

现代控制理论

第一章 绪论

第二章 系统的状态空间模型

第三章 状态空间方程的解

第四章 系统的稳定性

第五章 能控性与能观性

第六章 传递函数的状态空间实现

第七章 状态反馈与状态观测器

第八章 最优性原理与动态规划

第九章 极小值原理

第十章 二次型指标的线性最优控制

中国科学技术大学自动化系

本课程的篇章结构

建模	直接获取	第2章 系统的状态空间模型
	模型转换	第2章 系统的状态空间模型 第6章 传递函数的状态空间实现
分析	定量分析	第3章 状态空间状态方程的解
	定性分析	第4章 系统的稳定性 第5章 能控性和能观性
设计	常规控制	第7章 状态反馈和状态观测器
	最优控制	第8章 最优性原理与动态规划 第9章 极小值原理 第10章 二次型指标的线性最优控制

第七章 状态反馈与状态观测器

- § 7.1 反馈的结构与形式
- § 7.2 状态反馈与极点配置
- § 7.3 全维状态观测器
- § 7.4 分离定理与复合控制
- § 7.5 降维状态观测器

第七章 状态反馈与状态观测器

- § 7.1 反馈的结构与形式
- § 7.2 状态反馈与极点配置
- § 7.3 全维状态观测器
- § 7.4 分离定理与复合控制
- § 7.5 降维状态观测器

一、输业反馈

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \qquad u = v - H y$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \quad u = v - Kx$$

三、输业内反馈

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \dot{x} = Ax + Bu + Ly$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$

$$u = v - H y$$

$$u = v - K x$$

$$\dot{x} = A x + B u + L y$$

第七章 状态反馈与状态观测器

- § 7.1 反馈的结构与形式
- § 7.2 状态反馈与极点配置
- § 7.3 全维状态观测器
- § 7.4 分离定理与复合控制
- § 7.5 降维状态观测器

一、状态反馈定理

$$\dot{x} = Ax + bu$$

$$y = cx$$

$$u = r - kx$$

$$\dot{x} = (A - bk)x + br$$

$$y = cx$$

定理7.1 状态反馈定理

状态反馈不改变系统的能控性。

一、状态反馈定理

例 7.1 考察状态空间方程及其能控能观性

$$\dot{\mathbf{x}} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; \qquad \mathbf{M}_C = \begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix}, \qquad \mathbf{M}_O = \begin{bmatrix} 1 & 3 \\ 10 & 6 \end{bmatrix}$$

$$y = \begin{bmatrix} 1 & 3 \end{bmatrix} \mathbf{x}$$

易知,此状态方程是既能控又能观的。现引入状态反馈

$$u = r - [3 \ 1]x$$

则状态反馈后,状态空间方程及其能控性矩阵和能观性矩阵变为

$$\dot{\boldsymbol{x}} = \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \boldsymbol{r}; \qquad \boldsymbol{M}_{CK} = \begin{bmatrix} 0 & 3 \\ 1 & 0 \end{bmatrix}; \qquad \boldsymbol{M}_{OK} = \begin{bmatrix} 1 & 3 \\ 1 & 3 \end{bmatrix}$$
$$\boldsymbol{y} = \begin{bmatrix} 1 & 3 \end{bmatrix} \boldsymbol{x}$$

即状态反馈后,系统是能控的,但不是能观的。

二、极点配置定理

定理7.2 极点配置定理

状态反馈可任意配置系统闭环极点的充要条件是系统能控。 $若{A,b}$ 能控,则通过选择合适k,就可以任意指定(A-bk)的特征值。

【证明】为书写上的简便,假定n=4。

记系统的状态方程、状态反馈及状态反馈后的(闭环)状态方程分别是

$$\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{b}\boldsymbol{u}$$

$$u = r - kx$$

$$\dot{x} = (A - bk)x + br$$

则系统状态反馈前后的特征多项式分别为

$$f(\lambda) = \det(s\mathbf{I} - \mathbf{A}) = \lambda^4 + \alpha_3 \lambda^3 + \alpha_2 \lambda^2 + \alpha_1 \lambda + \alpha_0$$
$$f_{k}(\lambda) = \det(s\mathbf{I} - \mathbf{A} + b\mathbf{k}) = \lambda^4 + \overline{\alpha}_3 \lambda^3 + \overline{\alpha}_2 \lambda^2 + \overline{\alpha}_1 \lambda + \overline{\alpha}_0$$

另一方面,因系统能控,故有状态变换 $\bar{x} = Px$,将 (A,b) 变换为能控标准型

$$\dot{\overline{x}} = PAP^{-1}\overline{x} + Pbu = \overline{A}\overline{x} + \overline{b}u$$

定理7.2 极点配置定理

状态反馈可任意配置系统闭环极点的充要条件是系统能

若 $\{A,b\}$ 能控,则通过选择合适k,就可以任意指定(A-bk)的特征值。

【证明】

$$\dot{\bar{x}} = \bar{A}\bar{x} + \bar{b}u = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\alpha_0 & -\alpha_1 & -\alpha_2 & -\alpha_3 \end{bmatrix} \bar{x}(t) + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} u \qquad \frac{\bar{x} = Px}{\bar{A}\bar{x} = PAP^{-1}} \\ \bar{b} = Pb$$

此时状态反馈也可写成

$$u = r - kx = r - kP^{-1}\overline{x} =: r - \overline{k}\overline{x}$$
 $\overline{x} := kP^{-1}$

对任意指定的特征值集合,可迅速构造出期望的特征多项式 $f_k(\lambda)$

$$f_k(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A} + \mathbf{b}\mathbf{k}) = \det(\lambda \mathbf{I} - \overline{\mathbf{A}} + \overline{\mathbf{b}}\overline{\mathbf{k}}) = \lambda^4 + \overline{\alpha}_3 \lambda^3 + \overline{\alpha}_2 \lambda^2 + \overline{\alpha}_1 \lambda + \overline{\alpha}_0$$

