Análise Matemática II

2017/18

Lista de Exercícios 3

1. Considere a função $f:\mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} x+y, & x = 0 \text{ ou } y = 0, \\ 1 & x \neq 0 \text{ e } y \neq 0. \end{cases}$$

- a) Mostre que f tem derivadas parciais finitas em (0,0).
- b) Prove que f não é contínua em (0,0).
- 2. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{x^3y}{x^6 + y^2}, & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0). \end{cases}$$

- a) Mostre que f não é contínua na origem.
- b) Calcule a derivada parcial $\frac{\partial f}{\partial y}(0,0)$.
- c) Calcule a derivada de f segundo o vector (2,-1) no ponto (1,0).
- 3. Considere $f(x,y) = (e^{xy} 4y^2x + 5x^2y)$. Calcule $\frac{\partial^3 f}{\partial x \partial u \partial z}$.
- 4. Considere:

$$f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}.$$

- a) Indique o domínio de definição de $f,\,D.$
- b) Mostre que $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0, \forall (x, y, z) \in D.$
- 5. Considere a função $f(x,y) = 3x^2 + 4y^2x$. Determine $\frac{\partial^2 f}{\partial x \partial y}(1,2)$ e $\frac{\partial^2 f}{\partial y \partial x}(1,2)$.
- 6. Seja $f(x,y) = (\log x) \sqrt{y}$.
- a) Defina o domínio de f.
- b) Estude f quanto à diferenciabilidade.
- c) Calcule um valor aproximado de f(1.07, 3.98) usando o diferencial.

7. Considere uma função f diferenciável no ponto (1,2) com

$$\frac{\partial f}{\partial x}(1,2) = -1 \text{ e } \frac{\partial f}{\partial y}(1,2) = 3.$$

Se f(1,2) = 4 indique uma aproximação para o valor de f(0.99, 2.03).

- 8. Calcular a derivada de $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = \log(e^{2x} + e^y)$ no ponto (1, 2), segundo uma direcção que forma, com o eixo OX, um ângulo de $\frac{\pi}{4}$.
- 9. Mostre que a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} x^2 \operatorname{sen}\left(\frac{1}{x}\right) + y^2 \operatorname{sen}\left(\frac{1}{y}\right), & xy \neq 0, \\ x^2 \operatorname{sen}\left(\frac{1}{x}\right), & x \neq 0 \text{ e } y = 0, \\ y^2 \operatorname{sen}\left(\frac{1}{y}\right), & x = 0 \text{ e } y \neq 0, \\ 0, & (x,y) = (0,0). \end{cases}$$

é diferenciável na origem apesar de nenhuma das parciais ser contínua na origem.

- 10. Seja $f(x,y) = \frac{x+y}{xy}$ com $x = r\cos\theta$ e $y = r\sin\theta$. Calcule $\frac{\partial f}{\partial r}$ e $\frac{\partial f}{\partial \theta}$.
- 11. Sejam $f: \mathbb{R}^3 \to \mathbb{R}^2$ e $g: \mathbb{R}^2 \to \mathbb{R}^3$ tais que $g(x,y) = (e^{xy^2}, e^{x^2y}, xy)$ e f é diferenciável em \mathbb{R}^3 , f(1,1,0) = (1,0) e $f(1,1,0) = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$.
- a) Mostre que g é diferenciável em \mathbb{R}^2 .
- b) Determine as derivadas $(g \circ f)(1,1,0)$ e $(f \circ g)(1,0)$.
- 12. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x,y) = 2x^2 y^2$.
- a) Para $x = \varphi(t) = \operatorname{sen} t$ e $y = \psi(t) = \cos t$ calcular $\frac{du}{dt}$ designando por $u(t) = f(x, y) = f(\varphi(t), \psi(t))$.
- b) Para $x = \varphi(s,t) = \text{sen}(st)$ e $y = \psi(s,t) = \cos(st)$ calcular $\frac{\partial u}{\partial t}$ e $\frac{\partial u}{\partial s}$ designando por $u(s,t) = f(x,y) = f(\varphi(s,t),\psi(s,t))$.
- 13. Considere as funções $f(x, y, z) = (z, -x^2, -y^2)$ e $g(x, y, z) = x + y + z \text{ e sejam } v = (1, 2, 3) \text{ e } u = (2, 3, \frac{1}{2}).$
- a) Calcule as matrizes jacobianas de f, $g \in g \circ f$.

b) Calcule as seguintes derivadas:

$$\frac{\partial f}{\partial v}(1,1,1), \quad \frac{\partial f}{\partial u}(0,0,1), \quad \frac{\partial g}{\partial v}(0,1,0) \quad e \quad \frac{\partial (g \circ f)}{\partial u}(2,0,1).$$

