Detecção de Malwares Android: reprodução da seleção de características do SigPID

Joner Assolin¹, Vanderson Rocha², Diego Kreutz¹, Guilherme Silveira¹, Gustavo Rodrigues¹, Eduardo Feitosa², Karina Casola¹

¹ Universidade Federal do Pampa (Unipampa)

Resumo. O número de aplicativos maliciosos vem crescendo rapidamente na plataforma Android. Atualmente, muitas pesquisas utilizam modelos preditivos de aprendizado de máquina para detecção de malwares Android. Para atacar o desafio de escalabilidade derivado deste contexto, há trabalhos que propõe a utilização de um número reduzido de permissões, como é o caso do SigPID. Neste trabalho, apresentamos a realização da reprodução dos 3 níveis de corte de permissões SigPID, implementação e avaliação dos principais métodos de aprendizagem do SigPID, utilizando um conjunto de dados publicamente disponível. Nós comparamos as permissões em cada nível de corte com as 32 permissões identificadas como mais recorrentes; as 113 do conjunto de dados público escolhido e as 22 permissões (contidas no conjunto de dados), consideradas perigosas pela Google. Nosso estudo inicial indica que o número de permissões impacta o tempo de treinamento e execução, bem como a acurácia dos modelos. Entretanto, o tempo de execução pode não ser significativo a ponto de justificar um número menor de permissões para detecção de malwares.

1. Introdução

Dentre os métodos para detecção de *malwares* em aplicativos Android, os que utilizam aprendizado de máquina vêm ganhando destaque [Bayazit et al., 2020, Wu et al., 2021]. Independente de focarem suas abordagens na análise estática, dinâmica ou híbrida [Sharma and Rattan, 2021, Gyamfi and Owusu, 2018], esses trabalhos utilizam as permissões do Android para o desenvolvimento de modelos com bom desempenho de detecção de *malwares* [Alsoghyer and Almomani, 2020]. Entretanto, utilizar todas as 247 permissões das APIs do Android, disponíveis para treinamento dos modelos de aprendizado de máquina, pode representar um desafio de escalabilidade [Chakkaravarthy et al., 2019, Li et al., 2018] e impactar negativamente no tempo de execução das soluções.

Com o objetivo de mitigar o problema da escalabilidade, há trabalhos (e.g., [Li et al., 2018, Yildiz and Doğru, 2019]) que investigaram o impacto da redução dos números de permissões utilizadas para o treino dos modelos. Como resultado, verificaram que, mesmo utilizando um número menor de permissões, o tempo de execução pode ser reduzido sem comprometer de forma significativa a acurácia do modelo (i.e., aumento da escalabilidade sem comprometer o desempenho da classificação).

Neste trabalho avaliamos e discutimos a reprodutibilidade e o desempenho do trabalho de [Li et al., 2018, Sun et al., 2016] (SigPID), que pode ser considerado um dos mais relevantes e mais bem citados (mais de 320 citações GSC em setembro de 2021)

²Universidade Federal do Amazonas (UFAM)

sobre escalabilidade de modelos de detecção de *malwares* Android. Como o conjunto de dados empregado no trabalho original não está disponível, utilizamos um *dataset* de conhecimento público, que contém 113 permissões. Numa primeira etapa, reproduzimos a redução de características utilizada no SigPID, que consiste em três níveis seleção de características. Esses níveis são utilizados para reduzir o número total de permissões empregadas no treinamento dos modelos. A aplicação dos três níveis de seleção resultou em 27 permissões. Em seguida, avaliamos o desempenho do modelo em comparação com diferentes conjuntos de permissões, a saber: (a) 113 permissões (*baseline*) contidas no conjunto de dados; (b) 22 permissões identificadas no trabalho original do SigPID; (c) 32 permissões mais recorrentes em trabalhos de detecção de *malwares* Android; e (d) 22 permissões classificadas perigosas pela Google ¹

Como contribuição do trabalho, podemos destacar: (a) a implementação da estratégia de seleção de características empregada pelo SigPID em um conjunto de dados público; (b) a identificação de um subconjunto essencial de permissões (permissões significativas) que pode ser usado para identificar efetivamente *malwares* no Android; (c) um comparativo com o trabalho original, que identifica 22 permissões como significativas e também a comparação com outros conjuntos de dados com diferentes quantidades de permissões; e (d) a análise de aspectos de reprodutibilidade do trabalho original.

