

Lecture 22 | Part 1

Gradient Descent for NN Training

Empirical Risk Minimization

- 0. Collect a training set, $\{(\vec{x}^{(i)}, y_i)\}$
- Pick the form of the prediction function, H.
 E.g., a neural network, H.
- 2. Pick a loss function.
- 3. Minimize the empirical risk w.r.t. that loss.

Minimizing Risk

- To minimize risk, we often use **vector calculus**.
 - ► Either set $\nabla_{\vec{w}} R(\vec{w}) = 0$ and solve...
 - Or use gradient descent: walk in opposite direction of $\nabla_{\vec{w}} R(\vec{w})$.
- ► Recall, $\nabla_{\vec{w}} R(\vec{w}) = (\partial R / \partial w_0, \partial R / \partial w_1, ..., \partial R / \partial w_d)^T$

In General

- Let ℓ be the loss function, let $H(\vec{x}; \vec{w})$ be the prediction function.
- ► The empirical risk:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

Using the chain rule:

$$\nabla_{\vec{w}} R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \ell}{\partial H} \nabla_{\vec{w}} H(\vec{x}^{(i)}; \vec{w})$$

Training Neural Networks

- For neural networks with nonlinear activations, the risk $R(\vec{w})$ is typically **complicated.**
- ► The minimizer cannot be found directly.
- Instead, we use iterative methods, such as gradient descent.

Iterative Optimization

- To minimize a function $f(\vec{x})$, we may try to compute $\vec{\nabla} f(\vec{x})$; set to 0; solve.
- Often, there is no closed-form solution.
- ► How do we minimize *f*?

Example

Consider $f(x, y) = e^{x^2+y^2} + (x-2)^2 + (y-3)^2$.

Example

- ► Try solving $\vec{\nabla} f(x, y) = 0$.
- ► The gradient is:

$$\vec{\nabla}f(x,y) = \begin{pmatrix} 2xe^{x^2+y^2} + 2(x-2) \\ 2ye^{x^2+y^2} + 2(y-3) \end{pmatrix}$$

Can we solve the system?

$$2xe^{x^2+y^2} + 2(x-2) = 0$$
$$2ye^{x^2+y^2} + 2(y-3) = 0$$

Example

- ► Try solving $\vec{\nabla} f(x, y) = 0$.
- ► The gradient is:

$$\vec{\nabla}f(x,y) = \begin{pmatrix} 2xe^{x^2+y^2} + 2(x-2) \\ 2ye^{x^2+y^2} + 2(y-3) \end{pmatrix}$$

Can we solve the system? Not in closed form.

$$2xe^{x^2+y^2} + 2(x-2) = 0$$
$$2ye^{x^2+y^2} + 2(y-3) = 0$$

Idea

- Apply an iterative approach.
- Start at an arbitrary location.
- "Walk downhill", towards minimum.

Which way is down?

- Consider a differentiable function f(x, y).
- We are standing at $P = (x_0, y_0)$.
- In a small region around *P*, *f* looks like a plane.
- Slope of plane in x, y directions:

$$\frac{\partial f}{\partial x}(x_0, y_0) \quad \frac{\partial f}{\partial y}(x_0, y_0)$$

The Gradient

Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable. The gradient of f at \vec{x} is defined:

$$\vec{\nabla} f(\vec{x}) = \left(\frac{\partial f}{\partial x_1}(\vec{x}), \frac{\partial f}{\partial x_2}(\vec{x}), \dots, \frac{\partial f}{\partial x_d}(\vec{x})\right)^T$$

▶ **Note:** $\vec{\nabla} f(\vec{x})$ is a **function** mapping $\mathbb{R}^d \to \mathbb{R}^d$.

Which way is down?

- ▶ $\vec{\nabla} f(x_0, y_0)$ points in direction of steepest **ascent** at (x_0, y_0) .
- ► $-\vec{\nabla} f(x_0, y_0)$ points in direction of steepest **descent** at (x_0, y_0) .

Gradient Properties

The gradient is used in the linear approximation of f:

$$f(x_0+\delta_x,y_0+\delta_y)\approx f(x_0,y_0)+\vec{\delta}\cdot\vec{\nabla}f(x_0,y_0)$$

- Important properties:
 - $\vec{\nabla} f(\vec{x})$ points in direction of **steepest ascent** at \vec{x} .
 - ▶ $-\vec{\nabla} f(\vec{x})$ points in direction of **steepest descent** at \vec{x} .
 - In directions orthogonal to $\vec{\nabla} f(\vec{x})$, f does not change!

