

AULA 2 CAPÍTULO 10

PROF. DAVID WESLEY AMADO DUARTE 2023

COMPOSTOS INORGÂNICOS ÁCIDOS DE ARRHENIUS

- + Uma tarefa importante na Ciência, e que facilita o estudo, é reunir substâncias semelhantes em **classes** ou **grupos**.
- + Como já vimos, no século XVIII foi feita uma classificação das substâncias em inorgânicas (ou minerais) e orgânicas.

- + O que se dizia era:
- + Substância inorgânica (ou mineral) é a que se origina dos minerais.
- + **Substância orgânica** é a que se origina dos organismos vivos (vegetais e animais)

- + Posteriormente, verificou-se que todas as substâncias orgânicas contém o elemento carbono e passou-se a dizer que:
- + Substâncias orgânicas são as que contêm carbono.
- + **Substâncias inorgânicas** são formadas pelos demais elementos químicos.

+ Já vimos, porém, que existem **muitas exceções** de compostos que contêm carbono, mas que apresentam características de compostos inorgânicos, como CO, CO₂, Na₂CO₃, KCN, etc.

- + Como o número de compostos inorgânicos é muito grande, nós os dividimos em agrupamentos menores, denominados **grupos de compostos inorgânicos**. Levamos em consideração sua constituição química e sua interação com a água.
- + Os principais são: ácidos, bases, sais e óxidos.

Svante August Arrhenius

Nasceu na Suécia em 1859. Em 1876 ingressou na Universidade de Upsala, onde se doutorou em 1884. A partir de 1891, tornou-se professor na Universidade de Estocolmo. Já em 1884, propôs sua célebre **teoria da dissociação iônica**, que revolucionou o mundo científico da época. De fato, suas idéias sobre a existência de **íons** foram de início muito combatidas, pois na época era aceito o modelo atômico de Dalton, que falava em partículas neutras e indivisíveis. Aos poucos, porém, as idéias de Arrhenius não só foram aceitas como também contribuíram para o desenvolvimento das teorias eletrônicas da matéria. Por seus trabalhos, Arrhenius recebeu, em 1903, o Prêmio Nobel de Química.

SVANTE AUGUST ARRHENIUS

+ **Svante August Arrhenius** verificou, no fim do século XVIII, que algumas soluções aquosas conduziam corrente elétrica, e outras não.

A lâmpada se mantém apagada, provando que a solução de água e açúcar **não** permite a passagem da corrente elétrica (solução não-eletrolítica).

A lâmpada se acende, provando que a solução de água e sal permite a passagem da corrente elétrica (solução eletrolítica).

- + Arrhenius explicou a diferença de comportamento assim:
- + O açúcar (e outros não-eletrólitos), quando dissolvido em água, subdivide-se em moléculas (C₁₂H₂₂O₁₁) que são eletricamente neutras, insensíveis ao campo elétrico. Assim, a corrente elétrica não pode fluir na solução.

+ No caso do sal (e demais eletrólitos), quando dissolvido na água, subdivide-se em partículas carregadas eletricamente, denominadas íons (Na+ e Cl-, nesse caso). Os cátions caminham em direção ao pólo negativo e os ânions caminham em direção ao pólo positivo. A corrente elétrica flui e a lâmpada acende.

- + Os **não-eletrólitos** são sempre **substâncias moleculares** (como o açúcar).
- + Os eletrólitos podem ser moleculares ou iônicos.

- + Na verdade, como já sabemos, o sal comum é formado por íons (Na⁺ e Cl⁻) no seu estado natural, que é o estado sólido.
- + Quando se coloca sal em água, a água provoca apenas a **separação dos íons que já existem,** a **dissociação iônica** ou **dissociação eletrolítica**.

$$Na^{+}C\ell^{-}$$
 \xrightarrow{Agua} Na^{+} $+$ $C\ell^{-}$

15

No estado sólido, os íons Na⁺ e Cℓ⁻ estão "presos" no reticulado cristalino. (cores-fantasia; sem escala)

Em solução na água, os íons Na⁺ e C*l*⁻ estão "soltos" e podem se movimentar, transportando a corrente elétrica.

DISSOCIAÇÃO E IONIZAÇÃO

+ O ácido clorídrico (HCl) é um gás no estado natural. Ao ser dissolvido em água, a própria água quebra as moléculas de HCl e provoca a formação dos íons H+ e Cl-:

$$HC\ell \xrightarrow{Agua} H^+ + C\ell^-$$

- + A formação de íons a partir de substâncias moleculares é denominada de **ionização**.
- + A quantidade de moléculas ionizadas depende de cada substância. Em certas condições, pode-se verificar que de cada 100 moléculas de HCl em água, 92 estão ionizadas.
- + Por outro lado, nas mesmas condições, o HF (H+ e F-) só ioniza 8 de cada 100 moléculas.