O trabalho está organizado como segue. Nas Seções 2 e 3 apresentamos uma visão geral sobre os requisitos para a reprodução do SigPID e o detalhamos a metodologia de seleção das características, respectivamente. Por fim, nas Seções 4 e 5 discutimos os resultados e apresentamos as considerações finais, respectivamente.

2. Reprodução dos experimentos

2.1. Detalhamento do Ambiente

Para o desenvolvimento e avaliação dos experimentos, utilizamos um notebook com processador Intel Celeron 1007U (1.5GHz, Dual Core, 2MB L2), 4GB DDR3 1.600MHz, disco rígido de 320GB (SATA - 5.400rpm), Windows 10 Home Single Language, compilação 19042.1110. Para a implementação e avaliação dos modelos, utilizamos as ferramentas Jupyter Notebook (IPython 7.12.0, Python 3.7.6 (default, jan. 8 2020) e o Google Chrome Versão 91.0.4472.124 (Versão oficial) 64 bits. Com exceção do algoritmo *Funtional Tree*, versão 1.0.4, implementado com a ferramenta Weka versão 3.9.5, os demais foram implementados utilizando a versão 0.22.1 da biblioteca Scikit-learn.

Para análise e uso do *dataset*, utilizamos uma divisão estratificada pseudoaleatória (*test_size*) de 70%/30% [James et al., 2013], a partir dos dados iniciais, sendo 70% utilizado para treinos e 30% para testes. As divisões são desejáveis em casos de conjunto de dados desbalanceados, como é o caso do conjunto de dados escolhido.

Para garantir a reprodutibilidade do experimento, definimos arbitrariamente a semente aleatória como 1 para train_test_split, de forma a controlar a seleção dos dados de treino e teste. Já os hiperparâmetros, variáveis que controlam o próprio processo de treinamento, foram seguidos conforme o padrão da biblioteca Scikit-learn.

¹Ao total, a Google define 30 permissões como perigosas. Destas, 22 estão presentes no conjunto de dados analisado.

2.2. Dataset

Como mencionado, o conjunto de dados (*dataset*) original do trabalho está indisponível. Para a reprodução e comparação do SigPID com diferentes conjuntos de permissões, selecionamos o conjunto de dados Drebin_215 [Yerima and Sezer, 2018], um sub conjunto do *Drebin project* [Arp et al., 2014], por ser de acesso público e possuir permissões do Android como atributos. O Drebin_215, disponível publicamente no FigShare ² possui 215 atributos extraídos de 15.036 aplicativos (5.560 malignos e 9.476 benignos), sendo que 113 atributos são permissões.

3. MLDP: Remoção Multinível de Dados

MLDP *Multi-Level Data Pruning* é um método multinível (de 3 níveis) para seleção de características cujo objetivo é reduzir o número de permissões de um conjunto de dados para o treino dos modelos de aprendizado de máquina. A ideia por trás do método é diminuir significativamente o número de permissões e, consequentemente, o tempo de execução dos modelos. O MLDP assume como parâmetro de seleção uma taxa de acurácia e precisão de no mínimo 90%, considerada uma taxa ótima.

O MLDP opera nos seguintes três níveis de seleção: (1) classificação de permissão com taxa negativa (*Permission Ranking Negative Rate* ou PRNR); (2) classificação de permissão baseada em suporte (*Support Based Permission Ranking* ou SPR); e (3) mineração de permissões com regras de associação (*Permission Mining with Association Rules* ou PMAR). Cada um dos três níveis é detalhado a seguir.

