

### CIRCUITOS DIGITAIS SISTEMA DE NUMERAÇÃO

Marco A. Zanata Alves

Número: ideia de quantidade

Numeral: representação dessa ideia (falada ou escrita)

Na prática, usamos a palavra número para nos referirmos também a um numeral.



Número

Numeral

Exemplo: A idéia de quantidade/número cento e vinte e oito é representado pelo numeral "128"

Como representar todos os números naturais possíveis?

Um símbolo para cada número. Ex.: 1, 2, 3, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, \*, †, •, (...como lembrar de todos?)

Como representar todos os números naturais possíveis?

Um símbolo para cada número. Ex.: 1, 2, 3, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, \*, †, •, (...como lembrar de todos?)

#### **Símbolos diferentes** para algumas quantidades e **combinações** para as demais.

- Ex.: símbolos no sistema romano são I (um), V (cinco), X (dez), L (cinquenta), C (cem), D (quinhentos), M (mil).
- Combinações: II (dois), III (três), IV (quatro), MCMLXXXIV (mil novecentos e oitenta e quatro), . . .

#### **Egyptian Hieratic Numerals**

Algarismos: conjunto finito de símbolos numéricos que usamos para representar apenas algumas quantidades (não todas).

Todo e qualquer número deve poder ser representado por uma combinação de algarismos

Exemplo: os algarismos chamados indo-arábicos são 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Exemplo: O numeral 128 é representado pelos algarismos 1, 2 e 8.

**Sistema de numeração:** forma de atribuir uma representação única para cada número.

**Sistema de numeração posicional:** sistema de numeração onde cada número é representado por uma combinação de algarismos, onde a posição do algarismo altera a quantidade que ele representa.



**Algarismos ou dígitos:** 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Por possuir dez algarismos distintos, é chamado **decimal**.

Valor absoluto de cada algarismo: a quantidade que ele representa. 0 (zero) = nada, 1 = um, etc.

Dependendo da **posição** do algarismo na representação do número, a quantidade que ele representa varia (**valor posicional** ou valor **relativo**).





Dependendo da **posição** do algarismo na representação do número, a quantidade que ele representa varia (**valor posicional** ou valor **relativo**).



Dependendo da **posição** do algarismo na representação do número, a quantidade que ele representa varia (**valor posicional** ou valor **relativo**).



Em geral, um número inteiro A no sistema decimal é representado por  $\boldsymbol{n}$  dígitos

$$a_{n-1} a_{n-2} \dots a_2 a_1 a_0$$

onde cada  $a_i$  é um algarismo decimal.

Em geral, um número inteiro  ${\sf A}$  no sistema decimal é representado por n dígitos

$$a_{n-1} a_{n-2} \dots a_2 a_1 a_0$$

onde cada  $a_i$  é um algarismo decimal.

$$a_{n-1} * 10^{n-1} + a_{n-2} * 10^{n-2} + \dots + a_2 * 100 + a_1 * 10 + a_0 * 1$$

Em geral, um número inteiro A no sistema decimal é representado por n dígitos  $a_{n-1} \ a_{n-2} \dots a_2 \ a_1 \ a_0$ 

onde cada  $a_i$  é um algarismo decimal.

$$a_{n-1} * 10^{n-1} + a_{n-2} * 10^{n-2} + \dots + a_2 * 100 + a_1 * 10 + a_0 * 1$$

ou, usando a notação sigma (somatório):

$$\sum_{i=0}^{n-1} a_i * 10^i$$



## NÚMEROS QUE NÃO SÃO INTEIROS

Todo número racional pode ser representado no sistema decimal da seguinte forma:

$$a_{n-1} a_{n-2} \dots a_2 a_1 a_0 a_{-1} a_{-2} a_{-3} \dots$$

onde há um número finito de algarismos à direita da vírgula ou esses algarismos começam a se repetir a partir de uma certa posição.

Todo número racional pode ser representado no sistema decimal da seguinte forma:

$$a_{n-1} a_{n-2} \dots a_2 a_1 a_0$$
,  $a_{-1} a_{-2} a_{-3} \dots$ 

onde há um número finito de algarismos à direita da vírgula ou esses algarismos começam a se repetir a partir de uma certa posição.

