$\hat{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix}; \quad \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix}.$ $tS = \frac{a^{\dagger} \hat{\beta} - a^{\dagger} \beta}{\hat{\sigma} \sqrt{a^{\dagger} (x^{\dagger} x)^{-1} a}}$ ~ t (1-p) AA: Yi= Bo + Eij CC example: Aslan: Yi= Bo + B1 + Ei caucasian: li = Bo + B2 + Ei. the let $E(Y_i) = H_j$ if Y_i belongs to group j. 1) Ho: Bo = C1; $a^{\dagger} = (1, 0, 0)$. Bo = $a^{\dagger}\beta$.

This is estimated by $\beta \circ = a^{\dagger}\beta$.

Under Ho, $(a^{\dagger}\beta) - (a^{\dagger}\beta)/(f \sqrt{a^{\dagger}(x^{\dagger}x)^{-1}a}) \sim t(n-p)$. The important $A_2 = \begin{bmatrix} \beta \cdot + \beta_1 \end{bmatrix} = \begin{bmatrix} c_2 \\ 2 \end{bmatrix}$ at $\beta = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ at $\beta = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ what needs to be recomputed? $A_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ at $A_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ at $A_3 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ at $A_4 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ Hso, compute $a^{T} \cdot (X^{T}X)^{-1} \cdot a$ for $a^{T} = (1, 1, 0)$. f = RSETo finish, compute the obs. value of TS under Ho; call this to.

Then, p-value Pr (T7 | to | under Ho) i.e., as summy T is

Studentt with (A-p) dep. of freedom.

pietest, problem 2.3: A.x=b

pick the value of this of such that

If
$$x - b \cdot |_2^2 = 0$$
 for some $x = x^{\#}$.

Is $x^{\#}$ a unique Solution?

Notice: A. $\alpha = 0$, where $\alpha = (1, -1, -1)^{\top}$.

let $\alpha(\lambda) = \alpha + \lambda \cdot \alpha$, where $\alpha \in \mathbb{R}$

then this is also a solution to $\alpha = 0$.

Ax(α) = A(α) + α \cap = A. α + α \cap = b.

for any value of α .

=7 infritely many solutions to A.X = 6.