Work Report

贾宁欣

06-06-2021

Protein Folding

GraphBind: protein structural context embedded rules learned by hierarchical graph neural networks for recognizing nucleic-acid-binding residues

Ying Xia1, Chun-Qiu Xia1, Xiaoyong Pan 01, and Hong-Bin Shen 11,2,*

¹Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China and ²School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China

Received December 16, 2020; Editorial Decision January 09, 2021; Accepted February 09, 2021

NCBRPred

Problem:

cross-prediction

(If a DNA-binding residue predictor is only trained with DNA-binding proteins and does not consider the RNA-binding proteins, it can accurately predict the DNA-binding residues but also prefers to identify the RNA-binding residues as DNA-binding residues.)

Reason:

DNA-binding residues and RNA-binding residues share some similar characteristics.

Benchmark Datasets

D1096-D1103 Nucleic Acids Research, 2013, Vol. 41, Database issue doi:10.1093/nar/gks966

Published online 18 October 2012

BioLiP: a semi-manually curated database for biologically relevant ligand-protein interactions

Jianyi Yang, Ambrish Roy and Yang Zhang*

		number of	DNA	RNA	DNA-RNA
BioLiP database		binding proteins	4344	1558	440
	benchmark datasets	biliding proteins	573	495	0
		binding residues	11074	11756	
	without dada augmentation	non-binding residues	148809	125143	
train datasets		bi/non-bi ratio 0.074	0.094		
bef 2016.01		binding residues	14479	14609	
	with	non-binding residues 145404 bi/non-bi ratio 0.100	145404	122290	
	dada augmentation		0.119		
		increase	30.7%	19.5%	

Benchmark Datasets

D1096-D1103 Nucleic Acids Research, 2013, Vol. 41, Database issue doi:10.1093/nar/gks966

Published online 18 October 2012

BioLiP: a semi-manually curated database for biologically relevant ligand-protein interactions

Jianyi Yang, Ambrish Roy and Yang Zhang*

		number of	DNA	RNA	DNA-RNA
BioLiP database		binding proteins	4344	1558	440
	benchmark datasets	biliding proteins	573	495	0
		binding residues	11074	11756	
	without dada augmentation	non-binding residues	148809	125143	
train datasets		bi/non-bi ratio 0.074	0.094		
bef 2016.01		binding residues	14479	14609	
	with	non-binding residues	145404	122290	
	dada augmentation	bi/non-bi ratio	0.100	0.119	
		increase	30.7%	19.5%	\

Benchmark Datasets

D1096-D1103 Nucleic Acids Research, 2013, Vol. 41, Database issue doi:10.1093/nar/gks966

Published online 18 October 2012

BioLiP: a semi-manually curated database for biologically relevant ligand-protein interactions

Jianyi Yang, Ambrish Roy and Yang Zhang*

		number of	DNA	RNA	DNA-RNA
BioLiP database		binding proteins	4344	1558	440
	benchmark datasets	biliding proteins	573	495	0
		binding residues	11074	11756	
	without dada augmentation	non-binding residues	148809	125143	
train datasets		bi/non-bi ratio 0.074		0.094	
bef 2016.01		binding residues	14479	14609	
	with	non-binding residues	145404	122290	
	dada augmentation	bi/non-bi ratio	0.100	0.119	
		increase	30.7%	19.5%	

Data Augmentation

W20-W25 Nucleic Acids Research, 2004, Vol. 32, Web Server issue DOI: 10.1093/nar/gkh435

BLAST: at the core of a powerful and diverse set of sequence analysis tools

Scott McGinnis* and Thomas L. Madden

₽

2302–2309 Nucleic Acids Research, 2005, Vol. 33, No. 7 doi:10.1093/nar/gki524

TM-align: a protein structure alignment algorithm based on the TM-score

Yang Zhang and Jeffrey Skolnick*

asses the sequence identity between protein chain pairs

> 0.8

asses the structural similarity between protein chain pairs

TM scores >0.5

Data Augmentation

W20-W25 Nucleic Acids Research, 2004, Vol. 32, Web Server issue DOI: 10.1093/nar/gkh435

BLAST: at the core of a powerful and diverse set of sequence analysis tools

Scott McGinnis* and Thomas L. Madden

2302–2309 Nucleic Acids Research, 2005, Vol. 33, No. 7 doi:10.1093/nar/gki524

TM-align: a protein structure alignment algorithm based on the TM-score

Yang Zhang and Jeffrey Skolnick*

transferring binding annotations

CD-HIT (30%)

benchmark datasets

asses the sequence identity between protein chain pairs

> 0.8

asses the structural similarity between protein chain pairs

TM scores >0.5

transfer annotations of protein chains in the same cluster into the longest chain

remove the redundant protein chains

Type	Dataset	$N_{\mathrm{protein}}^{\mathrm{a}}$	$N_{ m pos}{}^{ m b}$	$N_{ m neg}^{\ \ c}$	PNratio ^d
DNA	DNA-573_Train	573	14479	145404	0.100
	DNA-129_Test	129	2240	35275	0.064
RNA	RNA-495_Train	495	14609	122290	0.119
	RNA-117_Test	117	2031	35314	0.058

^aNumber of proteins.

