CURRENT ELECTRICITY

ELECTRIC CURRENT

$$= \frac{\text{area under I-t graph}}{\text{total time taken}}$$

Concave area =
$$\frac{2}{3}$$
 x_0y_0

Convex area = $\frac{1}{3}$ x_0y_0

Free Electron

$$<\frac{1}{2} \text{ mv}^2 > \approx 10^{-21} \text{J}$$

Avg. Speed = 105 m/s

Electrons are in random motion

Avg. velocity =
$$\frac{\vec{v}_1 + \vec{v}_2 + \vec{v}_3 + ... \vec{v}_n}{\mathbf{n}}$$

 $I_{net} = 0$

DRIFT VELOCITY

←E ○→ ○→ ○→ ○→ ○→ ○→

E accelerates the electrons

$$\overrightarrow{v} = \overrightarrow{u} + \overrightarrow{at}$$
 $\overrightarrow{v}_d = a\tau$

$$v_d = \frac{eE}{m} \tau$$

$$v_d = \frac{eV}{mI}$$

FACTORS AFFECTING DRIFT VELOCITY

- Dependence on shape 1) Uniform shape

Here E is uniform so,

 $V_{d1} = V_{d2} = V_{d3}$ $E_1 = E_2 = E_3$

3) Relation B/w Current & Drift velocity n= no. of e^{-s} per unit volume

OHM'S LAW

V = I, × R

Slope = $tan\theta = R$

Depends on

1.Material (n & τ changes)

Non-Ohmic Conductor

V-I graph is not linear

Resistance = +ve

1)Slope=+ve

V ↑then I ↑

Slope of tangent $\frac{dv}{dI} = R$

Resistance is not constant

2.Temperature (n & τ changes)

2) Slope=0

Resistance=0

3)Slope=-ve

Resistance = -ve V↑thenI⊥

Depends on

1.Material (n & τ changes) 2. Temperature (n & τ change

3. Dimension (Length & Area)

Resistance

 $ohms(\Omega)$

CURRENT DENSITY

Uniform cross section

 $E_1 = E_2 = E_3$ $\therefore J_1 = J_2 = J_3$

Non-Uniform cross-section

E1>E2>E3 J ∝ <u>I</u> $\therefore J_1 > J_2 > J_3$

 $I_1 = I_2 = I_3$

PHYSICS

CUTTING & STRETCHING OF WIRE

If r become r/n then R become n4 R

If change in length>10% $\frac{R_2-R_1}{R} \times 100 = \frac{I_2^2-I_1^2}{I_2^2} \times 100$

- If change in length <10%
- 1)% change in R=2×% change in length 2)% change in R=2×% change
- 3)% change in R=4×% change in radius

TEMPERATURE

SERIES:

 $\alpha_s = \frac{\alpha_1 R_1 + \alpha_2 R_2}{\alpha_s}$

R₁+ R₂

if $R_1 = R_2$ $\alpha = \frac{\alpha_1 + \alpha_2}{2}$

DEPENDANCE OF RESISTANCE

PARALLEL: $\alpha_p = \frac{\frac{\alpha_1}{R_1} + \frac{\alpha_2}{R_2}}{\frac{1}{R_1} + \frac{\alpha_2}{R_2}}$ if $R_1 = R_2$ $\alpha = \frac{\alpha_1 + \alpha_2}{2}$ **GROUPING OF RESISTANCE**

Series Combination

Current is constant voltage is divided $R_s = R_1 + R_2 + R_3 + R_n$

Parallel Combination

voltage is constant current is divided

If resistors are

identical: R_s=nR

If resistors are identical: $R_p = \frac{\kappa}{n}$ Shortcut for two resistors in parallel

ightarrow R $_{\rm s}$ Bigger than largest value of

R Lower than smallest value of resistance

CURRENT & VOLTAGE DIVIDER RULE

Current Divider Rule

Voltage Divider Rule

COLOUR CODING

Resistor color code

Color	Digit	Multiplier	Tolerance (%)
Black	0	10°	
Brown	1	10 ¹	1
Red	2	10 ²	2
Orange	3	10 ³	
Yellow	4	104	
Green	5	10 ⁵	0.5
Blue	6	10 ⁶	0.25
Violet	7	10 ⁷	0.1
Grey	8	108	
White	9	109	
Gold		10-1	5
silver		10-2	10
none			20

GEOMETRICAL DIAGRAM

Circle formed by wire having uniform resistance per unit length (r)

$$R_{\text{eff}} = \text{ra} \left(\frac{\theta_1 \theta_2}{\theta_1 + \theta_2} \right) \left(\frac{\theta_2}{\theta_1} \right)$$

