```
import pandas as pd

df = pd.read_csv("ola_driver_scaler.csv")
```

df.head()

/usr/local/lib/python3.10/dist-packages/google/colab/_dataframe_summarizer.py:88: UserWarning: Could not infer format, so each eleme cast_date_col = pd.to_datetime(column, errors="coerce")

	Unnamed:	MMM-YY	Driver_ID	Age	Gender	City	Education_Level	Income	Dateofjoining	LastWorkingDate	Joining Designation	Grade	Bus
0	0	01/01/19	1	28.0	0.0	C23	2	57387	24/12/18	NaN	1	1	23
1	1	02/01/19	1	28.0	0.0	C23	2	57387	24/12/18	NaN	1	1	-61
2	2	03/01/19	1	28.0	0.0	C23	2	57387	24/12/18	03/11/19	1	1	
3	3	11/01/20	2	31.0	0.0	C7	2	67016	11/06/20	NaN	2	2	
4	4	12/01/20	2	31.0	0.0	C7	2	67016	11/06/20	NaN	2	2	

df.shape

→ (19104, 14)

df.info()

<</pre>
<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19104 entries, 0 to 19103
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	19104 non-null	int64
1	MMM-YY	19104 non-null	object
2	Driver_ID	19104 non-null	int64
3	Age	19043 non-null	float64
4	Gender	19052 non-null	float64
5	City	19104 non-null	object
6	Education_Level	19104 non-null	int64
7	Income	19104 non-null	int64
8	Dateofjoining	19104 non-null	object
9	LastWorkingDate	1616 non-null	object
10	Joining Designation	19104 non-null	int64
11	Grade	19104 non-null	int64
12	Total Business Value	19104 non-null	int64
13	Quarterly Rating	19104 non-null	int64
dtype	es: float64(2), int64(8	3), object(4)	
memor	∽y usage: 2.0+ MB		

df.drop(columns=['Unnamed: 0'],axis=1,inplace=True)

df.head()

/usr/local/lib/python3.10/dist-packages/google/colab/_dataframe_summarizer.py:88: UserWarning: Could not infer format, so each eleme cast_date_col = pd.to_datetime(column, errors="coerce")

	MMM-YY	Driver_ID	Age	Gender	City	Education_Level	Income	Dateofjoining	LastWorkingDate	Joining Designation	Grade	Business Value	Qua
0	01/01/19	1	28.0	0.0	C23	2	57387	24/12/18	NaN	1	1	2381060	
1	02/01/19	1	28.0	0.0	C23	2	57387	24/12/18	NaN	1	1	-665480	
2	03/01/19	1	28.0	0.0	C23	2	57387	24/12/18	03/11/19	1	1	0	
3	11/01/20	2	31.0	0.0	C7	2	67016	11/06/20	NaN	2	2	0	
4	12/01/20	2	31.0	0.0	C7	2	67016	11/06/20	NaN	2	2	0	
4													>

df.columns

df['Last_Working_Date'] = pd.to_datetime(df['LastWorkingDate'])

df.head()

<ipython-input-107-555294bdd4d7>:3: UserWarning: Could not infer format, so each element will be parsed individually, falling back t
 df['Date_Of_Joining'] = pd.to_datetime(df['Dateofjoining'])
<ipython-input-107-555294bdd4d7>:5: UserWarning: Could not infer format, so each element will be parsed individually, falling back t

<ipython-input-107-555294bdd4d7>:5: UserWarning: Could not infer format, so each element will be parsed individually, falling back full df['Last_Working_Date'] = pd.to_datetime(df['LastWorkingDate'])

/usr/local/lib/python3.10/dist-packages/google/colab/_dataframe_summarizer.py:88: UserWarning: Could not infer format, so each eleme cast_date_col = pd.to_datetime(column, errors="coerce")

	MMM-YY	Driver_ID	Age	Gender	City	Education_Level	Income	Dateofjoining	LastWorkingDate	Joining Designation	Grade	Total Business Value	Qua
0	01/01/19	1	28.0	0.0	C23	2	57387	24/12/18	NaN	1	1	2381060	
1	02/01/19	1	28.0	0.0	C23	2	57387	24/12/18	NaN	1	1	-665480	
2	03/01/19	1	28.0	0.0	C23	2	57387	24/12/18	03/11/19	1	1	0	
3	11/01/20	2	31.0	0.0	C7	2	67016	11/06/20	NaN	2	2	0	
4	12/01/20	2	31.0	0.0	C7	2	67016	11/06/20	NaN	2	2	0	

df.drop(columns=['MMM-YY','Dateofjoining','LastWorkingDate'],inplace=True)

df.head()

