Κίνηση σε κεντρικό δυναμικό

- Θεωρείστε ένα σωματίδιο κάτω από την επίδραση μιας κεντρικής δύναμης
 - Δύναμη παράλληλη στο r
- Υποθέτουμε ότι η δύναμη είναι συντηρητική
 - V είναι συνάρτηση του |r| αν η F είναι κεντρική $F = -\nabla V(r)$
- Τέτοια συστήματα είναι πολύ συνηθισμένα
 - Πλανήτης γύρω από τον ήλιο
 - Δορυφόρος γύρω από την γη
 - Ηλεκτρόνιο γύρω από το πυρήνα
 - Τα παραδείγματα αυτά υποθέτουν ότι το σώμα στο κέντρο είναι αρκετά βαρύ και δεν κινείται

Πρόβλημα δύο σωμάτων

- Θεωρήστε 2 σώματα χωρίς εξωτερική δύναμη
 - r₁ και r₂ σχετικά με το κέντρο μάζας
- H Lagrangian γράφεται:

Κίνηση του ΚΜ

Κίνηση γύρω από το ΚΜ

Δυναμικό είναι συνάρτηση του $|\vec{r}| = |\vec{r}_2 - \vec{r}_1|$

Ισχυρός νόμος δράσης - αντίδρασης

$$\vec{r}_1 = -\frac{m_2}{(m_1 + m_2)}\vec{r}, \ \vec{r}_2 = \frac{m_1}{(m_1 + m_2)}\vec{r}$$

$$\sum_{1}^{2} \frac{m_{i} \dot{\mathbf{r}}_{i}^{2}}{2} = \frac{1}{2} \frac{m_{1} m_{2}}{(m_{1} + m_{2})} \dot{\mathbf{r}}^{2}$$

Δύο Σώματα - Κεντρική Δύναμη

$$\mathcal{L} = \frac{(m_1 + m_2)\dot{\mathbf{R}}^2}{2} + \frac{1}{2} \frac{m_1 m_2}{(m_1 + m_2)} \dot{\mathbf{r}}^2 - V(r)$$

$$\mathcal{L} = \frac{1}{2} \frac{m_1 m_2}{(m_1 + m_2)} \dot{\mathbf{r}}^2 - V(r)$$

Σχετική κίνηση 2 σωμάτων είναι ταυτόσημη με την κίνηση ενός σωματιδίου σε δυναμικό κεντρικής δύναμης

Ανηγμένη μάζα:
$$\mu = \frac{m_1 m_2}{(m_1 + m_2)} \implies \frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2}$$

Παράδειγμα: Υδρογόνο και Ποζιτρόνιουμ

- Το ποζιτρόνιουμ είναι μια δέσμια κατάσταση ενός ηλεκτρονίου (e⁻) και ενός ποζιτρονίου (e⁺)
 - Παρόμοιο με το υδρογόνο αλλά m(p) >> m(e⁺)
 - Το δυναμικό V(r) είναι ίδιο
 - Μετατρέπουμε σε πρόβλημα κεντρικής δύναμης

$$\mu_{positronium} = \frac{m_e m_e}{(m_e + m_e)} = \frac{m_e}{2}$$

$$\mu_{\upsilon\delta\rho\sigma\gamma\sigma\nu} = \frac{m_p m_e}{(m_p + m_e)} \approx m_e$$

Το φάσμα του ποζιτρόνιουμ είναι ανάλογο του υδρογόνου με $m_e \to m_e/2$

Σφαιρική συμμετρία

- Σύστημα κεντρικής δύναμης είναι σφαιρικά συμμετρικό
 - Μπορεί να περιστραφεί γύρω από οποιοδήποτε άξονα που περνά από την αρχή του συστήματος
 - H Lagrangian $\int T = T(\dot{r}^2) V(r)$ δεν εξαρτάται από τη διεύθυνση
- Η στροφορμή διατηρείται $\vec{J} = \vec{r} \times \vec{p} = \sigma \tau \alpha \theta$.
 - Η διεύθυνση της J είναι προσδιορισμένη
 - r ⊥ J εξ' ορισμού → <math> r είναι πάντα σε επίπεδο
- Διαλέγουμε πολικές συντεταγμένες
 - Ο άξονας αζιμούθιου ταυτίζεται με τη διεύθυνση J

Περισσότερο φορμαλιστικά

Η Lagrangian σε σφαιρικές συντεταγμένες $\vec{r} = \vec{r}(r, \theta, \psi)$

$$\mathcal{L} = T - V = \frac{m}{2}(\dot{r}^2 + r^2 \sin^2 \psi \dot{\theta}^2 + r^2 \dot{\psi}^2) - V(r)$$

Η θ είναι κυκλική, αλλά η ψ δεν είναι

$$\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{\psi}}\right) - \frac{\partial \mathcal{L}}{\partial \psi} = mr^2(\frac{\ddot{\psi} - \sin\psi\cos\psi\dot{\theta}^2}{}) = 0$$

