## PENGOLAHAN DATA DENGAN MENGGUNAKAN METODE GEOLISTRIK & PERANGKAT LUNAK

### Amata Kara Perdani Handiman

Program Studi Fisika FPMIPA Universitas Pendidikan Indonesia

Email: amatakara@upi.edu

#### ABSTRAK

Metode geofisika memiliki berbagai macam Metode yang dapat digunakan, termasuk Metode geolistrik. Metode Geolistrik adalah metode eksplorasi geofisika yang menggunakan karakteristik kelistrikan batuan untuk mempelajari kondisi bawah tanah. Dalam penelitian ini akan melibatkan beberapa data Metode geolistrik yang memiliki data 1D dan 2D. Pengolahan ini menggunakan IPI2win dan RES2DINV yang nantiknya hasil dari IPI2win dan RES2DINV ini akan di identifikasi jenis batuannya melalui nilai resistivitas. IPI2win adalah program yang secara otomatis dan semi-otomatis memproses suara listrik vertikal dan/atau data polarisasi terinduksi dengan berbagai konfigurasi jangkauan yang banyak digunakan dalam perkiraan geolistrik. Sedangkan Res2Dinv adalah aplikasi komputer atau perangkat lunak yang mendeteksi lapisan yang mendasari temuan geolistrik dengan secara otomatis menentukan model resistivitas 2 dimensi (2-D). Hasilnya menunjukkan bahwa, Data 1D yang telah diolah menggunakan IPI2win menunjukan bahwa, sebagian besar didominasikan oleh batuan seperti lempung, marls, dan pasir minyak. Karena memiliki nilai resistivitas < 220 ohm.m. Setelah itu, Data 2D yang telah diolah dengan RES2DINV menunjukkan bahwa, Sebagian besar didominasikan dengan batuan seperti lempun, marls, dan grafit. Karena memiliki nilai resistivitas sebesar < 100 ohm.m.

Kata Kunci : Metode Geofisika, IPI2win, RES2DINV, batuan

#### **ABSTRAC**

Geophysical methods have a variety of methods that can be used, including the geoelectric method. Geoelectric method is a geophysical exploration method that uses the electrical characteristics of rocks to study underground conditions. This research will involve some geoelectric method data which has 1D and 2D data. This processing uses IPI2win and RES2DINV which later the results from IPI2win and RES2DINV will identify rock types through resistivity values. IPI2win is a program that automatically and semi-automatically processes vertical electrical noise and/or induced polarization data with various range configurations that are widely used in geoelectrical forecasting. While Res2Dinv is a computer or software application that detects the underlying layers of geoelectrical findings by automatically determining a 2-dimensional (2-D) resistivity model. The results show that, 1D data that has been processed using IPI2win shows that, most of it is dominated by rocks such as clay, marls, and oil sands. Because it has a resistivity value of < 220 ohm.m. After that, 2D data that has been processed with RES2DINV shows that, Most of it is dominated by rocks such as clay, marls, and graphite. Because it has a resistivity value of < 100 ohm.m.

Key words : Geophysical methods, IPI2win, RES2DINV, rocks

### 1. PENDAHULUAN

Metode Geolistrik adalah metode eksplorasi geofisika yang menggunakan karakteristik kelistrikan batuan untuk mempelajari kondisi bawah tanah. Karakteristik kelistrikan tersebut meliputi resistivitas, konduktivitas, konstanta dielektrik, kapasitas untuk menciptakan medan potensial sendiri dan medan induksi, dan juga sifat menyimpan potensial, dan Diketahu juga, lain-lain. perhitungan geolistrik dilakukan dengan menginjeksikan arus listrik buatan ke dalam tanah melalui batang elektroda arus dan kemudian mengukur beda potensial pada elektroda yang berlawanan.(Fakhrudin, 2014) Hukum Ohm dapat digunakan untuk mengidentifikasi jenis hambatan bahan yang dialiri arus listrik berdasarkan hasil perekaman.(Advanced Geosciences, 2009) Dalam Metode ini diperlukan geolistrik yang sudah diambil datanya. Lalu, data tersebut dapat menjadi sebuah pemodelan dengan perangkat lunak yang membaca data 1 dimensi dan membaca data 2 dimensi. Untuk data 1 dimensi akan menggunakan perangkat lunak IPI2win, dan untuk data 2 dimensi akan menggunakan perangkat lunak yang bernama RES2DINV. Selain itu, dalam studi yang dilakukan akan mengolah data menggunakan konfigurasi wenner dan selain itu juga, menggunakan konfigurasi Schlumberger.

