Universidad de l	Buenos Aires - Facultad de Ingeniería	2º Cuatrimestre 201				
□ 75.12/95.04	/95.13 Curso 07 - □ 95.10 Curso 02	Evaluación Parcial. Primera Oportunidad.	Tema 1	Nota		
Padrón:	Apellido y Nombres:					

Ejercicio 1. Tomando puntos en orden desde X0 se han obtenido la matriz A y el vector B de los SEL correspondientes a un Ajuste Polinómico por Cuadrados Mínimos y a una Interpolación por Spline. Utilizando ciertos puntos se construyó también un Polinomio de Newto PN(x) y utilizando los puntos indicados se calculó el coeficiente de peso W0.

i	0	1	2	3	4	5		5	nd	nd		39		nd	0	0	0		nd
Xi	?	?	?	?	?	?	A1 =	21	nd	nd	B1 =	194	A2 =	nd	6	1	0	B2 =	4,5
Yi	?	6	?	?	?	?		nd	nd	nd		nd	AZ =	0	1	6	nd	BZ =	-7,5
							_							О	0	0	nd		nd

PN(x) = 10 + 0.8 . (x-X5) -0.1 . (x-X5) . (x-X1) W0 = 1/21 usando X0, X2 y X5 solamente

- a) Indicar el grado y la cantidad de polinomios de ajuste o interpolantes, indicando además los puntos que se utilizaron en cada caso.
- b) Obtener el valor de cada punto Xi respecto a XO a partir de los datos de Spline, Cuadrados Mínimos y Lagrange Baricéntrico
- c) Incorporando la información del Polonimio de Newton, determinar la totalidad de los valores Yi.
- d) Utilizando el vector B de Cuadrados Mínimos, obtener una ENOL para hallar XO.
- e) Resolver la ENOL mediante un método de convergencia cuadrática en el intervalo [0.78;1.42] con una tolerancia relativa de 10⁻⁴
- f) Indicar cómo cambiarían los polinomios de Interpolación y Ajuste si incorporamos un punto (X0,Y0*).

Ejercicio 2. Se tiene el sistema A.X = B y un vector inicial X0 para su resolución por el método de Gauss-Seidel:

$$A = \begin{bmatrix} 3 & 1 & 0 \\ 1 & 3 & u \\ 0 & u & 3 \end{bmatrix} \quad B = \begin{bmatrix} 3 \\ 2 \\ v \end{bmatrix} \quad X0 = \begin{bmatrix} 0 \\ 0 \\ u \end{bmatrix}$$

- a) ¿Qué condiciones sería posible imponer sobre \boldsymbol{u} o \boldsymbol{v} para asegurar la convergencia del método? ¿Podría asegurarse además la convergencia del método del Gradiente Conjugado en alguno de esos casos?
- b) Realizar una iteración del método propuesto, para hallar el vector X1 correspondiente.
- c) Considerando la tercer componente del vector X1 como función de las variables (u, v) construir la gráfica de proceso correspondiente para hallar Cp y Te en forma teórica (O utilice: $v + u^2$).
- d) Estimar Cp por perturbaciones experimentales para u=v=1 adoptando una perturbación relativa r=5%

Ejercicio 3. Indicar a qué método corresponde el siguiente bloque de pseudocódigo y detectar cuáles son los 3 errores que impedirían que el mismo llegue a un resultado correcto:

Para i<-0 Hasta N Con Paso
B<-0
Para j<-0 Hasta i Con F
Si i<>N Entonces
B<-B*(PuntosX[i
Fin Si

Firma

Universidad de E	Buenos Aires - Facultad de Ingeniería	2º Cuatrimestre 201					
□ 75.12/95.04 ₀	/95.13 Curso 07 - □ 95.10 Curso 02	Evaluación Parcial. Primera Oportunidad.	Tema 2	Nota			
Padrón:	Apellido y Nombres:						

Ejercicio 1. Tomando puntos en orden desde X0 se han obtenido la matriz A y el vector B de los SEL correspondientes a un Ajuste Polinómico por Cuadrados Mínimos y a una Interpolación por Spline. Utilizando ciertos puntos se construyó también un Polinomio de Newto PN(x) y utilizando los puntos indicados se calculó el coeficiente de peso W0.

i	0	1	2	3	4	5		5	nd	nd		32		nd	0	0	0		nd
Xi	?	?	?	?	?	?	A1 =	26	nd	nd	B1 =	197	A2 =	nd	6	1	0	B2 =	-1,5
Yi	?	5	?	?	?	?		nd	nd	nd		nd	AZ =	0	1	6	nd	BZ =	1,5
							_'							0	0	0	nd		nd

 $PN(x) = 9 + 0.8 \cdot (x-X5) -0.1 \cdot (x-X5) \cdot (x-X1)$

- W0 = 1/21 usando X0, X2 y X5 solamente
- g) Indicar el grado y la cantidad de polinomios de ajuste o interpolantes, indicando además los puntos que se utilizaron en cada caso.
- h) Obtener el valor de cada punto Xi respecto a XO a partir de los datos de Spline, Cuadrados Mínimos y Lagrange Baricéntrico
- i) Incorporando la información del Polonimio de Newton, determinar la totalidad de los valores Yi.
- j) Utilizando el vector B de Cuadrados Mínimos, obtener una ENOL para hallar XO.
- k) Resolver la ENOL mediante un método de convergencia cuadrática en el intervalo [1.78;2.42] con una tolerancia relativa de 10⁻⁴
- I) Indicar cómo cambiarían los polinomios de Interpolación y Ajuste si incorporamos un punto (X0,Y0*).

Ejercicio 2. Se tiene el sistema A.X = B y un vector inicial X0 para su resolución por el método de Gauss-Seidel:

$$A = \begin{vmatrix} 2 & 1 & 0 \\ 1 & 3 & u \\ 0 & u & 2 \end{vmatrix} \quad B = \begin{vmatrix} 2 \\ 1 \\ v \end{vmatrix} \quad X0 = \begin{vmatrix} 0 \\ 0 \\ u \end{vmatrix}$$

- e) ¿Qué condiciones sería posible imponer sobre **u** o **v** para asegurar la convergencia del método? ¿Podría asegurarse además la convergencia del método del Gradiente Conjugado en alguno de esos casos?
- f) Realizar una iteración del método propuesto, para hallar el vector X1 correspondiente.
- g) Considerando la tercer componente del vector X1 como función de las variables (u, v) construir la gráfica de proceso correspondiente para hallar Cp y Te en forma teórica (O utilice: $v^2 + u$)
- h) Estimar Cp por perturbaciones experimentales para **u=v =1** adoptando una perturbación relativa r=5%

Ejercicio 3. Indicar a qué método corresponde el siguiente bloque de pseudocódigo y detectar cuáles son los 3 errores que impedirían que el mismo llegue a un resultado correcto:

Para i<-0 Hasta N Con Paso

B<-0

Para j<-i Hasta N Con P

Si N<>j Entonces

B<-B*(PuntosX[i

Fin Si