The Lazy Controller

I spend a few months each year in Berkeley, and one of my great pleasures there is a daily four-mile walk on a marked path in the hills, with a fine view of San Francisco Bay. I usually keep track of my time and have learned a fair amount about effort from doing so. I have found a speed, about 17 minutes for a mile, which I experience as a stroll. I certainly exert physical effort and burn more calories at that speed than if I sat in a recliner, but I experience no strain, no conflict, and no need to push myself. I am also able to think and work while walking at that rate. Indeed, I suspect that the mild physical arousal of the walk may spill over into greater mental allertness.

random thoughts and in monitoring what goes on around you even when your mind does nothing in particular, but there is little strain. Unless you are in a situation that makes you unusually wary or self-conscious, monitoring what happens in the environment or inside your head demands little effort. You make many small decisions as you drive your car, absorb some information as you read the newspaper, and conduct routine exchanges of pleasantries with a spouse or a colleague, all with little effort and no strain.

Just like a stroll.

Amos

System 2 also has a natural speed. You expend some mental energy in

It is normally easy and actually quite pleasant to walk and think at the same time, but at the extremes these activities appear to compete for the limited resources of System 2. You can confirm this claim by a simple experiment. While walking comfortably with a friend, ask him to compute 23 × 78 in his head, and to do so immediately. He will almost certainly stop in his tracks. My experience is that I can think while strolling but cannot engage in mental work that imposes a heavy load on short-term memory. If I must construct an intricate argument under time pressure, I would rather be still, and I would prefer sitting to standing. Of course, not all slow thinking requires that form of intense concentration and effortful

Accelerating beyond my strolling speed completely changes the experience of walking, because the transition to a faster walk brings about a sharp deterioration in my ability to think coherently. As I speed up, my attention is drawn with increasing frequency to the experience of walking and to the deliberate maintenance of the faster pace. My ability to bring a train of thought to a conclusion is impaired accordingly. At the highest speed I can sustain on the hills, about 14 minutes for a mile, I do not even try to think of anything else. In addition to the physical effort of moving my

computation-I did the best thinking of my life on leisurely walks with

body rapidly along the path, a mental effort of self-control is needed to resist the urge to slow down. Self-control and deliberate thought apparently draw on the same limited budget of effort.

For most of us, most of the time, the maintenance of a coherent train of

thought and the occasional engagement in effortful thinking also require

self-control. Although I have not conducted a systematic survey, I suspect that frequent switching of tasks and speeded-up mental work are not intrinsically pleasurable, and that people avoid them when possible. This is how the law of least effort comes to be a law. Even in the absence of time pressure, maintaining a coherent train of thought requires discipline. An observer of the number of times I look at e-mail or investigate the refrigerator during an hour of writing could wahene dd reasonably infer an urge to escape and conclude that keeping at it requires more self-control than I can readily muster.

Fortunately, cognitive work is not always aversive, and people sometimes expend considerable effort for long periods of time without

than I can readily muster.

Fortunately, cognitive work is not always aversive, and people sometimes expend considerable effort for long periods of time without having to exert willpower. The psychologist Mihaly Csikszentmihalyi (pronounced six-cent-mihaly) has done more than anyone else to study this state of effortless attending, and the name he proposed for it, flow, has become part of the language. People who experience flow describe it as "a state of effortless concentration so deep that they lose their sense of time, of themselves, of their problems," and their descriptions of the joy of that state are so compelling that Csikszentmihalyi has called it an "optimal experience." Many activities can induce a sense of flow, from painting to racing motorcycles—and for some fortunate authors I know, even writing a book is often an optimal experience. Flow neatly separates the two forms of effort: concentration on the task and the deliberate control of attention. Riding a motorcycle at 150 miles an hour and playing a competitive game of chess are certainly very effortful. In a state of flow, however, maintaining focused attention on these absorbing activities requires no exertion of self-control, thereby freeing resources to be directed to the task at hand.