Μπορούμε να διαλέξουμε τον αχιμουθιακό άξονα ώστε οι αρχικές συνθήκες

$$\psi = \pi / 2$$
, $\dot{\psi} = 0$ Ο δεύτερος όρος 0 $\ddot{\psi} = 0$

Τώρα η ψ είναι σταθερή και μπορούμε να την ξεχάσουμε

Στροφορμή

$$\mathcal{L} = T - V = \frac{m}{2}(\dot{r}^2 + r^2\dot{\theta}^2) - V(r)$$

θ είναι κυκλική. Η συζυγής ορμή ρ_θ διατηρείται

$$p_{\theta} = \frac{\partial \mathcal{L}}{\partial \dot{\theta}} = mr^2 \dot{\theta} = \sigma \tau \alpha \theta. \equiv l$$
 Μέτρο της στροφορμής

Διαφορετικά:

Εμβαδική ταχύτητα
$$\frac{dA}{dt} = \frac{1}{2}r^2\dot{\theta} = \sigma\tau\alpha\theta$$

- O 2^{ος} Νόμος του Kepler
- Ισχύει για κάθε κεντρική δύναμη

Ακτινική κίνηση

$$\mathcal{L} = T - V = \frac{m}{2}(\dot{r}^2 + r^2\dot{\theta}^2) - V(r)$$

□ Η εξίσωση του Lagrange για $r \rightarrow \frac{d}{dt}(m\dot{r}) - mr\dot{\theta}^2 + \frac{\partial V(r)}{\partial r} = 0$

Παράγωγος του δυναμικού V είναι η δύναμη $f(r) = -\frac{\partial V(r)}{\partial r}$

$$m\ddot{r}=mr\dot{\theta}^2+f(r)$$

Κεντρομόλος Κεντρική δύναμη

 \Box Χρησιμοποιώντας την στροφορμή $l=mr^2\dot{\theta}$

$$m\ddot{r} = \frac{l^2}{mr^3} + f(r)$$

Διατήρηση Ενέργειας

$$E = T + V = \frac{m}{2}(\dot{r}^2 + r^2\dot{\theta}^2) + V(r) = \frac{m}{2}\dot{r}^2 + \frac{1}{2}\frac{l^2}{mr^2} + V(r) = \sigma\tau\alpha\vartheta.$$

$$\dot{r} = \sqrt{\frac{2}{m} \left(E - V(r) - \frac{l^2}{2mr^2} \right)}$$

1°υ βαθμού διαφορική εξίσωση του r

Μπορεί να λυθεί ως:

$$t = \int_{0}^{t} dt = \int_{r_{0}}^{r} \frac{dr}{\sqrt{\frac{2}{m} \left(E - V(r) - \frac{l^{2}}{2mr^{2}}\right)}} = t(r)$$

Αυτό ποτέ δεν γίνεται αρνητικό

- \Box Μετά με αναστροφή t(r) → r(t)
- □ Κατόπιν υπολογίζεται το θ(t) ολοκληρώνοντας

$$\dot{\theta} = \frac{l}{mr^2}$$

Βαθμοί Ελευθερίας

- Ένα σώμα έχει 3 βαθμούς ελευθερίας
 - ➤ Η εξίσωση κίνησης είναι 2°° βαθμού διαφορική → 6 σταθερές
- □ Κάθε νόμος διατήρησης ελαττώνει μια παραγώγιση
 - Λέγοντας ότι «χρονική μερική παράγωγος ισούται με μηδέν»
- Χρησιμοποιήσαμε J και E → 4 διατηρήσιμες ποσότητες
 - Μένουμε με μόνο 2 σταθερές ολοκλήρωσης = r₀ και θ₀

- □ Δεν χρειάζεται εν γένει να χρησιμοποιούμε νόμους διατήρησης
 - > Απλά είναι πιο εύκολο από το να λύσουμε όλες τις εξισώσεις Lagrange

Ποιοτική συμπεριφορά

Ολοκληρώνοντας την ακτινική κίνηση δεν είναι πάντα εύκολο

$$\dot{r} = \sqrt{\frac{2}{m} \left(E - V(r) - \frac{l^2}{2mr^2} \right)}$$

□ Πολλές φορές είναι αδύνατο

Μπορούμε ωστόσο να μιλήσουμε για την γενική συμπεριφορά κοιτάζοντας τη σχέση

$$V'(r) \equiv V(r) + \frac{l^2}{2mr^2}$$
 Ημί-δυναμικό το οποίο περικλύει την κεντρομόλο δύναμη

Η ενέργεια διατηρείται και Ε-V' πρέπει να ναι θετική ποσότητα

$$E = \frac{m\dot{r}^2}{2} + V'(r)$$
 $\frac{m\dot{r}^2}{2} = E - V'(r) > 0$ $E > V'(r)$