#### Esse numeral representa o número



Todo número racional pode ser representado no sistema decimal da seguinte forma:

$$a_{n-1} a_{n-2} \dots a_2 a_1 a_0$$
,  $a_{-1} a_{-2} a_{-3} \dots$ 

onde há um número finito de algarismos à direita da vírgula ou esses algarismos começam a se repetir a partir de uma certa posição.

#### Esse numeral representa o número



$$10^{-1} = ?$$
 $10^{-2} = ?$ 
 $10^{-3} = ?$ 

Todo número racional pode ser representado no sistema decimal da seguinte forma:

$$a_{n-1} a_{n-2} \dots a_2 a_1 a_0$$
,  $a_{-1} a_{-2} a_{-3} \dots$ 

onde há um número finito de algarismos à direita da vírgula ou esses algarismos começam a se repetir a partir de uma certa posição.

#### Esse numeral representa o número

$$\sum_{i=0}^{n-1} a_i * 10^i + \sum_{i=1}^{\infty} a_{-i} * 10^{-i}$$

$$10^{-1} = \frac{1}{10^1} = \frac{1}{10} = 0,1$$
Parte inteira

Parte fracionária

$$10^{-1} = \frac{1}{10^1} = \frac{1}{10} = 0.1$$

$$10^{-2} = \frac{1}{10^2} = \frac{1}{100} = 0.01$$

$$10^{-3} = \frac{1}{10^{3}} = \frac{1}{1000} = 0,001$$



Exemplo:

**12**, **4533** ... =

$$\sum_{i=0}^{n-1} a_i * 10^i + \sum_{i=1}^{\infty} a_{-i} * 10^{-i}$$
Parte inteira
Parte fracionária

#### Exemplo:

$$12,4533 \dots = 1 * 10^1 + 2 * 10^0 +$$

$$\sum_{i=0}^{n-1} a_i * 10^i + \sum_{i=1}^{\infty} a_{-i} * 10^{-i}$$
Parte inteira Parte fracionária

#### **Exemplo:**

12,4533 ... = 
$$1 * 10^{1} + 2 * 10^{0} + 4 * 10^{-1} + 5 * 10^{-2} + 3 * 10^{-3} + 3 * 10^{-4} + \cdots$$

$$\sum_{i=0}^{n-1} a_i * 10^i + \sum_{i=1}^{\infty} a_{-i} * 10^{-i}$$
Parte inteira Parte fracionária

#### **Exemplo:**

12,4533 ... = 
$$1 * 10^{1} + 2 * 10^{0} + 4 * 10^{-1} + 5 * 10^{-2} + 3 * 10^{-3} + 3 * 10^{-4} + \cdots + 0,4 + 0,05 + 0,003 + 0,0003 + \cdots$$



## TRUNCAMENTO

$$a_{n-1} \ a_{n-2} \dots a_2 \ a_1 \ a_0$$
,  $a_{-1} \ a_{-2} \ a_{-3} \dots$ 

Observe que à medida que caminhamos mais para a direita após a vírgula, o valor relativo de cada algarismo torna-se cada vez menor.

Podemos tomar uma representação próxima do número, **limitando o número de algarismos após a vírgula** por uma constante m.

Essa aproximação chama-se **truncamento** a m dígitos.

Ex.: represente a fração  $\frac{1007}{495}$  por um numeral truncado a 4 dígitos decimais e calcule o erro de aproximação.

Ex.: represente a fração  $\frac{1007}{495}$  por um numeral truncado a 4 dígitos decimais e calcule o erro de aproximação.

$$\frac{1007}{495} = 2,0343434... \approx 2,0343$$
 usando 4 dígitos após a vírgula

Ex.: represente a fração  $\frac{1007}{495}$  por um numeral truncado a 4 dígitos decimais e calcule o erro de aproximação.

$$\frac{1007}{495}$$
 = 2,0343434... ≈ 2,0343 usando 4 dígitos após a vírgula

#### Erro de aproximação:

$$2,0343434... - 2,0343 = 0,000043434...$$

Ex.: represente a fração  $\frac{1007}{495}$  por um numeral truncado a 4 dígitos decimais e calcule o erro de aproximação.

