

Corrections and Additions to "Shale Gas Processing Integrated with Ethylene Production: Novel Process Designs, Exergy Analysis, and Techno-Economic Analysis"

Chang He^{†,‡} and Fengqi You*,[†]

Ind. Eng. Chem. Res. 2014, 53 (28), 11442-11459 (DOI: 10.1021/ie5012245)

In the original paper,¹ the kinetic model and referenced plant data were taken from a recent paper from Yancheshmeh et al.² Yancheshmeh's work² mainly follow Sundaram's model.³ We note that there are some mistakes in side reactions R3, R4, and R5 (shown in Table A2).

As a result of these changes, the predicted byproducts change significantly. However, as pointed out by Froment et al.,⁴ the side reactions are much less important in this model, and the resulting byproducts take up a very small proportion. The predicted main products (C_2H_4 , H_2 , and C_2H_6) have small variations. For example, C_2H_4 is a desired product, which only decreases by 0.53 mol % after a single pass through the cracking reactor. As a result, Figures 12 and 13, as well as a new

Figure 12. Breakdown of the total annualized cost.

version of Figure 15D and revised versions of Tables 1, 2, 4, and 5, have been revised. These revised figures and tables, as well as a revised version of Table A2, are shown in this Addition/Correction.

- ullet Page 11445: The sentence "The H_2S and CO_2 concentrations are reduced to lower than 4 and 100 ppm, respectively." at the end of the caption for Figure 3 should be deleted.
- \bullet Page 11446: The last sentence in section 3.1 needs to be revised. It should read as follows: "After the AGR process, the H_2S and CO_2 concentrations are reduced to 4 ppm and 0.05 mol % in sweet gas, respectively."
- Page 11450: In both Tables 1 and 2, the term "SEP" should be revised to "SSP". In addition, several values have been revised

Figure 13. Economic performance results: (A) NPVs and (B) BEGPs.

Eagle Ford

Barnett

in Table 1; these values are highlighted in bold font in this Addition/Correction.

- Page 11455: Figure 15D is incorrect; the trend in GHG emissions is not represented correctly. The revised figure is provided in this Addition/Correction. (The top figure is the published figure; the bottom figure is the revised figure.)
- Page 11456: The published version of Table A2 contains some editing errors and mistakes in the kinetic equations. In addition, the 1977 work of Sundaram and Froment (ref 34 in the original paper) and the 2013 work of Shokrollahi Yancheshmeh et al. (published in *Chem. Eng. J.*) each should have been cited as data sources in this table. The corrected table appears in this Addition/Correction.

Published: March 24, 2015

Bakken

[†]Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States

[‡]Department of Chemical Engineering, China University of Petroleum, Changping, Beijing 102249, People's Republic of China

Revised version of Figure 15D.

Table 1. Overall Material Balance for the 12 Case Studies^a

shale gas type	Barnett				Eagle Ford				Bakken			
design	CGP	SSP	CRN	CRD	CGP	SSP	CRN	CRD	CGP	SSP	CRN	CRD
Inputs												
shale gas (kBD)	17.01	17.01	17.01	17.01	18.78	18.78	18.78	18.78	19.66	19.66	19.66	19.66
Outputs												
sales gas (\mathbf{MMscfd}^b)	34.54	35.02	35.07	35.07	30.39	31.02	31.52	31.53	23.23	24.16	24.36	24.37
ethane (kBD)	1.535	0	0	0	3.218	0	0	0	4.700	0	0	0
ethylene (ton/day)	0	65.01	64.53	64.53	0	140.14	137.84	137.82	0	206.24	204.54	204.51
hydrogen (ton/day ^c)	0	3.63	3.62	3.62	0	8.91	8.90	8.90	0	13.46	13.39	13.40
propane (kBD)	0.479	0.518	0.518	0.518	1.417	1.470	1.470	1.470	2.950	3.030	3.031	3.030
propene (ton/day)	0	0.011	0	0	0	0.027	0	0	0	0.031	0	0
butanes (kBD)	0.392	0.405	0.406	0.405	0.815	0.843	0.845	0.846	1.104	1.214	1.215	1.215
pentanes (kBD)	0.115	0.119	0.118	0.118	0.771	0.775	0.775	0.775	0.495	0.497	0.497	0.496
sulfur (ton/day)	11.20	11.20	11.20	11.20	12.30	12.30	12.30	12.30	0	0	0	0

