Homework 7

by Carlos Rubio

February 18th, 2025

Directional Derivatives and the Gradient Vector

Problem 1

Find the directional derivative of the function at the given point P in the direction of the vector v.

1.
$$f(x,y)=\frac{x}{x^2+y^2}, P=(1,2), \pmb{v}=\langle 3,5\rangle$$

2.
$$f(x, y, z) = xy^2 \tan^{-1} z, P = (2, 1, 1), v = \langle 1, 1, 1 \rangle$$

Answer

Let u be the unit vector in \mathbb{R}^n with the same direction as v. Let u_i be the ith component of u. Then

$$D_{\boldsymbol{u}}f(\boldsymbol{x}) = \sum_{i=1}^n u_i f_{x_i}(\boldsymbol{x})$$

1.

$$u = \frac{v}{|v|}$$

$$= \frac{1}{\sqrt{3^2 + 5^2}} \langle 3, 5 \rangle$$

$$= \frac{1}{\sqrt{34}} \langle 3, 5 \rangle$$

$$= \langle \frac{3}{\sqrt{34}}, \frac{5}{\sqrt{34}} \rangle$$

$$\begin{split} \frac{\partial f}{\partial x} &= \frac{\partial x}{\partial x} \frac{1}{x^2 + y^2} + x \frac{\partial}{\partial x} (x^2 + y^2)^{-1} \\ &= \frac{1}{x^2 + y^2} - \frac{2x^2}{(x^2 + y^2)^2} \\ &= \frac{x^2 + y^2 - 2x^2}{(x^2 + y^2)^2} \\ &= \frac{y^2 - x^2}{(x^2 + y^2)^2} \end{split}$$

$$\begin{split} \frac{\partial f}{\partial y} &= \frac{\partial x}{\partial y} \frac{1}{x^2 + y^2} + x \frac{\partial}{\partial y} (x^2 + y^2)^{-1} \\ &= -\frac{2xy}{\left(x^2 + y^2\right)^2} \end{split}$$

$$\begin{split} D_{\pmb{u}}f(\pmb{x}) &= \frac{3}{\sqrt{34}} \Biggl(\frac{y^2 - x^2}{(x^2 + y^2)^2} \Biggr) - \frac{5}{\sqrt{34}} \Biggl(\frac{2xy}{(x^2 + y^2)^2} \Biggr) \\ &= \frac{1}{\sqrt{34}(x^2 + y^2)^2} \bigl(3\big(y^2 - x^2\big) - 5\big(2xy\big) \bigr) \\ &= \frac{3y^2 - 10xy - 3x^2}{\sqrt{34}(x^2 + y^2)^2} \end{split}$$

$$\begin{split} D_{\boldsymbol{u}}f(P) &= \frac{3(2^2) - 10(1)(2) - 3(1^2)}{\sqrt{34}(1^2 + 2^2)^2} \\ &= \frac{3(4) - 10(2) - 3}{\sqrt{34}(1 + 4)^2} \\ &= \frac{12 - 20 - 3}{25\sqrt{34}} \\ &= -\frac{11}{25\sqrt{34}} \end{split}$$

2.

$$u = \frac{1}{\sqrt{1^2 + 1^2 + 1^2}} \langle 1, 1, 1 \rangle$$
$$= \langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \rangle$$

$$\frac{\partial f}{\partial x} = y^2 \tan^{-1}(z)$$
$$\frac{\partial f}{\partial y} = 2xy \tan^{-1}(z)$$
$$\frac{\partial f}{\partial z} = \frac{xy^2}{1+z^2}$$

$$D_{\boldsymbol{u}} f(\boldsymbol{x}) = \frac{y}{\sqrt{3}} \Bigg(y \tan^{-1} z + 2x \tan^{-1} z + \frac{xy^2}{1 + z^2} \Bigg)$$

$$\begin{split} D_{\pmb{u}}f(2,1,1) &= \frac{1}{\sqrt{3}} \left(1 \tan^{-1}(1) + 2(2) \tan^{-1}(1) + \frac{2(1^2)}{1+1^2} \right) \\ &= \frac{1}{\sqrt{3}} \left(\frac{\pi}{4} + (4) \frac{\pi}{4} + \frac{2}{2} \right) \\ &= \frac{1}{\sqrt{3}} \left(\frac{\pi}{4} + \pi + 1 \right) \end{split}$$

Problem 2

Find the maximum rate of change of

$$f(x,y,z) = x \ln(yz)$$

at the point $P=\left(1,2,\frac{1}{2}\right)$ at the direction in which it occcurs.

