Kazhdan-Lusztig polynomials for p-adic Kac-Moody groups

Paul Philippe

Wednesday, June 5th 2024

Institut Camille Jordan, Université Jean Monnet, Saint-Etienne

Summary

- $1. \ \ \, \text{Kazhdan-Lusztig polynomials for p-adic reductive groups}.$
- 2. Passage to Kac-Moody groups.
- 3. The combinatorics of W^+ and its implications.

Object	Notation	Example
Connected split reductive group	G	GL_n
Borel subgroup	\mathbb{B}	Upper triangular matrices
Maximal torus	T	Diagonal matrices

Object	Notation	Example
Connected split reductive group	G	GL_n
Borel subgroup	₿	Upper triangular matrices
Maximal torus	T	Diagonal matrices
Coweight lattice	$Y:=Hom(\mathbb{G}_m,\mathbb{T})$	\mathbb{Z}^n
Vectorial Weyl group	W	\mathfrak{S}_n

Object	Notation	Example
Connected split reductive group	G	GL_n
Borel subgroup	₿	Upper triangular matrices
Maximal torus	T	Diagonal matrices
Coweight lattice	$Y:=Hom(\mathbb{G}_m,\mathbb{T})$	\mathbb{Z}^n
Vectorial Weyl group	W ^v	\mathfrak{S}_n
Non-archimedean local field, ring of integer	$(\mathcal{K},\mathcal{O}_{\mathcal{K}})$	$(\mathbb{Q}_p,\mathbb{Z}_p)$
Uniformizer, Residue field	$(arpi, \Bbbk)$	(p,\mathbb{F}_p)

Object	Notation	Example
Connected split reductive group	G	GL_n
Borel subgroup	\mathbb{B}	Upper triangular matrices
Maximal torus	T	Diagonal matrices
Coweight lattice	$Y:=Hom(\mathbb{G}_m,\mathbb{T})$	\mathbb{Z}^n
Vectorial Weyl group	W ^v	\mathfrak{S}_n
Non-archimedean local field, ring of integer	$(\mathcal{K},\mathcal{O}_{\mathcal{K}})$	$(\mathbb{Q}_p,\mathbb{Z}_p)$
Uniformizer, Residue field	$(arpi, \Bbbk)$	(p,\mathbb{F}_p)

Definition: Iwahori subgroup

Set $G := \mathbb{G}(\mathcal{K})$. The **Iwahori subgroup** of G is:

$$I := \{ g \in \mathbb{G}(\mathcal{O}_{\mathcal{K}}) \mid g \bmod \varpi \in \mathbb{B}(\mathbb{k}) \}.$$

Л

Definition

 $\mathcal{H}_{\mathbb{C}}(\mathit{G},\mathit{I})$ is the algebra of smooth $\mathit{I}\text{-bi-invariant}$ functions on G

Definition

 $\mathcal{H}_{\mathbb{C}}(G,I)$ is the algebra of smooth I-bi-invariant functions on G, endowed with a convolution product.

Definition

 $\mathcal{H}_{\mathbb{C}}(G,I)$ is the algebra of smooth I-bi-invariant functions on G, endowed with a convolution product.

Theorem (Borel 1976)

Smooth irreducible complex representations of G admitting a non-zero I-invariant vector

Definition

 $\mathcal{H}_{\mathbb{C}}(G,I)$ is the algebra of smooth I-bi-invariant functions on G, endowed with a convolution product.

Theorem (Borel 1976)

 $\left\{\begin{array}{c} \text{Smooth irreducible complex} \\ \text{representations of } G \\ \text{admitting a non-zero} \end{array}\right\} \xrightarrow{1-1} \left\{\begin{array}{c} \text{Irreducible complex} \\ \mathcal{H}_{\mathbb{C}}(G,I)\text{-modules} \end{array}\right\}.$ I-invariant vector

$$\stackrel{1\text{--}1}{\longleftrightarrow} \; \left\{ \begin{array}{c} \text{Irreducible complex} \\ \mathcal{H}_{\mathbb{C}}(\textit{G},\textit{I})\text{-modules} \end{array} \right\}$$

Definition

The extended affine Weyl group is $\tilde{W^a}:=Y\rtimes W^v.$

Definition

The extended affine Weyl group is $\tilde{W^a} := Y \rtimes W^v$.

Combinatorial properties

 \tilde{W}^a is (a finite extension of) a Coxeter group, it admits:

Definition

The extended affine Weyl group is $\tilde{W^a} := Y \rtimes W^v$.