GRAU DE IONIZAÇÃO

+ Para medir se a extensão da ionização é maior ou menor, usamos o **grau de ionização** (ou **grau de dissociação iônica**, quando for o caso), representado pela letra α:

 $\alpha = \frac{\text{Número de moléculas ionizadas}}{\text{Número de moléculas dissolvidas}}$

GRAU DE IONIZAÇÃO

+ Usando os exemplos dados acima, temos:

+ Para o HCl:
$$\propto = \frac{92}{100} = 0,92 \text{ ou } 92\%$$

+ Para o HF:
$$\propto = \frac{8}{100} = 0,08 \text{ ou } 8\%$$

GRAU DE IONIZAÇÃO

- + O grau de ionização varia entre 0 e 1 (ou 0% e 100%).
- + Quando o valor está próximo de zero, a substância está pouco ionizada e é um **eletrólito fraco**.
- + Quando o valor está próximo de 100, a substância está muito ionizada e é um **eletrólito forte**.

OBSERVAÇÃO IMPORTANTE 1

+ As substâncias iônicas (como o NaCl) conduzem a corrente elétrica tanto em solução como quando fundidas, pois a água ou a fusão apenas separam e libertam os íons já existentes.

OBSERVAÇÃO IMPORTANTE 2

+ As substâncias moleculares, por sua vez, podem ser ionizáveis (como o HCl) ou não (como o açúcar); no entanto, as primeiras somente se ionizam com o auxílio da água ou de outro solvente (solvente ionizante) que venha a quebrar suas moléculas.

VAMOS EXERCITAR UM POUCO?

(Unicamp-SP) À temperatura ambiente, o cloreto de sódio, NaCl, é sólido e o cloreto de hidrogênio, HCl, é um gás. Estas duas substâncias podem ser líquidas em temperaturas adequadas.

- a) Por que, no estado líquido, o NaCl é um bom condutor de eletricidade, enquanto, no estado sólido, não é?
- b) Por que, no estado líquido, o HCl é um mau condutor de eletricidade?
- c) Por que, em solução aquosa, ambos são bons condutores de eletricidade?

EXERCÍCIO 1

25

Qual dos itens a seguir representa o eletrólito mais forte?

- a) $\alpha = 40\%$
- b) $\alpha = 0.85\%$
- c) Tem 40 moléculas dissociadas em cada 200 moléculas totais.
- d) $\frac{3}{4}$ de moléculas estão dissociadas.
- e) Metade das moléculas se dissociaram.

EXERCÍCIO 2

COMPOSTOS INORGÂNICOS

+ Como a quantidade de cátions e ânions formados pode ser muito grande e com muitas variações, é interessante memorizar os principais e/ou consultar tabelas com os nomes e as fórmulas desses íons.

Tabela dos principais ânions							
Ânions monovalentes: 1—							
Halogênios	Carbono	Enxofre					
F¹-fluoreto	CN¹- cianeto	HS¹-mono-hidrogenossulfeto (bissulfeto)					
Cℓ¹⁻cloreto	NC ¹⁻ isocianeto	HSO₃-mono-hidrogenossulfito (bissulfito)					
Br¹- brometo	OCN¹- cianato	HSO⁴mono-hidrogenossulfato (bissulfato)					
I ¹⁻ iodeto	NOC⁻isocianato	Nitrogênio	Metais de transição				
CℓO¹-hipoclorito	ONC ¹⁻ fulminato	NO₁⁻ nitrito	MnO₄ permanganato				
CℓO ₂ ¹-clorito	HCO₃ mono-hidrogenocarbonato (bicarbonato)	NO₃¹⁻ nitrato	Outros				
CℓO³- clorato	HCOO¹- metanoato ou formiato	NH½ amideto	H¹- hidreto				
CℓO ₄ ¹- perclorato	H₃C — COO¹- etanoato ou acetato	N₃ ^{1–} azoteto	OH¹- hidróxido				

