

o Playlist Continuation

회귀분석팀 권남택 윤주희 진효주 한유진 황유나

[CONTENTS]

1

2

3

4

1주차 피드백

피드백

문제상황

- NDCG란?
- 분석 방향

데이터 탐색

- MF (행렬 분해)
- CF (협업 필터링) 추천시스템 구현

한계 및 의의

02. 문제 상황

목표

문제 상황

01. 1주차 피드백 D

Ⅲ 문제 상황 ▷

03. 모델링

04. 한계 및 의의 🔘

• 모델의 예측 정확도 평가 지표: nDCG

채점 방법: score = 평균 nDCG(예측한 곡) * 0.85 + 평균 nDCG(예측한 태그) * 0.15

"nDCG를 계산할 때 정답 안에서의 순서는 무시됩니다!"

한지만, 일반적인 추천 시스템에서는

순서

사용자가 좋아할 만한 컨텐츠를 상단에 배치 더 많은 사용자를 유인할 수 있는 키워드를 앞부분에 배치

개인화

사용자의 선호 컨텐츠를 분석하여 이와 유사한 컨텐츠를 추천

2020년 2학기 주제분석 3주차

회귀분석팀 | 19

02. 문제 상황

목표 문제 상황

- 20:00
- 01. 1주차 피드백 🕨

74

셔플재생

- Ⅲ 문제 상황
- 03. 모델링
- 04. 한계 및 의의 🕨

• 모델의 예측 정확도 평가 지표: nDCG

Recommendations Order =
$$[2, 3, 3, 1, 2]$$

Ideal Order = $[3, 3, 2, 2, 1]$

*상단부터 예측치, 정답

$$DCG = \sum_{i=1}^{n} \frac{relevance_i}{log_2(i+1)}$$

*relevance: 가중치

- 가중치가 높은 항목이 먼저 배치될 때 더 큰 값을 갖게 되는 형태
 - 항목 배치 순서가 중요하다!

02. 문제 상황

목표

문제 상황

01. 1주차 피드백 D

문제 상황 ▷

03. 모델링

04. 한계 및 의의 🕨

•	데이	터의	빈칸	처리
---	----	----	----	----

태그	playlist id	playlist name	수록 곡 id	좋아요 개 수	업데이트 일자
	51464		[529437, 516103, 360067, 705713, 226062, 37089	62	2008-06-21 23:26:22.00
['잔잔한']	101722		[75842, 26083, 244183, 684715, 500593, 508608,	17	2015-12-17 14:06:05.000
['어머니 등 ' '아빠', '즉', '위로받고싶을 때']	3 ・	적은 경우	[450275, 487671, 561031, 663944, 628672, 59121	10	2020-04-16 21:35:44.000

MF(행렬 분해) CF(협업 필터링)

추천시스템 구현

- 01. 1주차 피드백 🗅
- 02. 문제상황
- | 모델링 ▷
- 04. 한계 및 의의 🕨

Matrix Factorization

Loss Function

예측한 평점과 실제 평점의 차이를 나타내는 수식

$$\min_{x^*, \ y^*} \sum_{u,i} (r_{ui} - x_u^T y_i)^2 + \lambda (\sum_u ||x_u||^2 + \sum_i ||y_i||^2)$$

- ◇ 차이를 최소화
- ◇ 과적합 방지

Optimization

① Stochastic Gradient Descent ②Alternating Least Squares (더 많이 사용)

→ 우리가 사용할 방법

Matrix Factorization

MF(행렬 분해)

CF(협업 필터링)

추천시스템 구현

JC 20:00

셔플재생

01. 1주차 피드백

02. 문제상황

모델링

04. 한계 및 의의

모델 파라미터의 손실을 줄이는 알고리즘 이용

플레이리스트 id와 Song을 번갈아 고정시키면서 최적화

$$\min_{x^*,y^*} \sum_{u,i} (r_{ui} - x_u^T y_i)^2 + \lambda \left(\sum_u \|x_u\|^2 + \sum_i \|y_i\|^2 \right)$$
① X를 고정해서 최적화

$$\min_{x^*,y^*} \sum_{u,i} (r_{ui} - x_u^T y_i)^2 + \lambda \left(\sum_u \|x_u\|^2 + \sum_i \|y_i\|^2 \right)$$
 ② Y를 고정해서 최적화

