

NORTHWEST UNIVERSITY

3.1 完备性的定义

实数空间

回顾

柯西的收敛准则

 $\{x_n\}$ 收敛

 \iff 任给 $\varepsilon > 0$, 存在 N, 当 m, n > N 时, $|x_n - x_m| < \varepsilon$.

柯西列的定义

设(X,d)是距离空间, $\{x_n\} \subset X$. 若任给 $\varepsilon > 0$, 存在N, 当m,n > N时,

 $d(x_n, x_m) < \varepsilon,$

则称 $\{x_n\}$ 为**柯西列**.

柯西列与收敛列

定理

设 $\{x_n\}$ 在(X,d) 中收敛,则 $\{x_n\}$ 是柯西列.

设 $\lim_{n\to\infty} x_n = x_0$, 则对任给 $\varepsilon > 0$, 存在N, 当m, n > N 时

$$d(x_n, x_0) < \frac{\varepsilon}{2}, \ d(x_m, x_0) < \frac{\varepsilon}{2}.$$

由距离的三角不等式可知, 当m, n > N时,

$$d(x_n, x_m) \le d(x_n, x_0) + d(x_m, x_0) < \varepsilon.$$

因此 $\{x_n\}$ 是一个柯西列.

柯西列与收敛列

定理

设 $\{x_n\}$ 在(X,d) 中收敛,则 $\{x_n\}$ 是柯西列.

一般的距离空间中,柯西列未必是收敛列.

例如 $\left\{(1+\frac{1}{n})^n\right\}$ 在 (\mathbb{Q},d) 中是柯西列,但不是收敛列.

极限不在Q中

完备性的定义

如果距离空间X中的任何柯西列都是收敛列,则称X为完备的距离空间.

 (\mathbb{R},d) 是完备的, (\mathbb{Q},d) 是不完备的.

例 1

N维欧氏空间 \mathbb{R}^N 是完备的.

证

设 $\{x_n\}$ 是 \mathbb{R}^N 的任一柯西列, 其中 $x_n = (\xi_1^{(n)}, \dots, \xi_N^{(n)})$. 则任给 $\varepsilon > 0$, 存在 N_0 , 当 $n, m > N_0$ 时, 对每一个 $k = 1, 2, \dots, N$, $|\xi_k^{(n)} - \xi_k^{(m)}| \le d(x_n, x_m) < \varepsilon$.

于是 $\{\xi_k^{(n)}\}$ 是 \mathbb{R} 中的柯西列,由 \mathbb{R} 的完备性知,存在 $\xi_k \in \mathbb{R}$,使得

$$\lim_{n \to \infty} \xi_k^{(n)} = \xi_k, \ (k = 1, 2, \dots, N).$$

令 $x = (\xi_1, \xi_2, \dots, \xi_N)$. 则 $\lim_{n \to \infty} x_n = x$. 即 $\{x_n\}$ 是 \mathbb{R}^N 中的收敛列.

例 2

连续函数空间 C[a,b] 是完备的.

设 $\{x_n\}$ 是 C[a,b] 的任一柯西列,则任给 $\varepsilon > 0$,存在 N,当 n,m > N时,对任何 $t_0 \in [a,b]$,

$$|x_n(t_0) - x_m(t_0)| \le d(x_n, x_m) < \varepsilon.$$

即 $\{x_n(t_0)\}$ 是 \mathbb{R} 中的柯西列,则存在 $x(t_0) \in \mathbb{R}$,使得 $\lim_{n \to \infty} x_n(t_0) = x(t_0)$.

$$|x_n(t_0) - x(t_0)| \le \varepsilon.$$

例 2

连续函数空间 C[a,b] 是完备的.

证

定义 $x = x(t), t \in [a, b]$. 则当 n > N时,

$$d(x_n, x) = \max_{a \le t \le b} |x_n(t) - x(t)| \le \varepsilon.$$

故 $x_n \to x \ (n \to \infty)$, 即函数列 $\{x_n(t)\}$ —致收敛于x(t).

因而 $x \in C[a,b]$, 所以 $\{x_n\}$ 是 C[a,b] 的收敛列.

