Stochastik SS 2019

Dozent: Prof. Dr. Anita Behme

1. April 2019

In halts verzeichnis

Ι	Grundbegriffe der Wahrscheinlichkeitstheorie		4
	1	Wahrscheinlichkeitsräume	4
п	Test		5

Vorwort

Literatur

- Georgii: Stochastik (5. Auflage)
- Schilling: Wahrscheinlichkeit (1. Auflage)
- Bauer: Wahrscheinlichkeitstheorie (5. Auflage) (sehr maßtheoretisch!)

Ohne Maßtheorie!

- Krengel: Einführung in die Wahrscheinlichkeitstheorie und Statistik

Was ist Stochastik?

Altgriechisch Stochastikos ($\sigma \tau o \chi \alpha \sigma \tau \iota \kappa \delta \zeta$) und bedeutet sinngemäß "scharfsinning in Vermuten".

Fragestellung insbesondere aus Glückspiel, Versicherung-/Finanzmathematik, überall da wo Zufall/ Risiko / Chance auftauchen.

Was ist Stochastik?

- Beschreibt zufällige Phänomene in einer exakten Spache!

 Beispiel: "Beim Würfeln erscheint jedes sechste Mal (im Schnitt) eine 6." → Gesetz der großen Zahlen (siehe später!)
- Lässt sich mathematische Stochastik in zwei Teilgebiete unterteilen Wahrscheinlichkeitstheorie (W-Theorie) & Statistik
 - W-Theorie: Beschreibt und untersucht konkret gegebene Zufallssituationen
 - Statistik: Zieht Schlussfolgerungen aus Beobachtungen.

Statistik benötigt Modelle der W-Theorie und W-Theorie benötigt die Bestätigung der Modelle durch Statistik.

In diesem Semester konzentrieren wir und nur auf die Wahrscheinlichkeitstheorie!

Kapitel I

$Grundbegriffe\ der\ Wahrscheinlichkeitstheo-$ rie

1. Wahrscheinlichkeitsräume

Ergebnisraum

Welche der möglichen Ausgänge eines zufälligen Geschehens interessieren uns? Würfeln? Augenzahl, nicht die Lage und die Fallhöhe

Definition 1.1 (Ergebnisraum)

Die Menge der relevanten Ergebnisse eines Zufallsgeschehens nennen wir Ergebnisraum und bezeichnen diesen mit Ω .

Beispiel

• Würfeln: $\Omega = \{1, 2, \dots, 6\}$

• Wartezeiten: $\Omega = \mathbb{R}_+ = [0, \infty)$ (überabzählbar!)

Ereignisse

Oft interessieren wir uns gar nicht für das konkrete Ergenis des Zufallsexperiments, sondern nur für das Eintreten gewisser Ereignisse.

■ Beispiel

• Würfeln: Zahl ist ≥ 3

• Wartezeit: Wartezeit < 5 Minuten

 \longrightarrow Teilmenge aus Ereignisraum, also Element der Potenzmenge $\mathscr{P}(\Omega)$, denen eine Wahrscheinlichkeit zugeordnet werden kann, d.h. welche messbar (mb) sind.

Definition 1.2 (Ereignisraum, messbarer Raum)

Sei $\Omega \neq \emptyset$ ein Ergebnisraum und $\mathscr F$ eine σ -Algebra auf $\Omega,$ d.h. eine Familie von Teilmenge von $\Omega,$ sodass

1. $\Omega \in \mathscr{F}$

 $2. \ A \in \mathscr{F} \Rightarrow A^C \in \mathscr{F}$

3. $A_1, A_2, \dots \in \mathscr{F} \Rightarrow \bigcap_{i \geq 1} \in \mathscr{F}$

Dann heißt (Ω, \mathscr{F}) Ereignisraum bzw. messbarer Raum.

Wahrscheinlichkeiten

Kapitel II

Test

