

FE5213: Quantitative Macroeconomics and Finance with Python Project on Linear Dynamics in a Monetary Model

Instructor: Liu, Chang

Name	Student ID
Hui Yangyifan	A0294960R
He Sixian	A0297518M
Huang Anna	$\mathrm{A}0296296\mathrm{J}$
Zhang Huizi	$\mathrm{A}0297812\mathrm{U}$
Zhang Jinkun	A0294711A

Overview: Central banks aim to stabilize inflation and output fluctuations using monetary policy instruments such as the interest rate, typically via a Taylor rule. The analysis of monetary policy is an important issue in New Keynesian monetary economics. In this project, we will analyze the linear dynamics in a monetary model using Python. It involves formulating and setting up the state-space representation, solving impulse responses to economic and monetary shocks, and conducting comparative statics as the model parameters change.

Contents

1	Problem Setup	2			
	1.1 Economic Dynamics	2			
	1.2 Central Bank's Policy Rule	2			
	1.3 Shocks Assumption	2			
	1.4 Model Summary	2			
2	Model Solution				
	2.1 Rational Expectations Equilibrium	3			
	2.2 State-Space Form	5			
	2.3 Main Problems to Address	5			
2	Populto	=			

1 Problem Setup

1.1 Economic Dynamics

We consider a simple New Keynesian model, where the economy is described by a Phillips curve and IS curve. In particular,

$$\pi_t = \beta \mathbb{E}_t \pi_{t+1} + \kappa x_t + u_t, \tag{1}$$

$$x_t = \mathbb{E}_t x_{t+1} - \sigma \left(i_t - \mathbb{E}_t \pi_{t+1} - r_t^n \right), \tag{2}$$

where (1) is the New Keynesian Phillips curve and (2) is the IS curve. In these equations, π_t denotes inflation, x_t output gap, i_t nominal interest rate (policy instrument), u_t cost-push shock, r_t^n demand shock, β discount factor, κ slope of the Phillips curve, σ sensitivity to the real interest rate.

1.2 Central Bank's Policy Rule

The central bank sets the interest rate via the Taylor rule, which takes the following form:

$$i_t = \phi_\pi \pi_t + \phi_x x_t + \nu_t, \tag{3}$$

where ν_t is the monetary policy surprise/shock.

1.3 Shocks Assumption

Assume that u_t , r_t^n , and ν_t follow the following AR(1) process:

$$u_t = \rho_u u_{t-1} + \sigma_u \varepsilon_{ut},\tag{4}$$

$$r_t^n = \rho_r r_{t-1}^n + \sigma_r \varepsilon_{rt},\tag{5}$$

$$\nu_t = \rho_\nu \nu_{t-1} + \sigma_\nu \varepsilon_{\nu t},\tag{6}$$

where $\varepsilon_{ut} \sim N(0,1)$, $\varepsilon_{rt} \sim N(0,1)$, and $\varepsilon_{\nu t} \sim N(0,1)$.

1.4 Model Summary

Variables	Meaning	Setting	
$\overline{\pi_t}$	inflation	New Keynesian Phillips curve (1)	
x_t	output gap	IS curve (2)	
i_t	nominal interest rate (policy instrument)	Taylor rule (3)	
u_t	cost-push shock	AR(1) process (4)	
r_t^n	demand shock	AR(1) process (5)	
$ u_t$	monetary policy shock	AR(1) process (6)	
ε_{ut}	unit white noise for cost-push shock	N(0,1)	
$arepsilon_{rt}$	unit white noise for demand shock	N(0,1)	
$arepsilon_{ u t}$	unit white noise for monetary policy shock	N(0,1)	

Table 1: Variables in the model: the output (π_t, x_t, i_t) , three shocks (u_t, r_t^n, ν_t) , with unit white noise $(\varepsilon_{ut}, \varepsilon_{rt}, \varepsilon_{\nu t})$.

Parameter	Meaning	Benchmark Value
β	discount factor	0.99
σ	sensitivity to the real interest rate	1/6
κ	slope of the Phillips curve	0.024
ϕ_π	sensitivity to the inflation	1.5
ϕ_x	sensitivity to the output gap	0.5
$\overline{ ho_r}$	AR(1) coefficient for demand shock	0.35
$ ho_u$	AR(1) coefficient for cost-push shock	0.35
$ ho_ u$	AR(1) coefficient for monetary policy shock	0.35
σ_r	std for demand shock white noise	3.7
σ_u	std for cost-push shock white noise	0.4
$\sigma_{ u}$	std for monetary policy shock white noise	1

Table 2: Parameters in the model. In the benchmark analysis, use the calibrated parameters taken from the literature.