The Busy and Depleted System 2 It is now a well-established proposition that both self-control and cognitive

effort are forms of mental work. Several psychological studies have shown that people who are simultaneously challenged by a demanding cognitive task and by a temptation are more likely to yield to the temptation. Imagine that you are asked to retain a list of seven digits for a minute or two. You are told that remembering the digits is your top priority. While your attention is focused on the digits, you are offered a choice between two

control is tiring; if you have had to force yourself to do something, you are less willing or less able to exert self-control when the next challenge comes around. The phenomenon has been named ego depletion. In a typical demo thypical denstration, participants who are instructed to stifle their emotional reaction to an emotionally charged film will later perform poorly on a test of physical stamina—how long they can maintain a strong grip on

desserts: a sinful chocolate cake and a virtuous fruit salad. The evidence suggests that you would be more likely to select the tempting chocolate cake when your mind is loaded with digits. System 1 has more influence

People who are *cognitively busy* are also more likely to make selfish choices, use sexist language, and make superficial judgments in social situations. Memorizing and repeating digits loosens the hold of System 2 on behavior, but of course cognitive load is not the only cause of weakened self-control. A few drinks have the same effect, as does a sleepless night. The self-control of morning people is impaired at night; the reverse is true of night people. Too much concern about how well one is doing in a task sometimes disrupts performance by loading short-term memory with pointless anxious thoughts. The conclusion is straightforward: self-control requires attention and effort. Another way of saying this is that controlling thoughts and behaviors is one of the tasks that System 2

A series of surprising experiments by the psychologist Roy Baumeister and his colleagues has shown conclusively that all variants of voluntary effort—cognitive, emotional, or physical—draw at least partly on a shared pool of mental energy. Their experiments involve successive rather than

Baumeister's group has repeatedly found that an effort of will or self-

on behavior when System 2 is busy, and it has a sweet tooth.

performs.

simultaneous tasks

a dynamometer in spite of increasing discomfort. The emotional effort in the first phase of the experiment reduces the ability to withstand the pain of sustained muscle contraction, and ego-depleted people therefore succumb more quickly to the urge to quit. In another experiment, people are first depleted by a task in which they eat virtuous foods such as radishes and celery while resisting the temptation to indulge in chocolate and rich cookies. Later, these people will give up earlier than normal when faced with a difficult cognitive task.

The list of situations and tasks that are now known to deplete self-control is long and varied. All involve conflict and the need to suppress a natural tendency. They include:

avoiding the thought of white bears inhibiting the emotional response to a stirring film

trying to impress others responding kindly to a partner's bad behavior interacting with a person of a different race (for prejudiced individuals)

The list of indications of depletion is also highly diverse:

making a series of choices that involve conflict

deviating from one's diet overspending on impulsive purchases reacting aggressively to provocation persisting less time in a handgrip task performing poorly in cognitive tasks and logical decision making

The evidence is persuasive: activities that impose high demands on System 2 require self-control, and the exertion of self-control is depleting and unpleasant. Unlike cognitive load, ego depletion is at least in part a loss of motivation. After exerting self-control in one task, you do not feel like making an effort in another, although you could do it if you really had to. In several experiments, people were able to resist the effects of equ depletion when given a strong incentive to do so. In contrast, increasing effort is not an option when you must keep six digits in short-term memory while performing a task. Ego depletion is not the same mental state as cognitive busyness. The most surprising discovery made by Baumeister's group shows, as

The nervous system consumes more glucose than most other parts of the body, and effortful mental activity appears to be especially expensive in the

hypothesis n ohypothesiin several experiments. Volunteers in one of their studies watched a short silent film of a woman

currency of alucose. When you are actively involved in difficult cognitive reasoning or engaged in a task that requires self-control, your blood glucose level drops. The effect is analogous to a runner who draws down glucose stored in her muscles during a sprint. The bold implication of this idea is that the effects of ego depletion could be undone by ingesting glucose, and Baumeister and his colleagues have confirmed this

he puts it, that the idea of mental energy is more than a mere metaphor.

being interviewed and were asked to interpret her body language. While they were performing the task, a series of words crossed the screen in slow succession. The participants were specifically instructed to ignore the words, and if they found their attention drawn away they had to refocus their concentration on the woman's behavior. This act of self-control was known to cause ego depletion. All the volunteers drank some lemonade before

participating in a second task. The lemonade was sweetened with glucose for half of them and with Splenda for the others. Then all participants were given a task in which they needed to overcome an intuitive response to get the correct answer. Intuitive errors are normally much more frequent among ego-depleted people, and the drinkers of Splenda showed the expected depletion effect. On the other hand, the glucose drinkers were not depleted. Restoring the level of available sugar in the brain had prevented the deterioration of performance. It will take some time and much further research to establish whether the tasks that cause glucose-depletion also cause the momentary arousal that is reflected in increases of pupil size and heart rate.