^bNumber of binding residues.

^cNumber of non-binding residues.

^dPNratio = N_{pos}/N_{neg} .

Pipeline of Graph Construction

Pseudo-positions = centroid of a residue including both backbone and side-chain atoms of the residue L x 3

Pseudo-positions = centroid of a residue including both backbone and side-chain atoms of the residue $\perp x \mid 3$

Atomic features = average the sth feature of all the atoms as the sth atomic feature x_s of the residue x_s

$$x_s = \frac{1}{N_a} \left(\sum_{t=1}^{t=N_a} f_{s,t} \right)$$
 $\{x_s\}_{s=1,...,7}$

Pseudo-positions = centroid of a residue including both backbone and side-chain atoms of the residue L x 3

Atomic features = average the sth feature of all the atoms as the sth atomic feature x_s of the residue $L \times 7$

SS = secondary structure profile : residue water-exposed surface X 1

bond and torsion angles X 5

one-hot encoded secondary structure with eight states X8

Pseudo-positions = centroid of a residue including both backbone and side-chain atoms of the residue L x 3

Atomic features = average the sth feature of all the atoms as the sth atomic feature x_s of the residue x_s

SS = secondary structure profile L x 14

PSSM = position-specific scoring matrix (is normalized to the range [0, 1]) $L \times 20$

Pseudo-positions = centroid of a residue including both backbone and side-chain atoms of the residue $\perp x \mid 3$

Atomic features = average the sth feature of all the atoms as the sth atomic feature x_s of the residue x_s

SS = secondary structure profile L x 14

PSSM = position-specific scoring matrix (is normalized to the range [0, 1]) L x 20

HMM = hidden Markov matrix : observed frequencies for 20 amino acids in homologous sequences X 20 L x 30 transition frequencies X 7

local diversities X3

Structural Context Extraction

Graph Construction

Graph Construction

$$G = (V, E, u, A)$$

$$V = \{v_i\}_{i=1,\dots,N_v}$$

Raw feature vector:

the concatenation of the ${\color{blue} \textbf{position embedding}}$ and the ${\color{blue} \textbf{residue features}}$ of node .

$$PE_i = \frac{1}{r_g} |\overrightarrow{p_0 p_i}|$$

Distance matrix:

calculated based on pseudo positions of residues.

$$A_{ij}_{(N_v \times N_v)} = \begin{cases} 1, & if D_{ij} < r_v \\ 0, & if D_{ij} \ge r_v \end{cases} \qquad D_{ij} = \left| \overrightarrow{p_i p_j} \right|$$

Adjacency matrix:

apply the binary threshold r_v on the distance matrix, which records the connections of nodes.

Edge feature vectors:

 e_{ij} : the Euclidean distance between the two adjacent nodes. $E = \{e_{ij} | A_{ij} = 1\}$ $cos(\theta_{ij}) = \frac{p_0 p_i \cdot p_0 p_j}{|\overline{p_0 p_i}||\overline{p_0 p_j}|}$

 $heta_{ij}$: the cosine of the angle between the two vectors from the sphere center to the two adjacent nodes.

Hierarchical Graph Neural Networks (HGNN)

ATP Binding Residues Prediction

	protein	388
Troin	residues	147743
Train	positive examples	5657
	negative examples	142086

Test	protein	41	
	residues	14833	
	site	674	
	others	14159	

Ligand	Method	REC	PRE	MCC	AUC
ATPe (ATP-41_Test)	COACH	0.632	0.703	0.652	N/A
	ATPBind	0.631	0.756	0.677	0.915
	TargetS	0.516	0.689	0.580	N/A
	S-SITE	0.570	0.505	0.513	0.801
	DELIA	0.642	0.758	0.685	0.947

features	Thres	Sen (%)	Spe (%)	Acc (%)	Pre (A)	МСС	F1-sco	AUC
	0.28	63.95	98.96	97.37	74.5	0.677	0.688	0.884
	0.31	58.16	99.47	97.60	84.1 ₽	0.688	0.697	0.905
				/ _	()			
TMSITE+ILBR	0.34	66.02	99.17	97.51	79.18	0.711	0.702	0.932
	0.34	66.02	99.17	<i>3</i> 7.67	79.18	0.711	0.720	0.932
	0.30	68.10	98.76	97.56	75.74	0.706	0.717	0.933
	0.36	67.21	99.05	97.60	77.04	0.707	0.718	0.936
	0.30	66.47	9.12	97.64	78.32	0.709	0.719	0.935

```
(base) [junh@csbio lstm] java -jar MaxMCCReporter.jar /data0/junh/stu/ningxinJ/sy/lstm
/lstm lib/lstm ti 1000-100.prod
        Thres Sen(%) Spe(%)
                               Acc(%) Pre(%)
                                                 MCC
                                                       F1-sco
                                                                 AUC
Ind
          0.30
                66.47
                        99.12
                                97.64
                                        78.32
                                              0.709
                                                        0.719
                                                              0.935
```