Recall: • V®d = vector space gent by pure tensors $v_1 @ ... @ v_d$, $v_i \in V$ tensor power with relations so that $v_1 ... \times V \xrightarrow{\mu} V^{ed}$ is multilinear $(v_1, ..., v_d) \mapsto v_1 @ ... @ v_d$ $(+ multilinear maps <math>V_{x...} \times V_{x...} \times V_{$

Exterior algebra: do the same thing for skew-symmetric, also alternating, multilinear forms.

Def: $\gamma \in V^{\text{od}}$ is alterating if $\sigma(\gamma) = (-1)^{\sigma} \gamma \quad \forall \sigma \in S_d$. $\Lambda^d(V) = \{\text{alterating tensors}\} \subset V^{\text{od}}$. Sign of $\sigma :: -1$ for transpositions a probable of odd # of them.

The characteristic zero, we can view $\Lambda^d(V)$ as the image of steen-symmetrization operator $\beta: V \otimes d \longrightarrow V \otimes d$ $\beta(V_1 \otimes ... \otimes V_d) = \frac{1}{d!} \sum_{\sigma \in S_d} (-1)^{\sigma} V_{\sigma(1)} \otimes ... \otimes V_{\sigma(d)} \cdot =: V_1 \wedge ... \wedge V_d.$

This is zero whenever $v_i = v_j$ for some $i \neq j$... and so by multilinearity, whenever $v_i ... v_d$ are linearly dependent. Thus $\Lambda^d(V) = 0$ whenever d > d in V!

Alternative definitions: $\Lambda^d(V) = \text{quotient of } V^{\otimes d}$ by the subspace spanned by $v_1 \otimes v_2 \otimes v_3 \otimes ... \otimes v_d + v_2 \otimes v_1 \otimes v_3 \otimes ... \otimes v_d$ and similarly for other transpositions or: $\Lambda^d(V)$ vector space with an alternating

multilinear map $V \times ... \times V \longrightarrow \Lambda^d V$ $(v_1 \wedge v_2 = -v_2 \wedge v_4) \mapsto v_4 \wedge ... \wedge v_d$

and universal for alterating multilinear maps on Vx.xV.

- · If (e,.., en) are a basis of V then eign. neig, i, <... < id basis of NV.
- We have a poduct $\Lambda^k V = \Lambda^k V \longrightarrow \Lambda^{k+\ell} V$ induced by tenor algebra + skew symmetrization. $(v_1 \wedge ... \wedge v_k) \wedge (w_1 \wedge ... \wedge w_\ell) = v_1 \wedge ... \wedge v_k \wedge w_1 \wedge ... \wedge w_\ell$.

This makes the exterior algebra $\Lambda^{\circ}V = \bigoplus_{d \geq 0} \Lambda^{d}V$ into a (skew-commutative) ring ie. if $\eta \in \Lambda^{\dagger}V$, $\xi \in \Lambda^{\dagger}V$ then $\eta \wedge \xi = (-1)^{kl} \xi \wedge \eta$.

(check: $\dim \Lambda^{V} = 2^{\dim V}$).

• If $\dim V = n$, then $\dim \Lambda^n V = 1$ (if $e_1...e_n$ basis of $V \rightarrow e_1 \wedge ... \wedge e_n \in \Lambda^n V$)

A choice of isomorphism $\Lambda^n V \xrightarrow{\sim} k$ is determined by the data of a volume form vol $\in \Lambda^n V^* = (\Lambda^n V)^*$, vol $\neq 0$, i.e. a nondegenerate alternating multilinear map $V \in \mathcal{N} \setminus V \to k$ $V_1,..., V_n \mapsto vol(v_1,..., v_n)$

(Think of: signed volume of parallelepiped with edge vectors $v_1,...,v_n$ is naturally $v_1,...,v_n \in \Lambda^n V$, becomes a scalar given $\Lambda^n V \xrightarrow{\sim} k$).

• Eg, in a red inner probed space with attendered basis $(e_1,...,e_n)$.

