Lecture Note #8 Spring 2025 MTH653: Advanced Numerical Analysis

Instructor: Will Pazner

$$H(div)$$
 and $H(curl)$ spaces

1 Some motivating examples

1.1 Darcy's equations

Recall **Darcy's equations** that model flow through porous media. The unknowns are \boldsymbol{u} (the velocity vector) and p (the pressure). The governing equations are

$$\boldsymbol{u} + \nabla p = \boldsymbol{f},$$
$$\nabla \cdot \boldsymbol{u} = g,$$

with appropriate boundary conditions on $\partial\Omega$. To derive the variational formulation, multiply the first equation by a vector-valued test function and the second equation by a scalar test function, obtaining

$$(\boldsymbol{u}, \boldsymbol{v}) - (p, \nabla \cdot \boldsymbol{v}) = (\boldsymbol{f}, \boldsymbol{v}),$$

 $(\nabla \cdot \boldsymbol{u}, q) = (g, q).$

Notice that there are no derivatives acting on p and q, so we can choose $p, q \in L^2(\Omega)$. While we do have derivatives acting on \boldsymbol{u} and \boldsymbol{v} , we do not need the whole gradient—we only need the *divergence*. Therefore, it would make sense to choose the minimal regularity space

$$\boldsymbol{u}, \boldsymbol{v} \in [L^2(\Omega)]^d$$
 and $\nabla \cdot \boldsymbol{u}, \nabla \cdot \boldsymbol{v} \in L^2(\Omega)$.

This space is strictly larger than $[H^1(\Omega)]^d$.

1.2 Maxwell equations

Maxwell's equations, which govern the physics of electromagnetic fields, are given by

$$\begin{split} \nabla \times \boldsymbol{E} &= -\frac{\partial \boldsymbol{B}}{\partial t}, \\ \nabla \times \boldsymbol{H} &= \frac{\partial \boldsymbol{D}}{\partial t} + \boldsymbol{J}, \\ \nabla \times \boldsymbol{D} &= \rho, \\ \nabla \times \boldsymbol{B} &= 0, \\ \nabla \times \boldsymbol{J} &= -\frac{\partial \rho}{\partial t}. \end{split}$$

In the above, we use the notation:

 \bullet **E** is the electric field intensity

- \bullet **D** is the electric flux density
- \bullet \boldsymbol{H} is the magnetic field intensity
- \bullet **B** is the magnetic flux density
- \bullet J is the electric current density
- ρ is the electric charge density

Under some assumptions (that the fields are *time harmonic*, i.e. that they oscillate with a single frequency ω) and after introducing constitutive relations, the equations can be simplified, eventually reducing to the so-called "vector wave equation",

$$\nabla \times (\nabla \times \boldsymbol{E}) - \omega^2 \boldsymbol{E} = -j\omega \boldsymbol{J}$$

for the electric field, or

$$\nabla \times (\nabla \times \boldsymbol{H}) - \omega^2 \boldsymbol{H} = \nabla \times \boldsymbol{J}$$

for the magnetic field. These equations motivate considering the model problem

$$\nabla \times (\nabla \times \mathbf{E}) + \alpha \mathbf{E} = \mathbf{f}. \tag{1}$$

We derive the variational formulation for this problem. Recall the vector calculus identity

$$\nabla \cdot (\boldsymbol{u} \times \boldsymbol{v}) = \boldsymbol{v} \cdot (\nabla \times \boldsymbol{u}) - \boldsymbol{u} \cdot (\nabla \times \boldsymbol{v}).$$

Divergence theorem and then applying the above identity gives

$$\int_{\partial\Omega} (\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{n} \, ds = \int_{\Omega} \nabla \cdot (\boldsymbol{u} \times \boldsymbol{v}) \, dx$$
$$= \int_{\Omega} (\boldsymbol{v} \cdot (\nabla \times \boldsymbol{u}) - \boldsymbol{u} \cdot (\nabla \times \boldsymbol{v})) \, dx.$$

Rearranging, we obtain the integration by parts formula

$$\int_{\Omega} \boldsymbol{v} \cdot (\nabla \times \boldsymbol{u}) \, dx = \int_{\Omega} \boldsymbol{u} \cdot (\nabla \times \boldsymbol{v}) \, dx + \int_{\partial \Omega} (\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{n} \, ds. \tag{2}$$

Multiply (1) by a test function \mathbf{F} and integrate over Ω ,

$$\int_{\Omega} (\nabla \times \nabla \times \mathbf{E}) \cdot \mathbf{F} \, dx + \int_{\Omega} \alpha \mathbf{E} \cdot \mathbf{F} \, dx = \int_{\Omega} \mathbf{f} \cdot \mathbf{F} \, dx.$$

Applying the integration by parts formula to to the first integral on the left-hand side (setting $u = \nabla \times E$, v = F), we have

$$\int_{\Omega} (\nabla \times \nabla \times \mathbf{E}) \cdot \mathbf{F} \, dx = \int_{\Omega} \nabla \times \mathbf{E} \cdot \nabla \times \mathbf{F} \, dx + \int_{\partial \Omega} ((\nabla \times \mathbf{E}) \times \mathbf{F}) \cdot \mathbf{n} \, ds.$$

