Computer Graphics 제8장 3차원 객체의 모델링

2015년도 2학기

차례

- 객체 모델링
 - 다각형 면
 - 평면 방정식
 - -스플라인

객체 모델링의 개요

- 3차원 객체 표현
 - 다각형 면이나 2차 곡면을 이용하여 객체 표현
 - 매쉬 (Mesh, 삼각형이나 사각형 을 서로 연결하여 사용)로 표현
 - 임의의 모양을 가진 3차원 객 체를 표현
 - 곡선 또는 곡면 함수를 이용하여 부드러운 물체 표현
 - Bezier 곡선, 스플라인(Spline),
 NURBS 곡선 및 곡면

<u>객체 모델링의 개요</u>

- 스위핑 (Sweeping) 기법을 이용
 - 간단한 평면 도형을 공간상에서 이 동 또는 회전시켜 복잡한 3차원 객 체를 생성하는 기법
 - 원 → 원기둥, 도우넛...
- CSG (Constructive Solid Geometry, 조립적 입체기하학) 기법 이용
 - 개 기 기 기 기 대 이 생 • 기본적인 3차원 개체들을 집합 연 산시켜 새로운 객체를 만들어내고, 이를 반복함 으로서 점차 복잡한 객 체를 생성한다.
- <u>프랙탈</u>기하학 또는 <u>입자시스템</u>이 용
 - 기본 객체를 규칙에 따라 반복적으로 처리하여 자연물과 같은 불규칙적인 모습의 객체를 규칙적으로 모델링한다.

다각형 면(Polygon Surface) 모델링

- 다각형 매쉬 표현
 - 곡면을 삼각형이나 사각형으로 구성된 그물 형태로 표현한 그래 픽 표현 기법
 - 삼각 매쉬법(Triangular Mesh): 삼각형을 이용하여 곡면을 표현 하는 기법
 - 사각 매쉬법(Quadrilateral Mesh): 사각형을 이용
 - 삼각형면: 1차 방정식 (Ax + By + Cz + D = 0)를 이용
 - 공간상에 일직선상에 놓여있지 않은 3점을 이용하여 하나의 평 면을 구성

기하학 데이터 표

	꼭지점표
v_1	x_1, y_1, z_1
v_2	x_2, y_2, z_2
v_3	x_3, y_3, z_3
v_4	x_4, y_4, z_4
v_5	x_5, y_5, z_5
v_6	x_6, y_6, z_6

모서리표	
e_1	v_1, v_3
e_2	v_1, v_2
e_3	v_2, v_3
e_4	v_1, v_4
e_5	v_2, v_5
e_6	v_3, v_6
e_7	v_4, v_6
e_8	v_4, v_5
e_9	v_5, v_6

다각형 표		
S_1	e_1, e_2, e_3	
S_2	e_2 , e_4 , e_8 , e_5	
S_3	e3, e5, e9, e6	
S_4	e_1, e_6, e_7, e_4	
S_5	e9, e8, e7	

평면 방정식

- 다각형 면은 평면으로 구성
 - 평면 방정식 유도:
 - P0 =(x0, y0, z0)이 평면위의 점이고 n=(a, b, c)는 평면에 수직인 벡터일 때, 임의의 점 P(x, y, z)이 평면위의 점이라면, 벡터 v = P-P0도평면위의 벡터이다.
 - $n \cdot v = 0$
 - a(x-x0) + b(y-y0) + c(z-z0) = 0
 - ax + by + cz + d = 0, d = -ax0 - by0 - cz0

평면 방정식

Cramer's rule에 의해서 계수는,

$$A = y_1(z_2-z_3)+y_2(z_3-z_1)+y_3(z_1-z_2)$$

$$B = z_1(x_2-x_3)+z_2(x_3-x_1)+z_3(x_1-x_2)$$

$$C = x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2)$$

$$D = -x_1(y_2z_3-y_3z_2) - x_2(y_3z_1-y_1z_3) - x_3(y_1z_2-y_2z_1)$$

- 공간상에 점과 평면과의 위치
 - 점 P가 Ax + By + Cz + D < 0이면 → 평면의 안쪽
 - 점 P가 Ax + By + Cz + D = 0이면 → 평면 위
 - A P가 Ax + By + Cz + D > 0이면 → 평면의 바깥쪽