- 14. Sejam $f(x,y) = (x^2 y^2 + xy, y^2 1)$ e $f(u,v) = (u+v, 2u, v^2)$.
- a) Mostre que f e g são diferenciáveis e que $f \circ g$ existe.
- b) Determine a derivada de $f \circ g$ no ponto (1,1):
 - (i) Directamente e
 - (ii) Usando a regra da cadeia.
- 15. Seja $f:D\subset\mathbb{R}^3\to\mathbb{R}$ uma função de classe C^1 tal que $Df_{(0,0,e)}=\left[\begin{array}{ccc}1&2&3\end{array}\right]$ e seja

$$h(x, y, z) = f\left(xy^2z^3, \text{sen } x, ze^{5-y^2}\right).$$

Calcule
$$\frac{\partial f}{\partial x}(0, -2, 1)$$
.

16. Para a função $f: \mathbb{R}^3 \to \mathbb{R}^2$ definida por

$$f(x, y, z) = \left(x^2 + e^z, \operatorname{arctg}\left(\frac{x + 2y + 3z}{3}\right)\right),$$

screva a matriz jacobiana em (0,0,0).

17. Considere a função $f: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$f(x, y, z) = (2x + 3y^2 + 2z, x - \cos y, 2y + \operatorname{tg} z).$$

- a) Calcule a matriz jacobiana e o jacobiano.
- b) Determine a derivada de f no ponto $\left(1, \frac{\pi}{2}, \frac{\pi}{4}\right)$ segundo o vector u = (2, -1, 3).

18. Seja $g: \mathbb{R}^3 \to \mathbb{R}$ uma função diferenciável na origem cuja matriz jacobiana nesse ponto é $J_{(0,0,0)} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ e tal que g(0,0,0) = 0. Sendo $F: \mathbb{R}^3 \to \mathbb{R}$ uma função definida por

$$F(x,y,z) = g(x+y+z,g(x,y,z),xyz)$$

calcule $\frac{\partial F}{\partial y}(0,0,0)$.

19. Calcule $\frac{d^2u}{dt}$ para t=1, com

$$u = \frac{z^2}{(x-y)^2}$$
, $x = t^2 - 2t$, $y = \cos(1-t)$ e $z = \frac{1}{t^2}$.

20. Considere a função $f: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$f(x, y, z) = (\operatorname{sen}(xy), \cos(xy), xz).$$

Calcule o diferencial de f no ponto P=(0,2,1) segundo o vector u=(-1,2,1) .

21. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ uma função f = f(u, v) de classe C^2 tal que

$$\frac{\partial^2 f}{\partial u \partial v}(-1,0) = 3$$
 e $\frac{\partial f}{\partial v}(-1,0) = 2$.

Sendo h a função definida por $h(x,y)=f(x^2-y,xy)$, calcule $\frac{\partial^2 f}{\partial x \partial y}(0,1)$.

22. Seja $f:\mathbb{R}^2 \to \mathbb{R}$ uma função cujas derivadas mistas de 2^a ordem são nulas e tal que $f \in C^2$.

Para $\varphi(x,y)=x^2-y^2$ e $\psi(x,y)=y^3$, designando por u(x,y) a função composta de f com φ e ψ , $f(\varphi(x,y),\psi(x,y))$, prove que

$$\frac{x}{y}\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial x^2} = \frac{1}{x}\frac{\partial u}{\partial x}, \text{ com } x, y \neq 0.$$

- 23. Dada a função $z(x,y)=\operatorname{tg}\left(x^2+y^3\right)$, com $x=t^2+2t$ e $y=\log t$, calcule $\frac{dz}{dt}$.
- 24. Seja a função f(x, y, z) = 3x 2y + 4z, em que $x(t) = \log t$, y(t) = 3t, $z(t, w) = 2^t + \cos w$.

 Calcular $\frac{\partial f}{\partial t} \in \frac{\partial f}{\partial w}$.
- 25. Considere as funções $f,g:\mathbb{R}^3\to\mathbb{R}$ com f de classe $C^1\left(\mathbb{R}^3\right)$ e g definida por

$$g(x,y,z) = f(x-y,y-z,z-x).$$

Mostre que

$$\frac{\partial g}{\partial x}(x,y,z) + \frac{\partial g}{\partial y}(x,y,z) + \frac{\partial g}{\partial z}(x,y,z) = 0,$$

para qualquer ponto $(x, y, z) \in \mathbb{R}^3$.