The natural volume form is $vol = e_1^\alpha \dots e_n^\alpha$, so $vol(e_1,...,e_n) = 1$. (Excepting basis to identify $V \simeq \mathbb{R}^n$, give $\pm 1 \dots$ orientation!) $vol(v_1,...,v_n) = (e_1^\alpha \dots e_n^\alpha)(v_1,...,v_n) = \sum_{\sigma \in S_n} (-1)^\sigma (e_{\sigma(1)}^\alpha \otimes \dots \otimes e_{\sigma(n)}^\alpha)(v_1...v_n)$ $v_j = \begin{pmatrix} v_{1j} \\ v_{nj} \end{pmatrix}$ for each j $v_j = \begin{pmatrix} v_{1j} \\ v_{nj} \end{pmatrix}$ for each j $v_j = \begin{pmatrix} v_{1j} \\ v_{nj} \end{pmatrix}$ for each j $v_j = \begin{pmatrix} v_{1j} \\ v_{nj} \end{pmatrix}$ for each j $v_j = \begin{pmatrix} v_{1j} \\ v_{nj} \end{pmatrix}$ for each j $v_j = \begin{pmatrix} v_{1j} \\ v_{nj} \end{pmatrix}$ for each j $v_j = \begin{pmatrix} v_{1j} \\ v_{nj} \end{pmatrix}$ for each j $v_j = \begin{pmatrix} v_{1j} \\ v_{nj} \end{pmatrix}$ for each j $v_j = \begin{pmatrix} v_{1j} \\ v_{nj} \end{pmatrix}$ for each j $v_j = \begin{pmatrix} v_{1j} \\ v_{nj} \end{pmatrix}$ for each j $v_j = \begin{pmatrix} v_{1j} \\ v_{nj} \end{pmatrix}$ for each j $v_j = \begin{pmatrix} v_{1j} \\ v_{nj} \end{pmatrix}$ for each j $v_j = \begin{pmatrix} v_{1j} \\ v_{nj} \end{pmatrix}$ for each j $v_j = \begin{pmatrix} v_{1j} \\ v_{nj} \end{pmatrix}$ for each j $v_j = \begin{pmatrix} v_{1j} \\ v_{nj} \end{pmatrix}$ for each j $v_j = \begin{pmatrix} v_{1j} \\ v_{nj} \end{pmatrix}$ for each j $v_j = \begin{pmatrix} v_{1j} \\ v_{2j} \end{pmatrix}$ for each j $v_j = \begin{pmatrix} v_{1j} \\ v_{2j} \end{pmatrix}$ for each j $v_j = \begin{pmatrix} v_{2j} \\ v_{2j} \end{pmatrix}$ for each j $v_j = \begin{pmatrix} v_{2j} \\ v_{2j} \end{pmatrix}$ for each j $v_j = \begin{pmatrix} v_{2j} \\ v_{2j} \end{pmatrix}$ for each j $v_j = \begin{pmatrix} v_{2j} \\ v_{2j} \end{pmatrix}$ for each j $v_j = \begin{pmatrix} v_{2j} \\ v_{2j} \end{pmatrix}$ for each j

Recall that the determinant of a matrix is $\det(A) = \sum_{G \in S_n} (-1)^G \prod_{G(j)} a_{G(j)}$. $\det(A)$ is the only quantity which is $\{a, b, b\}$ on the columns of the matrix $\{a, b\}$ alternating (rupp two columns $\{a, b\}$). $\det(Id) = 1$.

- Even hingh the notion of determinant / volume of n=dim V vectors requires a choice of volume form (isom. $\Lambda^{n}V \stackrel{\sim}{\sim} k$) the notion of <u>determinant</u> of a linear operator requires no such choice!
- Usual definition: given T: V=V, define det(T) = det(A), A=M(T) in any basis, using det(AB) = det A det B, so under change of basis, det(P'AP) = det A. Ly usual proof is painfully explicit.
- Better definition: exterior power is a functor, so $T:V\to V$ induces a linear operator $\Lambda^n T: \Lambda^n V \to \Lambda^n V$ (explicitly, $(\Lambda^n T)(v_1 \dots v_n) = T(v_i) \dots \dots T(v_n)$)

 But $\dim(\Lambda^n V) = 1$, and any linear operator on a 1-dim vector space is a scalar multiple of id. \Rightarrow define $\det(T) \in K$ such that $\Lambda^n T = \det(T)$ id.

(This expresses the fact that T scales volume of parallelepipeds in V by a 3 factor of det (T), without having to choose $\Lambda^n V \simeq k$ to measure those volumes). Using this definition of the determinant via $\Lambda^n T$, independence of choice of basis is marifest, and so is the fact that $\det(T_1 T_2) = \det(T_1) \det(T_2)!$

Linear algebra over rings; modules (Artin §14.1-14.2)

Let R be a commutative ring (with 140) (ie-relax field axions to not require nulliplicative invesses). Plain examples $R = \mathbb{Z}$, \mathbb{Z}/n , k[x], $k[x] = x_n$.

Def: A <u>module</u> M ove a ring R is a set with two operations:

• +: MKM \rightarrow M \rightarrow Addition, st. (M,+) is an abelian grap.