<u>Spline</u> 곡선

- 스플라인 (Spline)
 - 간단한 다항식(Polynomial)으로 표현되는 부드러운 형태의 곡선
 - 곡선의 중요한 위치를 나타내는 제어점을 지정하여 곡선의 형태를 만들 수 있다.
 - 용도: 곡선 설계, 곡면 설계, 애니메이션의 동작 경로
 - 스플라인 종류
 - 보간 스플라인 (Interpolate spline): 주어진 점을 모두 지나는 부드러운 곡선
 일반 스플라인 곡선
 - 근사 스플라인 (Approximate spline): 주어진 점들을 지나지 않으면서 제어점을 연결하는 선들의 모양에 근사하는 부드러운 곡선
 - 부드러움을 위해 제어점을 통과하지 않고 제어점은 곡선을 끌어당기는 역할을 한다.
 - 베지어 곡선, B-스플라인 곡선, NURBS 곡선0

Spline 곡선

• 곡선의 국부 제어 (Locality): 제어점 하나가 바뀔 대 영향을 미치는

부분

<u>Spline</u> 곡선

- Convex hull (볼록 다각형):
 - 제어점들을 모두 둘러싸고 있는 최소 면적의 볼록한 형태의 경계
 - 구간별 3차 다항식: 4개의 인접한 제어점
 - 구간별 2차 다항식: 3개의 인접한 제어점
 - 스플라인 곡선이 항상 볼록다각형 내부에 존재 -> 곡선의 형태 파악

Control graph: 근사 곡선에서 제어점들을 연결한 직선 형태

<u>Spline 곡선과 Continuity (연속성)</u>

- 스플라인 곡선 P(x, y, z)의 매개변수 형태
 - x = x(u), y = y(u), z = z(u) $0 \le u \le 1$
 - n차 스플라인: 변수 x, y, z 가 매개변수 u의 n차식으로 표현되는 스플 라인
- Continuity: 분할된 곡선을 연결하여 하나의 긴 곡선을 설계할 때 연결되는 지점에 다양한 연결 조건
 - C°연속성: 두 곡선이 단순히 연결, 양쪽 곡선의 좌표 값이 동일
 - C¹연속성: 곡선의 기울기가 동일, 즉, 1차 도함수가 동일 (접선 벡터의 방향이 동일하다)
 - C²연속성: 양쪽 곡선의 곡률이 동일, 1차 및 2차 도함수가 동일

3자 스플라인 곡선

- 변수 x, y, z가 매개변수 u의 3차 식으로 표현
- n+1개의 제어점이 주어지고 이들 제어점을 보간하는 n개의 곡선으로 구성
- C¹ 및 C² 연속성을 만족
- 다음의 다항식을 만족

$$- x(u) = a_x u^3 + b_x u^2 + c_x u + d_x$$

$$- y(u) = a_y u^3 + b_y u^2 + c_y u + d_y$$

$$- z(u) = a_z u^3 + b_z u^2 + c_z u + d_z$$

- 위의 식의 행렬 형태,

$$x(u) = [u^3 \ u^2 \ u \ 1] \bullet \qquad \begin{vmatrix} a_x \\ b_x \end{vmatrix}$$

단, 0 ≤ u ≤ 1

= U • C (U: 매개변수 u의 행렬 C: 계수 행렬)

 $= U \bullet M_{spline} \bullet M_{geom}$

M_{aeom}: 경계조건 행렬

M_{spline}: 커브의 모양을 나타내는 행렬

Hermite spline (interpolation curve)

- 스플라인의 조건:
 제어점과 기울기 값에 의해서 스플라인 커브를 결정
 두 끝점에 관계되기 때문에 부분적으로 바꿀 수 있다.
 P(u): 제어점 p_k와 p_{k+1} 사이의 매개변수 3차원 함수
 P(0) = p_k
 P(1) = p_{k+1}
 P'(0) = Dp_k
 P'(1) = Dp_{k+1}

$$P(0) - p_k$$

 $P(1) = p_{k+1}$
 $P'(0) = Dp_k$
 $P'(1) = Dp_{k+1}$

• P(u) =
$$au^3 + bu^2 + cu + d$$

행렬: P(u) = $[u^3 \ u^2 \ u \ 1]$ · $\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$

$$0 \le u \le 1$$

• P'(u) =
$$3au^2 + 2bu + c$$

• By $\exists P(u) = [3u^2 \ 2u \ 1 \ 0]$ · $\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$