A disturbing demonstration of depletion effects in judgment was recently

reported in the Proceedings of the National Academy of Sciences. The unwitting participants in the study were eight parole judges in Israel. They spend entire days reviewing applications for parole. The cases are presented in random order, and the judges spend little time on each one, an average of 6 minutes. (The default decision is denial of parole; only 35% of requests are approved. The exact time of each decision is recorded, and the times of the judges' three food breaks-morning break, lunch, and afternoon break-during the day are recorded as well.) The authors of the study plotted the proportion of approved requests against the time since the last food break. The proportion spikes after each meal, when about 65% of requests are granted. During the two hours or so until the judges' next feeding, the approval rate drops steadily, to about zero just before the meal. As you might expect, this is an unwelcome result and the authors carefully checked many alternative explanations. The best possible account of the data provides bad news; tired and hungry judges tend to fall back on the easier default position of denving requests for parole. Both fatigue and hunger probably play a role.

The Lazy System 2

One of the main functions of System 2 is to monitor and control thoughts and actions "suggested" by System 1, allowing some to be expressed directly in behavior and suppressing or modifying others.

For an example, here is a simple puzzle. Do not try to solve it but listen to your intuition:

A bat and ball cost \$1.10.
The bat costs one dollar more than the ball.
How much does the ball cost?

question: How closely does System 2 monitor the suggestions of System 1? His reasoning was that we know a significant fact about anyone who says that the ball costs 10¢: that person did not actively check whether the answer was correct, and her System 2 endorsed an intuitive answer that it could have rejected with a small investment of effort. Furthermore, we also know that the people who give the intuitive answer have missed an obvious social cue; they should have wondered why anyone would include in a questionnaire a puzzle with such an obvious answer. A failure to check is remarkable because the cost of checking is so low: a few seconds of mental work (the problem is moderately difficult), with slightly tensed

muscles and dilated pupils, could avoid an embarrassing mistake. People who say 10¢ appear to be ardent followers of the law of least effort. People

Many thousands of university students have answered the bat-and-ball puzzle, and the results are shocking. More than 50% of students at Harvard, MIT, and Princeton ton gave the intuitive—incorrect—answer. At less selective universities, the rate of demonstrable failure to check was in excess of 80%. The bat-and-ball problem is our first encounter with an

A number came to your mind. The number, of course, is 10: 10ϕ . The distinctive mark of this easy puzzle is that it evokes an answer that is intuitive, appealing, and wrong. Do the math, and you will see. If the ball costs 10ϕ , then the total cost will be \$1.20 (10ϕ for the ball and \$1.10 for the bat), not \$1.10. The correct answer is 5ϕ . It%"> 5ϕ . is safe to assume that the intuitive answer also came to the mind of those who ended up with the correct number—they somehow managed to resist the intuition.

Shane Frederick and I worked together on a theory of judgment based on two systems, and he used the bat-and-ball puzzle to study a central

observation that will be a recurrent theme of this book: many people are overconfident, prone to place too much faith in their intuitions. They apparently find cognitive effort at least mildly unpleasant and avoid it as much as possible.

Now I will show you a logical argument—two premises and a conclusion. Try to determine, as quickly as you can, if the argument is logically valid. Does the conclusion follow from the premises?

who avoid that answer appear to have more active minds.

All roses are flowers.
Some flowers fade quickly.
Therefore some roses fade quickly.

A large majority of college students endorse this syllogism as valid. In fact

the argument is flawed, because it is possible that there are no roses among the flowers that fade quickly. Just as in the bat-and-ball problem, a

plausible answer comes to mind immediately. Overriding it requires hard work—the insistent idea that "it's true, it's true!" makes it difficult to check the logic, and most people do not take the trouble to think through the problem.