3.1. PRNR: classificação de permissão com taxa negativa

A PRNR opera em duas matrizes, uma de permissões utilizadas por amostras de *malwares* e outra utilizada por aplicativos benignos, onde cada linha corresponde a um aplicativo e cada coluna a uma permissão. O objetivo é remover as permissões que são frequentemente solicitadas tanto por aplicativos maliciosos quanto por benignos (*e.g.*, INTERNET).

Como o número de aplicativos benignos tende a ser maior que o de *malwares* em um conjunto de dados, o PRNR do SigPID propõe a equação 1 para equilibrar às duas matrizes. A equação calcula o suporte de cada permissão no conjunto de dados maior e, em seguida, dimensiona proporcionalmente o suporte para corresponder ao conjunto de dados menor. O suporte é a frequência com que cada permissão aparece no conjunto de dados.

$$S_B(P_j) = \frac{\sum_i B_{ij}}{Size(B_j)} * Size(M_j)$$
 (1)

Na equação, M representa a matriz de permissões dos aplicativos maliciosos e B dos benignos. (P_j) denota permissão e $S_B(P_j)$ representa o suporte da permissão na matriz B. A listagem 1 apresenta o código da implementação da equação 1 utilizando a linguagem de programação Python.

 $^{^2} https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_2/5854653$

Listagem 1. Implementação da equação 1

```
def S_B(j):
sigmaBij = B.sum(axis = 0, skipna = True)[j]
sizeBj = B.shape[0]
sizeMj = M.shape[0]
return (sigmaBij/sizeBj)*sizeMj
```

A implementação da PRNR é baseada na equação 2, que determina uma classificação para cada permissão, variando no intervalo [-1, 1]. Na equação, se $R(P_j)$ = 1, significa que a permissão (P_j) é apenas usada no conjunto de dados malicioso e que é uma permissão de alto risco. Se $R(P_j)$ = -1, significa que a permissão (P_j) só é usada no conjunto de dados benigno e é uma permissão de baixo risco. Por outro lado, se $R(P_j)$ = 0, significa que (P_j) tem muito pouco impacto na detecção de *malware* pois aparece em ambos os conjuntos de dado.

$$R(P_j) = \frac{\sum_{i} M_{ij} - S_B(P_j)}{\sum_{i} M_{ij} + S_B(P_j)}$$
 (2)

O processamento da equação do primeiro nível de seleção, PRNR, é ilustrado na Figura 1. O processamento foi implementado utilizando o código da listagem 2.

Figura 1. Exemplo do cálculo do ranking de cada permissão

Listagem 2. Implementação da equação 2

```
def PRNR(j):
sigmaMij = M.sum(axis = 0, skipna = True)[j]
S_Bj = S_B(j)
return (sigmaMij-S_Bj)/(sigmaMij+S_Bj)
```

O próximo passo é ordenar a lista dos valores obtidos pelo PRNR, associandoa pela ordem crescente aos aplicativos benignos e pela ordem decrescente aos *malwa*res, conforme ilustrado na Figura 2. Dando continuidade ao processo de classificação, é utilizado o *Permission Incremental System* (PIS). As permissões são agrupadas 3 a 3, iniciando pelo topo de cada lista. A cada incremento de 6 permissões (3 benignos e 3 *malwares*), os grupos de permissões são submetidos ao algorítimo de aprendizado de máquina *Support Vector Machine* (SVM).

Figura 2. Ordenação pelo ranking

A cada novo grupo, é avaliado o poder preditivo de detecção de *malware* utilizando as métricas descritas na Tabela 1.

Tabela 1. Métricas

Acurácia = $\frac{TP+TN}{100}$	$Precisão = \frac{TP}{TP+FP}$
Recall = $\frac{TP}{TP+FN}$	$F1_Score = \frac{2*(Percis\~ao*Recall)}{(Percis\~ao+Recall)}$

O momento de seleção ocorre quando as métricas chegam ao seu valor máximo e, posteriormente, começam a decair. O objetivo do processo é encontrar o menor número de permissões que produza os melhores *scores* de detecção de *malware*. Como resultado do primeiro nível de seleção, chegamos a 108 permissões, de um total de 113 contidas no conjunto de dados. A Figura 3 ilustra o desempenho do PRNR para cada incremento (PIS).

