Lecture8: Metal-Oxide-Semiconductor

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Parallel plates

- A problem from "General Physics" course.
 - Consider a dielectric layer (whose thickness is t_d and area is A) sandwiched by two parallel metal plates. Its permittivity is ϵ_d .
 - A voltage difference, V, is applied.
 - The charges are +Q and -Q, respectively.
 - The Gauss law in the 1D structure

$$\frac{d}{dx}(\epsilon E_x) = \rho$$

Charge density

• Areal charge densities are $+\frac{Q}{A}$ and $-\frac{Q}{A}$.

Electric field

- Electric field inside the dielectric layer is $\frac{1}{\epsilon_d} \frac{Q}{A}$.
 - Constant over the dielectric layer

Electrostatic potential

• Solve $-\frac{d\phi}{dx} = E_x$.

 $V = \frac{1}{\epsilon_d} \frac{Q}{A} t_d$ Electrostatic potential + + + t_d + **Dielectric**

Capacitance

- The capacitance charge depends on the applied voltage.
 - From the previous equation,

$$Q = \epsilon_d \frac{V}{t_d} A$$

Remember that, for a capacitor,

$$Q = CV$$

Therefore, the capacitance becomes

$$C = \frac{\epsilon_d}{t_d} A$$

- (Sometimes, the capacitance <u>per unit area</u>, $\frac{\epsilon_d}{t_d}$, is also written as C. Yes, it's confusing.)

Metal-Oxide-Semiconductor

- The key structure in the microelectronics
 - Question: Is the MOS a capacitor with $C_{ox} = \frac{\epsilon_{ox}}{t_{ox}}$?
 - Answer: No.

What is the difference?

Metal versus semiconductor

The same electric field

Deep inside metal or semiconductor, we have no electric field.

P-type substrate

 Just like the PN junction, the P-type substrate can provide a negative charge by the depletion!

$$E_s - \frac{qN_A}{\epsilon_{si}}W_d = 0$$

Depletion

- Up to $x = W_d$, we have no hole. We have no electron.
 - MOS structures are intentionally designed to be in such a situation at $V_G = 0$ V.
 - In other words, with $V_G = 0$ V, we have no charge carrier at the semiconductor/oxide interface.

Potential difference

By integrating the electric field,

$$\phi(0) - \phi(W_d) = \frac{1}{2} E_s W_d = \frac{\epsilon_{si}}{2qN_A} E_s^2$$

Electron density

 At equilibrium, there is a relation of (Probably you remember it.)

$$n = n_i \exp \frac{\phi}{V_T}$$

- At $x = W_d$, we have

$$n(W_d) = n_i \exp \frac{\phi(W_d)}{V_T} = \frac{n_i^2}{N_A}$$

- At x = 0, we have

$$n(0) = n_i \exp \frac{\phi(0)}{V_T} = n_i \exp \frac{\phi(W_d)}{V_T} \exp \frac{\phi(0) - \phi(W_d)}{V_T}$$

In other words, the electron density at the interface is

$$n(0) = \frac{n_i^2}{N_A} \exp \frac{\phi(0) - \phi(W_d)}{V_T}$$

Inversion & threshold voltage

- For a high gate voltage, E_S is also high.
 - Consider a condition of

$$n(0) = \frac{n_i^2}{N_A} \exp \frac{\phi(0) - \phi(W_d)}{V_T} = N_A$$

It is realized by the potential difference of

$$\phi(0) - \phi(W_d) = 2V_T \log \frac{N_A}{n_i}$$

- The electron density at the interface is the same with the P-type doping density.
- This phenomenon is called the <u>inversion</u>.
- The gate voltage which meets the above condition is called the threshold voltage.

Above the threshold voltage,

- Two mechanisms for negative charges
 - 1) Depletion of the P-type substrate
 - 2) Inversion electrons