^aCorrections are given in boldface. ^bMMscfd = millions of standard cubic feet per day. ^cIn the original paper, the units were MMmol/day.

Table 2. Exergy Efficiency of the Shale Gas-Based Process Designs (btu/s)

shale gas type	Barnett				Eagle Ford				Bakken				
design	CGP	SSP	CRN	CRD	CGP	SSP	CRN	CRD	CGP	SSP	CRN	CRD	
Inputs													
feedstock	470401	470401	470401	470401	576407	576407	576407	576407	619206	619206	619206	619206	
process utilities													
(u1)heat	2478	8668	7918	7824	3189	9737	7922	7601	3383	11079	9658	9480	
(u2)cold	2362	3508	2654	2553	2755	4224	3164	3065	2985	4816	3574	3385	
(u3)electricity	7017	19029	16125	16242	7664	22978	20623	20608	10435	27692	24272	24262	
(u4)waters	323	413	393	393	383	473	469	469	403	483	476	476	
(u5)solvents	56	56	56	56	80	80	80	80	96	96	96	96	
Outputs													
sales gas	379049	384372	384921	384921	333554	340469	345957	346067	255103	265190	267454	267526	
ethane	45910	0	0	0	96456	0	0	0	140878	0	0	0	
ethylene	0	34515	34260	34260	0	74403	73182	73171	0	109496	108594	108578	
propane	20668	22351	22351	22351	61141	63428	63428	63428	127286	130738	130825	130738	
butanes	17905	18499	18752	18705	37642	38935	39027	39073	50989	56070	56116	56116	
pentanes	6099	6311	6258	6258	40890	41102	41102	41102	26252	26358	26358	26305	
hydrogen	0	4637	4624	4624	0	11381	11368	11368	0	17192	17103	17116	
Byproducts													
(p1)propylene	0	195	0	0	0	511	0	0	0	580	0	0	
(p2)sulfur	725	725	725	725	800	800	800	800		0	0	0	
(p3)heat	268	328	322	320	551	521	502	510	502	789	760	765	
overall exergy efficiency (%)	97.51	94.00	94.91	94.91	96.71	93.10	94.53	94.62	94.42	91.41	92.38	92.42	

Table 4. Feedstocks/Products and Process Utilities Cost Distributions (MM\$/yr)

shale gas type		Bar	nett			Eagle Ford					Bakken			
design	CGP	SSP	CRN	CRD	CGP	SSP	CRN	CRD	CGP	SSP	CRN	CRD		
Raw material														
shale gas	75.87	75.87	75.87	75.87	92.80	92.80	92.80	92.80	99.87	99.87	99.87	99.87		
Process utilities														
(u1)heat	0.10	0.35	0.32	0.31	0.13	0.39	0.32	0.31	0.14	0.45	0.39	0.38		
(u2)cold	0.57	0.82	0.64	0.62	0.66	1.01	0.76	0.74	0.72	1.16	0.86	0.81		
(u3)electricity	4.15	11.30	9.59	9.58	4.53	13.57	12.19	12.12	6.11	16.41	14.24	14.22		
(u4)waters	0.12	0.15	0.15	0.15	0.14	0.17	0.17	0.17	0.15	0.18	0.18	0.18		
(u5)solvents	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03		
Outputs														
sales gas	65.50	66.42	66.51	66.51	57.64	58.83	59.78	59.80	44.06	45.82	46.21	46.23		
ethane	10.75	0	0	0	22.53	0	0	0	32.90	0	0	0		
ethylene	0	26.00	25.81	25.81	0	56.06	55.14	55.13	0	82.50	81.82	81.80		
propane	6.71	7.25	7.25	7.25	19.84	20.58	20.58	20.58	41.30	42.42	42.45	42.42		
butanes	8.78	9.07	9.09	9.07	18.26	18.88	18.93	18.95	24.73	27.19	27.22	27.22		
pentanes	3.54	3.67	3.63	3.63	23.75	23.87	23.87	23.87	15.25	15.31	15.31	15.28		
hydrogen	0	2.13	2.12	2.12	0	5.23	5.22	5.22	0	7.90	7.86	7.86		
Byproducts														
(p1)propylene	0	0.005	0	0	0	0.012	0	0	0	0.014	0	0		
(p2)sulfur	0.750	0.750	0.750	0.750	0.810	0.810	0.810	0.810	0	0	0	0		