Figura 3. Desempenho do PRNR a cada incremento (PIS)

Podemos observar no gráfico da Figura 3 que ocorre uma pequena redução na acurácia, que passou de 93,35% (com 113 permissões) para 93,24% (com 108 permissões), ocorrendo algo similar com as demais métricas.

3.2. SPR: classificação de permissão baseada em suporte

A classificação de permissão baseada em suporte busca avaliar a recorrência de uma permissão. Se ela possuir uma baixa frequência, seu impacto será mínimo no desempenho da detecção de *malware*. As permissões consideradas de baixo desempenho são excluídas. As 108 permissões selecionadas no passo anterior (PRNR) são ordenadas em ordem decrescente de acordo com o seu suporte.

O objetivo da SPR é encontrar o menor número de permissões de alto suporte capaz de produzir uma acurácia de detecção acima de 90%. Novamente é aplicado o incremento (PIS), porém agora, de 5 em 5 permissões. Quando o modelo atingir 90% de acurácia, selecionamos as permissões contidas no incremento. Com 30 permissões foi possível satisfazer a condição e atingir 90,07% de acurácia, conforme podemos observar no gráfico da Figura 4.

Figura 4. Desempenho da SPR para cada incremento (PIS)

3.3. PMAR: mineração de permissões com regras de associação

A mineração de permissões com regras de associação inspeciona permissões que possuem maior probabilidade de estarem associadas (*e.g.*, WRITE_SMS e READ_SMS). Então, a permissão com o menor suporte é eliminada.

Para identificar a relação de cada permissão, é aplicado o algorítimo Apriori [Agrawal et al., 1994] com os parâmetros de 96,5% de confiança mínima e 10% de suporte mínimo, pois é o mesmo definido no trabalho original do SigPID. O Apriori calcula a probabilidade de um item estar presente em um conjunto de itens frequente, desde que outro item esteja presente.

A Tabela 2 representa a execução do Apriori sobre as 30 permissões selecionadas após as etapas PRNR e SPR. A confiança de uma regra indica a probabilidade do antecedente e o consequente aparecerem na mesma transação. Ou seja, é a probabilidade condicional do consequente dado o antecedente, por exemplo, CHANGE_WIFI_STATE implica ACCESS_WIFI_STATE com 99,3% de confiança. Já o suporte de uma regra indica a frequência com que os itens na regra ocorrem juntos. Por exemplo, CHANGE_WIFI_STATE e ACCESS_WIFI_STATE podem aparecer juntos em 16,07% das transações. Nesse caso, as duas regras a seguir teriam, cada uma, um suporte mínimo de 16,07%. O *lift* nos diz que a probabilidade de WRITE_SMS e READ_SMS aparecerem juntos é 5,26 vezes maior do que a probabilidade de apenas READ_SMS e que são positivamente correlacionados.

Tabela 2. Saída do algoritmo Apriori

Antecedentes	Consequentes	Suporte	Confiança	Lift
CHANGE_WIFI_STATE	ACCESS_WIFI_STATE	0.160758	0.993016	2.28
MANAGE_ACCOUNTS	GET_ACCOUNTS	0.103359	0.992971	3.32
WRITE_SMS	READ_SMS	0.111407	0.984136	5.26

Apesar de WRITE_SMS e READ_SMS pertencerem à lista de permissões perigosas da Google, não é necessário considerar ambas as permissões, pois uma delas é suficiente para caracterizar comportamentos de aplicativos maliciosos. Algo similar ocorre com outras permissões. Por exemplo, pode-se remover, além de WRITE_SMS, as permissões MANAGE_ACCOUNTS e ACCESS_WIFI_STATE. Após remover as 3 permissões, identificadas pela regra de associação, chega-se a um conjunto de 27 permissões, apresentadas na Tabela 3.

