Can we tell what an advert is about based on its

audio?

(yes)

The Plan

- Select distinct advertising classes
- Scrape videos from youtube for each class
- Extract and analyse audio from video
- Use supervised machine learning to train a classifier to recognise ad class based on audio only

Scraping the data

Download videos from YouTube using Pytube python library

Classes:

- Alcohol
- Cars
- Perfume
- Banks
- Supermarkets

Filters:

- Upload age
- Duration
- Keyword in title

Analysing the audio spectrogram

- Extract features in time and frequency domain using librosa

Slice song into many frequency bands and time chunks and calculate:

- RMS energy (mean, standard deviation, skew, kurtosis)
- Zero-crossing rate
- Spectral centroid
- 1st order coefficient of a polynomial fit to the power spectrum
- Harmonic & percussive separation
- Chromatic feature

Also capture time varying properties via a running RMS window of varying width

Fit an nth order polynomial to the columns of a spectrogram.

Take the RMS of windows of varying width

Now have 419 features describing the audio

2500 videos (500 per class)

- Alcohol
- Cars
- Perfume
- Banks
- Supermarkets

Train a Random Forest on 60% (300 per class) of them, test on remaining 40% (200 per class)

Random Forest

- Binary class: Perfume and Alcohol

Random forest before pruning:							
11 - 11 - 13	precision	recall	f1-score	support			
alcohol	0.79	0.83	0.81	200			
perfume	0.82	0.78	0.80	200			
avg / total	0.81	0.81	0.80	400			

Random Forest - multiclass

- Explore selecting most important features maintains similar performance
- Seems to handle fewer features better than an excess of features.

44/115 features:

accuracy before pruning features: 0.53 accuracy after pruning features: 0.54 Random Forest report after feature pruning: recall f1-score precision support alcohol 0.53 0.39 0.45 200 banks 0.59 0.58 200 0.45 0.50 200 0.48 cars perfume 0.56 0.65 0.60 200 supermarkets 0.55 0.57 0.56 200 avg / total 0.53 1000 0.54 0.54

178/419 features:

accuracy befor	, ,			
Random Forest	report after precision		,	support
alcohol banks cars perfume supermarkets	0.51 0.50 0.42 0.60 0.48	0.35 0.57 0.51 0.57 0.47	0.42 0.53 0.46 0.58 0.47	200 200 200 200 200
avg / total	0.50	0.49	0.49	1000

Random Forest

Confusion matrix

Random Forest

- Receiver Operating Characteristic

Neural Network

- Performance increased with more features

115 features:

419 features:

AUC = 0.7398625000000001 number of features : 115 accuracy = 0.452								
	precision	recall	f1-score	support				
alcohol	0.40	0.38	0.39	200				
banks	0.46	0.46	0.46	200				
cars	0.39	0.46	0.42	200				
perfume	0.53	0.55	0.54	200				
supermarkets	0.49	0.43	0.46	200				
avg / total	0.45	0.45	0.45	1000				

AUC = 0.75962 number of fea accuracy = 0.	tures : 419			
	precision	recall	f1-score	support
alcohol	0.51	0.46	0.48	200
banks cars	0.45 0.40	0.51 0.42	0.48 0.41	200 200
perfume	0.57	0.51	0.54	200
supermarkets	0.50	0.51	0.51	200
avg / total	0.48	0.48	0.48	1000

Neural Network - metrics

Which is best?

- Very similar performance

Neural Network

Random Forest

AUC = 0.759625 number of features : 419				accuracy before pruning features: 0.49 accuracy after pruning features: 0.49					
accuracy = 0.48					Random Forest report after feature pruning:				
	precision	recall	f1-score	support		precision		f1-score	support
alcohol	0.51	0.46	0.48	200	alcohol	0.51	0.35	0.42	200
banks	0.45	0.51	0.48	200	banks	0.50	0.57	0.53	200
cars	0.40	0.42	0.41	200	cars	0.42	0.51	0.46	200
perfume	0.57	0.51	0.54	200	perfume	0.60	0.57	0.58	200
supermarkets	0.50	0.51	0.51	200	supermarkets	0.48	0.47	0.47	200
avg / total	0.48	0.48	0.48	1000	avg / total	0.50	0.49	0.49	1000

Which is best?

It's hard to tell...

Neural Network may need more tuning

Try with more data

Thoughts...

Both classifiers are successful - as shown with various metrics.

Why are they not perfect? Because of features or data?

Is audio in adverts too similar? What degree of accuracy should we expect?

Can we use ML to inform companies about how to make their ads more distinctive?

Conclusions

Understanding the problem, the data, and the questions one wants to ask is essential.

Looking ahead: more complex features, such as vocal separation/analysis.

Ask other questions: A "not an advert" class, e.g. podcasts (just speech). Can we incorporate analysis of the video too?