Answer

The maximum rate of change of f at P is given by $|\nabla f(P)|$, and it's direction is $\frac{\nabla f}{|\nabla f|}$.

$$f_x = \ln(yz)$$

$$f_y = \frac{x}{y}$$

$$f_z = \frac{x}{z}$$

$$\begin{split} \nabla f(P) &= \langle \ln \left(\frac{2}{2}\right), \frac{1}{2}, 2 \rangle \\ &= \langle 0, \frac{1}{2}, 2 \rangle \\ |\nabla f(P)| &= |\langle 0, \frac{1}{2}, 2 \rangle| \\ &= |\sqrt{\frac{1}{4} + 4} \\ &= |\sqrt{\frac{17}{4}} \\ \frac{\nabla f(P)}{|\nabla f(P)|} &= \frac{2}{\sqrt{17}} \langle 0, \frac{1}{2}, 2 \rangle \\ &= \langle 0, \frac{1}{\sqrt{17}}, \frac{4}{\sqrt{17}} \rangle \end{split}$$

Problem 3

Find equations of

- 1. the tangent plane and
- 2. the normal line to the surface

$$x = y^2 + z^2 + 1$$

at the point P = (3, 1, -1). Hint: Recall that the normal line is the line through the point that is orthogonal to the surface.

Answer

1. The equation for the tangent planes to the equation is given by

$$\nabla f(x, y, z) \cdot r'(t)$$

Then

$$\nabla f(x,y,z) = \langle 1, -2y, -2z \rangle$$

$$\nabla f(P) = \langle 1, -2, 2 \rangle$$

Which is the normal vector to the tangent plane of f at P. The equation of the tangent plane is:

$$x - 3 - 2(y - 1) + 2(z + 1) = 0$$

Maximum and Minimum values

Problem 4

Suppose (0, 2) is a critical point of a function g with continuous second derivative. In each case below, what can you say about g? Explain your reasoning.

1.
$$g_{xx}(0,2) = -1$$
, $g_{xy}(0,2) = 6$, $g_{xy}(0,2) = 1$

2.
$$g_{xx}(0,2) = -1$$
, $g_{xy}(0,2) = 2$, $g_{xy}(0,2) = -8$

3.
$$g_{xx}(0,2) = 4$$
, $g_{xy}(0,2) = 6$, $g_{xy}(0,2) = 9$

Answer

We can use the determinant of Hessian matrix $\begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix}$ to reach conclusions about the point and the function.

1.

$$\begin{split} f_{xx}(0,2)f_{yy}(0,2) - \left[f_{xy}(0,2)\right]^2 &= -1(1) - 6^2 \\ &= -37 < 0 \end{split}$$

Therefore, (0, 2) is a saddle point.

2.

$$\begin{split} f_{xx}(0,2)f_{yy}(0,2) - \left[f_{xy}(0,2)\right]^2 &= -1(-8) - 2^2 \\ &= 8 - 4 \\ &= 4 > 0 \end{split}$$

Also, $f_{xx} > 0$. Therefore, (0,2) is a local maximum at f.

3.

$$\begin{split} f_{xx}(0,2)f_{yy}(0,2) - \left[f_{xy}(0,2)\right]^2 &= 4(9) - 6^2 \\ &= 36 - 36 \\ &= 0 \end{split}$$

Therefore, the test is inconclusive about the relation between (0, 2) and f.

Problem 5

Find the local extrema and the saddle point(s) of the given function.

1.
$$f(x,y) = y(e^x - 1)$$

2.
$$f(x,y) = xye^{-\frac{x^2+y^2}{2}}$$

Answer

Given $f: \mathbb{R}^n \to \mathbb{R}, x \in \mathbb{R}^n, v \in \mathbb{R}^n$, the critical points of f(x) are the points for which $\forall u = \frac{1}{|v|}v, D_u f(x) = 0$. Then, we can use the second derivative test to infer about the given critical points.

1.
$$f(x,y) = y(e^x - 1)$$

$$f_x = \frac{\partial}{\partial x} y e^x - y$$
$$= y \frac{\partial}{\partial x} e^x - \frac{\partial y}{\partial x}$$
$$= y e^x$$

If y = 0, then any $f_x(x, y) = 0$. If $y \neq 0$, then

$$ye^{x} = 0$$

$$e^{x} = -y$$

$$x = \ln(-y)$$

Therefore, $\left(f_{x(x,y)}=0\right) \Longleftrightarrow (y<0 \land x=\ln(-y)) \lor (y=0).$

$$f_y = \frac{\partial}{\partial y} y e^x - y$$

$$= e^x \frac{\partial}{\partial y} y - \frac{\partial y}{\partial y}$$

$$= e^x - 1$$

$$e^x - 1 = 0$$

$$e^x = 1$$

$$x = 0$$

Therefore, $\forall y, x = 0 \Longrightarrow f_{y(x,y)} = 0$.

