## Ergebnisse der Triplett-Simulation von T-NDI-T 1CN

— moi, 2020-08-03 13:52:13

An das TREPR-Spektrum von T-NDI-T 1CN wurde mittels des Programms Tsim und unter Verwendung der Simulationsroutine pepper eine Triplett-Simulation angepasst.

Zielstellung: E nicht über D/3 Nutzerkommentar: E kleiner D/3

Für einen ersten Überblick über die Ergebnisse der Triplett-Simulation und der Anpassung an die experimentellen Daten vgl. Abb. 1, für die zugehörigen Simulationsparameter Tab. 1, S. 2, und für die Fitparameter Tab. 2, S. 2.



Abbildung 1: Gemessene Daten zusammen mit einer angepassten Simulation. Angepasst wurde die Simulation an einen Schnitt bei 1.25e-06 s. Experimentelle Parameter: Mikrowellenfrequenz 9.77092 GHz, Mikrowellenleistung 2.00 mW (20 dB), 100 spp, Lichtanregung bei 486 nm mit 1 mJ Pulsleistung. Für die Simulationsparameter vgl. Tab. 1, S. 2.

## — Disclaimer der Simulationsroutine —

If you're using this routine for simulating your data, please cite the publications you will find at:

http://www.easyspin.org/

Für die Kurvenanpassung wurde die Funktion lsqcurvefit von Matlab verwendet. Die verwendeten Optionen können Tab. 3 entnommen werden. Das Abbruchkriterium der Kurvenanpassung lautete:

Local minimum possible.

lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.

<stopping criteria details>

Optimization stopped because the relative sum of squares (r) is changing by less than options. FunctionTolerance = 1.000000e-10.

Gemessene Daten und Simulation wurden für die Kurvenanpassung jeweils auf gleiche Fläche normiert.

Tabelle 1: Übersicht über die Simulationsparameter. Die Simulationsparameter sind der vollständige Satz an Parametern, die für die Simulation des in Abb. 1 dargestellten Spektrums verwendet wurden.  $\Gamma$  steht für die Linienbreite, mit der die Simulation gefaltet wurde. Welche Parameter für die Kurvenanpassung wie variiert wurden, kann der Tab. 2 entnommen werden.

| Standardparameter |         |         |       |       |       |                        |                    |
|-------------------|---------|---------|-------|-------|-------|------------------------|--------------------|
| $g_x$             | $g_y$   | $g_z$   | $p_1$ | $p_2$ | $p_3$ | $D \ / \ \mathrm{MHz}$ | $E / \mathrm{MHz}$ |
| 2.00200           | 2.00200 | 2.00200 | 0.000 | 1.000 | 0.000 | 1500.1                 | 500.0              |

| Parameter                           | Wert  |  |
|-------------------------------------|-------|--|
| $\Gamma_{ m Gauß} \ / \ { m mT}$    | 8.01  |  |
| $\Gamma_{ m Lorentz} \ / \ { m mT}$ | 3.04  |  |
| $\Delta B~/~\mathrm{mT}$            | -0.03 |  |

Tabelle 2: Übersicht über die Fitparameter. Diese Parameter stellen in der Regel eine Untermenge der für die Simulation des in Abb. 1 dargestellten Spektrums verwendeten Parameter dar. Für einen vollständigen Satz der Simulationsparameter vgl. Tab. 1. Der Fehler für jeden Parameter ist die Standardabweichung, die aus der Jacobi-Matrix berechnet wird.

| Parameter | Startwert | untere Grenze | obere Grenze | Endwert | Fehler |
|-----------|-----------|---------------|--------------|---------|--------|
| D         | 1516.14   | 500.00        | 1591.95      | 1500.13 | 0.80   |
| E         | 500.00    | 140.00        | 530.60       | 499.99  | 0.27   |
| p2        | 1.00      | 0.00          | 1.00         | 1.00    | 738.37 |
| р3        | 0.00      | 0.00          | 1.00         | 0.00    | 0.34   |
| lwGauss   | 8.21      | 0.00          | 8.62         | 8.01    | 0.26   |
| lwLorentz | 2.53      | 0.00          | 7.00         | 3.04    | 0.24   |
| DeltaB    | -0.05     | -0.10         | 0.30         | -0.03   | 0.04   |

Tabelle 3: Übersicht über die Optionen der Matlab-Routine 1squurvefit, die bei der Kurvenanpassung Verwendung fanden. Vergleiche auch das Abbruchkriterium der Funktion 1squurvefit weiter oben.

| Parameter  | $\mathbf{Wert}$       |  |  |
|------------|-----------------------|--|--|
| MaxIter    | 4.00e + 02            |  |  |
| MaxFunEval | $1.00\mathrm{e}{+03}$ |  |  |
| TolFun     | 1.00e-10              |  |  |