• \times : R<M \rightarrow M scalar multiplication, st. (ab)v = a(bv), a(v+w) = av+aw, (a+b)v = av+bv, 0v=0, 1v=v.

Ex: $R^n = \{(x_1...x_n) | x \in R\}$ with compressive operations is the free mobile of rank n are R.

is the tree mobile of rank n are R.

n times

n times

n times

(homework)

Def:

- · Γ ⊂ M spans M for generating set) if every element of M is a (finite) linear combination Σa; V; V; ∈ Γ, a; ∈ R. Equivalently: the map φ: R → M, (ai) L→ Σa; V; is sujective. M is finitely generated if it has a finite spanning set.
- . The elements of $\Gamma \subset M$ are (binearly) independent if $\psi \colon R^{\Gamma} \to M$ is injective, ie $\sum a_i v_i = 0$, $v_i \in \Gamma$, $a_i \in R \implies a_i = 0 \ \forall i$
- · he elements of FCM form a basis if $\varphi: R^T \rightarrow M$ is an isomorphism. In his care, say M is a free module.

General fact about modules: nothing is true!

A boois need not exist!
 Ex: M= Z/n on Z-module: nx = 0 ∀x∈M so φ: Z⁷→M can't be injective!
 Even if M is free (almits a boois):

· a linearly independent set may not be a subset of a boois. Ex: M=Z as Z-module, \$\frac{1}{2} \text{Lasis }\frac{3}{2}.

- a spanning set need not contain a subset which is a basis $\underbrace{Ex:}$ M=Z as Z-module, $\{4,5\}$ span Z (since n=n.5-n.4) but aren't independent $\{5.4-4.5=0\}$, R neither subset $\{4\}$ ar $\{5\}$ spann all of Z.
- A submodule of a finitely generated module need not be finitely generated Ex: R = k[x1,x2,...] polynomials in so many variables

 M = R as R-module is generated by the element 1.

 M'= { polynomials whom combant tem is zero} CM is a submodule, but not finitely generated (any finite subset only involves finitely many xi's, can't span the other xk's).

(by contrast, his hold for modules over Noetheran rings including Z, k[x1...xn] and many others)

Def. | M, N robble over R, a module homomorphism $\varphi \in Hom_R(M,N)$ is a map $\varphi : M \rightarrow N$ st. $\varphi(v+\omega) = \varphi(v) + \varphi(v)$ and $\varphi(av) = a\varphi(v)$.

Observe. Home (M,N) is itself an R-nodule: $(\varphi + \psi)(v) = \varphi(v) + \psi(v)$ $(\alpha \varphi)(v) = \alpha \varphi(v).$

For free modules, things work as expected: Home $(R^m, R^n) \cong R^{m \times n}$ (φ is determined by image $\varphi(e_i) \in R^n$ of the basis vectors of R^m).

but we can have nonzero modules M, N st. Home (M, N) = 0! Ex: R = k[x], M = k with multiplication $(a_0 + a_1 x + ...) \cdot b = q_0 b$.

then home (k, k[x]) = 0 (Second $1 \in k$ satisfies $x \cdot 1 = 0$ so must map to $\varphi(1) = p(x) \in k[x]$ st. $x p(x) = 0 \Rightarrow p = 0$.

Remarks: R is a mobile over itself (Free module of rank 1).

A submodule of R is called an ideal: his is a moset NCR st.

• N is an abelian subgroup of (R, +)• R. N \subseteq N: and by any element of R takes N to itself

Ex. Ideals in \mathbb{Z} are $n\mathbb{Z}$ } i.e. generated by a single k[x] are p(x)k[x] elever. This is very special. (\mathbb{Z} and k[x]) are "pincipal ideal domains". This has to do with End'dean division algorithms: span(p,q) = span(gcd(p,q)).

The quotient of an R-module by a submodule is an R-module.

Ex: $\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}/n$ as \mathbb{Z} -module k[x]/xk[x] = k as k[x]-module (example above).

(The quotient of R itself by a submodule = ideal is, in fact, not just an R-module but also a ring in its own right).

The study of modules is a vart subject, which we want study there, with one exception: We're returning to group theory, but we start with a short account of the classification of finitely generated abelian groups (= \mathbb{Z} -modules).

Theorem: Any finitely generated abelian group is isom to a product of cyclic groups $G \cong (\mathbb{Z}/n_1 \times ... \times \mathbb{Z}/n_k) \times \mathbb{Z}^l$ (+ wing $\mathbb{Z}/m_1 \cong \mathbb{Z}/m_1 \times \mathbb{Z}/m_1$ iff g(d(m,n)=1), can rearrange the finite factors eg. to arrange all $n_i = powers$ of primes).