0. Setup

Initialization:

- FieldTrip top-level folder for ft defaults.m
- MEGneto top level for megne2setup.m
- SPM T1 template visible
 - project_path
 - analysis_name
 - rawdata_path
 - mri path
 - overwrite

MATLAB input

- Add proper paths for FieldTrip folder
- · Create directories for project
- Initialize JSON config file

megne2setup.m

paths (struct)

out

1,2. Processing

fcp_2_PreprocessingICA.m

1. Setup

- Read in config settings
- Load and match PIDs from MEG and MRI folders

fcp_1_TaskEpoching.m

Create list of subjects with full sets of data

2. Plot triggers

Generate and save plot of event triggers

3. Epoch continuous data into trials

- Set up trial definitions for epoching
- Epoch events list to define time windows corresponding to each trial and overall number of trials; save to config

4. Head motion

- Identify trials with excessive head motion
- · Reject those trials, save filtered version

5. Artifacts

- Check for muscle, jump artifacts
- Reject those trials with artifacts, save filtered version

6. Bad channels

- Identify and save list of bad channels
- Throw warning if there are many

Outputs

- Plots:
 - · Triggers for each event type
 - Head motion visualization
- Epochs (into JSON):
 - All trials
 - Filtered for head motion (HM)
 - Filtered for HM, muscle, jump artifacts
- List of bad channels (saved to its own JSON)

1. Setup

As in fcp_1

2. Noise reduction

• Load gradiometer info, 3rd order gradients from CTF to account for noise

3. Bad channel removal

Remove bad channels; replace signal with average of neighbours

4. ICA

- Remove bad channel signal altogether from consideration
- Run ICA
- Interactive decision on whether to keep or reject component
- Reject all selected components at once
- Save

Outputs

- Final preprocessed data output
- Bad ICA components to JSON file

fcp_3_beamforming_sourcegrid.m

3. Beamforming

1. Setup

- Read in config settings
- · Load and match PIDs from MEG and MRI folders
- Create list of subjects with full sets of data

2. Head model preparation

- Load and segment T1 template brain
- Construct head model and do necessary unit conversions
- Construct dipole grid in template brain
- Load desired atlas and create binary masks to define valid voxels within head model

3. Check alignment

- Load and segment participant MRIs, load preproc. MEG data
- Construct subject-specific head, source models
- Check alignment between subject and template head model
- Check alignment source model and head model
- Save images

4. Source reconstruction

- · Compute lead field matrix
- Run source analysis, reduce to dominant orientation
- · Interpolate functional data onto anatomical data
- Return these results

Outputs

- Individual and template head model alignment, *.png
- Source and head model alignment, *.png

Source analysis output

- Source descriptives output
- Source interpolation onto MRI data

out

fcp_4_connectivity.m

4. Connectivity Analysis

1. Setup

- As in fcp_1
- 2. Analysis
- Compute connectivity w/ FT code

Outputs

Connectivity statistics

• ft_defaults

- path_generation
- save_to_jsonpath_check

- load_config
- load participants
- ds pid match
- write_match_if_not_empty
- ft definetrial
- plotTriggers
- HeadMotionTool
- ft artifact muscle
- ft artifact jump
- ft_rejectartifact
- save_to_json
- cle
- detectBadChannels

- load_config
- load participants
- ds pid match
- write_match_if_not_empty
- save to ison