GRIS Modes Korley RF CDK 21 104 83 24 232 0.54 0.2 0.47 0.28 0.47 0.56 0.51 0.99 0.64 0.02 0.24 0.35 0.34 0.35 0.56 0.56 0.98 0.54 0.14 0.25 0.34 0.35 0.34 0.55 0.56 0.56 0.98 0.54 0.14 0.25 0.34 0.35 0.34 0.35 0.55 0.56 0.98 0.55 0												F-				Infor			
CHI Mouse Klaney 1 RF Adriana 24 111 76 20 231 0.58 0.24 0.55 0.33 0.55 0.59 0.57 98.381 6.6 0.11 44 14 14 15 15 0.5 0.5 0.59 0.55 98.381 6.6 0.11 44 14 15 0.5 0.5 0.58 0.59 0.55 98.38 0.50 0.1 44 14 15 0.5 0.58 0.59 0.55 98.38 0.50 0.1 44 14 15 0.5 0.58 0.59 0.55 98.38 0.50 0.1 44 14 15 0.5 0.58 0.59 0.55 98.38 0.50 0.1 40 15 0.50 0.59 0.55 98.38 0.50 0.1 40 15 0.50 0.59 0.55 98.38 0.50 0.2 40 0.55 0.50 0.50 0.55 0.55 0.55 0.55 0	Endpoint			TP T	ΓN	FP FI		Coun					SN	SP	ВА				RP
Colf Mouse Katery RF CDE 21 68 102 25 233 0.45 0.17 0.46 0.25 0.46 0.45 0.46 0.99 1 6.13 0.07 4.	CHR Mouse Kidney 1							221									6.6		
Mary Negleting RF CDK 21 104 83 24 232 254 232 254 232 254 232 254 232 254 232 254 232 254 232 254 232 254 232 254 232 254 232 254 232 254 255	AnyLesion	KI	Auriaria	24		70	20	231	0.56	0.24	0.55	0.33	0.55	0.59	0.57	90.001	0.0	0.11	
CHR Mouse Kidney 1 RF CDK 21 104 83 24 232 0.54 0.2 0.47 0.28 0.47 0.56 0.51 0.90 0 6.49 0.02 4. CRR Mouse Kidney 1 RF Dragon6 24 110 77 22 233 0.55 0.24 0.57 0.34 0.57 0.56 0.56 0.98.9 6.54 0.1 44 0.24 0.24 0.24 0.25 0.33 0.52 0.59 0.55 0.98.9 6.54 0.1 44 0.24 0.24 0.25 0.33 0.52 0.59 0.55 0.58 0.98.9 6.54 0.1 44 0.24 0.24 0.25 0.33 0.52 0.59 0.55 0.58 0.98.9 6.52 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0	•	RF	-	21	85	102	25	233	0.45	0 17	0.46	0.25	0.46	0.45	0.46	_00 1	6 13	071	46
Chemistry Chem	CHR Mouse Kidney 1																		
Any Merimen RF N 26 105 82 20 23 0.56 0.24 0.57 0.34 0.57 0.56 0.56 0.58 0.58 0.58 0.14 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· ·	RF		21	104	83	24	232	0.54	0.2	0.47	0.28	0.47	0.56	0.51	-99.0	6.49	0.02	45
Anylesion RF Oragon6 24 110 77 22 23 0.58 0.24 0.52 0.33 0.52 0.59 0.55 0.59 0.67 0.09 4 Chill Risone Chill Risone Child		RF	n	26	105	82	20	233	0.56	0.24	0.57	0.34	0.57	0.56	0.56	-98.9	6.54	0.1	46
AmyLesion RF or 25 99 88 21 233 0.53 0.20 0.54 0.31 0.54 0.53 0.54 98.9 6.42 0.06 4 CHR Mouse Kidney 1 ASN Adriana 16 118 69 28 231 0.58 0.19 0.36 0.25 0.36 0.63 0.55 0.99.0 6.62 0.03 44 0.39 0.53 0.46 0.99.1 6.38 0.63 44 0.64 0.65 0.66 0.58 0.52 0.99.0 6.62 0.03 44 0.64 0.65 0.66 0.65 0.65 0.66 0.55 0.66 0.55 0.66 0.55 0.66 0.55 0.66 0.56 0.66 0.6	•	RF	Dragon6	24	110	77	22	233	0.58	0.24	0.52	0.33	0.52	0.59	0.55	-98.9	6.67	0.09	46
CHR Mouse Körney 1 April 1 April 1 April 1 April 1 April 1 April 2 April 1 April 2 April 1 April 2 Apr	,	RF	ū	25	aa	88	21	233	0.53	0.22	0.54	N 31	0.54	0.53	0.54	-08 0	6 42	0.06	46
CHR Mouse Kidney 1 Any Lesion RF Inductive 21 108 79 25 233 0.55 0.21 0.46 0.29 0.46 0.58 0.52 -99.0 6.62 0.03 44 CHR Mouse Kidney 1 Any Lesion RF Mersy RF	CHR Mouse Kidney 1																		
AmyLesion RF Inductive 21 108 79 25 233 0.55 0.21 0.46 0.29 0.46 0.58 0.52 99.0 6.62 0.03 4 CMR Mouse Kidney 1 RF Mersy 18 102 85 27 232 0.52 0.17 0.4 0.4 0.24 0.4 0.55 0.47 99.1 6.41 0.43 42 CMR Mouse Kidney 1 ASN Anglesion N CDK 18 126 61 27 232 0.58 0.59 0.27 0.63 0.38 0.63 0.58 0.6 0.56 98.9 6.53 0.08 44 0.46 0.56 0.56 98.9 6.59 0.24 0.46 0.56 0.56 98.9 6.59 0.24 0.48 0.25 0.47 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56	-	RF	GSFrag	18	99	88	28	233	0.5	0.17	0.39	0.24	0.39	0.53	0.46	-99.1	6.38	.063	46
Amplesion North Ref Mersy 18 102 85 27 232 0.52 0.17 0.4 0.24 0.4 0.55 0.47 -99.1 6.41 0.43 4. CHR Mouse Kidney 1 ASN Obermaxo Northesion North Ref Mouse Kidney 1 ASN Amplesion North Rouge K	AnyLesion	RF		21	108	79	25	233	0.55	0.21	0.46	0.29	0.46	0.58	0.52	-99.0	6.62	0.03	46
AmyLesion RF QNPR 25 104 83 21 233 0.55 0.23 0.54 0.32 0.54 0.56 0.55 -98.9 6.53 0.08 41 CHR Mouse Kidney 1 ASN ALogPS, Adrigation N Adriana 16 118 69 28 231 0.58 0.19 0.36 0.25 0.36 0.63 0.5 -99.0 6.69 0.04 41 CHR Mouse Kidney 1 ASN ALogPS, Adrigation N A CICR Mouse Kidney 1 ASN CICRA Mouse Kidney 1 ASN Fragment N CICRA Mouse Kidney 1 ASN ADJUST MOUSE Kidney 1 ASN ADJUS		RF		18	102	85	27	232	0.52	0.17	0.4	0.24	0.4	0.55	0.47	-99.1	6.41	.043	45
CHR Mouse Kidney 1 ASN Anytesion N CDK 18 126 61 27 232 0.62 0.23 0.4 0.29 0.4 0.67 0.54 -98.9 6.73 0.08 41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	•	RF	QNPR	25	104	83	21	233	0.55	0.23	0.54	0.32	0.54	0.56	0.55	-98 9	6.53	0.08	46
CHR Mouse Kidney 1 ASN AlogPS, Anyltesion N Adriana 16 118 69 28 231 0.58 0.19 0.36 0.25 0.36 0.63 0.5 -99.0 6.69 .004 44 Anyltesion N OEstate 17 116 71 29 233 0.57 0.19 0.37 0.25 0.37 0.62 0.49 -99.0 6.73 .008 44 CHR Mouse Kidney 1 ASN AlogPS, Anyltesion N CDK Thematical Properties of the Christophila	-																		
CHIR Mouse Kidney 1 ASN Adriana 16 118 69 28 231 0.58 0.19 0.36 0.25 0.36 0.63 0.5 -99.0 6.69 .004 44 CHIR Mouse Kidney 1 ASN ALogPS, AnyLesion N OEstate 17 116 71 29 233 0.57 0.19 0.37 0.25 0.37 0.62 0.49 -99.0 6.73 .008 41 CHIR Mouse Kidney 1 ASN CDK 18 126 61 27 232 0.62 0.23 0.4 0.29 0.4 0.67 0.54 -98.9 6.95 0.06 41 CHIR Mouse Kidney 1 ASN CHEMBOOK N OESTATE N OES			hores	29	108	79	17	233	0.59	0.27	0.63	0.38	0.63	0.58	0.6	-98.8	6.56	0.17	46
AnyLesion N OEstate 17 116 71 29 233 0.57 0.19 0.37 0.25 0.37 0.62 0.49 -99.0 6.73 0.08 44 CHR Mouse Kidney 1 ASN AnyLesion N OESTAGE 18 126 61 27 232 0.62 0.23 0.4 0.29 0.4 0.67 0.54 -98.9 6.95 0.06 44 CHR Mouse Kidney 1 ASN AnyLesion N OR N N N Dragon6 18 138 49 28 233 0.63 0.23 0.37 0.28 0.37 0.7 0.53 -98.9 7.07 0.06 44 CHR Mouse Kidney 1 ASN AnyLesion N OR N OR N N OR OF 18 114 73 28 233 0.57 0.2 0.39 0.26 0.39 0.61 0.5 -99.0 6.71 0.4 0.64 0.4 0.67 0.54 0.56 0.51 0.99.0 6.52 0.02 44 0.64 0.65 0.51 0.99.0 6.52 0.02 44 0.64 0.65 0.51 0.99.0 6.52 0.02 44 0.64 0.65 0.51 0.99.0 6.52 0.02 44 0.64 0.65 0.55 0.51 0.99.0 6.55 0.51 0.99.0 6.52 0.02 44 0.64 0.65 0.55 0.51 0.99.0 6.55 0.51 0.99.0 6.50 0.51 0.99.0 6.55	•		Adriana	16	118	69	28	231	0.58	0.19	0.36	0.25	0.36	0.63	0.5	-99.0	6.69	.004	44
AnyLesion N CEstate 17 116 71 29 233 0.57 0.19 0.37 0.25 0.37 0.62 0.49 -99.0 6.73 0.08 41 CHR Mouse Kidney 1 ASN AnyLesion N CDK 18 126 61 27 232 0.62 0.23 0.4 0.29 0.4 0.67 0.54 -98.9 6.95 0.06 41 CHR Mouse Kidney 1 ASN CDK N N N N N N N N N N N N N N N N N N N	CHR Mouse Kidney 1	ASN	ALogPS,																
AnyLesion N CDK 18 126 61 27 232 0.62 0.23 0.4 0.29 0.4 0.67 0.54 -98.9 6.95 0.06 42 CHR Mouse Kidney 1 ASN Chemaxo N n n 17 130 57 29 233 0.63 0.23 0.37 0.28 0.37 0.7 0.53 -98.9 7.07 0.06 44 0.00 AnyLesion N Dragon6 18 138 49 28 233 0.67 0.27 0.39 0.32 0.39 0.74 0.56 -98.9 7.3 0.11 44 0.00 AnyLesion N Dragon6 18 14 73 28 233 0.57 0.2 0.39 0.32 0.39 0.74 0.56 -98.9 7.3 0.11 44 0.00 AnyLesion N GSFrag 22 103 84 24 233 0.57 0.2 0.39 0.26 0.39 0.61 0.5 -99.0 6.71 0. 44 0.00 AnyLesion N Inductive 19 114 73 27 233 0.57 0.2 0.44 0.28 0.41 0.61 0.51 -99.0 6.52 0.02 44 0.00 AnyLesion N Inductive 19 114 73 27 233 0.57 0.21 0.41 0.28 0.41 0.61 0.51 -99.0 6.52 0.02 44 0.00 AnyLesion N Inductive 19 114 73 27 233 0.57 0.21 0.41 0.28 0.41 0.61 0.51 -99.0 6.52 0.02 44 0.00 AnyLesion N Inductive 19 114 73 27 233 0.56 0.2 0.4 0.26 0.4 0.6 0.5 -99.0 6.55 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	•	N	•	17	116	71	29	233	0.57	0.19	0.37	0.25	0.37	0.62	0.49	-99.0	6.73	.008	46
AnyLesion N n 17 130 57 29 233 0.63 0.23 0.37 0.28 0.37 0.7 0.53 -98.9 7.07 0.06 44 CHR Mouse Kidney 1 ASN AnyLesion N or 18 114 73 28 233 0.67 0.27 0.39 0.32 0.39 0.74 0.56 -98.9 7.3 0.11 44 AnyLesion N or 18 114 73 28 233 0.57 0.2 0.39 0.26 0.39 0.61 0.5 -99.0 6.71 0. 44 AnyLesion N GSFrag 22 103 84 24 233 0.57 0.21 0.48 0.29 0.48 0.55 0.51 -99.0 6.52 0.02 44 CHR Mouse Kidney 1 ASN AnyLesion N inductive 19 114 73 27 233 0.57 0.21 0.41 0.28 0.41 0.61 0.51 -99.0 6.73 0.02 44 CHR Mouse Kidney 1 ASN Mera, AnyLesion N Mersy 18 113 74 27 232 0.56 0.2 0.4 0.26 0.4 0.6 0.5 -99.0 6.65 0. 44 CHR Mouse Kidney 1 ASN Mera, AnyLesion N QNPR 13 117 70 33 233 0.56 0.16 0.28 0.2 0.4 0.6 0.5 -99.0 6.63 0.76 44 CHR Mouse Kidney 1 ASN Spectrop AnyLesion N N DRAY SPECTRO N N DRAY SP	•		CDK	18	126	61	27	232	0.62	0.23	0.4	0.29	0.4	0.67	0.54	-98.9	6.95	0.06	45
CHR Mouse Kidney 1 ASN AnyLesion N Dragon6 18 138 49 28 233 0.67 0.27 0.39 0.32 0.39 0.74 0.56 -98.9 7.3 0.11 44 AnyLesion N Or 18 114 73 28 233 0.57 0.2 0.39 0.26 0.39 0.61 0.5 -99.0 6.71 0. 44 AnyLesion N Or 18 114 73 28 233 0.57 0.2 0.39 0.26 0.39 0.61 0.5 -99.0 6.72 0.02 44 AnyLesion N Or 18 114 73 28 233 0.57 0.2 0.39 0.26 0.39 0.61 0.5 -99.0 6.52 0.02 44 AnyLesion N OR SFrag 22 103 84 24 233 0.54 0.21 0.48 0.29 0.48 0.55 0.51 -99.0 6.52 0.02 44 AnyLesion N Inductive 19 114 73 27 233 0.57 0.21 0.41 0.28 0.41 0.61 0.51 -99.0 6.52 0.02 44 CHR Mouse Kidney 1 ASN AnyLesion N Mers, AnyLesion N Mers, AnyLesion N QNPR 13 117 70 33 233 0.56 0.16 0.28 0.2 0.4 0.6 0.5 -99.0 6.65 0. 44 CHR Mouse Kidney 1 ASN AnyLesion N ORPS 25 124 63 21 233 0.54 0.28 0.54 0.37 0.54 0.66 0.6 -98.8 6.98 0.17 44 AnyLesion N TP 13 122 65 32 232 0.58 0.17 0.29 0.21 0.29 0.65 0.47 -99.1 6.61 0.49 44 CHR Mouse Kidney 1 ASN AnyLesion N CDK, TA, TP 13 122 65 32 232 0.58 0.17 0.29 0.21 0.29 0.65 0.47 -99.1 6.68 0.43 44 AnyLesion N CDK, TA 15 127 60 30 232 0.57 0.17 0.31 0.22 0.31 0.64 0.47 -99.1 6.68 0.43 44 CHR Mouse Kidney 1 ASN AnyLesion N TA, TP 15 125 62 31 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.89 0.05 44 CHR Mouse Kidney 1 ASN AnyLesion N TA, TP 15 125 62 31 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.89 0.05 44 CHR Mouse Kidney 1 ASN AnyLesion N TA, TP 15 125 62 31 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.89 0.05 44 CHR Mouse Kidney 1 ASN AnyLesion N TA, TP 15 125 62 31 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.89 0.05 44 CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.89 0.05 44 CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.89 0.05 44 CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 44 CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 44 CHR Mouse Kidney 1 ASN AnyLe	,			17	120	5 7	20	222	0.63	0.22	0.27	0.20	0.27	0.7	0.52	00.0	7.07	0.06	46
AnyLesion N Dragon6 18 138 49 28 233 0.67 0.27 0.39 0.32 0.39 0.74 0.56 -98.9 7.3 0.11 41 CHR Mouse Kidney 1 ASN AnyLesion N GSFrag 22 103 84 24 233 0.57 0.2 0.39 0.26 0.39 0.61 0.5 -99.0 6.71 0. 44 CHR Mouse Kidney 1 ASN AnyLesion N GSFrag 22 103 84 24 233 0.57 0.21 0.48 0.29 0.48 0.55 0.51 -99.0 6.72 0.02 44 CHR Mouse Kidney 1 ASN AnyLesion N Inductive 19 114 73 27 233 0.57 0.21 0.41 0.28 0.41 0.61 0.51 -99.0 6.73 0.02 44 CHR Mouse Kidney 1 ASN AnyLesion N QNPR 13 117 70 33 233 0.56 0.16 0.28 0.2 0.4 0.66 0.5 -99.0 6.65 0. 44 CHR Mouse Kidney 1 ASN AnyLesion N QNPR 13 117 70 33 233 0.56 0.16 0.28 0.2 0.28 0.63 0.45 -99.1 6.63 0.76 44 CHR Mouse Kidney 1 ASN AnyLesion N TP 13 122 65 32 232 0.56 0.10 0.28 0.54 0.37 0.54 0.66 0.6 -98.8 6.98 0.17 44 CHR Mouse Kidney 1 ASN AnyLesion N CDK, TA TP 13 122 65 32 232 0.56 0.10 0.28 0.21 0.29 0.65 0.47 -99.1 6.71 0.49 44 CHR Mouse Kidney 1 ASN AnyLesion N CDK, TA TP 13 125 62 31 233 0.64 0.29 0.33 0.25 0.33 0.68 0.51 -99.0 6.9 0.01 44 CHR Mouse Kidney 1 ASN AnyLesion N CDK, TA 15 125 62 31 233 0.60 0.19 0.33 0.24 0.33 0.67 0.5 -99.0 6.89 0.05 44 CHR Mouse Kidney 1 ASN AnyLesion N TA, TP 15 125 62 31 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -99.0 6.89 0.05 44 CHR Mouse Kidney 1 ASN AnyLesion N TA, TP 15 125 62 31 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -99.0 6.89 0.05 44 CHR Mouse Kidney 1 ASN AnyLesion N TA, TP 15 125 62 31 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -99.0 6.89 0.05 44 CHR Mouse Kidney 1 ASN AnyLesion N TA, TP 15 125 62 31 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -99.0 6.89 0.05 44 CHR Mouse Kidney 1 ASN AnyLesion N TA TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -99.0 6.89 0.01 44 CHR Mouse Kidney 1 ASN AnyLesion N TA TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -99.0 6.89 0.01 44 CHR Mouse Kidney 1 ASN AnyLesion N TA TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 44 CHR Mouse Kidney 1 ASN AnyLesion N TA TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 44 CHR Mouse Kidney 1 ASN AnyLesion N TA TA 16 1			П	17	130	57	29	233	0.03	0.23	0.37	0.26	0.37	0.7	0.53	-90.9	7.07	0.06	40
AnyLesion N or 18 114 73 28 233 0.57 0.2 0.39 0.26 0.39 0.61 0.5 -99.0 6.71 0. 44 CHR Mouse Kidney 1 ASN AnyLesion N GSFrag 22 103 84 24 233 0.54 0.21 0.48 0.29 0.48 0.55 0.51 -99.0 6.52 0.02 44 CHR Mouse Kidney 1 ASN AnyLesion N Inductive 19 114 73 27 233 0.57 0.21 0.41 0.28 0.41 0.61 0.51 -99.0 6.73 0.02 44 CHR Mouse Kidney 1 ASN Mera, N Mersy 18 113 74 27 232 0.56 0.2 0.4 0.26 0.4 0.6 0.5 -99.0 6.65 0. 42 CHR Mouse Kidney 1 ASN AnyLesion N QNPR 13 117 70 33 233 0.56 0.16 0.28 0.2 0.28 0.63 0.45 -99.1 6.63 0.76 44 CHR Mouse Kidney 1 ASN Spectrop N hores 25 124 63 21 233 0.64 0.28 0.54 0.37 0.54 0.66 0.6 -98.8 6.98 0.17 44 CHR Mouse Kidney 1 ASN CDK, TA, N TP 13 122 65 32 232 0.58 0.17 0.29 0.21 0.29 0.65 0.47 -99.1 6.71 0.49 44 CHR Mouse Kidney 1 ASN N CDK, TA 15 127 60 30 232 0.61 0.2 0.33 0.25 0.33 0.68 0.51 -99.0 6.9 0.01 44 CHR Mouse Kidney 1 ASN N CDK, TA 15 127 60 30 232 0.61 0.2 0.33 0.25 0.33 0.69 0.51 -99.0 6.9 0.01 44 CHR Mouse Kidney 1 ASN N CDK, TA 15 127 60 30 232 0.61 0.2 0.33 0.25 0.33 0.68 0.51 -99.0 6.9 0.01 44 CHR Mouse Kidney 1 ASN N CDK, TA 15 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.9 0.05 44 CHR Mouse Kidney 1 ASN N TA 16 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.99 0.05 44 CHR Mouse Kidney 1 ASN N TA 16 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.99 0.05 44 CHR Mouse Kidney 1 ASN N TA 16 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.99 0.05 44 CHR Mouse Kidney 1 ASN N TA 16 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.99 0.05 44 CHR Mouse Kidney 1 ASN N TA 16 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.99 0.02 44 CHR Mouse Kidney 1 ASN N TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 44 CHR Mouse Kidney 1 ASN N TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 44 CHR Mouse Kidney 1 ASN N TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 44 CHR Mouse Kidney 1 ASN N TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 44 CHR Mouse	AnyLesion			18	138	49	28	233	0.67	0.27	0.39	0.32	0.39	0.74	0.56	-98.9	7.3	0.11	46
AnyLesion N GSFrag 22 103 84 24 233 0.54 0.21 0.48 0.29 0.48 0.55 0.51 -99.0 6.52 0.02 44 0.00 AnyLesion N Inductive 19 114 73 27 233 0.57 0.21 0.41 0.28 0.41 0.61 0.51 -99.0 6.52 0.02 44 0.00 AnyLesion N Mersy 18 113 74 27 232 0.56 0.2 0.4 0.26 0.4 0.6 0.5 -99.0 6.65 0.4 0.00 AnyLesion N Mersy 18 113 74 27 232 0.56 0.2 0.4 0.26 0.4 0.6 0.5 -99.0 6.65 0.4 0.00 AnyLesion N QNPR 13 117 70 33 233 0.56 0.16 0.28 0.2 0.28 0.63 0.45 -99.1 6.63 0.76 44 0.00 AnyLesion N QNPR 13 117 70 33 233 0.56 0.16 0.28 0.2 0.28 0.63 0.45 -99.1 6.63 0.76 44 0.00 AnyLesion N hores 25 124 63 21 233 0.64 0.28 0.54 0.37 0.54 0.66 0.6 -98.8 6.98 0.17 44 0.00 AnyLesion N TP 13 122 65 32 232 0.58 0.17 0.29 0.21 0.29 0.65 0.47 -99.1 6.71 0.49 44 0.00 AnyLesion N CDK, TA, AnyLesion N CDK, TA 15 127 60 30 232 0.61 0.2 0.33 0.25 0.33 0.68 0.51 -99.0 6.9 0.01 44 0.00 AnyLesion N CDK, TP 14 119 68 31 232 0.57 0.17 0.31 0.22 0.31 0.64 0.47 -99.1 6.68 0.43 44 0.00 AnyLesion N TA, TP 15 125 62 31 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.89 0.05 40 0.00 AnyLesion N TA, TP 15 125 62 31 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.89 0.05 40 0.00 AnyLesion N TA 16 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.89 0.05 40 0.00 AnyLesion N TA 16 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.89 0.05 40 0.00 AnyLesion N TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 40 0.00 AnyLesion N TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 40 0.00 AnyLesion N TA TA TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 40 0.00 AnyLesion N TA TA TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 40 0.00 AnyLesion N TA TA TA TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 40 0.00 AnyLesion N TA TA TA TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 40 0.00 AnyLesion N TA TA TA TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 40 0.00 AnyLesion N TA TA TA TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.	•		•	18	114	73	28	233	0.57	0.2	0.39	0.26	0.39	0.61	0.5	-99.0	6.71	0.	46
CHR Mouse Kidney 1 ASN Nuclesion N Inductive 19 114 73 27 233 0.57 0.21 0.41 0.28 0.41 0.61 0.51 -99.0 6.73 0.02 44 (CHR Mouse Kidney 1 ASN Mera, AnyLesion N Mersy 18 113 74 27 232 0.56 0.2 0.4 0.26 0.4 0.6 0.5 -99.0 6.65 0. 44 (CHR Mouse Kidney 1 ASN AnyLesion N CDK, TP 14 119 68 31 232 0.57 0.17 0.31 0.22 0.31 0.64 0.47 -99.1 6.68 0.43 44 (CHR Mouse Kidney 1 ASN AnyLesion N CDK, TP 15 125 62 31 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.89 0.01 44 (CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.11 44 (CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.11 44 (CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.11 44 (CHR Mouse Kidney 1 ASN AnyLesion N TA TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.11 44 (CHR Mouse Kidney 1 ASN AnyLesion N TA TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.11 44 (CHR Mouse Kidney 1 ASN AnyLesion N TA TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.11 44 (CHR Mouse Kidney 1 ASN AnyLesion N TA TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.11 44 (CHR Mouse Kidney 1 ASN AnyLesion N TA TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.11 44 (CHR Mouse Kidney 1 ASN AnyLesion N TA TA TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.11 44 (CHR Mouse Kidney 1 ASN AnyLesion N TA TA TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.11 44 (CHR Mouse Kidney 1 TA			GSFran	22	103	84	24	233	0 54	0.21	0.48	n 29	0.48	0.55	0.51	-99 N	6 52	0.02	46
CHR Mouse Kidney 1 ASN Mera, AnyLesion N Mersy 18 113 74 27 232 0.56 0.2 0.4 0.26 0.4 0.6 0.5 -99.0 6.65 0. 49. CHR Mouse Kidney 1 ASN AnyLesion N DORNE 13 117 70 33 233 0.56 0.16 0.28 0.2 0.28 0.63 0.45 -99.1 6.63 0.76 41. AnyLesion N DORNE 25 124 63 21 233 0.64 0.28 0.54 0.37 0.54 0.66 0.6 -98.8 6.98 0.17 41. CHR Mouse Kidney 1 ASN CDK, TA, AnyLesion N TP 13 122 65 32 232 0.58 0.17 0.29 0.21 0.29 0.65 0.47 -99.1 6.67 0.49 41. AnyLesion N CDK, TA 15 127 60 30 232 0.61 0.2 0.33 0.25 0.33 0.68 0.51 -99.0 6.9 0.01 41. AnyLesion N CDK, TP 14 119 68 31 232 0.57 0.17 0.31 0.22 0.31 0.64 0.47 -99.1 6.68 0.43 41. CHR Mouse Kidney 1 ASN AnyLesion N TA, TP 15 125 62 31 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.9 0.05 41. AnyLesion N TA, TP 15 125 62 31 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.9 0.05 41. CHR Mouse Kidney 1 ASN AnyLesion N TA, TP 15 125 62 31 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.9 0.05 41. AnyLesion N TA 16 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.97 0.02 41. CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.97 0.02 41. CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.97 0.02 41. CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 41. CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 41. CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 41. CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 41. CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 41. CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 41. CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 41. CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 6			COLIAG		100			200	0.04	0.21	0.40	0.23	0.40	0.00		-55.0	0.02	0.02	
AnyLesion N Mersy 18 113 74 27 232 0.56 0.2 0.4 0.26 0.4 0.6 0.5 -99.0 6.65 0. 44 0.45 0.5 -99.0 6.65 0. 44 0.45 0.45 0.45 0.45 0.45 0.45 0.	-			19	114	73	27	233	0.57	0.21	0.41	0.28	0.41	0.61	0.51	-99.0	6.73	0.02	46
AnyLesion N QNPR 13 117 70 33 233 0.56 0.16 0.28 0.2 0.28 0.63 0.45 -99.1 6.63 0.76 44 CHR Mouse Kidney 1 ASN Spectrop AnyLesion N hores 25 124 63 21 233 0.64 0.28 0.54 0.37 0.54 0.66 0.6 -98.8 6.98 0.17 44 CHR Mouse Kidney 1 ASN CDK, TA, AnyLesion N TP 13 122 65 32 232 0.58 0.17 0.29 0.21 0.29 0.65 0.47 -99.1 6.71 0.49 45 CHR Mouse Kidney 1 ASN AnyLesion N CDK, TA 15 127 60 30 232 0.61 0.2 0.33 0.25 0.33 0.68 0.51 -99.0 6.9 0.01 45 CHR Mouse Kidney 1 ASN N CDK, TP 14 119 68 31 232 0.57 0.17 0.31 0.22 0.31 0.64 0.47 -99.1 6.68 0.43 45 CHR Mouse Kidney 1 ASN AnyLesion N TA, TP 15 125 62 31 233 0.6 0.19 0.33 0.24 0.33 0.67 0.5 -99.0 6.89 0.05 46 CHR Mouse Kidney 1 ASN AnyLesion N TA TA 16 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.97 0.02 46 CHR Mouse Kidney 1 ASN AnyLesion N TA TA 16 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.97 0.02 46 CHR Mouse Kidney 1 ASN AnyLesion N TA TA TP 22 120 67 24 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 46 CHR Mouse Kidney 1 ASN AnyLesion N TA TA TP 22 120 67 24 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 46 CHR Mouse Kidney 1 FSM CDK, TA,	AnyLesion	Ν		18	113	74	27	232	0.56	0.2	0.4	0.26	0.4	0.6	0.5	-99.0	6.65	0.	45
CHR Mouse Kidney 1 ASN Spectrop AnyLesion N hores 25 124 63 21 233 0.64 0.28 0.54 0.37 0.54 0.66 0.6 -98.8 6.98 0.17 40 CHR Mouse Kidney 1 ASN CDK, TA, AnyLesion N TP 13 122 65 32 232 0.58 0.17 0.29 0.21 0.29 0.65 0.47 -99.1 6.71 0.49 43 CHR Mouse Kidney 1 ASN AnyLesion N CDK, TA 15 127 60 30 232 0.61 0.2 0.33 0.25 0.33 0.68 0.51 -99.0 6.9 0.01 43 CHR Mouse Kidney 1 ASN AnyLesion N CDK, TP 14 119 68 31 232 0.57 0.17 0.31 0.22 0.31 0.64 0.47 -99.1 6.68 0.43 43 CHR Mouse Kidney 1 ASN AnyLesion N TA, TP 15 125 62 31 233 0.6 0.19 0.33 0.24 0.33 0.67 0.5 -99.0 6.89 0.05 44 CHR Mouse Kidney 1 ASN AnyLesion N TA, TP 15 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.97 0.02 44 CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.97 0.02 44 CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 44 CHR Mouse Kidney 1 ASN AnyLesion N TA	CHR Mouse Kidney 1 AnvLesion	ASN N	QNPR	13	117	70	33	233	0.56	0.16	0.28	0.2	0.28	0.63	0.45	-99.1	6.63	.076	46
CHR Mouse Kidney 1 ASN CDK, TA, AnyLesion N TP 13 122 65 32 232 0.58 0.17 0.29 0.21 0.29 0.65 0.47 -99.1 6.71 .049 44 CHR Mouse Kidney 1 ASN AnyLesion N CDK, TA 15 127 60 30 232 0.61 0.2 0.33 0.25 0.33 0.68 0.51 -99.0 6.9 0.01 44 CHR Mouse Kidney 1 ASN AnyLesion N CDK, TP 14 119 68 31 232 0.57 0.17 0.31 0.22 0.31 0.64 0.47 -99.1 6.68 .043 44 CHR Mouse Kidney 1 ASN AnyLesion N TA, TP 15 125 62 31 233 0.6 0.19 0.33 0.24 0.33 0.67 0.5 -99.0 6.89 .005 44 CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.97 0.02 44 CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.97 0.02 44 CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 44 CHR Mouse Kidney 1 FSM CDK, TA,	CHR Mouse Kidney 1		Spectrop																
AnyLesion N TP 13 122 65 32 232 0.58 0.17 0.29 0.21 0.29 0.65 0.47 -99.1 6.71 .049 49.1 CHR Mouse Kidney 1 ASN AnyLesion N CDK, TA 15 127 60 30 232 0.61 0.2 0.33 0.25 0.33 0.68 0.51 -99.0 6.9 0.01 49.1 CHR Mouse Kidney 1 ASN AnyLesion N CDK, TP 14 119 68 31 232 0.57 0.17 0.31 0.22 0.31 0.64 0.47 -99.1 6.68 .043 49.1 CHR Mouse Kidney 1 ASN AnyLesion N TA, TP 15 125 62 31 233 0.6 0.19 0.33 0.24 0.33 0.67 0.5 -99.0 6.89 .005 49.1 CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.97 0.02 49.1 CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.97 0.02 49.1 CHR Mouse Kidney 1 ASN AnyLesion N TP 22 120 67 24 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 49.1 CHR Mouse Kidney 1 FSM CDK, TA,	,			25	124	63	21	233	0.64	0.28	0.54	0.37	0.54	0.66	0.6	-98.8	6.98	0.17	46
AnyLesion N CDK, TA 15 127 60 30 232 0.61 0.2 0.33 0.25 0.33 0.68 0.51 -99.0 6.9 0.01 49.0 CHR Mouse Kidney 1 ASN AnyLesion N CDK, TP 14 119 68 31 232 0.57 0.17 0.31 0.22 0.31 0.64 0.47 -99.1 6.68 .043 49.0 CHR Mouse Kidney 1 ASN AnyLesion N TA, TP 15 125 62 31 233 0.6 0.19 0.33 0.24 0.33 0.67 0.5 -99.0 6.89 .005 49.0 CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.97 0.02 49.0 CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.97 0.02 49.0 CHR Mouse Kidney 1 ASN AnyLesion N TP 22 120 67 24 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 49.0 CHR Mouse Kidney 1 FSM CDK, TA,	•	N		13	122	65	32	232	0.58	0.17	0.29	0.21	0.29	0.65	0.47	-99.1	6.71	.049	45
CHR Mouse Kidney 1 ASN AnyLesion N CDK, TP 14 119 68 31 232 0.57 0.17 0.31 0.22 0.31 0.64 0.47 -99.1 6.68 .043 48 CHR Mouse Kidney 1 ASN AnyLesion N TA, TP 15 125 62 31 233 0.6 0.19 0.33 0.24 0.33 0.67 0.5 -99.0 6.89 .005 48 CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.97 0.02 48 CHR Mouse Kidney 1 ASN AnyLesion N TP 22 120 67 24 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 48 CHR Mouse Kidney 1 FSM CDK, TA,			CDK, TA	15	127	60	30	232	0.61	0.2	0.33	0.25	0.33	0.68	0.51	-99.0	6.9	0.01	45
CHR Mouse Kidney 1 ASN AnyLesion N TA, TP 15 125 62 31 233 0.6 0.19 0.33 0.24 0.33 0.67 0.5 -99.0 6.89 .005 44 CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.97 0.02 44 CHR Mouse Kidney 1 ASN AnyLesion N TP 22 120 67 24 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 44 CHR Mouse Kidney 1 FSM CDK, TA,	CHR Mouse Kidney 1	ASN	•																
AnyLesion N TA, TP 15 125 62 31 233 0.6 0.19 0.33 0.24 0.33 0.67 0.5 -99.0 6.89 .005 40 CHR Mouse Kidney 1 ASN AnyLesion N TA 16 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.97 0.02 40 CHR Mouse Kidney 1 ASN AnyLesion N TP 22 120 67 24 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 40 CHR Mouse Kidney 1 FSM CDK, TA,	,		CDK, IP	14	119	ზშ	31	232	0.57	0.17	0.31	0.22	0.31	0.64	0.47	-99.1	80.0	.043	45
AnyLesion N TA 16 127 60 30 233 0.61 0.21 0.35 0.26 0.35 0.68 0.51 -99.0 6.97 0.02 40 CHR Mouse Kidney 1 ASN AnyLesion N TP 22 120 67 24 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 40 CHR Mouse Kidney 1 FSM CDK, TA,	AnyLesion		TA, TP	15	125	62	31	233	0.6	0.19	0.33	0.24	0.33	0.67	0.5	-99.0	6.89	.005	46
AnyLesion N TP 22 120 67 24 233 0.61 0.25 0.48 0.33 0.48 0.64 0.56 -98.9 6.89 0.1 40 CHR Mouse Kidney 1 FSM CDK, TA,			TA	16	127	60	30	233	0.61	0.21	0.35	0.26	0.35	0.68	0.51	-99.0	6.97	0.02	46
CHR Mouse Kidney 1 FSM CDK, TA,			TD	22	120	67	24	222	0.61	0.25	0.49	0.33	0.49	0.64	0.56	_0.0 0	6 90	0.1	46
	AHYLESIUH	IN	IF		120	07	24	233	0.01	0.23	0.40	0.33	0.40	0.04	0.56	-90.9	0.09	0.1	40
, = =	CHR Mouse Kidney 1 AnyLesion	FSM LR	CDK, TA, TP	23	117	70	22	232	0.6	0.25	0.51	0.33	0.51	0.63	0.57	-98.9	6.78	0.11	45

CHR Mouse Kidney 1 AnyLesion	FSM LR	CDK, TA	16	114	73	29	232	0.56	0.18	0.36	0.24	0.36	0.61	0.48	-99.0 6.63	.028	45
CHR Mouse Kidney 1 AnyLesion	FSM LR	CDK, TP	20	99	88	25	232	0.51	0.19	0.44	0.26	0.44	0.53	0.49	-99.0 6.38	.021	45
CHR Mouse Kidney 1 AnyLesion	FSM LR	TA, TP	16	120	67	30	233	0.58	0.19	0.35	0.25	0.35	0.64	0.49	-99.0 6.8	.009	46
CHR Mouse Kidney 1 AnyLesion	FSM LR	TA	14	124	63	32	233	0.59	0.18	0.3	0.23	0.3	0.66	0.48	-99.0 6.83	.028	46
CHR Mouse Kidney 1 AnyLesion	FSM LR	TP	20	119	68	26	233	0.6	0.23	0.43	0.3	0.43	0.64	0.54	-98.9 6.85	0.06	46
CHR Mouse Kidney 1 AnyLesion	KNN	CDK, TA, TP	21	92	95	24	232	0.49	0.18	0.47	0.26	0.47	0.49	0.48	-99.0 6.23	.033	45
CHR Mouse Kidney 1 AnyLesion		CDK, TA	25	77	110	20	232	0.44	0.19	0.56	0.28	0.56	0.41	0.48	-99.0 5.9		45
CHR Mouse Kidney 1 AnyLesion		CDK, TP	29	48	139	16	232	0.33	0.17	0.64	0.27	0.64	0.26	0.45	-99.1 5.13	.087	45
CHR Mouse Kidney 1 AnyLesion	KNN	TA, TP	19	90	97	27	233	0.47	0.16	0.41	0.23	0.41	0.48	0.45	-99.1 6.21	.084	46
CHR Mouse Kidney 1 AnyLesion	KNN	TA	12	153	34	34	233	0.71	0.26	0.26	0.26	0.26	0.82	0.54	-98.9 7.56	0.08	46
CHR Mouse Kidney 1 AnyLesion	KNN	TP	21	78	109	25	233	0.42	0.16	0.46	0.24	0.46	0.42	0.44	-99.1 5.97	.101	46
CHR Mouse Kidney 1 AnyLesion	LibS VM	CDK, TA, TP	3	177	10	42	232	0.78	0.23	0.07	0.1	0.07	0.95	0.51	-99.0 7.83	0.02	45
CHR Mouse Kidney 1 AnyLesion	LibS VM	CDK, TA	2	181	6	43	232	0.79	0.25	0.04	0.08	0.04	0.97	0.51	-99.0 8.02	0.03	45
CHR Mouse Kidney 1 AnyLesion	LibS VM	CDK, TP	3	184	3	42	232	0.81	0.5	0.07	0.12	0.07	0.98	0.53	-98.9 8.97	0.13	45
CHR Mouse Kidney 1 AnyLesion	LibS VM	TA, TP	0	187	0	46	233	0.8		0.		0.	1.	0.5	-99.0 9.07		46
CHR Mouse Kidney 1 AnyLesion	LibS VM	TA	1	184	3	45	233	0.79	0.25	0.02	0.04	0.02	0.98	0.5	-99.0 8.19	0.02	46
CHR Mouse Kidney 1 AnyLesion	LibS VM	TP	3	175	12	43	233	0.76	0.2	0.07	0.1	0.07	0.94	0.5	-99.0 7.67	0.	46
CHR Mouse Kidney 1 AnyLesion	MLR A	CDK, TA, TP	19	118	69	26	232	0.59	0.22	0.42	0.29	0.42	0.63	0.53	-98.9 6.78	0.04	45
CHR Mouse Kidney 1 AnyLesion	MLR A	CDK, TA	22	108	79	23	232	0.56	0.22	0.49	0.3	0.49	0.58	0.53	-98.9 6.58	0.05	45
CHR Mouse Kidney 1 AnyLesion	MLR A	CDK, TP	20	115	72	25	232	0.58	0.22	0.44	0.29	0.44	0.61	0.53	-98.9 6.72	0.05	45
CHR Mouse Kidney 1 AnyLesion	Α	TA, TP	22	96	91	24	233	0.51	0.19	0.48	0.28	0.48	0.51	0.5	-99.0 6.37	.007	46
CHR Mouse Kidney 1 AnyLesion	MLR A	TA	23	98	89	23	233	0.52	0.21	0.5	0.29	0.5	0.52	0.51	-99.0 6.41	0.02	46
CHR Mouse Kidney 1 AnyLesion	MLR A	TP TA	23	98	89	23	233	0.52	0.21	0.5	0.29	0.5	0.52	0.51	-99.0 6.41	0.02	46
CHR Mouse Kidney 1 AnyLesion	PLS	CDK, TA, TP	14	121	66	31	232	0.58	0.18	0.31	0.22	0.31	0.65	0.48	-99.0 6.73	.035	45
CHR Mouse Kidney 1 AnyLesion	PLS	CDK, TA	18	118	69	27	232	0.59	0.21	0.4	0.27	0.4	0.63	0.52	-99.0 6.77	0.03	45
CHR Mouse Kidney 1 AnyLesion	PLS	CDK, TP	19	115	72	26	232	0.58	0.21	0.42	0.28	0.42	0.61	0.52	-99.0 6.71	0.03	45
CHR Mouse Kidney 1 AnyLesion	PLS	TA, TP	19	127	60	27	233	0.63	0.24	0.41	0.3	0.41	0.68	0.55	-98.9 7.03	80.0	46

CHR Mouse Kidney 1 AnyLesion	PLS	TA	13	122	65	33	233	0.58	0.17	0.28	0.21	0.28	0.65	0.47	-99.1	6.74	.055	46
CHR Mouse Kidney 1 AnyLesion	PLS	TP TA	21	117	70	25	233	0.59	0.23	0.46	0.31	0.46	0.63	0.54	-98.9	6.82	0.07	46
CHR Mouse Kidney 1 AnyLesion	J48	CDK, TA, TP	17	121	66	28	232	0.59	0.2	0.38	0.27	0.38	0.65	0.51	-99.0	6.81	0.02	45
CHR Mouse Kidney 1 AnyLesion	J48	CDK, TA	18	128	59	27	232	0.63	0.23	0.4	0.3	0.4	0.68	0.54	-98.9	7.	0.07	45
CHR Mouse Kidney 1 AnyLesion	J48	CDK, TP	19	116	71	26	232	0.58	0.21	0.42	0.28	0.42	0.62	0.52	-99.0	6.74	0.03	45
CHR Mouse Kidney 1 AnyLesion	J48	TA, TP	13	135	52	33	233	0.64	0.2	0.28	0.23	0.28	0.72	0.5	-99.0	7.06	0.	46
CHR Mouse Kidney 1 AnyLesion	J48	TA	12	140	47	34	233	0.65	0.2	0.26	0.23	0.26	0.75	0.5	-99.0	7.15	0.01	46
CHR Mouse Kidney 1 AnyLesion	J48	TP	18	126	61	28	233	0.62	0.23	0.39	0.29	0.39	0.67	0.53	-98.9	6.99	0.05	46
CHR Mouse Kidney 1 AnyLesion	RF	CDK, TA, TP	21	111	76	24	232	0.57	0.22	0.47	0.3	0.47	0.59	0.53	-98.9	6.64	0.05	45
CHR Mouse Kidney 1 AnyLesion	RF	CDK, TA	20	112	75	25	232	0.57	0.21	0.44	0.29	0.44	0.6	0.52	-99.0	6.66	0.03	45
CHR Mouse Kidney 1 AnyLesion	RF	CDK, TP	22	96	91	23	232	0.51	0.19	0.49	0.28	0.49	0.51	0.5	-99.0	6.32	0.	45
CHR Mouse Kidney 1 AnyLesion	RF	TA, TP	20	99	88	26	233	0.51	0.19	0.43	0.26	0.43	0.53	0.48	-99.0	6.41	.029	46
CHR Mouse Kidney 1 AnyLesion	RF	TA	16	110	77	30	233	0.54	0.17	0.35	0.23	0.35	0.59	0.47	-99.1	6.58	.052	46
CHR Mouse Kidney 1 AnyLesion	RF	TP	23	99	88	23	233	0.52	0.21	0.5	0.29	0.5	0.53	0.51	-99.0	6.43	0.02	46
CHR Mouse Kidney 1 AnyLesion	FSM LR	Adriana	18	104	83	26	231	0.53	0.18	0.41	0.25	0.41	0.56	0.48	-99.0	6.42	.028	44
CHR Mouse Kidney 1 AnyLesion	FSM LR	ALogPS, OEstate	17	104	83	29	233	0.52	0.17	0.37	0.23	0.37	0.56	0.46	-99.1	6.47	.06	46
CHR Mouse Kidney 1 AnyLesion	FSM LR	CDK	21	112	75	24	232	0.57	0.22	0.47	0.3	0.47	0.6	0.53	-98.9	6.67	0.05	45
CHR Mouse Kidney 1 AnyLesion	FSM LR	Chemaxo n	14	131	56	32	233	0.62	0.2	0.3	0.24	0.3	0.7	0.5	-99.0	7.	0.	46
CHR Mouse Kidney 1 AnyLesion	FSM LR	Dragon6	21	128	59	25	233	0.64	0.26	0.46	0.33	0.46	0.68	0.57	-98.9	7.08	0.12	46
CHR Mouse Kidney 1	FSM LR	Fragment or	19	112	75	27	233	0.56	0.2	0.41	0.27	0.41	0.6	0.51	-99.0	6.68	0.01	46
CHR Mouse Kidney 1	FSM LR	GSFrag	19	99	88	27	233	0.51	0.18	0.41	0.25	0.41	0.53	0.47	-99.1	6.4	.046	46
CHR Mouse Kidney 1	FSM LR	Inductive	22	83	104	24	233	0.45	0.17	0.48	0.26	0.48	0.44	0.46	-99.1	6.09	.062	46
CHR Mouse Kidney 1	FSM LR	Mera, Mersy	22	119	68	23	232	0.61	0.24	0.49	0.33	0.49	0.64	0.56	-98.9	6.83	0.1	45
CHR Mouse Kidney 1 AnyLesion	FSM LR	QNPR	20	105	82	26	233	0.54	0.2	0.43	0.27	0.43	0.56	0.5	-99.0	6.54	.003	46
CHR Mouse Kidney 1	FSM LR	Spectrop hores	20	135	52	26	233	0.67	0.28	0.43	0.34	0.43	0.72	0.58	-98.8	7.25	0.13	46
CHR Mouse Kidney 1	KNN	Adriana	27	64	123	17	231	0.39	0.18	0.61	0.28	0.61	0.34	0.48	-99.0	5.53	.036	44
CHR Mouse Kidney 1 AnyLesion		ALogPS, OEstate	36	27	160	10	233	0.27				0.78	0.14		-99.1		.08	46

CHR Mouse Kidney 1 AnyLesion	KNN	CDK	33	60	127	12	232	0.4	0.21	0.73	0.32	0.73	0.32	0.53	-98.9 5.29 0.05	45
CHR Mouse Kidney 1 AnyLesion	KNN	Chemaxo n	24	96	91	22	233	0.52	0.21	0.52	0.3	0.52	0.51	0.52	-99.0 6.37 0.03	46
CHR Mouse Kidney 1 AnyLesion	KNN	Dragon6	24	101	86	22	233	0.54	0.22	0.52	0.31	0.52	0.54	0.53	-98.9 6.47 0.05	46
CHR Mouse Kidney 1 AnyLesion	KNN	Fragment or	29	47	140	17	233	0.33	0.17	0.63	0.27	0.63	0.25	0.44	-99.1 5.16 .105	46
CHR Mouse Kidney 1 AnyLesion	KNN	GSFrag	33	45	142	13	233	0.33	0.19	0.72	0.3	0.72	0.24	0.48	-99.0 4.97 .039	46
CHR Mouse Kidney 1 AnyLesion	KNN	Inductive	19	115	72	27	233	0.58	0.21	0.41	0.28	0.41	0.61	0.51	-99.0 6.75 0.02	46
CHR Mouse Kidney 1 AnyLesion	KNN	Mera, Mersy	24	97	90	21	232	0.52	0.21	0.53	0.3	0.53	0.52	0.53	-98.9 6.34 0.04	45
CHR Mouse Kidney 1 AnyLesion	KNN	QNPR	41	15	172	5	233	0.24	0.19	0.89	0.32	0.89	0.08	0.49	-99.0 3.02 .04	46
CHR Mouse Kidney 1 AnyLesion		Spectrop hores	29	107	80	17	233	0.58	0.27	0.63	0.37	0.63	0.57	0.6	-98.8 6.54 0.16	46
CHR Mouse Kidney 1 AnyLesion	LibS VM	Adriana	10	164	23	34	231	0.75	0.3	0.23	0.26	0.23	0.88	0.55	-98.9 7.84 0.12	44
CHR Mouse Kidney 1 AnyLesion	LibS VM	ALogPS, OEstate	7	175	12	39	233	0.78	0.37	0.15	0.22	0.15	0.94	0.54	-98.9 8.33 0.13	46
CHR Mouse Kidney 1 AnyLesion	LibS VM	CDK	7	178	9	38	232	0.8	0.44	0.16	0.23	0.16	0.95	0.55	-98.9 8.6 0.17	45
CHR Mouse Kidney 1 AnyLesion	LibS VM	Chemaxo n	5	163	24	41	233	0.72	0.17	0.11	0.13	0.11	0.87	0.49	-99.0 7.33 .024	46
CHR Mouse Kidney 1 AnyLesion	LibS VM	Dragon6	8	178	9	38	233	0.8	0.47	0.17	0.25	0.17	0.95	0.56	-98.9 8.72 0.19	46
CHR Mouse Kidney 1 AnyLesion	LibS VM	Fragment or	5	176	11	41	233	0.78	0.31	0.11	0.16	0.11	0.94	0.52	-99.0 8.16 0.08	46
CHR Mouse Kidney 1 AnyLesion	LibS VM	GSFrag	11	160	27	35	233	0.73	0.29	0.24	0.26	0.24	0.86	0.55	-98.9 7.78 0.1	46
CHR Mouse Kidney 1 AnyLesion	LibS VM	Inductive	1	178	9	45	233	0.77	0.1	0.02	0.04	0.02	0.95	0.49	-99.0 7.16 .052	46
CHR Mouse Kidney 1 AnyLesion	LibS VM	Mera, Mersy	5	172	15	40	232	0.76	0.25	0.11	0.15	0.11	0.92	0.52	-99.0 7.82 0.04	45
CHR Mouse Kidney 1 AnyLesion	LibS VM	QNPR	4	177	10	42	233	0.78	0.29	0.09	0.13	0.09	0.95	0.52	-99.0 8.08 0.06	46
CHR Mouse Kidney 1 AnyLesion	LibS VM	Spectrop hores	14	149	38	32	233	0.7	0.27	0.3	0.29	0.3	0.8	0.55	-98.9 7.51 0.1	46
CHR Mouse Kidney 1 AnyLesion	MLR A	Adriana	24	111	76	20	231		0.24		0.33		0.59	0.57	-98.9 6.6 0.11	44
CHR Mouse Kidney 1 AnyLesion	Α	ALogPS, OEstate	22	72	115	24	233	0.4	0.16	0.48	0.24	0.48	0.39	0.43	-99.1 5.85 .111	46
CHR Mouse Kidney 1 AnyLesion	MLR A	CDK	22	107	80	23	232	0.56	0.22	0.49	0.3	0.49	0.57	0.53	-98.9 6.56 0.05	45
CHR Mouse Kidney 1 AnyLesion	MLR A	Chemaxo n	18	106	81	28	233	0.53	0.18	0.39	0.25	0.39	0.57	0.48	-99.0 6.54 .034	46
CHR Mouse Kidney 1	MLR															
AnyLesion	Α	Dragon6	24	101	86	22	233	0.54	0.22	0.52	0.31	0.52	0.54	0.53	-98.9 6.47 0.05	46

CHR Mouse Kidney 1 AnyLesion																	
OUD M	MLR A	GSFrag	15	115	72	31	233	0.56	0.17	0.33	0.23	0.33	0.61	0.47	-99.1 6.66	.049	46
CHR Mouse Kidney 1 AnyLesion	MLR A		17	111	76	29	233	0.55	0.18	0.37	0.24	0.37	0.59	0.48	-99.0 6.62	.03	46
CHR Mouse Kidney 1	MLR	Mera,															
AnyLesion CHR Mouse Kidney 1	A MLR	Mersy	16	91	96	29	232	0.46	0.14	0.36	0.2	0.36	0.49	0.42	-99.2 6.13	.125	45
AnyLesion CHR Mouse Kidney 1	A MLR	QNPR Spectrop	26	96	91	20	233	0.52	0.22	0.57	0.32	0.57	0.51	0.54	-98.9 6.35	0.06	46
AnyLesion	Α	hores	22	117	70	24	233	0.6	0.24	0.48	0.32	0.48	0.63	0.55	-98.9 6.82	80.0	46
CHR Mouse Kidney 1 AnyLesion		Adriana	22	92	95	22	231	0.49	0.19	0.5	0.27	0.5	0.49	0.5	-99.0 6.2	.006	44
CHR Mouse Kidney 1 AnyLesion		ALogPS, OEstate	17	111	76	29	233	0.55	0.18	0.37	0.24	0.37	0.59	0.48	-99.0 6.62	.03	46
CHR Mouse Kidney 1 AnyLesion		CDK	20	113	74	25	232	0.57	0.21	0.44	0.29	0.44	0.6	0.52	-99.0 6.68	0.04	45
CHR Mouse Kidney 1		Chemaxo															
AnyLesion CHR Mouse Kidney 1	PLS	n	18	116	71	28	233	0.58	0.2	0.39	0.27	0.39	0.62	0.51	-99.0 6.76	0.01	46
AnyLesion	PLS	Dragon6 Fragment	17	135	52	29	233	0.65	0.25	0.37	0.3	0.37	0.72	0.55	-98.9 7.19	80.0	46
CHR Mouse Kidney 1 AnyLesion	PLS	or	18	114	73	28	233	0.57	0.2	0.39	0.26	0.39	0.61	0.5	-99.0 6.71	0.	46
CHR Mouse Kidney 1 AnyLesion	PLS	GSFrag	21	95	92	25	233	0.5	0.19	0.46	0.26	0.46	0.51	0.48	-99.0 6.34	.028	46
CHR Mouse Kidney 1 AnyLesion	PLS	Inductive Mera,	25	110	77	21	233	0.58	0.25	0.54	0.34	0.54	0.59	0.57	-98.9 6.66	0.11	46
CHR Mouse Kidney 1 AnyLesion	PLS	Mersy	20	108	79	25	232	0.55	0.2	0.44	0.28	0.44	0.58	0.51	-99.0 6.57	0.02	45
CHR Mouse Kidney 1 AnyLesion	PLS	QNPR	16	111	76	30	233	0.55	0.17	0.35	0.23	0.35	0.59	0.47	-99.1 6.6	.048	46
CHR Mouse Kidney 1 AnyLesion	PLS	Spectrop hores	23	117	70	23	233	0.6	0.25	0.5	0.33	0.5	0.63	0.56	-98.9 6.82	0.1	46
CHR Mouse Kidney 1 AnyLesion	J48	Adriana	15	150	37	29	231	0.71	0.29	0.34	0.31	0.34	0.8	0.57	-98.9 7.51	0.13	44
		ALogPS,															
CHR Mouse Kidney 1 AnyLesion	J48	OEstate	12	121	66	34	233	0.57	0.15	0.26	0.19	0.26	0.65	0.45	-99.1 6.67	.078	46
CHR Mouse Kidney 1 AnyLesion	J48	Chemaxo n	20	131	56	26	233	0.65	0.26	0.43	0.33	0.43	0.7	0.57	-98.9 7.14	0.11	46
CHR Mouse Kidney 1 AnyLesion	J48	Dragon6	15	140	47	31	233	0.67	0.24	0.33	0.28	0.33	0.75	0.54	-98.9 7.28	0.07	46
CHR Mouse Kidney 1	1	Fragment															
AnyLesion CHR Mouse Kidney 1		or	21	126	61	25	233	0.63	0.26	0.46	0.33	0.46	0.67	0.57	-98.9 7.03		46
AnyLesion CHR Mouse Kidney 1	J48	GSFrag	17	122	65	29	233	0.6	0.21	0.37	0.27	0.37	0.65	0.51	-99.0 6.87	0.02	46
AnyLesion	J48	Inductive Mera,	16	135	52	30	233	0.65	0.24	0.35	0.28	0.35	0.72	0.53	-98.9 7.17	0.06	46
CHR Mouse Kidney 1 AnyLesion	J48	Mersy	17	129	58	28	232	0.63	0.23	0.38	0.28	0.38	0.69	0.53	-98.9 7.01	0.06	45
CHR Mouse Kidney 1 AnyLesion	J48	QNPR	15	128	59	31	233	0.61	0.2	0.33	0.25	0.33	0.68	0.51	-99.0 6.96	0.01	46
CHR Mouse Kidney 1 AnyLesion	J48	Spectrop hores	17	140	47	29	233	0.67	0.27	0.37	0.31	0.37	0.75	0.56	-98.9 7.33	0.11	46
CHR Mouse Kidney 1 AnyLesion	J48	CDK	14	122	65	31	232	0.59	0.18	0.31	0.23	0.31	0.65	0.48	-99.0 6.75	.03	45
CHR Mouse Liver 1 AnyLesion	RF	Adriana	90	43	63	35	231	0.58	0.59	0.72	0.65	0.72	0.41	0.56		0.13	125
		ALogPS,							0.00	0.7	0.00	0.7	0.5	0.6	00.0 0.45	0.04	126
CHR Mouse Liver 1	RF	OEstate	88	54	53	38	233	0.61	0.62	0.7	0.66	0.7	0.5	0.6	-98.8 8.15	0.21	126
CHR Mouse Liver 1 AnyLesion CHR Mouse Liver 1 AnyLesion	RF RF	•	88 86	54 47	53 60	38	233	0.61	0.62	0.7	0.63	0.7	0.5	0.56	-98.9 7.89		125

0110.14																		
CHR Mouse Liver 1 AnyLesion	RF	Dragon6	89	51	56	37	233	0.6	0.61	0.71	0.66	0.71	0.48	0.59	-98.8	8.03	0.19	126
CHR Mouse Liver 1		Fragment										-			00.0		0.10	
AnyLesion	RF	or	92	60	47	34	233	0.65	0.66	0.73	0.69	0.73	0.56	0.65	-98.7	8.31	0.3	126
CHR Mouse Liver 1 AnyLesion	RF	GSFrag	83	52	55	43	233	0.58	0.6	0.66	0.63	0.66	0.49	0.57	-98.9	8.14	0.15	126
CHR Mouse Liver 1 AnyLesion	RF	Inductive	91	52	55	35	233	0.61	0.62	0.72	0.67	0.72	0.49	0.6	-98.8	8.03	0.21	126
CHR Mouse Liver 1 AnyLesion	RF	Mera, Mersy	94	47	60	31	232	0.61	0.61	0.75	0.67	0.75	0.44	0.6	-98.8	7.76	0.2	125
CHR Mouse Liver 1 AnyLesion	RF	QNPR	82	55	52	44	233	0.59	0.61	0.65	0.63	0.65	0.51	0.58	-98.8	8.26	0.17	126
CHR Mouse Liver 1 AnyLesion	RF	Spectrop hores	87	44	63	39	233	0.56	0.58	0.69	0.63	0.69	0.41	0.55	-98.9	7.79	0.11	126
CHR Mouse Liver 1 AnyLesion	ASN N	Adriana	74	60	46	51	231	0.58	0.62	0.59	0.6	0.59	0.57	0.58	-98.8	8.52	0.16	125
	A C NI	AL caDC																
CHR Mouse Liver 1 AnyLesion	ASN N	ALogPS, OEstate	81	71	36	45	233	0.65	0.69	0.64	0.67	0.64	0.66	0.65	-98.7	8.89	0.31	126
CHR Mouse Liver 1 AnyLesion	ASN N	CDK	78	66	41	47	232	0.62	0.66	0.62	0.64	0.62	0.62	0.62	-98.8	8.7	0.24	125
CHR Mouse Liver 1	ASN N	Chemaxo	-															
AnyLesion CHR Mouse Liver 1	ASN	n	76	61	46	50	233	0.59	0.62	0.6	0.61	0.6	0.57	0.59	-98.8	0.04	0.17	126
AnyLesion	N ASN	Dragon6 Fragment	75	64	43	51	233	0.6	0.64	0.6	0.61	0.6	0.6	0.6	-98.8	8.66	0.19	126
CHR Mouse Liver 1 AnyLesion	N	or	74	73	34	52	233	0.63	0.69	0.59	0.63	0.59	0.68	0.63	-98.7	9.03	0.27	126
CHR Mouse Liver 1 AnyLesion	ASN N	GSFrag	74	70	37	52	233	0.62	0.67	0.59	0.62	0.59	0.65	0.62	-98.8	8.9	0.24	126
CHR Mouse Liver 1 AnyLesion	ASN N	Inductive	71	65	42	55	233	0.58	0.63	0.56	0.59	0.56	0.61	0.59	-98.8	8.72	0.17	126
CHR Mouse Liver 1 AnyLesion	ASN N	Mera, Mersy	70	65	42	55	232	0.58	0.63	0.56	0.59	0.56	0.61	0.58	-98.8	8.7	0.17	125
CHR Mouse Liver 1 AnyLesion	ASN N	QNPR	68	63	44	58	233	0.56	0.61	0.54	0.57	0.54	0.59	0.56	-98.9			126
CHR Mouse Liver 1	ASN	Spectrop																
AnyLesion CHR Mouse Liver 1	N ASN	hores CDK, TA,	70	58	49	56	233	0.55	0.59	0.56	0.57	0.56	0.54	0.55	-98.9	8.46	0.1	126
AnyLesion	N ASN	TP	60	55	52	65	232	0.5	0.54	0.48	0.51	0.48	0.51	0.5	-99.0	8.34	.006	125
CHR Mouse Liver 1 AnyLesion	N	CDK, TA	65	53	54	60	232	0.51	0.55	0.52	0.53	0.52	0.5	0.51	-99.0	8.27	0.02	125
CHR Mouse Liver 1 AnyLesion	ASN N	CDK, TP	74	52	55	51	232	0.54	0.57	0.59	0.58	0.59	0.49	0.54	-98.9	8.2	0.08	125
CHR Mouse Liver 1 AnyLesion	ASN N	TA, TP	66	52	55	60	233	0.51	0.55	0.52	0.53	0.52	0.49	0.5	-99.0	8.24	0.01	126
CHR Mouse Liver 1	ASN		67	ΕO	E E	ΕO	222	0.54	0.55	0.50	0.54	0.50	0.40	0.54	00.0	0.04	0.00	100
AnyLesion CHR Mouse Liver 1	N ASN	TA	67	52	55	59	233	0.51	0.55	0.53	0.54	0.53	0.49	0.51	-99.0	0.24	0.02	126
AnyLesion	N	TP	71	45	62	55	233	0.5	0.53	0.56	0.55	0.56	0.42	0.49	-99.0	7.97	.016	126
CHR Mouse Liver 1 AnyLesion	FSM LR	CDK, TA, TP	62	55	52	63	232	0.5	0.54	0.5	0.52	0.5	0.51	0.51	-99.0	8.34	0.01	125
,···								3.0	0.01		0.02	3.0	0.01	<u> </u>		2.01	<u> </u>	0
CHR Mouse Liver 1 AnyLesion	FSM LR	CDK, TA	63	55	52	62	232	0.51	0.55	0.5	0.53	0.5	0.51	0.51	-99.0	8.34	0.02	125
	F011																	
CHR Mouse Liver 1 AnyLesion	FSM LR	CDK, TP	78	54	53	47	232	0.57	0.6	0.62	0.61	0.62	0.5	0.56	-98.9	8.24	0.13	125
OUD Marra 11	FSM																	
CHR Mouse Liver 1 AnyLesion	LR	TA, TP	68	51	56	58	233	0.51	0.55	0.54	0.54	0.54	0.48	0.51	-99.0	8.2	0.02	126
CHR Mouse Liver 1 AnyLesion	FSM LR	TA	64	61	46	62	233	0.54	0.58	0.51	0.54	0.51	0.57	0.54	-98.9	8.58	0.08	126

CHR Mouse Liver 1 AnyLesion	FSM LR	TP	70	52	55	56	233	0.52	0.56	0.56	0.56	0.56	0.49	0.52	-99.0	8.23	0.04	126
CHR Mouse Liver 1 AnyLesion	KNN	CDK, TA, TP	54	62	45	71	232	0.5	0.55	0.43	0.48	0.43	0.58	0.51	-99.0	8.59	0.01	125
CHR Mouse Liver 1 AnyLesion	KNN	CDK, TA	31	94	13	94	232	0.54	0.7	0.25	0.37	0.25	0.88	0.56	-98.9	9.94	0.16	125
CHR Mouse Liver 1 AnyLesion	KNN	CDK, TP	85	52	55	40	232	0.59	0.61	0.68	0.64	0.68	0.49	0.58	-98.8	8.09	0.17	125
CHR Mouse Liver 1 AnyLesion	KNN	TA, TP	72	61	46	54	233	0.57	0.61	0.57	0.59	0.57	0.57	0.57	-98.9	8.56	0.14	126
CHR Mouse Liver 1 AnyLesion	KNN	TA	34	84	23	92	233	0.51	0.6	0.27	0.37	0.27	0.79	0.53	-98.9	9.35	0.06	126
CHR Mouse Liver 1 AnyLesion	KNN	TP	99	37	70	27	233	0.58	0.59	0.79	0.67	0.79	0.35	0.57	-98.9	7.28	0.15	126
CHR Mouse Liver 1 AnyLesion	LibS VM	CDK, TA, TP	82	45	62	43	232	0.55	0.57	0.66	0.61	0.66	0.42	0.54	-98.9	7.87	0.08	125
CHR Mouse Liver 1 AnyLesion	LibS VM	CDK, TA	69	51	56	56	232	0.52	0.55	0.55	0.55	0.55	0.48	0.51	-99.0	8.18	0.03	125
CHR Mouse Liver 1 AnyLesion	LibS VM	CDK, TP	84	51	56	41	232	0.58	0.6	0.67	0.63	0.67	0.48	0.57	-98.9	8.07	0.15	125
CHR Mouse Liver 1 AnyLesion	LibS VM	TA, TP	73	47	60	53	233	0.52	0.55	0.58	0.56	0.58	0.44	0.51	-99.0	8.04	0.02	126
CHR Mouse Liver 1 AnyLesion	LibS VM	TA	76	52	55	50	233	0.55	0.58	0.6	0.59	0.6	0.49	0.54	-98.9	8.2	0.09	126
CHR Mouse Liver 1 AnyLesion		TP CDK, TA,	85	43	64	41	233	0.55	0.57	0.67	0.62	0.67	0.4	0.54	-98.9	7.78	0.08	126
CHR Mouse Liver 1 AnyLesion	A MLR	TP	67	49	58	58	232	0.5	0.54	0.54	0.54	0.54	0.46	0.5	-99.0	8.11	.006	125
CHR Mouse Liver 1 AnyLesion	A MLR	CDK, TA	64	48	59	61	232	0.48	0.52	0.51	0.52	0.51	0.45	0.48	-99.0	8.08	.039	125
CHR Mouse Liver 1 AnyLesion CHR Mouse Liver 1	A MLR	CDK, TP	71	59	48	54	232	0.56	0.6	0.57	0.58	0.57	0.55	0.56	-98.9	8.47	0.12	125
AnyLesion CHR Mouse Liver 1	A MLR	TA, TP	63	51	56	63	233	0.49	0.53	0.5	0.51	0.5	0.48	0.49	-99.0	8.21	.023	126
AnyLesion CHR Mouse Liver 1	A MLR	TA	65	53	54	61	233	0.51	0.55	0.52	0.53	0.52	0.5	0.51	-99.0	8.28	0.01	126
AnyLesion CHR Mouse Liver 1	Α	TP CDK, TA,	71	49	58	55	233	0.52	0.55	0.56	0.56	0.56	0.46	0.51	-99.0	8.12	0.02	126
AnyLesion CHR Mouse Liver 1	PLS		62	57	50	63	232	0.51	0.55	0.5	0.52	0.5	0.53	0.51	-99.0	8.42	0.03	125
AnyLesion CHR Mouse Liver 1	PLS	CDK, TA	63	54	53	62	232	0.5	0.54	0.5	0.52	0.5	0.5	0.5	-99.0	8.3	0.01	125
AnyLesion CHR Mouse Liver 1		CDK, TP	74	55	52	51	232	0.56	0.59	0.59	0.59	0.59	0.51	0.55	-98.9			
AnyLesion CHR Mouse Liver 1		TA, TP	65	59 58	48 49	61	233	0.53	0.58	0.52	0.54	0.52	0.55	0.53	-98.9			
AnyLesion CHR Mouse Liver 1 AnyLesion	PLS PLS		66 75	58 50	49 57	60 51	233	0.53	0.57	0.52	0.55	0.52	0.54	0.53	-98.9 -98.9			
CHR Mouse Liver 1 AnyLesion	J48	CDK, TA, TP	61	57	50	64	232	0.51		0.49				0.51	-99.0			
CHR Mouse Liver 1 AnyLesion	J48	CDK, TA	68	58	49	57	232	0.54	0.58	0.54	0.56	0.54	0.54	0.54	-98.9			
CHR Mouse Liver 1 AnyLesion	J48	CDK, TP	71	49	58	54	232	0.52	0.55	0.57	0.56	0.57	0.46	0.51	-99.0		0.03	
CHR Mouse Liver 1 AnyLesion		TA, TP	66	51	56	60	233			0.52				0.5	-99.0			126

CHR Mouse Liver 1	140	т.	70		40		000	0.55	0.50	0.50	0.55	0.50	0.51	0.55	00.0	0.40		
AnyLesion CHR Mouse Liver 1	J48	TA	70	58	49	56	233	0.55	0.59	0.56	0.57	0.56	0.54	0.55	-98.9	8.46	0.1	12
AnyLesion CHR Mouse Liver 1	J48	TP CDK, TA,	71	43	64	55	233	0.49	0.53	0.56	0.54	0.56	0.4	0.48	-99.0	7.89	.035	12
AnyLesion	RF	TP	84	31	76	41	232	0.5	0.53	0.67	0.59	0.67	0.29	0.48	-99.0	7.28	.041	12
CHR Mouse Liver 1 AnyLesion	RF	CDK, TA	91	33	74	34	232	0.53	0.55	0.73	0.63	0.73	0.31	0.52	-99.0	7.26	0.04	12
CHR Mouse Liver 1 AnyLesion	RF	CDK, TP	96	36	71	29	232	0.57	0.57	0.77	0.66	0.77	0.34	0.55	-98.9	7.28	0.12	12
CHR Mouse Liver 1 AnyLesion	RF	TA, TP	93	36	71	33	233	0.55	0.57	0.74	0.64	0.74	0.34	0.54	-98.9	7.38	0.08	12
CHR Mouse Liver 1 AnyLesion	RF	TA	87	32	75	39	233	0.51	0.54	0.69	0.6	0.69	0.3	0.49	-99.0	7.31	.011	12
CHR Mouse Liver 1 AnyLesion	RF	TP	100	39	68	26	233	0.6	0.6	0.79	0.68	0.79	0.36	0.58	-98.8	7.34	0.18	12
CHR Mouse Liver 1	FSM	A alui a .a a	00	47	50	40	004	0.50	0.50	0.00	0.00	0.00	0.44	0.55	00.0	7.00	0.4	40
AnyLesion	LR	Adriana	82	47	59	43	231	0.56	0.58	0.66	0.62	0.66	0.44	0.55	-98.9	7.96	0.1	12
CHR Mouse Liver 1 AnyLesion	LR	ALogPS, OEstate	77	73	34	49	233	0.64	0.69	0.61	0.65	0.61	0.68	0.65	-98.7	9.01	0.29	12
CHR Mouse Liver 1 AnyLesion	FSM LR	CDK	77	65	42	48	232	0.61	0.65	0.62	0.63	0.62	0.61	0.61	-98.8	8.66	0.22	12
CHR Mouse Liver 1 AnyLesion	FSM LR	Chemaxo n	75	56	51	51	233	0.56	0.6	0.6	0.6	0.6	0.52	0.56	-98 9	8.36	0.12	12
CHR Mouse Liver 1	FSM					-												
AnyLesion	LR	Dragon6	78	62	45	48	233	0.6	0.63	0.62	0.63	0.62	0.58	0.6	-98.8	8.56	0.2	12
CHR Mouse Liver 1 AnyLesion	LR	Fragment or	75	67	40	51	233	0.61	0.65	0.6	0.62	0.6	0.63	0.61	-98.8	8.78	0.22	12
CHR Mouse Liver 1 AnyLesion	FSM LR	GSFrag	66	85	22	60	233	0.65	0.75	0.52	0.62	0.52	0.79	0.66	-98.7	9.63	0.33	12
CHR Mouse Liver 1 AnyLesion	FSM LR	Inductive	103	32	75	23	233	0.58	0.58	0.82	0.68	0.82	0.3	0.56	-98.9	6.95	0.14	12
CHR Mouse Liver 1 AnyLesion	FSM LR	Mera, Mersy	70	69	38	55	232	0.6	0.65	0.56	0.6	0.56	0.64	0.6	-98.8	8.86	0.2	12
CHR Mouse Liver 1	FSM																	
AnyLesion	LR	QNPR	68	64	43	58	233	0.57	0.61	0.54	0.57	0.54	0.6	0.57	-98.9	8.69	0.14	12
CHR Mouse Liver 1 AnyLesion	FSM LR	Spectrop hores	75	57	50	51	233	0.57	0.6	0.6	0.6	0.6	0.53	0.56	-98.9	8.4	0.13	12
CHR Mouse Liver 1 AnyLesion	KNN	Adriana	74	57	49	51	231	0.57	0.6	0.59	0.6	0.59	0.54	0.56	-98.9	8.4	0.13	12
CHR Mouse Liver 1 AnyLesion	KNN	ALogPS, OEstate	87	61	46	39	233	0.64	0.65	0.69	0.67	0.69	0.57	0.63	-98.7	8.43	0.26	12
CHR Mouse Liver 1 AnyLesion	KNN	CDK	71	64	43	54	232	0.58	0.62	0.57	0.59	0.57	0.6	0.58	-98.8	8.66	0.17	12
CHR Mouse Liver 1 AnyLesion	KNN	Chemaxo	84	58	49	42	233	0.61	0.63	0.67	0.65	0.67	0.54	0.6		8.35		12
CHR Mouse Liver 1 AnyLesion	KNN	Dragon6	86	59	48	40	233	0.62	0.64	0.68	0.66	0.68	0.55	0.62			0.24	
CHR Mouse Liver 1 AnyLesion	KNN	Fragment	62	86	21	64	233	0.64	0.75	0.49	0.59	0.49	0.8	0.65		9.69		12
AllyLesion																		

CHR Mouse Liver 1 AnyLesion	KNN	Inductive	78	54	53	48	233	0.57	0.6	0.62	0.61	0.62	0.5	0.56	-98.9 8.26 0.	12 126
CHR Mouse Liver 1 AnyLesion	KNN	Mera, Mersy	65	67	40	60	232	0.57	0.62	0.52	0.57	0.52	0.63	0.57	-98.9 8.8 0.	15 125
CHR Mouse Liver 1		<u> </u>		00	40	7.4			0.74				0.00	0.00		
AnyLesion CHR Mouse Liver 1	KNN	QNPR Spectrop	52	89	18	74	233	0.61	0.74	0.41	0.53	0.41	0.83	0.62	-98.8 9.85 0.	27 126
AnyLesion	KNN	hores	65	58	49	61	233	0.53	0.57	0.52	0.54	0.52	0.54	0.53	-98.9 8.47 0.	06 126
CHR Mouse Liver 1	LibS															
AnyLesion	VM	Adriana	74	59	47	51	231	0.58	0.61	0.59	0.6	0.59	0.56	0.57	-98.9 8.48 0.	15 125
CHR Mouse Liver 1	LibS	ALogPS,														
AnyLesion	VM	OEstate	89	70	37	37	233	0.68	0.71	0.71	0.71	0.71	0.65	0.68	-98.6 8.75 0.	36 126
CHR Mouse Liver 1	LibS															
AnyLesion	VM	CDK	83	60	47	42	232	0.62	0.64	0.66	0.65	0.66	0.56	0.61	-98.8 8.42 0.	23 125
CHR Mouse Liver 1	LibS	Chemaxo														
AnyLesion	VM	n	72	63	44	54	233	0.58	0.62	0.57	0.6	0.57	0.59	0.58	-98.8 8.64 0.	16 126
CHR Mouse Liver 1	LibS															
AnyLesion	VM	Dragon6	78	60	47	48	233	0.59	0.62	0.62	0.62	0.62	0.56	0.59	-98.8 8.49 0.	18 126
CHR Mouse Liver 1	LibS	Fragment														
AnyLesion	VM	or	83	60	47	43	233	0.61	0.64	0.66	0.65	0.66	0.56	0.61	-98.8 8.44 0.	22 126
OUD M	LibS															
CHR Mouse Liver 1 AnyLesion	VM	GSFrag	70	68	39	56	233	0.59	0.64	0.56	0.6	0.56	0.64	0.6	-98.8 8.84 0.	19 126
	LibS															
CHR Mouse Liver 1 AnyLesion	VM	Inductive	71	60	47	55	233	0.56	0.6	0.56	0.58	0.56	0.56	0.56	-98.9 8.53 0.	12 126
	LibS	Mera,														
CHR Mouse Liver 1 AnyLesion	VM	Mersy	77	64	43	48	232	0.61	0.64	0.62	0.63	0.62	0.6	0.61	-98.8 8.63 0.	21 125
	LibS															
CHR Mouse Liver 1 AnyLesion	VM	QNPR	74	61	46	52	233	0.58	0.62	0.59	0.6	0.59	0.57	0.58	-98.8 8.55 0.	16 126
	LibS	Spectrop														
CHR Mouse Liver 1 AnyLesion	VM	hores	69	63	44	57	233	0.57	0.61	0.55	0.58	0.55	0.59	0.57	-98.9 8.65 0.	14 126
CHR Mouse Liver 1 AnyLesion	MLR A	Adriana	69	56	50	56	231	0.54	0.58	0.55	0.57	0.55	0.53	0.54	-98.9 8.39 0.	08 125
AllyLesion			09	30	30	50	231	0.54	0.56	0.55	0.57	0.55	0.55	0.54	-90.9 0.39 0.	00 123
CHR Mouse Liver 1		ALogPS, OEstate	77	77	20	40	222	0.66	0.72	0.61	0.66	0.61	0.72	0.67	097 019 0	22 126
AnyLesion CHR Mouse Liver 1	A MLR	OEstate	77	77	30	49	233	0.66	0.72	0.61	0.66	0.61	0.72	0.67	-98.7 9.18 0.	33 120
AnyLesion	A	CDK Chemaxo	67	68	39	58	232	0.58	0.63	0.54	0.58	0.54	0.64	0.59	-98.8 8.83 0.	17 125
CHR Mouse Liver 1 AnyLesion	A	n	69	64	43	57	233	0.57	0.62	0.55	0.58	0.55	0.6	0.57	-98.9 8.69 0.	15 126
CHR Mouse Liver 1	MLR															
AnyLesion CHR Mouse Liver 1	A MLR	Dragon6 Fragment	74	67	40	52	233	0.61	0.65	0.59	0.62	0.59	0.63	0.61	-98.8 8.78 0.	21 126
AnyLesion	Α	or	69	56	51	57	233	0.54	0.58	0.55	0.56	0.55	0.52	0.54	-98.9 8.39 0.	07 126
CHR Mouse Liver 1 AnyLesion	MLR A	GSFrag	63	64	43	63	233	0.55	0.59	0.5	0.54	0.5	0.6	0.55	-98.9 8.7 ().1 126
CHR Mouse Liver 1	MLR	_														
AnyLesion	A MIR	Inductive Mera,	80	65	42	46	233	0.62	0.66	0.63	0.65	0.63	0.61	0.62	-98.8 8.66 0.	24 126
CHR Mouse Liver 1 AnyLesion	Α	Mersy	63	61	46	62	232	0.53	0.58	0.5	0.54	0.5	0.57	0.54	-98.9 8.57 0.	07 125
CHR Mouse Liver 1	MLR	ONDD	70	50	10	56	222	0.55	0.50	0.56	0.57	0.56	0.55	0.55	080 040 0	11 100
AnyLesion CHR Mouse Liver 1	A MLR	QNPR Spectrop	70	59	48	56	233	0.55	0.59	0.56	0.57	0.56	0.55	0.55	-98.9 8.49 0.	11 126
AnyLesion	Α	hores	73	58	49	53	233	0.56	0.6	0.58	0.59	0.58	0.54	0.56	-98.9 8.44 0.	12 126

CHR Mouse Liver 1																	
AnyLesion	PLS	Adriana	67	68	38	58	231	0.58	0.64	0.54	0.58	0.54	0.64	0.59	-98.8 8.86	0.18	125
CHR Mouse Liver 1 AnyLesion	PLS	ALogPS, OEstate	78	71	36	48	233	0.64	0.68	0.62	0.65	0.62	0.66	0.64	-98.7 8.92	0.28	126
CHR Mouse Liver 1 AnyLesion	PLS	CDK	76	63	44	49	232	0.6	0.63	0.61	0.62	0.61	0.59	0.6	-98.8 8.59	0.2	125
CHR Mouse Liver 1 AnyLesion	PLS	Chemaxo n	71	65	42	55	233	0.58	0.63	0.56	0.59	0.56	0.61	0.59	-98.8 8.72	0 17	126
CHR Mouse Liver 1 AnyLesion		Dragon6	76	59	48	50	233	0.58	0.61	0.6	0.61	0.6	0.55	0.58	-98.8 8.46		126
CHR Mouse Liver 1 AnyLesion	PLS	Fragment or	76	70	37	50	233	0.63	0.67	0.6	0.64	0.6	0.65	0.63	-98.7 8.89		126
CHR Mouse Liver 1 AnyLesion	PLS	GSFrag	65	78	29	61	233	0.61	0.69	0.52	0.59	0.52	0.73	0.62	-98.8 9.28	0.25	126
CHR Mouse Liver 1 AnyLesion	PLS	Inductive	78	60	47	48	233	0.59	0.62	0.62	0.62	0.62	0.56	0.59	-98.8 8.49	0.18	126
CHR Mouse Liver 1 AnyLesion	PLS	Mera, Mersy	69	65	42	56	232	0.58	0.62	0.55	0.58	0.55	0.61	0.58	-98.8 8.71	0.16	125
CHR Mouse Liver 1 AnyLesion	PLS	QNPR	70	67	40	56	233	0.59	0.64	0.56	0.59	0.56	0.63	0.59	-98.8 8.8	0.18	126
CHR Mouse Liver 1 AnyLesion	PLS	Spectrop hores	74	63	44	52	233	0.59	0.63	0.59	0.61	0.59	0.59	0.59	-98.8 8.63	0.18	126
CHR Mouse Liver 1 AnyLesion	J48	Adriana	80	55	51	45	231	0.58	0.61	0.64	0.63	0.64	0.52	0.58	-98.8 8.28	0.16	125
CHR Mouse Liver 1 AnyLesion	J48	ALogPS, OEstate	81	65	42	45	233	0.63	0.66	0.64	0.65	0.64	0.61	0.63	-98.7 8.65	0.25	126
CHR Mouse Liver 1 AnyLesion	J48	CDK	70	63	44	55	232	0.57	0.61	0.56	0.59	0.56	0.59	0.57	-98.9 8.63	0.15	125
CHR Mouse Liver 1 AnyLesion	J48	Chemaxo n	68	63	44	58	233	0.56	0.61	0.54	0.57	0.54	0.59	0.56	-98.9 8.65	0.13	126
CHR Mouse Liver 1 AnyLesion	J48	Dragon6	72	59	48	54	233	0.56	0.6	0.57	0.59	0.57	0.55	0.56	-98.9 8.49	0.12	126
CHR Mouse Liver 1 AnyLesion	J48	Fragment or	78	71	36	48	233	0.64	0.68	0.62	0.65	0.62	0.66	0.64	-98.7 8.92	0.28	126
CHR Mouse Liver 1 AnyLesion	J48	GSFrag	70	63	44	56	233	0.57	0.61	0.56	0.58	0.56	0.59	0.57	-98.9 8.65	0.14	126
CHR Mouse Liver 1 AnyLesion	J48	Inductive	80	67	40	46	233	0.63	0.67	0.63	0.65	0.63	0.63	0.63	-98.7 8.74	0.26	126
CHR Mouse Liver 1 AnyLesion	J48	Mera, Mersy	78	66	41	47	232	0.62	0.66	0.62	0.64	0.62	0.62	0.62	-98.8 8.7	0.24	125
CHR Mouse Liver 1 AnyLesion	J48	QNPR	69	60	47	57	233	0.55	0.59	0.55	0.57	0.55	0.56	0.55	-98.9 8.54	0.11	126
CHR Mouse Liver 1 AnyLesion	J48	Spectrop hores	75	50	57	51	233	0.54	0.57	0.6	0.58	0.6	0.47	0.53	-98.9 8.14	0.06	126
CHR Mouse Liver 2 PreneoplasticLesion	RF	Adriana	54	64	77	36	231	0.51	0.41	0.6	0.49	0.6	0.45	0.53	-98.9 7.41	0.05	90
CHR Mouse Liver 2 PreneoplasticLesion	RF	ALogPS, OEstate	59	76	67	31	233	0.58	0.47	0.66	0.55	0.66	0.53	0.59	-98.8 7.66	0.18	90
CHR Mouse Liver 2 PreneoplasticLesion	RF	CDK	54	67	75	36	232	0.52	0.42	0.6	0.49	0.6	0.47	0.54	-98.9 7.48	0.07	90
CHR Mouse Liver 2 PreneoplasticLesion	RF	Chemaxo n	61	72	71	29	233	0.57	0.46	0.68	0.55	0.68	0.5	0.59	-98.8 7.52	0.18	90
CHR Mouse Liver 2 PreneoplasticLesion	RF	Dragon6	55	76	67	35	233	0.56	0.45	0.61	0.52	0.61	0.53	0.57	-98.9 7.71	0.14	90
CHR Mouse Liver 2 PreneoplasticLesion	RF	Fragment or	61	86	57	29	233	0.63	0.52	0.68	0.59	0.68	0.6	0.64	-98.7 7.91	0.27	90
CHR Mouse Liver 2 PreneoplasticLesion	RF	GSFrag	58	75	68	32	233	0.57	0.46	0.64	0.54	0.64	0.52	0.58	-98.8 7.65		90
CHR Mouse Liver 2 PreneoplasticLesion	RF	Inductive	55	77	66	35	233	0.57	0.45	0.61	0.52	0.61	0.54	0.57	-98.9 7.74	0.15	90
		Mera,															
CHR Mouse Liver 2 PreneoplasticLesion	RF	Mersy	58	72	70	32	232	0.56	0.45	0.64	0.53	0.64	0.51	0.58	-98.8 7.58	0.15	90

r																	
CHR Mouse Liver 2 PreneoplasticLesion	RF	Spectrop hores	55	68	75	35	233	0.53	0.42	0.61	0.5	0.61	0.48	0.54	-98.9 7.	49 N NS	90
CHR Mouse Liver 2	ASN	110103	- 00	- 00	7.5	- 55	200	0.00	0.72	0.01	0.0	0.01	0.40	0.04	-30.5 7.	45 0.00	30
PreneoplasticLesion	N	Adriana	37	87	54	53	231	0.54	0.41	0.41	0.41	0.41	0.62	0.51	-99.0 8.	08 0.03	90
CHR Mouse Liver 2	ASN	ALogPS,															
PreneoplasticLesion	N	OEstate	43	92	51	47	233	0.58	0.46	0.48	0.47	0.48	0.64	0.56	-98.9 8.	22 0.12	90
CHR Mouse Liver 2 PreneoplasticLesion	ASN N	CDK	51	102	40	39	232	0.66	0.56	0.57	0.56	0.57	0.72	0.64	-98.7 8.	55 0.28	90
CHR Mouse Liver 2	ASN	Chemaxo	<u> </u>	102	40	- 55	202	0.00	0.00	0.07	0.00	0.07	0.72	0.04	-30.1 0.	00 0.20	30
PreneoplasticLesion	N	n	38	87	56	52	233	0.54	0.4	0.42	0.41	0.42	0.61	0.52	-99.0 8.	05 0.03	90
CHR Mouse Liver 2 PreneoplasticLesion	ASN N	Dragon6	50	96	47	40	233	0.63	0.52	0.56	0.53	0.56	0.67	0.61	-98.8 8.	33 0.22	90
CHR Mouse Liver 2	ASN	Fragment															
PreneoplasticLesion	N ASN	or	45	107	36	45	233	0.65	0.56	0.5	0.53	0.5	0.75	0.62	-98.8 8.	72 0.25	90
CHR Mouse Liver 2 PreneoplasticLesion	N	GSFrag	36	83	60	54	233	0.51	0.38	0.4	0.39	0.4	0.58	0.49	-99.0 7.	92 .019	90
CHR Mouse Liver 2	ASN																
PreneoplasticLesion CHR Mouse Liver 2	N ASN	Inductive Mera.	48	86	57	42	233	0.58	0.46	0.53	0.49	0.53	0.6	0.57	-98.9 8.	04 0.13	90
PreneoplasticLesion	N	Mersy	45	94	48	45	232	0.6	0.48	0.5	0.49	0.5	0.66	0.58	-98.8	3.3 0.16	90
CHR Mouse Liver 2 PreneoplasticLesion	ASN N	QNPR	49	91	52	41	233	0.6	0.49	0.54	0.51	0.54	0.64	0.59	-98.8 8.	18 0.18	90
CHR Mouse Liver 2	ASN		73	31	32	71	200	0.0	0.43	0.54	0.51	0.54	0.04	0.55	-90.0 0.	10 0.10	30
PreneoplasticLesion	N	hores	48	96	47	42	233	0.62	0.51	0.53	0.52	0.53	0.67	0.6	-98.8 8.	34 0.2	90
CHR Mouse Liver 2 PreneoplasticLesion	ASN N	CDK, TA, TP	45	89	53	45	232	0.58	0.46	0.5	0.48	0.5	0.63	0.56	-98.9 8.	15 0.13	90
CHR Mouse Liver 2	ASN	••						0.00	00	0.0	01.10	0.0	0.00	0.00			
PreneoplasticLesion	N ASN	CDK, TA	42	90	52	48	232	0.57	0.45	0.47	0.46	0.47	0.63	0.55	-98.9 8.	18 0.1	90
CHR Mouse Liver 2 PreneoplasticLesion	N	CDK, TP	43	85	57	47	232	0.55	0.43	0.48	0.45	0.48	0.6	0.54	-98.9 8.	03 0.08	90
CHR Mouse Liver 2	ASN																
PreneoplasticLesion CHR Mouse Liver 2	N ASN	TA, TP	43	91	52	47	233	0.58	0.45	0.48	0.46	0.48	0.64	0.56	-98.9 8.	19 0.11	90
PreneoplasticLesion	N	TA	44	92	51	46	233	0.58	0.46	0.49	0.48	0.49	0.64	0.57	-98.9 8.	22 0.13	90
CHR Mouse Liver 2	ASN N	TP	38	78	65	52	233	0.5	0.37	0.42	0.39	0.42	0.55	0.48	-99.0 7.	79 .032	90
PreneoplasticLesion	IN	IF	30	70	05	52	233	0.5	0.37	0.42	0.39	0.42	0.55	0.46	-99.0 7.	19 .032	. 90
CHR Mouse Liver 2		CDK, TA,															
PreneoplasticLesion	LR	TP	42	90	52	48	232	0.57	0.45	0.47	0.46	0.47	0.63	0.55	-98.9 8.	18 0.1	90
CHR Mouse Liver 2	FSM																
PreneoplasticLesion	LR	CDK, TA	41	81	61	49	232	0.53	0.4	0.46	0.43	0.46	0.57	0.51	-99.0 7.	91 0.03	90
CHR Mouse Liver 2	FSM																
PreneoplasticLesion	LR	CDK, TP	50	87	55	40	232	0.59	0.48	0.56	0.51	0.56	0.61	0.58	-98.8 8.	08 0.16	90
CUD Mayor Liver 2	FSM																
CHR Mouse Liver 2 PreneoplasticLesion	LR	TA, TP	43	91	52	47	233	0.58	0.45	0.48	0.46	0.48	0.64	0.56	-98.9 8.	19 0.11	90
	CCM																
CHR Mouse Liver 2 PreneoplasticLesion	FSM LR	TA	43	88	55	47	233	0.56	0.44	0.48	0.46	0.48	0.62	0.55	-98.9	3.1 0.09	90
CHR Mouse Liver 2 PreneoplasticLesion	FSM LR	TP	47	78	65	43	233	0.54	0.42	0.52	0.47	0.52	0.55	0.53	-98.9 7.	81 N N7	90
CHR Mouse Liver 2	LIX	CDK, TA,	77	70	00	40	200	0.04	0.42	0.52	0.47	0.52	0.55	0.55	-90.9 7.	01 0.07	30
PreneoplasticLesion	KNN	TP	40	90	52	50	232	0.56	0.43	0.44	0.44	0.44	0.63	0.54	-98.9 8.	17 0.08	90
CHR Mouse Liver 2 PreneoplasticLesion	KNN	CDK, TA	20	127	15	70	232	0.63	0.57	0.22	0.32	0.22	0.89	0.56	-98.9 9.	38 0.16	90
CHR Mouse Liver 2																	
PreneoplasticLesion	KNN	CDK, TP	57	73	69	33	232	0.56	0.45	0.63	0.53	0.63	0.51	0.57	-98.9 7.	62 0.14	90
CHR Mouse Liver 2 PreneoplasticLesion	KNN	TA, TP	49	91	52	41	233	0.6	0.49	0.54	0.51	0.54	0.64	0.59	-98.8 8.	18 0.18	90
•																	'

CHR Mouse Liver 2 PreneoplasticLesion	KNN	TA	21	128	15	69	233	0.64	0.58	0.23	0.33	0.23	0.9	0.56	-98.9 9.42 0.1	7 90
CHR Mouse Liver 2 PreneoplasticLesion	KNN	TP	65	57	86	25	233	0.52	0.43	0.72	0.54	0.72	0.4	0.56	-98.9 7.01 0.1	2 90
CHR Mouse Liver 2 PreneoplasticLesion	LibS VM	CDK, TA, TP	33	104	38	57	232	0.59	0.46	0.37	0.41	0.37	0.73	0.55	-98.9 8.56 0.	1 90
CHR Mouse Liver 2 PreneoplasticLesion	LibS VM	CDK, TA	37	97	45	53	232	0.58	0.45	0.41	0.43	0.41	0.68	0.55	-98.9 8.37 0.	1 90
CHR Mouse Liver 2 PreneoplasticLesion	LibS VM	CDK, TP	21	115	27	69	232	0.59	0.44	0.23	0.3	0.23	0.81	0.52	-99.0 8.74 0.0	5 90
CHR Mouse Liver 2 PreneoplasticLesion	LibS VM	TA, TP	33	102	41	57	233	0.58	0.45	0.37	0.4	0.37	0.71	0.54	-98.9 8.47 0.0	8 90
CHR Mouse Liver 2 PreneoplasticLesion	LibS VM	TA	35	105	38	55	233	0.6	0.48	0.39	0.43	0.39	0.73	0.56	-98.9 8.59 0.1	3 90
CHR Mouse Liver 2 PreneoplasticLesion CHR Mouse Liver 2	LibS VM MLR	TP CDK, TA,	33	89	54	57	233	0.52	0.38	0.37	0.37	0.37	0.62	0.49	-99.0 8.06 .01	1 90
PreneoplasticLesion CHR Mouse Liver 2	A MLR	TP	44	86	56	46	232	0.56	0.44	0.49	0.46	0.49	0.61	0.55	-98.9 8.06 0.0	9 90
PreneoplasticLesion CHR Mouse Liver 2	A MLR	CDK, TA	39	82	60	51	232	0.52	0.39	0.43	0.41	0.43	0.58	0.51	-99.0 7.93 0.0	1 90
PreneoplasticLesion CHR Mouse Liver 2	A MLR	CDK, TP	48	81	61	42	232	0.56	0.44	0.53	0.48	0.53	0.57	0.55	-98.9 7.91 0.	1 90
PreneoplasticLesion CHR Mouse Liver 2	A MLR	TA, TP	39	77	66	51	233	0.5	0.37	0.43	0.4	0.43	0.54	0.49	-99.0 7.77 .02	8 90
PreneoplasticLesion CHR Mouse Liver 2	A MLR	TA	47	88	55	43	233	0.58	0.46	0.52	0.49	0.52	0.62	0.57	-98.9 8.1 0.1	
PreneoplasticLesion CHR Mouse Liver 2	Α	TP CDK, TA,	36	82	61	54	233	0.51	0.37	0.4	0.39	0.4	0.57	0.49	-99.0 7.89 .02	
PreneoplasticLesion CHR Mouse Liver 2	PLS	TP	44	89	53	46	232	0.57	0.45	0.49	0.47	0.49	0.63	0.56	-98.9 8.15 0.1	
PreneoplasticLesion CHR Mouse Liver 2	PLS	CDK, TA	45	90	52	45	232	0.58	0.46	0.5	0.48	0.5	0.63	0.57	-98.9 8.18 0.1	
PreneoplasticLesion CHR Mouse Liver 2 PreneoplasticLesion	PLS PLS	TA, TP	41	79 88	63 55	49 46	232	0.52	0.39	0.46	0.42	0.46	0.56	0.51	-99.0 7.85 0.0 -98.9 8.1 0.	
CHR Mouse Liver 2 PreneoplasticLesion	PLS	TA	43	90	53	47	233	0.57	0.45	0.48	0.46	0.48	0.63	0.55	-98.9 8.16 0.1	
CHR Mouse Liver 2 PreneoplasticLesion	PLS		44	70	73	46	233	0.49	0.38	0.49	0.43	0.49	0.49	0.49	-99.0 7.59 .02	1 90
CHR Mouse Liver 2 PreneoplasticLesion	J48	CDK, TA, TP	41	85	57	49	232	0.54	0.42	0.46	0.44	0.46	0.6	0.53	-98.9 8.02 0.0	5 90
CHR Mouse Liver 2 PreneoplasticLesion	J48	CDK, TA	50	90	52	40	232	0.6	0.49	0.56	0.52	0.56	0.63	0.59	-98.8 8.17 0.1	9 90
CHR Mouse Liver 2 PreneoplasticLesion	J48	CDK, TP	35	90	52	55	232	0.54	0.4	0.39	0.4	0.39	0.63	0.51	-99.0 8.13 0.0	2 90
CHR Mouse Liver 2 PreneoplasticLesion CHR Mouse Liver 2	J48	TA, TP	39	94	49	51	233	0.57	0.44	0.43	0.44	0.43	0.66	0.55	-98.9 8.26 0.0	9 90
PreneoplasticLesion CHR Mouse Liver 2	J48	TA	47	85	58	43	233	0.57	0.45	0.52	0.48	0.52	0.59	0.56	-98.9 8.01 0.1	
PreneoplasticLesion CHR Mouse Liver 2	J48	TP CDK, TA,	45	88	55	45	233	0.57	0.45	0.5	0.47	0.5	0.62	0.56	-98.9 8.1 0.1	
PreneoplasticLesion CHR Mouse Liver 2	RF	TP CDK TA	49	65	77	41	232	0.49	0.39	0.54	0.45	0.54	0.46	0.5		0. 90
PreneoplasticLesion CHR Mouse Liver 2 PreneoplasticLesion	RF RF	CDK, TA	61 59	73 65	69 77	29 31	232	0.58	0.47	0.68	0.55	0.68	0.51	0.6	-98.8 7.56 0.1 -98.9 7.37 0.1	
CHR Mouse Liver 2 PreneoplasticLesion	RF	TA, TP	59 56	76	67	34	232	0.53	0.43	0.62	0.52	0.62	0.46	0.58	-98.8 7.7 0.1	

CHR Mouse Liver 2 PreneoplasticLesion	RF	TA	57	74	69	33	233	0.56	0.45	0.63	0.53	0.63	0.52	0.58	-98.8	7 63	0 15	90
CHR Mouse Liver 2 PreneoplasticLesion	RF	TP	52	62	81	38	233	0.49	0.39	0.58	0.47	0.58	0.43	0.51	-99.0			90
,	FSM							0.10	0.00	0.00	0.11	0.00	0.10	0.01	00.0	7.00	0.01	- 00
CHR Mouse Liver 2 PreneoplasticLesion	LR	Adriana	48	69	72	42	231	0.51	0.4	0.53	0.46	0.53	0.49	0.51	-99.0	7.59	0.02	90
CHR Mouse Liver 2	FSM	ALogPS,																
PreneoplasticLesion	LR	OEstate	54	76	67	36	233	0.56	0.45	0.6	0.51	0.6	0.53	0.57	-98.9	7.72	0.13	90
CHR Mouse Liver 2	FSM																	
PreneoplasticLesion	LR	CDK	54	91	51	36	232	0.63	0.51	0.6	0.55	0.6	0.64	0.62	-98.8	8.17	0.24	90
CHR Mouse Liver 2		Chemaxo	40	00	- 4	50	000	0.55	0.40	0.44	0.40	0.44	0.00	0.50	00.0	0.40	0.07	00
PreneoplasticLesion	LR	n	40	89	54	50	233	0.55	0.43	0.44	0.43	0.44	0.62	0.53	-98.9	8.12	0.07	90
CHR Mouse Liver 2 PreneoplasticLesion	FSM LR	Dragon6	51	92	51	39	233	0.61	0.5	0.57	0.53	0.57	0.64	0.61	-98.8	8.2	0.21	90
			- 0 1	- 02	<u> </u>			0.01	0.0	0.01	0.00	0.01	0.01	0.01	00.0	0.2	0.21	- 00
CHR Mouse Liver 2 PreneoplasticLesion	FSM LR	Fragment or	46	100	43	44	233	0.63	0.52	0.51	0.51	0.51	0.7	0.61	-98.8	8.47	0.21	90
	FSM																	
CHR Mouse Liver 2 PreneoplasticLesion	LR	GSFrag	40	88	55	50	233	0.55	0.42	0.44	0.43	0.44	0.62	0.53	-98.9	8.09	0.06	90
CHR Mouse Liver 2	FSM																	
PreneoplasticLesion	LR	Inductive	56	58	85	34	233	0.49	0.4	0.62	0.48	0.62	0.41	0.51	-99.0	7.2	0.03	90
CHR Mouse Liver 2	FSM	Mera,																
PreneoplasticLesion	LR	Mersy	40	84	58	50	232	0.53	0.41	0.44	0.43	0.44	0.59	0.52	-99.0	7.99	0.04	90
CHR Mouse Liver 2	FSM																	
PreneoplasticLesion	LR	QNPR	52	90	53	38	233	0.61	0.5	0.58	0.53	0.58	0.63	0.6	-98.8	8.14	0.2	90
CHR Mouse Liver 2	FSM LR	Spectrop hores	44	86	57	46	233	0.56	0.44	0.49	0.46	0.49	0.6	0.55	-98.9	9 N4	0.00	90
PreneoplasticLesion CHR Mouse Liver 2	LK	nores						0.30	0.44	0.49	0.46	0.49	0.0	0.55	-90.9	0.04	0.09	
PreneoplasticLesion	KNN	Adriana	48	81	60	42	231	0.56	0.44	0.53	0.48	0.53	0.57	0.55	-98.9	7.93	0.11	90
CHR Mouse Liver 2	IZNINI	ALogPS,	50	00	C4	20	000	0.50	0.40	0.50	0.54	0.50	0.57	0.50	00.0	7.04	0.45	00
PreneoplasticLesion CHR Mouse Liver 2		OEstate	52	82	61	38	233	0.58	0.46	0.58	0.51	0.58	0.57	0.58	-98.8	7.91	0.15	90
PreneoplasticLesion	KNN	CDK Chemaxo	51	84	58	39	232	0.58	0.47	0.57	0.51	0.57	0.59	0.58	-98.8	7.99	0.15	90
CHR Mouse Liver 2 PreneoplasticLesion	KNN		56	65	78	34	233	0.52	0.42	0.62	0.5	0.62	0.45	0.54	-98.9	7.39	80.0	90
CHR Mouse Liver 2 PreneoplasticLesion	KNN	Dragon6	50	80	63	40	233	0.56	0.44	0.56	0.49	0.56	0.56	0.56	-98.9	7.86	0.11	90
CHR Mouse Liver 2 PreneoplasticLesion	KNN	Fragment																90
CHR Mouse Liver 2			43	101	42	47	233	0.62	0.51	0.48	0.49	0.48	0.71	0.59	-98.8		0.19	
PreneoplasticLesion CHR Mouse Liver 2	KNN	GSFrag	25	110	33	65	233	0.58	0.43	0.28	0.34	0.28	0.77	0.52	-99.0	8.61	0.05	90
PreneoplasticLesion	KNN	Inductive	51	78	65	39	233	0.55	0.44	0.57	0.5	0.57	0.55	0.56	-98.9	7.8	0.11	90
CHR Mouse Liver 2 PreneoplasticLesion	KNN	Mera, Mersy	43	89	53	47	232	0.57	0.45	0.48	0.46	0.48	0.63	0.55	-98.9	8.15	0.1	90
CHR Mouse Liver 2 PreneoplasticLesion		QNPR	34	107	36	56	233	0.61	0.49	0.38	0.43	0.38	0.75	0.56	-98.9		U 13	90
CHR Mouse Liver 2		Spectrop								0.00	0.43	0.50			-90.9	0.00	0.13	
PreneoplasticLesion	KNN	hores	42	85	58	48	233	0.55	0.42	0.47	0.44	0.47	0.59	0.53	-98.9	8.01	0.06	90
CHR Mouse Liver 2 PreneoplasticLesion	LibS VM	Adriana	26	110	31	64	231	0.59	0.46	0.29	0.35	0.29	0.78	0.53	-98.9	8.7	0.08	90

•																
CHR Mouse Liver 2 PreneoplasticLesion	LibS VM	ALogPS, OEstate	36	104	39	54	233	0.6	0.48	0.4	0.44	0.4	0.73	0.56	-98.9 8.57 0	.13 9
CHR Mouse Liver 2 PreneoplasticLesion	LibS VM	CDK	30	111	31	60	232	0.61	0.49	0.33	0.4	0.33	0.78	0.56	-98.9 8.78 0	.13 9
CHR Mouse Liver 2 PreneoplasticLesion	LibS VM	Chemaxo n	37	105	38	53	233	0.61	0.49	0.41	0.45	0.41	0.73	0.57	-98.9 8.61 0	.15 9
CHR Mouse Liver 2 PreneoplasticLesion	LibS VM	Dragon6	31	118	25	59	233	0.64	0.55	0.34	0.42	0.34	0.83	0.58	-98.8 9.07 0	.19 9
CHR Mouse Liver 2 PreneoplasticLesion	LibS VM	Fragment or	40	113	30	50	233	0.66	0.57	0.44	0.5	0.44	0.79	0.62	-98.8 8.94 0	.25 9
CHR Mouse Liver 2 PreneoplasticLesion	LibS VM	GSFrag	27	106	37	63	233	0.57	0.42	0.3	0.35	0.3	0.74	0.52	-99.0 8.51 0	.05 9
CHR Mouse Liver 2 PreneoplasticLesion	LibS VM	Inductive	41	101	42	49	233	0.61	0.49	0.46	0.47	0.46	0.71	0.58	-98.8 8.5 0	.16 9
CHR Mouse Liver 2 PreneoplasticLesion	LibS VM	Mera, Mersy	35	100	42	55	232	0.58	0.45	0.39	0.42	0.39	0.7	0.55		0.1 9
CHR Mouse Liver 2 PreneoplasticLesion	LibS VM	QNPR	39	100	43	51	233	0.6	0.48	0.43	0.45	0.43	0.7	0.57	-98.9 8.46 0	
CHR Mouse Liver 2 PreneoplasticLesion	LibS VM	Spectrop hores	39	106	37	51	233	0.62	0.51	0.43	0.47	0.43	0.74	0.59	-98.8 8.66 0	
CHR Mouse Liver 2 PreneoplasticLesion	MLR A	Adriana	40	89	52	50	231	0.56	0.43	0.44	0.44	0.44	0.63	0.54	-98.9 8.16 0	
CHR Mouse Liver 2 PreneoplasticLesion	MLR A MLR	ALogPS, OEstate	50	93	50	40	233	0.61	0.5	0.56	0.53	0.56	0.65	0.6	-98.8 8.24	0.2 9
CHR Mouse Liver 2 PreneoplasticLesion CHR Mouse Liver 2	A MLR	CDK Chemaxo	43	86	56	47	232	0.56	0.43	0.48	0.46	0.48	0.61	0.54		.08 9
PreneoplasticLesion CHR Mouse Liver 2 PreneoplasticLesion	A MLR A	n Dragon6	47 41	82 86	61 57	43	233	0.55	0.44	0.52	0.47	0.52	0.57	0.55	-98.9 7.93 0 -98.9 8.04 0	.09 9
CHR Mouse Liver 2 PreneoplasticLesion CHR Mouse Liver 2	MLR A MLR	Fragment or	46	88	55	44	233	0.58	0.46	0.51	0.48	0.51	0.62	0.56	-98.9 8.1 0	.12 9
PreneoplasticLesion CHR Mouse Liver 2 PreneoplasticLesion	A MLR A	GSFrag Inductive	40	85 85	58 58	50 46	233	0.54	0.41	0.44	0.43	0.44	0.59	0.52	-99.0 8. 0 -98.9 8.01 0	.04 9
CHR Mouse Liver 2 PreneoplasticLesion CHR Mouse Liver 2	MLR A MLR	Mera, Mersy	51	78	64	39	232	0.56	0.44	0.57	0.5	0.57	0.55	0.56	-98.9 7.81 0	.11 9
PreneoplasticLesion CHR Mouse Liver 2 PreneoplasticLesion	A MLR A	QNPR Spectrop hores	47 46	83	60	43	233	0.56	0.44	0.52	0.48	0.52	0.58	0.55	-98.9 7.96 -98.9 7.87 0	.07 9
CHR Mouse Liver 2 PreneoplasticLesion		Adriana	41	83	58	49	231	0.54	0.41	0.46	0.43	0.46	0.59	0.52	-99.0 7.98 0	
CHR Mouse Liver 2 PreneoplasticLesion CHR Mouse Liver 2		ALogPS, OEstate	45	87	56	45	233	0.57	0.45	0.5	0.47	0.5	0.61	0.55	-98.9 8.07 0	
PreneoplasticLesion CHR Mouse Liver 2 PreneoplasticLesion	PLS PLS	CDK Chemaxo n	55 45	73	55 70	35 45	232	0.61	0.5	0.61	0.55	0.61	0.61	0.61	-98.8 8.04 0 -99.0 7.68 0	
CHR Mouse Liver 2 PreneoplasticLesion	PLS	Dragon6	48	94	49	42	233	0.61	0.49	0.53	0.51	0.53	0.66	0.6	-98.8 8.28 0	.19 9

-																	
CHR Mouse Liver 2	DI 0	Fragment	40	400	40	4.4	000	0.04	0.50	0.54	0.54	0.54	0.7	0.00	000 0 47	0.04	00
PreneoplasticLesion CHR Mouse Liver 2	PLS	or	49	100	43	41	233	0.64	0.53	0.54	0.54	0.54	0.7	0.62	-98.8 8.47	0.24	90
PreneoplasticLesion	PLS	GSFrag	35	88	55	55	233	0.53	0.39	0.39	0.39	0.39	0.62	0.5	-99.0 8.05	0.	90
CHR Mouse Liver 2																	
PreneoplasticLesion	PLS	Inductive	50	79	64	40	233	0.55	0.44	0.56	0.49	0.56	0.55	0.55	-98.9 7.83	0.11	90
CHR Mouse Liver 2	5. 6	Mera,															
PreneoplasticLesion	PLS	Mersy	48	87	55	42	232	0.58	0.47	0.53	0.5	0.53	0.61	0.57	-98.9 8.09	0.14	90
CHR Mouse Liver 2 PreneoplasticLesion	PLS	QNPR	51	87	56	39	233	0.59	0.48	0.57	0.52	0.57	0.61	0.59	-98.8 8.06	0.17	90
CHR Mouse Liver 2		Spectrop															
PreneoplasticLesion	PLS	hores	45	82	61	45	233	0.55	0.42	0.5	0.46	0.5	0.57	0.54	-98.9 7.93	0.07	90
CHR Mouse Liver 2	140	A -l-1	40	00	50	40	004	0.54	0.40	0.47	0.44	0.47	0.50	0.50	000 700	0.05	00
PreneoplasticLesion	J48	Adriana	42	83	58	48	231	0.54	0.42	0.47	0.44	0.47	0.59	0.53	-98.9 7.99	0.05	90
OUD Marra Liver O		ALogPS,															
CHR Mouse Liver 2 PreneoplasticLesion	J48	OEstate	43	88	55	47	233	0.56	0.44	0.48	0.46	0.48	0.62	0.55	-98.9 8.1	0.09	90
CHR Mouse Liver 2									• • • • • • • • • • • • • • • • • • • •					*****			
PreneoplasticLesion	J48	CDK	43	92	50	47	232	0.58	0.46	0.48	0.47	0.48	0.65	0.56	-98.9 8.24	0.12	90
CHR Mouse Liver 2	140	Chemaxo	0.4	07	50	50	000	0.54	0.00	0.04	0.05	0.04	0.04	0.40	000 707	0.47	00
PreneoplasticLesion	J48	n	31	87	56	59	233	0.51	0.36	0.34	0.35	0.34	0.61	0.48	-99.0 7.97	.047	90
CHR Mouse Liver 2 PreneoplasticLesion	J48	Dragon6	35	98	45	55	233	0.57	0.44	0.39	0.41	0.39	0.69	0.54	-98.9 8.36	0.08	90
CHR Mouse Liver 2	0-10	Fragment						0.01	0.44	0.00	0.71	0.00	0.00	0.0-	00.0 0.00	0.00	
PreneoplasticLesion	J48	or	46	100	43	44	233	0.63	0.52	0.51	0.51	0.51	0.7	0.61	-98.8 8.47	0.21	90
CHR Mouse Liver 2																	
PreneoplasticLesion	J48	GSFrag	43	89	54	47	233	0.57	0.44	0.48	0.46	0.48	0.62	0.55	-98.9 8.13	0.1	90
CHR Mouse Liver 2 PreneoplasticLesion	J48	Inductive	46	97	46	44	233	0.61	0.5	0.51	0.51	0.51	0.68	0.59	-98.8 8.38	0.19	90
	J40	Mera,	40	91	40	44	233	0.01	0.5	0.51	0.51	0.51	0.00	0.59	-90.0 0.30	0.19	90
CHR Mouse Liver 2 PreneoplasticLesion	J48	Mersy	38	99	43	52	232	0.59	0.47	0.42	0.44	0.42	0.7	0.56	-98.9 8.44	0.12	90
CHR Mouse Liver 2		,															
PreneoplasticLesion	J48	QNPR	37	90	53	53	233	0.55	0.41	0.41	0.41	0.41	0.63	0.52	-99.0 8.13	0.04	90
CHR Mouse Liver 2	140	Spectrop	40	405	20	47	000	0.04	0.50	0.40	٥.	0.40	0.70	0.04	000 004	0.00	00
PreneoplasticLesion CHR Mouse Liver 3	J48	hores	43	105	38	47	233	0.64	0.53	0.48	0.5	0.48	0.73	0.61	-98.8 8.64	0.22	90
NeoplasticLesion	RF	Adriana	41	90	72	28	231	0.57	0.36	0.59	0.45	0.59	0.56	0.57	-98.9 7.3	0.14	69
CHR Mouse Liver 3		ALogPS,															
NeoplasticLesion	RF	OEstate	40	85	79	29	233	0.54	0.34	0.58	0.43	0.58	0.52	0.55	-98.9 7.16	0.09	69
CHR Mouse Liver 3 NeoplasticLesion	RF	CDK	36	86	77	33	232	0.53	0.32	0.52	0.4	0.52	0.53	0.52	-99.0 7.22	0.05	69
CHR Mouse Liver 3	131	Chemaxo	- 00				202	0.00	0.02	0.02	0.7	0.02	0.00	0.02	00.0 7.22	0.00	
NeoplasticLesion	RF	n	35	78	86	34	233	0.48	0.29	0.51	0.37	0.51	0.48	0.49	-99.0 7.01	.016	69
CHR Mouse Liver 3																	
NeoplasticLesion	RF	Dragon6	38	94	70	31	233	0.57	0.35	0.55	0.43	0.55	0.57	0.56	-98.9 7.39	0.11	69
CHR Mouse Liver 3	חר	Fragment	20	00	70	00	000	0.50	0.05	0.53	0.40	0.53	0.50	0.50	000 701	0.40	
NeoplasticLesion	RF	or	39	92	72	30	233	0.56	0.35	0.57	0.43	0.57	0.56	0.56	-98.9 7.34	0.12	69
CHR Mouse Liver 3 NeoplasticLesion	RF	GSFrag	38	88	76	31	233	0.54	0.33	0.55	0.42	0.55	0.54	0.54	-98.9 7.25	0.08	69
CHR Mouse Liver 3		- 3			-			-					-				\exists
NeoplasticLesion	RF	Inductive	41	100	64	28	233	0.61	0.39	0.59	0.47	0.59	0.61	0.6	-98.8 7.52	0.19	69
CHR Mouse Liver 3		Mera,															
NeoplasticLesion	RF	Mersy	38	78	85	31	232	0.5	0.31	0.55	0.4	0.55	0.48	0.51	-99.0 7.02	0.03	69
CHR Mouse Liver 3 NeoplasticLesion	RF	QNPR	39	95	69	30	233	0.58	0.36	0.57	0.44	0.57	0.58	0.57	-98.9 7.41	0 13	69
CHR Mouse Liver 3		Spectrop		- 50		- 50		0.00	0.00	0.01	J. 7-7	0.01	0.00	0.01	00.0 7.41	3.10	
NeoplasticLesion	RF	hores	38	99	65	31	233	0.59	0.37	0.55	0.44	0.55	0.6	0.58	-98.8 7.52	0.14	69
CHR Mouse Liver 3	ASN																\neg
NeoplasticLesion	N	Adriana	28	97	65	41	231	0.54	0.3	0.41	0.35	0.41	0.6	0.5	-99.0 7.47	0.	69
	401:	A1 50															
CHR Mouse Liver 3		ALogPS,	20	00	65	40	222	0 55	0.24	0.40	0.36	0.42	0.6	0.54	000 75	0.02	60
NeoplasticLesion	N ASN	OEstate	29	99	65	40	233	0.55	0.31	0.42	0.36	0.42	0.6	0.51	-99.0 7.5	0.02	69
CHR Mouse Liver 3	N	CDK	36	107	56	33	232	0.62	0.39	0.52	0.45	0.52	0.66	0.59	-98.8 7.75	0.17	69
NeoplasticLesion																	

	ASN	Chemaxo																
CHR Mouse Liver 3 NeoplasticLesion	N	n	31	101	63	38	233	0.57	0.33	0.45	0.38	0.45	0.62	0.53	-98.9	7.57	0.06	6
CHR Mouse Liver 3 NeoplasticLesion	ASN N	Dragon6	31	116	48	38	233	0.63	0.39	0.45	0.42	0.45	0.71	0.58	-98.8	7.98	0.15	(
CHR Mouse Liver 3	ASN	Fragment																
NeoplasticLesion	N ASN	or	33	119	45	36	233	0.65	0.42	0.48	0.45	0.48	0.73	0.6	-98.8	8.07	0.2	(
CHR Mouse Liver 3 NeoplasticLesion	N ASN	GSFrag	27	96	68	42	233	0.53	0.28	0.39	0.33	0.39	0.59	0.49	-99.0	7.41	.022	(
CHR Mouse Liver 3 NeoplasticLesion	N	Inductive	37	100	64	32	233	0.59	0.37	0.54	0.44	0.54	0.61	0.57	-98.9	7.55	0.13	(
CHR Mouse Liver 3 NeoplasticLesion	ASN N	Mera, Mersy	27	112	51	42	232	0.6	0.35	0.39	0.37	0.39	0.69	0.54	-98.9	7.85	0.08	(
CHR Mouse Liver 3 NeoplasticLesion	ASN N	QNPR	33	106	58	36	233	0.6	0.36	0.48	0.41	0.48	0.65	0.56	-98.9	7.71	0.12	(
CHR Mouse Liver 3 NeoplasticLesion	ASN N	Spectrop hores	41	119	45	28	233	0.69	0.48	0.59	0.53	0.59	0.73	0.66	-98.7	8.04	0.3	
CHR Mouse Liver 3 NeoplasticLesion	ASN N	CDK, TA, TP	26	110	53	43	232	0.59	0.33	0.38	0.35	0.38	0.67	0.53	-98.9	7.78	0.05	(
CHR Mouse Liver 3 NeoplasticLesion	ASN N	CDK, TA	30	108	55	39	232	0.59	0.35	0.43	0.39	0.43	0.66	0.55	-98.9	7.76	0.09	(
CHR Mouse Liver 3 NeoplasticLesion	ASN N	CDK. TP	25	106	57	44	232	0.56	0.3	0.36	0.33	0.36	0.65	0.51	-99.0	7.65	0.01	(
CHR Mouse Liver 3 NeoplasticLesion	ASN N	TA, TP	27	106	58	42	233	0.57	0.32	0.39	0.35	0.39	0.65	0.52	-99.0			
CHR Mouse Liver 3 NeoplasticLesion	ASN N	TA TA	27	114	50	42	233	0.61	0.35	0.39	0.37	0.39	0.03	0.54	-98.9			
CHR Mouse Liver 3 NeoplasticLesion	ASN N	TP	26	104	60	43	233	0.56	0.33	0.39	0.37	0.39	0.63	0.54	-98.9		0.08	
NeopiasticLesion			20	104	60	43	233	0.50	0.3	0.36	0.34	0.36	0.03	0.51	-99.0	7.0	0.01	
CHR Mouse Liver 3 NeoplasticLesion	FSM LR	CDK, TA, TP	28	99	64	41	232	0.55	0.3	0.41	0.35	0.41	0.61	0.51	-99.0	7.51	0.01	
CHR Mouse Liver 3 NeoplasticLesion	FSM LR	CDK, TA	19	115	48	50	232	0.58	0.28	0.28	0.28	0.28	0.71	0.49	-99.0	7.76	.019	(
CHR Mouse Liver 3 NeoplasticLesion	FSM LR	CDK, TP	33	114	49	36	232	0.63	0.4	0.48	0.44	0.48	0.7	0.59	-98.8	7.95	0.17	
CHR Mouse Liver 3 NeoplasticLesion	FSM LR	TA, TP	25	108	56	44	233	0.57	0.31	0.36	0.33	0.36	0.66	0.51	-99.0	7.69	0.02	
CHR Mouse Liver 3 NeoplasticLesion	FSM LR	TA	30	107	57	39	233	0.59	0.34	0.43	0.38	0.43	0.65	0.54	-98.9	7 72	0.08	(
	FSM	17.1	- 00	107	- 01		200	0.00	0.04	0.40	0.00	0.40	0.00	0.04	00.0	1.12	0.00	
CHR Mouse Liver 3 NeoplasticLesion	LR	TP CDK TA	42	88	76	27	233	0.56	0.36	0.61	0.45	0.61	0.54	0.57	-98.9	7.21	0.13	
CHR Mouse Liver 3 NeoplasticLesion	KNN	CDK, TA, TP	28	101	62	41	232	0.56	0.31	0.41	0.35	0.41	0.62	0.51	-99.0	7.56	0.02	
CHR Mouse Liver 3 NeoplasticLesion	KNN	CDK, TA	10	145	18	59	232	0.67	0.36	0.14	0.21	0.14	0.89	0.52	-99.0	8.5	0.05	
CHR Mouse Liver 3 NeoplasticLesion	KNN	CDK, TP	34	79	84	35	232	0.49	0.29	0.49	0.36	0.49	0.48	0.49	-99.0	7.05	.021	
CHR Mouse Liver 3 NeoplasticLesion	KNN	TA, TP	41	95	69	28	233	0.58	0.37	0.59	0.46	0.59	0.58	0.59	-98.8	7.39	0.16	
CHR Mouse Liver 3 NeoplasticLesion	KNN	TA	20	127	37	49	233	0.63	0.35	0.29	0.32	0.29	0.77	0.53	-98.9	8.15	0.07	
CHR Mouse Liver 3 NeoplasticLesion	KNN	TP	50	52	112	19	233	0.44	0.31	0.72	0.43	0.72	0.32	0.52	-99.0	6.13	0.04	
CHR Mouse Liver 3 NeoplasticLesion	LibS VM	CDK, TA, TP	18	132	31	51	232	0.65	0.37	0.26	0.31	0.26	0.81	0.54	-98.9	8.3	0.08	
CHR Mouse Liver 3 NeoplasticLesion	LibS VM	CDK, TA	22	129	34	47	232	0.65	0.39	0.32	0.35	0.32	0.79	0.56	-98.9	8.3	0.12	

																		_
CHR Mouse Liver 3 NeoplasticLesion	LibS VM	CDK, TP	13	139	24	56	232	0.66	0.35	0.19	0.25	0.19	0.85	0.52	-99.0	8.38	0.05	
CHR Mouse Liver 3 NeoplasticLesion	LibS VM	TA, TP	7	153	11	62	233	0.69	0.39	0.1	0.16	0.1	0.93	0.52	-99.0	8.74	0.06	
CHR Mouse Liver 3 NeoplasticLesion	LibS VM	TA	10	142	22	59	233	0.65	0.31	0.14	0.2	0.14	0.87	0.51	-99.0	8.28	0.01	
CHR Mouse Liver 3 NeoplasticLesion	LibS VM	TP	0	156	8	69	233	0.67	0.	0.		0.	0.95	0.48	-99.0	6.46	.122	
CHR Mouse Liver 3 NeoplasticLesion		CDK, TA, TP	25	79	84	44	232	0.45	0.23	0.36	0.28	0.36	0.48	0.42	-99.2		.14	_
CHR Mouse Liver 3 NeoplasticLesion	MLR A	CDK, TA	31	92	71	38	232	0.53	0.3	0.45	0.36	0.45	0.56	0.51	-99.0	7.36	0.01	
CHR Mouse Liver 3 NeoplasticLesion	MLR A	CDK, TP	38	76	87	31	232	0.49	0.3	0.55	0.39	0.55	0.47	0.51	-99.0	6.97	0.02	
CHR Mouse Liver 3 NeoplasticLesion	MLR A	TA, TP	28	78	86	41	233	0.45	0.25	0.41	0.31	0.41	0.48	0.44	-99.1	6.98	.108	
CHR Mouse Liver 3 NeoplasticLesion	MLR A MLR	TA	28	85	79	41	233	0.48	0.26	0.41	0.32	0.41	0.52	0.46	-99.1	7.15	.07	_
CHR Mouse Liver 3 NeoplasticLesion	A	TP CDK, TA,	32	84	80	37	233	0.5	0.29	0.46	0.35	0.46	0.51	0.49	-99.0	7.15	.022	_
CHR Mouse Liver 3 NeoplasticLesion CHR Mouse Liver 3	PLS	TP	27	108	55	42	232	0.58	0.33	0.39	0.36	0.39	0.66	0.53	-98.9	7.73	0.05	_
NeoplasticLesion CHR Mouse Liver 3	PLS	CDK, TA	30	109	54	39	232	0.6	0.36	0.43	0.39	0.43	0.67	0.55	-98.9	7.79	0.1	
NeoplasticLesion CHR Mouse Liver 3	PLS	CDK, TP	25	102	61	44	232	0.55	0.29	0.36	0.32	0.36	0.63	0.49	-99.0	7.54	.011	_
NeoplasticLesion CHR Mouse Liver 3		TA, TP	25	110	54	44	233	0.58	0.32	0.36	0.34	0.36	0.67	0.52	-99.0			_
NeoplasticLesion CHR Mouse Liver 3 NeoplasticLesion	PLS PLS		26 26	114 89	50 75	43	233	0.6	0.34	0.38	0.36	0.38	0.7	0.54	-98.9 -99.1		.074	_
CHR Mouse Liver 3 NeoplasticLesion	J48	CDK, TA, TP	30	108	55	39	232	0.59	0.35	0.43	0.39	0.43	0.66	0.55	-98.9			
CHR Mouse Liver 3 NeoplasticLesion	J48	CDK, TA	23	111	52	46	232	0.58	0.31	0.33	0.32	0.33	0.68	0.51	-99.0	7.75	0.01	
CHR Mouse Liver 3 NeoplasticLesion	J48	CDK, TP	20	116	47	49	232	0.59	0.3	0.29	0.29	0.29	0.71	0.5	-99.0	7.82	0.	
CHR Mouse Liver 3 NeoplasticLesion	J48	TA, TP	26	115	49	43	233	0.61	0.35	0.38	0.36	0.38	0.7	0.54	-98.9	7.9	80.0	
CHR Mouse Liver 3 NeoplasticLesion CHR Mouse Liver 3	J48	TA	26	107	57	43	233	0.57	0.31	0.38	0.34	0.38	0.65	0.51	-99.0	7.68	0.03	
NeoplasticLesion CHR Mouse Liver 3	J48	TP CDK, TA,	26	107	57	43	233	0.57	0.31	0.38	0.34	0.38	0.65	0.51	-99.0	7.68	0.03	_
NeoplasticLesion CHR Mouse Liver 3	RF	TP	34	79	84	35	232		0.29	0.49	0.36		0.48	0.49	-99.0			_
NeoplasticLesion CHR Mouse Liver 3	RF	CDK, TA	37	86	77	32	232	0.53	0.32	0.54	0.4	0.54	0.53	0.53	-98.9			_
NeoplasticLesion CHR Mouse Liver 3 NeoplasticLesion	RF RF	TA, TP	40 35	90 86	73 78	29 34	232	0.56	0.35	0.58	0.44	0.58	0.55	0.57	-98.9 -99.0			_
CHR Mouse Liver 3 NeoplasticLesion	RF	TA TA	37	88	76	32	233	0.54	0.33	0.54	0.41	0.54	0.54	0.54	-98.9			_
CHR Mouse Liver 3 NeoplasticLesion	RF	TP	38	72	92	31	233	0.47	0.29	0.55	0.38	0.55	0.44	0.49	-99.0	6.86	.009	
CHR Mouse Liver 3 NeoplasticLesion	FSM LR	Adriana	40	75	87	29	231	0.5	0.31	0.58	0.41	0.58	0.46	0.52	-99.0	6.94	0.04	
CHR Mouse Liver 3 NeoplasticLesion		ALogPS, OEstate	32	96	68	37	233	0.55		0.46		0.46	0.59	0.52	-99.0			

CHR Mouse Liver 3 NeoplasticLesion	FSM LR	CDK	38	107	56	31	232	0.63	0.4	0.55	0.47	0.55	0.66	0.6	-98.8	7.74 0.19	9 69
CHR Mouse Liver 3 NeoplasticLesion	FSM LR	Chemaxo n	34	92	72	35	233	0.54	0.32	0.49	0.39	0.49	0.56	0.53	-98.9	7.35 0.0	5 69
CHR Mouse Liver 3 NeoplasticLesion	FSM LR	Dragon6	34	107	57	35	233	0.61	0.37	0.49	0.43	0.49	0.65	0.57	-98.9	7.74 0.14	1 69
CHR Mouse Liver 3 NeoplasticLesion	FSM LR	Fragment or	28	112	52	41	233	0.6	0.35	0.41	0.38	0.41	0.68	0.54	-98.9	7.84 0.09	9 69
CHR Mouse Liver 3 NeoplasticLesion	FSM LR	GSFrag	35	96	68	34	233	0.56	0.34	0.51	0.41	0.51	0.59	0.55	-98.9	7.45 0.09	9 69
CHR Mouse Liver 3 NeoplasticLesion	FSM LR	Inductive	40	98	66	29	233	0.59	0.38	0.58	0.46	0.58	0.6	0.59	-98.8	7.48 0.10	69
CHR Mouse Liver 3 NeoplasticLesion	FSM LR	Mera, Mersy	37	94	69	32	232	0.56	0.35	0.54	0.42	0.54	0.58	0.56	-98.9	7.41 0.	I 69
CHR Mouse Liver 3 NeoplasticLesion	FSM LR	QNPR	30	106	58	39	233	0.58	0.34	0.43	0.38	0.43	0.65	0.54	-98.9	7.69 0.08	3 69
CHR Mouse Liver 3 NeoplasticLesion	FSM LR	Spectrop hores	45	87	77	24	233	0.57	0.37	0.65	0.47	0.65	0.53	0.59	-98.8	7.14 0.1	7 69
CHR Mouse Liver 3 NeoplasticLesion	KNN	Adriana	42	84	78	27	231	0.55	0.35	0.61	0.44	0.61	0.52	0.56	-98.9	7.14 0.12	2 69
CHR Mouse Liver 3 NeoplasticLesion	KNN	ALogPS, OEstate	38	83	81	31	233	0.52	0.32	0.55	0.4	0.55	0.51	0.53	-98.9	7.12 0.0	5 69
CHR Mouse Liver 3 NeoplasticLesion	KNN	CDK	45	76	87	24	232	0.52	0.34	0.65	0.45	0.65	0.47	0.56	-98.9	6.88 0.1	1 69
CHR Mouse Liver 3 NeoplasticLesion	KNN	Chemaxo n	51	44	120	18	233	0.41	0.3	0.74	0.43	0.74	0.27	0.5	-99.0	5.86 0.0	l 69
CHR Mouse Liver 3 NeoplasticLesion	KNN	Dragon6	44	63	101	25	233	0.46	0.3	0.64	0.41	0.64	0.38	0.51	-99.0	6.57 0.02	2 69
CHR Mouse Liver 3 NeoplasticLesion	KNN	Fragment or	41	105	59	28	233	0.63	0.41	0.59	0.49	0.59	0.64	0.62	-98.8	7.65 0.22	2 69
CHR Mouse Liver 3 NeoplasticLesion	KNN	GSFrag	23	121	43	46	233	0.62	0.35	0.33	0.34	0.33	0.74	0.54	-98.9	8.02 0.0	⁷ 69
CHR Mouse Liver 3 NeoplasticLesion	KNN	Inductive	49	86	78	20	233	0.58	0.39	0.71	0.5	0.71	0.52	0.62	-98.8	7.02 0.2	2 69
CHR Mouse Liver 3 NeoplasticLesion	KNN	Mera, Mersy	46	70	93	23	232	0.5	0.33	0.67	0.44	0.67	0.43	0.55	-98.9	6.71 0.09	9 69
CHR Mouse Liver 3 NeoplasticLesion	KNN	QNPR	43	79	85	26	233	0.52	0.34	0.62	0.44	0.62	0.48	0.55	-98.9	6.98 0.	l 69
CHR Mouse Liver 3 NeoplasticLesion	KNN	Spectrop hores	33	108	56	36	233	0.61	0.37	0.48	0.42	0.48	0.66	0.57	-98.9	7.76 0.13	3 69
CHR Mouse Liver 3 NeoplasticLesion	LibS VM	Adriana	11	145	17	58	231	0.68	0.39	0.16	0.23	0.16	0.9	0.53	-98.9	8.63 0.08	3 69
CHR Mouse Liver 3 NeoplasticLesion	LibS VM	ALogPS, OEstate	10	151	13	59	233	0.69	0.43	0.14	0.22	0.14	0.92	0.53	-98.9	8.86 0.	ı 69
CHR Mouse Liver 3 NeoplasticLesion	LibS VM	CDK	25	131	32	44	232	0.67	0.44	0.36	0.4	0.36	0.8	0.58	-98.8	8.43 0.18	3 69
CHR Mouse Liver 3 NeoplasticLesion	LibS VM	Chemaxo n	12	149	15	57	233	0.69	0.44	0.17	0.25	0.17	0.91	0.54	-98.9	8.84 0.12	2 69

																	\neg
CHR Mouse Liver 3 NeoplasticLesion	LibS VM	Dragon6	8	152	12	61	233	0.69	0.4	0.12	0.18	0.12	0.93	0.52	-99.0 8.76	0.07	69
CHR Mouse Liver 3 NeoplasticLesion	LibS VM	Fragment or	17	148	16	52	233	0.71	0.52	0.25	0.33	0.25	0.9	0.57	-98.9 9.02	0.19	69
CHR Mouse Liver 3 NeoplasticLesion	LibS VM	GSFrag	17	125	39	52	233	0.61	0.3	0.25	0.27	0.25	0.76	0.5	-99.0 7.98	0.01	69
CHR Mouse Liver 3 NeoplasticLesion	LibS VM	Inductive	25	129	35	44	233	0.66	0.42	0.36	0.39	0.36	0.79	0.57	-98.9 8.33	0.16	69
CHR Mouse Liver 3 NeoplasticLesion	LibS VM	Mera, Mersy	12	139	24	57	232	0.65	0.33	0.17	0.23	0.17	0.85	0.51	-99.0 8.32	0.03	69
CHR Mouse Liver 3 NeoplasticLesion	LibS VM	QNPR	18	151	13	51	233	0.73	0.58	0.26	0.36	0.26	0.92	0.59	-98.8 9.28	0.24	69
CHR Mouse Liver 3 NeoplasticLesion	LibS VM	Spectrop hores	31	132	32	38	233	0.7	0.49	0.45	0.47	0.45	0.8	0.63	-98.7 8.51	0.26	69
CHR Mouse Liver 3 NeoplasticLesion	MLR A	Adriana	36	92	70	33	231	0.55	0.34	0.52	0.41	0.52	0.57	0.54	-98.9 7.38	0.08	69
CHR Mouse Liver 3 NeoplasticLesion CHR Mouse Liver 3	MLR A MLR	ALogPS, OEstate	30	86	78	39	233	0.5	0.28	0.43	0.34	0.43	0.52	0.48	-99.0 7.19	.037	69
NeoplasticLesion CHR Mouse Liver 3 NeoplasticLesion	A MLR A	CDK Chemaxo n	29 34	86 92	77 72	40 35	232	0.5	0.27	0.42	0.33	0.42	0.53	0.47		.048	69 69
CHR Mouse Liver 3 NeoplasticLesion	MLR A	Dragon6	20	93	71	49	233	0.48	0.22	0.29	0.25	0.29	0.57	0.43		.134	69
CHR Mouse Liver 3 NeoplasticLesion CHR Mouse Liver 3	A MLR	or	38	81	83	31	233	0.51	0.31	0.55	0.4	0.55	0.49	0.52		0.04	69
NeoplasticLesion CHR Mouse Liver 3 NeoplasticLesion	A MLR A	GSFrag Inductive	38	73 93	91 71	45 31	233	0.42	0.21	0.35	0.26	0.35	0.45	0.4	-99.2 6.8 -98.9 7.37	0.11	69 69
CHR Mouse Liver 3 NeoplasticLesion CHR Mouse Liver 3	MLR A MLR	Mersy	43	96	67	26	232	0.6	0.39	0.62	0.48	0.62	0.59	0.61	-98.8 7.41	0.19	69
NeoplasticLesion CHR Mouse Liver 3 NeoplasticLesion	A MLR A	QNPR Spectrop hores	41 35	95	69 64	28 34	233	0.58	0.37	0.59	0.46	0.59	0.58	0.59	-98.8 7.39 -98.9 7.55	0.16	69 69
CHR Mouse Liver 3 NeoplasticLesion	PLS	Adriana	31	88	74	38	231	0.52	0.3	0.45	0.36	0.45	0.54	0.5	-99.0 7.27	.007	69
CHR Mouse Liver 3 NeoplasticLesion CHR Mouse Liver 3	PLS	ALogPS, OEstate	34	92	72	35	233	0.54	0.32	0.49	0.39	0.49	0.56	0.53	-98.9 7.35	0.05	69
NeoplasticLesion CHR Mouse Liver 3 NeoplasticLesion	PLS PLS	CDK Chemaxo n	37	97 82	66 82	29 32	232	0.59	0.38	0.58	0.46	0.58	0.6	0.59	-98.8 7.47 -99.0 7.11		69 69
CHR Mouse Liver 3 NeoplasticLesion	PLS	Dragon6 Fragment	32	113	51	37	233	0.62	0.39	0.46	0.42	0.46	0.69	0.58	-98.8 7.9	0.15	69
NeoplasticLesion CHR Mouse Liver 3 NeoplasticLesion	PLS PLS	or GSFrag	35 36	109 95	55 69	34	233	0.62	0.39	0.51	0.44	0.51	0.66	0.59	-98.8 7.79 -98.9 7.43		69 69
CHR Mouse Liver 3 NeoplasticLesion CHR Mouse Liver 3	PLS		41	84	80	28	233	0.54	0.34	0.59	0.43	0.59	0.51	0.55	-98.9 7.12	0.1	69
NeoplasticLesion CHR Mouse Liver 3 NeoplasticLesion	PLS PLS	Mersy	37 33	95 101	68 63	32 36	232	0.57	0.35	0.54	0.43	0.54	0.58	0.56	-98.9 7.44 -98.9 7.58		69 69
NeoplasticLesion CHR Mouse Liver 3 NeoplasticLesion	PLS PLS PLS PLS PLS PLS PLS	ALogPS, OEstate CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive Mera, Mersy	34 40 37 32 35 36 41 37	92 97 82 113 109 95 84 95	72 66 82 51 55 69 80 68	35 29 32 37 34 33 28	233 232 233 233 233 233 233 232	0.54 0.59 0.51 0.62 0.62 0.56 0.54	0.32 0.38 0.31 0.39 0.39 0.34 0.34	0.49 0.58 0.54 0.46 0.51 0.52 0.59	0.39 0.46 0.39 0.42 0.44 0.41 0.43	0.49 0.58 0.54 0.46 0.51 0.52 0.59	0.56 0.6 0.5 0.69 0.66 0.58 0.51 0.58	0.53 0.59 0.52 0.58 0.59 0.55 0.55	-98.9 7.35 -98.8 7.47 -99.0 7.11 -98.8 7.9 -98.8 7.79 -98.9 7.43 -98.9 7.12 -98.9 7.44	0.05 0.16 0.03 0.15 0.16 0.09 0.1 0.11	

•																	
CHR Mouse Liver 3 NeoplasticLesion	PLS	Spectrop hores	40	101	63	29	233	0.61	0.39	0.58	0.47	0.58	0.62	0.6	-98.8 7.5	5 0 18	69
CHR Mouse Liver 3	J48	Adriana	25	105	57	44	231	0.56	0.3	0.36	0.33	0.36	0.65	0.51	-99.0 7.6		69
CHR Mouse Liver 3 NeoplasticLesion	J48	ALogPS, OEstate	25	109	55	44	233	0.58	0.31	0.36	0.34	0.36	0.66	0.51	-99.0 7.7	1 0.03	69
CHR Mouse Liver 3 NeoplasticLesion	J48	CDK	28	114	49	41	232	0.61	0.36	0.41	0.38	0.41	0.7	0.55	-98.9 7.9	1 0.1	69
CHR Mouse Liver 3	J40	Chemaxo	20	114	49	41	232	0.01	0.30	0.41	0.36	0.41	0.7	0.55	-90.9 7.8	0.1	08
	J48	n	30	112	52	39	233	0.61	0.37	0.43	0.4	0.43	0.68	0.56	-98.9 7.8	6 0.11	69
CHR Mouse Liver 3 NeoplasticLesion	J48	Dragon6	36	118	46	33	233	0.66	0.44	0.52	0.48	0.52	0.72	0.62	-98.8 8.0	4 0.23	69
CHR Mouse Liver 3 NeoplasticLesion	J48	Fragment or	30	123	41	39	233	0.66	0.42	0.43	0.43	0.43	0.75	0.59	-98.8 8.1	8 0.18	69
CHR Mouse Liver 3 NeoplasticLesion	J48	GSFrag	28	95	69	41	233	0.53	0.29	0.41	0.34	0.41	0.58	0.49	-99.0 7.3	9 .014	69
CHR Mouse Liver 3 NeoplasticLesion	J48	Inductive	39	108	56	30	233	0.63	0.41	0.57	0.48	0.57	0.66	0.61	-98.8 7.7	5 0 21	69
CHR Mouse Liver 3		Mera,															
NeoplasticLesion CHR Mouse Liver 3	J48	Mersy	28	110	53	41	232	0.59	0.35	0.41	0.37	0.41	0.67	0.54	-98.9 7	8 0.08	69
	J48	QNPR	33	114	50	36	233	0.63	0.4	0.48	0.43	0.48	0.7	0.59	-98.8 7.9	3 0.17	69
CHR Mouse Liver 3 NeoplasticLesion	J48	Spectrop hores	27	123	41	42	233	0.64	0.4	0.39	0.39	0.39	0.75	0.57	-98.9 8.1	5 0.14	69
CHR Mouse Spleen 1 AnyLesion	RF	Adriana	19	123	71	18	231	0.61	0.21	0.51	0.3	0.51	0.63	0.57	-98.9 6.4	3 0.11	37
CHR Mouse Spleen 1 AnyLesion	RF	ALogPS, OEstate	21	124	72	16	233	0.62	0.23	0.57	0.32	0.57	0.63	0.6	-98.8 6.4	1 0.15	37
CHR Mouse Spleen 1 AnyLesion	RF	CDK	20	120	75	17	232	0.6	0.21	0.54	0.3	0.54	0.62	0.58	-98.8 6.3	5 0.12	37
CHR Mouse Spleen 1		Chemaxo															
,	RF	n	20	139	57	17	233	0.68	0.26	0.54	0.35	0.54	0.71	0.62	-98.8 6.7	7 0.19	37
	RF	Dragon6	19	127	69	18	233	0.63	0.22	0.51	0.3	0.51	0.65	0.58	-98.8 6.4	9 0.12	37
	RF	Fragment or	22	134	62	15	233	0.67	0.26	0.59	0.36	0.59	0.68	0.64	-98.7 6.6	2 0.21	37
CHR Mouse Spleen 1 AnyLesion	RF	GSFrag	12	122	74	25	233	0.58	0.14	0.32	0.2	0.32	0.62	0.47	-99.1 6.2	6 .04	37
CHR Mouse Spleen 1 AnyLesion	RF	Inductive	23	132	64	14	233	0.67	0.26	0.62	0.37	0.62	0.67	0.65	-98.7 6.5	5 0.22	37
CHR Mouse Spleen 1		Mera,															
AnyLesion CHR Mouse Spleen 1	RF	Mersy	20	125	70	17	232	0.63	0.22	0.54	0.31	0.54	0.64	0.59	-98.8 6.4	0 0.14	37
AnyLesion	RF	QNPR Spectrop	23	119	77	14	233	0.61	0.23	0.62	0.34	0.62	0.61	0.61	-98.8 6.2	6 0.17	37
	RF	hores	15	120	76	22	233	0.58	0.16	0.41	0.23	0.41	0.61	0.51	-99.0 6.3	1 0.01	37
or in a moduce opicion i	ASN N	Adriana	20	137	57	17	231	0.68	0.26	0.54	0.35	0.54	0.71	0.62	-98.8 6.7	5 0.19	37
CHR Mouse Spleen 1	ASN	ALogPS,															
AnyLesion .	N ASN	OEstate	19	135	61	18	233	0.66	0.24	0.51	0.32	0.51	0.69	0.6	-98.8 6.6	8 0.16	37
AnyLesion	N	CDK	20	135	60	17	232	0.67	0.25	0.54	0.34	0.54	0.69	0.62	-98.8 6.6	9 0.18	37
Of it would opicing	ASN N	Chemaxo n	14	137	59	23	233	0.65	0.19	0.38	0.25	0.38	0.7	0.54	-98.9 6.6	7_0.06	37
	ASN N	Dragon6	15	153	43	22	233	0.72	0.26	0.41	0.32	0.41	0.78	0.59	-98.8 7.1	2 0 16	37
Of it chiodoc opicon i																	
AnyLesion CHR Mouse Spleen 1	ASN	Fragment	17	150	40	20									-98.8 7.1	a 117	37
AnyLesion CHR Mouse Spleen 1 AnyLesion		Fragment or	17	153	43	20	233	0.73	0.28	0.46	0.35	0.46	0.78	0.62	00.0	4 0.2	
AnyLesion CHR Mouse Spleen 1 AnyLesion CHR Mouse Spleen 1 AnyLesion	ASN N	•	17 15	153 139	43 57	20	233	0.73	0.21	0.41	0.28	0.41	0.71	0.56	-98.9 6.7		37

CHR Mouse Spleen 1	ASN	Mera,														
AnyLesion	N	Mersy	16	141	54	21	232	0.68	0.23	0.43	0.3	0.43	0.72	0.58	-98.8 6.83 0.12	37
CHR Mouse Spleen 1 AnyLesion	ASN N	QNPR	14	145	51	23	233	0.68	0.22	0.38	0.27	0.38	0.74	0.56	-98.9 6.87 0.1	37
CHR Mouse Spleen 1 AnyLesion	ASN N	hores	15	130	66	22	233	0.62	0.19	0.41	0.25	0.41	0.66	0.53	-98.9 6.53 0.05	37
CHR Mouse Spleen 1 AnyLesion	ASN N	CDK, TA, TP	9	145	50	28	232	0.66	0.15	0.24	0.19	0.24	0.74	0.49	-99.0 6.66 .011	37
CHR Mouse Spleen 1 AnyLesion	ASN N	CDK, TA	13	149	46	24	232	0.7	0.22	0.35	0.27	0.35	0.76	0.56	-98.9 6.97 0.1	37
CHR Mouse Spleen 1 AnyLesion	ASN N	CDK, TP	15	147	48	22	232	0.7	0.24	0.41	0.3	0.41	0.75	0.58	-98.8 6.97 0.13	37
CHR Mouse Spleen 1 AnyLesion	ASN N	TA, TP	10	153	43	27	233	0.7	0.19	0.27		0.27	0.78	0.53	-98.9 6.93 0.04	37
CHR Mouse Spleen 1	ASN	TA	14	144	52	23	233	0.68	0.13	0.38	0.27	0.38	0.73	0.56	-98.9 6.84 0.09	37
AnyLesion CHR Mouse Spleen 1	ASN															
AnyLesion	N	TP ORK TA	16	143	53	21	233	0.68	0.23	0.43	0.3	0.43	0.73	0.58	-98.8 6.86 0.13	37
CHR Mouse Spleen 1 AnyLesion	LR	CDK, TA, TP	12	140	55	25	232	0.66	0.18	0.32	0.23	0.32	0.72	0.52	-99.0 6.69 0.03	37
CHR Mouse Spleen 1	FSM															
AnyLesion	LR	CDK, TA	14	134	61	23	232	0.64	0.19	0.38	0.25	0.38	0.69	0.53	-98.9 6.61 0.05	37
CHR Mouse Spleen 1 AnyLesion	FSM LR	CDK, TP	19	128	67	18	232	0.63	0.22	0.51	0.31	0.51	0.66	0.58	-98.8 6.53 0.13	37
CHR Mouse Spleen 1 AnyLesion	FSM LR	TA, TP	12	142	54	25	233	0.66	0.18	0.32	0.23	0.32	0.72	0.52	-99.0 6.73 0.04	37
CHR Mouse Spleen 1	FSM	ΤΛ.	40	444	50	24	000	0.07	0.0	0.05	0.05	0.05	0.70	0.54	00.0.004.007	27
AnyLesion	LR FSM	TA	13	144	52	24	233	0.67	0.2	0.35	0.25	0.35	0.73	0.54	-98.9 6.81 0.07	37
CHR Mouse Spleen 1 AnyLesion	LR	TP CDK, TA,	17	131	65	20	233	0.64	0.21	0.46	0.29	0.46	0.67	0.56	-98.9 6.58 0.1	37
CHR Mouse Spleen 1 AnyLesion	KNN		17	126	69	20	232	0.62	0.2	0.46	0.28	0.46	0.65	0.55	-98.9 6.48 0.08	37
CHR Mouse Spleen 1 AnyLesion	KNN	CDK, TA	15	137	58	22	232	0.66	0.21	0.41	0.27	0.41	0.7	0.55	-98.9 6.71 0.09	37
CHR Mouse Spleen 1 AnyLesion	KNN	CDK, TP	23	97	98	14	232	0.52	0.19	0.62	0.29	0.62	0.5	0.56	-98.9 5.82 0.09	37
CHR Mouse Spleen 1 AnyLesion	KNN	TA, TP	24	107	89	13	233	0.56	0.21	0.65	0.32	0.65	0.55	0.6	-98.8 5.98 0.14	37
CHR Mouse Spleen 1 AnyLesion	KNN	TA	17	150	46	20	233	0.72	0.27	0.46	0.34	0.46	0.77	0.61	-98.8 7.06 0.18	37
CHR Mouse Spleen 1 AnyLesion	KNN	TP	28	85	111	9	233	0.48	0.2	0.76	0.32	0.76	0.43	0.6	-98.8 5.34 0.14	37
CHR Mouse Spleen 1 AnyLesion	LibS VM	CDK, TA, TP	2	184	11	35	232	0.8	0.15	0.05	0.08	0.05	0.94	0.5	-99.0 7.26 .004	37
CHR Mouse Spleen 1 AnyLesion	LibS VM	CDK, TA	1	193	2	36	232	0.84	0.33	0.03	0.05	0.03	0.99	0.51	-99.0 8.35 0.05	37
CHR Mouse Spleen 1 AnyLesion	LibS VM	CDK, TP	5	181	14	32	232	0.8	0.26	0.14	0.18	0.14	0.93	0.53	-98.9 7.71 0.08	37
CHR Mouse Spleen 1 AnyLesion	LibS VM	TA, TP	1	193	3	36	233	0.83	0.25	0.03	0.05	0.03	0.98	0.51	-99.0 8.02 0.03	37
CHR Mouse Spleen 1	LibS VM	TA	0	190	6	37		0.82	0.	0.				0.48	-99.0 6.31 .071	37

CHR Mouse Spleen 1 AnyLesion	VM	TP CDIC TA	1	182	14	36	233	0.79	0.07	0.03	0.04	0.03	0.93	0.48	-99.0 6.54	.066	_
CHR Mouse Spleen 1 AnyLesion	Α	CDK, TA, TP	15	120	75	22	232	0.58	0.17	0.41	0.24	0.41	0.62	0.51	-99.0 6.32	0.02	
CHR Mouse Spleen 1 AnyLesion	MLR A	CDK, TA	17	131	64	20	232	0.64	0.21	0.46	0.29	0.46	0.67	0.57	-98.9 6.59	0.1	
CHR Mouse Spleen 1 AnyLesion	MLR A	CDK, TP	20	111	84	17	232	0.56	0.19	0.54	0.28	0.54	0.57	0.55	-98.9 6.16	0.08	
CHR Mouse Spleen 1 AnyLesion	MLR A	TA, TP	15	105	91	22	233	0.52	0.14	0.41	0.21	0.41	0.54	0.47	-99.1 6.	.043	
CHR Mouse Spleen 1 AnyLesion	MLR A	TA	20	93	103	17	233	0.48	0.16	0.54	0.25	0.54	0.47	0.51	-99.0 5.78	0.01	
CHR Mouse Spleen 1 AnyLesion	MLR A	TP	17	112	84	20	233	0.55	0.17	0.46	0.25	0.46	0.57	0.52	-99.0 6.17	0.02	
CHR Mouse Spleen 1 AnyLesion	PLS	CDK, TA, TP	13	145	50	24	232	0.68	0.21	0.35	0.26	0.35	0.74	0.55	-98.9 6.86	0.08	
CHR Mouse Spleen 1 AnyLesion	PLS	CDK, TA	13	143	52	24	232	0.67	0.2	0.35	0.25	0.35	0.73	0.54	-98.9 6.81		_
CHR Mouse Spleen 1 AnyLesion	PLS	CDK, TP	18	141	54	19	232	0.69	0.25	0.49	0.33	0.49	0.72	0.6	-98.8 6.84	0.17	_
CHR Mouse Spleen 1 AnyLesion	PLS	TA, TP	15	153	43	22	233	0.72	0.26	0.41	0.32	0.41	0.78	0.59	-98.8 7.12	0.16	
CHR Mouse Spleen 1 AnyLesion	PLS	TA	16	145	51	21	233	0.69	0.24	0.43	0.31	0.43	0.74	0.59	-98.8 6.91	0.14	
CHR Mouse Spleen 1 AnyLesion	PLS	TP	17	140	56	20	233	0.67	0.23	0.46	0.31	0.46	0.71	0.59	-98.8 6.79	0.14	
CHR Mouse Spleen 1 AnyLesion	J48	CDK, TA, TP	7	145	50	30	232	0.66	0.12	0.19	0.15	0.19	0.74	0.47	-99.1 6.49	.057	
CHR Mouse Spleen 1 AnyLesion	J48	CDK, TA	9	141	54	28	232	0.65	0.14	0.24	0.18	0.24	0.72	0.48	-99.0 6.56	.028	
CHR Mouse Spleen 1 AnyLesion	J48	CDK, TP	13	145	50	24	232	0.68	0.21	0.35	0.26	0.35	0.74	0.55	-98.9 6.86	0.08	
CHR Mouse Spleen 1 AnyLesion	J48	TA, TP	11	158	38	26	233	0.73	0.22	0.3	0.26	0.3	0.81	0.55	-98.9 7.13	0.09	
CHR Mouse Spleen 1 AnyLesion	J48	TA	11	148	48	26	233	0.68	0.19	0.3	0.23	0.3	0.76	0.53	-98.9 6.84	0.04	
CHR Mouse Spleen 1 AnyLesion	J48	TP CDK, TA,	14	147	49	23	233	0.69	0.22	0.38	0.28	0.38	0.75	0.56	-98.9 6.92	0.11	_
CHR Mouse Spleen 1 AnyLesion	RF	TP	14	130	65	23	232	0.62	0.18	0.38	0.24	0.38	0.67	0.52	-99.0 6.52	0.03	_
CHR Mouse Spleen 1 AnyLesion	RF	CDK, TA	14	130	65	23	232	0.62	0.18	0.38	0.24	0.38	0.67	0.52	-99.0 6.52	0.03	
CHR Mouse Spleen 1 AnyLesion	RF	CDK, TP	19	137	58	18	232	0.67	0.25	0.51	0.33	0.51	0.7	0.61	-98.8 6.74	0.17	
CHR Mouse Spleen 1 AnyLesion	RF	TA, TP	17	131	65	20	233	0.64	0.21	0.46	0.29	0.46	0.67	0.56	-98.9 6.58	0.1	
CHR Mouse Spleen 1 AnyLesion	RF	TA	17	133	63	20	233	0.64	0.21	0.46	0.29	0.46	0.68	0.57	-98.9 6.63	0.11	_
CHR Mouse Spleen 1 AnyLesion	RF	TP	23	122	74	14	233	0.62	0.24	0.62	0.34	0.62	0.62	0.62	-98.8 6.33	0.18	_
CHR Mouse Spleen 1 AnyLesion	FSM LR	Adriana	23	119	75	14	231	0.61	0.23	0.62	0.34	0.62	0.61	0.62	-98.8 6.29	0.17	
CHR Mouse Spleen 1 AnyLesion	FSM LR	ALogPS, OEstate	21	128	68	16	233	0.64	0.24	0.57	0.33	0.57	0.65	0.61	-98.8 6.5	0.17	
CHR Mouse Spleen 1 AnyLesion	FSM LR	CDK	22	117	78	15	232	0.6	0.22	0.59	0.32	0.59	0.6	0.6	-98.8 6.26	0.14	
CHR Mouse Spleen 1 AnyLesion	FSM LR	Chemaxo n	18	127	69	19	233	0.62	0.21	0.49	0.29	0.49	0.65	0.57	-98.9 6.49	0.1	
CHR Mouse Spleen 1 AnyLesion	FSM LR	Dragon6	18	136	60	19	233	0.66	0.23	n 49	O 31	n 49	n 60	n 50	-98.8 6.7	0.14	

CHR Mouse Spleen 1 AnyLesion	FSM LR	Fragment or	22	143	53	15	233	0.71	0.29	0.59	0.39	0.59	0.73	0.66	-98.7	6.84	0.25	
CHR Mouse Spleen 1 AnyLesion	FSM LR	GSFrag	18	113	83	19	233	0.56	0.18	0.49	0.26	0.49	0.58	0.53	-98.9	6.2	0.05	
CHR Mouse Spleen 1 AnyLesion	FSM LR	Inductive	20	120	76	17	233	0.6	0.21	0.54	0.3	0.54	0.61	0.58	-98.8	6.34	0.11	
CHR Mouse Spleen 1 AnyLesion	FSM LR	Mera, Mersy	21	136	59	16	232	0.68	0.26	0.57	0.36	0.57	0.7	0.63	-98.7	6.7	0.2	
CHR Mouse Spleen 1 AnyLesion	FSM LR	QNPR	20	128	68	17	233	0.64	0.23	0.54	0.32	0.54	0.65	0.6	-98.8	6.51	0.15	
CHR Mouse Spleen 1 AnyLesion	FSM LR	Spectrop hores	23	80	116	14	233	0.44	0.17	0.62	0.26	0.62	0.41	0.51	-99.0	5.46	0.02	
CHR Mouse Spleen 1 AnyLesion	KNN	Adriana	23	90	104	14	231	0.49	0.18	0.62	0.28	0.62	0.46	0.54	-98.9	5.69	0.06	
CHR Mouse Spleen 1 AnyLesion	KNN	ALogPS, OEstate	25	96	100	12	233	0.52	0.2	0.68	0.31	0.68	0.49	0.58	-98.8	5.72	0.12	
CHR Mouse Spleen 1 AnyLesion	KNN	CDK	22	110	85	15	232	0.57	0.21	0.59	0.31	0.59	0.56	0.58	-98.8	6.11	0.12	
CHR Mouse Spleen 1 AnyLesion	KNN	Chemaxo n	15	128	68	22	233	0.61	0.18	0.41	0.25	0.41	0.65	0.53	-98.9	6.48	0.04	
CHR Mouse Spleen 1 AnyLesion	KNN	Dragon6	23	117	79	14	233	0.6	0.23	0.62	0.33	0.62	0.6	0.61	-98.8	6.22	0.16	
CHR Mouse Spleen 1 AnyLesion	KNN	Fragment or	27	95	101	10	233	0.52	0.21	0.73	0.33	0.73	0.48	0.61	-98.8	5.6	0.16	
CHR Mouse Spleen 1 AnyLesion	KNN	GSFrag	23	77	119	14	233	0.43	0.16	0.62	0.26	0.62	0.39	0.51	-99.0	5.4	0.01	
CHR Mouse Spleen 1 AnyLesion	KNN	Inductive Mera,	21	135	61	16	233	0.67	0.26	0.57	0.35	0.57	0.69	0.63	-98.7	6.66	0.2	_
CHR Mouse Spleen 1 AnyLesion	KNN	Mersy	19	138	57	18	232	0.68	0.25	0.51	0.34	0.51	0.71	0.61	-98.8	6.77	0.17	_
CHR Mouse Spleen 1 AnyLesion	KNN	QNPR Spectrop	35	19	177	2	233	0.23	0.17	0.95	0.28	0.95	0.1	0.52	-99.0	2.28	0.05	_
CHR Mouse Spleen 1 AnyLesion	KNN	hores	12	116	80	25	233	0.55	0.13	0.32	0.19	0.32	0.59	0.46	-99.1	6.13	.063	_
CHR Mouse Spleen 1 AnyLesion	LibS VM	Adriana	7	176	18	30	231	0.79	0.28	0.19	0.23	0.19	0.91	0.55	-98.9	7.69	0.11	
CHR Mouse Spleen 1 AnyLesion	LibS VM		5	175	21	32	233	0.77	0.19	0.14	0.16	0.14	0.89	0.51	-99.0	7.29	0.03	
CHR Mouse Spleen 1 AnyLesion	LibS VM	CDK	7	171	24	30	232	0.77	0.23	0.19	0.21	0.19	0.88	0.53	-98.9	7.38	0.07	
CHR Mouse Spleen 1 AnyLesion	LibS VM	Chemaxo n	5	169	27	32	233	0.75	0.16	0.14	0.14	0.14	0.86	0.5	-99.0	7.	.003	
CHR Mouse Spleen 1 AnyLesion	LibS VM	Dragon6	2	186	10	35	233	0.81	0.17	0.05	0.08	0.05	0.95	0.5	-99.0	7.36	0.01	
CHR Mouse Spleen 1 AnyLesion	LibS VM	Fragment or	7	183	13	30	233	0.82	0.35	0.19	0.25	0.19	0.93	0.56	-98.9	8.04	0.16	
CHR Mouse Spleen 1 AnyLesion	LibS VM	GSFrag	4	184	12	33	233	0.81	0.25	0.11	0.15	0.11	0.94	0.52	-99.0	7.71	0.07	

																	\neg
CHR Mouse Spleen 1	LibS																
AnyLesion	VM	Inductive	11	174	22	26	233	0.79	0.33	0.3	0.31	0.3	0.89	0.59	-98.8 7.77	0.19	37
CHR Mouse Spleen 1	LibS	Mera,															
AnyLesion	VM	Mersy	5	180	15	32	232	8.0	0.25	0.14	0.18	0.14	0.92	0.53	-98.9 7.64	80.0	37
CHR Mouse Spleen 1	LibS																
AnyLesion	VM	QNPR	5	189	7	32	233	0.83	0.42	0.14	0.2	0.14	0.96	0.55	-98.9 8.42	0.16	37
CHR Mouse Spleen 1	LibS	Spectrop															
AnyLesion	VM MLR	hores	1	180	16	36	233	0.78	0.06	0.03	0.04	0.03	0.92	0.47	-99.1 6.4	.077	37
CHR Mouse Spleen 1 AnyLesion	A	Adriana	23	116	78	14	231	0.6	0.23	0.62	0.33	0.62	0.6	0.61	-98.8 6.23	0.16	37
	MIR	ALogPS,															
CHR Mouse Spleen 1 AnyLesion	A	OEstate	21	139	57	16	233	0.69	0.27	0.57	0.37	0.57	0.71	0.64	-98.7 6.76	0.21	37
CHR Mouse Spleen 1 AnyLesion	MLR A	CDK	11	110	85	26	232	0.52	0.11	0.3	0.17	0.3	0.56	0.43	-99.1 5.98	.103	37
CHR Mouse Spleen 1	MLR	_	- 11	110			202	0.02	0.11	0.0	0.17	0.0	0.00	0.40	-55.1 5.56	.100	-07
AnyLesion	A MLR	n	17	127	69	20	233	0.62	0.2	0.46	0.28	0.46	0.65	0.55	-98.9 6.49	80.0	37
CHR Mouse Spleen 1 AnyLesion	Α	Dragon6	16	91	105	21	233	0.46	0.13	0.43	0.2	0.43	0.46	0.45	-99.1 5.73	.076	37
CHR Mouse Spleen 1 AnyLesion	MLR A	Fragment or	23	146	50	14	233	0.73	0.32	0.62	0.42	0.62	0.74	0.68	-98.6 6.9	0.29	37
CHR Mouse Spleen 1	MLR	OI .		140			200	0.70	0.02	0.02	0.72	0.02	0.74	0.00	00.0 0.0	0.20	
AnyLesion	A MLR	GSFrag	22	96	100	15	233	0.51	0.18	0.59	0.28	0.59	0.49	0.54	-98.9 5.81	0.06	37
CHR Mouse Spleen 1 AnyLesion	Α	Inductive	19	133	63	18	233	0.65	0.23	0.51	0.32	0.51	0.68	0.6	-98.8 6.63	0.15	37
CHR Mouse Spleen 1 AnyLesion	MLR A	Mera, Mersy	16	112	83	21	232	0.55	0.16	0.43	0.24	0.43	0.57	0.5	-99.0 6.17	0.01	37
CHR Mouse Spleen 1	MLR	ivicisy	10	112	00	21	232	0.55	0.10	0.43	0.24	0.43	0.57	0.5	-99.0 0.17	0.01	-37
AnyLesion	A MLR	QNPR Spectrop	17	112	84	20	233	0.55	0.17	0.46	0.25	0.46	0.57	0.52	-99.0 6.17	0.02	37
CHR Mouse Spleen 1 AnyLesion	A	hores	17	116	80	20	233	0.57	0.18	0.46	0.25	0.46	0.59	0.53	-98.9 6.25	0.04	37
CHR Mouse Spleen 1 AnyLesion	PLS	Adriana	22	119	75	15	231	0.61	0.23	0.59	0.33	0.59	0.61	0.6	-98.8 6.31	0.15	37
							-										
CHR Mouse Spleen 1 AnyLesion	PLS	ALogPS, OEstate	20	132	64	17	233	0.65	0.24	0.54	0.33	0.54	0.67	0.61	-98.8 6.6	0.16	37
CHR Mouse Spleen 1	PLS		20	128		17	232							0.6			37
AnyLesion CHR Mouse Spleen 1	FLO	Chemaxo	20	120	67	17	232	0.64	0.23	0.54	0.32	0.54	0.66	0.0	-98.8 6.53	0.15	-37
AnyLesion	PLS	n	17	130	66	20	233	0.63	0.2	0.46	0.28	0.46	0.66	0.56	-98.9 6.56	0.09	37
CHR Mouse Spleen 1 AnyLesion	PLS	Dragon6	19	147	49	18	233	0.71	0.28	0.51	0.36	0.51	0.75	0.63	-98.7 6.98	0.21	37
CHR Mouse Spleen 1 AnyLesion	PLS	Fragment or	19	141	55	18	233	0.69	0.26	0.51	0.34	0.51	0.72	0.62	-98.8 6.82	N 18	37
CHR Mouse Spleen 1																	
AnyLesion CHR Mouse Spleen 1	PLS	GSFrag	17	122	74	20	233	0.6	0.19	0.46	0.27	0.46	0.62	0.54	-98.9 6.38	0.06	37
AnyLesion	PLS	Inductive	21	122	74	16	233	0.61	0.22	0.57	0.32	0.57	0.62	0.6	-98.8 6.37	0.14	37
CHR Mouse Spleen 1 AnyLesion	PLS	Mera, Mersy	18	130	65	19	232	0.64	0.22	0.49	0.3	0.49	0.67	0.58	-98.8 6.58	0 12	37
CHR Mouse Spleen 1																	
AnyLesion CHR Mouse Spleen 1		QNPR Spectrop	17	136	60	20	233	0.66	0.22	0.46	0.3	0.46	0.69	0.58	-98.8 6.7	0.12	37
AnyLesion	PLS		16	106	90	21	233	0.52	0.15	0.43	0.22	0.43	0.54	0.49	-99.0 6.03	.02	37
CHR Mouse Spleen 1 AnyLesion	J48	Adriana	13	145	49	24	231	0.68	0.21	0.35	0.26	0.35	0.75	0.55	-98.9 6.88	0.08	37
OUD M		ALogPS,															
CHR Mouse Spleen 1 AnyLesion	J48	OEstate	11	149	47	26	233	0.69	0.19	0.3	0.23	0.3	0.76	0.53	-98.9 6.87	0.05	37
CHR Mouse Spleen 1 AnyLesion	J48	CDK	17	145	50	20	232	0.7	0.25	0.46	0.33	0.46	0.74	0.6	-98.8 6.94	0.16	37
I, 200.0	0 10	3511	.,	. 10	-	_0	_5_	5.1	0.20	0.40	0.00	5.40	J.17	0.0	00.0 0.04	5.10	١,٠

		Oleanna																
CHR Mouse Spleen 1 AnyLesion	J48	Chemaxo n	13	154	42	24	233	0.72	0.24	0.35	0.28	0.35	0.79	0.57	-98.9 7	09	0 12	37
CHR Mouse Spleen 1	0.0								<u> </u>	0.00	0.20	0.00	00	0.0.				
AnyLesion	J48	Dragon6	9	158	38	28	233	0.72	0.19	0.24	0.21	0.24	0.81	0.52	-99.0 7	.02	0.04	37
CHR Mouse Spleen 1		Fragment																
AnyLesion	J48	or	19	148	48	18	233	0.72	0.28	0.51	0.37	0.51	0.76	0.63	-98.7 7	.01	0.22	37
CHR Mouse Spleen 1 AnyLesion	J48	GSFrag	9	154	42	28	233	0.7	0.18	0.24	0.2	0.24	0.79	0.51	-99.0 6	.89	0.03	37
CHR Mouse Spleen 1 AnyLesion	J48	Inductive	16	137	59	21	233	0.66	0.21	0.43	0.29	0.43	0.7	0.57	-98.9 6	.71	0.1	37
CHR Mouse Spleen 1 AnyLesion	J48	Mera, Mersy	11	155	40	26	232	0.72	0.22	0.3	0.25	0.3	0.79	0.55	-98.9 7	.06	0.08	37
CHR Mouse Spleen 1		ONDD	10	110		07	222	0.04	0.45	0.07	0.40	0.07	0.74	0.40	00.0.0		040	27
AnyLesion	J48	QNPR Spectrop	10	140	56	27	233	0.64	0.15	0.27	0.19	0.27	0.71	0.49	-99.0 6	.58	.013	37
CHR Mouse Spleen 1 AnyLesion	J48	hores	12	150	46	25	233	0.7	0.21	0.32	0.25	0.32	0.77	0.54	-98.9 6	.94	0.08	37
CHR Rat																		
AdrenalGland 1 AnyLesion	RF	Adriana	14	130	76	21	241	0.6	0.16	0.4	0.22	0.4	0.63	0.52	-99.0 6	.28	0.02	35
CHR Rat		AL caDC																
AdrenalGland 1 AnyLesion	RF	ALogPS, OEstate	17	134	74	18	243	0.62	0.19	0.49	0.27	0.49	0.64	0.56	-98.9 6	37	0 09	35
CHR Rat		J_51010		.0-7		10	70	0.02	0.10	5.75	U.L1	5.75	0.07	0.00	30.0 0		0.00	
AdrenalGland 1	D.F.	0014		465		٠.	0	0.01	0.10		0.00			0 =0	000 -		0.00	
AnyLesion	RF	CDK	14	133	73	21	241	0.61	0.16	0.4	0.23	0.4	0.65	0.52	-99.0 6	.34	0.03	35
CHR Rat AdrenalGland 1		Chemaxo																
AnyLesion	RF	n	19	124	84	16	243	0.59	0.18	0.54	0.28	0.54	0.6	0.57	-98.9 6	.16	0.1	35
CHR Rat																		
AdrenalGland 1	RF	Dragon6	17	135	73	18	243	0.63	0.19	0.49	0.27	0.49	0.65	0.57	-98.9 6	30	0.1	35
AnyLesion CHR Rat	131	Diagono	17	100	7.5	10	273	0.00	0.18	U.73	0.21	U.73	0.00	0.01	-30.8 0	.00	<u> </u>	
AdrenalGland 1		Fragment																
AnyLesion	RF	or	14	130	78	21	243	0.59	0.15	0.4	0.22	0.4	0.63	0.51	-99.0 6	.25	0.02	35
CHR Rat																		
AdrenalGland 1 AnyLesion	RF	GSFrag	21	132	76	14	243	0.63	0.22	0.6	0.32	0.6	0.63	0.62	-98.8 6	.29	0.17	35
CHR Rat		- 3		•						-	-	-		-		_		
AdrenalGland 1	DE	lua alconatto ca	47	400	70	40	0.40	0.00	0.40	0.40	0.07	0.40	0.05	0.53	0000		0.4	2.5
AnyLesion	RF	Inductive	17	136	72	18	243	0.63	0.19	0.49	0.27	0.49	0.65	0.57	-98.9 6	.41	0.1	35
CHR Rat AdrenalGland 1		Mera,																
AnyLesion	RF	Mersy	18	127	80	17	242	0.6	0.18	0.51	0.27	0.51	0.61	0.56	-98.9 6	.24	0.09	35
CHR Rat																		
AdrenalGland 1 AnyLesion	RF	QNPR	14	134	74	21	243	0.61	0.16	0.4	0.23	0.4	0.64	0.52	-99.0 6	33	በ በ3	35
CHR Rat	1 (1	WINI IV		104	, 4	۱ ـ	270	0.01	0.10	0.4	0.20	0.4	0.04	0.02	-55.0 0	.00	0.00	
AdrenalGland 1		Spectrop																
AnyLesion	RF	hores	15	121	87	20	243	0.56	0.15	0.43	0.22	0.43	0.58	0.51	-99.0 6	.09	0.01	35
CHR Rat AdrenalGland 1	ASN																	
AdrenalGland 1 AnyLesion	N	Adriana	14	142	64	21	241	0.65	0.18	0.4	0.25	0.4	0.69	0.54	-98.9 6	.53	0.07	35
CHR Rat			-															
AdrenalGland 1	ASN	ALogPS,																
AnyLesion	N	OEstate	18	145	63	17	243	0.67	0.22	0.51	0.31	0.51	0.7	0.61	-98.8 6	.61	0.16	35
CHR Rat	ASN																	
AdrenalGland 1 AnyLesion	N	CDK	16	140	66	19	241	0.65	0.2	0.46	0.27	0.46	0.68	0.57	-98.9 6	.52	0.1	35
CHR Rat				. 10			<u>- TI</u>	0.00	J. <u>L</u>	5.40	V.Z1	0.40	0.00	0.01				
		Chemaxo																
	N	n	14	142	66	21	243	0.64	0.18	0.4	0.24	0.4	0.68	0.54	-98.9	6.5	0.06	35
AdrenalGland 1	14																	
AdrenalGland 1 AnyLesion CHR Rat																		
AdrenalGland 1 AnyLesion CHR Rat AdrenalGland 1	ASN	Dragon6	14	151	57	21	243	0.68	0.2	0.4	0.26	0.4	0.73	0.56	-989 6	71	0 1	35
AdrenalGland 1 AnyLesion CHR Rat AdrenalGland 1 AnyLesion		Dragon6	14	151	57	21	243	0.68	0.2	0.4	0.26	0.4	0.73	0.56	-98.9 6	.71	0.1	35
AdrenalGland 1 AnyLesion	ASN N	Dragon6 Fragment	14	151 159	57 49	21	243	0.68	0.2		0.26	0.4		0.56	-98.9 6 -98.8 6			35 35

CHR Rat	4011															
AdrenalGland 1 AnyLesion	ASN N	GSFrag	21	158	50	14	243	0.74	0.3	0.6	0.4	0.6	0.76	0.68	-98.6 6.89 0.28	35
CHR Rat AdrenalGland 1 AnyLesion	ASN N	Inductive	16	141	67	19	243	0.65	0.19	0.46	0.27	0.46	0.68	0.57	-98.9 6.51 0.1	35
CHR Rat AdrenalGland 1 AnyLesion	ASN N	Mera, Mersy	17	142	65	18	242	0.66	0.21	0.49	0.29	0.49	0.69	0.59	-98.8 6.56 0.13	35
CHR Rat AdrenalGland 1 AnyLesion	ASN N	QNPR	13	145	63	22	243	0.65	0.17	0.37	0.23	0.37	0.7	0.53	-98.9 6.55 0.05	35
CHR Rat AdrenalGland 1 AnyLesion	ASN N	Spectrop hores	11	135	73	24	243	0.6	0.13	0.31	0.18	0.31	0.65	0.48	-99.0 6.25 .027	35
CHR Rat AdrenalGland 1 AnyLesion	ASN N	CDK, TA, TP	11	165	41	24	241	0.73	0.21	0.31	0.25	0.31	0.8	0.56	-98.9 7.02 0.1	35
CHR Rat AdrenalGland 1 AnyLesion	ASN N	CDK, TA	9	172	34	26	241	0.75	0.21	0.26	0.23	0.26	0.83	0.55	-98.9 7.14 0.08	35
CHR Rat AdrenalGland 1 AnyLesion	ASN N	CDK, TP	11	154	52	24	241	0.68	0.17	0.31	0.22	0.31	0.75	0.53	-98.9 6.72 0.05	35
CHR Rat AdrenalGland 1 AnyLesion	ASN N	TA, TP	9	166	42	26	243	0.72	0.18	0.26	0.21	0.26	0.8	0.53	-98.9 6.89 0.05	35
CHR Rat AdrenalGland 1 AnyLesion	ASN N	TA	11	166	42	24	243	0.73	0.21	0.31	0.25	0.31	0.8	0.56	-98.9 7.01 0.1	35
CHR Rat AdrenalGland 1 AnyLesion	ASN N	TP	8	152	56	27	243	0.66	0.13	0.23	0.16	0.23	0.73	0.48	-99.0 6.45 .032	35
CHR Rat AdrenalGland 1 AnyLesion		CDK, TA,	11	152	54	24	241	0.68	0.17	0.31	0.22	0.31	0.74	0.53	-98.9 6.67 0.04	35
CHR Rat AdrenalGland 1	FSM															
AnyLesion CHR Rat AdrenalGland 1	LR FSM	CDK, TA	11	151	55	24	241	0.67	0.17	0.31	0.22	0.31	0.73	0.52	-99.0 6.65 0.04	35
AnyLesion CHR Rat	LR	CDK, TP	9	138	68	26	241	0.61	0.12	0.26	0.16	0.26	0.67	0.46	-99.1 6.23 .055	35
AdrenalGland 1 AnyLesion	FSM LR	TA, TP	17	149	59	18	243	0.68	0.22	0.49	0.31	0.49	0.72	0.6	-98.8 6.7 0.15	35
CHR Rat AdrenalGland 1 AnyLesion	FSM LR	TA	14	149	59	21	243	0.67	0.19	0.4	0.26	0.4	0.72	0.56	-98.9 6.66 0.09	35
CHR Rat AdrenalGland 1 AnyLesion	FSM LR	TP	15	130	78	20	243	0.6	0.16	0.43	0.23	0.43	0.63	0.53	-98.9 6.27 0.04	35
CHR Rat AdrenalGland 1 AnyLesion	KNN	CDK, TA,	2	193	13	33	241	0.81	0.13	0.06	0.08	0.06	0.94	0.5	-99.0 7.09 .009	35
CHR Rat AdrenalGland 1 AnyLesion		CDK, TA	8	188	18	27	241	0.81	0.31	0.23	0.26	0.23	0.91	0.57	-98.9 7.78 0.16	35
CHR Rat AdrenalGland 1 AnyLesion		CDK, TP	8	129	77	27	241	0.57	0.09	0.23	0.13	0.23	0.63	0.43	-99.1 5.97 .107	35
CHR Rat AdrenalGland 1 AnyLesion		TA, TP	8	168	40	27	243	0.72	0.17	0.23	0.19	0.23	0.81	0.52	-99.0 6.88 0.03	35
CHR Rat AdrenalGland 1 AnyLesion	KNN		7	174	34	28	243	0.74	0.17	0.2	0.18	0.2	0.84	0.52	-99.0 6.99 0.03	35
CHR Rat AdrenalGland 1 AnyLesion	KNN	TP	8	111	97	27	243	0.49	0.08	0.23	0.11	0.23	0.53	0.38	-99.2 5.59 .169	35

CHR Rat AdrenalGland 1 AnyLesion	LibS VM	CDK, TA, TP	0	206	0	35	241	0.85		0.		0.	1.	0.5	-99.0	8.9	35
CHR Rat AdrenalGland 1 AnyLesion	LibS VM	CDK. TA	1	205	1	34	241	0.85	0.5	0.03	0.05	0.03	1.	0.51	-99.0	8.87 0.0	9 35
CHR Rat AdrenalGland 1 AnyLesion	LibS VM	CDK, TP	1	204	2	34	241	0.85	0.33	0.03	0.05	0.03	0.99	0.51		8.35 0.0	
CHR Rat AdrenalGland 1	LibS	,							0.55		0.00						
AnyLesion CHR Rat AdrenalGland 1	LibS	TA, TP	0	208	0	35	243	0.86		0.		0.	1.	0.5	-99.0		35
AnyLesion CHR Rat AdrenalGland 1	VM LibS	TA	0	208	0	35	243	0.86		0.		0.	1.	0.5	-99.0	8.91	35
AnyLesion CHR Rat AdrenalGland 1	VM MLR	TP CDK, TA,	0	208	0	35	243	0.86		0.		0.	1.	0.5	-99.0	8.91	35
AnyLesion CHR Rat AdrenalGland 1	A MLR	TP	16	135	71	19	241	0.63	0.18	0.46	0.26	0.46	0.66	0.56		6.41 0.0	
AnyLesion CHR Rat AdrenalGland 1	MLR	CDK, TA	16	135	71	19	241	0.63	0.18	0.46	0.26	0.46	0.66	0.56		6.41 0.0	
AnyLesion CHR Rat AdrenalGland 1 AnyLesion	MLR A	CDK, TP	19 11	55 111	151 97	16 	241	0.31	0.11	0.54	0.19	0.54	0.27	0.42	-99.2 -99.2	4.77 .1 ⁴ 5.78 .10	
CHR Rat AdrenalGland 1 AnyLesion	MLR A	TA, TP	19	124	84	16	243	0.59	0.18	0.51	0.13	0.54	0.55	0.42	-99.2		.1 35
CHR Rat AdrenalGland 1 AnyLesion	MLR A	TP	13	95	113	22	243	0.44	0.1	0.37	0.16	0.37	0.46	0.41		5.54 .12	
CHR Rat AdrenalGland 1 AnyLesion	PLS	CDK, TA, TP	9	159	47	26	241	0.7	0.16	0.26	0.2	0.26	0.77	0.51	-99.0	6.74 0.0)2 35
CHR Rat AdrenalGland 1 AnyLesion	PLS	CDK, TA	10	168	38	25	241	0.74	0.21	0.29	0.24	0.29	0.82	0.55	-98.9	7.07 0.0	9 35
CHR Rat AdrenalGland 1 AnyLesion	PLS	CDK, TP	11	150	56	24	241	0.67	0.16	0.31	0.22	0.31	0.73	0.52	-99.0	6.62 0.0	3 35
CHR Rat AdrenalGland 1 AnyLesion	PLS	TA, TP	11	160	48	24	243	0.7	0.19	0.31	0.23	0.31	0.77	0.54	-98.9	6.84 0.0	7 35
CHR Rat AdrenalGland 1 AnyLesion CHR Rat	PLS	TA	9	160	48	26	243	0.7	0.16	0.26	0.2	0.26	0.77	0.51	-99.0	6.73 0.0)2 35
AdrenalGland 1 AnyLesion CHR Rat	PLS	TP	10	137	71	25	243	0.6	0.12	0.29	0.17	0.29	0.66	0.47	-99.1	6.24 .04	11 35
AdrenalGland 1 AnyLesion CHR Rat	J48	CDK, TA, TP	9	172	34	26	241	0.75	0.21	0.26	0.23	0.26	0.83	0.55	-98.9	7.14 0.0)8 35
AdrenalGland 1 AnyLesion CHR Rat	J48	CDK, TA	12	170	36	23	241	0.76	0.25	0.34	0.29	0.34	0.83	0.58	-98.8	7.22 0.1	15 35
AdrenalGland 1 AnyLesion CHR Rat	J48	CDK, TP	11	156	50	24	241	0.69	0.18	0.31	0.23	0.31	0.76	0.54	-98.9	6.77 0.0	06 35
AdrenalGland 1 AnyLesion CHR Rat	J48	TA, TP	14	160	48	21	243	0.72	0.23	0.4	0.29	0.4	0.77	0.58	-98.8	6.94 0.1	14 35
AdrenalGland 1 AnyLesion	J48	TA	16	155	53	19	243	0.7	0.23	0.46	0.31	0.46	0.75	0.6	-98.8	6.84 0.1	16 35

CUD Dot																		
CHR Rat AdrenalGland 1																		
AnyLesion	J48	TP	11	146	62	24	243	0.65	0.15	0.31	0.2	0.31	0.7	0.51	-99.0	6.49	0.01	35
CHR Rat AdrenalGland 1		CDK, TA,																
AnyLesion	RF	TP	10	145	61	25	241	0.64	0.14	0.29	0.19	0.29	0.7	0.49	-99.0	6.45	.008	35
CHR Rat																		
AdrenalGland 1	DE	ODIC TA	40	400	00	40	044	0.04	0.40	0.40	0.07	0.40	0.07	0.50	00.0	0.40	0.00	0.5
AnyLesion	RF	CDK, TA	16	138	68	19	241	0.64	0.19	0.46	0.27	0.46	0.67	0.56	-98.9	6.48	0.09	35
CHR Rat																		
AdrenalGland 1 AnyLesion	RF	CDK, TP	12	136	70	23	241	0.61	0.15	0.34	0.21	0.34	0.66	0.5	-99.0	6.34	0.	35
CHR Rat		ODIT, 11		100				0.01	0.10	0.01	0.21	0.01	0.00	0.0		0.01	<u> </u>	
AdrenalGland 1																		
AnyLesion	RF	TA, TP	15	132	76	20	243	0.6	0.16	0.43	0.24	0.43	0.63	0.53	-98.9	6.31	0.05	35
CHR Rat																		
AdrenalGland 1	DE	Τ.	40	447	0.4	00	0.40	0.00	0.40	0.07	0.04	0.07	0.74	0.54	00.0	0.50	0.00	0.5
AnyLesion	RF	TA	13	147	61	22	243	0.66	0.18	0.37	0.24	0.37	0.71	0.54	-98.9	6.59	0.06	35
CHR Rat																		
AdrenalGland 1 AnyLesion	RF	TP	9	118	90	26	243	0.52	0.09	0.26	0.13	0.26	0.57	0.41	-99.2	5.8	.125	35
<u> </u>	1 (1	- ' '		110			2-10	0.02	0.00	0.20	0.10	0.20	0.07	0.41	00.2	0.0	.120	
CHR Rat	FSM																	
AdrenalGland 1 AnyLesion	LR	Adriana	20	131	75	15	241	0.63	0.21	0.57	0.31	0.57	0.64	0.6	-98.8	6.32	0.15	35
•	, `							0.00	<u> </u>	0.01	0.01	0.01	J.U.	J.0	30.0	J.JL	0.10	
CHR Rat	FSM	ALogPS,																
AdrenalGland 1 AnyLesion	LR	OEstate	16	126	82	19	243	0.58	0.16	0.46	0.24	0.46	0.61	0.53	-98.9	62	0.05	35
<u> </u>		JEGIGIO					_ +0	0.00	0.10	5.40	Ų. <u>∠</u> ¬′	0.40	0.01	0.00	30.0	J. <u>L</u>	0.00	
CHR Rat	FSM																	
AdrenalGland 1 AnyLesion	LR	CDK	16	143	63	19	241	0.66	0.2	0.46	0.28	0.46	0.69	0.58	-98 8	6.59	0.11	35
•		ODIC	-10	140		-10		0.00	0.2	0.40	0.20	0.40	0.00	0.00	00.0	0.00	0.11	
CHR Rat	FSM	Chemaxo																
AdrenalGland 1 AnyLesion	LR	n	16	132	76	19	243	0.61	0.17	0.46	0.25	0.46	0.63	0.55	_08 Q	6.32	0.07	35
uny Ecoloni			-10	102		-10	2-10	0.01	0.17	0.40	0.20	0.40	0.00	0.00	00.0	0.02	0.07	- 00
CHR Rat	FSM																	
AdrenalGland 1 AnyLesion	LR	Dragon6	19	132	76	16	243	0.62	0.2	0.54	0.29	0.54	0.63	0.59	-08 8	6.32	0 13	35
ATTYLEGIOT	LIX	Diagono	10	102	70	10	240	0.02	0.2	0.04	0.23	0.04	0.00	0.00	-30.0	0.02	0.10	00
CHR Rat	FSM	Fragment																
AdrenalGland 1 AnyLesion	LR	or	16	143	65	19	243	0.65	0.2	0.46	0.28	0.46	0.69	0.57	-98 9	6.56	0 11	35
•		01	-10	140		-10	2-10	0.00	0.2	0.40	0.20	0.40	0.00	0.07	00.0	0.00	0.11	
CHR Rat	FSM																	
AdrenalGland 1 AnyLesion	LR	GSFrag	16	142	66	19	243	0.65	0.2	0.46	0.27	0.46	0.68	0.57	-98.9	6 54	0.1	35
, triy Ecolori		OOI 149	-10	172		-10	2-10	0.00	0.2	0.40	0.21	0.40	0.00	0.07	00.0	0.04	0.1	- 00
CHR Rat	FSM																	
AdrenalGland 1 AnyLesion	LR	Inductive	18	138	70	17	243	0.64	0.2	0.51	0.29	0.51	0.66	0.59	-98.8	6.46	0.13	35
•	LIV			.00		- ' '	70	J.J .	V.Z	0.01	J.2J	5.01	0.00	0.00	00.0	5.70	0.10	
CHR Rat	FSM	Mera,																
AdrenalGland 1 AnyLesion	LR	Mersy	18	141	66	17	242	0.66	0.21	0.51	0.3	0.51	0.68	0.6	-98.8	6.54	0 14	35
•	LIX	itioloy	.0	1-71			<u></u>	0.00	0.21	0.01	0.0	0.01	0.00	0.0	30.0	0.07	0.17	
CHR Rat	FSM																	
AdrenalGland 1 AnyLesion	LR	QNPR	10	131	77	25	243	0.58	0.11	0.29	0.16	0.29	0.63	0.46	-99 1	6.12	062	35
•	LIX	SITE IX	.0	101	- ' '		<u>_</u>	0.00	V.11	0.20	0.10	0.20	0.00	0.70	55.1	U. 12	.002	
CHR Rat	FSM	Spectrop																
AdrenalGland 1 AnyLesion	LR	hores	11	141	67	24	243	0.63	0.14	0.31	0.19	0.31	0.68	0.5	-99 N	6.38	006	35
CHR Rat	LIV	.10100		171	J.		70	0.00	J. 17	0.01	5.10	5.01	0.00	0.0	55.0	0.00	.500	
CHR Rat AdrenalGland 1																		
	KNN	Adriana	16	137	69	19	241	0.63	0.19	0.46	0.27	0.46	0.67	0.56	-98.9	6.46	0.09	35
AnyLesion																		
-																		
CHR Rat		ALogPS,																2.5
CHR Rat AdrenalGland 1	KNN	ALogPS, OEstate	19	126	82	16	243	0.6	0.19	0.54	0.28	0.54	0.61	0.57	-98.9	6.2	0.11	30
CHR Rat AdrenalGland 1 AnyLesion	KNN	-	19	126	82	16	243	0.6	0.19	0.54	0.28	0.54	0.61	0.57	-98.9	6.2	0.11	35
CHR Rat AdrenalGland 1 AnyLesion CHR Rat		OEstate	19	126	82	16	243	0.6	0.19	0.54	0.28	0.54	0.61	0.57	-98.9	6.2	0.11	30
CHR Rat AdrenalGland 1 AnyLesion CHR Rat AdrenalGland 1		-	19	126 131	82 75	16	243	0.63	0.19	0.54	0.28	0.54	0.61	0.57		6.27		35 35
AnyLesion CHR Rat AdrenalGland 1 AnyLesion CHR Rat AdrenalGland 1 AnyLesion CHR Rat ArenalGland 1 AnyLesion CHR Rat		OEstate CDK																
CHR Rat AdrenalGland 1 AnyLesion CHR Rat AdrenalGland 1 AnyLesion		OEstate CDK Chemaxo								0.63			0.64	0.63	-98.7		0.19	

CHR Rat AdrenalGland 1																	
AnyLesion	KNN	Dragon6	18	132	76	17	243	0.62	0.19	0.51	0.28	0.51	0.63	0.57	-98.9 6	.33 0.11	35
CHR Rat																	
AdrenalGland 1	IZNINI	Fragment	10	110	00	17	242	0.56	0.47	0.51	0.05	0.51	0.57	0.54	000 6	07 0.06	25
AnyLesion	KNN	or	18	119	89	17	243	0.56	0.17	0.51	0.25	0.51	0.57	0.54	-98.9 6	.07 0.06	35
CHR Rat AdrenalGland 1																	
AnyLesion	KNN	GSFrag	15	167	41	20	243	0.75	0.27	0.43	0.33	0.43	0.8	0.62	-98.8 7	.16 0.19	35
CHR Rat																	
AdrenalGland 1	IZNINI	Inductive	22	02	11 <i>E</i>	10	242	0.40	0.47	0.66	0.07	0.66	0.45	0.55	000 5	47 0 07	25
AnyLesion	KININ	inductive	23	93	115	12	243	0.48	0.17	0.66	0.27	0.66	0.45	0.55	-90.9 5	.47 0.07	35
CHR Rat AdrenalGland 1		Mera,															
AnyLesion	KNN	Mersy	16	137	70	19	242	0.63	0.19	0.46	0.26	0.46	0.66	0.56	-98.9 6	.44 0.09	35
CHR Rat																	
AdrenalGland 1	KNINI	QNPR	15	124	84	20	243	0.57	0.15	0.43	0.22	0.43	0.6	0.51	-99.0 6	.15 0.02	35
AnyLesion	KININ	QNFN	13	124	04	20	243	0.57	0.15	0.43	0.22	0.43	0.0	0.51	-99.0 0	.13 0.02	33
CHR Rat AdrenalGland 1		Spectrop															
AnyLesion	KNN	hores	16	124	84	19	243	0.58	0.16	0.46	0.24	0.46	0.6	0.53	-98.9 6	.16 0.04	35
CHR Rat																	
AdrenalGland 1	LibS		_														
AnyLesion	VM	Adriana	7	177	29	28	241	0.76	0.19	0.2	0.2	0.2	0.86	0.53	-98.9 7	.16 0.06	35
CHR Rat	Libo	AL ac DC															
AdrenalGland 1	VM	ALogPS,	2	107	21	22	242	0.70	0.12	0.00	0.1	0.00	0.0	0.40	00.0	20 010	25
AnyLesion	VIVI	OEstate	3	187	21	32	243	0.78	0.13	0.09	0.1	0.09	0.9	0.49	-99.0	6.9 .018	35
CHR Rat	LibS																
AdrenalGland 1 AnyLesion	VM	CDK	2	177	29	33	241	0.74	0.06	0.06	0.06	0.06	0.86	0.46	-99.1 6	.22 .088	35
								• • • •									
CHR Rat AdrenalGland 1	LibS	Chemaxo															
AnyLesion	VM	n	5	187	21	30	243	0.79	0.19	0.14	0.16	0.14	0.9	0.52	-99.0 7	.29 0.05	35
CHR Rat																	
AdrenalGland 1	LibS																
AnyLesion	VM	Dragon6	0	197	11	35	243	0.81	0.	0.		0.	0.95	0.47	-99.1 5	.72 .089	35
CHR Rat	1:1-0																
AdrenalGland 1	LibS	Fragment	^	400	0	25	040	0.00	0	•		•	0.00	0.40	00.0 5	00 00	25
AnyLesion	VM	or	0	199	9	35	243	0.82	0.	0.		0.	0.96	0.48	-99.0 5	.92 .08	35
CHR Rat	LibS																
AdrenalGland 1 AnyLesion	VM	GSFrag	9	177	31	26	243	0.77	0.23	0.26	0.24	0.26	0.85	0.55	-98.9 7	.26 0.1	35
	VIVI	COLIUG		.,,			2-10	0.11	0.20	0.20	0.27	0.20	0.00	0.00	00.0 7	.20 0.1	
CHR Rat AdrenalGland 1	LibS																
AnyLesion	VM	Inductive	7	166	42	28	243	0.71	0.14	0.2	0.17	0.2	0.8	0.5	-99.0 6	.73 .002	35
CHR Rat																	
AdrenalGland 1	LibS	Mera,															
AnyLesion	VM	Mersy	2	185	22	33	242	0.77	0.08	0.06	0.07	0.06	0.89	0.48	-99.0 6	.54 .058	35
CHR Rat																	
AdrenalGland 1	LibS	01155	_														
AnyLesion	VM	QNPR	2	185	23	33	243	0.77	0.08	0.06	0.07	0.06	0.89	0.47	-99.1 6	.49 .062	35
CHR Rat	Libo	Cnastron															
AdrenalGland 1	LibS VM		3	189	19	32	243	0.79	0.14	0.09	0.11	0.09	0.91	0.5	00.0 7	.01 .007	35
AnyLesion	VIVI	hores	3	109	19	32	243	0.79	0.14	0.09	0.11	0.09	0.91	0.5	-99.0 7	.01 .007	35
CHR Rat AdrenalGland 1	MLR																
AnyLesion	Α	Adriana	21	121	85	14	241	0.59	0.2	0.6	0.3	0.6	0.59	0.59	-98.8 6	.09 0.13	35
CHR Rat																	
AdrenalGland 1	MLR	ALogPS,															
AnyLesion	Α	OEstate	19	121	87	16	243	0.58	0.18	0.54	0.27	0.54	0.58	0.56	-98.9	6.1 0.09	35
CHR Rat	MLR																
AdrenalGland 1 AnyLesion	A	CDK	15	105	101	20	241	0.5	0.13	0.43	0.2	0.43	0.51	0.47	-99.1	5.8 .044	35
CHR Rat				.50				3.0	0.10	5.40	J. <u>Z</u>	5.40	0.01	U. TI	55.1	J.O .O-T	- 50
AdrenalGland 1	MLR	Chemaxo															
AnyLesion	Α	n	20	136	72	15	243	0.64	0.22	0.57	0.31	0.57	0.65	0.61	-98.8 6	.39 0.16	35

CHR Rat AdrenalGland 1	MLR																	
AnyLesion	Α	Dragon6	15	106	102	20	243	0.5	0.13	0.43	0.2	0.43	0.51	0.47	-99.1	5.8	.043	35
CHR Rat AdrenalGland 1 AnyLesion	MLR A	Fragment or	20	141	67	15	243	0.66	0.23	0.57	0.33	0.57	0.68	0.62	-98.8	6.5	0.18	35
CHR Rat AdrenalGland 1	MLR																	
AnyLesion CHR Rat AdrenalGland 1	A MLR	GSFrag	18	121	87	17	243	0.57	0.17	0.51	0.26	0.51	0.58	0.55	-98.9	6.11	0.07	35
AnyLesion CHR Rat	Α	Inductive	18	146	62	17	243	0.67	0.23	0.51	0.31	0.51	0.7	0.61	-98.8	6.63	0.16	35
AdrenalGland 1 AnyLesion	A A	Mera, Mersy	15	118	89	20	242	0.55	0.14	0.43	0.22	0.43	0.57	0.5	-99.0	6.04	.001	35
CHR Rat AdrenalGland 1 AnyLesion	MLR A	QNPR	23	103	105	12	243	0.52	0.18	0.66	0.28	0.66	0.5	0.58	-98.8	5.66	0.11	35
CHR Rat AdrenalGland 1 AnyLesion	MLR A	Spectrop hores	12	118	90	23	243	0.53	0.12	0.34	0.18	0.34	0.57	0.46	-99.1	5.95	064	35
CHR Rat AdrenalGland 1																		
AnyLesion CHR Rat	PLS	Adriana	19	131	75	16	241	0.62	0.2	0.54	0.29	0.54	0.64	0.59	-98.8	6.33	0.13	35
AdrenalGland 1 AnyLesion	PLS	ALogPS, OEstate	16	134	74	19	243	0.62	0.18	0.46	0.26	0.46	0.64	0.55	-98.9	6.36	0.07	35
CHR Rat AdrenalGland 1 AnyLesion	PLS	CDK	18	133	73	17	241	0.63	0.2	0.51	0.29	0.51	0.65	0.58	-98.8	6.38	0.12	35
CHR Rat AdrenalGland 1		Chemaxo				40												
AnyLesion CHR Rat AdrenalGland 1	PLS	n	16	129	79	19	243	0.6	0.17	0.46	0.25	0.46	0.62	0.54	-98.9	6.26	0.06	35
AnyLesion CHR Rat	PLS	Dragon6	18	147	61	17	243	0.68	0.23	0.51	0.32	0.51	0.71	0.61	-98.8	6.65	0.17	35
AdrenalGland 1 AnyLesion CHR Rat	PLS	Fragment or	13	152	56	22	243	0.68	0.19	0.37	0.25	0.37	0.73	0.55	-98.9	6.71	80.0	35
AdrenalGland 1 AnyLesion	PLS	GSFrag	19	151	57	16	243	0.7	0.25	0.54	0.34	0.54	0.73	0.63	-98.7	6.74	0.2	35
CHR Rat AdrenalGland 1 AnyLesion	PLS	Inductive	20	126	82	15	243	0.6	0.2	0.57	0.29	0.57	0.61	0.59	-98.8	6 19	0 13	35
CHR Rat AdrenalGland 1		Mera,																
AnyLesion CHR Rat AdrenalGland 1	PLS	Mersy	17	127	80	18	242	0.6	0.18	0.49	0.26	0.49	0.61	0.55	-98.9	6.24	0.07	35
AnyLesion CHR Rat	PLS	QNPR	14	144	64	21	243	0.65	0.18	0.4	0.25	0.4	0.69	0.55	-98.9	6.55	0.07	35
AdrenalGland 1 AnyLesion	PLS	Spectrop hores	16	104	104	19	243	0.49	0.13	0.46	0.21	0.46	0.5	0.48	-99.0	5.77	.03	35
CHR Rat AdrenalGland 1 AnyLesion	J48	Adriana	12	158	48	23	241	0.71	0.2	0.34	0.25	0.34	0.77	0.55	-98.9	6.87	0.09	35
CHR Rat AdrenalGland 1	140	ALogPS,	40	450	50	-	0.40	0.07	0.40	0.07	0.05	0.07	0.70	0.55	00.5	0.00	0.67	0.5
AnyLesion CHR Rat AdrenalGland 1	J48	OEstate	13	150	58	22	243	0.67	0.18	0.37	0.25	0.37	0.72	0.55	-98.9	6.66	0.07	35
AnyLesion CHR Rat	J48	CDK	9	156	50	26	241	0.68	0.15	0.26	0.19	0.26	0.76	0.51	-99.0	6.66	0.01	35
AdrenalGland 1 AnyLesion CHR Rat	J48	Chemaxo n	13	143	65	22	243	0.64	0.17	0.37	0.23	0.37	0.69	0.53	-98.9	6.5	0.04	35
CHR Rat AdrenalGland 1 AnyLesion	J48	Dragon6	13	161	47	22	243	0.72	0.22	0.37	0.27	0.37	0.77	0.57	-98.9	6.94	0.12	35

CHR Rat AdrenalGland 1 AnyLesion	J48	Fragment or	13	147	61	22	243	0.66	0.18	0.37	0.24	0.37	0.71	0.54	-98.9	6.59 0.06	35
CHR Rat AdrenalGland 1 AnyLesion	J48	GSFrag	19	158	50	16	243	0.73	0.28	0.54	0.37	0.54	0.76	0.65	-98.7	6.92 0.24	35
CHR Rat AdrenalGland 1 AnyLesion	J48	Inductive	13	160	48	22	243	0.71	0.21	0.37	0.27	0.37	0.77	0.57		6.91 0.11	35
CHR Rat AdrenalGland 1 AnyLesion	J48	Mera, Mersy	14	168	39	21	242	0.75	0.26	0.4	0.32	0.4	0.81	0.61		7.19 0.18	35
CHR Rat AdrenalGland 1 AnyLesion	J48	QNPR	13	147	61	22	243	0.66	0.18	0.37	0.24	0.37	0.71	0.54		6.59 0.06	35
CHR Rat AdrenalGland 1	J48	Spectrop hores	11	143	65	24	243	0.63	0.14	0.31	0.24	0.31	0.69	0.54	-99.0		35
AnyLesion CHR Rat Eye 1 AnyLesion	RF	Adriana	18	132	71	20	241	0.62	0.14	0.47	0.28	0.47	0.65	0.56		6.56 0.09	38
CHR Rat Eye 1 AnyLesion	RF	ALogPS, OEstate	22	127	78	16	243	0.61	0.22	0.58	0.32	0.58	0.62	0.6	-98.8	6.4 0.15	38
CHR Rat Eye 1 AnyLesion	RF	CDK Chemaxo	17	122	82	20	241	0.58	0.17	0.46	0.25	0.46	0.6	0.53	-98.9	6.28 0.04	37
CHR Rat Eye 1 AnyLesion CHR Rat Eye 1	RF	n	20	124	81	18	243	0.59	0.2	0.53	0.29	0.53	0.6	0.57	-98.9	6.36 0.1	38
AnyLesion CHR Rat Eye 1	RF DE	Dragon6 Fragment	19	124	81	19	243	0.59	0.19	0.5	0.28	0.5	0.6	0.55		6.36 0.08	38
AnyLesion CHR Rat Eye 1 AnyLesion	RF RF	or GSFrag	17 19	133 139	72 66	21 19	243	0.62	0.19	0.45	0.27	0.45	0.65	0.55		6.54 0.07 6.68 0.14	38
CHR Rat Eye 1 AnyLesion	RF	Inductive	23	132	73	15	243	0.64	0.24	0.61	0.34	0.61	0.64	0.62	-98.8	6.49 0.19	38
CHR Rat Eye 1 AnyLesion CHR Rat Eye 1	RF	Mera, Mersy	23	119	85	15	242	0.59	0.21	0.61	0.32	0.61	0.58	0.59	-98.8	6.23 0.14	38
AnyLesion CHR Rat Eye 1 AnyLesion	RF RF	QNPR Spectrop hores	18 19	127 141	78 64	20 19	243	0.66	0.19	0.47	0.27	0.47	0.62	0.55		6.42 0.07 6.73 0.14	38
CHR Rat Eye 1 AnyLesion	ASN N	Adriana	14	143	60	24	241	0.65	0.19	0.37	0.25	0.37	0.7	0.54		6.74 0.06	38
CHR Rat Eye 1 AnyLesion	ASN N	ALogPS, OEstate	17	142	63	21	243	0.65	0.21	0.45	0.29	0.45	0.69	0.57	-98.9	6.74 0.11	38
CHR Rat Eye 1 AnyLesion	ASN N	CDK	17	132	72	20	241	0.62	0.19	0.46	0.27	0.46	0.65	0.55		6.49 0.08	37
CHR Rat Eye 1 AnyLesion	ASN N ASN	Chemaxo n	19	149	56	19	243	0.69	0.25	0.5	0.34	0.5	0.73	0.61	-98.8	6.91 0.18	38
CHR Rat Eye 1 AnyLesion CHR Rat Eye 1	N ASN	Dragon6 Fragment	17	148	57	21	243		0.23			0.45				6.88 0.13	38
AnyLesion CHR Rat Eye 1 AnyLesion	ASN N	or GSFrag	14 18	150	55 67	24	243	0.67	0.2	0.37	0.26	0.37	0.73	0.55		6.87 0.08 6.66 0.11	38 38
CHR Rat Eye 1 AnyLesion	ASN N	Inductive	18	133	72	20	243	0.62		0.47	0.28	0.47	0.65	0.56		6.55 0.09	38
CHR Rat Eye 1 AnyLesion	ASN N ASN	Mera, Mersy	18	133	71	20	242	0.62	0.2	0.47	0.28	0.47	0.65	0.56	-98.9	6.56 0.09	38
CHR Rat Eye 1 AnyLesion CHR Rat Eye 1	N	QNPR Spectrop	18	146	59	20	243	0.67	0.23	0.47	0.31	0.47	0.71	0.59	-98.8	6.84 0.15	38
AnyLesion CHR Rat Eye 1	N ASN	hores CDK, TA,	18	137	68	20	243	0.64	0.21		0.29	0.47		0.57		6.63 0.11	38
AnyLesion	N	TP	15	145	59	22	241	0.66	0.2	0.41	0.27	0.41	0.71	0.56	-98.9	6.75 0.09	37

CHR Rat Eye 1 AnyLesion CHR Rat Eye 1 AnyLesion CHR Rat Eye 1 AnyLesion	ASN N ASN N	CDK, TA	14	143	61	23	241	0.05		0.00	0.05	0.00	0.7	0.54	000 000 000	27
AnyLesion CHR Rat Eye 1							44 I	0.65	0.19	0.38	0.25	0.38	0.7	0.54	-98.9 6.68 0.06	37
		CDK, TP	13	137	67	24	241	0.62	0.16	0.35	0.22	0.35	0.67	0.51	-99.0 6.51 0.02	37
	ASN N	TA, TP	16	153	52	22	243	0.7	0.24	0.42	0.3	0.42	0.75	0.58	-98.8 6.99 0.14	38
CHR Rat Eye 1	ASN				42	23										
AnyLesion CHR Rat Eye 1	N ASN	TA	15	163			243	0.73	0.26	0.39	0.32	0.39	0.8	0.59	-98.8 7.25 0.16	38
AnyLesion	N	TP	12	147	58	26	243	0.65	0.17	0.32	0.22	0.32	0.72	0.52	-99.0 6.73 0.03	38
CHR Rat Eye 1 AnyLesion	FSM LR	CDK, TA, TP	17	140	64	20	241	0.65	0.21	0.46	0.29	0.46	0.69	0.57	-98.9 6.66 0.11	37
CHR Rat Eye 1 AnyLesion	FSM LR	CDK, TA	17	127	77	20	241	0.6	0.18	0.46	0.26	0.46	0.62	0.54	-98.9 6.38 0.06	37
CHR Rat Eye 1 AnyLesion	FSM LR	CDK, TP	16	134	70	21	241	0.62	0.19	0.43	0.26	0.43	0.66	0.54	-98.9 6.52 0.07	37
CHR Rat Eye 1 AnyLesion	FSM LR	TA, TP	18	144	61	20	243	0.67	0.23	0.47	0.31	0.47	0.7	0.59	-98.8 6.79 0.14	38
CHR Rat Eye 1 AnyLesion	FSM LR	TA	16	152	53	22	243	0.69	0.23	0.42	0.3	0.42	0.74	0.58	-98.8 6.96 0.13	38
CHR Rat Eye 1 AnyLesion	FSM LR	TP	12	133	72	26	243	0.6	0.14	0.32	0.2	0.32	0.65	0.48	-99.0 6.41 .027	38
CHR Rat Eye 1 AnyLesion	KNN	CDK, TA, TP	30	46	158	7	241	0.32	0.16	0.81	0.27	0.81	0.23	0.52	-99.0 4.21 0.03	37
CHR Rat Eye 1 AnyLesion	KNN	CDK, TA	21	106	98	16	241	0.53	0.18	0.57	0.27	0.57	0.52	0.54	-98.9 5.95 0.06	37
CHR Rat Eye 1 AnyLesion	KNN	CDK, TP	27	55	149	10	241	0.34	0.15	0.73	0.25	0.73	0.27	0.5	-99.0 4.67 .001	37
CHR Rat Eye 1 AnyLesion	KNN	TA, TP	28	54	151	10	243	0.34	0.16	0.74	0.26	0.74	0.26	0.5	-99.0 4.68 0.	38
CHR Rat Eye 1 AnyLesion	KNN	TA	22	86	119	16	243	0.44	0.16	0.58	0.25	0.58	0.42	0.5	-99.0 5.59 .001	38
CHR Rat Eye 1 AnyLesion	KNN	TP	27	69	136	11	243	0.4	0.17	0.71	0.27	0.71	0.34	0.52	-99.0 5.08 0.04	38
CHR Rat Eye 1 AnyLesion	LibS VM	CDK, TA, TP	2	189	15	35	241	0.79	0.12	0.05	0.07	0.05	0.93	0.49	-99.0 6.99 .027	37
CHR Rat Eye 1 AnyLesion	LibS VM	CDK, TA	2	200	4	35	241	0.84	0.33	0.05	0.09	0.05	0.98	0.52	-99.0 8.28 0.08	37
CHR Rat Eye 1 AnyLesion	LibS VM	CDK, TP	1	198	6	36	241	0.83	0.14	0.03	0.05	0.03	0.97	0.5	-99.0 7.42 .005	37
CHR Rat Eye 1 AnyLesion	LibS VM	TA, TP	1	196	9	37	243	0.81	0.1	0.03	0.04	0.03	0.96	0.49	-99.0 7.06 .032	38
CHR Rat Eye 1 AnyLesion	LibS VM	TA	5	191	14	33	243	0.81	0.26	0.13	0.18	0.13	0.93	0.53	-98.9 7.8 0.09	38
CHR Rat Eye 1 AnyLesion	LibS VM	TP	1	202	3	37	243	0.84	0.25	0.03	0.05	0.03	0.99	0.51	-99.0 8.09 0.03	38
CHR Rat Eye 1 AnyLesion	Α	CDK, TA, TP	18	133	71	19	241	0.63	0.2	0.49	0.29	0.49	0.65	0.57	-98.9 6.51 0.1	37
CHR Rat Eye 1 AnyLesion	MLR A	CDK, TA	21	126	78	16	241	0.61	0.21	0.57	0.31	0.57	0.62	0.59	-98.8 6.35 0.14	37
CHR Rat Eye 1 AnyLesion	MLR A	CDK, TP	14	115	89	23	241	0.54	0.14	0.38	0.2	0.38	0.56	0.47	-99.1 6.09 .042	37

MID																
Α	TA, TP	16	137	68	22	243	0.63	0.19	0.42	0.26	0.42	0.67	0.54	-98.9 6.6	1 0.07	3
Α	TA	22	97	108	16	243	0.49	0.17	0.58	0.26	0.58	0.47	0.53	-98.9 5.8	1 0.04	3
	TP	21	117	88	17	243	0.57	0.19	0.55	0.29	0.55	0.57	0.56	-98.9 6.2	1 0.09	3
	CDK, TA, TP				20											3
								0.20	00			0	0.00			
PLS	CDK, TA	14	145	59	23	241	0.66	0.19	0.38	0.25	0.38	0.71	0.54	-98.9 6.7	3 0.07	3
PLS	CDK, TP	16	135	69	21	241	0.63	0.19	0.43	0.26	0.43	0.66	0.55	-98.9 6.5	4 0.07	3
PLS	TA, TP	17	150	55	21	243	0.69	0.24	0.45	0.31	0.45	0.73	0.59	-98.8 6.9	3 0.14	3
PLS	TA	16	154	51	22	243	0.7	0.24	0.42	0.3	0.42	0.75	0.59	-98.8 7.0	2 0.14	3
PLS	TP	13	138	67	25	243	0.62	0.16	0.34	0.22	0.34	0.67	0.51	-99.0 6.5	6 0.01	3
J48	CDK, TA, TP	14	142	62	23	241	0.65	0.18	0.38	0.25	0.38	0.7	0.54	-98.9 6.6	6 0.06	3
J48	CDK. TA	13	144	60	24	241						0.71	0.53			3
	· · · · · · · · · · · · · · · · · · ·															3
	,														-	3
																3
J48	TP CDK, TA,	13	157	48	25	243	0.7	0.21	0.34	0.26	0.34	0.77	0.55	-98.9 7.0	2 0.09	3
RF	TP	17	120	84	20	241	0.57	0.17	0.46	0.25	0.46	0.59	0.52	-99.0 6.2	4 0.03	3
RF	CDK, TA	18	126	78	19	241	0.6	0.19	0.49	0.27	0.49	0.62	0.55	-98.9 6.3	7 0.08	3
RF	CDK, TP	23	118	86	14	241	0.59	0.21	0.62	0.32	0.62	0.58	0.6	-98.8 6.1	5 0.14	3
RF	TA, TP	17	125	80	21	243	0.58	0.18	0.45	0.25	0.45	0.61	0.53	-98.9 6.3	7 0.04	3
RF	TA	15	144	61	23	243	0.65	0.2	0.39	0.26	0.39	0.7	0.55	-98.9 6.7	5 0.08	3
RF	TP	19	112	93	19	243	0.54	0.17	0.5	0.25	0.5	0.55	0.52	-99.0 6.1	3 0.03	3
FSM																
LR	Adriana	14	130	73	24	241	0.6	0.16	0.37	0.22	0.37	0.64	0.5	-99.0 6.4	5 0.01	3
		47	407	00	0.4	0.40	0.00	0.0	0.45	0.00	0.45	0.07	0.50	00000	0 0 00	•
	OEstate	17	137	68	21	243	0.63	0.2	0.45	0.28	0.45	0.67	0.56	-98.9 6.6	3 0.09	3
FSM LR	CDK	18	123	81	19	241	0.59	0.18	0.49	0.26	0.49	0.6	0.54	-98.9 6.	3 0.07	3
FSM	Chemaxo															
LR	n	20	138	67	18	243	0.65	0.23	0.53	0.32	0.53	0.67	0.6	-98.8 6.6	6 0.15	3
FSM LR	Dragon6	20	137	68	18	243	0.65	0.23	0.53	0.32	0.53	0.67	0.6	-98.8 6.6	3 0.15	3
FSM	Fragment															
LR	or	16	151	54	22	243	0.69	0.23	0.42	0.3	0.42	0.74	0.58	-98.8 6.9	4 0.13	3
FSM LR	GSFrag	17	122	83	21	243	0.57	0.17	0.45	0.25	0.45	0.6	0.52	-99.0 6.3	1 0.03	3
	MLR A MLR A PLS	A TA, TP MLR A TP CDK, TA, PLS TP PLS CDK, TA PLS TA, TP PLS TA, TP PLS TA PLS TP CDK, TA, J48 TP J48 CDK, TA J48 TP J48 TA J48 TP CDK, TA, RF TP RF CDK, TA RF TD RF TA RF CDK RF	A TA, TP 16 MLR A TA 22 MLR A TP 21 CDK, TA, PLS TP 17 PLS CDK, TA 14 PLS CDK, TP 16 PLS TA 17 J48 TP 13 J48 CDK, TA 13 J48 TA 13 J48 TA 13 J48 TP 10 J48 TA 13 CDK, TA 18 RF CDK, TA 18 RF TA 15 <t< td=""><td>A TA, TP 16 137 MLR A TA 22 97 MLR A TP 21 117 MLR A TP 21 117 MLR A TP 17 147 PLS TP 17 145 PLS CDK, TP 16 135 PLS TA 16 154 PLS TA 16 154 PLS TA 16 154 PLS TA 16 154 PLS TA 17 150 PLS TA 19 154 PLS TA 13 142 J48 TP 19 154 J48 CDK, TP 19 154 J48 TA 13 157 CDK, TA 18 120 RF TP 17 120 RF CDK, TA 18 126 RF TA, TP 17 125 RF TA 17 <</td><td>A TA, TP 16 137 68 MLR A TA 22 97 108 MLR A TP 21 117 88 CDK, TA, TP 17 147 57 PLS CDK, TA 14 145 59 PLS CDK, TP 16 135 69 PLS TA, TP 17 150 55 PLS TA 16 135 69 PLS TA 16 150 55 PLS TA 13 138 67 PLS TP 13 144 60 J48 CDK, TA 13 144 60 J48 TA 17 120 84 RF TDK, TA 18 126 78 RF CDK, TA 18 126 78</td><td>A TA, TP 16 137 68 22 MLR A TA 22 97 108 16 MLR A TP 21 117 88 17 PLS TP 17 147 57 20 PLS TP 17 145 59 23 PLS CDK, TA 14 145 59 23 PLS TA, TP 17 150 55 21 PLS TA, TP 17 150 55 21 PLS TA 16 154 51 22 PLS TA 16 154 51 22 PLS TA 16 154 51 22 PLS TA 17 150 55 21 PLS TA 13 138 67 25 PLS TP 19 154 50 18 J48 TA, TP</td></t<> <td>A TA, TP 16 137 68 22 243 MLR A TA 22 97 108 16 243 MLR A TP 21 117 88 17 243 MLR A TP 21 117 88 17 243 PLS TP 17 147 57 20 241 PLS CDK, TA 14 145 59 23 241 PLS CDK, TP 16 135 69 21 241 PLS TA, TP 17 150 55 21 243 PLS TA 16 154 51 22 243 PLS TA 13 138 67 25 243 PLS TA 13 142 60 24 241 J48 TP 19 154 50 18 241 J48 TA, TP 10</td> <td>A TA, TP 16 137 68 22 243 0.63 MLR A TA 22 97 108 16 243 0.49 MLR A TP 21 117 88 17 243 0.57 PLS TP 17 147 57 20 241 0.68 PLS CDK, TA 14 145 59 23 241 0.66 PLS CDK, TP 16 135 69 21 241 0.63 PLS TA, TP 17 150 55 21 243 0.69 PLS TA 17 150 55 21 243 0.69 PLS TA 16 135 69 21 241 0.63 PLS TA 16 154 51 22 243 0.7 PLS TA 13 144 60 24 241 0.65</td> <td> MILR</td> <td> MILR</td> <td> MI</td> <td> MI</td> <td> Math</td> <td> Mile</td> <td> A TA, TP 16 137 68 22 243 0.63 0.19 0.42 0.66 0.42 0.67 0.54 -98.9 6.66 MLR TP 21 117 88 17 243 0.57 0.19 0.55 0.50 0.55 0.57 0.56 -98.9 6.6 CDK, TA, TP 17 147 57 20 241 0.66 0.19 0.35 0.36 0.46 0.72 0.59 -98.8 6.8 0.</td> <td>A TA, TP 16 137 68 22 243 0.63 0.49 0.42 0.28 0.67 0.58 0.61 0.07 A TA 22 97 108 16 243 0.49 0.15 0.58 0.26 0.58 0.47 0.53 98.9 5.81 0.04 MLR FD TP 21 117 88 17 243 0.57 0.19 0.55 0.29 0.55 0.50 0.55 0.89 6.21 0.09 PLS CDK, TA 14 145 59 23 241 0.66 0.19 0.38 0.25 0.53 0.54 0.07 PLS TA, TP 16 135 69 21 241 0.63 0.19 0.43 0.26 0.43 0.66 0.57 0.53 0.63 0.01 PLS TA, TP 17 15 15 22 243 0.62 0.42 0.43</td>	A TA, TP 16 137 MLR A TA 22 97 MLR A TP 21 117 MLR A TP 21 117 MLR A TP 17 147 PLS TP 17 145 PLS CDK, TP 16 135 PLS TA 16 154 PLS TA 16 154 PLS TA 16 154 PLS TA 16 154 PLS TA 17 150 PLS TA 19 154 PLS TA 13 142 J48 TP 19 154 J48 CDK, TP 19 154 J48 TA 13 157 CDK, TA 18 120 RF TP 17 120 RF CDK, TA 18 126 RF TA, TP 17 125 RF TA 17 <	A TA, TP 16 137 68 MLR A TA 22 97 108 MLR A TP 21 117 88 CDK, TA, TP 17 147 57 PLS CDK, TA 14 145 59 PLS CDK, TP 16 135 69 PLS TA, TP 17 150 55 PLS TA 16 135 69 PLS TA 16 150 55 PLS TA 13 138 67 PLS TP 13 144 60 J48 CDK, TA 13 144 60 J48 TA 17 120 84 RF TDK, TA 18 126 78 RF CDK, TA 18 126 78	A TA, TP 16 137 68 22 MLR A TA 22 97 108 16 MLR A TP 21 117 88 17 PLS TP 17 147 57 20 PLS TP 17 145 59 23 PLS CDK, TA 14 145 59 23 PLS TA, TP 17 150 55 21 PLS TA, TP 17 150 55 21 PLS TA 16 154 51 22 PLS TA 16 154 51 22 PLS TA 16 154 51 22 PLS TA 17 150 55 21 PLS TA 13 138 67 25 PLS TP 19 154 50 18 J48 TA, TP	A TA, TP 16 137 68 22 243 MLR A TA 22 97 108 16 243 MLR A TP 21 117 88 17 243 MLR A TP 21 117 88 17 243 PLS TP 17 147 57 20 241 PLS CDK, TA 14 145 59 23 241 PLS CDK, TP 16 135 69 21 241 PLS TA, TP 17 150 55 21 243 PLS TA 16 154 51 22 243 PLS TA 13 138 67 25 243 PLS TA 13 142 60 24 241 J48 TP 19 154 50 18 241 J48 TA, TP 10	A TA, TP 16 137 68 22 243 0.63 MLR A TA 22 97 108 16 243 0.49 MLR A TP 21 117 88 17 243 0.57 PLS TP 17 147 57 20 241 0.68 PLS CDK, TA 14 145 59 23 241 0.66 PLS CDK, TP 16 135 69 21 241 0.63 PLS TA, TP 17 150 55 21 243 0.69 PLS TA 17 150 55 21 243 0.69 PLS TA 16 135 69 21 241 0.63 PLS TA 16 154 51 22 243 0.7 PLS TA 13 144 60 24 241 0.65	MILR	MILR	MI	MI	Math	Mile	A TA, TP 16 137 68 22 243 0.63 0.19 0.42 0.66 0.42 0.67 0.54 -98.9 6.66 MLR TP 21 117 88 17 243 0.57 0.19 0.55 0.50 0.55 0.57 0.56 -98.9 6.6 CDK, TA, TP 17 147 57 20 241 0.66 0.19 0.35 0.36 0.46 0.72 0.59 -98.8 6.8 0.	A TA, TP 16 137 68 22 243 0.63 0.49 0.42 0.28 0.67 0.58 0.61 0.07 A TA 22 97 108 16 243 0.49 0.15 0.58 0.26 0.58 0.47 0.53 98.9 5.81 0.04 MLR FD TP 21 117 88 17 243 0.57 0.19 0.55 0.29 0.55 0.50 0.55 0.89 6.21 0.09 PLS CDK, TA 14 145 59 23 241 0.66 0.19 0.38 0.25 0.53 0.54 0.07 PLS TA, TP 16 135 69 21 241 0.63 0.19 0.43 0.26 0.43 0.66 0.57 0.53 0.63 0.01 PLS TA, TP 17 15 15 22 243 0.62 0.42 0.43

CHR Rat Eye 1 AnyLesion	FSM LR	Mera, Mersy	16	135	69	22	242	0.62	0.19	0.42	0.26	0.42	0.66	0.54	-98.9	6.58	0.06	38
CHR Rat Eye 1 AnyLesion	FSM LR	QNPR	17	140	65	21	243	0.65	0.21	0.45	0.28	0.45	0.68	0.57	-98.9	6.69	0.1	38
CHR Rat Eye 1 AnyLesion	FSM LR	Spectrop hores	15	146	59	23	243	0.66	0.2	0.39	0.27	0.39	0.71	0.55	-98.9	6.8	0.08	38
CHR Rat Eye 1 AnyLesion	KNN	Adriana	23	105	98	15	241	0.53	0.19	0.61	0.29	0.61	0.52	0.56	-98.9	5.97	0.09	38
CHR Rat Eye 1 AnyLesion	KNN	ALogPS, OEstate	31	68	137	7	243	0.41	0.18	0.82	0.3	0.82	0.33	0.57	-98.9	4.77	0.12	38
CHR Rat Eye 1 AnyLesion	KNN	CDK	32	49	155	5	241	0.34	0.17	0.86	0.29	0.86	0.24	0.55	-98.9	4.04	0.09	37
CHR Rat Eye 1 AnyLesion	KNN	Chemaxo n	27	109	96	11	243	0.56	0.22	0.71	0.34	0.71	0.53	0.62	-98.8	5.88	0.18	38
CHR Rat Eye 1 AnyLesion	KNN	Dragon6	32	62	143	6	243	0.39	0.18	0.84	0.3	0.84	0.3	0.57	-98.9	4.52	0.12	38
CHR Rat Eye 1 AnyLesion	KNN	Fragment or	15	152	53	23	243	0.69	0.22	0.39	0.28	0.39	0.74	0.57	-98.9	6.95	0.11	38
CHR Rat Eye 1 AnyLesion	KNN	GSFrag	26	78	127	12	243	0.43	0.17	0.68	0.27	0.68	0.38	0.53	-98.9	5.32	0.05	38
CHR Rat Eye 1 AnyLesion	KNN	Inductive	28	69	136	10	243	0.4	0.17	0.74	0.28	0.74	0.34	0.54	-98.9	5.03	0.06	38
CHR Rat Eye 1 AnyLesion	KNN	Mera, Mersy	29	62	142	9	242	0.38	0.17	0.76	0.28	0.76	0.3	0.53	-98.9	4.81	0.05	38
CHR Rat Eye 1 AnyLesion	KNN	QNPR	31	76	129	7	243	0.44	0.19	0.82	0.31	0.82	0.37	0.59	-98.8	4.94	0.14	38
CHR Rat Eye 1 AnyLesion	KNN	Spectrop hores	25	134	71	13	243	0.65	0.26	0.66	0.37	0.66	0.65	0.66	-98.7	6.47	0.23	38
CHR Rat Eye 1 AnyLesion	LibS VM	Adriana	6	184	19	32	241	0.79	0.24	0.16	0.19	0.16	0.91	0.53	-98.9	7.6	0.08	38
CHR Rat Eye 1 AnyLesion	LibS VM	ALogPS, OEstate	6	193	12	32	243	0.82	0.33	0.16	0.21	0.16	0.94	0.55	-98.9	8.09	0.14	38
CHR Rat Eye 1 AnyLesion	LibS VM	CDK	6	185	19	31	241	0.79	0.24	0.16	0.19	0.16	0.91	0.53	-98.9	7.57	0.08	37
CHR Rat Eye 1 AnyLesion	LibS VM	Chemaxo n	13	182	23	25	243	0.8	0.36	0.34	0.35	0.34	0.89	0.61	-98.8	7.89	0.24	38
CHR Rat Eye 1 AnyLesion	LibS VM	Dragon6	9	192	13	29	243	0.83	0.41	0.24	0.3	0.24	0.94	0.59	-98.8	8.29	0.22	38
CHR Rat Eye 1 AnyLesion	LibS VM	Fragment or	3	201	4	35	243	0.84	0.43	0.08	0.13	0.08	0.98	0.53	-98.9	8.62	0.13	38
CHR Rat Eye 1 AnyLesion	LibS VM	GSFrag	9	185	20	29	243	0.8	0.31	0.24	0.27	0.24	0.9	0.57	-98.9	7.84	0.16	38
CHR Rat Eye 1 AnyLesion	LibS VM	Inductive	8	184	21	30	243	0.79	0.28	0.21	0.24	0.21	0.9	0.55	-98.9	7.71	0.12	38
CHR Rat Eye 1 AnyLesion	LibS VM	Mera, Mersy	4	191	13	34	242	0.81	0.24	0.11	0.15	0.11	0.94	0.52	-99.0	7.7	0.06	38
CHR Rat Eye 1 AnyLesion	LibS VM	QNPR	6	197	8	32	243	0.84	0.43	0.16	0.23	0.16	0.96	0.56	-98.9	8.5	0.19	38

CHR Rat Eye 1 AnyLesion	LibS VM	Spectrop hores	2	186	19	36	243	0.77	0.1	0.05	0.07	0.05	0.91	0.48	-99.0 6.77 .052	38
CHR Rat Eye 1 AnyLesion	MLR A	Adriana	12	139	64	26	241	0.63	0.16	0.32	0.21	0.32	0.68	0.5	-99.0 6.57 0.	38
CHR Rat Eye 1 AnyLesion	Α	ALogPS, OEstate	25	139	66	13	243	0.67	0.27	0.66	0.39	0.66	0.68	0.67	-98.7 6.58 0.25	38
CHR Rat Eye 1 AnyLesion	MLR A	CDK	18	123	81	19	241	0.59	0.18	0.49	0.26	0.49	0.6	0.54	-98.9 6.3 0.07	37
CHR Rat Eye 1 AnyLesion	MLR A	Chemaxo n	21	148	57	17	243	0.7	0.27	0.55	0.36	0.55	0.72	0.64	-98.7 6.88 0.21	38
CHR Rat Eye 1 AnyLesion	MLR A	Dragon6	21	96	109	17	243	0.48	0.16	0.55	0.25	0.55	0.47	0.51	-99.0 5.8 0.02	38
CHR Rat Eye 1 AnyLesion	MLR A	Fragment or	21	110	95	17	243	0.54	0.18	0.55	0.27	0.55	0.54	0.54	-98.9 6.08 0.06	38
CHR Rat Eye 1 AnyLesion	MLR A	GSFrag	16	130	75	22	243	0.6	0.18	0.42	0.25	0.42	0.63	0.53	-98.9 6.46 0.04	38
CHR Rat Eye 1 AnyLesion	MLR A	Inductive	23	126	79	15	243	0.61	0.23	0.61	0.33	0.61	0.61	0.61	-98.8 6.36 0.16	38
CHR Rat Eye 1 AnyLesion	MLR A	Mera, Mersy	18	122	82	20	242	0.58	0.18	0.47	0.26	0.47	0.6	0.54	-98.9 6.33 0.05	38
CHR Rat Eye 1 AnyLesion	MLR A	QNPR	20	93	112	18	243	0.47	0.15	0.53	0.24	0.53	0.45	0.49	-99.0 5.75 .015	
CHR Rat Eye 1 AnyLesion		Spectrop hores	17	150	55	21	243	0.69	0.24	0.45	0.31	0.45	0.73	0.59	-98.8 6.93 0.14	
CHR Rat Eye 1 AnyLesion	PLS	Adriana	21	119	84	17	241	0.58	0.2	0.55	0.29	0.55	0.59	0.57	-98.9 6.28 0.1	
CHR Rat Eye 1		ALogPS,														
AnyLesion CHR Rat Eye 1	PLS	OEstate	20	130	75	18	243	0.62	0.21	0.53	0.3	0.53	0.63	0.58	-98.8 6.49 0.12	38
AnyLesion CHR Rat Eye 1	PLS	CDK Chemaxo	19	118	86	18	241	0.57	0.18	0.51	0.27	0.51	0.58	0.55	-98.9 6.2 0.07	37
AnyLesion CHR Rat Eye 1	PLS	n	22	136	69	16	243	0.65	0.24	0.58	0.34	0.58	0.66	0.62	-98.8 6.59 0.18	38
AnyLesion CHR Rat Eye 1	PLS	Dragon6 Fragment	17	132	73	21	243	0.61	0.19	0.45	0.27	0.45	0.64	0.55	-98.9 6.52 0.07	38
AnyLesion CHR Rat Eye 1	PLS	or	15	153	52	23	243	0.69	0.22	0.39	0.29	0.39	0.75	0.57	-98.9 6.97 0.11	38
AnyLesion CHR Rat Eye 1	PLS	GSFrag	19	121	84	19	243	0.58	0.18	0.5	0.27	0.5	0.59	0.55	-98.9 6.3 0.07	38
AnyLesion CHR Rat Eye 1	PLS	Inductive Mera,	19	118	87	19	243	0.56	0.18	0.5	0.26	0.5	0.58	0.54	-98.9 6.24 0.06	38
AnyLesion CHR Rat Eye 1	PLS	Mersy	16	133	71	22	242	0.62	0.18	0.42	0.26	0.42	0.65	0.54	-98.9 6.54 0.06	38
AnyLesion CHR Rat Eye 1	PLS	QNPR Spectrop	22	134	71	16	243	0.64	0.24	0.58	0.34	0.58	0.65	0.62	-98.8 6.55 0.17	38
AnyLesion CHR Rat Eye 1	PLS	hores	21	138	67	17	243	0.65	0.24	0.55	0.33	0.55	0.67	0.61	-98.8 6.65 0.17	38
AnyLesion	J48	Adriana	10	161	42	28	241	0.71	0.19	0.26	0.22	0.26	0.79	0.53	-98.9 7.04 0.05	38
CHR Rat Eye 1 AnyLesion	J48	ALogPS, OEstate	14	149	56	24	243	0.67	0.2	0.37	0.26	0.37	0.73	0.55	-98.9 6.85 0.08	38
CHR Rat Eye 1 AnyLesion	J48	CDK	14	154	50	23	241	0.7	0.22		0.28	0.38	0.75	0.57	-98.9 6.95 0.11	
CHR Rat Eye 1 AnyLesion	J48	Chemaxo n	19	154	51	19	243	0.71	0.27	0.5	0.35	0.5	0.75	0.63	-98.7 7.04 0.2	
CHR Rat Eye 1 AnyLesion	J48	Dragon6	13	160	45	25	243	0.71	0.22	0.34	0.27	0.34	0.78	0.56	-98.9 7.1 0.1	
CHR Rat Eye 1 AnyLesion	J48	Fragment or	15	156	49	23	243	0.7	0.23	0.39	0.29	0.39	0.76	0.58	-98.8 7.05 0.13	
CHR Rat Eye 1 AnyLesion	J48	GSFrag	16	144	61	22	243	0.66	0.21	0.42		0.42	0.7	0.56	-98.9 6.77 0.1	
CHR Rat Eye 1 AnyLesion	J48	Inductive	17	162	43	21	243	0.74		0.45				0.62	-98.8 7.25 0.2	

CHP Pat Fue 1		Mera,														
CHR Rat Eye 1 AnyLesion	J48	Mersy	15	158	46	23	242	0.71	0.25	0.39	0.3	0.39	0.77	0.58	-98.8 7.12 0.1	4 38
CHR Rat Eye 1 AnyLesion	J48	QNPR	19	143	62	19	243	0.67	0.23	0.5	0.32	0.5	0.7	0.6	-98.8 6.77 0.1	5 38
CHR Rat Eye 1 AnyLesion	J48	Spectrop hores	19	158	47	19	243	0.73	0.29	0.5	0.37	0.5	0.77	0.64	-98.7 7.15 0.2	2 38
CHR Rat Kidney 1 AnyLesion	RF	Adriana	51	97	60	33	241	0.61	0.46	0.61	0.52	0.61	0.62	0.61	-98.8 7.93 0.2	2 84
CHR Rat Kidney 1 AnyLesion	RF	ALogPS, OEstate	52	103	54	34	243	0.64	0.49	0.6	0.54	0.6	0.66	0.63	-98.7 8.14 0.2	5 86
CHR Rat Kidney 1 AnyLesion	RF	CDK Chemaxo	51	99	58	33	241	0.62	0.47	0.61	0.53	0.61	0.63	0.62	-98.8 7.98 0.2	3 84
CHR Rat Kidney 1 AnyLesion	RF	n	53	84	73	33	243	0.56	0.42	0.62	0.5	0.62	0.54	0.58	-98.8 7.63 0.1	4 86
CHR Rat Kidney 1 AnyLesion	RF	Dragon6	57	98	59	29	243	0.64	0.49	0.66	0.56	0.66	0.62	0.64	-98.7 7.94 0.2	7 86
CHR Rat Kidney 1 AnyLesion	RF	Fragment or	51	97	60	35	243	0.61	0.46	0.59	0.52	0.59	0.62	0.61	-98.8 7.99 0.	2 86
CHR Rat Kidney 1 AnyLesion	RF	GSFrag	50	90	67	36	243	0.58	0.43	0.58	0.49	0.58	0.57	0.58	-98.8 7.81 0.1	5 86
CHR Rat Kidney 1 AnyLesion	RF	Inductive	49	97	60	37	243	0.6	0.45	0.57	0.5	0.57	0.62	0.59	-98.8 8. 0.1	8 86
CHR Rat Kidney 1 AnyLesion	RF	Mera, Mersy	53	94	63	32	242	0.61	0.46	0.62	0.53	0.62	0.6	0.61	-98.8 7.86 0.2	1 85
CHR Rat Kidney 1 AnyLesion	RF	QNPR	56	94	63	30	243	0.62	0.47	0.65	0.55	0.65	0.6	0.62	-98.8 7.85 0.2	4 86
CHR Rat Kidney 1 AnyLesion	RF	Spectrop hores	47	87	70	39	243	0.55	0.4	0.55	0.46	0.55	0.55	0.55	-98.9 7.75 0.	1 86
CHR Rat Kidney 1 AnyLesion	ASN N	Adriana	44	106	51	40	241	0.62	0.46	0.52	0.49	0.52	0.68	0.6	-98.8 8.22 0.1	9 84
CHR Rat Kidney 1 AnyLesion	N	ALogPS, OEstate	49	94	63	37	243	0.59	0.44	0.57	0.49	0.57	0.6	0.58	-98.8 7.92 0.1	6 86
CHR Rat Kidney 1 AnyLesion	ASN N	CDK	46	102	55	38	241	0.61	0.46	0.55	0.5	0.55	0.65	0.6	-98.8 8.1 0.1	9 84
CHR Rat Kidney 1 AnyLesion	ASN N	Chemaxo n	49	100	57	37	243	0.61	0.46	0.57	0.51	0.57	0.64	0.6	-98.8 8.08 0.	2 86
CHR Rat Kidney 1 AnyLesion	ASN N	Dragon6	50	104	53	36	243	0.63	0.49	0.58	0.53	0.58	0.66	0.62	-98.8 8.19 0.2	4 86
CHR Rat Kidney 1 AnyLesion	ASN N	Fragment or	47	113	44	39	243	0.66	0.52	0.55	0.53	0.55	0.72	0.63	-98.7 8.47 0.2	6 86
CHR Rat Kidney 1 AnyLesion	ASN N	GSFrag	52	99	58	34	243	0.62	0.47	0.6	0.53	0.6	0.63	0.62	-98.8 8.03 0.2	3 86
CHR Rat Kidney 1 AnyLesion	ASN N	Inductive	42	102	55	44	243	0.59	0.43	0.49	0.46	0.49	0.65	0.57	-98.9 8.16 0.1	3 86
CHR Rat Kidney 1 AnyLesion	ASN N	Mera, Mersy	52	94	63	33	242	0.6	0.45	0.61	0.52	0.61	0.6	0.61	-98.8 7.87 0.	2 85
CHR Rat Kidney 1 AnyLesion	ASN N		53	99	58	33	243	0.63	0.48	0.62	0.54	0.62	0.63	0.62	-98.8 8.02 0.2	4 86
CHR Rat Kidney 1 AnyLesion	ASN N		47	100	57	39	243	0.6	0.45	0.55	0.49	0.55	0.64	0.59	-98.8 8.1 0.1	
CHR Rat Kidney 1 AnyLesion		CDK, TA, TP	46	104	53	38	241	0.62	0.46	0.55	0.5	0.55	0.66	0.61	-98.8 8.16 0.	
CHR Rat Kidney 1 AnyLesion	ASN N	CDK, TA	43	100	57	41	241	0.59	0.43	0.51	0.47	0.51	0.64	0.57	-98.9 8.06 0.1	
CHR Rat Kidney 1 AnyLesion	ASN N	CDK, TP	43	100	57	41	241	0.59	0.43	0.51	0.47	0.51	0.64	0.57	-98.9 8.06 0.1	
CHR Rat Kidney 1	ASN	TA, TP	38	105	52	48		0.59		0.31		0.31	0.67	0.56		
AnyLesion CHR Rat Kidney 1	ASN						243		0.42		0.43				-98.9 8.23 0.1	
AnyLesion CHR Rat Kidney 1	N ASN		41	110	47	45	243	0.62	0.47	0.48	0.47	0.48	0.7	0.59	-98.8 8.39 0.1	
AnyLesion	N	TP	40	100	57	46	243	0.58	0.41	0.47	0.44	0.47	0.64	0.55	-98.9 8.1 0.	1 86

CHR Rat Kidney 1 AnyLesion	FSM LR	CDK, TA, TP	42	103	54	42	241	0.6	0.44	0.5	0.47	0.5	0.66	0.58	-98.8 8.14 0.1	5 84
CHR Rat Kidney 1 AnyLesion	FSM LR	CDK, TA	47	105	52	37	241	0.63	0.47	0.56	0.51	0.56	0.67	0.61	-98.8 8.18 0.2	2 84
CHR Rat Kidney 1 AnyLesion	FSM LR	CDK, TP	40	101	56	44	241	0.59	0.42	0.48	0.44	0.48	0.64	0.56	-98.9 8.08 0.1	2 84
CHR Rat Kidney 1 AnyLesion	FSM LR	TA, TP	53	95	62	33	243	0.61	0.46	0.62	0.53	0.62	0.61	0.61	-98.8 7.92 0.2	1 86
CHR Rat Kidney 1 AnyLesion	FSM LR	TA	47	97	60	39	243	0.59	0.44	0.55	0.49	0.55	0.62	0.58	-98.8 8.01 0.1	6 86
CHR Rat Kidney 1 AnyLesion	FSM LR	TP	41	92	65	45	243	0.55	0.39	0.48	0.43	0.48	0.59	0.53	-98.9 7.89 0.0	6 86
CHR Rat Kidney 1 AnyLesion	KNN	CDK, TA, TP	65	59	98	19	241	0.51	0.4	0.77	0.53	0.77	0.38	0.57	-98.9 6.65 0.1	5 84
CHR Rat Kidney 1 AnyLesion	KNN	CDK, TA	70	33	124	14	241	0.43	0.36	0.83	0.5	0.83	0.21	0.52	-99.0 5.62 0.0	5 84
CHR Rat Kidney 1 AnyLesion CHR Rat Kidney 1		CDK, TP	58	81	76	26	241	0.58	0.43	0.69	0.53	0.69	0.52	0.6	-98.8 7.41 0	
AnyLesion CHR Rat Kidney 1 AnyLesion	KNN	TA, TP	62 77	51 39	106	24 9	243	0.47	0.37	0.72	0.49	0.72	0.32	0.52	-99.0 6.61 0.0 -98.9 5.5 0.1	
CHR Rat Kidney 1 AnyLesion	KNN		42	85	72	44	243	0.52	0.37	0.49	0.42	0.49	0.54	0.51	-99.0 7.71 0.0	
CHR Rat Kidney 1 AnyLesion	LibS VM	CDK, TA, TP	32	124	33	52	241	0.65	0.49	0.38	0.43	0.38	0.79	0.59	-98.8 8.75 0.1	8 84
CHR Rat Kidney 1 AnyLesion	LibS VM	CDK, TA	32	125	32	52	241	0.65	0.5	0.38	0.43	0.38	0.8	0.59	-98.8 8.79 0.1	9 84
CHR Rat Kidney 1 AnyLesion	LibS VM	CDK, TP	27	124	33	57	241	0.63	0.45	0.32	0.38	0.32	0.79	0.56	-98.9 8.68 0.1	2 84
CHR Rat Kidney 1 AnyLesion	LibS VM	TA, TP	24	119	38	62	243	0.59	0.39	0.28	0.32	0.28	0.76	0.52	-99.0 8.47 0.0	4 86
CHR Rat Kidney 1 AnyLesion	LibS VM	TA	21	138	19	65	243	0.65	0.53	0.24	0.33	0.24	0.88	0.56	-98.9 9.21 0.1	6 86
CHR Rat Kidney 1 AnyLesion	LibS VM	TP	29	114	43	57	243	0.59	0.4	0.34	0.37	0.34	0.73	0.53	-98.9 8.4 0.0	7 86
CHR Rat Kidney 1 AnyLesion	A MLR	CDK, TA, TP	38	94	63	46	241	0.55	0.38	0.45	0.41	0.45	0.6	0.53	-98.9 7.89 0.0	5 84
CHR Rat Kidney 1 AnyLesion CHR Rat Kidney 1	A MLR	CDK, TA	42	91	66	42	241	0.55	0.39	0.5	0.44	0.5	0.58	0.54	-98.9 7.82 0.0	8 84
AnyLesion CHR Rat Kidney 1 AnyLesion	A MLR A	CDK, TP	36 41	88 87	69 70	48 45	241	0.51	0.34	0.43	0.38	0.43	0.56	0.49	-99.0 7.72 .0 -99.0 7.76 0.0	
CHR Rat Kidney 1 AnyLesion	MLR A	TA TA	37	97	60	49	243	0.55	0.38	0.43	0.42	0.43	0.62	0.52	-99.0 7.76 0.0 -99.0 8. 0.0	
CHR Rat Kidney 1 AnyLesion	MLR A	TP CDK TA	46	87	70	40	243	0.55	0.4	0.53	0.46	0.53	0.55	0.54	-98.9 7.76 0.0	9 86
CHR Rat Kidney 1 AnyLesion CHR Rat Kidney 1	PLS	CDK, TA, TP	43	101	56	41	241	0.6	0.43	0.51	0.47	0.51	0.64	0.58	-98.8 8.08 0.1	5 84
AnyLesion	PLS	CDK, TA	43	103	54	41	241	0.61	0.44	0.51	0.48	0.51	0.66	0.58	-98.8 8.14 0.1	6 84

CHR Rat Kidney 1 AnyLesion	PLS	CDK, TP	46	98	59	38	241	0.6	0.44	0.55	0.49	0.55	0.62	0.59	-98.8	7.99	0.17	84
CHR Rat Kidney 1 AnyLesion		TA, TP	39	104	53	47	243	0.59	0.42	0.45	0.44	0.45	0.66	0.56	-98.9			86
CHR Rat Kidney 1 AnyLesion	PLS	•	43	100	57	43	243	0.59	0.43	0.5	0.46	0.5	0.64	0.57	-98.9		0.13	86
CHR Rat Kidney 1																		
AnyLesion CHR Rat Kidney 1	PLS	CDK, TA,	48	89	68	38	243	0.56	0.41	0.56	0.48	0.56	0.57	0.56	-98.9	7.8	0.12	86
AnyLesion	J48	TP	36	107	50	48	241	0.59	0.42	0.43	0.42	0.43	0.68	0.56	-98.9	8.23	0.11	84
CHR Rat Kidney 1 AnyLesion	J48	CDK, TA	39	113	44	45	241	0.63	0.47	0.46	0.47	0.46	0.72	0.59	-98.8	8.43	0.18	84
CHR Rat Kidney 1 AnyLesion	J48	CDK, TP	39	104	53	45	241	0.59	0.42	0.46	0.44	0.46	0.66	0.56	-98.9	8.16	0.12	84
CHR Rat Kidney 1 AnyLesion	J48	TA, TP	35	102	55	51	243	0.56	0.39	0.41	0.4	0.41	0.65	0.53	-98.9	8.12	0.06	86
CHR Rat Kidney 1 AnyLesion	J48	TA	33	111	46	53	243	0.59	0.42	0.38	0.4	0.38	0.71	0.55	-98.9	8.37	0.09	86
CHR Rat Kidney 1 AnyLesion	J48	TP	39	100	57	47	243	0.57	0.41	0.45	0.43	0.45	0.64	0.55	-98.9		0.09	86
CHR Rat Kidney 1 AnyLesion	RF	CDK, TA, TP	51	87	70	33	241	0.57	0.42	0.61	0.5	0.61	0.55	0.58	-98.8	7.67	0.15	84
CHR Rat Kidney 1																		
AnyLesion CHR Rat Kidney 1	RF	CDK, TA	53	97	60	31	241	0.62	0.47	0.63	0.54	0.63	0.62	0.62	-98.8	7.91	0.24	84
AnyLesion CHR Rat Kidney 1	RF	CDK, TP	51	80	77	33	241	0.54	0.4	0.61	0.48	0.61	0.51	0.56	-98.9	7.49	0.11	84
AnyLesion CHR Rat Kidney 1	RF	TA, TP	49	90	67	37	243	0.57	0.42	0.57	0.49	0.57	0.57	0.57	-98.9	7.82	0.14	86
AnyLesion	RF	TA	49	94	63	37	243	0.59	0.44	0.57	0.49	0.57	0.6	0.58	-98.8	7.92	0.16	86
CHR Rat Kidney 1 AnyLesion	RF	TP	43	80	77	43	243	0.51	0.36	0.5	0.42	0.5	0.51	0.5	-99.0	7.58	0.01	86
CHR Rat Kidney 1	FSM																	
AnyLesion	LR	Adriana	43	100	57	41	241	0.59	0.43	0.51	0.47	0.51	0.64	0.57	-98.9	8.06	0.14	84
CHR Rat Kidney 1 AnyLesion	FSM LR	ALogPS, OEstate	56	96	61	30	243	0.63	0.48	0.65	0.55	0.65	0.61	0.63	-98.7	7.9	0.25	86
	FSM																	
CHR Rat Kidney 1 AnyLesion	LR	CDK	52	99	58	32	241	0.63	0.47	0.62	0.54	0.62	0.63	0.62	-98.8	7.97	0.24	84
CHR Rat Kidney 1	FSM	Chemaxo																
AnyLesion	LR	n	49	89	68	37	243	0.57	0.42	0.57	0.48	0.57	0.57	0.57	-98.9	7.79	0.13	86
CHR Rat Kidney 1	FSM				5 0	0.0	0.10	0.00	0.10	0.00		0.00	0.00	0.00			0.6-	
AnyLesion	LR	Dragon6	54	99	58	32	243	0.63	0.48	0.63	0.55	0.63	0.63	0.63	-98.7	8.01	0.25	86
CHR Rat Kidney 1 AnyLesion	FSM LR	Fragment or	51	104	53	35	243	0.64	n ⊿o	0.59	0.54	0.59	0.66	0.63	-98.7	ឧ 1១	N 25	86
, uty Ecolott		<u> </u>	J1	104	55	55	270	0.04	0.43	0.03	0.04	0.00	0.00	0.00	-50.7	0.10	0.20	50
CHR Rat Kidney 1 AnyLesion	FSM LR	GSFrag	44	106	51	42	243	0.62	0.46	0.51	0.49	0.51	0.68	0.59	-98.8	8.27	0.18	86
CHR Rat Kidney 1	FSM																	
AnyLesion	LR	Inductive	47	100	57	39	243	0.6	0.45	0.55	0.49	0.55	0.64	0.59	-98.8	8.1	0.18	86
CHR Rat Kidney 1 AnyLesion	FSM LR	Mera, Mersy	48	99	58	37	242	0.61	0.45	0.56	0.5	0.56	0.63	0.6	-98.8	8 04	በ 10	85
, uty Ecolott		WICIOY		- 33	- 50	31	<u> </u>	0.01	0.40	0.00	0.0	0.00	0.00	0.0	-50.0	0.04	0.10	00
CHR Rat Kidney 1 AnyLesion	FSM LR	QNPR	50	102	55	36	243	0.63	0.48	0.58	0.52	0.58	0.65	0.62	-98.8	8.13	0.22	86
CHR Rat Kidney 1 AnyLesion	FSM LR	Spectrop hores	34	131	26	52	243	0.68	0.57	0.4	0.47	0.4	0.83	0.61	-98.8	9.1	0.25	86
AnyLesion	LK	HUIES	34	131	20	52	243	0.00	0.57	0.4	0.47	0.4	0.03	0.01	-90.0	ن . ۱	0.25	00

CHR Rat Kidney 1 AnyLesion	KNN	Adriana	42	104	53	42	241	0.61	0.44	0.5	0.47	0.5	0.66	0.58	-98.8	8.17	0.16	84
CHR Rat Kidney 1 AnyLesion	KNN	ALogPS, OEstate	79	29	128	7	243	0.44	0.38	0.92	0.54	0.92	0.18	0.55	-98.9	4.92	0.14	86
CHR Rat Kidney 1 AnyLesion	KNN	CDK	64	68	89	20	241	0.55	0.42	0.76	0.54	0.76	0.43	0.6	-98.8	6.92	0.19	84
CHR Rat Kidney 1 AnyLesion	KNN	Chemaxo n	41	97	60	45	243	0.57	0.41	0.48	0.44	0.48	0.62	0.55	-98.9	8.02	0.09	86
CHR Rat Kidney 1 AnyLesion	KNN	Dragon6	56	91	66	30	243	0.6	0.46	0.65	0.54	0.65	0.58	0.62	-98.8	7.77	0.22	86
CHR Rat Kidney 1 AnyLesion	KNN	Fragment	75	30	127	11	243	0.43	0.37	0.87	0.52	0.87	0.19	0.53	-98.9			86
CHR Rat Kidney 1 AnyLesion	KNN	GSFrag	47	100	57	39	243	0.6	0.45	0.55	0.49	0.55	0.64	0.59	-98.8	8.1	0.18	86
CHR Rat Kidney 1 AnyLesion	KNN	Inductive	48	95	62	38	243	0.59	0.44	0.56	0.49	0.56	0.61	0.58	-98.8	7.96	0.16	86
CHR Rat Kidney 1 AnyLesion	KNN	Mera, Mersy	45	117	40	40	242	0.67	0.53	0.53	0.53	0.53	0.75	0.64	-98.7	8.58	0.27	85
CHR Rat Kidney 1 AnyLesion	KNN	QNPR	76	36	121	10	243	0.46	0.39	0.88	0.54	0.88	0.23	0.56	-98.9	5.49	0.14	86
CHR Rat Kidney 1 AnyLesion	KNN	Spectrop hores	15	150	7	71	243	0.68	0.68	0.17	0.28	0.17	0.96	0.56	-98.9	10.	0.22	86
CHR Rat Kidney 1 AnyLesion	LibS VM	Adriana	33	125	32	51	241	0.66	0.51	0.39	0.44	0.39	0.8	0.59	-98.8	8.8	0.2	84
CHR Rat Kidney 1 AnyLesion	LibS VM	ALogPS, OEstate	44	115	42	42	243	0.65	0.51	0.51	0.51	0.51	0.73	0.62	-98.8	8.54	0.24	86
CHR Rat Kidney 1 AnyLesion	LibS VM	CDK	40	123	34	44	241	0.68	0.54	0.48	0.51	0.48	0.78	0.63	-98.7	8.77	0.27	84
CHR Rat Kidney 1 AnyLesion	LibS VM	Chemaxo n	33	115	42	53	243	0.61	0.44	0.38	0.41	0.38	0.73	0.56	-98.9	8.49	0.12	86
CHR Rat Kidney 1 AnyLesion	LibS VM	Dragon6	40	121	36	46	243	0.66	0.53	0.47	0.49	0.47	0.77	0.62	-98.8	8.74	0.24	86
CHR Rat Kidney 1 AnyLesion	LibS VM	Fragment or	43	128	29	43	243	0.7	0.6	0.5	0.54	0.5	0.82	0.66	-98.7	9.02	0.33	86
CHR Rat Kidney 1 AnyLesion	LibS VM	GSFrag	26	120	37	60	243	0.6	0.41	N 3	0.35	0.3	0.76	0.53	-98.9	8 55	0.07	86
CHR Rat Kidney 1	LibS	Corrug		120	- 01		240	0.0	0.41	0.0	0.00	0.0	0.70	0.00	00.0	0.00	0.07	
AnyLesion	VM	Inductive	35	125	32	51	243	0.66	0.52	0.41	0.46	0.41	8.0	0.6	-98.8	8.86	0.22	86
CHR Rat Kidney 1 AnyLesion	LibS VM	Mera, Mersy	40	116	41	45	242	0.64	0.49	0.47	0.48	0.47	0.74	0.6	-98.8	8.55	0.21	85
CHR Rat Kidney 1 AnyLesion	LibS VM	QNPR	48	109	48	38	243	0.65	0.5	0.56	0.53	0.56	0.69	0.63	-98.7	8.35	0.25	86
CHR Rat Kidney 1 AnyLesion	VM	Spectrop hores	36	121	36	50	243	0.65	0.5	0.42	0.46	0.42	0.77	0.59	-98.8	8.72	0.2	86
CHR Rat Kidney 1 AnyLesion	MLR A	Adriana	38	102	55	46	241	0.58	0.41	0.45	0.43	0.45	0.65	0.55	-98.9	8.1	0.1	84
CHR Rat Kidney 1 AnyLesion	MLR A	ALogPS, OEstate	47	90	67	39	243	0.56	0.41	0.55	0.47	0.55	0.57	0.56	-98.9	7.83	0.11	86
CHR Rat Kidney 1	MLR	CDK								0.52								84

CHR Rat Kidney 1	MID	Chamaya																
AnyLesion	MLR A	Chemaxo n	49	90	67	37	243	0.57	0.42	0.57	0.49	0.57	0.57	0.57	-08.0	7.82	0 14	86
	MLR		43	30	01	31	240	0.57	0.42	0.57	0.43	0.57	0.57	0.57	-30.3	7.02	0.14	00
CHR Rat Kidney 1 AnyLesion	A	Dragon6	49	96	61	37	243	0.6	0.45	0.57	0.5	0.57	0.61	0.59	-08.8	7.98	0.17	86
		Fragment	49	90	01	31	243	0.0	0.43	0.57	0.5	0.57	0.01	0.59	-90.0	7.90	0.17	00
CHR Rat Kidney 1		•	20	400	40	47	040	0.0	0.44	0.45	0.45	0.45	0.00	0.57	00.0	0.00	0.44	00
AnyLesion	A	or	39	108	49	47	243	0.6	0.44	0.45	0.45	0.45	0.69	0.57	-98.9	8.32	0.14	86
CHR Rat Kidney 1	MLR																	
AnyLesion	Α	GSFrag	43	90	67	43	243	0.55	0.39	0.5	0.44	0.5	0.57	0.54	-98.9	7.84	0.07	86
CHR Rat Kidney 1	MLR																	
AnyLesion	Α	Inductive	37	102	55	49	243	0.57	0.4	0.43	0.42	0.43	0.65	0.54	-98.9	8.14	0.08	86
CHR Rat Kidney 1	MLR	Mera,																
AnyLesion	Α	Mersy	48	78	79	37	242	0.52	0.38	0.56	0.45	0.56	0.5	0.53	-98.9	7.49	0.06	85
CHR Rat Kidney 1	MLR	-																
AnyLesion	Α	QNPR	50	103	54	36	243	0.63	0.48	0.58	0.53	0.58	0.66	0.62	-98.8	8.16	0.23	86
		Spectrop																
CHR Rat Kidney 1 AnyLesion	A	hores	48	105	52	38	243	0.63	0.48	0.56	0.52	0.56	0.67	0.61	-98.8	8 23	0.22	86
		110163	40	103	32	30	243	0.03	0.40	0.50	0.52	0.50	0.07	0.01	-90.0	0.23	0.22	00
CHR Rat Kidney 1 AnyLesion	DI S	Adriana	44	101	56	40	241	0.6	0.44	0.52	0.48	0.52	0.64	0.58	-08.8	8.08	0.16	84
TIVECSION		Adriana		101	- 50	70	271	0.0	0.44	0.02	0.40	0.02	0.04	0.50	-30.0	0.00	0.10	07
		AL amDC																
CHR Rat Kidney 1	DI O	ALogPS,		6-	00	0.4	0.40		0.40	0.0	0.50	0.0	0.04	0.0	00.0	7.00	0.0	-
AnyLesion	PLS	OEstate	52	95	62	34	243	0.6	0.46	0.6	0.52	0.6	0.61	0.6	-98.8	7.93	0.2	86
CHR Rat Kidney 1	Б. С	CDIC	40	^ -	00	0.5	044	0.01	0.45	0.50	0.51	0.50	0.00	~ ~	00.0	7.05	0.40	٠.
AnyLesion	PLS		49	97	60	35	241	0.61	0.45	0.58	0.51	0.58	0.62	0.6	-98.8	7.95	U.19	84
CHR Rat Kidney 1		Chemaxo																
AnyLesion	PLS	n	47	94	63	39	243	0.58	0.43	0.55	0.48	0.55	0.6	0.57	<u>-98.9</u>	7.93	0.14	86
CHR Rat Kidney 1																		
AnyLesion	PLS	Dragon6	52	103	54	34	243	0.64	0.49	0.6	0.54	0.6	0.66	0.63	-98.7	8.14	0.25	86
-		Fragment																
CHR Rat Kidney 1 AnyLesion	PLS	or	47	110	47	39	243	0.65	0.5	0.55	0.52	0.55	0.7	0.62	-08.8	8.38	0.24	86
•	1 10	OI .	77	110	7/	33	243	0.03	0.5	0.55	0.52	0.55	0.7	0.02	-90.0	0.50	0.24	00
CHR Rat Kidney 1 AnyLesion	PLS	GSFrag	43	107	50	43	243	0.62	0.46	0.5	0.48	0.5	0.68	0.59	-98.8	03	0.18	86
-	1 10	GGI Tag	40	107	30	73	243	0.02	0.40	0.5	0.40	0.5	0.00	0.55	-90.0	0.5	0.10	00
CHR Rat Kidney 1	DI 0	Landon Africa	40	405		40	0.40	0.04	0.45	٥.	0.40	٥.	0.07	0.50	00.0	0.04	0.47	00
AnyLesion	PLS	Inductive	43	105	52	43	243	0.61	0.45	0.5	0.48	0.5	0.67	0.58	-98.8	8.24	0.17	86
CHR Rat Kidney 1		Mera,																
AnyLesion	PLS	Mersy	45	102	55	40	242	0.61	0.45	0.53	0.49	0.53	0.65	0.59	-98.8	8.13	0.17	85
CHR Rat Kidney 1																		
AnyLesion	PLS	QNPR	58	100	57	28	243	0.65	0.5	0.67	0.58	0.67	0.64	0.66	-98.7	7.98	0.3	86
CHR Rat Kidney 1		Spectrop																
AnyLesion	PLS	hores	46	98	59	40	242	0.50	0.44	0.53	0.48	0.53	0.62	0.58				~ ~
CHR Rat Kidney 1					00	40	243	0.59							-98.8	8.04	0.15	86
						40	243	0.59						0.00	-98.8	8.04	0.15	86
AnyLesion	J48	Adriana	39	112	45	45	243	0.63	0.46	0.46	0.46	0.46	0.71	0.59	-98.8 -98.8		0.15	86
,	J48	Adriana	39	112					0.46	0.46	0.46	0.46						
AnyLesion	J48		39	112					0.46	0.46	0.46	0.46						
AnyLesion CHR Rat Kidney 1		ALogPS,			45	45	241	0.63					0.71	0.59	-98.8	8.4	0.18	84
AnyLesion CHR Rat Kidney 1 AnyLesion	J48		39 40	112 99					0.46	0.46	0.46	0.46			-98.8		0.18	
AnyLesion CHR Rat Kidney 1 AnyLesion CHR Rat Kidney 1	J48	ALogPS, OEstate	40	99	45 58	45	241	0.63	0.41	0.47	0.43	0.47	0.71	0.59	-98.8 -98.9	8.4	0.18	84
AnyLesion CHR Rat Kidney 1 AnyLesion CHR Rat Kidney 1 AnyLesion		ALogPS, OEstate			45	45	241	0.63		0.47	0.43		0.71	0.59	-98.8	8.4	0.18	84
AnyLesion CHR Rat Kidney 1 AnyLesion CHR Rat Kidney 1 AnyLesion CHR Rat Kidney 1	J48 J48	ALogPS, OEstate CDK Chemaxo	40	99	45 58 45	45 46 41	241 243 241	0.63 0.57 0.64	0.41	0.47	0.43	0.47	0.71 0.63 0.71	0.59 0.55 0.61	-98.8 -98.9 -98.8	8.4 8.07 8.4	0.18	86
AnyLesion CHR Rat Kidney 1 AnyLesion CHR Rat Kidney 1 AnyLesion CHR Rat Kidney 1 AnyLesion	J48	ALogPS, OEstate	40	99	45 58	45	241	0.63	0.41	0.47	0.43	0.47	0.71	0.59	-98.8 -98.9	8.4 8.07 8.4	0.18	84
AnyLesion CHR Rat Kidney 1	J48 J48 J48	ALogPS, OEstate CDK Chemaxo	40 43 42	99 112 107	45 58 45 50	45 46 41 44	241 243 241 243	0.63 0.57 0.64 0.61	0.41 0.49 0.46	0.47 0.51 0.49	0.43 0.5 0.47	0.47 0.51 0.49	0.71 0.63 0.71 0.68	0.59 0.55 0.61 0.58	-98.8 -98.9 -98.8 -98.8	8.4 8.07 8.4 8.3	0.18 0.09 0.22 0.17	84 86 84
AnyLesion CHR Rat Kidney 1 AnyLesion CHR Rat Kidney 1 AnyLesion CHR Rat Kidney 1 AnyLesion	J48 J48	ALogPS, OEstate CDK Chemaxo n	40	99	45 58 45	45 46 41	241 243 241	0.63 0.57 0.64	0.41	0.47 0.51 0.49	0.43	0.47 0.51 0.49	0.71 0.63 0.71 0.68	0.59 0.55 0.61	-98.8 -98.9 -98.8 -98.8	8.4 8.07 8.4	0.18 0.09 0.22 0.17	86
AnyLesion CHR Rat Kidney 1 AnyLesion	J48 J48 J48	ALogPS, OEstate CDK Chemaxo	40 43 42	99 112 107	45 58 45 50	45 46 41 44	241 243 241 243	0.63 0.57 0.64 0.61	0.41 0.49 0.46	0.47 0.51 0.49	0.43 0.5 0.47	0.47 0.51 0.49	0.71 0.63 0.71 0.68	0.59 0.55 0.61 0.58	-98.8 -98.9 -98.8 -98.8	8.4 8.07 8.4 8.3	0.18 0.09 0.22 0.17	84 86 84
AnyLesion CHR Rat Kidney 1	J48 J48 J48	ALogPS, OEstate CDK Chemaxo n	40 43 42	99 112 107	45 58 45 50	45 46 41 44	241 243 241 243	0.63 0.57 0.64 0.61	0.41 0.49 0.46	0.47 0.51 0.49	0.43 0.5 0.47	0.47 0.51 0.49	0.71 0.63 0.71 0.68	0.59 0.55 0.61 0.58	-98.8 -98.9 -98.8 -98.8	8.4 8.07 8.4 8.3	0.18 0.09 0.22 0.17 0.26	84 86 84
CHR Rat Kidney 1 AnyLesion	J48 J48 J48	ALogPS, OEstate CDK Chemaxo n Dragon6 Fragment or	40 43 42 45 46	99 112 107 115 109	45 58 45 50 42 48	45 46 41 44 41	241 243 241 243 243	0.63 0.57 0.64 0.61 0.66	0.41 0.49 0.46 0.52	0.47 0.51 0.49 0.52	0.43 0.5 0.47 0.52	0.47 0.51 0.49 0.52	0.71 0.63 0.71 0.68 0.73	0.59 0.55 0.61 0.58 0.63	-98.8 -98.9 -98.8 -98.7 -98.8	8.4 8.07 8.4 8.3 8.54	0.18 0.09 0.22 0.17 0.26 0.22	84 86 86
AnyLesion CHR Rat Kidney 1	J48 J48 J48	ALogPS, OEstate CDK Chemaxo n Dragon6 Fragment	40 43 42 45	99 112 107 115	45 58 45 50 42	45 46 41 44 41	241 243 241 243 243	0.63 0.57 0.64 0.61 0.66	0.41 0.49 0.46 0.52	0.47 0.51 0.49 0.52	0.43 0.5 0.47 0.52	0.47 0.51 0.49 0.52	0.71 0.63 0.71 0.68 0.73	0.59 0.55 0.61 0.58 0.63	-98.8 -98.9 -98.8 -98.7 -98.8	8.4 8.07 8.4 8.3 8.54	0.18 0.09 0.22 0.17 0.26 0.22	84 86 86
AnyLesion CHR Rat Kidney 1 AnyLesion	J48 J48 J48 J48	ALogPS, OEstate CDK Chemaxo n Dragon6 Fragment or	40 43 42 45 46	99 112 107 115 109	45 58 45 50 42 48	45 46 41 44 41	241 243 241 243 243	0.63 0.57 0.64 0.61 0.66 0.64	0.41 0.49 0.46 0.52 0.49	0.47 0.51 0.49 0.52 0.53	0.43 0.5 0.47 0.52 0.51	0.47 0.51 0.49 0.52 0.53	0.71 0.63 0.71 0.68 0.73	0.59 0.55 0.61 0.58 0.63	-98.8 -98.9 -98.8 -98.7 -98.8	8.4 8.07 8.4 8.3 8.54	0.18 0.09 0.22 0.17 0.26 0.22	84 86 86 86
AnyLesion CHR Rat Kidney 1 CHR Rat Kidney 1	J48 J48 J48 J48 J48 J48	ALogPS, OEstate CDK Chemaxo n Dragon6 Fragment or GSFrag	40 43 42 45 46 43	99 112 107 115 109	45 58 45 50 42 48 55	45 46 41 44 41 40 43	241 243 241 243 243 243 243	0.63 0.57 0.64 0.61 0.66 0.64 0.6	0.41 0.49 0.46 0.52 0.49	0.47 0.51 0.49 0.52 0.53	0.43 0.5 0.47 0.52 0.51 0.47	0.47 0.51 0.49 0.52 0.53	0.71 0.63 0.71 0.68 0.73 0.69 0.65	0.59 0.55 0.61 0.58 0.63 0.61 0.57	-98.8 -98.9 -98.8 -98.7 -98.8	8.4 8.07 8.4 8.3 8.54 8.36 8.16	0.18 0.09 0.22 0.17 0.26 0.22 0.15	84 86 86 86 86
AnyLesion CHR Rat Kidney 1 AnyLesion	J48 J48 J48 J48	ALogPS, OEstate CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive	40 43 42 45 46	99 112 107 115 109	45 58 45 50 42 48	45 46 41 44 41	241 243 241 243 243	0.63 0.57 0.64 0.61 0.66 0.64	0.41 0.49 0.46 0.52 0.49	0.47 0.51 0.49 0.52 0.53	0.43 0.5 0.47 0.52 0.51	0.47 0.51 0.49 0.52 0.53	0.71 0.63 0.71 0.68 0.73	0.59 0.55 0.61 0.58 0.63	-98.8 -98.9 -98.8 -98.7 -98.8	8.4 8.07 8.4 8.3 8.54 8.36 8.16	0.18 0.09 0.22 0.17 0.26 0.22	84 86 86 86
AnyLesion CHR Rat Kidney 1 AnyLesion	J48 J48 J48 J48 J48 J48 J48	ALogPS, OEstate CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive Mera,	40 43 42 45 46 43 40	99 112 107 115 109 102	45 58 45 50 42 48 55 50	45 46 41 44 41 40 43 46	241 243 241 243 243 243 243	0.63 0.57 0.64 0.61 0.66 0.64 0.6	0.41 0.49 0.46 0.52 0.49 0.44	0.47 0.51 0.49 0.52 0.53 0.5	0.43 0.5 0.47 0.52 0.51 0.47	0.47 0.51 0.49 0.52 0.53 0.5	0.71 0.63 0.71 0.68 0.73 0.69 0.65 0.68	0.59 0.55 0.61 0.58 0.63 0.61 0.57	-98.8 -98.8 -98.8 -98.7 -98.8 -98.9	8.4 8.07 8.4 8.3 8.54 8.36 8.16 8.3	0.18 0.09 0.22 0.17 0.26 0.22 0.15	844 866 866 866 866
AnyLesion CHR Rat Kidney 1 AnyLesion	J48 J48 J48 J48 J48 J48	ALogPS, OEstate CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive	40 43 42 45 46 43	99 112 107 115 109	45 58 45 50 42 48 55	45 46 41 44 41 40 43	241 243 241 243 243 243 243	0.63 0.57 0.64 0.61 0.66 0.64 0.6	0.41 0.49 0.46 0.52 0.49	0.47 0.51 0.49 0.52 0.53	0.43 0.5 0.47 0.52 0.51 0.47	0.47 0.51 0.49 0.52 0.53	0.71 0.63 0.71 0.68 0.73 0.69 0.65	0.59 0.55 0.61 0.58 0.63 0.61 0.57	-98.8 -98.9 -98.8 -98.7 -98.8	8.4 8.07 8.4 8.3 8.54 8.36 8.16 8.3	0.18 0.09 0.22 0.17 0.26 0.22 0.15	84 86 86 86 86
AnyLesion CHR Rat Kidney 1 AnyLesion	J48 J48 J48 J48 J48 J48 J48 J48	ALogPS, OEstate CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive Mera, Mersy	40 43 42 45 46 43 40 38	99 112 107 115 109 102 107 111	45 58 45 50 42 48 55 50 46	45 46 41 44 41 40 43 46 47	241 243 241 243 243 243 243 243	0.63 0.57 0.64 0.61 0.66 0.64 0.6 0.6 0.62	0.41 0.49 0.46 0.52 0.49 0.44 0.44	0.47 0.51 0.49 0.52 0.53 0.5 0.47	0.43 0.5 0.47 0.52 0.51 0.47 0.45	0.47 0.51 0.49 0.52 0.53 0.5 0.47	0.71 0.63 0.71 0.68 0.73 0.69 0.65 0.68	0.59 0.55 0.61 0.58 0.63 0.61 0.57 0.57	-98.8 -98.8 -98.8 -98.7 -98.8 -98.9 -98.9	8.4 8.07 8.4 8.3 8.54 8.36 8.16 8.3	0.18 0.09 0.22 0.17 0.26 0.22 0.15 0.15	844 866 866 866 866 866 866
AnyLesion CHR Rat Kidney 1	J48 J48 J48 J48 J48 J48 J48	ALogPS, OEstate CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive Mera, Mersy QNPR	40 43 42 45 46 43 40	99 112 107 115 109 102	45 58 45 50 42 48 55 50	45 46 41 44 41 40 43 46	241 243 241 243 243 243 243	0.63 0.57 0.64 0.61 0.66 0.64 0.6	0.41 0.49 0.46 0.52 0.49 0.44	0.47 0.51 0.49 0.52 0.53 0.5	0.43 0.5 0.47 0.52 0.51 0.47	0.47 0.51 0.49 0.52 0.53 0.5	0.71 0.63 0.71 0.68 0.73 0.69 0.65 0.68	0.59 0.55 0.61 0.58 0.63 0.61 0.57	-98.8 -98.8 -98.8 -98.7 -98.8 -98.9 -98.9	8.4 8.07 8.4 8.3 8.54 8.36 8.16 8.3	0.18 0.09 0.22 0.17 0.26 0.22 0.15 0.15	844 866 866 866 866
AnyLesion CHR Rat Kidney 1 AnyLesion	J48 J48 J48 J48 J48 J48 J48 J48	ALogPS, OEstate CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive Mera, Mersy QNPR Spectrop	40 43 42 45 46 43 40 38	99 112 107 115 109 102 107 111	45 58 45 50 42 48 55 50 46 45	45 46 41 44 41 40 43 46 47	241 243 241 243 243 243 243 243 2443	0.63 0.57 0.64 0.61 0.66 0.64 0.6 0.6 0.62	0.41 0.49 0.46 0.52 0.49 0.44 0.44 0.45	0.47 0.51 0.49 0.52 0.53 0.5 0.47 0.45	0.43 0.5 0.47 0.52 0.51 0.47 0.45 0.45	0.47 0.51 0.49 0.52 0.53 0.5 0.47 0.45	0.71 0.63 0.71 0.68 0.73 0.69 0.65 0.68 0.71	0.59 0.55 0.61 0.58 0.63 0.61 0.57 0.57 0.58 0.62	-98.8 -98.8 -98.8 -98.7 -98.8 -98.9 -98.9	8.4 8.07 8.4 8.3 8.54 8.36 8.16 8.3 8.39	0.18 0.09 0.22 0.17 0.26 0.22 0.15 0.15 0.23	844 866 866 866 866 866 866
AnyLesion CHR Rat Kidney 1 AnyLesion	J48 J48 J48 J48 J48 J48 J48 J48	ALogPS, OEstate CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive Mera, Mersy QNPR	40 43 42 45 46 43 40 38	99 112 107 115 109 102 107 111	45 58 45 50 42 48 55 50 46	45 46 41 44 41 40 43 46 47	241 243 241 243 243 243 243 243	0.63 0.57 0.64 0.61 0.66 0.64 0.6 0.6 0.62	0.41 0.49 0.46 0.52 0.49 0.44 0.44	0.47 0.51 0.49 0.52 0.53 0.5 0.47	0.43 0.5 0.47 0.52 0.51 0.47 0.45	0.47 0.51 0.49 0.52 0.53 0.5 0.47	0.71 0.63 0.71 0.68 0.73 0.69 0.65 0.68	0.59 0.55 0.61 0.58 0.63 0.61 0.57 0.57	-98.8 -98.8 -98.8 -98.7 -98.8 -98.9 -98.9	8.4 8.07 8.4 8.3 8.54 8.36 8.16 8.3	0.18 0.09 0.22 0.17 0.26 0.22 0.15 0.15 0.23	844 866 866 866 866 866 866
AnyLesion CHR Rat Kidney 1 AnyLesion	J48 J48 J48 J48 J48 J48 J48 J48	ALogPS, OEstate CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive Mera, Mersy QNPR Spectrop	40 43 42 45 46 43 40 38	99 112 107 115 109 102 107 111	45 58 45 50 42 48 55 50 46 45	45 46 41 44 41 40 43 46 47	241 243 241 243 243 243 243 243 2443	0.63 0.57 0.64 0.61 0.66 0.64 0.6 0.6 0.62	0.41 0.49 0.46 0.52 0.49 0.44 0.44 0.45	0.47 0.51 0.49 0.52 0.53 0.5 0.47 0.45	0.43 0.5 0.47 0.52 0.51 0.47 0.45 0.45	0.47 0.51 0.49 0.52 0.53 0.5 0.47 0.45	0.71 0.63 0.71 0.68 0.73 0.69 0.65 0.68 0.71	0.59 0.55 0.61 0.58 0.63 0.61 0.57 0.57 0.58 0.62	-98.8 -98.8 -98.8 -98.7 -98.8 -98.9 -98.9	8.4 8.07 8.4 8.3 8.54 8.36 8.16 8.3 8.39	0.18 0.09 0.22 0.17 0.26 0.22 0.15 0.15 0.23	844 866 866 866 866 866 866

