Formális nyelvek - 10.

Csuhaj Varjú Erzsébet

Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c

E-mail: csuhaj@inf.elte.hu

Veremautomata

A veremautomata a véges automata általánosítása potenciálisan végtelen veremmel és véges kontrollal.

A verem esetében az új adat mindig a már meglevő veremtartalom tetejéhez adódik, kivétele fordított sorrendben történik.

A verem kezelési technikája ún. FILO (first-in-last-out).

A veremautomata egy rendezett hetes

$$A = (Z, Q, T, \delta, z_0, q_0, F),$$

ahol

- Z a veremszimbólumok véges halmaza,
- Q az állapotok véges halmaza,
- T az inputszimbólumok véges halmaza,
- δ leképezése a $Z \times Q \times (T \cup \{\varepsilon\})$ halmaznak $Z^* \times Q$ véges részhalmazaiba, az ún. átmeneti függvény,
- $z_0 \in Z$ a kezdeti (kezdő) veremszimbólum,
- $q_0 \in Q$ a kezdeti (kezdő) állapot,
- $F \subseteq Q$ az elfogadó állapotok halmaza.

Legyen $A = (Z, Q, T, \delta, z_0, q_0, F)$ veremautomata.

A veremautomata konfigurációja alatt egy uq alakú szót értünk, ahol $u \in Z^*$ a verem aktuális tartalma és $q \in Q$ az aktuális állapot.

A kezdeti konfiguráció z_0q_0 .

Megjegyzés: Ha $u=x_1...x_n$, ahol $x_i \in Z$, $1 \le i \le n$, akkor a verem tetején levő szimbólum x_n .

Közvetlen lépés a veremautomatában

Tegyük fel, hogy az A veremautomata olvasófeje az a inputszimbólumon áll, a veremautomata (a véges kontroll) q állapotban van, valamint a verem tetején levő szimbólum z.

Legyen $\delta(z,q,a) = \{(u_1,r_1), \dots, (u_n,r_n)\}$, ahol $u_i \in Z^*$ és $r_i \in Q$, $1 \le i \le n$.

Akkor A következő állapota valamely r_i lesz és egyidejűleg z-t helyettesíti az u_i szóval, továbbá az olvasófej egy cellával jobbra lép az input szalagon.

Ha $\delta(z,q,\varepsilon)$ nem üres, akkor ún. ε -átmenet (ε -lépés) hajtható végre.

Szó elfogadása a veremautomatában

Ha az input szalag a $w \in T^*$ szót tartalmazza és a z_0q_0 kezdeti konfigurációból kiindulva és lépések sorozatát végrehajtva az A veremautomata egy up konfigurációba ér, ahol p elfogadó állapot, akkor azt mondjuk, hogy A elfogadta a w szót.

Az A veremautomata az $\alpha \in Z^*QT^*$ szót a $\beta \in Z^*QT^*$ szóra redukálja egy lépésben, amelyet $\alpha \Longrightarrow_A \beta$ -val jelölünk, ha létezik olyan $z \in Z, q, p \in Q, \ a \in T \cup \{\varepsilon\}, \ r, u \in Z^*$ és $w \in T^*$, hogy $(u, p) \in \delta(z, q, a)$ és $\alpha = rzqaw$ és $\beta = rupw$ teljesül.

Az A veremautomata az $\alpha \in Z^*QT^*$ szót a $\beta \in Z^*QT^*$ szóra redukálja, amelyet $\alpha \Longrightarrow_A^* \beta$ -val jelölünk, ha vagy $\alpha = \beta$, vagy létezik olyan $\alpha_1, \ldots, \alpha_n \in Z^*QT^*$ szavakból álló véges sorozat, ahol $\alpha = \alpha_1, \beta = \alpha_n$, és $\alpha_i \Longrightarrow_A \alpha_{i+1}, 1 \le i \le n-1$.

Az A veremautomata által (elfogadó állapottal) elfogadott nyelv

$$L(A) = \{ w \in T^* \mid z_0 q_0 w \Longrightarrow_A^* up, \text{ ahol } u \in Z^*, p \in F \}.$$

Megjegyzés

A δ leképezést szabályok formájában is megadhatjuk. Az így nyert szabályhalmazt M_{δ} -val jelöljük. Tehát

- 1. $zqa \rightarrow up \in M_{\delta}$ hacsak $(u,p) \in \delta(z,q,a)$,
- 2. $zq \to up \in M_{\delta}$ hacsak $(u,p) \in \delta(z,q,\varepsilon)$

Példa

Legyen $L = \{a^nb^n \mid n \geq 2\}$. Az L nyelvet elfogadó veremautomata átmenetei a következők (csak azokat az átmeneteket tüntetjük fel, amelyek nemüresek):

$$(z_0a, q_0,) \in \delta(z_0, q_0, a),$$

$$(aa, q_0) \in \delta(a, q_0, a),$$

$$(\varepsilon, q_1) \in \delta(a, q_0, b),$$

$$(\varepsilon, q_1) \in \delta(a, q_1, b),$$

$$(\varepsilon, q_2) \in \delta(a, q_1, b),$$

$$(\varepsilon, q_2) \in \delta(z_0, q_2, \varepsilon)$$

Az $A=(Z,Q,T,M,z_0,q_0,F)$ veremautomatát determinisztikusnak mondjuk, ha minden $(z,q)\in Z\times Q$ pár esetén

- 1. vagy $\delta(z,q,a)$ pontosan egy elemet tartalmaz minden $a\in T$ inputszimbólumra és $M(z,q,\varepsilon)=\emptyset$, vagy
- 2. $\delta(z,q,\varepsilon)$ pontosan egy elemet tartalmaz és $\delta(z,q,a)=\emptyset$ minden $a\in T$ inputszimbólumra.

