Sex Prediction from T1-weighted Brain MRI

Traditional machine learning and deep learning perspectives

Roberto Souza

February 2023

Outline

Hypothesis and Objectives

Introduction and Background

Introduction

- Many neurological diseases have different prevalence among women and men¹
 - Alzheimer's -> women
 - Parkinson's > men
- Understanding how the male and female brains differ from a traditional ML and DL perspectives is important and allows us to hypothesize whether sex plays an important role on the disease:
 - Ethics, fairness, and bias considerations
 - Inform your dataset construction if building a data-driven model
 - Decide whether to include confounding removal techniques, such as "sex" unlearning²

Traditional ML versus DL

Trainable Parameters and GPU Memory

- Convolutional layer:
 - (w1*w2*w3*#channels + 1)*#filters
- Dense layer
 - (input_size + 1)*output_size
- Variables are often stored as float32 (i.e., 4 bytes)
 - Model parameters
 - Gradients
 - Intermediary results
 - Code overhead

VGG-16

- Won 2014 ImageNet
- Still often used in 2022
- Easy to code
- Drawbacks:
 - Many parameters
 - Computationally expensive

Hypothesis and Objectives

Hypothesis

We hypothesize that we can use ML obtain > 80% accuracy in distinguishing biological sex from presumed normal subjects using T1-weighted MRI

 Literature has obtained >90% accuracy but using other MRI sequences (e.g., DTI)

Objectives

- 1. Develop traditional ML models of sex classification using volumetric features
- 2. Perform feature importance analysis
- 3. Develop DL models of sex classification
- 4. Perform visual explanation of the model using GRAD-CAM

Materials and Methods

Calgary-Campinas Dataset

Vendor	Field	Age	Gender	Datasets
Siemens	1.5 T	53.9 ± 7.3	30M/30F	60
	3 T	56.6 ± 6.9	30M/30F	60
Philips	1.5 T	52.8 ± 9.6	26M/33F	59
	3 T	50.0 ± 9.3	30M/30F	60
GE	1.5 T	53.9 ± 5.8	30M/30F	60
	3 T	53.6 ± 5.7	30M/30F	60
All	1.5 and 3 T	53.5 ± 7.8	176M/18 3F	359

Calgary-Campinas Dataset

Traditional ML Analysis

- Volumetrics features extracted from FreeSurfer + age
- Models:
 - Random Forest
 - XGBOOST
- Grid-search for hyperparameter tuning
- Stratified 10-fold cross-validation
 - Sex
 - Scanner vendor
 - Magnetic field

DL Analysis

- 3D Convolutional Neural Network (CNN)
- Stratified 10-fold cross-validation
 - Sex
 - Scanner vendor
 - Magnetic field
- Network inputs
 - 6-dof registration to MNI space + skull-stripping + min-max normalization
 - No data augmentation

3D CNN - Network Architecture

Number of Model Parameters

$$L_1 = (27*1 + 1)*30 = 840$$

$$L_2 = (27*30 + 1)*30 = 24,330$$

$$L_3 = (27*30 + 1)*60 = 48,660$$

$$L_4 = (27*60 + 1)*60 = 97,260$$

$$L_5 = (27*60 + 1)*120 = 194,520$$

$$L_6 = (27*120 + 1)*120 = 388,920$$

$$L_7 = (27*120 + 1)*240 = 777,840$$

$$L_8 = (27*240 + 1)*240 = 1,555,440$$

$$L_9 = (213840 + 1)*1 = 213,841$$

GPU Memory Consumption

Params =3,301,651*4 = **13.21** MB

Grads =3,301,651*4 = **13.21 MB**

 $I_1 = 193*229*193*1*4 =$ **34.12 MB**

I₂ = 191*227*191*30*4 = **993.74 MB**

I₃ = 95*113*95*30*4 = **122.38 MB**

 $I_a = 93*111*93*60*4 = 230.4 MB$

 $I_5 = 46*55*46*60*4 =$ **51.50 MB**

 $I_6 = 44*53*44*120*4 = 49.25 MB$

 $I_7 = 21*26*21*120*4 = 5.50 MB$

 $I_{g} = 19*24*19*240*4 = 8.32 \text{ MB}$

 $I_9 = 9*11*9*240*4 = 0.86 MB$

 $I_{10} = 1*4 = 4e-6 MB$

Batch mem = Params + Grads + bs ×
$$(I_1 + 2 \times \sum_{i=2}^{10} I_i)$$

VGG-16 Revisited

Results

Accuracy Results

Confusion Matrix

Feature Importance Analysis (Top-15 Features)

GRAD-CAM Visualization

Grad-CAM Visualization

Discussion and Next Steps

Discussion

- We were able to obtain > 80% accuracy as hypothesized
- Traditional ML outperformed DL, perhaps due to the small dataset size for training?
- Models seems to have learned different things
 - Model combination can be used to improve results?
- Better hyperparameter tuning and feature selection could be used to improve traditional ML results
- More data, data augmentation or a more modern CNN architecture could be used to improve DL results
- GRAD-CAM results are difficult to interpret

Next Steps

- Further improve the models perhaps add ADNI dtata?
- Build atlas using GRAD-CAM visualizations highlighting differences between male and female brain
- Assess the utility of the information learned to inform the development of classification models of neurological diseases that are known to affect men and women differently

Thank you!

