Chapitre 6

I. La bobine

Bobine idéale :

Bobine réelle :

Comportement:

- Régime transitoire : La bobine s'oppose au passage du courant dans le circuit.
- Régime permanent : La bobine se comporte comme un conducteur ohmique.

Une bobine s'oppose aux variations de l'intensité dans le circuit.

II. Établissement du courant dans une bobine

Lorsque l'on ferme l'interrupteur, la tension aux bornes la résistance (et i) augmente jusqu'à une valeur limite.

$$E = L\frac{\mathrm{di}}{\mathrm{dt}} + R_{eq}i \underbrace{i(t) = A + Be^{-\frac{t}{\tau}}}_{\text{donc}} \mathrm{donc} \underbrace{\frac{\mathrm{d}i}{\mathrm{d}t} = -\frac{B}{\tau}e^{-\frac{t}{\tau}}}_{\text{donc}}$$

$$A = \frac{E}{R_{eq}}$$
 ($lim_{t \to \infty} E$) | $\tau = \frac{L}{R_{eq}}$ (Remplacement de A dans E) | $to R = -\frac{E}{R_{eq}}$ (À $t = 0$, $to R = 0$)

$$\boxed{i(t) = I_0 \left(1 - e^{-\frac{t}{\tau}} \right)} \left(I_0 = \frac{E}{R_{eq}} \right) \text{ et } u_R(t) = \frac{\text{RE}}{R_{eq}} \left(1 - e^{-\frac{t}{\tau}} \right) \text{ et } u_C(t) = \frac{E}{R_{eq}} \left(r + Re^{-\frac{t}{\tau}} \right)$$

Détermination de τ :

- La tangente à l'origine de la courbe i=f(t) coupe la droite $y=I_0$ en $t=\tau$
- $t = \tau \, \text{quand} \, i(t) = 0.63 I_0$

Interruption du courant dans une bobine III.

$$L\frac{\mathrm{d}i}{\mathrm{d}t} + R_{eq}i = 0$$
 (1) $i(t) = A + Be^{-\frac{t}{\tau}}$ donc $di = -\frac{B}{\tau}e^{-\frac{t}{\tau}}$

$$A = 0$$
 ($\lim_{t \to \infty} (1)$)

$$A = \mathbf{0}$$
 ($\lim_{t \to \infty} (1)$)
$$\mathbf{T} = \frac{L}{R_{eq}}$$
 $A = \mathbf{0}$ ($A = \mathbf{0}$) $A = \mathbf{E}$ ($A = \mathbf{0}$) $A = \mathbf{E}$

$$\tau = \frac{L}{R_{eq}}$$
 (Remplacement de A par 0)

$$i(t) = I_0 e^{-\frac{t}{\tau}}$$

Détermination de τ :

- La tangente à l'origine de la courbe i = f(t) coupe l'axe des x en $t = \tau$
- $t = \tau$ quand $i(t) = 0.37I_0$

Chapitre 6

IV. Énergie emmagasinée dans une bobine

$$\mathcal{P} = ri^2 + Li \frac{di}{dt}$$

 $\begin{array}{c} \mathcal{P}=ri^2+Li\frac{di}{dt} \\ \hline \mathcal{E}_{bob}=\frac{1}{2}Li^2 \\ \hline \end{array} \begin{array}{c} \mathcal{P} \text{ (W) : puissance reçue par la bobine} \\ \mathcal{E} \text{ (J) : énergie emmagasinée dans la bobine} \\ \text{L (H) : inductance de la bobine} \\ \text{i (A) : intensité dans le circuit} \\ \end{array}$

V. Continuité de l'intensité dans le circuit

L'intensité du courtant dans un circuit qui contient une bobine ne subit pas de discontinuité.