Table 5. Capital Cost Distribution

shale gas type		Bar	nett		Eagle Ford			Bakken				
design		SSP	CRN	CRD	CGP	SSP	CRN	CRD	CGP	SSP	CRN	CRD
Capital cost (MM\$)												
total direct cost, TDC	16.15	21.15	18.92	18.78	16.91	25.41	23.12	22.82	18.18	27.69	25.35	25.06
indirect plant expenses, IPE	5.17	6.77	6.05	6.01	5.41	8.13	7.40	7.30	5.82	8.86	8.11	8.02
total plant capital cost, TPC	21.32	27.92	24.97	24.79	22.32	33.54	30.52	30.12	24.00	36.55	33.46	33.08
annual operating cost, AOC	4.95	12.64	10.71	10.68	5.49	15.18	13.47	13.36	7.14	18.23	15.70	15.62
raw material cost	75.87	75.87	75.87	75.87	92.80	92.80	92.80	92.80	99.87	99.87	99.87	99.87
total annualized cost, TAC (MM\$/yr)	80.82	88.51	86.57	86.55	98.29	107.98	106.27	106.17	107.01	118.09	115.56	115.49
shale gas processing cost (\$/MMbtu shale gas)	5.97	6.53	6.39	6.39	5.93	6.52	6.41	6.41	6.00	6.62	6.48	6.48

Table A2. Expressions of Reaction Rate and Corresponding Model Validation

No.		reaction			CO	nstant of reaction	rate ^a	
$R(1)^{b,c}$	C_2H_6	\leftrightarrow C ₂ H ₄ + H ₂		k ₁ (4	0.65×10^{13} , 2.73	$\times 10^5) \left[\frac{F_{\rm C_2H_6}}{F_t} \cdot \frac{R}{R} \right]$	$\frac{F_{C_2H_4}F_{H_2}}{T} - \frac{F_{C_2H_4}F_{H_2}}{F_t^2K_{C1}}$	$\left(\frac{P_t}{RT}\right)^2$
$R(2)^b$	$2C_2H_6$	$_5 \rightarrow C_3H_8 + CH_9$	4	$k_2(3$	3.85×10^{11} , 2.73	$\times 10^5) \left[\frac{F_{\rm C_2H_6}}{F_t} \cdot \frac{1}{R} \right]$	$\left[\frac{D_t}{T}\right]$	
$R(3)^{b,d}$	C_3H_6	\leftrightarrow C ₂ H ₂ + CH ₄		k ₃ (9	$0.81 \times 10^8, 1.54 >$	$(10^5) \left[\frac{F_{\text{C}_3\text{H}_6}}{F_t} \cdot \frac{P_t}{R^7} \right]$	$\frac{F_{C_2H_2}F_{CH_4}}{F_t^2K_{C5}}$	$\left(\frac{P_t}{RT}\right)^2$
$R(4)^b$	C_2H_2	$+ C_2H_4 \rightarrow C_4H_6$	5	k ₄ (1	$.03 \times 10^{12}$, 1.73	$\times 10^{5}$ $\left[\frac{F_{\text{C}_2\text{H}_2}F_{\text{C}_2}}{F_t^2}\right]$	$\frac{H_4}{RT} \left(\frac{P_t}{RT} \right)^2$	
$R(5)^b$	C_2H_6	$+ C_2H_4 \rightarrow C_3H_6$	5 + CH ₄	k ₅ (7	0.08×10^{13} , 2.53	$\times 10^{5}$ $\left[\frac{F_{\text{C}_2\text{H}_6}F_{\text{C}_2}}{F_t^2}\right]$	$\frac{H_4}{RT} \left(\frac{P_t}{RT} \right)^2$	
basis mol %)	C_2H_4	H_2	C_2H_6	CH_4	C_3H_8	C_3H_6	C_2H_2	1,3-C ₄ H ₆
modeling result	33.54	37.68	20.53	5.22	0.18	0.20	0.26	2.2
plant data ^e	34.56	37.36	20.60	5.81	0.08	0.51	0.27	0.81^{f}
relative error, RE	2.95	0.85	0.33	10.32	125.00	62.74	3.70	171.6