CHR Rat Liver 1		ALogPS,																
AnyLesion	RF	OEstate	93	59	59	32	243	0.63	0.61	0.74	0.67	0.74	0.5	0.62	-98.8	8.02	0.25	125
CHR Rat Liver 1 AnyLesion	RF	CDK	93	57	59	32	241	0.62	0.61	0.74	0.67	0.74	0.49	0.62	-98.8	7.99	0.24	125
CHR Rat Liver 1 AnyLesion	RF	Chemaxo n	86	57	61	39	243	0.59	0.59	0.69	0.63	0.69	0.48	0.59	-98.8	8.07	0.17	125
CHR Rat Liver 1 AnyLesion	RF	Dragon6	93	61	57	32	243	0.63	0.62	0.74	0.68	0.74	0.52	0.63	-98.7	8 09	0.27	125
CHR Rat Liver 1		Fragment																
AnyLesion CHR Rat Liver 1	RF	or	91	60	58	34	243	0.62	0.61	0.73	0.66	0.73	0.51	0.62		8.09		125
AnyLesion CHR Rat Liver 1	RF	GSFrag	89	66	52	36	243	0.64	0.63	0.71	0.67	0.71	0.56	0.64	-98.7	8.33	0.27	125
AnyLesion	RF	Inductive	92	55	63	33	243	0.6	0.59	0.74	0.66	0.74	0.47	0.6	-98.8	7.9	0.21	125
CHR Rat Liver 1 AnyLesion	RF	Mera, Mersy	97	53	64	28	242	0.62	0.6	0.78	0.68	0.78	0.45	0.61	-98.8	7.74	0.24	125
CHR Rat Liver 1 AnyLesion	RF	QNPR	95	55	63	30	243	0.62	0.6	0.76	0.67	0.76	0.47	0.61	-98.8	7.84	0.24	125
CHR Rat Liver 1 AnyLesion	RF	Spectrop hores	90	64	54	35	243	0.63	0.63	0.72	0.67	0.72	0.54	0.63	-98.7	8 24	0.27	125
CHR Rat Liver 1	ASN	110163	90	U 4	J +	33	240	0.03	0.03	0.12	0.07	0.12	0.04	0.03	-90.1	0.24	0.21	120
AnyLesion	N	Adriana	70	75	41	55	241	0.6	0.63	0.56	0.59	0.56	0.65	0.6	-98.8	8.87	0.21	125
CHR Rat Liver 1		ALogPS,																
AnyLesion CHR Rat Liver 1	N ASN	OEstate	77	68	50	48	243	0.6	0.61	0.62	0.61	0.62	0.58	0.6	-98.8	8.54	0.19	125
AnyLesion	N	CDK	78	70	46	47	241	0.61	0.63	0.62	0.63	0.62	0.6	0.61	-98.8	8.64	0.23	125
CHR Rat Liver 1 AnyLesion	ASN N	Chemaxo n	77	69	49	48	243	0.6	0.61	0.62	0.61	0.62	0.58	0.6	-98.8	<u>8.5</u> 7	0.2	125
CHR Rat Liver 1 AnyLesion	ASN N	Dragon6	85	71	47	40	243	0.64	0.64	0.68	0.66	0.68	0.6	0.64	-98 7	8.56	0.28	125
CHR Rat Liver 1	ASN	Fragment																
AnyLesion CHR Rat Liver 1	N ASN	or	79	69	49	46	243	0.61	0.62	0.63	0.62	0.63	0.58	0.61	-98.8	8.55	0.22	125
AnyLesion	N ASN	GSFrag	79	77	41	46	243	0.64	0.66	0.63	0.64	0.63	0.65	0.64	-98.7	8.84	0.28	125
CHR Rat Liver 1 AnyLesion	N	Inductive	77	66	52	48	243	0.59	0.6	0.62	0.61	0.62	0.56	0.59	-98.8	8.47	0.18	125
CHR Rat Liver 1 AnyLesion	ASN N	Mera, Mersy	79	70	47	46	242	0.62	0.63	0.63	0.63	0.63	0.6	0.62	-98.8	8.61	0.23	125
CHR Rat Liver 1	ASN			71		48									00.0	0.64	0.22	
AnyLesion CHR Rat Liver 1	N ASN	QNPR Spectrop	77	71	47		243	0.61	0.62	0.62	0.62	0.62	0.6	0.61	-96.8	8.64	U.ZZ	125
AnyLesion	N ASN	hores CDK, TA,	80	68	50	45	243	0.61	0.62	0.64	0.63	0.64	0.58	0.61	-98.8	8.51	0.22	125
CHR Rat Liver 1 AnyLesion	N	TP TP	70	63	53	55	241	0.55	0.57	0.56	0.56	0.56	0.54	0.55	-98.9	8.44	0.1	125
CHR Rat Liver 1 AnyLesion	ASN N	CDK, TA	71	65	51	54	241	0.56	0.58	0.57	0.57	0.57	0.56	0.56	<u>-9</u> 8.9	8.51	0.13	125
CHR Rat Liver 1 AnyLesion	ASN N	CDK, TP	71	69	47	54	241	0.58	0.6	0.57	0.58	0.57	0.59	0.58	-98.8	8.65	0.16	125
CHR Rat Liver 1	ASN																	
AnyLesion CHR Rat Liver 1	N ASN	TA, TP	59	60	58	66	243	0.49	0.5	0.47	0.49	0.47	0.51	0.49	-99.0	8.32	.02	125
AnyLesion	N ASN	TA	64	61	57	61	243	0.51	0.53	0.51	0.52	0.51	0.52	0.51	-99.0	8.35	0.03	125
CHR Rat Liver 1 AnyLesion	N	TP	66	64	54	59	243	0.53	0.55	0.53	0.54	0.53	0.54	0.54	-98.9	8.45	0.07	125
CHR Rat Liver 1	FSM	CDK, TA,																
AnyLesion	LR	TP	68	66	50	57	241	0.56	0.58	0.54	0.56	0.54	0.57	0.56	-98.9	8.55	0.11	125
CHR Rat Liver 1	FSM																	
AnyLesion	LR	CDK, TA	67	74	42	58	241	0.59	0.61	0.54	0.57	0.54	0.64	0.59	-98.8	8.84	0.17	125
CHR Rat Liver 1	FSM	ODK 75	70	00	4-	5 0	044	0.50	0.04	0.50	0.50	0.50	0.50	0.50	00.5	0.01	0.47	405
AnyLesion	LR	CDK, TP	72	69	47	53	241	0.59	0.61	0.58	0.59	0.58	0.59	0.59	-98.8	8.64	0.17	125

CHR Rat Liver 1 AnyLesion	FSM LR	TA, TP	56	60	58	69	243	0.48	0.49	0.45	0.47	0.45	0.51	0.48	-99.0	8.31	.044	125
CHR Rat Liver 1 AnyLesion	FSM LR	TA	62	68	50	63	243	0.53	0.55	0.5	0.52	0.5	0.58	0.54	-98.9	8.59	0.07	125
CHR Rat Liver 1 AnyLesion	FSM LR	TP	72	56	62	53	243	0.53	0.54	0.58	0.56	0.58	0.47	0.53	-98.9	8.16	0.05	125
CHR Rat Liver 1 AnyLesion	KNN	CDK, TA, TP	36	93	23	89	241	0.54	0.61	0.29	0.39	0.29	0.8	0.54	-98.9	9.47	0.1	125
CHR Rat Liver 1 AnyLesion	KNN	CDK, TA	24	103	13	101	241	0.53	0.65	0.19	0.3	0.19	0.89	0.54	-98.9	9.86	0.11	125
CHR Rat Liver 1 AnyLesion	KNN	CDK, TP	66	68	48	59	241	0.56	0.58	0.53	0.55	0.53	0.59	0.56	-98.9	8.63	0.11	125
CHR Rat Liver 1 AnyLesion	KNN	TA, TP	57	79	39	68	243	0.56	0.59	0.46	0.52	0.46	0.67	0.56	-98.9	8.98	0.13	125
CHR Rat Liver 1 AnyLesion	KNN	TA	20	107	11	105	243	0.52	0.65	0.16	0.26	0.16	0.91	0.53	-98.9	9.91	0.1	125
CHR Rat Liver 1 AnyLesion	KNN	TP	69	68	50	56	243	0.56	0.58	0.55	0.57	0.55	0.58	0.56	-98.9	8.58	0.13	125
CHR Rat Liver 1 AnyLesion	LibS VM	CDK, TA, TP	75	55	61	50	241	0.54	0.55	0.6	0.57	0.6	0.47	0.54	-98.9	8.14	0.07	125
CHR Rat Liver 1 AnyLesion	LibS VM	CDK, TA	74	60	56	51	241	0.56	0.57	0.59	0.58	0.59	0.52	0.55	-98.9	8.32	0.11	125
CHR Rat Liver 1 AnyLesion	LibS VM	CDK, TP	75	64	52	50	241	0.58	0.59	0.6	0.6	0.6	0.55	0.58	-98.8	8.45	0.15	125
CHR Rat Liver 1 AnyLesion	LibS VM	TA, TP	77	45	73	48	243	0.5	0.51	0.62	0.56	0.62	0.38	0.5	-99.0	7.75	.003	125
CHR Rat Liver 1 AnyLesion	LibS VM	TA	77	55	63	48	243	0.54	0.55	0.62	0.58	0.62	0.47	0.54	-98.9	8.1	0.08	125
CHR Rat Liver 1 AnyLesion	LibS VM	TP	69	58	60	56	243	0.52	0.53	0.55	0.54	0.55	0.49	0.52	-99.0	8.24	0.04	125
CHR Rat Liver 1 AnyLesion	MLR A	CDK, TA, TP	72	67	49	53	241	0.58	0.6	0.58	0.59	0.58	0.58	0.58	-98.8	8.57	0.15	125
CHR Rat Liver 1 AnyLesion	MLR A	CDK, TA	70	71	45	55	241	0.59	0.61	0.56	0.58	0.56	0.61	0.59	-98.8	8.72	0.17	125
CHR Rat Liver 1 AnyLesion	MLR A	CDK, TP	70	61	55	55	241	0.54	0.56	0.56	0.56	0.56	0.53	0.54	-98.9	8.37	0.09	125
CHR Rat Liver 1 AnyLesion	MLR A	TA, TP	61	59	59	64	243	0.49	0.51	0.49	0.5	0.49	0.5	0.49	-99.0	8.29	.012	125
CHR Rat Liver 1 AnyLesion	MLR A	TA	67	66	52	58	243	0.55	0.56	0.54	0.55	0.54	0.56	0.55	-98.9	8.52	0.1	125
CHR Rat Liver 1 AnyLesion	MLR A	TP	59	52	66	66	243	0.46	0.47	0.47	0.47	0.47	0.44	0.46	-99.1	8.05	.087	125
CHR Rat Liver 1 AnyLesion	PLS	CDK, TA, TP	66	61	55	59	241	0.53	0.55	0.53	0.54	0.53	0.53	0.53	-98.9	8.39	0.05	125
CHR Rat Liver 1 AnyLesion	PLS	CDK, TA	70	68	48	55	241	0.57	0.59	0.56	0.58	0.56	0.59	0.57	-98.9	8.62	0.15	125
CHR Rat Liver 1 AnyLesion	PLS	CDK, TP	73	61	55	52	241	0.56	0.57	0.58	0.58	0.58	0.53	0.55	-98.9	8.36	0.11	125
CHR Rat Liver 1 AnyLesion CHR Rat Liver 1	PLS	TA, TP	66	61	57	59	243	0.52	0.54	0.53	0.53	0.53	0.52	0.52	-99.0	8.35	0.04	125
AnyLesion CHR Rat Liver 1	PLS	TA	68	68	50	57	243	0.56	0.58	0.54	0.56	0.54	0.58	0.56	-98.9	8.58	0.12	125
AnyLesion CHR Rat Liver 1	PLS	TP CDK, TA,	69	62	56	56	243	0.54	0.55	0.55	0.55	0.55	0.53	0.54	-98.9	8.38	80.0	125
AnyLesion	J48	TP	67	64	52	58	241	0.54	0.56	0.54	0.55	0.54	0.55	0.54	-98.9	8.49	0.09	125

CHR Rat Liver 1	J48	CDK TA	66	68	48	59	241	0.56	0.50	0.52	0.55	0.52	0.50	0.56	-98.9 8.6	22 0 11	125
AnyLesion CHR Rat Liver 1		CDK, TA						0.56	0.58	0.53	0.55	0.53	0.59				
AnyLesion CHR Rat Liver 1 AnyLesion	J48 J48	TA. TP	70 64	69 55	47 63	55 61	241	0.58	0.6	0.56	0.58	0.56	0.59	0.58	-98.8 8.6 -99.0 8.7		125 125
CHR Rat Liver 1	J 4 0	IA, IF	04	33	03	01	243	0.49	0.5	0.51	0.51	0.51	0.47	0.49	-99.0 0.	.022	123
AnyLesion	J48	TA	74	65	53	51	243	0.57	0.58	0.59	0.59	0.59	0.55	0.57	-98.9 8.4	5 0.14	125
CHR Rat Liver 1 AnyLesion	J48	TP CDK TA	64	62	56	61	243	0.52	0.53	0.51	0.52	0.51	0.53	0.52	-99.0 8.3	39 0.04	125
CHR Rat Liver 1 AnyLesion	RF	CDK, TA, TP	96	51	65	29	241	0.61	0.6	0.77	0.67	0.77	0.44	0.6	-98.8 7.7	1 0.22	125
CHR Rat Liver 1 AnyLesion	RF	CDK, TA	96	49	67	29	241	0.6	0.59	0.77	0.67	0.77	0.42	0.6	-98.8 7.6	64 0.2	125
CHR Rat Liver 1 AnyLesion	RF	CDK, TP	100	56	60	25	241	0.65	0.63	0.8	0.7	0.8	0.48	0.64	-98.7 7.7	78 0.3	125
CHR Rat Liver 1 AnyLesion	RF	TA, TP	91	41	77	34	243	0.54	0.54	0.73	0.62	0.73	0.35	0.54	-98.9 7.4	3 0.08	125
CHR Rat Liver 1 AnyLesion	RF	TA	94	42	76	31	243	0.56	0.55	0.75	0.64	0.75	0.36	0.55	-98.9 7.4	1 0.12	125
CHR Rat Liver 1 AnyLesion	RF	TP	86	44	74	39	243	0.53	0.54	0.69	0.6	0.69	0.37	0.53	-98.9 7.6	0.06	125
CHR Rat Liver 1 AnyLesion	FSM LR	Adriana	75	72	44	50	241	0.61	0.63	0.6	0.61	0.6	0.62	0.61	-98.8 8.7	73 0.22	125
CHR Rat Liver 1 AnyLesion	FSM LR	ALogPS, OEstate	78	76	42	47	243	0.63	0.65	0.62	0.64	0.62	0.64	0.63	-98.7 8.8	31 0.27	125
CHR Rat Liver 1 AnyLesion	FSM LR	CDK	74	68	48	51	241	0.59	0.61	0.59	0.6	0.59	0.59	0.59	-98.8 8	.6 0.18	125
CHR Rat Liver 1 AnyLesion	FSM LR	Chemaxo n	76	73	45	49	243	0.61	0.63	0.61	0.62	0.61	0.62	0.61	-98.8 8.7	72 0.23	125
CHR Rat Liver 1 AnyLesion	FSM LR	Dragon6	81	76	42	44	243	0.65	0.66	0.65	0.65	0.65	0.64	0.65	-98.7 8.7	78 0.29	125
CHR Rat Liver 1 AnyLesion	FSM LR	Fragment or	76	70	48	49	243	0.6	0.61	0.61	0.61	0.61	0.59	0.6	-98.8 8.6	61 0.2	125
CHR Rat Liver 1 AnyLesion	FSM LR	GSFrag	78	76	42	47	243	0.63	0.65	0.62	0.64	0.62	0.64	0.63	-98.7 8.8	31 0.27	125
CHR Rat Liver 1 AnyLesion	FSM LR	Inductive	82	61	57	43	243	0.59	0.59	0.66	0.62	0.66	0.52	0.59	-98.8 8.2	25 0.17	125
CHR Rat Liver 1 AnyLesion	FSM LR	Mera, Mersy	82	70	47	43	242	0.63	0.64	0.66	0.65	0.66	0.6	0.63	-98.7 8.5	58 0.25	125
CHR Rat Liver 1 AnyLesion	FSM LR	QNPR	78	66	52	47	243	0.59	0.6	0.62	0.61	0.62	0.56	0.59	-98.8 8.4	16 0.18	125
CHR Rat Liver 1 AnyLesion	FSM LR	Spectrop hores	75	78	40	50	243	0.63	0.65	0.6	0.63	0.6	0.66	0.63	-98.7 8.9	0.26	125
CHR Rat Liver 1 AnyLesion	KNN	Adriana	95	57	59	30	241	0.63	0.62	0.76	0.68	0.76	0.49	0.63	-98.7 7.9	0.26	125
CHR Rat Liver 1 AnyLesion	KNN	ALogPS, OEstate	84	76	42	41	243	0.66	0.67	0.67	0.67	0.67	0.64	0.66	-98.7 8.7	75 0.32	125
CHR Rat Liver 1 AnyLesion	KNN	CDK	78	69	47	47	241	0.61	0.62	0.62	0.62	0.62	0.59	0.61	-98.8 8	.6 0.22	125
CHR Rat Liver 1 AnyLesion	KNN	Chemaxo n	87	55	63	38	243	0.58	0.58	0.7	0.63	0.7	0.47	0.58	-98.8 7.9	99 0.17	125

CHR Rat Liver 1 AnyLesion	KNN	Dragon6	80	73	45	45	243	0.63	0.64	0.64	0.64	0.64	0.62	0.63	-98.7 8.69 0.26	3 125
CHR Rat Liver 1 AnyLesion	KNN	Fragment or	80	71	47	45	243	0.62	0.63	0.64	0.63	0.64	0.6	0.62	-98.8 8.61 0.24	125
CHR Rat Liver 1 AnyLesion	KNN	GSFrag	74	73	45	51	243	0.6	0.62	0.59	0.61	0.59	0.62	0.61	-98.8 8.73 0.2°	125
CHR Rat Liver 1 AnyLesion		Inductive	76	67	51	49	243	0.59	0.6	0.61	0.6	0.61	0.57	0.59	-98.8 8.51 0.18	
CHR Rat Liver 1		Mera,														
AnyLesion CHR Rat Liver 1	KNN	Mersy	78	78	39	47	242	0.64	0.67	0.62	0.64	0.62	0.67	0.65	-98.7 8.91 0.29	125
AnyLesion	KNN	QNPR Spectrop	92	63	55	33	243	0.64	0.63	0.74	0.68	0.74	0.53	0.63	-98.7 8.17 0.28	125
CHR Rat Liver 1 AnyLesion	KNN	hores	81	73	45	44	243	0.63	0.64	0.65	0.65	0.65	0.62	0.63	-98.7 8.68 0.27	125
CHR Rat Liver 1	LibS															
AnyLesion	VM	Adriana	73	77	39	52	241	0.62	0.65	0.58	0.62	0.58	0.66	0.62	-98.8 8.93 0.25	125
CHR Rat Liver 1 AnyLesion	LibS VM	ALogPS, OEstate	86	69	49	39	243	0.64	0.64	0.69	0.66	0.69	0.58	0.64	-98.7 8.48 0.27	125
CHR Rat Liver 1	LibS															
AnyLesion	VM	CDK	83	65	51	42	241	0.61	0.62	0.66	0.64	0.66	0.56	0.61	-98.8 8.41 0.23	125
CHR Rat Liver 1 AnyLesion	LibS VM	Chemaxo n	76	67	51	49	243	0.59	0.6	0.61	0.6	0.61	0.57	0.59	-98.8 8.51 0.18	3 125
CHR Rat Liver 1	LibS															
AnyLesion	VM	Dragon6	78	74	44	47	243	0.63	0.64	0.62	0.63	0.62	0.63	0.63	-98.7 8.74 0.25	125
CHR Rat Liver 1 AnyLesion	LibS VM	Fragment or	78	66	52	47	243	0.59	0.6	0.62	0.61	0.62	0.56	0.59	-98.8 8.46 0.18	3 125
CHR Rat Liver 1 AnyLesion	LibS VM	GSFrag	83	71	47	42	243	0.63	0.64	0.66	0.65	0.66	0.6	0.63	-98.7 8.58 0.27	' 125
CHR Rat Liver 1 AnyLesion	LibS VM	Inductive	84	57	61	41	243	0.58	0.58	0.67	0.62	0.67	0.48	0.58	-98.8 8.1 0.16	3 125
CHR Rat Liver 1	LibS VM	Mera,	85	66	51	40	242	0.62	0.63	0.68	0.65	0.68	0.56	0.62	-98.8 8.41 0.25	
AnyLesion		Mersy	65	00	31	40	242	0.02	0.03	0.00	0.03	0.00	0.30	0.02	-90.0 0.41 0.23) 123
CHR Rat Liver 1 AnyLesion	LibS VM	QNPR	83	67	51	42	243	0.62	0.62	0.66	0.64	0.66	0.57	0.62	-98.8 8.44 0.23	3 125
CHR Rat Liver 1	LibS	Spectrop														
AnyLesion	VM	hores	77	68	50	48	243	0.6	0.61	0.62	0.61	0.62	0.58	0.6	-98.8 8.54 0.19	125
CHR Rat Liver 1 AnyLesion	MLR A	Adriana	82	75	41	43	241	0.65	0.67	0.66	0.66	0.66	0.65	0.65	-98.7 8.78 0.3	125
CHR Rat Liver 1 AnyLesion	MLR A	ALogPS, OEstate	74	67	51	51	243	0.58	0.59	0.59	0.59	0.59	0.57	0.58	-98.8 8.52 0.16	§ 125
CHR Rat Liver 1 AnyLesion	MLR A		74	66	50	51	241	0.58	0.6	0.59	0.59	0.59	0.57	0.58	-98.8 8.53 0.16	
CHR Rat Liver 1 AnyLesion		Chemaxo n	83	69	49	42	241	0.63	0.63	0.66	0.65	0.66	0.57	0.62	-98.8 8.51 0.25	
CHR Rat Liver 1	MLR															
AnyLesion CHR Rat Liver 1	A MLR	Dragon6 Fragment	77	61	57	48	243	0.57	0.57	0.62	0.59	0.62	0.52	0.57	-98.9 8.3 0.13	125
AnyLesion CHR Rat Liver 1	A MLR	or	74	68	50	51	243	0.58	0.6	0.59	0.59	0.59	0.58	0.58	-98.8 8.56 0.17	125
AnyLesion	Α	GSFrag	68	73	45	57	243	0.58	0.6	0.54	0.57	0.54	0.62	0.58	-98.8 8.76 0.16	125
CHR Rat Liver 1 AnyLesion	MLR A	Inductive	81	67	51	44	243	0.61	0.61	0.65	0.63	0.65	0.57	0.61	-98.8 8.47 0.22	2 125

	MID	Mana															
CHR Rat Liver 1 AnyLesion	MLR A	Mera, Mersy	65	63	54	60	242	0.53	0.55	0.52	0.53	0.52	0.54	0.53	-98.9 8.44	0.06	125
CHR Rat Liver 1	MLR		- 55	- 55	J-1		_74	0.00	0.00	0.02	5.55	0.02	5.57	0.00	00.0 0.77	5.00	.20
AnyLesion	Α	QNPR	72	75	43	53	243	0.6	0.63	0.58	0.6	0.58	0.64	0.61	-98.8 8.81	0.21	125
CHR Rat Liver 1		Spectrop															
AnyLesion	Α	hores	74	68	50	51	243	0.58	0.6	0.59	0.59	0.59	0.58	0.58	-98.8 8.56	0.17	125
CHR Rat Liver 1 AnyLesion	PLS	Adriana	78	68	48	47	241	0.61	0.62	0.62	0.62	0.62	0.59	0.61	-98.8 8.57	0.21	125
CHR Rat Liver 1	DI O	ALogPS,	0.4	7.4	4.4	44	0.40	0.04	0.05	0.05	0.05	0.05	0.00	0.04	00.7.0.74	0.00	405
AnyLesion CHR Rat Liver 1	PLS	OEstate	81	74	44	44	243	0.64	0.65	0.65	0.65	0.65	0.63	0.64	-98.7 8.71	0.28	125
AnyLesion	PLS	CDK	81	71	45	44	241	0.63	0.64	0.65	0.65	0.65	0.61	0.63	-98.7 8.65	0.26	125
CHR Rat Liver 1 AnyLesion	PLS	Chemaxo n	87	69	49	38	243	0.64	0.64	0.7	0.67	0.7	0.58	0.64	-98.7 8.46	0.28	125
CHR Rat Liver 1 AnyLesion	PLS	Dragon6	80	71	47	45	243	0.62	0.63	0.64	0.63	0.64	0.6	0.62	-98.8 8.61	0.24	125
CHR Rat Liver 1 AnyLesion	PLS	Fragment or	76	65	53	49	243	0.58	0.59	0.61	0.6	0.61	0.55	0.58	-98.8 8.44	0.16	125
CHR Rat Liver 1 AnyLesion	PLS	GSFrag	77	76	42	48	243	0.63	0.65	0.62	0.63	0.62	0.64	0.63	-98.7 8.82		125
CHR Rat Liver 1	DI 0					40	0.40	0.00	0.00	0.00		0.00		0.00	000005		405
AnyLesion	PLS	Inductive Mera,	85	65	53	40	243	0.62	0.62	0.68	0.65	0.68	0.55	0.62	-98.8 8.35	0.23	125
CHR Rat Liver 1 AnyLesion CHR Rat Liver 1	PLS	Mersy	79	66	51	46	242	0.6	0.61	0.63	0.62	0.63	0.56	0.6	-98.8 8.47	0.2	125
AnyLesion	PLS	QNPR	82	71	47	43	243	0.63	0.64	0.66	0.65	0.66	0.6	0.63	-98.7 8.59	0.26	125
CHR Rat Liver 1	DI O	Spectrop	0-				0.40	0.00	0.00		0.00		0	0.00	00.7.000	0.07	405
AnyLesion CHR Rat Liver 1	PLS	hores	87	67	51	38	243	0.63	0.63	0.7	0.66	0.7	0.57	0.63	-98.7 8.39	0.27	125
AnyLesion	J48	Adriana	75	68	48	50	241	0.59	0.61	0.6	0.6	0.6	0.59	0.59	-98.8 8.59	0.19	125
CHR Rat Liver 1 AnyLesion	J48	ALogPS, OEstate	81	69	49	44	243	0.62	0.62	0.65	0.64	0.65	0.58	0.62	-98.8 8.54	0.23	125
CHR Rat Liver 1	140	CDK	70	71	15	55	241	0.50	0.61	0.56	0.50	0.56	0.61	0.50	000 072	0.17	125
AnyLesion CHR Rat Liver 1	J48	CDK Chemaxo	70	71	45	55	241	0.59	0.61	0.56	0.58	0.56	0.61	0.59	-98.8 8.72	0.17	125
AnyLesion	J48	n	69	64	54	56	243	0.55	0.56	0.55	0.56	0.55	0.54	0.55	-98.9 8.44	0.09	125
CHR Rat Liver 1 AnyLesion	J48	Dragon6	83	70	48	42	243	0.63	0.63	0.66	0.65	0.66	0.59	0.63	-98.7 8.55	0.26	125
CHR Rat Liver 1 AnyLesion	J48	Fragment or	69	70	48	56	243	0.57	0.59	0.55	0.57	0.55	0.59	0.57	-98.9 8.65	0 15	125
CHR Rat Liver 1 AnyLesion	J48	GSFrag	77	75	43	48	243	0.63	0.64	0.62	0.63	0.62	0.64	0.63	-98.7 8.78		125
CHR Rat Liver 1	145				4.5		0	0.00	0.00	0.01	0.0.	0.0.	0.01	0.65	00.7.00=	0.65	46-
AnyLesion	J48	Inductive Mera,	80	72	46	45	243	0.63	0.63	0.64	0.64	0.64	0.61	0.63	-98.7 8.65	0.25	125
CHR Rat Liver 1 AnyLesion	J48	Mersy	76	68	49	49	242	0.6	0.61	0.61	0.61	0.61	0.58	0.59	-98.8 8.56	0.19	125
CHR Rat Liver 1 AnyLesion	J48	QNPR	75	67	51	50	243	0.58	0.6	0.6	0.6	0.6	0.57	0.58	-98.8 8.52		125
CHR Rat Liver 1	140	Spectrop	00	00	40	4.5	040	0.04	0.00	0.04	0.00	0.04	0.50	0.01	000 055	0.00	405
AnyLesion CHR Rat Liver 2 PreneoplasticLesion	J48 RF	hores Adriana	23	69 98	49 86	45 34	243	0.61	0.62	0.64	0.63	0.64	0.58	0.61	-98.8 8.55 -99.1 6.83		125 57
c.icopiadiioLesiUII	131	, which		50	- 50	J-T	<u>-</u> 71	0.0	V. <u>L</u> I	0.4	0.20	0.4	0.00	U.71	00.1 0.00	.000	31
CHR Rat Liver 2 PreneoplasticLesion	RF	ALogPS, OEstate	28	109	77	29	243	0.56	0.27	0.49	0.35	0.49	0.59	0.54	-98.9 7.08	0.07	57
CHR Rat Liver 2	DE	CDK	24	ດວ	01	33	2/11	0.40	n 21	0.42	0.20	0.42	0.51	0.46	_00 1 6 72	Ues	57
PreneoplasticLesion CHR Rat Liver 2	RF	Chemaxo	24	93	91	33	241	0.49	0.21	0.42	0.28	0.42	0.51	0.46	-99.1 6.73	.003	<i>ا</i> ن
PreneoplasticLesion	RF	n	24	95	91	33	243	0.49	0.21	0.42	0.28	0.42	0.51	0.47	-99.1 6.75	.058	57
CHR Rat Liver 2 PreneoplasticLesion	RF	Dragon6	23	96	90	34	243	0.49	0.2	0.4	0.27	0.4	0.52	0.46	-99.1 6.76		57
CHR Rat Liver 2	DE	Fragment	20	110	74	20	242	0.50	0.20	0.51	0.36	0.54	0.6	0.56	000 715	0.1	E-7
PreneoplasticLesion CHR Rat Liver 2	RF	OSEroa	29	112	74	28	243	0.58	0.28	0.51	0.36	0.51	0.6	0.56	-98.9 7.15	0.1	57 57
PreneoplasticLesion	RF	GSFrag	29	84	102	28	243	0.47	0.22	0.51	0.31	0.51	0.45	0.48	-99.0 6.54	.034	57

Color Rest Let 2 Perfect P																		
Primer P		RF	Inductive	24	96	90	33	243	0.49	0.21	0.42	0.28	0.42	0.52	0.47	-99.1 6.77	.053	5
Principle		RF	/	21	89	96	36	242	0.45	0.18	0.37	0.24	0.37	0.48	0.42	-99.2 6.59	.128	5
Selection Sele		RF	ONPR	22	97	89	35	243	n 49	0.2	0.39	0.26	0.39	0.52	0.45	-99 1 6 77	079	5
Commonstration Comm	•	IXI			- 51		- 55	240	0.43	0.2	0.00	0.20	0.00	0.02	0.40	-55.1 0.11	.075	
Procession Name	•		hores	20	97	89	37	243	0.48	0.18	0.35	0.24	0.35	0.52	0.44	-99.1 6.73	.109	5
Processing Pro			Adriana	18	112	72	39	241	0.54	0.2	0.32	0.24	0.32	0.61	0.46	-99.1 7.03	.066	57
CHR Rat Live 2 No. Chemaxo No. CDK 23 111 73 34 241 0.56 0.24 0.4 0.3 0.4 0.6 0.5 -99.0 7.11 0.01 5 CHR Rat Live 2 SN. Chemaxo No. No. Chemaxo No. Chemaxo No. Chemaxo No. Chemaxo No. C			-	28	124	62	29	243	0.63	0.31	0.49	0.38	0.49	0.67	0.58	-98.8 7.42	0.14	57
CHR Rat Live 2 ASN Chemaxo PremoplasticLesion N	CHR Rat Liver 2		CDK	23	111	73	34	241		0.24				0.6	0.5			57
CHR Rat Liver 2 ASN Preposed place of the control o	CHR Rat Liver 2	ASN	Chemaxo															5
CHR Rat Liver 2 ASN Prepagations and Prepagation CHR Rat Liver 2 ASN Prepagations and Prepagations CHR Rat Liver 2 ASN Prepagations CHR Rat Liver 2 AS	CHR Rat Liver 2	ASN																5
CHR Rat Liver 2 CHR Rat Liver	CHR Rat Liver 2	ASN	Fragment															57
CHR Rat Liver 2 CHR Rat Liver	•			20	120			2+3	0.02	0.5	0.40	0.30	0.40	0.07	0.00	-30.3 1.44	0.11	
Prenoplasticicision N inductive 20 108 78 37 243 0.53 0.2 0.35 0.26 0.35 0.58 0.47 -99.1 6.97 0.59 8. PRENOPLASTICISION N MOREY 21 119 66 36 242 0.58 0.24 0.37 0.29 0.37 0.64 0.51 -99.0 7.25 0.01 8. PRENOPLASTICISION N MOREY 21 119 66 36 242 0.58 0.24 0.37 0.29 0.37 0.64 0.51 -99.0 7.25 0.01 8. PRENOPLASTICISION N MOREY 21 119 66 36 242 0.58 0.24 0.37 0.29 0.37 0.64 0.51 -99.0 7.25 0.01 8. PRENOPLASTICISION N MOREY 23 128 58 34 243 0.62 0.28 0.4 0.33 0.4 0.69 0.55 -98.9 7.48 0.08 8. PRENOPLASTICISION N N N N N N N N N N N N N N N N N N	•		GSFrag	18	118	68	39	243	0.56	0.21	0.32	0.25	0.32	0.63	0.48	-99.0 7.14	.044	5
PreneplasticLesion N Mersy 21 119 66 36 242 0.58 0.24 0.37 0.29 0.37 0.64 0.51 -99.0 7.25 0.01 55	PreneoplasticLesion	N		20	108	78	37	243	0.53	0.2	0.35	0.26	0.35	0.58	0.47	-99.1 6.97	.059	5
PreneropiasticLesion N QNPR 23 128 58 34 243 0.62 0.28 0.4 0.33 0.4 0.69 0.55 -98.9 7.48 0.08 5 PreneropiasticLesion N N CDK TA N TP 23 131 53 34 241 0.64 0.3 0.4 0.35 0.4 0.71 0.56 -98.9 7.6 0.11 5 PreneropiasticLesion N TA TP 24 131 53 38 241 0.62 0.26 0.33 0.29 0.33 0.71 0.52 -99.0 7.52 0.04 5 PreneropiasticLesion N CDK, TA N TP 24 131 53 38 241 0.64 0.31 0.42 0.36 0.42 0.71 0.57 -98.9 7.6 0.11 5 PreneropiasticLesion N TA, TP 29 132 54 28 243 0.66 0.35 0.51 0.41 0.51 0.71 0.61 -98.8 7.62 0.2 5 PreneropiasticLesion N TA, TP 29 132 54 28 243 0.63 0.3 0.44 0.36 0.44 0.69 0.56 -98.9 7.51 0.11 5 PreneropiasticLesion N TA TP 27 126 60 30 243 0.63 0.31 0.47 0.38 0.47 0.68 0.58 -98.8 7.47 0.13 5 PreneropiasticLesion N TA TP 29 126 58 28 241 0.64 0.31 0.44 0.36 0.44 0.70 0.57 -98.9 7.51 0.11 5 PreneropiasticLesion N TA TP 29 126 58 28 241 0.64 0.33 0.51 0.4 0.51 0.68 0.6 -98.8 7.51 0.11 5 PreneropiasticLesion N TA TP 29 126 58 28 241 0.64 0.33 0.51 0.4 0.51 0.68 0.6 -98.8 7.51 0.11 5 PreneropiasticLesion N TA TP 29 126 58 28 241 0.64 0.33 0.51 0.4 0.51 0.68 0.6 -98.8 7.51 0.11 5 PreneropiasticLesion LR TP 29 126 58 28 241 0.64 0.31 0.44 0.36 0.44 0.7 0.57 -98.9 7.57 0.13 5 PreneropiasticLesion LR TP 28 128 56 29 241 0.65 0.33 0.49 0.4 0.49 0.7 0.57 -98.9 7.57 0.13 5 PreneropiasticLesion LR TA, TP 32 127 59 25 243 0.65 0.35 0.56 0.43 0.56 0.68 0.62 -98.8 7.56 0.17 5 PreneropiasticLesion LR TA, TP 32 127 59 25 243 0.65 0.35 0.56 0.43 0.56 0.68 0.62 -98.8 7.48 0.21 5 PreneropiasticLesion LR TA, TP 32 127 59 25 243 0.65 0.35 0.56 0.43 0.56 0.68 0.62 -98.8 7.48 0.21 5 PreneropiasticLesion LR TA, TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.69 0.55 -98.9 7.48 0.08 5 PreneropiasticLesion LR TA, TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.69 0.55 0.61 -98.8 6.84 0.19 5 PreneropiasticLesion RN TA, TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.69 0.55 0.61 -98.8 6.84 0.19 5 PreneropiasticLesion RN TA, TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.69 0.55 0.61 -98.8 6.84 0.19 5 PRENERO		N		21	119	66	36	242	0.58	0.24	0.37	0.29	0.37	0.64	0.51	-99.0 7.25	0.01	57
PreneoplasticLesion N hores 19 105 81 38 243 0.51 0.19 0.33 0.24 0.33 0.56 0.45 -99.1 6.88 0.88 5 CHR Rat Liver 2 PreneoplasticLesion N TP 23 131 53 34 241 0.64 0.3 0.4 0.35 0.4 0.71 0.56 -98.9 7.6 0.11 5 CHR Rat Liver 2 PreneoplasticLesion N CDK, TA 19 131 53 38 241 0.62 0.26 0.33 0.29 0.33 0.71 0.52 -99.0 7.52 0.04 5 CHR Rat Liver 2 ASN PreneoplasticLesion N CDK, TA 19 131 53 38 241 0.62 0.26 0.33 0.29 0.33 0.71 0.52 -99.0 7.52 0.04 5 CHR Rat Liver 2 ASN PreneoplasticLesion N TA, TP 24 131 53 33 241 0.64 0.31 0.42 0.36 0.42 0.71 0.57 -98.9 7.61 0.12 5 CHR Rat Liver 2 ASN PreneoplasticLesion N TA, TP 29 132 54 28 243 0.66 0.35 0.51 0.41 0.51 0.71 0.61 -98.8 7.62 0.2 5 CHR Rat Liver 2 ASN PreneoplasticLesion N TA 25 128 58 32 243 0.63 0.3 0.44 0.36 0.44 0.69 0.56 -98.9 7.51 0.11 5 CHR Rat Liver 2 PreneoplasticLesion N TP 27 126 60 30 243 0.63 0.31 0.47 0.38 0.47 0.68 0.58 -98.8 7.47 0.13 5 CHR Rat Liver 2 PreneoplasticLesion LR TP 29 126 58 28 241 0.64 0.33 0.51 0.4 0.51 0.68 0.6 -98.8 7.51 0.17 5 CHR Rat Liver 2 PreneoplasticLesion LR TP 29 126 58 28 241 0.64 0.33 0.51 0.4 0.51 0.68 0.6 -98.8 7.51 0.17 5 CHR Rat Liver 2 PreneoplasticLesion LR TP 29 126 58 28 241 0.64 0.33 0.51 0.4 0.51 0.68 0.6 -98.8 7.51 0.17 5 CHR Rat Liver 2 PreneoplasticLesion LR TP 29 126 58 28 241 0.64 0.31 0.44 0.36 0.44 0.7 0.57 -98.9 7.57 0.13 5 CHR Rat Liver 2 PreneoplasticLesion LR CDK, TA 25 129 55 32 241 0.64 0.31 0.44 0.36 0.44 0.7 0.57 -98.9 7.57 0.13 5 CHR Rat Liver 2 PreneoplasticLesion LR CDK, TA 25 129 55 32 241 0.65 0.33 0.49 0.4 0.49 0.7 0.59 -98.8 7.56 0.17 5 CHR Rat Liver 2 PreneoplasticLesion LR TA, TP 32 127 59 25 243 0.65 0.35 0.56 0.43 0.56 0.68 0.62 -98.8 7.48 0.21 5 CHR Rat Liver 2 PreneoplasticLesion LR TA, TP 32 127 59 25 243 0.65 0.35 0.56 0.43 0.56 0.68 0.62 -98.8 7.48 0.21 5 CHR Rat Liver 2 PreneoplasticLesion LR TA, TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.69 0.55 -98.9 7.48 0.09 5 CHR Rat Liver 2 PreneoplasticLesion RR Rat Liver 2 PreneoplasticLesion RR Rat Liver 2 PreneoplasticLesion RR Rat Liver 2 Pre		N		23	128	58	34	243	0.62	0.28	0.4	0.33	0.4	0.69	0.55	-98.9 7.48	0.08	57
PreneoplasticLesion N TP 23 131 53 34 241 0.64 0.3 0.4 0.35 0.4 0.71 0.56 -98.9 7.6 0.11 5 CHR Rat Liver 2 PreneoplasticLesion N CDK, TA 19 131 53 38 241 0.62 0.26 0.33 0.29 0.33 0.71 0.52 -99.0 7.52 0.04 5 CHR Rat Liver 2 ASN PreneoplasticLesion N CDK, TP 24 131 53 33 241 0.64 0.31 0.42 0.36 0.42 0.71 0.57 -98.9 7.61 0.12 5 CHR Rat Liver 2 ASN PreneoplasticLesion N TA, TP 29 132 54 28 243 0.66 0.35 0.51 0.41 0.51 0.71 0.61 -98.8 7.62 0.2 5 CHR Rat Liver 2 ASN PreneoplasticLesion N TA, TP 29 132 54 28 243 0.63 0.3 0.44 0.36 0.44 0.69 0.56 -98.9 7.51 0.11 5 CHR Rat Liver 2 PreneoplasticLesion N TA 25 128 58 32 243 0.63 0.31 0.47 0.38 0.47 0.68 0.58 -98.8 7.47 0.13 5 CHR Rat Liver 2 PreneoplasticLesion N TP 27 126 60 30 243 0.63 0.31 0.47 0.38 0.47 0.68 0.58 -98.8 7.47 0.13 5 CHR Rat Liver 2 PreneoplasticLesion LR TP 29 126 58 28 241 0.64 0.33 0.51 0.4 0.51 0.68 0.6 -98.8 7.51 0.17 5 CHR Rat Liver 2 PreneoplasticLesion LR CDK, TA 25 129 55 32 241 0.64 0.31 0.44 0.36 0.44 0.7 0.57 -98.9 7.57 0.13 5 CHR Rat Liver 2 PreneoplasticLesion LR CDK, TA 25 129 55 32 241 0.65 0.33 0.49 0.4 0.49 0.7 0.59 -98.8 7.56 0.17 5 CHR Rat Liver 2 PreneoplasticLesion LR CDK, TP 28 128 56 29 241 0.65 0.33 0.49 0.4 0.49 0.7 0.59 -98.8 7.56 0.17 5 CHR Rat Liver 2 PreneoplasticLesion LR CDK, TP 28 128 56 29 241 0.65 0.33 0.49 0.4 0.49 0.7 0.59 -98.8 7.48 0.21 5 CHR Rat Liver 2 PreneoplasticLesion LR TA, TP 32 127 59 25 243 0.65 0.35 0.56 0.43 0.56 0.68 0.62 -98.8 7.48 0.21 5 CHR Rat Liver 2 FSM LR TA, TP 32 127 59 25 243 0.65 0.35 0.56 0.43 0.56 0.68 0.62 -98.8 7.48 0.21 5 CHR Rat Liver 2 FSM LR TA, TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.9 7.48 0.08 5 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion LR TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion LR TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.56 0.63 0.65 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion LR TP 31 116 70 26 243 0.6 0.31 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.		N	hores	19	105	81	38	243	0.51	0.19	0.33	0.24	0.33	0.56	0.45	-99.1 6.88	.088	57
PreneoplasticLesion N CDK, TA 19 131 53 38 241 0.62 0.26 0.33 0.29 0.33 0.71 0.52 -99.0 7.52 0.04 52 CHR Rat Liver 2 PreneoplasticLesion N TA, TP 29 132 54 28 243 0.66 0.35 0.51 0.41 0.51 0.71 0.61 -98.8 7.62 0.2 52 CHR Rat Liver 2 PreneoplasticLesion N TA, TP 29 132 54 28 243 0.66 0.35 0.51 0.41 0.51 0.71 0.61 -98.8 7.62 0.2 52 CHR Rat Liver 2 PreneoplasticLesion N TA 25 128 58 32 243 0.63 0.3 0.44 0.36 0.44 0.69 0.56 -98.9 7.51 0.11 52 CHR Rat Liver 2 PreneoplasticLesion N TP 27 126 60 30 243 0.63 0.31 0.47 0.38 0.47 0.68 0.58 -98.8 7.47 0.13 52 CHR Rat Liver 2 PreneoplasticLesion N TP 29 126 58 28 241 0.64 0.33 0.51 0.4 0.51 0.68 0.6 -98.8 7.51 0.17 52 CHR Rat Liver 2 PreneoplasticLesion N TP 29 126 58 28 241 0.64 0.33 0.51 0.4 0.51 0.68 0.6 -98.8 7.51 0.17 52 CHR Rat Liver 2 PreneoplasticLesion LR CDK, TA 25 129 55 32 241 0.64 0.31 0.44 0.36 0.44 0.7 0.57 -98.9 7.57 0.13 52 CHR Rat Liver 2 PreneoplasticLesion LR CDK, TP 28 128 56 29 241 0.65 0.33 0.49 0.4 0.49 0.7 0.57 -98.9 7.57 0.13 52 CHR Rat Liver 2 PreneoplasticLesion LR CDK, TP 28 128 56 29 241 0.65 0.33 0.49 0.4 0.49 0.7 0.59 -98.8 7.56 0.17 52 CHR Rat Liver 2 PreneoplasticLesion LR TA, TP 32 127 59 25 243 0.65 0.35 0.56 0.43 0.56 0.68 0.62 -98.8 7.48 0.21 52 CHR Rat Liver 2 PreneoplasticLesion LR TA, TP 32 128 58 34 243 0.62 0.28 0.4 0.33 0.4 0.69 0.55 -98.9 7.48 0.08 52 CHR Rat Liver 2 PreneoplasticLesion LR TA, TP 31 116 70 26 243 0.60 0.31 0.54 0.39 0.54 0.69 0.55 -98.9 7.48 0.08 52 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion LR TA, Pr 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.69 0.55 0.61 -98.8 6.84 0.19 52 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 52 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 52 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 52 CHR Rat Liver 2		N		23	131	53	34	241	0.64	0.3	0.4	0.35	0.4	0.71	0.56	-98.9 7.6	0.11	57
CHR Rat Liver 2 Preneplastic Lesion N TP 29 132 54 28 243 0.66 0.35 0.51 0.41 0.51 0.71 0.61 -98.8 7.62 0.2 5 CHR Rat Liver 2 ASN Preneplastic Lesion N TA 25 128 58 32 243 0.63 0.3 0.44 0.36 0.44 0.69 0.56 -98.9 7.51 0.11 5 CHR Rat Liver 2 ASN Preneplastic Lesion N TA 25 128 58 32 243 0.63 0.3 0.44 0.36 0.44 0.69 0.56 -98.9 7.51 0.11 5 CHR Rat Liver 2 Preneplastic Lesion N TP 27 126 60 30 243 0.63 0.31 0.47 0.38 0.47 0.68 0.58 -98.8 7.47 0.13 5 CHR Rat Liver 2 Preneplastic Lesion LR TP 29 126 58 28 241 0.64 0.33 0.51 0.4 0.51 0.68 0.6 -98.8 7.51 0.17 5 CHR Rat Liver 2 Preneplastic Lesion LR CDK, TA 25 129 55 32 241 0.64 0.31 0.44 0.36 0.44 0.7 0.57 -98.9 7.57 0.13 5 CHR Rat Liver 2 Preneplastic Lesion LR CDK, TA 25 129 55 32 241 0.64 0.31 0.44 0.36 0.44 0.7 0.57 -98.9 7.57 0.13 5 CHR Rat Liver 2 Preneplastic Lesion LR CDK, TP 28 128 56 29 241 0.65 0.33 0.49 0.4 0.49 0.7 0.59 -98.8 7.56 0.17 5 CHR Rat Liver 2 Preneplastic Lesion LR TA, TP 32 127 59 25 243 0.65 0.35 0.56 0.43 0.56 0.68 0.62 -98.8 7.48 0.21 5 CHR Rat Liver 2 Preneplastic Lesion LR TA, TP 32 127 59 25 243 0.65 0.35 0.56 0.43 0.56 0.68 0.62 -98.8 7.48 0.21 5 CHR Rat Liver 2 Preneplastic Lesion LR TA, TP 32 128 58 34 243 0.62 0.28 0.4 0.33 0.4 0.69 0.55 -98.9 7.48 0.08 5 CHR Rat Liver 2 PSM Preneplastic Lesion LR TA, TP 32 127 59 25 243 0.65 0.35 0.56 0.43 0.56 0.68 0.62 -98.8 7.48 0.21 5 CHR Rat Liver 2 PSM Preneplastic Lesion LR TA, TP 32 127 59 25 243 0.65 0.35 0.56 0.43 0.56 0.68 0.62 -98.8 7.48 0.21 5 CHR Rat Liver 2 PSM Preneplastic Lesion LR TA, TP 33 116 70 26 243 0.60 0.31 0.54 0.39 0.54 0.69 0.55 -98.9 7.48 0.08 5 CHR Rat Liver 2 Preneplastic Lesion LR TA, TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2 PSM Preneplastic Lesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2 CDK, TA, Preneplastic Lesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2 CDK, TA, Preneplastic Lesion			CDK, TA	19	131	53	38	241	0.62	0.26	0.33	0.29	0.33	0.71	0.52	-99.0 7.52	0.04	57
PreneoplasticLesion N TA, TP 29 132 54 28 243 0.66 0.35 0.51 0.41 0.51 0.71 0.61 -98.8 7.62 0.2 5 PreneoplasticLesion N TA 25 128 58 32 243 0.63 0.3 0.44 0.36 0.44 0.69 0.56 -98.9 7.51 0.11 5 PreneoplasticLesion N TA 25 128 58 32 243 0.63 0.3 0.44 0.36 0.44 0.69 0.56 -98.9 7.51 0.11 5 PreneoplasticLesion N TP 27 126 60 30 243 0.63 0.31 0.47 0.38 0.47 0.68 0.58 -98.8 7.47 0.13 5 PreneoplasticLesion LR TP 29 126 58 28 241 0.64 0.33 0.51 0.4 0.51 0.68 0.6 -98.8 7.51 0.17 5 PreneoplasticLesion LR CDK, TA 25 129 55 32 241 0.64 0.31 0.44 0.36 0.44 0.7 0.57 -98.9 7.57 0.13 5 PreneoplasticLesion LR CDK, TP 28 128 56 29 241 0.65 0.33 0.49 0.4 0.49 0.7 0.59 -98.8 7.56 0.17 5 PreneoplasticLesion LR TA, TP 32 127 59 25 243 0.65 0.35 0.56 0.43 0.56 0.68 0.62 -98.8 7.48 0.21 5 PreneoplasticLesion LR TA, TP 32 128 58 34 243 0.62 0.28 0.4 0.33 0.4 0.69 0.55 -98.9 7.48 0.08 5 PreneoplasticLesion LR TA, TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.8 7.23 0.14 5 PreneoplasticLesion LR TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.8 7.23 0.14 5 PreneoplasticLesion LR TA, TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 PRENEOPLASTICLESION KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 PRENEOPLASTICLESION KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 PRENEOPLASTICLESION KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 PRENEOPLASTICLESION KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 PRENEOPLASTICLESION KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 PRENEOPLASTICLESION KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 PRENEOPLASTICLESION KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 PRENEOPLASTICLESION KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43			CDK, TP	24	131	53	33	241	0.64	0.31	0.42	0.36	0.42	0.71	0.57	-98.9 7.61	0.12	5
PreneoplasticLesion N TA 25 128 58 32 243 0.63 0.3 0.44 0.36 0.44 0.69 0.56 -98.9 7.51 0.11 5 CHR Rat Liver 2 PreneoplasticLesion N TP 27 126 60 30 243 0.63 0.31 0.47 0.38 0.47 0.68 0.58 -98.8 7.47 0.13 5 CHR Rat Liver 2 PreneoplasticLesion LR TP 29 126 58 28 241 0.64 0.33 0.51 0.4 0.51 0.68 0.6 -98.8 7.51 0.17 5 CHR Rat Liver 2 PreneoplasticLesion LR CDK, TA 25 129 55 32 241 0.64 0.31 0.44 0.36 0.44 0.7 0.57 -98.9 7.57 0.13 5 CHR Rat Liver 2 PreneoplasticLesion LR CDK, TP 28 128 56 29 241 0.65 0.33 0.49 0.4 0.49 0.7 0.59 -98.8 7.56 0.17 5 CHR Rat Liver 2 PreneoplasticLesion LR TA, TP 32 127 59 25 243 0.65 0.35 0.56 0.43 0.56 0.68 0.62 -98.8 7.48 0.21 5 CHR Rat Liver 2 PreneoplasticLesion LR TA, TP 32 128 58 34 243 0.62 0.28 0.4 0.33 0.4 0.69 0.55 -98.9 7.48 0.08 5 CHR Rat Liver 2 PreneoplasticLesion LR TA 23 128 58 34 243 0.62 0.28 0.4 0.33 0.4 0.69 0.55 -98.9 7.48 0.08 5 CHR Rat Liver 2 PreneoplasticLesion LR TA 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.8 7.23 0.14 5 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion LR TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion KN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion KN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion KN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2 CDK, TA, PreneoplasticLesio			TA, TP	29	132	54	28	243	0.66	0.35	0.51	0.41	0.51	0.71	0.61	-98.8 7.62	0.2	57
PreneoplasticLesion N TP 27 126 60 30 243 0.63 0.31 0.47 0.38 0.47 0.68 0.58 -98.8 7.47 0.13 5 PreneoplasticLesion N TP 27 126 60 30 243 0.63 0.31 0.47 0.38 0.47 0.68 0.58 -98.8 7.47 0.13 5 PreneoplasticLesion LR TP 29 126 58 28 241 0.64 0.33 0.51 0.4 0.51 0.68 0.6 -98.8 7.51 0.17 5 CHR Rat Liver 2 FSM PreneoplasticLesion LR CDK, TA 25 129 55 32 241 0.64 0.31 0.44 0.36 0.44 0.7 0.57 -98.9 7.57 0.13 5 CHR Rat Liver 2 FSM PreneoplasticLesion LR CDK, TP 28 128 56 29 241 0.65 0.33 0.49 0.4 0.49 0.7 0.59 -98.8 7.56 0.17 5 CHR Rat Liver 2 FSM PreneoplasticLesion LR TA, TP 32 127 59 25 243 0.65 0.35 0.56 0.43 0.56 0.68 0.62 -98.8 7.48 0.21 5 CHR Rat Liver 2 FSM PreneoplasticLesion LR TA, TP 32 127 59 25 243 0.65 0.35 0.56 0.43 0.56 0.68 0.62 -98.8 7.48 0.21 5 CHR Rat Liver 2 FSM PreneoplasticLesion LR TA 23 128 58 34 243 0.62 0.28 0.4 0.33 0.4 0.69 0.55 -98.9 7.48 0.08 5 CHR Rat Liver 2 FSM PreneoplasticLesion LR TA 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.8 7.23 0.14 5 CHR Rat Liver 2 FSM LR TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.8 7.23 0.14 5 CHR Rat Liver 2 FSM LR TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.8 7.23 0.14 5 CHR Rat Liver 2 FSM LR TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.8 7.23 0.14 5 CHR Rat Liver 2 FSM LR TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.8 7.23 0.14 5 CHR Rat Liver 2 FSM LR TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.8 7.23 0.14 5 CHR Rat Liver 2 FSM LR TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.8 7.23 0.14 5 CHR Rat Liver 2 FSM LR TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.8 7.23 0.14 5 CHR Rat Liver 2 FSM LR TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.8 7.23 0.14 5 CHR Rat Liver 2 FSM LR TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.8 7.23 0.14 5 CHR Rat Liver 2 FSM 2			TA	25	128	58	32	243	0.63	0.3	0.44	0.36	0.44	0.69	0.56	-98.9 7.51	0.11	5
PreneoplasticLesion LR TP 29 126 58 28 241 0.64 0.33 0.51 0.4 0.51 0.68 0.6 -98.8 7.51 0.17 5 CHR Rat Liver 2 PreneoplasticLesion LR CDK, TA 25 129 55 32 241 0.64 0.31 0.44 0.36 0.44 0.7 0.57 -98.9 7.57 0.13 5 CHR Rat Liver 2 PreneoplasticLesion LR CDK, TP 28 128 56 29 241 0.65 0.33 0.49 0.4 0.49 0.7 0.59 -98.8 7.56 0.17 5 CHR Rat Liver 2 PreneoplasticLesion LR TA, TP 32 127 59 25 243 0.65 0.35 0.56 0.43 0.56 0.68 0.62 -98.8 7.48 0.21 5 CHR Rat Liver 2 PreneoplasticLesion LR TA 23 128 58 34 243 0.62 0.28 0.4 0.33 0.4 0.69 0.55 -98.9 7.48 0.08 5 CHR Rat Liver 2 PreneoplasticLesion LR TA 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.8 7.23 0.14 5 CHR Rat Liver 2 PreneoplasticLesion LR TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.8 7.23 0.14 5 CHR Rat Liver 2 PreneoplasticLesion LR TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.8 7.23 0.14 5 CHR Rat Liver 2 PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2 PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2 PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5			TP	27	126	60	30	243	0.63	0.31	0.47	0.38	0.47	0.68	0.58	-98.8 7.47	0.13	57
PreneoplasticLesion LR TP 29 126 58 28 241 0.64 0.33 0.51 0.4 0.51 0.68 0.6 -98.8 7.51 0.17 5 CHR Rat Liver 2 PreneoplasticLesion LR CDK, TA 25 129 55 32 241 0.64 0.31 0.44 0.36 0.44 0.7 0.57 -98.9 7.57 0.13 5 CHR Rat Liver 2 PreneoplasticLesion LR CDK, TP 28 128 56 29 241 0.65 0.33 0.49 0.4 0.49 0.7 0.59 -98.8 7.56 0.17 5 CHR Rat Liver 2 PreneoplasticLesion LR TA, TP 32 127 59 25 243 0.65 0.35 0.56 0.43 0.56 0.68 0.62 -98.8 7.48 0.21 5 CHR Rat Liver 2 PreneoplasticLesion LR TA 23 128 58 34 243 0.62 0.28 0.4 0.33 0.4 0.69 0.55 -98.9 7.48 0.08 5 CHR Rat Liver 2 PreneoplasticLesion LR TA 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.8 7.23 0.14 5 CHR Rat Liver 2 PreneoplasticLesion LR TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.8 7.23 0.14 5 CHR Rat Liver 2 PreneoplasticLesion LR TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.8 7.23 0.14 5 CHR Rat Liver 2 PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2 PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2 PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5	CHR Rat Liver 2	FSM	CDK, TA,															
PreneoplasticLesion LR CDK, TA 25 129 55 32 241 0.64 0.31 0.44 0.36 0.44 0.7 0.57 -98.9 7.57 0.13 55 CHR Rat Liver 2 PreneoplasticLesion LR CDK, TP 28 128 56 29 241 0.65 0.33 0.49 0.4 0.49 0.7 0.59 -98.8 7.56 0.17 55 CHR Rat Liver 2 PreneoplasticLesion LR TA, TP 32 127 59 25 243 0.65 0.35 0.56 0.43 0.56 0.68 0.62 -98.8 7.48 0.21 55 CHR Rat Liver 2 PreneoplasticLesion LR TA 23 128 58 34 243 0.62 0.28 0.4 0.33 0.4 0.69 0.55 -98.9 7.48 0.08 55 CHR Rat Liver 2 PreneoplasticLesion LR TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.8 7.23 0.14 55 CHR Rat Liver 2 CDK, TA PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 55 CHR Rat Liver 2 PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 55 CHR Rat Liver 2 PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 55 CHR Rat Liver 2				29	126	58	28	241	0.64	0.33	0.51	0.4	0.51	0.68	0.6	-98.8 7.51	0.17	57
CHR Rat Liver 2 PreneoplasticLesion			CDK, TA	25	129	55	32	241	0.64	0.31	0.44	0.36	0.44	0.7	0.57	-98.9 7.57	0.13	57
PreneoplasticLesion LR CDK, TP 28 128 56 29 241 0.65 0.33 0.49 0.4 0.49 0.7 0.59 -98.8 7.56 0.17 5 CHR Rat Liver 2 FSM LR TA, TP 32 127 59 25 243 0.65 0.35 0.56 0.43 0.56 0.68 0.62 -98.8 7.48 0.21 5 CHR Rat Liver 2 FSM PreneoplasticLesion LR TA 23 128 58 34 243 0.62 0.28 0.4 0.33 0.4 0.69 0.55 -98.9 7.48 0.08 5 CHR Rat Liver 2 FSM PreneoplasticLesion LR TA 23 128 58 34 243 0.62 0.28 0.4 0.33 0.4 0.69 0.55 -98.9 7.48 0.08 5 CHR Rat Liver 2 FSM PreneoplasticLesion LR TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.8 7.23 0.14 5 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5	CHR Rat Liver 2	FSM																
PreneoplasticLesion LR TA, TP 32 127 59 25 243 0.65 0.35 0.56 0.43 0.56 0.68 0.62 -98.8 7.48 0.21 5 CHR Rat Liver 2 PreneoplasticLesion LR TA 23 128 58 34 243 0.62 0.28 0.4 0.33 0.4 0.69 0.55 -98.9 7.48 0.08 5 CHR Rat Liver 2 PreneoplasticLesion LR TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.8 7.23 0.14 5 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5			CDK, TP	28	128	56	29	241	0.65	0.33	0.49	0.4	0.49	0.7	0.59	-98.8 7.56	0.17	57
PreneoplasticLesion LR TA 23 128 58 34 243 0.62 0.28 0.4 0.33 0.4 0.69 0.55 -98.9 7.48 0.08 5 CHR Rat Liver 2 FSM PreneoplasticLesion LR TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.8 7.23 0.14 5 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2			TA, TP	32	127	59	25	243	0.65	0.35	0.56	0.43	0.56	0.68	0.62	-98.8 7.48	0.21	57
PreneoplasticLesion LR TA 23 128 58 34 243 0.62 0.28 0.4 0.33 0.4 0.69 0.55 -98.9 7.48 0.08 5 CHR Rat Liver 2 PreneoplasticLesion LR TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.8 7.23 0.14 5 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2	CHR Rat Liver 2	FSM																
PreneoplasticLesion LR TP 31 116 70 26 243 0.6 0.31 0.54 0.39 0.54 0.62 0.58 -98.8 7.23 0.14 5 CHR Rat Liver 2 CDK, TA, PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2		LR	TA	23	128	58	34	243	0.62	0.28	0.4	0.33	0.4	0.69	0.55	-98.9 7.48	0.08	5
CHR Rat Liver 2 CDK, TA, PreneoplasticLesion KNN TP 38 102 82 19 241 0.58 0.32 0.67 0.43 0.67 0.55 0.61 -98.8 6.84 0.19 5 CHR Rat Liver 2			TP	31	116	70	26	243	0.6	0.31	0.54	0.39	0 54	0.62	0.58	-988 723	0 14	5
CHR Rat Liver 2	CHR Rat Liver 2		CDK, TA,															5
	CHR Rat Liver 2																	57
				. •					•					2.0		22.3		J

CHR Rat Liver 2 PreneoplasticLesion	KNN	CDK, TP	37	82	102	20	241	0.49	0.27	0.65	0.38	0.65	0.45	0.55	-98.9 6.43 0.08	57
CHR Rat Liver 2 PreneoplasticLesion	KNN	TA, TP	31	113	73	26	243	0.59	0.3	0.54	0.39	0.54	0.61	0.58	-98.8 7.16 0.13	57
CHR Rat Liver 2 PreneoplasticLesion	KNN	TA	16	167	19	41	243	0.75	0.46	0.28	0.35	0.28	0.9	0.59	-98.8 8.68 0.22	57
CHR Rat Liver 2 PreneoplasticLesion	KNN	TP	43	83	103	14	243	0.52	0.29	0.75	0.42	0.75	0.45	0.6	-98.8 6.23 0.17	57
CHR Rat Liver 2 PreneoplasticLesion	LibS VM	CDK, TA, TP	16	161	23	41	241	0.73	0.41	0.28	0.33	0.28	0.88	0.58	-98.8 8.46 0.18	57
CHR Rat Liver 2 PreneoplasticLesion	LibS VM	CDK, TA	9	168	16	48	241	0.73	0.36	0.16	0.22	0.16	0.91	0.54	-98.9 8.46 0.1	57
CHR Rat Liver 2 PreneoplasticLesion	LibS VM	CDK, TP	4	177	7	53	241	0.75	0.36	0.07	0.12	0.07	0.96	0.52	-99.0 8.65 0.07	57
CHR Rat Liver 2 PreneoplasticLesion	LibS VM	TA, TP	16	162	24	41	243	0.73	0.4	0.28	0.33	0.28	0.87	0.58	-98.8 8.42 0.17	57
CHR Rat Liver 2 PreneoplasticLesion	LibS VM	TA	11	159	27	46	243	0.7	0.29	0.19	0.23	0.19	0.85	0.52	-99.0 8.04 0.06	57
CHR Rat Liver 2 PreneoplasticLesion	LibS VM	TP CDK, TA,	11	156	30	46	243	0.69	0.27	0.19	0.22	0.19	0.84	0.52	-99.0 7.92 0.04	57
CHR Rat Liver 2 PreneoplasticLesion	Α	TP	27	106	78	30	241	0.55	0.26	0.47	0.33	0.47	0.58	0.52	-99.0 7.04 0.04	57
CHR Rat Liver 2 PreneoplasticLesion	MLR A	CDK, TA	26	110	74	31	241	0.56	0.26	0.46	0.33	0.46	0.6	0.53	-98.9 7.12 0.05	57
CHR Rat Liver 2 PreneoplasticLesion	MLR A	CDK, TP	29	108	76	28	241	0.57	0.28	0.51	0.36	0.51	0.59	0.55	-98.9 7.08 0.08	57
CHR Rat Liver 2 PreneoplasticLesion	MLR A MLR	TA, TP	23	115	71	34	243	0.57	0.24	0.4	0.3	0.4	0.62	0.51	-99.0 7.18 0.02	57
CHR Rat Liver 2 PreneoplasticLesion	Α	TA	31	132	54	26	243	0.67	0.36	0.54	0.44	0.54	0.71	0.63	-98.7 7.62 0.23	57
CHR Rat Liver 2 PreneoplasticLesion	MLR A	TP ODK TA	29	93	93	28	243	0.5	0.24	0.51	0.32	0.51	0.5	0.5	-99.0 6.73 0.01	57
CHR Rat Liver 2 PreneoplasticLesion	PLS	CDK, TA, TP	28	130	54	29	241	0.66	0.34	0.49	0.4	0.49	0.71	0.6	-98.8 7.61 0.18	57
CHR Rat Liver 2 PreneoplasticLesion	PLS	CDK, TA	21	127	57	36	241	0.61	0.27	0.37	0.31	0.37	0.69	0.53	-98.9 7.46 0.05	57
CHR Rat Liver 2 PreneoplasticLesion	PLS	CDK, TP	28	110	74	29	241	0.57	0.27	0.49	0.35	0.49	0.6	0.54	-98.9 7.13 0.08	57
CHR Rat Liver 2 PreneoplasticLesion CHR Rat Liver 2	PLS	TA, TP	33	129	57	24	243	0.67	0.37	0.58	0.45	0.58	0.69	0.64	-98.7 7.52 0.24	57
PreneoplasticLesion CHR Rat Liver 2	PLS	TA	26	125	61	31	243	0.62	0.3	0.46	0.36	0.46	0.67	0.56	-98.9 7.44 0.11	57
PreneoplasticLesion CHR Rat Liver 2	PLS	TP CDK, TA,	31	98	88	26	243	0.53	0.26	0.54	0.35	0.54	0.53	0.54	-98.9 6.83 0.06	57
PreneoplasticLesion CHR Rat Liver 2	J48	TP	24	138	46	33	241	0.67	0.34	0.42	0.38	0.42	0.75	0.59	-98.8 7.8 0.16	57
PreneoplasticLesion	J48	CDK, TA	24	142	42	33	241	0.69	0.36	0.42	0.39	0.42	0.77	0.6	-98.8 7.92 0.18	57
CHR Rat Liver 2 PreneoplasticLesion CHR Rat Liver 2	J48	CDK, TP	21	137	47	36	241	0.66	0.31	0.37	0.34	0.37	0.74	0.56	-98.9 7.73 0.11	57
PreneoplasticLesion CHR Rat Liver 2	J48	TA, TP	25	140	46	32	243	0.68	0.35	0.44	0.39	0.44	0.75	0.6	-98.8 7.83 0.18	57
PreneoplasticLesion CHR Rat Liver 2		TA	28	144	42	29	243	0.71	0.4	0.49	0.44	0.49	0.77	0.63	-98.7 7.96 0.25	57
PreneoplasticLesion	J48	TP CDK, TA,	23	135	51	34	243	0.65	0.31	0.4	0.35	0.4	0.73	0.56	-98.9 7.67 0.12	57
CHR Rat Liver 2													0.63	0.57	-98.9 7.24 0.12	57

CHR Rat Liver 2 PreneoplasticLesion	RF	CDK, TP	26	98	86	31	241	0.51	0.23	0.46	0.31	0.46	0.53	0.49	-99.0	6.86	.01	57
CHR Rat Liver 2 PreneoplasticLesion	RF	TA, TP	39	106	80	18	243	0.6	0.33	0.68	0.44	0.68	0.57	0.63	-98.7	6.87	0.22	57
CHR Rat Liver 2 PreneoplasticLesion	RF	TA	30	113	73	27	243	0.59	0.29	0.53	0.38	0.53	0.61	0.57	-98.9	7.17	0.11	57
CHR Rat Liver 2 PreneoplasticLesion	RF	TP	35	102	84	22	243	0.56	0.29	0.61	0.4	0.61	0.55	0.58	-98.8	6.88	0.14	57
CHR Rat Liver 2 PreneoplasticLesion	FSM LR	Adriana	23	104	80	34	241	0.53	0.22	0.4	0.29	0.4	0.57	0.48	-99.0	6.96	.027	57
CHR Rat Liver 2 PreneoplasticLesion	FSM LR	ALogPS, OEstate	31	105	81	26	243	0.56	0.28	0.54	0.37	0.54	0.56	0.55	-98.9	6.99	0.09	57
CHR Rat Liver 2 PreneoplasticLesion	FSM LR	CDK	28	93	91	29	241	0.5	0.24	0.49	0.32	0.49	0.51	0.5	-99.0	6.76	.003	57
CHR Rat Liver 2 PreneoplasticLesion	FSM LR	Chemaxo n	34	88	98	23	243	0.5	0.26	0.6	0.36	0.6	0.47	0.53	-98.9	6.59	0.06	57
CHR Rat Liver 2 PreneoplasticLesion	FSM LR	Dragon6	25	108	78	32	243	0.55	0.24	0.44	0.31	0.44	0.58	0.51	-99.0	7.04	0.02	57
CHR Rat Liver 2 PreneoplasticLesion	FSM LR	Fragment or	23	117	69	34	243	0.58	0.25	0.4	0.31	0.4	0.63	0.52	-99.0	7.22	0.03	57
CHR Rat Liver 2 PreneoplasticLesion	FSM LR	GSFrag	23	85	101	34	243	0.44	0.19	0.4	0.25	0.4	0.46	0.43	-99.1	6.53	.118	57
CHR Rat Liver 2 PreneoplasticLesion	FSM LR	Inductive	40	51	135	17	243	0.37	0.23	0.7	0.34	0.7	0.27	0.49	-99.0	5.6	.023	57
CHR Rat Liver 2 PreneoplasticLesion	FSM LR	Mera, Mersy	17	110	75	40	242	0.52	0.18	0.3	0.23	0.3	0.59	0.45	-99.1	6.94	.094	57
CHR Rat Liver 2 PreneoplasticLesion	FSM LR	QNPR	25	113	73	32	243	0.57	0.26	0.44	0.32	0.44	0.61	0.52	-99.0	7.15	0.04	57
CHR Rat Liver 2 PreneoplasticLesion	FSM LR	Spectrop hores	22	113	73	35	243	0.56	0.23	0.39	0.29	0.39	0.61	0.5	-99.0	7.12	.006	57
CHR Rat Liver 2 PreneoplasticLesion	KNN	Adriana	39	76	108	18	241	0.48	0.27	0.68	0.38	0.68	0.41	0.55	-98.9	6.24	0.08	57
CHR Rat Liver 2 PreneoplasticLesion	KNN	ALogPS, OEstate	32	87	99	25	243	0.49	0.24	0.56	0.34	0.56	0.47	0.51	-99.0	6.59	0.02	57
CHR Rat Liver 2 PreneoplasticLesion	KNN	CDK	50	12	172	7	241	0.26	0.23	0.88	0.36	0.88	0.07	0.47	-99.1	3.31	.091	57
CHR Rat Liver 2 PreneoplasticLesion	KNN	Chemaxo n	37	62	124	20	243	0.41	0.23	0.65	0.34	0.65	0.33	0.49	-99.0	5.96	.016	57
CHR Rat Liver 2 PreneoplasticLesion		Dragon6	38	59	127	19	243	0.4	0.23	0.67	0.34	0.67	0.32	0.49	-99.0	5.86	.015	57
CHR Rat Liver 2 PreneoplasticLesion	KNN	Fragment or	37	77	109	20	243	0.47	0.25	0.65	0.36	0.65	0.41	0.53	-98.9	6.3	0.05	57
CHR Rat Liver 2 PreneoplasticLesion		GSFrag	22	78	108	35	243	0.41	0.17	0.39		0.39	0.42	0.4	-99.2			57
CHR Rat Liver 2	KNN	Inductive	28	67	119	29	243	0.39	0.19	0.49	0.27	0.49	0.36	0.43	-99.1	6.16	.129	57
PreneoplasticLesion		11																
CHR Rat Liver 2	KNN	Mera, Mersy	31	88	97	26	242	0.49	0.24	0.54	0.34	0.54	0.48	0.51	-99.0	6.63	0.02	57
PreneoplasticLesion CHR Rat Liver 2 PreneoplasticLesion CHR Rat Liver 2 PreneoplasticLesion			31 45	88 41		26 12	242					0.54		0.51	-99.0 -99.0			57 57

CHR Rat Liver 2 PreneoplasticLesion	LibS VM	Adriana	2	166	18	55	241	0.7	0.1	0.04	0.05	0.04	0.9	0.47	-99.1 7.13 .097	57
CHR Rat Liver 2 PreneoplasticLesion	LibS VM	ALogPS, OEstate	12	164	22	45	243	0.72	0.35	0.21	0.26	0.21	0.88	0.55	-98.9 8.33 0.11	57
CHR Rat Liver 2 PreneoplasticLesion	LibS VM	CDK	1	171	13	56	241	0.71	0.07	0.02	0.03	0.02	0.93	0.47	-99.1 6.98 .096	57
CHR Rat Liver 2 PreneoplasticLesion	LibS VM	Chemaxo n	8	144	42	49	243	0.63	0.16	0.14	0.15	0.14	0.77	0.46	-99.1 7.27 .09	57
CHR Rat Liver 2 PreneoplasticLesion	LibS VM	Dragon6	2	176	10	55	243	0.73	0.17	0.04	0.06	0.04	0.95	0.49	-99.0 7.75 .037	57
CHR Rat Liver 2 PreneoplasticLesion	LibS VM	Fragment or	9	168	18	48	243	0.73	0.33	0.16	0.21	0.16	0.9	0.53	-98.9 8.34 0.08	57
CHR Rat Liver 2 PreneoplasticLesion	LibS VM	GSFrag	8	165	21	49	243	0.71	0.28	0.14	0.19	0.14	0.89	0.51	-99.0 8.08 0.04	57
CHR Rat Liver 2 PreneoplasticLesion	LibS VM	Inductive	7	153	33	50	243	0.66	0.18	0.12	0.14	0.12	0.82	0.47	-99.1 7.46 .062	57
CHR Rat Liver 2 PreneoplasticLesion	LibS VM	Mera, Mersy	4	168	17	53	242	0.71	0.19	0.07	0.1	0.07	0.91	0.49	-99.0 7.75 .033	57
CHR Rat Liver 2 PreneoplasticLesion	LibS VM	QNPR	11	164	22	46	243	0.72	0.33	0.19	0.24	0.19	0.88	0.54	-98.9 8.27 0.09	57
CHR Rat Liver 2 PreneoplasticLesion	LibS VM	Spectrop hores	6	160	26	51	243	0.68	0.19	0.11	0.13	0.11	0.86	0.48	-99.0 7.61 .043	57
CHR Rat Liver 2 PreneoplasticLesion	MLR A	Adriana	26	99	85	31	241	0.52	0.23	0.46	0.31	0.46	0.54	0.5	-99.0 6.88 .005	57
CHR Rat Liver 2 PreneoplasticLesion	Α	ALogPS, OEstate	34	106	80	23	243	0.58	0.3	0.6	0.4	0.6	0.57	0.58	-98.8 6.98 0.14	57
CHR Rat Liver 2 PreneoplasticLesion	MLR A	CDK	29	96	88	28	241	0.52	0.25	0.51	0.33	0.51	0.52	0.52	-99.0 6.82 0.03	57
CHR Rat Liver 2 PreneoplasticLesion	MLR A	Chemaxo n	24	102	84	33	243	0.52	0.22	0.42	0.29	0.42	0.55	0.48	-99.0 6.9 .026	57
CHR Rat Liver 2 PreneoplasticLesion	MLR A	Dragon6	30	85	101	27	243	0.47	0.23	0.53	0.32	0.53	0.46	0.49	-99.0 6.56 .014	57
CHR Rat Liver 2 PreneoplasticLesion	Α	Fragment or	26	106	80	31	243	0.54	0.25	0.46	0.32	0.46	0.57	0.51	-99.0 7.01 0.02	57
CHR Rat Liver 2 PreneoplasticLesion	MLR A	GSFrag	28	108	78	29	243	0.56	0.26	0.49	0.34	0.49	0.58	0.54	-98.9 7.06 0.06	57
CHR Rat Liver 2 PreneoplasticLesion	MLR A	Inductive	26	95	91	31	243	0.5	0.22	0.46	0.3	0.46	0.51	0.48	-99.0 6.77 .028	57
CHR Rat Liver 2 PreneoplasticLesion	MLR A	Mera, Mersy	21	99	86	36	242	0.5	0.2	0.37	0.26	0.37	0.54	0.45	-99.1 6.81 .082	57
CHR Rat Liver 2 PreneoplasticLesion	MLR A	QNPR	31	94	92	26	243	0.51	0.25	0.54	0.34	0.54	0.51	0.52	-99.0 6.75 0.04	57
CHR Rat Liver 2 PreneoplasticLesion	MLR A	Spectrop hores	22	94	92	35	243	0.48	0.19	0.39	0.26	0.39	0.51	0.45	-99.1 6.7 .092	57
CHR Rat Liver 2 PreneoplasticLesion	PLS	Adriana	26	90	94	31	241	0.48	0.22	0.46	0.29	0.46	0.49	0.47	-99.1 6.68 .047	57
CHR Rat Liver 2 PreneoplasticLesion	PLS	ALogPS, OEstate	28	118	68	29	243	0.6	0.29	0.49	0.37	0.49	0.63	0.56	-98.9 7.28 0.11	57
CHR Rat Liver 2 PreneoplasticLesion	PLS	CDK	25	101	83	32	241	0.52	0.23	0.44	0.3	0.44	0.55	0.49	-99.0 6.92 .011	57
CHR Rat Liver 2 PreneoplasticLesion	PLS	Chemaxo n	26	93	93	31	243	0.49	0.22	0.46	0.3	0.46	0.5	0.48	-99.0 6.73 .037	57

CHR Rat Liver 2 PreneoplasticLesion	PLS	Dragon6	24	113	73	33	243	0.56	0.25	0.42	0.31	0.42	0.61	0.51	-99.0	7.14	0.02	57
CHR Rat Liver 2 PreneoplasticLesion	PLS	Fragment or	26	122	64	31	243	0.61	0.29	0.46	0.35	0.46	0.66	0.56	-98.9	7.37	0.1	57
CHR Rat Liver 2 PreneoplasticLesion	PLS	GSFrag	25	93	93	32	243	0.49	0.21	0.44	0.29	0.44	0.5	0.47	-99.1	6.72	.052	57
CHR Rat Liver 2 PreneoplasticLesion	PLS	Inductive	26	85	101	31	243	0.46	0.2	0.46	0.28	0.46	0.46	0.46	-99.1	6.56	.074	57
CHR Rat Liver 2 PreneoplasticLesion	PLS	Mera, Mersy	22	112	73	35	242	0.55	0.23	0.39	0.29	0.39	0.61	0.5	-99.0	7.11	.007	57
CHR Rat Liver 2 PreneoplasticLesion	PLS	QNPR	26	117	69	31	243	0.59	0.27	0.46	0.34	0.46	0.63	0.54	-98.9	7.25	0.07	57
CHR Rat Liver 2 PreneoplasticLesion	PLS	Spectrop hores	32	93	93	25	243	0.51	0.26	0.56	0.35	0.56	0.5	0.53	-98.9	6.72	0.05	57
CHR Rat Liver 2 PreneoplasticLesion	J48	Adriana	17	135	49	40	241	0.63	0.26	0.3	0.28	0.3	0.73	0.52	-99.0	7.57	0.03	57
CHR Rat Liver 2 PreneoplasticLesion	J48	ALogPS, OEstate	20	128	58	37	243	0.61	0.26	0.35	0.3	0.35	0.69	0.52	-99.0	7.43	0.04	57
CHR Rat Liver 2 PreneoplasticLesion	J48	CDK	12	135	49	45	241	0.61	0.2	0.21	0.2	0.21	0.73	0.47	-99.1	7.35	.055	57
CHR Rat Liver 2 PreneoplasticLesion	J48	Chemaxo n	17	130	56	40	243	0.6	0.23	0.3	0.26	0.3	0.7	0.5	-99.0	7.4	.003	57
CHR Rat Liver 2 PreneoplasticLesion	J48	Dragon6	13	126	60	44	243	0.57	0.18	0.23	0.2	0.23	0.68	0.45	-99.1	7.14	.087	57
CHR Rat Liver 2 PreneoplasticLesion	J48	Fragment or	22	126	60	35	243	0.61	0.27	0.39	0.32	0.39	0.68	0.53	-98.9	7.42	0.06	57
CHR Rat Liver 2 PreneoplasticLesion	J48	GSFrag	15	120	66	42	243	0.56	0.19	0.26	0.22	0.26	0.65	0.45	-99.1	7.08	.082	57
CHR Rat Liver 2 PreneoplasticLesion	J48	Inductive Mera,	18	117	69	39	243	0.56	0.21	0.32	0.25	0.32	0.63	0.47	-99.1	7.12	.049	57
CHR Rat Liver 2 PreneoplasticLesion	J48	Mersy	11	135	50	46	242	0.6	0.18	0.19	0.19	0.19	0.73	0.46	-99.1	7.27	.076	57
CHR Rat Liver 2 PreneoplasticLesion	J48	QNPR Spectrop	16	121	65	41	243	0.56	0.2	0.28	0.23	0.28	0.65	0.47	-99.1	7.15	.062	57
CHR Rat Liver 2 PreneoplasticLesion CHR Rat Lung 1	J48	hores	19	129	57	38	243	0.61	0.25	0.33	0.29	0.33	0.69	0.51	-99.0	7.43	0.02	57
AnyLesion	RF	Adriana	17	128	77	19	241	0.6	0.18	0.47	0.26	0.47	0.62	0.55	-98.9	6.34	0.07	36
CHR Rat Lung 1 AnyLesion	RF	ALogPS, OEstate	12	128	79	24	243	0.58	0.13	0.33	0.19	0.33	0.62	0.48	-99.0	6.2	.035	36
CHR Rat Lung 1 AnyLesion	RF	CDK	16	119	86	20	241	0.56	0.16	0.44	0.23	0.44	0.58	0.51	-99.0	6.15	0.02	36
CHR Rat Lung 1 AnyLesion	RF	Chemaxo n	21	114	93	15	243	0.56	0.18	0.58	0.28	0.58	0.55	0.57	-98.9	6.01	0.1	36
CHR Rat Lung 1 AnyLesion	RF	Dragon6	19	116	91	17	243	0.56	0.17	0.53	0.26	0.53	0.56	0.54	-98.9	6.07	0.06	36
CHR Rat Lung 1 AnyLesion	RF	Fragment or	8	125	82	28	243	0.55	0.09	0.22	0.13	0.22	0.6	0.41	-99.2	5.91	.128	36
CHR Rat Lung 1 AnyLesion	RF	GSFrag	15	129	78	21	243	0.59	0.16	0.42	0.23	0.42	0.62	0.52	-99.0	6.31	0.03	36
CHR Rat Lung 1 AnyLesion	RF	Inductive Mera,	19	132	75	17	243	0.62	0.2	0.53	0.29	0.53	0.64	0.58	-98.8	6.4	0.12	36
CHR Rat Lung 1 AnyLesion CHR Rat Lung 1	RF	Mersy	17	125	81	19	242	0.59	0.17	0.47	0.25	0.47	0.61	0.54	-98.9	6.26	0.06	36
AnyLesion	RF	QNPR Spectrop	22	117	90	14	243	0.57	0.2	0.61	0.3	0.61	0.57	0.59	-98.8	6.05	0.13	36
CHR Rat Lung 1 AnyLesion	RF ASN	hores	17	112	95	19	243	0.53	0.15	0.47	0.23	0.47	0.54	0.51	-99.0	6.	0.01	36
CHR Rat Lung 1 AnyLesion	N	Adriana	16	123	82	20	241	0.58	0.16	0.44	0.24	0.44	0.6	0.52	-99.0	6.23	0.03	36
CHR Rat Lung 1 AnyLesion	ASN N	ALogPS, OEstate	10	122	85	26	243	0.54	0.11	0.28	0.15	0.28	0.59	0.43	-99.1	5.99	.097	36

CHR Rat Lung 1 AnyLesion	ASN N	CDK	14	132	73	22	241	0.61	0.16	0.39	0.23	0.39	0.64	0.52	-99.0 6.38	0.02	36
CHR Rat Lung 1 AnyLesion	ASN N	Chemaxo n	12	132	75	24	243	0.59	0.14	0.33	0.2	0.33	0.64	0.49	-99.0 6.29	.021	36
CHR Rat Lung 1	ASN																
AnyLesion CHR Rat Lung 1	ASN	Dragon6 Fragment	14	146	61	22	243	0.66	0.19	0.39	0.25	0.39	0.71	0.55	-98.9 6.66	0.07	36
AnyLesion CHR Rat Lung 1	N ASN	or	9	142	65	27	243	0.62	0.12	0.25	0.16	0.25	0.69	0.47	-99.1 6.34	.049	36
AnyLesion	N ASN	GSFrag	16	135	72	20	243	0.62	0.18	0.44	0.26	0.44	0.65	0.55	-98.9 6.45	0.07	36
CHR Rat Lung 1 AnyLesion	N	Inductive	13	143	64	23	243	0.64	0.17	0.36	0.23	0.36	0.69	0.53	-98.9 6.56	0.04	36
CHR Rat Lung 1 AnyLesion	ASN N	Mera, Mersy	15	137	69	21	242	0.63	0.18	0.42	0.25	0.42	0.67	0.54	-98.9 6.49	0.06	36
CHR Rat Lung 1	ASN N	QNPR	15	137	70	21	243	0.63	0.18	0.42	0.25	0.42	0.66	0.54	-98.9 6.48		36
AnyLesion CHR Rat Lung 1		Spectrop	15					0.03	0.16	0.42			0.00			0.00	
AnyLesion CHR Rat Lung 1	N ASN	hores CDK, TA,	14	127	80	22	243	0.58	0.15	0.39	0.22	0.39	0.61	0.5	-99.0 6.25	0.	36
AnyLesion	N ASN	TP	11	152	53	25	241	0.68	0.17	0.31	0.22	0.31	0.74	0.52	-99.0 6.73	0.04	36
CHR Rat Lung 1 AnyLesion	N	CDK, TA	12	142	63	24	241	0.64	0.16	0.33	0.22	0.33	0.69	0.51	-99.0 6.53	0.02	36
CHR Rat Lung 1 AnyLesion	ASN N	CDK, TP	13	141	64	23	241	0.64	0.17	0.36	0.23	0.36	0.69	0.52	-99.0 6.55	0.04	36
CHR Rat Lung 1 AnyLesion	ASN N	TA, TP	8	148	59	28	243	0.64	0.12	0.22	0.16	0.22	0.71	0.47	-99.1 6.4	.05	36
CHR Rat Lung 1	ASN																
AnyLesion CHR Rat Lung 1	ASN	TA	10	155	52	26	243	0.68	0.16	0.28	0.2	0.28	0.75	0.51	-99.0 6.71	0.02	36
AnyLesion	N	TP	10	142	65	26	243	0.63	0.13	0.28	0.18	0.28	0.69	0.48	-99.0 6.41	.028	36
CHR Rat Lung 1 AnyLesion	FSM LR	CDK, TA, TP	15	127	78	21	241	0.59	0.16	0.42	0.23	0.42	0.62	0.52	-99.0 6.29	0.03	36
CUD Dat Lung 1	FSM																
CHR Rat Lung 1 AnyLesion	LR	CDK, TA	15	131	74	21	241	0.61	0.17	0.42	0.24	0.42	0.64	0.53	-98.9 6.38	0.04	36
CHR Rat Lung 1 AnyLesion	FSM LR	CDK, TP	15	125	80	21	241	0.58	0.16	0.42	0.23	0.42	0.61	0.51	-99.0 6.25	0.02	36
CHR Rat Lung 1 AnyLesion	FSM LR	TA, TP	13	146	61	23	243	0.65	0.18	0.36	0.24	0.36	0.71	0.53	-98.9 6.63	0 05	36
,====:		., ,						0.00	01.0	0.00	0.2.	0.00		0.00	00.0 0.00	0.00	
CHR Rat Lung 1 AnyLesion	FSM LR	TA	15	147	60	21	243	0.67	0.2	0.42	0.27	0.42	0.71	0.56	-98.9 6.7	0.1	36
CHR Rat Lung 1 AnyLesion	FSM LR	TP	14	122	85	22	243	0.56	0.14	0.39	0.21	0.39	0.59	0.49	-99.0 6.15	.016	36
CHR Rat Lung 1 AnyLesion	KNN	CDK, TA,	13	136	69	23	241	0.62	0.16	0.36	0.22	0.36	0.66	0.51	-99.0 6.43		36
CHR Rat Lung 1 AnyLesion		CDK, TA	10	174	31	26	241	0.02	0.16	0.36	0.22	0.36	0.85	0.51	-98.9 7.34		36
CHR Rat Lung 1 AnyLesion		CDK, TP	14	126	79	22	241	0.58	0.15	0.39	0.22	0.39	0.61	0.5	-99.0 6.25	0.	36
CHR Rat Lung 1 AnyLesion		TA, TP	21	106	101	15	243	0.52	0.17	0.58	0.27	0.58	0.51	0.55	-98.9 5.86		36
CHR Rat Lung 1 AnyLesion	KNN	TA	8	174	33	28	243	0.75	0.2	0.22	0.21	0.22	0.84	0.53	-98.9 7.14	0.06	36
CHR Rat Lung 1 AnyLesion	KNN	TP	14	127	80	22	243	0.58	0.15	0.39	0.22	0.39	0.61	0.5	-99.0 6.25	0.	36
CHR Rat Lung 1 AnyLesion	LibS VM	CDK, TA, TP	0	201	4	36	241	0.83	0.	0.		0.	0.98	0.49	-99.0 6.71	.054	36

CHR Rat Lung 1 AnyLesion	LibS VM	CDK, TA	1	203	2	35	241	0.85	0.33	0.03	0.05	0.03	0.99	0.51	-99.0 8.37	0.06	;
CHR Rat Lung 1 AnyLesion	LibS VM	CDK, TP	3	198	7	33	241	0.83	0.3	0.08	0.13	0.08	0.97	0.52	-99.0 8.04	0.09	
CHR Rat Lung 1 AnyLesion	LibS VM	TA, TP	1	205	2	35	243	0.85	0.33	0.03	0.05	0.03	0.99	0.51	-99.0 8.38	3 0.06	
CHR Rat Lung 1 AnyLesion	LibS VM	TA	0	207	0	36	243	0.85		0.		0.	1.	0.5	-99.0 8.93	3	
CHR Rat Lung 1 AnyLesion	LibS VM	TP	1	205	2	35	243	0.85	0.33	0.03	0.05	0.03	0.99	0.51	-99.0 8.38	3 0.06	
CHR Rat Lung 1 AnyLesion	MLR A	CDK, TA, TP	14	126	79	22	241	0.58	0.15	0.39	0.22	0.39	0.61	0.5	-99.0 6.25	5 0.	
CHR Rat Lung 1 AnyLesion	MLR A	CDK, TA	18	127	78	18	241	0.6	0.19	0.5	0.27	0.5	0.62	0.56	-98.9 6.32	2 0.09	
CHR Rat Lung 1 AnyLesion	MLR A MLR	CDK, TP	21	101	104	15	241	0.51	0.17	0.58	0.26	0.58	0.49	0.54	-98.9 5.78	0.05	
CHR Rat Lung 1 AnyLesion	A MLR	TA, TP	18	111	96	18	243	0.53	0.16	0.5	0.24	0.5	0.54	0.52	-99.0 5.98	0.03	
CHR Rat Lung 1 AnyLesion CHR Rat Lung 1	A MLR	TA	13	131	76	23	243	0.59	0.15	0.36	0.21	0.36	0.63	0.5	-99.0 6.3	.004	
AnyLesion CHR Rat Lung 1	A	TP CDK, TA,	19	122	85	17	243	0.58	0.18	0.53	0.27	0.53	0.59	0.56	-98.9 6.19	0.08	
AnyLesion CHR Rat Lung 1	PLS	TP	11	148	57	25	241	0.66	0.16	0.31	0.21	0.31	0.72	0.51	-99.0 6.63	0.02	
AnyLesion CHR Rat Lung 1	PLS	CDK, TA	12	147	58	24	241	0.66	0.17	0.33	0.23	0.33	0.72	0.53	-98.9 6.65	0.04	
AnyLesion CHR Rat Lung 1		CDK, TP	13	140	65	23	241	0.63	0.17	0.36	0.23	0.36	0.68	0.52	-99.0 6.52		
AnyLesion CHR Rat Lung 1 AnyLesion	PLS PLS	TA, TP	7 13	141 149	66 58	29	243	0.61	0.1	0.19	0.13	0.19	0.68	0.44	-99.1 6.15 -98.9 6.7	0.06 0.06	
CHR Rat Lung 1 AnyLesion	PLS		11	141	66	25	243	0.63	0.14	0.31	0.19	0.31	0.68	0.49	-99.0 6.44		
CHR Rat Lung 1 AnyLesion	J48	CDK, TA, TP	7	152	53	29	241	0.66	0.12	0.19	0.15	0.19	0.74	0.47	-99.1 6.45	.053	
CHR Rat Lung 1 AnyLesion	J48	CDK, TA	7	157	48	29	241	0.68	0.13	0.19	0.15	0.19	0.77	0.48	-99.0 6.58	.034	
CHR Rat Lung 1 AnyLesion	J48	CDK, TP	12	148	57	24	241	0.66	0.17	0.33	0.23	0.33	0.72	0.53	-98.9 6.67	0.04	
CHR Rat Lung 1 AnyLesion CHR Rat Lung 1	J48	TA, TP	9	150	57	27	243	0.65	0.14	0.25	0.18	0.25	0.72	0.49	-99.0 6.53	.02	
AnyLesion CHR Rat Lung 1	J48	TA	7	166	41	29	243	0.71	0.15	0.19	0.17	0.19	8.0	0.5	-99.0 6.79	.003	
AnyLesion CHR Rat Lung 1	J48	TP CDK, TA,	10	139	68	26	243	0.61		0.28			0.67	0.47	-99.1 6.34		
AnyLesion CHR Rat Lung 1	RF	TP ODK TA	13	113	92	23	241	0.52		0.36			0.55	0.46	-99.1 5.96		
AnyLesion CHR Rat Lung 1	RF	CDK, TA	17	128	77	19	241	0.6	0.18	0.47	0.26	0.47	0.62	0.55	-98.9 6.34		
AnyLesion CHR Rat Lung 1 AnyLesion	RF RF	TA, TP	15 19	124 107	100	21 17	241	0.58		0.42	0.23	0.42	0.6	0.51	-99.0 6.23 -99.0 5.9	0.02	
CHR Rat Lung 1 AnyLesion	RF	TA	17	120	87	19	243	0.56		0.47	0.24	0.47	0.58	0.53	-98.9 6.15		
CHR Rat Lung 1 AnyLesion	RF	TP	17	121	86	19	243	0.57	0.17	0.47	0.24	0.47	0.58	0.53	-98.9 6.17		
CHR Rat Lung 1 AnyLesion	FSM LR	Adriana	16	108	97	20	241	0.51	0.14	0.44	0.21	0.44	0.53	0.49	-99.0 5.93	3 .021	

CHR Rat Lung 1 AnyLesion	FSM LR	ALogPS, OEstate	16	111	96	20	243	0.52	0.14	0.44	0.22	0.44	0.54	0.49	-99.0 5.97 .01	4 36
CHR Rat Lung 1 AnyLesion	FSM LR	CDK	16	129	76	20	241	0.6	0.17	0.44	0.25	0.44	0.63	0.54	-98.9 6.35 0.0	5 36
CHR Rat Lung 1 AnyLesion	FSM LR	Chemaxo n	14	136	71	22	243	0.62	0.16	0.39	0.23	0.39	0.66	0.52	-99.0 6.43 0.0	3 36
CHR Rat Lung 1 AnyLesion	FSM LR	Dragon6	19	136	71	17	243	0.64	0.21	0.53	0.3	0.53	0.66	0.59	-98.8 6.48 0.1	4 36
CHR Rat Lung 1 AnyLesion	FSM LR	Fragment or	9	138	69	27	243	0.6	0.12	0.25	0.16	0.25	0.67	0.46	-99.1 6.26 .06	3 36
CHR Rat Lung 1 AnyLesion	FSM LR	GSFrag	21	117	90	15	243	0.57	0.19	0.58	0.29	0.58	0.57	0.57	-98.9 6.07 0.1	1 36
CHR Rat Lung 1 AnyLesion	FSM LR	Inductive	22	99	108	14	243	0.5	0.17	0.61	0.27	0.61	0.48	0.54	-98.9 5.7 0.0	36
CHR Rat Lung 1 AnyLesion	FSM LR	Mera, Mersy	14	134	72	22	242	0.61	0.16	0.39	0.23	0.39	0.65	0.52	-99.0 6.41 0.0	3 36
CHR Rat Lung 1 AnyLesion	FSM LR	QNPR	16	119	88	20	243	0.56	0.15	0.44	0.23	0.44	0.57	0.51	-99.0 6.12 0.0	1 36
CHR Rat Lung 1 AnyLesion	FSM LR	Spectrop hores	18	99	108	18	243	0.48	0.14	0.5	0.22	0.5	0.48	0.49	-99.0 5.75 .01	5 36
CHR Rat Lung 1 AnyLesion	KNN	Adriana	27	64	141	9	241	0.38	0.16	0.75	0.26	0.75	0.31	0.53	-98.9 4.78 0.0	5 36
CHR Rat Lung 1 AnyLesion	KNN	ALogPS, OEstate	21	53	154	15	243	0.3	0.12	0.58	0.2	0.58	0.26	0.42	-99.2 4.75 .12	7 36
CHR Rat Lung 1 AnyLesion	KNN	CDK	33	43	162	3	241	0.32	0.17	0.92	0.29	0.92	0.21	0.56	-98.9 3.45 0.1	1 36
CHR Rat Lung 1 AnyLesion	KNN	Chemaxo n	23	94	113	13	243	0.48	0.17	0.64	0.27	0.64	0.45	0.55	-98.9 5.58 0.0	7 36
CHR Rat Lung 1 AnyLesion	KNN	Dragon6	27	67	140	9	243	0.39	0.16	0.75	0.27	0.75	0.32	0.54	-98.9 4.83 0.0	36
CHR Rat Lung 1 AnyLesion	KNN	Fragment or	22	46	161	14	243	0.28	0.12	0.61	0.2	0.61	0.22	0.42	-99.2 4.54 .13	7 36
CHR Rat Lung 1 AnyLesion	KNN	GSFrag	26	87	120	10	243	0.47	0.18	0.72	0.29	0.72	0.42	0.57	-98.9 5.31 0.	1 36
CHR Rat Lung 1 AnyLesion	KNN	Inductive	20	127	80	16	243	0.6	0.2	0.56	0.29	0.56	0.61	0.58	-98.8 6.28 0.1	2 36
CHR Rat Lung 1 AnyLesion	KNN	Mera, Mersy	26	70	136	10	242	0.4	0.16	0.72	0.26	0.72	0.34	0.53	-98.9 4.97 0.0	5 36
CHR Rat Lung 1 AnyLesion	KNN	QNPR	30	53	154	6	243	0.34	0.16	0.83	0.27	0.83	0.26	0.54	-98.9 4.23 0.0	7 36
CHR Rat Lung 1 AnyLesion	KNN	Spectrop hores	13	123	84	23	243	0.56	0.13	0.36	0.2	0.36	0.59	0.48	-99.0 6.14 .03	2 36
CHR Rat Lung 1 AnyLesion	LibS VM	Adriana	4	180	25	32	241	0.76	0.14	0.11	0.12	0.11	0.88	0.49	-99.0 6.94 .01	2 36
CHR Rat Lung 1 AnyLesion	LibS VM	ALogPS, OEstate	0	199	8	36	243	0.82	0.	0.		0.	0.96	0.48	-99.0 6.06 .07	7 36
CHR Rat Lung 1 AnyLesion	LibS VM	CDK	1	192	13	35	241	0.8	0.07	0.03	0.04	0.03	0.94	0.48	-99.0 6.63 .05	4 36

CHR Rat Lung 1	LibS	Chemaxo																
AnyLesion	VM	n	4	183	24	32	243	0.77	0.14	0.11	0.13	0.11	0.88	0.5	-99.0	7.	.005	36
CHR Rat Lung 1 AnyLesion	LibS VM	Dragon6	2	196	11	34	243	0.81	0.15	0.06	0.08	0.06	0.95	0.5	-99.0	7.3	0.	36
CHR Rat Lung 1 AnyLesion	LibS VM	Fragment or	1	204	3	35	243	0.84	0.25	0.03	0.05	0.03	0.99	0.51	-99.0	8.04	0.04	36
CHR Rat Lung 1 AnyLesion	LibS VM	GSFrag	5	179	28	31	243	0.76	0.15	0.14	0.14	0.14	0.86	0.5	-99.0	7.	0.	36
CHR Rat Lung 1	LibS	Oor rag		173	20	- 31	243	0.70	0.13	0.14	0.14	0.14	0.00	0.5	-33.0	7.	<u> </u>	
AnyLesion	VM	Inductive	8	174	33	28	243	0.75	0.2	0.22	0.21	0.22	0.84	0.53	-98.9	7.14	0.06	36
CHR Rat Lung 1 AnyLesion	LibS VM	Mera, Mersy	4	190	16	32	242	0.8	0.2	0.11	0.14	0.11	0.92	0.52	-99.0	7.43	0.04	36
CHR Rat Lung 1 AnyLesion	LibS VM	QNPR	2	198	9	34	243	0.82	0.18	0.06	0.09	0.06	0.96	0.51	-99.0	7.5	0.02	36
CHR Rat Lung 1 AnyLesion	VM	Spectrop hores	4	176	31	32	243	0.74	0.11	0.11	0.11	0.11	0.85	0.48	-99.0	6.71	.039	36
CHR Rat Lung 1 AnyLesion	MLR A	Adriana	17	101	104	19	241	0.49	0.14	0.47	0.22	0.47	0.49	0.48	-99.0	5.8	.025	36
CHR Rat Lung 1 AnyLesion	Α	ALogPS, OEstate	14	114	93	22	243	0.53	0.13	0.39	0.2	0.39	0.55	0.47	-99.1	5.99	.043	36
CHR Rat Lung 1 AnyLesion	MLR A	CDK	22	111	94	14	241	0.55	0.19	0.61	0.29	0.61	0.54	0.58	-98.8	5.95	0.11	36
CHR Rat Lung 1 AnyLesion	A MLR	Chemaxo n	16	121	86	20	243	0.56	0.16	0.44	0.23	0.44	0.58	0.51	-99.0	6.16	0.02	36
CHR Rat Lung 1 AnyLesion CHR Rat Lung 1	Α	Dragon6 Fragment	20	95	112	16	243	0.47	0.15	0.56	0.24	0.56	0.46	0.51	-99.0	5.66	0.01	36
AnyLesion CHR Rat Lung 1	A MLR	or	16	109	98	20	243	0.51	0.14	0.44	0.21	0.44	0.53	0.49	-99.0	5.93	.021	36
AnyLesion CHR Rat Lung 1	A MLR	GSFrag	14	104	103	22	243	0.49	0.12	0.39	0.18	0.39	0.5	0.45	-99.1	5.8	.077	36
AnyLesion CHR Rat Lung 1		Inductive Mera,	17 19	118	89 97	19 17	243	0.56	0.16	0.47	0.24	0.47	0.57	0.52	-99.0 -98.9	6.11		36 36
AnyLesion CHR Rat Lung 1 AnyLesion	A MLR A	Mersy QNPR	14	153	54	22	242	0.69	0.10		0.23	0.39	0.53	0.56	-98.9		0.04	36
CHR Rat Lung 1 AnyLesion	MLR A	Spectrop hores	14	109	98	22	243	0.51	0.13	0.39	0.19	0.39	0.53	0.46	-99.1	5.89	.06	36
CHR Rat Lung 1 AnyLesion	PLS	Adriana	23	101	104	13	241	0.51	0.18	0.64	0.28	0.64	0.49	0.57	-98.9	5.73	0.09	36
CHR Rat Lung 1 AnyLesion	PLS	ALogPS, OEstate	13	122	85	23	243	0.56	0.13	0.36	0.19	0.36	0.59	0.48	-99.0	6.12	.036	36
CHR Rat Lung 1 AnyLesion	PLS	CDK Chemaxo	18	120	85	18	241	0.57	0.17	0.5	0.26	0.5	0.59	0.54	-98.9	6.18	0.06	36
CHR Rat Lung 1 AnyLesion	PLS		18	133	74	18	243	0.62	0.2	0.5	0.28	0.5	0.64	0.57	-98.9	6.42	0.1	36
CHR Rat Lung 1 AnyLesion CHR Rat Lung 1	PLS	Dragon6 Fragment	19	128	79	17	243	0.6	0.19	0.53	0.28	0.53	0.62	0.57	-98.9	6.31	0.11	36
AnyLesion CHR Rat Lung 1	PLS	•	12	138	69	24	243	0.62	0.15	0.33	0.21	0.33	0.67	0.5	-99.0	6.41	0.	36
AnyLesion CHR Rat Lung 1		GSFrag	17	113	94	19	243	0.53	0.15	0.47	0.23		0.55	0.51	-99.0			36
AnyLesion	PLS	Inductive	17	135	72	19	243	0.63	0.19	0.47	0.27	0.47	0.65	0.56	-98.9	6.46	0.09	36

CHR Rat Lung 1 AnyLesion	PLS	Mera, Mersy	17	128	78	19	242	0.6	0.18	0.47	0.26	0.47	0.62	0.55	-98.9 6.33 0.07	36
CHR Rat Lung 1	1 20	Wicioy	- 17	120	70	10	272	0.0	0.10	0.47	0.20	0.47	0.02	0.00	-50.5 0.55 0.07	- 30
AnyLesion	PLS	QNPR	15	122	85	21	243	0.56	0.15	0.42	0.22	0.42	0.59	0.5	-99.0 6.17 0.	36
CHR Rat Lung 1 AnyLesion	PLS	Spectrop hores	13	110	97	23	243	0.51	0.12	0.36	0.18	0.36	0.53	0.45	-99.1 5.88 .077	36
CHR Rat Lung 1	1 20	Hores	10	110	- 51	20	240	0.01	0.12	0.00	0.10	0.00	0.00	0.40	-55.1 5.00 .011	- 30
AnyLesion	J48	Adriana	9	149	56	27	241	0.66	0.14	0.25	0.18	0.25	0.73	0.49	-99.0 6.54 .019	36
CHR Rat Lung 1 AnyLesion	J48	ALogPS, OEstate	7	164	43	29	243	0.7	0.14	0.19	0.16	0.19	0.79	0.49	-99.0 6.73 .012	36
CHR Rat Lung 1 AnyLesion	J48	CDK	12	150	55	24	241	0.67	0.18	0.33	0.23	0.33	0.73	0.53	-98.9 6.72 0.05	36
CHR Rat Lung 1	040	Chemaxo	12	100	- 55		271	0.07	0.10	0.00	0.20	0.00	0.73	0.00	-30.0 0.72 0.00	- 30
AnyLesion	J48	n	14	144	63	22	243	0.65	0.18	0.39	0.25	0.39	0.7	0.54	-98.9 6.61 0.06	36
CHR Rat Lung 1 AnyLesion	J48	Dragon6	16	148	59	20	243	0.67	0.21	0.44	0.29	0.44	0.71	0.58	-98.8 6.74 0.12	36
CHR Rat Lung 1	340	Fragment	10	140	39	20	243	0.07	0.21	0.44	0.29	0.44	0.71	0.56	-90.0 0.74 0.12	30
AnyLesion	J48	or	8	158	49	28	243	0.68	0.14	0.22	0.17	0.22	0.76	0.49	-99.0 6.65 .012	36
CHR Rat Lung 1 AnyLesion	J48	GSFrag	11	146	61	25	243	0.65	0.15	0.31	0.2	0.31	0.71	0.51	-99.0 6.55 0.01	36
CHR Rat Lung 1	0-10	Joi lay	- 1 1	1-10	01		240	0.00	0.10	0.01	0.2	0.01	0.7 1	0.01	33.0 0.33 0.01	30
AnyLesion	J48	Inductive	12	168	39	24	243	0.74	0.24	0.33	0.28	0.33	0.81	0.57	-98.9 7.18 0.13	36
CHR Rat Lung 1	140	Mera,	0	160	16	20	242	0.60	0.15	0.22	0.10	0.22	0.70	0.5	00.0 6.72 004	26
AnyLesion CHR Rat Lung 1	J48	Mersy	8	160	46	28	242	0.69	0.15	0.22	0.18	0.22	0.78	0.5	-99.0 6.73 .001	36
AnyLesion	J48	QNPR	13	138	69	23	243	0.62	0.16	0.36	0.22	0.36	0.67	0.51	-99.0 6.45 0.02	36
CHR Rat Lung 1	140	Spectrop	0	110	- 0	20	040	0.04	0.00	0.47	0.40	0.47	0.70	0.44	004 000 000	20
AnyLesion CHR Rat Testes 1	J48	hores	6	149	58	30	243	0.64	0.09	0.17	0.12	0.17	0.72	0.44	-99.1 6.23 .092	36
AnyLesion	RF	Adriana	16	108	93	24	241	0.51	0.15	0.4	0.21	0.4	0.54	0.47	-99.1 6.15 .047	40
		AL DC														
CHR Rat Testes 1 AnyLesion	RF	ALogPS, OEstate	19	116	87	21	243	0.56	0.18	0.48	0.26	0.48	0.57	0.52	-99.0 6.32 0.03	40
CHR Rat Testes 1		OLOIGIO	-10					0.00	0.10	0.10	0.20	0.10	0.01	0.02	00.0 0.02 0.00	<u>`</u>
AnyLesion	RF	CDK	20	119	82	20	241	0.58	0.2	0.5	0.28	0.5	0.59	0.55	-98.9 6.41 0.07	40
CHR Rat Testes 1 AnyLesion	RF	Chemaxo n	21	112	91	19	243	0.55	0.19	0.53	0.28	0.53	0.55	0.54	-98.9 6.25 0.06	40
CHR Rat Testes 1					<u> </u>			0.00	00	0.00	0.20	0.00	0.00	0.0.	00.0 0.20 0.00	
AnyLesion	RF	Dragon6	21	107	96	19	243	0.53	0.18	0.53	0.27	0.53	0.53	0.53	-98.9 6.15 0.04	40
CHR Rat Testes 1 AnyLesion	RF	Fragment or	23	122	81	17	243	0.6	0.22	0.58	0.32	0.58	0.6	0.59	-98.8 6.43 0.13	40
CHR Rat Testes 1	IXI	01	20	122	01	- 17	240	0.0	0.22	0.00	0.02	0.00	0.0	0.00	-50.0 0.45 0.15	
AnyLesion	RF	GSFrag	23	108	95	17	243	0.54	0.19	0.58	0.29	0.58	0.53	0.55	-98.9 6.15 0.08	40
CHR Rat Testes 1 AnyLesion	RF	Inductive	21	112	91	19	243	0.55	0.19	0.53	0.28	0.53	0.55	0.54	-98.9 6.25 0.06	40
CHR Rat Testes 1	131	Mera,		112	<u> </u>	10	2-10	0.00	0.10	0.00	0.20	0.00	0.00	0.04	00.0 0.20 0.00	
AnyLesion	RF	Mersy	21	118	84	19	242	0.57	0.2	0.53	0.29	0.53	0.58	0.55	-98.9 6.38 0.08	40
CHR Rat Testes 1 AnyLesion	RF	QNPR	20	101	102	20	243	0.5	0.16	0.5	0.25	0.5	0.5	0.5	-99.0 6.03 .002	40
CHR Rat Testes 1		Spectrop		101				0.0	0.10	0.0	0.20	0.0	0.0	0.0	00.0 0.00 .002	
AnyLesion	RF	hores	15	110	93	25	243	0.51	0.14	0.38	0.2	0.38	0.54	0.46	-99.1 6.15 .062	40
CHR Rat Testes 1	ASN	Adriana	16	111	07	24	244	0 54	0.46	0.4	0.22	0.4	0.57	0.40	00.0 6.27 025	40
AnyLesion	N	Adriana	16	114	87	24	241	0.54	0.16	0.4	0.22	0.4	0.57	0.48	-99.0 6.27 .025	40
CHR Rat Testes 1	ASN	ALogPS,														
AnyLesion	N	OEstate	17	115	88	23	243	0.54	0.16	0.43	0.23	0.43	0.57	0.5	-99.0 6.29 .006	40
CHR Rat Testes 1	ASN	CDK	17	105	76	22	244	0.50	0.10	0.42	0.06	0.42	0.60	0.50	00.0 6.51 0.04	40
AnyLesion CHR Rat Testes 1	N ASN	CDK Chemaxo	17	125	76	23	241	0.59	0.18	0.43	0.26	0.43	0.62	0.52	-99.0 6.51 0.04	40
AnyLesion	N	n	18	118	85	22	243	0.56	0.17	0.45	0.25	0.45	0.58	0.52	-99.0 6.36 0.02	40
CHR Rat Testes 1	ASN	_		4										_		
AnyLesion	N ASN	Dragon6 Fragment	13	138	65	27	243	0.62	0.17	0.33	0.22	0.33	0.68	0.5	-99.0 6.67 0.	40
CHR Rat Testes 1 AnyLesion	N	or or	17	138	65	23	243	0.64	0.21	0.43	0.28	0.43	0.68	0.55	-98.9 6.77 0.08	40
I,		٥.	• •	.50	50	_0	_ +0	5.0→	0.21	5.40	0.20	5.40	0.00	0.00	33.3 3.11 0.00	10

	ASN															
CHR Rat Testes 1 AnyLesion	N N	GSFrag	21	139	64	19	243	0.66	0.25	0.53	0.34	0.53	0.68	0.6	-98.8 6.81 0.1	6 40
CHR Rat Testes 1	ASN	oor rag		100		- 10		0.00	0.20	0.00	0.01	0.00	0.00	0.0	00.0 0.01 0.1	0 10
AnyLesion	N	Inductive	17	116	87	23	243	0.55	0.16	0.43	0.24	0.43	0.57	0.5	-99.0 6.31 .00	3 40
CHR Rat Testes 1	ASN		15	120	64	25	242	0.62	0.10	0.20	0.25	0.20	0.60	0.52	-98.9 6.74 0.0	. AO
AnyLesion	N ASN	Mersy	15	138	64	25	242	0.63	0.19	0.38	0.25	0.38	0.68	0.53	-98.9 6.74 0.0	5 40
CHR Rat Testes 1 AnyLesion	N	QNPR	17	138	65	23	243	0.64	0.21	0.43	0.28	0.43	0.68	0.55	-98.9 6.77 0.0	8 40
CHR Rat Testes 1	ASN	Spectrop														
AnyLesion	N	hores	16	148	55	24	243	0.67	0.23	0.4	0.29	0.4	0.73	0.56	-98.9 6.99 0.1	1 40
CHR Rat Testes 1	ASN N	CDK, TA, TP	17	151	50	23	241	0.7	0.25	0.43	0.32	0.43	0.75	0.59	-98.8 7.12 0.1	5 40
AnyLesion CHR Rat Testes 1	ASN	11	17	101	30	2.5	241	0.7	0.23	0.43	0.52	0.43	0.73	0.55	-90.0 7.12 0.1	3 40
AnyLesion	N	CDK, TA	14	142	59	26	241	0.65	0.19	0.35	0.25	0.35	0.71	0.53	-98.9 6.82 0.0	5 40
CHR Rat Testes 1	ASN															
AnyLesion	N ASN	CDK, TP	15	138	63	25	241	0.63	0.19	0.38	0.25	0.38	0.69	0.53	-98.9 6.76 0.0	5 40
CHR Rat Testes 1 AnyLesion	N	TA, TP	11	151	52	29	243	0.67	0.17	0.28	0.21	0.28	0.74	0.51	-99.0 6.89 0.0	2 40
CHR Rat Testes 1	ASN	17 (, 11						0.01	0.11	0.20	0.21	0.20	0.7 1	0.01	00.0 0.00 0.0	
AnyLesion	N	TA	12	145	58	28	243	0.65	0.17	0.3	0.22	0.3	0.71	0.51	-99.0 6.79 0.0	1 40
CHR Rat Testes 1	ASN	TD	0	400	00	24	040	0.54	0.4	0.00	0.44	0.00	0.04	0.40	00.0 0.40 4	2 40
AnyLesion	N	TP	9	123	80	31	243	0.54	0.1	0.23	0.14	0.23	0.61	0.42	-99.2 6.13 .1	3 40
CHR Rat Testes 1	FSM	CDK, TA,														
AnyLesion	LR	TP	21	140	61	19	241	0.67	0.26	0.53	0.34	0.53	0.7	0.61	-98.8 6.86 0.1	7 40
	=0.4															
CHR Rat Testes 1 AnyLesion	FSM LR	CDK, TA	16	133	68	24	241	0.62	0.19	0.4	0.26	0.4	0.66	0.53	-98.9 6.67 0.0	5 40
ArryLesion	LIX	CDR, IA	10	133	00	24	241	0.02	0.19	0.4	0.20	0.4	0.00	0.55	-90.9 0.07 0.0	3 40
CHR Rat Testes 1	FSM															
AnyLesion	LR	CDK, TP	18	135	66	22	241	0.63	0.21	0.45	0.29	0.45	0.67	0.56	-98.9 6.74 0.0	9 40
	E014															
CHR Rat Testes 1 AnyLesion	FSM LR	TA, TP	14	138	65	26	243	0.63	0.18	0.35	0.24	0.35	0.68	0.51	-99.0 6.7 0.0	2 40
ArryLesion	LIX	IA, IF	14	130	03	20	243	0.03	0.10	0.55	0.24	0.55	0.00	0.51	-99.0 0.7 0.0	2 40
CHR Rat Testes 1	FSM															
AnyLesion	LR	TA	14	141	62	26	243	0.64	0.18	0.35	0.24	0.35	0.69	0.52	-99.0 6.77 0.0	4 40
	FSM															
CHR Rat Testes 1 AnyLesion	LR	TP	17	115	88	23	243	0.54	0.16	0.43	0.23	0.43	0.57	0.5	-99.0 6.29 .00	6 40
CHR Rat Testes 1		CDK, TA,		110				0.01	0.10	0.10	0.20	0.10	0.01	0.0	00.0 0.20 .00	0 10
AnyLesion	KNN	TP	30	62	139	10	241	0.38	0.18	0.75	0.29	0.75	0.31	0.53	-98.9 4.97 0.0	5 40
CHR Rat Testes 1	IZNINI	ODIC TA	47	400	74	00	044	0.04	0.40	0.40	0.07	0.40	0.05	0.54	000 000 00	
AnyLesion	KNN	CDK, TA	17	130	71	23	241	0.61	0.19	0.43	0.27	0.43	0.65	0.54	-98.9 6.62 0.0	6 40
CHR Rat Testes 1 AnyLesion	KNN	CDK, TP	24	73	128	16	241	0.4	0.16	0.6	0.25	0.6	0.36	0.48	-99.0 5.44 .02	8 40
CHR Rat Testes 1																
AnyLesion	KNN	TA, TP	29	70	133	11	243	0.41	0.18	0.73	0.29	0.73	0.34	0.53	-98.9 5.19 0.0	5 40
CHR Rat Testes 1 AnyLesion	KNN	ТΔ	17	108	95	23	243	0.51	0.15	0.43	0.22	0.43	0.53	0.48	-99.0 6.15 .03	2 40
CHR Rat Testes 1	IXININ	iΛ	17	100	90	23	Z + 3	0.01	0.10	0.43	0.22	0.43	0.00	0.40	-99.0 0.10 .03	<u>-</u> 40
AnyLesion	KNN	TP	22	63	140	18	243	0.35	0.14	0.55	0.22	0.55	0.31	0.43	-99.1 5.24 .1	1 40
CHR Rat Testes 1		CDK, TA,	o	174	27	20	244	0.76	0.22	0.0	0.24	0.0	0 07	0.52	090 747 00	7 40
AnyLesion	VM	TP	8	174	27	32	241	0.76	0.23	0.2	0.21	0.2	0.87	0.53	-98.9 7.47 0.0	7 40
CHR Rat Testes 1	LibS															
AnyLesion	VM	CDK, TA	3	190	11	37	241	8.0	0.21	0.08	0.11	80.0	0.95	0.51	-99.0 7.68 0.0	3 40
	1.15.0															
CHR Rat Testes 1 AnyLesion	LibS VM	CDK, TP	4	187	14	36	241	0.79	0.22	0.1	0.14	0.1	0.93	0.52	-99.0 7.66 0.0	4 40
Allycololi	V IVI	ODN, IF	+	101	14	50	Z4 I	0.19	0.22	U. I	0.14	0.1	0.33	0.02	-99.0 7.00 0.0	-, 4 0
CHR Rat Testes 1	LibS															
AnyLesion	VM	TA, TP	5	193	10	35	243	0.81	0.33	0.13	0.18	0.13	0.95	0.54	-98.9 8.19 0.1	2 40

CHR Rat Testes 1 AnyLesion CHR Rat Testes 1 AnyLesion	LibS VM	TA																
			1	202	1	39	243	0.84	0.5	0.03	0.05	0.03	1.	0.51	-99.0	8.99	0.08	
HITYLCOIOTI	LibS VM	TP	3	192	11	37	243	0.8	0.21	0.08	0.11	0.08	0.95	0.51	-99.0	7 60	0 03	
CHR Rat Testes 1 AnyLesion		CDK, TA,	19	143	58	21	241	0.67	0.25	0.48	0.32	0.48	0.71	0.59	-98.8			_
CHR Rat Testes 1 AnyLesion	MLR A	CDK, TA	18	126	75	22	241	0.6	0.19	0.45	0.27	0.45	0.63	0.54	-98.9			_
CHR Rat Testes 1 AnyLesion	MLR A	CDK, TP	23	115	86	17	241	0.57	0.21	0.58	0.31	0.58	0.57	0.57	-98.9	6.31	0.11	
CHR Rat Testes 1 AnyLesion	MLR A	TA, TP	19	129	74	21	243	0.61	0.2	0.48	0.29	0.48	0.64	0.56	-98.9	6.59	80.0	
CHR Rat Testes 1 AnyLesion	MLR A	TA	14	130	73	26	243	0.59	0.16	0.35	0.22	0.35	0.64	0.5	-99.0	6.53	.007	
CHR Rat Testes 1 AnyLesion	MLR A	TP	16	100	103	24	243	0.48	0.13	0.4	0.2	0.4	0.49	0.45	-99.1	5.97	.08	
CHR Rat Testes 1 AnyLesion	PLS	CDK, TA, TP	17	148	53	23	241	0.68	0.24	0.43	0.31	0.43	0.74	0.58	-98.8	7.04	0.13	
CHR Rat Testes 1 AnyLesion	PLS	CDK, TA	16	141	60	24	241	0.65	0.21	0.4	0.28	0.4	0.7	0.55	-98.9	6.85	80.0	
CHR Rat Testes 1 AnyLesion CHR Rat Testes 1	PLS	CDK, TP	16	133	68	24	241	0.62	0.19	0.4	0.26	0.4	0.66	0.53	-98.9	6.67	0.05	_
AnyLesion CHR Rat Testes 1 CHR Rat Testes 1	PLS	TA, TP	12	142	61	28	243	0.63	0.16	0.3	0.21	0.3	0.7	0.5	-99.0	6.72	-	_
AnyLesion CHR Rat Testes 1	PLS		14	138	65	26	243	0.63	0.18	0.35	0.24	0.35	0.68	0.51	-99.0		0.02	_
AnyLesion CHR Rat Testes 1	PLS	CDK, TA,	16	121	82	24	243	0.56	0.16	0.4	0.23	0.4	0.6	0.5	-99.0		.003	_
AnyLesion CHR Rat Testes 1	J48	TP CDK TA	10	167	34	30	241	0.73	0.23	0.25	0.24	0.25	0.83	0.54	-98.9			_
AnyLesion CHR Rat Testes 1 AnyLesion	J48 J48	CDK, TA	9 16	156 147	45 54	31 24	241	0.68	0.17	0.23	0.19	0.23	0.78	0.5	-99.0 -98.9		0. 0.11	_
CHR Rat Testes 1 AnyLesion	J48	TA, TP	13	143	60	27	243	0.64	0.18	0.33	0.23	0.33	0.7	0.51	-99.0		0.02	_
CHR Rat Testes 1 AnyLesion	J48	TA	11	150	53	29	243	0.66	0.17	0.28	0.21	0.28	0.74	0.51	-99.0	6.86	0.01	
CHR Rat Testes 1 AnyLesion	J48	TP CDK. TA.	13	137	66	27	243	0.62	0.16	0.33	0.22	0.33	0.67	0.5	-99.0	6.64		
CHR Rat Testes 1 AnyLesion	RF	TP	22	125	76	18	241	0.61	0.22	0.55	0.32	0.55	0.62	0.59	-98.8	6.53	0.13	_
CHR Rat Testes 1 AnyLesion	RF	CDK, TA	16	121	80	24	241	0.57	0.17	0.4	0.24	0.4	0.6	0.5	-99.0	6.41	0.	_
CHR Rat Testes 1 AnyLesion CHR Rat Testes 1	RF	CDK, TP	19	113	88	21	241	0.55	0.18	0.48	0.26	0.48	0.56	0.52	-99.0	6.29	0.03	_
AnyLesion CHR Rat Testes 1	RF	TA, TP	20	115	88	20	243	0.56	0.19	0.5	0.27	0.5	0.57	0.53	-98.9	6.31	0.05	_
AnyLesion CHR Rat Testes 1	RF	TA	16	111	92	24	243	0.52	0.15	0.4	0.22	0.4	0.55	0.47	-99.1		.04	_
AnyLesion	RF FSM	TP	18	106	97	22	243	0.51	0.16	0.45	0.23	0.45	0.52	0.49	-99.0	0.12	.021	_
CHR Rat Testes 1 AnyLesion	LR	Adriana	14	133	68	26	241	0.61	0.17	0.35	0.23	0.35	0.66	0.51	-99.0	6.62	0.01	_
CHR Rat Testes 1 AnyLesion	FSM LR	ALogPS, OEstate	16	124	79	24	243	0.58	0.17	0.4	0.24	0.4	0.61	0.51	-99.0	6.45	0.01	
CHR Rat Testes 1 AnyLesion	FSM LR	CDK	18	128	73	22	241	0.61	0.2	0.45	0 27	0.45	0.64	0.54	-98.9	6 50	0 07	
CHR Rat Testes 1 AnyLesion		Chemaxo n	22	111	92	18	243					0.45			-98.9			_

CHR Rat Testes 1 AnyLesion	FSM LR	Dragon6	17	118	85	23	243	0.56	0.17	0.43	0.24	0.43	0.58	0.5	-99.0	6.35	0.	40
CHR Rat Testes 1 AnyLesion	FSM LR	Fragment or	16	132	71	24	243	0.61	0.18	0.4	0.25	0.4	0.65	0.53	-98.9	6.62	0.04	40
CHR Rat Testes 1 AnyLesion	FSM LR	GSFrag	16	142	61	24	243	0.65	0.21	0.4	0.27	0.4	0.7	0.55	-98.9	6.84	0.08	40
CHR Rat Testes 1 AnyLesion	FSM LR	Inductive	13	134	69	27	243	0.6	0.16	0.33	0.21	0.33	0.66	0.49	-99.0	6.58	.012	40
CHR Rat Testes 1 AnyLesion	FSM LR	Mera, Mersy	19	128	74	21	242	0.61	0.2	0.48	0.29	0.48	0.63	0.55	-98.9	6.58	0.08	40
CHR Rat Testes 1 AnyLesion	FSM LR	QNPR	17	143	60	23	243	0.66	0.22	0.43	0.29	0.43	0.7	0.56	-98.9	6.88	0.1	40
CHR Rat Testes 1 AnyLesion	FSM LR	Spectrop hores	20	135	68	20	243	0.64	0.23	0.5	0.31	0.5	0.67	0.58	-98.8	6.72	0.13	40
CHR Rat Testes 1 AnyLesion	KNN	Adriana	12	154	47	28	241	0.69	0.2	0.3	0.24	0.3	0.77	0.53	-98.9	7.06	0.06	40
CHR Rat Testes 1 AnyLesion	KNN	ALogPS, OEstate	30	83	120	10	243	0.47	0.2	0.75	0.32	0.75	0.41	0.58	-98.8	5.4	0.12	40
CHR Rat Testes 1 AnyLesion	KNN	CDK	21	132	69	19	241	0.63	0.23	0.53	0.32	0.53	0.66	0.59	-98.8	6.68	0.14	40
CHR Rat Testes 1 AnyLesion	KNN	Chemaxo n	26	88	115	14	243	0.47	0.18	0.65	0.29	0.65	0.43	0.54	-98.9	5.69	0.06	40
CHR Rat Testes 1 AnyLesion	KNN	Dragon6	21	90	113	19	243	0.46	0.16	0.53	0.24	0.53	0.44	0.48	-99.0	5.81	.024	40
CHR Rat Testes 1 AnyLesion	KNN	Fragment or	22	129	74	18	243	0.62	0.23	0.55	0.32	0.55	0.64	0.59	-98.8	6.58	0.14	40
CHR Rat Testes 1 AnyLesion	KNN	GSFrag	15	149	54	25	243	0.67	0.22	0.38	0.28	0.38	0.73	0.55	-98.9	6.99	0.09	40
CHR Rat Testes 1 AnyLesion	KNN	Inductive	27	81	122	13	243	0.44	0.18	0.68	0.29	0.68	0.4	0.54	-98.9	5.51	0.06	40
CHR Rat Testes 1 AnyLesion	KNN	Mera, Mersy	14	131	71	26	242	0.6	0.16	0.35	0.22	0.35	0.65	0.5	-99.0	6.56	.001	40
CHR Rat Testes 1 AnyLesion	KNN	QNPR	20	112	91	20	243	0.54	0.18	0.5	0.26	0.5	0.55	0.53	-98.9	6.25	0.04	40
CHR Rat Testes 1 AnyLesion	KNN	Spectrop hores	25	95	108	15	243	0.49	0.19	0.63	0.29	0.63	0.47	0.55	-98.9	5.85	0.07	40
CHR Rat Testes 1 AnyLesion	LibS VM	Adriana	5	179	22	35	241	0.76	0.19	0.13	0.15	0.13	0.89	0.51	-99.0	7.35	0.02	40
CHR Rat Testes 1 AnyLesion	LibS VM	ALogPS, OEstate	6	190	13	34	243	0.81	0.32	0.15	0.2	0.15	0.94	0.54	-98.9	8.06	0.12	40
CHR Rat Testes 1 AnyLesion	LibS VM	CDK	4	197	4	36	241	0.83	0.5	0.1	0.17	0.1	0.98	0.54	-98.9	8.88	0.17	40
CHR Rat Testes 1 AnyLesion	LibS VM	Chemaxo n	4	196	7	36	243	0.82	0.36	0.1	0.16	0.1	0.97	0.53	-98.9	8.37	0.12	40
CHR Rat Testes 1 AnyLesion	LibS VM	Dragon6	4	191	12	36	243	0.8	0.25	0.1	0.14	0.1	0.94	0.52	-99.0	7.83	0.06	40
CHR Rat Testes 1 AnyLesion	LibS VM	Fragment or	7	182	21	33	243	0.78	0.25	0.18	0.21	0.18	0.9	0.54	-98.9	7.67	0.08	40

CHR Rat Testes 1 AnyLesion	LibS VM	GSFrag	5	191	12	35	243	0.81	0.29	0.13	0.18	0.13	0.94	0.53	-98.9	8.	0.1	40
CHR Rat Testes 1 AnyLesion	LibS VM	Inductive	8	157	46	32	243	0.68	0.15	0.2	0.17	0.2	0.77	0.49	-99.0	6.84	.024	40
CHR Rat Testes 1 AnyLesion	LibS VM	Mera, Mersy	3	190	12	37	242	0.8	0.2	0.08	0.11	0.08	0.94	0.51	-99.0	7.6	0.02	40
CHR Rat Testes 1 AnyLesion	LibS VM	QNPR	4	191	12	36	243	0.8	0.25	0.1	0.14	0.1	0.94	0.52	-99.0	7.83	0.06	40
CHR Rat Testes 1 AnyLesion	LibS VM	Spectrop hores	6	182	21	34	243	0.77	0.22	0.15	0.18	0.15	0.9	0.52	-99.0	7.55	0.05	40
CHR Rat Testes 1 AnyLesion	MLR A	Adriana	15	119	82	25	241	0.56	0.15	0.38	0.22	0.38	0.59	0.48	-99.0	6.35	.025	40
CHR Rat Testes 1 AnyLesion	Α	ALogPS, OEstate	17	115	88	23	243	0.54	0.16	0.43	0.23	0.43	0.57	0.5	-99.0	6.29	.006	40
CHR Rat Testes 1 AnyLesion CHR Rat Testes 1	MLR A MLR	CDK Chemaxo	20	111	90	20	241	0.54	0.18	0.5	0.27	0.5	0.55	0.53	-98.9		0.04	40
AnyLesion CHR Rat Testes 1 AnyLesion	A MLR A	n Dragon6	20	113	90	20 18	243	0.55	0.18	0.5	0.27	0.5	0.56	0.53	-98.9 -98.9			40 40
CHR Rat Testes 1 AnyLesion	MLR A	Fragment or	20	114	89	20	243	0.55	0.18	0.5	0.27	0.5	0.56	0.53	-98.9			40
CHR Rat Testes 1 AnyLesion CHR Rat Testes 1	MLR A MLR	GSFrag	20	125	78	20	243	0.6	0.2	0.5	0.29	0.5	0.62	0.56	-98.9	6.51	0.09	40
AnyLesion CHR Rat Testes 1 AnyLesion	A MLR A	Inductive Mera, Mersy	15 20	125 111	78 91	25 20	243	0.58	0.16	0.38	0.23	0.38	0.62	0.5	-99.0 -99.0			40 40
CHR Rat Testes 1 AnyLesion	MLR A	QNPR	21	122	81	19	243	0.59	0.21	0.53	0.3	0.53	0.6	0.56	-98.9			40
CHR Rat Testes 1 AnyLesion CHR Rat Testes 1	MLR A	Spectrop hores	18	126	77	22	243	0.59	0.19	0.45	0.27	0.45	0.62	0.54	-98.9	6.52	0.05	40
AnyLesion CHR Rat Testes 1	PLS	Adriana ALogPS,	14	125	76	26	241	0.58	0.16	0.35	0.22	0.35	0.62	0.49	-99.0	6.45	.022	40
AnyLesion CHR Rat Testes 1 AnyLesion	PLS PLS	OEstate	15 19	130 127	73 74	25 21	243 241	0.6	0.17	0.38	0.23	0.38	0.64	0.51	-99.0 -98.9			40 40
CHR Rat Testes 1 AnyLesion	PLS	Chemaxo	20	120	83	20	243	0.58	0.19	0.5	0.28	0.5	0.59	0.55	-98.9			40
CHR Rat Testes 1 AnyLesion CHR Rat Testes 1	PLS	Dragon6 Fragment	17	126	77	23	243	0.59	0.18	0.43	0.25	0.43	0.62	0.52	-99.0	6.51	0.03	40
AnyLesion CHR Rat Testes 1 AnyLesion	PLS PLS	or GSFrag	16 16	141 145	62 58	24	243	0.65	0.21	0.4	0.27	0.4	0.69	0.55	-98.9 -98.9			40 40
CHR Rat Testes 1 AnyLesion	PLS	Inductive	21	106	97	19	243	0.52	0.18	0.53	0.27	0.53	0.52	0.52	-99.0			40
CHR Rat Testes 1 AnyLesion CHR Rat Testes 1	PLS	-	14	125	77	26	242	0.57	0.15	0.35	0.21	0.35	0.62	0.48	-99.0			40
AnyLesion CHR Rat Testes 1 AnyLesion	PLS PLS	QNPR Spectrop hores	17 21	137	66 83	23 19	243	0.63	0.2	0.43	0.28	0.43	0.67	0.55	-98.9 -98.9			40 40
CHR Rat Testes 1 AnyLesion	J48	Adriana	15	140	61	25	241	0.64		0.38	0.26	0.38	0.7		-98.9			40

CHR Rat Testes 1 AnyLesion	J48	ALogPS, OEstate	15	147	56	25	243	0.67	0.21	0.38	0.27	0.38	0.72	0.55	-98.9 6.94	0.08	40
CHR Rat Testes 1 AnyLesion	J48	CDK	15	150	51	25	241	0.68	0.23	0.38	0.28	0.38	0.75	0.56	-98.9 7.05	0.1	40
CHR Rat Testes 1 AnyLesion	J48	Chemaxo n	18	150	53	22	243	0.69	0.25	0.45	0.32	0.45	0.74	0.59	-98.8 7.07		40
CHR Rat Testes 1 AnyLesion	J48	Dragon6	16	144	59	24	243	0.66	0.21	0.4	0.28	0.4	0.71	0.55	-98.9 6.89	0.09	40
CHR Rat Testes 1 AnyLesion	J48	Fragment or	17	147	56	23	243	0.67	0.23	0.43	0.3	0.43	0.72	0.57	-98.9 6.98	0.12	40
CHR Rat Testes 1 AnyLesion	J48	GSFrag	19	139	64	21	243	0.65	0.23	0.48	0.31	0.48	0.68	0.58	-98.8 6.81	0.12	40
CHR Rat Testes 1 AnyLesion	J48	Inductive	16	146	57	24	243	0.67	0.22	0.4	0.28	0.4	0.72	0.56	-98.9 6.94	0.1	40
CHR Rat Testes 1 AnyLesion	J48	Mera, Mersy	12	148	54	28	242	0.66	0.18	0.3	0.23	0.3	0.73	0.52	-99.0 6.88	0.03	40
CHR Rat Testes 1 AnyLesion	J48	QNPR	14	150	53	26	243	0.67	0.21	0.35	0.26	0.35	0.74	0.54	-98.9 6.99	0.07	40
CHR Rat Testes 1 AnyLesion	J48	Spectrop hores	11	152	51	29	243	0.67	0.18	0.28	0.22	0.28	0.75	0.51	-99.0 6.91	0.02	40
CHR Rat ThyroidGland 1 AnyLesion	RF	Adriana	25	108	82	26	241	0.55	0.23	0.49	0.32	0.49	0.57	0.53	-98.9 6.79	0.05	51
CHR Rat ThyroidGland 1 AnyLesion	RF	ALogPS, OEstate	26	104	87	26	243	0.53	0.23	0.5	0.32	0.5	0.54	0.52	-99.0 6.73	0.04	52
CHR Rat ThyroidGland 1 AnyLesion	RF	CDK	23	119	70	29	241	0.59	0.25	0.44	0.32	0.44	0.63	0.54	-98.9 7.07	0.06	52
CHR Rat ThyroidGland 1 AnyLesion	RF	Chemaxo n	26	108	83	26	243	0.55	0.24	0.5	0.32	0.5	0.57	0.53	-98.9 6.82	0.05	52
CHR Rat ThyroidGland 1 AnyLesion	RF	Dragon6	26	111	80	26	243	0.56	0.25	0.5	0.33	0.5	0.58	0.54	-98.9 6.88	0.07	52
CHR Rat ThyroidGland 1 AnyLesion	RF	Fragment or	27	121	70	25	243	0.61	0.28	0.52	0.36	0.52	0.63	0.58	-98.8 7.1	0.13	52
CHR Rat ThyroidGland 1 AnyLesion	RF	GSFrag	24	109	82	28	243	0.55	0.23	0.46	0.3	0.46	0.57	0.52	-99.0 6.83	0.03	52
CHR Rat ThyroidGland 1 AnyLesion	RF	Inductive	29	113	78	23	243	0.58	0.27	0.56	0.36	0.56	0.59	0.57	-98.9 6.91	0.12	52
CHR Rat ThyroidGland 1 AnyLesion	RF	Mera, Mersy	27	120	70	25	242	0.61	0.28	0.52	0.36	0.52	0.63	0.58	-98.8 7.09	0.13	52
CHR Rat ThyroidGland 1 AnyLesion	RF	QNPR	22	108	83	30	243	0.53	0.21	0.42	0.28	0.42	0.57	0.49	-99.0 6.79	.01	52
CHR Rat ThyroidGland 1 AnyLesion	RF	Spectrop hores	24	111	80	28	243	0.56	0.23	0.46	0.31	0.46	0.58	0.52	-99.0 6.87	0.04	52
CHR Rat ThyroidGland 1 AnyLesion	ASN N	Adriana	23	132	58	28	241	0.64	0.28	0.45	0.35	0.45	0.69	0.57	-98.9 7.32	0.13	51
CHR Rat ThyroidGland 1 AnyLesion	ASN N	ALogPS, OEstate	20	140	51	32	243	0.66	0.28	0.38	0.33	0.38	0.73	0.56	-98.9 7.51	0.11	52
CHR Rat ThyroidGland 1 AnyLesion	ASN N	CDK	20	136	53	32	241	0.65	0.27	0.38	0.32	0.38	0.72	0.55	-98.9 7.44	0.09	52
CHR Rat ThyroidGland 1 AnyLesion	ASN N	Chemaxo n	16	134	57	36	243	0.62	0.22	0.31	0.26	0.31	0.7	0.5	-99.0 7.25	0.01	52
CHR Rat ThyroidGland 1 AnyLesion	ASN N	Dragon6	19	142	49	33	243	0.66	0.28	0.37	0.32	0.37	0.74	0.55	-98.9 7.54	0.1	52

CHR Rat																
ThyroidGland 1 AnyLesion	ASN N	Fragment or	24	147	44	28	243	0.7	0.35	0.46	0.4	0.46	0.77	0.62	-98.8 7.75 0.21	52
CHR Rat ThyroidGland 1 AnyLesion	ASN N	GSFrag	20	112	79	32	243	0.54	0.2	0.38	0.26	0.38	0.59	0.49	-99.0 6.85 .024	52
CHR Rat ThyroidGland 1 AnyLesion	ASN N	Inductive	24	129	62	28	243	0.63	0.28	0.46	0.35	0.46	0.68	0.57	-98.9 7.28 0.12	52
CHR Rat ThyroidGland 1	ASN	Mera,														
AnyLesion CHR Rat ThyroidGland 1	N ASN	Mersy	17	129	61	35	242	0.6	0.22	0.33	0.26	0.33	0.68	0.5	-99.0 7.18 0.01	52
AnyLesion CHR Rat	N ASN	QNPR Spectrop	20	132	59	32	243	0.63	0.25	0.38	0.31	0.38	0.69	0.54	-98.9 7.3 0.07	52
ThyroidGland 1 AnyLesion CHR Rat	N	hores	23	121	70	29	243	0.59	0.25	0.44	0.32	0.44	0.63	0.54	-98.9 7.09 0.06	52
ThyroidGland 1 AnyLesion	ASN N	CDK, TA, TP	18	121	68	34	241	0.58	0.21	0.35	0.26	0.35	0.64	0.49	-99.0 7.03 .012	52
CHR Rat ThyroidGland 1 AnyLesion	ASN N	CDK, TA	19	130	59	33	241	0.62	0.24	0.37	0.29	0.37	0.69	0.53	-98.9 7.27 0.05	52
CHR Rat ThyroidGland 1 AnyLesion	ASN N	CDK, TP	21	130	59	31	241	0.63	0.26	0.4	0.32	0.4	0.69	0.55	-98.9 7.3 0.08	52
CHR Rat ThyroidGland 1 AnyLesion	ASN N	TA, TP	23	130	61	29	243	0.63	0.27	0.44	0.34	0.44	0.68	0.56	-98.9 7.29 0.11	52
CHR Rat ThyroidGland 1 AnyLesion	ASN N	TA	21	125	66	31	243	0.6	0.24	0.4	0.3	0.4	0.65	0.53	-98.9 7.15 0.05	52
CHR Rat ThyroidGland 1 AnyLesion	ASN N	TP	16	127	64	36	243	0.59	0.2	0.31	0.24	0.31	0.66	0.49	-99.0 7.08 .024	52
CHR Rat ThyroidGland 1 AnyLesion	FSM LR	CDK, TA, TP	17	121	68	35	241	0.57	0.2	0.33	0.25	0.33	0.64	0.48	-99.0 7028	52
CHR Rat ThyroidGland 1	FSM															
AnyLesion CHR Rat ThyroidGland 1	LR FSM	CDK, TA	20	137	52	32	241	0.65	0.28	0.38	0.32	0.38	0.72	0.55	-98.9 7.46 0.1	52
AnyLesion CHR Rat	LR	CDK, TP	22	125	64	30	241	0.61	0.26	0.42	0.32	0.42	0.66	0.54	-98.9 7.2 0.07	52
ThyroidGland 1 AnyLesion	FSM LR	TA, TP	23	131	60	29	243	0.63	0.28	0.44	0.34	0.44	0.69	0.56	-98.9 7.32 0.11	52
CHR Rat ThyroidGland 1 AnyLesion	FSM LR	TA	20	124	67	32	243	0.59	0.23	0.38	0.29	0.38	0.65	0.52	-99.0 7.11 0.03	52
CHR Rat ThyroidGland 1 AnyLesion	FSM LR	TP	19	126	65	33	243	0.6	0.23	0.37	0.28	0.37	0.66	0.51	-99.0 7.14 0.02	52
CHR Rat ThyroidGland 1 AnyLesion	KNN	CDK, TA,	21	139	50	31	241	0.66	0.3	0.4	0.34	0.4	0.74	0.57	-98.9 7.53 0.13	52
CHR Rat ThyroidGland 1 AnyLesion		CDK, TA	11	166	23	41	241	0.73	0.32	0.21	0.26	0.21	0.88	0.54	-98.9 8.13 0.11	52
CHR Rat ThyroidGland 1 AnyLesion		CDK, TP	23	120	69	29	241	0.59	0.25	0.44	0.32	0.44	0.63	0.54	-98.9 7.09 0.07	52
CHR Rat ThyroidGland 1		·														
AnyLesion CHR Rat ThyroidGland 1 AnyLesion	KNN	TA, TP	17	128	63 51	35	243	0.62	0.26	0.42	0.32	0.42	0.67	0.55	-98.9 7.24 0.08 -98.9 7.44 0.05	52 52

CHR Rat ThyroidGland 1 AnyLesion	KNN	TP	30	98	93	22	243	0.53	0.24	0.58	0.34	0.58	0.51	0.55	-98.9	6.58	0.07	52
CHR Rat ThyroidGland 1 AnyLesion	LibS VM	CDK, TA, TP	5	173	16	47	241	0.74	0.24	0.1	0.14	0.1	0.92	0.51	-99.0	7.92	0.02	52
CHR Rat ThyroidGland 1 AnyLesion	LibS VM	CDK, TA	8	174	15	44	241	0.76	0.35	0.15	0.21	0.15	0.92	0.54	-98.9	8.36	0.1	52
CHR Rat ThyroidGland 1 AnyLesion	LibS VM	CDK, TP	8	174	15	44	241	0.76	0.35	0.15	0.21	0.15	0.92	0.54	-98.9	8.36	0.1	52
CHR Rat ThyroidGland 1 AnyLesion	LibS VM	TA, TP	7	176	15	45	243	0.75	0.32	0.13	0.19	0.13	0.92	0.53	-98.9	8.27	0.08	52
CHR Rat ThyroidGland 1 AnyLesion	LibS VM	TA	4	173	18	48	243	0.73	0.18	0.08	0.11	0.08	0.91	0.49	-99.0	7.62	.025	52
CHR Rat ThyroidGland 1 AnyLesion	LibS VM	TP	9	167	24	43	243	0.72	0.27	0.17	0.21	0.17	0.87	0.52	-99.0	7.95	0.06	52
CHR Rat ThyroidGland 1 AnyLesion	MLR A	CDK, TA, TP	22	121	68	30	241	0.59	0.24	0.42	0.31	0.42	0.64	0.53	-98.9	7.1	0.05	52
CHR Rat ThyroidGland 1 AnyLesion	MLR A	CDK, TA	20	113	76	32	241	0.55	0.21	0.38	0.27	0.38	0.6	0.49	-99.0	6.9	.015	52
CHR Rat ThyroidGland 1 AnyLesion	MLR A	CDK, TP	26	101	88	26	241	0.53	0.23	0.5	0.31	0.5	0.53	0.52	-99.0	6.69	0.03	52
CHR Rat ThyroidGland 1 AnyLesion CHR Rat	MLR A	TA, TP	24	121	70	28	243	0.6	0.26	0.46	0.33	0.46	0.63	0.55	-98.9	7.09	0.08	52
ThyroidGland 1 AnyLesion CHR Rat	MLR A	TA	22	109	82	30	243	0.54	0.21	0.42	0.28	0.42	0.57	0.5	-99.0	6.81	.005	52
ThyroidGland 1 AnyLesion CHR Rat	MLR A	TP	27	107	84	25	243	0.55	0.24	0.52	0.33	0.52	0.56	0.54	-98.9	6.79	0.07	52
ThyroidGland 1 AnyLesion CHR Rat	PLS	CDK, TA, TP	20	123	66	32	241	0.59	0.23	0.38	0.29	0.38	0.65	0.52	-99.0	7.12	0.03	52
ThyroidGland 1 AnyLesion CHR Rat	PLS	CDK, TA	19	128	61	33	241	0.61	0.24	0.37	0.29	0.37	0.68	0.52	-99.0	7.22	0.04	52
ThyroidGland 1 AnyLesion CHR Rat	PLS	CDK, TP	21	126	63	31	241	0.61	0.25	0.4	0.31	0.4	0.67	0.54	-98.9	7.21	0.06	52
ThyroidGland 1 AnyLesion CHR Rat ThyroidGland 1	PLS	TA, TP	20	134	57	32	243	0.63	0.26	0.38	0.31	0.38	0.7	0.54	-98.9	7.35	0.08	52
AnyLesion CHR Rat ThyroidGland 1	PLS	TA	19	127	64	33	243	0.6	0.23	0.37	0.28	0.37	0.66	0.52	-99.0	7.16	0.03	52
AnyLesion CHR Rat ThyroidGland 1	PLS	CDK, TA,	17	122	69	35	243	0.57	0.2		0.25	0.33	0.64	0.48	-99.0		.029	52
AnyLesion CHR Rat ThyroidGland 1	J48	TP OPK TA	15	130	59	37	241	0.6	0.2	0.29	0.24	0.29	0.69	0.49	-99.0			52
AnyLesion CHR Rat ThyroidGland 1	J48	CDK, TA	19	151	38	28	241	0.73	0.39	0.46	0.42	0.46	0.8	0.63	-98.7			52
AnyLesion CHR Rat ThyroidGland 1 AnyLesion	J48 J48	CDK, TP TA, TP	18 25	141	48	34 27	241	0.66	0.27	0.35	0.31	0.35	0.75	0.55	-98.9	1.53	0.09	52 52

CHR Rat ThyroidGland 1 AnyLesion	J48	TA	18	143	48	34	243	0.66	0.27	0.35	0.31	0.35	0.75	0.55	-98.9 7	7.54 0.0	09	52
CHR Rat ThyroidGland 1 AnyLesion	J48	TP	20	150	41	32	243	0.7	0.33	0.38	0.35	0.38	0.79	0.58	-98.8 7	7.79 0. ⁻	16	52
CHR Rat ThyroidGland 1 AnyLesion	RF	CDK, TA, TP	25	113	76	27	241	0.57	0.25	0.48	0.33	0.48	0.6	0.54	-98.9 6	6.95 0.0	07	52
CHR Rat ThyroidGland 1 AnyLesion	RF	CDK, TA	23	110	79	29	241	0.55	0.23	0.44	0.3	0.44	0.58	0.51	-99.0 6	6.87 0.0	02	52
CHR Rat ThyroidGland 1 AnyLesion	RF	CDK, TP	24	116	73	28	241	0.58	0.25	0.46	0.32	0.46	0.61	0.54	-98.9 7	7.01 0.0	06	52
CHR Rat ThyroidGland 1 AnyLesion	RF	TA, TP	27	110	81	25	243	0.56	0.25	0.52	0.34	0.52	0.58	0.55	-98.9 6	6.86 0.0	08	52
CHR Rat ThyroidGland 1 AnyLesion	RF	TA	18	108	83	34	243	0.52	0.18	0.35	0.24	0.35	0.57	0.46	-99.1 6	6.72 .07	74	52
CHR Rat ThyroidGland 1 AnyLesion	RF	TP	24	95	96	28	243	0.49	0.2	0.46	0.28	0.46	0.5	0.48	-99.0 6	6.54 .03	34	52
CHR Rat ThyroidGland 1 AnyLesion	FSM LR	Adriana	28	116	74	23	241	0.6	0.27	0.55	0.37	0.55	0.61	0.58	-988 6	6.95 O.	13	51
CHR Rat ThyroidGland 1 AnyLesion		ALogPS, OEstate	22	131	60	30	243	0.63	0.27	0.42	0.33	0.42	0.69	0.55	-98.9 7			52
CHR Rat ThyroidGland 1 AnyLesion	FSM LR	CDK	19	127	62	33	241	0.61	0.23	0.37	0.29	0.37	0.67	0.52		7.19 0.0		52
CHR Rat ThyroidGland 1 AnyLesion		Chemaxo n	20	111	80	32	243	0.54	0.2	0.38	0.26	0.38	0.58	0.48	-99.0			52
CHR Rat ThyroidGland 1	FSM	_				-												
AnyLesion CHR Rat ThyroidGland 1		Dragon6 Fragment	24	134	57	28	243	0.65	0.3	0.46	0.36	0.46	0.7	0.58	-98.8	7.4 0.		52
AnyLesion CHR Rat ThyroidGland 1	LR FSM	or	23	137	54	29	243	0.66	0.3	0.44	0.36	0.44	0.72	0.58	-98.8 7	7.47 O. ⁻	14	52
AnyLesion CHR Rat	LR	GSFrag	30	112	79	22	243	0.58	0.28	0.58	0.37	0.58	0.59	0.58	-98.8 6	6.88 O. ⁻	13	52
ThyroidGland 1 AnyLesion CHR Rat	FSM LR	Inductive	24	113	78	28	243	0.56	0.24	0.46	0.31	0.46	0.59	0.53	-98.9	6.92 0.0	04	52
ThyroidGland 1 AnyLesion	FSM LR	Mera, Mersy	15	117	73	37	242	0.55	0.17	0.29	0.21	0.29	0.62	0.45	-99.1 6	6.83 .08	32	52
CHR Rat ThyroidGland 1 AnyLesion	FSM LR	QNPR	22	116	75	30	243	0.57	0.23	0.42	0.3	0.42	0.61	0.52	-99.0 6	6.97 0.0	03	52
CHR Rat ThyroidGland 1 AnyLesion	FSM LR	Spectrop hores	29	94	97	23	243	0.51	0.23	0.56	0.33	0.56	0.49	0.52	-99.0 6	6.51 0.0	04_	52
CHR Rat ThyroidGland 1 AnyLesion	KNN	Adriana	33	84	106	18	241	0.49	0.24	0.65	0.35	0.65	0.44	0.54	-98.9	6.2 0.0	07	51
CHR Rat ThyroidGland 1 AnyLesion	KNN	ALogPS, OEstate	29	103	88	23	243	0.54	0.25	0.56	0.34	0.56	0.54	0.55	-98.9	6.7 0.0	_ 08	52
CHR Rat ThyroidGland 1 AnyLesion		CDK	16	123	66	36	241	0.58	0.2	0.31	0.24	0.31	0.65	0.48	-99.0 7	7.02 .03	36	52

CHR Rat ThyroidGland 1 AnyLesion	KNN	Chemaxo	13	119	72	39	243	0.54	0.15	0.25	0.19	0.25	0.62	0.44	-99.1	6.78	100	52
CHR Rat ThyroidGland 1	KININ		13	119	12	39	243	0.34	0.15	0.25	0.19	0.25	0.02	0.44	-99.1	0.76	.109	52
AnyLesion	KNN	Dragon6	27	111	80	25	243	0.57	0.25	0.52	0.34	0.52	0.58	0.55	-98.9	6.88	0.08	52
CHR Rat ThyroidGland 1 AnyLesion	KNN	Fragment or	44	52	139	8	243	0.4	0.24	0.85	0.37	0.85	0.27	0.56	-98.9	4.96	0.11	52
CHR Rat ThyroidGland 1 AnyLesion	KNN	GSFrag	38	76	115	14	243	0.47	0.25	0.73	0.37	0.73	0.4	0.56	-98.9	5.91	0.11	52
CHR Rat ThyroidGland 1 AnyLesion	KNN	Inductive	16	140	51	36	243	0.64	0.24	0.31	0.27	0.31	0.73	0.52	-99.0	7.4	0.04	52
CHR Rat ThyroidGland 1 AnyLesion	KNN	Mera, Mersy	21	123	67	31	242	0.6	0.24	0.4	0.3	0.4	0.65	0.53	-98.9	7 12	0.04	52
CHR Rat ThyroidGland 1 AnyLesion		QNPR	40	77	114	12	243	0.48	0.26	0.77	0.39	0.77	0.4	0.59	-98.8			52
CHR Rat ThyroidGland 1 AnyLesion		Spectrop hores	15	130	61	37	243	0.6	0.20	0.29	0.23	0.29	0.68	0.48	-99.0			52
CHR Rat ThyroidGland 1	LibS	1101.62	10	130	UI	31	۷43	0.0	0.2	0.28	0.23	0.28	0.00	v. 4 0	-99.0	1.12	.021	J <u>Z</u>
AnyLesion	VM	Adriana	16	144	46	35	241	0.66	0.26	0.31	0.28	0.31	0.76	0.54	-98.9	7.51	0.07	51
CHR Rat ThyroidGland 1 AnyLesion	LibS VM	ALogPS, OEstate	6	174	17	46	243	0.74	0.26	0.12	0.16	0.12	0.91	0.51	-99.0	8.01	0.04	52
CHR Rat ThyroidGland 1 AnyLesion	LibS VM	CDK	12	174	15	40	241	0.77	0.44	0.23	0.3	0.23	0.92	0.58	-98.8	8.65	0.2	52
CHR Rat ThyroidGland 1 AnyLesion	LibS VM	Chemaxo n	6	178	13	46	243	0.76	0.32	0.12	0.17	0.12	0.93	0.52	-99.0	8.29	0.07	52
CHR Rat ThyroidGland 1 AnyLesion	LibS VM	Dragon6	4	172	19	48	243	0.72	0.17	0.08	0.11	0.08	0.9	0.49	-99.0	7.57	.032	52
CHR Rat ThyroidGland 1 AnyLesion		Fragment or	11	167	24	41	243	0.73	0.31	0.21	0.25	0.21	0.87	0.54	-98.9		0.1	52
CHR Rat	VIVI	OI	- 11	107	24	71	243	0.73	0.51	0.21	0.23	0.21	0.07	0.54	-90.9	0.03	0.1	52
ThyroidGland 1 AnyLesion	LibS VM	GSFrag	6	153	38	46	243	0.65	0.14	0.12	0.13	0.12	0.8	0.46	-99.1	7.09	.089	52
CHR Rat ThyroidGland 1 AnyLesion	LibS VM	Inductive	14	155	36	38	243	0.7	0.28	0.27	0.27	0.27	0.81	0.54	-98.9	7.77	0.08	52
CHR Rat ThyroidGland 1 AnyLesion	LibS VM	Mera, Mersy	10	152	38	42	242	0.67	0.21	0.19	0.2	0.19	0.8	0.5	-99.0	7.48	.008	52
CHR Rat ThyroidGland 1	LibS	•																
AnyLesion CHR Rat ThyroidGland 1		QNPR Spectrop	11	157	34	41	243	0.69		0.21	0.23	0.21	0.82	0.52	-99.0			52
AnyLesion CHR Rat	VM	hores	9	157	34	43	243	0.68	0.21	0.17	0.19	0.17	0.82	0.5	-99.0	7.54	.005	52
ThyroidGland 1 AnyLesion	MLR A	Adriana	25	117	73	26	241	0.59	0.26	0.49	0.34	0.49	0.62	0.55	-98.9	6.98	0.09	51
CHR Rat ThyroidGland 1 AnyLesion	MLR A	ALogPS, OEstate	22	80	111	30	243	0.42	0.17	0.42	0.24	0.42	0.42	0.42	-99.2	6.21	.13	52
CHR Rat															-		_	

OLID D. I																		
CHR Rat ThyroidGland 1		Chemaxo																
AnyLesion	Α	n	19	131	60	33	243	0.62	0.24	0.37	0.29	0.37	0.69	0.53	-98.9	7.26	0.04	52
CHR Rat ThyroidGland 1	MLR																	
AnyLesion	Α	Dragon6	31	106	85	21	243	0.56	0.27	0.6	0.37	0.6	0.55	0.58	-98.8	6.74	0.12	52
CHR Rat	MID																	
ThyroidGland 1	MLR A	Fragment or	24	138	53	28	243	0.67	0.31	0.46	0.37	0.46	0.72	0.59	-98.8	7.5	0.16	52
AnyLesion CHR Rat	A	OI	24	130	55	20	243	0.07	0.31	0.40	0.37	0.40	0.72	0.59	-90.0	7.5	0.10	52
ThyroidGland 1	MLR																	
AnyLesion	Α	GSFrag	17	123	68	35	243	0.58	0.2	0.33	0.25	0.33	0.64	0.49	-99.0	7.02	.025	52
CHR Rat	MID																	
ThyroidGland 1	MLR	Inductive	29	120	53	23	242	0.60	0.25	0.56	0.42	0.56	0.72	0.64	00.7	7.49	0.24	52
AnyLesion	A	inductive	29	138	55	23	243	0.69	0.35	0.56	0.43	0.56	0.72	0.64	-90.7	7.49	0.24	52
CHR Rat ThyroidGland 1	MLR	Mera,																
AnyLesion	Α	Mersy	17	110	80	35	242	0.52	0.18	0.33	0.23	0.33	0.58	0.45	-99.1	6.75	.079	52
CHR Rat		-																
ThyroidGland 1	MLR	ONDD	0.4	400	00	00	040	0.50	0.04	0.40	0.00	0.40	0.54	0.5	00.0	0.74	0	
AnyLesion	A	QNPR	24	103	88	28	243	0.52	0.21	0.46	0.29	0.46	0.54	0.5	-99.0	6./1	0.	52
CHR Rat ThyroidGland 1	MLR	Spectrop																
AnyLesion	Α	hores	24	109	82	28	243	0.55	0.23	0.46	0.3	0.46	0.57	0.52	-99.0	6.83	0.03	52
CHR Rat																		
ThyroidGland 1	D: 6		0.0	445		. ·			0.00	0	0.00	0	0	0 =0		0.0-	0.4-	
AnyLesion	PLS	Adriana	30	112	78	21	241	0.59	0.28	0.59	0.38	0.59	0.59	0.59	-98.8	6.85	0.15	51
CHR Rat		Al cape																
ThyroidGland 1 AnyLesion	PLS	ALogPS, OEstate	20	132	59	32	243	0.63	0.25	0.38	0.31	0.38	0.69	0.54	-98.9	7 3	0.07	52
-	PLS	OESiale	20	132	59	32	243	0.03	0.23	0.36	0.51	0.36	0.09	0.54	-90.9	1.3	0.07	52
CHR Rat ThyroidGland 1																		
AnyLesion	PLS	CDK	21	122	67	31	241	0.59	0.24	0.4	0.3	0.4	0.65	0.52	-99.0	7.11	0.04	52
CHR Rat		01																
ThyroidGland 1	DI C	Chemaxo	40	400	0.5	24	040	0.54	0.47	0.05	0.00	0.05	0.55	0.45	00.4	0.00	000	
AnyLesion	PLS	n	18	106	85	34	243	0.51	0.17	0.35	0.23	0.35	0.55	0.45	-99.1	6.68	.082	52
CHR Rat ThyroidGland 1																		
AnyLesion	PLS	Dragon6	21	140	51	31	243	0.66	0.29	0.4	0.34	0.4	0.73	0.57	-98.9	7.52	0.12	52
CHR Rat		_																
ThyroidGland 1		Fragment																
AnyLesion	PLS	or	25	147	44	27	243	0.71	0.36	0.48	0.41	0.48	0.77	0.63	-98.7	7.75	0.23	52
CHR Rat																		
ThyroidGland 1 AnyLesion	PLS	GSFrag	31	97	94	21	243	0.53	0.25	0.6	0.35	0.6	0.51	0.55	-98.9	6.55	0.09	52
CHR Rat																		
ThyroidGland 1							_			_		_		_				
AnyLesion	PLS	Inductive	23	133	58	29	243	0.64	0.28	0.44	0.35	0.44	0.7	0.57	-98.9	7.37	0.12	52
CHR Rat		Mera,																
ThyroidGland 1 AnyLesion	PLS	Mersy	21	127	63	31	242	0.61	0.25	0.4	0.31	0.4	0.67	0.54	-98 9	7.22	0.06	52
CHR Rat		Moloy				<u> </u>		0.01	0.20	J.¬	0.01	J.¬	0.01	5.5∓	30.0		3.30	- 02
ThyroidGland 1																		
AnyLesion	PLS	QNPR	22	125	66	30	243	0.6	0.25	0.42	0.31	0.42	0.65	0.54	-98.9	7.17	0.07	52
CHR Rat		Spectrop																
ThyroidGland 1	DI 0		23	114	77	29	243	0.56	0.23	0.44	0.3	0.44	0.6	0.52	-00 0	6.93	U U3	52
	₽1 <	110163	20	117	1.1	23	270	0.50	0.23	U. T1	0.5	U. T1	0.0	0.02	-33.0	0.90	0.00	JZ
AnyLesion	PLS																	
AnyLesion CHR Rat	PLS																	
AnyLesion CHR Rat ThyroidGland 1	J48	Adriana	21	127	63	30	241	0.61	0.25	0.41	0.31	0.41	0.67	0.54	<u>-98</u> .9	7.18	0.07	51
AnyLesion CHR Rat ThyroidGland 1 AnyLesion		Adriana	21	127	63	30	241	0.61	0.25	0.41	0.31	0.41	0.67	0.54	-98.9	7.18	0.07	51
AnyLesion CHR Rat ThyroidGland 1 AnyLesion CHR Rat			21	127		30	241	0.61	0.25	0.41	0.31		0.67	0.54				51
AnyLesion CHR Rat ThyroidGland 1 AnyLesion CHR Rat ThyroidGland 1		Adriana	21	127	63 51	30	241	0.61	0.25	0.41	0.31	0.41	0.67	0.54		7.18 7.52		51 52
AnyLesion CHR Rat FhyroidGland 1 AnyLesion CHR Rat FhyroidGland 1 AnyLesion CHR Rat CHYROIdGland 1 AnyLesion CHR Rat	J48	Adriana ALogPS,																
AnyLesion CHR Rat FhyroidGland 1 AnyLesion CHR Rat FhyroidGland 1 AnyLesion CHR Rat FhyroidGland 1 CHR Rat FhyroidGland 1	J48	Adriana ALogPS, OEstate	21	140	51	31	243	0.66	0.29	0.4	0.34	0.4	0.73	0.57	-98.9	7.52	0.12	52
AnyLesion CHR Rat ThyroidGland 1 AnyLesion	J48	Adriana ALogPS,																
AnyLesion CHR Rat ThyroidGland 1 AnyLesion CHR Rat ThyroidGland 1 AnyLesion CHR Rat CHR Rat CHR Rat CHR Rat	J48	Adriana ALogPS, OEstate	21	140	51	31	243	0.66	0.29	0.4	0.34	0.4	0.73	0.57	-98.9	7.52	0.12	52

J48	Dragon6	17	144	47	35	243	0.66	0.27	0.33	0.29	0.33	0.75	0.54	-98.9	7.54	0.08	52
J48	Fragment or	20	134	57	32	243	0.63	0.26	0.38	0.31	0.38	0.7	0.54	-98.9	7.35	0.08	52
J48	GSFrag	21	133	58	31	243	0.63	0.27	0.4	0.32	0.4	0.7	0.55	-98.9	7.34	0.09	52
J48	Inductive	16	142	49	36	243	0.65	0.25	0.31	0.27	0.31	0.74	0.53	-98.9	7.46	0.05	52
J48	Mera, Mersy	11	135	55	41	242	0.6	0.17	0.21	0.19	0.21	0.71	0.46	-99.1	7.06	.072	52
J48	QNPR	20	122	69	32	243	0.58	0.22	0.38	0.28	0.38	0.64	0.51	-99.0	7.07	0.02	52
J48	Spectrop hores	18	145	46	34	243	0.67	0.28	0.35	0.31	0.35	0.76	0.55	-98.9	7.6	0.1	52
RF	Adriana	18	127	74	22	241	0.6	0.2	0.45	0.27	0.45	0.63	0.54	-98.9	6.57	0.06	40
RF	ALogPS, OEstate	19	135	68	21	243	0.63	0.22	0.48	0.3	0.48	0.67	0.57	-98 9	6.72	0.11	40
RF				71	16												40
RF	Chemaxo	17		80													40
																	40
	Fragment																40
	<u> </u>																40
																	40
	Mera,																40
	•				-												40
	Spectrop																40
ASN N	Adriana	21	152	49	19	241	0.72	0.3	0.53	0.38	0.53	0.76	0.64				40
ASN	ALogPS,																40
ASN																	40
ASN	Chemaxo																40
ASN	11	13	101	52	۷1	∠+3	0.01	0.2	0.33	0.20	0.33	0.74	0.00	-30.3	0.30	0.00	+0
	J48 J48 J48 J48 J48 RF RF RF RF RF RF RF RF RF R	Fragment J48 GSFrag J48 Inductive Mera, Mersy J48 QNPR Spectrop hores RF Adriana ALogPS, OEstate RF CDK Chemaxo n RF Dragon6 Fragment rF GSFrag RF Inductive RF GSFrag RF Inductive RF QNPR RF Wersy RF QNPR RF QNPR RF QNPR ASN Mersy ASN ALogPS, N Adriana ASN ALogPS, OEstate ASN Chemaxo n CDK ASN CDK ASN CDK ASN Chemaxo n CDK ASN Chemaxo n CDK ASN Chemaxo n CDK Chemaxo n	J48 Fragment or 20 J48 GSFrag 21 J48 Inductive 16 Mera, Mersy 11 J48 QNPR 20 J48 Spectrop hores 18 RF Adriana 18 RF CDK 24 Chemaxo n 17 RF Dragon6 17 Fragment RF 19 19 RF Inductive 24 RF Inductive 24 RF Inductive 24 RF Inductive 24 RF Mersy 21 RF QNPR 18 Spectrop hores 21 ASN Adriana 21 ASN OEstate 16 ASN Chemaxo n 13	Jable of Pragment RF Pragment Jable of	JA8 Fragment or 20 134 57 J48 GSFrag 21 133 58 J48 Inductive 16 142 49 Mera, J48 Mersy 11 135 55 J48 QNPR 20 122 69 J48 Popertrop hores 18 145 46 RF Adriana 18 127 74 RF OEstate 19 135 68 RF CDK 24 130 71 RF Dragon6 17 123 80 RF Dragon6 17 135 68 RF Dragon6 17 135 68 RF Dragon6 17 133 70 RF GSFrag 27 126 77 RF Inductive 24 129 74 RF QNPR 18 126 77 RF <td>J48 Fragment or 20 134 57 32 J48 GSFrag 21 133 58 31 J48 Inductive 16 142 49 36 Mera, J48 Mersy 11 135 55 41 J48 QNPR 20 122 69 32 Spectrop hores 18 145 46 34 RF Adriana 18 127 74 22 RF CDK 24 130 71 16 Chemaxo RF 17 123 80 23 RF Dragon6 17 135 68 23 RF Dragon6 17 135 68 23 RF Dragon6 17 135 68 23 RF Inductive 24 129 74 16 RF Inductive 24 129 74 16 RF</td> <td>J48 Fragment or 20 134 57 32 243 J48 GSFrag 21 133 58 31 243 J48 Inductive 16 142 49 36 243 J48 Mera, Mersy 11 135 55 41 242 J48 QNPR 20 122 69 32 243 RF Adriana 18 127 74 22 241 RF Adriana 18 127 74 22 241 RF CDK 24 130 71 16 241 RF Dragon6 17 123 80 23 243 RF Dragon6 17 135 68 23 243 RF Dragon6 17 135 68 23 243 RF Inductive 24 129 74 16 243 RF In</td> <td>J48 Fragment or 20 134 57 32 243 0.63 J48 GSFrag 21 133 58 31 243 0.63 J48 Inductive 16 142 49 36 243 0.65 J48 Mera, Mersy 11 135 55 41 242 0.6 J48 QNPR 20 122 69 32 243 0.58 J48 QNPR 20 122 69 32 243 0.58 J48 Adriana 18 145 46 34 243 0.67 RF Adriana 18 127 74 22 241 0.6 RF CDK 24 130 71 16 241 0.63 RF Dragon6 17 123 80 23 243 0.63 RF Dragon6 17 135 68 23 243</td> <td>J48 Fragment of Pragment o</td> <td>J48 Fragment of Pragment of Pragment of Pragment J48 20 134 57 32 243 0.63 0.26 0.38 J48 GSFrag 21 133 58 31 243 0.63 0.27 0.4 J48 Inductive 16 142 49 36 243 0.65 0.25 0.31 J48 Mera, Mersy 11 135 55 41 242 0.6 0.17 0.21 J48 QNPR 20 122 69 32 243 0.65 0.22 0.38 J48 ONPR 18 145 46 34 243 0.67 0.22 0.35 RF Adriana 18 127 74 22 241 0.6 0.2 0.45 RF Adriana 18 127 74 22 241 0.6 0.2 0.48 RF Dragone 17 135 68 23 2</td> <td>J48 Fragment January 20 134 57 32 243 0.63 0.26 0.38 0.31 J48 GSFrag 21 133 58 31 243 0.63 0.27 0.4 0.22 J48 Inductive 16 142 49 36 243 0.65 0.25 0.31 0.27 J48 Mera, Mersy 11 135 55 41 242 0.6 0.17 0.21 0.19 J48 ONPR 20 122 69 32 243 0.63 0.22 0.35 0.28 J48 Adriana 18 142 74 22 241 0.6 0.2 0.35 0.21 J48 Adriana 18 127 74 22 241 0.6 0.2 0.48 0.3 RF Adriana 18 127 74 22 241 0.6 0.2 0.48 0.3</td> <td>J48 Fragment of or 20 134 57 32 243 0.63 0.26 0.38 0.31 0.38 J48 GSFrag 21 133 58 31 243 0.63 0.27 0.4 0.22 0.41 J48 Inductive 16 142 49 36 243 0.63 0.25 0.31 0.27 0.31 J48 Inductive 11 135 55 41 242 0.6 0.17 0.21 0.91 0.21 J48 ONPR 20 122 69 32 243 0.65 0.22 0.38 0.28 0.28 0.33 0.26 0.33 0.21 0.43 0.25 0.43 0.25 0.43 0.25 0.43 0.25 0.43 0.25 0.43 0.25 0.43 0.25 0.43 0.25 0.43 0.26 0.43 0.26 0.43 0.26 0.43 0.26 0.24 0.26</td> <td>J48 Fragment of Correct Series 20 134 57 32 243 0.63 0.26 0.38 0.31 0.36 0.7 J48 GSFrag 21 133 58 31 243 0.63 0.27 0.42 0.22 0.4 0.74 J48 Inductive 16 142 49 36 243 0.65 0.25 0.13 0.27 0.21 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74<</td> <td>J48 Fragment Gragnent 20 134 57 32 243 0.63 0.26 0.38 0.31 0.38 0.7 0.54 J48 GSFrag 21 133 58 31 243 0.63 0.27 0.41 0.32 0.4 0.7 0.55 J48 Inductive 16 142 49 36 243 0.65 0.25 0.31 0.27 0.31 0.74 0.74 0.53 J48 Mera, Mersy 11 135 55 41 242 0.6 0.27 0.21 0.31 0.71 0.6 0.2 0.22 0.24 0.20 0.22 0.24 0.25 0.24 0.25 0.25 0.24 0.30 0.24 0.51 0.51 0.51 0.51 0.51 0.52 0.24 0.24 0.24 0.25 0.26 0.25 0.24 0.25 0.24 0.25 0.25 0.24 0.25 0.25 0.24 0</td> <td>J48 Fragment J48 20 134 57 32 243 0.63 0.26 0.38 0.31 0.74 0.54 -98.9 J48 GSFrag 21 133 58 31 243 0.63 0.27 0.4 0.32 0.4 0.7 0.55 -98.9 J48 Inductive 16 142 49 36 243 0.65 0.21 0.21 0.71 0.46 -99.1 J48 Mers, Mers, Mers 11 135 55 41 242 0.6 0.17 0.21 0.19 0.21 0.71 0.46 -99.1 J48 Mers, Mers 11 135 55 41 242 0.6 0.21 0.38 0.22 0.71 0.4 0.99.0 J48 Ones 12 122 241 0.6 0.2 0.38 0.25 0.63 0.55 -98.9 J48 Ones 12 12 24 <t< td=""><td>JAB Fragment JaB 20 134 57 32 243 0.63 0.26 0.38 0.31 0.70 0.54 -98.9 7.35 JAB GSFrag 21 133 58 31 243 0.63 0.27 0.41 0.32 0.41 0.55 -98.9 7.34 JAB Inductive 16 142 49 36 243 0.65 0.27 0.21 0.21 0.74 0.53 -99.9 7.04 JAB Mersy 11 135 55 41 242 0.6 0.17 0.21 0.19 0.21 0.74 0.64 -99.1 7.06 JAB ONPR 10 122 69 32 243 0.58 0.22 0.38 0.28 0.54 0.51 -99.9 7.07 JAB Actican 18 127 74 22 241 0.6 0.25 0.35 0.23 0.63 0.52 0.</td><td> Figure F</td></t<></td>	J48 Fragment or 20 134 57 32 J48 GSFrag 21 133 58 31 J48 Inductive 16 142 49 36 Mera, J48 Mersy 11 135 55 41 J48 QNPR 20 122 69 32 Spectrop hores 18 145 46 34 RF Adriana 18 127 74 22 RF CDK 24 130 71 16 Chemaxo RF 17 123 80 23 RF Dragon6 17 135 68 23 RF Dragon6 17 135 68 23 RF Dragon6 17 135 68 23 RF Inductive 24 129 74 16 RF Inductive 24 129 74 16 RF	J48 Fragment or 20 134 57 32 243 J48 GSFrag 21 133 58 31 243 J48 Inductive 16 142 49 36 243 J48 Mera, Mersy 11 135 55 41 242 J48 QNPR 20 122 69 32 243 RF Adriana 18 127 74 22 241 RF Adriana 18 127 74 22 241 RF CDK 24 130 71 16 241 RF Dragon6 17 123 80 23 243 RF Dragon6 17 135 68 23 243 RF Dragon6 17 135 68 23 243 RF Inductive 24 129 74 16 243 RF In	J48 Fragment or 20 134 57 32 243 0.63 J48 GSFrag 21 133 58 31 243 0.63 J48 Inductive 16 142 49 36 243 0.65 J48 Mera, Mersy 11 135 55 41 242 0.6 J48 QNPR 20 122 69 32 243 0.58 J48 QNPR 20 122 69 32 243 0.58 J48 Adriana 18 145 46 34 243 0.67 RF Adriana 18 127 74 22 241 0.6 RF CDK 24 130 71 16 241 0.63 RF Dragon6 17 123 80 23 243 0.63 RF Dragon6 17 135 68 23 243	J48 Fragment of Pragment o	J48 Fragment of Pragment of Pragment of Pragment J48 20 134 57 32 243 0.63 0.26 0.38 J48 GSFrag 21 133 58 31 243 0.63 0.27 0.4 J48 Inductive 16 142 49 36 243 0.65 0.25 0.31 J48 Mera, Mersy 11 135 55 41 242 0.6 0.17 0.21 J48 QNPR 20 122 69 32 243 0.65 0.22 0.38 J48 ONPR 18 145 46 34 243 0.67 0.22 0.35 RF Adriana 18 127 74 22 241 0.6 0.2 0.45 RF Adriana 18 127 74 22 241 0.6 0.2 0.48 RF Dragone 17 135 68 23 2	J48 Fragment January 20 134 57 32 243 0.63 0.26 0.38 0.31 J48 GSFrag 21 133 58 31 243 0.63 0.27 0.4 0.22 J48 Inductive 16 142 49 36 243 0.65 0.25 0.31 0.27 J48 Mera, Mersy 11 135 55 41 242 0.6 0.17 0.21 0.19 J48 ONPR 20 122 69 32 243 0.63 0.22 0.35 0.28 J48 Adriana 18 142 74 22 241 0.6 0.2 0.35 0.21 J48 Adriana 18 127 74 22 241 0.6 0.2 0.48 0.3 RF Adriana 18 127 74 22 241 0.6 0.2 0.48 0.3	J48 Fragment of or 20 134 57 32 243 0.63 0.26 0.38 0.31 0.38 J48 GSFrag 21 133 58 31 243 0.63 0.27 0.4 0.22 0.41 J48 Inductive 16 142 49 36 243 0.63 0.25 0.31 0.27 0.31 J48 Inductive 11 135 55 41 242 0.6 0.17 0.21 0.91 0.21 J48 ONPR 20 122 69 32 243 0.65 0.22 0.38 0.28 0.28 0.33 0.26 0.33 0.21 0.43 0.25 0.43 0.25 0.43 0.25 0.43 0.25 0.43 0.25 0.43 0.25 0.43 0.25 0.43 0.25 0.43 0.26 0.43 0.26 0.43 0.26 0.43 0.26 0.24 0.26	J48 Fragment of Correct Series 20 134 57 32 243 0.63 0.26 0.38 0.31 0.36 0.7 J48 GSFrag 21 133 58 31 243 0.63 0.27 0.42 0.22 0.4 0.74 J48 Inductive 16 142 49 36 243 0.65 0.25 0.13 0.27 0.21 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74<	J48 Fragment Gragnent 20 134 57 32 243 0.63 0.26 0.38 0.31 0.38 0.7 0.54 J48 GSFrag 21 133 58 31 243 0.63 0.27 0.41 0.32 0.4 0.7 0.55 J48 Inductive 16 142 49 36 243 0.65 0.25 0.31 0.27 0.31 0.74 0.74 0.53 J48 Mera, Mersy 11 135 55 41 242 0.6 0.27 0.21 0.31 0.71 0.6 0.2 0.22 0.24 0.20 0.22 0.24 0.25 0.24 0.25 0.25 0.24 0.30 0.24 0.51 0.51 0.51 0.51 0.51 0.52 0.24 0.24 0.24 0.25 0.26 0.25 0.24 0.25 0.24 0.25 0.25 0.24 0.25 0.25 0.24 0	J48 Fragment J48 20 134 57 32 243 0.63 0.26 0.38 0.31 0.74 0.54 -98.9 J48 GSFrag 21 133 58 31 243 0.63 0.27 0.4 0.32 0.4 0.7 0.55 -98.9 J48 Inductive 16 142 49 36 243 0.65 0.21 0.21 0.71 0.46 -99.1 J48 Mers, Mers, Mers 11 135 55 41 242 0.6 0.17 0.21 0.19 0.21 0.71 0.46 -99.1 J48 Mers, Mers 11 135 55 41 242 0.6 0.21 0.38 0.22 0.71 0.4 0.99.0 J48 Ones 12 122 241 0.6 0.2 0.38 0.25 0.63 0.55 -98.9 J48 Ones 12 12 24 <t< td=""><td>JAB Fragment JaB 20 134 57 32 243 0.63 0.26 0.38 0.31 0.70 0.54 -98.9 7.35 JAB GSFrag 21 133 58 31 243 0.63 0.27 0.41 0.32 0.41 0.55 -98.9 7.34 JAB Inductive 16 142 49 36 243 0.65 0.27 0.21 0.21 0.74 0.53 -99.9 7.04 JAB Mersy 11 135 55 41 242 0.6 0.17 0.21 0.19 0.21 0.74 0.64 -99.1 7.06 JAB ONPR 10 122 69 32 243 0.58 0.22 0.38 0.28 0.54 0.51 -99.9 7.07 JAB Actican 18 127 74 22 241 0.6 0.25 0.35 0.23 0.63 0.52 0.</td><td> Figure F</td></t<>	JAB Fragment JaB 20 134 57 32 243 0.63 0.26 0.38 0.31 0.70 0.54 -98.9 7.35 JAB GSFrag 21 133 58 31 243 0.63 0.27 0.41 0.32 0.41 0.55 -98.9 7.34 JAB Inductive 16 142 49 36 243 0.65 0.27 0.21 0.21 0.74 0.53 -99.9 7.04 JAB Mersy 11 135 55 41 242 0.6 0.17 0.21 0.19 0.21 0.74 0.64 -99.1 7.06 JAB ONPR 10 122 69 32 243 0.58 0.22 0.38 0.28 0.54 0.51 -99.9 7.07 JAB Actican 18 127 74 22 241 0.6 0.25 0.35 0.23 0.63 0.52 0.	Figure F

CHR Rat ThyroidGland 2 PreneoplasticLesion	ASN N	Fragment or	14	168	35	26	243	0.75	0.29	0.35	0.31	0.35	0.83	0.59	-98.8 7.5	51 0.16	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	ASN N	GSFrag	14	152	51	26	243	0.68	0.22	0.35	0.27	0.35	0.75	0.55	-98.9 7.0	0.08	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	ASN N	Inductive	22	148	55	18	243	0.7	0.29	0.55	0.38	0.55	0.73	0.64	-98.7 7.0	0.22	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	ASN N	Mera, Mersy	15	144	58	25	242	0.66	0.21	0.38	0.27	0.38	0.71	0.54	-98.9 6.8	38 0.07	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	ASN N	QNPR	16	155	48	24	243	0.7	0.25	0.4	0.31	0.4	0.76	0.58	-98.8 7.1	17 0.14	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	ASN N	Spectrop hores	19	132	71	21	243	0.62	0.21	0.48	0.29	0.48	0.65	0.56	-98.9 6.6	6 0.1	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	ASN N	CDK, TA, TP	13	143	58	27	241	0.65	0.18	0.33	0.23	0.33	0.71	0.52	-99.0 6.8	31 0.03	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	ASN N	CDK, TA	11	139	62	29	241	0.62	0.15	0.28	0.19	0.28	0.69	0.48	-99.0 6.6	3 .027	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	ASN N	CDK, TP	15	145	56	25	241	0.66	0.21	0.38	0.27	0.38	0.72	0.55	-98.9 6.9	93 0.08	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	ASN N	TA, TP	15	144	59	25	243	0.65	0.2	0.38	0.26	0.38	0.71	0.54	-98.9 6.8	37 0.07	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	ASN N	TA	13	144	59	27	243	0.65	0.18	0.33	0.23	0.33	0.71	0.52	-99.0 6	.8 0.03	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	ASN N	TP	16	139	64	24	243	0.64	0.2	0.4	0.27	0.4	0.68	0.54	-98.9 6.7	7 0.07	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	FSM LR	CDK, TA, TP	13	141	60	27	241	0.64	0.18	0.33	0.23	0.33	0.7	0.51	-99.0 6.7	7 0.02	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	FSM LR	CDK, TA	15	153	48	25	241	0.7	0.24	0.38	0.29	0.38	0.76	0.57	-98.9 7.1	13 0.12	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	FSM LR	CDK, TP	18	138	63	22	241	0.65	0.22	0.45	0.3	0.45	0.69	0.57	-98.9 6.8	81 0 11	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	FSM LR	TA, TP	15	136	67	25	243	0.62	0.18	0.38	0.25	0.38	0.67	0.52	-99.0 6.6		40
CHR Rat ThyroidGland 2	FSM																
PreneoplasticLesion CHR Rat ThyroidGland 2	LR FSM	TA	13	147	56	27	243	0.66	0.19	0.33	0.24	0.33	0.72	0.52	-99.0 6.8	38 0.04	40
PreneoplasticLesion CHR Rat ThyroidGland 2	LR	TP CDK, TA,	14	132	71	26	243	0.6	0.16	0.35	0.22	0.35	0.65	0.5	-99.0 6.5	57 0.	40
PreneoplasticLesion CHR Rat ThyroidGland 2	KNN	TP	20	143	58	20	241	0.68	0.26	0.5	0.34	0.5	0.71	0.61	-98.8 6.9	94 0.17	40
PreneoplasticLesion CHR Rat ThyroidGland 2	KNN	CDK, TA	6	180	21	34	241	0.77	0.22	0.15	0.18	0.15	0.9	0.52	-99.0 7.5	0.05	40
PreneoplasticLesion CHR Rat ThyroidGland 2	KNN	CDK, TP	23	114	87	17	241	0.57	0.21	0.58	0.31	0.58	0.57	0.57	-98.9 6.2	29 0.11	40
PreneoplasticLesion CHR Rat	KNN	TA, TP	19	128	75	21	243	0.6	0.2	0.48	0.28	0.48	0.63	0.55	-98.9 6.5	0.08	40
ThyroidGland 2 PreneoplasticLesion	KNN	TA	12	161	42	28	243	0.71	0.22	0.3	0.26	0.3	0.79	0.55	-98.9 7.2	21 0.08	40

CHR Rat																\neg
ThyroidGland 2 PreneoplasticLesion	KNN	TP	27	107	96	13	243	0.55	0.22	0.68	0.33	0.68	0.53	0.6	-98.8 6.02 0.15	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	LibS VM	CDK, TA, TP	1	198	3	39	241	0.83	0.25	0.03	0.05	0.03	0.99	0.51	-99.0 8.12 0.03	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	LibS VM	CDK, TA	3	190	11	37	241	0.8	0.21	0.08	0.11	0.08	0.95	0.51	-99.0 7.68 0.03	40
CHR Rat ThyroidGland 2	LibS VM	•	6			-					-					
PreneoplasticLesion CHR Rat ThyroidGland 2	LibS	CDK, TP	-	182	19	34	241	0.78	0.24	0.15	0.18	0.15	0.91	0.53	-98.9 7.65 0.07	40
PreneoplasticLesion CHR Rat ThyroidGland 2	VM LibS	TA, TP	5	185	18	35	243	0.78	0.22	0.13	0.16	0.13	0.91	0.52	-99.0 7.58 0.05	40
PreneoplasticLesion CHR Rat	VM	TA	3	187	16	37	243	0.78	0.16	0.08	0.1	0.08	0.92	0.5	-99.0 7.31 .005	40
ThyroidGland 2 PreneoplasticLesion CHR Rat	LibS VM	TP	4	185	18	36	243	0.78	0.18	0.1	0.13	0.1	0.91	0.51	-99.0 7.41 0.01	40
ThyroidGland 2 PreneoplasticLesion	MLR A	CDK, TA, TP	12	130	71	28	241	0.59	0.14	0.3	0.2	0.3	0.65	0.47	-99.1 6.48 .042	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	MLR A	CDK, TA	11	121	80	29	241	0.55	0.12	0.28	0.17	0.28	0.6	0.44	-99.1 6.24 .094	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	MLR A	CDK, TP	19	98	103	21	241	0.49	0.16	0.48	0.23	0.48	0.49	0.48	-99.0 5.99 .028	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	MLR A	TA, TP	19	137	66	21	243	0.64	0.22	0.48	0.3	0.48	0.67	0.57	-98.9 6.76 0.12	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	MLR A	TA	16	110	93	24	243	0.52	0.15	0.4	0.21	0.4	0.54	0.47	-99.1 6.17 .043	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	MLR A	TP	18	124	79	22	243	0.58	0.19	0.45	0.26	0.45	0.61	0.53	-98.9 6.48 0.05	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	PLS	CDK, TA, TP	16	141	60	24	241	0.65	0.21	0.4	0.28	0.4	0.7	0.55	-98.9 6.85 0.08	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	PLS	CDK, TA	10	139	62	30	241	0.62	0.14	0.25	0.18	0.25	0.69	0.47	-99.1 6.57 .048	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	PLS	CDK, TP	18	138	63	22	241	0.65	0.22	0.45	0.3	0.45	0.69	0.57	-98.9 6.81 0.11	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	PLS	TA, TP	15	140	63	25	243	0.64	0.19	0.38	0.25	0.38	0.69	0.53	-98.9 6.77 0.05	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	PLS	TA	14	141	62	26	243	0.64	0.18	0.35	0.24	0.35	0.69	0.52	-99.0 6.77 0.04	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	PLS	TP	18	125	78	22	243	0.59	0.19	0.45	0.26	0.45	0.62	0.53	-98.9 6.5 0.05	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	J48	CDK, TA, TP	13	161	40	27	241	0.72	0.25	0.33	0.28	0.33	0.8	0.56	-98.9 7.3 0.11	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	J48	CDK, TA	13	155	46	27	241	0.7	0.22	0.33	0.26	0.33	0.77	0.55	-98.9 7.12 0.08	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	J48	CDK, TP	9	159	42	31	241	0.7	0.18	0.23	0.2	0.23	0.79	0.51	-99.0 7.02 0.01	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	J48	TA, TP	10	139	64	30	243	0.61	0.14		0.18		0.68	0.47	-99.1 6.54 .053	40

CHR Rat ThyroidGland 2 PreneoplasticLesion	J48	TA	10	151	52	30	243	0.66	0.16	0.25	0.2	0.25	0.74	0.5	-99.0	6.83	.005	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	J48	TP	12	167	36	28	243	0.74	0.25	0.3	0.27	0.3	0.82	0.56	-98.9	7.4	0.11	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	RF	CDK, TA, TP	15	131	70	25	241	0.61	0.18	0.38	0.24	0.38	0.65	0.51	-99.0	6.6	0.02	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	RF	CDK, TA	16	134	67	24	241	0.62	0.19	0.4	0.26	0.4	0.67	0.53	-98.9	6.69	0.05	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	RF	CDK, TP	19	131	70	21	241	0.62	0.21	0.48	0.29	0.48	0.65	0.56	-98.9	6.66	0.1	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	RF	TA, TP	20	119	84	20	243	0.57	0.19	0.5	0.28	0.5	0.59	0.54	-98.9	6.39	0.06	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	RF	TA	21	126	77	19	243	0.6	0.21	0.53	0.3	0.53	0.62	0.57	-98.9	6.53	0.11	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	RF	TP	19	117	86	21	243	0.56	0.18	0.48	0.26	0.48	0.58	0.53	-98.9	6.34	0.04	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	FSM LR	Adriana	24	138	63	16	241	0.67	0.28	0.6	0.38	0.6	0.69	0.64	-98.7	6.78	0.22	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	FSM LR	ALogPS, OEstate	22	141	62	18	243	0.67	0.26	0.55	0.35	0.55	0.69	0.62	-98.8	6.85	0.19	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	FSM LR	CDK	18	146	55	22	241	0.68	0.25	0.45	0.32	0.45	0.73	0.59	-98.8	7.	0.14	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	FSM LR	Chemaxo n	11	137	66	29	243	0.61	0.14	0.28	0.19	0.28	0.67	0.47	-99.1	6 55	.04	40
CHR Rat ThyroidGland 2	FSM																	
PreneoplasticLesion CHR Rat ThyroidGland 2	LR FSM	Dragon6 Fragment	18_	140	63	22	243	0.65	0.22	0.45	0.3	0.45	0.69	0.57	-98.9	6.83	0.11	40
PreneoplasticLesion CHR Rat ThyroidGland 2	LR FSM	or	17	149	54	23	243	0.68	0.24	0.43	0.31	0.43	0.73	0.58	-98.8	7.03	0.13	40
PreneoplasticLesion CHR Rat	LR	GSFrag	17	126	77	23	243	0.59	0.18	0.43	0.25	0.43	0.62	0.52	-99.0	6.51	0.03	40
ThyroidGland 2 PreneoplasticLesion CHR Rat	FSM LR	Inductive	23	120	83	17	243	0.59	0.22	0.58	0.32	0.58	0.59	0.58	-98.8	6.39	0.12	40
ThyroidGland 2 PreneoplasticLesion	FSM LR	Mera, Mersy	19	136	66	21	242	0.64	0.22	0.48	0.3	0.48	0.67	0.57	-98.9	6.76	0.12	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	FSM LR	QNPR	20	133	70	20	243	0.63	0.22	0.5	0.31	0.5	0.66	0.58	-98.8	6.68	0.12	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	FSM LR	Spectrop hores	22	118	85	18	243	0.58	0.21	0.55	0.3	0.55	0.58	0.57	-98.9	6.36	0.1	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	KNN	Adriana	29	88	113	11	241	0.49	0.2	0.73	0.32	0.73	0.44	0.58	-98.8	5.58	0.12	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	KNN	ALogPS, OEstate	13	172	31	27	243	0.76	0.3	0.33	0.31	0.33	0.85	0.59	<u>-98</u> .8	7.62	0.17	40
CHR Rat ThyroidGland 2													_					

CHR Rat ThyroidGland 2 PreneoplasticLesion	KNN	Chemaxo n	17	89	114	23	243	0.44	0.13	0.43	0.2	0.43	0.44	0.43	-99.1	5.77	.102	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	KNN	Dragon6	22	95	108	18	243	0.48	0.17	0.55	0.26	0.55	0.47	0.51	-99.0	5.9	0.01	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	KNN	Fragment or	25	113	90	15	243	0.57	0.22	0.63	0.32	0.63	0.56	0.59	-98.8	6.21	0.13	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	KNN	GSFrag	18	117	86	22	243	0.56	0.17	0.45	0.25	0.45	0.58	0.51	-99.0	6.34	0.02	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	KNN	Inductive	21	133	70	19	243	0.63	0.23	0.53	0.32	0.53	0.66	0.59	-98.8	6.68	0.14	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	KNN	Mera, Mersy	27	107	95	13	242	0.55	0.22	0.68	0.33	0.68	0.53	0.6	-98.8	6.04	0.15	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	KNN	QNPR	13	145	58	27	243	0.65	0.18	0.33	0.23	0.33	0.71	0.52	-99.0	6.83	0.03	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	KNN	Spectrop hores	22	115	88	18	243	0.56	0.2	0.55	0.29	0.55	0.57	0.56	-98.9	6.3	0.09	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	LibS VM	Adriana	8	173	28	32	241	0.75	0.22	0.2	0.21	0.2	0.86	0.53	-98.9	7.43	0.06	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	LibS VM	ALogPS, OEstate	10	186	17	30	243	0.81	0.37	0.25	0.3	0.25	0.92	0.58	-98.8	8.14	0.2	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	LibS VM	CDK	7	182	19	33	241	0.78	0.27	0.18	0.21	0.18	0.91	0.54	-98.9	7 76	0.1	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	LibS VM	Chemaxo n	7	177	26	33	243	0.76	0.21	0.18	0.19	0.18	0.87	0.52	-99.0		-	40
CHR Rat ThyroidGland 2	LibS		-		-													
PreneoplasticLesion CHR Rat ThyroidGland 2	VM LibS	Dragon6 Fragment	10	171	32	30	243	0.74	0.24	0.25	0.24	0.25	0.84	0.55	-98.9	7.43	0.09	40
PreneoplasticLesion CHR Rat ThyroidGland 2	VM LibS	or	8	182	21	32	243	0.78	0.28	0.2	0.23	0.2	0.9	0.55	-98.9	7.76	0.11	40
PreneoplasticLesion CHR Rat	VM	GSFrag	5	177	26	35	243	0.75	0.16	0.13	0.14	0.13	0.87	0.5	-99.0	7.18	.003	40
ThyroidGland 2 PreneoplasticLesion CHR Rat	LibS VM	Inductive	11	174	29	29	243	0.76	0.28	0.28	0.28	0.28	0.86	0.57	-98.9	7.6	0.13	40
ThyroidGland 2 PreneoplasticLesion	LibS VM	Mera, Mersy	2	187	15	38	242	0.78	0.12	0.05	0.07	0.05	0.93	0.49	-99.0	7.06	.035	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	LibS VM	QNPR	5	188	15	35	243	0.79	0.25	0.13	0.17	0.13	0.93	0.53	-98.9	7.77	0.07	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	LibS VM	Spectrop hores	8	155	48	32	243	0.67	0.14	0.2	0.17	0.2	0.76	0.48	-99.0	6.79	.032	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	MLR A	Adriana	16	126	75	24	241	0.59	0.18	0.4	0.24	0.4	0.63	0.51	-99.0	6.52	0.02	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	MLR A	ALogPS, OEstate	18	146	57	22	243	0.67	0.24	0.45	0.31	0.45	0.72	0.58	-98.8	6.97	0.14	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	MLR A	CDK	21	121	80	19	241	0.59	0.21	0.53	0.3	0.53	0.6	0.56	-98.9	6.45	0.1	40

CHR Rat ThyroidGland 2 PreneoplasticLesion	MLR A	Chemaxo n	21	139	64	19	243	0.66	0.25	0.53	0.34	0.53	0.68	0.6	-98.8	6.81	0.16	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	MLR A	Dragon6	22	123	80	18	243	0.6	0.22	0.55	0.31	0.55	0.61	0.58	-98.8	6.46	0.12	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	MLR A	Fragment or	25	109	94	15	243	0.55	0.21	0.63	0.31	0.63	0.54	0.58	-98.8	6.13	0.12	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	MLR A	GSFrag	13	135	68	27	243	0.61	0.16	0.33	0.21	0.33	0.67	0.5	-99.0	6.6	.008	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	MLR A	Inductive	22	150	53	18	243	0.71	0.29	0.55	0.38	0.55	0.74	0.64	-98.7	7.07	0.23	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	MLR A	Mera, Mersy	19	99	103	21	242	0.49	0.16	0.48	0.23	0.48	0.49	0.48	-99.0	6.	.026	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	MLR A	QNPR	17	124	79	23	243	0.58	0.18	0.43	0.25	0.43	0.61	0.52	-99.0	6.47	0.03	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	MLR A	Spectrop hores	17	120	83	23	243	0.56	0.17	0.43	0.24	0.43	0.59	0.51	-99.0	6.39	0.01	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	PLS	Adriana	25	129	72	15	241	0.64	0.26	0.63	0.36	0.63	0.64	0.63	-98.7	6.56	0.2	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	PLS	ALogPS, OEstate	19	154	49	21	243	0.71	0.28	0.48	0.35	0.48	0.76	0.62	-98.8	7 18	N 19	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	PLS	CDK	17	142	59	23	241	0.66	0.22	0.43	0.29	0.43	0.71	0.57	-98.9		0.11	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	PLS	Chemaxo n	12	117	86	28	243	0.53	0.12	0.3	0.17	0.3	0.58	0.44	-99.1	6.18	.093	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	PLS	Dragon6	19	156	47	21	243	0.72	0.12	0.48	0.36	0.48	0.77	0.62	-98.8		0.2	40
CHR Rat ThyroidGland 2 PreneoplasticLesion	PLS	Fragment or	16	159	44	24	243	0.72	0.29	0.40	0.32	0.40	0.77	0.59	-98.8			40
CHR Rat ThyroidGland 2		-	-		61	24									-98.9			
PreneoplasticLesion CHR Rat ThyroidGland 2	PLS	GSFrag Inductive	16	142			243	0.65	0.21	0.4	0.27	0.4	0.7	0.55				40
PreneoplasticLesion CHR Rat ThyroidGland 2		Mera,	18	146	57	22	243					0.45		0.58	-98.8			40
PreneoplasticLesion CHR Rat ThyroidGland 2		Mersy	14	137	65	26	242	0.62	0.18	0.35	0.24	0.35	0.68	0.51	-99.0			40
PreneoplasticLesion CHR Rat ThyroidGland 2		Spectrop .	16	151	52	24	243	0.69	0.24	0.4	0.3	0.4	0.74	0.57	-98.9			40
PreneoplasticLesion CHR Rat ThyroidGland 2		hores	19	123	80	21	243	0.58	0.19	0.48	0.27	0.48	0.61	0.54	-98.9			40
PreneoplasticLesion CHR Rat ThyroidGland 2	J48	Adriana ALogPS,	13	159	42	27	241	0.71	0.24	0.33	0.27	0.33	0.79	0.56	-98.9	7.24	0.1	40
PreneoplasticLesion CHR Rat ThyroidGland 2	J48	OEstate	16	167	36	24	243	0.75	0.31	0.4	0.35	0.4	0.82	0.61	-98.8	7.53	0.2	40
PreneoplasticLesion CHR Rat	J48	CDK	15	159	42	25	241	0.72	0.26	0.38	0.31	0.38	0.79	0.58	-98.8	7.3	0.15	40
ThyroidGland 2 PreneoplasticLesion	J48	Chemaxo n	10	161	42	30	243	0.7	0.19	0.25	0.22	0.25	0.79	0.52	-99.0	7.1	0.04	40

OUD D-t																
CHR Rat ThyroidGland 2	140	DC	4.4	400	2.4	00	040	0.75	0.00	0.05	0.00	0.05	0.00	0.50	00 0 7 54 0 47	
PreneoplasticLesion CHR Rat	J48	Dragon6	14	169	34	26	243	0.75	0.29	0.35	0.32	0.35	0.83	0.59	-98.8 7.54 0.17	
ThyroidGland 2		Fragment														
PreneoplasticLesion	J48	or	15	152	51	25	243	0.69	0.23	0.38	0.28	0.38	0.75	0.56	-98.9 7.07 0.1	
CHR Rat ThyroidGland 2																
PreneoplasticLesion	J48	GSFrag	13	161	42	27	243	0.72	0.24	0.33	0.27	0.33	0.79	0.56	-98.9 7.25 0.1	
CHR Rat		5														
ThyroidGland 2	140		4.0	4	40	-00	0.40	0.74	0.07	0.45	0.04	0.45	0.70	0.04	000 70 040	
PreneoplasticLesion	J48	Inductive	18	155	48	22	243	0.71	0.27	0.45	0.34	0.45	0.76	0.61	-98.8 7.2 0.18	
CHR Rat ThyroidGland 2		Mera,														
PreneoplasticLesion	J48	Mersy	15	147	55	25	242	0.67	0.21	0.38	0.27	0.38	0.73	0.55	-98.9 6.96 0.08	
CHR Rat		-														
ThyroidGland 2	140	QNPR	12	150	ΕO	27	242	0.60	0.24	0.22	0.25	0.22	0.75	0.54	000 702 007	
PreneoplasticLesion	J48	QNPK	13	153	50	27	243	0.68	0.21	0.33	0.25	0.33	0.75	0.54	-98.9 7.03 0.07	
CHR Rat ThyroidGland 2		Spectrop														
PreneoplasticLesion	J48	hores	14	152	51	26	243	0.68	0.22	0.35	0.27	0.35	0.75	0.55	-98.9 7.04 0.08	
CHR Mouse	DE	۸ ما بیان م	20	405	- 0	40	004	0.00	0.00	0.50	0.07	0.50	0.7	0.04	007 070 000	
LiverNecrosis	RF	Adriana	22	135	58	16	231	0.68	0.28	0.58	0.37	0.58	0.7	0.64	-98.7 6.76 0.22	
CUD Massa		ALogPS,														
CHR Mouse LiverNecrosis	RF	OEstate	25	141	53	14	233	0.71	0.32	0.64	0.43	0.64	0.73	0.68	-98.6 6.89 0.29	
CHR Mouse		0 201010						••••	0.02	0.0.	00	0.0.	00	0.00	00.0 0.00 0.20	
LiverNecrosis	RF	CDK	23	133	61	15	232	0.67	0.27	0.61	0.38	0.61	0.69	0.65	-98.7 6.67 0.22	
CHR Mouse		Chemaxo														
LiverNecrosis	RF	n	22	126	68	17	233	0.64	0.24	0.56	0.34	0.56	0.65	0.61	-98.8 6.59 0.16	
CHR Mouse	DE	Dragane	22	127	E7	17	222	0.60	0.20	0.56	0.27	0.56	0.71	0.64	007 605 001	
LiverNecrosis	RF	Dragon6 Fragment	22	137	57	17	233	0.68	0.28	0.56	0.37	0.56	0.71	0.64	-98.7 6.85 0.21	
CHR Mouse LiverNecrosis	RF	or	21	131	63	18	233	0.65	0.25	0.54	0.34	0.54	0.68	0.61	-98.8 6.71 0.17	
CHR Mouse	1 (1	OI .	<u> </u>	101	- 00	10	200	0.00	0.20	0.04	0.04	0.04	0.00	0.01	-50.0 0.77 0.17	
LiverNecrosis	RF	GSFrag	21	123	71	18	233	0.62	0.23	0.54	0.32	0.54	0.63	0.59	-98.8 6.53 0.13	
CHR Mouse																
LiverNecrosis	RF	Inductive	22	136	58	17	233	0.68	0.28	0.56	0.37	0.56	0.7	0.63	-98.7 6.82 0.21	
CHR Mouse	55	Mera,	00	404	00	45	000	0.00	0.07	0.04	0.07	0.04	0.00	0.04	007 000 004	
LiverNecrosis CHR Mouse	RF	Mersy	23	131	63	15	232	0.66	0.27	0.61	0.37	0.61	0.68	0.64	-98.7 6.63 0.21	
LiverNecrosis	RF	QNPR	21	140	54	18	233	0.69	0.28	0.54	0.37	0.54	0.72	0.63	-98.7 6.93 0.21	
CHR Mouse		Spectrop														
LiverNecrosis	RF	hores	24	128	66	15	233	0.65	0.27	0.62	0.37	0.62	0.66	0.64	-98.7 6.6 0.21	
CHR Mouse	ASN															
LiverNecrosis	N	Adriana	24	142	51	14	231	0.72	0.32	0.63	0.42	0.63	0.74	0.68	-98.6 6.89 0.29	
CHR Mouse		ALogPS,	00	4.40	4.5	40	000		0.07	0.07	0.47	0.07		0.70		
LiverNecrosis	N ASN	OEstate	26	149	45	13	233	0.75	0.37	0.67	0.47	0.67	0.77	0.72	-98.6 7.07 0.35	
CHR Mouse LiverNecrosis	N N	CDK	21	146	48	17	232	0.72	0.3	0.55	0.39	0.55	0.75	0.65	-98.7 7.04 0.25	
		Chemaxo	<u> </u>	140	40	17	202	0.12	0.5	0.55	0.55	0.55	0.75	0.03	-90.1 1.04 0.23	
CHR Mouse LiverNecrosis	N	n	20	140	54	19	233	0.69	0.27	0.51	0.35	0.51	0.72	0.62	-98.8 6.94 0.19	
CHR Mouse	ASN								•							
	N	Dragon6	22	155	39	17	233	0.76	0.36	0.56	0.44	0.56	8.0	0.68	-98.6 7.35 0.31	
LiverNecrosis	ASN	Fragment				40	222	0.74	0.32	0.51	0.4	0.51	0.78	0.65	-98.7 7.27 0.25	
LiverNecrosis CHR Mouse	N	Fragment or	20	152	42	19	233									
LiverNecrosis CHR Mouse LiverNecrosis CHR Mouse	N ASN	or							0.00	0.4.	0.00	0.44	<u> </u>	0.50	000 001 0	
LiverNecrosis CHR Mouse LiverNecrosis CHR Mouse LiverNecrosis	N ASN N	ū	20 16	152 136	42 58	23	233	0.65	0.22	0.41	0.28	0.41	0.7	0.56	-98.9 6.81 0.09	
LiverNecrosis CHR Mouse LiverNecrosis CHR Mouse LiverNecrosis CHR Mouse	N ASN N ASN	or GSFrag	16	136	58	23	233	0.65								
LiverNecrosis CHR Mouse LiverNecrosis CHR Mouse LiverNecrosis CHR Mouse LiverNecrosis	ASN N ASN N	or GSFrag Inductive							0.22	0.41		0.41	0.72	0.56	-98.9 6.81 0.09 -98.7 6.91 0.25	
LiverNecrosis CHR Mouse	ASN N ASN N ASN	or GSFrag Inductive Mera,	16 23	136 140	58 54	23 16	233	0.65	0.3	0.59	0.4	0.59	0.72	0.66	-98.7 6.91 0.25	
LiverNecrosis CHR Mouse LiverNecrosis	N ASN N ASN N ASN	or GSFrag Inductive	16	136	58	23	233	0.65								
CHR Mouse LiverNecrosis CHR Mouse LiverNecrosis	ASN N ASN N ASN	or GSFrag Inductive Mera, Mersy	16 23	136 140	58 54	23 16	233	0.65	0.3	0.59	0.4	0.59	0.72	0.66	-98.7 6.91 0.25 -98.7 6.91 0.2	
LiverNecrosis CHR Mouse LiverNecrosis	ASN N ASN N ASN N ASN N	or GSFrag Inductive Mera,	16 23 20	136 140 141	58 54 53	23 16 18	233 233 232	0.65 0.7 0.69	0.3	0.59	0.4	0.59	0.72	0.66	-98.7 6.91 0.25 -98.7 6.91 0.2	

CHR Mouse	ASN	CDK, TA,														
LiverNecrosis	N	TP	7	146	48	31	232	0.66	0.13	0.18	0.15	0.18	0.75	0.47	-99.1 6.57 .0	55 3
CHR Mouse LiverNecrosis	ASN N	CDK, TA	12	148	46	26	232	0.69	0.21	0.32	0.25	0.32	0.76	0.54	-98.9 6.96 0.	07 3
CHR Mouse LiverNecrosis	ASN N	CDK, TP	15	148	46	23	232	0.7	0.25	0.39	0.3	0.39	0.76	0.58	-98.8 7.06 0.	13 3
CHR Mouse LiverNecrosis	ASN N	TA, TP	13	145	49	26	233	0.68	0.21	0.33	0.26	0.33	0.75	0.54	-98.9 6.96 O.	
CHR Mouse	ASN	IA, IF	13	145	49	20	233	0.00	0.21	0.33	0.20	0.33	0.75	0.54	-90.9 0.90 0.	01 3
LiverNecrosis	N	TA	14	136	58	25	233	0.64	0.19	0.36	0.25	0.36	0.7	0.53	-98.9 6.76 0.	05 3
CHR Mouse LiverNecrosis	ASN N	TP	11	133	61	28	233	0.62	0.15	0.28	0.2	0.28	0.69	0.48	-99.0 6.57 .0	26 3
CHR Mouse LiverNecrosis	FSM LR	CDK, TA, TP	15	126	68	23	232	0.61	0.18	0.39	0.25	0.39	0.65	0.52	-99.0 6.51 0.	03 3
CHR Mouse LiverNecrosis	FSM LR	CDK, TA	15	144	50	23	232	0.69	0.23	0.39	0.29	0.39	0.74	0.57	-98.9 6.95 0.	11 3
CHR Mouse	FSM															
LiverNecrosis	LR	CDK, TP	17	134	60	21	232	0.65	0.22	0.45	0.3	0.45	0.69	0.57	-98.9 6.73 0.	11 3
CHR Mouse LiverNecrosis	FSM LR	TA, TP	14	123	71	25	233	0.59	0.16	0.36	0.23	0.36	0.63	0.5	-99.0 6.46 .0	05 39
CHR Mouse LiverNecrosis	FSM LR	TA	14	136	58	25	233	0.64	0.19	0.36	0.25	0.36	0.7	0.53	-98.9 6.76 0.	05 3
CHR Mouse LiverNecrosis	FSM LR	TP	16	121	73	23	233	0.59	0.18	0.41	0.25	0.41	0.62	0.52	-99.0 6.46 0.	03 3
CHR Mouse LiverNecrosis	KNN	CDK, TA, TP	26	76	118	12	232	0.44	0.18	0.68	0.29	0.68	0.39	0.54	-98.9 5.37 0.	06 3
CHR Mouse LiverNecrosis	KNN	CDK, TA	8	163	31	30	232	0.74	0.21	0.21	0.21	0.21	0.84	0.53	-98.9 7.2 0.	05 38
CHR Mouse LiverNecrosis	KNN	CDK, TP	24	111	83	14	232	0.58	0.22	0.63	0.33	0.63	0.57	0.6	-98.8 6.16 0.	15 3
CHR Mouse LiverNecrosis	KNN	TA, TP	25	100	94	14	233	0.54	0.21	0.64	0.32	0.64	0.52	0.58	-98.8 5.97 0.	12 3
CHR Mouse LiverNecrosis	KNN	TA	14	138	56	25	233	0.65	0.2	0.36	0.26	0.36	0.71	0.54	-98.9 6.81 0.	06 3
CHR Mouse LiverNecrosis	KNN	TP	23	59	135	16	233	0.35	0.15	0.59	0.23	0.59	0.3	0.45	-99.1 5.14 .0	85 39
CHR Mouse LiverNecrosis	LibS VM	CDK, TA, TP	0	194	0	38	232	0.84		0.		0.	1.	0.5	-99.0 8.92	38
CHR Mouse LiverNecrosis	LibS VM	CDK, TA	0	193	1	38	232	0.83	0.	0.		0.	0.99	0.5	-99.0 7.82 .0	29 3
CHR Mouse LiverNecrosis	LibS VM	CDK, TP	3	186	8	35	232	0.81	0.27	0.08	0 12	0.08	0.96	0.52	-99.0 7.91 0.	07 3
CHR Mouse	LibS	·														
LiverNecrosis	VM	TA, TP	4	176	18	35	233	0.77	0.18	0.1	0.13	0.1	0.91	0.5	-99.0 7.33 0.	01 3
CHR Mouse LiverNecrosis	LibS VM	TA	5	167	27	34	233	0.74	0.16	0.13	0.14	0.13	0.86	0.49	-99.0 7.05 .0	12 3
CHR Mouse	LibS VM	TP	5	175	19	34	233	0.77	0.21	0.13	0.16	0.13	0.9	0.52	-99.0 7.44 0.	04 39
LiverNecrosis	- 141 5	CDK, TA,														
CHR Mouse LiverNecrosis	MLR A	TP	14	136	58	24	232	0.65	0.19	0.37	0.25	0.37	0.7	0.53	-98.9 6.72 0.	06 3

CHR Mouse LiverNecrosis	MLR A	CDK, TP	19	112	82	19	232	0.56	0.19	0.5	0.27	0.5	0.58	0.54	-98.9	6.25	0.06	;
CHR Mouse LiverNecrosis	MLR A	TA, TP	20	121	73	19	233	0.61	0.22	0.51	0.3	0.51	0.62	0.57	-98.9	6.49	0.1	
CHR Mouse LiverNecrosis	MLR A	TA	19	113	81	20	233	0.57	0.19	0.49	0.27	0.49	0.58	0.53	-98.9	6.32	0.05	;
CHR Mouse LiverNecrosis	MLR A	TP	16	124	70	23	233	0.6	0.19	0.41	0.26	0.41	0.64	0.52	-99.0	6.53	0.04	
CHR Mouse LiverNecrosis	PLS	CDK, TA, TP	14	135	59	24	232	0.64	0.19	0.37	0.25	0.37	0.7	0.53	-98.9	6.7	0.05	
CHR Mouse LiverNecrosis	PLS	CDK, TA	15	140	54	23	232	0.67	0.22	0.39	0.28	0.39	0.72	0.56	-98.9	6.84	0.09	
CHR Mouse LiverNecrosis	PLS	CDK, TP	15	144	50	23	232	0.69	0.23	0.39	0.29	0.39	0.74	0.57	-98.9	6.95	0.11	
CHR Mouse LiverNecrosis	PLS	TA, TP	17	140	54	22	233	0.67	0.24	0.44	0.31	0.44	0.72	0.58	-98.8	6.92	0.13	
CHR Mouse LiverNecrosis	PLS	TA	16	130	64	23	233	0.63	0.2	0.41	0.27	0.41	0.67	0.54	-98.9	6.67	0.06	
CHR Mouse LiverNecrosis	PLS	TP CDK, TA,	13	128	66	26	233	0.61	0.16	0.33	0.22	0.33	0.66	0.5	-99.0	6.54	.005	
CHR Mouse LiverNecrosis	J48	TP	16	137	57	22	232	0.66	0.22	0.42	0.29	0.42	0.71	0.56	-98.9	6.79	0.1	
CHR Mouse LiverNecrosis	J48	CDK, TA	7	164	30	31	232	0.74	0.19	0.18	0.19	0.18	0.85	0.51	-99.0	7.15	0.03	_
CHR Mouse LiverNecrosis	J48	CDK, TP	14	152	42	24	232	0.72	0.25	0.37	0.3	0.37	0.78	0.58	-98.8	7.15	0.13	
CHR Mouse LiverNecrosis	J48	TA, TP	12	153	41	27	233	0.71	0.23	0.31	0.26	0.31	0.79	0.55	-98.9	7.15	0.09	_
CHR Mouse LiverNecrosis CHR Mouse	J48	TA	8	151	43	31	233	0.68	0.16	0.21	0.18	0.21	0.78	0.49	-99.0	6.84	.015	
LiverNecrosis CHR Mouse	J48	TP CDK, TA,	9	133	61	30	233	0.61	0.13	0.23	0.17	0.23	0.69	0.46	-99.1	6.44	.068	_
LiverNecrosis	RF	TP	14	140	54	24	232	0.66	0.21	0.37	0.26	0.37	0.72	0.55	-98.9	6.82	0.07	
CHR Mouse LiverNecrosis	RF	CDK, TA	18	137	57	20	232	0.67	0.24	0.47	0.32	0.47	0.71	0.59	-98.8	6.81	0.14	
CHR Mouse LiverNecrosis	RF	CDK, TP	19	133	61	19	232	0.66	0.24	0.5	0.32	0.5	0.69	0.59	-98.8	6.72	0.14	_
CHR Mouse LiverNecrosis CHR Mouse	RF	TA, TP	19	110	84	20	233	0.55	0.18	0.49	0.27	0.49	0.57	0.53	-98.9	6.26	0.04	_
LiverNecrosis CHR Mouse	RF	TA	18	116	78	21	233	0.58	0.19	0.46	0.27	0.46	0.6	0.53	-98.9	6.38	0.05	_
LiverNecrosis	RF	TP	21	99	95	18	233	0.52	0.18	0.54	0.27	0.54	0.51	0.52	-99.0	6.03	0.04	
CHR Mouse LiverNecrosis	FSM LR	Adriana	22	134	59	16	231	0.68	0.27	0.58	0.37	0.58	0.69	0.64	-98.7	6.73	0.21	
CHR Mouse		ALogPS,																
LiverNecrosis	LR	OEstate	25	147	47	14	233	0.74	0.35	0.64	0.45	0.64	0.76	0.7	-98.6	7.05	0.32	_
CHR Mouse LiverNecrosis	FSM LR	CDK	24	140	54	14	232	0.71	0.31	0.63	0.41	0.63	0.72	0.68	-98.6	6.82	0.28	
CHR Mouse LiverNecrosis	FSM LR	Chemaxo n	25	134	60	14	233	0.68	0.29	0.64	0.4	0.64	0.69	0.67	-98.7	6.71	0.26	
CHR Mouse LiverNecrosis	FSM LR	Dragon6	18	143	51	21	233	0.69	0.26	0.46	0.33	0.46	0.74	0.6	-98.8	7.01	0.16	
CHR Mouse LiverNecrosis	FSM LR	Fragment or	22	145	49	17	233	0.72	0.31	0.56	0.4	0.56	0.75	0.66	-98.7	7.05	0.25	
CHR Mouse LiverNecrosis	FSM LR	GSFrag	18	142	52	21	233	0.69	0.26	0.46	0.33	0.46	0.73	0.6	-98.8	6.98	0.16	

CHR Mouse LiverNecrosis	FSM LR	Inductive	34	57	137	5	233	0.39	0.2	0.87	0.32	0.87	0.29	0.58	-98.8	4.37	0.14	
CHR Mouse		Mera,	47	405	50	0.4	000	0.00	0.00	0.45	0.0	0.45	0.7	0.57	00.0	0.75	0.44	
LiverNecrosis	LR	Mersy	17	135	59	21	232	0.66	0.22	0.45	0.3	0.45	0.7	0.57	-98.9	6.75	0.11	_
CHR Mouse LiverNecrosis	FSM LR	QNPR	21	142	52	18	233	0.7	0.29	0.54	0.38	0.54	0.73	0.64	-98.7	6.98	0.22	
CHR Mouse LiverNecrosis	FSM LR	Spectrop hores	22	137	57	17	233	0.68	0.28	0.56	0.37	0.56	0.71	0.64	-98.7	6.85	0.21	
CHR Mouse LiverNecrosis		Adriana	24	111	82	14	231	0.58	0.23	0.63	0.33	0.63	0.58	0.6	-98.8			_
CHR Mouse	Tarr	ALogPS,			- 02		201	0.00	0.20	0.00	0.00	0.00	0.00	0.0	00.0	0.17	0.10	_
LiverNecrosis	KNN	OEstate	27	133	61	12	233	0.69	0.31	0.69	0.43	0.69	0.69	0.69	-98.6	6.61	0.29	_
CHR Mouse LiverNecrosis	KNN	CDK Chemaxo	28	127	67	10	232	0.67	0.29	0.74	0.42	0.74	0.65	0.7	-98.6	6.34	0.29	_
CHR Mouse LiverNecrosis	KNN		27	101	93	12	233	0.55	0.23	0.69	0.34	0.69	0.52	0.61	-98.8	5.92	0.16	
CHR Mouse LiverNecrosis	KNN	Dragon6	27	129	65	12	233	0.67	0.29	0.69	0.41	0.69	0.66	0.68	-98.6	6.52	0.27	
CHR Mouse LiverNecrosis	KNN	Fragment or	18	149	45	21	233	0.72	0.29	0.46	0.35	0.46	0.77	0.61	-98.8	7.18	0.19	
CHR Mouse LiverNecrosis	KNN	GSFrag	18	140	54	21	233	0.68	0.25	0.46	0.32	0.46	0.72	0.59	-98.8	6.93	0.15	
CHR Mouse LiverNecrosis	KNN		24	114	80	15	233	0.59	0.23	0.62	0.34	0.62	0.59	0.6	-98.8	6.29	0.15	
CHR Mouse LiverNecrosis	KNN	Mera, Mersy	28	93	101	10	232	0.52	0.22	0.74	0.34	0.74	0.48	0.61	-98.8	5.62	0.16	
CHR Mouse LiverNecrosis	KNN	QNPR	14	168	26	25	233	0.78	0.35	0.36	0.35	0.36	0.87	0.61	-98.8	7.76	0.22	
CHR Mouse LiverNecrosis	KNN	Spectrop hores	27	114	80	12	233	0.61	0.25	0.69	0.37	0.69	0.59	0.64	-98.7	6.19	0.21	
CHR Mouse LiverNecrosis	LibS VM	Adriana	14	166	27	24	231	0.78	0.34	0.37	0.35	0.37	0.86	0.61	-98.8	7 67	0.22	
Livernecrosis			14	100	21	24	231	0.76	0.54	0.37	0.33	0.37	0.00	0.01	-90.0	7.07	0.22	-
CHR Mouse LiverNecrosis	LibS VM	ALogPS, OEstate	19	164	30	20	233	0.79	0.39	0.49	0.43	0.49	0.85	0.67	-98.7	7.68	0.3	
CHR Mouse LiverNecrosis	LibS VM	CDK	14	174	20	24	232	0.81	0.41	0.37	0.39	0.37	0.9	0.63	-98.7	8 01	0.28	
		Chemaxo						0.0.		0.01	0.00	0.01		0.00		0.0.	0.20	_
CHR Mouse LiverNecrosis	VM	n	13	166	28	26	233	0.77	0.32	0.33	0.33	0.33	0.86	0.59	-98.8	7.64	0.19	_
CHR Mouse LiverNecrosis	LibS VM	Dragon6	18	163	31	21	233	0.78	0.37	0.46	0.41	0.46	0.84	0.65	-98.7	<u>7</u> .63	0.28	_
CHR Mouse		Fragment		174	22	24	222	0.77	0.20	0.24	0.22	0.24	0.00	0.54	00.0	7.50	0.4	_
LiverNecrosis	VM	or	8	171	23	31	233	0.77	0.20	0.21	0.23	0.21	0.88	0.04	-98.9	1.36	0.1	_
CHR Mouse LiverNecrosis	LibS VM	GSFrag	11	171	23	28	233	0.78	0.32	0.28	0.3	0.28	0.88	0.58	-98.8	7.78	0.17	
CHR Mouse LiverNecrosis	LibS VM	Inductive	12	165	29	27	233	0.76	0.29	0.31	0.3	0.31	0.85	0.58	-98.8	7.56	0.16	
CHR Mouse LiverNecrosis	LibS VM	Mera, Mersy	8	170	24	30			0.25					0.54	-98.9		0.09	-

CHR Mouse	LibS																
LiverNecrosis	VM	QNPR	15	161	33	24	233	0.76	0.31	0.38	0.34	0.38	0.83	0.61	-98.8 7.51	0.2	3
CHR Mouse	LibS	Spectrop															
LiverNecrosis	VM	hores	16	155	39	23	233	0.73	0.29	0.41	0.34	0.41	8.0	0.6	-98.8 7.33 (0.18	3
CHR Mouse	MLR																
LiverNecrosis	A	Adriana	20	119	74	18	231	0.6	0.21	0.53	0.3	0.53	0.62	0.57	-98.9 6.41	0.11	3
OUD Massa	MIR	ALogPS,															
CHR Mouse LiverNecrosis	A	OEstate	24	140	54	15	233	0.7	0.31	0.62	0.41	0.62	0.72	0.67	-98.7 6.89 (0.27	39
CHR Mouse	MLR																
LiverNecrosis	A	CDK	20	107	87	18	232	0.55	0.19	0.53	0.28	0.53	0.55	0.54	-98.9 6.14 (0.06	38
CHR Mouse LiverNecrosis	MLR A	Chemaxo n	20	135	59	19	233	0.67	0.25	0.51	0.34	0.51	0.7	0.6	-98.8 6.81 (0.16	39
CHR Mouse	MLR			100	- 00	10	200	0.01	0.20	0.01	0.04	0.01	0.7	0.0	00.0 0.01	5.10	
LiverNecrosis	Α	Dragon6	23	100	94	16	233	0.53	0.2	0.59	0.29	0.59	0.52	0.55	-98.9 6.02 (3.08	39
CHR Mouse		Fragment	0.5	00	404		000	0.40	0.40	0.04	0.0	0.04	0.40	0.55	000 577		0.0
LiverNecrosis	A MLR	or	25	90	104	14	233	0.49	0.19	0.64	0.3	0.64	0.46	0.55	-98.9 5.77 (80.0	39
CHR Mouse LiverNecrosis	A	GSFrag	23	103	91	16	233	0.54	0.2	0.59	0.3	0.59	0.53	0.56	-98.9 6.08 (0.09	39
CHR Mouse	MLR	<u> </u>															
LiverNecrosis	A	Inductive	22	130	64	17	233	0.65	0.26	0.56	0.35	0.56	0.67	0.62	-98.8 6.68 (0.18	39
CHR Mouse LiverNecrosis	MLR A	Mera, Mersy	21	105	89	17	232	0.54	0.19	0.55	0.28	0.55	0.54	0.55	-98.9 6.09 (0.07	38
CHR Mouse	MLR		<u> </u>	103	09	17	232	0.54	0.19	0.55	0.20	0.55	0.54	0.55	-90.9 0.09 (3.07	
LiverNecrosis	Α	QNPR	18	103	91	21	233	0.52	0.17	0.46	0.24	0.46	0.53	0.5	-99.0 6.11 .	.006	39
CHR Mouse	MLR																
LiverNecrosis	A	hores	22	127	67	17	233	0.64	0.25	0.56	0.34	0.56	0.65	0.61	-98.8 6.61 (0.17	39
CHR Mouse LiverNecrosis	PLS	Adriana	23	142	51	15	231	0.71	0.31	0.61	0.41	0.61	0.74	0.67	-98.7 6.92 (0.27	38
CHR Mouse	DI O	ALogPS,	0.5	450	4.4		000	0.75	0.00	0.04	0.40	0.04	0.77	0.74	000 740	2.04	00
LiverNecrosis CHR Mouse	PLS	OEstate	25	150	44	14	233	0.75	0.36	0.64	0.46	0.64	0.77	0.71	-98.6 7.13 (J.34	39
LiverNecrosis	PLS	CDK	26	145	49	12	232	0.74	0.35	0.68	0.46	0.68	0.75	0.72	-98.6 6.88 (0.34	38
CHR Mouse	DI O	Chemaxo	0.4	400		4-	200		0.00	0.00	0.4	0.00		0.00	007.070		-
LiverNecrosis	PLS	n	24	136	58	15	233	0.69	0.29	0.62	0.4	0.62	0.7	0.66	-98.7 6.79 (0.25	39
CHR Mouse LiverNecrosis	PLS	Dragon6	23	150	44	16	233	0.74	0.34	0.59	0.43	0.59	0.77	0.68	-98.6 7.18	0.3	39
CHR Mouse		Fragment															
LiverNecrosis	PLS	or	18	153	41	21	233	0.73	0.31	0.46	0.37	0.46	0.79	0.63	-98.7 7.29 (0.21	39
CHR Mouse LiverNecrosis	PLS	GSFrag	19	139	55	20	233	0.68	0.26	0.49	0.34	0.49	0.72	0.6	-98.8 6.91 (0.16	39
CHR Mouse																	
LiverNecrosis	PLS	Inductive	24	119	75	15	233	0.61	0.24	0.62	0.35	0.62	0.61	0.61	-98.8 6.4 (0.17	39
CHR Mouse	ם פ	Mera,	20	120	56	10	222	0.60	U 26	0.52	U 3E	0.52	0.71	0.62	_08 8 8 03 <i>1</i>	10	20
LiverNecrosis CHR Mouse	PLS	Mersy	20	138	56	18	232	0.68	0.26	0.53	0.35	0.53	0.71	0.62	-98.8 6.83 (J. 18	38
LiverNecrosis	PLS	QNPR	18	148	46	21	233	0.71	0.28	0.46	0.35	0.46	0.76	0.61	-98.8 7.15 (0.19	39
CHR Mouse	DI O	Spectrop	00	407	07	40	000	0.04	0.00	0.50	0.00	0.50	0.05	0.00	000 00	2.40	00
LiverNecrosis CHR Mouse	PLS	hores	23	127	67	16	233	0.64	0.26	0.59	0.36	0.59	0.65	0.62	-98.8 6.6 (J.19	39
LiverNecrosis	J48	Adriana	19	158	35	19	231	0.77	0.35	0.5	0.41	0.5	0.82	0.66	-98.7 7.44 (0.28	38
		AL c =: DC															
CHR Mouse LiverNecrosis	140	ALogPS, OEstate	19	152	42	20	222	0.72	U 31	0.40	U 30	0 40	O 70	0.64	_087 707 (J 22	39
CHR Mouse	J48	OLSIAIE	18	102	44	20	233	0.73	0.31	0.49	0.38	0.49	0.78	0.64	-98.7 7.27 (J. Z J	
LiverNecrosis	J48	CDK	15	160	34	23	232	0.75	0.31	0.39	0.34	0.39	0.82	0.61	-98.8 7.44	0.2	38
CHR Mouse	140	Chemaxo	40	450	40	00	000	0.70	0.04	0.40	0.00	0.40	0.70	0.04	00.7.707.6		
LiverNecrosis	J48	n	19	152	42	20	233	0.73	0.31	0.49	0.38	0.49	0.78	0.64	-98.7 7.27 (J. Z 3	39
CHR Mouse LiverNecrosis	J48	Dragon6	14	157	37	25	233	0.73	0.27	0.36	0.31	0.36	0.81	0.58	-98.8 7.35 (0.15	39
CHR Mouse		Fragment															
LiverNecrosis	J48	or	15	141	53	24	233	0.67	0.22	0.38	0.28	0.38	0.73	0.56	-98.9 6.91 (0.09	39

CHR Mouse LiverNecrosis	J48	GSFrag	18	149	45	21	233	0.72	0.29	0.46	0.35	0.46	0.77	0.61	-98.8	7.18 0.19	39
CHR Mouse iverNecrosis	J48	Inductive	15	150	44	24	233	0.71	0.25	0.38	0.31	0.38	0.77	0.58	-98.8	7.16 0.14	39
CHR Mouse	140	Mera,		450	00	0.4	000	0.70	0.07	0.07	0.04	0.07		0.50	00.0	7 00 0 4	
LiverNecrosis CHR Mouse	J48	Mersy	14	156	38	24	232	0.73	0.27	0.37	0.31	0.37	8.0	0.59	-98.8	7.28 0.15	38
LiverNecrosis	J48	QNPR Spectrop	16	144	50	23	233	0.69	0.24	0.41	0.3	0.41	0.74	0.58	-98.8	7.01 0.13	39
CHR Mouse LiverNecrosis	J48	hores	15	154	40	24	233	0.73	0.27	0.38	0.32	0.38	0.79	0.59	-98.8	7.28 0.16	39
CHR Mouse LiverProliferativeLesions	RF	Adriana	54	75	68	34	231	0.56	0.44	0.61	0.51	0.61	0.52	0.57	-98.9	7.64 0.13	88 8
CHR Mouse LiverProliferativeLesio		ALogPS,	50	70	00	00	000	0.57	0.45	0.04	0.50	0.04	0.50	0.50	00.0	7.04.0.46	
CHR Mouse	RF	OEstate	56	76	69	32	233	0.57	0.45	0.64	0.53	0.64	0.52	0.58	-98.8	7.61 0.16	88
LiverProliferativeLesio ns	RF	CDK	50	72	72	38	232	0.53	0.41	0.57	0.48	0.57	0.5	0.53	-98.9	7.57 0.07	' 88
CHR Mouse LiverProliferativeLesio		Chemaxo	5 0			0.5	000	0.50	0.44		0.40		0.40	0.54	00.0	7 40 0 0	
ns CHR Mouse	RF	n	53	70	75	35	233	0.53	0.41	0.6	0.49	0.6	0.48	0.54	-98.9	7.48 0.08	88
LiverProliferativeLesio ns	RF	Dragon6	56	83	62	32	233	0.6	0.47	0.64	0.54	0.64	0.57	0.6	-98.8	7.81 0.2	2 88
CHR Mouse LiverProliferativeLesio ns	RF	Fragment or	53	84	61	35	233	0.59	0.46	0.6	0.52	0.6	0.58	0.59	-98.8	7.87 0.18	88
CHR Mouse LiverProliferativeLesio			52	71	74	36	233	0.53	0.41	0.59	0.49	0.59	0.49	0.54		7.52 0.08	
CHR Mouse		GSFrag	JZ	11	, 4	30	۷,00	0.00	0.41	0.08	0.48	0.08	0.48	0.04	-30.3	1.52 0.00	88
LiverProliferativeLesio ns	RF	Inductive	53	79	66	35	233	0.57	0.45	0.6	0.51	0.6	0.54	0.57	-98.9	7.73 0.14	88
CHR Mouse LiverProliferativeLesio ns	RF	Mera, Mersy	59	71	73	29	232	0.56	0.45	0.67	0.54	0.67	0.49	0.58	-98.8	7.44 0.16	88
CHR Mouse LiverProliferativeLesio ns	RF	QNPR	52	83	62	36	233	0.58	0.46	0.59	0.51	0.59	0.57	0.58	-98.8	7.85 0.16	88
CHR Mouse LiverProliferativeLesio		Spectrop														2.2 3.70	
ns CHR Mouse	RF	hores	51	76	69	37	233	0.55	0.43	0.58	0.49	0.58	0.52	0.55	-98.9	7.66 0.1	88
LiverProliferativeLesions	ASN N	Adriana	38	88	55	50	231	0.55	0.41	0.43	0.42	0.43	0.62	0.52	-99.0	8.04 0.05	5 88
CHR Mouse LiverProliferativeLesio ns	ASN N	ALogPS, OEstate	42	94	51	46	233	0.58	0.45	0.48	0.46	0.48	0.65	0.56	-98.9	8.2 0.12	2 88
CHR Mouse		2	· <u>-</u>														
LiverProliferativeLesions	N N	CDK	47	103	41	41	232	0.65	0.53	0.53	0.53	0.53	0.72	0.62	-98.8	8.5 0.25	88
CHR Mouse LiverProliferativeLesio ns	ASN N	Chemaxo n	35	93	52	53	233	0.55	0.4	0.4	0.4	0.4	0.64	0.52	-99.0	8.13 0.04	88
CHR Mouse LiverProliferativeLesio ns	ASN N	Dragon6	41	104	41	47	233	0.62	0.5	0.47	0.48	0.47	0.72	0.59	-98 8	8.51 0.19) 88
CHR Mouse LiverProliferativeLesio	ASN	Fragment															
CHR Mouse	N	or	47	109	36	41	233	0.67	0.57	0.53	0.55	0.53	0.75	0.64	-98.7	8.69 0.29	88 (
LiverProliferativeLesions	ASN N	GSFrag	36	90	55	52	233	0.54	0.4	0.41	0.4	0.41	0.62	0.51	-99.0	8.05 0.03	88
CHR Mouse LiverProliferativeLesions	ASN N	Inductive	48	92	53	40	233	0.6	0.48	0.55	0.51	0.55	0.63	0.59	-98.8	8.13 0.18	88

CHR Mouse LiverProliferativeLesio ns	ASN N	QNPR	45	95	50	43	233	0.6	0.47	0.51	0.49	0.51	0.66	0.58	-98.8	8.23 0.1	6 88
CHR Mouse LiverProliferativeLesions	ASN N	Spectrop hores	46	94	51	42	233	0.6	0.47	0.52	0.5	0.52	0.65	0.59	-98.8	8.2 0.1	7 88
CHR Mouse LiverProliferativeLesions	ASN N	CDK, TA, TP	44	95	49	44	232	0.6	0.47	0.5	0.49	0.5	0.66	0.58	-98.8	8.25 0.1	6 88
CHR Mouse LiverProliferativeLesions	ASN N	CDK, TA	43	96	48	45	232	0.6	0.47	0.49	0.48	0.49	0.67	0.58	-98.8	8.28 0.1	5 88
CHR Mouse LiverProliferativeLesions	ASN N	CDK, TP	43	86	58	45	232	0.56	0.43	0.49	0.46	0.49	0.6	0.54	-98.9	7.98 0.0	8 88
CHR Mouse LiverProliferativeLesions	ASN N	TA, TP	41	92	53	47	233	0.57	0.44	0.47	0.45	0.47	0.63	0.55	-98.9	8.13 0	.1 88
CHR Mouse LiverProliferativeLesions	ASN N	TA	40	93	52	48	233	0.57	0.43	0.45	0.44	0.45	0.64	0.55	-98.9	8.16 0	.1 88
CHR Mouse LiverProliferativeLesions	ASN N	TP	37	84	61	51	233	0.52	0.38	0.42	0.4	0.42	0.58	0.5	-99.0	7.88	. 88
CHR Mouse LiverProliferativeLesio ns	FSM LR	CDK, TA, TP	43	97	47	45	232	0.6	0.48	0.49	0.48	0.49	0.67	0.58	-98.8	8.31 0.1	6 88
CHR Mouse LiverProliferativeLesio ns	FSM LR	CDK, TA	40	97	47	48	232	0.59	0.46	0.45	0.46	0.45	0.67	0.56	-98.9	8.3 0.1	3 88
CHR Mouse LiverProliferativeLesions	FSM LR	CDK, TP	44	98	46	44	232	0.61	0.49	0.5	0.49	0.5	0.68	0.59	-98.8	8.34 0.1	8 88
CHR Mouse LiverProliferativeLesions	FSM LR	TA, TP	36	95	50	52	233	0.56	0.42	0.41	0.41	0.41	0.66	0.53	-98.9	8.2 0.0	16 88
CHR Mouse LiverProliferativeLesio	FSM	,	41	91		-											
ns CHR Mouse LiverProliferativeLesio	LR FSM	TA		-	54	47	233	0.57	0.43	0.47	0.45	0.47	0.63	0.55	-98.9	8.1 0.0	
ns CHR Mouse LiverProliferativeLesio		CDK, TA,	40	78	67	48	233	0.51	0.37	0.45		0.45		0.5		7.73 .00	
ns CHR Mouse LiverProliferativeLesio			37	96	48	51	232	0.57	0.44	0.42		0.42	0.67	0.54		8.25 0.0	
ns CHR Mouse LiverProliferativeLesio		CDK, TA	14	131	13	74				0.16					-98.9		
ns CHR Mouse LiverProliferativeLesio		CDK, TP	55	70	74	33	232	0.54					0.49			7.47 0. ⁻	
ns CHR Mouse LiverProliferativeLesio		TA, TP	47	92	53	41	233	0.6	0.47			0.53		0.58		8.13 0.1	
ns CHR Mouse LiverProliferativeLesio			21	131	97	67	233	0.65	0.6		0.34		0.9			9.49 0.1 7.01 0.1	
ns CHR Mouse LiverProliferativeLesio		CDK, TA,	62	58	87	26	233	0.52		0.7	0.52	0.7		0.55		7.01 0.	
ns CHR Mouse LiverProliferativeLesio	VM LibS	TP	32	105	39	56	232	0.59	0.45	0.36	0.4	0.36	0.73	0.55	-98.9	8.5 0	.1 88
ns	VM	CDK, TA	35	104	40	53	232	0.6	0.47	0.4	0.43	0.4	0.72	0.56	-98.9	8.5 0.1	2 88

LiverProliferativeLesions	VM	CDK, TP	21	114	30	67	232	0.58	0.41	0.24	0.3	0.24	0.79	0.52	-99.0	8.6	0.04	88
CHR Mouse LiverProliferativeLesions		TA, TP	26	107	38	62	233	0.57	0.41	0.3	0.34	0.3	0.74	0.52	-99.0	8.44	0.04	88
CHR Mouse LiverProliferativeLesions	LibS	TA	25	118	27	63	233	0.61		0.28		0.28	0.81	0.55		8.85		88
CHR Mouse LiverProliferativeLesions	LibS VM	TP	24	108	37	64	233	0.57	0.39	0.27	0.32	0.27	0.74	0.51	-99.0	8.43	0.02	88
CHR Mouse LiverProliferativeLesions	MLR A	CDK, TA, TP	42	87	57	46	232	0.56	0.42	0.48	0.45	0.48	0.6	0.54	-98.9	8.01	0.08	88
CHR Mouse LiverProliferativeLesions	MLR A	CDK, TA	38	92	52	50	232	0.56	0.42	0.43	0.43	0.43	0.64	0.54	-98.9	8.14	0.07	88
CHR Mouse LiverProliferativeLesions	MLR A	CDK, TP	45	87	57	43	232	0.57	0.44	0.51	0.47	0.51	0.6	0.56	-98.9	8.01	0.11	88
CHR Mouse LiverProliferativeLesions	MLR A	TA, TP	29	81	64	59	233	0.47	0.31	0.33	0.32	0.33	0.56	0.44	-99.1	7.7	.111	88
CHR Mouse LiverProliferativeLesions	MLR A	TA	40	84	61	48	233	0.53	0.4	0.45	0.42	0.45	0.58	0.52	-99.0	7.9	0.03	88
CHR Mouse LiverProliferativeLesions	MLR A	TP	41	70	75	47	233	0.48	0.35	0.47	0.4	0.47	0.48	0.47	-99.1	7.52	.05	88
CHR Mouse LiverProliferativeLesions CHR Mouse	PLS	CDK, TA, TP	43	94	50	45	232	0.59	0.46	0.49	0.48	0.49	0.65	0.57	-98.9	8.22	0.14	88
LiverProliferativeLesions	PLS	CDK, TA	40	94	50	48	232	0.58	0.44	0.45	0.45	0.45	0.65	0.55	-98.9	8.21	0.11	88
LiverProliferativeLesions	PLS	CDK, TP	42	77	67	46	232	0.51	0.39	0.48	0.43	0.48	0.53	0.51	-99.0	7.73	0.01	88
LiverProliferativeLesions	PLS	TA, TP	42	95	50	46	233	0.59	0.46	0.48	0.47	0.48	0.66	0.57	-98.9	8.23	0.13	88
LiverProliferativeLesions	PLS	TA	40	96	49	48	233	0.58	0.45	0.45	0.45	0.45	0.66	0.56	-98.9	8.25	0.12	88
LiverProliferativeLesions	PLS	TP	45	73	72	43	233	0.51	0.38	0.51	0.44	0.51	0.5	0.51	-99.0	7.6	0.01	88
LiverProliferativeLesions		CDK, TA, TP	40	96	48	48	232	0.59	0.45	0.45	0.45	0.45	0.67	0.56	-98.9	8.27	0.12	88
LiverProliferativeLesions	J48	CDK, TA	40	98	46	48	232	0.59	0.47	0.45	0.46	0.45	0.68	0.57	-98.9	8.33	0.14	88
LiverProliferativeLesions	J48	CDK, TP	38	95	49	50	232	0.57	0.44	0.43	0.43	0.43	0.66	0.55	-98.9	8.23	0.09	88
LiverProliferativeLesions CHR Mouse	J48	TA, TP	43	92	53	45	233	0.58	0.45	0.49	0.47	0.49	0.63	0.56	-98.9	8.14	0.12	88
LiverProliferativeLesions CHR Mouse	J48	TA	43	97	48	45	233	0.6	0.47	0.49	0.48	0.49	0.67	0.58	-98.8	8.29	0.16	88
LiverProliferativeLesions	J48	TP	36	92	53	52	233	0.55	0.4	0.41	0.41	0.41	0.63	0.52	-99.0	8.11	0.04	88
CHR Mouse LiverProliferativeLesions	RF	CDK, TA, TP	52	78	66	36	232	0.56	0.44	0.59	0.5	0.59	0.54	0.57	-98.9	7.72	0.13	88

CHR Mouse LiverProliferativeLesio ns	RF	CDK, TA	52	83	61	36	232	0.58	0.46	0.59	0.52	0.59	0.58	0.58	-98.8	7.86	0.16	88
CHR Mouse LiverProliferativeLesions	RF	CDK, TP	58	67	77	30	232	0.54	0.43	0.66	0.52	0.66	0.47	0.56	-98.9	7.35	0.12	88
CHR Mouse LiverProliferativeLesio ns	RF	TA, TP	54	71	74	34	233	0.54	0.42	0.61	0.5	0.61	0.49	0.55	-98.9	7.5	0.1	88
CHR Mouse LiverProliferativeLesio ns	RF	TA	50	72	73	38	233	0.52	0.41	0.57	0.47	0.57	0.5	0.53	-98.9	7.56	0.06	88
CHR Mouse LiverProliferativeLesio ns	RF	TP	51	74	71	37	233	0.54	0.42	0.58	0.49	0.58	0.51	0.54	-98.9	7.61	0.09	88
CHR Mouse LiverProliferativeLesio	FSM LR	Adriana	51	59	84	37	231	0.48	0.38	0.58	0.46	0.58	0.41	0.5	-99.0	7.22	.008	88
CHR Mouse LiverProliferativeLesio	FSM		45	86	59	43	233	0.56	0.43	0.51	0.47		0.59	0.55	-98.9		0.1	88
CHR Mouse LiverProliferativeLesio	FSM																-	
ns CHR Mouse LiverProliferativeLesio	LR FSM	CDK	47	86	58	41_	232	0.57	0.45	0.53	0.49	0.53	0.6	0.57	-98.9	7.98	0.13	88
CHR Mouse	LR	n	44	79	66	44	233	0.53	0.4	0.5	0.44	0.5	0.54	0.52	-99.0	7.77	0.04	88
CHP Mouse	LR	Dragon6	46	96	49	42	233	0.61	0.48	0.52	0.5	0.52	0.66	0.59	-98.8	8.26	0.18	88
LiverProliferativeLesio ns	FSM LR	Fragment or	41	102	43	47	233	0.61	0.49	0.47	0.48	0.47	0.7	0.58	-98.8	8.44	0.17	88
CHR Mouse LiverProliferativeLesio ns	FSM LR	GSFrag	41	85	60	47	233	0.54	0.41	0.47	0.43	0.47	0.59	0.53	-98.9	7.93	0.05	88
CHR Mouse LiverProliferativeLesio ns	FSM LR	Inductive	64	44	101	24	233	0.46	0.39	0.73	0.51	0.73	0.3	0.52	-99.0	6.54	0.03	88
CHR Mouse LiverProliferativeLesions	FSM LR	Mera, Mersy	34	103	41	54	232	0.59	0.45	0.39	0.42	0.39	0.72	0.55	-98.9	8.45	0.11	88
CHR Mouse LiverProliferativeLesions	FSM LR	QNPR	49	84	61	39	233	0.57	0.45	0.56	0.49	0.56	0.58	0.57	-98.9	7.9	0.13	88
CHR Mouse LiverProliferativeLesio	FSM LR	Spectrop hores	42	87	58	46	233	0.55	0.42	0.48	0.45	0.48	0.6	0.54	-98.9	7 99	0.08	88
CHR Mouse LiverProliferativeLesio		Adriana	47	79	64	41	231		0.42						-98.9		0.08	88
CHR Mouse LiverProliferativeLesio		ALogPS, OEstate	58	76	69	30	233	0.58	0.46			0.66			-98.8			88
CHR Mouse LiverProliferativeLesio		CDK	53	72	72	35	232	0.54		0.6	0.5	0.6	0.5	0.55	-98.9			88
CHR Mouse LiverProliferativeLesio	KNN	Chemaxo	64	49	96	24	233	0.48	0.4			0.73			-98.9		0.07	88
CHR Mouse LiverProliferativeLesio		Dragon6	50	76	69	38	233		0.42			0.57			-98.9			88
CHR Mouse LiverProliferativeLesio	11 1	Fragment						0.01	V. 12	0.01	0.10	0.01	J.UL	0.00	20.0			30

CHR Mouse LiverProliferativeLesions	KNN	GSFrag	33	105	40	55	233	0.59	0.45	0.38	0.41	0.38	0.72	0.55	-98.9	8.49	0.1	88
CHR Mouse LiverProliferativeLesions	KNN	Inductive	55	65	80	33	233	0.52	0.41	0.63	0.49	0.63	0.45	0.54	-98.9	7.32	0.07	88
CHR Mouse LiverProliferativeLesio ns	KNN	Mera, Mersy	46	82	62	42	232	0.55	0.43	0.52	0.47	0.52	0.57	0.55	-98.9	7.87	0.09	88
CHR Mouse LiverProliferativeLesio		QNPR	37	102	43	51	233	0.6	0.46	0.42	0.44	0.42	0.7	0.56	-98.9	8.42	0.13	88
CHR Mouse LiverProliferativeLesio		Spectrop hores	49	72	73	39	233	0.52	0.4	0.56	0.47	0.56	0.5	0.53	-98.9			88
CHR Mouse LiverProliferativeLesio	LibS																	
CHR Mouse LiverProliferativeLesio		Adriana ALogPS,	32	106	37	56	231	0.6	0.46	0.36	0.41	0.36	0.74	0.55	-98.9	8.56	0.11	88
CHR Mouse LiverProliferativeLesio		OEstate	23	114	31	65	233	0.59	0.43	0.26	0.32	0.26	0.79	0.52	-99.0	8.63	0.05	88
CHP Mouse	VM	CDK	32	111	33	56	232	0.62	0.49	0.36	0.42	0.36	0.77	0.57	-98.9	8.72	0.15	88
	LibS VM		32	105	40	56	233	0.59	0.44	0.36	0.4	0.36	0.72	0.54	-98.9	8.47	0.09	88
CHR Mouse LiverProliferativeLesio ns	LibS VM	Dragon6	25	124	21	63	233	0.64	0.54	0.28	0.37	0.28	0.86	0.57	-98.9	9.15	0.17	88
CHR Mouse LiverProliferativeLesio ns	LibS VM		22	129	16	66	233	0.65	0.58	0.25	0.35	0.25	0.89	0.57	-98.9	9.37	0.18	88
CHR Mouse LiverProliferativeLesions	LibS VM	GSFrag	24	108	37	64	233	0.57	0.39	0.27	0.32	0.27	0.74	0.51	-99.0	8.43	0.02	88
CHR Mouse LiverProliferativeLesio	LibS VM	Inductive	32	116	29	56	233	0.64	0.52	0.36	0.43	0.36	0.8	0.58	-98.8			88
CHR Mouse LiverProliferativeLesio	LibS	Mera,	-	-														
CHR Mouse LiverProliferativeLesio	VM LibS	Mersy	32	112	32	56	232	0.62	0.5	0.36	0.42	0.36	0.78	0.57	-98.9	8.76	0.15	88
CHR Mouse LiverProliferativeLesio	VM	QNPR	32	113	32	56	233	0.62	0.5	0.36	0.42	0.36	0.78	0.57	-98.9	8.77	0.16	88
CHR Mouse	VM	hores	37	109	36	51	233	0.63	0.51	0.42	0.46	0.42	0.75	0.59	-98.8	8.66	0.18	88
LiverProliferativeLesions CHR Mouse	Α	Adriana	40	87	56	48	231	0.55	0.42	0.45	0.43	0.45	0.61	0.53	-98.9	8.02	0.06	88
LiverProliferativeLesions CHR Mouse	MLR A	ALogPS, OEstate	45	107	38	43	233	0.65	0.54	0.51	0.53	0.51	0.74	0.62	-98.8	8.62	0.25	88
LiverProliferativeLesions	MLR A	CDK	49	89	55	39	232	0.59	0.47	0.56	0.51	0.56	0.62	0.59	-98.8	8.06	0.17	88
CHR Mouse LiverProliferativeLesions	MLR A	Chemaxo n	43	85	60	45	233	0.55	0.42	0.49	0.45	0.49	0.59	0.54	-98.9	7.94	0.07	88
CHR Mouse LiverProliferativeLesions	MLR A	Dragon6	42	90	55	46	233	0.57	0.43	0.48	0.45	0.48	0.62	0.55	-98.9	8.08	0.1	88
CHR Mouse	MID	Fragment																

CHR Mouse LiverProliferativeLesio ns	MLR A	GSFrag	43	80	65	45	233	0.53	0.4	0.49	0.44	0.49	0.55	0.52	-99.0	7.8	0.04	88
CHR Mouse LiverProliferativeLesio ns	MLR A	Inductive	43	83	62	45	233	0.54	0.41	0.49	0.45	0.49	0.57	0.53	-98.9	7.88	0.06	88
CHR Mouse LiverProliferativeLesions	MLR A	Mera, Mersy	52	83	61	36	232	0.58	0.46	0.59	0.52	0.59	0.58	0.58	-98.8	7.86	0.16	88
CHR Mouse LiverProliferativeLesions		QNPR	43	83	62	45	233	0.54	0.41	0.49	0.45	0.49	0.57	0.53	-98.9			88
CHR Mouse LiverProliferativeLesions			47	84	61	41	233	0.56	0.44	0.53	0.48	0.53	0.58	0.56	-98.9		0.11	88
CHR Mouse LiverProliferativeLesions		Adriana	40	76	67	48	231	0.5	0.37	0.45	0.41	0.45	0.53	0.49	-99.0		.014	88
CHR Mouse LiverProliferativeLesio		ALogPS,			-													
ns CHR Mouse LiverProliferativeLesio	PLS	OEstate	42	91	54	46	233	0.57	0.44	0.48	0.46	0.48	0.63	0.55	-98.9	8.11	0.1	88
ns CHR Mouse LiverProliferativeLesio	PLS	CDK Chemaxo	49	91	53	39	232	0.6	0.48	0.56	0.52	0.56	0.63	0.59	-98.8	8.11	0.18	88
ns CHR Mouse	PLS	n	44	76	69	44	233	0.52	0.39	0.5	0.44	0.5	0.52	0.51	-99.0	7.69	0.02	88
LiverProliferativeLesions CHR Mouse	PLS	Dragon6	40	101	44	48	233	0.61	0.48	0.45	0.47	0.45	0.7	0.58	-98.8	8.41	0.15	88
LiverProliferativeLesions CHR Mouse	PLS	Fragment or	48	103	42	40	233	0.65	0.53	0.55	0.54	0.55	0.71	0.63	-98.7	8.47	0.25	88
LiverProliferativeLesions CHR Mouse	PLS	GSFrag	34	91	54	54	233	0.54	0.39	0.39	0.39	0.39	0.63	0.51	-99.0	8.06	0.01	88
LiverProliferativeLesions CHR Mouse	PLS	Inductive	51	67	78	37	233	0.51	0.4	0.58	0.47	0.58	0.46	0.52	-99.0	7.41	0.04	88
LiverProliferativeLesio ns	PLS	Mera, Mersy	41	97	47	47	232	0.59	0.47	0.47	0.47	0.47	0.67	0.57	-98.9	8.31	0.14	88
CHR Mouse LiverProliferativeLesio ns	PLS	QNPR	49	91	54	39	233	0.6	0.48	0.56	0.51	0.56	0.63	0.59	-98.8	8.1	0.18	88
CHR Mouse LiverProliferativeLesio ns		Spectrop hores	42	85	60	46	233	0.55	0.41	0.48	0.44	0.48	0.59	0.53	-98.9	7.93	0.06	88
CHR Mouse LiverProliferativeLesio ns	J48	Adriana	38	93	50	50	231	0.57	0.43	0.43	0.43	0.43	0.65	0.54	-98.9	8.19	0.08	88
CHR Mouse LiverProliferativeLesions	J48	ALogPS, OEstate	45	102	43	43	233	0.63	0.51	0.51	0.51	0.51	0.7	0.61	-98.8	8 45	0.21	88
CHR Mouse LiverProliferativeLesions	J48	CDK	40	97	47	48	232	0.59	0.46		0.46	0.45		0.56	-98.9		0.13	88
CHR Mouse LiverProliferativeLesio		Chemaxo																
ns CHR Mouse LiverProliferativeLesio	J48	n	31	100	45	57	233	0.56	0.41		0.38	0.35	0.69	0.52	-99.0			88
CHR Mouse LiverProliferativeLesio	J48	Dragon6 Fragment	42	102	43	46	233	0.62	0.49	0.48	0.49	0.48	0.7	0.59	-98.8	8.45	0.18	88
ns CHR Mouse LiverProliferativeLesio	J48	or	45	106	39	43	233	0.65	0.54	0.51	0.52	0.51	0.73	0.62	-98.8	8.58	0.24	88
ns	J48	GSFrag	40	97	48	48	233	0.59	0.45	0.45	0.45	0.45	0.67	0.56	-98.9	8.28	0.12	88

CHR Mouse LiverProliferativeLesions	J48	Inductive	41	95	50	47	233	0.58	0.45	0.47	0.46	0.47	0.66	0.56	-98.9	8.22	0.12	
CHR Mouse LiverProliferativeLesio ns	J48	Mera, Mersy	29	104	40	59	232	0.57	0.42	0.33	0.37	0.33	0.72	0.53	-98.9	8.42	0.05	
CHR Mouse LiverProliferativeLesio ns	J48	QNPR	37	92	53	51	233	0.55	0.41	0.42	0.42	0.42	0.63	0.53	-98.9	8.11	0.05	
CHR Mouse LiverProliferativeLesio ns	J48	Spectrop hores	35	101	44	53	233	0.58	0.44	0.4	0.42	0.4	0.7	0.55	-98.9	8.37	0.1	
CHR Mouse Tumorigen	RF	Adriana	58	70	72	31	231	0.55	0.45	0.65	0.53	0.65	0.49	0.57	-98.9	7.49	0.14	
CHR Mouse Tumorigen	RF	ALogPS, OEstate	59	68	75	31	233	0.55	0.44	0.66	0.53	0.66	0.48	0.57	-98.9	7 11	በ 13	
CHR Mouse	RF	CDK	55															_
Tumorigen CHR Mouse		Chemaxo		60	82	35	232	0.5	0.4	0.61	0.48	0.61	0.42	0.52	-99.0		0.03	_
Tumorigen CHR Mouse	RF RF	n Dragon6	54 57	69 71	74 72	36	233	0.53	0.42	0.63	0.52	0.63	0.48	0.54	-98.9		0.08	-
Гиmorigen CHR Mouse Гиmorigen	RF	Fragment or	60	66	77	30	233	0.55	0.44	0.63	0.52	0.63	0.46	0.56	-98.9 -98.9		0.13	_
CHR Mouse Tumorigen	RF	GSFrag	55	71	72	35	233	0.54	0.43	0.61	0.51	0.61	0.40	0.55	-98.9		0.11	-
CHR Mouse Fumorigen	RF	Inductive	50	76	67	40	233	0.54	0.43	0.56	0.48	0.56	0.53	0.54	-98.9	7.75	0.08	_
CHR Mouse Fumorigen	RF	Mera, Mersy	61	64	78	29	232	0.54	0.44	0.68	0.53	0.68	0.45	0.56	-98.9	7.31	0.13	_
CHR Mouse Tumorigen	RF	QNPR	58	79	64	32	233	0.59	0.48	0.64	0.55	0.64	0.55	0.6	-98.8	7.76	0.19	
CHR Mouse Tumorigen	RF	Spectrop hores	52	77	66	38	233	0.55	0.44	0.58	0.5	0.58	0.54	0.56	-98.9	7.76	0.11	
CHR Mouse Tumorigen	ASN N	Adriana	43	80	62	46	231	0.53	0.41	0.48	0.44	0.48	0.56	0.52	-99.0	7.87	0.05	
CHR Mouse Tumorigen	ASN N	ALogPS, OEstate	45	81	62	45	233	0.54	0.42	0.5	0.46	0.5	0.57	0.53	-98.9	7.9	0.06	
CHR Mouse Tumorigen	ASN N	CDK	55	94	48	35	232	0.64	0.53	0.61	0.57	0.61	0.66	0.64	-98.7	8.25	0.27	
CHR Mouse Fumorigen	ASN N	Chemaxo n	48	90	53	42	233	0.59	0.48	0.53	0.5	0.53	0.63	0.58	-98.8	8.16	0.16	
CHR Mouse Tumorigen	ASN N	Dragon6	48	92	51	42	233	0.6	0.48	0.53	0.51	0.53	0.64	0.59	-98.8	8.22	0.17	
CHR Mouse Tumorigen	N	eragment or	45	90	53	45	233	0.58	0.46	0.5	0.48	0.5	0.63	0.56	-98.9	8.16	0.13	
CHR Mouse Tumorigen	ASN N ASN	GSFrag	43	77	66	47	233	0.52	0.39	0.48	0.43	0.48	0.54	0.51	-99.0	7.79	0.02	
CHR Mouse Fumorigen	N	Inductive Mera,	50	87	56	40	233	0.59	0.47	0.56	0.51	0.56	0.61	0.58	-98.8	8.06	0.16	_
CHR Mouse Tumorigen	N ASN	Mersy	44	87	55	46	232	0.56	0.44	0.49	0.47	0.49	0.61	0.55	-98.9	8.09	0.1	_
CHR Mouse Tumorigen CHR Mouse	N ASN	QNPR Spectrop	47	86	57	43	233	0.57	0.45	0.52	0.48	0.52	0.6	0.56	-98.9	8.04	0.12	_
Tumorigen CHR Mouse	N	hores CDK, TA,	43	99	44	47	233	0.61	0.49	0.48	0.49	0.48	0.69	0.59	-98.8	8.44	0.17	_
Tumorigen CHR Mouse	N ASN	TP	36	83	59	54	232	0.51	0.38	0.4	0.39	0.4	0.58	0.49	-99.0	7.93	.015	_
Γumorigen CHR Mouse	N ASN	CDK, TA	34	89	53	56	232	0.53	0.39	0.38	0.38	0.38	0.63	0.5	-99.0	8.09	0.	_
Tumorigen CHR Mouse	N ASN	CDK, TP	44	84	58	46	232	0.55	0.43	0.49	0.46	0.49	0.59	0.54	-98.9	8.	80.0	_
Tumorigen	N	TA, TP	35	87	56	55	233	0.52	0.38	0.39	0.39	0.39	0.61	0.5	-99.0	8.02	.003	

