Unidad 5 Teorema de los residuos

5° CLASE

Cintia Perrone – PS 2023

Criterio de clasificación de singularidades aisladas de funciones que son cociente de funciones analíticas

Teorema 5.2.12. Sea $f(z) = \frac{N(z)}{D(z)}$, donde N(z) y D(z) son analíticas en z_0 tal

que N(z) tiene un cero de orden p y D(z) tiene un cero de orden q en z_0 , entonces:

- i) Si p < q, z_0 es un polo de orden (q p) de f(z)
- ii) Si $p \ge q$, z_0 es una singularidad evitable de f(z)

Demostración:

Puesto que N(z) tiene un cero de orden p en z_0 y D(z) tiene un cero de orden q en z_0 , por el Teorema de Caracterización de ceros:

$$N(z) = (z - z_0)^p n_1(z)$$
, con $n_1(z)$ analítica en z_0 y $n_1(z_0) \neq 0$

$$D(z) = (z - z_0)^q d_1(z)$$
, con $d_1(z)$ analítica en z_0 y $d_1(z_0) \neq 0$

Así podemos escribir:

$$f(z) = \frac{N(z)}{D(z)} = \frac{(z - z_0)^p n_1(z)}{(z - z_0)^q d_1(z)} = (z - z_0)^{p - q} g_1(z) \qquad con \qquad g_1(z) = \frac{n_1(z)}{d_1(z)}$$

 $g_1(z)$ es analítica en z_0 por ser cociente de funciones analíticas en z_0 con denominador no nulo en z_0 y $g_1(z_0) \neq 0$.

i) Si
$$q > p \Rightarrow q - p > 0$$

$$f(z) = (z - z_0)^{p - q} g_1(z) = (z - z_0)^{-(q - p)} g_1(z) = \frac{1}{(z - z_0)^{q - p}} g_1(z)$$

Por Teorema de Caracterización de Polos, z_0 es un polo de orden q - p de f(z)

ii) Si $p \geq q$ entonces $f(z) = (z-z_0)^{p-q}g_1(z)$, válido si $z \neq z_0$, es decir en una región $0 < |z-z_0| < \infty$. Por otro lado $g_1(z)$ es analítica en z_0 y admite un desarrollo de Taylor en z_0 válido en la región $|z-z_0| < R$. Por lo tanto, $f(z) = (z-z_0)^{p-q}g_1(z)$ admite un desarrollo en serie de Laurent en $0 < |z-z_0| < R$ y solamente tiene potencias positivas de $(z-z_0)$, es decir, $b_n = 0 \quad \forall n \geq 1$, es decir, z_0 es una singularidad evitable de f(z).

(Ejemplo pizarrón 5.A)

Resolución de integrales a lo largo de una curva cerrada de una función analítica sobre la curva y en su interior, salvo en un número finito de puntos singulares.

El Teorema de Cauchy-Goursat nos permitía calcular la integral de una función f(z) a lo largo de una curva \mathcal{C} suave, o suave a trozos, simple, cerrada y recorrida en sentido antihorario, afirmando que el resultado era:

$$\oint_{\mathcal{C}} f(z) \, dz = 0$$

¿Pero qué ocurre en el caso en que la función f(z) sea analítica sobre la curva $\mathcal C$ y en su interior, salvo en un número finito de puntos singulares?

Para responder esta pregunta recurriremos al concepto de "Residuo".

Primero analizaremos el caso de una función f(z) analítica sobre una curva cerrada \mathcal{C} y en su interior, salvo en un punto z_0 : Si z_0 es una singularidad aislada de f(z) entonces f(z) es analítica en un entorno reducido de z_0 , $0 < |z - z_0| < R$ y f(z) admite un desarrollo de Laurent en dicho entorno reducido:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} b_n (z - z_0)^{-n} \qquad 0 < |z - z_0| < R$$

$$a_n = \frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{f(z)}{(z - z_0)^{n+1}} dz$$
 y $b_n = \frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{f(z)}{(z - z_0)^{-n+1}} dz$

siendo \mathcal{C} cualquier curva cerrada, suave o suave a trozos, simple y recorrida en sentido antihorario, contenida en la corona o entorno reducido $0 < |z - z_0| < R$ y que rodea a z_0 .

Si n = 1:

$$b_1 = \frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{f(z)}{(z - z_0)^{-1+1}} dz = \frac{1}{2\pi i} \oint_{\mathcal{C}} f(z) dz \qquad \Rightarrow \qquad \oint_{\mathcal{C}} f(z) dz = 2\pi i b_1$$

Es decir, si obtenemos el coeficiente b_1 , podemos calcular el valor de la integral. (Ejemplo pizarrón 5.B)

Definición 5.3.1: Sea $\mathbf{z_0}$ una singularidad aislada de f(z). Se denomina **residuo** de f(z) en $\mathbf{z_0}$ al coeficiente b_1 de la potencia $(z-z_0)^{-1}$ del desarrollo de la serie de Laurent de f(z) en un entorno reducido de $\mathbf{z_0}$, $0 < |z-z_0| < R$ y se indica $\operatorname{Res}_{\mathbf{z_0}} f(\mathbf{z})$.

