Implicit Feedbacks are Not Always Favorable: Iterative Relabeled One-Class Collaborative Filtering against Noisy Interactions

Zitai Wang^{1,2}, Qianqian Xu^{3*}, Zhiyong Yang^{1,2}, Xiaochun Cao^{1,4}, Qingming Huang^{3,5,6,7*}

¹SKLOIS, Institute of Information Engineering, CAS
 ²SCS, University of Chinese Academy of Sciences
 ³IIP, Institute of Computing Technology, CAS
 ⁴SCST, Sun Yat-sen University
 ⁵SCST, University of Chinese Academy of Sciences
 ⁶Key Lab. of BDKM, CAS
 ⁷Peng Cheng Laboratory

Outline

- Introduction
- Methodology
- Experiments
- Conclusion

Collaborative Filtering

Recommend according to users with similar feedback

Implicit Feedback

Explicit Feedback

Implicit Feedback

Noise in Implicit Feedback

This is a good movie, why no one told me before?

I search this movie for my friends, but I do not like it.

Prior arts

Reweighting

> WRMF, NA

Resampling

> DNS

$$R_r = \frac{1}{2} \sum_{u} \sum_{i < j \notin E_u} (\hat{r}_{ui} - \hat{r}_{uj})^2$$

Unobserved items should have similar scores

	Pos Examples	"Neg" Examples
Uniform	$W_{ij} = 1$	$W_{ij} = \delta$
User-Oriented	$W_{ij} = 1$	$W_{ij} \propto \sum_j R_{ij}$
Item-Oriented	$W_{ij} = 1$	$W_{ij} \propto m - \sum_{i} R_{ij}$

Popular items are less likely to be negative

Algorithm 1 Ranking-Aware Reject Sampling - Linear

Require: Unobserved item set $I \setminus I_u$, scoring function $s(\cdot)$, parameter β

Draw sample j, l uniformly from $I \setminus I_u$

Query s(j) and s(l)

if s(j) > s(l) then

Return j with probability $\frac{1}{1+\beta}$, or return l otherwise else

Return l with probability $\frac{1}{1+\beta}$, or return j otherwise end if

Items with lower scores are rejected

Outline

- Introduction
- Methodology
- Experiments
- Conclusion

Main idea:

- ➤ Items with the top highest/lowest <u>scores</u> are more likely to be positive/negative
- Similar preference should have similar embeddings

Train a prediction model based on the current label to evaluate the label confidence

$$\min_{\theta} - \sum_{(u,i,j)\in\mathcal{T}} \log \sigma \left(\mathbf{v}_u^T \mathbf{v}_i - \mathbf{v}_u^T \mathbf{v}_j \right) \qquad \mathbf{s}_{u,i} = f(\mathbf{v}_u^*, \mathbf{v}_i^*) = \mathbf{v}_u^{*T} \mathbf{v}_i^*.$$

Rank current prediction, relabel the most confident samples

$$s_{u,1}^{\downarrow} > s_{u,2}^{\downarrow} > \dots > s_{u,|I_{u+}|}^{\downarrow}, u \in [n_{user}],$$

$$I_{u+}^{\text{top}} = \left\{ i : s_{u,i} \ge s_{u,n_+}^{\downarrow} \right\},\,$$

$$\mathcal{I}_{u+}^{\mathrm{bottom}} = \left\{i: s_{u,i} \leq s_{u,n_{-}}^{\downarrow}\right\}$$

Relabel the rest samples according to embeddings

$$\overline{\boldsymbol{v}}_{u+}^{\text{top}} = \frac{1}{n_{+}} \sum_{i \in I_{u+}^{\text{top}}} \boldsymbol{v}_{i}^{*},$$

$$\overline{\boldsymbol{v}}_{u+}^{\text{bottom}} = \frac{1}{n_{-}} \sum_{i \in I_{u+}^{\text{bottom}}} \boldsymbol{v}_{i}^{*}$$

$$\hat{y}_{u,i} = g(\boldsymbol{v}_i^*) = \begin{cases} 1, & \alpha ||\boldsymbol{v}_i^* - \overline{\boldsymbol{v}}_{u+}^{\text{top}}||_2 < ||\boldsymbol{v}_i^* - \overline{\boldsymbol{v}}_{u+}^{\text{bottom}}||_2; \\ 0, & \text{otherwise,} \end{cases}$$

$$y_{u,i}^{(t)} = g_{\mu}(u,i) = \begin{cases} 1, & i \in \mathcal{I}_{u+}^{\text{top}(t)} \cup \mathcal{I}_{u+}^{\text{potential}(t)} \cup \mathcal{I}_{u-}^{\text{top}(t)}; \\ 0, & otherwise, \end{cases}$$

Outline

- Introduction
- Methodology
- Experiments
- Conclusion

Datasets

We perform evaluations on three real-world datasets

- To generate implicit training data, randomly select n_r ratings for each user as observed interactions, no matter whether the user likes the item or not.
- ➤ Binarize the rest ratings according to a threshold of 4 to evaluate the performance for user preference.