CHR Mouse	ASN															
Tumorigen	N	TA	42	92	51	48	233	0.58	0.45	0.47	0.46	0.47	0.64	0.56	-98.9 8.22 0.11	90
CHR Mouse Tumorigen	ASN N	TP	36	82	61	54	233	0.51	0.37	0.4	0.39	0.4	0.57	0.49	-99.0 7.89 .026	90
CHR Mouse		CDK, TA,														
Tumorigen	LR	TP	42	86	56	48	232	0.55	0.43	0.47	0.45	0.47	0.61	0.54	-98.9 8.06 0.07	90
CHR Mouse	FSM	CDK TA	24	06	46	EG	222	0.56	0.42	0.20	0.4	0.20	0.60	0.52	00.0 0.21 0.06	00
Tumorigen	LR	CDK, TA	34	96	46	56	232	0.56	0.43	0.38	0.4	0.38	0.68	0.53	-98.9 8.31 0.06	90
CHR Mouse	FSM															
Tumorigen	LR	CDK, TP	45	88	54	45	232	0.57	0.45	0.5	0.48	0.5	0.62	0.56	-98.9 8.12 0.12	90
CHR Mouse	FSM															
Tumorigen	LR	TA, TP	35	87	56	55	233	0.52	0.38	0.39	0.39	0.39	0.61	0.5	-99.0 8.02 .003	90
CHR Mouse	FSM															
Tumorigen	LR	TA	35	93	50	55	233	0.55	0.41	0.39	0.4	0.39	0.65	0.52	-99.0 8.2 0.04	90
CHR Mouse	FSM															
Tumorigen	LR	TP	41	73	70	49	233	0.49	0.37	0.46	0.41	0.46	0.51	0.48	-99.0 7.67 .033	90
CHR Mouse	KNN	CDK, TA,	31	108	34	59	232	0.6	0.48	0.34	0.4	0.34	0.76	0.55	090 969 011	90
Tumorigen CHR Mouse	KININ	IF	31	100	34	59	232	0.0	0.40	0.34	0.4	0.34	0.76	0.55	-98.9 8.68 0.11	90
Tumorigen	KNN	CDK, TA	7	133	9	83	232	0.6	0.44	0.08	0.13	0.08	0.94	0.51	-99.0 9.08 0.03	90
CHR Mouse Tumorigen	KNN	CDK, TP	36	89	53	54	232	0.54	0.4	0.4	0.4	0.4	0.63	0.51	-99.0 8.11 0.03	90
CHR Mouse	10.01	0511, 11				<u> </u>		0.01	0.1	0.1	0.1	0.1	0.00	0.01	00.0 0.11 0.00	
Tumorigen	KNN	TA, TP	46	92	51	44	233	0.59	0.47	0.51	0.49	0.51	0.64	0.58	-98.8 8.22 0.15	90
CHR Mouse Tumorigen	KNN	TA	13	127	16	77	233	0.6	0.45	0.14	0.22	0.14	0.89	0.52	-99.0 9. 0.05	90
CHR Mouse																
Tumorigen	KNN	IP	49	62	81	41	233	0.48	0.38	0.54	0.45	0.54	0.43	0.49	-99.0 7.36 .022	90
CHR Mouse	LibS	CDK, TA,														
Tumorigen	VM	TP	18	123	19	72	232	0.61	0.49	0.2	0.28	0.2	0.87	0.53	-98.9 9.05 0.09	90
CHR Mouse	LibS															
Tumorigen	VM	CDK, TA	25	108	34	65	232	0.57	0.42	0.28	0.34	0.28	0.76	0.52	-99.0 8.57 0.04	90
	LibS															
CHR Mouse Tumorigen	VM	CDK, TP	21	108	34	69	232	0.56	0.38	0.23	0.29	0.23	0.76	0.5	-99.0 8.46 .007	90
		·														
CHR Mouse Tumorigen	LibS VM	TA, TP	16	121	22	74	233	0.59	0.42	0 18	0.25	0.18	0.85	0.51	-99.0 8.8 0.03	90
Tumongen	VIVI	177, 11	10	121		- / -	200	0.00	0.42	0.10	0.23	0.10	0.00	0.01	-55.0 0.0 0.05	- 30
CHR Mouse	LibS								- ·-							
Tumorigen	VM	TA	29	108	35	61	233	0.59	0.45	0.32	0.38	0.32	0.76	0.54	-98.9 8.62 0.08	90
CHR Mouse	LibS															
Tumorigen	VM	TP ODK TA	19	105	38	71	233	0.53	0.33	0.21	0.26	0.21	0.73	0.47	-99.1 8.25 .062	90
CHR Mouse Tumorigen	MLR A	CDK, TA, TP	42	77	65	48	232	0.51	0.39	0.47	0.43	0.47	0.54	0.5	-99.0 7.8 0.01	90
CHR Mouse	MLR							0.01	0.00	0.47	0.40	0.47	0.0-	0.0	7.0 0.01	
Tumorigen	A	CDK, TA	43	76	66	47	232	0.51	0.39	0.48	0.43	0.48	0.54	0.51	-99.0 7.77 0.01	90
CHR Mouse Tumorigen	MLR A	CDK, TP	36	83	59	54	232	0.51	0.38	0.4	0.39	0.4	0.58	0.49	-99.0 7.93 .015	90
CHR Mouse	MLR	JDIN, 11						0.01	0.00	J.7	0.00	J. T	0.00	0.40	20.0 7.00 .010	
Tumorigen	A MLR	TA, TP	49	72	71	41	233	0.52	0.41	0.54	0.47	0.54	0.5	0.52	-99.0 7.64 0.05	90
CHR Mouse	_	TΛ	40	91	52	50	233	0.56	0.43	0.44	0.44	0.44	0.64	0.54	-98.9 8.18 0.08	90
	Α	IA	40	91	3/	ວບ										
Tumorigen CHR Mouse	A MLR	TA	40	91	32	50	233	0.50	0.43	0.44	0.44	0.11	0.04	0.04	00.0 0.10 0.00	90

Controllar Pist TP 38 83 59 52 232 0.52 0.42 0.41 0.42 0.58 0.5 -99.0 7.95 0.01 9			CDK, TA,															
Unrongen PLS CDK, TA 37 86 56 53 232 0.53 0.4 0.41 0.4 0.4 0.41 0.41 0.51 0.51 0.50 0.90 8.03 0.02 9 PLS CDK, TP 44 81 61 46 232 0.54 0.42 0.49 0.45 0.49 0.57 0.53 0.98 9 7.92 0.06 9 PLS TA, TP 38 87 56 52 233 0.54 0.4 0.42 0.41 0.42 0.61 0.52 0.90 8.05 0.00 9 PLS TA 39 89 54 51 233 0.55 0.42 0.43 0.43 0.43 0.62 0.53 0.98 9 8.11 0.06 9 PLS TP 40 78 65 50 233 0.51 0.38 0.44 0.41 0.44 0.55 0.49 0.99 0.78 0.01 9 PLS TB MANAGE PLS TP 40 78 65 50 233 0.51 0.38 0.44 0.41 0.44 0.55 0.49 0.99 0.78 0.01 9 PLS TB 57	CHR Mouse Tumorigen	PLS		38	83	59	52	232	0.52	0.39	0.42	0.41	0.42	0.58	0.5	-99.0 7.95	0.01	90
The PLS CDK, TP 44 81 61 46 232 0.54 0.42 0.45 0.49 0.45 0.57 0.53 .98.9 7.92 0.06 9	CHR Mouse Fumorigen	PLS	CDK, TA	37	86	56	53	232	0.53	0.4	0.41	0.4	0.41	0.61	0.51	-99.0 8.03	0.02	90
PLS TA, TP 38	CHR Mouse	PI S	CDK TP	44	81	61	46	232	0 54	0.42	n 49	0.45	n 49	0.57	0.53	-08 0 7 02	0.06	90
P. P. TA 39 89 54 51 233 255 242 243 243 243 243 243 243 243 245 255 256 245	CHR Mouse																	
PLS TP	CHR Mouse																	90
CPIK, TAX, Uniforcing in the content of the content	CHR Mouse								0.55	0.42			0.43	0.02	0.53	-90.9 0.11	0.06	
Compress of the Compress of	Tumorigen	PLS		40	78	65	50	233	0.51	0.38	0.44	0.41	0.44	0.55	0.49	-99.0 7.8	.01	90
Numericage J48 CDK, TA 29 93 49 61 232 0.55 0.37 0.32 0.35 0.32 0.36 0.49 -99.0 8.14 0.24 9	Tumorigen	J48		38	83	59	52	232	0.52	0.39	0.42	0.41	0.42	0.58	0.5	-99.0 7.95	0.01	90
Semantage Jab CDK, TP 43 88 54 47 232 0.56 0.44 0.48 0.46 0.48 0.62 0.55 9.89 8.12 0.1 9	CHR Mouse Tumorigen	J48	CDK, TA	29	93	49	61	232	0.53	0.37	0.32	0.35	0.32	0.65	0.49	-99.0 8.14	.024	90
Commongen J48 TA, TP 41 82 61 49 233 0.53 0.4 0.46 0.45 0.66 0.57 0.51 0.99.0 7.92 0.03 9	CHR Mouse Tumorigen	J48	CDK, TP	43	88	54	47	232	0.56	0.44	0.48	0.46	0.48	0.62	0.55	-98.9 8.12	0.1	90
Cumorigen J48 TA 42 84 59 48 233 0.54 0.42 0.47 0.44 0.47 0.59 0.53 98.9 7.98 0.05 9	CHR Mouse Tumorigen	J48	TA, TP	41	82	61	49	233	0.53	0.4	0.46	0.43	0.46	0.57	0.51	-99.0 7.92	0.03	90
Cumorigen J48 TP 39 84 59 51 233 0.53 0.4 0.43 0.41 0.43 0.59 0.51 -99.0 7.97 0.02 9	CHR Mouse Tumorigen	J48	TA	42	84	59	48	233	0.54	0.42	0.47	0.44	0.47	0.59	0.53	-98.9 7.98	0.05	90
THE Mouse umorigen RF TP 52 61 81 38 232 0.49 0.39 0.58 0.47 0.58 0.43 0.5 -99.0 7.33 0.01 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CHR Mouse Tumorigen	J48		39	84	59	51	233	0.53	0.4	0.43	0.41	0.43	0.59	0.51	-99.0 7.97	0.02	90
CHR Mouse unmorigen RF CDK, TA 52 60 82 38 232 0.48 0.39 0.58 0.46 0.58 0.42 0.5 -99.0 7.3 0. 9 PMR Mouse unmorigen RF CDK, TP 61 63 79 29 232 0.53 0.44 0.68 0.53 0.68 0.44 0.56 -98.9 7.28 0.12 9 PMR Mouse unmorigen RF TA, TP 48 68 75 42 233 0.5 0.39 0.53 0.45 0.53 0.48 0.5 -99.0 7.5 0.01 9 PMR Mouse unmorigen RF TA 51 67 76 39 233 0.51 0.4 0.57 0.47 0.57 0.47 0.52 -99.0 7.49 0.03 9 PMR Mouse unmorigen RF TP 51 60 83 39 233 0.48 0.38 0.57 0.46 0.57 0.42 0.49 -99.0 7.3 0.14 9 PMR Mouse unmorigen RF TA A 51 67 76 39 231 0.47 0.37 0.56 0.45 0.56 0.41 0.49 -99.0 7.3 0.14 9 PMR Mouse Unmorigen RF TP 51 60 83 39 231 0.47 0.37 0.56 0.45 0.56 0.41 0.49 -99.0 7.3 0.14 9 PMR Mouse Unmorigen RF TP 51 60 83 39 231 0.47 0.37 0.56 0.45 0.56 0.41 0.49 -99.0 7.3 0.14 9 PMR Mouse Unmorigen RF TP 51 60 83 39 231 0.47 0.37 0.56 0.45 0.56 0.41 0.49 -99.0 7.3 0.14 9 PMR Mouse Unmorigen RF TP 51 60 83 39 231 0.47 0.37 0.56 0.45 0.56 0.41 0.49 -99.0 7.3 0.14 9 PMR Mouse Unmorigen RF TP 51 60 83 39 231 0.47 0.37 0.56 0.45 0.56 0.41 0.49 -99.0 7.3 0.14 9 PMR Mouse Unmorigen RF TP 51 60 83 39 231 0.47 0.37 0.56 0.45 0.56 0.41 0.49 -99.0 7.3 0.14 9 PMR Mouse Unmorigen RF TP 51 60 83 39 231 0.47 0.37 0.56 0.45 0.56 0.41 0.49 -99.0 7.3 0.14 9 PMR Mouse Unmorigen RF TP 51 60 83 39 232 0.59 0.48 0.57 0.52 0.57 0.61 0.59 -98.8 8.04 0.17 9 PMR Mouse Unmorigen RF SM Chemaxo RF SM Fragment RF SM	CHR Mouse Tumorigen	RF		52	61	81	38	232	0.49	0.39	0.58	0.47	0.58	0.43	0.5	-99.0 7.33	0.01	90
Check Mouse RF CDK, TP 61 63 79 29 232 0.53 0.44 0.68 0.53 0.68 0.44 0.56 -98.9 7.28 0.12 9	CHR Mouse Tumorigen	RF	CDK. TA	52	60	82	38	232	0.48	0.39	0.58	0.46	0.58	0.42	0.5	-99.0 7.3	0.	90
Check Mouse RF TA, TP 48 68 75 42 233 0.5 0.39 0.53 0.45 0.53 0.48 0.5 -99.0 7.53 0.01 9	CHR Mouse	RF	· · · · · · · · · · · · · · · · · · ·	61	63	79	29	232	0.53	0.44	0.68	0.53	0.68	0.44	0.56	-98.9 7.28	0.12	90
CHR Mouse unmorgen RF TA 51 67 76 39 233 0.51 0.4 0.57 0.47 0.57 0.47 0.52 -99.0 7.49 0.03 9 1	CHR Mouse		,															
Check Mouse currongen RF TP 51 60 83 39 233 0.48 0.38 0.57 0.46 0.57 0.42 0.49 -99.0 7.3 0.14 9	CHR Mouse		,															
HR Mouse LR Adriana 50 58 84 39 231 0.47 0.37 0.56 0.45 0.56 0.41 0.49 -99.0 7.23 .029 8 Charmonigen LR Adriana 50 58 84 39 231 0.47 0.37 0.56 0.45 0.56 0.41 0.49 -99.0 7.23 .029 8 Charmonigen LR OEstate 55 72 71 35 233 0.55 0.44 0.61 0.51 0.61 0.5 0.56 -98.9 7.6 0.11 9 Charmonigen LR CDK 51 86 56 39 232 0.59 0.48 0.57 0.52 0.57 0.61 0.59 -98.8 8.04 0.17 9 Charmonigen LR CDK 51 86 56 39 232 0.59 0.48 0.57 0.52 0.57 0.61 0.59 -98.8 8.04 0.17 9 Charmonigen LR Dragon6 46 92 51 44 233 0.54 0.44 0.66 0.52 0.66 0.47 0.56 -98.9 7.41 0.12 9 Charmonigen LR Dragon6 46 92 51 44 233 0.59 0.47 0.51 0.49 0.51 0.64 0.58 -98.8 8.22 0.15 9 Charmonigen LR or 48 79 64 42 233 0.55 0.43 0.53 0.48 0.53 0.55 0.54 -98.9 7.84 0.08 9 Charmonigen LR GSFrag 46 77 66 44 233 0.53 0.41 0.51 0.46 0.51 0.54 0.52 -99.0 7.79 0.05 9 Charmonigen LR Inductive 58 57 86 32 233 0.49 0.4 0.64 0.5 0.64 0.4 0.52 -99.0 7.14 0.04 9 Charmonigen LR Mouse FSM LR Inductive 58 57 86 32 233 0.49 0.4 0.64 0.5 0.64 0.4 0.52 -99.0 7.14 0.04 9 Charmonigen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 Charmonigen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 Charmonigen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 Charmonigen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 Charmonigen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 Charmonicen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 Charmonicen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 Charmonicen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 Charmonicen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 Charmonicen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 Charmonicen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7	Tumorigen CHR Mouse	- RF	IA	51	67	76	39	233	0.51	0.4	0.57	0.47	0.57	0.47	0.52	-99.0 7.49	0.03	90
Umorigen LR Adriana 50 58 84 39 231 0.47 0.37 0.56 0.45 0.56 0.41 0.49 -99.0 7.23 0.29 8 CHR Mouse FSM ALogPS, LR OEstate 55 72 71 35 233 0.55 0.44 0.61 0.51 0.61 0.5 0.56 -98.9 7.6 0.11 9 CHR Mouse FSM Chemaxo LR Dragon6 46 92 51 44 233 0.59 0.47 0.51 0.49 0.51 0.64 0.58 -98.8 8.22 0.15 9 CHR Mouse FSM Fragment LR Or 48 79 64 42 233 0.55 0.43 0.53 0.48 0.53 0.55 0.54 -98.9 7.84 0.08 9 CHR Mouse FSM FSM Fragment LR GSFrag 46 77 66 44 233 0.53 0.41 0.51 0.46 0.51 0.54 0.52 -99.0 7.79 0.05 9 CHR Mouse TSM FSM FRAGMENT LR GSFrag 46 77 66 44 233 0.53 0.49 0.4 0.64 0.5 0.64 0.5 0.54 0.52 -99.0 7.79 0.05 9 CHR Mouse TSM Inductive 58 57 86 32 233 0.49 0.4 0.64 0.5 0.64 0.4 0.52 -99.0 7.14 0.04 9 CHR Mouse FSM FRAGMENT LR INDUCTION FSM INDUCT	Tumorigen	RF	TP	51	60	83	39	233	0.48	0.38	0.57	0.46	0.57	0.42	0.49	-99.0 7.3	.014	90
LR OEstate 55 72 71 35 233 0.55 0.44 0.61 0.51 0.61 0.5 0.56 -98.9 7.6 0.11 9	CHR Mouse Tumorigen		Adriana	50	58	84	39	231	0.47	0.37	0.56	0.45	0.56	0.41	0.49	-99.0 7.23	.029	89
FSM Chemaxo LR n 59 67 76 31 233 0.54 0.44 0.66 0.52 0.66 0.47 0.56 -98.9 7.41 0.12 9 CHR Mouse FSM Chemaxo LR n 59 67 76 31 233 0.59 0.47 0.51 0.49 0.51 0.64 0.58 -98.8 8.22 0.15 9 CHR Mouse FSM Chemaxo LR n 59 67 76 31 233 0.59 0.47 0.51 0.49 0.51 0.64 0.58 -98.8 8.22 0.15 9 CHR Mouse TSM Fragment LR Dragon6 46 92 51 44 233 0.59 0.47 0.51 0.49 0.51 0.64 0.58 -98.8 8.22 0.15 9 CHR Mouse TSM Fragment LR or 48 79 64 42 233 0.55 0.43 0.53 0.48 0.53 0.55 0.54 -98.9 7.84 0.08 9 CHR Mouse TSM GSFrag 46 77 66 44 233 0.53 0.41 0.51 0.46 0.51 0.54 0.52 -99.0 7.79 0.05 9 CHR Mouse TSM LR GSFrag 46 77 66 44 233 0.53 0.41 0.51 0.46 0.51 0.54 0.52 -99.0 7.79 0.05 9 CHR Mouse TSM LR Inductive 58 57 86 32 233 0.49 0.4 0.64 0.5 0.64 0.4 0.52 -99.0 7.14 0.04 9 CHR Mouse TSM Mera, LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9	CHR Mouse	FSM	ALogPS,															
LR CDK 51 86 56 39 232 0.59 0.48 0.57 0.52 0.57 0.61 0.59 -98.8 8.04 0.17 9	Tumorigen	LR	OEstate	55	72	71	35	233	0.55	0.44	0.61	0.51	0.61	0.5	0.56	-98.9 7.6	0.11	90
CHR Mouse FSM Chemaxo LR n 59 67 76 31 233 0.54 0.44 0.66 0.52 0.66 0.47 0.56 -98.9 7.41 0.12 9 CHR Mouse FSM Chemorigen LR Dragon6 46 92 51 44 233 0.59 0.47 0.51 0.49 0.51 0.64 0.58 -98.8 8.22 0.15 9 CHR Mouse FSM Fragment Chemorigen LR or 48 79 64 42 233 0.55 0.43 0.53 0.48 0.53 0.55 0.54 -98.9 7.84 0.08 9 CHR Mouse FSM Chemorigen LR GSFrag 46 77 66 44 233 0.53 0.41 0.51 0.46 0.51 0.54 0.52 -99.0 7.79 0.05 9 CHR Mouse FSM Chemorigen LR Inductive 58 57 86 32 233 0.49 0.4 0.64 0.5 0.64 0.4 0.52 -99.0 7.14 0.04 9 CHR Mouse FSM Chemorigen LR Inductive 58 57 86 32 233 0.49 0.4 0.64 0.5 0.64 0.4 0.52 -99.0 7.14 0.04 9 CHR Mouse FSM Chemorigen LR Mouse FSM Mera, Chemorigen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 CHR Mouse FSM Chemorigen FSM Mera, Chemorigen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 CHR Mouse FSM	CHR Mouse																	
Tumorigen LR n 59 67 76 31 233 0.54 0.44 0.66 0.52 0.66 0.47 0.56 -98.9 7.41 0.12 9 CHR Mouse Telemorigen LR Dragon6 46 92 51 44 233 0.59 0.47 0.51 0.49 0.51 0.64 0.58 -98.8 8.22 0.15 9 CHR Mouse Telemorigen LR or 48 79 64 42 233 0.55 0.43 0.53 0.48 0.53 0.55 0.54 -98.9 7.84 0.08 9 CHR Mouse Telemorigen LR Gerrag 46 77 66 44 233 0.53 0.41 0.51 0.46 0.51 0.54 0.52 -99.0 7.79 0.05 9 CHR Mouse Telemorigen LR Inductive 58 57 86 32 233 0.49 0.4 0.64 0.5 0.64 0.4 0.52 -99.0 7.14 0.04 9 CHR Mouse Telemorigen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 CHR Mouse Telemorigen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 CHR Mouse Telemorigen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 CHR Mouse Telemorigen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 CHR Mouse Telemorigen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 CHR Mouse Telemorigen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 CHR Mouse Telemorigen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 CHR Mouse Telemorigen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9	Tumorigen	LR	CDK	51	86	56	39	232	0.59	0.48	0.57	0.52	0.57	0.61	0.59	-98.8 8.04	0.17	90
FSM Fragment LR or 48 79 64 42 233 0.55 0.43 0.53 0.48 0.53 0.55 0.54 -98.9 7.84 0.08 9 CHR Mouse FSM Fragment LR or 48 79 64 42 233 0.55 0.43 0.53 0.48 0.53 0.55 0.54 -98.9 7.84 0.08 9 CHR Mouse FSM LR GSFrag 46 77 66 44 233 0.53 0.41 0.51 0.46 0.51 0.54 0.52 -99.0 7.79 0.05 9 CHR Mouse FSM LR Inductive 58 57 86 32 233 0.49 0.4 0.64 0.5 0.64 0.4 0.52 -99.0 7.14 0.04 9 CHR Mouse FSM LR Inductive 58 57 86 32 233 0.49 0.4 0.64 0.5 0.64 0.4 0.52 -99.0 7.14 0.04 9 CHR Mouse FSM Mera, LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 CHR Mouse FSM FSM FRAG FSM	CHR Mouse			50	67	76	31	233	0.54	0.44	0.66	0.52	0.66	0.47	0.56	_08.0 7./1	ი 12	90
Tumorigen LR Dragon6 46 92 51 44 233 0.59 0.47 0.51 0.49 0.51 0.64 0.58 -98.8 8.22 0.15 9 CHR Mouse Tumorigen LR or 48 79 64 42 233 0.55 0.43 0.53 0.48 0.53 0.55 0.54 -98.9 7.84 0.08 9 CHR Mouse Tumorigen LR GSFrag 46 77 66 44 233 0.53 0.41 0.51 0.46 0.51 0.54 0.52 -99.0 7.79 0.05 9 CHR Mouse Tumorigen LR Inductive 58 57 86 32 233 0.49 0.4 0.64 0.5 0.64 0.4 0.52 -99.0 7.14 0.04 9 CHR Mouse Tumorigen LR Inductive 58 57 86 32 233 0.49 0.4 0.64 0.5 0.64 0.4 0.52 -99.0 7.14 0.04 9 CHR Mouse Tumorigen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 CHR Mouse TSM Mera, LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 CHR Mouse TSM Mera, LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9	rumongen		11	33	07	70	<u> </u>	233	0.54	0.44	0.00	0.52	0.00	0.47	0.50	-90.9 7.41	0.12	
Tumorigen LR or 48 79 64 42 233 0.55 0.43 0.53 0.48 0.53 0.55 0.54 -98.9 7.84 0.08 9 CHR Mouse Tumorigen LR GSFrag 46 77 66 44 233 0.53 0.41 0.51 0.46 0.51 0.54 0.52 -99.0 7.79 0.05 9 CHR Mouse Tumorigen LR Inductive 58 57 86 32 233 0.49 0.4 0.64 0.5 0.64 0.4 0.52 -99.0 7.14 0.04 9 CHR Mouse Tumorigen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 CHR Mouse Tumorigen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 CHR Mouse Tumorigen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 CHR Mouse FSM	CHR Mouse Tumorigen		Dragon6	46	92	51	44	233	0.59	0.47	0.51	0.49	0.51	0.64	0.58	-98.8 8.22	0.15	90
FSM LR GSFrag 46 77 66 44 233 0.53 0.41 0.51 0.46 0.51 0.54 0.52 -99.0 7.79 0.05 9 CHR Mouse FSM LR Inductive 58 57 86 32 233 0.49 0.4 0.64 0.5 0.64 0.4 0.52 -99.0 7.14 0.04 9 CHR Mouse FSM Mera, LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 CHR Mouse FSM	CHR Mouse		ū	40	70	0.4	40	222	0.55	0.40	0.50	0.40	0.50	0.55	0.54	00.0.7.04	0.00	00
Tumorigen LR GSFrag 46 77 66 44 233 0.53 0.41 0.51 0.46 0.51 0.54 0.52 -99.0 7.79 0.05 9 CHR Mouse Tumorigen LR Inductive 58 57 86 32 233 0.49 0.4 0.64 0.5 0.64 0.4 0.52 -99.0 7.14 0.04 9 CHR Mouse Tumorigen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 CHR Mouse Tumorigen FSM FSM Figure FSM FSM	Tumorigen	LK	Or	48	79	64	42	233	0.55	0.43	0.53	0.48	0.53	0.55	0.54	-98.9 7.84	0.08	90
FSM LR Inductive 58 57 86 32 233 0.49 0.4 0.64 0.5 0.64 0.4 0.52 -99.0 7.14 0.04 9 CHR Mouse FSM Mera, LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 CHR Mouse FSM	CHR Mouse Tumorigen			46	77	66	44	233	0.53	0.41	0.51	0.46	0.51	0.54	0.52	-99.0 7.79	0.05	90
FSM Mera, LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 CHR Mouse FSM	-																	
Tumorigen LR Mersy 42 83 59 48 232 0.54 0.42 0.47 0.44 0.47 0.58 0.53 -98.9 7.97 0.05 9 CHR Mouse FSM	CHR Mouse Tumorigen		Inductive	58	57	86	32	233	0.49	0.4	0.64	0.5	0.64	0.4	0.52	-99.0 7.14	0.04	90
CHR Mouse FSM	CHR Mouse Tumorigen		-	42	83	59	48	232	0.54	0.42	0.47	0.44	0.47	0.58	0.53	-98.9 7.97	0.05	90
Tumorigen LR QNPR 50 77 66 40 233 0.55 0.43 0.56 0.49 0.56 0.54 0.55 -98.9 7.78 0.09 9	CHR Mouse		•		-	-	-	-		· · ·								
	Tumorigen	LR	QNPR	50	77	66	40	233	0.55	0.43	0.56	0.49	0.56	0.54	0.55	-98.9 7.78	0.09	90

																		\neg
CHR Mouse Tumorigen	FSM LR	Spectrop hores	47	75	68	43	233	0.52	0.41	0.52	0.46	0.52	0.52	0.52	-99.0	7.73	0.05	90
CHR Mouse Tumorigen	KNN	Adriana	70	28	114	19	231	0.42	0.38	0.79	0.51	0.79	0.2	0.49	-99.0	5.84	.02	89
CHR Mouse Tumorigen	KNN	ALogPS, OEstate	72	49	94	18	233	0.52	0.43	0.8	0.56	0.8	0.34	0.57	-98.9	6.55	0.15	90
CHR Mouse Tumorigen	KNN	CDK	66	62	80	24	232	0.55	0.45	0.73	0.56	0.73	0.44	0.58	-98.8	7.14	0.17	90
CHR Mouse Tumorigen	KNN	Chemaxo	68	35	108	22	233	0.44	0.39	0.76	0.51	0.76	0.24	0.5	-99.0		0.	90
CHR Mouse	IZNINI	D		0.4	00	00	000	0.54	0.44	0.00	0.5	0.00	0.40	0.50	00.0	7.07	0.00	-00
Tumorigen CHR Mouse	KNN	Dragon6 Fragment	57	61	82	33	233	0.51	0.41	0.63	0.5	0.63	0.43	0.53	-98.9	1.21	0.06	90
Tumorigen CHR Mouse	KNN	•	73	40	103	17	233	0.48	0.41	0.81	0.55	0.81	0.28	0.55	-98.9	6.22	0.1	90
Tumorigen	KNN	GSFrag	56	50	93	34	233	0.45	0.38	0.62	0.47	0.62	0.35	0.49	-99.0	6.96	.029	90
CHR Mouse Tumorigen	KNN	Inductive	56	71	72	34	233	0.55	0.44	0.62	0.51	0.62	0.5	0.56	-98.9	7.56	0.12	90
CHR Mouse Tumorigen	KNN	Mera, Mersy	46	65	77	44	232	0.48	0.37	0.51	0.43	0.51	0.46	0.48	-99.0	7.47	.03	90
CHR Mouse Tumorigen	KNN	<u> </u>	79	33	110	11	233	0.48	0.42	0.88	0.57	0.88	0.23	0.55	-98.9	5.62	0.14	90
CHR Mouse Tumorigen	KNN	Spectrop hores	44	86	57	46	233	0.56	0.44	0.49	0.46	0.49	0.6	0.55	-98.9	8.04	0.09	90
CHR Mouse	LibS																	
Tumorigen	VM	Adriana	38	85	57	51	231	0.53	0.4	0.43	0.41	0.43	0.6	0.51	-99.0	7.99	0.03	89
CHR Mouse Tumorigen	LibS VM	ALogPS, OEstate	36	106	37	54	233	0.61	0.49	0.4	0.44	0.4	0.74	0.57	-98.9	8.64	0.15	90
CHR Mouse Tumorigen	LibS VM	CDK	35	113	29	55	232	0.64	0.55	0.39	0.45	0.39	0.8	0.59	-98.8	8.93	0.2	90
CHR Mouse Tumorigen	LibS VM	Chemaxo n	36	112	31	54	233	0.64	0.54	0.4	0.46	0.4	0.78	0.59	-98.8	8.87	0.2	90
CHR Mouse Tumorigen	LibS VM	Dragon6	29	119	24	61	233	0.64	0.55	0.32	0.41	0.32	0.83	0.58	-98.8	9.09	0.18	90
CHR Mouse Tumorigen	LibS VM	Fragment or	33	106	37	57	233	0.6	0.47	0.37	0.41	0.37	0.74	0.55	-98.9	8 61	O 11	90
CHR Mouse	LibS		- 00	100	01	07	200	0.0	0.47	0.07	0.41	0.07	0.74	0.00	00.0	0.01	0.11	
Tumorigen	VM	GSFrag	26	104	39	64	233	0.56	0.4	0.29	0.34	0.29	0.73	0.51	-99.0	8.42	0.02	90
CHR Mouse Tumorigen	LibS VM	Inductive	36	102	41	54	233	0.59	0.47	0.4	0.43	0.4	0.71	0.56	-98.9	8.5	0.12	90
CHR Mouse Tumorigen	LibS VM	Mera, Mersy	35	103	39	55	232	0.59	0.47	0.39	0.43	0.39	0.73	0.56	-98.9	8.55	0.12	90
CHR Mouse Tumorigen	LibS VM	QNPR	30	116	27	60	233	0.63	0.53	0.33	0.41	0.33	0.81	0.57	-98.9	8.96	0.16	90
CHR Mouse Tumorigen	LibS VM	Spectrop hores	34	102	41	56	233	0.58	0.45	0.38	0.41	0.38	0.71	0.55	-98.9	8.48	0.09	90
CHR Mouse Tumorigen	MLR A	Adriana	42	69	73	47	231	0.48	0.37	0.47	0.41	0.47	0.49	0.48	-99.0	7.55	.041	89
CHR Mouse Tumorigen	MLR A	ALogPS, OEstate	44	88	55	46	233	0.57	0.44	0.49	0.47	0.49	0.62	0.55	-98.9	8.1	0.1	90

CHR Mouse Tumorigen	MLR A	CDK	55	69	73	35	232	0.53	0.43	0.61	0.5	0.61	0.49	0.55	-98.9	7 53	0.1	90
		Chemaxo	- 55	09	13	- 33	232	0.55	0.43	0.01	0.5	0.01	0.43	0.55	-30.3	1.55	0.1	
CHR Mouse	A		55	76	67	35	233	0.56	0.45	0.61	0.52	0.61	0.53	0.57	-98.9	7 71	0.14	90
Tumorigen	MLR	n	55	70	07	33	233	0.50	0.45	0.01	0.52	0.01	0.55	0.57	-90.9	1.11	0.14	90
CHR Mouse		Dragon6	40	00	62	ΕO	222	0.50	0.20	0.44	0.44	0.44	0.56	0.5	00.0	7 06	0	00
Tumorigen	A	- 0	40	80	63	50	233	0.52	0.39	0.44	0.41	0.44	0.56	0.5	-99.0	7.00	0.	90
CHR Mouse		Fragment	27	00	04	- -2	222	0.54	0.00	0.44	0.00	0.44	0.57	0.40	00.0	7.0	045	00
Tumorigen	A	or	37	82	61	53	233	0.51	0.38	0.41	0.39	0.41	0.57	0.49	-99.0	7.9	.015	90
CHR Mouse	MLR	005	0.4	70	0.4		000	0.47	0.00	0.04	0.04	0.04	0.55	0.45	00.4	-	400	0.0
Tumorigen	A	GSFrag	31	79	64	59	233	0.47	0.33	0.34	0.34	0.34	0.55	0.45	-99.1	7.75	.102	90
CHR Mouse	MLR		4-	70	0.4	4.5	000	0.50	0.44	۰.	0.45	۰.		0.50	000		0.05	0.0
Tumorigen	A	Inductive	45	79	64	45	233	0.53	0.41	0.5	0.45	0.5	0.55	0.53	-98.9	7.84	0.05	90
CHR Mouse		Mera,																
Tumorigen	A	Mersy	48	77	65	42	232	0.54	0.42	0.53	0.47	0.53	0.54	0.54	-98.9	7.8	0.07	90
CHR Mouse	MLR																	
Tumorigen	Α	QNPR	44	73	70	46	233	0.5	0.39	0.49	0.43	0.49	0.51	0.5	-99.0	7.68	.001	90
CHR Mouse	MLR	Spectrop																
Tumorigen	Α	hores	39	79	64	51	233	0.51	0.38	0.43	0.4	0.43	0.55	0.49	-99.0	7.83	.014	90
CHR Mouse																	<u> </u>	
Tumorigen	PLS	Adriana	51	59	83	38	231	0.48	0.38	0.57	0.46	0.57	0.42	0.49	-99.0	7.25	.011	89
CHR Mouse		ALogPS,																
Tumorigen	PLS	OEstate	55	67	76	35	233	0.52	0.42	0.61	0.5	0.61	0.47	0.54	-98.9	7.46	80.0	90
CHR Mouse																		
Tumorigen	PLS	CDK	54	84	58	36	232	0.59	0.48	0.6	0.53	0.6	0.59	0.6	-98.8	7.96	0.19	90
CHR Mouse		Chemaxo													_			
Tumorigen	PLS	n	55	73	70	35	233	0.55	0.44	0.61	0.51	0.61	0.51	0.56	-98.9	7.63	0.12	90
CHR Mouse																		
Tumorigen	PLS	Dragon6	43	86	57	47	233	0.55	0.43	0.48	0.45	0.48	0.6	0.54	-98.9	8.04	80.0	90
CHR Mouse		Fragment																
Tumorigen	PLS	or	49	82	61	41	233	0.56	0.45	0.54	0.49	0.54	0.57	0.56	-98.9	7.92	0.11	90
CHR Mouse																		
Tumorigen	PLS	GSFrag	46	66	77	44	233	0.48	0.37	0.51	0.43	0.51	0.46	0.49	-99.0	7.48	.027	90
CHR Mouse																		
Tumorigen	PLS	Inductive	53	69	74	37	233	0.52	0.42	0.59	0.49	0.59	0.48	0.54	-98.9	7.53	0.07	90
CHR Mouse		Mera,																
Tumorigen	PLS	Mersy	47	79	63	43	232	0.54	0.43	0.52	0.47	0.52	0.56	0.54	-98.9	7.86	0.08	90
CHR Mouse		-																
Tumorigen	PLS	QNPR	53	67	76	37	233	0.52	0.41	0.59	0.48	0.59	0.47	0.53	-98.9	7.48	0.06	90
CHR Mouse		Spectrop																
Tumorigen	PLS	hores	47	63	80	43	233	0.47	0.37	0.52	0.43	0.52	0.44	0.48	-99.0	7.4	.036	90
CHR Mouse																		
Tumorigen	J48	Adriana	30	95	47	59	231	0.54	0.39	0.34	0.36	0.34	0.67	0.5	-99.0	8.2	0.01	89
CHR Mouse		ALogPS,																
Tumorigen	J48	OEstate	46	97	46	44	233	0.61	0.5	0.51	0.51	0.51	0.68	0.59	-98.8	8.38	0.19	90
CHR Mouse																		
Tumorigen	J48	CDK	49	94	48	41	232	0.62	0.51	0.54	0.52	0.54	0.66	0.6	-98.8	8.29	0.2	90
CHR Mouse		Chemaxo																
Tumorigen	J48	n	38	102	41	52	233	0.6	0.48	0.42	0.45	0.42	0.71	0.57	-98.9	8.52	0.14	90
CHR Mouse																		
Tumorigen	J48	Dragon6	41	104	39	49	233	0.62	0.51	0.46	0.48	0.46	0.73	0.59	-98.8	8.6	0.19	90
CHR Mouse		Fragment																
Tumorigen	J48	or	48	94	49	42	233	0.61	0.49	0.53	0.51	0.53	0.66	0.6	-98.8	8.28	0.19	90
CHR Mouse																		
Tumorigen	J48	GSFrag	41	97	46	49	233	0.59	0.47	0.46	0.46	0.46	0.68	0.57	-98.9	8.37	0.13	90
CHR Mouse																		
Fumorigen	J48	Inductive	46	88	55	44	233	0.58	0.46	0.51	0.48	0.51	0.62	0.56	-98.9	8.1	0.12	90
CHR Mouse		Mera,																
Tumorigen	J48	Mersy	42	90	52	48	232	0.57	0.45	0.47	0.46	0.47	0.63	0.55	-98.9	8.18	0.1	90
CHR Mouse	0.10							3.01	J. 10	J. 11	5.70	V. 11	3.50	3.50	30.0	50	J. 1	
Tumorigen	J48	QNPR	39	88	55	51	233	0.55	0.41	0.43	0.42	0.43	0.62	0.52	-99.0	8.08	0.05	90
CHR Mouse		Spectrop							-									
Tumorigen	J48	hores	38	98	45	52	233	0.58	0.46	0.42	0.44	0.42	0.69	0.55	-98.9	8.38	0.11	90
CHR Mouse					. •													
LiverTumors	RF	Adriana	41	90	72	28	231	0.57	0.36	0.59	0.45	0.59	0.56	0.57	-98.9	7.3	0.14	69
					_													

CHR Mouse LiverTumors	RF	ALogPS, OEstate	40	85	79	29	233	0.54	0.34	0.58	0.43	0.58	0.52	0.55	-98.9 7.16	0.00	69
	KF	OEstate	40	00	79	29	233	0.54	0.34	0.56	0.43	0.56	0.52	0.55	-96.9 7.10	0.09	08
CHR Mouse LiverTumors	RF	CDK	36	86	77	33	232	0.53	0.32	0.52	0.4	0.52	0.53	0.52	-99.0 7.22	0.05	69
CHR Mouse LiverTumors	RF	Chemaxo n	35	78	86	34	233	0.48	0.29	0.51	0.37	0.51	0.48	0.49	-99.0 7.01	.016	69
CHR Mouse																	
LiverTumors	RF	Dragon6 Fragment	38	94	70	31	233	0.57	0.35	0.55	0.43	0.55	0.57	0.56	-98.9 7.39	0.11	69
CHR Mouse LiverTumors	RF	or	39	92	72	30	233	0.56	0.35	0.57	0.43	0.57	0.56	0.56	-98.9 7.34	0.12	69
CHR Mouse LiverTumors	RF	GSFrag	38	88	76	31	233	0.54	0.33	0.55	0.42	0.55	0.54	0.54	-98.9 7.25	0.08	69
CHR Mouse LiverTumors	RF	Inductive	41	100	64	28	233	0.61	0.39	0.59	0.47	0.59	0.61	0.6	-98.8 7.52	0.10	69
CHR Mouse	IXI	Mera,	71	100	04	20	233	0.01	0.55	0.55	0.47	0.55	0.01	0.0	-90.0 7.32	0.19	- 00
LiverTumors	RF	Mersy	38	78	85	31	232	0.5	0.31	0.55	0.4	0.55	0.48	0.51	-99.0 7.02	0.03	69
CHR Mouse LiverTumors	RF	QNPR	39	95	69	30	233	0.58	0.36	0.57	0.44	0.57	0.58	0.57	-98.9 7.41	0.13	69
CHR Mouse LiverTumors	RF	Spectrop hores	38	99	65	31	233	0.59	0.37	0.55	0.44	0.55	0.6	0.58	-98.8 7.52	0.14	69
CHR Mouse	ASN	110100		- 55		J 1	200	0.00	0.01	0.00	0.77	0.00	0.0	0.00	00.0 7.02	0.17	- 00
LiverTumors	N	Adriana	28	97	65	41	231	0.54	0.3	0.41	0.35	0.41	0.6	0.5	-99.0 7.47	0.	69
CHR Mouse	ASN	ALogPS,															
LiverTumors	N	OEstate	29	99	65	40	233	0.55	0.31	0.42	0.36	0.42	0.6	0.51	-99.0 7.5	0.02	69
CHR Mouse LiverTumors	ASN N	CDK	36	107	56	33	232	0.62	0.39	0.52	0.45	0.52	0.66	0.59	-98.8 7.75	0.17	69
CHR Mouse	ASN																
LiverTumors	N ASN	n	31	101	63	38	233	0.57	0.33	0.45	0.38	0.45	0.62	0.53	-98.9 7.57	0.06	69
CHR Mouse LiverTumors	N	Dragon6	31	116	48	38	233	0.63	0.39	0.45	0.42	0.45	0.71	0.58	-98.8 7.98	0.15	69
CHR Mouse LiverTumors	ASN N	Fragment or	33	119	45	36	233	0.65	0.42	0.48	0.45	0.48	0.73	0.6	-98.8 8.07	0.2	69
CHR Mouse	ASN																
LiverTumors	N ASN	GSFrag	27	96	68	42	233	0.53	0.28	0.39	0.33	0.39	0.59	0.49	-99.0 7.41	.022	69
CHR Mouse LiverTumors	N	Inductive	37	100	64	32	233	0.59	0.37	0.54	0.44	0.54	0.61	0.57	-98.9 7.55	0.13	69
CHR Mouse LiverTumors	ASN N	Mera, Mersy	27	112	51	42	232	0.6	0.35	0.39	0.37	0.39	0.69	0.54	-98.9 7.85	0.08	69
CHR Mouse	ASN		<u> </u>	114	J 1	74	202	0.0	0.00	0.00	0.01	0.00	0.03	0.04	55.5 7.65	0.00	08
LiverTumors	N ASN	QNPR Spectrop	33	106	58	36	233	0.6	0.36	0.48	0.41	0.48	0.65	0.56	-98.9 7.71	0.12	69
CHR Mouse LiverTumors	N N	hores	41	119	45	28	233	0.69	0.48	0.59	0.53	0.59	0.73	0.66	-98.7 8.04	0.3	69
CHR Mouse		CDK, TA,	20	110	F2	40	222	0.50	0.00	0.00	0.05	0.00	0.07	0.50	000 770	0.05	^′
LiverTumors CHR Mouse	ASN	TP	26	110	53	43	232	0.59	0.33	0.38	0.35	0.38	0.67	0.53	-98.9 7.78	0.05	69
LiverTumors	N ACN	CDK, TA	30	108	55	39	232	0.59	0.35	0.43	0.39	0.43	0.66	0.55	-98.9 7.76	0.09	69
CHR Mouse LiverTumors	ASN N	CDK, TP	25	106	57	44	232	0.56	0.3	0.36	0.33	0.36	0.65	0.51	-99.0 7.65	0.01	69
CHR Mouse	ASN																
LiverTumors CHR Mouse	N ASN	TA, TP	27	106	58	42	233	0.57	0.32	0.39	0.35	0.39	0.65	0.52	-99.0 7.66	0.04	69
LiverTumors	N ACN	TA	27	114	50	42	233	0.61	0.35	0.39	0.37	0.39	0.7	0.54	-98.9 7.88	80.0	69
CHR Mouse LiverTumors	ASN N	TP	26	104	60	43	233	0.56	0.3	0.38	0.34	0.38	0.63	0.51	-99.0 7.6	0.01	69
CHR Mouse LiverTumors	FSM LR	CDK, TA, TP	28	99	64	41	232	0.55	0.3	0.41	0.35	0.41	0.61	0.51	-99.0 7.51	0.01	69
230.0		••			<u> </u>			2.00	0.0	V. 11	2.00	V. 11		0.01	23.0 7.01	5.01	
CHR Mouse LiverTumors	FSM LR	CDK, TA	19	115	48	50	232	0.58	0.28	0.28	0.28	0.28	0.71	0.49	-99.0 7.76	010	69
Liver rumurs		ODN, IA	18	110	70	30	232	0.00	0.20	0.20	0.20	0.20	0.7 1	∪.+∂	-99.0 1.10	.018	U:
CHR Mouse	FSM	CDV TD	22	111	40	20	222	0.00	0.4	0.40	0.44	0.40	0.7	0.50	000 705	0.47	^
LiverTumors	LR	CDK, TP	33	114	49	36	232	0.63	0.4	0.48	0.44	0.48	0.7	0.59	-98.8 7.95	0.17	69

																	\neg
CHR Mouse	FSM																
LiverTumors	LR	TA, TP	25	108	56	44	233	0.57	0.31	0.36	0.33	0.36	0.66	0.51	-99.0 7.69	0.02	69
CHR Mouse	FSM																
LiverTumors	LR	TA	30	107	57	39	233	0.59	0.34	0.43	0.38	0.43	0.65	0.54	-98.9 7.72	80.0	69
	FSM																
CHR Mouse LiverTumors	LR	TP	42	88	76	27	233	0.56	0.36	0.61	0.45	0.61	0.54	0.57	-98.9 7.21	0.13	69
CHR Mouse		CDK, TA,															
LiverTumors	KNN	TP	28	101	62	41	232	0.56	0.31	0.41	0.35	0.41	0.62	0.51	-99.0 7.56	0.02	69
CHR Mouse LiverTumors	KNN	CDK, TA	10	145	18	59	232	0.67	0.36	0.14	0.21	0.14	0.89	0.52	-99.0 8.5	0.05	69
CHR Mouse	IZAIAI	ODK TD	0.4	70	0.4	0.5	000	0.40	0.00	0.40	0.00	0.40	0.40	0.40	000 705	. 004	
LiverTumors CHR Mouse	KNN	CDK, TP	34	79	84	35	232	0.49	0.29	0.49	0.36	0.49	0.48	0.49	-99.0 7.05	.021	69
LiverTumors	KNN	TA, TP	41	95	69	28	233	0.58	0.37	0.59	0.46	0.59	0.58	0.59	-98.8 7.39	0.16	69
CHR Mouse LiverTumors	KNN	TA	20	127	37	49	233	0.63	0.35	0.29	0.32	0.29	0.77	0.53	-98.9 8.15	0.07	69
CHR Mouse	KININ	IA		121	31	49	233	0.03	0.55	0.29	0.32	0.29	0.77	0.55	-90.9 0.13	0.07	- 09
LiverTumors	KNN	TP	50	52	112	19	233	0.44	0.31	0.72	0.43	0.72	0.32	0.52	-99.0 6.13	0.04	69
CHR Mouse	LibS	CDK, TA,															
LiverTumors	VM	TP TP	18	132	31	51	232	0.65	0.37	0.26	0.31	0.26	0.81	0.54	-98.9 8.3	0.08	69
	Libe																\Box
CHR Mouse LiverTumors	LibS VM	CDK, TA	22	129	34	47	232	0.65	0.39	0.32	0.35	0.32	0.79	0.56	-98.9 8.3	0.12	69
		•															\neg
CHR Mouse LiverTumors	LibS VM	CDK, TP	13	139	24	56	232	0.66	0.35	0.19	0.25	0.19	0.85	0.52	-99.0 8.38	0.05	69
Liverramors	VIVI	ODIX, II	10	100		- 50	202	0.00	0.00	0.10	0.20	0.10	0.00	0.02	-55.0 0.50	0.00	
CHR Mouse	LibS	T4 TD	_	450	44		000	0.00	0.00	0.4	0.40	0.4		0.50	000074	0.00	
LiverTumors	VM	TA, TP	7	153	11	62	233	0.69	0.39	0.1	0.16	0.1	0.93	0.52	-99.0 8.74	0.06	69
CHR Mouse	LibS																
LiverTumors	VM	TA	10	142	22	59	233	0.65	0.31	0.14	0.2	0.14	0.87	0.51	-99.0 8.28	0.01	69
CHR Mouse	LibS																
LiverTumors	VM	TP TP	0	156	8	69	233	0.67	0.	0.		0.	0.95	0.48	-99.0 6.46	.122	69
CHR Mouse LiverTumors	MLR A	CDK, TA, TP	25	79	84	44	232	0.45	0.23	0.36	0.28	0.36	0.48	0.42	-99.2 6.97	.14	69
CHR Mouse	MLR			- 10	0-1		202	0.40	0.20	0.00	0.20	0.00	0.40	0.72	00.2 0.01		
LiverTumors	A MLR	CDK, TA	31	92	71	38	232	0.53	0.3	0.45	0.36	0.45	0.56	0.51	-99.0 7.36	0.01	69
CHR Mouse LiverTumors	A	CDK, TP	38	76	87	31	232	0.49	0.3	0.55	0.39	0.55	0.47	0.51	-99.0 6.97	0.02	69
CHR Mouse	MLR																\Box
LiverTumors	A MLR	TA, TP	28	78	86	41	233	0.45	0.25	0.41	0.31	0.41	0.48	0.44	-99.1 6.98	.108	69
CHR Mouse LiverTumors	A	TA	28	85	79	41	233	0.48	0.26	0.41	0.32	0.41	0.52	0.46	-99.1 7.15	.07	69
CHR Mouse	MLR		20	0.4	00	27	222	0.5	0.00	0.40	0.05	0.40	0.54	0.40	00.0. 7.45	. 000	
LiverTumors CHR Mouse	A	TP CDK, TA,	32	84	80	37	233	0.5	0.29	0.46	0.35	0.46	0.51	0.49	-99.0 7.15	.022	69
LiverTumors	PLS	TP	27	108	55	42	232	0.58	0.33	0.39	0.36	0.39	0.66	0.53	-98.9 7.73	0.05	69
CHR Mouse LiverTumors	PLS	CDK, TA	30	109	54	39	232	0.6	0.36	0.43	0.39	0.43	0.67	0.55	-98.9 7.79	0.1	69
CHR Mouse	1 20	ODIN, IA	- 50	100		- 55	202	0.0	0.00	0.40	0.00	0.40	0.07	0.00	-50.5 1.15	0.1	
LiverTumors	PLS	CDK, TP	25	102	61	44	232	0.55	0.29	0.36	0.32	0.36	0.63	0.49	-99.0 7.54	.011	69
CHR Mouse LiverTumors	PLS	TA, TP	25	110	54	44	233	0.58	0.32	0.36	0.34	0.36	0.67	0.52	-99.0 7.74	0.03	69
CHR Mouse			26	111	50	43	233	0.6	U 34	U 38	U 36	U 38	0.7	0.54	_080 707	0.07	60
LiverTumors CHR Mouse	PLS	IA	20	114	50	43	233	0.6	0.34	0.38	0.36	0.38	0.7	0.54	-98.9 7.87	0.07	69
LiverTumors	PLS		26	89	75	43	233	0.49	0.26	0.38	0.31	0.38	0.54	0.46	-99.1 7.22	.074	69
CHR Mouse LiverTumors	J48	CDK, TA, TP	30	108	55	39	232	0.59	0.35	0.43	0.39	0.43	0.66	0.55	-98.9 7.76	0.09	69
1	3.0		50	. 50		50		5.55	0.00	5.10	2.00	5.10	0.00	0.50	55.5 7.70	0.00	ام

OUD Marra																		
CHR Mouse LiverTumors	J48	CDK, TA	23	111	52	46	232	0.58	0.31	0.33	0.32	0.33	0.68	0.51	-99.0	7.75	0.01	69
CHR Mouse LiverTumors	J48	CDK, TP	20	116	47	49	232	0.59	0.3	0.29	0.29	0.29	0.71	0.5	-99.0	7.82	0.	69
CHR Mouse LiverTumors	J48	TA, TP	26	115	49	43	233	0.61	0.35	0.38	0.36	0.38	0.7	0.54	-98.9	7.9	0.08	69
CHR Mouse LiverTumors	J48	TA	26	107	57	43	233	0.57	0.31	0.38	0.34	0.38	0.65	0.51	-99.0	7.68	0.03	69
CHR Mouse LiverTumors	J48	TP	26	107	57	43	233	0.57	0.31	0.38	0.34	0.38	0.65	0.51	-99.0	7.68	0.03	69
CHR Mouse LiverTumors	RF	CDK, TA, TP	34	79	84	35	232	0.49	0.29	0.49	0.36	0.49	0.48	0.49	-99.0	7.05	.021	69
CHR Mouse LiverTumors	RF	CDK, TA	37	86	77	32	232	0.53	0.32	0.54	0.4	0.54	0.53	0.53	-98.9	7 22	0.06	69
CHR Mouse LiverTumors	RF	CDK, TP	40	90	73	29	232	0.56	0.35	0.58	0.44	0.58	0.55	0.57	-98.9			69
CHR Mouse LiverTumors	RF	TA, TP	35	86	78	34	233	0.52	0.31	0.51	0.38	0.51	0.52	0.52	-99.0			69
CHR Mouse LiverTumors	RF	TA	37	88	76	32	233	0.54	0.33	0.54	0.41	0.54	0.54	0.54	-98.9			69
CHR Mouse LiverTumors	RF	TP	38	72	92	31	233	0.47	0.29	0.55	0.38	0.55	0.44	0.49	-99.0			69
CHR Mouse LiverTumors	FSM LR	Adriana	40	75	87	29	231	0.5	0.31	0.58	0.41	0.58	0.46	0.52	-99.0	5.94	0.04	69
CHR Mouse LiverTumors		ALogPS, OEstate	32	96	68	37	233	0.55		0.46	0.38	0.46	0.59	0.52	-99.0			69
CHR Mouse LiverTumors	FSM LR	CDK	38	107	56	31	232	0.63	0.4	0.55	0.47	0.55	0.66	0.6	-98.8	7.74	0.19	69
CHR Mouse LiverTumors	FSM LR	Chemaxo n	34	92	72	35	233	0.54	0.32	0.49	0.39	0.49	0.56	0.53	-98.9	7.35	0.05	69
CHR Mouse LiverTumors	FSM LR	Dragon6	34	107	57	35	233	0.61	0.37	0.49	0.43	0.49	0.65	0.57	-98.9	7.74	0.14	69
CHR Mouse LiverTumors	FSM LR	Fragment or	28	112	52	41	233	0.6	0.35	0.41	0.38	0.41	0.68	0.54	-98.9	7.84	0.09	69
CHR Mouse LiverTumors	FSM LR	GSFrag	35	96	68	34	233	0.56	0.34	0.51	0.41	0.51	0.59	0.55	-98.9	7.45	0.09	69
CHR Mouse LiverTumors	FSM LR	Inductive	40	98	66	29	233	0.59	0.38	0.58	0.46	0.58	0.6	0.59	-98.8	7.48	0.16	69
CHR Mouse LiverTumors	FSM LR	Mera, Mersy	37	94	69	32	232	0.56	0.35	0.54	0.42	0.54	0.58	0.56	-98.9	7.41	0.1	69
CHR Mouse LiverTumors	FSM LR	QNPR	30	106	58	39	233	0.58	0.34	0.43	0.38	0.43	0.65	0.54	-98.9	7.69	0.08	69
CHR Mouse	FSM LR	Spectrop hores	45	87	77	24	233	0.57	0.37	0.65	0.47	0.65	0.53	0.59	-98.8	7.14	0.17	69
LiverTumors		Adriana	42	84	78	27	231	0.55	0.35	0.61	0.44	0.61	0.52	0.56	-98.9	7.14	0.12	69
CHR Mouse	KNN																	
CHR Mouse LiverTumors		ALogPS, OEstate	38	83	81	31	233	0.52	0.32	0.55	0.4	0.55	0.51	0.53	-98.9	7.12	0.05	69
CHR Mouse LiverTumors CHR Mouse LiverTumors CHR Mouse LiverTumors CHR Mouse LiverTumors	KNN	•	38 45	83 76	81 87	31 24	233 232	0.52	0.32	0.55	0.4	0.55	0.51	0.53	-98.9 T			69 69

CHD Moures																		
CHR Mouse LiverTumors	KNN	Dragon6	44	63	101	25	233	0.46	0.3	0.64	0.41	0.64	0.38	0.51	-99.0	6.57	0.02	69
CHR Mouse LiverTumors	KNN	Fragment or	41	105	59	28	233	0.63	0.41	0.59	0.49	0.59	0.64	0.62	-98.8	7.65	0.22	69
CHR Mouse	IZNINI	005	22	404	40	40	000	0.00	0.05	0.00	0.24	0.00	0.74	0.54	00.0	0.00	0.07	
LiverTumors CHR Mouse	KININ	GSFrag	23	121	43	46	233	0.62	0.35	0.33	0.34	0.33	0.74	0.54	-90.9	8.02	0.07	69
LiverTumors	KNN	Inductive	49	86	78	20	233	0.58	0.39	0.71	0.5	0.71	0.52	0.62	-98.8	7.02	0.22	69
CHR Mouse LiverTumors	KNN	Mera, Mersy	46	70	93	23	232	0.5	0.33	0.67	0.44	0.67	0.43	0.55	-98.9	6.71	0.09	69
CHR Mouse LiverTumors	KNN	QNPR	43	79	85	26	233	0.52	0.34	0.62	0.44	0.62	0.48	0.55	-98.9	6.98	0.1	69
CHR Mouse		Spectrop																
LiverTumors	KNN	hores	33	108	56	36	233	0.61	0.37	0.48	0.42	0.48	0.66	0.57	-98.9	7.76	0.13	69
CHR Mouse	LibS																	
LiverTumors	VM	Adriana	11	145	17	58	231	0.68	0.39	0.16	0.23	0.16	0.9	0.53	-98.9	8.63	0.08	69
CHR Mouse	LibS	ALogPS,																
LiverTumors	VM	OEstate	10	151	13	59	233	0.69	0.43	0.14	0.22	0.14	0.92	0.53	-98.9	8.86	0.1	69
	LibS																	
CHR Mouse LiverTumors	VM	CDK	25	131	32	44	232	0.67	0.44	0.36	0.4	0.36	0.8	0.58	-98.8	8.43	0.18	69
	1:50	Chamana																
CHR Mouse LiverTumors	LibS VM	Chemaxo n	12	149	15	57	233	0.69	0.44	0.17	0.25	0.17	0.91	0.54	-98.9	8.84	0.12	69
	1.11.0																	
CHR Mouse LiverTumors	LibS VM	Dragon6	8	152	12	61	233	0.69	0.4	0.12	0.18	0.12	0.93	0.52	-99 0	8.76	0.07	69
	* 111	Bragono				- 0 1		0.00	0.1	0.12	0.10	0.12	0.00	0.02	- 00.0	0.70	0.07	
CHR Mouse	LibS	Fragment	17	140	16	5 0	222	0.71	0.50	0.25	0.22	0.05	0.0	0.57	00.0	0.00	0.10	ec
LiverTumors	VM	or	17	148	16	52	233	0.71	0.52	0.25	0.33	0.25	0.9	0.57	-90.9	9.02	0.19	69
CHR Mouse	LibS																	
LiverTumors	VM	GSFrag	17	125	39	52	233	0.61	0.3	0.25	0.27	0.25	0.76	0.5	-99.0	7.98	0.01	69
CHR Mouse	LibS											0.00						
	LibS VM	Inductive	25	129	35	44	233	0.66	0.42	0.36	0.39	0.36	0.79	0.57	-98.9	8.33	0.16	69
LiverTumors		Inductive Mera,	25	129	35	44	233	0.66	0.42	0.36	0.39	0.36	0.79	0.57	-98.9	8.33	0.16	69
	VM		25 12	129 139	35 24	57	233	0.66	0.42	0.36	0.39	0.36	0.79	0.57		8.33 8.32		
LiverTumors CHR Mouse LiverTumors	VM LibS VM	Mera,																
LiverTumors CHR Mouse	VM LibS	Mera,													-99.0		0.03	69
CHR Mouse LiverTumors	VM LibS VM LibS VM	Mera, Mersy QNPR	12	139	24	57	232	0.65	0.33	0.17	0.23	0.17	0.85	0.51	-99.0	8.32	0.03	69
CHR Mouse LiverTumors CHR Mouse LiverTumors CHR Mouse LiverTumors CHR Mouse	LibS VM LibS VM	Mera, Mersy QNPR Spectrop	12	139	13	57	232	0.65	0.33	0.17	0.23	0.17	0.85	0.51	-99.0 -98.8	9.28	0.03	69
CHR Mouse LiverTumors CHR Mouse LiverTumors CHR Mouse LiverTumors CHR Mouse LiverTumors	VM LibS VM LibS VM	Mera, Mersy QNPR	12	139	24	57	232	0.65	0.33	0.17	0.23	0.17	0.85	0.51	-99.0 -98.8	8.32	0.03	69
CHR Mouse LiverTumors CHR Mouse LiverTumors	LibS VM LibS VM LibS VM	Mera, Mersy QNPR Spectrop	12	139	13	57	232	0.65	0.33	0.17	0.23	0.17	0.85	0.51	-99.0 -98.8 -98.7	9.28	0.03 0.24 0.26	69
CHR Mouse LiverTumors	LibS VM LibS VM LibS VM MLR A	Mera, Mersy QNPR Spectrop hores Adriana	12	139 151 132	24 13 32	57 51 38	232 233 233	0.65	0.33	0.17 0.26 0.45	0.23 0.36 0.47	0.17 0.26 0.45	0.85	0.51	-99.0 -98.8 -98.7	8.32 9.28 8.51	0.03 0.24 0.26	69
CHR Mouse LiverTumors	LibS VM LibS VM LibS VM MLR A	Mera, Mersy QNPR Spectrop hores	12	139 151 132	24 13 32	57 51 38	232 233 233	0.65	0.33	0.17 0.26 0.45	0.23 0.36 0.47	0.17 0.26 0.45	0.85	0.51	-99.0 -98.8 -98.7 -98.9	8.32 9.28 8.51	0.03 0.24 0.26 0.08	69 69 69
CHR Mouse LiverTumors	LibS VM LibS VM LibS VM MLR A	Mera, Mersy QNPR Spectrop hores Adriana ALogPS, OEstate	12 18 31 36	139 151 132 92 86	24 13 32 70	57 51 38 33	232 233 233 231 233	0.65 0.73 0.7 0.55	0.33 0.58 0.49 0.34	0.17 0.26 0.45 0.52	0.23 0.36 0.47 0.41	0.17 0.26 0.45 0.52	0.85 0.92 0.8 0.57	0.51 0.59 0.63 0.54	-99.0 -98.8 -98.7 -98.9	8.32 9.28 8.51 7.38	0.03 0.24 0.26 0.08	69 69 69
CHR Mouse LiverTumors	LibS VM LibS VM LibS VM MLR A MLR A	Mera, Mersy QNPR Spectrop hores Adriana ALogPS, OEstate CDK	12 18 31 36	139 151 132 92	24 13 32 70	57 51 38 33	232 233 233 231	0.65 0.73 0.7 0.55	0.33 0.58 0.49 0.34	0.17 0.26 0.45 0.52	0.23 0.36 0.47 0.41	0.17 0.26 0.45 0.52	0.85 0.92 0.8 0.57	0.51 0.59 0.63 0.54	-99.0 -98.8 -98.7 -98.9	8.32 9.28 8.51 7.38	0.03 0.24 0.26 0.08	69 69 69
CHR Mouse LiverTumors	LibS VM LibS VM LibS VM MLR A MLR A MLR A	Mera, Mersy QNPR Spectrop hores Adriana ALogPS, OEstate	12 18 31 36	139 151 132 92 86	24 13 32 70	57 51 38 33	232 233 233 231 233	0.65 0.73 0.7 0.55	0.33 0.58 0.49 0.34	0.17 0.26 0.45 0.52 0.43	0.23 0.36 0.47 0.41 0.34 0.33	0.17 0.26 0.45 0.52	0.85 0.92 0.8 0.57	0.51 0.59 0.63 0.54	-99.0 -98.8 -98.7 -98.9 -99.0	8.32 9.28 8.51 7.38	0.03 0.24 0.26 0.08 .037	69 69 69 69
CHR Mouse LiverTumors	LibS VM LibS VM LibS VM MLR A MLR A MLR A	Mera, Mersy QNPR Spectrop hores Adriana ALogPS, OEstate CDK Chemaxo n	12 18 31 36 30 29	139 151 132 92 86 86 92	24 13 32 70 78 77	57 51 38 33 39 40 35	232 233 233 231 233 232 233	0.65 0.73 0.7 0.55 0.5 0.5	0.33 0.58 0.49 0.34 0.28 0.27 0.32	0.17 0.26 0.45 0.52 0.43 0.42	0.23 0.36 0.47 0.41 0.34 0.33	0.17 0.26 0.45 0.52 0.43 0.42	0.85 0.92 0.8 0.57 0.52 0.53	0.51 0.59 0.63 0.54 0.48 0.47	-99.0 -98.8 -98.7 -98.9 -99.0 -99.1	8.32 9.28 8.51 7.38 7.19 7.2 7.35	0.03 0.24 0.26 0.08 .037 .048 0.05	69 69 69 69 69
CHR Mouse LiverTumors	LibS VM LibS VM LibS VM MLR A MLR A MLR A MLR A	Mera, Mersy QNPR Spectrop hores Adriana ALogPS, OEstate CDK Chemaxo	12 18 31 36 30 29	139 151 132 92 86 86	24 13 32 70 78 77	57 51 38 33 39 40	232 233 233 231 233 232	0.65 0.73 0.7 0.55 0.5	0.33 0.58 0.49 0.34 0.28	0.17 0.26 0.45 0.52 0.43	0.23 0.36 0.47 0.41 0.34 0.33	0.17 0.26 0.45 0.52 0.43	0.85 0.92 0.8 0.57 0.52	0.51 0.59 0.63 0.54 0.48	-99.0 -98.8 -98.7 -98.9 -99.0 -99.1	8.32 9.28 8.51 7.38 7.19	0.03 0.24 0.26 0.08 .037 .048 0.05	69 69 69 69 69
CHR Mouse LiverTumors	LibS VM LibS VM LibS VM MLR A MLR A MLR A MLR A	Mera, Mersy QNPR Spectrop hores Adriana ALogPS, OEstate CDK Chemaxo n Dragon6	12 18 31 36 30 29	139 151 132 92 86 86 92	24 13 32 70 78 77	57 51 38 33 39 40 35	232 233 233 231 233 232 233	0.65 0.73 0.7 0.55 0.5 0.5	0.33 0.58 0.49 0.34 0.28 0.27 0.32	0.17 0.26 0.45 0.52 0.43 0.42	0.23 0.36 0.47 0.41 0.34 0.33	0.17 0.26 0.45 0.52 0.43 0.42	0.85 0.92 0.8 0.57 0.52 0.53	0.51 0.59 0.63 0.54 0.48 0.47	-99.0 -98.8 -98.7 -98.9 -99.0 -99.1 -98.9	8.32 9.28 8.51 7.38 7.19 7.2 7.35	0.03 0.24 0.26 0.08 .037 .048 0.05 .134	69 69 69 69 69
CHR Mouse LiverTumors CHR Mouse LiverTumors	LibS VM LibS VM LibS VM MLR A MLR A MLR A MLR A MLR A	Mera, Mersy QNPR Spectrop hores Adriana ALogPS, OEstate CDK Chemaxo n Dragon6 Fragment or	12 18 31 36 30 29 34 20 38	139 151 132 92 86 86 92 93	24 13 32 70 78 77 72 71 83	57 51 38 33 39 40 35 49	232 233 231 233 232 233 233 233	0.65 0.73 0.7 0.55 0.5 0.54 0.48 0.51	0.33 0.58 0.49 0.34 0.28 0.27 0.32 0.22 0.31	0.17 0.26 0.45 0.52 0.43 0.42 0.49 0.29	0.23 0.36 0.47 0.41 0.34 0.33 0.39 0.25	0.17 0.26 0.45 0.52 0.43 0.42 0.49 0.29	0.85 0.92 0.8 0.57 0.52 0.53 0.56 0.57 0.49	0.51 0.59 0.63 0.54 0.48 0.47 0.53 0.43	-99.0 -98.8 -98.7 -98.9 -99.1 -98.9 -99.1	8.32 9.28 8.51 7.38 7.19 7.2 7.35 7.19 7.08	0.03 0.24 0.26 0.08 .037 .048 0.05 .134 0.04	69 69 69 69 69 69
CHR Mouse LiverTumors	LibS VM LibS VM LibS VM MLR A MLR A MLR A MLR A	Mera, Mersy QNPR Spectrop hores Adriana ALogPS, OEstate CDK Chemaxo n Dragon6 Fragment	12 18 31 36 30 29 34 20	139 151 132 92 86 86 92 93	24 13 32 70 78 77 72 71	57 51 38 33 39 40 35 49	232 233 231 231 233 232 233	0.65 0.73 0.7 0.55 0.5 0.5 0.54 0.48	0.33 0.58 0.49 0.34 0.28 0.27 0.32 0.22	0.17 0.26 0.45 0.52 0.43 0.42 0.49	0.23 0.36 0.47 0.41 0.34 0.33 0.39	0.17 0.26 0.45 0.52 0.43 0.42 0.49	0.85 0.92 0.8 0.57 0.52 0.53 0.56	0.51 0.59 0.63 0.54 0.48 0.47 0.53 0.43	-99.0 -98.8 -98.7 -98.9 -99.0 -99.1 -98.9	8.32 9.28 8.51 7.38 7.19 7.2 7.35 7.19 7.08	0.03 0.24 0.26 0.08 .037 .048 0.05 .134	699 699 699 699 699 699 699

	MID	Moro														
CHR Mouse LiverTumors	A	Mera, Mersy	43	96	67	26	232	0.6	0.39	0.62	0.48	0.62	0.59	0.61	-98.8 7.41 0.19	69
CHR Mouse	MLR															
LiverTumors	A	QNPR	41	95	69	28	233	0.58	0.37	0.59	0.46	0.59	0.58	0.59	-98.8 7.39 0.16	69
CHR Mouse LiverTumors	MLR		35	100	64	34	233	0.58	0.35	0.51	0.42	0.51	0.61	0.56	090 755 0 11	69
CHR Mouse	A	hores	33	100	04	34	233	0.56	0.35	0.51	0.42	0.51	0.61	0.50	-98.9 7.55 0.11	09
LiverTumors	PLS	Adriana	31	88	74	38	231	0.52	0.3	0.45	0.36	0.45	0.54	0.5	-99.0 7.27 .007	69
CHR Mouse LiverTumors	PLS	ALogPS, OEstate	34	92	72	35	233	0.54	0.32	0.49	0.39	0.49	0.56	0.53	-98.9 7.35 0.05	69
CHR Mouse LiverTumors	PLS	CDK	40	97	66	29	232	0.59	0.38	0.58	0.46	0.58	0.6	0.59	-98.8 7.47 0.16	69
CHR Mouse LiverTumors	PLS	Chemaxo n	37	82	82	32	233	0.51	0.31	0.54	0.39	0.54	0.5	0.52	-99.0 7.11 0.03	69
CHR Mouse	FLO	11	31	02	02	32	233	0.51	0.51	0.54	0.59	0.54	0.5	0.52	-99.0 7.11 0.03	09
LiverTumors	PLS	Dragon6	32	113	51	37	233	0.62	0.39	0.46	0.42	0.46	0.69	0.58	-98.8 7.9 0.15	69
CHR Mouse LiverTumors	PLS	Fragment or	35	109	55	34	233	0.62	0.39	0.51	0.44	0.51	0.66	0.59	-98.8 7.79 0.16	69
CHR Mouse		<u> </u>		100		<u> </u>		0.02	0.00	0.01	0.11	0.01	0.00	0.00	00.0 7.70 0.10	
LiverTumors	PLS	GSFrag	36	95	69	33	233	0.56	0.34	0.52	0.41	0.52	0.58	0.55	-98.9 7.43 0.09	69
CHR Mouse LiverTumors	PLS	Inductive	41	84	80	28	233	0.54	0.34	0.59	0.43	0.59	0.51	0.55	-98.9 7.12 0.1	69
CHR Mouse		Mera,														
LiverTumors	PLS	Mersy	37	95	68	32	232	0.57	0.35	0.54	0.43	0.54	0.58	0.56	-98.9 7.44 0.11	69
CHR Mouse LiverTumors	PLS	QNPR	33	101	63	36	233	0.58	0.34	0.48	0.4	0.48	0.62	0.55	-98.9 7.58 0.09	69
CHR Mouse		Spectrop														
LiverTumors	PLS	hores	40	101	63	29	233	0.61	0.39	0.58	0.47	0.58	0.62	0.6	-98.8 7.55 0.18	69
CHR Mouse LiverTumors	J48	Adriana	25	105	57	44	231	0.56	0.3	0.36	0.33	0.36	0.65	0.51	-99.0 7.64 0.01	69
CHR Mouse LiverTumors	J48	ALogPS, OEstate	25	109	55	44	233	0.58	0.31	0.36	0.34	0.36	0.66	0.51	-99.0 7.71 0.03	69
CHR Mouse LiverTumors	J48	CDK	28	114	49	41	232	0.61	0.36	0.41	0.38	0.41	0.7	0.55	-98.9 7.91 0.1	69
CHR Mouse	0.10	Chemaxo			-10			0.01	0.00	0.11	0.00	0.11	0.1	0.00	00.0 7.01 0.1	
LiverTumors	J48	n	30	112	52	39	233	0.61	0.37	0.43	0.4	0.43	0.68	0.56	-98.9 7.86 0.11	69
CHR Mouse LiverTumors	J48	Dragon6	36	118	46	33	233	0.66	0.44	0.52	0.48	0.52	0.72	0.62	-98.8 8.04 0.23	69
CHR Mouse		Fragment														
LiverTumors	J48	or	30	123	41	39	233	0.66	0.42	0.43	0.43	0.43	0.75	0.59	-98.8 8.18 0.18	69
CHR Mouse LiverTumors	J48	GSFrag	28	95	69	41	233	0.53	0.29	0.41	0.34	0.41	0.58	0.49	-99.0 7.39 .014	69
CHR Mouse	140			400			000	0.00	0.44	0.55	0.40	0.55	0.00	0.04	000 775 004	
LiverTumors	J48	Inductive Mera,	39	108	56	30	233	0.63	0.41	0.57	0.48	0.57	0.66	0.61	-98.8 7.75 0.21	69
CHR Mouse LiverTumors	J48	Mersy	28	110	53	41	232	0.59	0.35	0.41	0.37	0.41	0.67	0.54	-98.9 7.8 0.08	69
CHR Mouse LiverTumors	J48	QNPR	33	114	50	36	233	0.63	0.4	0.48	0.43	0.48	0.7	0.59	-98.8 7.93 0.17	69
CHR Mouse		Spectrop														
LiverTumors	J48	hores	27	123	41	42	233	0.64	0.4	0.39	0.39	0.39	0.75	0.57	-98.9 8.15 0.14	69
CHR Mouse KidneyPathology	RF	Adriana	24	111	76	20	231	0.58	0.24	0.55	0.33	0.55	0.59	0.57	-98.9 6.6 0.11	44
CHR Mouse KidneyPathology	RF	ALogPS, OEstate	21	85	102	25	233	0.45	0.17	0.46	0.25	0.46	0.45	0.46	-99.1 6.13 .071	46
CHR Mouse KidneyPathology	RF	CDK	21	104	83	24	232	0.54	0.2	0.47	0.28	0.47	0.56	0.51	-99.0 6.49 0.02	45
CHR Mouse	IM	Chemaxo	۷1	104	00	24	232	0.04	0.2	0.47	0.20	0.47	0.50	0.01	-55.0 0.48 0.02	40
KidneyPathology	RF	n	26	105	82	20	233	0.56	0.24	0.57	0.34	0.57	0.56	0.56	-98.9 6.54 0.1	46
CHR Mouse KidneyPathology	RF	Dragon6	24	110	77	22	233	0.58	0.24	0.52	0.33	0.52	0.59	0.55	-98.9 6.67 0.09	46
CHR Mouse	IM	Fragment		110	11		200	0.00	0.24	0.02	0.00	0.02	0.08	0.00	-55.5 0.07 0.09	70
KidneyPathology	RF	or	25	99	88	21	233	0.53	0.22	0.54	0.31	0.54	0.53	0.54	-98.9 6.42 0.06	46
CHR Mouse KidneyPathology	RF	GSFrag	18	99	88	28	233	0.5	0.17	0.39	0.24	0.39	0.53	0.46	-99.1 6.38 .063	46

CHR Mouse KidneyPathology	RF	Inductive	21	108	79	25	233	0.55	0.21	0.46	0.29	0.46	0.58	0.52	-99.0 6.62	0.03	46
CHR Mouse KidneyPathology	RF	Mera, Mersy	18	102	85	27	232	0.52	0.17	0.4	0.24	0.4	0.55	0.47	-99.1 6.41	.043	45
CHR Mouse KidneyPathology	RF	QNPR	25	104	83	21	233	0.55	0.23	0.54	0.32	0.54	0.56	0.55	-98.9 6.53	0.08	46
CHR Mouse KidneyPathology	RF	Spectrop hores	29	108	79	17	233	0.59	0.27	0.63	0.38	0.63	0.58	0.6	-98.8 6.56	0.17	46
CHR Mouse KidneyPathology	ASN N	Adriana	16	118	69	28	231	0.58	0.19	0.36	0.25	0.36	0.63	0.5	-99.0 6.69	.004	44
CHR Mouse	ASN	ALogPS,															
KidneyPathology	N ASN	OEstate	17	116	71	29	233	0.57	0.19	0.37	0.25	0.37	0.62	0.49	-99.0 6.73	.008	46
CHR Mouse KidneyPathology	N	CDK	18	126	61	27	232	0.62	0.23	0.4	0.29	0.4	0.67	0.54	-98.9 6.95	0.06	45
CHR Mouse KidneyPathology	ASN N	Chemaxo n	17	130	57	29	233	0.63	0.23	0.37	0.28	0.37	0.7	0.53	-98.9 7.07	0.06	46
CHR Mouse KidneyPathology	ASN N	Dragon6	18	138	49	28	233	0.67	0.27	0.39	0.32	0.39	0.74	0.56	-98.9 7.3	0.11	46
CHR Mouse KidneyPathology	ASN N	Fragment or	18	114	73	28	233	0.57	0.2	0.39	0.26	0.39	0.61	0.5	-99.0 6.71	0.	46
CHR Mouse KidneyPathology	ASN N	GSFrag	22	103	84	24	233	0.54	0.21	0.48	0.29	0.48	0.55	0.51	-99.0 6.52	0.02	46
CHR Mouse	ASN N	Inductive	19	114	73	27	233	0.57	0.21	0.41	0.28	0.41	0.61	0.51	-99.0 6.73		46
KidneyPathology CHR Mouse	ASN	Mera,															
KidneyPathology CHR Mouse	N ASN	Mersy	18	113	74	27	232	0.56	0.2	0.4	0.26	0.4	0.6	0.5	-99.0 6.65	0.	45
KidneyPathology CHR Mouse	N ASN	QNPR Spectrop	13	117	70	33	233	0.56	0.16	0.28	0.2	0.28	0.63	0.45	-99.1 6.63	.076	46
KidneyPathology	N ASN	hores CDK, TA,	25	124	63	21	233	0.64	0.28	0.54	0.37	0.54	0.66	0.6	-98.8 6.98	0.17	46
CHR Mouse KidneyPathology	N ASN	TP TP	13	122	65	32	232	0.58	0.17	0.29	0.21	0.29	0.65	0.47	-99.1 6.71	.049	45
CHR Mouse KidneyPathology	N	CDK, TA	15	127	60	30	232	0.61	0.2	0.33	0.25	0.33	0.68	0.51	-99.0 6.9	0.01	45
CHR Mouse KidneyPathology	ASN N	CDK, TP	14	119	68	31	232	0.57	0.17	0.31	0.22	0.31	0.64	0.47	-99.1 6.68	.043	45
CHR Mouse KidneyPathology	ASN N	TA, TP	15	125	62	31	233	0.6	0.19	0.33	0.24	0.33	0.67	0.5	-99.0 6.89	.005	46
CHR Mouse KidneyPathology	ASN N	TA	16	127	60	30	233	0.61	0.21	0.35	0.26	0.35	0.68	0.51	-99.0 6.97	0.02	46
CHR Mouse KidneyPathology	ASN N	TP	22	120	67	24	233	0.61	0.25	0.48	0.33	0.48	0.64	0.56	-98.9 6.89	0.1	46
				120	- 01		200	0.01	0.20	0.40	0.00	0.40	0.04	0.50	-50.5 0.05	0.1	
CHR Mouse KidneyPathology	LR	CDK, TA, TP	23	117	70	22	232	0.6	0.25	0.51	0.33	0.51	0.63	0.57	-98.9 6.78	0.11	45
CHR Mouse	FSM																
KidneyPathology	LR	CDK, TA	16	114	73	29	232	0.56	0.18	0.36	0.24	0.36	0.61	0.48	-99.0 6.63	.028	45
CHR Mouse KidneyPathology	FSM LR	CDK, TP	20	99	88	25	232	0.51	0.19	0.44	0.26	0.44	0.53	0.49	-99.0 6.38	.021	45
CHR Mouse	FSM																
KidneyPathology	LR	TA, TP	16	120	67	30	233	0.58	0.19	0.35	0.25	0.35	0.64	0.49	-99.0 6.8	.009	46
CHR Mouse KidneyPathology	FSM LR	TA	14	124	63	32	233	0.59	0.18	0.3	0.23	0.3	0.66	0.48	-99.0 6.83	.028	46
CHR Mouse KidneyPathology	FSM LR	TP	20	119	68	26	233	0.6	0.23	0.43	0.3	0.43	0.64	0.54	-98.9 6.85	0.06	46
CHR Mouse KidneyPathology	KNN	CDK, TA, TP	21	92	95	24	232	0.49	0.18	0.47	0.26	0.47	0.49	0.48	-99.0 6.23	.033	45
CHR Mouse KidneyPathology		CDK, TA	25	77	110	20	232	0.44	0.19	0.56	0.28	0.56	0.41	0.48		.026	45

CHR Mouse KidneyPathology	KNN	CDK, TP	29	48	139	16	232	0.33	0.17	0.64	0.27	0.64	0.26	0.45	-99.1	5.13	.087	45
CHR Mouse KidneyPathology	KNN	TA, TP	19	90	97	27	233	0.47	0.16	0.41	0.23	0.41	0.48	0.45	-99.1	6.21	.084	46
CHR Mouse KidneyPathology	KNN	TA	12	153	34	34	233	0.71	0.26	0.26	0.26	0.26	0.82	0.54	-98.9	7.56	0.08	46
CHR Mouse KidneyPathology	KNN	TP	21	78	109	25	233	0.42	0.16	0.46	0.24	0.46	0.42	0.44	-99.1	5.97	.101	46
CHR Mouse KidneyPathology	LibS VM	CDK, TA, TP	3	177	10	42	232	0.78	0.23	0.07	0.1	0.07	0.95	0.51	-99.0	7.83	0.02	45
CHR Mouse KidneyPathology	LibS VM	CDK, TA	2	181	6	43	232	0.79	0.25	0.04	0.08	0.04	0.97	0.51	-99.0	8.02	0.03	45
CHR Mouse KidneyPathology	LibS VM	CDK, TP	3	184	3	42	232	0.81	0.5	0.07	0.12	0.07	0.98	0.53	-98.9	8.97	0.13	45
CHR Mouse KidneyPathology	LibS VM	TA, TP	0	187	0	46	233	0.8		0.		0.	1.	0.5	-99.0	9.07		46
CHR Mouse KidneyPathology	LibS VM	TA	1	184	3	45	233	0.79	0.25	0.02	0.04	0.02	0.98	0.5	-99.0	8.19	0.02	46
CHR Mouse KidneyPathology	LibS VM	TP	3	175	12	43	233	0.76	0.2	0.07	0.1	0.07	0.94	0.5	-99.0	7.67	0.	46
CHR Mouse KidneyPathology	Α	CDK, TA, TP	19	118	69	26	232	0.59	0.22	0.42	0.29	0.42	0.63	0.53	-98.9	6.78	0.04	45
CHR Mouse KidneyPathology	MLR A	CDK, TA	22	108	79	23	232	0.56	0.22	0.49	0.3	0.49	0.58	0.53	-98.9	6.58	0.05	45
CHR Mouse KidneyPathology	MLR A	CDK, TP	20	115	72	25	232	0.58	0.22	0.44	0.29	0.44	0.61	0.53	-98.9	6.72	0.05	45
CHR Mouse KidneyPathology	MLR A	TA, TP	22	96	91	24	233	0.51	0.19	0.48	0.28	0.48	0.51	0.5	-99.0	6.37	.007	46
CHR Mouse KidneyPathology	MLR A	TA	23	98	89	23	233	0.52	0.21	0.5	0.29	0.5	0.52	0.51	-99.0	6.41	0.02	46
CHR Mouse KidneyPathology	MLR A	TP CON TA	23	98	89	23	233	0.52	0.21	0.5	0.29	0.5	0.52	0.51	-99.0	6.41	0.02	46
CHR Mouse KidneyPathology	PLS	CDK, TA, TP	14	121	66	31	232	0.58	0.18	0.31	0.22	0.31	0.65	0.48	-99.0	6.73	.035	45
CHR Mouse KidneyPathology	PLS	CDK, TA	18	118	69	27	232	0.59	0.21	0.4	0.27	0.4	0.63	0.52	-99.0	6.77	0.03	45
CHR Mouse KidneyPathology	PLS	CDK, TP	19	115	72	26	232	0.58	0.21	0.42	0.28	0.42	0.61	0.52	-99.0	6.71	0.03	45
CHR Mouse KidneyPathology CHR Mouse	PLS	TA, TP	19	127	60	27	233	0.63	0.24	0.41	0.3	0.41	0.68	0.55	-98.9	7.03	0.08	46
KidneyPathology CHR Mouse	PLS	TA	13	122	65	33	233	0.58	0.17	0.28	0.21	0.28	0.65	0.47	-99.1	6.74	.055	46
KidneyPathology CHR Mouse	PLS	TP CDK, TA,	21	117	70	25	233	0.59	0.23	0.46	0.31	0.46	0.63	0.54	-98.9	6.82	0.07	46
KidneyPathology CHR Mouse	J48	TP	17	121	66	28	232	0.59	0.2	0.38	0.27	0.38	0.65	0.51	-99.0	6.81	0.02	45
KidneyPathology CHR Mouse	J48	CDK, TA	18	128	59	27	232	0.63	0.23	0.4	0.3	0.4	0.68	0.54	-98.9	7.	0.07	45
KidneyPathology CHR Mouse	J48	CDK, TP	19	116	71	26	232	0.58	0.21	0.42	0.28	0.42		0.52	-99.0	6.74		45
KidneyPathology CHR Mouse	J48	TA, TP	13	135	52	33	233	0.64	0.2	0.28	0.23	0.28	0.72	0.5	-99.0		0.	46
KidneyPathology CHR Mouse	J48	TA	12	140	47	34	233	0.65	0.2	0.26	0.23	0.26	0.75	0.5	-99.0			46
KidneyPathology CHR Mouse	J48	CDK, TA,	18	126	61	28	233	0.62	0.23	0.39	0.29	0.39	0.67	0.53	-98.9			46
KidneyPathology CHR Mouse KidneyPathology	RF RF	TP CDK, TA	21	111	76 75	24 25	232	0.57	0.22	0.47	0.3	0.47	0.59	0.53	-98.9 -99.0			45 45

CHR Mouse KidneyPathology	RF	CDK, TP	22	96	91	23	232	0.51	0.19	0.49	0.28	0.49	0.51	0.5	-99.0 6.3	32 0.	45
CHR Mouse KidneyPathology	RF	TA. TP	20	99	88	26	233	0.51	0.19	0.43	0.26	0.43	0.53	0.48	-99.0 6.4		46
CHR Mouse KidneyPathology	RF	TA TA	16	110	77	30	233	0.54	0.17	0.45	0.23	0.45	0.59	0.47	-99.1 6.t		46
CHR Mouse																	
KidneyPathology	RF	TP	23	99	88	23	233	0.52	0.21	0.5	0.29	0.5	0.53	0.51	-99.0 6.4	13 0.02	46
CHR Mouse KidneyPathology	FSM LR	Adriana	18	104	83	26	231	0.53	0.18	0.41	0.25	0.41	0.56	0.48	-99.0 6.4	12 .028	44
CHR Mouse KidneyPathology	FSM LR	ALogPS, OEstate	17	104	83	29	233	0.52	0.17	0.37	0.23	0.37	0.56	0.46	-99.1 6.4	17 .06	46
CHR Mouse KidneyPathology	FSM LR	CDK	21	112	75	24	232	0.57	0.22	0.47	0.3	0.47	0.6	0.53	-98.9 6.6	37 0.05	45
CHR Mouse KidneyPathology	FSM LR	Chemaxo n	14	131	56	32	233	0.62	0.2	0.3	0.24	0.3	0.7	0.5	-99.0	7. 0.	46
CHR Mouse KidneyPathology	FSM LR	Dragon6	21	128	59	25	233	0.64	0.26	0.46	0.33	0.46	0.68	0.57	-98.9 7.0	0.12	46
CHR Mouse KidneyPathology	FSM LR	Fragment or	19	112	75	27	233	0.56	0.2	0.41	0.27	0.41	0.6	0.51	-99.0 6.6	88 0.01	46
CHR Mouse KidneyPathology	FSM LR	GSFrag	19	99	88	27	233	0.51	0.18	0.41	0.25	0.41	0.53	0.47	-99.1 6	.4 .046	46
CHR Mouse KidneyPathology	FSM LR	Inductive	22	83	104	24	233	0.45	0.17	0.48	0.26	0.48	0.44	0.46	-99.1 6.0	9 .062	46
CHR Mouse KidneyPathology	FSM LR	Mera, Mersy	22	119	68	23	232	0.61	0.24	0.49	0.33	0.49	0.64	0.56	-98.9 6.8	33 0.1	45
CHR Mouse KidneyPathology	FSM LR	QNPR	20	105	82	26	233	0.54	0.2	0.43	0.27	0.43	0.56	0.5	-99.0 6.5	54 .003	46
CHR Mouse KidneyPathology	FSM LR	Spectrop hores	20	135	52	26	233	0.67	0.28	0.43	0.34	0.43	0.72	0.58	-98.8 7.2	25 0.13	46
CHR Mouse KidneyPathology	KNN	Adriana	27	64	123	17	231	0.39	0.18	0.61	0.28	0.61	0.34	0.48	-99.0 5.5	3 .036	44
CHR Mouse KidneyPathology	KNN	ALogPS, OEstate	36	27	160	10	233	0.27	0.18	0.78	0.3	0.78	0.14	0.46	-99.1 4. <i>°</i>	8 .08	46
CHR Mouse KidneyPathology	KNN	CDK	33	60	127	12	232	0.4	0.21	0.73	0.32	0.73	0.32	0.53	-98.9 5.2	9 0.05	45
CHR Mouse KidneyPathology	KNN	Chemaxo n	24	96	91	22	233	0.52	0.21	0.52	0.3	0.52	0.51	0.52	-99.0 6.3	37 0.03	46
CHR Mouse KidneyPathology	KNN	Dragon6	24	101	86	22	233	0.54	0.22	0.52	0.31	0.52	0.54	0.53	-98.9 6.4	7 0.05	46
CHR Mouse KidneyPathology	KNN	Fragment or	29	47	140	17	233	0.33	0.17	0.63	0.27	0.63	0.25	0.44	-99.1 5.1	16 .105	46
CHR Mouse KidneyPathology	KNN	GSFrag	33	45	142	13	233	0.33	0.19	0.72	0.3	0.72	0.24	0.48	-99.0 4.9	7 .039	46
CHR Mouse KidneyPathology	KNN	Inductive	19	115	72	27	233	0.58	0.21	0.41	0.28	0.41	0.61	0.51	-99.0 6.7	75 0.02	46
CHR Mouse KidneyPathology	KNN	Mera, Mersy	24	97	90	21	232	0.52	0.21	0.53	0.3	0.53	0.52	0.53	-98.9 6.3	34 0.04	45
CHR Mouse KidneyPathology	KNN	QNPR	41	15	172	5	233	0.24	0.19	0.89	0.32	0.89	0.08	0.49	-99.0 3.0)2 .04	46
CHR Mouse KidneyPathology	KNN	Spectrop hores	29	107	80	17	233	0.58	0.27	0.63	0.37	0.63	0.57	0.6	-98.8 6.5	54 0.16	46

	LibS																	
CHR Mouse (idneyPathology	VM	Adriana	10	164	23	34	231	0.75	0.3	0.23	0.26	0.23	0.88	0.55	-98.9	7.84	0.12	44
CHR Mouse KidneyPathology	LibS VM	ALogPS, OEstate	7	175	12	39	233	0.78	0.37	0.15	0.22	0.15	0.94	0.54	-98.9	8.33	0.13	46
CHR Mouse KidneyPathology	LibS VM	CDK	7	178	9	38	232	0.8	0.44	0.16	0.23	0.16	0.95	0.55	-98.9	8.6	0.17	45
CHR Mouse KidneyPathology	LibS VM	Chemaxo n	5	163	24	41	233	0.72	0.17	0.11	0.13	0.11	0.87	0.49	-99.0			46
CHR Mouse KidneyPathology	LibS VM	Dragon6	8	178	9	38	233	0.8	0.47	0.17	0.15	0.17	0.95	0.56	-98.9			46
CHR Mouse KidneyPathology	LibS VM	Fragment or	5	176	11	41	233	0.78	0.47	0.17	0.25	0.17	0.93	0.52	-99.0			46
CHR Mouse	LibS VM		11	160	27	35	233		0.29	0.24	0.26	0.11	0.86	0.55	-98.9		0.1	46
CHR Mouse	LibS	GSFrag						0.73										
KidneyPathology CHR Mouse KidneyPathology	LibS VM	Mera, Mersy	<u>1</u> 5	178	9 15	45	233	0.77	0.1	0.02	0.04	0.02	0.95	0.49	-99.0 -99.0			46
CHR Mouse KidneyPathology	LibS VM	QNPR	4	177	10	42	233	0.78	0.29	0.09	0.13	0.09	0.92	0.52	-99.0	-		46
CHR Mouse KidneyPathology	LibS VM	Spectrop hores	14	149	38	32	233	0.7	0.27	0.3	0.29	0.3	0.8	0.55	-98.9		0.1	46
CHR Mouse KidneyPathology	MLR A	Adriana	24	111	76	20	231	0.58	0.24	0.55	0.33	0.55	0.59	0.57	-98.9		0.11	44
CHR Mouse KidneyPathology	Α	ALogPS, OEstate	22	72	115	24	233	0.4	0.16	0.48	0.24	0.48	0.39	0.43	-99.1	5.85	.111	46
CHR Mouse KidneyPathology CHR Mouse	MLR A MLR	CDK Chemaxo	22	107	80	23	232	0.56	0.22	0.49	0.3	0.49	0.57	0.53	-98.9	6.56	0.05	45
KidneyPathology CHR Mouse KidneyPathology	A MLR A	n Dragon6	18 24	106	81 86	28	233	0.53	0.18	0.39	0.25	0.39	0.57	0.48	-99.0 -98.9	6.54 6.47		46
CHR Mouse KidneyPathology CHR Mouse	MLR A MLR	Fragment or	22	101	86	24	233	0.53	0.2	0.48	0.29	0.48	0.54	0.51	-99.0	6.47	0.01	46
KidneyPathology CHR Mouse KidneyPathology	A MLR A	GSFrag Inductive	15 17	115 111	72 76	31 29	233	0.56	0.17	0.33	0.23	0.33	0.61	0.47	-99.1 -99.0		.049	46
CHR Mouse KidneyPathology		Mera, Mersy	16	91	96	29	232	0.46	0.14	0.36	0.2	0.36	0.49	0.42	-99.2			45
CHR Mouse KidneyPathology CHR Mouse	A MLR	QNPR Spectrop	26	96	91	20	233	0.52	0.22	0.57	0.32	0.57	0.51	0.54	-98.9			46
KidneyPathology CHR Mouse KidneyPathology	A PLS	hores Adriana	22	92	70 95	24	233	0.6	0.24	0.48	0.32	0.48	0.63	0.55	-98.9 -99.0		.006	46
CHR Mouse KidneyPathology	PLS	ALogPS, OEstate	17	111	76	29	233	0.55	0.18	0.37	0.24	0.37	0.59	0.48	-99.0	6.62	.03	46
CHR Mouse KidneyPathology CHR Mouse		CDK Chemaxo	20	113	74	25	232	0.57	0.21	0.44	0.29	0.44	0.6	0.52	-99.0	6.68	0.04	45
KidneyPathology	PLS	n	18	116	71	28	233	0.58	0.2	0.39	0.27	0.39	0.62	0.51	-99.0	6.76	0.01	46

CHR Mouse KidneyPathology	PLS	Dragon6	17	135	52	29	233	0.65	0.25	0.37	0.3	0.37	0.72	0.55	-98.9	7.19	0.08	46
CHR Mouse KidneyPathology	PLS	Fragment or	18	114	73	28	233	0.57	0.2	0.39	0.26	0.39	0.61	0.5	-99.0	6.71	0.	46
CHR Mouse KidneyPathology	PLS	GSFrag	21	95	92	25	233	0.5	0.19	0.46	0.26	0.46	0.51	0.48	-99.0	6.34	.028	46
CHR Mouse KidneyPathology	PLS	Inductive	25	110	77	21	233	0.58	0.25	0.54	0.34	0.54	0.59	0.57	-98.9	6.66	0.11	46
CHR Mouse KidneyPathology	PLS	Mera, Mersy	20	108	79	25	232	0.55	0.2	0.44	0.28	0.44	0.58	0.51	-99.0	6.57	0.02	45
CHR Mouse KidneyPathology	PLS	QNPR	16	111	76	30	233	0.55	0.17	0.35	0.23	0.35	0.59	0.47	-99.1	6.6	.048	46
CHR Mouse KidneyPathology	PLS	Spectrop hores	23	117	70	23	233	0.6	0.25	0.5	0.33	0.5	0.63	0.56	-98.9	6.82	0.1	46
CHR Mouse KidneyPathology	J48	Adriana	15	150	37	29	231	0.71	0.29	0.34	0.31	0.34	0.8	0.57	-98.9	7.51	0.13	44
CHR Mouse KidneyPathology	J48	ALogPS, OEstate	12	121	66	34	233	0.57	0.15	0.26	0.19	0.26	0.65	0.45	-99.1	6.67	.078	46
CHR Mouse KidneyPathology	J48	CDK	14	122	65	31	232	0.59	0.18	0.31	0.23	0.31	0.65	0.48	-99.0	6.75	.03	45
CHR Mouse KidneyPathology	J48	Chemaxo n	20	131	56	26	233	0.65	0.26	0.43	0.33	0.43	0.7	0.57	-98.9	7.14	0.11	46
CHR Mouse KidneyPathology	J48	Dragon6	15	140	47	31	233	0.67	0.24	0.33	0.28	0.33	0.75	0.54	-98.9	7.28	0.07	46
CHR Mouse KidneyPathology	J48	Fragment or	21	126	61	25	233	0.63	0.26	0.46	0.33	0.46	0.67	0.57	-98.9	7.03	0.11	46
CHR Mouse KidneyPathology	J48	GSFrag	17	122	65	29	233	0.6	0.21	0.37	0.27	0.37	0.65	0.51	-99.0	6.87	0.02	46
CHR Mouse KidneyPathology	J48	Inductive	16	135	52	30	233	0.65	0.24	0.35	0.28	0.35	0.72	0.53	-98.9	7.17	0.06	46
CHR Mouse KidneyPathology	J48	Mera, Mersy	17	129	58	28	232	0.63	0.23	0.38	0.28	0.38	0.69	0.53	-98.9	7.01	0.06	45
CHR Mouse KidneyPathology	J48	QNPR	15	128	59	31	233	0.61	0.2	0.33	0.25	0.33	0.68	0.51	-99.0	6.96	0.01	46
CHR Mouse KidneyPathology	J48	Spectrop hores	17	140	47	29	233	0.67	0.27	0.37	0.31	0.37	0.75	0.56	-98.9	7.33	0.11	46
CHR Mouse LiverHypertrophy	RF	Adriana	31	101	69	30	231	0.57	0.31	0.51	0.39	0.51	0.59	0.55	-98.9	7.25	0.09	61
CHR Mouse LiverHypertrophy	RF	ALogPS, OEstate	37	108	64	24	233	0.62	0.37	0.61	0.46	0.61	0.63	0.62	-98.8	7.34	0.21	61
CHR Mouse LiverHypertrophy	RF	CDK	33	106	65	28	232	0.6	0.34	0.54	0.42	0.54	0.62	0.58	-98.8	7.35	0.14	61
CHR Mouse LiverHypertrophy	RF	Chemaxo n	27	103	69	34	233	0.56	0.28	0.44	0.34	0.44	0.6	0.52	-99.0	7.25	0.04	61
CHR Mouse LiverHypertrophy	RF	Dragon6	33	112	60	28	233	0.62	0.35	0.54	0.43	0.54	0.65	0.6	-98.8	7.48	0.17	61
CHR Mouse LiverHypertrophy	RF	Fragment or	37	121	51	24	233	0.68	0.42	0.61	0.5	0.61	0.7	0.66	-98.7	7.68	0.28	61
CHR Mouse LiverHypertrophy	RF	GSFrag	30	94	78	31	233	0.53	0.28	0.49	0.36	0.49	0.55	0.52	-99.0	7.05	0.03	61
CHR Mouse LiverHypertrophy	RF	Inductive	30	99	73	31	233	0.55	0.29	0.49	0.37	0.49	0.58	0.53	-98.9	7.17	0.06	61
CHR Mouse LiverHypertrophy	RF	Mera, Mersy	29	96	75	32	232	0.54	0.28	0.48	0.35	0.48	0.56	0.52	-99.0	7.11	0.03	61
CHR Mouse LiverHypertrophy	RF	QNPR	27	113	59	34	233	0.6	0.31	0.44	0.37	0.44	0.66	0.55	-98.9	7.5	0.09	61
CHR Mouse LiverHypertrophy	RF	Spectrop hores	33	107	65	28	233	0.6	0.34	0.54	0.42	0.54	0.62	0.58	-98.8	7.36	0.15	61
CHR Mouse LiverHypertrophy	ASN N	Adriana	30	110	60	31	231	0.61	0.33	0.49	0.4	0.49	0.65	0.57	-98.9	7.47	0.13	61
CHR Mouse LiverHypertrophy	ASN N	ALogPS, OEstate	33	120	52	28	233	0.66	0.39	0.54	0.45	0.54	0.7	0.62	-98.8	7.69	0.22	61

Content Note No. CICK 32 122 49 29 222 0.68 0.4 0.52 0.45 0.52 0.71 0.62 98.8 7.77 0.22 0.7 0.65 0.6																			
Maching Properties N		ASN N	CDK	32	122	49	29	232	0.66	0.4	0.52	0.45	0.52	0.71	0.62	-98.8	7.77	0.22	61
CHIR Mause ASN North Properties ASN Fingement ASN AS				27	110	62	34	233	0.59	0.3	0 44	0.36	0 44	0 64	0.54	-98 9	7 42	0.07	61
CHR Mouse ASN Fagment N or 35 124 48 26 233 0.86 0.42 0.57 0.40 0.57 0.72 0.65 -98.7 7.79 0.27 0.67 0.72 0.65 0.98.7 7.79 0.27 0.67 0.72 0.65 0.98.7 7.79 0.27 0.67 0.72 0.67 0.72 0.65 0.98.7 7.79 0.27 0.67 0.72 0.67 0.72 0.65 0.98.7 7.79 0.27 0.67 0.72 0.67 0.72 0.65 0.98.7 7.79 0.27 0.72 0.67 0.72 0.65 0.98.7 7.79 0.27 0.72 0.67 0.72 0.67 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.7	CHR Mouse	ASN											-						
Interhypotrophy N or 35 124 48 26 233 0.68 0.42 0.57 0.49 0.57 0.72 0.65 -98.7 7.79 0.27 61				25	121	51	36	233	0.63	0.33	0.41	0.36	0.41	0.7	0.56	-98.9	7.69	0.11	61
CHICATION No. CSFFrag Z7 122 50 34 233 0.64 0.35 0.44 0.79 0.58 0.88 7.74 0.14 0.15 0.16 0.15 0		N	_	35	124	48	26	233	0.68	0.42	0.57	0.49	0.57	0.72	0.65	-98.7	7.79	0.27	61
Math-properticipation National Math-properticipation Nationa			GSFrag	27	122	50	34	233	0.64	0.35	0.44	0.39	0.44	0.71	0.58	-98.8	7.74	0.14	61
Colin Missing ASN Meric			Inductive	29	101	71	32	233	0.56	0.29	0.48	0.36	0.48	0.59	0.53	-98.9	7 22	0.06	61
CHR Mouse ASN No					101				0.00	0.20	0.10	0.00	0.10	0.00	0.00	00.0		0.00	<u> </u>
Note			Mersy	31	117	54	30	232	0.64	0.36	0.51	0.42	0.51	0.68	0.6	-98.8	7.64	0.18	61
Liber-Hypertrophy N hores 29 109 63 32 233 0.59 0.32 0.48 0.38 0.48 0.63 0.55 -98.9 7.41 0.1 61		N		30	127	45	31	233	0.67	0.4	0.49	0.44	0.49	0.74	0.62	-98.8	7.9	0.22	61
CHR Mouse ASN CDK, TA TP 17 112 59 44 232 0.56 0.22 0.28 0.25 0.28 0.65 0.47 -99.1 7.29 0.62 61				29	109	63	32	233	0.59	0.32	0.48	0.38	0.48	0.63	0.55	-98.9	7.41	0.1	61
Chert Mouse	CHR Mouse		CDK, TA,	17	112		11											062	
CHR Mouse LiverHypertrophy LR CDK, TP LR CDK, TP LR LiverHypertrophy N TA, TP LR LiverHypertrophy N TA TA LiverHypertrophy LR TP LR LiverHypertrophy LR CDK, TA LiverHypertroph			IF	17	112	- 59	44	232	0.56	0.22	0.20	0.23	0.20	0.03	0.47	-99.1	1.29	.002	01
Chiral Mouse FSM LiverHypertrophy LR CDK, TP 22 115 56 39 232 0.59 0.28 0.36 0.36 0.36 0.67 0.52 0.99 0.75 0.03 61			CDK, TA	22	120	51	39	232	0.61	0.3	0.36	0.33	0.36	0.7	0.53	-98.9	7.64	0.06	61
N TA, TP		N	CDK, TP	22	115	56	39	232	0.59	0.28	0.36	0.32	0.36	0.67	0.52	-99.0	7.5	0.03	61
CHR Mouse LiverHypertrophy RSM			TA. TP	22	115	57	39	233	0.59	0.28	0.36	0.31	0.36	0.67	0.51	-99.0	7.49	0.03	61
CHR Mouse LiverHypertrophy LiverHypertro	CHR Mouse	ASN		20	100		44											005	
Leverthypertrophy N TP 22 110 62 39 233 0.57 0.26 0.36 0.3 0.36 0.64 0.5 0.99.0 7.36 0.6 61			IA	20	109	63	41	233	0.55	0.24	0.33	0.28	0.33	0.63	0.48	-99.0	7.29	.035	61
CHR Mouse FSM LiverHypertrophy LR TP 25 97 74 36 232 0.53 0.25 0.41 0.31 0.41 0.57 0.49 -99.0 7.11 0.02 61		N	TP	22	110	62	39	233	0.57	0.26	0.36	0.3	0.36	0.64	0.5	-99.0	7.36	0.	61
CHR Mouse FSM LiverHypertrophy LR CDK, TA 24 104 67 37 232 0.55 0.26 0.39 0.32 0.39 0.61 0.5 -99.0 7.26 0. 61 CHR Mouse FSM LiverHypertrophy LR CDK, TP 30 99 72 31 232 0.56 0.29 0.49 0.37 0.49 0.58 0.54 -98.9 7.18 0.06 61 CHR Mouse FSM LiverHypertrophy LR TA, TP 26 106 66 35 233 0.57 0.28 0.43 0.34 0.43 0.62 0.52 -99.0 7.32 0.04 61 CHR Mouse FSM LiverHypertrophy LR TA 19 101 71 42 233 0.52 0.21 0.31 0.25 0.31 0.59 0.45 -99.1 7.07 0.91 61 CHR Mouse FSM LiverHypertrophy LR TA 19 101 71 32 233 0.56 0.29 0.48 0.36 0.48 0.59 0.53 -98.9 7.22 0.06 61 CHR Mouse CDK, TA, LiverHypertrophy KNN TP 28 85 86 33 232 0.49 0.25 0.46 0.32 0.46 0.5 0.48 -99.0 6.85 0.39 61 CHR Mouse LiverHypertrophy KNN CDK, TP 23 86 85 38 232 0.47 0.21 0.38 0.27 0.38 0.5 0.44 -99.1 6.82 .106 61 CHR Mouse LiverHypertrophy KNN CDK, TP 23 86 85 38 232 0.47 0.21 0.38 0.27 0.38 0.5 0.44 -99.1 6.82 .106 61 CHR Mouse LiverHypertrophy KNN TA, TP 34 79 93 27 233 0.48 0.25 0.48 0.36 0.48 0.48 0.48 -99.0 6.89 0.01 61 CHR Mouse LiverHypertrophy KNN TA, TP 34 79 93 27 233 0.48 0.25 0.48 0.32 0.48 0.48 0.48 -99.0 6.8 0.037 61 CHR Mouse LiverHypertrophy KNN TA, TP 34 79 93 27 233 0.48 0.25 0.48 0.32 0.48 0.48 0.48 -99.0 6.8 0.037 61 CHR Mouse LiverHypertrophy KNN TA, TP 34 79 93 27 233 0.48 0.25 0.48 0.32 0.48 0.48 0.48 -99.0 6.8 0.037 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 32 233 0.48 0.25 0.48 0.32 0.48 0.48 0.48 0.48 -99.0 6.8 0.037 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 32 233 0.48 0.25 0.48 0.35 0.52 0.48 0.48 0.48 0.48 -99.0 6.8 0.037 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 32 233 0.49 0.26 0.52 0.35 0.52 0.48 0.55 -99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 32 233 0.49 0.26 0.52 0.35 0.52 0.48 0.55 -99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 32 233 0.49 0.26 0.52 0.35 0.52 0.48 0.55 -99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 32 233 0.49 0.26 0.52 0.35 0.52 0.48 0.55 -99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TA 30 32 83 89 32 233 0.49 0.26 0.52 0.35 0.52 0.48 0.55 -99.0 6.8 0.0	CHR Mouse	FSM	CDK, TA,																
CHR Mouse FSM LiverHypertrophy LR TA, TP 26 106 66 35 233 0.57 0.28 0.49 0.37 0.49 0.58 0.54 -98.9 7.18 0.06 61 CHR Mouse LiverHypertrophy LR TA TA TP 26 106 66 35 233 0.57 0.28 0.49 0.37 0.49 0.58 0.54 -98.9 7.18 0.06 61 CHR Mouse FSM LiverHypertrophy LR TA TA TP 26 106 66 35 233 0.57 0.28 0.43 0.34 0.43 0.62 0.52 -99.0 7.32 0.04 61 CHR Mouse FSM LiverHypertrophy LR TA TA TP 26 106 66 35 233 0.57 0.28 0.49 0.37 0.49 0.58 0.54 -98.9 7.18 0.06 61 CHR Mouse FSM LiverHypertrophy LR TA TA TP 26 106 66 35 233 0.57 0.28 0.49 0.37 0.49 0.58 0.59 0.52 -99.0 7.32 0.04 61 CHR Mouse FSM LiverHypertrophy LR TA TA TP 29 101 71 32 233 0.56 0.29 0.48 0.36 0.48 0.59 0.53 -98.9 7.22 0.06 61 CHR Mouse CDK, TA LiverHypertrophy KNN TP 28 85 86 33 232 0.49 0.25 0.46 0.32 0.46 0.5 0.48 -99.0 6.85 0.39 61 CHR Mouse LiverHypertrophy KNN CDK, TA 28 105 66 33 232 0.49 0.25 0.46 0.36 0.46 0.61 0.54 -98.9 7.32 0.07 61 CHR Mouse LiverHypertrophy KNN CDK, TP 23 86 85 38 232 0.47 0.21 0.38 0.27 0.38 0.5 0.44 -99.1 6.82 .106 61 CHR Mouse LiverHypertrophy KNN TA, TP 34 79 93 27 233 0.48 0.27 0.56 0.36 0.56 0.46 0.51 -99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TA, TP 34 79 93 27 233 0.48 0.27 0.56 0.36 0.56 0.46 0.51 -99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TA, TP 32 83 89 29 233 0.49 0.25 0.48 0.32 0.48 0.48 0.48 0.99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 32 233 0.49 0.25 0.48 0.32 0.48 0.48 0.48 0.99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 32 233 0.49 0.25 0.48 0.32 0.48 0.48 0.48 0.99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 32 233 0.49 0.25 0.48 0.32 0.48 0.48 0.48 0.99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 0.48 0.5 0.99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TA 32 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 0.48 0.5 0.99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TA 32 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 0.99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TA 32 83 89 29 233 0.49 0.26 0.52 0.35 0.5	LiverHypertrophy	LR	TP	25	97	74	36	232	0.53	0.25	0.41	0.31	0.41	0.57	0.49	-99.0	7.11	.02	61
CHR Mouse LiverHypertrophy LR CDK, TP 30 99 72 31 232 0.56 0.29 0.49 0.37 0.49 0.58 0.54 -98.9 7.18 0.06 61 CHR Mouse LiverHypertrophy LR TA, TP 26 106 66 35 233 0.57 0.28 0.43 0.34 0.43 0.62 0.52 -99.0 7.32 0.04 61 CHR Mouse LiverHypertrophy LR TA 19 101 71 42 233 0.52 0.21 0.31 0.25 0.31 0.59 0.45 -99.1 7.07 0.91 61 CHR Mouse LiverHypertrophy LR TA 29 101 71 32 233 0.56 0.29 0.48 0.36 0.48 0.59 0.53 -98.9 7.22 0.06 61 CDK, TA, LiverHypertrophy KNN TP 28 85 86 33 232 0.49 0.25 0.46 0.32 0.46 0.5 0.48 -99.0 6.85 0.39 61 CHR Mouse LiverHypertrophy KNN CDK, TA 28 105 66 33 232 0.47 0.21 0.38 0.27 0.38 0.5 0.44 -99.1 6.82 .106 61 CHR Mouse LiverHypertrophy KNN CDK, TP 23 86 85 38 232 0.47 0.21 0.38 0.27 0.38 0.5 0.44 -99.1 6.82 .106 61 CHR Mouse LiverHypertrophy KNN TA, TP 34 79 93 27 233 0.48 0.27 0.56 0.36 0.56 0.46 0.51 -99.0 6.69 0.01 61 CHR Mouse LiverHypertrophy KNN TA, TP 34 79 93 27 233 0.48 0.27 0.56 0.36 0.56 0.46 0.51 -99.0 6.89 0.01 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 32 233 0.49 0.25 0.48 0.32 0.48 0.48 0.48 0.49 -99.0 6.8 0.07 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 32 233 0.49 0.25 0.46 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61 CHR Mouse Libs CDK, TA,	CHR Mouse	FSM																	
CHR Mouse FSM LiverHypertrophy LR TA, TP 26 106 66 35 233 0.57 0.28 0.43 0.34 0.43 0.62 0.52 -99.0 7.32 0.04 61 CHR Mouse FSM LiverHypertrophy LR TA 19 101 71 42 233 0.52 0.21 0.31 0.25 0.31 0.59 0.45 -99.1 7.07 0.91 61 CHR Mouse FSM LiverHypertrophy LR TA 19 101 71 32 233 0.56 0.29 0.48 0.36 0.48 0.59 0.53 -99.9 7.22 0.06 61 CHR Mouse LiverHypertrophy LR TP 29 101 71 32 233 0.56 0.29 0.48 0.36 0.48 0.59 0.53 -99.9 7.22 0.06 61 CHR Mouse LiverHypertrophy KNN TP 28 85 86 33 232 0.49 0.25 0.46 0.32 0.46 0.5 0.48 -99.0 6.85 0.39 61 CHR Mouse LiverHypertrophy KNN CDK, TA 28 105 66 33 232 0.57 0.3 0.46 0.36 0.46 0.61 0.54 -99.1 7.07 0.91 61 CHR Mouse LiverHypertrophy KNN CDK, TA 28 105 66 33 232 0.47 0.21 0.38 0.27 0.38 0.5 0.44 -99.1 6.82 106 61 CHR Mouse LiverHypertrophy KNN TA, TP 34 79 93 27 233 0.48 0.27 0.56 0.36 0.56 0.46 0.51 -99.0 6.69 0.01 61 CHR Mouse LiverHypertrophy KNN TA, TP 34 79 93 27 233 0.48 0.27 0.56 0.36 0.56 0.46 0.48 0.48 -99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TA, TP 34 89 93 27 233 0.48 0.25 0.48 0.32 0.48 0.48 0.48 -99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TA, TP 32 83 89 32 233 0.49 0.26 0.52 0.35 0.52 0.48 0.48 0.48 -99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 32 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 32 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61	LiverHypertrophy	LR	CDK, TA	24	104	67	37	232	0.55	0.26	0.39	0.32	0.39	0.61	0.5	-99.0	7.26	0.	61
CHR Mouse LiverHypertrophy LR TA, TP 26 106 66 35 233 0.57 0.28 0.43 0.34 0.43 0.62 0.52 -99.0 7.32 0.04 61 CHR Mouse FSM LiverHypertrophy LR TA 19 101 71 42 233 0.52 0.21 0.31 0.25 0.31 0.59 0.45 -99.1 7.07 0.91 61 CHR Mouse LiverHypertrophy LR TP 29 101 71 32 233 0.56 0.29 0.48 0.36 0.48 0.59 0.53 -98.9 7.22 0.06 61 CHR Mouse LiverHypertrophy KNN TP 28 85 86 33 232 0.49 0.25 0.46 0.32 0.46 0.5 0.48 -99.0 6.85 0.39 61 CHR Mouse LiverHypertrophy KNN CDK, TA 28 105 66 33 232 0.57 0.3 0.46 0.36 0.46 0.61 0.54 -98.9 7.32 0.07 61 CHR Mouse LiverHypertrophy KNN CDK, TP 23 86 85 38 232 0.47 0.21 0.38 0.27 0.38 0.5 0.44 -99.1 6.82 1.06 61 CHR Mouse LiverHypertrophy KNN TA, TP 34 79 93 27 233 0.48 0.27 0.56 0.36 0.56 0.46 0.51 -99.0 6.69 0.01 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 32 233 0.48 0.27 0.56 0.36 0.56 0.46 0.51 -99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 32 233 0.48 0.25 0.48 0.32 0.48 0.48 0.48 0.48 -99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61 CHR Mouse Libs CDK, TA,																			
Chr Mouse FSM LiverHypertrophy LR TA TP 26 106 66 35 233 0.57 0.28 0.43 0.34 0.43 0.62 0.52 -99.0 7.32 0.04 61	LiverHypertrophy	LR	CDK, TP	30	99	72	31	232	0.56	0.29	0.49	0.37	0.49	0.58	0.54	-98.9	7.18	0.06	61
CHR Mouse LiverHypertrophy LR TA 19 101 71 42 233 0.52 0.21 0.31 0.25 0.31 0.59 0.45 -99.1 7.07 .091 61 CHR Mouse FSM LiverHypertrophy LR TP 29 101 71 32 233 0.56 0.29 0.48 0.36 0.48 0.59 0.53 -98.9 7.22 0.06 61 CHR Mouse LiverHypertrophy KNN TP 28 85 86 33 232 0.49 0.25 0.46 0.32 0.46 0.5 0.48 -99.0 6.85 .039 61 CHR Mouse LiverHypertrophy KNN CDK, TA 28 105 66 33 232 0.57 0.3 0.46 0.36 0.46 0.61 0.54 -98.9 7.32 0.07 61 CHR Mouse LiverHypertrophy KNN CDK, TP 23 86 85 38 232 0.47 0.21 0.38 0.27 0.38 0.5 0.44 -99.1 6.82 .106 61 CHR Mouse LiverHypertrophy KNN TA, TP 34 79 93 27 233 0.48 0.27 0.56 0.36 0.56 0.46 0.51 -99.0 6.69 0.01 61 CHR Mouse LiverHypertrophy KNN TA, TP 34 79 93 27 233 0.48 0.25 0.48 0.32 0.48 0.48 0.48 -99.0 6.8 .037 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 32 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TP 32 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TP 32 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TP 32 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61			T4 TD		100	00		000	0.55	0.00	0.40	0.04	0.40	0.00	0.50	00.0	7.00	0.04	
Cherrophy	LiverHypertrophy	LK	IA, IP	26	106	66	35	233	0.57	0.28	0.43	0.34	0.43	0.62	0.52	-99.0	7.32	0.04	61
CHR Mouse LiverHypertrophy LR TP 29 101 71 32 233 0.56 0.29 0.48 0.36 0.48 0.59 0.53 -98.9 7.22 0.06 61 CDK, TA, LiverHypertrophy KNN TP 28 85 86 33 232 0.49 0.25 0.46 0.32 0.46 0.5 0.48 -99.0 6.85 .039 61 CHR Mouse LiverHypertrophy KNN CDK, TA 28 105 66 33 232 0.57 0.3 0.46 0.36 0.46 0.61 0.54 -98.9 7.32 0.07 61 CHR Mouse LiverHypertrophy KNN CDK, TP 23 86 85 38 232 0.47 0.21 0.38 0.27 0.38 0.5 0.44 -99.1 6.82 .106 61 CHR Mouse LiverHypertrophy KNN TA, TP 34 79 93 27 233 0.48 0.27 0.56 0.36 0.56 0.46 0.51 -99.0 6.69 0.01 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 32 233 0.48 0.25 0.48 0.32 0.48 0.48 0.48 -99.0 6.8 .037 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 32 233 0.48 0.25 0.48 0.32 0.48 0.48 0.48 -99.0 6.8 .037 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TP 32 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61			ΤΛ	10	101	71	42	222	0.52	0.21	0.21	0.25	0.21	0.50	0.45	00.1	7.07	001	61
LiverHypetrophy LR TP 29 101 71 32 233 0.56 0.29 0.48 0.36 0.48 0.59 0.53 -98.9 7.22 0.06 61 CHR Mouse CDK, TA, LiverHypetrophy KNN TP 28 85 86 33 232 0.49 0.25 0.46 0.32 0.46 0.5 0.48 -99.0 6.85 0.39 61 CHR Mouse LiverHypetrophy KNN CDK, TA 28 105 66 33 232 0.57 0.3 0.46 0.36 0.46 0.61 0.54 -98.9 7.32 0.07 61 CHR Mouse LiverHypetrophy KNN CDK, TP 23 86 85 38 232 0.47 0.21 0.38 0.27 0.38 0.5 0.44 -99.1 6.82 .106 61 CHR Mouse LiverHypetrophy KNN TA, TP 34 79 93 27 233 0.48 0.27 0.56 0.36 0.56 0.46 0.51 -99.0 6.69 0.01 61 CHR Mouse LiverHypetrophy KNN TA 29 83 89 32 233 0.48 0.25 0.48 0.32 0.48 0.48 0.48 -99.0 6.8 0.37 61 CHR Mouse LiverHypetrophy KNN TA 29 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.48 0.5 -99.0 6.8 0.01 61 CHR Mouse LiverHypetrophy KNN TP 32 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61 CHR Mouse LiverHypetrophy KNN TP 32 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61 CHR Mouse LiverHypetrophy KNN TP 32 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61 CHR Mouse LibS CDK, TA,	LiverHypertrophly		IA	19	101	7 1	42	233	0.52	0.21	0.51	0.23	0.51	0.59	0.45	-99.1	7.07	.091	01
CDK, TA, LiverHypertrophy KNN TP 28 85 86 33 232 0.49 0.25 0.46 0.32 0.46 0.5 0.48 -99.0 6.85 .039 61 CHR Mouse LiverHypertrophy KNN CDK, TA 28 105 66 33 232 0.57 0.3 0.46 0.36 0.46 0.61 0.54 -98.9 7.32 0.07 61 CHR Mouse LiverHypertrophy KNN CDK, TP 23 86 85 38 232 0.47 0.21 0.38 0.27 0.38 0.5 0.44 -99.1 6.82 .106 61 CHR Mouse LiverHypertrophy KNN TA, TP 34 79 93 27 233 0.48 0.27 0.56 0.36 0.56 0.46 0.51 -99.0 6.69 0.01 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 32 233 0.48 0.25 0.48 0.32 0.48 0.48 0.48 -99.0 6.8 .037 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TP 32 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61 CHR Mouse LibS CDK, TA,			TP	29	101	71	32	233	0.56	0.29	0.48	0.36	0 48	0.59	0.53	-98 9	7 22	0.06	61
CHR Mouse LiverHypertrophy KNN CDK, TA 28 105 66 33 232 0.57 0.3 0.46 0.36 0.46 0.61 0.54 -98.9 7.32 0.07 61 CHR Mouse LiverHypertrophy KNN CDK, TP 23 86 85 38 232 0.47 0.21 0.38 0.27 0.38 0.5 0.44 -99.1 6.82 .106 61 CHR Mouse LiverHypertrophy KNN TA, TP 34 79 93 27 233 0.48 0.27 0.56 0.36 0.56 0.46 0.51 -99.0 6.69 0.01 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 32 233 0.48 0.25 0.48 0.32 0.48 0.48 0.48 -99.0 6.8 .037 61 CHR Mouse LiverHypertrophy KNN TP 32 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TP 32 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61	CHR Mouse		CDK, TA,																
LiverHypertrophy KNN CDK, TA 28 105 66 33 232 0.57 0.3 0.46 0.36 0.46 0.61 0.54 -98.9 7.32 0.07 61 CHR Mouse LiverHypertrophy KNN CDK, TP 23 86 85 38 232 0.47 0.21 0.38 0.27 0.38 0.5 0.44 -99.1 6.82 .106 61 CHR Mouse LiverHypertrophy KNN TA, TP 34 79 93 27 233 0.48 0.27 0.56 0.36 0.56 0.46 0.51 -99.0 6.69 0.01 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 32 233 0.48 0.25 0.48 0.32 0.48 0.48 0.48 -99.0 6.8 .037 61 CHR Mouse LiverHypertrophy KNN TP 32 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TP 32 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61		KNN	IP	28	85	86	33	232	0.49	0.25	0.46	0.32	0.46	0.5	0.48	-99.0	6.85	.039	61
LiverHypertrophy KNN CDK, TP 23 86 85 38 232 0.47 0.21 0.38 0.27 0.38 0.5 0.44 -99.1 6.82 .106 61 CHR Mouse LiverHypertrophy KNN TA, TP 34 79 93 27 233 0.48 0.27 0.56 0.36 0.56 0.46 0.51 -99.0 6.69 0.01 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 32 233 0.48 0.25 0.48 0.32 0.48 0.48 0.48 -99.0 6.8 .037 61 CHR Mouse LiverHypertrophy KNN TP 32 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61 CHR Mouse LiverHypertrophy KNN TP 32 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61	LiverHypertrophy	KNN	CDK, TA	28	105	66	33	232	0.57	0.3	0.46	0.36	0.46	0.61	0.54	-98.9	7.32	0.07	61
LiverHypertrophy KNN TA, TP 34 79 93 27 233 0.48 0.27 0.56 0.36 0.56 0.46 0.51 -99.0 6.69 0.01 61 CHR Mouse LiverHypertrophy KNN TA 29 83 89 32 233 0.48 0.25 0.48 0.32 0.48 0.48 0.48 -99.0 6.8 .037 61 CHR Mouse LiverHypertrophy KNN TP 32 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61 CHR Mouse LibS CDK, TA,		KNN	CDK, TP	23	86	85	38	232	0.47	0.21	0.38	0.27	0.38	0.5	0.44	-99.1	6.82	.106	61
LiverHypertrophy KNN TA 29 83 89 32 233 0.48 0.25 0.48 0.32 0.48 0.48 0.48 -99.0 6.8 .037 61 CHR Mouse LiverHypertrophy KNN TP 32 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61 CHR Mouse LibS CDK, TA,		KNN	TA, TP	34	79	93	27	233	0.48	0.27	0.56	0.36	0.56	0.46	0.51	-99.0	6.69	0.01	61
CHR Mouse LiverHypertrophy KNN TP 32 83 89 29 233 0.49 0.26 0.52 0.35 0.52 0.48 0.5 -99.0 6.8 0.01 61 CHR Mouse LibS CDK, TA,		KNINI	ТΔ	20	83	80	32	233	0.48	0.25				U 48	U 48	_00 n	6.8	037	61
CHR Mouse LibS CDK, TA,		ININ	1/4		00	08	JZ	200	0.70	0.20	0.70	0.02	0.70	0.70	0.70	-99.0	0.0	.001	01
of in Cinedado		KNN	TP	32	83	89	29	233	0.49	0.26	0.52	0.35	0.52	0.48	0.5	-99.0	6.8	0.01	61
	CHR Mouse LiverHypertrophy			3	154	17	58	232	0.68	0.15	0.05	0.07	0.05	0.9	0.47	-99.1	7.5	.079	61

																		—
CHR Mouse LiverHypertrophy	LibS VM	CDK, TA	2	162	9	59	232	0.71	0.18	0.03	0.06	0.03	0.95	0.49	-99.0 7	.84	.041	6
CHR Mouse LiverHypertrophy	LibS VM	CDK, TP	6	152	19	55	232	0.68	0.24	0.1	0.14	0.1	0.89	0.49	-99.0 7	.94	.018	
CHR Mouse LiverHypertrophy	LibS VM	TA, TP	7	153	19	54	233	0.69	0.27	0.11	0.16	0.11	0.89	0.5	-99.0 8	.08	0.01	
CHR Mouse LiverHypertrophy	LibS VM	TA	1	166	6	60	233	0.72	0.14	0.02	0.03	0.02	0.97	0.49	-99.0 7	.75	.048	
CHR Mouse LiverHypertrophy	LibS VM	TP	7	136	36	54	233	0.61	0.16	0.11	0.13	0.11	0.79	0.45	-99.1 7	.33	.107	
CHR Mouse LiverHypertrophy	MLR A	CDK, TA, TP	26	89	82	35	232	0.5	0.24	0.43	0.31	0.43	0.52	0.47	-99.1 6	.93	.047	
CHR Mouse LiverHypertrophy	MLR A	CDK, TA	28	108	63	33	232	0.59	0.31	0.46	0.37	0.46	0.63	0.55	-98.9	7.4	0.08	
CHR Mouse LiverHypertrophy	MLR A	CDK, TP	32	72	99	29	232	0.45	0.24	0.52	0.33	0.52	0.42	0.47	-99.1 6	.55	.048	
CHR Mouse LiverHypertrophy	MLR A	TA, TP	26	92	80	35	233	0.51	0.25	0.43	0.31	0.43	0.53	0.48	-99.0 6	.99	.034	
CHR Mouse LiverHypertrophy	MLR A MLR	TA	30	100	72	31	233	0.56	0.29	0.49	0.37	0.49	0.58	0.54	-98.9 7	.19	0.06	
CHR Mouse LiverHypertrophy	A	TP CDK. TA.	31	96	76	30	233	0.55	0.29	0.51	0.37	0.51	0.56	0.53	-98.9	7.1	0.06	
CHR Mouse LiverHypertrophy	PLS	TP	17	109	62	44	232	0.54	0.22	0.28	0.24	0.28	0.64	0.46	-99.1 7	.22	.078	
CHR Mouse LiverHypertrophy	PLS	CDK, TA	25	117	54	36	232	0.61	0.32	0.41	0.36	0.41	0.68	0.55	-98.9	7.6	0.09	
CHR Mouse LiverHypertrophy CHR Mouse	PLS	CDK, TP	28	113	58	33	232	0.61	0.33	0.46	0.38	0.46	0.66	0.56	-98.9 7	.52	0.11	
LiverHypertrophy CHR Mouse		TA, TP	24	118	54	37	233	0.61	0.31	0.39	0.35	0.39	0.69	0.54			0.07	
LiverHypertrophy CHR Mouse	PLS PLS	TA	19 23	112	60 67	42 38	233	0.56	0.24	0.31	0.27	0.31	0.65	0.48	-99.0 7 -99.0 7		.035	
LiverHypertrophy CHR Mouse LiverHypertrophy	J48	CDK, TA,	13	126	45	48	232	0.55	0.20	0.36	0.22	0.38	0.01	0.49	-99.0 <i>7</i>		.011	
CHR Mouse LiverHypertrophy	J48	CDK, TA	16	118	53	45	232	0.58	0.23	0.26	0.25	0.26	0.69	0.48			.046	
CHR Mouse LiverHypertrophy	J48	CDK, TP	16	121	50	45	232	0.59	0.24	0.26	0.25	0.26	0.71	0.48			.029	_
CHR Mouse LiverHypertrophy	J48	TA, TP	18	125	47	43	233	0.61	0.28	0.3	0.29	0.3	0.73	0.51	-99.0 7			
CHR Mouse LiverHypertrophy	J48	TA	18	128	44	43	233	0.63	0.29	0.3	0.29	0.3	0.74	0.52	-99.0 7	.75	0.04	
CHR Mouse LiverHypertrophy	J48	TP CDK, TA,	18	111	61	43	233	0.55	0.23	0.3	0.26	0.3	0.65	0.47	-99.1 7	.29	.055	
CHR Mouse LiverHypertrophy CHR Mouse	RF	TP	29	97	74	32	232	0.54	0.28	0.48	0.35	0.48	0.57	0.52	-99.0 7	.13	0.04	
LiverHypertrophy CHR Mouse	RF	CDK, TA	24	94	77	37	232	0.51	0.24	0.39	0.3	0.39	0.55	0.47	-99.1 7	.02	.05	
LiverHypertrophy CHR Mouse	RF	CDK, TP	31	104	67	30	232	0.58	0.32	0.51	0.39	0.51	0.61	0.56	-98.9	7.3	0.1	
LiverHypertrophy CHR Mouse	RF	TA, TP	23	87	85	38	233	0.47	0.21	0.38	0.27	0.38	0.51	0.44	-99.1 6			
LiverHypertrophy CHR Mouse LiverHypertrophy	RF RF	TA TP	24	96 80	76 92	37 32	233	0.52	0.24	0.39	0.32	0.39	0.56	0.48	-99.0 7 -99.1 6			
CHR Mouse LiverHypertrophy	FSM LR	Adriana	36	98	72	25	231	0.47		0.48	0.32		0.47		-98.8 7			

CHR Mouse LiverHypertrophy	FSM LR	ALogPS, OEstate	31	124	48	30	233	0.67	0.39	0.51	0.44	0.51	0.72	0.61	-98.8 7.8	1 0.21	61
CHR Mouse LiverHypertrophy	FSM LR	CDK	32	117	54	29	232	0.64	0.37	0.52	0.44	0.52	0.68	0.6	-98.8 7.6	3 0.19	61
CHR Mouse LiverHypertrophy	FSM LR	Chemaxo n	30	96	76	31	233	0.54	0.28	0.49	0.36	0.49	0.56	0.52	-99.0 7.	1 0.04	61
CHR Mouse LiverHypertrophy	FSM LR	Dragon6	31	110	62	30	233	0.61	0.33	0.51	0.4	0.51	0.64	0.57	-98.9 7.4	4 0.13	61
CHR Mouse LiverHypertrophy	FSM LR	Fragment or	26	120	52	35	233	0.63	0.33	0.43	0.37	0.43	0.7	0.56	-98.9 7.6	8 0.12	61
CHR Mouse LiverHypertrophy	FSM LR	GSFrag	31	108	64	30	233	0.6	0.33	0.51	0.4	0.51	0.63	0.57	-98.9 7.3	9 0.12	61
CHR Mouse LiverHypertrophy	FSM LR	Inductive	44	63	109	17	233	0.46	0.29	0.72	0.41	0.72	0.37	0.54	-98.9 6.1	1 0.08	61
CHR Mouse LiverHypertrophy	FSM LR	Mera, Mersy	30	110	61	31	232	0.6	0.33	0.49	0.39	0.49	0.64	0.57	-98.9 7.4	5 0.12	61
CHR Mouse LiverHypertrophy	FSM LR	QNPR	26	118	54	35	233	0.62	0.33	0.43	0.37	0.43	0.69	0.56	-98.9 7.6	2 0.1	61
CHR Mouse LiverHypertrophy	FSM LR	Spectrop hores	29	101	71	32	233	0.56	0.29	0.48	0.36	0.48	0.59	0.53	-98.9 7.2	2 0.06	61
CHR Mouse LiverHypertrophy	KNN	Adriana	41	76	94	20	231	0.51	0.3	0.67	0.42	0.67	0.45	0.56	-98.9 6.5	3 0.11	61
CHR Mouse LiverHypertrophy	KNN	ALogPS, OEstate	36	103	69	25	233	0.6	0.34	0.59	0.43	0.59	0.6	0.59	-98.8 7.2	3 0.17	61
CHR Mouse LiverHypertrophy	KNN	CDK	39	97	74	22	232	0.59	0.35	0.64	0.45	0.64	0.57	0.6	-98.8 7.0	6 0.18	61
CHR Mouse LiverHypertrophy	KNN	Chemaxo n	37	79	93	24	233	0.5	0.28	0.61	0.39	0.61	0.46	0.53	-98.9 6.6	6 0.06	61
CHR Mouse LiverHypertrophy	KNN	Dragon6	40	82	90	21	233	0.52	0.31	0.66	0.42	0.66	0.48	0.57	-98.9 6.6	8 0.12	61
CHR Mouse LiverHypertrophy	KNN	Fragment or	13	147	25	48	233	0.69	0.34	0.21	0.26	0.21	0.85	0.53	-98.9 8.2	4 0.08	61
CHR Mouse LiverHypertrophy	KNN	GSFrag	20	112	60	41	233	0.57	0.25	0.33	0.28	0.33	0.65	0.49	-99.0 7.3	7 .019	61
CHR Mouse LiverHypertrophy	KNN	Inductive	46	56	116	15	233	0.44	0.28	0.75	0.41	0.75	0.33	0.54	-98.9 5.8	6 0.08	61
CHR Mouse LiverHypertrophy	KNN	Mera, Mersy	34	77	94	27	232	0.48	0.27	0.56	0.36	0.56	0.45	0.5	-99.0 6.6	6 0.01	61
CHR Mouse LiverHypertrophy	KNN	QNPR	21	137	35	40	233	0.68	0.38	0.34	0.36	0.34	0.8	0.57	-98.9 8.1	2 0.14	61
CHR Mouse LiverHypertrophy	KNN	Spectrop hores	38	68	104	23	233	0.45	0.27	0.62	0.37	0.62	0.4	0.51	-99.0 6.3	9 0.02	61
CHR Mouse LiverHypertrophy	LibS VM	Adriana	14	149	21	47	231	0.71	0.4	0.23	0.29	0.23	0.88	0.55	-98.9 8.4	7 0.13	61
CHR Mouse LiverHypertrophy	LibS VM	ALogPS, OEstate	26	132	40	35	233	0.68	0.39	0.43	0.41	0.43	0.77	0.6	-98.8 8.0	3 0.19	61
CHR Mouse LiverHypertrophy	LibS VM	CDK	19	147	24	42	232	0.72	0.44	0.31	0.37	0.31	0.86	0.59	-98.8 8.5	2 0.19	61

CHR Mouse	LibS	Chemaxo																
LiverHypertrophy	VM	n	13	148	24	48	233	0.69	0.35	0.21	0.27	0.21	0.86	0.54	-98.9	8.29	0.09	61
CHR Mouse LiverHypertrophy	LibS VM	Dragon6	16	144	28	45	233	0.69	0.36	0.26	0.3	0.26	0.84	0.55	08.0	8.24	0 11	61
LiverHypertrophly	VIVI	Diagono	10	144	20	45	233	0.09	0.30	0.20	0.5	0.20	0.04	0.55	-90.9	0.24	0.11	01
CHR Mouse	LibS	Fragment																
LiverHypertrophy	VM	or	22	141	31	39	233	0.7	0.42	0.36	0.39	0.36	0.82	0.59	-98.8	8.29	0.19	61
CHR Mouse	LibS	005	•	457	4.5		000	0.7	0.00	0.4	0.45	0.4	0.04	0.54	00.0	0.04	0.00	C4
LiverHypertrophy	VM	GSFrag	6	157	15	55	233	0.7	0.29	0.1	0.15	0.1	0.91	0.51	-99.0	8.21	0.02	61
CHR Mouse	LibS																	
LiverHypertrophy	VM	Inductive	22	127	45	39	233	0.64	0.33	0.36	0.34	0.36	0.74	0.55	-98.9	7.82	0.1	61
CHR Mouse	LibS	Mera,																
LiverHypertrophy	VM	Mersy	16	146	25	45	232	0.7	0.39	0.26	0.31	0.26	0.85	0.56	-98.9	8.37	0.13	61
OUD Marri	LibS																	
CHR Mouse LiverHypertrophy	VM	QNPR	25	137	35	36	233	0.7	0.42	0.41	0.41	0.41	0.8	0.6	-98.8	8.19	0.21	61
Vice - Perry																		
CHR Mouse	LibS	Spectrop																
LiverHypertrophy	VM	hores	17	142	30	44	233	0.68	0.36	0.28	0.31	0.28	0.83	0.55	-98.9	8.2	0.11	61
CHR Mouse	MLR	Adriana	20	111	EΟ	21	224	0.64	0.24	0.40	Ο 4	0.40	0.65	0.57	00.0	7 -	0.42	64
LiverHypertrophy	A	Adriana	30	111	59	31	231	0.61	0.34	0.49	0.4	0.49	0.65	0.57	-98.9	1.5	0.13	61
CHR Mouse	MLR	ALogPS,																
LiverHypertrophy	A	OEstate	27	111	61	34	233	0.59	0.31	0.44	0.36	0.44	0.65	0.54	-98.9	7.45	80.0	61
CHR Mouse	MLR																	
LiverHypertrophy	Α	CDK	32	99	72	29	232	0.56	0.31	0.52	0.39	0.52	0.58	0.55	-98.9	7.18	0.09	61
CHR Mouse	_	Chemaxo	22	100	62	20	222	0.64	0.24	0.50	0.44	0.50	0.62	0.50	00.0	7 11	0.14	61
LiverHypertrophy	A MLR	n	32	109	63	29	233	0.61	0.34	0.52	0.41	0.52	0.63	0.58	-98.8	7.41	0.14	61
CHR Mouse LiverHypertrophy	A	Dragon6	28	98	74	33	233	0.54	0.27	0.46	0.34	0.46	0.57	0.51	-99.0	7.14	0.03	61
CHR Mouse		Fragment																
LiverHypertrophy	Α	or	29	96	76	32	233	0.54	0.28	0.48	0.35	0.48	0.56	0.52	-99.0	7.1	0.03	61
CHR Mouse	MLR																	
LiverHypertrophy	A MLR	GSFrag	32	106	66	29	233	0.59	0.33	0.52	0.4	0.52	0.62	0.57	-98.9	7.34	0.13	61
CHR Mouse LiverHypertrophy	A	Inductive	31	97	75	30	233	0.55	0.29	0.51	0.37	0.51	0.56	0.54	-98.9	7.12	0.06	61
CHR Mouse		Mera,	<u> </u>	31	13	30	200	0.55	0.23	0.51	0.57	0.51	0.50	0.54	-30.3	1.12	0.00	
LiverHypertrophy	A	Mersy	30	83	88	31	232	0.49	0.25	0.49	0.34	0.49	0.49	0.49	-99.0	6.81	.02	61
CHR Mouse	MLR	<u> </u>																
LiverHypertrophy	A	QNPR	31	102	70	30	233	0.57	0.31	0.51	0.38	0.51	0.59	0.55	-98.9	7.24	0.09	61
CHR Mouse	MLR		26	100	60	25	222	0 <i>E E</i>	0.27	0.42	0.22	0.42	0.6	0 E4	00.0	7 04	0.00	64
LiverHypertrophy CHR Mouse	A	hores	26	103	69	35	233	0.55	0.27	0.43	0.33	0.43	0.0	0.51	-99.0	7.24	0.02	61
LiverHypertrophy	PLS	Adriana	27	107	63	34	231	0.58	0.3	0.44	0.36	0.44	0.63	0.54	-98.9	7.38	0.07	61
CHR Mouse	D: 0	ALogPS,	00	400	5 0	00	000	0.00	0.00	0 = :	0.4-	0 = :	<u> </u>	0.00	00.0	7.00	0.00	٠.
LiverHypertrophy	PLS	OEstate	33	120	52	28	233	0.66	0.39	0.54	0.45	0.54	0.7	0.62	-98.8	7.69	0.22	61
CHR Mouse LiverHypertrophy	PLS	CDK	31	113	58	30	232	0.62	0.35	0.51	0.41	0.51	0.66	0.58	-98.8	7.53	0.15	61
CHR Mouse		Chemaxo																
LiverHypertrophy	PLS	n	34	100	72	27	233	0.58	0.32	0.56	0.41	0.56	0.58	0.57	-98.9	7.18	0.12	61
CHR Mouse																		
	PLS	Dragon6	31	115	57	30	233	0.63	0.35	0.51	0.42	0.51	0.67	0.59	-98.8	7.57	0.16	61
		Fragment		110	54	31	233	0.64	0.36	0.40	0.41	0.49	0.60	0.59	_QQ Q	764	0 16	61
CHR Mouse	DI C	or	311				7.7.7	0.04	0.30	0.49	0.41	0.49	0.69	0.09	-90.0	7.64	0.10	01
CHR Mouse LiverHypertrophy	PLS	or	30	118	54	<u> </u>												
LiverHypertrophy CHR Mouse LiverHypertrophy CHR Mouse LiverHypertrophy		or GSFrag	28	112	60	33	233	0.6	0.32	0.46	0.38	0.46	0.65	0.56	-98.9	7.48	0.1	61
CHR Mouse LiverHypertrophy CHR Mouse		GSFrag								0.46		0.46				7.48 6.98		61 61

<u> </u>		Mera,																\neg
CHR Mouse LiverHypertrophy	PLS	Mersy	33	116	55	28	232	0.64	0.38	0.54	0.44	0.54	0.68	0.61	-98.8	7.6	0.2	61
CHR Mouse LiverHypertrophy	PLS	QNPR	28	127	45	33	233	0.67	0.38	0.46	0.42	0.46	0.74	0.6	-98.8		0.19	61
CHR Mouse		Spectrop																ヿ
LiverHypertrophy	PLS	hores	28	100	72	33	233	0.55	0.28	0.46	0.35	0.46	0.58	0.52	-99.0	7.19 0	0.04	61
CHR Mouse LiverHypertrophy	J48	Adriana	28	116	54	33	231	0.62	0.34	0.46	0.39	0.46	0.68	0.57	-98.9	7.62 0).13	61
CHR Mouse LiverHypertrophy	J48	ALogPS, OEstate	26	123	49	35	233	0.64	0.35	0.43	0.38	0.43	0.72	0.57	-98.9	7.76 0).13	61
CHR Mouse LiverHypertrophy	J48	CDK	27	132	39	34	232	0.69	0.41	0.44	0.43	0.44	0.77	0.61	-98.8	8.07 0).21	61
CHR Mouse LiverHypertrophy	J48	Chemaxo n	16	132	40	45	233	0.64	0.29	0.26	0.27	0.26	0.77	0.51	-99.0	7.81 0	0.03	61
CHR Mouse	J48		27	124	48	34	233	0.65	0.36	0.44	0.4	0.44	0.72	0.58	-98.8	7.8 0		61
LiverHypertrophy	J 4 0	Dragon6 Fragment	21	124	40	34	233	0.05	0.30	0.44	0.4	0.44	0.72	0.56	-90.0	7.0 0	1.15	-01
CHR Mouse LiverHypertrophy	J48	or	27	139	33	34	233	0.71	0.45	0.44	0.45	0.44	0.81	0.63	-98.7	8.28 0	.25	61
CHR Mouse LiverHypertrophy	J48	GSFrag	24	118	54	37	233	0.61	0.31	0.39	0.35	0.39	0.69	0.54	-98.9	7.6 0	0.07	61
CHR Mouse	140	Industive	24	110	60	27	222	0.50	0.20	0.20	0.22	0.20	0.65	0.50	00.0	7 4 4 0	0.04	61
LiverHypertrophy	J48	Inductive Mera,	24	112	60	37	233	0.58	0.29	0.39	0.33	0.39	0.65	0.52	-99.0	7.44 U	1.04	61
CHR Mouse LiverHypertrophy	J48	Mersy	22	126	45	39	232	0.64	0.33	0.36	0.34	0.36	0.74	0.55	-98.9	7.81 0	.09	61
CHR Mouse LiverHypertrophy	J48	QNPR	26	125	47	35	233	0.65	0.36	0.43	0.39	0.43	0.73	0.58	-98.8	782 0	14	61
CHR Mouse		Spectrop	21	130	42	40	233	0.65					0.76	0.55			0.1	61
LiverHypertrophy CHR Rat	J48	hores	21	130	42	40	233	0.05	0.33	0.34	0.34	0.34	0.76	0.55	-98.9	7.09	0.1	-
LiverProliferativeLesions	RF	Adriana	23	99	82	37	241	0.51	0.22	0.38	0.28	0.38	0.55	0.47	-99.1	6.97 .0	061	60
CHR Rat LiverProliferativeLesio ns	RF	ALogPS, OEstate	30	99	84	30	243	0.53	0.26	0.5	0.34	0.5	0.54	0.52	-99.0	7. 0	0.04	60
CHR Rat LiverProliferativeLesio ns	RF	CDK	29	80	101	31	241	0.45	0.22	0.48	0.31	0.48	0.44	0.46	-99.1	6.6 .0	065	60
CHR Rat LiverProliferativeLesio ns	RF	Chemaxo n	27	78	105	33	243	0.43	0.2	0.45	0.28	0.45	0.43	0.44	-99.1	6.53 .	107	60
CHR Rat LiverProliferativeLesio ns	RF	Dragon6	27	88	95	33	243	0.47	0.22	0.45	0.3	0.45	0.48	0.47	-99.1	6.75	.06	60
CHR Rat LiverProliferativeLesio ns	RF	Fragment or	35	100	83	25	243	0.56	0.3	0.58	0.39	0.58	0.55	0.56	-98.9	6.99 ().11	60
CHR Rat LiverProliferativeLesio ns	RF	GSFrag	26	77	106	34	243	0.42	0.2	0.43	0.27	0.43	0.42	0.43	-99.1	6.5 .	126	60
CHR Rat LiverProliferativeLesio ns	RF	Inductive	23	93	90	37	243	0.48	0.2	0.38	0.27	0.38	0.51	0.45	-99.1	6.81 .(094	60
CHR Rat LiverProliferativeLesio ns	RF	Mera, Mersy	27	85	97	33	242	0.46	0.22	0.45	0.29	0.45	0.47	0.46	-99.1	6.69 .0	072	60
CHR Rat LiverProliferativeLesio ns	RF	QNPR	29	90	93	31	243	0.49	0.24	0.48	0.32	0.48	0.49	0.49	-99.0	6.8 .0	021	60
CHR Rat LiverProliferativeLesio ns	RF	Spectrop hores	31	78	105	29	243	0.45	0.23	0.52	0.32	0.52	0.43	0.47	-99.1	6.54	.05	60
CHR Rat LiverProliferativeLesio ns	ASN N	Adriana	15	106	75	45	241	0.5	0.17	0.25	0.2	0.25	0.59	0.42	-99.2	6.9 .	147	60
CHR Rat LiverProliferativeLesio ns	ASN N	ALogPS, OEstate	28	120	63	32	243	0.61	0.31	0.47	0.37	0.47	0.66	0.56	-98.9	7.47 ().11	60

CHR Rat LiverProliferativeLesio ns	ASN N	CDK	23	95	86	37	241	0.49	0.21	0.38	0.27	0.38	0.52	0.45	-99.1	6.88	.08	60
CHR Rat LiverProliferativeLesio ns	ASN N	Chemaxo n	21	104	79	39	243	0.51	0.21	0.35	0.26	0.35	0.57	0.46	-99.1	7.02	.072	60
CHR Rat LiverProliferativeLesio ns	ASN N	Dragon6	18	109	74	42	243	0.52	0.2	0.3	0.24	0.3	0.6	0.45	-99.1	7.05	.093	60
CHR Rat LiverProliferativeLesio ns	ASN N	Fragment or	26	125	58	34	243	0.62	0.31	0.43	0.36	0.43	0.68	0.56	-98.9	7.58	0.11	60
CHR Rat LiverProliferativeLesio ns	ASN N	GSFrag	15	113	70	45	243	0.53	0.18	0.25	0.21	0.25	0.62	0.43	-99.1	7.03	.12	60
CHR Rat LiverProliferativeLesio ns	ASN N	Inductive	24	105	78	36	243	0.53	0.24	0.4	0.3	0.4	0.57	0.49	-99.0	7.09	.023	60
CHR Rat LiverProliferativeLesio ns	ASN N	Mera, Mersy	22	103	79	38	242	0.52	0.22	0.37	0.27	0.37	0.57	0.47	-99.1	7.03	.059	60
CHR Rat LiverProliferativeLesio ns	ASN N	QNPR	21	117	66	39	243	0.57	0.24	0.35	0.29	0.35	0.64	0.49	-99.0	7.31	.01	60
CHR Rat LiverProliferativeLesio ns	ASN N	Spectrop hores	22	95	88	38	243	0.48	0.2	0.37	0.26	0.37	0.52	0.44	-99.1	6.84	.099	60
CHR Rat LiverProliferativeLesio ns	ASN N	CDK, TA, TP	25	130	51	35	241	0.64	0.33	0.42	0.37	0.42	0.72	0.57	-98.9	7.74	0.13	60
CHR Rat LiverProliferativeLesio ns	ASN N	CDK, TA	23	128	53	37	241	0.63	0.3	0.38	0.34	0.38	0.71	0.55	-98.9	7.66	0.08	60
CHR Rat LiverProliferativeLesio ns	ASN N	CDK, TP	28	127	54	32	241	0.64	0.34	0.47	0.39	0.47	0.7	0.58	-98.8	7.68	0.15	60
CHR Rat LiverProliferativeLesio ns	ASN N	TA, TP	29	134	49	31	243	0.67	0.37	0.48	0.42	0.48	0.73	0.61	-98.8	7.83	0.2	60
CHR Rat LiverProliferativeLesio ns	ASN N	TA	25	126	57	35	243	0.62	0.3	0.42	0.35	0.42	0.69	0.55	-98.9	7.6	0.1	60
CHR Rat LiverProliferativeLesio ns	ASN N	TP	29	122	61	31	243	0.62	0.32	0.48	0.39	0.48	0.67	0.58	-98.9	7.52	0.13	60
CHR Rat LiverProliferativeLesio ns		CDK, TA, TP	29	122	59	31	241	0.63	0.33	0.48	0.39	0.48	0.67	0.58	-98.8	7 56	0 14	60
CHR Rat LiverProliferativeLesio	FSM					-												
ns CHR Rat LiverProliferativeLesio		CDK, TA	24	132	49	36	241	0.05	0.33	0.4	0.36	0.4	0.73	0C.U	-98.9	1.18	0.12	60
ns CHR Rat LiverProliferativeLesio	LR	CDK, TP	26	128	53	34	241	0.64	0.33	0.43	0.37	0.43	0.71	0.57	-98.9	7.69	0.13	60
ns CHR Rat	LR	TA, TP	29	127	56	31	243	0.64	0.34	0.48	0.4	0.48	0.69	0.59	-98.8	7.65	0.16	60
CHP Pat	LR	TA	25	129	54	35	243	0.63	0.32	0.42	0.36	0.42	0.7	0.56	-98.9	7.67	0.11	60
LiverProliferativeLesio	FSM LR	TP	27	120	63	33	243	0.6	0.3	0.45	0.36	0.45	0.66	0.55	-98.9	7.47	0.09	60
LiverProliferativeLesions	KNN	CDK, TA, TP	39	103	78	21	241	0.59	0.33	0.65	0.44	0.65	0.57	0.61	-98.8	7.02	0.19	60
CHR Rat LiverProliferativeLesions	KNN	CDK, TA	7	165	16	53	241	0.71	0.3	0.12	0.17	0.12	0.91	0.51	-99.0	8.3	0.04	60

CHR Rat LiverProliferativeLesio																	
ns	KNN	CDK, TP	40	82	99	20	241	0.51	0.29	0.67	0.4	0.67	0.45	0.56	-98.9 6.	53 0.1	60
CHR Rat LiverProliferativeLesio																	
ns	KNN	TA, TP	36	111	72	24	243	0.6	0.33	0.6	0.43	0.6	0.61	0.6	-98.8 7.	23 0.18	60
CHR Rat LiverProliferativeLesio																	
ns	KNN	TA	12	163	20	48	243	0.72	0.38	0.2	0.26	0.2	0.89	0.55	-98.9 8.	48 0.12	60
CHR Rat LiverProliferativeLesio																	
ns	KNN	TP	45	77	106	15	243	0.5	0.3	0.75	0.43	0.75	0.42	0.59	-98.8 6.	24 0.15	60
CHR Rat LiverProliferativeLesio	LibS	CDK, TA,															
ns	VM	TP	15	146	35	45	241	0.67	0.3	0.25	0.27	0.25	0.81	0.53	-98.9 7.	98 0.06	60
CHR Rat LiverProliferativeLesio	LibS																
ns	VM	CDK, TA	3	165	16	57	241	0.7	0.16	0.05	0.08	0.05	0.91	0.48	-99.0 7.	61 .062	60
CHR Rat LiverProliferativeLesio	LihS																
ns LiverProliferativeLesio	VM	CDK, TP	8	149	32	52	241	0.65	0.2	0.13	0.16	0.13	0.82	0.48	-99.0 7.	63 .051	60
CHR Rat	Lihe																
LiverProliferativeLesio ns	VM	TA, TP	8	166	17	52	243	0.72	0.32	0.13	0.19	0.13	0.91	0.52	-99.0 8.	35 0.06	60
CHR Rat	1:1-0																
LiverProliferativeLesio	VM	TA	6	170	13	54	243	0.72	0.32	0.1	0.15	0.1	0.93	0.51	-99.0 8.	41 0.05	60
CHR Rat																	
LiverProliferativeLesio	LibS VM	TP	14	151	32	46	243	0.68	0.3	0.23	0.26	0.23	0.83	0.53	-98.9 8.	05 0 06	60
CHR Rat			-17	101	32	40	243	0.00	0.5	0.23	0.20	0.23	0.00	0.55	-90.9 0.	05 0.00	- 00
LiverProliferativeLesio	MLR A	CDK, TA, TP	24	101	80	36	241	0.52	0.23	0.4	0.29	0.4	0.56	0.48	-99.0 7.	03 037	60
CHR Rat								0.02	0.20		0.20		0.00	00			- 00
LiverProliferativeLesions	MLR A	CDK, TA	17	104	77	43	241	0.5	0.18	0.28	0.22	0.28	0.57	0.43	-99.1 6.	93 .126	60
CHR Rat	MID	•															
LiverProliferativeLesio ns	A	CDK, TP	31	79	102	29	241	0.46	0.23	0.52	0.32	0.52	0.44	0.48	-99.0 6.	58 .041	60
CHR Rat LiverProliferativeLesio	MIR																
ns	A	TA, TP	29	107	76	31	243	0.56	0.28	0.48	0.35	0.48	0.58	0.53	-98.9 7.	17 0.06	60
CHR Rat LiverProliferativeLesio	MLR																
ns	Α	TA	30	105	78	30	243	0.56	0.28	0.5	0.36	0.5	0.57	0.54	-98.9 7.	13 0.06	60
CHR Rat LiverProliferativeLesio	MLR																
ns	Α	TP	26	93	90	34	243	0.49	0.22	0.43	0.3	0.43	0.51	0.47	-99.1 6.	85 .05	60
CHR Rat LiverProliferativeLesio		CDK, TA,															
ns	PLS	TP	26	123	58	34	241	0.62	0.31	0.43	0.36	0.43	0.68	0.56	-98.9 7.	57 0.1	60
CHR Rat LiverProliferativeLesio																	
ns	PLS	CDK, TA	19	122	59	41	241	0.59	0.24	0.32	0.28	0.32	0.67	0.5	-99.0 7.	42 .009	60
CHR Rat LiverProliferativeLesio																	
ns	PLS	CDK, TP	35	117	64	25	241	0.63	0.35	0.58	0.44	0.58	0.65	0.61	-98.8 7.	41 0.2	60
CHR Rat LiverProliferativeLesio																	
ns CUD Det	PLS	TA, TP	29	129	54	31	243	0.65	0.35	0.48	0.41	0.48	0.7	0.59	-98.8	7.7 0.17	60
CHR Rat LiverProliferativeLesio																	
ns CHR Rat	PLS	ΙΆ	24	127	56	36	243	0.62	0.3	0.4	0.34	0.4	0.69	0.55	-98.9 7.	61 0.09	60
LiverProliferativeLesio	DI O	TD	00	400	00	67	0.40	0.55	0.00	0.55	0.00	0.55	0.55	0.55	000 =	04 000	
ns CHR Rat	PLS	1P	33	100	83	27	243	0.55	0.28	0.55	0.38	0.55	0.55	0.55	-98.9 7.	υ1 0.08	60
LiverProliferativeLesio		CDK, TA,	00	440	00	0.4	044	o -	0.4	0.40	0.40	0.40	0.70	0.01	00.0	. 4 . 0 0 .	
ns	J48	TP	26	142	39	34	241	0.7	0.4	0.43	0.42	0.43	0.78	0.61	-98.8	3.1 0.21	60

CHR Rat LiverProliferativeLesio ns	J48	CDK, TA	25	136	45	35	241	0.67	0.36	0.42	0.38	0.42	0.75	0.58	-98.8	7.91	0.16	60
CHR Rat LiverProliferativeLesio ns	J48	CDK, TP	19	140	41	41	241	0.66	0.32	0.32	0.32	0.32	0.77	0.55	-98.9	7.92	0.09	60
CHR Rat LiverProliferativeLesio ns	J48	TA, TP	30	137	46	30	243	0.69	0.39	0.5	0.44	0.5	0.75	0.62	-98.8	7.92	0.23	60
CHR Rat LiverProliferativeLesions	J48	TA	27	131	52	33	243	0.65	0.34	0.45	0.39	0.45	0.72	0.58	-98.8	7.74	0.15	60
CHR Rat LiverProliferativeLesio ns	J48	TP	27	136	47	33	243	0.67	0.36	0.45	0.4	0.45	0.74	0.6	-98.8	7.88	0.18	60
CHR Rat LiverProliferativeLesio ns	RF	CDK, TA, TP	30	117	64	30	241	0.61	0.32	0.5	0.39	0.5	0.65	0.57	-98.9	7.44	0.13	60
CHR Rat LiverProliferativeLesio ns	RF	CDK, TA	27	108	73	33	241	0.56	0.27	0.45	0.34	0.45	0.6	0.52	-99.0	7.22	0.04	60
CHR Rat LiverProliferativeLesio ns	RF	CDK, TP	35	84	97	25	241	0.49	0.27	0.58	0.36	0.58	0.46	0.52	-99.0	6.67	0.04	60
CHR Rat LiverProliferativeLesio ns	RF	TA, TP	36	109	74	24	243	0.6	0.33	0.6	0.42	0.6	0.6	0.6	-98.8	7.18	0.17	60
CHR Rat LiverProliferativeLesio ns	RF	TA	32	109	74	28	243	0.58	0.3	0.53	0.39	0.53	0.6	0.56	-98.9	7.22	0.11	60
CHR Rat LiverProliferativeLesions	RF	TP	37	94	89	23	243	0.54	0.29	0.62	0.4	0.62	0.51	0.57	-98.9	6.84	0.11	60
CHR Rat LiverProliferativeLesio ns	FSM LR	Adriana	14	105	76	46	241	0.49	0.16	0.23	0.19	0.23	0.58	0.41	-99.2	6.84	.167	60
CHR Rat LiverProliferativeLesio ns	FSM LR	ALogPS, OEstate	30	108	75	30	243	0.57	0.29	0.5	0.36	0.5	0.59	0.55	-98.9	7.2	0.08	60
CHR Rat LiverProliferativeLesio ns	FSM LR	CDK	23	79	102	37	241	0.42	0.18	0.38	0.25	0.38	0.44	0.41	-99.2	6.53	.156	60
CHR Rat LiverProliferativeLesio ns	FSM LR	Chemaxo n	27	85	98	33	243	0.46	0.22	0.45	0.29	0.45	0.46	0.46	-99.1	6 68	074	60
CHR Rat LiverProliferativeLesio	FSM																	
ns CHR Rat LiverProliferativeLesio			21	111	72	39	243			0.35				0.48	-99.0			60
ns CHR Rat LiverProliferativeLesio	LR FSM	or	29	117	66	31	243	0.6	0.31	0.48	0.37	0.48	0.64	0.56	-98.9	7.4	0.11	60
ns CHR Rat LiverProliferativeLesio	LR	GSFrag	20	98	85	40	243	0.49	0.19	0.33	0.24	0.33	0.54	0.43	-99.1	6.86	.114	60
ns CHP Pat	LR	Inductive	30	78	105	30	243	0.44	0.22	0.5	0.31	0.5	0.43	0.46	-99.1	6.54	.064	60
LiverProliferativeLesions CHR Rat	LR	Mersy	21	98	84	39	242	0.49	0.2	0.35	0.25	0.35	0.54	0.44	-99.1	6.9	.097	60
LiverProliferativeLesions CHR Rat	LR	QNPR	21	111	72	39	243	0.54	0.23	0.35	0.27	0.35	0.61	0.48	-99.0	7.17	.039	60
LiverProliferativeLesions	FSM LR	Spectrop hores	28	87	96	32	243	0.47	0.23	0.47	0.3	0.47	0.48	0.47	-99.1	6.73	.05	60

LiverProliferativeLesions	KNN	Adriana	33	84	97	27	241	0.49	0.25	0.55	0.35	0.55	0.46	0.51	-99.0	6.68	0.01	60
CHR Rat		AL DO																
LiverProliferativeLesions		ALogPS, OEstate	30	65	118	30	243	0.39	0.2	0.5	0.29	0.5	0.36	0.43	-99.1	6 24	128	60
CHR Rat	IXIVIN	OLSiale	- 30	- 00	110	30	240	0.55	0.2	0.5	0.23	0.5	0.50	0.43	-33.1	0.24	.120	- 00
LiverProliferativeLesio																		
ns	KNN	CDK	48	10	171	12	241	0.24	0.22	0.8	0.34	0.8	0.06	0.43	-99.1	3.61	.217	60
CHR Rat		Chemaxo																
LiverProliferativeLesions	KNN		43	42	141	17	243	0.35	0.23	0.72	0.35	0.72	0.23	0.47	-99.1	5.43	.054	60
CHR Rat																		
LiverProliferativeLesio		_																
ns	KNN	Dragon6	28	69	114	32	243	0.4	0.2	0.47	0.28	0.47	0.38	0.42	-99.2	6.33	.137	60
CHR Rat LiverProliferativeLesio		Fragment																
ns	KNN	-	31	84	99	29	243	0.47	0.24	0.52	0.33	0.52	0.46	0.49	-99.0	6.67	.021	60
CHR Rat		<u> </u>						••••	··	0.02	0.00	0.02	00	00		0.0.		
LiverProliferativeLesio																		
ns	KNN	GSFrag	28	62	121	32	243	0.37	0.19	0.47	0.27	0.47	0.34	0.4	-99.2	6.17	.172	60
CHR Rat																		
LiverProliferativeLesions	KNN	Inductive	30	71	112	30	243	0.42	0.21	0.5	0.3	0.5	0.39	0.44	-99.1	6.38	.098	60
CHR Rat	111							V. 1 <u>-</u>	V. <u>-</u> 1			3.0	0.00	V. 1 1		2.50	.000	-33
LiverProliferativeLesio		Mera,																
ns	KNN	Mersy	22	101	81	38	242	0.51	0.21	0.37	0.27	0.37	0.55	0.46	-99.1	6.98	.068	60
CHR Rat																		
LiverProliferativeLesions	KNINI	QNPR	43	41	142	17	243	0.35	U 23	0.72	0.35	0.72	0 22	0.47	-99.1	5.4	.06	60
CHR Rat	IXININ	QIVIIX	73	71	172	17	240	0.55	0.23	0.72	0.55	0.72	0.22	0.47	-33.1	J. 4	.00	- 00
LiverProliferativeLesio		Spectrop																
ns	KNN	hores	29	91	92	31	243	0.49	0.24	0.48	0.32	0.48	0.5	0.49	-99.0	6.82	.017	60
CHR Rat																		
LiverProliferativeLesio	LibS																	
ns		Adriana	3	139	42	57	241	0.59	0.07	0.05	0.06	0.05	0.77	0.41	-99.2	6.49	.202	60
CHR Rat																		
LiverProliferativeLesio			4.0	404	00		0.40	0.70	0.40	0.07	0.00	0.07	0.00	0.55	00.0	o ==	0.47	
ns	VIVI	OEstate	16	161	22	44	243	0.73	0.42	0.27	0.33	0.27	0.88	0.57	-98.9	8.57	0.17	60
CHR Rat	Lihe																	
LiverProliferativeLesions		CDK	12	138	43	48	241	0.62	0.22	0.2	0.21	0.2	0.76	0.48	-99.0	7 57	030	60
15	VIVI	CDR	12	130	43	40	241	0.02	0.22	0.2	0.21	0.2	0.70	0.40	-99.0	1.51	.039	- 00
CHR Rat LiverProliferativeLesio	LibS	Chemaxo																
ns	VM		6	159	24	54	243	0.68	0.2	0.1	0.13	0.1	0.87	0.48	-99.0	7.74	.041	60
					-													
CHR Rat LiverProliferativeLesio	LibS																	
ns	VM	Dragon6	0	159	24	60	243	0.65	0.	0.		0.	0.87	0.43	-99.1	5.28	.19	60
CHR Rat		_																
LiverProliferativeLesio	LibS	Fragment																
ns	VM		14	155	28	46	243	0.7	0.33	0.23	0.27	0.23	0.85	0.54	-98.9	8.21	0.09	60
CHR Rat																		
LiverProliferativeLesio		005	_	46.	0.0		00		0.00			0.00	0.00	0.10	00.	0.65	465	
ns	VM	GSFrag	2	161	22	58	243	0.67	0.08	0.03	0.05	0.03	0.88	0.46	-99.1	6.96	.126	60
CHR Rat	Liko																	
LiverProliferativeLesio		Industive	10	100	E0	47	242	0.6	0.24	0.00	0.04	0.00	0.70	0.47	00.4	711	OFG	60
ns	VM	Inductive	13	133	50	47	243	0.0	U.21	0.22	U.ZT	0.22	0.73	0.47	-99.1	1.44	dcu.	60
CHR Rat	LihS	Mera																
LiverProliferativeLesions		Mersy	4	167	15	56	2/12	0 71	0.21	0.07	0.1	0.07	0 02	0.40	-99.0	7 02	025	60
	V IVI	ivicisy	4	107	10	50	242	0.71	0.21	0.07	U. I	0.07	0.92	0.48	-99.0	1.32	.020	00
CHR Rat LiverProliferativeLesio	LihS																	
LiverProliferativeLesions	VM	QNPR	8	146	37	52	243	0.63	0.18	0.13	0.15	0.13	0.8	0.47	-99.1	7.46	.076	60
		J						0.00	0.10	0.10	0.10	0.10	J.U	V. 17				-55
CHR Rat LiverProliferativeLesio	LibS	Spectrop																
			_	44-	00	F 2	242	0.63	0.16	0.40	0.40	0.40	0.70	0.45	00.4	7 00	404	60
ns	VIVI	hores	7	145	38	53	243	บ.ชง	0.10	0.12	0.13	0.12	0.79	0.45	-99.1	7.32	.101	60

CHR Rat LiverProliferativeLesions	MLR A	Adriana	26	101	80	34	241	0.53	0.25	0.43	0.31	0.43	0.56	0.5	-99.0	7.05	.008	60
OUD D-4																		
CHR Rat LiverProliferativeLesio	MLR	ALogPS,																
ns	Α	OEstate	29	97	86	31	243	0.52	0.25	0.48	0.33	0.48	0.53	0.51	-99.0	6.95	0.01	60
CHR Rat																		
LiverProliferativeLesio	MLR																	
ns	Α	CDK	28	85	96	32	241	0.47	0.23	0.47	0.3	0.47	0.47	0.47	-99.1	6.71	.055	60
CHR Rat		01																
LiverProliferativeLesio																		
ns	A	n	24	99	84	36	243	0.51	0.22	0.4	0.29	0.4	0.54	0.47	-99.1	6.96	.051	60
CHR Rat	МІР																	
LiverProliferativeLesio		Dragone	22	02	101	27	242	0.47	0.25	0.55	0.24	0.55	0.45	0.5	00.0	6 62	002	60
ns	A	Dragon6	33	82	101	27	243	0.47	0.25	0.55	0.34	0.55	0.45	0.5	-99.0	0.02	.002	60
CHR Rat LiverProliferativeLesio	MI R	Fragment																
LiverProliferativeLesio	A	or	30	116	67	30	243	0.6	0.31	0.5	0.38	0.5	0.63	0.57	-98.9	7 38	0.12	60
		Oi	30	110	01	30	243	0.0	0.51	0.5	0.50	0.5	0.03	0.57	-30.3	7.50	0.12	- 00
CHR Rat LiverProliferativeLesio	MI R																	
ns	Α	GSFrag	33	90	93	27	243	0.51	0.26	0.55	0.35	0.55	0.49	0.52	-99.0	6 79	0.04	60
		COLIUG	- 00		- 00		2-10	0.01	0.20	0.00	0.00	0.00	0.40	0.02	00.0	0.70	0.04	- 00
CHR Rat LiverProliferativeLesio	MLR																	
ns	Α	Inductive	20	99	84	40	243	0.49	0.19	0.33	0.24	0.33	0.54	0.44	-99.1	6.89	.11	60
CHD Dat					<u> </u>			0.10	0.10	0.00	· ·	0.00	0.01	Ų. I I		0.00		- 55
CHR Rat LiverProliferativeLesio	MLR	Mera,																
ns	Α	Mersy	30	96	86	30	242	0.52	0.26	0.5	0.34	0.5	0.53	0.51	-99.0	6.94	0.02	60
CHR Rat	-	,	- •			- •				2.0		J. U						
LiverProliferativeLesio	MLR																	
ns	Α	QNPR	29	87	96	31	243	0.48	0.23	0.48	0.31	0.48	0.48	0.48	-99.0	6.74	.036	60
CHR Rat																		
LiverProliferativeLesio	MLR	Spectrop																
ns	Α	hores	31	90	93	29	243	0.5	0.25	0.52	0.34	0.52	0.49	0.5	-99.0	6.8	0.01	60
CHR Rat																		
LiverProliferativeLesio																		
ns	PLS	Adriana	31	63	118	29	241	0.39	0.21	0.52	0.3	0.52	0.35	0.43	-99.1	6.21	.12	60
CHR Rat LiverProliferativeLesio		ALogPS,																
ns	PLS	OEstate	31	115	68	29	243	0.6	0.31	0.52	0.39	0.52	0.63	0.57	-98.9	7 36	0.13	60
		OLGIGIC	<u> </u>	-110	- 00		2-10	0.0	0.01	0.02	0.00	0.02	0.00	0.07	00.0	7.00	0.10	- 00
CHR Rat LiverProliferativeLesio																		
ns	PLS	CDK	21	85	96	39	241	0.44	0.18	0.35	0.24	0.35	0 47	0.41	-99.2	6 62	156	60
		OBIL						0.11	0.10	0.00	0.21	0.00	0.11	0.11	00.2	0.02		
CHR Rat LiverProliferativeLesio		Chemaxo																
ns	PLS		22	77	106	38	243	0.41	0.17	0.37	0.23	0.37	0.42	0.39	-99.2	6 45	184	60
CHR Rat								••••	••••	0.0.	0.20	0.0.	· · · <u>-</u>	0.00		0		
LiverProliferativeLesio																		
ns	PLS	Dragon6	20	114	69	40	243	0.55	0.22	0.33	0.27	0.33	0.62	0.48	-99.0	7.22	.039	60
																		- 55
CHR Rat LiverProliferativeLesio		Fragment																
ns	PLS	Ū	30	122	61	30	243	0.63	0.33	0.5	0.4	0.5	0.67	0.58	-98.8	7.52	0.15	60
CHR Rat					- '			0.00	0.00	3.0	V. I	J.U	0.01	0.00	55.5		0.10	- 55
CHR Rat LiverProliferativeLesio																		
ns	PLS	GSFrag	20	93	90	40	243	0.47	0.18	0.33	0.24	0.33	0.51	0.42	-99.2	6.75	.137	60
CHR Rat																		- 55
CHR Rat LiverProliferativeLesio																		
ns	PLS	Inductive	26	92	91	34	243	0.49	0.22	0.43	0.29	0.43	0.5	0.47	-99.1	6.83	.055	60
CHR Rat																		
CHR Rat LiverProliferativeLesio		Mera,																
ns	PLS	Mersy	20	93	89	40	242	0.47	0.18	0.33	0.24	0.33	0.51	0.42	-99.2	6.77	.135	60
CHR Rat		3																
CHR Rat LiverProliferativeLesio																		
ns	PLS	QNPR	26	109	74	34	243	0.56	0.26	0.43	0.33	0.43	0.6	0.51	-99.0	7.2	0.03	60
CHR Rat		· · ·			• •	- '		0.00	·u	0.10	0.00	0.10		0.01	00.0		0.00	- 55
CHR Rat LiverProliferativeLesio		Spectrop																
ns	PLS	hores	29	81	102	31	243	0.45	0.22	0.48	0.3	0.48	0.44	0.46	-99.1	6.61	.064	60
				<u> </u>	102	<u> </u>	_ 10	5.40	V.LL	0.40	0.0	0.40	U. T-T	0.10	55.1	0.01	.00-	50
CHR Rat																		
CHR Rat LiverProliferativeLesions	.142	Adriana	18	128	53	42	241	0.61	0.25	0.3	0.27	0.3	0.71	0.5	-99.0	7 54	0.01	60

CHR Rat LiverProliferativeLesio ns	J48	ALogPS, OEstate	19	126	57	41	243	0.6	0.25	0.32	0.28	0.32	0.69	0.5	-99.0	7.48	0.	60
CHR Rat LiverProliferativeLesio ns	J48	CDK	17	131	50	43	241	0.61	0.25	0.28	0.27	0.28	0.72	0.5	-99.0	7.59	0.01	60
CHR Rat LiverProliferativeLesio ns	J48	Chemaxo n	17	116	67	43	243	0.55	0.2	0.28	0.24	0.28	0.63	0.46	-99.1	7.18	.075	60
CHR Rat LiverProliferativeLesio ns	J48	Dragon6	16	127	56	44	243	0.59	0.22	0.27	0.24	0.27	0.69	0.48	-99.0	7.41	.037	60
CHR Rat LiverProliferativeLesio ns	J48	Fragment or	23	134	49	37	243	0.65	0.32	0.38	0.35	0.38	0.73	0.56	-98.9	7.78	0.11	60
CHR Rat LiverProliferativeLesio ns	J48	GSFrag	17	118	65	43	243	0.56	0.21	0.28	0.24	0.28	0.64	0.46	-99.1	7.23	.066	60
CHR Rat LiverProliferativeLesio ns	J48	Inductive	18	125	58	42	243	0.59	0.24	0.3	0.26	0.3	0.68	0.49	-99.0	7.43	.016	60
CHR Rat LiverProliferativeLesio ns	J48	Mera, Mersy	17	132	50	43	242	0.62	0.25	0.28	0.27	0.28	0.73	0.5	-99.0	7.6	0.01	60
CHR Rat LiverProliferativeLesio ns	J48	QNPR	17	116	67	43	243	0.55	0.2	0.28	0.24	0.28	0.63	0.46	-99.1	7.18	.075	60
CHR Rat LiverProliferativeLesio ns	J48	Spectrop hores	21	124	59	39	243	0.6	0.26	0.35	0.3	0.35	0.68	0.51	-99.0	7.48	0.03	60
CHR Rat ThyroidProliferativeLe sions	RF	Adriana	18	127	74	22	241	0.6	0.2	0.45	0.27	0.45	0.63	0.54	-98.9	6.57	0.06	40
CHR Rat ThyroidProliferativeLe sions	RF	ALogPS, OEstate	19	135	68	21	243	0.63	0.22	0.48	0.3	0.48	0.67	0.57	-98.9	6.72	0.11	40
CHR Rat ThyroidProliferativeLe sions	RF	CDK	24	130	71	16	241	0.64	0.25	0.6	0.36	0.6	0.65	0.62	-98.8	6.6	0.19	40
CHR Rat ThyroidProliferativeLe sions	RF	Chemaxo n	17	123	80	23	243	0.58	0.18	0.43	0.25	0.43	0.61	0.52	-99.0	6.45	0.02	40
CHR Rat ThyroidProliferativeLe sions	RF	Dragon6	17	135	68	23	243	0.63	0.2	0.43	0.27	0.43	0.67	0.55	-98.9	6.7	0.07	40
CHR Rat ThyroidProliferativeLe sions	RF	Fragment or	19	133	70	21	243	0.63	0.21	0.48	0.29	0.48	0.66	0.57		6.68	0.1	40
CHR Rat ThyroidProliferativeLe sions	RF	GSFrag	27	126	77	13	243	0.63	0.26	0.68	0.38	0.68	0.62	0.65	-98.7			40
CHR Rat ThyroidProliferativeLe sions	RF	Inductive	24	129	74	16	243	0.63	0.24	0.6	0.35	0.6	0.64	0.62	-98.8			40
CHR Rat ThyroidProliferativeLe sions	RF	Mera, Mersy	21	124	78	19	242	0.6	0.21	0.53	0.3	0.53		0.57	-98.9	6.5	0.1	40
CHR Rat ThyroidProliferativeLe sions	RF	QNPR	18	126	77	22	243	0.59	0.19		0.27	0.45		0.54	-98.9			40
CHR Rat ThyroidProliferativeLe sions	RF	Spectrop hores	21	127	76	19	243	0.61	0.22	0.53	0.31	0.53		0.58	-98.8			40
CHR Rat ThyroidProliferativeLe sions		Adriana	21	152	49	19	241	0.72	0.3	0.53	0.38	0.53	0.76	0.64	-98.7			40
CHR Rat ThyroidProliferativeLe sions			16	161	42	24	243	0.73		0.4		0.4		0.6	-98.8			40

CHR Rat ThyroidProliferativeLe sions	ASN N	CDK	16	142	59	24	241	0.66	0.21	0.4	0.28	0.4	0.71	0.55	-98.9	6.88	0.09	40
CHR Rat ThyroidProliferativeLe sions	ASN N	Chemaxo n	13	151	52	27	243	0.67	0.2	0.33	0.25	0.33	0.74	0.53	-98.9	6.98	0.06	40
CHR Rat ThyroidProliferativeLe sions	ASN N	Dragon6	16	162	41	24	243	0.73	0.28	0.4	0.33	0.4	0.8	0.6	-98.8	7.37	0.17	40
CHR Rat ThyroidProliferativeLe sions	ASN N	Fragment or	14	168	35	26	243	0.75	0.29	0.35	0.31	0.35	0.83	0.59	-98.8	7.51	0.16	40
CHR Rat ThyroidProliferativeLe sions	ASN N	GSFrag	14	152	51	26	243	0.68	0.22	0.35	0.27	0.35	0.75	0.55	-98.9	7.04	0.08	40
CHR Rat ThyroidProliferativeLe sions	ASN N	Inductive	22	148	55	18	243	0.7	0.29	0.55	0.38	0.55	0.73	0.64	-98.7	7.02	0.22	40
CHR Rat ThyroidProliferativeLe sions	ASN N	Mera, Mersy	15	144	58	25	242	0.66	0.21	0.38	0.27	0.38	0.71	0.54	-98.9	6.88	0.07	40
CHR Rat ThyroidProliferativeLe sions	ASN N	QNPR	16	155	48	24	243	0.7	0.25	0.4	0.31	0.4	0.76	0.58	-98.8	7.17	0.14	40
CHR Rat ThyroidProliferativeLe sions	ASN N	Spectrop hores	19	132	71	21	243	0.62	0.21	0.48	0.29	0.48	0.65	0.56	-98.9	6.66	0.1	40
CHR Rat ThyroidProliferativeLe sions	ASN N		13	143	58	27	241	0.65		0.33						6.81	0.03	40
CHR Rat ThyroidProliferativeLe sions		CDK, TA	11	139	62	29	241	0.62		0.28					-99.0	6.63	.027	40
CHR Rat ThyroidProliferativeLe sions	ASN N	CDK, TP	15	145	56	25	241	0.66		0.38					-98.9			40
CHR Rat ThyroidProliferativeLe sions	ASN N	TA, TP	15	144	59	25	243	0.65	0.2	0.38		0.38	0.71	0.54	-98.9			40
CHR Rat ThyroidProliferativeLe sions	ASN N	TA	13	144	59	27	243	0.65	0.18	0.33	0.23	0.33	0.71	0.52	-99.0	6.8	0.03	40
CHR Rat ThyroidProliferativeLe sions	ASN N	TP	16	139	64	24	243	0.64	0.2	0.4	0.27	0.4	0.68	0.54	-98.9	6.77	0.07	40
CHR Rat ThyroidProliferativeLe sions	FSM LR	CDK, TA, TP	13	141	60	27	241	0.64	O 18	0.33	U 33	U 33	0.7	0.51	-99.0	6 77	0.02	40
CHR Rat ThyroidProliferativeLe	FSM																	
sions CHR Rat ThyroidProliferativeLe	LR	CDK, TA	15	153	48	25	241	0.7	0.24	0.38	0.29	0.38	0.76	0.57	-98.9	7.13	0.12	40
Sions CHR Rat	LR	CDK, TP	18	138	63	22	241	0.65	0.22	0.45	0.3	0.45	0.69	0.57	-98.9	6.81	0.11	40
ThyroidProliferativeLe sions CHR Rat	LR	TA, TP	15	136	67	25	243	0.62	0.18	0.38	0.25	0.38	0.67	0.52	-99.0	6.68	0.04	40
ThyroidProliferativeLe sions	FSM LR	TA	13	147	56	27	243	0.66	0.19	0.33	0.24	0.33	0.72	0.52	-99.0	6.88	0.04	40
CHR Rat ThyroidProliferativeLe sions	FSM LR	TP	14	132	71	26	243	0.6	0.16	0.35	0.22	0.35	0.65	0.5	-99.0	6.57	0.	40
CHR Rat ThyroidProliferativeLe sions	KNN	CDK, TA, TP	20	143	58	20	241	0.68	0.26	0.5	0.34	0.5	0.71	0.61	-98.8	6.94	0.17	40
CHR Rat ThyroidProliferativeLe sions	KNN	CDK, TA	6	180	21	34	241	0.77	0.22	0.15	0.18	0.15	0.9	0.52	-99.0	7.54	0.05	40

CHR Rat ThyroidProliferativeLe sions	KNN	CDK, TP	23	114	87	17	241	0.57	0.21	0.58	0.31	0.58	0.57	0.57	-98.9	6.29	0.11	40
CHR Rat ThyroidProliferativeLe sions	KNN	TA, TP	19	128	75	21	243	0.6	0.2	0.48	0.28	0.48	0.63	0.55	-98.9	6.57	0.08	40
CHR Rat ThyroidProliferativeLe sions	KNN	TA	12	161	42	28	243	0.71	0.22	0.3	0.26	0.3	0.79	0.55	-98.9	7.21	0.08	40
CHR Rat ThyroidProliferativeLe sions	KNN	TP	27	107	96	13	243	0.55	0.22	0.68	0.33	0.68	0.53	0.6	-98.8	6.02	0.15	40
CHR Rat ThyroidProliferativeLe sions	LibS VM	CDK, TA, TP	1	198	3	39	241	0.83	0.25	0.03	0.05	0.03	0.99	0.51	-99.0	8.12	0.03	40
CHR Rat ThyroidProliferativeLe sions	LibS VM	CDK, TA	3	190	11	37	241	0.8	0.21	0.08	0.11	0.08	0.95	0.51	-99.0	7.68	0.03	40
CHR Rat ThyroidProliferativeLe sions	1:50	CDK, TP	6	182	19	34	241	0.78	0.24	0.15	0.18	0.15	0.91	0.53	-98.9			40
CHR Rat ThyroidProliferativeLe	LibS	,		-	-													
sions CHR Rat ThyroidProliferativeLe	LibS	TA, TP	5	185	18	35	243	0.78	0.22	0.13	0.16	0.13	0.91	0.52	-99.0	7.58	0.05	40
sions CHR Rat ThyroidProliferativeLe	VM	TA	3	187	16	37	243	0.78	0.16	0.08	0.1	80.0	0.92	0.5	-99.0	7.31	.005	40
sions CHR Rat	VM	TP ODK TA	4	185	18	36	243	0.78	0.18	0.1	0.13	0.1	0.91	0.51	-99.0	7.41	0.01	40
ThyroidProliferativeLe sions CHR Rat	A A	TP	12	130	71	28	241	0.59	0.14	0.3	0.2	0.3	0.65	0.47	-99.1	6.48	.042	40
ThyroidProliferativeLe sions	MLR A	CDK, TA	11	121	80	29	241	0.55	0.12	0.28	0.17	0.28	0.6	0.44	-99.1	6.24	.094	40
CHR Rat ThyroidProliferativeLe sions	MLR A	CDK, TP	19	98	103	21	241	0.49	0.16	0.48	0.23	0.48	0.49	0.48	-99.0	5.99	.028	40
CHR Rat ThyroidProliferativeLe sions	MLR A	TA, TP	19	137	66	21	243	0.64	0.22	0.48	0.3	0.48	0.67	0.57	-98.9	6.76	0.12	40
CHR Rat ThyroidProliferativeLe sions	MLR A	TA	16	110	93	24	243	0.52	0.15	0.4	0.21	0.4	0.54	0.47	-99.1	6.17	.043	40
CHR Rat ThyroidProliferativeLe sions	MLR A	TP	18	124	79	22	243	0.58	0.19	0.45	0.26	0.45	0.61	0.53	-98.9	6.48	0.05	40
CHR Rat ThyroidProliferativeLe sions	PLS	CDK, TA, TP	16	141	60	24	241	0.65	0.21	0.4	0.28	0.4	0.7	0.55	-98.9	6.85	0.08	40
CHR Rat ThyroidProliferativeLe sions	PLS	CDK, TA	10	139	62	30	241	0.62	0.14	0.25	0.18	0.25	0.69	0.47	-99.1	6.57	.048	40
CHR Rat ThyroidProliferativeLe sions	PLS	CDK, TP	18	138	63	22	241	0.65	0.22	0.45	0.3	0.45	0.69	0.57	-98.9	6.81	0.11	40
CHR Rat ThyroidProliferativeLe sions	PLS	TA, TP	15	140	63	25	243	0.64	0.19	0.38	0.25	0.38	0.69	0.53	-98.9	6.77	0.05	40
CHR Rat ThyroidProliferativeLe sions	PLS	TA	14	141	62	26	243	0.64	0.18	0.35	0.24	0.35	0.69	0.52	-99.0	6.77	0.04	40
CHR Rat ThyroidProliferativeLe sions	PLS	TP	18	125	78	22	243	0.59	0.19	0.45	0.26	0.45	0.62	0.53	-98.9	6.5	0.05	40
CHR Rat ThyroidProliferativeLe sions	J48	CDK, TA, TP	13	161	40	27	241	0.72	0.25	0.33	0.28	0.33	0.8	0.56	-98.9	7.3	0.11	40

CHR Rat ThyroidProliferativeLe sions	J48	CDK, TA	13	155	46	27	241	0.7	0.22	0.33	0.26	0.33	0.77	0.55	-98.9	7.12	0.08	40
CHR Rat ThyroidProliferativeLe sions	J48	CDK, TP	9	159	42	31	241	0.7	0.18	0.23	0.2	0.23	0.79	0.51	-99.0	7.02	0.01	40
CHR Rat ThyroidProliferativeLe sions	J48	TA, TP	10	139	64	30	243	0.61	0.14	0.25	0.18	0.25	0.68	0.47	-99.1	6.54	.053	40
CHR Rat ThyroidProliferativeLe sions CHR Rat	J48	TA	10	151	52	30	243	0.66	0.16	0.25	0.2	0.25	0.74	0.5	-99.0	6.83	.005	40
ThyroidProliferativeLe sions CHR Rat	J48	TP	12	167	36	28	243	0.74	0.25	0.3	0.27	0.3	0.82	0.56	-98.9	7.4	0.11	40
ThyroidProliferativeLe sions	RF	CDK, TA, TP	15	131	70	25	241	0.61	0.18	0.38	0.24	0.38	0.65	0.51	-99.0	6.6	0.02	40
CHR Rat ThyroidProliferativeLe sions CHR Rat	RF	CDK, TA	16	134	67	24	241	0.62	0.19	0.4	0.26	0.4	0.67	0.53	-98.9	6.69	0.05	40
ThyroidProliferativeLe sions	RF	CDK, TP	19	131	70	21	241	0.62	0.21	0.48	0.29	0.48	0.65	0.56	-98.9	6.66	0.1	40
CHR Rat ThyroidProliferativeLe sions	RF	TA, TP	20	119	84	20	243	0.57	0.19	0.5	0.28	0.5	0.59	0.54	-98.9	6.39	0.06	40
CHR Rat ThyroidProliferativeLe sions	RF	TA	21	126	77	19	243	0.6	0.21	0.53	0.3	0.53	0.62	0.57	-98.9	6.53	0.11	40
CHR Rat ThyroidProliferativeLe sions	RF	TP	19	117	86	21	243	0.56	0.18	0.48	0.26	0.48	0.58	0.53	-98.9	6.34	0.04	40
CHR Rat ThyroidProliferativeLe sions	FSM LR	Adriana	24	138	63	16	241	0.67	0.28	0.6	0.38	0.6	0.69	0.64	-98.7	6.78	0.22	40
CHR Rat ThyroidProliferativeLe sions	FSM LR	ALogPS, OEstate	22	141	62	18	243	0.67	0.26	0.55	0.35	0.55	0.69	0.62	-98.8	6.85	0.19	40
CHR Rat ThyroidProliferativeLe sions	FSM LR	CDK	18	146	55	22	241	0.68	0.25	0.45	0.32	0.45	0.73	0.59	-98.8	7.	0.14	40
CHR Rat ThyroidProliferativeLe sions	FSM LR	Chemaxo n	11	137	66	29	243	0.61	0.14	0.28	0.19	0.28	0.67	0.47	-99.1	6.55	.04	40
CHR Rat ThyroidProliferativeLe sions		Dragon6	18	140	63	22	243	0.65	0.22		0.3	0.45		0.57	-98.9		-	40
CHR Rat ThyroidProliferativeLe	FSM	Fragment																
sions CHR Rat ThyroidProliferativeLe	LR FSM	or	17	149	54	23	243	0.68	0.24	0.43	0.31	0.43	0.73	0.58	-98.8	7.03	0.13	40
sions CHR Rat ThyroidProliferativeLe	LR	GSFrag	17	126	77	23	243	0.59	0.18	0.43	0.25	0.43	0.62	0.52	-99.0	6.51	0.03	40
sions CHR Rot	LR	Inductive	23	120	83	17	243	0.59	0.22	0.58	0.32	0.58	0.59	0.58	-98.8	6.39	0.12	40
ThyroidProliferativeLe sions CHR Rat	LR	Mersy	19	136	66	21	242	0.64	0.22	0.48	0.3	0.48	0.67	0.57	-98.9	6.76	0.12	40
ThyroidProliferativeLe sions	FSM LR	QNPR	20	133	70	20	243	0.63	0.22	0.5	0.31	0.5	0.66	0.58	-98.8	6.68	0.12	40
CHR Rat ThyroidProliferativeLe sions	FSM LR	Spectrop hores	22	118	85	18	243	0.58	0.21	0.55	0.3	0.55	0.58	0.57	-98.9	6.36	0.1	40

	0.12		40
		7	_40
5 (0 N		
	J.U-	4	40
7 .	.102	2	40
9 (0.0	1	40
1 (0.13	3	40
4 (0.02	2	40
8 (0.14	4	40
4 (0.1	5	40
3 (0.0	3	40
3 (0.0	9	40
3 (0.0	6	40
4	0.2	2	40
6	0.	1	40
3 (0.0	5	40
3 (0.09	9	40
6 (0.1	1	40
8 .	.00:	3	40
	0.13		40
		_	
6	034	5	4 0
	.03		40
2 3 6 0 8 3. 4 1 7	21 34 68 04 83 3.3 43 43 43 76	21 0.1 34 0.0 68 0.1 04 0.1 83 0.0 63 0.0 43 0.0 43 0.0 43 0.0 43 0.0 76 0.1	21 0.13 34 0.02 68 0.14 04 0.15 83 0.03 3.3 0.09 43 0.06

CHR Rat ThyroidProliferativeLe																		
	Α	Adriana	16	126	75	24	241	0.59	0.18	0.4	0.24	0.4	0.63	0.51	-99.0	6.52	0.02	40
CHR Rat ThyroidProliferativeLe	MLR	ALogPS,																
sions	Α	OEstate	18	146	57	22	243	0.67	0.24	0.45	0.31	0.45	0.72	0.58	-98.8	6.97	0.14	40
CHR Rat ThyroidProliferativeLe	MLR																	
	Α	CDK	21	121	80	19	241	0.59	0.21	0.53	0.3	0.53	0.6	0.56	-98.9	6.45	0.1	40
CHR Rat ThyroidProliferativeLe	MLR	Chemaxo																
	Α	n	21	139	64	19	243	0.66	0.25	0.53	0.34	0.53	0.68	0.6	-98.8	6.81	0.16	40
CHR Rat ThyroidProliferativeLe	MLR																	
sions	Α	Dragon6	22	123	80	18	243	0.6	0.22	0.55	0.31	0.55	0.61	0.58	-98.8	6.46	0.12	40
CHR Rat ThyroidProliferativeLe	MLR	Fragment																
	Α	or	25	109	94	15	243	0.55	0.21	0.63	0.31	0.63	0.54	0.58	-98.8	6.13	0.12	40
CHR Rat ThyroidProliferativeLe	MLR																	
sions	Α	GSFrag	13	135	68	27	243	0.61	0.16	0.33	0.21	0.33	0.67	0.5	-99.0	6.6	.008	40
CHR Rat ThyroidProliferativeLe	MLR																	
sions	A	Inductive	22	150	53	18	243	0.71	0.29	0.55	0.38	0.55	0.74	0.64	-98.7	7.07	0.23	40
CHR Rat ThyroidProliferativeLe	MIR	Mera																
	A	Mersy	19	99	103	21	242	0.49	0.16	0.48	0.23	0.48	0.49	0.48	-99.0	6.	.026	40
CHR Rat	MIR																	
ThyroidProliferativeLe sions	A	QNPR	17	124	79	23	243	0.58	0.18	0.43	0.25	0.43	0.61	0.52	-99.0	6.47	0.03	40
CHR Rat ThyroidProliferativeLe	MID	Spectron																
	A	hores	17	120	83	23	243	0.56	0.17	0.43	0.24	0.43	0.59	0.51	-99.0	6.39	0.01	40
CHR Rat																		
ThyroidProliferativeLe sions	PLS	Adriana	25	129	72	15	241	0.64	0.26	0.63	0.36	0.63	0.64	0.63	-98.7	6.56	0.2	40
CHR Rat																		
ThyroidProliferativeLe sions	PI S	ALogPS, OEstate	19	154	49	21	243	0.71	0.28	0.48	0.35	0.48	0.76	0.62	-98.8	7 18	n 10	40
CHR Rat	1 20	OLSIGIC	13	104	70		240	0.7 1	0.20	0.40	0.00	0.40	0.70	0.02	-30.0	7.10	0.10	
ThyroidProliferativeLe sions	PLS	CDK	17	142	59	23	241	0.66	0.22	0.43	0.29	0.43	0.71	0.57	-98.9	S 20	0.11	40
CHR Rat	FLS	CDR	17	142	- 39		241	0.00	0.22	0.43	0.29	0.43	0.71	0.57	-90.9	0.09	0.11	40
ThyroidProliferativeLe	PLS	Chemaxo	12	117	86	28	242	0.52	0.12	0.2	0.17	0.2	0.50	0.44	00.1	2 10	002	40
sions CHR Rat	PLS	n	12	117	00	20	243	0.53	0.12	0.3	0.17	0.3	0.58	0.44	-99.1	6.18	.093	40
ThyroidProliferativeLe	DI C	D====C	40	450	47	04	040	0.70	0.00	0.40	0.00	0.40	0.77	0.00	00.0	7 00	0.0	40
sions CHR Rat	PLS	Dragon6	19	156	47	21	243	0.72	0.29	0.48	0.36	0.48	0.77	0.62	-98.8	1.23	0.2	40
ThyroidProliferativeLe	DI O	Fragment	40	450	4.4	0.4	0.40	0.70	0.07	0.4	0.00	0.4	0.70	0.50	00.0	7.00	0.40	40
sions CHR Rat	PLS	or	16	159	44	24	243	0.72	0.27	0.4	0.32	0.4	0.78	0.59	-98.8	7.28	0.16	40
ThyroidProliferativeLe	DI 0	005	4.0	4.40	0.4	0.4	0.40	0.05	0.04		0.07		۰-		00.0	0.04	0.00	
	PLS	GSFrag	16	142	61	24	243	0.65	0.21	0.4	0.27	0.4	0.7	0.55	-98.9	6.84	0.08	40
CHR Rat ThyroidProliferativeLe																		
	PLS	Inductive	18	146	57	22	243	0.67	0.24	0.45	0.31	0.45	0.72	0.58	-98.8	6.97	0.14	40
CHR Rat ThyroidProliferativeLe		Mera,																
	PLS	Mersy	14	137	65	26	242	0.62	0.18	0.35	0.24	0.35	0.68	0.51	-99.0	6.69	0.02	40
CHR Rat ThyroidProliferativeLe																		
	PLS	QNPR	16	151	52	24	243	0.69	0.24	0.4	0.3	0.4	0.74	0.57	-98.9	7.06	0.12	40
CHR Rat ThyroidProliferativeLe		Spectrop																
sions	PLS	hores	19	123	80	21	243	0.58	0.19	0.48	0.27	0.48	0.61	0.54	-98.9	6.47	0.06	40
CHR Rat ThyroidProliferativeLe																		
	J48	Adriana	13	159	42	27	241	0.71	0.24	0.33	0.27	0.33	0.79	0.56	-98.9	7.24	0.1	40

CHR Rat ThyroidProliferativeLe sions	J48	ALogPS, OEstate	16	167	36	24	243	0.75	0.31	0.4	0.35	0.4	0.82	0.61	-98.8 7.53	0.2	40
CHR Rat ThyroidProliferativeLe sions	J48	CDK	15	159	42	25	241	0.72	0.26	0.38	0.31	0.38	0.79	0.58	-98.8 7.3	0.15	40
CHR Rat ThyroidProliferativeLe sions	J48	Chemaxo n	10	161	42	30	243	0.7	0.19	0.25	0.22	0.25	0.79	0.52	-99.0 7.1	0.04	40
CHR Rat ThyroidProliferativeLe sions	J48	Dragon6	14	169	34	26	243	0.75	0.29	0.35	0.32	0.35	0.83	0.59	-98.8 7.54	0.17	40
CHR Rat ThyroidProliferativeLe sions	J48	Fragment or	15	152	51	25	243	0.69	0.23	0.38	0.28	0.38	0.75	0.56	-98.9 7.07	0.1	40
CHR Rat ThyroidProliferativeLe sions	J48	GSFrag	13	161	42	27	243	0.72	0.24	0.33	0.27	0.33	0.79	0.56	-98.9 7.25	0.1	40
CHR Rat ThyroidProliferativeLe sions	J48	Inductive	18	155	48	22	243	0.71	0.27	0.45	0.34	0.45	0.76	0.61	-98.8 7.2	0.18	40
CHR Rat ThyroidProliferativeLe sions	J48	Mera, Mersy	15	147	55	25	242	0.67	0.21	0.38	0.27	0.38	0.73	0.55	-98.9 6.96	0.08	40
CHR Rat ThyroidProliferativeLe sions	J48	QNPR	13	153	50	27	243	0.68	0.21	0.33	0.25	0.33	0.75	0.54	-98.9 7.03	0.07	40
CHR Rat ThyroidProliferativeLe sions	J48	Spectrop hores	14	152	51	26	243	0.68	0.22	0.35	0.27	0.35	0.75	0.55	-98.9 7.04	0.08	40
CHR Rat Tumorigen	RF	Adriana	45	63	84	49	241	0.45	0.35	0.48	0.4	0.48	0.43	0.45	-99.1 7.43	.091	94
CHR Rat Tumorigen CHR Rat Tumorigen	RF RF	ALogPS, OEstate CDK	48	67 50	81 96	47 51	243 241	0.47	0.37	0.51	0.43	0.51	0.45	0.48	-99.0 7.55 -99.2 7.09	.041	95 95
CHR Rat Tumorigen	RF	Chemaxo n	50	61	87	45	243	0.46	0.36	0.53	0.43	0.53	0.41	0.47	-99.1 7.39	.061	95
CHR Rat Tumorigen	RF	Dragon6 Fragment	48	55	93	47	243	0.42	0.34	0.51	0.41	0.51	0.37	0.44	-99.1 7.22	.122	95
CHR Rat Tumorigen CHR Rat Tumorigen	RF RF	or GSFrag	45 44	74 62	74 86	50 51	243 243	0.49 0.44	0.38	0.47 0.46	0.42	0.47 0.46	0.5	0.49	-99.0 7.74 -99.1 7.41	.026 .115	95 95
CHR Rat Tumorigen	RF	Inductive Mera,	49	58	90	46	243	0.44	0.35	0.52	0.42	0.52	0.39	0.45	-99.1 7.31	.091	95
CHR Rat Tumorigen CHR Rat Tumorigen	RF RF	Mersy QNPR Spectrop	59 42	62 66	85 82	36 53	242 243	0.5	0.41	0.62	0.49	0.62	0.42	0.52	-99.0 7.37 -99.1 7.51		95 95
CHR Rat Tumorigen	RF ASN	hores	50	62	86	45	243	0.46	0.37	0.53	0.43	0.53	0.42	0.47	-99.1 7.41		95
CHR Rat Tumorigen	N ASN	Adriana ALogPS,	45	74	73	49	241	0.49	0.38	0.48	0.42	0.48	0.5	0.49	-99.0 7.73	.017	94
CHR Rat Tumorigen	N ASN	OEstate	37	83	65	58	243	0.49		0.39			0.56	0.48	-99.0 7.94		95
CHR Rat Tumorigen CHR Rat Tumorigen	N	CDK Chemaxo n	38	76 73	70 75	51 57	241	0.5	0.39	0.46	0.42	0.46	0.52	0.49	-99.0 7.82 -99.1 7.68		95 95
CHR Rat Tumorigen	ASN N ASN	Dragon6 Fragment	36	80	68	59	243	0.48	0.35	0.38	0.36	0.38	0.54	0.46	-99.1 7.84	.079	95
CHR Rat Tumorigen	N ASN	or	42	85	63	53	243	0.52	0.4	0.44	0.42	0.44	0.57	0.51	-99.0 8.03		95 05
CHR Rat Tumorigen CHR Rat Tumorigen	ASN N	GSFrag Inductive	38	73 68	75 80	54 57	243	0.47	0.35	0.43	0.39	0.43	0.49	0.46	-99.1 7.7 -99.1 7.54	.137	95 95

CHR Rat Tumorigen	ASN N	Mera, Mersy	47	85	62	48	242	0.55	0.43	0.49	0.46	0.49	0.58	0.54	-98.9	8.06	0.07	95
	ASN	<u> </u>																
CHR Rat Tumorigen	N ASN	QNPR Spectrop	43	77	71	52	243	0.49	0.38	0.45	0.41	0.45	0.52	0.49	-99.0	7.81	.026	95
CHR Rat Tumorigen	N	hores	47	76	72	48	243	0.51	0.39	0.49	0.44	0.49	0.51	0.5	-99.0	7.8	0.01	95
CHR Rat Tumorigen	N	CDK, TA, TP	36	76	70	59	241	0.46	0.34	0.38	0.36	0.38	0.52	0.45	-99.1	7.76	.099	95
CHR Rat Tumorigen	ASN N	CDK, TA	37	83	63	58	241	0.5	0.37	0.39	0.38	0.39	0.57	0.48	-99.0	7 07	042	95
Orint real runnongen	ASN	ODIX, IA	- 57			- 50	271	0.0	0.07	0.00	0.00	0.00	0.07	0.40	-33.0	7.51	.042	
CHR Rat Tumorigen	N ASN	CDK, TP	42	80	66	53	241	0.51	0.39	0.44	0.41	0.44	0.55	0.5	-99.0	7.92	.01	95
CHR Rat Tumorigen	N	TA, TP	37	81	67	58	243	0.49	0.36	0.39	0.37	0.39	0.55	0.47	-99.1	7.88	.062	95
CHR Rat Tumorigen	ASN N	TA	35	81	67	60	243	0.48	0.34	0.37	0.36	0.37	0.55	0.46	-99.1	7.86	.083	95
_	ASN																	
CHR Rat Tumorigen	N	TP	39	81	67	56	243	0.49	0.37	0.41	0.39	0.41	0.55	0.48	-99.0	7.9	.042	95
CHR Rat Tumorigen	FSM LR	CDK, TA, TP	36	68	78	59	241	0.43	0.32	0.38	0.34	0.38	0.47	0.42	-99.2	7.55	.152	95
	FSM																	
CHR Rat Tumorigen		CDK, TA	38	72	74	57	241	0.46	0.34	0.4	0.37	0.4	0.49	0.45	-99.1	7.68	.105	95
	FSM																	
CHR Rat Tumorigen	LR	CDK, TP	40	77	69	55	241	0.49	0.37	0.42	0.39	0.42	0.53	0.47	-99.1	7.83	.051	95
	FSM																	
CHR Rat Tumorigen	LR	TA, TP	40	74	74	55	243	0.47	0.35	0.42	0.38	0.42	0.5	0.46	-99.1	7.72	.077	95
	FSM																	
CHR Rat Tumorigen	LR	TA	32	73	75	63	243	0.43	0.3	0.34	0.32	0.34	0.49	0.42	-99.2	7.61	.167	95
	FSM	TD	4.4	7.		- 4	0.40	0.47	0.00	0.40	0.44	0.40	0.40	0.47	60.1	7.00	050	0.5
CHR Rat Tumorigen	LR	TP CDK, TA,	44	71	77	51	243	0.47	0.36	0.46	0.41	0.46	0.48	0.47	-99.1	7.66	.056	95
CHR Rat Tumorigen	KNN	TP	47	65	81	48	241	0.46	0.37	0.49	0.42	0.49	0.45	0.47	-99.1	7.52	.059	95
CHR Rat Tumorigen	KNN	CDK, TA	43	94	52	52	241	0.57	0.45	0.45	0.45	0.45	0.64	0.55	-98.9	8.32	0.1	95
CHR Rat Tumorigen	KNN	CDK, TP	45	71	75	50	241	0.48	0.38	0.47	0.42	0.47	0.49	0.48	-99.0	7.69	.039	95
CHR Rat Tumorigen	KNN	TA, TP	56	63	85	39	243	0.49	0.4	0.59	0.47	0.59	0.43	0.51	-99.0	7.41	0.01	95
															00.0	0 22	0.03	
CHR Rat Tumorigen	KNN	1/4	38	93	55	57	243	0.54	U.4 I	0.4	0.4	0.4	0.63	0.01	-99.0	0.22	0.03	95
CHR Rat Tumorigen	KNN	TP	48	65	83	47	243	0.47	0.37	0.51	0.42	0.51	0.44	0.47	-99.1	7.5	.054	95
		CDK, TA,																
CHR Rat Tumorigen	VM	TP	18	116	30	77	241	0.56	0.38	0.19	0.25	0.19	0.79	0.49	-99.0	8.61	.02	95
	LibS	0514 =:	•					•										
CHR Rat Tumorigen	VM	CDK, TA	22	110	36	73	241	0.55	0.38	0.23	0.29	0.23	0.75	0.49	-99.0	8.52	.017	95
	LibS	ODK TO	00	400	0-	00	044	0.55	0 4 4	0.04	0.00	0.04	0 75	0.50		0.05	0.00	٥-
CHR Rat Tumorigen	VM	CDK, TP	29	109	37	66	241	0.57	U.44	υ.31	0.36	0.31	0.75	0.53	-98.9	ช. 6 5	0.06	95
CUD Dat Towns of the	LibS	TA TD	24	110	26	74	242	0.55	0.27	0.22	0.00	0.00	0.76	0.40	00.0	0 5	006	0.5
CHR Rat Tumorigen	VIVI	TA, TP	21	112	36	74	243	0.55	0.37	0.22	υ.Ζδ	0.22	0.76	0.49	-99.0	0.5	.026	95
CHR Rat Tumorigen	LibS VM	TA	25	111	37	70	243	0.56	0.4	0.26	0.32	0.26	0.75	0.51	-99.0	8.58	0.01	95

	LibS																
CHR Rat Tumorigen	VM	TP	25	102	46	70	243	0.52	0.35	0.26	0.3	0.26	0.69	0.48	-99.0 8.28	.051	(
CHR Rat Tumorigen	MLR A	CDK, TA, TP	48	84	62	47	241	0.55	0.44	0.51	0.47	0.51	0.58	0.54	-98.9 8.04	0.08	,
CHR Rat Tumorigen	MLR A	CDK, TA	44	79	67	51	241	0.51	0.4	0.46	0.43	0.46	0.54	0.5	-99.0 7.9	0.	
	MLR																
CHR Rat Tumorigen	A MLR	CDK, TP	46	76	70	49	241	0.51	0.4	0.48	0.44	0.48	0.52	0.5	-99.0 7.82	0.	
CHR Rat Tumorigen	A MLR	TA, TP	51	74	74	44	243	0.51	0.41	0.54	0.46	0.54	0.5	0.52	-99.0 7.74	0.04	
CHR Rat Tumorigen	Α	TA	40	67	81	55	243	0.44	0.33	0.42	0.37	0.42	0.45	0.44	-99.1 7.53	.123	
CHR Rat Tumorigen	MLR A	TP	51	84	64	44	243	0.56	0.44	0.54	0.49	0.54	0.57	0.55	-98.9 8.01	0.1	
CHR Rat Tumorigen	PLS	CDK, TA, TP	37	76	70	58	241	0.47	0.35	0.39	0.37	0.39	0.52	0.46	-99.1 7.78	.088	
•																	
CHR Rat Tumorigen	PLS	CDK, TA	42	77	69	53	241	0.49	0.38	0.44	0.41	0.44	0.53	0.48	-99.0 7.84	.03	
CHR Rat Tumorigen		CDK, TP	43	75	71	52	241	0.49	0.38	0.45	0.41	0.45	0.51	0.48	-99.0 7.79		
CHR Rat Tumorigen	PLS	TA, TP	49	81	67	46	243	0.53	0.42	0.52	0.46	0.52	0.55	0.53	-98.9 7.93		
CHR Rat Tumorigen	PLS	TA	45	78	70	50	243	0.51	0.39	0.47	0.43	0.47	0.53	0.5	-99.0 7.85	0.	
CHR Rat Tumorigen	PLS	TP CDK, TA,	50	73	75	45	243	0.51	0.4	0.53	0.45	0.53	0.49	0.51	-99.0 7.71	0.02	
CHR Rat Tumorigen	J48	TP	31	82	64	64	241	0.47	0.33	0.33	0.33	0.33	0.56	0.44	-99.1 7.86	.112	
CHR Rat Tumorigen	J48	CDK, TA	31	82	64	64	241	0.47	0.33	0.33	0.33	0.33	0.56	0.44	-99.1 7.86	.112	
HR Rat Tumorigen	J48	CDK, TP	25	85	61	70	241	0.46	0.29	0.26	0.28	0.26	0.58	0.42	-99.2 7.82	.158	
CHR Rat Tumorigen	J48	TA, TP	33	85	63	62	243	0.49	0.34	0.35	0.35	0.35	0.57	0.46	-99.1 7.94	.078	
CHR Rat Tumorigen	J48	TA	32	88	60	63	243	0.49	0.35	0.34	0.34	0.34	0.59	0.47	-99.1 8.01	.069	
CHR Rat Tumorigen	J48	TP	27	88	60	68	243	0.47	0.31	0.28	0.3	0.28	0.59	0.44	-99.1 7.92	.123	
CHR Rat Tumorigen	RF	CDK, TA, TP	48	50	96	47	241	0.41	0.33	0.51	0.4	0.51	0.34	0.42	-99.2 7.09	.152	
CHR Rat Tumorigen	RF	CDK, TA	40	43	103	55	241	0.34	0.28	0.42	0.34	0.42	0.29	0.36	-99.3 6.85	.283	
CHR Rat Tumorigen	RF	CDK, TP	51	51	95	44	241	0.42	0.35	0.54	0.42	0.54	0.35	0.44	-99.1 7.12	.114	
CHR Rat Tumorigen	RF	TA, TP	49	61	87	46	243	0.45	0.36	0.52	0.42	0.52	0.41	0.46	-99.1 7.39		
CHR Rat Tumorigen	RF	TA	42	64	84	53	243	0.44	0.33	0.44	0.38	0.44	0.43	0.44	-99.1 7.46	.123	
CHR Rat Tumorigen	RF	TP	51	60	88	44	243	0.46	0.37	0.54	0.44	0.54	0.41	0.47	-99.1 7.36	.057	
	FSM																
CHR Rat Tumorigen	LR	Adriana	54	63	84	40	241	0.49	0.39	0.57	0.47	0.57	0.43	0.5	-99.0 7.41	0.	
	FSM	ALogPS,															
CHR Rat Tumorigen	LR	OEstate	42	77	71	53	243	0.49	0.37	0.44	0.4	0.44	0.52	0.48	-99.0 7.81	.037	
	FSM																
CHR Rat Tumorigen	LR	CDK	38	69	77	57	241	0.44	0.33	0.4	0.36	0.4	0.47	0.44	-99.1 7.59	.125	
	FSM	Chemaxo															
CHR Rat Tumorigen	LR	n	29	81	67	66	243	0.45	0.3	0.31	0.3	0.31	0.55	0.43	-99.1 7.77	.147	
	FSM	_		_						_	_	_		_			
CHR Rat Tumorigen	LR	Dragon6	46	75	73	49	243	0.5	0.39	0.48	0.43	0.48	0.51	0.5	-99.0 7.77	.009	
NID Det Torrerie		Fragment	E 0	70	60	ΛE	242	0.52	0.40	0.52	0.47	0.52	0.52	0.52	000 707	0.06	
CHR Rat Tumorigen	LR	or	50	79	69	45	243	0.53	0.42	0.53	U.4 <i>1</i>	0.53	0.53	0.53	-98.9 7.87	0.06	
OUD Dat Town and a	FSM	CSEro~	11	70	70	E 1	242	0.5	0.20	0.46	0.40	0.46	0.52	0.5	00 0 7 04	04	
CHR Rat Tumorigen	LK	GSFrag	44	78	70	51	243	0.5	0.39	0.46	0.42	0.46	0.53	0.5	-99.0 7.84	.01	

CHR Rat Tumorigen	FSM LR	Inductive	36	66	82	59	243	0.42	0.31	0.38	0.34	0.38	0.45	0.41	-99.2	7.47	.171	
	FSM	Mera,																
CHR Rat Tumorigen	LR	Mersy	51	90	57	44	242	0.58	0.47	0.54	0.5	0.54	0.61	0.57	-98.9	8.19	0.15	
		-																
CHR Rat Tumorigen	FSM LR	QNPR	45	68	80	50	243	0.47	0.36	0.47	0.41	0.47	0.46	0.47	-99.1	7 58	065	
Orner rumongen	LIX	QIVIII	70	- 00	00	- 50	240	0.47	0.00	0.47	0.41	0.47	0.40	0.47	-55.1	7.50	.000	_
		Spectrop																
CHR Rat Tumorigen	LR	hores	62	57	91	33	243	0.49	0.41	0.65	0.5	0.65	0.39	0.52	-99.0	7.18	0.04	_
CHR Rat Tumorigen	KNN	Adriana	66	42	105	28	241	0.45	0.39	0.7	0.5	0.7	0.29	0.49	-99.0	6.64	.013	
		A1 D0																
CHR Rat Tumorigen	KNN	ALogPS, OEstate	81	13	135	14	243	0.39	0.38	0.85	0.52	0.85	0.09	0.47	-99.1	4 77	092	
or in creat runnongen	10.01	OLOIGIO			100			0.00	0.00	0.00	0.02	0.00	0.00	0.17			.002	_
CHR Rat Tumorigen	KNN	CDK	75	11	135	20	241	0.36	0.36	0.79	0.49	0.79	80.0	0.43	-99.1	4.88	.197	
CHR Rat Tumorigen	KNN	Chemaxo n	85	4	144	10	243	0.37	0.37	0.89	0.52	0.89	0.03	0.46	-99.1	3 33	164	
ac rumongon	1 (1 41 4		- 55		. T-T	.0	70	0.01	0.01	0.00	J.J2	0.00	0.00	0.40	55.1	0.00		_
CHR Rat Tumorigen	KNN	Dragon6	73	18	130	22	243	0.37	0.36	0.77	0.49	0.77	0.12	0.45	-99.1	5.46	.145	
CHR Rat Tumorigen	KNN	Fragment or	77	37	111	18	243	0.47	0.41	0.81	0.54	0.81	0.25	0.53	-98.9	6 18	0.07	
Orner rumongen	1000	01				10	2-10	0.47	0.71	0.01	0.04	0.01	0.20	0.00	00.0	0.10	0.07	_
CHR Rat Tumorigen	KNN	GSFrag	42	58	90	53	243	0.41	0.32	0.44	0.37	0.44	0.39	0.42	-99.2	7.29	.163	
CHR Rat Tumorigen	KNN	Inductive	36	66	82	59	243	0.42	0.31	0.38	0.34	0.38	0.45	0.41	-99.2	7 47	171	
Orit Nat Tumongen	IXIVIV	Mera,	- 50	- 00	02	- 55	240	0.42	0.01	0.00	0.54	0.00	0.40	0.71	-55.2	7.47	.171	_
CHR Rat Tumorigen	KNN	Mersy	75	26	121	20	242	0.42	0.38	0.79	0.52	0.79	0.18	0.48	-99.0	5.82	.042	
CHR Rat Tumorigen	KNN	QNPR	71	26	122	24	243	0.4	0.37	0.75	0.49	0.75	0.18	0.46	-99.1	5 94	003	
Orit Nat rumongen	IXIVIV	Spectrop		20	122		240	0.4	0.07	0.70	0.43	0.70	0.10	0.40	-55.1	0.04	.000	-
CHR Rat Tumorigen	KNN	hores	51	52	96	44	243	0.42	0.35	0.54	0.42	0.54	0.35	0.44	-99.1	7.13	.112	
	LibS																	
CHR Rat Tumorigen	VM	Adriana	36	96	51	58	241	0.55	0.41	0.38	0.4	0.38	0.65	0.52	-99.0	8.29	0.04	
		50																
CHR Rat Tumorigen		ALogPS, OEstate	28	101	47	67	243	0.53	0.37	n 29	0.33	n 29	0.68	0.49	-99.0	8 32	024	
Criix ixat rumongen	VIVI	OLSIAIC	20	101	47	01	240	0.55	0.57	0.23	0.55	0.23	0.00	0.43	-99.0	0.52	.024	_
	LibS																	
CHR Rat Tumorigen	VM	CDK	26	102	44	69	241	0.53	0.37	0.27	0.32	0.27	0.7	0.49	-99.0	8.35	.03	_
	LibS	Chemaxo																
CHR Rat Tumorigen	VM	n	30	105	43	65	243	0.56	0.41	0.32	0.36	0.32	0.71	0.51	-99.0	8.49	0.03	
	LibS																	
CHR Rat Tumorigen		Dragon6	32	107	41	63	243	0.57	0.44	0.34	0.38	0.34	0.72	0.53	-98.9	8.58	0.06	
CUD Bot Tumorias		Fragment	33	102	15	62	242	0.56	0.42	0.25	U 30	0.25	0.7	0 F2	00.0	0 47	0.05	
CHR Rat Tumorigen	VM	or	33	103	45	62	243	0.50	0.42	0.35	0.38	0.35	0.7	0.52	-99.0	0.47	0.05	_
	LibS																	
CHR Rat Tumorigen	VM	GSFrag	27	90	58	68	243	0.48	0.32	0.28	0.3	0.28	0.61	0.45	-99.1	7.98	.11	_
	LibS																	
CHR Rat Tumorigen		Inductive	27	88	60	68	243	0.47	0.31	0.28	0.3	0.28	0.59	0.44	-99.1	7.92	.123	
	L:I- C	Mana				_										_		
CHR Rat Tumorigen		Mera, Mersy	32	100	47	63	242	0.55	0 41	0.34	0.37	0.34	0.68	0.51	-99.0	8.38	0 02	
orna rac runnongen	VIVI	iviciay	J_	100	71	00	474	0.00	U. T I	U.J T	0.01	U.JT	0.00	0.01	-00.0	0.00	0.02	

LIBS Spectrop WM horses 36 84 64 59 243 0.49 0.36 0.38 0.37 0.38 0.57 0.47 -99.1 7.95 0.53 9 BIRK Rat Tumorgon MA horses 36 84 64 59 243 0.49 0.36 0.38 0.37 0.38 0.57 0.47 -99.1 7.95 0.53 9 BIRK Rat Tumorgon MA A didinals 45 70 77 49 241 0.49 0.40 0.36 0.37 0.48 0.42 0.48 0.48 0.48 -99.0 7.63 0.44 9 BIRK Rat Tumorgon MILR A CICK 51 68 78 44 241 0.49 0.4 0.54 0.46 0.54 0.47 0.5 99.0 7.6 0.5 9 BIRK Rat Tumorgon MILR CICK 51 68 78 44 241 0.49 0.4 0.49 0.40 0.40 0.40 0.49 0.49																		
LibS Spectrop Li	CHR Rat Tumorigen		ONPR	27	99	49	68	243	0.52	0.36	0.28	0.32	0.28	0.67	N 48	-99 N 8 24	. 049	9:
See Real Tumorigne M. More See 36 84 64 69 243 049 0.36 0.38 0.37 0.38 0.57 0.47 0.91 7.95 0.53 5 1 1 1 1 1 1 1 1 1	orner rate ramongen	V 1V1	QITITY			-10		240	0.02	0.00	0.20	0.02	0.20	0.07	0.40	00.0 0.2	.040	<u> </u>
MIR RatTumorigen A	CUD Dat Tumorisan			26	0.4	64	50	242	0.40	0.26	0.20	0.27	0.20	0.57	0.47	00 1 7 05	0.52	0
MIR ALogPS, A OEstate 45 67 81 50 243 0.46 0.36 0.47 0.41 0.47 0.45 0.46 -99.1 7.55 0.72 5 0.00 0.00 0.00 0.00 0.00 0.40 0.40 0.	CHR Rat Turnongen		nores	30	04	04	- 59	243	0.49	0.30	0.36	0.37	0.36	0.57	0.47	-99.1 7.90	.055	
Color No. Color	CHR Rat Tumorigen	Α	Adriana	45	70	77	49	241	0.48	0.37	0.48	0.42	0.48	0.48	0.48	-99.0 7.63	.044	9
Color No. Color		MLR	ALoaPS.															
See Rati Tumorigen A CDK 51 68 78 44 241 0.49 0.48 0.46 0.46 0.47 0.45 0.5 0.90 7.6 0.5 0.5	CHR Rat Tumorigen	Α	OEstate	45	67	81	50	243	0.46	0.36	0.47	0.41	0.47	0.45	0.46	-99.1 7.55	.072	9
MLR Chemaxo SHR Rat Tumorigen A DR Rat Tumorigen A	CHR Rat Tumorigen	_		51	68	78	44	241	0.49	0.4	0 54	0.46	0 54	0.47	0.5	-99 N 7 A	. 0	9
Margy Marg	Orner rumongen								0.40	0.4	0.04	0.40	0.04	0.47	0.0	00.0 7.0	, <u>0.</u>	
CHAR Rest Tumorigien A Dragonfe 47 87 61 48 243 0.55 0.44 0.49 0.46 0.49 0.59 0.54 0.98 8.09 0.08 6 6 6 6 6 6 6 6 6	CHR Rat Tumorigen		n	45	73	75	50	243	0.49	0.38	0.47	0.42	0.47	0.49	0.48	-99.0 7.71	.032	9
Cher Rat Tumorigen A	CHR Rat Tumorigen		Dragon6	47	87	61	48	243	0.55	0.44	0.49	0.46	0.49	0.59	0.54	-98.9 8.09	0.08	9
CHAR Rat Tumorigen A GSFrag 45 75 73 50 243 0.49 0.38 0.47 0.42 0.47 0.51 0.49 -99.0 7.77 0.19 5		_		F.4	70	7.5	4.4	0.40	0.54	0.4	0.54	0.40	0.54	0.40	0.50	00.0. 7.74	0.00	
CHAR Rat Tumorigen PLS CDK 44 66 80 51 241 0.47 0.46 0.45 0.46 0.45 0.46 0.45 0.46 0.49 0.47 0.47 0.47 0.47 0.47 0.47 0.48 0.48 0.44 0.44 0.44 0.44 0.44 0.44	CHR Rat Tumorigen			51	/3	75	44	243	0.51	0.4	0.54	0.46	0.54	0.49	0.52	-99.0 7.71	0.03	9
CHR Real Tumorigen A Inductive 37 63 85 58 243 0.41 0.3 0.39 0.34 0.39 0.43 0.41 0.99 2.7 4. 1.8 58 CHR Real Tumorigen A Mersy 46 77 70 49 242 0.51 0.4 0.48 0.44 0.48 0.52 0.5 0.99 0.7 0.4 0.01 CHR Real Tumorigen A CMPR 44 78 70 51 243 0.5 0.39 0.45 0.42 0.46 0.53 0.5 0.99 0.7 0.60 0.01 CHR Real Tumorigen A CMPR 44 78 70 51 243 0.5 0.39 0.45 0.45 0.45 0.45 0.49 0.47 0.99 7.66 0.01 CHR Real Tumorigen PLS Adriana 42 72 75 52 241 0.47 0.36 0.45 0.45 0.45 0.49 0.47 0.99 7.67 0.62 CHR Real Tumorigen PLS CDK 44 66 80 51 241 0.46 0.35 0.46 0.45 0.46 0.45 0.46 0.99 7.55 0.83 CHR Real Tumorigen PLS CDK 44 66 80 51 241 0.46 0.35 0.46 0.41 0.47 0.47 0.47 0.47 0.99 7.55 0.83 CHR Real Tumorigen PLS Dragon6 42 80 68 53 243 0.45 0.45 0.45 0.46 0.45 0.46 0.49 9.91 7.55 0.83 CHR Real Tumorigen PLS Dragon6 42 80 68 53 243 0.45 0.45 0.45 0.45 0.46 0.45 0.49 9.90 7.89 0.17 0.47 CHR Real Tumorigen PLS GSFrag 42 69 79 53 243 0.45 0.45 0.45 0.45 0.46 0.45 0.45 0.49 9.90 7.89 0.17 0.47 CHR Real Tumorigen PLS GSFrag 42 69 79 53 243 0.45 0.45 0.45 0.45 0.46 0.45 0.45 0.49 9.90 7.89 0.17 0.47 CHR Real Tumorigen PLS GSFrag 42 69 79 53 243 0.45	CHR Rat Tumorigen			45	75	73	50	243	0.49	0.38	0.47	0.42	0.47	0.51	0.49	-99.0 7.77	.019	9
MILR Mers Mers Mers Mers Mers Mers Milk Mers Milk Mers Milk	CHR Rat Tumorigen			37	63	85	58	243	0.41	0.3	0.39	0.34	0.39	0.43	0 41	-992 74	. 18	9!
MILK A QNPR 44 78 70 51 243 0.5 0.39 0.46 0.42 0.46 0.53 0.5 -99.0 7.84 0.1 0.1 0.1	Orac ramongen			- 01				240	0.71	0.0	0.00	0.04	0.00	0.40	0.71	00.E 7.4	.10	
Cher Rat Tumorigen A QNPR 44 78 70 51 243 0.5 0.39 0.46 0.42 0.46 0.53 0.5 -99.0 7.84 0.1 5	CHR Rat Tumorigen			46	77	70	49	242	0.51	0.4	0.48	0.44	0.48	0.52	0.5	-99.0 7.84	0.01	9
Chern Rat Tumorigen A hores 50 71 77 45 243 0.5 0.39 0.53 0.45 0.53 0.48 0.5 0.90 7.66 0.01 0.55	CHR Rat Tumorigen	_		44	78	70	51	243	0.5	0.39	0.46	0.42	0.46	0.53	0.5	-99.0 7.84	.01	9
ALogPS, CHR Rat Tumorigen PLS ODE addriana 42 72 75 52 241 0.47 0.36 0.45 0.4 0.45 0.49 0.47 -99.1 7.67 0.62 52 0.45 0.45 0.45 0.45 0.45 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47	OUD D I T	_		50	74	77	45	040	0.5	0.20	0.50	0.45	0.50	0.40	0.5	00.0.7.00	0.04	
ALogPS, CHR Rat Tumorigen PLS OEstate 45 69 79 50 243 0.47 0.36 0.47 0.41 0.47 0.47 0.47 0.47 -99.1 7.61 0.59 50 CHR Rat Tumorigen PLS CDK 44 66 80 51 241 0.46 0.35 0.46 0.4 0.46 0.45 0.46 -99.1 7.55 0.83 50 CHR Rat Tumorigen PLS Dragon6 42 80 68 53 243 0.46 0.35 0.47 0.41 0.47 0.45 0.46 -99.1 7.52 0.79 50 CHR Rat Tumorigen PLS Or 46 84 64 49 243 0.53 0.42 0.48 0.45 0.48 0.57 0.53 -98.9 8.01 0.05 50 CHR Rat Tumorigen PLS GSFrag 42 69 79 53 243 0.46 0.35 0.42 0.48 0.45 0.48 0.57 0.53 -98.9 8.01 0.05 50 CHR Rat Tumorigen PLS Inductive 46 64 84 49 243 0.45 0.45 0.48 0.45 0.48 0.47 0.45 -99.1 7.59 0.89 50 CHR Rat Tumorigen PLS Mersy 46 83 64 49 242 0.53 0.42 0.48 0.45 0.48 0.56 0.52 -99.0 8. 0.05 50 CHR Rat Tumorigen PLS Nores 56 71 77 39 243 0.49 0.37 0.44 0.4 0.44 0.52 0.48 -99.0 7.81 0.37 50 CHR Rat Tumorigen PLS Nores 56 71 77 39 243 0.52 0.42 0.59 0.49 0.59 0.49 0.59 0.48 0.53 -99.0 8.19 0.03 50 CHR Rat Tumorigen PLS Nores 56 71 77 39 243 0.50 0.52 0.59 0.49 0.59 0.48 0.50 0.52 -99.0 8.10 0.05 50 CHR Rat Tumorigen PLS Nores 56 71 77 39 243 0.50 0.52 0.42 0.59 0.49 0.59 0.48 0.50 0.52 -99.0 8.10 0.07 50 CHR Rat Tumorigen PLS Nores 56 71 77 39 243 0.50 0.52 0.42 0.59 0.49 0.59 0.48 0.50 0.52 -99.0 8.10 0.07 50 CHR Rat Tumorigen PLS Nores 56 71 77 39 243 0.50 0.50 0.59 0.49 0.59 0.48 0.50 0.50 -99.0 8.10 0.01 50 CHR Rat Tumorigen PLS Nores 56 71 77 39 243 0.50 0.50 0.59 0.49 0.59 0.48 0.50 0.50 -99.0 8.10 0.01 50 CHR Rat Tumorigen PLS Nores 56 71 77 39 243 0.50 0.50 0.59 0.49 0.59 0.																		9:
Cher Rat Tumorigen PLS OEstate 45 69 79 50 243 0.47 0.36 0.47 0.41 0.47 0.47 0.47 0.47 0.91 7.61 0.59 50 50 50 50 50 50 50	Criix ivat rumongen	1 LO	Auriaria	42	12	73	32	241	0.47	0.50	0.43	0.4	0.43	0.43	0.47	-33.1 7.07	.002	
CHER Rat Tumorigen PLS CDK Chemaxo CHER Rat Tumorigen PLS CDK Chemaxo CHER Rat Tumorigen PLS Dragon6 42 80 68 53 243 0.46 0.35 0.47 0.41 0.47 0.45 0.46 -99.1 7.52 0.79 5 CHER Rat Tumorigen PLS Dragon6 42 80 68 53 243 0.5 0.38 0.44 0.41 0.44 0.54 0.49 -99.0 7.89 0.17 5 CHER Rat Tumorigen PLS Or 46 84 64 49 243 0.53 0.42 0.48 0.45 0.48 0.57 0.53 -98.9 8.01 0.05 5 CHER Rat Tumorigen PLS GSFrag 42 69 79 53 243 0.46 0.35 0.44 0.39 0.44 0.47 0.45 -99.1 7.59 0.89 5 CHER Rat Tumorigen PLS Inductive 46 64 84 49 243 0.45 0.35 0.48 0.41 0.48 0.43 0.46 -99.1 7.47 0.82 5 CHER Rat Tumorigen PLS Mersy 46 83 64 49 242 0.53 0.42 0.48 0.45 0.48 0.50 0.52 -99.0 8. 0.05 5 CHER Rat Tumorigen PLS Mersy 46 83 64 49 242 0.53 0.42 0.48 0.45 0.48 0.50 0.52 -99.0 8. 0.05 5 CHER Rat Tumorigen PLS Mores 56 71 77 39 243 0.52 0.42 0.59 0.49 0.59 0.48 0.50 0.52 -99.0 8. 0.05 5 CHER Rat Tumorigen PLS hores 56 71 77 39 243 0.52 0.42 0.59 0.49 0.59 0.48 0.53 -98.9 7.63 0.07 5 CHER Rat Tumorigen PLS DK DK Spectrop CHER Rat Tumorigen PLS DK DK 39 87 59 56 241 0.52 0.4 0.41 0.4 0.41 0.6 0.5 -99.0 8.1 0.01 S CHER Rat Tumorigen PLS DK DK 39 87 59 56 241 0.52 0.4 0.41 0.4 0.41 0.6 0.5 -99.0 8.1 0.01 S CHER Rat Tumorigen PLS DK DK 39 87 59 56 241 0.52 0.4 0.41 0.4 0.41 0.6 0.5 -99.0 8.1 0.01 S CHER Rat Tumorigen PLS DK DK 39 87 59 56 241 0.52 0.4 0.41 0.4 0.41 0.6 0.5 -99.0 8.1 0.01 S CHER Rat Tumorigen PLS DK DK 39 87 59 56 241 0.52 0.4 0.41 0.4 0.41 0.6 0.5 -99.0 8.1 0.01 S CHER Rat Tumorigen PLS DRAGON S S CHER Rat	OUD D AT	DI C	•	45	00	70	50	040	0.47	0.00	0.47	0.44	0.47	0.47	0.47	004 7.04	050	0/
Chemaxo n																		9!
CHR Rat Tumorigen PLS Dragon6 42 80 68 53 243 0.5 0.38 0.44 0.41 0.44 0.54 0.49 -99.0 7.89 0.017 Stragment Fragment CHR Rat Tumorigen PLS or 46 84 64 49 243 0.53 0.42 0.48 0.45 0.48 0.57 0.53 -98.9 8.01 0.05 Star Rat Tumorigen PLS GSFrag 42 69 79 53 243 0.46 0.35 0.44 0.39 0.44 0.47 0.45 -99.1 7.59 0.89 Star Rat Tumorigen PLS Inductive 46 64 84 49 243 0.45 0.35 0.48 0.41 0.48 0.43 0.46 -99.1 7.47 0.82 Star Rat Tumorigen PLS Mersy 46 83 64 49 242 0.53 0.42 0.48 0.45 0.48 0.56 0.52 -99.0 8. 0.05 Star Rat Tumorigen PLS QNPR 42 77 71 53 243 0.49 0.37 0.44 0.4 0.4 0.40 0.52 0.48 -99.0 7.81 0.37 Star Rat Tumorigen PLS hores 56 71 77 39 243 0.52 0.42 0.59 0.49 0.59 0.48 0.50 0.53 -98.9 7.63 0.07 Star Rat Tumorigen PLS hores 56 71 77 39 243 0.52 0.42 0.59 0.49 0.59 0.48 0.53 -99.1 8.04 0.94 Star Rat Tumorigen PLS Adriana 26 93 54 68 241 0.49 0.33 0.28 0.3 0.28 0.63 0.45 -99.1 8.04 0.94 Star Rat Tumorigen PLS CHER	Orner rumongen	1 20							0.40	0.00	0.40	0.4	0.40	0.40	0.40	00.1 7.00	.000	
Fragment CHR Rat Tumorigen PLS or 46 84 64 49 243 0.53 0.42 0.48 0.45 0.48 0.57 0.53 -98.9 8.01 0.05 9. SHR Rat Tumorigen PLS GSFrag 42 69 79 53 243 0.46 0.35 0.44 0.39 0.44 0.47 0.45 -99.1 7.59 0.89 9. SHR Rat Tumorigen PLS Inductive 46 64 84 49 243 0.45 0.35 0.48 0.41 0.48 0.43 0.46 -99.1 7.47 0.82 9. Mera, CHR Rat Tumorigen PLS Mersy 46 83 64 49 242 0.53 0.42 0.48 0.45 0.48 0.56 0.52 -99.0 8. 0.05 9. SHR Rat Tumorigen PLS QNPR 42 77 71 53 243 0.49 0.37 0.44 0.4 0.4 0.44 0.52 0.48 -99.0 7.81 0.37 9. SHR Rat Tumorigen PLS hores 56 71 77 39 243 0.52 0.42 0.59 0.49 0.59 0.48 0.53 -98.9 7.63 0.07 9. SHR Rat Tumorigen PLS hores 56 71 77 39 243 0.52 0.42 0.59 0.49 0.59 0.48 0.53 -99.0 8.10 0.09 9. SHR Rat Tumorigen PLS hores 56 71 77 39 243 0.52 0.42 0.59 0.49 0.59 0.48 0.53 -99.0 8.10 0.09 9. SHR Rat Tumorigen PLS hores 56 71 77 39 243 0.52 0.42 0.59 0.49 0.59 0.48 0.53 -99.0 8.10 0.09 9. SHR Rat Tumorigen PLS hores 56 71 77 39 243 0.52 0.42 0.59 0.49 0.59 0.48 0.53 -99.0 8.10 0.09 9. SHR Rat Tumorigen PLS hores 56 71 77 39 243 0.52 0.42 0.59 0.49 0.59 0.49 0.59 0.48 0.53 -99.0 8.10 0.00 9. SHR Rat Tumorigen PLS hores 56 71 77 39 243 0.52 0.42 0.59 0.49 0.59 0.49 0.59 0.48 0.53 -99.0 8.10 0.00 9. SHR Rat Tumorigen PLS hores 56 71 77 39 243 0.52 0.42 0.59 0.49	CHR Rat Tumorigen	PLS	n	45	66	82	50	243	0.46	0.35	0.47	0.41	0.47	0.45	0.46	-99.1 7.52	.079	9:
CHR Rat Tumorigen PLS or 46 84 64 49 243 0.53 0.42 0.48 0.45 0.48 0.57 0.53 -98.9 8.01 0.05 SCHR Rat Tumorigen PLS GSFrag 42 69 79 53 243 0.46 0.35 0.44 0.39 0.44 0.47 0.45 -99.1 7.59 0.89 SCHR Rat Tumorigen PLS Inductive 46 64 84 49 243 0.45 0.35 0.48 0.41 0.48 0.43 0.46 -99.1 7.47 0.82 SCHR Rat Tumorigen PLS Mersy 46 83 64 49 242 0.53 0.42 0.48 0.45 0.48 0.50 0.52 -99.0 8. 0.05 SCHR Rat Tumorigen PLS Mersy 46 83 64 49 242 0.53 0.42 0.48 0.45 0.48 0.50 0.52 -99.0 8. 0.05 SCHR Rat Tumorigen PLS Mersy 46 83 64 49 242 0.53 0.42 0.48 0.45 0.48 0.50 0.52 0.48 -99.0 7.81 0.037 SCHR Rat Tumorigen PLS Mersy 46 83 64 49 242 0.53 0.49 0.37 0.44 0.4 0.44 0.52 0.48 -99.0 7.81 0.037 SCHR Rat Tumorigen PLS Mersy 46 83 64 49 242 0.53 0.49 0.37 0.44 0.4 0.44 0.52 0.48 -99.0 7.81 0.037 SCHR Rat Tumorigen PLS Mersy 46 83 64 49 242 0.53 0.49 0.37 0.44 0.4 0.44 0.52 0.48 -99.0 7.81 0.037 SCHR Rat Tumorigen PLS Mersy 56 71 77 39 243 0.52 0.42 0.59 0.49 0.59 0.48 0.53 -98.9 7.63 0.07 SCHR Rat Tumorigen PLS Mersy 56 71 77 39 243 0.52 0.42 0.59 0.49 0.59 0.48 0.53 -98.9 7.63 0.07 SCHR Rat Tumorigen PLS Mersy 56 71 77 39 243 0.52 0.42 0.59 0.49 0.59 0.48 0.53 -98.9 7.63 0.07 SCHR Rat Tumorigen PLS Mersy 56 71 77 39 243 0.52 0.42 0.59 0.49 0.59 0.49 0.59 0.48 0.53 -99.0 8.19 0.03 SCHR Rat Tumorigen PLS Mersy 56 82 82 82 82 82 82 82 82 82 82 82 82 82	CHR Rat Tumorigen	PLS	Dragon6	42	80	68	53	243	0.5	0.38	0.44	0.41	0.44	0.54	0.49	-99.0 7.89	.017	9
CHR Rat Tumorigen PLS GSFrag 42 69 79 53 243 0.46 0.35 0.44 0.39 0.44 0.47 0.45 -99.1 7.59 0.89 SCHR Rat Tumorigen PLS Inductive 46 64 84 49 243 0.45 0.35 0.48 0.41 0.48 0.43 0.46 -99.1 7.47 0.82 SCHR Rat Tumorigen PLS Mersy 46 83 64 49 242 0.53 0.42 0.48 0.45 0.48 0.56 0.52 -99.0 8. 0.05 SCHR Rat Tumorigen PLS QNPR 42 77 71 53 243 0.49 0.37 0.44 0.4 0.4 0.44 0.52 0.48 -99.0 7.81 0.37 SCHR Rat Tumorigen PLS hores 56 71 77 39 243 0.52 0.42 0.59 0.49 0.59 0.48 0.53 -98.9 7.63 0.07 SCHR Rat Tumorigen PLS hores 56 71 77 39 243 0.52 0.42 0.59 0.49 0.59 0.48 0.53 -98.9 7.63 0.07 SCHR Rat Tumorigen PLS Adriana 26 93 54 68 241 0.49 0.33 0.28 0.3 0.28 0.63 0.45 -99.1 8.04 0.94 SCHR Rat Tumorigen PLS OESTATE AS TUMORIGEN PLS ACCORDANCE AS TUMORIGEN PLS ACCOR		DI O	J	40	0.4	0.4	40	0.40	0.50	0.40	0.40	0.45	0.40	0.57	0.50	000 004	0.05	
CHR Rat Tumorigen PLS Inductive 46 64 84 49 243 0.45 0.35 0.48 0.41 0.48 0.43 0.46 -99.1 7.47 .082 9																		9:
Mera, CHR Rat Tumorigen PLS Mersy Me	Orne rumongen	1 20	COLIAG	72	- 00	15	- 55	240	0.40	0.00	0.44	0.00	0.44	0.47	0.40	-55.1 7.50	.000	
CHR Rat Tumorigen PLS Mersy 46 83 64 49 242 0.53 0.42 0.48 0.45 0.48 0.56 0.52 -99.0 8. 0.05 SER Rat Tumorigen PLS QNPR 42 77 71 53 243 0.49 0.37 0.44 0.4 0.4 0.44 0.52 0.48 -99.0 7.81 0.37 SER Rat Tumorigen PLS hores 56 71 77 39 243 0.52 0.42 0.59 0.49 0.59 0.48 0.53 -98.9 7.63 0.07 SER Rat Tumorigen PLS hores 56 71 77 39 243 0.52 0.42 0.59 0.49 0.59 0.48 0.53 -98.9 7.63 0.07 SER Rat Tumorigen PLS hores 56 71 77 39 243 0.52 0.42 0.59 0.49 0.59 0.48 0.53 -98.9 7.63 0.07 SER Rat Tumorigen PLS hores 56 71 77 39 243 0.52 0.42 0.59 0.49 0.59 0.48 0.53 -99.0 8.04 0.094 SER Rat Tumorigen PLS hores 56 71 77 39 243 0.52 0.42 0.59 0.49 0.59 0.48 0.53 -99.0 8.04 0.094 SER Rat Tumorigen PLS hores 56 71 77 39 243 0.53 0.39 0.37 0.38 0.37 0.63 0.45 -99.1 8.04 0.094 SER Rat Tumorigen PLS hores 35 93 55 60 243 0.53 0.39 0.37 0.38 0.37 0.63 0.5 -99.0 8.19 0.03 SER Rat Tumorigen PLS hores 56 241 0.52 0.4 0.41 0.4 0.41 0.6 0.5 -99.0 8.19 0.03 SER Rat Tumorigen PLS hores 56 243 0.51 0.38 0.39 0.39 0.39 0.39 0.59 0.49 -99.0 8.07 0.16 SER Rat Tumorigen PLS hores 56 243 0.49 0.34 0.35 0.35 0.35 0.57 0.46 -99.1 7.94 0.78 SER Rat Tumorigen PLS hores 56 244 96 52 51 243 0.49 0.34 0.35 0.35 0.35 0.55 0.43 -99.1 7.8 0.14 SER RAT Tumorigen PLS hores 56 66 243 0.46 0.46 0.46 0.46 0.46 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	CHR Rat Tumorigen	PLS		46	64	84	49	243	0.45	0.35	0.48	0.41	0.48	0.43	0.46	-99.1 7.47	.082	9
CHR Rat Tumorigen PLS QNPR 42 77 71 53 243 0.49 0.37 0.44 0.4 0.4 0.44 0.52 0.48 -99.0 7.81 0.37 Spectrop CHR Rat Tumorigen PLS hores 56 71 77 39 243 0.52 0.42 0.59 0.49 0.59 0.48 0.53 -98.9 7.63 0.07 SCHR Rat Tumorigen J48 Adriana 26 93 54 68 241 0.49 0.33 0.28 0.3 0.28 0.63 0.45 -99.1 8.04 0.94 SCHR Rat Tumorigen J48 OEstate 35 93 55 60 243 0.53 0.39 0.37 0.38 0.37 0.63 0.5 -99.0 8.19 0.03 SCHR Rat Tumorigen J48 CDK 39 87 59 56 241 0.52 0.4 0.41 0.4 0.41 0.6 0.5 -99.0 8.1 0.01 SCHR Rat Tumorigen J48 N N N N N N N N N N N N N N N N N N N	CHR Rat Tumorigen	PLS		46	83	64	49	242	0.53	0.42	0.48	0.45	0.48	0.56	0.52	-99.0 8	0.05	9!
CHR Rat Tumorigen PLS hores 56 71 77 39 243 0.52 0.42 0.59 0.49 0.59 0.48 0.53 -98.9 7.63 0.07 Start Tumorigen J48 Adriana 26 93 54 68 241 0.49 0.33 0.28 0.3 0.28 0.63 0.45 -99.1 8.04 .094 Start Tumorigen J48 OEstate 35 93 55 60 243 0.53 0.39 0.37 0.38 0.37 0.63 0.5 -99.0 8.19 .003 Start Tumorigen J48 CDK 39 87 59 56 241 0.52 0.4 0.41 0.4 0.41 0.6 0.5 -99.0 8.1 0.01 Start Tumorigen J48 n 37 88 60 58 243 0.51 0.38 0.39 0.39 0.39 0.39 0.59 0.49 -99.0 8.07 .016 Start Tumorigen J48 Dragon6 33 85 63 62 243 0.49 0.34 0.35 0.35 0.35 0.57 0.46 -99.1 7.94 .078 Start Tumorigen J48 or 44 96 52 51 243 0.58 0.46 0.46 0.46 0.46 0.46 0.65 0.56 -98.9 8.35 0.11 Start Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 Start Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 Start Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 Start Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 Start Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 Start Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 Start Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 Start Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 Start Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31	CHR Rat Tumorigen		QNPR	42	77	71	53	243	0.49	0.37	0.44	0.4	0.44	0.52	0.48	-99.0 7.81	.037	9
ALogPS, CHR Rat Tumorigen J48 OEstate 35 93 55 60 243 0.53 0.39 0.37 0.38 0.37 0.63 0.5 -99.0 8.19 .003 SCHR Rat Tumorigen J48 CDK 39 87 59 56 241 0.52 0.4 0.41 0.4 0.41 0.6 0.5 -99.0 8.1 0.01 SCHR Rat Tumorigen J48 Dragon6 33 85 63 62 243 0.51 0.38 0.39 0.39 0.39 0.39 0.59 0.49 -99.0 8.07 .016 SCHR Rat Tumorigen J48 OF 44 96 52 51 243 0.58 0.46 0.46 0.46 0.46 0.46 0.65 0.56 -98.9 8.35 0.11 SCHR Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 SCHR Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 SCHR Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 SCHR Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 SCHR Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 SCHR Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 SCHR Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 SCHR Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 SCHR Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 SCHR Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 SCHR Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31	CHR Bot Tumorigon	DI C		56	71	77	30	2/12	0.52	0.42	0.50	0.40	0.50	0.49	0.53	090 763	0.07	0
ALogPS, CHR Rat Tumorigen J48 OEstate 35 93 55 60 243 0.53 0.39 0.37 0.38 0.37 0.63 0.5 -99.0 8.19 .003 93																		9.
CHR Rat Tumorigen J48 OEstate 35 93 55 60 243 0.53 0.39 0.37 0.38 0.37 0.63 0.5 -99.0 8.19 .003 SER Rat Tumorigen J48 CDK 39 87 59 56 241 0.52 0.4 0.41 0.4 0.41 0.6 0.5 -99.0 8.1 0.01 SER Rat Tumorigen J48 n 37 88 60 58 243 0.51 0.38 0.39 0.39 0.39 0.59 0.49 -99.0 8.07 .016 SER Rat Tumorigen J48 Dragon6 33 85 63 62 243 0.49 0.34 0.35 0.35 0.35 0.57 0.46 -99.1 7.94 .078 SER Rat Tumorigen J48 or 44 96 52 51 243 0.58 0.46 0.46 0.46 0.46 0.46 0.65 0.56 -98.9 8.35 0.11 SER Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 SER RAT Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 SER RAT Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 SER RAT Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 SER RAT Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 SER RAT Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 SER RAT Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 SER RAT Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 SER RAT Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31	<u> </u>																	_
CHR Rat Tumorigen J48 CDK 39 87 59 56 241 0.52 0.4 0.41 0.4 0.41 0.6 0.5 -99.0 8.1 0.01 Stranger Chemaxo CHR Rat Tumorigen J48 n 37 88 60 58 243 0.51 0.38 0.39 0.39 0.39 0.59 0.49 -99.0 8.07 .016 Stranger CHR Rat Tumorigen J48 Dragon6 33 85 63 62 243 0.49 0.34 0.35 0.35 0.35 0.57 0.46 -99.1 7.94 .078 Stranger CHR Rat Tumorigen J48 or 44 96 52 51 243 0.58 0.46 0.46 0.46 0.46 0.46 0.65 0.56 -98.9 8.35 0.11 Stranger CHR Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 Stranger CHR Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 Stranger CHR Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 Stranger CHR Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 Stranger CHR Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 Stranger CHR Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 Stranger CHR Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31	CHR Rat Tumorigen	148	-	35	93	55	60	243	0.53	n 30	0.37	0.38	0.37	0.63	0.5	_00 N 8 10	003	a
CHR Rat Tumorigen J48 Dragon6 33 85 63 62 243 0.51 0.38 0.39 0.39 0.39 0.59 0.49 -99.0 8.07 .016 9 CHR Rat Tumorigen J48 Dragon6 33 85 63 62 243 0.49 0.34 0.35 0.35 0.35 0.57 0.46 -99.1 7.94 .078 9 Fragment CHR Rat Tumorigen J48 or 44 96 52 51 243 0.58 0.46 0.46 0.46 0.46 0.65 0.56 -98.9 8.35 0.11 9 CHR Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 9	CHR Rat Tumorigen																	9
CHR Rat Tumorigen J48 Dragon6 33 85 63 62 243 0.49 0.34 0.35 0.35 0.35 0.57 0.46 -99.1 7.94 .078 9 Fragment CHR Rat Tumorigen J48 or 44 96 52 51 243 0.58 0.46 0.46 0.46 0.46 0.65 0.56 -98.9 8.35 0.11 9 CHR Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 9			Chemaxo															
Fragment CHR Rat Tumorigen J48 OF 44 96 52 51 243 0.58 0.46 0.46 0.46 0.46 0.65 0.56 -98.9 8.35 0.11 9 CHR Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 9	CHR Rat Tumorigen	J48	n	37	88	60	58	243	0.51	0.38	0.39	0.39	0.39	0.59	0.49	-99.0 8.07	.016	9
CHR Rat Tumorigen J48 or 44 96 52 51 243 0.58 0.46 0.46 0.46 0.46 0.65 0.56 -98.9 8.35 0.11 90 CHR Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 90 CHR Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 90 CHR Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31	CHR Rat Tumorigen	J48		33	85	63	62	243	0.49	0.34	0.35	0.35	0.35	0.57	0.46	-99.1 7.94	.078	9
CHR Rat Tumorigen J48 GSFrag 29 82 66 66 243 0.46 0.31 0.31 0.31 0.31 0.55 0.43 -99.1 7.8 .141 9	CHD Dat Tumorica	140	_	11	oe.	52	5 1	242	0.50	0.46	0.46	0.46	0.46	0.65	0.56	_02 0 0 25	0 11	0
																		9:
CHR Rat Tumorigen J48 Inductive 42 79 69 53 243 0.5 0.38 0.44 0.41 0.44 0.53 0.49 -99.0 7.86 .024 S			_															
	CHR Rat Tumorigen	J48	Inductive	42	79	69	53	243	0.5	0.38	0.44	0.41	0.44	0.53	0.49	-99.0 7.86	.024	9

		Mera,			_									_				
CHR Rat Tumorigen	J48	Mersy	33	90	57	62	242	0.51	0.37	0.35	0.36	0.35	0.61	0.48	-99.0		.041	95
CHR Rat Tumorigen	J48	QNPR	34	88	60	61	243	0.5	0.36	0.36	0.36	0.36	0.59	0.48	-99.0	8.04	.048	95
CHR Rat Tumorigen	J48	Spectrop hores	31	87	61	64	243	0.49	0.34	0.33	0.33	0.33	0.59	0.46	-99.1	7.97	.086	95
CHR Rat CholinesteraseInhibiti on	RF	Adriana	36	172	27	6	241	0.86	0.57	0.86	0.69	0.86	0.86	0.86	-98.3	7.31	0.62	42
CHR Rat CholinesteraseInhibiti on	RF	ALogPS, OEstate	36	188	13	6	243	0.92	0.73	0.86	0.79	0.86	0.94	0.9	-98.2	8.11	0.75	42
CHR Rat CholinesteraseInhibiti on	RF	CDK	38	179	20	4	241	0.9	0.66	0.9	0.76	0.9	0.9	0.9	-98.2	7.32	0.71	42
CHR Rat CholinesteraseInhibiti on	RF	Chemaxo n	37	166	35	5	243	0.84	0.51	0.88	0.65	0.88	0.83	0.85	-98.3	6.87	0.59	42
CHR Rat CholinesteraseInhibiti on	RF	Dragon6	38	180	21	4	243	0.9	0.64	0.9	0.75	0.9	0.9	0.9	-98.2	7.28	0.71	42
CHR Rat CholinesteraseInhibiti on	RF	Fragment or	37	188	13	5	243	0.93	0.74	0.88	0.8	0.88	0.94	0.91	-98.2	7.97	0.76	42
CHR Rat CholinesteraseInhibiti on	RF	GSFrag	36	176	25	6	243	0.87	0.59	0.86	0.7	0.86	0.88	0.87	-98.3	7.4	0.64	42
CHR Rat CholinesteraseInhibiti on	RF	Inductive	36	183	18	6	243	0.9	0.67	0.86	0.75	0.86	0.91	0.88	-98.2	7.76	0.7	42
CHR Rat CholinesteraseInhibiti on	RF	Mera, Mersy	37	185	15	5	242	0.92	0.71	0.88	0.79	0.88	0.93	0.9	-98.2	7.81	0.74	42
CHR Rat CholinesteraseInhibiti on	RF	QNPR	39	187	14	3	243	0.93	0.74	0.93	0.82	0.93	0.93	0.93	-98.1	7.49	0.79	42
CHR Rat CholinesteraseInhibiti on	RF	Spectrop hores	29	148	53	13	243	0.73	0.35	0.69	0.47	0.69	0.74	0.71	-98.6	7.01	0.34	42
CHR Rat CholinesteraseInhibiti on	ASN N	Adriana	35	180	19	7	241	0.89	0.65	0.83	0.73	0.83	0.9	0.87	-98.3	7.81	0.67	42
CHR Rat CholinesteraseInhibiti on	ASN N	ALogPS, OEstate	36	187	14	6	243	0.92	0.72	0.86	0.78	0.86	0.93	0.89	-98.2	8.03	0.74	42
CHR Rat CholinesteraseInhibiti on	ASN N	CDK	37	185	14	5	241	0.92	0.73	0.88	0.8	0.88	0.93	0.91	-98.2	7.88	0.75	42
CHR Rat CholinesteraseInhibiti on	ASN N	Chemaxo n	34	176	25	8	243	0.86	0.58	0.81	0.67	0.81	0.88	0.84	-98.3	7.62	0.6	42
CHR Rat CholinesteraseInhibiti on	ASN N	Dragon6	37	190	11	5	243	0.93	0.77	0.88	0.82	0.88	0.95	0.91	-98.2	8.14	0.78	42
CHR Rat CholinesteraseInhibiti on	ASN N	Fragment or	39	191	10	3	243	0.95	0.8	0.93	0.86	0.93	0.95	0.94	-98.1	7.83	0.83	42
CHR Rat CholinesteraseInhibiti on	ASN N	GSFrag	37	182	19	5	243	0.9	0.66	0.88	0.76	0.88	0.91	0.89	-98.2	7.57	0.71	42
CHR Rat CholinesteraseInhibiti on	ASN N	Inductive	37	182	19	5	243	0.9	0.66	0.88	0.76	0.88	0.91	0.89	-98.2	7.57	0.71	42
CHR Rat CholinesteraseInhibiti on	ASN N	Mera, Mersy	36	187	13	6	242	0.92	0.73	0.86	0.79	0.86	0.94	0.9	-98.2	8.1	0.75	42
CHR Rat CholinesteraseInhibiti on	ASN N	QNPR	38	190	11	4	243	0.94	0.78	0.9	0.84	0.9	0.95	0.93	-98.1	7.96	0.8	42

CHR Rat CholinesteraseInhibiti on	ASN N	Spectrop hores	35	166	35	7	243	0.83	0.5	0.83	0.63	0.83	0.83	0.83	-98.3	7.13	0.55	42
CHR Rat CholinesteraseInhibiti on	ASN N	CDK, TA, TP	28	179	20	14	241	0.86	0.58	0.67	0.62	0.67	0.9	0.78	-98.4	8.19	0.54	42
CHR Rat CholinesteraseInhibiti on	ASN N	CDK, TA	34	183	16	8	241	0.9	0.68	0.81	0.74	0.81	0.92	0.86	-98.3	8.09	0.68	42
CHR Rat CholinesteraseInhibiti on	ASN N	CDK, TP	36	194	5	6	241	0.95	0.88	0.86	0.87	0.86	0.97	0.92	-98.2	9.03	0.84	42
CHR Rat CholinesteraseInhibiti on	ASN N	TA, TP	24	166	35	18	243	0.78	0.41	0.57	0.48	0.57	0.83	0.7	-98.6	7.66	0.35	42
CHR Rat CholinesteraseInhibiti on	ASN N	TA	25	163	38	17	243	0.77	0.4	0.6	0.48	0.6	0.81	0.7	-98.6	7.55	0.35	42
CHR Rat CholinesteraseInhibiti on	ASN N	TP	24	161	40	18	243	0.76	0.38	0.57	0.45	0.57	0.8	0.69	-98.6	7.5	0.32	42
CHR Rat CholinesteraseInhibiti on	FSM LR	CDK, TA, TP	24	179	20	18	241	0.84	0.55	0.57	0.56	0.57	0.9	0.74	-98.5	8.29	0.46	42
CHR Rat CholinesteraseInhibiti on	FSM LR	CDK, TA	32	180	19	10	241	0.88	0.63	0.76	0.69	0.76	0.9	0.83	-98.3	8.06	0.62	42
CHR Rat CholinesteraseInhibiti on	FSM LR	CDK, TP	31	197	2	11	241	0.95	0.94	0.74	0.83	0.74	0.99	0.86	-98.3	10.3	0.8	42
CHR Rat CholinesteraseInhibiti on	E014	TA, TP	23	169	32	19	243	0.79		0.55			0.84			7.78		42
CHR Rat CholinesteraseInhibiti	ECM.	TA TA	24	171	30	18	243	0.73	0.44			0.57	0.85	0.71		7.84		
on CHR Rat CholinesteraseInhibiti	FSM																	42
on CHR Rat CholinesteraseInhibiti	LR	CDK, TA,	26	170	31	16	243				0.53		0.85			7.77		42
on CHR Rat CholinesteraseInhibiti	KNN		29	162	37	13	241	0.79	0.44			0.69	0.81	0.75		7.45		42
OHR Rat CholinesteraseInhibiti		CDK, TA	29	179	20	13	241	0.86	0.59	0.69	0.64	0.69	0.9	0.79		7.15		42
on CHR Rat CholinesteraseInhibiti on		CDK, TP	34 27	162 152	37 49	8 15	241		0.48				0.81	0.81		7.15		42 42
OHR Rat CholinesteraseInhibiti on	KNN	•	14	191	10	28	243					0.04				8.93		42
CHR Rat CholinesteraseInhibiti on	KNN		27	134	67	15	243			0.64			0.93			6.74		42
CHR Rat CholinesteraseInhibiti	LibS	CDK, TA,																
on CHR Rat CholinesteraseInhibiti		TP	24	188	11	18	241	0.88		0.57			0.94			8.91		42
ON CHR Rat CholinesteraseInhibiti	VM LibS	CDK, TA	27	189	10	15	241	0.9	0.73	0.64	0.68	0.64	0.95	0.8	-98.4	8.95	0.62	42
on		CDK, TP	32	193	6	10	241	0.93	0.84	0.76	8.0	0.76	0.97	0.87	-98.3	9.23	0.76	42

																		$\overline{}$
CHR Rat	LibS																	
CholinesteraseInhibiti on	VM	TA, TP	15	186	15	27	243	0.83	0.5	0.36	0.42	0.36	0.93	0.64	-98 7	8.54 0.	32	42
	VIVI	173, 11	-10	100	-10		2-10	0.00	0.0	0.00	0.72	0.00	0.00	0.04	00.7	0.0+ 0.	.02	
CHR Rat CholinesteraseInhibiti	LibS																	
on	VM	TA	26	182	19	16	243	0.86	0.58	0.62	0.6	0.62	0.91	0.76	-98.5	8.32 0	.51	42
		.,,						0.00	0.00	0.02	0.0	0.02	0.0.	00		0.02		Ť
CHR Rat CholinesteraseInhibiti	LibS																	
on	VM	TP	12	181	20	30	243	0.79	0.38	0.29	0.32	0.29	0.9	0.59	-98.8	8.12 0.	.21	42
CHR Rat																		
CholinesteraseInhibiti	MLR	CDK, TA,																
on	Α	TP	28	160	39	14	241	0.78	0.42	0.67	0.51	0.67	8.0	0.74	-98.5	7.43	0.4	42
CHR Rat	MID																	
CholinesteraseInhibiti		CDK TA	24	176	22	0	244	0.07	0.6	0.01	0.60	0.01	0.00	0.05	00.2	77 0	60	42
on	Α	CDK, TA	34	176	23	8	241	0.87	0.6	0.81	0.69	0.81	0.88	0.85	-98.3	7.7 0.	.02	42
CHR Rat CholinesteraseInhibiti	MLR																	
on	Α	CDK, TP	23	138	61	19	241	0.67	0.27	0.55	0.37	0.55	0.69	0.62	-98.8	6.94 0	.19	42
CHR Rat		,																Ť
CholinesteraseInhibiti	MLR																	
on	Α	TA, TP	26	139	62	16	243	0.68	0.3	0.62	0.4	0.62	0.69	0.66	-98.7	6.88 0.	.24	42
CHR Rat	MID																	
CholinesteraseInhibiti	IVILK	ΤΛ	20	150	40	4.4	0.40	0.74	0.07	0.07	0.47	0.07	0.70	0.74	00.0	7 40 ^	25	4
on	Α	TA	28	153	48	14	243	0.74	0.37	0.67	0.47	0.67	0.76	0.71	-98.6	7.18 0	.35	42
CHR Rat CholinesteraseInhibiti	MIR																	
on	A	TP	20	110	91	22	243	0.53	0.18	0.48	0.26	0.48	0.55	0.51	-99 0	6.32 0	02	42
CHR Rat								0.00	0.10	0.10	0.20	0.10	0.00	0.01		0.02		
CholinesteraseInhibiti		CDK, TA,																
on	PLS	TP	29	176	23	13	241	0.85	0.56	0.69	0.62	0.69	0.88	0.79	-98.4	8. 0	.53	42
CHR Rat																		
CholinesteraseInhibiti		0011				_										- -		
on	PLS	CDK, TA	33	187	12	9	241	0.91	0.73	0.79	0.76	0.79	0.94	0.86	-98.3	8.47 0.	.71	42
CHR Rat																		
CholinesteraseInhibiti on	PI S	CDK, TP	34	191	8	8	241	0.93	0.81	0.81	0.81	0.81	0.96	0.88	-98.2	8.8 0	77	42
	1 1.0	CDR, II	J -1	191			Z 1 1	0.55	0.01	0.01	0.01	0.01	0.30	0.00	-30.2	0.0 0	. / /	72
CHR Rat CholinesteraseInhibiti																		
on	PLS	TA, TP	24	159	42	18	243	0.75	0.36	0.57	0.44	0.57	0.79	0.68	-98.6	7.44 0	.31	42
CHR Rat																		
CholinesteraseInhibiti																		
on	PLS	TA	28	165	36	14	243	0.79	0.44	0.67	0.53	0.67	0.82	0.74	-98.5	7.54 0	.42	42
CHR Rat																		
CholinesteraseInhibiti	PLS	TD	27	154	47	15	242	0.74	0.26	0.64	0.47	0.64	0.77	0.7	006	7.23 0	24	42
on	FLO	IF	21	104	47	15	243	0.74	0.36	0.64	0.47	0.64	0.77	0.7	-90.0	1.23 0.	.54	42
CHR Rat CholinesteraseInhibiti		CDK, TA,																
on	J48	TP	27	167	32	15	241	8.0	0.46	0.64	0.53	0.64	0.84	0.74	-98.5	7.69 0	.43	42
CHR Rat																		
CholinesteraseInhibiti																		
on	J48	CDK, TA	33	181	18	9	241	0.89	0.65	0.79	0.71	0.79	0.91	0.85	-98.3	8.05 0.	.65	42
CHR Rat																		
CholinesteraseInhibiti	140	CDV TD	37	107	2	_	2/1	0.07	0.05	0 00	0.04	0 0 0	0.00	0.04	00 4	0.7	0.0	40
on	J48	CDK, TP	37	197	2	5	241	0.97	0.95	0.88	0.91	0.88	0.99	0.94	-98.1	9.7	0.9	42
CHR Rat CholinesteraseInhibiti																		
on	J48	TA, TP	22	171	30	20	243	0.79	0.42	0.52	0.47	0.52	0.85	0.69	-98.6	7.86 0.	.35	42
CHR Rat		, .														- , -		\dashv
CholinesteraseInhibiti																		
on	J48	TA	21	166	35	21	243	0.77	0.38	0.5	0.43	0.5	0.83	0.66	-98.7	7.68 0	.29	42
CHR Rat																		
CholinesteraseInhibiti	140	TD	00	470	00	00	0.40	0.70	0.40	0.40	0.44	0.40	0.00	0.07	00.7	704 0	20	4
on	J48	TP	20	173	28	22	243	0.79	0.42	0.48	0.44	U.48	0.86	0.67	-98./	7.94 0	.32	42
CHR Rat		CDK, TA,																
CholinesteraseInhibiti on	RF	TP	33	165	34	9	241	0.82	0.49	0.79	0.61	0.79	0.83	0.81	-98 4	7.33 0.	52	42
CHR Rat		••			- ·			0.02	0. 10	0.70	0.01	0.70	0.00	0.01	JJ.7	00		
CholinesteraseInhibiti																		
on	RF	CDK, TA	36	180	19	6	241	0.9	0.65	0.86	0.74	0.86	0.9	0.88	-98.2	7.69 0	.69	42
-																		•