□ Σχεδιάζουμε το V'(r) και κοιτάμε πως τέμνει το διάγραμμα της ενέργειας Ε

Δύναμη αντιστρόφου του τετραγώνου της r

□ Θεωρήστε μια ελκτική 1/r² δύναμη

$$f(r) = -\frac{k}{r^2} \quad \boxed{} \quad V(r) = -\frac{k}{r}$$

□ Βαρύτητα ή ηλεκτροστατική δύναμη

$$V'(r) = -\frac{k}{r} + \frac{l^2}{2mr^2}$$

- □ Η 1/r² δύναμη υπερισχύει σε μεγάλα r
- Η κεντρομόλος δύναμη υπερισχύει σε μικρά r
- □ Μια «κοιλιά» εμφανίζεται στις μέσες τιμές

Μη φραγμένη κίνηση

- Πάρετε ένα V' παρόμοιο με την περίπτωση 1/r²
 - Μόνο τα γενικά χαρακτηριστικά ενδιαφέρουν
- $\Box \quad \mathsf{E} = \mathsf{E}_1 \to \mathsf{r} > \mathsf{r}_{\mathsf{min}}$
 - > Σώμα μπορεί να πάει στο άπειρο

$$E_1 = V'(r_{\min})$$

Φραγμένη κίνηση

- $\blacksquare \quad \mathsf{E} = \mathsf{E}_2 \quad \Rightarrow \quad \mathsf{r}_{\min} < \mathsf{r} < \mathsf{r}_{\max}$
 - Το σώμα είναι περιορισμένο μεταξύ δύο κύκλων

Κυκλική κίνηση

- \Box E=E3 \rightarrow r = r₀
 - Μόνο μία ακτίνα επιτρέπεται

Ο καταχωρισμός σε φραγείς, μη φραγείς και κυκλικές κινήσεις εξαρτάται από το γενικό σχήμα του V' Όχι από τις λεπτομέρειες (1/r² ή διαφορετικά)

Άλλο παράδειγμα

$$V = -\frac{a}{r^3}$$
 $f = -\frac{3a}{r^4}$ $V'(r) = -\frac{a}{r^3} + \frac{l^2}{2mr^2}$

- □ Ελκτική r**-4** δύναμη
 - V' έχει κάποια κορυφή
 - Σωματίδιο με ενέργεια Ε μπορεί να είναι φραγμένο ή όχι, ανάλογα από την αρχική r

Ευσταθής κυκλική τροχιά

Κυκλική τροχιά υπάρχει στο βάθος ενός κοίλους του V'

$$\frac{m\dot{r}^2}{2} = E - V' = 0 \qquad m\ddot{r}^2 = -\frac{dV'}{dr} = 0$$

$$r = \sigma\tau\alpha\theta$$

- Στην κορυφή ενός κοίλους «δουλεύει» στη θεωρία, αλλά είναι ασταθές
 - Η αρχική συνθήκη πρέπει να 'ναι ακριβής

$$\dot{r} = 0$$
 kal $r = r_0$

Σταθερή κυκλική τροχιά απαιτεί

$$\frac{d^2V'}{dr^2} > 0$$

Εκθετική Δύναμη
$$V'(r) \equiv V(r) + \frac{l^2}{2mr^2}$$

$$\left. \frac{dV'}{dr} \right|_{r=r_0} = -f(r_0) - \frac{l^2}{mr_0^3} = 0$$

$$\left. \frac{dV'}{dr} \right|_{r=r_0} = -f(r_0) - \frac{l^2}{mr_0^3} = 0 \qquad \left. \frac{d^2V'}{dr^2} \right|_{r=r_0} = -\frac{df}{dr} \right|_{r=r_0} + \frac{3l^2}{mr_0^4} > 0$$

Η δύναμη μπορεί να είναι

μόνο ελκτική
$$f(r_0) = -\frac{l^2}{mr_0^3}$$

$$\left. \frac{df}{dr} \right|_{\mathbf{r}=\mathbf{r}_0} < -\frac{3f(r_0)}{r_0}$$

- \square Υποθέστε ότι η δύναμη έχει τη μορφή $f=-kr^n$
 - k>0 για ελκτική δύναμη
 - > Συνθήκες για ευσταθή κυκλική τροχιά είναι

$$-knr_0^{n-1} < 3kr_0^{n-1}$$
 $n > -3$

Εκθετικές δυνάμεις με εκθέτη n>-3 μπορούν να δημιουργήσουν ευσταθή κυκλική τροχιά

Περίληψη

- Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης.
 - ✓ Ανάγαμε το πρόβλημα 2 σωμάτων σε πρόβλημα κεντρικής δύναμης.
- Το πρόβλημα περιορίζεται σε μια εξίσωση $m\ddot{r} = \frac{l^2}{mr^3} + f(r)$

$$m\ddot{r} = \frac{l^2}{mr^3} + f(r)$$

✓ Χρήση της διατήρησης στροφορμής

$$V'(r) \equiv V(r) + \frac{l^2}{2mr^2}$$

- Ποιοτική συμπεριφορά εξαρτάται από
 - ✓ Φραγμένες, μη φραγμένες και κυκλικές τροχιές
 - ✓ Συνθήκες για σταθερές κυκλικές τροχιές
- Επόμενο βήμα: Μπορούμε να λύσουμε για την τροχιά19