0 - Traffic lights

1. Preparation tasks

State table:

Figure with connection of RGB LEDs on Nexys A7 board:

Table with color settings:

RGB LED	Artix-7 pin names	Red	Yellow	Green
LD16	N15, M16, R12	1,0,0	1,1,0	0,1,0
LD17	N16, R11, G14	1,0,0	1,1,0	0,1,0

2. Traffic light controller

Listing of VHDL code of sequential process p_traffic_fsm:

```
-- to the delay value.
case s_state is
    -- If the current state is STOP1, then wait 1 sec
    -- and move to the next GO_WAIT state.
    when STOP1 =>
        -- Count up to c_DELAY_1SEC
        if (s_cnt < c_DELAY_1SEC) then
            s_cnt <= s_cnt + 1;
        else
            -- Move to the next state
            s_state <= WEST_GO;</pre>
            -- Reset local counter value
            s_cnt <= c_ZERO;</pre>
        end if;
    when WEST_GO =>
        if (s_cnt < c_DELAY_4SEC) then
            s_cnt <= s_cnt + 1;
        else
            s_state <= WEST_WAIT;</pre>
            s_cnt <= c_ZERO;</pre>
        end if;
    when WEST_WAIT =>
        if (s_cnt < c_DELAY_2SEC) then
            s_cnt <= s_cnt + 1;
        else
            s_state <= STOP2;</pre>
            s_cnt <= c_ZERO;
        end if;
    when STOP2 =>
        if (s_cnt < c_DELAY_1SEC) then
            s_cnt <= s_cnt + 1;
        else
            s_state <= SOUTH_GO;</pre>
            s_cnt <= c_ZERO;</pre>
        end if;
    when SOUTH GO =>
        if (s_cnt < c_DELAY_4SEC) then
            s_cnt <= s_cnt + 1;
        else
            s_state <= SOUTH_WAIT;</pre>
            s_cnt <= c_ZERO;
        end if;
    when SOUTH WAIT =>
        if (s_cnt < c_DELAY_2SEC) then
            s_cnt <= s_cnt + 1;
        else
            s_state <= STOP1;</pre>
            s_cnt <= c_ZERO;</pre>
        end if;
    -- It is a good programming practice to use the
    -- OTHERS clause, even if all CASE choices have
    -- been made.
```

Listing of VHDL code of combinatorial process p_output_fsm

```
p_output_fsm : process(s_state)
    begin
         case s_state is
              when STOP1 =>
                   south_o <= c_RED;</pre>
                   west_o <= c_RED;</pre>
              when WEST_GO =>
                   south_o <= c_RED;</pre>
                   west_o <= c_GREEN;</pre>
              when WEST_WAIT =>
                   south_o <= c_RED;
                  west_o <= c_YELLOW;</pre>
              when STOP2 =>
                   south_o <= c_RED;</pre>
                   west_o <= c_RED;</pre>
              when SOUTH_GO =>
                   south_o <= c_GREEN;</pre>
                   west_o <= c_RED;</pre>
              when SOUTH WAIT =>
                   south_o <= c_YELLOW;</pre>
                   west_o <= c_RED;</pre>
              when others =>
                   south_o <= c_RED;</pre>
                   west_o <= c_RED;</pre>
         end case;
    end process p_output_fsm;
```

Screenshots of the simulation:

Reset:

Cycle:

3. Smart controller

State table:

Current state	Direction South	Direction West	Sensor South	Sensor West	Next state
STOP1	red	red	Х	Х	WEST_GO
WEST_GO	red	green	0	0	WEST_GO
WEST_GO	red	green	0	1	WEST_GO
WEST_GO	red	green	1	0	WEST_WAIT
WEST_GO	red	green	1	1	WEST_WAIT
WEST_WAIT	red	yellow	Х	Х	STOP2
STOP2	red	red	Х	Х	SOUTH_GO
SOUTH_GO	green	red	0	0	SOUTH_GO
SOUTH_GO	green	red	0	1	SOUTH_WAIT
SOUTH_GO	green	red	1	0	SOUTH_GO
SOUTH_GO	green	red	1	1	SOUTH_WAIT
SOUTH_WAIT	yellow	red	Х	Х	STOP1

Listing of VHDL code of sequential process p_smart_traffic_fsm:

```
when STOP1 =>
                          if (s_cnt < c_DELAY_1SEC) then
                              s_cnt <= s_cnt + 1;
                          else
                              s_state <= WEST_GO;</pre>
                              s_cnt <= c_ZERO;
                          end if;
                     when WEST GO =>
                          if (s_cnt < c_DELAY_4SEC) then
                              s_cnt <= s_cnt + 1;
                          elsif (sensor_south_i='0') then
                              s_cnt <= c_DELAY_4SEC; -- trochu bodge, ale aspon</pre>
ochrani proti preteceniu s_cnt
                          else
                              s_state <= WEST_WAIT;</pre>
                              s_cnt <= c_ZERO;
                          end if;
                     when WEST WAIT =>
                          if (s_cnt < c_DELAY_2SEC) then
                              s_cnt <= s_cnt + 1;
                          else
                              s_state <= STOP2;</pre>
                              s_cnt <= c_ZERO;
                          end if;
                     when STOP2 =>
                          if (s_cnt < c_DELAY_1SEC) then
                              s_cnt <= s_cnt + 1;
                          else
                              s_state <= SOUTH_GO;</pre>
                              s_cnt <= c_ZERO;
                          end if;
                     when SOUTH GO =>
                          if (s_cnt < c_DELAY_4SEC) then
                              s_cnt <= s_cnt + 1;
                          elsif (sensor_west_i='0') then
                              s_cnt <= c_DELAY_4SEC;</pre>
                          else
                              s_state <= SOUTH_WAIT;</pre>
                              s_cnt <= c_ZERO;</pre>
                          end if;
                     when SOUTH WAIT =>
                          if (s_cnt < c_DELAY_2SEC) then
                              s_cnt <= s_cnt + 1;
                          else
                              s_state <= STOP1;</pre>
                              s_cnt <= c_ZERO;
                          end if;
                     when others =>
                          s_state <= STOP1;</pre>
                 end case;
             end if; -- Synchronous reset
         end if; -- Rising edge
    end process p smart traffic fsm;
```