RF	CDK, TP	35	188	11	7	241	0.93	0.76	0.83	0.8	0.83	0.94	0.89	-98.2 8.3	38 0.75	42
RF	TA, TP	27	153	48	15	243	0.74	0.36	0.64	0.46	0.64	0.76	0.7	-98.6 7.3	21 0.33	42
RF	TA	27	161	40	15	243	0.77	0.4	0.64	0.5	0.64	0.8	0.72	-98.6 7.4	44 0.38	42
RF	TP	27	148	53	15	243	0.72	0.34	0.64	0.44	0.64	0.74	0.69	-98.6 7.0	08 0.31	42
FSM I R	Adriana	34	183	16	8	241	0.9	0.68	0.81	0.74	0.81	0.92	0.86	-983 81	09 0 68	42
FSM	ALogPS,	34		6	8											42
FSM				-												
		30	195	4	12	241	0.93	0.88	0.71	0.79	0.71	0.98	0.85	-98.3 9.	71 0.76	42
LR FSM	n	37	155	46	5	243	0.79	0.45	0.88	0.59	0.88	0.77	0.83	-98.3 6.	54 0.52	42
LR	Dragon6	33	192	9	9	243	0.93	0.79	0.79	0.79	0.79	0.96	0.87	-98.3 8.	77 0.74	42
LR	or	37	191	10	5	243	0.94	0.79	0.88	0.83	0.88	0.95	0.92	-98.2 8.3	23 0.8	42
FSM LR	GSFrag	38	184	17	4	243	0.91	0.69	0.9	0.78	0.9	0.92	0.91	-98.2 7.5	51 0.74	42
FSM LR	Inductive	30	192	9	12	243	0.91	0.77	0.71	0.74	0.71	0.96	0.83	-98.3 8.9	95 0.69	42
FSM LR	Mera, Mersy	30	188	12	12	242	0.9	0.71	0.71	0.71	0.71	0.94	0.83	-98.3 8.0	66 0.65	42
FSM LR	QNPR	37	196	5	5	243	0.96	0.88	0.88	0.88	0.88	0.98	0.93	-98.1 8.9	91 0.86	42
FSM LR	Spectrop hores	35	158	43	7	243	0.79	0.45	0.83	0.58	0.83	0.79	0.81	-98.4 6.8	88 0.5	42
KNN	Adriana	38	161	38	4	241	0.83	0.5	0.9	0.64	0.9	0.81	0.86	-98.3 6.	59 0.58	42
	-	37	174	27	5	243	0.87	0.58	0.88	0.7	0.88	0.87	0.87	-98.3 7.	18 0.64	42
KNN	CDK	38	168	31	4	241	0.85	0.55	0.9	0.68	0.9	0.84	0.87	-98.3 6.8	83 0.63	42
KNN	Chemaxo n	37	144	57	5	243	0.74	0.39	0.88	0.54	0.88	0.72	0.8	-98.4 6.2	25 0.46	42
KNN	Dragon6	39	166	35	3	243	0.84	0.53	0.93	0.67	0.93	0.83	0.88	-98.2 6.4	47 0.62	42
	-	38	183	18	4	243	0.91	0.68	0.9	0.78	0.9	0.91	0.91	-98.2 7.4	45 0.73	42
KNN	GSFrag	39	158	43	3	243	0.81	0.48	0.93	0.63	0.93	0.79	0.86	-98.3 6.2	22 0.57	42
	RF R	RF TA, TP RF TA RF TP FSM Adriana FSM ALogPS, OEstate FSM Chemaxo IR FSM IR FSM GSFrag FSM INDUCTIVE FSM Mera, IR FSM INDUCTIVE FSM INDUCTIVE FSM INDUCTIVE FSM ALOGPS, COEstate KNN CDK	RF TA, TP 27 RF TA 27 RF TP 27 FSM LR Adriana 34 FSM ALogPS, LR 30 FSM CDK 30 FSM CDK 30 FSM CDK 30 FSM CDK 30 FSM Pragment LR 37 FSM CSFrag 38 FSM Inductive 30 FSM Mera, LR 30 FSM Mera, LR 30 FSM Spectrop LR 37 FSM Spectrop LR 35 KNN Adriana 38 KNN OEstate 37 KNN CDK 38 Chemaxo KNN n 37 KNN Dragon6 39 Fragment KNN or 38	RF TA, TP 27 153 RF TA 27 161 RF TP 27 148 FSM LR Adriana 34 183 FSM ALogPS, LR 34 195 FSM CDK 30 195 FSM LR CDK 30 195 FSM LR Dragon6 33 192 FSM Fragment LR 37 191 FSM LR Inductive 30 192 FSM Mera, LR Mersy 30 188 FSM Mera, LR Mersy 30 188 FSM Nores 35 158 KNN Adriana 38 161 KNN OEstate 37 174 KNN CDK 38 168 KNN Dragon6 39 166 KNN Dragon6 39 166 KNN Oragon6 39 166 KNN Oragon6 39 166 KNN Oragon6 39 166	RF TA, TP 27 153 48 RF TA 27 161 40 RF TP 27 148 53 FSM LR Adriana 34 183 16 FSM ALogPS, LR 34 195 6 FSM CDK 30 195 4 FSM CDK 30 192 9 FSM Fragment LR 37 191 10 FSM CSFrag 38 184 17 FSM LR Inductive 30 192 9 FSM Mera, LR Mersy 30 188 12 FSM Spectrop LR 37 196 5 FSM Spectrop LR 37 174 27 KNN Adriana 38 161 38 KNN CDK 38 168 31 KNN CDK 38 166 35 KNN Dragon6	RF TA, TP 27 153 48 15 RF TA 27 161 40 15 RF TP 27 148 53 15 FSM LR Adriana 34 183 16 8 FSM LR OEstate 34 195 6 8 FSM LR CDK 30 195 4 12 FSM Chemaxo LR 37 155 46 5 FSM Pragment LR Or 37 191 10 5 FSM ERS Fragment LR 37 191 10 5 FSM LR Inductive 30 192 9 12 FSM Mera LR Mersy 30 188 12 12 FSM Mera LR QNPR 37 196 5 5 FSM Spectrop LR 37 196 5 5 KNN Adriana 38 161 38 4 KNN OEstate 37 174 27 5 KNN Dragon6 39 166 </td <td>RF TA, TP 27 153 48 15 243 RF TA 27 161 40 15 243 RF TP 27 148 53 15 243 FSM LR Adriana 34 183 16 8 241 FSM LR OEstate 34 195 6 8 243 FSM LR CDK 30 195 4 12 241 FSM Chemaxo LR 37 155 46 5 243 FSM Chemaxo LR 37 191 10 5 243 FSM Fragment LR 37 191 10 5 243 FSM LR Inductive 30 192 9 12 243 FSM LR Inductive 30 192 9 12 243 FSM LR QNPR 37 196 5 5 243 FSM LR QNPR 37 196<</td> <td>RF TA, TP 27 153 48 15 243 0.74 RF TA 27 161 40 15 243 0.77 RF TP 27 148 53 15 243 0.72 FSM LR Adriana 34 183 16 8 241 0.9 FSM ALogPS, LR OEstate 34 195 6 8 243 0.94 FSM CDK 30 195 4 12 241 0.93 FSM Chemaxo LR 37 155 46 5 243 0.79 FSM Fragment LR 0 ragon6 33 192 9 9 243 0.93 FSM Fragment LR 0 ragon6 33 184 17 4 243 0.94 FSM LR Inductive 30 192 9 12 243 0.91 FSM Mera, LR Mersy 30 188 12 12 242</td> <td>RF TA, TP 27 153 48 15 243 0.74 0.36 RF TA 27 161 40 15 243 0.77 0.4 RF TP 27 148 53 15 243 0.72 0.34 FSM LR AlcogPS, LR 34 183 16 8 241 0.9 0.68 FSM ALogPS, LR 34 195 6 8 243 0.94 0.85 FSM LR CDK 30 195 4 12 241 0.93 0.88 FSM Chemaxo LR 0 155 46 5 243 0.79 0.45 FSM Chemaxo LR 0 37 155 46 5 243 0.79 0.45 FSM Fragment LR 0 37 191 10 5 243 0.91 0.79 FSM Mera, LR Meray 30 188 12 12 243 0.91</td> <td>RF TA, TP 27 153 48 15 243 0.74 0.36 0.64 RF TA 27 161 40 15 243 0.77 0.4 0.64 RF TP 27 148 53 15 243 0.72 0.34 0.64 FSM ALogPS, LR Adriana 34 183 16 8 241 0.9 0.68 0.81 FSM ALogPS, LR OEstate 34 195 6 8 243 0.94 0.85 0.81 FSM CDE CDK 30 195 4 12 241 0.93 0.88 0.71 FSM CHE CDK 30 195 4 12 243 0.93 0.79 0.88 FSM CHE Dragon6 33 192 9 9 243 0.93 0.79 0.79 FSM Fragment LR Dragon6 38 184 17 4 243 <</td> <td>RF TA, TP 27 153 48 15 243 0.74 0.36 0.64 0.64 RF TA 27 161 40 15 243 0.77 0.4 0.64 0.5 RF TP 27 148 53 15 243 0.72 0.34 0.64 0.44 FSM LOSPS, LR Adriana 34 183 16 8 241 0.9 0.68 0.81 0.74 FSM ALOSPS, LR OEstate 34 195 6 8 243 0.94 0.85 0.81 0.83 FSM LR CDK 30 195 4 12 241 0.93 0.88 0.71 0.79 FSM Chemaxo LR 0 195 4 12 241 0.93 0.85 0.88 0.59 FSM Chemaxo LR 0 192 9 9 243 0.94 0.79 0.88 0.83 FSM Fragment LR<!--</td--><td>RF TA, TP 27 153 48 15 243 0.74 0.36 0.64 0.64 0.64 RF TA 27 161 40 15 243 0.72 0.44 0.64 0.64 0.64 RF TP 27 148 53 15 243 0.72 0.34 0.64 0.44 0.64 FSM LR Adriana 34 183 16 8 241 0.99 0.68 0.81 0.74 0.81 FSM CEstate 34 195 6 8 243 0.94 0.85 0.81 0.83 0.81 FSM CEstate 34 195 4 12 241 0.93 0.88 0.71 0.71 0.71 FSM CHEMANO LR 37 155 46 5 243 0.93 0.78 0.78 0.79 0.78 0.79 0.79 0.78 0.79 0.79 0.78 0.79 0.79</td><td>RF TA, TP 27 153 48 15 243 0.74 0.36 0.64 0.46 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.74 0.64 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.72 0.74 0.72 0.74 0.72 0.72 0.72 0.75 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72<td>RF TA. TP 27 153 48 15 243 0.74 0.36 0.64 0.64 0.64 0.76 0.7 RF TA 27 161 40 15 243 0.77 0.4 0.64 0.56 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.68 0.68 0.61 0.62 0.81 0.63 0.81 0.62 0.81 0.63 0.81 0.83 0.82 0.83 0.83 0.82 0.83 0.83 0.81 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.</td><td>RF TA, TP 27 153 48 15 243 0.74 0.36 0.64 0.64 0.64 0.76 0.7 -98.6 7. RF TA 27 161 40 15 243 0.77 0.4 0.64 0.64 0.5 0.64 0.8 0.72 -98.6 7. RF TP 27 148 53 15 243 0.72 0.34 0.64 0.64 0.64 0.76 0.7 0.98 0.72 -98.6 7. RF TP 27 148 53 15 243 0.72 0.34 0.64 0.64 0.64 0.74 0.69 -98.6 7. RF TP 27 148 53 16 8 241 0.9 0.68 0.81 0.74 0.81 0.92 0.86 -98.3 8.1 RM Adriana 34 183 16 8 241 0.9 0.68 0.81 0.74 0.81 0.92 0.86 -98.3 8.1 RSM ALogPS, LR OEstate 34 195 6 8 243 0.94 0.95 0.85 0.81 0.89 0.81 0.97 0.89 -98.2 9.1 FSM Chemaxo LR O</td><td>RF TA. TP 27 153 48 15 243 0.74 0.36 0.84 0.46 0.64 0.76 0.7 -98.6 7.21 0.33 RF TA 27 161 40 15 243 0.77 0.4 0.64 0.5 0.64 0.8 0.72 -98.6 7.44 0.38 RF TP 27 148 53 15 243 0.72 0.34 0.64 0.64 0.64 0.74 0.69 -98.6 7.44 0.38 RF TP 27 148 53 15 243 0.72 0.34 0.64 0.44 0.64 0.74 0.69 -98.6 7.40 0.31 RF Adriana 34 183 16 8 241 0.9 0.68 0.81 0.74 0.81 0.92 0.86 -98.3 8.09 0.85 FSM ALogPS, LR OEstate 34 195 6 8 243 0.94 0.85 0.81 0.80 0.81 0.97 0.89 -98.2 9.08 0.79 FSM CDK 30 195 4 12 241 0.93 0.88 0.71 0.79 0.71 0.98 0.85 -98.3 9.71 0.76 FSM CDK 30 195 4 12 241 0.93 0.85 0.81 0.79 0.79 0.79 0.89 0.85 9.83 9.71 0.76 FSM DR Pragonet 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></td></td>	RF TA, TP 27 153 48 15 243 RF TA 27 161 40 15 243 RF TP 27 148 53 15 243 FSM LR Adriana 34 183 16 8 241 FSM LR OEstate 34 195 6 8 243 FSM LR CDK 30 195 4 12 241 FSM Chemaxo LR 37 155 46 5 243 FSM Chemaxo LR 37 191 10 5 243 FSM Fragment LR 37 191 10 5 243 FSM LR Inductive 30 192 9 12 243 FSM LR Inductive 30 192 9 12 243 FSM LR QNPR 37 196 5 5 243 FSM LR QNPR 37 196<	RF TA, TP 27 153 48 15 243 0.74 RF TA 27 161 40 15 243 0.77 RF TP 27 148 53 15 243 0.72 FSM LR Adriana 34 183 16 8 241 0.9 FSM ALogPS, LR OEstate 34 195 6 8 243 0.94 FSM CDK 30 195 4 12 241 0.93 FSM Chemaxo LR 37 155 46 5 243 0.79 FSM Fragment LR 0 ragon6 33 192 9 9 243 0.93 FSM Fragment LR 0 ragon6 33 184 17 4 243 0.94 FSM LR Inductive 30 192 9 12 243 0.91 FSM Mera, LR Mersy 30 188 12 12 242	RF TA, TP 27 153 48 15 243 0.74 0.36 RF TA 27 161 40 15 243 0.77 0.4 RF TP 27 148 53 15 243 0.72 0.34 FSM LR AlcogPS, LR 34 183 16 8 241 0.9 0.68 FSM ALogPS, LR 34 195 6 8 243 0.94 0.85 FSM LR CDK 30 195 4 12 241 0.93 0.88 FSM Chemaxo LR 0 155 46 5 243 0.79 0.45 FSM Chemaxo LR 0 37 155 46 5 243 0.79 0.45 FSM Fragment LR 0 37 191 10 5 243 0.91 0.79 FSM Mera, LR Meray 30 188 12 12 243 0.91	RF TA, TP 27 153 48 15 243 0.74 0.36 0.64 RF TA 27 161 40 15 243 0.77 0.4 0.64 RF TP 27 148 53 15 243 0.72 0.34 0.64 FSM ALogPS, LR Adriana 34 183 16 8 241 0.9 0.68 0.81 FSM ALogPS, LR OEstate 34 195 6 8 243 0.94 0.85 0.81 FSM CDE CDK 30 195 4 12 241 0.93 0.88 0.71 FSM CHE CDK 30 195 4 12 243 0.93 0.79 0.88 FSM CHE Dragon6 33 192 9 9 243 0.93 0.79 0.79 FSM Fragment LR Dragon6 38 184 17 4 243 <	RF TA, TP 27 153 48 15 243 0.74 0.36 0.64 0.64 RF TA 27 161 40 15 243 0.77 0.4 0.64 0.5 RF TP 27 148 53 15 243 0.72 0.34 0.64 0.44 FSM LOSPS, LR Adriana 34 183 16 8 241 0.9 0.68 0.81 0.74 FSM ALOSPS, LR OEstate 34 195 6 8 243 0.94 0.85 0.81 0.83 FSM LR CDK 30 195 4 12 241 0.93 0.88 0.71 0.79 FSM Chemaxo LR 0 195 4 12 241 0.93 0.85 0.88 0.59 FSM Chemaxo LR 0 192 9 9 243 0.94 0.79 0.88 0.83 FSM Fragment LR </td <td>RF TA, TP 27 153 48 15 243 0.74 0.36 0.64 0.64 0.64 RF TA 27 161 40 15 243 0.72 0.44 0.64 0.64 0.64 RF TP 27 148 53 15 243 0.72 0.34 0.64 0.44 0.64 FSM LR Adriana 34 183 16 8 241 0.99 0.68 0.81 0.74 0.81 FSM CEstate 34 195 6 8 243 0.94 0.85 0.81 0.83 0.81 FSM CEstate 34 195 4 12 241 0.93 0.88 0.71 0.71 0.71 FSM CHEMANO LR 37 155 46 5 243 0.93 0.78 0.78 0.79 0.78 0.79 0.79 0.78 0.79 0.79 0.78 0.79 0.79</td> <td>RF TA, TP 27 153 48 15 243 0.74 0.36 0.64 0.46 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.74 0.64 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.72 0.74 0.72 0.74 0.72 0.72 0.72 0.75 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72<td>RF TA. TP 27 153 48 15 243 0.74 0.36 0.64 0.64 0.64 0.76 0.7 RF TA 27 161 40 15 243 0.77 0.4 0.64 0.56 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.68 0.68 0.61 0.62 0.81 0.63 0.81 0.62 0.81 0.63 0.81 0.83 0.82 0.83 0.83 0.82 0.83 0.83 0.81 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.</td><td>RF TA, TP 27 153 48 15 243 0.74 0.36 0.64 0.64 0.64 0.76 0.7 -98.6 7. RF TA 27 161 40 15 243 0.77 0.4 0.64 0.64 0.5 0.64 0.8 0.72 -98.6 7. RF TP 27 148 53 15 243 0.72 0.34 0.64 0.64 0.64 0.76 0.7 0.98 0.72 -98.6 7. RF TP 27 148 53 15 243 0.72 0.34 0.64 0.64 0.64 0.74 0.69 -98.6 7. RF TP 27 148 53 16 8 241 0.9 0.68 0.81 0.74 0.81 0.92 0.86 -98.3 8.1 RM Adriana 34 183 16 8 241 0.9 0.68 0.81 0.74 0.81 0.92 0.86 -98.3 8.1 RSM ALogPS, LR OEstate 34 195 6 8 243 0.94 0.95 0.85 0.81 0.89 0.81 0.97 0.89 -98.2 9.1 FSM Chemaxo LR O</td><td>RF TA. TP 27 153 48 15 243 0.74 0.36 0.84 0.46 0.64 0.76 0.7 -98.6 7.21 0.33 RF TA 27 161 40 15 243 0.77 0.4 0.64 0.5 0.64 0.8 0.72 -98.6 7.44 0.38 RF TP 27 148 53 15 243 0.72 0.34 0.64 0.64 0.64 0.74 0.69 -98.6 7.44 0.38 RF TP 27 148 53 15 243 0.72 0.34 0.64 0.44 0.64 0.74 0.69 -98.6 7.40 0.31 RF Adriana 34 183 16 8 241 0.9 0.68 0.81 0.74 0.81 0.92 0.86 -98.3 8.09 0.85 FSM ALogPS, LR OEstate 34 195 6 8 243 0.94 0.85 0.81 0.80 0.81 0.97 0.89 -98.2 9.08 0.79 FSM CDK 30 195 4 12 241 0.93 0.88 0.71 0.79 0.71 0.98 0.85 -98.3 9.71 0.76 FSM CDK 30 195 4 12 241 0.93 0.85 0.81 0.79 0.79 0.79 0.89 0.85 9.83 9.71 0.76 FSM DR Pragonet 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></td>	RF TA, TP 27 153 48 15 243 0.74 0.36 0.64 0.64 0.64 RF TA 27 161 40 15 243 0.72 0.44 0.64 0.64 0.64 RF TP 27 148 53 15 243 0.72 0.34 0.64 0.44 0.64 FSM LR Adriana 34 183 16 8 241 0.99 0.68 0.81 0.74 0.81 FSM CEstate 34 195 6 8 243 0.94 0.85 0.81 0.83 0.81 FSM CEstate 34 195 4 12 241 0.93 0.88 0.71 0.71 0.71 FSM CHEMANO LR 37 155 46 5 243 0.93 0.78 0.78 0.79 0.78 0.79 0.79 0.78 0.79 0.79 0.78 0.79 0.79	RF TA, TP 27 153 48 15 243 0.74 0.36 0.64 0.46 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.74 0.64 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.72 0.74 0.72 0.74 0.72 0.72 0.72 0.75 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 <td>RF TA. TP 27 153 48 15 243 0.74 0.36 0.64 0.64 0.64 0.76 0.7 RF TA 27 161 40 15 243 0.77 0.4 0.64 0.56 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.68 0.68 0.61 0.62 0.81 0.63 0.81 0.62 0.81 0.63 0.81 0.83 0.82 0.83 0.83 0.82 0.83 0.83 0.81 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.</td> <td>RF TA, TP 27 153 48 15 243 0.74 0.36 0.64 0.64 0.64 0.76 0.7 -98.6 7. RF TA 27 161 40 15 243 0.77 0.4 0.64 0.64 0.5 0.64 0.8 0.72 -98.6 7. RF TP 27 148 53 15 243 0.72 0.34 0.64 0.64 0.64 0.76 0.7 0.98 0.72 -98.6 7. RF TP 27 148 53 15 243 0.72 0.34 0.64 0.64 0.64 0.74 0.69 -98.6 7. RF TP 27 148 53 16 8 241 0.9 0.68 0.81 0.74 0.81 0.92 0.86 -98.3 8.1 RM Adriana 34 183 16 8 241 0.9 0.68 0.81 0.74 0.81 0.92 0.86 -98.3 8.1 RSM ALogPS, LR OEstate 34 195 6 8 243 0.94 0.95 0.85 0.81 0.89 0.81 0.97 0.89 -98.2 9.1 FSM Chemaxo LR O</td> <td>RF TA. TP 27 153 48 15 243 0.74 0.36 0.84 0.46 0.64 0.76 0.7 -98.6 7.21 0.33 RF TA 27 161 40 15 243 0.77 0.4 0.64 0.5 0.64 0.8 0.72 -98.6 7.44 0.38 RF TP 27 148 53 15 243 0.72 0.34 0.64 0.64 0.64 0.74 0.69 -98.6 7.44 0.38 RF TP 27 148 53 15 243 0.72 0.34 0.64 0.44 0.64 0.74 0.69 -98.6 7.40 0.31 RF Adriana 34 183 16 8 241 0.9 0.68 0.81 0.74 0.81 0.92 0.86 -98.3 8.09 0.85 FSM ALogPS, LR OEstate 34 195 6 8 243 0.94 0.85 0.81 0.80 0.81 0.97 0.89 -98.2 9.08 0.79 FSM CDK 30 195 4 12 241 0.93 0.88 0.71 0.79 0.71 0.98 0.85 -98.3 9.71 0.76 FSM CDK 30 195 4 12 241 0.93 0.85 0.81 0.79 0.79 0.79 0.89 0.85 9.83 9.71 0.76 FSM DR Pragonet 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	RF TA. TP 27 153 48 15 243 0.74 0.36 0.64 0.64 0.64 0.76 0.7 RF TA 27 161 40 15 243 0.77 0.4 0.64 0.56 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.68 0.68 0.61 0.62 0.81 0.63 0.81 0.62 0.81 0.63 0.81 0.83 0.82 0.83 0.83 0.82 0.83 0.83 0.81 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.	RF TA, TP 27 153 48 15 243 0.74 0.36 0.64 0.64 0.64 0.76 0.7 -98.6 7. RF TA 27 161 40 15 243 0.77 0.4 0.64 0.64 0.5 0.64 0.8 0.72 -98.6 7. RF TP 27 148 53 15 243 0.72 0.34 0.64 0.64 0.64 0.76 0.7 0.98 0.72 -98.6 7. RF TP 27 148 53 15 243 0.72 0.34 0.64 0.64 0.64 0.74 0.69 -98.6 7. RF TP 27 148 53 16 8 241 0.9 0.68 0.81 0.74 0.81 0.92 0.86 -98.3 8.1 RM Adriana 34 183 16 8 241 0.9 0.68 0.81 0.74 0.81 0.92 0.86 -98.3 8.1 RSM ALogPS, LR OEstate 34 195 6 8 243 0.94 0.95 0.85 0.81 0.89 0.81 0.97 0.89 -98.2 9.1 FSM Chemaxo LR O	RF TA. TP 27 153 48 15 243 0.74 0.36 0.84 0.46 0.64 0.76 0.7 -98.6 7.21 0.33 RF TA 27 161 40 15 243 0.77 0.4 0.64 0.5 0.64 0.8 0.72 -98.6 7.44 0.38 RF TP 27 148 53 15 243 0.72 0.34 0.64 0.64 0.64 0.74 0.69 -98.6 7.44 0.38 RF TP 27 148 53 15 243 0.72 0.34 0.64 0.44 0.64 0.74 0.69 -98.6 7.40 0.31 RF Adriana 34 183 16 8 241 0.9 0.68 0.81 0.74 0.81 0.92 0.86 -98.3 8.09 0.85 FSM ALogPS, LR OEstate 34 195 6 8 243 0.94 0.85 0.81 0.80 0.81 0.97 0.89 -98.2 9.08 0.79 FSM CDK 30 195 4 12 241 0.93 0.88 0.71 0.79 0.71 0.98 0.85 -98.3 9.71 0.76 FSM CDK 30 195 4 12 241 0.93 0.85 0.81 0.79 0.79 0.79 0.89 0.85 9.83 9.71 0.76 FSM DR Pragonet 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CHR Rat																	
CholinesteraseInhibiti on	KNN	Inductive	37	173	28	5	243	0.86	0.57	0.88	0.69	0.88	0.86	0.87	-98.3 7	.14 0.63	
CHR Rat CholinesteraseInhibiti on	KNN	Mera, Mersy	39	166	34	3	242	0.85	0.53	0.93	0.68	0.93	0.83	0.88	-98.2	6.5 0.63	
CHR Rat CholinesteraseInhibiti on	KNN	QNPR	39	189	12	3	243	0.94	0.76	0.93	0.84	0.93	0.94	0.93	-98.1 7	.65 0.81	
CHR Rat CholinesteraseInhibiti on	KNN	Spectrop hores	34	130	71	8	243	0.67	0.32	0.81	0.46	0.81	0.65	0.73	-98.5 6	.28 0.35	
CHR Rat CholinesteraseInhibiti on	LibS	Adriana	30	188	11	12	241	nα	0.73	0.71	0.72	0.71	n 94	N 83	-0838	.74 0.67	
CHR Rat CholinesteraseInhibiti	LibS	ALogPS,															
on CHR Rat CholinesteraseInhibiti	VM LibS	OEstate	36	198	3	6	243	0.96	0.92	0.86	0.89	0.86	0.99	0.92	-98.2 9	.51 0.87	
on CHR Rat CholinesteraseInhibiti		Chemayo	35	193	6	7	241	0.95	0.85	0.83	0.84	0.83	0.97	0.9	-98.2 8	.98 0.81	
CholinesteraseInhibiti on CHR Rat	VM		35	183	18	7	243	0.9	0.66	0.83	0.74	0.83	0.91	0.87	-98.3 7	.88 0.68	
CholinesteraseInhibiti on	LibS VM	Dragon6	33	193	8	9	243	0.93	0.8	0.79	0.8	0.79	0.96	0.87	-98.3 8	.89 0.75	
CHR Rat CholinesteraseInhibiti on	LibS VM	Fragment or	37	194	7	5	243	0.95	0.84	0.88	0.86	0.88	0.97	0.92	-98.2 8	.58 0.83	
CHR Rat CholinesteraseInhibiti on	LibS VM	GSFrag	34	183	18	8	243	0.89	0.65	0.81	0.72	0.81	0.91	0.86	-98.3 7	.98 0.66	
CHR Rat CholinesteraseInhibiti on	LibS VM	Inductive	36	187	14	6	243	0.92	0.72	0.86	0.78	0.86	0.93	0.89	-98.2 8	.03 0.74	
CHR Rat CholinesteraseInhibiti on	LibS VM	Mera, Mersy	35	194	6	7	242	0.95	0.85	0.83	0.84	0.83	0.97	0.9	-9828	.98 0.81	
CHR Rat CholinesteraseInhibiti on		QNPR	37	193	8	5		0.95								.45 0.82	
CHR Rat CholinesteraseInhibiti	LibS	Spectrop	-														
on CHR Rat CholinesteraseInhibiti		hores	30	167		12	243					0.71			-98.5 7	.52 0.47	
on CHR Rat CholinesteraseInhibiti	A	Adriana	33	167	32	9	241	0.83	0.51	0.79	0.62	0.79	0.84	0.81	-98.4	7.4 0.53	
on CHR Rat	Α	OEstate	36	184	17	6	243	0.91	0.68	0.86	0.76	0.86	0.92	0.89	-98.2 7	.82 0.71	
CholinesteraseInhibiti on CHR Rat	Α	CDK	33	120	79	9	241	0.63	0.29	0.79	0.43	0.79	0.6	0.69	-98.6 6	.18 0.3	
Chr Rat CholinesteraseInhibiti on CHR Rat	Α	n	34	165	36	8	243	0.82	0.49	0.81	0.61	0.81	0.82	0.82	-98.4 7	.19 0.53	
CholinesteraseInhibiti on CHR Rat	A	Dragon6	22	120	81	20	243	0.58	0.21	0.52	0.3	0.52	0.6	0.56	-98.9 6	.52 0.09	
CholinesteraseInhibiti on CHR Rat	Α	Fragment or	33	137	64	9	243	0.7	0.34	0.79	0.47	0.79	0.68	0.73	-98.5 6	.52 0.36	
CholinesteraseInhibiti on	MLR A	GSFrag	30	136	65	12	243	0.68	U 33	0.71	0.44	0.71	0.68	0.7	-086 6	.68 0.3	

CHR Rat CholinesteraseInhibiti on	MLR A	Inductive	35	177	24	7	243	0.87	0.59	0.83	0.69	0.83	0.88	0.86	-98.3	7.56	0.63	42
CHR Rat CholinesteraseInhibiti on	MLR A	Mera, Mersy	28	162	38	14	242	0.79	0.42	0.67	0.52	0.67	0.81	0.74	-98.5	7.46	0.41	42
CHR Rat CholinesteraseInhibiti on	MLR A	QNPR	37	177	24	5	243	0.88	0.61	0.88	0.72	0.88	0.88	0.88	-98.2	7.31	0.66	42
CHR Rat CholinesteraseInhibiti	MLR A		31	167	34	11	243	0.81	0.48	0.74	0.58	0.74	0.83	0.78	-98.4	7.47	0.49	42
CHR Rat CholinesteraseInhibiti on		Adriana	33	188	11	9	241	0.92	0.75	0.79	0.77	0.79	0.94	0.87	-98.3			42
CHR Rat CholinesteraseInhibiti		ALogPS, OEstate	37	196	5	5	243	0.96	0.88	0.88	0.88	0.88	0.98	0.93	-98.1	Ω Ω1	0.86	42
CHR Rat CholinesteraseInhibiti						10												
OHR Rat CholinesteraseInhibiti		CDK	32	189	10		241	0.92	0.76	0.76	0.76	0.76	0.95	0.86	-98.3			42
CHR Rat CholinesteraseInhibiti	PLS		35	168	33		243	0.84	0.51	0.83	0.64	0.83	0.84	0.83	-98.3		0.56	42
on CHR Rat CholinesteraseInhibiti		Dragon6 Fragment	34	192	9	8	243	0.93	0.79	0.81	0.8	0.81	0.96	0.88	-98.2			42
on CHR Rat CholinesteraseInhibiti	PLS		37	192	9	5	243	0.94	0.8	0.88	0.84	0.88	0.96	0.92	-98.2			42
on CHR Rat CholinesteraseInhibiti		GSFrag	39	177	24	3	243	0.89	0.62	0.93	0.74	0.93	0.88	0.9	-98.2		0.7	42
on CHR Rat CholinesteraseInhibiti		Inductive Mera,	36	189	12	6	243	0.93	0.75	0.86	0.8	0.86	0.94	0.9	-98.2	8.19	0.76	42
on CHR Rat CholinesteraseInhibiti	PLS	Mersy	37	190	10	5	242	0.94	0.79	0.88	0.83	0.88	0.95	0.92	-98.2	8.23	0.8	42
on CHR Rat CholinesteraseInhibiti		QNPR Spectrop	38	192	9	4	243	0.95	0.81	0.9	0.85	0.9	0.96	0.93	-98.1	8.16	0.82	42
on CHR Rat CholinesteraseInhibiti		hores	34	158	43	8	243	0.79	0.44	0.81	0.57	0.81	0.79	0.8	-98.4	6.97	0.48	42
on CHR Rat	J48	Adriana ALogPS,	29	182	17	13	241	0.88	0.63	0.69	0.66	0.69	0.91	8.0	-98.4	8.33	0.58	42
CholinesteraseInhibition CHR Rat	J48	OEstate OEstate	36	196	5	6	243	0.95	0.88	0.86	0.87	0.86	0.98	0.92	-98.2	9.05	0.84	42
CholinesteraseInhibition CHR Rat	J48	CDK Chemaxo	35	187	12	7	241	0.92	0.74	0.83	0.79	0.83	0.94	0.89	-98.2	8.29	0.74	42
CholinesteraseInhibition CHR Rat	J48	n	32	183	18	10	243	0.88	0.64	0.76	0.7	0.76	0.91	0.84	-98.3	8.13	0.63	42
CholinesteraseInhibition CHR Rat	J48	Dragon6	34	191	10	8	243	0.93	0.77	0.81	0.79	0.81	0.95	0.88	-98.2	8.58	0.75	42
CholinesteraseInhibition CHR Rat	J48	Fragment or	36	193	8	6	243	0.94	0.82	0.86	0.84	0.86	0.96	0.91	-98.2	8.59	0.8	42
CholinesteraseInhibition CHR Rat	J48	GSFrag	33	190	11	9	243	0.92	0.75	0.79	0.77	0.79	0.95	0.87	-98.3	8.57	0.72	42
CholinesteraseInhibiti on	J48	Inductive	34	188	13	8	243	0.91	0.72	0.81	0.76	0.81	0.94	0.87	-98.3	8.32	0.71	42

CHR Rat CholinesteraseInhibiti on	J48	Mera, Mersy	33	189	11	9	242	0.92	0.75	0.79	0.77	0.79	0.95	0.87	-98.3 8.56	0.72	42
CHR Rat CholinesteraseInhibiti on	J48	QNPR	37	194	7	5	243	0.95	0.84	0.88	0.86	0.88	0.97	0.92	-98.2 8.58	0.83	42
CHR Rat CholinesteraseInhibiti on	J48	Spectrop hores	22	166	35	20	243	0.77	0.39	0.52	0.44	0.52	0.83	0.67	-98.7 7.68	0.31	42
CHR Rat KidneyNephropathy	RF	Adriana	9	117	89	26	241	0.52	0.09	0.26	0.14	0.26	0.57	0.41	-99.2 5.8	.125	35
CHR Rat KidneyNephropathy	RF	ALogPS, OEstate	17	136	71	19	243	0.63	0.19	0.47	0.27	0.47	0.66	0.56	-98.9 6.48	0.1	36
CHR Rat KidneyNephropathy	RF	CDK	12	128	79	22	241	0.58	0.13	0.35	0.19	0.35	0.62	0.49	-99.0 6.12	.021	34
CHR Rat KidneyNephropathy	RF	Chemaxo n	10	123	84	26	243	0.55	0.11	0.28	0.15	0.28	0.59	0.44	-99.1 6.01	.093	36
CHR Rat KidneyNephropathy	RF	Dragon6	19	130	77	17	243	0.61	0.2	0.53	0.29	0.53	0.63	0.58	-98.8 6.35	0.11	36
CHR Rat KidneyNephropathy	RF	Fragment or	17	137	70	19	243	0.63	0.2	0.47	0.28	0.47	0.66	0.57	-98.9 6.5	0.1	36
CHR Rat KidneyNephropathy	RF	GSFrag	14	130	77	22	243	0.59	0.15	0.39	0.22	0.39	0.63	0.51	-99.0 6.31	0.01	36
CHR Rat KidneyNephropathy	RF	Inductive	18	125	82	18	243	0.59	0.18	0.5	0.26	0.5	0.6	0.55	-98.9 6.26	0.07	36
CHR Rat KidneyNephropathy	RF	Mera, Mersy	15	133	74	20	242	0.61	0.17	0.43	0.24	0.43	0.64	0.54	-98.9 6.34	0.05	35
CHR Rat KidneyNephropathy CHR Rat	RF	QNPR Spectrop	15	141	66	21	243	0.64	0.19	0.42	0.26	0.42	0.68	0.55	-98.9 6.56	0.07	36
KidneyNephropathy	RF ASN	hores	17	133	74	19	243	0.62	0.19	0.47	0.27	0.47	0.64	0.56	-98.9 6.42	0.08	36
CHR Rat KidneyNephropathy	N	Adriana	6	153	53	29	241	0.66	0.1	0.17	0.13	0.17	0.74	0.46	-99.1 6.31	.07	35
CHR Rat KidneyNephropathy	ASN N	ALogPS, OEstate	10	146	61	26	243	0.64	0.14	0.28	0.19	0.28	0.71	0.49	-99.0 6.5	.013	36
CHR Rat KidneyNephropathy	ASN N	CDK	11	143	64	23	241	0.64	0.15	0.32	0.2	0.32	0.69	0.51	-99.0 6.4	0.01	34
CHR Rat KidneyNephropathy	N	Chemaxo n	13	146	61	23	243	0.65	0.18	0.36	0.24	0.36	0.71	0.53	-98.9 6.63	0.05	36
CHR Rat KidneyNephropathy	ASN N	Dragon6	14	156	51	22	243	0.7	0.22	0.39	0.28	0.39	0.75	0.57	-98.9 6.9	0.11	36
CHR Rat KidneyNephropathy	ASN N	Fragment or	15	155	52	21	243	0.7	0.22	0.42	0.29	0.42	0.75	0.58	-98.8 6.89	0.13	36
CHR Rat KidneyNephropathy	ASN N	GSFrag	15	148	59	21	243	0.67	0.2	0.42	0.27	0.42	0.71	0.57	-98.9 6.72	0.1	36
CHR Rat KidneyNephropathy	ASN N	Inductive	15	138	69	21	243	0.63	0.18	0.42	0.25	0.42	0.67	0.54	-98.9 6.5	0.06	36
CHR Rat KidneyNephropathy	ASN N ASN	Mera, Mersy	14	142	65	21	242	0.64	0.18	0.4	0.25	0.4	0.69	0.54	-98.9 6.52	0.06	35
CHR Rat KidneyNephropathy	N	QNPR Spectrop	14	162	45	22	243	0.72	0.24	0.39	0.29	0.39	0.78	0.59	-98.8 7.06	0.14	36
CHR Rat KidneyNephropathy	Ν	hores CDK, TA,	15	136	71	21	243	0.62	0.17	0.42	0.25	0.42	0.66	0.54	-98.9 6.46	0.05	36
CHR Rat KidneyNephropathy	N ASN	TP	8	147	60	26	241	0.64	0.12	0.24	0.16	0.24	0.71	0.47	-99.1 6.31	.042	34
CHR Rat KidneyNephropathy	N ASN	CDK, TA	7	148	59	27	241	0.64	0.11	0.21	0.14	0.21	0.71	0.46	-99.1 6.24	.062	34
CHR Rat KidneyNephropathy	N ASN	CDK, TP	12	150	57	22	241	0.67	0.17	0.35	0.23	0.35	0.72	0.54	-98.9 6.6	0.06	34
CHR Rat KidneyNephropathy	N ASN	TA, TP	10	142	65	26	243	0.63	0.13	0.28	0.18	0.28	0.69	0.48	-99.0 6.41	.028	36
CHR Rat KidneyNephropathy	N N	TA	9	155	52	27	243	0.67	0.15	0.25	0.19	0.25	0.75	0.5	-99.0 6.65	.001	36

CHR Rat	ASN																	
KidneyNephropathy	N	TP	7	157	50	29	243	0.67	0.12	0.19	0.15	0.19	0.76	0.48	-99.0	6.54	.039	36
CHR Rat KidneyNephropathy	FSM LR	CDK, TA, TP	9	146	61	25	241	0.64	0.13	0.26	0.17	0.26	0.71	0.49	-99.0	6.36	.023	34
CHR Rat KidneyNephropathy	FSM LR	CDK, TA	9	146	61	25	241	0.64	0.13	0.26	0.17	0.26	0.71	0.49	-99.0	6.36	.023	34
CHR Rat KidneyNephropathy	FSM LR	CDK, TP	11	147	60	23	241	0.66	0.15	0.32	0.21	0.32	0.71	0.52	-99.0	6.49	0.03	34
CHR Rat KidneyNephropathy	FSM LR	TA, TP	7	138	69	29	243	0.6	0.09	0.19	0.13	0.19	0.67	0.43	-99.1	6.09	.106	36
CHR Rat KidneyNephropathy	FSM LR	TA	8	139	68	28	243	0.6	0.11	0.22	0.14	0.22	0.67	0.45	-99.1	6.2	.081	36
CHR Rat KidneyNephropathy	FSM LR	TP	12	148	59	24	243	0.66	0.17	0.33	0.22	0.33	0.71	0.52	-99.0	6.64	0.04	36
CHR Rat KidneyNephropathy	KNN	CDK, TA, TP	22	67	140	12	241	0.37	0.14	0.65	0.22	0.65	0.32	0.49	-99.0	4.91	.022	34
CHR Rat KidneyNephropathy	KNN	CDK, TA	19	46	161	15	241	0.27	0.11	0.56	0.18	0.56	0.22	0.39	-99.2	4.47	.175	34
CHR Rat KidneyNephropathy	KNN	CDK, TP	10	159	48	24	241	0.7	0.17	0.29	0.22	0.29	0.77	0.53	-98.9	6.74	0.05	34
CHR Rat KidneyNephropathy	KNN	TA, TP	26	72	135	10	243	0.4	0.16	0.72	0.26	0.72	0.35	0.54	-98.9	5.	0.05	36
CHR Rat KidneyNephropathy	KNN	TA	23	56	151	13	243	0.33	0.13	0.64	0.22	0.64	0.27	0.45	-99.1	4.77	.071	36
CHR Rat KidneyNephropathy	KNN	TP	9	163	44	27	243	0.71	0.17	0.25	0.2	0.25	0.79	0.52	-99.0	6.87	0.03	36
CHR Rat KidneyNephropathy	LibS VM	CDK, TA, TP	0	207	0	34	241	0.86		0.		0.	1.	0.5	-99.0	8.88		34
CHR Rat KidneyNephropathy	LibS VM	CDK, TA	1	203	4	33	241	0.85	0.2	0.03	0.05	0.03	0.98	0.51	-99.0	7.73	0.02	34
CHR Rat KidneyNephropathy	LibS VM	CDK, TP	0	207	0	34	241	0.86		0.		0.	1.	0.5	-99.0	8.88		34
CHR Rat KidneyNephropathy	LibS VM	TA, TP	0	207	0	36	243	0.85		0.		0.	1.	0.5	-99.0	8.93		36
CHR Rat KidneyNephropathy	LibS																	
	VM	TA	0	206	1	36	243	0.85	0.	0.		0.	1.	0.5	-99.0	7.83	.027	36
CHR Rat KidneyNephropathy	LibS VM	TP	0	206	0	36	243	0.85	0.	0.		0.	1.	0.5	-99.0 -99.0		.027	36 36
KidneyNephropathy CHR Rat KidneyNephropathy	LibS VM MLR A								0.		0.15					8.93	.027	
KidneyNephropathy CHR Rat KidneyNephropathy CHR Rat KidneyNephropathy	LibS VM MLR A MLR A	TP CDK, TA,	0	207	0	36	243	0.85		0.	0.15 0.25	0.	1.	0.5	-99.0	8.93 5.87	.09	36
KidneyNephropathy CHR Rat KidneyNephropathy CHR Rat KidneyNephropathy CHR Rat KidneyNephropathy CHR Rat KidneyNephropathy	LibS VM MLR A MLR A MLR A	TP CDK, TA, TP	0	207	0 87	36 24	243 241	0.85	0.1	0. 0.29 0.5		0.	1. 0.58 0.59	0.5	-99.0 -99.1	8.93 5.87 6.08	.09	36 34
KidneyNephropathy CHR Rat KidneyNephropathy	LibS VM MLR A MLR A MLR A MLR A	TP CDK, TA, TP CDK, TA	0 10 17	207 120 122	0 87 85	36 24 17	243 241 241	0.85 0.54 0.58	0.1	0. 0.29 0.5	0.25	0. 0.29 0.5	1. 0.58 0.59	0.5 0.44 0.54	-99.0 -99.1 -98.9	8.93 5.87 6.08 5.21	.09	36 34 34
KidneyNephropathy CHR Rat KidneyNephropathy	LibS VM MLR A MLR A MLR A MLR A MLR A	TP CDK, TA, TP CDK, TA CDK, TP	0 10 17 19	207 120 122 78	0 87 85 129	36 24 17 15	243 241 241 241	0.85 0.54 0.58 0.4	0.1 0.17 0.13	0. 0.29 0.5 0.56	0.25	0. 0.29 0.5 0.56	1. 0.58 0.59	0.5 0.44 0.54 0.47	-99.0 -99.1 -98.9 -99.1	8.93 5.87 6.08 5.21 6.17	.09 0.06	36 34 34 34
KidneyNephropathy CHR Rat	LibS VM MLR A MLR A MLR A MLR A	TP CDK, TA, TP CDK, TA CDK, TP TA, TP	0 10 17 19 15	207 120 122 78 122	0 87 85 129 85	36 24 17 15 21	243 241 241 241 243	0.85 0.54 0.58 0.4 0.56	0.1 0.17 0.13 0.15	0. 0.29 0.5 0.56	0.25 0.21 0.22	0. 0.29 0.5 0.56 0.42	1. 0.58 0.59 0.38 0.59	0.5 0.44 0.54 0.47	-99.0 -99.1 -98.9 -99.1	8.93 5.87 6.08 5.21 6.17 6.	.09 0.06 .046 0.	36 34 34 34 36

CHR Rat KidneyNephropathy	PLS	CDK, TA	6	147	60	28	241	0.63	0.09	0.18	0.12	0.18	0.71	0.44	-99.1	6.11	.089	34
CHR Rat KidneyNephropathy	PLS	CDK, TP	10	144	63	24	241	0.64	0.14	0.29	0.19	0.29	0.7	0.49	-99.0	6.37	.008	34
CHR Rat KidneyNephropathy	PLS	TA, TP	8	138	69	28	243	0.6	0.1	0.22	0.14	0.22	0.67	0.44	-99.1	6.18	.085	36
CHR Rat KidneyNephropathy	PLS	TA	11	140	67	25	243	0.62	0.14	0.31	0.19	0.31	0.68	0.49	-99.0	6.41	.014	36
CHR Rat KidneyNephropathy	PLS	TP	9	157	50	27	243	0.68	0.15	0.25	0.19	0.25	0.76	0.5	-99.0	6.7	0.01	36
CHR Rat KidneyNephropathy	J48	CDK, TA, TP	8	165	42	26	241	0.72	0.16	0.24	0.19	0.24	0.8	0.52	-99.0	6.78	0.03	34
CHR Rat KidneyNephropathy	J48	CDK, TA	10	165	42	24	241	0.73	0.19	0.29	0.23	0.29	0.8	0.55	-98.9			34
CHR Rat		·																
KidneyNephropathy CHR Rat	J48	CDK, TP	8	165	42	26	241	0.72	0.16	0.24	0.19	0.24	0.8	0.52	-99.0			34
KidneyNephropathy CHR Rat	J48	TA, TP	7	158	49	29	243	0.68	0.13	0.19	0.15	0.19	0.76	0.48	-99.0	6.56	.036	36
KidneyNephropathy CHR Rat	J48	TA	7	164	43	29	243	0.7	0.14	0.19	0.16	0.19	0.79	0.49	-99.0	6.73	.012	36
KidneyNephropathy CHR Rat	J48	TP CDK, TA,	10	165	42	26	243	0.72	0.19	0.28	0.23	0.28	8.0	0.54	-98.9	6.99	0.06	36
KidneyNephropathy	RF	TP	11	122	85	23	241	0.55	0.11	0.32	0.17	0.32	0.59	0.46	-99.1	5.96	.062	34
CHR Rat KidneyNephropathy	RF	CDK, TA	14	127	80	20	241	0.59	0.15	0.41	0.22	0.41	0.61	0.51	-99.0	6.15	0.02	34
CHR Rat KidneyNephropathy	RF	CDK, TP	14	142	65	20	241	0.65	0.18	0.41	0.25	0.41	0.69	0.55	-98.9	6.47	0.07	34
CHR Rat KidneyNephropathy	RF	TA, TP	13	108	99	23	243	0.5	0.12	0.36	0.18	0.36	0.52	0.44	-99.1	5.85	.083	36
CHR Rat KidneyNephropathy	RF	TA	10	132	75	26	243	0.58	0.12	0.28	0.17	0.28	0.64	0.46	-99.1	6.19	.063	36
CHR Rat KidneyNephropathy	RF	TP	14	146	61	22	243	0.66	0.19	0.39	0.25	0.39	0.71	0.55	-98.9	6.66	0.07	36
	FSM																	
CHR Rat KidneyNephropathy	LR	Adriana	10	128	78	25	241	0.57	0.11	0.29	0.16	0.29	0.62	0.45	-99.1	6.08	.068	35
CHR Rat	FSM	ALogPS,																
KidneyNephropathy	LR	OEstate	12	138	69	24	243	0.62	0.15	0.33	0.21	0.33	0.67	0.5	-99.0	6.41	0.	36
CHR Rat KidneyNephropathy	FSM LR	CDK	11	143	64	23	241	0.64	0.15	0.32	0.2	0.32	0.69	0.51	-99.0	6.4	0.01	34
				110				0.01	0.10	0.02		0.02	0.00	0.01	00.0	0.1	0.01	<u> </u>
CHR Rat KidneyNephropathy	LR	Chemaxo n	13	143	64	23	243	0.64	0.17	0.36	0.23	0.36	0.69	0.53	-98.9	6.56	0.04	36
CHR Rat	FSM																	
KidneyNephropathy	LR	Dragon6	16	154	53	20	243	0.7	0.23	0.44	0.3	0.44	0.74	0.59	-98.8	6.88	0.15	36
CHR Rat		Fragment	10	150	5 7	00	040	0.07	0.40	0.00	0.05	0.00	0.70	0.54	00.0	6.70	0.07	20
KidneyNephropathy	LR	or	13	150	57	23	243	0.67	0.19	0.36	0.25	0.36	0.72	0.54	-98.9	0.72	0.07	36
CHR Rat KidneyNephropathy	FSM LR	GSFrag	11	154	53	25	243	0.68	0.17	0.31	0.22	0.31	0.74	0.52	-99.0	6.74	0.04	36
CHR Rat KidneyNephropathy	FSM LR	Inductive	17	108	99	19	243	0.51	0.15	0.47	0.22	0.47	0.52	0.5	-99.0	5.92	.004	36
CHR Rat KidneyNephropathy	FSM LR	Mera, Mersy	17	132	75	18	242	0.62	0.18	0.49	0.27	0.49	0.64	0.56	-98.9	6.34	0.09	35
CHR Rat KidneyNephropathy	FSM LR	QNPR	11	154	53	25	243	0.68	0.17	0.31	0.22	0.31	0.74	0.52	-99.0	6.74	0.04	36

CHR Rat KidneyNephropathy	FSM LR	Spectrop hores	10	153	54	26	243	0.67	0.16	0.28	0.2	0.28	0.74	0.51	-99.0	6.66	0.01	36
CHR Rat KidneyNephropathy	KNN	Adriana	7	157	49	28	241	0.68	0.13	0.2	0.15	0.2	0.76	0.48	-99.0	6.52	.032	35
CHR Rat KidneyNephropathy	KNN	ALogPS, OEstate	19	95	112	17	243	0.47	0.15	0.53	0.23	0.53	0.46	0.49	-99.0	5.67	.009	36
CHR Rat KidneyNephropathy	KNN	_	11	134	73	23	241	0.6	0.13	0.32	0.19	0.32	0.65	0.49	-99.0	6.2	.021	34
CHR Rat KidneyNephropathy	KNN	Chemaxo n	13	136	71	23	243	0.61	0.15	0.36	0.22	0.36	0.66	0.51	-99.0	6.41	0.01	36
CHR Rat KidneyNephropathy	KNN	Dragon6	16	151	56	20	243	0.69	0.22	0.44	0.3	0.44	0.73	0.59	-98.8	6.81	0.14	36
CHR Rat KidneyNephropathy	KNN	Fragment or	26	95	112	10	243	0.5	0.19	0.72	0.3	0.72	0.46	0.59	-98.8	5.46	0.13	36
CHR Rat KidneyNephropathy	KNN	GSFrag	6	142	65	30	243	0.61	0.08	0.17	0.11	0.17	0.69	0.43	-99.1	6.07	.115	36
CHR Rat KidneyNephropathy	KNN	Inductive	10	167	40	26	243	0.73	0.2	0.28	0.23	0.28	0.81	0.54	-98.9	7.05	0.07	36
CHR Rat KidneyNephropathy	KNN	Mera, Mersy	8	160	47	27	242	0.69	0.15	0.23	0.18	0.23	0.77	0.5	-99.0	6.67	0.	35
CHR Rat KidneyNephropathy	KNN	QNPR	20	109	98	16	243	0.53	0.17	0.56	0.26	0.56	0.53	0.54	-98.9	5.93	0.06	36
CHR Rat KidneyNephropathy	KNN	Spectrop hores	12	158	49	24	243	0.7	0.2	0.33	0.25	0.33	0.76	0.55	-98.9	6.89	0.08	36
CHR Rat KidneyNephropathy	LibS VM	Adriana	0	198	8	35	241	0.82	0.	0.		0.	0.96	0.48	-99.0	6.03	.076	35
CHR Rat KidneyNephropathy	LibS VM	ALogPS, OEstate	2	197	10	34	243	0.82	0.17	0.06	0.08	0.06	0.95	0.5	-99.0	7.39	0.01	36
CHR Rat KidneyNephropathy	LibS VM	CDK	0	205	2	34	241	0.85	0.	0.		0.	0.99	0.5	-99.0	7.26	.037	34
CHR Rat KidneyNephropathy	LibS VM	Chemaxo n	0	198	9	36	243	0.81	0.	0.		0.	0.96	0.48	-99.0	5.94	.082	36
CHR Rat KidneyNephropathy	LibS VM	Dragon6	0	206	1	36	243	0.85	0.	0.		0.	1.	0.5	-99.0	7.83	.027	36
CHR Rat KidneyNephropathy	LibS VM	Fragment or	4	189	18	32	243	0.79	0.18	0.11	0.14	0.11	0.91	0.51	-99.0	7.31	0.03	36
CHR Rat KidneyNephropathy	LibS VM	GSFrag	1	196	11	35	243	0.81	0.08	0.03	0.04	0.03	0.95	0.49	-99.0	6.81	.042	36
CHR Rat KidneyNephropathy	LibS VM	Inductive	2	193	14	34	243	0.8	0.13	0.06	0.08	0.06	0.93	0.49	-99.0	7.05	.017	36
CHR Rat KidneyNephropathy	LibS VM	Mera, Mersy	0	203	4	35	242	0.84	0.	0.		0.	0.98	0.49	-99.0	6.69	.053	35
CHR Rat KidneyNephropathy	LibS VM	QNPR	1	193	14	35	243	0.8	0.07	0.03	0.04	0.03	0.93	0.48	-99.0	6.57	.059	36
CHR Rat KidneyNephropathy	VM	Spectrop hores	9	187	20	27	243	0.81	0.31	0.25	0.28	0.25	0.9	0.58	-98.8	7.78	0.17	36
CHR Rat KidneyNephropathy	MLR A	Adriana	14	128	78	21	241	0.59	0.15	0.4	0.22	0.4	0.62	0.51	-99.0	6.24	0.02	35
CHR Rat KidneyNephropathy	MLR A	ALogPS, OEstate	11	120	87	25	243	0.54	0.11	0.31	0.16	0.31	0.58	0.44	-99.1	6.	.083	36

CHR Rat KidneyNephropathy	MLR A	CDK	15	121	86	19	241	0.56	0.15	0.44	0.22	0.44	0.58	0.51	-99.0 6	3.05	0.02	34
CHR Rat	MLR	Chemaxo																
KidneyNephropathy CHR Rat	A MLR	n	15	137	70	21	243	0.63	0.18	0.42	0.25	0.42	0.66	0.54	-98.9 6	0.40	0.06	36
KidneyNephropathy	A MIR	Dragon6 Fragment	21	66	141	15	243	0.36	0.13	0.58	0.21	0.58	0.32	0.45	-99.1 5	5.05	.074	36
CHR Rat KidneyNephropathy	A	or	18	135	72	18	243	0.63	0.2	0.5	0.29	0.5	0.65	0.58	-98.8	3.46	0.11	36
CHR Rat	MLR																	
KidneyNephropathy	A MLR	GSFrag	21	109	98	15	243	0.53	0.18	0.58	0.27	0.58	0.53	0.55	-98.9 5	5.91	80.0	36
CHR Rat KidneyNephropathy	Α	Inductive	13	138	69	23	243	0.62	0.16	0.36	0.22	0.36	0.67	0.51	-99.0 6	6.45	0.02	36
CHR Rat KidneyNephropathy	MLR A	Mera, Mersy	18	107	100	17	242	0.52	0.15	0.51	0.24	0.51	0.52	0.52	-99.0 5	5.85	0.02	35
CHR Rat	MLR	Wicioy	10	107	100	- 17	272	0.02	0.10	0.01	0.24	0.01	0.02	0.02	-55.0 0	5.00	0.02	
KidneyNephropathy	A MIR	QNPR Spectrop	17	139	68	19	243	0.64	0.2	0.47	0.28	0.47	0.67	0.57	-98.9	6.54	0.11	36
CHR Rat KidneyNephropathy	A	hores	14	132	75	22	243	0.6	0.16	0.39	0.22	0.39	0.64	0.51	-99.0	3.35	0.02	36
CHR Rat KidneyNephropathy	PLS	Adriana	11	134	72	24	241	0.6	0.13	0.31	0.19	0.31	0.65	0.48	-99.0 6	6.26	.026	35
CHR Rat		ALogPS,																\neg
KidneyNephropathy	PLS	OEstate	11	143	64	25	243	0.63	0.15	0.31	0.2	0.31	0.69	0.5	-99.0 6	5.48	.003	36
CHR Rat KidneyNephropathy	PI S	CDK	11	133	74	23	241	0.6	0.13	0.32	0.18	0.32	0.64	0.48	-99.0 6	3 18	025	34
CHR Rat	, LO	Chemaxo	- 11	100	1-7			0.0	0.10	0.02	0.10	0.02	0.04	0.70	33.0 (J. 10	.020	J-1
KidneyNephropathy	PLS	n	15	136	71	21	243	0.62	0.17	0.42	0.25	0.42	0.66	0.54	-98.9	5.46	0.05	36
CHR Rat KidneyNephropathy	PLS	Dragon6	13	150	57	23	243	0.67	0.19	0.36	0.25	0.36	0.72	0.54	-98.9 6	5.72	0.07	36
CHR Rat	DLC	Fragment	15	140	E 0	24	242	0.67	0.0	0.40	0.27	0.42	0.74	0 F7	000	2 70	0.1	26
KidneyNephropathy CHR Rat	PLS	or	15	148	59	21	243	0.67	0.2	0.42	0.27	0.42	0.71	0.57	-98.9 6	0.72	0.1	36
KidneyNephropathy	PLS	GSFrag	12	149	58	24	243	0.66	0.17	0.33	0.23	0.33	0.72	0.53	-98.9	6.66	0.04	36
CHR Rat KidneyNephropathy	PLS	Inductive	12	148	59	24	243	0.66	0.17	0.33	0.22	0.33	0.71	0.52	-99.0 6	6.64	0.04	36
CHR Rat KidneyNephropathy	PLS	Mera, Mersy	13	129	78	22	242	0.59	0.14	0.37	0.21	0.37	0.62	0.5	-99.0 6	3 22	004	35
CHR Rat	1 LO	IVICISY	13	123	70		242	0.55	0.14	0.57	0.21	0.57	0.02	0.5	-99.0 0	J.ZZ	.004	33
KidneyNephropathy	PLS	QNPR	14	155	52	22	243	0.7	0.21	0.39	0.27	0.39	0.75	0.57	-98.9	3.87	0.11	36
CHR Rat KidneyNephropathy	PLS	Spectrop hores	13	141	66	23	243	0.63	0.16	0.36	0.23	0.36	0.68	0.52	-99.0 6	3 51	0.03	36
CHR Rat KidneyNephropathy	J48	Adriana	8	173	33	27	241	0.05	0.10	0.30	0.23	0.30	0.84	0.52	-98.9		0.06	35
таспоуноринораціу	0-70	Auriaria	- 0	173	- 55	۷.	<u> </u>	0.13	0.2	0.20	0.21	0.20	0.04	0.00	-50.5	1.1	0.00	- 33
CHR Rat		ALogPS,					_											
KidneyNephropathy CHR Rat	J48	OEstate	9	156	51	27	243	0.68	0.15	0.25	0.19	0.25	0.75	0.5	-99.0	6.68	0.	36
CHR Rat KidneyNephropathy	J48	CDK	10	152	55	24	241	0.67	0.15	0.29	0.2	0.29	0.73	0.51	-99.0	3.56	0.02	34
CHR Rat	140	Chemaxo	4.0	450			0.45	0.00	0.45	0.00	0.01	0.00	0 ==	0.50			0.00	<u></u>
KidneyNephropathy CHR Rat	J48	n	10	156	51	26	243	0.68	0.16	0.28	0.21	0.28	0.75	0.52	-99.0 6	j.74	0.03	36
KidneyNephropathy	J48	Dragon6	12	154	53	24	243	0.68	0.18	0.33	0.24	0.33	0.74	0.54	-98.9	3.78	0.06	36
CHR Rat KidneyNephropathy	J48	Fragment or	11	160	47	25	243	0.7	0.19	0.31	0.23	0.31	0.77	0.54	-98.9	69	0.07	36
CHR Rat KidneyNephropathy	J48	GSFrag	10	154	53	26	243	0.67	0.19	0.31	0.23	0.31	0.74	0.54	-99.0			36
CHR Rat																		
KidneyNephropathy	J48	Inductive Mera,	10	155	52	26	243	0.68	0.16	0.28	0.2	0.28	0.75	0.51	-99.0 6	5.71	0.02	36
CHR Rat KidneyNephropathy	J48	Mersy	10	166	41	25	242	0.73	0.2	0.29	0.23	0.29	8.0	0.54	-98.9 6	5.98	80.0	35
CHR Rat KidneyNephropathy	J48	QNPR	9	165	42	27	243	0.72	0.18	0.25	0.21	0.25	0.8	0.52	-99.0	5.92	0.04	36
CHR Rat		Spectrop																
KidneyNephropathy	J48	hores	10	150	57	26	243	0.66	0.15	0.28	0.19	0.28	0.72	0.5	-99.0	5.59	0.	36
CHR Rat LiverHypertrophy	RF	Adriana	39	109	69	24	241	0.61	0.36	0.62	0.46	0.62	0.61	0.62	-98.8 7	7.33	0.2	63

CHR Rat LiverHypertrophy	RF	ALogPS, OEstate	44	113	67	19	243	0.65	0.4	0.7	0.51	0.7	0.63	0.66	-98.7	7.29 0.2	29 63
CHR Rat LiverHypertrophy	RF	CDK	44	112	66	19	241	0.65	0.4	0.7	0.51	0.7	0.63	0.66	-98.7	7.29 0.2	29 63
CHR Rat LiverHypertrophy	RF	Chemaxo n	44	115	65	19	243	0.65	0.4	0.7	0.51	0.7	0.64	0.67	-98.7	7.33 0	.3 63
CHR Rat LiverHypertrophy	RF	Dragon6	42	113	67	21	243	0.64	0.39	0.67	0.49	0.67	0.63	0.65	-98.7	7.34 0.2	26 63
CHR Rat LiverHypertrophy	RF	Fragment or	37	107	73	26	243	0.59	0.34	0.59	0.43	0.59	0.59	0.59	-98.8	7.28 0.1	16 63
CHR Rat LiverHypertrophy	RF	GSFrag	42	113	67	21	243	0.64	0.39	0.67	0.49	0.67	0.63	0.65	-98.7	7.34 0.2	26 63
CHR Rat LiverHypertrophy	RF	Inductive	45	114	66	18	243	0.65	0.41	0.71	0.52	0.71	0.63	0.67	-98.7	7.28 0.3	31 63
CHR Rat LiverHypertrophy	RF	Mera, Mersy	43	102	77	20	242	0.6	0.36	0.68	0.47	0.68	0.57	0.63	-98.7	7.07 0.2	22 63
CHR Rat LiverHypertrophy	RF	QNPR	37	107	73	26	243	0.59	0.34	0.59	0.43	0.59	0.59	0.59	-98.8	7.28 0.1	16 63
CHR Rat LiverHypertrophy	RF	Spectrop hores	43	115	65	20	243	0.65	0.4	0.68	0.5	0.68	0.64	0.66	-98.7	7.36 0.2	28 63
CHR Rat LiverHypertrophy	ASN N	Adriana	40	112	66	23	241	0.63	0.38	0.63	0.47	0.63	0.63	0.63	-98.7	7.38 0.2	23 63
CHR Rat LiverHypertrophy	ASN N	ALogPS, OEstate	39	123	57	24	243	0.67	0.41	0.62	0.49	0.62	0.68	0.65	-98.7	7.64 0.2	27 63
CHR Rat LiverHypertrophy	ASN N	CDK	38	103	75	25	241	0.59	0.34	0.6	0.43	0.6	0.58	0.59	-98.8	7.2 0.1	
CHR Rat LiverHypertrophy	ASN N	Chemaxo n	37	120	60	26	243	0.65	0.38	0.59	0.46	0.59	0.67	0.63	-98.7	7.59 0.2	23 63
CHR Rat LiverHypertrophy	ASN N	Dragon6	35	119	61	28	243	0.63	0.36	0.56	0.44	0.56	0.66	0.61	-98.8	7.58 0.1	19 63
CHR Rat LiverHypertrophy	ASN N	Fragment or	33	125	55	30	243	0.65	0.38	0.52	0.44	0.52	0.69	0.61	-98.8	7.75 0	.2 63
CHR Rat LiverHypertrophy	ASN N	GSFrag	40	133	47	23	243	0.71	0.46	0.63	0.53	0.63	0.74	0.69	-98.6	7.89 0.3	34 63
CHR Rat LiverHypertrophy	ASN N	Inductive	39	109	71	24	243	0.61	0.35	0.62	0.45	0.62	0.61	0.61	-98.8	7.3 0	.2 63
CHR Rat LiverHypertrophy	ASN N	Mera, Mersy	36	116	63	27	242	0.63	0.36	0.57	0.44	0.57	0.65	0.61	-98.8	7.52 0	.2 63
CHR Rat LiverHypertrophy	ASN N	QNPR	38	123	57	25	243	0.66	0.4	0.6	0.48	0.6	0.68	0.64	-98.7	7.65 0.2	26 63
CHR Rat LiverHypertrophy	ASN N	hores	44	118	62	19	243	0.67	0.42	0.7	0.52	0.7	0.66	0.68	-98.6	7.41 0.3	31 63
CHR Rat LiverHypertrophy	N	CDK, TA, TP	23	117	61	40	241	0.58	0.27	0.37	0.31	0.37	0.66	0.51	-99.0	7.51 0.0)2 63
CHR Rat LiverHypertrophy	ASN N	CDK, TA	27	110	68	36	241	0.57	0.28	0.43	0.34	0.43	0.62	0.52	-99.0	7.39 0.0	04 63
CHR Rat LiverHypertrophy	ASN N	CDK, TP	30	123	55	33	241	0.63	0.35	0.48	0.41	0.48	0.69	0.58	-98.8	7.73 0.1	15 63
CHR Rat LiverHypertrophy	ASN N	TA, TP	27	113	67	36	243	0.58	0.29	0.43	0.34	0.43	0.63	0.53	-98.9	7.43 0.0)5 63
CHR Rat LiverHypertrophy	ASN N	TA	25	117	63	38	243	0.58	0.28	0.4	0.33	0.4	0.65	0.52	-99.0	7.5 0.0)4 63
CHR Rat LiverHypertrophy	ASN N	TP	28	113	67	35	243	0.58	0.29	0.44	0.35	0.44	0.63	0.54	-98.9	7.44 0.0	06 63
CHR Rat LiverHypertrophy	FSM LR	CDK, TA, TP	28	125	53	35	241	0.63	0.35	0.44	0.39	0.44	0.7	0.57	-98.9	7.77 0.1	14 63
CHR Rat LiverHypertrophy	FSM LR	CDK, TA	26	111	67	37	241	0.57	0.28	0.41	0.33	0.41	0.62	0.52	-99.0	7.4 0.0)3 63
CHR Rat LiverHypertrophy	FSM LR	CDK, TP	32	118	60	31	241	0.62	0.35	0.51	0.41	0.51	0.66	0.59	-98.8	7.6 0.1	15 63

CHR Rat LiverHypertrophy	FSM LR	TA, TP	28	103	77	35	243	0.54	0.27	0.44	0.33	0.44	0.57	0.51	-99.0 7.21 0	.01 6
CHR Rat LiverHypertrophy	FSM LR	TA	26	116	64	37	243	0.58	0.29	0.41	0.34	0.41	0.64	0.53	-98.9 7.49 0	.05 6
CHR Rat LiverHypertrophy	FSM LR	TP	33	106	74	30	243	0.57	0.31	0.52	0.39	0.52	0.59	0.56	-98.9 7.29	0.1 6
CHR Rat LiverHypertrophy	KNN	CDK, TA, TP	28	119	59	35	241	0.61	0.32	0.44	0.37	0.44	0.67	0.56	-98.9 7.62	0.1 6
CHR Rat LiverHypertrophy	KNN	CDK, TA	19	143	35	44	241	0.67	0.35	0.3	0.32	0.3	0.8	0.55	-98.9 8.16 0	.11 6
CHR Rat LiverHypertrophy	KNN	CDK, TP	41	84	94	22	241	0.52	0.3	0.65	0.41	0.65	0.47	0.56	-98.9 6.73 0	.11 6
CHR Rat LiverHypertrophy	KNN	TA, TP	37	109	71	26	243	0.6	0.34	0.59	0.43	0.59	0.61	0.6	-98.8 7.33 0	.17 6
CHR Rat LiverHypertrophy	KNN	TA	19	140	40	44	243	0.65	0.32	0.3	0.31	0.3	0.78	0.54	-98.9 8.01 0	.08 6
CHR Rat LiverHypertrophy	KNN	TP	41	89	91	22	243	0.53	0.31	0.65	0.42	0.65	0.49	0.57	-98.9 6.82 0	.13 6
CHR Rat LiverHypertrophy	LibS VM	CDK, TA, TP	19	145	33	44	241	0.68	0.37	0.3	0.33	0.3	0.81	0.56	-98.9 8.23 0	.12 6
CHR Rat LiverHypertrophy	LibS VM	CDK, TA	16	152	26	47	241	0.7	0.38	0.25	0.3	0.25	0.85	0.55	-98.9 8.41 0	.12 6
CHR Rat LiverHypertrophy	LibS VM	CDK, TP	21	142	36	42	241	0.68	0.37	0.33	0.35	0.33	0.8	0.57	-98.9 8.18 0	.14 6
CHR Rat LiverHypertrophy	LibS VM	TA, TP	16	144	36	47	243	0.66	0.31	0.25	0.28	0.25	0.8	0.53	-98.9 8.04 0	.06 6
CHR Rat LiverHypertrophy	LibS VM	TA	18	137	43	45	243	0.64	0.3	0.29	0.29	0.29	0.76	0.52	-99.0 7.89 0	.05 6
CHR Rat LiverHypertrophy	LibS VM	TP	17	136	44	46	243	0.63	0.28	0.27	0.27	0.27	0.76	0.51	-99.0 7.82 0	.03 6
CHR Rat LiverHypertrophy	MLR A	CDK, TA, TP	34	116	62	29	241	0.62	0.35	0.54	0.43	0.54	0.65	0.6	-98.8 7.55 0	.17 6
CHR Rat LiverHypertrophy	MLR A	CDK, TA	28	111	67	35	241	0.58	0.29	0.44	0.35	0.44	0.62	0.53	-98.9 7.42 0	.06 6
CHR Rat LiverHypertrophy	MLR A MLR	CDK, TP	35	83	95	28	241	0.49	0.27	0.56	0.36	0.56	0.47	0.51	-99.0 6.79 0	.02 6
CHR Rat LiverHypertrophy	A MLR	TA, TP	28	99	81	35	243	0.52	0.26	0.44	0.33	0.44	0.55	0.5	-99.0 7.12 .0	005 6
CHR Rat LiverHypertrophy CHR Rat	A MLR	TA	27	104	76	36	243	0.54	0.26	0.43	0.33	0.43	0.58	0.5	-99.0 7.22 0	.01 6
LiverHypertrophy CHR Rat	A	TP CDK, TA,	27	97	83	36	243	0.51	0.25	0.43	0.31	0.43	0.54	0.48	-99.0 7.07 .0)29 6
LiverHypertrophy CHR Rat	PLS	TP	26	119	59	37	241	0.6	0.31	0.41	0.35	0.41	0.67	0.54	-98.9 7.6 0	.07 6
LiverHypertrophy CHR Rat		CDK, TA	35	117	61	28	241	0.63	0.36	0.56	0.44	0.56	0.66	0.61	-98.8 7.57 0	
LiverHypertrophy CHR Rat LiverHypertrophy		CDK, TP	36 30	115 114	63 66	27 33	241	0.63	0.36	0.57	0.44	0.57	0.65	0.61	-98.8 7.51 0 -98.9 7.47	.19 6 0.1 6
CHR Rat LiverHypertrophy	PLS		30	114	66	33	243	0.59	0.31	0.48	0.38	0.48	0.63	0.55		0.1 6
CHR Rat LiverHypertrophy	PLS	TP	33	107	73	30	243	0.58	0.31	0.52	0.39	0.52	0.59	0.56		0.1 6
CHR Rat LiverHypertrophy	J48	CDK, TA, TP	21	125	53	42	241	0.61	0.28	0.33	0.31	0.33	0.7	0.52	-99.0 7.67 0	.03 6

CHR Rat LiverHypertrophy	J48	CDK, TA	21	119	59	42	241	0.58	0.26	0.33	0.29	0.33	0.67	0.5	-99.0	7.51	0.	63
CHR Rat LiverHypertrophy	J48	CDK, TP	36	130	48	27	241	0.69	0.43	0.57	0.49	0.57	0.73	0.65	-98.7	7.9	0.28	63
CHR Rat LiverHypertrophy	J48	TA, TP	18	120	60	45	243	0.57	0.23	0.29	0.26	0.29	0.67	0.48	-99.0	7.42	.045	63
CHR Rat LiverHypertrophy	J48	TA	21	117	63	42	243	0.57	0.25	0.33	0.29	0.33	0.65	0.49	-99.0	7.43	.015	63
CHR Rat LiverHypertrophy	J48	TP	19	119	61	44	243	0.57	0.24	0.3	0.27	0.3	0.66	0.48	-99.0	7.43	.035	63
CHR Rat LiverHypertrophy	RF	CDK, TA, TP	31	97	81	32	241	0.53	0.28	0.49	0.35	0.49	0.54	0.52	-99.0	7.11	0.03	63
CHR Rat LiverHypertrophy	RF	CDK, TA	36	113	65	27	241	0.62	0.36	0.57	0.44	0.57	0.63	0.6	-98.8	7.46	0.18	63
CHR Rat LiverHypertrophy	RF	CDK, TP	40	99	79	23	241	0.58	0.34	0.63	0.44	0.63	0.56	0.6	-98.8			63
CHR Rat LiverHypertrophy	RF	TA, TP	34	98	82	29	243	0.54	0.29	0.54	0.38	0.54	0.54	0.54	-98.9		0.07	63
CHR Rat LiverHypertrophy	RF	TA	32	104	76	31	243	0.56	0.23	0.51	0.37	0.51	0.58	0.54	-98.9			63
CHR Rat LiverHypertrophy	RF	TP	32	98	82	31	243	0.53	0.28	0.51	0.36	0.51	0.54	0.53	-98.9			63
CHR Rat LiverHypertrophy	FSM LR	Adriana	42	102	76	21	241	0.6	0.36	0.67	0.46	0.67	0.57	0.62	-98.8			63
CHR Rat	FSM	ALogPS,																
LiverHypertrophy	LR	OEstate	38	117	63	25	243	0.64	0.38	0.6	0.46	0.6	0.65	0.63	-98.7	7.5	0.23	63
CHR Rat LiverHypertrophy	FSM LR	CDK	39	107	71	24	241	0.61	0.35	0.62	0.45	0.62	0.6	0.61	-98.8	7.28	0.19	63
CHR Rat LiverHypertrophy	FSM LR	Chemaxo n	42	108	72	21	243	0.62	0.37	0.67	0.47	0.67	0.6	0.63	-98.7	7.22	0.23	63
CHR Rat LiverHypertrophy	FSM LR	Dragon6	38	117	63	25	243	0.64	0.38	0.6	0.46	0.6	0.65	0.63	-98.7	7.5	0.23	63
CHR Rat LiverHypertrophy	FSM LR	Fragment or	32	119	61	31	243	0.62	0.34	0.51	0.41	0.51	0.66	0.58	-98.8	7.6	0.15	63
CHR Rat LiverHypertrophy	FSM LR	GSFrag	39	123	57	24	243	0.67	0.41	0.62	0.49	0.62	0.68	0.65	-98.7	7 64	0.27	63
CHR Rat	FSM																	
CHR Rat	LR FSM	Inductive Mera,	43	100	80	20	243	0.59	0.35	0.08	0.46	0.68	0.56	0.62	-98.8	7.02	0.21	63
LiverHypertrophy	LR	Mersy	37	114	65	26	242	0.62	0.36	0.59	0.45	0.59	0.64	0.61	-98.8	7.46	0.2	63
CHR Rat LiverHypertrophy	FSM LR	QNPR	39	117	63	24	243	0.64	0.38	0.62	0.47	0.62	0.65	0.63	-98.7	7.49	0.24	63
CHR Rat LiverHypertrophy	FSM LR	Spectrop hores	47	104	76	16	243	0.62	0.38	0.75	0.51	0.75	0.58	0.66	-98.7	6.98	0.28	63
CHR Rat LiverHypertrophy	KNN	Adriana	57	74	104	6	241	0.54	0.35	0.9	0.51	0.9	0.42	0.66	-98.7	5.59	0.3	63
CHR Rat LiverHypertrophy	KNN	ALogPS, OEstate	53	88	92	10	243	0.58	0.37	0.84	0.51	0.84	0.49	0.67	-98.7	6.29	0.29	63
CHR Rat LiverHypertrophy	KNN	CDK	50	89	89	13	241	0.58	0.36	0.79	0.5	0.79	0.5	0.65	-98.7	6.52	0.26	63

CHR Rat																
LiverHypertrophy	KNN	Dragon6	52	89	91	11	243	0.58	0.36	0.83	0.5	0.83	0.49	0.66	-98.7 6.38 0.28	63
CHR Rat LiverHypertrophy	KNN	Fragment or	48	93	87	15	243	0.58	0.36	0.76	0.48	0.76	0.52	0.64	-98.7 6.69 0.25	63
CHR Rat LiverHypertrophy	KNN	GSFrag	45	100	80	18	243	0.6	0.36	0.71	0.48	0.71	0.56	0.63	-98.7 6.96 0.24	63
CHR Rat LiverHypertrophy	KNN	Inductive	44	96	84	19	243	0.58	0.34	0.7	0.46	0.7	0.53	0.62	-98.8 6.9 0.2	63
CHR Rat LiverHypertrophy	KNN	Mera, Mersy	50	95	84	13	242	0.6	0.37	0.79	0.51	0.79	0.53	0.66	-98.7 6.65 0.29	63
CHR Rat LiverHypertrophy	KNN	QNPR	39	114	66	24	243	0.63	0.37	0.62	0.46	0.62	0.63	0.63	-98.7 7.42 0.22	63
CHR Rat	IZNINI	Spectrop	- -0	00	00	44	040	0.00	0.00	0.00	0.50	0.00	0.54	0.00	00.0 0.50 0.33	60
_iverHypertrophy	KININ	hores	52	98	82	11	243	0.62	0.39	0.83	0.53	0.83	0.54	0.68	-98.6 6.58 0.33	63
CHR Rat LiverHypertrophy	LibS VM	Adriana	39	124	54	24	241	0.68	0.42	0.62	0.5	0.62	0.7	0.66	-98.7 7.7 0.28	63
CHR Rat	LibS VM	ALogPS, OEstate	35	133	47	28	243	0.69	0.43	0.56	0.48	0.56	0.74	0.65	-98.7 7.95 0.27	63
		OLSidio	- 00	100			2-10	0.00	0.40	0.00	0.40	0.00	0.74	0.00	00.7 7.00 0.27	- 00
CHR Rat LiverHypertrophy	LibS VM	CDK	34	119	59	29	241	0.63	0.37	0.54	0.44	0.54	0.67	0.6	-98.8 7.62 0.19	63
CHR Rat LiverHypertrophy	LibS VM	Chemaxo n	30	131	49	33	243	0.66	0.38	0.48	0.42	0.48	0.73	0.6	-98.8 7.91 0.19	63
CHR Rat LiverHypertrophy	LibS VM	Dragon6	32	126	54	31	243	0.65	0.37	0.51	0.43	0.51	0.7	0.6	-98.8 7.77 0.19	63
	V	Bragono		120				0.00	0.01	0.01	0.10	0.01	0.7	0.0	00.0 7.77 0.10	- 00
CHR Rat _iverHypertrophy	LibS VM	Fragment or	26	147	33	37	243	0.71	0.44	0.41	0.43	0.41	0.82	0.61	-98.8 8.38 0.23	63
CHR Rat LiverHypertrophy	LibS VM	GSFrag	34	136	44	29	243	0.7	0.44	0.54	0.48	0.54	0.76	0.65	-98.7 8.05 0.28	63
CHR Rat LiverHypertrophy	LibS VM	Inductive	34	128	52	29	243	0.67	0.4	0.54	0.46	0.54	0.71	0.63	-98.7 7.82 0.23	63
CHR Rat LiverHypertrophy	LibS VM	Mera, Mersy	30	128	51	33	242	0.65	0.37	0.48	0.42	0.48	0.72	0.6	-98.8 7.84 0.18	63
CHR Rat LiverHypertrophy	LibS VM	QNPR	30	130	50	33	243	0.66	0.38	0.48	0.42	0.48	0.72	0.6	-98.8 7.88 0.19	63
CHR Rat LiverHypertrophy	LibS VM	Spectrop hores	42	120	60	21	243	0.67	0.41	0.67	0.51	0.67	0.67	0.67	-98.7 7.51 0.3	63
CHR Rat	MLR	110103	72	120			240	0.07								
	Α	Adriana	41	113	65	22	241	0.64	0.39	0.65	0.49	0.65	0.63	0.64	-98.7 7.39 0.25	63
iverHypertrophy		Adriana ALogPS, OEstate	41 35	113	65 67	22	241	0.64	0.39	0.65	0.49		0.63	0.64	-98.7 7.39 0.25 -98.8 7.44 0.16	63
CHR Rat LiverHypertrophy CHR Rat	MLR	ALogPS,														
CHR Rat LiverHypertrophy CHR Rat LiverHypertrophy CHR Rat LiverHypertrophy CHR Rat	MLR A MLR A MLR	ALogPS, OEstate	35	113	67	28	243	0.61	0.34	0.56	0.42	0.56	0.63	0.59	-98.8 7.44 0.16	63
CHR Rat LiverHypertrophy	MLR A MLR A MLR A MLR	ALogPS, OEstate CDK Chemaxo n	35 34 35	113 91 122	67 87 58	28 29 28	243 241 243	0.61 0.52 0.65	0.34 0.28 0.38	0.56 0.54 0.56	0.42 0.37 0.45	0.56 0.54 0.56	0.63 0.51 0.68	0.59 0.53 0.62	-98.8 7.44 0.16 -98.9 6.97 0.04 -98.8 7.66 0.21	63 63
CHR Rat LiverHypertrophy	MLR A MLR A MLR A MLR A	ALogPS, OEstate CDK Chemaxo n Dragon6 Fragment	35 34	113 91	67 87	28 29	243 241 243 243	0.61 0.52 0.65 0.5	0.34 0.28 0.38 0.26	0.56 0.54 0.56 0.49	0.42 0.37 0.45 0.34	0.56 0.54 0.56 0.49	0.63 0.51 0.68 0.5	0.59 0.53 0.62 0.5	-98.8 7.44 0.16 -98.9 6.97 0.04 -98.8 7.66 0.21 -99.0 6.93 .007	63 63
CHR Rat LiverHypertrophy CHR Rat LiverHypertrophy	MLR A MLR A MLR A MLR A	ALogPS, OEstate CDK Chemaxo n	35 34 35 31	113 91 122 90	67 87 58 90	28 29 28 32	243 241 243	0.61 0.52 0.65	0.34 0.28 0.38	0.56 0.54 0.56	0.42 0.37 0.45	0.56 0.54 0.56	0.63 0.51 0.68	0.59 0.53 0.62	-98.8 7.44 0.16 -98.9 6.97 0.04 -98.8 7.66 0.21	63 63 63

CHR Rat	MLR	Mera,															
LiverHypertrophy	Α	Mersy	33	95	84	30	242	0.53	0.28	0.52	0.37	0.52	0.53	0.53	-98.9 7.05	0.05	63
CHR Rat LiverHypertrophy	MLR A	QNPR	28	103	77	35	243	0.54	0.27	0.44	0.33	0.44	0.57	0.51	-99.0 7.21	0.01	63
CHR Rat LiverHypertrophy	MLR A	Spectrop hores	44	116	64	19	243	0.66	0.41	0.7	0.51	0.7	0.64	0.67	-98.7 7.36	0.3	63
CHR Rat	,,	110100		110				0.00	0.11	0.1	0.01	0.1	0.01	0.07	00.7 7.00	0.0	
LiverHypertrophy	PLS	Adriana	45	100	78	18	241	0.6	0.37	0.71	0.48	0.71	0.56	0.64	-98.7 6.98	0.24	63
CHR Rat LiverHypertrophy	PLS	ALogPS, OEstate	41	118	62	22	243	0.65	0.4	0.65	0.49	0.65	0.66	0.65	-98.7 7.48	0.27	63
CHR Rat LiverHypertrophy	PLS	CDK	40	105	73	23	241	0.6	0.35	0.63	0.45	0.63	0.59	0.61	-98.8 7.22	0.2	63
CHR Rat LiverHypertrophy	PLS	Chemaxo n	40	114	66	23	243	0.63	0.38	0.63	0.47	0.63	0.63	0.63	-98.7 7.4	0.24	63
CHR Rat LiverHypertrophy	DI S	Dragon6	38	115	65	25	243	0.63	0.37	0.6	0.46	0.6	0.64	0.62	-98.8 7.46	0.21	63
CHR Rat	1 LO	Fragment	30	113	00		240	0.00	0.57	0.0	0.40	0.0	0.04	0.02	-90.0 7.40	0.21	- 00
LiverHypertrophy	PLS	or	34	119	61	29	243	0.63	0.36	0.54	0.43	0.54	0.66	0.6	-98.8 7.59	0.18	63
CHR Rat LiverHypertrophy	PLS	GSFrag	38	119	61	25	243	0.65	0.38	0.6	0.47	0.6	0.66	0.63	-98.7 7.55	0.24	63
CHR Rat LiverHypertrophy	PLS	Inductive	42	98	82	21	243	0.58	0.34	0.67	0.45	0.67	0.54	0.61	-98.8 6.99	0.19	63
CHR Rat LiverHypertrophy		Mera, Mersy	42	107	72	21	242	0.62	0.37	0.67	0.47	0.67	0.6	0.63		0.23	63
CHR Rat		QNPR	40	118	62	23	243	0.65	0.37	0.67	0.47	0.67	0.66	0.65		0.26	63
LiverHypertrophy CHR Rat		Spectrop															
LiverHypertrophy	PLS	hores	51	106	74	12	243	0.65	0.41	0.81	0.54	0.81	0.59	0.7	-98.6 6.82	0.35	63
CHR Rat LiverHypertrophy	J48	Adriana	33	128	50	30	241	0.67	0.4	0.52	0.45	0.52	0.72	0.62	-98.8 7.86	0.22	63
CHR Rat		ALogPS,															
LiverHypertrophy	J48	OEstate	43	127	53	20	243	0.7	0.45	0.68	0.54	0.68	0.71	0.69	-98.6 7.66	0.35	63
CHR Rat LiverHypertrophy	J48	CDK	32	121	57	31	241	0.63	0.36	0.51	0.42	0.51	0.68	0.59	-98.8 7.68	0.17	63
CHR Rat LiverHypertrophy	J48	Chemaxo n	33	128	52	30	243	0.66	0.39	0.52	0.45	0.52	0.71	0.62	-98.8 7.82	0.22	63
CHR Rat LiverHypertrophy	J48	Dragon6	28	134	46	35	243	0.67	0.38	0.44	0.41	0.44	0.74	0.59	-98.8 7.98	0.18	63
CHR Rat		Fragment															
LiverHypertrophy	J48	or	31	122	58	32	243	0.63	0.35	0.49	0.41	0.49	0.68	0.58	-98.8 7.67	0.15	63
CHR Rat LiverHypertrophy	J48	GSFrag	31	136	44	32	243	0.69	0.41	0.49	0.45	0.49	0.76	0.62	-98.8 8.05	0.23	63
CHR Rat LiverHypertrophy	J48	Inductive	31	141	39	32	243	0.71	0.44	0.49	0.47	0.49	0.78	0.64	-98.7 8.21	0.27	63
CHR Rat LiverHypertrophy	J48	Mera, Mersy	32	126	53	31	242	0.65	0.38	0.51	0.43	0.51	0.7	0.61	-98.8 7.79	0.10	63
CHR Rat		Mersy QNPR															
LiverHypertrophy CHR Rat	J48	Spectrop	29	122	58	34	243	0.62	0.33	0.46	0.39	0.46	0.68	0.57	-98.9 7.66		63
LiverHypertrophy	J48	hores	37	129	51	26	243	0.68	0.42	0.59	0.49	0.59	0.72	0.65	-98.7 7.82	0.28	63
DEV rabbit Developmental	RF	Adriana	69	57	69	35	230	0.55	0.5	0.66	0.57	0.66	0.45	0.56	-98.9 7.62	0.12	104
DEV rabbit		ALogPS,															
Developmental	RF	OEstate	54	55	72	50	231	0.47	0.43	0.52	0.47	0.52	0.43	0.48	-99.0 7.65	.048	104
DEV rabbit Developmental	RF	CDK	67	55	72	36	230	0.53	0.48	0.65	0.55	0.65	0.43	0.54	-98.9 7.54	0.08	103
DEV rabbit Developmental	RF	Chemaxo n	57	49	78	47	231	0.46	0.42	0.55	0.48	0.55	0.39	0.47	-99.1 7.45	.067	104
DEV rabbit Developmental	RF	Dragon6	65	48	79	39	231	0.49	0.45	0.63	0.52	0.63	0.38	0.5	-99.0 7.36		104
DEV rabbit		Fragment															
Llovolonmontal	RF	or	61	66	61	43	231	0.55	0.5	0.59	0.54	0.59	0.52	0.55	-98.9 7.97	U.11	104
Developmental DEV rabbit																	

DEV rabbit Developmental	RF	Inductive	66	48	79	38	231	0.49	0.46	0.63	0.53	0.63	0.38	0.51	-99.0	7.35	0.01	104
DEV rabbit Developmental	RF	Mera, Mersy	57	58	69	47	231	0.5	0.45	0.55	0.5	0.55	0.46	0.5	-99.0	7.74	0.	104
DEV rabbit																		
Developmental	RF	QNPR	56	68	59	48	231	0.54	0.49	0.54	0.51	0.54	0.54	0.54	-98.9	8.06	0.07	104
DEV rabbit Developmental	RF	Spectrop hores	67	58	69	37	231	0.54	0.49	0.64	0.56	0.64	0.46	0.55	-98.9	7 66	0.1	104
· ·	ASN	Hores	07	56	09	31	231	0.54	0.49	0.04	0.30	0.04	0.40	0.55	-90.9	7.00	<u> </u>	104
DEV rabbit Developmental	N	Adriana	62	78	48	42	230	0.61	0.56	0.6	0.58	0.6	0.62	0.61	-98.8	8.37	0.21	104
	A CNI	AL DC																
DEV rabbit Developmental	ASN N	ALogPS, OEstate	52	76	51	52	231	0.55	0.5	0.5	0.5	0.5	0.6	0.55	00 0	0 22	0.1	104
<u> </u>	ASN	OESiale	32	70	31	52	231	0.55	0.5	0.5	0.5	0.5	0.0	0.55	-98.9	0.32		104
DEV rabbit Developmental	N	CDK	56	70	57	47	230	0.55	0.5	0.54	0.52	0.54	0.55	0.55	-98.9	8.1	0.09	103
DEV rabbit	ASN	_						0.00	0.0		0.02	0.0.	0.00	0.00			0.00	
Developmental	N	n	56	76	51	48	231	0.57	0.52	0.54	0.53	0.54	0.6	0.57	-98.9	8.31	0.14	104
DEV rabbit	ASN																	
Developmental	N	Dragon6	56	76	51	48	231	0.57	0.52	0.54	0.53	0.54	0.6	0.57	-98.9	8.31	0.14	104
DEV rabbit	ASN	Fragment																
Developmental	N	or	56	76	51	48	231	0.57	0.52	0.54	0.53	0.54	0.6	0.57	-98.9	8.31	0.14	104
DEV rabbit	ASN																	
Developmental	N	GSFrag	50	79	48	54	231	0.56	0.51	0.48	0.5	0.48	0.62	0.55	-98.9	8.41	0.1	104
DEV rabbit	ASN						00.	0	o :-	0 10	0.10		o = :		00.5	0.00	0.00	40.
Developmental	N ACN	Inductive	51	69	58	53	231	0.52	0.47	0.49	0.48	0.49	0.54	0.52	-99.0	8.09	0.03	104
DEV rabbit		Mera,	E 2	74	EC	E 4	224	0.54	0.40	0.54	0.5	0.54	0.50	0.50	00.0	0.40	0.07	104
Developmental	N	Mersy	53	71	56	51	231	0.54	0.49	0.51	0.5	0.51	0.56	0.53	-98.9	8.16	0.07	104
DEV rabbit	ASN	QNPR	E	77	ΕO	49	224	0 57	0.50	0.52	0.52	0.52	0.64	0.57	00.0	0 25	0 14	104
Developmental	N ASN	Spectrop	55	11	50	49	231	0.57	0.52	0.53	0.53	0.53	0.61	0.57	-96.9	0.35	0.14	104
DEV rabbit Developmental	N	hores	56	61	66	48	231	0.51	0.46	0.54	0.5	0.54	0.48	0.51	_00 ∩	7 8/	0.02	104
		CDK, TA,	50	υı	00	+0	ا ب	0.01	0.40	0.04	0.5	0.04	0.40	0.01	-99.0	7.04	0.02	104
DEV rabbit Developmental	N	TP	50	75	52	53	230	0.54	0.49	0.49	0.49	0.49	0.59	0.54	-98 9	8.26	0.08	103
DEV rabbit	ASN			, 0		- 55	200	0.04	0.40	010	0.70	0.70	0.00	0.04	50.5	5.20	3.00	100
DEV rappit Developmental	N	CDK, TA	55	83	44	48	230	0.6	0.56	0.53	0.54	0.53	0.65	0.59	-98 8	8.53	0.19	103
DEV rabbit	ASN	J, 17.									0.01	0.00	0.00	0.00	50.0	3.50	30	
Developmental	N	CDK, TP	53	66	61	50	230	0.52	0.46	0.51	0.49	0.51	0.52	0.52	-99.0	7.98	0.03	103
DEV rabbit	ASN	, :-			•													
Developmental	N	TA, TP	56	75	52	48	231	0.57	0.52	0.54	0.53	0.54	0.59	0.56	-98.9	8.28	0.13	104
DEV rabbit	ASN																	
Developmental	N	TA	53	78	49	51	231	0.57	0.52	0.51	0.51	0.51	0.61	0.56	-98.9	8.38	0.12	104
DEV rabbit	ASN																	
Developmental	N	TP	48	67	60	56	231	0.5	0.44	0.46	0.45	0.46	0.53	0.49	-99.0	8.03	.011	104
	F01.	ODK T																
DEV rabbit		CDK, TA,	- 7	70	40	40	000	0.50	0.54	0.55	0.55	0.55	0.00	0.50	00.0	0.00	0.40	400
Developmental	LR	TP	57	79	48	46	230	0.59	0.54	0.55	0.55	0.55	0.62	0.59	-98.8	<u>ძ.39</u>	0.18	103
	FSM																	
DEV rabbit Developmental	LR	CDK, TA	59	79	48	44	230	0.6	0.55	0.57	0.56	0.57	0.62	0.6	_Q& &	ይ 38	0.19	103
Developmental	LN	ODIN, IA	Jä	13	70	74	230	0.0	0.00	0.01	0.00	0.07	0.02	0.0	-90.0	0.00	0.18	103
DEV rabbit	FSM																	
DEV rabbit Developmental	LR	CDK, TP	58	67	60	45	230	0.54	0.49	0.56	0.52	0.56	0.53	0.55	-98.9	8	0.09	103
		,																
DEV rabbit	FSM																	
Developmental	LR	TA, TP	60	62	65	44	231	0.53	0.48	0.58	0.52	0.58	0.49	0.53	-98.9	7.85	0.07	104
DEV rabbit	FSM																	
Developmental	LR	TA	52	68	59	52	231	0.52	0.47	0.5	0.48	0.5	0.54	0.52	-99.0	8.06	0.04	104
DEV rabbit	FSM																	
Developmental	LR	TP	55	68	59	49	231	0.53	0.48	0.53	0.5	0.53	0.54	0.53	-98.9	8.06	0.06	104
Borolopinontal		CDK, TA,																
DEV rabbit				00	ΕO	F 4	220	0.50	0.47	0.5	0.49	0.5	0.54	0.52	-99.0	8 N7	0.05	103
	KNN	TP	52	69	58	51	230	0.53	0.47	0.5	0.40	0.0	0.0 .	0.0=	00.0	0.07	0.00	
DEV rabbit		TP CDK, TA	52 65	66	61	38	230	0.53		0.63			0.52				0.15	

DEV rabbit Developmental	KNN	CDK, TP	62	61	66	41	230	0.53	0.48	0.6	0.54	0.6	0.48	0.54	-98.9 7.78 0.	08 103
DEV rabbit Developmental	KNN	TA, TP	61	55	72	43	231	0.5	0.46	0.59	0.51	0.59	0.43	0.51	-99.0 7.62 0.	02 104
DEV rabbit Developmental	KNN	TA	63	53	74	41	231	0.5	0.46	0.61	0.52	0.61	0.42	0.51	-99.0 7.55 0.	02 104
DEV rabbit Developmental	KNN		66	44	83	38	231	0.48	0.44	0.63	0.52	0.63	0.35	0.49		02 104
Sevelopmental					- 00	- 50	201	0.40	0.44	0.00	0.02	0.00	0.00	0.40	-55.0 1.22 .	JZ 10-
DEV rabbit Developmental	LibS VM	CDK, TA, TP	45	88	39	58	230	0.58	0.54	0.44	0.48	0.44	0.69	0.56	-98.9 8.69 0.	13 103
DEV rabbit	LibS															
Developmental	VM	CDK, TA	50	88	39	53	230	0.6	0.56	0.49	0.52	0.49	0.69	0.59	-98.8 8.71 0.	18 103
DEV rabbit	LibS			•												
Developmental	VM	CDK, TP	44	81	46	59	230	0.54	0.49	0.43	0.46	0.43	0.64	0.53	-98.9 8.44 0.	07 103
DEV rabbit Developmental	LibS VM	TA, TP	47	83	44	57	231	0.56	0.52	0.45	0.48	0.45	0.65	0.55	-98.9 8.54 0.	11 104
	LibS	•														
DEV rabbit Developmental	VM	TA	48	91	36	56	231	0.6	0.57	0.46	0.51	0.46	0.72	0.59	-98.8 8.83 0.	18 104
DEV rabbit	LibS															
Developmental DEV rabbit	VM MLR	TP CDK, TA,	31	99	28	73	231	0.56	0.53	0.3	0.38	0.3	0.78	0.54	-98.9 9. 0.	09 104
Developmental	A MLR	TP	58	76	51	45	230	0.58	0.53	0.56	0.55	0.56	0.6	0.58	-98.8 8.28 0.	16 103
DEV rabbit Developmental	Α	CDK, TA	62	75	52	41	230	0.6	0.54	0.6	0.57	0.6	0.59	0.6	-98.8 8.22 0.	19 103
DEV rabbit Developmental	MLR A	CDK, TP	52	66	61	51	230	0.51	0.46	0.5	0.48	0.5	0.52	0.51	-99.0 7.98 0.	02 103
DEV rabbit Developmental	MLR A	TA, TP	54	69	58	50	231	0.53	0.48	0.52	0.5	0.52	0.54	0.53	-98.9 8.09 0.	06 104
DEV rabbit Developmental	MLR A	TA	53	76	51	51	231	0.56	0.51	0.51	0.51	0.51	0.6	0.55	-98.9 8.32 0.	
DEV rabbit	MLR															
Developmental DEV rabbit	Α	TP CDK, TA,	64	65	62	40	231	0.56	0.51	0.62	0.56	0.62	0.51	0.56	-98.9 7.91 0.	
Developmental DEV rabbit	PLS	TP	50	74	53	53	230	0.54	0.49	0.49	0.49	0.49	0.58	0.53	-98.9 8.23 0.	07 103
Developmental	PLS	CDK, TA	57	84	43	46	230	0.61	0.57	0.55	0.56	0.55	0.66	0.61	-98.8 8.56 0.	22 103
DEV rabbit Developmental	PLS	CDK, TP	50	74	53	53	230	0.54	0.49	0.49	0.49	0.49	0.58	0.53	-98.9 8.23 0.	07 103
DEV rabbit Developmental	PLS	TA, TP	51	75	52	53	231	0.55	0.5	0.49	0.49	0.49	0.59	0.54	-98.9 8.28 0.	08 104
DEV rabbit Developmental	PLS	TA	53	75	52	51	231	0.55	0.5	0.51	0.51	0.51	0.59	0.55	-98.9 8.28 0	.1 104
DEV rabbit Developmental	PLS		49	64	63	55	231	0.49	0.44	0.47	0.45	0.47	0.5	0.49	-99.0 7.93 .0	25 104
DEV rabbit Developmental	J48	CDK, TA, TP	59	75	52	44	230	0.58	0.53	0.57	0.55	0.57	0.59	0.58	-98.8 8.24 0.	16 103
DEV rabbit Developmental	J48	CDK, TA	57	74	53	46	230	0.57	0.52	0.55	0.54	0.55	0.58	0.57	-98.9 8.22 0.	
DEV rabbit Developmental	J48	CDK, TP	47	77	50	56	230	0.54	0.48	0.46	0.47	0.46	0.61	0.53	-98.9 8.32 0.	
DEV rabbit		TA, TP	47	80	47	57	231		0.48		0.47		0.63	0.53	-98.9 8.44 0.	
Developmental DEV rabbit		· · · · · · · · · · · · · · · · · · ·						0.55		0.45		0.45				
Developmental DEV rabbit	J48	TA	44	73	54	60	231	0.51	0.45	0.42	0.44	0.42	0.57	0.5	-99.0 8.2 .0	
Developmental DEV rabbit	J48	TP CDK, TA,	46	71	56	58	231	0.51	0.45	0.44	0.45	0.44	0.56	0.5	-99.0 8.14	0. 104
Developmental	RF	TP	65	60	67	38	230	0.54	0.49	0.63	0.55	0.63	0.47	0.55	-98.9 7.72 0	.1 103
DEV rabbit Developmental	RF	CDK, TA	66	65	62	37	230	0.57	0.52	0.64	0.57	0.64	0.51	0.58	-98.8 7.87 0.	15 103

DEV rabbit Developmental	RF	CDK, TP	66	56	71	37	230	0.53	0.48	0.64	0.55	0.64	0.44	0.54	-98.9	7.59	0.08	103
DEV rabbit Developmental	RF	TA, TP	64	58	69	40	231	0.53	0.48	0.62	0.54	0.62	0.46	0.54	-98.9	7.7	0.07	104
DEV rabbit Developmental	RF	TA	64	62	65	40	231	0.55	0.5	0.62	0.55	0.62	0.49	0.55	-98.9	7.82	0.1	104
DEV rabbit Developmental	RF	TP	60	46	81	44	231	0.46	0.43	0.58	0.49	0.58	0.36	0.47	-99.1	7.34	.062	104
DEV rabbit	FSM																	
Developmental	LR	Adriana	48	85	41	56	230	0.58	0.54	0.46	0.5	0.46	0.67	0.57	-98.9	8.64	0.14	104
DEV rabbit Developmental	FSM LR	ALogPS, OEstate	53	80	47	51	231	0.58	0.53	0.51	0.52	0.51	0.63	0.57	-98.9	8.45	0.14	104
DEV rabbit Developmental	FSM LR	CDK	59	74	53	44	230	0.58	0.53	0.57	0.55	0.57	0.58	0.58	-98.8	8.21	0.15	103
DEV rabbit Developmental	FSM LR	Chemaxo n	53	81	46	51	231	0.58	0.54	0.51	0.52	0.51	0.64	0.57	-08 0	8.48	0.15	104
Developmental			- 55	01	70	- 01	201	0.00	0.04	0.01	0.02	0.01	0.04	0.01	-50.5	0.40	0.10	104
DEV rabbit Developmental	FSM LR	Dragon6	63	84	43	41	231	0.64	0.59	0.61	0.6	0.61	0.66	0.63	-98.7	8.54	0.27	104
DEV rabbit Developmental	FSM LR	Fragment or	58	82	45	46	231	0.61	0.56	0.56	0.56	0.56	0.65	0.6	-98.8	8.5	0.2	104
DEV rabbit Developmental	FSM LR	GSFrag	49	81	46	55	231	0.56	0.52	0.47	0.49	0.47	0.64	0.55	-98.9	8.48	0.11	104
DEV rabbit Developmental	FSM LR	Inductive	48	80	47	56	231	0.55	0.51	0.46	0.48	0.46	0.63	0.55	-98.9	8.44	0.09	104
	ESM	Mera,																
DEV rabbit Developmental	LR	Mersy	60	63	64	44	231	0.53	0.48	0.58	0.53	0.58	0.5	0.54	-98.9	7.88	0.07	104
DEV rabbit Developmental	FSM LR	QNPR	59	77	50	45	231	0.59	0.54	0.57	0.55	0.57	0.61	0.59	-98.8	8.33	0.17	104
DEV rabbit Developmental	FSM LR	Spectrop hores	58	69	58	46	231	0.55	0.5	0.56	0.53	0.56	0.54	0.55	-98.9	8.08	0.1	104
DEV rabbit Developmental	KNN	Adriana	59	69	57	45	230	0.56	0.51	0.57	0.54	0.57	0.55	0.56	-98.9	8.09	0.11	104
DEV rabbit Developmental	KNN	ALogPS, OEstate	61	62	65	43	231	0.53	0.48	0.59	0.53	0.59	0.49	0.54	_gg a	7.84	0.07	104
DEV rabbit																		
Developmental DEV rabbit		CDK Chemaxo	55	76	51	48	230	0.57	0.52	0.53	0.53	0.53	0.6	0.57			0.13	103
Developmental DEV rabbit	KNN	n	55	63	64	49	231	0.51	0.46	0.53	0.49	0.53	0.5	0.51	-99.0	7.9	0.02	104
Developmental	KNN	Dragon6 Fragment	48	81	46	56	231	0.56	0.51	0.46	0.48	0.46	0.64	0.55	-98.9	8.48	0.1	104
DEV rabbit Developmental	KNN	•	66	64	63	38	231	0.56	0.51	0.63	0.57	0.63	0.5	0.57	-98.9	7.86	0.14	104
DEV rabbit Developmental	KNN	GSFrag	45	88	39	59	231	0.58	0.54	0.43	0.48	0.43	0.69	0.56	-98.9	8.71	0.13	104
DEV rabbit Developmental	KNN	Inductive	43	71	56	61	231	0.49	0.43	0.41	0.42	0.41	0.56	0.49	-99.0	8.13	.028	104
DEV rabbit	KNINI	Mera, Mersy	51	79	48	53	231	0.56	0.52	0.49	0.5	0.49	0.62	0.56			0.11	104
	IZININ																	
Developmental DEV rabbit Developmental		QNPR	57	78	49	47	231	0.58	0.54	0.55	0.54	0.55	0.61	0.58	-98.8	8.37	0.16	104

DEV rabbit Developmental	LibS VM	Adriana	51	85	41	53	230	0.59	0.55	0.49	0.52	0.49	0.67	0.58	-98.8 8.64 0.17 10
	LihS	ALogPS,													
DEV rabbit Developmental	VM	OEstate	47	91	36	57	231	0.6	0.57	0.45	0.5	0.45	0.72	0.58	-98.8 8.83 0.17 10
DEV rabbit	LibS														
Developmental	VM	CDK	40	90	37	63	230	0.57	0.52	0.39	0.44	0.39	0.71	0.55	-98.9 8.73 0.1 10
DEV rabbit Developmental	LibS VM	Chemaxo n	43	80	47	61	231	0.53	0.48	0.41	0.44	0.41	0.63	0.52	-99.0 8.42 0.04 10
Ботогоринана:			10					0.00	0.10	0.11	0.11	0.11	0.00	0.02	00.0 0.12 0.01 10
DEV rabbit Developmental	LibS VM	Dragon6	38	91	36	66	231	0.56	0.51	0.37	0.43	0.37	0.72	0.54	-98.9 8.77 0.09 10
DEV rabbit	LibS	Fragment													
Developmental	VM	or	40	92	35	64	231	0.57	0.53	0.38	0.45	0.38	0.72	0.55	-98.9 8.83 0.12 10
DEV rabbit	LibS	005	0.7	0.4	00	07	004	0.55	0.54	0.00	0.40	0.00	0.70	0.54	0000070000
Developmental	VM	GSFrag	37	91	36	67	231	0.55	0.51	0.36	0.42	0.36	0.72	0.54	-98.9 8.76 0.08 10 ₀
DEV rabbit Developmental	LibS VM	Inductive	41	83	44	63	231	0.54	0.48	0.39	0.43	0.39	0.65	0.52	-99.0 8.51 0.05 10 ₀
Developmental			7.	- 00		- 00	201	0.04	0.40	0.00	0.40	0.00	0.00	0.02	-55.0 6.51 6.65 10
DEV rabbit Developmental	LibS VM	Mera, Mersy	40	89	38	64	231	0.56	0.51	0.38	0.44	0.38	0.7	0.54	-98.9 8.71 0.09 10
DEV rabbit	LibS														
Developmental	VM	QNPR	49	80	47	55	231	0.56	0.51	0.47	0.49	0.47	0.63	0.55	-98.9 8.45 0.1 10
DEV rabbit Developmental	LibS VM	Spectrop hores	36	81	46	68	231	0.51	0.44	0.35	0.39	0.35	0.64	0.49	-99.0 8.39 .017 10
DEV rabbit	MLR														
Developmental	Α	Adriana	56	75	51	48	230	0.57	0.52	0.54	0.53	0.54	0.6	0.57	-98.9 8.3 0.13 10
DEV rabbit Developmental	Α	ALogPS, OEstate	52	73	54	52	231	0.54	0.49	0.5	0.5	0.5	0.57	0.54	-98.9 8.22 0.07 10
DEV rabbit Developmental	MLR A	CDK	49	78	49	54	230	0.55	0.5	0.48	0.49	0.48	0.61	0.54	-98.9 8.36 0.09 10
DEV rabbit	MLR	Chemaxo													
Developmental DEV rabbit	A MLR	n	53	67	60	51	231	0.52	0.47	0.51	0.49	0.51	0.53	0.52	-99.0 8.03 0.04 10
Developmental	A MI D	Dragon6	53	60	67	51	231	0.49	0.44	0.51	0.47	0.51	0.47	0.49	-99.0 7.81 .018 10
DEV rabbit Developmental	Α	Fragment or	49	66	61	55	231	0.5	0.45	0.47	0.46	0.47	0.52	0.5	-99.0 8009 10
DEV rabbit Developmental	MLR A	GSFrag	54	70	57	50	231	0.54	0.49	0.52	0.5	0.52	0.55	0.54	-98.9 8.12 0.07 10
DEV rabbit	MLR														
Developmental DEV rabbit	A MLR	Inductive Mera,	48	72	55	56	231	0.52	0.47	0.46	0.46	0.46	0.57	0.51	-99.0 8.18 0.03 10
Developmental	A MLR	Mersy	49	69	58	55	231	0.51	0.46	0.47	0.46	0.47	0.54	0.51	-99.0 8.09 0.01 10
DEV rabbit Developmental	Α	QNPR	59	69	58	45	231	0.55	0.5	0.57	0.53	0.57	0.54	0.56	-98.9 8.08 0.11 10
DEV rabbit Developmental	MLR A	Spectrop hores	54	68	59	50	231	0.53	0.48	0.52	0.5	0.52	0.54	0.53	-98.9 8.06 0.05 10
DEV rabbit Developmental		Adriana	57	72	54	47	230	0.56	0.40	0.55	0.53	0.55	0.57	0.56	-98.9 8.2 0.12 10
DEV rabbit		ALogPS,													
Developmental	PLS	OEstate	57	76	51	47	231	0.58	0.53	0.55	0.54	0.55	0.6	0.57	-98.9 8.31 0.15 10
DEV rabbit Developmental	PLS	CDK	58	72	55	45	230	0.57	0.51	0.56	0.54	0.56	0.57	0.57	-98.9 8.15 0.13 10
DEV rabbit Developmental	PLS	Chemaxo n	54	67	60	50	231	0.52	0.47	0.52	0.5	0.52	0.53	0.52	-99.0 8.03 0.05 10

DEV rabbit Developmental	PLS	Dragon6	60	79	48	44	231	0.6	0.56	0.58	0.57	0.58	0.62	0.6	-98.8 8.39 ().2 104
DEV rabbit	FLO	Fragment	00	19	40		231	0.0	0.50	0.56	0.57	0.56	0.02	0.0	-90.0 0.39 (7.2 104
Developmental	PLS	or	56	76	51	48	231	0.57	0.52	0.54	0.53	0.54	0.6	0.57	-98.9 8.31 0.	14 104
DEV rabbit	DI C	CCFror	EE	74	F2	40	224	0.56	0.51	0.52	0.50	0.52	0.50	0.56	000 025 0	11 104
Developmental	PLS	GSFrag	55	74	53	49	231	0.56	0.51	0.53	0.52	0.53	0.58	0.56	-98.9 8.25 0.	11 104
DEV rabbit Developmental	PLS	Inductive	46	75	52	58	231	0.52	0.47	0.44	0.46	0.44	0.59	0.52	-99.0 8.27 0.	03 104
DEV rabbit		Mera,														
Developmental	PLS	Mersy	59	72	55	45	231	0.57	0.52	0.57	0.54	0.57	0.57	0.57	-98.9 8.17 0.	13 104
DEV rabbit Developmental	PLS	QNPR	51	81	46	53	231	0.57	0.53	0.49	0.51	0.49	0.64	0.56	-98.9 8.48 0.	13 104
DEV rabbit		Spectrop														
Developmental	PLS	hores	55	70	57	49	231	0.54	0.49	0.53	0.51	0.53	0.55	0.54	-98.9 8.12 0.	08 104
DEV rabbit Developmental	J48	Adriana	55	76	50	49	230	0.57	0.52	0.53	0.53	0.53	0.6	0.57	-98.9 8.33 0.	13 104
Bevelopmental	0-10	7 tariaria		70	- 00	-10	200	0.01	0.02	0.00	0.00	0.00	0.0	0.07	00.0 0.00 0.	10 10+
DEV rabbit		ALogPS,														
Developmental	J48	OEstate	53	75	52	51	231	0.55	0.5	0.51	0.51	0.51	0.59	0.55	-98.9 8.28 ().1 104
DEV rabbit Developmental	J48	CDK	53	74	53	50	230	0.55	0.5	0.51	0.51	0.51	0.58	0.55	-98.9 8.23 ().1 103
DEV rabbit		Chemaxo		-												
Developmental	J48	n	50	75	52	54	231	0.54	0.49	0.48	0.49	0.48	0.59	0.54	-98.9 8.28 0.	07 104
DEV rabbit	140	Dragone	ΕO	70	40	ΕA	224	0.56	0.54	0.40	0.5	0.40	0.60	0.55	000 044 7	1 101
Developmental DEV rabbit	J48	Dragon6 Fragment	50	79	48	54	231	0.56	0.51	0.48	0.5	0.48	0.62	0.55	-98.9 8.41 ().1 104
DEV rabbit Developmental	J48	or	54	70	57	50	231	0.54	0.49	0.52	0.5	0.52	0.55	0.54	-98.9 8.12 0.	07 104
DEV rabbit	140	005		-,	5 0		004	0.50	0.40		0.40		0.50	0.50	0000000	00 404
Developmental	J48	GSFrag	52	71	56	52	231	0.53	0.48	0.5	0.49	0.5	0.56	0.53	-98.9 8.16 0.	06 104
DEV rabbit Developmental	J48	Inductive	43	70	57	61	231	0.49	0.43	0.41	0.42	0.41	0.55	0.48	-99.0 8.1 .0	36 104
DEV rabbit		Mera,														
Developmental	J48	Mersy	47	74	53	57	231	0.52	0.47	0.45	0.46	0.45	0.58	0.52	-99.0 8.24 0.	03 104
DEV rabbit Developmental	J48	QNPR	47	75	52	57	231	0.53	0.47	0.45	0.46	0.45	0.59	0.52	-99.0 8.28 0.	04 104
DEV rabbit		Spectrop	•••					0.00	••••	00	00	00	0.00	0.02	00.0 0.20 0.	
Developmental	J48	hores	41	73	54	63	231	0.49	0.43	0.39	0.41	0.39	0.57	0.48	-99.0 8.18 .0	31 104
DEV rabbit Maternal	RF	Adriana	178	5	15	32	230	8.0	0.92	0.85	0.88	0.85	0.25	0.55	-98.9 7.63 0.	07 210
		AL ac DC														
DEV rabbit Maternal	RF	ALogPS, OEstate	190	4	16	21	231	0.84	0.92	0.9	0.91	0.9	0.2	0.55	-98.9 7.02 0.	09 211
DEV rabbit Maternal	RF	CDK	175	5	15	35	230	0.78	0.92	0.83	0.88	0.83	0.25	0.54	-98.9 7.7 0.	
DET TOOSE MALESTIA		Chemaxo	110					0.70	0.02	0.00	0.00	0.00	0.20	0.01	00.0 7.7 0.	00 210
DEV rabbit Maternal	RF	n	182	7	13	29	231	0.82	0.93	0.86	0.9	0.86	0.35	0.61	-98.8 8. 0.	16 211
DEV	חר	Drogero	100	4	10	10	224	0.05	0.00	0.04	0.00	0.04	0.0	0.55	000 000 0	[,, ,,
DEV rabbit Maternal	RF	Dragon6 Fragment	192	4	16	19	231	0.85	0.92	0.91	0.92	0.91	0.2	0.55	-98.9 6.93 ().1 211
DEV rabbit Maternal	RF	or	193	5	15	18	231	0.86	0.93	0.91	0.92	0.91	0.25	0.58	-98.8 7.15 0.	15 211
DEV rabbit Maternal	RF	GSFrag	173	3	17	38	231	0.76	0.91	0.82	0.86	0.82	0.15	0.48	-99.0 7.2 .0	
DEV rabbit Maternal	RF	Inductive	161	4	16	50	231	0.71	0.91	0.76	0.83	0.76	0.2	0.48	-99.0 7.71 .0	25 211
DEV rabbit Maternal	RF	Mera, Mersy	197	2	18	14	231	0.86	0.92	0.93	0.92	0.93	0.1	0.52	-99.0 5.96 0.	04 211
DEV rabbit Maternal	RF	QNPR	187	3	17	24	231	0.82	0.92	0.93	0.92	0.93	0.15	0.52	-99.0 5.96 0. -99.0 6.82 0.	
DEV TADDIC MATERIAL	IM	Spectrop	101	<u> </u>	17	∠+	201	0.02	0.02	0.08	0.8	0.08	0.10	0.02	-55.0 0.02 0.	211
DEV rabbit Maternal	RF	hores	181	5	15	30	231	0.81	0.92	0.86	0.89	0.86	0.25	0.55	-98.9 7.58 0.	08 211
	ASN				, -											
DEV rabbit Maternal	N	Adriana	139	4	16	71	230	0.62	0.9	0.66	0.76	0.66	0.2	0.43	-99.1 7.91 .0	83 210
	ASN	ALogPS,														
DEV rabbit Maternal	N	OEstate	159	4	16	52	231	0.71	0.91	0.75	0.82	0.75	0.2	0.48	-99.0 7.73 .	03 211
	ASN															
DEV rabbit Maternal	N	Chamava	144	5	15	66	230	0.65	0.91	0.69	0.78	0.69	0.25	0.47	-99.1 8.13 .0	39 210
DEV rabbit Maternal	ASN N	Chemaxo n	151	8	12	60	231	0.69	0.93	0 72	0.81	0.72	N 4	0.56	-98.9 8.74 0.	07 211
	1.4	11	101	U	14	50	201	0.03	0.55	0.12	0.01	0.12	J. T	0.50	00.0 0.14 0.	~ ~ ~ 1

	ASN																
DEV rabbit Maternal	N	Dragon6	157	4	16	54	231	0.7	0.91	0.74	0.82	0.74	0.2	0.47	-99.1 7.76	.036	21′
DEV rabbit Maternal	N	Fragment or	154	7	13	57	231	0.7	0.92	0.73	0.81	0.73	0.35	0.54	-98.9 8.5	0.05	21
DEV rabbit Maternal	ASN N	GSFrag	147	7	13	64	231	0.67	0.92	0.7	0.79	0.7	0.35	0.52	-99.0 8.57	0.03	21′
DEV rabbit Maternal	ASN N	Inductive	135	7	13	76	231	0.61	0.91	0.64	0.75	0.64	0.35	0.49	-99.0 8.66	.006	21′
DEV rabbit Maternal	N	Mera, Mersy	153	8	12	58	231	0.7	0.93	0.73	0.81	0.73	0.4	0.56	-98.9 8.72	2 0.08	21′
DEV rabbit Maternal	ASN N	QNPR	159	7	13	52	231	0.72	0.92	0.75	0.83	0.75	0.35	0.55	-98.9 8.45	0.07	21
DEV rabbit Maternal	N	Spectrop hores	157	9	11	54	231	0.72	0.93	0.74	0.83	0.74	0.45	0.6	-98.8 8.87	0.12	211
DEV rabbit Maternal	N	CDK, TA, TP	172	1	19	38	230	0.75	0.9	0.82	0.86	0.82	0.05	0.43	-99.1 6.24	.098	210
DEV rabbit Maternal	ASN N	CDK, TA	154	5	15	56	230	0.69	0.91	0.73	0.81	0.73	0.25	0.49	-99.0 8.04	.011	210
DEV rabbit Maternal	ASN N	CDK, TP	142	2	18	68	230	0.63	0.89	0.68	0.77	0.68	0.1	0.39	-99.2 7.18	.137	210
DEV rabbit Maternal	ASN N	TA, TP	167	4	16	44	231	0.74	0.91	0.79	0.85	0.79	0.2	0.5	-99.0 7.62	2 .006	211
DEV rabbit Maternal	ASN N	TA	146	5	15	65	231	0.65	0.91	0.69	0.78	0.69	0.25	0.47	-99.1 8.13	.036	211
DEV rabbit Maternal	ASN N	TP	148	3	17	63	231	0.65	0.9	0.7	0.79	0.7	0.15	0.43	-99.1 7.54	.092	21′
DEV rabbit Maternal	FSM LR	CDK, TA, TP	151	10	10	59	230	0.7	0.94	0.72	0.81	0.72	0.5	0.61	-98.8 9.11	0.13	210
	FSM	ODK TA	444	7	40	00	000	0.04	0.00	0.07	0.77	0.07	0.05	0.54	00.0.0.0	0.04	04/
DEV rabbit Maternal	LR	CDK, TA	141	7	13	69	230	0.64	0.92	0.67	0.77	0.67	0.35	0.51	-99.0 8.61	0.01	210
DEV rabbit Maternal	FSM LR	CDK, TP	131	5	15	79	230	0.59	0.9	0.62	0.74	0.62	0.25	0.44	-99.1 8.22	.074	210
DEV rabbit Maternal	FSM LR	TA, TP	165	2	18	46	231	0.72	0.9	0.78	0.84	0.78	0.1	0.44	-99.1 6.95	.082	21
DEV rabbit Maternal	FSM LR	TA	172	2	18	39	231	0.75	0.91	0.82	0.86	0.82	0.1	0.46	-99.1 6.83	.062	21
DEV rabbit Maternal	FSM LR	TP	131	2	18	80	231	0.58	0.88	0.62	0.73	0.62	0.1	0.36	-99.3 7.27	'.164	21
DEV rabbit Maternal	KNN	CDK, TA, TP	194	1	19	16	230	0.85	0.91		0.92	0.92	0.05	0.49	-99.0 5.51	.028	210
DEV rabbit Maternal	KNN	CDK, TA	104	7	13	106	230	0.48	0.89	0.5	0.64	0.5	0.35	0.42	-99.2 8.73		
DEV rabbit Maternal		CDK, TP	180	1	19	30	230	0.79	0.9	0.86	0.88	0.86	0.05	0.45	-99.1 6.05		
DEV rabbit Maternal	KNN	TA, TP	174	3	17	37	231	0.77	0.91	0.82	0.87	0.82	0.15	0.49	-99.0 7.18		
DEV rabbit Maternal	KNN	TA	152	6	14	59	231	0.68	0.92	0.72	0.81	0.72	0.3	0.51	-99.0 8.31	0.01	211
DEV rabbit Maternal	KNN	TP	143	3	17	68	231	0.63	0.89	0.68	0.77	0.68	0.15	0.41	-99.2 7.58	.105	21
DEV rabbit Maternal	LibS VM	CDK, TA, TP	210	0	20	0	230	0.91	0.91	1.	0.95	1.	0.	0.5	-99.0 0.94		210
DEV rabbit Maternal	LibS VM	CDK, TA	210	0	20	0	230	0.91	0.91	1.	0.95	1.	0.	0.5	-99.0 0.94		210

	LibS																	
DEV rabbit Maternal	VM	CDK, TP	210	0	20	0	230	0.91	0.91	1.	0.95	1.	0.	0.5	-99.0	0.94		210
	LibS																	
DEV rabbit Maternal	VM	TA, TP	211	0	20	0	231	0.91	0.91	1.	0.95	1.	0.	0.5	-99.0	0.95		211
	1:50																	
DEV rabbit Maternal	LibS VM	TA	211	0	20	0	231	0.91	0.91	1.	0.95	1.	0.	0.5	-99.0	0.95		21
227 140211 11141011141	*	.,,						0.01	0.01	•••	0.00		<u> </u>	0.0	00.0	0.00		
	LibS																	
DEV rabbit Maternal	VM	TP CDK TA	211	0	20	0	231	0.91	0.91	1.	0.95	1.	0.	0.5	-99.0	0.95		21′
DEV rabbit Maternal	MLR A	CDK, TA, TP	142	8	12	68	230	0.65	0.92	0.68	0.78	0.68	0.4	0.54	-98.9	8.8	0.05	210
DEV Tubble Muternal	MLR		172			- 00	200	0.00	0.02	0.00	0.70	0.00	0.7	0.04	00.0	0.0	0.00	
DEV rabbit Maternal	Α	CDK, TA	89	9	11	121	230	0.43	0.89	0.42	0.57	0.42	0.45	0.44	-99.1	9.1	.072	210
	MLR	ODIC TO	404	40			000	0.50	0.04	0.50	0.74	0.50		0.50	00.0	0.00		0.44
DEV rabbit Maternal	A MLR	CDK, TP	121	12	8	89	230	0.58	0.94	0.58	0.71	0.58	0.6	0.59	-98.8	9.68	0.1	210
DEV rabbit Maternal	A	TA, TP	101	8	12	110	231	0.47	0.89	0.48	0.62	0.48	0.4	0.44	-99.1	8.94	.068	21
	MLR	,																
DEV rabbit Maternal	Α	TA	106	7	13	105	231	0.49	0.89	0.5	0.64	0.5	0.35	0.43	-99.1	8.74	.083	21′
DEV 11:33	MLR	TD	0.4	0	11	107	004	0.4	0.00	0.4	0.55	0.4	0.45	0.40	00.0	0.00	007	044
DEV rabbit Maternal	A	TP CDK, TA,	84	9	11	127	231	0.4	0.88	0.4	0.55	0.4	0.45	0.42	-99.2	9.09	.08/	21′
DEV rabbit Maternal	PLS		173	1	19	37	230	0.76	0.9	0.82	0.86	0.82	0.05	0.44	-99.1	6.22	.096	210
DEV rabbit Maternal	PLS	CDK, TA	162	4	16	48	230	0.72	0.91	0.77	0.84	0.77	0.2	0.49	-99.0	7.67	.019	210
DEV/ robbit M	DI C	CDV TD	145	0	40	G.F.	220	0.64	0.00	0.60	0.70	0.60	0.4	0.4	00.0	7.40	40	040
DEV rabbit Maternal		CDK, TP	145	2	18	65	230	0.64	0.89	0.69	0.78	0.69	0.1	0.4	-99.2		.13	210
DEV rabbit Maternal		TA, TP	174	4	16	37	231	0.77	0.92	0.82	0.87	0.82	0.2	0.51		7.49		211
DEV rabbit Maternal	PLS	TA	170	2	18	41	231	0.74	0.9	0.81	0.85	0.81	0.1	0.45		6.86		211
DEV rabbit Maternal	PLS	CDK, TA,	148	3	17	63	231	0.65	0.9	0.7	0.79	0.7	0.15	0.43	-99.1	7.54	.092	21
DEV rabbit Maternal	J48	TP	170	6	14	40	230	0.77	0.92	0.81	0.86	0.81	0.3	0.55	-98.9	8.04	0.08	210
DEV rabbit Maternal	J48	CDK, TA	161	7	13	49	230	0.73	0.93	0.77	0.84	0.77	0.35	0.56	-98.9	8.4	0.08	210
DEV	140	CDV TD	157	2	17	5 2	220	0.7	0.0	0.75	0.00	0.75	0.15	0.45	00.1	7 42	067	240
DEV rabbit Maternal	J48	CDK, TP	157	3	17	53	230	0.7	0.9	0.75	0.82	0.75	0.15	0.45	-99.1		.067	210
DEV rabbit Maternal	J48	TA, TP	178	3	17	33	231	0.78	0.91	0.84	0.88	0.84	0.15	0.5	-99.0		.005	211
DEV rabbit Maternal	J48	TA	172	4	16	39	231	0.76	0.91	0.82	0.86	0.82	0.2	0.51		7.53		211
DEV rabbit Maternal	J48	TP CDK, TA,	154	1	19	57	231	0.67	0.89	0.73	0.8	0.73	0.05	0.39	-99.2	6.53	. 143	21′
DEV rabbit Maternal	RF	TP	205	2	18	5	230	0.9	0.92	0.98	0.95	0.98	0.1	0.54	-98.9	5.03	0.12	210
													· · ·					
DEV rabbit Maternal	RF	CDK, TA	201	3	17	9	230	0.89	0.92	0.96	0.94	0.96	0.15	0.55	-98.9	5.95	0.14	210
DEV robbit M-t	DE	CDV TD	204	4	10	e	220	0 00	0.04	0.07	0.04	0.07	0.05	0.54	00.0	1 62	0.04	247
DEV rabbit Maternal	RF	CDK, TP	204	1	19	14	230	0.89	0.91	0.97	0.94		0.05	0.51			0.04	210
DEV rabbit Maternal	RF	TA, TP	197	1	19	14	231	0.86	0.91	0.93	0.92		0.05	0.49			.019	
DEV rabbit Maternal	RF	TA	182	3	17	29	231	0.8	0.91	0.86	0.89	0.86	0.15	0.51	-99.0			211
DEV rabbit Maternal	RF	TP	187	1	19	24	231	0.81	0.91	0.89	0.9	0.89	0.05	0.47	-99.1	ე.४/	.058	21′
	FSM																	
DEV rabbit Maternal	LR	Adriana	135	10	10	75	230	0.63	0.93	0.64	0.76	0.64	0.5	0.57	-98.9	9.23	0.08	210
DEV 11.33		ALogPS,	470	^	4.4	00	004	0 77	0.00	0.00	0.07	0.00		0.50	00.0	0.00	0.00	044
DEV rabbit Maternal	LR	OEstate	172	6	14	39	231	0.77	0.92	0.82	0.87	0.82	0.3	0.56	-98.9	8.02	0.08	21′
	FSM																	
DEV rabbit Maternal	LR	CDK	136	7	13	74	230	0.62	0.91	0.65	0.76	0.65	0.35	0.5	-99.0	8.64	.001	210
		Chemaxo	400	_	40		004	0.50	0.04	0.50	0 74	0.50		0.40	00.0	0.00	0.10	
DEV rabbit Maternal	LR	n	122	8	12	89	231	0.56	U.91	U.58	0.71	υ.58	0.4	0.49	-99.0	8.92	.012	211

DEV rabbit Maternal	FSM LR	Dragon6	133	6	14	78	231	0.6	0.9	0.63	0.74	0.63	0.3	0.47	-99.1	8.45	.041	211
	ESM	Fragment																
DEV rabbit Maternal	LR	or	152	8	12	59	231	0.69	0.93	0.72	0.81	0.72	0.4	0.56	-98.9	8.73	0.07	211
DEV rabbit Maternal	FSM LR	GSFrag	129	9	11	82	231	0.6	0.92	0.61	0.74	0.61	0.45	0.53	-98.9	9.09	0.04	211
DEV rabbit Maternal	FSM LR	Inductive	129	6	14	82	231	0.58	0.9	0.61	0.73	0.61	0.3	0.46	-99.1	8.47	.051	211
DEV rabbit Maternal	FSM LR	Mera, Mersy	152	6	14	59	231	0.68	0.92	0.72	0.81	0.72	0.3	0.51	-99.0	8.31	0.01	211
DEV rabbit Maternal	FSM LR	QNPR	142	9	11	69	231	0.65	0.93	0.67	0.78	0.67	0.45	0.56	-98.9	9.01	0.07	211
DEV rabbit Maternal	FSM LR	Spectrop hores	107	11	9	104	231	0.51	0.92	0.51	0.65	0.51	0.55	0.53	-98.9	9.52	0.03	211
DEV rabbit Maternal	KNN	Adriana	132	9	11	78	230	0.61	0.92	0.63	0.75	0.63	0.45	0.54	-98.9	9.06	0.05	210
DEV rabbit Maternal	KNN	ALogPS, OEstate	187	5	15	24	231	0.83	0.93	0.89	0.91	0.89	0.25	0.57	-98.9	7.4	0.12	211
DEV rabbit Maternal	KNN	CDK	134	7	13	76	230	0.61	0.91	0.64	0.75	0.64	0.35	0.49	-99.0	8.65	.007	210
DEV rabbit Maternal	KNN	Chemaxo n	146	9	11	65	231	0.67	0.93	0.69	0.79	0.69	0.45	0.57	-98.9	8.98	0.09	211
DEV rabbit Maternal	KNN	Dragon6	125	9	11	86	231	0.58	0.92	0.59	0.72	0.59	0.45	0.52	-99.0	9.1	0.02	211
DEV rabbit Maternal	KNN	Fragment or	174	6	14	37	231	0.78	0.93	0.82	0.87	0.82	0.3	0.56	-98.9	7.98	0.09	211
DEV rabbit Maternal	KNN	GSFrag	133	6	14	78	231	0.6	0.9	0.63	0.74	0.63	0.3	0.47	-99.1	8.45	.041	211
DEV rabbit Maternal	KNN	Inductive Mera,	121	9	11	90	231	0.56	0.92	0.57	0.71	0.57	0.45	0.51	-99.0	9.11	0.01	211
DEV rabbit Maternal	KNN	Mersy	121	10	10	90	231	0.57	0.92	0.57	0.71	0.57	0.5	0.54	-98.9	9.31	0.04	211
DEV rabbit Maternal	KNN	QNPR Spectrop	157	6	14	54	231	0.71	0.92	0.74	0.82	0.74	0.3	0.52	-99.0	8.26	0.03	211
DEV rabbit Maternal		hores	168	3	17	43	231	0.74	0.91	8.0	0.85	8.0	0.15	0.47	-99.1	7.29	.038	211
DEV rabbit Maternal	LibS VM	Adriana	209	0	20	1	230	0.91	0.91	1.	0.95	1.	0.	0.5	-99.0	2.04	.02	210
DEV rabbit Maternal	LibS VM	ALogPS, OEstate	210	2	18	1	231	0.92	0.92	1.	0.96	1.	0.1	0.55	-98.9	3.75	0.24	211
DEV rabbit Maternal	LibS VM	CDK	209	1	19	1	230	0.91	0.92	1.	0.95	1.	0.05	0.52	-99.0	3.19	0.14	210
DEV rabbit Maternal	LibS VM	Chemaxo n	203	2	18	8	231	0.89	0.92	0.96	0.94	0.96	0.1	0.53	-98.9	5.45	0.09	211
DEV rabbit Maternal	LibS VM	Dragon6	211	0	20	0	231	0.91	0.91	1.	0.95	1.	0.	0.5	-99.0	0.95		211
DEV rabbit Maternal	LibS VM	Fragment or	211	1	19	0	231	0.92	0.92	1.	0.96	1.	0.05	0.53	-99.0	2.1	0.21	211

DEV rabbit Maternal	LibS VM	GSFrag	206	0	20	5	231	0.89	0.91	0.98	0.94	0.98	0.	0.49	-99.0	3.32	.046	211
DEV rabbit Maternal	LibS VM	Inductive	210	1	19	1	231	0.91	0.92	1.	0.95	1.	0.05	0.52	-99.0	3.19	0.14	211
		Mera,	044	0	20	0	004	0.04	0.01	4	0.05	4	0	0.5	00.0	0.05		044
DEV rabbit Maternal	VM	Mersy	211	0	20	0	231	0.91	0.91	1.	0.95	1.	0.	0.5	-99.0	0.95		211
DEV rabbit Maternal	LibS VM	QNPR	211	0	20	0	231	0.91	0.91	1.	0.95	1.	0.	0.5	-99.0	0.95		211
DEV rabbit Maternal	LibS VM	Spectrop hores	211	0	20	0	231	0.91	0.91	1.	0.95	1.	0.	0.5	-99.0	0.95		211
DEV	MLR	Adriana	102	7	12	107	220	0.40	0.00	0.40	0.62	0.40	0.25	0.42	00.2	0.72	00	240
DEV rabbit Maternal	A	Adriana	103	7	13	107	230	0.48	0.89	0.49	0.63	0.49	0.35	0.42	-99.2	8.73	.09	210
DEV rabbit Maternal	Α	ALogPS, OEstate	127	9	11	84	231	0.59	0.92	0.6	0.73	0.6	0.45	0.53	-98.9	9.09	0.03	211
DEV rabbit Maternal	MLR A	CDK	92	8	12	118	230	0.43	0.88	0.44	0.59	0.44	0.4	0.42	-99.2	8.92	.092	210
	MLR	Chemaxo																
DEV rabbit Maternal	A MLR	n	94	10	10	117	231	0.45	0.9	0.45	0.6	0.45	0.5	0.47	-99.1	9.32	.031	211
DEV rabbit Maternal	A MI D	Dragon6	94	10	10	117	231	0.45	0.9	0.45	0.6	0.45	0.5	0.47	-99.1	9.32	.031	211
DEV rabbit Maternal	Α	Fragment or	111	9	11	100	231	0.52	0.91	0.53	0.67	0.53	0.45	0.49	-99.0	9.13	.013	211
DEV rabbit Maternal	MLR A	GSFrag	100	10	10	111	231	0.48	0.91	0.47	0.62	0.47	0.5	0.49	-99.0	9.32	.015	211
DEV rabbit Maternal	MLR A	Inductive	100	7	13	111	231	0.46	0.88	0.47	0.62	0.47	0.35	0.41	-99.2	8.74	.099	211
DEV rabbit Maternal	MLR A	Mera, Mersy	144	6	14	67	231	0.65	0.91	0.68	0.78	0.68	0.3	0.49	-99.0	8.38	.011	211
DEV rabbit Maternal	MLR A	QNPR	81	12	8	130	231	0.4	0.91	0.38	0.54	0.38	0.6	0.49	-99.0	9.66	.009	211
DEV rabbit Maternal	MLR A	Spectrop hores	122	11	9	89	231	0.58	0.93	0.58	0.71	0.58	0.55	0.56	-98.9	0 40	0.07	211
DEV rabbit Maternal		Adriana	139	7	13	71	230	0.63	0.91	0.66	0.77	0.66	0.35	0.51	-99.0			210
		ALogPS,																
DEV rabbit Maternal	PLS	OEstate	171	4	16	40	231	0.76	0.91	0.81	0.86	0.81	0.2	0.51	-99.0	7.55	0.01	211
DEV rabbit Maternal	PLS	CDK	141	5	15	69	230	0.63	0.9	0.67	0.77	0.67	0.25	0.46	-99.1	8.16	.047	210
DEV rabbit Maternal	PLS	Chemaxo n	136	8	12	75	231	0.62	0.92	0.64	0.76	0.64	0.4	0.52	-99.0	8.85	0.03	211
DEV rabbit Maternal	PLS	Dragon6	154	4	16	57	231	0.68	0.91	0.73	0.81	0.73	0.2	0.46	-99.1	7.79	.045	211
DEV rabbit Maternal	PLS	Fragment or	169	8	12	42	231	0.77	0.93	0.8	0.86	0.8	0.4	0.6	-98.8	8.5	0.14	211
DEV rabbit Maternal	PLS	GSFrag	147	6	14	64	231	0.66	0.91	0.7	0.79	0.7	0.4	0.5			.002	211
DEV rabbit Maternal	PLS	Inductive	125	9	11	86	231	0.58	0.92	0.59	0.72	0.59	0.45	0.52	-99.0	9.1	0.02	211
DEV rabbit Maternal	PLS	Mera, Mersy	149	8	12	62	231	0.68	0.93	0.71	0.8	0.71	0.4	0.55	-98.9	8.76	0.06	211
DEV rabbit Maternal	PLS	QNPR	163	8	12	48	231	0.74	0.93	0.77	0.84	0.77	0.4	0.59	-98.8			211
	DI C	Spectrop	4.45															
DEV rabbit Maternal	PLS	hores	140	9	11	71	231	0.65	0.93	0.66	0.77	0.66	0.45	0.56	-98.9			211
DEV rabbit Maternal	J48	Adriana	142	6	14	68	230	0.64	0.91	0.68	0.78	0.68	0.3	0.49	-99.0	<u>გ.</u> 38	.014	210
		ALogPS,	100	_			65 :	o ==	0.0-		0.5-	. -	. -	0.7=				
DEV rabbit Maternal	J48	OEstate	168	6	14	43	231	0.75	0.92	8.0	0.85	8.0	0.3	0.55	-98.9	8.1	0.07	211

		01															
DEV rabbit Maternal	J48	Chemaxo n	170	8	12	41	231	0.77	0.93	0.81	0.87	0.81	0.4	0.6	-98.8 8.	48 0.14	211
DEV rabbit Maternal	J48	Dragon6	144	6	14	67	231	0.65	0.91	0.68	0.78	0.68	0.3	0.49	-99.0 8.	38 .011	211
DEV seek it Meteore	140	Fragment	165	6	1.1	46	224	0.74	0.00	0.70	0.05	0.70	0.2	0.54	00.0	1F 0.06	244
DEV rabbit Maternal DEV rabbit Maternal	J48 J48	or GSFrag	165 160	6 3	14 17	46 51	231	0.74	0.92	0.78	0.85	0.78	0.3	0.54		15 0.06 41 .061	211
DEV rabbit Maternal	J48	Inductive	147	7	13	64	231	0.67	0.92	0.7	0.79	0.7	0.35	0.52	-99.0 8.		211
DEV Tabbit Material	0-10	Mera,	177		10			0.07	0.02	0.7	0.70	0.7	0.00	0.02	00.0 0.	0.00	
DEV rabbit Maternal	J48	Mersy	165	7	13	46	231	0.74	0.93	0.78	0.85	0.78	0.35	0.57	-98.9 8.	36 0.09	211
DEV rabbit Maternal	J48	QNPR	164	5	15	47	231	0.73	0.92	0.78	0.84	0.78	0.25	0.51	-99.0 7.	93 0.02	211
DEV rabbit Maternal	J48	Spectrop hores	180	4	16	31	231	8.0	0.92	0.85	0.88	0.85	0.2	0.53	-98.9 7.	35 0.04	211
DEV rat Developmental	RF	Adriana	106	40	64	36	246	0.59	0.62	0.75	0.68	0.75	0.38	0.57	-98.9 7	7.8 0.14	142
DEV rat	DE	ALogPS,	404	40	00	40	0.47	0.50	0.00	0.74	0.00	0.74	0.4	0.50	000 7	00 0 11	440
Developmental DEV rat	RF	OEstate	101	42	62	42	247	0.58	0.62	0.71	0.66	0.71	0.4	0.56	-98.9 7.	98 0.11	143
Developmental DEV rat	RF	CDK Chemaxo	110	39	65	32	246	0.61	0.63	0.77	0.69	0.77	0.38	0.57	-98.9 7.	68 0.16	142
Developmental	RF	n	101	34	70	42	247	0.55	0.59	0.71	0.64	0.71	0.33	0.52	-99.0 7.	65 0.04	143
DEV rat Developmental	RF	Dragon6	110	39	65	33	247	0.6	0.63	0.77	0.69	0.77	0.38	0.57	-98.9 7.	71 0.16	143
DEV rat Developmental	RF	Fragment or	103	47	57	40	247	0.61	0.64	0.72	0.68	0.72	0.45	0.59	-98.8 8.	15 0.18	143
DEV rat Developmental	RF	GSFrag	105	51	53	38	247	0.63	0.66	0.73	0.7	0.73	0.49	0.61	-98.8 8.	27 0.23	143
DEV rat Developmental	RF	Inductive	105	36	68	38	247	0.57	0.61	0.73	0.66	0.73	0.35	0.54	-98.9 7.	68 0.09	143
DEV rat Developmental	RF	Mera, Mersy	111	40	64	32	247	0.61	0.63	0.78	0.7	0.78	0.38	0.58	-98.8 7.	73 0.17	143
DEV rat	RF	QNPR	95	46	58	48	247	0.57	0.62	0.66	0.64	0.66	0.44	0.55	-98.9 8.		143
Developmental DEV rat		Spectrop	107	30	74	36	247	0.55	0.02	0.75		0.00	0.44	0.52			
Developmental DEV rat	RF ASN	hores	107	30	74	30	241	0.55	0.59	0.75	0.66	0.75	0.29	0.52	-99.0 7.	38 0.04	143
Developmental	N	Adriana	90	58	46	52	246	0.6	0.66	0.63	0.65	0.63	0.56	0.6	-98.8 8	3.7 0.19	142
DEV rat Developmental	ASN N	ALogPS, OEstate	90	59	45	53	247	0.6	0.67	0.63	0.65	0.63	0.57	0.6	-98.8 8.	75 0.2	143
DEV rat Developmental	ASN N	CDK	88	61	43	54	246	0.61	0.67	0.62	0.64	0.62	0.59	0.6	-98.8 8.	83 0.2	142
DEV rat	ASN	Chemaxo															
Developmental DEV rat	N ASN	n	84	52	52	59	247	0.55	0.62	0.59	0.6	0.59	0.5	0.54	-98.9 8.	52 0.09	143
Developmental	N	Dragon6	90	62	42	53	247	0.62	0.68	0.63	0.65	0.63	0.6	0.61	-98.8 8.	87 0.22	143
DEV rat Developmental	N	Fragment or	88	56	48	55	247	0.58	0.65	0.62	0.63	0.62	0.54	0.58	-98.8 8.	65 0.15	143
DEV rat Developmental	ASN N	GSFrag	91	61	43	52	247	0.62	0.68	0.64	0.66	0.64	0.59	0.61	-98.8 8.	82 0.22	143
DEV rat Developmental	ASN N	Inductive	80	59	45	63	247	0.56	0.64	0.56	0.6	0.56	0.57	0.56	-98.9 8.	81 0.13	143
DEV rat Developmental	ASN N	Mera, Mersy	77	56	48	66	247	0.54	0.62	0.54	0.57	0.54	0.54	0.54	-98.9 8	3.7 0.08	143
DEV rat Developmental	ASN N	QNPR	77	63	41	66	247	0.57	0.65	0.54	0.59	0.54	0.61	0.57	-98.9 8.	97 0.14	143
DEV rat Developmental	ASN N	Spectrop hores	75	48	56	68	247	0.5	0.57	0.52	0.55	0.52	0.46	0.49		3.4 .014	
DEV rat	ASN	CDK, TA,															
Developmental DEV rat	N ASN	TP	88	49	55	54	246	0.56	0.62	0.62	0.62	0.62	0.47	0.55	-98.9 8.	37 0.09	142
Developmental	N	CDK, TA	86	57	47	56	246	0.58	0.65	0.61	0.63	0.61	0.55	0.58	-98.8 8.	69 0.15	142

DEV rat Developmental	ASN N	CDK, TP	85	54	50	57	246	0.57	0.63	0.6	0.61	0.6	0.52	0.56	-98.9	8.58	0.12	142
DEV rat Developmental	ASN N	TA, TP	91	51	53	52	247	0.57	0.63	0.64	0.63	0.64	0.49	0.56	-98.9	8.44	0.13	143
DEV rat Developmental	ASN N	TA	83	48	56	60	247	0.53	0.6	0.58	0.59	0.58	0.46	0.52	-99.0	8 37	0.04	143
DEV rat	ASN																	
Developmental	N	TP	87	57	47	56	247	0.58	0.65	0.61	0.63	0.61	0.55	0.58	-98.8	0.7	0.16	143
DEV rat Developmental	FSM LR	CDK, TA, TP	91	54	50	51	246	0.59	0.65	0.64	0.64	0.64	0.52	0.58	-98.8	8.53	0.16	142
DEV rat	FSM	001/ 71																
Developmental	LR	CDK, TA	86	50	54	56	246	0.55	0.61	0.61	0.61	0.61	0.48	0.54	-98.9	8.42	0.09	142
DEV rat Developmental	FSM LR	CDK, TP	89	58	46	53	246	0.6	0.66	0.63	0.64	0.63	0.56	0.59	-98.8	8.7	0.18	142
	FSM																	
DEV rat Developmental	LR	TA, TP	97	58	46	46	247	0.63	0.68	0.68	0.68	0.68	0.56	0.62	-98.8	8.65	0.24	143
DEV rat	FSM																	
Developmental	LR	TA	86	42	62	57	247	0.52	0.58	0.6	0.59	0.6	0.4	0.5	-99.0	8.13	0.01	143
DEV rat	FSM LR	TP	91	51	53	52	247	0.57	0.63	0.64	0.63	0.64	0.40	0.56	0.0	0 11	0.13	1/12
Developmental DEV rat		CDK, TA,					247		0.63	0.64	0.63	0.64	0.49					
Developmental DEV rat	KNN	TP	116	22	82	26	246	0.56	0.59	0.82	0.68	0.82	0.21	0.51	-99.0	6.74	0.04	142
Developmental	KNN	CDK, TA	95	32	72	47	246	0.52	0.57	0.67	0.61	0.67	0.31	0.49	-99.0	7.62	.025	142
DEV rat Developmental	KNN	CDK, TP	58	65	39	84	246	0.5	0.6	0.41	0.49	0.41	0.63	0.52	-99.0	9.01	0.03	142
DEV rat Developmental	KNN	TA, TP	120	21	83	23	247	0.57	0.59	0.84	0.69	0.84	0.2	0.52	-99.0	6.59	0.05	143
DEV rat Developmental	KNN	TA	111	30	74	32	247	0.57	0.6	0.78	0.68	0.78	0.29	0.53	-98.9	7.3	0.07	143
DEV rat Developmental	KNN	TP	74	58	46	69	247	0.53	0.62	0.52	0.56	0.52	0.56	0.54	-98.9	8.78	0.07	143
DEV rat	LibS	CDK, TA,																
Developmental	VM	TP	96	42	62	46	246	0.56	0.61	0.68	0.64	0.68	0.4	0.54	-98.9	8.02	0.08	142
DEV rat Developmental	LibS VM	CDK, TA	94	42	62	48	246	0.55	0.6	0.66	0.63	0.66	0.4	0.53	-98.9	8 O4	0.07	142
Bevelopmental		ODIX, IX	<u> </u>	72		-10	2-10	0.00	0.0	0.00	0.00	0.00	0.4	0.00	00.0	0.04	0.01	172
DEV rat Developmental	LibS VM	CDK, TP	93	43	61	49	246	0.55	0.6	0.65	0.63	0.65	0.41	0.53	-98.9	8.09	0.07	142
DEV rat	LibS																	
Developmental	VM	TA, TP	94	50	54	49	247	0.58	0.64	0.66	0.65	0.66	0.48	0.57	-98.9	8.37	0.14	143
DEV rat	LibS						- · -											
Developmental	VM	TA	90	32	72	53	247	0.49	0.56	0.63	0.59	0.63	0.31	0.47	-99.1	7.68	.065	143
DEV rat Developmental	LibS VM	TP	101	45	59	42	247	0.59	0.63	0.71	0.67	0.71	0.43	0.57	-98.9	8.1	0.14	143
DEV rat Developmental	MLR A	CDK, TA, TP	77	52	52	65	246	0.52	0.6	0.54	0.57	0.54	0.5	0.52	-99.0	8.53	0.04	142
DEV rat Developmental	MLR A	CDK, TA	76	62	42	66	246	0.56	0.64	0.54	0.58	0.54	0.6	0.57			0.13	142
DEV rat	MLR																	
Developmental DEV rat	A MLR	CDK, TP	79	63	41	63	246	0.58	0.66	0.56	0.6	0.56	0.61	0.58	-98.8	8.95	0.16	142
Developmental	Α	TA, TP	76	52	52	67	247	0.52	0.59	0.53	0.56	0.53	0.5	0.52	-99.0	8.55	0.03	143

DEV rat Developmental	MLR A	TA	67	50	54	76	247	0.47	0.55	0.47	0.51	0.47	0.48	0.47	-99.1	8.47	.05	143
DEV rat	MLR		25		40			0.55										
Developmental DEV rat	A	TP CDK, TA,	85	55	49	58	247	0.57	0.63	0.59	0.61	0.59	0.53	0.56	-98.9	8.63	0.12	143
Developmental	PLS	TP	85	48	56	57	246	0.54	0.6	0.6	0.6	0.6	0.46	0.53	-98.9	8.35	0.06	142
DEV rat Developmental	PLS	CDK, TA	84	56	48	58	246	0.57	0.64	0.59	0.61	0.59	0.54	0.57	-98.9	8.66	0.13	142
DEV rat Developmental	PLS	CDK, TP	83	55	49	59	246	0.56	0.63	0.58	0.61	0.58	0.53	0.56	-98.9	8.63	0.11	142
DEV rat Developmental	PLS	TA, TP	90	57	47	53	247	0.6	0.66	0.63	0.64	0.63	0.55	0.59	-98.8	8.68	0.18	143
DEV rat Developmental	PLS	TA	80	47	57	63	247	0.51	0.58	0.56	0.57	0.56	0.45	0.51	-99.0	8.35	0.01	143
DEV rat Developmental	PLS	TP	80	55	49	63	247	0.55	0.62	0.56	0.59	0.56	0.53	0.54	-98.9		0.09	143
DEV rat Developmental	J48	CDK, TA, TP	87	57	47	55	246	0.59	0.65	0.61	0.63	0.61	0.55	0.58	-98.8	8.68	0.16	142
DEV rat Developmental	J48	CDK, TA	83	56	48	59	246	0.57	0.63	0.58	0.61	0.58	0.54	0.56	-98.9		0.12	142
DEV rat Developmental	J48	CDK. TP	84	58	46	58	246	0.58	0.65	0.59	0.62	0.59	0.56	0.57		8.74	0.15	142
DEV rat Developmental	J48	TA, TP	94	53	51	49	247	0.56	0.65	0.66	0.65	0.66	0.50	0.58		8.49	0.17	143
DEV rat Developmental	J48	TA	87	51	53	56	247	0.56	0.62	0.61	0.61	0.61	0.49	0.55	-98.9		0.1	143
DEV rat	140	TP	81	53	51	62	247	0.54	0.61	0.57	0.50	0.57	0.51	0.54	00.0	0 57	0.08	142
Developmental DEV rat	J48	CDK, TA,					247	0.54			0.59	0.57		0.54		8.57		143
Developmental DEV rat	RF	TP	118	30	74	24	246	0.6	0.61	0.83	0.71	0.83	0.29	0.56	-98.9	7.08	0.14	142
Developmental	RF	CDK, TA	110	33	71	32	246	0.58	0.61	0.77	0.68	0.77	0.32	0.55	-98.9	7.43	0.1	142
DEV rat Developmental	RF	CDK, TP	116	27	77	26	246	0.58	0.6	0.82	0.69	0.82	0.26	0.54	-98.9	7.	0.09	142
DEV rat Developmental	RF	TA, TP	112	30	74	31	247	0.57	0.6	0.78	0.68	0.78	0.29	0.54	-98.9	7.28	0.08	143
DEV rat Developmental	RF	TA	110	28	76	33	247	0.56	0.59	0.77	0.67	0.77	0.27	0.52	-99.0	7.23	0.04	143
DEV rat Developmental	RF	TP	109	26	78	34	247	0.55	0.58	0.76	0.66	0.76	0.25	0.51	-99.0	7.15	0.01	143
DEV	FSM																	
DEV rat Developmental	LR	Adriana	101	44	60	41	246	0.59	0.63	0.71	0.67	0.71	0.42	0.57	-98.9	8.04	0.14	142
DEV rat		ALogPS,																
Developmental	LR	OEstate	95	62	42	48	247	0.64	0.69	0.66	0.68	0.66	0.6	0.63	-98.7	8.83	0.26	143
DEV rat	FSM																	
Developmental	LR	CDK	83	66	38	59	246	0.61	0.69	0.58	0.63	0.58	0.63	0.61	-98.8	9.06	0.22	142
DEV rat Developmental	FSM LR	Chemaxo n	69	63	41	74	247	0.53	0.63	0.48	0.55	0.48	0.61	0.54	-98.9	8.98	0.09	143
P - 2 - 3-2-2																		
DEV rat Developmental	FSM LR	Dragon6	89	64	40	54	247	0.62	0.69	0.62	0.65	0.62	0.62	0.62	-98.8	8.96	0.24	143
DEV rat	FSM	Fragment																
Developmental Developmental	LR	or	81	63	41	62	247	0.58	0.66	0.57	0.61	0.57	0.61	0.59	-98.8	8.96	0.17	143
DEV rat	FSM	GSFrag	88	72	32	55	247	0.65	0.72	0.62	0.67	0.62	0.60	0.65	-98.7	03	0.3	1/2
Developmental	LR	GOFTAY	00	12	JZ	55	<u> </u>	0.65	0.73	0.62	0.67	0.62	0.69	0.00	-90.1	9.3	0.3	143
DEV rat Developmental	FSM LR	Inductive	75	57	47	68	247	0.53	0.61	0.52	0.57	0.52	0.55	0.54	-98.9	8.74	0.07	143

DEV rat Developmental	FSM LR	Mera, Mersy	88	52	52	55	247	0.57	0.63	0.62	0.62	0.62	0.5	0.56	-98.9	8.5	0.11	143
DEV rat Developmental	FSM LR	QNPR	74	65	39	69	247	0.56	0.65	0.52	0.58	0.52	0.63	0.57	-08.0	9.06	0.14	143
· · · · · · · · · · · · · · · · · · ·		Spectrop	74		38	09	241	0.50	0.03	0.32	0.36	0.32	0.03	0.57	-90.9	9.00	0.14	140
DEV rat Developmental	LR	hores	43	59	45	100	247	0.41	0.49	0.3	0.37	0.3	0.57	0.43	-99.1	8.65	.136	143
DEV rat Developmental	KNN	Adriana	106	40	64	36	246	0.59	0.62	0.75	0.68	0.75	0.38	0.57	-98.9	7.8	0.14	142
DEV rat Developmental	KNN	ALogPS, OEstate	95	54	50	48	247	0.6	0.66	0.66	0.66	0.66	0.52	0.59	-98.8	8.52	0.18	143
DEV rat Developmental	KNN	CDK	84	55	49	58	246	0.57	0.63	0.59	0.61	0.59	0.53	0.56	-98.9	8.62	0.12	142
DEV rat Developmental	KNN	Chemaxo n	62	67	37	81	247	0.52	0.63	0.43	0.51	0.43	0.64	0.54	-98.9	9.12	0.08	143
DEV rat Developmental	KNN	Dragon6	79	60	44	64	247	0.56	0.64	0.55	0.59	0.55	0.58	0.56	-98.9	8.85	0.13	143
DEV rat Developmental	KNN	Fragment or	73	71	33	70	247	0.58	0.69	0.51	0.59	0.51	0.68	0.6	-98.8	9.31	0.19	143
DEV rat Developmental	KNN	GSFrag	87	60	44	56	247	0.6	0.66	0.61	0.64	0.61	0.58	0.59	-98.8	8.81	0.18	143
DEV rat Developmental	KNN	Inductive	86	46	58	57	247	0.53	0.6	0.6	0.6	0.6	0.44	0.52	-99.0	8.28	0.04	143
DEV rat Developmental	KNN	Mera, Mersy	86	59	45	57	247	0.59	0.66	0.6	0.63	0.6	0.57	0.58	-98.8	8.78	0.17	143
DEV rat Developmental	KNN	QNPR	53	84	20	90	247	0.55	0.73	0.37	0.49	0.37	0.81	0.59	-98.8	9.9	0.19	143
DEV rat Developmental	KNN	Spectrop hores	84	41	63	59	247	0.51	0.57	0.59	0.58	0.59	0.39	0.49	-99.0	8.1	.018	143
DEV rat	LibS	A dric	00	E 7	47	F0	040	0.50	0.05	0.00	0.64	0.00	0.55	0.50	00.0	0.00	0.47	140
Developmental	VM	Adriana	89	57	47	53	246	0.59	0.65	0.63	0.04	0.63	0.55	0.59	-98.8	0.00	0.17	142
DEV rat Developmental	VM	ALogPS, OEstate	88	55	49	55	247	0.58	0.64	0.62	0.63	0.62	0.53	0.57	-98.9	8.61	0.14	143
DEV rat Developmental	LibS VM	CDK	95	59	45	47	246	0.63	0.68	0.67	0.67	0.67	0.57	0.62	-98.8	8.69	0.24	142
DEV rat Developmental	LibS VM	Chemaxo n	82	52	52	61	247	0.54	0.61	0.57	0.59	0.57	0.5	0.54	-98.9	8.53	0.07	143
DEV rat	LibS																	
Developmental	VM	Dragon6	97	53	51	46	247	0.61	0.66	0.68	0.67	0.68	0.51	0.59	-98.8	8.46	υ.19	143
DEV rat Developmental	LibS VM	Fragment or	95	48	56	48	247	0.58	0.63	0.66	0.65	0.66	0.46	0.56	-98.9	8.29	0.13	143
DEV rat Developmental	LibS VM	GSFrag	91	57	47	52	247	0.6	0.66	0.64	0.65	0.64	0.55	0.59	-98.8	8.67	0.18	143
DEV rat Developmental	LibS VM	Inductive	90	44	60	53	247	0.54	0.6	0.63	0.61	0.63	0.42	0.53	-98.9	8.18	0.05	143
DEV rat Developmental	LibS VM	Mera, Mersy	86	53	51	57	247	0.56	0.63	0.6	0.61	0.6	0.51	0.56	-98.9	8.55	0.11	143
DEV rat Developmental	LibS VM	QNPR	96	54	50	47		0.61						0.6			0.19	

DEV rat Developmental	LibS VM	Spectrop hores	95	37	67	48	247	0.53	0.59	0.66	0.62	0.66	0.36	0.51	-99.0	7.85	0.02	143
DEV rat Developmental	MLR A	Adriana	87	57	47	55	246	0.59	0.65	0.61	0.63	0.61	0.55	0.58	-98.8	8.68	0.16	142
DEV rat Developmental	MLR A	ALogPS, OEstate	81	51	53	62	247	0.53	0.6	0.57	0.58	0.57	0.49	0.53	-98.9	2.5	0.06	143
DEV rat	MLR																	
Developmental DEV rat	A MLR	CDK Chemaxo	76	59	45	66	246	0.55	0.63	0.54	0.58	0.54	0.57	0.55	-98.9	8.8	0.1	142
Developmental DEV rat	A MLR	n	76	57	47	67	247	0.54	0.62	0.53	0.57	0.53	0.55	0.54	-98.9	8.74	80.0	143
Developmental	A MIR	Dragon6 Fragment	72	57	47	71	247	0.52	0.61	0.5	0.55	0.5	0.55	0.53	-98.9	8.74	0.05	143
DEV rat Developmental	A MLR	or	89	59	45	54	247	0.6	0.66	0.62	0.64	0.62	0.57	0.59	-98.8	8.76	0.19	143
DEV rat Developmental	Α	GSFrag	70	47	57	73	247	0.47	0.55	0.49	0.52	0.49	0.45	0.47	-99.1	8.36	.058	143
DEV rat Developmental	MLR A	Inductive	83	63	41	60	247	0.59	0.67	0.58	0.62	0.58	0.61	0.59	-98.8	8.95	0.18	143
DEV rat Developmental	MLR A	Mera, Mersy	77	60	44	66	247	0.55	0.64	0.54	0.58	0.54	0.58	0.56	-98.9	8.85	0.11	143
DEV rat Developmental	MLR A	QNPR	94	57	47	49	247	0.61	0.67	0.66	0.66	0.66	0.55	0.6	-98.8		0.2	143
DEV rat	MLR	Spectrop																
Developmental DEV rat	A	hores	61	46	58	82	247	0.43	0.51	0.43	0.47	0.43	0.44	0.43	-99.1	8.3	.13	143
Developmental	PLS	Adriana	88	56	48	54	246	0.59	0.65	0.62	0.63	0.62	0.54	0.58	-98.8	ŏ.63	U.16	142
DEV rat Developmental	PLS	ALogPS, OEstate	82	56	48	61	247	0.56	0.63	0.57	0.6	0.57	0.54	0.56	-98.9	8.68	0.11	143
DEV rat Developmental	PLS	CDK	86	63	41	56	246	0.61	0.68	0.61	0.64	0.61	0.61	0.61	-98.8	8.92	0.21	142
DEV rat Developmental	PLS	Chemaxo	70	65	39	73	247	0.55	0.64	0.49	0.56	0.49	0.63	0.56	-98.9			143
DEV rat Developmental		Dragon6	90	63	41	53	247	0.62	0.69	0.63	0.66	0.63	0.61	0.62	-98.8			143
DEV rat		Fragment																
Developmental DEV rat	PLS		88	61	43	55	247	0.6	0.67	0.62	0.64	0.62	0.59	0.6	-98.8			143
Developmental DEV rat	PLS	GSFrag	91	60	44	52	247	0.61	0.67	0.64	0.65	0.64	0.58	0.61	-98.8	8.78	0.21	143
Developmental DEV rat	PLS	Inductive Mera,	81	53	51	62	247	0.54	0.61	0.57	0.59	0.57	0.51	0.54	-98.9	8.57	80.0	143
Developmental DEV rat	PLS	Mersy	82	64	40	61	247	0.59	0.67	0.57	0.62	0.57	0.62	0.59	-98.8	9.	0.19	143
Developmental	PLS	QNPR Spectrop	78	64	40	65	247	0.57	0.66	0.55	0.6	0.55	0.62	0.58	-98.8	9.01	0.16	143
DEV rat Developmental	PLS	hores	61	43	61	82	247	0.42	0.5	0.43	0.46	0.43	0.41	0.42	-99.2	8.19	.158	143
DEV rat Developmental	J48	Adriana	87	60	44	55	246	0.6	0.66	0.61	0.64	0.61	0.58	0.59	-98.8	8.8	0.19	142
DEV rat		ALogPS,																
Developmental DEV rat	J48	OEstate	83	65	39	60	247	0.6	0.68	0.58	0.63	0.58	0.63	0.6	-98.8	9.03	0.2	143
Developmental DEV rat	J48	CDK Chemaxo	81	58	46	61	246	0.57	0.64	0.57	0.6	0.57	0.56	0.56	-98.9	8.75	0.13	142
Developmental	J48	n	84	58	46	59	247	0.57	0.65	0.59	0.62	0.59	0.56	0.57	-98.9	8.75	0.14	143
DEV rat Developmental	J48	Dragon6	92	56	48	51	247	0.6	0.66	0.64	0.65	0.64	0.54	0.59	-98.8	8.62	0.18	143
DEV rat Developmental	J48	Fragment or	85	55	49	58	247	0.57	0.63	0.59	0.61	0.59	0.53	0.56	-98.9	8.63	0.12	143
DEV rat Developmental	J48	GSFrag	86	66	38	57	247	0.62	0.69	0.6	0.64	0.6	0.63	0.62	-98.8	9.06	0.23	143

DEV rat		Mera,																
Developmental	J48	Mersy	78	56	48	65	247	0.54	0.62	0.55	0.58	0.55	0.54	0.54	-98.9	8.7	0.08	14:
DEV rat Developmental	J48	QNPR	72	59	45	71	247	0.53	0.62	0.5	0.55	0.5	0.57	0.54	-98.9	8.82	0.07	143
DEV rat Developmental	J48	Spectrop hores	90	52	52	53	247	0.57	0.63	0.63	0.63	0.63	0.5	0.56	-98.9	8.49	0.13	143
DEV rat Maternal	RF	Adriana	171	17	14	44	246	0.76	0.92	0.8	0.86	0.8	0.55	0.67	-98.7	9.13	0.26	215
	DE	ALogPS,	400	40	40	00	0.47	0.04	0.04	0.07	0.00	0.07	0.40	0.04	00.7	0.07	0.00	04/
DEV rat Maternal	RF	OEstate	188	13	18	28	247	0.81	0.91	0.87	0.89	0.87	0.42	0.64	-98.7		0.26	216
DEV rat Maternal	RF	CDK Chemaxo	182	16	15	33	246	8.0	0.92	0.85	0.88	0.85	0.52	0.68	-98.6	8.78	0.3	215
DEV rat Maternal	RF	n	179	18	13	37	247	0.8	0.93	0.83	0.88	0.83	0.58	0.7	-98.6	9.13	0.33	216
DEV rat Maternal	RF	Dragon6 Fragment	178	14	17	38	247	0.78	0.91	0.82	0.87	0.82	0.45	0.64	-98.7	8.65	0.22	216
DEV rat Maternal	RF	or	197	9	22	19	247	0.83	0.9	0.91	0.91	0.91	0.29	0.6	-98.8	7.39	0.21	216
DEV rat Maternal	RF	GSFrag	166	19	12	50	247	0.75	0.93	0.77	0.84	0.77	0.61	0.69	-98.6	9.48	0.28	216
DEV rat Maternal	RF	Inductive Mera.	187	15	16	29	247	0.82	0.92	0.87	0.89	0.87	0.48	0.67	-98.7	8.56	0.3	216
DEV rat Maternal	RF	Mersy	191	14	17	25	247	0.83	0.92	0.88	0.9	0.88	0.45	0.67	-98.7	8.31	0.31	216
DEV rat Maternal	RF	QNPR	196	16	15	20	247	0.86	0.93	0.91	0.92	0.91	0.52	0.71	-98.6		0.4	216
DEV rat Maternal	RF	Spectrop hores	180	11	20	36	247	0.77	0.9	0.83	0.87	0.83	0.35	0.59	-98.8	8.21	0.16	216
DEV rat Maternal	ASN N	Adriana	152	18	13	63	246	0.69	0.92	0.71	0.8	0.71	0.58	0.64	-98.7	9.49	0.2	215
DEV rat Maternal	N	ALogPS, OEstate	170	19	12	46	247	0.77	0.93	0.79	0.85	0.79	0.61	0.7	-98.6	9.42	0.3	216
DEV rat Maternal	ASN N	CDK	158	21	10	57	246	0.73	0.94	0.73	0.83	0.73	0.68	0.71	-98.6	9.83	0.29	215
DEV rat Maternal	ASN N	n	146	18	13	70	247	0.66	0.92	0.68	0.78	0.68	0.58	0.63	-98.7	9.56	0.18	216
DEV rat Maternal	ASN N	Dragon6	165	18	13	51	247	0.74	0.93	0.76	0.84	0.76	0.58	0.67	-98.7	9.37	0.25	216
DEV rat Maternal	ASN N	or	151	15	16	65	247	0.67	0.9	0.7	0.79	0.7	0.48	0.59	-98.8	9.14	0.13	216
DEV rat Maternal	ASN N ASN	GSFrag	157	18	13	59	247	0.71	0.92	0.73	0.81	0.73	0.58	0.65	-98.7	9.46	0.22	216
DEV rat Maternal	N	Inductive Mera,	157	15	16	59	247	0.7	0.91	0.73	0.81	0.73	0.48	0.61	-98.8	9.08	0.15	216
DEV rat Maternal	N ASN	Mersy	152	19	12	64	247	0.69	0.93	0.7	0.8	0.7	0.61	0.66	-98.7	9.64	0.22	216
DEV rat Maternal	N	QNPR Spectrop	162	19	12	54	247	0.73	0.93	0.75	0.83	0.75	0.61	0.68	-98.6	9.53	0.26	216
DEV rat Maternal	N	hores CDK, TA,	156	17	14	60	247	0.7	0.92	0.72	0.81	0.72	0.55	0.64	-98.7	9.34	0.19	216
DEV rat Maternal	N ASN	TP	160	15	16	55	246	0.71	0.91	0.74	0.82	0.74	0.48	0.61	-98.8	9.03	0.17	215
DEV rat Maternal	N ASN	CDK, TA	163	11	20	52	246	0.71	0.89	0.76	0.82	0.76	0.35	0.56	-98.9	8.48	0.09	215
DEV rat Maternal	N ASN	CDK, TP	164	15	16	51	246	0.73	0.91	0.76	0.83	0.76	0.48	0.62	-98.8	8.98	0.18	215
DEV rat Maternal	N ASN	TA, TP	166	11	20	50	247	0.72	0.89	0.77	0.83	0.77	0.35	0.56	-98.9	8.46	0.09	216
DEV rat Maternal	N ASN	TA	159	10	21	57	247	0.68	0.88	0.74	8.0	0.74	0.32	0.53	-98.9	8.41	0.04	216
DEV rat Maternal	N	TP	145	9	22	71	247	0.62	0.87	0.67	0.76	0.67	0.29	0.48	-99.0	8.39	.027	216
DEV rat Maternal	FSM LR	CDK, TA, TP	159	16	15	56	246	0.71	0.91	0.74	0.82	0.74	0.52	0.63	-98.7	9.17	0.19	215

DEV rat Maternal	FSM LR	CDK, TA	157	10	21	58	246	0.68	0.88	0.73	0.8	0.73	0.32	0.53	-98.9	8.41	0.04	2
	FSM																	
DEV rat Maternal	LR	CDK, TP	151	18	13	64	246	0.69	0.92	0.7	8.0	0.7	0.58	0.64	-98.7	9.5	0.2	2
DEV rot Motornol	FSM	TA TD	155	12	10	61	247	0.69	0.0	0.72	0.0	0.72	0.42	0.57	00.0	0 05	0.1	2
DEV rat Maternal	LR	TA, TP	155	13	18	61	247	0.68	0.9	0.72	8.0	0.72	0.42	0.57	-98.9	0.00	0.1	
DEV rat Maternal	FSM LR	TA	155	13	18	61	247	0.68	0.9	0.72	0.8	0.72	0.42	0.57	-98.9	8.85	0.1	2
	FSM	TD	400	40	40	00	0.47	0.57	0.07	0.50	0.74	0.50	0.00	0.40	00.0	0.00	044	,
DEV rat Maternal	LR	TP CDK, TA,	128	12	19	88	247	0.57	0.87	0.59	0.71	0.59	0.39	0.49	-99.0	8.89	.014	
DEV rat Maternal	KNN	TP	96	23	8	119	246	0.48	0.92	0.45	0.6	0.45	0.74	0.59	-98.8	10.4	0.13	2
DEV rat Maternal	KNN	CDK, TA	98	21	10	117	246	0.48	0.91	0.46	0.61	0.46	0.68	0.57	-98.9	10.1	0.09	2
DEV rat Maternal	KNN	CDK, TP	41	28	3	174	246	0.28	0.93	0.19	0.32	0.19	0.9	0.55	-98.9	11.	0.08	2
DEV rat Maternal	KNN	TA, TP	59	26	5	157	247	0.34	0.92	0.27	0.42	0.27	0.84	0.56	-98.9	10.7	0.08	2
DEV rat Maternal	KNN	TA	26	28	3	190	247	0.22	0.9	0.12	0.21	0.12	0.9	0.51	-99.0	10.6	0.02	2
DEV rat Maternal	KNN	TP	50	27	4	166	247	0.31	0.93	0.23	0.37	0.23	0.87	0.55	-98.9	10.8	0.08	2
DEV rat Maternal	LibS VM	CDK, TA, TP	213	3	28	2	246	0.88	0.88	0.99	0.93	0.99	0.1	0.54	-98.9	4.18	0.21	2
DEV rat Maternal	LibS VM	CDK, TA	215	2	29	0	246	0.88	0.88	1	0.94	1.	0.06	0.53	-98.9	2 21	0.24	-
DEV lativaterial	LibS	ODIN, 171					2.0	0.00	0.00		0.01		0.00	0.00	00.0		0.21	_
DEV rat Maternal	VM	CDK, TP	207	3	28	8	246	0.85	0.88	0.96	0.92	0.96	0.1	0.53	-98.9	5.38	0.1	2
	LibS			_			- · -											
DEV rat Maternal	VM	TA, TP	215	0	31	1_	247	0.87	0.87	1.	0.93	1.	0.	0.5	-99.0	1.64	.024	
DEV rat Maternal	LibS VM	TA	216	0	31	0	247	0.87	0.87	1.	0.93	1.	0.	0.5	-99.0	0.54		2
	LibS																	
DEV rat Maternal		TP CDK, TA,	207	0	31	9	247	0.84	0.87	0.96	0.91	0.96	0.	0.48	-99.0	3.44	.074	2
DEV rat Maternal	A MLR	TP	139	17	14	76	246	0.63	0.91	0.65	0.76	0.65	0.55	0.6	-98.8	9.46	0.13	2
DEV rat Maternal	A MLR	CDK, TA	124	17	14	91	246	0.57	0.9	0.58	0.7	0.58	0.55	0.56	-98.9	9.53	80.0	2
DEV rat Maternal	Α	CDK, TP	108	20	11	107	246	0.52	0.91	0.5	0.65	0.5	0.65	0.57	-98.9	9.94	0.1	2
DEV rat Maternal	MLR A	TA, TP	126	11	20	90	247	0.55	0.86	0.58	0.7	0.58	0.35	0.47	-99.1	8.77	.042	2
DEV rat Maternal	MLR A	TA	102	22	9	114	247	0.5	0.92	0.47	0.62	0.47	0.71	0.59	-98.8	10.2	0.12	2
DEV rat Maternal	MLR A	TP	133	16	15	83	247	0.6	0.9	0.62	0.73	0.62	0.52	0.57	-98.9	9.38	0.09	2
DEV rat Maternal	PLS	CDK, TA, TP	166	13	18	49	246	0.73	0.9	0.77	0.83	0.77	0.42	0.6	-98.8	8.7	0.15	2
DEV rat Maternal	PLS	CDK, TA	159	13	18	56	246	0.7	0.9	0.74	0.81	0.74	0.42	0.58	-98.8	8.79	0.12	2
DEV rat Maternal		CDK, TP	155	15	16	60	246	0.69	0.91	0.72	0.8	0.72		0.6	-98.8			
DEV rat Maternal		TA, TP	162	12	19	54	247	0.7	0.9			0.75		0.57	-98.9			

DEV rat Maternal	PLS	TA	160	8	23	56	247	0.68	0.87	0.74	8.0	0.74	0.26	0.5	-99.0	8.1	.001	216
DEV rat Maternal	PLS	TP	137	11	20	79	247	0.6	0.87	0.63	0.73	0.63	0.35	0.49	-99.0	8.72	.008	216
DEV rat Maternal	J48	CDK, TA, TP	168	10	21	47	246	0.72	0.89	0.78	0.83	0.78	0.32	0.55	-98.9	8.27	0.08	215
DEV rat Maternal	J48	CDK, TA	160	11	20	55	246	0.7	0.89	0.74	0.81	0.74	0.35	0.55	-98.9	8.52	0.07	215
DEV rat Maternal	J48	CDK, TP	165	22	9	50	246	0.76	0.95	0.77	0.85	0.77	0.71	0.74	-98.5	9.89	0.35	215
DEV rat Maternal	J48	TA, TP	170	7	24	46	247	0.72	0.88	0.79	0.83	0.79	0.23	0.51	-99.0	7.79	0.01	216
DEV rat Maternal	J48	TA	177	11	20	39	247	0.76	0.9	0.82	0.86	0.82	0.35	0.59	-98.8	8.28	0.14	216
DEV rat Maternal	J48	TP CDK, TA,	149	11	20	67	247	0.65	0.88	0.69	0.77	0.69	0.35	0.52	-99.0	8.64	0.03	216
DEV rat Maternal	RF	TP	201	8	23	14	246	0.85	0.9	0.93	0.92	0.93	0.26	0.6	-98.8	6.96	0.22	215
DEV rat Maternal	RF	CDK, TA	192	8	23	23	246	0.81	0.89	0.89	0.89	0.89	0.26	0.58	-98.8	7.4	0.15	215
DEV rat Maternal	RF	CDK, TP	193	11	20	22	246	0.83	0.91	0.9	0.9	0.9	0.35	0.63	-98.7	7.8	0.25	215
DEV rat Maternal	RF	TA, TP	205	1	30	11	247	0.83	0.87	0.95	0.91	0.95	0.03	0.49	-99.0	4.76	.029	216
DEV rat Maternal	RF	TA	184	4	27	32	247	0.76	0.87	0.85	0.86	0.85	0.13	0.49	-99.0	6.89	.018	216
DEV rat Maternal	RF	TP	183	1	30	33	247	0.74	0.86	0.85	0.85	0.85	0.03	0.44	-99.1	5.71	.116	216
DEV rat Maternal	FSM LR	Adriana	163	13	18	52	246	0.72	0.9	0.76	0.82	0.76	0.42	0.59	-98.8	8.74	0.13	215
DEV rat Maternal	FSM LR	ALogPS, OEstate	156	22	9	60	247	0.72	0.95	0.72	0.82	0.72	0.71	0.72	-98.6	10.	0.3	216
DEV rat Maternal	FSM LR	CDK	158	23	8	57	246	0.74	0.95	0.73	0.83	0.73	0.74	0.74	-98.5	10.1	0.34	215
DEV rat Maternal	FSM LR	Chemaxo n	146	19	12	70	247	0.67	0.92	0.68	0.78	0.68	0.61	0.64	-98.7	9.69	0.2	216
	FSM																	
DEV rat Maternal	LR	Dragon6	157	18	13	59	247	0.71	0.92	0.73	0.81	0.73	0.58	0.65	-98.7	9.46	0.22	216
DEV rat Maternal	FSM LR	Fragment or	170	15	16	46	247	0.75	0.91	0.79	0.85	0.79	0.48	0.64	-98.7	8.92	0.21	216
DEV rat Maternal	FSM LR	GSFrag	161	16	15	55	247	0.72	0.91	0.75	0.82	0.75	0.52	0.63	-98.7	9.16	0.19	216
	FSM																	
DEV rat Maternal	LR	Inductive	167	13	18	49	247	0.73	0.9	0.77	0.83	0.77	0.42	0.6	-98.8	8.71	0.15	216
DEV rat Maternal	FSM LR	Mera, Mersy	147	19	12	69	247	0.67	0.92	0.68	0.78	0.68	0.61	0.65	-98.7	9.68	0.2	216
DEV rat Maternal	FSM LR	QNPR	168	19	12	48	247	0.76	0.93	0.78	0.85	0.78	0.61	0.7	-98.6	9.45	0.29	216
DEV.		Spectrop	160	14	20	F.0	0.47	0.00	0.00	0.74	0.04	0.74	0.25	0.55	00.0	0.50	0.07	240
DEV rat Maternal	LR	hores	160	11	20	56	247	0.69	0.89	0.74	0.81	0.74		0.55	-98.9			
DEV rat Maternal	KNN	Adriana	143	17	14	72	246	0.65	0.91	0.67	0.77	0.67	0.55	0.61	-98.8	9.44	0.15	215
DEV rat Maternal	KNN	ALogPS, OEstate	106	24	7	110	247	0.53	0.94	0.49	0.64	0.49	0.77	0.63	-98.7	10.6	0.18	216
DEV rat Maternal	KNN	CDK Chemaxo	125	23	8	90	246	0.6	0.94	0.58	0.72	0.58	0.74	0.66	-98.7	10.4	0.22	215
DEV rat Maternal	KNN		113	23	8	103	247	0.55	0.93	0.52	0.67	0.52	0.74	0.63	-98.7	10.4	0.18	216

DEV rat Maternal	KNN	Dragon6	124	24	7	92	247	0.6	0.95	0.57	0.71	0.57	0.77	0.67	-98.7	10.5	0.23	216
DEV rat Maternal	KNN	Fragment or	160	15	16	56	247	0.71	0.91	0.74	0.82	0.74	0.48	0.61	-98.8	9.05	0.16	216
DEV rat Maternal	KNN	GSFrag	146	22	9	70	247	0.68	0.94	0.68	0.79	0.68	0.71	0.69	-98.6	10.1	0.26	216
DEV rat Maternal	KNN	Inductive Mera,	127	20	11	89	247	0.6	0.92	0.59	0.72	0.59	0.65	0.62	-98.8	9.92	0.16	216
DEV rat Maternal	KNN	Mersy	143	21	10	73	247	0.66	0.93	0.66	0.78	0.66	0.68	0.67	-98.7	9.98	0.23	216
DEV rat Maternal	KNN	QNPR Spectrop	149	18	13	67	247	0.68	0.92	0.69	0.79	0.69	0.58	0.64	-98.7	9.53	0.19	216
DEV rat Maternal	KNN	hores	117	19	12	99	247	0.55	0.91	0.54	0.68	0.54	0.61	0.58	-98.8	9.81	0.1	216
DEV rat Maternal	LibS VM	Adriana	181	14	17	34	246	0.79	0.91	0.84	0.88	0.84	0.45	0.65	-08 7	2 55	0.25	215
DEV Tat Maternal		ALogPS,	101	14	17	- 34	240	0.79	0.91	0.04	0.00	0.04	0.43	0.03	-90.7	0.00	0.23	210
DEV rat Maternal	VM	OEstate	185	13	18	31	247	0.8	0.91	0.86	0.88	0.86	0.42	0.64	-98.7	8.36	0.24	216
DEV rat Maternal	LibS VM	CDK	177	18	13	38	246	0.79	0.93	0.82	0.87	0.82	0.58	0.7	-08 6	0 1/	0.32	215
DEV Tat Maternal	LibS	Chemaxo	177	10	13	36	240	0.79	0.93	0.02	0.67	0.02	0.36	0.7	-90.0	9.14	0.32	210
DEV rat Maternal	VM	n	185	14	17	31	247	0.81	0.92	0.86	0.89	0.86	0.45	0.65	-98.7	8.48	0.26	216
DEV rat Maternal	LibS VM	Dragon6	185	12	19	31	247	0.8	0.91	0.86	0.88	0.86	0.39	0.62	-98.8	8.23	0.21	216
DEV rat Maternal	LibS VM	Fragment or	199	9	22	17	247	0.84	0.9	0.92	0.91	0.92	0.29	0.61	-98.8	7.3	0.23	216
	LibS																	
DEV rat Maternal	VM	GSFrag	175	14	17	41	247	0.77	0.91	0.81	0.86	0.81	0.45	0.63	-98.7	8.71	0.21	216
DEV rat Maternal	LibS VM	Inductive	182	11	20	34	247	0.78	0.9	0.84	0.87	0.84	0.35	0.6	-98.8	8.17	0.17	216
DEV rat Maternal	LibS VM	Mera, Mersy	198	14	17	18	247	0.86	0.92	0.92	0.92	0.92	0.45	0.68	-98.6	8.02	0.36	216
	LibS	-																
DEV rat Maternal	VM	QNPR	184	12	19	32	247	0.79	0.91	0.85	0.88	0.85	0.39	0.62	-98.8	8.25	0.21	216
DEV rat Maternal	VM	Spectrop hores	195	7	24	21	247	0.82	0.89	0.9	0.9	0.9	0.23	0.56	-98.9	7.16	0.13	216
DEV rat Maternal	MLR A	Adriana	134	16	15	81	246	0.61	0.9	0.62	0.74	0.62	0.52	0.57	-98.9	9.36	0.09	215
DEV rat Maternal	MLR A	ALogPS, OEstate	143	17	14	73	247	0.65	0.91	0.66	0.77	0.66	0.55	0.61	-98.8	9.45	0.14	216
DEV rat Maternal	MLR A	CDK	109	15	16	106	246	0.5	0.87	0.51	0.64	0.51	0.48	0.5	-99.0		.006	
DEV rat Maternal		Chemaxo n	128	18	13	88	247	0.59	0.91		0.72			0.59			0.12	
DEV rat Maternal	MLR A	Dragon6	95	20	11	121	247	0.47	0.9	0.44	0.59	0.44	0.65	0.54			0.06	
DEV rat Maternal		Fragment or	117	14	17	99	247	0.53	0.87	0.54	0.67	0.54	0.45	0.5			.004	
DEV rat Maternal	MLR A	GSFrag	139	18	13	77	247	0.64	0.91	0.64		0.64		0.61	-98.8		0.15	
DEV rat Maternal	MLR A	Inductive	145	12	19	71	247		0.88		0.76			0.53			0.13	
JEV TALIVIAREITIAI	~	muuulive	140	14	19	7 1	241	0.04	0.00	0.07	0.70	0.07	0.38	0.03	-90.9	0.01	0.04	Z 10

	MIR	Mera,																
DEV rat Maternal	A	Mersy	121	9	22	95	247	0.53	0.85	0.56	0.67	0.56	0.29	0.43	-99.1	8.5	.1	216
	MLR	· · · · · ·																
DEV rat Maternal	A MID	QNPR Spectrop	111	11	20	105	247	0.49	0.85	0.51	0.64	0.51	0.35	0.43	-99.1	8.79	.087	216
DEV rat Maternal	A	hores	143	14	17	73	247	0.64	0.89	0.66	0.76	0.66	0.45	0.56	-98.9	9.08	0.08	216
DEV rat Maternal		Adriana	155	17	14	60	246	0.7	0.92	0.72	0.81	0.72	0.55	0.63			0.19	215
	DI 0	ALogPS,	400	00			0.47	0 7 4	0.04		0.00		0.05		00.0	0.07	0.00	044
DEV rat Maternal		OEstate	162	20	11	54	247	0.74	0.94	0.75	0.83	0.75	0.65	0.7		9.67		216
DEV rat Maternal	PLS	CDK Chemaxo	152	22	9	63	246	0.71	0.94	0.71	0.81	0.71	0.71	0.71	-98.6	10.	0.29	215
DEV rat Maternal	PLS	n	143	19	12	73	247	0.66	0.92	0.66	0.77	0.66	0.61	0.64	-98.7	9.71	0.19	216
DEV rat Maternal	PLS	Dragon6 Fragment	164	20	11	52	247	0.74	0.94	0.76	0.84	0.76	0.65	0.7	-98.6	9.64	0.29	216
DEV rat Maternal	PLS	or	154	16	15	62	247	0.69	0.91	0.71	0.8	0.71	0.52	0.61	-98.8	9.24	0.16	216
DEV rat Maternal	PLS	GSFrag	156	19	12	60	247	0.71	0.93	0.72	0.81	0.72	0.61	0.67	-98.7	9.6	0.24	216
DEV. (14)	DI O	lander of the co	440	40	40	67	0.47	0.00	0.00	0.00	0.70	0.00	0.50	0.04	00.7	0.50	0.40	041
DEV rat Maternal	PLS	Inductive Mera,	149	18	13	67	247	0.68	0.92	0.69	0.79	0.69	0.58	0.64	-98.7	9.53	0.19	216
DEV rat Maternal	PLS	Mersy	138	21	10	78	247	0.64	0.93	0.64	0.76	0.64	0.68	0.66	-98.7	10.	0.21	216
DEV rat Maternal	PLS	QNPR	159	17	14	57	247	0.71	0.92	0.74	0.82	0.74	0.55	0.64	-98.7	9.31	0.21	216
		Spectrop				_	_											
DEV rat Maternal	PLS	hores	139	13	18	77	247	0.62	0.89	0.64	0.75	0.64	0.42	0.53			0.04	216
DEV rat Maternal	J48	Adriana	160	19	12	55	246	0.73	0.93	0.74	0.83	0.74	0.61	0.68	-98.6	9.54	0.26	215
		ALogPS,																
DEV rat Maternal	J48	OEstate	178	15	16	38	247	0.78	0.92	0.82	0.87	0.82	0.48	0.65	-98.7	8.77	0.25	216
DEV rat Maternal	J48	CDK	180	13	18	35	246	0.78	0.91	0.84	0.87	0.84	0.42	0.63	-98.7	8.45	0.21	215
DEV rot Motornal	140	Chemaxo	160	16	15	10	247	0.74	0.03	0.70	0 04	0.70	0.52	0.65	007	0.07	0.22	214
DEV rat Maternal	J48	n	168	16	15	48	247	0.74	0.92	0.78	0.84	0.78	0.52	0.65	-98. <i>l</i>	9.07	0.22	216
DEV rat Maternal	J48	Dragon6	169	18	13	47	247	0.76	0.93	0.78	0.85	0.78	0.58	0.68	-98.6	9.31	0.27	216
	140	Fragment	460	4-	4.0	67	0.47	0.00	0.00	0.00		0.00	0.40	0.00	00.0		0.00	644
DEV rat Maternal	J48	or	189	15	16	27	247	0.83	0.92	0.88	0.9	0.88	0.48	0.68	-98.6		0.32	
DEV rat Maternal	J48	GSFrag	158	19	12	58	247	0.72	0.93	0.73	0.82	0.73	0.61	0.67	-98.7	9.58	0.25	216
DEV rat Maternal	J48	Inductive	160	15	16	56	247	0.71	0.91	0.74	0.82	0.74	0.48	0.61	-98.8	9.05	0.16	216
		Mera,				_	_						_					
DEV rat Maternal	J48	Mersy	186	14	17	30	247	0.81	0.92	0.86	0.89	0.86	0.45	0.66		8.46		216
DEV rat Maternal	J48	QNPR Spectrop	174	15	16	42	247	0.77	0.92	0.81	0.86	0.81	0.48	0.64	-98.7	8.85	0.23	216
DEV rat Maternal	J48	hores	169	12	19	47	247	0.73	0.9	0.78	0.84	0.78	0.39	0.58	-98.8	8.55	0.13	216
										· v								
DEV rabbit Developmental																		
GeneralFetal																		
FetalWeightReduction	RF	Adriana	19	92	94	25	230	0.48	0.17	0.43	0.24	0.43	0.49	0.46	-99.1	6.19	.058	44
DEV rabbit																		
Developmental		ALogPS,																
GeneralFetal FetalWeightReduction	RF	OEstate	25	113	74	19	231	0.6	0.25	0.57	0.35	0.57	0.6	0.59	-98 R	6.63	0 14	44
. Jan Proigniti Codolion	731	JESIAIC		110		10	201	0.0	0.20	0.01	0.00	0.01	0.0	0.00	50.0	0.00	0.17	
DEV rabbit																		
Developmental GeneralFetal																		
FetalWeightReduction	RF	CDK	22	103	83	22	230	0.54	0.21	0.5	0.3	0.5	0.55	0.53	-98.9	6.44	0.04	44
DEV rabbit Developmental																		
GeneralFetal FetalWeightReduction	DE	Chemaxo	24	107	80	20	231	0.57	0.00	0.55	0.32	0.55	0.53	0.50	00.0	6.51	0.00	44
		n																/1/

																		_
DEV rabbit																		
Developmental GeneralFetal																		
FetalWeightReduction	RF	Dragon6	22	105	82	22	231	0.55	0.21	0.5	0.3	0.5	0.56	0.53	-98.9	6.47	0.05	44
DEV rabbit Developmental																		
GeneralFetal	DE	Fragment	00	400	70	04	004	0.57	0.00	0.50	0.00	0.50	0.50	0.55	00.0	0.50	0.00	
FetalWeightReduction	KF	or	23	109	78	21	231	0.57	0.23	0.52	0.32	0.52	0.58	0.55	-98.9	6.56	0.08	44
DEV rabbit																		
Developmental																		
GeneralFetal FetalWeightReduction	RF	GSFrag	31	115	72	13	231	0.63	0.3	0.7	0.42	0.7	0.61	0.66	-98.7	6.52	0.25	44
DEV rabbit																		
Developmental GeneralFetal																		
FetalWeightReduction	RF	Inductive	19	107	80	25	231	0.55	0.19	0.43	0.27	0.43	0.57	0.5	-99.0	6.5	0.	44
DEV rabbit																		
Developmental		Moro																
GeneralFetal FetalWeightReduction	RF	Mera, Mersy	23	111	76	21	231	0.58	0.23	0.52	0.32	0.52	0.59	0.56	-98.9	6.6	0.09	44
r etaiveight teadouri	131	Wicioy			70		201	0.00	0.20	0.02	0.02	0.02	0.00	0.00	00.0	0.0	0.00	
DEV rabbit																		
Developmental GeneralFetal																		
FetalWeightReduction	RF	QNPR	26	108	79	18	231	0.58	0.25	0.59	0.35	0.59	0.58	0.58	-98.8	6.51	0.13	44
DEV rabbit Developmental																		
GeneralFetal	DE	Spectrop	0.4	00	00	20	224	0.50	0.04	0.55	0.04	0.55	0.50	0.54	00.0	0.04	0.00	
FetalWeightReduction	KF	hores	24	99	88	20	231	0.53	0.21	0.55	0.31	0.55	0.53	0.54	-98.9	6.34	0.06	44
DEV rabbit																		
Developmental	ASN																	
GeneralFetal FetalWeightReduction		Adriana	23	111	75	21	230	0.58	0.23	0.52	0.32	0.52	0.6	0.56	-98.9	6.61	0.1	44
DEV rabbit Developmental																		
GeneralFetal		ALogPS,																
FetalWeightReduction	N	OEstate	18	120	67	26	231	0.6	0.21	0.41	0.28	0.41	0.64	0.53	-98.9	6.77	0.04	44
DEV rabbit																		
Developmental	ASN																	
GeneralFetal FetalWeightReduction		CDK	21	122	64	23	230	0.62	0.25	0.48	0.33	0.48	0.66	0.57	-98.9	6.87	0.11	44
, in the same				-													-	
DEV rabbit																		
Developmental GeneralFetal	ASN	Chemaxo																
FetalWeightReduction	N	n	23	111	76	21	231	0.58	0.23	0.52	0.32	0.52	0.59	0.56	-98.9	6.6	0.09	44
DEV rabbit																		
Developmental	A C L '																	
GeneralFetal FetalWeightReduction	ASN N	Dragon6	16	127	60	28	231	0.62	0.21	0.36	0.27	0.36	0.68	0.52	-99.0	69	0.04	44
. Startfolgriti (Eduction)	.,	Diagono	10	141		20	201	0.02	V. <u>L</u> I	0.00	V.£1	0.00	0.00	0.02	55.0	0.5	0.04	77
DEV rabbit																		
Developmental GeneralFetal	ASN	Fragment																
		-					004	0.04	0.00	0.44	0.20	0.44	0.00	0.50	000		0.05	44
FetalWeightReduction		or	18	123	64	26	231	0.61	0.22	0.41	0.29	0.41	0.66	0.53	-98.9	6.84	0.05	
		or	18	123	64	26	231	0.61	0.22	0.41	0.29	0.41	0.00	0.53	-98.9	6.84	0.05	
DEV rabbit	N	or	18	123	64	26	231	0.61	0.22	0.41	0.29	0.41	0.00	0.53	-98.9	6.84	0.05	
	N ASN	or GSFrag	18 25	123	59	19	231	0.66	0.22		0.29		0.68		-98.9 -98.7			44

r																		
DEV rabbit																		
Developmental	ASN																	
GeneralFetal FetalWeightReduction		Inductive	16	116	71	28	231	0.57	0.18	0.36	0.24	0.36	0.62	0.49	-99.0	6.64	.013	44
DEV rabbit																		
Developmental GeneralFetal	ASN	Mera,																
FetalWeightReduction	N	Mersy	23	108	79	21	231	0.57	0.23	0.52	0.32	0.52	0.58	0.55	-98.9	6.54	80.0	44
DEV rabbit																		
Developmental GeneralFetal	ASN																	
FetalWeightReduction	N	QNPR	22	122	65	22	231	0.62	0.25	0.5	0.34	0.5	0.65	0.58	-98.8	6.85	0.12	44
DEV rabbit Developmental																		
GeneralFetal		Spectrop								- ·-		- ·-						
FetalWeightReduction	N	hores	20	107	80	24	231	0.55	0.2	0.45	0.28	0.45	0.57	0.51	-99.0	6.51	0.02	44
DEV rabbit																		
Developmental	A C N I	CDK TA																
GeneralFetal FetalWeightReduction		CDK, TA, TP	20	140	46	24	230	0.7	0.3	0.45	0.36	0.45	0.75	0.6	-98.8	7 32	Λ 1 8	44
i etarweighti veddetion	IN	- 11	20	140	40		230	0.7	0.5	0.43	0.50	0.43	0.75	0.0	-90.0	1.52	0.10	
DEV rabbit																		
Developmental	ASN																	
GeneralFetal FetalWeightReduction		CDK, TA	16	146	40	28	230	0.7	0.29	0.36	0.32	0.36	0.78	0.57	-98.9	7.44	0.14	44
		· · · · · · · · · · · · · · · · · · ·																
DEV rabbit																		
Developmental GeneralFetal	ASN																	
FetalWeightReduction	N	CDK, TP	19	145	41	25	230	0.71	0.32	0.43	0.37	0.43	0.78	0.61	-98.8	7.46	0.19	44
DEV rabbit Developmental																		
GeneralFetal	ASN																	
FetalWeightReduction	N	TA, TP	18	138	49	26	231	0.68	0.27	0.41	0.32	0.41	0.74	0.57	-98.9	7.22	0.13	44
DEV rabbit																		
Developmental	401																	
GeneralFetal FetalWeightReduction	ASN	TA	16	139	48	28	231	0.67	0.25	0.36	0.3	0.36	0.74	0.55	-98.9	7 21	0.00	44
retaivveigntReduction	IN	IA	10	138	40	20	231	0.07	0.23	0.30	0.5	0.30	0.74	0.55	-90.9	1.21	0.09	
DEV rabbit																		
Developmental	ASN																	
GeneralFetal FetalWeightReduction		TP	15	135	52	29	231	0.65	0.22	0.34	0.27	0.34	0.72	0.53	-98.9	7.07	0.05	44
DEV rabbit																		
Developmental GeneralFetal	FSM	CDK, TA,																
FetalWeightReduction	LR	TP	24	136	50	20	230	0.7	0.32	0.55	0.41	0.55	0.73	0.64	-98.7	7.21	0.23	44
DEV rabbit Developmental																		
GeneralFetal	FSM	0.D.V. =:		40-										•				
FetalWeightReduction	LR	CDK, TA	23	132	54	21	230	0.67	0.3	0.52	0.38	0.52	0.71	0.62	-98.8	7.11	0.19	44
DEV rabbit																		
Developmental	FC																	
GeneralFetal	FSM	CDK TD	10	1/15	11	25	33N	0.71	U 33	0.43	0.37	0.43	0.79	0.61	_0o o	7 46	0.10	11
FetalWeightReduction	LK	CDK, TP	19	145	41	25	230	0.71	0.32	0.43	0.37	0.43	0.78	0.61	-98.8	7.40	0.19	44
DEV rabbit																		
Developmental	FSM																	
GeneralFetal FetalWeightReduction		TA, TP	23	127	60	21	231	0.65	0.28	0.52	0.36	0.52	0.68	0.6	-98.8	6.97	0.17	44
1		,					_0.	5.50	5.20	J.J2	5.50	J.J2	2.00	0.0	55.5	0.01	J /	. 7

DEV rabbit		_																
Developmental	FSM																	
GeneralFetal FetalWeightReduction		TA	20	134	53	24	231	0.67	0.27	0.45	0.34	0.45	0.72	0.59	-98.8	7 14	0 14	44
T ctarveignti (caaction	LIX	IA		104	- 55		201	0.07	0.21	0.40	0.04	0.40	0.12	0.00	-30.0	7.17	0.14	
DEV rabbit																		
Developmental	ECN4																	
GeneralFetal FetalWeightReduction	FSM	TP	17	135	52	27	231	0.66	0.25	0.39	0.3	0.39	0.72	0.55	-98.9	7 12	0.00	44
retailveigntReduction	LK	IF	17	133	52		231	0.00	0.25	0.39	0.3	0.39	0.72	0.55	-90.9	1.12	0.09	44
DEV rabbit																		
Developmental		0011 -1																
GeneralFetal		CDK, TA,	07	00		4-	000	0.55	0.04	0.04	0.04	0.04	0.50	o ==	00.0			
FetalWeightReduction	KNN	TP	27	99	87	17	230	0.55	0.24	0.61	0.34	0.61	0.53	0.57	-98.9	6.3	0.11	44
DEV rabbit Developmental																		
GeneralFetal																		
FetalWeightReduction	KNN	CDK, TA	24	126	60	20	230	0.65	0.29	0.55	0.38	0.55	0.68	0.61	-98.8	6.96	0.18	44
DEV rabbit																		
Developmental GeneralFetal																		
FetalWeightReduction	KNN	CDK, TP	30	118	68	14	230	0.64	0.31	0.68	0.42	0.68	0.63	0.66	-98.7	6.64	0.25	44
·		•																
DEV rabbit																		
Developmental																		
GeneralFetal FetalWeightReduction	KNINI	TA TD	26	89	98	18	231	0.5	0.21	0.59	0.31	0.59	0.48	0.53	-98.9	6.1	0.05	44
T etaivveighti veduction	IXIVIN	17, 11	20	03	30	10	231	0.5	0.21	0.55	0.51	0.55	0.40	0.55	-30.3	0.1	0.03	
DEV rabbit																		
Developmental																		
GeneralFetal																		
FetalWeightReduction	KNN	TA	20	106	81	24	231	0.55	0.2	0.45	0.28	0.45	0.57	0.51	-99.0	6.49	0.02	44
DEV rabbit																		
Developmental GeneralFetal																		
FetalWeightReduction	KNN	TP	32	74	113	12	231	0.46	0.22	0.73	0.34	0.73	0.4	0.56	-98.9	5.59	0.1	44
DEV rabbit																		
Developmental GeneralFetal	LibS	CDK, TA,																
FetalWeightReduction		TP	3	178	8	41	230	0.79	0.27	0.07	0.11	0.07	0.96	0.51	-99.0	8.02	0.05	44
								****	•		••••	****						$\overline{}$
DEV rabbit																		
Developmental	l iko																	
GeneralFetal FetalWeightReduction	LibS	CDK, TA	11	165	21	33	230	0.77	0.24	0.25	0.29	0.25	0.00	0.57	-98.9	7 00	0.16	44
retailveigntReduction	VIVI	CDK, IA	11	100	۷۱	33	230	0.77	0.34	0.23	0.29	0.25	0.89	0.57	-90.9	7.99	0.10	44
DEV rabbit																		
Developmental																		
GeneralFetal	LibS	AD1: ==																
FetalWeightReduction	VM	CDK, TP	11	172	14	33	230	0.8	0.44	0.25	0.32	0.25	0.92	0.59	-98.8	8.43	0.22	44
DEV rabbit Developmental																		
GeneralFetal	LibS																	
FetalWeightReduction	VM	TA, TP	7	168	19	37	231	0.76	0.27	0.16	0.2	0.16	0.9	0.53	-98.9	7.8	0.07	44
DEV rabbit																		
Developmental	LibS																	
GeneralFetal FetalWeightReduction		TA	7	167	20	37	231	0.75	0.26	0.16	0.2	0.16	0.89	0.53	-98.9	7.74	0.06	44
						<u> </u>		5.70	·. <u>_</u>	0.10	- J. <u>-</u>	0.10	0.00	0.00			2.30	\dashv
DEV rabbit																		
Developmental	1 :k 0																	
GeneralFetal	LibS	TD	^	100	40	25	004	0 77	0.00		0.05	0.0	^ ^	0.55	00.0	7.00	0.40	
FetalWeightReduction	VIVI	TP	9	168	19	35	231	0.77	0.32	0.2	0.25	0.2	0.9	0.55	-98.9	7.98	0.12	44

r																		
DEV rabbit																		
Developmental	MIR	CDK, TA,																
GeneralFetal FetalWeightReduction		TP	18	98	88	26	230	0.5	0.17	0.41	0.24	0.41	0.53	0.47	-99.1	6.3	.051	44
DEV rabbit Developmental																		
GeneralFetal	MLR																	
FetalWeightReduction	Α	CDK, TA	20	102	84	24	230	0.53	0.19	0.45	0.27	0.45	0.55	0.5	-99.0	6.41	0.	44
DEV rabbit																		
Developmental	МБ																	
GeneralFetal FetalWeightReduction	MLR _A	CDK, TP	26	121	65	18	230	0.64	0.29	0.59	0.39	0.59	0.65	0.62	-98.8	6.81	Λ 1Q	44
T CLAITVOIGHT (CAGOLOIT		ODIK, II		121		10	200	0.04	0.20	0.00	0.00	0.00	0.00	0.02	00.0	0.01	0.10	
DEV rabbit																		
Developmental GeneralFetal	MLR																	
FetalWeightReduction	Α	TA, TP	24	115	72	20	231	0.6	0.25	0.55	0.34	0.55	0.61	0.58	-98.8	6.68	0.13	44
DEV rabbit Developmental																		
GeneralFetal	MLR	T 4	. .	~-	0.0			0 ==	0.0:	o ==	. -	o ==	0 ==	0 ==			0.0=	
FetalWeightReduction	A	TA	24	97	90	20	231	0.52	0.21	0.55	0.3	0.55	0.52	0.53	-98.9	6.29	0.05	44
DEV rabbit																		
Developmental	MLR																	
GeneralFetal FetalWeightReduction		TP	22	98	89	22	231	0.52	0.2	0.5	0.28	0.5	0.52	0.51	-99.0	6.32	0.02	44
- Clairroigna toddolon		••						0.02		0.0	0.20	0.0	0.02	0.01	00.0	0.02	0.02	$\overline{}$
DEV rabbit																		
Developmental GeneralFetal		CDK, TA,																
FetalWeightReduction	PLS	TP	21	135	51	23	230	0.68	0.29	0.48	0.36	0.48	0.73	0.6	-98.8	7.19	0.17	44
DEV rabbit Developmental																		
GeneralFetal	5. 6																	
FetalWeightReduction	PLS	CDK, TA	20	142	44	24	230	0.7	0.31	0.45	0.37	0.45	0.76	0.61	-98.8	7.38	0.19	44
DEV rabbit																		
Developmental																		
GeneralFetal FetalWeightReduction	PLS	CDK TP	19	143	43	25	230	0.7	0.31	0.43	0.36	0.43	0.77	0.6	-98.8	7 4	0.18	44
- Clairroigna toddolon		ODIK, III	-10	110	10			0.7	0.01	0.10	0.00	0.10	0.77	0.0	00.0		0.10	$\overline{}$
DEV rabbit																		
Developmental GeneralFetal																		
FetalWeightReduction	PLS	TA, TP	21	138	49	23	231	0.69	0.3	0.48	0.37	0.48	0.74	0.61	-98.8	7.25	0.18	44
DEV rabbit Developmental																		
GeneralFetal	DI O	Τ.	4-	405	50	0-	004	0.00	0.05	0.00	0.0	0.00	0.70	0.55	00.0	7.40	0.00	
FetalWeightReduction	PLS	IA	17	135	52	27	231	0.66	0.25	0.39	0.3	0.39	0.72	0.55	-98.9	7.12	0.09	44
DEV rabbit																		
Developmental																		
GeneralFetal FetalWeightReduction	PLS	TP	18	135	52	26	231	0.66	0.26	0.41	0.32	0.41	0.72	0.57	-98.9	7.14	0.11	44
- 1	0							0.00	0.20	U. T I	0.02	U. T I	V.12	0.07	50.0	7	0.11	\dashv
DEV rabbit																		
Developmental GeneralFetal		CDK, TA,																
FetalWeightReduction	J48	TP	23	146	40	21	230	0.73	0.37	0.52	0.43	0.52	0.78	0.65	-98.7	7.51	0.27	44
DEV rabbit Developmental																		
GeneralFetal		0D1/ =:																
FetalWeightReduction	J48	CDK, TA	16	155	31	28	230	0.74	0.34	0.36	0.35	0.36	0.83	0.6	-98.8	7.75	0.19	44

DEV rabbit																	
Developmental GeneralFetal																	
FetalWeightReduction J48	CDK, TP	18	154	32	26	230	0.75	0.36	0.41	0.38	0.41	0.83	0.62	-98.8	7.75	0.23	44
DEV rabbit																	
Developmental																	
GeneralFetal FetalWeightReduction J48	TA, TP	14	136	51	30	231	0.65	0.22	0.32	0.26	0.32	0.73	0.52	-99.0	7.07	0.04	44
								-									
DEV rabbit Developmental																	
GeneralFetal																	
FetalWeightReduction J48	TA	14	150	37	30	231	0.71	0.27	0.32	0.29	0.32	8.0	0.56	-98.9	7.48	0.11	44
DEV rabbit																	
Developmental																	
GeneralFetal FetalWeightReduction J48	TP	15	140	47	29	231	0.67	0.24	0.34	0.28	0.34	0.75	0.54	-98.9	7 21	0.08	44
0 10							0.0.	<u> </u>	0.0.	0.20	0.0.	00	0.0.			0.00	
DEV rabbit																	
Developmental GeneralFetal	CDK, TA,																
FetalWeightReduction RF	TP	23	114	72	21	230	0.6	0.24	0.52	0.33	0.52	0.61	0.57	-98.9	6.68	0.11	44
DEV rabbit																	
Developmental																	
GeneralFetal	CDK TA	21	124	62	23	230	0.62	0.25	0.40	0.22	0.40	0.67	0.57	00.0	6.01	0.12	44
FetalWeightReduction RF	CDK, TA	21	124	02	23	230	0.63	0.25	0.48	0.33	0.48	0.67	0.57	-98.9	0.91	0.12	44
DEV rabbit																	
Developmental GeneralFetal																	
FetalWeightReduction RF	CDK, TP	24	115	71	20	230	0.6	0.25	0.55	0.35	0.55	0.62	0.58	-98.8	6.7	0.13	44
DEV rabbit Developmental																	
GeneralFetal																	
FetalWeightReduction RF	TA, TP	26	118	69	18	231	0.62	0.27	0.59	0.37	0.59	0.63	0.61	-98.8	6.73	0.18	44
DEV rabbit																	
Developmental																	
GeneralFetal FetalWeightReduction RF	TA	17	133	54	27	231	0.65	0.24	0.39	0.3	0.39	0.71	0.55	-98.9	7.07	0.08	44
DEV rabbit																	
Developmental GeneralFetal																	
FetalWeightReduction RF	TP	21	116	71	23	231	0.59	0.23	0.48	0.31	0.48	0.62	0.55	-98.9	6.71	0.08	44
DEV rabbit																	
Developmental																	
GeneralFetal FSIVI FetalWeightReduction LR	Adriana	23	106	80	21	230	0.56	0.22	0.52	0.31	0.52	0.57	0.55	-98.9	6.5	0.07	44
- otalifolgila toddolloli Elit	7 tariana		100				0.00	0.22	0.02	0.01	0.02	0.01	0.00	00.0	0.0	0.01	\dashv
DEV rabbit																	
Developmental GeneralFetal FSM	ALogPS,																
FetalWeightReduction LR	OEstate	21	115	72	23	231	0.59	0.23	0.48	0.31	0.48	0.61	0.55	-98.9	6.69	0.07	44
DEV rabbit Developmental																	
GeneralFetal FSM	ODK	00	440	07	0.4	000		0.00	0.45	0.01	0.45	0.01	0.55	00.0	0.70	0.00	
FetalWeightReduction LR	CDK	20	119	67	24	230	0.6	0.23	0.45	0.31	0.45	0.64	0.55	-98.9	6.79	0.08	44
DEV rabbit																	
Developmental	Chemaxo																
GeneralFetal FSIVI FetalWeightReduction LR	n	23	105	82	21	231	0.55	0.22	0.52	0.31	0.52	0.56	0.54	-98.9	6.47	0.07	44
		-			-			_							-		.1

DEV rabbit Developmental GeneralFetal FetalWeightReduction	FSM LR	Dragon6	15	128	59	29	231	0.62	0.2	0.34	0.25	0.34	0.68	0.51	-99.0	6.9	0.02	
DEV rabbit Developmental	ESM	Fragment																
GeneralFetal FetalWeightReduction		or	21	117	70	23	231	0.6	0.23	0.48	0.31	0.48	0.63	0.55	-98.9	6.74	0.08	
DEV rabbit Developmental GeneralFetal FetalWeightReduction	FSM	GSFrag	21	128	59	23	231	0.65	0.26	0.48	0.34	0.48	0.68	0.58	-98.8	7	0.13	
·	LK	GSFIAG	21	120	59	23	231	0.05	0.20	0.40	0.34	0.40	0.00	0.56	-90.0	7.	0.13	_
DEV rabbit Developmental GeneralFetal FetalWeightReduction	FSM LR	Inductive	22	94	93	22	231	0.5	0.19	0.5	0.28	0.5	0.5	0.5	-99.0	6.24	0.	
DEV rabbit Developmental GeneralFetal		Mera,																
FetalWeightReduction	LR	Mersy	24	98	89	20	231	0.53	0.21	0.55	0.31	0.55	0.52	0.53	-98.9	6.31	0.05	_
DEV rabbit Developmental GeneralFetal FetalWeightReduction	FSM LR	QNPR	25	118	69	19	231	0.62	0.27	0.57	0.36	0.57	0.63	0.6	-98.8	6.74	0.16	
DEV rabbit Developmental GeneralFetal FetalWeightReduction		Spectrop hores	27	94	93	17	231	0.52	0.23	0.61	0.33	0.61	0.5	0.56	-98.9	6 10	0.00	
DEV rabbit	LIX	nores	21	34	93	17	231	0.32	0.23	0.01	0.33	0.01	0.5	0.30	-90.9	0.19	0.09	_
Developmental GeneralFetal FetalWeightReduction	∠NINI	Adriana	34	57	129	10	230	0.4	0.21	0.77	0.33	0.77	0.31	0.54	-98.9	E 00	0.07	
DEV rabbit	KININ	Auriaria	34	31	129	10	230	0.4	0.21	0.77	0.33	0.77	0.51	0.54	-90.9	3.00	0.07	_
Developmental GeneralFetal FetalWeightReduction	KNN	ALogPS, OEstate	39	34	153	5	231	0.32	0.2	0.89	0.33	0.89	0.18	0.53	-98.9	3.89	0.07	
DEV rabbit Developmental GeneralFetal																		
FetalWeightReduction	KNN	CDK	32	70	116	12	230	0.44	0.22	0.73	0.33	0.73	0.38	0.55	-98.9	5.5	0.09	_
DEV rabbit Developmental GeneralFetal FetalWeightReduction	KNN	Chemaxo n	32	62	125	12	231	0.41	0.2	0.73	0.32	0.73	0.33	0.53	-98.9	5.31	0.05	
DEV rabbit Developmental GeneralFetal																		
FetalWeightReduction	KNN	Dragon6	28	98	89	16	231	0.55	0.24	0.64	0.35	0.64	0.52	0.58	-98.8	6.25	0.13	_
DEV rabbit Developmental GeneralFetal	IZNINI	Fragment	27	60	105	7	224	0.42	0.00	0.04	0.20	0.04	0.22	0.50	00.0	4.04	0.45	
FetalWeightReduction	NININ	UI	37	62	125	7	231	0.43	0.23	0.84	0.36	0.84	0.33	0.59	-98.8	4.94	0.15	-
DEV rabbit Developmental GeneralFetal FetalWeightReduction	KNN	GSFrag	29	99	88	15	231	0.55	0.25	0.66	0.36	0.66	0.53	0.59	-98.8	6.24	0.15	
. Startforgriff (Cudolion)		Joi lag	20	55	50	10	201	0.00	0.20	0.00	0.00	0.00	0.00	0.00	50.0	0.27	5.15	

DEV rabbit		_																
Developmental																		
GeneralFetal FetalWeightReduction	<nn< td=""><td>Inductive</td><td>21</td><td>111</td><td>76</td><td>23</td><td>231</td><td>0.57</td><td>0.22</td><td>0.48</td><td>0.3</td><td>0.48</td><td>0.59</td><td>0.54</td><td>-98.9</td><td>6.6</td><td>0.06</td><td>44</td></nn<>	Inductive	21	111	76	23	231	0.57	0.22	0.48	0.3	0.48	0.59	0.54	-98.9	6.6	0.06	44
r ctarveigna codetion 1	CIVIV	maacavc		- 111	- 10		201	0.01	0.22	0.40	0.0	0.40	0.00	0.04	-30.3	0.0	0.00	
DEV rabbit																		
Developmental		Mera,																
GeneralFetal FetalWeightReduction	(NN		29	85	102	15	231	0.49	0.22	0.66	0.33	0.66	0.45	0.56	-98 9	5.94	0.09	44
- ctarroigna toddodon 1		morey						0.10	0.22	0.00	0.00	0.00	0.10	0.00	00.0	0.01	0.00	\dashv
DEV rabbit																		
Developmental																		
GeneralFetal FetalWeightReduction	KNN	QNPR	33	71	116	11	231	0.45	0.22	0.75	0.34	0.75	0.38	0.56	-98.9	5.47	0.11	44
DEV rabbit																		
Developmental		Spectrop																
GeneralFetal FetalWeightReduction	KNN	hores	33	83	104	11	231	0.5	0.24	0.75	0.36	0.75	0.44	0.6	-98.8	5.73	0.15	44
DEV rabbit																		
Developmental GeneralFetal L	_ibS																	
FetalWeightReduction \		Adriana	14	149	37	30	230	0.71	0.27	0.32	0.29	0.32	0.8	0.56	-98.9	7.47	0.11	44
<u> </u>		-																
DEV rabbit																		
Developmental	ibS	ALogPS,																
GeneralFetal LetalWeightReduction		OEstate	15	156	31	29	231	0.74	0.33	0.34	0.33	0.34	0.83	0.59	-98.8	7.73	0.17	44
DEV rabbit																		
Developmental	_ibS																	
GeneralFetal LetalWeightReduction		CDK	14	147	39	30	230	0.7	0.26	0.32	0.29	0.32	0.79	0.55	-98.9	7.41	0.1	44
3																		
DEV rabbit																		
Developmental	ihS	Chemaxo																
GeneralFetal LetalWeightReduction		n	4	162	25	40	231	0.72	0.14	0.09	0.11	0.09	0.87	0.48	-99.0	7.06	.051	44
DEV rabbit																		
Developmental GeneralFetal	_ibS																	
FetalWeightReduction \		Dragon6	7	157	30	37	231	0.71	0.19	0.16	0.17	0.16	0.84	0.5	-99.0	7.28	.001	44
DEV rabbit																		
Developmental GeneralFetal	_ibS	Fragment																
FetalWeightReduction \		or	11	165	22	33	231	0.76	0.33	0.25	0.29	0.25	0.88	0.57	-98.9	7.95	0.15	44
DEV rabbit																		
Developmental GeneralFetal	_ibS																	
FetalWeightReduction \		GSFrag	12	154	33	32	231	0.72	0.27	0.27	0.27	0.27	0.82	0.55	-98.9	7.54	0.1	44
DEV rabbit																		
Developmental GeneralFetal	_ibS																	
FetalWeightReduction \		Inductive	12	153	34	32	231	0.71	0.26	0.27	0.27	0.27	0.82	0.55	-98.9	7.5	0.09	44
-																		
DEV rabbit																		
Developmental GeneralFetal L	_ibS	Mera,																
FetalWeightReduction \		Mersy	8	162	25	36	231	0.74	0.24	0.18	0.21	0.18	0.87	0.52	-99.0	7.59	0.05	44
<u> </u>																		
DEV rabbit																		
Developmental	_ibS																	
GeneralFetal L FetalWeightReduction \		QNPR	12	158	29	32	231	0.74	0.29	0.27	0.28	0.27	0.84	0.56	-98.9	7.69	0.12	44
		-····							0						55.5			1

r																		
DEV rabbit																		
Developmental GeneralFetal	LibS	Spectrop	_															
FetalWeightReduction	VM	hores	9	141	46	35	231	0.65	0.16	0.2	0.18	0.2	0.75	0.48	-99.0	6.93	.038	44
DEV rabbit																		
Developmental GeneralFetal	MLR																	
FetalWeightReduction	A	Adriana	20	116	70	24	230	0.59	0.22	0.45	0.3	0.45	0.62	0.54	-98.9	6.72	0.06	44
DEV rabbit																		
Developmental GeneralFetal	MLR	ALogPS,																
FetalWeightReduction	Α	OEstate	17	123	64	27	231	0.61	0.21	0.39	0.27	0.39	0.66	0.52	-99.0	6.83	0.04	44
DEV rabbit																		
Developmental GeneralFetal	MLR																	
FetalWeightReduction	Α	CDK	22	100	86	22	230	0.53	0.2	0.5	0.29	0.5	0.54	0.52	-99.0	6.38	0.03	44
DEV rabbit																		
Developmental GeneralFetal	MLR	Chemaxo																
FetalWeightReduction	Α	n	24	113	74	20	231	0.59	0.24	0.55	0.34	0.55	0.6	0.57	-98.9	6.64	0.12	44
DEV rabbit																		
Developmental GeneralFetal	MLR																	
FetalWeightReduction	Α	Dragon6	18	105	82	26	231	0.53	0.18	0.41	0.25	0.41	0.56	0.49	-99.0	6.44	.023	44
DEV rabbit																		
Developmental GeneralFetal	MLR	Fragment																
FetalWeightReduction		or	24	89	98	20	231	0.49	0.2	0.55	0.29	0.55	0.48	0.51	-99.0	6.12	0.02	44
DEV rabbit																		
Developmental GeneralFetal	MLR																	
FetalWeightReduction		GSFrag	20	100	87	24	231	0.52	0.19	0.45	0.26	0.45	0.53	0.49	-99.0	6.36	.008	44
DEV rabbit																		
Developmental	MLR																	
GeneralFetal FetalWeightReduction		Inductive	22	117	70	22	231	0.6	0.24	0.5	0.32	0.5	0.63	0.56	-98.9	6.74	0.1	44
DEV rabbit																		
Developmental	MIR	Mera,																
GeneralFetal FetalWeightReduction		Mersy	24	88	99	20	231	0.48	0.2	0.55	0.29	0.55	0.47	0.51	-99.0	6.1	0.01	44
DEV rabbit																		
Developmental	MLR																	
GeneralFetal FetalWeightReduction		QNPR	23	99	88	21	231	0.53	0.21	0.52	0.3	0.52	0.53	0.53	-98.9	6.34	0.04	44
DEV salabit																		
DEV rabbit Developmental	MI D	Spectrop																
GeneralFetal FetalWeightReduction		hores	18	96	91	26	231	0.49	0.17	0.41	0.24	0.41	0.51	0.46	-99.1	6.25	.061	44
DEV																		
DEV rabbit Developmental																		
GeneralFetal FetalWeightReduction	PLS	Adriana	24	95	91	20	230	0.52	0.21	0.55	0.3	0.55	0.51	0.53	-98.9	6.26	0.04	44
DEV 11.																		\neg
DEV rabbit Developmental		AL cape																
GeneralFetal FetalWeightReduction	PLS	ALogPS, OEstate	26	111	76	18	231	0.59	0.25	0.59	0.36	0.59	0.59	0.59	-98.8	6.57	0.15	44

DEV rabbit Developmental																	
Developmental GeneralFetal																	
FetalWeightReduction PLS	CDK	23	112	74	21	230	0.59	0.24	0.52	0.33	0.52	0.6	0.56	-98.9	6.64	0.1	
DEV rabbit Developmental																	
GeneralFetal	Chemaxo																
FetalWeightReduction PLS	n	20	114	73	24	231	0.58	0.22	0.45	0.29	0.45	0.61	0.53	-98.9	6.66	0.05	_
DEV rabbit																	
Developmental																	
GeneralFetal	D	00	400	07	0.4	004	0.04	0.00	0.45	0.04	0.45	0.04	0.55	00.0	0.0	0.00	
FetalWeightReduction PLS	Dragono	20	120	67	24	231	0.61	0.23	0.45	0.31	0.45	0.64	0.55	-98.9	0.8	80.0	_
DEV rabbit																	
Developmental	Fragment																
GeneralFetal FetalWeightReduction PLS	Fragment or	20	116	71	24	231	0.59	0.22	0.45	0.3	0.45	0.62	0.54	_08.0	6.71	0.06	
r etaiweignii\eduction LO	Oi		110	7 1		201	0.55	0.22	0.43	0.5	0.43	0.02	0.54	-30.3	0.7 1	0.00	_
DEV rabbit																	
Developmental																	
GeneralFetal FetalWeightReduction PLS	GSFrag	25	126	61	19	231	0.65	0.29	0.57	0.38	0.57	0.67	0.62	-98.8	6.93	0.2	
<u> </u>	· - · · · · · · · · · · · · · · · ·																-
DEV rabbit																	
Developmental GeneralFetal																	
FetalWeightReduction PLS	Inductive	21	117	70	23	231	0.6	0.23	0.48	0.31	0.48	0.63	0.55	-98.9	6.74	0.08	
																	_
DEV rabbit																	
Developmental GeneralFetal	Mera,																
FetalWeightReduction PLS	Mersy	22	98	89	22	231	0.52	0.2	0.5	0.28	0.5	0.52	0.51	-99.0	6.32	0.02	
DEV rabbit																	
Developmental GeneralFetal																	
FetalWeightReduction PLS	QNPR	21	124	63	23	231	0.63	0.25	0.48	0.33	0.48	0.66	0.57	-98.9	6.9	0.11	_
DEV rabbit Developmental																	
GeneralFetal	Spectrop																
FetalWeightReduction PLS	hores	29	98	89	15	231	0.55	0.25	0.66	0.36	0.66	0.52	0.59	-98.8	6.22	0.14	_
DEV robbit																	
DEV rabbit Developmental																	
GeneralFetal	۸	40	100	_	20	000	0.04	0.47	0.07	0.04	0.07	0.00	0.40	00.0	6.00	000	
FetalWeightReduction J48	Adriana	12	129	57	32	230	0.61	0.17	0.27	0.21	0.27	0.69	0.48	-99.0	o.82	.029	_
DEV rabbit																	
Developmental	AL carro																
GeneralFetal FetalWeightReduction J48	ALogPS, OEstate	18	121	66	26	231	0.6	0.21	0.41	U 28	0.41	0.65	0.53	-98.9	6.8	0.05	
i etaitveignitheduction J40	OESIAIE	10	121	00	20	231	0.0	0.21	0.41	0.20	0.41	0.00	0.55	-30.3	0.0	0.00	-
DEV rabbit																	
Developmental																	
GeneralFetal FetalWeightReduction J48	CDK	18	129	57	26	230	0.64	0.24	0.41	0.3	0.41	0.69	0.55	-98.9	7 01	n na	
- Clarvelgriti (Cduction 040	JUIN	10	123	51	20	200	0.04	0.24	0.41	0.0	0.41	0.03	0.00	-30.9	7.01	0.03	-
DEV rabbit																	
Developmental	Chemaxo																
GeneralFetal FetalWeightReduction J48	n	14	128	59	30	231	0.61	0.19	0.32	0.24	0.32	0.68	0.5	-99.0	6.86	0.	
- Clarvelgriti (Cduction 040	11		120	00	30	201	0.01	0.10	0.02	0.27	0.02	0.00	0.0	-33.0	0.00	0.	-
DEV rabbit																	
Developmental																	
GeneralFetal FetalWeightReduction J48	Dragon6	18	134	53	26	231	0.66	0.25	0 ⊿1	0.31	0 ⊿1	0.72	0.56	-98.9	7 10	0 11	

DEV rabbit Developmental GeneralFetal FetalWeightReduction	J48	Fragment or	24	126	61	20	231	0.65	0.28	0.55	0.37	0.55	0.67	0.61	-98.8	6.94	0.18	44
DEV rabbit Developmental GeneralFetal FetalWeightReduction	J48	GSFrag	21	140	47	23	231	0.7	0.31	0.48	0.38	0.48	0.75	0.61	-98.8	7.31	0.19	44
DEV rabbit Developmental GeneralFetal FetalWeightReduction	J48	Inductive	19	133	54	25	231	0.66	0.26	0.43	0.32	0.43	0.71	0.57	-98.9	7.1	0.12	44
DEV rabbit Developmental GeneralFetal FetalWeightReduction	J48	Mera, Mersy	15	133	54	29	231	0.64	0.22	0.34	0.27	0.34	0.71	0.53	-98.9	7.02	0.04	44
DEV rabbit Developmental GeneralFetal FetalWeightReduction	J48	QNPR	19	130	57	25	231	0.65	0.25	0.43	0.32	0.43	0.7	0.56	-98.9	7.03	0.11	44
DEV rabbit Developmental GeneralFetal FetalWeightReduction	J48	Spectrop hores	15	109	78	29	231	0.54	0.16	0.34	0.22	0.34	0.58	0.46	-99.1	6.46	.061	44
DEV rabbit Maternal GeneralMaternal Systemic	RF	Adriana	187	6	24	13	230	0.84	0.89	0.94	0.91	0.94	0.2	0.57	-98.9	6.51	0.17	200
DEV rabbit Maternal GeneralMaternal Systemic DEV rabbit Maternal	RF	ALogPS, OEstate	175	7	23	26	231	0.79	0.88	0.87	0.88	0.87	0.23	0.55	-98.9	7.3	0.1	201
GeneralMaternal Systemic DEV rabbit Maternal GeneralMaternal	RF	CDK Chemaxo	180	6	24	20	230	0.81	0.88	0.9	0.89	0.9	0.2	0.55	-98.9	6.89	0.11	200
Systemic DEV rabbit Maternal GeneralMaternal Systemic	RF RF	n Dragon6	169 178	6	22	23	231	0.77	0.88	0.84	0.86	0.84	0.27	0.55	-98.9 -98.9		0.1	201
DEV rabbit Maternal GeneralMaternal Systemic DEV rabbit Maternal	RF	Fragment or	180	4	26	21	231	0.8	0.87	0.9	0.88	0.9	0.13	0.51	-99.0	6.49	0.03	201
GeneralMaternal Systemic DEV rabbit Maternal GeneralMaternal	RF	GSFrag	166	4	26	35	231	0.74	0.86	0.83	0.84	0.83	0.13	0.48	-99.0	6.91	.037	201
Systemic DEV rabbit Maternal GeneralMaternal Systemic	RF RF	Inductive Mera, Mersy	162 181	7	23	39 20	231	0.73	0.88	0.81	0.84	0.81	0.23	0.52	-99.0 -99.0			201
DEV rabbit Maternal GeneralMaternal Systemic	RF	QNPR	172	5	25	29	231	0.77	0.87	0.86	0.86	0.86	0.17	0.51	-99.0		0.02	
DEV rabbit Maternal GeneralMaternal Systemic DEV rabbit Maternal GeneralMaternal	RF ASN	Spectrop hores	173	8	22	28	231	0.78	0.89	0.86	0.87	0.86	0.27	0.56	-98.9	7.53	0.12	201
Systemic DEV rabbit Maternal GeneralMaternal Systemic	N	Adriana ALogPS, OEstate	129	9 7	21	71 53	230	0.6	0.86	0.65	0.74	0.65	0.3	0.47	-99.1 -99.0			200
Systemic	IN	OLSiale	140	,	23	55	231	0.07	0.07	0.74	0.0	0.74	0.23	0.40	-99.0	1.04	.023	201

DEV rabbit Maternal GeneralMaternal Systemic	ASN N	CDK	140	9	21	60	230	0.65	0.87	0.7	0.78	0.7	0.3	0.5	-99.0	8.23	0.	200
DEV rabbit Maternal GeneralMaternal Systemic	ASN N	Chemaxo n	136	10	20	65	231	0.63	0.87	0.68	0.76	0.68	0.33	0.5	-99 N	8.43	0.01	201
DEV rabbit Maternal GeneralMaternal	ASN N		145	7	23	56	231	0.66	0.86	0.72	0.79	0.72	0.23	0.48		7.87		201
Systemic DEV rabbit Maternal GeneralMaternal Systemic		Dragon6 Fragment or	145	8	22	54	231	0.67	0.87	0.72	0.79	0.72	0.23	0.46		8.02		201
DEV rabbit Maternal GeneralMaternal Systemic	ASN N	GSFrag	135	13	17	66	231	0.64	0.89	0.67	0.76	0.67	0.43	0.55		8.85		201
DEV rabbit Maternal GeneralMaternal Systemic	ASN N	Inductive	124	10	20	77	231	0.58	0.86	0.62	0.72	0.62	0.33	0.48		8.51		201
DEV rabbit Maternal GeneralMaternal Systemic	ASN N	Mera, Mersy	129	8	22	72	231	0.59	0.85	0.64	0.73	0.64	0.27	0.45	-99.1	8.17	.065	201
DEV rabbit Maternal GeneralMaternal Systemic	ASN N	QNPR	141	9	21	60	231	0.65	0.87	0.7	0.78	0.7	0.3	0.5	-99.0	8.24	0.	201
DEV rabbit Maternal GeneralMaternal Systemic	ASN N	Spectrop hores	133	11	19	68	231	0.62	0.88	0.66	0.75	0.66	0.37	0.51	-99.0	8.59	0.02	201
DEV rabbit Maternal GeneralMaternal Systemic	ASN N	CDK, TA, TP	138	5	25	62	230	0.62	0.85	0.69	0.76	0.69	0.17	0.43	-99.1	7.53	.106	200
DEV rabbit Maternal GeneralMaternal Systemic	ASN N	CDK, TA	148	7	23	52	230	0.67	0.87	0.74	0.8	0.74	0.23	0.49	-99.0	7.82	.021	200
DEV rabbit Maternal GeneralMaternal Systemic	ASN N	CDK, TP	130	8	22	70	230	0.6	0.86	0.65	0.74	0.65	0.27	0.46	-99.1	8.15	.059	200
DEV rabbit Maternal GeneralMaternal Systemic	ASN N	TA, TP	146	5	25	55	231	0.65	0.85	0.73	0.78	0.73	0.17	0.45	-99.1	7.47	.082	201
DEV rabbit Maternal GeneralMaternal Systemic	ASN N	TA	134	6	24	67	231	0.61	0.85	0.67	0.75	0.67	0.2	0.43	-99.1	7.79	.096	201
DEV rabbit Maternal GeneralMaternal Systemic	ASN N	TP	139	5	25	62	231	0.62	0.85	0.69	0.76	0.69	0.17	0.43	-99.1	7.54	.105	201
DEV rabbit Maternal GeneralMaternal Systemic	FSM LR	CDK, TA, TP	148	5	25	52	230	0.67	0.86	0.74	0.79	0.74	0.17	0.45	-99.1	7.43	.073	200
DEV rabbit Maternal GeneralMaternal Systemic	FSM LR	CDK, TA	144	10	20	56	230	0.67	0.88	0.72	0.79	0.72	0.33	0.53	-98.9	8 34	0.04	200
DEV rabbit Maternal GeneralMaternal Systemic	FSM LR	CDK, TP	128	2	28	72	230	0.57	0.82	0.64			0.07	0.35			.211	
DEV rabbit Maternal GeneralMaternal	FSM																	
Systemic DEV rabbit Maternal GeneralMaternal	FSM	TA, TP	154	5	25	47	231	0.69	0.86	0.77	0.81	0.77	0.17	0.47			.054	
Systemic DEV rabbit Maternal GeneralMaternal	LR FSM	TA	150	5	25	51	231	0.67	0.86	0.75	0.8		0.17	0.46		7.42		201
Systemic DEV rabbit Maternal GeneralMaternal	LR	CDK, TA,	147	4	26	54	231	0.65	0.85	0.73	0.79	0.73	0.13	0.43			.105	
Systemic DEV rabbit Maternal GeneralMaternal	KNN	Τ̈́P	145	2	28	55	230	0.64	0.84	0.73	0.78	0.73	0.07	0.4	-99.2	6.56	.163	200

DEV rabbit Maternal																
GeneralMaternal Systemic	KNN	CDK, TP	129	6	24	71	230	0.59	0.84	0.65	0.73	0.65	0.2	0.42	-99.2 7.81 .111	200
DEV rabbit Maternal GeneralMaternal Systemic	KNN	TA, TP	159	4	26	42	231	0.71	0.86	0.79	0.82	0.79	0.13	0.46	-99.1 7.05 .064	201
DEV rabbit Maternal GeneralMaternal Systemic	KNN	TA	142	12	18	59	231	0.67	0.89	0.71	0.79	0.71	0.4	0.55	-98.9 8.65 0.08	201
DEV rabbit Maternal GeneralMaternal Systemic	KNN		126	9	21	75	231	0.58	0.86	0.63	0.72	0.63	0.3	0.46	-99.1 8.35 .051	
DEV rabbit Maternal GeneralMaternal	LibS	CDK, TA,														
DEV rabbit Maternal GeneralMaternal	VM LibS	TP	200	0	30	0	230	0.87	0.87	1.	0.93	1.	0.	0.5	-99.0 0.5	200
Systemic DEV rabbit Maternal	VM	CDK, TA	198	0	30	2	230	0.86	0.87	0.99	0.93	0.99	0.	0.5	-99.0 2.1 .036	200
GeneralMaternal Systemic	LibS VM	CDK, TP	200	0	30	0	230	0.87	0.87	1.	0.93	1.	0.	0.5	-99.0 0.5	200
DEV rabbit Maternal GeneralMaternal Systemic	LibS VM	TA, TP	201	0	30	0	231	0.87	0.87	1.	0.93	1.	0.	0.5	-99.0 0.5	201
DEV rabbit Maternal GeneralMaternal Systemic	LibS VM	TA	201	0	30	0	231	0.87	0.87	1.	0.93	1.	0.	0.5	-99.0 0.5	201
DEV rabbit Maternal GeneralMaternal Systemic	LibS VM	TP	201	0	30	0	231	0.87	0.87	1.	0.93	1.	0.	0.5	-99.0 0.5	201
DEV rabbit Maternal GeneralMaternal Systemic	MLR A	CDK, TA, TP	132	10	20	68	230	0.62	0.87	0.66	0.75	0.66	0.33	0.5	-99.0 8.44 .005	5 200
DEV rabbit Maternal GeneralMaternal Systemic	MLR A	CDK, TA	98	16	14	102	230	0.5	0.88	0.49	0.63	0.49	0.53	0.51	-99.0 9.35 0.02	200
DEV rabbit Maternal GeneralMaternal Systemic	MLR A	CDK, TP	101	17	13	99	230	0.51	0.89	0.51	0.64	0.51	0.57	0.54	-98.9 9.48 0.05	200
DEV rabbit Maternal GeneralMaternal Systemic	MLR A	TA, TP	116	8	22	85	231	0.54	0.84	0.58	0.68	0.58	0.27	0.42	-99.2 8.23 .107	201
DEV rabbit Maternal GeneralMaternal Systemic	MLR A	TA	81	20	10	120	231	0.44	0.89	0.4	0.55	0.4	0.67	0.53	-98.9 9.86 0.05	5 201
DEV rabbit Maternal GeneralMaternal Systemic	MLR A	TP	107	13	17	94	231	0.52	0.86	0.53	0.66	0.53	0.43	0.48	-99.0 8.97 .023	201
DEV rabbit Maternal GeneralMaternal Systemic	PLS	CDK, TA, TP	140	6	24	60	230	0.63	0.85	0.7	0.77	0.7	0.2	0.45	-99.1 7.72 .074	200
DEV rabbit Maternal GeneralMaternal Systemic	PLS	CDK, TA	147	8	22	53	230	0.67	0.87	0.74	0.8	0.74	0.27	0.5	-99.0 8. 0.	. 200
DEV rabbit Maternal GeneralMaternal Systemic	PLS	CDK, TP	127	7	23	73	230	0.58	0.85	0.64	0.73	0.64	0.23	0.43	-99.1 8093	200
DEV rabbit Maternal GeneralMaternal Systemic	PLS	TA, TP	149	7	23	52	231	0.68	0.87	0.74	0.8	0.74	0.23	0.49	-99.0 7.83 .02	201
DEV rabbit Maternal GeneralMaternal Systemic	PLS		141	7	23	60	231	0.64	0.86	0.7	0.77	0.7	0.23	0.47	-99.1 7.91 .048	201
DEV rabbit Maternal GeneralMaternal Systemic	PLS	TP	132	5	25	69	231	0.59	0.84	0.66	0.74	0.66	0.17	0.41	-99.2 7.59 .127	
DEV rabbit Maternal GeneralMaternal Systemic	J48	CDK, TA, TP	146	6	24	54	230	0.66	0.86	0.73	0.79	0.73	0.2	0.47	-99.1 7.66 .054	

DEV rabbit Maternal																		
DEV rabbit Maternal GeneralMaternal																		
Systemic	J48	CDK, TA	153	5	25	47	230	0.69	0.86	0.77	0.81	0.77	0.17	0.47	-99.1	7.36	.055	200
DEV rabbit Maternal																		
GeneralMaternal Systemic	J48	CDK, TP	153	3	27	47	230	0.68	0.85	0.77	0.81	0.77	0.1	0.43	-99.1	6.83	.11	200
DEV rabbit Maternal	0-10	ODIX, II	100				200	0.00	0.00	0.77	0.01	0.77	0.1	0.40	00.1	0.00		
GeneralMaternal																		
Systemic	J48	TA, TP	147	9	21	54	231	0.68	0.88	0.73	8.0	0.73	0.3	0.52	-99.0	8.18	0.02	201
DEV rabbit Maternal																		
GeneralMaternal	J48	TA	157	5	25	11	231	0.7	0.86	0.78	0.82	0.78	0.17	0.47	-99.1	7 32	043	201
Systemic	J40	IA	137	<u> </u>	25	44	231	0.7	0.00	0.76	0.02	0.76	0.17	0.47	-99.1	1.32	.043	201
DEV rabbit Maternal GeneralMaternal																		
Systemic	J48	TP	135	8	22	66	231	0.62	0.86	0.67	0.75	0.67	0.27	0.47	-99.1	8.13	.044	201
DEV rabbit Maternal																		
GeneralMaternal		CDK, TA,		_														
Systemic	RF	TP	190	2	28	10	230	0.83	0.87	0.95	0.91	0.95	0.07	0.51	-99.0	5.17	0.03	200
DEV rabbit Maternal																		
GeneralMaternal Systemic	RF	CDK, TA	197	1	29	3	230	0.86	0.87	0.99	0.92	0.99	0.03	0.51	-99.0	3 56	0.05	200
DEV rabbit Maternal		J=, 1/1						0.00	0.01	0.00	0.02	0.50	0.00	0.01	30.0	0.00	0.50	
GeneralMaternal																		
Systemic	RF	CDK, TP	193	0	30	7	230	0.84	0.87	0.97	0.91	0.97	0.	0.48	-99.0	3.17	.069	200
DEV rabbit Maternal																		
GeneralMaternal	DE	TA TD	100	2	20	0	224	0.04	0.07	0.06	0.01	0.06	0.07	0.51	00.0	E 00	0.02	201
Systemic	RF	TA, TP	192	2	28	9	231	0.84	0.87	0.96	0.91	0.96	0.07	0.51	-99.0	5.06	0.03	201
DEV rabbit Maternal GeneralMaternal																		
Systemic	RF	TA	180	1	29	21	231	0.78	0.86	0.9	0.88	0.9	0.03	0.46	-99.1	5.28	.081	201
DEV rabbit Maternal																		
GeneralMaternal																		
Systemic	RF	TP	184	1	29	17	231	0.8	0.86	0.92	0.89	0.92	0.03	0.47	-99.1	5.1	.064	201
DEV rabbit Maternal																		
GeneralMaternal	FSM																	
Systemic	LR	Adriana	140	12	18	60	230	0.66	0.89	0.7	0.78	0.7	0.4	0.55	-98.9	8.66	0.07	200
DEV rabbit Maternal	ECM.	A1DC																
GeneralMaternal		ALogPS,	140	0	22	ΕO	224	0.65	0.07	0.71	0.70	0.71	0.07	0.40	00.0	0.07	00	201
Systemic	LR	OEstate	142	8	22	59	231	0.65	0.87	0.71	0.78	0.71	0.27	0.49	-99.0	0.07	.02	201
DEV rabbit Maternal	FSM																	
GeneralMaternal	LR	CDK	130	10	20	70	230	0.61	0.87	0.65	0.74	0.65	0.33	0.49	-99.0	Q 16	.012	200
Systemic	LK	CDK	130	10	20	70	230	0.61	0.67	0.05	0.74	0.03	0.33	0.49	-99.0	0.40	.012	200
DEV rabbit Maternal	FSM	Chemaxo																
GeneralMaternal Systemic	LR	n	140	13	17	61	231	0.66	0.89	0.7	0.78	0.7	0.43	0.56	-98.9	8.8	0.09	201
_			170	10	.,	<u> </u>	201	0.00	0.00	0.1	0.70	0.1	0.70	0.00	50.9	5.0	0.00	201
DEV rabbit Maternal	FSM																	
GeneralMaternal Systemic	LR	Dragon6	136	8	22	65	231	0.62	0.86	0.68	0.76	0.68	0.27	0.47	-99 1	8.12	.041	201
											•				30.1			
DEV rabbit Maternal GeneralMaternal	FSM	Fragment																
Systemic	LR	or	151	8	22	50	231	0.69	0.87	0.75	0.81	0.75	0.27	0.51	-99.0	7.97	0.01	201
_																		
DEV rabbit Maternal GeneralMaternal	FSM																	
Systemic	LR	GSFrag	129	10	20	72	231	0.6	0.87	0.64	0.74	0.64	0.33	0.49	-99.0	8.48	.017	201
DEV rabbit Maternal		-																
	FSM																	
GeneralMaternal	i Civi			11	19	66	231	0.63	0.88	0.67	0.76	0.67	0.37	0.52	-99.0	8.58	0.03	201
	LR	Inductive	135															
GeneralMaternal Systemic	LR		135	- 11														
GeneralMaternal	LR FSM	Inductive Mera,																
GeneralMaternal Systemic DEV rabbit Maternal	LR		135	10	20	67	231	0.62	0.87	0.67	0.75	0.67	0.33	0.5	-99.0	8.44	0.	201
GeneralMaternal Systemic DEV rabbit Maternal GeneralMaternal	FSM LR	Mera,				67	231	0.62	0.87	0.67	0.75	0.67	0.33	0.5	-99.0	8.44	0.	201
GeneralMaternal Systemic DEV rabbit Maternal GeneralMaternal Systemic DEV rabbit Maternal GeneralMaternal	FSM LR FSM	Mera, Mersy	134	10	20													
GeneralMaternal Systemic DEV rabbit Maternal GeneralMaternal Systemic DEV rabbit Maternal	FSM LR	Mera,				67 64	231	0.62	0.87	0.67	0.75	0.67	0.33	0.5	-99.0 -99.0			201
GeneralMaternal Systemic DEV rabbit Maternal GeneralMaternal Systemic DEV rabbit Maternal GeneralMaternal	FSM LR FSM LR	Mera, Mersy QNPR	134	10	20													
GeneralMaternal Systemic DEV rabbit Maternal GeneralMaternal Systemic DEV rabbit Maternal GeneralMaternal Systemic	FSM LR FSM LR	Mera, Mersy	134	10	20											8.27	.013	

DEV rabbit Maternal																		\neg
GeneralMaternal																		
Systemic	KNN	Adriana	113	17	13	87	230	0.57	0.9	0.57	0.69	0.57	0.57	0.57	-98.9	9.46	0.09	200
DEV rabbit Maternal		ALogPS,																
GeneralMaternal Systemic	KNN	OEstate	128	12	18	73	231	0.61	0.88	0.64	0.74	0.64	0.4	0.52	-99.0	8 76	0.03	201
DEV rabbit Maternal	131414	OLOIGIC	120	12	10	70	201	0.01	0.00	0.04	0.74	0.04	0.4	0.02	00.0	0.70	0.00	
GeneralMaternal																		
Systemic	KNN	CDK	127	8	22	73	230	0.59	0.85	0.64	0.73	0.64	0.27	0.45	-99.1	8.17	.069	200
DEV rabbit Maternal GeneralMaternal		Chemaxo																
Systemic	KNN	n	147	11	19	54	231	0.68	0.89	0.73	8.0	0.73	0.37	0.55	-98.9	8.46	0.07	201
DEV rabbit Maternal																		\neg
GeneralMaternal	KNINI	Dragone	107	16	11	04	221	0.52	000	0.52	0.66	0.52	0.52	0.52	00.0	0.26	0.04	201
Systemic	KNN	Dragon6	107	16	14	94	231	0.53	0.88	0.53	0.66	0.53	0.53	0.53	-98.9	9.30	0.04	201
DEV rabbit Maternal GeneralMaternal		Fragment																
Systemic	KNN	or	126	11	19	75	231	0.59	0.87	0.63	0.73	0.63	0.37	0.5	-99.0	8.64	.004	201
DEV rabbit Maternal																		
GeneralMaternal Systemic	KNN	GSFrag	103	11	19	98	231	0.49	0.84	0.51	0.64	0.51	0.37	0.44	-99.1	8.7	.081	201
DEV rabbit Maternal	IXIVIV	Oorrag	100	- ' '	10	- 50	201	0.40	0.04	0.01	0.04	0.01	0.01	0.44	-00.1	0.7	.001	
GeneralMaternal																		
Systemic	KNN	Inductive	93	20	10	108	231	0.49	0.9	0.46	0.61	0.46	0.67	0.56	-98.9	9.89	0.09	201
DEV rabbit Maternal		Mera,																
GeneralMaternal Systemic	KNN	,	110	15	15	91	231	0.54	0.88	0.55	0.67	0.55	0.5	0.52	-99.0	9 22	0.03	201
DEV rabbit Maternal								0.0.	0.00	0.00	0.0.	0.00	0.0	0.02		<u> </u>	0.00	
GeneralMaternal																		
Systemic	KNN	QNPR	49	18	12	152	231	0.29	0.8	0.24	0.37	0.24	0.6	0.42	-99.2	9.32	.119	201
DEV rabbit Maternal GeneralMaternal		Spectrop																
Systemic	KNN		143	9	21	58	231	0.66	0.87	0.71	0.78	0.71	0.3	0.51	-99.0	8.22	0.01	201
DEV rabbit Maternal																		\neg
GeneralMaternal	LibS																	
Systemic	VM	Adriana	196	0	30	4	230	0.85	0.87	0.98	0.92	0.98	0.	0.49	-99.0	2.67	.052	200
DEV rabbit Maternal		50																
GeneralMaternal		ALogPS,	000	0	07	,	004	0.00	0.00		0.00		0.4	0.55	00.0	0.04	0.04	204
Systemic	VM	OEstate	200	3	27	1	231	0.88	0.88	1.	0.93	1.	0.1	0.55	-98.9	3.64	0.24	201
DEV rabbit Maternal	LibS																	
GeneralMaternal Systemic	VM	CDK	198	1	29	2	230	0.87	0.87	0.99	0.93	0.99	0.03	0.51	-99.0	3 23	0.07	200
-	V 1V1	ODIC	100	<u>'</u>			200	0.01	0.01	0.00	0.00	0.00	0.00	0.01	00.0	0.20	0.07	
DEV rabbit Maternal GeneralMaternal	LibS	Chemaxo																
Systemic	VM	n	197	2	28	4	231	0.86	0.88	0.98	0.92	0.98	0.07	0.52	-99.0	4.36	0.1	201
DEV rabbit Maternal																		\Box
GeneralMaternal	LibS																	
Systemic	VM	Dragon6	201	3	27	0	231	0.88	0.88	1.	0.94	1.	0.1	0.55	-98.9	2.55	0.3	201
DEV rabbit Maternal	0																	
GeneralMaternal		Fragment	200	0	20	4	004	0.07	0.07	4	0.00	4	0	0.5	00.0	4.0	005	204
Systemic	VM	or	200	0	30	1	231	0.87	0.87	1.	0.93	1.	0.	0.5	-99.0	1.0	.025	201
DEV rabbit Maternal	LibS																	
GeneralMaternal Systemic	VM	GSFrag	185	2	28	16	231	0.81	0.87	0.92	0.89	0.92	0.07	0.49	-99.0	5.59	.016	201
		001.49						0.0.	0.0.	0.02	0.00	0.02	0.0.	00		0.00		
DEV rabbit Maternal GeneralMaternal	LibS																	
Systemic	VM	Inductive	191	4	26	10	231	0.84	0.88	0.95	0.91	0.95	0.13	0.54	-98.9	5.83	0.12	201
DEV rabbit Maternal																		$\neg \neg$
GeneralMaternal		Mera,												_		_		
Systemic	VM	Mersy	201	0	30	0	231	0.87	0.87	1.	0.93	1.	0.	0.5	-99.0	0.5		201
DEV rabbit Maternal	L:I- C																	
GeneralMaternal	LibS	ONDD	100	0	20	0	224	0.00	0.07	0.00	0.00	0.00	0	0.5	00.0	0.4	020	204
Systemic	VM	QNPR	199	0	30	2	231	0.86	0.87	0.99	0.93	0.99	0.	0.5	-99.0	2.1	.036	201
DEV rabbit Maternal	LihS	Spectrop																
GeneralMaternal Systemic	VM	hores	183	3	27	18	231	0.81	0.87	0.91	0.89	0.91	0.1	0.51	-99.0	6 07	0.01	201
	V IVI	110103	.00	9	-1	10	201	0.01	0.07	0.01	0.00	0.01	J. 1	0.01	55.0	5.57	5.51	201

DEV rabbit Maternal GeneralMaternal	MLR																	
Systemic	Α	Adriana	99	20	10	101	230	0.52	0.91	0.5	0.64	0.5	0.67	0.58	-98.8	9.89	0.11	200
DEV rabbit Maternal																		
GeneralMaternal		ALogPS,																
Systemic	Α	OEstate	108	16	14	93	231	0.54	0.89	0.54	0.67	0.54	0.53	0.54	-98.9	9.35	0.05	201
DEV rabbit Maternal	MLR																	
GeneralMaternal Systemic	A	CDK	112	13	17	88	230	0.54	0.87	0.56	0.68	0.56	0.43	0.5	-99.0	8 95	.005	200
DEV rabbit Maternal								0.0.	0.0.	0.00	0.00	0.00	00	0.0		0.00		
GeneralMaternal	MLR	Chemaxo																
Systemic	Α	n	88	8	22	113	231	0.42	0.8	0.44	0.57	0.44	0.27	0.35	-99.3	8.24	.199	201
DEV rabbit Maternal	MLR																	
GeneralMaternal Systemic	A	Dragon6	92	16	14	109	231	0.47	0.87	0.46	0.6	0.46	0.53	0.5	-99.0	9 35	.006	201
DEV rabbit Maternal						100		0.11	0.01	0.10	0.0	0.10	0.00	0.0	00.0	0.00	.000	
GeneralMaternal	MLR	Fragment																
Systemic	Α	or	105	12	18	96	231	0.51	0.85	0.52	0.65	0.52	0.4	0.46	-99.1	8.84	.052	201
DEV rabbit Maternal	MLR																	
GeneralMaternal Systemic	A	GSFrag	119	12	18	82	231	0.57	0.87	0.59	0.7	0.59	0.4	0.5	-99.0	8.8	.005	201
		OOI 149	110	12	10	02	201	0.01	0.07	0.00	0.7	0.00	0.4	0.0	-55.0	0.0	.000	
DEV rabbit Maternal GeneralMaternal	MLR																	
Systemic	Α	Inductive	104	11	19	97	231	0.5	0.85	0.52	0.64	0.52	0.37	0.44	-99.1	8.7	.078	201
DEV rabbit Maternal	MID	Mera,																
GeneralMaternal Systemic			110	11	19	91	231	0.52	0.05	0.55	0.67	0.55	0.27	0.46	00.1	0 60	050	201
	Α	Mersy	110	- !!	19	91	231	0.32	0.85	0.55	0.67	0.55	0.37	0.46	-99.1	0.09	.058	201
DEV rabbit Maternal GeneralMaternal	MLR																	
Systemic	Α	QNPR	96	13	17	105	231	0.47	0.85	0.48	0.61	0.48	0.43	0.46	-99.1	8.97	.06	201
DEV rabbit Maternal	- LI D	0																
GeneralMaternal	MLR		111	16	4.4	00	224	0 EE	0.00	0 EE	0.60	0 EE	0.50	0.54	00.0	0.25	0.06	201
Systemic	Α	hores	111	16	14	90	231	0.55	0.89	0.55	0.68	0.55	0.53	0.54	-98.9	9.35	0.06	201
DEV rabbit Maternal GeneralMaternal																		
Systemic	PLS	Adriana	126	10	20	74	230	0.59	0.86	0.63	0.73	0.63	0.33	0.48	-99.0	8.48	.026	200
DEV rabbit Maternal																		
GeneralMaternal		ALogPS,																
Systemic	PLS	OEstate	139	9	21	62	231	0.64	0.87	0.69	0.77	0.69	0.3	0.5	-99.0	8.26	.006	201
DEV rabbit Maternal																		
GeneralMaternal Systemic	PLS	CDK	132	10	20	68	230	0.62	0.87	0.66	0.75	0.66	0.33	0.5	-99.0	8 11	.005	200
DEV rabbit Maternal	1 20	ODIC	102	10		- 00	200	0.02	0.07	0.00	0.73	0.00	0.00	0.0	-55.0	0.44	.000	
GeneralMaternal		Chemaxo																
Systemic	PLS	n	128	13	17	73	231	0.61	0.88	0.64	0.74	0.64	0.43	0.54	-98.9	8.89	0.05	201
DEV rabbit Maternal																		
GeneralMaternal	PLS	Dragon6	143	10	20	58	231	0.66	0.88	0.71	0.79	0.71	0.33	0.52	-99.0	Q 27	0 03	201
Systemic	FLO	Diagono	143	10	20	30	231	0.00	0.00	0.71	0.79	0.7 1	0.55	0.52	-99.0	0.51	0.03	201
DEV rabbit Maternal GeneralMaternal		Fragment																
Systemic	PLS		151	7	23	50	231	0.68	0.87	0.75	0.81	0.75	0.23	0.49	-99.0	7.8	.012	201
DEV rabbit Maternal																		
GeneralMaternal	DI C	005	400	40	40	70	004	0.04	0.00	0.04	0.74	0.04	0.4	0.50	00.0	0.70	0.00	204
Systemic	PLS	GSFrag	128	12	18	73	231	0.61	0.88	0.64	0.74	0.64	0.4	0.52	-99.0	o./b	0.03	201
DEV rabbit Maternal GeneralMaternal																		
Systemic	PLS	Inductive	100	12	18	101	231	0.48	0.85	0.5	0.63	0.5	0.4	0.45	-99.1	8.84	.069	201
DEV rabbit Maternal																		
GeneralMaternal	DI 0	Mera,	400	4.4	40		004	0.04	o o=	0.04	0 7 4	0.04	o o=	0.5	00.0	0.00	0.01	
Systemic	PLS	Mersy	129	11	19	72	231	0.61	0.87	0.64	0.74	0.64	0.37	0.5	-99.0	8.62	0.01	201
DEV rabbit Maternal																		
GeneralMaternal Systemic	PLS	QNPR	139	9	21	62	231	0.64	0.87	0.69	0.77	0.69	0.3	0.5	-99.0	8.26	.006	201
DEV rabbit Maternal		_			-													
GeneralMaternal		Spectrop																
Systemic	PLS	hores	122	16	14	79	231	0.6	0.9	0.61	0.72	0.61	0.53	0.57	-98.9	9.31	0.1	201
DEV rabbit Maternal																		
GeneralMaternal Systemic	J48	Adriana	152	10	20	48	230	0.7	0.88	0.76	0.82	0.76	0.33	0.55	-98.9	8 24	0.07	200
I STORME	0-70	, which	102	.0	20	-+0	200	0.1	0.00	0.70	0.02	0.70	0.00	0.00	50.5	J. <u>Z</u> -T	5.57	200

DEV rabbit Maternal GeneralMaternal Systemic	J48	ALogPS, OEstate	151	9	21	50	231	0.69	0.88	0.75	0.81	0.75	0.3	0.53	-98.9	8.13	0.04	201
DEV rabbit Maternal GeneralMaternal Systemic	J48	CDK	145	7	23	55	230	0.66	0.86	0.73	0.79	0.73	0.23	0.48	-99.0	7.85	.032	200
DEV rabbit Maternal GeneralMaternal Systemic	J48	Chemaxo n	145	12	18	56	231	0.68	0.89	0.72	0.8	0.72	0.4	0.56	-98.9		0.00	201
DEV rabbit Maternal GeneralMaternal																		
Systemic DEV rabbit Maternal GeneralMaternal	J48	Dragon6 Fragment	147	7	23	54	231	0.67	0.86	0.73	0.79	0.73	0.23	0.48	-99.0	7.85	.027	201
Systemic DEV rabbit Maternal	J48	or	155	9	21	46	231	0.71	0.88	0.77	0.82	0.77	0.3	0.54	-98.9	8.07	0.06	201
GeneralMaternal Systemic DEV rabbit Maternal	J48	GSFrag	129	10	20	72	231	0.6	0.87	0.64	0.74	0.64	0.33	0.49	-99.0	8.48	.017	201
GeneralMaternal Systemic	J48	Inductive	138	9	21	63	231	0.64	0.87	0.69	0.77	0.69	0.3	0.49	-99.0	8.27	.01	201
DEV rabbit Maternal GeneralMaternal Systemic	J48	Mera, Mersy	152	7	23	49	231	0.69	0.87	0.76	0.81	0.76	0.23	0.49	-99.0	7.79	.008	201
DEV rabbit Maternal GeneralMaternal Systemic	J48	QNPR	120	8	22	81	231	0.55	0.85	0.6	0.7	0.6	0.27	0.43	-99.1	8.22	.094	201
DEV rabbit Maternal GeneralMaternal Systemic	J48	Spectrop hores	144	6	24	57	231	0.65	0.86	0.72	0.78	0.72	0.2	0.46	-99.1	7.7	.063	201
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	RF	Adriana	96	28	69	37	230	0.54	0.58	0.72	0.64	0.72	0.29	0.51	-99.0	7.3	0.01	133
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	RF	ALogPS, OEstate	98	41	56	36	231	0.6	0.64	0.73	0.68	0.73	0.42	0.58	-98.8	7 88	0.16	134
DEV rabbit Maternal PregnancyRelated	RF	CDK	98	28	68	36	230	0.55	0.59	0.73	0.65	0.73	0.29	0.51	-99.0		0.03	134
MaternalPregLoss DEV rabbit Maternal PregnancyRelated		Chemaxo		-														
MaternalPregLoss DEV rabbit Maternal PregnancyRelated	RF	n	96	33	64	38	231	0.56	0.6	0.72	0.65	0.72	0.34	0.53	-98.9	7.57	0.06	134
MaternalPregLoss DEV rabbit Maternal	RF	Dragon6 Fragment	101	31	66	33	231	0.57	0.6	0.75	0.67	0.75	0.32	0.54	-98.9	7.38	0.08	134
PregnancyRelated MaternalPregLoss DEV rabbit Maternal	RF	or	95	39	58	39	231	0.58	0.62	0.71	0.66	0.71	0.4	0.56	-98.9	7.84	0.12	134
PregnancyRelated MaternalPregLoss DEV rabbit Maternal	RF	GSFrag	95	36	61	39	231	0.57	0.61	0.71	0.66	0.71	0.37	0.54	-98.9	7.71	0.08	134
PregnancyRelated MaternalPregLoss	RF	Inductive	95	34	63	39	231	0.56	0.6	0.71	0.65	0.71	0.35	0.53	-98.9	7.63	0.06	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	RF	Mera, Mersy	99	27	70	35	231	0.55	0.59	0.74	0.65	0.74	0.28	0.51	-99.0	7.23	0.02	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	RF	QNPR	90	34	63	44	231	0.54	0.59	0.67	0.63	0.67	0.35	0.51	-99.0	7.69	0.02	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	RF	Spectrop hores	96	30	67	38	231	0.55	0.59	0.72	0.65	0.72	0.31	0.51	-99.0	7.43	0.03	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	ASN N	Adriana	74	56	41	59	230	0.57	0.64	0.56	0.6	0.56	0.58	0.57	-98.9			133
DEV rabbit Maternal PregnancyRelated MaternalPregLoss		ALogPS, OEstate	82	45	52	52	231	0.55	0.61	0.61	0.61	0.61	0.46	0.54	-98.9			134

DEV rabbit Maternal PregnancyRelated MaternalPregLoss	ASN N	CDK	82	53	43	52	230	0.59	0.66	0.61	0.63	0.61	0.55	0.58	-98.8 8.5	SR 0.16	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss		Chemaxo	87	51	46	47	231	0.6	0.65	0.65	0.65	0.65	0.53	0.59	-98.8 8.4		
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	ASN N	Dragon6	83	47	50	51	231	0.56	0.62	0.62	0.62	0.62	0.48	0.55	-98.9 8.3		134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss		Fragment	79	48	49	55	231	0.55	0.62	0.59	0.02	0.59	0.49	0.54	-98.9 8.3		134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	ASN N	GSFrag	83	55	42	51	231	0.6	0.66	0.62	0.64	0.62	0.57	0.59	-98.8 8.6		134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	ASN N	Inductive	77	47	50	57	231	0.54	0.61	0.57	0.59	0.57	0.48	0.53	-98.9 8.3	4 0.06	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	ASN N	Mera, Mersy	84	52	45	50	231	0.59	0.65	0.63	0.64	0.63	0.54	0.58	-98.8 8	.5 0.16	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	ASN N	QNPR	85	45	52	49	231	0.56	0.62	0.63	0.63	0.63	0.46	0.55	-98.9 8.2	1 0.1	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	ASN N	Spectrop hores	77	50	47	57	231	0.55	0.62	0.57	0.6	0.57	0.52	0.55	-98.9 8.4	6 0.09	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	ASN N	CDK, TA, TP	74	43	53	60	230	0.51	0.58	0.55	0.57	0.55	0.45	0.5	-99.0 8.2	<u></u>	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	ASN N	CDK, TA	71	45	51	63	230	0.5	0.58	0.53	0.55	0.53	0.47	0.5	-99.0 8	.3 .001	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	ASN N	CDK, TP	79	42	54	55	230	0.53	0.59	0.59	0.59	0.59	0.44	0.51	-99.0 8.1	4 0.03	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	ASN N	TA, TP	70	42	55	64	231	0.48	0.56	0.52	0.54	0.52	0.43	0.48	-99.0 8.1	6 .044	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	ASN N	TA	68	48	49	66	231	0.5	0.58	0.51	0.54	0.51	0.49	0.5	-99.0 8	.4 0.	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	ASN N	TP	72	44	53	62	231	0.5	0.58	0.54	0.56	0.54	0.45	0.5	-99.0 8.2	3 .009	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	FSM LR	CDK, TA, TP	78	41	55	56	230	0.52	0.59	0.58	0.58	0.58	0.43	0.5	-99.0 8. ⁻	1 0.01	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	FSM LR	CDK, TA	72	42	54	62	230	0.5	0.57	0.54	0.55	0.54	0.44	0.49	-99.0 8.1	7 025	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	FSM LR	CDK, TP	84	43	53	50	230	0.55	0.61	0.63	0.62	0.63	0.45	0.54	-98.9 8.1		
DEV rabbit Maternal PregnancyRelated	FSM	·															
MaternalPregLoss DEV rabbit Maternal PregnancyRelated	FSM	TA, TP	80	43	54	54	231	0.53	0.6	0.6	0.6	0.6	0.44	0.52	-99.0 8.1		
MaternalPregLoss DEV rabbit Maternal PregnancyRelated	FSM	TA	85	41	56	49	231	0.55	0.6	0.63	0.62	0.63	0.42		-98.9 8.0		
MaternalPregLoss DEV rabbit Maternal PregnancyRelated	LR	CDK, TA,	71	44	53	63	231	0.5	0.57	0.53	0.55	0.53	0.45	0.49	-99.0 8.2		
MaternalPregLoss DEV rabbit Maternal PregnancyRelated	KNN	CDK, TA	101	28	62	27	230	0.59	0.62	0.75	0.68	0.75	0.35	0.55	-98.9 7.5 -98.9 7.7		134

DEV rabbit Maternal PregnancyRelated MaternalPregLoss	KNN	CDK, TP	81	48	48	53	230	0.56	0.63	0.6	0.62	0.6	0.5	0.55	-98.9	8.38	0.1	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	KNN	TA, TP	108	31	66	26	231	0.6	0.62	0.81	0.7	0.81	0.32	0.56	-98.9	7.22	0.14	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	KNN	TA	107	28	69	27	231	0.58	0.61	0.8	0.69	0.8	0.29	0.54	-98.9	7.1	0.1	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	KNN	TP	77	52	45	57	231	0.56	0.63	0.57	0.6	0.57	0.54	0.56	-98.9	8.55	0.11	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	LibS VM	CDK, TA,	88	30	66	46	230	0.51	0.57	0.66	0.61	0.66	0.31	0.48	-99.0	7 54	032	134
DEV rabbit Maternal PregnancyRelated	LibS																	-
MaternalPregLoss DEV rabbit Maternal PregnancyRelated	LibS	CDK, TA	98	27	69	36	230	0.54	0.59	0.73	0.65	0.73	0.28	0.51	-99.0		0.01	134
MaternalPregLoss DEV rabbit Maternal PregnancyRelated	VM LibS	CDK, TP	90	31	65	44_	230	0.53	0.58	0.67	0.62	0.67	0.32	0.5	-99.0	7.57	.006	134
MaternalPregLoss DEV rabbit Maternal	VM LibS	TA, TP	85	34	63	49	231	0.52	0.57	0.63	0.6	0.63	0.35	0.49	-99.0	7.74	.016	134
PregnancyRelated MaternalPregLoss DEV rabbit Maternal	VM	TA	100	21	76	34	231	0.52	0.57	0.75	0.65	0.75	0.22	0.48	-99.0	6.88	.043	134
PregnancyRelated MaternalPregLoss DEV rabbit Maternal	LibS VM	TP	85	37	60	49	231	0.53	0.59	0.63	0.61	0.63	0.38	0.51	-99.0	7.87	0.02	134
PregnancyRelated MaternalPregLoss	MLR A	CDK, TA, TP	69	42	54	65	230	0.48	0.56	0.51	0.54	0.51	0.44	0.48	-99.0	8.17	.047	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	MLR A	CDK, TA	67	39	57	67	230	0.46	0.54	0.5	0.52	0.5	0.41	0.45	-99.1	8.05	.093	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	MLR A	CDK, TP	81	48	48	53	230	0.56	0.63	0.6	0.62	0.6	0.5	0.55	-98.9	8.38	0.1	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	MLR A	TA, TP	66	50	47	68	231	0.5	0.58	0.49	0.53	0.49	0.52	0.5	-99.0	8.49	0.01	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	MLR A	TA	72	45	52	62	231	0.51	0.58	0.54	0.56	0.54	0.46	0.5	-99.0	8.28	0.	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	MLR A	TP	66	54	43	68	231	0.52	0.61	0.49	0.54	0.49	0.56	0.52	-99.0	8.65	0.05	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	PLS	CDK, TA, TP	75	49	47	59	230	0.54	0.61	0.56	0.59	0.56	0.51	0.54	-98.9	8.45	0.07	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	PLS	CDK, TA	76	41	55	58	230	0.51	0.58	0.57	0.57	0.57	0.43	0.5	-99.0	8.12	.006	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	PLS	CDK, TP	76	36	60	58	230	0.49	0.56	0.57	0.56	0.57	0.38	0.47	-99.1	7.9	.058	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	PLS	TA, TP	79	45	52	55	231	0.54	0.6	0.59	0.6	0.59	0.46	0.53	-98.9	8.25	0.05	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	PLS	TA	86	43	54	48	231	0.56	0.61	0.64	0.63	0.64	0.44	0.54	-98.9	8.12	0.09	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	PLS	TP	78	41	56	56	231	0.52	0.58	0.58	0.58	0.58	0.42	0.5	-99.0	8.09	0.	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	J48	CDK, TA, TP	76	41	55	58	230	0.51	0.58	0.57	0.57	0.57	0.43	0.5	-99.0	8.12	.006	134

r																		_
DEV rabbit Maternal PregnancyRelated																		
MaternalPregLoss	J48	CDK, TA	84	54	42	50	230	0.6	0.67	0.63	0.65	0.63	0.56	0.59	-98.8	8.61	0.19	134
DEV rabbit Maternal																		
PregnancyRelated	140	CDV TD	75	46	ΕO	ΕO	220	0.52	0.6	0.56	0.50	0.56	0.40	0.50	00.0	0 22	0.04	124
MaternalPregLoss	J48	CDK, TP	75	46	50	59	230	0.53	0.6	0.56	0.58	0.56	0.48	0.52	-99.0	0.33	0.04	134
DEV rabbit Maternal PregnancyRelated																		
MaternalPregLoss	J48	TA, TP	61	51	46	73	231	0.48	0.57	0.46	0.51	0.46	0.53	0.49	-99.0	8.52	.019	134
DEV rabbit Maternal																		
PregnancyRelated	J48	TA	71	53	44	63	231	0.54	0.62	0.53	0.57	0.53	0.55	0.54	-98.9	8.6	0.08	134
MaternalPregLoss	J 4 0	IA	7 1	55	++	03	231	0.54	0.02	0.55	0.57	0.55	0.55	0.54	-90.9	0.0	0.00	134
DEV rabbit Maternal PregnancyRelated																		
MaternalPregLoss	J48	TP	64	51	46	70	231	0.5	0.58	0.48	0.52	0.48	0.53	0.5	-99.0	8.52	0.	134
DEV rabbit Maternal		CDK, TA,																
PregnancyRelated MaternalPregLoss	RF	TP	104	24	72	30	230	0.56	0.59	0.78	0.67	0.78	0.25	0.51	-99.0	6 98	ი ივ	134
DEV rabbit Maternal	1 (1		104		12	- 50	200	0.00	0.00	0.70	0.07	0.70	0.20	0.01	-33.0	0.50	0.00	104
PregnancyRelated																		
MaternalPregLoss	RF	CDK, TA	102	25	71	32	230	0.55	0.59	0.76	0.66	0.76	0.26	0.51	-99.0	7.08	0.02	134
DEV rabbit Maternal																		- 1
PregnancyRelated MaternalPregLoss	RF	CDK, TP	99	29	67	35	230	0.56	0.6	0.74	0.66	0.74	0.3	0.52	-99.0	7.34	0.04	134
DEV rabbit Maternal		,																
PregnancyRelated																		
MaternalPregLoss	RF	TA, TP	97	29	68	37	231	0.55	0.59	0.72	0.65	0.72	0.3	0.51	-99.0	7.36	0.02	134
DEV rabbit Maternal PregnancyRelated																		- 1
MaternalPregLoss	RF	TA	92	27	70	42	231	0.52	0.57	0.69	0.62	0.69	0.28	0.48	-99.0	7.34	.038	134
DEV rabbit Maternal																		
PregnancyRelated	D.E.	TD	0.4	00	00	40	004	0.50	0.50	c =	0.04	o =	0.0	0.5	00.0	-	^	
MaternalPregLoss	RF	TP	94	29	68	40	231	0.53	0.58	0.7	0.64	0.7	0.3	0.5	-99.0	7.41	0.	134
DEV rabbit Maternal	FSM																	- 1
PregnancyRelated MaternalPregLoss	LR	Adriana	56	70	27	77	230	0.55	0.67	0.42	0.52	0.42	0.72	0.57	-98.9	9.33	0.15	133
									,						00.0	50		- 55
DEV rabbit Maternal PregnancyRelated	FSM	ALogPS,																
MaternalPregLoss	LR	OEstate	95	52	45	39	231	0.64	0.68	0.71	0.69	0.71	0.54	0.62	-98.8	8.38	0.25	134
DEV rabbit Maternal																		
PregnancyRelated	FSM	0011					00-		0.0-		0.0-		o ==	0 ==				
MaternalPregLoss	LR	CDK	82	53	43	52	230	0.59	0.66	0.61	0.63	0.61	0.55	0.58	-98.8	8.58	0.16	134
DEV rabbit Maternal	FSM	Chomovo																
PregnancyRelated MaternalPregLoss	LR	Chemaxo n	87	55	42	47	231	0.61	0.67	0.65	0.66	0.65	0.57	0.61	-98.8	8 6	0.21	134
_	LIX	11	01	55	74	71	201	0.01	0.01	0.00	0.00	0.00	0.01	0.01	-30.0	0.0	U.Z I	104
DEV rabbit Maternal PregnancyRelated	FSM																	
MaternalPregLoss	LR	Dragon6	92	49	48	42	231	0.61	0.66	0.69	0.67	0.69	0.51	0.6	-98.8	8.3	0.19	134
DEV rabbit Maternal																		
PregnancyRelated		Fragment																
MaternalPregLoss	LR	or	85	46	51	49	231	0.57	0.63	0.63	0.63	0.63	0.47	0.55	-98.9	8.25	0.11	134
DEV rabbit Maternal	E014																	
PregnancyRelated	FSM	CSEron	76	E0	47	E0	224	0.55	0.60	0 <i>5</i> 7	0.50	0 F 7	0.50	0 E4	00.0	0 47	0.00	124
MaternalPregLoss	LR	GSFrag	76	50	47	58	231	0.55	0.62	0.57	0.59	0.57	0.52	0.54	-98.9	0.47	U.U8	134
DEV rabbit Maternal	FSM																	- 1
PregnancyRelated MaternalPregLoss	LR	Inductive	81	53	44	53	231	0.58	0.65	0.6	0.63	0.6	0.55	0.58	-98.8	8.56	0.15	134
									•		•		•	•			•	
DEV rabbit Maternal PregnancyRelated	FSM	Mera,																
MaternalPregLoss	LR	Mersy	88	44	53	46	231	0.57	0.62	0.66	0.64	0.66	0.45	0.56	-98.9	8.14	0.11	134
DEV rabbit Maternal																		
PregnancyRelated	FSM	ONDE	o :		4-		06 1			0.00	0.00	0.00	0.50		00.5			
MaternalPregLoss	LR	QNPR	84	50	47	50	231	0.58	0.64	0.63	0.63	0.63	0.52	0.57	-98.9	8.42	0.14	134
DEV rabbit Maternal	ESM	Spectrop																
PregnancyRelated MaternalPregLoss	LR	hores	58	64	33	76	231	0.53	0.64	0.43	0.52	0.43	0.66	0.55	-98.9	9 06	റ റമ	134
Imaternair reguess	LIV	110169	50	J-4	55	70	201	0.00	0.04	0.73	0.02	0.73	0.00	0.00	-30.9	5.00	0.03	104