	MoiveLens100K	MoiveLens1M	Netflix
#User	943	6,040	8,143
#Item	1,683	3,706	17,770
#Rating	100,000	1,000,209	5,394,409
Sparsity	93.70%	95.53%	96.27%
Positive rate	56.43%	59.19%	54.79%

Competitors

Handle the noise in unobserved interactions:

➤ WRMF, NA, DNS, iCD, SRRMF Handle the noise in observed interactions:

> T_CE

$$\mathcal{L}_{T\text{-}CE}(u,i) = \begin{cases} 0, & \mathcal{L}_{CE}(u,i) > \tau \land \bar{y}_{ui} = 1 \\ \mathcal{L}_{CE}(u,i), & \text{otherwise,} \end{cases}$$

Results

From the results, we can find:

- The rate of positive samples increases gradually as the iterative relabeling process goes on
- Pseudo labels help improve the performance of the downstream model

Table 2: Experimental results of our proposed method on three datasets. The downstream model is BPR.

Relabeled Dataset P@5 R@5 NDCG@5 0.7481 0.1214 0.7635 ML100K 0.7179 0.1178 0.7264 × 0.7861 0.0979 0.7969 ML1M 0.7762 0.0966 0.7791 × 0.7607 0.1368 0.7754 **Netflix** 0.7343 0.1315 0.7425 X

Table 3: Experimental results of our proposed method on three datasets. The downstream model is MLP.

Dataset	Relabeled	P@5	R@5	NDCG@5
ML100K	✓	0.7513	0.1230	0.7727
ML100K	×	0.7167	0.1195	0.7347
ML1M	✓	0.7885	0.0977	0.7974
	×	0.7782	0.0970	0.7870
Netflix	✓	0.7301	0.1315	0.7448
	×	0.7180	0.1295	0.7306

Results

Table 4: Experimental results on MovieLens100K.

	P@1↑	P@5↑	P@10↑	R@5↑	R@10↑	NDCG@5↑	NDCG@10↑
DNS [44]	0.7606	0.7171	0.6825	0.1175	0.2201	0.7247	0.6980
NA [20]	0.7686	0.7111	0.6870	0.1190	0.2244	0.7225	0.7088
WRMF [25]	0.8048	0.7284	0.6855	0.1191	0.2187	0.7455	0.7099
iCD [2]	0.7706	0.7171	0.6982	0.1196	0.2245	0.7274	0.7104
SRRMF [4]	0.8129	0.7066	0.6730	0.1171	0.2195	0.7281	0.6967
T_CE [39]	0.7968	0.7272	0.6996	0.1212	0.2271	0.7413	0.7169
IR _{BPR} (Ours)	0.8229	0.7481	0.7040	0.1214	0.2272	0.7635	0.7269

Table 6: Experimental results on Netflix.

	P@1↑	P@5↑	R@1↑	R@5↑	NDCG@5↑	NDCG@10↑
DNS [44]	0.7336	0.6935	0.0266	0.1246	0.7019	0.16874
NA [20]	0.7689	0.7187	0.0278	0.1288	0.7300	0.7086
WRMF [25]	0.7812	0.7185	0.0283	0.1295	0.7320	0.7057
iCD [2]	0.7980	0.7580	0.0290	0.1362	0.7672	0.7427
SRRMF [4]	0.7944	0.7549	0.0290	0.1358	0.7633	0.7399
T_CE [39]	0.7917	0.7501	0.0289	0.1349	0.7602	0.7310
IR _{BPR} (Ours)	0.8292	0.7607	0.0301	0.1368	0.7754	0.7433

Table 5: Experimental results one MovieLens1M.

	P@1↑	P@5↑	P@10↑	R@5↑	R@10↑	NDCG@5↑	NDCG@10↑
DNS [44]	0.7901	0.7773	0.7565	0.0960	0.1812	0.7805	0.7651
NA [20]	0.7846	0.7703	0.7548	0.0960	0.1804	0.7736	0.7619
WRMF [25]	0.8019	0.7843	0.7665	0.0971	0.1828	0.7893	0.7753
iCD [2]	0.8089	0.7838	0.7603	0.0953	0.1801	0.7897	0.7714
SRRMF [4]	0.8115	0.7809	0.7639	0.0969	0.1822	0.7933	0.7780
T_CE [39]	0.8167	0.7823	0.7612	0.0968	0.1820	0.7892	0.7723
IR _{BPR} (Ours)	0.8366	0.7861	0.7686	0.0979	0.1833	0.7969	0.7810

Outline

- Introduction
- Methodology
- Experiments
- Conclusion

Conclusion

- ➤ We propose an iterative relabeling framework to eliminate the noise in <u>both observed and unobserved</u> interactions.
- The core of the framework lies the iterative relabeling module which aims to generate promising labels for user preferences by exploiting the self-training principle.
- ➤ The empirical experiments on three real-world datasets illustrate the effectiveness of our proposed framework.

THANKS!