显然,只需选择 $\bar{k} = [\bar{\alpha}_0 - \alpha_0 \ \bar{\alpha}_1 - \alpha_1 \ \bar{\alpha}_2 - \alpha_2 \ \bar{\alpha}_3 - \alpha_3]$,就一定有

$$\dot{\overline{x}} = \overline{A}\overline{x} + \overline{b}u = \overline{A}\overline{x} + \overline{b}(r - kx) = \overline{A}\overline{x} - \overline{b}\overline{k}\overline{x} + \overline{b}r = (\overline{A} - \overline{b}\overline{k})\overline{x} + \overline{b}r$$

$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\overline{\alpha}_0 & -\overline{\alpha}_1 & -\overline{\alpha}_2 & -\overline{\alpha}_3 \end{bmatrix} \overline{x}(t) + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} r$$

$$\overline{A} - \overline{b} \overline{k} = P(A - bk)P^{-1}$$

定理7.2 极点配置定理

若 $\{A,b\}$ 能控,则通过选择合适k,就可以任意指定(A-bk) 的特征值

【证明】
$$f(\lambda) = \det(\lambda I - A) = \lambda^4 + \alpha_3 \lambda^3 + \alpha_2 \lambda^2 + \alpha_1 \lambda + \alpha_0$$

$$f_k(\lambda) = \prod_{i=1}^4 (\lambda - \lambda_i) = \lambda^4 + \overline{\alpha}_3 \lambda^3 + \overline{\alpha}_2 \lambda^2 + \overline{\alpha}_1 \lambda + \overline{\alpha}_0$$

$$= \det(\lambda I - A + bk) = \det(\lambda I - \overline{A} + \overline{b}\overline{k}) \qquad \overline{k} := kP^{-1}$$

$$\overline{A} - \overline{b}\overline{k} = P(A - bk)P^{-1} \qquad \overline{k} = [k_0 \ k_1 \ k_2 \ k_3]$$

$$\overline{A} - \overline{b}\overline{k} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\alpha_0 & -\alpha_1 & -\alpha_2 & -\alpha_3 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} k_0 \ k_1 \ k_2 \ k_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\overline{\alpha}_0 & -\overline{\alpha}_1 & -\overline{\alpha}_2 & -\overline{\alpha}_3 \end{bmatrix}$$

$$\overline{\mathbf{k}} = [k_0 \quad k_1 \quad k_2 \quad k_3] = [\overline{\alpha}_0 - \alpha_0 \quad \overline{\alpha}_1 - \alpha_1 \quad \overline{\alpha}_2 - \alpha_2 \quad \overline{\alpha}_3 - \alpha_3]$$

$$k = \overline{k}P$$

二、极点配置定理

定理7.2 极点配置定理

状态反馈可任意配置系统闭环极点的充要条件是系统能控

- 1. 有些教科书在陈述极点配置定理时,要求期望极点关于实轴 对称(为实或共轭方式成对出现)。这在实践中是合理的(保证反馈 增益阵为实),但从理论上说它是不必要的;
- 2. 状态反馈不改变传递函数的零点。这一结论也可以用来解释 为什么状态反馈可以改变状态方程的能观性。
- 3. 定理陈述中的"能控"二字非常重要,事实上它与"任意配 置"互为因果。
- 4. 对于不完全能控系统,状态反馈可以任意配置其能控子空间 的特征值: 而对不能控子空间的特征值没有任何影响力。

三、状态反馈增益阵的求取

1. 标准型法:

$$\mathbf{k} = \overline{\mathbf{k}} \mathbf{P} = (\overline{\boldsymbol{\alpha}} - \boldsymbol{\alpha}) M_{CC} M_{C}^{-1}$$

其中,行向量 α 和 $\bar{\alpha}$ 分别是状态反馈前后系统特征多项式系数的升幂排列, M_c 是原系统的能控性矩阵, M_{cc} 是其相应能控标准型系统的能控性矩阵

它的依据是极点配置定理的构造性证明。关键是状态变换阵P的求取,其背景是

$$\mathbf{M}_{CC} = [\overline{\mathbf{B}} \ \overline{\mathbf{A}} \overline{\mathbf{B}} \ \overline{\mathbf{A}}^{2} \overline{\mathbf{B}} \cdots \overline{\mathbf{A}}^{n-1} \overline{\mathbf{B}}] = [\mathbf{P} \mathbf{B} \ \mathbf{P} \mathbf{A} \mathbf{P}^{-1} \mathbf{P} \mathbf{B} \ \mathbf{P} \mathbf{A}^{2} \mathbf{P}^{-1} \mathbf{P} \mathbf{B} \cdots \mathbf{P} \mathbf{A}^{n-1} \mathbf{P}^{-1} \mathbf{P} \mathbf{B}]$$

$$= \mathbf{P} [\mathbf{B} \ \mathbf{A} \mathbf{B} \ \mathbf{A}^{2} \mathbf{B} \cdots \mathbf{A}^{n-1} \mathbf{B}] = \mathbf{P} \mathbf{M}_{C}$$

2. 待定系数法:

【例7.2】考察状态方程

$$\dot{\boldsymbol{x}} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \boldsymbol{u}$$

其 A 阵的特征多项式是: $f(\lambda) = (\lambda-1)^2 - 9 = \lambda^2 - 2\lambda - 8 = (\lambda-4)(\lambda+2)$ 故系统是不稳定的。易判断系统能控,引入状态反馈

$$u = r - [k_1 \ k_2] x$$

这样,状态反馈系统可描述为

$$\dot{\boldsymbol{x}} = \left(\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ k_1 & k_2 \end{bmatrix} \right) \boldsymbol{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r = \left(\begin{bmatrix} 1 & 3 \\ 3 - k_1 & 1 - k_2 \end{bmatrix} \right) \boldsymbol{x} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} r$$