Tabela 3. Lista de permissões selecionadas após aplicação do MLDP

PRNR+SPR+PMAR					
ACCESS_NETWORK_STATE	CHANGE_WIFI_STATE	WRITE_EXTERNAL_STORAGE			
WRITE_SETTINGS	READ_PHONE_STATE	CAMERA			
WAKE_LOCK	CALL_PHONE	RECEIVE_BOOT_COMPLETED			
WRITE_CONTACTS	VIBRATE	READ_EXTERNAL_STORAGE			
GET_ACCOUNTS	USE_CREDENTIALS	ACCESS_FINE_LOCATION			
READ_HISTORY_BOOKMARKS	ACCESS_COARSE_LOCATION	CHANGE_NETWORK_STATE			
SEND_SMS	RECORD_AUDIO	READ_CONTACTS			
READ_SYNC_SETTINGS	RECEIVE_SMS	RESTART_PACKAGES			
READ_SMS	BLUETOOTH	GET_TASKS			

4. Resultados

Para a reprodução do SigPID, utilizamos o algoritmo SVM, conforme proposto pelos autores no trabalho original [Li et al., 2018]. A Tabela 4 apresenta os resultados da execução do SVM para os diferentes conjuntos de dados, incluindo métricas para a avaliação do desempenho da detecção e o tempo de execução.

Tabela 4. Métricas de avaliação SVM

Conjunto de Dados	Quantidade de Permissões	Precisão	Recall	FPR	F1_Score	Acurácia	Tempo Execução (s)
PRNR	108	93,62	88,01	3,52	90,73	93,35	5,44
PRNR+SPR	30	90,03	82,25	5,35	85,96	90,07	2,41
PRNR+SPR+PMAR	27	90,13	82,07	5,28	85,91	90,05	2,26
Baseline	113	93,49	87,83	3,59	90,57	93,24	5,84
Perigosas Google	22	86,76	71,88	6,44	78,62	85,55	2,34
Recorrentes	32	88,54	81,53	6,19	84,89	89,27	3,17
SigPID	22	91,77	74,88	3,94	82,47	88,23	2,62

Como podemos observar, os conjuntos de dados que utilizam o mesmo número de permissões obtiveram resultados diferentes. As 22 permissões identificadas no SigPID se destacam em todas as métricas de avaliação quando comparadas com as 22 permissões consideradas perigosas pela Google, ou seja, utilizar permissões perigosas não leva a um melhor resultado qualitativo. Isto indica que a escolha das permissões possui, de fato, um impacto no desempenho na detecção de *malwares*.

Testamos também o conjunto de dados que utiliza 32 permissões que mais aparecem em *malwares*. Elas foram identificadas por meio da interseção entre permissões encontradas em 9 trabalhos na literatura, conforme detalhamos em [Assolin et al., 2021]. Podemos observar na Tabela 4 que, embora as 32 permissões recorrentes tenham atingido uma acurácia melhor em comparação a conjuntos de dados que utilizam 22 permissões (SigPID e Perigosas da Google), ainda assim, não atingem 90% de acurácia como o conjunto de dados PRNR+SPR+PMAR que treina um SVM com apenas 27 permissões.

Quando reduzimos o número de permissões de 113 (baseline) para 108 com PRNR, alcançamos taxas de precisão e acurácia mais altas, acima de 93%. Apesar de haver aumento no recall, o F1-Score e a taxa de falsos positivos (FPR) permaneceu mais baixa em relação a baseline, assim como o tempo de execução também diminuiu. Quando reduzimos o número de permissões de 113 para 30 com PRNR+SPR, mantiveram-se a acurácia e precisão na faixa de 90%, porém com F1-Score, a métrica a ser considerada, abaixo de 90%. Além disso, obtivemos um ganho de mais de 2 segundos em relação ao tempo de execução.

Finalmente, quando aplicamos o último nível de seleção do SigPID (PRNR+SPR+PMAR), chegamos a 27 permissões de um total de 113. Uma redução de 76% no número de permissões mantendo métricas como precisão e acurácia acima de 90% e atingindo uma redução no tempo de execução superior a 2 segundos. Porém, com a diminuição do número de permissões ocorre um aumento na taxa de falsos positivos.

