Matematika 4 – Logika pre informatikov: Cvičenie 1

- **Úloha 1.** Rozhodnite, či nasledovné refazce sú formulami nad množinou výrokových premenných $\mathcal{V} = \{p_1, p_2, \dots, p_n, \dots\}$:
 - 1. $p_1 \rightarrow p_2$
 - 2. $(p_1) \wedge (p_2)$
 - 3. $(p_1 \vee (\neg p_2))$
 - 4. $(p_1 \wedge p_2 \wedge p_3)$
 - 5. $(p_1 \land (q_2 \to p_3))$
 - 6. $((p_1 \rightarrow p_2) \leftrightarrow (p_2 \land p_1))$
- **Úloha 2.** Rozhodnite, či nasledovné reťazce sú formulami nad nejakou množinou výrokových premenných \mathcal{V} . Určte aj množinu \mathcal{V} :
 - 1. $(a \land \neg a)$
 - 2. $(tweety_is_penguin \rightarrow \neg tweety_flies)$
 - 3. $(rich(jack) \land loves(marry, jack))$
 - $4. \neg \neg \neg \neg \neg \neg what_time_is_it$
 - 5. $\neg\neg\neg\neg\neg p \rightarrow \neg\neg\neg q$
 - 6. $(\neg(\neg wow))$
 - 7. $(\neg \neg \neg a \neg \rightarrow \neg \neg (b \lor c))$
 - 8. $\forall x ((student(x) \land \neg studies(x)) \rightarrow fails \ exam(x))$
- **Úloha 3.** Definujte aritmetické výrazy s operátormi súčinu, odčítania, opačného čísla ("unárne mínus") nad množinou premenných \mathcal{V} .
- **Úloha 4.** Definujte formuly výrokovej logiky nad množinou výrokových premenných \mathcal{V} s ternárnou spojkou $(\dots$? \dots : \dots) a dvoma nulárnymi spojkami \top a \bot .
- Úloha 5. Napíšte vytvárajúcu postupnosť pre formuly:
 - 1. $(((p \land q) \lor p) \to ((p \land q) \lor \neg p))$
 - 2. $(((p \land p) \land (p \land q)) \land ((p \land p) \land (p \land p)))$
- **Úloha 6.** Napíšte dve ďalšie (rôzne) vytvárajúce postupnosti pre formuly z úlohy 5.
- **Úloha 7.** Zakreslite vytvárajúce stromy pre formuly z úlohy 5.
- Úloha 8. Definujte výrokové formuly tak, aby pre ne neplatila veta o jednoznačnosti rozkladu.
- **Definícia 1 (Priama podformula).** Priamou podformulou $\neg A$ je formula A. Priamymi podformulami $(A \land B)$, $(A \lor B)$ a $(A \to B)$ sú formuly A a B.
- **Definícia 2 (Podformula).** Ak A je priamou podformulou B, tak A je podformulou B a B je podformulou C, tak A je podformulou C.
- Úloha 9. Vypíšte všetky (a) priame podformuly a (b) podformuly pre formuly z úlohy 5.
- **Úloha 10.** Definujte:
 - 1. vars(A) množinu všetkých výrokových premenných formuly A;
 - 2. sub(A) množinu všetkých podformúl formuly A;

- 3. vcount(A, p) počet výskytov výrokovej premennej p vo formule A;
- 4. $\operatorname{ccount}(A)$ počet logických spojok vo formule A;
- 5. p $\operatorname{count}(A)$ počet výskytov zátvoriek vo formule A.

Úloha 11. Určte stupeň formúl z úlohy 5.

Úloha 12. Dokážte alebo vyvrátte nasledovné tvrdenia:

- 1. $|vars(A)| \le deg(A) + 1$;
- 2. $|\operatorname{sub}(A)| \le \operatorname{deg}(A) + |\operatorname{vars}(A)|$;
- 3. deg(A) = |vars(A)|;
- 4. počet výskytov pravých zátvoriek v Aplus počet negácií v A je menší alebo rovný stupňu $A\,;$
- 5. ak A je podformulou B, tak $\deg(A) \leq \deg(B)$;
- 6. ak deg(A) < deg(B), tak A je podformulou B;
- 7. ak A je priamou podformulou B a B je priamou podformulou C, tak $\deg(C)=2+\deg(A)$;
- 8. deg(A) = ccount(A);
- 9. ak A je podformulou B, tak sa nachádza v každej vytvárajúcej postupnosti pre B;
- 10. ak sa A nachádza vo vytvárajúcej postupnosti pre B, tak A je podformulou B;
- 11. ak sa A nachádza pred B vo vytvárajúcej postupnosti pre formulu X, tak A je podformulou B;
- 12. všetky vytvárajúce postupnosti pre formulu A majú rovnakú dĺžku;
- 13. ak T je vytvárajúci strom pre A a P je vytvárajúca postupnosť pre A, potom počet vrcholov T je rovnaký ako dĺžka P;
- 14. dĺžka vytvárajúcej postupnosti pre A je rovná stupňu A;
- 15. počet vrcholov vytvárajúceho stromu pre A je rovný stupňu A.