ALOGPS A	DEV rabbit Maternal																		
DEV_rabeto National Programs/policient Mathematic Programs/policient National National Programs/policient National National Programs/policient National Nati		KNN	Adriana	57	59	38	76	230	0.5	0.6	0.43	0.5	0.43	0.61	0.52	-99.0	8.82	0.04	133
Pergramspresidented MathemarPhysics of Chemaxo M			7 10110110	<u> </u>					0.0	0.0	01.10	0.0	01.10	0.0.	0.02	00.0	0.02	0.0.	
DEF Variable Maternal Programs/Pediated Matern	PregnancyRelated		•																
Programs/Political Maternal		KNN	OEstate	89	40	57	45	231	0.56	0.61	0.66	0.64	0.66	0.41	0.54	-98.9	7.96	0.08	134
Maisemaris-gase MNN CDK 51 68 28 83 230 0.52 0.65 0.38 0.48 0.38 0.71 0.54 -98.9 9.24 0.09 10																			
Chemakon		KNN	CDK	51	68	28	83	230	0.52	0.65	0.38	0.48	0.38	0.71	0.54	-98.9	9.24	0.09	134
Main-main-glasse MNN n 83 51 46 51 231 0.58 0.64 0.62 0.63 0.62 0.53 0.67 -98.9 8.47 0.14 15			Chemayo																
Color		KNN		83	51	46	51	231	0.58	0.64	0.62	0.63	0.62	0.53	0.57	-98.9	8.47	0.14	134
Maiorian Programs No. Pragment Fragment Fragm																			
DEV rabbit Maternal Programs/Related Materna		IZNINI	D	50	0.5	00	7.	004	0.54	0.05	0.44	0.50	0.44	0.07	0.50	00.0	0.44	0.44	404
Fragmen/Related Maternal Programs/Related Ma		KININ	Dragono	59	05	32	75	231	0.54	0.05	0.44	0.52	0.44	0.67	0.56	-98.9	9.11	0.11	134
DEV rabbit Maternal Programs/Related Materna			Fragment																
Programs/Related Maternal Programs/Related M		KNN	or	97	32	65	37	231	0.56	0.6	0.72	0.66	0.72	0.33	0.53	-98.9	7.5	0.06	134
Maisemaifregloss KNN SSFrag 59 62 35 75 231 0.52 0.63 0.44 0.52 0.44 0.64 0.54 0.98 8.98 0.08 12																			
DEV rabbit Maternal PrognancyRelated Materna		KNN	GSFrag	59	62	35	75	231	0.52	0.63	0.44	0.52	0.44	0.64	0.54	-98.9	8.98	0.08	134
MaternalPreguloss KNN Inductive 70 60 37 64 231 0.56 0.65 0.52 0.58 0.52 0.62 0.57 98.9 8.9 0.14 12																			
DEV rabbit Maternal PregnancyRelated Mater		∠ NINI	Industina	70	60	27	64	224	0.56	0.65	0.50	0.50	0.50	0.60	0 F7	00.0	0.0	0 4 4	124
Mera, Mera		NININ	iriuuctive	70	UØ	3/	04	231	0.56	0.05	0.52	U.ეგ	0.52	0.02	0.5/	-98.9	8.9	U.14	134
MaternalPregLoss KNN Mersy 56 66 31 78 231 0.53 0.64 0.42 0.51 0.42 0.68 0.55 -98.9 9.14 0.1 12			Mera,																
PregnancyRelated Maternal Pregloss KNN QNPR 96 36 61 38 231 0.57 0.61 0.72 0.66 0.72 0.37 0.54 -98.9 7.7 0.09 13 DEV rabbit Maternal PregnancyRelated Maternal PregnancyRela		KNN	Mersy	56	66	31	78	231	0.53	0.64	0.42	0.51	0.42	0.68	0.55	-98.9	9.14	0.1	134
MaternalPregues																			
DEV rabbit Maternal PregnancyRelated Mater		KNN	QNPR	96	36	61	38	231	0.57	0.61	0.72	0.66	0.72	0.37	0.54	-98.9	7.7	0.09	134
MaternalPregLoss KNN nores 66 58 39 68 231 0.54 0.63 0.49 0.55 0.49 0.6 0.55 -98.9 8.82 0.09 13			-																
DEV rabbit Maternal PreguencyRelated Mater		IZNINI		00		20	00	004	0.54	0.00	0.40	0.55	0.40	0.0	0.55	00.0	0.00	0.00	404
PregnancyRelated MaternalPregLoss VM Adriana 92 36 61 41 230 0.56 0.6 0.69 0.64 0.69 0.37 0.53 -98.9 7.73 0.07 13	MaternalPregLoss	KNN	nores	66	58	39	68	231	0.54	0.63	0.49	0.55	0.49	0.6	0.55	-98.9	8.82	0.09	134
Madriana PaganaryRelated Maternal PregnancyRelated LibS Dragon6 PaganaryRelated LibS Dragon6 PaganaryRe		LibS																	
PregnancyRelated Maternal PregnancyRelated M			Adriana	92	36	61	41	230	0.56	0.6	0.69	0.64	0.69	0.37	0.53	-98.9	7.73	0.07	133
PregnancyRelated LibS AlcogPS, Moternal PregnancyRelated LibS Chemaxo VM Dragon6 95 33 64 39 231 0.55 0.61 0.68 0.64 0.68 0.4 0.54 -98.9 7.9 0.08 13 13 13 13 14 13 14 14	DEV rabbit Maternal																		
DEV rabbit Maternal PregnancyRelated Materna		LibS	ALogPS,																
PregnancyRelated MaternalPregLoss VM CDK 95 30 66 39 230 0.54 0.59 0.71 0.64 0.71 0.31 0.51 -99.0 7.46 0.02 13 DEV rabbit Maternal PregnancyRelated MaternalPregLoss VM n 90 46 51 44 231 0.59 0.64 0.67 0.65 0.67 0.47 0.57 -98.9 8.2 0.15 13 DEV rabbit Maternal PregnancyRelated MaternalPregLoss VM Dragon6 95 33 64 39 231 0.55 0.6 0.71 0.65 0.71 0.34 0.52 -99.0 7.58 0.05 13 DEV rabbit Maternal PregnancyRelated MaternalPregLoss VM Or n 88 40 57 46 231 0.55 0.61 0.66 0.63 0.66 0.41 0.53 -98.9 7.97 0.07 13 DEV rabbit Maternal PregnancyRelated MaternalPregLoss VM GSFrag 94 42 55 40 231 0.59 0.63 0.7 0.66 0.7 0.43 0.57 -98.9 7.98 0.14 13 DEV rabbit Maternal PregnancyRelated MaternalPregLoss VM Inductive 78 38 59 56 231 0.5 0.57 0.58 0.58 0.58 0.58 0.39 0.49 -99.0 7.96 0.26 13 DEV rabbit Maternal PregnancyRelated MaternalPregLoss VM Inductive 78 38 59 56 231 0.5 0.57 0.58 0.58 0.58 0.58 0.59 0.49 -99.0 7.96 0.26 13 DEV rabbit Maternal PregnancyRelated MaternalPregLoss VM Inductive 78 38 59 56 231 0.5 0.57 0.58 0.58 0.58 0.58 0.59 0.49 -99.0 7.96 0.26 13 DEV rabbit Maternal PregnancyRelated MaternalPregLoss VM Inductive 78 38 59 56 231 0.5 0.57 0.58 0.58 0.58 0.58 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59	MaternalPregLoss	VM	OEstate	91	39	58	43	231	0.56	0.61	0.68	0.64	0.68	0.4	0.54	-98.9	7.9	0.08	134
MaternalPregloss VM CDK 95 30 66 39 230 0.54 0.59 0.71 0.64 0.71 0.31 0.51 -99.0 7.46 0.02 13		Lihe																	
DEV rabbit Maternal PregnancyRelated Materna			CDK	95	30	66	39	230	0 54	0 59	0.71	0 64	0.71	0.31	0.51	-99 N	7 46	0.02	134
PregnancyRelated MaternalPregLoss LibS Chemaxo VM n 90 46 51 44 231 0.59 0.64 0.67 0.65 0.67 0.47 0.57 -98.9 8.2 0.15 13		****	OBIT						0.01	0.00	0.7 1	0.01	0.7 1	0.01	0.01		7.10	0.02	
MaternalPregLoss VM N 90 46 51 44 231 0.59 0.64 0.67 0.65 0.67 0.47 0.57 -98.9 8.2 0.15 13		LibS	Chemaxo																
PregnancyRelated Maternal PregnancyRelated LibS Spectrop		VM	n	90	46	51	44	231	0.59	0.64	0.67	0.65	0.67	0.47	0.57	-98.9	8.2	0.15	134
DEV rabbit Maternal PregnancyRelated LibS Spectrop	DEV rabbit Maternal																		
DEV rabbit Maternal PregnancyRelated LibS Spectrop	0 ,		Drosss	O.F.	22	64	20	224	0.55	0.0	0.74	0.65	0.74	0.24	0.50	00.0	7 50	0.05	104
PregnancyRelated Maternal PregnancyRelated LibS Spectrop	iviaternaiPregLoss	VIVI	Dragonb	95	33	04	39	231	0.55	0.6	0.71	0.65	0.71	0.34	0.52	-99.0	7.58	0.05	134
Maternal Pregloss VM or 88 40 57 46 231 0.55 0.61 0.66 0.63 0.66 0.41 0.53 -98.9 7.97 0.07 13 DEV rabbit Maternal Pregloss VM GSFrag 94 42 55 40 231 0.59 0.63 0.7 0.66 0.7 0.43 0.57 -98.9 7.98 0.14 13 DEV rabbit Maternal Pregloss VM Inductive 78 38 59 56 231 0.5 0.57 0.58 0.58 0.58 0.39 0.49 -99.0 7.96 0.026 13 DEV rabbit Maternal Pregloss VM Inductive 78 38 59 56 231 0.5 0.57 0.58 0.58 0.58 0.58 0.39 0.49 -99.0 7.96 0.026 13 DEV rabbit Maternal Pregloss VM Mersy 83 46 51 51 231 0.56 0.62 0.62 0.62 0.62 0.62 0.47 0.55 -98.9 8.26 0.09 13 DEV rabbit Maternal Pregloss VM QNPR 97 37 60 37 231 0.58 0.62 0.72 0.67 0.72 0.38 0.55 -98.9 7.73 0.11 13 DEV rabbit Maternal Pregloss VM QNPR 97 37 60 37 231 0.58 0.62 0.72 0.67 0.72 0.38 0.55 -98.9 7.73 0.11 13 DEV rabbit Maternal Pregloss VM QNPR 97 37 60 37 231 0.58 0.62 0.72 0.67 0.72 0.38 0.55 -98.9 7.73 0.11 13 DEV rabbit Maternal Pregloss VM QNPR 97 37 60 37 231 0.58 0.62 0.72 0.67 0.72 0.38 0.55 -98.9 7.73 0.11 13 DEV rabbit Maternal Pregloss VM QNPR 97 37 60 37 231 0.58 0.62 0.72 0.67 0.72 0.38 0.55 -98.9 7.73 0.11 13 DEV rabbit Maternal Pregloss VM QNPR 97 37 60 37 231 0.58 0.62 0.72 0.67 0.72 0.38 0.55 -98.9 7.73 0.11 13 DEV rabbit Maternal Pregloss VM QNPR 97 37 60 37 231 0.58 0.62 0.72 0.67 0.72 0.38 0.55 -98.9 7.73 0.11 13 DEV rabbit Maternal Pregloss VM QNPR 97 37 60 37 231 0.58 0.62 0.72 0.67 0.72 0.38 0.55 -98.9 7.73 0.11 13 DEV rabbit Maternal Pregloss VM QNPR 97 37 60 37 231 0.58 0.62 0.72 0.67 0.72 0.88 0.55 -98.9 7.73 0.11 13 DEV rabbit Maternal Pregloss VM QNPR 97 37 60 37 231 0.58 0.62 0.72 0.67 0.72 0.88 0.55 -98.9 7.73 0.11 13 DEV rabbit Maternal Pregloss VM QNPR 97 37 60 37 231 0.58 0.62 0.72 0.67 0.72 0.88 0.55 -98.9 7.73 0.11 13 DEV rabbit Maternal Pregloss VM QNPR 97 37 60 37 231 0.58 0.62 0.72 0.67 0.72 0.88 0.55 -98.9 7.73 0.11 13 DEV rabbit Maternal Pregloss VM QNPR 97 37 60 37 231 0.58 0.62 0.72 0.67 0.72 0.88 0.55 -98.9 7.73 0.11 13 DEV rabbit Maternal Pregloss VM QNPR 97 37 60 37 231 0.58 0.62 0.72 0.67 0.7		LibS	Fragment																
DEV rabbit Maternal PregnancyRelated LibS Spectrop			ū	88	40	57	46	231	0.55	0.61	0.66	0.63	0.66	0.41	0.53	-98.9	7.97	0.07	134
PregnancyRelated Maternal PregnancyRelated LibS Spectrop Sp	DEV rabbit Maternal																		
DEV rabbit Maternal PregnancyRelated LibS Spectrop	PregnancyRelated																		
PregnancyRelated Maternal PregnancyRelated LibS Spectrop Spectr	MaternalPregLoss	VM	GSFrag	94	42	55	40	231	0.59	0.63	0.7	0.66	0.7	0.43	0.57	-98.9	7.98	0.14	134
NaternalPregLoss VM Inductive 78 38 59 56 231 0.5 0.57 0.58 0.58 0.58 0.39 0.49 -99.0 7.96 0.26 13		Like																	
DEV rabbit Maternal PregnancyRelated Maternal PregnancyRelated Maternal PregnancyRelated Maternal PregnancyRelated PregnancyRelated PregnancyRelated Maternal PregnancyRelated Maternal PregnancyRelated Maternal PregnancyRelated LibS VM QNPR 97 37 60 37 231 0.58 0.62 0.72 0.67 0.72 0.38 0.55 -98.9 7.73 0.11 13 13 14 15 15 15 15 15 15 15			Inductive	78	38	59	56	231	0.5	0.57	0.58	0.58	0.58	0.39	0 49	-99 N	7 96	026	134
PregnancyRelated LibS Mera MaternalPregLoss VM Mersy 83 46 51 51 231 0.56 0.62 0.62 0.62 0.62 0.62 0.47 0.55 -98.9 8.26 0.09 13		v IVI	ii iddoli VC	, 0	55		- 50	201	0.0	0.07	0.00	0.00	0.00	0.00	U.70	55.0	7.50	.020	10+
Maternal PregLoss VM Mersy 83 46 51 51 231 0.56 0.62 0.62 0.62 0.62 0.47 0.55 -98.9 8.26 0.09 13 DEV rabbit Maternal PregLoss LibS VM QNPR 97 37 60 37 231 0.58 0.62 0.72 0.67 0.72 0.38 0.55 -98.9 7.73 0.11 13 DEV rabbit Maternal PregnancyRelated LibS Spectrop Spectrop A 231 0.58 0.62 0.72 0.67 0.72 0.38 0.55 -98.9 7.73 0.11 13		LibS	Mera,																
PregnancyRelated LibS MaternalPregLoss VM QNPR 97 37 60 37 231 0.58 0.62 0.72 0.67 0.72 0.38 0.55 -98.9 7.73 0.11 13 DEV rabbit Maternal PregnancyRelated LibS Spectrop				83	46	51	51	231	0.56	0.62	0.62	0.62	0.62	0.47	0.55	-98.9	8.26	0.09	134
PregnancyRelated LibS MaternalPregLoss VM QNPR 97 37 60 37 231 0.58 0.62 0.72 0.67 0.72 0.38 0.55 -98.9 7.73 0.11 13 DEV rabbit Maternal PregnancyRelated LibS Spectrop	DEV rabbit Maternal																		
DEV rabbit Maternal PregnancyRelated LibS Spectrop	PregnancyRelated		ONDE	0-7	07	00	2-	004	0.50	0.00	0.70	0.07	0.70	0.00	0.55	00.0	7 70	0.44	404
PregnancyRelated LibS Spectrop	waternalPregLoss	VIVI	UNPK	97	3/	υU	3/	231	0.58	0.62	0.72	0.67	0.72	ს.პ8	0.55	-98.9	1.13	U.11	134
regnandyrodated		LibS	Spectron																
				84	36	61	50	231	0.52	0.58	0.63	0.6	0.63	0.37	0.5	-99.0	7.84	.002	134
	ŭ																		- 1

DEV rabbit Maternal PregnancyRelated	MLR		_						_	_		_		_		_		
MaternalPregLoss	Α	Adriana	70	49	48	63	230	0.52	0.59	0.53	0.56	0.53	0.51	0.52	-99.0	8.43	0.03	133
DEV rabbit Maternal	MI Þ	ALogPS,																
PregnancyRelated MaternalPregLoss	A	OEstate	82	49	48	52	231	0.57	0.63	0.61	0.62	0.61	0.51	0.56	-98.9	8.39	0.12	134
DEV rabbit Maternal																		
PregnancyRelated	MLR	ODK	70		40		000	0.55	0.00	0.57	0.50	0.57	0.50	0.54	00.0	0.40	0.00	404
MaternalPregLoss	Α	CDK	76	50	46	58	230	0.55	0.62	0.57	0.59	0.57	0.52	0.54	-98.9	8.49	0.09	134
DEV rabbit Maternal PregnancyRelated	MLR	Chemaxo																
MaternalPregLoss	Α	n	82	58	39	52	231	0.61	0.68	0.61	0.64	0.61	0.6	0.6	-98.8	8.77	0.21	134
DEV rabbit Maternal	MLR																	
PregnancyRelated MaternalPregLoss	A	Dragon6	56	44	53	78	231	0.43	0.51	0.42	0.46	0.42	0.45	0.44	-99 1	8.21	127	134
DEV rabbit Maternal								00	0.0.	- · · · <u>-</u>	00		00	••••		<u> </u>		
PregnancyRelated		Fragment																
MaternalPregLoss	Α	or	83	52	45	51	231	0.58	0.65	0.62	0.63	0.62	0.54	0.58	-98.8	8.51	0.15	134
DEV rabbit Maternal PregnancyRelated	MLR																	
MaternalPregLoss	Α	GSFrag	84	48	49	50	231	0.57	0.63	0.63	0.63	0.63	0.49	0.56	-98.9	8.34	0.12	134
DEV rabbit Maternal	NAI T	<u>_</u>																
PregnancyRelated	MLR ^	Industina	64	E 1	10	70	224	0.5	0.50	0.40	0.50	0.40	0.53	0 5	00.0	0 50	0	124
MaternalPregLoss	Α	Inductive	64	51	46	70	231	0.5	0.58	0.48	0.52	0.48	0.53	0.5	-99.0	0.52	0.	134
DEV rabbit Maternal PregnancyRelated	MLR	Mera,																
MaternalPregLoss	Α	Mersy	72	48	49	62	231	0.52	0.6	0.54	0.56	0.54	0.49	0.52	-99.0	8.4	0.03	134
DEV rabbit Maternal	MLR																	
PregnancyRelated MaternalPregLoss	MLR A	QNPR	75	50	47	59	231	0.54	0.61	0.56	0.59	0.56	0.52	0.54	_Q, Q	8.47	0 07	134
DEV rabbit Maternal	, ,	S(11 1)	, ,	- 50	-71	0.9	201	0.04	0.01	0.00	0.00	0.00	0.02	0.04	50.8	U.71	0.01	.04
PregnancyRelated		Spectrop																
MaternalPregLoss	Α	hores	71	58	39	63	231	0.56	0.65	0.53	0.58	0.53	0.6	0.56	-98.9	8.81	0.13	134
DEV rabbit Maternal																		
PregnancyRelated MaternalPregLoss	PLS	Adriana	79	55	42	54	230	0.58	0.65	0.59	0.62	0.59	0.57	0.58	-98.8	8.64	0.16	133
-																		
DEV rabbit Maternal PregnancyRelated		ALogPS,																
MaternalPregLoss	PLS	OEstate	83	54	43	51	231	0.59	0.66	0.62	0.64	0.62	0.56	0.59	-98.8	8.59	0.17	134
DEV rabbit Maternal																		
PregnancyRelated MaternalPregLoss	PLS	CDK	77	52	44	57	230	0.56	0.64	0.57	0.6	0.57	0.54	0.56	-98.9	8.57	0 11	134
DEV rabbit Maternal		JD.1.				<u> </u>		0.00	5.0⊣	0.01	3.0	0.01	0.07	0.00	30.0	0.01	U. 11	. 5-1
PregnancyRelated		Chemaxo											_			_		
MaternalPregLoss	PLS	n	82	57	40	52	231	0.6	0.67	0.61	0.64	0.61	0.59	0.6	-98.8	8.72	0.2	134
DEV rabbit Maternal																		
PregnancyRelated MaternalPregLoss	PLS	Dragon6	79	46	51	55	231	0.54	0.61	0.59	0.6	0.59	0.47	0.53	-98.9	8.29	0.06	134
DEV rabbit Maternal						-												
PregnancyRelated	DI C	Fragment	00	E 4	40	E 4	224	0.50	0.05	0.0	0.00	0.0	0.50	0.50	00.0	0.04	0.45	104
MaternalPregLoss	PLS	Uľ	80	54	43	54	231	0.58	0.65	0.6	0.62	0.6	0.56	0.58	-98.8	8.61	U.15	134
DEV rabbit Maternal PregnancyRelated																		
MaternalPregLoss	PLS	GSFrag	73	53	44	61	231	0.55	0.62	0.54	0.58	0.54	0.55	0.55	-98.9	8.6	0.09	134
DEV rabbit Maternal																		
PregnancyRelated MaternalPregLoss	PLS	Inductive	75	56	41	59	231	0.57	0.65	0.56	0.6	0.56	0.58	0.57	_0.2.0_	8.72	0.14	124
DEV rabbit Maternal	i LO	muucuve	13	50	+ 1	Ja	201	0.07	0.00	0.50	0.0	0.50	0.00	0.07	-30.9	0.12	0.14	134
PregnancyRelated		Mera,																
MaternalPregLoss	PLS	Mersy	78	52	45	56	231	0.56	0.63	0.58	0.61	0.58	0.54	0.56	-98.9	8.54	0.12	134
DEV rabbit Maternal																		
PregnancyRelated MaternalPregLoss	PLS	QNPR	82	51	46	52	231	0.58	0.64	0.61	0.63	0.61	0.53	0.57	-98.9	8.48	0.14	134
DEV rabbit Maternal			<u> </u>					3.50	5.5⊣	2.51	5.50	2.01	3.50	0.01	55.5	5. 10	J. 1 T	. 5⊣
PregnancyRelated		Spectrop																
MaternalPregLoss	PLS	hores	70	51	46	64	231	0.52	0.6	0.52	0.56	0.52	0.53	0.52	-99.0	8.52	0.05	134
DEV rabbit Maternal																		
PregnancyRelated MaternalPregLoss	J48	Adriana	74	48	49	59	230	0.53	0.6	0.56	0.58	0.56	0.49	0.53	-98.9	8.38	0.05	133
- 3				. •	. •	- •			٥.٠						- 0.0			اکت

DEV rabbit Maternal PregnancyRelated MaternalPregLoss	J48	ALogPS, OEstate	80	50	47	54	231	0.56	0.63	0.6	0.61	0.6	0.52	0.56	-98.9	8.45	0.11	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	J48	CDK	77	43	53	57	230	0.52	0.59	0.57	0.58	0.57	0.45	0.51	-99.0	8.2	0.02	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	J48	Chemaxo n	74	50	47	60	231	0.54	0.61	0.55	0.58	0.55	0.52	0.53	-98.9	8.47	0.07	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	J48	Dragon6	83	41	56	51	231	0.54	0.6	0.62	0.61	0.62	0.42	0.52	-99.0	8.06	0.04	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	J48	Fragment or	83	47	50	51	231	0.56	0.62	0.62	0.62	0.62	0.48	0.55	-98.9		0.1	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	J48	GSFrag	79	49	48	55	231	0.55	0.62	0.59	0.61	0.59	0.51	0.55	-98.9		0.09	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	J48	Inductive	84	41	56	50	231	0.54	0.6	0.63	0.61	0.63	0.42	0.52	-99.0		0.05	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	J48	Mera, Mersy	75	43	54	59	231	0.51	0.58	0.56	0.57	0.56	0.44	0.52	-99.0		0.00	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	J48	QNPR	80	50	47	54	231	0.56	0.63	0.6	0.61	0.6	0.52	0.56	-98.9		0.11	134
DEV rabbit Maternal PregnancyRelated MaternalPregLoss	J48	Spectrop hores	73	46	51	61	231	0.52	0.59	0.54	0.57	0.54	0.47	0.51	-99.0		0.02	134
DEV rabbit Developmental Skeletal Axial	RF	Adriana	19	112	65	34	230	0.57	0.23	0.36	0.28	0.36	0.63	0.5	-99.0		.008	53
DEV rabbit Developmental		ALogPS,				-												
Skeletal Axial DEV rabbit Developmental	RF_	OEstate	24	117	61	29	231	0.61	0.28	0.45	0.35	0.45	0.66	0.56	-98.9		0.1	53
Skeletal Axial DEV rabbit Developmental	RF	CDK Chemaxo	25	113	65	27	230	0.6	0.28	0.48	0.35	0.48	0.63	0.56	-98.9	7.1	0.1	52
Skeletal Axial DEV rabbit Developmental	RF	n	21	108	70	32	231	0.56	0.23	0.4	0.29	0.4	0.61	0.5	-99.0		0.	53
Skeletal Axial DEV rabbit Developmental	RF	Dragon6 Fragment	24	108	70	29	231	0.57	0.26	0.45	0.33	0.45	0.61	0.53	-98.9		0.05	53
Skeletal Axial DEV rabbit Developmental	RF	or	22	112	66	31	231	0.58	0.25	0.42	0.31	0.42	0.63	0.52	-99.0	7.09	0.04	53
Skeletal Axial DEV rabbit Developmental	RF	GSFrag	24	103	75	29	231	0.55	0.24	0.45	0.32	0.45	0.58	0.52	-99.0	6.9	0.03	53
Skeletal Axial DEV rabbit Developmental	RF	Inductive Mera,	18	107	71	35	231	0.54	0.2	0.34	0.25	0.34	0.6	0.47	-99.1	6.9	.051	53
Skeletal Axial DEV rabbit Developmental	RF	Mersy	17	105	73	36	231	0.53	0.19	0.32	0.24	0.32	0.59	0.46	-99.1	6.82	.077	53
Skeletal Axial DEV rabbit Developmental	RF	QNPR Spectrop	21	117	61	32	231	0.6	0.26	0.4	0.31	0.4	0.66	0.53	-98.9	7.2	0.05	53
Skeletal Axial DEV rabbit Developmental	RF ASN	hores	27	113	65	26	231	0.61	0.29	0.51	0.37	0.51	0.63	0.57	-98.9	7.14	0.12	53
Skeletal Axial DEV rabbit	N	Adriana	21	121	56	32	230	0.62	0.27	0.4	0.32	0.4	0.68	0.54	-98.9	7.31	0.07	53
Developmental Skeletal Axial	ASN N	ALogPS, OEstate	25	127	51	28	231	0.66	0.33	0.47	0.39	0.47	0.71	0.59	-98.8	7.5	0.17	53

DEV rabbit Developmental Skeletal Axial	ASN N	CDK	26	129	49	26	230	0.67	0.35	0.5	0.41	0.5	0.72	0.61	-98.8 7.5	52 0.2	52
DEV rabbit Developmental Skeletal Axial	ASN N	Chemaxo n	16	119	59	37	231	0.58	0.21	0.3	0.25	0.3	0.67	0.49	-99.0 7.1	3 .027	53
DEV rabbit Developmental Skeletal Axial	ASN N	Dragon6	19	130	48	34	231	0.65	0.28	0.36	0.32	0.36	0.73	0.54	-98.9 7	.5 0.08	53
DEV rabbit Developmental Skeletal Axial	ASN N	Fragment or	18	130	48	35	231	0.64	0.27	0.34	0.3	0.34	0.73	0.53	-98.9 7.4	8 0.07	53
DEV rabbit Developmental Skeletal Axial	ASN N	GSFrag	23	126	52	30	231	0.65	0.31	0.43	0.36	0.43	0.71	0.57	-98.9 7.4	5 0.13	53
DEV rabbit Developmental Skeletal Axial	ASN N	Inductive	21	125	53	32	231	0.63	0.28	0.4	0.33	0.4	0.7	0.55	-98.9 7	4 0.09	53
DEV rabbit Developmental Skeletal Axial	ASN N	Mera, Mersy	26	118	60	27	231	0.62	0.3	0.49	0.37	0.49	0.66	0.58	-98.8 7.2	6 0.13	53
DEV rabbit Developmental Skeletal Axial	ASN N	QNPR	21	134	44	32	231	0.67	0.32	0.4	0.36	0.4	0.75	0.57	-98.9 7.6	6 0.14	53
DEV rabbit Developmental Skeletal Axial	ASN N	Spectrop hores	21	118	60	32	231	0.6	0.26	0.4	0.31	0.4	0.66	0.53	-98.9 7.2	2 0.05	53
DEV rabbit Developmental Skeletal Axial	ASN N	CDK, TA, TP	18	124	54	34	230	0.62	0.25	0.35	0.29	0.35	0.7	0.52	-99.0 7.2	8 0.04	52
DEV rabbit Developmental Skeletal Axial	ASN N	CDK, TA	24	125	53	28	230	0.65	0.31	0.46	0.37	0.46	0.7	0.58	-98.8 7	4 0.15	52
DEV rabbit Developmental Skeletal Axial	ASN N	CDK, TP	24	123	55	28	230	0.64	0.3	0.46	0.37	0.46	0.69	0.58	-98.8 7.3	5 0.13	52
DEV rabbit Developmental Skeletal Axial	ASN N	TA, TP	22	126	52	31	231	0.64	0.3	0.42	0.35	0.42	0.71	0.56	-98.9 7.4	4 0.11	53
DEV rabbit Developmental Skeletal Axial	ASN N	TA	23	132	46	30	231	0.67	0.33	0.43	0.38	0.43	0.74	0.59	-98.8 7.6	2 0.16	53
DEV rabbit Developmental Skeletal Axial	ASN N	TP	18	119	59	35	231	0.59	0.23	0.34	0.28	0.34	0.67	0.5	-99.0 7.1	8 0.01	53
DEV rabbit Developmental Skeletal Axial	FSM LR	CDK, TA, TP	25	132	46	27	230	0.68	0.35	0.48	0.41	0.48	0.74	0.61	-98.8 7	.6 0.2	52
DEV rabbit Developmental Skeletal Axial	FSM LR	CDK, TA	23	132	46	29	230	0.67	0.33	0.44	0.38	0.44	0.74	0.59	-98.8 7.5	SQ 0.17	52
DEV rabbit Developmental	FSM	·															
Skeletal Axial DEV rabbit Developmental	LR FSM	CDK, TP	26	117	61	26	230	0.62	0.3	0.5	0.37	0.5	0.66	0.58		2 0.14	52
Skeletal Axial DEV rabbit Developmental	LR FSM	TA, TP	23	118	60	30	231	0.61	0.28	0.43	0.34	0.43	0.66	0.55	-98.9 7.2	25 0.08	53
Skeletal Axial DEV rabbit Developmental	LR FSM	TA	24	128	50	29	231	0.66	0.32	0.45	0.38	0.45	0.72	0.59	-98.8 7.5	0.15	53
Skeletal Axial DEV rabbit Developmental	LR	TP CDK, TA,	25	101	77	28	231	0.55	0.25	0.47	0.32	0.47	0.57	0.52	-99.0 6.8	6 0.03	53
Skeletal Axial DEV rabbit Developmental	KNN		25	110	68	27	230	0.59	0.27	0.48	0.34	0.48	0.62	0.55	-98.9 7.0	3 0.08	52
Skeletal Axial	KNN	CDK, TA	28	102	76	24	230	0.57	0.27	0.54	0.36	0.54	0.57	0.56	-98.9 6.8	34 0.09	52

DEV rabbit Developmental																
Skeletal Axial	KNN	CDK, TP	35	66	112	17	230	0.44	0.24	0.67	0.35	0.67	0.37	0.52	-99.0 5.91 0.04	52
DEV rabbit Developmental																
Skeletal Axial	KNN	TA, TP	31	86	92	22	231	0.51	0.25	0.58	0.35	0.58	0.48	0.53	-98.9 6.5 0.06	53
DEV rabbit																
Developmental Skeletal Axial	KNN	TA	24	111	67	29	231	0.58	0.26	0.45	0.33	0.45	0.62	0.54	-98.9 7.08 0.07	53
DEV rabbit																
Developmental	IZNINI	TD	27	27	111	16	224	0.22	0.24	0.7	0.22	0.7	0.24	0.45	00.1 5.1 00.4	E2
Skeletal Axial	KNN	IP	37	37	141	16	231	0.32	0.21	0.7	0.32	0.7	0.21	0.45	-99.1 5.1 .094	53
DEV rabbit Developmental	LibS	CDK, TA,														
Skeletal Axial	VM	TP	9	154	24	43	230	0.71	0.27	0.17	0.21	0.17	0.87	0.52	-99.0 7.87 0.05	52
DEV rabbit																
Developmental	LibS	0DI(T4	_	450	40	4-	000	0.70	0.07	0.40	0.40	0.40	0.00	0.54	7.00	
Skeletal Axial	VM	CDK, TA	7	159	19	45	230	0.72	0.27	0.13	0.18	0.13	0.89	0.51	-99.0 7.93 0.04	52
DEV rabbit	LibS															
Developmental Skeletal Axial	VM	CDK, TP	10	158	20	42	230	0.73	0.33	0.19	0.24	0.19	0.89	0.54	-98.9 8.15 0.1	52
DEV rabbit		,			-											
Developmental	LibS															
Skeletal Axial	VM	TA, TP	8	165	13	45	231	0.75	0.38	0.15	0.22	0.15	0.93	0.54	-98.9 8.46 0.11	53
DEV rabbit	Like															
Developmental Skeletal Axial	LibS VM	TA	6	157	21	47	231	0.71	0.22	0.11	0.15	0.11	0.88	0.5	-99.0 7.72 .006	53
	V IVI	iA		101	<u> </u>	71	201	0.71	0.22	0.11	0.10	0.11	0.00	0.0	33.3 7.72 .000	- 55
DEV rabbit Developmental	LibS															
Skeletal Axial	VM	TP	7	159	19	46	231	0.72	0.27	0.13	0.18	0.13	0.89	0.51	-99.0 7.96 0.03	53
DEV rabbit	МГР	CDK, TA,														
Developmental Skeletal Axial	A	TP	28	117	61	24	230	0.63	0.31	0.54	0.4	0.54	0.66	0.6	-98.8 7.2 0.17	52
DEV rabbit		••			<u> </u>			0.00	0.01	0.01	0.1	0.01	0.00	0.0	00.0 7.2 0.11	
Developmental	MLR	0011														
Skeletal Axial	A	CDK, TA	31	107	71	21	230	0.6	0.3	0.6	0.4	0.6	0.6	0.6	-98.8 6.93 0.17	52
DEV rabbit Developmental	MLR															
Skeletal Axial	Α	CDK, TP	27	100	78	25	230	0.55	0.26	0.52	0.34	0.52	0.56	0.54	-98.9 6.8 0.07	52
DEV rabbit	MLR															
Developmental Skeletal Axial	A	TA. TP	25	114	64	28	231	0.6	0.28	0.47	0.35	0.47	0.64	0.56	-98.9 7.16 0.1	53
DEV rabbit		, 11		,,,,	J-7			0.0	5.20	J.→1	0.00	J.→1	0.07	0.00	00.0 7.10 0.1	55
Developmental	MLR		•-					.		0 1-		0 1-	0.1-	o	00.4.0.15.5	
Skeletal Axial	A	TA	23	85	93	30	231	0.47	0.2	0.43	0.27	0.43	0.48	0.46	-99.1 6.49 .074	53
DEV rabbit Developmental	MLR															
Skeletal Axial	Α	TP	19	103	75	34	231	0.53	0.2	0.36	0.26	0.36	0.58	0.47	-99.1 6.83 .054	53
DEV rabbit		CDK, TA,														
Developmental Skeletal Axial	PLS		21	117	61	31	230	0.6	0.26	0.4	0.31	0.4	0.66	0.53	-98.9 7.17 0.05	52
DEV rabbit					<u> </u>			0.0	J. <u>_</u> U	U.¬	0.01	U.¬	0.00	2.50	22.3 7.17 0.00	52
Developmental	DI 0	ODK T	00	440		00	000	0.00	0.01	<u> </u>	0.00	^ -	0.07	0.50	00.0 7.05 0.15	
Skeletal Axial	PLS	CDK, TA	26	119	59	26	230	0.63	0.31	0.5	0.38	0.5	0.67	0.58	-98.8 7.25 0.15	52
DEV rabbit Developmental																
Skeletal Axial	PLS	CDK, TP	23	117	61	29	230	0.61	0.27	0.44	0.34	0.44	0.66	0.55	-98.9 7.19 0.09	52
DEV rabbit														-		
	DI C	TA, TP	26	121	57	27	231	0.64	0.31	0.49	0.38	0.49	0.68	0.59	-98.8 7.34 0.15	53
Developmental	F1.03	,		· <u>-</u> ·	<u> </u>			0.01	0.01	0.10	0.00	0.10	0.00	0.00	22.2 7.01 3.10	
Developmental Skeletal Axial	FLO															
Developmental Skeletal Axial DEV rabbit Developmental			. .													
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	PLS	TA	21	127	51	32	231	0.64	0.29	0.4	0.34	0.4	0.71	0.55	-98.9 7.46 0.1	53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial DEV rabbit		TA	21	127	51	32	231	0.64	0.29	0.4	0.34	0.4	0.71	0.55	-98.9 7.46 0.1	53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial DEV rabbit Developmental			21	127 111	51 67	32	231	0.64	0.29	0.4	0.34	0.4	0.71	0.55	-98.9 7.46 0.1 -99.0 7.03 0	
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	PLS	TP														
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	PLS PLS								0.23	0.38	0.29		0.62			

																	_
DEV rabbit Developmental																	
Skeletal Axial	J48	CDK, TA	19	135	43	33	230	0.67	0.31	0.37	0.33	0.37	0.76	0.56	-98.9 7.62	0.12	52
DEV rabbit																	
Developmental	140	CDK TD	04	101	47	24	220	0.00	0.04	0.4	0.05	0.4	0.74	0.57	00.0 7.54	0.40	
Skeletal Axial	J48	CDK, TP	21	131	47	31	230	0.66	0.31	0.4	0.35	0.4	0.74	0.57	-98.9 7.54	0.13	52
DEV rabbit Developmental																	
Skeletal Axial	J48	TA, TP	20	133	45	33	231	0.66	0.31	0.38	0.34	0.38	0.75	0.56	-98.9 7.61	0.12	53
DEV rabbit																	
Developmental	140	ΤΛ	47	407	44	20	004	0.07	0.00	0.00	0.04	0.00	0.77	0.55	00.0 7.00	0.00	-
Skeletal Axial	J48	TA	17	137	41	36	231	0.67	0.29	0.32	0.31	0.32	0.77	0.55	-98.9 7.66	0.09	53
DEV rabbit Developmental																	
Skeletal Axial	J48	TP	20	131	47	33	231	0.65	0.3	0.38	0.33	0.38	0.74	0.56	-98.9 7.55	0.1	53
DEV rabbit		ODIC TA															
Developmental	D.E.	CDK, TA,	00	447	04	00	000	0.04	0.00	0.50	0.40	0.50	0.00	0.00	000 740	0.0	
Skeletal Axial	RF	TP	30	117	61	22	230	0.64	0.33	0.58	0.42	0.58	0.66	0.62	-98.8 7.18	0.2	52
DEV rabbit Developmental																	
Skeletal Axial	RF	CDK, TA	27	103	75	25	230	0.57	0.26	0.52	0.35	0.52	0.58	0.55	-98.9 6.87	0.08	52
DEV rabbit		•															
Developmental	D-	ODK TO	00	440	00	00	000	0.00	0.00	0.50	0 44	0.50	0.05	0.0	000 7 10	0.40	[]
Skeletal Axial	RF	CDK, TP	29	116	62	23	230	0.63	0.32	0.56	0.41	0.56	0.65	0.6	-98.8 7.16	υ.18	52
DEV rabbit Developmental																	
Skeletal Axial	RF	TA, TP	26	95	83	27	231	0.52	0.24	0.49	0.32	0.49	0.53	0.51	-99.0 6.73	0.02	53
DEV rabbit		•															\dashv
Developmental																	
Skeletal Axial	RF	TA	30	109	69	23	231	0.6	0.3	0.57	0.39	0.57	0.61	0.59	-98.8 7.03	0.15	53
DEV rabbit																	
Developmental Skeletal Axial	RF	TP	25	91	87	28	231	0.5	0.22	0.47	0.3	0.47	0.51	0.49	-99.0 6.63	.014	53
		••							<u> </u>	••••	0.0	••••	0.0.	00	00.0 0.00		
DEV rabbit Developmental	FSM																
Skeletal Axial	LR	Adriana	22	115	62	31	230	0.6	0.26	0.42	0.32	0.42	0.65	0.53	-98.9 7.18	0.06	53
DEV rabbit																	
Developmental	FSM	ALogPS,															
Skeletal Axial	LR	OEstate	21	129	49	32	231	0.65	0.3	0.4	0.34	0.4	0.72	0.56	-98.9 7.51	0.11	53
DEV rabbit	E01.																
Developmental	FSM	CDK	00	400		00	000	0.05	0.00	۰.	0.00	۰.	0.00	0.0	000 705	0.47	[[
Skeletal Axial	LR	CDK	26	123	55	26	230	0.65	0.32	0.5	0.39	0.5	0.69	0.6	-98.8 7.35	0.17	52
DEV rabbit	ECV	Chomovo															
Developmental Skeletal Axial	FSM LR	Chemaxo n	21	118	60	32	231	0.6	0.26	0.4	0.31	0.4	0.66	0.53	-98.9 7.22	0.05	53
	LIX	11	۷1	110	00	JZ	201	0.0	0.20	0.4	0.01	0.4	0.00	0.55	-30.3 1.22	0.00	55
DEV rabbit	FSM																
Developmental Skeletal Axial	LR	Dragon6	21	134	44	32	231	0.67	0.32	0.4	0.36	0.4	0.75	0.57	-98.9 7.66	0.14	53
													•		22.300		<u> </u>
DEV rabbit Developmental	FSM	Fragment															
Skeletal Axial	LR	or	15	134	44	38	231	0.65	0.25	0.28	0.27	0.28	0.75	0.52	-99.0 7.5	0.03	53
DEV rabbit																	\neg
Developmental	FSM																
Skeletal Axial	LR	GSFrag	22	123	55	31	231	0.63	0.29	0.42	0.34	0.42	0.69	0.55	-98.9 7.36	0.09	53
DEV rabbit																	\neg
Developmental	FSM			4.5-					•								
Skeletal Axial	LR	Inductive	17	128	50	36	231	0.63	0.25	0.32	0.28	0.32	0.72	0.52	-99.0 7.39	0.04	53
DEV rabbit	ECN4	Moro															
Developmental		Mera,	00	110	e e	20	224	0.50	0.00	0.40	0.22	0.40	0.60	0.50	000 74	0.05	E 2
Skeletal Axial	LR	Mersy	23	112	66	30	231	0.58	0.26	0.43	0.32	0.43	0.63	0.53	-98.9 7.1	0.05	53
DEV rabbit	FSM																
Developmental Skeletal Axial	LR	QNPR	21	134	44	32	231	0.67	0.32	0.4	0.36	0.4	0.75	0.57	-98.9 7.66	0 14	53
	LIX	SCINI IV	<u> </u>	104	77	52	201	0.01	0.02	J. 4	0.00	J. 4	0.13	0.01	-50.8 1.00	0.14	- 33
DEV rabbit Developmental	FSM	Spectrop															
Skeletal Axial	LR	hores	20	120	58	33	231	0.61	0.26	0.38	0.31	0.38	0.67	0.53	-98.9 7.25	0.05	53
1	-		-												•		

DEV rabbit																	
Developmental																	
Skeletal Axial	KNN	Adriana	18	107	70	35	230	0.54	0.2	0.34	0.26	0.34	0.6	0.47	-99.1 6.91	.048	53
DEV rabbit																	
Developmental		ALogPS,															
Skeletal Axial	KNN	OEstate	25	112	66	28	231	0.59	0.27	0.47	0.35	0.47	0.63	0.55	-98.9 7.11	0.09	53
DEV rabbit																	
Developmental Skeletal Axial	KNN	CDK	35	75	103	17	230	0.48	0.25	0.67	0.37	0.67	0.42	0.55	-98.9 6.12	0.08	52
DEV rabbit		ODIT			100	.,		0.10	0.20	0.01	0.01	0.01	0.12	0.00	00.0 0.12	0.00	<u> </u>
Developmental		Chemaxo															
Skeletal Axial	KNN	n	21	116	62	32	231	0.59	0.25	0.4	0.31	0.4	0.65	0.52	-99.0 7.17	0.04	53
DEV rabbit																	
Developmental Skeletal Axial	KNINI	Dragon6	21	106	72	32	231	0.55	0.23	0.4	0.29	0.4	0.6	0.5	-99.0 6.93	.007	53
-	KNN	Diagono	۷1	100	12	32	231	0.55	0.23	0.4	0.29	0.4	0.0	0.5	-99.0 0.93	.007	- 55
DEV rabbit Developmental		Fragment															
Skeletal Axial	KNN	or	26	120	58	27	231	0.63	0.31	0.49	0.38	0.49	0.67	0.58	-98.8 7.31	0.14	53
DEV rabbit																	
Developmental																	
Skeletal Axial	KNN	GSFrag	31	101	77	22	231	0.57	0.29	0.58	0.39	0.58	0.57	0.58	-98.8 6.83	0.13	53
DEV rabbit																	
Developmental Skeletal Axial	KNN	Inductive	24	115	63	29	231	0.6	0.28	0.45	0.34	0.45	0.65	0.55	-98.9 7.18	0.09	53
DEV rabbit								3.0	JU	0.10	0.01	0.10	0.00	0.00	22.2 7.10	0.00	
Developmental		Mera,															
Skeletal Axial	KNN	Mersy	29	98	80	24	231	0.55	0.27	0.55	0.36	0.55	0.55	0.55	-98.9 6.78	0.08	53
DEV rabbit																	
Developmental Skeletal Axial	KNN	QNPR	13	162	16	40	231	0.76	0.45	0.25	0.32	0.25	0.91	0.58	-98.8 8.59	0.2	53
-	KININ	QINFK	13	102	10	40	231	0.76	0.45	0.25	0.32	0.25	0.91	0.56	-90.0 0.09	0.2	53
DEV rabbit Developmental		Spectrop															
Skeletal Axial	KNN	hores	28	110	68	25	231	0.6	0.29	0.53	0.38	0.53	0.62	0.57	-98.9 7.07	0.12	53
DEV rabbit																	
Developmental	LibS																
Skeletal Axial	VM	Adriana	11	153	24	42	230	0.71	0.31	0.21	0.25	0.21	0.86	0.54	-98.9 8.03	80.0	53
DEV rabbit																	
Developmental	LibS	ALogPS,														- · -	
Skeletal Axial	VM	OEstate	14	155	23	39	231	0.73	0.38	0.26	0.31	0.26	0.87	0.57	-98.9 8.24		
															00.0 0.21	0.15	53
DEV rabbit	1.11.0														00.0 0.21	0.15	53
Developmental	LibS		40	444	0.4	0.4	000	0.7	0.05	0.05	0.05	0.05	0.04	0.50			
	LibS VM	CDK	18	144	34	34	230	0.7	0.35	0.35	0.35	0.35	0.81	0.58	-98.8 7.89		52
Developmental Skeletal Axial DEV rabbit	VM	CDK	18	144	34	34	230	0.7	0.35	0.35	0.35	0.35	0.81	0.58			
Developmental Skeletal Axial DEV rabbit Developmental	VM	CDK Chemaxo													-98.8 7.89	0.16	52
Developmental Skeletal Axial DEV rabbit	VM	CDK	18	144	34 19	34 45	230	0.72	0.35	0.35	0.35	0.35	0.81	0.58	-98.8 7.89	0.16	
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	VM LibS VM	CDK Chemaxo													-98.8 7.89	0.16	52
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial DEV rabbit Developmental	VM LibS VM	CDK Chemaxo n	8	159	19	45	231	0.72	0.3	0.15	0.2	0.15	0.89	0.52	-98.8 7.89 -99.0 8.06	0.16	52
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	VM LibS VM	CDK Chemaxo													-98.8 7.89	0.16	52
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial DEV rabbit	VM LibS VM LibS VM	CDK Chemaxo n Dragon6	8	159	19	45	231	0.72	0.3	0.15	0.2	0.15	0.89	0.52	-98.8 7.89 -99.0 8.06	0.16	52
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	VM LibS VM LibS VM	CDK Chemaxo n	8	159	19	45	231	0.72	0.3	0.15	0.2	0.15	0.89	0.52	-98.8 7.89 -99.0 8.06 -99.0 8.29	0.16 0.06 0.05	52 53 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	VM LibS VM LibS VM LibS	CDK Chemaxo n Dragon6 Fragment	8	159	19	45	231	0.72	0.3	0.15	0.2	0.15	0.89	0.52	-98.8 7.89 -99.0 8.06	0.16 0.06 0.05	52
Developmental Skeletal Axial DEV rabbit	VM LibS VM LibS VM LibS	CDK Chemaxo n Dragon6 Fragment	8	159	19	45	231	0.72	0.3	0.15	0.2	0.15	0.89	0.52	-98.8 7.89 -99.0 8.06 -99.0 8.29	0.16 0.06 0.05	52 53 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	VM LibS VM LibS VM LibS VM	CDK Chemaxo n Dragon6 Fragment	8	159	19	45	231	0.72	0.3	0.15	0.2	0.15	0.89	0.52	-98.8 7.89 -99.0 8.06 -99.0 8.29	0.16 0.06 0.05	52 53 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	VM LibS VM LibS VM LibS VM LibS VM	CDK Chemaxo n Dragon6 Fragment or	8 4 6	159 169 159	19 9 19	45 49 47	231 231 231	0.72 0.75 0.71	0.3 0.31 0.24	0.15 0.08 0.11	0.2 0.12 0.15	0.15 0.08 0.11	0.89 0.95 0.89	0.52	-98.8 7.89 -99.0 8.06 -99.0 8.29 -99.0 7.83	0.16 0.06 0.05	52 53 53
Developmental Skeletal Axial DEV rabbit Developmental	VM LibS VM LibS VM LibS VM LibS VM	CDK Chemaxo n Dragon6 Fragment or	8 4 6	159 169 159	19 9 19	45 49 47	231 231 231	0.72 0.75 0.71	0.3 0.31 0.24	0.15 0.08 0.11	0.2 0.12 0.15	0.15 0.08 0.11	0.89 0.95 0.89	0.52	-98.8 7.89 -99.0 8.06 -99.0 8.29 -99.0 7.83	0.16 0.06 0.05	52 53 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	VM LibS VM LibS VM LibS VM LibS VM	CDK Chemaxo n Dragon6 Fragment or	8 4 6	159 169 159	19 9 19	45 49 47	231 231 231	0.72 0.75 0.71	0.3 0.31 0.24	0.15 0.08 0.11	0.2 0.12 0.15	0.15 0.08 0.11	0.89 0.95 0.89	0.52	-98.8 7.89 -99.0 8.06 -99.0 7.83 -99.0 7.62	0.16 0.06 0.05	52 53 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	LibS VM LibS VM LibS VM LibS VM	CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive	8 4 6 8	159 169 159	19 9 19 28	45 49 47 45	231 231 231 231	0.72 0.75 0.71	0.3 0.31 0.24 0.22	0.15 0.08 0.11 0.15	0.2 0.12 0.15	0.15 0.08 0.11 0.15	0.89 0.95 0.89	0.52 0.51 0.5	-98.8 7.89 -99.0 8.06 -99.0 7.83 -99.0 7.62	0.16 0.06 0.05 0.01	52 53 53 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	LibS VM LibS VM LibS VM LibS VM	CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive Mera,	8 4 6 8	159 169 159 150	19 9 19 28	45 49 47 45	231 231 231 231	0.72 0.75 0.71 0.68	0.3 0.31 0.24 0.22	0.15 0.08 0.11 0.15	0.2 0.12 0.15 0.18	0.15 0.08 0.11 0.15	0.89 0.95 0.89 0.84	0.52 0.51 0.5 0.5	-98.8 7.89 -99.0 8.06 -99.0 7.83 -99.0 7.62 -98.9 8.4	0.16 0.06 0.05 0.01	52 53 53 53 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	LibS VM LibS VM LibS VM LibS VM	CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive	8 4 6 8	159 169 159	19 9 19 28	45 49 47 45	231 231 231 231	0.72 0.75 0.71	0.3 0.31 0.24 0.22	0.15 0.08 0.11 0.15	0.2 0.12 0.15	0.15 0.08 0.11 0.15	0.89 0.95 0.89	0.52 0.51 0.5	-98.8 7.89 -99.0 8.06 -99.0 7.83 -99.0 7.62	0.16 0.06 0.05 0.01	52 53 53 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	LibS VM LibS VM LibS VM LibS VM LibS VM	CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive Mera,	8 4 6 8	159 169 159 150	19 9 19 28	45 49 47 45	231 231 231 231	0.72 0.75 0.71 0.68	0.3 0.31 0.24 0.22	0.15 0.08 0.11 0.15	0.2 0.12 0.15 0.18	0.15 0.08 0.11 0.15	0.89 0.95 0.89 0.84	0.52 0.51 0.5 0.5	-98.8 7.89 -99.0 8.06 -99.0 7.83 -99.0 7.62 -98.9 8.4	0.16 0.06 0.05 0.01	52 53 53 53 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	LibS VM LibS VM LibS VM LibS VM LibS VM	CDK Chemaxon Dragon6 Fragment or GSFrag Inductive Mera, Mersy	8 8 9	159 169 159 150 163	19 9 19 28 15	45 49 47 45 44	231 231 231 231 231	0.72 0.75 0.71 0.68 0.74	0.3 0.31 0.24 0.22 0.38	0.15 0.08 0.11 0.15 0.17	0.2 0.12 0.15 0.18 0.23 0.03	0.15 0.08 0.11 0.15 0.17	0.89 0.95 0.89 0.84 0.92	0.52 0.51 0.5 0.5 0.54	-98.8 7.89 -99.0 8.06 -99.0 7.83 -99.0 7.62 -98.9 8.4 -99.1 6.72	0.16 0.06 0.05 0.01 .007	52 53 53 53 53 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	LibS VM LibS VM LibS VM LibS VM LibS VM	CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive Mera,	8 4 6 8	159 169 159 150	19 9 19 28	45 49 47 45	231 231 231 231	0.72 0.75 0.71 0.68	0.3 0.31 0.24 0.22	0.15 0.08 0.11 0.15	0.2 0.12 0.15 0.18	0.15 0.08 0.11 0.15	0.89 0.95 0.89 0.84	0.52 0.51 0.5 0.5	-98.8 7.89 -99.0 8.06 -99.0 7.83 -99.0 7.62 -98.9 8.4	0.16 0.06 0.05 0.01 .007	52 53 53 53 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	LibS VM LibS VM LibS VM LibS VM LibS VM	CDK Chemaxon Dragon6 Fragment or GSFrag Inductive Mera, Mersy QNPR	8 8 9	159 169 159 150 163	19 9 19 28 15	45 49 47 45 44	231 231 231 231 231	0.72 0.75 0.71 0.68 0.74	0.3 0.31 0.24 0.22 0.38	0.15 0.08 0.11 0.15 0.17	0.2 0.12 0.15 0.18 0.23 0.03	0.15 0.08 0.11 0.15 0.17	0.89 0.95 0.89 0.84 0.92	0.52 0.51 0.5 0.5 0.54	-98.8 7.89 -99.0 8.06 -99.0 7.83 -99.0 7.62 -98.9 8.4 -99.1 6.72	0.16 0.06 0.05 0.01 .007	52 53 53 53 53 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	LibS VM LibS VM LibS VM LibS VM LibS VM	CDK Chemaxon Dragon6 Fragment or GSFrag Inductive Mera, Mersy	8 8 9	159 169 159 150 163	19 9 19 28 15	45 49 47 45 44	231 231 231 231 231	0.72 0.75 0.71 0.68 0.74	0.3 0.31 0.24 0.22 0.38	0.15 0.08 0.11 0.15 0.17	0.2 0.12 0.15 0.18 0.23 0.03	0.15 0.08 0.11 0.15 0.17 0.02 0.23	0.89 0.95 0.89 0.84 0.92	0.52 0.51 0.5 0.5 0.54 0.47 0.57	-98.8 7.89 -99.0 8.06 -99.0 7.83 -99.0 7.62 -98.9 8.4 -99.1 6.72	0.16 0.06 0.05 0.01 .007 0.12 .108	52 53 53 53 53 53

Skeletal Axial	MLR A	Adriana	20	117	60	33	230	0.6	0.25	0.38	0.3	0.38	0.66	0.52	-99.0	7.2	0.03	53
DEV rabbit Developmental	MLR	ALogPS,																
Skeletal Axial	Α	OEstate	26	77	101	27	231	0.45	0.2	0.49	0.29	0.49	0.43	0.46	-99.1	6.32	.065	53
DEV rabbit																		
Developmental	MLR																	
Skeletal Axial	Α	CDK	23	107	71	29	230	0.57	0.24	0.44	0.32	0.44	0.6	0.52	-99.0	6.95	0.04	52
DEV rabbit																		
Developmental	MLR	Chemaxo																
Skeletal Axial	Α	n	20	123	55	33	231	0.62	0.27	0.38	0.31	0.38	0.69	0.53	-98.9	7.33	0.06	53
DEV rabbit																		
Developmental	MLR																	
Skeletal Axial	Α	Dragon6	22	109	69	31	231	0.57	0.24	0.42	0.31	0.42	0.61	0.51	-99.0	7.02	0.02	53
DEV rabbit																		
Developmental	MLR	Fragment																
Skeletal Axial	Α	or	22	86	92	31	231	0.47	0.19	0.42	0.26	0.42	0.48	0.45	-99.1	6.5	.086	53
DEV rabbit		_																
Developmental	MLR																	
Skeletal Axial	Α	GSFrag	27	72	106	26	231	0.43	0.2	0.51	0.29	0.51	0.4	0.46	-99.1	6.21	.073	53
DEV rabbit									~. <u>~</u>				Ų. i	0				
DEV rabbit Developmental	MLR																	
Skeletal Axial	A	Inductive	22	114	64	31	231	0.59	0.26	0.42	0.32	0.42	0.64	0.53	-98.9	7 14	0.05	53
	, · ·				J-f	J 1		0.00	0.20	J. ¬∠	5.02	J.→ ∠	5.07	0.00	55.5		0.00	00
DEV rabbit	MIR	Mera,																
Developmental Skeletal Axial	A	Mersy	33	86	92	20	231	0.52	0.26	0.62	0.37	0.62	0.48	0.55	-98.9	6 16	0.00	53
		ivicisy	JJ	00	52	20	١ ډ2	0.52	0.20	0.02	0.37	0.02	0.40	0.00	-50.9	0.40	0.09	50
DEV rabbit	MLR																	
Developmental		ONDD	20	105	70	25	224	0.50	0.00	0.50	0.00	0.50	0.50	0.50	00.0	6.05	0.4	
Skeletal Axial	A	QNPR	28	105	73	25	231	0.58	0.28	0.53	0.36	0.53	0.59	0.56	-98.9	0.95	0.1	53
DEV rabbit	MID	Spootron																
Developmental		Spectrop	40	440	00	0.5	004	0.55	0.01	001	0.00	001	0.00	0.40	00.0	o o=	00-	
Skeletal Axial	Α	hores	18	110	68	35	231	0.55	0.21	0.34	0.26	0.34	0.62	0.48	-99.0	6.97	.037	53
DEV rabbit																		
Developmental										_		_		_				
Skeletal Axial	PLS	Adriana	24	116	61	29	230	0.61	0.28	0.45	0.35	0.45	0.66	0.55	-98.9	7.22	0.09	53
DEV rabbit																		
Developmental		ALogPS,																
Skeletal Axial	DI C	-		120	49	24	004		0.04	0 40	0.25	0.40	0.70	0.57				
	PI 5	OEstate	77	1/9	49	.o i	231	0.65	0.31	() 42	ບລວ	0.4/	0//	0.57	-98 9	7 53	0.13	53
DEV/ robbit	PLS	OEstate	22	129	49	31	231	0.65	0.31	0.42	0.35	0.42	0.72	0.57	-98.9	7.53	0.13	53
DEV rabbit	PLS	OEstate	22	129	49	31	231	0.65	0.31	0.42	0.35	0.42	0.72	0.57	-98.9	7.53	0.13	53
Developmental																		
Developmental Skeletal Axial		OEstate CDK	28	126	52	24	230	0.65	0.31	0.42	0.42	0.42	0.72	0.62	-98.9 -98.8			53 52
Developmental Skeletal Axial DEV rabbit		CDK																
Developmental Skeletal Axial DEV rabbit Developmental	PLS	CDK Chemaxo	28	126	52	24	230	0.67	0.35	0.54	0.42	0.54	0.71	0.62	-98.8	7.43	0.22	52
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	PLS	CDK														7.43	0.22	
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial DEV rabbit	PLS	CDK Chemaxo	28	126	52	24	230	0.67	0.35	0.54	0.42	0.54	0.71	0.62	-98.8	7.43	0.22	52
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial DEV rabbit Developmental	PLS PLS	CDK Chemaxo n	28 19	126 121	52 57	34	230	0.67	0.35	0.54	0.42	0.54	0.71	0.62	-98.8 -99.0	7.43 7.26	0.22	52 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial DEV rabbit	PLS PLS	CDK Chemaxo	28	126	52	24	230	0.67	0.35	0.54	0.42	0.54	0.71	0.62	-98.8	7.43 7.26	0.22	52
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial DEV rabbit Developmental	PLS PLS	CDK Chemaxo n Dragon6	28 19	126 121	52 57	34	230	0.67	0.35	0.54	0.42	0.54	0.71	0.62	-98.8 -99.0	7.43 7.26	0.22	52 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	PLS PLS	CDK Chemaxo n Dragon6 Fragment	28 19 20	126 121 130	52 57 48	24 34 33	230 231 231	0.67 0.61 0.65	0.35 0.25 0.29	0.54 0.36 0.38	0.42	0.54 0.36 0.38	0.71 0.68 0.73	0.62 0.52 0.55	-98.8 -99.0 -98.9	7.43 7.26 7.52	0.22	52 53 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial DEV rabbit	PLS PLS	CDK Chemaxo n Dragon6 Fragment	28 19	126 121	52 57	34	230	0.67	0.35	0.54	0.42	0.54	0.71	0.62	-98.8 -99.0	7.43 7.26 7.52	0.22	52 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	PLS PLS	CDK Chemaxo n Dragon6 Fragment	28 19 20	126 121 130	52 57 48	24 34 33	230 231 231	0.67 0.61 0.65	0.35 0.25 0.29	0.54 0.36 0.38	0.42	0.54 0.36 0.38	0.71 0.68 0.73	0.62 0.52 0.55	-98.8 -99.0 -98.9	7.43 7.26 7.52	0.22	52 53 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	PLS PLS PLS	CDK Chemaxo n Dragon6 Fragment or	28 19 20	126 121 130	52 57 48	24 34 33	230 231 231	0.67 0.61 0.65	0.35 0.25 0.29	0.54 0.36 0.38	0.42	0.54 0.36 0.38	0.71 0.68 0.73	0.62 0.52 0.55	-98.8 -99.0 -98.9	7.43 7.26 7.52	0.22	52 53 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	PLS PLS PLS	CDK Chemaxo n Dragon6 Fragment	28 19 20	126 121 130	52 57 48	24 34 33	230 231 231	0.67 0.61 0.65	0.35 0.25 0.29	0.54 0.36 0.38	0.42	0.54 0.36 0.38	0.71 0.68 0.73	0.62 0.52 0.55	-98.8 -99.0 -98.9	7.43 7.26 7.52	0.22	52 53 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	PLS PLS PLS	CDK Chemaxo n Dragon6 Fragment or	28 19 20	126 121 130 131	52 57 48 47	24 34 33 34	230 231 231 231	0.67 0.61 0.65	0.35 0.25 0.29	0.54 0.36 0.38	0.42 0.29 0.33	0.54 0.36 0.38	0.71 0.68 0.73 0.74	0.62 0.52 0.55 0.55	-98.8 -99.0 -98.9	7.43 7.26 7.52 7.53	0.22 0.03 0.1 0.09	52 53 53
Developmental Skeletal Axial DEV rabbit Developmental	PLS PLS PLS	CDK Chemaxo n Dragon6 Fragment or	28 19 20	126 121 130 131	52 57 48 47	24 34 33 34	230 231 231 231	0.67 0.61 0.65	0.35 0.25 0.29	0.54 0.36 0.38	0.42 0.29 0.33	0.54 0.36 0.38	0.71 0.68 0.73 0.74	0.62 0.52 0.55 0.55	-98.8 -99.0 -98.9	7.43 7.26 7.52 7.53	0.22 0.03 0.1 0.09	52 53 53
Developmental Skeletal Axial DEV rabbit	PLS PLS PLS PLS	CDK Chemaxo n Dragon6 Fragment or	28 19 20	126 121 130 131	52 57 48 47	24 34 33 34	230 231 231 231	0.67 0.61 0.65	0.35 0.25 0.29	0.54 0.36 0.38	0.42 0.29 0.33	0.54 0.36 0.38	0.71 0.68 0.73 0.74	0.62 0.52 0.55 0.55	-98.8 -99.0 -98.9	7.43 7.26 7.52 7.53 7.3	0.22 0.03 0.1 0.09	52 53 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	PLS PLS PLS PLS	CDK Chemaxo n Dragon6 Fragment or GSFrag	28 19 20 19 23	126 121 130 131 120	52 57 48 47	24 34 33 34 30	230 231 231 231 231	0.67 0.61 0.65 0.65	0.35 0.25 0.29 0.29	0.54 0.36 0.38 0.36	0.42 0.29 0.33 0.32	0.54 0.36 0.38 0.36	0.71 0.68 0.73 0.74	0.62 0.52 0.55 0.55	-98.8 -99.0 -98.9 -98.9	7.43 7.26 7.52 7.53 7.3	0.22 0.03 0.1 0.09	53 53 53 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	PLS PLS PLS PLS	CDK Chemaxo n Dragon6 Fragment or GSFrag	28 19 20 19 23	126 121 130 131 120	52 57 48 47	24 34 33 34 30	230 231 231 231 231	0.67 0.61 0.65 0.65	0.35 0.25 0.29 0.29	0.54 0.36 0.38 0.36	0.42 0.29 0.33 0.32	0.54 0.36 0.38 0.36	0.71 0.68 0.73 0.74	0.62 0.52 0.55 0.55	-98.8 -99.0 -98.9 -98.9	7.43 7.26 7.52 7.53 7.3	0.22 0.03 0.1 0.09	53 53 53 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	PLS PLS PLS PLS PLS	CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive Mera,	28 19 20 19 23	126 121 130 131 120 112	52 57 48 47 58 66	34 33 34 30 36	230 231 231 231 231 231	0.67 0.61 0.65 0.65 0.62	0.35 0.25 0.29 0.29 0.28	0.54 0.36 0.38 0.36 0.43	0.42 0.29 0.33 0.32 0.34	0.54 0.36 0.38 0.36 0.43	0.71 0.68 0.73 0.74 0.67 0.63	0.62 0.52 0.55 0.55	-98.8 -99.0 -98.9 -98.9 -98.9	7.43 7.26 7.52 7.53 7.3	0.22 0.03 0.1 0.09 0.1	53 53 53 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	PLS PLS PLS PLS PLS	CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive	28 19 20 19 23	126 121 130 131 120	52 57 48 47	24 34 33 34 30	230 231 231 231 231	0.67 0.61 0.65 0.65	0.35 0.25 0.29 0.29	0.54 0.36 0.38 0.36	0.42 0.29 0.33 0.32	0.54 0.36 0.38 0.36	0.71 0.68 0.73 0.74	0.62 0.52 0.55 0.55	-98.8 -99.0 -98.9 -98.9	7.43 7.26 7.52 7.53 7.3	0.22 0.03 0.1 0.09 0.1	53 53 53 53
Developmental Skeletal Axial DEV rabbit	PLS PLS PLS PLS PLS	CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive Mera,	28 19 20 19 23	126 121 130 131 120 112	52 57 48 47 58 66	34 33 34 30 36	230 231 231 231 231 231	0.67 0.61 0.65 0.65 0.62	0.35 0.25 0.29 0.29 0.28	0.54 0.36 0.38 0.36 0.43	0.42 0.29 0.33 0.32 0.34	0.54 0.36 0.38 0.36 0.43	0.71 0.68 0.73 0.74 0.67 0.63	0.62 0.52 0.55 0.55	-98.8 -99.0 -98.9 -98.9 -98.9	7.43 7.26 7.52 7.53 7.3	0.22 0.03 0.1 0.09 0.1	53 53 53 53
Developmental Skeletal Axial DEV rabbit Developmental	PLS PLS PLS PLS PLS PLS	CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive Mera, Mersy	28 19 20 19 23 17	126 121 130 131 120 112	52 57 48 47 58 66	24 34 33 34 30 36	230 231 231 231 231 231	0.67 0.61 0.65 0.65 0.62 0.56	0.35 0.25 0.29 0.29 0.28 0.2	0.54 0.36 0.38 0.36 0.43 0.32	0.42 0.29 0.33 0.32 0.34 0.25	0.54 0.36 0.38 0.36 0.43 0.32	0.71 0.68 0.73 0.74 0.67 0.63	0.62 0.52 0.55 0.55 0.47	-98.8 -99.0 -98.9 -98.9 -99.1	7.43 7.26 7.52 7.53 7.3 6.99	0.22 0.03 0.1 0.09 0.1 .044	53 53 53 53 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	PLS PLS PLS PLS PLS PLS	CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive Mera,	28 19 20 19 23	126 121 130 131 120 112	52 57 48 47 58 66	34 33 34 30 36	230 231 231 231 231 231	0.67 0.61 0.65 0.65 0.62	0.35 0.25 0.29 0.29 0.28	0.54 0.36 0.38 0.36 0.43	0.42 0.29 0.33 0.32 0.34	0.54 0.36 0.38 0.36 0.43	0.71 0.68 0.73 0.74 0.67 0.63	0.62 0.52 0.55 0.55	-98.8 -99.0 -98.9 -98.9 -98.9	7.43 7.26 7.52 7.53 7.3 6.99	0.22 0.03 0.1 0.09 0.1	53 53 53 53
Developmental Skeletal Axial DEV rabbit	PLS PLS PLS PLS PLS PLS	CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive Mera, Mersy QNPR	28 19 20 19 23 17	126 121 130 131 120 112	52 57 48 47 58 66	24 34 33 34 30 36	230 231 231 231 231 231	0.67 0.61 0.65 0.65 0.62 0.56	0.35 0.25 0.29 0.29 0.28 0.2	0.54 0.36 0.38 0.36 0.43 0.32	0.42 0.29 0.33 0.32 0.34 0.25	0.54 0.36 0.38 0.36 0.43 0.32	0.71 0.68 0.73 0.74 0.67 0.63	0.62 0.52 0.55 0.55 0.47	-98.8 -99.0 -98.9 -98.9 -99.1	7.43 7.26 7.52 7.53 7.3 6.99	0.22 0.03 0.1 0.09 0.1 .044	53 53 53 53 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	PLS PLS PLS PLS PLS PLS PLS	CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive Mera, Mersy QNPR Spectrop	28 19 20 19 23 17 22	126 121 130 131 120 112 122 132	52 57 48 47 58 66 56	24 34 33 34 30 36 31	230 231 231 231 231 231 231	0.67 0.61 0.65 0.62 0.56 0.62 0.66	0.35 0.25 0.29 0.28 0.28 0.28	0.54 0.36 0.38 0.36 0.43 0.42 0.42	0.42 0.29 0.33 0.32 0.34 0.25 0.34	0.54 0.36 0.38 0.36 0.43 0.42 0.42	0.71 0.68 0.73 0.74 0.67 0.63 0.69	0.62 0.52 0.55 0.55 0.47 0.55	-98.8 -99.0 -98.9 -98.9 -98.9 -98.9	7.43 7.26 7.52 7.53 7.3 6.99 7.34	0.22 0.03 0.1 0.09 0.1 .044 0.09	53 53 53 53 53
Developmental Skeletal Axial DEV rabbit	PLS PLS PLS PLS PLS PLS PLS	CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive Mera, Mersy QNPR	28 19 20 19 23 17	126 121 130 131 120 112	52 57 48 47 58 66	24 34 33 34 30 36	230 231 231 231 231 231	0.67 0.61 0.65 0.65 0.62 0.56	0.35 0.25 0.29 0.29 0.28 0.2	0.54 0.36 0.38 0.36 0.43 0.32	0.42 0.29 0.33 0.32 0.34 0.25	0.54 0.36 0.38 0.36 0.43 0.32	0.71 0.68 0.73 0.74 0.67 0.63	0.62 0.52 0.55 0.55 0.47	-98.8 -99.0 -98.9 -98.9 -99.1	7.43 7.26 7.52 7.53 7.3 6.99 7.34	0.22 0.03 0.1 0.09 0.1 .044 0.09	53 53 53 53 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	PLS PLS PLS PLS PLS PLS PLS	CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive Mera, Mersy QNPR Spectrop	28 19 20 19 23 17 22	126 121 130 131 120 112 122 132	52 57 48 47 58 66 56	24 34 33 34 30 36 31	230 231 231 231 231 231 231	0.67 0.61 0.65 0.62 0.56 0.62 0.66	0.35 0.25 0.29 0.28 0.28 0.28	0.54 0.36 0.38 0.36 0.43 0.42 0.42	0.42 0.29 0.33 0.32 0.34 0.25 0.34	0.54 0.36 0.38 0.36 0.43 0.42 0.42	0.71 0.68 0.73 0.74 0.67 0.63 0.69	0.62 0.52 0.55 0.55 0.47 0.55	-98.8 -99.0 -98.9 -98.9 -98.9 -98.9	7.43 7.26 7.52 7.53 7.3 6.99 7.34	0.22 0.03 0.1 0.09 0.1 .044 0.09	53 53 53 53 53
Developmental Skeletal Axial DEV rabbit Developmental Skeletal Axial	PLS PLS PLS PLS PLS PLS PLS	CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive Mera, Mersy QNPR Spectrop	28 19 20 19 23 17 22	126 121 130 131 120 112 122 132	52 57 48 47 58 66 56	24 34 33 34 30 36 31	230 231 231 231 231 231 231	0.67 0.61 0.65 0.62 0.56 0.62 0.66	0.35 0.29 0.29 0.28 0.2 0.28 0.31	0.54 0.36 0.38 0.36 0.43 0.42 0.42	0.42 0.29 0.33 0.32 0.34 0.25 0.34 0.35	0.54 0.36 0.38 0.36 0.43 0.42 0.4 0.43	0.71 0.68 0.73 0.74 0.67 0.63 0.69 0.74	0.62 0.52 0.55 0.55 0.47 0.55	-98.8 -99.0 -98.9 -98.9 -98.9 -98.9	7.43 7.26 7.52 7.53 7.3 6.99 7.34	0.22 0.03 0.1 0.09 0.1 .044 0.09	53 53 53 53 53

DEV rabbit Developmental		ALogPS,																
Skeletal Axial	J48	OEstate	24	125	53	29	231	0.65	0.31	0.45	0.37	0.45	0.7	0.58	-98.8	7.44	0.14	53
DEV rabbit																		
Developmental	146	ODI	C :	40:			000	0.00	0.0-	0.40	<u> </u>	0 10	o -	0.01	00.5	7 ^-	0.0	
Skeletal Axial	J48	CDK	24	134	44	28	230	0.69	0.35	0.46	0.4	0.46	0.75	0.61	-98.8	7.65	0.2	52
DEV rabbit		Chemaxo																
Developmental Skeletal Axial	J48	n	20	126	52	33	231	0.63	0.28	0.38	0.32	0.38	0.71	0.54	-98.9	7.41	0.08	53
DEV rabbit	0.0			.20				0.00	0.20	0.00	0.02	0.00	0.7 1	0.01	00.0	••••	0.00	-00
Developmental																		
Skeletal Axial	J48	Dragon6	18	140	38	35	231	0.68	0.32	0.34	0.33	0.34	0.79	0.56	-98.9	7.78	0.12	53
DEV rabbit																		
Developmental	140	Fragment	40	407	4.4	0.5	004	0.07	0.04	0.04	0.00	0.04	0.77	0.55	00.0	7.00	0.44	
Skeletal Axial	J48	or	18	137	41	35	231	0.67	0.31	0.34	0.32	0.34	0.77	0.55	-98.9	7.69	0.11	53
DEV rabbit																		
Developmental Skeletal Axial	J48	GSFrag	19	135	43	34	231	0.67	0.31	0.36	0.33	0.36	0.76	0.56	-98 9	7.65	0 11	53
DEV rabbit	0.0							0.0.	0.0.	0.00	0.00	0.00	00	0.00	00.0		<u> </u>	
Developmental																		
Skeletal Axial	J48	Inductive	12	117	61	41	231	0.56	0.16	0.23	0.19	0.23	0.66	0.44	-99.1	6.9	.105	53
DEV rabbit		N4+::-																\Box
Developmental	140	Mera,		444	^ -	00	004	0.07	0.07	0.00	0.07	0.00	0.70	0.50	00.0	7.00	0.00	اا
Skeletal Axial	J48	Mersy	14	141	37	39	231	0.67	0.27	0.26	0.27	0.26	0.79	0.53	-98.9	7.68	0.06	53
DEV rabbit																		
Developmental Skeletal Axial	J48	QNPR	16	144	34	37	231	0.69	0.32	0.3	0.31	0.3	0.81	0.56	-98.9	7.86	0.11	53
DEV rabbit	3 .0				U -1			0.00	0.02	3.0	0.01	3.0	0.01	0.00	30.0		V. 11	- 55
Developmental		Spectrop																
Skeletal Axial	J48	hores	18	136	42	35	231	0.67	0.3	0.34	0.32	0.34	0.76	0.55	-98.9	7.65	0.1	53
DEV rat																		
Developmental																		
GeneralFetal FetalWeightReduction	DE	Adriana	46	89	74	37	246	0.55	0.38	0.55	0.45	0.55	0.55	0.55	_02 0	7.65	0.00	83
retailveigntReduction	KF	Auriaria	40	09	74	31	240	0.55	0.36	0.55	0.43	0.55	0.55	0.55	-90.9	7.00	0.09	03
557																		
DEV rat Developmental																		
GeneralFetal		ALogPS,																
FetalWeightReduction	RF	OEstate	49	102	61	35	247	0.61	0.45	0.58	0.51	0.58	0.63	0.6	-98.8	7.98	0.2	84
DEV rat																		
Developmental																		
GeneralFetal FetalWeightReduction	RF	CDK	55	94	69	28	246	0.61	0.44	0.66	0.53	0.66	0.58	0.62	-08 8	7.67	0.23	83
r ctarveignti (caaction	IXI	ODIC	55	- 54	- 00	20	240	0.01	0.77	0.00	0.00	0.00	0.00	0.02	-50.0	7.07	0.20	- 00
DEV rat																		
Dev rat Developmental																		
GeneralFetal		Chemaxo																
FetalWeightReduction	RF	n	47	83	80	37	247	0.53	0.37	0.56	0.45	0.56	0.51	0.53	-98.9	7.52	0.07	84
DEV rat																		
Developmental																		
GeneralFetal FetalWeightReduction	RF	Dragon6	51	94	69	33	247	0.59	0.43	0.61	0.5	0.61	0.58	0.59	-98 8	7.76	0 17	84
. Clairroignii (Caaciloii		Diagono	01	J-T		- 55	471	0.00	0.70	0.01	0.0	0.01	0.00	0.00	50.0	7.70	J. 11	J-7
DEV rat																		
Dev rat Developmental																		
GeneralFetal		Fragment																
FetalWeightReduction	RF	or	57	97	66	27	247	0.62	0.46	0.68	0.55	0.68	0.6	0.64	-98.7	7.75	0.26	84
DEV rat																		
Developmental																		
GeneralFetal FetalWeightReduction	RE	GSFrag	47	86	77	37	247	0.54	0.38	0.56	0.45	0.56	0.53	0.54	_0.2 0	7.59	U U8	84
ı etarvvelgitikedüctiön	INΓ	Goriay	41	00	11	31	247	0.54	0.30	0.50	0.40	0.50	<u> </u>	0.54	-90.9	1.09	0.00	04
DEV																		
DEV rat Developmental																		
GeneralFetal																		
FetalWeightReduction	RF	Inductive	47	80	83	37	247	0.51	0.36	0.56	0.44	0.56	0.49	0.53	-98.9	7.45	0.05	84
																		'

-																		
DEV rat Developmental																		
GeneralFetal FetalWeightReduction	RF	Mera, Mersy	48	84	79	36	247	0.53	0.38	0.57	0.45	0.57	0.52	0.54	-98.9	7.54	0.08	84
DEV rat Developmental GeneralFetal FetalWeightReduction	RF	QNPR	46	95	68	38	247	0.57	0.4	0.55	0.46	0.55	0.58	0.57	-98.9	7.82	0.12	84
DEV rat Developmental GeneralFetal FetalWeightReduction	RF	Spectrop hores	43	87	76	41	247	0.53	0.36	0.51	0.42	0.51	0.53	0.52	-99.0	7.63	0.04	84
DEV rat Developmental GeneralFetal FetalWeightReduction	ASN N	Adriana	46	110	53	37	246	0.63	0.46	0.55	0.51	0.55	0.67	0.61	-98.8	8.19	0.22	83
DEV rat Developmental GeneralFetal FetalWeightReduction		ALogPS, OEstate	43	99	64	41	247	0.57	0.4	0.51	0.45	0.51	0.61	0.56	-98.9	7.93	0.11	84
DEV rat Developmental GeneralFetal FetalWeightReduction	ASN N	CDK	47	106	57	36	246	0.62	0.45	0.57	0.5	0.57	0.65	0.61	-98.8	8.07	0.21	83
DEV rat Developmental GeneralFetal FetalWeightReduction		Chemaxo n	32	92	71	52	247	0.5	0.31	0.38	0.34	0.38	0.56	0.47	-99.1	7.7	.052	84
DEV rat Developmental GeneralFetal FetalWeightReduction	ASN N	Dragon6	37	107	56	47	247	0.58	0.4	0.44	0.42	0.44	0.66	0.55	-98.9	8.13	0.09	84
DEV rat Developmental GeneralFetal FetalWeightReduction		Fragment or	48	95	68	36	247	0.58	0.41	0.57	0.48	0.57	0.58	0.58	-98.8	7.81	0.15	84
DEV rat Developmental GeneralFetal FetalWeightReduction	ASN N	GSFrag	43	101	62	41	247	0.58	0.41	0.51	0.46	0.51	0.62	0.57	-98.9	7.98	0.13	84
DEV rat Developmental GeneralFetal FetalWeightReduction	ASN N	Inductive	31	85	78	53	247	0.47	0.28	0.37	0.32	0.37	0.52	0.45	-99.1	7.52	.104	84
DEV rat Developmental GeneralFetal FetalWeightReduction		Mera, Mersy	46	110	53	38	247	0.63	0.46	0.55	0.5	0.55	0.67	0.61	-98.8	8.22	0.22	84
DEV rat Developmental GeneralFetal FetalWeightReduction	ASN N	QNPR	33	103	60	51	247	0.55	0.35	0.39	0.37	0.39	0.63	0.51	-99.0	7.99	0.02	84
DEV rat Developmental GeneralFetal FetalWeightReduction		Spectrop hores	30	101	62	54	247	0.53	0.33	0.36	0.34	0.36	0.62	0.49	-99.0	7.9	.023	84

DEV/ rot																		
DEV rat Developmental																		
GeneralFetal		CDK, TA,	0.5		00	40	0.40	0.50	0.04	0.40	0.07	0.40	0.50				000	20
FetalWeightReduction	N	TP	35	94	69	48	246	0.52	0.34	0.42	0.37	0.42	0.58	0.5	-99.0	7.76	.002	83
DEV rat																		
Developmental																		
GeneralFetal	ASN	ODK TA	0.4	404	00	40	0.40	0.55	0.05	0.44	0.00	0.44	0.00	0.54	00.0	7.00	0.00	00
FetalWeightReduction	N	CDK, TA	34	101	62	49	246	0.55	0.35	0.41	0.38	0.41	0.62	0.51	-99.0	7.93	0.03	83
DEV rat																		
Developmental																		
GeneralFetal	ASN	ODIK TD	00		0.7		0.40	0.54		0.40	0.00	0.40	0.50	0.54	00.0	- 00	0.00	20
FetalWeightReduction	N	CDK, TP	36	96	67	47	246	0.54	0.35	0.43	0.39	0.43	0.59	0.51	-99.0	7.82	0.02	83
DEV rat																		
Developmental																		
GeneralFetal	ASN						- · -											
FetalWeightReduction	N	TA, TP	39	100	63	45	247	0.56	0.38	0.46	0.42	0.46	0.61	0.54	-98.9	7.95	0.07	84
DEV/ rot																		
DEV rat Developmental																		
GeneralFetal	ASN		c=		c =		o ·-	0 ==	0.0-					o ==			0.0:	
FetalWeightReduction	N	TA	37	98	65	47	247	0.55	0.36	0.44	0.4	0.44	0.6	0.52	-99.0	7.89	0.04	84
DEV rat Developmental																		
GeneralFetal	ASN																	
FetalWeightReduction	N	TP	39	106	57	45	247	0.59	0.41	0.46	0.43	0.46	0.65	0.56	-98.9	8.11	0.11	84
DEV rat Developmental																		
GeneralFetal	FSM	CDK, TA,																
FetalWeightReduction	LR	TP	38	92	71	45	246	0.53	0.35	0.46	0.4	0.46	0.56	0.51	-99.0	7.73	0.02	83
DEV rat Developmental																		
GeneralFetal	FSM																	
FetalWeightReduction	LR	CDK, TA	41	89	74	42	246	0.53	0.36	0.49	0.41	0.49	0.55	0.52	-99.0	7.66	0.04	83
DEV rat																		
Developmental GeneralFetal	FSM																	
FetalWeightReduction	LR	CDK, TP	40	89	74	43	246	0.52	0.35	0.48	0.41	0.48	0.55	0.51	-99.0	7.66	0.03	83
DEV rat																		
Developmental GeneralFetal	FSM																	
FetalWeightReduction	LR	TA, TP	46	97	66	38	247	0.58	0.41	0.55	0.47	0.55	0.6	0.57	-98.9	7.87	0.14	84
DEV rat																		
Developmental GeneralFetal	FSM																	
FetalWeightReduction	LR	TA	45	87	76	39	247	0.53	0.37	0.54	0.44	0.54	0.53	0.53	-98.9	7.63	0.07	84
																		\Box
DEV rat																		
Developmental GeneralFetal	FSM																	
FetalWeightReduction	LR	TP	45	104	59	39	247	0.6	0.43	0.54	0.48	0.54	0.64	0.59	-98.8	8.06	0.17	84
																		\Box
DEV rat																		
Developmental GeneralFetal		CDK, TA,																
FetalWeightReduction	KNN		71	34	129	12	246	0.43	0.36	0.86	0.5	0.86	0.21	0.53	-98.9	5.47	80.0	83
																		\neg
DEV rat																		
Developmental Congressificates																		
GeneralFetal FetalWeightReduction	KNN	CDK. TA	75	20	143	8	246	0.39	0.34	0.9	0.5	0.9	0.12	0.51	-99.0	4.52	0.04	83
1	•1 •	,	. •	_0		Ü	0	2.00		3.0	0.0	0.0	v	0.0.	55.5		0.01	ام

DEV rat																		
Developmental																		
GeneralFetal FetalWeightReduction	KNN	CDK, TP	39	98	65	44	246	0.56	0.38	0.47	0.42	0.47	0.6	0.54	-98.9	7.88	0.07	83
DEV rat																		
Developmental GeneralFetal																		
FetalWeightReduction	KNN	TA, TP	71	34	129	13	247	0.43	0.36	0.85	0.5	0.85	0.21	0.53	-98.9	5.55	0.06	84
DEV rat Developmental																		
GeneralFetal																		
FetalWeightReduction	KNN	TA	77	24	139	7	247	0.41	0.36	0.92	0.51	0.92	0.15	0.53	-98.9	4.63	0.09	84
DEV																		
DEV rat Developmental																		
GeneralFetal	IZNINI	TD	20	101	50	40	047	0.57	0.00	0.45	0.40	0.45	0.04	0.55	00.0	0.05	0.00	0.4
FetalWeightReduction	KININ	IP	38	104	59	46	247	0.57	0.39	0.45	0.42	0.45	0.64	0.55	-98.9	8.05	0.09	84
DEV rat																		
Developmental	Like	CDK TA																
GeneralFetal FetalWeightReduction		CDK, TA, TP	18	136	27	65	246	0.63	0.4	0.22	0.28	0.22	0.83	0.53	-98.9	27	0.06	83
1 etaiweightixeduction	VIVI	11	10	130	21	00	240	0.03	0.4	0.22	0.20	0.22	0.00	0.55	-30.3	0.7	0.00	00
DEV rat																		
Developmental	LibS																	
GeneralFetal FetalWeightReduction		CDK, TA	16	130	33	67	246	0.59	0.33	0.19	0.24	0.19	0.8	0.5	-99.0	8.38	.011	83
		,																
DEV rat																		
Developmental GeneralFetal	LibS																	
FetalWeightReduction		CDK, TP	14	141	22	69	246	0.63	0.39	0.17	0.24	0.17	0.87	0.52	-99.0	8.75	0.05	83
DEV rat																		
Developmental GeneralFetal	LibS																	
FetalWeightReduction	VM	TA, TP	27	130	33	57	247	0.64	0.45	0.32	0.38	0.32	8.0	0.56	-98.9	8.73	0.13	84
DEV rat Developmental																		
GeneralFetal	LibS																	
FetalWeightReduction	VM	TA	24	133	30	60	247	0.64	0.44	0.29	0.35	0.29	0.82	0.55	-98.9	8.78	0.12	84
DEV																		
DEV rat Developmental																		
GeneralFetal	LibS	TD	00	404	00	00	0.47	0.50	0.00	0.00		0.00	0.70	0.54	00.0		0.00	
FetalWeightReduction	VIVI	TP	22	124	39	62	247	0.59	0.36	0.26	0.3	0.26	0.76	0.51	-99.0	8.4	0.02	84
DEV rat																		
Developmental	MID	CDV TA																
GeneralFetal FetalWeightReduction		CDK, TA, TP	38	85	78	45	246	0.5	0.33	0.46	0.38	0.46	0.52	0.49	-99.0	7 55	.02	83
1 etaiweightixeduction		11	30	00	70	70	240	0.5	0.55	0.40	0.50	0.40	0.52	0.43	-99.0	1.55	.02	00
DEV rat																		
Developmental	MLR																	
GeneralFetal FetalWeightReduction		CDK, TA	40	86	77	43	246	0.51	0.34	0.48	0.4	0.48	0.53	0.5	-99.0	7.58	0.01	83
<u> </u>		,																
DEV rat																		
Developmental GeneralFetal	MLR																	
FetalWeightReduction		CDK, TP	34	84	79	49	246	0.48	0.3	0.41	0.35	0.41	0.52	0.46	-99.1	7.5	.071	83
DEV rat																		
Developmental GeneralFetal	MLR																	
FetalWeightReduction	Α	TA, TP	36	83	80	48	247	0.48	0.31	0.43	0.36	0.43	0.51	0.47	-99.1	7.52	.059	84

DEV rat Developmental	MID																	
GeneralFetal FetalWeightReduction	MLR A	TA	30	88	75	54	247	0.48	0.29	0.36	0.32	0.36	0.54	0.45	-99.1	7.57	.099	84
DEV rat Developmental	MLR																	
GeneralFetal FetalWeightReduction		TP	47	96	67	37	247	0.58	0.41	0.56	0.47	0.56	0.59	0.57	-98.9	7.84	0.14	84
DEV rat Developmental GeneralFetal	DI C	CDK, TA,	20	07	70	4.4	246	0.54	0.24	0.47	0.20	0.47	0.52	0.5	00.0	7.04	0	0.0
FetalWeightReduction	PLS	TP	39	87	76	44	246	0.51	0.34	0.47	0.39	0.47	0.53	0.5	-99.0	7.01	0.	83
DEV rat Developmental GeneralFetal FetalWeightReduction	PLS	CDK, TA	41	84	79	42	246	0.51	0.34	0.49	0.4	0.49	0.52	0.5	-99.0	7.54	0.01	83
DEV rat Developmental GeneralFetal FetalWeightReduction	DI S	CDK TP	40	101	62	43	246	0.57	0.39	0.48	0.43	0.48	0.62	0.55	-98.9	7 06	0.1	83
DEV rat Developmental	1 LO	ODK, II	40	101	02		240	0.57	0.59	0.40	0.43	0.40	0.02	0.55	-90.9	7.50	0.1	00
GeneralFetal FetalWeightReduction	PLS	TA, TP	44	90	73	40	247	0.54	0.38	0.52	0.44	0.52	0.55	0.54	-98.9	7.7	0.07	84
DEV rat Developmental GeneralFetal FetalWeightReduction	PLS	ТА	45	86	77	39	247	0.53	0.37	0.54	0.44	0.54	0.53	0.53	-98.9	76	0.06	84
DEV rat Developmental GeneralFetal	120		-10					0.00	0.01	0.01	0.11	0.01	0.00	0.00	00.0	7.0	0.00	
FetalWeightReduction	PLS	TP	43	97	66	41	247	0.57	0.39	0.51	0.45	0.51	0.6	0.55	-98.9	7.88	0.1	84
DEV rat Developmental GeneralFetal FetalWeightReduction	J48	CDK, TA, TP	30	107	56	53	246	0.56	0.35	0.36	0.36	0.36	0.66	0.51	-99.0	8.04	0.02	83
DEV rat Developmental GeneralFetal FetalWeightReduction	.148	CDK, TA	28	115	48	55	246	0.58	0.37	0.34	0.35	0.34	0.71	0.52	-99.0	8 23	0.04	83
DEV rat Developmental GeneralFetal	040	OBIC, III		110	40		240	0.00	0.01	0.04	0.00	0.04	0.71	0.02	00.0	0.20	0.04	- 00
FetalWeightReduction	J48	CDK, TP	30	110	53	53	246	0.57	0.36	0.36	0.36	0.36	0.67	0.52	-99.0	8.12	0.04	83
DEV rat Developmental GeneralFetal FetalWeightReduction	J48	TA, TP	32	116	47	52	247	0.6	0.41	0.38	0.39	0.38	0.71	0.55	-98.9	8.34	0.09	84
DEV rat Developmental GeneralFetal FetalWeightReduction	J48	TA	31	100	63	53	247	0.53	0.33	0.37	0.35	0.37	0.61	0.49	-99.0	7.89	.017	84
DEV rat Developmental GeneralFetal FetalWeightReduction	J48	TP	33	107	56	51	247	0.57			0.38	0.39	0.66	0.52	-99.0		0.05	84

DEV rat																
Developmental GeneralFetal	CDK, TA,															
FetalWeightReduction RF	TP	49	78	85	34	246	0.52	0.37	0.59	0.45	0.59	0.48	0.53	-98.9 7.	36 0.07	83
DEV rat Developmental																
GeneralFetal FetalWeightReduction RF	CDK, TA	56	83	80	27	246	0.57	0.41	0.67	0.51	0.67	0.51	0.59	-98.8 7.	30 0 17	83
DEV rat	ODK, IA	30	- 00	- 00	21	240	0.57	0.41	0.07	0.51	0.07	0.51	0.55	-90.0 7.	39 0.17	- 00
Developmental GeneralFetal																
FetalWeightReduction RF	CDK, TP	50	92	71	33	246	0.58	0.41	0.6	0.49	0.6	0.56	0.58	-98.8 7.	69 0.16	83
DEV rat Developmental GeneralFetal	TA TD	40	96	77	42	247	0.50	0.25	0.5	0.44	0.5	0.52	0.51	00.0.7	64 0.03	0.4
FetalWeightReduction RF	TA, TP	42	86	77	42	247	0.52	0.35	0.5	0.41	0.5	0.53	0.51	-99.0 7.	61 0.03	84
DEV rat Developmental GeneralFetal																
FetalWeightReduction RF	TA	46	84	79	38	247	0.53	0.37	0.55	0.44	0.55	0.52	0.53	-98.9 7.	55 0.06	84
DEV rat Developmental GeneralFetal																
FetalWeightReduction RF	TP	42	90	73	42	247	0.53	0.37	0.5	0.42	0.5	0.55	0.53	-98.9 7.	71 0.05	84
DEV rat Developmental GeneralFetal FSM FetalWeightReduction LR	Adriana	45	68	95	38	246	0.46	0.32	0.54	0.4	0.54	0.42	0.48	-99.0 7.	14 .039	83
DEV rat Developmental Construction FSM	ALogPS,															
GeneralFetal FSIVI FetalWeightReduction LR	OEstate	47	96	67	37	247	0.58	0.41	0.56	0.47	0.56	0.59	0.57	-98.9 7.	84 0.14	84
DEV rat Developmental GeneralFetal FSM	CDK	44	102	61	20	246	0.50	0.42	0.52	0.47	0.52	0.63	0.59	000 7	00 0 15	02
FetalWeightReduction LR	CDK	44	102	61	39	246	0.59	0.42	0.53	0.47	0.53	0.63	0.58	-90.0 7.	98 0.15	83
DEV rat Developmental GeneralFetal FetalWeightReduction LR	Chemaxo n	35	88	75	49	247	0.5	0.32	0.42	0.36	0.42	0.54	0.48	-99.0 7.	63 .041	84
DEV rat Developmental																
GeneralFetal FSM FetalWeightReduction LR	Dragon6	39	100	63	45	247	0.56	0.38	0.46	0.42	0.46	0.61	0.54	090 7	95 0.07	84
i clairreignii\euuclion LR	Diagono	JJ	100	- 00	73	471	0.00	0.00	0.70	0.72	0.70	0.01	0.54	-50.8 1.	00 0.07	04
	Fragment	16	102	60	20	247	0.6	0.42	0.55	0.49	0.55	0.62	0.50	0000	03 0 17	٨٥
FetalWeightReduction LR	or	46	103	60	38	247	0.6	0.43	0.55	0.48	0.55	0.63	0.59	-90.0 8.	03 0.17	84
DEV rat Developmental GeneralFetal FSM FetalWeightReduction LR	GSFrag	48	94	69	36	247	0.57	0.41	0.57	0.48	0.57	0.58	0.57	-98.9 7.	79 0.14	84
	- 3												-			
DEV rat Developmental GeneralFetal FSM FetalWeightReduction LR	Inductive	41	90	73	43	247	0.53	0.36	0.49	0.41	0.49	0.55	0.52	-99.0 7.	71 0.04	84

r																		
DEV rat																		
Developmental GeneralFetal FetalWeightReduction		Mera, Mersy	49	91	72	35	247	0.57	0.4	0.58	0.48	0.58	0.56	0.57	-98.9	7.7	0.13	84
DEV rat				-					-									
Developmental	FSM																	
FetalWeightReduction	LR	QNPR	42	85	78	42	247	0.51	0.35	0.5	0.41	0.5	0.52	0.51	-99.0	7.58	0.02	84
DEV rat Developmental																		
GeneralFetal FetalWeightReduction	FSM LR	Spectrop hores	28	100	63	56	247	0.52	0.31	0.33	0.32	0.33	0.61	0.47	-99.1	7.84	.052	84
DEV rat																		
Developmental GeneralFetal																		
FetalWeightReduction	KNN	Adriana	49	80	83	34	246	0.52	0.37	0.59	0.46	0.59	0.49	0.54	-98.9	7.41	80.0	83
DEV rat Developmental																		
GeneralFetal FetalWeightReduction	KNN	ALogPS, OEstate	63	76	87	21	247	0.56	0.42	0.75	0.54	0.75	0.47	0.61	-98.8	7.08	0.21	84
DEV rat																		
Developmental GeneralFetal																		
FetalWeightReduction	KNN	CDK	42	91	72	41	246	0.54	0.37	0.51	0.43	0.51	0.56	0.53	-98.9	7.71	0.06	83
DEV rat Developmental																		
GeneralFetal FetalWeightReduction	KNN	Chemaxo n	20	107	56	64	247	0.51	0.26	0.24	0.25	0.24	0.66	0.45	-99.1	7.83	.108	84
DEV rat																		
Developmental GeneralFetal																		
FetalWeightReduction	KNN	Dragon6	39	88	75	45	247	0.51	0.34	0.46	0.39	0.46	0.54	0.5	-99.0	7.65	0.	84
DEV rat Developmental																		
GeneralFetal FetalWeightReduction	KNN	Fragment or	58	79	84	26	247	0.55	0.41	0.69	0.51	0.69	0.48	0.59	-98.8	7.29	0.17	84
DEV rat																		
Developmental GeneralFetal																		
FetalWeightReduction	KNN	GSFrag	51	77	86	33	247	0.52	0.37	0.61	0.46	0.61	0.47	0.54	-98.9	7.34	80.0	84
DEV rat Developmental																		
GeneralFetal FetalWeightReduction	KNN	Inductive	53	64	99	31	247	0.47	0.35	0.63	0.45	0.63	0.39	0.51	-99.0	7.	0.02	84
DEV rat																		
Developmental GeneralFetal		Mera,																
FetalWeightReduction	KNN	Mersy	40	105	58	44	247	0.59	0.41	0.48	0.44	0.48	0.64	0.56	-98.9	8.09	0.12	84
DEV rat Developmental																		
GeneralFetal FetalWeightReduction	KNN	QNPR	47	86	77	37	247	0.54	0.38	0.56	0.45	0.56	0.53	0.54	-98.9	7.59	0.08	84
DEV rat																		\neg
Developmental GeneralFetal		Spectrop																
FetalWeightReduction	KNN	hores	26	121	42	58	247	0.6	0.38	0.31	0.34	0.31	0.74	0.53	-98.9	8.4	0.05	84

DEV rat																		
Developmental GeneralFetal	LibS																	
FetalWeightReduction	VM	Adriana	32	132	31	51	246	0.67	0.51	0.39	0.44	0.39	0.81	0.6	-98.8	8.86	0.21	83
DEV rat																		
Developmental	LihS	ALogPS,																
GeneralFetal FetalWeightReduction		OEstate	33	125	38	51	247	0.64	0.46	0.39	0.43	0.39	0.77	0.58	-98.8	8.63	0.17	84
DEV rat Developmental	1:1:0																	
GeneralFetal FetalWeightReduction	LibS VM	CDK	33	127	36	50	246	0.65	0.48	0.4	0.43	0.4	0.78	0.59	-98.8	8 68	0 19	83
								0.00	01.10	•••	01.10	•••	00	0.00		0.00	00	
DEV rat Developmental																		
GeneralFetal		Chemaxo	0.5	400	07		0.47	0.04			0.04			0.54	00.0	0 = 4	0.00	
FetalWeightReduction	VM	n	25	126	37	59	247	0.61	0.4	0.3	0.34	0.3	0.77	0.54	-98.9	8.54	80.0	84
DEV rat																		
Developmental GeneralFetal	LibS																	
FetalWeightReduction	VM	Dragon6	23	130	33	61	247	0.62	0.41	0.27	0.33	0.27	8.0	0.54	-98.9	8.64	80.0	84
DEV rat																		
Developmental	LihS	Fragment																
GeneralFetal FetalWeightReduction		or	27	131	32	57	247	0.64	0.46	0.32	0.38	0.32	0.8	0.56	-98.9	8.76	0.14	84
DEV rat Developmental																		
GeneralFetal FetalWeightReduction	LibS	GSFrag	27	127	36	57	247	0.62	0.43	0.32	0.37	0.32	0.78	0.55	-98.9	8 62	O 11	84
- etaivveigntiveduction	VIVI	Oor rag	21	121	30	31	241	0.02	0.43	0.52	0.57	0.52	0.70	0.55	-90.9	0.02	0.11	
DEV rat																		
Developmental GeneralFetal	LibS																	
FetalWeightReduction	VM	Inductive	25	109	54	59	247	0.54	0.32	0.3	0.31	0.3	0.67	0.48	-99.0	8.02	.034	84
DEV rat																		
Developmental GeneralFetal	LibS	Mera,																
FetalWeightReduction		Mersy	30	125	38	54	247	0.63	0.44	0.36	0.39	0.36	0.77	0.56	-98.9	8.6	0.13	84
DEV rat																		
Developmental	Libo																	
GeneralFetal FetalWeightReduction	LibS VM	QNPR	16	130	33	68	247	0.59	0.33	0.19	0.24	0.19	0.8	0.49	-99.0	8.39	.014	84
-																		\neg
DEV rat Developmental																		
GeneralFetal		Spectrop	11	120	25	72	247	0.6	0.21	0.12	0.10	0.12	0.05	0.40	00.0	0 42	02	.,
FetalWeightReduction	VIVI	hores	11	138	25	73	247	0.6	0.31	0.13	0.18	0.13	0.85	0.49	-99.0	0.43	.03	84
DEV rat																		
Developmental GeneralFetal	MLR																	
FetalWeightReduction	Α	Adriana	46	90	73	37	246	0.55	0.39	0.55	0.46	0.55	0.55	0.55	-98.9	7.67	0.1	83
DEV rat																		
Developmental	MIR	ALogPS,																
GeneralFetal FetalWeightReduction		OEstate	41	107	56	43	247	0.6	0.42	0.49	0.45	0.49	0.66	0.57	-98.9	8.14	0.14	84
DEV rat Developmental																		
GeneralFetal FetalWeightReduction	MLR A	CDK	43	97	66	40	246	0.57	0.39	0.52	0.45	0.52	0.6	0.56	-98.9	7 86	0 11	83
- Clairreignin Euucilon	$\overline{}$	SDIC	+3	91	50	70	40	0.51	0.00	0.02	0.70	0.02	0.0	0.50	-30.8		0.11	99

DEV rat																		
Developmental GeneralFetal FetalWeightReduction		Chemaxo n	39	86	77	45	247	0.51	0.34	0.46	0.39	0.46	0.53	0.5	-99.0	7.6	.008	84
DEV rat Developmental																		
GeneralFetal FetalWeightReduction	MLR A	Dragon6	39	96	67	45	247	0.55	0.37	0.46	0.41	0.46	0.59	0.53	-98.9	7.85	0.05	84
DEV rat Developmental GeneralFetal FetalWeightReduction		Fragment or	39	96	67	45	247	0.55	0.37	0.46	0.41	0.46	0.59	0.53	-98.9	7.85	0.05	84
DEV rat Developmental	MLR																	
GeneralFetal FetalWeightReduction		GSFrag	47	89	74	37	247	0.55	0.39	0.56	0.46	0.56	0.55	0.55	-98.9	7.67	0.1	84
DEV rat Developmental GeneralFetal FetalWeightReduction	MLR _A	Inductive	49	101	62	35	247	0.61	0.44	0.58	0.5	0.58	0.62	0.6	-98.8	7 96	O 19	84
DEV rat	Λ	madelive	40	101	02	- 55	241	0.01	0.44	0.00	0.0	0.00	0.02	0.0	-50.0	7.50	0.10	04
Developmental GeneralFetal FetalWeightReduction		Mera, Mersy	45	81	82	39	247	0.51	0.35	0.54	0.43	0.54	0.5	0.52	-99.0	7.48	0.03	84
DEV rat Developmental GeneralFetal	MLR	QNPR	37	84	79	47	247	0.49	0.32	0.44	0.37	0.44	0.52	0.49	-99.0	7 5 5	042	84
FetalWeightReduction DEV rat	Α	QNPR	31	04	19	47	241	0.49	0.32	0.44	0.37	0.44	0.52	0.48	-99.0	7.55	.042	04
Developmental GeneralFetal FetalWeightReduction		Spectrop hores	28	83	80	56	247	0.45	0.26	0.33	0.29	0.33	0.51	0.42	-99.2	7.42	.15	84
DEV rat Developmental GeneralFetal																		
FetalWeightReduction	PLS	Adriana	35	82	81	48	246	0.48	0.3	0.42	0.35	0.42	0.5	0.46	-99.1	7.46	.071	83
DEV rat Developmental GeneralFetal FetalWeightReduction	PLS	ALogPS, OEstate	41	101	62	43	247	0.57	0.4	0.49	0.44	0.49	0.62	0.55	-98.9	7.98	0.1	84
DEV rat Developmental GeneralFetal																		
FetalWeightReduction	PLS	CDK	44	99	64	39	246	0.58	0.41	0.53	0.46	0.53	0.61	0.57	-98.9	7.91	0.13	83
DEV rat Developmental GeneralFetal FetalWeightReduction	PLS	Chemaxo n	34	93	70	50	247	0.51	0.33	0.4	0.36	0.4	0.57	0.49	-99.0	7.75	.024	84
DEV rat Developmental GeneralFetal																		
FetalWeightReduction	PLS	Dragon6	38	100	63	46	247	0.56	0.38	0.45	0.41	0.45	0.61	0.53	-98.9	7.95	0.06	84
DEV rat Developmental GeneralFetal FetalWeightReduction	PLS	Fragment or	44	99	64	40	247	0.58	0.41	0.52	0.46	0.52	0.61	0.57	-98.9	7.93	0.13	84

DEV rat																	
DEV rat Developmental																	
GeneralFetal	005		0.4	70		0.47	0.50	0.00	0.50	0.40	0.50	0.50	0.50	00.0		0.44	
FetalWeightReduction PLS	GSFrag	47	91	72	37	247	0.56	0.39	0.56	0.46	0.56	0.56	0.56	-98.9	7.72	0.11	_
DEV rat																	
Developmental GeneralFetal																	
FetalWeightReduction PLS	Inductive	50	83	80	34	247	0.54	0.38	0.6	0.47	0.6	0.51	0.55	-98.9	7.5	0.1	
DEV rat Developmental																	
GeneralFetal	Mera,																
FetalWeightReduction PLS	Mersy	45	105	58	39	247	0.61	0.44	0.54	0.48	0.54	0.64	0.59	-98.8	8.08	0.17	_
DE)/ /																	
DEV rat Developmental																	
GeneralFetal																	
FetalWeightReduction PLS	QNPR	36	92	71	48	247	0.52	0.34	0.43	0.38	0.43	0.56	0.5	-99.0	7.74	.007	_
DEV rat Developmental																	
GeneralFetal	Spectrop																
FetalWeightReduction PLS	hores	35	96	67	49	247	0.53	0.34	0.42	0.38	0.42	0.59	0.5	-99.0	7.83	0.01	_
DEV rat Developmental																	
GeneralFetal																	
FetalWeightReduction J48	Adriana	38	116	47	45	246	0.63	0.45	0.46	0.45	0.46	0.71	0.58	-98.8	8.37	0.17	
DEV rat																	
Developmental GeneralFetal	ALogPS,																
FetalWeightReduction J48	OEstate	43	111	52	41	247	0.62	0.45	0.51	0.48	0.51	0.68	0.6	-98.8	8.25	0.19	
DEV rat																	
Developmental GeneralFetal																	
FetalWeightReduction J48	CDK	40	111	52	43	246	0.61	0.43	0.48	0.46	0.48	0.68	0.58	-98.8	8.23	0.16	
DEV rat																	
Developmental GeneralFetal	Chemaxo																
FetalWeightReduction J48	n	33	111	52	51	247	0.58	0.39	0.39	0.39	0.39	0.68	0.54	-98.9	8.21	0.07	
-																	_
DEV rat																	
Developmental GeneralFetal																	
FetalWeightReduction J48	Dragon6	41	118	45	43	247	0.64	0.48	0.49	0.48	0.49	0.72	0.61	-98.8	8.46	0.21	
	-																_
DEV rat																	
Developmental GeneralFetal	Fragment																
FetalWeightReduction J48	or	40	95	68	44	247	0.55	0.37	0.48	0.42	0.48	0.58	0.53	-98.9	7.83	0.06	
																	_
DEV rat																	
Developmental																	
GeneralFetal FetalWeightReduction J48	GSFrag	34	117	46	50	247	0.61	0.43	0.4	0.41	0.4	0.72	0.56	-98.9	8 39	0 12	
. ctarroignii teddedioii 070	Sorray	J- 1		-+0	- 50		0.01	0.70	0.4	U.71	0.4	0.12	0.00	50.5	0.00	J. 12	-
DEV rat																	
Developmental																	
GeneralFetal	Inductive	34	97	66	50	247	0.53	0.34	Λ 4	0.37	0.4	0.6	0.5	-99.0	7 95		
FetalWeightReduction J48	Inductive	54	91	00	50	247	0.03	0.34	0.4	0.37	0.4	0.0	0.5	-99.0	7.00	•	_
DEV rat																	
レ ∟																	
Developmental																	
	Mera, Mersy	32	101	62	52		0.54					0.62	0.5	-99.0		0.	

DEV rat																	
Developmental																	
GeneralFetal FetalWeightReduction	J48	QNPR	34	106	57	50	247	0.57	0.37	0.4	0.39	0.4	0.65	0.53	-98 9 8	3.08 0.0	5 84
	0.0	<u></u>	<u> </u>		<u> </u>			0.0.	0.0.		0.00		0.00	0.00	00.0	0.00	
DEV rat																	
Developmental GeneralFetal		Spectrop															
FetalWeightReduction	J48	hores	35	111	52	49	247	0.59	0.4	0.42	0.41	0.42	0.68	0.55	-98.9	3.22 O.	1 84
DEV rat																	
Developmental																	
GeneralFetal GeneralFetalPatholog																	
у	RF	Adriana	15	133	80	18	246	0.6	0.16	0.45	0.23	0.45	0.62	0.54	-98.9	6.16 0.00	33
DEV rat																	
Developmental GeneralFetal																	
GeneralFetalPatholog		ALogPS,															
у	RF	OEstate	15	139	74	19	247	0.62	0.17	0.44	0.24	0.44	0.65	0.55	-98.9	3.34 0.0	7 34
DEV rat																	
Developmental GeneralFetal																	
GeneralFetalPatholog	RF	CDK	10	132	81	22	246	0.50	0 44	0.2	0.46	0.2	0.60	0.46	-99.1 5	5 00 05	
У	KF	CDK	10	132	01	23	246	0.58	0.11	0.3	0.16	0.3	0.62	0.46	-99.1 3	5.99 .05	5 33
DEV rat Developmental																	
GeneralFetal		Chomovo															
GeneralFetalPatholog	RF	Chemaxo n	17	122	91	17	247	0.56	0.16	0.5	0.24	0.5	0.57	0.54	-98.9	6.02 0.0	5 34
DEV rat								0.00	0.10	0.0	0.21	0.0	0.01	0.01	00.0	0.02	, , ,
Developmental																	
GeneralFetal GeneralFetalPatholog																	
y	RF	Dragon6	11	134	79	23	247	0.59	0.12	0.32	0.18	0.32	0.63	0.48	-99.0	6.13 .03	4 34
DEV rat		-															
Developmental																	
GeneralFetal GeneralFetalPatholog		Fragment															
у	RF	or	17	136	77	17	247	0.62	0.18	0.5	0.27	0.5	0.64	0.57	-98.9	3.29 O.	1 34
DEV rat																	
Developmental GeneralFetal																	
GeneralFetalPatholog							- · -										
у	RF	GSFrag	16	136	77	18	247	0.62	0.17	0.47	0.25	0.47	0.64	0.55	-98.9	6.29 0.0	3 34
DEV rat Developmental																	
GeneralFetal																	
GeneralFetalPatholog	DE	Inductivo	11	121	92	20	247	0.50	0.15	0.41	0.22	0.41	0.62	0.51	00.0	3 16 O O	2 24
у	RF	Inductive	14	131	82	20	247	0.59	0.15	0.41	0.22	0.41	0.62	0.51	-99.0 (6.16 0.02	2 34
DEV rat Developmental																	
GeneralFetal		Mera,															
GeneralFetalPatholog v	RF	Mersy	16	129	84	18	247	0.59	0.16	0.47	0.24	0.47	0.61	0.54	-98.9	3.15 0.09	5 34
DEV rat																	
Developmental																	
GeneralFetal GeneralFetalPatholog																	
y	RF	QNPR	18	138	75	16	247	0.63	0.19	0.53	0.28	0.53	0.65	0.59	-98.8	6.33 0.13	3 34
DEV rat																	
Developmental																	
GeneralFetal GeneralFetalPatholog		Spectrop															
у	RF	hores	13	126	87	21	247	0.56	0.13	0.38	0.19	0.38	0.59	0.49	-99.0	3.04 .018	3 34
DEV rat																	
Developmental GeneralFetal																	
GeneralFetalPatholog			4.5		7.0		00	0.00	o	0.00	0.00	0.00	0.00	0.50	00.0		, ,
у	N	Adriana	13	141	72	20	246	0.63	0.15	0.39	0.22	0.39	0.66	0.53	-98.9	6.29 0.04	4 33

DEV rat Developmental																
CongrelEctel																
GeneralFetalPatholog		ALogPS,														
у	N	OEstate	15	141	72	19	247	0.63	0.17	0.44	0.25	0.44	0.66	0.55	-98.9 6.38 0.	07 34
DEV rat																
Developmental GeneralFetal																
GeneralFetalPatholog	ASN															
у	N	CDK	11	140	73	22	246	0.61	0.13	0.33	0.19	0.33	0.66	0.5	-99.0 6.2 .0	07 33
DEV rat																
Developmental																
GeneralFetal GeneralFetalPatholog	ASN	Chemaxo														
V	N	n	10	121	92	24	247	0.53	0.1	0.29	0.15	0.29	0.57	0.43	-99.1 5.82 .0	96 34
DEV rat																
Developmental																
GeneralFetal	ASN															
GeneralFetalPatholog	N	Dragon6	9	158	55	25	247	0.68	0.14	0.26	0.18	0.26	0.74	0.5	-99.0 6.54 0.	01 34
У	IN	Diagono	9	130	33	23	241	0.00	0.14	0.20	0.10	0.20	0.74	0.5	-99.0 0.04 0.	01 34
DEV rat Developmental																
GeneralFetal		_														
GeneralFetalPatholog		Fragment														
у	N	or	16	153	60	18	247	0.68	0.21	0.47	0.29	0.47	0.72	0.59	-98.8 6.65 0.	14 34
DEV rat																
Developmental GeneralFetal																
GeneralFetalPatholog	ASN															
у	N	GSFrag	14	152	61	20	247	0.67	0.19	0.41	0.26	0.41	0.71	0.56	-98.9 6.6 0.	09 34
DEV rat																
Developmental																
GeneralFetal GeneralFetalPatholog	ASN															
y	N	Inductive	8	145	68	26	247	0.62	0.11	0.24	0.15	0.24	0.68	0.46	-99.1 6.17 .0	63 34
DEV rat																
Developmental																
GeneralFetal GeneralFetalPatholog	ASN	Mera														
v GeneralFetalPatholog	N	Mersy	14	132	81	20	247	0.59	0.15	0.41	0.22	0.41	0.62	0.52	-99.0 6.18 0.	02 34
DEV rat										••••			****			
Developmental																
GeneralFetal	A CNI															
GeneralFetalPatholog	ASN N	QNPR	14	156	57	20	247	0.69	0.2	0.41	0.27	0.41	0.73	0.57	-98.9 6.7 0.	.11 34
У	IN	QINFK	14	130	31	20	241	0.09	0.2	0.41	0.27	0.41	0.73	0.57	-90.9 0.7 0.	.11 34
DEV rat Developmental																
CanaralFatal																
GeneralFetalPatholog	ASN	Spectrop														
у	N	hores	11	130	83	23	247	0.57	0.12	0.32	0.17	0.32	0.61	0.47	-99.1 6.05 .0	47 34
DEV rat																
Developmental GeneralFetal																
GeneralFetalPatholog	ASN	CDK, TA,														
у	N	TP	9	163	50	24	246	0.7	0.15	0.27	0.2	0.27	0.77	0.52	-99.0 6.62 0.	03 33
DEV rat																
Developmental																
GeneralFetal GeneralFetalPatholog	ASN															
у	N	CDK, TA	8	163	50	25	246	0.7	0.14	0.24	0.18	0.24	0.77	0.5	-99.0 6.55 0.	01 33
DEV rat																
Developmental																
GeneralFetal	ASN															
	ASN N	CDK, TP	10	154	59	23	246	0.67	0.14	0.3	0.2	0.3	0.72	0.51	-99.0 6.46 0.	02 33
GeneralFetal GeneralFetalPatholog y	ASN N	CDK, TP	10	154	59	23	246	0.67	0.14	0.3	0.2	0.3	0.72	0.51	-99.0 6.46 0.	02 33
GeneralFetal	ASN N	CDK, TP	10	154	59	23	246	0.67	0.14	0.3	0.2	0.3	0.72	0.51	-99.0 6.46 0.	02 33
GeneralFetal GeneralFetalPatholog y DEV rat Developmental GeneralFetal	N	CDK, TP	10	154	59	23	246	0.67	0.14	0.3	0.2	0.3	0.72	0.51	-99.0 6.46 0.	02 33
GeneralFetal GeneralFetalPatholog y DEV rat Developmental	N	CDK, TP	10	154 165	59 48	23	246			0.3					-99.0 6.46 0. -98.9 6.83 0.	

DEV rat Developmental GeneralFetal GeneralFetalPatholog v	ASN N	TA	11	170	43	23	247	0.73	0.2	0.32	0.25	0.32	0.8	0.56	-98.9	6.97	0.1	34
DEV rat Developmental GeneralFetal				170			2-11	0.70	0.2	0.02	0.20	0.02	0.0	0.00	00.0	0.01	0.1	04
GeneralFetalPatholog y	ASN N	TP	11	153	60	23	247	0.66	0.15	0.32	0.21	0.32	0.72	0.52	-99.0	6.53	0.03	34
DEV rat Developmental GeneralFetal GeneralFetalPatholog v	FSM LR	CDK, TA, TP	11	136	77	22	246	0.6	0.13	0.33	0.18	0.33	0.64	0.49	-99.0	6.12	.02	33
DEV rat Developmental GeneralFetal GeneralFetalPatholog	FSM				64												040	
DEV rat Developmental GeneralFetal	LR FSM	CDK, TA	8	149	64	25	246	0.64	0.11	0.24	0.15	0.24	0.7	0.47	-99.1	0.22	.043	33
GeneralFetalPatholog y DEV rat	LR	CDK, TP	14	128	85	19	246	0.58	0.14	0.42	0.21	0.42	0.6	0.51	-99.0	6.05	0.02	33
Developmental GeneralFetal GeneralFetalPatholog y	FSM LR	TA, TP	13	150	63	21	247	0.66	0.17	0.38	0.24	0.38	0.7	0.54	-98.9	6.53	0.06	34
DEV rat Developmental GeneralFetal GeneralFetalPatholog	FSM LR	TA	18	152	61	16	247	0.69	0.23	0.53	0.32	0.53	0.71	0.62	-98.8	6 63	0 18	34
DEV rat Developmental GeneralFetal GeneralFetalPatholog	FSM		10	102	- 01	10	2-11	0.00	0.20	0.00	0.02	0.00	0.71	0.02	00.0	0.00	0.10	04
y	LR	TP	13	158	55	21	247	0.69	0.19	0.38	0.25	0.38	0.74	0.56	-98.9	6.72	0.1	34
DEV rat Developmental GeneralFetal GeneralFetalPatholog y	KNN	CDK, TA, TP	9	137	76	24	246	0.59	0.11	0.27	0.15	0.27	0.64	0.46	-99.1	6.04	.06	33
DEV rat Developmental GeneralFetal GeneralFetalPatholog																		
y DEV rat Developmental GeneralFetal	KNN	CDK, TA	14	82	131	19	246	0.39	0.1	0.42	0.16	0.42	0.38	0.4	-99.2	5.18	.132	33
GeneralFetalPatholog y	KNN	CDK, TP	15	129	84	18	246	0.59	0.15	0.45	0.23	0.45	0.61	0.53	-98.9	6.09	0.04	33
DEV rat Developmental GeneralFetal GeneralFetalPatholog																		
y DEV rat Developmental	KNN	TA, TP	26	80	133	8	247	0.43	0.16	0.76	0.27	0.76	0.38	0.57	-98.9	4.91	0.1	34
GeneralFetal GeneralFetalPatholog y	KNN	TA	24	81	132	10	247	0.43	0.15	0.71	0.25	0.71	0.38	0.54	-98.9	5. <u>0</u> 6	0.06	34
DEV rat Developmental GeneralFetal GeneralFetalPatholog																		
у	KNN	TP	14	125	88	20	247	0.56	0.14	0.41	0.21	0.41	0.59	0.5	-99.0	6.04	.001	34

DEV rat																		
Developmental GeneralFetal																		
GeneralFetalPatholog		CDK, TA,	_		_													
у	VM	TP	2	206	7	31	246	0.85	0.22	0.06	0.1	0.06	0.97	0.51	-99.0	7.68	0.05	33
DEV rat																		
Developmental GeneralFetal																		
GeneralFetalPatholog	LibS																	
у	VM	CDK, TA	0	213	0	33	246	0.87		0.		0.	1.	0.5	-99.0	8.88		33
DEV rat																		
Developmental																		
GeneralFetal GeneralFetalPatholog	LibS																	
у	VM	CDK, TP	0	213	0	33	246	0.87		0.		0.	1.	0.5	-99.0	8.88		33
DEV rat																		
Developmental																		
GeneralFetal	LibS																	
GeneralFetalPatholog v	VM	TA, TP	3	201	12	31	247	0.83	0.2	0.09	0.12	0.09	0.94	0.52	-99.0	7.48	0.05	34
DEV rat																		
Developmental																		
GeneralFetal	Lihe																	
GeneralFetalPatholog	LibS VM	TA	3	207	6	31	247	0.85	0.33	0.09	0.14	0.09	0.97	0.53	_0.2.0	Q 17	O 11	34
y 	v IVI	IA	3	201	U	J١	241	0.00	0.33	0.09	0.14	0.09	0.97	ს.טა	-98.9	0.17	U. 11	34
DEV rat Developmental																		
GeneralFetal																		
GeneralFetalPatholog	LibS																	
у	VM	TP	1	203	10	33	247	0.83	0.09	0.03	0.04	0.03	0.95	0.49	-99.0	6.88	.029	34
DEV rat																		
Developmental GeneralFetal																		
GeneralFetalPatholog	MLR	CDK, TA,																
у	Α	TP	16	144	69	17	246	0.65	0.19	0.48	0.27	0.48	0.68	0.58	-98.8	6.4	0.12	33
DEV rat																		
Developmental																		
GeneralFetal GeneralFetalPatholog	MLR																	
y	Α	CDK, TA	11	129	84	22	246	0.57	0.12	0.33	0.17	0.33	0.61	0.47	-99.1	5.98	.043	33
DEV rat		•																
Developmental																		
GeneralFetal	MLR																	
GeneralFetalPatholog	A	CDK, TP	12	116	97	21	246	0.52	0.11	0.36	0.17	0.36	0.54	0.45	-99.1	5 77	.063	33
<u>, </u>		ODIX, II	12	110	- 01		240	0.02	0.11	0.00	0.17	0.00	0.04	0.40	-00.1	0.11	.000	-55
DEV rat Developmental																		
GeneralFetal																		
GeneralFetalPatholog	MLR	TA TD	45	400	00	40	0.47	0.0	0.40	0.44	0.00	0.44	0.00	0.50	00.0	0.00	0.05	ار
У	Α	TA, TP	15	133	80	19	247	0.6	0.16	0.44	0.23	0.44	0.62	0.53	-98.9	6.22	0.05	34
DEV rat																		
Developmental GeneralFetal																		
GeneralFetalPatholog	MLR																	
у	Α	TA	11	142	71	23	247	0.62	0.13	0.32	0.19	0.32	0.67	0.5	-99.0	6.29	.007	34
DEV rat																		
Developmental																		
GeneralFetal GeneralFetalPatholog	MLR																	
у	Α	TP	20	126	87	14	247	0.59	0.19	0.59	0.28	0.59	0.59	0.59	-98.8	6.06	0.13	34
DEV rat																		\Box
Developmental																		
GeneralFetal		CDK, TA,																
GeneralFetalPatholog v	PLS	TP	11	158	55	22	246	0.69	0.17	0.33	0.22	0.33	0.74	0.54	-98.9	6 61	0.06	33
DEV/ rot		••		.00	- 55		0	3.50	J. 11	2.50	VL	2.50	V.1 T	5.5∓		5.51	2.00	-55
DEV rat Developmental																		
GeneralFetal																		
GeneralFetalPatholog	DLC	CDK, TA	10	161	52	22	246	0.7	0.46	0.2	0.24	0.3	0.76	0 F2	00.0	6 62	0.05	22
у		CDN. IA	10	IOI	52	23	246	U./	0.16	U.3	0.21	U.3	0.76	U.33	-98.9	0.03	U.U5	33

																		_
DEV rat Developmental GeneralFetal																		
GeneralFetalPatholog y	PLS	CDK, TP	13	151	62	20	246	0.67	0.17	0.39	0.24	0.39	0.71	0.55	-98.9	6.51	0.08	33
DEV rat Developmental GeneralFetal GeneralFetalPatholog y	PLS	TA, TP	13	162	51	21	247	0.71	0.2	0.38	0.27	0.38	0.76	0.57	-98.9	6.82	0.11	34
DEV rat Developmental GeneralFetal GeneralFetalPatholog	-	,	-	-	-			•	-		-						-	
у	PLS	TA	13	153	60	21	247	0.67	0.18	0.38	0.24	0.38	0.72	0.55	-98.9	6.6	80.0	34
DEV rat Developmental GeneralFetal GeneralFetalPatholog	5 . 6																	
y DEV rat	PLS	TP	13	156	57	21	247	0.68	0.19	0.38	0.25	0.38	0.73	0.56	-98.9	6.67	0.09	34
Developmental GeneralFetal GeneralFetalPatholog y	J48	CDK, TA, TP	9	155	58	24	246	0.67	0.13	0.27	0.18	0.27	0.73	0.5	-99.0	6.43	0.	33
DEV rat Developmental GeneralFetal GeneralFetalPatholog	140	CDV TA	0	400	47	25	240	0.74	0.45	0.04	0.40	0.04	0.70	0.54	00.0	0.00	0.00	22
y DEV rat	J48	CDK, TA	8	166	47	25	246	0.71	0.15	0.24	0.18	0.24	0.78	0.51	-99.0	6.63	0.02	33
Developmental GeneralFetal GeneralFetalPatholog y	J48	CDK, TP	7	163	50	26	246	0.69	0.12	0.21	0.16	0.21	0.77	0.49	-99.0	6.47	.018	33
DEV rat Developmental GeneralFetal GeneralFetalPatholog	140	TA TD	40	450		40	0.47		0.00	0.47		0.47	0.74	0.04	00.0	0.77	0.40	
DEV rat Developmental GeneralFetal GeneralFetalPatholog	J48	TA, TP	16	158_	55	18	247	0.7	0.23	0.47	0.3	0.47	0.74	0.61	-98.8	0.77	0.16	34
у	J48	TA	10	166	47	24	247	0.71	0.18	0.29	0.22	0.29	0.78	0.54	-98.9	6.8	0.06	34
DEV rat Developmental GeneralFetal GeneralFetalPatholog																		
y DEV rat	J48	TP	10	172	41	24	247	0.74	0.2	0.29	0.24	0.29	0.81	0.55	-98.9	6.97	0.09	34
Developmental GeneralFetal GeneralFetalPatholog y	RF	CDK, TA, TP	12	137	76	21	246	0.61	0.14	0.36	0.2	0.36	0.64	0.5	-99.0	6.18	0.	33
DEV rat Developmental GeneralFetal GeneralFetalPatholog																		
DEV rat	RF	CDK, TA	11	143	70	22	246	0.63	0.14	0.33	0.19	0.33	0.67	0.5	-99.0	6.27	0.	33
Developmental GeneralFetal GeneralFetalPatholog y	RF	CDK, TP	13	133	80	20	246	0.59	0.14	0.39	0.21	0.39	0.62	0.51	-99.0	6.13	0.01	33
DEV rat Developmental GeneralFetal GeneralFetalPatholog																		
у	RF	TA, TP	17	129	84	17	247	0.59	0.17	0.5	0.25	0.5	0.61	0.55	-98.9	6.15	0.07	34

DEV rat Developmental GeneralFetal GeneralFetalPatholog y	RF	TA	13	152	61	21	247	0.67	0.18	0.38	0.24	0.38	0.71	0.55	-98.9	6.58	0.07	34
DEV rat Developmental GeneralFetal						<u></u>												
GeneralFetalPatholog y	RF	TP	15	152	61	19	247	0.68	0.2	0.44	0.27	0.44	0.71	0.58	-98.8	6.62	0.12	34
DEV rat Developmental GeneralFetal GeneralFetalPatholog	FSM LR	Adriana	16	121	92	17	246	0.56	0.15	0.48	0.23	0.48	0.57	0.53	-98.9	5 94	0 04	33
DEV rat Developmental GeneralFetal GeneralFetalPatholog		ALogPS,	10		- 02		210	0.00	0.10	0.10	0.20	0.10	0.01	0.00	00.0	0.01	0.01	- 55
y DEV rat Developmental	LR	OEstate	20	133	80	14	247	0.62	0.2	0.59	0.3	0.59	0.62	0.61	-98.8	6.2	0.15	34
GeneralFetal	FSM LR	CDK	12	122	91	21	246	0.54	0.12	0.36	0.18	0.36	0.57	0.47	-99.1	5.89	.044	33
DEV rat Developmental GeneralFetal GeneralFetalPatholog v	FSM LR	Chemaxo n	13	112	101	21	247	0.51	0.11	0.38	0.18	0.38	0.53	0.45	-99.1	5.77	.063	34
DEV rat Developmental GeneralFetal GeneralFetalPatholog	FSM LR	Dragon6	13	157	56	21	247	0.69	0.19	0.38	0.25	0.38	0.74	0.56	-98.9		0.09	34
DEV rat Developmental GeneralFetal GeneralFetalPatholog		Fragment	10	137		21	241	0.09	0.19	0.30	0.23	0.30	0.74	0.50				34
y DEV rat Developmental GeneralFetal	LR	or	17	127	86	17	247	0.58	0.17	0.5	0.25	0.5	0.6	0.55	-98.9	6.11	0.07	34
GeneralFetalPatholog y	FSM LR	GSFrag	12	130	83	22	247	0.57	0.13	0.35	0.19	0.35	0.61	0.48	-99.0	6.09	.026	34
DEV rat Developmental GeneralFetal GeneralFetalPatholog y	FSM LR	Inductive	9	176	37	25	247	0.75	0.2	0.26	0.23	0.26	0.83	0.55	-98.9	7.04	0.08	34
DEV rat Developmental GeneralFetal GeneralFetalPatholog		Mera,																
DEV rat Developmental GeneralFetal	LR	Mersy	14_	121	92	20	247	0.55	0.13	0.41	0.2	0.41	0.57	0.49	-99.0	5.97	.014	34
GeneralFetalPatholog y	FSM LR	QNPR	15	135	78	19	247	0.61	0.16	0.44	0.24	0.44	0.63	0.54	-98.9	6.26	0.05	34
DEV rat Developmental GeneralFetal GeneralFetalPatholog y	FSM LR	Spectrop hores	16	100	113	18	247	0.47	0.12	0.47	0.2	0.47	0.47	0.47	-99.1	5.6	.041	34
DEV rat Developmental GeneralFetal GeneralFetalPatholog y	KNN	Adriana	28	38	175	5	246	0.27	0.14	0.85	0.24	0.85	0.18	0.51	-99.0	3.54	0.02	33

DEV rat																		
Developmental GeneralFetal																		
GeneralFetalPatholog		ALogPS,																
у	KNN	OEstate	20	103	110	14	247	0.5	0.15	0.59	0.24	0.59	0.48	0.54	-98.9	5.63	0.05	34
DEV rat																		
Developmental																		
GeneralFetal GeneralFetalPatholog																		
у	KNN	CDK	14	105	108	19	246	0.48	0.11	0.42	0.18	0.42	0.49	0.46	-99.1	5.62	.056	33
DEV rat																		
Developmental																		
GeneralFetal		Chemaxo																
GeneralFetalPatholog v	KNN		21	130	83	13	247	0.61	0.2	0.62	0.3	0.62	0.61	0.61	-98.8	6 12	0 16	34
DEV rat								0.0.		0.02		0.02	0.0.	0.0.	00.0	· · · -	00	-
Developmental																		
GeneralFetal																		
GeneralFetalPatholog	IZNINI	Dragane	10	112	100	22	247	0.51	0 11	0.25	0.16	0.25	0.50	0.44	00.1	E 76	001	24
у	KININ	Dragon6	12	113	100	22	247	0.51	0.11	0.35	0.16	0.35	0.53	0.44	-99.1	5.76	.081	34
DEV rat																		
Developmental GeneralFetal																		
GeneralFetalPatholog		Fragment																
у	KNN	or	24	88	125	10	247	0.45	0.16	0.71	0.26	0.71	0.41	0.56	-98.9	5.2	0.08	34
DEV rat																		
Developmental																		
GeneralFetal GeneralFetalPatholog																		
у	KNN	GSFrag	16	116	97	18	247	0.53	0.14	0.47	0.22	0.47	0.54	0.51	-99.0	5.9	0.01	34
DEV rat																		
Developmental																		
GeneralFetal																		
GeneralFetalPatholog v	KNN	Inductive	14	144	69	20	247	0.64	0.17	0.41	0.24	0.41	0.68	0.54	-98.9	6.43	0.06	34
DEV rat																		
Developmental																		
GeneralFetal		Moro																
GeneralFetalPatholog	KNINI	Mera, Mersy	21	101	112	13	247	0.49	0.16	0.62	0.25	0.62	0.47	0.55	-98.9	5 57	0.06	34
У	KININ	ivicisy	<u> </u>	101	112	13	241	0.49	0.10	0.02	0.23	0.02	0.47	0.55	-90.9	5.51	0.00	-34
DEV rat Developmental																		
GeneralFetal																		
GeneralFetalPatholog		0.1.00					- · -											
у	KNN	QNPR	22	110	103	12	247	0.53	0.18	0.65	0.28	0.65	0.52	0.58	-98.8	5.7	0.11	34
DEV rat																		
Developmental GeneralFetal																		
GeneralFetalPatholog		Spectrop																
у	KNN	hores	17	83	130	17	247	0.4	0.12	0.5	0.19	0.5	0.39	0.44	-99.1	5.28	.077	34
DEV rat																		
Developmental																		
GeneralFetal GeneralFetalPatholog	LibS																	- 1
y	VM	Adriana	2	203	10	31	246	0.83	0.17	0.06	0.09	0.06	0.95	0.51	-99.0	7.33	0.02	33
DEV rat																		\neg
Developmental																		- 1
GeneralFetal	Lihs	ALogPS,																
GeneralFetalPatholog y	VM	OEstate	4	205	8	30	247	0.85	0.33	0.12	0.17	0.12	0.96	0.54	-98.9	8 11	0.13	34
	A 141	JESIGIO	-	200		- 50	<u>_</u> TI	0.00	0.00	V. 12	0.17	V. 12	0.00	0.07	50.5	0.11	5.10	
DEV rat Developmental																		
GeneralFetal																		- 1
GeneralFetalPatholog	LibS	0014		000			00				0.0-		0.00	o - ·	00.5		0.65	
У	VM	CDK	1	209	4	32	246	0.85	0.2	0.03	0.05	0.03	0.98	0.51	-99.0	7.73	0.03	33
DEV rat																		- 1
Developmental GeneralFetal																		
GeneralFetalPatholog	LibS	Chemaxo																
у	VM	n	0	200	13	34	247	0.81	0.	0.		0.	0.94	0.47	-99.1	5.55	.094	34

DEV rat																		
Developmental GeneralFetal																		
GeneralFetalPatholog	LibS																	
у	VM	Dragon6	1	208	5	33	247	0.85	0.17	0.03	0.05	0.03	0.98	0.5	-99.0	7.55	0.01	34
DEV rat																		
Developmental																		
GeneralFetal	LihS	Fragment																
GeneralFetalPatholog	VM	or	4	207	6	30	247	0.85	0.4	0.12	0.18	0.12	0.97	0.54	-98.9	8 30	0.16	34
y	VIVI	OI .		201		- 50	271	0.00	0.4	0.12	0.10	0.12	0.07	0.54	-30.3	0.00	0.10	- 54
DEV rat Developmental																		
GeneralFetal																		
GeneralFetalPatholog																		
у	VM	GSFrag	4	208	5	30	247	0.86	0.44	0.12	0.19	0.12	0.98	0.55	-98.9	8.56	0.17	34
DEV rat																		
Developmental																		
GeneralFetal GeneralFetalPatholog	LibS																	
у	VM	Inductive	2	201	12	32	247	0.82	0.14	0.06	0.08	0.06	0.94	0.5	-99.0	7.18	0.	34
DEV rat																		
Developmental																		
GeneralFetal	LibS	Mera,																
GeneralFetalPatholog	VM	Mersy	2	205	8	32	247	0.84	0.2	0.06	0.09	0.06	0.96	0.51	-99.0	7 52	0 04	34
y	VIVI	Wiciby		200		32	271	0.04	0.2	0.00	0.00	0.00	0.50	0.01	-33.0	7.50	0.04	- 54
DEV rat Developmental																		
GeneralFetal																		
GeneralFetalPatholog	LibS																	
у	VM	QNPR	0	205	8	34	247	0.83	0.	0.		0.	0.96	0.48	-99.0	6.03	.073	34
DEV rat																		
Developmental																		
GeneralFetal GeneralFetalPatholog	LibS	Spectrop																
y	VM	hores	0	205	8	34	247	0.83	0.	0.		0.	0.96	0.48	-99.0	6.03	.073	34
DEV rat																		
Developmental																		
GeneralFetal	MLR																	
GeneralFetalPatholog v	A	Adriana	16	125	88	17	246	0.57	0.15	0.48	0.23	0.48	0.59	0.54	-98.9	6.01	0.05	33
,		Adriana	10	120	- 00	- ''	240	0.01	0.10	0.40	0.23	0.40	0.00	0.04	-30.3	0.01	0.00	- 55
DEV rat Developmental																		
GeneralFetal																		
GeneralFetalPatholog		ALogPS,																
у	Α	OEstate	13	138	75	21	247	0.61	0.15	0.38	0.21	0.38	0.65	0.52	-99.0	6.28	0.02	34
DEV rat																		
Developmental																		
GeneralFetal GeneralFetalPatholog	MLR																	
y	Α	CDK	19	115	98	14	246	0.54	0.16	0.58	0.25	0.58	0.54	0.56	-98.9	5.8	0.08	33
DEV rat																		
Developmental																		
GeneralFetal	MI D	Chemaxo																
GeneralFetalPatholog	A	n	14	117	96	20	247	0.53	0.13	0.41	0.19	0.41	0.55	0.48	-99.0	5 20	027	34
		11	14	117	90	20	<u> </u>	0.00	0.13	U. + I	0.18	U. + I	0.00	0.40	-33.0	5.09	.021	34
DEV rat Developmental																		
GeneralFetal																		
GeneralFetalPatholog		_																
у	Α	Dragon6	22	96	117	12	247	0.48	0.16	0.65	0.25	0.65	0.45	0.55	-98.9	5.44	0.07	34
DEV rat																		
Developmental																		
GeneralFetal GeneralFetalPatholog	MLR	Fragment																
y	Α	or	14	110	103	20	247	0.5	0.12	0.41	0.19	0.41	0.52	0.46	-99.1	5.76	.05	34
DEV rat			•															- 1
Developmental																		ı
Developmental GeneralFetal	MID																	
Developmental GeneralFetal	MLR A	GSFrag	19	120	93	15	247	0.56	0.17	0.56	0.26	0.56	0.56	0.56	-98.9	5.06	0.00	34

																		_
DEV rat																		
Developmental GeneralFetal																		
GeneralFetalPatholog	MLR																	
у	Α	Inductive	14	143	70	20	247	0.64	0.17	0.41	0.24	0.41	0.67	0.54	-98.9	6.41	0.06	34
DEV rat																		
Developmental GeneralFetal																		
GeneralFetalPatholog	MLR	Mera,																
у	Α	Mersy	19	113	100	15	247	0.53	0.16	0.56	0.25	0.56	0.53	0.54	-98.9	5.83	0.06	34
DEV rat																		
Developmental																		
GeneralFetal GeneralFetalPatholog	MLR																	
y	Α	QNPR	14	139	74	20	247	0.62	0.16	0.41	0.23	0.41	0.65	0.53	-98.9	6.32	0.05	34
DEV rat																		
Developmental																		
GeneralFetal	MI R	Spectrop																
GeneralFetalPatholog v	A	hores	12	126	87	22	247	0.56	0.12	0.35	0.18	0.35	0.59	0.47	-99.1	6 01	.039	34
DEV rat	-				<u> </u>			0.00		0.00	0	0.00	0.00	<u> </u>		0.0.		-
Developmental																		
GeneralFetal																		
GeneralFetalPatholog	PLS	Adriana	19	116	97	14	246	0.55	0.16	0.58	0.26	0.58	0.54	0.56	-98.9	5 22	U U8	33
y 	rlo	Aunana	18	110	31	14	240	0.00	0.10	0.36	0.20	0.36	0.04	0.30	-90.9	J.0Z	0.00	33
DEV rat Developmental																		
GeneralFetal																		
GeneralFetalPatholog		ALogPS,					- · -											
у	PLS	OEstate	18	135	78	16	247	0.62	0.19	0.53	0.28	0.53	0.63	0.58	-98.8	6.27	0.12	34
DEV rat																		
Developmental GeneralFetal																		
GeneralFetalPatholog																		
у	PLS	CDK	12	123	90	21	246	0.55	0.12	0.36	0.18	0.36	0.58	0.47	-99.1	5.9	.041	33
DEV rat																		
Developmental																		
GeneralFetal GeneralFetalPatholog		Chemaxo																
у	PLS	n	12	126	87	22	247	0.56	0.12	0.35	0.18	0.35	0.59	0.47	-99.1	6.01	.039	34
DEV rat																		
Developmental																		
GeneralFetal GeneralFetalPatholog																		
y	PLS	Dragon6	12	158	55	22	247	0.69	0.18	0.35	0.24	0.35	0.74	0.55	-98.9	6.69	0.07	34
DEV rat																		
Developmental																		
GeneralFetal		Fragment																
GeneralFetalPatholog y	PLS	•	15	147	66	19	247	0.66	0.19	0.44	0.26	0.44	0.69	0.57	-98.9	6 51	0.1	34
	1 20	OI .	-10	177		-10	2-11	0.00	0.10	0.44	0.20	0.44	0.00	0.07	00.0	0.01	0.1	
DEV rat Developmental																		
GeneralFetal																		
GeneralFetalPatholog	DIG	CSEros	16	117	06	10	247	0.54	0 14	0.47	0 22	0.47	0.55	0 E1	00.0	5.02	0.01	اړ د
у	rlð	GSFrag	16	117	96	18	247	0.54	0.14	0.47	0.22	0.47	0.55	0.51	-99.0	ე.ყ2	0.01	34
DEV rat																		
Developmental GeneralFetal																		
GeneralFetalPatholog						_								_			_	
у	PLS	Inductive	10	151	62	24	247	0.65	0.14	0.29	0.19	0.29	0.71	0.5	-99.0	6.44	0.	34
DEV rat																		
Developmental GeneralFetal																		
GeneralFetal GeneralFetalPatholog		Mera,																
у	PLS	Mersy	14	127	86	20	247	0.57	0.14	0.41	0.21	0.41	0.6	0.5	-99.0	6.08	0.01	34
DEV rat																		\neg
Developmental																		
GeneralFetal GeneralFetalPatholog																		
y	PLS	QNPR	15	144	69	19	247	0.64	0.18	0.44	0.25	0.44	0.68	0.56	-98.9	6.44	0.09	34
1-			-			-												7 1

DEV rat Developmental GeneralFetal GeneralFetalPatholog y	PLS	Spectrop hores	17	107	106	17	247	0.5	0.14	0.5	0.22	0.5	0.5	0.5	-99.0	5.73	0.	34
DEV rat Developmental GeneralFetal GeneralFetalPatholog																		
у	J48	Adriana	11	153	60	22	246	0.67	0.15	0.33	0.21	0.33	0.72	0.53	-98.9	6.49	0.04	33
DEV rat Developmental GeneralFetal GeneralFetalPatholog y	J48	ALogPS, OEstate	14	153	60	20	247	0.68	0.19	0.41	0.26	0.41	0.72	0.57	-98.9	6.63	0.1	34
DEV rat Developmental GeneralFetal GeneralFetalPatholog	J48	CDK	10	157	56	23	246	0.68	0.15	0.3	0.2	0.3	0.74	0.52	-99.0	6 53	0.03	33
DEV rat	J40	CDR	10	131	30		240	0.00	0.15	0.5	0.2	0.5	0.74	0.52	-99.0	0.55	0.03	- 33
Developmental GeneralFetal GeneralFetalPatholog	140	Chemaxo	0	160	E2	25	247	0.69	0.15	0.26	0.10	0.26	0.75	0.51	00.0	6 50	0.01	24
y DEV ==+	J48	n	9	160	53	25	247	0.68	0.15	0.26	0.19	0.26	0.75	0.51	-99.0	6.59	0.01	34
DEV rat Developmental GeneralFetal GeneralFetalPatholog	J48	Dragon6	10	158	55	24	247	0.68	0.15	0.29	0.2	0.29	0.74	0.52	-99.0	6.6	0.03	34
DEV rat	040	Diagono	10	100	- 55	27	271	0.00	0.10	0.20	0.2	0.20	0.74	0.02	-55.0	0.0	0.00	- 54
Developmental GeneralFetal GeneralFetalPatholog y	J48	Fragment or	14	162	51	20	247	0.71	0.22	0.41	0.28	0.41	0.76	0.59	-98.8	6.84	0.13	34
DEV rat Developmental GeneralFetal GeneralFetalPatholog																		
у	J48	GSFrag	11	158	55	23	247	0.68	0.17	0.32	0.22	0.32	0.74	0.53	-98.9	6.65	0.05	34
DEV rat Developmental GeneralFetal GeneralFetalPatholog y	J48	Inductive	8	176	37	26	247	0.74	0.18	0.24	0.2	0.24	0.83	0.53	-98.9	6.97	0.05	34
DEV rat Developmental GeneralFetal		Mera,																
GeneralFetalPatholog y	J48	Mersy	9	155	58	25	247	0.66	0.13	0.26	0.18	0.26	0.73	0.5	-99.0	6.47	.006	34
DEV rat Developmental GeneralFetal GeneralFetalPatholog																		
у	J48	QNPR	14	153	60	20	247	0.68	0.19	0.41	0.26	0.41	0.72	0.57	-98.9	6.63	0.1	34
DEV rat Developmental GeneralFetal GeneralFetalPatholog		Spectrop																
y y	J48	hores	6	147	66	28	247	0.62	0.08	0.18	0.11	0.18	0.69	0.43	-99.1	6.02	.101	34
DEV rat Maternal GeneralMaternal Systemic	RF	Adriana	156	21	12	57	246	0.72	0.93	0.73	0.82	0.73	0.64	0.68	-98.6	9.65	0.27	213
DEV rat Maternal GeneralMaternal Systemic	RF	ALogPS, OEstate	182	17	16	32	247	0.81	0.92	0.85	0.88	0.85	0.52	0.68	-98.6	8.75	0.31	214
DEV rat Maternal GeneralMaternal Systemic	RF	CDK	176	18	15	37	246	0.79	0.92	0.83	0.87	0.83	0.55	0.69	-98.6	8.97	0.3	213

DEV M-t																		
DEV rat Maternal GeneralMaternal		Chemaxo																
Systemic	RF	n	167	18	15	47	247	0.75	0.92	0.78	0.84	0.78	0.55	0.66	-98.7	9.16	0.25	214
DEV rat Maternal																		
GeneralMaternal Systemic	RF	Dragon6	166	18	15	48	247	0.74	0.92	0.78	0.84	0.78	0.55	0.66	-98.7	9.17	0.25	214
DEV rat Maternal																		
GeneralMaternal	DE	Fragment	106	10	20	10	247	0.05	0.01	0.00	0.01	0.00	0.20	0.65	00.7	7 70	0.22	244
Systemic	RF	or	196	13	20	18	247	0.85	0.91	0.92	0.91	0.92	0.39	0.65	-98.7	7.78	0.32	214
DEV rat Maternal GeneralMaternal																		
Systemic	RF	GSFrag	157	20	13	57	247	0.72	0.92	0.73	0.82	0.73	0.61	0.67	-98.7	9.53	0.25	214
DEV rat Maternal																		
GeneralMaternal Systemic	RF	Inductive	175	15	18	39	247	0.77	0.91	0.82	0.86	0.82	0.45	0.64	-98.7	8.67	0 22	214
DEV rat Maternal		maaaava						0.77	0.01	0.02	0.00	0.02	0.10	0.01	00.7	0.01	<u> </u>	
GeneralMaternal		Mera,																
Systemic	RF	Mersy	179	18	15	35	247	0.8	0.92	0.84	0.88	0.84	0.55	0.69	-98.6	8.94	0.32	214
DEV rat Maternal GeneralMaternal																		
Systemic	RF	QNPR	190	13	20	24	247	0.82	0.9	0.89	0.9	0.89	0.39	0.64	-98.7	8.03	0.27	214
DEV rat Maternal		Cnoctron																
GeneralMaternal Systemic	RF	Spectrop hores	169	11	22	45	247	0.73	0.88	0.79	0.83	0.79	0.33	0.56	-98.9	8 28	0.1	214
DEV rat Maternal	131	110103	100	- ' '		70	471	0.73	0.00	0.13	0.00	0.13	0.00	0.00	-50.9	5.20	0.1	- 17
GeneralMaternal	ASN																	
Systemic	N	Adriana	150	20	13	63	246	0.69	0.92	0.7	8.0	0.7	0.61	0.66	-98.7	9.58	0.22	213
DEV rat Maternal	A C N I	A1 ==DC																
GeneralMaternal Systemic	ASN N	ALogPS, OEstate	168	18	15	46	247	0.75	0.92	0.79	0.85	0.79	0.55	0.67	-98.7	9.14	0.26	214
DEV rat Maternal	IN	OLSiale	100	10	13	40	241	0.75	0.92	0.79	0.03	0.79	0.55	0.07	-90.1	9.14	0.20	214
GeneralMaternal	ASN																	
Systemic	N	CDK	160	20	13	53	246	0.73	0.92	0.75	0.83	0.75	0.61	0.68	-98.6	9.48	0.27	213
DEV rat Maternal	ASN	Chemaxo																
GeneralMaternal Systemic	N	n	140	19	14	74	247	0.64	0.91	0.65	0.76	0.65	0.58	0.61	-98.8	9.55	0.16	214
DEV rat Maternal																		$\overline{}$
GeneralMaternal	ASN						- · -											
Systemic	N	Dragon6	156	19	14	58	247	0.71	0.92	0.73	0.81	0.73	0.58	0.65	-98.7	9.42	0.22	214
DEV rat Maternal GeneralMaternal	ASN	Fragment																
Systemic	Ν	or	151	17	16	63	247	0.68	0.9	0.71	0.79	0.71	0.52	0.61	-98.8	9.23	0.16	214
DEV rat Maternal	ASN																	
GeneralMaternal Systemic	N N	GSFrag	159	19	14	55	247	0.72	0.92	0.74	0.82	0.74	0.58	0.66	-98.7	9.38	0.24	214
DEV rat Maternal	IN	Oorrag	100	13	17	33	241	0.72	0.32	0.74	0.02	0.74	0.50	0.00	-90.1	3.30	0.24	214
GeneralMaternal	ASN																	
Systemic	N	Inductive	151	16	17	63	247	0.68	0.9	0.71	0.79	0.71	0.48	0.6	-98.8	9.11	0.14	214
DEV rat Maternal	ASN	Mera,																
GeneralMaternal Systemic	N	Mersy	149	21	12	65	247	0.69	0.93	0.7	0.79	0.7	0.64	0.67	-98.7	9.73	0.24	214
DEV rat Maternal		- ,	-	•			-										-	\dashv
GeneralMaternal	ASN	ONDD	457	40	47		047	0.7	0.0	0.70	0.04	0.70	0.40	0.04	00.0	0.05	0.40	
Systemic	N	QNPR	157	16	17	57	247	0.7	0.9	0.73	0.81	0.73	0.48	0.61	-98.8	9.05	U.16	214
DEV rat Maternal GeneralMaternal	ASN	Spectrop																
Systemic	N	hores	151	18	15	63	247	0.68	0.91	0.71	0.79	0.71	0.55	0.63	-98.7	9.35	0.18	214
DEV rat Maternal	ΛCN	CDK TA																
GeneralMaternal Systemic	ASN N	CDK, TA, TP	154	16	17	59	246	0.69	0.9	0.72	0.8	0.72	0.48	0.6	-98.8	9 07	0 15	213
DEV rat Maternal			104	10	17	JJ	470	0.08	0.8	0.12	0.0	0.12	0.70	0.0	-30.0	5.07	0.10	213
GeneralMaternal	ASN																	
Systemic	N	CDK, TA	161	12	21	52	246	0.7	0.88	0.76	0.82	0.76	0.36	0.56	-98.9	8.5	0.09	213
DEV rat Maternal	ASN																	
GeneralMaternal Systemic	N	CDK, TP	154	19	14	59	246	0.7	0.92	0.72	0.81	0.72	0.58	0.65	-98.7	9.42	0.22	213
DEV rat Maternal		,	•															一
GeneralMaternal	ASN	TA TD	100	40	00	F0	047	0.7	0.00	0.70	0.04	0.70	0.0	0.50	00.0	0.05	0.05	
Systemic	N	TA, TP	162	10	23	52	247	0.7	0.88	0.76	0.81	0.76	0.3	0.53	-98.9	0.25	0.05	∠14

DEV rat Maternal GeneralMaternal Systemic	ASN N	TA	149	12	21	65	247	0.65	0.88	0.7	0.78	0.7	0.36	0.53	-98.9	8.65	0.04	214
DEV rat Maternal GeneralMaternal Systemic	ASN N	TP	149	11	22	65	247	0.65	0.87	0.7	0.77	0.7	0.33	0.51	-99.0	8.52	0.02	214
DEV rat Maternal GeneralMaternal Systemic	FSM LR	CDK, TA, TP	160	14	19	53	246	0.71	0.89	0.75	0.82	0.75	0.42	0.59	-98.8	8.76	0.13	213
DEV rat Maternal GeneralMaternal Systemic	FSM LR	CDK, TA	154	18	15	59	246	0.7	0.91	0.72	0.81	0.72	0.55	0.63	-98.7	9.3	0.2	213
DEV rat Maternal GeneralMaternal Systemic	FSM LR	CDK, TP	161	21	12	52	246	0.74	0.93	0.76	0.83	0.76	0.64	0.7	-98.6			213
DEV rat Maternal GeneralMaternal Systemic	FSM LR	TA, TP	168	9	24	46	247	0.72	0.88	0.79	0.83	0.79	0.27	0.53	-98.9			214
DEV rat Maternal GeneralMaternal Systemic	FSM LR	TA TA	159	8	25	55	247	0.68	0.86	0.74	0.8	0.74	0.24	0.49	-99.0		.011	214
DEV rat Maternal GeneralMaternal Systemic	FSM LR	TP	140	10	23	74	247	0.61	0.86	0.65	0.74	0.65	0.3	0.48	-99.0		.031	214
DEV rat Maternal GeneralMaternal Systemic	KNN	CDK, TA,	93	19	14	120	246	0.46	0.87	0.44	0.58	0.44	0.58	0.51	-99.0			213
DEV rat Maternal GeneralMaternal Systemic	KNN	CDK, TA	82	23	10	131	246	0.43	0.89	0.38	0.54	0.38	0.7	0.54	-98.9	10.1	0.06	213
DEV rat Maternal GeneralMaternal Systemic	KNN	CDK, TP	36	30	3	177	246	0.27	0.92	0.17	0.29	0.17	0.91	0.54	-98.9	10.9	0.07	213
DEV rat Maternal GeneralMaternal Systemic	KNN	TA, TP	87	21	12	127	247	0.44	0.88	0.41	0.56	0.41	0.64	0.52	-99.0	9.86	0.03	214
DEV rat Maternal GeneralMaternal Systemic DEV rat Maternal	KNN	TA	95	22	11	119	247	0.47	0.9	0.44	0.59	0.44	0.67	0.56	-98.9	10.	80.0	214
GeneralMaternal Systemic DEV rat Maternal	KNN	TP	42	30	3	172	247	0.29	0.93	0.2	0.32	0.2	0.91	0.55	-98.9	11.1	0.09	214
GeneralMaternal Systemic	LibS VM	CDK, TA, TP	213	11	32	0	246	0.87	0.87	1.	0.93	1.	0.03	0.52	-99.0	1.59	0.16	213
DEV rat Maternal GeneralMaternal Systemic	LibS VM	CDK, TA	213	3	30	0	246	0.88	0.88	1.	0.93	1.	0.09	0.55	-98.9	2.51	0.28	213
DEV rat Maternal GeneralMaternal Systemic	LibS VM	CDK, TP	203	4	29	10	246	0.84	0.88	0.95	0.91	0.95	0.12	0.54	-98.9	5.79	0.11	213
DEV rat Maternal GeneralMaternal Systemic	LibS VM	TA, TP	214	0	33	0	247	0.87	0.87	1.	0.93	1.	0.	0.5	-99.0	0.47		214
DEV rat Maternal GeneralMaternal Systemic	LibS VM	TA	213	0	33	1	247	0.86	0.87	1.	0.93	1.	0.	0.5	-99.0	1.56	.025	214
DEV rat Maternal GeneralMaternal Systemic	LibS VM	TP	212	0	33	2	247	0.86	0.87	0.99	0.92	0.99	0.	0.5	-99.0	2.07	.035	214
DEV rat Maternal GeneralMaternal Systemic	MLR A	CDK, TA, TP	147	16	17	66	246	0.66	0.9	0.69	0.78	0.69	0.48	0.59	-98.8	9.13	0.13	213
DEV rat Maternal GeneralMaternal Systemic	MLR A	CDK, TA	131	16	17	82	246	0.6	0.89	0.62	0.73	0.62	0.48	0.55	-98.9	9.23	0.07	213

																		\neg
DEV rat Maternal GeneralMaternal	MLR																	
Systemic	Α	CDK, TP	116	15	18	97	246	0.53	0.87	0.54	0.67	0.54	0.45	0.5	-99.0	9.16	.001	213
DEV rat Maternal		·																\neg
GeneralMaternal	MLR																	
Systemic	A	TA, TP	128	15	18	86	247	0.58	0.88	0.6	0.71	0.6	0.45	0.53	-98.9	9.14	0.04	214
DEV rat Maternal	MLR																	
GeneralMaternal Systemic	A	TA	130	18	15	84	247	0.6	0.9	0.61	0.72	0.61	0.55	0.58	-98.8	0 10	0.11	214
<u> </u>		1/4	130	10	13	04	241	0.0	0.9	0.01	0.72	0.01	0.55	0.50	-30.0	3.43	0.11	
DEV rat Maternal GeneralMaternal	MLR																	
Systemic	Α	TP	109	17	16	105	247	0.51	0.87	0.51	0.64	0.51	0.52	0.51	-99.0	9.41	0.02	214
DEV rat Maternal																		\neg
GeneralMaternal		CDK, TA,																
Systemic	PLS	TP	157	17	16	56	246	0.71	0.91	0.74	0.81	0.74	0.52	0.63	-98.7	9.15	0.19	213
DEV rat Maternal																		
GeneralMaternal	DI O	ODK TA	450	40	00	00	0.40	0.00	0.00	0.7	0.70	0.7	0.00	0.55	00.0	0.75	0.07	~
Systemic	PLS	CDK, TA	150	13	20	63	246	0.66	0.88	0.7	0.78	0.7	0.39	0.55	-98.9	8.75	0.07	213
DEV rat Maternal																		
GeneralMaternal Systemic	PLS	CDK, TP	147	19	14	66	246	0.67	0.91	0.69	0.79	0.69	0.58	0.63	-98.7	9 49	0.19	213
DEV rat Maternal		ODIN, II						0.01	0.01	0.00	0.70	0.00	0.00	0.00		0.10	0.10	
GeneralMaternal																		
Systemic	PLS	TA, TP	158	10	23	56	247	0.68	0.87	0.74	8.0	0.74	0.3	0.52	-99.0	8.29	0.03	214
DEV rat Maternal																		\neg
GeneralMaternal																		
Systemic	PLS	TA	154	12	21	60	247	0.67	0.88	0.72	0.79	0.72	0.36	0.54	-98.9	8.6	0.06	214
DEV rat Maternal																		
GeneralMaternal	DI C	TD	120	12	20	76	247	0.61	0.07	0.64	0.74	0.64	0.20	0.52	00.0	0 05	0.02	214
Systemic	PLS	TP	138	13	20	76	247	0.61	0.87	0.64	0.74	0.64	0.39	0.52	-99.0	0.00	0.03	214
DEV rat Maternal GeneralMaternal		CDK, TA,																
Systemic	J48	TP	171	15	18	42	246	0.76	0.9	0.8	0.85	0.8	0.45	0.63	-98.7	8 72	0.21	213
DEV rat Maternal	0.0							00	0.0	0.0	0.00	0.0	00	0.00				
GeneralMaternal																		
Systemic	J48	CDK, TA	167	14	19	46	246	0.74	0.9	0.78	0.84	0.78	0.42	0.6	-98.8	8.66	0.17	213
DEV rat Maternal																		\neg
GeneralMaternal																		
Systemic	J48	CDK, TP	170	19	14	43	246	0.77	0.92	0.8	0.86	0.8	0.58	0.69	-98.6	9.21	0.29	213
DEV rat Maternal																		
GeneralMaternal Systemic	J48	TA, TP	164	9	24	50	247	0.7	0.87	0.77	0.82	0.77	0.27	0.52	-99.0	8 U8	U U3	214
<u> </u>	0-10	174, 11	104			- 50	271	0.1	0.07	0.77	0.02	0.11	0.21	0.52	-55.0	0.00	0.00	
DEV rat Maternal GeneralMaternal																		
Systemic	J48	TA	164	10	23	50	247	0.7	0.88	0.77	0.82	0.77	0.3	0.53	-98.9	8.22	0.06	214
DEV rat Maternal																		\neg
GeneralMaternal																		
Systemic	J48	TP	138	14	19	76	247	0.62	0.88	0.64	0.74	0.64	0.42	0.53	-98.9	8.97	0.05	214
DEV rat Maternal		CDV TA																
GeneralMaternal	D.E.	CDK, TA,	407	•	0.5	40	0.40	0.00	0.00	0.00	0.04	0.00	0.04	0.50	00.0	0.00	0.40	~
Systemic	RF	TP	197	8	25	16	246	0.83	0.89	0.92	0.91	0.92	0.24	0.58	-98.8	6.99	0.19	213
DEV rat Maternal																		
GeneralMaternal Systemic	RF	CDK, TA	193	8	25	20	246	0.82	0.89	0.91	0.9	0.91	0.24	0.57	-98.9	7 10	0.16	213
	131	ODIX, IA	100		20	20	240	0.02	0.00	0.01	0.5	0.01	0.24	0.57	-30.3	7.10	0.10	-10
DEV rat Maternal GeneralMaternal																		
Systemic	RF	CDK, TP	190	12	21	23	246	0.82	0.9	0.89	0.9	0.89	0.36	0.63	-98.7	7.86	0.25	213
DEV rat Maternal																		\neg
GeneralMaternal																		
Systemic	RF	TA, TP	199	2	31	15	247	0.81	0.87	0.93	0.9	0.93	0.06	0.5	-99.0	5.5	.013	214
DEV rat Maternal																		
GeneralMaternal	DE	ТА	100	10	22	20	247	0.70	0.00	0.05	0.07	0.05	0.0	0.50	00.0	7.00	0 4 4	المد
Systemic	RF	TA	182	10	23	32	247	0.78	0.89	0.85	0.87	0.85	0.3	0.58	-98.8	7 .88	U.14	214
DEV rat Maternal GeneralMaternal																		- 1
Systemic	RF	TP	188	4	29	26	247	0.78	0.87	0.88	0.87	0.88	0.12	0.5	-99.0	6.64		214
<u> </u>	• • •										2.01		-·· -				•	=∸+
DEV rat Maternal GeneralMaternal	FSM																	- 1
Systemic	LR	Adriana	155	17	16	58	246	0.7	0.91	0.73	0.81	0.73	0.52	0.62	-98.8	9.17	0.18	213
1-,	`			• •	. 0	30	0	٥.,	0.01	0.70	0.01	5.75	J.J_	J.J_	55.5	J. 1 1	5.10	- '~

DEV rat Maternal	FSM	ALogPS,																
GeneralMaternal Systemic	LR	OEstate	160	20	13	54	247	0.73	0.92	0.75	0.83	0.75	0.61	0.68	-98.6	9.49	0.26	214
DEV rat Maternal GeneralMaternal Systemic	FSM LR	CDK	159	23	10	54	246	0.74	0.94	0.75	0.83	0.75	0.7	0.72	-98.6	9.88	0.33	213
DEV rat Maternal GeneralMaternal Systemic	FSM LR	Chemaxo n	139	20	13	75	247	0.64	0.91	0.65	0.76	0.65	0.61	0.63	-98.7	9.68	0.18	214
DEV rat Maternal GeneralMaternal Systemic	FSM LR	Dragon6	153	20	13	61	247	0.7	0.92	0.71	0.81	0.71	0.61	0.66	-98.7	9.57	0.23	214
DEV rat Maternal GeneralMaternal Systemic	FSM LR	Fragment or	170	16	17	44	247	0.75	0.91	0.79	0.85	0.79	0.48	0.64	-98.7	8.88	0.22	214
DEV rat Maternal GeneralMaternal Systemic	FSM LR	GSFrag	157	22	11	57	247	0.72	0.93	0.73	0.82	0.73	0.67	0.7	-98.6	9.78	0.29	214
DEV rat Maternal GeneralMaternal Systemic	FSM LR	Inductive	149	15	18	65	247	0.66	0.89	0.7	0.78	0.7	0.45	0.58	-98.8	9.01	0.11	214
DEV rat Maternal GeneralMaternal Systemic	FSM LR	Mera, Mersy	140	22	11	74	247	0.66	0.93	0.65	0.77	0.65	0.67	0.66	-98.7			214
DEV rat Maternal GeneralMaternal Systemic	FSM LR	QNPR	168	18	15	46	247	0.75	0.92	0.79	0.85	0.79	0.55	0.67	-98.7	9.14	0.26	214
DEV rat Maternal GeneralMaternal Systemic	FSM LR	Spectrop hores	138	18	15	76	247	0.63	0.9	0.64	0.75	0.64	0.55	0.6	-98.8			214
DEV rat Maternal GeneralMaternal Systemic	KNN		146	18	15	67	246	0.67	0.91	0.69	0.78	0.69	0.55	0.62	-98.8	9.38	0.17	213
DEV rat Maternal GeneralMaternal Systemic	KNN	ALogPS, OEstate	111	24	9	103	247	0.55	0.93	0.52	0.66	0.52	0.73	0.62	-98.8	10.3	0.17	214
DEV rat Maternal GeneralMaternal Systemic	KNN		125	25	8	88	246	0.61	0.94	0.59	0.72	0.59	0.76	0.67	-98.7		0.24	213
DEV rat Maternal GeneralMaternal Systemic	KNN	Chemaxo n	112	24	9	102	247	0.55	0.93	0.52	0.67	0.52	0.73	0.63	-98.7	10.3	0.17	214
DEV rat Maternal GeneralMaternal Systemic	KNN	Dragon6	123	26	7	91	247	0.6	0.95	0.57	0.72	0.57	0.79	0.68	-98.6	10.6	0.25	214
DEV rat Maternal GeneralMaternal Systemic	KNN	Fragment or	158	15	18	56	247	0.7	0.9	0.74	0.81	0.74	0.45	0.6	-98.8	8.92	0.14	214
DEV rat Maternal GeneralMaternal Systemic	KNN	GSFrag	149	24	9	65	247	0.7	0.94	0.7	0.8	0.7	0.73	0.71	-98.6	10.1	0.3	214
DEV rat Maternal GeneralMaternal Systemic DEV rat Maternal	KNN	Inductive	118	21	12	96	247	0.56	0.91	0.55	0.69	0.55	0.64	0.59	-98.8	9.89	0.13	214
GeneralMaternal Systemic DEV rat Maternal	KNN	Mera, Mersy	143	22	11	71	247	0.67	0.93	0.67	0.78	0.67	0.67	0.67	-98.7	9.91	0.24	214
GeneralMaternal Systemic DEV rat Maternal	KNN	QNPR	175	15	18	39	247	0.77	0.91	0.82	0.86	0.82	0.45	0.64	-98.7	8.67	0.22	214
GeneralMaternal Systemic DEV rat Maternal	KNN	Spectrop hores	115	21	12	99	247	0.55	0.91	0.54	0.67	0.54	0.64	0.59	-98.8	9.89	0.12	214
GeneralMaternal Systemic	LibS VM	Adriana	185	11	22	28	246	0.8	0.89	0.87	0.88	0.87	0.33	0.6	-98.8	7.9	0.19	213

DEV rat Maternal GeneralMaternal Systemic	LibS VM	ALogPS, OEstate	198	8	25	16	247	0.83	0.89	0.93	0.91	0.93	0.24	0.58	-98.8	7.	0.19	214
DEV rat Maternal GeneralMaternal Systemic	LibS VM	CDK	189	14	19	24	246	0.83	0.91	0.89	0.9	0.89	0.42	0.66	-98.7	8.15	0.29	213
DEV rat Maternal GeneralMaternal Systemic	LibS VM	Chemaxo n	200	6	27	14	247	0.83	0.88	0.93	0.91	0.93	0.18	0.56	-98.9	6.53	0.15	214
DEV rat Maternal GeneralMaternal Systemic	LibS VM	Dragon6	175	14	19	39	247	0.77	0.9	0.82	0.86	0.82	0.42	0.62	-98.8	8.55	0.2	214
DEV rat Maternal GeneralMaternal Systemic	LibS VM	Fragment or	213	3	30	1	247	0.87	0.88	1.	0.93	1.	0.09	0.54	-98.9	3.6	0.23	214
DEV rat Maternal GeneralMaternal Systemic	LibS VM	GSFrag	176	14	19	38	247	0.77	0.9	0.82	0.86	0.82	0.42	0.62	-98.8	8.53	0.21	214
DEV rat Maternal GeneralMaternal Systemic	LibS VM	Inductive	172	13	20	42	247	0.75	0.9	0.8	0.85	0.8	0.39	0.6	-98.8	8.48	0.16	214
DEV rat Maternal GeneralMaternal Systemic	LibS VM	Mera, Mersy	198	12	21	16	247	0.85	0.9	0.93	0.91	0.93	0.36	0.64	-98.7	7.55	0.31	214
DEV rat Maternal GeneralMaternal Systemic	LibS VM	QNPR	193	7	26	21	247	0.81	0.88	0.9	0.89	0.9	0.21	0.56	-98.9	7.07	0.12	214
DEV rat Maternal GeneralMaternal Systemic	LibS VM	Spectrop hores	188	12	21	26	247	0.81	0.9	0.88	0.89	0.88	0.36	0.62	-98.8	7.97	0.23	214
DEV rat Maternal GeneralMaternal Systemic	MLR A	Adriana	124	17	16	89	246	0.57	0.89	0.58	0.7	0.58	0.52	0.55	-98.9	9.38	0.07	213
DEV rat Maternal GeneralMaternal Systemic	MLR A	ALogPS, OEstate	144	16	17	70	247	0.65	0.89	0.67	0.77	0.67	0.48	0.58	-98.8	9.17	0.11	214
DEV rat Maternal GeneralMaternal Systemic	MLR A	CDK	106	25	8	107	246	0.53	0.93	0.5	0.65	0.5	0.76	0.63	-98.7	10.4	0.17	213
DEV rat Maternal GeneralMaternal Systemic DEV rat Maternal	MLR A	Chemaxo n	101	21	12	113	247	0.49	0.89	0.47	0.62	0.47	0.64	0.55	-98.9	9.89	0.07	214
GeneralMaternal Systemic DEV rat Maternal	MLR A	Dragon6	128	11	22	86	247	0.56	0.85	0.6	0.7	0.6	0.33	0.47	-99.1	8.64	.048	214
GeneralMaternal Systemic DEV rat Maternal	Α	Fragment or	139	15	18	75	247	0.62	0.89	0.65	0.75	0.65	0.45	0.55	-98.9	9.09	0.07	214
GeneralMaternal Systemic DEV rat Maternal	MLR A MLR	GSFrag	99	13	20	115	247	0.45	0.83	0.46	0.59	0.46	0.39	0.43	-99.1	8.93	.098	214
GeneralMaternal Systemic DEV rat Maternal	Α	Inductive Mera,	130	17	16	84	247	0.6	0.89	0.61	0.72	0.61	0.52	0.56	-98.9	9.37	0.08	214
GeneralMaternal Systemic DEV rat Maternal GeneralMaternal	A MLR	Mersy	111	21	12	103	247	0.53	0.9	0.52	0.66	0.52	0.64	0.58	-98.8	9.9	0.11	214
Systemic DEV rat Maternal GeneralMaternal		QNPR Spectrop	96	16	17	118	247	0.45	0.85	0.45	0.59	0.45	0.48	0.47	-99.1			214
Systemic DEV rat Maternal GeneralMaternal Systemic	A PLS	hores Adriana	129 155	21	12	85 58	247	0.61	0.91	0.6	0.73	0.6	0.64	0.62			0.16	

DEV rat Maternal GeneralMaternal		ALogPS,																
Systemic	PLS	OEstate	160	20	13	54	247	0.73	0.92	0.75	0.83	0.75	0.61	0.68	-98.6	9.49	0.26	214
DEV rat Maternal GeneralMaternal																		
Systemic	PLS	CDK	153	22	11	60	246	0.71	0.93	0.72	0.81	0.72	0.67	0.69	-98.6	9.81	0.28	213
DEV rat Maternal GeneralMaternal		Chemaxo																
Systemic	PLS	n	141	20	13	73	247	0.65	0.92	0.66	0.77	0.66	0.61	0.63	-98.7	9.67	0.19	214
DEV rat Maternal																		
GeneralMaternal Systemic	PLS	Dragon6	153	21	12	61	247	0.7	0.93	0.71	0.81	0.71	0.64	0.68	-98.6	9.7	0.25	214
DEV rat Maternal	1 LO	Diagono	100	<u> </u>	12	01	241	0.7	0.55	0.7 1	0.01	0.71	0.04	0.00	-90.0	3.1	0.23	214
GeneralMaternal		Fragment																
Systemic	PLS	or	156	17	16	58	247	0.7	0.91	0.73	0.81	0.73	0.52	0.62	-98.8	9.18	0.18	214
DEV rat Maternal GeneralMaternal																		
Systemic	PLS	GSFrag	158	18	15	56	247	0.71	0.91	0.74	0.82	0.74	0.55	0.64	-98.7	9.28	0.21	214
DEV rat Maternal																		
GeneralMaternal Systemic	PLS	Inductive	143	18	15	71	247	0.65	0.91	0.67	0.77	0.67	0.55	0.61	-98.8	0./1	0.15	214
DEV rat Maternal	1 LO	IIIuuciive	140	10	10	- / 1	241	0.00	0.51	0.07	0.77	0.07	0.55	0.01	-30.0	3.41	0.15	214
GeneralMaternal		Mera,					_				_							
Systemic	PLS	Mersy	145	22	11	69	247	0.68	0.93	0.68	0.78	0.68	0.67	0.67	-98.7	9.89	0.24	214
DEV rat Maternal GeneralMaternal																		
Systemic	PLS	QNPR	155	16	17	59	247	0.69	0.9	0.72	8.0	0.72	0.48	0.6	-98.8	9.07	0.15	214
DEV rat Maternal		Chacter																
GeneralMaternal Systemic	PLS	Spectrop hores	132	17	16	82	247	0.6	0.89	0.62	0.73	0.62	0.52	0.57	-98.9	0 36	0 00	214
Systemic DEV rat Maternal	FLO	110162	132	17	10	02	241	0.0	0.09	0.02	0.73	0.02	0.32	0.57	-90.9	J.30	0.09	Z 14
GeneralMaternal																		
Systemic	J48	Adriana	153	17	16	60	246	0.69	0.91	0.72	8.0	0.72	0.52	0.62	-98.8	9.2	0.17	213
DEV rat Maternal		AL DC																
GeneralMaternal	J48	ALogPS, OEstate	174	16	17	40	247	0.77	0.91	0.81	0.86	0.81	0.48	0.65	-98.7	ΩΩ	0.24	214
Systemic DEV rat Maternal	J40	OLSiale	174	10	17	40	241	0.77	0.91	0.01	0.00	0.01	0.40	0.05	-90.7	0.0	0.24	214
GeneralMaternal																		
Systemic	J48	CDK	163	20	13	50	246	0.74	0.93	0.77	0.84	0.77	0.61	0.69	-98.6	9.44	0.28	213
DEV rat Maternal		Chemaxo																
GeneralMaternal Systemic	J48	n	160	22	11	54	247	0.74	0.94	0.75	0.83	0.75	0.67	0.71	-98.6	9.75	0.31	214
DEV rat Maternal																		
GeneralMaternal	140	DC	470	40	4.4	4.4	047	0.77	0.00	0.70	0.05	0.70	0.50	0.00	00.0	0.00	0.00	044
Systemic	J48	Dragon6	170	19	14	44	247	0.77	0.92	0.79	0.85	0.79	0.58	0.69	-98.6	9.23	0.29	214
DEV rat Maternal GeneralMaternal		Fragment																
Systemic	J48	or	179	15	18	35	247	0.79	0.91	0.84	0.87	0.84	0.45	0.65	-98.7	8.58	0.25	214
DEV rat Maternal																		
GeneralMaternal Systemic	J48	GSFrag	159	18	15	55	247	0.72	0.91	0.74	0.82	0.74	0.55	0.64	-98.7	9.27	0.22	214
DEV rat Maternal								· -										
GeneralMaternal	140	Landon C	450	4-	4.0		0.47	0 74	0.04	0 7 4	0.00	0 - 1	0.50	0.00	00 -	0.45	0.40	
Systemic	J48	Inductive	159	17	16	55	247	0.71	0.91	0.74	0.82	0.74	0.52	0.63	-98.7	9.15	0.19	214
DEV rat Maternal GeneralMaternal		Mera,																
Systemic	J48	Mersy	165	17	16	49	247	0.74	0.91	0.77	0.84	0.77	0.52	0.64	-98.7	9.07	0.22	214
DEV rat Maternal																		
GeneralMaternal Systemic	J48	QNPR	165	17	16	49	247	0.74	0.91	0.77	0.84	0.77	0.52	0.64	-98.7	9 07	0 22	214
DEV rat Maternal	0-10	S(11) 11	100	.,		70	<u>_</u> -T1	0.17	0.01	0.11	0.04	0.11	0.02	0.07	50.7	5.01	0.22	_ 1-7
GeneralMaternal	_	Spectrop					_				_		_			_		
Systemic	J48	hores	146	19	14	68	247	0.67	0.91	0.68	0.78	0.68	0.58	0.63	-98.7	9.51	0.18	214
DEV rat Maternal PregnancyRelated																		
MaternalPregLoss	RF	Adriana	43	84	79	40	246	0.52	0.35	0.52	0.42	0.52	0.52	0.52	-99.0	7.54	0.03	83
DEV rat Maternal		ALogPS,																
PregnancyRelated MaternalPregLoss	RF	OEstate	44	88	76	39	247	0.53	0.37	0.53	0.43	0.53	0.54	0.53	-98.9	7 62	0.06	83
atoman rogeoss	1 (1	OLSIGIE	7-7	50	, 0	0.9	1	0.00	0.01	0.00	0.70	0.00	0.04	0.00	50.5	1.02	0.00	55

PregnancyRelated MaternalPregLoss	RF	CDK	39	89	74	44	246	0.52	0.35	0.47	0.4	0.47	0.55	0.51	-99 N	7.66	0.02	83
DEV rat Maternal	NI	CDK	39	09	74		240	0.52	0.55	0.47	0.4	0.47	0.55	0.51	-99.0	7.00	0.02	03
PregnancyRelated		Chemaxo																
MaternalPregLoss	RF	n	48	96	68	35	247	0.58	0.41	0.58	0.48	0.58	0.59	0.58	-98.8	7.79	0.15	83
DEV rat Maternal PregnancyRelated																		
MaternalPregLoss	RF	Dragon6	45	92	72	38	247	0.55	0.38	0.54	0.45	0.54	0.56	0.55	-98.9	7.71	0.1	83
DEV rat Maternal																		
PregnancyRelated	D.E.	Fragment	40	0.5	70	40	0.47	0.50	0.05	0.50	0.40	0.50	0.50	0.50	00.0	7.55	0.00	
MaternalPregLoss	RF	or	43	85	79	40	247	0.52	0.35	0.52	0.42	0.52	0.52	0.52	-99.0	7.55	0.03	83
DEV rat Maternal PregnancyRelated																		
MaternalPregLoss	RF	GSFrag	37	76	88	46	247	0.46	0.3	0.45	0.36	0.45	0.46	0.45	-99.1	7.32	.086	83
DEV rat Maternal																		
PregnancyRelated	RF	Industivo	47	90	74	36	247	0.55	0.20	0.57	0.46	0.57	0.55	0.56	00.0	7.65	0 11	83
MaternalPregLoss	KF	Inductive	47	90	74	30	247	0.55	0.39	0.57	0.46	0.57	0.55	0.56	-96.9	7.65	0.11	ಂಎ
DEV rat Maternal PregnancyRelated		Mera,																
MaternalPregLoss	RF	Mersy	47	92	72	36	247	0.56	0.39	0.57	0.47	0.57	0.56	0.56	-98.9	7.7	0.12	83
DEV rat Maternal																		\neg
PregnancyRelated MaternalPregLoss	RF	QNPR	40	91	73	43	247	0.53	0.35	0.48	0.41	0.48	0.55	0.52	_ga n	7.69	0 03	83
DEV rat Maternal	IXI	QIVIII	40	91	73	40	241	0.55	0.55	0.40	0.41	0.40	0.55	0.52	-99.0	7.03	0.03	-03
PregnancyRelated		Spectrop																
MaternalPregLoss	RF	hores	41	82	82	42	247	0.5	0.33	0.49	0.4	0.49	0.5	0.5	-99.0	7.48	.006	83
DEV rat Maternal	ASN																	
PregnancyRelated MaternalPregLoss	N	Adriana	38	96	67	45	246	0.54	0.36	0.46	0.4	0.46	0.59	0.52	-99 N	7.83	0 04	83
	. 4	, which	50	50	<i>31</i>	70	270	0.04	0.00	0.70	0.4	0.70	0.00	0.02	55.0	7.00	J.U -1	-55
DEV rat Maternal PregnancyRelated	ASN	ALogPS,																
MaternalPregLoss	N	OEstate	34	90	74	49	247	0.5	0.31	0.41	0.36	0.41	0.55	0.48	-99.0	7.64	.04	83
DEV rat Maternal	461																	\neg
PregnancyRelated	ASN	CDK	07	0.4	00	50	0.40	0.40	0.00	0.00		0.00	0.50	0.45	00.4	7.00	005	
MaternalPregLoss	N	CDK	27	94	69	56	246	0.49	0.28	0.33	0.3	0.33	0.58	0.45	-99.1	7.66	.095	83
DEV rat Maternal PregnancyRelated	ASN	Chemaxo																
MaternalPregLoss	N	n	43	97	67	40	247	0.57	0.39	0.52	0.45	0.52	0.59	0.55	-98.9	7.84	0.1	83
DEV rat Maternal	A 0 h 1																	\Box
PregnancyRelated	ASN	Dragane	20	10 <i>E</i>	ΕO	E2	247	0 55	0.24	0.36	0.25	0.36	0.64	0.5	00.0	7.07	Λ	ادو
MaternalPregLoss	N	Dragon6	30	105	59	53	247	0.55	0.34	0.36	0.35	0.36	0.64	0.5	-99.0	1.91	0.	83
DEV rat Maternal PregnancyRelated	ASN	Fragment																
MaternalPregLoss	N	or	30	96	68	53	247	0.51	0.31	0.36	0.33	0.36	0.59	0.47	-99.1	7.74	.051	83
DEV rat Maternal	A CA !																	\Box
PregnancyRelated	ASN N	GSFrag	37	101	63	46	247	0.56	0.37	0.45	0.4	0.45	0.62	0.53	_0.2 U	7.93	0.06	83
MaternalPregLoss	IN	Goriag	31	101	US	40	241	0.56	0.37	0.45	0.4	0.45	0.62	0.55	-90.9	1.93	0.00	03
DEV rat Maternal PregnancyRelated	ASN																	
MaternalPregLoss	N	Inductive	38	97	67	45	247	0.55	0.36	0.46	0.4	0.46	0.59	0.52	-99.0	7.84	0.05	83
DEV rat Maternal	ACNI	Moro																
PregnancyRelated MaternalPregLoss	ASN N	Mera, Mersy	40	105	59	43	247	0.59	0.4	0.48	0.44	0.48	0.64	0.56	_0.2 O	8.05	ი 12	83
DEV rat Maternal	IN	ivicisy	40	100	59	43	241	บ.บฮ	0.4	0.40	0.44	0.40	0.04	0.30	-30.3	0.00	0.12	03
DEV rat Maternal PregnancyRelated	ASN																	
MaternalPregLoss	N	QNPR	30	94	70	53	247	0.5	0.3	0.36	0.33	0.36	0.57	0.47	-99.1	7.69	.063	83
DEV rat Maternal	ACN	Spectron																
PregnancyRelated	ASN N	Spectrop	39	104	60	44	247	0.58	0.39	0.47	0.43	0.47	0.63	0.55	_0.00	8.02	0.1	83
MaternalPregLoss	IN	hores	აყ	104	00	44	241	0.36	0.39	0.47	0.43	0.47	0.03	0.00	-90.9	0.02	U. I	os
DEV rat Maternal PregnancyRelated	ASN	CDK, TA,																
MaternalPregLoss	N	TP	34	99	64	49	246	0.54	0.35	0.41	0.38	0.41	0.61	0.51	-99.0	7.88	0.02	83
DEV rat Maternal	ACNI																	
PregnancyRelated	ASN	CDK, TA	30	98	65	52	246	0.52	0 33	0.36	0.34	U 36	0.6	0 40	_00_0	7 Q1	USE	83
MaternalPregLoss	N	CDK, IA	30	90	65	53	246	0.52	0.32	0.36	0.34	0.36	0.6	0.48	-99.0	7.81	.030	03
DEV rat Maternal	ASN																	
PregnancyRelated	, .																	

DEV rat Maternal PregnancyRelated MaternalPregLoss	ASN N	TA, TP	35	105	59	48	247	0.57	0.37	0.42	0.4	0.42	0.64	0.53	-98.9	8.02	0.06	83
DEV rat Maternal PregnancyRelated MaternalPregLoss	ASN N	TA	30	101	63	53	247	0.53	0.32	0.36	0.34	0.36	0.62	0.49	-99.0	7.87	.022	83
DEV rat Maternal PregnancyRelated MaternalPregLoss	ASN N	TP	31	101	63	52	247	0.53	0.33	0.37	0.35	0.37	0.62	0.49	-99.0	7 88	.01	83
DEV rat Maternal PregnancyRelated	FSM	CDK, TA,	-														-	
MaternalPregLoss DEV rat Maternal PregnancyRelated	FSM	TP	31	107	56	52	246	0.56	0.36	0.37	0.36	0.37	0.66	0.51	-99.0			83
MaternalPregLoss DEV rat Maternal PregnancyRelated	LR FSM	CDK, TA	31	102	61	52	246	0.54	0.34	0.37	0.35	0.37	0.63	0.5	-99.0			83
MaternalPregLoss DEV rat Maternal PregnancyRelated	LR FSM	CDK, TP	33	87	76	50	246	0.49	0.3	0.4	0.34	0.4	0.53	0.47	-99.1	7.57	.065	83
MaternalPregLoss DEV rat Maternal	LR	TA, TP	32	109	55	51	247	0.57	0.37	0.39	0.38	0.39	0.66	0.53	-98.9	8.1	0.05	83
PregnancyRelated MaternalPregLoss	FSM LR	TA	28	111	53	55	247	0.56	0.35	0.34	0.34	0.34	0.68	0.51	-99.0	8.1	0.01	83
DEV rat Maternal PregnancyRelated MaternalPregLoss	FSM LR	TP	34	103	61	49	247	0.55	0.36	0.41	0.38	0.41	0.63	0.52	-99.0	7.96	0.04	83
DEV rat Maternal PregnancyRelated MaternalPregLoss	KNN	CDK, TA, TP	15	141	22	68	246	0.63	0.41	0.18	0.25	0.18	0.87	0.52	-99.0	8.81	0.06	83
DEV rat Maternal PregnancyRelated MaternalPregLoss	KNN	CDK, TA	2	159	4	81	246	0.65	0.33	0.02	0.04	0.02	0.98	0.5	-99.0	8.88	.001	83
DEV rat Maternal PregnancyRelated MaternalPregLoss	KNN	CDK, TP	16	138	25	67	246	0.63	0.39	0.19	0.26	0.19	0.85	0.52	-99.0	8.71	0.05	83
DEV rat Maternal PregnancyRelated MaternalPregLoss	KNN	TA, TP	8	154	10	75	247	0.66	0.44	0.1	0.16	0.1	0.94	0.52	-99.0	9.15	0.06	83
DEV rat Maternal PregnancyRelated MaternalPregLoss	KNN	TA	6	157	7	77	247	0.66	0.46	0.07	0.13	0.07	0.96	0.51	-99.0	9.27	0.06	83
DEV rat Maternal PregnancyRelated MaternalPregLoss	KNN	TP	25	113	51	58	247	0.56	0.33	0.3	0.31	0.3	0.69	0.5	-99.0	8.1	.01	83
DEV rat Maternal PregnancyRelated MaternalPregLoss	LibS VM	CDK, TA, TP	11	138	25	72	246	0.61	0.31	0.13	0.18	0.13	0.85	0.49	-99 N	8.42	028	83
DEV rat Maternal PregnancyRelated	LibS																	
MaternalPregLoss DEV rat Maternal PregnancyRelated	VM LibS	CDK, TA	18	123	40	65	246	0.57	0.31			0.22		0.49	-99.0			83
MaternalPregLoss DEV rat Maternal PregnancyRelated	VM LibS	CDK, TP	15	129	34	68	246	0.59	0.31	0.18	0.23	0.18	0.79	0.49	-99.0	8.29	.033	83
MaternalPregLoss DEV rat Maternal	VM	TA, TP	20	129	35	63	247	0.6	0.36	0.24	0.29	0.24	0.79	0.51	-99.0	8.47	0.03	83
PregnancyRelated MaternalPregLoss DEV rat Maternal	LibS VM	TA	9	141	23	74	247	0.61	0.28	0.11	0.16	0.11	0.86	0.48	-99.0	8.36	.045	83
PregnancyRelated MaternalPregLoss	LibS VM	TP	21	122	42	62	247	0.58	0.33	0.25	0.29	0.25	0.74	0.5	-99.0	8.26	.003	83
DEV rat Maternal PregnancyRelated MaternalPregLoss	MLR A	CDK, TA, TP	39	100	63	44	246	0.57	0.38	0.47	0.42	0.47	0.61	0.54	-98.9	7.93	0.08	83

DEV rat Maternal PregnancyRelated	MLR																	
MaternalPregLoss	Α	CDK, TA	38	80	83	45	246	0.48	0.31	0.46	0.37	0.46	0.49	0.47	-99.1	7.43	.049	83
DEV rat Maternal																		\neg
PregnancyRelated	MLR	ODK TD	40	0.4	70	07	0.40	0.50	0.00	0.55	0.40	0.55	0.50	0.50	00.0	- -	0.44	
MaternalPregLoss	Α	CDK, TP	46	91	72	37	246	0.56	0.39	0.55	0.46	0.55	0.56	0.56	-98.9	7.7	0.11	83
DEV rat Maternal PregnancyRelated	MLR																	
MaternalPregLoss	Α	TA, TP	34	87	77	49	247	0.49	0.31	0.41	0.35	0.41	0.53	0.47	-99.1	7.56	.057	83
DEV rat Maternal		,																$\overline{}$
PregnancyRelated	MLR																	
MaternalPregLoss	Α	TA	34	100	64	49	247	0.54	0.35	0.41	0.38	0.41	0.61	0.51	-99.0	7.89	0.02	83
DEV rat Maternal	MLR																	
PregnancyRelated MaternalPregLoss	A	TP	41	97	67	42	247	0.56	0.38	0.49	0.43	0.49	0.59	0.54	-98.9	7.84	0.08	83
DEV rat Maternal			71	- 51	01	72	271	0.00	0.00	0.43	0.40	0.40	0.00	0.54	-30.3	7.04	0.00	
PregnancyRelated		CDK, TA,																
MaternalPregLoss	PLS	TP	32	99	64	51	246	0.53	0.33	0.39	0.36	0.39	0.61	0.5	-99.0	7.86	.007	83
DEV rat Maternal																		
PregnancyRelated	DI 0	0DI/ T4	00	400	00		0.40	0.50			0.04	0.00	0.04	0.40	00.0	- 00	004	
MaternalPregLoss	PLS	CDK, TA	30	100	63	53	246	0.53	0.32	0.36	0.34	0.36	0.61	0.49	-99.0	7.86	.024	83
DEV rat Maternal																		
PregnancyRelated MaternalPregLoss	PLS	CDK, TP	41	89	74	42	246	0.53	0.36	0.49	0.41	0.49	0.55	0.52	-99.0	7.66	0.04	83
DEV rat Maternal		0D11, 11			• •			0.00	0.00	0.10	0.11	0.10	0.00	0.02	00.0	7.00	0.01	
PregnancyRelated																		
MaternalPregLoss	PLS	TA, TP	29	105	59	54	247	0.54	0.33	0.35	0.34	0.35	0.64	0.49	-99.0	7.96	.01	83
DEV rat Maternal																		
PregnancyRelated	DI C	ΤΛ	20	101	00	- 4	047	0.55	0.05	0.00	0.07	0.00	0.00	0.54	00.0	7.07	0.00	
MaternalPregLoss	PLS	TA	32	104	60	51	247	0.55	0.35	0.39	0.37	0.39	0.63	0.51	-99.0	7.97	0.02	83
DEV rat Maternal PregnancyRelated																		
MaternalPregLoss	PLS	TP	33	91	73	50	247	0.5	0.31	0.4	0.35	0.4	0.55	0.48	-99.0	7.65	.045	83
DEV rat Maternal																		
PregnancyRelated		CDK, TA,																
MaternalPregLoss	J48	TP	37	97	66	46	246	0.54	0.36	0.45	0.4	0.45	0.6	0.52	-99.0	7.85	0.04	83
DEV rat Maternal																		
PregnancyRelated MaternalPregLoss	J48	CDK, TA	33	106	57	50	246	0.57	0.37	0.4	0.38	0.4	0.65	0.52	-99.0	8.05	0.05	83
	340	CDR, IA	33	100	31	50	240	0.57	0.37	0.4	0.30	0.4	0.03	0.52	-99.0	0.03	0.03	
DEV rat Maternal PregnancyRelated																		
MaternalPregLoss	J48	CDK, TP	36	107	56	47	246	0.58	0.39	0.43	0.41	0.43	0.66	0.55	-98.9	8.1	0.09	83
DEV rat Maternal																		\neg
PregnancyRelated							- · -											
MaternalPregLoss	J48	TA, TP	25	106	58	58	247	0.53	0.3	0.3	0.3	0.3	0.65	0.47	-99.1	7.91	.052	83
DEV rat Maternal																		
PregnancyRelated MaternalPregLoss	J48	TA	30	107	57	53	247	0.55	0.34	0.36	0.35	0.36	0.65	0.51	-99.0	8.02	0.01	83
DEV rat Maternal	0.10	.,,		107	<u> </u>			0.00	0.01	0.00	0.00	0.00	0.00	0.01	00.0	0.02	0.01	$\stackrel{\circ}{-}$
PregnancyRelated																		
MaternalPregLoss	J48	TP	32	106	58	51	247	0.56	0.36	0.39	0.37	0.39	0.65	0.52	-99.0	8.02	0.03	83
DEV rat Maternal		CDK TA																
PregnancyRelated	DE	CDK, TA,	50	70	00	24	040	0.5	0.00	0.00	0.40	0.00	0.40	0.50	00.0	7 40	0.05	
MaternalPregLoss	RF	TP	52	70	93	31	246	0.5	0.36	0.63	0.46	0.63	0.43	0.53	-98.9	7.13	0.05	83
DEV rat Maternal PregnancyRelated																		
MaternalPregLoss	RF	CDK, TA	47	75	88	36	246	0.5	0.35	0.57	0.43	0.57	0.46	0.51	-99.0	7.3	0.03	83
DEV rat Maternal																		$\overline{}$
PregnancyRelated																		
MaternalPregLoss	RF	CDK, TP	48	78	85	35	246	0.51	0.36	0.58	0.44	0.58	0.48	0.53	-98.9	7.37	0.05	83
DEV rat Maternal																		
PregnancyRelated	DE	TA TD	20	00	00	4.4	247	0.40	0.22	0.47	0.20	0.47	0.5	0.40	00.0	7 47	020	0.2
MaternalPregLoss	RF	TA, TP	39	82	82	44	247	0.49	0.32	0.47	0.38	0.47	0.5	0.48	-99.0	7.47	.028	83
DEV rat Maternal PregnancyRelated																		
MaternalPregLoss	RF	TA	42	88	76	41	247	0.53	0.36	0.51	0.42	0.51	0.54	0.52	-99.0	7.62	0.04	83
DEV rat Maternal														-			-	\neg
PregnancyRelated																		
MaternalPregLoss	RF	TP	40	85	79	43	247	0.51	0.34	0.48	0.4	0.48	0.52	0.5	-99.0	7.55	0.	83

PregnancyRelated	FSM	A alui a a	40	00	0.4	44	040	0.5	0.04	0.54	0.44	0.54	0.5	0.5	00.0	7 40	0.04	00
MaternalPregLoss	LR	Adriana	42	82	81	41	246	0.5	0.34	0.51	0.41	0.51	0.5	0.5	-99.0	7.49	0.01	83
DEV rat Maternal PregnancyRelated MaternalPregLoss	FSM LR	ALogPS, OEstate	41	76	88	42	247	0.47	0.32	0.49	0.39	0.49	0.46	0.48	-99.0	7 33	.04	83
	LIX	OLSiale	71	70	00	72	241	0.47	0.52	0.43	0.55	0.43	0.40	0.40	-99.0	7.55	.04	- 00
DEV rat Maternal PregnancyRelated	FSM																	
MaternalPregLoss	LR	CDK	30	86	77	53	246	0.47	0.28	0.36	0.32	0.36	0.53	0.44	-99.1	7.51	.106	83
DEV rat Maternal																		
PregnancyRelated	FSM	Chemaxo																
MaternalPregLoss	LR	n	41	91	73	42	247	0.53	0.36	0.49	0.42	0.49	0.55	0.52	-99.0	7.69	0.05	83
DEV rat Maternal																		
PregnancyRelated	FSM	D	00	0.4	70	4.4	0.47	0.54	0.00	0.47	0.44	0.47	0.57	0.50	00.0	7 70	0.04	00
MaternalPregLoss	LR	Dragon6	39	94	70	44	247	0.54	0.36	0.47	0.41	0.47	0.57	0.52	-99.0	7.76	0.04	83
DEV rat Maternal	ECM	Fragment																
PregnancyRelated MaternalPregLoss	LR	or	33	84	80	50	247	0.47	0.29	0.4	0.34	0.4	0.51	0.45	-99.1	7 / 12	086	83
	LIX	OI .	- 55	0+	- 00	- 50	271	0.77	0.20	0.4	0.04	0.7	0.01	0.40	-00.1	7.40	.000	- 00
DEV rat Maternal PregnancyRelated	FSM																	
MaternalPregLoss	LR	GSFrag	45	83	81	38	247	0.52	0.36	0.54	0.43	0.54	0.51	0.52	-99.0	7.49	0.05	83
DEV rat Maternal																		
PregnancyRelated	FSM																	
MaternalPregLoss	LR	Inductive	70	40	124	13	247	0.45	0.36	0.84	0.51	0.84	0.24	0.54	-98.9	5.74	0.1	83
DEV rat Maternal	- 6.																	
PregnancyRelated		Mera,	00	400	0.4		0.47	0.55	0.00	0 17	0.40	o 4 -	0.00	0.55	00.0	7.00	0.00	
MaternalPregLoss	LR	Mersy	39	103	61	44	247	0.57	0.39	0.47	0.43	0.47	0.63	0.55	-98.9	7.99	0.09	83
DEV rat Maternal	FSM																	
PregnancyRelated MaternalPregLoss	LR	QNPR	34	89	75	49	247	0.5	0.31	0.41	0.35	0.41	0.54	0.48	-99.0	7 61	045	83
	LIX	SCIAL IV	J +	08	13	70	<u> </u>	0.0	0.01	U. T I	0.00	0.71	0.04	0.70	-99.0	7.01	.040	03
DEV rat Maternal PregnancyRelated	FSM	Spectrop																
MaternalPregLoss	LR	hores	35	101	63	48	247	0.55	0.36	0.42	0.39	0.42	0.62	0.52	-99.0	7.92	0.04	83
DEV rat Maternal																		
PregnancyRelated	[/KIKI	۸	70	00	105	4.4	040	0.44	0.05	0.07	0.5	0.07	0.47	0.50	00.0	E 47	0.05	
MaternalPregLoss	KNN	Adriana	72	28	135	11	246	0.41	0.35	0.87	0.5	0.87	0.17	0.52	-99.0	5.1/	0.05	83
DEV rat Maternal		ALogPS,																
PregnancyRelated MaternalPregLoss	KNINI	OEstate	24	116	48	59	247	0.57	0.33	0.29	0.31	0.29	0.71	0.5	-99.0	8 16	004	83
DEV rat Maternal	IXININ	JESIAIC	47	110	70	33	41	0.01	0.00	0.23	0.01	0.23	0.7 1	0.0	-55.0	0.10	.004	- 55
PregnancyRelated																		
MaternalPregLoss	KNN	CDK	39	82	81	44	246	0.49	0.33	0.47	0.38	0.47	0.5	0.49	-99.0	7.48	.026	83
DEV rat Maternal		Chemaxo																
PregnancyRelated MaternalPregLoss	KNN		52	75	89	31	247	0.51	0.37	0.63	0.46	0.63	0.46	0.54	-98.9	7 24	0.08	83
DEV rat Maternal	13/414		- J_			<u> </u>	_ 11	0.01	0.01	0.00	J. 70	0.00	J. 70	0.5⊣	50.0	∠-r	0.00	55
PregnancyRelated																		
MaternalPregLoss	KNN	Dragon6	57	61	103	26	247	0.48	0.36	0.69	0.47	0.69	0.37	0.53	-98.9	6.81	0.06	83
DEV rat Maternal		Fragment																
PregnancyRelated MaternalPregLoss	KNN	Ū	71	33	131	12	247	0.42	0.35	0.86	0.5	0.86	0.2	0.53	-98.9	5.43	0.07	83
DEV rat Maternal	11 1																	- 55
PregnancyRelated							_	_						_		_		
MaternalPregLoss	KNN	GSFrag	71	36	128	12	247	0.43	0.36	0.86	0.5	0.86	0.22	0.54	-98.9	5.54	0.09	83
DEV rat Maternal																		
PregnancyRelated MaternalPregLoss	KNN	Inductive	40	72	92	43	247	0.45	0.3	0.48	0.37	0.48	0.44	0.46	-99.1	7.23	.075	83
DEV rat Maternal	14414					.0	_ 11	J. 70	0.0	0.40	0.01	0.40	U. T-T	0.10	50.1	20	.0.0	50
PregnancyRelated		Mera,																
MaternalPregLoss	KNN	Mersy	52	77	87	31	247	0.52	0.37	0.63	0.47	0.63	0.47	0.55	-98.9	7.29	0.09	83
DEV rat Maternal					440		247	0.45	0.25	0.72	0.47	0.72	0.31	0.52	-99.0	6 47	0.03	83
PregnancyRelated	KNN	QNPR	60	51	113	23	241	U 4:5	U .5:1	0//		0//		0:12		U + /		
PregnancyRelated MaternalPregLoss	KNN	QNPR	60	51	113	23	247	0.45	0.35	0.72	0.47	0.72	0.51	0.52	-33.0	0.47	0.03	00
PregnancyRelated		QNPR Spectrop hores	32	98	66	<u>23</u> 51	247			0.72		0.72	0.6		-99.0			83

DEV rat Maternal PregnancyRelated	LibS																	
MaternalPregLoss	VM	Adriana	22	127	36	61	246	0.61	0.38	0.27	0.31	0.27	0.78	0.52	-99.0	8.48	0.05	83
DEV rat Maternal PregnancyRelated	LibS	ALogPS,																
MaternalPregLoss	VM	OEstate	10	134	30	73	247	0.58	0.25	0.12	0.16	0.12	0.82	0.47	-99.1	8.13	.08	83
DEV rat Maternal	Libo																	
PregnancyRelated MaternalPregLoss	LibS VM	CDK	11	132	31	72	246	0.58	0.26	0.13	0.18	0.13	0.81	0.47	-99 1	8.16	072	83
	VIVI	ODIC		102		12	240	0.00	0.20	0.10	0.10	0.10	0.01	0.47	-00.1	0.10	.012	00
DEV rat Maternal PregnancyRelated	LibS	Chemaxo																
MaternalPregLoss	VM	n	21	126	38	62	247	0.6	0.36	0.25	0.3	0.25	0.77	0.51	-99.0	8.39	0.02	83
DEV rat Maternal	LibS																	
PregnancyRelated MaternalPregLoss	VM	Dragon6	12	131	33	71	247	0.58	0.27	0.14	0.19	0.14	0.8	0.47	-99 1	8.16	069	83
-	V 1V1	Diagono	- 12	101	- 00			0.00	0.21	0.17	0.10	0.17	0.0	0.47	00.1	0.10	.000	
DEV rat Maternal PregnancyRelated	LibS	Fragment																
MaternalPregLoss	VM	or	15	137	27	68	247	0.62	0.36	0.18	0.24	0.18	0.84	0.51	-99.0	8.58	0.02	83
DEV rat Maternal	1 :1- 0																	
PregnancyRelated MaternalPregLoss	LibS VM	GSFrag	19	126	38	64	247	0.59	0.33	0.23	0.27	0.23	0.77	0.5	-99 N	8.33	003	83
	VIVI	COLIAG	13	120	- 50	- 0 -	271	0.00	0.00	0.20	0.21	0.20	0.77	0.5	-33.0	0.00	.000	00
DEV rat Maternal PregnancyRelated	LibS																	
MaternalPregLoss	VM	Inductive	24	127	37	59	247	0.61	0.39	0.29	0.33	0.29	0.77	0.53	-98.9	8.51	0.07	83
DEV rat Maternal	Libo	Moro																
PregnancyRelated MaternalPregLoss	VM	Mera, Mersy	13	137	27	70	247	0.61	0.33	0.16	0.21	0.16	0.84	0.5	-99.0	8 47	.01	83
-	VIVI	IVICIO	13	107	21	70	241	0.01	0.55	0.10	0.21	0.10	0.04	0.5	-99.0	0.47	.01	00
DEV rat Maternal PregnancyRelated	LibS																	
MaternalPregLoss	VM	QNPR	9	133	31	74	247	0.57	0.23	0.11	0.15	0.11	0.81	0.46	-99.1	8.01	.103	83
DEV rat Maternal	0																	
PregnancyRelated		Spectrop	11	115	10	60	247	0.64	0.42	0.17	0.24	0.17	000	0.52	00.0	0 02	0.07	02
MaternalPregLoss DEV rat Maternal	VM	hores	14	145	19	69	247	0.64	0.42	0.17	0.24	0.17	0.88	0.53	-96.9	8.93	0.07	83
PregnancyRelated	MLR																	
MaternalPregLoss	Α	Adriana	41	82	81	42	246	0.5	0.34	0.49	0.4	0.49	0.5	0.5	-99.0	7.49	.003	83
DEV rat Maternal	MID	AL caDC																
PregnancyRelated MaternalPregLoss	A	ALogPS, OEstate	40	81	83	43	247	0.49	0.33	0.48	0.39	0.48	0.49	0.49	_aa n	7.45	023	83
DEV rat Maternal		OLSIGIC		- 01	- 00		271	0.43	0.00	0.40	0.00	0.40	0.40	0.40	-33.0	7.45	.020	00
PregnancyRelated	MLR																	
MaternalPregLoss	Α	CDK	37	79	84	46	246	0.47	0.31	0.45	0.36	0.45	0.48	0.47	-99.1	7.4	.066	83
DEV rat Maternal PregnancyRelated	MLR	Chemaxo																
MaternalPregLoss	Α	n	44	97	67	39	247	0.57	0.4	0.53	0.45	0.53	0.59	0.56	-98.9	7.84	0.12	83
DEV rat Maternal	MLR																	
PregnancyRelated MaternalPregLoss	A	Dragon6	44	79	85	39	247	0.5	0.34	0.53	0.42	0.53	0.48	0.51	-99.0	7.4	0.01	83
DEV rat Maternal			-															
PregnancyRelated		Fragment	30	90	76	11	247	0.51	0.24	0.47	0.30	0.47	0.54	0.5	00.0	7 60	0.01	0.7
MaternalPregLoss DEV rat Maternal	A	or	39	88	76	44	247	0.51	0.34	0.47	0.39	0.47	0.54	0.5	-99.0	7.62	0.01	83
	MLR																	
PregnancyRelated	Α	GSFrag	44	82	82	39	247	0.51	0.35	0.53	0.42	0.53	0.5	0.52	-99.0	7.47	0.03	83
MaternalPregLoss																		
MaternalPregLoss DEV rat Maternal	MLR						247	0.57	0.39	0.47	0.42	0.47	0.62	0.55	-98.9	7 07	0.00	83
MaternalPregLoss DEV rat Maternal PregnancyRelated		Inductive	39	102	62	44	247	0.07								1.51	0.09	UU
PregnancyRelated MaternalPregLoss DEV rat Maternal PregnancyRelated MaternalPregLoss DEV rat Maternal	MLR A		39	102	62	44	247	0.07								1.51	0.09	- 00
MaternalPregLoss DEV rat Maternal PregnancyRelated MaternalPregLoss DEV rat Maternal PregnancyRelated	MLR A MLR	Mera,							U 33	0.43	0.37	0.43	N 52		-00 0			
MaternalPregLoss DEV rat Maternal PregnancyRelated MaternalPregLoss DEV rat Maternal PregnancyRelated MaternalPregLoss	MLR A		39 36	102 86	62 78	47	247	0.49	0.32	0.43	0.37	0.43	0.52	0.48	-99.0		.04	
Maternal PregLoss DEV rat Maternal PregnancyRelated Maternal PregLoss DEV rat Maternal PregnancyRelated MaternalPregLoss DEV rat Maternal PregnancyRelated MaternalPregLoss	MLR A MLR A	Mera, Mersy	36	86	78	47	247	0.49						0.48		7.56	.04	83
Maternal PregLoss DEV rat Maternal PregnancyRelated Maternal PregLoss DEV rat Maternal PregnancyRelated Maternal PregLoss DEV rat Maternal PregnancyRelated Maternal PregLoss	MLR A MLR A	Mera,							0.32	0.43	0.37	0.43	0.52				.04	83
MaternalPregLoss DEV rat Maternal PregnancyRelated MaternalPregLoss DEV rat Maternal PregnancyRelated MaternalPregLoss DEV rat Maternal PregnancyRelated MaternalPregLoss	MLR A MLR A MLR A	Mera, Mersy	36	86	78	47	247	0.49						0.48		7.56	.04	83

DEV rat Maternal PregnancyRelated MaternalPregLoss	PLS	Adriana	48	77	86	35	246	0.51	0.36	0.58	0.44	0.58	0.47	0.53	-98.9	7.34	0.05	83
DEV rat Maternal PregnancyRelated		ALogPS,						0.0.	0.00	0.00	0	0.00	0	0.00			0.00	
MaternalPregLoss	PLS	OEstate	38	91	73	45	247	0.52	0.34	0.46	0.39	0.46	0.55	0.51	-99.0	7.69	0.01	83
DEV rat Maternal PregnancyRelated																		
MaternalPregLoss	PLS	CDK	37	94	69	46	246	0.53	0.35	0.45	0.39	0.45	0.58	0.51	-99.0	7.77	0.02	83
DEV rat Maternal PregnancyRelated		Chemaxo																
MaternalPregLoss	PLS	n	36	89	75	47	247	0.51	0.32	0.43	0.37	0.43	0.54	0.49	-99.0	7.63	.022	83
DEV rat Maternal																		
PregnancyRelated MaternalPregLoss	PLS	Dragon6	31	96	68	52	247	0.51	0.31	0.37	0.34	0.37	0.59	0.48	-99.0	7.75	.04	83
DEV rat Maternal		Fragment																
PregnancyRelated MaternalPregLoss	PLS	Fragment or	32	95	69	51	247	0.51	0.32	0.39	0.35	0.39	0.58	0.48	-99.0	7 74	034	83
DEV rat Maternal		01						0.01	0.02	0.00	0.00	0.00	0.00	0.10	00.0		.001	
PregnancyRelated	DI C	005	40	04	00	27	047	0.54	0.00	0.55	0.40	0.55	0.40	0.50	00.0	7 44	0.05	00
MaternalPregLoss DEV rat Maternal	PLS	GSFrag	46	81	83	37	247	0.51	0.36	0.55	0.43	0.55	0.49	0.52	-99.0	1.44	0.05	83
PregnancyRelated																		
MaternalPregLoss	PLS	Inductive	45	89	75	38	247	0.54	0.38	0.54	0.44	0.54	0.54	0.54	-98.9	7.64	0.08	83
DEV rat Maternal PregnancyRelated		Mera,																
MaternalPregLoss	PLS	Mersy	37	102	62	46	247	0.56	0.37	0.45	0.41	0.45	0.62	0.53	-98.9	7.96	0.07	83
DEV rat Maternal PregnancyRelated																		
MaternalPregLoss	PLS	QNPR	34	87	77	49	247	0.49	0.31	0.41	0.35	0.41	0.53	0.47	-99.1	7.56	.057	83
DEV rat Maternal		Cnootron																
PregnancyRelated MaternalPregLoss	PLS	Spectrop hores	36	92	72	47	247	0.52	0.33	0.43	0.38	0.43	0.56	0.5	-99.0	7.7	.005	83
DEV rat Maternal		110100						0.02	0.00	0.10	0.00	0.10	0.00	0.0	00.0		.000	
PregnancyRelated MaternalPregLoss	J48	Adriana	32	110	53	51	246	0.58	0.38	0.39	0.38	0.39	0.67	0.53	-98.9	0 15	0.06	83
	340	Auriaria	32	110	55	31	240	0.56	0.30	0.59	0.36	0.59	0.07	0.55	-90.9	0.15	0.00	00
DEV rat Maternal PregnancyRelated		ALogPS,																
MaternalPregLoss	J48	OEstate	33	90	74	50	247	0.5	0.31	0.4	0.35	0.4	0.55	0.47	-99.1	7.63	.051	83
DEV rat Maternal PregnancyRelated																		
MaternalPregLoss	J48	CDK	30	104	59	53	246	0.54	0.34	0.36	0.35	0.36	0.64	0.5	-99.0	7.96	.001	83
DEV rat Maternal		Chemaxo																
PregnancyRelated MaternalPregLoss	J48	n	32	103	61	51	247	0.55	0.34	0.39	0.36	0.39	0.63	0.51	-99.0	7.94	0.01	83
DEV rat Maternal																		
PregnancyRelated MaternalPregLoss	J48	Dragon6	33	106	58	50	247	0.56	0.36	0.4	0.38	0.4	0.65	0.52	-99.0	8 03	0.04	83
DEV rat Maternal	340	Diagono	33	100	30	30	241	0.50	0.30	0.4	0.36	0.4	0.03	0.52	-99.0	0.03	0.04	00
PregnancyRelated		Fragment					~											
MaternalPregLoss	J48	or	28	103	61	55	247	0.53	0.31	0.34	0.33	0.34	0.63	0.48	-99.0	7.89	.034	83
DEV rat Maternal PregnancyRelated																		
MaternalPregLoss	J48	GSFrag	30	105	59	53	247	0.55	0.34	0.36	0.35	0.36	0.64	0.5	-99.0	7.97	0.	83
DEV rat Maternal PregnancyRelated																		
MaternalPregLoss	J48	Inductive	35	111	53	48	247	0.59	0.4	0.42	0.41	0.42	0.68	0.55	-98.9	8.19	0.1	83
DEV rat Maternal		Mera,																
PregnancyRelated MaternalPregLoss	J48	Mersy	32	118	46	51	247	0.61	0.41	0.39	0.4	0.39	0.72	0.55	-98.9	8.36	0.11	83
DEV rat Maternal		,				· · ·												
PregnancyRelated MaternalPregLoss	J48	QNPR	32	105	59	51	247	0.55	0.35	0.39	0.37	0.39	0.64	0.51	-99.0	8.	0.03	83
DEV rat Maternal	0-70		J <u>Z</u>	100	00	J1	471	0.00	0.00	0.00	0.01	0.00	0.04	0.01	-55.0	0.	0.00	00
PregnancyRelated	140	Spectrop	00	101	40	<i></i>	0.47	0.01	o 4	0.05	0.07	0.05	0 7 4	0.54	00.0	0.44	0.00	
MaternalPregLoss	J48	hores	29	121	43	54	247	0.61	0.4	0.35	0.37	0.35	0.74	0.54	-98.9	8.41	0.09	83
DEV rat																		
Developmental	DE	A drices	22	111	0.5	O.F.	246	0.55	0.24	0.47	0.00	0.47	0.57	0.50	00.0	6.64	0.03	47
Skeletal Appendicular	ΚΓ	Adriana	22	114	85	25	246	0.55	0.21	0.47	0.29	0.47	0.57	0.52	-99.0	0.04	0.03	47

DEV rat Developmental Skeletal Appendicular	RF	ALogPS, OEstate	19	117	82	29	247	0.55	0.19	0.4	0.26	0.4	0.59	0.49	-99.0	6.71	.013	2
DEV rat Developmental Skeletal Appendicular	RF	CDK	18	99	99	30	246	0.48	0.15	0.38	0.22	0.38	0.5	0.44	-99.1	6.34	.099	
DEV rat Developmental Skeletal Appendicular	RF	Chemaxo n	23	105	94	25	247	0.52	0.2	0.48	0.28	0.48	0.53	0.5	-99.0	6.51	0.01	
DEV rat Developmental Skeletal Appendicular	RF	Dragon6	18	109	90	30	247	0.51	0.17	0.38	0.23	0.38	0.55	0.46	-99.1	6.53	.062	
DEV rat Developmental Skeletal Appendicular	RF	Fragment or	24	107	92	24	247	0.53	0.21	0.5	0.29	0.5	0.54	0.52	-99.0	6.55	0.03	
DEV rat Developmental Skeletal Appendicular	RF	GSFrag	19	92	107	29	247	0.45	0.15	0.4	0.22	0.4	0.46	0.43	-99.1	6.2	.112	
DEV rat Developmental Skeletal Appendicular	RF	Inductive	17	116	83	31	247	0.54	0.17	0.35	0.23	0.35	0.58	0.47	-99.1	6.65	.051	
DEV rat Developmental Skeletal Appendicular	RF	Mera, Mersy	21	107	92	27	247	0.52	0.19	0.44	0.26	0.44	0.54	0.49	-99.0		.02	
DEV rat Developmental Skeletal Appendicular	RF	QNPR	12	125	74	36	247	0.55	0 14	0.25	0.18	0.25	0.63	0.44	-99.1	6 64	101	
DEV rat Developmental Skeletal Appendicular		Spectrop hores	25	115	84	23	247	0.57	0.23	0.52	0.32	0.52	0.58		-98.9			_
DEV rat Developmental Skeletal Appendicular	ASN	Adriana	19	115	84	28	246	0.54	0.18	0.4	0.25	0.4	0.58	0.49	-99.0			_
DEV rat Developmental	ASN	ALogPS,																_
Skeletal Appendicular DEV rat Developmental	ASN	OEstate	17	134	65	31	247	0.61	0.21	0.35	0.26		0.67	0.51	-99.0			_
Skeletal Appendicular DEV rat Developmental		CDK	18	135	63	30	246	0.62	0.22	0.38	0.28	0.38	0.68	0.53	-98.9	7.09	0.05	
Skeletal Appendicular DEV rat Developmental	N ASN	n	21	118	81	27	247	0.56	0.21	0.44	0.28	0.44	0.59	0.52	-99.0	6.76	0.02	_
Skeletal Appendicular	N	Dragon6 Fragment	14	131	68	34	247	0.59	0.17	0.29	0.22	0.29	0.66	0.47	-99.1	6.87	.042	_
Developmental Skeletal Appendicular DEV rat		or	17	126	73	31	247	0.58	0.19	0.35	0.25	0.35	0.63	0.49	-99.0	6.86	.01	_
DEV rat Developmental Skeletal Appendicular	ASN N	GSFrag	18	122	77	30	247	0.57	0.19	0.38	0.25	0.38	0.61	0.49	-99.0	6.79	.01	

DEV rat Developmental Skeletal Appendicular	ASN N	Inductive	18	126	73	30	247	0.58	0.2	0.38	0.26	0.38	0.63	0.5	-99.0	6.88	0.01	48
DEV rat Developmental Skeletal Appendicular		Mera, Mersy	18	129	70	30	247	0.6	0.2	0.38	0.26	0.38	0.65	0.51	-99.0	6.94	0.02	48
DEV rat Developmental Skeletal Appendicular	ASN N	QNPR	12	129	70	36	247	0.57	0.15	0.25	0.18	0.25	0.65	0.45	-99.1	6.73	.086	48
DEV rat Developmental Skeletal Appendicular		Spectrop hores	17	129	70	31	247	0.59	0.2	0.35	0.25	0.35	0.65	0.5	-99.0	6.92	0.	48
DEV rat Developmental Skeletal Appendicular		CDK, TA, TP	18	142	56	30	246	0.65	0.24	0.38	0.3	0.38	0.72	0.55	-98.9	7.26	0.08	48
DEV rat Developmental Skeletal Appendicular	ASN N	CDK, TA	18	144	54	30	246	0.66	0.25	0.38	0.3	0.38	0.73	0.55	-98.9	7.31	0.09	48
DEV rat Developmental Skeletal Appendicular	ASN N	CDK, TP	18	156	42	30	246	0.71	0.3	0.38	0.33	0.38	0.79	0.58	-98.8	7.64	0.15	48
DEV rat Developmental Skeletal Appendicular	ASN N	TA, TP	22	156	43	26	247	0.72	0.34	0.46	0.39	0.46	0.78	0.62	-98.8	7.67	0.22	48
DEV rat Developmental Skeletal Appendicular	ASN N	TA	22	143	56	26	247	0.67	0.28	0.46	0.35	0.46	0.72	0.59	-98.8	7.32	0.15	48
DEV rat Developmental Skeletal Appendicular	ASN N	TP	22	152	47	26	247	0.7	0.32	0.46	0.38	0.46	0.76	0.61	-98.8	7.56	0.2	48
DEV rat Developmental Skeletal Appendicular		CDK, TA, TP	20	122	76	28	246	0.58	0.21	0.42	0.28	0.42	0.62	0.52	-99.0	6.84	0.03	48
DEV rat Developmental Skeletal Appendicular	FSM LR	CDK, TA	24	120	78	24	246	0.59	0.24	0.5	0.32	0.5	0.61	0.55	-98.9	6.83	0.09	48
DEV rat Developmental Skeletal Appendicular	FSM LR	CDK, TP	17	143	55	31	246	0.65	0.24	0.35	0.28	0.35	0.72	0.54	-98.9	7.26	0.07	48
DEV rat Developmental Skeletal Appendicular	FSM LR	TA, TP	23	148	51	25	247	0.69	0.31	0.48	0.38	0.48	0.74	0.61	-98.8	7.45	0.19	48
DEV rat Developmental Skeletal Appendicular	FSM LR	TA	27	135	64	21	247	0.66	0.3	0.56	0.39	0.56	0.68	0.62	-98.8	7.12	0.2	48
DEV rat Developmental Skeletal Appendicular	FSM LR	TP	21	150	49	27	247	0.69	0.3	0.44	0.36	0.44	0.75	0.6	-98.8	7.49	0.17	48
DEV rat Developmental Skeletal Appendicular	KNN	CDK, TA, TP	38	52	146	10	246	0.37	0.21	0.79	0.33	0.79	0.26	0.53	-98.9	4.98	0.05	48

DEV rat Developmental Skeletal Appendicular	KNN	CDK, TA	37	53	145	11	246	0.37	0.2	0.77	0.32	0.77	0.27	0.52	-99.0	5.07	0.03	4
DEV rat Developmental Skeletal Appendicular	KNN	CDK, TP	28	123	75	20	246	0.61	0.27	0.58	0.37	0.58	0.62	0.6	-98.8	6.86	0.16	
DEV rat Developmental Skeletal Appendicular	KNN	TA, TP	33	95	104	15	247	0.52	0.24	0.69	0.36	0.69	0.48	0.58	-98.8	6.16	0.13	
DEV rat Developmental Skeletal Appendicular	KNN	TA	42	47	152	6	247	0.36	0.22	0.88	0.35	0.88	0.24	0.56	-98.9	4.45	0.11	
DEV rat Developmental Skeletal Appendicular	KNN	TP	28	118	81	20	247	0.59	0.26	0.58	0.36	0.58	0.59	0.59	-98.8	6.74	0.14	
DEV rat Developmental Skeletal Appendicular		CDK, TA, TP	5	182	16	43	246	0.76	0.24	0.1	0.14	0.1	0.92	0.51	-99.0	7.88	0.03	
DEV rat Developmental Skeletal Appendicular	LibS VM	CDK, TA	1	183	15	47	246	0.75	0.06	0.02	0.03	0.02	0.92	0.47		6.74		
DEV rat Developmental Skeletal Appendicular	LibS VM	CDK, TP	15	173	25	33	246	0.76	0.38	0.31	0.34	0.31	0.87	0.59	-98.8		0.2	
DEV rat Developmental Skeletal Appendicular	LibS VM	TA, TP	15	182	17	33	247	0.8	0.47	0.31	0.38	0.31	0.91	0.61	-98.8	8.6	0.27	
DEV rat Developmental Skeletal Appendicular	LibS VM	TA	10	171	28	38	247	0.73	0.26	0.21	0.23	0.21	0.86	0.53	-98.9	7.8	0.07	
DEV rat Developmental Skeletal Appendicular	LibS VM	TP	10	180	19	38	247	0.77	0.34	0.21	0.26	0.21	0.9	0.56	-98.9	8.23	0.14	
DEV rat Developmental Skeletal Appendicular		CDK, TA, TP	27	105	93	21	246	0.54	0.23	0.56	0.32	0.56	0.53	0.55	-98.9	6.5	0.07	
DEV rat Developmental Skeletal Appendicular	MLR A	CDK, TA	28	117	81	20	246	0.59	0.26	0.58	0.36	0.58	0.59	0.59	-98.8	6.74	0.14	
DEV rat Developmental Skeletal Appendicular	MLR A	CDK, TP	26	130	68	22	246	0.63	0.28	0.54	0.37	0.54	0.66	0.6	-98.8	7.04	0.16	
DEV rat Developmental Skeletal Appendicular	MLR	TA, TP	29	111	88	19	247	0.57	0.25	0.6	0.35	0.6	0.56	0.58		6.59		
DEV rat Developmental Skeletal Appendicular	MLR	TA	22	118	81	26	247	0.57	0.23	0.46	0.29	0.46	0.59	0.53		6.76		_
DEV rat Developmental Skeletal Appendicular	MLR	TP	20	112	87	28			0.19							6.62		_

DEV rat Developmental Skeletal Appendicular PLS	CDK, TA, TP	18	132	66	30	246	0.61	0.21	0.38	0.27	0.38	0.67	0.52	-99.0	7.02	0.03	4
DEV rat Developmental Skeletal Appendicular PLS	CDK, TA	21	131	67	27	246	0.62	0.24	0.44	0.31	0.44	0.66	0.55	-98.9	7.05	0.08	4
DEV rat Developmental Skeletal Appendicular PLS	CDK, TP	19	149	49	29	246	0.68	0.28	0.4	0.33	0.4	0.75	0.57	-98.9	7.46	0.13	_
DEV rat Developmental Skeletal Appendicular PLS	TA, TP	23	144	55	25	247	0.68	0.29	0.48	0.37	0.48	0.72	0.6	-98.8	7.35	0.17	2
DEV rat Developmental Skeletal Appendicular PLS	TA	28	128	71	20	247	0.63	0.28	0.58	0.38	0.58	0.64	0.61	-98.8	6.96	0.18	
DEV rat Developmental Skeletal Appendicular PLS	TP	20	148	51	28	247	0.68	0.28	0.42	0.34	0.42	0.74	0.58	-98.8	7.43	0.14	_
DEV rat Developmental Skeletal Appendicular J48	CDK, TA, TP	15	143	55	33	246	0.64	0.21	0.31	0.25		0.72	0.52	-99.0	7.2	0.03	4
DEV rat Developmental Skeletal Appendicular J48	CDK, TA	18	150	48	30	246	0.68	0.27	0.38	0.32	0.38	0.76	0.57	-98.9	7.47	0.12	4
DEV rat Developmental Skeletal Appendicular J48	CDK, TP	20	150	48	28	246	0.69	0.29	0 42	0.34		0.76	0.59	-98.8		0.15	4
DEV rat Developmental Skeletal Appendicular J48	TA, TP	15	157	42	33	247	0.7	0.26	0.31	0.29		0.79		-98.9		0.1	4
DEV rat Developmental Skeletal Appendicular J48	TA	15	139	60	33	247	0.62		0.31	0.24		0.7	0.51	-99.0			
DEV rat Developmental	TP	18	155	44	30	247	0.7	0.29	0.38	0.33		0.78		-98.8			
Skeletal Appendicular J48 DEV rat Developmental Skeletal Appendicular RF	CDK, TA,	21	120	78	27	246	0.7	0.29		0.29		0.78	0.52	-99.0			
DEV rat Developmental				-		-											4
Skeletal Appendicular RF DEV rat Developmental	CDK, TA	25	117	81	23	246	0.58	0.24	0.52	0.32	0.52	0.59	0.56	-98.9			4
Skeletal Appendicular RF DEV rat Developmental	CDK, TP	21	133	65	27	246	0.63	0.24	0.44	0.31	0.44	0.67	0.55	-98.9	7.09	0.09	
Skeletal Appendicular RF DEV rat	TA, TP	24	138	61	24	247	0.66	0.28	0.5	0.36	0.5	0.69	0.6	-98.8	7.21	0.16	4
Developmental Skeletal Appendicular RF	TA	25	123	76	23	247	0.6	0.25	0.52	0.34	0.52	0.62	0.57	-98.9	6.87	0.11	4

DEV rat Developmental Skeletal Appendicular	RF	TP	24	140	59	24	247	0.66	0.29	0.5	0.37	0.5	0.7	0.6	-98.8	7.26	0.17	4
DEV rat Developmental Skeletal Appendicular	FSM LR	Adriana	22	108	91	25	246	0.53	0.19	0.47	0.28	0.47	0.54	0.51	-99.0	6.52	0.01	4
DEV rat Developmental Skeletal Appendicular		ALogPS, OEstate	18	133	66	30	247	0.61	0.21	0.38	0.27	0.38	0.67	0.52	-99.0	7.03	0.04	
DEV rat Developmental Skeletal Appendicular	FSM LR	CDK	16	127	71	32	246	0.58	0.18	0.33	0.24	0.33	0.64	0.49	-99.0	6.86	.021	
DEV rat Developmental Skeletal Appendicular		Chemaxo n	21	126	73	27	247	0.6	0.22	0.44	0.3	0.44	0.63	0.54	-98.9	6.93	0.06	
DEV rat Developmental Skeletal Appendicular	FSM LR	Dragon6	16	122	77	32	247	0.56	0.17	0.33	0.23	0.33	0.61	0.47	-99.1	6.74	.044	
DEV rat Developmental Skeletal Appendicular		Fragment or	21	107	92	27	247	0.52	0.19	0.44	0.26	0.44	0.54	0.49	-99.0	6.53	.02	
DEV rat Developmental Skeletal Appendicular	FSM LR	GSFrag	16	134	65	32	247	0.61	0.2	0.33	0.25	0.33	0.67	0.5	-99.0	7.	0.01	
DEV rat Developmental Skeletal Appendicular	FSM LR	Inductive	30	76	123	18	247	0.43	0.2	0.63	0.3	0.63	0.38	0.5	-99.0	5.86	0.01	
DEV rat Developmental Skeletal Appendicular		Mera, Mersy	23	106	93	25	247	0.52	0.2	0.48	0.28	0.48	0.53	0.51	-99.0	6.53	0.01	
DEV rat Developmental Skeletal Appendicular	FSM LR	QNPR	13	126	73	35	247	0.56	0.15	0.27	0.19	0.27	0.63	0.45	-99.1	6.72	.08	
DEV rat Developmental Skeletal Appendicular		Spectrop hores	19	124	75	29	247	0.58	0.2	0.4	0.27	0.4	0.62	0.51	-99.0	6.85	0.02	
DEV rat Developmental Skeletal Appendicular	KNN	Adriana	10	137	62	37	246	0.6	0.14	0.21	0.17	0.21	0.69	0.45	-99.1	6.76	.085	
DEV rat Developmental Skeletal Appendicular	KNN	ALogPS, OEstate	12	152	47	36	247	0.66	0.2	0.25	0.22	0.25	0.76	0.51	-99.0	7.29	0.01	
DEV rat Developmental Skeletal Appendicular	KNN	CDK	17	125	73	31	246	0.58	0.19	0.35	0.25	0.35	0.63	0.49	-99.0	6.85	.012	
DEV rat Developmental Skeletal Appendicular	KNN	Chemaxo n	22	129	70	26	247	0.61	0.24	0.46	0.31	0.46	0.65	0.55	-98.9	7.	0.09	
DEV rat Developmental Skeletal Appendicular	KNN	Dragon6	20	124	75	28	247	0.58	0.21	0.42	0.28	0.42	0.62	0.52	-99.0	6.87	0.03	

DEV rat Developmental		Fragment																
Skeletal Appendicular	KNN	or	5	175	24	43	247	0.73	0.17	0.1	0.13	0.1	0.88	0.49	-99.0	7.45	.02	48
DEV rat Developmental	128.181	005	40	404	0.5	0.5	0.47	0.70	2.07	0.07	0.07	2.07	0.00	0.55	00.0		0.00	4.6
Skeletal Appendicular	KNN	GSFrag	13	164	35	35	247	0.72	0.27	0.27	0.27	0.27	0.82	0.55	-98.9	7.71	0.09	48
DEV rat Developmental Skeletal Appendicular	KNN	Inductive	16	139	60	32	247	0.63	0.21	0.33	0.26	0.33	0.7	0.52	-99.0	7.12	0.03	48
DEV rat Developmental Skeletal Appendicular	KNN	Mera,	31	78	121	17	247	0.44	0.2	0.65	0.31	0.65	0.39	0.52	-99.0	5.88	0.03	48
Okcietai Appendiculai	IXIVIA	Wiciay	01	70	121	- ' '	271	0.77	0.2	0.00	0.01	0.00	0.00	0.02	-55.0	3.00	0.00	70
DEV rat Developmental Skeletal Appendicular	KNN	QNPR	2	183	16	46	247	0.75	0.11	0.04	0.06	0.04	0.92	0.48	-99.0	7.16	.059	48
DEV rat Developmental Skeletal Appendicular	KNN	Spectrop hores	28	124	75	20	247	0.62	0.27	0.58	0.37	0.58	0.62	0.6	-98.8	6.87	0.17	48
DEV rat Developmental Skeletal Appendicular	LibS VM	Adriana	4	170	29	43	246	0.71	0.12	0.09	0.1	0.09	0.85	0.47	-99.1	7.03	.07	47
DEV rat Developmental		ALogPS,		470	00	4.4	0.47	0.74	0.47	0.00	0.44	0.00	0.0	0.40	00.0	7 47	000	40
Skeletal Appendicular	VIVI	OEstate	4	179	20	44	247	0.74	0.17	0.08	0.11	0.08	0.9	0.49	-99.0	7.47	.023	48
DEV rat Developmental Skeletal Appendicular	LibS VM	CDK	5	167	31	43	246	0.7	0.14	0.1	0.12	0.1	0.84	0.47	-99.1	7.15	.059	48
DEV rat	LibS	Chemaxo																
Developmental Skeletal Appendicular		n	11	161	38	37	247	0.7	0.22	0.23	0.23	0.23	0.81	0.52	-99.0	7.5	0.04	48
DEV rat Developmental Skeletal Appendicular	LibS	Dragon6	1	191	8	47	247	0.78	0 11	0.02	0.04	0.02	0.96	0.40	00.0	7 20	041	10
Skeletal Appendicular	VIVI	Dragon6	- 1	191	0	47	241	0.76	0.11	0.02	0.04	0.02	0.90	0.49	-99.0	1.30	.041	48
DEV rat Developmental Skeletal Appendicular		Fragment or	2	185	14	46	247	0.76	0.13	0.04	0.06	0.04	0.93	0.49	-99.0	7.3	.046	48
DEV rat Developmental	LibS																	
Skeletal Appendicular	VM	GSFrag	8	167	32	40	247	0.71	0.2	0.17	0.18	0.17	0.84	0.5	-99.0	7.48	0.01	48
DEV rat Developmental Skeletal Appendicular	LibS VM	Inductive	10	168	31	38	247	0.72	0.24	0.21	0.22	0.21	0.84	0.53	-98.9	7.68	0.06	48
DEV rat Developmental	LibS	Mera,	2	176	22	45	247	0.72	0.12	0.06	0.00	0.06	0.00	0.47	00.1	7.00	069	40
Skeletal Appendicular	V IVI	Mersy	3	176	23	45	247	0.72	0.12	0.06	0.08	0.06	0.88	0.47	-99.1	7.09	.008	48
DEV rat Developmental Skeletal Appendicular	LibS VM	QNPR	2	186	13	46	247	0.76	0.13	0.04	0.06	0.04	0.93	0.49	-99.0	7.38	.039	48
DEV rat Developmental Skeletal Appendicular		Spectrop hores	4	169	30	44	247	0.7	0.12	0.08	0.1	0.08	0.85	0.47	-99.1	7.01	.077	48

DEV rat Developmental Skeletal Appendicular	MLR A	Adriana	22	116	83	25	246	0.56	0.21	0.47	0.29	0.47	0.58	0.53	-98.9	6.69	0.04	4
DEV rat Developmental Skeletal Appendicular		ALogPS, OEstate	18	117	82	30	247	0.55	0.18	0.38	0.24	0.38	0.59	0.48	-99.0	6.69	.03	
DEV rat Developmental Skeletal Appendicular	MLR A	CDK	23	104	94	25	246	0.52	0.2	0.48	0.28	0.48	0.53	0.5	-99.0	6.5	0.	
DEV rat Developmental Skeletal Appendicular		Chemaxo n	20	116	83	28	247	0.55	0.19	0.42	0.26	0.42	0.58	0.5	-99.0	6.7		
DEV rat Developmental Skeletal Appendicular	MLR A	Dragon6	20	108	91	28	247	0.52	0.18	0.42	0.25	0.42	0.54	0.48	-99.0	6.54	.032	
DEV rat Developmental Skeletal Appendicular		Fragment or	19	109	90	29	247	0.52	0.17	0.4	0.24	0.4	0.55	0.47	-99.1	6.55	.045	
DEV rat Developmental Skeletal Appendicular	MLR A	GSFrag	23	112	87	25	247	0.55	0.21	0.48	0.29	0.48	0.56	0.52	-99.0			
DEV rat Developmental Skeletal Appendicular	MLR A	Inductive	21	117	82	27	247	0.56	0.2	0.44	0.28	0.44	0.59	0.51	-99.0	6.74	0.02	
DEV rat Developmental Skeletal Appendicular		Mera, Mersy	28	94	105	20	247	0.49	0.21	0.58	0.31	0.58	0.47	0.53	-98.9	6.26	0.04	
DEV rat Developmental Skeletal Appendicular	MLR A	QNPR	16	115	84	32	247	0.53	0.16	0.33	0.22	0.33	0.58	0.46	-99.1	6.6	.072	
DEV rat Developmental Skeletal Appendicular		Spectrop hores	17	117	82	31	247	0.54	0.17	0.35	0.23	0.35	0.59	0.47	-99.1	6.67	.047	
DEV rat Developmental Skeletal Appendicular	PLS	Adriana	17	126	73	30	246	0.58	0.19	0.36	0.25	0.36	0.63	0.5	-99.0	6.82	.004	
DEV rat Developmental Skeletal Appendicular		ALogPS, OEstate	20	133	66	28	247	0.62	0.23	0.42	0.3	0.42	0.67	0.54	-98.9	7.07	0.07	
DEV rat Developmental Skeletal Appendicular	PLS		20	123	75	28	246	0.58	0.21	0.42	0.28	0.42	0.62	0.52	-99.0			
DEV rat Developmental Skeletal Appendicular		Chemaxo	23	127	72	25	247	0.61	0.24		0.32	0.48	0.64	0.56	-98.9		0.1	
DEV rat Developmental																		
Skeletal Appendicular DEV rat Developmental Skeletal Appendicular		Fragment	14 12	127	72 71	34	247	0.57	0.16		0.21	0.29	0.64	0.46	<u>-99.1</u>		.089	

DEV rat Developmental Skeletal Appendicular	PLS	GSFrag	19	132	67	29	247	0.61	0.22	0.4	0.28	0.4	0.66	0.53	-98.9	7.03	0.05	48
DEV rat Developmental Skeletal Appendicular	PLS	Inductive	17	114	85	31	247	0.53	0.17	0.35	0.23	0.35	0.57	0.46	-99.1	6.6	.059	48
DEV rat Developmental Skeletal Appendicular	PLS	Mera, Mersy	20	127	72	28	247	0.6	0.22	0.42	0.29	0.42	0.64	0.53	-98.9	6.93	0.04	48
DEV rat Developmental Skeletal Appendicular		QNPR	12	127	72	36	247	0.56	0.14	0.25	0.18	0.25	0.64	0.44	-99.1		.093	48
DEV rat Developmental		Spectrop																
Skeletal Appendicular DEV rat Developmental	PLS	hores	25	120	79	23	247	0.59	0.24	0.52	0.33	0.52	0.6	0.56	-98.9	6.81	0.1	48
Skeletal Appendicular DEV rat	J48	Adriana ALogPS,	14	127	72	33	246	0.57	0.16	0.3	0.21	0.3	0.64	0.47	-99.1	6.75	.053	47
Developmental Skeletal Appendicular DEV rat	J48	OEstate	14	137	62	34	247	0.61	0.18	0.29	0.23	0.29	0.69	0.49	-99.0	7.	.017	48
Developmental Skeletal Appendicular	J48	CDK	14	139	59	34	246	0.62	0.19	0.29	0.23	0.29	0.7	0.5	-99.0	7.07	.005	48
DEV rat Developmental Skeletal Appendicular	J48	Chemaxo n	17	134	65	31	247	0.61	0.21	0.35	0.26	0.35	0.67	0.51	-99.0	7.03	0.02	48
DEV rat Developmental Skeletal Appendicular	J48	Dragon6	9	137	62	39	247	0.59	0.13	0.19	0.15	0.19	0.69	0.44	-99.1	6.72	.108	48
DEV rat Developmental Skeletal Appendicular	J48	Fragment or	16	123	76	32	247	0.56	0.17	0.33	0.23	0.33	0.62	0.48	-99.0	6.76	.04	48
DEV rat Developmental Skeletal Appendicular	J48	GSFrag	18	120	79	30	247	0.56	0.19	0.38	0.25	0.38	0.6	0.49	-99.0	6.75	.018	48
DEV rat Developmental Skeletal Appendicular	.148	Inductive	18	140	59	30	247	0.64	0.23	0.38	0.29	0.38	0.7	0.54	-98.9	7 19	0.07	48
DEV rat Developmental		Mera,											-					
Skeletal Appendicular DEV rat Developmental	J48	Mersy	7	138	61	41_	247	0.59	0.1	0.15	0.12	0.15	0.69	0.42	-99.2	0.00	. 142	48
Skeletal Appendicular DEV rat	J48	QNPR Spectrop	13	135	64	35	247	0.6	0.17	0.27	0.21	0.27	0.68	0.47	-99.1	6.91	.043	48
Developmental Skeletal Appendicular DEV rat Developmental		hores	18	144	55	30	247	0.66	0.25	0.38	0.3	0.38	0.72	0.55		7.29		48
DEV rat Developmental	RF RF	Adriana ALogPS, OEstate	71 69	71 76	66	38 41	246	0.58	0.52	0.65	0.58	0.65	0.52	0.58	-98.8 -98.8	7.99		109
Skeletal Axial	ĽΓ	OLSIAIE	บษ	10	ΟI	41	41	0.59	0.55	0.03	0.50	0.03	0.55	0.59	-90.6	0.19	0.10	110

DE) / .																		
DEV rat Developmental																		
Skeletal Axial	RF	CDK	72	66	71	37	246	0.56	0.5	0.66	0.57	0.66	0.48	0.57	-98.9	7.84	0.14	109
DEV rat		Chemaxo																
Developmental Skeletal Axial	RF	n	69	77	60	41	247	0.59	0.53	0.63	0.58	0.63	0.56	0.59	-98.8	8.21	0.19	110
DEV rat																		
Developmental	DE	D====0	7.4		70	20	047	0.54	0.40	0.07	0.50	0.07	0.40	0.55	00.0	7.00	0.44	440
Skeletal Axial	RF	Dragon6	74	59	78	36	247	0.54	0.49	0.67	0.56	0.67	0.43	0.55	-98.9	7.63	0.11	110
DEV rat Developmental		Fragment																
Skeletal Axial	RF	or	68	71	66	42	247	0.56	0.51	0.62	0.56	0.62	0.52	0.57	-98.9	8.05	0.14	110
DEV rat																		
Developmental Skeletal Axial	RF	GSFrag	70	79	58	40	247	0.6	0.55	0.64	0.59	0.64	0.58	0.61	-98.8	8.26	0.21	110
DEV rat																		
Developmental							- · -											
Skeletal Axial	RF	Inductive	73	68	69	37	247	0.57	0.51	0.66	0.58	0.66	0.5	0.58	-98.8	7.91	0.16	110
DEV rat Developmental		Mera,																
Skeletal Axial	RF	Mersy	75	63	74	35	247	0.56	0.5	0.68	0.58	0.68	0.46	0.57	-98.9	7.73	0.14	110
DEV rat																		
Developmental Skeletal Axial	RF	QNPR	73	73	64	37	247	0.59	0.53	0.66	0.59	0.66	0.53	0.6	-98.8	8 05	0.2	110
DEV rat		S(11) 11			<u> </u>			0.00	0.00	0.00	0.00	0.00	0.00	0.0	55.5	3.30	٥.٢	
Developmental		Spectrop																
Skeletal Axial	RF	hores	69	55	82	41	247	0.5	0.46	0.63	0.53	0.63	0.4	0.51	-99.0	7.57	0.03	110
DEV rat Developmental	ASN																	
Skeletal Axial	N	Adriana	62	87	50	47	246	0.61	0.55	0.57	0.56	0.57	0.64	0.6	-98.8	8.55	0.2	109
DEV rat																		
Developmental		ALogPS,					- · -											
Skeletal Axial	N	OEstate	57	83	54	53	247	0.57	0.51	0.52	0.52	0.52	0.61	0.56	-98.9	8.46	0.12	110
DEV rat Developmental	ASN																	
Skeletal Axial	N	CDK	65	83	54	44	246	0.6	0.55	0.6	0.57	0.6	0.61	0.6	-98.8	8.4	0.2	109
DEV rat	VGVI	Chemaxo																
Developmental Skeletal Axial	N	n	59	81	56	51	247	0.57	0.51	0.54	0.52	0.54	0.59	0.56	-98.9	8 39	0.13	110
DEV rat								0.01	0.01	0.01	0.02	0.01	0.00	0.00	00.0	0.00	0.10	
Developmental	ASN																	
Skeletal Axial	N	Dragon6	65	87	50	45	247	0.62	0.57	0.59	0.58	0.59	0.64	0.61	-98.8	8.55	0.23	110
DEV rat Developmental	ASN	Fragment																
Skeletal Axial	N	or	61	81	56	49	247	0.57	0.52	0.55	0.54	0.55	0.59	0.57	-98.9	8.39	0.15	110
DEV rat	ASN																	
Developmental Skeletal Axial	N ASIN	GSFrag	63	85	52	47	247	0.6	0.55	0.57	0.56	0.57	0.62	0.6	-98.8	8.5	0.19	110
DEV rat	IN	Oorrag	00	00	32	77	241	0.0	0.55	0.57	0.50	0.57	0.02	0.0	-90.0	0.5	0.13	110
Developmental	ASN																	
Skeletal Axial	N	Inductive	63	86	51	47	247	0.6	0.55	0.57	0.56	0.57	0.63	0.6	-98.8	8.53	0.2	110
DEV rat	ASN	Mera,																
Developmental Skeletal Axial	N	Mersy	57	82	55	53	247	0.56	0.51	0.52	0.51	0.52	0.6	0.56	-98.9	8.43	0.12	110
DEV rat	401																	
Developmental	ASN	ONDD	EE	07	E0	E.F.	247	0.57	0.50	0.5	0 54	0.5	0.64	0.57	00 0	0 50	0 14	110
Skeletal Axial	N	QNPR	55	87	50	55	247	0.57	0.52	0.5	0.51	0.5	0.64	0.57	-90.9	0.00	0.14	110
DEV rat Developmental	ASN	Spectrop																
Skeletal Axial	N	hores	50	73	64	60	247	0.5	0.44	0.45	0.45	0.45	0.53	0.49	-99.0	8.16	.013	110
DEV rat	ASN	CDK, TA,																
Developmental Skeletal Axial	N	TP	54	80	57	55	246	0.54	0.49	0.5	0.49	0.5	0.58	0.54	-98.9	8.35	0.08	109
DEV rat									•									
Developmental	ASN	CDV TA		7.4	00	- -0	0.40	0.50	0.40	0.40	0.47	0.40	0.54	0.54	00.0	0.47	0.00	400
Skeletal Axial	N	CDK, TA	53	74	63	56	246	0.52	0.46	0.49	0.47	0.49	0.54	0.51	-99.0	ช.17	0.03	109
DEV rat Developmental	ASN																	
Skeletal Axial	Ν	CDK, TP	55	82	55	54	246	0.56	0.5	0.5	0.5	0.5	0.6	0.55	-98.9	8.41	0.1	109

DEV rat Developmental Skeletal Axial	ASN N	TA. TP	62	81	56	48	247	0.58	0.53	0.56	0.54	0.56	0.59	0.58	-98.8	8 38	0 15	110
DEV rat	ASN	17, 11	02	01		40	241	0.50	0.00	0.50	0.54	0.50	0.55	0.50	-30.0	0.30	0.13	110
Developmental Skeletal Axial	N	TA	57	77	60	53	247	0.54	0.49	0.52	0.5	0.52	0.56	0.54	-98.9	8.28	0.08	110
DEV rat	ASN																	
Developmental Skeletal Axial	N	TP	61	77	60	49	247	0.56	0.5	0.55	0.53	0.55	0.56	0.56	-98.9	8.27	0.12	110
DEV rat	FSM	CDK, TA,																
Developmental Skeletal Axial	LR	TP	57	91	46	52	246	0.6	0.55	0.52	0.54	0.52	0.66	0.59	-98.8	8.69	0.19	109
DEV rat	CCM																	
Developmental Skeletal Axial	FSM LR	CDK, TA	53	77	60	56	246	0.53	0.47	0.49	0.48	0.49	0.56	0.52	-99.0	8.26	0.05	109
DEV rat	5014	·																
Developmental Skeletal Axial	FSM LR	CDK, TP	59	90	47	50	246	0.61	0.56	0.54	0.55	0.54	0.66	0.6	-98.8	8.65	0.2	109
DEV rat		,																
Developmental Skeletal Axial	FSM LR	TA. TP	61	90	47	49	247	0.61	0.56	0.55	0.56	0.55	0.66	0.61	-98.8	8 67	0.21	110
DEV rat	LIX	17.4, 11				-10		0.01	0.00	0.00	0.00	0.00	0.00	0.01	00.0	0.01	0.21	
Developmental Skeletal Axial	FSM LR	TA	60	77	60	50	247	0.55	0.5	0.55	0.52	0.55	0.56	0.55	-98.9	8 27	0.11	110
DEV rat	LIX	IA .	00	11	00	30	241	0.55	0.5	0.55	0.52	0.55	0.50	0.55	-90.9	0.21	0.11	110
Developmental	FSM	TD	5 7	00	40	5 2	247	0.50	0.54	0.50	0.52	0.50	0.64	0.50	00.0	0.61	0.16	110
Skeletal Axial DEV rat	LR	TP	57	88	49	53	247	0.59	0.54	0.52	0.53	0.52	0.64	0.58	-98.8	8.61	0.16	110
Developmental Skeletal Axial	KNN	CDK, TA,	77	50	87	32	246	0.52	0.47	0.71	0.56	0.71	0.36	0.54	-98.9	7 28	0 08	109
DEV rat	IXININ		- ' ' '	30	01	32	240	0.52	0.47	0.71	0.50	0.71	0.50	0.54	-30.3	7.20	0.00	103
Developmental Skeletal Axial	KNN	CDK, TA	100	13	124	9	246	0.46	0.45	0.92	0.6	0.92	0.09	0.51	-99.0	4.64	0.02	109
DEV rat		,																
Developmental Skeletal Axial	KNN	CDK, TP	52	83	54	57	246	0.55	0.49	0.48	0.48	0.48	0.61	0.54	-98.9	8.44	0.08	109
DEV rat																		
Developmental Skeletal Axial	KNN	TA, TP	75	55	82	35	247	0.53	0.48	0.68	0.56	0.68	0.4	0.54	-98.9	7.5	0.09	110
DEV rat Developmental																		
Skeletal Axial	KNN	TA	94	20	117	16	247	0.46	0.45	0.85	0.59	0.85	0.15	0.5	-99.0	5.61	0.	110
DEV rat Developmental																		
Skeletal Axial	KNN	TP	52	82	55	58	247	0.54	0.49	0.47	0.48	0.47	0.6	0.54	-98.9	8.43	0.07	110
DEV rat Developmental	LibS	CDK, TA,																
Skeletal Axial	VM	TP	48	96	41	61	246	0.59	0.54	0.44	0.48	0.44	0.7	0.57	-98.9	8.84	0.15	109
DEV rat Developmental	LibS																	
Skeletal Axial	VM	CDK, TA	42	94	43	67	246	0.55	0.49	0.39	0.43	0.39	0.69	0.54	-98.9	8.74	0.07	109
DEV rat	LibS																	
Developmental Skeletal Axial	VM	CDK, TP	47	99	38	62	246	0.59	0.55	0.43	0.48	0.43	0.72	0.58	-98.8	8.95	0.16	109
DEV rat	LibS																	
Developmental Skeletal Axial	VM	TA, TP	54	97	40	56	247	0.61	0.57	0.49	0.53	0.49	0.71	0.6	-98.8	8.91	0.2	110
DEV rat	1:50																	
Developmental Skeletal Axial	LibS VM	TA	51	88	49	59	247	0.56	0.51	0.46	0.49	0.46	0.64	0.55	-98.9	8.61	0.11	110
DEV rat			- ·															\dashv
Developmental Skeletal Axial	LibS VM	TP	47	94	43	63	247	0.57	0.52	0.43	0.47	0.43	0.69	0.56	-98.9	ጸ 70	ი 12	110
DEV rat			71	J -1	70	00	<u> </u>	0.01	0.02	0.40	0.41	0.40	0.03	0.00	-30.3	5.13	0.12	-110
Developmental Skeletal Axial	MLR A	CDK, TA, TP	53	81	56	56	246	0.54	0.49	0.49	0.49	0.49	0.59	0.54	-98.9	8 38	0 08	109
I - No. octor / total	, ,	••	00	01	55	55	70	0.04	5.√5	5.75	5.75	5.75	5.55	0.04	55.5	5.50	0.00	.00

DEV rat Developmental Skeletal Axial	MLR A	CDK, TA	56	72	65	53	246	0.52	0.46	0.51	0.49	0.51	0.53	0.52	-99.0	8.12	0.04	109
DEV rat Developmental Skeletal Axial	MLR A	CDK, TP	60	74	63	49	246	0.54	0.49	0.55	0.52	0.55	0.54	0.55	-98.9	8.16	0.09	109
DEV rat Developmental Skeletal Axial	MLR A	TA, TP	64	69	68	46	247	0.54	0.48	0.58	0.53	0.58	0.5	0.54	-98.9	8.02	0.09	110
DEV rat Developmental Skeletal Axial	MLR A	TA	51	63	74	59	247	0.46	0.41	0.46	0.43	0.46	0.46	0.46	-99.1	7.87	.076	110
DEV rat Developmental Skeletal Axial	MLR A	TP	60	81	56	50	247	0.57	0.52	0.55	0.53	0.55	0.59	0.57	-98.9	8.39	0.14	110
DEV rat Developmental Skeletal Axial	PLS	CDK, TA, TP	54	84	53	55	246	0.56	0.5	0.5	0.5	0.5	0.61	0.55	-98.9	8.47	0.11	109
DEV rat Developmental Skeletal Axial	PLS	CDK, TA	56	75	62	53	246	0.53	0.47	0.51	0.49	0.51	0.55	0.53	-98.9	8.2	0.06	109
DEV rat Developmental Skeletal Axial	PLS	CDK, TP	53	83	54	56	246	0.55	0.5	0.49	0.49	0.49	0.61	0.55	-98.9	8.44	0.09	109
DEV rat Developmental Skeletal Axial	PLS	TA, TP	60	85	52	50	247	0.59	0.54	0.55	0.54	0.55	0.62	0.58	-98.8	8.51	0.17	110
DEV rat Developmental Skeletal Axial	PLS	TA	59	73	64	51	247	0.53	0.48	0.54	0.51	0.54	0.53	0.53	-98.9	8.16	0.07	110
DEV rat Developmental Skeletal Axial	PLS	TP	55	86	51	55	247	0.57	0.52	0.5	0.51	0.5	0.63	0.56	-98.9	8.55	0.13	110
DEV rat Developmental Skeletal Axial	J48	CDK, TA, TP	57	90	47	52	246	0.6	0.55	0.52	0.54	0.52	0.66	0.59	-98.8	8.66	0.18	109
DEV rat Developmental Skeletal Axial	J48	CDK, TA	48	86	51	61	246	0.54	0.48	0.44	0.46	0.44	0.63	0.53	-98.9	8.52	0.07	109
DEV rat Developmental Skeletal Axial	J48	CDK, TP	56	95	42	53	246	0.61	0.57	0.51	0.54	0.51	0.69	0.6	-98.8	8.82	0.21	109
DEV rat Developmental Skeletal Axial	J48	TA, TP	63	88	49	47	247	0.61	0.56	0.57	0.57	0.57	0.64	0.61	-98.8	8.59	0.21	110
DEV rat Developmental Skeletal Axial	J48	TA	51	86	51	59	247	0.55	0.5	0.46	0.48	0.46	0.63	0.55	-98.9	8.55	0.09	110
DEV rat Developmental Skeletal Axial	J48	TP	55	82	55	55	247	0.55	0.5	0.5	0.5	0.5	0.6	0.55	-98.9	8.43	0.1	110
DEV rat Developmental Skeletal Axial	RF	CDK, TA, TP	75	55	82	34	246	0.53	0.48	0.69	0.56	0.69	0.4	0.54	-98.9	7.47	0.09	109
DEV rat Developmental Skeletal Axial	RF	CDK, TA	75	58	79	34	246	0.54	0.49	0.69	0.57	0.69	0.42	0.56	-98.9	7.56	0.11	109
DEV rat Developmental Skeletal Axial	RF	CDK, TP	76	57	80	33	246	0.54	0.49	0.7	0.57	0.7	0.42	0.56	-98.9	7.51	0.12	109
DEV rat Developmental Skeletal Axial	RF	TA, TP	71	57	80	39	247	0.52	0.47	0.65	0.54	0.65	0.42	0.53	-98.9	7.61	0.06	110
DEV rat Developmental Skeletal Axial	RF	TA	64	58	79	46	247	0.49	0.45	0.58	0.51	0.58	0.42	0.5	-99.0		0.01	110
DEV rat Developmental Skeletal Axial	RF	TP	69	58	79	41	247		0.47	0.63							0.05	110

																		\neg
DEV rat Developmental	FSM																	
Skeletal Axial	LR	Adriana	68	84	53	41	246	0.62	0.56	0.62	0.59	0.62	0.61	0.62	-98.8	8.41	0.24	109
DEV rat Developmental Skeletal Axial	FSM LR	ALogPS, OEstate	59	86	51	51	247	0.59	0.54	0.54	0.54	0.54	0.63	0.58	-98.8	8.55	0.16	110
DEV rat Developmental Skeletal Axial	FSM LR	CDK	61	92	45	48	246	0.62	0.58	0.56	0.57	0.56	0.67	0.62	-98.8	8.71	0.23	109
DEV rat Developmental Skeletal Axial	FSM LR	Chemaxo n	57	98	39	53	247	0.63	0.59	0.52	0.55	0.52	0.72	0.62	-98.8	8.95	0.24	110
DEV rat Developmental Skeletal Axial	FSM LR	Dragon6	65	88	49	45	247	0.62	0.57	0.59	0.58	0.59	0.64	0.62	-98.8	8.58	0.23	110
DEV rat Developmental Skeletal Axial	FSM LR	Fragment or	63	88	49	47	247	0.61	0.56	0.57	0.57	0.57	0.64	0.61	-98.8	8.59	0.21	110
DEV rat Developmental Skeletal Axial	FSM LR	GSFrag	62	84	53	48	247	0.59	0.54	0.56	0.55	0.56	0.61	0.59	-98.8	8.47	0.18	110
DEV rat Developmental Skeletal Axial	FSM LR	Inductive	60	80	57	50	247	0.57	0.51	0.55	0.53	0.55	0.58	0.56	-98.9	8.36	0.13	110
DEV rat Developmental Skeletal Axial	FSM LR	Mera, Mersy	66	81	56	44	247	0.6	0.54	0.6	0.57	0.6	0.59	0.6	-98.8	8.36	0.19	110
DEV rat Developmental Skeletal Axial	FSM LR	QNPR	55	82	55	55	247	0.55	0.5	0.5	0.5	0.5	0.6	0.55	-98.9	8.43	0.1	110
DEV rat Developmental Skeletal Axial	FSM LR	Spectrop hores	27	93	44	83	247	0.49	0.38	0.25	0.3	0.25	0.68	0.46	-99.1	8.48	.083	110
DEV rat Developmental Skeletal Axial	KNN	Adriana	88	51	86	21	246	0.57	0.51	0.81	0.62	0.81	0.37	0.59	-98.8	7.03	0.2	109
DEV rat Developmental Skeletal Axial	KNN	ALogPS, OEstate	82	65	72	28	247	0.6	0.53	0.75	0.62	0.75	0.47	0.61	-98.8	7.66	0.23	110
DEV rat Developmental Skeletal Axial	KNN	CDK	55	94	43	54	246	0.61	0.56	0.5	0.53	0.5	0.69	0.6	-98.8	8.79	0.19	109
DEV rat Developmental Skeletal Axial	KNN	Chemaxo n	59	83	54	51	247	0.57	0.52	0.54	0.53	0.54	0.61	0.57	-98.9	8.45	0.14	110
DEV rat Developmental Skeletal Axial DEV rat	KNN	Dragon6	60	79	58	50	247	0.56	0.51	0.55	0.53	0.55	0.58	0.56	-98.9	8.33	0.12	110
Developmental Skeletal Axial DEV rat	KNN	Fragment or	70	75	62	40	247	0.59	0.53	0.64	0.58	0.64	0.55	0.59	-98.8	8.15	0.18	110
Developmental Skeletal Axial DEV rat	KNN	GSFrag	81	69	68	29	247	0.61	0.54	0.74	0.63	0.74	0.5	0.62	-98.8	7.8	0.24	110
Developmental Skeletal Axial DEV rat	KNN	Inductive	63	66	71	47	247	0.52	0.47	0.57	0.52	0.57	0.48	0.53	-98.9	7.94	0.05	110
Developmental Skeletal Axial DEV rat	KNN	Mera, Mersy	82	64	73	28	247	0.59	0.53	0.75	0.62	0.75	0.47	0.61	-98.8	7.63	0.22	110
Developmental Skeletal Axial DEV rat Developmental	KNN	QNPR Spectrop	67	97	40	43	247	0.66	0.63	0.61	0.62	0.61	0.71	0.66	-98.7	8.86	0.32	110
Skeletal Axial	KNN	hores	61	62	75	49	247	0.5	0.45	0.55	0.5	0.55	0.45	0.5	-99.0	7.83	0.01	110

																		\neg
DEV rat Developmental	LibS																	
Skeletal Axial	VM	Adriana	47	98	39	62	246	0.59	0.55	0.43	0.48	0.43	0.72	0.57	-98.9	8.91	0.15	109
DEV rat Developmental Skeletal Axial	LibS VM	ALogPS, OEstate	53	93	44	57	247	0.59	0.55	0.48	0.51	0.48	0.68	0.58	-98.8	8.77	0.16	110
DEV rat Developmental Skeletal Axial	LibS VM	CDK	53	90	47	56	246	0.58	0.53	0.49	0.51	0.49	0.66	0.57	-98.9	8.66	0.14	109
DEV rat Developmental Skeletal Axial	LibS VM	Chemaxo n	45	96	41	65	247	0.57	0.52	0.41	0.46	0.41	0.7	0.55	-98.9	8.84	0.11	110
DEV rat Developmental Skeletal Axial	LibS VM	Dragon6	49	95	42	61	247	0.58	0.54	0.45	0.49	0.45	0.69	0.57	-98.9	8.83	0.14	110
DEV rat Developmental Skeletal Axial	LibS VM	Fragment or	50	89	48	60	247	0.56	0.51	0.45	0.48	0.45	0.65	0.55	-98.9	8.64	0.11	110
DEV rat Developmental Skeletal Axial	LibS VM	GSFrag	53	100	37	57	247	0.62	0.59	0.48	0.53	0.48	0.73	0.61	-98.8	9.02	0.22	110
DEV rat Developmental Skeletal Axial	LibS VM	Inductive	54	92	45	56	247	0.59	0.55	0.49	0.52	0.49	0.67	0.58	-98.8	8.74	0.16	110
DEV rat Developmental Skeletal Axial	LibS VM	Mera, Mersy	52	94	43	58	247	0.59	0.55	0.47	0.51	0.47	0.69	0.58	-98.8	8.81	0.16	110
DEV rat Developmental Skeletal Axial	LibS VM	QNPR	49	96	41	61	247	0.59	0.54	0.45	0.49	0.45	0.7	0.57	-98.9	8.86	0.15	110
DEV rat Developmental Skeletal Axial	LibS VM	Spectrop hores	40	90	47	70	247	0.53	0.46	0.36	0.41	0.36	0.66	0.51	-99.0	8.6	0.02	110
DEV rat Developmental Skeletal Axial	MLR A	Adriana	65	83	54	44	246	0.6	0.55	0.6	0.57	0.6	0.61	0.6	-98.8	8.4	0.2	109
DEV rat Developmental Skeletal Axial	MLR A	ALogPS, OEstate	57	69	68	53	247	0.51	0.46	0.52	0.49	0.52	0.5	0.51	-99.0	8.05	0.02	110
DEV rat Developmental Skeletal Axial	MLR A	CDK	51	62	75	58	246	0.46	0.4	0.47	0.43	0.47	0.45	0.46	-99.1	7.82	.079	109
DEV rat Developmental Skeletal Axial	MLR A	Chemaxo n	66	85	52	44	247	0.61	0.56	0.6	0.58	0.6	0.62	0.61	-98.8	8.48	0.22	110
DEV rat Developmental Skeletal Axial DEV rat	MLR A	Dragon6	64	67	70	46	247	0.53	0.48	0.58	0.52	0.58	0.49	0.54	-98.9	7.96	0.07	110
Developmental Skeletal Axial	Α	Fragment or	59	82	55	51	247	0.57	0.52	0.54	0.53	0.54	0.6	0.57	-98.9	8.42	0.13	110
Developmental Skeletal Axial DEV rat	MLR A	GSFrag	62	75	62	48	247	0.55	0.5	0.56	0.53	0.56	0.55	0.56	-98.9	8.21	0.11	110
Developmental Skeletal Axial DEV rat	MLR A	Inductive	55	84	53	55	247	0.56	0.51	0.5	0.5	0.5	0.61	0.56	-98.9	8.49	0.11	110
Developmental Skeletal Axial DEV rat	A MLR	Mera, Mersy	60	79	58	50	247	0.56	0.51	0.55	0.53	0.55	0.58	0.56	-98.9	8.33	0.12	110
Developmental Skeletal Axial DEV rat	Α	QNPR Spectrop	64	69	68	46	247	0.54	0.48	0.58	0.53	0.58	0.5	0.54	-98.9	8.02	0.09	110
Developmental Skeletal Axial	A	hores	46	72	65	64	247	0.48	0.41	0.42	0.42	0.42	0.53	0.47	-99.1	8.11	.056	110

DEV rat Developmental Skeletal Axial	PLS	Adriana	66	85	52	43	246	0.61	0.56	0.61	0.58	0.61	0.62	0.61	-98.8	8.46	0.22	109
DEV rat Developmental Skeletal Axial	PLS	ALogPS, OEstate	61	85	52	49	247	0.59	0.54	0.55	0.55	0.55	0.62	0.59	-98.8	8.51	0.17	110
DEV rat Developmental Skeletal Axial	PLS	CDK	62	88	49	47	246	0.61	0.56	0.57	0.56	0.57	0.64	0.61	-98.8	8.58	0.21	109
DEV rat Developmental Skeletal Axial	PLS	Chemaxo n	54	95	42	56	247	0.6	0.56	0.49	0.52	0.49	0.69	0.59	-98.8	8.84	0.19	110
DEV rat Developmental Skeletal Axial DEV rat	PLS	Dragon6	64	84	53	46	247	0.6	0.55	0.58	0.56	0.58	0.61	0.6	-98.8	8.46	0.19	110
Developmental Skeletal Axial DEV rat	PLS	Fragment or	58	84	53	52	247	0.57	0.52	0.53	0.52	0.53	0.61	0.57	-98.9	8.49	0.14	110
Developmental Skeletal Axial DEV rat	PLS	GSFrag	68	87	50	42	247	0.63	0.58	0.62	0.6	0.62	0.64	0.63	-98.7	8.53	0.25	110
Developmental Skeletal Axial DEV rat	PLS	Inductive	54	83	54	56	247	0.55	0.5	0.49	0.5	0.49	0.61	0.55	-98.9	8.46	0.1	110
Developmental Skeletal Axial DEV rat	PLS	Mera, Mersy	66	85	52	44	247	0.61	0.56	0.6	0.58	0.6	0.62	0.61	-98.8	8.48	0.22	110
Developmental Skeletal Axial DEV rat	PLS	QNPR	58	88	49	52	247	0.59	0.54	0.53	0.53	0.53	0.64	0.58	-98.8	8.61	0.17	110
Developmental Skeletal Axial DEV rat	PLS	Spectrop hores	42	67	70	68	247	0.44	0.38	0.38	0.38	0.38	0.49	0.44	-99.1	7.93	.129	110
Developmental Skeletal Axial DEV rat	J48	Adriana	57	88	49	52	246	0.59	0.54	0.52	0.53	0.52	0.64	0.58	-98.8	8.59	0.17	109
Developmental Skeletal Axial DEV rat	J48	ALogPS, OEstate	71	87	50	39	247	0.64	0.59	0.65	0.61	0.65	0.64	0.64	-98.7	8.5	0.28	110
Developmental Skeletal Axial DEV rat	J48	CDK	54	92	45	55	246	0.59	0.55	0.5	0.52	0.5	0.67	0.58	-98.8	8.72	0.17	109
Developmental Skeletal Axial DEV rat	J48	Chemaxo n	60	86	51	50	247	0.59	0.54	0.55	0.54	0.55	0.63	0.59	-98.8	8.54	0.17	110
Developmental Skeletal Axial DEV rat Developmental	J48	Dragon6 Fragment	59	84	53	51	247	0.58	0.53	0.54	0.53	0.54	0.61	0.57	-98.9	8.48	0.15	110
Skeletal Axial DEV rat Developmental	J48	or	60	79	58	50	247	0.56	0.51	0.55	0.53	0.55	0.58	0.56	-98.9	8.33	0.12	110
Skeletal Axial DEV rat Developmental	J48	GSFrag	57	86	51	53	247	0.58	0.53	0.52	0.52	0.52	0.63	0.57	-98.9	8.55	0.15	110
Skeletal Axial DEV rat Developmental	J48_	Inductive Mera,	57	83	54	53	247	0.57	0.51	0.52	0.52	0.52	0.61	0.56	-98.9	8.46	0.12	110
Skeletal Axial DEV rat Developmental	J48	Mersy	53	85	52	57	247	0.56	0.5	0.48	0.49	0.48	0.62	0.55	-98.9		0.1	110
Skeletal Axial DEV rat Developmental	J48	QNPR Spectrop	52	86	51	58	247	0.56	0.5	0.47	0.49	0.47	0.63	0.55	-98.9		0.1	110
Skeletal Axial DEV rat Developmental	J48	hores	46	69	68	64	247	0.47	0.4	0.42	0.41	0.42	0.5	0.46	-99.1			110
Skeletal Cranial	RF	Adriana	16	124	84	22	246	0.57	0.16	0.42	0.23	0.42	0.6	0.51	-99.0	6.3	0.01	38