Since f is a continuous function, and the conditions for critical point require x=0, and $\nexists y\neq 0$ $(\ln(-y)=0)$, then (0,0) is only critical point at f.

If we use the determinant of the Hessian matrix in the second derivative test:

$$f_{xx}(x,y) = ye^x$$

$$f_{yx}(x,y) = e^x$$

$$f_{yx}(x,y) = 0$$

$$\begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = \begin{vmatrix} ye^x & e^x \\ e^x & 0 \end{vmatrix}$$
$$= (0)ye^x - (e^x)^2$$
$$= -e^{2x}$$

Since $-e^{2x}|_{x=0,y=0}=-1$, (0,0) is a saddle point in f.

2.
$$f(x,y) = xye^{-\frac{x^2+y^2}{2}}$$

$$\begin{split} f_x &= \frac{\partial}{\partial x} \left(xye^{-\frac{x^2+y^2}{2}} \right) \\ &= y \left(\frac{\partial x}{\partial x} e^{-\frac{x^2+y^2}{2}} + x \frac{\partial}{\partial x} \left(e^{-\frac{x^2+y^2}{2}} \right) \right) \\ &= y \left(e^{-\frac{x^2+y^2}{2}} - x^2 e^{-\frac{x^2+y^2}{2}} \right) \\ &= (1-x^2) ye^{-\frac{x^2+y^2}{2}} \end{split}$$

Here, I made the mistake of trying to solve the derivative at 0. When it got too complicated, I checked the solution sheet to see what method was employed, when I saw that the e factor could never be equal to 0. This means that $\forall x \in \mathbb{R}, y = 0 \iff f_x = 0$ and $\forall y \in \mathbb{R}, x = \pm 1 \iff f_x = 0$.

$$\begin{split} f_y &= \frac{\partial}{\partial y} \left(xye^{-\frac{x^2 + y^2}{2}} \right) \\ &= x \left(\frac{\partial y}{\partial y} e^{-\frac{x^2 + y^2}{2}} + y \frac{\partial}{\partial y} \left(e^{-\frac{x^2 + y^2}{2}} \right) \right) \\ &= y \left(e^{-\frac{x^2 + y^2}{2}} - y^2 e^{-\frac{x^2 + y^2}{2}} \right) \\ &= (1 - y^2) xe^{-\frac{x^2 + y^2}{2}} \end{split}$$

In this case, we have a similar argument to the solutions of f_x , except that now x=0 and $y=\pm 1$. Or, more formally, $\forall y \in \mathbb{R}, x=0 \Longleftrightarrow f_y=0$ and $\forall x \in \mathbb{R}, y=\pm 1 \Longleftrightarrow f_y=0$

Let's check a couple of cases where a point (x, y) could be a critical point.

- Let x=0, implying $f_y=0$. Then, for (x,y) to be a critical point, $f_x=0\Longrightarrow x=\pm 1$ or y=0. Since we established x=0, then y=0. The same happens if we let y=0 and then try to find a suitable value for x.
- Let $x=\pm 1$, implying $f_x=0$. Then, for (x,y) to be a critical point, $f_y=0\Longrightarrow y=\pm 1$ or x=0. Since we established $x=\pm 1$, then $y=\pm 1$.

Therefore, $\{(-1, -1), (-1, 1), (0, 0), (1, -1), (1, 1)\}$ is the set of critical points of f.

$$\begin{split} f_{xx}(x,y) &= \frac{\partial}{\partial x} f_x \\ f_{xx}(x,y) &= y e^{-\frac{x^2+y^2}{2}} \frac{\partial}{\partial x} (1-x^2) + (1-x^2) \frac{\partial}{\partial x} \left(y e^{-\frac{x^2+y^2}{2}} \right) \\ f_{xx}(x,y) &= -2x e^{-\frac{x^2+y^2}{2}} + (1-x^2) \left(y e^{-\frac{x^2+y^2}{2}} \right) \frac{\partial}{\partial x} \left(-\frac{x^2+y^2}{2} \right) \\ f_{xx}(x,y) &= -2x e^{-\frac{x^2+y^2}{2}} + (1-x^2) \left(y e^{-\frac{x^2+y^2}{2}} \right) (-x) \\ f_{xx}(x,y) &= xy (x^2-3) e^{\frac{-x^2+y^2}{2}} \end{split}$$