_		Driver_ID	Age	Gender	City	Education_Level	Income	Joining Designation	Grade	Total Business Value	Quarterly Rating	Reporting_Date	Date_Of_Joining
	0	1	28.0	0.0	C23	2	57387	1	1	2381060	2	2019-01-01	2018-12-24
	1	1	28.0	0.0	C23	2	57387	1	1	-665480	2	2019-02-01	2018-12-24
	2	1	28.0	0.0	C23	2	57387	1	1	0	2	2019-03-01	2018-12-24
	3	2	31.0	0.0	C7	2	67016	2	2	0	1	2020-11-01	2020-11-06
	4	2	31.0	0.0	C7	2	67016	2	2	0	1	2020-12-01	2020-11-06
	∢ 📗												•

numerical_columns = df.select_dtypes(include=['int64','float64']).columns

numerical_columns

df[numerical_columns].isna().sum()

→ ▼	0
Driver_ID	0
Age	61
Gender	52
Education_Level	0
Income	0
Joining Designation	0
Grade	0
Total Business Value	0
Quarterly Rating	0
dtyne: int64	

```
import matplotlib.pyplot as plt
from sklearn.impute import KNNImputer
imputer = KNNImputer(n_neighbors=5,weights='distance').set_output(transform='pandas')
imputer.fit(df[numerical_columns])
imputed_numerical_columns = imputer.transform(df[numerical_columns])
imputed_numerical_columns.isna().sum()
\overline{\Rightarrow}
           Driver_ID
                          0
             Age
                          0
            Gender
       Education_Level
                          0
            Income
                          0
      Joining Designation 0
                          0
            Grade
      Total Business Value 0
        Quarterly Rating
     dtvno int64
df['Age'] = imputed_numerical_columns['Age']
df['Gender'] = imputed_numerical_columns['Gender']
df.isna().sum()
→
                               0
           Driver_ID
                               0
             Age
                               0
            Gender
                               0
             City
                               0
       Education_Level
            Income
                               0
      Joining Designation
                               0
            Grade
                               0
      Total Business Value
                               0
        Quarterly Rating
        Reporting_Date
                               0
       Date_Of_Joining
                               0
      Last_Working_Date 17488
     dtvne: int64
df = df.sort_values(by=['Driver_ID', 'Reporting_Date']).reset_index(drop=True)
```

df

	Driver_ID	Age	Gender	City	Education_Level	Income	Joining Designation	Grade	Total Business Value	Quarterly Rating	Reporting_Date	Date_Of_Joini
0	1	28.0	0.0	C23	2	57387	1	1	2381060	2	2019-01-01	2018-12-
1	1	28.0	0.0	C23	2	57387	1	1	-665480	2	2019-02-01	2018-12-
2	1	28.0	0.0	C23	2	57387	1	1	0	2	2019-03-01	2018-12-
3	2	31.0	0.0	C7	2	67016	2	2	0	1	2020-11-01	2020-11-
4	2	31.0	0.0	C7	2	67016	2	2	0	1	2020-12-01	2020-11-
19099	2788	30.0	0.0	C27	2	70254	2	2	740280	3	2020-08-01	2020-06-
19100	2788	30.0	0.0	C27	2	70254	2	2	448370	3	2020-09-01	2020-06-
19101	2788	30.0	0.0	C27	2	70254	2	2	0	2	2020-10-01	2020-06-
19102	2788	30.0	0.0	C27	2	70254	2	2	200420	2	2020-11-01	2020-06-
19103	2788	30.0	0.0	C27	2	70254	2	2	411480	2	2020-12-01	2020-06-
19104 r	ows × 13 colu	mns										
4												>