Gradient Descent

- Pick arbitrary starting point $\vec{x}^{(0)}$, learning rate parameter $\eta > 0$.
- Until convergence, repeat:
 - ► Compute gradient of f at $\vec{x}^{(i)}$; that is, compute $\vec{\nabla} f(\vec{x}^{(i)})$.
 - ► Update $\vec{x}^{(i+1)} = \vec{x}^{(i)} \eta \vec{\nabla} f(\vec{x}^{(i)})$.
- When do we stop?
 - ▶ When difference between $\vec{x}^{(i)}$ and $\vec{x}^{(i+1)}$ is negligible.
 - ► I.e., when $\|\vec{x}^{(i)} \vec{x}^{(i+1)}\|$ is small.

```
def gradient_descent(
          gradient, x, learning_rate=.01,
          threshold=.1e-4
):
    while True:
        x_new = x - learning_rate * gradient(x)
        if np.linalg.norm(x - x new) < threshold:</pre>
```

break

x = x new

return x

Backprop Revisited

- ► The weights of a neural network can be trained using gradient descent.
- This requires the gradient to be calculated repeatedly; this is where backprop enters.
- Sometimes people use "backprop" to mean "backprop + SGD", but this is not strictly correct.

Backprop Revisited

Consider training a NN using the square loss:

$$\nabla_{\vec{w}} R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \ell}{\partial H} \nabla_{\vec{w}} H(\vec{x}^{(i)}; \vec{w})$$

$$= \frac{2}{n} \sum_{i=1}^{n} (H(\vec{x}^{(i)}) - y_i) \nabla_{\vec{w}} H(\vec{x}^{(i)}; \vec{w})$$

Backprop Revisited

► Interpretation:

$$\nabla_{\vec{w}} R(\vec{w}) = \frac{2}{n} \sum_{i=1}^{n} \underbrace{(H(\vec{x}^{(i)}) - y_i)}_{\text{Error}} \underbrace{\nabla_{\vec{w}} H(\vec{x}^{(i)}; \vec{w})}_{\text{Blame}}$$

When used in SGD, backprop "propagates error backward" in order to update weights.

Difficulty of Training NNs

Gradient descent is guaranteed to find optimum when objective function is convex.¹

¹Assuming it is properly initialized

Difficulty of Training NNs

When activations are non-linear, neural network risk is highly non-convex:

Non-Convexity

- When R is non-convex, GD can get "stuck" in local minima.
 - Solution depends on initialization.
- More sophisticated optimizers, using momentum, adaptation, better initialization, etc.
 - Adagrad, RMSprop, Adam, etc.

Difficulty of Training (Deep) NNs

Deep networks can suffer from the problem of vanishing gradients: if w is a weight at the "front" of the network, ∂H/∂w can be very small

Vanishing Gradients

- If $\partial H/\partial w$ is always close to zero, w is updated **very slowly** by gradient descent.
- In short: early layers are slower to train.
- One mitigation: use ReLU instead of sigmoid.

Vanishing Gradients

DSC 1408 Representation Learning

Lecture 22 | Part 2

Stochastic Gradient Descent

Gradient Descent for Minimizing Risk

► In ML, we often want to minimize a risk function:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

Observation

The gradient of the risk function is a sum of gradients:

$$\vec{\nabla}R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \vec{\nabla}\ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

One term for each point in training data.

Problem

- In machine learning, the number of training points *n* can be **very large**.
- Computing the gradient can be expensive when n is large.
- Therefore, each step of gradient descent can be expensive.

Idea

► The (full) gradient of the risk uses all of the training data:

$$\nabla R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

- It is an average of n gradients.
- ▶ **Idea:** instead of using all n points, randomly choose $\ll n$.

Stochastic Gradient

- Choose a random subset (mini-batch) B of the training data.
- Compute a stochastic gradient:

$$\nabla R(\vec{w}) \approx \sum_{i \in B} \vec{\nabla} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

Stochastic Gradient

$$\nabla R(\vec{w}) \approx \sum_{i \in B} \vec{\nabla} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

- ▶ **Good:** if $|B| \ll n$, this is much faster to compute.
- Bad: it is a (random) approximation of the full gradient, noisy.

Stochastic Gradient Descent (SGD) for ERM

- Pick arbitrary starting point $\vec{x}^{(0)}$, learning rate parameter $\eta > 0$, batch size $m \ll n$.
- Until convergence, repeat:
 - Randomly sample a batch *B* of *m* training data points (on each iteration).
 - ► Compute stochastic gradient of f at $\vec{x}^{(i)}$:

$$\vec{g} = \sum_{i=1}^{n} \vec{\nabla} \ell(H(\vec{x}^{(i)}; \vec{w}), y_i)$$

ightharpoonup Update $\vec{x}^{(i+1)} = \vec{x}^{(i)} - \eta \vec{q}$

Idea

- In practice, a stochastic gradient often works well enough.
- It is better to take many noisy steps quickly than few exact steps slowly.

Batch Size

- Batch size m is a parameter of the algorithm.
- ► The larger *m*, the more reliable the stochastic gradient, but the more time it takes to compute.
- Extreme case when m = 1 will still work.

Usefulness of SGD

- SGD allows learning on massive data sets.
- Useful even when exact solutions available.
 - ► E.g., least squares regression / classification.

Training NNs in Practice

- There are several Python packages for training NNs:
 - PyTorch
 - ► Tensorflow / Keras
- ► This week's discussion was a Tensorflow tutorial.