Hermite spline (interpolation curve)

- 위의 식에서 u에 0과 1을 넣어 다시 풀면,

$$\begin{bmatrix} P(0) \\ P(1) \\ P'(0) \\ P'(1) \end{bmatrix} = \begin{bmatrix} p_k \\ p_{k+1} \\ Dp_k \\ Dp_{k+1} \end{bmatrix} =$$

$$- \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} =$$

$$- P(u) =$$

Cardinal Spline

- 스플라인 조건
 - 각 곡선 부분의 경계에서 지정된 끝점 접선으로 3차 곡선들을 보 간한다
 - 제어점의 기울기 값은 두 이웃 제어점 좌표로부터 계산된다.
 - 4개의 연속되는 제어점으로 지정
 - 중간 두 제어점은 부분 끝점
 - 다른 두 제어점은 끝점 기울기 계산에 사용
 - $P(0) = p_k$
 - $P(1) = p_{k+1}$
 - $P'(0)=(1/2)^* (1-t)^* (p_{k+1}-p_{k-1})$
 - $P'(1) = (1/2)^* (1-t)^* (p_{k+2} p_k)$

- t: tension 매개변수 (스플라인이 입력 제어점에 얼마나 느슨하게 또는 단단하게 맞춰지는 지 제어)
 - » t<0: 느슨한 곡선t > 0: 타이트한 곡선

Cardinal Spline

$$\begin{array}{ccc} \bullet & \begin{bmatrix} P(0) \\ P(1) \\ P'(0) \\ P'(1) \end{bmatrix} & = \begin{bmatrix} p_k \\ p_{k+1} \\ s(p_{k+1} - p_{k-1}) \\ s(p_{k+2} - p_k) \end{bmatrix}$$

$$\begin{array}{c|c}
a \\
b \\
c \\
d
\end{array} =$$

- P(u) =
- Mc =

- 다항식으로 표현되는 근사곡선
 - CAD에서 많이 사용되는 커브
 - 주어진 제어점의 위치에 의해 곡선의 형태가 결정되는 근사곡선
 - 어떤 숫자의 제어점에도 베지에 커브는 적용될 수 있다.
 - 제어점의 수는 베지어 다항식의 차수를 결정
 - 2개의 제어점: 두 점 사이의 선분
 - 3개의 제어점: 2차원 곡선
 - 4개의 제어점: 3차원 곡선

- 제어점 중 처음과 끝 점을 빼고는 보통 어느 조절점과도 만나지 않는다.

- 곡선은, 항상 제어점으로 이루어진 다각형 안에 들어가고, 곡선이 조절점들 사이에서 크게 벗어나지 않는다.
- 배합함수(Blending Function)
 - 어느 한 점에서 각 제어점이 미치는 영향
 - 제어점의 차수보다 하나 작은 다항식

- 3개의 제어점을 가진 베지에 곡선
 - $p_{01}(t) = (1-t)p_0 + tp_1$
 - $-p_{12}(t) = (1-t)p_1 + tp_2$
 - $p(t) = (1 t)p_{01}(t) + tp_{12}(t)$

• 4개의 제어점을 가진 베지에 곡선

$$-p_{012}(t) = (1-t)p_{01}(t) + tp_{12}(t)$$

$$-p_{123}(t) = (1-t)p_{12}(t) + tp_{23}(t)$$

$$-p(t) = (1-t)p_{012}(t) + tp_{123}(t)$$

$$= (1-t)\{(1-t)p_{01}(t) + tp_{12}(t)\} + t\{(1-t)p_{12}(t) + tp_{23}(t)\}$$

$$= (1-t)[(1-t)\{(1-t)p_0 + tp_1\} + t\{(1-t)p_1 + tp_2\}]$$

$$+ t[(1-t)\{(1-t)p_1 + tp_2\} + t\{(1-t)p_2 + tp_3\}]$$

$$= p_0(1-t)^3 + 3p_1t(1-t)^2 + 3p_2t^2(1-t) + p_3t^3$$

• 베지에 곡선/곡면으로 생성된 객체