### 2. METODE

Dalam penelitian ini akan melibatkan beberapa data excel yang memiliki data 1D (terdiri dari 1D1, 1D2, dan 1D3). Lalu, ada pula data excel 2D (terdiri dari 2D1, 2D2, 2D3, 2D4, 2D5, dan juga 2D6). Berikut merupakan salah satu table data dari 1D dan 2D.

| AB/2 (m) | MN  | I (mA)  | V (mV)  |
|----------|-----|---------|---------|
| 2        | 4   | 0.39376 | 0.50014 |
| 4        | 8   | 0.11846 | 0.02329 |
| 6        | 12  | 0.34182 | 0.02476 |
| 10       | 20  | 0.43159 | 0.01032 |
| 10       | 20  | 0.43487 | 0.01979 |
| 15       | 30  | 0.27964 | 0.00506 |
| 25       | 50  | 0.30856 | 0.0015  |
| 30       | 60  | 0.15292 | 0.00077 |
| 30       | 60  | 0.15336 | 0.00138 |
| 35       | 70  | 0.35219 | 0.00277 |
| 40       | 80  | 0.24436 | 0.00167 |
| 50       | 100 | 0.40648 | 0.00157 |
| 50       | 100 | 0.40571 | 0.00423 |
| 60       | 120 |         |         |
| 70       | 140 |         |         |
| 80       | 160 |         |         |
| 100      | 200 |         |         |
| 100      | 200 |         |         |
| 140      | 280 |         |         |
| 180      | 360 |         |         |
| 200      | 400 |         |         |
| 200      | 400 |         |         |

| 250 | 500  |
|-----|------|
| 300 | 600  |
| 350 | 700  |
| 400 | 800  |
| 400 | 800  |
| 450 | 900  |
| 500 | 1000 |
| 550 | 1100 |
| 575 | 1150 |

Tabel 1. Data 1D1

| A (m) | Spasi | RHOA     |
|-------|-------|----------|
| 0     | 5     | 6.097778 |
| 5     | 5     | 8.900602 |
| 10    | 5     | 6.29814  |
| 15    | 5     | 9.106484 |
| 20    | 5     | 6.601136 |
| 25    | 5     | 8.985188 |
| 30    | 5     | 7.354525 |
| 35    | 5     | 6.388276 |
| 40    | 5     | 12.78988 |
| 45    | 5     | 12.05355 |
| 50    | 5     | 14.10888 |
| 55    | 5     | 2.878333 |
| 60    | 5     | 7.813059 |
| 65    | 5     | 15.45962 |
| 70    | 5     | 4.426885 |
| 75    | 5     | 6.708182 |
| 80    | 5     | 3.843229 |
| 85    | 5     | 9.42     |
| 90    | 5     | 6.446726 |
| 95    | 5     | 8.083168 |
| 0     | 10    | 10.3625  |
| 5     | 10    | 7.545864 |

| 10 | 10 | 10.46975 |
|----|----|----------|
| 15 | 10 | 12.24883 |
| 20 | 10 | 10.02925 |
|    |    |          |
| 25 | 10 | 7.620992 |
| 30 | 10 | 8.683592 |
| 35 | 10 | 0.974483 |
| 40 | 10 | 5.658218 |
| 45 | 10 | 7.239825 |
| 50 | 10 | 3.523511 |
| 55 | 10 | 6.068908 |
| 60 | 10 | 5.345949 |
| 65 | 10 | 3.900887 |
| 70 | 10 | 4.268301 |
| 75 | 10 | 5.699191 |
| 80 | 10 | 8.805652 |
| 0  | 15 | 12.32791 |
| 5  | 15 | 27.55828 |
| 10 | 15 | 10.66036 |
| 15 | 15 | 9.988132 |
| 20 | 15 | 10.94076 |
| 25 | 15 | 8.682141 |
| 30 | 15 | 2.179529 |
| 35 | 15 | 4.14253  |
| 40 | 15 | 5.849863 |
| 45 | 15 | 5.809    |
| 50 | 15 | 3.672679 |
| 55 | 15 | 5.796923 |
| 60 | 15 | 4.179817 |
| 65 | 15 | 5.724791 |
| 0  | 20 | 15.04045 |
| 5  | 20 | 19.24779 |
| 10 | 20 | 14.14153 |
| 15 | 20 | 12.01754 |
|    |    |          |