Combinatorial properties

 \tilde{W}^a is (a finite extension of) a Coxeter group, it admits:

• a Bruhat order ≤

Definition

The extended affine Weyl group is $\tilde{W}^a := Y \rtimes W^v$.

Combinatorial properties

 \tilde{W}^a is (a finite extension of) a Coxeter group, it admits:

- a Bruhat order ≤,
- ullet a compatible length function ℓ

Definition

The extended affine Weyl group is $\tilde{W}^a := Y \rtimes W^v$.

Combinatorial properties

 $\tilde{W^a}$ is (a finite extension of) a Coxeter group, it admits:

- a Bruhat order ≤,
- a compatible length function ℓ ,
- a (quasi-)generating finite set S of simple reflections (of length 1).

Relation with the Iwahori-Hecke algebra

Theorem (Iwahori-Matsumoto 1965)

Setting $q=|\mathbb{k}|$, the Iwahori-Hecke algebra $\mathcal{H}_{\mathbb{C}}(G,I)$ has basis $(T_w)_{w\in \tilde{W}^s}$ with the relations:

$$T_{vw}=T_vT_w \quad ext{if } \ell(v)+\ell(w)=\ell(vw), \ T_s^2=(q-1)T_s+qT_1 \quad ext{for } s\in S.$$

The Kazhdan-Lusztig involution

The map $T_w\mapsto \overline{T_w}:=T_{w^{-1}}^{-1}$ defines an involution of $\mathcal{H}_\mathbb{C}(G,I)$.

The Kazhdan-Lusztig involution

The map $T_w \mapsto \overline{T_w} := T_{w^{-1}}^{-1}$ defines an involution of $\mathcal{H}_{\mathbb{C}}(G, I)$.

Kazhdan-Lusztig polynomials

• The *R*-polynomials: $(R_{w,v})$ such that $\overline{T_w} = \sum_{v \in \tilde{W}^a} R_{w,v}(q) T_v$.

8

The Kazhdan-Lusztig involution

The map $T_w \mapsto \overline{T_w} := T_{w^{-1}}^{-1}$ defines an involution of $\mathcal{H}_{\mathbb{C}}(G, I)$.

Kazhdan-Lusztig polynomials

- The *R*-polynomials: $(R_{w,v})$ such that $\overline{T_w} = \sum_{v \in \tilde{W}^a} R_{w,v}(q) T_v$.
- The P-polynomials: $(P_{w,v})$ such that $C_w:=q^{\frac{-\ell(w)}{2}}\sum_{v\leq w}P_{w,v}(q)T_v$ satisfies $C_w=\overline{C_w}$.

The Kac-Moody setting

ullet ${\mathbb G}$ a Kac-Moody group (eg ${\mathbb G}:R\mapsto \mathsf{SL_n}(R[t,t^{-1}])\rtimes R^{ imes})$

The Kac-Moody setting

- \mathbb{G} a Kac-Moody group (eg $\mathbb{G}: R \mapsto \mathsf{SL}_\mathsf{n}(R[t, t^{-1}]) \rtimes R^{\times})$,
- W^{ν} infinite Coxeter group with infinite root system $\Phi = \Phi_{+} \sqcup (-\Phi_{+}).$

The Kac-Moody setting

- \mathbb{G} a Kac-Moody group (eg $\mathbb{G}: R \mapsto \mathsf{SL}_{\mathsf{n}}(R[t, t^{-1}]) \rtimes R^{\times}$),
- W^ν infinite Coxeter group with infinite root system
 Φ = Φ₊ ⊔ (−Φ₊).

Difficulties

- No convolution product on $C(I \setminus G/I, \mathbb{C})$,
- Y × W^v has no Coxeter group structure (no finite set of simple reflections).

The Tits cone

- $Y^+ := \{ y \in Y \mid \alpha(y) < 0 \text{ for finitely many } \alpha \in \Phi_+ \}$,
- $Y^+ = Y$ if and only if \mathbb{G} is reductive,
- Y^+ is W^v -stable, we define $W^+ := Y^+ \rtimes W^v$.

The Tits cone

- $Y^+ := \{ y \in Y \mid \alpha(y) < 0 \text{ for finitely many } \alpha \in \Phi_+ \}$,
- $Y^+ = Y$ if and only if \mathbb{G} is reductive,
- Y^+ is W^v -stable, we define $W^+ := Y^+ \rtimes W^v$.