$$\frac{1007}{495} = 2,0343434... \approx 2,0343$$
 usando 4 dígitos após a vírgula

#### Erro de aproximação:

$$2,0343434... - 2,0343 = 0,000043434...$$

$$4 * 10^{-5} + 3 * 10^{-6} + \cdots$$



Ex.: represente a fração  $\frac{1007}{495}$  por um numeral truncado a 4 dígitos decimais e calcule o erro de aproximação.

$$\frac{1007}{495} = 2,0343434... \approx 2,0343$$
 usando 4 dígitos após a vírgula

#### Erro de aproximação:

$$2,0343434... - 2,0343 = 0,000043434...$$

Ou seja o maior erro poderia ser  $9*10^5 + 9*10^6 + 9*10^7$ 

Que é menor do que  $10^4$ 

$$4*10^{-5} + 3*10^{-6} + \cdots$$

Ex.: represente a fração  $\frac{1007}{495}$  por um numeral truncado a 4 dígitos decimais e calcule o erro de aproximação.

$$\frac{1007}{495}$$
 = 2,0343434... ≈ 2,0343 usando 4 dígitos após a vírgula

#### Erro de aproximação:

$$2,0343434... - 2,0343 = 0,000043434...$$

$$Erro < 10^{-4}$$

#### **NÚMEROS REAIS: TRUNCAMENTO**

Se adotarmos uma representação finita com  $m \, + \, n$  algarismos para qualquer número real

$$a_{n-1} \ a_{n-2} \dots a_2 \ a_1 \ a_0, a_{-1} \ a_{-2} \ a_{-3} \dots a_m$$

com n algarismos à esquerda da vírgula, e m algarismos à direita, **então** o erro de aproximação de qualquer número será

$$err < 10^{-m}$$

Aumentar m implica a diminuição do erro.

#### **NÚMEROS REAIS: TRUNCAMENTO**

A grande maioria dos números reais que desejamos representar vêm de medidas.

Ex: comprimento, temperatura, tempo, etc.

Como toda medida possui um erro  $\epsilon$  intrínseco ao processo de medição, podemos escolher m de maneira que o erro de representação seja menor do que o erro de medição.

Ou seja, escolha m tal que

$$10^{-m} < \epsilon$$
, ou seja,  $m > -\log_{10} \epsilon$ 



#### BASES NÃO DECIMAIS

A quantidade de algarismos usados em um sistema de numeração posicional é chamada **base**.

Ex.: O sistema de numeração decimal é um sistema de base 10.

A base 10 tornou-se a mais popular pois possuímos 10 dedos (digitus em latim)

### BASES NÃO DECIMAIS

A quantidade de algarismos usados em um sistema de numeração posicional é chamada **base**.

Ex.: O sistema de numeração decimal é um sistema de base 10.

A base 10 tornou-se a mais popular pois possuímos 10 dedos (digitus em latim)

Nada impede de construirmos sistemas de numeração posicionais com bases diferentes de 10 (se tivéssemos apenas 1 dedo em cada mão, provavelmente a base mais popular seria 2)

A base 2 também é chamada base binária.

### BASES NÃO DECIMAIS

Em um sistema de numeração posicional de **base** d, o número

$$a_{n-1} \ a_{n-2} \dots a_2 \ a_1 \ a_0$$
 ,  $a_{-1} \ a_{-2} \ a_{-3} \dots a_m$ 

possui valor

$$\sum_{i=0}^{n-1} a_i * \underline{d}^i + \sum_{i=1}^{\infty} a_{-i} * \underline{d}^{-i}$$
Parte inteira
Parte fracionária

Para indicar a base em que um número está representado, usaremos a notação

$$(a_{n-1} \ a_{n-2} \dots a_2 \ a_1 \ a_0 \ a_{-1} \ a_{-2} \ a_{-3} \dots a_m)_d$$



#### Conforme o ditado:

"Existem 10 tipos de pessoas: aquelas que sabem contar em binário, e as que não sabem."