26. Prove que a derivada de f segundo um vector depende linearmente de v, isto é, para $f:D\subset\mathbb{R}^n\to\mathbb{R};\ a\in D;\ \frac{\partial f}{\partial v}(a)$ existe se,

e só se, $\frac{\partial f}{\partial \alpha v}(a)$ existe $\forall \alpha \in \mathbb{R} \setminus \{0\}$ e no caso afirmativo:

$$\frac{\partial f}{\partial \alpha v}(a) = \alpha \frac{\partial f}{\partial v}(a)$$

27. Sejam as funções $h: \mathbb{R}^2 \to \mathbb{R}, h \in C^2\left(\mathbb{R}^2\right)$ e $z(s,t) = h\left(x(s,t),y(s,t)\right)$ com $x(s,t) = s^2 - t^2$ e y(s,t) = 2st. Prove que

$$\frac{\partial^2 z}{\partial s \partial t} = 4x \frac{\partial^2 h}{\partial x \partial y} - 2y \left(\frac{\partial^2 h}{\partial x^2} - \frac{\partial^2 h}{\partial y^2} \right) + 2 \frac{\partial h}{\partial y}.$$

28. Determine uma equação da recta normal e do plano tangente, no ponto P = (3, 4, -2), ao cone

$$C = \left\{ (x, y, z) \in \mathbb{R}^3 : z = 3 - \sqrt{x^2 + y^2} \right\}$$

- 29. Indique a equação do plano tangente e da recta normal à superfície $3xyz z^3 = 8$ no ponto com a abcissa nula e ordenada 2.
- 30. Indique a equação do plano tangente à superfície $z = 3 2x^2 y^2$ no ponto P = (1, -1, 0).
- 31. Considere o parabolóide $z = f(x, y) = 1 + 4x^2 + y^2$.
- a) Verifique que o ponto $P = (\frac{1}{2}, \sqrt{3}, 5)$ pertence ao parabolóide.
- b) Determine a equação do plano tangente ao parabolóide em P.
- c) Indique uma equação da recta normal ao parabolóide no ponto P.
- d) Determine o ponto Q de intersecção da reta perpendicular ao gráfico de f em P com o plano XOY.
- 32. Considere a superfície φ dada pela igualdade $z = 2x^2 + 4y^2$ e um ponto P = (1, 2, 18).
- a) Mostre que $P \in \varphi$.
- b) Determine a equação do plano tangente a φ em P.
- c) Indique a equação da recta normal a φ em P.
- 33. Indique a equação do plano tangente e da recta normal à superfície

$$x^2 - 4y^2 + 2z = -2$$

no ponto (2, 1, -1).

34. Determine a equação de um plano tangente à superfície

$$x^2 + 2y^2 + z^2 = 1$$

de modo que seja paralelo ao plano y=2z.

- 35. Calcule a divergência e o rotacional das seguintes funções:
- a) f(x, y, z) = (xy, yz, zx)
- b) $g(x, y, z) = (xe^y) \overrightarrow{e}_2 + (yez) \overrightarrow{e}_3$.
- 36. Considere a função $g: \mathbb{R}^2 \to \mathbb{R}^2$, definida por

$$g(\rho, \theta) = (\rho \cos \theta, \rho \sin \theta),$$

com $0 \le \theta \le 2\pi$ e $\rho > 0$. Calcule div f.

37. Seja $f: \mathbb{R}^3 \to \mathbb{R}^3$, definida por

$$g(x, y, z) = (x^2 + y - z, xyz^2, 2xy - y^2z).$$

Calcule:

- a) $\operatorname{div} f$.
- b) rot g.
- 38. Seja $f: \mathbb{R}^3 \to \mathbb{R}^3$ uma função de classe $C^2(\mathbb{R}^3)$. Prove que:

$$\operatorname{rot}(\nabla f) = (0, 0, 0)$$
 e que $\operatorname{div}(\operatorname{rot} f) = 0$.

- 39. Considere a função $f(x,y) = \log(x^2 + y^2)$.
- a) Calcule o laplaciano.
- b) A função é harmónica? Justifique.
- 40. Considere a função $h: \mathbb{R}^3 \to \mathbb{R}$, definida por

$$h(x, y, z) = 5xy + 3x^2y + 2xz + 5yz - z^3.$$

Calcule:

- a) ∇h .
- b) O hessiano de h em (0, b, 1).
- c) Δh .
- 41. Considere uma função $f: D \subset \mathbb{R}^3 \to \mathbb{R}^3$, de classe C^2 . Prove que $\text{rot}(\nabla f) = 0$.
- 42. Calcule a divergência e o rotacional do campo vetorial :

$$F(x, y, z) = (x\cos(y^2 + z^2), y(x + z), ze^{xy}).$$