[#] Create a column to check if the rating increased compared to the previous row $df['Rating_Increased'] = df.groupby('Driver_ID')['Quarterly Rating'].diff().apply(lambda x: 1 if x > 0 else 0)$

df

<u>*</u>		Driver_ID	Age	Gender	City	Education_Level	Income	Joining Designation	Grade	Total Business Value	Quarterly Rating	Reporting_Date	Date_Of_Joini
	0	1	28.0	0.0	C23	2	57387	1	1	2381060	2	2019-01-01	2018-12-
	1	1	28.0	0.0	C23	2	57387	1	1	-665480	2	2019-02-01	2018-12-
	2	1	28.0	0.0	C23	2	57387	1	1	0	2	2019-03-01	2018-12-
	3	2	31.0	0.0	C7	2	67016	2	2	0	1	2020-11-01	2020-11-
	4	2	31.0	0.0	C7	2	67016	2	2	0	1	2020-12-01	2020-11-
	19099	2788	30.0	0.0	C27	2	70254	2	2	740280	3	2020-08-01	2020-06-
	19100	2788	30.0	0.0	C27	2	70254	2	2	448370	3	2020-09-01	2020-06-
	19101	2788	30.0	0.0	C27	2	70254	2	2	0	2	2020-10-01	2020-06-
	19102	2788	30.0	0.0	C27	2	70254	2	2	200420	2	2020-11-01	2020-06-
	19103	2788	30.0	0.0	C27	2	70254	2	2	411480	2	2020-12-01	2020-06-

19104 rows × 14 columns

df['Rating_Increased'].value_counts()

count

Rating	_Increased	
	0	17859
	1	1245

dtvne int64

```
# Sort the dataframe by Driver_ID (we don't need Reporting_Date here)
df = df.sort_values(by=['Driver_ID']).reset_index(drop=True)
```

```
# Create a column to check if Monthly Income has increased compared to the previous row df['Income\_Increased'] = df.groupby('Driver\_ID')['Income'].diff().apply(lambda x: 1 if x > 0 else 0)
```

df['Income_Increased'].value_counts()

```
\overline{\Rightarrow}
                                                                          count
```

```
Income_Increased
                  19049
       0
                     55
```

dtype: int64

```
aggregation_rules = {
    'Age': 'mean',
    'Gender': 'first',
    'City': 'first',
    'Education_Level': 'max',
    'Income': 'mean',
    'Date_Of_Joining': 'min',
    'Last_Working_Date': 'max',
    'Joining Designation': 'first',
    'Grade': 'max',
    'Total Business Value': 'sum',
    'Quarterly Rating': 'mean',
    'Income_Increased': 'max' # Did the income increase at any point (1 if yes, 0 otherwise)
}
aggregated_data = df.groupby('Driver_ID').agg(aggregation_rules).reset_index()
```

aggregated_data

₹

	Driver_ID	Age	Gender	City	Education_Level	Income	Date_Of_Joining	Last_Working_Date	Joining Designation	Grade	Total Business Value
0	1	28.000000	0.0	C23	2	57387.0	2018-12-24	2019-03-11	1	1	1715580
1	2	31.000000	0.0	C7	2	67016.0	2020-11-06	NaT	2	2	0
2	4	43.000000	0.0	C13	2	65603.0	2019-12-07	2020-04-27	2	2	350000
3	5	29.000000	0.0	C9	0	46368.0	2019-01-09	2019-03-07	1	1	120360
4	6	31.000000	1.0	C11	1	78728.0	2020-07-31	NaT	3	3	1265000
	1 2 3	0 1 1 2 2 4 3 5	0 1 28.000000 1 2 31.000000 2 4 43.000000 3 5 29.000000	0 1 28.000000 0.0 1 2 31.000000 0.0 2 4 43.000000 0.0 3 5 29.000000 0.0	0 1 28.000000 0.0 C23 1 2 31.000000 0.0 C7 2 4 43.000000 0.0 C13 3 5 29.000000 0.0 C9	0 1 28.000000 0.0 C23 2 1 2 31.000000 0.0 C7 2 2 4 43.000000 0.0 C13 2 3 5 29.000000 0.0 C9 0	0 1 28.000000 0.0 C23 2 57387.0 1 2 31.000000 0.0 C7 2 67016.0 2 4 43.000000 0.0 C13 2 65603.0 3 5 29.000000 0.0 C9 0 46368.0	0 1 28.000000 0.0 C23 2 57387.0 2018-12-24 1 2 31.000000 0.0 C7 2 67016.0 2020-11-06 2 4 43.000000 0.0 C13 2 65603.0 2019-12-07 3 5 29.000000 0.0 C9 0 46368.0 2019-01-09	0 1 28.000000 0.0 C23 2 57387.0 2018-12-24 2019-03-11 1 2 31.000000 0.0 C7 2 67016.0 2020-11-06 NaT 2 4 43.000000 0.0 C13 2 65603.0 2019-12-07 2020-04-27 3 5 29.000000 0.0 C9 0 46368.0 2019-01-09 2019-03-07	Driver_ID Age Gender City Education_Level Income Date_OF_Joining Last_working_bate Designation 0 1 28.000000 0.0 C23 2 57387.0 2018-12-24 2019-03-11 1 1 2 31.000000 0.0 C7 2 67016.0 2020-11-06 NaT 2 2 4 43.000000 0.0 C13 2 65603.0 2019-12-07 2020-04-27 2 3 5 29.000000 0.0 C9 0 46368.0 2019-01-09 2019-03-07 1	Diver_ID Age General City Education_Level Income Bate_OF_Joining Last_working_Date Designation Grade 0 1 28.000000 0.0 C23 2 57387.0 2018-12-24 2019-03-11 1 1 1 1 2 31.000000 0.0 C7 2 67016.0 2020-11-06 NaT 2 2 2 4 43.000000 0.0 C13 2 65603.0 2019-12-07 2020-04-27 2 2 3 5 29.000000 0.0 C9 0 46368.0 2019-01-09 2019-03-07 1 1