This experiment has discouraging implications for reasoning in everyday.

life. It suggests that when people believe a conclusion is true, they are also very likely to believe arguments that appear to support it, even when these arguments are unsound. If System 1 is involved, the conclusion comes first and the arguments follow.

Next, consider the following question and answer it quickly before reading on:

The question, which was also devised by Shane Frederick, is again a

How many murders occur in the state of Michigan in one year?

challenge to System 2. The "trick" is whether the respondent will remember that Detroit, a high-crime c thigh-crimeity, is in Michigan. College students in the United States know this fact and will correctly identify Detroit as the largest city in Michigan. But knowledge of a fact is not all-or-none. Facts that we know do not always come to mind when we need them. People who remember that Detroit is in Michigan give higher estimates of the murder rate in the state than people who do not, but a majority of Frederick's respondents did not think of the city when questioned about the state. Indeed, the average guess by people who were asked about Michigan is *lower* than the guesses of a similar group who were asked

about the murder rate in Detroit. Blame for a failure to think of Detroit can be laid on both System 1 and System 2. Whether the city comes to mind when the state is mentioned depends in part on the automatic function of memory. People differ in this respect. The representation of the state of Michigan is very detailed in some people's minds: residents of the state are more likely to retrieve many facts about it than people who live elsewhere; geography buffs will retrieve more than others who specialize in baseball statistics; more intelligent individuals are more likely than others to have rich representations of most things. Intelligence is not only the ability to reason; it is also the ability to find relevant material in memory and to deploy attention when needed. Memory function is an attribute of System 1. However, everyone has the option of slowing down to conduct an active search of memory for all possibly relevant facts-just as they could slow down to check the intuitive answer in the bat-and-ball problem. The extent of deliberate checking and search is a characteristic of System 2, which varies among individuals.

motivation, not trying hard enough. Anyone who can be admitted to a good university is certainly able to reason through the first two questions and to reflect about Michigan long enough to remember the major city in that state and its crime problem. These students can solve much more difficult problems when they are not tempted to accept a superficially plausible answer that comes readily to mind. The ease with which they are satisfied enough to stop thinking is rather troubling. "Lazy" is a harsh judgment about the self-monitoring of these young people and their System 2, but it does not seem to be unfair. Those who avoid the sin of intellectual sloth could be called "engaged." They are more alert, more intellectually active, less willing to be satisfied with superficially attractive answers, more skeptical about their intuitions. The psychologist Keith Stanovich would call them more rational.

Intelligence, Control, Rationality

Researchers have applied diverse methods to examine the connection

bat-and-ball problem, the flowers syllogism.

Michigan/Detroit problem have something in common. Failing these minitests appears to be, at least to some extent, a matter of insufficient

The

between thinking and self-control. Some have addressed it by asking the correlation question: If people were ranked by their self-control and by their cognitive aptitude, would individuals have similar positions in the two

cognitive aptitude, would individuals have similar positions in the two rankings?

In one of the most famous experiments in the history of psychology,

In one of the most famous experiments in the history of psychology, Walter Mischel and his students exposed four-year-old children to a cruel dilemma. They were given a choice between a small reward (one Oreo), which they could have at any time, or a larger reward (two cookies) for which they had to wait 15 minutes under difficult conditions. They were to remain alone in a room, facing a desk with two objects: a single cookie and a bell that the child could ring at any time to call in the experimenter and receiven oand recei the one cookie. As the experiment was

The children were watched through a one-way mirror, and the film that shows their behavior during the waiting time always has the audience roaring in laughter. About half the children managed the feat of waiting for 15 minutes, mainly by keeping their attention away from the tempting reward. Ten or fifteen years later, a large gap had opened between those

described: "There were no toys, books, pictures, or other potentially distracting items in the room. The experimenter left the room and did not return until 15 min had passed or the child had rung the bell, eaten the

rewards, stood up, or shown any signs of distress."