此新的 A 阵的特征多项式为

$$f_k(\lambda) = (\lambda - 1 + k_2)(\lambda - 1) - 3(3 - k_1) = \lambda^2 + (k_2 - 2)\lambda + (3k_1 - k_2 - 8)$$

显然, $f_k(\lambda)$ 的根,即状态反馈系统的特征值,可通过选择适当的 k_1, k_2 ,

而得以任意配置。例如,若欲将两特征值配置在-1± j2,即期望的特

征多项式为:
$$(s+1+j2)(s+1-j2) = s^2 + 2s + 5$$

只须令:
$$k_2-2=2$$
 $3k_1-k_2-8=5$

即可得:
$$k_1 = 17/3$$
 $k_2 = 4$

所以,状态反馈增益[17/3 4]可将系统特征值从4,-2变换到 $-1\pm j2$ 。

多输入状态反馈与极点配置

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases}, x \in \mathbb{R}^n, u \in \mathbb{R}^p \end{cases} \qquad u = r - Kx \\ \begin{cases} \dot{x} = (A - BK)x + Br \\ y = Cx \end{cases}$$

定理7.3 状态反馈定理

状态反馈不改变系统的能控性。

定理7.4 极点配置定理

状态反馈可任意配置系统闭环极点的充要条件是系统能控。 $若{A,B}$ 能控,则通过选择合适K,就可以任意指定(A-BK)的特征值。

- 构造法: (1) 多输入→单输入
 - (2)多输入标准型

多输入一单输入

多输入系统

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases} \qquad b = B \times v \qquad \begin{cases} \dot{x} = Ax + b\overline{u} \\ y = Cx \end{cases}$$

$$u = v \times \overline{u}$$
$$b = B \times v$$

单输入系统

$$\begin{cases} \dot{x} = Ax + b\overline{u} \\ y = Cx \end{cases}$$

如果能控
$$\bar{u} = r - kx$$

如果能控

$$\overline{u} = r - kx$$

$$u = vr - (vk)x$$

$$K = vk$$

$$\begin{cases} \dot{x} = (A - bk)x + br = (A - Bvk)x + br \\ y = Cx \end{cases}$$

单输入系统能控充分条件:对每个特征值,A仅一个约当块。

多输入标准型

多输入系统: n=6, p=2

非奇异

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases}, B = \begin{bmatrix} b_1 & b_2 \end{bmatrix}$$

$$\begin{cases} \dot{x} = Ax + Bu \\ v = Cx \end{cases}, B = \begin{bmatrix} b_1 & b_2 \end{bmatrix} \qquad M_c = \begin{bmatrix} b_1 & b_2 & Ab_1 & Ab_2 & A^2b_1 & A^2b_2 & A^3b_1 & A^3b_2 & \cdots \end{bmatrix}$$

构造非奇异方阵: $M = \begin{bmatrix} b_1 & Ab_1 & A^2b_1 & A^3b_1 \mid b_2 & Ab_2 \end{bmatrix}$

定义方程: $\begin{vmatrix} v_1^T \\ v_2^T \end{vmatrix} \begin{bmatrix} b_1 & Ab_1 & A^2b_1 & A^3b_1 | b_2 & Ab_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$

$$v_1^T b_1 = 0, v_1^T A b_1 = 0, v_1^T A^2 b_1 = 0, v_1^T A^3 b_1 = 1$$

$$v_1^T b_2 = 0, v_1^T A b_2 = 0$$

$$v_2^T b_1 = 0, v_2^T A b_1 = 0, v_2^T A^2 b_1 = 0, v_2^T A^3 b_1 = 0$$

$$v_2^T b_2 = 0, v_2^T A b_2 = 1$$

变换
矩阵
$$P = \begin{bmatrix} v_1^T A^3 \\ v_1^T A^2 \\ v_1^T A \\ v_1^T A \\ v_1^T \\ v_2^T A \\ v_2^T \end{bmatrix}$$

文技
$$P = \begin{bmatrix} v_1^T A^3 \\ v_1^T A^2 \\ v_1^T A \\ v_1^T \\ v_1^T \\ v_2^T A \\ v_2^T \end{bmatrix} \qquad PM = \begin{bmatrix} v_1^T A^3 \\ v_1^T A^2 \\ v_1^T A \\ v_1^T \\ v_2^T A \\ v_2^T \end{bmatrix} \begin{bmatrix} b_1 & Ab_1 & A^2 b_1 & A^3 b_1 \mid b_2 & Ab_2 \end{bmatrix} = \begin{bmatrix} 1 & * & * & * & * & * \\ 0 & 1 & * & * & * & * \\ 0 & 0 & 1 & * & 0 & * \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & * & 1 & * \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases}$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases} \quad \overline{x} = Px \\ \overline{A} = PAP^{-1}, \overline{B} = PB \end{cases} \quad \begin{cases} \dot{\overline{x}} = \overline{A}\overline{x} + \overline{B}u \\ y = \overline{C}\overline{x} \end{cases}$$

$$\begin{cases} \dot{\overline{x}} = A\overline{x} + Bu \\ y = \overline{C}\overline{x} \end{cases}$$

$$\begin{bmatrix} v_1^T \\ v_2^T \end{bmatrix} \begin{bmatrix} b_1 & Ab_1 & A^2b_1 & A^3b_1 \mid b_2 & Ab_2 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\overline{B} = PB = \begin{bmatrix} v_1^T A^3 \\ v_1^T A^2 \\ v_1^T A \\ v_1^T \\ v_2^T A \\ v_2^T \end{bmatrix} \begin{bmatrix} b_1 & b_2 \end{bmatrix} = \begin{bmatrix} 1 & b_{12} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$\overline{A} = PAP^{-1}$:

$$\overline{A}P = PA = \begin{bmatrix} v_1^T A^4 \\ v_1^T A^3 \\ v_1^T A^2 \\ v_1^T A \\ v_2^T A^2 \\ v_2^T A \end{bmatrix} = \begin{bmatrix} -\alpha_{111} & -\alpha_{112} & -\alpha_{113} & -\alpha_{114} & -\alpha_{121} & -\alpha_{122} \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ -\alpha_{211} & -\alpha_{212} & -\alpha_{213} & -\alpha_{214} & -\alpha_{221} & -\alpha_{222} \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} v_1^T A^3 \\ v_1^T A^2 \\ v_1^T A \\ v_2^T A \\ v_2^T \end{bmatrix}$$

$$\overline{A} = \begin{bmatrix} -\alpha_{111} & -\alpha_{112} & -\alpha_{113} & -\alpha_{114} & -\alpha_{121} & -\alpha_{122} \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ -\alpha_{211} & -\alpha_{212} & -\alpha_{213} & -\alpha_{214} & -\alpha_{221} & -\alpha_{222} \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad \overline{B} = \begin{bmatrix} 1 & b_{12} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$\overline{B} = \begin{bmatrix} 1 & b_{12} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$u = r - \overline{K}\overline{x}$$

 $\times \begin{bmatrix} \overline{\alpha}_{111} - \alpha_{111} & \overline{\alpha}_{112} - \alpha_{112} & \overline{\alpha}_{113} - \alpha_{113} & \overline{\alpha}_{114} - \alpha_{114} & -\alpha_{121} & -\alpha_{122} \\ -\alpha_{211} & -\alpha_{212} & -\alpha_{213} & -\alpha_{214} & \overline{\alpha}_{221} - \alpha_{221} & \overline{\alpha}_{222} - \alpha_{222} \end{bmatrix}$

$$=\begin{bmatrix} -\overline{\alpha}_{111} & -\overline{\alpha}_{112} & -\overline{\alpha}_{113} & -\overline{\alpha}_{114} & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\overline{\alpha}_{221} & -\overline{\alpha}_{222} \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad \begin{array}{c} \overline{A} - \overline{B} \overline{K} & \overline{\Xi} \overline{K} \\ \overline{A} - \overline{B} \overline{K} \\ \overline{A}$$

 $\bar{A} - \bar{B}\bar{K}$ 特征多项式:

$$\Delta(s) = \left(s^4 + \overline{\alpha}_{111}s^3 + \overline{\alpha}_{112}s^2 + \overline{\alpha}_{113}s + \overline{\alpha}_{114}\right)$$
$$\times \left(s^2 + \overline{\alpha}_{221}s + \overline{\alpha}_{222}\right)$$

习题: p293-295 (284-287)

- 7.1 (a) 注: 两种能控规范型是指下友型能控标准型和右 友型能控标准型;
- 7.3 题目修改为: 用状态反馈将题7.1(a)系统的特征值安排在-4,-2±j2。要求用三种不同的方法(标准型构造法、标准型公式法和待定系数法)求状态反馈增益阵。
- 7.7, 7.13: 讨论并修改要求:
 - (1)设原系统为3阶能观标准型系统,求k;
 - (2)求满足题目要求且k=[111]的任意一个原系统。

补充习题:

分别求出线性定常系统 $\{A,B,C,D\}$ 在输出反馈、状态反馈、输出内反馈下,闭环系统的状态空间方程($r \to x \to y$)和传递函数($r \to y$)。

第七章 状态反馈与状态观测器

- § 7.1 反馈的结构与形式
- § 7.2 状态反馈与极点配置
- § 7.3 全维状态观测器
- § 7.4 分离定理与复合控制
- § 7.5 降维状态观测器

§ 7.3 全维状态观测器

一、状态观测器的概念

- ◆ 状态反馈功能强大(如: 极点配置等)
- ◆ 欲实现状态反馈须有实时准确的状态值
- ◆ 但直接量测所有状态很困难甚至不可能

设法利用来自系统的实时可用的信息,通过构造一个模拟系统来实现对状态变量的实时估计。就是所谓的状态估计或叫状态观测问题

$$\dot{x} = Ax + bu$$

$$y = cx$$

$$\begin{cases} A, b, c \\ u(\cdot), y(\cdot) \end{cases} \implies x(t)$$

$$\dot{x} = Ax + bu$$
$$y = cx$$

$$\dot{\hat{x}} = A\hat{x} + bu$$

$$\hat{\boldsymbol{x}}(t_0) \stackrel{\mathbf{2}}{\rightleftharpoons} \boldsymbol{x}(t_0)$$

开环状态观测器

二、全维渐近状态观测器

$$\dot{x} = Ax + bu$$
$$y = cx$$

$$\dot{\hat{x}} = A\hat{x} + bu + l(y - c\hat{x})$$

$$\dot{\hat{x}} = (A - lc)\hat{x} + bu + ly$$

$$\boldsymbol{e}(t) = \boldsymbol{x}(t) - \hat{\boldsymbol{x}}(t)$$

$$\dot{e} = \dot{x} - \dot{\hat{x}}$$

$$= Ax + bu - (A - lc)\hat{x} - bu + l(cx)$$

$$=(A-lc)x-(A-lc)\hat{x}$$

$$=(A-lc)(x-\hat{x})$$

$$=(A-lc)e$$

闭环状态观测器

$$\dot{e} = (A - lc)e$$

全维渐近状态观测器

闭环状态观测器

$$\dot{e} = (A - lc)e$$

$$e(t) = e^{(A-lc)t}e(0)$$

期望:
$$e(t) \rightarrow 0$$

$$\operatorname{Re}(\lambda_{A-lc}) < 0$$

$$\begin{array}{c|c} u & & & \\ \hline \\ b & & & \\ \hline \\ c & & \\ \hline \\ b & & \\ \hline \\ b & & \\ \hline \\ c & & \\ \\ c & & \\ \hline \\ c & & \\ c & & \\ \hline \\ c & & \\ c & & \\ \hline \\ c & & \\$$