DEV rat Developmental Skeletal Cranial	RF	ALogPS, OEstate	20	142	66	19	247	0.66	0.23	0.51	0.32	0.51	0.68	0.6	-98.8	6.75	0.15	39
DEV rat Developmental Skeletal Cranial	RF	CDK	22	101	106	17	246	0.5	0.17	0.56	0.26	0.56	0.49	0.53	-98.9	5.93	0.04	39
DEV rat Developmental Skeletal Cranial	RF	Chemaxo n	18	118	90	21	247	0.55	0.17	0.46	0.24	0.46	0.57	0.51	-99.0			39
DEV rat Developmental Skeletal Cranial	RF	Dragon6	14	128	80	25	247	0.57	0.15	0.36	0.21	0.36	0.62	0.49	-99.0		.019	39
DEV rat Developmental		Fragment																
Skeletal Cranial DEV rat Developmental	RF	or	22	125	83	17	247	0.6	0.21	0.56	0.31	0.56	0.6	0.58	-98.8			39
Skeletal Cranial DEV rat Developmental	RF	GSFrag	18	128	80	21	247	0.59	0.18	0.46	0.26	0.46	0.62	0.54	-98.9	6.45	0.06	39
Skeletal Cranial DEV rat Developmental	RF	Inductive Mera,	19	105	103	20	247	0.5	0.16	0.49	0.24	0.49	0.5	0.5	-99.0	6.01	.006	39
Skeletal Cranial DEV rat Developmental	RF	Mersy	16	115	93	23	247	0.53	0.15	0.41	0.22	0.41	0.55	0.48	-99.0	6.17	.027	39
Skeletal Cranial DEV rat Developmental	RF	QNPR Spectrop	14	146	62	25	247	0.65	0.18	0.36	0.24	0.36	0.7	0.53	-98.9	6.76	0.05	39
Skeletal Cranial DEV rat Developmental	RF ASN	hores	19	131	77	20	247	0.61	0.2	0.49	0.28	0.49	0.63	0.56	-98.9	6.52	0.09	39
Skeletal Cranial DEV rat	N	Adriana	12	129	79	26	246	0.57	0.13	0.32	0.19	0.32	0.62	0.47	-99.1	6.29	.048	38
Developmental Skeletal Cranial DEV rat	N	ALogPS, OEstate	17	145	63	22	247	0.66	0.21	0.44	0.29	0.44	0.7	0.57	-98.9	6.8	0.1	39
Developmental Skeletal Cranial DEV rat	ASN N	CDK	20	134	73	19	246	0.63	0.22	0.51	0.3	0.51	0.65	0.58	-98.8	6.6	0.12	39
Developmental Skeletal Cranial	ASN N	Chemaxo n	16	117	91	23	247	0.54	0.15	0.41	0.22	0.41	0.56	0.49	-99.0	6.21	.02	39
DEV rat Developmental Skeletal Cranial	ASN N	Dragon6	14	158	50	25	247	0.7	0.22	0.36	0.27	0.36	0.76	0.56	-98.9	7.06	0.1	39
DEV rat Developmental Skeletal Cranial	ASN N	Fragment or	19	147	61	20	247	0.67	0.24	0.49	0.32	0.49	0.71	0.6	-98.8	6.87	0.15	39
DEV rat Developmental Skeletal Cranial	ASN N	GSFrag	15	143	65	24	247	0.64	0.19	0.38	0.25	0.38	0.69	0.54	-98.9	6.72	0.06	39
DEV rat Developmental Skeletal Cranial	ASN N	Inductive	17	129	79	22	247	0.59	0.18	0.44	0.25	0.44	0.62	0.53	-98.9	6.46	0.04	39
DEV rat Developmental Skeletal Cranial	ASN N	Mera, Mersy	19	149	59	20	247	0.68	0.24	0.49	0.32	0.49	0.72	0.6	-98.8	6.91	0.16	39
DEV rat Developmental Skeletal Cranial	ASN N	QNPR	14	151	57	25	247	0.67	0.2	0.36	0.25	0.36	0.73	0.54	-98.9	6.88	0.07	39
DEV rat Developmental Skeletal Cranial	ASN N	Spectrop hores	15	138	70	24	247	0.62	0.18	0.38	0.24	0.38	0.66	0.52	-99.0	6.61	0.04	39
DEV rat Developmental Skeletal Cranial	ASN N	CDK, TA,	9	148	59	30	246	0.64	0.13	0.23	0.17	0.23	0.71	0.47	-99.1			39
DEV rat Developmental	ASN N	CDK, TA	9	146	61	30	246		0.13		0.17			0.47			.052	39

r																	
DEV rat Developmental Skeletal Cranial	ASN N	CDK, TP	12	143	64	27	246	0.63	0.16	0.31	0.21	0.31	0.69	0.5	-99.0 6.64	.001	39
DEV rat Developmental Skeletal Cranial	ASN N	TA, TP	15	152	56	24	247	0.68	0.21	0.38	0.27	0.38	0.73	0.56	-98.9 6.93	0.09	39
DEV rat Developmental Skeletal Cranial	ASN N	TA	12	156	52	27	247	0.68	0.19	0.31	0.23	0.31	0.75	0.53	-98.9 6.93	0.05	39
DEV rat Developmental Skeletal Cranial	ASN N	TP	8	141	67	31	247	0.6	0.11	0.21	0.14	0.21	0.68	0.44	-99.1 6.33	.093	39
DEV rat Developmental Skeletal Cranial	FSM LR	CDK, TA,	14	131	76	25	246	0.59	0.16	0.36	0.22	0.36	0.63	0.5	-99.0 6.45	.006	39
DEV rat Developmental	FSM								0.16								
DEV rat Developmental	LR FSM	CDK, TA	16	108	99	23	246	0.5	0.14	0.41	0.21	0.41	0.52	0.47	-99.1 6.05	.05	39
Skeletal Cranial DEV rat	LR	CDK, TP	15	129	78	24	246	0.59	0.16	0.38	0.23	0.38	0.62	0.5	-99.0 6.44	0.01	39
Developmental Skeletal Cranial	FSM LR	TA, TP	18	124	84	21	247	0.57	0.18	0.46	0.26	0.46	0.6	0.53	-98.9 6.37	0.04	39
DEV rat Developmental Skeletal Cranial	FSM LR	TA	16	124	84	23	247	0.57	0.16	0.41	0.23	0.41	0.6	0.5	-99.0 6.35	0.	39
DEV rat Developmental Skeletal Cranial	FSM LR	TP	18	131	77	21	247	0.6	0.19	0.46	0.27	0.46	0.63	0.55	-98.9 6.51	0.07	39
DEV rat Developmental Skeletal Cranial	KNN	CDK, TA, TP	27	34	173	12	246	0.25	0.14	0.69	0.23	0.69	0.16	0.43	-99.1 4.22	.134	39
DEV rat Developmental Skeletal Cranial	KNN	CDK, TA	35	8	199	4	246	0.17	0.15	0.9	0.26	0.9	0.04	0.47	-99.1 1.92	.108	39
DEV rat Developmental Skeletal Cranial	KNN	CDK, TP	24	88	119	15	246	0.46	0.17	0.62	0.26	0.62	0.43	0.52	-99.0 5.64	0.03	39
DEV rat Developmental Skeletal Cranial	KNN	TA, TP	36	32	176	3	247	0.28	0.17	0.92	0.29	0.92	0.15	0.54	-98.9 3.16	0.08	39
DEV rat Developmental Skeletal Cranial	KNN	TA	37	15	193	2	247	0.21	0.16	0.95	0.28	0.95	0.07	0.51	-99.0 2.02	0.03	39
DEV rat Developmental Skeletal Cranial	KNN	TP	24	97	111	15	247	0.49	0.18	0.62	0.28	0.62	0.47	0.54	-98.9 5.81	0.06	39
DEV rat Developmental Skeletal Cranial	LibS VM	CDK, TA, TP	3	206	1	36	246	0.85	0.75	0.08	0.14	0.08	1.	0.54	-98.9 9.77	0.21	39
DEV rat Developmental Skeletal Cranial	LibS VM	CDK, TA	2	207	0	37	246	0.85	1.	0.05	0.1	0.05	1.	0.53	-98.9 10.6		39
DEV rat Developmental	LibS	•							1.		0.1						
Skeletal Cranial DEV rat Developmental	VM LibS	CDK, TP	0	207	0	39	246	0.84		0.		0.	1.	0.5	-99.0 9.01		39
Skeletal Cranial DEV rat	VM	TA, TP	5	194	14	34	247	0.81	0.26	0.13	0.17	0.13	0.93	0.53	-98.9 7.84	0.08	39
Developmental Skeletal Cranial DEV rat	LibS VM	TA	1	206	2	38	247	0.84	0.33	0.03	0.05	0.03	0.99	0.51	-99.0 8.47	0.05	39
Developmental Skeletal Cranial	LibS VM	TP	0	206	2	39	247	0.83	0.	0.		0.	0.99	0.5	-99.0 7.4	.039	39

DEV rat Developmental Skeletal Cranial	MLR A	CDK, TA, TP	11	130	77	28	246	0.57	0.13	0.28	0.17	0.28	0.63	0.46	-99.1	6.31	.069	39
DEV rat Developmental Skeletal Cranial	MLR A	CDK, TA	14	138	69	25	246	0.62	0.17	0.36	0.23	0.36	0.67	0.51	-99.0	6.6	0.02	39
DEV rat Developmental Skeletal Cranial	MLR A	CDK, TP	14	108	99	25	246	0.5	0.12	0.36	0.18	0.36	0.52	0.44	-99.1	6.	.087	39
DEV rat Developmental Skeletal Cranial	MLR A	TA, TP	16	107	101	23	247	0.5	0.14	0.41	0.21	0.41	0.51	0.46	-99.1	6.02	.055	39
DEV rat Developmental Skeletal Cranial	MLR A	TA	13	122	86	26	247	0.55	0.13	0.33	0.19	0.33	0.59	0.46	-99.1	6.23	.06	39
DEV rat Developmental Skeletal Cranial	MLR A	TP	18	107	101	21	247	0.51	0.15	0.46	0.23	0.46	0.51	0.49	-99.0	6.04	.018	39
DEV rat Developmental Skeletal Cranial	PLS	CDK, TA, TP	8	138	69	31	246	0.59	0.1	0.21	0.14	0.21	0.67	0.44	-99.1	6.28	.101	39
DEV rat Developmental Skeletal Cranial	PLS	CDK, TA	10	132	75	29	246	0.58	0.12	0.26	0.16	0.26	0.64	0.45	-99.1	6.3	.081	39
DEV rat Developmental Skeletal Cranial	PLS	CDK, TP	13	139	68	26	246	0.62	0.16	0.33	0.22	0.33	0.67	0.5	-99.0	6.59	0.	39
DEV rat Developmental Skeletal Cranial	PLS	TA, TP	17	145	63	22	247	0.66	0.21	0.44	0.29	0.44	0.7	0.57	-98.9	6.8	0.1	39
DEV rat Developmental Skeletal Cranial	PLS	TA	18	145	63	21	247	0.66	0.22	0.46	0.3	0.46	0.7	0.58	-98.8	6.81	0.12	39
DEV rat Developmental Skeletal Cranial	PLS	TP	9	139	69	30	247	0.6	0.12	0.23	0.15	0.23	0.67	0.45	-99.1	6.37	.079	39
DEV rat Developmental Skeletal Cranial	J48	CDK, TA, TP	11	140	67	28	246	0.61	0.14	0.28	0.19	0.28	0.68	0.48	-99.0	6.53	.033	39
DEV rat Developmental Skeletal Cranial	J48	CDK, TA	10	146	61	29	246	0.63	0.14	0.26	0.18	0.26	0.71	0.48	-99.0	6.6	.031	39
DEV rat Developmental Skeletal Cranial	J48	CDK, TP	10	156	51	29	246	0.67	0.16	0.26	0.2	0.26	0.75	0.51	-99.0	6.85	0.01	39
DEV rat Developmental Skeletal Cranial	J48	TA, TP	9	145	63	30	247	0.62	0.13	0.23	0.16	0.23	0.7	0.46	-99.1	6.5	.058	39
DEV rat Developmental Skeletal Cranial	J48	TA	10	142	66	29	247	0.62	0.13	0.26	0.17	0.26	0.68	0.47	-99.1	6.5	.048	39
DEV rat Developmental Skeletal Cranial	J48	TP	11	155	53	28	247	0.67	0.17	0.28	0.21	0.28	0.75	0.51	-99.0	6.86	0.02	39
DEV rat Developmental Skeletal Cranial	RF	CDK, TA, TP	15	115	92	24	246	0.53	0.14	0.38	0.21	0.38	0.56	0.47	-99.1	6.16	.044	39
DEV rat Developmental Skeletal Cranial	RF	CDK, TA	16	131	76	23	246	0.6	0.17	0.41	0.24	0.41	0.63	0.52	-99.0	6.5	0.03	39
DEV rat Developmental Skeletal Cranial	RF	CDK, TP	15	130	77	24	246	0.59	0.16	0.38	0.23	0.38	0.63	0.51	-99.0	6.46	0.01	39
DEV rat Developmental Skeletal Cranial	RF	TA, TP	21	118	90	18	247	0.56	0.19	0.54	0.28	0.54	0.57	0.55	-98.9	6.26	0.08	39
DEV rat Developmental Skeletal Cranial	RF	TA	16	123	85	23	247	0.56	0.16	0.41	0.23	0.41	0.59	0.5	-99.0	6.33	0.	39

r																	
DEV rat Developmental Skeletal Cranial	RF	TP	12	122	86	27	247	0.54	0.12	0.31	0.18	0.31	0.59	0.45	-99.1 6.19	.079	39
DEV rat Developmental Skeletal Cranial	FSM LR	Adriana	13	127	81	25	246	0.57	0.14	0.34	0.2	0.34	0.61	0.48	-99.0 6.29	.035	38
DEV rat Developmental Skeletal Cranial		ALogPS, OEstate	18	146	62	21	247	0.66	0.23	0.46	0.3	0.46	0.7	0.58	-98.8 6.84	0.13	39
DEV rat Developmental Skeletal Cranial	FSM LR	CDK	15	134	73	24	246	0.61	0.17	0.38	0.24	0.38	0.65	0.52	-99.0 6.54		39
DEV rat Developmental Skeletal Cranial		Chemaxo n	16	125	83	23	247	0.57	0.16	0.41	0.23	0.41	0.6	0.51	-99.0 6.37	0.01	39
DEV rat Developmental Skeletal Cranial	FSM LR	Dragon6	17	151	57	22	247	0.68	0.23	0.44	0.3	0.44	0.73	0.58	-98.8 6.94		39
DEV rat Developmental Skeletal Cranial		Fragment or	15	146	62	24	247	0.65	0.19	0.38	0.26	0.38	0.7	0.54	-98.9 6.79	0.07	39
DEV rat Developmental Skeletal Cranial	FSM LR	GSFrag	15	136	72	24	247	0.61	0.17	0.38	0.24	0.38	0.65	0.52	-99.0 6.57		39
DEV rat Developmental Skeletal Cranial	FSM LR	Inductive	25	95	113	14	247	0.49	0.18	0.64	0.28	0.64	0.46	0.55	-98.9 5.74	0.07	39
DEV rat Developmental Skeletal Cranial		Mera, Mersy	16	133	75	23	247	0.6	0.18	0.41	0.25	0.41	0.64	0.52	-99.0 6.53		39
DEV rat Developmental Skeletal Cranial	FSM LR	QNPR	17	142	66	22	247	0.64	0.2	0.44	0.28	0.44	0.68	0.56	-98.9 6.74	0.09	39
DEV rat Developmental Skeletal Cranial	FSM LR		14	138	70	25	247	0.62	0.17	0.36	0.23	0.36	0.66	0.51	-99.0 6.59	0.02	39
DEV rat Developmental Skeletal Cranial		Adriana	10	176	32	28	246	0.76	0.24	0.26	0.25	0.26	0.85	0.55	-98.9 7.39	0.1	38
DEV rat Developmental Skeletal Cranial	KNN	ALogPS, OEstate	13	165	43	26	247	0.72	0.23	0.33	0.27	0.33	0.79	0.56	-98.9 7.22	0.11	39
DEV rat Developmental Skeletal Cranial	KNN	CDK	18	119	88	21	246	0.56	0.17	0.46	0.25	0.46	0.57	0.52	-99.0 6.29	0.03	39
DEV rat Developmental Skeletal Cranial	KNN	Chemaxo n	19	95	113	20	247	0.46	0.14	0.49	0.22	0.49	0.46	0.47	-99.1 5.82	.041	39
DEV rat Developmental Skeletal Cranial DEV rat	KNN	Dragon6	11	165	43	28	247	0.71	0.2	0.28	0.24	0.28	0.79	0.54	-98.9 7.13	0.07	39
Developmental Skeletal Cranial DEV rat	KNN	Fragment or	10	173	35	29	247	0.74	0.22	0.26	0.24	0.26	0.83	0.54	-98.9 7.32	0.08	39
Developmental Skeletal Cranial DEV rat	KNN	GSFrag	14	171	37	25	247	0.75	0.27	0.36	0.31	0.36	0.82	0.59	-98.8 7.43	0.16	39
Developmental Skeletal Cranial DEV rat	KNN	Inductive Mera,	19	111	97	20	247	0.53	0.16	0.49	0.25	0.49	0.53	0.51	-99.0 6.13	0.02	39
Developmental Skeletal Cranial DEV rat	KNN	Mersy	14	127	81	25	247	0.57	0.15	0.36	0.21	0.36	0.61	0.48	-99.0 6.36	.023	39
Developmental Skeletal Cranial	KNN	QNPR	12	176	32	27	247	0.76	0.27	0.31	0.29	0.31	0.85	0.58	-98.8 7.53	0.15	39

DEV rat																		
Developmental Skeletal Cranial	KNN	Spectrop hores	21	136	72	18	247	0.64	0.23	0.54	0.32	0.54	0.65	0.6	-98.8	6.62	0.14	39
DEV rat Developmental Skeletal Cranial	LibS VM	Adriana	3	204	4	35	246	0.84	0.43	0.08	0.13	0.08	0.98	0.53	-98.9	8.64	0.13	38
DEV rat Developmental Skeletal Cranial		ALogPS, OEstate	6	192	16	33	247	0.8	0.27	0.15	0.2	0.15	0.92	0.54	-98.9		0.1	39
DEV rat Developmental	LibS																	
DEV rat Developmental	VM LibS	CDK	6	194	13	33	246	0.81	0.32	0.15	0.21	0.15	0.94	0.55	-98.9	8.05	0.12	39
Skeletal Cranial DEV rat	VM LibS	n	4	195	13	35	247	0.81	0.24	0.1	0.14	0.1	0.94	0.52	-99.0	7.75	0.06	39
Developmental Skeletal Cranial DEV rat	VM	Dragon6	6	203	5	33	247	0.85	0.55	0.15	0.24	0.15	0.98	0.56	-98.9	8.99	0.23	39
Developmental Skeletal Cranial	LibS VM	Fragment or	8	193	15	31	247	0.81	0.35	0.21	0.26	0.21	0.93	0.57	-98.9	8.11	0.17	39
DEV rat Developmental Skeletal Cranial	LibS VM	GSFrag	10	192	16	29	247	0.82	0.38	0.26	0.31	0.26	0.92	0.59	-98.8	8.19	0.21	39
DEV rat Developmental Skeletal Cranial	LibS VM	Inductive	9	202	6	30	247	0.85	0.6	0.23	0.33	0.23	0.97	0.6	-98.8	9.11	0.31	39
DEV rat Developmental Skeletal Cranial	LibS VM	Mera, Mersy	10	200	8	29	247	0.85	0.56	0.26	0.35	0.26	0.96	0.61	-98.8	8.9	0.31	39
DEV rat Developmental Skeletal Cranial	LibS VM	QNPR	7	193	15	32	247	0.81	0.32	0.18	0.23	0.18	0.93	0.55	-98.9	8 02	0 14	39
DEV rat Developmental Skeletal Cranial	LibS VM	Spectrop hores	10	193	15	29	247	0.82	0.4	0.26	0.31	0.26	0.93	0.59	-98.8			39
DEV rat Developmental Skeletal Cranial	MLR A	Adriana	20	97	111	18	246	0.48	0.15	0.53	0.24	0.53	0.47	0.59	-99.0	5.8	.005	38
DEV rat Developmental Skeletal Cranial		ALogPS, OEstate	15	126	82	24	247	0.57	0.15	0.38	0.22	0.38	0.61	0.5	-99.0		.007	39
DEV rat Developmental Skeletal Cranial	MLR A	CDK	23	120	87	16	246	0.58	0.21	0.59	0.31	0.59	0.58	0.58	-98.8			39
DEV rat Developmental Skeletal Cranial		Chemaxo n	21	128	80	18	247	0.6	0.21	0.54	0.3	0.54	0.62	0.58	-98.8			39
DEV rat Developmental Skeletal Cranial	MLR A	Dragon6	21	114	94	18	247	0.55	0.18	0.54	0.27	0.54	0.55	0.54	-98.9	6.18	0.06	39
DEV rat Developmental Skeletal Cranial	MLR A	Fragment or	22	99	109	17	247	0.49	0.17	0.56	0.26	0.56	0.48	0.52	-99.0	5.88	0.03	39
DEV rat Developmental Skeletal Cranial	MLR A	GSFrag	19	124	84	20	247	0.58	0.18	0.49	0.27	0.49	0.6	0.54	-98.9	6.38	0.06	39
DEV rat Developmental Skeletal Cranial	MLR A	Inductive	17	113	95	22	247	0.53	0.15	0.44	0.23	0.44	0.54	0.49	-99.0	6.15	.015	39
DEV rat Developmental Skeletal Cranial	MLR A	Mera, Mersy	23	108	100	16	247	0.53	0.19	0.59	0.28	0.59	0.52	0.55	-98.9	6.04	0.08	39
DEV rat Developmental Skeletal Cranial	MLR A	QNPR	10	125	83	29	247	0.55	0.11	0.26	0.15	0.26	0.6	0.43	-99.1	6.14	.107	39

DEV rat Developmental Skeletal Cranial	MLR A	Spectrop hores	18	128	80	21	247	0.59	0.18	0.46	0.26	0.46	0.62	0.54	-98.9	6.45	0.06	39
DEV rat Developmental Skeletal Cranial	PLS	Adriana	9	158	50	29	246	0.68	0.15	0.24	0.19	0.24	0.76	0.5	-99.0	6.78	.003	38
DEV rat Developmental Skeletal Cranial	PLS	ALogPS, OEstate	18	149	59	21	247	0.68	0.23	0.46	0.31	0.46	0.72	0.59	-98.8	6.91	0.14	39
DEV rat Developmental Skeletal Cranial	PLS	CDK	20	132	75	19	246	0.62	0.21	0.51	0.3	0.51	0.64	0.58	-98.8	6.55	0.11	39
DEV rat Developmental Skeletal Cranial DEV rat	PLS	Chemaxo n	18	120	88	21	247	0.56	0.17	0.46	0.25	0.46	0.58	0.52	-99.0	6.29	0.03	39
Developmental Skeletal Cranial DEV rat	PLS	Dragon6	17	141	67	22	247	0.64	0.2	0.44	0.28	0.44	0.68	0.56	-98.9	6.72	0.09	39
Developmental Skeletal Cranial DEV rat	PLS	Fragment or	19	155	53	20	247	0.7	0.26	0.49	0.34	0.49	0.75	0.62	-98.8	7.06	0.19	39
Developmental Skeletal Cranial DEV rat	PLS	GSFrag	16	152	56	23	247	0.68	0.22	0.41	0.29	0.41	0.73	0.57	-98.9	6.95	0.11	39
Developmental Skeletal Cranial DEV rat	PLS	Inductive	21	106	102	18	247	0.51	0.17	0.54	0.26	0.54	0.51	0.52	-99.0	6.02	0.04	39
Developmental Skeletal Cranial DEV rat	PLS	Mera, Mersy	19	133	75	20	247	0.62	0.2	0.49	0.29	0.49	0.64	0.56	-98.9	6.56	0.1	39
Developmental Skeletal Cranial DEV rat	PLS	QNPR Spectrop	15	155	53	24	247	0.69	0.22	0.38	0.28	0.38	0.75	0.56	-98.9	7.01	0.11	39
Developmental Skeletal Cranial DEV rat	PLS	hores	18	128	80	21	247	0.59	0.18	0.46	0.26	0.46	0.62	0.54	-98.9	6.45	0.06	39
Developmental Skeletal Cranial DEV rat	J48	Adriana	14	170	38	24	246	0.75	0.27	0.37	0.31	0.37	0.82	0.59	-98.8	7.36	0.16	38
Developmental Skeletal Cranial DEV rat	J48	ALogPS, OEstate	14	162	46	25	247	0.71	0.23	0.36	0.28	0.36	0.78	0.57	-98.9	7.16	0.12	39
Developmental Skeletal Cranial DEV rat	J48	CDK Chemaxo	15	158	49	24	246	0.7	0.23	0.38	0.29	0.38	0.76	0.57	-98.9	7.1	0.12	39
Developmental Skeletal Cranial DEV rat	J48	n	15	139	69	24	247	0.62	0.18	0.38	0.24	0.38	0.67	0.53	-98.9	6.64	0.04	39
Developmental Skeletal Cranial DEV rat Developmental	J48	Dragon6 Fragment	13	159	49	26	247	0.7	0.21	0.33	0.26	0.33	0.76	0.55	-98.9	7.05	80.0	39
Skeletal Cranial DEV rat Developmental	J48	or	14	152	56	25	247	0.67	0.2	0.36	0.26	0.36	0.73	0.54	-98.9	6.91	0.07	39
Skeletal Cranial DEV rat Developmental	J48	GSFrag	14	142	66	25	247	0.63	0.18	0.36	0.24	0.36	0.68	0.52	-99.0	6.67	0.03	39
Skeletal Cranial DEV rat Developmental	J48	Inductive Mera,	14	148	60	25	247	0.66	0.19	0.36	0.25	0.36	0.71	0.54	-98.9	6.81	0.06	39
Skeletal Cranial DEV rat Developmental	J48	Mersy	13	157	51	26	247	0.69	0.2	0.33	0.25	0.33	0.75	0.54	-98.9	7.	0.07	39
Skeletal Cranial DEV rat Developmental	J48	QNPR Spectrop	13	161	47	26	247	0.7	0.22	0.33	0.26	0.33	0.77	0.55	-98.9	7.1	0.09	39
Skeletal Cranial	J48	hores	13	163	45	26	247	0.71	0.22	0.33	0.27	0.33	0.78	0.56	-98.9	7.16	0.1	39

DEV rabbit Developmental GeneralFetal	RF	Adriana	31	100	75	24	230	0.57	0.29	0.56	0.39	0.56	0.57	0.57	_0.2.0_	6.93	በ 12	55
	ΚΓ	Auildild	JΙ	100	73	24	230	0.07	0.29	0.00	0.39	0.00	0.07	0.57	-90.9	0.93	0.12	ეე
DEV rabbit Developmental		ALogPS,																
GeneralFetal	RF	OEstate	33	102	74	22	231	0.58	0.31	0.6	0.41	0.6	0.58	0.59	-98.8	6.94	0.15	55
DEV rabbit																		
Developmental	DГ	CDK	25	00	77	10	220	0.50	0.24	0.65	0.40	0.65	0.56	0.64	00.0	6 70	0.40	E 1
GeneralFetal	RF	CDK	35	99	77	19	230	0.58	0.31	0.65	0.42	0.65	0.56	0.61	-98.8	6.79	υ. Ιδ	54
DEV rabbit Developmental		Chemaxo																
GeneralFetal	RF	n	35	106	70	20	231	0.61	0.33	0.64	0.44	0.64	0.6	0.62	-98.8	7.	0.2	55
DEV rabbit																		
Developmental																		
GeneralFetal	RF	Dragon6	31	107	69	24	231	0.6	0.31	0.56	0.4	0.56	0.61	0.59	-98.8	7.08	0.15	55
DEV rabbit		Fragment																
Developmental GeneralFetal	RF	or	31	105	71	24	231	0.59	0.3	0.56	0.39	0.56	0.6	0.58	-98.8	7.04	0 14	55
DEV rabbit	131	01	01	100			201	0.00	0.5	0.00	0.00	0.50	0.0	0.50	-50.0	7.04	0.14	- 55
Developmental																		
GeneralFetal	RF	GSFrag	30	113	63	25	231	0.62	0.32	0.55	0.41	0.55	0.64	0.59	-98.8	7.24	0.16	55
DEV rabbit																		
Developmental	DE	Industina	20	100	70	O.F.	004	0.50	0.00	0.55	0.00	0 55	0.50	0.57	00.0	-	0 44	
GeneralFetal	RF	Inductive	30	103	73	25	231	0.58	0.29	0.55	0.38	0.55	0.59	0.57	-98.9	1.	0.11	55
DEV rabbit Developmental		Mera,																
GeneralFetal	RF	Mersy	30	102	74	25	231	0.57	0.29	0.55	0.38	0.55	0.58	0.56	-98.9	6.98	0.11	55
DEV rabbit		,						-										
Developmental																		
GeneralFetal	RF	QNPR	38	101	75	17	231	0.6	0.34	0.69	0.45	0.69	0.57	0.63	-98.7	6.81	0.23	55
DEV rabbit		Spectron																
Developmental GeneralFetal	RF	Spectrop hores	33	102	74	22	231	0.58	0.31	0.6	0.41	0.6	0.58	0.59	_02 2	6.94	0 15	55
	ΚF	110169	JJ	102	14		231	0.00	0.31	0.0	0.41	0.0	0.00	0.09	-90.0	0.94	0.10	55
DEV rabbit Developmental	ASN																	
GeneralFetal	N	Adriana	29	113	62	26	230	0.62	0.32	0.53	0.4	0.53	0.65	0.59	-98.8	7.26	0.15	55
DEV rabbit																		
Developmental	ASN	ALogPS,																
GeneralFetal	N	OEstate	29	114	62	26	231	0.62	0.32	0.53	0.4	0.53	0.65	0.59	-98.8	7.27	0.15	55
DEV rabbit	401																	
Developmental	ASN	CDK	20	117	EO	25	222	0.00	0.00	0.54	0.44	0.54	0.00	0.0	00.0	7.0	0.40	ار ہ
GeneralFetal	N	CDK	29	117	59	25	230	0.63	0.33	0.54	0.41	0.54	0.66	0.6	-98.8	1.3	0.18	54
DEV rabbit	ASN	Chemaxo																
Developmental GeneralFetal	N	n	31	113	63	24	231	0.62	0.33	0.56	0.42	0.56	0.64	0.6	-98.8	7.23	0.18	55
DEV rabbit		•																
Developmental	ASN																	
GeneralFetal	N	Dragon6	27	124	52	28	231	0.65	0.34	0.49	0.4	0.49	0.7	0.6	-98.8	7.53	0.18	55
DEV rabbit	ACNI	Eroamont																
Developmental		Fragment	20	121	55	27	224	0.65	0.24	0.51	0.44	0 51	0.60	0.6	00 0	7 15	0 17	E E
GeneralFetal	N	or	28	121	55	27	231	0.65	0.34	0.51	0.41	0.51	0.69	0.6	-90.8	7.45	U.1/	55
DEV rabbit Developmental	ASN																	
GeneralFetal	N	GSFrag	30	122	54	25	231	0.66	0.36	0.55	0.43	0.55	0.69	0.62	-98.8	7.47	0.21	55
DEV rabbit																		
Developmental	ASN					_				_								
GeneralFetal	N	Inductive	28	110	66	27	231	0.6	0.3	0.51	0.38	0.51	0.63	0.57	-98.9	7.17	0.12	55
DEV rabbit	ΔСИ	Mera.																
Developmental GeneralFetal	N	Mersy	27	111	65	28	231	0.6	0.29	0.49	0.37	0.49	0.63	0.56	-98.9	7 2	0.11	55
	14	IVICIOY	<u> </u>	111	00	20	201	0.0	0.28	U. 4 3	0.31	0.48	0.03	0.50	-90.9	1.4	0.11	JJ
DEV rabbit Developmental	ASN																	
GeneralFetal	Ν	QNPR	36	125	51	19	231	0.7	0.41	0.65	0.51	0.65	0.71	0.68	-98.6	7.46	0.32	55
DEV rabbit																		
Developmental		Spectrop																_
GeneralFetal	N	hores	28	99	77	27	231	0.55	0.27	0.51	0.35	0.51	0.56	0.54	-98.9	6.91	0.06	55
DEV rabbit	ASN	CDK, TA,																
Developmental GeneralFetal	N	TP	25	136	40	29	230	0.7	U 35	0.46	0 42	0.46	0 77	0.62	_02 2	7.84	ი აა	54
	13	- 11	7:1	1.1()	→ \/	/ -1	Z.11.1	U /	U JO	v.+U		1 (()						J4

DEV rabbit Developmental	ASN																	
GeneralFetal	N	CDK, TA	25	128	48	29	230	0.67	0.34	0.46	0.39	0.46	0.73	0.6	-98.8	7.6	0.17	54
DEV rabbit Developmental	ASN																	
GeneralFetal	N	CDK, TP	18	119	57	36	230	0.6	0.24	0.33	0.28	0.33	0.68	0.5	-99.0	7.25	0.01	54
DEV rabbit Developmental	ASN																	
GeneralFetal	N	TA, TP	25	129	47	30	231	0.67	0.35	0.45	0.39	0.45	0.73	0.59	-98.8	7.66	0.17	55
DEV rabbit	ASN																	
Developmental GeneralFetal	N	TA	21	129	47	34	231	0.65	0.31	0.38	0.34	0.38	0.73	0.56	-98.9	7.61	0.11	55
DEV rabbit	A C N I																	\neg
Developmental GeneralFetal	ASN N	TP	24	110	66	31	231	0.58	0.27	0.44	0.33	0.44	0.63	0.53	-98.9	7.16	0.05	55
				110	- 00		201	0.00	0.21	0.11	0.00	0.44	0.00	0.00	00.0	7.10	0.00	
DEV rabbit Developmental	FSM	CDK, TA,																
GeneralFetal	LR	TP	23	132	44	31	230	0.67	0.34	0.43	0.38	0.43	0.75	0.59	-98.8	7.7	0.16	54
DEV rabbit	FSM																	
Developmental GeneralFetal	LR	CDK, TA	28	126	50	26	230	0.67	0.36	0.52	0.42	0.52	0.72	0.62	-98.8	7.55	0.21	54
DEV rabbit		· · · · · · · · · · · · · · · · · · ·																\neg
Developmental	FSM	0011 75	o=	440	5 0	^-	000	0.00	0.00	o -	0.00	<u> </u>	0.0-	0.50	00.0	7.00	0.45	إ
GeneralFetal	LR	CDK, TP	27	118	58	27	230	0.63	0.32	0.5	0.39	0.5	0.67	0.59	-98.8	7.33	0.15	54
DEV rabbit Developmental	FSM																	
GeneralFetal	LR	TA, TP	25	124	52	30	231	0.65	0.32	0.45	0.38	0.45	0.7	0.58	-98.8	7.52	0.14	55
DEV rabbit																		
Developmental	FSM	ΤΛ	25	122	4.4	20	224	0.60	0.26	0.45	0.4	0.45	0.75	0.6	00.0	7 75	0.40	
GeneralFetal	LR	TA	25	132	44	30	231	0.68	0.36	0.45	0.4	0.45	0.75	0.6	-98.8	7.75	0.19	55
DEV rabbit Developmental	FSM																	
GeneralFetal	LR	TP	21	101	75	34	231	0.53	0.22	0.38	0.28	0.38	0.57	0.48	-99.0	6.9	.038	55
DEV rabbit		CDK, TA,																
Developmental GeneralFetal	KNN		26	114	62	28	230	0.61	0.3	0.48	0.37	0.48	0.65	0.56	-98.9	7.23	0.11	54
DEV rabbit																		
Developmental GeneralFetal	KNN	CDK, TA	24	127	49	30	230	0.66	0.33	0.44	0.38	0.44	0.72	0.58	-98.8	7.56	0.15	54
DEV rabbit	14111	ODIT, 171						0.00	0.00	0.11	0.00	0.11	0.72	0.00	00.0	1.00	0.10	"
Developmental	IZNINI	CDV TD	27	0.5	04	47	220	0.50	0.00	0.00	0.44	0.00	0.40	0.50	00.0	C 40	0.44	را ج
GeneralFetal DEV rabbit	KNN	CDK, TP	37	85	91	17	230	0.53	0.29	0.69	0.41	0.69	0.48	0.58	-98.8	6.42	0.14	54
Developmental																		
GeneralFetal	KNN	TA, TP	27	127	49	28	231	0.67	0.36	0.49	0.41	0.49	0.72	0.61	-98.8	7.61	0.19	55
DEV rabbit Developmental																		
GeneralFetal	KNN	TA	12	149	27	43	231	0.7	0.31	0.22	0.26	0.22	0.85	0.53	-98.9	7.99	0.07	55
DEV rabbit																		
Developmental GeneralFetal	KNN	TP	33	78	98	22	231	0.48	0.25	0.6	0.35	0.6	0.44	0.52	-99.0	6.4	0.04	55
DEV rabbit																		\neg
Developmental		CDK, TA,	0	400	4.4	40	000	0.74	0.00	0.45	0.04	0.45	0.00	0.50	00.0	0.4	0.4	
GeneralFetal	VM	TP	8	162	14	46	230	0.74	0.36	0.15	0.21	0.15	0.92	0.53	-98.9	8.4	0.1	54
DEV rabbit Developmental	LibS																	
GeneralFetal	VM	CDK, TA	12	158	18	42	230	0.74	0.4	0.22	0.29	0.22	0.9	0.56	-98.9	8.42	0.15	54
DEV rabbit																		
Developmental	LibS	CDK, TP	Q	156	20	16	220	0.71	0.20	0 15	0.2	0 15	U 0U	0.52	_00_0	Q ∩1	0 04	51
GeneralFetal	VM	טטת, וד	8	156	20	46	230	0.71	0.29	0.15	0.2	0.15	0.89	0.52	-99.0	8.01	0.04	54
DEV rabbit Developmental	LibS																	
GeneralFetal	VM	TA, TP	11	157	19	44	231	0.73	0.37	0.2	0.26	0.2	0.89	0.55	-98.9	8.33	0.12	55
DEV rabbit	Libo																	
Developmental GeneralFetal	LibS VM	TA	9	162	14	46	231	0.74	0.39	0.16	0.23	0.16	0.92	0.54	_02.0	8.51	ი 12	55
GeneralFetal	V IVI	17	Э	102	14	40	231	0.74	0.38	0.10	0.23	0.10	0.92	0.54	-30.9	0.01	U. 1Z	55

DEV rabbit	LibS																
Developmental GeneralFetal	VM	TP	8	147	29	47	231	0.67	0.22	0.15	0.17	0.15	0.84	0.49	-99.0	7.61 .022	55
DEV rabbit	VIVI	!!		147	23		201	0.07	0.22	0.13	0.17	0.15	0.04	0.43	-99.0	7.01 .022	
Developmental	MLR	CDK, TA,															
GeneralFetal	Α	TP	32	81	95	22	230	0.49	0.25	0.59	0.35	0.59	0.46	0.53	-98.9	6.44 0.05	54
DEV rabbit																	
Developmental	MLR																_
GeneralFetal	A	CDK, TA	27	112	64	27	230	0.6	0.3	0.5	0.37	0.5	0.64	0.57	-98.9	7.18 0.12	54
DEV rabbit	MLR																
Developmental		CDV TD	26	111	60	20	220	0.61	0.2	0.40	0.27	0.40	0.65	0.56	000	702 044	E /
GeneralFetal	A	CDK, TP	26	114	62	28	230	0.61	0.3	0.48	0.37	0.48	0.65	0.56	-98.9	7.23 0.11	54
DEV rabbit Developmental	MLR																
GeneralFetal	Α	TA, TP	29	91	85	26	231	0.52	0.25	0.53	0.34	0.53	0.52	0.52	-99 0	6.73 0.04	55
DEV rabbit		,		<u> </u>				0.02	0.20	0.00	0.0.	0.00	0.02	0.02	00.0	00 0.0.	
Developmental	MLR																
GeneralFetal	Α	TA	31	98	78	24	231	0.56	0.28	0.56	0.38	0.56	0.56	0.56	-98.9	6.88 0.1	55
DEV rabbit																	
Developmental	MLR																
GeneralFetal	Α	TP	21	90	86	34	231	0.48	0.2	0.38	0.26	0.38	0.51	0.45	-99.1	6.65 .091	55
DEV rabbit		CDV TA															
Developmental	DI C	CDK, TA,	25	107	40	20	220	0.00	0.24	0.40	0.00	0.40	0.70	0.50	00.0	7 5 7 7 4 7	_
GeneralFetal	PLS	TP	25	127	49	29	230	0.66	0.34	0.46	0.39	0.46	0.72	0.59	-98.8	7.57 0.17	54
DEV rabbit																	
Developmental GeneralFetal	PLS	CDK. TA	26	129	47	28	230	0.67	0.36	0.48	0.41	0.48	0.73	0.61	-98.8	7.63 0.2	54
	1 20	ODIX, IA		120	71	20	200	0.07	0.00	0.40	0.71	0.40	0.73	0.01	-30.0	7.00 0.2	<u> </u>
DEV rabbit Developmental																	
GeneralFetal	PLS	CDK. TP	19	120	56	35	230	0.6	0.25	0.35	0.29	0.35	0.68	0.52	-99.0	7.3 0.03	5
DEV rabbit		,															
Developmental																	
GeneralFetal	PLS	TA, TP	26	126	50	29	231	0.66	0.34	0.47	0.4	0.47	0.72	0.59	-98.8	7.58 0.17	55
DEV rabbit																	
Developmental																	
GeneralFetal	PLS	TA	22	124	52	33	231	0.63	0.3	0.4	0.34	0.4	0.7	0.55	-98.9	7.49 0.1	55
DEV rabbit																	
Developmental	DI C	TD	00	407	00	20	004	0.50	0.05	0.40	0.04	0.40	0.04	0.54	00.0	707 000	
GeneralFetal	PLS	TP	23	107	69	32	231	0.56	0.25	0.42	0.31	0.42	0.61	0.51	-99.0	7.07 0.02	5
DEV rabbit		CDK, TA,															
Developmental GeneralFetal	J48	TP	25	137	39	29	230	0.7	0.39	0.46	0.42	0.46	0.78	0.62	-088	7.87 0.23	54
	J -1 0			107	39		230	0.7	0.55	0.40	0.42	0.40	0.70	0.02	-30.0	1.01 0.23	<u></u>
DEV rabbit Developmental																	
GeneralFetal	J48	CDK, TA	19	137	39	35	230	0.68	0.33	0.35	0.34	0.35	0.78	0.57	-98.9	7.79 0.13	54
DEV rabbit		- ,															
Developmental																	
GeneralFetal	J48	CDK, TP	18	133	43	36	230	0.66	0.3	0.33	0.31	0.33	0.76	0.54	-98.9	7.64 0.09	54
DEV rabbit																	
Developmental																	
GeneralFetal	J48	TA, TP	26	136	40	29	231	0.7	0.39	0.47	0.43	0.47	0.77	0.62	-98.8	7.88 0.23	5
DEV rabbit																	
Developmental	140		40	400	o=	40	004	0.05	0.04	0.00	0.00	0.00	0.70	٥.	000	704 004	_
GeneralFetal	J48	TA	12	139	37	43	231	0.65	0.24	0.22	0.23	0.22	0.79	0.5	-99.0	7.61 0.01	5
DEV rabbit																	
Developmental GeneralFetal	J48	TP	19	118	58	36	231	0.59	0.25	0.35	0.29	0.35	0.67	0.51	_00 O	7.27 0.01	5
	J40	IF	19	110	30	30	231	0.59	0.23	0.55	0.29	0.55	0.07	0.51	-99.0	1.21 0.01	<u> </u>
DEV rabbit Developmental		CDK, TA,															
Developmental GeneralFetal	RF	TP	30	109	67	24	230	0.6	0.31	0.56	0.4	0.56	0.62	0.59	-98.8	7.1 0.15	5
DEV rabbit		••		.00	٠,	_ T	_00	0.0	0.01	3.00	♥.¬	0.00	J.JL	0.00	33.0	5.10	
Developmental																	
GeneralFetal	RF	CDK, TA	30	110	66	24	230	0.61	0.31	0.56	0.4	0.56	0.63	0.59	-98.8	7.12 0.16	5
DEV rabbit		· · · · · · · · · · · · · · · · · · ·															
Developmental																	
	RF	CDK, TP	30	106	70	24	230	0.59	0.3	0.56	0.39	0.56	0.6	0.58	-98.8	7.03 0.13	54
GeneralFetal																	
DEV rabbit																	
	RF	TA, TP	29	113	63	26	231	0.61	0.32	0.53	0.39	0.53	0.64	0.58		7.24 0.15	5

DEV rabbit Developmental GeneralFetal	RF	TA	21	116	60	34	231	0.59	0.26	0.38	0.31	0.38	0.66	0.52	-99.0	7.26	0.04	55
DEV rabbit Developmental GeneralFetal	RF	TP	27	88	88	28	231	0.5	0.23	0.49	0.32	0.49	0.5	0.5	-99.0	6.66	.008	55
DEV rabbit Developmental GeneralFetal	FSM LR	Adriana	30	106	69	25	230	0.59	0.3	0.55	0.39	0.55	0.61	0.58	-98.8	7.08	0.13	55
DEV rabbit Developmental GeneralFetal	FSM LR	ALogPS, OEstate	30	110	66	25	231	0.61	0.31	0.55	0.4	0.55	0.63	0.59	-98.8	7 16	0 15	55
DEV rabbit Developmental GeneralFetal	FSM LR	CDK	32	114	62	22	230	0.63	0.34	0.59	0.43	0.59	0.65	0.62	-98.8		0.21	54
DEV rabbit Developmental GeneralFetal		Chemaxo n	34	103	73	21	231	0.59	0.32	0.62	0.42	0.62	0.59	0.6	-98.8			55
DEV rabbit Developmental GeneralFetal	FSM LR	Dragon6	26	119	57	29	231	0.63	0.31	0.47	0.38	0.47	0.68	0.57	-98.9			55
DEV rabbit Developmental GeneralFetal		Fragment or	28	117	59	27	231	0.63	0.32	0.51	0.39	0.51	0.66	0.59	-98.8			55
DEV rabbit Developmental GeneralFetal	FSM LR	GSFrag	30	120	56	25	231	0.65	0.35	0.55	0.43	0.55	0.68	0.61	-98.8		0.2	55
DEV rabbit Developmental GeneralFetal	FSM LR	Inductive	27	117	59	28	231	0.62	0.31	0.49	0.38	0.49	0.66	0.58	-98.8			55
DEV rabbit Developmental GeneralFetal		Mera, Mersy	26	119	57	29	231	0.63	0.31	0.47	0.38	0.47	0.68	0.57	-98.9			55
DEV rabbit Developmental GeneralFetal	FSM LR	QNPR	30	119	57	25	231	0.65	0.34	0.55	0.42	0.55	0.68	0.61	-98.8	7.39	0.19	55
DEV rabbit Developmental GeneralFetal	FSM LR	Spectrop hores	30	108	68	25	231	0.6	0.31	0.55	0.39	0.55	0.61	0.58	-98.8	7.12	0.14	55
DEV rabbit Developmental GeneralFetal		Adriana	43	53	122	12	230	0.42	0.26	0.78	0.39	0.78	0.3	0.54	-98.9			55
DEV rabbit Developmental GeneralFetal	KNN	ALogPS, OEstate	42	69	107	13	231	0.48	0.28	0.76	0.41	0.76	0.39	0.58	-98.8	5.92	0.14	55
DEV rabbit Developmental GeneralFetal	KNN	CDK	42	84	92	12	230	0.55	0.31	0.78	0.45	0.78	0.48	0.63	-98.7	6.18	0.22	54
DEV rabbit Developmental GeneralFetal	KNN	Chemaxo n	44	64	112	11	231	0.47	0.28	0.8	0.42	0.8	0.36	0.58	-98.8	5.68	0.15	55
DEV rabbit Developmental GeneralFetal DEV rabbit	KNN	Dragon6	35	99	77	20	231	0.58	0.31	0.64	0.42	0.64	0.56	0.6	-98.8	6.84	0.17	55
DEV rabbit Developmental GeneralFetal DEV rabbit	KNN	Fragment or	48	66	110	7	231	0.49	0.3	0.87	0.45	0.87	0.38	0.62	-98.8	5.39	0.23	55
Developmental GeneralFetal DEV rabbit	KNN	GSFrag	32	107	69	23	231	0.6	0.32	0.58	0.41	0.58	0.61	0.59	-98.8	7.07	0.16	55
Developmental GeneralFetal DEV rabbit	KNN	Inductive Mera,	25	117	59	30	231	0.61	0.3	0.45	0.36	0.45	0.66	0.56	-98.9	7.34	0.11	55
Developmental GeneralFetal	KNN	Mersy	34	100	76	21	231	0.58	0.31	0.62	0.41	0.62	0.57	0.59	-98.8	6.88	0.16	55

DEV rabbit Developmental GeneralFetal	KNN	QNPR	44	74	102	11	231	0.51	0.3	0.8	0.44	0.8	0.42	0.61	-98.8	5.92	0.19	55
DEV rabbit Developmental GeneralFetal	KNN	Spectrop hores	44	87	89	11	231	0.57	0.33	0.8	0.47	0.8	0.49	0.65	-98.7	6.22	0.25	55
DEV rabbit Developmental GeneralFetal	LibS VM	Adriana	15	133	42	40	230	0.64	0.26	0.27	0.27	0.27	0.76	0.52	-99.0	7.59	0.03	55
DEV rabbit Developmental GeneralFetal		ALogPS, OEstate	19	140	36	36	231	0.69	0.35	0.35	0.35	0.35	0.8	0.57	-98.9			55
DEV rabbit Developmental GeneralFetal	LibS VM	CDK	20	139	37	34	230	0.69	0.35	0.37	0.36	0.37	0.79	0.58	-98.8	-	-	54
DEV rabbit Developmental GeneralFetal		Chemaxo	16	142	34	39	231	0.68	0.32	0.29	0.3	0.29	0.73	0.55	-98.9	7.9	0.10	55
DEV rabbit Developmental GeneralFetal	LibS VM	Dragon6	18	140	36	37	231	0.68	0.33	0.33	0.33	0.33	0.8	0.56	-98.9			55
DEV rabbit Developmental GeneralFetal		Fragment or	16	149	27	39	231	0.71	0.37	0.29	0.33	0.29	0.85	0.57	-98.9			55
DEV rabbit Developmental GeneralFetal	LibS VM	GSFrag	21	141	35	34	231	0.7	0.38	0.38	0.38	0.38	0.8	0.59	-98.8			55
DEV rabbit Developmental GeneralFetal	LibS VM	Inductive	16	134	42	39	231	0.65	0.28	0.29	0.28	0.29	0.76	0.53	-98.9			55
DEV rabbit Developmental GeneralFetal		Mera, Mersy	13	136	40	42	231	0.65	0.25	0.24	0.24	0.24	0.77	0.5	-99.0			55
DEV rabbit Developmental GeneralFetal	LibS VM	QNPR	24	141	35	31	231	0.71	0.41	0.44	0.42	0.44	0.8	0.62	-98.8	8.03	0.23	55
DEV rabbit Developmental GeneralFetal	LibS VM	Spectrop hores	18	136	40	37	231	0.67	0.31	0.33	0.32	0.33	0.77	0.55	-98.9	7.76	0.1	55
DEV rabbit Developmental GeneralFetal	MLR A	Adriana	28	102	73	27	230	0.57	0.28	0.51	0.36	0.51	0.58	0.55	-98.9	7.	0.08	55
DEV rabbit Developmental GeneralFetal	MLR A	ALogPS, OEstate	32	86	90	23	231	0.51	0.26	0.58	0.36	0.58	0.49	0.54	-98.9	6.59	0.06	55
DEV rabbit Developmental GeneralFetal	MLR A	CDK	26	85	91	28	230	0.48	0.22	0.48	0.3	0.48	0.48	0.48	-99.0	6.56	.03	54
DEV rabbit Developmental GeneralFetal	MLR A	Chemaxo n	26	110	66	29	231	0.59	0.28	0.47	0.35	0.47	0.63	0.55	-98.9	7.17	0.09	55
DEV rabbit Developmental GeneralFetal DEV rabbit	MLR A	Dragon6	32	94	82	23	231	0.55	0.28	0.58	0.38	0.58	0.53	0.56	-98.9	6.77	0.1	55
DEV rabbit Developmental GeneralFetal DEV rabbit	Α	Fragment or	23	96	80	32	231	0.52	0.22	0.42	0.29	0.42	0.55	0.48	-99.0	6.82	.031	55
Developmental GeneralFetal DEV rabbit	MLR A	GSFrag	31	83	93	24	231	0.49	0.25	0.56	0.35	0.56	0.47	0.52	-99.0	6.54	0.03	55
Developmental GeneralFetal DEV rabbit	MLR A	Inductive	26	111	65	29	231	0.59	0.29	0.47	0.36	0.47	0.63	0.55	-98.9	7.19	0.09	55
Developmental GeneralFetal	MLR A	Mera, Mersy	22	97	79	33	231	0.52	0.22	0.4	0.28	0.4	0.55	0.48	-99.0	6.83	.042	55

DEV																		_
DEV rabbit Developmental	MLR																	
GeneralFetal	Α	QNPR	33	106	70	22	231	0.6	0.32	0.6	0.42	0.6	0.6	0.6	-98.8	7.04	0.17	55
DEV rabbit Developmental	MLR	Spectrop																
GeneralFetal	Α	hores	29	109	67	26	231	0.6	0.3	0.53	0.38	0.53	0.62	0.57	-98.9	7.15	0.13	55
DEV rabbit																		
Developmental GeneralFetal	PLS	Adriana	33	99	76	22	230	0.57	0.3	0.6	0.4	0.6	0.57	0.58	-98.8	6.89	0.14	55
																	• • • • • • • • • • • • • • • • • • • •	
DEV rabbit Developmental		ALogPS,																
GeneralFetal	PLS	OEstate	32	107	69	23	231	0.6	0.32	0.58	0.41	0.58	0.61	0.59	-98.8	7.07	0.16	55
DEV rabbit																		
Developmental	DI C	CDK	24	110	64	20	220	0.62	0.25	0.62	0.45	0.62	0.64	0.62	00.7	7 10	0.22	E 4
GeneralFetal	PLS	CDK	34	112	64	20	230	0.63	0.35	0.63	0.45	0.63	0.64	0.63	-96.7	7.12	0.23	54
DEV rabbit Developmental		Chemaxo																
GeneralFetal	PLS	n	34	106	70	21	231	0.61	0.33	0.62	0.43	0.62	0.6	0.61	-98.8	7.02	0.19	55
DEV rabbit																		
Developmental	DI C	D====C	07	440	50	20	004	0.00	0.00	0.40	0.00	0.40	0.07	0.50	00.0	7 07	0.44	
GeneralFetal	PLS	Dragon6	27	118	58	28	231	0.63	0.32	0.49	0.39	0.49	0.67	0.58	-98.8	7.37	0.14	55
DEV rabbit Developmental		Fragment																
GeneralFetal	PLS	or	29	116	60	26	231	0.63	0.33	0.53	0.4	0.53	0.66	0.59	-98.8	7.32	0.16	55
DEV rabbit																		
Developmental	DI C	CCError	22	447	ΕO	20	224	0.05	0.00	0.0	0.45	0.0	0.00	0.00	00 -	7 04	0.00	
GeneralFetal	PLS	GSFrag	33	117	59	22	231	0.65	0.36	0.6	0.45	0.6	0.66	0.63	-98.7	7.31	0.23	55
DEV rabbit Developmental																		
GeneralFetal	PLS	Inductive	29	119	57	26	231	0.64	0.34	0.53	0.41	0.53	0.68	0.6	-98.8	7.39	0.18	55
DEV rabbit																		
Developmental	DI O	Mera,	00	404	70	0.5	004	0.50	0.00	0.55	0.00	0.55	0.50	0.55	00.0	7.00	0.40	
GeneralFetal	PLS	Mersy	30	104	72	25	231	0.58	0.29	0.55	0.38	0.55	0.59	0.57	-98.9	7.02	0.12	55
DEV rabbit Developmental																		
GeneralFetal	PLS	QNPR	34	120	56	21	231	0.67	0.38	0.62	0.47	0.62	0.68	0.65	-98.7	7.37	0.26	55
DEV rabbit																		
Developmental	5. 6	Spectrop															- ·-	
GeneralFetal	PLS	hores	34	102	74	21	231	0.59	0.31	0.62	0.42	0.62	0.58	0.6	-98.8	6.93	0.17	55
DEV rabbit Developmental																		
GeneralFetal	J48	Adriana	21	120	55	34	230	0.61	0.28	0.38	0.32	0.38	0.69	0.53	-98.9	7.38	0.06	55
DEV																		
DEV rabbit Developmental		ALogPS,																
GeneralFetal	J48	OEstate	22	121	55	33	231	0.62	0.29	0.4	0.33	0.4	0.69	0.54	-98.9	7.41	80.0	55
DEV rabbit																		
Developmental	140	CDK	O.F.	110	E0	20	220	0.60	0.3	0.46	0.26	0.46	0.67	0.57	00.0	7 22	0.10	ادع
GeneralFetal	J48	CDK	25	118	58	29	230	0.62	0.3	0.46	0.36	0.46	0.67	0.57	-90.9	7.33	U. IZ	54
DEV rabbit Developmental		Chemaxo																
GeneralFetal	J48	n	23	131	45	32	231	0.67	0.34	0.42	0.37	0.42	0.74	0.58	-98.8	7.7	0.15	55
DEV rabbit																		
Developmental	140	Drogone	10	117	E0	26	224	0.50	0.24	0.25	0.20	0.25	0.66	0.54	00.0	7 25	0.04	
GeneralFetal	J48	Dragon6	19	117	59	36	231	0.59	0.24	0.35	0.29	0.35	0.66	0.51	-99.0	7.25	0.01	55
DEV rabbit Developmental		Fragment																
GeneralFetal	J48	or	27	123	53	28	231	0.65	0.34	0.49	0.4	0.49	0.7	0.59	-98.8	7.5	0.17	55
DEV rabbit																		
Developmental	140	CCFror	24	100	47	24	004	0.65	0.24	0.20	0.24	0.20	0.70	0.50	00.0	7.64	0.44	
GeneralFetal	J48	GSFrag	21	129	47	34	231	0.65	0.31	0.38	0.34	0.38	0.73	0.56	-98.9	7.61	0.11	55
DEV rabbit Developmental																		
GeneralFetal	J48	Inductive	21	124	52	34	231	0.63	0.29	0.38	0.33	0.38	0.7	0.54	-98.9	7.47	80.0	55
DEV rabbit																		
Developmental		Mera,		40-		<u>.</u> .	.			0.5-	0.0-	0.0-		0.5-			0.05	
GeneralFetal	J48	Mersy	21	126	50	34	231	0.64	0.3	0.38	0.33	0.38	0.72	0.55	-98.9	7.53	0.09	55
DEV rabbit Developmental																		
GeneralFetal	J48	QNPR	31	126	50	24	231	0.68	0.38	0.56	0.46	0.56	0.72	0.64	-98.7	7.57	0.25	55
	•				- •			00	00	00			-·· -		50.1		•	

DEV rabbit Developmental GeneralFetal	J48	Spectrop hores	22	119	57	33	231	0.61	0.28	0.4	0.33	0.4	0.68	0.54	-98.9	7.36	0.07	55
DEV rabbit Developmental	DE	A -1	0.5	00	74	0.4	000	0.50	0.00	0.50	0.44	0.50	0.57	0.55	00.0	7.00	0.00	00
Skeletal	RF	Adriana	35	93	71	31	230	0.56	0.33	0.53	0.41	0.53	0.57	0.55	-98.9	7.29	0.09	66
DEV rabbit																		
Developmental		ALogPS,																
Skeletal	RF	OEstate	36	99	66	30	231	0.58	0.35	0.55	0.43	0.55	0.6	0.57	-98.9	7.42	0.13	66
DEV rabbit																		
Developmental	DE	CDK	20	400	00	00	000	0.04	0.00	0.0	0.47	0.0	0.00	0.04	00.0	7 40	0.0	٥.
Skeletal	RF	CDK	39	102	63	26	230	0.61	0.38	0.6	0.47	0.6	0.62	0.61	-98.8	7.43	0.2	65
DEV rabbit		Chemaxo																
Developmental	DE		26	06	60	20	224	0.57	0.24	0.55	0.40	0.55	0.50	0.56	00.0	724	0.40	66
Skeletal	RF	n	36	96	69	30	231	0.57	0.34	0.55	0.42	0.55	0.58	0.56	-90.9	7.34	0.12	66
DEV rabbit																		
Developmental Skeletal	RF	Dragone	38	89	76	20	221	0.55	0.33	0.50	0.42	0.50	0.54	0.56	-98.9	7 16	0.1	66
	ΚΓ	Dragon6	36	69	70	28	231	0.55	0.33	0.58	0.42	0.58	0.54	0.56	-90.9	7.10	0.1	00
DEV rabbit		Fragment																
Developmental Skeletal	RF	or	35	93	72	31	231	0.55	0.33	0.53	0.4	0.53	0.56	0.55	_0.8 0	7.27	0.00	66
	131	JI	55	90	12	J 1	201	0.00	0.00	0.00	0.4	0.00	0.50	0.00	-30.8	1.41	0.00	50
DEV rabbit Developmental																		
Developmental Skeletal	RF	GSFrag	40	97	68	26	231	0.59	0.37	0.61	0.46	0.61	0.59	0.6	-98.8	7.33	0.18	66
	131	July 149	70	01	30	20	_01	0.00	0.01	0.01	5.→0	0.01	0.00	0.0	55.0		5.10	50
DEV rabbit Developmental																		
Skeletal	RF	Inductive	35	92	73	31	231	0.55	0.32	0.53	0.4	0.53	0.56	0.54	-98.9	7.25	0.08	66
	131					<u> </u>		5.50	J.UL	2.00	σ.¬	2.00	0.00	5.57	00.0	0	2.00	
DEV rabbit Developmental		Mera,																
Skeletal	RF	Mersy	29	104	61	37	231	0.58	0.32	0.44	0.37	0.44	0.63	0.53	-98 9	7.54	0.06	66
DEV rabbit						<u> </u>									30.0		, .	
Developmental																		
Skeletal	RF	QNPR	38	94	71	28	231	0.57	0.35	0.58	0.43	0.58	0.57	0.57	-98.9	7.28	0.13	66
DEV rabbit																		
Developmental		Spectrop																
Skeletal	RF	hores	35	95	70	31	231	0.56	0.33	0.53	0.41	0.53	0.58	0.55	-98.9	7.32	0.1	66
DEV rabbit																		
Developmental	ASN																	
Skeletal	N	Adriana	33	109	55	33	230	0.62	0.38	0.5	0.43	0.5	0.66	0.58	-98.8	7.7	0.15	66
DEV rabbit	ASN	ALogPS,																
Developmental Skeletal	N	OEstate	36	115	50	30	231	0.65	0.42	0.55	0.47	0.55	0.7	0.62	-08 8	7.84	ი 23	66
	- 11	OLSiaic	- 50	110	- 50	- 50	201	0.00	0.72	0.00	0.47	0.00	0.7	0.02	-30.0	7.04	0.20	- 00
DEV rabbit	ASN																	
Developmental Skeletal	N	CDK	37	113	52	28	230	0.65	0.42	0.57	0.48	0.57	0.68	0.63	-08 7	7.75	ი 23	65
	14	JUIN	31	113	52	20	200	0.00	0.72	0.07	0.40	0.07	0.00	0.00	-30.7	1.75	0.20	00
DEV rabbit	ASN	Chemaxo																
Developmental Skeletal	N	n	33	107	58	33	231	0.61	0.36	0.5	0.42	0.5	0.65	0.57	_Q2 Q	7.63	0 14	66
	- 11		- 00	101	- 55	- 55	201	0.01	0.00	0.0	U.72	0.0	0.00	0.01	50.5	7.00	5.17	50
DEV rabbit Developmental	ASN																	
Developmental Skeletal	N	Dragon6	33	120	45	33	231	0.66	0.42	0.5	0.46	0.5	0.73	0.61	-98.8	R	0.22	66
	. 1	Diagono	- 55	120	70	- 55	201	0.00	U.72	0.0	0.40	0.0	0.70	0.01	50.0	<u> </u>	J. <u>L</u> L	50
DEV rabbit Developmental	ASN	Fragment																
Developmental Skeletal	N	or	34	113	52	32	231	0.64	0.4	0.52	0.45	0.52	0.68	0.6	-98.8	7.79	0 19	66
	- 11	J1	UT	.10		- 52	201	0.07	J. T	0.02	0.40	0.02	0.00	0.0	50.0	1.75	5.15	50
DEV rabbit Developmental	ASN																	
Developmental Skeletal	N	GSFrag	33	119	46	33	231	0.66	0.42	0.5	0.46	0.5	0.72	0.61	-98.8	7.97	0.21	66
	- 11	July 149	55	110			_01	0.00	J.→∠	0.0	5.→0	0.0	U.12	0.01	55.0	01	J. <u>L</u> I	50
DEV rabbit Developmental	ASN																	
Skeletal	N	Inductive	32	107	58	34	231	0.6	0.36	0.48	0.41	0.48	0.65	0.57	-98 9	7.63	0 12	66
	- 11		<u> </u>	.01	30	U-T	_01	0.0	0.00	5.70	J.→1	5.70	0.00	0.01	55.5		J. 12	50
DEV rabbit	ASN	Mera,																
Developmental Skeletal	N	Mersy	34	96	69	32	231	0.56	0.33	0.52	0.4	0.52	0.58	0.55	_Q8 Q	7.35	n na	66
	14	iviciay	J -1	90	JJ	υZ	<u> -</u> U I	0.50	0.00	0.02	0.4	0.02	0.00	0.00	-90.9	7.00	5.03	00
DEV rabbit	ASN																	
Developmental Skeletal	N	QNPR	33	123	42	33	231	0.68	0.44	0.5	0.47	0.5	0.75	0.62	_Q2 2	8.09	0.24	66
	14	QIVI IX	JJ	123	74	JJ	201	0.00	0.44	0.5	0.47	0.5	0.73	0.02	-30.0	0.08	0.24	00
		C																
DEV rabbit	ASN	Speciron																
DEV rabbit Developmental Skeletal	ASN N	Spectrop hores	33	103	62	33	231	0.59	0.35	0.5	0.41	0.5	0.62	0.56	_0.2.0	7.53	0 11	66

DEV rabbit Developmental Skeletal	ASN N	CDK, TA, TP	24	110	55	41	230	0.58	0.3	0.37	0.33	0.37	0.67	0.52	-99.0	7.61	0.03	65
DEV rabbit Developmental Skeletal	ASN N	CDK, TA	29	116	49	36	230	0.63	0.37	0.45	0.41	0.45	0.7	0.57	-98.9	7.84	0.14	65
DEV rabbit Developmental Skeletal	ASN N	CDK, TP	29	101	64	36	230	0.57	0.31	0.45	0.37	0.45	0.61	0.53	-98.9			65
DEV rabbit Developmental	ASN	,																
Skeletal DEV rabbit Developmental	N ASN	TA, TP	27	104	61	39	231	0.57	0.31	0.41	0.35	0.41	0.63	0.52	-99.0	7.52	0.04	66
Skeletal DEV rabbit	N ASN	TA	28	116	49	38	231	0.62	0.36	0.42	0.39	0.42	0.7	0.56	-98.9	7.86	0.12	66
Developmental Skeletal	N N	TP	24	99	66	42	231	0.53	0.27	0.36	0.31	0.36	0.6	0.48	-99.0	7.35	.034	66
DEV rabbit Developmental Skeletal	FSM LR	CDK, TA, TP	32	114	51	33	230	0.63	0.39	0.49	0.43	0.49	0.69	0.59	-98.8	7.79	0.17	65
DEV rabbit Developmental Skeletal	FSM LR	CDK, TA	38	115	50	27	230	0.67	0.43	0.58	0.5	0.58	0.7	0.64	-98.7	7.79	0.26	65
DEV rabbit Developmental Skeletal	FSM LR	CDK, TP	29	105	60	36	230	0.58	0.33	0.45	0.38	0.45	0.64	0.54	-98.9	7.54	0.08	65
DEV rabbit Developmental Skeletal	FSM LR	TA, TP	26	100	65	40	231	0.55	0.29	0.39	0.33	0.39	0.61	0.5	-99.0	7 41	0.	66
DEV rabbit Developmental Skeletal	FSM LR	TA	36	106	59	30	231	0.61	0.38	0.55	0.45	0.55	0.64	0.59	-98.8		0.17	66
DEV rabbit Developmental Skeletal	FSM LR	TP	33	91	74	33	231	0.54	0.31	0.5	0.38	0.5	0.55	0.53	-98.9	7.23	0.05	66
DEV rabbit Developmental Skeletal	KNN	CDK, TA, TP	39	83	82	26	230	0.53	0.32	0.6	0.42	0.6	0.5	0.55	-98.9	6.97	0.09	65
DEV rabbit Developmental Skeletal	KNN	CDK, TA	46	78	87	19	230	0.54	0.35	0.71	0.46	0.71	0.47	0.59	-98.8	6.7	0.16	65
DEV rabbit Developmental Skeletal	KNN	CDK, TP	40	69	96	25	230	0.47	0.29	0.62	0.4	0.62	0.42	0.52	-99.0	6.61	0.03	65
DEV rabbit Developmental Skeletal	KNN	TA, TP	38	68	97	28	231	0.46	0.28	0.58	0.38	0.58	0.41	0.49	-99.0	6.65	.011	66
DEV rabbit Developmental Skeletal	KNN	TA	33	90	75	33	231	0.53	0.31	0.5	0.38	0.5	0.55	0.52	-99.0	7.2	0.04	66
DEV rabbit Developmental Skeletal	KNN	TP	44	50	115	22	231	0.41	0.28	0.67	0.39	0.67	0.3	0.48	-99.0	6.08	.03	66
DEV rabbit Developmental Skeletal	LibS VM	CDK, TA, TP	16	135	30	49	230	0.66	0.35	0.25	0.29	0.25	0.82	0.53	-98.9	8.2	0.07	65
DEV rabbit Developmental Skeletal	LibS VM	CDK, TA	14	140	25	51	230	0.67	0.36	0.22	0.27	0.22	0.85	0.53	-98.9			65
DEV rabbit Developmental Skeletal	LibS VM	CDK, TP	20	141	24	45	230	0.7	0.45	0.31	0.37	0.31	0.85	0.58	-98.8	8.59	0.19	65
DEV rabbit Developmental Skeletal	LibS VM	TA, TP	11	139	26	55	231	0.65	0.3	0.17	0.21	0.17	0.84	0.5	-99.0	8.12	0.01	66

DEV rabbit																	
Developmental	LibS VM	TA	11	144	21	55	231	0.67	0.34	0.17	0.22	0.17	0.87	0.52	00 0 0 26	0.05	66
Skeletal	VIVI	IA	- 11	144	21	55	231	0.07	0.34	0.17	0.22	0.17	0.67	0.52	-99.0 8.36	0.05	-00
DEV rabbit Developmental	LibS																
Skeletal	VM	TP	11	139	26	55	231	0.65	0.3	0.17	0.21	0.17	0.84	0.5	-99.0 8.12	0.01	66
DEV rabbit	MIR	CDK, TA,															
Developmental Skeletal	A	TP	28	104	61	37	230	0.57	0.31	0.43	0.36	0.43	0.63	0.53	-98.9 7.5	0.06	65
DEV rabbit	MID																\neg
Developmental Skeletal	MLR A	CDK, TA	30	103	62	35	230	0.58	0.33	0.46	0.38	0.46	0.62	0.54	-98.9 7.49	0.08	65
DEV rabbit		CDR, IA	30	103	02	33	230	0.56	0.55	0.40	0.30	0.40	0.02	0.54	-90.9 7.49	0.00	-03
Developmental	MLR																
Skeletal	Α	CDK, TP	26	70	95	39	230	0.42	0.21	0.4	0.28	0.4	0.42	0.41	-99.2 6.65	.158	65
DEV rabbit Developmental	MLR																
Skeletal	Α	TA, TP	25	107	58	41	231	0.57	0.3	0.38	0.34	0.38	0.65	0.51	-99.0 7.57	0.03	66
DEV rabbit	MLR																
Developmental Skeletal	A	TA	36	88	77	30	231	0.54	0.32	0.55	0.4	0.55	0.53	0.54	-98.9 7.15	0.07	66
DEV rabbit	V41 C														-		ヿ
Developmental Skeletal	MLR A	TP	30	104	61	36	231	0.58	0.33	0.45	0.38	0.45	0.63	0.54	-98.9 7.55	U U8	66
DEV rabbit			50	104	υı	30	201	0.00	0.00	0.40	0.30	0.40	0.03	0.04	-90.9 1.00	0.00	-00
Developmental		CDK, TA,															
Skeletal	PLS	TP	27	111	54	38	230	0.6	0.33	0.42	0.37	0.42	0.67	0.54	-98.9 7.68	0.08	65
DEV rabbit Developmental																	
Skeletal	PLS	CDK, TA	30	115	50	35	230	0.63	0.38	0.46	0.41	0.46	0.7	0.58	-98.8 7.81	0.15	65
DEV rabbit																	
Developmental Skeletal	PLS	CDK, TP	28	100	65	37	230	0.56	0.3	0.43	0.35	0.43	0.61	0.52	-99.0 7.4	0.03	65
DEV rabbit																	\neg
Developmental Skeletal	PLS	TA, TP	28	105	60	38	231	0.58	0.32	0.42	0.36	0.42	0.64	0.53	-98.9 7.56	0.06	66
DEV rabbit	1 20	171, 11		100	- 00	- 00	201	0.00	0.02	0.72	0.00	0.72	0.04	0.00	00.0 7.00	0.00	
Developmental	DI O	Τ.	0.5	444	- 4	4.4	004	0.50	0.00	0.00	0.04	0.00	0.07	0.50	000 700	0.05	00
Skeletal	PLS	TA	25	111	54	41	231	0.59	0.32	0.38	0.34	0.38	0.67	0.53	-98.9 7.68	0.05	66
DEV rabbit Developmental																	
Skeletal	PLS	TP	26	94	71	40	231	0.52	0.27	0.39	0.32	0.39	0.57	0.48	-99.0 7.26	.033	66
DEV rabbit Developmental		CDK, TA,															
Skeletal	J48	TP	26	122	43	39	230	0.64	0.38	0.4	0.39	0.4	0.74	0.57	-98.9 7.99	0.14	65
DEV rabbit																	
Developmental Skeletal	J48	CDK, TA	26	118	47	39	230	0.63	0.36	0.4	0.38	0.4	0.72	0.56	-98.9 7.87	0.11	65
DEV rabbit		· · · · · · · · · · · · · · · · · · ·															\neg
Developmental Skeletal	J48	CDK, TP	25	117	48	40	230	0.62	0.34	0.38	0.36	0.38	0.71	0.55	-98.9 7.82	0.00	65
DEV rabbit	J 4 0	CDR, IF	23	117	40	40	230	0.02	0.54	0.36	0.30	0.30	0.71	0.55	-90.9 7.02	0.09	-03
Developmental																	
Skeletal	J48	TA, TP	26	98	67	40	231	0.54	0.28	0.39	0.33	0.39	0.59	0.49	-99.0 7.36	.011	66
DEV rabbit Developmental																	
Skeletal	J48	TA	23	113	52	43	231	0.59	0.31	0.35	0.33	0.35	0.68	0.52	-99.0 7.7	0.03	66
DEV rabbit																	
Developmental Skeletal	J48	TP	26	104	61	40	231	0.56	0.3	0.39	0.34	0.39	0.63	0.51	-99.0 7.51	0.02	66
DEV rabbit		CDV TA															ヿ
Developmental Skeletal	RF	CDK, TA, TP	40	102	63	25	230	0.62	0.39	0.62	0.48	0.62	0.62	0.62	-98.8 7.42	ი 21	65
DEV rabbit	INF	- 11	40	102	00	23	200	0.02	0.08	0.02	0.40	0.02	0.02	0.02	-50.0 1.42	V. <u>L</u> I	- 00
Developmental		0014 =:	4.5			o-	000	0 = 0		0.00	o				000 = 15	0.45	
Skeletal	RF	CDK, TA	40	93	72	25	230	0.58	0.36	0.62	0.45	0.62	0.56	0.59	-98.8 7.19	U.16	65
DEV rabbit Developmental																	
Skeletal	RF	CDK, TP	37	99	66	28	230	0.59	0.36	0.57	0.44	0.57	0.6	0.58	-98.8 7.38	0.15	65

DEV rabbit Developmental Skeletal	RF	TA, TP	35	81	84	31	231	0.5	0.29	0.53	0.38	0.53	0.49	0.51	-99.0	6.98	0.02	66
DEV rabbit Developmental Skeletal	RF	TA	38	83	82	28	231	0.52	0.32	0.58	0.41	0.58	0.5	0.54	-98.9	7.01	0.07	66
DEV rabbit Developmental Skeletal	RF	TP	34	84	81	32	231	0.51	0.3	0.52	0.38	0.52	0.51	0.51	-99.0	7.06	0.02	66
DEV rabbit Developmental	FSM		- 54	- 04	01	<u> </u>	201	0.01	0.0	0.02	0.00	0.02	0.01	0.01	-55.0	7.00	0.02	00
Skeletal DEV rabbit	LR	Adriana	36	77	87	30	230	0.49	0.29	0.55	0.38	0.55	0.47	0.51	-99.0	6.89	0.01	66
Developmental Skeletal	FSM LR	ALogPS, OEstate	33	118	47	33	231	0.65	0.41	0.5	0.45	0.5	0.72	0.61	-98.8	7.94	0.2	66
DEV rabbit Developmental Skeletal	FSM LR	CDK	37	110	55	28	230	0.64	0.4	0.57	0.47	0.57	0.67	0.62	-98.8	7.66	0.22	65
DEV rabbit Developmental Skeletal	FSM LR	Chemaxo n	37	107	58	29	231	0.62	0.39	0.56	0.46	0.56	0.65	0.6	-98.8	7.62	0.19	66
DEV rabbit Developmental Skeletal	FSM LR	Dragon6	32	121	44	34	231	0.66	0.42	0.48	0.45	0.48	0.73	0.61	-98.8	8.03	0.21	66
DEV rabbit Developmental Skeletal		Fragment	30	118	47	36	231	0.64	0.39		0.42		0.72		-98.8			66
DEV rabbit Developmental	FSM	or																
Skeletal DEV rabbit	LR	GSFrag	33	115	50	33	231	0.64	0.4	0.5	0.44	0.5	0.7	0.6	-98.8	7.85	0.19	66
Developmental Skeletal	FSM LR	Inductive	29	122	43	37	231	0.65	0.4	0.44	0.42	0.44	0.74	0.59	-98.8	8.04	0.17	66
DEV rabbit Developmental Skeletal	FSM LR	Mera, Mersy	34	96	69	32	231	0.56	0.33	0.52	0.4	0.52	0.58	0.55	-98.9	7.35	0.09	66
DEV rabbit Developmental Skeletal	FSM LR	QNPR	34	112	53	32	231	0.63	0.39	0.52	0.44	0.52	0.68	0.6	-98.8	7.77	0.18	66
DEV rabbit Developmental Skeletal	FSM LR	Spectrop hores	27	114	51	39	231	0.61	0.35	0.41	0.38	0.41	0.69	0.55	-98.9	7.79	0.1	66
DEV rabbit Developmental Skeletal		Adriana	39	51	113	27	230	0.39		0.59	0.36	0.59	0.31	0.45	-99.1		.094	66
DEV rabbit Developmental Skeletal		ALogPS,																
DEV rabbit Developmental Skeletal		OEstate	36 41	118 86	47 79	30 24	231		0.43						-98.7			66
DEV rabbit Developmental Skeletal	KNN	CDK Chemaxo	36	101	64	30	230	0.59	0.34	0.55	0.44		0.52	0.58	-98.8 -98.8			65 66
DEV rabbit Developmental Skeletal		Dragon6	32	101	64	34	231	0.58	0.33	0.48		0.48	0.61	0.55	-98.9			66
DEV rabbit Developmental Skeletal		Fragment	36	114		30									-98.8			
DEV rabbit Developmental	KNN		39	112	51 53	27	231	0.65					0.69	0.62				66 66
Skeletal DEV rabbit	IXININ	GSFrag	JB	112	55	۷1	۷) ۱	0.65	0.42	0.59	0.49	0.59	0.68	0.63	-98.7	1.13	0.20	00

DEV rabbit Developmental Skeletal	KNN	Mera, Mersy	43	74	91	23	231	0.51	0.32	0.65	0.43	0.65	0.45	0.55	-98.9	6.72	0.09	66
DEV rabbit Developmental Skeletal	KNN	QNPR	27	131	34	39	231	0.68	0.44	0.41	0.43	0.41	0.79	0.6	-98.8	8.33	0.21	66
DEV rabbit Developmental Skeletal		Spectrop hores	45	77	88	21	231	0.53	0.34	0.68	0.45	0.68	0.47	0.57		6.75		66
DEV rabbit Developmental Skeletal	LibS VM	Adriana	26	124	40	40	230	0.65	0.39	0.39	0.39	0.39	0.76	0.58	-98.8		0.15	66
DEV rabbit Developmental Skeletal		ALogPS, OEstate	20	136	29	46	231	0.68	0.41	0.3	0.35	0.3	0.82	0.56		8.39		66
DEV rabbit Developmental Skeletal	LibS VM	CDK	24	131	34	41	230	0.67	0.41	0.37	0.39	0.37	0.79	0.58		8.26		65
DEV rabbit Developmental Skeletal	LibS VM	Chemaxo n	21	135	30	45	231	0.68	0.41	0.32	0.36	0.32	0.82	0.57	-98.9	8.38	0.15	66
DEV rabbit Developmental Skeletal	LibS VM	Dragon6	19	146	19	47	231	0.71	0.5	0.29	0.37	0.29	0.88	0.59	-98.8	8.85	0.21	66
DEV rabbit Developmental Skeletal	LibS VM	Fragment or	13	146	19	53	231	0.69	0.41	0.2	0.27	0.2	0.88	0.54	-98.9	8.6	0.11	66
DEV rabbit Developmental Skeletal	LibS VM	GSFrag	17	139	26	49	231	0.68	0.4	0.26	0.31	0.26	0.84	0.55	-98.9	8.43	0.12	66
DEV rabbit Developmental Skeletal	LibS VM	Inductive	16	139	26	50	231	0.67	0.38	0.24	0.3	0.24	0.84	0.54	-98.9	8.39	0.1	66
DEV rabbit Developmental Skeletal	LibS VM	Mera, Mersy	17	136	29	49	231	0.66	0.37	0.26	0.3	0.26	0.82	0.54	-98.9	8.3	0.09	66
DEV rabbit Developmental Skeletal	LibS VM	QNPR	15	140	25	51	231	0.67	0.38	0.23	0.28	0.23	0.85	0.54	-98.9	8.39	0.09	66
DEV rabbit Developmental Skeletal	LibS VM	Spectrop hores	13	130	35	53	231	0.62	0.27	0.2	0.23	0.2	0.79	0.49	-99.0	7.88	.017	66
DEV rabbit Developmental Skeletal	MLR A	Adriana	33	99	65	33	230	0.57	0.34	0.5	0.4	0.5	0.6	0.55	-98.9	7.44	0.09	66
DEV rabbit Developmental Skeletal	MLR A	ALogPS, OEstate	36	92	73	30	231	0.55	0.33	0.55	0.41	0.55	0.56	0.55	-98.9	7.24	0.09	66
DEV rabbit Developmental Skeletal	MLR A	CDK	36	87	78	29	230	0.53	0.32	0.55	0.4	0.55	0.53	0.54	-98.9	7.09	0.07	65
DEV rabbit Developmental Skeletal DEV rabbit	MLR A	Chemaxo n	32	105	60	34	231	0.59	0.35	0.48	0.41	0.48	0.64	0.56	-98.9	7.58	0.11	66
DEV rabbit Developmental Skeletal DEV rabbit	MLR A	Dragon6	37	94	71	29	231	0.57	0.34	0.56	0.43	0.56	0.57	0.57	-98.9	7.29	0.12	66
Developmental Skeletal DEV rabbit	Α	Fragment or	35	101	64	31	231	0.59	0.35	0.53	0.42	0.53	0.61	0.57	-98.9	7.47	0.13	66
Developmental Skeletal DEV rabbit	MLR A	GSFrag	31	112	53	35	231	0.62	0.37	0.47	0.41	0.47	0.68	0.57	-98.9	7.76	0.14	66
Developmental Skeletal	MLR A	Inductive	30	102	63	36	231	0.57	0.32	0.45	0.38	0.45	0.62	0.54	-98.9	7.49	0.07	66

Developmental books Mark Mera Mark M	DEV. 11.7																	
March Marc	DEV rabbit Developmental	MLR	Mera,															
Developmental Mile Sepectrop Relation Mile September Mil	Skeletal	Α	Mersy	32	93	72	34	231	0.54	0.31	0.48	0.38	0.48	0.56	0.52	-99.0 7.28	0.04	66
Secretarial A ORPR 35 89 76 31 231 0.54 0.32 0.53 0.4 0.53 0.54 0.53 98.9 7.18 0.06 66 Per Parabet Developmental	DEV rabbit	MIR																
March Marc			ONPR	35	89	76	31	231	0 54	0.32	0.53	0.4	0.53	0 54	0.53	-989 718	0.06	66
Developmental Mark Spectrop			QIVIIIX	33	09	70	J1	201	0.54	0.32	0.55	0.4	0.55	0.54	0.55	-90.9 7.10	0.00	-00
Secretary A Nores Z7 104 61 39 231 0.57 0.31 0.41 0.35 0.41 0.63 0.52 -99.0 7.52 0.04 66		MLR	Spectrop															
Developmental Selection PLS Adriana 36 93 71 30 230 0.56 0.42 0.55 0.42 0.55 0.42 0.56 0.66 0.89 7.28 0.1 66 EVALUATION PLS Cestate State Sta	Skeletal	Α	hores	27	104	61	39	231	0.57	0.31	0.41	0.35	0.41	0.63	0.52	-99.0 7.52	0.04	66
Developmental Selection PLS Adriana 36 93 71 30 230 0.56 0.42 0.55 0.42 0.55 0.42 0.56 0.66 0.89 7.28 0.1 66 EVALUATION PLS Cestate State Sta	DEV rabbit																	
Developmental ALogPS PLS OEstate 35 116 49 31 231 0.65 0.42 0.53 0.47 0.53 0.7 0.62 -98.8 7.88 0.22 66	Developmental																	
Developmental personnel	Skeletal	PLS	Adriana	36	93	71	30	230	0.56	0.34	0.55	0.42	0.55	0.57	0.56	-98.9 7.28	0.1	66
Developmental personnel	DEV rabbit																	
PLS CDK Selected PLS CDK Selected Selected Selected PLS CDK Selected Selected PLS CDK Selected Selected PLS CDK Selected Selected PLS CDK Selected PLS Selected			ALogPS,															
Public P	Skeletal	PLS	OEstate	35	116	49	31	231	0.65	0.42	0.53	0.47	0.53	0.7	0.62	-98.8 7.88	0.22	66
Public P	DEV rabbit																	
Chemaxo PLS n 31 103 62 35 231 0.58 0.33 0.47 0.39 0.47 0.62 0.55 -98.9 7.52 0.09 66																		
Chemaxo Chem	Skeletal	PLS	CDK	38	106	59	27	230	0.63	0.39	0.58	0.47	0.58	0.64	0.61	-98.8 7.55	0.21	65
PLS n 31 103 62 35 231 0.68 0.33 0.47 0.39 0.47 0.62 0.55 -98.9 7.52 0.09 65	DEV rabbit		<u> </u>															
PLS Dragon6 34 116 49 32 231 0.65 0.41 0.52 0.46 0.52 0.7 0.61 -98.8 7.88 0.21 66																		
PLS Dragon6 34 116 49 32 231 0.65 0.41 0.52 0.46 0.52 0.7 0.61 -98.8 7.88 0.21 66	Skeletal	PLS	n	31	103	62	35	231	0.58	0.33	0.47	0.39	0.47	0.62	0.55	-98.9 7.52	0.09	66
PLS Dragon6 34 16 49 32 231 0.65 0.41 0.52 0.46 0.52 0.7 0.61 -98.8 7.88 0.21 66																		
Part		DI C	Drageno	24	440	40	20	224	0.05	0.44	0.50	0.40	0.50	0.7	0.04	000 700	0.04	
PLS GSFrag State PLS State PLS State PLS State PLS State State PLS State State PLS State PLS State State State State PLS State		PLS	⊔ragonb	34	116	49	32	231	0.65	0.41	0.52	0.46	0.52	U./	0.61	-98.8 /.88	U.ZT	96
PLS OF 34 116 49 32 231 0.65 0.41 0.52 0.46 0.52 0.7 0.61 -98.8 7.86 0.21 66			Fragment															
PLS GSFrag 35 112 53 31 231 0.64 0.4 0.53 0.45 0.53 0.68 0.6 -98.8 7.76 0.19 66		DI S	•	3/	116	40	32	231	0.65	0.41	0.52	0.46	0.52	0.7	0.61	-088 788	N 21	66
PLS GSFrag 35 112 53 31 231 0.64 0.4 0.53 0.45 0.53 0.68 0.6 -98.8 7.76 0.19 66		1 LO	Oi	J -1	110	73	32	201	0.03	0.41	0.52	0.40	0.52	0.1	0.01	-90.0 7.00	0.21	-00
PLS GSFrag 35 112 53 31 231 0.64 0.4 0.53 0.45 0.53 0.68 0.6 -98.8 7.76 0.19 66																		
PLS Inductive 27 117 48 39 231 0.62 0.36 0.41 0.38 0.41 0.71 0.56 -98.9 7.88 0.11 66		PLS	GSFrag	35	112	53	31	231	0.64	0.4	0.53	0.45	0.53	0.68	0.6	-988 776	0 19	66
PLS Inductive 27 117 48 39 231 0.62 0.36 0.41 0.38 0.41 0.71 0.56 -98.9 7.88 0.11 66	DEV rabbit																	
Decomposition PLS Inductive 27 117 48 39 231 0.62 0.36 0.41 0.38 0.41 0.71 0.56 -98.9 7.88 0.11 66																		
Mera		PLS	Inductive	27	117	48	39	231	0.62	0.36	0.41	0.38	0.41	0.71	0.56	-98.9 7.88	0.11	66
Mera	DEV rabbit																	
DEV rabbit Developmental Receival PLS QNPR 36 113 52 30 231 0.65 0.41 0.55 0.47 0.55 0.68 0.62 -98.8 7.79 0.21 66 DEV rabbit Developmental Receival PLS hores 36 97 68 30 231 0.58 0.35 0.55 0.42 0.55 0.59 0.57 -98.9 7.37 0.12 66 DEV rabbit Developmental Receival PLS hores 36 97 68 30 231 0.58 0.35 0.55 0.42 0.55 0.59 0.57 -98.9 7.85 0.08 66 DEV rabbit Developmental Receival PLS hores 36 97 68 30 231 0.63 0.37 0.41 0.39 0.41 0.72 0.57 -98.9 7.85 0.08 66 DEV rabbit Developmental Receival PLS hores 36 0.55 0.59 0.59 0.57 -98.9 7.85 0.08 66 DEV rabbit Developmental Receival PLS hores 27 119 46 39 231 0.63 0.37 0.41 0.39 0.41 0.72 0.57 -98.9 7.85 0.08 66 DEV rabbit Developmental Receival PLS hores 28 0.55 0.59 0.59 0.57 -98.9 7.85 0.08 66 DEV rabbit Developmental Receival PLS hores 28 0.55 0.59 0.59 0.57 -98.9 7.80 0.13 66 DEV rabbit Developmental Receival PLS hores 28 0.59 0.59 0.59 0.57 0.50 0.59 0.59 0.59 0.59 0.59 0.59 0.59			Mera,															
Public P	Skeletal	PLS	Mersy	34	107	58	32	231	0.61	0.37	0.52	0.43	0.52	0.65	0.58	-98.8 7.63	0.15	66
Skeletal PLS QNPR 36 113 52 30 231 0.65 0.41 0.55 0.47 0.55 0.68 0.62 -98.8 7.79 0.21 66	DEV rabbit																	
Spectrop Spectrop Spectrop PLS hores 36 97 68 30 231 0.58 0.35 0.55 0.42 0.55 0.59 0.57 -98.9 7.37 0.12 66	Developmental																	
Developmental Spectrop Spec	Skeletal	PLS	QNPR	36	113	52	30	231	0.65	0.41	0.55	0.47	0.55	0.68	0.62	-98.8 7.79	0.21	66
PLS hores 36 97 68 30 231 0.58 0.35 0.55 0.42 0.55 0.59 0.57 -98.9 7.37 0.12 66	DEV rabbit		C															
DEV rabbit Developmental Skeletal J48 Adriana 24 117 47 42 230 0.61 0.34 0.36 0.35 0.36 0.71 0.54 -98.9 7.85 0.08 66 DEV rabbit Developmental Skeletal J48 OEstate 27 119 46 39 231 0.63 0.37 0.41 0.39 0.41 0.72 0.57 -98.9 7.93 0.13 66 DEV rabbit Developmental Skeletal J48 CDK 33 124 41 32 230 0.68 0.45 0.51 0.47 0.51 0.75 0.63 -98.7 8.09 0.25 65 DEV rabbit Developmental Skeletal J48 Dragon6 22 121 44 44 231 0.62 0.33 0.33 0.33 0.33 0.33 0.33 0.73 0.53 -98.9 7.91 0.07 66 DEV rabbit Developmental Skeletal J48 Dragon6 22 121 44 44 231 0.62 0.33 0.33 0.33 0.33 0.33 0.53 0.55 -98.9 7.91 0.07 66 DEV rabbit Developmental Skeletal J48 GSFrag 28 122 43 38 231 0.65 0.39 0.42 0.41 0.42 0.74 0.58 -98.8 8.04 0.16 66 DEV rabbit Developmental Skeletal J48 Inductive 22 104 61 44 231 0.55 0.27 0.33 0.3 0.3 0.3 0.3 0.48 -99.0 7.44 0.34 66 DEV rabbit Developmental Skeletal J48 Inductive 22 104 61 44 231 0.55 0.27 0.33 0.3 0.3 0.3 0.3 0.48 -99.0 7.44 0.34 66 DEV rabbit Developmental Skeletal J48 Inductive 22 104 61 44 231 0.55 0.27 0.33 0.3 0.3 0.3 0.3 0.48 -99.0 7.44 0.34 66 DEV rabbit Developmental Skeletal J48 Inductive 22 104 61 44 231 0.55 0.27 0.33 0.3 0.3 0.3 0.3 0.48 -99.0 7.44 0.34 66 DEV rabbit Developmental Skeletal J48 Inductive 22 104 61 44 231 0.55 0.27 0.33 0.3 0.3 0.3 0.3 0.48 -99.0 7.44 0.34 66 DEV rabbit Developmental Skeletal J48 Inductive 22 104 61 44 231 0.55 0.27 0.33 0.3 0.3 0.3 0.3 0.48 -99.0 7.44 0.34 66 DEV rabbit Developmental Skeletal J48 Inductive 22 104 61 44 231 0.55 0.27 0.33 0.3 0.3 0.3 0.3 0.3 0.48 -99.0 7.44 0.34 66 DEV rabbit Developmental Skeletal J48 Inductive 22 104 61 44 231 0.55 0.27 0.33 0.3 0.3 0.3 0.3 0.3 0.48 -99.0 7.44 0.34 66 DEV rabbit Developmental Skeletal Developmen		DI O		00	0.7	00	00	004	0.50	0.05	0.55	0.40	0.55	0.50	0.57	000 707	0.40	
Developmental Skeletal J48 Adriana Z4 117 47 42 230 0.61 0.34 0.36 0.35 0.36 0.71 0.54 -98.9 7.85 0.08 66	Skeletal	PLS	nores	36	97	68	30	231	0.58	0.35	0.55	0.42	0.55	0.59	0.57	-98.9 7.37	0.12	66
Skeletal J48 Adriana Z4 117 47 42 230 0.61 0.34 0.36 0.35 0.36 0.71 0.54 -98.9 7.85 0.08 66	DEV rabbit																	
DEV rabbit Developmental Skeletal		140	Adriana	24	117	47	42	220	0.61	0.24	0.26	0.25	0.26	0.71	0.54	000 705	n no	66
ALogPS, J48 OEstate 27 119 46 39 231 0.63 0.37 0.41 0.39 0.41 0.72 0.57 -98.9 7.93 0.13 66 DEV rabbit Developmental Skeletal J48 CDK 33 124 41 32 230 0.68 0.45 0.51 0.47 0.51 0.75 0.63 -98.7 8.09 0.25 65 DEV rabbit Developmental Skeletal J48 Dragon6 22 121 44 44 231 0.62 0.33 0.33 0.33 0.33 0.33 0.73 0.53 -98.9 7.91 0.07 66 DEV rabbit Developmental Skeletal J48 Dragon6 22 121 44 44 231 0.62 0.33 0.33 0.33 0.33 0.33 0.73 0.53 -98.9 7.91 0.07 66 DEV rabbit Developmental Skeletal J48 GSFrag 28 122 43 38 231 0.61 0.36 0.48 0.41 0.48 0.65 0.57 -98.9 7.66 0.13 66 DEV rabbit Developmental Skeletal J48 GSFrag 28 122 43 38 231 0.65 0.39 0.42 0.41 0.42 0.74 0.58 -98.8 8.04 0.16 66 DEV rabbit Developmental Skeletal J48 Inductive 22 104 61 44 231 0.55 0.27 0.33 0.3 0.3 0.3 0.3 0.3 0.3 0.48 -99.0 7.44 0.04 66 DEV rabbit Developmental Skeletal J48 Inductive 22 104 61 44 231 0.55 0.27 0.33 0.3 0.3 0.3 0.3 0.3 0.3 0.48 -99.0 7.44 0.04 0.04 0.00 0.00 0.00 0.00 0.	Skeletal	J40	Auriana	24	117	47	42	230	0.61	0.34	0.36	0.35	0.36	0.71	0.54	-90.9 7.00	0.06	00
Skeletal J48 OEstate 27 119 46 39 231 0.63 0.37 0.41 0.39 0.41 0.72 0.57 -98.9 7.93 0.13 66 DEV rabbit Developmental Skeletal J48 CDK 33 124 41 32 230 0.68 0.45 0.51 0.47 0.51 0.75 0.63 -98.7 8.09 0.25 65 DEV rabbit OEvelopmental Skeletal J48 Dragon6 22 121 44 44 231 0.62 0.33 0.33 0.33 0.33 0.33 0.73 0.53 -98.9 7.91 0.07 66 DEV rabbit Developmental Skeletal J48 OF 32 108 57 34 231 0.61 0.36 0.48 0.41 0.48 0.65 0.57 -98.9 7.66 0.13 66 DEV rabbit Developmental Skeletal J48 GSFrag 28 122 43 38 231 0.65 0.39 0.42 0.41 0.42 0.74 0.58 -98.8 8.04 0.16 66 DEV rabbit Developmental Skeletal J48 Inductive 22 104 61 44 231 0.55 0.27 0.33 0.3 0.3 0.3 0.3 0.3 0.48 -99.0 7.44 0.34 66 DEV rabbit Developmental	DEV rabbit		AL CEDO															
DEV rabbit Developmental Skeletal J48 CDK 33 124 41 32 230 0.68 0.45 0.51 0.47 0.51 0.75 0.63 -98.7 8.09 0.25 65 DEV rabbit Developmental Skeletal J48 n 30 111 54 36 231 0.61 0.36 0.45 0.4 0.45 0.67 0.56 -98.9 7.73 0.12 66 DEV rabbit Developmental Skeletal J48 Dragon6 22 121 44 44 231 0.62 0.33 0.33 0.33 0.33 0.33 0.73 0.53 -98.9 7.91 0.07 66 DEV rabbit Developmental Skeletal J48 or 32 108 57 34 231 0.61 0.36 0.48 0.41 0.48 0.65 0.57 -98.9 7.66 0.13 66 DEV rabbit Developmental Skeletal J48 GSFrag 28 122 43 38 231 0.65 0.39 0.42 0.41 0.42 0.74 0.58 -98.8 8.04 0.16 66 DEV rabbit Developmental Skeletal J48 Inductive 22 104 61 44 231 0.55 0.27 0.33 0.3 0.3 0.3 0.3 0.3 0.48 -99.0 7.44 0.34 66 DEV rabbit Developmental Skeletal J48 Inductive 22 104 61 44 231 0.55 0.27 0.33 0.3 0.3 0.3 0.3 0.48 -99.0 7.44 0.34 66 DEV rabbit Developmental Skeletal J48 Inductive 22 104 61 44 231 0.55 0.27 0.33 0.3 0.3 0.3 0.3 0.48 -99.0 7.44 0.34 66 DEV rabbit Developmental Skeletal J48 Inductive 22 104 61 44 231 0.55 0.27 0.33 0.3 0.3 0.3 0.3 0.3 0.48 -99.0 7.44 0.34 66 DEV rabbit Developmental Skeletal Mera,	Developmental	140	-	~-	440	4.0	00		0.00	0.0-	0 4 4	0.00	0 4 4	o - -	0 ==	000	0.40	اـ ِ
Developmental Skeletal J48 CDK 33 124 41 32 230 0.68 0.45 0.51 0.47 0.51 0.75 0.63 -98.7 8.09 0.25 65	Skeletal	J48	∪Estate	27	119	46	39	231	0.63	0.37	0.41	0.39	0.41	0.72	0.57	-98.9 7.93	υ.13	66
Skeletal J48 CDK 33 124 41 32 230 0.68 0.45 0.51 0.47 0.51 0.75 0.63 -98.7 8.09 0.25 65	DEV rabbit																	
Chemaxo J48 N 30 111 54 36 231 0.61 0.36 0.45 0.4 0.45 0.67 0.56 -98.9 7.73 0.12 66		140	CDK	22	124	11	22	220	0.60	0.45	0.51	0.47	0.51	0.75	0.62	097 000	n 25	65
Chemaxo Chem		J40	CDV	აა	124	41	32	∠30	0.00	0.45	0.51	0.47	0.51	0.75	0.03	-90.1 0.09	∪.∠ე	ავ
Skeletal J48 n 30 111 54 36 231 0.61 0.36 0.45 0.4 0.45 0.67 0.56 -98.9 7.73 0.12 66			Chemaxo															
DEV rabbit Developmental Skeletal		.142		30	111	54	36	231	0.61	0.36	0.45	N 4	0.45	0.67	0.56	-989 773	ი 12	66
Developmental Skeletal J48 Dragon6 22 121 44 44 231 0.62 0.33 0.33 0.33 0.33 0.33 0.33 0.53 -98.9 7.91 0.07 66 DEV rabbit Developmental Skeletal J48 Or 32 108 57 34 231 0.61 0.36 0.48 0.41 0.48 0.65 0.57 -98.9 7.66 0.13 66 DEV rabbit Developmental Develo		070	11	30	111	U-T	30	201	0.01	0.50	0.40	U. T	0.40	0.07	0.50	-50.5 1.15	J. 12	50
Skeletal J48 Dragon6 22 121 44 44 231 0.62 0.33 0.33 0.33 0.33 0.73 0.53 -98.9 7.91 0.07 66 DEV rabbit Developmental Skeletal J48 or 32 108 57 34 231 0.61 0.36 0.48 0.41 0.48 0.65 0.57 -98.9 7.66 0.13 66 DEV rabbit Developmental Skeletal J48 GSFrag 28 122 43 38 231 0.65 0.39 0.42 0.41 0.42 0.74 0.58 -98.8 8.04 0.16 66 DEV rabbit Developmental Developmental Skeletal J48 Inductive 22 104 61 44 231 0.55 0.27 0.33 0.3 0.33 0.63 0.48 -99.0 7.44 0.034 66 DEV rabbit Developmental Developmenta																		
DEV rabbit Developmental Skeletal		J48	Dragon6	22	121	44	44	231	0.62	0.33	0.33	0.33	0.33	0.73	0.53	-98.9 7.91	0.07	66
Fragment Fragment Fragment J48 or 32 108 57 34 231 0.61 0.36 0.48 0.41 0.48 0.65 0.57 -98.9 7.66 0.13 66		•																
Skeletal J48 or 32 108 57 34 231 0.61 0.36 0.48 0.41 0.48 0.65 0.57 -98.9 7.66 0.13 66 DEV rabbit Developmental Skeletal J48 GSFrag 28 122 43 38 231 0.65 0.39 0.42 0.41 0.42 0.74 0.58 -98.8 8.04 0.16 66 DEV rabbit Developmental Skeletal J48 Inductive 22 104 61 44 231 0.55 0.27 0.33 0.3 0.33 0.63 0.48 -99.0 7.44 .034 66 DEV rabbit Developmental Skeletal J48 Inductive 32 104 61 44 231 0.55 0.27 0.33 0.3 0.3 0.3 0.48 -99.0 7.44 .034 66 DEV rabbit Developmental Skeletal J48 Inductive 32 104 61 44 231 0.55 0.27 0.33 0.3 0.3 0.3 0.48 -99.0 7.44 .034 66			Fragment															
DEV rabbit Developmental Skeletal J48 GSFrag 28 122 43 38 231 0.65 0.39 0.42 0.41 0.42 0.74 0.58 -98.8 8.04 0.16 66 DEV rabbit Developmental Skeletal J48 Inductive 22 104 61 44 231 0.55 0.27 0.33 0.3 0.33 0.63 0.48 -99.0 7.44 .034 66 DEV rabbit Developmental DEV rabbit Developmental Developmental Developmental Mera,		J48	ū	32	108	57	34	231	0.61	0.36	0.48	0.41	0.48	0.65	0.57	-98.9 7.66	0.13	66
Developmental Skeletal J48 GSFrag 28 122 43 38 231 0.65 0.39 0.42 0.41 0.42 0.74 0.58 -98.8 8.04 0.16 66 DEV rabbit Obevelopmental Skeletal J48 Inductive 22 104 61 44 231 0.55 0.27 0.33 0.3 0.3 0.63 0.48 -99.0 7.44 .034 66 DEV rabbit Obevelopmental Skeletal Mera,					-					-							•	
Skeletal J48 GSFrag 28 122 43 38 231 0.65 0.39 0.42 0.41 0.42 0.74 0.58 -98.8 8.04 0.16 66 DEV rabbit Developmental Skeletal J48 Inductive 22 104 61 44 231 0.55 0.27 0.33 0.3 0.33 0.63 0.48 -99.0 7.44 .034 66 DEV rabbit Developmental Mera,																		
Developmental Skeletal J48 Inductive 22 104 61 44 231 0.55 0.27 0.33 0.3 0.33 0.63 0.48 -99.0 7.44 .034 66 DEV rabbit Developmental Mera,		J48	GSFrag	28	122	43	38	231	0.65	0.39	0.42	0.41	0.42	0.74	0.58	-98.8 8.04	0.16	66
Developmental Skeletal J48 Inductive 22 104 61 44 231 0.55 0.27 0.33 0.3 0.33 0.63 0.48 -99.0 7.44 .034 66 DEV rabbit Developmental Mera,	DEV rabbit																	
DEV rabbit Developmental Mera,	Developmental																	
Developmental Mera,	Skeletal	J48	Inductive	22	104	61	44	231	0.55	0.27	0.33	0.3	0.33	0.63	0.48	-99.0 7.44	.034	66
bevelopmental .	DEV rabbit		Mana															
Skeletal J48 Mersy 27 135 30 39 231 0.7 0.47 0.41 0.44 0.41 0.82 0.61 -98.8 8.48 0.24 66	Developmental			c-	46-	0.0		001	c -	o :-						000 0 15		اء
	Skeletal	J48	Mersy	27	135	30	39	231	0.7	0.47	0.41	0.44	0.41	0.82	0.61	-98.8 8.48	0.24	66

Developmental Skeletal	J48	QNPR	27	124	41	39	231	0.65	0.4	0.41	0.4	0.41	0.75	0.58	-98.8	8.09	0.16	66
DEV rabbit Developmental Skeletal	J48	Spectrop hores	28	119	46	38	231	0.64	0.38	0.42	0.4	0.42	0.72	0.57	-98.9	7.94	0.14	66
DEV rabbit Maternal GeneralMaternal	RF	Adriana	187	6	24	13	230	0.84	0.89	0.94	0.91	0.94	0.2	0.57	-98.9	6.51	0.17	200
DEV rabbit Maternal GeneralMaternal	RF	ALogPS, OEstate	175	7	23	26	231	0.79	0.88	0.87	0.88	0.87	0.23	0.55	-98.9	7.3	0.1	201
DEV rabbit Maternal GeneralMaternal	RF	CDK Chemaxo	180	6	24	20	230	0.81	0.88	0.9	0.89	0.9	0.2	0.55	-98.9	6.89	0.11	200
DEV rabbit Maternal GeneralMaternal	RF	n	169	8	22	32	231	0.77	0.88	0.84	0.86	0.84	0.27	0.55	-98.9	7.64	0.1	201
DEV rabbit Maternal GeneralMaternal	RF	Dragon6	178	6	24	23	231	0.8	0.88	0.89	0.88	0.89	0.2	0.54	-98.9	7.01	0.09	201
DEV rabbit Maternal GeneralMaternal	RF	Fragment or	180	4	26	21	231	0.8	0.87	0.9	0.88	0.9	0.13	0.51	-99.0	6.49	0.03	201
DEV rabbit Maternal GeneralMaternal	RF	GSFrag	166	4	26	35	231	0.74	0.86	0.83	0.84	0.83	0.13	0.48	-99.0	6.91	.037	201
DEV rabbit Maternal GeneralMaternal	RF	Inductive	162	7	23	39	231	0.73	0.88	0.81	0.84	0.81	0.23	0.52	-99.0	7.62	0.03	201
DEV rabbit Maternal GeneralMaternal	RF	Mera, Mersy	181	4	26	20	231	0.8	0.87	0.9	0.89	0.9	0.13	0.52	-99.0	6.45	0.04	201
DEV rabbit Maternal GeneralMaternal	RF	QNPR	172	5	25	29	231	0.77	0.87	0.86	0.86	0.86	0.17	0.51	-99.0	7.	0.02	201
DEV rabbit Maternal GeneralMaternal	RF	Spectrop hores	173	8	22	28	231	0.78	0.89	0.86	0.87	0.86	0.27	0.56	-98.9	7.53	0.12	201
DEV rabbit Maternal GeneralMaternal	ASN N	Adriana	129	9	21	71	230	0.6	0.86	0.65	0.74	0.65	0.3	0.47	-99.1	8.32	.039	200
DEV rabbit Maternal GeneralMaternal	ASN N	ALogPS, OEstate	148	7	23	53	231	0.67	0.87	0.74	0.8	0.74	0.23	0.48	-99.0	7.84	.023	201
DEV rabbit Maternal GeneralMaternal	ASN N	CDK	140	9	21	60	230	0.65	0.87	0.7	0.78	0.7	0.3	0.5	-99.0	8.23	0.	200
DEV rabbit Maternal GeneralMaternal	ASN N	Chemaxo n	136	10	20	65	231	0.63	0.87	0.68	0.76	0.68	0.33	0.5	-99.0	8.43	0.01	201
DEV rabbit Maternal GeneralMaternal	ASN N	Dragon6	145	7	23	56	231	0.66	0.86	0.72	0.79	0.72	0.23	0.48	-99.0	7 87	034	201
DEV rabbit Maternal GeneralMaternal		Fragment or	147	8	22	54	231	0.67	0.87	0.73	0.79	0.73	0.27	0.5	-99.0			201
DEV rabbit Maternal GeneralMaternal	ASN N	GSFrag	135	13	17	66	231	0.64	0.89	0.67	0.76	0.67	0.43	0.55	-98.9			201
DEV rabbit Maternal	ASN																	
GeneralMaternal DEV rabbit Maternal		Inductive Mera,	124	10	20	77	231						0.33				.035	
GeneralMaternal DEV rabbit Maternal	ASN	Mersy	129	8	22	72	231	0.59	0.85	0.64	0.73	0.64	0.27	0.45	-99.1			201
GeneralMaternal DEV rabbit Maternal	N ASN	QNPR Spectrop	141	9	21	60	231	0.65	0.87	0.7	0.78	0.7	0.3	0.5	-99.0	8.24	0.	201
GeneralMaternal DEV rabbit Maternal	N ASN	hores CDK, TA,	133	11	19	68	231	0.62	0.88	0.66	0.75	0.66	0.37	0.51	-99.0	8.59	0.02	201
GeneralMaternal DEV rabbit Maternal	N ASN	TP	138	5	25	62	230	0.62	0.85	0.69	0.76	0.69	0.17	0.43	-99.1	7.53	.106	200
GeneralMaternal	N ASN	CDK, TA	148	7	23	52	230	0.67	0.87	0.74	8.0	0.74	0.23	0.49	-99.0	7.82	.021	200
DEV rabbit Maternal GeneralMaternal	N ASN	CDK, TP	130	8	22	70	230	0.6	0.86	0.65	0.74	0.65	0.27	0.46	-99.1	8.15	.059	200
DEV rabbit Maternal GeneralMaternal	N	TA, TP	146	5	25	55	231	0.65	0.85	0.73	0.78	0.73	0.17	0.45	-99.1	7.47	.082	201
DEV rabbit Maternal GeneralMaternal	ASN N	TA	134	6	24	67	231	0.61	0.85	0.67	0.75	0.67	0.2	0.43	-99.1	7.79	.096	201
DEV rabbit Maternal GeneralMaternal	ASN N	TP	139	5	25	62	231	0.62	0.85	0.69	0.76	n 60	0.17	0.43	-00 1	7 54	.105	201

DEV rabbit Maternal GeneralMaternal	FSM LR	CDK, TA, TP	148	5	25	52	230	0.67	0.86	0.74	0.79	0.74	0.17	0.45	-99.1	7.43	.073	20
DEV rabbit Maternal GeneralMaternal	FSM LR	CDK, TA	144	10	20	56	230	0.67	0.88	0.72	0.79	0.72	0.33	0.53	-98.9	8.34	0.04	20
DEV rabbit Maternal GeneralMaternal	FSM LR	CDK, TP	128	2	28	72	230	0.57	0.82	0.64	0.72	0.64	0.07	0.35	-99.3	6.71	.211	20
DEV rabbit Maternal GeneralMaternal	FSM LR	TA, TP	154	5	25	47	231	0.69	0.86	0.77	0.81	0.77	0.17	0.47	-99.1	7.37	.054	20
DEV rabbit Maternal GeneralMaternal	FSM LR	TA	150	5	25	51	231	0.67	0.86	0.75	0.8	0.75	0.17	0.46	-99.1	7.42	.068	20
DEV rabbit Maternal GeneralMaternal	FSM LR	TP	147	4	26	54	231	0.65	0.85	0.73	0.79	0.73	0.13	0.43	-99.1	7.22	.105	20
DEV rabbit Maternal GeneralMaternal	KNN	CDK, TA, TP	145	2	28	55	230	0.64	0.84	0.73	0.78	0.73	0.07	0.4	-99.2		.163	20
DEV rabbit Maternal GeneralMaternal DEV rabbit Maternal	KNN	CDK, TA	120	12	18	80	230	0.57	0.87	0.6	0.71	0.6	0.4	0.5	-99.0	8.79	0.	20
GeneralMaternal DEV rabbit Maternal		CDK, TP	129	6	24	71	230	0.59	0.84	0.65	0.73	0.65	0.2	0.42	-99.2		.111	20
GeneralMaternal DEV rabbit Maternal GeneralMaternal	KNN	TA, TP TA	159 142	12	26 18	42 59	231	0.71	0.86	0.79	0.82	0.79	0.13	0.46	-99.1 -98.9	7.05 8.65	0.08	20
DEV rabbit Maternal GeneralMaternal	KNN	TP	126	9	21	75	231	0.58	0.86	0.63	0.72	0.63	0.3	0.46	-99.1	8.35	.051	20
DEV rabbit Maternal GeneralMaternal	LibS VM	CDK, TA, TP	200	0	30	0	230	0.87	0.87	1.	0.93	1.	0.	0.5	-99.0	0.5		20
DEV rabbit Maternal GeneralMaternal	LibS VM	CDK, TA	198	0	30	2	230	0.86	0.87	0.99	0.93	0.99	0.	0.5	-99.0	2.1	.036	20
DEV rabbit Maternal GeneralMaternal	LibS VM	CDK, TP	200	0	30	0	230	0.87	0.87	1.	0.93	1.	0.	0.5	-99.0	0.5		20
DEV rabbit Maternal GeneralMaternal	LibS VM	TA, TP	201	0	30	0	231	0.87	0.87	1.	0.93	1.	0.	0.5	-99.0	0.5		20
DEV rabbit Maternal GeneralMaternal	LibS VM	TA	201	0	30	0	231	0.87	0.87	1.	0.93	1.	0.	0.5	-99.0	0.5		20
DEV rabbit Maternal GeneralMaternal	LibS VM	TP	201	0	30	0	231	0.87	0.87	1.	0.93	1.	0.	0.5	-99.0	0.5		20
DEV rabbit Maternal GeneralMaternal	Α	CDK, TA, TP	132	10	20	68	230	0.62	0.87	0.66	0.75	0.66	0.33	0.5	-99.0	8.44	.005	20
DEV rabbit Maternal GeneralMaternal DEV rabbit Maternal	MLR A MLR	CDK, TA	98	16	14	102	230	0.5	0.88	0.49	0.63	0.49	0.53	0.51	-99.0	9.35	0.02	20
GeneralMaternal DEV rabbit Maternal	A MLR	CDK, TP	101	17	13	99	230	0.51	0.89	0.51	0.64	0.51	0.57	0.54	-98.9	9.48	0.05	20
GeneralMaternal DEV rabbit Maternal	A MLR	TA, TP	116	8	22	85	231	0.54	0.84	0.58	0.68	0.58	0.27	0.42	-99.2			20
GeneralMaternal DEV rabbit Maternal GeneralMaternal	A MLR A	TA TP	107	13	10 17	120 94	231	0.44	0.89	0.4	0.55	0.4	0.67	0.53	-98.9 -99.0			20
DEV rabbit Maternal GeneralMaternal	PLS	CDK, TA,	140	6	24	60	230	0.63	0.85	0.7	0.77	0.7	0.2	0.45	-99.1			20
DEV rabbit Maternal GeneralMaternal	PLS	CDK, TA	147	8	22	53	230	0.67	0.87	0.74	0.8	0.74	0.27	0.5	-99.0	8.	0.	20

GeneralMaternal	PLS																	
DEV rabbit Maternal GeneralMaternal		CDK, TP	127	7	23	73	230	0.58	0.85	0.64	0.73	0.64	0.23	0.43	-99.1	8.	.093	200
DEV rabbit Maternal	PLS	TA, TP	149	7	23	52	231	0.68	0.87	0.74	0.8	0.74	0.23	0.49	-99.0			201
GeneralMaternal	PLS	•	141	7	23	60	231	0.64	0.86	0.7	0.77	0.7	0.23	0.47	-99.1			201
DEV rabbit Maternal GeneralMaternal	PLS		132	5	25	69	231	0.59	0.84	0.66	0.74	0.66	0.17	0.41	-99.2			201
DEV rabbit Maternal		CDK, TA,												-				
GeneralMaternal DEV rabbit Maternal	J48	TP	146	6	24	54	230	0.66	0.86	0.73	0.79	0.73	0.2	0.47	-99.1	7.00	.054	200
GeneralMaternal DEV rabbit Maternal	J48	CDK, TA	153	5	25	47	230	0.69	0.86	0.77	0.81	0.77	0.17	0.47	-99.1	7.36	.055	200
GeneralMaternal DEV rabbit Maternal	J48	CDK, TP	153	3	27	47	230	0.68	0.85	0.77	0.81	0.77	0.1	0.43	-99.1	6.83	.11	200
GeneralMaternal	J48	TA, TP	147	9	21	54	231	0.68	0.88	0.73	0.8	0.73	0.3	0.52	-99.0	8.18	0.02	201
DEV rabbit Maternal GeneralMaternal	J48	TA	157	5	25	44	231	0.7	0.86	0.78	0.82	0.78	0.17	0.47	-99.1	7.32	.043	201
DEV rabbit Maternal GeneralMaternal	J48	TP	135	8	22	66	231	0.62	0.86	0.67	0.75	0.67	0.27	0.47	-99.1	8.13	.044	201
DEV rabbit Maternal GeneralMaternal	RF	CDK, TA, TP	190	2	28	10	230	0.83	0.87	0.95	0.91	0.95	0.07	0.51	-99.0	5.17	0.03	200
DEV rabbit Maternal GeneralMaternal	RF	CDK, TA	197	1	29	3	230	0.86	0.87	0.99	0.92	0.99	0.03	0.51		3.56		200
DEV rabbit Maternal																		
GeneralMaternal DEV rabbit Maternal	RF	CDK, TP	193	0	30	7	230	0.84	0.87	0.97	0.91	0.97	0.	0.48	-99.0			200
GeneralMaternal DEV rabbit Maternal	RF	TA, TP	192	2	28	9	231	0.84	0.87	0.96	0.91	0.96	0.07	0.51	-99.0			
GeneralMaternal DEV rabbit Maternal	RF	TA	180	1	29	21	231	0.78	0.86	0.9	0.88	0.9	0.03	0.46	-99.1	5.28	.081	201
GeneralMaternal	RF	TP	184	1	29	17	231	8.0	0.86	0.92	0.89	0.92	0.03	0.47	-99.1	5.1	.064	201
DEV rabbit Maternal	FSM	اعرام ۸	140	40	40	00	000	0.00	0.00	0.7	0.70	0.7	0.4	0.55	00.0	0.00	0.07	000
GeneralMaternal	LR	Adriana	140	12	18	60	230	0.66	0.89	0.7	0.78	0.7	0.4	0.55	-98.9	8.00	0.07	200
DEV rabbit Maternal GeneralMaternal	FSM LR	ALogPS, OEstate	142	8	22	59	231	0.65	0.87	0.71	0.78	0.71	0.27	0.49	-99.0	8.07	.02	201
DEV rabbit Maternal	FSM																	
GeneralMaternal	LR	CDK	130	10	20	70	230	0.61	0.87	0.65	0.74	0.65	0.33	0.49	-99.0	8.46	.012	200
DEV rabbit Maternal GeneralMaternal	FSM LR	Chemaxo n	140	13	17	61	231	0.66	0.89	0.7	0.78	0.7	0.43	0.56	-98.9	88	0.09	201
				5	.,			2.00	2.00	0.1	50	· · · ·	5. 10	2.00			0.00	
DEV rabbit Maternal GeneralMaternal	FSM LR	Dragon6	136	8	22	65	231	0.62	0.86	0.68	0.76	0.68	0.27	0.47	-99.1	8.12	.041	201
DEV rabbit Maternal	FSM	Fragment																
GeneralMaternal	LR	or	151	8	22	50	231	0.69	0.87	0.75	0.81	0.75	0.27	0.51	-99.0	7.97	0.01	201
DEV rabbit Maternal	FSM	005	400	4.5	0.5		00.1		0.0-		o = :	0.01	0.00		00.5		o	
GeneralMaternal	LR	GSFrag	129	10	20	72	231	0.6	0.87	0.64	0.74	0.64	0.33	0.49	-99.0	8.48	.017	201
DEV rabbit Maternal GeneralMaternal	FSM LR	Inductive	135	11	19	66	231	0.63	0.88	0.67	0.76	0.67	0.37	0.52	-99.0	8.58	0.03	201
		Mera,		<u> </u>	<u> </u>													
DEV rabbit Maternal	LR	Mersy	134	10	20	67	231	0.62	0.87	0.67	0.75	0.67	0.33	0.5	-99.0	8.44	0.	201
GeneralMaternal																		
	FSM																	
GeneralMaternal DEV rabbit Maternal GeneralMaternal	FSM LR	QNPR	137	9	21	64	231	0.63	0.87	0.68	0.76	0.68	0.3	0.49	-99.0	8.27	.013	201

DEV rabbit Maternal GeneralMaternal	KNN	Adriana	113	17	13	87	230	0.57	0.9	0.57	0.69	0.57	0.57	0.57	-98.9	9.46	0.09	200
DEV rabbit Maternal GeneralMaternal	KNN	ALogPS, OEstate	128	12	18	73	231	0.61	0.88	0.64	0.74	0.64	0.4	0.52	-99.0	8.76	0.03	201
DEV rabbit Maternal GeneralMaternal	KNN	CDK	127	8	22	73	230	0.59	0.85	0.64	0.73	0.64	0.27	0.45	-99.1	8.17	.069	200
DEV rabbit Maternal GeneralMaternal	KNN	Chemaxo n	147	11	19	54	231	0.68	0.89	0.73	0.8	0.73	0.37	0.55	-98.9	8.46	0.07	201
DEV rabbit Maternal GeneralMaternal	KNN	Dragon6	107	16	14	94	231	0.53	0.88	0.53	0.66	0.53	0.53	0.53	-98.9	9.36	0.04	201
DEV rabbit Maternal GeneralMaternal	KNN	Fragment or	126	11	19	75	231	0.59	0.87	0.63	0.73	0.63	0.37	0.5	-99.0	8.64	.004	201
DEV rabbit Maternal GeneralMaternal	KNN	GSFrag	103	11	19	98	231	0.49	0.84	0.51	0.64	0.51	0.37	0.44	-99.1	8.7	.081	201
DEV rabbit Maternal GeneralMaternal	KNN	Inductive	93	20	10	108	231	0.49	0.9	0.46	0.61	0.46	0.67	0.56	-98.9	9.89	0.09	201
DEV rabbit Maternal GeneralMaternal	KNN	Mera, Mersy	110	15	15	91	231	0.54	0.88	0.55	0.67	0.55	0.5	0.52	-99.0	9.22	0.03	201
DEV rabbit Maternal GeneralMaternal	KNN	QNPR	49	18	12	152	231	0.29	0.8	0.24	0.37	0.24	0.6	0.42	-99.2	9.32	.119	201
DEV rabbit Maternal GeneralMaternal	KNN	Spectrop hores	143	9	21	58	231	0.66	0.87	0.71	0.78	0.71	0.3	0.51	-99.0	8.22	0.01	201
DEV rabbit Maternal GeneralMaternal	LibS VM	Adriana	196	0	30	4	230	0.85	0.87	0.98	0.92	0.98	0.	0.49	-99.0	2.67	.052	200
DEV rabbit Maternal GeneralMaternal	LibS VM	ALogPS, OEstate	200	3	27	1	231	0.88	0.88	1.	0.93	1.	0.1	0.55	-98.9	3.64	0.24	201
DEV rabbit Maternal GeneralMaternal	LibS	CDK	198	1	29	2		0.87		0.99		0.99	0.03	0.51		3.23		
DEV rabbit Maternal GeneralMaternal		Chemaxo n	197	2	28	4	231	0.86	0.88	0.98	0.92	0.98	0.07	0.52	-99.0	4.36	0.1	201
DEV rabbit Maternal GeneralMaternal	LibS VM	Dragon6	201	3	27	0	231	0.88	0.88	1.	0.94	1.	0.1	0.55	-98.9	2.55	0.3	201
DEV rabbit Maternal GeneralMaternal	LibS VM	Fragment or	200	0	30	1	231	0.87	0.87	1.	0.93	1.	0.	0.5	-99.0	1.6	.025	201
DEV rabbit Maternal	LibS																	
GeneralMaternal	VM	GSFrag	185	2	28	16	231	0.81	0.87	0.92	0.89	0.92	0.07	0.49	-99.0	5.59	.016	201
DEV rabbit Maternal GeneralMaternal	LibS VM	Inductive	191	4	26	10	231	0.84	0.88	0.95	0.91	0.95	0.13	0.54	-98.9	5.83	0.12	201
DEV rabbit Maternal GeneralMaternal	LibS VM	Mera, Mersy	201	0	30	0	231	0.87	0.87	1.	0.93	1.	0.	0.5	-99.0	0.5		201
DEV rabbit Maternal GeneralMaternal	LibS VM	QNPR	199	0	30	2	231	0.86	0.87	0.99	0.93	0.99	0.	0.5	-99.0	2.1	.036	201
DEV rabbit Maternal GeneralMaternal		Spectrop hores	183	3	27	18	231	0.81	0.87	0.91	0.89	0.91	0.1	0.51	-99.0	6.07	0.01	201
DEV rabbit Maternal GeneralMaternal	MLR A	Adriana	99	20	10	101	230	0.52	0.91	0.5	0.64	0.5	0.67	0.58	-98.8	9.89	0.11	200
DEV rabbit Maternal GeneralMaternal	MLR A	ALogPS, OEstate	108	16	14	93	231	0.54	0.89	0.54	0.67	0.54	0.53	0.54	-98.9	9.35	0.05	201
DEV rabbit Maternal	MLR	CDK	112		-													200

DEV rabbit Maternal GeneralMaternal	MLR A	Chemaxo n	88	8	22	113	231	0.42	0.8	0.44	0.57	0.44	0.27	0.35	-99.3	8.24	.199	201
DEV rabbit Maternal GeneralMaternal	MLR A	Dragon6	92	16	14	109	231	0.47	0.87	0.46	0.6	0.46	0.53	0.5	-99.0	9.35	.006	201
DEV rabbit Maternal GeneralMaternal	MLR A	Fragment or	105	12	18	96	231	0.51	0.85	0.52	0.65	0.52	0.4	0.46	-99.1	8.84	.052	201
DEV rabbit Maternal GeneralMaternal	MLR A	GSFrag	119	12	18	82	231	0.57	0.87	0.59	0.7	0.59	0.4	0.5	-99.0	8.8	.005	201
DEV rabbit Maternal GeneralMaternal	MLR A	Inductive	104	11	19	97	231	0.5	0.85	0.52	0.64	0.52	0.37	0.44	-99.1	8.7	.078	201
DEV rabbit Maternal GeneralMaternal	MLR A	Mera, Mersv	110	11	19	91	231	0.52	0.85	0.55	0.67	0.55	0.37	0.46	-99.1	8.69	.058	201
DEV rabbit Maternal GeneralMaternal	MLR A	QNPR	96	13	17	105	231	0.47	0.85	0.48	0.61	0.48	0.43	0.46	-99.1		.06	201
DEV rabbit Maternal GeneralMaternal		Spectrop	111	16	14	90	231	0.55	0.89	0.55	0.68	0.55	0.53	0.54		9.35	0.06	201
DEV rabbit Maternal GeneralMaternal	PLS	Adriana	126	10	20	74	230	0.59	0.86	0.63	0.73	0.63	0.33	0.48	-99.0		.026	200
DEV rabbit Maternal		ALogPS,																
GeneralMaternal DEV rabbit Maternal	PLS	OEstate	139	9	21	62	231	0.64	0.87	0.69	0.77	0.69	0.3	0.5	-99.0	8.26	.006	201
GeneralMaternal DEV rabbit Maternal	PLS	CDK Chemaxo	132	10	20	68	230	0.62	0.87	0.66	0.75	0.66	0.33	0.5	-99.0	8.44	.005	200
GeneralMaternal DEV rabbit Maternal	PLS	n	128	13	17	73	231	0.61	0.88	0.64	0.74	0.64	0.43	0.54	-98.9	8.89	0.05	201
GeneralMaternal DEV rabbit Maternal	PLS	Dragon6 Fragment	143	10	20	58	231	0.66	0.88	0.71	0.79	0.71	0.33	0.52	-99.0	8.37	0.03	201
GeneralMaternal DEV rabbit Maternal	PLS	or	151	7	23	50	231	0.68	0.87	0.75	0.81	0.75	0.23	0.49	-99.0	7.8	.012	201
GeneralMaternal DEV rabbit Maternal	PLS	GSFrag	128	12	18	73	231	0.61	0.88	0.64	0.74	0.64	0.4	0.52	-99.0	8.76	0.03	201
GeneralMaternal DEV rabbit Maternal	PLS	Inductive Mera,	100	12	18	101	231	0.48	0.85	0.5	0.63	0.5	0.4	0.45	-99.1	8.84	.069	201
GeneralMaternal DEV rabbit Maternal	PLS	Mersy	129	11	19	72	231	0.61	0.87	0.64	0.74	0.64	0.37	0.5	-99.0	8.62	0.01	201
GeneralMaternal DEV rabbit Maternal	PLS	QNPR Spectrop	139	9	21	62	231	0.64	0.87	0.69	0.77	0.69	0.3	0.5	-99.0	8.26	.006	201
GeneralMaternal DEV rabbit Maternal	PLS	hores	122	16	14	79	231	0.6	0.9	0.61	0.72	0.61	0.53	0.57	-98.9	9.31	0.1	201
GeneralMaternal	J48	Adriana	152	10	20	48	230	0.7	0.88	0.76	0.82	0.76	0.33	0.55	-98.9	8.24	0.07	200
DEV rabbit Maternal GeneralMaternal	J48	ALogPS, OEstate	151	9	21	50	231	0.69	0.88	0.75	0.81	0.75	0.3	0.53	-98.9	8.13	0.04	201
DEV rabbit Maternal GeneralMaternal	J48	CDK	145	7	23	55	230	0.66	0.86	0.73	0.79	0.73	0.23	0.48	-99.0	7.85	.032	200
DEV rabbit Maternal GeneralMaternal	J48	Chemaxo n	145	12	18	56	231	0.68	0.89	0.72	0.8	0.72	0.4	0.56	-98.9	8.62	0.09	201
DEV rabbit Maternal GeneralMaternal	J48	Dragon6	147	7	23	54	231	0.67	0.86	0.73	0.79	0.73	0.23	0.48	-99.0	7.85	.027	201
DEV rabbit Maternal GeneralMaternal	J48	Fragment or	155	9	21	46	231	0.71	0.88	0.77	0.82	0.77	0.3	0.54	-98.9	8.07	0.06	201
DEV rabbit Maternal GeneralMaternal	J48	GSFrag	129	10	20	72	231	0.6	0.87	0.64	0.74	0.64	0.33	0.49	-99.0			201
DEV rabbit Maternal GeneralMaternal	J48	Inductive	138	9	21	63	231	0.64	0.87	0.69	0.77	0.69	0.3	0.49	-99.0	8.27	.01	201
DEV rabbit Maternal GeneralMaternal	J48	Mera, Mersy	152	7	23	49	231	0.69	0.87	0.76	0.81	0.76	0.23	0.49	-99.0	7.79	.008	201
DEV rabbit Maternal GeneralMaternal	J48	QNPR	120	8	22	81	231	0.55	0.85	0.6	0.7	0.6	0.27	0.43	-99.1			201
DEV rabbit Maternal GeneralMaternal	J48	Spectrop hores	144	6	24	57	231	0.65	0.86	0.72	0.78	0.72	0.2	0.46	-99.1	7.7	.063	201
DEV rabbit Maternal PregnancyRelated	RF	Adriana	96	28	69	37	230	0.54	0.58	0.72	0.64	0.72	0.29	0.51	-99.0		0.01	133

DEV rabbit Maternal		ALogPS,															
PregnancyRelated DEV rabbit Maternal	RF	OEstate	98	41	56	36	231	0.6	0.64	0.73	0.68	0.73	0.42	0.58	-98.8 7.88 0	.16	134
PregnancyRelated	RF	CDK	98	28	68	36	230	0.55	0.59	0.73	0.65	0.73	0.29	0.51	-99.0 7.31 0	.03	134
DEV rabbit Maternal PregnancyRelated	RF	Chemaxo n	96	33	64	38	231	0.56	0.6	0.72	0.65	0.72	0.34	0.53	-98.9 7.57 0	.06	134
DEV rabbit Maternal PregnancyRelated	RF	Dragon6	101	31	66	33	231	0.57	0.6	0.75	0.67	0.75	0.32	0.54	-98.9 7.38 0	.08	134
DEV rabbit Maternal PregnancyRelated	RF	Fragment or	95	39	58	39	231	0.58	0.62	0.71	0.66	0.71	0.4	0.56	-98.9 7.84 0	.12	134
DEV rabbit Maternal PregnancyRelated	RF	GSFrag	95	36	61	39	231	0.57	0.61	0.71	0.66	0.71	0.37	0.54	-98.9 7.71 0	.08	134
DEV rabbit Maternal PregnancyRelated	RF	Inductive	95	34	63	39	231	0.56	0.6	0.71	0.65	0.71	0.35	0.53	-98.9 7.63 0	.06	134
DEV rabbit Maternal PregnancyRelated	RF	Mera, Mersy	99	27	70	35	231	0.55	0.59	0.74	0.65	0.74	0.28	0.51	-99.0 7.23 0	.02	134
DEV rabbit Maternal PregnancyRelated	RF	QNPR	90	34	63	44	231	0.54	0.59	0.67	0.63	0.67	0.35	0.51	-99.0 7.69 0	.02	134
DEV rabbit Maternal PregnancyRelated	RF	Spectrop hores	96	30	67	38	231	0.55	0.59	0.72	0.65	0.72	0.31	0.51	-99.0 7.43 0	.03	134
DEV rabbit Maternal PregnancyRelated	ASN N	Adriana	74	56	41	59	230	0.57	0.64	0.56	0.6	0.56	0.58	0.57	-98.9 8.71 0	.13	133
DEV rabbit Maternal	ASN	ALogPS,															
PregnancyRelated	N ASN	OEstate	82	45	52	52	231	0.55	0.61	0.61	0.61	0.61	0.46	0.54	-98.9 8.23 0	.08	134
DEV rabbit Maternal PregnancyRelated	N	CDK Chemaxo	82	53	43	52	230	0.59	0.66	0.61	0.63	0.61	0.55	0.58	-98.8 8.58 0	.16	134
DEV rabbit Maternal PregnancyRelated	N	n	87	51	46	47	231	0.6	0.65	0.65	0.65	0.65	0.53	0.59	-98.8 8.43 0	.17	134
DEV rabbit Maternal PregnancyRelated	ASN N	Dragon6	83	47	50	51	231	0.56	0.62	0.62	0.62	0.62	0.48	0.55	-98.9 8.31	0.1	134
DEV rabbit Maternal PregnancyRelated	N	Fragment or	79	48	49	55	231	0.55	0.62	0.59	0.6	0.59	0.49	0.54	-98.9 8.37 0	.08	134
DEV rabbit Maternal PregnancyRelated	ASN N	GSFrag	83	55	42	51	231	0.6	0.66	0.62	0.64	0.62	0.57	0.59	-98.8 8.63 0	.18	134
DEV rabbit Maternal PregnancyRelated	ASN N	Inductive	77	47	50	57	231	0.54	0.61	0.57	0.59	0.57	0.48	0.53	-98.9 8.34 0	.06	134
DEV rabbit Maternal PregnancyRelated	ASN N	Mera, Mersy	84	52	45	50	231	0.59	0.65	0.63	0.64	0.63	0.54	0.58	-98.8 8.5 0	.16	134
DEV rabbit Maternal PregnancyRelated	ASN N	QNPR	85	45	52	49	231	0.56	0.62	0.63	0.63	0.63	0.46	0.55	-98.9 8.21	0.1	134
DEV rabbit Maternal PregnancyRelated	ASN N	Spectrop hores	77	50	47	57	231	0.55	0.62	0.57	0.6	0.57	0.52	0.55	-98.9 8.46 0	.09	134
DEV rabbit Maternal PregnancyRelated		CDK, TA, TP	74	43	53	60	230	0.51	0.58	0.55	0.57	0.55	0.45	0.5	-99.0 8.21	0.	134
DEV rabbit Maternal PregnancyRelated	ASN N	CDK, TA	71	45	51	63	230	0.5	0.58	0.53	0.55	0.53	0.47	0.5	-99.0 8.3 .0		134
DEV rabbit Maternal PregnancyRelated	ASN N	CDK, TP	79	42	54	55	230	0.53			0.59			0.51	-99.0 8.14 0		134
DEV rabbit Maternal	ASN								0.59	0.59		0.59	0.44				
PregnancyRelated DEV rabbit Maternal	ASN	TA, TP	70	42	55	64	231	0.48	0.56	0.52	0.54	0.52	0.43	0.48	-99.0 8.16 .0		134
PregnancyRelated DEV rabbit Maternal	ASN	TA	68	48	49	66	231	0.5	0.58	0.51	0.54	0.51	0.49	0.5	-99.0 8.4	0.	134
PregnancyRelated	N	TP	72	44	53	62	231	0.5	0.58	0.54	0.56	0.54	0.45	0.5	-99.0 8.23 .0	J09	134
DEV rabbit Maternal PregnancyRelated	FSM LR	CDK, TA, TP	78	41	55	56	230	0.52	0.59	0.58	0.58	0.58	0.43	0.5	-99.0 8.11 0	.01	134
DEV rabbit Maternal	FSM		_														
PregnancyRelated	LR	CDK, TA	72	42	54	62	230	0.5	0.57	0.54	0.55	0.54	0.44	0.49	-99.0 8.17 .0	025	134
DEV rabbit Maternal PregnancyRelated	FSM LR	CDK, TP	84	43	53	50	230	0.55	0.61	0.63	0.62	0.63	0.45	0.54	-98.9 8.15 0	.08	134

DEV rabbit Maternal PregnancyRelated	FSM LR	TA, TP	80	43	54	54	231	0.53	0.6	0.6	0.6	0.6	0.44	0.52	-99.0	8.16	0.04	134
DEV 11.314	FSM																	
DEV rabbit Maternal PregnancyRelated	LR	TA	85	41	56	49	231	0.55	0.6	0.63	0.62	0.63	0.42	0.53	-98.9	8.04	0.06	134
., .,											****			*****				
DEV rabbit Maternal	FSM																	
PregnancyRelated	LR	TP TA	71	44	53	63	231	0.5	0.57	0.53	0.55	0.53	0.45	0.49	-99.0	8.24	.016	134
DEV rabbit Maternal PregnancyRelated	KNN	CDK, TA,	101	34	62	33	230	0.59	0.62	0.75	0.68	0.75	0.35	0.55	-98.9	7 54	n 12	134
DEV rabbit Maternal	IXIVIN	- 11	101	J 4	02	- 33	230	0.55	0.02	0.73	0.00	0.75	0.55	0.55	-90.9	7.54	0.12	134
PregnancyRelated	KNN	CDK, TA	107	28	68	27	230	0.59	0.61	0.8	0.69	8.0	0.29	0.55	-98.9	7.11	0.1	134
DEV rabbit Maternal																		
PregnancyRelated	KNN	CDK, TP	81	48	48	53	230	0.56	0.63	0.6	0.62	0.6	0.5	0.55	-98.9	8.38	0.1	134
DEV rabbit Maternal PregnancyRelated	KNINI	TA, TP	108	31	66	26	231	0.6	0.62	0.81	0.7	0.81	0.32	0.56	-98.9	7 22	N 14	134
DEV rabbit Maternal	IXININ	177, 11	100	- 01	- 00		201	0.0	0.02	0.01	0.7	0.01	0.02	0.50	-30.3	1 .22	0.14	104
PregnancyRelated	KNN	TA	107	28	69	27	231	0.58	0.61	8.0	0.69	8.0	0.29	0.54	-98.9	7.1	0.1	134
DEV rabbit Maternal																		
PregnancyRelated	KNN	TP	77	52	45	57	231	0.56	0.63	0.57	0.6	0.57	0.54	0.56	-98.9	8.55	0.11	134
DEV rabbit Maternal	LibS	CDK, TA,																
DEV rabbit Maternal PregnancyRelated	VM	TP	88	30	66	46	230	0.51	0.57	0.66	0.61	0.66	0.31	0.48	-99.0	7.54	.032	134
DEV rabbit Maternal	LibS																	
PregnancyRelated	VM	CDK, TA	98	27	69	36	230	0.54	0.59	0.73	0.65	0.73	0.28	0.51	-99.0	7.26	0.01	134
DEV bbit M-t	LibS																	
DEV rabbit Maternal PregnancyRelated	VM	CDK, TP	90	31	65	44	230	0.53	0.58	0.67	0.62	0.67	0.32	0.5	-99.0	7.57	.006	134
<u> </u>		,																
DEV rabbit Maternal	LibS																	
PregnancyRelated	VM	TA, TP	85	34	63	49	231	0.52	0.57	0.63	0.6	0.63	0.35	0.49	-99.0	7.74	.016	134
DEV rabbit Maternal	LibS																	
PregnancyRelated	VM	TA	100	21	76	34	231	0.52	0.57	0.75	0.65	0.75	0.22	0.48	-99.0	6.88	.043	134
DEV rabbit Maternal	LibS	TD	0.5	0.7	00	40	004	0.50	0.50	0.00	0.04	0.00	0.00	0.54	00.0			404
PregnancyRelated	VM	TP CDK. TA.	85	37	60	49	231	0.53	0.59	0.63	0.61	0.63	0.38	0.51	-99.0	7.87	0.02	134
DEV rabbit Maternal PregnancyRelated	A	TP	69	42	54	65	230	0.48	0.56	0.51	0.54	0.51	0.44	0.48	-99.0	8 17	.047	134
DEV rabbit Maternal	MLR	••			<u> </u>			0.10	0.00	0.01	0.01	0.01	0.11	0.10	00.0	0.11	.0 11	
PregnancyRelated	Α	CDK, TA	67	39	57	67	230	0.46	0.54	0.5	0.52	0.5	0.41	0.45	-99.1	8.05	.093	134
DEV rabbit Maternal	MLR																	
PregnancyRelated	A MLR	CDK, TP	81	48	48	53	230	0.56	0.63	0.6	0.62	0.6	0.5	0.55	-98.9	8.38	0.1	134
DEV rabbit Maternal PregnancyRelated	A	TA, TP	66	50	47	68	231	0.5	0.58	0.49	0.53	0.49	0.52	0.5	-99.0	8.49	0.01	134
DEV rabbit Maternal	MLR	,													20.0			
PregnancyRelated	Α	TA	72	45	52	62	231	0.51	0.58	0.54	0.56	0.54	0.46	0.5	-99.0	8.28	0.	134
DEV rabbit Maternal	MLR				40	00	004	0.50	0.01	0.40	0.51	0.40	0.50	0.50	00.0	0.05	0.05	40.
PregnancyRelated	Α	TP CDK, TA,	66	54	43	68	231	0.52	0.61	0.49	0.54	0.49	0.56	0.52	-99.0	ช. 0 5	υ.05	134
DEV rabbit Maternal PregnancyRelated	PLS		75	49	47	59	230	0.54	0.61	0.56	0.59	0.56	0.51	0.54	-98.9	8.45	0.07	134
DEV rabbit Maternal				-	-											-		
PregnancyRelated	PLS	CDK, TA	76	41	55	58	230	0.51	0.58	0.57	0.57	0.57	0.43	0.5	-99.0	8.12	.006	134
DEV rabbit Maternal	DI O	CDV TD	70	00	00	- 0	000	0.40	0.50	0.53	0.50	0.53	0.00	0.47	00.4	7.0	050	404
PregnancyRelated DEV rabbit Maternal	PLS	CDK, TP	76	36	60	58	230	0.49	0.56	0.57	0.56	0.57	0.38	0.47	-99.1	7.9	.058	134
PregnancyRelated	PLS	TA, TP	79	45	52	55	231	0.54	0.6	0.59	0.6	0.59	0.46	0.53	-98.9	8.25	0.05	134
DEV rabbit Maternal			22	4.0	- ·		60.1	0.50	0.01	0.01	0.00	0.01	0.11	0.5:				<i>1</i> ~ ·
PregnancyRelated DEV rabbit Maternal	PLS	IA	86	43	54	48	231	0.56	0.61	0.64	0.63	0.64	0.44	0.54	-98.9	ช.12	0.09	134
PregnancyRelated	PLS	TP	78	41	56	56	231	0.52	0.58	0.58	0.58	0.58	0.42	0.5	-99.0	8.09	0.	134
DEV rabbit Maternal		CDK, TA,													-	· ·		
DE V Tabbit Maternal																		

DEV rabbit Maternal PregnancyRelated	J48	CDK, TA	84	54	42	50	230	0.6	0.67	0.63	0.65	0.63	0.56	0.59	-98.8	8.61	0.19	134
DEV rabbit Maternal PregnancyRelated	J48	CDK, TP	75	46	50	59	230	0.53	0.6	0.56	0.58	0.56	0.48	0.52	-99.0	8.33	0.04	134
DEV rabbit Maternal PregnancyRelated	J48	TA, TP	61	51	46	73	231	0.48	0.57	0.46	0.51	0.46	0.53	0.49	-99.0	8 52	010	134
DEV rabbit Maternal PregnancyRelated	J48	TA TA	71	53	44	63	231	0.54	0.62	0.53	0.57	0.53	0.55	0.54	-98.9		0.08	134
DEV rabbit Maternal PregnancyRelated	J48	TP	64	51	46	70	231	0.5	0.58	0.48	0.52	0.48	0.53	0.5	-99.0		0.	
DEV rabbit Maternal		CDK, TA,																
PregnancyRelated DEV rabbit Maternal	RF	TP	104	24	72	30	230	0.56	0.59	0.78	0.67	0.78	0.25	0.51	-99.0	6.98	0.03	134
PregnancyRelated	RF	CDK, TA	102	25	71	32	230	0.55	0.59	0.76	0.66	0.76	0.26	0.51	-99.0	7.08	0.02	134
DEV rabbit Maternal PregnancyRelated	RF	CDK, TP	99	29	67	35	230	0.56	0.6	0.74	0.66	0.74	0.3	0.52	-99.0	7.34	0.04	134
DEV rabbit Maternal PregnancyRelated	RF	TA, TP	97	29	68	37	231	0.55	0.59	0.72	0.65	0.72	0.3	0.51	-99.0	7.36	0.02	134
DEV rabbit Maternal PregnancyRelated	RF	TA	92	27	70	42	231	0.52	0.57	0.69	0.62	0.69	0.28	0.48	-99.0	7.34	.038	134
DEV rabbit Maternal																		
PregnancyRelated	RF	TP	94	29	68	40	231	0.53	0.58	0.7	0.64	0.7	0.3	0.5	-99.0	7.41	0.	134
DEV rabbit Maternal PregnancyRelated	FSM LR	Adriana	56	70	27	77	230	0.55	0.67	0.42	0.52	0.42	0.72	0.57	-98.9	9.33	0.15	133
DEV rabbit Maternal	FSM	ALogPS,																
PregnancyRelated	LR	OEstate	95	52	45	39	231	0.64	0.68	0.71	0.69	0.71	0.54	0.62	-98.8	8.38	0.25	134
DEV rabbit Maternal PregnancyRelated	FSM LR	CDK	82	53	43	52	230	0.59	0.66	0.61	0.63	0.61	0.55	0.58	-98.8	8.58	0.16	134
DEV rabbit Maternal	FSM	Chemaxo																
PregnancyRelated	LR	n	87	55	42	47	231	0.61	0.67	0.65	0.66	0.65	0.57	0.61	-98.8	8.6	0.21	134
DEV rabbit Maternal PregnancyRelated	FSM LR	Dragon6	92	49	48	42	231	0.61	0.66	0.69	0.67	0.69	0.51	0.6	-98.8	8.3	0.19	134
251	FSM	Fragment																
DEV rabbit Maternal PregnancyRelated	LR	or	85	46	51	49	231	0.57	0.63	0.63	0.63	0.63	0.47	0.55	-98.9	8.25	0.11	134
DEV rabbit Maternal	FSM																	
PregnancyRelated	LR	GSFrag	76	50	47	58	231	0.55	0.62	0.57	0.59	0.57	0.52	0.54	-98.9	8.47	80.0	134
DEV rabbit Maternal PregnancyRelated	FSM LR	Inductive	81	53	44	53	231	0.58	0.65	0.6	0.63	0.6	0.55	0.58	-98.8	8 56	0.15	134
.goy. tolutou				- 55		- 55		2.00	2.00	0.0	2.00	0.0	2.00	2.50	00.0	2.50	00	۰.۵۰۲
DEV rabbit Maternal PregnancyRelated	FSM LR	Mera, Mersy	88	44	53	46	231	0.57	0.62	0.66	0.64	0.66	0.45	0.56	-98.9	8.14	0.11	134
<u> </u>	FSM	- - ,											•					
DEV rabbit Maternal PregnancyRelated	LR	QNPR	84	50	47	50	231	0.58	0.64	0.63	0.63	0.63	0.52	0.57	-98.9	8.42	0.14	134
DEV rabbit Maternal	FSM	Spectrop																
PregnancyRelated	LR	hores	58	64	33	76	231	0.53	0.64	0.43	0.52	0.43	0.66	0.55	-98.9	9.06	0.09	134
DEV rabbit Maternal	KNN	Adriana	57	59	38	76	230	0.5	0.6	0.43	0.5	0.43	0.61	0.52	-99.0	8.82	0.04	133
PregnancyRelated		ALDC						0.50	0.61	0.66	0.64	0.66	0.41	0.54	00.0	7.06	0.00	124
DEV rabbit Maternal	KVIV	ALogPS,	00	40	57	15						unn	1141	1174	-98.9	/ Yn	UUK	134
DEV rabbit Maternal PregnancyRelated DEV rabbit Maternal		OEstate	89	40	57	45	231	0.56										
DEV rabbit Maternal PregnancyRelated	KNN	OEstate	89 51	40 68	57 28	45 83	231	0.56	0.65	0.38	0.48	0.38	0.71	0.54	-98.9			134

DEV rabbit Maternal PregnancyRelated	KNN	Dragon6	59	65	32	75	231	0.54	0.65	0.44	0.52	0.44	0.67	0.56	-98.9 9.11 (0.11	134
DEV rabbit Maternal PregnancyRelated	KNN	Fragment or	97	32	65	37	231	0.56	0.6	0.72	0.66	0.72	0.33	0.53	-98.9 7.5 C	0.06	134
DEV rabbit Maternal												-					
PregnancyRelated DEV rabbit Maternal	KNN	GSFrag	59	62	35	75	231	0.52	0.63	0.44	0.52	0.44	0.64	0.54	-98.9 8.98 C	0.08	134
PregnancyRelated	KNN	Inductive Mera,	70	60	37	64	231	0.56	0.65	0.52	0.58	0.52	0.62	0.57	-98.9 8.9 0).14	134
DEV rabbit Maternal PregnancyRelated	KNN	Mersy	56	66	31	78	231	0.53	0.64	0.42	0.51	0.42	0.68	0.55	-98.9 9.14	0.1	134
DEV rabbit Maternal PregnancyRelated	KNN	QNPR	96	36	61	38	231	0.57	0.61	0.72	0.66	0.72	0.37	0.54	-98.9 7.7 C	0.09	134
DEV rabbit Maternal	KNINI	Spectrop hores	66	58	39	68	231	0.54	0.63	0.49	0.55	0.49	0.6	0.55	-98.9 8.82 C	0.00	134
PregnancyRelated		nores	00	36	39	00	231	0.54	0.03	0.49	0.55	0.49	0.0	0.55	-90.9 0.02 0	7.09	134
DEV rabbit Maternal PregnancyRelated	LibS VM	Adriana	92	36	61	41	230	0.56	0.6	0.69	0.64	0.69	0.37	0.53	-98.9 7.73 C	0.7	133
								0.00		0.00	0.0.	0.00	0.0.	0.00	00.0 1.1.0 0		
DEV rabbit Maternal PregnancyRelated	LibS VM	ALogPS, OEstate	91	39	58	43	231	0.56	0.61	0.68	0.64	0.68	0.4	0.54	-98.9 7.9 0	0.08	134
	LibS																
DEV rabbit Maternal PregnancyRelated	VM	CDK	95	30	66	39	230	0.54	0.59	0.71	0.64	0.71	0.31	0.51	-99.0 7.46 C	0.02	134
DEV rabbit Maternal	LibS	Chemaxo															
PregnancyRelated	VM	n	90	46	51	44	231	0.59	0.64	0.67	0.65	0.67	0.47	0.57	-98.9 8.2 C).15	134
DEV rabbit Maternal	LibS																
PregnancyRelated	VM	Dragon6	95	33	64	39	231	0.55	0.6	0.71	0.65	0.71	0.34	0.52	-99.0 7.58 C	0.05	134
DEV rabbit Maternal	LibS	Fragment															
PregnancyRelated	VM	or	88	40	57	46	231	0.55	0.61	0.66	0.63	0.66	0.41	0.53	-98.9 7.97 C	0.07	134
DEV rabbit Maternal	LibS																
PregnancyRelated	VM	GSFrag	94	42	55	40	231	0.59	0.63	0.7	0.66	0.7	0.43	0.57	-98.9 7.98 C).14	134
DEV rabbit Maternal	LibS	la du ativa	70	20	5 0	EG	004	0.5	0.57	0.50	0.50	0.50	0.20	0.40	00.0 7.06	026	124
PregnancyRelated	VM	Inductive	78	38	59	56	231	0.5	0.57	0.58	0.58	0.58	0.39	0.49	-99.0 7.96 .	026	134
DEV rabbit Maternal PregnancyRelated	LibS VM	Mera, Mersy	83	46	51	51	231	0.56	0.62	0.62	0.62	0.62	0.47	0.55	-98.9 8.26 C	ากจ	134
Tregnaney (clated		Wicioy	- 00	-10	<u> </u>	01	201	0.00	0.02	0.02	0.02	0.02	0.47	0.00	00.0 0.20 0	7.00	101
DEV rabbit Maternal PregnancyRelated	LibS VM	QNPR	97	37	60	37	231	0.58	0.62	0.72	0.67	0.72	0.38	0.55	-98.9 7.73 (0.11	134
	Libe	Chaotron															
DEV rabbit Maternal PregnancyRelated	VM	Spectrop hores	84	36	61	50	231	0.52	0.58	0.63	0.6	0.63	0.37	0.5	-99.0 7.84 .	002	134
DEV rabbit Maternal PregnancyRelated	MLR A	Adriana	70	49	48	63	230	0.52	0.59	0.53	0.56	0.53	0.51	0.52	-99.0 8.43 0	0.03	133
- rognanoy tolatoa				-10				0.02	0.00	0.00	0.00	0.00	0.01	0.02	00.0 0.10 0		100
DEV rabbit Maternal PregnancyRelated	MLR A	ALogPS, OEstate	82	49	48	52	231	0.57	0.63	0.61	0.62	0.61	0.51	0.56	-98.9 8.39 C).12	134
DEV rabbit Maternal	MLR																
PregnancyRelated DEV rabbit Maternal	A MLR	CDK Chemaxo	76	50	46	58	230	0.55	0.62	0.57	0.59	0.57	0.52	0.54	-98.9 8.49 C	7.09	134
PregnancyRelated	A MLR	n	82	58	39	52	231	0.61	0.68	0.61	0.64	0.61	0.6	0.6	-98.8 8.77 C).21	134
DEV rabbit Maternal PregnancyRelated	Α	Dragon6	56	44	53	78	231	0.43	0.51	0.42	0.46	0.42	0.45	0.44	-99.1 8.21 .	127	134
DEV rabbit Maternal PregnancyRelated	MLR A	Fragment or	83	52	45	51	231	0.58	0.65	0.62	0.63	0.62	0.54	0.58	-98.8 8.51 C) 15	134
DEV rabbit Maternal	MLR																
PregnancyRelated DEV rabbit Maternal	A MLR	GSFrag	84	48	49	50	231	0.57	0.63	0.63	0.63	0.63	0.49	0.56	-98.9 8.34 C).12	134
PregnancyRelated	A	Inductive	64	51	46	70	231	0.5	0.58	0.48	0.52	0.48	0.53	0.5	-99.0 8.52	0.	134

	MID	Mera.																
DEV rabbit Maternal PregnancyRelated	A	Mersy	72	48	49	62	231	0.52	0.6	0.54	0.56	0.54	0.49	0.52	-99.0	8.4	0.03	13
DEV rabbit Maternal PregnancyRelated	MLR A	QNPR	75	50	47	59	231	0.54	0.61	0.56	0.59	0.56	0.52	0.54	-98.9	8.47	0.07	13
DEV rabbit Maternal	MLR	Spectrop																
PregnancyRelated	Α	hores	71	58	39	63	231	0.56	0.65	0.53	0.58	0.53	0.6	0.56	-98.9	8.81	0.13	13
DEV rabbit Maternal PregnancyRelated	PLS	Adriana	79	55	42	54	230	0.58	0.65	0.59	0.62	0.59	0.57	0.58	-98.8	8.64	0.16	13
DEV rabbit Maternal PregnancyRelated	PLS	ALogPS, OEstate	83	54	43	51	231	0.59	0.66	0.62	0.64	0.62	0.56	0.59	-98.8	8.59	0.17	13
DEV rabbit Maternal PregnancyRelated	PLS		77	52	44	57	230	0.56	0.64	0.57	0.6	0.57	0.54	0.56	-98.9	8.57	0.11	13
DEV rabbit Maternal PregnancyRelated	PLS	Chemaxo n	82	57	40	52	231	0.6	0.67	0.61	0.64	0.61	0.59	0.6	-98.8	8.72	0.2	13
DEV rabbit Maternal PregnancyRelated	PLS	Dragon6	79	46	51	55	231	0.54	0.61	0.59	0.6	0.59	0.47	0.53	-98.9	8.29	0.06	13
DEV rabbit Maternal PregnancyRelated	PLS	Fragment or	80	54	43	54	231	0.58	0.65	0.6	0.62	0.6	0.56	0.58	-98.8	8.61	0.15	13
DEV rabbit Maternal PregnancyRelated	PLS	GSFrag	73	53	44	61	231	0.55	0.62	0.54	0.58	0.54	0.55	0.55	-98.9		0.09	13
DEV rabbit Maternal PregnancyRelated	PLS	Inductive	75	56	41	59	231	0.57	0.65	0.56	0.6	0.56	0.58	0.57			0.14	
DEV rabbit Maternal	PLS	Mera, Mersy	78	52	45	56	231	0.56	0.63	0.58	0.61	0.58	0.54	0.56		8.54		13
PregnancyRelated DEV rabbit Maternal PregnancyRelated	PLS	QNPR	82	52 51	46	52	231	0.58	0.64	0.56	0.63	0.56	0.54	0.56			0.12	
DEV rabbit Maternal		Spectrop					-											
PregnancyRelated DEV rabbit Maternal	PLS J48	hores Adriana	70 74	51 48	46 49	64 59	231	0.52	0.6	0.52	0.56	0.52	0.53	0.52	-99.0 -98.9			13 13
PregnancyRelated	J40	Auriaria	74	40	49	59	230	0.03	0.0	0.30	0.56	0.30	0.49	0.55	-90.9	0.30	0.05	10
DEV rabbit Maternal PregnancyRelated	J48	ALogPS, OEstate	80	50	47	54	231	0.56	0.63	0.6	0.61	0.6	0.52	0.56	-98.9	8.45	0.11	13
DEV rabbit Maternal PregnancyRelated	J48	CDK	77	43	53	57	230	0.52	0.59	0.57	0.58	0.57	0.45	0.51	-99.0	8.2	0.02	13
DEV rabbit Maternal PregnancyRelated	J48	Chemaxo n	74	50	47	60	231	0.54	0.61	0.55	0.58	0.55	0.52	0.53	-98.9	8.47	0.07	13
DEV rabbit Maternal PregnancyRelated	J48	Dragon6	83	41	56	51	231	0.54	0.6	0.62	0.61	0.62	0.42	0.52	-99.0	8.06	0.04	13
DEV rabbit Maternal PregnancyRelated	J48	Fragment or	83	47	50	51	231	0.56	0.62	0.62	0.62	0.62	0.48	0.55	-98.9	8.31	0.1	13
DEV rabbit Maternal PregnancyRelated	J48	GSFrag	79	49	48	55	231	0.55	0.62	0.59	0.61	0.59	0.51	0.55	-98.9	8.41	0.09	13
DEV rabbit Maternal PregnancyRelated	J48	Inductive	84	41	56	50	231	0.54	0.6	0.63	0.61	0.63	0.42	0.52	-99.0	8.05	0.05	13
DEV rabbit Maternal PregnancyRelated	J48	Mera, Mersy	75	43	54	59	231	0.51	0.58	0.56	0.57	0.56	0.44	0.5	-99.0	8.18	0.	13
DEV rabbit Maternal PregnancyRelated	J48	QNPR	80	50	47	54	231	0.56	0.63	0.6	0.61	0.6	0.52	0.56	-98.9	8.45	0.11	13
DEV rabbit Maternal PregnancyRelated	J48	Spectrop hores	73	46	51	61	231	0.52	0.59	0.54	0.57	0.54	0.47	0.51	-00 N	g 31	0.02	13
DEV rat Developmental	040	110103	70		<u> </u>	- 01	201	0.02	0.00	0.04	0.01	0.04	0.47	0.01	-55.0	0.01	0.02	
GeneralFetal	RF	Adriana	51	71	83	41	246	0.5	0.38	0.55	0.45	0.55	0.46	0.51	-99.0	7.51	0.01	ç
DEV rat Developmental	DE	ALogPS,	0.4	00	00	00	0.17	0.0	0.40	0.00	0.55	0.00	0.57	0.04	00.0	7.00	0.00	,
GeneralFetal DEV rat	RF	OEstate	61	88	66	32	247	0.6	0.48	0.66	0.55	0.66	0.57	0.61	-98.8	7.89	0.22	Ç
Developmental GeneralFetal	RF	CDK	56	78	76	36	246	0.54	0.42	0.61	0.5	0.61	0.51	0.56	-98.9	7.66	0.11	ç
DEV rat Developmental GeneralFetal	RF	Chemaxo n	57	79	75	36	247	0.55	0.43	0.61	0.51	0.61	0.51	0.56	-98.9	77	0.12	ç
GeneralFetal DEV rat	IXE	11	31	13	13	50	241	0.00	0.43	0.01	0.01	0.01	0.01	0.00	-90.9	1.1	0.12	

																	\neg
DEV rat Developmental		Fragment															
GeneralFetal	RF	or	62	79	75	31	247	0.57	0.45	0.67	0.54	0.67	0.51	0.59	-98.8 7.64	0.18	93
DEV rat Developmental																	
GeneralFetal	RF	GSFrag	57	80	74	36	247	0.55	0.44	0.61	0.51	0.61	0.52	0.57	-98.9 7.73	0.13	93
DEV rat																	
Developmental GeneralFetal	RF	Inductive	55	77	77	38	247	0.53	0.42	0.59	0.49	0.59	0.5	0.55	-98.9 7.67	0.09	93
DEV rat																	
Developmental GeneralFetal	RF	Mera, Mersy	57	80	74	36	247	0.55	0.44	0.61	0.51	0.61	0.52	0.57	-98.9 7.73	0.13	93
DEV rat	NI	ivicisy	31	00	74	30	241	0.55	0.44	0.01	0.51	0.01	0.52	0.57	-90.9 1.13	0.13	-93
Developmental																	
GeneralFetal	RF	QNPR	58	89	65	35	247	0.6	0.47	0.62	0.54	0.62	0.58	0.6	-98.8 7.95	0.2	93
DEV rat Developmental		Spectrop															
GeneralFetal	RF	hores	45	82	72	48	247	0.51	0.38	0.48	0.43	0.48	0.53	0.51	-99.0 7.83	0.02	93
DEV rat	ASN																
Developmental GeneralFetal	N	Adriana	54	95	59	38	246	0.61	0.48	0.59	0.53	0.59	0.62	0.6	-98.8 8.12	0.2	92
DEV rat																	Ť
Developmental	ASN	ALogPS,															
GeneralFetal	N	OEstate	52	94	60	41	247	0.59	0.46	0.56	0.51	0.56	0.61	0.58	-98.8 8.13	0.16	93
DEV rat Developmental	ASN																
GeneralFetal	N	CDK	52	94	60	40	246	0.59	0.46	0.57	0.51	0.57	0.61	0.59	-98.8 8.11	0.17	92
DEV rat	ACN	Chamaya															
Developmental GeneralFetal	N	Chemaxo n	47	87	67	46	247	0.54	0.41	0.51	0.45	0.51	0.56	0.54	-98.9 7.96	0.07	93
DEV rat					01	-10		0.04	0.71	0.01	0.40	0.01	0.00	0.04	00.0 7.00	0.07	
Developmental	ASN	_					- · -										
GeneralFetal	N	Dragon6	45	96	58	48	247	0.57	0.44	0.48	0.46	0.48	0.62	0.55	-98.9 8.2	0.11	93
DEV rat Developmental	ASN	Fragment															
GeneralFetal	N	or	47	93	61	46	247	0.57	0.44	0.51	0.47	0.51	0.6	0.55	-98.9 8.12	0.11	93
DEV rat	ASN																
Developmental GeneralFetal	N	GSFrag	45	93	61	48	247	0.56	0.42	0.48	0.45	0.48	0.6	0.54	-98.9 8.12	0.09	93
DEV rat	401																
Developmental GeneralFetal	ASN N	Inductive	45	86	68	48	247	0.53	0.4	0.48	0.44	0.48	0.56	0.52	-99.0 7.93	0.04	93
DEV rat	IN	inductive	40	00	00	40	241	0.55	0.4	0.40	0.44	0.40	0.50	0.52	-99.0 7.93	0.04	93
Developmental	ASN	Mera,															
GeneralFetal	N	Mersy	57	96	58	36	247	0.62	0.5	0.61	0.55	0.61	0.62	0.62	-98.8 8.15	0.23	93
DEV rat Developmental	ASN																
GeneralFetal	N	QNPR	39	95	59	54	247	0.54	0.4	0.42	0.41	0.42	0.62	0.52	-99.0 8.15	0.04	93
DEV rat	ΔSN	Spectrop															
Developmental GeneralFetal	N	hores	30	88	66	63	247	0.48	0.31	0.32	0.32	0.32	0.57	0.45	-99.1 7.85	105	93
DEV rat								00	0.0.	0.02	0.02	0.02	0.0.	00			
Developmental		CDK, TA,	40	00	0.4	40	0.40	0.54	0.4	0.47	0.40	0.47	0.50	0.50	000000	0.05	00
GeneralFetal	N	TP	43	90	64	49	246	0.54	0.4	0.47	0.43	0.47	0.58	0.53	-98.9 8.01	0.05	92
DEV rat Developmental	ASN																
GeneralFetal	N	CDK, TA	37	97	57	55	246	0.54	0.39	0.4	0.4	0.4	0.63	0.52	-99.0 8.17	0.03	92
DEV rat	ASN																
Developmental GeneralFetal	N	CDK, TP	43	92	62	49	246	0.55	0.41	0.47	0.44	0.47	0.6	0.53	-98.9 8.07	0.06	92
DEV rat		·															\neg
Developmental GeneralFetal	ASN N	TA, TP	42	87	67	51	2/17	0.52	U 30	0.45	0.42	0.45	0.56	0.51	-99.0 7.95	U U3	93
DEV rat	IN	IA, IF	+4	01	Οí	υI	247	0.02	0.39	0.40	0.42	0.45	0.56	0.01	-99.0 1.83	0.02	93
Developmental	ASN																
GeneralFetal	N	TA	39	97	57	54	247	0.55	0.41	0.42	0.41	0.42	0.63	0.52	-99.0 8.2	0.05	93
DEV rat Developmental	ASN																
GeneralFetal	Ν	TP	38	102	52	55	247	0.57	0.42	0.41	0.42	0.41	0.66	0.54	-98.9 8.34	0.07	93

																	\neg
DEV rat Developmental GeneralFetal	FSM LR	CDK, TA, TP	42	90	64	50	246	0.54	0.4	0.46	0.42	0.46	0.58	0.52	-99.0 8.0	1 0.04	92
DEV rat Developmental GeneralFetal	FSM LR	CDK, TA	46	86	68	46	246	0.54	0.4	0.5	0.45	0.5	0.56	0.53	-98.9 7.9	1 0.06	92
DEV rat Developmental GeneralFetal	FSM LR	CDK, TP	46	96	58	46	246	0.58	0.44	0.5	0.47	0.5	0.62	0.56	-98.9 8.1	8 0.12	92
DEV rat Developmental GeneralFetal	FSM LR	TA, TP	45	88	66	48	247	0.54	0.41	0.48	0.44	0.48	0.57	0.53	-98.9 7.9	9 0.05	93
DEV rat Developmental GeneralFetal	FSM LR	TA	46	83	71	47	247	0.52	0.39	0.49	0.44	0.49	0.54	0.52	-99.0 7.8	6 0.03	93
DEV rat Developmental GeneralFetal	FSM LR	TP	45	92	62	48	247	0.55	0.42	0.48	0.45	0.48	0.6	0.54	-98.9 8.0	9 0.08	93
DEV rat Developmental GeneralFetal	KNN	CDK, TA, TP	66	55	99	26	246	0.49	0.4	0.72	0.51	0.72	0.36	0.54	-98.9 6.8	9 0.08	92
DEV rat Developmental GeneralFetal	KNN	CDK, TA	67	39	115	25	246	0.43	0.37	0.73	0.49	0.73	0.25	0.49	-99.0 6.3	8 .02	92
DEV rat Developmental GeneralFetal DEV rat	KNN	CDK, TP	36	106	48	56	246	0.58	0.43	0.39	0.41	0.39	0.69	0.54	-98.9 8.4	2 0.08	92
Developmental GeneralFetal DEV rat	KNN	TA, TP	74	32	122	19	247	0.43	0.38	0.8	0.51	0.8	0.21	0.5	-99.0 5.9	5 0.	93
Developmental GeneralFetal DEV rat	KNN	TA	70	35	119	23	247	0.43	0.37	0.75	0.5	0.75	0.23	0.49	-99.0 6.2	2 .023	93
Developmental GeneralFetal DEV rat	KNN	TP	40	96	58	53	247	0.55	0.41	0.43	0.42	0.43	0.62	0.53	-98.9 8.1	8 0.05	93
Developmental GeneralFetal	LibS VM	CDK, TA, TP	30	113	41	62	246	0.58	0.42	0.33	0.37	0.33	0.73	0.53	-98.9 8.5	6 0.06	92
DEV rat Developmental GeneralFetal	LibS VM	CDK, TA	27	122	32	65	246	0.61	0.46	0.29	0.36	0.29	0.79	0.54	-98.9 8.8	2 0.1	92
DEV rat Developmental GeneralFetal	LibS VM	CDK, TP	21	124	30	71	246	0.59	0.41	0.23	0.29	0.23	0.81	0.52	-99.0 8.7	4 0.04	92
DEV rat Developmental GeneralFetal	LibS VM	TA, TP	18	138	16	75	247	0.63	0.53	0.19	0.28	0.19	0.9	0.54	-98.9 9.3	7 0.13	93
DEV rat Developmental GeneralFetal	LibS VM	TA	22	127	27	71	247	0.6	0.45	0.24	0.31	0.24	0.82	0.53	-98.9 8.9	2 0.07	93
DEV rat Developmental GeneralFetal	LibS VM	TP	18	129	25	75	247	0.6	0.42	0.19	0.26	0.19	0.84	0.52	-99.0 8.8	7 0.04	93
DEV rat Developmental GeneralFetal	MLR A	CDK, TA, TP	39	80	74	53	246	0.48	0.35	0.42	0.38	0.42	0.52	0.47	-99.1 7.7	3 .055	92
DEV rat Developmental GeneralFetal	MLR A	CDK, TA	41	79	75	51	246	0.49	0.35	0.45	0.39	0.45	0.51	0.48	-99.0 7.7	2 .04	92
DEV rat Developmental GeneralFetal	MLR A	CDK, TP	44	78	76	48	246	0.5	0.37	0.48	0.42	0.48	0.51	0.49	-99.0 7.	7 .015	92
DEV rat Developmental GeneralFetal	MLR A	TA, TP	41	80	74	52	247	0.49	0.36	0.44	0.39	0.44	0.52	0.48	-99.0 7.7	6 .039	93

DEV rat Developmental GeneralFetal	MLR A	TA	49	76	78	44	247	0.51	0.39	0.53	0.45	0.53	0.49	0.51	-99 0	7.67 (0.02	93
DEV rat Developmental GeneralFetal	MLR A	TP	39	89	65	54	247	0.52	0.38	0.42	0.4	0.42	0.58	0.5		7.99		93
DEV rat Developmental GeneralFetal	PLS	CDK, TA, TP	42	88	66	50	246	0.53	0.39	0.46	0.42	0.46	0.57	0.51	-99.0	7.96 (0.03	92
DEV rat Developmental GeneralFetal	PLS	CDK, TA	41	89	65	51	246	0.53	0.39	0.45	0.41	0.45	0.58	0.51	-99.0	7.98 (0.02	92
DEV rat Developmental GeneralFetal	PLS	CDK, TP	45	91	63	47	246	0.55	0.42	0.49	0.45	0.49	0.59	0.54	-98.9	8.04 (0.08	92
DEV rat Developmental GeneralFetal	PLS	TA, TP	46	83	71	47	247	0.52	0.39	0.49	0.44	0.49	0.54	0.52	-99.0	7.86 (0.03	93
DEV rat Developmental GeneralFetal	PLS	TA	47	84	70	46	247	0.53	0.4	0.51	0.45	0.51	0.55	0.53	-98.9	7.88 (0.05	93
DEV rat Developmental GeneralFetal	PLS	TP	40	96	58	53	247	0.55	0.41	0.43	0.42	0.43	0.62	0.53	-98.9	8.18 (0.05	93
DEV rat Developmental GeneralFetal DEV rat	J48	CDK, TA, TP	40	94	60	52	246	0.54	0.4	0.43	0.42	0.43	0.61	0.52	-99.0	8.11 (0.04	92
DEV rat Developmental GeneralFetal DEV rat	J48	CDK, TA	35	100	54	57	246	0.55	0.39	0.38	0.39	0.38	0.65	0.51	-99.0	8.23 (0.03	92
Devrat Developmental GeneralFetal DEV rat	J48	CDK, TP	38	108	46	54	246	0.59	0.45	0.41	0.43	0.41	0.7	0.56	-98.9	8.5 (0.12	92
Developmental GeneralFetal DEV rat	J48	TA, TP	43	106	48	50	247	0.6	0.47	0.46	0.47	0.46	0.69	0.58	-98.8	8.48 (0.15	93
Developmental GeneralFetal DEV rat	J48	TA	33	104	50	60	247	0.55	0.4	0.35	0.38	0.35	0.68	0.52	-99.0	8.34 (0.03	93
Developmental GeneralFetal DEV rat	J48	TP OPE TA	43	104	50	50	247	0.6	0.46	0.46	0.46	0.46	0.68	0.57	-98.9	8.42 (0.14	93
Developmental GeneralFetal DEV rat	RF	CDK, TA, TP	51	64	90	41	246	0.47	0.36	0.55	0.44	0.55	0.42	0.48	-99.0	7.33	029	92
Developmental GeneralFetal DEV rat	RF	CDK, TA	56	64	90	36	246	0.49	0.38	0.61	0.47	0.61	0.42	0.51	-99.0	7.29	0.02	92
Developmental GeneralFetal DEV rat	RF	CDK, TP	56	72	82	36	246	0.52	0.41	0.61	0.49	0.61	0.47	0.54	-98.9	7.5 (0.07	92
Developmental GeneralFetal DEV rat	RF	TA, TP	53	74	80	40	247	0.51	0.4	0.57	0.47	0.57	0.48	0.53	-98.9	7.6	0.05	93
Developmental GeneralFetal DEV rat	RF	TA	50	73	81	43	247	0.5	0.38	0.54	0.45	0.54	0.47	0.51	-99.0	7.59 (0.01	93
Developmental GeneralFetal DEV rat	RF	TP	50	74	80	43	247	0.5	0.38	0.54	0.45	0.54	0.48	0.51	-99.0	7.62 (0.02	93
Developmental GeneralFetal	FSM LR	Adriana	52	75	79	40	246	0.52	0.4	0.57	0.47	0.57	0.49	0.53	-98.9	7.61 (0.05	92
DEV rat Developmental GeneralFetal	FSM LR	ALogPS, OEstate	53	85	69	40	247	0.56	0.43	0.57	0.49	0.57	0.55	0.56	-98.9	7.89 (0.12	93
DEV rat Developmental GeneralFetal	FSM LR	CDK	51	89	65	41	246	0.57	0.44	0.55	0.49	0.55	0.58	0.57	-98.9	7.98 (0.13	92

																		\neg
DEV rat Developmental	FSM	Chemaxo																
GeneralFetal	LR	n	41	90	64	52	247	0.53	0.39	0.44	0.41	0.44	0.58	0.51	-99.0	8.03	0.02	93
DEV rat	5014																	
Developmental	FSM	Dragone	47	89	65	46	247	0.55	0.42	0.51	0.46	0.51	0.50	0.54	00.0	0 01	0.00	02
GeneralFetal	LR	Dragon6	47	09	65	40	247	0.55	0.42	0.51	0.46	0.51	0.58	0.54	-98.9	0.01	0.08	93
DEV rat Developmental	FSM	Fragment																
GeneralFetal	LR	or	54	81	73	39	247	0.55	0.43	0.58	0.49	0.58	0.53	0.55	-98.9	7.78	0.1	93
DEV rat																		\neg
Developmental	FSM																	
GeneralFetal	LR	GSFrag	46	96	58	47	247	0.57	0.44	0.49	0.47	0.49	0.62	0.56	-98.9	8.2	0.12	93
DEV rat	FSM																	
Developmental GeneralFetal	LR	Inductive	56	80	74	37	247	0.55	0.43	0.6	0.5	0.6	0.52	0.56	-98.9	7 74	0 12	93
								0.00	00	0.0	0.0	0.0	0.02	0.00	00.0		···-	
DEV rat Developmental	FSM	Mera,																
GeneralFetal	LR	Mersy	58	90	64	35	247	0.6	0.48	0.62	0.54	0.62	0.58	0.6	-98.8	7.98	0.2	93
DEV rat	E014																	
Developmental	FSM	ONDD	46	0.6	60	47	247	0.50	0.4	0.40	0.44	0.40	0.56	0.52	00.0	7.02	0.05	02
GeneralFetal	LR	QNPR	46	86	68	47	247	0.53	0.4	0.49	0.44	0.49	0.56	0.53	-98.9	7.93	0.05	93
DEV rat Developmental	FSM	Spectrop																
GeneralFetal	LR	hores	32	77	77	61	247	0.44	0.29	0.34	0.32	0.34	0.5	0.42	-99.2	7.6	.152	93
DEV rat																		\neg
Developmental	KNINI	Adriana	64	57	97	28	246	0.40	0.4	0.7	0.51	0.7	0.27	0.52	00.0	6 00	0.07	02
GeneralFetal	KININ	Adriana	04	31	91	20	246	0.49	0.4	0.7	0.51	0.7	0.37	0.53	-98.9	6.99	0.07	92
DEV rat Developmental		ALogPS,																
GeneralFetal	KNN		70	71	83	23	247	0.57	0.46	0.75	0.57	0.75	0.46	0.61	-98.8	7.26	0.21	93
DEV rat																		\neg
Developmental GeneralFetal	KNN	CDK	62	73	81	30	246	0.55	0.43	0.67	0.53	0.67	0.47	0.57	-98.9	7 15	0.15	92
DEV rat	IXININ	CDIC	02	13	01	30	240	0.55	0.43	0.07	0.55	0.07	0.47	0.51	-30.3	7.45	0.15	- 32
Developmental		Chemaxo																
GeneralFetal	KNN	n	38	99	55	55	247	0.55	0.41	0.41	0.41	0.41	0.64	0.53	-98.9	8.25	0.05	93
DEV rat Developmental																		
GeneralFetal	KNN	Dragon6	53	83	71	40	247	0.55	0.43	0.57	0.49	0.57	0.54	0.55	-98.9	7.84	0.11	93
DEV rat		Fraamont																\neg
Developmental GeneralFetal	KNN	Fragment	66	77	77	27	247	0.58	0.46	0.71	0.56	0.71	0.5	0.6	-98.8	7 5 1	0.21	93
DEV rat	IXININ	OI	00		- ' '		241	0.50	0.40	0.71	0.50	0.7 1	0.5	0.0	-30.0	7.51	0.21	-33
Developmental																		
GeneralFetal	KNN	GSFrag	50	82	72	43	247	0.53	0.41	0.54	0.47	0.54	0.53	0.54	-98.9	7.82	0.07	93
DEV rat Developmental																		
GeneralFetal	KNN	Inductive	53	85	69	40	247	0.56	0.43	0.57	0.49	0.57	0.55	0.56	-98.9	7.89	0.12	93
DEV rat		N4																\neg
Developmental GeneralFetal	KNINI	Mera, Mersy	52	91	63	41	247	0.58	0.45	0.56	0.5	0.56	0.59	0.58	-98.8	8 N5	0.15	93
DEV rat	IXININ	IVICIOY	32	31	00	1	241	0.50	0.43	0.50	0.5	0.50	0.55	0.50	-30.0	0.03	0.15	-33
Developmental																		
GeneralFetal	KNN	QNPR	51	90	64	42	247	0.57	0.44	0.55	0.49	0.55	0.58	0.57	-98.9	8.03	0.13	93
DEV rat Developmental		Spectrop																
GeneralFetal	KNN	hores	36	100	54	57	247	0.55	0.4	0.39	0.39	0.39	0.65	0.52	-99.0	8.26	0.04	93
DEV rat																		コ
Developmental	LibS			4 = 0		2												
GeneralFetal	VM	Adriana	52	109	45	40	246	0.65	0.54	0.57	0.55	0.57	0.71	0.64	-98.7	8.54	0.27	92
DEV rat	Liho	ALogPS,																
Developmental GeneralFetal	VM	OEstate	39	117	37	54	247	0.63	0.51	0.42	0.46	0.42	0.76	0.59	-98.8	8 82	0 19	93
	* 191	JEJUIO				J-1		0.00	0.01	Ų. ⊣ Ł	0.40	V.7L	0.70	0.00	55.5	J.JL	3.10	\dashv
DEV rat Developmental	LibS																	
GeneralFetal	VM	CDK	33	118	36	59	246	0.61	0.48	0.36	0.41	0.36	0.77	0.56	-98.9	8.78	0.13	92
																		•

																		\neg
DEV rat Developmental GeneralFetal	LibS VM	Chemaxo n	22	130	24	71	247	0.62	0.48	0.24	0.32	0.24	0.84	0.54	-98.9	9.06	0.1	93
DEV rat Developmental GeneralFetal	LibS VM	Dragon6	29	117	37	64	247	0.59	0.44	0.31	0.36	0.31	0.76	0.54	-98.9	8.69	0.08	93
DEV rat Developmental GeneralFetal	LibS VM	Fragment or	38	118	36	55	247	0.63	0.51	0.41	0.46	0.41	0.77	0.59	-98.8	8.84	0.18	93
DEV rat Developmental GeneralFetal	LibS VM	GSFrag	41	108	46	52	247	0.6	0.47	0.44	0.46	0.44	0.7	0.57	-98.9	8.53	0.14	93
DEV rat Developmental GeneralFetal	LibS VM	Inductive	28	105	49	65	247	0.54	0.36	0.3	0.33	0.3	0.68	0.49	-99.0	8.29	.018	93
DEV rat Developmental GeneralFetal	LibS VM	Mera, Mersy	32	113	41	61	247	0.59	0.44	0.34	0.39	0.34	0.73	0.54	-98.9	8.61	0.08	93
DEV rat Developmental GeneralFetal	LibS VM	QNPR	25	116	38	68	247	0.57	0.4	0.27	0.32	0.27	0.75	0.51	-99.0	8.57	0.02	93
DEV rat Developmental GeneralFetal	LibS VM	Spectrop hores	19	113	41	74	247	0.53	0.32	0.2	0.25	0.2	0.73	0.47	-99.1	8.29	.07	93
DEV rat Developmental GeneralFetal	MLR A	Adriana	52	88	66	40	246	0.57	0.44	0.57	0.5	0.57	0.57	0.57	-98.9	7.95	0.13	92
DEV rat Developmental GeneralFetal	MLR A	ALogPS, OEstate	47	93	61	46	247	0.57	0.44	0.51	0.47	0.51	0.6	0.55	-98.9	8.12	0.11	93
DEV rat Developmental GeneralFetal	MLR A	CDK	43	85	69	49	246	0.52	0.38	0.47	0.42	0.47	0.55	0.51	-99.0	7.88	0.02	92
DEV rat Developmental GeneralFetal	MLR A	Chemaxo n	47	85	69	46	247	0.53	0.41	0.51	0.45	0.51	0.55	0.53	-98.9	7.91	0.06	93
DEV rat Developmental GeneralFetal DEV rat	MLR A	Dragon6	53	92	62	40	247	0.59	0.46	0.57	0.51	0.57	0.6	0.58	-98.8	8.07	0.16	93
Developmental GeneralFetal DEV rat	Α	Fragment or	45	78	76	48	247	0.5	0.37	0.48	0.42	0.48	0.51	0.5	-99.0	7.73	.009	93
Developmental GeneralFetal DEV rat	MLR A	GSFrag	42	85	69	51	247	0.51	0.38	0.45	0.41	0.45	0.55	0.5	-99.0	7.9	0.	93
Developmental GeneralFetal DEV rat	MLR A	Inductive Mera,	54	95	59	39	247	0.6	0.48	0.58	0.52	0.58	0.62	0.6	-98.8	8.15	0.19	93
Developmental GeneralFetal DEV rat Developmental	A MLR	Mersy	55	79	75	38	247	0.54	0.42	0.59	0.49	0.59	0.51	0.55	-98.9	7.72	0.1	93
GeneralFetal DEV rat Developmental	Α	QNPR Spectrop	48	68	86	45	247	0.47	0.36	0.52	0.42	0.52	0.44	0.48	-99.0	7.47	.041	93
GeneralFetal DEV rat Developmental	A	hores	37	70	84	56	247	0.43	0.31	0.4	0.35	0.4	0.45	0.43	-99.1			93
GeneralFetal DEV rat Developmental		Adriana ALogPS,	46	80	74	46	246	0.51	0.38	0.5	0.43	0.5	0.52	0.51	-99.0			92
GeneralFetal DEV rat Developmental GeneralFetal		OEstate CDK	52	89	65	46	247	0.55	0.42	0.51	0.46	0.51	0.58	0.54	-98.9 -98.9			93 92

DEV rat																
Developmental	DI 0	Chemaxo	40	07	07		0.47	0 = 1	0.44	0.40	0.45	0.40	0.50	0.50	7	
GeneralFetal	PLS	n	46	87	67	47	247	0.54	0.41	0.49	0.45	0.49	0.56	0.53	-98.9 7.96 0.06	93
DEV rat Developmental																
GeneralFetal	PLS	Dragon6	48	93	61	45	247	0.57	0.44	0.52	0.48	0.52	0.6	0.56	-98.9 8.12 0.12	93
DEV rat																
Developmental	DI C	Fragment	40	00	00	45	047	0.57	0.44	0.50	0.47	0.50	0.0	0.50	00.0.000.044	00
GeneralFetal	PLS	or	48	92	62	45	247	0.57	0.44	0.52	0.47	0.52	0.6	0.56	-98.9 8.09 0.11	93
DEV rat Developmental																
GeneralFetal	PLS	GSFrag	49	89	65	44	247	0.56	0.43	0.53	0.47	0.53	0.58	0.55	-98.9 8.01 0.1	93
DEV rat																
Developmental																
GeneralFetal	PLS	Inductive	55	78	76	38	247	0.54	0.42	0.59	0.49	0.59	0.51	0.55	-98.9 7.69 0.1	93
DEV rat		Mera,														
Developmental GeneralFetal	PLS	Mersy	53	93	61	40	247	0.59	0.46	0.57	0.51	0.57	0.6	0.59	-98.8 8.1 0.17	93
DEV rat	1 20	Wicioy		- 50			2-11	0.00	0.40	0.07	0.01	0.01	0.0	0.00	00.0 0.1 0.17	- 00
Developmental																
GeneralFetal	PLS	QNPR	44	89	65	49	247	0.54	0.4	0.47	0.44	0.47	0.58	0.53	-98.9 8.01 0.05	93
DEV rat		Cnostron														
Developmental	DI C	Spectrop	25	04	72	E0	247	0.47	0.22	0.20	0.25	0.20	0.50	0.45	00 1 7 74 005	00
GeneralFetal	PLS	hores	35	81	73	58	247	0.47	0.32	0.38	0.35	0.38	0.53	0.45	-99.1 7.74 .095	93
DEV rat Developmental																
GeneralFetal	J48	Adriana	45	107	47	47	246	0.62	0.49	0.49	0.49	0.49	0.69	0.59	-98.8 8.5 0.18	92
DEV rat															<u>-</u>	
Dev rat Developmental		ALogPS,														
GeneralFetal	J48	OEstate	46	103	51	47	247	0.6	0.47	0.49	0.48	0.49	0.67	0.58	-98.8 8.4 0.16	93
DEV rat																
Developmental	140	0014	40	404			0.40	0.50	0.40	0.40	0.40	0.40	0.00	0.53	000 04 040	
GeneralFetal	J48	CDK	42	104	50	50	246	0.59	0.46	0.46	0.46	0.46	0.68	0.57	-98.9 8.4 0.13	92
DEV rat Developmental		Chemaxo														
GeneralFetal	J48	n	37	109	45	56	247	0.59	0.45	0.4	0.42	0.4	0.71	0.55	-98.9 8.54 0.11	93
DEV rat																
Developmental																
GeneralFetal	J48	Dragon6	39	101	53	54	247	0.57	0.42	0.42	0.42	0.42	0.66	0.54	-98.9 8.31 0.08	93
DEV rat		Ergamont														
Developmental GeneralFetal	J48	Fragment or	46	90	64	47	247	0.55	0.42	0.49	0.45	0.49	0.58	0.54	-98.9 8.04 0.08	93
	340	OI	40	30	0+	- /	241	0.55	0.42	0.43	0.43	0.43	0.50	0.54	-90.9 0.04 0.00	93
DEV rat Developmental																
GeneralFetal	J48	GSFrag	41	92	62	52	247	0.54	0.4	0.44	0.42	0.44	0.6	0.52	-99.0 8.08 0.04	93
DEV rat		_														
Developmental																
GeneralFetal	J48	Inductive	36	98	56	57	247	0.54	0.39	0.39	0.39	0.39	0.64	0.51	-99.0 8.2 0.02	93
DEV rat		Mera,														
Developmental GeneralFetal	J48	Mersy	32	99	55	61	247	0.53	0.37	0.34	0.36	0.34	0.64	0.49	-99.0 8.18 .013	93
DEV rat	0-10	Wicioy	- 02	- 00			2-11	0.00	0.07	0.04	0.00	0.04	0.04	0.40	00.0 0.10 .010	- 00
Developmental																
GeneralFetal	J48	QNPR	39	106	48	54	247	0.59	0.45	0.42	0.43	0.42	0.69	0.55	-98.9 8.46 0.11	93
DEV rat		Cnestar														
Developmental	140	Spectrop	20	00	EF	60	047	0.50	0.25	0.00	0.24	0.00	0.04	0.40	00.0 0.45 005	- 00
GeneralFetal	J48	hores	30	99	55	63	247	0.52	0.35	0.32	0.34	0.32	0.64	0.48	-99.0 8.15 .035	93
DEV rat Developmental																
Skeletal	RF	Adriana	76	56	72	42	246	0.54	0.51	0.64	0.57	0.64	0.44	0.54	-98.9 7.84 0.08	118
NEV /		ALogPS,														
		ALUGI U.								0.70	0.05	0.70	0.54		007 040 007	119
Developmental	RF		86	69	59	33	247	0.63	0.59	0.72	บ.ชอ	0.72	0.54	0.63	-98.7 8.13 0.27	
Developmental Skeletal	RF	OEstate	86	69	59	33	247	0.63	0.59	0.72	0.65	0.72	0.54	0.63	-98.7 8.13 0.27	
Developmental Skeletal DEV rat		OEstate					247	0.63						0.63	-98.7 8.13 0.27	
Developmental Skeletal DEV rat Developmental	RF RF		86 76	69 65	59 63	33 42	247	0.63	0.59	0.72	0.59	0.72	0.54	0.63	-98.7 8.13 0.27 -98.8 8.12 0.15	
DEV rat Developmental Skeletal DEV rat Developmental Skeletal DEV rat		OEstate CDK														
Developmental Skeletal DEV rat Developmental Skeletal		OEstate								0.64		0.64				118

DEV rat Developmental																		
Skeletal	RF	Dragon6	89	62	66	30	247	0.61	0.57	0.75	0.65	0.75	0.48	0.62	-98.8	7.85	0.24	119
DEV rat		Fragment																
Developmental Skeletal	RF	Fragment or	79	63	65	40	247	0.57	0.55	0.66	0.6	0.66	0.49	0.58	-98.8	Q 05	0.16	119
	ΚΓ	OI	19	03	00	40	241	0.57	0.55	0.00	0.0	0.00	0.49	0.56	-90.0	0.00	0.10	119
DEV rat Developmental																		
Skeletal	RF	GSFrag	79	78	50	40	247	0.64	0.61	0.66	0.64	0.66	0.61	0.64	-98.7	8.52	0.27	119
DEV rat																		
Developmental	חר	la di catico	0.4	C F	00	25	047	0.0	0.57	0.74	0.00	0.74	0.54	0.04	00.0	0.04	0.00	440
Skeletal	RF	Inductive	84	65	63	35	247	0.6	0.57	0.71	0.63	0.71	0.51	0.61	-98.8	8.04	0.22	119
DEV rat Developmental		Mera,																
Skeletal	RF	Mersy	82	57	71	37	247	0.56	0.54	0.69	0.6	0.69	0.45	0.57	-98.9	7.82	0.14	119
DEV rat																		
Developmental	חר	ONDD	70	00	00	40	047	0.50	0.50	0.04	0.0	0.04	0.50	0.50	00.0	0.00	0.47	440
Skeletal	RF	QNPR	76	68	60	43	247	0.58	0.56	0.64	0.6	0.64	0.53	0.58	-98.8	8.23	0.17	119
DEV rat Developmental		Spectrop																
Skeletal	RF	hores	77	44	84	42	247	0.49	0.48	0.65	0.55	0.65	0.34	0.5	-99.0	7.46	.01	119
DEV rat	4.011																	
Developmental	ASN	A alui a .a a	00	70	50	- -0	040	0.50	0.57	0.50	0.50	0.50	0.04	0.50	00.0	0.0	0.47	440
Skeletal	N	Adriana	66	78	50	52	246	0.59	0.57	0.56	0.56	0.56	0.61	0.58	-98.8	8.6	0.17	118
DEV rat	ASN	ALogPS,																
Developmental Skeletal	N	OEstate	70	81	47	49	247	0.61	0.6	0.59	0.59	0.59	0.63	0.61	-98.8	8.7	0.22	119
DEV rat	11	OLSidic	70	01		70	271	0.01	0.0	0.00	0.00	0.00	0.00	0.01	-30.0	0.7	0.22	113
Developmental	ASN																	
Skeletal	N	CDK	71	74	54	47	246	0.59	0.57	0.6	0.58	0.6	0.58	0.59	-98.8	8.44	0.18	118
DEV rat	ASN	Chemaxo																
Developmental Skeletal	N	n	66	77	51	53	247	0.58	0.56	0.55	0.56	0.55	0.6	0.58	-98.8	Q 5Ω	0.16	119
	IN		00	11	31	33	241	0.56	0.50	0.55	0.50	0.55	0.0	0.56	-90.0	0.59	0.10	119
DEV rat Developmental	ASN																	
Skeletal	N	Dragon6	71	84	44	48	247	0.63	0.62	0.6	0.61	0.6	0.66	0.63	-98.7	8.79	0.25	119
DEV rat	A C N I																	
Developmental	ASN	Fragment	68	77	51	51	247	0.50	0.57	0.57	0.57	0.57	0.6	0.50	00.0	0 50	0 17	119
Skeletal	N	or	00	11	31	31	247	0.59	0.57	0.57	0.57	0.57	0.6	0.59	-98.8	0.50	0.17	119
DEV rat Developmental	ASN																	
Skeletal	N	GSFrag	69	80	48	50	247	0.6	0.59	0.58	0.58	0.58	0.63	0.6	-98.8	8.67	0.2	119
DEV rat	A C N I																	
Developmental	ASN N	Inductive	64	73	55	55	247	0.55	0.54	0.54	0.54	0.54	0.57	0.55	-98.9	0 16	0.11	119
Skeletal	IN	inductive	04	13	33	55	241	0.55	0.54	0.54	0.54	0.54	0.57	0.55	-90.9	0.40	0.11	119
DEV rat Developmental	ASN	Mera,																
Skeletal	N	Mersy	64	81	47	55	247	0.59	0.58	0.54	0.56	0.54	0.63	0.59	-98.8	8.72	0.17	119
DEV rat	A C N I																	
Developmental	ASN	ONDD	64	76	E0.	EE	247	0.57	0.55	0.54	0.54	0.54	0.50	0.57	00.0	0 56	0.42	110
Skeletal	N	QNPR	64	76	52	55	247	0.57	0.55	0.54	0.54	0.54	0.59	0.57	-98.9	0.00	0.13	119
DEV rat Developmental	ASN	Spectrop																
Skeletal	N	hores	63	64	64	56	247	0.51	0.5	0.53	0.51	0.53	0.5	0.51	-99.0	8.19	0.03	119
DEV rat		0014 74																
Developmental		CDK, TA,	0.4	70			0.40	0.54	0.50	0.50	0.50	0.50	0.50	0.54	00.0	0.40	0.00	440
Skeletal	N	TP	61	72	56	57	246	0.54	0.52	0.52	0.52	0.52	0.56	0.54	-98.9	8.42	0.08	118
DEV rat Developmental	ASN																	
Skeletal	N	CDK, TA	59	70	58	59	246	0.52	0.5	0.5	0.5	0.5	0.55	0.52	-99.0	8.36	0.05	118
DEV rat		,																$\overline{}$
Developmental	ASN								_	_	_	_						
Skeletal	N	CDK, TP	67	78	50	51	246	0.59	0.57	0.57	0.57	0.57	0.61	0.59	-98.8	8.59	0.18	118
DEV rat	ASN																	
Developmental Skeletal	N	TA, TP	70	77	51	49	247	0.6	0.58	0.59	0.58	0.59	0.6	0.59	-98.8	8.57	0.19	119
DEV rat		,						J.0	0.00	0.00	0.00	0.00	3.0	0.50		2.01	0.10	
Developmental	ASN																	
Skeletal	N	TA	60	72	56	59	247	0.53	0.52	0.5	0.51	0.5	0.56	0.53	-98.9	8.44	0.07	119

DEV .																		\neg
DEV rat Developmental Skeletal	ASN N	TP	61	76	52	58	247	0.55	0.54	0.51	0.53	0.51	0.59	0.55	-98.9	8.56	0.11	119
DEV rat Developmental Skeletal	FSM LR	CDK, TA, TP	64	79	49	54	246	0.58	0.57	0.54	0.55	0.54	0.62	0.58	-98.8	8.64	0.16	118
DEV rat Developmental Skeletal	FSM LR	CDK, TA	64	77	51	54	246	0.57	0.56	0.54	0.55	0.54	0.6	0.57	-98.9	8.57	0.14	118
DEV rat Developmental Skeletal	FSM LR	CDK, TP	62	83	45	56	246	0.59	0.58	0.53	0.55	0.53	0.65	0.59	-98.8		0.18	118
DEV rat Developmental Skeletal	FSM LR	TA, TP	68	75	53	51	247	0.58	0.56	0.57	0.57	0.57	0.59	0.58	-98.8		0.16	119
DEV rat Developmental Skeletal	FSM LR	TA TA	62	70	58	57	247	0.53	0.52	0.52	0.52	0.52	0.55	0.53	-98.9		0.07	119
DEV rat Developmental	FSM					-												
Skeletal DEV rat Developmental Skeletal	LR KNN	TP CDK, TA, TP	59 90	33	51 95	28	247	0.55	0.54	0.5	0.52	0.5	0.6	0.55	-98.9 -99.0	8.6 6.81	0.1	119
DEV rat Developmental Skeletal		CDK, TA	106	7	121	12	246	0.46	0.47	0.9	0.61	0.9	0.05	0.48	-99.0		.088	118
DEV rat Developmental Skeletal	KNN	CDK, TP	58	73	55	60	246	0.53	0.51	0.49	0.5	0.49	0.57	0.53	-98.9	8.45	0.06	118
DEV rat Developmental Skeletal	KNN	TA, TP	92	29	99	27	247	0.49	0.48	0.77	0.59	0.77	0.23	0.5	-99.0	6.63		119
DEV rat Developmental Skeletal DEV rat	KNN	TA	106	20	108	13	247	0.51	0.5	0.89	0.64	0.89	0.16	0.52	-99.0	5.6	0.07	119
Developmental Skeletal	KNN	TP	58	72	56	61	247	0.53	0.51	0.49	0.5	0.49	0.56	0.52	-99.0	8.44	0.05	119
DEV rat Developmental Skeletal	LibS VM	CDK, TA, TP	57	83	45	61	246	0.57	0.56	0.48	0.52	0.48	0.65	0.57	-98.9	8.78	0.13	118
DEV rat Developmental Skeletal	LibS VM	CDK, TA	49	77	51	69	246	0.51	0.49	0.42	0.45	0.42	0.6	0.51	-99.0	8.55	0.02	118
DEV rat Developmental Skeletal	LibS VM	CDK, TP	55	95	33	63	246	0.61	0.63	0.47	0.53	0.47	0.74	0.6	-98.8	9.22	0.22	118
DEV rat Developmental Skeletal	LibS VM	TA, TP	55	95	33	64	247	0.61	0.63	0.46	0.53	0.46	0.74	0.6	-98.8	9.23	0.21	119
DEV rat Developmental Skeletal	LibS VM	TA	46	87	41	73	247	0.54	0.53	0.39	0.45	0.39	0.68	0.53	-98.9	8.88	0.07	119
DEV rat Developmental Skeletal	LibS VM	TP	52	84	44	67	247	0.55	0.54	0.44	0.48	0.44	0.66	0.55	-98.9	8.81	0.1	119
DEV rat Developmental Skeletal	MLR A	CDK, TA, TP	49	72	56	69	246	0.49	0.47	0.42	0.44	0.42	0.56	0.49	-99.0	8.39	.022	118
DEV rat Developmental Skeletal	MLR A	CDK, TA	56	68	60	62	246	0.5	0.48	0.47	0.48	0.47	0.53	0.5	-99.0	8.29	0.01	118
DEV rat Developmental Skeletal	MLR A	CDK, TP	61	79	49	57	246	0.57	0.55	0.52	0.54	0.52	0.62	0.57	-98.9	8.64	0.13	118

DEV rat Developmental Skeletal	MLR A	TA, TP	66	63	65	53	247	0.52	0.5	0.55	0.53	0.55	0.49	0.52	-99.0	8.15 0.0	5 119
DEV rat Developmental Skeletal	MLR A	TA	59	64	64	60	247	0.5	0.48	0.5	0.49	0.5	0.5	0.5	-99.0	8.19 .004	1 119
DEV rat Developmental Skeletal	MLR A	TP	65	70	58	54	247	0.55	0.53	0.55	0.54	0.55	0.55	0.55	-98.9	8.37 0.09	9 119
DEV rat Developmental Skeletal	PLS	CDK, TA, TP	62	75	53	56	246	0.56	0.54	0.53	0.53	0.53	0.59	0.56	-98.9	8.51 0.1	1 118
DEV rat Developmental Skeletal	PLS	CDK, TA	57	72	56	61	246	0.52	0.5	0.48	0.49	0.48	0.56	0.52	-99.0	8.42 0.0	5 118
DEV rat Developmental Skeletal	PLS	CDK, TP	67	83	45	51	246	0.61	0.6	0.57	0.58	0.57	0.65	0.61	-98.8	8.76 0.22	2 118
DEV rat Developmental Skeletal	PLS	TA, TP	70	79	49	49	247	0.6	0.59	0.59	0.59	0.59	0.62	0.6	-98.8	8.63 0.2	1 119
DEV rat Developmental Skeletal	PLS	TA	74	65	63	45	247	0.56	0.54	0.62	0.58	0.62	0.51	0.56	-98.9	8.16 0.1	3 119
DEV rat Developmental Skeletal	PLS	TP	63	74	54	56	247	0.55	0.54	0.53	0.53	0.53	0.58	0.55	-98.9	8.5 0.1	1 119
DEV rat Developmental Skeletal	J48	CDK, TA, TP	61	66	62	57	246	0.52	0.5	0.52	0.51	0.52	0.52	0.52	-99.0	8.23 0.0	3 118
DEV rat Developmental Skeletal	J48	CDK, TA	61	84	44	57	246	0.59	0.58	0.52	0.55	0.52	0.66	0.59	-98.8	8.81 0.1 ⁻	7 118
DEV rat Developmental Skeletal	J48	CDK, TP	60	76	52	58	246	0.55	0.54	0.51	0.52	0.51	0.59	0.55	-98.9	8.55 0.	1 118
DEV rat Developmental Skeletal	J48	TA, TP	62	80	48	57	247	0.57	0.56	0.52	0.54	0.52	0.63	0.57	-98.9	8.69 0.1	5 119
DEV rat Developmental Skeletal	J48	TA	50	70	58	69	247	0.49	0.46	0.42	0.44	0.42	0.55	0.48	-99.0	8.35 .03	3 119
DEV rat Developmental Skeletal	J48	TP	62	73	55	57	247	0.55	0.53	0.52	0.53	0.52	0.57	0.55	-98.9	8.47 0.09	9 119
DEV rat Developmental Skeletal	RF	CDK, TA, TP	87	50	78	31	246	0.56	0.53	0.74	0.61	0.74	0.39	0.56	-98.9	7.48 0.14	1 118
DEV rat Developmental Skeletal	RF	CDK, TA	76	49	79	42	246	0.51	0.49	0.64	0.56	0.64	0.38	0.51	-99.0	7.61 0.0	3 118
DEV rat Developmental Skeletal	RF	CDK, TP	83	56	72	35	246	0.57	0.54	0.7	0.61	0.7	0.44	0.57	-98.9	7.75 0.1	5 118
DEV rat Developmental Skeletal	RF	TA, TP	79	52	76	40	247	0.53	0.51	0.66	0.58	0.66	0.41	0.54	-98.9	7.7 0.0	7 119
DEV rat Developmental Skeletal	RF	TA	78	51	77	41	247	0.52	0.5	0.66	0.57	0.66	0.4	0.53	-98.9	7.68 0.00	3 119
DEV rat Developmental Skeletal	RF	TP	85	52	76	34	247	0.55	0.53	0.71	0.61	0.71	0.41	0.56	-98.9	7.61 0.1	3 119
DEV rat Developmental Skeletal	FSM LR	Adriana	72	77	51	46	246	0.61	0.59	0.61	0.6	0.61	0.6	0.61	-98.8	8.53 0.2	1 118
DEV rat Developmental Skeletal	FSM LR	ALogPS, OEstate	70	80	48	49	247	0.61	0.59	0.59	0.59	0.59	0.63	0.61	-98.8	8.66 0.2	1 119

DEV/ rot																		\neg
DEV rat Developmental	FSM																	
Skeletal	LR	CDK	60	89	39	58	246	0.61	0.61	0.51	0.55	0.51	0.7	0.6	-98.8	8.99	0.21	118
DEV rat Developmental	FSM	Chemaxo																
Skeletal	LR	n	69	78	50	50	247	0.6	0.58	0.58	0.58	0.58	0.61	0.59	-98.8	8.6	0.19	119
DEV rat	ECM																	
Developmental Skeletal	FSM LR	Dragon6	75	88	40	44	247	0.66	0.65	0.63	0.64	0.63	0.69	0.66	-98.7	8.9	0.32	119
DEV rat		2.090.10						0.00	0.00	0.00	0.0.	0.00	0.00	0.00		0.0	0.02	
Developmental	FSM	Fragment																
Skeletal	LR	or	64	84	44	55	247	0.6	0.59	0.54	0.56	0.54	0.66	0.6	-98.8	8.82	0.2	119
DEV rat Developmental	FSM																	
Skeletal	LR	GSFrag	65	86	42	54	247	0.61	0.61	0.55	0.58	0.55	0.67	0.61	-98.8	8.89	0.22	119
DEV rat	E014																	
Developmental Skeletal	FSM LR	Inductive	66	74	54	53	247	0.57	0.55	0.55	0.55	0.55	0.58	0.57	-98.9	8 40	0 13	119
	LIX	madelive	- 00	- ' -	 	- 55	271	0.01	0.00	0.00	0.00	0.00	0.00	0.07	-30.3	0.40	0.10	-113
DEV rat Developmental	FSM	Mera,																
Skeletal	LR	Mersy	71	74	54	48	247	0.59	0.57	0.6	0.58	0.6	0.58	0.59	-98.8	8.46	0.17	119
DEV rat	FSM																	
Developmental Skeletal	LR	QNPR	61	80	48	58	247	0.57	0.56	0.51	0.54	0.51	0.63	0.57	-98.9	8.69	0.14	119
DEV rat																		
Developmental	FSM	Spectrop	20	00	40	00	047	0.47	0.40	0.0	0.05	0.0	0.00	0.40	00.4	0.50	070	440
Skeletal DEV rat	LR	hores	36	80	48	83	247	0.47	0.43	0.3	0.35	0.3	0.63	0.46	-99.1	8.53	.076	119
Developmental																		
Skeletal	KNN	Adriana	86	43	85	32	246	0.52	0.5	0.73	0.6	0.73	0.34	0.53	-98.9	7.27	0.07	118
DEV rat		ALogPS,																
Developmental Skeletal	KNN	-	83	75	53	36	247	0.64	0.61	0.7	0.65	0.7	0.59	0.64	-98.7	8.37	0.28	119
DEV rat																		\Box
Developmental Skeletal	KNN	CDK	59	89	39	59	246	0.6	0.6	0.5	0.55	0.5	0.7	0.6	-98.8	8.99	0.2	118
DEV rat		01																\neg
Developmental Skeletal	KNN	Chemaxo n	59	80	48	60	247	0.56	0.55	0.5	0.52	0.5	0.63	0.56	-98.9	8.7	0.12	119
DEV rat	1000							0.00	0.00	0.0	0.02	0.0	0.00	0.00	00.0	0.7	0.12	
Developmental Skeletal	KNINI	Dragon6	66	78	50	53	247	0.58	0.57	0.55	0.56	0.55	0.61	0.58	-98.8	9 62	0.16	119
DEV rat	KININ	Diagono	00	70	30	55	241	0.56	0.57	0.55	0.50	0.55	0.01	0.56	-90.0	0.02	0.10	119
Developmental	175.15.1	Fragment		0.4		0.4	0.47			0.40	0.50	0.40	0.00	0.53	00.0	0.00	0.45	440
Skeletal	KNN	or	58	84	44	61	247	0.57	0.57	0.49	0.52	0.49	0.66	0.57	-98.9	8.83	0.15	119
DEV rat Developmental																		
Skeletal	KNN	GSFrag	80	78	50	39	247	0.64	0.62	0.67	0.64	0.67	0.61	0.64	-98.7	8.51	0.28	119
DEV rat Developmental																		
Skeletal	KNN	Inductive	61	72	56	58	247	0.54	0.52	0.51	0.52	0.51	0.56	0.54	-98.9	8.44	0.08	119
DEV rat Developmental		Mera,																
Skeletal	KNN	Mersy	79	69	59	40	247	0.6	0.57	0.66	0.61	0.66	0.54	0.6	-98.8	8.23	0.2	119
DEV rat																		\Box
Developmental Skeletal	KNN	QNPR	61	99	29	58	247	0.65	0.68	0.51	0.58	0.51	0.77	0.64	-98.7	9.4	0.3	119
DEV rat																		
Developmental Skeletal	KNINI	Spectrop hores	77	29	99	42	247	0.43	0.44	0.65	0.52	0.65	0.23	0.44	-99.1	6 88	.14	119
	IXININ	110169	11	23	99	74	∠ +1	0.43	0.44	0.00	0.02	0.00	0.23	U. ++	-55.1	0.00	. 14	119
DEV rat Developmental	LibS																	
Skeletal	VM	Adriana	60	88	40	58	246	0.6	0.6	0.51	0.55	0.51	0.69	0.6	-98.8	8.95	0.2	118
DEV rat	Lihe	ΔΙ οσΡ9																
Developmental Skeletal	VM	ALogPS, OEstate	67	83	45	52	247	0.61	0.6	0.56	0.58	0.56	0.65	0.61	-98.8	8 78	0 21	119
1	A 141	J_51410	51	55	,,	52		0.01	0.0	5.50	5.50	5.50	0.00	0.01	55.0	5.70	U. <u>~</u> I	

DEV rat Developmental Skeletal	LibS VM	CDK	63	76	52	55	246	0.57	0.55	0.53	0.54	0.53	0.59	0.56	-98.9	8.54	0.13	118
DEV rat Developmental Skeletal	LibS VM	Chemaxo n	55	83	45	64	247	0.56	0.55	0.46	0.5	0.46	0.65	0.56	-98.9	8.79	0.11	119
DEV rat Developmental Skeletal	LibS VM	Dragon6	65	87	41	54	247	0.62	0.61	0.55	0.58	0.55	0.68	0.61	-98.8	8.93	0.23	119
DEV rat Developmental Skeletal	LibS VM	Fragment or	62	79	49	57	247	0.57	0.56	0.52	0.54	0.52	0.62	0.57	-98.9	8.66	0.14	119
DEV rat Developmental Skeletal	LibS VM	GSFrag	63	79	49	56	247	0.57	0.56	0.53	0.55	0.53	0.62	0.57	-98.9	8.66	0.15	119
DEV rat Developmental Skeletal	LibS VM	Inductive	68	73	55	51	247	0.57	0.55	0.57	0.56	0.57	0.57	0.57	-98.9	8.45	0.14	119
DEV rat Developmental Skeletal	LibS VM	Mera, Mersy	63	81	47	56	247	0.58	0.57	0.53	0.55	0.53	0.63	0.58	-98.8	8.73	0.16	119
DEV rat Developmental Skeletal	LibS VM	QNPR	63	81	47	56	247	0.58	0.57	0.53	0.55	0.53	0.63	0.58	-98.8	8.73	0.16	119
DEV rat Developmental Skeletal	LibS VM	Spectrop hores	47	74	54	72	247	0.49	0.47	0.39	0.43	0.39	0.58	0.49	-99.0	8.46	.027	119
DEV rat Developmental Skeletal	MLR A	Adriana	71	80	48	47	246	0.61	0.6	0.6	0.6	0.6	0.63	0.61	-98.8	8.64	0.23	118
DEV rat Developmental Skeletal	MLR A	ALogPS, OEstate	72	73	55	47	247	0.59	0.57	0.61	0.59	0.61	0.57	0.59	-98.8	8.43	0.18	119
DEV rat Developmental Skeletal	MLR A	CDK	57	63	65	61	246	0.49	0.47	0.48	0.48	0.48	0.49	0.49	-99.0	8.14	.025	118
DEV rat Developmental Skeletal DEV rat	MLR A	Chemaxo n	66	81	47	53	247	0.6	0.58	0.55	0.57	0.55	0.63	0.59	-98.8	8.72	0.19	119
Developmental Skeletal DEV rat	MLR A	Dragon6	68	67	61	51	247	0.55	0.53	0.57	0.55	0.57	0.52	0.55	-98.9	8.26	0.09	119
Developmental Skeletal DEV rat	Α	Fragment or	63	79	49	56	247	0.57	0.56	0.53	0.55	0.53	0.62	0.57	-98.9	8.66	0.15	119
Developmental Skeletal DEV rat	MLR A MLR	GSFrag	68	73	55	51	247	0.57	0.55	0.57	0.56	0.57	0.57	0.57	-98.9	8.45	0.14	119
Developmental Skeletal DEV rat	Α	Inductive Mera,	70	81	47	49	247	0.61	0.6	0.59	0.59	0.59	0.63	0.61	-98.8	8.7	0.22	119
Developmental Skeletal DEV rat Developmental	A MLR	Mersy	64	77	51	55	247	0.57	0.56	0.54	0.55	0.54	0.6	0.57	-98.9	8.59	0.14	119
Skeletal DEV rat Developmental	Α	QNPR Spectrop	65	69	59	54	247	0.54	0.52	0.55	0.53	0.55	0.54	0.54	-98.9	8.34	0.09	119
Skeletal DEV rat Developmental	Α	hores	58	57	71	61	247	0.47	0.45	0.49	0.47	0.49	0.45	0.47	-99.1			119
Skeletal DEV rat Developmental	PLS	Adriana ALogPS,	63	81	47	55	246	0.59	0.57	0.53	0.55	0.53	0.63	0.58	-98.8	8.71	0.17	118
Skeletal	PLS	OEstate	62	82	46	57	247	0.58	0.57	0.52	0.55	0.52	0.64	0.58	-98.8	8.76	0.16	119

DEV rat Developmental																		
Skeletal	PLS	CDK	68	83	45	50	246	0.61	0.6	0.58	0.59	0.58	0.65	0.61	-98.8	8.76	0.23	118
DEV rat Developmental Skeletal	PLS	Chemaxo	57	91	37	62	247	0.6	0.61	0.48	0.54	0.48	0.71	0.59	-98.8	0.08	0.2	119
DEV rat	1 LO	11	31	91	31	02	241	0.0	0.01	0.40	0.54	0.40	0.7 1	0.55	-90.0	3.00	0.2	113
Developmental Skeletal	PLS	Dragon6	69	80	48	50	247	0.6	0.59	0.58	0.58	0.58	0.63	0.6	-98.8	8.67	0.2	119
DEV rat Developmental		Fragment																
Skeletal	PLS	or	65	79	49	54	247	0.58	0.57	0.55	0.56	0.55	0.62	0.58	-98.8	8.65	0.16	119
DEV rat Developmental Skeletal	PLS	GSFrag	64	83	45	55	247	0.6	0.59	0.54	0.56	0.54	0.65	0.59	-98.8	8 79	0 19	119
DEV rat Developmental		- COI Tag		- 00	10			0.0	0.00	0.01	0.00	0.01	0.00	0.00	00.0	0.70	0.10	-110
skeletal	PLS	Inductive	69	72	56	50	247	0.57	0.55	0.58	0.57	0.58	0.56	0.57	-98.9	8.41	0.14	119
DEV rat Developmental Skeletal	DI C	Mera, Mersy	73	76	52	46	247	0.6	0.58	0.61	0.6	0.61	0.59	0.6	00.0	Q 5 1	0.21	110
	FLO	IVICISY	73	70	32	40	241	0.0	0.56	0.01	0.0	0.01	0.58	0.0	-98.8	0.51	0.21	119
DEV rat Developmental Skeletal	PLS	QNPR	62	84	44	57	247	0.59	0.58	0.52	0.55	0.52	0.66	0.59	-98.8	<u>8.8</u> 3	<u>0.1</u> 8	119
DEV rat Developmental	DIE	Spectrop hores	53	54	74	66	247	0.43	0.42	0.45	0.43	0.45	0.42	0.43	-99.1	7 00	122	110
Skeletal DEV rat	FLO	110162	55	54	14	00	241	0.43	0.42	0.40	0.43	0.40	0.42	0.43	-33. I	1.00	.133	119
DEV rat Developmental Skeletal	J48	Adriana	55	78	50	63	246	0.54	0.52	0.47	0.49	0.47	0.61	0.54	-98.9	8.61	0.08	118
DEV rat Developmental		ALogPS,																
skeletal	J48	OEstate	73	84	44	46	247	0.64	0.62	0.61	0.62	0.61	0.66	0.63	-98.7	8.78	0.27	119
DEV rat																		
Developmental Skeletal	J48	CDK	66	76	52	52	246	0.58	0.56	0.56	0.56	0.56	0.59	0.58	-98.8	8.53	0.15	118
DEV rat	3.0				<u> </u>			2.00	2.00	2.00	2.00	3.50	2.00	2.00	55.5	2.50	5.10	
Developmental		Chemaxo					. . –											
Skeletal	J48	n	53	88	40	66	247	0.57	0.57	0.45	0.5	0.45	0.69	0.57	-98.9	8.96	0.14	119
DEV rat Developmental		5 -		<i>.</i> .	,_		c ·-	0.0:	0 = -	0.7-	0.7-	0.5-	0.0-	0.0:				
Skeletal	J48	Dragon6	69	81	47	50	247	0.61	0.59	0.58	0.59	0.58	0.63	0.61	-98.8	8.7	0.21	119
DEV rat Developmental		Fragment																
Skeletal	J48	or	66	74	54	53	247	0.57	0.55	0.55	0.55	0.55	0.58	0.57	-98.9	8.49	0.13	119
DEV rat																		
Developmental Skeletal	J48	GSFrag	68	75	53	51	247	0.58	0.56	0.57	0.57	0.57	0.59	0.58	-98.8	8 51	0 16	119
DEV rat	J+0	Joi lay	00	13	55	JI	<u> </u>	0.00	0.00	0.01	0.01	0.57	0.08	0.00	-90.0	0.01	0.10	118
Developmental																		
Skeletal	J48	Inductive	66	74	54	53	247	0.57	0.55	0.55	0.55	0.55	0.58	0.57	-98.9	8.49	0.13	119
DEV rat Developmental		Mera,																
Skeletal	J48	Mersy	64	77	51	55	247	0.57	0.56	0.54	0.55	0.54	0.6	0.57	-98.9	8.59	0.14	119
DEV rat																		
Developmental	140	ONDD	60	70	E.C.	57	247	0.54	0.52	0.50	0.50	0.50	0.56	0.54	00.0	0 44	0.00	110
Skeletal	J48	QNPR	62	72	56	57	247	0.54	0.53	0.52	0.52	0.52	0.56	0.54	-98.9	0.44	0.08	119
DEV rat Developmental		Spectrop																
Skeletal	J48	hores	59	68	60	60	247	0.51	0.5	0.5	0.5	0.5	0.53	0.51	-99.0	8.31	0.03	119
DEV rat Maternal GeneralMaternal	RF	Adriana	156	21	12	57	246	0.72	0.93	0.73	0.82	0.73	0.64	0.68	-98.6	9.65	0.27	213
DEV rat Maternal		ALogPS,	40-				.											
GeneralMaternal DEV rat Maternal	RF	OEstate	182	17	16	32	247	0.81	0.92	0.85	0.88	0.85	0.52	0.68			0.31	
GeneralMaternal	RF	CDK Chemaxo	176	18	15	37	246	0.79	0.92	0.83	0.87	0.83	0.55	0.69	-98.6	ö.9/	0.3	213
DEV rat Maternal GeneralMaternal	RF	n	167	18	15	47	247	0.75	0.92	0.78	0.84	0.78	0.55	0.66	-98.7	9.16	0.25	214

DEV rat Maternal GeneralMaternal	RF	Dragon6	166	18	15	48	247	0.74	0.92	0.78	0.84	0.78	0.55	0.66	-98.7	9.17 0.2	25 214
DEV rat Maternal GeneralMaternal	RF	Fragment or	196	13	20	18	247	0.85	0.91	0.92	0.91	0.92	0.39	0.65	-98.7	7.78 0.3	32 214
DEV rat Maternal GeneralMaternal	RF	GSFrag	157	20	13	57	247	0.72	0.92	0.73	0.82	0.73	0.61	0.67	-98.7	9.53 0.2	25 214
DEV rat Maternal GeneralMaternal	RF	Inductive	175	15	18	39	247	0.77	0.91	0.82	0.86	0.82	0.45	0.64	-98.7 8	3.67 0.2	22 214
DEV rat Maternal GeneralMaternal	RF	Mera, Mersy	179	18	15	35	247	0.8	0.92	0.84	0.88	0.84	0.55	0.69	-98.6 8	3.94 0.0	32 214
DEV rat Maternal GeneralMaternal	RF	QNPR	190	13	20	24	247	0.82	0.9	0.89	0.9	0.89	0.39	0.64	-98.7 8	3.03 0.2	27 214
DEV rat Maternal GeneralMaternal	RF	Spectrop hores	169	11	22	45	247	0.73	0.88	0.79	0.83	0.79	0.33	0.56	-98.9 8	3.28 0	.1 214
DEV rat Maternal GeneralMaternal	ASN N	Adriana	150	20	13	63	246	0.69	0.92	0.7	0.8	0.7	0.61	0.66	-98.7	9.58 0.2	22 213
DEV rat Maternal		ALogPS,	400	40	45	40	0.47	0.75	0.00	0.70	0.05	0.70	0.55	0.07	00.7		20 044
GeneralMaternal DEV rat Maternal	ASN N	OEstate CDK	168 160	18	15	46	247	0.75	0.92	0.79	0.85	0.79	0.55	0.67		0.14 0.2	
GeneralMaternal DEV rat Maternal	ASN	Chemaxo		20	13	53	246	0.73	0.92	0.75	0.83	0.75	0.61	0.68		9.48 0.2	
GeneralMaternal DEV rat Maternal	ASN	n o	140	19	14	74	247	0.64	0.91	0.65	0.76	0.65	0.58	0.61			16 214
GeneralMaternal DEV rat Maternal		Dragon6 Fragment	156	19	14	58	247	0.71	0.92	0.73	0.81	0.73	0.58	0.65			22 214
GeneralMaternal DEV rat Maternal GeneralMaternal	ASN N	or GSFraq	151 159	17 19	16 14	63 55	247	0.68	0.9	0.71	0.79	0.71	0.52	0.61	-98.8 9 -98.7 9		16 214
DEV rat Maternal GeneralMaternal	ASN N	Inductive	159	16	17	63	247	0.72	0.92	0.74	0.82	0.74	0.58	0.66			24 214 14 214
DEV rat Maternal GeneralMaternal		Mera, Mersy	149	21	12	65	247	0.69	0.93	0.71	0.79	0.71	0.48	0.67	-98.7		
DEV rat Maternal GeneralMaternal	ASN N	QNPR	157	16	17	57	247	0.7	0.9	0.73	0.81	0.73	0.48	0.61			16 214
DEV rat Maternal GeneralMaternal		Spectrop	151	18	15	63	247	0.68	0.91	0.71	0.79	0.71	0.55	0.63		9.35 0.°	
DEV rat Maternal GeneralMaternal		CDK, TA, TP	154	16	17	59	246	0.69	0.9	0.72	0.8	0.72	0.48	0.6		9.07 O.	
DEV rat Maternal GeneralMaternal	ASN N	CDK, TA	161	12	21	52	246	0.7	0.88	0.76	0.82	0.76	0.36	0.56	-98.9	8.5 0.0	09 213
DEV rat Maternal GeneralMaternal	ASN N	CDK, TP	154	19	14	59	246	0.7	0.92	0.72	0.81	0.72	0.58	0.65	-98.7	9.42 0.2	22 213
DEV rat Maternal GeneralMaternal	ASN N	TA, TP	162	10	23	52	247	0.7	0.88	0.76	0.81	0.76	0.3	0.53	-98.9 8	3.25 0.0)5 214
DEV rat Maternal GeneralMaternal	ASN N	TA	149	12	21	65	247	0.65	0.88	0.7	0.78	0.7	0.36	0.53	-98.9 8	3.65 0.0	04 214
DEV rat Maternal GeneralMaternal	ASN N	TP	149	11	22	65	247	0.65	0.87	0.7	0.77	0.7	0.33	0.51	-99.0 8	3.52 0.0)2 214
DEV rat Maternal GeneralMaternal	FSM LR	CDK, TA, TP	160	14	19	53	246	0.71	0.89	0.75	0.82	0.75	0.42	0.59	-98.8 8	3.76 O.	13 213
DEV rat Maternal GeneralMaternal	FSM LR	CDK, TA	154	18	15	59	246	0.7	0.91	0.72	0.81	0.72	0.55	0.63	-98.7	9.3 0	.2 213
DEV rat Maternal GeneralMaternal	FSM LR	CDK, TP	161	21	12	52	246	0.74	0.93	0.76	0.83	0.76	0.64	0.7	-98.6	9.59 0.2	29 213
DEV rat Maternal GeneralMaternal	FSM LR	TA, TP	168	9	24	46	247	0.72	0.88	0.79	0.83	0.79	0.27	0.53	-98.9 8	3.02 0.0)5 214
DEV rat Maternal GeneralMaternal	FSM LR	TA	159	8	25	55	247	0.68	0.86	0.74	0.8	0.74	0.24	0.49	-99.0 7	7.99 .0	11 214

DEV rat Maternal GeneralMaternal	FSM LR	TP	140	10	23	74	247	0.61	0.86	0.65	0.74	0.65	0.3	0.48	-99.0	8.45	.031	214
DEV rat Maternal GeneralMaternal	KNN	CDK, TA, TP	93	19	14	120	246	0.46	0.87	0.44	0.58	0.44	0.58	0.51	-99.0	9.63	0.01	213
DEV rat Maternal GeneralMaternal	KNN	CDK, TA	82	23	10	131	246	0.43	0.89	0.38	0.54	0.38	0.7	0.54	-98.9	10.1	0.06	213
DEV rat Maternal GeneralMaternal	KNN	CDK, TP	36	30	3	177	246	0.27	0.92	0.17	0.29	0.17	0.91	0.54	-98.9	10.9	0.07	213
DEV rat Maternal GeneralMaternal	KNN	TA, TP	87	21	12	127	247	0.44	0.88	0.41	0.56	0.41	0.64	0.52	-99.0	9.86	0.03	214
DEV rat Maternal GeneralMaternal	KNN	TA	95	22	11	119	247	0.47	0.9	0.44	0.59	0.44	0.67	0.56	-98.9	10.	0.08	214
DEV rat Maternal GeneralMaternal	KNN	TP	42	30	3	172	247	0.29	0.93	0.2	0.32	0.2	0.91	0.55	-98.9	11.1	0.09	214
DEV rat Maternal GeneralMaternal	LibS VM	CDK, TA, TP	213	1	32	0	246	0.87	0.87	1.	0.93	1.	0.03	0.52	-99.0	1.59	0.16	213
DEV rat Maternal GeneralMaternal	LibS VM	CDK, TA	213	3	30	0	246	0.88	0.88	1.	0.93	1.	0.09	0.55	-98.9	2.51	0.28	213
DEV rat Maternal GeneralMaternal	LibS VM	CDK, TP	203	4	29	10	246	0.84	0.88	0.95	0.91	0.95	0.12	0.54	-98.9	5.79	0.11	213
DEV rat Maternal GeneralMaternal	LibS VM	TA, TP	214	0	33	0	247	0.87	0.87	1.	0.93	1.	0.	0.5	-99.0	0.47		214
DEV rat Maternal GeneralMaternal	LibS VM	TA	213	0	33	1	247	0.86	0.87	1.	0.93	1.	0.	0.5	-99.0	1.56	.025	214
DEV rat Maternal GeneralMaternal		TP	212	0	33	2	247	0.86	0.87	0.99	0.92	0.99	0.	0.5	-99.0	2.07	.035	214
DEV rat Maternal GeneralMaternal	Α	CDK, TA, TP	147	16	17	66	246	0.66	0.9	0.69	0.78	0.69	0.48	0.59	-98.8	9.13	0.13	213
DEV rat Maternal GeneralMaternal	MLR A	CDK, TA	131	16	17	82	246	0.6	0.89	0.62	0.73	0.62	0.48	0.55	-98.9	9.23	0.07	213
DEV rat Maternal GeneralMaternal	MLR A MLR	CDK, TP	116	15	18	97	246	0.53	0.87	0.54	0.67	0.54	0.45	0.5	-99.0	9.16	.001	213
DEV rat Maternal GeneralMaternal	A MLR	TA, TP	128	15	18	86	247	0.58	0.88	0.6	0.71	0.6	0.45	0.53	-98.9	9.14	0.04	214
DEV rat Maternal GeneralMaternal	A MLR	TA	130	18	15	84	247	0.6	0.9	0.61	0.72	0.61	0.55	0.58	-98.8	9.49	0.11	214
DEV rat Maternal GeneralMaternal	A	TP CDK, TA,	109	17	16	105	247	0.51	0.87	0.51	0.64	0.51	0.52	0.51	-99.0	9.41	0.02	214
DEV rat Maternal DEV rat Maternal	PLS	, ,	157	17	16	56	246	0.71	0.91	0.74	0.81	0.74	0.52	0.63	-98.7	9.15	0.19	213
DEV rat Maternal	PLS	CDK, TA	150	13	20	63	246	0.66	0.88	0.7	0.78	0.7	0.39	0.55	-98.9	8.75	0.07	213
DEV rat Maternal GeneralMaternal DEV rat Maternal	PLS	CDK, TP	147	19	14	66	246	0.67	0.91	0.69	0.79	0.69	0.58	0.63	-98.7	9.49	0.19	213
GeneralMaternal DEV rat Maternal		TA, TP	158	10	23	56	247	0.68	0.87	0.74	8.0	0.74	0.3	0.52	-99.0			
GeneralMaternal DEV rat Maternal	PLS		154	12	21	60	247	0.67	0.88	0.72	0.79	0.72	0.36	0.54	-98.9		0.06	
GeneralMaternal DEV rat Maternal	PLS	CDK, TA,	138	13	20	76	247	0.61	0.87	0.64	0.74	0.64	0.39	0.52	-99.0			
GeneralMaternal DEV rat Maternal ConoralMaternal	J48	TP CDK TA	171	15	18	42	246	0.76	0.9	0.8	0.85	0.8	0.45	0.63	-98.7			
GeneralMaternal DEV rat Maternal GeneralMaternal	J48 J48	CDK, TA	167	14	19	46	246	0.74	0.9	0.78	0.84	0.78	0.42	0.69	-98.8			
GeneralMaternal DEV rat Maternal GeneralMaternal	J48 J48	TA, TP	170 164	19 9	14 24	50	246 247	0.77	0.92	0.8	0.86	0.8	0.58		-98.6 -99.0			213

DEV rat Maternal GeneralMaternal	J48	TA	164	10	23	50	247	0.7	0.88	0.77	0.82	0.77	0.3	0.53	-98.9	8.22	0.06	2
DEV rat Maternal GeneralMaternal	J48	TP	138	14	19	76	247	0.62	0.88	0.64	0.74	0.64	0.42	0.53	-98.9	8.97	0.05	2
DEV rat Maternal GeneralMaternal	RF	CDK, TA, TP	197	8	25	16	246	0.83	0.89	0.92	0.91	0.92	0.24	0.58	-98 8	6.99	0 19	2
DEV rat Maternal GeneralMaternal	RF	CDK, TA	193	8	25	20	246	0.82	0.89	0.91	0.9	0.91	0.24	0.57		7.19		2
DEV rat Maternal GeneralMaternal	RF	CDK, TP	190	12	21	23	246	0.82	0.9	0.89	0.9	0.89	0.36	0.63	-98.7	7.86	0.25	2
DEV rat Maternal													0.06				.013	
GeneralMaternal DEV rat Maternal	RF	TA, TP	199	2	31	15	247	0.81	0.87	0.93	0.9	0.93	0.06	0.5	-99.0	5.5	.013	
GeneralMaternal DEV rat Maternal	RF	TA	182	10	23	32	247	0.78	0.89	0.85	0.87	0.85	0.3	0.58	-98.8	7.88	0.14	2
GeneralMaternal	RF	TP	188	4	29	26	247	0.78	0.87	0.88	0.87	0.88	0.12	0.5	-99.0	6.64		2
DEV rat Maternal GeneralMaternal	FSM LR	Adriana	155	17	16	58	246	0.7	0.91	0.73	0.81	0.73	0.52	0.62	-98.8	9.17	0.18	2
DEV rat Maternal		ALogPS,	400	00	40	F.4	0.47	0.70	0.00	0.75	0.00	0.75	0.04	0.00	00.0	0.40	0.00	
GeneralMaternal	LR	OEstate	160	20	13	54	247	0.73	0.92	0.75	0.83	0.75	0.61	0.68	-98.6	9.49	0.26	2
DEV rat Maternal GeneralMaternal	FSM LR	CDK	159	23	10	54	246	0.74	0.94	0.75	0.83	0.75	0.7	0.72	-98.6	9.88	0.33	2
DEV rat Maternal GeneralMaternal	FSM LR	Chemaxo n	139	20	13	75	247	0.64	0.91	0.65	0.76	0.65	0.61	0.63	-98.7	9.68	0.18	2
DEV rat Maternal GeneralMaternal	FSM LR	Dragon6	153	20	13	61	247	0.7	0.92	0.71	0.81	0.71	0.61	0.66	-98.7	9.57	0.23	2
DEV rat Maternal		Fragment						-										
GeneralMaternal	LR	or	170	16	17	44	247	0.75	0.91	0.79	0.85	0.79	0.48	0.64	-98.7	8.88	0.22	2
DEV rat Maternal GeneralMaternal	FSM LR	GSFrag	157	22	11	57	247	0.72	0.93	0.73	0.82	0.73	0.67	0.7	-98.6	9.78	0.29	2
DEV rat Maternal GeneralMaternal	FSM LR	Inductive	149	15	18	65	247	0.66	0.89	0.7	0.78	0.7	0.45	0.58	-98.8	9.01	0.11	2
DEV rat Maternal	FSM	Mera,																
GeneralMaternal	LR	Mersy	140	22	11	74	247	0.66	0.93	0.65	0.77	0.65	0.67	0.66	-98.7	9.93	0.22	2
DEV rat Maternal GeneralMaternal	FSM LR	QNPR	168	18	15	46	247	0.75	0.92	0.79	0.85	0.79	0.55	0.67	-98.7	9.14	0.26	2
DEV rat Maternal GeneralMaternal	FSM LR	Spectrop hores	138	18	15	76	247	0.63	0.9	0.64	0.75	0.64	0.55	0.6	-98 8	9 45	0.13	2
DEV rat Maternal GeneralMaternal		Adriana	146	18	15	67	246	0.67	0.91	0.69	0.78	0.69	0.55	0.62			0.17	
DEV rat Maternal GeneralMaternal		ALogPS, OEstate	111	24	9	103	247	0.55	0.93	0.52	0.66	0.52	0.73	0.62			0.17	
DEV rat Maternal																		
GeneralMaternal DEV rat Maternal GeneralMaternal	KNN	CDK Chemaxo	125 112	25 24	8 9	102	246	0.61	0.94	0.59	0.72	0.59	0.76	0.67			0.24	
DEV rat Maternal																		
GeneralMaternal DEV rat Maternal		Dragon6 Fragment	123	26	10	91	247	0.6	0.95	0.57	0.72		0.79	0.68			0.25	
GeneralMaternal	KNN	or	158	15	18	56	247	0.7	0.9	0.74	0.81	0.74	0.45	0.6	-98.8	8.92	0.14	2

DEV rat Maternal GeneralMaternal	KNN	Inductive	118	21	12	96	247	0.56	0.91	0.55	0.69	0.55	0.64	0.59	-98.8	9.89	0.13	214
DEV rat Maternal GeneralMaternal	KNN	Mera, Mersy	143	22	11	71	247	0.67	0.93	0.67	0.78	0.67	0.67	0.67	-98.7	9.91	0.24	214
DEV rat Maternal GeneralMaternal	KNN	QNPR	175	15	18	39	247	0.77	0.91	0.82	0.86	0.82	0.45	0.64	-98.7	8.67	0.22	214
DEV rat Maternal GeneralMaternal	KNN	Spectrop hores	115	21	12	99	247	0.55	0.91	0.54	0.67	0.54	0.64	0.59	-98.8	9.89	0.12	214
DEV rat Maternal GeneralMaternal	LibS VM	Adriana	185	11	22	28	246	0.8	0.89	0.87	0.88	0.87	0.33	0.6	-98.8	7.9	0.19	213
DEV rat Maternal GeneralMaternal	LibS VM	ALogPS, OEstate	198	8	25	16	247	0.83	0.89	0.93	0.91	0.93	0.24	0.58	-98.8	7.	0.19	214
DEV rat Maternal GeneralMaternal	LibS VM	CDK	189	14	19	24	246	0.83	0.91	0.89	0.9	0.89	0.42	0.66	-98.7	8.15	0.29	213
DEV rat Maternal GeneralMaternal	LibS VM	Chemaxo n	200	6	27	14	247	0.83	0.88	0.93	0.91	0.93	0.18	0.56	-98.9	6.53	0.15	214
DEV rat Maternal GeneralMaternal	LibS VM	Dragon6	175	14	19	39	247	0.77	0.9	0.82	0.86	0.82	0.42	0.62	-98.8	8.55	0.2	214
DEV rat Maternal GeneralMaternal	LibS VM	Fragment or	213	3	30	1	247	0.87	0.88	1.	0.93	1.	0.09	0.54	-98.9	3.6	0.23	214
DEV rat Maternal GeneralMaternal	LibS VM	GSFrag	176	14	19	38	247	0.77	0.9	0.82	0.86	0.82	0.42	0.62	-98.8	8.53	0.21	214
DEV rat Maternal GeneralMaternal	LibS VM	Inductive	172	13	20	42	247	0.75	0.9	0.8	0.85	0.8	0.39	0.6	-98.8	8.48	0.16	214
DEV rat Maternal GeneralMaternal	LibS VM	Mera, Mersy	198	12	21	16	247	0.85	0.9	0.93	0.91	0.93	0.36	0.64	-98.7	7.55	0.31	214
DEV rat Maternal GeneralMaternal	LibS VM	QNPR	193	7	26	21	247	0.81	0.88	0.9	0.89	0.9	0.21	0.56	-98.9	7.07	0.12	214
DEV rat Maternal GeneralMaternal	LibS VM	Spectrop hores	188	12	21	26	247	0.81	0.9	0.88	0.89	0.88	0.36	0.62	-98.8	7.97	0.23	214
DEV rat Maternal GeneralMaternal	MLR A	Adriana	124	17	16	89	246	0.57	0.89	0.58	0.7	0.58	0.52	0.55	-98.9	9.38	0.07	213
DEV rat Maternal GeneralMaternal	MLR A	ALogPS, OEstate	144	16	17	70	247	0.65	0.89	0.67	0.77	0.67	0.48	0.58	-98.8	9.17	0.11	214
DEV rat Maternal GeneralMaternal	MLR A	CDK	106	25	8	107	246	0.53	0.93	0.5	0.65	0.5	0.76	0.63	-98.7	10.4	0.17	213
DEV rat Maternal GeneralMaternal	Α	Chemaxo n	101	21	12	113	247	0.49	0.89	0.47	0.62	0.47	0.64	0.55	-98.9	9.89	0.07	214
DEV rat Maternal GeneralMaternal	MLR A	Dragon6	128	11	22	86	247	0.56	0.85	0.6	0.7	0.6	0.33	0.47	-99.1	8.64	.048	214
DEV rat Maternal GeneralMaternal	A MLR	Fragment or	139	15	18	75	247	0.62	0.89	0.65	0.75	0.65	0.45	0.55	-98.9	9.09	0.07	214
DEV rat Maternal GeneralMaternal	A MLR	GSFrag	99	13	20	115	247	0.45	0.83	0.46	0.59	0.46	0.39	0.43	-99.1	8.93	.098	214
DEV rat Maternal	Α	Inductive Mera,	130	17	16	84	247	0.6	0.89	0.61	0.72	0.61	0.52	0.56	-98.9	9.37	80.0	214
DEV rat Maternal	A MLR	Mersy	111	21	12	103	247	0.53	0.9	0.52	0.66	0.52	0.64	0.58	-98.8	9.9	0.11	214
DEV rat Maternal GeneralMaternal DEV rat Maternal	Α	QNPR Spectrop	96	16	17	118	247	0.45	0.85	0.45	0.59	0.45	0.48	0.47	-99.1	9.29	.045	214
GeneralMaternal	Α	hores	129	21	12	85	247	0.61	0.91	0.6	0.73	0.6	0.64	0.62	-98.8	9.85	0.16	214

DEV rat Maternal GeneralMaternal	PLS	Adriana	155	20	13	58	246	0.71	0.92	0.73	0.81	0.73	0.61	0.67	-98.7 9.5	3 0.24	213
DEV rat Maternal GeneralMaternal	PLS	ALogPS, OEstate	160	20	13	54	247	0.73	0.92	0.75	0.83	0.75	0.61	0.68	-98.6 9.4	9 0.26	214
DEV rat Maternal GeneralMaternal	PLS	CDK	153	22	11	60	246	0.71	0.93	0.72	0.81	0.72	0.67	0.69	-98.6 9.8	31 0.28	213
DEV rat Maternal		Chemaxo															
GeneralMaternal	PLS	n	141	20	13	73	247	0.65	0.92	0.66	0.77	0.66	0.61	0.63	-98.7 9.6	0.19	214
DEV rat Maternal GeneralMaternal	PLS	Dragon6 Fragment	153	21	12	61	247	0.7	0.93	0.71	0.81	0.71	0.64	0.68	-98.6 9	.7 0.25	214
DEV rat Maternal GeneralMaternal	PLS	or	156	17	16	58	247	0.7	0.91	0.73	0.81	0.73	0.52	0.62	-98.8 9.1	8 0.18	214
DEV rat Maternal GeneralMaternal	PLS	GSFrag	158	18	15	56	247	0.71	0.91	0.74	0.82	0.74	0.55	0.64	-98.7 9.2	8 0.21	214
DEV rat Maternal GeneralMaternal	PLS	Inductive	143	18	15	71	247	0.65	0.91	0.67	0.77	0.67	0.55	0.61	-98.8 9.4	1 0.15	214
DEV rat Maternal		Mera,															
GeneralMaternal DEV rat Maternal	PLS	Mersy	145	22	11	69	247	0.68	0.93	0.68	0.78	0.68	0.67	0.67	-98.7 9.8	9 0.24	214
GeneralMaternal	PLS	QNPR Spectrop	155	16	17	59	247	0.69	0.9	0.72	8.0	0.72	0.48	0.6	-98.8 9.0	0.15	214
DEV rat Maternal GeneralMaternal	PLS	hores	132	17	16	82	247	0.6	0.89	0.62	0.73	0.62	0.52	0.57	-98.9 9.3	86 0.09	214
DEV rat Maternal GeneralMaternal	J48	Adriana	153	17	16	60	246	0.69	0.91	0.72	0.8	0.72	0.52	0.62	-98.8 9	.2 0.17	213
Generalivialemai	J+0	Aunana	100	17	10	00	∠+0	0.08	0.81	0.12	0.0	0.12	0.02	0.02	-90.0 9	. <u>~</u> U.17	213
DEV rat Maternal GeneralMaternal	J48	ALogPS, OEstate	174	16	17	40	247	0.77	0.91	0.81	0.86	0.81	0.48	0.65	-98.7 8	.8 0.24	214
DEV rat Maternal GeneralMaternal	J48	CDK	163	20	13	50	246	0.74	0.93	0.77	0.84	0.77	0.61	0.69	-98.6 9.4	4 0.28	213
DEV rat Maternal		Chemaxo	400				~							. = .			
GeneralMaternal	J48	n	160	22	11	54	247	0.74	0.94	0.75	0.83	0.75	0.67	0.71	-98.6 9.7	5 0.31	214
DEV rat Maternal GeneralMaternal	J48	Dragon6	170	19	14	44	247	0.77	0.92	0.79	0.85	0.79	0.58	0.69	-98.6 9.2	23 0.29	214
DEV rat Maternal GeneralMaternal	J48	Fragment or	179	15	18	35	247	0.79	0.91	0.84	0.87	0.84	0.45	0.65	-98.7 8.5	8 0.25	214
DEV rat Maternal GeneralMaternal	J48	GSFrag	159	18	15	55	247	0.72	0.91	0.74	0.82	0.74	0.55	0.64	-98.7 9.2	7 0.22	214
DEV rat Maternal GeneralMaternal	J48	Inductive	159	17	16	55	247	0.71	0.91	0.74	0.82	0.74	0.52	0.63	-98.7 9.1	5 0.19	214
DEV rat Maternal GeneralMaternal	J48	Mera, Mersy	165	17	16	49	247	0.74	0.91	0.77	0.84	0.77	0.52	0.64	-98.7 9.0	7 0.22	214
DEV rat Maternal GeneralMaternal	J48	QNPR	165	17	16	49	247	0.74	0.91	0.77	0.84	0.77	0.52	0.64	-98.7 9.0		214
DEV rat Maternal		Spectrop															
GeneralMaternal DEV rat Maternal	J48	hores	146	19	14	68	247	0.67	0.91	0.68	0.78	0.68	0.58	0.63	-98.7 9.5	0.18	214
PregnancyRelated	RF	Adriana	43	84	79	40	246	0.52	0.35	0.52	0.42	0.52	0.52	0.52	-99.0 7.5	0.03	83
DEV rat Maternal	5 -	ALogPS,			70		C 1=	0.50	0.0=	0.50	0.45	0.50	0.5:	0.50	000 =	0 0 0 0 0	
PregnancyRelated DEV rat Maternal	RF	OEstate	44	88	76	39	247	0.53	0.37	0.53	0.43	0.53	0.54	0.53	-98.9 7.6		83
PregnancyRelated	RF	CDK Chemaxo	39	89	74	44	246	0.52	0.35	0.47	0.4	0.47	0.55	0.51	-99.0 7.6	ου 0.02	83
DEV rat Maternal PregnancyRelated	RF	n	48	96	68	35	247	0.58	0.41	0.58	0.48	0.58	0.59	0.58	-98.8 7.7	9 0.15	83
DEV rat Maternal PregnancyRelated	RF	Dragon6	45	92	72	38	247	0.55	0.38	0.54	0.45	0.54	0.56	0.55	-98.9 7.7	1 0.1	83
DEV rat Maternal PregnancyRelated	RF	Fragment or	43	85	79	40	247	0.52	0.35	0.52	0.42	0.52	0.52	0.52	-99.0 7.5	55 0.03	83
DEV rat Maternal	RF	GSFrag	37	76	88	46	247	0.46	0.3	0.45	0.36	0.45	0.46	0.45	-99.1 7.3		83
PregnancyRelated DEV rat Maternal																	
PregnancyRelated DEV rat Maternal	RF	Inductive Mera,	47	90	74	36	247	0.55	0.39	0.57	0.46	0.57	0.55	0.56	-98.9 7.6		83
PregnancyRelated	RF	Mersy	47	92	72	36	247	0.56	0.39	0.57	0.47	0.57	0.56	0.56	-98.9 7	.7 0.12	83
DEV rat Maternal PregnancyRelated	RF	QNPR	40	91	73	43	247	0.53	0.35	0.48	0.41	0.48	0.55	0.52	-99.0 7.6	9 0.03	83

		Constant															
DEV rat Maternal PregnancyRelated	RF	Spectrop hores	41	82	82	42	247	0.5	0.33	0.49	0.4	0.49	0.5	0.5	-99.0 7.48	.006	83
DEV rat Maternal PregnancyRelated	ASN N	Adriana	38	96	67	45	246	0.54	0.36	0.46	0.4	0.46	0.59	0.52	-99.0 7.83	0.04	83
DEV rat Maternal PregnancyRelated	ASN N	ALogPS, OEstate	34	90	74	49	247	0.5	0.31	0.41	0.36	0.41	0.55	0.48	-99.0 7.64	.04	83
DEV rat Maternal PregnancyRelated	ASN N	CDK	27	94	69	56	246	0.49	0.28	0.33	0.3	0.33	0.58	0.45	-99.1 7.66	.095	83
DEV rat Maternal PregnancyRelated	ASN N	Chemaxo n	43	97	67	40	247	0.57	0.39	0.52	0.45	0.52	0.59	0.55	-98.9 7.84	0.1	83
DEV rat Maternal PregnancyRelated	ASN N	Dragon6	30	105	59	53	247	0.55	0.34	0.36	0.35	0.36	0.64	0.5	-99.0 7.97	0.	83
DEV rat Maternal PregnancyRelated	ASN N	Fragment or	30	96	68	53	247	0.51	0.31	0.36	0.33	0.36	0.59	0.47	-99.1 7.74	.051	83
DEV rat Maternal PregnancyRelated	ASN N	GSFrag	37	101	63	46	247	0.56	0.37	0.45	0.4	0.45	0.62	0.53	-98.9 7.93	0.06	83
DEV rat Maternal PregnancyRelated	ASN N	Inductive	38	97	67	45	247	0.55	0.36	0.46	0.4	0.46	0.59	0.52	-99.0 7.84	0.05	83
DEV rat Maternal PregnancyRelated	ASN N	Mera, Mersy	40	105	59	43	247	0.59	0.4	0.48	0.44	0.48	0.64	0.56	-98.9 8.05	0.12	83
DEV rat Maternal PregnancyRelated	ASN N	QNPR	30	94	70	53	247	0.5	0.3	0.36	0.33	0.36	0.57	0.47	-99.1 7.69	.063	83
DEV rat Maternal PregnancyRelated	ASN N	Spectrop hores	39	104	60	44	247	0.58	0.39	0.47	0.43	0.47	0.63	0.55	-98.9 8.02	0.1	83
DEV rat Maternal PregnancyRelated	ASN N	CDK, TA, TP	34	99	64	49	246	0.54	0.35	0.41	0.38	0.41	0.61	0.51	-99.0 7.88	0.02	83
DEV rat Maternal PregnancyRelated	ASN N	CDK, TA	30	98	65	53	246	0.52	0.32	0.36	0.34	0.36	0.6	0.48	-99.0 7.81	.036	83
DEV rat Maternal PregnancyRelated	ASN N	CDK, TP	37	98	65	46	246	0.55	0.36	0.45	0.4	0.45	0.6	0.52	-99.0 7.87	0.05	83
DEV rat Maternal PregnancyRelated	ASN N	TA, TP	35	105	59	48	247	0.57	0.37	0.42	0.4	0.42	0.64	0.53	-98.9 8.02	0.06	83
DEV rat Maternal PregnancyRelated	ASN N	TA	30	101	63	53	247	0.53	0.32	0.36	0.34	0.36	0.62	0.49	-99.0 7.87	.022	83
DEV rat Maternal PregnancyRelated	ASN N	TP	31	101	63	52	247	0.53	0.33	0.37	0.35	0.37	0.62	0.49	-99.0 7.88	.01	83
DEV rat Maternal PregnancyRelated	FSM LR	CDK, TA, TP	31	107	56	52	246	0.56	0.36	0.37	0.36	0.37	0.66	0.51	-99.0 8.05	0.03	83
DEV rat Maternal PregnancyRelated	FSM LR	CDK, TA	31	102	61	52	246	0.54	0.34	0.37	0.35	0.37	0.63	0.5	-99.0 7.92	.001	83
DEV rat Maternal PregnancyRelated	FSM LR	CDK, TP	33	87	76	50	246	0.49	0.3	0.4	0.34	0.4	0.53	0.47	-99.1 7.57	.065	83
DEV rat Maternal PregnancyRelated	FSM LR	TA, TP	32	109	55	51	247	0.57	0.37	0.39	0.38	0.39	0.66	0.53	-98.9 8.1	0.05	83
DEV rat Maternal PregnancyRelated	FSM LR	TA	28	111	53	55	247	0.56	0.35	0.34	0.34	0.34	0.68	0.51	-99.0 8.1	0.01	83
DEV rat Maternal PregnancyRelated	FSM LR	TP	34	103	61	49	247	0.55	0.36	0.41	0.38	0.41	0.63	0.52	-99.0 7.96	0.04	83
DEV rat Maternal PregnancyRelated	KNN	CDK, TA, TP	15	141	22	68	246	0.63	0.41	0.18	0.25	0.18	0.87	0.52	-99.0 8.81	0.06	83
DEV rat Maternal PregnancyRelated	KNN	CDK, TA	2	159	4	81	246	0.65	0.33	0.02	0.04	0.02	0.98	0.5	-99.0 8.88	.001	83
DEV rat Maternal PregnancyRelated	KNN	CDK, TP	16	138	25	67	246	0.63	0.39	0.19	0.26	0.19	0.85	0.52	-99.0 8.71	0.05	83
DEV rat Maternal PregnancyRelated	KNN	TA, TP	8	154	10	75	247	0.66	0.44	0.1	0.16	0.1	0.94	0.52	-99.0 9.15	0.06	83

DEV rat Maternal PregnancyRelated	KNN	TA	6	157	7	77	247	0.66	0.46	0.07	0.13	0.07	0.96	0.51	-99.0	9.27 (0.06	83
EV rat Maternal regnancyRelated	KNN	TP	25	113	51	58	247	0.56	0.33	0.3	0.31	0.3	0.69	0.5	-99.0	8.1	.01	83
DEV rat Maternal regnancyRelated	LibS VM	CDK, TA, TP	11	138	25	72	246	0.61	0.31	0.13	0.18	0.13	0.85	0.49	-99.0	8.42	.028	83
EV rat Maternal regnancyRelated	LibS VM	CDK, TA	18	123	40	65	246	0.57	0.31	0.22	0.26	0.22	0.75	0.49	-99.0 8	8.21	.032	83
DEV rat Maternal PregnancyRelated	LibS VM	CDK, TP	15	129	34	68	246	0.59	0.31	0.18	0.23	0.18	0.79	0.49	-99.0 8	8.29	.033	83
DEV rat Maternal PregnancyRelated	LibS VM	TA, TP	20	129	35	63	247	0.6	0.36	0.24	0.29	0.24	0.79	0.51	-99.0 8	8.47 (0.03	83
DEV rat Maternal PregnancyRelated	LibS VM	TA	9	141	23	74	247	0.61	0.28	0.11	0.16	0.11	0.86	0.48	-99.0 8	8.36	.045	83
PEV rat Maternal regnancyRelated	LibS VM	TP TA	21	122	42	62	247	0.58	0.33	0.25	0.29	0.25	0.74	0.5	-99.0 8	8.26	.003	83
DEV rat Maternal PregnancyRelated	Α	CDK, TA, TP	39	100	63	44	246	0.57	0.38	0.47	0.42	0.47	0.61	0.54	-98.9	7.93 (80.0	83
DEV rat Maternal PregnancyRelated	MLR A	CDK, TA	38	80	83	45	246	0.48	0.31	0.46	0.37	0.46	0.49	0.47	-99.1	7.43	.049	83
DEV rat Maternal PregnancyRelated	MLR A	CDK, TP	46	91	72	37	246	0.56	0.39	0.55	0.46	0.55	0.56	0.56	-98.9	7.7	0.11	83
EV rat Maternal regnancyRelated	MLR A	TA, TP	34	87	77	49	247	0.49	0.31	0.41	0.35	0.41	0.53	0.47	-99.1	7.56 .	.057	83
EV rat Maternal regnancyRelated	MLR A	TA	34	100	64	49	247	0.54	0.35	0.41	0.38	0.41	0.61	0.51	-99.0	7.89 (0.02	83
EV rat Maternal regnancyRelated	MLR A	TP	41	97	67	42	247	0.56	0.38	0.49	0.43	0.49	0.59	0.54	-98.9	7.84 (0.08	83
DEV rat Maternal PregnancyRelated	PLS	CDK, TA, TP	32	99	64	51	246	0.53	0.33	0.39	0.36	0.39	0.61	0.5	-99.0	7.86 .	.007	83
DEV rat Maternal PregnancyRelated	PLS	CDK, TA	30	100	63	53	246	0.53	0.32	0.36	0.34	0.36	0.61	0.49	-99.0	7.86 .	.024	83
DEV rat Maternal PregnancyRelated	PLS	CDK, TP	41	89	74	42	246	0.53	0.36	0.49	0.41	0.49	0.55	0.52	-99.0	7.66 (0.04	83
DEV rat Maternal PregnancyRelated	PLS	TA, TP	29	105	59	54	247	0.54	0.33	0.35	0.34	0.35	0.64	0.49	-99.0	7.96	.01	83
DEV rat Maternal PregnancyRelated	PLS	TA	32	104	60	51	247	0.55	0.35	0.39	0.37	0.39	0.63	0.51	-99.0	7.97 (0.02	83
DEV rat Maternal PregnancyRelated	PLS		33	91	73	50	247	0.5	0.31	0.4	0.35	0.4	0.55	0.48	-99.0	7.65 .	.045	83
DEV rat Maternal PregnancyRelated	J48	CDK, TA, TP	37	97	66	46	246	0.54	0.36	0.45	0.4	0.45	0.6	0.52	-99.0	7.85 (0.04	83
DEV rat Maternal PregnancyRelated	J48	CDK, TA	33	106	57	50	246	0.57	0.37	0.4	0.38	0.4	0.65	0.52	-99.0	8.05 (0.05	83
DEV rat Maternal PregnancyRelated	J48	CDK, TP	36	107	56	47	246	0.58	0.39	0.43	0.41	0.43	0.66	0.55	-98.9	8.1 (0.09	83
DEV rat Maternal PregnancyRelated	J48	TA, TP	25	106	58	58	247	0.53	0.3	0.3	0.3	0.3	0.65	0.47	-99.1	7.91	.052	83
DEV rat Maternal PregnancyRelated	J48	TA	30	107	57	53	247	0.55	0.34	0.36	0.35	0.36	0.65	0.51	-99.0	8.02	0.01	83
DEV rat Maternal PregnancyRelated	J48	TP	32	106	58	51	247	0.56	0.36	0.39	0.37	0.39	0.65	0.52	-99.0	8.02 (0.03	83
DEV rat Maternal PregnancyRelated	RF	CDK, TA, TP	52	70	93	31	246	0.5	0.36	0.63	0.46	0.63	0.43	0.53	-98.9	7.13 (0.05	83
DEV rat Maternal PregnancyRelated	RF	CDK, TA	47	75	88	36	246	0.5	0.35	0.57	0.43	0.57	0.46	0.51	-99.0	7.3 (0.03	83
DEV rat Maternal PregnancyRelated	RF	CDK, TP	48	78	85	35	246	0.51	0.36	0.58	0.44	0.58	0.48	0.53	-98.9	7.37 (0.05	83
DEV rat Maternal PregnancyRelated	RF	TA, TP	39	82	82	44	247	0.49	0.32	0.47	0.38	0.47	0.5	0.48	-99.0			83

DEV rat Maternal PregnancyRelated	RF	TA	42	88	76	41	247	0.53	0.36	0.51	0.42	0.51	0.54	0.52	-99.0 7.62	0.04	83
DEV rat Maternal PregnancyRelated	RF	TP	40	85	79	43	247	0.51	0.34	0.48	0.4	0.48	0.52	0.5	-99.0 7.55	0.	83
DEV rat Maternal PregnancyRelated	FSM LR	Adriana	42	82	81	41	246	0.5	0.34	0.51	0.41	0.51	0.5	0.5	-99.0 7.49	0.01	83
DEV rat Maternal PregnancyRelated	FSM LR	ALogPS, OEstate	41	76	88	42	247	0.47	0.32	0.49	0.39	0.49	0.46	0.48	-99.0 7.33	.04	83
DEV rat Maternal PregnancyRelated	FSM LR	CDK	30	86	77	53	246	0.47	0.28	0.36	0.32	0.36	0.53	0.44	-99.1 7.51	.106	83
DEV rat Maternal PregnancyRelated	FSM LR	Chemaxo n	41	91	73	42	247	0.53	0.36	0.49	0.42	0.49	0.55	0.52	-99.0 7.69	0.05	83
DEV rat Maternal PregnancyRelated	FSM LR	Dragon6	39	94	70	44	247	0.54	0.36	0.47	0.41	0.47	0.57	0.52	-99.0 7.76	0.04	83
DEV rat Maternal PregnancyRelated	FSM LR	Fragment or	33	84	80	50	247	0.47	0.29	0.4	0.34	0.4	0.51	0.45	-99.1 7.48	.086	83
DEV rat Maternal PregnancyRelated	FSM LR	GSFrag	45	83	81	38	247	0.52	0.36	0.54	0.43	0.54	0.51	0.52	-99.0 7.49	0.05	83
DEV rat Maternal PregnancyRelated	FSM LR	Inductive	70	40	124	13	247	0.45	0.36	0.84	0.51	0.84	0.24	0.54	-98.9 5.74	0.1	83
DEV rat Maternal PregnancyRelated	FSM LR	QNPR	34	89	75	49	247	0.5	0.31	0.41	0.35	0.41	0.54	0.48	-99.0 7.61	.045	83
DEV rat Maternal PregnancyRelated	FSM LR	Spectrop hores	35	101	63	48	247	0.55	0.36	0.42	0.39	0.42	0.62	0.52	-99.0 7.92	0.04	83
DEV rat Maternal PregnancyRelated	KNN	Adriana	72	28	135	11	246	0.41	0.35	0.87	0.5	0.87	0.17	0.52	-99.0 5.17	0.05	83
DEV rat Maternal PregnancyRelated	KNN	ALogPS, OEstate	24	116	48	59	247	0.57	0.33	0.29	0.31	0.29	0.71	0.5	-99.0 8.16	.004	83
DEV rat Maternal PregnancyRelated	KNN	CDK	39	82	81	44	246	0.49	0.33	0.47	0.38	0.47	0.5	0.49	-99.0 7.48	.026	83
DEV rat Maternal PregnancyRelated	KNN	Chemaxo n	52	75	89	31	247	0.51	0.37	0.63	0.46	0.63	0.46	0.54	-98.9 7.24	0.08	83
DEV rat Maternal PregnancyRelated	KNN	Dragon6 Fragment	57	61	103	26	247	0.48	0.36	0.69	0.47	0.69	0.37	0.53	-98.9 6.81	0.06	83
DEV rat Maternal PregnancyRelated	KNN	-	71	33	131	12	247	0.42	0.35	0.86	0.5	0.86	0.2	0.53	-98.9 5.43	0.07	83
DEV rat Maternal PregnancyRelated DEV rat Maternal	KNN	GSFrag	71	36	128	12	247	0.43	0.36	0.86	0.5	0.86	0.22	0.54	-98.9 5.54	0.09	83
PregnancyRelated DEV rat Maternal		Inductive Mera,	40	72	92	43	247	0.45	0.3	0.48	0.37	0.48	0.44	0.46	-99.1 7.23	.075	83
PregnancyRelated DEV rat Maternal		Mersy	52	77	87	31	247	0.52	0.37	0.63	0.47	0.63	0.47	0.55	-98.9 7.29		83
PregnancyRelated DEV rat Maternal PregnancyRelated		QNPR Spectrop hores	32	51 98	113 66	23 51	247	0.45	0.35	0.72 n.39	0.47	0.72 n.39	0.31	0.52	-99.0 6.47 -99.0 7.82		83
DEV rat Maternal PregnancyRelated	LibS VM	Adriana	22	127	36	61		0.53							-99.0 7.82 -99.0 8.48		83
DEV rat Maternal PregnancyRelated		ALogPS, OEstate	10	134	30	73		0.58							-99.1 8.13		83

DEV rat Maternal PregnancyRelated	LibS VM	CDK	11	132	31	72	246	0.58	0.26	0.13	0.18	0.13	0.81	0.47	-99.1 8.16	.072	83
DEV rat Maternal PregnancyRelated	LibS VM	Chemaxo n	21	126	38	62	247	0.6	0.36	0.25	0.3	0.25	0.77	0.51	-99.0 8.39	0.02	83
DEV rat Maternal PregnancyRelated	LibS VM	Dragon6	12	131	33	71	247	0.58	0.27	0.14	0.19	0.14	0.8	0.47	-99.1 8.16	.069	83
DEV rat Maternal PregnancyRelated	LibS VM	Fragment or	15	137	27	68	247	0.62	0.36	0.18	0.24	0.18	0.84	0.51	-99.0 8.58	0.02	83
DEV rat Maternal	LibS																
PregnancyRelated DEV rat Maternal	LibS	GSFrag	19	126	38	64	247	0.59	0.33	0.23	0.27	0.23	0.77	0.5	-99.0 8.33	.003	83
PregnancyRelated DEV rat Maternal	VM LibS	Inductive Mera,	24	127	37	59	247	0.61	0.39	0.29	0.33	0.29	0.77	0.53	-98.9 8.51	0.07	83
PregnancyRelated	VM LibS	Mersy	13	137	27	70	247	0.61	0.33	0.16	0.21	0.16	0.84	0.5	-99.0 8.47	.01	83
DEV rat Maternal PregnancyRelated	VM	QNPR	9	133	31	74	247	0.57	0.23	0.11	0.15	0.11	0.81	0.46	-99.1 8.01	.103	83
DEV rat Maternal PregnancyRelated DEV rat Maternal	LibS VM MLR	Spectrop hores	14	145	19	69	247	0.64	0.42	0.17	0.24	0.17	0.88	0.53	-98.9 8.93	0.07	83
PregnancyRelated DEV rat Maternal	A MIR	Adriana ALogPS,	41	82	81	42	246	0.5	0.34	0.49	0.4	0.49	0.5	0.5	-99.0 7.49	.003	83
PregnancyRelated DEV rat Maternal	A MLR	OEstate	40	81	83	43	247	0.49	0.33	0.48	0.39	0.48	0.49	0.49	-99.0 7.45	.023	83
PregnancyRelated DEV rat Maternal PregnancyRelated	A MLR A	CDK Chemaxo n	37 44	79 97	84 67	46 39	246	0.47	0.31	0.45	0.36	0.45	0.48	0.47	-99.1 7.4 -98.9 7.84	0.12	83 83
DEV rat Maternal PregnancyRelated DEV rat Maternal	MLR A MLR	Dragon6 Fragment	44	79	85	39	247	0.5	0.34	0.53	0.42	0.53	0.48	0.51	-99.0 7.4	0.01	83
PregnancyRelated DEV rat Maternal PregnancyRelated	A MLR A	or GSFrag	39 44	88	76 82	39	247	0.51	0.34	0.47	0.39	0.47	0.54	0.5	-99.0 7.62 -99.0 7.47		83 83
DEV rat Maternal PregnancyRelated	MLR A	Inductive	39	102	62	44	247	0.57	0.39	0.47	0.42	0.47	0.62	0.55	-98.9 7.97	0.09	83
DEV rat Maternal PregnancyRelated DEV rat Maternal	A MLR	Mera, Mersy	36	86	78	47	247	0.49	0.32	0.43	0.37	0.43	0.52	0.48	-99.0 7.56	.04	83
PregnancyRelated DEV rat Maternal PregnancyRelated	A MLR A	QNPR Spectrop hores	38 41	91 95	73 69	45 42	247	0.52	0.34	0.46	0.39	0.46	0.55	0.51	-99.0 7.69 -98.9 7.79		83 83
DEV rat Maternal PregnancyRelated	PLS	Adriana	48	77	86	35	246	0.51	0.36	0.58	0.44	0.58	0.47	0.53	-98.9 7.34		83
DEV rat Maternal PregnancyRelated	PLS	ALogPS, OEstate	38	91	73	45	247	0.52	0.34	0.46	0.39	0.46	0.55	0.51	-99.0 7.69	0.01	83
DEV rat Maternal PregnancyRelated DEV rat Maternal	PLS	CDK Chemaxo	37	94	69	46	246	0.53	0.35	0.45	0.39	0.45	0.58	0.51	-99.0 7.77		83
PregnancyRelated DEV rat Maternal PregnancyRelated	PLS PLS	n Dragon6	36 31	89 96	75 68	47 52	247	0.51	0.32	0.43	0.37	0.43	0.54	0.49	-99.0 7.63 -99.0 7.75	.022	83 83
DEV rat Maternal PregnancyRelated DEV rat Maternal	PLS	Fragment or	32	95	69	51	247	0.51	0.32	0.39	0.35	0.39	0.58	0.48	-99.0 7.74	.034	83
PregnancyRelated	PLS	GSFrag	46	81	83	37	247	0.51	0.36	0.55	0.43	0.55	0.49	0.52	-99.0 7.44	0.05	83