2 Model Solution

2.1 Rational Expectations Equilibrium

The rational expectations equilibrium for this model can be solved as follows. Conjecture a model solution where the output is linear in the state comprised of three shocks (u_t, r_t^n, ν_t) ,

$$\begin{bmatrix} \pi_t \\ x_t \\ i_t \end{bmatrix} = \mathbf{P} \begin{bmatrix} u_t \\ r_t^n \\ \nu_t \end{bmatrix} := \begin{bmatrix} \gamma_\pi^u & \gamma_\pi^r & \gamma_\pi^\nu \\ \gamma_x^u & \gamma_x^r & \gamma_x^\nu \\ \gamma_i^u & \gamma_i^r & \gamma_i^\nu \end{bmatrix} \begin{bmatrix} u_t \\ r_t^n \\ \nu_t \end{bmatrix}. \tag{7}$$

With (7), we can write the one-period-ahead expectations accordingly,

$$\mathbb{E}_{t}\pi_{t+1} = \gamma_{\pi}^{u}\rho_{u}u_{t} + \gamma_{\pi}^{r}\rho_{r}r_{t}^{n} + \gamma_{\pi}^{\nu}\rho_{\nu}\nu_{t},
\mathbb{E}_{t}x_{t+1} = \gamma_{x}^{u}\rho_{u}u_{t} + \gamma_{x}^{r}\rho_{r}r_{t}^{n} + \gamma_{x}^{\nu}\rho_{\nu}\nu_{t},
\mathbb{E}_{t}i_{t+1} = \gamma_{u}^{u}\rho_{u}u_{t} + \gamma_{t}^{r}\rho_{r}r_{t}^{n} + \gamma_{u}^{\nu}\rho_{\nu}\nu_{t}.$$
(8)

To solve for \mathbf{P} , we can substitute items in (1)(2)(3) with (7) and (8) and solve \mathbf{P} using the method of undetermined coefficients. In particular, for (1),

$$\gamma_{\pi}^{u} u_{t} + \gamma_{\pi}^{r} r_{t}^{n} + \gamma_{\pi}^{\nu} \nu_{t} = \beta \left(\gamma_{\pi}^{u} \rho_{u} u_{t} + \gamma_{\pi}^{r} \rho_{r} r_{t}^{n} + \gamma_{\pi}^{\nu} \rho_{\nu} \nu_{t} \right) + \kappa \left(\gamma_{x}^{u} u_{t} + \gamma_{x}^{r} r_{t}^{n} + \gamma_{x}^{\nu} \nu_{t} \right) + u_{t},$$

collecting items and re-arranging,

$$\left(\gamma_{\pi}^{u} - \beta \gamma_{\pi}^{u} \rho_{u} - \kappa \gamma_{x}^{u} - 1\right) u_{t} + \left(\gamma_{\pi}^{r} - \beta \gamma_{\pi}^{r} \rho_{r} - \kappa \gamma_{x}^{r}\right) r_{t}^{n} + \left(\gamma_{\pi}^{\nu} - \beta \gamma_{\pi}^{\nu} \rho_{\nu} - \kappa \gamma_{x}^{\nu}\right) \nu_{t} = 0,$$

This implies that

$$\gamma_{\pi}^{u} = \beta \gamma_{\pi}^{u} \rho_{u} + \kappa \gamma_{x}^{u} + 1, \tag{9}$$

$$\gamma_{\pi}^{r} = \beta \gamma_{\pi}^{r} \rho_{r} + \kappa \gamma_{x}^{r},\tag{10}$$

$$\gamma_{\pi}^{\nu} = \beta \gamma_{\pi}^{\nu} \rho_{\nu} + \kappa \gamma_{x}^{\nu}. \tag{11}$$

Similarly, for (2)

$$\gamma_{x}^{u}u_{t} + \gamma_{x}^{r}r_{t}^{n} + \gamma_{x}^{\nu}\nu_{t} = \left(\gamma_{x}^{u}\rho_{u}u_{t} + \gamma_{x}^{r}\rho_{r}r_{t}^{n} + \gamma_{x}^{\nu}\rho_{\nu}\nu_{t}\right) - \sigma\left[\left(\gamma_{i}^{u}u_{t} + \gamma_{i}^{r}r_{t}^{n} + \gamma_{i}^{\nu}\nu_{t}\right) - \left(\gamma_{\pi}^{u}\rho_{u}u_{t} + \gamma_{\pi}^{r}\rho_{r}r_{t}^{n} + \gamma_{\pi}^{\nu}\rho_{\nu}\nu_{t}\right) - r_{t}^{n}\right],$$

collecting items, we have

$$\gamma_x^u = \gamma_x^u \rho_u - \sigma \left(\gamma_i^u - \gamma_\pi^u \rho_u \right), \tag{12}$$

$$\gamma_x^r = \gamma_x^r \rho_r - \sigma \left(\gamma_i^r - \gamma_\pi^r \rho_r - 1 \right), \tag{13}$$

$$\gamma_x^{\nu} = \gamma_x^{\nu} \rho_{\nu} - \sigma \left(\gamma_i^{\nu} - \gamma_{\pi}^{\nu} \rho_{\nu} \right). \tag{14}$$