$$\lambda_{A-lc} = \lambda_{(A-lc)^T}$$

$$\lambda_{A-lc} = \lambda_{(A-lc)^T}$$

$$\operatorname{Re}(\lambda_{(A-lc)^T}) < 0 \quad (A-lc)^T = A^T - c^T l^T$$

$$(A^T, c^T)$$
 能镇定 (c, A) 能检测

三、存在性定理

定理7.3

渐近状态观测器存在的充要条件是系统能检测。

$$\dot{x} = Ax + bu$$

$$y = cx$$

$$\begin{cases} A, b, c \\ u(\cdot), y(\cdot) \end{cases}$$

$$\dot{\hat{x}} = (A - lc)\hat{x} + bu + ly$$

要明确的是:状态观测器事实上是一个与被观测系统同时运行的一个人工系统(该系统的所有信息都可及时准确得到,激励信号也可以施加在任何需要的地方),输入是被观测系统的输入和输出,输出是被观测系统状态的估计值。

第七章 状态反馈与状态观测器

- § 7.1 反馈的结构与形式
- § 7.2 状态反馈与极点配置
- § 7.3 全维状态观测器
- § 7.4 分离定理与复合控制
- § 7.5 降维状态观测器

§ 7.4 分离定理与复合控制

一、复合系统的结构

用观测状态进行反馈的复合系统

$$\dot{x} = Ax + bu$$

$$\dot{x} = (A - lc)\hat{x} + bu + ly \qquad u = r - k\hat{x}$$

$$y = cx$$

§ 7.4 分离定理与复合控制

一、复合系统的结构

$$\dot{x} = Ax + bu$$
$$y = cx$$

$$\dot{\hat{x}} = (A - lc)\hat{x} + bu + ly$$

$$u = r - k\hat{x}$$

$$\dot{x} = Ax - bk\hat{x} + br$$

$$\dot{\hat{x}} = (A - lc)\hat{x} + b(r - k\hat{x}) + lcx$$

$$\begin{bmatrix} \dot{x} \\ \dot{\hat{x}} \end{bmatrix} = \begin{bmatrix} A & -bk \\ lc & A - lc - bk \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix} + \begin{bmatrix} b \\ b \end{bmatrix} r$$
$$y = \begin{bmatrix} c & 0 \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix}$$

分离定理与复合控制

二、分离特性

$$\dot{x} = Ax + bu$$

$$y = cx$$

$$\dot{\hat{x}} = (A - lc)\hat{x} + bu + ly$$

$$u = r - k\hat{x}$$

$$\begin{bmatrix} \dot{x} \\ \dot{\hat{x}} \end{bmatrix} = \begin{bmatrix} A & -bk \\ lc & A - lc - bk \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix} + \begin{bmatrix} b \\ b \end{bmatrix} r$$

$$y = \begin{bmatrix} c & 0 & \begin{bmatrix} x \\ \hat{x} \end{bmatrix} \end{bmatrix}$$

$$\dot{x} = Ax + bu$$

$$y = cx$$

$$\dot{\hat{x}} = (A - lc)\hat{x} + bu + ly$$

$$u = r - k\hat{x}$$

$$\begin{bmatrix} \dot{x} \\ \dot{x} \end{bmatrix} = \begin{bmatrix} A & -bk \\ lc & A - lc - bk \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix} + \begin{bmatrix} b \\ b \end{bmatrix} r$$

$$y = \begin{bmatrix} c & 0 & \begin{bmatrix} x \\ \hat{x} \end{bmatrix} \end{bmatrix}$$

$$y = \begin{bmatrix} c & 0 & \begin{bmatrix} x \\ \hat{x} \end{bmatrix} \end{bmatrix}$$

$$\dot{x} = Ax - bk\hat{x} + br$$

$$= (A - bk)x + bk(x - k\hat{x}) + br$$

$$\dot{e} = (A - lc)e$$

$$\begin{bmatrix} \dot{x} \\ \dot{e} \end{bmatrix} = \begin{bmatrix} A - bk & bk \\ 0 & A - lc \end{bmatrix} \begin{bmatrix} x \\ e \end{bmatrix} + \begin{bmatrix} b \\ 0 \end{bmatrix} r$$

$$y = \begin{bmatrix} c & 0 & \begin{bmatrix} x \\ e \end{bmatrix} \end{bmatrix}$$

§ 7.4 分离定理与复合控制

二、分离特胜

$$\begin{bmatrix} \dot{x} \\ \dot{e} \end{bmatrix} = \begin{bmatrix} A - bk & bk \\ 0 & A - lc \end{bmatrix} \begin{bmatrix} x \\ e \end{bmatrix} + \begin{bmatrix} b \\ 0 \end{bmatrix} r$$

$$y = \begin{bmatrix} c & 0 & \end{bmatrix} \begin{bmatrix} x \\ e \end{bmatrix}$$

估计误
$$e(t) \rightarrow 0$$
 $\text{Re}(\lambda_{A-lc}) < 0$ 差收敛:

第七章 状态反馈与状态观测器

- § 7.1 反馈的结构与形式
- § 7.2 状态反馈与极点配置
- § 7.3 全维状态观测器
- § 7.4 分离定理与复合控制
- § 7.5 降维状态观测器

一、状态观测器的一般形式

$$\begin{cases} \dot{z} = Fz + Gu + Hy \\ \hat{x} = Pz + Qu + Ry \end{cases} \dot{\hat{x}} = (A - lc)\hat{x} + bu + ly$$

二、降维观测器:

若状态观测器系统S1的维数小于被观测系统S2的维数,则称S1是S2的降维观测器。

三、最小维状态观测器:

对 n 维线性定常系统{A, B, C}, 若{A, C}能观,且 rank(C) = q

则该系统状态观测器的最小维数是 n-q。

四、龙伯格观测器

(D.G. Luenaherger)

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases}$$

 $\dim x = n$ rank C = q

$$\overline{A} = PAP^{-1}$$
, $\overline{B} = PB$
 $\overline{C} = CP^{-1}$

从 C 阵中抽取互不相关的 q 行,称之为C。 (或不妨假设C满秩,这样 $C=C_2$),再 寻 $(n-q)\times n$ 维矩阵 C_1 使 P 非奇异,这样

$$\boldsymbol{P} = \begin{bmatrix} \boldsymbol{C}_1 \\ \boldsymbol{C}_2 \end{bmatrix} \quad n - q \qquad \quad \boldsymbol{\overline{x}} = \begin{bmatrix} \boldsymbol{\overline{x}}_1 \\ \boldsymbol{\overline{x}}_2 \end{bmatrix}$$

$$egin{aligned} ar{A} &= PAP^{-1} = egin{bmatrix} A_{11} & A_{12} \ A_{21} & A_{22} \end{bmatrix}, & ar{B} &= PB = egin{bmatrix} B_1 \ B_2 \end{bmatrix} \ ar{C} &= C_2 P^{-1} = C_2 egin{bmatrix} C_1 \ C_2 \end{bmatrix}^{-1} = egin{bmatrix} O & I \end{bmatrix} \end{aligned}$$

$$y = \overline{C}\overline{x} = [O \ I] \begin{bmatrix} \overline{x}_1 \\ \overline{x}_2 \end{bmatrix} = \overline{x}_2$$

四、龙伯格观测器

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases} \quad \overline{x} = Px \quad \begin{cases} \dot{\overline{x}} = \overline{A}\overline{x} + \overline{B}u & \overline{A} = PAP^{-1}, \quad \overline{B} = PB \\ y = \overline{C}\overline{x} & \overline{C} = CP^{-1} \end{cases}$$

$$P = \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} \quad n - q \quad \overline{x} = \begin{bmatrix} \overline{x}_1 \\ \overline{x}_2 \end{bmatrix} \quad \overline{A} = PAP^{-1} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad \overline{B} = PB = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} \quad \overline{C} = C_2 P^{-1} = C_2 \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}^{-1} = \begin{bmatrix} O & I \end{bmatrix}$$

$$\dot{\overline{x}}_1 = A_{11}\overline{x}_1 + A_{12}\overline{x}_2 + B_1 u \quad y = \overline{C}\overline{x} = \overline{x}_2$$

$$\dot{\overline{x}}_2 = A_{21}\overline{x}_1 + A_{22}\overline{x}_2 + B_2 u \quad y = \overline{C}\overline{x} = \overline{x}_2$$

记
$$w = A_{21}\overline{x}_1$$
 则 $\dot{\overline{x}}_1 = A_{11}\overline{x}_1 + (A_{12}y + B_1u)$ $\dot{\overline{x}}_1 = A_{11}\overline{x}_1 + v$ $w = A_{21}\overline{x}_1 = \dot{y} - A_{22}y - B_2u$ $w = A_{21}\overline{x}_1$

至此可用全维状态观测器的设计方法构造 \bar{x}_1 的观测器:

四、龙伯格观测器

$$\frac{\dot{\overline{x}}_1 = A_{11}\overline{x}_1 + A_{12}\overline{x}_2 + B_1 u}{\dot{\overline{x}}_2 = A_{21}\overline{x}_1 + A_{22}\overline{x}_2 + B_2 u} \qquad y = \overline{C}\overline{x} = \overline{x}_2$$

记
$$\boldsymbol{w} = \boldsymbol{A}_{21} \overline{\boldsymbol{x}}_1$$
 则

$$\dot{\overline{x}}_1 = A_{11}\overline{x}_1 + (A_{12}y + B_1u)$$

$$\dot{\overline{x}}_1 = A_{11}\overline{x}_1 + v$$

$$\boldsymbol{w} = \boldsymbol{A}_{21} \overline{\boldsymbol{x}}_1 = \dot{\boldsymbol{y}} - \boldsymbol{A}_{22} \boldsymbol{y} - \boldsymbol{B}_2 \boldsymbol{u}$$

$$\boldsymbol{w} = \boldsymbol{A}_{21} \overline{\boldsymbol{x}}_1$$

至此可用全维状态观测器的设计方法构造 \bar{x} ,的观测器:

$$\dot{\hat{x}}_{1} = (A_{11} - LA_{21})\hat{x}_{1} + (A_{12}y + B_{1}u) + L(\dot{y} - A_{22}y - B_{2}u)$$

为了消除式中 \dot{y} 项,取

$$z = \hat{\overline{x}}_1 - Ly \implies \hat{\overline{x}}_1 = z + Ly$$

$$\dot{z} = (A_{11} - LA_{21})(z + Ly) + (A_{12}y + B_{1}u) - L(A_{22}y + B_{2}u)$$

$$\dot{z} = (A_{11} - LA_{21})z + (B_1 - LB_2)u + [(A_{11} - LA_{21})L + A_{12} - LA_{22}]y$$

$$\hat{\overline{x}} = \begin{bmatrix} \hat{\overline{x}}_1 \\ \hat{\overline{x}}_2 \end{bmatrix} = \begin{bmatrix} z + Ly \\ y \end{bmatrix} = \begin{bmatrix} I & L \\ O & I \end{bmatrix} \begin{bmatrix} z \\ y \end{bmatrix}$$

$$\hat{\boldsymbol{x}} = \boldsymbol{P}^{-1} \hat{\overline{\boldsymbol{x}}} = \boldsymbol{P}^{-1} \begin{bmatrix} \boldsymbol{I} & \boldsymbol{L} \\ \boldsymbol{O} & \boldsymbol{I} \end{bmatrix} \begin{bmatrix} \boldsymbol{z} \\ \boldsymbol{y} \end{bmatrix}$$