Como o objetivo é chegar a um número mínimo de permissões que forneça uma acurácia acima de 90% e reduza o tempo de treino e teste dos modelos, podemos confirmar que os níveis de seleção de características do SigPID cumprem o seu papel.

Além do SVM, avaliamos também outros três algoritmos (*Random Forest*, *Decision Tree* e *Functional Trees* [Gama, 2004]) e comparamos os resultados com os conjuntos de dados discriminados na Tabela 5.

Tabela 5. Conjuntos de dados

Nº de Permissões	Conjunto de dados	Observação
113	Baseline	Contidas no dataset Drebin_215
22	SigPID	Identificadas no trabalho original do SigPID
32	Recorrentes	Identificadas por meio da interseção de permissões identificadas em outros
		trabalhos
22	Perigosas	Permissões na lista de perigosas da Google e estavam contidas na baseline
		deste trabalho
27	PRNR+SPR+PMAR	Identificadas após aplicação dos três níveis de corte sobre a baseline

A Tabela 6 sintetiza os resultados dos algoritmos *Random Forest*, *Decision Tree* e *Functional Trees*. As métricas apresentadas são a acurácia , que indica o desempenho geral do modelo, e F1-Score, a média harmônica entre o *recall* e a precisão.

Tabela 6. Métricas de avaliação dos conjuntos de dados

	Decision tree		Random forest		Functional Trees	
Conjunto de dados	F1_Score	Acurácia	F1_Score	Acurácia	F1_Score	Acurácia
113 Baseline	92,28	94,32	94,44	95,94	97,30	97,27
22 SigPID	88,46	92,00	89,30	92,57	92,90	93,05
27 PRNR+SPR+PMAR	91,09	93,50	92,62	94,64	95,40	95,43
32 Recorrentes	90,89	93,44	92,46	94,57	95,60	95,63
22 Perigosas Google	81,62	87,74	85,31	88,85	89,10	89,02

Quatro dos cinco conjuntos de dados obtiveram acurácia acima dos 90% (*Baseline*, SigPID, PRNR+SPR+PMAR e Recorrentes). Destes, o *Baseline* performou melhor que os demais. Quando utilizamos o *Decision Tree* atingimos 94,32% de acurácia e 92,28% de F1-score. Com os algoritmos *Random Forest* e *Functional Trees* atingimos 95,94% de acurácia e 94,44% de F1-score e acurácia e F1-score acima dos 97%, respectivamente.

Utilizando 22 permissões do SigPID a acurácia se manteve na faixa de 92% com *Decision Tree* e *Random Forest*, já F1-score se manteve abaixo de 90%. O *Functional Trees* foi o algoritmo com melhor desempenho, atingindo 93,05% acurácia e 92,90% de F1-score. Segundo os dados da Tabela 6, os conjuntos de dados PRNR+SPR+PMAR e Recorrentes obtiveram resultados muito próximos, ficando ambos com acurácia acima de 95% utilizando o *Functional Trees*, por exemplo.

Na Figura 5 apresentamos os dados sobre o tempo de execução de cada algoritmo. Como podemos observar, o *Baseline* tem o maior tempo de execução, chegando a 11,31 segundos com algoritmo *Functional Trees*. Entretanto, é interessante observar que o problema ocorre apenas para o *Baseline*, já que o algoritmo executa em menos tempo que alguns dos demais para conjuntos de dados menores.

Figura 5. Tempo de execução para diferentes conjuntos de dados

O Functional Trees é um algoritmo baseado em árvores de classificação que podem ter funções de regressão logística nos nós internos ou folhas. O algoritmo pode lidar com variáveis de destino binárias e multi-classe, atributos numéricos, nominais e valores ausentes, o que pode aumentar o tempo de execução de acordo com o número de características de entrada [Gama, 2004]. Como a estrutura do algoritmo é uma generalização das Multivariate Trees [Gama, 2001], sua complexidade pode ser similar, isto é, $\mathcal{O}(n^2)$. Esta complexidade pode ser utilizada para explicar o comportamento apresentado no gráfico da Figura 5. De fato, o algoritmo Functional Trees reduziu significativamente o tempo de execução para conjuntos de dados menores (e.g., 1,77s para as 27 permissões do PRNR+SPR+PMAR).