2376 2784 33.500000 0.0 C24 0 82815.0 2015-10-15 3 21748820 NaT 2377 2785 34.000000 1.0 C9 0 12105.0 2020-08-28 2020-10-28 0 2786 44.888889 2019-09-22 2378 0.0 C19 0 35370.0 2018-07-31 2 2 2815090 2379 2787 28.000000 1.0 C20 2 69498.0 2018-07-21 2019-06-20 1 977830 2 2380 2788 29.857143 0.0 C27 2 70254.0 2020-06-08 NaT 2 2298240

aggregated_data['Target'] = aggregated_data['Last_Working_Date'].notna().astype(int)

aggregated_data

2381 rows × 13 columns

•		Driver_ID	Age	Gender	City	Education_Level	Income	Date_Of_Joining	Last_Working_Date	Joining Designation	Grade	Total Business Value
	0	1	28.000000	0.0	C23	2	57387.0	2018-12-24	2019-03-11	1	1	1715580
	1	2	31.000000	0.0	C7	2	67016.0	2020-11-06	NaT	2	2	0
	2	4	43.000000	0.0	C13	2	65603.0	2019-12-07	2020-04-27	2	2	350000
	3	5	29.000000	0.0	C9	0	46368.0	2019-01-09	2019-03-07	1	1	120360
	4	6	31.000000	1.0	C11	1	78728.0	2020-07-31	NaT	3	3	1265000
2	2376	2784	33.500000	0.0	C24	0	82815.0	2015-10-15	NaT	2	3	21748820
2	2377	2785	34.000000	1.0	C9	0	12105.0	2020-08-28	2020-10-28	1	1	0
2	2378	2786	44.888889	0.0	C19	0	35370.0	2018-07-31	2019-09-22	2	2	2815090
2	2379	2787	28.000000	1.0	C20	2	69498.0	2018-07-21	2019-06-20	1	1	977830
2	2380	2788	29.857143	0.0	C27	2	70254.0	2020-06-08	NaT	2	2	2298240

2381 rows × 14 columns

aggregated_data.describe()