We often use the boundary conditions that E (and the test function F) have **zero tangential** trace on $\partial\Omega$, i.e.

$$\boldsymbol{E} \cdot \boldsymbol{t} = 0$$
 and $\boldsymbol{F} \cdot \boldsymbol{t} = 0$ on $\partial \Omega$

where t tangent to the boundary. Equivalently,

$$\boldsymbol{E} \times \boldsymbol{n} = 0, \quad \boldsymbol{F} \times \boldsymbol{n} = 0.$$

With these conditions, note that the integrand of the boundary integral is given by

$$((\nabla \times \mathbf{E}) \times \mathbf{F}) \cdot \mathbf{n} = (\nabla \times \mathbf{E}) \cdot (\mathbf{F} \times \mathbf{n}) = 0.$$

Therefore, the variational formulation for (1) (with zero tangential trace conditions) reduces to

$$(\nabla \times \boldsymbol{E}, \nabla \times \boldsymbol{F}) + (\alpha \boldsymbol{E}, \boldsymbol{F}) = (\boldsymbol{f}, \boldsymbol{F}).$$

Therefore, the conditions on E and F that we require in order for this variational problem to make sense are

$$\boldsymbol{E}, \boldsymbol{F} \in [L^2(\Omega)]^d$$
 and $\nabla \times \boldsymbol{E}, \nabla \times \boldsymbol{F} \in [L^2(\Omega)]^d$.

Again, this space is strictly larger than $[H^1(\Omega)]^d$.

2 Sobolev spaces

So far, we have been working with the $W^{k,p}(\Omega)$ Sobolev spaces (and more specifically, the $H^k(\Omega) := W^{k,2}(\Omega)$ Hilbert spaces). In finite elements, we commonly work in the space $H^1(\Omega)$. However, for the problems described above, it makes sense to work in spaces that do not possess full H^1 regularity. The natural spaces to work in for the above problems are H(div) and H(curl), which are defined as

$$\boldsymbol{H}(\operatorname{div},\Omega) := \{ \boldsymbol{v} \in [L^2(\Omega)]^d : \nabla \cdot \boldsymbol{v} \in L^2(\Omega) \},$$

$$\boldsymbol{H}(\operatorname{curl},\Omega) := \{ \boldsymbol{v} \in [L^2(\Omega)]^d : \nabla \times \boldsymbol{v} \in [L^2(\Omega)]^d \}.$$

Each of these spaces is larger than $[H^1(\Omega)]^d$ but smaller than $[L^2(\Omega)]^d$.

2.1 Continuity requirements

Suppose Ω is partitioned into the union of disjoint subdomains Ω_i (to be precise, the interiors of the subdomains are disjoint).

We had previously seen that if $u \in L^2(\Omega)$ and $u|_{\Omega_i} \in C^1(\Omega_i)$, then

$$u \in H^1(\Omega) \iff u \in C^0(\Omega).$$

We briefly review this argument. Suppose $u \in H^1(\Omega)$. Then, its weak derivative $\nabla_w u \in [L^2(\Omega)]^d$ is well-defined, and $\nabla_w u|_{\Omega_i} = \nabla(u|_{\Omega_i})$. Multiply $\nabla_w u$ by a smooth test function ϕ (supported away from $\partial\Omega$) and integrate over Ω . The weak derivative satisfies

$$\int_{\Omega} \nabla_w u \cdot \boldsymbol{\phi} \, dx = -\int_{\Omega} u \nabla \cdot \boldsymbol{\phi} \, dx. \tag{3}$$

Take the left-hand side and integrate by parts over each subdomain,

$$\int_{\Omega} \nabla_{w} u \cdot \boldsymbol{\phi} \, dx = \sum_{i} \int_{\Omega_{i}} \nabla_{w} u \cdot \boldsymbol{\phi} \, dx$$

$$= \sum_{i} \left(-\int_{\Omega_{i}} u \nabla \cdot \boldsymbol{\phi} \, dx + \int_{\partial \Omega_{i}} u \boldsymbol{\phi} \cdot \boldsymbol{n} \, ds \right)$$

$$= -\int_{\Omega} u \nabla \cdot \boldsymbol{\phi} \, dx + \int_{\Gamma} [\![u]\!] \cdot \boldsymbol{\phi} \, ds$$

But by (3), this implies that $\int_{\Gamma} \llbracket u \rrbracket \cdot \phi \, ds = 0$, and we can conclude that the function is continuous. The converse direction follows by showing that the function defined by $\nabla(u|_{\Omega_i})$ on each subdomain satisfies the definition of the weak gradient under the condition that $\llbracket u \rrbracket = 0$.

This means that from the point of view of finite elements (where finite element functions u_h restricted to each element $\kappa \in mathcalT$ are smooth), membership in H^1 is determined by continuity at element interfaces. The situation is similar for determining if a finite element function is an element of H(div) and H(curl).