ESTRUCTURAS ALGEBRAICAS. GRUPO M3 (19-20). CARLOS ANDRADAS Y ANDONI DE ARRIBA.

Generalidades en grupos. Finitos, Abelianos y Cíclicos. Orden. Subgrupos.

- 1. Sean G un grupo y $g \in G$ arbitrario. Probar que las aplicaciones multiplicación a izquierda $L_g: G \to G, h \mapsto gh$; y a derecha $R_g: G \to G, h \mapsto hg$; son biyectivas.
- 2. Dados Gun grupo, $k \in \mathbb{N}$ y $g \in G$ arbitrarios, demostrar que

$$\operatorname{ord}\left(g^k\right) = \frac{|G|}{\operatorname{mcd}\left(k,|G|\right)}.$$

3. El grupo cuaternión se define como

$$Q = \left\{ \pm 1, \pm i, \pm j, \pm k \ : \ i^2 = j^2 = k^2 = -1; \ ijk = -1 \right\}.$$

- (i) Calcular el orden de cada elemento, y determinar la tabla de multiplicar para Q.
- (ii) Describir todos los subgrupos de Q. Demostrar que $i^n j i^n = j$ para todo $n \in \mathbb{Z}$.
- (iii) Estudiar si Q es abeliano, y determinar su centro.
- 4. Sea \mathcal{D}_n el n-ésimo grupo diédrico (a saber, el subgrupo de O(2) que deja invariante el grupo $\mathcal{U}_n = \{z \in \mathbb{C} : z^n = 1\}$ de las raíces n-ésimas de la unidad).
 - (i) Probar que $|\mathcal{D}_n| \leq 2n$. Concluir la igualdad a partir de probar que

$$\mathcal{D}_n = \{ \mathrm{Id}, \rho, \rho^2, \dots, \rho^{n-1}, \tau, \tau \rho, \dots, \tau \rho^{n-1} \},$$

con $\rho \in SO(2)$ la rotación de ángulo $2\pi/n$ y $\tau \in O(2) \setminus SO(2)$ la conjugación.

- (ii) Calcular el orden para cada elemento de \mathcal{D}_n . Demostrar que $\rho^k \tau \rho^k = \tau$.
- (iii) Demostrar que \mathcal{D}_n no es abeliano para $n \geq 3$. Calcular el centro de \mathcal{D}_n .
- (iv) Calcular todos los subgrupos de \mathcal{D}_3 , \mathcal{D}_4 y \mathcal{D}_5 .
- 5. Sean G un grupo finito y n un entero positivo.
 - (i) Suponiendo que el orden de todo elemento en G divide a n, estudiar si $|G| \mid n$.
 - (ii) Supongamos ahora que G es abeliano, y sea H_n el subconjunto de G formado por los elementos cuyo orden es divisor de n. Demostrar que H_n es un subgrupo. ¿Qué pasa si G NO es abeliano?
 - (iii) Si $n = n_1 n_2$ con $mcd(n_1, n_2) = 1$ es el orden de $g \in G$ arbitrario, probar que existen $g_1, g_2 \in G$ de orden n_1 y n_2 respectivamente con $g = g_1 g_2 = g_2 g_1$.
- 6. Sean G un grupo, H < G un subgrupo y $x \in G$ de orden n. Supongamos que $m \in \mathbb{Z}$ es un número coprimo con n tal que $x^m \in H$. Demostrar que $x \in H$.
- 7. Sea G un grupo. Probar que $g \in G$ no trivial tiene orden 2 si, y solo si, coincide con su inverso. Concluir que G es abeliano si ord(g) = 2 para todo $g \in G \{1\}$.
- 8. Demostrar que, dados cinco números naturales cualesquiera, existen tres de forma que su suma es un múltiplo de tres.
- 9. Sean H y K subgrupos de un grupo G. Demostrar que $H \cup K$ es un subgrupo de G si, y solo si, uno de ellos es subgrupo del otro. Concluir que un grupo nunca puede ser la unión de dos subgrupos propios.
- 10. Demostrar que el grupo producto cartesiano de dos grupos no triviales cuyos órdenes no sean coprimos **nunca** puede ser un grupo cíclico.
- 11. Demostrar que, si H_1, \ldots, H_n son subgrupos de índices finitos en G grupo arbitrario, entonces la intersección $H_1 \cap \cdots \cap H_n$ es también un subgrupo de índice finito en G.
- 12. Sean G un grupo y $H, K \leq G$ con $x, y \in G$ tal que Hx = Ky. Probar que H = K.