^aData taken from ref 34. $^bk_i(A, E_a)$ follows the Arrhenius equation $k_i(A, E_a) = A \times \exp[-E_a/(RT)]$, where A is the Arrhenius constant (given in units of s⁻¹ or mol⁻¹ s⁻¹), E_a the activation energy (J mol⁻¹), E_a the molar flow rate (mol s⁻¹), E_a the total pressure (Pa), E_a the reaction temperature (K), and E_a the universal gas constant (given in units of J (mol K)⁻¹ or Pa m³ (mol K)⁻¹. $^cK_{C1} = 8.895 \times 10^{-3}$ at 775 °C, 1.276 × 10⁻² at 800 °C, 1.800 × 10⁻² at 825 °C. $^dK_{C5} = 9.847 \times 10^{-3}$ at 775 °C, 1.375 × 10⁻² at 800 °C, 1.890 × 10⁻² at 825 °C. eD ata taken from: Shokrollahi Yancheshmeh, E_a M. S.; Seifzadeh Haghighi, S.; Gholipour, M. R.; Dehghani, O.; Rahimpour, M. R.; Raeissi, S. Modeling of ethane pyrolysis process: A study on effects of steam carbon dioxide on ethylene and hydrogen productions. *Chem. Eng. J.* 2013, 215–216, 550–560. fA ll C_4 hydrocarbons are considered to be 1,3- C_4 H₆.

AUTHOR INFORMATION

Corresponding Author

*E-mail: you@northwestern.edu.

ACKNOWLEDGMENTS

We gratefully acknowledge Mr. David Wegerer (R&D Fellow at Honeywell UOP) for helpful discussions.

REFERENCES

- (1) He, C.; You, F. Shale gas processing integrated with ethylene production: Novel process designs, exergy analysis, and technoeconomic analysis. *Ind. Eng. Chem. Res.* **2014**, 53 (28), 11442–11459.
- (2) Shokrollahi Yancheshmeh, M. S.; Seifzadeh Haghighi, S.; Gholipour, M. R.; Dehghani, O.; Rahimpour, M. R.; Raeissi, S. Modeling of ethane pyrolysis process: A study on effects of steam and carbon dioxide on ethylene and hydrogen productions. *Chem. Eng. J.* **2013**, 215–216, 550–560.
- (3) Sundaram, K. M.; Froment, G. F. Modeling of thermal cracking kinetics—I: Thermal cracking of ethane, propane and their mixtures. *Chem. Eng. Sci.* 1977, 32 (6), 601–608.
- (4) Froment, G. P.; Van de Steene, B. O.; Van Damme, P. S.; Narayanan, S.; Goossens, A. G. Thermal Cracking of Ethane and Ethane-Propane Mixtures. *Ind. Eng. Chem., Process Des. Dev.* **1976**, 15 (4), 495–504.