In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

In [2]:

```
data = pd.read_csv("car data.csv")
data.head(10)
```

Out[2]:

	Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type
0	ritz	2014	3.35	5.59	27000	Petrol
1	sx4	2013	4.75	9.54	43000	Diesel
2	ciaz	2017	7.25	9.85	6900	Petrol
3	wagon r	2011	2.85	4.15	5200	Petrol
4	swift	2014	4.60	6.87	42450	Diesel
5	vitara brezza	2018	9.25	9.83	2071	Diesel
6	ciaz	2015	6.75	8.12	18796	Petrol
7	s cross	2015	6.50	8.61	33429	Diesel
8	ciaz	2016	8.75	8.89	20273	Diesel
9	ciaz	2015	7.45	8.92	42367	Diesel
4						•

In [3]:

```
data.isnull().sum()
```

Out[3]:

Car Name 0 Year 0 Selling Price 0 Present Price 0 Kms Driven 0 Fuel Type 0 Seller Type Transmission Owner 0 dtype: int64

In [4]:

data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 301 entries, 0 to 300 Data columns (total 9 columns): 301 non-null object Car_Name 301 non-null int64 Year 301 non-null float64 Selling Price Present Price 301 non-null float64 Kms Driven 301 non-null int64 Fuel Type 301 non-null object Seller Type 301 non-null object 301 non-null object Transmission Owner 301 non-null int64 dtypes: float64(2), int64(3), object(4) memory usage: 21.2+ KB

In [5]:

data.describe(include = 'all')

Out[5]:

	Car_Name	Year	Selling_Price	Present_Price	Kms_Drive
count	301	301.000000	301.000000	301.000000	301.00000
unique	98	NaN	NaN	NaN	Na
top	city	NaN	NaN	NaN	Na
freq	26	NaN	NaN	NaN	Na
mean	NaN	2013.627907	4.661296	7.628472	36947.20598
std	NaN	2.891554	5.082812	8.644115	38886.88388
min	NaN	2003.000000	0.100000	0.320000	500.00000
25%	NaN	2012.000000	0.900000	1.200000	15000.00000
50%	NaN	2014.000000	3.600000	6.400000	32000.00000
75%	NaN	2016.000000	6.000000	9.900000	48767.00000
max	NaN	2018.000000	35.000000	92.600000	500000.00000

In [6]:

sns.pairplot(data)

Out[6]:

<seaborn.axisgrid.PairGrid at 0x7f7c5543ae50>

Now Lets Check few Hypothesis

Hypothesis - 1 :Less Driven cars have high selling price

Hypothesis - 2 :Latest Cars will have high selling price

Hypothesis - 3: Automatic Transmission Cars have high selling price

Lets check our hypothesis

Hypothesis - 1

In [7]:

Less Drive Cars have high selling price

In [8]:

```
fig,ax1 = plt.subplots(figsize = (15,10))
sns.scatterplot(x='Kms_Driven' , y ="Selling_Price",data = data , ax = ax
1)
```

Out[8]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f7c3c7e0990>

Hypothesis - 2

In [9]:

#Latest Cars will have high selling price

In [10]:

```
data['latest_car_year'] = 2020 - data.Year
data.head()
```

Out[10]:

	Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type
0	ritz	2014	3.35	5.59	27000	Petrol
1	sx4	2013	4.75	9.54	43000	Diesel
2	ciaz	2017	7.25	9.85	6900	Petrol
3	wagon r	2011	2.85	4.15	5200	Petrol
4	swift	2014	4.60	6.87	42450	Diesel
4						>

In [11]:

```
sns.catplot(x='latest_car_year',y='Selling_Price',data=data,kind= 'point'
,height = 5,aspect = 2)
```

Out[11]:

<seaborn.axisgrid.FacetGrid at 0x7f7c3c385750>

In [12]:

#Second hypothesis is also true

Hypothesis - 3

In [13]:

data.Transmission.value_counts()

Out[13]:

Manual 261 Automatic 40

Name: Transmission, dtype: int64

In [14]:

data.loc[:,['Transmission','Selling_Price']].sort_values(by=['Selling_Price'],ascending = False)['Transmission'].head(15).value_counts().plot.pie(figsize=(15,15),subplots = True , autopct = '%.1f%%',explode=[0,.08],shadow=True)

Out[14]:

In [15]:

#Top 15 cars with high sale price have Automatic transmission. That proves our 3rd hypothesis

#Now Lets get in to prediction

In [16]:

```
label = LabelEncoder()
data1 = pd.get_dummies(data['Fuel_Type'],prefix = 'FT' , drop_first = Tru
e)
data1.head()
```

Out[16]:

	FT_Diesel	FT_Petrol
0	0	1
1	1	0
2	0	1
3	0	1
4	1	0

In [17]:

```
data['Seller_Type'] = label.fit_transform(data['Seller_Type'])
data['Transmission'] = label.fit_transform(data['Transmission'])
```

In [18]:

```
data = pd.concat([data,data1],axis = 1)
data.drop(['Fuel_Type'],axis=1,inplace=True)
data.head()
```

Out[18]:

	Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Seller_Type
0	ritz	2014	3.35	5.59	27000	0
1	sx4	2013	4.75	9.54	43000	0
2	ciaz	2017	7.25	9.85	6900	0
3	wagon r	2011	2.85	4.15	5200	0
4	swift	2014	4.60	6.87	42450	0

In [19]:

```
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 301 entries, 0 to 300
Data columns (total 11 columns):
Car_Name
                   301 non-null object
                   301 non-null int64
Year
                   301 non-null float64
Selling Price
Present Price
                   301 non-null float64
Kms Driven
                   301 non-null int64
Seller Type
                   301 non-null int64
Transmission
                   301 non-null int64
Owner
                   301 non-null int64
latest car year
                   301 non-null int64
                   301 non-null uint8
FT Diesel
                   301 non-null uint8
FT Petrol
dtypes: float64(2), int64(6), object(1), uint8(2)
memory usage: 21.8+ KB
```

In [20]:

```
fig , ax2 = plt.subplots(figsize = (15,10))
sns.heatmap(data.corr() , annot= True , ax =ax2 , cmap = sns.cm.vlag)
```

Out[20]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f7c3c233d90>

In [21]:

 $\#The\ Selling\ Price\ has\ Strong\ Correlation\ with\ Year\ and\ Present\ Price\ ,\ D$ iesel Fuel Type of the car

#I am gonna create 2 models

#Model with all features

#Model with Strong Correlated features

In [52]:

```
def model(x,y):
    training_x ,testing_x ,training_y ,testing_y = train_test_split(x,y,t
est_size=0.30,random_state =10)
    li_model = LinearRegression()
    li_model.fit(training_x,training_y)
    print("Training Sucessfully Done !!!!!")
    y_pred = li_model.predict(testing_x)

fig,ax1 = plt.subplots(figsize=(15,8))
    fig = sns.scatterplot(testing_y,y_pred,ax=ax1)
    plt.xlabel('Y true')
    plt.ylabel('Y true')
    plt.title('True vs Predicted')
    plt.show(fig)
```

Model 1

In [53]:

```
x = data.drop(['Car_Name','Selling_Price'] ,axis = 1)
y= data['Selling_Price']
model(x,y)
```

Training Sucessfully Done !!!!!!

Model 2

```
In [54]:
```

```
x = data.drop(['Car_Name','Selling_Price','Kms_Driven','Seller_Type','Tra
nsmission','Owner', 'latest_car_year','FT_Petrol'],axis = 1)
y = data['Selling_Price']
model(x,y)
```

Training Sucessfully Done !!!!!!

In []:	
In []:	
In []:	
In []:	

<pre>In []:</pre>	
In []:	
In []:	_
In []:	
In []:	
In []:	_
	_
<pre>In []:</pre>	
In []:	
<pre>In []:</pre>	_
In []:	
In []:	
	\neg

In []:	
In []:	
In []:	
In []:	
In []:	
In []:	