- 13. El objetivo de este ejercicio es probar que $(\mathbb{Q}, +)$ no puede ser finitamente generado.
 - (i) Sean $m_1, \ldots, m_r \in \mathbb{Z}$ enteros no nulos y $d = \operatorname{mcd}(m_1, \ldots, m_r)$. Demostrar que el subgrupo de \mathbb{Z} generado por m_1, \ldots, m_r es $d\mathbb{Z}$.
 - (ii) Probar que todo subgrupo finitamente generado de $(\mathbb{Q}, +)$ es cíclico.
 - (iii) Concluir que $(\mathbb{Q}, +)$ no puede ser finitamente generado.
- 14. Clasificar todos los subgrupos finitos de \mathbb{O}^* , \mathbb{R}^* v \mathbb{C}^* .
- 15. Sean G un grupo finito y p el menor primo divisor de |G|.
 - (i) Dado $S \subseteq G$ con |S| > |G|/2 un **subconjunto**, is puede asegurar que $G = \langle S \rangle$?
 - (ii) Si $H \leq G$ verifica que |G:H| < p, is se puede asegurar que G=H?

Homomorfismos. Subgrupos normales. Grupo cociente. Teoremas de Isomorfía.

- 16. Demostrar que en un grupo la aplicación conjugación es un automorfismo de grupos. Como consecuencia, dados G un grupo y $n \in \mathbb{N}$ arbitrario, probar que si existe un único $g \in G$ de orden n dado, entonces $g \in Z(G)$. Calcular el valor de n.
- 17. Sean G un grupo y H un subgrupo en G de índice n.
 - (i) Estudiar si $g^n \in H$ para cada $g \in G$.
 - (ii) ¿Si n=2 se puede asegurar que H es subgrupo normal?
- 18. Sean $H \vee K$ subgrupos normales de G grupo tales que $G/H \cong G/K$. ¿Es $H \cong K$?
- 19. Sean H y K dos subgrupos de un grupo G.
 - (i) Demostrar que $HK = \{hk \mid h \in H, k \in K\}$ es también subgrupo de G si, y sólo si, es HK = KH. Deducir que, si H es normal, entonces $HK \leq G$.
 - (ii) Probar que Z(G) es normal. Deducir que HZ(G) es abeliano si lo es H.
 - (iii) Supongamos ahora que H y K son normales y cíclicos con mcd(|H|, |K|) = 1. Demostrar que HK es un subgrupo cíclico de G con orden |H||K|.
- 20. Dar un ejemplo para cada uno de los casos siguientes:
 - (i) Grupo finito no abeliano cuyos subgrupos sean todos normales.
 - (ii) Grupo cíclico de orden no primo.
- 21. Sean G un grupo y $H \leq Z(G)$. Demostrar que G es abeliano si G/H es cíclico.
- 22. Sean G un grupo con $g \in G$ y $N \subseteq G$. Probar que $g \in N$ si $\operatorname{mcd}(\operatorname{ord}(g), |G/N|) = 1$.
- 23. ¿Existen homomorfismos no triviales entre dos grupos finitos de órdenes coprimos?
- 24. Sean G_1 y G_2 dos grupos con $N_i \subseteq G_i$ para cada $i \in \{1,2\}$ y $f: G_1 \longrightarrow G_2$ un homomorfismo de grupos con $f(N_1) \leq N_2$. Probar que f induce un homomorfismo de grupos entre G_1/N_1 y G_2/N_2 . ¿Qué sucede si $f(N_1)$ NO es subgrupo de N_2 ?
- 25. Dados G un grupo cíclico y $d \geq 0$ un divisor del orden, probar que su único subgrupo con orden d es $H_d = \{g \in G : g^d = 1\}$. Estudiar si $H = \{y \in G : \exists x \in G \text{ con } x^d = y\}$ es un subgrupo, y determinar su orden.
- 26. Sea G un grupo finito y $f \in Aut(G)$ un automorfismo que sólo fija el elemento neutro.

 - (i) Demostrar que G = {g⁻¹f(g) : g ∈ G}.
 (ii) Probar que si f² = Id entonces f ≡ · ¹ en G. Deducir que G es abeliano.
 - (iii) Buscar un contraejemplo al apartado (i) para el caso en el que G no es finito.
- 27. ¿Bajo que condiciones $f: G \longrightarrow G, g \mapsto g^{-1}$; es un automorfismo de grupos?
- 28. Probar que $G \cong \mathcal{D}_n$ siendo G el subgrupo de $\mathrm{GL}(2,\mathbb{C})$ generado por

$$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \ \mathrm{y} \ \left(\begin{array}{cc} \xi_n & 0 \\ 0 & \overline{\xi}_n \end{array}\right) \quad \left(\mathrm{donde} \ \xi_n = e^{\frac{2\pi i}{n}} \ \mathrm{con} \ n \geq 3\right).$$

- 29. Dado G grupo finito arbitrario, demostrar las afirmaciones siguientes:
 - (i) Si |G| = 4 (esto es, G tiene orden 4), entonces G es isomorfo a \mathbb{Z}_4 ó $\mathbb{Z}_2 \times \mathbb{Z}_2$.
 - (ii) Si |G| = 6 (esto es, G tiene orden 6), entonces G es cíclico ó $G \cong \mathcal{D}_6$.
- 30. Estudiar si $(\mathbb{Q}, +)$ es isomorfo a (\mathbb{Q}^*, \cdot) .