Real and Complex Analysis Qualifying Exam.

New System-January 2005

Burckel and Ryabogin

Instructions: The exam consists of 9 problems. Each problem is worth 10 points.

Time: 3 hours.

Notation: $\mathbf{R} = \text{reals}$, $\mathbf{C} = \text{complexes}$, $\mathbf{D} = \{z \in \mathbf{C} : |z| < 1\}$, Ω is a region = open, connected subset of $\mathbf{R}^2 = \mathbf{C}$, $\mathbf{H}(\Omega)$ the set of holomorphic functions in Ω , |E| is the Lebesgue measure of $E \subset \mathbf{R}$, and (μ, X) is an abstract measure space.

Note: Any fact from the hints that you use you are expected to prove.

1. Problem 1.

a) Compute

$$\int_{0}^{2\pi} \frac{dt}{\cos t - 2}.$$

b) Find the following residues (n is a positive integer):

$$Res_{z=\infty} \ z^n e^{10/z}, \qquad Res_{z=0} \ \frac{e^{z^2}}{z^{2n+1}}.$$

2. Problem 2.

Let E_j , j=1,...,m be measurable subsets of [0,1]. Assume also that $q \leq m$ and each $x \in [0,1]$ belongs to at least q sets E_j . Prove that there exists j such that $|E_j| \geq q/m$.

3. Problem 3.

Consider $1 \le s < r < p < \infty$. Prove that $f \in L^s(\mu, X) \cap L^p(\mu, X)$ implies $f \in L^r(\mu, X)$.

4. Problem 4.

Let $f \in L^1(\mu, X)$. Prove that $\forall \epsilon > 0 \ \exists \delta = \delta(\epsilon) > 0$ such that

$$\left| \int_{A} f \, d\mu \right| < \epsilon,$$

provided $A \subset X$ is measurable and $\mu(A) < \delta$.

5. Problem 5.

Is there an $f \in \mathbf{H}(\mathbf{D})$ such that $\lim_{|z| \to 1} |f(z)| = \infty$, that is, such that

$$\inf\{|f(z)|: 1 > |z| \ge 1 - 1/n\} \to \infty \quad \text{as} \quad n \to \infty$$
?

Hint: f can have only finitely many zeros. Consider 1/f.

6. Problem 6.

- a) Let $f: \Omega \to \mathbf{C}$ be holomorphic. True or false: if e^f is constant, then f is constant. Give a proof or a counterexample. Answer this question if f is only continuous.
- b) According to Liouville a bounded function which is holomorphic in **C** is constant. Is this true if "holomorphic" is weakened to "harmonic"?

Hint: Use a).

7. Problem 7.

Let I be a non-empty compact interval in \mathbf{R} and let $f: I \to \mathbf{C}$ be **real-analytic**, by which is meant that in a neighborhood of each point of I, f is represented by a convergent power series. Show that I lies in an open subset U of \mathbf{C} into which f may be extended as a holomorphic function.

Hint: Cover I with finitely many discs and use the uniqueness theorem for holomorphic functions to synthesize a single extension.

8. Problem 8.

Let $(r_k)_{k=1}^{\infty}$ be a 1-1 enumeration of the sequence of all rationals in (0,1], and let $r_k = p_k/q_k$ with relatively prime positive integers p_k, q_k . Define $f_k(x) := e^{-(p_k - xq_k)^2}$ for $x \in [0,1]$. Prove that $f_k \to 0$ in measure as $k \to \infty$, but the pointwise limit of $(f_k(x))_{k=1}^{\infty}$ does not exist at any point $x \in [0,1]$.

Hint: Given x, prove that there exist two sub-sequences $(k_n)_{n=1}^{\infty}$, $(l_n)_{n=1}^{\infty}$ such that $|r_{k_n}-x|$ is bounded away from 0 (hence $f_{k_n}(x) \to 0$), and $|r_{l_n}-x| = |p_{l_n}/q_{l_n}-x| \le 1/q_{l_n}$ (hence $f_{k_n}(x) \ge 1/e$).

9. **Problem 9**. Let $\mu(X) < \infty$, and let $f \ge 0$ on X be measurable. Prove that f is μ -integrable on X if and only if

$$\sum_{n=0}^{\infty} 2^n \mu(\{x \in X : f(x) \ge 2^n\}) < \infty.$$