When resistance of wire forming circle is given

$$\sum_{l_1} I_{in} = \sum_{l_2} I_{out}$$

$$I_1 + I_2 + I_4 + I_5 = I_3 + I_6$$

$$A - V_B = -E$$

2. Open Circuit (1) A •— $V_A - V_B = +E$ $(3)A \longrightarrow R B V_A - V_B = IR$ (4) A \longrightarrow V_A-V_B = -IR **Closed Circuit**

CELL & INTERNAL RESISTANCE

Terminal potential difference (TPD)

2) When current is given to cell

$$V = V_A - V_B = E + Ir$$

TPD> EMF

CELL & INTERNAL RESISTANCE

- 3) When cell is in open circuit A Here, I=0
- 3) When cell is in short circuit

$$I = I_{\text{max}} = \frac{E}{r}$$
$$TPD = 0$$

CELL & INTERNAL RESISTANCE

Internal Resistance $r = \left(\frac{E - V}{V}\right)$

Power delivered by cell during withdrawl of current

Maximum power transfered

COMBINATION OF CELLS

1) Series Combination

- (a) $E_{\text{equivalent}} = E_1 + E_2 + E_3 + \dots + E_n$
- (b) $r_{\text{equivalent}} = r_1 + r_2 + r_3 + \dots + r_n$
- (c) Current, $i = \frac{\sum E_i}{\sum r_i + R}$
- (d) If all cells have equal emf E and equal internal resistance r then i = NE
- 1) If $nr \rightarrow R \Rightarrow i = \frac{E}{r}$ nr + R
- 2) If $nr < < R \implies i = \frac{nE}{R}$
- (e) Power dissipated in circuit $P=I^2R = \left(\frac{nE}{nr + R}\right)^2$

Conditions for maximum power: R=nr $P_{max} = nE^2/4r$

COMBINATION **OF CELLS**

COMBINATION OF CELLS

Infinite resistors

$$R_{\rm eq} = \frac{R_1 + R_3}{2} \left[1 + \sqrt{1 + \frac{4R_2}{R_1 + R_3}} \right]$$

If all resistors are equal
$$R_{eq}=R(1+\sqrt{3}\,)$$

3D CIRCUIT

WHEATSTONE BRIDGE

1) Balanced WSB

2) Unbalanced WSB

then
$$V_{\mathcal{Q}} > V_{\mathcal{P}}$$

METER BRIDGE

POTENTIOMETER

POTENTIAL GRADIENT

POTENTIOMETER

2. BOTH BATTERIES ARE CONNECTED TOGETHER

(Once with same polarity then with opposite polarity)

2) Parallel Combination

 $r_{\text{equivalent}} = \frac{r}{n} \Rightarrow \text{current } i = E$

(d) Power dissipated in the circuit $P = I^2 R = \left(\frac{n E}{r + n R}\right)^2 R$

n cells connected in series and there are m such branches in the circuit.
Internal resistance of cells connected in a row =ni

3. CALCULATION OF INTERNAL RESISTANCE

$$r = R\left(\frac{E}{V} - 1\right) = R\left(\frac{\ell_1}{\ell_2} - 1\right)$$

E=V_{PO} when key is open V=V_{PO} when key is close **HEATING EFFECT OF ELECTRIC CURRENT**

POWER

$$P = \frac{dH}{dt} = VI = \frac{V^2}{R} = I^2R$$

ELECTRIC KETTLE

Time taken for first coil- t₁, time taken for second coil-t₂

if they are connected in series $t_{_{\mathcal{S}}}=t_1+t_2$	if they are connected in parallel $t_p = \frac{t_1 t_2}{t_1 + t_2} \label{eq:tp}$
--	---

$$P_{rated} \, = \, \frac{V_{rated}^2}{R} \, \Longrightarrow \, R = \, \frac{V_{rated}^2}{P_{rated}}$$

CONNECTED IN SERIES

Brightness∝R

HEATING EFFECT OF ELECTRIC CURRENT

$$P_{\text{dissipated}} \, \alpha \, \frac{ \left(\, V_{\text{rated}} \, \, \right)^2}{P_{\text{rated}}}$$

CONNECTED IN PARALLEL

 $P_{d(brighness)} \propto P_{rated}$

if $(P_1)_R > (P_2)_R$ \Rightarrow Brightness $(P_d)_1 > (P_d)_2$ **HEATING EFFECT OF ELECTRIC CURRENT**

COMBINATION OF BULBS SERIES

TOTAL POWER

PARALLEL

 $P = P_1 + P_2$

HEATING EFFECT OF ELECTRIC CURRENT

FUSED BULB

If bulb 2 is fused then, for bulb 3 for bulb 1 R ↑ V↓ V ↑ P↓ P↑ в↓ В↑

If bulb is added in parallel:-

 $\mathbf{P}\downarrow$

В↑

CONVERSION OF GALVANOMETER

Current sensitivity

Voltage sensitivity

 θ = angle of deflection in galvanometer where, v=Corresponding voltage across galvanometer divisions OR rad V

GALVANOMETER TO AMMETER