higher measures of executive control in cognitive tasks, and especially the ability to reallocate their attention effectively. As young adults, they were less likely to take drugs. A significant difference in intellectual aptitude emerged: the children who had shown more self-control as four-year-olds had substantially higher scores on tests of intelligence. A team of researchers at the University of Oregon explored the link between cognitive control and intelligence in several ways, including an attempt to raise intelligence by improving the control of attention. During five 40-minute sessions, they exposed children aged four to six to various computer games especially designed to demand attention and control. In one of the exercises, the children used a joystick to track a cartoon cat and move it to a grassy area while avoiding a muddy area. The grassy areas gradually shrank and the muddy area expanded, requiring progressively more precise control. The testers found that training attention not only improved executive control: scores on nonverbal tests of intelligence also improved and the improvement was maintained for several months. Other research by the same group identified specific genes that are involved in the control of attention, showed that parenting techniques also affected this ability, and demonstrated a close connection between the children's ability to control their attention and their ability to control their emotions. Shane Frederick constructed a Cognitive Reflection Test, which consists of the bat-and-ball problem and two other questions, chosen because they also invite an intuitive answer that is both compelling and wrong (the guestions are shown here). He went on to study the characteristics of students who score very low on this test—the supervisory function of System 2 is weak in these people—and found that they are prone to answer questions with the first idea that comes to mind and unwilling to invest the effort needed to check their intuitions. Individuals who uncritically follow their intuitions about puzzles are also prone to accept other suggestions from System 1. In particular, they are impulsive. impatient, and keen to receive immediate gratification. For example, 63% of the intuitive respondents say they would prefer to get \$3,400 this month rather than \$3,800 next month. Only 37% of those who solve all three puzzles correctly have the same shortsighted preference for receiving a smaller amount immediately. When asked how much they will pay to get overnight delivery of a book they have ordered, the low scorers on the Cognitive Reflection Test are willing to pay twice as much as the high

scorers. Frederick's findings suggest that the characters of our psychodrama have different "personalities." System 1 is impulsive and intuitive; System 2 is capable of reasoning, and it is cautious, but at least for some people it is also lazy. We recognize related differences among

who had resisted temptation and those who had not. The resisters had

individuals: some people are more like their System 2; others are closer to their System 1. This simple test has emerged as one of the better predictors of laztestors of ly thinking.

Keith Stanovich and his longtime collaborator Richard West originally.

introduced the terms System 1 and System 2 (they now prefer to speak of Type 1 and Type 2 processes). Stanovich and his colleagues have spent decades studying differences among individuals in the kinds of problems with which this book is concerned. They have asked one basic question in many different ways: What makes some people more susceptible than others to biases of judgment? Stanovich published his conclusions in a book titled Rationality and the Reflective Mind. which offers a bold and distinctive approach to the topic of this chapter. He draws a sharp distinction between two parts of System 2—indeed, the distinction is so sharp that he calls them separate "minds." One of these minds (he calls it algorithmic) deals with slow thinking and demanding computation. Some people are better than others in these tasks of brain power—they are the individuals who excel in intelligence tests and are able to switch from one task to another guickly and efficiently. However, Stanovich argues that high intelligence does not make people immune to biases. Another ability is involved, which he labels rationality. Stanovich's concept of a rational person is similar to what I earlier labeled "engaged." The core of his argument is that rationality should be distinguished from intelligence. In his view, superficial or "lazv" thinking is a flaw in the reflective mind, a failure of rationality. This is an attractive and thought-provoking idea. In support of it. Stanovich and his colleagues have found that the bat-and-ball question and others like it are somewhat better indicators of our susceptibility to cognitive errors than are conventional measures of intelligence, such as IQ tests. Time will tell whether the distinction between intelligence and rationality can lead to new discoveries.

Speaking of Control

"She did not have to struggle to stay on task for hours. She was in a state of *flow*."

"His ego was depleted after a long day of meetings. So he just turned to standard operating procedures instead of thinking through the problem."

"He didn't bother to check whether what he said made sense. Does he usually have a lazy System 2 or was he unusually tired?"

"Unfortunately, she tends to say the first thing that comes into her mind. She probably also has trouble delaying gratification. Weak System 2."