Liittymistä saaduista havainnoista ja kokonaisliikenteen määrästä havaintohetkien ajanjaksoilla voidaan laskea todennäköisyysiä/suhdelukuja siitä mitä liittymiä käytetään. Jotkut suhdeluvut ovat tarkkoja havaintovälillä (x_1,x_2,x_3,y_1) ja jotkut (y_3,y_2) pitää arvioida molempien havaintojaksojen perusteella. Suhdeluvuista p voidaan laskea extrapoloimalla liittymien käyttöasteita eri ajanjaksoilla kokonaisliikennemäärän (X,Y) perusteella.

Kaikki muuttujat ovat vektoriarvoisia, niin että ensimmäinen arvo kuvaa kevyenliikenteen määrää ja toinen raskaanliikenteen määrää: [kevytliikenne, raskasliikenne]. Liikennedatasta saadut tulokset:

	t ₁ = 25-10-2017 08:34:00-08:44:00	t ₂ = 25-10-2017 08:57:00-09:07:00
Χ	[661,17]	[540,17]
Υ	[402,16]	[352,14]

Havaintoarvot:

	t ₁	t ₂	
x ₁	[73,1]		
X ₂		[103,1]	
X3		[8,0]	
y ₁	[41,2]		
y ₂		[72,0]	
У 3		[13,0]	

Lasketaan suhdeluvut suhteutettuna liikenteeseen ennen Lauttasaarta (X,Z)

$$Z = Y - y_1 - y_2 + y_3$$

$$Z_{t_2} = Y_{t_2} - Y_{t_2} \left(\frac{(y_1)_{t_1}}{Y_{t_1}} \right) - (y_2)_{t_2} + (y_3)_{t_2} = [257,12]$$

$p_{x_1} = \frac{(x_1)_{t_1}}{X_{t_1}} = [0.1104, 0.05882]$	$p_{y_1} = \frac{(y_1)_{t_1}}{\frac{Z_{t_2}}{Y_{t_2}} \times Y_{t_1}} = [0.1397, 0.1458]$
$p_{x_2} = \frac{(x_2)_{t_2}}{X_{t_2}} = [0.1907, 0.05882]$	$p_{y_2} = \frac{(y_2)_{t_2}}{Z_{t_2}} = [0.2802,0]$
$p_{x_2} = \frac{(x_3)_{t_2}}{X_{t_2}} = [0.01481, 0]$	$p_{y_3} = \frac{(y_3)_{t_2}}{Z_{t_2}} = [0.05058,0]$