ÂNIONS MONOVALENTES

Ânions bivalentes: 2—							
Oxigênio	Enxofre	Metais de transição	Carbono				
O²-óxido	S²-sulfeto	CrO ₄ ^{2–} (orto) cromato	CO ₃ ²⁻ carbonato				
O ₂ ^{2–} peróxido	SO ₃ ²⁻ sulfito	Cr ₂ O ₇ ^{2–} dicromato	C₂O₄²⁻oxalato				
O ₄ ^{2–} superóxido	SO ₄ sulfato	MnO ₃ -manganito	C² acetileto (carbeto)				
Nitrogênio	S ₂ O ₃ ^{2–} tiossulfato	MnO₄²⁻ manganato	Outros				
N ₂ O ₂ ^{2–} hiponitrito	S ₂ O ₈ ^{2–} peroxidissulfato	ZnO ₂ -zincato	B₄O₂⁻ tetraborato				

ÂNIONS BIVALENTES

Ânions trivalentes: 3—			
Nitrogênio	Metais de transição		
N³⁻ nitreto	[Fe(CN) ₆] ^{3–} ferricianeto		
Fósforo	Outros		
PO ₄ ³-(orto)fosfato	BO₃⁻ (orto)borato		

Ânions tetravalentes: 4—			
Fósforo	Metais de transição		
P ₂ O ₇ ⁴⁻ pirofosfato	[Fe(CN) ₆] ^{4–} ferrocianeto		
Carbono	Outros		
C⁴⁻carbeto	SiO ₄ -(orto)silicato		

ÂNIONS TRI E TETRAVALENTES

	Tabela dos principais cátions						
	Monovalentes: 1+	Bivalentes: 2+	Trivalentes: 3+	Tetravalentes: 4+	Pentavalentes: 5+		
	H₃O¹+ hidrônio	Be²+ berílio	Aℓ³+ alumínio				
Possuem uma única valência	NH ₄ ¹⁺ amônio	Mg ²⁺ magnésio	Bi³+ bismuto				
ica va	Li¹+ lítio	Ca²+ cálcio					
ma ún	Na ¹⁺ sódio	Sr²+ estrôncio					
n mər	K¹+ potássio	Ba²+ bário					
Possi	Rb¹+ rubídio	Ra²+ rádio					
	Cs ¹⁺ césio	Zn²+ zinco					
	Ag¹+ prata	Cd ²⁺ cádmio					
	Cu ¹⁺ cobre I cuproso	Cu²+ cobre II cúprico					
	Hg ₂ ²⁺ mercúrio I mercuroso	Hg ²⁺ mercúrio II mercúrico					
	Au ¹⁺ ouro I auroso		Au³+ ouro III áurico				
		Cr ²⁺ crômio II cromioso	Cr³+ crômio III crômico				
		Fe ²⁺ ferro II ferroso	Fe³+ ferro III férrico				
alência		Co²+ cobalto II cobaltoso	Co³+ cobalto III cobáltico				
le uma va		Ni²+ níquel II niqueloso	Ni³+ níquel III niquélico				
Possuem mais de uma valência		Mn ²⁺ manganês II manganoso	Mn³+ manganês III mangânico				
Possue		Sn²+ estanho II estanoso		Sn ⁴⁺ estanho IV estânico			
		Pb ²⁺ chumbo II plumboso		Pb ⁴⁺ chumbo IV plúmbico			
		Pt²+ platina II platinoso		Pt ⁴⁺ platina IV platínico			
		Ti ²⁺ titânio II titanoso		Ti⁴+ titânio IV titânico			
			As³+ arsênio III arsenioso		As ^{s+} arsênio V arsênico		
			Sb³+ antimônio III antimonioso		Sb⁵+ antimônio V antimônico		

PRINCIPAIS CÁTIONS PÁGINA 249

ÁCIDOS DE ARRHENIUS

- + Os **ácidos são eletrólitos**. Logo, podem formar íons em solução aquosa.
- + A definição mais comum para ácidos foi formulada por Arrhenius, de acordo com o seu conceito de eletrólitos.

ÁCIDOS DE ARRHENIUS

Ácidos são compostos covalentes que reagem com a água (sofrem ionização) formando soluções que apresentam como único cátion o hidrônio, H₃O¹⁺.

$$HC\ell(g) + H_2O(\ell) \longrightarrow H_3O^{1+}(aq) + C\ell^{1-}(aq)$$
 cloreto de hidrogênio água cátion hidrônio ânion cloreto ácido clorídrico

ÁCIDOS DE ARRHENIUS

+ A ionização é uma reação química que, como dito anteriormente, produz íons que não existiam anteriormente.