		Driver_ID	Age	Gender	Education_Level	Income	Date_Of_Joining	Last_Working_Date	Joining Designation	
C	ount	2381.000000	2381.000000	2381.000000	2381.00000	2381.000000	2381	1616	2381.000000	2381.0
m	ean	1397.559009	33.376784	0.410477	1.00756	59232.460484	2019-02-08 07:14:50.550189056	2019-12-21 20:59:06.534653440	1.820244	2.0
r	min	1.000000	21.000000	0.000000	0.00000	10747.000000	2013-04-01 00:00:00	2018-12-31 00:00:00	1.000000	1.0
2	25%	695.000000	29.000000	0.000000	0.00000	39104.000000	2018-06-29 00:00:00	2019-06-06 00:00:00	1.000000	1.(
5	60%	1400.000000	33.000000	0.000000	1.00000	55285.000000	2019-07-21 00:00:00	2019-12-20 12:00:00	2.000000	2.0
7	′5%	2100.000000	37.000000	1.000000	2.00000	75835.000000	2020-05-02 00:00:00	2020-07-03 00:00:00	2.000000	3.0
n	nax	2788.000000	58.000000	1.000000	2.00000	188418.000000	2020-12-28 00:00:00	2020-12-28 00:00:00	5.000000	5.0
:	std	806.161628	5.878336	0.491918	0.81629	28298.214012	NaN	NaN	0.841433	0.9

```
# 1. Distribution plots for all continuous variables
continuous_columns = ['Age', 'Income', 'Total Business Value', 'Quarterly Rating'] # Add any continuous variables

# Create a figure with subplots
plt.figure(figsize=(15, 10))

for i, col in enumerate(continuous_columns, 1):
    plt.subplot(2, 2, i) # 2 rows, 2 columns for subplots
    sns.histplot(aggregated_data[col], kde=True, color='blue', bins=30) # kde for density plot
    plt.title(f'Distribution of {col}')
    plt.xlabel(col)
    plt.ylabel('Frequency')

plt.tight_layout()
plt.show()
```



```
categorical_columns = ['Education_Level', 'Grade', 'Joining Designation'] # Add categorical variables here
plt.figure(figsize=(15, 10))

for i, col in enumerate(categorical_columns, 1):
    plt.subplot(2, 2, i) # 2 rows, 2 columns for subplots
    sns.countplot(x=aggregated_data[col], palette='Set2')
    plt.title(f'Count of {col}')
    plt.xlabel(col)
    plt.ylabel('Count')
    plt.xticks(rotation=45) # Rotate x labels for better visibility if needed

plt.tight_layout()
plt.show()
```

```
<ipython-input-171-ce2ab8926171>:7: FutureWarning:
```

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set sns.countplot(x=aggregated_data[col], palette='Set2')

<ipython-input-171-ce2ab8926171>:7: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set

sns.countplot(x=aggregated_data[col], palette='Set2')
<ipython-input-171-ce2ab8926171>:7: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set

sns.countplot(x=aggregated_data[col], palette='Set2')

- # Select only numeric columns for correlation calculation
 numeric_columns = aggregated_data.select_dtypes(include=['number']).columns
- # Calculate the correlation matrix using only numeric columns
 correlation_matrix = aggregated_data[numeric_columns].corr()
- # Display the correlation matrix
 print(correlation_matrix)

\rightarrow		Driver_ID	Age	Gender	Education_Level	\
	Driver_ID	1.000000	-0.007068	0.014142	-0.014343	
	Age	-0.007068	1.000000	0.032779	-0.008329	
	Gender	0.014142	0.032779	1.000000	-0.008766	
	Education_Level	-0.014343	-0.008329	-0.008766	1.000000	
	Income	-0.017553	0.195907	0.006518	0.140779	
	Joining Designation	-0.023126	0.089230	-0.046351	0.003203	
	Grade	-0.014345	0.242799	-0.002871	-0.016806	
	Total Business Value	0.015133	0.227084	0.017458	0.001392	
	Quarterly Rating	0.023867	0.195670	0.000338	0.037169	
	Income_Increased	-0.023591	0.079226	0.019417	-0.009485	
	Target	0.029269	-0.063012	0.009171	-0.007953	

```
Grade
                             Income Joining Designation
     Driver_ID
                          -0.017553
                                               -0.023126 -0.014345
     Age
                           0.195907
                                                0.089230 0.242799
     Gender
                           0.006518
                                                -0.046351 -0.002871
     Education_Level
                           0.140779
                                                0.003203 -0.016806
                           1.000000
                                                0.484116 0.738869
     Income
     Joining Designation
                           0.484116
                                                1.000000
                                                          0.712419
     Grade
                           0.738869
                                                0.712419 1.000000
                                               -0.121368
     Total Business Value
                           0.368632
                                                          0.383076
     Quarterly Rating
                           0.187621
                                               -0.193807
                                                          0.109546
     Income_Increased
                           0.059381
                                               -0.082136 0.138531
     Target
                          -0.197988
                                               -0.127773 -0.226190
                           Total Business Value Quarterly Rating
     Driver_ID
                                       0.015133
                                                          0.023867
                                       0.227084
                                                          0.195670
     Age
     Gender
                                       0.017458
                                                         0.000338
     Education_Level
                                       0.001392
                                                          0.037169
                                       0.368632
                                                         0.187621
     Income
                                      -0.121368
     Joining Designation
                                                         -0.193807
                                                         0.109546
     Grade
                                       0.383076
                                       1.000000
     Total Business Value
                                                          0.712487
     Quarterly Rating
                                       0.712487
                                                         1.000000
     {\tt Income\_Increased}
                                       0.398861
                                                         0.302464
     Target
                                      -0.379552
                                                         -0.373683
                           Income_Increased
                                               Target
     Driver_ID
                                  -0.023591 0.029269
                                   0.079226 -0.063012
     Age
     Gender
                                   0.019417 0.009171
     Education_Level
                                  -0.009485 -0.007953
                                   0.059381 -0.197988
     Income
     Joining Designation
                                  -0.082136 -0.127773
     Grade
                                   0.138531 -0.226190
     Total Business Value
                                   0.398861 -0.379552
     Quarterly Rating
                                   0.302464 -0.373683
     Income_Increased
                                   1.000000 -0.160790
     Target
                                  -0.160790 1.000000
import seaborn as sns
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.show()
```


