

Exo III Generated Structures

FIG. 1

FIG. 2

Panel B.

Panel C.

Panel D.

FIG. 3

Panel B.

FIG. 4A

FIG. 4B

FIG. 5

A----G GCCTACATCG GCCTATGTCG GCGTATATCG GCGTACGTGG AGCTACGTCG CGCGACACGG GTCGATGTTG GCCTATGTCG + n = 144 d.s oligos C::0 က်က CATGAACTAC TTCGGAGATG TATGCACTAC GAAGCGCATG CGCGGAGATG TAAGCGAATG CCGCGAGATG TTCGGAGATG TGGATTCGTT 124-2d AATGGACAAG AAACGTGTCC GTGTGTACAA AAGTTCTCGG AGGTGCTGGG AAATCGCCGG CGGTCTTCGG CCGTGCTCGA TGGGCGAGCG ∞ Ligate CACCGCGTAG CGCTACATCG AAGTACCTAG AAGCGGATCG ATTGAGCTAT GTGGAAGTCC TTTCGGCGGT mana A scriminana mana T scriminana ∞ Select for full length GCATCCGAGA ~ATGGAGAAA ACACGACAAG CGGGCAGCCG ~ATGCCAGCG CCCCCATTAT CTACCCAAAA ∞ Consensus-124-1d 15112 rhod2 12412 myco1

FIG. 6A

 $8^{18} = 2x10^{16}$ Reassembled Gene Variants

TCCCACGTCG CCCCACGTCG CCCCACCTCG CCCGACTTCC CCCCACGTCG CCCGACCTCG CCCGACGTCG TCCGACCTCA -CC-AC-IC-100 TTCACGGCAA AGCACGGCAA TGCACGGCAA TTCACGGCAA TGCACGGCAA TGCACGGTAA --CACGG-AA TCCACGGAAA AACACGGCAA GTGCTGTTCC ATCGTGTTCC ATCATTTCC ATCGTCTTTC ATCGTACTCT ATCGTGTTCC GTCGTGTTCC GTICIGILIC -L--L--L-GGGGGACCCG GGGTGATTCC GGGTGATCCC GGGTGACGCC GGGGGACCCC GGGAGCGCCG T...CITCCC TGGCACGCCT GACCGCGGGA ACACGGGCCA AAGTGGGACG ATACCGGCGA GCGTCGGCGA ACGTGGGAGA AGATGGGCGA ACGAAGGCAA

FIG. 6B

Represents 15% of gene

150

TCGCCCGATG TGGGACGCTG TCGGTCGCTG TAGGCCGCTG ACGCCAGATG AGCACCGGTG GTCATCGGTG TGGGCCGGCT GTAGCACCGA GTGACGGACG GTTGCCGGCT CIGGCGCCGT CTCGCGGATC GICGCIGGCC TTGGAAGGGC GTGCAACAGC CATCCCGCAT GATTCCCCAC GTTGCCGCAC CATCCCCTAT GATCCCGCAC CATGCCCCAT CATGCCGCAC AATGCCTTTT ---DD-L--GGCGCAACAT GGAGGGGCGT GGCGCAACAT GGCGCAACGT GCGCAACGT GGCGGAACGT GGCGCAACAT GGCGCAACAT 36-6--C-T TCGTATCTGT TCCTACCTGT TCGTACCTGT TCGTACCTGT TCTTACTTGT CGTACCTCT CCTATCTTT TCTCACGTCT C--A--T-T