Exemplos de conversão de base:

$$(1101001)_2 = ?$$



#### Conforme o ditado:

"Existem 10 tipos de pessoas: aquelas que sabem contar em binário, e as que não sabem."

### Exemplos de conversão de base:

$$(1101001)_2 = 1 * 2^0 + 1 * 2^3 + 1 * 2^5 + 1 * 2^6 = 105$$
  
 $(110,1001)_2 = ?$ 



#### Conforme o ditado:

"Existem 10 tipos de pessoas: aquelas que sabem contar em binário, e as que não sabem."

#### Exemplos de conversão de base:

$$(1101001)_2 = 1 * 2^0 + 1 * 2^3 + 1 * 2^5 + 1 * 2^6 = 105$$
  
 $(110,1001)_2 = 1 * 2^{-4} + 1 * 2^{-1} + 1 * 2^1 + 1 * 2^2 = 6,5625$   
 $(1101001)_8 = ?$ 



#### Conforme o ditado:

"Existem 10 tipos de pessoas: aquelas que sabem contar em binário, e as que não sabem."

### Exemplos de conversão de base:

$$(1101001)_2 = 1 * 2^0 + 1 * 2^3 + 1 * 2^5 + 1 * 2^6 = 105$$
  
 $(110,1001)_2 = 1 * 2^{-4} + 1 * 2^{-1} + 1 * 2^1 + 1 * 2^2 = 6,5625$   
 $(1101001)_8 = 1 * 8^0 + 1 * 8^3 + 1 * 8^5 + 1 * 8^6 = 295425$   
 $(B, EEF)_{16} = ?$ 

Obs.: valor absoluto dos algarismos na base 16:

#### Conforme o ditado:

"Existem 10 tipos de pessoas: aquelas que sabem contar em binário, e as que não sabem."

### Exemplos de conversão de base:

$$(1101001)_2 = 1 * 2^0 + 1 * 2^3 + 1 * 2^5 + 1 * 2^6 = 105$$

$$(110,1001)_2 = 1 * 2^{-4} + 1 * 2^{-1} + 1 * 2^1 + 1 * 2^2 = 6,5625$$

$$(1101001)_8 = 1 * 8^0 + 1 * 8^3 + 1 * 8^5 + 1 * 8^6 = 295425$$

$$(B, EEF)_{16} = 11 * 16^0 + 14 * 16^{-1} + 14 * 16^{-2} + 15 * 16^{-3} = 11,933349609$$

Obs.: valor absoluto dos algarismos na base 16:

#### Conforme o ditado:

"Existem 10 tipos de pessoas: aquelas que sabem contar em binário, e as que não sabem."

Exemplos de conversão de base:

$$(1101001)_2 = 1 * 2^0 + 1 * 2^3 + 1 * 2^5 + 1 * 2^6 = 105$$

$$(110,1001)_2 = 1 * 2^{-4} + 1 * 2^{-1} + 1 * 2^1 + 1 * 2^2 = 6,5625$$

$$(1101001)_8 = 1 * 8^0 + 1 * 8^3 + 1 * 8^5 + 1 * 8^6 = 295425$$

$$(B, EEF)_{16} = 11 * 16^0 + 14 * 16^{-1} + 14 * 16^{-2} + 15 * 16^{-3} = 11,933349609$$

Obs.: valor absoluto dos algarismos na base 16:

Note que as conversões de base d para base 10 são triviais!



# CONVERSÃO DE BASES

45

Vamos começar com os números inteiros.

Ex: represente os números  $(0)_{10}$ ,  $(1)_{10}$ ,  $(2)_{10}$  e  $(3)_{10}$  na base 2.

Vamos começar com os números inteiros.

Ex: represente os números  $(0)_{10}$ ,  $(1)_{10}$ ,  $(2)_{10}$  e  $(3)_{10}$  na base 2.

Muito fáceis:  $(0)_{10} = 0_2$ ,  $(1)_{10} = 1_2$ 

Não existe nenhum **algarismo** para representar  $(2)_{10}$  e  $(3)_{10}$  na base 2.

Vamos começar com os números inteiros.

Ex: represente os números  $(0)_{10}$ ,  $(1)_{10}$ ,  $(2)_{10}$  e  $(3)_{10}$  na base 2.