| 20 | 20 | 12.78549 |
|----|----|----------|
| 25 | 20 | 11.15736 |
| 30 | 20 | 6.877629 |
| 35 | 20 | 6.108207 |
| 40 | 20 | 19.74314 |
| 45 | 20 | 4.014714 |
| 50 | 20 | 4.894377 |
| 0  | 25 | 20.11204 |
| 5  | 25 | 15.87444 |
| 10 | 25 | 14.69047 |
| 15 | 25 | 11.68687 |
| 20 | 25 | 10.1312  |
| 25 | 25 | 7.269379 |
| 30 | 25 | 9.021642 |
| 35 | 25 | 4.861312 |

Tabel 2. Data 2D1

Data tersebut akan di olah menggunakan perangkat lunak IPI2win dan RES2DINV. IPI2win adalah program yang secara otomatis dan semi-otomatis memproses suara listrik vertikal dan/atau data polarisasi terinduksi dengan berbagai konfigurasi jangkauan yang banyak digunakan dalam

## 3. HASIL & PEMBAHASAN a. HASIL DATA 1D

Pada data 1D diketahui menggunakan konfigurasi Schulumberger. Pengolahan data tersebut diperlukan IPI2win yang merupakan perangkat lunak yang nantinya Gambar 1. Hasil dari pengolahan data 1D1 dengan IPI2win

perkiraan geolistrik. Sedangkan Res2Dinv adalah aplikasi komputer atau perangkat lunak yang mendeteksi lapisan yang mendasari temuan geolistrik dengan secara otomatis menentukan model resistivitas 2 dimensi (2-D).

Maka selanjutnya, akan menganalisis nilai resistivitasnya dengan mengidentifikasi nilai resistivitasnya melalui table berikut.

| Tipe Batuan     | Nilai Resistivitas (Ωm)                       |  |
|-----------------|-----------------------------------------------|--|
| Andesit         | 4.5 x 10 <sup>4</sup> - 1.7 x 10 <sup>2</sup> |  |
| Lavas           | 10 <sup>2</sup> - 5 x 10 <sup>4</sup>         |  |
| Gabbro          | 10 <sup>3</sup> x 10 <sup>6</sup>             |  |
| Basalt          | $10 - 1.3 \times 10^7$                        |  |
| Tuffs           | 2 x 10 <sup>3</sup> - 10 <sup>5</sup>         |  |
| Shales          | 20 - 2 x 10 <sup>5</sup>                      |  |
| Conglomerat es  | $2 \times 10^3 - 10^4$                        |  |
| Sandstones      | $1 - 6.4 \times 10^{5}$                       |  |
| Limestones      | 50 - 10 <sup>7</sup>                          |  |
| Marls           | 3 – 70                                        |  |
| Clays           | 1-100                                         |  |
| Oil Sands       | 4-800                                         |  |
| Graphite schist | 10 - 100                                      |  |

Tabel 3. Tipe batuan berdasarkan resistivitasnya (Wanudya et al., 2020)

akan dimasukan data AB/2, MN, I, dan juga V. Lalu, secara automatis akan terlihat nilai Rho-a dan K. (Hidayat, n.d.)



Pada gambar 1 menunjukan bahwa terdapat kurva matching yang terlihat tergabung dan memiliki nilai eror sebesar 8,43%. Dengan kata lain, data tersebut terbilang akurat. Penampang yang diukur memiliki tiga lapisan. Lapisan pertama memiliki nilai ketebalan 0.812m dan memiliki kedalaman sebesar 0.812m. sedangkan resistivitasnya adalah  $55,1\Omega$ . Lapisan kedua memiliki nilai ketebalan 6,53m dan memiliki kedalaman sebesar 7.34m. sedangkan nilai resistivitasnya adalah 17,1 $\Omega$ . Untuk lapisan ketiga memiliki nilai ketebalan 4,08m dan memiliki kedalaman sebesar 11,4m, sedangkan nilai resistivitasnya adalah 3,02 $\Omega$ . Sedangkan untuk lapisan keempat memiliki nilai ketebalan dan kedalaman yang tak hingga, namun memiliki resistivitas dengan nilai  $29,9\Omega$ .