 ${\it from sklearn.preprocessing import One HotEncoder}$

Initialize the label encoder

label_encoder = OneHotEncoder(sparse_output=False, handle_unknown='ignore') # sparse=False for a dense array

Reshape the 'City' column into a 2D array

 $\verb|city_data| = aggregated_data[['City']] # Use double brackets to select as a DataFrame| \\$

Apply label encoding to the 'City_Code' column
encoded_city = label_encoder.fit_transform(city_data)

Create a DataFrame from the encoded data

encoded_city_df = pd.DataFrame(encoded_city, columns=label_encoder.get_feature_names_out(['City']))

Concatenate the encoded data with the original DataFrame

 $aggregated_data = pd.concat([aggregated_data, encoded_city_df], axis=1)$

aggregated_data.head()

→		Driver_ID	Age	Gender	City	Education_Level	Income	Date_Of_Joining	Last_Working_Date	Joining Designation	Grade	•••	City_C27 Cit
	0	1	28.0	0.0	C23	2	57387.0	2018-12-24	2019-03-11	1	1		0.0
	1	2	31.0	0.0	C7	2	67016.0	2020-11-06	NaT	2	2		0.0
	2	4	43.0	0.0	C13	2	65603.0	2019-12-07	2020-04-27	2	2		0.0
	3	5	29.0	0.0	C9	0	46368.0	2019-01-09	2019-03-07	1	1		0.0
	4	6	31.0	1.0	C11	1	78728.0	2020-07-31	NaT	3	3		0.0

5 rows × 44 columns

aggregated_data.drop(columns=['City'],inplace=True)

