Tissue Transplantation Experiments: Inference and other Problems

Yue Wang

Department of Computational Medicine, University of California, Los Angeles

- Tissue transplantation experiments.
- Take one piece of one tissue, and graft it to another tissue.
- Observe how the grafted tissue behaves.

- To simplify the problem, we consider a rough classification of results:
- The grafted tissue develops normally.
- The grafted tissue develops abnormally.

- Species: Xenopus laevis (African clawed frog).
- Donor: Upper lateral lip (development stage 11).
- Host: Lower lip (development stage 11).
- Result: Normal. The transplanted tissue will develop normally as if it was the host tissue.

How to infer the unknown experimental results?

					Donor			
		AM19	PM19	PM15	UL11	LL11	LL15	LL19
	AM19	?	Ν	Α	Α	Α	Α	N
	PM19	?	Ν	?	N	Ν	?	?
Н	PM15	?	?	?	?	?	?	?
0	UL11	?	Ν	?	N	Ν	?	?
S	LL11	?	Ν	?	Ν	Ν	?	?
t	LL15	?	?	?	?	?	?	?
	LL19	?	?	?	?	?	?	?

Table: Results reported by Krneta-Stankic et al. 2010

N=normal; A=abnormal. AM=anterior paraxial mesoderm; PM=presomitic mesoderm; UL=upper lateral lip; LL=lower lip; Number=developmental stage.

- Core idea: similar experiments should have similar results.
- Similar experiments: similar donors and similar hosts.
- With this idea, we can use known results to infer unknown results.
- Assume we have known the similarities between experiments.

Experiment similarity chart:

Black/red terms are experiments with known/unknown results.

Double/single/no line: high/medium/low similarity.

- We design a penalty function that evaluates guesses of unknown experimental results.
- There is a penalty if two similar experiments have different results.
- For the concrete form of this function, we can get inspirations from the Ising model.

Ising model

The Ising model describes ferromagnetism in statistical mechanics. Consider a set of lattice sites, where each site k has a variable σ_k that takes +1 or -1.

Ising model

• For a configuration σ , its energy function is

$$H(\sigma) = -\sum_{i\sim j} J_{ij}\sigma_i\sigma_j,$$

where $i \sim j$ means site i and site j are neighboring, and J_{ij} is the interaction coefficient (no external field).

• The probability of a configuration σ is

$$P_{\beta}(\sigma) = e^{-\beta H(\sigma)}/Z_{\beta},$$

where $\beta = (k_B T)^{-1}$, Z_{β} is the normalization constant.

 Configuration with high energy (high penalty) has small probability. Neighboring sites tend to have the same value.

Analogies between tissue transplantation experiments and the Ising model:

Tissue transplantation	Ising model
Experiment similarity chart Experiment Result: normal/abnormal Similar experiments	Lattice Site Value: +1/-1 Neighboring sites
Penalty: similar experiments have different results Penalty function?	Penalty: neighboring sites have different values Energy function

Pure analogy, not physical correspondence.

- Regard N as +1, and A as -1.
- If two experiments $\sigma_{\gamma}, \sigma_{\delta}$ are similar, set $J_{\gamma\delta}=2J_0$ or J_0 . Otherwise, set $J_{\gamma\delta}=0$.
- The penalty function is

$$\mathrm{H}(\sigma) = -\sum_{\gamma,\delta} J_{\gamma\delta}\sigma_{\gamma}\sigma_{\delta}.$$

• The probability of a configuration σ is

$$P_{\beta}(\sigma) = e^{-\beta H(\sigma)}/Z_{\beta}$$
.

- $\{PM19, PM15\} = N: H = -3, P = 0.65.$
- $\{PM19, PM15\} = A: H = 3, P = 0.35.$
- Result=N is the most probable guess. P(N) = 0.65.

	Co	nfigura	tion	Penalty	Probability	
-1	-1	-1	-1	-1	14	0.0019
1	-1	-1	-1	-1	10	0.0029
-1	1	-1	-1	-1	14	0.0019
1	1	-1	-1	-1	2	0.0064
-1	-1	1	-1	-1	14	0.0019
1	-1	1	-1	-1	2	0.0064
-1	1	1	-1	-1	6	0.0043
1	1	1	-1	-1	-14	0.0319
-1	-1	-1	1	-1	16	0.0016
1	-1	-1	1	-1	12	0.0024
-1	1	-1	1	-1	8	0.0035
1	1	-1	1	-1	-4	0.0117
-1	-1	1	1	-1	12	0.0024
1	-1	1	1	-1	0	0.0079
-1	1	1	1	-1	-4	0.0117
1	1	1	1	-1	-24	0.0868

For each configuration of the unknown results (guesses), we can calculate its probability. We can determine the most probable guesses:

					Donor			
		AM19	PM19	PM15	UL11	LL11	LL15	LL19
	AM19	Ν	Ν	Α	Α	Α	Α	Ν
	PM19	Ν	Ν	<u>N</u>	N	N	<u>N</u>	<u>N</u>
Η	PM15	Α	<u>N</u>	Ν	<u>N</u>	<u>N</u>	<u>N</u>	<u>N</u>
0	UL11	Α	N	<u>N</u>	N	N	<u>N</u>	<u>N</u>
s	LL11	Α	Ν	<u>N</u>	N	N	<u>N</u>	<u>N</u>
t	LL15	Α	<u>N</u>	<u>N</u>	<u>N</u>	<u>N</u>	Ν	<u>N</u>
	LL19	Ν	N	N	N	N	N	Ν