Megjegyzés

A determinisztikus veremautomata elfogadó (felismerő) ereje kisebb, mint a (nemdeterminisztikus) veremautomatáé.

Példanyelvek:

$$L_1 = \{wcw^{-1} \mid w \in \{a, b\}^*\}$$
$$L_2 = \{ww^{-1} \mid w \in \{a, b\}^*\}$$

Míg az L_1 nyelvet el lehet fogadni determinisztikus veremautomatával, addig a másodikat nem, L_2 -t csak nemdeterminisztikus veremautomatával lehet elfogadni.

Az N(A) nyelvet az A veremautomata üres veremmel fogadja el, ha $N(A) = \{ w \in T^* \mid z_0 q_0 w \Longrightarrow_A^* p, \text{ ahol } p \in Q \}.$

Vegyük észre, hogyha a verem üres, az automata működése blokkolódik, mivel nincs átmenet definiálva üres verem esetére. (Ezért van szükségünk a z_0 kezdeti veremszimbólumra.)

Lemma

Bármely A veremautomatához meg tudunk adni egy A' veremautomatát úgy, hogy N(A') = L(A) teljesül.

Bizonyításvázlat

Legyen

$$A = (Z, Q, T, \delta, z_0, q_0, F)$$

veremautomata. Az

$$A' = (Z \cup \{z'_0\}, Q \cup \{q'_0, q'_h\}, \delta', z'_0, q'_0, \emptyset)$$

veremautomatát a következőképpen definiáljuk: $z_0' \notin Z, \ q_0', q_h' \notin Q, \ \delta'$ -re pedig teljesülnek a következők:

$$\delta'(z'_0, q'_0, \varepsilon) = \{(z'_0 z_0, q_0)\},\$$

$$\delta'(z, q, a) = \delta(z, q, a), z \in Z, q \in Q, a \in T,\$$

$$\delta(z, q, \varepsilon) \subseteq \delta'(z, q, \varepsilon), z \in Z, q \in Q,\$$

$$(\varepsilon, q'_h) \in \delta'(z, q, \varepsilon), z \in Z \cup \{z'_0\}, q \in F \cup \{q'_h\}.\$$

A' szimulálja A működését; a $z'_0 \neq z_0$ veremszimbólum azért szükséges, hogy A' nem fogadhasson el olyan u szót, amely kiüríti az A automata vermét.

Bizonyításvázlat - folytatás

Legyen $w \in L(A)$. Akkor

$$z_0q_0w \Longrightarrow_A^* uq,$$

valamely $u \in Z^*$ veremszimbólum-sorozatra és $q \in F$ elfogadó állapotra. De akkor

$$z_0'q_0'w \Longrightarrow_{A'} z_0'z_0q_0w \Longrightarrow_{A'}^* z_0'uq \Longrightarrow_{A'}^* q_h'$$

is fennáll, ahonnan $w \in N(A')$ következik.

Bizonyításvázlat - folytatás

Legyen $w \in N(A')$. Akkor

$$z_0'q_0'w \Longrightarrow_{A'}^* q$$

valamely $q \in Q \cup \{q'_0, q'_h\}$ állapotra.

A konstrukció alapján az első lépés $z_0'q_0'w \Longrightarrow_{A'} z_0'z_0q_0$. Mivel a z_0' szimbólum csak valamely $(\varepsilon,q_h')\in \delta'(z_0',q,\varepsilon)$ átmenetet alkalmazó lépéssel törölhető a veremből, ezért lennie kell olyan $q\in F$ elfogadó állapotnak és $u\in Z^*$ szónak, amelyre

$$z_0'z_0q_0w \Longrightarrow_{A'}^* z_0'uq \Longrightarrow_{A'}^* q_h'$$

teljesül, ahol $z_0q_0w \Longrightarrow_A^* uq$. Azaz, $w \in L(A)$.

Lemma

Bármely A veremautomatához meg tudunk adni egy A' veremautomatát úgy, hogy L(A')=N(A) teljesül.

Bizonyításvázlat

Legyen

$$A = (Z, Q, T, \delta, z_0, q_0, \emptyset)$$

veremautomata, amely üres veremmel az N(A) nyelvet fogadja el. Megkonstruáljuk az A' veremautomatát, amely elfogadó állapottal az L(A') = N(A) nyelvet fogadja el. Legyen

$$A' = (Z \cup \{z_0'\}, Q \cup \{q_0', q_f'\}, T, \delta', z_0', q_0', \{q_f'\}),$$

ahol $z_0' \notin Z$, $q_0', q_f' \notin Q$ és

$$\delta'(z'_0, q'_0, \varepsilon) = \{(z'_0 z_0, q_0)\},\$$

$$\delta'(z, q, a) = \delta(z, q, a), z \in Z, q \in Q, a \in (T \cup \{\varepsilon\}),\$$

$$\delta'(z'_0, q, \varepsilon) = \{(z'_0, q'_f)\}, q \in Q.$$

Könnyen látható, hogy valahányszor A kiüríti a vermét, akkor A' elfogadó állapotba kerül, továbbá A' csak ebben az esetben kerül elfogadó állapotba. Így a L(A') = N(A) teljesül.