150am13_00 150AM7_001 431am7_002 150am13_00 150AM7_001 431am7_002 150AM7_001 431am7_002 150AM7_001 431am7_002 431am7_001 431am7_001	NCOI CATGATGCACG CATGAACTAC CGTGAACTAC CGTGAACTAC CGTGAACTAC CGTGAACTAC CGTGAACTAC GGTGAACTAC ACGCCCGCAA ACGCCCGCAA ACGCCCGCAA ACGCCCCCAAA GGAATGGATC GGACTCCAAG CGACTCCAAG	GCGACATTTC GCGACATTTC GAGATATCTC AAGATGCCGC AAGATGCCGC GATCGCCGAC GATCGCCGAC GATCGCCGAC GATCGCCGAC GATCGCCGAC GATCGCCGAC GATCGCCGAC GATCGCCGAC	ATCGAGCAAT CAGCAGCAAT CAGCAGCAAC GCCTTCATAC GGCTTCATAC GGCTTCATAC GCCTGCATAC ATGATCGTGG ATGCTGGAATAT CCCGGAATAT CCCGGAATAT CCCGGAATAT CCCGGAATAT ATACCGCGTC ATACCGCGTC ATACCGCGTC ATACCGCGTC ATACCGCGTC ATACCGCGTC ATACCGCGTC	GACACGGTCG GACACGGTCG GATTGCGTGG GATTGCGTGG CAAGGCTGAG CCACGCGGAG CCACGCACG TCCACGCCACG	CCGT GCGTTGCCGT GCGTTGCCGT GTGTTTAGCGA GTGCTGGCCA GTGCTGGCCA CGGCCTGCCC CGGCCTGCCC CGGCCTGCCC CGGCCTGCCA GGCCTGCCC GGCCTGCCC GGCCTGCCC GGCCTGCCC GGCCTGCCC GGCCTGCCC GGCCAGGA GGCGAGGA GGCGAGGA
	CCGAGATITI	CGCCGAGGCC	TGCCGCAAGG	CCAAGGTCTG	GGGCGTGTTC
	CIGCIGIGII	CGCCGACGCC	TGCCGCAAGG	CCAACGTATG	GGGCGTGTTT

TCGCTCACCG TCGCTGACCG TCGCTGATC CACCCTGATC CACCCTGATC AGATCATGCC AGATCATGCC AGATCATGCC TACGTCTCCG

																		•					
	ACGTCGCGGT	ACGTGGCGGT		GGCCACTCGG	GGCCATTCGG	GGCCATTCGG		CGAGGAA <u>GAA</u>	CGAGGAGGAT	TGAAGAAGAC		GCGACGCCCG	GCGACGCGCG	GCGACGCGCG		CATCGTGGCT	CACCGTGGCT	CACCGCGGCT		CCCCCCICI	CGCGGCTTGC	CGCGGCATGC	
	AATAATTGTT	AACAACGICI		TTCGTAT <u>TTC</u>	CTCGTATTTC	TICCIACTIC		GCGAATGCGG	GCGAATGCGG	GCGAATGCGG		ATGCTGATCC	TCGCTGATCC	AGCCTGATCC		CAAGCTG <u>GTG</u>	CAAGCTGGTG	CAAGCTGGTG		ACCGCGGTCT	ACCGCGGTGT	CCACCGGCGT	
	66CGTGGGCG	GGCGTGGATG		ATGGCGTCTA	ACGGCGTCTA	ACGGCGTGTA		CGCACGCTCG	CGTACCCTCG	CGCACGCTGG		GCTTTCG <u>AAG</u>	CATCTCCAAG	GCTCTCCACC		ACCATCTCTT	ACCATCTCTT	ACCACTTGTT		GGCGAGGGCG	GGCGAGGGCG	GGCGAAGAGG	
ည	CGAAGGCGAT	CCAAGGCCAT	GGGCTTCG	GCGGGCTTCG	TCGGGCTTCG	GCGGCCTTCG	I^{-1} .CGA	CTTCGATGGC	CTTCGACGGC	CTTCGACGGC	AGTA	AGTATGCCCA	AGTATGCCGC	AGTACGCCGA	CAATC	CAATCGGAAA	CAATCGGAAA	CAGTCGCAGA	GATCAA	GATCAACTCC	GATCAATTCC	GATCAATTCC	
	GTCATCATGG	GTCATGGTGT		TTCCAATGCC	CGCCAATGCC	GGCCAATGCC		CGATCATCGG	CGATCATCGG	CCATCATCGG	U	TACGGCATCC	TATGGCATC	ATGGGCGTGC		CCGCACC <u>GGA</u>	CCGCACCGGC	CAAGAACATG		ACACCGGGTT	ACACCGGCAT	ACACCGGCAA	
	150am13_00	431am7 002	I	150am13 00	150AM7 $\overline{0}$ 01	$431am7_002$		150am13 00	$150AM7 \overline{0}01$	431am7_002	l	150am13 00	150AM7 $\overline{0}$ 01	431am7_002	l	150am13 00	150AM7 $\overline{0}$ 01	431am7_002		150am13 00	150AM7 001	431am7_002	