(Note that computations for f_{xx} and f_{yy} are similar.)

$$f_{yy}(x,y) = \frac{\partial}{\partial y} f_y$$
$$= xy(y^2 - 3)e^{\frac{-x^2 + y^2}{2}}$$

$$\begin{split} f_{xy}(x,y) &= \frac{\partial}{\partial y} f_x \\ &= (1-x^2) \frac{\partial}{\partial y} \left(y e^{-\frac{x^2+y^2}{2}} \right) \\ &= (1-x^2) \frac{\partial}{\partial y} \left(y e^{-\frac{x^2+y^2}{2}} \right) \\ &= (1-x^2) \left(\frac{\partial y}{\partial y} e^{-\frac{x^2+y^2}{2}} + y \frac{\partial}{\partial y} e^{-\frac{x^2+y^2}{2}} \right) \\ &= (1-x^2) \left(e^{-\frac{x^2+y^2}{2}} - y^2 e^{-\frac{x^2+y^2}{2}} \right) \\ &= (1-x^2) \left(e^{-\frac{x^2+y^2}{2}} \right) (1-y^2) \end{split}$$

The determinant of the Hessian Matrix is:

$$\begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = \left(xye^{-\frac{x^2 + y^2}{2}} \right)^2 (x^2 - 3)(y^2 - 3) - \left((1 - x^2)(1 - y^2) \left(e^{-\frac{x^2 + y^2}{2}} \right) \right)^2$$

$$= (x^2 - 3)(y^2 - 3)x^2y^2 \left(e^{-\frac{x^2 + y^2}{2}} \right)^2 - (1 - x^2)^2 (1 - y^2)^2 \left(e^{-\frac{x^2 + y^2}{2}} \right)^2$$

$$= e^{-(x^2 + y^2)} \left((x^2 - 3)(y^2 - 3)x^2y^2 - (1 - x^2)^2 (1 - y^2)^2 \right)$$

and if we evaluated the Hessian determinant at the critical points:

1. At (0,0):

$$\begin{split} e^{-x^2 - y^2} \Big((x^2 - 3)(y^2 - 3)x^2y^2 - (1 - x^2)^2 (1 - y^2)^2 \Big)|_{0,0} \\ &= e^0 \big((-3)(-3)(0^2)(0^2) - (1)^2 (1)^2 \big) \\ &= -1 < 0 \end{split}$$

Therefore, (0,0) is a saddle point.

2. At (-1, -1):

$$\begin{split} e^{-x^2-y^2} \Big((x^2-3)(y^2-3)x^2y^2 - \big(1-x^2\big)^2 \big(1-y^2\big)^2 \Big)|_{-1,-1} \\ &= e^{-2} ((-2)(-2) - (1-1)(1-1)) \\ &= \frac{4-0}{c^2} = \frac{4}{c^2} > 0 \end{split}$$

and

$$f_{xx}(0,0) = (-1)(-1)\big((-1)^2 - 3\big)e^{-\frac{(-1)^2 + (-1)^2}{2}} = (-2)e^{-1} = -\frac{2}{e} < 1$$

Therefore, (-1, -1) is a local minimum.

Note that, for (|x|, |y|) = (1, 1), the determinant of the Hessian is always $\frac{4}{e^2}$. I'll skip computation for brevity.

3. At (-1,1):

$$f_{xx}(-1,1) = (-1)(1)\big((-1)^2 - 3\big)e^{-\frac{(-1)^2 + (1)^2}{2}} = (2)e^{-1} = \frac{2}{e} > 1$$

Therefore, (-1,1) is a local maximum.

4. At (1,-1):

$$f_{xx}(1,-1) = (1)(-1)\big((1)^2 - 3\big)e^{-\frac{(1)^2 + (-1)^2}{2}} = (2)e^{-1} = \frac{2}{e} > 1$$

Therefore, (1, -1) is a local maximum.

5. At (1, 1):

$$f_{xx}(1,1) = (1)(1)\big((1)^2 - 3\big)e^{-\frac{(1)^2 + (1)^2}{2}} = (-2)e^{-1} = -\frac{2}{e} < 1$$

Therefore, (1,1) is a local minimum.