# НАЦИОНАЛНА ОЛИМПИАДА ПО ИНФОРМАТИКА

Общински кръг, 04. 01. 2015 г.

Група А (11.-12. клас)

# Задача А1. *N*-доку

| 4 | 1 | 3 | 8 | 6 | 2 | 7 | 9 | 5 |
|---|---|---|---|---|---|---|---|---|
| 7 | 8 | 6 | 5 | 4 | 9 | 2 | 1 | 3 |
| 5 | 2 | 9 | 7 | 1 | 3 | 4 | 8 | 6 |
| 8 | 4 | 7 | 6 | 2 | 5 | 9 | 3 | 1 |
| 6 | 9 | 1 | 4 | 3 | 8 | 5 | 2 | 7 |
| 3 | 5 | 2 | 1 | 9 | 7 | 8 | 6 | 4 |
| 2 | 6 | 8 | 3 | 5 | 4 | 1 | 7 | 9 |
| 9 | 3 | 5 | 2 | 7 | 1 | 6 | 4 | 8 |
| 1 | 7 | 4 | 9 | 8 | 6 | 3 | 5 | 2 |

По подобие на известната игра с цифри "судоку" дефинираме играта N-доку:

- 1. Разглеждаме таблица с  $N^2$  реда и  $N^2$  колонки (общо  $N^4$  на брой клетки):
- 2. Започвайки от горния ляв ъгъл, разделяме таблицата на  $N^2$  квадрати с по N реда и N колонки;
- 3. Нека имаме зададени  $N^2$  различни символи. Ще наричаме таблицата N- doкy, ако на всеки неин ред, на всяка нейна колонка, както и във всеки

от отделените квадрати NxN, всеки от зададените символи се среща **точно по веднъж**.

Очевидно, известната игра судоку е N-доку при N=3, като за набор от  $3^2$ =9 символа се използват цифрите от 1 до 9.

Нека е зададен квадратът NxN от горния ляв ъгъл на една таблица  $N^2xN^2$ , запълнен с  $N^2$  различни символи. Напишете програма **ndoku**, която *допълва* таблицата до N-доку.

## Вход

Първият ред на стандартния вход съдържа естественото число N.

Следващите N реда съдържат по N символа без разделители. Всички символи са различни помежду си.

#### Изход

Изведете на стандартния изход  $N^2$  реда, всеки с по  $N^2$  символа, които представляват едно N-доку, чийто горен ляв квадрат NxN съвпада със зададения на входа.

## Ограничения

 $2 \le N \le 6$ 

Всеки от символите, с които се запълва таблицата, е цифра или главна латинска буква.

# Пример

#### Вход

2

Z1

# 3F

**Изход** Z13F

3FZ1

13FZ

FZ13

# НАЦИОНАЛНА ОЛИМПИАДА ПО ИНФОРМАТИКА

Общински кръг, 04. 01. 2015 г.

Група А (11.-12. клас)

## Задача А2. Сума

Дадена е редица от n цели положителни числа:  $a_1, a_2, ..., a_n$  и цялото число s. Напишете програма **sum**, която намира два индекса i и j на числа от редицата такива, че  $a_i + a_j = s$  и  $1 \le i \le j \le n$ . Ако има повече от една двойка индекси с това свойство, програмата трябва да намери двойката, която е най-малка по лексикографска подредба.

#### Вход

Стойността на n, следвана от елементите на дадената редица и стойността на s.

#### Изход

Търсената двойка индекси във вид на две цели числа, разделени с точно един интервал. Ако не съществува такава двойка индекси, програмата трябва да изведе двойката 0 0.

## Ограничения

```
0 < n < 1\ 000\ 000; Числата от дадената редица са по-малки от 1 000; 0 < s < 2\ 000.
```

# Пример 1.

## Вход:

```
10
3 2 2 3 3 1 5 3 1 1
6
Изход:
1 1
```

## Пример 2.

#### Вход:

10 7 2 2 3 3 1 5 3 5 1 7 Изход:

#### HIJA

2 7

Забележка: За да бъде успешен всеки тест, времето за работа на програмата на състезателя не трябва да надминава с 50% времето за работа на програмата на автора.

# НАЦИОНАЛНА ОЛИМПИАДА ПО ИНФОРМАТИКА

Общински кръг, 04. 01. 2015 г.

Група А (11.-12. клас)

## Задача АЗ. Рисуване

Дида започнала да рисува дърво. Означила стъблото му с числото 0. От стъблото излизали два клона, които тя означила с естествените числа 1 и 2: най-напред този, който отива наляво, а след това този, който отива надясно. От всеки от новонарисуваните клони



отново излизали по два клона. Тя продължила да ги означава със следващите естествени числа, като от ляво надясно най-напред надписвала клоните, които отиват наляво, а след това (пак от ляво надясно) – клоните, които отиват надясно. "Интересно – помислила си тя, – ако нарисувам мно-о-о-о-го високо дърво и си измисля едно естествено число N, с кой номер клон от подолните би бил свързан клон номер N? А кои ли номера клони биха излизали от него?"

Задоволете любопитството на Дида, като напишете програма **paint**, която отговаря на нейните въпроси.

## Вход

От стандартния вход се въвежда един ред, който съдържа само естественото число N.

## Изход

Програмата трябва да изведе на стандартния изход два реда. На първия от тях запишете едно цяло число, което е номерът на по-долния клон, свързан с клон номер N. На втория запишете две естествени числа, разделени с интервал: номерата на клоните, които излизат от клон номер N; първо този, който отива наляво, а след това този, който отива надясно.

# Ограничения

В 25% от тестовите примери  $N \le 100~000$ .

В 50% от тестовите примери  $N \le 10~000~000$ .

N се записва с не повече от 16 десетични цифри.

# Пример

Вход

4

Изход

2

9 13