例 3

有界数列空间 l^{∞} 是完备的.

设 $\{x_n\}$ 是 l^{∞} 的任一柯西列,

只需证明:

- (1) 找出x (即 $\{x_n\}$ 的极限);
- $(2) x \in l^{\infty};$
- (3) $x_n \to x (n \to \infty)$ (按 l^∞ 空间中的距离收敛).

例 4

距离空间 (C[-1,1],d) 是不完备的,其中

$$d(x,y) = \int_{-1}^{1} |x(t) - y(t)| dt.$$

解

$$\hat{x}_n(t) = \begin{cases}
-1, & -1 \le t \le -\frac{1}{n} \\
nt, & -\frac{1}{n} < t < \frac{1}{n} \\
1, & \frac{1}{n} \le t \le 1.
\end{cases}$$

下面验证 $\{x_n\}$ 是(C[-1,1],d) 中的柯西列,但不是收敛列.

例 4

距离空间 (C[-1,1],d) 是不完备的,其中

$$d(x,y) = \int_{-1}^{1} |x(t) - y(t)| dt.$$

解

当 m > n 时,

$$d(x_n, x_m) = \int_{-1}^{1} |x_n(t) - x_m(t)| dt$$
$$= \frac{1}{n} - \frac{1}{m} \le \frac{1}{n} \to 0, \ (n \to \infty)$$

因此 $\{x_n\}$ 是(C[-1,1],d) 中的柯西列.

例 4

距离空间 (C[-1,1],d) 是不完备的,其中

$$d(x,y) = \int_{-1}^{1} |x(t) - y(t)| dt.$$

解

$$\mathbf{\hat{y}}(t) = \begin{cases} -1, & -1 \le t < 0 \\ 1, & 0 \le t \le 1. \end{cases}$$

则有

$$\int_{-1}^{1} |x_n(t) - y(t)| dt = \frac{1}{n} \to 0 \ (n \to \infty).$$

例 4

距离空间 (C[-1,1],d) 是不完备的,其中

$$d(x,y) = \int_{-1}^{1} |x(t) - y(t)| dt.$$

解

对任意 $x \in C[-1,1]$,

$$0 < \int_{-1}^{1} |y(t) - x(t)| dt \le \int_{-1}^{1} |y(t) - x_n(t)| dt + \int_{-1}^{1} |x_n(t) - x(t)| dt$$

则有

$$d(x_n, x) = \int_{-1}^{1} |x_n(t) - x(t)| dt \not\to 0 \ (n \to \infty).$$

即 $\{x_n\}$ 在 (C[-1,1],d)中不收敛.

例 5

距离空间 $(C[a,b],d_p)$ 是不完备的,其中

$$d_p(x,y) = \left(\int_a^b |x(t) - y(t)|^p \, dt \right)^{\frac{1}{p}}, \quad (1 \le p < +\infty).$$

解

$$\Rightarrow x_n(t) = \arctan n(t-a), \ n = 1, 2, \cdots$$

 $\lim_{n \to \infty} x_n(t) = x(t) = \begin{cases} \frac{\pi}{2}, & a < t \le b, \\ 0, & t = a. \end{cases}$

由
$$|x_n(t)| \leq \frac{\pi}{2} (n = 1, 2, \cdots)$$
 和Lebesgue控制收敛定理,有

$$\lim_{n \to \infty} d_p(x_n, x) = \lim_{n \to \infty} \left(\int_a^b |x_n(t) - x(t)|^p dt \right)^{\frac{1}{p}} = 0.$$

例 5

距离空间 $(C[a,b],d_p)$ 是不完备的,其中

$$d_p(x,y) = \left(\int_a^b |x(t) - y(t)|^p \, dt \right)^{\frac{1}{p}}, \quad (1 \le p < +\infty).$$

因而

$$d(x_n, x_m) \le d(x_n, x) + d(x_m, x) \to 0, \ (n, m \to \infty),$$

故 $\{x_n\}$ 是 $(C[a,b],d_p)$ 中的柯西列,但是 $x \notin C[a,b]$.

小结

- 柯西列的定义
- 柯西列与收敛列
- 完备距离空间的定义
- (不)完备距离空间的例