平成 26 年度

卒業論文

題目

周期流中における振動翼の3次元渦構造

の揚抗力に与える影響に関する研究

学籍番号	18123026
提出者	来代 勝胤
指導教員	村田 滋 教授
指導教員	田中 洋介 准教授

京都工芸繊維大学 工芸科学部 機械システム工学課程

概要

本研究の目的は

目次

1. 約	者言	3
1.1 破	TT究の背景	3
2. H	里論	4
2.0.1	ステレオ PIV 法	4
2.0.2	拡張位相乱流強度	4
3. 舅	『験装置と実験方法	5
3.0.1	回流水槽	5
3.0.2	揚抗力測定装置	5
3.0.3	PIV 光学系	5
4. K	吉果	6
4.0.1	揚抗力と揚抗比	6
4.0.2	翼表面圧力の推定	6
4.0.3	流れの剥離と再付着	6
4.0.4	ステレオ PIV による翼端渦構造の可視化	6
5. 系	吉果	7
5.0.1	揚抗力と揚抗比	7
5.0.2	翼表面圧力の推定	7
5.0.3	流れの剥離と再付着	7
5.0.4	ステレオ PIV による翼端渦構造の可視化	7
6. 作	寸録	8
6.0.1	回流水槽の性能評価	8
6.0.2	揚抗力測定装置の性能評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
	翼周り流れ構造の数値実験	8
6.0.4	翼の製作	8
6.0.5	2 次元 PIV の精度評価	8
6.0.6	ステレオ PIV の精度評価	8
謝辞 .		9

1. 緒言

1.1 研究の背景

Latychevskaia らによるデコンボリューション法を用いる手法 $^{(?)}$ や , min-max フィルターを用いることによる手法 $^{(?)}$ などが行われてきた .

2. 理論

2.0.1 ステレオ PIV 法

この粒子が伸びてしまうという問題 (Depth-of-focus 問題) を解決する策として,トモグラフィックディジタルホログラフィ法が考えられる.

2.0.2 拡張位相乱流強度

3. 実験装置と実験方法

3.0.1 回流水槽

この粒子が伸びてしまうという問題 (Depth-of-focus 問題) を解決する策として,トモグラフィックディジタルホログラフィ法が考えられる.

- 3.0.2 揚抗力測定装置
- 3.0.3 PIV 光学系

4. 結果

4.0.1 揚抗力と揚抗比

この粒子が伸びてしまうという問題 (Depth-of-focus 問題) を解決する策として,トモグラフィックディジタルホログラフィ法が考えられる.

4.0.2 翼表面圧力の推定

あ翼表面の流れ構造から翼表面圧力を推定する

4.0.3 流れの剥離と再付着

位相乱流強度

4.0.4 ステレオ PIV による翼端渦構造の可視化

Fig. 1 Abstract of tomographic digital holography.

5. 結果

5.0.1 揚抗力と揚抗比

この粒子が伸びてしまうという問題 (Depth-of-focus 問題) を解決する策として,トモグラフィックディジタルホログラフィ法が考えられる.

5.0.2 翼表面圧力の推定

あ翼表面の流れ構造から翼表面圧力を推定する

5.0.3 流れの剥離と再付着

位相乱流強度

5.0.4 ステレオ PIV による翼端渦構造の可視化

Fig. 2 Abstract of tomographic digital holography.

6. 付録

6.0.1 回流水槽の性能評価OpenFOAM による数値実験

PIV による流速測定

- 6.0.2 揚抗力測定装置の性能評価 円柱をつけた場合の
- 6.0.3 翼周り流れ構造の数値実験 OpenFOAM を用いて数値実験を行った.
- 6.0.4 翼の製作 3次元プリンタを用いて実験に供する翼の製作を行った.
- 6.0.5 2 次元 PIV の精度評価 相関平面の平均化処理

サブピクセル補間

- 6.0.6 ステレオ PIV の精度評価
 - 3次元流れ場を生成し、比較することで精度評価を行う.

謝辞

謝辞を述べる

付録