DSC 1408 Representation Learning

Lecture 22 | Part 3

Output Units

Output Units

- As with units in hidden layers, can choose different activation functions for the outputs layey.
 - What activation function?
 - How many units?
- Good choice depends on task:
 - Regression, binary classification, multiclass, etc.
- ▶ Which loss?

Setting 1: Regression

- Output can be any real number.
- Single output neuron.
- It makes sense to use a linear activation.

Setting 1: Regression

- Prediction should not be too high/low.
- It makes sense to use the mean squared error.

Setting 1: Regression

- Suppose we use linear activation for output neuron + mean squared error.
- This is very similar to least squares regression...
- But! Features in earlier layers are learned, non-linear.

Special Case: Least Squares

The case of:

- a one layer neural network
- with all linear activations
- trained with square loss

is also called **least** squares regression.

Setting 2: Binary Classification

- Output can be in [0, 1].
- Single output neuron.
- We could use a linear activation, threshold.
- But there is a better way.

Sigmoids for Classification

Natural choice for activation in output layer for binary classification: the **sigmoid**.

Binary Classification Loss

We could use square loss for binary classification. There are several reasons not to:

1) Square loss penalizes predictions which are "too correct".

2) It doesn't work well with the sigmoid due to saturation.

The Cross-Entropy

- ► Instead, we often train deep classifiers using the **cross-entropy** as loss.
- Let $y^{(i)} \in \{0, 1\}$ be true label of ith example.
- The average cross-entropy loss:

$$-\frac{1}{n} \sum_{i=1}^{n} \left\{ \log f(\vec{x}^{(i)}), & \text{if } y^{(i)} = 1 \\ \log \left[1 - f(\vec{x}^{(i)}) \right], & \text{if } y^{(i)} = 0 \right\}$$

The Cross-Entropy and the Sigmoid

Cross-entropy "undoes" the exponential in the sigmoid, resulting in less saturation.

Summary: Binary Classification

- Use sigmoidal activation the output layer + cross-entropy loss.
- ► This will promote a strong gradient.
- Use whatever activation for the hidden layers (e.g., ReLU).

Special Case: Logisitic Regression

The case of:

- a one layer neural network
- with sigmoid activation
- trained with cross-entropy loss

is also called **logistic** regression.

DSC 1408 Representation Learning

Lecture 22 | Part 4

Convolutions

4 /---+

From Simple to Complex

- Complex shapes are made of simple patterns
- ► The human visual system uses this fact
- ▶ Line detector → shape detector → ... → face detector
- Can we replicate this with a deep NN?

Edge Detector

- How do we find vertical edges in an image?
- One solution: convolution with an edge filter.

Vertical Edge Filter

- Take a patch of the image, same size as filter.
- Perform "dot product" between patch and filter.
- If large, this is a (vertical) edge.

imag	age patch:	

f	ilter	:

0	0	0	0	0	0						
0	0	.9	0	0	.7						
0	0	.9	0	0	.8			1			
0	0	.8	0	0	.9		4	_			
0	0	.7	0	0	0		*	-			
								J			

0	0	0	0	0	0						
0	0	.9	0	0	.7						
0	0	.9	0	0	.8			7			
0	0	.8	0	0	.9		J.	┤ _			
0	0	.7	0	0	0		*				

0	0	0	0	0	0							
0	0	.9	0	0	.7							
0	0	.9	0	0	.8				7			
0	0	.8	0	0	.9		*		┤			
0	0	.7	0	0	0		•	\vdash	┤ ̄			

0	0	0	0	0	0						
0	0	.9	0	0	.7						
0	0	.9	0	0	.8						
0	0	.8	0	0	.9		*	=			
0	0	.7	0	0	0		•	_			

0	0	0	0	0	0]				
0	0	.9	0	0	.7						Γ
0	0	.9	0	0	.8						
0	0	.8	0	0	.9		*	=			
0	0	.7	0	0	0		_ ^	_			

Convolution

- ► The result is the (2d) **convolution** of the filter with the image.
- Output is also 2-dimensional array.
- Called a response map.

Example: Vertical Filter

Example: Horizontal Filter

More About Filters

- ► Typically 3×3 or 5×5.
- ► Variations: different **stride**, image **padding**.

- Black and white images are 2-d arrays.
- But color images are 3-d arrays:
 - a.k.a., tensors
 - ► Three color **channels**: red, green, blue.
 - ► height × width × 3
- ► How does convolution work here?

Color Image

- ► The filter must also have three channels:
 - \triangleright 3 × 3 × 3, 5 × 5 × 3, etc.

Convolution with 3-d Filter

- Filter must have same number of channels as image.
 - ▶ 3 channels if image RGB.

Result is still a 2-d array.

General Case

- ► Input "image" has *k* channels.
- Filter must have *k* channels as well.
 - ► e.g., 3 × 3 × k
- ► Output is still 2 d

