Seroprevalence and risk factors associated with West Nile Virus infection in wild birds in 4 regions of Madagascar

- West Nile virus: zoonotic arbovirus of birds which can affect Humans and horses, endemic in Madagascar but never studied in wild bird populations
- Statistical model: What is the seroprevalence and the risk factors associated with the infection of WVN in bird on Madagascar?
- Mechanistical model: How can be maintain endemic transmission without new reintroduction in passerine bird population from Alaotra-Mangoro

Aknowlegment: Thanks to Anthonio, Angelo and Santino for reading my slide

- Serological survey of 354 birds from 4 regions of Madagascar in 2016-7
- Seroprevalence: 12.5% (44/352) of birds [95%CI: 11.0-14.0] (belonging to 19/41 species)
- Response variable: serological status
- Family: Binomial
- Link: Logit
- Potential predictors:

Order, Region, wetland proximity, area distribution

R code:

<- glm(Res~PZH+Ordre2+SERR+Regionr,
data=WN, family="binomial")
summary (mod7rrr)
drop1(mod7rrr,.~.,test="Chisq")
Hypothesis: high seroprevalence in bird is
associated with order, region, proximity of
wetland and bird its Africa's distribution</pre>

Logistic regression model: risk factors

Variables		OR	95% CI OR	р
Constant		0,002	9.10-05-0,02	
Proximity to wetlands	Yes No	1 8,19	1,2-165,1	0,021
			.,,	
	Others order	1		
Order	Ciconiiformes	2,5	0,3-29,5	0,023
	Passeriformes	4,99	1,6-16,2	
	Analamanga	1		
	Itasy	9,2	1,2-115,3	
Region	Vakinankaratra	1,6	0,03-41,6	5,01.10-06
	Alaotra-Mangoro	41,4	6,2-610,7	
	Widespread	1		
Distribution area	Endemic to Indian Ocean	2,6	0,5-14,3	0,0002
	Endemic to Madagascar	1,1	0,28-4,8	
	Africa	31,9	5,46-313,1	

AUC ROC: 0,856

S:Susceptible bird

E:Exposed bird

I: Infected bird

R:recovery bird

S: susceptible

mosquito

E:exposed mosquito

I:infectious

mosquito

λB: bird migration rate(0 when there is no migration)

βb: transmisssion rate in bird

Yb:incubation rate in bird

α b:recovery rate in bird

μd:death rate in bird

β M:transmission rate in mosquito

Y M:incubation rate on mosquito

Next Steps

- Do my mechanistical model framework and fit in it on my data
- Begin to write my article