Theorem

G admits a sub-semi-group $G^+\supset I$ and a corresponding Iwahori-Hecke algebra $\mathcal{H}_{\mathbb{C}}(G^+,I)$ with a basis $(T_w)_{w\in W^+}$ indexed by W^+ .

- Braverman, Kazhdan, Patnaik (Affine ADE, 2016),
- Bardy-Panse, Gaussent, Rousseau (General Kac-Moody, 2016).

The Tits cone

- $Y^+ := \{ y \in Y \mid \alpha(y) < 0 \text{ for finitely many } \alpha \in \Phi_+ \}$,
- $Y^+ = Y$ if and only if \mathbb{G} is reductive,
- Y^+ is W^v -stable, we define $W^+ := Y^+ \times W^v$.

Theorem

G admits a sub-semi-group $G^+\supset I$ and a corresponding Iwahori-Hecke algebra $\mathcal{H}_{\mathbb{C}}(G^+,I)$ with a basis $(T_w)_{w\in W^+}$ indexed by W^+ .

- Braverman, Kazhdan, Patnaik (Affine ADE, 2016),
- Bardy-Panse, Gaussent, Rousseau (General Kac-Moody, 2016).

Issues

- W⁺ is not a Coxeter group,
- $\mathcal{H}_{\mathbb{C}}(G^+, I)$ has no simple presentation,
- the Kazhdan-Lusztig involution is not defined.

The combinatorics of W^+

Theorem: Muthiah, Orr (General Kac-Moody 2018)

 W^+ admits a partial order \leq and a compatible \mathbb{Z} -valued length function ℓ^a .

The combinatorics of W^+

Theorem: Muthiah, Orr (General Kac-Moody 2018)

 W^+ admits a partial order \leq and a compatible \mathbb{Z} -valued length function ℓ^a .

Theorem: Muthiah, Orr (Affine ADE 2018) P. (General Kac-Moody 2023)

The length function ℓ^a is a grading of (W^+, \leq) :

$$x < y$$
 and $\not\exists z, x < z < y \implies \ell(y) = \ell(x) + 1$.

The combinatorics of W^+

Theorem: Muthiah, Orr (General Kac-Moody 2018)

 W^+ admits a partial order \leq and a compatible \mathbb{Z} -valued length function ℓ^a .

Theorem: Muthiah, Orr (Affine ADE 2018) P. (General Kac-Moody 2023)

The length function ℓ^a is a grading of (W^+, \leq) :

$$x < y$$
 and $\not\exists z, x < z < y \implies \ell(y) = \ell(x) + 1$.

Theorem: Welch (Affine ADE 2019) Hébert, P. (General Kac-Moody 2024)

Any element of W^+ admits a finite number of covers. In particular, intervals are finite.

In the reductive case

- 1. $R_{x,y} = \sum R_{x,c}$ where \mathfrak{c} runs over chains $y = x_0 < x_1 < \cdots < x_n = x$.
- 2. Combinatorial model for $R_{x,c}$ through Bruhat-Tits buildings.

In the reductive case

- 1. $R_{x,y} = \sum R_{x,c}$ where \mathfrak{c} runs over chains $y = x_0 < x_1 < \cdots < x_n = x$.
- 2. Combinatorial model for $R_{x,c}$ through Bruhat-Tits buildings.

Strategy in the Kac-Moody case

1. The set of chains from y to x is still finite.

In the reductive case

- 1. $R_{x,y} = \sum R_{x,c}$ where \mathfrak{c} runs over chains $y = x_0 < x_1 < \cdots < x_n = x$.
- 2. Combinatorial model for $R_{x,c}$ through Bruhat-Tits buildings.

Strategy in the Kac-Moody case

- 1. The set of chains from y to x is still finite.
- 2. Combinatorial model for $R_{x,c}$ through masures (in progress).

In the reductive case

- 1. $R_{x,y} = \sum R_{x,c}$ where \mathfrak{c} runs over chains $y = x_0 < x_1 < \cdots < x_n = x$.
- 2. Combinatorial model for $R_{x,c}$ through Bruhat-Tits buildings.

Strategy in the Kac-Moody case

- 1. The set of chains from *y* to *x* is still finite.
- 2. Combinatorial model for $R_{x,c}$ through masures (in progress).
- 3. Check that $R_{x,y} := \sum R_{x,c}$ are coefficients for an involution of $\mathcal{H}_{\mathbb{C}}(G^+, I)$ (difficult step).

Thank you for your attention !