	TCTACAACAA ATGGATCGCC GATCCGGAAG GCACCCGCGA	TCTATICGAA AIGGAICGCC GAICCCGAGG GIACACGCGA	TCTACGCCAA CTGGATCAAC GATCCGGAGG GCACGCGCAA		AATGGTCGAG TCCTTTACCC GGCCGACGGT GGGAACCGAT GAAGCGCCCA	ST GGGTGTGGAG GAATGCCCGA	ST GGCACGCCG GAGTGCCCCA		TCGAAGGCAT CCCGAAC <u>AAG</u> GTCGCGGTGC ACCGCTGA aagct	TCCGAACAAG GCCACCACGC ACCGCTGA aagct	CCCCAACGAG GACGCCAAGC ACCGCTAG AAGCL	T T T T T T T T T T T T T T T T T T T
	ATGGATC <u>G</u>	ATGGATCG	CTGGATCA		GGCCGACG	: GTCCGACG	GGTCCACC		GTCGCGGT(GCCACCAC	GACGCCAAG	
	TCTACAACAA	TCTATTCGAA	TCTACGCCAA		TCCTTTACCC	TCCTTCACGC GTCCGACGGT	TCCTTCACCC GGTCCACCGT		CCCGAACAAG	TCCGAACAAG	CCCCAACGAG	
TTA	CCTTATGAGT	CCGTATGATT	CCGTACAACT	A.I.ee.i.	AATGGTCGAG	GATGGTGGAA	GATGGTCGAA	TCGAG	TCGAAGGCAT	TCGAGGGCAT	TGGACGGCAT	
	150am13 00	150AM7 001	431am7_002		150am13 00	150AM7 001	431am7_002	l	150am13 00	150AM7 001	$431am7_002$	

FIG. 70

FIG. 8

FIG. 10

FIG. 11

5 m

FIG. 12

Fig. 15. HOLISTIC ENGINEERING OF DIFFERENTIALLY ACTIVATABLE STACKED TRAITS IN NOVELTRANSGENIC PLANTS USING DIRECTED EVOLUTION AND WHOLE CELL MONITORING

Fig. 16. Differential Activation of Selected Traits Can Be Achieved by Adjusting and Controlling the Environment of the Traits.

For example, in one aspect, stacked traits can be comprised of genetically introduced enzymes. Because the stacked enzymes have different activity profile (including reaction specificities and reaction requirements) they can be selectively and differentially activated by adjusting the environment to which they are exposed.

Fig. 17. Harvesting, Processing, Storage

Differentially activated and/or selected enzymes respond to the environments of harvesting, processing and storage to activate environmentally action specific promoters.

Fig. 18. Processing

^{*} An example of a Gene Product might be a protein. Through processing/decorating the protein changes forms, eventually becoming active. It is at this point that specific traits can be expressed differentially.

Fig. 19. Cellular Mutagenesis.

Fig. 20. Differential Activation of Selected Precursor (Inactive) Gene Products

Differential activation of selected precursor (inactive) gene products by controlling the post-translational modifications that differentially transform selected molecules from inactive precursor form to active form. Deselection of particular molecules can also be achieved by degradation (ex. By proteoclytic cleavage).

(ex. pre-pro hor	Inactive precursor gene products (ex. pre-pro hormones, pro-hormones pre-pro proteins, or pro-proteins).										
LEGEND:											
	pre-pro										
	pro										
	active										

Figure 21. Starting population comprised of an organism strain to be subjected to improvement or evolution in order to produce a resultant population comprised of an improved organism strain that has a desired trait

Figure 22. Starting population comprised of a genomic sequence to be subjected to improvement or evolution in order to produce a resultant population comprised of an improved genomic sequence that has a desired trait

Fig. 23. Strain Improvement.

Fig. 24. Iterative Strain Incovement.