Ao analisarmos os conjuntos de dados que utilizam 27 e 32 permissões, observase que o tempo de execução e as métricas estão muito próximas para o *Functional Trees*. Nesse caso, podemos dizer que os modelos são equivalentes, isto é, não faz diferença utilizar as 32 permissões recorrentes ou as 27 permissões do PRNR+SPR+PMAR. Isto prova que a identificação das permissões recorrentes, em trabalhos existentes na literatura, leva a resultados tão bom quanto os resultados do método de múltiplos níveis de seleção do SigPID, o que confirma uma das nossas hipóteses, isto é, permissões recorrentes podem ter um impacto positivo sobre os modelos de detecção de *malwares*.

Discussão

O tempo de execução é o mais relevante? Como pode ser observado nos dados apresentados, o algoritmo Decision Tree foi o que executou no menor tempo em todos os conjuntos de dados, ficando abaixo de 1 segundo. Entretanto, o algoritmo ficou abaixo do Decision Tree e Functional Tree em relação às métricas de desempenho acurácia e F1-Score. Portanto, cabe ao usuário final realizar uma análise do trade-off entre tempo de execução e desempenho, isto é, latência do aprendizado versus capacidade de detecção do modelo.

O tempo de execução pode tornar-se irrelevante. Como executamos os experimentos em um ambiente com baixa capacidade computacional, acreditamos que o tempo de execução seja praticamente irrelevante quando aplicarmos os modelos em *smartpho*-

nes atuais. Enquanto que os experimentos foram realizados utilizando uma CPU Intel Celeron 1007U de 1.5GHz, que produz apenas 96 Gigaflops, smartphones modernos disponibilizam CPUs como a Qualcomm Snapdragon 865, que opera em 2.84GHz e é capaz de produzir 1.228 Gigaflops, ou seja, um poder computacional mais de 12x maior. Outros fatores que irão impactar o tempo de execução são as instruções avançadas em CPUs modernas, voltadas para aprendizado de máquina, e a velocidade da memória RAM. Enquanto que o experimento foi executado em um hardware com 4GB de RAM operando a 1.600MHz, um smartphone moderno fornece 6GB de RAM operando a 2.750MHz.

Quantidade de dados impacta o tempo de execução. Conjuntos de dados maiores e mais atuais impactam o desempenho dos algoritmos de aprendizado de máquina. Por exemplo, o algoritmo SVM apresenta problemas de desempenho para conjuntos de dados maiores, aumentando substancialmente o tempo treinamento [Cristianini et al., 2000]. Algo similar pode ser dito do algoritmo Functional Trees, que apresentou um tempo de computação substancialmente maior para 113 permissões (i.e., um conjunto com mais características), por exemplo.

Desafios. Encontramos diversos problemas de reprodutibilidade do SigPID, como a falta de informação sobre os hiper-parâmetros utilizados nos algoritmos, indisponibilidade de conjuntos de dados e falta de detalhamento de ferramentas e tecnologias utilizadas no SigPID.

5. Considerações Finais

Aplicando os 3 níveis de seleção do SigPID nas 113 permissões do *dataset* Drebin_215, conseguimos reduzir em 76% o número de permissões a serem analisadas para detecção de *malwares* Android, mantendo acurácia acima de 90% com SVM, 93,50% com *Decision Tree*, 94,64% com *Random Forest* e 95% com o *Functional Trees*. Além disso, conseguimos também reduzir o tempo de execução dos modelos, porém, ao custo de um leve aumento na taxa de falsos positivos.