DEV rat Maternal																		
	DI C	landeration	45	00	75	20	047	0.54	0.00	0.54	0.44	0.54	0.54	0.54	00.0	7.04	0.00	0.
PregnancyRelated	PL3	Inductive Mera,	45	89	75	38	247	0.54	0.38	0.54	0.44	0.54	0.54	0.54	-98.9	.04	U.U8	83
DEV rat Maternal PregnancyRelated	PLS	Mersy	37	102	62	46	247	0.56	0.37	0.45	0.41	0.45	0.62	0.53	-98.9	7 96	0.07	83
DEV rat Maternal		morey	<u> </u>					0.00	0.01	0.10	0.11	0.10	0.02	0.00	00.0		0.01	
PregnancyRelated	PLS	QNPR	34	87	77	49	247	0.49	0.31	0.41	0.35	0.41	0.53	0.47	-99.1	7.56	.057	83
DEV rat Maternal		Spectrop																
PregnancyRelated	PLS	hores	36	92	72	47	247	0.52	0.33	0.43	0.38	0.43	0.56	0.5	-99.0	7.7	.005	83
DEV rat Maternal	140	A -l-:	00	440	50	-4	0.40	0.50	0.00	0.00	0.00	0.00	0.07	0.50	00.0	2.45	0.00	0.0
PregnancyRelated	J48	Adriana	32	110	53	51	246	0.58	0.38	0.39	0.38	0.39	0.67	0.53	-98.9	3.15	0.06	83
		AL caDC																
DEV rat Maternal PregnancyRelated	J48	ALogPS, OEstate	33	90	74	50	247	0.5	0.31	0.4	0.35	0.4	0.55	0.47	-99.1	7 63	051	83
DEV rat Maternal	J+0	OLSIAIC	55	30	74	30	241	0.5	0.51	0.4	0.55	0.4	0.55	0.47	-33.1	7.00	.001	
PregnancyRelated	J48	CDK	30	104	59	53	246	0.54	0.34	0.36	0.35	0.36	0.64	0.5	-99.0	7.96	.001	83
DEV rat Maternal		Chemaxo																
PregnancyRelated	J48	n	32	103	61	51	247	0.55	0.34	0.39	0.36	0.39	0.63	0.51	-99.0	7.94	0.01	83
DEV rat Maternal																		
PregnancyRelated	J48	Dragon6	33	106	58	50	247	0.56	0.36	0.4	0.38	0.4	0.65	0.52	-99.0	3.03	0.04	83
DEV rat Maternal	140	Fragment	0.0	465	o .		o : =	0		0.01	0.00		0.00		00.0	7.00	00:	_
PregnancyRelated	J48	or	28	103	61	55	247	0.53	0.31	0.34	0.33	0.34	0.63	0.48	-99.0	7.89	.034	83
DEV rat Maternal PregnancyRelated	J48	GSFrag	30	105	59	53	247	0.55	0.34	0.36	0.35	0.36	0.64	0.5	-99.0	7 97	0.	83
	3-10	JOI 149		100			<u></u> TI	0.00	0.07	0.00	0.00	0.00	0.07	0.0	00.0		<u>J.</u>	
DEV rat Maternal PregnancyRelated	J48	Inductive	35	111	53	48	247	0.59	0.4	0.42	0.41	0.42	0.68	0.55	-98.9	3.19	0.1	83
DEV rat Maternal		Mera,										<u>`</u>						
PregnancyRelated	J48	Mersy	32	118	46	51	247	0.61	0.41	0.39	0.4	0.39	0.72	0.55	-98.9	3.36	0.11	83
DEV rat Maternal		01105		46-			<u> </u>			• • • •	•							
PregnancyRelated	J48	QNPR	32	105	59	51	247	0.55	0.35	0.39	0.37	0.39	0.64	0.51	-99.0	8.	0.03	83
DEV rat Maternal	J48	Spectrop hores	29	121	43	54	247	0.61	0.4	0.35	0.37	0.35	0.74	0.54	-98.9	0 11	0.00	83
PregnancyRelated	J 4 0	110168	29	121	45	34	241	0.01	0.4	0.33	0.57	0.55	0.74	0.54	-90.9	3.41	0.09	- 00
DEM	FSM	Mera,																
DEV rat Maternal PregnancyRelated	LR	Mersy	39	103	61	44	247	0.57	0.39	0.47	0.43	0.47	0.63	0.55	-98.9	7.99	0.09	83
MGR rat										••••		••••						
emaleReproductiveT																		
act	RF	Adriana	19	110	86	24	239	0.54	0.18	0.44	0.26	0.44	0.56	0.5	-99.0	3.41	0.	
																		43
MGR rat		A.L. DO														-		43
emaleReproductiveT		ALogPS,	07	400	0.4	47	0.40	0.54	0.00	0.04	0.00	0.04	0.50	0.57	00.0		-	
FemaleReproductiveT act	RF	ALogPS, OEstate	27	102	94	17	240	0.54	0.22	0.61	0.33	0.61	0.52	0.57	-98.9		0.1	
FemaleReproductiveT act MGR rat	RF	-	27	102	94	17	240	0.54	0.22	0.61	0.33	0.61	0.52	0.57	-98.9		-	
FemaleReproductiveT act	RF	-	27	102	94	17	240	0.54	0.22	0.61	0.33	0.61	0.52	0.57	-98.9 (-99.0 (6.26	0.1	44
FemaleReproductiveT act MGR rat FemaleReproductiveT	RF	OEstate CDK		-												6.26	0.1	44
FemaleReproductiveT act MGR rat FemaleReproductiveT act MGR rat FemaleReproductiveT	RF RF	OEstate CDK Chemaxo	21	109	86	23	239	0.54	0.2	0.48	0.28	0.48	0.56	0.52	-99.0	6.26 6.46	0.1	44
FemaleReproductiveT act MGR rat FemaleReproductiveT act MGR rat FemaleReproductiveT act	RF RF	OEstate CDK		-					0.2		0.28		0.56			6.26 6.46	0.1	44
FemaleReproductiveT act MGR rat FemaleReproductiveT act MGR rat FemaleReproductiveT act MGR rat MGR rat MGR rat	RF RF	OEstate CDK Chemaxo	21	109	86	23	239	0.54	0.2	0.48	0.28	0.48	0.56	0.52	-99.0	6.26 6.46	0.1	44
FemaleReproductiveT act MGR rat FemaleReproductiveT act MGR rat FemaleReproductiveT act	RF RF	OEstate CDK Chemaxo	21	109	86	23	239	0.54	0.2	0.48	0.28	0.48	0.56	0.52	-99.0	6.26 6.46 6.27	0.1	44
FemaleReproductiveT act MGR rat FemaleReproductiveT act MGR rat FemaleReproductiveT act MGR rat FemaleReproductiveT	RF RF	CDK Chemaxon Dragon6	21	109	86	23	239	0.54	0.2	0.48	0.28	0.48	0.56	0.52	-99.0 (-99.0 (6.26 6.46 6.27	0.1	44
FemaleReproductiveT act MGR rat FemaleReproductiveT act MGR rat FemaleReproductiveT act MGR rat FemaleReproductiveT act MGR rat FemaleReproductiveT act MGR rat FemaleReproductiveT	RF RF RF	CDK Chemaxon Dragon6 Fragment	21 21 20	109	86 96 83	23 23 24	239 240 240	0.54 0.5 0.55	0.2 0.18 0.19	0.48 0.48 0.45	0.28 0.26 0.27	0.48 0.48 0.45	0.56 0.51 0.58	0.52	-99.0 (-99.0 (6.26 6.46 6.27	0.1 0.03 .01 0.02	44 44 44
FemaleReproductiveT act MGR rat FemaleReproductiveT act	RF RF RF	CDK Chemaxon Dragon6	21	109	86	23	239	0.54	0.2	0.48 0.48 0.45	0.28	0.48 0.48 0.45	0.56	0.52	-99.0 (-99.0 (6.26 6.46 6.27	0.1 0.03 .01 0.02	44 44 44
FemaleReproductiveT act MGR rat FemaleReproductiveT	RF RF RF	CDK Chemaxon Dragon6 Fragment	21 21 20	109	86 96 83	23 23 24	239 240 240	0.54 0.5 0.55	0.2 0.18 0.19	0.48 0.48 0.45	0.28 0.26 0.27	0.48 0.48 0.45	0.56 0.51 0.58	0.52	-99.0 (-99.0 (6.26 6.46 6.27	0.1 0.03 .01 0.02	44
FemaleReproductiveT act MGR rat FemaleReproductiveT act	RF RF RF	CDK Chemaxon Dragon6 Fragment	21 21 20	109	86 96 83	23 23 24	239 240 240	0.54 0.5 0.55	0.2 0.18 0.19 0.17	0.48 0.48 0.45	0.28 0.26 0.27 0.26	0.48 0.48 0.45	0.56 0.51 0.58 0.46	0.52	-99.0 (-99.0 (6.26 6.46 6.27 6.53	0.1 0.03 .01 0.02	444
FemaleReproductiveT act MGR rat FemaleReproductiveT	RF RF RF	OEstate CDK Chemaxo n Dragon6 Fragment or	21 21 20 22	109 100 113 91	86 96 83	23 23 24 22	239 240 240 240	0.54 0.5 0.55 0.47	0.2 0.18 0.19 0.17	0.48 0.48 0.45	0.28 0.26 0.27 0.26	0.48 0.48 0.45	0.56 0.51 0.58 0.46	0.52 0.49 0.52 0.48	-99.0 (-99.0 (-99.0 (6.26 6.46 6.27 6.53	0.1 0.03 .01 0.02	444
FemaleReproductiveT act MGR rat FemaleReproductiveT	RF RF RF RF	CDK Chemaxo n Dragon6 Fragment or GSFrag	21 21 20 22 20	109 100 113 91 115	86 96 83 105	23 23 24 22 24	239 240 240 240	0.54 0.55 0.47 0.56	0.2 0.18 0.19 0.17	0.48 0.45 0.5 0.45	0.28 0.26 0.27 0.26 0.28	0.48 0.48 0.45 0.5	0.56 0.51 0.58 0.46 0.59	0.52 0.49 0.52 0.48	-99.0 (-99.0 (-99.0 (3.26 3.46 3.53 3.53 3.53	0.1 0.03 .01 0.02 .028 0.03	42 44 44 44
FemaleReproductiveT act MGR rat FemaleReproductiveT act	RF RF RF RF	OEstate CDK Chemaxo n Dragon6 Fragment or	21 21 20 22	109 100 113 91	86 96 83	23 23 24 22	239 240 240 240	0.54 0.5 0.55 0.47	0.2 0.18 0.19 0.17	0.48 0.48 0.45	0.28 0.26 0.27 0.26 0.28	0.48 0.48 0.45	0.56 0.51 0.58 0.46 0.59	0.52 0.49 0.52 0.48	-99.0 (-99.0 (-99.0 (3.26 3.46 3.53 3.53 3.53	0.1 0.03 .01 0.02 .028 0.03	444444444444444444444444444444444444444
FemaleReproductiveT act MGR rat FemaleReproductiveT act	RF RF RF RF	OEstate CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive	21 21 20 22 20	109 100 113 91 115	86 96 83 105	23 23 24 22 24	239 240 240 240	0.54 0.55 0.47 0.56	0.2 0.18 0.19 0.17	0.48 0.45 0.5 0.45	0.28 0.26 0.27 0.26 0.28	0.48 0.48 0.45 0.5	0.56 0.51 0.58 0.46 0.59	0.52 0.49 0.52 0.48	-99.0 (-99.0 (-99.0 (3.26 3.46 3.53 3.53 3.53	0.1 0.03 .01 0.02 .028 0.03	444444444444444444444444444444444444444
FemaleReproductiveT act MGR rat FemaleReproductiveT act	RF RF RF RF	OEstate CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive Mera,	21 21 20 22 20 24	109 100 113 91 115 120	86 96 83 105 81	23 23 24 22 24 20	240 240 240 240 240	0.54 0.55 0.47 0.56	0.2 0.18 0.19 0.17 0.2 0.24	0.48 0.45 0.5 0.45	0.28 0.26 0.27 0.26 0.28	0.48 0.45 0.5 0.45	0.56 0.51 0.58 0.46 0.59 0.61	0.52 0.49 0.52 0.48 0.52	-99.0 (-99.0 (-99.0 (-99.0 (3.26 3.46 3.53 3.53 3.67	0.1 0.03 .01 0.02 .028 0.03 0.12	444444444444444444444444444444444444444
FemaleReproductiveT act MGR rat FemaleReproductiveT act	RF RF RF RF	OEstate CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive	21 21 20 22 20	109 100 113 91 115	86 96 83 105	23 23 24 22 24	239 240 240 240	0.54 0.55 0.47 0.56	0.2 0.18 0.19 0.17	0.48 0.45 0.5 0.45	0.28 0.26 0.27 0.26 0.28	0.48 0.48 0.45 0.5	0.56 0.51 0.58 0.46 0.59	0.52 0.49 0.52 0.48	-99.0 (-99.0 (-99.0 (3.26 3.46 3.53 3.53 3.53	0.1 0.03 .01 0.02 .028 0.03 0.12	444444444444444444444444444444444444444
FemaleReproductiveT act MGR rat FemaleReproductiveT	RF RF RF RF RF	OEstate CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive Mera, Mersy	21 21 20 22 20 24 22	109 100 113 91 115 120	86 96 83 105 81 76	23 23 24 22 24 20	240 240 240 240 240	0.54 0.55 0.47 0.56 0.6	0.18 0.19 0.17 0.2 0.24	0.48 0.45 0.5 0.45 0.55	0.28 0.26 0.27 0.26 0.28 0.33	0.48 0.45 0.5 0.45 0.55	0.56 0.51 0.58 0.46 0.59 0.61 0.59	0.52 0.49 0.52 0.48 0.52 0.58	-99.0 (-99.0 (-99.0 (-99.0 (-98.8 (-98.9	3.26 3.46 3.27 3.53 3.53 3.67 6.6	0.1 0.03 .01 0.02 .028 0.03 0.12	444444444444444444444444444444444444444
FemaleReproductiveT act MGR rat	RF RF RF RF RF	OEstate CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive Mera,	21 21 20 22 20 24	109 100 113 91 115 120	86 96 83 105 81	23 23 24 22 24 20	240 240 240 240 240	0.54 0.55 0.47 0.56	0.18 0.19 0.17 0.2 0.24	0.48 0.45 0.5 0.45	0.28 0.26 0.27 0.26 0.28 0.33	0.48 0.45 0.5 0.45	0.56 0.51 0.58 0.46 0.59 0.61 0.59	0.52 0.49 0.52 0.48 0.52	-99.0 (-99.0 (-99.0 (-99.0 (3.26 3.46 3.27 3.53 3.53 3.67 6.6	0.1 0.03 .01 0.02 .028 0.03 0.12	444444444444444444444444444444444444444
FemaleReproductiveT act MGR rat FemaleReproductiveT act	RF RF RF RF RF	OEstate CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive Mera, Mersy QNPR	21 21 20 22 20 24 22	109 100 113 91 115 120	86 96 83 105 81 76	23 23 24 22 24 20 22	240 240 240 240 240 240	0.54 0.55 0.47 0.56 0.6	0.18 0.19 0.17 0.2 0.24	0.48 0.45 0.5 0.45 0.55	0.28 0.26 0.27 0.26 0.28 0.33	0.48 0.45 0.5 0.45 0.55	0.56 0.51 0.58 0.46 0.59 0.61 0.59	0.52 0.49 0.52 0.48 0.52 0.58	-99.0 (-99.0 (-99.0 (-99.0 (-98.8 (-98.9	3.26 3.46 3.27 3.53 3.53 3.67 6.6	0.1 0.03 .01 0.02 .028 0.03 0.12 0.07	42 42 42 42 42
FemaleReproductiveT act MGR rat FemaleReproductiveT act	RF RF RF RF RF	OEstate CDK Chemaxo n Dragon6 Fragment or GSFrag Inductive Mera, Mersy	21 21 20 22 20 24 22	109 100 113 91 115 120	86 96 83 105 81 76	23 23 24 22 24 20 22	240 240 240 240 240 240	0.54 0.55 0.47 0.56 0.6 0.58	0.2 0.18 0.19 0.17 0.2 0.24 0.22	0.48 0.45 0.5 0.45 0.55	0.28 0.26 0.27 0.26 0.33 0.33	0.48 0.45 0.5 0.45 0.55 0.55	0.56 0.51 0.58 0.46 0.59 0.61 0.59	0.52 0.49 0.52 0.48 0.52 0.58	-99.0 (-99.0 (-99.0 (-99.0 (-98.8 (-98.9	3.26 3.46 3.27 3.53 3.67 6.6	0.1 0.03 .01 0.02 .028 0.03 0.12 0.07 0.1	444

MCD rot																	
MGR rat FemaleReproductiveT ract	ASN N	Adriana	19	120	76	24	239	0.58	0.2	0.44	0.28	0.44	0.61	0.53	-98.9 6.6	2 0 04	43
	11	Adriana	10	120	70		200	0.50	0.2	0.77	0.20	0.77	0.01	0.00	-30.3 0.0	2 0.04	70
MGR rat FemaleReproductiveT	ASN	ALogPS,															
ract	N	OEstate	25	113	83	19	240	0.58	0.23	0.57	0.33	0.57	0.58	0.57	-98.9 6.5	2 0.11	44
MGR rat FemaleReproductiveT	ASN																
ract	N	CDK	23	114	81	21	239	0.57	0.22	0.52	0.31	0.52	0.58	0.55	-98.9 6.5	7 0.08	44
MGR rat																	
FemaleReproductiveT	ASN	Chemaxo															
ract	N	n	18	125	71	26	240	0.6	0.2	0.41	0.27	0.41	0.64	0.52	-99.0 6.7	6 0.04	44
MGR rat FemaleReproductiveT	ASN																
ract	N	Dragon6	19	140	56	25	240	0.66	0.25	0.43	0.32	0.43	0.71	0.57	-98.9 7.1	2 0.12	44
MCP rot																	
FemaleReproductiveT	ASN	Fragment															
ract	N	or	17	116	80	27	240	0.55	0.18	0.39	0.24	0.39	0.59	0.49	-99.0 6.5	55 .017	44
MGR rat	ΔСИ																
FemaleReproductiveT ract	N	GSFrag	23	115	81	21	240	0.58	0.22	0.52	0.31	0.52	0.59	0.55	-98.9 6.5	7 0 00	44
MCP rat		JOI Tay	23	110	01	۷ ۱	240	0.50	V.ZZ	0.02	0.01	0.02	0.08	0.00	-50.5 0.0	0.08	
MGR rat FemaleReproductiveT	ASN																
ract	N	Inductive	18	132	64	26	240	0.63	0.22	0.41	0.29	0.41	0.67	0.54	-98.9 6.9	0.07	44
MGR rat	A 0 k i	More															
FemaleReproductiveT		Mera:	40	400	C 4	00	040	0.00	0.00	0.44	0.00	0.44	0.07	0.54	000 00	4 0 0 7	
ract	N	Mersy	18	132	64	26	240	0.63	0.22	0.41	0.29	0.41	0.67	0.54	-98.9 6.9	0.07	44
MGR rat FemaleReproductiveT	ASN																
ract	N	QNPR	21	127	69	23	240	0.62	0.23	0.48	0.31	0.48	0.65	0.56	-98.9 6.8	3 0.1	44
MGR rat									•								
FemaleReproductiveT	ASN	Spectrop															
ract	N	hores	17	133	63	27	240	0.63	0.21	0.39	0.27	0.39	0.68	0.53	-98.9 6.9	2 0.05	44
MGR rat	A CNI	CDK TA															
FemaleReproductiveT ract	N	TP	18	135	60	26	239	0.64	0.23	0.41	0.2	0.41	0.69	0.55	000	7. 0.08	11
	IN	IF	10	133	00	20	239	0.04	0.23	0.41	0.3	0.41	0.09	0.55	-98.9	7. 0.06	44
MGR rat FemaleReproductiveT	ASN																
ract	N	CDK, TA	16	134	61	28	239	0.63	0.21	0.36	0.26	0.36	0.69	0.53	-98.9 6.9	4 0.04	44
MGR rat		·															
FemaleReproductiveT	ASN																
ract	N	CDK, TP	19	143	52	25	239	0.68	0.27	0.43	0.33	0.43	0.73	0.58	-98.8 7.2	21 0.14	44
MGR rat	ΔςΝ																
FemaleReproductiveT ract	N	TA, TP	19	139	57	25	240	0.66	0.25	0.43	0.32	0.43	0.71	0.57	-98.9 7.	1 0.12	44
MGR rat	14	177, 11	10	100	01	20	240	0.00	0.23	0.40	0.02	0.40	0.7 1	0.57	-30.5 7.	.1 0.12	
FemaleReproductiveT	ASN																
ract	N	TA	16	142	54	28	240	0.66	0.23	0.36	0.28	0.36	0.72	0.54	-98.9 7.1	11 0.08	44
MGR rat	A C. L.																
FemaleReproductiveT	ASN	TD	47	4.40	5 0	0.7	040	0.00	0.05	0.00	0.04	0.00	0.74	0.53	000 70	4 6 44	
ract	N	TP	17	146	50	27	240	0.68	0.25	0.39	0.31	0.39	0.74	0.57	-98.9 7.2	4 U.11	44
MGR rat	ECM	CDK TA															
FemaleReproductiveT			22	120	75	22	220	0 50	0.22	0.5	0.24	0.5	0.60	0.50	000 60	0 0 00	11
ract	LR	TP	22	120	75	22	239	0.59	0.23	0.5	0.31	0.5	0.62	0.00	-98.9 6.6	0.09	44
MGR rat	ESM																
FemaleReproductiveT ract	LR	CDK, TA	20	119	76	24	239	0.58	0 21	0.45	0.29	0.45	0.61	0.53	-98.9 6.6	7 0 05	44
	-11	JDIN, IA		110	, 0		200	0.00	V.Z I	0.70	0.20	0.70	0.01	0.00	00.0 0.0	. 0.00	77
MGR rat FemaleReproductiveT	FSM																
ract	LR	CDK, TP	20	128	67	24	239	0.62	0.23	0.45	0.31	0.45	0.66	0.56	-98.9 6.8	6 0.09	44
		, ··													22.0 3.0		
MGR rat FemaleReproductiveT	FSM																
ract	LR	TA, TP	17	131	65	27	240	0.62	0.21	0.39	0.27	0.39	0.67	0.53	-98.9 6.8	7 0.04	44
		•	•			•											
	FSM																
MGR rat	. D	TA	21	130	66	23	240	0.63	0.24	0.48	0.32	0.48	0.66	0.57	-98.9 6.	.9 0.11	44
FemaleReproductiveT	LR				_	_	-										
MGR rat FemaleReproductiveT ract	LK																
FemaleReproductiveT ract																	
FemaleReproductiveT ract	FSM	TP	19	131	65	25	240	0.63	0.23	0.43	0.3	0.43	0.67	0.55	-98.9 6.9	1 0.08	44

MGR rat																	
FemaleReproductiveT		CDK, TA,															
ract	KNN	TP	42	8	187	2	239	0.21	0.18	0.95	0.31	0.95	0.04	0.5	-99.0 1.57	.009	44
MGR rat FemaleReproductiveT																	
ract		CDK, TA	31	47	148	13	239	0.33	0.17	0.7	0.28	0.7	0.24	0.47	-99.1 4.91	.049	44
MGR rat																	
FemaleReproductiveT		CDV TD	20	444	0.4	00	000	0.50	0.04	٥.	0.00	0.5	0.57	0.50	000 05	0.05	4.4
ract	KININ	CDK, TP	22	111	84	22	239	0.56	0.21	0.5	0.29	0.5	0.57	0.53	-98.9 6.5	0.05	44
MGR rat FemaleReproductiveT																	
ract		TA, TP	41	14	182	3	240	0.23	0.18	0.93	0.31	0.93	0.07	0.5	-99.0 2.45	0.	44
MGR rat																	
FemaleReproductiveT		Τ.	00	7.5	404	44	040	0.45	0.04	0.75	0.00	0.75	0.00	0.57	000 5 40	0.44	
ract	KNN	IA	33	75	121	11	240	0.45	0.21	0.75	0.33	0.75	0.38	0.57	-98.9 5.48	0.11	44
MGR rat FemaleReproductiveT																	
ract	KNN	TP	15	136	60	29	240	0.63	0.2	0.34	0.25	0.34	0.69	0.52	-99.0 6.94	0.03	44
MGR rat																	
FemaleReproductiveT	LibS	CDK, TA,															
ract	VM	TP	2	194	1	42	239	0.82	0.67	0.05	0.09	0.05	0.99	0.52	-99.0 9.53	0.14	44
MGR rat																	
FemaleReproductiveT		0014	_	465	_		000			0.6-			0.00	0.50	000	0.00	
ract	VM	CDK, TA	3	188	7	41	239	8.0	0.3	0.07	0.11	0.07	0.96	0.52	-99.0 8.2	0.06	44
MGR rat	Like																
FemaleReproductiveT		CDK, TP	6	173	22	20	220	0.75	0.21	0.14	0.17	0.14	0 00	0.51	00 0 7 57	0.02	44
ract	VM	CDK, IF	6	173		38	239	0.75	0.21	0.14	0.17	0.14	0.09	0.51	-99.0 7.57	0.03	44
MGR rat FemaleReproductiveT	LihS																
ract	VM	TA, TP	1	194	2	43	240	0.81	0.33	0.02	0.04	0.02	0.99	0.51	-99.0 8.53	0.04	44
-	VIVI	171, 11		10-1		70	2-10	0.01	0.00	0.02	0.04	0.02	0.00	0.01	00.0 0.00	0.04	
MGR rat FemaleReproductiveT	LibS																
ract	VM	TA	5	192	4	39	240	0.82	0.56	0.11	0.19	0.11	0.98	0.55	-98.9 9.14	0.19	44
MGR rat																	
FemaleReproductiveT	LibS																
ract	VM	TP	5	181	15	39	240	0.78	0.25	0.11	0.16	0.11	0.92	0.52	-99.0 7.84	0.05	44
MGR rat	MLD	CDK TA															
FemaleReproductiveT	A	TP	21	95	100	23	239	0.49	0.17	0.48	0.25	0.48	0.49	0.48	-99.0 6.17	028	44
MGR rat	Α	ır	<u> </u>	95	100	23	239	0.49	0.17	0.40	0.23	0.40	0.49	0.40	-99.0 0.17	.020	44
FemaleReproductiveT	MLR																
ract	Α	CDK, TA	20	112	83	24	239	0.55	0.19	0.45	0.27	0.45	0.57	0.51	-99.0 6.52	0.02	44
MGR rat	MID																
FemaleReproductiveT	A	CDK, TP	27	119	76	17	239	0.61	0.26	0.61	0.37	0.61	0.61	0.61	-98.8 6.62	0.10	44
	Α	CDR, IF	21	119	70	17	239	0.01	0.20	0.01	0.37	0.01	0.01	0.01	-90.0 0.02	0.10	
MGR rat FemaleReproductiveT	MLR																
ract	Α	TA, TP	20	95	101	24	240	0.48	0.17	0.45	0.24	0.45	0.48	0.47	-99.1 6.16	.047	44
MGR rat	MID																
FemaleReproductiveT		ТΛ	20	102	04	24	240	0.51	O 10	0.45	0.25	0.45	0.52	0.40	000 63	010	44
MGR rat	Α	TA	20	102	94	24	240	0.51	0.18	0.40	0.25	0.40	0.52	0.49	-99.0 6.3	.019	44
FemaleReproductiveT	MLR																
ract	Α	TP	24	108	88	20	240	0.55	0.21	0.55	0.31	0.55	0.55	0.55	-98.9 6.42	0.07	44
MGR rat		CDK TA															
FemaleReproductiveT	PLS	CDK, TA,	17	126	60	27	230	0.6	0.2	U 30	0.26	U 30	0.65	0.52	_000 6 70	U U3	11
ract	гьэ	1F	17	126	69	27	239	0.6	0.2	0.39	0.26	0.39	0.65	0.52	-99.0 6.78	0.03	44
MGR rat FemaleReproductiveT																	
ract		CDK, TA	16	133	62	28	239	0.62	0.21	0.36	0.26	0.36	0.68	0.52	-99.0 6.91	0.04	44
MGR rat																	
FemaleReproductiveT		CDV TD	22	100	EC	24	220	0.00	0.00	0.50	0.07	0.50	0.74	0.00	000 740	0.40	,,
ract	PLS	CDK, TP	23	139	56	21	239	0.68	0.29	0.52	0.37	0.52	0.71	0.62	-98.8 7.13	0.19	44
MGR rat FemaleReproductiveT																	
ract		TA, TP	19	139	57	25	240	0.66	0.25	0.43	0.32	0.43	0.71	0.57	-98.9 7.1	0.12	44
MGR rat																	
FemaleReproductiveT		Τ.	4-	404	00	^ -	0.40	0.00	0.00	0.00	0.00	0.00	0.00	0.54	000 001	0.00	
ract	PLS	IA	17	134	62	27	240	0.63	0.22	0.39	0.28	0.39	0.68	0.54	-98.9 6.94	0.06	44

MGR rat FemaleReproductiveT																
ract	PLS	TP	18	141	55	26	240	0.66	0.25	0.41	0.31	0.41	0.72	0.56	-98.9 7.13 0.11	44
MGR rat																
FemaleReproductiveT		CDK, TA,														
ract	J48	TP	15	134	61	29	239	0.62	0.2	0.34	0.25	0.34	0.69	0.51	-99.0 6.91 0.02	44
MGR rat																
FemaleReproductiveT		CDK TA	17	1/2	5 2	27	220	0.67	0.25	0.20	0.2	0.20	0.72	0.56	000 710 01	44
ract	J48	CDK, TA	17	143	52	27	239	0.67	0.25	0.39	0.3	0.39	0.73	0.56	-98.9 7.18 0.1	44
MGR rat FemaleReproductiveT																
ract	J48	CDK, TP	16	146	49	28	239	0.68	0.25	0.36	0.29	0.36	0.75	0.56	-98.9 7.24 0.1	44
MGR rat	0.0	0211, 11						0.00	0.20	0.00	0.20	0.00	00	0.00	00.0 1.21 0.1	
FemaleReproductiveT																
ract	J48	TA, TP	17	132	64	27	240	0.62	0.21	0.39	0.27	0.39	0.67	0.53	-98.9 6.9 0.05	44
MGR rat																
FemaleReproductiveT																
ract	J48	TA	22	130	66	22	240	0.63	0.25	0.5	0.33	0.5	0.66	0.58	-98.8 6.9 0.13	44
MGR rat																
FemaleReproductiveT		TD	10	142	E 1	24	240	0.62	0.16	0.22	0.10	0.22	0.72	0.40	00 0 6 95 042	44
ract	J48	TP	10	142	54	34	240	0.63	0.16	0.23	0.19	0.23	0.72	0.48	-99.0 6.85 .042	44
MGR rat FemaleReproductiveT		CDK, TA,														
ract	RF	TP	22	99	96	22	239	0.51	0.19	0.5	0.27	0.5	0.51	0.5	-99.0 6.26 0.01	44
MGR rat		•													22.2 2.20 0.01	\dashv
FemaleReproductiveT																
ract	RF	CDK, TA	21	99	96	23	239	0.5	0.18	0.48	0.26	0.48	0.51	0.49	-99.0 6.26 .012	44
MGR rat																
FemaleReproductiveT																
ract	RF	CDK, TP	23	106	89	21	239	0.54	0.21	0.52	0.29	0.52	0.54	0.53	-98.9 6.4 0.05	44
MGR rat																
FemaleReproductiveT		TA TD	24	00	00	20	240	O E 1	0.0	0.55	0.20	0.55	0.5	0.50	000 632 004	4.4
ract	RF	TA, TP	24	98	98	20	240	0.51	0.2	0.55	0.29	0.55	0.5	0.52	-99.0 6.22 0.04	44
MGR rat																
FemaleReproductiveT ract	RF	TA	25	101	95	19	240	0.53	0.21	0.57	0.3	0.57	0.52	0.54	-98.9 6.27 0.06	44
MGR rat		.,,						0.00	0.21	0.07	0.0	0.01	0.02	0.01	00.0 0.27 0.00	
FemaleReproductiveT																
ract	RF	TP	15	121	75	29	240	0.57	0.17	0.34	0.22	0.34	0.62	0.48	-99.0 6.6 .033	44
MCD rot																
MGR rat FemaleReproductiveT	FSM															
ract	LR	Adriana	26	95	101	17	239	0.51	0.2	0.6	0.31	0.6	0.48	0.54	-98.9 6.08 0.07	43
MGR rat FemaleReproductiveT	FSM	ALogPS,														
ract	LR	OEstate	28	99	97	16	240	0.53	0.22	0.64	0.33	0.64	0.51	0.57	-98.9 6.17 0.11	44
						· ·		-								
MGR rat FemaleReproductiveT	FSM															
ract	LR	CDK	24	108	87	20	239	0.55	0.22	0.55	0.31	0.55	0.55	0.55	-98.9 6.43 0.08	44
MGR rat FemaleReproductiveT	FSM	Chemaxo														
ract	LR	n	27	113	83	17	240	0.58	0.25	0.61	0.35	0.61	0.58	0.6	-98.8 6.48 0.15	44
								0.00	0.20	0.0.	0.00	0.0.	0.00	0.0	00.0 00 00	
MGR rat FemaleReproductiveT	FSM															
ract	LR	Dragon6	28	121	75	16	240	0.62	0.27	0.64	0.38	0.64	0.62	0.63	-98.7 6.63 0.2	44
		Bragono				-10	2-10	0.02	0.21	0.0-1	0.00	0.04	0.02	0.00	00.7 0.00 0.2	
MGR rat FemaleReproductiveT	FSM	Fragment														
FemaleReproductiveT ract	LR	or	21	112	84	23	240	0.55	0.2	0.48	0.28	0.48	0.57	0.52	-99.0 6.51 0.04	44
	-11	Ji	<u>- '</u>	114	J-7	20	<u>_</u> +0	0.00	0.2	0.70	0.20	0.70	0.01	0.02	00.0 0.01 0.04	77
MGR rat FemaleReproductiveT	FSM															
	. CIVI					4.0	240	0.55	0.23	0.64	0.34	0.64	0.50	0.50	000 605 040	44
ract	ΙP	GSFrag	28	1በ3	Qα	16								11 5×		
ract	LR	GSFrag	28	103	93	16	240	0.55	0.23	0.04	0.54	0.64	0.53	0.58	-98.8 6.25 0.13	\dashv
ract MGP rat	LR	GSFrag	28	103	93	16	240	0.55	0.23	0.04	0.34	0.04	0.53	0.58	-96.6 6.25 0.13	\dashv
ract MGR rat FemaleReproductiveT	FSM	<u> </u>														
ract MGP rat	LR	GSFrag	28	103	93 67	24	240	0.62			0.34	0.45		0.58	-98.9 6.87 0.09	44
ract MGR rat FemaleReproductiveT ract	FSM LR	Inductive														
ract MGR rat FemaleReproductiveT ract	FSM LR	Inductive							0.23	0.45		0.45	0.66	0.56		

FemaleReproductiveT ract	FSM LR	QNPR	31	111	85	13	240	0.59	0.27	0.7	0.39	0.7	0.57	0.64	-98.7	6.32	0.21	44
MGR rat									-									
FemaleReproductiveT			17	124	72	27	240	0.50	0.10	0.30	0.26	0.30	0.63	0.51	00.0	6 72	0.02	44
ract MGR rat	LR	hores	17	124	72	21	240	0.59	0.19	0.39	0.26	0.39	0.63	0.51	-99.0	0.72	0.02	44
FemaleReproductiveT			40	00	407	•	000		0.40	0.00	0.00	0.00	0.45	0.54	00.0		0.00	4.0
ract	KNN	Adriana	40	29	167	3	239	0.29	0.19	0.93	0.32	0.93	0.15	0.54	-98.9	3.22	0.09	43
MGR rat FemaleReproductiveT		ALogPS,																
ract		OEstate	42	22	174	2	240	0.27	0.19	0.95	0.32	0.95	0.11	0.53	-98.9	2.62	0.09	44
MGR rat																		
FemaleReproductiveT ract	KNN	CDK	38	41	154	6	239	0.33	0.2	0.86	0.32	0.86	0.21	0.54	-98.9	4 21	0.07	44
MGR rat								0.00		0.00	0.02	0.00	0.2.	0.0.	00.0		0.0.	
FemaleReproductiveT		Chemaxo	20	44	455		040	0.00	0.40	0.00	0.04	0.00	0.04	0.54	00.0	4.40	0.00	
ract MGR rat	KNN	n	36	41	155	8	240	0.32	0.19	0.82	0.31	0.82	0.21	0.51	-99.0	4.42	0.03	44
мGR гат FemaleReproductiveT																		
ract	KNN	Dragon6	30	66	130	14	240	0.4	0.19	0.68	0.29	0.68	0.34	0.51	-99.0	5.42	0.02	44
MGR rat FemaleReproductiveT		Fragment																
ract	KNN		41	28	168	3	240	0.29	0.2	0.93	0.32	0.93	0.14	0.54	-98.9	3.2	0.09	44
MGR rat																		
FemaleReproductiveT ract	KNN	GSFrag	37	41	155	7	240	0.33	0.19	0.84	0.31	0.84	0.21	0.53	-98.9	4.32	0.05	44
MGR rat		iug			. 55		0	2.00	0.10	J.J.	J.J.	J.J.	V. <u></u> 1	0.00	00.0		0.00	
FemaleReproductiveT		lands : -4!	00	00	400	4.4	0.40	0.54	0.00	0.00	0.01	0.00	0.47	0.50	00.0	F 00	0.40	
ract	KNN	Inductive	30	93	103	14	240	0.51	0.23	0.68	0.34	0.68	0.47	0.58	-98.8	5.99	0.12	44
MGR rat FemaleReproductiveT		Mera,																
ract	KNN	Mersy	32	81	115	12	240	0.47	0.22	0.73	0.34	0.73	0.41	0.57	-98.9	5.66	0.11	44
MGR rat FemaleReproductiveT																		
ract	KNN	QNPR	43	28	168	1	240	0.3	0.2	0.98	0.34	0.98	0.14	0.56	-98.9	2.4	0.14	44
MGR rat		Cnastron																
FemaleReproductiveT ract		Spectrop hores	25	109	87	19	240	0.56	0 22	0.57	0.32	0.57	0.56	0.56	-98.9	6 43	0.1	44
	131414	110100		100		- 10	2-10	0.00	0.22	0.07	0.02	0.01	0.00	0.00	00.0	0.40	0.1	
MGR rat FemaleReproductiveT	LibS																	
ract	VM	Adriana	10	153	43	33	239	0.68	0.19	0.23	0.21	0.23	0.78	0.51	-99.0	7.12	0.01	43
MGR rat	Like	AL acDC																
FemaleReproductiveT	VM	OEstate	8	176	20	36	240	0.77	0.29	0.18	0.22	0.18	0.9	0.54	-98.9	7 89	0.1	44
	· · · · ·	OLOIGIO		110				0.11	0.20	0.10	0.22	0.10	0.0	0.01	00.0	1.00		
MGR rat FemaleReproductiveT	LibS																	
ract	VM	CDK	11	162	33	33	239	0.72	0.25	0.25	0.25	0.25	0.83	0.54	-98.9	7.53	0.08	44
MGR rat	Lihe	Chemove																
FemaleReproductiveT	VM	n	9	176	20	35	240	0.77	0.31	0.2	0.25	0.2	0.9	0.55	-98.9	7.97	0.12	44
MGR rat								V.,,	0.01		UU			0.00				
мGR rat FemaleReproductiveT	LibS																	
ract	VM	Dragon6	7	183	13	37	240	0.79	0.35	0.16	0.22	0.16	0.93	0.55	-98.9	8.25	0.13	44
MGR rat	LihS	Fragment																
FemaleReproductiveT	VM	or	6	180	16	38	240	0.78	0.27	0.14	0.18	0.14	0.92	0.53	-98.9	7.91	0.07	44
		**						0										- 1
MGR rat FemaleReproductiveT	LibS																	
ract	VM	GSFrag	16	148	48	28	240	0.68	0.25	0.36	0.3	0.36	0.76	0.56	-98.9	7.27	0.1	44
	Like																	
MGR rat	rin2			474	25	24	240	0.75	n 20	0.23	0.25	0.23	0.87	0.55	-98.9	7.8	0.11	44
FemaleReproductiveT	VM	Inductive	10	777		.74												
FemaleReproductiveT ract	VM	Inductive	10	171	25	34	240	0.75	0.23	0.20	0.20	0.20	0.01	0.00	00.0	7.0	0.11	
FemaleReproductiveT	VM		10	1/1	25	34	240	0.73	0.23	0.20	0.20	0.20	0.07	0.00		7.0	0.11	

MGR rat FemaleReproductiveT	LibS																	
ract	VM	QNPR	9	173	23	35	240	0.76	0.28	0.2	0.24	0.2	0.88	0.54	-98.9	7.82	0.1	44
MGR rat																		
FemaleReproductiveT			_	455	4.4	0.5	0.40	0.00	0.40	0.0	0.40	0.0	0.70	0.5	00.0	7 4 4	004	
ract	VM	hores	9	155	41	35	240	0.68	0.18	0.2	0.19	0.2	0.79	0.5	-99.0	7.14	.004	44
MGR rat FemaleReproductiveT	MLR																	
ract	Α	Adriana	24	108	88	19	239	0.55	0.21	0.56	0.31	0.56	0.55	0.55	-98.9	6.37	0.08	43
MGR rat FemaleReproductiveT	MLR	ALogPS,																
ract	Α	OEstate	27	95	101	17	240	0.51	0.21	0.61	0.31	0.61	0.48	0.55	-98.9	6.12	0.08	44
MGR rat																		
FemaleReproductiveT	MLR																	
ract	Α	CDK	20	120	75	24	239	0.59	0.21	0.45	0.29	0.45	0.62	0.53	-98.9	6.69	0.06	44
MGR rat	MID	Chomovo																
FemaleReproductiveT			25	127	60	10	240	0.62	0.27	0.57	0.26	0.57	0.65	0.61	00.0	6 02	0.17	44
ract	Α	n	25	127	69	19	240	0.63	0.27	0.57	0.36	0.57	0.65	0.61	-98.8	0.02	0.17	44
MGR rat FemaleReproductiveT	MLR																	
ract	Α	Dragon6	30	77	119	14	240	0.45	0.2	0.68	0.31	0.68	0.39	0.54	-98.9	5.66	0.06	44
MCP rot				-														
FemaleReproductiveT	MLR	Fragment																
ract	Α	or	23	92	104	21	240	0.48	0.18	0.52	0.27	0.52	0.47	0.5	-99.0	6.1	.006	44
MGR rat	MID																	
FemaleReproductiveT		CCEro~	22	106	00	22	240	0.50	0.0	0 E	0.00	0 E	0 = 4	0 F2	00.0	6 20	0.02	4.4
ract	Α	GSFrag	22	106	90	22	240	0.53	0.2	0.5	0.28	0.5	0.54	0.52	-99.0	0.39	0.03	44
MGR rat FemaleReproductiveT	MLR																	
ract	Α	Inductive	19	115	81	25	240	0.56	0.19	0.43	0.26	0.43	0.59	0.51	-99.0	6.56	0.01	44
MCP rot					<u> </u>			0.00	01.0	01.0	0.20	00	0.00	0.0.		0.00	0.0.	
FemaleReproductiveT	MLR	Mera,																
ract	Α	Mersy	27	91	105	17	240	0.49	0.2	0.61	0.31	0.61	0.46	0.54	-98.9	6.03	0.06	44
MGR rat																		
FemaleReproductiveT	MLR	ONDD	0.5		00	40	0.40	0.54						0.50	00.0	0.04		
ract	Α	QNPR	25	98	98	19	240	0.51	0.2	0.57	0.3	0.57	0.5	0.53	-98.9	6.21	0.05	44
MGR rat FemaleReproductiveT	MIR	Spectron																
ract	A	hores	20	122	74	24	240	0.59	0.21	0.45	0.29	0.45	0.62	0.54	-98.9	6 72	0.06	44
		110103	20	122			240	0.00	0.21	0.40	0.23	0.40	0.02	0.04	-30.3	0.12	0.00	77
MGR rat FemaleReproductiveT																		
ract		Adriana	21	104	92	22	239	0.52	0.19	0.49	0.27	0.49	0.53	0.51	-99.0	6.3	0.01	43
MGR rat																		
FemaleReproductiveT		ALogPS,																
ract		OEstate	25	104	92	19	240	0.54	0.21	0.57	0.31	0.57	0.53	0.55	-98.9	6.33	0.08	44
MGR rat																		
FemaleReproductiveT								_		_		_	_			_		
ract	PLS	CDK	24	112	83	20	239	0.57	0.22	0.55	0.32	0.55	0.57	0.56	-98.9	6.52	0.09	44
MGR rat		Chemaxo																
FemaleReproductiveT ract	PLS		25	115	81	19	240	0.58	0.24	0.57	0.33	0.57	0.50	0.58	-98.8	6 56	ი 12	44
	FLO	11	20	110	ΟI	19	240	0.00	0.24	0.57	0.33	0.57	0.59	0.36	-30.0	0.50	0.12	44
MGR rat FemaleReproductiveT																		
ract		Dragon6	20	130	66	24	240	0.63	0.23	0.45	0.31	0.45	0.66	0.56	-98.9	6.89	0.1	44
MGR rat			-															
FemaleReproductiveT		Fragment																
ract	PLS	or	21	110	86	23	240	0.55	0.2	0.48	0.28	0.48	0.56	0.52	-99.0	6.47	0.03	44
MGR rat																		
FemaleReproductiveT		GSFrag	30	111	0=	11	240	0.50	0.26	0.60	U 20	0 60	0.57	0.62	00 0	6 26	0.40	11
ract	FLO	Goriag	30	111	85	14	240	0.59	0.26	0.68	0.38	0.68	0.57	0.62	-98.8	0.30	0.19	44
MGR rat FemaleReproductiveT																		
ract		Inductive	24	121	75	20	240	0.6	0.24	0.55	0.34	0.55	0.62	0.58	-98.8	6.69	0.13	44
MGR rat	0							3.0	V. <u>-</u> '	0.00	0.01	0.00	U.U_	0.00		0.00	0.10	
FemaleReproductiveT		Mera,																
ract		Mersy	19	137	59	25	240	0.65	0.24	0.43	0.31	0.43	0.7	0.57	-98.9	7.05	0.11	44
MGR rat																		
FemaleReproductiveT	DI 6	ONDE	00	44-	70	6.4	0.40	0.50	0.00	0 =0	0.00	0.50		0.50	00.0	0.00	0.00	
ract	PLS	QNPR	23	117	79	21	240	0.58	0.23	0.52	0.32	0.52	0.6	0.56	-98.9	6.62	0.09	44

	Spectrop hores	19	115	81	25	240	0.56	0.19	0.43	0.26	0.43	0.59	0.51	-99.0	6.56	0.01	44
								-	-		-						
J48	Adriana	18	143	53	25	239	0.67	0.25	0.42	0.32	0.42	0.73	0.57	-98.9	7.14	0.12	43
	ALogPS,																
J48	OEstate	20	125	71	24	240	0.6	0.22	0.45	0.3	0.45	0.64	0.55	-98.9	6.78	0.07	44
J48	CDK	19	126	69	25	239	0.61	0.22	0.43	0.29	0.43	0.65	0.54	-98.9	6.81	0.06	44
	Chemaxo																
J48	n	19	131	65	25	240	0.63	0.23	0.43	0.3	0.43	0.67	0.55	-98.9	6.91	80.0	44
140		40	4.40		0.5	0.40	0.07		0.40		0.40	0.70	0.50	00.0	- 4-	0.40	
J48	Dragon6	19	142	54	25	240	0.67	0.26	0.43	0.32	0.43	0.72	0.58	-98.8	7.17	0.13	44
	Fragment	10	100	72	26	240	0.50	0.0	0.44	0.07	0.44	0.62	0.50	00.0	6 71	0.02	4.4
J46	UI .	10	123	73	20	240	0.59	0.2	0.41	0.27	0.41	0.03	0.52	-99.0	0.71	0.03	44
J48	GSFrag	19	125	71	25	240	0.6	0 21	0.43	0.28	0.43	0.64	0.53	-98 9	6 77	0.06	44
J-TU	Jorray	10	120	7 1		270	0.0	V. <u>L</u> I	0.70	0.20	0.70	0.04	0.00	50.5	J.11	0.00	-7-1
J48	Inductive	15	147	49	29	240	0.68	0.23	0.34	0.28	0.34	0.75	0.55	-98.9	7.22	0.08	44
J48	Mersy	15	152	44	29	240	0.7	0.25	0.34	0.29	0.34	0.78	0.56	-98.9	7.36	0.1	44
J48	QNPR	22	143	53	22	240	0.69	0.29	0.5	0.37	0.5	0.73	0.61	-98.8	7.21	0.19	44
	Spectrop																
J48	hores	7	158	38	37	240	0.69	0.16	0.16	0.16	0.16	0.81	0.48	-99.0	7.05	.034	44
:																	
RF	Adriana	24	123	67	25	239	0.62	0.26	0.49	0.34	0.49	0.65	0.57	-98.9	7.04	0.11	49
	ALoaPS.																
RF	OEstate	21	114	77	28	240	0.56	0.21	0.43	0.29	0.43	0.6	0.51	-99.0	6.81	0.02	49
:																	
RF	CDK	25	120	70	24	239	0.61	0.26	0.51	0.35	0.51	0.63	0.57	-98.9	6.97	0.12	49
;	Chemaxo																
RF	n	25	122	69	24	240	0.61	0.27	0.51	0.35	0.51	0.64	0.57	-98.9	7.	0.12	49
RF	Dragon6	22	128	63	27	240	0.63	0.26	0.45	0.33	0.45	0.67	0.56	-98.9	7.13	0.1	49
	Fragment	0.5	440	70	0.4	0.40	0.57	0.04	0.54	0.00	0.54	0.50	0.55	00.0	0.70	0.00	40
KF_	or	25	112	79	24	240	0.57	0.24	0.51	0.33	0.51	0.59	0.55	-98.9	6.78	80.0	49
	GSFrag	22	111	77	26	240	0.57	0.22	0.47	0.21	0.47	0.6	0.52	00.0	6 02	0.05	40
RF	GSFIAY	23	114	77	26	240	0.57	0.23	0.47	0.31	0.47	0.6	0.53	-90.9	0.02	0.05	49
						0.40	0.57	0.22	0.45	0.3	0.45	0.6	0.52	-99.0	6 00	0.04	49
RF	Inductive	22	11/	77	27	ンタロ		11//	U.TU	U.J	U.TU	0.0		-33.0			
RF	Inductive	22	114	77	27	240	0.57	<u> </u>					0.02		0.02	0.04	-10
RF	Mera,									0.28		0.61					
RF		22	114	77	27	240	0.57	0.21	0.41	0.28	0.41	0.61	0.51	-99.0			
RF	Mera, Mersy					240	0.57	0.21	0.41		0.41			-99.0	6.86	0.02	49
RF RF	Mera,	20	117	74	29					0.28		0.61	0.51		6.86	0.02	
	J48 J48 J48 J48 J48 J48 J48 J48	PLS hores J48 Adriana ALogPS, J48 CDK Chemaxo n J48 Dragon6 Fragment J48 GSFrag J48 Inductive Mera, J48 Mersy J48 QNPR Spectrop J48 Adriana ALogPS, RF Adriana ALogPS, RF CDK RF CDK Chemaxo n RF CDK Chemaxo n RF CDK Chemaxo n RF CDK Chemaxo n	PLS hores 19 J48 Adriana 18 ALogPS, J48 OEstate 20 J48 CDK 19 Chemaxo J48 n 19 J48 Dragon6 19 Fragment J48 or 18 J48 GSFrag 19 J48 Inductive 15 Mera, Mersy 15 J48 QNPR 22 Spectrop J48 hores 7 RF Adriana 24 ALogPS, RF CEstate 21 RF CDK 25 Chemaxo RF n 25 RF Dragon6 22 RF Fragment RF 25	PLS hores 19 115 J48 Adriana 18 143 J48 OEstate 20 125 J48 CDK 19 126 Chemaxo J48 n 19 131 J48 Dragon6 19 142 Fragment J48 or 18 123 J48 Inductive 15 147 Mera, J48 Mersy 15 152 J48 QNPR 22 143 Spectrop J48 hores 7 158 RF Adriana 24 123 ALogPS, RF OEstate 21 114 RF CDK 25 120 Chemaxo RF n 25 122 RF Dragon6 22 128 Fragment RF or 25 112	PLS hores 19 115 81 J48 Adriana 18 143 53 J48 OEstate 20 125 71 J48 CDK 19 126 69 Chemaxo J48 n 19 142 54 Fragment J48 or 18 123 73 J48 GSFrag 19 125 71 J48 Inductive 15 147 49 Mera, J48 Mersy 15 152 44 J48 QNPR 22 143 53 Spectrop J48 hores 7 158 38 RF Adriana 24 123 67 RF OEstate 21 114 77 RF CDK 25 120 70 RF Dragon6 22 128 63 RF Dragon6 22 128 63	PLS hores 19 115 81 25 J48 Adriana 18 143 53 25 J48 ALogPS, OEstate 20 125 71 24 J48 CDK 19 126 69 25 J48 Dragon6 19 142 54 25 J48 GSFrag 19 125 71 25 J48 Inductive 15 147 49 29 J48 Inductive 15 147 49 29 J48 Mera, Mersy 15 152 44 29 J48 QNPR 22 143 53 22 J48 Mersy 15 152 44 29 J48 Nores 7 158 38 37 RF Adriana 24 123 67 25 RF OEstate 21 114 77 28	PLS hores 19 115 81 25 240 J48 Adriana 18 143 53 25 239 ALogPS, J48 OEstate 20 125 71 24 240 J48 CDK 19 126 69 25 239 Chemaxo Days 19 131 65 25 240 J48 Dragon6 19 142 54 25 240 J48 GSFrag 19 125 71 25 240 J48 Inductive 15 147 49 29 240 J48 Mera, Mersy 15 152 44 29 240 J48 QNPR 22 143 53 22 240 J48 ONPR 22 143 53 22 240 ALogPS, RF OEstate 21 114 77 28 240 RF CDK <td>PLS hores 19 115 81 25 240 0.56 J48 Adriana 18 143 53 25 239 0.67 J48 CDK 19 126 69 25 239 0.61 J48 CDK 19 126 69 25 239 0.61 J48 Dragon6 19 142 54 25 240 0.63 J48 Dragon6 19 142 54 25 240 0.63 J48 GSFrag 19 125 71 25 240 0.69 J48 Inductive 15 147 49 29 240 0.68 J48 Mera, Mersy 15 152 44 29 240 0.69 J48 QNPR 22 143 53 22 240 0.69 J48 QNPR 22 143 53 22</td> <td>PLS hores 19 115 81 25 240 0.56 0.19 J48 Adriana 18 143 53 25 239 0.67 0.25 J48 CDK 19 126 69 25 239 0.61 0.22 J48 CDK 19 126 69 25 239 0.61 0.22 J48 Dragon6 19 142 54 25 240 0.63 0.23 J48 Dragon6 19 142 54 25 240 0.67 0.26 J48 GSFrag 19 125 71 25 240 0.67 0.26 J48 Inductive 15 147 49 29 240 0.6 0.21 J48 Inductive 15 152 44 29 240 0.6 0.23 J48 QNPR 22 143 53 22 240</td> <td>PLS hores 19 115 81 25 240 0.56 0.19 0.43 J48 Adriana 18 143 53 25 239 0.67 0.25 0.42 J48 CDK 19 126 69 25 239 0.61 0.22 0.43 J48 CDK 19 126 69 25 239 0.61 0.22 0.43 J48 CDK 19 131 65 25 240 0.63 0.23 0.43 J48 Dragon6 19 142 54 25 240 0.67 0.26 0.43 J48 GSFrag 19 125 71 25 240 0.67 0.26 0.43 J48 Inductive 15 147 49 29 240 0.68 0.23 0.34 J48 QNPR 22 143 53 22 240 0.69 0.26<</td> <td>PLS hores 19 115 81 25 240 0.56 0.19 0.43 0.26 J48 Adriana 18 143 53 25 239 0.67 0.25 0.42 0.32 J48 CDK 19 126 69 25 239 0.61 0.22 0.43 0.29 J48 CDK 19 126 69 25 240 0.63 0.23 0.43 0.29 J48 Dragon6 19 142 54 25 240 0.63 0.23 0.43 0.33 J48 Dragon6 19 142 54 25 240 0.67 0.26 0.43 0.32 J48 GSFrag 19 125 71 25 240 0.69 0.21 0.43 0.28 J48 Inductive 15 147 49 29 240 0.68 0.23 0.34 0.28</td> <td>PLS hores 19 115 81 25 240 0.56 0.19 0.43 0.26 0.43 J48 Adriana 18 143 53 25 239 0.67 0.25 0.42 0.32 0.42 J48 CDK 19 126 69 25 239 0.61 0.22 0.43 0.29 0.43 J48 CDK 19 126 69 25 239 0.61 0.22 0.43 0.29 0.43 J48 CDK 19 131 65 25 240 0.63 0.23 0.43 0.23 0.43 J48 Dragon6 19 142 54 25 240 0.67 0.26 0.43 0.23 0.43 J48 Oragon6 19 125 71 25 240 0.69 0.21 0.43 0.28 0.43 J48 Inductive 15 147 49</td> <td>PLS hores 19 115 81 25 240 0.56 0.19 0.43 0.26 0.43 0.73 J48 Adriana 18 143 53 25 239 0.67 0.25 0.42 0.32 0.42 0.73 J48 CDK 19 126 69 25 239 0.61 0.22 0.43 0.29 0.43 0.65 J48 CDK 19 131 65 25 240 0.63 0.23 0.43 0.32 0.43 0.67 J48 Dragone 19 142 54 25 240 0.67 0.26 0.43 0.32 0.43 0.63 0.72 J48 Dragone 19 125 71 25 240 0.69 0.22 0.41 0.27 0.41 0.63 J48 Inductive 15 147 49 29 240 0.6 0.21 0.34 0.</td> <td>PLS hores 19 115 81 25 240 0.56 0.19 0.43 0.26 0.43 0.59 0.51 J48 Adriana 18 143 53 25 239 0.67 0.25 0.42 0.32 0.42 0.73 0.57 J48 ALogPS, OEstate 20 125 71 24 240 0.6 0.22 0.43 0.29 0.43 0.65 0.54 J48 CDK 19 126 69 25 239 0.61 0.22 0.43 0.29 0.43 0.65 0.54 J48 Dragon6 19 142 54 25 240 0.63 0.23 0.43 0.33 0.43 0.65 0.55 J48 Dragon6 19 142 54 25 240 0.69 0.21 0.41 0.27 0.41 0.63 0.52 J48 Inductive 15 147 49</td> <td>PLS fores 19 115 81 25 240 0.56 0.19 0.43 0.26 0.43 0.59 0.51 -99.0 J48 Adriana 18 143 53 25 239 0.67 0.25 0.42 0.32 0.42 0.73 0.57 -98.9 J48 CLogPS, OEstate 20 125 71 24 240 0.6 0.22 0.43 0.32 0.43 0.65 0.54 -98.9 J48 CDK 19 131 65 25 240 0.63 0.22 0.43 0.32 0.43 0.65 0.55 -98.9 J48 Dragon6 19 142 54 25 240 0.67 0.26 0.43 0.32 0.43 0.60 0.55 -98.9 J48 Dragon6 19 125 71 25 240 0.69 0.21 0.43 0.28 0.43 0.62 0.53</td> <td>RLS hores 19 115 81 25 240 0.56 0.19 0.43 0.26 0.43 0.59 0.51 .99.0 6.56 J48 Adriana 18 143 53 25 239 0.67 0.25 0.42 0.32 0.42 0.73 0.57 .98.9 7.14 J48 AlcogPS, OEstate 20 125 71 24 240 0.6 0.22 0.43 0.23 0.43 0.65 0.54 .98.9 6.78 J48 CDK 19 126 69 25 239 0.61 0.22 0.43 0.43 0.65 0.54 .98.9 6.71 J48 Dragone 19 131 65 25 240 0.63 0.23 0.43 0.43 0.67 0.55 .98.9 6.71 J48 Dragone 19 125 71 25 240 0.69 0.21 0.43 0.23 <t></t></td> <td>RLS nores 19 115 81 25 240 0.60 0.19 0.43 0.26 0.43 0.50 0.51 -98.0 6.56 0.01 J48 Adriana 18 143 53 25 239 0.67 0.25 0.42 0.32 0.42 0.73 0.57 -98.9 7.14 0.12 J48 ALogPS, Jan 19 126 69 25 239 0.61 0.22 0.43 0.43 0.64 0.55 -98.9 6.81 0.06 J48 CDK 19 126 69 25 239 0.61 0.22 0.43 0.43 0.65 0.54 -98.9 6.91 0.06 J48 Dragone 19 125 71 25 240 0.69 0.26 0.43 0.23 0.43 0.67 0.55 -98.9 6.91 0.03 J48 Dragone 19 125 71 25 24</td>	PLS hores 19 115 81 25 240 0.56 J48 Adriana 18 143 53 25 239 0.67 J48 CDK 19 126 69 25 239 0.61 J48 CDK 19 126 69 25 239 0.61 J48 Dragon6 19 142 54 25 240 0.63 J48 Dragon6 19 142 54 25 240 0.63 J48 GSFrag 19 125 71 25 240 0.69 J48 Inductive 15 147 49 29 240 0.68 J48 Mera, Mersy 15 152 44 29 240 0.69 J48 QNPR 22 143 53 22 240 0.69 J48 QNPR 22 143 53 22	PLS hores 19 115 81 25 240 0.56 0.19 J48 Adriana 18 143 53 25 239 0.67 0.25 J48 CDK 19 126 69 25 239 0.61 0.22 J48 CDK 19 126 69 25 239 0.61 0.22 J48 Dragon6 19 142 54 25 240 0.63 0.23 J48 Dragon6 19 142 54 25 240 0.67 0.26 J48 GSFrag 19 125 71 25 240 0.67 0.26 J48 Inductive 15 147 49 29 240 0.6 0.21 J48 Inductive 15 152 44 29 240 0.6 0.23 J48 QNPR 22 143 53 22 240	PLS hores 19 115 81 25 240 0.56 0.19 0.43 J48 Adriana 18 143 53 25 239 0.67 0.25 0.42 J48 CDK 19 126 69 25 239 0.61 0.22 0.43 J48 CDK 19 126 69 25 239 0.61 0.22 0.43 J48 CDK 19 131 65 25 240 0.63 0.23 0.43 J48 Dragon6 19 142 54 25 240 0.67 0.26 0.43 J48 GSFrag 19 125 71 25 240 0.67 0.26 0.43 J48 Inductive 15 147 49 29 240 0.68 0.23 0.34 J48 QNPR 22 143 53 22 240 0.69 0.26<	PLS hores 19 115 81 25 240 0.56 0.19 0.43 0.26 J48 Adriana 18 143 53 25 239 0.67 0.25 0.42 0.32 J48 CDK 19 126 69 25 239 0.61 0.22 0.43 0.29 J48 CDK 19 126 69 25 240 0.63 0.23 0.43 0.29 J48 Dragon6 19 142 54 25 240 0.63 0.23 0.43 0.33 J48 Dragon6 19 142 54 25 240 0.67 0.26 0.43 0.32 J48 GSFrag 19 125 71 25 240 0.69 0.21 0.43 0.28 J48 Inductive 15 147 49 29 240 0.68 0.23 0.34 0.28	PLS hores 19 115 81 25 240 0.56 0.19 0.43 0.26 0.43 J48 Adriana 18 143 53 25 239 0.67 0.25 0.42 0.32 0.42 J48 CDK 19 126 69 25 239 0.61 0.22 0.43 0.29 0.43 J48 CDK 19 126 69 25 239 0.61 0.22 0.43 0.29 0.43 J48 CDK 19 131 65 25 240 0.63 0.23 0.43 0.23 0.43 J48 Dragon6 19 142 54 25 240 0.67 0.26 0.43 0.23 0.43 J48 Oragon6 19 125 71 25 240 0.69 0.21 0.43 0.28 0.43 J48 Inductive 15 147 49	PLS hores 19 115 81 25 240 0.56 0.19 0.43 0.26 0.43 0.73 J48 Adriana 18 143 53 25 239 0.67 0.25 0.42 0.32 0.42 0.73 J48 CDK 19 126 69 25 239 0.61 0.22 0.43 0.29 0.43 0.65 J48 CDK 19 131 65 25 240 0.63 0.23 0.43 0.32 0.43 0.67 J48 Dragone 19 142 54 25 240 0.67 0.26 0.43 0.32 0.43 0.63 0.72 J48 Dragone 19 125 71 25 240 0.69 0.22 0.41 0.27 0.41 0.63 J48 Inductive 15 147 49 29 240 0.6 0.21 0.34 0.	PLS hores 19 115 81 25 240 0.56 0.19 0.43 0.26 0.43 0.59 0.51 J48 Adriana 18 143 53 25 239 0.67 0.25 0.42 0.32 0.42 0.73 0.57 J48 ALogPS, OEstate 20 125 71 24 240 0.6 0.22 0.43 0.29 0.43 0.65 0.54 J48 CDK 19 126 69 25 239 0.61 0.22 0.43 0.29 0.43 0.65 0.54 J48 Dragon6 19 142 54 25 240 0.63 0.23 0.43 0.33 0.43 0.65 0.55 J48 Dragon6 19 142 54 25 240 0.69 0.21 0.41 0.27 0.41 0.63 0.52 J48 Inductive 15 147 49	PLS fores 19 115 81 25 240 0.56 0.19 0.43 0.26 0.43 0.59 0.51 -99.0 J48 Adriana 18 143 53 25 239 0.67 0.25 0.42 0.32 0.42 0.73 0.57 -98.9 J48 CLogPS, OEstate 20 125 71 24 240 0.6 0.22 0.43 0.32 0.43 0.65 0.54 -98.9 J48 CDK 19 131 65 25 240 0.63 0.22 0.43 0.32 0.43 0.65 0.55 -98.9 J48 Dragon6 19 142 54 25 240 0.67 0.26 0.43 0.32 0.43 0.60 0.55 -98.9 J48 Dragon6 19 125 71 25 240 0.69 0.21 0.43 0.28 0.43 0.62 0.53	RLS hores 19 115 81 25 240 0.56 0.19 0.43 0.26 0.43 0.59 0.51 .99.0 6.56 J48 Adriana 18 143 53 25 239 0.67 0.25 0.42 0.32 0.42 0.73 0.57 .98.9 7.14 J48 AlcogPS, OEstate 20 125 71 24 240 0.6 0.22 0.43 0.23 0.43 0.65 0.54 .98.9 6.78 J48 CDK 19 126 69 25 239 0.61 0.22 0.43 0.43 0.65 0.54 .98.9 6.71 J48 Dragone 19 131 65 25 240 0.63 0.23 0.43 0.43 0.67 0.55 .98.9 6.71 J48 Dragone 19 125 71 25 240 0.69 0.21 0.43 0.23 <t></t>	RLS nores 19 115 81 25 240 0.60 0.19 0.43 0.26 0.43 0.50 0.51 -98.0 6.56 0.01 J48 Adriana 18 143 53 25 239 0.67 0.25 0.42 0.32 0.42 0.73 0.57 -98.9 7.14 0.12 J48 ALogPS, Jan 19 126 69 25 239 0.61 0.22 0.43 0.43 0.64 0.55 -98.9 6.81 0.06 J48 CDK 19 126 69 25 239 0.61 0.22 0.43 0.43 0.65 0.54 -98.9 6.91 0.06 J48 Dragone 19 125 71 25 240 0.69 0.26 0.43 0.23 0.43 0.67 0.55 -98.9 6.91 0.03 J48 Dragone 19 125 71 25 24

MGR rat MaleReproductiveTrac t	ASN N	Adriana	25	125	65	24	239	0.63	0.28	0.51	0.36	0.51	0.66	0.58	-98.8 7.09	0.14	49
MGR rat MaleReproductiveTrac t	ASN N	ALogPS, OEstate	20	122	69	29	240	0.59	0.22	0.41	0.29	0.41	0.64	0.52	-99.0 6.97	0.04	49
MGR rat MaleReproductiveTrac t	ASN N	CDK	22	116	74	27	239	0.58	0.23	0.45	0.3	0.45	0.61	0.53	-98.9 6.87	0.05	49
MGR rat MaleReproductiveTract	ASN N	Chemaxo n	21	109	82	28	240	0.54	0.2	0.43	0.28	0.43	0.57	0.5	-99.0 6.7	' .001	49
MGR rat MaleReproductiveTrac t	ASN N	Dragon6	24	141	50	25	240	0.69	0.32	0.49	0.39	0.49	0.74	0.61	-98.8 7.47	0.2	49
MGR rat MaleReproductiveTrac t	ASN N	Fragment or	23	126	65	26	240	0.62	0.26	0.47	0.34	0.47	0.66	0.56	-98.9 7.09	0.11	49
MGR rat MaleReproductiveTrac t	ASN N	GSFrag	21	120	71	28	240	0.59	0.23	0.43	0.3	0.43	0.63	0.53	-98.9 6.94	0.05	49
MGR rat MaleReproductiveTrac t	ASN N	Inductive	19	111	80	30	240	0.54	0.19	0.39	0.26	0.39	0.58	0.48	-99.0 6.71	.025	49
MGR rat MaleReproductiveTrac t	ASN N	Mera, Mersy	17	115	76	32	240	0.55	0.18	0.35	0.24	0.35	0.6	0.47	-99.1 6.76	6 .042	49
MGR rat MaleReproductiveTrac t	ASN N	QNPR	18	124	67	31	240	0.59	0.21	0.37	0.27	0.37	0.65	0.51	-99.0 6.98	3 0.01	49
MGR rat MaleReproductiveTrac t	ASN N	Spectrop hores	24	130	61	25	240	0.64	0.28	0.49	0.36	0.49	0.68	0.59	-98.8 7.19	0.14	49
MGR rat MaleReproductiveTrac t	ASN N	CDK, TA, TP	17	138	52	32	239	0.65	0.25	0.35	0.29	0.35	0.73	0.54	-98.9 7.31	0.07	49
MGR rat MaleReproductiveTrac t	ASN N	CDK, TA	17	140	50	32	239	0.66	0.25	0.35	0.29	0.35	0.74	0.54	-98.9 7.37	7 0.08	49
MGR rat MaleReproductiveTrac t	ASN N	CDK, TP	21	134	56	28	239	0.65	0.27	0.43	0.33	0.43	0.71	0.57	-98.9 7.29	0.12	49
MGR rat MaleReproductiveTrac t	ASN N	TA, TP	14	139	52	35	240	0.64	0.21	0.29	0.24	0.29	0.73	0.51	-99.0 7.22	2 0.01	49
MGR rat MaleReproductiveTrac t	NI.	TA	13	145	46	36	240	0.66	0.22	0.27	0.24	0.27	0.76	0.51	-99.0 7.34	0.02	49
MGR rat MaleReproductiveTrac t	ASN N	TP	18	135	56	31	240	0.64	0.24	0.37	0.29	0.37	0.71	0.54	-98.9 7.24	0.06	49
MGR rat MaleReproductiveTrac t	FSM LR	CDK, TA, TP	15	140	50	34	239	0.65	0.23	0.31	0.26	0.31	0.74	0.52	-99.0 7.31	0.04	49
MGR rat MaleReproductiveTract	FSM LR	CDK, TA	16	132	58	33	239	0.62	0.22	0.33	0.26	0.33	0.69	0.51	-99.0 7.13	3 0.02	49
MGR rat MaleReproductiveTract		CDK, TP	26	128	62	23	239	0.64	0.3					0.6	-98.8 7.15		49
MGR rat MaleReproductiveTract		TA, TP	15	126	65	34	240			0.31					-99.0 6.94		49
MGR rat MaleReproductiveTrac	FSM					-											
t MGR rat MaleReproductiveTrac	LR FSM	TA	13	132	59	36	240	0.6	0.18	0.27	0.21	0.27	0.69	0.48	-99.0 7	038	49
t	LR	TP	21	125	66	28	240	0.61	0.24	0.43	0.31	0.43	0.65	0.54	-98.9 7.05	0.07	49

MGR rat MaleReproductiveTrac t	KNN	CDK, TA, TP	25	77	113	24	239	0.43	0.18	0.51	0.27	0.51	0.41	0.46	-99.1 6.06	.069	49
MGR rat MaleReproductiveTrac		CDK, TA	20	123	67	29	239	0.6	0.23	0.41	0.29	0.41	0.65	0.53	-98.9 7.01	0.05	49
เ MGR rat MaleReproductiveTrac		·															
t MGR rat MaleReproductiveTrac		CDK, TP	24	102	88	25	239	0.53	0.21	0.49	0.3	0.49	0.54	0.51	-99.0 6.58	0.02	49
t MGR rat	KNN	TA, TP	34	63	128	15	240	0.4	0.21	0.69	0.32	0.69	0.33	0.51	-99.0 5.58	0.02	49
MaleReproductiveTrac t MGR rat	KNN	TA	29	76	115	20	240	0.44	0.2	0.59	0.3	0.59	0.4	0.49	-99.0 5.99	.008	49
MaleReproductiveTrac t	KNN	TP	28	87	104	21	240	0.48	0.21	0.57	0.31	0.57	0.46	0.51	-99.0 6.24	0.02	49
MGR rat MaleReproductiveTrac t	LibS VM	CDK, TA, TP	5	172	18	44	239	0.74	0.22	0.1	0.14	0.1	0.91	0.5	-99.0 7.73	0.01	49
MGR rat MaleReproductiveTrac t	LibS VM	CDK, TA	7	164	26	42	239	0.72	0.21	0.14	0.17	0.14	0.86	0.5	-99.0 7.59	0.01	49
MGR rat MaleReproductiveTrac t	LibS VM	CDK, TP	11	164	26	38	239	0.73	0.3	0.22	0.26	0.22	0.86	0.54	-98.9 7.92	0.1	49
MGR rat MaleReproductiveTrac t	LibS VM	TA, TP	5	175	16	44	240	0.75	0.24	0.1	0.14	0.1	0.92	0.51	-99.0 7.86	0.03	49
MGR rat MaleReproductiveTrac	LibS VM	TA	9	167	24	40	240	0.73	0.27	0.18	0.22	0.18	0.87	0.53	-98.9 7.87	0.07	49
MGR rat MaleReproductiveTrac		TP	2	176	15	47	240	0.74		0.04		0.04	0.92	0.48	-99.0 7.21		49
MGR rat MaleReproductiveTrac			27	122	68	22	239	0.62		0.55	0.38	0.55	0.64	0.46	-98.8 7.01		49
MGR rat MaleReproductiveTrac		CDK, TA	24	120	70	25	239	0.6	0.26	0.49	0.34	0.49			-98.9 6.97	0.10	49
MGR rat MaleReproductiveTrac		CDK, TA	27	127	63	22	239	0.64	0.20	0.49	0.39	0.49	0.67	0.61	-98.8 7.12		49
MGR rat MaleReproductiveTrac	MLR	·															
τ MGR rat MaleReproductiveTrac		TA, TP	19	113	78	30	240	0.55	0.2	0.39	0.26	0.39	0.59	0.49	-99.0 6.76		49
t MGR rat MaleReproductiveTrac	A MLR	TA	26	103	88	23	240	0.54	0.23	0.53	0.32	0.53	0.54	0.53	-98.9 6.59	0.06	49
t MGR rat MaleReproductiveTrac	A	TP CDK, TA,	23	104	87	26	240	0.53	0.21	0.47	0.29	0.47	0.54	0.51	-99.0 6.61	0.01	49
MGR rat	PLS		16	132	58	33	239	0.62	0.22	0.33	0.26	0.33	0.69	0.51	-99.0 7.13	0.02	49
MaleReproductiveTrac t MGR rat		CDK, TA	19	137	53	30	239	0.65	0.26	0.39	0.31	0.39	0.72	0.55	-98.9 7.33	0.1	49
MaleReproductiveTrac t		CDK, TP	20	128	62	29	239	0.62	0.24	0.41	0.31	0.41	0.67	0.54	-98.9 7.13	0.07	49
MGR rat MaleReproductiveTrac t		TA, TP	16	134	57	33	240	0.63	0.22	0.33	0.26	0.33	0.7	0.51	-99.0 7.16	0.02	49
MGR rat MaleReproductiveTrac t	PLS	TA	17	129	62	32	240	0.61	0.22	0.35	0.27	0.35	0.68	0.51	-99.0 7.07	0.02	49

MGR rat MaleReproductiveTrac t PLS	TP	22	135	56	27	240	0.65	0.28	0.45	0.35	0.45	0.71	0.58	-98.8	7.3	0.13	49
MGR rat MaleReproductiveTrac t J48	CDK, TA, TP	16	154	36	33	239	0.71	0.31	0.33	0.32	0.33	0.81	0.57	-98.9	7.76	0.13	49
MGR rat MaleReproductiveTrac t J48	CDK, TA	17	134	56	32	239	0.63	0.23	0.35	0.28	0.35	0.71	0.53	-98.9	7.21	0.05	49
MGR rat MaleReproductiveTrac t J48	CDK, TP	15	150	40	34	239	0.69	0.27	0.31	0.29	0.31	0.79	0.55	-98.9	7.59	0.09	49
MGR rat MaleReproductiveTrac t J48	TA, TP	11	148	43	38	240	0.66	0.2	0.22	0.21	0.22	0.77	0.5	-99.0	7.32	.001	49
MGR rat MaleReproductiveTrac t J48	TA	9	154	37	40	240	0.68	0.2	0.18	0.19	0.18	0.81	0.49	-99.0	7.37	.01	49
MGR rat MaleReproductiveTrac t J48	TP	17	142	49	32	240	0.66	0.26	0.35	0.3	0.35	0.74	0.55	-98.9	7.4	0.08	49
MGR rat MaleReproductiveTrac t RF	CDK, TA, TP	22	119	71	27	239	0.59	0.24	0.45	0.31	0.45	0.63	0.54	-98.9	6.94	0.06	49
MGR rat MaleReproductiveTrac t RF	CDK, TA	21	115	75	28	239	0.57	0.22	0.43	0.29	0.43	0.61	0.52	-99.0	6.84	0.03	49
MGR rat MaleReproductiveTrac t RF	CDK, TP	24	133	57	25	239	0.66	0.3	0.49	0.37	0.49	0.7	0.59	-98.8	7.28	0.16	49
MGR rat MaleReproductiveTrac t RF	TA, TP	16	116	75	33	240	0.55	0.18	0.33	0.23	0.33	0.61	0.47	-99.1	6.75	.055	49
MGR rat MaleReproductiveTrac t RF	TA	18	124	67	31	240	0.59	0.21	0.37	0.27	0.37	0.65	0.51	-99.0	6.98	0.01	49
MGR rat MaleReproductiveTrac t RF	TP	24	118	73	25	240	0.59	0.25	0.49	0.33	0.49	0.62	0.55	-98.9	6.91	0.09	49
MGR rat MaleReproductiveTrac FSM t LR	Adriana	20	120	70	29	239	0.59	0.22	0.41	0.29	0.41	0.63	0.52	-99.0	6.94	0.03	49
MGR rat MaleReproductiveTrac FSM t LR	ALogPS, OEstate	27	119	72	22	240	0.61	0.27	0.55	0.36	0.55	0.62	0.59	-98.8	6.93	0.14	49
MGR rat MaleReproductiveTrac FSM t LR	CDK	27	118	72	22	239	0.61	0.27			0.55		0.59	-98.8	6.92	0 14	49
MGR rat MaleReproductiveTrac FSM	Chemaxo	25	99	92	24									-99.0			
MGR rat MaleReproductiveTrac FSM	n o					240			0.51		0.51		0.51				49
t LR MGR rat MaleReproductiveTrac FSM	Dragon6 Fragment	24_	131	60	25	240	0.65	0.29	0.49	0.36	0.49	0.69	0.59	-98.8	7.21	0.15	49
t LR MGR rat MaleReproductiveTrac FSM	or	19	132	59	30	240	0.63	0.24	0.39	0.3	0.39	0.69	0.54	-98.9	7.19	0.07	49
t LR	GSFrag	23	108	83	26	240	0.55	0.22	0.47	0.3	0.47	0.57	0.52	-99.0	6.7	0.03	49
MaleReproductiveTrac FSM t LR	Inductive	11	147	44	38	240	0.66	0.2	0.22	0.21	0.22	0.77	0.5	-99.0	7.29	.006	49
MGR rat MaleReproductiveTrac FSM t LR	Mera, Mersy	18	118	73	31	240	0.57	0.2	0.37	0.26	0.37	0.62	0.49	-99.0	6.85	.012	49

MGR rat MaleReproductiveTrac	FSM																	
t	LR	QNPR	23	123	68	26	240	0.61	0.25	0.47	0.33	0.47	0.64	0.56	-98.9	7.02	0.09	_
MGR rat MaleReproductiveTrac	FSM	Spectrop																
t	LR	hores	23	114	77	26	240	0.57	0.23	0.47	0.31	0.47	0.6	0.53	-98.9	6.82	0.05	_
MGR rat MaleReproductiveTrac				400	00			0.70		0.00		0.00	0.04	0.50	00.0		0.40	
t	KNN	Adriana	14	160	30	35	239	0.73	0.32	0.29	0.3	0.29	0.84	0.56	-98.9	7.9	0.13	_
MGR rat MaleReproductiveTrac		ALogPS,																
MGR rat	KNN	OEstate	18	132	59	31	240	0.63	0.23	0.37	0.29	0.37	0.69	0.53	-98.9	7.17	0.05	_
MaleReproductiveTrac		CDK	31	118	72	18	239	0.62	0.3	0.63	0.41	0.63	0.62	0.63	-98.7	6.86	N 21	
MGR rat	KININ		31	110	12	10	239	0.02	0.3	0.03	0.41	0.03	0.02	0.03	-90.7	0.00	0.21	-
MaleReproductiveTract	KNN	Chemaxo n	19	131	60	30	240	0.63	0.24	0.39	0.3	0.39	0.69	0.54	-98.9	7 16	0.06	
MGR rat																		_
MaleReproductiveTract t		Dragon6	25	90	101	24	240	0.48	0.2	0.51	0.29	0.51	0.47	0.49	-99.0	6.32	.015	
MGR rat MaleReproductiveTrac		Fragment																
t	KNN	-	14	145	46	35	240	0.66	0.23	0.29	0.26	0.29	0.76	0.52	-99.0	7.38	0.04	
MGR rat MaleReproductiveTrac																		
t	KNN	GSFrag	18	104	87	31	240	0.51	0.17	0.37	0.23	0.37	0.54	0.46	-99.1	6.55	.072	_
MGR rat MaleReproductiveTrac																		
t MGR rat	KNN	Inductive	25	94	97	24	240	0.5	0.2	0.51	0.29	0.51	0.49	0.5	-99.0	6.41	0.	_
MaleReproductiveTrac	IZNINI	Mera,	17	120	61	20	240	0.61	0.00	0.25	0.07	0.25	0.60	0.51	00.0	7 1	0.00	
MGR rat	KININ	Mersy	17	130	61	32	240	0.61	0.22	0.35	0.27	0.35	0.68	0.51	-99.0	7.1	0.02	-
MaleReproductiveTract		QNPR	20	118	73	29	240	0.58	0.22	0.41	0.28	0.41	0.62	0.51	-99.0	6 88	0.02	
MGR rat		Spectrop						0.00		••••	0.20	0111	0.02	0.0.		0.00	0.02	_
MaleReproductiveTract t		hores	18	136	55	31	240	0.64	0.25	0.37	0.3	0.37	0.71	0.54	-98.9	7.27	0.07	
MGR rat	Lihe																	
MaleReproductiveTrac t	VM	Adriana	10	157	33	39	239	0.7	0.23	0.2	0.22	0.2	0.83	0.52	-99.0	7.58	0.03	
MGR rat	Libo	AL acDC																
MaleReproductiveTrac t	VM	OEstate	7	164	27	42	240	0.71	0.21	0.14	0.17	0.14	0.86	0.5	-99.0	7.55	0.	
MGR rat	1:1:0																	_
MaleReproductiveTrac t	VM	CDK	4	155	35	45	239	0.67	0.1	0.08	0.09	0.08	0.82	0.45	-99.1	6.8	.112	
MGR rat																		_
MaleReproductiveTract t		Chemaxo n	5	162	29	44	240	0.7	0.15	0.1	0.12	0.1	0.85	0.48	-99.0	7.21	.058	
MGR rat																		_
MaleReproductiveTrac t	LIDS	Dragon6	6	157	34	43	240	0.68	0.15	0.12	0.13	0.12	0.82	0.47	-99.1	7.16	.06	
MGR rat				-							-							_
MaleReproductiveTract	LibS	Fragment or	3	170	21	46	240	0.72	0.13	0.06	0.08	0.06	0.89	0.48	-99.0	7.16	.065	
MGR rat				. •				<u>-</u>										_
MaleReproductiveTract	LibS VM	GSFrag	5	170	21	44	240	0.73	0.19	0.1	0.13	0.1	0.89	0.5	-99.0	7.57	.01	
MGR rat		20ug				•••		5.70	0.10	<u> </u>	0.10	J.1						-
MaleReproductiveTract	LibS VM	Inductive	4	174	17	45	240	0 74	0.19	0.08	0.11	0.08	0.91	0.5	-99.0	7 62	.011	
•	V 1V1		-г	.,,	- 17	70	0	V.17	0.10	0.00	U.11	0.00	0.01	0.0	30.0		.511	-
MGR rat MaleReproductiveTrac																		

MGR rat MaleReproductiveTrac	LibS VM	QNPR	8	158	33	41	240	0.69	0.2	0.16	0.18	0.16	0.83	0.5	-99.0	7.42	.01	49
MGR rat MaleReproductiveTrac	LibS VM	Spectrop hores	4	166	25	45	240	0.71	0.14	0.08	0.1	0.08	0.87	0.48	-99.0	7.2	.061	49
MGR rat MaleReproductiveTrac		Adriana	25	101	89	24	239	0.53		0.51	0.31		0.53	0.52	-99.0			49
MGR rat MaleReproductiveTrac			30	94	97	19	240	0.52		0.61		0.61		0.55	-98.9			49
MGR rat MaleReproductiveTrac		CDK	26	112	78	23	239	0.58	0.25	0.53		0.53	0.49	0.56	-98.9		0.00	49
MGR rat MaleReproductiveTrac			22	112	79	27	240	0.56	0.22		0.29	0.45	0.59	0.52	-99.0			49
MGR rat MaleReproductiveTrac	MLR A	Dragon6	28	99	92	21	240	0.53	0.23	0.57	0.33	0.57	0.52	0.54	-98.9	6.49	0.07	49
MGR rat MaleReproductiveTrac t	MLR A	Fragment or	22	116	75	27	240	0.58	0.23	0.45	0.3	0.45	0.61	0.53	-98.9	6.86	0.05	49
MGR rat MaleReproductiveTrac :	MLR A	GSFrag	23	105	86	26	240	0.53	0.21	0.47	0.29	0.47	0.55	0.51	-99.0	6.63	0.02	49
MGR rat MaleReproductiveTrac t	MLR A	Inductive	25	115	76	24	240	0.58	0.25	0.51	0.33	0.51	0.6	0.56	-98.9	6.85	0.09	49
MGR rat MaleReproductiveTrac	MLR A	Mera, Mersy	20	102	89	29	240	0.51	0.18	0.41	0.25	0.41	0.53	0.47	-99.1	6.54	.047	49
	MLR A	QNPR	23	115	76	26	240	0.58	0.23	0.47	0.31	0.47	0.6	0.54	-98.9	6.85	0.06	49
	MLR A	Spectrop hores	22	117	74	27	240	0.58	0.23	0.45	0.3	0.45	0.61	0.53	-98.9	6.88	0.05	49
MGR rat MaleReproductiveTrac		Adriana	17	133	57	32	239	0.63	0.23	0.35	0.28	0.35	0.7	0.52	-99.0	7.19	0.04	49
MGR rat MaleReproductiveTrac :	PLS	ALogPS, OEstate	20	123	68	29	240	0.6	0.23	0.41	0.29	0.41	0.64	0.53	-98.9	6.99	0.04	49
MGR rat MaleReproductiveTrac t	PLS	CDK	23	112	78	26	239	0.56	0.23	0.47	0.31	0.47	0.59	0.53	-98.9	6.79	0.05	49
MGR rat MaleReproductiveTrac	PLS	Chemaxo n	20	112	79	29	240	0.55	0.2	0.41	0.27	0.41	0.59	0.5	-99.0	6.75	.004	49
MGR rat MaleReproductiveTrac		Dragon6	24	131	60	25	240	0.65	0.29	0.49	0.36	0.49	0.69	0.59	-98.8	7.21	0.15	49
	PLS	Fragment or	20	129	62	29	240	0.62	0.24	0.41	0.31	0.41	0.68	0.54	-98.9	7.13	0.07	49
		GSFrag	24	102	89	25	240	0.53	0.21	0.49	0.3	0.49	0.53	0.51	-99.0	6.57	0.02	49
		Inductive	22	76	115	27	240	0.41	0.16	0.45	0.24	0.45	0.4	0.42	-99.2	6.02	.125	49
		Mera, Mersy	17	112	79	32	240	0.54	0.18	0.35	0.23	0.35	0.59	0.47	-99.1	6.69	.055	49
MGR rat MaleReproductiveTrac		QNPR	16	120	71	33	240	0.57	0.18	0.33	0.24	0.33	0.63	0.48	-99.0	6 84	038	49

MGR rat MaleReproductiveTrac t	PLS	Spectrop hores	24	115	76	25	240	0.58	0.24	0.49	0.32	0.49	0.6	0.55	-98.9	6.85	0.08	49
MGR rat MaleReproductiveTrac t	J48	Adriana	16	153	37	33	239	0.71	0.3	0.33	0.31	0.33	0.81	0.57	-98.9	7.72	0.13	49
MGR rat MaleReproductiveTrac t	J48	ALogPS, OEstate	18	123	68	31	240	0.59	0.21	0.37	0.27	0.37	0.64	0.51	-99.0	6.96	0.01	49
MGR rat MaleReproductiveTrac	J48	CDK	18	136	54	31	239	0.64	0.25	0.37	0.3	0.37	0.72	0.54	-98.9	7.29	0.07	49
MGR rat MaleReproductiveTrac	J48	Chemaxo n	12	136	55	37	240	0.62	0.18	0.24	0.21	0.24	0.71	0.48	-99.0	7.05	.039	49
MGR rat MaleReproductiveTrac	J48	Dragon6	15	147	44	34	240	0.68	0.25	0.31	0.28	0.31	0.77	0.54	-98.9	7.48	0.07	49
MGR rat MaleReproductiveTrac	J48	Fragment or	17	123	68	32	240	0.58	0.2	0.35	0.25	0.35	0.64	0.5	-99.0	6.93	.008	49
	J48	GSFrag	18	126	65	31	240	0.6	0.22	0.37	0.27	0.37	0.66	0.51	-99.0	7.03	0.02	49
	J48	Inductive	15	136	55	34	240	0.63	0.21	0.31	0.25	0.31	0.71	0.51	-99.0	7.18	0.02	49
	J48	Mera, Mersy	16	138	53	33	240	0.64	0.23	0.33	0.27	0.33	0.72	0.52	-99.0	7.27	0.04	49
	J48	QNPR	13	132	59	36	240	0.6	0.18	0.27	0.21	0.27	0.69	0.48	-99.0	7.	.038	49
	J48	Spectrop hores	14	139	52	35	240	0.64	0.21	0.29	0.24	0.29	0.73	0.51	-99.0	7.22	0.01	49
MGR rat OffspringSurvival	RF	Adriana	54	74	79	32	239	0.54	0.41	0.63	0.49	0.63	0.48	0.56	-98.9	7.41	0.11	86
MGR rat OffspringSurvival MGR rat	RF	ALogPS, OEstate	55	79	75	31	240	0.56	0.42	0.64	0.51	0.64	0.51	0.58	-98.8	7.52	0.15	86
OffspringSurvival MGR rat	RF RF	CDK Chemaxo n	53 59	81 86	73 68	32 27	239	0.56	0.42	0.62	0.5	0.62	0.53	0.57	-98.9 -98.8			85 86
MGR rat	RF	Dragon6	54	82	72	32	240	0.57	0.43	0.63	0.51	0.63	0.53	0.58	-98.8			86
MGR rat	RF	Fragment or	54	85	69	32	240	0.58	0.44	0.63	0.52	0.63	0.55	0.59	-98.8			86
MGR rat	RF RF	GSFrag Inductive	53 53	86 79	68 75	33	240	0.58	0.44	0.62	0.51	0.62	0.56	0.59	-98.8 -98.9			86 86
	RF	Mera, Mersy	55	76	78	31	240	0.55	0.41	0.64	0.5	0.64	0.49	0.57	-98.9	7.44	0.13	86
MGR rat	RF	QNPR Spectrop	52	84	70	34	240	0.57		0.6	0.5	0.6	0.55	0.58	-98.8			86
MGR rat	RF ASN N	hores Adriana	50 49	74 92	80 61	36 37	240	0.52	0.38	0.58	0.46	0.58	0.48	0.53	-98.9 -98.8			86 86
MGR rat		ALogPS, OEstate	48	99	55	38	240	0.61	0.47	0.56	0.51	0.56	0.64	0.6	-98.8			86
MGR rat OffspringSurvival	ASN N	CDK	45	101	53	40	239	0.61	0.47	0.53	0.49	0.53	0.66	0.59	-98.8			85
	ASN N	Chemaxo n	47	84	70	39	240	0.55	0.4	0.55	0.46	0.55	0.55	0.55	-98.9	7.72	0.09	86

MGR rat OffspringSurvival	ASN N	Dragon6	46	104	50	40	240	0.63	0.48	0.53	0.51	0.53	0.68	0.61	-98.8	8.27	0.21	86
MGR rat OffspringSurvival	N	Fragment or	56	103	51	30	240	0.66	0.52	0.65	0.58	0.65	0.67	0.66	-98.7	8.15	0.31	86
MGR rat OffspringSurvival	ASN N	GSFrag	55	95	59	31	240	0.63	0.48	0.64	0.55	0.64	0.62	0.63	-98.7	7.94	0.25	86
MGR rat OffspringSurvival	ASN N	Inductive	44	97	57	42	240	0.59	0.44	0.51	0.47	0.51	0.63	0.57	-98.9	8.07	0.14	86
MGR rat OffspringSurvival	ASN N	Mera, Mersy	43	100	54	43	240	0.6	0.44	0.5	0.47	0.5	0.65	0.57	-98.9	8.16	0.15	86
MGR rat OffspringSurvival	ASN N	QNPR	47	95	59	39	240	0.59	0.44	0.55	0.49	0.55	0.62	0.58	-98.8	8.01	0.16	86
MGR rat OffspringSurvival	ASN N	Spectrop hores	44	89	65	42	240	0.55	0.4	0.51	0.45	0.51	0.58	0.54	-98.9	7.86	0.09	86
MGR rat OffspringSurvival	ASN N	CDK, TA, TP	45	100	54	40	239	0.61	0.45	0.53	0.49	0.53	0.65	0.59	-98.8	8.13	0.17	85
MGR rat OffspringSurvival	ASN N	CDK, TA	45	92	62	40	239	0.57	0.42	0.53	0.47	0.53	0.6	0.56		7.91		85
MGR rat OffspringSurvival	ASN N	CDK, TP	46	99	55	39	239	0.61	0.46			0.54		0.59	-98.8		0.18	85
MGR rat OffspringSurvival	ASN N	TA, TP	44	99	55	42	240	0.6	0.44	0.51	0.48	0.51	0.64	0.58		8.13		86
MGR rat	ASN	· ·		102	52													
OffspringSurvival MGR rat	ASN	TA	42			44	240	0.6	0.45	0.49	0.47	0.49	0.66	0.58		8.21		86
OffspringSurvival	N	TP OPK TA	49	97	57	37	240	0.61	0.46	0.57	0.51	0.57	0.63	0.6	-98.8	8.05	0.19	86
MGR rat OffspringSurvival	FSM LR	CDK, TA, TP	42	99	55	43	239	0.59	0.43	0.49	0.46	0.49	0.64	0.57	-98.9	8.11	0.13	85
MGR rat OffspringSurvival	FSM LR	CDK, TA	43	99	55	42	239	0.59	0.44	0.51	0.47	0.51	0.64	0.57	-98.9	8.11	0.14	85
MGR rat	FSM																	
OffspringSurvival	LR	CDK, TP	43	87	67	42	239	0.54	0.39	0.51	0.44	0.51	0.56	0.54	-98.9	7.78	0.07	85
MGR rat OffspringSurvival	FSM LR	TA, TP	40	99	55	46	240	0.58	0.42	0.47	0.44	0.47	0.64	0.55	-98.9	8.12	0.11	86
MGR rat OffspringSurvival	FSM LR	TA	43	101	53	43	240	0.6	0.45	0.5	0.47	0.5	0.66	0.58	-98.8	8.19	0.15	86
MGR rat	FSM																	
OffspringSurvival MGR rat	LR	TP CDK, TA,	44	106	48	42	240	0.63	0.48	0.51	0.49	0.51	0.69	0.6	-98.8	8.33	0.2	86
OffspringSurvival MGR rat	KNN		17	133	21	68	239	0.63	0.45	0.2	0.28	0.2	0.86	0.53	-98.9	8.92	80.0	85
OffspringSurvival	KNN	CDK, TA	29	101	53	56	239	0.54	0.35	0.34	0.35	0.34	0.66	0.5	-99.0	8.06	.003	85
MGR rat OffspringSurvival	KNN	CDK, TP	38	98	56	47	239	0.57	0.4	0.45	0.42	0.45	0.64	0.54	-98.9	8.07	0.08	85
MGR rat OffspringSurvival	KNN	TA, TP	24	126	28	62	240	0.63	0.46	0.28	0.35	0.28	0.82	0.55	-98.9	8.82	0.11	86
MGR rat OffspringSurvival	KNN	TA	34	100	54	52	240	0.56	0.39	0.4	0.39	0.4	0.65	0.52	-99.0	8.11	0.04	86
MGR rat OffspringSurvival	KNN	TP	41	104	50	45	240	0.6	0.45	0.48	0.46	0.48	0.68	0.58	-98.8	8.27	0.15	86
MGR rat OffspringSurvival	LibS VM	CDK, TA, TP	25	126	28	60	239	0.63	0.47	0.29	0.36	0.29	0.82	0.56	-98.9	8.83	0.13	85
																		_

																	_
MGR rat OffspringSurvival	LibS VM	CDK, TP	33	110	44	52	239	0.6	0.43	0.39	0.41	0.39	0.71	0.55	-98.9 8.38	0.11	1
MGR rat	LibS	TA TD		404	50		0.40	0.55	0.07	0.04	2.25	0.04	0.00	0.54	00.0.0.40	0.04	
OffspringSurvival	VM	TA, TP	29	104	50	57	240	0.55	0.37	0.34	0.35	0.34	0.68	0.51	-99.0 8.16	0.01	_
MGR rat OffspringSurvival	LibS VM	TA	28	113	41	58	240	0.59	0.41	0.33	0.36	0.33	0.73	0.53	-98.9 8.43	0.06	
MGR rat OffspringSurvival	LibS VM	TP	47	102	52	39	240	0.62	0.47	0.55	0.51	0.55	0.66	0.6	-98.8 8.21	0.2	
MGR rat OffspringSurvival	MLR A	CDK, TA, TP	46	95	59	39	239	0.59	0.44	0.54	0.48	0.54	0.62	0.58	-98.8 7.99		
MGR rat OffspringSurvival	MLR A	CDK, TA	48	92	62	37	239	0.59	0.44	0.56	0.49	0.56	0.6	0.58	-98.8 7.9	0.16	
MGR rat OffspringSurvival	MLR A	CDK, TP	47	94	60	38	239	0.59	0.44	0.55	0.49	0.55	0.61	0.58	-98.8 7.96	0.16	
MGR rat OffspringSurvival	MLR A	TA, TP	35	67	87	51	240	0.43	0.29	0.41	0.34	0.41	0.44	0.42	-99.2 7.25	.152	
MGR rat OffspringSurvival	MLR A MLR	TA	44	93	61	42	240	0.57	0.42	0.51	0.46	0.51	0.6	0.56	-98.9 7.96	0.11	
MGR rat OffspringSurvival	A	TP CDK, TA,	51	87	67	35	240	0.58	0.43	0.59	0.5	0.59	0.56	0.58	-98.8 7.77	0.15	_
MGR rat OffspringSurvival MGR rat	PLS	TP	42	102	52	43	239	0.6	0.45	0.49	0.47	0.49	0.66	0.58	-98.8 8.19	0.15	_
MGR rat OffspringSurvival MGR rat	PLS	CDK, TA	46	94	60	39	239	0.59	0.43	0.54	0.48	0.54	0.61	0.58	-98.8 7.96	0.15	_
OffspringSurvival MGR rat		CDK, TP	49	94	60	36	239	0.6	0.45	0.58	0.51	0.58	0.61	0.59	-98.8 7.95		_
OffspringSurvival MGR rat	PLS PLS	TA, TP	39 44	96 93	58 61	47 42	240	0.56	0.4	0.45	0.43	0.45	0.62	0.54	-98.9 8.04		_
OffspringSurvival MGR rat OffspringSurvival	PLS		47	98	56	39	240	0.57	0.42	0.51	0.46	0.51	0.6	0.56	-98.9 7.96 -98.8 8.09		_
MGR rat OffspringSurvival	J48	CDK, TA, TP	36	105	49	49	239	0.59	0.42	0.42	0.42	0.42	0.68	0.55	-98.9 8.26		
MGR rat OffspringSurvival	J48	CDK, TA	35	90	64	50	239	0.52	0.35	0.41	0.38	0.41	0.58	0.5	-99.0 7.83	.004	
MGR rat OffspringSurvival	J48	CDK, TP	39	92	62	46	239	0.55	0.39	0.46	0.42	0.46	0.6	0.53	-98.9 7.91	0.05	
MGR rat OffspringSurvival	J48	TA, TP	33	96	58	53	240	0.54	0.36	0.38	0.37	0.38	0.62	0.5	-99.0 7.99	0.01	
MGR rat OffspringSurvival MGR rat	J48	TA	39	100	54	47	240	0.58	0.42	0.45	0.44	0.45	0.65	0.55	-98.9 8.15	0.1	_
OffspringSurvival MGR rat	J48	TP CDK, TA,	37	101	53	49	240	0.58	0.41	0.43	0.42	0.43	0.66	0.54	-98.9 8.17	0.09	_
OffspringSurvival MGR rat	RF	TP OPUL TO	57	81	73	28	239	0.58		0.67			0.53	0.6	-98.8 7.51		_
OffspringSurvival MGR rat	RF	CDK, TA	54	81	73	31	239	0.56	0.43	0.64	0.51	0.64	0.53	0.58	-98.8 7.55		_
OffspringSurvival MGR rat OffspringSurvival	RF RF	TA, TP	54 50	72 66	82 88	31 36	239	0.53	0.4	0.64	0.49	0.64	0.47	0.55	-98.9 7.32 -99.0 7.23		_
MGR rat OffspringSurvival	RF	TA TA	51	77	77	35	240	0.53	0.4	0.59	0.48	0.59	0.45	0.55	-98.9 7.51		_
MGR rat OffspringSurvival	RF	TP	49	69	85	37	240	0.49	0.37	0.57	0.45	0.57	0.45	0.51	-99.0 7.32	0.02	_
MGR rat OffspringSurvival	FSM LR	Adriana	44	78	75	42	239	0.51	0.37	0.51	0.43	0.51	0.51	0.51	-99.0 7.58	0.02	
MGR rat	FSM	ALogPS,															_
OffspringSurvival	LR	OEstate	50	91	63	36	240	0.59	0.44	0.58	0.5	0.58	0.59	0.59	-98.8 7.88	0.17	

MGR rat OffspringSurvival	FSM LR	CDK	51	92	62	34	239	0.6	0.45	0.6	0.52	0.6	0.6	0.6	-98.8 7.87	0.19	85
MGR rat OffspringSurvival	FSM LR	Chemaxo n	58	77	77	28	240	0.56	0.43	0.67	0.52	0.67	0.5	0.59	-98.8 7.42	0 17	86
MGR rat	FSM																
OffspringSurvival MGR rat	LR FSM	Dragon6 Fragment	49_	93	61	37	240	0.59	0.45	0.57	0.5	0.57	0.6	0.59	-98.8 7.95	0.17	86
OffspringSurvival	LR	or	56	98	56	30	240	0.64	0.5	0.65	0.57	0.65	0.64	0.64	-98.7 8.01	0.28	86
MGR rat OffspringSurvival	FSM LR	GSFrag	65	74	80	21	240	0.58	0.45	0.76	0.56	0.76	0.48	0.62	-98.8 7.17	0.23	86
MGR rat OffspringSurvival	FSM LR	Inductive	48	93	61	38	240	0.59	0.44	0.56	0.49	0.56	0.6	0.58	-98.8 7.95	0.16	86
MGR rat OffspringSurvival	FSM LR	Mera, Mersy	42	86	68	44	240	0.53	0.38	0.49	0.43	0.49	0.56	0.52	-99.0 7.78	0.05	86
MGR rat OffspringSurvival	FSM LR	QNPR	51	84	70	35	240	0.56	0.42	0.59	0.49	0.59	0.55	0.57	-98.9 7.69	0.13	86
MGR rat OffspringSurvival	FSM LR	Spectrop hores	39	95	59	47	240	0.56	0.4	0.45	0.42	0.45	0.62	0.54	-98.9 8.01	0.07	86
MGR rat OffspringSurvival	KNN	Adriana	57	64	89	29	239	0.51	0.39	0.66	0.49	0.66	0.42	0.54	-98.9 7.11	0.08	86
MGR rat OffspringSurvival	KNN	ALogPS, OEstate	59	69	85	27	240	0.53	0.41	0.69	0.51	0.69	0.45	0.57	-98.9 7.19	0.13	86
MGR rat OffspringSurvival	KNN	CDK	61	68	86	24	239	0.54	0.41	0.72	0.53	0.72	0.44	0.58	-98.8 7.08	0.16	85
MGR rat OffspringSurvival	KNN	Chemaxo n	69	64	90	17	240	0.55	0.43	0.8	0.56	8.0	0.42	0.61	-98.8 6.76	0.22	86
MGR rat OffspringSurvival MGR rat	KNN	Dragon6 Fragment	59	86	68	27	240	0.6	0.46	0.69	0.55	0.69	0.56	0.62	-98.8 7.63	0.23	86
OffspringSurvival MGR rat	KNN		69	59	95	17	240	0.53	0.42	8.0	0.55	8.0	0.38	0.59	-98.8 6.63	0.19	86
OffspringSurvival MGR rat		GSFrag Inductive	73 42	52 95	102 59	13 44	240	0.52	0.42	0.85	0.56	0.85	0.34	0.59	-98.8 6.23	0.2	86
OffspringSurvival MGR rat OffspringSurvival		Mera, Mersy	63	68	86	23	240	0.57	0.42		0.45		0.62		-98.9 8.02 -98.8 7.07		86 86
MGR rat OffspringSurvival		QNPR	66	65	89	20	240	0.55	0.43	0.77	0.55	0.77	0.42	0.59	-98.8 6.91		86
MGR rat OffspringSurvival	KNN	Spectrop hores	25	112	42	61	240	0.57	0.37	0.29	0.33	0.29	0.73	0.51	-99.0 8.33	0.02	86
MGR rat OffspringSurvival	LibS VM	Adriana	36	114	39	50	239	0.63	0.48	0.42	0.45	0.42	0.75	0.58	-98.8 8.58	0.17	86
MGR rat OffspringSurvival	LibS VM	ALogPS, OEstate	43	115	39	43	240	0.66	0.52	0.5	0.51	0.5	0.75	0.62	-98.8 8.62	0.25	86
MGR rat OffspringSurvival	LibS VM	CDK	43	115	39	42	239	0.66	0.52	0.51	0.51	0.51	0.75	0.63	-98.7 8.6	0.25	85
MGR rat OffspringSurvival	LibS VM	Chemaxo n	40	101	53	46	240	0.59	0.43	0.47	0.45	0.47	0.66	0.56	-98.9 8.18	0.12	86

																	_
MGR rat OffspringSurvival	LibS VM	Dragon6	40	124	30	46	240	0.68	0.57	0.47	0.51	0.47	0.81	0.64	-98.7 8	.95 0.29	8
MGR rat	LibS	Fragment															
OffspringSurvival	VM	or	48	109	45	38	240	0.65	0.52	0.56	0.54	0.56	0.71	0.63	-98.7 8	.41 0.26	
MGR rat OffspringSurvival	LibS VM	GSFrag	47	104	50	39	240	0.63	0.48	0.55	0.51	0.55	0.68	0.61	-98.8 8	.26 0.22	
MGR rat OffspringSurvival	LibS VM	Inductive	44	102	52	42	240	0.61	0.46	0.51	0.48	0.51	0.66	0.59	-088 8	.21 0.17	
MGR rat	LibS			102	<u> </u>	72	240	0.01	0.40	0.01	0.40	0.01	0.00	0.00	-30.0 0	.21 0.17	
OffspringSurvival	VM	Mersy	31	129	25	55	240	0.67	0.55	0.36	0.44	0.36	0.84	0.6	-98.8 9	.09 0.22	
MGR rat OffspringSurvival	LibS VM	QNPR	39	109	45	47	240	0.62	0.46	0.45	0.46	0.45	0.71	0.58	-98.8 8	.42 0.16	
MGR rat OffspringSurvival	LibS VM	Spectrop hores	28	109	45	58	240	0.57	0.38	0.33	0.35	0.33	0.71	0.52	-99.0	8.3 0.03	
MGR rat OffspringSurvival	MLR A	Adriana	53	76	77	33	239	0.54	0.41	0.62	0.49	0.62	0.5	0.56	-98.9 7		
MGR rat		ALogPS,	40	07	E7	20	240	0.6	0.46	0.56	0.5	0.56	0.62	0.50	000 0	06 0 40	
OffspringSurvival MGR rat OffspringSurvival	A MLR A	OEstate CDK	48	97 92	57 62	38 42	240	0.6	0.46	0.56	0.5	0.56	0.63	0.59	-98.8 8 -98.9 7	.91 0.1	
MGR rat OffspringSurvival	MLR A	Chemaxo n	53	92	62	33	240	0.6	0.46	0.62	0.53	0.62	0.6	0.61	-98.8 7		
MGR rat OffspringSurvival	MLR A	Dragon6	55	87	67	31	240	0.59	0.45	0.64	0.53	0.64	0.56	0.6	-98.8 7	.73 0.2	
MGR rat OffspringSurvival	A MLR	Fragment or	53	97	57	33	240	0.63	0.48	0.62	0.54	0.62	0.63	0.62	-98.8 8	.02 0.24	
MGR rat OffspringSurvival MGR rat	A MLR	GSFrag	48	83	71	38	240	0.55	0.4	0.56	0.47	0.56	0.54	0.55	-98.9 7	.69 0.09	
OffspringSurvival MGR rat	A MLR	Inductive Mera,	44	97	57	42	240	0.59	0.44	0.51	0.47	0.51	0.63	0.57	-98.9 8	.07 0.14	
OffspringSurvival MGR rat	A MLR	Mersy	47	93	61	39	240	0.58	0.44	0.55	0.48	0.55	0.6	0.58		.96 0.14	
OffspringSurvival MGR rat		QNPR Spectrop	53	82	72	33	240	0.56	0.42	0.62	0.5	0.62	0.53	0.57	-98.9 7		_
OffspringSurvival MGR rat OffspringSurvival	A PLS	hores Adriana	38 49	88 69	66 84	48 37	240	0.53	0.37	0.44	0.45		0.57	0.51		.82 0.01	
MGR rat		ALogPS,															
OffspringSurvival MGR rat OffspringSurvival		OEstate CDK	53 54	87 97	67 57	33 31	240	0.58	0.44	0.62	0.51	0.62	0.56	0.59		.75 0.17 .98 0.25	_
MGR rat OffspringSurvival	PLS	Chemaxo n	48	83	71	38	240	0.55	0.49	0.56	0.47	0.56	0.54	0.55		.69 0.09	_
MGR rat OffspringSurvival		Dragon6	50	100	54	36	240	0.63	0.48	0.58	0.53	0.58	0.65	0.62		.13 0.22	
MGR rat OffspringSurvival	PLS	Fragment or	56	94	60	30	240	0.63	0.48	0.65	0.55	0.65	0.61	0.63	-98.7	7.9 0.25	
MGR rat OffspringSurvival MGR rat	PLS	GSFrag	57	79	75	29	240	0.57	0.43	0.66	0.52	0.66	0.51	0.59	-98.8 7	.49 0.17	
OffspringSurvival MGR rat	PLS	Inductive Mera,	42	94	60	44	240	0.57	0.41	0.49	0.45	0.49	0.61	0.55	-98.9 7	.99 0.1	_
OffspringSurvival MGR rat		Mersy	41 52	86	68	45	240	0.53	0.38	0.48	0.42	0.48	0.56	0.52		.78 0.03	_
OffspringSurvival	PLS	QNPR	52	92	62	34	240	0.6	0.46	0.6	0.52	0.6	0.6	0.6	-98.8 7	.89 0.19	

110D /		Spectrop																
MGR rat OffspringSurvival	PLS	hores	41	89	65	45	240	0.54	0.39	0.48	0.43	0.48	0.58	0.53	-98.9	7.86	0.05	86
MGR rat																		
OffspringSurvival	J48	Adriana	36	104	49	50	239	0.59	0.42	0.42	0.42	0.42	0.68	0.55	-98.9	8.27	0.1	86
MGR rat		ALogPS,																
	J48	OEstate	42	99	55	44	240	0.59	0.43	0.49	0.46	0.49	0.64	0.57	-98.9	8.13	0.13	86
MGR rat																		
OffspringSurvival	J48	CDK	38	103	51	47	239	0.59	0.43	0.45	0.44	0.45	0.67	0.56	-98.9	8.21	0.11	85
MGR rat OffspringSurvival	J48	Chemaxo	42	104	50	44	240	0.61	0.46	0.49	0.47	0.49	0.68	0.58	-98.8	9 27	0.16	86
	J 4 0	n	42	104	30		240	0.01	0.40	0.49	0.47	0.49	0.00	0.56	-90.0	0.21	0.10	00
MGR rat OffspringSurvival	J48	Dragon6	40	100	54	46	240	0.58	0.43	0.47	0.44	0.47	0.65	0.56	-98.9	8.15	0.11	86
MGR rat		Fragment			_													
	J48	or	45	100	54	41	240	0.6	0.45	0.52	0.49	0.52	0.65	0.59	-98.8	8.16	0.17	86
MGR rat	140	005	00	400	40	47	0.40	0.0	0.45	0.45	0.45	0.45	0.00	0.57	00.0	0.00	0.44	00
	J48	GSFrag	39	106	48	47	240	0.6	0.45	0.45	0.45	0.45	0.69	0.57	-98.9	8.32	0.14	86
MGR rat OffspringSurvival	J48	Inductive	41	90	64	45	240	0.55	0.39	0.48	0.43	0.48	0.58	0.53	-98.9	7 88	0 06	86
MGR rat	3.0	Mera,		- 50	<u> </u>		_ +0	0.00	0.00	J. 70	5.40	5.40	0.00	0.00	55.5	50	3.00	55
	J48	Mersy	49	100	54	37	240	0.62	0.48	0.57	0.52	0.57	0.65	0.61	-98.8	8.14	0.21	86
MGR rat		<u> </u>				2.5-												
3-1-	J48	QNPR	44	101	53	42	240	0.6	0.45	0.51	0.48	0.51	0.66	0.58	-98.8	8.19	0.16	86
MGR rat	140	Spectrop	20	100	51	E0	240	0.55	0.25	U 33	0.24	U 33	0.67	0.5	00.0	Q 10	006	96
OffspringSurvival	J48	hores	28	103	<u>ي ا</u>	58	240	0.55	0.35	0.33	0.34	0.33	0.67	0.5	-99.0	0.12	.000	86
MGR rat																		
ReproductiveOutcome	RF	Adriana	35	85	89	30	239	0.5	0.28	0.54	0.37	0.54	0.49	0.51	-99.0	6.94	0.02	65
		50																
MGR rat	D.E.	ALogPS,	00	00	70	07	0.40	0.57	0.00	0.50	0.40	0.50	0.57	0.50	00.0	7.00	0.40	٥.
ReproductiveOutcome	KF	OEstate	38	99	76	27	240	0.57	0.33	0.58	0.42	0.58	0.57	0.58	-98.8	7.23	0.13	65
MGR rat																		
ReproductiveOutcome	RF	CDK	38	107	67	27	239	0.61	0.36	0.58	0.45	0.58	0.61	0.6	-98.8	7.43	0.18	65
L		Chemaxo																
MGR rat ReproductiveOutcome	RF	n	36	99	76	29	240	0.56	0.32	0.55	0.41	0.55	0.57	0.56	-98.9	7.24	0.11	65
.,											• • • • • • • • • • • • • • • • • • • •							
MGR rat		_																
ReproductiveOutcome	KF	Dragon6	38	111	64	27	240	0.62	0.37	0.58	0.46	0.58	0.63	0.61	-98.8	7.51	0.2	65
MGR rat		Fragment																
ReproductiveOutcome	RF	or	42	97	78	23	240	0.58	0.35	0.65	0.45	0.65	0.55	0.6	-98.8	7.12	0.18	65
MGR rat ReproductiveOutcome	RF	GSFrag	37	89	86	28	240	0.53	0.3	0.57	0.39	0.57	0.51	0.54	-98.9	7 01	0.07	65
1.cpioddoliveOdlcome	1 (1	Joi ray	51	09	00	20	<u>_</u>	0.00	0.0	0.01	0.00	0.01	0.01	0.04	-50.5	7.01	0.01	00
MGR rat																		
ReproductiveOutcome	RF	Inductive	40	113	62	25	240	0.64	0.39	0.62	0.48	0.62	0.65	0.63	-98.7	7.54	0.23	65
MGR rat		Mera,																
ReproductiveOutcome	RF	Mersy	37	115	60	28	240	0.63	0.38	0.57	0.46	0.57	0.66	0.61	-98.8	7.62	0.2	65
		<u>, </u>																
MGR rat	DГ	ONDD	27	104	74	20	240	0.50	0.22	0.57	0.40	0.57	0.50	0.57	00.0	7 20	0.42	e r
ReproductiveOutcome	ĸF	QNPR	37	101	74	28	240	0.58	0.33	0.57	0.42	0.57	0.58	0.57	-98.9	1.28	U. 13	65
MGR rat		Spectrop																
ReproductiveOutcome	RF	hores	33	96	79	32	240	0.54	0.29	0.51	0.37	0.51	0.55	0.53	-98.9	7.19	0.05	65
	ASN																	
		Adriana	29	109	65	36	239	0.58	0.31	0 45	0.36	0 45	0.63	0.54	-98.9	7.5	0.07	65
IVIGITIAL								0.00	0.01	0.10	0.00	0.10	0.00	0.01				
MGR rat ReproductiveOutcome																		
ReproductiveOutcome	ASN	ALogPS,																
ReproductiveOutcome		ALogPS, OEstate	25	103	72	40	240	0.53	0.26	0.38	0.31	0.38	0.59	0.49	-99.0	7.3	.024	65
ReproductiveOutcome MGR rat ReproductiveOutcome	N	-	25	103	72	40	240	0.53	0.26	0.38	0.31	0.38	0.59	0.49	-99.0	7.3	.024	65
ReproductiveOutcome MGR rat ReproductiveOutcome	N ASN	-	25 35	103	72 64	40 30	240	0.53			0.31				-99.0 -98.8			65 65

MGR rat ReproductiveOutcome		Chemaxo n	22	105	70	43	240	0.53	0.24	0.34	0.28	0.34	0.6	0.47	-99.1 7.29	.056	65
MGR rat ReproductiveOutcome	ASN • N	Dragon6	28	126	49	37	240	0.64	0.36	0.43	0.39	0.43	0.72	0.58	-98.8 7.91	0.14	65
MGR rat ReproductiveOutcome		Fragment or	28	111	64	37	240	0.58	0.3	0.43	0.36	0.43	0.63	0.53	-98.9 7.52	0.06	65
MGR rat ReproductiveOutcome	ASN • N	GSFrag	36	107	68	29	240	0.6	0.35	0.55	0.43	0.55	0.61	0.58	-98.8 7.43	0.15	65
MGR rat ReproductiveOutcome	ASN ∍ N	Inductive	32	124	51	33	240	0.65	0.39	0.49	0.43	0.49	0.71	0.6	-98.8 7.88	0.19	65
MGR rat ReproductiveOutcome		Mera, Mersy	25	115	60	40	240	0.58	0.29	0.38	0.33	0.38	0.66	0.52	-99.0 7.59	0.04	65
MGR rat ReproductiveOutcome	ASN • N	QNPR	32	109	66	33	240	0.59	0.33	0.49	0.39	0.49	0.62	0.56	-98.9 7.49	0.1	65
MGR rat ReproductiveOutcome		Spectrop hores	30	115	60	35	240	0.6	0.33	0.46	0.39	0.46	0.66	0.56	-98.9 7.63	0.11	65
MGR rat ReproductiveOutcome		CDK, TA, TP	26	122	52	39	239	0.62	0.33	0.4	0.36	0.4	0.7	0.55	-98.9 7.8	0.1	65
MGR rat ReproductiveOutcome	ASN • N	CDK, TA	26	113	61	39	239	0.58	0.3	0.4	0.34	0.4	0.65	0.52	-99.0 7.57	0.05	65
MGR rat ReproductiveOutcome	ASN • N	CDK, TP	26	120	54	39	239	0.61	0.33	0.4	0.36	0.4	0.69	0.54	-98.9 7.75	0.08	65
MGR rat ReproductiveOutcome	ASN • N	TA, TP	22	122	53	43	240	0.6	0.29	0.34	0.31	0.34	0.7	0.52	-99.0 7.71	0.03	65
MGR rat ReproductiveOutcome	ASN • N	TA	20	125	50	45	240	0.6	0.29	0.31	0.3	0.31	0.71	0.51	-99.0 7.75	0.02	65
MGR rat ReproductiveOutcome	ASN • N	TP	30	123	52	35	240	0.64	0.37	0.46	0.41	0.46	0.7	0.58	-98.8 7.84	0.15	65
MGR rat ReproductiveOutcome		CDK, TA, TP	27	112	62	38	239	0.58	0.3	0.42	0.35	0.42	0.64	0.53	-98.9 7.55	0.05	65
MGR rat ReproductiveOutcome	FSM	CDK, TA	27	108	66	38	239	0.56	0.29	0.42	0.34	0.42	0.62	0.52	-99.0 7.45	0.03	65
MGR rat	FSM																
ReproductiveOutcome MGR rat	FSM	CDK, TP	29	117	57	36	239	0.61	0.34	0.45	0.38	0.45	0.67	0.56	-98.9 7.7	0.11	65
ReproductiveOutcome	E LR FSM	TA, TP	25	113	62	40	240	0.58	0.29	0.38	0.33	0.38	0.65	0.52	-99.0 7.54	0.03	65
MGR rat ReproductiveOutcome	e LR	TA	30	113	62	35	240	0.6	0.33	0.46	0.38	0.46	0.65	0.55	-98.9 7.58	0.1	65
MGR rat ReproductiveOutcome	FSM LR	TP	23	122	53	42	240	0.6	0.3	0.35	0.33	0.35	0.7	0.53	-98.9 7.73	0.05	65
MGR rat ReproductiveOutcome	· KNN	CDK, TA, TP	11	141	33	54	239	0.64	0.25	0.17	0.2	0.17	0.81	0.49	-99.0 7.88	.023	65
MGR rat ReproductiveOutcome	KNN	CDK, TA	29	88	86	36	239	0.49	0.25	0.45	0.32	0.45	0.51	0.48	-99.0 7.	.043	65
MGR rat ReproductiveOutcome	· KNN	CDK, TP	20	119	55	45	239	0.58	0.27	0.31	0.29	0.31	0.68	0.5	-99.0 7.61	.008	65

MGR rat ReproductiveOutcome KNN	TA, TP	28	103	72	37	240	0.55	0.28	0.43	0.34	0.43	0.59	0.51	-99.0 7.33 0.02	65
MGR rat ReproductiveOutcome KNN	TA	29	101	74	36	240	0.54	0.28	0.45	0.35	0.45	0.58	0.51	-99.0 7.29 0.02	65
MGR rat ReproductiveOutcome KNN	TP	18	133	42	47	240	0.63	0.3	0.28	0.29	0.28	0.76	0.52	-99.0 7.92 0.04	65
MGR rat LibS ReproductiveOutcome VM	CDK, TA, TP	10	151	23	55	239	0.67	0.3	0.15	0.2	0.15	0.87	0.51	-99.0 8.23 0.03	65
MGR rat LibS ReproductiveOutcome VM	CDK, TA	8	157	17	57	239	0.69	0.32	0.12	0.18	0.12	0.9	0.51	-99.0 8.39 0.04	65
MGR rat LibS ReproductiveOutcome VM	CDK, TP	14	147	27	51	239	0.67	0.34	0.22	0.26	0.22	0.84	0.53	-98.9 8.3 0.07	65
MGR rat LibS ReproductiveOutcome VM	TA, TP	14	152	23	51	240	0.69	0.38	0.22	0.27	0.22	0.87	0.54	-98.9 8.49 0.1	65
MGR rat LibS ReproductiveOutcome VM	TA	9	155	20	56	240	0.68	0.31	0.14	0.19	0.14	0.89	0.51	-99.0 8.31 0.03	65
MGR rat LibS ReproductiveOutcome VM		15	147	28									0.54		
<u>'</u>	CDK, TA,	32	101	73	33	240	0.68	0.35	0.23	0.28	0.23	0.84	0.54	-98.9 8.31 0.08 -98.9 7.32 0.07	65 65
MGR rat MLR ReproductiveOutcome A		32	95	79	33	239	0.53	0.29	0.49	0.36	0.49	0.55	0.52	-99.0 7.18 0.03	65
MGR rat MLR ReproductiveOutcome A	CDK, TP	38	94	80	27	239	0.55	0.32	0.58	0.42	0.58	0.54	0.56	-98.9 7.13 0.11	65
MGR rat MLR ReproductiveOutcome A	TA, TP	24	117	58	41	240	0.59	0.29	0.37	0.33	0.37	0.67	0.52	-99.0 7.62 0.04	65
MGR rat MLR ReproductiveOutcome A	TA	30	90	85	35	240	0.5	0.26	0.46	0.33	0.46	0.51	0.49	-99.0 7.04 .022	65
MGR rat MLR ReproductiveOutcome A	TP	34	108	67	31	240	0.59	0.34	0.52	0.41	0.52	0.62	0.57	-98.9 7.47 0.13	65
MGR rat ReproductiveOutcome PLS	CDK, TA, TP	25	118	56	40	239	0.6	0.31	0.38	0.34	0.38	0.68	0.53	-98.9 7.68 0.06	65
MGR rat ReproductiveOutcome PLS	CDK, TA	27	110	64	38	239	0.57	0.3	0.42	0.35	0.42	0.63	0.52	-99.0 7.5 0.04	65
MGR rat ReproductiveOutcome PLS	CDK, TP	25	113	61	40	239	0.58	0.29	0.38	0.33	0.38	0.65	0.52	-99.0 7.55 0.03	65
MGR rat ReproductiveOutcome PLS	TA, TP	23	119	56	42	240	0.59	0.29	0.35	0.32	0.35	0.68	0.52	-99.0 7.66 0.03	65
MGR rat ReproductiveOutcome PLS	TA	25	120	55	40	240	0.6	0.31	0.38	0.34	0.38	0.69	0.54	-98.9 7.72 0.07	65
MGR rat ReproductiveOutcome PLS	TP OR ICE	24	117	58	41	240	0.59	0.29	0.37	0.33	0.37	0.67	0.52	-99.0 7.62 0.04	65
MGR rat ReproductiveOutcome J48	CDK, TA, TP	33	121	53	32	239	0.64	0.38	0.51	0.44	0.51	0.7	0.6	-98.8 7.81 0.19	65
MGR rat ReproductiveOutcome J48	CDK, TA	22	130	44	43	239	0.64	0.33	0.34	0.34	0.34	0.75	0.54	-98.9 7.96 0.09	65

MGR rat ReproductiveOutcome	J48	CDK, TP	19	131	43	46	239	0.63	0.31	0.29	0.3	0.29	0.75	0.52	-99.0 7.9	0.05	65
MGR rat ReproductiveOutcome	J48	TA, TP	28	120	55	37	240	0.62	0.34	0.43	0.38	0.43	0.69	0.56	-98.9 7.7	75 0.11	65
MGR rat ReproductiveOutcome	J48	TA	23	132	43	42	240	0.65	0.35	0.35	0.35	0.35	0.75	0.55	-98.9 8.0	0.11	65
MGR rat ReproductiveOutcome	J48	TP	19	138	37	46	240	0.65	0.34	0.29	0.31	0.29	0.79	0.54	-98.9 8.1	12 0.08	65
MGR rat ReproductiveOutcome	RF	CDK, TA, TP	33	106	68	32	239	0.58	0.33	0.51	0.4	0.51	0.61	0.56	-98.9 7.4	3 0.11	65
MGR rat ReproductiveOutcome	RF	CDK, TA	36	90	84	29	239	0.53	0.3	0.55	0.39	0.55	0.52	0.54	-98.9 7.0	05 0.06	65
MGR rat ReproductiveOutcome	RF	CDK, TP	34	98	76	31	239	0.55	0.31	0.52	0.39	0.52	0.56	0.54	-98.9 7.2	24 0.08	65
MGR rat ReproductiveOutcome	RF	TA, TP	27	97	78	38	240	0.52	0.26	0.42	0.32	0.42	0.55	0.48	-99.0 7.1	18 .027	65
MGR rat ReproductiveOutcome	RF	TA	31	106	69	34	240	0.57	0.31	0.48	0.38	0.48	0.61	0.54	-98.9 7.4	12 0.07	65
MGR rat ReproductiveOutcome	RF	TP	27	104	71	38	240	0.55	0.28	0.42	0.33	0.42	0.59	0.5	-99.0 7.3	34 0.01	65
MGR rat ReproductiveOutcome	FSM LR	Adriana	34	83	91	31	239	0.49	0.27	0.52	0.36	0.52	0.48	0.5	-99.0 6	.9 0.	65
MGR rat ReproductiveOutcome		ALogPS, OEstate	37	89	86	28	240	0.53	0.3	0.57	0.39	0.57	0.51	0.54	-98.9 7.0	0.07	65
MGR rat ReproductiveOutcome	FSM	CDK	28	104	70	37	239	0.55	0.29	0.43	0.34	0.43	0.6	0.51	-99.0 7.3	87 N N3	65
MGR rat	FSM	Chemaxo															
ReproductiveOutcome MGR rat	LR FSM	n	27	104	71	38	240	0.55	0.28	0.42	0.33	0.42	0.59	0.5	-99.0 7.3	34 0.01	65
ReproductiveOutcome		Dragon6	29	111	64	36	240	0.58	0.31	0.45	0.37	0.45	0.63	0.54	-98.9 7.5	3 0.07	65
MGR rat ReproductiveOutcome		Fragment or	32	106	69	33	240	0.58	0.32	0.49	0.39	0.49	0.61	0.55	-98.9 7.4	12 0.09	65
MGR rat ReproductiveOutcome	FSM LR	GSFrag	44	87	88	21	240	0.55	0.33	0.68	0.45	0.68	0.5	0.59	-98.8 6.8	35 0.16	65
MGR rat ReproductiveOutcome	FSM LR	Inductive	32	121	54	33	240	0.64	0.37	0.49	0.42	0.49	0.69	0.59	-98.8 7.7	9 0.17	65
MGR rat ReproductiveOutcome		Mera, Mersy	27	112	63	38	240	0.58	0.3	0.42	0.35	0.42	0.64	0.53	-98.9 7.5	54 0.05	65
MGR rat ReproductiveOutcome	FSM LR	QNPR	35	100	75	30	240	0.56	0.32	0.54	0.4	0.54	0.57	0.55	-98.9 7.2	27 0.1	65
. MGR rat ReproductiveOutcome	FSM	Spectrop hores	39	77	98	26	240		0.28	0.6	0.39	0.6			-99.0 6.7		65
MGR rat								0.48					0.44				
ReproductiveOutcome	KNN	Adriana	36	82	92	29	239	0.49	0.28	0.55	0.37	0.55	0.47	0.51	-99.0 6.8	s/ U.02	65

MGR rat ReproductiveOutcome KNN	ALogPS, OEstate	41	87	88	24	240	0.53	0.32	0.63	0.42	0.63	0.5	0.56	-98.9 6	.91 0	.11	65
MGR rat ReproductiveOutcome KNN	CDK	26	109	65	39	239	0.56	0.29	0.4	0.33	0.4	0.63	0.51	-99.0 7	.47 0	.02	65
MGR rat ReproductiveOutcome KNN	Chemaxo n	45	66	109	20	240	0.46	0.29	0.69	0.41	0.69	0.38	0.53	-98.9 6	.34 0	.06	65
MGR rat ReproductiveOutcome KNN	Dragon6	32	103	72	33	240	0.56	0.31	0.49	0.38	0.49	0.59	0.54	-98.9 7	.35 0	.07	65
MGR rat ReproductiveOutcome KNN	Fragment or	43	64	111	22	240	0.45	0.28	0.66	0.39	0.66	0.37	0.51	-99.0 6	.34 0	.03	65
MGR rat ReproductiveOutcome KNN	GSFrag	57	30	145	8	240	0.36	0.28	0.88	0.43	0.88	0.17	0.52	-99.0 4	.63 0	.06	65
MGR rat ReproductiveOutcome KNN	Inductive	27	133	42	38	240	0.67	0.39	0.42	0.4	0.42	0.76	0.59	-98.8 8	1.11 0	.17	65
MGR rat ReproductiveOutcome KNN	Mera, Mersy	33	113	62	32	240	0.61	0.35	0.51	0.41	0.51	0.65	0.58	-98.8 7	.59 0	.14	65
MGR rat ReproductiveOutcome KNN	QNPR	30	124	51	35	240	0.64	0.37	0.46	0.41	0.46	0.71	0.59	-98.8 7	.87 0	.16	65
MGR rat ReproductiveOutcome KNN	Spectrop hores	32	94	81	33	240	0.53	0.28	0.49	0.36	0.49	0.54	0.51	-99.0 7	.14 0	.03	65
MGR rat LibS ReproductiveOutcome VM	Adriana	20	134	40	45	239	0.64	0.33	0.31	0.32	0.31	0.77	0.54	-98.9 8	.04 0	.08	65
MGR rat LibS ReproductiveOutcome VM	ALogPS, OEstate	18	142	33	47	240	0.67	0.35	0.28	0.31	0.28	0.81	0.54	-98.9 8	.23	0.1	65
MGR rat LibS ReproductiveOutcome VM	CDK	19	138	36	46	239	0.66	0.35	0.29	0.32	0.29	0.79	0.54	-98.9 8	.14 0	.09	65
MGR rat LibS ReproductiveOutcome VM	Chemaxo n	10	144	31	55	240	0.64	0.24	0.15	0.19	0.15	0.82	0.49	-99.0 7	89 ()28	65
MGR rat LibS				-													
ReproductiveOutcome VM MGR rat LibS	Dragon6 Fragment	18	147	28	47	240	0.69	0.39	0.28	0.32	0.28	0.84	0.56	-98.9 8	.42 0	.13	65
ReproductiveOutcome VM MGR rat LibS	or	15	140	35	50	240	0.65	0.3	0.23	0.26	0.23	0.8	0.52	-99.0 8	.04 0	.03	65
ReproductiveOutcome VM	GSFrag	25	122	53	40	240	0.61	0.32	0.38	0.35	0.38	0.7	0.54	-98.9 7	.77 0	.08	65
MGR rat LibS ReproductiveOutcome VM	Inductive	23	139	36	42	240	0.68	0.39	0.35	0.37	0.35	0.79	0.57	-98.9 8	.25 0	.15	65
MGR rat LibS ReproductiveOutcome VM	Mera, Mersy	21	145	30	44	240	0.69	0.41	0.32	0.36	0.32	0.83	0.58	-98.8 8	.43 0	.16	65
MGR rat LibS ReproductiveOutcome VM	QNPR	17	149	26	48	240	0.69	0.4	0.26	0.31	0.26	0.85	0.56	-98.9 8	.47 0	.13	65
MGR rat LibS ReproductiveOutcome VM	Spectrop hores	20	150	25	45	240	0.71	0.44	0.31	0.36	0.31	0.86	0.58	-98.8 8	.61 0	.19	65
MGR rat MLR ReproductiveOutcome A	Adriana	26	101	73	39	239	0.53	0.26	0.4	0.32	0.4	0.58	0.49	-99.0 7	.28 .0)18	65

MGR rat ReproductiveOutcome		ALogPS, OEstate	34	92	83	31	240	0.53	0.29	0.52	0.37	0.52	0.53	0.52	-99.0	7.09	0.04	65
MGR rat ReproductiveOutcome	MLR A	CDK	30	90	84	35	239	0.5	0.26	0.46	0.34	0.46	0.52	0.49	-99.0	7.06	.019	65
MGR rat ReproductiveOutcome		Chemaxo n	26	97	78	39	240	0.51	0.25	0.4	0.31	0.4	0.55	0.48	-99.0	7.17	.041	65
MGR rat ReproductiveOutcome	MLR A	Dragon6	34	79	96	31	240	0.47	0.26	0.52	0.35	0.52	0.45	0.49	-99.0	6.8	.023	65
MGR rat ReproductiveOutcome		Fragment or	28	106	69	37	240	0.56	0.29	0.43	0.35	0.43	0.61	0.52	-99.0	7.4	0.03	65
MGR rat ReproductiveOutcome	MLR A	GSFrag	38	92	83	27	240	0.54	0.31	0.58	0.41	0.58	0.53	0.56	-98.9	7.07	0.1	65
MGR rat ReproductiveOutcome	MLR A	Inductive	34	126	49	31	240	0.67	0.41	0.52	0.46	0.52	0.72	0.62	-98.8	7.93	0.23	65
MGR rat ReproductiveOutcome		Mera, Mersy	41	93	82	24	240	0.56	0.33	0.63	0.44	0.63	0.53	0.58	-98.8	7.05	0.14	65
MGR rat ReproductiveOutcome	MLR A	QNPR	35	100	75	30	240	0.56	0.32	0.54	0.4	0.54	0.57	0.55	-98.9	7.27	0.1	65
MGR rat ReproductiveOutcome		Spectrop hores	29	103	72	36	240	0.55	0.29	0.45	0.35	0.45	0.59	0.52	-99.0	7.34	0.03	65
MGR rat ReproductiveOutcome	PLS	Adriana	30	112	62	35	239	0.59	0.33	0.46	0.38	0.46	0.64	0.55	-98.9	7.58	0.1	65
MGR rat ReproductiveOutcome	PLS	ALogPS, OEstate	28	108	67	37	240	0.57	0.29	0.43	0.35	0.43	0.62	0.52	-99.0	7 45	0.04	65
MGR rat ReproductiveOutcome			29	105	69	36	239	0.56	0.3	0.45	0.36	0.45	0.6	0.52	-99.0	-	0.04	65
MGR rat ReproductiveOutcome		Chemaxo	29	86	89	36	240	0.48	0.25	0.45	0.32	0.45	0.49	0.47	-99.1	6.95		65
MGR rat ReproductiveOutcome			34	118	57	31	240	0.43	0.23	0.43	0.32	0.43	0.49	0.47	-98.8		0.18	65
MGR rat ReproductiveOutcome		Fragment	27	109	66		240	0.57	0.29	0.32	0.44	0.32	0.62	0.52		7.46		
MGR rat		or CCE				38												65
ReproductiveOutcome			42	85	90	23	240	0.53	0.32	0.65	0.43	0.65	0.49	0.57	-98.9			65
ReproductiveOutcome MGR rat		Mera,	30	117	58	35	240	0.61	0.34	0.46	0.39	0.46	0.67	0.57	-98.9			65
ReproductiveOutcome MGR rat		Mersy	26	110	65	39	240	0.57	0.29	0.4	0.33	0.4	0.63	0.51	-99.0			65
ReproductiveOutcome MGR rat		QNPR Spectrop	30	114	61	35	240	0.6	0.33	0.46	0.38	0.46	0.65	0.56	-98.9		0.1	65
ReproductiveOutcome MGR rat	PLS	hores	34	95	80	31	240	0.54	0.3	0.52	0.38	0.52	0.54	0.53	-98.9	7.16	0.06	65
ReproductiveOutcome	. J48	Adriana ALogPS,	18	118	56	47	239	0.57	0.24	0.28	0.26	0.28	0.68	0.48	-99.0	7.52	.043	65
MGR rat ReproductiveOutcome	J48	OEstate	29	114	61	36	240	0.6	0.32	0.45	0.37	0.45	0.65	0.55	-98.9	7.6	0.09	65

MGR rat ReproductiveOutcome J	48	CDK	29	131	43	36	239	0.67	0.4	0.45	0.42	0.45	0.75	0.6	-98.8 8	3.09 0.19	65
MGR rat ReproductiveOutcome J	48	Chemaxo n	20	128	47	45	240	0.62	0.3	0.31	0.3	0.31	0.73	0.52	-99.0 7	7.83 0.04	65
MGR rat ReproductiveOutcome J	48	Dragon6	26	132	43	39	240	0.66	0.38	0.4	0.39	0.4	0.75	0.58	-98.8 8	3.07 0.15	65
MGR rat ReproductiveOutcome J		Fragment or	31	122	53	34	240	0.64	0.37	0.48	0.42	0.48	0.7	0.59	-98.8 7	7.82 0.16	65
MGR rat ReproductiveOutcome J	48	GSFrag	31	118	57	34	240	0.62	0.35	0.48	0.41	0.48	0.67	0.58	-98.8 7	7.71 0.14	65
MGR rat ReproductiveOutcome J	48	Inductive	23	127	48	42	240	0.63	0.32	0.35	0.34	0.35	0.73	0.54	-98.9 7	7.87 0.08	65
MGR rat ReproductiveOutcome J		Mera, Mersy	28	129	46	37	240	0.65	0.38	0.43	0.4	0.43	0.74	0.58	-98.8	8. 0.16	65
MGR rat ReproductiveOutcome J	48	QNPR	32	116	59	33	240	0.62	0.35	0.49	0.41	0.49	0.66	0.58	-98.8 7	7.66 0.14	65
MGR rat ReproductiveOutcome J		Spectrop hores	24	131	44	41	240	0.65	0.35	0.37	0.36	0.37	0.75	0.56	-98.9 8	3.01 0.12	65
MGR rat ReproductivePerforma nce R	RF	Adriana	22	103	86	28	239	0.52	0.2	0.44	0.28	0.44	0.54	0.49	-99.0 6	6.64 .012	50
MGR rat ReproductivePerforma nce R	RF	ALogPS, OEstate	28	113	77	22	240	0.59	0.27	0.56	0.36	0.56	0.59	0.58	-98.8 6	5.84 0.13	50
MGR rat ReproductivePerforma nce R	₹F	CDK	26	109	80	24	239	0.56	0.25	0.52	0.33	0.52	0.58	0.55	-98.9 6	6.78 0.08	50
MGR rat ReproductivePerforma nce R	₹F	Chemaxo n	26	96	94	24	240	0.51	0.22	0.52	0.31	0.52	0.51	0.51	-99.0	6.5 0.02	50
MGR rat ReproductivePerforma nce R	₹F	Dragon6	22	108	82	28	240	0.54	0.21	0.44	0.29	0.44	0.57	0.5	-99.0 6	5.74 0.01	50
MGR rat ReproductivePerforma nce R	₹F	Fragment or	22	122	68	28	240	0.6	0.24	0.44	0.31	0.44	0.64	0.54	-98.9 7	7.04 0.07	50
MGR rat ReproductivePerforma nce R	₹F	GSFrag	30	115	75	20	240	0.6	0.29	0.6	0.39	0.6	0.61	0.6	-98.8 6	5.86 0.17	50
MGR rat ReproductivePerforma nce R	₹F	Inductive	26	112	78	24	240	0.58	0.25	0.52	0.34	0.52	0.59	0.55	-98.9 6	5.84 0.09	50
MGR rat ReproductivePerforma nce R		Mera, Mersy	22	95	95	28	240	0.49	0.19	0.44	0.26	0.44	0.5	0.47	-99.1 6	5.46 .049	50
MGR rat ReproductivePerforma nce R	RF	QNPR	26	119	71	24	240	0.6	0.27	0.52	0.35	0.52	0.63	0.57	-98.9	6.99 0.12	50
MGR rat ReproductivePerforma nce R		Spectrop hores	24	106	84	26	240	0.54	0.22	0.48	0.3	0.48	0.56	0.52	-99.0	5.71 0.03	50
MGR rat ReproductivePerforma A nce N	SN I	Adriana	23	113	76	27	239	0.57	0.23	0.46	0.31	0.46	0.6	0.53	-98.9	6.87 0.05	50
MGR rat ReproductivePerforma A	SN I	ALogPS, OEstate	23	131	59	27	240	0.64	0.28	0.46	0.35	0.46	0.69	0.57	-98.9. 7	7.26 0.13	50
MGR rat ReproductivePerforma A															23.0		

MGR rat ReproductivePerforma	ASN N	Chemaxo n	22	118	72	28	240	0.58	0.23	0.44	0.31	0.44	0.62	0.53	-98.9 6.95 0.05	50
MGR rat ReproductivePerforma nce	ASN N	Dragon6	16	133	57	34	240	0.62	0.22	0.32		0.32	0.7	0.51	-99.0 7.19 0.02	50
MGR rat ReproductivePerforma nce			20	132	58	30	240	0.63	0.26	0.4	0.31	0.4	0.69	0.55	-98.9 7.26 0.08	50
MGR rat ReproductivePerforma nce	ASN N	GSFrag	25	124	66	25	240	0.62	0.27	0.5	0.35	0.5	0.65	0.58	-98.8 7.1 0.13	50
MGR rat ReproductivePerforma nce	ASN N	Inductive	21	126	64	29	240	0.61	0.25	0.42	0.31	0.42	0.66	0.54	-98.9 7.13 0.07	50
MGR rat ReproductivePerforma nce	ASN N	Mera, Mersy	14	122	68	36	240	0.57	0.17	0.28	0.21	0.28	0.64	0.46	-99.1 6.85 .067	5
MGR rat ReproductivePerforma nce	ASN N	QNPR	26	140	50	24	240	0.69	0.34	0.52	0.41	0.52	0.74	0.63	-98.7 7.5 0.22	5
MGR rat ReproductivePerforma nce	ASN N	Spectrop hores	21	118	72	29	240	0.58	0.23	0.42	0.29	0.42	0.62	0.52	-99.0 6.94 0.03	5
MGR rat ReproductivePerforma nce	ASN N	CDK, TA, TP	21	137	52	29	239	0.66	0.29	0.42	0.34	0.42	0.72	0.57	-98.9 7.42 0.13	5
MGR rat ReproductivePerforma nce	ASN N	CDK, TA	19	134	55	31	239	0.64	0.26	0.38	0.31	0.38	0.71	0.54	-98.9 7.31 0.08	5
MGR rat ReproductivePerforma nce	ASN N	CDK, TP	28	141	48	22	239	0.71	0.37	0.56	0.44	0.56	0.75	0.65	-98.7 7.53 0.27	5
MGR rat ReproductivePerforma nce	ASN N	TA, TP	18	141	49	32	240	0.66	0.27	0.36	0.31	0.36	0.74	0.55	-98.9 7.45 0.09	5
MGR rat ReproductivePerforma nce	ASN N	TA	20	133	57	30	240	0.64	0.26	0.4	0.31	0.4	0.7	0.55	-98.9 7.28 0.09	5
MGR rat ReproductivePerforma nce	ASN N	TP	29	132	58	21	240	0.67	0.33	0.58	0.42	0.58	0.69	0.64	-98.7 7.27 0.23	5
MGR rat ReproductivePerforma nce	FSM LR	CDK, TA, TP	26	137	52	24	239	0.68	0.33	0.52	0.41	0.52	0.72	0.62	-98.8 7.44 0.21	5
MGR rat ReproductivePerforma nce	FSM LR	CDK, TA	20	136	53	30	239	0.65	0.27	0.4	0.33	0.4	0.72	0.56	-98.9 7.37 0.11	5
MGR rat ReproductivePerforma	FSM	·														
nce MGR rat ReproductivePerforma	FSM	CDK, TP	27	144	45	23	239		0.38						-98.7 7.63 0.27	5
nce MGR rat ReproductivePerforma	LR	TA, TP	21_	135	55	29	240	0.65	0.28	0.42	0.33	0.42	0.71	0.57	-98.9 7.35 0.11	5
nce MGR rat ReproductivePerforma	LR	TA	21	135	55	29	240	0.65	0.28	0.42	0.33	0.42	0.71	0.57	-98.9 7.35 0.11	5
nce MGR rat	LR	TP CDK, TA,	27	137	53	23	240	0.68	0.34	0.54	0.42	0.54	0.72	0.63	-98.7 7.42 0.22	5
ReproductivePerformance MGR rat	KNN		32	91	98	18	239	0.51	0.25	0.64	0.36	0.64	0.48	0.56	-98.9 6.33 0.1	5
ReproductivePerformance MGR rat	KNN	CDK, TA	15	135	54	35	239	0.63	0.22	0.3	0.25	0.3	0.71	0.51	-99.0 7.22 0.01	5
ReproductivePerforma nce		CDK, TP	29	98	91	21	239	0.53	0.24	0.58	0.34	0.58	0.52	0.55	-98.9 6.53 0.08	5

MGR rat																		
ReproductivePerforma nce		TA, TP	23	90	100	27	240	0.47	0.19	0.46	0.27	0.46	0.47	0.47	-99.1	6.37	.054	50
MGR rat ReproductivePerforma nce	KNN	TA	19	137	53	31	240	0.65	0.26	0.38	0.31	0.38	0.72	0.55	-98.9	7.36	0.09	50
MGR rat ReproductivePerforma nce	KNN	TP	26	106	84	24	240	0.55	0.24	0.52	0.33	0.52	0.56	0.54	-98.9	6.71	0.06	50
MGR rat ReproductivePerforma			4.4	400	00	00	000	0.74	0.05	0.00	0.04	0.00	0.00	0.57	00.0	0.00	0.40	
nce MGR rat	VM	TP	14	163	26	36	239	0.74	0.35	0.28	0.31	0.28	0.86	0.57	-98.9	8.09	0.16	50
ReproductivePerforma nce	LibS VM	CDK, TA	2	185	4	48	239	0.78	0.33	0.04	0.07	0.04	0.98	0.51	-99.0	8.52	0.05	50
MGR rat ReproductivePerforma nce	LibS VM	CDK, TP	9	171	18	41	239	0.75	0.33	0.18	0.23	0.18	0.9	0.54	-98.9	8.2	0 11	50
MGR rat ReproductivePerforma		02.4,						00	0.00	00	0.20	00	0.0				•	
nce ReproductivePerforma	VM	TA, TP	1	186	4	49	240	0.78	0.2	0.02	0.04	0.02	0.98	0.5	-99.0	8.03	.003	50
MGR rat ReproductivePerforma nce	LibS VM	TA	4	176	14	46	240	0.75	0.22	0.08	0.12	0.08	0.93	0.5	-99.0	7.84	0.01	50
MGR rat ReproductivePerforma nce	LibS VM	TP	12	170	20	38	240	0.76	0.38	0.24	0.29	0.24	0.89	0.57	-98.9	8.29	0.16	50
MGR rat ReproductivePerforma nce	MLR A	CDK, TA,	29	114	75	21	239	0.6	0.28	0.58	0.38	0.58	0.6	0.59	-98.8	6.87	0.15	50
MGR rat ReproductivePerforma	MLR A	CDK, TA	23	111	78	27	239	0.56	0.23	0.46	0.3	0.46	0.59	0.52	-99.0			50
MGR rat ReproductivePerforma	MLR A	CDK, TP	30	125	64	20	239	0.65	0.32	0.6	0.42	0.6	0.66	0.63	-98.7	7.1	0.22	50
MGR rat ReproductivePerforma		TA, TP	25	105	85	25	240	0.54	0.23	0.5	0.31	0.5		0.53	-98.9			50
MGR rat ReproductivePerforma	MLR		-										0.55					
nce MGR rat	A MI P	TA	24	111	79	26	240	0.56	0.23	0.48	0.31	0.48	0.58	0.53	-98.9	6.81	0.05	50
ReproductivePerforma	A	TP	22	112	78	28	240	0.56	0.22	0.44	0.29	0.44	0.59	0.51	-99.0	6.82	0.02	50
MGR rat ReproductivePerforma nce	PLS	CDK, TA, TP	21	135	54	29	239	0.65	0.28	0.42	0.34	0.42	0.71	0.57	-98.9	7.36	0.12	50
MGR rat ReproductivePerforma nce		CDK, TA	16	136	53	34	239	0.64	0.23	0.32	0.27	0.32	0.72	0.52	-99.0	7.28	0.04	50
MGR rat ReproductivePerforma																		
nce MGR rat		CDK, TP	30	140	49	20	239	0.71	0.38	0.6	0.47	0.6	0.74	0.67	-98.7	7.48	0.29	50
	PLS	TA, TP	18	133	57	32	240	0.63	0.24	0.36	0.29	0.36	0.7	0.53	-98.9	7.24	0.05	50
MGR rat ReproductivePerforma nce	PLS	TA	24	132	58	26	240	0.65	0.29	0.48	0.36	0.48	0.69	0.59	-98.8	7.29	0.15	50
MGR rat ReproductivePerforma nce	PLS	TP	28	134	56	22	240	0.68	0.33	0.56	0.42	0.56	0.71	0.63	-98.7	7.33	0.23	50
MGR rat ReproductivePerforma	J48	CDK, TA,	20	143	46	30	239	0.68	0.3		0.34		0.76	0.58	-98.8			50
MGR rat ReproductivePerforma nce		CDK, TA	18	142	47	32	239				0.31		0.75	0.56	-98.9	7.5	0.14	50
	3-10	JDIN, IA		1-72	71	02	200	0.07	0.20	0.00	0.01	0.00	0.70	0.00	50.5	, .5	0.1	99

MGR rat ReproductivePerforma		CDV TD	15	142	47	25	239	0.66	0.24	0.2	0.27	0.2	0.75	0.52	00.0	7 41	0.05	50
nce MGR rat	J48	CDK, TP	15	142	47	35	239	0.66	0.24	0.3	0.27	0.3	0.75	0.53	-98.9	7.41	0.05	50
ReproductivePerforma	J48	TA, TP	13	151	39	37	240	0.68	0.25	0.26	0.25	0.26	0.79	0.53	-98.9	7.57	0.05	50
MGR rat ReproductivePerforma nce	J48	TA	15	140	50	35	240	0.65	0.23	0.3	0.26	0.3	0.74	0.52	-99.0	7.33	0.03	50
MGR rat ReproductivePerformance	J48	TP	19	146	44	31	240	0.69	0.3	0.38	0.34	0.38	0.77	0.57	-98.9	7 61	0 14	50
MGR rat ReproductivePerformance		CDK, TA,	31	97	92	19	239	0.54	0.25	0.62	0.36	0.62	0.51	0.57	-98.9		0.11	50
MGR rat ReproductivePerforma		CDK, TA	27	103	86	23	239	0.54	0.24	0.54	0.33	0.54	0.54	0.54	-98.9			50
MGR rat ReproductivePerforma		CDK, TP	26	119	70	24	239	0.61	0.27	0.52	0.36	0.52	0.63	0.57	-98.9		0.12	50
MGR rat		ODIC, II	20	113	70	24	233	0.01	0.21	0.02	0.50	0.52	0.03	0.51	-30.3	7.	0.12	30
ReproductivePerformance	RF	TA, TP	25	104	86	25	240	0.54	0.23	0.5	0.31	0.5	0.55	0.52	-99.0	6.67	0.04	50
MGR rat ReproductivePerforma nce	RF	TA	26	112	78	24	240	0.58	0.25	0.52	0.34	0.52	0.59	0.55	-98.9	6.84	0.09	50
MGR rat ReproductivePerforma nce	RF	TP	26	119	71	24	240	0.6	0.27	0.52	0.35	0.52	0.63	0.57	-98.9	6.99	0.12	50
MGR rat ReproductivePerforma nce	FSM LR	Adriana	18	116	73	32	239	0.56	0.2	0.36	0.26	0.36	0.61	0.49	-99.0	6.86	.022	50
MGR rat ReproductivePerformance	FSM LR	ALogPS, OEstate	16	120	70	34	240	0.57	0.19	0.32	0.24	0.32	0.63	0.48	-99.0 (6.88	.041	50
MGR rat	ECM																	
ReproductivePerformance	LR	CDK	21	118	71	29	239	0.58	0.23	0.42	0.3	0.42	0.62	0.52	-99.0	6.96	0.04	50
MGR rat ReproductivePerforma nce	FSM LR	Chemaxo n	27	108	82	23	240	0.56	0.25	0.54	0.34	0.54	0.57	0.55	-98.9	3.75	0.09	50
MGR rat ReproductivePerformance	FSM LR	Dragon6	23	129	61	27	240	0.63	0.27	0.46	0.34	0.46	0.68	0.57	-98.9	7.22	0.12	50
MGR rat ReproductivePerforma	FSM	Fragment				0.5	040											
nce MGR rat	LR	or	15	133	57	35	240	0.62	0.21	0.3	0.25	0.3	0.7	0.5	-99.0	7.15	0.	50
ReproductivePerforma nce	FSM LR	GSFrag	26	124	66	24	240	0.63	0.28	0.52	0.37	0.52	0.65	0.59	-98.8	7.1	0.14	50
MGR rat ReproductivePerforma nce	FSM LR	Inductive	28	117	73	22	240	0.6	0.28	0.56	0.37	0.56	0.62	0.59	-98.8	6.93	0.14	50
MGR rat ReproductivePerformance	FSM LR	Mera, Mersy	17	122	68	33	240	0.58	0.2	0.34	0.25	0.34	0.64	0.49	-99.0 (6.96	.015	50
MGR rat ReproductivePerforma		QNPR	23	131	59	27	240		0.28		0.35		0.69		-98.9			50
MGR rat ReproductivePerforma			۷.	131	J8	۷1	∠+∪	0.04	0.20	0.40	0.33	0.40	0.08	0.01	-30.3		0.10	30
ReproductivePerforma nce MGR rat	LR	hores	28	92	98	22	240	0.5	0.22	0.56	0.32	0.56	0.48	0.52	-99.0	6.4	0.04	50
ReproductivePerformance		Adriana	31	79	110	19	239	0.46	0.22	0.62	0.32	0.62	0.42	0.52	-99.0	6.09	0.03	50

MGR rat																		
ReproductivePerforma		ALogPS,	0.4	440	50	00	040	0.00	0.00	0.40	0.00	0.40	0.74	0.04	00.0	7.5	0.40	- 0
nce	KININ	OEstate	24	140	50	26	240	0.68	0.32	0.48	0.39	0.48	0.74	0.61	-98.8	7.5	0.19	50
MGR rat ReproductivePerforma																		
nce		CDK	23	126	63	27	239	0.62	0.27	0.46	0.34	0.46	0.67	0.56	-98.9	7.16	0.11	50
MGR rat																		
ReproductivePerforma		Chemaxo																
nce	KNN	n	38	56	134	12	240	0.39	0.22	0.76	0.34	0.76	0.29	0.53	-98.9	5.31	0.05	50
MGR rat																		
ReproductivePerforma nce		Dragon6	23	121	69	27	240	0.6	0.25	0.46	0.32	0.46	0.64	0.55	_0.8.0	7.03	0.08	50
	IXININ	Diagono		121	09	21	240	0.0	0.23	0.40	0.52	0.40	0.04	0.55	-90.9	7.00	0.00	30
MGR rat ReproductivePerforma		Fragment																
nce	KNN	or	16	148	42	34	240	0.68	0.28	0.32	0.3	0.32	0.78	0.55	-98.9	7.6	0.09	50
MGR rat																		
ReproductivePerforma																		
nce	KNN	GSFrag	30	94	96	20	240	0.52	0.24	0.6	0.34	0.6	0.49	0.55	-98.9	6.42	0.08	50
MGR rat																		
ReproductivePerforma nce		Inductive	26	121	69	24	240	0.61	0.27	0.52	0.36	0.52	0.64	0.58	-08 8	7.03	O 13	50
MGR rat		aaolivo		141			_+0	0.01	0.21	0.02	0.00	0.02	0.07	0.00	50.0	7.00	5.10	50
เพษหาสถ ReproductivePerforma		Mera,																
nce		Mersy	28	94	96	22	240	0.51	0.23	0.56	0.32	0.56	0.49	0.53	-98.9	6.44	0.04	50
MGR rat																		
ReproductivePerforma		01155															.	
nce	KNN	QNPR	25	136	54	25	240	0.67	0.32	0.5	0.39	0.5	0.72	0.61	-98.8	7.4	0.19	50
MGR rat		Spectrop																
ReproductivePerforma nce		hores	31	68	122	19	240	0.41	0.2	0.62	0.31	0.62	0.36	0.49	-99 N	5.84	019	50
		110100	<u> </u>	- 50	122	10	_+0	0.71	٥.٢	0.02	0.01	0.02	0.00	0.70	55.0	0.07	.010	50
MGR rat ReproductivePerforma	LihS																	
nce	VM	Adriana	13	153	36	37	239	0.69	0.27	0.26	0.26	0.26	0.81	0.53	-98 9	7.66	0.07	50
		7.0						0.00	0	0.20	0.20	0.20	0.0.	0.00	00.0		0.0.	
MGR rat ReproductivePerforma	LibS	ALogPS.																
nce		OEstate	12	155	35	38	240	0.7	0.26	0.24	0.25	0.24	0.82	0.53	-98.9	7.65	0.06	50
MGR rat ReproductivePerforma	LibS																	
nce	VM	CDK	11	153	36	39	239	0.69	0.23	0.22	0.23	0.22	0.81	0.51	-99.0	7.56	0.03	50
MODt																		
MGR rat ReproductivePerforma	LibS	Chemaxo																
nce	VM		16	143	47	34	240	0.66	0.25	0.32	0.28	0.32	0.75	0.54	-98.9	7.45	0.07	50
MODt																		
MGR rat ReproductivePerforma	LibS																	
nce	VM	Dragon6	5	164	26	45	240	0.7	0.16	0.1	0.12	0.1	0.86	0.48	-99.0	7.35	.045	50
MGR rat		-																
เทGR rat ReproductivePerforma	LibS	Fragment																
nce	VM	or	9	163	27	41	240	0.72	0.25	0.18	0.21	0.18	0.86	0.52	-99.0	7.76	0.04	50
MGR rat																		
ReproductivePerforma	LibS																	
nce	VM	GSFrag	15	158	32	35	240	0.72	0.32	0.3	0.31	0.3	0.83	0.57	-98.9	7.89	0.13	50
MGR rat																		
ReproductivePerforma	LibS																	
nce	VM	Inductive	12	152	38	38	240	0.68	0.24	0.24	0.24	0.24	8.0	0.52	-99.0	7.55	0.04	50
MGR rat																		
ReproductivePerforma																		
nce		Mersy	6	158	32	44	240	0.68	0.16	0.12	0.14	0.12	0.83	0.48	-99.0	7.25	.054	50
MGR rat																		
ReproductivePerforma	LibS																	
nce	VM	QNPR	12	161	29	38	240	0.72	0.29	0.24	0.26	0.24	0.85	0.54	-98.9	7.88	0.09	50
MGR rat																		_
ReproductivePerforma		hores	11	161	29	39	240	0.72	0.28	0.22	0.24	0.22	0.85	0.53	-98.9	7.82	0.07	50
ReproductivePerforma nce	VIVI																	
nce MGR rat																		
nce MGR rat ReproductivePerforma		Adriana	19	116	73	31	239	0.56	0.04	0.20	0.27	0.38	0.64	0.5	00.0	6.88	005	50

MGR rat ReproductivePerforma nce	MLR A	ALogPS, OEstate	22	119	71	28	240	0.59	0.24	0.44	0.31	0.44	0.63	0.53	-98.9	6.98	0.06	50
MGR rat ReproductivePerforma nce	MLR A	CDK	29	107	82	21	239	0.57	0.26	0.58	0.36	0.58	0.57	0.57	-98.9	6.72	0.12	50
	MLR A	Chemaxo n	19	120	70	31	240	0.58	0.21	0.38	0.27	0.38	0.63	0.51	-99.0	6.96	0.01	50
	MLR A	Dragon6	18	107	83	32	240	0.52	0.18	0.36	0.24	0.36	0.56	0.46	-99.1	6.65	.063	50
	MLR A	Fragment or	21	104	86	29	240	0.52	0.2	0.42	0.27	0.42	0.55	0.48	-99.0	6.64	.027	50
	MLR A	GSFrag	28	127	63	22	240	0.65	0.31	0.56	0.4	0.56	0.67	0.61	-98.8	7.16	0.19	50
	MLR A	Inductive	23	118	72	27	240	0.59	0.24	0.46	0.32	0.46	0.62	0.54	-98.9	6.96	0.07	50
MGR rat ReproductivePerforma nce MGR rat	MLR A	Mera, Mersy	24	87	103	26	240	0.46	0.19	0.48	0.27	0.48	0.46	0.47	-99.1	6.31	.051	50
ReproductivePerforma	MLR A	QNPR	25	111	79	25	240	0.57	0.24	0.5	0.32	0.5	0.58	0.54	-98.9	6.82	0.07	50
ReproductivePerforma nce	MLR A	Spectrop hores	21	99	91	29	240	0.5	0.19	0.42	0.26	0.42	0.52	0.47	-99.1	6.54	.048	50
MGR rat ReproductivePerforma nce	PLS	Adriana	20	107	82	30	239	0.53	0.2	0.4	0.26	0.4	0.57	0.48	-99.0	6.7	.028	50
MGR rat ReproductivePerforma nce	PLS	ALogPS, OEstate	20	135	55	30	240	0.65	0.27	0.4	0.32	0.4	0.71	0.56	-98.9	7.33	0.1	50
MGR rat ReproductivePerforma nce	PLS	CDK	19	118	71	31	239	0.57	0.21	0.38	0.27	0.38	0.62	0.5	-99.0	6.93	0.	50
MGR rat ReproductivePerforma nce	PLS	Chemaxo n	26	105	85	24	240	0.55	0.23	0.52	0.32	0.52	0.55	0.54	-98.9	6.69	0.06	50
MGR rat ReproductivePerforma nce	PLS	Dragon6	18	121	69	32	240	0.58	0.21	0.36	0.26	0.36	0.64	0.5	-99.0	6.96	.003	50
MGR rat ReproductivePerforma nce	PLS	Fragment or	19	130	60	31	240	0.62	0.24	0.38	0.29	0.38	0.68	0.53	-98.9	7.19	0.06	50
	PLS	GSFrag	29	121	69	21	240	0.63	0.3	0.58	0.39	0.58	0.64	0.61	-98.8	7.01	0.18	50
MGR rat ReproductivePerforma nce	PLS	Inductive	26	123	67	24	240	0.62	0.28	0.52	0.36	0.52	0.65	0.58	-98.8	7.08	0.14	50
MGR rat ReproductivePerforma nce	PLS	Mera, Mersy	17	109	81	33	240	0.53	0.17	0.34	0.23	0.34	0.57	0.46	-99.1	6.67	.071	50
	PLS	QNPR	27	138	52	23	240	0.69	0.34	0.54	0.42	0.54	0.73	0.63	-98.7	7.44	0.23	50
MGR rat ReproductivePerforma nce	PLS	Spectrop hores	21	107	83	29	240	0.53	0.2	0.42	0.27	0.42	0.56	0.49	-99.0	6.71	.014	50
MGR rat ReproductivePerforma nce	J48	Adriana	12	138	51	38	239	0.63	0.19	0.24	0.21	0.24	0.73	0.49	-99.0	7.17	.028	50
MGR rat ReproductivePerforma nce	J48	ALogPS, OEstate	12	139	51	38	240	0.63	0.19	0.24	0.21	0.24	0.73	0.49	-99.0	7.17	.026	50

MGR rat ReproductivePerforma																		_
	J48	CDK	13	134	55	37	239	0.62	0.19	0.26	0.22	0.26	0.71	0.48	-99.0	7.11	.028	
MGR rat ReproductivePerforma nce	J48	Chemaxo n	18	136	54	32	240	0.64	0.25	0.36	0.3	0.36	0.72	0.54	-98.9	7 32	0.07	
MGR rat ReproductivePerforma	J 4 0		10	130	- 54	32	240	0.04	0.23	0.30	0.5	0.30	0.72	0.54	-90.9	1.32	0.07	_
	J48	Dragon6	17	147	43	33	240	0.68	0.28	0.34	0.31	0.34	0.77	0.56	-98.9	7.59	0.11	_
ReproductivePerforma	J48	Fragment or	20	126	64	30	240	0.61	0.24	0.4	0.3	0.4	0.66	0.53	-98.9	7.11	0.05	
MGR rat ReproductivePerforma nce	J48	GSFrag	25	127	63	25	240	0.63	0.28	0.5	0.36	0.5	0.67	0.58	-98.8	7.17	0.14	
MGR rat ReproductivePerforma nce	J48	Inductive	15	132	58	35	240	0.61	0.21	0.3	0.24	0.3	0.69	0.5	-99.0	7 13	.005	
MGR rat ReproductivePerforma	J48	Mera, Mersy	9	142	48	41	240	0.63	0.16	0.18	0.17	0.18	0.75	0.46	-99.1		.069	_
MGR rat ReproductivePerforma	J40	Mersy		142	40		240	0.03	0.10	0.10	0.17	0.10	0.73	0.40	-33.1	7.03	.003	_
	J48	QNPR	15	147	43	35	240	0.68	0.26	0.3	0.28	0.3	0.77	0.54	-98.9	7.53	0.07	_
ReproductivePerforma	J48	Spectrop hores	21	133	57	29	240	0.64	0.27	0.42	0.33	0.42	0.7	0.56	-98.9	7.29	0.1	
MGR Rat LitterSize	RF	Adriana	18	99	96	26	239	0.49	0.16	0.41	0.23	0.41	0.51	0.46	-99.1	6.23	.065	
MGR Rat LitterSize	RF	ALogPS, OEstate	22	118	78	22	240	0.58	0.22	0.5	0.31	0.5	0.6	0.55	-98.9	6 64	0.08	
	RF	CDK	24	117	78	20	239	0.59	0.24	0.55	0.33	0.55	0.6	0.57	-98.9		0.11	_
MGR Rat LitterSize	RF	Chemaxo n	19	120	76	25	240	0.58	0.2	0.43	0.27	0.43	0.61	0.52	-99.0	6.66	0.03	_
MGR Rat LitterSize	RF	Dragon6 Fragment	23	113	83	21	240	0.57	0.22	0.52	0.31	0.52	0.58	0.55	-98.9	6.53	0.08	_
MGR Rat LitterSize	RF	or	26	122	74	18	240	0.62	0.26	0.59	0.36	0.59	0.62	0.61	-98.8	6.69	0.17	
	RF	GSFrag	23	106	90	21	240	0.54	0.2	0.52	0.29	0.52	0.54	0.53	-98.9		0.05	
MGR Rat LitterSize	RF	Inductive Mera,	21	118	78	23	240	0.58	0.21	0.48	0.29	0.48	0.6	0.54	-98.9	6.64	0.06	_
MGR Rat LitterSize	RF	Mersy	21	116	80	23	240	0.57	0.21	0.48	0.29	0.48	0.59	0.53	-98.9	6.59	0.05	
MGR Rat LitterSize	RF	QNPR Spectrop	25	116	80	19	240	0.59	0.24	0.57	0.34	0.57	0.59	0.58	-98.8	6.58	0.12	_
	RF ASN	hores	23	109	87	21	240	0.55	0.21	0.52	0.3	0.52	0.56	0.54	-98.9	6.45	0.06	_
	ASN N	Adriana	14	120	75	30	239	0.56	0.16	0.32	0.21	0.32	0.62	0.47	-99.1	6.56	.053	_
MGR Rat LitterSize	N	ALogPS, OEstate	15	132	64	29	240	0.61	0.19	0.34	0.24	0.34	0.67	0.51	-99.0	6.85	0.01	
MGR Rat LitterSize	ASN N	CDK	17	129	66	27	239	0.61	0.2	0.39	0.27	0.39	0.66	0.52	-99.0	6.84	0.04	
MGR Rat LitterSize	N	Chemaxo n	19	127	69	25	240	0.61	0.22	0.43	0.29	0.43	0.65	0.54	-98.9	6.82	0.06	_
MGR Rat LitterSize	ASN N ASN	Dragon6 Fragment	15	148	48	29	240	0.68	0.24	0.34	0.28	0.34	0.76	0.55	-98.9	7.24	0.08	_
MGR Rat LitterSize	N ASN	or	13	132	64	31	240	0.6	0.17	0.3	0.21	0.3	0.67	0.48	-99.0	6.77	.026	_
MGR Rat LitterSize	N ASN	GSFrag	17	112	84	27	240	0.54	0.17	0.39	0.23	0.39	0.57	0.48	-99.0	6.46	.033	_
MGR Rat LitterSize	N	Inductive Mera,	18	144	52	26	240	0.68	0.26	0.41	0.32	0.41	0.73	0.57	-98.9	7.21	0.12	_
	NON	Mersy		133					0.18								.003	

	ASN															
MGR Rat LitterSize	N	QNPR	21	133	63	23	240	0.64	0.25	0.48	0.33	0.48	0.68	0.58	-98.8 6.97 0.13	44
MGR Rat LitterSize	ASN N	Spectrop hores	17	126	70	27	240	0.6	0.2	0.39	0.26	0.39	0.64	0.51	-99.0 6.76 0.02	44
	ASN	CDK, TA,														
MGR Rat LitterSize	ASN	TP	19	139	56	25	239	0.66	0.25	0.43	0.32	0.43	0.71	0.57	-98.9 7.11 0.12	44
MGR Rat LitterSize	N ASN	CDK, TA	22	139	56	22	239	0.67	0.28	0.5	0.36	0.5	0.71	0.61	-98.8 7.13 0.18	44
MGR Rat LitterSize	N ASN	CDK, TP	17	146	49	27	239	0.68	0.26	0.39	0.31	0.39	0.75	0.57	-98.9 7.26 0.12	44
MGR Rat LitterSize	N	TA, TP	16	136	60	28	240	0.63	0.21	0.36	0.27	0.36	0.69	0.53	-98.9 6.97 0.05	44
MGR Rat LitterSize	ASN N	TA	18	143	53	26	240	0.67	0.25	0.41	0.31	0.41	0.73	0.57	-98.9 7.18 0.12	44
MGR Rat LitterSize	ASN N	TP	18	141	55	26	240	0.66	0.25	0.41	0.31	0.41	0.72	0.56	-98.9 7.13 0.11	44
MOIT HAT EIGIOIZE			10				240	0.00	0.20	0.41	0.01	0.41	0.72	0.00	30.3 7.10 0.11	
MGR Rat LitterSize	FSM LR	CDK, TA, TP	19	133	62	25	239	0.64	0.23	0.43	0.3	0.43	0.68	0.56	-98.9 6.97 0.09	44
	FSM															
MGR Rat LitterSize	LR	CDK, TA	20	129	66	24	239	0.62	0.23	0.45	0.31	0.45	0.66	0.56	-98.9 6.89 0.09	44
	FSM															
MGR Rat LitterSize	LR	CDK, TP	14	139	56	30	239	0.64	0.2	0.32	0.25	0.32	0.71	0.52	-99.0 7. 0.03	44
	FSM															
MGR Rat LitterSize	LR	TA, TP	19	120	76	25	240	0.58	0.2	0.43	0.27	0.43	0.61	0.52	-99.0 6.66 0.03	44
	FSM	T4		400	70	0.4	0.40	0.04	0.00	0.45	0.0	0.45	0.04			
MGR Rat LitterSize	LR	TA	20	126	70	24	240	0.61	0.22	0.45	0.3	0.45	0.64	0.55	-98.9 6.8 0.08	44
MGR Rat LitterSize	FSM LR	TP	17	138	58	27	240	0.65	0.23	0.39	0.29	0.39	0.7	0.55	-98.9 7.04 0.08	44
MON Nat Ellicroize		CDK, TA,														
MGR Rat LitterSize	KNN	TP	19	121	74	25	239	0.59	0.2	0.43	0.28	0.43	0.62	0.53	-98.9 6.7 0.04	44
MGR Rat LitterSize	KNN	CDK, TA	21	103	92	23	239	0.52	0.19	0.48	0.27	0.48	0.53	0.5	-99.0 6.34 0.	44
MGR Rat LitterSize	KNN	CDK, TP	13	139	56	31	239	0.64	0.19	0.3	0.23	0.3	0.71	0.5	-99.0 6.96 0.01	44
MGR Rat LitterSize	KNN	TA, TP	13	128	68	31	240	0.59	0.16	0.3	0.21	0.3	0.65	0.47	-99.1 6.68 .042	44
MGR Rat LitterSize	KNN	TA	21	88	108	23	240	0.45	0.16	0.48	0.24	0.48	0.45	0.46	-99.1 6.02 .057	44
MGR Rat LitterSize	KNN	TP	8	160	36	36	240	0.7	0.18	0.18	0.18	0.18	0.82	0.5	-99.0 7.22 .002	44
MGR Rat LitterSize	VM	CDK, TA, TP	1	178	17	43	239	0.75	0.06	0.02	0.03	0.02	0.91	0.47	-99.1 6.5 .095	44
	LibS															
MGR Rat LitterSize	VM	CDK, TA	8	179	16	36	239	0.78	0.33	0.18	0.24	0.18	0.92	0.55	-98.9 8.12 0.13	44
	LibS															
MGR Rat LitterSize	VM	CDK, TP	3	183	12	41	239	0.78	0.2	0.07	0.1	0.07	0.94	0.5	-99.0 7.66 0.01	44
	LibS															
MGR Rat LitterSize	VM	TA, TP	6	168	28	38	240	0.73	0.18	0.14	0.15	0.14	0.86	0.5	-99.0 7.3 .007	44
MOD B-41:4 O	LibS	ΤΛ	•	104	40	40	040	0.70	0.44	0.05	0.07	0.05	0.04	0.40	00.0 7.20 000	, <u>,</u>
MGR Rat LitterSize	VM	TA	2	184	12	42	240	0.78	0.14	0.05	0.07	0.05	0.94	0.49	-99.0 7.36 .026	44
MGR Rat LitterSize	LibS VM	TP	5	179	17	39	240	0 77	0 23	0.11	0 15	<u>() 11</u>	() Q1	0.51	-99.0 7.71 0.04	44
	V IVI	11	J	113	1/	55	- 40	0.11	0.20	0.11	0.10	0.11	0.01	0.01	-00.0 1.11 0.04	

-																		
MGR Rat LitterSize	MLR A	CDK, TA, TP	18	129	66	26	239	0.62	0.21	0.41	0.28	0.41	0.66	0.54	-98.9	6.86 0.0	06	44
MGR Rat LitterSize	MLR A	CDK, TA	23	120	75	21	239	0.6	0.23	0.52	0.32	0.52	0.62	0.57	-98.9 (6.69 O.	11	44
MGR Rat LitterSize	MLR A	CDK, TP	23	109	86	21	239	0.55	0.21	0.52	0.3	0.52	0.56	0.54	-98.9 6	6.46 0.0	n6	44
	MLR	·																
MGR Rat LitterSize	MLR	TA, TP	20	119	77	24	240	0.58	0.21	0.45	0.28	0.45	0.61	0.53		5.65 0.0		44
MGR Rat LitterSize	A MLR	TA	22	118	78	22	240	0.58	0.22	0.5	0.31	0.5	0.6	0.55	-98.9	5.64 0.0	08	44
MGR Rat LitterSize	Α	TP CDK, TA,	24	115	81	20	240	0.58	0.23	0.55	0.32	0.55	0.59	0.57	-98.9	6.57 C	.1	44
MGR Rat LitterSize	PLS	TP	21	143	52	23	239	0.69	0.29	0.48	0.36	0.48	0.73	0.61	-98.8	7.23 0.	18	44
MGR Rat LitterSize	PLS	CDK, TA	20	135	60	24	239	0.65	0.25	0.45	0.32	0.45	0.69	0.57	-98.9	7.03 0.	12	44
MGR Rat LitterSize	PLS	CDK, TP	16	131	64	28	239	0.62	0.2	0.36	0.26	0.36	0.67	0.52	-99.0	5.87 0.0	03	44
MGR Rat LitterSize	PLS	TA, TP	18	140	56	26	240	0.66	0.24	0.41	0.31	0.41	0.71	0.56	-98.9	7.11 0	.1	44
MGR Rat LitterSize	PLS	TA	21	143	53	23	240	0.68	0.28	0.48	0.36	0.48	0.73	0.6	-98.8	7.21 0.	17	44
MGR Rat LitterSize	PLS	TP CDK, TA,	23	134	62	21	240	0.65	0.27	0.52	0.36	0.52	0.68	0.6	-98.8	5.99 0.	17	44
MGR Rat LitterSize	J48	TP	17	151	44	27	239	0.7	0.28	0.39	0.32	0.39	0.77	0.58	-98.8	7.4 0.	14	44
MGR Rat LitterSize	J48	CDK, TA	19	139	56	25	239	0.66	0.25	0.43	0.32	0.43	0.71	0.57	-98.9	7.11 0.	12	44
MGR Rat LitterSize	J48	CDK, TP	12	156	39	32	239	0.7	0.24	0.27	0.25	0.27	0.8	0.54	-98.9	7.38 0.0	07	44
MGR Rat LitterSize	J48	TA, TP	12	146	50	32	240	0.66	0.19	0.27	0.23	0.27	0.74	0.51	-99.0	7.07 0.0)2	44
MGR Rat LitterSize	J48	TA	18	138	58	26	240	0.65	0.24	0.41	0.3	0.41	0.7	0.56	-98.9	7.06 0.0	09	44
MGR Rat LitterSize	J48	TP	8	138	58	36	240	0.61	0.12	0.18	0.15	0.18	0.7	0.44	-99.1	6.6 .09		44
MGR Rat LitterSize	RF	CDK, TA, TP	25	108	87	19	239	0.56	0.22	0.57	0.32	0.57	0.55	0.56		6.42 0.0		44
MGR Rat LitterSize	RF	CDK, TA	18	123	72	26	239	0.59	0.2	0.41	0.27	0.41	0.63	0.52		6.73 0.0		44
		· · · · · · · · · · · · · · · · · · ·								-								
MGR Rat LitterSize	RF	CDK, TP	17	117	78	27	239	0.56	0.18	0.39	0.24	0.39	0.6	0.49		3.58 .0		44
MGR Rat LitterSize	RF	TA, TP	20	113	83	24	240	0.55	0.19	0.45	0.27	0.45	0.58	0.52		3.53 0.0		44
MGR Rat LitterSize	RF	TA	24	120	76	20	240	0.6	0.24	0.55	0.33	0.55	0.61	0.58	-98.8	3.67 0.	12	44
MGR Rat LitterSize	RF	TP	23	123	73	21	240	0.61	0.24	0.52	0.33	0.52	0.63	0.58	-98.8	6.74 0.	12	44
MGR Rat LitterSize	FSM LR	Adriana	14	101	94	30	239	0.48	0.13	0.32	0.18	0.32	0.52	0.42	-99.2 6	3.16 .13	28	44
		ALogPS,							-		-							Ì
MGR Rat LitterSize	LR	OEstate OEstate	18	115	81	26	240	0.55	0.18	0.41	0.25	0.41	0.59	0.5	-99.0	6.54 .00	03	44
	FSM																	
MGR Rat LitterSize	LR	CDK	16	117	78	28	239	0.56	0.17	0.36	0.23	0.36	0.6	0.48	-99.0	3.56 .02	29	44
MGR Rat LitterSize	FSM LR	Chemaxo n	19	108	88	25	240	0.53	0 18	0.43	0 25	0 43	0.55	0.49	-99 N <i>6</i>	6.41 .0°	13	44
	FSM							2.00	5.10	5.10	5.20	5. 10	2.00	5.10	30.0			Ť
MGR Rat LitterSize	LR	Dragon6	14	137	59	30	240	0.63	0.19	0.32	0.24	0.32	0.7	0.51	-99.0	5.93 0.0	01	44
	FSM	Fragment																
MGR Rat LitterSize	LR	or	16	118	78	28	240	0.56	0.17	0.36	0.23	0.36	0.6	0.48	-99.0	3.57 .02	27	44
MGR Rat LitterSize	FSM LR	GSFrag	29	90	106	15	240	0.5	0.21	0.66	0.32	0.66	0.46	0.56	-98.9 !	5.96 0.0	09	44
	FSM							3.0							- 5.0			
MGR Rat LitterSize	LR	Inductive	21	114	82	23	240	0.56	0.2	0.48	0.29	0.48	0.58	0.53	-98.9	6.55 0.0	05	44

MGR Rat LitterSize	FSM LR	Mera, Mersy	17	125	71	27	240	0.59	0.19	0.39	0.26	0.39	0.64	0.51	-99.0 6.74 (0.02	44
MGR Rat LitterSize	FSM LR	QNPR	19	114	82	25	240	0.55	0.19	0.43	0.26	0.43	0.58	0.51	-99.0 6.54 (0.01	44
MGR Rat LitterSize	FSM LR	Spectrop hores	20	94	102	24	240	0.48	0.16	0.45	0.24	0.45	0.48	0.47	-99.1 6.14 .	.051	44
MGR Rat LitterSize	KNN	Adriana	11	126	69	33	239	0.57	0.14	0.25	0.18	0.25	0.65	0.45	-99.1 6.55 .	.085	44
MGR Rat LitterSize	KNN	ALogPS, OEstate	23	94	102	21	240	0.49	0.18	0.52	0.27	0.52	0.48	0.5	-99.0 6.14	0.	44
MGR Rat LitterSize	KNN		16	102	93	28	239	0.49	0.15	0.36	0.21	0.36	0.52	0.44	-99.1 6.25 .	.088	44
MGR Rat LitterSize	KNN	Chemaxo n	21	118	78	23	240	0.58	0.21	0.48	0.29	0.48	0.6	0.54	-98.9 6.64 (0.06	44
MGR Rat LitterSize	KNN	Dragon6	23	115	81	21	240	0.58	0.22	0.52	0.31	0.52	0.59	0.55	-98.9 6.57 (0.09	44
MGR Rat LitterSize	KNN	Fragment or	26	59	137	18	240	0.35	0.16	0.59	0.25	0.59	0.3	0.45	-99.1 5.36	.09	44
MGR Rat LitterSize	KNN	GSFrag	34	54	142	10	240	0.37	0.19	0.77	0.31	0.77	0.28	0.52	-99.0 4.93 (0.04	44
MGR Rat LitterSize	KNN	Inductive	11	157	39	33	240	0.7	0.22	0.25	0.23	0.25	8.0	0.53	-98.9 7.34 (0.05	44
MGR Rat LitterSize	KNN	Mera, Mersy	23	103	93	21	240	0.53	0.2	0.52	0.29	0.52	0.53	0.52	-99.0 6.33 (0.04	44
MGR Rat LitterSize	KNN	QNPR	23	103	93	21	240	0.53	0.2	0.52	0.29	0.52	0.53	0.52	-99.0 6.33 (0.04	44
MGR Rat LitterSize	KNN	Spectrop hores	23	90	106	21	240	0.47	0.18	0.52	0.27	0.52	0.46	0.49	-99.0 6.06 .	.014	44
MGR Rat LitterSize	LibS VM	Adriana	3	180	15	41	239	0.77	0.17	0.07	0.1	0.07	0.92	0.5	-99.0 7.43 .	.013	44
MGR Rat LitterSize	LibS VM	ALogPS, OEstate	6	186	10	38	240	0.8	0.38	0.14	0.2	0.14	0.95	0.54	-98.9 8.4 (0.13	44
MGR Rat LitterSize	LibS VM	CDK	5	180	15	39	239	0.77	0.25	0.11	0.16	0.11	0.92	0.52	-99.0 7.84 (0.05	44
MGR Rat LitterSize		Chemaxo n	5	178	18	39	240	0.76	0.22	0.11	0.15	0.11	0.91	0.51	-99.0 7.65 (0.03	44
MGR Rat LitterSize	LibS VM	Dragon6	3	185	11	41	240	0.78	0.21	0.07	0.1	0.07	0.94	0.51	-99.0 7.76 (0.02	44
MGR Rat LitterSize	LibS VM	Fragment or	4	187	9	40	240	0.8	0.31	0.09	0.14	0.09	0.95	0.52	-99.0 8.19 (0.08	44
MGR Rat LitterSize	LibS VM	GSFrag	14	154	42	30	240	0.7	0.25	0.32	0.28	0.32	0.79	0.55	-98.9 7.38	0.1	44
MGR Rat LitterSize	LibS VM	Inductive	7	182	14	37	240	0.79	0.33	0.16	0.22	0.16	0.93	0.54	-98.9 8.17 (0.12	44
MGR Rat LitterSize	LibS VM	Mera, Mersy	2	189	7	42	240	0.8	0.22	0.05	0.08	0.05	0.96	0.5	-99.0 7.9 (0.02	44
MGR Rat LitterSize	LibS VM	QNPR	8	185	11	36	240	0.8	0.42	0.18	0.25	0.18	0.94	0.56	-98.9 8.52 (0.18	44

MLR ALogPS, MGR Rat LitterSize A OEstate 22 107 89 22 240 0.54 0.2 0.5 0.28 0.5 0.55 0.52 -99.0 6.41 0.4 MLR MGR Rat LitterSize A CDK 22 101 94 22 239 0.51 0.19 0.5 0.28 0.5 0.52 0.51 -99.0 6.3 0.4 MLR Chemaxo MGR Rat LitterSize A n 23 120 76 21 240 0.6 0.23 0.52 0.32 0.52 0.61 0.57 -98.9 6.68 0. MLR MGR Rat LitterSize A Dragon6 16 99 97 28 240 0.48 0.14 0.36 0.2 0.36 0.51 0.43 -99.1 6.17 .10 MLR Fragment MGR Rat LitterSize A or 25 108 88 19 240 0.55 0.22 0.57 0.32 0.57 0.55 0.56 -98.9 6.41 0.4 MGR Rat LitterSize A GSFrag 20 96 100 24 240 0.48 0.17 0.45 0.24 0.45 0.49 0.47 -99.1 6.18 .04 MLR	14 4 04 4 01 4 11 4
MLR ALogPS, MGR Rat LitterSize A OEstate 22 107 89 22 240 0.54 0.2 0.5 0.28 0.5 0.55 0.52 -99.0 6.41 0.4 MLR ALogPS, MGR Rat LitterSize A OEstate 22 107 89 22 240 0.54 0.2 0.5 0.28 0.5 0.55 0.52 -99.0 6.41 0.4 MLR MGR Rat LitterSize A CDK 22 101 94 22 239 0.51 0.19 0.5 0.28 0.5 0.52 0.51 -99.0 6.3 0.4 MLR Chemaxo MGR Rat LitterSize A n 23 120 76 21 240 0.6 0.23 0.52 0.32 0.52 0.61 0.57 -98.9 6.68 0.4 MGR Rat LitterSize A Dragon6 16 99 97 28 240 0.48 0.14 0.36 0.2 0.36 0.51 0.43 -99.1 6.17 .10 MGR Rat LitterSize A or 25 108 88 19 240 0.55 0.22 0.57 0.32 0.57 0.55 0.56 -98.9 6.41 0.4 MGR Rat LitterSize A GSFrag 20 96 100 24 240 0.48 0.17 0.45 0.24 0.45 0.49 0.47 -99.1 6.18 .04 MLR MGR Rat LitterSize A Inductive 22 131 65 22 240 0.64 0.25 0.5 0.54 0.5 0.54 0.5 0.67 0.58 -98.8 6.92 0.5	14 4 04 4 01 4 11 4
MGR Rat LitterSize A Adriana 12 106 89 32 239 0.49 0.12 0.27 0.17 0.27 0.54 0.41 -99.2 6.18 .14 MLR ALogPS, MGR Rat LitterSize A OEstate 22 107 89 22 240 0.54 0.2 0.5 0.28 0.5 0.55 0.52 -99.0 6.41 0.41 MLR MGR Rat LitterSize A CDK 22 101 94 22 239 0.51 0.19 0.5 0.28 0.5 0.52 0.51 -99.0 6.3 0.41 MLR Chemaxo MGR Rat LitterSize A n 23 120 76 21 240 0.6 0.23 0.52 0.32 0.52 0.61 0.57 -98.9 6.68 0.41 MLR MGR Rat LitterSize A Dragon6 16 99 97 28 240 0.48 0.14 0.36 0.2 0.36 0.51 0.43 -99.1 6.17 .10 MLR MGR Rat LitterSize A or 25 108 88 19 240 0.55 0.22 0.57 0.32 0.57 0.55 0.56 -98.9 6.41 0.41 MLR MGR Rat LitterSize A GSFrag 20 96 100 24 240 0.48 0.17 0.45 0.24 0.45 0.49 0.47 -99.1 6.18 .04 MLR MGR Rat LitterSize A Inductive 22 131 65 22 240 0.64 0.25 0.5 0.50 0.34 0.5 0.67 0.58 -98.8 6.92 0.50	04 4 01 4 11 4 02 4
MGR Rat LitterSize A OEstate 22 107 89 22 240 0.54 0.2 0.5 0.28 0.5 0.55 0.52 -99.0 6.41 0.4 MLR MGR Rat LitterSize A CDK 22 101 94 22 239 0.51 0.19 0.5 0.28 0.5 0.52 0.51 -99.0 6.3 0.4 MLR Chemaxo MGR Rat LitterSize A n 23 120 76 21 240 0.6 0.23 0.52 0.32 0.52 0.61 0.57 -98.9 6.68 0. MLR MGR Rat LitterSize A Dragon6 16 99 97 28 240 0.48 0.14 0.36 0.2 0.36 0.51 0.43 -99.1 6.17 .10 MLR Fragment MGR Rat LitterSize A or 25 108 88 19 240 0.55 0.22 0.57 0.32 0.57 0.55 0.56 -98.9 6.41 0.4 MGR Rat LitterSize A GSFrag 20 96 100 24 240 0.48 0.17 0.45 0.24 0.45 0.49 0.47 -99.1 6.18 .04 MLR MGR Rat LitterSize A Inductive 22 131 65 22 240 0.64 0.25 0.5 0.5 0.34 0.5 0.67 0.58 -98.8 6.92 0.50)1 4 11 4)2 4
MGR Rat LitterSize A OEstate 22 107 89 22 240 0.54 0.2 0.5 0.28 0.5 0.55 0.52 -99.0 6.41 0.4 MLR MGR Rat LitterSize A CDK 22 101 94 22 239 0.51 0.19 0.5 0.28 0.5 0.52 0.51 -99.0 6.3 0.4 MLR Chemaxo MGR Rat LitterSize A n 23 120 76 21 240 0.6 0.23 0.52 0.32 0.52 0.61 0.57 -98.9 6.68 0. MLR MGR Rat LitterSize A Dragon6 16 99 97 28 240 0.48 0.14 0.36 0.2 0.36 0.51 0.43 -99.1 6.17 .10 MLR Fragment MGR Rat LitterSize A or 25 108 88 19 240 0.55 0.22 0.57 0.32 0.57 0.55 0.56 -98.9 6.41 0.4 MLR MGR Rat LitterSize A GSFrag 20 96 100 24 240 0.48 0.17 0.45 0.24 0.45 0.49 0.47 -99.1 6.18 .04 MLR MGR Rat LitterSize A Inductive 22 131 65 22 240 0.64 0.25 0.5 0.5 0.54 0.5 0.67 0.58 -98.8 6.92 0.5)1 4 11 4)2 4
MGR Rat LitterSize A CDK 22 101 94 22 239 0.51 0.19 0.5 0.28 0.5 0.52 0.51 -99.0 6.3 0.0 MLR Chemaxo MGR Rat LitterSize A n 23 120 76 21 240 0.6 0.23 0.52 0.32 0.52 0.61 0.57 -98.9 6.68 0.0 MLR MGR Rat LitterSize A Dragon6 16 99 97 28 240 0.48 0.14 0.36 0.2 0.36 0.51 0.43 -99.1 6.17 .10 MLR Fragment MGR Rat LitterSize A or 25 108 88 19 240 0.55 0.22 0.57 0.32 0.57 0.55 0.56 -98.9 6.41 0.1 MLR MGR Rat LitterSize A GSFrag 20 96 100 24 240 0.48 0.17 0.45 0.24 0.45 0.49 0.47 -99.1 6.18 .04 MLR MGR Rat LitterSize A Inductive 22 131 65 22 240 0.64 0.25 0.5 0.5 0.50 0.54 0.55 0.56 -98.8 6.92 0.50	11 4)2 4
MLR Chemaxo MGR Rat LitterSize A n 23 120 76 21 240 0.6 0.23 0.52 0.32 0.52 0.61 0.57 -98.9 6.68 0. MLR MGR Rat LitterSize A Dragon6 16 99 97 28 240 0.48 0.14 0.36 0.2 0.36 0.51 0.43 -99.1 6.17 .10 MLR Fragment MGR Rat LitterSize A or 25 108 88 19 240 0.55 0.22 0.57 0.32 0.57 0.55 0.56 -98.9 6.41 0.4 MLR MGR Rat LitterSize A GSFrag 20 96 100 24 240 0.48 0.17 0.45 0.24 0.45 0.49 0.47 -99.1 6.18 .04 MLR MGR Rat LitterSize A Inductive 22 131 65 22 240 0.64 0.25 0.5 0.5 0.34 0.5 0.67 0.58 -98.8 6.92 0.	11 4)2 4
MLR MGR Rat LitterSize A Dragon6 16 99 97 28 240 0.48 0.14 0.36 0.2 0.36 0.51 0.43 -99.1 6.17 .10 MLR Fragment MGR Rat LitterSize A or 25 108 88 19 240 0.55 0.22 0.57 0.32 0.57 0.55 0.56 -98.9 6.41 0.0 MLR MGR Rat LitterSize A GSFrag 20 96 100 24 240 0.48 0.17 0.45 0.24 0.45 0.49 0.47 -99.1 6.18 .04 MLR MGR Rat LitterSize A Inductive 22 131 65 22 240 0.64 0.25 0.5 0.5 0.34 0.5 0.67 0.58 -98.8 6.92 0.)2 4
MGR Rat LitterSize A Dragon6 16 99 97 28 240 0.48 0.14 0.36 0.2 0.36 0.51 0.43 -99.1 6.17 .10 MLR Fragment MGR Rat LitterSize A or 25 108 88 19 240 0.55 0.22 0.57 0.32 0.57 0.55 0.56 -98.9 6.41 0.00 MLR MGR Rat LitterSize A GSFrag 20 96 100 24 240 0.48 0.17 0.45 0.24 0.45 0.49 0.47 -99.1 6.18 .04 MLR MGR Rat LitterSize A Inductive 22 131 65 22 240 0.64 0.25 0.5 0.50 0.34 0.5 0.67 0.58 -98.8 6.92 0.	
MGR Rat LitterSize A or 25 108 88 19 240 0.55 0.22 0.57 0.32 0.57 0.55 0.56 -98.9 6.41 0.4 MLR MGR Rat LitterSize A GSFrag 20 96 100 24 240 0.48 0.17 0.45 0.24 0.45 0.49 0.47 -99.1 6.18 .04 MLR MGR Rat LitterSize A Inductive 22 131 65 22 240 0.64 0.25 0.5 0.34 0.5 0.67 0.58 -98.8 6.92 0.)9 4
MGR Rat LitterSize A GSFrag 20 96 100 24 240 0.48 0.17 0.45 0.24 0.45 0.49 0.47 -99.1 6.18 .04 MLR MGR Rat LitterSize A Inductive 22 131 65 22 240 0.64 0.25 0.5 0.34 0.5 0.67 0.58 -98.8 6.92 0.	
MLR MGR Rat LitterSize A Inductive 22 131 65 22 240 0.64 0.25 0.5 0.34 0.5 0.67 0.58 -98.8 6.92 0.	
	13 4
INLK INETA,	14 4
MGR Rat LitterSize A Mersy 25 92 104 19 240 0.49 0.19 0.57 0.29 0.57 0.47 0.52 -99.0 6.09 0.1	03 4
MLR	
MGR Rat LitterSize A QNPR 17 92 104 27 240 0.45 0.14 0.39 0.21 0.39 0.47 0.43 -99.1 6.05 .1	12 4
MGR Rat LitterSize A hores 22 108 88 22 240 0.54 0.2 0.5 0.29 0.5 0.55 0.53 -98.9 6.43 0.0)4 4
MGR Rat LitterSize PLS Adriana 13 116 79 31 239 0.54 0.14 0.3 0.19 0.3 0.59 0.45 -99.1 6.43 .06	37 4
ALCODS	
ALogPS, MGR Rat LitterSize PLS OEstate 17 125 71 27 240 0.59 0.19 0.39 0.26 0.39 0.64 0.51 -99.0 6.74 0.4)2 4
)4 4
Chemaxo	
MGR Rat LitterSize PLS n 21 113 83 23 240 0.56 0.2 0.48 0.28 0.48 0.58 0.53 -98.9 6.53 0.4)4 4
MGR Rat LitterSize PLS Dragon6 17 137 59 27 240 0.64 0.22 0.39 0.28 0.39 0.7 0.54 -98.9 7.01 0.0	07 4
Fragment MGR Rat LitterSize PLS or 16 126 70 28 240 0.59 0.19 0.36 0.25 0.36 0.64 0.5 -99.0 6.74 0.0	01 4
MGR Rat LitterSize PLS GSFrag 29 96 100 15 240 0.52 0.22 0.66 0.34 0.66 0.49 0.57 -98.9 6.08 0.	12 4
MGR Rat LitterSize PLS Inductive 18 133 63 26 240 0.63 0.22 0.41 0.29 0.41 0.68 0.54 -98.9 6.94 0.0	07 4
Mera,	
MGR Rat LitterSize PLS Mersy 14 126 70 30 240 0.58 0.17 0.32 0.22 0.32 0.64 0.48 -99.0 6.68 .03	
MGR Rat LitterSize PLS QNPR 20 124 72 24 240 0.6 0.22 0.45 0.29 0.45 0.63 0.54 -98.9 6.76 0.4 Spectrop	07 4
MGR Rat LitterSize PLS hores 23 102 94 21 240 0.52 0.2 0.52 0.29 0.52 0.52 0.52 -99.0 6.31 0.0	03 4
MGR Rat LitterSize J48 Adriana 17 140 55 27 239 0.66 0.24 0.39 0.29 0.39 0.72 0.55 -98.9 7.11 0.0	9 4
ALogPS,	
MGR Rat LitterSize J48 OEstate 12 134 62 32 240 0.61 0.16 0.27 0.2 0.27 0.68 0.48 -99.0 6.77 .03	37 4
MGR Rat LitterSize J48 CDK 15 137 58 29 239 0.64 0.21 0.34 0.26 0.34 0.7 0.52 -99.0 6.98 0.0	
Chemaxo	01 4
IMGR Rat LitterSize - IAX n - 13 140 56 31 240 064 010 03 023 03 071 05 000 606 00	. 1 4
MGR Rat LitterSize J48 n 13 140 56 31 240 0.64 0.19 0.3 0.23 0.3 0.71 0.5 -99.0 6.96 0.0	
MGR Rat LitterSize J48 Dragon6 18 147 49 26 240 0.69 0.27 0.41 0.32 0.41 0.75 0.58 -98.8 7.29 0.	14 4
MGR Rat LitterSize J48 Dragon6 18 147 49 26 240 0.69 0.27 0.41 0.32 0.41 0.75 0.58 -98.8 7.29 0. Fragment	13 4
MGR Rat LitterSize J48 Dragon6 18 147 49 26 240 0.69 0.27 0.41 0.32 0.41 0.75 0.58 -98.8 7.29 0. Fragment MGR Rat LitterSize J48 or 21 133 63 23 240 0.64 0.25 0.48 0.33 0.48 0.68 0.58 -98.8 6.97 0. MGR Rat LitterSize J48 GSFrag 18 118 78 26 240 0.57 0.19 0.41 0.26 0.41 0.6 0.51 -99.0 6.61 0.0	13 4 01 4
MGR Rat LitterSize	13 4 01 4
MGR Rat LitterSize J48 Dragon6 18 147 49 26 240 0.69 0.27 0.41 0.32 0.41 0.75 0.58 -98.8 7.29 0. Fragment MGR Rat LitterSize J48 or 21 133 63 23 240 0.64 0.25 0.48 0.33 0.48 0.68 0.58 -98.8 6.97 0. MGR Rat LitterSize J48 GSFrag 18 118 78 26 240 0.57 0.19 0.41 0.26 0.41 0.6 0.51 -99.0 6.61 0.4 MGR Rat LitterSize J48 Inductive 16 145 51 28 240 0.67 0.24 0.36 0.29 0.36 0.74 0.55 -98.9 7.19 0.4 MGR Rat LitterSize J48 Inductive 16 145 51 28 240 0.67 0.24 0.36 0.29 0.36 0.74 0.55 -98.9 7.19 0.4	13 4 01 4 09 4

MGR Rat LitterSize	J48	Spectrop hores	13	148	48	31	240	0.67	0.21	0.3	0.25	0.3	0.76	0.53	-98.9	7 17	0 04	
MGR Rat Kidney	RF	Adriana	42	113	55	29	239	0.65	0.43	0.59	0.25	0.59	0.70	0.63			0.04	
MGK Kat Kluffey	IXI	Adriana	72	113	33	23	233	0.03	0.43	0.55	0.5	0.55	0.07	0.03	-90.7	7.00	0.23	_
		ALogPS,																
MGR Rat Kidney	RF	OEstate	51	113	56	20	240	0.68	0.48	0.72	0.57	0.72	0.67	0.69	-98.6			_
MGR Rat Kidney	RF	CDK Chemaxo	47	119	50	23	239	0.69	0.48	0.67	0.56	0.67	0.7	0.69	-98.6	7.88	0.35	_
MGR Rat Kidney	RF	n	42	116	53	29	240	0.66	0.44	0.59	0.51	0.59	0.69	0.64	-98.7	7.91	0.26	
MGR Rat Kidney	RF	Dragon6	47	112	57	24	240	0.66	0.45	0.66	0.54	0.66	0.66	0.66	-98.7	7.73	0.3	
MGR Rat Kidney	RF	Fragment or	46	105	64	25	240	0.63	0.42	0.65	0.51	0.65	0.62	0.63	-98.7	7.57	0.25	
MGR Rat Kidney	RF	GSFrag	40	114	55	31	240	0.64	0.42	0.56	0.48	0.56	0.67	0.62	-98.8	7.88	0.22	_
MGR Rat Kidney	RF	Inductive	42	105	64	29	240	0.61	0.4	0.59	0.47	0.59	0.62	0.61	-98.8	7.63	0.2	
MGR Rat Kidney	RF	Mera, Mersy	46	115	54	25	240	0.67	0.46	0.65	0.54	0.65	0.68	0.66	-98.7	7.83	0.3	
MGR Rat Kidney	RF	QNPR Spectrop	46	105	64	25	240	0.63	0.42	0.65	0.51	0.65	0.62	0.63	-98.7	7.57	0.25	_
MGR Rat Kidney	RF ASN	hores	32	101	68	39	240	0.55	0.32	0.45	0.37	0.45	0.6	0.52	-99.0	7.55	0.04	_
MGR Rat Kidney	N	Adriana	42	117	51	29	239	0.67	0.45	0.59	0.51	0.59	0.7	0.64	-98.7	7.96	0.27	_
MCB Bot Video		ALogPS,	12	101	48	20	240	0.60	0.47	0.61	0.52	0.61	0.72	0.66	097	Ω Π4	0.3	
MGR Rat Kidney	ASN	OEstate	43	121		28		0.68	0.47	0.61	0.53	0.61	0.72		-98.7			_
MGR Rat Kidney	N ASN	CDK Chemaxo	45	118	51	25	239	0.68	0.47	0.64	0.54	0.64	0.7	0.67	-98.7		0.32	_
MGR Rat Kidney	N ASN	n	39	112	57	32	240	0.63	0.41	0.55	0.47	0.55	0.66	0.61	-98.8	7.83	0.2	_
MGR Rat Kidney	N ASN	Dragon6 Fragment	41	125	44	30	240	0.69	0.48	0.58	0.53	0.58	0.74	0.66	-98.7	8.18	0.3	_
MGR Rat Kidney	N ASN	or	37	121	48	34	240	0.66	0.44	0.52	0.47	0.52	0.72	0.62	-98.8	8.08	0.23	_
MGR Rat Kidney	N ASN	GSFrag	39	115	54	32	240	0.64	0.42	0.55	0.48	0.55	0.68	0.61	-98.8	7.91	0.22	_
MGR Rat Kidney	N	Inductive Mera,	42	112	57	29	240	0.64	0.42	0.59	0.49	0.59	0.66	0.63	-98.7	7.81	0.24	_
MGR Rat Kidney	N	Mersy	42	115	54	29	240	0.65	0.44	0.59	0.5	0.59	0.68	0.64	-98.7	7.88	0.25	
MGR Rat Kidney	ASN N	QNPR	35	115	54	36	240	0.63	0.39	0.49	0.44	0.49	0.68	0.59	-98.8	7.92	0.16	
MGR Rat Kidney		Spectrop hores	31	112	57	40	240	0.6	0.35	0.44	0.39	0.44	0.66	0.55	-98.9	7.82	0.09	_
MGR Rat Kidney	ASN N	CDK, TA, TP	28	112	57	42	239	0.59	0.33	0.4	0.36	0.4	0.66	0.53	-98.9			_
MGR Rat Kidney	ASN N	CDK, TA	30	117	52	40	239	0.62	0.37		0.39				-98.9			-
-	ASN																	-
MGR Rat Kidney	ASN	CDK, TP	39	125	44	31	239	0.69	0.47	0.56	0.51	0.56	0.74	0.65	-98.7			_
MGR Rat Kidney	N ASN	TA, TP	31	117	52	40	240	0.62	0.37	0.44	0.4	0.44	0.69	0.56	-98.9	7.96	0.12	-
MGR Rat Kidney	N ASN	TA	33	119	50	38	240	0.63	0.4	0.46	0.43	0.46	0.7	0.58	-98.8	8.02	0.16	_
MGR Rat Kidney	N	TP	37	112	57	34	240	0.62	0.39	0.52	0.45	0.52	0.66	0.59	-98.8	7.84	0.17	_
MGR Rat Kidney	FSM LR	CDK, TA, TP	33	97	72	37	239	0.54	0.31	0.47	0.38	0.47	0.57	0.52	-99.0	7.43	0.04	
MGR Rat Kidney	FSM LR		40	101	68	30		0.59						0.58	-98.8			_

	FSM															
MGR Rat Kidney	LR	CDK, TP	43	110	59	27	239	0.64	0.42	0.61	0.5	0.61	0.65	0.63	-98.7 7.71 0.2	4 70
	FSM															
MGR Rat Kidney	LR	TA, TP	33	107	62	38	240	0.58	0.35	0.46	0.4	0.46	0.63	0.55	-98.9 7.7 0.0	9 71
MOD Dat Kida a	FSM	ΤΛ	24	100	60	27	240	0.56	0.22	0.40	0.20	0.40	0.50	0.54	00 0 7 52 0 0	7 71
MGR Rat Kidney	LR	TA	34	100	69	37	240	0.56	0.33	0.48	0.39	0.48	0.59	0.54	-98.9 7.53 0.0	7 71
MGR Rat Kidney	FSM LR	TP	36	107	62	35	240	0.6	0.37	0.51	0.43	0.51	0.63	0.57	-98.9 7.71 0.1	3 71
MGR Rat Kidney	KNN	CDK, TA, TP	46	52	117	24	239	0.41	0.28	0.66	0.39	0.66	0.31	0.48	-99.0 6.23 .03	4 70
,																
MGR Rat Kidney		CDK, TA	59	34	135	11	239	0.39	0.3	0.84	0.45	0.84	0.2	0.52	-99.0 5.16 0.0	
MGR Rat Kidney	KNN	CDK, TP	28	114	55	42	239	0.59	0.34	0.4	0.37	0.4	0.67	0.54	-98.9 7.82 0.0	7 70
MGR Rat Kidney	KNN	TA, TP	34	102	67	37	240	0.57	0.34	0.48	0.4	0.48	0.6	0.54	-98.9 7.58 0.0	8 71
MGR Rat Kidney	KNN	TA	44	58	111	27	240	0.43	0.28	0.62	0.39	0.62	0.34	0.48	-99.0 6.46 .03	5 71
MGR Rat Kidney	KNN	TP	31	122	47	40	240	0.64	0.4	0.44	0.42	0.44	0.72	0.58	-98.8 8.1 0.1	5 71
	LibS	CDK, TA,														
MGR Rat Kidney	VM	TP	16	142	27	54	239	0.66	0.37	0.23	0.28	0.23	0.84	0.53	-98.9 8.45 0.0	8 70
MOD Det Kide en	LibS	CDK TA	22	126	22	47	220	0.67	0.41	0.22	0.27	0.22	0.0	0.57	000 042 04	4 70
MGR Rat Kidney	VM	CDK, TA	23	136	33	47	239	0.67	0.41	0.33	0.37	0.33	8.0	0.57	-98.9 8.42 0.1	4 70
MGR Rat Kidney	LibS VM	CDK, TP	27	128	41	43	239	0.65	0.4	0.39	0.39	0.39	0.76	0.57	-98.9 8.22 0.1	4 70
	LibS															
MGR Rat Kidney	VM	TA, TP	20	138	31	51	240	0.66	0.39	0.28	0.33	0.28	0.82	0.55	-98.9 8.44 0.1	1 71
	LibS															
MGR Rat Kidney	VM	TA	18	141	28	53	240	0.66	0.39	0.25	0.31	0.25	0.83	0.54	-98.9 8.5 0.	1 71
MGR Rat Kidney	LibS VM	TP	20	136	33	51	240	0.65	0.38	0.28	0.32	0.28	0.8	0.54	-98.9 8.37 0.	1 71
-	MLR	CDK, TA,														
MGR Rat Kidney	A MLR	TP	39	101	68	31	239	0.59	0.36	0.56	0.44	0.56	0.6	0.58	-98.8 7.52 0.1	
MGR Rat Kidney	A MLR	CDK, TA	34	103	66	36	239	0.57	0.34	0.49	0.4	0.49	0.61	0.55	-98.9 7.58 0.0	9 70
MGR Rat Kidney	A MLR	CDK, TP	36	100	69	34	239	0.57	0.34	0.51	0.41	0.51	0.59	0.55	-98.9 7.51 0.	1 70
MGR Rat Kidney	Α	TA, TP	34	85	84	37	240	0.5	0.29	0.48	0.36	0.48	0.5	0.49	-99.0 7.18 .01	7 71
MGR Rat Kidney	MLR A	TA	29	90	79	42	240	0.5	0.27	0.41	0.32	0.41	0.53	0.47	-99.1 7.26 .05	4 71
MGR Rat Kidney	MLR A	TP	42	104	65	29	240	0.61	0.39	0.59	0.47	0.59	0.62	0.6	-98.8 7.6 0.1	9 71
MGR Rat Kidney	PLS	CDK, TA, TP	31	107	62	39	239	0.58	0.33	0.44	0.38	0.44	0.63	0.54	-98.9 7.67 0.0	
· ·					60		239									
MGR Rat Kidney		CDK, TA	35	109		35		0.6	0.37	0.5	0.42	0.5	0.64	0.57	-98.9 7.73 0.1	
MGR Rat Kidney MGR Rat Kidney	PLS PLS	CDK, TP TA, TP	35 30	111 97	58 72	35 41	239	0.61	0.38	0.5	0.43	0.5	0.66	0.58	-98.8 7.78 0.1 -99.0 7.44 .00	
MGR Rat Kidney	PLS	TA, IF	38	104	65	33	240	0.59	0.29	0.42	0.33	0.42	0.62	0.58	-98.8 7.63 0.1	
MGR Rat Kidney	PLS		39	100	69	32	240	0.58	0.36	0.55	0.44	0.55	0.59	0.57	-98.9 7.53 0.1	

MIGNER Rack Kidney MASE TEM 30 111 58 40 239 0.59 0.34 0.43 0.38 0.43 0.65 0.54 98.9 7.76 0.08 70 MIGNER Rack Kidney MASE CDK, TA 33 112 57 37 239 0.61 0.37 0.47 0.61 0.47 0.66 0.57 98.9 7.81 0.13 70 MIGNER Rack Kidney MASE TAME TAME TAME TAME TAME TAME TAME TAM																		
MICH Restrictions MICH Restrictions July CLK, TP 37 128 41 33 239 0.69 0.47 0.53 0.5 0.53 0.76 0.64 -98.7 8.27 0.28 70 MICH Restrictions July 318 TA 7P 24 116 63 47 240 0.58 0.31 0.34 0.32 0.34 0.69 0.51 -99.0 7.84 0.02 71 MICH Restrictions July 318 TA 28 111 58 43 240 0.58 0.33 0.39 0.36 0.39 0.66 0.53 -98.9 7.77 0.02 71 MICH Restrictions July 318 TP 29 107 62 42 240 0.57 0.32 0.41 0.36 0.41 0.36 0.43 0.52 -99.0 7.78 0.04 71 CDK, TA 78 TP 43 93 76 27 239 0.57 0.36 0.61 0.46 0.61 0.55 0.58 -98.8 7.29 0.15 70 MICH Restrictions July 318 TP 29 107 62 42 240 0.57 0.36 0.61 0.46 0.61 0.55 0.58 -98.8 7.39 0.15 70 MICH Restrictions July 318 TP 29 107 62 42 240 0.57 0.36 0.61 0.46 0.61 0.55 0.58 -98.8 7.39 0.15 70 MICH Restrictions July 318 TP 29 107 62 42 240 0.57 0.36 0.61 0.46 0.61 0.55 0.58 -98.8 7.39 0.15 70 MICH Restrictions July 318 TP 29 107 62 42 240 0.57 0.36 0.61 0.46 0.61 0.55 0.58 -98.8 7.39 0.15 70 MICH Restrictions July 318 TP 29 27 35 240 0.53 0.39 0.64 0.61 0.52 0.61 0.69 0.65 98.7 7.87 0.28 70 MICH Restrictions July 318 TP 29 27 35 240 0.53 0.35 0.56 0.61 0.59 0.64 0.61 0.65 0.65 98.7 7.87 0.28 70 MICH Restrictions July 318 TP 29 11 89 80 30 240 0.55 0.33 0.35 0.50 0.48 0.59 0.64 0.61 98.8 7.89 0.21 71 MICH Restrictions July 318 TP 29 11 89 80 30 240 0.55 0.44 0.59 0.48 0.59 0.64 0.61 98.8 7.89 0.21 71 MICH Restrictions July 318 TP 29 240 0.65 0.44 0.63 0.59 0.64 0.61 98.8 7.89 0.21 71 MICH Restrictions July 318 TP 29 240 0.65 0.40 0.65 0.40 0.59 0.66 0.65 98.7 7.74 0.27 71 MICH Restrictions July 318 TP 29 240 0.66 0.40 0.69 0.59 0.69 0.66 98.7 7.90 0.29 71 MICH Restrictions July 318 TP 29 240 0.66 0.40 0.69 0.59 0.69 0.66 98.7 7.90 0.29 71 MICH Restrictions July 318 TP 29 240 0.66 0.40 0.69 0.69 0.69 0.66 98.7 7.90 0.29 71 MICH Restrictions July 318 TP 29 240 0.66 0.40 0.69 0.69 0.69 0.66 98.7 7.90 0.29 71 MICH Restrictions July 318 TP 29 240 0.66 0.69 0.69 0.69 0.69 0.66 98.7 7.90 0.29 71 MICH Restrictions July 318 TP 29 240 0.66 0.69 0.69 0.69 0.69 0.69 0.69 0.6	MGR Rat Kidney	J48	CDK, TA, TP	30	111	58	40	239	0.59	0.34	0.43	0.38	0.43	0.66	0.54	-98.9 7.76	0.08	70
MIGRIPATION MIGRIP	MGR Rat Kidney	J48	CDK, TA	33	112	57	37	239	0.61	0.37	0.47	0.41	0.47	0.66	0.57	-98.9 7.81	0.13	70
MIGRIP Rat Rotingy JAB TA 28 111 58 43 240 0.58 0.33 0.39 0.36 0.39 0.66 0.53 9.8.9 7.77 0.05 71 MIGRIP Rat Rotingy JAB TP 29 107 62 42 240 0.57 0.32 0.41 0.36 0.41 0.63 0.52 9.9.0 7.77 0.05 71 MIGRIP RATE Rotingy RF TP 43 93 76 27 239 0.57 0.36 0.61 0.46 0.61 0.55 0.58 9.8.8 7.29 0.15 70 MIGRIP RATE Rotingy RF CDK, TA 45 98 71 25 239 0.6 0.39 0.64 0.48 0.64 0.68 0.61 0.55 0.68 9.8.8 7.29 0.15 70 MIGRIP RATE Rotingy RF CDK, TA 45 98 71 25 239 0.6 0.39 0.64 0.48 0.64 0.68 0.61 9.89 0.61 9.87 7.87 0.28 70 MIGRIP RATE Rotingy RF TA 40 88 81 31 240 0.53 0.33 0.50 0.61 0.50 0.65 0.65 0.89 9.87 7.87 0.28 70 MIGRIP RATE Rotingy RF TA 40 88 81 31 240 0.53 0.33 0.50 0.62 0.56 0.52 0.64 0.69 0.65 9.89 7.23 0.08 71 MIGRIP RATE Rotingy RF TA 40 88 81 31 240 0.53 0.33 0.50 0.62 0.56 0.52 0.54 98.9 7.25 0.1 71 MIGRIP RATE ROTINGY RF TP 41 89 80 30 240 0.54 0.44 0.83 0.52 0.63 0.65 0.52 0.64 98.9 7.25 0.1 71 MIGRIP RATE ROTINGY LR Adriana 42 107 61 29 239 0.62 0.41 0.59 0.48 0.59 0.64 0.61 9.8.8 7.89 0.21 71 MIGRIP RATE ROTINGY LR OESTALLE FSM LR CDK 50 113 56 20 239 0.68 0.49 0.63 0.52 0.63 0.66 0.65 98.7 7.74 0.27 71 MIGRIP RATE ROTINGY LR CDK 50 113 56 20 239 0.68 0.49 0.59 0.48 0.59 0.64 0.61 9.8.8 7.89 0.21 71 MIGRIP RATE ROTINGY LR CDK 50 113 56 20 239 0.68 0.49 0.59 0.49 0.59 0.60 0.65 98.8 7.84 0.35 70 MIGRIP RATE ROTINGY LR D Taggon6 44 117 52 30 240 0.66 0.44 0.58 0.5 0.58 0.69 0.63 98.7 7.92 0.29 71 MIGRIP RATE ROTINGY LR G SFrag 42 112 57 29 240 0.67 0.46 0.65 0.53 0.65 0.69 0.63 98.7 7.95 0.25 71 MIGRIP RATE ROTINGY LR MGR RATE ROTINGY 41 106 63 30 240 0.61 0.39 0.58 0.49 0.59 0.60 0.63 9.87 7.81 0.24 71 MIGRIP RATE ROTINGY KMGR RATE	MGR Rat Kidney	J48	CDK, TP	37	128	41	33	239	0.69	0.47	0.53	0.5	0.53	0.76	0.64	-98.7 8.27	0.28	70
MIGR Rat Kidewy MIGR Rat Kidew	MGR Rat Kidney	J48	TA, TP	24	116	53	47	240	0.58	0.31	0.34	0.32	0.34	0.69	0.51	-99.0 7.84	0.02	71
MIGR Rat Kidewy MIGR Rat Kidew	MGR Rat Kidney	J48	TA	28	111	58	43	240	0.58	0.33	0.39	0.36	0.39	0.66	0.53	-98.9 7.77	0.05	71
CDK, TA, MORR Rat Kidney RF TP 43 93 76 27 239 0.57 0.36 0.61 0.46 0.61 0.55 0.58 98.8 7.29 0.15 70 MOR Rat Kidney RF DDK, TA 45 98 71 25 239 0.6 0.39 0.64 0.48 0.64 0.58 0.61 98.8 7.38 0.2 70 MOR Rat Kidney RF DDK, TA 45 98 71 25 239 0.6 0.39 0.64 0.48 0.64 0.58 0.61 98.8 7.38 0.2 70 MOR Rat Kidney RF TA, TP 36 92 77 35 240 0.53 0.32 0.51 0.39 0.51 0.54 0.53 98.9 7.34 0.05 71 MORR Rat Kidney RF TA, TP 36 92 77 35 240 0.53 0.33 0.50 0.42 0.56 0.52 0.54 98.9 7.38 0.02 70 MORR Rat Kidney RF TA 40 88 81 31 240 0.53 0.33 0.56 0.42 0.56 0.52 0.54 98.9 7.25 0.1 71 MORR Rat Kidney RF TA 40 88 81 31 240 0.53 0.33 0.56 0.42 0.56 0.52 0.54 98.9 7.25 0.1 71 MORR Rat Kidney RF TA 40 88 81 31 240 0.54 0.54 0.54 0.58 0.43 0.58 0.53 0.55 98.9 7.25 0.1 71 MORR Rat Kidney RF TA 40 88 81 31 240 0.55 0.30 0.55 0.42 0.56 0.52 0.54 98.9 7.25 0.1 71 MORR Rat Kidney RF TA 40 88 81 31 240 0.55 0.62 0.41 0.59 0.48 0.59 0.64 0.61 98.8 7.69 0.21 71 MORR Rat Kidney RF TA 40 88 81 31 240 0.55 0.62 0.41 0.59 0.48 0.59 0.64 0.61 98.8 7.69 0.21 71 MORR Rat Kidney RF TA 40 1.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0	-																	_
MGR Rat Kidney RF TP 43 93 76 27 239 0.57 0.36 0.61 0.46 0.61 0.55 0.58 98.8 7.29 0.15 70 MGR Rat Kidney RF CDK, TA 45 98 71 25 239 0.6 0.39 0.64 0.48 0.64 0.58 0.61 98.8 7.38 0.2 70 MGR Rat Kidney RF CDK, TP 43 116 53 27 239 0.67 0.45 0.61 0.52 0.61 0.69 0.65 98.7 7.87 0.28 70 MGR Rat Kidney RF TA, TP 36 92 77 35 240 0.53 0.32 0.51 0.39 0.51 0.54 0.53 9.93 7.28 0.05 71 MGR Rat Kidney RF TA, TP 36 92 77 35 240 0.53 0.32 0.51 0.39 0.51 0.54 0.53 9.93 7.28 0.05 71 MGR Rat Kidney RF TP 41 89 80 30 240 0.54 0.34 0.58 0.35 0.55 0.58 0.53 0.55 98.9 7.25 0.1 71 FSM MGR Rat Kidney LR Adriana 42 107 61 29 239 0.62 0.41 0.59 0.48 0.59 0.64 0.61 98.8 7.69 0.21 71 FSM ALogPS, LR OEstate 45 111 58 26 240 0.65 0.44 0.63 0.52 0.63 0.66 0.65 98.7 7.44 0.27 71 MGR Rat Kidney LR CDK 50 113 56 20 239 0.68 0.47 0.71 0.57 0.71 0.67 0.69 98.8 7.61 0.18 71 MGR Rat Kidney LR Dragon6 44 117 52 27 240 0.67 0.46 0.62 0.53 0.65 0.69 0.66 98.7 7.92 0.29 71 MGR Rat Kidney LR Dragon6 44 117 52 30 240 0.67 0.46 0.62 0.53 0.65 0.69 0.66 98.7 7.95 0.25 71 FSM MGR Rat Kidney LR Dragon6 42 117 57 29 240 0.67 0.46 0.62 0.53 0.65 0.69 0.66 98.7 7.95 0.25 71 FSM MGR Rat Kidney LR Dragon6 44 117 52 30 240 0.67 0.46 0.62 0.53 0.65 0.69 0.63 98.7 7.81 0.24 71 FSM MGR Rat Kidney LR Dragon6 44 117 52 30 240 0.67 0.46 0.62 0.53 0.65 0.69 0.63 98.7 7.81 0.24 71 FSM MGR Rat Kidney LR Dragon6 45 90 79 26 240 0.67 0.66 0.44 0.58 0.59 0.69 0.63 98.7 7.81 0.24 71 FSM MGR Rat Kidney LR MGR Rat Kidney KNN GP Rat Kidney KNN Adriana 48 99 69 23 239 0.62 0.41 0.68 0.45 0.68 0.45 0.69 0.63 98.8 7.64 0.14 71 MGR Rat Kidney KNN Adriana 48 99 69 23 239 0.62 0.41 0.68 0.45 0.68 0.45 0.66 0.63 98.7 7.4 0.24 71 MGR Rat Kidney KNN CDK 77 79 21 3 29 0.60 0.47 0.35 0.92 0.51 0.92 0.8 0.6 98.8 7.64 0.12 71 MGR Rat Kidney KNN CDK 77 79 21 3 29 0.65 0.80 0.81 0.52 0.81 0.45 0.65 0.65 0.80 0.80 0.80 0.7 7.4 0.24 71 MGR Rat Kidney KNN CDK 77 79 21 3 29 0.65 0.80 0.80 0.81 0.55 0	Morritariancy	0-10			107	02	-12	270	0.01	0.02	0.41	0.00	0.41	0.00	0.02	00.0 7.00	0.04	\dashv
MGR Rat Kidney RF CDK, TP 43 116 53 27 239 0.67 0.45 0.61 0.52 0.61 0.69 0.65 -98.7 7.87 0.28 70 MGR Rat Kidney RF TA, TP 36 92 77 35 240 0.53 0.32 0.51 0.39 0.51 0.54 0.53 -98.9 7.34 0.05 71 MGR Rat Kidney RF TA 40 88 81 31 240 0.53 0.33 0.56 0.42 0.56 0.52 0.54 -98.9 7.23 0.08 71 MGR Rat Kidney RF TA 40 88 81 31 240 0.53 0.33 0.56 0.42 0.56 0.52 0.54 -98.9 7.23 0.08 71 MGR Rat Kidney RF TP 41 89 80 30 240 0.54 0.54 0.59 0.48 0.59 0.64 0.61 -98.8 7.69 0.21 71 FSM LR Adriana 42 107 61 29 239 0.62 0.41 0.59 0.48 0.59 0.64 0.61 -98.8 7.69 0.21 71 MGR Rat Kidney LR Adriana 42 107 61 29 239 0.62 0.44 0.63 0.52 0.63 0.66 0.65 -98.7 7.74 0.27 71 MGR Rat Kidney LR CDK 50 113 56 20 239 0.68 0.47 0.71 0.57 0.71 0.67 0.69 -98.8 7.61 0.18 71 FSM LR CDK 50 113 56 20 239 0.68 0.47 0.71 0.57 0.71 0.67 0.69 -98.8 7.61 0.18 71 FSM MGR Rat Kidney LR Dragone 44 117 52 27 240 0.67 0.46 0.62 0.53 0.62 0.69 0.66 -98.7 7.92 0.29 71 FSM MGR Rat Kidney LR Dragone 44 117 52 27 240 0.67 0.46 0.62 0.59 0.49 0.69 0.66 -98.7 7.92 0.29 71 FSM MGR Rat Kidney LR Dragone 45 111 17 52 27 240 0.67 0.46 0.62 0.59 0.49 0.69 0.66 -98.7 7.92 0.29 71 FSM MGR Rat Kidney LR Dragone 45 111 17 52 27 240 0.67 0.46 0.62 0.59 0.49 0.59 0.66 0.63 -98.7 7.92 0.29 71 FSM MGR Rat Kidney LR Dragone 45 111 17 52 29 240 0.64 0.42 0.59 0.49 0.59 0.66 0.63 -98.7 7.81 0.24 71 FSM MGR Rat Kidney LR GSFrag 42 112 57 29 240 0.64 0.62 0.59 0.49 0.59 0.66 0.63 -98.7 7.81 0.24 71 FSM MGR Rat Kidney LR GSFrag 42 112 57 29 240 0.61 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69	MGR Rat Kidney	RF	, ,	43	93	76	27	239	0.57	0.36	0.61	0.46	0.61	0.55	0.58	-98.8 7.29	0.15	70
MIGR Rat Kidney RF TA, TP 36 92 77 35 240 0.53 0.32 0.51 0.39 0.51 0.54 0.53 -98.9 7.34 0.05 71 MIGR Rat Kidney RF TA 40 88 81 31 240 0.53 0.33 0.56 0.42 0.56 0.52 0.54 -98.9 7.23 0.08 71 MIGR Rat Kidney RF TP 41 89 80 30 240 0.54 0.54 0.54 0.58 0.43 0.58 0.53 0.55 -98.9 7.25 0.1 71 FSM ALogPS, LR OEstate 45 111 58 26 240 0.65 0.44 0.63 0.52 0.63 0.66 0.65 -98.7 7.74 0.27 71 FSM MIGR Rat Kidney LR CDK 50 113 56 20 239 0.68 0.47 0.71 0.57 0.71 0.67 0.69 -98.6 7.64 0.35 70 MIGR Rat Kidney LR CDK 50 113 56 20 239 0.68 0.47 0.71 0.57 0.71 0.67 0.69 -98.6 7.64 0.35 70 MIGR Rat Kidney LR CDK 50 113 56 20 239 0.68 0.44 0.58 0.59 0.68 0.62 0.6 -98.7 7.74 0.27 71 FSM MIGR Rat Kidney LR CDK 50 113 56 20 239 0.68 0.47 0.71 0.57 0.71 0.67 0.69 -98.6 7.64 0.35 70 MIGR Rat Kidney LR CDK 50 113 56 20 239 0.68 0.47 0.71 0.57 0.71 0.67 0.69 -98.6 7.64 0.35 70 MIGR Rat Kidney LR CDK 50 113 56 20 239 0.68 0.47 0.71 0.57 0.71 0.67 0.69 -98.6 7.64 0.35 70 MIGR Rat Kidney LR CDK 50 113 56 20 27 240 0.67 0.46 0.62 0.53 0.62 0.69 0.66 -98.7 7.92 0.29 71 FSM MIGR Rat Kidney LR CDK 50 113 52 27 240 0.67 0.46 0.62 0.53 0.62 0.69 0.66 -98.7 7.92 0.29 71 FSM MIGR Rat Kidney LR CDK 50 113 52 27 240 0.67 0.46 0.62 0.59 0.69 0.69 0.63 -98.7 7.95 0.25 71 FSM MIGR Rat Kidney LR CDK 50 114 55 25 240 0.67 0.66 0.44 0.58 0.59 0.69 0.69 0.63 -98.7 7.95 0.25 71 FSM MIGR Rat Kidney LR CDK 50 50 50 50 50 50 50 50 50 50 50 50 50	MGR Rat Kidney	RF	CDK, TA	45	98	71	25	239	0.6	0.39	0.64	0.48	0.64	0.58	0.61	-98.8 7.38	0.2	70
MGR Rat Kidney RF TA 40 88 81 31 240 0.53 0.33 0.56 0.42 0.56 0.52 0.54 -98.9 7.23 0.08 71 MGR Rat Kidney RF TP 41 89 80 30 240 0.54 0.54 0.58 0.43 0.58 0.43 0.50 0.55 0.55 -98.9 7.25 0.1 71 71 FSM LCDPS, LR Adriana 42 107 61 29 239 0.62 0.41 0.59 0.48 0.59 0.64 0.61 -98.8 7.69 0.21 71 FSM ALOPS, LR OCENTAL COK 50 113 56 20 239 0.68 0.47 0.71 0.57 0.71 0.67 0.69 -98.6 7.64 0.35 70 FSM CDK 50 113 56 20 239 0.68 0.47 0.71 0.57 0.71 0.67 0.69 -98.6 7.64 0.35 70 FSM CDK 50 113 56 20 239 0.68 0.47 0.71 0.57 0.71 0.67 0.69 -98.6 7.64 0.35 70 FSM CRR Rat Kidney LR Dragon6 44 117 52 27 240 0.67 0.69 0.68 0.62 0.63 0.66 0.65 -98.7 7.92 0.29 71 MGR Rat Kidney LR Dragon6 44 117 52 30 240 0.66 0.44 0.58 0.59 0.69 0.69 0.66 -98.7 7.95 0.25 71 FSM CRR Rat Kidney LR Dragon6 42 117 52 30 240 0.66 0.44 0.58 0.59 0.69 0.69 0.63 -98.7 7.95 0.25 71 FSM MGR Rat Kidney LR Dragon6 42 112 57 29 240 0.67 0.46 0.63 0.69 0.69 0.69 0.63 -98.7 7.95 0.25 71 FSM MGR Rat Kidney LR Dragon6 42 112 57 29 240 0.64 0.58 0.59 0.49 0.59 0.69 0.63 -98.7 7.95 0.25 71 FSM MGR Rat Kidney LR Dragon6 42 112 57 29 240 0.64 0.58 0.59 0.49 0.59 0.69 0.63 -98.7 7.95 0.25 71 FSM MGR Rat Kidney LR Dragon6 42 112 57 29 240 0.64 0.65 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69	MGR Rat Kidney		-															$\overline{}$
MGR Rat Kidney RF TP 41 89 80 30 240 0.54 0.34 0.58 0.43 0.58 0.53 0.55 -98.9 7.25 0.1 71 FSM LR Adriana 42 107 61 29 239 0.62 0.41 0.59 0.48 0.59 0.64 0.61 -98.8 7.69 0.21 71 FSM ALogPS, LR OEstate 45 111 58 26 240 0.65 0.44 0.63 0.52 0.63 0.66 0.65 -98.7 7.74 0.27 71 MGR Rat Kidney LR CDK 50 113 56 20 239 0.68 0.47 0.71 0.67 0.71 0.67 0.69 -98.6 7.64 0.35 70 MGR Rat Kidney LR Dragon6 44 117 52 27 240 0.67 0.46 0.62 0.53 0.62 0.69 0.66 -98.7 7.92 0.29 71 MGR Rat Kidney LR Dragon6 44 117 52 30 240 0.66 0.44 0.58 0.5 0.58 0.69 0.63 -98.7 7.95 0.25 71 MGR Rat Kidney LR GSFrag 42 112 57 29 240 0.66 0.44 0.59 0.49 0.59 0.66 0.63 -98.7 7.91 0.24 71 MGR Rat Kidney LR GSFrag 42 112 57 29 240 0.66 0.44 0.58 0.5 0.58 0.69 0.63 -98.7 7.81 0.24 71 MGR Rat Kidney LR Mera, LR Inductive 45 90 79 26 240 0.66 0.66 0.63 0.63 0.65 0.67 0.66 -98.7 7.8 0.3 71 MGR Rat Kidney LR Mera,	MGR Rat Kidney	RF	IA, IP	36	92	77	35	240	0.53	0.32	0.51	0.39	0.51	0.54	0.53			$\overline{}$
FSM Additionary FSM Additionary FSM CDK 50 113 56 20 239 0.62 0.41 0.59 0.48 0.59 0.64 0.61 -98.8 7.69 0.21 71	MGR Rat Kidney	RF	TA	40	88	81	31	240	0.53	0.33	0.56	0.42	0.56	0.52	0.54	-98.9 7.23	0.08	71
MGR Rat Kidney LR Adriana 42 107 61 29 239 0.62 0.41 0.59 0.48 0.59 0.64 0.61 -98.8 7.69 0.21 71 FSM ALogPS, LR OEstate 45 111 58 26 240 0.65 0.44 0.63 0.52 0.63 0.66 0.65 -98.7 7.74 0.27 71 FSM MGR Rat Kidney LR CDK 50 113 56 20 239 0.68 0.47 0.71 0.57 0.71 0.67 0.69 -98.6 7.64 0.35 70 MGR Rat Kidney LR Dragon6 44 117 52 27 240 0.67 0.46 0.62 0.53 0.62 0.69 0.66 -98.7 7.92 0.29 71 MGR Rat Kidney LR Dragon6 44 117 52 30 240 0.66 0.44 0.58 0.5 0.58 0.69 0.63 -98.7 7.95 0.25 71 FSM MGR Rat Kidney LR GSFrag 42 112 57 29 240 0.66 0.44 0.58 0.5 0.58 0.69 0.63 -98.7 7.91 0.24 71 MGR Rat Kidney LR Inductive 45 90 79 26 240 0.66 0.42 0.59 0.49 0.59 0.66 0.63 -98.7 7.81 0.24 71 MGR Rat Kidney LR Mersy 46 114 55 25 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 MGR Rat Kidney LR Mersy 46 114 55 25 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 MGR Rat Kidney LR Mersy 46 114 55 25 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 MGR Rat Kidney LR Mersy 46 114 55 25 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 MGR Rat Kidney LR Mersy 46 114 55 25 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 MGR Rat Kidney LR Mersy 46 114 55 25 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 MGR Rat Kidney LR Mersy 46 114 55 25 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 MGR Rat Kidney LR Mersy 46 114 55 25 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 MGR Rat Kidney LR Mersy 46 114 55 25 240 0.67 0.68 0.69 0.68 0.69 0.63 -98.8 7.66 0.19 71 MGR Rat Kidney KNN Adriana 48 99 69 23 239 0.62 0.41 0.68 0.51 0.68 0.59 0.63 -98.7 7.4 0.24 71 MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 0.45 0.66 -98.9 6.44 0.12 71	MGR Rat Kidney	RF	TP	41	89	80	30	240	0.54	0.34	0.58	0.43	0.58	0.53	0.55	-98.9 7.25	0.1	71
FSM ALogPS, LR OEstate 45 111 58 26 240 0.65 0.44 0.63 0.52 0.63 0.66 0.65 -98.7 7.74 0.27 71 FSM MGR Rat Kidney LR CDK 50 113 56 20 239 0.68 0.47 0.71 0.57 0.71 0.67 0.69 -98.6 7.64 0.35 70 FSM Chemaxo LR n 41 104 65 30 240 0.6 0.39 0.58 0.46 0.58 0.62 0.6 -98.8 7.61 0.18 71 FSM MGR Rat Kidney LR Dragon6 44 117 52 27 240 0.67 0.46 0.62 0.53 0.62 0.69 0.66 -98.7 7.92 0.29 71 FSM Fragment LR Dragon6 44 117 52 30 240 0.66 0.44 0.58 0.5 0.58 0.69 0.63 -98.7 7.95 0.25 71 FSM MGR Rat Kidney LR GSFrag 42 112 57 29 240 0.64 0.42 0.59 0.49 0.59 0.66 0.63 -98.7 7.95 0.25 71 FSM MGR Rat Kidney LR Inductive 45 90 79 26 240 0.56 0.36 0.63 0.46 0.63 0.53 0.58 -98.8 7.22 0.15 71 FSM MGR Rat Kidney LR Inductive 45 90 79 26 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 FSM MGR Rat Kidney LR Inductive 45 90 79 26 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 FSM MGR Rat Kidney LR Inductive 45 90 79 26 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 FSM MGR Rat Kidney LR Inductive 45 90 79 26 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 FSM MGR Rat Kidney LR Inductive 45 90 79 26 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 FSM MGR Rat Kidney LR Inductive 45 90 79 26 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 FSM MGR Rat Kidney LR Inductive 45 90 79 26 240 0.67 0.68 0.69 0.63 0.69 0.63 0.69 0.69 0.69 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7																		
MGR Rat Kidney LR OEstate 45 111 58 26 240 0.65 0.44 0.63 0.52 0.63 0.66 0.65 -98.7 7.74 0.27 71	MGR Rat Kidney	LR	Adriana	42	107	61	29	239	0.62	0.41	0.59	0.48	0.59	0.64	0.61	-98.8 7.69	0.21	71
MGR Rat Kidney LR CDK 50 113 56 20 239 0.68 0.47 0.71 0.57 0.71 0.67 0.69 -98.6 7.64 0.35 70 FSM Chemaxo LR n 41 104 65 30 240 0.6 0.39 0.58 0.46 0.58 0.62 0.6 -98.8 7.61 0.18 71 MGR Rat Kidney LR Dragon6 44 117 52 27 240 0.67 0.46 0.62 0.53 0.62 0.69 0.66 -98.7 7.92 0.29 71 MGR Rat Kidney LR Or 41 117 52 30 240 0.66 0.44 0.58 0.5 0.58 0.69 0.66 -98.7 7.92 0.29 71 FSM Fragment LR Or 41 117 52 30 240 0.66 0.44 0.58 0.5 0.58 0.69 0.63 -98.7 7.95 0.25 71 FSM MGR Rat Kidney LR GSFrag 42 112 57 29 240 0.64 0.42 0.59 0.49 0.59 0.66 0.63 -98.7 7.81 0.24 71 FSM MGR Rat Kidney LR Inductive 45 90 79 26 240 0.56 0.36 0.63 0.46 0.63 0.53 0.58 -98.8 7.22 0.15 71 MGR Rat Kidney LR Mersy 46 114 55 25 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 MGR Rat Kidney LR QNPR 41 106 63 30 240 0.61 0.38 0.48 0.42 0.49 0.65 0.67 0.66 -98.7 7.8 0.3 71 MGR Rat Kidney LR Nores 34 113 56 37 240 0.61 0.38 0.48 0.42 0.48 0.67 0.57 -98.9 7.86 0.14 71 MGR Rat Kidney KNN Adriana 48 99 69 23 23 0.62 0.41 0.68 0.51 0.68 0.59 0.63 -98.7 7.4 0.24 71 ALogPS, MGR Rat Kidney KNN OEstate 65 48 121 6 240 0.47 0.35 0.92 0.51 0.92 0.28 0.6 -98.8 5.14 0.22 71 MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.9 6.84 0.12 71 MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.9 6.84 0.12 71	MGR Rat Kidney		•	45	111	58	26	240	0.65	0.44	0.63	0.52	0.63	0.66	0.65	-98.7 7.74	0.27	71
MGR Rat Kidney LR CDK 50 113 56 20 239 0.68 0.47 0.71 0.57 0.71 0.67 0.69 -98.6 7.64 0.35 70 FSM Chemaxo LR n 41 104 65 30 240 0.6 0.39 0.58 0.46 0.58 0.62 0.6 -98.8 7.61 0.18 71 MGR Rat Kidney LR Dragon6 44 117 52 27 240 0.67 0.46 0.62 0.53 0.62 0.69 0.66 -98.7 7.92 0.29 71 MGR Rat Kidney LR Or 41 117 52 30 240 0.66 0.44 0.58 0.5 0.58 0.69 0.66 -98.7 7.92 0.29 71 FSM Fragment LR Or 41 117 52 30 240 0.66 0.44 0.58 0.5 0.58 0.69 0.63 -98.7 7.95 0.25 71 FSM MGR Rat Kidney LR GSFrag 42 112 57 29 240 0.64 0.42 0.59 0.49 0.59 0.66 0.63 -98.7 7.81 0.24 71 FSM MGR Rat Kidney LR Inductive 45 90 79 26 240 0.56 0.36 0.63 0.46 0.63 0.53 0.58 -98.8 7.22 0.15 71 MGR Rat Kidney LR Mersy 46 114 55 25 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 MGR Rat Kidney LR QNPR 41 106 63 30 240 0.61 0.38 0.48 0.42 0.49 0.65 0.67 0.66 -98.7 7.8 0.3 71 MGR Rat Kidney LR Nores 34 113 56 37 240 0.61 0.38 0.48 0.42 0.48 0.67 0.57 -98.9 7.86 0.14 71 MGR Rat Kidney KNN Adriana 48 99 69 23 23 9 0.62 0.41 0.68 0.51 0.68 0.59 0.63 -98.7 7.4 0.24 71 ALogPS, MGR Rat Kidney KNN OEstate 65 48 121 6 240 0.47 0.35 0.92 0.51 0.92 0.28 0.6 -98.8 5.14 0.22 71 MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.9 6.84 0.12 71 MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.9 6.84 0.12 71																		
MGR Rat Kidney LR n 41 104 65 30 240 0.6 0.39 0.58 0.46 0.58 0.62 0.6 -98.8 7.61 0.18 71 FSM MGR Rat Kidney LR Dragon6 44 117 52 27 240 0.67 0.46 0.62 0.53 0.62 0.69 0.66 -98.7 7.92 0.29 71 FSM Fragment LR or 41 117 52 30 240 0.66 0.44 0.58 0.5 0.58 0.69 0.63 -98.7 7.95 0.25 71 MGR Rat Kidney LR GSFrag 42 112 57 29 240 0.64 0.42 0.59 0.49 0.59 0.66 0.63 -98.7 7.81 0.24 71 FSM MGR Rat Kidney LR Inductive 45 90 79 26 240 0.66 0.36 0.63 0.63 0.63 0.63 0.63 0.6	MGR Rat Kidney		CDK	50	113	56	20	239	0.68	0.47	0.71	0.57	0.71	0.67	0.69	-98.6 7.64	0.35	70
MGR Rat Kidney LR n 41 104 65 30 240 0.6 0.39 0.58 0.46 0.58 0.62 0.6 -98.8 7.61 0.18 71 FSM MGR Rat Kidney LR Dragon6 44 117 52 27 240 0.67 0.46 0.62 0.53 0.62 0.69 0.66 -98.7 7.92 0.29 71 FSM Fragment LR or 41 117 52 30 240 0.66 0.44 0.58 0.5 0.58 0.69 0.63 -98.7 7.95 0.25 71 MGR Rat Kidney LR GSFrag 42 112 57 29 240 0.64 0.42 0.59 0.49 0.59 0.66 0.63 -98.7 7.81 0.24 71 FSM MGR Rat Kidney LR Inductive 45 90 79 26 240 0.66 0.36 0.63 0.63 0.63 0.63 0.63 0.6		ECM.	Oh a manua															
FSM FRANKIGNEY FSM Fragment FSM FSM Fragment FSM FSM Fragment FSM FSM FSM Fragment FSM	MOD D 1161			44	104	G.E.	20	240	0.6	0.20	0.50	0.46	0.50	0.60	0.6	000 761	0.10	74
MGR Rat Kidney	MGR Rat Kidney	LK	П	41	104	05	30	240	0.6	0.39	0.56	0.46	0.56	0.62	0.6	-90.0 7.01	0.16	
MGR Rat Kidney		EGM																
FSM Fragment LR or 41 117 52 30 240 0.66 0.44 0.58 0.5 0.58 0.69 0.63 -98.7 7.95 0.25 71 FSM MGR Rat Kidney LR GSFrag 42 112 57 29 240 0.64 0.42 0.59 0.49 0.59 0.66 0.63 -98.7 7.81 0.24 71 FSM MGR Rat Kidney LR Inductive 45 90 79 26 240 0.56 0.36 0.63 0.46 0.63 0.53 0.58 -98.8 7.22 0.15 71 FSM Mera, LR Mersy 46 114 55 25 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 FSM MGR Rat Kidney LR QNPR 41 106 63 30 240 0.61 0.39 0.58 0.47 0.58 0.63 0.6 -98.8 7.66 0.19 71 FSM Spectrop MGR Rat Kidney LR Nores 34 113 56 37 240 0.61 0.38 0.48 0.42 0.48 0.67 0.57 -98.9 7.86 0.14 71 MGR Rat Kidney KNN Adriana 48 99 69 23 239 0.62 0.41 0.68 0.51 0.68 0.59 0.63 -98.7 7.4 0.24 71 ALogPS, MGR Rat Kidney KNN OEstate 65 48 121 6 240 0.47 0.35 0.92 0.51 0.92 0.28 0.6 -98.8 5.14 0.22 71 MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.9 6.84 0.12 71	MCD Dat Kidnov		Dragon6	11	117	52	27	240	0.67	0.46	0.62	0.53	0.62	0.60	0.66	_087 702	0.20	71
MGR Rat Kidney LR or 41 117 52 30 240 0.66 0.44 0.58 0.5 0.58 0.69 0.63 -98.7 7.95 0.25 71 FSM MGR Rat Kidney LR GSFrag 42 112 57 29 240 0.64 0.42 0.59 0.49 0.59 0.66 0.63 -98.7 7.81 0.24 71 FSM MGR Rat Kidney LR Inductive 45 90 79 26 240 0.56 0.36 0.63 0.46 0.63 0.53 0.58 -98.8 7.22 0.15 71 FSM MGR Rat Kidney LR Mersy 46 114 55 25 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 FSM MGR Rat Kidney LR QNPR 41 106 63 30 240 0.61 0.39 0.58 0.47 0.58 0.63 0.6 -98.8 7.66 0.19 71 FSM MGR Rat Kidney LR Andrew LR	INGK Kat Kluffey	LIX	Diagono		117	52		240	0.07	0.40	0.02	0.55	0.02	0.03	0.00	-90.1 1.92	0.23	
MGR Rat Kidney LR or 41 117 52 30 240 0.66 0.44 0.58 0.5 0.58 0.69 0.63 -98.7 7.95 0.25 71 FSM MGR Rat Kidney LR GSFrag 42 112 57 29 240 0.64 0.42 0.59 0.49 0.59 0.66 0.63 -98.7 7.81 0.24 71 FSM MGR Rat Kidney LR Inductive 45 90 79 26 240 0.56 0.36 0.63 0.46 0.63 0.53 0.58 -98.8 7.22 0.15 71 FSM MGR Rat Kidney LR Mersy 46 114 55 25 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 FSM MGR Rat Kidney LR QNPR 41 106 63 30 240 0.61 0.39 0.58 0.47 0.58 0.63 0.6 -98.8 7.66 0.19 71 FSM MGR Rat Kidney LR Andrew LR		FSM	Fragment															
FSM LR Inductive 45 90 79 26 240 0.64 0.42 0.59 0.49 0.59 0.66 0.63 -98.7 7.81 0.24 71 FSM LR Inductive 45 90 79 26 240 0.56 0.36 0.63 0.46 0.63 0.53 0.58 -98.8 7.22 0.15 71 FSM Mera, MGR Rat Kidney LR Mersy 46 114 55 25 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 FSM Mera, LR Mersy 46 114 55 25 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 FSM Spectrop LR ONPR 41 106 63 30 240 0.61 0.39 0.58 0.47 0.58 0.63 0.6 -98.8 7.66 0.19 71 FSM Spectrop LR hores 34 113 56 37 240 0.61 0.38 0.48 0.42 0.48 0.67 0.57 -98.9 7.86 0.14 71 MGR Rat Kidney KNN Adriana 48 99 69 23 239 0.62 0.41 0.68 0.51 0.68 0.59 0.63 -98.7 7.4 0.24 71 ALogPS, MGR Rat Kidney KNN OEstate 65 48 121 6 240 0.47 0.35 0.92 0.51 0.92 0.28 0.6 -98.8 5.14 0.22 71 MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70	MGR Rat Kidnev		ū	41	117	52	30	240	0.66	0.44	0.58	0.5	0.58	0.69	0.63	-98.7 7.95	0.25	71
MGR Rat Kidney LR GSFrag 42 112 57 29 240 0.64 0.42 0.59 0.49 0.59 0.66 0.63 -98.7 7.81 0.24 71 FSM MGR Rat Kidney LR Inductive 45 90 79 26 240 0.56 0.36 0.63 0.46 0.63 0.53 0.58 -98.8 7.22 0.15 71 FSM Mera, LR Mersy 46 114 55 25 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 FSM MGR Rat Kidney LR QNPR 41 106 63 30 240 0.61 0.39 0.58 0.47 0.58 0.63 0.6 -98.8 7.66 0.19 71 FSM Spectrop LR hores 34 113 56 37 240 0.61 0.38 0.48 0.42 0.48 0.67 0.57 -98.9 7.86 0.14 71 MGR Rat Kidney KNN Adriana 48 99 69 23 239 0.62 0.41 0.68 0.51 0.68 0.59 0.63 -98.7 7.4 0.24 71 ALogPS, MGR Rat Kidney KNN OEstate 65 48 121 6 240 0.47 0.35 0.92 0.51 0.92 0.28 0.6 -98.8 5.14 0.22 71 MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70	orritat raunoy		<u> </u>						0.00	<u> </u>	0.00	0.0	0.00	0.00	0.00		0.20	
MGR Rat Kidney LR GSFrag 42 112 57 29 240 0.64 0.42 0.59 0.49 0.59 0.66 0.63 -98.7 7.81 0.24 71 FSM MGR Rat Kidney LR Inductive 45 90 79 26 240 0.56 0.36 0.63 0.46 0.63 0.53 0.58 -98.8 7.22 0.15 71 FSM Mera, LR Mersy 46 114 55 25 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 FSM MGR Rat Kidney LR QNPR 41 106 63 30 240 0.61 0.39 0.58 0.47 0.58 0.63 0.6 -98.8 7.66 0.19 71 FSM Spectrop LR hores 34 113 56 37 240 0.61 0.38 0.48 0.42 0.48 0.67 0.57 -98.9 7.86 0.14 71 MGR Rat Kidney KNN Adriana 48 99 69 23 239 0.62 0.41 0.68 0.51 0.68 0.59 0.63 -98.7 7.4 0.24 71 ALogPS, MGR Rat Kidney KNN OEstate 65 48 121 6 240 0.47 0.35 0.92 0.51 0.92 0.28 0.6 -98.8 5.14 0.22 71 MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70		FSM																
FSM Mera, MGR Rat Kidney LR Mersy 46 114 55 25 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 FSM Mera, MGR Rat Kidney LR Mersy 46 114 55 25 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 FSM MGR Rat Kidney LR QNPR 41 106 63 30 240 0.61 0.39 0.58 0.47 0.58 0.63 0.6 -98.8 7.66 0.19 71 FSM Spectrop MGR Rat Kidney LR hores 34 113 56 37 240 0.61 0.38 0.48 0.42 0.48 0.67 0.57 -98.9 7.86 0.14 71 MGR Rat Kidney KNN Adriana 48 99 69 23 239 0.62 0.41 0.68 0.51 0.68 0.59 0.63 -98.7 7.4 0.24 71 ALogPS, MGR Rat Kidney KNN OEstate 65 48 121 6 240 0.47 0.35 0.92 0.51 0.92 0.28 0.6 -98.8 5.14 0.22 71 MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.9 6.84 0.12 71	MGR Rat Kidney		GSFrag	42	112	57	29	240	0.64	0.42	0.59	0.49	0.59	0.66	0.63	-98.7 7.81	0.24	71
MGR Rat Kidney LR Inductive 45 90 79 26 240 0.56 0.36 0.63 0.46 0.63 0.53 0.58 -98.8 7.22 0.15 71			5															
FSM Mera, LR Mersy 46 114 55 25 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 FSM MGR Rat Kidney LR QNPR 41 106 63 30 240 0.61 0.39 0.58 0.47 0.58 0.63 0.6 -98.8 7.66 0.19 71 FSM Spectrop LR hores 34 113 56 37 240 0.61 0.38 0.48 0.42 0.48 0.67 0.57 -98.9 7.86 0.14 71 MGR Rat Kidney KNN Adriana 48 99 69 23 239 0.62 0.41 0.68 0.51 0.68 0.59 0.63 -98.7 7.4 0.24 71 ALogPS, MGR Rat Kidney KNN OEstate 65 48 121 6 240 0.47 0.35 0.92 0.51 0.92 0.28 0.6 -98.8 5.14 0.22 71 MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo MGR Rat Kidney KNN n 48 76 93 23 240 0.52 0.34 0.68 0.45 0.68 0.45 0.56 -98.9 6.84 0.12 71		FSM																
FSM MGR Rat Kidney LR Mersy 46 114 55 25 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 FSM MGR Rat Kidney LR QNPR 41 106 63 30 240 0.61 0.39 0.58 0.47 0.58 0.63 0.6 -98.8 7.66 0.19 71 FSM Spectrop MGR Rat Kidney LR hores 34 113 56 37 240 0.61 0.38 0.48 0.42 0.48 0.67 0.57 -98.9 7.86 0.14 71 MGR Rat Kidney KNN Adriana 48 99 69 23 239 0.62 0.41 0.68 0.51 0.68 0.59 0.63 -98.7 7.4 0.24 71 ALogPS, MGR Rat Kidney KNN OEstate 65 48 121 6 240 0.47 0.35 0.92 0.51 0.92 0.28 0.6 -98.8 5.14 0.22 71 MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo MGR Rat Kidney KNN n 48 76 93 23 240 0.52 0.34 0.68 0.45 0.68 0.45 0.56 -98.9 6.84 0.12 71	MGR Rat Kidney	LR	Inductive	45	90	79	26	240	0.56	0.36	0.63	0.46	0.63	0.53	0.58	-98.8 7.22	0.15	71
FSM MGR Rat Kidney LR Mersy 46 114 55 25 240 0.67 0.46 0.65 0.53 0.65 0.67 0.66 -98.7 7.8 0.3 71 FSM MGR Rat Kidney LR QNPR 41 106 63 30 240 0.61 0.39 0.58 0.47 0.58 0.63 0.6 -98.8 7.66 0.19 71 FSM Spectrop MGR Rat Kidney LR hores 34 113 56 37 240 0.61 0.38 0.48 0.42 0.48 0.67 0.57 -98.9 7.86 0.14 71 MGR Rat Kidney KNN Adriana 48 99 69 23 239 0.62 0.41 0.68 0.51 0.68 0.59 0.63 -98.7 7.4 0.24 71 ALogPS, MGR Rat Kidney KNN OEstate 65 48 121 6 240 0.47 0.35 0.92 0.51 0.92 0.28 0.6 -98.8 5.14 0.22 71 MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo MGR Rat Kidney KNN n 48 76 93 23 240 0.52 0.34 0.68 0.45 0.68 0.45 0.56 -98.9 6.84 0.12 71																		
FSM LR QNPR 41 106 63 30 240 0.61 0.39 0.58 0.47 0.58 0.63 0.6 -98.8 7.66 0.19 71 FSM Spectrop MGR Rat Kidney LR hores 34 113 56 37 240 0.61 0.38 0.48 0.42 0.48 0.67 0.57 -98.9 7.86 0.14 71 MGR Rat Kidney KNN Adriana 48 99 69 23 239 0.62 0.41 0.68 0.51 0.68 0.59 0.63 -98.7 7.4 0.24 71 ALogPS, MGR Rat Kidney KNN OEstate 65 48 121 6 240 0.47 0.35 0.92 0.51 0.92 0.28 0.6 -98.8 5.14 0.22 71 MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo MGR Rat Kidney KNN n 48 76 93 23 240 0.52 0.34 0.68 0.45 0.68 0.45 0.56 -98.9 6.84 0.12 71			Mera,															
MGR Rat Kidney LR QNPR 41 106 63 30 240 0.61 0.39 0.58 0.47 0.58 0.63 0.6 -98.8 7.66 0.19 71 FSM Spectrop MGR Rat Kidney LR hores 34 113 56 37 240 0.61 0.38 0.48 0.42 0.48 0.67 0.57 -98.9 7.86 0.14 71 MGR Rat Kidney KNN Adriana 48 99 69 23 239 0.62 0.41 0.68 0.51 0.68 0.59 0.63 -98.7 7.4 0.24 71 ALogPS, MGR Rat Kidney KNN OEstate 65 48 121 6 240 0.47 0.35 0.92 0.51 0.92 0.28 0.6 -98.8 5.14 0.22 71 MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo MGR Rat Kidney KNN n 48 76 93 23 240 0.52 0.34 0.68 0.45 0.68 0.45 0.56 -98.9 6.84 0.12 71	MGR Rat Kidney	LR	Mersy	46	114	55	25	240	0.67	0.46	0.65	0.53	0.65	0.67	0.66	-98.7 7.8	0.3	71
MGR Rat Kidney LR QNPR 41 106 63 30 240 0.61 0.39 0.58 0.47 0.58 0.63 0.6 -98.8 7.66 0.19 71 FSM Spectrop MGR Rat Kidney LR hores 34 113 56 37 240 0.61 0.38 0.48 0.42 0.48 0.67 0.57 -98.9 7.86 0.14 71 MGR Rat Kidney KNN Adriana 48 99 69 23 239 0.62 0.41 0.68 0.51 0.68 0.59 0.63 -98.7 7.4 0.24 71 ALogPS, MGR Rat Kidney KNN OEstate 65 48 121 6 240 0.47 0.35 0.92 0.51 0.92 0.28 0.6 -98.8 5.14 0.22 71 MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo MGR Rat Kidney KNN n 48 76 93 23 240 0.52 0.34 0.68 0.45 0.68 0.45 0.56 -98.9 6.84 0.12 71		5014																
FSM Spectrop LR hores 34 113 56 37 240 0.61 0.38 0.48 0.42 0.48 0.67 0.57 -98.9 7.86 0.14 71 MGR Rat Kidney KNN Adriana 48 99 69 23 239 0.62 0.41 0.68 0.51 0.68 0.59 0.63 -98.7 7.4 0.24 71 ALogPS, MGR Rat Kidney KNN OEstate 65 48 121 6 240 0.47 0.35 0.92 0.51 0.92 0.28 0.6 -98.8 5.14 0.22 71 MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo MGR Rat Kidney KNN n 48 76 93 23 240 0.52 0.34 0.68 0.45 0.68 0.45 0.56 -98.9 6.84 0.12 71				4.4	400	00	00	040	0.04	0.00	0.50	0.47	0.50	0.00	0.0	000 700	0.40	ا ــ
MGR Rat Kidney LR hores 34 113 56 37 240 0.61 0.38 0.48 0.42 0.48 0.67 0.57 -98.9 7.86 0.14 71 MGR Rat Kidney KNN Adriana 48 99 69 23 239 0.62 0.41 0.68 0.51 0.68 0.59 0.63 -98.7 7.4 0.24 71 ALogPS, MGR Rat Kidney KNN OEstate 65 48 121 6 240 0.47 0.35 0.92 0.51 0.92 0.28 0.6 -98.8 5.14 0.22 71 MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo MGR Rat Kidney KNN n 48 76 93 23 240 0.52 0.34 0.68 0.45 0.68 0.45 0.56 -98.9 6.84 0.12 71	MGR Rat Kidney	LK	QNPR	41	106	63	30	240	0.61	0.39	0.58	0.47	0.58	0.63	0.6	-98.8 7.66	0.19	71
MGR Rat Kidney LR hores 34 113 56 37 240 0.61 0.38 0.48 0.42 0.48 0.67 0.57 -98.9 7.86 0.14 71 MGR Rat Kidney KNN Adriana 48 99 69 23 239 0.62 0.41 0.68 0.51 0.68 0.59 0.63 -98.7 7.4 0.24 71 ALogPS, MGR Rat Kidney KNN OEstate 65 48 121 6 240 0.47 0.35 0.92 0.51 0.92 0.28 0.6 -98.8 5.14 0.22 71 MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo MGR Rat Kidney KNN n 48 76 93 23 240 0.52 0.34 0.68 0.45 0.68 0.45 0.56 -98.9 6.84 0.12 71		EGM	Spectron															
MGR Rat Kidney KNN Adriana 48 99 69 23 239 0.62 0.41 0.68 0.51 0.68 0.59 0.63 -98.7 7.4 0.24 71 ALogPS, MGR Rat Kidney KNN OEstate 65 48 121 6 240 0.47 0.35 0.92 0.51 0.92 0.28 0.6 -98.8 5.14 0.22 71 MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo MGR Rat Kidney KNN n 48 76 93 23 240 0.52 0.34 0.68 0.45 0.68 0.45 0.56 -98.9 6.84 0.12 71	MCD Dat Kidnov			3/	113	56	37	240	0.61	0.38	0.48	0.42	0.48	0.67	0.57	-080 786	0.14	71
ALogPS, MGR Rat Kidney KNN OEstate 65 48 121 6 240 0.47 0.35 0.92 0.51 0.92 0.28 0.6 -98.8 5.14 0.22 71 MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo MGR Rat Kidney KNN n 48 76 93 23 240 0.52 0.34 0.68 0.45 0.68 0.45 0.56 -98.9 6.84 0.12 71	INGIC IVAL RIGHEY	LIX	110103	U-T	110	- 50	- 51	240	0.01	0.00	0.40	0.72	0.40	0.07	0.07	-50.5 7.00	0.14	
ALogPS, MGR Rat Kidney KNN OEstate 65 48 121 6 240 0.47 0.35 0.92 0.51 0.92 0.28 0.6 -98.8 5.14 0.22 71 MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo MGR Rat Kidney KNN n 48 76 93 23 240 0.52 0.34 0.68 0.45 0.68 0.45 0.56 -98.9 6.84 0.12 71	MGR Rat Kidnev	KNN	Adriana	48	99	69	23	239	0.62	0.41	0.68	0.51	0.68	0.59	0.63	-987 74	0.24	71
MGR Rat Kidney KNN OEstate 65 48 121 6 240 0.47 0.35 0.92 0.51 0.92 0.28 0.6 -98.8 5.14 0.22 71 MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo MGR Rat Kidney KNN n 48 76 93 23 240 0.52 0.34 0.68 0.45 0.68 0.45 0.56 -98.9 6.84 0.12 71	orritariano,	1011	, tarrarra						0.02	0.11	0.00	0.01	0.00	0.00	0.00	00.7 7.1	0.21	\dashv
MGR Rat Kidney KNN OEstate 65 48 121 6 240 0.47 0.35 0.92 0.51 0.92 0.28 0.6 -98.8 5.14 0.22 71 MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo MGR Rat Kidney KNN n 48 76 93 23 240 0.52 0.34 0.68 0.45 0.68 0.45 0.56 -98.9 6.84 0.12 71			ALogPS,															
MGR Rat Kidney KNN CDK 57 77 92 13 239 0.56 0.38 0.81 0.52 0.81 0.46 0.63 -98.7 6.48 0.25 70 Chemaxo MGR Rat Kidney KNN n 48 76 93 23 240 0.52 0.34 0.68 0.45 0.68 0.45 0.56 -98.9 6.84 0.12 71	MGR Rat Kidney	KNN	-	65	48	121	6	240	0.47	0.35	0.92	0.51	0.92	0.28	0.6	-98.8 5.14	0.22	71
Chemaxo MGR Rat Kidney KNN n 48 76 93 23 240 0.52 0.34 0.68 0.45 0.68 0.45 0.56 -98.9 6.84 0.12 71																		
MGR Rat Kidney KNN n 48 76 93 23 240 0.52 0.34 0.68 0.45 0.68 0.45 0.56 -98.9 6.84 0.12 71	MGR Rat Kidney	KNN	CDK	57	77	92	13	239	0.56	0.38	0.81	0.52	0.81	0.46	0.63	<u>-98.7</u> 6.48	0.25	70
MGR Rat Kidney KNN Dragon6 54 86 83 17 240 0.58 0.39 0.76 0.52 0.76 0.51 0.63 -98.7 6.9 0.25 71	MGR Rat Kidney	KNN	n	48	76	93	23	240	0.52	0.34	0.68	0.45	0.68	0.45	0.56	-98.9 6.84	0.12	71
MONTHER MINITED LIAGUITO 07 00 00 17 240 0.00 0.00 0.00 0.02 0.70 0.01 0.00 -90.7 0.9 0.20 71	MGR Rat Kidaay	KNINI	Dragone	5/	96	δ3	17	240	0.59	ሀ 30	0.76	0.52	0.76	0.51	U 63	_087 60	0.25	71
	INIOR KAL KIDNEY	LININ	Diagono	54	00	03	17	240	0.50	0.39	0.70	0.52	0.70	10.0	0.03	-50.1 0.9	0.20	<i>'</i> '

Microsope None Series (1968) Series (1968) Series (1968) Series (1969) S																			
Micro Real Kidney Micro	MGR Rat Kidney	KNN	•	62	38	131	9	240	0.42	0.32	0.87	0.47	0.87	0.22	0.55	-98.9	5.16	0.11	71
Micric Relation Micric Relat	MGR Rat Kidney	KNN	GSFrag	54	82	87	17	240	0.57	0.38	0.76	0.51	0.76	0.49	0.62	-98.8	6.8	0.23	71
MICER Rath Kolmey KINN Mersy A1 107 62 30 240 062 044 0.58 0.47 0.58 0.47 0.58 0.61 98.8 7.69 0.19 7. MICER Rath Kolmey KINN ONPR B3 33 136 3 240 0.42 0.33 0.96 0.49 0.96 0.2 0.58 98.8 4.07 0.2 7. Specificor Specifi	MGR Rat Kidney	KNN		43	102	67	28	240	0.6	0.39	0.61	0.48	0.61	0.6	0.6	-98.8	7.54	0.19	71
Spectrop MGR Rat Kidney MGR Rat Kidn	MGR Rat Kidney	KNN	,	41	107	62	30	240	0.62	0.4	0.58	0.47	0.58	0.63	0.61	-98.8	7.69	0.19	71
MGR Rat Kidney KNN hores 36 132 37 35 240 0.7 0.49 0.51 0.5 0.51 0.76 0.64 0.98.7 8.43 0.29 7. MGR Rat Kidney KNN hores 34 129 39 37 239 0.68 0.47 0.48 0.47 0.48 0.77 0.62 -98.8 8.35 0.24 7. MGR Rat Kidney KNN hores 38 127 42 32 239 0.69 0.48 0.54 0.51 0.54 0.75 0.65 -98.7 8.62 0.28 7. MGR Rat Kidney KNN hores 38 127 42 32 239 0.69 0.48 0.54 0.51 0.54 0.75 0.65 -98.7 8.62 0.28 7. MGR Rat Kidney KNN hores 31 130 39 40 240 0.67 0.44 0.44 0.44 0.44 0.77 0.6 -98.8 8.35 0.21 7. MGR Rat Kidney KNN hores 31 130 39 40 240 0.67 0.48 0.45 0.5 0.46 0.83 0.65 -98.7 8.72 0.31 7. MGR Rat Kidney KNN hores 32 138 31 45 240 0.68 0.46 0.47 0.46 0.79 0.63 -98.8 8.58 0.22 7. MGR Rat Kidney KNN hores 34 128 31 35 38 240 0.70 0.49 0.46 0.47 0.46 0.79 0.63 -98.8 8.59 0.24 7. MGR Rat Kidney KNN hores 34 128 31 35 38 240 0.70 0.48 0.45 0.47 0.45 0.86 0.69 0.69 0.46 0.47 0.48 0.49 0.69 0.69 0.48 0.49 0.46 0.49 0.46 0.79 0.63 -98.8 8.59 0.24 7. MGR Rat Kidney KNN hores 34 128 41 37 240 0.68 0.45 0.45 0.45 0.45 0.45 0.68 0.65 0.48 0.45 0.45 0.45 0.68 0.65 0.45 0.45 0.45 0.45 0.65 0.65 0.69 0.65 0.69 0.65 0.69 0.65 0.69 0.65 0.69 0.65 0.69 0.65 0.69 0.65 0.	MGR Rat Kidney	KNN		68	33	136	3	240	0.42	0.33	0.96	0.49	0.96	0.2	0.58	-98.8	4.07	0.2	71
MGR Rat Kidney VM Adriana Ad	MGR Rat Kidney	KNN		36	132	37	35	240	0.7	0.49	0.51	0.5	0.51	0.78	0.64	-98.7	8.43	0.29	71
Migr Rat Kidney	MGR Rat Kidney		Adriana	34	129	39	37	239	0.68	0.47	0.48	0.47	0.48	0.77	0.62	-98.8	8.35	0.24	71
MGR Rat Kidney	MGR Rat Kidney		-	33	137	32	38	240	0.71	0.51	0.46	0.49	0.46	0.81	0.64	-98.7	8.6	0.28	71
MGR Rat Kidney	MGR Rat Kidney		CDK	38	127	42	32	239	0.69	0.48	0.54	0.51	0.54	0.75	0.65	-98.7	8.23	0.28	70
Migr Rat Kidney VM Dragon6 33 140 29 38 240 0.72 0.53 0.46 0.5 0.46 0.83 0.65 -98.7 8.72 0.31 7.75	MGR Rat Kidney			31	130	39	40	240	0.67	0.44	0.44	0.44	0.44	0.77	0.6	-98.8	8.35	0.21	71
MGR Rat Kidney	MGR Rat Kidney		Dragon6	33	140	29	38	240	0.72	0.53	0.46	0.5	0.46	0.83	0.65	-98.7	8.72	0.31	71
MGR Rat Kidney VM GSFrag 33 134 35 38 240 0.7 0.49 0.46 0.47 0.46 0.79 0.63 -98.7 8.49 0.26 7.	MGR Rat Kidney			26	138	31	45	240	0.68	0.46	0.37	0.41	0.37	0.82	0.59	-98.8	8.58	0.2	71
MGR Rat Kidney VM Inductive 37 118 51 34 240 0.65 0.42 0.52 0.47 0.52 0.7 0.61 -98.8 8. 0.21 77 LibS Mera, VM Mersy 32 135 34 39 240 0.7 0.48 0.45 0.47 0.45 0.8 0.62 -98.8 8.53 0.26 77 LibS MGR Rat Kidney VM QNPR 29 134 35 42 240 0.68 0.45 0.41 0.43 0.41 0.79 0.6 -98.8 8.47 0.21 77 LibS Spectrop MGR Rat Kidney NM hores 34 128 41 37 240 0.68 0.45 0.48 0.47 0.48 0.76 0.62 -98.8 8.3 0.23 77 MGR Rat Kidney A Adriana 38 107 61 33 239 0.61 0.38 0.54 0.45 0.58 0.59 0.58 -98.8 7.51 0.15 77 MGR Rat Kidney A OEstate 41 100 69 30 240 0.59 0.37 0.58 0.45 0.58 0.59 0.58 -98.8 7.51 0.15 77 MGR Rat Kidney A CDK 37 81 88 33 239 0.49 0.3 0.53 0.58 0.59 0.50 0.69 0.62 -98.8 7.93 0.23 77 MGR Rat Kidney A CDK 37 81 88 33 239 0.49 0.3 0.53 0.58 0.59 0.58 0.69 0.62 -98.8 7.93 0.23 77 MGR Rat Kidney A Dragon6 35 87 82 36 240 0.51 0.3 0.49 0.37 0.49 0.51 0.5 -99.0 7.05 0.01 77 MGR Rat Kidney A Dragon6 35 87 82 36 240 0.51 0.3 0.49 0.37 0.49 0.51 0.5 -99.0 7.23 0.01 77 MGR Rat Kidney A GSFrag 52 88 81 19 240 0.58 0.39 0.73 0.51 0.73 0.52 0.63 -98.7 7.01 0.23 77 MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 0.64 -98.7 7.66 0.25 77 MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 0.64 -98.7 7.66 0.25 77 MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 0.64 -98.7 7.66 0.25 77 MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 0.64 -98.7 7.66 0.25 77	MGR Rat Kidney		GSFrag	33	134	35	38	240	0.7	0.49	0.46	0.47	0.46	0.79	0.63	-98.7	8.49	0.26	71
Minder Rat Kidney VM Mersy 32 135 34 39 240 0.7 0.48 0.45 0.47 0.45 0.8 0.62 -98.8 8.53 0.26 7	MGR Rat Kidney		Inductive	37	118	51	34	240	0.65	0.42	0.52	0.47	0.52	0.7	0.61	-98.8	8.	0.21	71
MGR Rat Kidney VM QNPR 29 134 35 42 240 0.68 0.45 0.41 0.43 0.41 0.79 0.6 -98.8 8.47 0.21 7'	MGR Rat Kidney			32	135	34	39	240	0.7	0.48	0.45	0.47	0.45	0.8	0.62	-98.8	8.53	0.26	71
MGR Rat Kidney	MGR Rat Kidney		QNPR	29	134	35	42	240	0.68	0.45	0.41	0.43	0.41	0.79	0.6	-98.8	8.47	0.21	71
MLR ALogPS, MGR Rat Kidney A OEstate 41 100 69 30 240 0.59 0.37 0.58 0.45 0.54 0.64 0.59 -98.8 7.72 0.16 7/ MLR MGR Rat Kidney A CDK 37 81 88 33 239 0.49 0.3 0.53 0.38 0.53 0.48 0.5 -99.0 7.05 0.01 7/ MLR Chemaxo MGR Rat Kidney A n 40 116 53 31 240 0.65 0.43 0.56 0.49 0.56 0.69 0.62 -98.8 7.93 0.23 7/ MLR MGR Rat Kidney A Dragon6 35 87 82 36 240 0.51 0.3 0.49 0.37 0.49 0.51 0.5 -99.0 7.23 0.01 7/ MLR Fragment MGR Rat Kidney A or 39 104 65 32 240 0.6 0.38 0.55 0.45 0.55 0.62 0.58 -98.8 7.62 0.15 7/ MLR MGR Rat Kidney A GSFrag 52 88 81 19 240 0.58 0.39 0.73 0.51 0.73 0.52 0.63 -98.7 7.01 0.23 7/ MLR MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 -98.7 7.66 0.25 7/ MLR MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 -98.7 7.66 0.25 7/ MLR MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 -98.7 7.66 0.25 7/ MLR MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 -98.7 7.66 0.25 7/ MLR MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 -98.7 7.66 0.25 7/ MLR MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 -98.7 7.66 0.25 7/ MLR MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 -98.7 7.66 0.25 7/ MLR MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 -98.7 7.66 0.25 7/ MLR MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 -98.7 7.66 0.25 7/ MLR MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 0.64 -98.7 7.66 0.25 7/ MLR MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 0.64 -98.7 7.66 0.25 7/ MLR MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 0.64 -98.7 7.66 0.25 7/	MGR Rat Kidney	VM		34	128	41	37	240	0.68	0.45	0.48	0.47	0.48	0.76	0.62	-98.8	8.3	0.23	71
MGR Rat Kidney A OEstate 41 100 69 30 240 0.59 0.37 0.58 0.45 0.58 0.59 0.58 -98.8 7.51 0.15 7' MLR MGR Rat Kidney A CDK 37 81 88 33 239 0.49 0.3 0.53 0.38 0.53 0.48 0.5 -99.0 7.05 0.01 70 MLR Chemaxo MGR Rat Kidney A n 40 116 53 31 240 0.65 0.43 0.56 0.49 0.56 0.69 0.62 -98.8 7.93 0.23 7' MLR MGR Rat Kidney A Dragon6 35 87 82 36 240 0.51 0.3 0.49 0.37 0.49 0.51 0.5 -99.0 7.23 0.01 7' MLR Fragment MGR Rat Kidney A or 39 104 65 32 240 0.6 0.38 0.55 0.45 0.55 0.62 0.58 -98.8 7.62 0.15 7' MLR MGR Rat Kidney A GSFrag 52 88 81 19 240 0.58 0.39 0.73 0.51 0.73 0.52 0.63 -98.7 7.01 0.23 7' MLR MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 -98.7 7.66 0.25 7' MLR MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 -98.7 7.66 0.25 7' MLR MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 -98.7 7.66 0.25 7' MLR	MGR Rat Kidney		Adriana	38	107	61	33	239	0.61	0.38	0.54	0.45	0.54	0.64	0.59	-98.8	7.72	0.16	71
MGR Rat Kidney A CDK 37 81 88 33 239 0.49 0.3 0.53 0.38 0.53 0.48 0.5 -99.0 7.05 0.01 70 MLR Chemaxo MGR Rat Kidney A n 40 116 53 31 240 0.65 0.43 0.56 0.49 0.56 0.69 0.62 -98.8 7.93 0.23 70 MLR MGR Rat Kidney A Dragon6 35 87 82 36 240 0.51 0.3 0.49 0.37 0.49 0.51 0.5 -99.0 7.23 0.01 70 MLR Fragment MGR Rat Kidney A or 39 104 65 32 240 0.6 0.38 0.55 0.45 0.55 0.62 0.58 -98.8 7.62 0.15 70 MLR MGR Rat Kidney A GSFrag 52 88 81 19 240 0.58 0.39 0.73 0.51 0.73 0.52 0.63 -98.7 7.01 0.23 70 MLR MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 -98.7 7.66 0.25 70 MLR MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 -98.7 7.66 0.25 70 MLR	MGR Rat Kidney	Α	OEstate	41	100	69	30	240	0.59	0.37	0.58	0.45	0.58	0.59	0.58	-98.8	7.51	0.15	71
MGR Rat Kidney A n 40 116 53 31 240 0.65 0.43 0.56 0.49 0.56 0.69 0.62 -98.8 7.93 0.23 7′ MLR MGR Rat Kidney A Dragon6 35 87 82 36 240 0.51 0.3 0.49 0.37 0.49 0.51 0.5 -99.0 7.23 0.01 7′ MLR Fragment MGR Rat Kidney A or 39 104 65 32 240 0.6 0.38 0.55 0.45 0.55 0.62 0.58 -98.8 7.62 0.15 7′ MLR MGR Rat Kidney A GSFrag 52 88 81 19 240 0.58 0.39 0.73 0.51 0.73 0.52 0.63 -98.7 7.01 0.23 7′ MLR MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 -98.7 7.66 0.25 7′ MLR MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 -98.7 7.66 0.25 7′ MLR	MGR Rat Kidney	Α	CDK	37	81	88	33	239	0.49	0.3	0.53	0.38	0.53	0.48	0.5	-99.0	7.05	0.01	70
MGR Rat Kidney A Dragon6 35 87 82 36 240 0.51 0.3 0.49 0.37 0.49 0.51 0.5 -99.0 7.23 0.01 7′ MLR Fragment MGR Rat Kidney A or 39 104 65 32 240 0.6 0.38 0.55 0.45 0.55 0.62 0.58 -98.8 7.62 0.15 7′ MLR MGR Rat Kidney A GSFrag 52 88 81 19 240 0.58 0.39 0.73 0.51 0.73 0.52 0.63 -98.7 7.01 0.23 7′ MLR MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 -98.7 7.66 0.25 7′ MLR Mera,	MGR Rat Kidney	Α		40	116	53	31	240	0.65	0.43	0.56	0.49	0.56	0.69	0.62	-98.8	7.93	0.23	71
MGR Rat Kidney A or 39 104 65 32 240 0.6 0.38 0.55 0.45 0.55 0.62 0.58 -98.8 7.62 0.15 7' MLR MGR Rat Kidney A GSFrag 52 88 81 19 240 0.58 0.39 0.73 0.51 0.73 0.52 0.63 -98.7 7.01 0.23 7' MLR MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 -98.7 7.66 0.25 7' MLR Mera,	MGR Rat Kidney	Α		35	87	82	36	240	0.51	0.3	0.49	0.37	0.49	0.51	0.5	-99.0	7.23	0.01	71
MGR Rat Kidney A GSFrag 52 88 81 19 240 0.58 0.39 0.73 0.51 0.73 0.52 0.63 -98.7 7.01 0.23 7′ MLR MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 -98.7 7.66 0.25 7′ MLR Mera,	MGR Rat Kidney	Α	J	39	104	65	32	240	0.6	0.38	0.55	0.45	0.55	0.62	0.58	-98.8	7.62	0.15	71
MGR Rat Kidney A Inductive 45 108 61 26 240 0.64 0.42 0.63 0.51 0.63 0.64 0.64 -98.7 7.66 0.25 7' MLR Mera,	MGR Rat Kidney	Α	GSFrag	52	88	81	19	240	0.58	0.39	0.73	0.51	0.73	0.52	0.63	-98.7	7.01	0.23	71
MGR Rat Kidney A Mersy 34 94 75 37 240 0.53 0.31 0.48 0.38 0.48 0.56 0.52 -99.0 7.39 0.03 7	MGR Rat Kidney	Α		45	108	61	26	240	0.64	0.42	0.63	0.51	0.63	0.64	0.64	-98.7	7.66	0.25	71
	MGR Rat Kidney	Α	Mersy	34	94	75	37	240	0.53	0.31	0.48	0.38	0.48	0.56	0.52	-99.0	7.39	0.03	71