四、龙怕格观测器 (D.G. Luenaherger)

$$\dot{x} = Ax + Bu$$
 dim $x = n$ $y = Cx$ rank $C = q$

- 1.检查系统的能观性,确定最小维观测器的阶
- 2.定义坐标变换 $\overline{x} = Px$ $P = \begin{vmatrix} C_1 \\ C_2 \end{vmatrix}$ n-q 从C阵中抽取互不相关的q行为 C_2 再寻 $(n-q) \times n$ 维矩阵 C_1 使P 非奇异
- 3.进行状态变换

- 5.消除微分项 $z = \hat{x}_1 Ly$ $\dot{z} = (A_{11} LA_{21})(z + Ly) + (A_{12}y + B_1u) L(A_{22}y + B_2u)$

$$\dot{z} = (A_{11} - LA_{21})z + (B_1 - LB_2)u + [(A_{11} - LA_{21})L + A_{12} - LA_{22}]y$$

6.还原观测目标

$$\hat{\boldsymbol{x}} = \boldsymbol{P}^{-1} \hat{\overline{\boldsymbol{x}}} = \boldsymbol{P}^{-1} \begin{bmatrix} \hat{\overline{\boldsymbol{x}}}_1 \\ \hat{\overline{\boldsymbol{x}}}_2 \end{bmatrix} = \boldsymbol{P}^{-1} \begin{bmatrix} \boldsymbol{z} + \boldsymbol{L} \boldsymbol{y} \\ \boldsymbol{y} \end{bmatrix} = \boldsymbol{P}^{-1} \begin{bmatrix} \boldsymbol{I} & \boldsymbol{L} \\ \boldsymbol{O} & \boldsymbol{I} \end{bmatrix} \begin{bmatrix} \boldsymbol{z} \\ \boldsymbol{y} \end{bmatrix}$$

【例 7.3】已知系统的动态方程为

$$\begin{cases} \dot{x}_1 = -2x_1 + x_2 + u \\ \dot{x}_2 = x_1 - 3x_2 + 2u \\ y = x_1 - x_2 \end{cases} = de$$

- 1. 判断系统的渐近稳定性和 BIBO 稳定性;
- 2. 若可能,设计状态反馈使闭环系统的极点位于 $-2\pm j2$;
- 3. 当系统的状态不可直接量测时,若可能,设 计极点均位于-6 处的最小维状态观测器;
- 4. 用你得到的观测状态实现你设计的状态反馈,给出实现你所设计的复合系统结构图。

注: 此题为中国科学技术大学 2004 年攻读硕士 学位研究生入学试题 (24 分)

根据观测器极点的要求:

$$(A_o - lc_o) = -1 - l = -6 \implies l = 5$$

于是,观测器方程为:

$$\dot{\bar{x}}_1 = -6\dot{\bar{x}}_1 + (u-y) + 5(\dot{y} + 4y + u) = -6\dot{\bar{x}}_1 + 6u + 5\dot{y} + 19y$$

为消去微分项,令 $z = \hat{x}_1 - 5y$,即 $\hat{x}_1 = z + 5y$,则得最小维观测器的状态方程

$$\dot{z} = -6z + 6u - 11v$$

而观测器的输出方程自然是

$$\hat{x} = \mathbf{P}^{-1} \begin{bmatrix} \hat{\overline{x}}_1 \\ \hat{\overline{x}}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} z + 5y \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} z + \begin{bmatrix} 5 \\ 4 \end{bmatrix} y$$

设实现题目要求的状态反馈为u=v-kx,则

$$\det(\lambda \mathbf{I} - \mathbf{A} + \mathbf{b}\mathbf{k}) = (\lambda + 2 - j2)(\lambda + 2 + j2) = \lambda^2 + 4\lambda + 8$$

$$= \det\begin{pmatrix} \begin{bmatrix} \lambda + 2 + k_1 & -1 + k_2 \\ -1 + 2k_1 & \lambda + 3 + 2k_2 \end{bmatrix} \end{pmatrix} = \lambda^2 + (5 + k_1 + 2k_2)\lambda + (5 + 5k_1 + 5k_2)$$

解得: $k_1 = 2.2$, $k_2 = -1.6$, 即题求状态反馈为 u = v - [2.2 -1.6]x = v - 2.2x, +1.6x。

3. 因系统的能观性矩阵 $M_o = \begin{bmatrix} c \\ cA \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -3 & 4 \end{bmatrix}$ 满

秩,故系统能观,状态观测器存在。又因 c 的 秩为 1,故最小维状态观测器应为 1 维,取

$$\boldsymbol{P} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}, \qquad \text{II} \qquad \boldsymbol{P}^{-1} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}$$

$$\overline{A} = PAP^{-1} = \begin{bmatrix} -1 & -1 \\ 1 & -4 \end{bmatrix}; \quad \overline{b} = Pb = \begin{bmatrix} 1 \\ -1 \end{bmatrix};$$

$$\bar{c} = cP^{-1} = [0 \quad 1]$$

以 x 为状态的状态空间方程可写成:

$$\begin{split} \dot{\overline{x}}_1 &= A_o \overline{x}_1 + b_o u_o = -\overline{x}_1 + \overline{u} \\ y_o &= c_o \overline{x}_1 &= \overline{x}_1 \end{split}$$

其中: $b_o u_o = u - y$, $y_o = \overline{x}_1 = \dot{y} + 4y + u$ 构造此 1 维系统的等维观测器:

$$\hat{\overline{x}}_1 = (A_o - lc_o)\hat{\overline{x}}_1 + b_o u_o + ly_o$$

五、享雅普诺夫方程法

$$\begin{cases} \dot{x} = Ax + Bu & \dim x = n \\ y = Cx & \operatorname{rank} C = q \end{cases}$$