Além das 27 permissões resultantes dos 3 níveis de seleção, utilizamos também conjuntos de 113, 22 e 32 permissões. Percebemos que o conjunto de dados que utiliza todas permissões (113) foi o que melhor performou (e.g., 97% de acurácia), porém, ao preço de de um tempo de execução significativamente maior. Um caso interessante foi quando comparamos os conjuntos com 22 permissões, sendo um oriundo do trabalho original do SigPID e 22 permissões classificadas como perigosas pela Google. O SigPID chegou a 93% de acurácia enquanto que as perigosas manteve acurácia abaixo de 90%, o que indica que o fato da permissão ser classificada como perigosa não a torna necessariamente relevante para detecção de *malwares*. Outra observação interessante é o fato de os conjuntos de dados com 32 permissões mais recorrentes e as 27 identificadas aplicando os 3 níveis de seleção atingiram resultados muito próximos. Isto indica que escolher as permissões de acordo com a recorrência pode ser um caminho de investigação a ser seguido.

Como trabalhos futuros, podemos elencar: (a) testes com conjuntos de dados maiores; (b) testes com conjuntos de dados atuais; (c) avaliação dos níveis de seleção para outras características (e.g., *intents* e chamadas de API); (d) otimização de hiperparâmetros; (e) testar os modelos em *smartphones* modernos; e (f) mensurar o tempo de execução dos modelos em CPUs modernas projetadas para acelerar a computação de algoritmos de aprendizado de máquina.

Referências

- Agrawal, R., Srikant, R., et al. (1994). Fast algorithms for mining association rules. In *Proc. 20th int. conf. very large data bases, VLDB*, volume 1215, pages 487–499. Citeseer.
- Alsoghyer, S. and Almomani, I. (2020). On the effectiveness of application permissions for android ransomware detection. In 2020 6th Conference on Data Science and Machine Learning Applications (CDMA), pages 94–99.
- Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., and Siemens, C. (2014). Drebin: Effective and explainable detection of android malware in your pocket. In *Ndss*, volume 14, pages 23–26.
- Assolin, J., Siqueira, G., Rodrigues, G., and Kreutz, D. (2021). Permissões android para detecção de malwares: Um estudo preliminar. In XV Workshop de Trabalhos de Iniciação Científica e de Graduação (WTICG).
- Bayazit, E. C., Sahingoz, O. K., and Dogan, B. (2020). Malware detection in android systems with traditional machine learning models: a survey. In 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), pages 1–8. IEEE.
- Chakkaravarthy, S. S., Sangeetha, D., and Vaidehi, V. (2019). A survey on malware analysis and mitigation techniques. *Computer Science Review*, 32:1–23.
- Cristianini, N., Shawe-Taylor, J., et al. (2000). *An introduction to support vector machines and other kernel-based learning methods*. Cambridge university press.
- Gama, J. (2001). Functional trees for classification. In *Proceedings 2001 IEEE International Conference on Data Mining*, pages 147–154. IEEE.
- Gama, J. (2004). Functional trees. *Machine learning*, 55(3):219–250.
- Gyamfi, N. K. and Owusu, E. (2018). Survey of mobile malware analysis, detection techniques and tool. In 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pages 1101–1107. IEEE.
- James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). *An introduction to statistical learning*, volume 112. Springer.
- Li, J., Sun, L., Yan, Q., Li, Z., Srisa-an, W., and Ye, H. (2018). Significant permission identification for machine-learning-based android malware detection. *IEEE Transactions on Industrial Informatics*, 14(7):3216–3225.
- Sharma, T. and Rattan, D. (2021). Malicious application detection in android—a systematic literature review. *Computer Science Review*, 40:100373.
- Sun, L., Li, Z., Yan, Q., Srisa-an, W., and Pan, Y. (2016). Sigpid: significant permission identification for android malware detection. In 2016 11th international conference on malicious and unwanted software (MALWARE), pages 1–8. IEEE.
- Wu, Q., Zhu, X., and Liu, B. (2021). A survey of android malware static detection technology based on machine learning. *Mobile Information Systems*, 2021.
- Yerima, S. Y. and Sezer, S. (2018). Droidfusion: A novel multilevel classifier fusion approach for android malware detection. https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_2/5854653.

Yildiz, O. and Doğru, I. A. (2019). Permission-based android malware detection system using feature selection with genetic algorithm. *International Journal of Software Engineering and Knowledge Engineering*, 29(02):245–262.