x(t)	Table 3.1: $X(s)$	Table of Laplace and z $x(kT)$	
Impulse		$x(kT)$ $\delta(k) = \left\{ \begin{smallmatrix} 1 & k = 0 \\ 0 & k \neq 1 \end{smallmatrix} \right\}$	1
Delay		$\delta(n-k) = \left\{ \begin{smallmatrix} 1 & k=n \\ 0 & k \neq n \end{smallmatrix} \right\}$	z^{-k}
1	$\frac{1}{s}$	1	$\frac{1}{1-z^{-1}}$
e^{-at}	$\frac{1}{s+a}$	e^{-akT}	$\frac{1}{1 - e^{-aT}z^{-1}}$
t	$\frac{1}{s^2}$	kT	$\frac{Tz^{-1}}{(1-z^{-1})^2}$
t^2	$\frac{2}{s^3}$	$(kT)^2$	$\frac{T^2z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$
t^3	$\frac{6}{s^4}$	$(kT)^3$	$\frac{T^3z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^4}$
$1 - e^{-at}$	$\frac{a}{s(s+a)}$	$1 - e^{-akT}$	$\frac{z^{-1}(1-e^{-aT})}{(1-z^{-1})(1-e^{-aT}z^{-1})}$
$e^{-at} - e^{-bt}$	$\frac{b-a}{(s+a)(s+b)}$	$e^{-akT} - e^{-bkT}$	$\frac{z^{-1}(e^{-aT} - e^{-bT})}{(1 - e^{-aT}z^{-1})(1 - e^{-bT}z^{-1})}$
te^{-at}	$\frac{1}{(s+a)^2}$	kTe^{-akT}	$\frac{Te^{-aT}z^{-1}}{(1-e^{-aT}z^{-1})^2}$
$(1-at)e^{-at}$	$\frac{s}{(s+a)^2}$	$(1 - akT)e^{-akT}$	$\frac{1 - (1 + aT)e^{-aT}z^{-1}}{(1 - e^{-aT}z^{-1})^2}$
t^2e^{-at}	$\frac{2}{(s+a)^3}$	$(kT)^2 e^{-akT}$	$\frac{T^2 e^{-aT} (1 + e^{-aT} z^{-1}) z^{-1}}{(1 - e^{-aT} z^{-1})^3}$
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$	$\sin \omega kT$	$\frac{z^{-1}\sin \omega T}{1 - 2z^{-1}\cos \omega T + z^{-2}}$
$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$	$\cos \omega kT$	$\frac{1 - z^{-1}\cos\omega T}{1 - 2z^{-1}\cos\omega T + z^{-2}}$
$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2 + \omega^2}$	$e^{-akT}\sin\omega kT$	$\frac{e^{-aT}z^{-1}\sin\omega T}{1 - 2e^{-aT}z^{-1}\cos\omega T + e^{-2aT}z^{-2}}$
$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$	$e^{-akT}\cos\omega kT$	$\frac{1 - e^{-aT}z^{-1}\cos\omega T}{1 - 2e^{-aT}z^{-1}\cos\omega T + e^{-2aT}z^{-2}}$
		a^k	$\frac{1}{1-az^{-1}}$
		$a^{k-1}, k=1,2,3\dots$	$\frac{z^{-1}}{1 - az^{-1}}$
		ka^{k-1}	$\frac{z^{-1}}{(1-az^{-1})^2}$
		$a^k \cos k\pi$	$\frac{1}{1+az^{-1}}$