一般步骤:

- 1. 选择任一 $(n-q)\times(n-q)$ 稳定矩阵 F,但其特征值与 A 不同;
- 2. 选择任一 $(n-q)\times q$ 的矩阵 L,使得(F,L)能控;
- 3. 求李雅普诺夫方程TA FT = LC 的唯一解。 (注意: T = LC 化 化 (注意: T = LC 化 (注意: T = LC 化 (注意)
- 4. 如果n阶方阵 $P = \begin{bmatrix} T \\ C \end{bmatrix}$ 奇异,退回第2步重新选择;

而若P非奇异,则该系统的n-q维状态观测器就是

$$\dot{z} = Fz + TBu + Ly$$

$$\hat{x} = \begin{bmatrix} T \\ C \end{bmatrix}^{-1} \begin{bmatrix} z \\ y \end{bmatrix}$$

下面来说明此步骤的正确性,将状态观测器的输出方程写为

$$\begin{bmatrix} z \\ y \end{bmatrix} = \begin{bmatrix} T \\ C \end{bmatrix} \hat{x}$$

它意味着 $z = T\hat{x}$, $y = C\hat{x}$ 。显然 $y \in Cx$ 的估计,于是只须证明 $z \in Tx$ 的一个估计。 定义 e = z - Tx, 这样

$$\dot{e} = \dot{z} - T\dot{x} = Fz + TBu + LCx - TAx - TBu$$
$$= Fz + (LC - TA)x = F(z - Tx) = Fe$$

若 F 稳定,则当 $t \to \infty$ 时 $e(t) \to 0$,于是 z 是 Tx 的估计。

为保证上述步骤的完备性,我们有如下的定理(证明略)

定理

若 A 与 F 没有相同的特征值,且 T 是方程 TA-FT=LC 的唯一解,则矩阵 $P=\begin{bmatrix}T\\C\end{bmatrix}$ 非奇异的必要条件是 (A,C) 能观且 (F,L) 能控。对单输出系统,上述条件是充要条件。

【例 7.3】已知系统的动态方程为

$$\begin{cases} \dot{x}_1 = -2x_1 + x_2 + u \\ \dot{x}_2 = x_1 - 3x_2 + 2u \\ y = x_1 - x_2 \end{cases}$$

- 1. 判断系统的渐近稳定性和 BIBO 稳定性;
- 2. 若可能,设计状态反馈使闭环系统的极点位于 $-2 \pm j2$;
- 3. 当系统的状态不可直接量测时,若可能,设计极点均位于-6处的最小维状态观测器;
- 4. 用你得到的观测状态实现你设计的状态反馈,给出实现你所设计的复合系统结构图。
- 注: 此题为中国科学技术大学 2004 年攻读硕士 学位研究生入学试题 (24 分)

【解】:
$$A = \begin{bmatrix} -2 & 1 \\ 1 & -3 \end{bmatrix}$$
; $b = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$; $c = \begin{bmatrix} 1 & -1 \end{bmatrix}$

3. 因系统的能观性矩阵 $M_o = \begin{bmatrix} c \\ cA \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -3 & 4 \end{bmatrix}$ 满 秩,故系统能观,状态观测器存在。又因 c 的 秩为 1,故最小维状态观测器应为 1 维

原系统的特征值是 $(-5\pm\sqrt{5})/2\neq -6$,故可使用 李雅普诺夫方程法

- (1)为满足观测器极点的要求,取F = -6,
 - (2) 为保证(F,L)能控,只须 $L \neq 0$,但为设计结果尽可能简单,先让L待定
 - (3)令 $T = [t_1 t_2]$,则待解的李雅普诺夫方程为

$$TA - FT = LC$$

$$\begin{bmatrix} t_1 & t_2 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 1 & -3 \end{bmatrix} - (-6) \begin{bmatrix} t_1 & t_2 \end{bmatrix} = L \cdot \begin{bmatrix} 1 & -1 \end{bmatrix}$$

$$\begin{cases} -2t_1 + t_2 + 6t_1 = L \\ t_1 - 3t_2 + 6t_2 = -L \end{cases} \Rightarrow \begin{cases} 4t_1 + t_2 = L \\ t_1 + 3t_2 = -L \end{cases}$$

取 L = 11 则: $T = [t_1, t_2] = [4, -5]$

合在一起即(李雅普诺夫方程法求得的观测器):

$$\dot{z} = -6z - 6u + 11y$$
, $\hat{x} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} z + \begin{bmatrix} 5 \\ 4 \end{bmatrix} y$

记得前面的结果是:

$$\dot{z} = -6z + 6u - 11y$$
, $\hat{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} z + \begin{bmatrix} 5 \\ 4 \end{bmatrix} y$
它们是一样的吗?回答是—— v | "两个观测器的外特性是完全一样的"。

即观测器输入至输出 \hat{x} 的传递函数阵相同事实上,如果当时选L=-11就可以得到完全一样的结果,同样L的选择不同还可得到表节面上差异更大的降维状态观测器。

| -1 | | 4 |

习题: p293-295 (284-287)

- 7.1 (a) 注: 两种能控规范型是指下友型能控标准型和右 友型能控标准型;
- 7.3 题目修改为: 用状态反馈将题7.1(a)系统的特征值安排在-4,-2±j2。要求用两种不同的方法(标准型法和待定系数法)求状态反馈增益阵。
- 7.7, 7.11, 7.12 (两种方法), 7.14
- 7.13: 讨论并修改要求:
 - (1)设原系统为3阶能观标准型系统,求k;
 - (2)求满足题目要求且k=[111]的任意一个原系统。

补充习题:

分别求出线性定常系统 $\{A,B,C,D\}$ 在输出反馈、状态反馈、输出内反馈下,闭环系统的状态空间方程($r \to x \to y$)和传递函数($r \to y$)。