We can also calculate the expectation of all guesses, i.e., the probability for each experimental result to be "N":

					Donor			
		AM19	PM19	PM15	UL11	LL11	LL15	LL19
	AM19	100%	100%	0%	0%	0%	0%	100%
	PM19	100%	100%	<u>65%</u>	100%	100%	<u>49%</u>	<u>56%</u>
Н	PM15	0%	<u>65%</u>	100%	<u>62%</u>	<u>62%</u>	<u>53%</u>	<u>54%</u>
0	UL11	0%	100%	<u>62%</u>	100%	100%	<u>81%</u>	<u>81%</u>
s	LL11	0%	100%	<u>62%</u>	100%	100%	<u>90%</u>	<u>90%</u>
t	LL15	0%	<u>49%</u>	<u>53%</u>	<u>81%</u>	<u>90%</u>	100%	<u>86%</u>
	LL19	100%	<u>56%</u>	<u>54%</u>	<u>81%</u>	<u>90%</u>	<u>86%</u>	100%

What if the known experimental results are not deterministic, but stochastic?

				Donor		
		PLE11	PLE12	PLE14	PLE16	PLE19
	LFR\PLE14	61%	58%	82%	?	?
Host	LFR\PLE16	?	?	?	?	?
	LFR\PLE19	4%	24%	83%	?	100%

Table: Results reported by Henry et al. 1987

- Percentage is lens formation (normal growth) rate.
- PLE11: presumptive lens ectoderm, stage 11.
- LFR\PLE14: lens-forming region without presumptive lens ectoderm, stage 14.

Decompose the stochastic results into several deterministic results with different probabilities:

$$[61\%N 58\%N]: P([N N]) = 61\% \times 58\% = 31\%.$$

$$P([N A]) = 61\% \times (100\% - 58\%) = 26\%.$$

$$P([A N]) = (100\% - 61\%) \times 58\% = 23\%.$$

$$P([A A]) = (100\% - 61\%) \times (100\% - 58\%) = 16\%.$$

$$[61\%N 58\%N] = 35\%[N N] + 26\%[N A] + 23\%[A N] + 16\%[A A].$$

For each deterministic configuration, apply our method to obtain the expectation of guesses. Then average over these deterministic configurations.

				Donor		
		PLE11	PLE12	PLE14	PLE16	PLE19
	LFR\PLE14	61%	58%	82%	<u>93%</u>	94%
Host	LFR\PLE16	<u>39%</u>	<u>53%</u>	88%	<u>97%</u>	<u>97%</u>
	LFR\PLE19	4%	24%	83%	96%	100%

- There are many tissue transplantation experiments, and we want to know all the results.
- We can choose some experiments to conduct, and use the known results to infer other experiments.
- How to choose experiments to conduct?
- We need enough data to conduct the inference. We should minimize the experimental cost.

- The results of non-conducted experiments are inferred by similar conducted experiments.
- To guarantee the inference quality, one non-conducted experiment should be similar to at least k conducted experiments (e.g., k = 2 or k = 1).
- The most efficient design: no conducted experiments are similar, and each non-conducted experiment is similar to exactly k conducted experiments.

- Consider the figure that each unit is an experiment, and neighboring units are similar experiments.
- Black units are conducted experiments, and white units are non-conducted experiments.
- How to color the figure, so that two black units are not neighboring, and each white unit is neighboring to k black units?

No neighboring black units, and each white unit is neighboring to k = 4 black units (ignore the boundary cases).

No neighboring black units, and each white unit is neighboring to k = 2 black units (ignore the boundary cases).

No neighboring black units, and each white unit is neighboring to k = 1 black units (ignore the boundary cases).

- For k = 4, we need to conduct 1/2 experiments.
- For k = 2, we need to conduct 1/3 experiments.
- For k = 1, we need to conduct 1/5 experiments.

- In practice, the experiment similarity chart is not 2-dimensional, but 4-dimensional.
- Similar coloring problems for such 4-dimensional figures.
- We need some abstract methods.

• For k = 8, color a unit (x, y, z, w) if

$$x + y + z + w \equiv 0 \mod 2$$
.

We need to conduct 1/2 experiments.

• For k = 4, color a unit (x, y, z, w) if

$$x+y+z+w\equiv 0\mod 3.$$

We need to conduct 1/3 experiments.

• For k = 2, color a unit (x, y, z, w) if

$$x + 2y + z + 2w \equiv 0 \mod 5.$$

We need to conduct 1/5 experiments.

• For k = 1, color a unit (x, y, z, w) if

$$x + 2y + 3z + 4w \equiv 0 \mod 9.$$

We need to conduct 1/9 experiments.

- In practice, k = 2 or k = 1 is enough to conduct satisfactory inference. Therefore we only need to conduct 1/5 1/3 experiments (two-dimensional) or 1/9 1/5 experiments (four-dimensional).
- The more experiment similarities we have, the fewer experiments we need to conduct.

References

- Wang, Y., Zhang, B., Kropp, J., & Morozova, N. (2021).
 Inference on tissue transplantation experiments. Journal of Theoretical Biology, 520, 110645.
- Wang, Y., Minarsky, A., Penner, R., Soulé, C., & Morozova, N. (2020). Model of morphogenesis. Journal of Computational Biology, 27(9), 1373-1383.
- Wang, Y., Kropp, J., & Morozova, N. (2020). Biological notion of positional information/value in morphogenesis theory. International Journal of Developmental Biology, 64(10-11-12), 453-463.
- Wang, Y. (2022). Two metrics on rooted unordered trees with labels. Algorithms for Molecular Biology, 17(1), 13.