For (3),

$$\gamma_{i}^{u}u_{t} + \gamma_{i}^{r}r_{t}^{n} + \gamma_{i}^{\nu}\nu_{t} = \phi_{\pi}\left(\gamma_{\pi}^{u}u_{t} + \gamma_{\pi}^{r}r_{t}^{n} + \gamma_{\pi}^{\nu}\nu_{t}\right) + \phi_{x}\left(\gamma_{x}^{u}u_{t} + \gamma_{x}^{r}r_{t}^{n} + \gamma_{x}^{\nu}\nu_{t}\right) + \nu_{t},$$

so we have

$$\gamma_i^u = \phi_\pi \gamma_\pi^u + \phi_x \gamma_x^u,\tag{15}$$

$$\gamma_i^r = \phi_\pi \gamma_\pi^r + \phi_x \gamma_\pi^r,\tag{16}$$

$$\gamma_i^{\nu} = \phi_{\pi} \gamma_{\pi}^{\nu} + \phi_x \gamma_x^{\nu} + 1. \tag{17}$$

Note that in the system of equations (9) through (17), there are 9 equations with 9 unknowns, which are entries in the matrix \mathbf{P} . We denote the vectorization of the matrix \mathbf{P} as vector \mathbf{x} ,

$$\mathbf{P} = \begin{bmatrix} \gamma_{\pi}^{u} & \gamma_{\pi}^{r} & \gamma_{\pi}^{\nu} \\ \gamma_{x}^{u} & \gamma_{x}^{r} & \gamma_{x}^{\nu} \\ \gamma_{x}^{u} & \gamma_{x}^{r} & \gamma_{x}^{\nu} \end{bmatrix} \implies \mathbf{x} := \text{vec}(\mathbf{P}) = [\gamma_{\pi}^{u}, \gamma_{x}^{u}, \gamma_{x}^{u}, \gamma_{\pi}^{r}, \gamma_{\pi}^{r}, \gamma_{x}^{r}, \gamma_{\pi}^{r}, \gamma_{x}^{\nu}, \gamma_{x}^{\nu}, \gamma_{x}^{\nu}]^{\top}.$$

The system of linear equations (9) through (17) can be packed into matrix form

$$\mathbf{A}\mathbf{x} = \mathbf{b},\tag{18}$$

where

(18) can be easily solved using matrix inversion, so that we get $vec(\mathbf{P}) = \mathbf{A}^{-1}\mathbf{b}$. In this way, \mathbf{P} is solved and known.

2.2 State-Space Form

With **P**, the model is characterized by a linear state-space system with the measurement equation

$$\begin{bmatrix} \pi_t \\ x_t \\ i_t \end{bmatrix} = \mathbf{P} \begin{bmatrix} u_t \\ r_t^n \\ \nu_t \end{bmatrix}, \tag{19}$$

and the transition equation

$$\begin{bmatrix} u_t \\ r_t^n \\ \nu_t \end{bmatrix} = \begin{bmatrix} \rho_u & 0 & 0 \\ 0 & \rho_r & 0 \\ 0 & 0 & \rho_\nu \end{bmatrix} \begin{bmatrix} u_{t-1} \\ r_{t-1}^n \\ \nu_{t-1} \end{bmatrix} + \begin{bmatrix} \sigma_u & 0 & 0 \\ 0 & \sigma_r & 0 \\ 0 & 0 & \sigma_\nu \end{bmatrix} \begin{bmatrix} \varepsilon_{ut} \\ \varepsilon_{rt} \\ \varepsilon_{\nu t} \end{bmatrix}. \tag{20}$$

2.3 Main Problems to Address

- ullet Solve ${f P}$ and formulate the model solutions as a linear state space system.
- Plot and discuss the dynamic responses of $\pi_{t+i}, x_{t+i}, i_{t+i}$ to a one standard deviation change in economic shocks $\varepsilon_{rt}, \varepsilon_{ut}$ and the monetary policy shock $\varepsilon_{\nu t}$.
- Investigate how the results would change if we change $\kappa, \rho_u, \rho_r, \phi_\pi, \phi_x$. Discuss your results.

3 Results