	MLR															
MGR Rat Kidney	A MLR	QNPR Spectrop	37	93	76	34	240	0.54	0.33	0.52	0.4	0.52	0.55	0.54	-98.9 7.37 0.07	71
MGR Rat Kidney	Α	hores	31	100	69	40	240	0.55	0.31	0.44	0.36	0.44	0.59	0.51	-99.0 7.52 0.03	71
MGR Rat Kidney	PLS	Adriana	40	113	55	31	239	0.64	0.42	0.56	0.48	0.56	0.67	0.62	-98.8 7.87 0.22	71
MCD Det Kidney	PLS	ALogPS, OEstate	48	111	58	23	240	0.66	0.45	0.68	0.54	0.68	0.66	0.67	-98.7 7.68 0.31	71
MGR Rat Kidney						_										_
MGR Rat Kidney	PLS	CDK Chemaxo	49	119	50	21	239	0.7	0.49	0.7	0.58	0.7	0.7	0.7	-98.6 7.83 0.37	70
MGR Rat Kidney	PLS	n	41	105	64	30	240	0.61	0.39	0.58	0.47	0.58	0.62	0.6	-98.8 7.64 0.18	71
MGR Rat Kidney	PLS	Dragon6 Fragment	44	124	45	27	240	0.7	0.49	0.62	0.55	0.62	0.73	0.68	-98.6 8.12 0.33	71
MGR Rat Kidney	PLS	or	41	118	51	30	240	0.66	0.45	0.58	0.5	0.58	0.7	0.64	-98.7 7.98 0.26	71
MGR Rat Kidney	PLS	GSFrag	46	100	69	25	240	0.61	0.4	0.65	0.49	0.65	0.59	0.62	-98.8 7.45 0.22	71
MGR Rat Kidney	PLS	Inductive Mera,	41	110	59	30	240	0.63	0.41	0.58	0.48	0.58	0.65	0.61	-98.8 7.76 0.21	71
MGR Rat Kidney	PLS	Mersy	39	113	56	32	240	0.63	0.41	0.55	0.47	0.55	0.67	0.61	-98.8 7.86 0.2	71
MGR Rat Kidney	PLS	QNPR	42	105	64	29	240	0.61	0.4	0.59	0.47	0.59	0.62	0.61	-98.8 7.63 0.2	71
	, 10	Spectrop	74	100	U-T		2-70	0.01	J. T	0.00	0.71	0.00	0.02	0.01	30.0 7.00 0.2	- ' '
MGR Rat Kidney	PLS	hores	41	100	69	30	240	0.59	0.37	0.58	0.45	0.58	0.59	0.58	-98.8 7.51 0.15	71
MGR Rat Kidney	J48	Adriana	37	114	54	34	239	0.63	0.41	0.52	0.46	0.52	0.68	0.6	-98.8 7.91 0.19	71
		ALogPS,														
MGR Rat Kidney	J48	OEstate	44	127	42	27	240	0.71	0.51	0.62	0.56	0.62	0.75	0.69	-98.6 8.21 0.35	71
MGR Rat Kidney	J48	CDK	38	126	43	32	239	0.69	0.47	0.54	0.5	0.54	0.75	0.64	-98.7 8.2 0.28	70
MGR Rat Kidney	J48	Chemaxo n	37	129	40	34	240	0.69	0.48	0.52	0.5	0.52	0.76	0.64	-98.7 8.33 0.28	71
MGR Rat Kidney	J48	Dragon6 Fragment	37	133	36	34	240	0.71	0.51	0.52	0.51	0.52	0.79	0.65	-98.7 8.46 0.31	71
MGR Rat Kidney	J48	or	39	118	51	32	240	0.65	0.43	0.55	0.48	0.55	0.7	0.62	-98.8 7.99 0.23	71
MGR Rat Kidney	J48	GSFrag	41	119	50	30	240	0.67	0.45	0.58	0.51	0.58	0.7	0.64	-98.7 8. 0.26	71
MGR Rat Kidney	J48	Inductive Mera,	32	117	52	39	240	0.62	0.38	0.45	0.41	0.45	0.69	0.57	-98.9 7.96 0.14	71
MGR Rat Kidney	J48	Mersy	39	130	39	32	240	0.7	0.5	0.55	0.52	0.55	0.77	0.66	-98.7 8.35 0.31	71
MGR Rat Kidney	J48	QNPR Spectrop	36	123	46	35	240	0.66	0.44	0.51	0.47	0.51	0.73	0.62	-98.8 8.14 0.23	71
MGR Rat Kidney	J48	hores	28	121	48	43	240	0.62	0.37	0.39	0.38	0.39	0.72	0.56	-98.9 8.04 0.11	71
MGR Rat LactationPND21	RF	Adriana	19	108	89	23	239	0.53	0.18	0.45	0.25	0.45	0.55	0.5	-99.0 6.32 0.	42
MGR Rat LactationPND21	RF	ALogPS, OEstate	23	122	76	19	240	0.6	0.23	0.55	0.33	0.55	0.62	0.58	-98.8 6.6 0.13	42
MGR Rat LactationPND21	RF	CDK	20	128	70	21	239	0.62	0.22	0.49	0.31	0.49	0.65	0.57	-98.9 6.69 0.1	41
MGR Rat	חר	Chemaxo	22	400	70	40	0.40	0.00	0.00	0.74	0.44	0.74	0.00	0.07	007.044.005	4.0
LactationPND21 MGR Rat	RF	n Draman C	30	122	76	12	240	0.63	0.28	0.71	0.41	0.71	0.62	0.67	-98.7 6.41 0.25	42
LactationPND21 MGR Rat	RF	Dragon6 Fragment	25	115	83	17	240	0.58	0.23	0.6	0.33	0.6	0.58	0.59	-98.8 6.43 0.13	42
LactationPND21 MGR Rat	RF	or	23	132	66	19	240	0.65	0.26	0.55	0.35	0.55	0.67	0.61	-98.8 6.82 0.17	42
LactationPND21 MGR Rat	RF	GSFrag	19	122	76	23	240	0.59	0.2	0.45	0.28	0.45	0.62	0.53	-98.9 6.6 0.05	42
LactationPND21 MGR Rat	RF	Inductive Mera,	25	124	74	17	240	0.62	0.25	0.6	0.35	0.6	0.63	0.61	-98.8 6.61 0.17	42
LactationPND21 MGR Rat	RF	Mersy	27	120	78	15	240	0.61	0.26	0.64	0.37	0.64	0.61	0.62	-98.8 6.48 0.19	42
LactationPND21	RF	QNPR	20	123	75	22	240	0.6	0.21	0.48	0.29	0.48	0.62	0.55	-98.9 6.63 0.08	42

MGR Rat _actationPND21	RF	Spectrop hores	21	115	83	21	240	0.57	0.2	0.5	0.29	0.5	0.58	0.54	-98.9 6.46 0.0)6 4
MGR Rat _actationPND21	ASN N	Adriana	21	135	62	21	239	0.65	0.25	0.5	0.34	0.5	0.69	0.59	-98.8 6.91 0.	
MGR Rat .actationPND21	ASN N	ALogPS, OEstate	21	136	62	21	240	0.65	0.25	0.5	0.34	0.5	0.69	0.59	-98.8 6.92 0.	15 4
MGR Rat actationPND21	ASN N	CDK	19	137	61	22	239	0.65	0.24	0.46	0.31	0.46	0.69	0.58	-98.8 6.89 0.	12 4
MGR Rat	ASN N	Chemaxo	18	136	62	24	240	0.64	0.23	0.43	0.3	0.43	0.69	0.56	-98.9 6.9 0.0	
MGR Rat	ASN															
ActationPND21 MGR Rat		Dragon6 Fragment	19	148	50	23	240	0.7	0.28	0.45	0.34	0.45	0.75	0.6	-98.8 7.21 0.	
_actationPND21 MGR Rat	ASN	or	21	137	61	21	240	0.66	0.26	0.5	0.34	0.5	0.69	0.6	-98.8 6.94 0.	
actationPND21 MGR Rat	N ASN	GSFrag	20	134	64	22	240	0.64	0.24	0.48	0.32	0.48	0.68	0.58	-98.8 6.87 0.	12
actationPND21 MGR Rat	N ASN	Inductive Mera,	25	131	67	17	240	0.65	0.27	0.6	0.37	0.6	0.66	0.63	-98.7 6.77 C	.2
actationPND21	N ASN	Mersy	23	134	64	19	240	0.65	0.26	0.55	0.36	0.55	0.68	0.61	-98.8 6.86 0.	18
LactationPND21	N ASN	QNPR Spectrop	18	133	65	24	240	0.63	0.22	0.43	0.29	0.43	0.67	0.55	-98.9 6.83 0.0	8
actationPND21	N	hores	21	124	74	21	240	0.6	0.22	0.5	0.31	0.5	0.63	0.56	-98.9 6.65 0	.1
MGR Rat _actationPND21	N ASN	TP	16	142	56	25	239	0.66	0.22	0.39	0.28	0.39	0.72	0.55	-98.9 6.97 0.0)9
MGR Rat _actationPND21	N	CDK, TA	20	131	67	21	239	0.63	0.23	0.49	0.31	0.49	0.66	0.57	-98.9 6.76 0.	12
MGR Rat actationPND21	ASN N	CDK, TP	20	140	58	21	239	0.67	0.26	0.49	0.34	0.49	0.71	0.6	-98.8 6.96 0.	16
MGR Rat _actationPND21	ASN N	TA, TP	15	135	63	27	240	0.63	0.19	0.36	0.25	0.36	0.68	0.52	-99.0 6.81 0.0)3
MGR Rat _actationPND21	ASN N	TA	18	149	49	24	240	0.7	0.27	0.43	0.33	0.43	0.75	0.59	-98.8 7.22 0.	15
MGR Rat actationPND21	ASN N	TP	19	146	52	23	240	0.69	0.27	0.45	0.34	0.45	0.74	0.59	-98.8 7.15 0.	16
MGR Rat _actationPND21	FSM LR	CDK, TA, TP	18	141	57	23	239	0.67	0.24	0.44	0.31	0.44	0.71	0.58	-98.8 6.98 0.	12
MGR Rat LactationPND21	FSM LR	CDK, TA	15	136	62	26	239	0.63	0.19	0.37	0.25	0.37	0.69	0.53	-98.9 6.8 0.0)4
MGR Rat LactationPND21	FSM LR	CDK, TP	18	145	53	23	239	0.68	0.25	0.44	0.32	0.44	0.73	0.59	-98.8 7.08 0.	14
MGR Rat LactationPND21	FSM LR	TA, TP	14	138	60	28	240	0.63	0.19	0.33	0.24	0.33	0.7	0.52	-99.0 6.85 0.0)2
MGR Rat _actationPND21	FSM LR	TA	15	137	61	27	240	0.63	0.2	0.36	0.25	0.36	0.69	0.52	-99.0 6.86 0.0)4
MGR Rat _actationPND21	FSM LR	TP	21	132	66	21	240	0.64	0.24	0.5	0.33	0.5	0.67	0.58	-98.8 6.83 0.	13
MGR Rat actationPND21	KNN	CDK, TA, TP	24	93	105	17	239	0.49	0.19	0.59	0.28	0.59	0.47	0.53	-98.9 5.94 0.0)4
MGR Rat actationPND21	KNN	CDK, TA	26	84	114	15	239	0.46	0.19	0.63	0.29	0.63	0.42	0.53	-98.9 5.71 0.0)4
MGR Rat _actationPND21	KNN	CDK, TP	18	124	74	23	239	0.59	0.2	0.44	0.27	0.44	0.63	0.53	-98.9 6.59 0.0)5
MGR Rat								0.44	0.18		0.29	0.64		0.52	-99.0 5.65 0.0	

KNN	TA	32	47	151	10	240	0.33	0.17	0.76	0.28	0.76	0.24	0.5	-99.0 4.67 .001	42
KNN	TP	19	103	95	23	240	0.51	0.17	0.45	0.24	0.45	0.52	0.49	-99.0 6.21 .021	42
LibS	CDK. TA.														
VΜ	TP	0	193	5	41	239	0.81	0.	0.		0.	0.97	0.49	-99.0 6.59 .067	41
LibS															
VM_	CDK, TA	2	192	6	39	239	0.81	0.25	0.05	0.08	0.05	0.97	0.51	-99.0 7.98 0.04	41
LibS VM	CDK, TP	5	188	10	36	239	0.81	0.33	0.12	0.18	0.12	0.95	0.54	-98.9 8.19 0.11	41
LibS VM	TA, TP	0	196	2	42	240	0.82	0.	0.		0.	0.99	0.49	-99.0 7.42 .042	42
LibS VM	TA	0	194	4	42	240	0.81	0.	0.		0.	0.98	0.49	-99.0 6.82 .06	42
ihS															
VΜ		0	191	7	42	240	0.8	0.	0.		0.	0.96	0.48	-99.0 6.3 .08	42
VILK A	TP	22	124	74	19	239	0.61	0.23	0.54	0.32	0.54	0.63	0.58	-98.8 6.6 0.13	41
MLR A	CDK, TA	24	130	68	17	239	0.64	0.26	0.59	0.36	0.59	0.66	0.62	-98.8 6.71 0.19	41
MLR _A		21	112	86	20	230	0.56	0.2	0.51	n 28	0.51	0.57	0.54	-98.9 6.35 0.06	41
MLR															
A MLR	IA, IP	18	118	80	24	240	0.57	0.18	0.43	0.26	0.43	0.6	0.51	-99.0 6.5 0.02	42
A MLR	TA	21	107	91	21	240	0.53	0.19	0.5	0.27	0.5	0.54	0.52	-99.0 6.3 0.03	42
Ą	TP TA	19	105	93	23	240	0.52	0.17	0.45	0.25	0.45	0.53	0.49	-99.0 6.25 .013	42
PLS	TP	14	142	56	27	239	0.65	0.2	0.34	0.25	0.34	0.72	0.53	-98.9 6.91 0.05	41
PLS	CDK, TA	18	135	63	23	239	0.64	0.22	0.44	0.3	0.44	0.68	0.56	-98.9 6.83 0.1	41
PLS	CDK, TP	20	135	63	21	239	0.65	0.24	0.49	0.32	0.49	0.68	0.58	-98.8 6.85 0.13	41
PLS	TA. TP	19	120	78	23	240	0.58	0.2	0.45	0.27	0.45	0.61	0.53	-98.9 6.56 0.05	42
				56											42
															42
	CDK, TA,														
J48	IP .	17	147	51	24	239	0.69	0.25	0.41	0.31	0.41	0.74	0.58	-98.8 7.11 0.13	41
J48	CDK, TA	17	149	49	24	239	0.69	0.26	0.41	0.32	0.41	0.75	0.58	-98.8 7.17 0.14	41
J48	CDK, TP	19	143	55	22	239	0.68	0.26	0.46	0.33	0.46	0.72	0.59	-98.8 7.03 0.15	41
J48	TA, TP	12	140	58	30	240	0.63	0.17	0.29	0.21	0.29	0.71	0.5	-99.0 6.82 .006	42
J48	TA	15	148	50	27	240	0.68	0.23	0.36	0.28	0.36	0.75	0.55	-98.9 7.13 0.09	42
J48	TP	11	158	40	31	240	0.7	0.22	0.26	0.24	0.26	0.8	0.53	-98.9 7.26 0.06	42
	CDK, TA, TP	25	123	75	16	239	0.62	0.25	0.61	0.35	0.61	0.62	0.62	-98.8 6.53 0.18	41
RF	TP														
RF RF		25 26 22	123 115 124	75 83 74	16 15 19	239 239 239	0.62 0.59 0.61	0.25 0.24 0.23	0.61 0.63 0.54	0.35 0.35 0.32	0.61 0.63 0.54	0.62 0.58 0.63	0.62 0.61 0.58	-98.8 6.53 0.18 -98.8 6.34 0.16 -98.8 6.6 0.13	41
	I.I.D.S. //M I.I.D.S. //M I.I.D.S. //M I.I.D.S. //M I.I.D.S. //M II.I.D.S. //M II.I.D.S. //M II.I.D.S. //M II.I.D.S. //M II.I.D.S. //M II.I.D.S. //M III.D.S. //M	M TP LibS /M CDK, TA LibS /M CDK, TP LibS /M TA, TP LibS /M TA LibS /M TA	CNN TP 19 LibS CDK, TA, //M TP 0 LibS CDK, TA 2 LibS //M CDK, TP 5 LibS //M TA, TP 0 LibS //M TA, TP 0 LibS //M TA 0 LibS //M TA 0 LibS //M TA 22 LibS //M TA 24 LibS //M TP 19 LibS CDK, TA 18 LibS TP 15 LibS	CNN TP 19 103 CNN TP 0 193 CNN TP 0 193 CNN TP 0 193 CNN TP 0 193 CNN TP 0 194 CNN TP 5 188 CNN TA, TP 0 196 CNN TA, TP 0 196 CNN TA 0 194 CNN TP 0 191 CNN TP 0 191 CNN TP 0 191 CNN TP 22 124 CNN TP 22 124 CNN TP 22 124 CNN TP 21 112 CNN TA 24 130 CNN TP 21 112 CNN TA 24 130 CNN TP 18 118 CNN TA 21 107 CNN TA 18 135 CNN TA 18 136 CNN TA 18 142 CNN TA 18 144 CNN TA 17 149 CNN TA 18 148 CNN TA 18	CANN TP 19 103 95 CIBS CDK, TA, M TP 0 193 5 CIBS CDK, TA 2 192 6 CIBS CDK, TP 5 188 10 CIBS CDK, TP 5 188 10 CIBS CDK, TP 0 196 2 CIBS CM TA, TP 0 196 2 CIBS CM TA 24 130 68 CDK, TA 25 112 86 CDK, TA 18 142 56 CDK, TA 18 135 63 CDK, TA 18 142 56 CDK, TA 17 149 49 CDK, TA 18 15 148 50	CON, TP 19 103 95 23 CON, TA, TP 0 193 5 41 CDK, TA 2 192 6 39 CDK, TA 10 196 2 42 CDK, TA 0 194 4 42 CDK, TA 2 124 74 19 CDK, TA 2 130 68 17 CDK, TA 24 130 68 17 CDK, TA 21 107 91 21 CDK, TA 18 118 80 24 CDK, TA 18 118 80 24 CDK, TA 18 135 63 23 CDK, TA 18 135 63 23 CDK, TA 18 135 63 23 CDK, TA 18 142 56 27 CDK, TA 18 142 56 24 CDK, TA 17 147 51 24 CDK, TA 17 149 49 24 CDK, TA 17 149 58 30 CDK, TA 17 148 50 27 CDK, TA 18 TA 15 148 50 27 CDK, TA 15 148 50 27	CANN TP 19 103 95 23 240 CIBS CDK, TA, M TP 0 193 5 41 239 CIBS CDK, TA 2 192 6 39 239 CIBS CM CDK, TA 2 192 6 39 239 CIBS CM CDK, TP 5 188 10 36 239 CIBS CM TA, TP 0 196 2 42 240 CIBS CM TA, TP 0 196 2 42 240 CIBS CM TA TA 19 239 CIBS CM TA TA 2 130 68 17 239 CALLER CDK, TA 24 130 68 17 239 CALLER CDK, TP 21 112 86 20 239 CALLER TA TA 21 107 91 21 240 CALLER TA 21 107 91 21 240 CALLER TA 21 107 91 21 240 CALLER TA 18 135 63 23 239 CLS CDK, TA 18 142 56 27 239 CLS TA 18 142 56 24 240 CDK, TA 17 149 49 24 239 CDK, TA 17 149 49 24 239	CNN TP 19 103 95 23 240 0.51 LibS CDK, TA, M TP 0 193 5 41 239 0.81 LibS M CDK, TA 2 192 6 39 239 0.81 LibS M CDK, TP 5 188 10 36 239 0.81 LibS M TA, TP 0 196 2 42 240 0.82 LibS M TA TA 0 194 4 42 240 0.81 LibS M TA TA 0 191 7 42 240 0.81 LibS M TP 0 191 7 42 240 0.81 LibS M TP 0 191 7 42 240 0.81 LibS M TP 0 191 7 42 240 0.81 LibS M TP 0 191 7 42 240 0.81 LibS M TP 0 191 7 42 240 0.81 LibS M TP 0 191 7 42 240 0.81 LibS M TP 11 18 118 80 24 240 0.57 LIC M TA TA TP 18 118 80 24 240 0.57 LIC M TA TA TP 18 118 80 24 240 0.57 LIC M TA TA TP 19 105 93 23 240 0.52 CDK, TA TA 18 135 63 23 239 0.64 LIC CDK, TA 18 135 63 21 239 0.65 LIC CDK, TA 18 135 63 21 239 0.65 LIC CDK, TA 18 135 63 21 239 0.65 LIC CDK, TA 18 142 56 24 240 0.67 LIC CDK, TA 18 142 56 24 240 0.67 LIC CDK, TA 18 142 56 24 240 0.67 LIC CDK, TA 18 142 56 24 240 0.67 LIC CDK, TA 18 142 56 24 240 0.67 LIC CDK, TA 18 142 56 24 240 0.67 LIC CDK, TA 18 142 56 24 240 0.69 LIC CDK, TA 18 142 56 24 240 0.69 LIC CDK, TA 18 142 56 24 240 0.69 LIC CDK, TA 18 142 56 24 240 0.69 LIC CDK, TA 18 142 56 24 240 0.69 LIC CDK, TA 18 142 56 24 240 0.69 LIC CDK, TA 18 142 56 24 240 0.69 LIC CDK, TA 18 142 56 24 240 0.69 LIC CDK, TA 18 142 56 24 240 0.69 LIC CDK, TA 18 142 56 24 240 0.69 LIC CDK, TA 18 142 56 24 240 0.69 LIC CDK, TA 18 142 56 24 240 0.69 LIC CDK, TA 18 143 55 22 239 0.69 LIC CDK, TA 17 149 49 24 239 0.69 LIC CDK, TA 17 149 49 24 239 0.69 LIC CDK, TA 17 149 49 24 239 0.69 LIC CDK, TA 17 149 49 24 239 0.69 LIC CDK, TA 17 149 58 30 240 0.68 LIC CDK, TA 17 149 58 30 240 0.68 LIC CDK, TA 17 149 58 30 240 0.68 LIC CDK, TA 17 149 58 30 240 0.68 LIC CDK, TA 17 149 58 30 240 0.68	CINN TP 19 103 95 23 240 0.51 0.17 LIBS CDK, TA, M TP 0 193 5 41 239 0.81 0.51 LIBS CDK, TA 2 192 6 39 239 0.81 0.25 LIBS CM CDK, TP 5 188 10 36 239 0.81 0.33 LIBS CM TA, TP 0 196 2 42 240 0.82 0. LIBS CM TA, TP 0 191 7 42 240 0.8 0. LIBS CM TA TA 19 239 0.61 0.23 LIBS CDK, TA 24 130 68 17 239 0.61 0.23 LIBS CDK, TA 24 130 68 17 239 0.64 0.26 LIBS CDK, TP 21 112 86 20 239 0.56 0.2 LIBS CDK, TP 18 118 80 24 240 0.57 0.18 LIBS CDK, TA 21 107 91 21 240 0.53 0.19 LIBS CDK, TA 18 135 63 23 239 0.65 0.2 LIBS CDK, TA 18 135 63 23 239 0.65 0.2 LIBS CDK, TP 20 135 63 21 239 0.65 0.2 LIBS CDK, TA 18 135 63 23 239 0.65 0.2 LIBS CDK, TA 18 135 63 23 239 0.65 0.2 LIBS CDK, TA 18 135 63 23 239 0.65 0.2 LIBS CDK, TA 18 135 63 23 239 0.65 0.2 LIBS CDK, TA 18 135 63 23 239 0.65 0.2 LIBS CDK, TA 18 135 63 21 239 0.65 0.2 LIBS CDK, TA 18 142 56 27 239 0.65 0.2 LIBS CDK, TA 18 142 56 27 239 0.65 0.2 LIBS CDK, TA 18 135 63 21 239 0.65 0.2 LIBS TP 14 142 56 24 240 0.58 0.2 LIBS TP 15 134 64 27 240 0.62 0.19 CDK, TA, TA 17 149 49 24 239 0.69 0.26 LIBS TP 17 147 51 24 239 0.69 0.26 LIBS CDK, TA 17 149 49 24 239 0.69 0.26 LIBS TA TA 17 149 49 24 239 0.69 0.26 LIBS TA TA 17 149 49 24 239 0.69 0.26 LIBS TA TA 17 149 49 24 239 0.69 0.26 LIBS TA TA 17 149 49 24 239 0.69 0.26 LIBS TA TA 17 149 49 24 239 0.69 0.26 LIBS TA TA 15 148 50 27 240 0.63 0.17 LIBS TA 15 148 50 27 240 0.63 0.17 LIBS TA 15 148 50 27 240 0.68 0.23 LIBS TA 15 148 50 27 240 0.68 0.23	CINN TP 19 103 95 23 240 0.51 0.17 0.45 CIDS CDK, TA, IM TP 0 193 5 41 239 0.81 0. 0. CIDS CDK, TA 2 192 6 39 239 0.81 0.25 0.05 CIDS CDK, TA 2 192 6 39 239 0.81 0.33 0.12 CDK, TP 5 188 10 36 239 0.81 0.33 0.12 CDK, TP 0 196 2 42 240 0.82 0. 0. CDK, TA 0 194 4 42 240 0.81 0. 0. CDK, TA 2 192 7 42 240 0.8 0. 0. CDK, TA 1 11 18 118 80 24 240 0.57 0.18 0.43 CDK, TA 1 14 142 56 27 239 0.65 0.2 0.34 CDK, TA 18 135 63 23 239 0.65 0.2 0.44 CDK, TA 18 135 63 21 239 0.65 0.2 0.44 CDK, TA 18 135 63 21 239 0.65 0.2 0.44 CDK, TA 18 135 63 21 239 0.65 0.2 0.44 CDK, TA 18 135 63 21 239 0.65 0.2 0.44 CDK, TA 18 135 63 21 239 0.65 0.2 0.44 CDK, TA 18 135 63 21 239 0.65 0.2 0.44 CDK, TA 18 135 63 21 239 0.65 0.2 0.44 CDK, TA 18 135 63 21 239 0.65 0.2 0.44 CDK, TA 18 135 63 21 239 0.65 0.2 0.44 CDK, TA 18 135 63 21 239 0.65 0.2 0.44 CDK, TA 18 142 56 24 240 0.57 0.18 0.43 CDK, TA 18 135 63 21 239 0.65 0.2 0.44 CDK, TA 18 135 63 21 239 0.65 0.2 0.44 CDK, TA 18 135 63 21 239 0.65 0.2 0.44 CDK, TA 18 135 63 21 239 0.65 0.2 0.44 CDK, TA 18 142 56 24 240 0.67 0.24 0.49 CDK, TA 18 142 56 24 240 0.67 0.24 0.49 CDK, TA 18 142 56 24 240 0.67 0.24 0.49 CDK, TA 18 142 56 24 240 0.67 0.24 0.49 CDK, TA 18 142 56 24 240 0.67 0.24 0.49 CDK, TA 18 142 56 24 240 0.67 0.24 0.49 CDK, TA 18 142 56 24 240 0.67 0.24 0.49 CDK, TA 18 142 56 24 240 0.67 0.24 0.49 CDK, TA 18 143 55 22 239 0.68 0.26 0.41 M48 CDK, TA 17 149 49 24 239 0.69 0.25 0.41 M48 CDK, TP 19 143 55 22 239 0.68 0.26 0.46 M48 TA, TP 12 140 58 30 240 0.68 0.23 0.36 M48 TA 15 148 50 27 240 0.68 0.23 0.36	KINN TP 19 103 95 23 240 0.51 0.17 0.45 0.24 LibS CDK, TA, MI TP 0 193 5 41 239 0.81 0.0 0.0 LibS CDK, TA 2 192 6 39 239 0.81 0.25 0.05 0.08 LibS CDK, TP 5 188 10 36 239 0.81 0.33 0.12 0.18 LibS M CDK, TP 5 188 10 36 239 0.81 0.3 0.12 0.18 LibS M TA, TP 0 196 2 42 240 0.82 0. 0. LibS M TA 0 194 4 42 240 0.81 0. 0. 0. LibS M TA 19 19 19 42 240 0.8 0. 0. 0. <td>KINN TP 19 103 95 23 240 0.51 0.17 0.45 0.24 0.45 JISS CDK, TA, MIN TP 0 193 5 41 239 0.81 0. 0. 0. JISS CDK, TA 2 192 6 39 239 0.81 0.25 0.05 0.08 0.05 JISS MIN CDK, TP 5 188 10 36 239 0.81 0.33 0.12 0.18 0.12 JISS MIN TA, TP 0 196 2 42 240 0.82 0. 0. 0. JISS MIN TA 0 191 7 42 240 0.81 0. 0. 0. JISS MIN TA 2 191 7 42 240 0.81 0. 0. 0. JISS JIMIR A 12 14 42<</td> <td>SAN TP 19 103 95 23 240 0.51 0.17 0.45 0.24 0.45 0.52 1.55 CDK, TA, M TP 0 193 5 41 239 0.81 0.0 0. 0. 0. 0. 0. 0.97 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.5</td> <td> No. TP</td> <td>CINN TP</td>	KINN TP 19 103 95 23 240 0.51 0.17 0.45 0.24 0.45 JISS CDK, TA, MIN TP 0 193 5 41 239 0.81 0. 0. 0. JISS CDK, TA 2 192 6 39 239 0.81 0.25 0.05 0.08 0.05 JISS MIN CDK, TP 5 188 10 36 239 0.81 0.33 0.12 0.18 0.12 JISS MIN TA, TP 0 196 2 42 240 0.82 0. 0. 0. JISS MIN TA 0 191 7 42 240 0.81 0. 0. 0. JISS MIN TA 2 191 7 42 240 0.81 0. 0. 0. JISS JIMIR A 12 14 42<	SAN TP 19 103 95 23 240 0.51 0.17 0.45 0.24 0.45 0.52 1.55 CDK, TA, M TP 0 193 5 41 239 0.81 0.0 0. 0. 0. 0. 0. 0.97 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.5	No. TP	CINN TP

MGR Rat LactationPND21	RF	TA	23	98	100	19	240	0.5	0.19	0.55	0.28	0.55	0.49	0.52	-99.0	6.11	0.03	42
MGR Rat LactationPND21	RF	TP	15	121	77	27	240	0.57	0.16	0.36	0.22	0.36	0.61	0.48	-99.0	6.5	.025	42
MGR Rat LactationPND21	FSM LR	Adriana	24	118	79	18	239	0.59	0.23	0.57	0.33	0.57	0.6	0.59	-98.8	6.52	0.13	42
MGR Rat LactationPND21	FSM LR	ALogPS, OEstate	17	141	57	25	240	0.66	0.23	0.4	0.29	0.4	0.71	0.56	-98.9	7.	0.1	42
MGR Rat LactationPND21	FSM LR	CDK	25	129	69	16	239	0.64	0.27	0.61	0.37	0.61	0.65	0.63	-98.7	6.66	0.2	41
MGR Rat LactationPND21	FSM LR	Chemaxo n	26	111	87	16	240	0.57	0.23	0.62	0.34	0.62	0.56	0.59	-98.8	6.32	0.14	42
MGR Rat _actationPND21	FSM LR	Dragon6	22	134	64	20	240	0.65	0.26	0.52	0.34	0.52	0.68	0.6	-98.8	6.87	0.16	42
MGR Rat LactationPND21	FSM LR	Fragment or	17	132	66	25	240	0.62	0.2	0.4	0.27	0.4	0.67	0.54	-98.9	6.79	0.06	42
MGR Rat LactationPND21	FSM LR	GSFrag	25	120	78	17	240	0.6	0.24	0.6	0.34	0.6	0.61	0.6	-98.8	6.53	0.15	42
MGR Rat LactationPND21	FSM LR	Inductive	28	112	86	14	240	0.58	0.25	0.67	0.36	0.67	0.57	0.62	-98.8	6.29	0.18	42
MGR Rat LactationPND21	FSM LR	Mera, Mersy	25	132	66	17	240	0.65	0.27	0.6	0.38	0.6	0.67	0.63	-98.7	6.79	0.21	42
MGR Rat LactationPND21	FSM LR	QNPR	20	130	68	22	240	0.63	0.23	0.48	0.31	0.48	0.66	0.57	-98.9	6.78	0.1	42
MGR Rat LactationPND21	FSM LR	Spectrop hores	20	116	82	22	240	0.57	0.2	0.48	0.28	0.48	0.59	0.53	-98.9	6.48	0.05	42
MGR Rat LactationPND21	KNN	Adriana	35	27	170	7	239	0.26	0.17	0.83	0.28	0.83	0.14	0.49	-99.0	3.76	.032	42
MGR Rat LactationPND21	KNN	ALogPS, OEstate	27	112	86	15	240	0.58	0.24	0.64	0.35	0.64	0.57	0.6	-98.8	6.32	0.16	42
MGR Rat LactationPND21	KNN	CDK	32	94	104	9	239	0.53	0.24	0.78	0.36	0.78	0.47	0.63	-98.7	5.63	0.19	41
MGR Rat LactationPND21	KNN	Chemaxo n	28	110	88	14	240	0.58	0.24	0.67	0.35	0.67	0.56	0.61	-98.8	6.25	0.17	42
MGR Rat LactationPND21	KNN	Dragon6	29	72	126	13	240	0.42	0.19	0.69	0.29	0.69	0.36	0.53	-98.9	5.43	0.04	42
MGR Rat LactationPND21	KNN	Fragment or	17	132	66	25	240	0.62	0.2	0.4	0.27	0.4	0.67	0.54	-98.9	6.79	0.06	42
MGR Rat LactationPND21	KNN	GSFrag	31	75	123	11	240	0.44	0.2	0.74	0.32	0.74	0.38	0.56	-98.9	5.4	0.09	42
MGR Rat LactationPND21	KNN	Inductive	27	100	98	15	240	0.53	0.22	0.64	0.32	0.64	0.51	0.57	-98.9	6.08	0.11	42
MGR Rat LactationPND21	KNN	Mera, Mersy	39	38	160	3	240	0.32	0.2	0.93	0.32	0.93	0.19	0.56	-98.9	3.5	0.12	42
MGR Rat LactationPND21	KNN	QNPR	20	107	91	22	240	0.53	0.18	0.48	0.26	0.48	0.54	0.51	-99.0	6.3	0.01	42
MGR Rat LactationPND21	KNN	Spectrop hores	15	113	85	27	240	0.53	0.15	0.36	0.21	0.36	0.57	0.46	-99.1	6.34	.056	42
MGR Rat LactationPND21	LibS VM	Adriana	8	171	26	34	239	0.75	0.24	0.19	0.21	0.19	0.87	0.53	-98.9	7.55	0.06	42

MGR Rat LactationPND21	LibS VM	ALogPS, OEstate	9	175	23	33	240	0.77	0.28	0.21	0.24	0.21	0.88	0.55	-98.9 7.77 0.11	42
MGR Rat LactationPND21	LibS VM	CDK	16	163	35	25	239	0.75	0.31	0.39	0.35	0.39	0.82	0.61	-98.8 7.57 0.2	41
MGR Rat LactationPND21	LibS VM	Chemaxo n	8	176	22	34	240	0.77	0.27	0.19	0.22	0.19	0.89	0.54	-98.9 7.74 0.09	42
MGR Rat LactationPND21	LibS VM	Dragon6	9	176	22	33	240	0.77	0.29	0.21	0.25	0.21	0.89	0.55	-98.9 7.82 0.12	42
MGR Rat LactationPND21	LibS VM	Fragment or	5	182	16	37	240	0.78	0.24	0.12	0.16	0.12	0.92	0.52	-99.0 7.73 0.05	42
MGR Rat LactationPND21	LibS VM	GSFrag	10	167	31	32	240	0.74	0.24	0.24	0.24	0.24	0.84	0.54	-98.9 7.5 0.08	42
MGR Rat LactationPND21	LibS VM	Inductive	14	168	30	28	240	0.76	0.32	0.33	0.33	0.33	0.85	0.59	-98.8 7.73 0.18	42
MGR Rat LactationPND21	LibS VM	Mera, Mersy	10	175	23	32	240	0.77	0.3	0.24	0.27	0.24	0.88	0.56	-98.9 7.84 0.13	42
MGR Rat LactationPND21	LibS VM	QNPR	6	187	11	36	240	0.8	0.35	0.14	0.2	0.14	0.94	0.54	-98.9 8.26 0.13	42
MGR Rat LactationPND21 MGR Rat	LibS VM MLR	Spectrop hores	7	177	21	35	240	0.77	0.25	0.17	0.2	0.17	0.89	0.53	-98.9 7.7 0.07	42
LactationPND21 MGR Rat	A MLR	Adriana ALogPS,	22	100	97	20	239	0.51	0.18	0.52	0.27	0.52	0.51	0.52	-99.0 6.16 0.02	42
LactationPND21 MGR Rat LactationPND21	A MLR A	OEstate CDK	20 17	112	86 86	22	240	0.55	0.19	0.48	0.27	0.48	0.57	0.52	-99.0 6.4 0.03 -99.0 6.32 .015	42 41
MGR Rat LactationPND21 MGR Rat	MLR A MLR	Chemaxo n	20	122	76	22	240	0.59	0.21	0.48	0.29	0.48	0.62	0.55	-98.9 6.6 0.07	42
LactationPND21 MGR Rat LactationPND21	Α	Dragon6 Fragment or	22	100	98 76	20	240	0.51	0.18	0.52	0.27	0.52	0.51	0.51	-99.0 6.15 0.02 -98.9 6.6 0.11	42 42
MGR Rat LactationPND21 MGR Rat	MLR A MLR	GSFrag	17	113	85	25	240	0.54	0.17	0.4	0.24	0.4	0.57	0.49	-99.0 6.38 .019	42
LactationPND21 MGR Rat LactationPND21	Α	Inductive Mera, Mersy	26	109	76 89	20	240	0.62	0.25	0.62	0.36	0.62	0.62	0.62	-98.8 6.55 0.18 -98.9 6.34 0.06	42 42
MGR Rat LactationPND21 MGR Rat		QNPR Spectrop	18	100	98	24	240	0.49	0.16		0.23		0.51	0.47	-99.1 6.14 .05	42
LactationPND21 MGR Rat LactationPND21	A PLS	hores Adriana	17 23	108	90 80	25 19	239	0.52	0.16	0.4	0.23	0.4	0.55	0.48	-99.0 6.28 .038 -98.9 6.51 0.11	42 42
MGR Rat LactationPND21 MGR Rat	PLS	ALogPS, OEstate	22	139	59	20	240	0.67	0.27	0.52	0.36	0.52	0.7	0.61	-98.8 6.99 0.18	42
LactationPND21 MGR Rat LactationPND21	PLS PLS	CDK Chemaxo n	23 24	132 117	66 81	18 18	239	0.65	0.26	0.56	0.35	0.56	0.67	0.61	-98.8 6.76 0.18 -98.8 6.48 0.12	41 42
MGR Rat LactationPND21		Dragon6	20	141	57	22	240	0.67	0.26	0.48	0.34		0.71	0.59	-98.8 7.03 0.15	42

		Ergamont															
MGR Rat LactationPND21	PLS	Fragment or	20	134	64	22	240	0.64	0.24	0.48	0.32	0.48	0.68	0.58	-98.8	6.87 0.	12 4:
MGR Rat LactationPND21	PLS	GSFrag	23	117	81	19	240	0.58	0.22	0.55	0.32	0.55	0.59	0.57	-98.9	6.49 0.	11 4:
MGR Rat LactationPND21	PLS	Inductive	26	124	74	16	240	0.63	0.26	0.62	0.37	0.62	0.63	0.62	-98.8	6.59 0.	19 4:
MGR Rat LactationPND21	PLS	Mera, Mersy	24	133	65	18	240	0.65	0.27	0.57	0.37	0.57	0.67	0.62		6.83 0.	
MGR Rat LactationPND21	PLS	QNPR	19	131	67	23	240	0.63	0.22	0.45	0.3	0.45	0.66	0.56	-98.9		
MGR Rat	1 20	Spectrop	-10	101				0.00	U.LL	0.10	0.0	0.10	0.00	0.00	00.0	0.70 0.	
LactationPND21	PLS	hores	20	116	82	22	240	0.57	0.2	0.48	0.28	0.48	0.59	0.53	-98.9	6.48 0.)5 4:
MGR Rat LactationPND21	J48	Adriana	13	145	52	29	239	0.66	0.2	0.31	0.24	0.31	0.74	0.52	-99.0	7.01 0.)4 42
MGR Rat LactationPND21	J48	ALogPS, OEstate	17	150	48	25	240	0.7	0.26	0.4	0.32	0.4	0.76	0.58	-98.8	7.23 0.	14 4:
MGR Rat LactationPND21	J48	CDK	15	150	48	26	239	0.69	0.24	0.37	0.29	0.37	0.76	0.56	-98.9	7.15 0.	11 4
MGR Rat	140	Chemaxo	-00				0.10	0.00		0.50	0.07	0.50	0.70	0.00	00.7	7.44.0	
LactationPND21 MGR Rat	J48	<u>n</u>	22	144	54	20	240	0.69	0.29	0.52	0.37	0.52	0.73	0.63		7.11 0.	
LactationPND21 MGR Rat	J48	Dragon6 Fragment	15	152	46	27	240	0.7	0.25	0.36	0.29	0.36	0.77	0.56	-98.9	7.24 0.	11 4:
LactationPND21	J48	or	18	152	46	24	240	0.71	0.28	0.43	0.34	0.43	0.77	0.6	-98.8	7.3 0.	7 4
MGR Rat LactationPND21	J48	GSFrag	16	152	46	26	240	0.7	0.26	0.38	0.31	0.38	0.77	0.57	-98.9	7.27 0.	13 42
MGR Rat LactationPND21	J48	Inductive	25	146	52	17	240	0.71	0.32	0.6	0.42	0.6	0.74	0.67	-98.7	7.13 0.	27 42
MGR Rat LactationPND21	J48	Mera, Mersy	12	155	43	30	240	0.7	0.22	0.29	0.25	0.29	0.78	0.53	-98.9	7.22 0.	06 42
MGR Rat LactationPND21	J48	QNPR	17	144	54	25	240	0.67	0.24	0.4	0.3	0.4	0.73	0.57	-98.9	7.08 0.	11 4:
MGR Rat		Spectrop															
LactationPND21	J48	hores	11	155	43	31	240	0.69	0.2	0.26	0.23	0.26	0.78	0.52		7.17 0.	
MGR Rat Liver	RF	Adriana	76	83	53	27	239	0.67	0.59	0.74	0.66	0.74	0.61	0.67	-98.7	8.1 0.	35 10
MGR Rat Liver	RF	ALogPS, OEstate	70	82	55	33	240	0.63	0.56	0.68	0.61	0.68	0.6	0.64	-98 7	8.16 0.	28 10
MGR Rat Liver	RF	CDK	72	77	59	31	239	0.62	0.55	0.7	0.62	0.7	0.57	0.63	-98.7	8. 0.:	
MGR Rat Liver	RF	Chemaxo n	61	82	55	42	240	0.6	0.53	0.59	0.56	0.59	0.6	0.6	-98.8		
MGR Rat Liver	RF	Dragon6 Fragment	63	83	54	40	240	0.61	0.54	0.61	0.57	0.61	0.61	0.61	-98.8	8.28 0.	22 10
MGR Rat Liver	RF	or	71	89	48	32	240	0.67	0.6	0.69	0.64	0.69	0.65	0.67	-98.7	8.36 0.	34 10
MGR Rat Liver	RF	GSFrag	66	83	54	37	240	0.62	0.55	0.64	0.59	0.64	0.61	0.62	-98.8	8.25 0.	24 10
MGR Rat Liver	RF	Inductive	70	79	58	33	240	0.62	0.55	0.68	0.61	0.68	0.58	0.63	-98.7	8.07 0.	25 10
									0.00								
MGR Rat Liver		Mera,		80	57		240			0 71	0.63	0 71	0.58	0.65	-98 7	8.05 O	9 10
MGR Rat Liver MGR Rat Liver	RF RF		73 77	80 82	57 55	30	240 240	0.64	0.56	0.71 0.75	0.63 0.66	0.71	0.58	0.65		8.05 0. 8.02 0.	
MGR Rat Liver	RF	Mera, Mersy	73			30		0.64	0.56						-98.7		34 10
MGR Rat Liver	RF RF ASN	Mera, Mersy QNPR Spectrop hores	73 77 69	82 84	55 53	30 26 34	240 240	0.64 0.66 0.64	0.56 0.58 0.57	0.75	0.66	0.75	0.6	0.67	-98.7 -98.7	8.02 0. 8.24 0.	34 103 28 103
MGR Rat Liver MGR Rat Liver MGR Rat Liver MGR Rat Liver	RF RF ASN N	Mera, Mersy QNPR Spectrop hores	73 77	82	55	30 26	240	0.64	0.56 0.58	0.75	0.66	0.75	0.6	0.67	-98.7 -98.7	8.02 0.	34 103 28 103
MGR Rat Liver	RF RF ASN N ASN N	Mera, Mersy QNPR Spectrop hores	73 77 69	82 84	55 53	30 26 34	240 240	0.64 0.66 0.64	0.56 0.58 0.57	0.75	0.66	0.75	0.6	0.67	-98.7 -98.7	8.02 0. 8.24 0.	34 103 28 103 27 103
MGR Rat Liver MGR Rat Liver MGR Rat Liver	RF RF ASN N ASN N ASN N	Mera, Mersy QNPR Spectrop hores Adriana ALogPS, OEstate	73 77 69 63	82 84 90	55 53 46	30 26 34 40	240 240 239	0.64 0.66 0.64 0.64	0.56 0.58 0.57 0.58	0.75 0.67 0.61	0.66 0.61 0.59	0.75 0.67 0.61	0.6 0.61 0.66	0.67 0.64 0.64	-98.7 -98.7 -98.7	8.02 0. 8.24 0. 8.52 0.	34 103 28 103 27 103 31 103
MGR Rat Liver MGR Rat Liver MGR Rat Liver	RF RF ASN N ASN N ASN N	Mera, Mersy QNPR Spectrop hores Adriana ALogPS, OEstate	73 77 69 63	82 84 90 96	55 53 46 41	30 26 34 40	240 240 239 240	0.64 0.66 0.64 0.64	0.56 0.58 0.57 0.58	0.75 0.67 0.61	0.66 0.61 0.59 0.61	0.75 0.67 0.61	0.6 0.61 0.66 0.7	0.67 0.64 0.64 0.66	-98.7 -98.7 -98.7 -98.7	8.02 0. 8.24 0. 8.52 0. 8.7 0.	34 103 28 103 27 103 31 103

MGR Rat Liver	ASN N	Fragment or	61	93	44	42	240	0.64	0.58	0.59	0.59	0.59	0.68	0.64	-98.7	8 61	0.27	103
	ASN																	
MGR Rat Liver	N ASN	GSFrag	63	96	41	40	240	0.66	0.61	0.61	0.61	0.61	0.7	0.66	-98.7	8.7	0.31	103
MGR Rat Liver	N	Inductive	63	92	45	40	240	0.65	0.58	0.61	0.6	0.61	0.67	0.64	-98.7	8.56	0.28	103
MGR Rat Liver	ASN N	Mera, Mersy	68	92	45	35	240	0.67	0.6	0.66	0.63	0.66	0.67	0.67	-98.7	8.51	0.33	103
	ASN	<u> </u>																
MGR Rat Liver	N ASN	QNPR Spectrop	66	94	43	37	240	0.67	0.61	0.64	0.62	0.64	0.69	0.66	-98.7	8.6	0.32	103
MGR Rat Liver	N	hores	61	92	45	42	240	0.64	0.58	0.59	0.58	0.59	0.67	0.63	-98.7	8.58	0.26	103
MGR Rat Liver	ASN N	CDK, TA, TP	65	92	44	38	239	0.66	0.6	0.63	0.61	0.63	0.68	0.65	-98.7	8 56	0.31	103
	ASN											0.00	0.00	0.00		0.00	0.0.	
MGR Rat Liver	N ASN	CDK, TA	57	91	45	46	239	0.62	0.56	0.55	0.56	0.55	0.67	0.61	-98.8	8.59	0.22	103
MGR Rat Liver	N	CDK, TP	69	90	46	34	239	0.67	0.6	0.67	0.63	0.67	0.66	0.67	-98.7	8.45	0.33	103
MGR Rat Liver	ASN N	TA, TP	57	88	49	46	240	0.6	0.54	0.55	0.55	0.55	0.64	0.6	-98.8	8 47	0.2	103
	ASN																	
MGR Rat Liver	N ASN	TA	52	83	54	51	240	0.56	0.49	0.5	0.5	0.5	0.61	0.56	-98.9	8.33	0.11	103
MGR Rat Liver	N	TP	58	89	48	45	240	0.61	0.55	0.56	0.56	0.56	0.65	0.61	-98.8	8.5	0.21	103
	FSM	CDK, TA,																
MGR Rat Liver	LR	TP TP	52	91	45	51	239	0.6	0.54	0.5	0.52	0.5	0.67	0.59	-98.8	8.6	0.18	103
	FSM																	
MGR Rat Liver	LR	CDK, TA	61	89	47	42	239	0.63	0.56	0.59	0.58	0.59	0.65	0.62	-98.8	8.5	0.25	103
	FSM																	
MGR Rat Liver		CDK, TP	70	93	43	33	239	0.68	0.62	0.68	0.65	0.68	0.68	0.68	-98.6	8.53	0.36	103
	FSM																	
MGR Rat Liver		TA, TP	60	89	48	43	240	0.62	0.56	0.58	0.57	0.58	0.65	0.62	-98.8	8.49	0.23	103
	FSM																	
MGR Rat Liver	LR	TA	51	94	43	52	240	0.6	0.54	0.5	0.52	0.5	0.69	0.59	-98.8	8.68	0.18	103
	FSM																	
MGR Rat Liver	LR	TP	69	94	43	34	240	0.68	0.62	0.67	0.64	0.67	0.69	0.68	-98.6	8.56	0.35	103
MGR Rat Liver	KNN	CDK, TA, TP	70	61	75	33	239	0.55	0.48	0.68	0.56	0.68	0 45	0.56	-98 9	7 56	0.13	103
MGR Rat Liver	KNN	CDK, TA	39	93	43	64	239	0.55	0.48	0.38	0.42	0.38	0.68	0.53	-98.9	8.61	0.07	103
MGR Rat Liver	KNN	CDK, TP	70	78	58	33	239	0.62	0.55	0.68	0.61	0.68	0.57	0.63	-98.7	8.06	0.25	103
MGR Rat Liver	KNN	TA, TP	70	70	67	33	240	0.58	0.51	0.68	0.58	0.68	0.51	0.6	-98 8	7.81	0.19	103
MGR Rat Liver	KNN	TA	43	96	41	60	240	0.58	0.51	0.42	0.46	0.42	0.7	0.56	-98.9	8.72	0.12	103
MGR Rat Liver	KNN	TP	77	67	70	26	240	0.6	0.52	0.75	0.62	0.75	0.49	0.62	-98.8	7.58	0.24	103
	LibS	CDK, TA,																
MGR Rat Liver	VM		57	93	43	46	239	0.63	0.57	0.55	0.56	0.55	0.68	0.62	-98.8	8.66	0.24	103
	LibS																	
MGR Rat Liver	VM	CDK, TA	49	95	41	54	239	0.6	0.54	0.48	0.51	0.48	0.7	0.59	-98.8	8.73	0.18	103
	LibS																	
MGR Rat Liver	VM	CDK, TP	64	94	42	39	239	0.66	0.6	0.62	0.61	0.62	0.69	0.66	-98.7	8.64	0.31	103

	Liho																	
MGR Rat Liver	LibS VM	TA, TP	52	96	41	51	240	0.62	0.56	0.5	0.53	0.5	0.7	0.6	-98 8	8.75	0.21	103
orritat Eiroi	****	174, 11			• • •			0.02	0.00	0.0	0.00	0.0	0.7	0.0	00.0	0.70	0.21	100
	LibS																- · -	
MGR Rat Liver	VM	TA	51	90	47	52	240	0.59	0.52	0.5	0.51	0.5	0.66	0.58	-98.8	8.55	0.15	103
	LibS																	
MGR Rat Liver	VM	TP	58	101	36	45	240	0.66	0.62	0.56	0.59	0.56	0.74	0.65	-98.7	8.91	0.3	103
	_	CDK, TA,		70		4.4	000	0.50	0.54	0.57	0.54	0.57	0.50	0.50	00.0	0.04	0.45	400
MGR Rat Liver	A MLR	TP	59	79	57	44	239	0.58	0.51	0.57	0.54	0.57	0.58	0.58	-98.8	8.21	0.15	103
MGR Rat Liver	A	CDK, TA	54	86	50	49	239	0.59	0.52	0.52	0.52	0.52	0.63	0.58	-98.8	8.44	0.16	103
	MLR	· · · · · · · · · · · · · · · · · · ·																
MGR Rat Liver	A MLR	CDK, TP	60	73	63	43	239	0.56	0.49	0.58	0.53	0.58	0.54	0.56	-98.9	8.02	0.12	103
MGR Rat Liver	A	TA, TP	58	79	58	45	240	0.57	0.5	0.56	0.53	0.56	0.58	0.57	-98.9	8.19	0.14	103
	MLR																	
MGR Rat Liver	A	TA	50	86	51	53	240	0.57	0.5	0.49	0.49	0.49	0.63	0.56	-98.9	8.42	0.11	103
MGR Rat Liver	MLR A	TP	52	80	57	51	240	0.55	0.48	0.5	0.49	0.5	0.58	0.54	_0,2,0_	8 24	0.09	103
IVIOIN INAL LIVEI	А	CDK, TA,	- 52	- 50	- 51	J 1	2-10	0.00	0.40	0.0	0.40	0.0	0.00	0.04	-50.8	0.24	0.09	103
MGR Rat Liver	PLS		70	87	49	33	239	0.66	0.59	0.68	0.63	0.68	0.64	0.66	-98.7	8.34	0.32	103
MOD D-41:	DI C	CDK TA		0.5	E4	40	220	0.50	0.50	0.50	0.50	0.50	0.00	0.50	00.0	C 4	0.40	100
MGR Rat Liver	PLS	CDK, TA	55	85	51	48	239	0.59	0.52	0.53	0.53	0.53	0.63	0.58	-98.8	<u>გ.4</u>	0.16	103
MGR Rat Liver	PLS	CDK, TP	67	88	48	36	239	0.65	0.58	0.65	0.61	0.65	0.65	0.65	-98.7	8.41	0.29	103
MGR Rat Liver	PLS	TA, TP	57	87	50	46	240	0.6	0.53	0.55	0.54	0.55	0.64	0.59	-98.8	8.44	0.19	103
MGR Rat Liver	PLS	TA	51	87	50	52	240	0.58	0.5	0.5	0.5	0.5	0.64	0.57	-98.9	8.45	0.13	103
MGR Rat Liver	PLS		64	94	43	39	240	0.66	0.6	0.62	0.61	0.62	0.69	0.65	-98.7	8.62	0.31	103
MGR Rat Liver	J48	CDK, TA, TP	53	92	44	50	239	0.61	0.55	0.51	0.53	0.51	0.68	0.6	-98.8	8.63	0 19	103
	0-10					- 55				0.01			0.00	0.0	00.0	5.55	0.10	100
MGR Rat Liver	J48	CDK, TA	55	93	43	48	239	0.62	0.56	0.53	0.55	0.53	0.68	0.61	-98.8	8.66	0.22	103
MGR Rat Liver	J48	CDK, TP	59	94	42	44	239	0.64	0.58	0.57	0.58	0.57	0.69	0.63	-98.7	8.68	0.26	103
MGR Rat Liver	J48	TA, TP	52	96	41	51	240	0.62	0.56	0.5	0.53	0.5	0.7	0.6	-98.8	8.75	0.21	103
MGR Rat Liver	J48	TA	57	89	48	46	240	0.61	0.54	0.55	0.55	0.55	0.65	0.6	-98.8	8.5	0.2	103
MGR Rat Liver	J48	TP	60	95	42	43	240	0.65	0.59	0.58	0.59	0.58	0.69	0.64	-98.7	8.69	0.28	103
MOD Dat Live	DE	CDK, TA,	76	70	62	27	220	0.60	0 <i>EE</i>	0.74	0.63	0.74	0 F 4	0.64	00.7	70	0.00	100
MGR Rat Liver	RF	TP	76	73	63	27	239	0.02	0.55	0.74	0.63	0.74	0.54	0.04	-98.7	7.8	0.28	103
MGR Rat Liver	RF	CDK, TA	79	79	57	24	239	0.66	0.58	0.77	0.66	0.77	0.58	0.67	-98.7	7.9	0.35	103
	5-	0017.75	7.0		- ·		000	0.0=		0 = :	0.00	0 = :	0.00	0.00	20.5	0.45	0.00	400
MGR Rat Liver	RF	CDK, TP	76	85	51	27	239	0.67	0.6			0.74					0.36	
MGR Rat Liver	RF	TA, TP	77	62	75	26	240	0.58	0.51	0.75	0.6	0.75	0.45	0.6		7.44		103
MGR Rat Liver MGR Rat Liver	RF RF	TA TP	72 78	66 70	71 67	31 25	240 240	0.58	0.5	0.76	0.59	0.7	0.48	0.59			0.18	
WIGIN INAL LIVE	RΓ	11	10	70	O1	20	240	0.02	0.04	0.70	0.03	0.70	0.01	0.03	-30.7	1.00	0.21	103
	FSM																	
MGR Rat Liver	LR	Adriana	75	79	57	28	239	0.64	0.57	0.73	0.64	0.73	0.58	0.65	-98.7	8.	0.31	103
	FSM	ALogPS,																
MGR Rat Liver	LR	OEstate	69	93	44	34	240	0.68	0.61	0.67	0.64	0.67	0.68	0.67	-98.7	8.52	0.35	103
			-															
MOD B	FSM		^ -	00	47	00	000	0.05	0.50	0.05	0.00	0.05	0.05	0.05	00 -	0.44		400
MGR Rat Liver	LR	CDK	67	89	47	36	239	0.65	0.59	0.65	0.62	0.65	0.65	0.65	-98.7	8.44	0.3	103
	FSM	Chemaxo																
MGR Rat Liver	LR		57	92	45	46	240	0.62	0.56	0.55	0.56	0.55	0.67	0.61	-98.8	8.6	0.23	103
	FO.4																	
MGR Rat Liver	FSM LR	Dragon6	69	89	48	34	240	0.66	0.50	0.67	0.63	0.67	0.65	0.66	-02 7	8 30	0.32	103
WIGH IVALLIVE	LIX	Piagono	OB	OS	+0	J 4	4 0	0.00	0.59	0.07	0.03	0.07	0.00	0.00	-90.7	0.59	0.52	103

MGR Rat Liver	FSM LR	Fragment or	61	93	44	42	240	0.64	0.58	0.59	0.59	0.59	0.68	0.64	-98.7	8.61	0.27	1
	FSM																	
MGR Rat Liver	LR	GSFrag	63	96	41	40	240	0.66	0.61	0.61	0.61	0.61	0.7	0.66	-98.7	8.7	0.31	
	FSM																	
MGR Rat Liver	LR	Inductive	89	54	83	14	240	0.6	0.52	0.86	0.65	0.86	0.39	0.63	-98.7	6.74	0.28	
	FSM	Mera,																
MGR Rat Liver	LR	Mersy	76	86	51	27	240	0.68	0.6	0.74	0.66	0.74	0.63	0.68	-98.6	8.17	0.36	_
	FSM																	
MGR Rat Liver	LR	QNPR	70	89	48	33	240	0.66	0.59	0.68	0.63	0.68	0.65	0.66	-98.7	8.38	0.33	_
	FSM	Spectrop																
MGR Rat Liver	LR	hores	67	85	52	36	240	0.63	0.56	0.65	0.6	0.65	0.62	0.64	-98.7	8.3	0.27	_
MGR Rat Liver	KNN	Adriana	83	66	70	20	239	0.62	0.54	0.81	0.65	0.81	0.49	0.65	-98.7	7.39	0.3	
		ALogPS,																
MGR Rat Liver	KNN	OEstate	74	85	52	29	240	0.66	0.59	0.72	0.65	0.72	0.62	0.67	-98.7	8.18	0.34	
MGR Rat Liver	KNN	CDK	72	83	53	31	239	0.65	0.58	0.7	0.63	0.7	0.61	0.65	-98.7	8.18	0.31	
MGR Rat Liver	KNN	Chemaxo	74	72	65	29	240	0.61	0.53	0.72	0.61	0.72	0.53	0.62	-98.8	7.8	0.24	
WON NAI LIVE	IXININ	11	74	12	00		240	0.01	0.55	0.72	0.01	0.72	0.55	0.02	-90.0	7.0	0.24	_
MGR Rat Liver	KNN	Dragon6 Fragment	68	81	56	35	240	0.62	0.55	0.66	0.6	0.66	0.59	0.63	-98.7	8.16	0.25	
MGR Rat Liver	KNN	•	64	87	50	39	240	0.63	0.56	0.62	0.59	0.62	0.64	0.63	-98.7	8.39	0.25	
MGR Rat Liver	KNN	GSFrag	60	92	45	43	240	0.63	0.57	0.58	0.58	0.58	0.67	0.63	-98.7	8.58	0.25	
MGR Rat Liver	KNN	Inductive	69	78	59	34	240	0.61	0.54	0.67	0.6	0.67	0.57	0.62	-98.8	8.06	0.24	
	LZNINI	Mera,	70	70	0.4		0.40	0.04	0.50	0.74	0.04		0.50	0.00				
MGR Rat Liver	KNN	Mersy	73	73	64	30	240	0.61	0.53	0.71	0.61	0.71	0.53	0.62	-98.8	7.85	0.24	_
MGR Rat Liver	KNN	QNPR Spectrop	76	86	51	27	240	0.68	0.6	0.74	0.66	0.74	0.63	0.68	-98.6	8.17	0.36	
MGR Rat Liver	KNN	hores	66	84	53	37	240	0.63	0.55	0.64	0.59	0.64	0.61	0.63	-98.7	8.28	0.25	
	LibS																	
MGR Rat Liver	VM	Adriana	64	87	49	39	239	0.63	0.57	0.62	0.59	0.62	0.64	0.63	-98.7	8.41	0.26	
	LibS	ALogPS,																
MGR Rat Liver	VM	OEstate	54	100	37	49	240	0.64	0.59	0.52	0.56	0.52	0.73	0.63	-98.7	8.89	0.26	_
	LibS																	
MGR Rat Liver	VM	CDK	67	97	39	36	239	0.69	0.63	0.65	0.64	0.65	0.71	0.68	-98.6	8.71	0.36	_
	LibS	Chemaxo																
MGR Rat Liver	VM	n	61	93	44	42	240	0.64	0.58	0.59	0.59	0.59	0.68	0.64	-98.7	8.61	0.27	_
	LibS									_	_	_						
MGR Rat Liver	VM	Dragon6	60	92	45	43	240	0.63	0.57	0.58	0.58	0.58	0.67	0.63	-98.7	8.58	0.25	_
		Fragment		6-	40	40	0.40	0.00	0.50	0	0.50	0.55	0.00	0.00	00.5	c =	0.05	
MGR Rat Liver	VM	or	57	95	42	46	240	0.63	U.58	0.55	0.56	0.55	0.69	0.62	-98.8	8.7	0.25	_
MOD C · · ·	LibS	OSE	F0	07	40	4.5	040	0.05	0.50	0.50	0.50	0.50	0.74	0.04	00 -	0 77	0.07	
MGR Rat Liver	VM	GSFrag	58	97	40	45	240	0.65	0.59	0.56	0.58	0.56	0.71	0.64	-98.7	8.77	0.27	

MICR ALOGPS: A OEstate 59 88 49 44 240 0.61 0.55 0.57 0.66 0.57 0.64 0.61 -98.8 8.46 0.21 10 MICR ALOGRAPHICE MICR Chemaxo MI																			
LibS Mera, VM Mersy 67 95 42 36 240 0.68 0.61 0.65 0.63 0.65 0.69 0.67 -99.7 8.62 0.34 10	MGR Rat Liver		Inductive	54	93	44	49	240	0.61	0.55	0.52	0.54	0.52	0.68	0.6	-98 8	8 64	0.2	10:
Column C		****	madouvo			•••			0.01	0.00	0.02	0.01	0.02	0.00	0.0	00.0	0.01	0.2	
LibS Spectrop WM ONPR 65 95 42 38 240 0.67 0.61 0.63 0.62 0.63 0.69 0.66 -98.7 8.64 0.32 10 LibS Spectrop WM hores 54 102 35 49 240 0.65 0.61 0.52 0.66 0.52 0.74 0.63 -98.7 8.64 0.32 10 MLR Adniana 69 84 52 34 239 0.64 0.57 0.67 0.62 0.67 0.62 0.64 -98.7 8.26 0.28 10 MLR ALogPS, MCR Ratther A Clostate 59 88 49 44 240 0.61 0.55 0.57 0.60 0.57 0.64 0.61 -98.8 8.46 0.21 10 MLR Chemaxo MLR C	MCD Det Liver		,	67	0.5	42	26	240	0.60	0.61	0.65	0.62	0.65	0.60	0.67	00.7	0 62	0.24	10
LIBS Spectrop LIBS Spectro	IVIGR Rai Livei	VIVI	Mersy	07	95	42	30	240	0.00	0.01	0.03	0.03	0.03	0.09	0.07	-90.7	0.02	0.34	10.
LibS Spectrop WM hores 54 102 35 49 240 0.65 0.61 0.52 0.56 0.52 0.74 0.63 -98.7 8.96 0.28 10 MICR ALOGRE, MICR ALOGRE, MICR ALOGRE, MICR Chemaxo A CDK 56 88 48 47 239 0.6 0.55 0.57 0.56 0.57 0.64 0.61 -98.8 8.46 0.21 10 MICR ALOGRE, MICR Chemaxo A CDK 56 88 48 47 239 0.6 0.55 0.57 0.56 0.57 0.64 0.61 -98.8 8.46 0.21 10 MICR Chemaxo A CDK 56 88 48 47 239 0.6 0.54 0.54 0.54 0.54 0.56 0.6 98.8 8.5 0.19 10 MICR ALOGRE, MICR Chemaxo A CDK 56 88 48 47 239 0.6 0.54 0.54 0.54 0.54 0.55 0.6 98.8 8.5 0.19 10 MICR RatLiver A CDK 56 88 48 47 239 0.6 0.6 0.6 0.6 0.6 0.6 0.6 98.8 8.5 0.19 10 MICR RatLiver A CDK 56 88 48 47 239 0.6 0.55 0.57 0.56 0.6 0.6 0.6 0.6 98.8 8.5 0.19 10 MICR RatLiver A CDK 56 88 48 47 239 0.6 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 98.8 8.5 0.19 10 MICR Fragment A CDK 67 85 52 49 240 0.58 0.51 0.52 0.52 0.52 0.52 0.62 0.57 98.9 8.39 0.14 10 MICR Fragment A CDK 68 85 52 39 240 0.6 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 98.8 8.33 0.24 10 MICR MICR MICR MICR MICR MICR MICR MICR	MOD D:		ONDD	0.5	0.5	40	20	040	0.07	0.04	0.00	0.00	0.00	0.00	0.00	00.7	0.04	0.00	404
More	MGR Rat Liver	VIVI	QNPR	65	95	42	38	240	0.67	0.61	0.63	0.62	0.63	0.69	0.00	-98.7	8.04	0.32	100
MER ALLOGPS, A Odriana 69 84 52 34 239 0.64 0.57 0.67 0.62 0.67 0.62 0.64 98.7 8.26 0.28 10 MER ALLOGPS, A OGESTATE SPEAKER S																			
MACR ALGOPS, A Adriana 69 84 52 34 239 0.64 0.57 0.62 0.67 0.62 0.64 0.61 9.87 8.26 0.28 10 MACR ALGOPS, A COESTATE 59 88 49 44 240 0.61 0.55 0.57 0.56 0.57 0.64 0.61 98.8 8.46 0.21 10 MACR Chemistry A COESTATE 59 88 49 44 240 0.61 0.55 0.57 0.56 0.57 0.64 0.61 98.8 8.46 0.21 10 MACR Chemistry A COESTATE 56 88 48 47 239 0.6 0.54 0.54 0.54 0.55 0.69 0.66 0.68 98.8 8.45 0.21 10 MACR Chemistry A COESTATE 56 88 48 47 239 0.6 0.54 0.54 0.54 0.55 0.69 0.66 0.68 98.8 8.45 0.21 10 MACR Chemistry A DIRAGRACHIVE A COESTATE 56 88 48 47 239 0.6 0.58 0.51 0.59 0.65 0.69 0.66 0.68 98.8 8.45 0.21 10 MACR Chemistry A COESTATE 56 88 48 47 239 0.6 0.58 0.51 0.59 0.65 0.69 0.66 0.68 98.8 8.45 0.21 10 MACR Chemistry A COESTATE 56 88 48 52 49 240 0.58 0.51 0.52 0.55 0.62 0.55 0.69 0.66 0.68 98.8 8.33 0.24 10 MACR MACR CHEMISTRY A COESTATE 56 88 88 48 48 48 48 48 48 48 48 48 48 48	MGR Rat Liver			54	102	35	49	240	0.65	0.61	0.52	0.56	0.52	0.74	0.63	-98.7	8.96	0.28	103
MGR RatLiver A CEstate 59 88 49 44 240 0.61 0.55 0.57 0.56 0.57 0.64 0.61 0.98.8 8.46 0.21 10	MGR Rat Liver	_		69	84	52	34	239	0.64	0.57	0.67	0.62	0.67	0.62	0.64	-98.7	8.26	0.28	103
MGR RatLiver A CEstate 59 88 49 44 240 0.61 0.55 0.57 0.56 0.57 0.64 0.61 0.98.8 8.46 0.21 10		MIR	Al oaPS																
ACR RatLiver A CDK 56 88 48 47 239 0.6 0.54 0.54 0.54 0.65 0.6 0.68 0.88 8.5 0.19 10	MGR Rat Liver		-	59	88	49	44	240	0.61	0.55	0.57	0.56	0.57	0.64	0.61	-98.8	8.46	0.21	103
MICR Chemaxo MICR MICR MICR MICR MICR Fragment MICR Triagment MICR	MCB Bot Liver	_		56	00	10	47	230	0.6	0.54	0.54	0.54	0.54	0.65	0.6	00.0	9.5	0.10	103
MICR Fragment MICR Fragment MICR Fragment MICR Fragment MICR A or 64 85 52 39 240 0.62 0.55 0.62 0.52 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.6	INGR Rat Livel			30	- 00	40	47	239	0.0	0.54	0.54	0.54	0.54	0.03	0.0	-90.0	0.5	0.19	100
MGR Rat Liver A Dragon6 54 85 52 49 240 0.58 0.51 0.52 0.52 0.52 0.62 0.57 -98.9 8.39 0.14 10	MGR Rat Liver			71	91	46	32	240	0.68	0.61	0.69	0.65	0.69	0.66	0.68	-98.6	8.43	0.35	103
MAR Fragment MIR Fragment MIR MIR A Or 64 85 52 39 240 0.62 0.55 0.62 0.58 0.62 0.62 0.62 -98.8 8.33 0.24 10 MIR MIR A GSFrag 62 91 46 41 240 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.54 0.26 10 MIR MIR MIR MIR Mera, A Inductive 62 81 56 41 240 0.6 0.53 0.6 0.56 0.6 0.6 0.63 -98.7 8.54 0.26 10 MIR MIR Mera, A Meray 63 90 47 40 240 0.64 0.57 0.61 0.59 0.61 0.66 0.63 -98.7 8.5 0.27 10 MIR MIR Spectrop MIR Spectrop MIR Spectrop MIR A hores 64 78 59 39 240 0.59 0.52 0.62 0.57 0.6 0.59 0.6 -98.8 8.12 0.19 10 MIR Spectrop MIR Spectrop MIR A hores 64 78 59 39 240 0.59 0.52 0.62 0.57 0.6 0.6 0.63 -98.7 8.5 0.34 10 MIR Spectrop MIR A hores 64 78 59 39 240 0.59 0.52 0.62 0.57 0.6 0.61 0.66 0.63 -98.7 8.25 0.34 10 MIR Spectrop MIR Spectrop MIR Spectrop MIR Spectrop MIR A hores 64 78 59 39 240 0.59 0.52 0.62 0.57 0.62 0.57 0.6 -98.8 8.12 0.19 10 MIR Spectrop MIR S	MGR Rat Liver			54	85	52	49	240	0.58	0.51	0.52	0.52	0.52	0.62	0.57	-98.9	8.39	0.14	103
MGR Rat Liver PLS OEstate 67 96 41 36 240 0.64 0.57 0.6 0.59 0.6 0.63 0.67 0.68 0.83 0.79 0.8 0.09 0.6 0.68 0.63 0.80 0.90 0.8 0.90 0.90 0.90 0.90 0.90			Ū	0.4	0.5			040	0.00	0.55	0.00	0.50	0.00	0.00	0.00	00.0	0.00	0.04	400
MILR A Inductive A Inductive 62 81 56 41 240 0.6 0.53 0.6 0.56 0.6 0.59 0.6 -98.8 8.23 0.19 10 MILR MICH MICH MICH MICH MICH MICH MICH MICH	MGR Rat Liver			64	85	52	39	240	0.62	0.55	0.62	0.58	0.62	0.62	0.62	-98.8	8.33	0.24	103
A Inductive A Inductive 62 81 56 41 240 0.6 0.53 0.6 0.6 0.6 0.59 0.6 98.8 8.23 0.19 10 MLR Mera, A Mersy 63 90 47 40 240 0.64 0.57 0.61 0.59 0.61 0.66 0.63 98.7 8.5 0.27 10 MLR Spectrop MCR RatLiver A Nores 64 78 59 39 240 0.59 0.52 0.62 0.57 0.62 0.57 0.6 98.9 8.33 0.12 10 MCR RatLiver PLS Adriana 73 86 50 30 239 0.67 0.59 0.71 0.65 0.71 0.63 0.67 98.7 8.5 0.34 10 MCR RatLiver PLS OEstate 67 96 41 36 240 0.68 0.62 0.65 0.64 0.65 0.7 0.68 98.6 8.65 0.35 10 MCR RatLiver PLS Dragon6 67 97 43 240 0.61 0.55 0.58 0.69 0.67 0.69 0.67 98.8 8.43 0.22 10 MCR RatLiver PLS Dragon6 67 94 43 36 240 0.61 0.55 0.58 0.65 0.64 0.61 98.8 8.43 0.22 10 MCR RatLiver PLS GSFrag 62 92 45 41 240 0.64 0.58 0.59 0.60 0.65 0.69 0.67 98.7 8.56 0.28 10 MCR RatLiver PLS Inductive 72 76 61 31 240 0.69 0.62 0.59 0.60 0.59 0.60 0.67 98.6 8.48 0.37 10 MCR RatLiver PLS Mersy 72 93 44 31 240 0.69 0.62 0.57 0.60 0.69 0.69 0.69 98.8 8.48 0.37 10 MCR RatLiver PLS Inductive 72 76 61 31 240 0.69 0.62 0.57 0.60 0.59 0.60 0.69 0.69 98.6 8.48 0.37 10 MCR RatLiver PLS Mersy 72 93 44 31 240 0.69 0.62 0.57 0.60 0.59 0.60 0.69 0.69 98.6 8.48 0.37 10 MCR RatLiver PLS Mersy 72 93 44 31 240 0.69 0.62 0.57 0.60 0.59 0.60 0.61 0.61 98.8 8.70 0.22 10 MCR RatLiver PLS Mersy 72 93 44 31 240 0.69 0.62 0.57 0.60 0.59 0.60 0.69 0.69 98.6 8.48 0.37 10 MCR RatLiver PLS Mersy 72 93 44 31 240 0.69 0.62 0.57 0.60 0.59 0.60 0.61 0.61 98.8 8.70 0.23 10 MCR RatLiver PLS Mersy 72 93 44 31 240 0.69 0.62 0.57 0.58 0.62 0.61 0.61 98.8 8.70 0.23 10 MCR RatLiver PLS Mersy 72 93 44 31 240 0.69 0.62 0.57 0.58 0.69 0.61 0.61 98.8 8.70 0.23 10 MCR RatLiver PLS Mersy 72 93 44 31 240 0.69 0.62 0.57 0.58 0.69 0.61 0.61 98.8 8.70 0.23 10 MCR RatLiver PLS Mersy 72 93 44 31 240 0.69 0.62 0.57 0.58 0.69 0.61 0.61 98.8 8.70 0.23 10 MCR RatLiver PLS Mersy 72 93 44 31 240 0.69 0.62 0.57 0.58 0.69 0.61 0.61 98.8 8.70 0.23 10 MCR RatLiver PLS Mersy 72 93 44 33 48 240 0.61 0.54 0.62 0.58 0.69 0.61 0.61 98.8 8.70 0.23 10 MCR RatLiver J48 OEstate 68 91 46 35 240 0.66 0.66 0.65	MGR Rat Liver			62	91	46	41	240	0.64	0.57	0.6	0.59	0.6	0.66	0.63	-98.7	8.54	0.26	103
MICR RAILIVEY MICR A Mersy 63 90 47 40 240 0.64 0.57 0.61 0.59 0.61 0.66 0.63 -98.7 8.5 0.27 10 MICR MICR MICR MICR MICR A MICR Spectrop A hores 64 78 59 39 240 0.59 0.52 0.62 0.57 0.62 0.57 0.62 0.57 0.62 0.57 0.66 -98.8 8.12 0.19 10 10 10 10 10 10 10 10 10	MGR Rat Liver			62	81	56	41	240	0.6	0.53	0.6	0.56	0.6	0 59	0.6	-98.8	8 23	0 19	103
MGR Rat Liver A QNPR 53 83 54 50 240 0.57 0.5 0.51 0.5 0.51 0.61 0.56 -98.9 8.33 0.12 10 MILR Spectrop MGR Rat Liver A hores 64 78 59 39 240 0.59 0.52 0.62 0.57 0.62 0.57 0.6 -98.8 8.12 0.19 10 MGR Rat Liver PLS Adriana 73 86 50 30 239 0.67 0.59 0.71 0.65 0.71 0.63 0.67 -98.7 8.25 0.34 10 MGR Rat Liver PLS OEstate 67 96 41 36 240 0.68 0.62 0.65 0.64 0.65 0.7 0.68 -98.6 8.65 0.35 10 MGR Rat Liver PLS OEstate 67 96 41 36 240 0.68 0.62 0.65 0.64 0.65 0.7 0.68 -98.6 8.65 0.35 10 MGR Rat Liver PLS OEstate 67 96 41 36 240 0.68 0.62 0.65 0.64 0.65 0.7 0.68 -98.6 8.65 0.35 10 MGR Rat Liver PLS Dragon6 67 94 43 240 0.61 0.55 0.58 0.66 0.58 0.64 0.61 -98.8 8.43 0.22 10 MGR Rat Liver PLS Dragon6 67 94 43 36 240 0.67 0.61 0.65 0.63 0.65 0.69 0.67 -98.7 8.59 0.33 10 Fragment MGR Rat Liver PLS OF 63 92 45 40 240 0.65 0.58 0.61 0.6 0.61 0.67 0.64 -98.7 8.56 0.28 10 MGR Rat Liver PLS GSFrag 62 92 45 41 240 0.64 0.58 0.6 0.59 0.6 0.67 0.64 -98.7 8.56 0.28 10 MGR Rat Liver PLS Inductive 72 76 61 31 240 0.69 0.62 0.7 0.66 0.7 0.68 0.9 -98.6 8.48 0.37 10 MGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.66 0.7 0.68 0.9 -98.6 8.48 0.37 10 MGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.66 0.7 0.68 0.9 -98.6 8.48 0.37 10 MGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.66 0.7 0.69 0.68 -98.6 8.56 0.35 10 MGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.66 0.7 0.69 0.69 -98.6 8.48 0.37 10 MGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.66 0.7 0.69 0.69 0.61 -98.8 8.7 0.22 10 MGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.66 0.7 0.69 0.61 0.98 8.87 0.22 10 MGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.66 0.7 0.69 0.69 0.61 -98.8 8.7 0.22 10 MGR Rat Liver PLS Mersy 72 93 44 33 240 0.61 0.54 0.62 0.58 0.69 0.61 0.61 0.98 8.7 0.22 10 MGR Rat Liver PLS Mersy 72 93 44 33 48 240 0.66 0.6 0.66 0.63 0.66 0.66 0.66 0.63 -98.7 8.47 0.32 10 MGR Rat Liver PLS Mersy 72 93 44 3 48 240 0.66 0.6 0.60 0.65 0.65 0.69 0.61 -98.8 8.7 0.22 10 MGR Rat Liver PLS Mersy 72 93 44 3 48	WOLL LIVE			02	- 01			240	0.0	0.00	0.0	0.00	0.0	0.00	0.0	00.0	0.20	0.10	-100
MGR Rat Liver A QNPR 53 83 54 50 240 0.57 0.5 0.51 0.5 0.51 0.61 0.56 -98.9 8.33 0.12 10	MGR Rat Liver			63	90	47	40	240	0.64	0.57	0.61	0.59	0.61	0.66	0.63	-98.7	8.5	0.27	103
A hores 64 78 59 39 240 0.59 0.52 0.62 0.57 0.62 0.57 0.6 -98.8 8.12 0.19 10 10 MGR Rat Liver PLS Adriana 73 86 50 30 239 0.67 0.59 0.71 0.65 0.71 0.63 0.67 -98.7 8.25 0.34 10 ALogPS, AGR Rat Liver PLS OEstate 67 96 41 36 240 0.68 0.62 0.65 0.64 0.65 0.7 0.68 -98.6 8.65 0.35 10 MGR Rat Liver PLS CDK 72 91 45 31 239 0.68 0.62 0.7 0.65 0.7 0.67 0.68 -98.6 8.43 0.36 10 Chemaxo AGR Rat Liver PLS Dragon6 67 94 43 36 240 0.61 0.55 0.58 0.56 0.58 0.64 0.61 -98.8 8.43 0.22 10 MGR Rat Liver PLS Or 63 92 45 40 240 0.67 0.61 0.65 0.63 0.65 0.69 0.67 -98.7 8.59 0.33 10 MGR Rat Liver PLS GSFrag 62 92 45 41 240 0.64 0.58 0.60 0.59 0.6 0.67 0.64 -98.7 8.57 0.27 10 MGR Rat Liver PLS Inductive 72 76 61 31 240 0.62 0.54 0.7 0.61 0.7 0.65 0.63 0.69 0.67 -98.7 8.59 0.25 10 MGR Rat Liver PLS Mersy 72 93 44 31 240 0.62 0.54 0.7 0.61 0.7 0.66 0.67 0.64 -98.7 8.57 0.27 10 MGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.66 0.7 0.69 0.69 0.69 -98.6 8.48 0.37 10 MGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.66 0.7 0.69 0.69 0.68 -98.6 8.48 0.37 10 MGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.66 0.7 0.69 0.69 0.68 -98.6 8.48 0.37 10 MGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.66 0.7 0.69 0.69 0.68 -98.6 8.48 0.37 10 MGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.64 0.67 0.69 0.68 -98.6 8.48 0.37 10 MGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.66 0.7 0.69 0.69 0.68 -98.6 8.48 0.37 10 MGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.57 0.63 0.69 0.61 0.61 0.61 0.61 0.61 0.68 0.69 0.60 0.60 0.60 0.60 0.60 0.60 0.60	MGR Rat Liver	_		53	83	54	50	240	0.57	0.5	0.51	0.5	0.51	0.61	0.56	-98.9	8.33	0.12	103
ALogPS, ACR Rat Liver PLS OEstate 67 96 41 36 240 0.68 0.62 0.65 0.64 0.65 0.7 0.68 98.6 8.65 0.35 10 AGR Rat Liver PLS CDK 72 91 45 31 239 0.68 0.62 0.7 0.65 0.7 0.67 0.68 98.6 8.43 0.36 10 Chemaxo AGR Rat Liver PLS Dragon6 67 94 43 36 240 0.61 0.55 0.58 0.56 0.58 0.64 0.61 -98.8 8.43 0.22 10 AGR Rat Liver PLS Dragon6 67 94 43 36 240 0.61 0.55 0.58 0.63 0.65 0.69 0.67 -98.7 8.59 0.33 10 Fragment AGR Rat Liver PLS Gr 63 92 45 40 240 0.65 0.58 0.61 0.6 0.61 0.67 0.64 -98.7 8.56 0.28 10 AGR Rat Liver PLS GSFrag 62 92 45 41 240 0.64 0.58 0.6 0.59 0.6 0.67 0.64 -98.7 8.57 0.27 10 AGR Rat Liver PLS Inductive 72 76 61 31 240 0.62 0.54 0.7 0.61 0.7 0.55 0.63 -98.7 7.95 0.25 10 AGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.66 0.7 0.68 0.69 -98.6 8.48 0.37 10 AGR Rat Liver PLS GNPR 69 94 43 34 240 0.68 0.62 0.67 0.64 0.67 0.69 0.68 -98.6 8.50 0.35 10 AGR Rat Liver PLS ONPR 69 94 43 34 240 0.68 0.62 0.67 0.64 0.67 0.69 0.68 -98.6 8.50 0.35 10 AGR Rat Liver PLS ONPR 69 94 43 34 240 0.68 0.62 0.67 0.64 0.67 0.69 0.68 -98.6 8.50 0.35 10 AGR Rat Liver PLS ONPR 69 94 43 34 240 0.68 0.62 0.67 0.64 0.67 0.69 0.68 -98.6 8.50 0.35 10 AGR Rat Liver PLS DNPR 69 94 43 34 240 0.68 0.62 0.67 0.64 0.67 0.69 0.68 -98.6 8.50 0.35 10 AGR Rat Liver PLS DNPR 69 94 42 48 239 0.62 0.67 0.63 0.65 0.60 0.60 0.60 -98.8 8.7 0.23 10 AGR Rat Liver PLS DNPR 69 94 42 48 239 0.62 0.57 0.53 0.55 0.53 0.69 0.61 -98.8 8.7 0.23 10 ALogPS, AGR Rat Liver J48 OEstate 68 91 46 35 240 0.66 0.66 0.66 0.63 0.66 0.66 0.66 -98.7 8.47 0.32 10 AGR Rat Liver J48 OEstate 68 91 46 35 240 0.66 0.66 0.65 0.65 0.65 0.66 0.66 0.6	MOD D III			C4	70		20	240	0.50	0.50	0.00	0.57	0.00	0.57	0.0	00.0	0.40	0.40	400
ALogPS, AGR Rat Liver PLS OEstate 67 96 41 36 240 0.68 0.62 0.65 0.64 0.65 0.7 0.68 -98.6 8.65 0.35 10 AGR Rat Liver PLS CDK 72 91 45 31 239 0.68 0.62 0.7 0.65 0.7 0.67 0.68 -98.6 8.43 0.36 10 Chemaxo AGR Rat Liver PLS n 60 87 50 43 240 0.61 0.55 0.58 0.56 0.58 0.64 0.61 -98.8 8.43 0.22 10 AGR Rat Liver PLS Dragon6 67 94 43 36 240 0.67 0.61 0.65 0.63 0.65 0.69 0.67 -98.7 8.59 0.33 10 Fragment AGR Rat Liver PLS or 63 92 45 40 240 0.65 0.58 0.61 0.6 0.61 0.67 0.64 -98.7 8.56 0.28 10 AGR Rat Liver PLS GSFrag 62 92 45 41 240 0.64 0.58 0.6 0.59 0.6 0.67 0.64 -98.7 8.57 0.27 10 AGR Rat Liver PLS Inductive 72 76 61 31 240 0.62 0.54 0.7 0.61 0.7 0.55 0.63 -98.7 7.95 0.25 10 AGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.66 0.7 0.68 0.69 -98.6 8.48 0.37 10 AGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.66 0.7 0.69 0.68 -98.6 8.56 0.35 10 AGR Rat Liver PLS Nores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 0.61 -98.8 8.27 0.22 10 AGR Rat Liver PLS Nores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 -98.8 8.7 0.23 10 ALogPS, AGR Rat Liver J48 Adriana 55 94 42 48 239 0.62 0.57 0.53 0.55 0.53 0.69 0.61 -98.8 8.7 0.23 10 ALogPS, AGR Rat Liver J48 OEstate 68 91 46 35 240 0.66 0.6 0.6 0.66 0.63 0.66 0.66 0.66																			
MGR Rat Liver PLS OEstate 67 96 41 36 240 0.68 0.62 0.65 0.64 0.65 0.7 0.68 -98.6 8.65 0.35 10 MGR Rat Liver PLS CDK 72 91 45 31 239 0.68 0.62 0.7 0.65 0.7 0.67 0.68 -98.6 8.43 0.36 10 Chemaxo MGR Rat Liver PLS n 60 87 50 43 240 0.61 0.55 0.58 0.56 0.58 0.64 0.61 -98.8 8.43 0.22 10 MGR Rat Liver PLS Dragon6 67 94 43 36 240 0.67 0.61 0.65 0.63 0.65 0.69 0.67 -98.7 8.59 0.33 10 Fragment MGR Rat Liver PLS or 63 92 45 40 240 0.65 0.58 0.61 0.6 0.61 0.67 0.64 -98.7 8.56 0.28 10 MGR Rat Liver PLS GSFrag 62 92 45 41 240 0.64 0.58 0.6 0.59 0.6 0.67 0.64 -98.7 8.57 0.27 10 MGR Rat Liver PLS Inductive 72 76 61 31 240 0.62 0.54 0.7 0.61 0.7 0.65 0.63 -98.7 8.57 0.27 10 MGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.66 0.7 0.66 0.69 -98.6 8.48 0.37 10 MGR Rat Liver PLS QNPR 69 94 43 34 240 0.69 0.62 0.7 0.66 0.7 0.69 0.68 -98.6 8.56 0.35 10 MGR Rat Liver PLS Nores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 0.61 -98.8 8.27 0.22 10 MGR Rat Liver PLS Nores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 -98.8 8.27 0.22 10 MGR Rat Liver PLS Nores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 -98.8 8.27 0.22 10 MGR Rat Liver PLS Nores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 -98.8 8.27 0.22 10 MGR Rat Liver PLS Nores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 -98.8 8.27 0.22 10 MGR Rat Liver PLS Nores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 -98.8 8.27 0.22 10 MGR Rat Liver PLS Nores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 -98.8 8.27 0.22 10 MGR Rat Liver PLS Nores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 -98.8 8.27 0.22 10 MGR Rat Liver PLS Nores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 -98.8 8.27 0.22 10 MGR Rat Liver PLS Nores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 -98.8 8.27 0.22 10 MGR Rat Liver PLS Nores 64 83 54 39 240 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.	WOLL LIVE	1 20	7 tantana	70				200	0.07	0.00	0.7 1	0.00	0.71	0.00	0.01	00.1	0.20	0.04	100
MGR Rat Liver PLS CDK 72 91 45 31 239 0.68 0.62 0.7 0.65 0.7 0.67 0.68 -98.6 8.43 0.36 10 Chemaxo MGR Rat Liver PLS n 60 87 50 43 240 0.61 0.55 0.58 0.56 0.58 0.64 0.61 -98.8 8.43 0.22 10 MGR Rat Liver PLS Dragon6 67 94 43 36 240 0.67 0.61 0.65 0.63 0.65 0.69 0.67 -98.7 8.59 0.33 10 Fragment MGR Rat Liver PLS or 63 92 45 40 240 0.65 0.58 0.61 0.6 0.61 0.67 0.64 -98.7 8.56 0.28 10 MGR Rat Liver PLS GSFrag 62 92 45 41 240 0.64 0.58 0.6 0.59 0.6 0.67 0.64 -98.7 8.57 0.27 10 MGR Rat Liver PLS Inductive 72 76 61 31 240 0.62 0.54 0.7 0.61 0.7 0.55 0.63 -98.7 7.95 0.25 10 MGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.66 0.7 0.68 0.69 -98.6 8.48 0.37 10 MGR Rat Liver PLS QNPR 69 94 43 34 240 0.68 0.62 0.67 0.64 0.67 0.69 0.68 -98.6 8.56 0.35 10 Spectrop MGR Rat Liver PLS hores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 -98.8 8.27 0.22 10 MGR Rat Liver PLS hores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 -98.8 8.7 0.23 10 MGR Rat Liver PLS hores 64 83 54 39 240 0.61 0.54 0.62 0.55 0.53 0.69 0.61 -98.8 8.7 0.22 10 MGR Rat Liver PLS hores 64 83 54 39 240 0.61 0.54 0.62 0.55 0.53 0.69 0.61 -98.8 8.7 0.22 10 MGR Rat Liver PLS hores 64 83 54 39 240 0.61 0.54 0.62 0.55 0.53 0.69 0.61 -98.8 8.7 0.22 10 MGR Rat Liver PLS hores 64 83 54 39 240 0.61 0.54 0.62 0.55 0.53 0.69 0.61 -98.8 8.7 0.22 10 MGR Rat Liver PLS hores 64 83 54 39 240 0.61 0.54 0.62 0.55 0.53 0.69 0.61 -98.8 8.7 0.22 10 MGR Rat Liver PLS hores 64 83 54 39 240 0.66 0.66 0.66 0.63 0.66 0.66 0.66 -98.7 8.47 0.32 10 MGR Rat Liver PLS hores 64 83 54 39 240 0.66 0.66 0.65 0.65 0.66 0.66 0.66 0.6	MCB Bot Liver	DI C	-	67	06	41	36	240	0.69	0.62	0.65	0.64	0.65	0.7	0.69	08.6	9.65	0.35	105
Chemaxo PLS n 60 87 50 43 240 0.61 0.55 0.58 0.56 0.58 0.64 0.61 -98.8 8.43 0.22 10 MGR Rat Liver PLS Dragon6 67 94 43 36 240 0.67 0.61 0.65 0.63 0.65 0.69 0.67 -98.7 8.59 0.33 10 Fragment MGR Rat Liver PLS or 63 92 45 40 240 0.65 0.58 0.61 0.6 0.61 0.67 0.64 -98.7 8.56 0.28 10 MGR Rat Liver PLS GSFrag 62 92 45 41 240 0.64 0.58 0.6 0.59 0.6 0.67 0.64 -98.7 8.57 0.27 10 MGR Rat Liver PLS Inductive 72 76 61 31 240 0.62 0.54 0.7 0.61 0.7 0.55 0.63 -98.7 7.95 0.25 10 MGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.66 0.7 0.68 0.69 -98.6 8.48 0.37 10 MGR Rat Liver PLS QNPR 69 94 43 34 240 0.68 0.62 0.67 0.64 0.67 0.69 0.68 -98.6 8.56 0.35 10 MGR Rat Liver PLS hores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 -98.8 8.27 0.22 10 MGR Rat Liver PLS hores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 -98.8 8.27 0.22 10 MGR Rat Liver PLS hores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 -98.8 8.7 0.23 10 MGR Rat Liver PLS hores 64 83 54 39 240 0.61 0.57 0.59 0.59 0.60 0.66 -98.7 8.47 0.32 10 MGR Rat Liver J48 OEstate 68 91 46 35 240 0.66 0.6 0.6 0.66 0.63 0.66 0.66 -98.7 8.47 0.32 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.61 -98.8 8.67 0.22 10	MGR Rat Liver																		103
MGR Rat Liver PLS Dragon6 67 94 43 36 240 0.67 0.61 0.65 0.63 0.65 0.69 0.67 -98.7 8.59 0.33 10 Fragment Fragment Fragment Fragment MGR Rat Liver PLS or 63 92 45 40 240 0.65 0.58 0.61 0.6 0.61 0.67 0.64 -98.7 8.56 0.28 10 MGR Rat Liver PLS GSFrag 62 92 45 41 240 0.64 0.58 0.6 0.59 0.6 0.67 0.64 -98.7 8.57 0.27 10 MGR Rat Liver PLS Inductive 72 76 61 31 240 0.62 0.54 0.7 0.61 0.7 0.55 0.63 -98.7 7.95 0.25 10 MGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.66 0.7 0.68 0.69 -98.6 8.48 0.37 10 MGR Rat Liver PLS QNPR 69 94 43 34 240 0.68 0.62 0.67 0.64 0.67 0.69 0.68 -98.6 8.56 0.35 10 Spectrop MGR Rat Liver PLS hores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 -98.8 8.27 0.22 10 MGR Rat Liver J48 Adriana 55 94 42 48 239 0.62 0.57 0.53 0.55 0.53 0.69 0.61 -98.8 8.7 0.23 10 ALogPS, MGR Rat Liver J48 OEstate 68 91 46 35 240 0.66 0.6 0.6 0.60 0.63 0.66 0.66 0.63 -98.7 8.57 0.22 10 MGR Rat Liver J48 OEstate 68 91 46 35 240 0.66 0.6 0.60 0.63 0.66 0.66 0.63 -98.7 8.53 0.26 10 Chemaxo Chemaxo MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10			Chemaxo																
Fragment MGR Rat Liver PLS or 63 92 45 40 240 0.65 0.58 0.61 0.6 0.61 0.67 0.64 -98.7 8.56 0.28 10 MGR Rat Liver PLS GSFrag 62 92 45 41 240 0.64 0.58 0.6 0.59 0.6 0.67 0.64 -98.7 8.57 0.27 10 MGR Rat Liver PLS Inductive 72 76 61 31 240 0.62 0.54 0.7 0.61 0.7 0.55 0.63 -98.7 7.95 0.25 10 MGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.66 0.7 0.68 0.69 -98.6 8.48 0.37 10 MGR Rat Liver PLS QNPR 69 94 43 34 240 0.68 0.62 0.67 0.64 0.67 0.69 0.68 -98.6 8.56 0.35 10 Spectrop MGR Rat Liver PLS hores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 -98.8 8.27 0.22 10 MGR Rat Liver J48 Adriana 55 94 42 48 239 0.62 0.57 0.53 0.55 0.53 0.69 0.61 -98.8 8.7 0.23 10 ALogPS, MGR Rat Liver J48 OEstate 68 91 46 35 240 0.66 0.6 0.66 0.63 0.66 0.66 0.66 -98.7 8.47 0.32 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 Chemaxo MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10	MGR Rat Liver	PLS	n	60	87	50	43	240	0.61	0.55	0.58	0.56	0.58	0.64	0.61	-98.8	8.43	0.22	103
MGR Rat Liver PLS or 63 92 45 40 240 0.65 0.58 0.61 0.6 0.61 0.67 0.64 -98.7 8.56 0.28 10 MGR Rat Liver PLS GSFrag 62 92 45 41 240 0.64 0.58 0.6 0.59 0.6 0.67 0.64 -98.7 8.57 0.27 10 MGR Rat Liver PLS Inductive 72 76 61 31 240 0.62 0.54 0.7 0.61 0.7 0.55 0.63 -98.7 7.95 0.25 10 Mera, MGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.66 0.7 0.68 0.69 -98.6 8.48 0.37 10 MGR Rat Liver PLS QNPR 69 94 43 34 240 0.68 0.62 0.67 0.64 0.67 0.69 0.68 -98.6 8.56 0.35 10 Spectrop MGR Rat Liver PLS hores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 -98.8 8.27 0.22 10 MGR Rat Liver J48 Adriana 55 94 42 48 239 0.62 0.57 0.53 0.55 0.53 0.69 0.61 -98.8 8.7 0.23 10 MGR Rat Liver J48 OEstate 68 91 46 35 240 0.66 0.6 0.6 0.66 0.63 0.66 0.66 -98.7 8.47 0.32 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.65 0.53 0.69 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.53 0.59 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.53 0.59 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.66 0.59 0.53 0.59 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10 MGR R	MGR Rat Liver	PLS		67	94	43	36	240	0.67	0.61	0.65	0.63	0.65	0.69	0.67	-98.7	8.59	0.33	103
MGR Rat Liver PLS GSFrag 62 92 45 41 240 0.64 0.58 0.6 0.59 0.6 0.67 0.64 -98.7 8.57 0.27 10 MGR Rat Liver PLS Inductive 72 76 61 31 240 0.62 0.54 0.7 0.61 0.7 0.55 0.63 -98.7 7.95 0.25 10 Mera, MGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.66 0.7 0.68 0.69 -98.6 8.48 0.37 10 MGR Rat Liver PLS QNPR 69 94 43 34 240 0.68 0.62 0.67 0.64 0.67 0.69 0.68 -98.6 8.56 0.35 10 Spectrop MGR Rat Liver PLS hores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 -98.8 8.27 0.22 10 MGR Rat Liver J48 Adriana 55 94 42 48 239 0.62 0.57 0.53 0.55 0.53 0.69 0.61 -98.8 8.7 0.23 10 ALogPS, MGR Rat Liver J48 OEstate 68 91 46 35 240 0.66 0.6 0.6 0.66 0.66 0.66 0.66 -98.7 8.47 0.32 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 Chemaxo MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10	MCP Pat Liver	DI S	•	63	02	15	40	240	0.65	0.58	0.61	0.6	0.61	0.67	0.64	-08 7	8 56	U 28	101
MGR Rat Liver PLS Inductive 72 76 61 31 240 0.62 0.54 0.7 0.61 0.7 0.55 0.63 -98.7 7.95 0.25 10 Mera, MGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.66 0.7 0.68 0.69 -98.6 8.48 0.37 10 MGR Rat Liver PLS QNPR 69 94 43 34 240 0.68 0.62 0.67 0.64 0.67 0.69 0.68 -98.6 8.56 0.35 10 Spectrop MGR Rat Liver PLS hores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 -98.8 8.27 0.22 10 MGR Rat Liver J48 Adriana 55 94 42 48 239 0.62 0.57 0.53 0.55 0.53 0.69 0.61 -98.8 8.7 0.23 10 MGR Rat Liver J48 OEstate 68 91 46 35 240 0.66 0.6 0.66 0.63 0.66 0.66 0.66 -98.7 8.47 0.32 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 Chemaxo MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.55 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.55 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.55 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10	MGR Rat Liver																		103
MGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.66 0.7 0.68 0.69 -98.6 8.48 0.37 10 MGR Rat Liver PLS QNPR 69 94 43 34 240 0.68 0.62 0.67 0.64 0.67 0.69 0.68 -98.6 8.56 0.35 10 Spectrop MGR Rat Liver PLS hores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 -98.8 8.27 0.22 10 MGR Rat Liver J48 Adriana 55 94 42 48 239 0.62 0.57 0.53 0.55 0.53 0.69 0.61 -98.8 8.7 0.23 10 ALogPS, MGR Rat Liver J48 OEstate 68 91 46 35 240 0.66 0.6 0.66 0.63 0.66 0.66 0.66 -98.7 8.47 0.32 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 Chemaxo MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10		51.0																	
MGR Rat Liver PLS Mersy 72 93 44 31 240 0.69 0.62 0.7 0.66 0.7 0.68 0.69 -98.6 8.48 0.37 10 MGR Rat Liver PLS QNPR 69 94 43 34 240 0.68 0.62 0.67 0.64 0.67 0.69 0.68 -98.6 8.56 0.35 10 Spectrop MGR Rat Liver PLS hores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 -98.8 8.27 0.22 10 MGR Rat Liver J48 Adriana 55 94 42 48 239 0.62 0.57 0.53 0.55 0.53 0.69 0.61 -98.8 8.7 0.23 10 ALogPS, MGR Rat Liver J48 OEstate 68 91 46 35 240 0.66 0.6 0.66 0.63 0.66 0.66 0.66 -98.7 8.47 0.32 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 Chemaxo MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10	MGR Rat Liver	PLS		72	76	61	31	240	0.62	0.54	0.7	0.61	0.7	0.55	0.63	-98.7	7.95	0.25	103
Spectrop GR Rat Liver PLS hores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 -98.8 8.27 0.22 10 MGR Rat Liver J48 Adriana 55 94 42 48 239 0.62 0.57 0.53 0.55 0.53 0.69 0.61 -98.8 8.7 0.23 10 ALogPS, GR Rat Liver J48 OEstate 68 91 46 35 240 0.66 0.6 0.66 0.66 0.66 0.66 0.66 0.66 -98.7 8.47 0.32 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 Chemaxo MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10 MGR Rat Liver J48	MGR Rat Liver	PLS	/	72	93	44	31	240	0.69	0.62	0.7	0.66	0.7	0.68	0.69	-98.6	8.48	0.37	103
MGR Rat Liver PLS hores 64 83 54 39 240 0.61 0.54 0.62 0.58 0.62 0.61 0.61 -98.8 8.27 0.22 10 MGR Rat Liver J48 Adriana 55 94 42 48 239 0.62 0.57 0.53 0.55 0.53 0.69 0.61 -98.8 8.7 0.23 10 ALogPS, MGR Rat Liver J48 OEstate 68 91 46 35 240 0.66 0.6 0.66 0.63 0.66 0.66 0.66 -98.7 8.47 0.32 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 Chemaxo MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10	MGR Rat Liver	PLS		69	94	43	34	240	0.68	0.62	0.67	0.64	0.67	0.69	0.68	-98.6	8.56	0.35	103
ALogPS, AGR Rat Liver J48 OEstate 68 91 46 35 240 0.66 0.66 0.66 0.69 0.60 0.60 0.60 0.6	MGR Rat Liver	PLS		64	83	54	39	240	0.61	0.54	0.62	0.58	0.62	0.61	0.61	-98.8	8.27	0.22	103
MGR Rat Liver J48 OE state 68 91 46 35 240 0.66 0.6 0.66 0.63 0.66 0.66 0.66 -98.7 8.47 0.32 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 Chemaxo MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10	MGR Rat Liver																		103
MGR Rat Liver J48 OE state 68 91 46 35 240 0.66 0.6 0.66 0.63 0.66 0.66 0.66 -98.7 8.47 0.32 10 MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 Chemaxo MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10			Al caps																
MGR Rat Liver J48 CDK 62 90 46 41 239 0.64 0.57 0.6 0.59 0.6 0.66 0.63 -98.7 8.53 0.26 10 Chemaxo MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10	MGR Rat Liver	J48	-	68	91	46	35	240	0.66	0.6	0.66	0.63	0.66	0.66	0.66	-98.7	8.47	0.32	103
MGR Rat Liver J48 n 55 94 43 48 240 0.62 0.56 0.53 0.55 0.53 0.69 0.61 -98.8 8.67 0.22 10	MGR Rat Liver	J48	CDK							0.57					0.63				103
	MGR Rat Liver	IΔΩ		55	Q/I	43	42	240	0.62	0.56	0.53	0.55	0.53	0.60	0.61	-02 2	8 67	0 22	101
MGR Rat Liver J48 Dragon6 61 95 42 42 240 0.65 0.59 0.59 0.59 0.69 0.64 -98.7 8.68 0.29 10	WON KALLIVE	J+0	11	55	94	+3	40	24 0	0.02	0.50	0.55	0.00	0.00	0.09	0.01	-30.0	0.01	0.22	103
	MGR Rat Liver	J48	Dragon6	61	95	42	42	240	0.65	0.59	0.59	0.59	0.59	0.69	0.64	-98.7	8.68	0.29	103

MGR Rat Liver	J48	Fragment or	57	92	45	46	240	0.62	0.56	0.55	0.56	0.55	0.67	0.61	-98.8	8.6	0.23	103
MGR Rat Liver	J48	GSFrag	62	92	45	41	240	0.64	0.58	0.55	0.50	0.55	0.67	0.64	-96.6 -98.7			103
IVIGR RAI LIVEI	J 4 0	оопау	02	92	40	41	240	0.04	0.36	0.0	0.09	0.0	0.07	0.04	-50.7	0.07	0.21	103
MGR Rat Liver	J48	Inductive	48	91	46	55	240	0.58	0.51	0.47	0.49	0.47	0.66	0.57	-98.9	8.57	0.13	103
		Mera,																
MGR Rat Liver	J48	Mersy	67	99	38	36	240	0.69	0.64	0.65	0.64	0.65	0.72	0.69	-98.6	8.76	0.37	103
MGR Rat Liver	J48	QNPR	65	90	47	38	240	0.65	0.58	0.63	0.6	0.63	0.66	0.64	-98.7	8.48	0.29	103
	140	Spectrop		404	0.0		0.40	0.00	0.50	0.40	0.50	0.40	0 7 4	0.04		0.00	0.00	400
MGR Rat Liver	J48	hores	50	101	36	53	240	0.63	0.58	0.49	0.53	0.49	0.74	0.61	-98.8			103
MGR Rat Ovary	RF	Adriana	16	118	87	18	239	0.56	0.16	0.47	0.23	0.47	0.58	0.52	-99.0	6.02	0.03	34
		ALogPS,																
MGR Rat Ovary	RF	OEstate	18	112	93	17	240	0.54	0.16	0.51	0.25	0.51	0.55	0.53	-98.9	5.96	0.04	35
MGR Rat Ovary	RF	CDK	18	117	87	17	239	0.56	0.17	0.51	0.26	0.51	0.57	0.54	-98.9			35
		Chemaxo																
MGR Rat Ovary	RF	n	16	105	100	19	240	0.5	0.14	0.46	0.21	0.46	0.51	0.48	-99.0	5.82	.022	35
MGR Rat Ovary	RF	Dragon6	17	111	94	18	240	0.53	0.15	0.49	0.23	0.49	0.54	0.51	-99.0	5.95	0.02	35
MGR Rat Ovary	RF	Fragment or	18	106	99	17	240	0.52	0.15	0.51	0.24	0.51	0.52	0.52	-99.0	5 25	0 02	35
MGR Rat Ovary	RF	GSFrag	18	128	77	17	240	0.52	0.15	0.51	0.24	0.51	0.62	0.57	-98.9		0.02	35
won nai Ovaly	INI"	оогтау	10	120	11	17	24 0	0.01	0.18	0.01	0.20	0.01	0.02	0.07	-30.9	0.28	0.1	30
MGR Rat Ovary	RF	Inductive	18	124	81	17	240	0.59	0.18	0.51	0.27	0.51	0.6	0.56	-98.9	6.2	0.09	35
-		Mera,																
MGR Rat Ovary	RF	Mersy	15	119	86	20	240	0.56	0.15	0.43	0.22	0.43	0.58	0.5	-99.0	6.08	0.01	35
MGR Rat Ovary	RF	QNPR	17	126	79	18	240	0.6	0.18	0.49	0.26	0.49	0.61	0.55	-98.9	6.24	0.07	35
		Spectrop	4.0	400		00	0.40	0.55	0.40	0.04	0.40	0.04	0.50	0.40	00.4	0.00	050	
MGR Rat Ovary	RF ASN	hores	12	120	85	23	240	0.55	0.12	0.34	0.18	0.34	0.59	0.46	-99.1	6.03	.052	35
MGR Rat Ovary	N	Adriana	15	139	66	19	239	0.64	0.19	0.44	0.26	0.44	0.68	0.56	-98.9	6 45	0.09	34
orritat o raily		ranana		100		10		0.01	0.10	0.11	0.20	0.11	0.00	0.00	- 00.0	0.10	0.00	
	ASN	ALogPS,																
MGR Rat Ovary	N	OEstate	16	121	84	19	240	0.57	0.16	0.46	0.24	0.46	0.59	0.52	-99.0	6.14	0.03	35
MOD D 10	ASN	CDK	40	405	70	47	220	0.0	0.40	0.54	0.07	0.54	0.04	0.50	00.0	C 04	0.00	25
MGR Rat Ovary	N ASN	CDK Chemaxo	18	125	79	17	239	0.6	0.19	0.51	0.27	0.51	0.61	0.56	-98.9	0.24	0.09	35
MGR Rat Ovary	N	n	14	137	68	21	240	0.63	0.17	0.4	0.24	0.4	0.67	0.53	-98.9	6.44	0.05	35
	ASN															-		
	ASIN																	
MGR Rat Ovary	N N	Dragon6	11	150	55	24	240	0.67	0.17	0.31	0.22	0.31	0.73	0.52	-99.0	6.64	0.04	35
·	N ASN	Fragment																
·	N ASN N		11 13	150 118	55 87	24	240 240	0.67	0.17	0.31	0.22	0.31	0.73	0.52		6.64		35
MGR Rat Ovary	N ASN N ASN	Fragment or	13	118	87	22	240	0.55	0.13	0.37	0.19	0.37	0.58	0.47	-99.1	6.02	.038	35
·	ASN N ASN N	Fragment								0.37						6.02	.038	
MGR Rat Ovary	N ASN N ASN	Fragment or	13	118	87	22	240	0.55	0.13	0.37	0.19	0.37	0.58	0.47	-99.1	6.02	.038	35
MGR Rat Ovary	N ASN N ASN N ASN	Fragment or GSFrag	13 17	118 129 130	87 76	22 18	240	0.55	0.13 0.18 0.15	0.37 0.49 0.37	0.19	0.37 0.49 0.37	0.58	0.47	-99.1 -98.9 -99.0	6.02 6.31 6.26	.038	35 35
MGR Rat Ovary MGR Rat Ovary MGR Rat Ovary	N ASN N ASN N ASN N	Fragment or GSFrag Inductive	13 17	118	87 76	22 18	240	0.55	0.13	0.37	0.19	0.37	0.58	0.47	-99.1 -98.9	6.02 6.31 6.26	.038	35 35
MGR Rat Ovary MGR Rat Ovary MGR Rat Ovary MGR Rat Ovary	ASN N ASN N ASN N ASN N ASN	GSFrag Inductive Mera, Mersy	13 17 13 12	118 129 130 133	87 76 75 72	22 18 22 23	240 240 240 240	0.55 0.61 0.6 0.6	0.13 0.18 0.15 0.14	0.37 0.49 0.37 0.34	0.19 0.27 0.21 0.2	0.37 0.49 0.37 0.34	0.58 0.63 0.63 0.65	0.47 0.56 0.5	-99.1 -98.9 -99.0 -99.0	6.02 6.31 6.26 6.29	.038 0.08 0.	35 35 35
MGR Rat Ovary	N ASN N ASN N ASN N ASN N	GSFrag Inductive Mera, Mersy QNPR	13 17 13	118 129 130	87 76 75	22 18 22	240 240 240	0.55 0.61 0.6	0.13 0.18 0.15 0.14	0.37 0.49 0.37	0.19 0.27 0.21 0.2	0.37 0.49 0.37	0.58 0.63 0.63 0.65	0.47 0.56 0.5	-99.1 -98.9 -99.0	6.02 6.31 6.26 6.29	.038	35 35 35
MGR Rat Ovary	N ASN N ASN N ASN N ASN N	Fragment or GSFrag Inductive Mera, Mersy QNPR Spectrop	13 17 13 12	118 129 130 133 135	87 76 75 72 70	22 18 22 23	240 240 240 240 240	0.55 0.61 0.6 0.6 0.61	0.13 0.18 0.15 0.14 0.15	0.37 0.49 0.37 0.34	0.19 0.27 0.21 0.2 0.21	0.37 0.49 0.37 0.34	0.58 0.63 0.63 0.65 0.66	0.47 0.56 0.5 0.5	-99.1 -98.9 -99.0 -99.0	6.02 6.31 6.26 6.29 6.34	.038 0.08 0. .006	35 35 35 35
MGR Rat Ovary	N ASN N	GSFrag Inductive Mera, Mersy QNPR	13 17 13 12 12	118 129 130 133	87 76 75 72	22 18 22 23 23	240 240 240 240	0.55 0.61 0.6 0.6	0.13 0.18 0.15 0.14	0.37 0.49 0.37 0.34	0.19 0.27 0.21 0.2	0.37 0.49 0.37 0.34	0.58 0.63 0.63 0.65 0.66	0.47 0.56 0.5	-99.1 -98.9 -99.0 -99.0	6.02 6.31 6.26 6.29 6.34	.038 0.08 0. .006	35 35 35
MGR Rat Ovary	N ASN N ASN N ASN N ASN N ASN N ASN N N ASN N N ASN N N ASN N N	GSFrag Inductive Mera, Mersy QNPR Spectrop hores	13 17 13 12 12	118 129 130 133 135	87 76 75 72 70	22 18 22 23 23	240 240 240 240 240	0.55 0.61 0.6 0.6 0.61	0.13 0.18 0.15 0.14 0.15	0.37 0.49 0.37 0.34	0.19 0.27 0.21 0.2 0.21	0.37 0.49 0.37 0.34	0.58 0.63 0.63 0.65 0.66	0.47 0.56 0.5 0.5	-99.1 -98.9 -99.0 -99.0	6.02 6.31 6.26 6.29 6.34 6.59	.038 0.08 0. .006 0.	35 35 35 35
MGR Rat Ovary	N ASN	GSFrag Inductive Mera, Mersy QNPR Spectrop hores CDK, TA, TP	13 17 13 12 12 13 5	118 129 130 133 135 145	76 75 72 70 60 53	22 18 22 23 23 22 30	240 240 240 240 240 240 239	0.55 0.61 0.6 0.6 0.61 0.66 0.65	0.13 0.18 0.15 0.14 0.15 0.18 0.09	0.37 0.49 0.37 0.34 0.34 0.37	0.19 0.27 0.21 0.2 0.21 0.24 0.11	0.37 0.49 0.37 0.34 0.34 0.37	0.58 0.63 0.63 0.65 0.66 0.71 0.74	0.47 0.56 0.5 0.5 0.5 0.54	-99.1 -98.9 -99.0 -99.0 -98.9 -99.1	6.02 6.31 6.26 6.29 6.34 6.59 6.16	.038 0.08 0. .006 0. 0.06	355 355 355 355 355 355
MGR Rat Ovary MGR Rat Ovary MGR Rat Ovary MGR Rat Ovary	N ASN N N ASN N N ASN N	Fragment or GSFrag Inductive Mera, Mersy QNPR Spectrop hores CDK, TA,	13 17 13 12 12 13	118 129 130 133 135 145	87 76 75 72 70	22 18 22 23 23 22	240 240 240 240 240 240	0.55 0.61 0.6 0.6 0.61 0.66	0.13 0.18 0.15 0.14 0.15 0.18	0.37 0.49 0.37 0.34 0.34	0.19 0.27 0.21 0.2 0.21 0.24 0.11	0.37 0.49 0.37 0.34 0.34	0.58 0.63 0.63 0.65 0.66	0.47 0.56 0.5 0.5 0.5	-99.1 -98.9 -99.0 -99.0 -99.0	6.02 6.31 6.26 6.29 6.34 6.59 6.16	.038 0.08 0. .006 0. 0.06	35 35 35 35 35
MGR Rat Ovary	N ASN	GSFrag Inductive Mera, Mersy QNPR Spectrop hores CDK, TA, TP CDK, TA	13 17 13 12 12 13 5	118 129 130 133 135 145 151	87 76 75 72 70 60 53 64	22 18 22 23 23 22 30 27	240 240 240 240 240 240 239 239	0.55 0.61 0.6 0.6 0.61 0.66 0.65 0.62	0.13 0.18 0.15 0.14 0.15 0.18 0.09	0.37 0.49 0.37 0.34 0.34 0.37 0.14	0.19 0.27 0.21 0.2 0.21 0.24 0.11 0.15	0.37 0.49 0.37 0.34 0.34 0.37 0.14	0.58 0.63 0.65 0.66 0.71 0.74 0.69	0.47 0.56 0.5 0.5 0.5 0.54 0.44 0.46	-99.1 -98.9 -99.0 -99.0 -99.0 -98.9 -99.1	6.02 6.31 6.26 6.29 6.34 6.59 6.16 6.23	.038 0.08 0. .006 0. 0.06 .096	35 35 35 35 35 35 35
MGR Rat Ovary	N ASN N N ASN N N ASN N N ASN N	GSFrag Inductive Mera, Mersy QNPR Spectrop hores CDK, TA, TP	13 17 13 12 12 13 5	118 129 130 133 135 145	76 75 72 70 60 53	22 18 22 23 23 22 30	240 240 240 240 240 240 239	0.55 0.61 0.6 0.6 0.61 0.66 0.65	0.13 0.18 0.15 0.14 0.15 0.18 0.09	0.37 0.49 0.37 0.34 0.34 0.37	0.19 0.27 0.21 0.2 0.21 0.24 0.11	0.37 0.49 0.37 0.34 0.34 0.37	0.58 0.63 0.63 0.65 0.66 0.71 0.74	0.47 0.56 0.5 0.5 0.5 0.54	-99.1 -98.9 -99.0 -99.0 -98.9 -99.1	6.02 6.31 6.26 6.29 6.34 6.59 6.16	.038 0.08 0. .006 0. 0.06 .096	355 355 355 355 355 355
MGR Rat Ovary MGR Rat Ovary	N ASN	Fragment or GSFrag Inductive Mera, Mersy QNPR Spectrop hores CDK, TA, TP CDK, TA	13 17 13 12 12 13 5	118 129 130 133 135 145 151 140	87 76 75 72 70 60 53 64 57	22 18 22 23 23 22 30 27	240 240 240 240 240 240 239 239	0.55 0.61 0.6 0.61 0.66 0.65 0.62	0.13 0.18 0.15 0.14 0.15 0.18 0.09 0.11 0.12	0.37 0.49 0.37 0.34 0.34 0.37 0.14 0.23 0.23	0.19 0.27 0.21 0.2 0.21 0.24 0.11 0.15	0.37 0.49 0.37 0.34 0.34 0.37 0.14 0.23 0.23	0.58 0.63 0.65 0.66 0.71 0.74 0.69 0.72	0.47 0.56 0.5 0.5 0.5 0.54 0.44 0.46 0.47	-99.1 -98.9 -99.0 -99.0 -99.1 -99.1 -99.1	6.02 6.31 6.26 6.29 6.34 6.59 6.16 6.23	.038 0.08 0. .006 0. 0.06 .096	35 35 35 35 35 35 35 35
MGR Rat Ovary	N ASN	GSFrag Inductive Mera, Mersy QNPR Spectrop hores CDK, TA, TP CDK, TA	13 17 13 12 12 13 5 8	118 129 130 133 135 145 151	87 76 75 72 70 60 53 64	22 18 22 23 23 22 30 27	240 240 240 240 240 240 239 239	0.55 0.61 0.6 0.6 0.61 0.66 0.65 0.62	0.13 0.18 0.15 0.14 0.15 0.18 0.09 0.11 0.12	0.37 0.49 0.37 0.34 0.34 0.37 0.14	0.19 0.27 0.21 0.2 0.21 0.24 0.11 0.15	0.37 0.49 0.37 0.34 0.34 0.37 0.14	0.58 0.63 0.65 0.66 0.71 0.74 0.69	0.47 0.56 0.5 0.5 0.5 0.54 0.44 0.46	-99.1 -98.9 -99.0 -99.0 -99.0 -98.9 -99.1	6.02 6.31 6.26 6.29 6.34 6.59 6.16 6.23	.038 0.08 0. .006 0. 0.06 .096	35 35 35 35 35 35 35

MGR Rat Ovary	ASN N	TP	14	154	51	21	240	0.7	0.22	0.4	0.28	0.4	0.75	0.58	-98.8 6.84 0.12	35
VIGR Rat Ovaly			14	104	31	21	240	0.7	0.22	0.4	0.20	0.4	0.75	0.56	-90.0 0.04 0.12	J.
MGR Rat Ovary	FSM LR	CDK, TA, TP	8	148	56	27	239	0.65	0.13	0.23	0.16	0.23	0.73	0.48	-99.0 6.42 .037	35
	FSM															
MGR Rat Ovary	LR	CDK, TA	7	136	68	28	239	0.6	0.09	0.2	0.13	0.2	0.67	0.43	-99.1 6.05 .102	35
	FSM															
MGR Rat Ovary	LR	CDK, TP	11	149	55	24	239	0.67	0.17	0.31	0.22	0.31	0.73	0.52	-99.0 6.63 0.04	35
	FSM															
MGR Rat Ovary	LR	TA, TP	9	147	58	26	240	0.65	0.13	0.26	0.18	0.26	0.72	0.49	-99.0 6.45 .02	35
MOD Det Overs	FSM	ΤΛ	15	107	68	20	240	0.62	0.10	0.42	0.25	0.42	0.67	0.55	00 0 6 46 0 07	21
MGR Rat Ovary	LR	TA	15	137	00	20	240	0.63	0.18	0.43	0.25	0.43	0.67	0.55	-98.9 6.46 0.07	35
MGR Rat Ovary	FSM LR	TP	14	144	61	21	240	0.66	0.19	0.4	0.25	0.4	0.7	0.55	-98.9 6.6 0.08	35
· · ·		CDK, TA,														
MGR Rat Ovary	KNN	IP	26	18	186	9	239	0.18	0.12	0.74	0.21	0.74	0.09	0.42	-99.2 3.22 .189	35
MGR Rat Ovary	KNN	CDK, TA	27	32	172	8	239	0.25	0.14	0.77	0.23	0.77	0.16	0.46	-99.1 3.79 .068	35
MGR Rat Ovary	KNN	CDK, TP	16	101	103	19	239	0.49	0.13	0.46	0.21	0.46	0.5	0.48	-99.0 5.75 .034	35
MGR Rat Ovary	KNN	TA, TP	30	14	191	5	240	0.18	0.14	0.86	0.23	0.86	0.07	0.46	-99.1 2.54 .097	35
MGR Rat Ovary	KNN	TA	26	71	134	9	240	0.4	0.16	0.74	0.27	0.74	0.35	0.54	-98.9 4.9 0.07	35
MGR Rat Ovary	KNN	TP	13	136	69	22	240	0.62	0.16	0.37	0.22	0.37	0.66	0.52	-99.0 6.39 0.03	35
More real overy			10	100			2-10	0.02	0.10	0.07	U.LL	0.01	0.00	0.02	00.0 0.00 0.00	
MGR Rat Ovary	LibS VM	CDK, TA, TP	0	204	0	35	239	0.85		0.		0.	1.	0.5	-99.0 8.89	35
•	LibS															
MGR Rat Ovary	VM	CDK, TA	0	203	1	35	239	0.85	0.	0.		0.	1.	0.5	-99.0 7.79 .027	35
	LibS															
MGR Rat Ovary																
WOR NOT OVALY	VM	CDK, TP	3	195	9	32	239	0.83	0.25	0.09	0.13	0.09	0.96	0.52	-99.0 7.76 0.07	35
		CDK, TP	3	195	9	32	239	0.83	0.25	0.09	0.13	0.09	0.96	0.52	-99.0 7.76 0.07	35
MGR Rat Ovary	VM LibS	CDK, TP	0	195 202	3	32	239	0.83	0.25	0.09	0.13		0.96	0.52	-99.0 7.76 0.07 -99.0 6.93 .046	35
	VM LibS VM	·		202			240	0.84			0.13				-99.0 6.93 .046	
MGR Rat Ovary	VM LibS VM	·									0.13					
MGR Rat Ovary	LibS VM LibS VM	TA, TP	0	202	3	35	240	0.84	0.	0.		0.	0.99	0.49	-99.0 6.93 .046 -99.0 7.79 .027	35 35
MGR Rat Ovary	LibS VM LibS VM LibS VM	TA, TP	0	202	3	35	240	0.84	0.	0.		0.	0.99	0.49	-99.0 6.93 .046	35
MGR Rat Ovary MGR Rat Ovary MGR Rat Ovary	LibS VM LibS VM LibS VM MLR A	TA, TP TA TP	0	202	3	35	240	0.84	0.	0. 0.		0.	0.99	0.49	-99.0 6.93 .046 -99.0 7.79 .027	35 35
MGR Rat Ovary MGR Rat Ovary MGR Rat Ovary MGR Rat Ovary	LibS VM LibS VM LibS VM MLR A MLR A	TA, TP TA TP CDK, TA,	0 0	202 204 201	3 1 4	35 35 34	240 240 240	0.84	0.	0. 0.	0.05	0. 0.	0.99	0.49	-99.0 6.93 .046 -99.0 7.79 .027 -99.0 7.75 0.02	35
MGR Rat Ovary	VM LibS VM LibS VM LibS VM MLR A MLR	TA, TP TA TP CDK, TA, TP	0 0 1 10	202 204 201 133	3 1 4 71	35 35 34 25	240 240 240 239	0.84 0.85 0.84 0.6	0. 0.2 0.12 0.13	0. 0. 0.03 0.29	0.05 0.17 0.19	0. 0.03 0.29 0.37	0.99 1. 0.98 0.65	0.49 0.5 0.5 0.47 0.46	-99.0 6.93 .046 -99.0 7.79 .027 -99.0 7.75 0.02 -99.1 6.21 .047	35 35 35
MGR Rat Ovary	LibS VM LibS VM LibS VM MLR A MLR A MLR A	TA, TP TA TP CDK, TA, TP CDK, TA	0 0 1 10 13 20	202 204 201 133 113 119	3 1 4 71 91 85	35 35 34 25 22	240 240 240 239 239	0.84 0.85 0.84 0.6 0.53	0. 0.2 0.12 0.13	0. 0.03 0.29 0.37 0.57	0.05 0.17 0.19	0. 0.03 0.29 0.37 0.57	0.99 1. 0.98 0.65 0.55	0.49 0.5 0.5 0.47 0.46 0.58	-99.0 6.93 .046 -99.0 7.79 .027 -99.0 7.75 0.02 -99.1 6.21 .047 -99.1 5.93 .053 -98.8 6.1 0.11	35 35 35 35 35
MGR Rat Ovary	LibS VM LibS VM LibS VM MLR A MLR A MLR A MLR A	TA, TP TA TP CDK, TA, TP CDK, TA CDK, TP TA, TP	0 0 1 10 13 20	202 204 201 133 113 119	3 1 4 71 91 85 85	35 35 34 25 22 15	240 240 240 239 239 239 240	0.84 0.85 0.84 0.6 0.53 0.58	0. 0.2 0.12 0.13 0.19 0.17	0. 0.03 0.29 0.37 0.57	0.05 0.17 0.19 0.29	0. 0.03 0.29 0.37 0.57	0.99 1. 0.98 0.65 0.55 0.58	0.49 0.5 0.5 0.47 0.46 0.58	-99.0 6.93 .046 -99.0 7.79 .027 -99.0 7.75 0.02 -99.1 6.21 .047 -99.1 5.93 .053 -98.8 6.1 0.11 -98.9 6.12 0.05	355 355 355 355 355 355
MGR Rat Ovary	LibS VM LibS VM LibS VM MLR A MLR A MLR A	TA, TP TA TP CDK, TA, TP CDK, TA	0 0 1 10 13 20	202 204 201 133 113 119	3 1 4 71 91 85	35 35 34 25 22	240 240 240 239 239	0.84 0.85 0.84 0.6 0.53	0. 0.2 0.12 0.13	0. 0.03 0.29 0.37 0.57	0.05 0.17 0.19	0. 0.03 0.29 0.37 0.57	0.99 1. 0.98 0.65 0.55	0.49 0.5 0.5 0.47 0.46 0.58	-99.0 6.93 .046 -99.0 7.79 .027 -99.0 7.75 0.02 -99.1 6.21 .047 -99.1 5.93 .053 -98.8 6.1 0.11	35 35 35 35 35
MGR Rat Ovary MGR Rat Ovary	LibS VM LibS VM LibS VM MLR A MLR A MLR A MLR A	TA, TP TA TP CDK, TA, TP CDK, TA CDK, TP TA, TP	0 0 1 10 13 20	202 204 201 133 113 119	3 1 4 71 91 85 85	35 35 34 25 22 15	240 240 240 239 239 239 240	0.84 0.85 0.84 0.6 0.53 0.58	0. 0.2 0.12 0.13 0.19 0.17	0. 0.03 0.29 0.37 0.57	0.05 0.17 0.19 0.29 0.25	0. 0.03 0.29 0.37 0.57 0.49	0.99 1. 0.98 0.65 0.55 0.58	0.49 0.5 0.5 0.47 0.46 0.58 0.54	-99.0 6.93 .046 -99.0 7.79 .027 -99.0 7.75 0.02 -99.1 6.21 .047 -99.1 5.93 .053 -98.8 6.1 0.11 -98.9 6.12 0.05	355 355 355 355 355 355

MGR Rat Ovary	PLS	CDK, TA	8	131	73	27	239	0.58	0.1	0.23	0.14	0.23	0.64	0.44	-99.1	6.04	.097	35
MGR Rat Ovary	PLS	CDK, TP	8	142	62	27	239	0.63	0.11	0.23	0.15	0.23	0.7	0.46	-99.1	6.28	.059	35
MGR Rat Ovary	PLS	TA, TP	11	140	65	24	240	0.63	0.14	0.31	0.2	0.31	0.68	0.5	-99.0	6.4	.002	35
MGR Rat Ovary	PLS	TA	15	138	67	20	240	0.64	0.18	0.43	0.26	0.43	0.67	0.55		6.48	0.08	35
MGR Rat Ovary	PLS	TP	13	145	60	22	240	0.66	0.18	0.37	0.24	0.37	0.71	0.54	-98.9	6.59	0.06	35
MGR Rat Ovary	J48	CDK, TA, TP	7	158	46	28	239	0.69	0.13	0.2	0.16	0.2	0.77	0.49	-99.0	6 50	022	35
MGR Rat Ovaly	J40	-11				20	200	0.03	0.13	0.2	0.10	0.2	0.77	0.43				33
MGR Rat Ovary	J48	CDK, TA	9	153	51	26	239	0.68	0.15	0.26	0.19	0.26	0.75	0.5	-99.0	6.62	0.01	35
MGR Rat Ovary	J48	CDK, TP	11	150	54	24	239	0.67	0.17	0.31	0.22	0.31	0.74	0.52	-99.0	6.66	0.04	35
MGR Rat Ovary	J48	TA, TP	5	161	44	30	240	0.69	0.1	0.14	0.12	0.14	0.79	0.46	-99.1	6.41	.063	35
MGR Rat Ovary	J48	TA	10	157	48	25	240	0.7	0.17	0.29	0.22	0.29	0.77	0.53	-98.9	6.77	0.04	35
MGR Rat Ovary	J48	TP	10	153	52	25	240	0.68	0.16	0.29	0.21	0.29	0.75	0.52	-99.0	6.66	0.03	35
MGR Rat Ovary	RF	CDK, TA, TP	12	92	112	23	239	0.44	0.1	0.34	0.15	0.34	0.45	0.4	-99.2	5.49	.146	35
MGR Rat Ovary	RF	CDK, TA	13	103	101	22	239	0.49	0.11	0.37	0.17	0.37	0.5	0.44	-99.1	5.74	.088	35
MGR Rat Ovary	RF	CDK, TP	16	122	82	19	239	0.58	0.16	0.46	0.24	0.46	0.6	0.53	-98.9	6.17	0.04	35
MGR Rat Ovary	RF	TA, TP	14	109	96	21	240	0.51	0.13	0.40	0.19	0.40	0.53	0.47	-99.1	5.87	.048	35
MGR Rat Ovary	RF	TA	14	117	88	21	240	0.55	0.13	0.4	0.13	0.4	0.57	0.49		6.03	.021	35
	RF	TP	14															
MGR Rat Ovary		IP	14	129	76	21	240	0.6	0.16	0.4	0.22	0.4	0.63	0.51	-99.0	6.27	0.02	35
MGR Rat Ovary	FSM LR	Adriana	21	109	96	13	239	0.54	0.18	0.62	0.28	0.62	0.53	0.57	-98.9	5.8	0.1	34
MGR Rat Ovary	FSM LR	ALogPS, OEstate	18	107	98	17	240	0.52	0.16	0.51	0.24	0.51	0.52	0.52	-99.0	5.87	0.03	35
MGR Rat Ovary	FSM LR	CDK	21	115	89	14	239	0.57	0.19	0.6	0.29	0.6	0.56	0.58	-98.8	6.	0.12	35
		Chemaxo																
MGR Rat Ovary	LR	n	20	119	86	15	240	0.58	0.19	0.57	0.28	0.57	0.58	0.58	-98.8	6.08	0.11	35
MGR Rat Ovary	FSM LR	Dragon6	15	132	73	20	240	0.61	0.17	0.43	0.24	0.43	0.64	0.54	-98.9	6.35	0.05	35
MGR Rat Ovary		Fragment or	16	132	73	19	240	0.62	0.18	0.46	0.26	0.46	0.64	0.55	-98.9	6.36	0.07	35
	FSM																	
MGR Rat Ovary	LR	GSFrag	24	110	95	11	240	0.56	0.2	0.69	0.31	0.69	0.54	0.61	-98.8	5.79	0.16	35
MGR Rat Ovary	FSM LR	Inductive	15	123	82	20	240	0.58	0.15	0.43	0.23	0.43	0.6	0.51	-99.0	6.16	0.02	35
MGR Rat Ovary	FSM LR	Mera, Mersy	14	128	77	21	240	0.59	0.15	0.4	0.22	0.4	0.62	0.51	-99.0	6.25	0.02	35
MGR Rat Ovary	FSM LR	QNPR	17	126	79	18	240	0.6	0 18	0.49	0.26	0.49	0.61	0.55	-98.9	6 24	0.07	35
			.,	120	- 7 - 0	10		0.0	0.10	0.70	0.20	0.40	0.01	0.00	50.5	5.27	5.01	55
MGR Rat Ovary	FSM LR	Spectrop hores	8	152	53	27	240	0.67	0.13	0.23	0.17	0.23	0.74	0.49	-99.0	6.5	.024	35
MGR Rat Ovary	KNN	Adriana	31	37	168	3	239	0.28	0.16	0.91	0.27	0.91	0.18	0.55	-98.9	3.2	0.09	34

		ALogPS,																
MGR Rat Ovary	KNN	OEstate	27	24	181	8	240	0.21	0.13	0.77	0.22	0.77	0.12	0.44	-99.1	3.45	.116	35
MGR Rat Ovary	KNN	CDK Chemaxo	24	48	156	11	239	0.3	0.13	0.69	0.22	0.69	0.24	0.46	-99.1	4.47	.065	35
MGR Rat Ovary	KNN		26	53	152	9	240	0.33	0.15	0.74	0.24	0.74	0.26	0.5	-99.0	4.48	0.	35
MGR Rat Ovary	KNN	Dragon6	25	66	139	10	240	0.38	0.15	0.71	0.25	0.71	0.32	0.52	-99.0	4.85	0.03	35
MGR Rat Ovary	KNN	Fragment or	32	18	187	3	240	0.21	0.15	0.91	0.25	0.91	0.09	0.5	-99.0	2.42	0.	35
MGR Rat Ovary	KNN	GSFrag	32	42	163	3	240	0.31	0.16	0.91	0.28	0.91	0.2	0.56	-98.9	3.39	0.11	35
MGR Rat Ovary		Inductive	22	105	100	13	240	0.53				0.63	0.51	0.57		5.76	0.1	35
INGR Rat Ovaly	KININ	Mera,		103	100	13	240	0.00	0.10	0.03	0.20	0.03	0.51	0.51				
MGR Rat Ovary	KNN	Mersy	27	76	129	8	240	0.43	0.17	0.77	0.28	0.77	0.37	0.57	-98.9	4.93	0.11	35
MGR Rat Ovary	KNN	QNPR Spectrop	34	12	193	1	240	0.19	0.15	0.97	0.26	0.97	0.06	0.51	-99.0	1.21	0.05	35
MGR Rat Ovary	KNN	hores	15	127	78	20	240	0.59	0.16	0.43	0.23	0.43	0.62	0.52	-99.0	6.25	0.03	35
	LibS																	
MGR Rat Ovary	VM	Adriana	1	194	11	33	239	0.82	80.0	0.03	0.04	0.03	0.95	0.49	-99.0	6.75	.039	34
MOD D : C		ALogPS,	,	104	44	24	040	0.00	0.07	0.44	0.40	0.44	0.05	0.50	00.0	7 70	0.00	0.5
MGR Rat Ovary	VM	OEstate	4	194	11	31	240	0.83	0.27	0.11	0.16	0.11	0.95	0.53	-98.9	7.78	0.09	35
MGR Rat Ovary	LibS VM	CDK	4	189	15	31	239	0.81	0.21	0 11	0 15	0.11	0.93	0.52	-99 0	7.46	0.05	35
			•	100		<u> </u>		0.01	0.21	0.11	0.10	0.11	0.00	0.02	00.0	7.10	0.00	
MGR Rat Ovary	VM	Chemaxo n	4	189	16	31	240	0.8	0.2	0.11	0.15	0.11	0.92	0.52	-99.0	7.4	0.05	35
	LibS																	
MGR Rat Ovary		Dragon6	3	196	9	32	240	0.83	0.25	0.09	0.13	0.09	0.96	0.52	-99.0	7.76	0.07	35
	LibS	Fragment																
MGR Rat Ovary	VM	or	0	200	5	35	240	0.83	0.	0.		0.	0.98	0.49	-99.0	6.47	.06	35
MOD Det Overe	LibS	CCFror	0	176	20	26	240	0.77	0.24	0.06	0.25	0.26	0.06	0.56	00.0	7 22	0.11	25
MGR Rat Ovary	VM	GSFrag	9	176	29	26	240	0.77	0.24	0.26	0.25	0.26	0.00	0.56	-96.9	7.32	0.11	35
MGR Rat Ovary	LibS VM	Inductive	7	188	17	28	240	0.81	0.29	0.2	0.24	0.2	0.92	0.56	-98.9	7.74	0.14	35
•		Mera,																
MGR Rat Ovary	VM	Mersy	4	194	11	31	240	0.83	0.27	0.11	0.16	0.11	0.95	0.53	-98.9	7.78	0.09	35
	LibS																	
MGR Rat Ovary	VM	QNPR	4	198	7	31	240	0.84	0.36	0.11	0.17	0.11	0.97	0.54	-98.9	8.23	0.14	35
		Spectrop	_	46-										•			• • •	
MGR Rat Ovary	VM MLR	hores	3	190	15	32	240	8.0	0.17	0.09	0.11	0.09	0.93	0.51	-99.0	7.24	0.02	35
MGR Rat Ovary	Α	Adriana	17	117	88	17	239	0.56	0.16	0.5	0.24	0.5	0.57	0.54	-98.9	6.01	0.05	34
	_	ALogPS,	4-	460	0-		00	0	o	0.10	0.00		0	o = :		<i>.</i> .	0.64	•
MGR Rat Ovary	A MLR	OEstate	15	120	85	20	240	0.56	0.15	0.43	0.22	0.43	0.59	0.51	-99.0	6.1	0.01	35
MGR Rat Ovary	A MIR	CDK Chemaxo	19	108	96	16	239	0.53	0.17	0.54	0.25	0.54	0.53	0.54	-98.9	5.89	0.05	35
MGR Rat Ovary	A	n	14	103	102	21	240	0.49	0 12	0.4	0.19	0.4	0.5	0.45	-99.1	5 75	060	35

	MID																	
MGR Rat Ovary	MLR A	Dragon6	19	111	94	16	240	0.54	0.17	0.54	0.26	0.54	0.54	0.54	-98.9	5.94	0.06	3
MGR Rat Ovary	Α	Fragment or	16	107	98	19	240	0.51	0.14	0.46	0.21	0.46	0.52	0.49	-99.0	5.86	.015	3
MGR Rat Ovary	MLR A	GSFrag	23	102	103	12	240	0.52	0.18	0.66	0.29	0.66	0.5	0.58	-98.8	5.67	0.11	3
MGR Rat Ovary	MLR A	Inductive	16	120	85	19	240	0.57	0.16	0.46	0.24	0.46	0.59	0.52	-99.0	6.12	0.03	3
MGR Rat Ovary	Α	Mera, Mersy	14	96	109	21	240	0.46	0.11	0.4	0.18	0.4	0.47	0.43	-99.1	5.62	.093	3
MGR Rat Ovary	MLR A	QNPR	15	135	70	20	240	0.63	0.18	0.43	0.25	0.43	0.66	0.54	-98.9	6.41	0.06	3
MGR Rat Ovary	MLR A	Spectrop hores	18	130	75	17	240	0.62	0.19	0.51	0.28	0.51	0.63	0.57	-98.9	6.33	0.11	(
MGR Rat Ovary	PLS	Adriana	21	104	101	13	239	0.52	0.17	0.62	0.27	0.62	0.51	0.56	-98.9	5.7	0.09	(
MGR Rat Ovary	DI S	ALogPS, OEstate	16	108	97	19	240	0.52	0.14	0.46	0.22	0.46	0.53	0.49	-99.0	5 88	.011	;
MGR Rat Ovary	PLS	CDK	17	123	81	18	239	0.52	0.14	0.49	0.26	0.49	0.6	0.49	-98.9		0.06	
•	PLS	Chemaxo n	14	116	89	21	240	0.59	0.17	0.49	0.20	0.49	0.57	0.34	-99.0		.024	
MGR Rat Overv	PLS		17	144	61	18			0.14		0.2		0.57					<u>`</u>
MGR Rat Ovary		Dragon6 Fragment					240	0.67		0.49		0.49		0.59		6.63		
MGR Rat Ovary MGR Rat Ovary	PLS PLS	or GSFrag	13 19	128 114	77 91	22 16	240	0.59	0.14	0.37	0.21	0.37	0.62	0.55	-99.0 -98.9	6.22	.003	;
MGR Rat Ovary	PLS	Inductive	19	122	83	16	240	0.59	0.19	0.54	0.28	0.54	0.6	0.57	-98.9	6.16	0.1	;
MGR Rat Ovary	PLS	Mera, Mersy	15	127	78	20	240	0.59	0.16	0.43	0.23	0.43	0.62	0.52	-99.0	6.25	0.03	,
MGR Rat Ovary	PLS	QNPR	13	125	80	22	240	0.58	0.14	0.37	0.2	0.37	0.61	0.49		6.16		;
MGR Rat Ovary	PLS	Spectrop	14	131	74	21	240	0.6	0.16	0.4	0.23	0.4	0.64	0.52	-99.0		0.03	
MGR Rat Ovary	J48	Adriana	12	150	55	22	239	0.68	0.18	0.35	0.24	0.35	0.73	0.54		6.64		
MGR Rat Ovary	J48	ALogPS, OEstate	12	137	68	23	240	0.62	0.15	0.34	0.21	0.34	0.67	0.51	-99.0	6.38	0.01	;
MGR Rat Ovary	J48	CDK	13	138	66	22	239	0.63	0.16	0.37	0.23	0.37	0.68	0.52	-99.0	6.45	0.04	;
MGR Rat Ovary	J48	Chemaxo n	14	135	70	21	240	0.62	0.17	0.4	0.24	0.4	0.66	0.53	-98.9	6.4	0.04	;
MGR Rat Ovary	J48	Dragon6	9	157	48	26	240	0.69	0.16	0.26	0.2	0.26	0.77	0.51	-99.0	6.71	0.02	
MGR Rat Ovary	J48	Fragment or	16	127	78	19	240	0.6	0.17	0.46	0.25	0.46	0.62	0.54	-98.9	6.26	0.06	
MGR Rat Ovary	J48	GSFrag	15	148	57	20	240	0.68	0.21	0.43	0.28	0.43	0.72	0.58	-98.8	6.71	0.12	
MGR Rat Ovary	J48	Inductive	13	162	43	22	240	0.73	0.23	0.37	0.29	0.37	0.79	0.58	-98.8	7.03	0.13	
MGR Rat Ovary	J48	Mera, Mersy	12	164	41	23	240	0.73	0.23	0.34	0.27	0.34	0.8	0.57	-98.9	7.06	0.12	
MGR Rat Ovary	J48	QNPR Spectrop	16	145	60	19	240	0.67	0.21	0.46	0.29	0.46	0.71	0.58	-98.8	6.65	0.12	
MGR Rat Ovary	J48	hores	9	150	55	26	240	0.66	0.14	0.26	0.18	0.26	0.73	0.49	-99.0	6.53	.009	
MGR Rat Testis	RF	Adriana	20	110	90	19	239	0.54	0.18	0.51	0.27	0.51	0.55	0.53	-98.9	6.19	0.05	;
MGR Rat Testis	RF	ALogPS, OEstate	18	114	87	21	240	0.55	0.17	0.46	0.25	0.46	0.57	0.51	-99.0	6.25	0.02	;
	RF	CDK	18	113	87	21	239	0.55	0.17	0.46	0.25	0.46	0.57	0.51	-99.0			
MGR Rat Testis		Chemaxo												- ·-				
MGR Rat Testis	RF	n	14	109	92	25	240	0.51	0.13	0.36	0.19	0.36	0.54	0.45	-99.1	6.08	.073	. ;

MCRI Ratifies RF of 2 21 122 79 18 240 0.6 0.21 0.54 0.6 1 0.57 -98.9 6.42 0.11 38 MCRI Ratifies RF GSFrag 20 120 81 19 240 0.57 0.19 0.51 0.20 0.51 0.6 0.55 -98.9 6.32 0.10 38 39 MCRI Ratifies RF Inductive 20 116 85 19 240 0.57 0.19 0.51 0.28 0.51 0.50 0.55 -98.9 6.32 0.10 38 39 MCRI Ratifies RF Inductive 20 116 85 19 240 0.56 0.17 0.4 0.24 0.44 0.58 0.51 -99.0 6.31 0.01 38 MCRI Ratifies RF Mersy 17 117 84 22 240 0.56 0.17 0.4 0.24 0.44 0.58 0.51 -99.0 6.31 0.01 38 MCRI Ratifies RF Mersy 18 113 90 21 240 0.56 0.17 0.46 0.24 0.40 0.56 0.52 -99.0 6.24 0.04 39 MCRI Ratifies RF Mersy 19 113 88 20 240 0.55 0.18 0.49 0.26 0.49 0.56 0.52 -99.0 6.24 0.04 39 MCRI Ratifies RF Mersy 19 113 88 20 240 0.56 0.17 0.46 0.24 0.46 0.56 0.55 0.51 -99.0 6.19 0.01 38 MCRI Ratifies RF Mersy 19 113 88 20 240 0.56 0.18 0.46 0.26 0.46 0.56 0.52 -99.0 6.24 0.04 39 MCRI Ratifies RF Mersy 19 12 8 MCRI Ratifies RF M																			
MIGRIC Real Testins MIGRIC	MGR Rat Testis	RF	Fragment or	21	122	79	18	240	0.6	0.21	0.54	0.3	0.54	0.61	0.57	-98.9	6.42	0.11	39
More real Testis More More More real Testis TA TP 13 148 52 26 239 0.64 0.5	MGR Rat Testis	RF	GSFrag	20	120	81	19	240	0.58	0.2	0.51	0.29	0.51	0.6	0.55	-98.9	6.38	80.0	39
More Real Teatles More Real Teatles RF More No.		DE	lando ettara	00	440	0.5	40	0.40	0.57	0.40	0.54	0.00	0.54	0.50	0.54	00.0	0.0	0.07	-00
MIGR Rat Testis RF Merey 17 117 84 22 240 0.56 0.17 0.44 0.24 0.44 0.56 0.51 99.0 6.31 0.01 38 MGR Rat Testis RF Nortes 19 113 88 20 240 0.55 0.17 0.46 0.24 0.46 0.56 0.52 99.0 6.31 0.01 38 MGR Rat Testis RF Nortes 18 111 90 21 240 0.5 0.5 0.17 0.46 0.24 0.46 0.5 0.50 0.51 99.0 6.19 0.01 38 ASN Adrian 18 120 80 21 239 0.58 0.18 0.46 0.26 0.46 0.6 0.5 0.5 0.51 99.0 6.19 0.01 38 ASN ADRIAN ADRIAN 18 120 80 21 239 0.58 0.18 0.40 0.26 0.46 0.6 0.5 0.5 0.51 99.0 6.19 0.01 38 ASN ADRIAN ADRIAN 18 120 80 21 239 0.58 0.18 0.40 0.26 0.46 0.6 0.5 0.5 0.57 98.9 6.49 0.15 39 MGR Rat Testis N CDK 20 127 73 19 239 0.62 0.22 0.51 0.3 0.51 0.62 0.57 98.9 6.49 0.1 39 MGR Rat Testis N CDK 20 127 73 19 239 0.62 0.22 0.51 0.3 0.51 0.64 0.57 98.9 6.52 0.07 38 MGR Rat Testis N CDK 20 127 74 21 240 0.6 0.2 0.46 0.27 0.46 0.63 0.55 98.9 6.52 0.07 38 MGR Rat Testis N CDK 20 139 6.2 19 240 0.66 0.24 0.51 0.3 0.51 0.69 0.6 98.8 6.84 0.19 38 MGR Rat Testis N CDK 20 139 6.2 19 240 0.66 0.24 0.51 0.33 0.51 0.69 0.6 98.8 6.79 0.16 38 MGR Rat Testis N CDK 20 139 6.2 19 240 0.66 0.24 0.51 0.33 0.51 0.69 0.6 98.8 6.79 0.16 38 MGR Rat Testis N CDK 20 139 6.2 19 240 0.66 0.24 0.51 0.33 0.51 0.69 0.6 98.8 6.79 0.16 39 MGR Rat Testis N CDK 20 139 6.2 19 240 0.69 0.59 0.18 0.40 0.26 0.44 0.26 0.44 0.62 0.53 98.9 6.47 0.04 38 MGR Rat Testis N CDK 20 139 6.2 19 240 0.69 0.59 0.17 0.41 0.24 0.41 0.6 0.51 99.0 6.37 0.01 39 MGR Rat Testis N M MGR Rat Testis N N N CDK 14 143 58 25 240 0.59 0.69 0.69 0.29 0.20 0.50 0.50 0.59 0.59 0.69 0.69 0.09 0.39 0.69 0.69 0.69 0.69 0.09 0.39 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.6	MGR Rat Testis	KF		20	116	85	19	240	0.57	0.19	0.51	0.28	0.51	0.58	0.54	-98.9	6.3	0.07	39
Spectrop More Real Tests Spectrop More Real	MGR Rat Testis	RF	/	17	117	84	22	240	0.56	0.17	0.44	0.24	0.44	0.58	0.51	-99.0	6.31	0.01	39
MGR Rat Testes RF hores 18 111 90 21 240 0.54 0.17 0.46 0.24 0.46 0.55 0.51 99.0 6.19 0.01 35 ASN MGR Rat Testes N Adriana 18 120 80 21 239 0.59 0.18 0.46 0.26 0.46 0.6 0.53 98.9 6.39 0.05 35 MGR Rat Testes N Rores N Rore Rat Testes N Rores N Rores N Rore Rat Testes N Rore Rat Testes N Rores N Rore Rat Testes N Rores N Rore Rat Testes N Rore Rat Test	MGR Rat Testis	RF	QNPR	19	113	88	20	240	0.55	0.18	0.49	0.26	0.49	0.56	0.52	-99.0	6.24	0.04	39
ASN AlogPs, N Octate 20 125 76 19 240 0.6 0.21 0.51 0.3 0.51 0.62 0.57 98.9 6.39 0.05 38 ASN AlogPs, N Octate 20 125 76 19 240 0.6 0.21 0.51 0.3 0.51 0.62 0.57 98.9 6.39 0.05 38 ASN ASN CICK 20 127 73 19 239 0.62 0.22 0.51 0.3 0.51 0.64 0.57 98.9 6.54 0.11 36 ASN Chemaxo N CICK 20 127 74 21 240 0.6 0.2 0.62 0.27 0.46 0.63 0.55 98.9 6.52 0.07 36 ASN Chemaxo N Dragon6 21 141 60 18 240 0.68 0.26 0.54 0.35 0.54 0.7 0.62 98.8 6.84 0.19 36 ASN Fragment N Or 20 139 62 19 240 0.68 0.26 0.54 0.35 0.54 0.7 0.62 98.8 6.84 0.19 36 ASN ASN Chemato N Or 20 139 62 19 240 0.69 0.24 0.51 0.33 0.51 0.69 0.6 98.8 6.79 0.16 35 ASN Morra, N Grant Testis N Morra N Grant Testis N N Horts N HORT N HORTS N HOR		- D-F		40	444			0.40	0.54	0.47	0.40	0.04	0.40	0.55	0.54	00.0	0.40	0.04	
MGR RatTresis N Adriana 18 120 80 21 239 0.58 0.18 0.46 0.26 0.46 0.6 0.53 0.98 9 6.39 0.05 38 MGR RatTresis N O Clestate 20 125 76 19 240 0.6 0.21 0.51 0.3 0.51 0.62 0.57 0.98 9 6.39 0.01 38 ASN ALogPS, ASN Chemaxo N O Clestate 20 127 73 19 239 0.62 0.22 0.51 0.3 0.51 0.64 0.57 0.98 9 6.54 0.11 38 ASN Chemaxo N O To 12 127 74 21 240 0.6 0.2 0.46 0.27 0.46 0.63 0.55 0.98 9 6.52 0.07 38 MGR RatTresis N O Dragond 21 141 60 18 240 0.68 0.26 0.54 0.35 0.54 0.7 0.62 0.98 8 6.84 0.19 38 MGR RatTresis N O Or 20 139 62 19 240 0.66 0.24 0.51 0.33 0.51 0.69 0.6 0.98 6.79 0.16 38 MGR RatTresis N O GFRag 17 125 76 22 240 0.59 0.18 0.44 0.26 0.44 0.62 0.53 0.98 6.47 0.04 38 MGR RatTresis N N Inductive 16 121 80 23 240 0.59 0.18 0.44 0.24 0.41 0.6 0.51 0.90 0.6 0.90 6.37 0.01 38 MGR RatTresis N N MGR RatTresis N N ONPR 16 135 66 23 240 0.59 0.17 0.41 0.24 0.41 0.62 0.52 0.90 0.64 0.02 38 MGR RatTresis N N ONPR 14 143 58 25 240 0.65 0.19 0.36 0.25 0.36 0.71 0.54 0.98 6.81 0.06 38 MGR RatTresis N N N ONPR 14 143 58 25 240 0.65 0.19 0.36 0.25 0.36 0.71 0.54 0.98 6.81 0.06 38 MGR RatTresis N N N ONPR 13 148 52 26 239 0.67 0.2 0.31 0.25 0.33 0.74 0.54 0.98 6.81 0.06 38 MGR RatTresis N N CDK, TA N N N ONPR 15 13 148 52 26 239 0.67 0.2 0.33 0.25 0.33 0.74 0.54 0.98 6.81 0.06 38 MGR RatTresis N N CDK, TA N N N ONPR 15 14 143 58 25 240 0.65 0.19 0.36 0.25 0.36 0.71 0.54 0.98 6.81 0.06 38 MGR RatTresis N N CDK, TA N N N N TP 13 13 188 63 26 240 0.63 0.19 0.28 0.22 0.28 0.76 0.52 0.90 6.94 0.04 38 MGR RatTresis N N CDK, TA N N N TP 13 13 188 63 26 240 0.63 0.19 0.28 0.22 0.28 0.76 0.52 0.90 6.94 0.04 38 MGR RatTresis N TA, TP 13 13 88 27 240 0.52 0.12 0.12 0.12 0.10 0.10 0.50 0.54 0.99 6.50 0.07 38 MGR RatTresis N TA, TP 13 13 88 27 240 0.52 0.12 0.12 0.12 0.13 0.15 0.56 0.43 0.99 6.56 0.17 0.5 38 MGR RatTresis N TA, TP 19 128 72 20 239 0.62 0.12 0.12 0.12 0.13 0.15 0.16 0.50 0.43 0.99 6.50 0.07 38 MGR RatTresis N TA, TP 13 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.18 0.56 0.43 0.99 6.50 0.07 38 MGR RatTresis N TA	MGR Rat Testis		nores	18	111	90	21	240	0.54	0.17	0.46	0.24	0.46	0.55	0.51	-99.0	6.19	0.01	39
MGR Rat Tesils	MGR Rat Testis		Adriana	18	120	80	21	239	0.58	0.18	0.46	0.26	0.46	0.6	0.53	-98.9	6.39	0.05	39
MGR Rat Tesils																			
ASN N CDK 20 127 73 19 239 0.62 0.22 0.51 0.3 0.51 0.64 0.57 -98.9 6.54 0.11 35 ASN Chemaxo N n n 18 127 74 21 240 0.6 0.2 0.46 0.27 0.46 0.63 0.55 -98.9 6.52 0.07 35 ASN Chemaxo N n n 18 127 74 21 240 0.6 0.2 0.46 0.27 0.46 0.63 0.55 -98.9 6.52 0.07 35 ASN Fragment MGR Rat Testis N or 20 139 62 19 240 0.66 0.24 0.51 0.33 0.51 0.69 0.6 98.8 6.84 0.19 35 ASN Fragment MGR Rat Testis N or 20 139 62 19 240 0.66 0.24 0.51 0.33 0.51 0.69 0.6 98.8 6.87 0.16 35 ASN Fragment MGR Rat Testis N GSFrag 17 125 76 22 240 0.59 0.18 0.44 0.26 0.44 0.62 0.53 -98.9 6.47 0.04 35 ASN MGR Rat Testis N N N MGR Rat Testis N N N MGR Rat Testis N N N N CDK, TP 16 143 57 23 239 0.67 0.2 0.33 0.25 0.33 0.74 0.54 98.9 6.87 0.14 35 ASN MGR Rat Testis N N TA, TP 13 138 63 26 240 0.63 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.69 0.04 35 ASN MGR Rat Testis N TA, TP 13 138 63 26 240 0.63 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.69 0.04 0.04 35 ASN MGR Rat Testis N TA, TP 13 138 63 26 240 0.63 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.69 0.04 0.04 35 ASN MGR Rat Testis N TA, TP 13 138 63 26 240 0.63 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.69 0.04 0.04 35 ASN MGR Rat Testis N TA, TP 13 138 63 24 239 0.64 0.19 0.38 0.25 0.33 0.74 0.54 -99.9 6.67 0.1 35 ASN MGR Rat Testis N TA, TP 13 138 63 24 239 0.62 0.02 0.41 0.29 0.41 0.72 0.56 -99.9 6.69 0.04 0.04 35 ASN MGR Rat Testis N TA, TP 13 138 63 24 239 0.62 0.20 0.44 0.27 0.44 0.65 0.54 -99.9 6.69 0.07 35 ASN MGR Rat Testis N TA, TP 13 138 63 24 239 0.62 0.20 0.44 0.27 0.44 0.65 0.54 -99.9 6.69 0.07 35 ASN MGR Rat Testis N TA, TP 13 138 63 24 239 0.62 0.20 0.44 0.27 0.44 0.65 0.54 -99.9 6.69 0.07 35 ASN MGR Rat Testis N TA, TP 13 138 82 27 240 0.52 0.12 0.14 0.29 0.49 0.29 0.49 0.64 0.66 0.43 -99.1 6.09 0.07 35 ASN MGR Rat Testis N TA, TP 13 138 82 72 240 0.52 0.12 0.14 0.29 0.49 0.29 0.49 0.64 0.66 0.43 -99.1 6.69 0.07 35 A	MOD Det Teetie		•	20	105	76	10	240	0.6	0.21	0.51	0.2	0.51	0.60	0.57	00.0	6 40	0.1	20
MGR Rat Tesils N CDK 20 127 73 19 239 0.62 0.22 0.51 0.3 0.51 0.64 0.57 -98.9 6.54 0.11 38 ASN Chemaxo N n 18 127 74 21 240 0.6 0.2 0.46 0.27 0.46 0.63 0.55 -98.9 6.52 0.07 35 ASN Chemaxo N n 18 127 74 21 240 0.6 0.2 0.46 0.27 0.46 0.63 0.55 -98.9 6.52 0.07 35 ASN GRAT Rat Tesils N Dragon6 21 141 60 18 240 0.68 0.26 0.54 0.35 0.54 0.7 0.62 98.8 6.84 0.19 35 ASN Fragment MGR Rat Tesils N GSFrag 17 125 76 22 240 0.59 0.18 0.44 0.26 0.44 0.62 0.53 98.9 6.79 0.16 36 ASN MGR Rat Tesils N Inductive 16 121 80 23 240 0.59 0.17 0.41 0.24 0.41 0.60 0.51 99.0 6.37 0.01 35 ASN MGR Rat Tesils N N MGR Rat Tesils N MGR Rat Tesils N N CDK, TA MGR Rat Tesils N N TA 11 153 48 28 240 0.63 0.10 0.28 0.22 0.41 0.29 0.41 0.70 0.50 -99.0 6.94 0.04 35 ASN MGR Rat Tesils N N TA 11 153 48 28 240 0.63 0.10 0.28 0.22 0.41 0.29 0.40 0.50 0.50 -99.0 6.60 0.02 36 ASN MGR Rat Tesils N N CDK, TA MGR Rat Tesils N N CDK, TA MGR Rat Tesils N N TA 11 153 48 28 240 0.63 0.10 0.28 0.22 0.28 0.76 0.52 -99.0 6.94 0.04 35 ASN MGR Rat Tesils N TA 11 153 48 28 240 0.63 0.10 0.29 0.24 0.25 0.35 0.30 0.74 0.54 -98.9 6.97 0.10 35 ASN MGR Rat Tesils N TA 11 153 48 28 240 0.63 0.10 0.29 0.20 0.41 0.29 0.41 0.29 0.40 0.50 -99.0 6.94 0.04 35 ASN MGR Rat Tesils N TA 11 153 48 28 240 0.63 0.10 0.30 0.25 0.30 0.70 0.54 0.99.0 6.90 0.90 0.90 0.90 0.90 0.90 0.	MGR Rat Testis		OEstate	20	125	70	19	240	0.6	0.21	0.51	0.3	0.51	0.02	0.57	-96.9	0.49	0.1	38
MGR Rat Testis N Dragon6 21 141 60 18 240 0.6 0.2 0.46 0.27 0.46 0.63 0.55 -98.9 6.52 0.07 35 ASN MGR Rat Testis N Dragon6 21 141 60 18 240 0.68 0.26 0.54 0.35 0.54 0.7 0.62 -98.8 6.84 0.19 35 ASN Fragment N Or 20 139 62 19 240 0.66 0.24 0.51 0.33 0.51 0.69 0.6 -98.8 6.79 0.16 35 ASN MGR Rat Testis N GSFrag 17 125 76 22 240 0.59 0.18 0.44 0.26 0.44 0.62 0.53 -98.9 6.47 0.04 35 ASN MGR Rat Testis N TA 11 152 48 28 29 0.68 0.19 0.28 0.22 0.28 0.76 0.52 0.99.0 6.94 0.04 36 ASN MGR Rat Testis N TA 11 153 48 28 240 0.68 0.19 0.28 0.22 0.28 0.76 0.52 0.99.0 6.94 0.04 36 ASN MGR Rat Testis N TA 11 153 48 28 240 0.68 0.19 0.28 0.22 0.28 0.76 0.52 0.99.0 6.94 0.04 36 ASN MGR Rat Testis N TA 11 153 48 28 240 0.68 0.19 0.28 0.29 0.28 0.70 0.50 0.51 0.99.0 6.94 0.04 36 ASN MGR Rat Testis N TA 11 153 48 28 240 0.68 0.19 0.28 0.29 0.29 0.49 0.69 0.51 0.99.0 6.95 0.07 0.90 0.90 0.90 0.90 0.90 0.90 0.90	MGR Rat Testis		CDK	20	127	73	19	239	0.62	0.22	0.51	0.3	0.51	0.64	0.57	-98.9	6.54	0.11	39
ASN NGR Rat Testis N Dragon6 21 141 60 18 240 0.68 0.26 0.54 0.35 0.54 0.7 0.62 -98.8 6.84 0.19 35 ASN Fragment MGR Rat Testis N or 20 139 62 19 240 0.66 0.24 0.51 0.33 0.51 0.69 0.6 -98.8 6.84 0.19 35 ASN MGR Rat Testis N Or 20 139 62 19 240 0.66 0.24 0.51 0.33 0.51 0.69 0.6 -98.8 6.87 0.14 35 ASN MGR Rat Testis N Or 20 139 62 19 240 0.65 0.24 0.51 0.33 0.51 0.69 0.6 -98.8 6.87 0.14 35 ASN MGR Rat Testis N OR SFrag 17 125 76 22 240 0.59 0.18 0.44 0.26 0.44 0.62 0.53 -98.9 6.47 0.04 35 ASN MGR Rat Testis N Mera, N More, 16 135 66 23 240 0.63 0.2 0.41 0.26 0.41 0.67 0.54 -98.9 6.67 0.06 38 ASN MGR Rat Testis N ONPR 16 135 66 23 240 0.63 0.2 0.41 0.26 0.41 0.67 0.54 -98.9 6.81 0.06 38 ASN MGR Rat Testis N N DOR, TA, N TP 13 148 52 26 239 0.67 0.2 0.33 0.25 0.33 0.74 0.54 -98.9 6.81 0.06 38 ASN MGR Rat Testis N CDK, TA, N TP 13 148 52 26 239 0.67 0.2 0.33 0.25 0.33 0.74 0.54 -98.9 6.87 0.1 38 ASN MGR Rat Testis N CDK, TA 11 152 48 28 239 0.68 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.94 0.04 38 ASN MGR Rat Testis N CDK, TP 16 143 57 23 239 0.67 0.22 0.41 0.29 0.41 0.72 0.56 -98.9 6.87 0.1 38 ASN MGR Rat Testis N TA, TP 8 144 57 31 240 0.63 0.12 0.21 0.15 0.21 0.72 0.46 -99.1 6.51 0.65 38 ASN MGR Rat Testis N TA, TP 13 138 63 26 240 0.63 0.17 0.33 0.23 0.33 0.69 0.51 -99.0 6.69 0.07 38 ASN MGR Rat Testis N TA, TP 13 138 63 26 240 0.63 0.17 0.33 0.23 0.33 0.69 0.51 -99.0 6.69 0.07 38 MGR Rat Testis N TA, TP 13 138 63 26 240 0.63 0.17 0.33 0.23 0.33 0.69 0.51 -99.0 6.69 0.07 38 MGR Rat Testis N TA, TP 13 138 63 26 240 0.63 0.12 0.21 0.49 0.29 0.49 0.64 0.56 -98.9 6.59 0.07 38 MGR Rat Testis N TA, TP 13 138 63 26 240 0.63 0.14 0.29 0.49 0.29 0.49 0.64 0.56 -98.9 6.59 0.07 38 MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.49 0.29 0.49 0.64 0			Chemaxo																
MGR Rat Testis N Dragon6 Z1 141 60 18 240 0.68 0.26 0.54 0.35 0.54 0.7 0.62 -98.8 6.84 0.19 38 ASN Fragment N 0 0 20 139 62 19 240 0.66 0.24 0.51 0.33 0.51 0.69 0.6 -98.8 6.84 0.19 38 ASN MGR Rat Testis N Or 20 139 62 19 240 0.66 0.24 0.51 0.33 0.51 0.69 0.6 -98.8 6.79 0.16 38 ASN MGR Rat Testis N Inductive 16 121 80 23 240 0.59 0.18 0.44 0.26 0.44 0.62 0.53 -98.9 6.47 0.04 38 ASN MGR Rat Testis N Mersy 16 125 76 23 240 0.59 0.17 0.41 0.24 0.41 0.62 0.52 -99.0 6.46 0.02 38 ASN Mera, ASN Mera, ASN Mera, ASN Mera, ASN Mera, ASN MGR Rat Testis N ONPR 16 135 66 23 240 0.63 0.19 0.36 0.25 0.36 0.71 0.54 -98.9 6.87 0.06 38 ASN ASN Nores N ONPR Nores 14 143 58 25 240 0.65 0.19 0.36 0.25 0.36 0.71 0.54 -98.9 6.81 0.06 38 ASN	MGR Rat Testis		n	18	127	74	21	240	0.6	0.2	0.46	0.27	0.46	0.63	0.55	-98.9	6.52	0.07	39
ASN Fragment N or 20 139 62 19 240 0.66 0.24 0.51 0.33 0.51 0.69 0.6 -98.8 6.79 0.16 38 ASN MGR Rat Testis N Or 20 139 62 19 240 0.59 0.18 0.44 0.26 0.44 0.62 0.53 -98.9 6.47 0.04 38 ASN MGR Rat Testis N Inductive 16 121 80 23 240 0.57 0.17 0.41 0.24 0.41 0.6 0.51 -99.0 6.37 0.01 38 ASN MGR Rat Testis N Mers N N Mers N Mers N N N N N N N N N N N N N N N N N N N	MGR Rat Testis		Dragon6	21	141	60	18	240	0.68	0.26	0.54	0.35	0.54	0.7	0.62	-98.8	6.84	0.19	39
AGR Rat Testis N GSFrag 17 125 76 22 240 0.59 0.18 0.44 0.26 0.44 0.62 0.53 -98.9 6.47 0.04 38 ASN N Inductive 16 121 80 23 240 0.57 0.17 0.41 0.24 0.41 0.60 0.51 -99.0 6.37 0.01 38 ASN MGR Rat Testis N Mera, MGR Rat Testis N Mera, MGR Rat Testis N Mores 14 143 58 25 240 0.63 0.2 0.41 0.26 0.41 0.67 0.54 -98.9 6.67 0.06 38 ASN CDK, TA 11 152 48 28 239 0.68 0.19 0.28 0.25 0.36 0.71 0.54 -98.9 6.92 0.06 38 ASN MGR Rat Testis N CDK, TA 11 153 48 28 239 0.68 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.94 0.04 38 ASN MGR Rat Testis N N TA 11 153 48 28 240 0.63 0.17 0.22 0.41 0.29 0.41 0.72 0.56 -98.9 6.67 0.19 0.36 0.25 0.36 0.71 0.54 -98.9 6.92 0.06 38 ASN MGR Rat Testis N N TA 11 153 48 28 240 0.63 0.17 0.22 0.41 0.29 0.41 0.72 0.56 -98.9 6.87 0.1 38 ASN MGR Rat Testis N N TA 11 153 48 28 240 0.63 0.17 0.22 0.41 0.29 0.41 0.72 0.56 -98.9 6.87 0.1 38 ASN MGR Rat Testis N TP 13 138 63 26 240 0.63 0.17 0.33 0.23 0.33 0.69 0.51 -99.0 6.94 0.04 38 ASN MGR Rat Testis N TP 13 138 63 26 240 0.63 0.17 0.33 0.23 0.33 0.69 0.51 -99.0 6.94 0.04 38 ASN MGR Rat Testis N TP 13 138 63 26 240 0.63 0.17 0.33 0.23 0.33 0.69 0.51 -99.0 6.96 0.02 38 ASN MGR Rat Testis N TP 13 138 63 26 240 0.63 0.17 0.33 0.23 0.33 0.69 0.51 -99.0 6.96 0.02 38 ASN MGR Rat Testis N TP 13 138 63 26 240 0.63 0.17 0.33 0.23 0.33 0.69 0.51 -99.0 6.96 0.02 38 ASN MGR Rat Testis LR TP 15 13 138 63 26 240 0.63 0.17 0.33 0.23 0.33 0.69 0.51 -99.0 6.96 0.02 38 ASN MGR Rat Testis LR TP 15 13 138 63 26 240 0.63 0.17 0.33 0.23 0.34 0.69 0.53 -98.9 6.51 0.05 38 ASN MGR Rat Testis LR TP 15 13 138 63 26 240 0.63 0.17 0.33 0.23 0.34 0.69 0.51 -99.0 6.66 0.02 38 ASN MGR Rat Testis LR TP 15 13 138 63 26 240 0.63 0.17 0.39 0.28 0.29 0.49 0.64 0.56 -98.9 6.59 0.07 38 ASN MGR Rat Testis LR TP 15 13 138 63 26 240 0.63 0.17 0.39 0.29 0.49 0.64 0.56 0.54 -98.9 6.59 0.07 38 ASN MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.12 0.12 0.13 0.17 0.31 0.56 0.43 -99.0 6.56 0.31 0.99 0.97 38 ASN MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.12 0.13 0.14 0.26 0.18 0.26 0.7 0.4																			
MGR Rat Testiss	MGR Rat Testis		or	20	139	62	19	240	0.66	0.24	0.51	0.33	0.51	0.69	0.6	-98.8	6.79	0.16	39
MGR Rat Testis ASN Morra, MGR Rat Testis N Inductive 16	MGP Pat Testis		GSFrag	17	125	76	22	240	0.50	O 18	0 44	0.26	0 44	0.62	0.53	-08 0	6 47	0 04	30
ASN MGR Rat Testis ASN MGR Rat Testis ASN MGR Rat Testis N TP 13 148 52 26 239 0.67 0.22 0.33 0.25 0.33 0.74 0.54 98.9 6.81 0.06 39 0.04 0.04 39 0.00 MGR Rat Testis N MGR Rat Testis N TP 13 148 52 26 239 0.67 0.22 0.33 0.25 0.33 0.74 0.54 98.9 6.92 0.06 39 0.00 0.00 MGR Rat Testis N CDK, TA, N CDK, TA 11 152 48 28 239 0.68 0.19 0.28 0.22 0.28 0.76 0.52 99.0 6.94 0.04 39 0.00 0.00 MGR Rat Testis N TA, TP 8 144 57 31 240 0.63 0.12 0.21 0.15 0.21 0.72 0.46 99.1 6.51 0.65 39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	WOR Teat Testis		Oor rag	- 17	123	70		240	0.00	0.10	0.77	0.20	0.77	0.02	0.00	-30.3	0.47	0.04	- 00
MGR Rat Testis N Mersy 16 125 76 23 240 0.59 0.17 0.41 0.24 0.41 0.62 0.52 -99.0 6.46 0.02 39 ASN ASN ASN Spectrop N hores 14 143 58 25 240 0.65 0.19 0.36 0.25 0.36 0.71 0.54 -98.9 6.67 0.06 39 ASN CDK, TA, MGR Rat Testis N TP 13 148 52 26 239 0.67 0.2 0.33 0.25 0.36 0.71 0.54 -98.9 6.81 0.06 39 ASN CDK, TA, MGR Rat Testis N TP 13 148 52 26 239 0.67 0.2 0.33 0.25 0.33 0.74 0.54 -98.9 6.92 0.06 39 ASN CDK, TA, MGR Rat Testis N CDK, TA 11 152 48 28 239 0.68 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.94 0.04 39 ASN MGR Rat Testis N CDK, TP 16 143 57 23 239 0.67 0.22 0.41 0.29 0.41 0.72 0.56 -98.9 6.87 0.1 39 ASN MGR Rat Testis N TA, TP 8 144 57 31 240 0.63 0.12 0.21 0.15 0.21 0.72 0.46 -99.1 6.51 0.065 39 ASN MGR Rat Testis N TA 11 153 48 28 240 0.68 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.94 0.04 39 ASN MGR Rat Testis N TA 11 153 48 28 240 0.63 0.12 0.21 0.15 0.21 0.72 0.46 -99.1 6.51 0.05 39 ASN MGR Rat Testis N TA 11 153 48 28 240 0.63 0.17 0.33 0.23 0.33 0.69 0.51 -99.0 6.96 0.02 39 ASN MGR Rat Testis N TA 11 153 48 28 240 0.63 0.17 0.33 0.23 0.33 0.69 0.51 -99.0 6.96 0.02 39 ASN MGR Rat Testis N TA 11 153 48 28 240 0.63 0.17 0.33 0.23 0.33 0.69 0.51 -99.0 6.96 0.02 39 ASN MGR Rat Testis LR CDK, TA 17 130 70 22 239 0.62 0.2 0.44 0.27 0.44 0.65 0.54 -98.9 6.57 0.05 39 ASN MGR Rat Testis LR CDK, TA 17 130 70 22 239 0.62 0.2 0.44 0.27 0.44 0.65 0.54 -98.9 6.50 0.7 0.05 39 ASN MGR Rat Testis LR CDK, TA 17 130 70 22 239 0.62 0.2 0.44 0.27 0.44 0.65 0.54 -98.9 6.50 0.7 0.05 39 ASN MGR Rat Testis LR CDK, TP 19 128 72 20 239 0.62 0.2 0.44 0.27 0.49 0.29 0.49 0.64 0.56 0.43 -99.0 6.56 0.1 39 ASN MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.0 6.56 0.38 39 ASN MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.48 -99.0 6.56 0.38 39 ASN MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.12 0.31 0.17 0.31 0.56 0.48 -99.0 6.56 0.38 39 ASN MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.12 0.13 0.17 0.31 0.56 0.48 -99.0 6.56 0.38 39 ASN MGR Rat Testis LR TA, TP 12	MGR Rat Testis	N	Inductive	16	121	80	23	240	0.57	0.17	0.41	0.24	0.41	0.6	0.51	-99.0	6.37	0.01	39
ASN ORR Rat Testis N QNPR 16 135 66 23 240 0.63 0.2 0.41 0.26 0.41 0.67 0.54 -98.9 6.67 0.06 39 ASN Spectrop MGR Rat Testis N hores 14 143 58 25 240 0.65 0.19 0.36 0.25 0.36 0.71 0.54 -98.9 6.67 0.06 39 ASN CDK, TA, MGR Rat Testis N TP 13 148 52 26 239 0.67 0.2 0.33 0.25 0.33 0.74 0.54 -98.9 6.92 0.06 39 ASN CDK, TA MGR Rat Testis N CDK, TA 11 152 48 28 239 0.68 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.94 0.04 39 ASN MGR Rat Testis N CDK, TP 16 143 57 23 239 0.67 0.22 0.41 0.29 0.41 0.72 0.56 -98.9 6.87 0.1 39 ASN MGR Rat Testis N TA, TP 8 144 57 31 240 0.63 0.12 0.21 0.15 0.21 0.72 0.46 -99.1 6.51 0.65 39 ASN MGR Rat Testis N TA, TP 8 144 57 31 240 0.63 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.94 0.04 39 ASN MGR Rat Testis N TA, TP 8 144 57 31 240 0.63 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.94 0.04 39 ASN MGR Rat Testis N TA, TP 8 143 138 63 26 240 0.68 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.94 0.04 39 ASN MGR Rat Testis N TP 13 138 63 26 240 0.68 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.94 0.04 39 ASN MGR Rat Testis N TP 13 138 63 26 240 0.63 0.17 0.33 0.23 0.33 0.69 0.51 -99.0 6.64 0.02 39 ASN MGR Rat Testis LR TP 15 137 63 24 239 0.64 0.19 0.38 0.26 0.38 0.69 0.53 -98.9 6.71 0.05 39 ASN MGR Rat Testis LR TP 15 137 63 24 239 0.62 0.2 0.44 0.27 0.44 0.65 0.54 -98.9 6.59 0.07 39 ASN MGR Rat Testis LR CDK, TA 17 130 70 22 239 0.62 0.2 0.44 0.27 0.44 0.65 0.54 -98.9 6.56 0.1 39 ASN MGR Rat Testis LR CDK, TP 19 128 72 20 239 0.62 0.21 0.49 0.29 0.49 0.64 0.56 -98.9 6.56 0.1 39 ASN MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 0.97 39 ASN MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 0.97 39 ASN MGR Rat Testis LR TA TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 0.38 39 ASN MGR Rat Testis LR TA TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 0.38 39 ASN				40	405	70	00	0.40	0.50	0.47	0.44	0.04	0.44	0.00	0.50	00.0	0.40	0.00	00
MGR Rat Testis	MGR Rat Testis		iviersy	16	125	76	23	240	0.59	0.17	0.41	0.24	0.41	0.62	0.52	-99.0	6.46	0.02	38
MGR Rat Testis N hores ASN CDK, TA, MGR Rat Testis N TP 13 148 52 26 239 0.67 0.2 0.33 0.25 0.33 0.74 0.54 -98.9 6.81 0.06 39 ASN MGR Rat Testis N TP 13 148 52 26 239 0.67 0.2 0.33 0.25 0.33 0.74 0.54 -98.9 6.92 0.06 39 ASN MGR Rat Testis N CDK, TA ASN MGR Rat Testis N CDK, TA 11 152 48 28 239 0.68 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.94 0.04 39 ASN MGR Rat Testis N CDK, TP 16 143 57 23 239 0.67 0.22 0.41 0.29 0.41 0.72 0.56 -98.9 6.87 0.1 39 ASN MGR Rat Testis N TA, TP 8 144 57 31 240 0.63 0.12 0.21 0.15 0.21 0.72 0.46 -99.1 6.51 0.65 39 ASN MGR Rat Testis N TA 11 153 48 28 240 0.68 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.94 0.04 39 ASN MGR Rat Testis N TA 11 153 48 28 240 0.68 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.94 0.04 39 ASN MGR Rat Testis N TP 13 138 63 26 240 0.63 0.17 0.33 0.23 0.33 0.69 0.51 -99.0 6.66 0.02 39 FSM CDK, TA, MGR Rat Testis LR TP 15 137 63 24 239 0.62 0.2 0.44 0.27 0.44 0.65 0.54 -98.9 6.57 0.07 39 MGR Rat Testis LR CDK, TP 19 128 72 20 239 0.62 0.2 0.44 0.27 0.44 0.65 0.54 -98.9 6.50 0.07 39 MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 0.97 39 MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 0.97 39 MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 0.97 39 MGR Rat Testis LR TA, TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 0.97 39 MGR Rat Testis LR TA, TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 0.97 39 MGR Rat Testis LR TA, TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 0.97 39 MGR Rat Testis LR TA, TA, TP 15 137 63 24 239 0.62 0.12 0.15 0.15 0.18 0.26 0.7 0.48 -99.0 6.56 0.38 39	MGR Rat Testis		QNPR	16	135	66	23	240	0.63	0.2	0.41	0.26	0.41	0.67	0.54	-98.9	6.67	0.06	39
ASN CDK, TA, MGR Rat Testis N TP 13 148 52 26 239 0.67 0.2 0.33 0.25 0.33 0.74 0.54 -98.9 6.92 0.06 39 MGR Rat Testis N CDK, TA 11 152 48 28 239 0.68 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.94 0.04 39 MGR Rat Testis N CDK, TP 16 143 57 23 239 0.67 0.22 0.41 0.29 0.41 0.72 0.56 -98.9 6.87 0.1 39 MGR Rat Testis N TA, TP 8 144 57 31 240 0.63 0.12 0.21 0.15 0.21 0.72 0.46 -99.1 6.51 0.65 39 MGR Rat Testis N TA TA 11 153 48 28 240 0.68 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.94 0.04 39 MGR Rat Testis N TA TA 11 153 48 28 240 0.68 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.94 0.04 39 MGR Rat Testis N TP 13 138 63 26 240 0.63 0.17 0.33 0.23 0.33 0.69 0.51 -99.0 6.66 0.02 39 MGR Rat Testis N TP 15 137 63 24 239 0.64 0.19 0.38 0.26 0.38 0.69 0.53 -98.9 6.71 0.05 39 MGR Rat Testis LR TP 15 137 63 24 239 0.62 0.2 0.44 0.27 0.44 0.65 0.54 -98.9 6.59 0.07 39 MGR Rat Testis LR CDK, TA 17 130 70 22 239 0.62 0.2 0.44 0.27 0.44 0.65 0.54 -98.9 6.59 0.07 39 MGR Rat Testis LR CDK, TP 19 128 72 20 239 0.62 0.2 0.44 0.27 0.44 0.65 0.54 -98.9 6.56 0.1 39 MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 0.97 39 MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 0.97 39 MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 0.97 39 MGR Rat Testis LR TA, TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 0.97 39 MGR Rat Testis LR TA, TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 0.97 39 MGR Rat Testis LR TA, TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 0.97 39		ASN	Spectrop																
MGR Rat Testis N TP 13 148 52 26 239 0.67 0.2 0.33 0.25 0.33 0.74 0.54 -98.9 6.92 0.06 39 ASN AGN AGN AGN AGN AGN AGN AGN AGN AGN AG	MGR Rat Testis			14	143	58	25	240	0.65	0.19	0.36	0.25	0.36	0.71	0.54	-98.9	6.81	0.06	39
ASN MGR Rat Testis N CDK, TA 11 152 48 28 239 0.68 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.94 0.04 39 MGR Rat Testis N CDK, TP 16 143 57 23 239 0.67 0.22 0.41 0.29 0.41 0.72 0.56 -98.9 6.87 0.1 39 MGR Rat Testis N TA, TP 8 144 57 31 240 0.63 0.12 0.21 0.15 0.21 0.72 0.46 -99.1 6.51 0.65 39 MGR Rat Testis N TA TA TA TB 11 153 48 28 240 0.68 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.94 0.91 0.51 0.95 39 MGR Rat Testis N TA TB TB 13 138 63 26 240 0.68 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.94 0.94 0.94 39 MGR Rat Testis N TP 13 138 63 26 240 0.68 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.94 0.94 0.94 39 MGR Rat Testis N TP 13 138 63 26 240 0.68 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.94 0.94 0.94 39 MGR Rat Testis N TP 13 138 63 26 240 0.63 0.17 0.33 0.23 0.33 0.69 0.51 -99.0 6.66 0.02 39 MGR Rat Testis LR TP 15 137 63 24 239 0.64 0.19 0.38 0.26 0.38 0.69 0.53 -98.9 6.71 0.05 39 MGR Rat Testis LR TD 15 137 63 24 239 0.64 0.19 0.38 0.26 0.38 0.69 0.53 -98.9 6.71 0.05 39 MGR Rat Testis LR TD 15 137 83 24 239 0.62 0.2 0.44 0.27 0.44 0.65 0.54 -98.9 6.56 0.1 39 MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.0 6.56 0.03 39 MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.0 6.56 0.03 39 MGR Rat Testis LR TA TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.70 0.48 -99.0 6.56 0.03 39	MGR Rat Testis			13	148	52	26	239	0.67	0.2	0.33	0.25	0.33	0 74	0 54	-98 9	6 92	0.06	30
ASN N CDK, TP 16 143 57 23 239 0.67 0.22 0.41 0.29 0.41 0.72 0.56 -98.9 6.87 0.1 39 ASN MGR Rat Testis N TA, TP 8 144 57 31 240 0.63 0.12 0.21 0.15 0.21 0.72 0.46 -99.1 6.51 0.65 39 ASN N TA 11 153 48 28 240 0.68 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.94 0.04 39 ASN N TP 13 138 63 26 240 0.63 0.17 0.33 0.23 0.33 0.69 0.51 -99.0 6.66 0.02 39 FSM CDK, TA, LR TP 15 137 63 24 239 0.64 0.19 0.38 0.26 0.38 0.69 0.53 -98.9 6.71 0.05 39 ASN MGR Rat Testis LR TP 15 137 63 24 239 0.64 0.19 0.38 0.26 0.38 0.69 0.53 -98.9 6.71 0.05 39 ASN MGR Rat Testis LR CDK, TA 17 130 70 22 239 0.62 0.2 0.44 0.27 0.44 0.65 0.54 -98.9 6.59 0.07 39 ASN MGR Rat Testis LR CDK, TP 19 128 72 20 239 0.62 0.2 0.44 0.27 0.44 0.65 0.54 -98.9 6.56 0.1 39 ASN MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.49 0.29 0.49 0.64 0.56 -98.9 6.56 0.1 39 ASN MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 0.97 39 ASN MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 0.97 39 ASN MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 0.97 39 ASN MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.0 6.56 0.38 39 ASN MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 0.38 39 ASN MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 0.38 39 ASN MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 0.38 39 ASN MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 0.38 39 ASN MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 0.38 39 ASN MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 0.38 39 ASN MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 0.38 39 ASN MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 0.38 39 ASN MGR RAT TESTIS DATE TA TA 10 140 61 29 240 0.63 0.14 0.2	WOR Rat resus			10	140	<u> </u>	20	200	0.07	0.2	0.00	0.23	0.00	0.74	0.54	-30.3	0.52	0.00	
MGR Rat Testis	MGR Rat Testis		CDK, TA	11	152	48	28	239	0.68	0.19	0.28	0.22	0.28	0.76	0.52	-99.0	6.94	0.04	39
ASN ASN ASN ASN ASN ASN MGR Rat Testis N TA, TP 8 144 57 31 240 0.63 0.12 0.21 0.15 0.21 0.72 0.46 -99.1 6.51 .065 39 ASN ASN MGR Rat Testis N TA 11 153 48 28 240 0.68 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.94 0.04 39 ASN MGR Rat Testis N TP 13 138 63 26 240 0.63 0.17 0.33 0.23 0.33 0.69 0.51 -99.0 6.66 0.02 39 FSM CDK, TA, TP 15 137 63 24 239 0.64 0.19 0.38 0.26 0.38 0.69 0.53 -98.9 6.71 0.05 39 FSM MGR Rat Testis LR TP 15 137 63 24 239 0.62 0.2 0.44 0.27 0.44 0.65 0.54 -98.9 6.59 0.07 39 FSM MGR Rat Testis LR CDK, TA 17 130 70 22 239 0.62 0.2 0.44 0.27 0.44 0.65 0.54 -98.9 6.59 0.07 39 FSM MGR Rat Testis LR CDK, TP 19 128 72 20 239 0.62 0.21 0.49 0.29 0.49 0.64 0.56 -98.9 6.56 0.1 39 FSM MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 .097 39 FSM MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 .097 39 FSM MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 0.38 39 FSM	MCD Dat Tastia		CDK TD	16	142	57	22	220	0.67	0.22	0.41	0.20	0.41	0.72	0.56	00.0	6 07	0.1	20
ASN N TA 11 153 48 28 240 0.68 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.94 0.04 39 ASN MGR Rat Testis N TP 13 138 63 26 240 0.63 0.17 0.33 0.23 0.33 0.69 0.51 -99.0 6.66 0.02 39 FSM CDK, TA, LR TP 15 137 63 24 239 0.64 0.19 0.38 0.26 0.38 0.69 0.53 -98.9 6.71 0.05 39 FSM MGR Rat Testis LR CDK, TA 17 130 70 22 239 0.62 0.2 0.44 0.27 0.44 0.65 0.54 -98.9 6.59 0.07 39 FSM MGR Rat Testis LR CDK, TP 19 128 72 20 239 0.62 0.21 0.49 0.29 0.49 0.64 0.56 -98.9 6.56 0.1 39 FSM MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 .097 39 FSM MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 .097 39 FSM MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 .038 39 FSM FSM MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 .038 39 FSM	MGR Rat Testis		CDK, IF	10	143	37	23	239	0.07	0.22	0.41	0.29	0.41	0.72	0.50	-90.9	0.07	0.1	38
MGR Rat Testis N TA 11 153 48 28 240 0.68 0.19 0.28 0.22 0.28 0.76 0.52 -99.0 6.94 0.04 39 ASN MGR Rat Testis N TP 13 138 63 26 240 0.63 0.17 0.33 0.23 0.33 0.69 0.51 -99.0 6.66 0.02 39 FSM CDK, TA, LR TP 15 137 63 24 239 0.64 0.19 0.38 0.26 0.38 0.69 0.53 -98.9 6.71 0.05 39 FSM MGR Rat Testis LR CDK, TA 17 130 70 22 239 0.62 0.2 0.44 0.27 0.44 0.65 0.54 -98.9 6.59 0.07 39 FSM MGR Rat Testis LR CDK, TP 19 128 72 20 239 0.62 0.21 0.49 0.29 0.49 0.64 0.56 -98.9 6.56 0.1 39 FSM MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 0.97 39 FSM MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 0.38 39 FSM MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 0.38 39 FSM	MGR Rat Testis	N	TA, TP	8	144	57	31	240	0.63	0.12	0.21	0.15	0.21	0.72	0.46	-99.1	6.51	.065	39
ASN N TP 13 138 63 26 240 0.63 0.17 0.33 0.23 0.33 0.69 0.51 -99.0 6.66 0.02 39 FSM CDK, TA, LR TP 15 137 63 24 239 0.64 0.19 0.38 0.26 0.38 0.69 0.53 -98.9 6.71 0.05 39 FSM LR CDK, TA 17 130 70 22 239 0.62 0.2 0.44 0.27 0.44 0.65 0.54 -98.9 6.59 0.07 39 FSM LR CDK, TP 19 128 72 20 239 0.62 0.21 0.49 0.29 0.49 0.64 0.56 -98.9 6.56 0.1 39 FSM MGR Rat Testis LR CDK, TP 19 128 72 20 239 0.62 0.21 0.49 0.29 0.49 0.64 0.56 -98.9 6.56 0.1 39 FSM MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 0.097 39 FSM MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 0.038 39 FSM	MOD D : T ::			4.4	150	40	00	040	0.00	0.40	0.00	0.00	0.00	0.70	0.50	00.0	6.04	0.04	
MGR Rat Testis N TP 13 138 63 26 240 0.63 0.17 0.33 0.23 0.33 0.69 0.51 -99.0 6.66 0.02 39 FSM CDK, TA, LR TP 15 137 63 24 239 0.64 0.19 0.38 0.26 0.38 0.69 0.53 -98.9 6.71 0.05 39 FSM MGR Rat Testis LR CDK, TA 17 130 70 22 239 0.62 0.2 0.44 0.27 0.44 0.65 0.54 -98.9 6.59 0.07 39 FSM MGR Rat Testis LR CDK, TP 19 128 72 20 239 0.62 0.21 0.49 0.29 0.49 0.64 0.56 -98.9 6.56 0.1 39 FSM MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 .097 39 FSM MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 .038 39 FSM MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 .038 39 FSM	MGR Rat Testis		IA	11	153	48	28	240	0.68	0.19	0.28	0.22	0.28	0.76	0.52	-99.0	0.94	U.U4	39
FSM CDK, TA, LR TP 15 137 63 24 239 0.64 0.19 0.38 0.26 0.38 0.69 0.53 -98.9 6.71 0.05 39 FSM MGR Rat Testis LR CDK, TP 19 128 72 20 239 0.62 0.21 0.49 0.29 0.49 0.64 0.56 -98.9 6.56 0.1 39 FSM MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 0.97 39 FSM MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 0.97 39 FSM MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 0.97 39 FSM MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 0.038 39 FSM	MGR Rat Testis		TP	13	138	63	26	240	0.63	0.17	0.33	0.23	0.33	0.69	0.51	-99.0	6.66	0.02	39
MGR Rat Testis LR TP 15 137 63 24 239 0.64 0.19 0.38 0.26 0.38 0.69 0.53 -98.9 6.71 0.05 39 FSM MGR Rat Testis LR CDK, TA 17 130 70 22 239 0.62 0.2 0.44 0.27 0.44 0.65 0.54 -98.9 6.59 0.07 39 FSM MGR Rat Testis LR CDK, TP 19 128 72 20 239 0.62 0.21 0.49 0.29 0.49 0.64 0.56 -98.9 6.56 0.1 39 FSM MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 .097 39 FSM MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 .038 39 FSM MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 .038 39 FSM																			
FSM LR CDK, TA 17 130 70 22 239 0.62 0.2 0.44 0.27 0.44 0.65 0.54 -98.9 6.59 0.07 39 FSM LR CDK, TP 19 128 72 20 239 0.62 0.21 0.49 0.29 0.49 0.64 0.56 -98.9 6.56 0.1 39 FSM LR CDK, TP 19 128 72 20 239 0.62 0.21 0.49 0.29 0.49 0.64 0.56 -98.9 6.56 0.1 39 FSM LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 .097 39 FSM LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 .038 39 FSM FSM LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 .038 39	MCD Dot Tootio			15	127	62	24	220	0.64	0.40	U 30	0.26	U 30	0.60	0 F2	00 0	6 71	0.05	20
MGR Rat Testis LR CDK, TA 17 130 70 22 239 0.62 0.2 0.44 0.27 0.44 0.65 0.54 -98.9 6.59 0.07 39 FSM MGR Rat Testis LR CDK, TP 19 128 72 20 239 0.62 0.21 0.49 0.29 0.49 0.64 0.56 -98.9 6.56 0.1 39 FSM MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 .097 39 FSM MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 .038 39 FSM MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 .038 39 FSM	NIOR ROLLIESTIS	LK	IF	10	13/	US	24	239	0.04	0.19	0.30	0.20	0.30	0.09	0.03	-90.9	U./ I	0.05	38
FSM LR CDK, TP 19 128 72 20 239 0.62 0.21 0.49 0.29 0.49 0.64 0.56 -98.9 6.56 0.1 39 FSM MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 .097 39 FSM MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 .038 39 FSM																			
MGR Rat Testis LR CDK, TP 19 128 72 20 239 0.62 0.21 0.49 0.29 0.49 0.64 0.56 -98.9 6.56 0.1 39 FSM MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 .097 39 FSM MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 .038 39 FSM	MGR Rat Testis	LR	CDK, TA	17	130	70	22	239	0.62	0.2	0.44	0.27	0.44	0.65	0.54	-98.9	6.59	0.07	39
MGR Rat Testis LR CDK, TP 19 128 72 20 239 0.62 0.21 0.49 0.29 0.49 0.64 0.56 -98.9 6.56 0.1 39 FSM MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 .097 39 FSM MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 .038 39 FSM		FSM																	
MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 .097 39 FSM MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 .038 39 FSM	MGR Rat Testis			19	128	72	20	239	0.62	0.21	0.49	0.29	0.49	0.64	0.56	-98.9	6.56	0.1	39
MGR Rat Testis LR TA, TP 12 113 88 27 240 0.52 0.12 0.31 0.17 0.31 0.56 0.43 -99.1 6.09 .097 39 FSM MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 .038 39 FSM																			
FSM MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 .038 39 FSM	MOD D-+T- "			40	110	00	07	040	0.50	0.40	0.24	0 47	0.24	0.50	0.40	00.4	6.00	007	20
MGR Rat Testis LR TA 10 140 61 29 240 0.63 0.14 0.26 0.18 0.26 0.7 0.48 -99.0 6.56 .038 39	IVIOR KAI TESTIS	LK	IA, IP	12	113	οσ	21	240	0.52	0.12	0.31	0.17	0.31	0.00	0.43	-99.1	0.09	.097	39
FSM		FSM																	
	MGR Rat Testis	LR	TA	10	140	61	29	240	0.63	0.14	0.26	0.18	0.26	0.7	0.48	-99.0	6.56	.038	39
		ECVA																	
	MGR Rat Testis		TP	10	138	63	29	240	0.62	0.14	0.26	0.18	0.26	0.69	0.47	-99.1	6.52	.046	39
		•						•				•						•	20

MGR Rat Testis	KNN	CDK, TA, TP	36	27	173	3	239	0.26	0.17	0.92	0.29	0.92	0.14	0.53	-98.9	3.01	0.06	39
MGR Rat Testis	KNN	CDK, TA	30	67	133	9	239	0.41	0.18	0.77	0.3	0.77	0.34	0.55	-98.9	4.99	0.08	39
MGR Rat Testis	KNN	CDK, TP	28	70	130	11	239	0.41	0.18	0.72	0.28	0.72	0.35	0.53	-98.9	5.18	0.05	39
MGR Rat Testis	KNN	TA, TP	34	42	159	5	240	0.32	0.18	0.87	0.29	0.87	0.21	0.54	-98.9	3.92	0.08	39
MGR Rat Testis	KNN	TA	31	59	142	8	240	0.38	0.18	0.79	0.29	0.79	0.29	0.54	-98.9	4.72	0.07	39
MGR Rat Testis	KNN	TP	25	79	122	14	240	0.43	0.17	0.64	0.27	0.64	0.39	0.52	-99.0	5.48	0.03	39
MGR Rat Testis		CDK, TA, TP	4	189	11	35	239	0.81	0.27	0.1	0.15	0.1	0.95	0.52	-99.0	7.88	0.07	39
MGR Rat Testis	LibS VM	CDK, TA	1	197	3	38	239	0.83	0.25	0.03	0.05	0.03	0.99	0.51	-99.0	8.09	0.03	39
MGR Rat Testis	LibS VM	CDK, TP	4	186	14	35	239	0.79	0.22	0.1	0.14	0.1	0.93	0.52	-99.0	7.63	0.05	39
MGR Rat Testis	LibS VM	TA, TP	0	195	6	39	240	0.81	0.	0.		0.	0.97	0.49	-99.0	6.39	.071	39
MGR Rat Testis	LibS VM	TA	0	191	10	39	240	0.8	0.	0.		0.	0.95	0.48	-99.0	5.89	.092	39
MGR Rat Testis		TP CDV TA	0	194	7	39	240	0.81	0.	0.		0.	0.97	0.48	-99.0	6.24	.076	39
MGR Rat Testis	A MLR	CDK, TA, TP	18	118	82	21	239	0.57	0.18	0.46	0.26	0.46	0.59	0.53	-98.9	6.35	0.04	39
MGR Rat Testis	A MLR	CDK, TA	18	121	79	21	239	0.58	0.19	0.46	0.26	0.46	0.61	0.53	-98.9	6.41	0.05	39
MGR Rat Testis	A MLR	CDK, TP	15	97	103	24	239	0.47	0.13	0.38	0.19	0.38	0.49	0.43	-99.1	5.88	.096	39
MGR Rat Testis	A MLR	TA, TP	15	127	74	24	240	0.59	0.17	0.38	0.23	0.38	0.63	0.51	-99.0	6.48	0.01	39
MGR Rat Testis	A MLR	TA	14	131	70	25	240	0.6	0.17	0.36	0.23	0.36	0.65	0.51	-99.0	6.54	0.01	39
MGR Rat Testis	A	TP CDK, TA,	21	118	83	18	240	0.58	0.2	0.54	0.29	0.54	0.59	0.56	-98.9	6.34	0.09	39
MGR Rat Testis	PLS		14	142	58	25	239	0.65	0.19	0.36	0.25	0.36	0.71	0.53	-98.9	6.8	0.06	39
MGR Rat Testis	PLS	CDK, TA	17	136	64	22	239	0.64	0.21	0.44	0.28	0.44	0.68	0.56	-98.9	6.73	0.09	39
MGR Rat Testis		CDK, TP	15	140	60	24	239	0.65	0.2	0.38	0.26	0.38	0.7	0.54	-98.9			39
MGR Rat Testis	PLS	TA, TP	9	141	60	30	240	0.63	0.13	0.23	0.17	0.23	0.7	0.47	-99.1			39
MGR Rat Testis MGR Rat Testis	PLS PLS	TA TP	11 13	129 136	72 65	28 26	240 240	0.58	0.13	0.28	0.18	0.28	0.64	0.46	-99.1 -99.0			39 39
MGR Rat Testis	J48	CDK, TA, TP	15	137	63	24	239	0.64	0.17	0.38	0.26	0.38	0.69	0.53	-98.9			39
MGR Rat Testis	J48	CDK, TA	9	141	59	30	239	0.63	0.13			0.23	0.71	0.47	-99.1			39
MGR Rat Testis	J48	CDK, TP	12	142	58	27	239	0.64	0.17	0.31	0.22	0.31	0.71	0.51	-99.0			39
MGR Rat Testis	J48	TA, TP	12	128	73	27	240	0.58	0.14	0.31	0.19	0.31	0.64	0.47	-99.1		.043	39
RACED Dot Tootio	J48	TA	8	147	54	31	240	0.65	0.13	0.21	0.16	0.21	0.73	0.47	-99.1			39
MGR Rat Testis		TP	7	151	50	32	240	0.66	0.12	0.18	0.15	0.18	0.75	0.47	-99.1	6.59	.06	39
MGR Rat Testis MGR Rat Testis	J48 RF	CDK, TA, TP	24	107	93	15	239		0.21		0.31		0.54	0.58	-98.8			39

MGR Rat Testis	RF	CDK, TA	17	118	82	22	239	0.56	0.17	0.44	0.25	0.44	0.59	0.51	-99.0	6.34	0.02	39
MGR Rat Testis	RF	CDK, TP	20	120	80	19	239	0.59	0.2	0.51	0.29	0.51	0.6	0.56	-98.9	6.39	0.08	39
MGR Rat Testis	RF	TA, TP	16	110	91	23	240	0.53	0.15	0.41	0.22	0.41	0.55	0.48	-99.0	6.15	.032	39
MGR Rat Testis	RF	TA	14	129	72	25	240	0.6	0.16	0.36	0.22	0.36	0.64	0.5	-99.0	6.49	0.	39
MGR Rat Testis	RF	TP	18	116	85	21	240	0.56	0.17	0.46	0.25	0.46	0.58	0.52	-99.0	6.3	0.03	39
MGR Rat Testis	FSM LR	Adriana	18	117	83	21	239	0.56	0.18	0.46	0.26	0.46	0.59	0.52	-99.0	6.33	0.03	39
MGR Rat Testis	FSM LR	ALogPS, OEstate	18	130	71	21	240	0.62	0.2	0.46	0.28	0.46	0.65	0.55	-98.9	6.59	0.08	39
MGR Rat Testis	FSM LR	CDK	24	120	80	15	239	0.6	0.23	0.62	0.34	0.62	0.6	0.61	-98.8	6.34	0.16	39
MGR Rat Testis	FSM LR	Chemaxo n	21	117	84	18	240	0.58	0.2	0.54	0.29	0.54	0.58	0.56	-98.9	6.32	0.09	39
MGR Rat Testis	FSM LR	Dragon6	23	119	82	16	240	0.59	0.22	0.59	0.32	0.59	0.59	0.59	-98.8	6.33	0.14	39
MGR Rat Testis	FSM LR	Fragment or	21	128	73	18	240	0.62	0.22	0.54	0.32	0.54	0.64	0.59	-98.8	6.54	0.13	39
MGR Rat Testis	FSM LR	GSFrag	15	134	67	24	240	0.62	0.18	0.38	0.25	0.38	0.67	0.53	-98.9	6.63	0.04	39
MGR Rat Testis	FSM LR	Inductive	26	82	119	13	240	0.45	0.18	0.67	0.28	0.67	0.41	0.54	-98.9	5.51	0.06	39
MGR Rat Testis	FSM LR	Mera, Mersy	16	130	71	23	240	0.61	0.18	0.41	0.25	0.41	0.65	0.53	-98.9	6.56	0.04	39
MGR Rat Testis	FSM LR	QNPR	15	137	64	24	240	0.63	0.19	0.38	0.25	0.38	0.68	0.53	-98.9	6.7	0.05	39
MGR Rat Testis	FSM LR	Spectrop hores	23	121	80	16	240	0.6	0.22	0.59	0.32	0.59	0.6	0.6	-98.8	6.37	0.14	39
MGR Rat Testis	KNN	Adriana	10	153	47	29	239	0.68	0.18	0.26	0.21	0.26	0.77	0.51	-99.0	6.91	0.02	39
MGR Rat Testis	KNN	ALogPS, OEstate	22	99	102	17	240	0.5	0.18	0.56	0.27	0.56	0.49	0.53	-98.9	5.95	0.04	39
MGR Rat Testis	KNN	CDK	28	98	102	11	239	0.53	0.22	0.72	0.33	0.72	0.49	0.6	-98.8	5.75	0.15	39
MGR Rat Testis	KNN	Chemaxo n	19	121	80	20	240	0.58	0.19	0.49	0.28	0.49	0.6	0.54	-98.9	6.4	0.07	39
MGR Rat Testis		Dragon6 Fragment	24	88	113	15	240	0.47	0.18		0.27	0.62	0.44		-98.9			39
MGR Rat Testis	KNN	•	17	146	55	22	240	0.68	0.24	0.44	0.31	0.44	0.73	0.58	-98.8	6.95	0.13	39
MGR Rat Testis	KNN	GSFrag	13	146	55	26	240	0.66	0.19	0.33	0.24	0.33	0.73	0.53	-98.9	6.85	0.05	39
MGR Rat Testis	KNN	Inductive Mera,	18	115	86	21	240	0.55	0.17	0.46	0.25	0.46	0.57	0.52	-99.0	6.27	0.03	39
MGR Rat Testis	KNN	Mersy	13	131	70	26	240	0.6	0.16	0.33	0.21	0.33	0.65	0.49	-99.0	6.5	.012	39
MGR Rat Testis	KNN	QNPR Spectrop	16	127	74	23	240	0.6	0.18	0.41	0.25	0.41	0.63	0.52	-99.0	6.5	0.03	39
MGR Rat Testis	KNN	hores	22	83	118	17	240	0.44	0.16	0.56	0.25	0.56	0.41	0.49	-99.0	5.63	.017	39

MGR Rat Testis	LibS VM	Adriana	5	172	28	34	239	0.74	0.15	0.13	0.14	0.13	0.86	0.49	-99.0 7.0	5 .013	39
MGR Rat Testis	LibS VM	ALogPS, OEstate	6	174	27	33	240	0.75	0.18	0.15	0.17	0.15	0.87	0.51	-99.0 7.2	3 0 02	39
WIGHT IVAL TESTIS	VIVI	OLSiale		174		- 33	240	0.73	0.10	0.15	0.17	0.15	0.07	0.51	-99.0 1.2	0.02	33
	LibS																
MGR Rat Testis	VM	CDK	9	153	47	30	239	0.68	0.16	0.23	0.19	0.23	0.77	0.5	-99.0 6.8	4 .004	39
	LihS	Chemaxo															
MGR Rat Testis	VM		5	180	21	34	240	0.77	0.19	0.13	0.15	0.13	0.9	0.51	-99.0 7.3	7 0.03	39
MOD Dat Taatia	LibS	Dragane	2	170	22	27	240	0.75	0.00	0.05	0.06	0.05	0.00	0.47	00.1 6.5	7 076	20
MGR Rat Testis	VM	Dragon6	2	178	23	37	240	0.75	0.08	0.05	0.06	0.05	0.89	0.47	-99.1 6.5	7 .076	39
	LibS	Fragment															
MGR Rat Testis	VM	or	7	184	17	32	240	8.0	0.29	0.18	0.22	0.18	0.92	0.55	-98.9 7.8	5 0.12	39
	LibS																
MGR Rat Testis	VM	GSFrag	3	170	31	36	240	0.72	0.09	0.08	0.08	0.08	0.85	0.46	-99.1 6.5	4 082	39
															20 0.0		- 50
	LibS					_											
MGR Rat Testis	VM	Inductive	5	178	23	34	240	0.76	0.18	0.13	0.15	0.13	0.89	0.51	-99.0 7.2	7 0.02	39
	LibS	Mera,															
MGR Rat Testis	VM	Mersy	0	199	2	39	240	0.83	0.	0.		0.	0.99	0.5	-99.0 7.3	6 .04	39
		-															
MOD D-4.T- "	LibS	ONDD	^	100	C	20	240	0.0	0	^		^	0.00	0.40	000 04	1 000	20
MGR Rat Testis	VM	QNPR	0	193	8	39	240	0.8	0.	0.		0.	0.96	0.48	-99.0 6.1	1 .082	39
	LibS	Spectrop															
MGR Rat Testis	VM	hores	4	185	16	35	240	0.79	0.2	0.1	0.14	0.1	0.92	0.51	-99.0 7.4	9 0.03	39
	MLR	A -lui	47	440	00	00	000	0.50	0.47	0.44	0.05	0.44	0.50	0.54	000.00	4 0 00	00
MGR Rat Testis	Α	Adriana	17	118	82	22	239	0.56	0.17	0.44	0.25	0.44	0.59	0.51	-99.0 6.3	4 0.02	39
	MLR	ALogPS,															
MGR Rat Testis	Α	OEstate	23	120	81	16	240	0.6	0.22	0.59	0.32	0.59	0.6	0.59	-98.8 6.3	5 0.14	39
	MLR		40	0.5	405	20	000	0.40	0.45	0.40	0.00	0.40	0.40	0.40	00.0 5.0	0 000	20
MGR Rat Testis	A MLR	CDK Chemaxo	19	95	105	20	239	0.48	0.15	0.49	0.23	0.49	0.48	0.48	-99.0 5.8	9 .028	39
MGR Rat Testis	A	n	23	122	79	16	240	0.6	0.23	0.59	0.33	0.59	0.61	0.6	-98.8 6.3	9 0.15	39
	MLR																
MGR Rat Testis	A	Dragon6	21	98	103	18	240	0.5	0.17	0.54	0.26	0.54	0.49	0.51	-99.0 5.9	4 0.02	39
MGR Rat Testis	MLR A	Fragment or	23	122	79	16	240	0.6	0.23	0.59	0.33	0.59	0.61	0.6	-98.8 6.3	9 0 15	39
	MLR						_ +0	3.0	0.20	0.00	0.00	0.00	0.01	0.0	33.0 0.0	0.10	- 00
MGR Rat Testis	Α	GSFrag	12	111	90	27	240	0.51	0.12	0.31	0.17	0.31	0.55	0.43	-99.1 6.0	5 .105	39
	MLR		00	400	70	4-	0.40	0.00	0.00	0.50	0.00	0.50	0.01		00000	0.645	
MGR Rat Testis	A MLR	Inductive Mera,	22	128	73	17	240	0.63	0.23	0.56	0.33	0.56	0.64	0.6	-98.8 6.5	3 U.15	39
MGR Rat Testis	A	Mersy	18	102	99	21	240	0.5	0.15	0.46	0.23	0.46	0.51	0.48	-99.0 6.0	2 .023	39
	MLR																
MGR Rat Testis	A	QNPR	16	116	85	23	240	0.55	0.16	0.41	0.23	0.41	0.58	0.49	-99.0 6.2	7 .009	39
	MLR A	Spectrop hores	20	128	73	19	240	0.62	0.22	0.51	0.3	0.51	0.64	0.57	-98.9 6.5	5 N 11	39
MGR Rat Tactic		Adriana	22	128	72	17	239	0.63	0.22		0.33	0.56	0.64	0.6	-98.8 6.5		39
MGR Rat Testis		nunana		120	14	17	200	0.00	0.20	0.00	0.00	0.00	0.04	0.0	-50.0 0.5	0.10	59
MGR Rat Testis MGR Rat Testis	. 20																
		ALogPS,															
	PLS	OEstate	19	125	76	20	240	0.6	0.2			0.49	0.62		-98.9 6.4		39
MGR Rat Testis	PLS		19 21	125 123	76 77	20 18	240 239	0.6	0.2	0.49 0.54	0.28	0.49 0.54	0.62 0.62		-98.9 6.4 -98.8 6.4		39 39

Finglement Fin																	
MIGR Rat Testles PLS OF 19 136 65 20 240 0.65 0.23 0.49 0.31 0.49 0.86 0.58 -98.8 6.73 0.13 2 MIGR Rat Testles PLS GSFrag 15 137 64 24 24 240 0.65 0.70 0.59 0.25 0.36 0.80 0.53 0.98.9 6.70 0.05 0.05 0.06 0.05 0.05 0.05 0.06 0.05 0.05	MGR Rat Testis	PLS		21	129	72	18	240	0.63	0.23	0.54	0.32	0.54	0.64	0.59	-98.8 6.57 0.14	39
MORE Real Teachs PLS Inductive 19 99 102 20 240 0.49 0.46 0.49	MGR Rat Testis	PLS	•	19	136	65	20	240	0.65	0.23	0.49	0.31	0.49	0.68	0.58	-98.8 6.73 0.13	39
MOR Real Testes PLS Inductive 19 99 102 20 240 0.49	MGR Rat Testis	PLS	GSFrag	15	137	64	24	240	0.63	0 19	0.38	0.25	0.38	0.68	0.53	-989 67 0 05	39
Moder Real Teeslass PLS Converse PLS									0.00	00	0.00	0.20	0.00	0.00	0.00		
MIGR Rat Testes PLS Merey 16 121 80 23 240 0.57 0.70 0.41 0.26 0.41 0.6 0.51 99.0 6.37 0.01 2 MigR Rat Testes PLS North 14 131 70 25 240 0.6 0.17 0.36 0.23 0.36 0.65 0.51 99.0 6.54 0.01 3 MigR Rat Testes PLS North 14 141 87 18 240 0.66 0.19 0.54 0.29 0.54 0.57 0.55 98.9 6.52 0.08 2 MigR Rat Testes PLS North 15 141 48 52 25 239 0.68 0.21 0.36 0.27 0.36 0.27 0.55 98.9 6.52 0.08 2 MigR Rat Testes PLS North 15 141 48 52 25 239 0.68 0.21 0.36 0.27 0.36 0.27 0.55 98.9 6.52 0.08 2 MigR Rat Testes PLS North 15 141 48 52 25 239 0.68 0.21 0.46 0.29 0.46 0.66 0.56 98.9 6.50 0.82 0.50 0.55 98.9 6.55 0.88 2 MigR Rat Testes PLS North 15 141 48 52 25 239 0.62 0.21 0.46 0.29 0.46 0.66 0.56 98.9 6.50 0.82 0.50 0.65 0.65 0.80 0.65 0.65 0.80 0.65 0.65 0.80 0.65 0.65 0.80 0.65 0.65 0.65 0.80 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.6	MGR Rat Testis	PLS		19	99	102	20	240	0.49	0.16	0.49	0.24	0.49	0.49	0.49	-99.0 5.96 .015	3
MIGRI Rait Teeslas PLS ONPR 14 131 70 25 240 0.6 0.17 0.36 0.23 0.36 0.65 0.51 -99.0 6.54 0.01 0.5 Spectrop LS poterrop LS hores Spectrop LS hores 14 14 18 7 18 240 0.56 0.19 0.54 0.29 0.54 0.57 0.55 -98.9 6.25 0.08 0.000	MGR Rat Testis	PLS		16	121	80	23	240	0.57	0.17	0.41	0.24	0.41	0.6	0.51	-99.0 6.37 0.01	3
MGR Rat Testes PLS hores 21 114 87 18 240 0.56 0.19 0.54 0.29 0.54 0.57 0.55 -98.9 6.25 0.08 2 MGR Rat Testes J48 Official 14 148 52 25 29 0.68 0.21 0.36 0.21 0.36 0.74 0.55 -98.9 6.25 0.08 2 MGR Rat Testes J48 OFFicial 10 137 64 29 240 0.61 0.14 0.26 0.18 0.26 0.68 0.47 -99.1 6.49 0.50 0.50 0.68 0.67 0.69 0.65 0.69 0.65 0.08 2 MGR Rat Testes J48 OFFicial 10 137 64 29 240 0.61 0.14 0.26 0.18 0.26 0.68 0.47 -99.1 6.49 0.50 0.65 0.66 0.66 0.66 0.66 0.66 0.66				_				_									3
MGR Rat Tests		DI O		0.4	444		40	0.40	0.50	0.40	0.54	0.00	0.54	0.55		000 005 000	
ALogPS, MGR Rat Tests J48 OEstate 10 137 64 29 240 0.61 0.14 0.26 0.18 0.26 0.68 0.47 -99.1 6.49 0.5 3 MGR Rat Tests J48 OES 1 1 148 53 28 240 0.66 0.17 0.22 0.33 0.26 0.33 0.77 0.55 -98.9 6.62 0.09 3 MGR Rat Tests J48 OR 1 1 148 53 28 240 0.66 0.17 0.28 0.21 0.28 0.74 0.51 -99.0 6.81 0.02 5 MGR Rat Tests J48 Or 18 136 65 21 240 0.66 0.17 0.28 0.21 0.28 0.74 0.51 -99.0 6.81 0.02 5 MGR Rat Tests J48 Or 18 136 65 21 240 0.66 0.17 0.28 0.21 0.33 0.30 0.46 0.68 0.57 -98.9 6.72 0.11 5 MGR Rat Tests J48 Or 18 136 65 21 240 0.66 0.59 0.15 0.33 0.21 0.33 0.33 0.48 0.90 0.68 0.57 -99.9 6.72 0.11 5 MGR Rat Tests J48 Mersy 10 149 52 29 240 0.69 0.16 0.16 0.26 0.2 0.44 0.66 0.55 -98.9 6.72 0.07 3 MGR Rat Tests J48 Mersy 10 149 52 29 240 0.66 0.16 0.26 0.2 0.26 0.74 0.55 0.55 -98.9 6.72 0.06 0.55 MGR Rat Tests J48 Mersy 10 157 44 29 240 0.66 0.16 0.26 0.2 0.26 0.74 0.56 0.55 -99.0 6.70 0.06 0.75 MGR Rat Tests J48 Mersy 10 157 44 29 240 0.77 0.19 0.26 0.22 0.26 0.78 0.52 -99.0 6.91 0.69 0.77 0.06 0.75 MGR Rat Tests J48 Mersy 10 157 44 29 240 0.79 0.19 0.26 0.22 0.26 0.78 0.52 -99.0 7.0 0.06 0.75 MGR Rat Tests J48 MGR Rat Tes								_									
MGR Rat Trests J48 CEstate 10 137 64 29 240 0.61 0.14 0.26 0.18 0.26 0.68 0.47 -99.1 6.49 0.5 2 MGR Rat Trests J48 CDK 18 131 69 21 239 0.62 0.21 0.46 0.29 0.46 0.66 0.66 0.56 -98.9 6.62 0.09 3 CMGR Rat Trests J48 n 13 154 47 26 240 0.7 0.22 0.33 0.26 0.33 0.77 0.55 -98.9 7.06 0.08 3 MGR Rat Trests J48 or 18 136 65 21 240 0.66 0.17 0.28 0.21 0.28 0.74 0.51 -99.0 6.81 0.02 3 MGR Rat Trests J48 or 18 136 65 21 240 0.66 0.75 0.28 0.21 0.28 0.74 0.51 -99.0 6.81 0.02 3 MGR Rat Trests J48 or 18 136 65 21 240 0.66 0.75 0.33 0.21 0.33 0.63 0.48 -99.0 6.42 0.27 0.48 MGR Rat Trests J48 or 18 136 65 21 240 0.66 0.75 0.33 0.21 0.33 0.63 0.48 -99.0 6.42 0.27 0.49 MGR Rat Trests J48 Mersy 10 149 52 29 240 0.66 0.16 0.26 0.2 0.44 0.66 0.55 -98.9 6.62 0.07 0.68 MGR Rat Trests J48 Mersy 10 149 52 29 240 0.66 0.16 0.26 0.2 0.26 0.74 0.5 -99.0 6.78 0.02 0.67 0.67 0.59 MGR Rat Trests J48 Notes 10 157 44 29 240 0.67 0.19 0.38 0.26 0.38 0.69 0.54 9.90 0.7 0.03 0.60 MGR Rat Trests J48 Notes 10 157 44 29 240 0.7 0.19 0.26 0.22 0.26 0.78 0.59 0.90 0.7 0.03 0.60 MGR Rat M	MGR Rat Testis	J48	Adriana	14	148	52	25	239	0.68	0.21	0.36	0.27	0.36	0.74	0.55	-98.9 6.95 0.08	3
MGR Rat Testis Jak			ALogPS,														
Chemaxo Chem	MGR Rat Testis	J48	OEstate	10	137	64	29	240	0.61	0.14	0.26	0.18	0.26	0.68	0.47	-99.1 6.49 .05	3
MGR Rat Tesis MGR Ra	MGR Rat Testis	J48	CDK	18	131	69	21	239	0.62	0.21	0.46	0.29	0.46	0.66	0.56	-98.9 6.62 0.09	3
MGR Rat Testis J48 MGR Rat Testis M																	
Fragment Grammar Fragment Grammar Fragment Grammar G	MGR Rat Testis	J48	n	13	154	47	26	240	0.7	0.22	0.33	0.26	0.33	0.77	0.55	-98.9 7.06 0.08	3
MGR Rat Testis J48 Or	MGR Rat Testis	J48	Dragon6	11	148	53	28	240	0.66	0.17	0.28	0.21	0.28	0.74	0.51	-99.0 6.81 0.02	3
MGR Rat Testis			J														
MGR Rat Testis J48 Inductive 17 132 69 22 240 0.62 0.2 0.44 0.27 0.44 0.66 0.55 -98.9 6.62 0.07 3 MGR Rat Testis J48 Mersy 10 149 52 29 240 0.66 0.16 0.26 0.2 0.26 0.74 0.5 -99.0 6.78 0.02 3 MGR Rat Testis J48 Mersy 15 138 63 24 240 0.64 0.19 0.38 0.26 0.38 0.69 0.54 -98.9 6.72 0.06 3 Spectrop MGR Rat Testis J48 hores 10 157 44 29 240 0.7 0.19 0.26 0.22 0.26 0.78 0.52 -99.0 7. 0.03 3 MGR Rat Testis J48 hores 10 157 44 29 240 0.7 0.19 0.26 0.22 0.26 0.78 0.52 -99.0 7. 0.03 3 MGR Rat Testis J48 hores 10 157 44 29 240 0.7 0.19 0.26 0.25 0.57 0.47 0.52 -99.0 7. 0.03 3 MGR Rat Testis J48 hores 10 157 44 29 240 0.54 0.32 0.57 0.41 0.57 0.53 0.55 -98.9 7.14 0.08 6 MGR Rat Testis J48 hores 10 157 44 29 240 0.54 0.32 0.57 0.41 0.57 0.53 0.55 -98.9 7.14 0.08 6 MGR Rat Testis J48 hores 10 157 44 29 240 0.54 0.32 0.57 0.41 0.57 0.53 0.55 -98.9 7.14 0.08 6 MGR Rat Testis J48 hores 10 157 44 29 240 0.54 0.32 0.57 0.41 0.57 0.53 0.55 -98.9 7.14 0.08 6 MGR Rat Testis J48 hores 10 157 44 29 240 0.54 0.32 0.57 0.41 0.57 0.53 0.55 -98.9 7.14 0.08 6 MGR Rat Testis J48 hores 10 157 44 29 240 0.54 0.55 0.39 0.55 0.51 0.53 -98.9 7.1 0.06 6 MGR Rat Testis J48 hores 10 157 44 0.58 6 MGR Rat Testis J48 hores 10 1																	
Meral Mera	MGR Rat Testis	J48	GSFrag	13	127	74	26	240	0.58	0.15	0.33	0.21	0.33	0.63	0.48	-99.0 6.42 .027	3
MGR Rat Testis J48 Mersy 10 149 52 29 240 0.66 0.16 0.26 0.2 0.26 0.74 0.5 -99.0 6.78 0.02 3 MGR Rat Testis J48 NPR 15 138 63 24 240 0.64 0.19 0.38 0.26 0.38 0.69 0.54 -98.9 6.72 0.06 3 Spectrop MGR Rat Testis J48 hores 10 157 44 29 240 0.7 0.19 0.26 0.22 0.26 0.78 0.52 -99.0 7. 0.03 3 MGR Rat Testis J48 hores 10 157 44 29 240 0.7 0.19 0.26 0.22 0.26 0.78 0.52 -99.0 7. 0.03 3 MGR Rat Testis J48 hores 10 157 44 29 240 0.7 0.19 0.26 0.22 0.26 0.78 0.52 -99.0 6.92 0.03 6 MGR Rat ModellityPhD4 RF Adriana 38 81 91 29 239 0.5 0.29 0.57 0.39 0.57 0.47 0.52 -99.0 6.92 0.03 6 MGR Rat ModellityPhD4 RF ODEstate 38 91 82 29 240 0.54 0.32 0.57 0.41 0.57 0.53 0.55 -98.9 7.14 0.08 6 MGR Rat ModellityPhD4 RF CDK 35 85 87 32 239 0.5 0.29 0.52 0.37 0.52 0.49 0.51 -99.0 7.03 0.01 6 MGR Rat ModellityPhD4 RF n 37 89 84 30 240 0.53 0.31 0.55 0.39 0.55 0.51 0.53 -98.9 7.1 0.06 6 MGR Rat ModellityPhD4 RF n 37 89 84 30 240 0.53 0.31 0.55 0.39 0.55 0.51 0.53 -98.9 7.1 0.06 6 MGR Rat ModellityPhD4 RF or 34 88 85 33 240 0.51 0.29 0.51 0.37 0.51 0.51 0.51 -99.0 7.09 0.01 6 MGR Rat ModellityPhD4 RF or 34 88 85 33 240 0.51 0.29 0.51 0.37 0.51 0.51 0.51 -99.0 7.09 0.01 6 MGR Rat ModellityPhD4 RF or 34 88 85 33 240 0.51 0.29 0.51 0.37 0.51 0.51 0.51 -99.0 7.09 0.01 6 MGR Rat ModellityPhD4 RF or 34 88 85 33 240 0.51 0.29 0.51 0.37 0.51 0.51 0.51 0.51 -99.0 7.09 0.01 6 MGR Rat ModellityPhD4 RF Inductive 35 90 83 32 240 0.52 0.3 0.52 0.38 0.52 0.52 0.52 0.99.0 7.13 0.04 6 MGR Rat ModellityPhD4 RF Inductive 35 90 83 32 240 0.53 0.3 0.52 0.38 0.52 0.55 0.58 0.57 -98.9 7.18 0.05 6 MGR Rat ModellityPhD4 RF ModellityP	MGR Rat Testis	J48		17	132	69	22	240	0.62	0.2	0.44	0.27	0.44	0.66	0.55	-98.9 6.62 0.07	3
Spectrop Spectrop Spectrop Moder Rat Testils J48 hores 10 157 44 29 240 0.7 0.19 0.26 0.22 0.26 0.78 0.52 -99.0 7. 0.03 3 Moder Rat WelbilityPND4 RF Adriana 38 81 91 29 239 0.5 0.29 0.57 0.39 0.57 0.47 0.52 -99.0 6.92 0.03 6 Moder Rat WelbilityPND4 RF OEstate 38 91 82 29 240 0.54 0.32 0.57 0.41 0.57 0.53 0.55 -98.9 7.14 0.08 6 Moder Rat WelbilityPND4 RF OEstate 38 91 82 29 240 0.54 0.32 0.57 0.41 0.57 0.53 0.55 -98.9 7.14 0.08 6 Moder Rat WelbilityPND4 RF OEstate 38 91 82 29 240 0.54 0.32 0.57 0.41 0.57 0.53 0.55 -98.9 7.14 0.08 6 Moder Rat WelbilityPND4 RF Dragon6 39 94 79 28 240 0.53 0.31 0.55 0.39 0.55 0.51 0.53 -98.9 7.1 0.06 6 Moder Rat WelbilityPND4 RF OF 34 88 85 33 240 0.51 0.29 0.51 0.37 0.51 0.51 0.51 -99.0 7.09 0.01 6 Moder Rat WelbilityPND4 RF OF 34 88 85 33 240 0.51 0.29 0.51 0.37 0.51 0.51 0.51 -99.0 7.09 0.01 6 Moder Rat WelbilityPND4 RF GSFrag 37 101 72 30 240 0.58 0.34 0.55 0.42 0.55 0.58 0.57 -98.9 7.38 0.12 6 Moder Rat WelbilityPND4 RF Moders 32 88 85 35 240 0.53 0.3 0.52 0.38 0.52 0.52 0.52 -99.0 7.13 0.04 6 Moder Rat WelbilityPND4 RF Morey 35 92 81 33 240 0.53 0.3 0.51 0.37 0.51 0.51 0.51 0.99.0 7.09 0.12 6 Moder Rat WelbilityPND4 RF Mores 32 88 85 35 240 0.53 0.3 0.51 0.37 0.51 0.53 0.52 -99.0 7.18 0.04 6 Moder Rat WelbilityPND4 RF Mores 32 88 85 35 240 0.53 0.3 0.51 0.37 0.51 0.53 0.59 7.8 0.05 6 Moder Rat WelbilityPND4 N OEstate 35 95 78 32 240 0.54 0.31 0.52 0.39 0.55 0.59 0.49 -99.0 7.38 0.17 6 Moder Rat WelbilityPND4 N OEstate 35 95 78 32 240	MGR Rat Testis	J48		10	149	52	29	240	0.66	0.16	0.26	0.2	0.26	0.74	0.5	-99.0 6.78 .002	3
Spectrop Spectrop Spectrop More Spectrop More Spectrop More Spectrop More Spectrop More Spectrop Spectro	MGR Rat Testis	J48	QNPR	15	138	63	24	240	0.64	0.19	0.38	0.26	0.38	0.69	0.54	-98.9 6.72 0.06	3
MGR Rat ALogPS Aloghe RF Adriana AlogPS Aloghe AlogPS AlogNe AlogPS Alo	MGR Rat Testis	J48		10	157	44	29	240	0.7	0.19	0.26	0.22	0.26	0.78	0.52	-99.0 7. 0.03	3
MGR Rat ViabilityPND4 RF OEstate 38 91 82 29 240 0.54 0.32 0.57 0.41 0.57 0.53 0.55 -98.9 7.14 0.08 6 MGR Rat ViabilityPND4 RF OEstate 38 91 82 29 240 0.54 0.32 0.57 0.41 0.57 0.53 0.55 -98.9 7.14 0.08 6 MGR Rat ViabilityPND4 RF CDK 35 85 87 32 239 0.5 0.29 0.52 0.37 0.52 0.49 0.51 -99.0 7.03 0.01 6 MGR Rat ViabilityPND4 RF n 37 89 84 30 240 0.53 0.31 0.55 0.39 0.55 0.51 0.53 -98.9 7.1 0.06 6 MGR Rat ViabilityPND4 RF Dragon6 39 94 79 28 240 0.55 0.33 0.58 0.42 0.58 0.54 0.56 -98.9 7.2 0.11 6 MGR Rat ViabilityPND4 RF or 34 88 85 33 240 0.51 0.29 0.51 0.37 0.51 0.51 0.51 -99.0 7.09 0.01 6 MGR Rat ViabilityPND4 RF GSFrag 37 101 72 30 240 0.58 0.34 0.55 0.42 0.55 0.58 0.57 -98.9 7.38 0.12 6 MGR Rat ViabilityPND4 RF Inductive 35 90 83 32 240 0.52 0.3 0.52 0.38 0.52 0.52 0.52 -99.0 7.13 0.04 6 MGR Rat ViabilityPND4 RF Mersy 35 92 81 32 240 0.53 0.3 0.52 0.38 0.52 0.52 0.52 -99.0 7.13 0.04 6 MGR Rat ViabilityPND4 RF Mersy 35 92 81 32 240 0.53 0.3 0.51 0.37 0.51 0.53 0.53 -98.9 7.18 0.05 6 MGR Rat ViabilityPND4 RF Nores 32 88 85 35 240 0.53 0.3 0.51 0.37 0.51 0.53 0.52 -99.0 7.18 0.04 6 MGR Rat ViabilityPND4 RF Nores 32 88 85 35 240 0.53 0.3 0.51 0.37 0.51 0.53 0.52 -99.0 7.18 0.04 6 MGR Rat ViabilityPND4 RF Nores 32 88 85 35 240 0.53 0.3 0.51 0.37 0.51 0.53 0.52 -99.0 7.18 0.04 6 MGR Rat ViabilityPND4 RF Nores 32 88 85 35 240 0.5 0.27 0.48 0.35 0.48 0.51 0.49 -99.0 7.09 0.12 6 MGR Rat ViabilityPND4 N Adriana 32 100 72 35 239 0.55 0.31 0.48 0.37 0.48 0.55 0.54 -98.9 7.38 0.05 6 MGR Rat ASN ViabilityPND4 N OEstate 35 95 78 32 240 0.54 0.27 0.39 0.32 0.39 0.59 0.49 -99.0 7.38 0.07 6 MGR Rat ASN Chemaxo		DE	Adriana	20	01	01	20	220	0.5	0.20	0.57	0.20	0.57	0.47	0.52	00.0 6.02 0.03	6
ViabilityPND4 RF OEstate 38 91 82 29 240 0.54 0.32 0.57 0.41 0.57 0.53 0.55 -98.9 7.14 0.08 64	VIADIIILYF ND4	IXI	Auriaria	30	01	91		233	0.5	0.23	0.51	0.55	0.57	0.47	0.52	-99.0 0.92 0.03	
MGR Rat CDK 35 85 87 32 239 0.5 0.29 0.52 0.37 0.52 0.49 0.51 -99.0 7.03 0.01 6	MGR Rat		ALogPS,														
ViabilityPND4 RF CDK 35 85 87 32 239 0.5 0.29 0.52 0.37 0.52 0.49 0.51 -99.0 7.03 0.01 66		RF	OEstate	38	91	82	29	240	0.54	0.32	0.57	0.41	0.57	0.53	0.55	-98.9 7.14 0.08	6
MGR Rat ViabilityPND4 RF n 37 89 84 30 240 0.53 0.31 0.55 0.39 0.55 0.51 0.53 -98.9 7.1 0.06 64		RF	CDK	35	85	87	32	239	0.5	0.29	0.52	0.37	0.52	0.49	0.51	-99.0 7.03 0.01	6
ViabilityPND4 RF n 37 89 84 30 240 0.53 0.31 0.55 0.39 0.55 0.51 0.53 -98.9 7.1 0.06 64									0.0	0.20	0.02	0.01	0.02	0.10	0.01	00.0 7.00 0.01	
ViabilityPND4 RF Dragon6 39 94 79 28 240 0.55 0.33 0.58 0.42 0.58 0.54 0.56 -98.9 7.2 0.11 68 Fragment RF or 34 88 85 33 240 0.51 0.29 0.51 0.37 0.51 0.51 0.51 -99.0 7.09 0.01 68 68 68 68 68 68 68 6		RF	n	37	89	84	30	240	0.53	0.31	0.55	0.39	0.55	0.51	0.53	-98.9 7.1 0.06	6
NationalityPND4 RF Or 34 88 85 33 240 0.51 0.29 0.51 0.37 0.51 0.51 0.51 -99.0 7.09 0.01 60		RF	Dragon6	39	94	79	28	240	0.55	0.33	0.58	0.42	0.58	0.54	0.56	-98.9 7.2 0.11	6
MGR Rat ViabilityPND4 RF GSFrag 37 101 72 30 240 0.58 0.34 0.55 0.42 0.55 0.58 0.57 -98.9 7.38 0.12 64 MGR Rat ViabilityPND4 RF Inductive 35 90 83 32 240 0.52 0.3 0.52 0.38 0.52 0.52 0.52 0.52 -99.0 7.13 0.04 65 MGR Rat ViabilityPND4 RF Mersy 35 92 81 32 240 0.53 0.3 0.52 0.38 0.52 0.53 0.53 -98.9 7.18 0.05 65 MGR Rat ViabilityPND4 RF QNPR 34 92 81 33 240 0.53 0.3 0.51 0.37 0.51 0.53 0.52 -99.0 7.18 0.05 65 MGR Rat ViabilityPND4 RF hores 32 88 85 35 240 0.5 0.57 0.48 0.35 0.48 0.51 0.49 -99.0 7.09 0.12 65 MGR Rat ViabilityPND4 RF hores 32 88 85 35 240 0.5 0.57 0.48 0.35 0.48 0.51 0.49 -99.0 7.09 0.12 65 MGR Rat ViabilityPND4 N Adriana 32 100 72 35 239 0.55 0.31 0.48 0.37 0.48 0.58 0.53 -98.9 7.38 0.05 65 MGR Rat ViabilityPND4 N OEstate 35 95 78 32 240 0.54 0.31 0.52 0.39 0.52 0.55 0.54 -98.9 7.25 0.06 65 MGR Rat ViabilityPND4 N OEstate 35 95 78 32 240 0.54 0.31 0.52 0.39 0.52 0.59 0.49 -99.0 7.38 0.07 65 MGR Rat ViabilityPND4 N OEstate 35 95 78 32 240 0.54 0.27 0.39 0.32 0.39 0.59 0.49 -99.0 7.38 0.07 65 MGR Rat ViabilityPND4 N OEstate 35 95 78 32 240 0.54 0.27 0.39 0.32 0.39 0.59 0.49 -99.0 7.38 0.07 65 MGR Rat ViabilityPND4 N OEstate 35 95 78 32 240 0.54 0.27 0.39 0.32 0.39 0.59 0.49 -99.0 7.38 0.07 65 MGR Rat ViabilityPND4 N OEstate 35 95 78 32 240 0.54 0.27 0.39 0.32 0.39 0.59 0.49 -99.0 7.38 0.07 65 MGR Rat ViabilityPND4 N OEstate 35 95 78 32 240 0.54 0.27 0.39 0.32 0.39 0.59 0.49 -99.0 7.38 0.07 65 MGR Rat ASN Chemaxo			Fragment														
ViabilityPND4 RF GSFrag 37 101 72 30 240 0.58 0.34 0.55 0.42 0.55 0.58 0.57 -98.9 7.38 0.12 64		RF	or	34	88	85	33	240	0.51	0.29	0.51	0.37	0.51	0.51	0.51	-99.0 7.09 0.01	- 6
ViabilityPND4 RF Inductive 35 90 83 32 240 0.52 0.3 0.52 0.38 0.52 0.52 0.52 0.90 7.13 0.04 64 MGR Rat		RF	GSFrag	37	101	72	30	240	0.58	0.34	0.55	0.42	0.55	0.58	0.57	-98.9 7.38 0.12	6
MGR Rat ViabilityPND4 RF Mersy 35 92 81 32 240 0.53 0.3 0.52 0.38 0.52 0.53 0.53 -98.9 7.18 0.05 64 MGR Rat ViabilityPND4 RF QNPR 34 92 81 33 240 0.53 0.3 0.51 0.37 0.51 0.53 0.52 -99.0 7.18 0.04 65 MGR Rat Spectrop ViabilityPND4 RF hores 32 88 85 35 240 0.5 0.27 0.48 0.35 0.48 0.51 0.49 -99.0 7.09 0.12 65 MGR Rat ASN ViabilityPND4 N Adriana 32 100 72 35 239 0.55 0.31 0.48 0.37 0.48 0.58 0.53 -98.9 7.38 0.05 65 MGR Rat ASN ALogPS, ViabilityPND4 N OEstate 35 95 78 32 240 0.54 0.31 0.52 0.39 0.52 0.55 0.54 -98.9 7.25 0.06 65 MGR Rat ASN ViabilityPND4 N OEstate 35 95 78 32 240 0.54 0.31 0.52 0.39 0.52 0.55 0.54 -98.9 7.25 0.06 65 MGR Rat ASN ALogPS, ViabilityPND4 N OEstate 35 95 78 32 240 0.54 0.27 0.39 0.32 0.39 0.59 0.49 -99.0 7.38 0.07 65 MGR Rat ASN ViabilityPND4 N CDK 26 102 70 41 239 0.54 0.27 0.39 0.32 0.39 0.59 0.49 -99.0 7.38 0.07 65 MGR Rat ASN Chemaxo		RF	Inductive	35	90	83	32	240	0.52	0.3	0.52	0.38	0.52	0.52	0.52	-99 0 7 13 0 04	6
MGR Rat ViabilityPND4 RF QNPR 34 92 81 33 240 0.53 0.3 0.51 0.37 0.51 0.53 0.52 -99.0 7.18 0.04 69 MGR Rat Spectrop ViabilityPND4 RF hores 32 88 85 35 240 0.5 0.27 0.48 0.35 0.48 0.51 0.49 -99.0 7.09 .012 69 MGR Rat ASN ViabilityPND4 N Adriana 32 100 72 35 239 0.55 0.31 0.48 0.37 0.48 0.58 0.53 -98.9 7.38 0.05 69 MGR Rat ViabilityPND4 N OEstate 35 95 78 32 240 0.54 0.31 0.52 0.39 0.52 0.55 0.54 -98.9 7.25 0.06 69 MGR Rat ASN ViabilityPND4 N OEstate 35 95 78 32 240 0.54 0.31 0.52 0.39 0.52 0.55 0.54 -98.9 7.25 0.06 69 MGR Rat ASN ViabilityPND4 N CDK 26 102 70 41 239 0.54 0.27 0.39 0.32 0.39 0.59 0.49 -99.0 7.38 .017 69 MGR Rat ASN Chemaxo									0.02	0.0			0.02	0.02		00.0 1.1.0 0.01	
ViabilityPND4 RF QNPR 34 92 81 33 240 0.53 0.3 0.51 0.37 0.51 0.53 0.52 -99.0 7.18 0.04 68 68 68 68 68 68 68 6		RF	Mersy	35	92	81	32	240	0.53	0.3	0.52	0.38	0.52	0.53	0.53	-98.9 7.18 0.05	6
ViabilityPND4 RF hores 32 88 85 35 240 0.5 0.27 0.48 0.35 0.48 0.51 0.49 -99.0 7.09 .012 6 MGR Rat ViabilityPND4 N Adriana 32 100 72 35 239 0.55 0.31 0.48 0.37 0.48 0.58 0.53 -98.9 7.38 0.05 6 MGR Rat ViabilityPND4 N OEstate 35 95 78 32 240 0.54 0.31 0.52 0.39 0.52 0.55 0.54 -98.9 7.25 0.06 6 MGR Rat ViabilityPND4 N CDK 26 102 70 41 239 0.54 0.27 0.39 0.32 0.39 0.59 0.49 -99.0 7.38 .017 6 MGR Rat ASN Chemaxo ASN Chemaxo 0.54 0.27 0.39 0.32 0.39 0.59 0.49		RF		34	92	81	33	240	0.53	0.3	0.51	0.37	0.51	0.53	0.52	-99.0 7.18 0.04	6
MGR Rat ViabilityPND4 N Adriana 32 100 72 35 239 0.55 0.31 0.48 0.37 0.48 0.58 0.53 -98.9 7.38 0.05 6 MGR Rat ASN ALogPS, ViabilityPND4 N OEstate 35 95 78 32 240 0.54 0.31 0.52 0.39 0.52 0.55 0.54 -98.9 7.25 0.06 6 MGR Rat ASN ViabilityPND4 N CDK 26 102 70 41 239 0.54 0.27 0.39 0.32 0.39 0.59 0.49 -99.0 7.38 .017 6 MGR Rat ASN Chemaxo		RF		32	88	85	35	240	0.5	0 27	0.48	0.35	0.48	0.51	0.49	-99 0 7 09 012	6
MGR Rat ViabilityPND4 N Adriana 32 100 72 35 239 0.55 0.31 0.48 0.37 0.48 0.58 0.53 -98.9 7.38 0.05 6 MGR Rat ViabilityPND4 ASN ALogPS, ViabilityPND4 N OEstate 35 95 78 32 240 0.54 0.31 0.52 0.39 0.52 0.55 0.54 -98.9 7.25 0.06 6 MGR Rat ViabilityPND4 N CDK 26 102 70 41 239 0.54 0.27 0.39 0.32 0.39 0.52 0.59 0.49 -99.0 7.38 .017 6 MGR Rat ASN Chemaxo ASN Chemaxo			110100	- 02	- 00	- 00	- 00	2-10	0.0	0.21	0.40	0.00	0.40	0.01	0.40	00.0 7.00 .012	
ViabilityPND4 N OEstate 35 95 78 32 240 0.54 0.31 0.52 0.39 0.52 0.55 0.54 -98.9 7.25 0.06 6 MGR Rat ASN N CDK 26 102 70 41 239 0.54 0.27 0.39 0.32 0.39 0.59 0.49 -99.0 7.38 .017 6 MGR Rat ASN Chemaxo			Adriana	32	100	72	35	239	0.55	0.31	0.48	0.37	0.48	0.58	0.53	-98.9 7.38 0.05	6
ViabilityPND4 N OEstate 35 95 78 32 240 0.54 0.31 0.52 0.39 0.52 0.55 0.54 -98.9 7.25 0.06 6 MGR Rat ASN N CDK 26 102 70 41 239 0.54 0.27 0.39 0.32 0.39 0.59 0.49 -99.0 7.38 .017 6 MGR Rat ASN Chemaxo	MGR Rat	ASN	ALogPS.														
ViabilityPND4 N CDK 26 102 70 41 239 0.54 0.27 0.39 0.32 0.39 0.59 0.49 -99.0 7.38 .017 6 MGR Rat ASN Chemaxo		N	•	35	95	78	32	240	0.54	0.31	0.52	0.39	0.52	0.55	0.54	-98.9 7.25 0.06	6
MGR Rat ASN Chemaxo			CDK	26	102	70	<u></u>	230	0.54	0 27	0.30	U 33	0.30	0.50	0.49	_00 0 7 38 017	-
morrial and a second a second and a second a				20	102	70	+1	238	0.04	0.21	0.08	0.32	0.08	0.08	∪.+3	-99.0 1.30 .017	- (
				34	98	75	33	240	0.55	0.31	0.51	0.39	0.51	0.57	0.54	-98.9 7.32 0.07	6

MOD D-4	ASN																
MGR Rat ViabilityPND4	N	Dragon6	33	116	57	34	240	0.62	0.37	0.49	0.42	0.49	0.67	0.58	-98.8	7.76 0.	15 6
MGR Rat ViabilityPND4	ASN N	Fragment or	33	113	60	34	240	0.61	0.35	0.49	0.41	0.49	0.65	0.57	-98.9	7.68 0.	13 6
MGR Rat ViabilityPND4	ASN N	GSFrag	35	108	65	32	240	0.6	0.35	0.52	0.42	0.52	0.62	0.57	-98.9	7.56 0.	13 6
MGR Rat ViabilityPND4	ASN N	Inductive	34	108	65	33	240	0.59	0.34	0.51	0.41	0.51	0.62	0.57	-98.9	7.56 0.	12 6
MGR Rat ViabilityPND4	ASN N		30	97	76	37	240	0.53	0.28	0.45	0.35	0.45	0.56	0.5	-99.0		
MGR Rat ViabilityPND4	ASN N	QNPR	32	106	67	35	240	0.58	0.32	0.48	0.39	0.48	0.61	0.55	-98.9		
MGR Rat ViabilityPND4	ASN N	Spectrop hores	34	109	64	33	240	0.6	0.35	0.51	0.41	0.51	0.63	0.57		7.58 0.	
MGR Rat	ASN	CDK, TA,															
ViabilityPND4 MGR Rat	ASN	TP	33	115	57	34	239	0.62	0.37	0.49	0.42	0.49	0.67	0.58		7.75 0.	
ViabilityPND4 MGR Rat	ASN	CDK, TA	33	122	50	34	239	0.65	0.4	0.49	0.44	0.49	0.71	0.6		7.94 0.	
ViabilityPND4 MGR Rat	N ASN	CDK, TP	34	120	52	33	239	0.64	0.4	0.51	0.44	0.51	0.7	0.6	-98.8	7.88 0.	19 6
ViabilityPND4 MGR Rat	N ASN	TA, TP	28	124	49	39	240	0.63	0.36	0.42	0.39	0.42	0.72	0.57	-98.9	7.95 0.	13 6
ViabilityPND4 MGR Rat	N ASN	TA	33	122	51	34	240	0.65	0.39	0.49	0.44	0.49	0.71	0.6	-98.8	7.92 0.	19 6
ViabilityPND4	N	TP	39	119	54	28	240	0.66	0.42	0.58	0.49	0.58	0.69	0.63	-98.7	7.81 0.:	25 6
MGR Rat ViabilityPND4	FSM LR	CDK, TA, TP	26	116	56	41	239	0.59	0.32	0.39	0.35	0.39	0.67	0.53	-98.9	7.73 0.0	06 6
MGR Rat ViabilityPND4	FSM LR	CDK, TA	30	118	54	37	239	0.62	0.36	0.45	0.4	0.45	0.69	0.57	-98.9	7.82 0.	13 6
MGR Rat ViabilityPND4	FSM LR	CDK, TP	31	112	60	36	239	0.6	0.34	0.46	0.39	0.46	0.65	0.56	-98.9	7.67 0.	11 6
MGR Rat ViabilityPND4	FSM LR	TA, TP	29	110	63	38	240	0.58	0.32	0.43	0.36	0.43	0.64	0.53	-98.9	7.59 0.0	06 6
MGR Rat ViabilityPND4	FSM LR	TA	33	118	55	34	240	0.63	0.38	0.49	0.43	0.49	0.68	0.59	-98.8	7.81 0.	16 6
MGR Rat ViabilityPND4	FSM LR	TP	35	120	53	32	240	0.65	0.4	0.52	0.45	0.52	0.69	0.61	-98.8	7.86 O	.2 6
MGR Rat ViabilityPND4	KNN	CDK, TA,	21	112	60	46	239	0.56	0.26	0.31	0.28	0.31	0.65	0.48		7.53 .0	
MGR Rat ViabilityPND4		CDK, TA	21	132	40	46	239	0.64	0.34	0.31	0.33	0.31	0.77	0.54		8.09 0.0	
MGR Rat ViabilityPND4		CDK, TP	33	129	43	34	239	0.68	0.43	0.49	0.46	0.49	0.75	0.62		8.14 0.2	
MGR Rat ViabilityPND4		TA, TP	21	138	35	46	240	0.66	0.38	0.31	0.34	0.31	0.8	0.56		8.27 0.	
MGR Rat ViabilityPND4	KNN		21	135	38	46	240	0.65	0.36	0.31	0.33	0.31	0.78	0.55	-98.9		.1 6
MGR Rat ViabilityPND4	KNN		34	127	46	33	240	0.67	0.43		0.46	0.51	0.73	0.62		8.06 0.2	
MGR Rat ViabilityPND4	LibS VM	CDK, TA, TP	13	148	24	54	239	0.67	0.35	0.19	0.25	0.19	0.86	0.53	-98.9	8.4 0.0	07 6
MGR Rat ViabilityPND4	LibS VM	CDK, TA	19	151	21	48	239	0.71	0.48	0.28	0.36	0.28	0.88	0.58	-98.8	8.8 0.	19 6

MGR Rat	LibS																
ViabilityPND4	VM	CDK, TP	24	146	26	43	239	0.71	0.48	0.36	0.41	0.36	0.85	0.6	-98.8 8.6	88 0.23	
MGR Rat ViabilityPND4	LibS VM	TA, TP	12	145	28	55	240	0.65	0.3	0.18	0.22	0.18	0.84	0.51	-99.0 8.	17 0.02	
MGR Rat ViabilityPND4	LibS VM	TA	17	150	23	50	240	0.7	0.43	0.25	0.32	0.25	0.87	0.56	-98.9 8.6	64 0.15	
MGR Rat ViabilityPND4	LibS VM	TP	21	147	26	46	240	0.7	0.45	0.31	0.37	0.31	0.85	0.58	-98.8 8.6	62 0.18	
MGR Rat ViabilityPND4	MLR A	CDK, TA, TP	29	97	75	38	239	0.53	0.28	0.43	0.34	0.43	0.56	0.5	-99.0 7.2	29 .003	
MGR Rat ViabilityPND4	MLR A	CDK, TA	35	114	58	32	239	0.62	0.38	0.52	0.44	0.52	0.66	0.59	-98.8 7.7	2 0.17	
MGR Rat ViabilityPND4	MLR A	CDK, TP	29	88	84	38	239	0.49	0.26	0.43	0.32	0.43	0.51	0.47	-99.1 7.0	08 .05	
MGR Rat ViabilityPND4	MLR A MLR	TA, TP	27	95	78	40	240	0.51	0.26	0.4	0.31	0.4	0.55	0.48	-99.0 7.2	21 .043	
MGR Rat ViabilityPND4	A MLR	TA	35	102	71	32	240	0.57	0.33	0.52	0.4	0.52	0.59	0.56	-98.9 7.4	1 0.1	
MGR Rat ViabilityPND4 MGR Rat	A	TP CDK, TA,	37	109	64	30	240	0.61	0.37	0.55	0.44	0.55	0.63	0.59	-98.8 7.5	7 0.17	
ViabilityPND4 MGR Rat	PLS	TP	27	115	57	40	239	0.59	0.32	0.4	0.36	0.4	0.67	0.54	-98.9 7.7	71 0.07	
ViabilityPND4 MGR Rat	PLS	CDK, TA	31	118	54	36	239	0.62	0.36	0.46	0.41	0.46	0.69	0.57	-98.9 7.8	32 0.14	
ViabilityPND4 MGR Rat		CDK, TP	34	118	54	33	239	0.64	0.39	0.51	0.44	0.51	0.69	0.6	-98.8 7.8		
ViabilityPND4 MGR Rat ViabilityPND4	PLS PLS	TA, TP	31 35	122 120	51 53	36 32	240	0.64	0.38	0.46	0.42	0.46	0.71	0.58	-98.8 7.8 -98.8 7.8		
MGR Rat ViabilityPND4	PLS		37	115	58	30	240	0.63	0.39	0.52	0.45	0.52	0.66	0.61	-98.8 7.7		
MGR Rat ViabilityPND4	J48	CDK, TA, TP	30	116	56	37	239	0.61	0.35	0.45	0.39	0.45	0.67	0.56	-98.9 7.7		
MGR Rat ViabilityPND4	J48	CDK, TA	27	129	43	40	239	0.65	0.39	0.4	0.39	0.4	0.75	0.58	-98.8 8.	11 0.15	
MGR Rat ViabilityPND4	J48	CDK, TP	24	125	47	43	239	0.62	0.34	0.36	0.35	0.36	0.73	0.54	-98.9 7.9	94 0.08	
MGR Rat ViabilityPND4	J48	TA, TP	27	123	50	40	240	0.63	0.35	0.4	0.38	0.4	0.71	0.56	-98.9 7.9	0.11	
MGR Rat ViabilityPND4 MGR Rat	J48	TA	25	131	42	42	240	0.65	0.37	0.37	0.37	0.37	0.76	0.57	-98.9 8.	12 0.13	
ViabilityPND4 MGR Rat	J48	TP CDK, TA,	29	128	45	38	240	0.65	0.39	0.43	0.41	0.43	0.74	0.59	-98.8 8.0	0.17	
ViabilityPND4 MGR Rat	RF	TP	37	99	73	30	239	0.57	0.34	0.55	0.42	0.55	0.58	0.56	-98.9 7.3	34 0.12	
ViabilityPND4 MGR Rat	RF	CDK, TA	36	106	66	31	239	0.59	0.35	0.54	0.43	0.54	0.62	0.58	-98.8 7.5		
ViabilityPND4 MGR Rat	RF DE	CDK, TP	36	102	85	31	239	0.51	0.3	0.54	0.38	0.54	0.51	0.52	-99.0 7.0		
ViabilityPND4 MGR Rat ViabilityPND4	RF RF	TA, TP TA	33 35	102 102	71 71	34	240	0.56	0.32	0.49	0.39	0.49	0.59	0.54	-98.9 7.4 -98.9 7.4		
MGR Rat ViabilityPND4	RF	TP	42	108	65	25	240	0.63	0.39	0.63	0.48		0.62	0.63	-98.7 7.4		
MGR Rat ViabilityPND4	FSM LR	Adriana	37	90	82	30	239	0.53	0.31	0.55	0.4	0.55	0.52	0.54	-98.9 7. [^]	13 0.07	
MGR Rat ViabilityPND4		ALogPS, OEstate	34	92	81	33	240	0.53				0.51			-99.0 7.		

MGR Rat ViabilityPND4	FSM LR	CDK	26	109	63	41	239	0.56	0.29	0.39	0.33	0.39	0.63	0.51	-99.0	7.55	0.02	67
MGR Rat ViabilityPND4		Chemaxo n	40	84	89	27	240	0.52	0.31	0.6	0.41	0.6	0.49	0.54	-98.9	6.96	0.07	67
MGR Rat ViabilityPND4	FSM LR	Dragon6	37	101	72	30	240	0.58	0.34	0.55	0.42	0.55	0.58	0.57	-98.9	7.38	0.12	67
MGR Rat ViabilityPND4	FSM LR	Fragment or	34	102	71	33	240	0.57	0.32	0.51	0.4	0.51	0.59	0.55	-98.9	7.41	0.09	67
MGR Rat ViabilityPND4	FSM LR	GSFrag	41	101	72	26	240	0.59	0.36	0.61	0.46	0.61	0.58	0.6	-98.8	7.34	0.18	67
MGR Rat ViabilityPND4	FSM LR	Inductive	31	96	77	36	240	0.53	0.29	0.46	0.35	0.46	0.55	0.51	-99.0	7.27	0.02	67
MGR Rat ViabilityPND4	FSM LR	Mera, Mersy	25	101	72	42	240	0.53	0.26	0.37	0.3	0.37	0.58	0.48	-99.0	7.32	.039	67
MGR Rat ViabilityPND4	FSM LR	QNPR	33	93	80	34	240	0.53	0.29	0.49	0.37	0.49	0.54	0.52	-99.0	7.2	0.03	67
MGR Rat ViabilityPND4	FSM LR	Spectrop hores	32	105	68	35	240	0.57	0.32	0.48	0.38	0.48	0.61	0.54	-98.9	7.48	0.08	67
MGR Rat ViabilityPND4	KNN	Adriana	53	71	101	14	239	0.52	0.34	0.79	0.48	0.79	0.41	0.6	-98.8	6.3	0.19	67
MGR Rat ViabilityPND4	KNN	ALogPS, OEstate	46	64	109	21	240	0.46	0.3	0.69	0.41	0.69	0.37	0.53	-98.9	6.38	0.05	67
MGR Rat ViabilityPND4	KNN	CDK	39	93	79	28	239	0.55	0.33	0.58	0.42	0.58	0.54	0.56	-98.9	7.19	0.11	67
MGR Rat ViabilityPND4	KNN	Chemaxo n	47	70	103	20	240	0.49	0.31	0.7	0.43	0.7	0.4	0.55	-98.9	6.5	0.1	67
MGR Rat ViabilityPND4	KNN	Dragon6	40	99	74	27	240	0.58	0.35	0.6	0.44	0.6	0.57	0.58	-98.8	7.3	0.15	67
MGR Rat ViabilityPND4	KNN	Fragment or	56	52	121	11	240	0.45	0.32	0.84	0.46	0.84	0.3	0.57	-98.9	5.64	0.14	67
MGR Rat ViabilityPND4	KNN	GSFrag	54	67	106	13	240	0.5	0.34	0.81	0.48	0.81	0.39	0.6	-98.8	6.14	0.18	67
MGR Rat ViabilityPND4	KNN	Inductive	41	91	82	26	240	0.55	0.33	0.61	0.43	0.61	0.53	0.57	-98.9	7.11	0.12	67
MGR Rat ViabilityPND4	KNN	Mera, Mersy	41	90	83	26	240	0.55	0.33	0.61	0.43	0.61	0.52	0.57	-98.9	7.08	0.12	67
MGR Rat ViabilityPND4	KNN	QNPR	40	73	100	27	240	0.47	0.29	0.6	0.39	0.6	0.42	0.51	-99.0	6.7	0.02	67
MGR Rat ViabilityPND4	KNN	Spectrop hores	28	122	51	39	240	0.63	0.35	0.42	0.38	0.42	0.71	0.56	-98.9	7.89	0.12	67
MGR Rat ViabilityPND4	LibS VM	Adriana	23	131	41	44	239	0.64	0.36	0.34	0.35	0.34	0.76	0.55	-98.9	8.11	0.11	67
MGR Rat ViabilityPND4	LibS VM	ALogPS, OEstate	21	138	35	46	240	0.66	0.38	0.31	0.34	0.31	0.8	0.56	-98.9	8.27	0.12	67
MGR Rat ViabilityPND4	LibS VM	CDK	15	147	25	52	239	0.68	0.38	0.22	0.28	0.22	0.85	0.54	-98.9	8.46	0.09	67
MGR Rat ViabilityPND4	LibS VM	Chemaxo n	22	141	32	45	240	0.68	0.41	0.33	0.36	0.33	0.82	0.57	-98.9	8.4	0.15	67

	1.11.0															
MGR Rat ViabilityPND4	LibS VM	Dragon6	17	146	27	50	240	0.68	0.39	0.25	0.31	0.25	0.84	0.55	-98.9 8.46 0.	11
MGR Rat ViabilityPND4	LibS VM	Fragment or	21	143	30	46	240	0.68	0.41	0.31	0.36	0.31	0.83	0.57	-98.9 8.46 0.	15
MGR Rat ViabilityPND4	LibS VM	GSFrag	34	124	49	33	240	0.66	0.41	0.51	0.45	0.51	0.72	0.61	-98.8 7.97 0.:	21
MGR Rat ViabilityPND4	LibS VM	Inductive	19	121	52	48	240	0.58	0.27	0.28	0.28	0.28	0.7	0.49	-99.0 7.69 .0	17
MGR Rat ViabilityPND4	LibS VM	Mera, Mersy	16	147	26	51	240	0.68	0.38	0.24	0.29	0.24	0.85	0.54	-98.9 8.46 C	.1
MGR Rat ViabilityPND4	LibS VM	QNPR	21	143	30	46	240	0.68	0.41	0.31	0.36	0.31	0.83	0.57	-98.9 8.46 0.	
MGR Rat	LibS	Spectrop														
ViabilityPND4 MGR Rat ViabilityPND4	MLR A	hores Adriana	33	100	30 72	34	239	0.65	0.3	0.19	0.24	0.19	0.83	0.51	-99.0 8.15 0. -98.9 7.38 0.	
MGR Rat ViabilityPND4	MLR A	ALogPS, OEstate	37	81	92	30	240	0.49	0.29	0.55	0.38	0.55	0.47	0.51	-99.0 6.92 0.	02_
MGR Rat ViabilityPND4 MGR Rat	MLR A MLR	CDK Chemaxo	39	85	87	28	239	0.52	0.31	0.58	0.4	0.58	0.49	0.54	-98.9 7. 0.	07
ViabilityPND4 MGR Rat	A MLR	n	38	90	83 72	29	240	0.53	0.31	0.57	0.4	0.57	0.52	0.54	-98.9 7.12 0.	
ViabilityPND4 MGR Rat ViabilityPND4	Α	Dragon6 Fragment or	36 37	92	81	31	240	0.57	0.33	0.54	0.41	0.54	0.58	0.56	-98.9 7.38 0. -98.9 7.17 0.	
MGR Rat ViabilityPND4 MGR Rat	MLR A MLR	GSFrag	34	82	91	33	240	0.48	0.27	0.51	0.35	0.51	0.47	0.49	-99.0 6.95 .0	17
ViabilityPND4 MGR Rat ViabilityPND4	A MLR A	Inductive Mera, Mersy	33	98	75 85	34	240	0.55	0.31	0.49	0.38	0.49	0.57	0.53	-98.9 7.32 0. -99.0 7.09	05 0.
MGR Rat ViabilityPND4	MLR A	QNPR Spectrop	31	90	83	36	240	0.5	0.27	0.46	0.34	0.46	0.52	0.49	-99.0 7.13 .0	
MGR Rat ViabilityPND4 MGR Rat	Α	hores	32	106	67	35	240	0.58	0.32	0.48	0.39	0.48	0.61	0.55	-98.9 7.51 0.	
ViabilityPND4 MGR Rat		Adriana ALogPS,	36	76	96	31	239	0.47	0.27			0.54			-99.0 6.82 .0	
ViabilityPND4 MGR Rat ViabilityPND4		OEstate CDK	32	95 94	78 78	35 37	240	0.53	0.29	0.48	0.36	0.48	0.55	0.51	-99.0 7.25 0. -99.0 7.23 .0	
MGR Rat ViabilityPND4 MGR Rat	PLS	Chemaxo n	42	92	81	25	240	0.56	0.34	0.63	0.44	0.63	0.53	0.58	-98.8 7.11 0.	14
ViabilityPND4 MGR Rat ViabilityPND4	PLS PLS	Dragon6 Fragment or	32 36	111	62 69	35 31	240	0.6	0.34	0.48	0.42	0.48	0.64	0.56	-98.9 7.63 0. -98.9 7.46 0.	
MGR Rat ViabilityPND4		GSFrag	43	97	76	24	240	0.58		0.64	0.46		0.56	0.6	-98.8 7.21 0.	
MGR Rat ViabilityPND4 MGR Rat	PLS	Inductive Mera,	33	98	75	34	240	0.55	0.31	0.49	0.38	0.49	0.57	0.53	-98.9 7.32 0.	
ViabilityPND4 MGR Rat ViabilityPND4		Mersy QNPR	26 35	93	72	41 32	240	0.5	0.25	0.39	0.3	0.39	0.54	0.46	-99.1 7.15 .0 -98.9 7.39 0	67 .1

MGR Rat	PLS	Spectrop hores	36	94	79	31	240	0.54	0.31	0.54	0.4	0.54	0.54	0.54	-98.9	7 22	0.07	67
ViabilityPND4	PLS	nores	30	94	79	31	240	0.54	0.31	0.54	0.4	0.54	0.54	0.54	-96.9	1.22	0.07	07
MGR Rat ViabilityPND4	J48	Adriana	26	106	66	41	239	0.55	0.28	0.39	0.33	0.39	0.62	0.5	-99.0	7.47	0.	67
MGR Rat ViabilityPND4	J48	ALogPS, OEstate	26	114	59	41	240	0.58	0.31	0.39	0.34	0.39	0.66	0.52	-99.0	7.66	0.04	67
MGR Rat ViabilityPND4	J48	CDK	26	114	58	41	239	0.59	0.31	0.39	0.34	0.39	0.66	0.53	-98.9	7.67	0.05	67
MGR Rat ViabilityPND4	J48	Chemaxo n	26	120	53	41	240	0.61	0.33	0.39	0.36	0.39	0.69	0.54	-98.9	7.81	0.08	67
MGR Rat ViabilityPND4	J48	Dragon6	27	126	47	40	240	0.64	0.36	0.4	0.38	0.4	0.73	0.57	-98.9	8.	0.13	67
MGR Rat ViabilityPND4	J48	Fragment or	29	107	66	38	240	0.57	0.31	0.43	0.36	0.43	0.62	0.53	-98.9	7.52	0.05	67
MGR Rat ViabilityPND4	J48	GSFrag	35	113	60	32	240	0.62	0.37	0.52	0.43	0.52	0.65	0.59	-98.8	7.68	0.16	67
MGR Rat ViabilityPND4	J48	Inductive	21	108	65	46	240	0.54	0.24	0.31	0.27	0.31	0.62	0.47	-99.1	7.41	.058	67
MGR Rat ViabilityPND4	J48	Mera, Mersy	31	119	54	36	240	0.63	0.36	0.46	0.41	0.46	0.69	0.58	-98.8	7.83	0.14	67
MGR Rat ViabilityPND4	J48	QNPR	28	113	60	39	240	0.59	0.32	0.42	0.36	0.42	0.65	0.54	-98.9	7.66	0.07	67
MGR Rat ViabilityPND4	J48	Spectrop hores	23	123	50	44	240	0.61	0.32	0.34	0.33	0.34	0.71	0.53	-98.9	7.85	0.05	67
TP: True Positives,	TN: True N	legatives, FP: Fa	alse Pos	itives, FN	: False N	Negative	s, SN: S	entitivity,	SP: Spec	ificity, RF	: Real Po	ositives, 7	TA: ToxCa	ast Assays	s, TP: ToxC	ast path	nways	