El desarrollo en serie de Laurent de una función f(z) en una singularidad aislada z_0 puede admitir varias coronas de convergencia:

$$I: 0 < |z - z_0| < R_1$$

$$II: R_1 < |z - z_0| < R_2$$

$$III: R_2 < |z - z_0| < R_3$$

$$IV: R_3 < |z - z_0| < \infty$$

Para clasificar la singularidad z_0 y hallar el residuo de f(z) en z_0 debemos encontrar el desarrollo en serie de Laurent de f(z) convergente en la corona o entorno reducido I.

Si z_0 es una **singularidad evitable** de f(z), se cumple que todos los coeficientes b_n de la parte principal del desarrollo en serie de Laurent de f(z) en z_0 , convergente en $0 < |z - z_0| < R$ son iguales a cero. Entonces, en particular, para las singularidades evitables tenemos $Res_{z_0}f(z) = b_1 = 0$.

Para encontrar el residuo de singularidades esenciales no se cuenta con ninguna fórmula y se debe encontrar el desarrollo de Laurent convergente en la corona $0 < |z - z_0| < R$.

Para determinar el residuo en un polo de orden k de una función f(z), sin necesidad de encontrar el desarrollo de Laurent de f(z) en un entorno reducido de z_0 podemos utilizar la **siguiente proposición**:

Proposición 5.3.7. Cálculo de residuos en polos:

i) Si z_0 es un polo de orden k > 1 de f(z) entonces:

$$Res_{z_0} f(z) = \frac{1}{(k-1)!} \lim_{z \to z_0} \left\{ \frac{d^{k-1}}{dz^{k-1}} [(z-z_0)^k f(z)] \right\}$$

ii) Si z_0 es un polo simple k = 1 de f(z) entonces:

$$Res_{z_0} f(z) = \lim_{z \to z_0} [(z - z_0) f(z)]$$

Demostración:

i) Si z_0 un polo de orden k > 1 de f(z), por el Teorema de caracterización de polos:

$$f(z) = \frac{1}{(z-z_0)^k}h(z)$$
 con $h(z)$ analítica en z_0 y $h(z_0) \neq 0$. Entonces $h(z)$ admite

un desarrollo de Taylor:
$$h(z) = \sum_{n=0}^{\infty} \frac{h^{(n)}}{n!} (z-z_0)^n$$
 en $|z-z_0| < R$

Reemplazando en f(z):

$$f(z) = \frac{h(z_0)}{(z - z_0)^k} + \frac{h'(z_0)}{(z - z_0)^{k-1}} + \dots + \frac{h^{(k-1)}(z_0)}{(k-1)!(z - z_0)} + \frac{h^{(k)}(z_0)}{k!} + \frac{h^{(k+1)}(z_0)(z - z_0)}{(k+1)!} + \dots$$

$$en \quad 0 < |z - z_0| < R$$

El residuo será por definición el coeficiente b_1 del desarrollo de la serie de Laurent:

$$Res_{z_0} f(z) = b_1 = \frac{h^{(k-1)}(z_0)}{(k-1)!} = \frac{1}{(k-1)!} \lim_{z \to z_0} \left\{ \frac{d^{(k-1)}}{dz^{(k-1)}} h(z) \right\}$$

$$Res_{z_0} f(z) = \frac{1}{(k-1)!} \lim_{z \to z_0} \left\{ \frac{d^{(k-1)}}{dz^{(k-1)}} (z - z_0)^k f(z) \right\}$$

ii) Si k = 1 tenemos:

$$Res_{z_0} f(z) = \lim_{z \to z_0} [(z - z_0) f(z)]$$

(Ejemplo pizarrón 5.C)

Teorema de los Residuos

Teorema 5.3.10. Teorema de los Residuos.

Sea \mathcal{C} una curva cerrada, simple, suave o suave a trozos y recorrida en sentido antihorario. Sea f(z) una función analítica sobre \mathcal{C} y en su interior, salvo en un número finito de puntos singulares $z_1, z_2, ..., z_n$ interiores a \mathcal{C} . Entonces:

$$\oint_{\mathcal{C}} f(z) dz = 2\pi i \sum_{j=1}^{n} Res_{z_{j}} f(z)$$

Demostración:

Vamos a utilizar el Corolario de Cauchy-Goursat. Para eso consideramos a cada punto singular z_j j=1,...,n como el centro de una circunferencia C_j interior a C_j , orientada en sentido antihorario y de radio suficientemente pequeño de modo que dos cualesquiera de ellas sean disjuntas.

La curva \mathcal{C} y las circunferencias \mathcal{C}_j forman la frontera de una región \mathcal{D} donde f(z) es analítica.

Por el Corolario de Cauchy-Goursat:

$$\oint_{\mathcal{C}} f(z) dz = \sum_{j=1}^{n} \oint_{C_j} f(z) dz$$

Por la definición de residuo en una singularidad aislada:

$$\oint_{C_j} f(z) dz = 2\pi i Res_{z_j} f(z) \qquad j = 1, ..., n$$

Reemplazando:

$$\oint_{\mathcal{C}} f(z) dz = 2\pi i \sum_{j=1}^{n} Res_{z_j} f(z) \qquad j = 1, ..., n$$