from imblearn.over_sampling import SMOTE

 ${\it from sklearn.preprocessing import StandardScaler}$

```
# Convert datetime columns to numeric (e.g., Unix timestamp)
for col in ['Date_Of_Joining', 'Last_Working_Date']:
    aggregated_data[col] = aggregated_data[col].astype('int64') // 10**9 # Convert to Unix timestamp
# Apply SMOTE to handle class imbalance
smote = SMOTE(random_state=42)
X = aggregated_data.drop(columns=['Target'])
y = aggregated_data['Target']
X_resampled, y_resampled = smote.fit_resample(X, y)
# Step 4: Check the class distribution before and after applying SMOTE
print("Before SMOTE:\n", y.value_counts())
print("\nAfter SMOTE:\n", y_resampled.value_counts())
# Step 5: Standardize the resampled features (X resampled)
scaler = StandardScaler()
X_resampled_scaled = scaler.fit_transform(X_resampled)
# Check the result (scaled features for resampled data)
print("\nScaled Resampled Training Data (First 5 rows):\n", X resampled scaled[:5])
→ Before SMOTE:
     Target
     1
         1616
          765
     Name: count, dtvpe: int64
     After SMOTE:
      Target
         1616
          1616
     Name: count, dtype: int64
     Scaled Resampled Training Data (First 5 rows):
      [[-1.81210602 -0.98375085 -0.87410555 1.3490513 -0.1418648
                  -0.96625626 -1.20967523 -0.40912303 0.42461999 -0.11611998
        0.11382795 -0.18785206 -0.20224581 -0.17309401 -0.19791481 -0.16604662
       -0.18840765 -0.22037344 -0.20358346 -0.17956063 -0.18435409 -0.19539535
       -0.17649055 \ -0.2674719 \ -0.20498838 \ -0.19691202 \ 5.91020391 \ -0.17901023
       -0.18150078 \ -0.20973228 \ -0.20634542 \ -0.20085749 \ -0.23250496 \ -0.19264925
       -0.20539167 -0.20066427 -0.18463455 -0.18824631 -0.2167729 -0.18726035]
      [-1.81080801 -0.44887171 -0.87410555 1.3490513 0.20015466 0.
                 0.25986868 -0.12032713 -0.5723096 -0.88327034 -0.11611998
       1.50976151 -0.18785206 -0.20224581 -0.17309401 -0.19791481 -0.16604662
       -0.18840765 -0.22037344 -0.20358346 -0.17956063 -0.18435409 -0.19539535
       -0.17649055 -0.2674719 -0.20498838 -0.19691202 -0.18235598 -0.17901023
       -0.18150078 -0.20973228 -0.20634542 -0.20085749 -0.23250496 -0.19264925
       -0.20539167 -0.20066427 -0.18463455 5.78301496 -0.2167729 -0.18726035]
      [-1.80821198 1.69064484 -0.87410555 1.3490513 0.14996528 0.
                    0.25986868 -0.12032713 -0.53901748 -0.88327034 -0.11611998
       -1.28210561 -0.18785206 -0.20224581 -0.17309401 -0.19791481 6.24282567
       -0.18840765 -0.22037344 -0.20358346 -0.17956063 -0.18435409 -0.19539535
       -0.17649055 -0.2674719 -0.20498838 -0.19691202 -0.18235598 -0.17901023
       -0.18150078 -0.20973228 -0.20634542 -0.20085749 -0.23250496 -0.19264925
       -0.20539167 -0.20066427 -0.18463455 -0.18824631 -0.2167729 -0.18726035]
      [-1.80691397 -0.8054578 -0.87410555 -1.16980127 -0.53325668 0.
                  -0.96625626 -1.20967523 -0.56086091 -0.88327034 -0.11611998
        1.76356761 -0.18785206 -0.20224581 -0.17309401 -0.19791481 -0.16604662
       -0.18840765 -0.22037344 -0.20358346 -0.17956063 -0.18435409 -0.19539535
       -0.17649055 -0.2674719 -0.20498838 -0.19691202 -0.18235598 -0.17901023
       -0.18150078 -0.20973228 -0.20634542 -0.20085749 -0.23250496 -0.19264925
       -0.20539167 \ -0.20066427 \ -0.18463455 \ -0.18824631 \ -0.2167729 \ \ 5.85006285]
      [-1.80561595 \ -0.44887171 \ 1.25249351 \ 0.08962501 \ 0.61616171 \ 0.
                    1.48599363 0.96902098 -0.45198236 -0.09853614 -0.11611998
       -1.53591171 -0.18785206 -0.20224581 6.31046624 -0.19791481 -0.16604662
       -0.18840765 -0.22037344 -0.20358346 -0.17956063 -0.18435409 -0.19539535
       -0.17649055 -0.2674719 -0.20498838 -0.19691202 -0.18235598 -0.17901023
       -0.18150078 -0.20973228 -0.20634542 -0.20085749 -0.23250496 -0.19264925
       -0.20539167 -0.20066427 -0.18463455 -0.18824631 -0.2167729 -0.18726035]]
from \ sklearn.ensemble \ import \ Random Forest Classifier
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.metrics import roc_curve,classification_report,confusion_matrix,auc
from sklearn.model_selection import cross_val_score