MF(행렬 분해) CF(협업 필터링)

추천시스템 구현

20:00

01. 1주차 피드백

02. 문제상황

모델링

04. 한계 및 의의

Factorization Machine

User			Item			Categories			History						
1	0	0		1	0	0		1	0	1		1	0	1	
1	0	0		0	1	0		0	2	1		0	0	1	
0	1	0		1	0	0		3	0	14		1	0	0	
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
0	0	0		0	0	1		0	1	5		0	0	1	

Quantity	
2	y
4	y
5	y
:	
1	y

User, Item 이외에 존재하는 다양한 feature들을 적용하여 학습 시키는 모델 변수들 간의 interaction을 새로운 파라미터 d로 모델링 할 수 있음

Optimization

- ① Stochastic Gradient Descent (SGD)
- ② Alternating Least Squares (ALS)
- ③ Markov Chain Monte Carlo (MCMC) __

3가지 모두 이용

MF(행렬 분해) CF(협업 필터링)

추천시스템 구현

MF(행렬 분해) CF(협업 필터링) 추

추천시스템 구현

② 20:00 ス 肉플재생

01. 1주차 피드백 D

02. 문제상황

| 모델링 ▷

04. 한계 및 의의 🕨

• AutoEncoder : 행렬 분해와 차이점

행렬 분해는 행렬간의 선형적인 연산을 통한 Latent Factor 기반의 연산

→ 간단하면서 강력하지만 한계가 존재!

MF(행렬 분해) **CF(협업 필터링)**

추천시스템 구현

01. 1주차 피드백 D

02. 문제상황

모델링 🕻

04. 한계 및 의의 🕨

• AutoEncoder : 더 좋은 모델은?

Table 3: Performance of different recommender systems (RecSys) measured as recall (r) and mean reciprocal rank (mrr).

Dataset	RecSys	r/mrr	rec	all	mrr		
	Recoys	@1	@5	@20	@5	@20	
	unigram	0.001	0.004	0.016	0.002	0.003	
	bigram	0.015	0.027	0.031	0.020	0.020	
	trigram	0.015	0.015	0.015	0.015	0.015	
	kNNi20	0.027	0.044	0.062	0.033	0.035	
AotM	kNNc50	0.018	0.024	0.036	0.020	0.022	
	AE1	0.028	0.048	0.076	0.035	0.038	
	AE2	0.028	0.045	0.073	0.035	0.039	
	AE3	0.027	0.045	0.080	0.034	0.037	0.00
	AE4	0.027	0.045	0.069	0.034	0.036	100

Autoencoders for Next-Track-Recommendation

VAE(Variational AE)와 같이 더 복잡한 모델을 쓰지 않아도 Playlist Continuation에서 AE도 성능이 좋다는 논문 확인!

사실 시간도 없었다...

MF(행렬 분해)

CF(협업 필터링)

추천시스템 구현

20:00

01. 1주차 피드백 D

02. 문제상황

모델링

04. 한계 및 의의

Denoising AutoEncoder

1. Gaussian Noise input

2. Dropout input

우리 상황에 맞게 Dropout input 방식 채택

MF(행렬 분해) CF(협업 필터링) 추천시스템 구현

② 20:00 文 _{셔플재생}

01. 1주차 피드백

02. 문제상황

| 모델링 ▷

04. 한계 및 의의 🗅

• KNN 기반 추천시스템

```
self.train_id = train["id"]
self.train_songs = train["songs"]
self.train_tags = train["tags"]
del train

self.val_id = val["id"]
self.val_songs = val["songs"]
self.val_tags = val["tags"]
del val
```

Train, Validation의 tag, song에 대해 K=100, 유사도는 코사인 유사도로 측정하였다.

MF(행렬 분해) CF(협업 필터링) 추천시스템 구현

01. 1주차 피드백 D

02. 문제상황 🗅

모델링

04. 한계 및 의의 🔘

04. 한계 및 의의

한계

의의

01. 1주차 피드백 D

02. 문제상황

03. 모델링

| 한계 및 의의 ▷

- 다양한 모델을 살펴보고, 직접 실행해보는 값진 경험 (MF, FM, KNN, w2v, auto-encoder…)
- 파이썬과 R 둘 다 이용해서 모델을 다뤄보았다!
- 다루기 어려운 데이터도 포기하지 않고 할 수 있다!!!