1 Properties of A^TA and AA^T

Let $A \in \mathbb{R}^{m \times n}$ be any matrix. Please show:

- 1. number example
- 2. Name two sufficient conditions for the invertibility of A^TA and AA^T .

Solution:

- 1. For example:
 - i) Let A have independent columns ("full column rank"). This is equivalent to $\ker(A) = \{0\}$, thus also the columns of A^TA are independent, which implies that A^TA is invertible.
 - ii) Let A^TA be positive definite. Then its eigenvalues are strictly positive. Since A^TA is symmetric we can use its eigendecomposition to conclude that A^TA is invertible.