• fórmulas eletrônicas:

$$H \bullet \bullet C\ell^{1-} \cdot + H \bullet \bullet O \bullet H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H \end{pmatrix} + C\ell^{1-} \cdot H \longrightarrow \begin{pmatrix} H \bullet O \bullet H$$

fórmulas estruturais:

$$H - C\ell^{1-} + H \longrightarrow \begin{pmatrix} H \\ H \end{pmatrix} + C\ell^{1-}$$

ÁCIDOS DE ARRHENIUS

ÁCIDOS DE ARRHENIUS

+ O que foi demonstrado acima foi que o cloro é mais eletronegativo que o hidrogênio e, portanto, atrai o par de elétrons da ligação covalente para mais perto de si, originando um caráter parcial positivo (δ^+) próximo ao hidrogênio e um caráter parcial negativo (δ^-) próximo ao cloro na molécula.

+ Ao entrar em contato com a água, o hidrogênio positivamente carregado da molécula de HCl é fortemente atraído pelo oxigênio da água, H₂O (mais eletronegativo que o cloro), e se estabelece uma ligação covalente, formando o cátion hidrônio (H₃O+).

 + Em meio aquoso, o íon hidrônio (H₃O+) é cercado por moléculas de água, originando o cátion hidroxônio, ou seja o cátion hidrônio hidratado.

 $H_3O^+ \cdot 3H_2O$ ou $H_9O_4^+$

- + O cloro adquire carga negativa e transforma-se no ânion cloreto (Cl⁻).
- + O mesmo processo de ionização, ou formação do íon hidrônio, ocorre para os demais ácidos, quando em solução aquosa.

$$1 \text{ HCN(g)} + 1 \text{ H}_2\text{O}(\ell) \longrightarrow 1 \text{ H}_3\text{O}^{1+}(\text{aq}) + 1 \text{ CN}^{1-}(\text{aq})$$

$$1 \text{ H}_2\text{SO}_3(\text{g}) + 2 \text{ H}_2\text{O}(\ell) \longrightarrow 2 \text{ H}_3\text{O}^{1+}(\text{aq}) + 1 \text{ SO}_3^{2-}(\text{aq})$$

$$1 \text{ H}_3\text{PO}_4(\text{s}) + 3 \text{ H}_2\text{O}(\ell) \longrightarrow 3 \text{ H}_3\text{O}^{1+}(\text{aq}) + 1 \text{ PO}_4^{3-}(\text{aq})$$

$$1 \text{ H}_4\text{P}_2\text{O}_7(\text{s}) + 4 \text{ H}_2\text{O}(\ell) \longrightarrow 4 \text{ H}_3\text{O}^{1+}(\text{aq}) + 1 \text{ P}_2\text{O}_7^{4-}(\text{aq})$$

- + Um ácido pode conter mais de um hidrogênio ionizável. Neste caso, a ionização ocorre em etapas (ionização parcial) e é possível encontrar mais de um tipo de ânion (mas não de cátion) na solução.
- + Esse é o caso, por exemplo, do ácido fosfórico.

1º ionização parcial: $1 H_3 PO_4$ + $1 H_2 O(\ell)$ \longrightarrow $1 H_3 O^{1+}(aq)$ + $1 H_2 PO_4^{1-}(aq)$ 2º ionização parcial: $1 H_2 PO_4^{1-}(aq)$ + $1 H_2 O(\ell)$ \longrightarrow $1 H_3 O^{1+}(aq)$ + $1 H_2 PO_4^{2-}(aq)$ 3º ionização parcial: $1 H_2 PO_4^{2-}(aq)$ + $1 H_2 O(\ell)$ \longrightarrow $1 H_3 O^{1+}(aq)$ + $1 PO_4^{3-}(aq)$ Equação global: $1 H_3 PO_4(s)$ + $3 H_3 O(\ell)$ \longrightarrow $3 H_3 O^{1+}(aq)$ + $1 PO_4^{3-}(aq)$

ÁCIDOS DE ARRHENIUS

Assim, numa solução aquosa de ácido fosfórico, dependendo das condições do meio (temperatura, pressão, concentração), podemos encontrar os ânions fosfato, PO₄³⁻ (aq), fosfato diácido, H₂PO₄⁻ (aq) e fosfato monoácido, HPO₄²⁻ (aq).

NOMENCLATURA DOS ÁCIDOS

+ O nome dos ácidos inorgânicos é fornecido pelo esquema a seguir:

<mark>ácido</mark> +

nome do ânion com terminação trocada

Ácido (fórmula molecular)	Ânion formado em meio aquoso (fórmula e nome)	Nome do ácido
HCℓ(aq)	Cℓ¹⁻(aq): clor eto	Ácido clor ídrico
HCℓO(aq)	CℓO¹-(aq): hipo clor ito	Ácido hipo clor oso
HCℓO₂(aq)	CℓO₂¹⁻(aq): clor ito	Ácido clor oso
HCℓO₃(aq)	CℓO₃¹⁻(aq): (orto)clor ato	Ácido (orto)clór ico
HCℓO₄(aq)	CℓO₄¹-(aq): per clor ato	Ácido per clór ico

NOMENCLATURA DOS ÁCIDOS

VAMOS EXERCITAR UM POUCO?