# Gambar 2. Hasil dari pengolahan data 1D2 dengan IPI2win

Pada gambar 2 menunjukan bahwa terdapat kurva matching yang terlihat tergabung dan memiliki nilai eror sebesar 32,9%. Dengan kata lain, data tersebut terbilang akurat. Penampang yang diukur memiliki dua lapisan. Lapisan pertama memiliki nilai ketebalan 6,92m dan memiliki kedalaman sebesar 6,92m, sedangkan nilai resistivitasnya adalah 23,1Ω. Lapisan

kedua memiliki nilai ketebalan 3,45m dan memiliki kedalaman sebesar 10,4m, sedangkan nilai resistivitasnya adalah 123 $\Omega$ . Untuk lapisan ketiga memiliki nilai ketebalan dan kedalaman yang tak hingga, namun memiliki resistivitas dengan nilai 0,293 $\Omega$ .



Gambar 3. Hasil dari pengolahan data 1D3 dengan IPI2win dan Penampang resistivitas semu dan sebenarnya untuk semua data 1D

Pada gambar 3 menunjukan bahwa terdapat kurva matching yang terlihat tergabung dan memiliki nilai eror sebesar 25,6%. Dengan kata lain, data tersebut terbilang akurat. Penampang yang diukur memiliki dua lapisan. Lapisan pertama memiliki nilai ketebalan 3,89m dan memiliki kedalaman sebesar 3,89m, sedangkan nilai resistivitasnya adalah 220,55Ω. Lapisan

kedua memiliki nilai ketebalan 1,24m dan memiliki kedalaman sebesar 5,13m, sedangkan nilai resistivitasnya adalah 3,64 $\Omega$ . Untuk lapisan ketiga memiliki nilai ketebalan dan kedalaman yang tak hingga, namun memiliki resistivitas dengan nilai 14,2 $\Omega$ .

### b. HASIL DATA 2D

Data 2Dimensi akan diolah menggunakan perangkat lunak RES2DINV, yang dimana data tersebut menggunakan konfigurasi Wenner.

Data tersebut akan diolah dengan mengimput nilai yang sudah diperoleh dari excel ke dalam notepad. Terdapat format yang harus dicantumka pada notepad ialah .

- ➤ Pada Baris 1 = Nama atau judul lintasan
- ➤ Pada Baris 2 = Spasi elektroda terkecil
- ▶ Pada Baris 3 = jenis konfiguras (
   Wenner = 1, Pole pole = 2, Dipole
   dipole = 3, Pole dipole = 4,
   Schlumberger = 7)
- ➤ Pada Baris 4 = Jumlah titik data
- Pada Baris 5 = Titik pada lokasi x.
   Diisi 0 jika pada elektroda pertama.
   Diisi 1 jika titik tengah yang digunakan dari konfigurasi.

▶ Pada Baris 6 = Indikasi untuk data IP.Diisi 0 jika yang digunakan adalah data resitivity (Winda, 2012)



Gambar 4. Hasil dari pengolahan data 2D1 dengan RES2DINV

Pada gambar 4 menggambarkan tiga penampang, untuk yang pertama penampang merupakan pseudosection resistivitas semu yang memiliki nilai diantara 1,75 - 25,8 ohm-m. Kemudian, untuk yang kedua merupakan penampang kakulasi resistivitas semu yang memiliki nilai 3,08 – 13,8 ohm-m. Penampang selanjutnya, merupakan inversi resistivitas semu yang memiliki nilai 0,508 - 400 ohmm. Terakhir, nilai erornya adalah 17,6%.



Gambar 5. Hasil dari pengolahan data 2D2 dengan RES2DINV

Pada gambar 5 menggambarkan tiga penampang, pertama untuk yang merupakan penampang pseudosection resistivitas semu yang memiliki nilai diantara 3,20 – 28,5 ohm-m. Kemudian, untuk yang kedua merupakan penampang kakulasi resistivitas semu yang memiliki nilai 3,08 – 8,81 ohm-m. Penampang selanjutnya, merupakan inversi resistivitas semu yang memiliki nilai 0,598 - 40 ohmm. Terakhir, nilai erornya adalah 13,1%.