X_train, X_test, y_train, y_test = train_test_split(X_resampled_scaled, y_resampled, test_size=0.3, random_state=42)
rf = RandomForestClassifier(random_state=42)
# Hyperparameter tuning with GridSearchCV
param grid rf = {
    'n_estimators': [50, 100, 200],
```

```
'max_depth': [10, 20, None],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4],
    'bootstrap': [True, False]
}
# Perform GridSearchCV
grid_search_rf = GridSearchCV(estimator=rf, param_grid=param_grid_rf, cv=5, n_jobs=-1, verbose=2)
grid_search_rf.fit(X_train, y_train)
# Best hyperparameters for Random Forest
print("Best Hyperparameters for Random Forest:", grid_search_rf.best_params_)
# Predict using the best model
y_pred_rf = grid_search_rf.best_estimator_.predict(X_test)
y_prob_rf = grid_search_rf.best_estimator_.predict_proba(X_test)[:, 1]
Fitting 5 folds for each of 162 candidates, totalling 810 fits
     Best Hyperparameters for Random Forest: {'bootstrap': True, 'max_depth': 10, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estim
import xgboost as xgb
# Initialize XGBoost model
xgb model = xgb.XGBClassifier(random state=42)
# Hyperparameter tuning with GridSearchCV for XGBoost
param grid xgb = {
    'n_estimators': [50, 100, 200],
    'learning_rate': [0.01, 0.1, 0.2],
    'max_depth': [3, 5, 7],
    'subsample': [0.8, 0.9, 1.0],
    'colsample_bytree': [0.8, 0.9, 1.0]
# Perform GridSearchCV
grid_search_xgb = GridSearchCV(estimator=xgb_model, param_grid=param_grid_xgb, cv=5, n_jobs=-1, verbose=2)
grid_search_xgb.fit(X_train, y_train)
# Best hyperparameters for XGBoost
print("Best Hyperparameters for XGBoost:", grid_search_xgb.best_params_)
# Predict using the best model
y_pred_xgb = grid_search_xgb.best_estimator_.predict(X_test)
y_prob_xgb = grid_search_xgb.best_estimator_.predict_proba(X_test)[:, 1]
    Fitting 5 folds for each of 243 candidates, totalling 1215 fits
     Best Hyperparameters for XGBoost: {'colsample_bytree': 0.8, 'learning_rate': 0.01, 'max_depth': 3, 'n_estimators': 50, 'subsample':
# Function to plot ROC curve
def plot_roc_curve(y_test, y_prob, model_name):
    fpr, tpr, thresholds = roc_curve(y_test, y_prob)
    roc_auc = auc(fpr, tpr)
   plt.figure(figsize=(8, 6))
   plt.plot(fpr, tpr, color='blue', lw=2, label=f'{model_name} ROC curve (AUC = {roc_auc:.2f})')
    plt.plot([0, 1], [0, 1], color='gray', linestyle='--') # Diagonal line (random classifier)
   plt.xlim([0.0, 1.0])
   plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
   plt.ylabel('True Positive Rate')
   plt.title(f'ROC Curve for {model_name}')
   plt.legend(loc='lower right')
   plt.show()
# --- Model 1: Random Forest (Bagging) ---
# Predict probabilities using the best Random Forest model
y_prob_rf = grid_search_rf.best_estimator_.predict_proba(X_test)[:, 1] # Get probability for class 1 (positive class)
plot_roc_curve(y_test, y_prob_rf, "Random Forest")
# --- Model 2: XGBoost (Boosting) ---
# Predict probabilities using the best XGBoost model
y_prob_xgb = grid_search_xgb.best_estimator_.predict_proba(X_test)[:, 1] # Get probability for class 1 (positive class)
plot_roc_curve(y_test, y_prob_xgb, "XGBoost")
```



```
print("Random Forest Classification Report:\n", classification_report(y_test, y_pred_rf))
\verb|print("\nXGBoost Classification Report:\n", classification\_report(y\_test, y\_pred\_xgb))| \\
# --- Evaluation: Confusion Matrix ---
\# Function to plot confusion matrix
def plot_confusion_matrix(y_test, y_pred, model_name):
    cm = confusion_matrix(y_test, y_pred)
    plt.figure(figsize=(8, 6))
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['Predicted 0', 'Predicted 1'], yticklabels=['True 0', 'True 1'])
    plt.title(f'Confusion Matrix for {model_name}')
    plt.xlabel('Predicted')
    plt.ylabel('True')
    plt.show()
# Plot Confusion Matrix for Random Forest
\verb|plot_confusion_matrix(y_test, y_pred_rf, "Random Forest")|\\
# Plot Confusion Matrix for XGBoost
plot_confusion_matrix(y_test, y_pred_xgb, "XGBoost")
```

macro avg weighted avg

Random Forest Classification Report:
precision recall f1-score support 1.00 1.00 1.00 0 1.00 498 1.00 1.00 472 1 1.00 970 accuracy 1.00 1.00 1.00 970 970

1.00

1.00

1.00