Muito fáceis:  $(0)_{10} = 0_2$ ,  $(1)_{10} = 1_2$ 

Não existe nenhum **algarismo** para representar  $(2)_{10}$  e  $(3)_{10}$  na base 2.

Portanto,  $(3)_{10}$  deve ser representado como  $(a_1 a_0)_2$ 

 $a_0$  = unidades,  $a_1$  = quantas vezes  $2^1$  cabe em 3

Vamos começar com os números inteiros.

Ex: represente os números  $(0)_{10}$ ,  $(1)_{10}$ ,  $(2)_{10}$  e  $(3)_{10}$  na base 2.

Muito fáceis: 
$$(0)_{10} = 0_2$$
,  $(1)_{10} = 1_2$ 

Não existe nenhum **algarismo** para representar  $(2)_{10}$  e  $(3)_{10}$  na base 2.

Portanto,  $(3)_{10}$  deve ser representado como  $(a_1 a_0)_2$ 

 $a_0$  = unidades,  $a_1$  = quantas vezes  $2^1$  cabe em 3

$$\begin{array}{c|c}
3 & 2 \\
1 & 1 \\
\hline
(3)_{10} = (11)_2
\end{array}$$

Converter 18 da base 10 para a base 2.

Vamos fazer sucessivas divisões entre o **quociente** e 2 (base)... Até o quociente ser menor que 2 (base)

Converter 18 da base 10 para a base 2.

Vamos fazer sucessivas divisões entre o **quociente** e 2 (base)... Até o quociente ser menor que 2 (base)



leia os restos neste sentido

Converter 18 da base 10 para a base 2.

Vamos fazer sucessivas divisões entre o **quociente** e 2 (base)... Até o quociente ser menor que 2 (base)



leia os restos neste sentido

$$(18)_{10} = (010010)_2$$



$$(731)_{10} = ($$

$$(1)_2$$

$$(731)_{10} = ( 11)_2$$

$$(11)_2$$

$$(731)_{10} = (1011011011)_2$$







Converter 731 da base 10 para a base 16.

Observe que  $(11)_{10} = (B)_{16}$  e que  $(13)_{10} = (D)_{16}$  , logo:

$$(731)_{10} = (2DB)_{16}$$

| Base 10 | Base 16 |
|---------|---------|
| 0       | 0       |
| 1       | 1       |
| 2       | 2       |
| 3       | 3       |
| 4       | 4       |
| 5       | 5       |
| 6       | 6       |
| 7       | 7       |
| 8       | 8       |
| 9       | 9       |
| 10      | A       |
| 11      | В       |
| 12      | С       |
| 13      | D       |
| 14      | Е       |
| 15      | F       |

$$(18)_{10} = (10010)_2$$
  
 $(731)_{10} = (1011011011)_2$ 

### Observação 1:

- Se um número é par, na base 2 o seu último algarismo é sempre 0
- Se um número é ímpar, na base 2 o seu último algarismo é sempre 1

Observação 2: é muito fácil converter da base 2 para 16 e vice-versa!



$$(50F1A)_{16} = (???)_2$$



Observação 2: é muito fácil converter da base 2 para 1



$$(50F1A)_{16} = (???)_2$$

| Base 2 | Base 16 |
|--------|---------|
| 0000   | 0       |
| 0001   | 1       |
| 0010   | 2       |
| 0011   | 3       |
| 0100   | 4       |
| 0101   | 5       |
| 0110   | 6       |
| 0111   | 7       |
| 1000   | 8       |
| 1001   | 9       |
| 1010   | A       |
| 1011   | В       |
| 1100   | С       |
| 1101   | D       |
| 1110   | E       |
| 1111   | F       |

Observação 2: é muito fácil converter da base 2 para 16 e vice-versa!

$$(731)_{10} = (1011011011)_2$$

$$(50F1A)_{16} = (???)_2$$
  
 $(50F1A)_{16} = (0101\ 0000\ 1111\ 0001\ 1010)_2$ 

Note que a conversão entre as bases octal ← → binária também é trivial.

Quais outras bases são triviais? Porque?