Exame - Gac Normal 16/17

1) · révers de decisos

$$\frac{\sqrt{2}}{2}$$
 $\frac{\sqrt{2}}{2}$ $\frac{2$

· Função objetivo

Meximizer on de inspeções complets la severe Mex Z = 21+22

· Restrições

421 + 2x2 < 28 $2x1 + 6x2 \leq 30$ 4x1+6x2 ≤36

	Isolaman	Inst. Ele'	1515+ Epe
x1-1	44	20	4 4
2 - 10	20	6 h	64
Disporb	286	30h	36 h

50

04)

$$- x_1 + 2 x_2 \le 5 (-4,0) (0,2) (1)$$

$$2x1 + 2x2 = 10(5,0)(0,5)(3)$$

x = (4,1)

2) Min
$$Z = 421 + 3x2(=)$$
 May $Z' = -4x1 - 3x2$
 $= -4x1 + 2x2 + 2x3 = 4$
 $= -2x1 + 2x2 + 2x3 + 2x3 = 4$
 $= -2x1 + 2x2 + 2x3 + 2x3 = 4$
 $= -2x1 + 2x2 + 2x3 + 2x3 = 4$
 $= -2x1 + 2x2 + 2x3 + 2x3 = 4$
 $= -2x1 + 2x3 + 2x3 + 2x3 = 4$
 $= -2x1 + 2x3 + 2x3 + 2x3 = 4$
 $= -2x1 + 2x3 + 2x3 + 2x3 = 4$
 $= -2x1 + 2x3 + 2x3 + 2x3 = 4$
 $= -2x1 + 2x3 + 2x3 + 2x3 = 4$
 $= -2x1 + 2x3 + 2x$

		0)(2					
λ3 Θ	-1	2	1	0	0	Ó	$\frac{4}{6} \times (1)$ $\frac{6}{10} \times (2)$ $\frac{10}{10} \times (2)$
as-1	2	- 2	6	- 1	1	6)	6 6/2=3(2)
x4-1	2	2	0	0	0	1	10 10/2=5(3)
zj-cj	-4	6	6	1	0	0	-16

SBA, = For 2= (4,1,6,0,0,0). 220

 $M_{c} \times Z = -4x1 - 3x2$

	- 4	-3	0	0	/
	21	262	X 3	26 4	<u>_</u>
23 Θ	0	6	1	-3/4	
	1	\bigcirc	0	- 1/4	4
261-4 22-3	0	1	0	1/4	1
zj-cj	0	0	0	1/4	-19

 $SBA x^{*} = (4, 1, 6, 0, 0, 0)$ $Z^{*} = -19, 2^{*} = 19$

C) Dus SBAs são adjecentes quando diferen ellings nume verievel não bésice.

Desde modo, es solitors besica admissiveis connespendentes a quadros so metodo Simplex obtidos en ideações suasivas são adjacentes.

3) Mex
$$Z = \chi_1 - M\chi_1$$

Suppose which χ_{-1}
 $2\chi_1 + \chi_2 \le 2 + 1 - 2\chi_1 - \chi_2 \ge -2$
 $\chi_1 + 3\chi_2 \le 3 = 3$
 $\chi_1 + 3\chi_2 \le 3 = 3$
Suppose $\chi_1 + 3\chi_2 = 3$
 $\chi_1 + 3\chi_2 \le 3 = 3$
Suppose $\chi_1 + 3\chi_2 = 3$
Suppose $\chi_1 + 3\chi_2 = 3$
Suppose $\chi_1 + 3\chi_2 = 3$

217,0,227,0

Quidro obimo jago e colore do 5 je'so ten relones

$$\mathcal{X}^* = (1,0,0,0,2) \quad Z^* = 1$$

Max
$$z = x1$$

Sa

 $2 \times 1 + 2 \times 2 \le 2 \leftarrow 11$
 $2 \times 1 + 3 \times 2 \le 3 \leftarrow 12$
 $2 \times 1 + 3 \times 2 \le 3 \leftarrow 12$
 $2 \times 1 + 3 \times 2 \le 3 \leftarrow 12$
 $2 \times 1 + 3 \times 2 \le 3 \leftarrow 12$
 $2 \times 1 + 3 \times 2 \le 3 \leftarrow 12$
 $2 \times 1 + 3 \times 2 \le 3 \leftarrow 12$
 $2 \times 1 + 3 \times 2 \le 3 \leftarrow 12$
 $2 \times 1 + 3 \times 2 \le 3 \leftarrow 12$
 $2 \times 1 + 3 \times 2 \le 3 \leftarrow 12$
 $2 \times 1 + 3 \times 2 \le 3 \leftarrow 12$
 $2 \times 1 + 3 \times 2 \le 3 \leftarrow 12$
 $2 \times 1 + 3 \times 2 \le 3 \leftarrow 12$
 $2 \times 1 + 3 \times 2 \le 3 \leftarrow 12$

11 Duc (1)

$$2 \times 1 + 2 \times 1$$

$$2 \times 1 + 2 \times 2 \times 0$$

$$2 \times 1 + 3 \times 2 \times 0$$

$$2 \times 1 + 3 \times 2 \times 0$$

$$2 \times 1 + 3 \times 2 \times 0$$

Custo de solução

Z= 15 × 1+6×2+1h×3+h×1 + 6×6+5×0=109 €

Célules desocywes

$$(3,2):6+2 \leq 9$$

Factive

					t	4
	V12	1	V2 = 2	V 3=0	V 4= -	-3
()1=0	9	1	122	5	0	21
U2=1		8	8 3	101	Q	18
U3=3	6	4	9	6	5	11
	4.5	5	20	10	5	

Céliles desocydes

Quedro rodino?

$$\chi_{11}^{\dagger} = 9$$
; $\chi_{12}^{a} = 12$; $\chi_{22}^{a} = 8$; $\chi_{23}^{a} = 10$; $\chi_{31}^{a} = 6$; $\chi_{34}^{a} = 5$

ausho Min do transporte

C) $211 + 212 + 213 \le 21$ Porque OFERTA > PROCURA $21 + 22 + 223 \le 18$ $1631 + 232 + 2633 \le 11$