have

$$\begin{split} |I_4| &\leq \lambda \sum_{(j,j') \in T} \left| |\omega_{0,j,j'} + \delta_{j,j'}|^{1/2} - |\omega_{0,j,j'}|^{1/2} \right| \\ &= \lambda \sum_{(j,j') \in T} \left| \frac{|\omega_{0,j,j'} + \delta_{j,j'}| - |\omega_{0,j,j'}|}{|\omega_{0,j,j'} + \delta_{j,j'}|^{1/2} + |\omega_{0,j,j'}|^{1/2}} \right| \\ &\leq \frac{\lambda}{\tau_2^{1/2}} |\Delta_T|_1 \\ &\leq \frac{M\Lambda_2}{\tau_2^{1/2}} \frac{(p+q)\log p}{n}, \end{split}$$

where the last inequality follows the bound $|\Delta_T^-|_1 \le q^{1/2} \|\Delta_T^-\|_F$ and the assumption that $\lambda \le \Lambda_2 \sqrt{\frac{(1+p/q)\log p}{n}}$.

Back to (3), for $\Delta \in \partial \mathcal{A}$, we have

$$G(\Delta) \ge -I_{1,1} - I_{1,2} + I_2 + I_3 - |I_4|$$

$$\ge I_2 - I_{1,1} - I_4$$

$$\ge \frac{M^2(p+q)\log p}{n} \left(\frac{1}{4\tau_2^2} - \frac{C_1 + C_2 - \Lambda_2/\tau_3^{1/2}}{M}\right).$$

For M large enough, we have $G(\Delta)$ for all $\Delta \in \partial A$. Then, the proof completes.

1.2 Extension to multiple layers

It is quite easy to extend the proof for single layer to multiple layers following Guo's proof. The objective function (1) changes to

$$Q(\{\Omega^k\}_{k=1}^K) = \sum_{k=1}^K \left\{ \operatorname{tr}(S^k \Omega^k) - \log |\Omega^k| \right\} + \lambda \sum_{(j,j')} \left(\sum_{k=1}^K |\omega_{j,j'}^k| \right)^{1/2}.$$

First, replace \mathcal{A} by $\mathcal{A} = \left\{ \sum_{k=1}^{K} \left\| \Delta^k \right\|_F \leq Mr_n \right\}$. We still decompose the function $G(\{\Delta^k\}_{k=1}^K)$ by four parts, i.e.,

$$G(\{\Delta^k\}_{k=1}^K) = I_1 + I_2 + I_3 + I_4,$$

where

$$I_{1} = \sum_{k=1}^{K} \operatorname{tr} \left((S - \Sigma_{0}) \Delta^{k} \right),$$

$$I_{2} = \sum_{k=1}^{K} (\tilde{\Delta}^{k})^{T} \int_{0}^{1} (1 - v) (\Omega_{0}^{k} + v \Delta^{k})^{-1} \otimes (\Omega_{0}^{k} + v \Delta^{k})^{-1} dv \tilde{\Delta}^{k},$$

$$I_{3} = \lambda \sum_{(j,j') \in T} \left(\sum_{k=1}^{K} |\delta_{j,j'}^{k}| \right)^{1/2},$$

$$I_{4} = \lambda \sum_{(j,j') \in T} \left(\left(\sum_{k=1}^{K} |\omega_{0,j,j'}^{k}| + \delta_{j,j'}^{k}| \right)^{1/2} - \left(\sum_{k=1}^{K} |\omega_{0,j,j'}^{k}| \right)^{1/2} \right).$$

Define $I_{1,1}$, $I_{1,2}$ similarly as single layer case. By simple modification, we have

$$I_{1,1} \le \sum_{k=1}^K (C_1 + C_2) \sqrt{\frac{(p+q)\log p}{n}} \left\| \Delta^k \right\|_F \le M(C_1 + C_2) \frac{(p+q)\log p}{n}.$$

Similarly, we have

$$I_2 \ge \sum_{k=1}^K \frac{1}{4\tau_2^2} \left\| \Delta^k \right\|_F^2 \ge \frac{M^2}{4\tau_2^2} \frac{(p+q)\log p}{n},$$

for all $\Delta \in \partial \mathcal{A}$. Note that for r_n small enough, we have $I_3 \geq \lambda \sum_{k=1}^K |\Delta_{T^c}^{k,-}|_1$. Then,

$$I_3 - I_{1,2} \ge \sum_{k=1}^{K} (\Lambda_1 - C_1) \sqrt{\frac{\log p}{n}} |\Delta_{T^c}^{k,-}|_1,$$

for Λ_1 large enough. Last, for I_4 ,

$$\begin{split} |I_4| &\leq \lambda \sum_{(j,j') \in T} \left| \frac{\left(\sum_{k=1}^K |\omega_{0,j,j'}^k + \delta_{j,j'}^k|\right) - \left(\sum_{k=1}^K |\omega_{0,j,j'}^k|\right)}{\left(\sum_{k=1}^K |\omega_{0,j,j'}^k + \delta_{j,j'}^k|\right)^{1/2} + \left(\sum_{k=1}^K |\omega_{0,j,j'}^k|\right)^{1/2}} \right| \\ &\leq \frac{\lambda}{\tau_3^{1/2}} \sum_{(j,j') \in T} \sum_{k=1}^K |\delta_{j,j'}^k| \\ &\leq \frac{\lambda}{\tau_3^{1/2}} \sum_{k=1}^K |\Delta_T^k|_1 \\ &\leq \frac{M\Lambda_2}{\tau_3^{1/2}} \frac{(p+q)\log p}{n}. \end{split}$$

Therefore, we still have

$$G(\Delta) \ge I_2 - I_{1,2} - |I_4| \ge \frac{M^2(p+q)\log p}{n} \left(\frac{1}{4\tau_2^2} - \frac{C_1 + C_2 - \Lambda_2/\tau_3^{1/2}}{M}\right) > 0,$$

for all $\Delta \in \partial \mathcal{A}$ and M large enough.