### Gambar 6. Hasil dari pengolahan data 2D3 dengan RES2DINV

Pada gambar 6 menggambarkan tiga penampang, untuk yang pertama merupakan pseudosection penampang resistivitas semu yang memiliki nilai diantara 1,01 – 16,0 ohm-m. Kemudian, untuk yang kedua merupakan penampang kakulasi resistivitas semu yang memiliki nilai 2,45 – 6,26 ohm-m. Penampang selanjutnya, merupakan inversi resistivitas semu yang memiliki nilai 0,598 - 50 ohmm. Terakhir, nilai erornya adalah 14,9%.



### Gambar 7. Hasil dari pengolahan data 2D4 dengan RES2DINV

Pada gambar 7 menggambarkan tiga pertama penampang, untuk yang merupakan pseudosection penampang resistivitas semu yang memiliki nilai diantara 14.4 – 30,8 ohm-m. Kemudian, untuk yang kedua merupakan penampang kakulasi resistivitas semu yang memiliki nilai 15,0 – 30,1 ohm-m. Penampang selanjutnya, merupakan inversi resistivitas semu yang memiliki nilai 7,0 - 55 ohm-m. Terakhir, nilai erornya adalah 2,4%.



### Gambar 8. Hasil dari pengolahan data 2D5 dengan RES2DINV

Pada gambar 8 menggambarkan tiga penampang, untuk yang pertama merupakan penampang pseudosection resistivitas semu yang memiliki nilai diantara 12.4 - 29.3 ohm-m. Kemudian, untuk yang kedua merupakan penampang kakulasi resistivitas semu yang memiliki nilai 10,6 – 24,1 ohm-m. Penampang selanjutnya, merupakan inversi resistivitas semu yang memiliki nilai 5,30 - 60 ohm-m. Terakhir, nilai erornya adalah 5,5%.



Gambar 9. Hasil dari pengolahan data 2D6 dengan RES2DINV

Pada gambar 9 menggambarkan tiga penampang, untuk yang pertama merupakan penampang pseudosection resistivitas semu yang memiliki nilai diantara 9,0 – 39 ohm-m. Kemudian, untuk kedua merupakan penampang yang kakulasi resistivitas semu yang memiliki nilai 9,5 – 26,6 ohm-m. Penampang selanjutnya, merupakan inversi resistivitas semu yang memiliki nilai 6,40 - 95 ohm-m. Terakhir, nilai erornya adalah 3,6%.

#### 4. KESIMPULAN

Berdasarkan dari hasil yang telah diuji coba. Maka, dari data 1D dan 2D dapat disimpulkan:

- Data 1D yang telah diolah menggunakan IPI2win menunjukan

- bahwa, sebagian besar didominasikan oleh batuan seperti lempung, marls, dan pasir minyak. Karena memiliki nilai resistivitas < 220 ohm.m.
- Data 2D yang telah diolah dengan RES2DINV menunjukkan bahwa, Sebagian besar didominasikan dengan batuan seperti lempun, marls, dan grafit. Karena memiliki nilai resistivitas sebesar < 100 ohm.m.

2D SEBAGAI PENGGANTI SEISMIK UNTUK PENENTUAN PARAMTER PELEDAKAN PADA OVERBURDEN BATUBARA DI PT BWM KALSEL.

Winda. (2012). UJI COBA RESISTIVTIY-

Maluku. Jurnal Geofisika Eksplorasi,

https://doi.org/10.23960/jge.v4i3.40

39-49.

*4*(3), 41–57.

### 5. DAFTAR PUSTAKA

- Advanced Geosciences, I. (AGI). (2009). *Instruction Manual for EarthImager*2D (Issue 512).
- Fakhrudin, K. D. (2014). PENGOLAHAN

  DATA MENGGUNAKAN RES2DINV

  METODE RESISTIVITY

  KONFIGURASI WENNER-ALPHA.
- Hidayat, I. M. (n.d.). *PENGOLAHAN*DATA MENGGUNAKAN IP2WIN

  METODE RESISTIVITY

  KONFIGURASI SCHLUMBERGER.
  2–5.
- Wanudya, G. P. R., Rasimeng, S., Rustadi, R., & Indragiri, N. M. (2020).

  Identifikasi Cekungan Hidrokarbon
  "Rae" Berdasarkan Data

  Magnetotelurik Di Daerah Bula,