EXERCÍCIO 3

(PUC-MG) A tabela abaixo apresenta algumas características e aplicações de alguns ácidos:

Nome do ácido	Aplicações e características	
Ácido muriático	Limpeza doméstica e de peças metálicas (decapagem)	
Ácido fosfórico	Usado como acidulante em refrigerantes, balas e goma de mascar	
Ácido sulfúrico	Desidratante, solução de bateria	
Ácido nítrico	Indústria de explosivos e corantes	

As fórmulas dos ácidos da tabela são, respectivamente:

- a) $HC\ell$, H_3PO_4 , H_2SO_4 , HNO_3
- b) HClO, H₃PO₃, H₂SO₄, HNO₂
- c) HCl, H₃PO₃, H₂SO₄, HNO₃
- d) HClO₂, H₄P₂O₇, H₂SO₃, HNO₂
- e) HClO, H₃PO₄, H₂SO₃, HNO₃

EXERCÍCIO 4

Escreva as equações de ionização dos seguintes ácidos:

a) ácido bromídrico

b) ácido nitroso

c) ácido sulfuroso

d) ácido pirofosfórico

FORÇA DOS ÁCIDOS

+ Para entender a força dos ácidos, consideremos as diferenças entre o ácido clorídrico (HCl) e o ácido bórico (H₃BO₃), a seguir.

FORÇA DOS ÁCIDOS - HCI

+ Possui um único hidrogênio ionizável. É um gás incolor ou levemente amarelado, tóxico, obtido como subproduto da cloração do benzeno ou de outros hidrocarbonetos. Forma com a água um ácido forte e corrosivo.

FORÇA DOS ÁCIDOS – H₃BO₃

+ Possui 3 hidrogênios ionizáveis. Sólido encontrado na forma de cristais incolores ou sob a forma de pó branco. É venenoso se ingerido ou inalado em grande quantidade, embora não seja considerado muito mais perigoso que o sal de cozinha. Forma com a água um **ácido fraco**, de ação antisséptica, que compõe vários colírios comerciais.

FORÇA DOS ÁCIDOS

- + Podemos concluir que a força de um ácido não reside na quantidade de hidrogênios ionizáveis.
- + O HCl, com 1 hidrogênio ionizável é um ácido forte, enquanto o H₃BO₃, com 3 hidrogênios ionizáveis, é um ácido fraco.

FORÇA DOS ÁCIDOS

- + A força de um ácido é determinada pelo seu grau de ionização, que vimos no começo da aula.
- + Ácidos fortes: possuem $\alpha > 50\%$.
- + Ácidos semifortes: α entre 5 e 50%.
- + Ácidos fracos: α < 5%.

PROF. DAVID DUARTE

53

ÁCIDOS FORTES

Exemplos: a 18 °C (solução diluída)

```
ácido clorídrico — HC\ell(aq) — \alpha% = 92,5%
```

ácido nítrico — HNO₃(aq) —
$$\alpha$$
% = 92%

ácido sulfúrico —
$$H_2SO_4(aq)$$
 — $\alpha\% = 61\%$

ÁCIDOS SEMIFORTES

Exemplos: a 18 °C (solução diluída)

ácido sulfuroso —
$$H_2SO_3(aq)$$
 — $\alpha\% = 30\%$

ácido fosfórico —
$$H_3PO_4(aq)$$
 — $\alpha\% = 27\%$

ácido fluorídrico — HF(aq) —
$$\alpha$$
% = 8,5%

ÁCIDOS FRACOS

```
Exemplos: a 18 °C (solução diluída)
```

```
ácido sulfídrico — H_2S(aq) — \alpha\% = 0,076\%
ácido bórico — H_3BO_3(aq) — \alpha\% = 0,075\%
ácido cianídrico — HCN(aq) — \alpha\% = 0,008\%
```

OBSERVAÇÃO IMPORTANTE

- + Os valores de α (grau de ionização) são obtidos experimentalmente e tabelados.
- + Não é preciso memorizá-los. Porém, com o uso nós acabamos por relembrar de alguns dos principais.

ÁCIDOS FIXOS E VOLÁTEIS

- + São classificados em fixos e voláteis a depender de suas TE. Os voláteis liberam vapores que podem ser tóxicos.
- + **Fixos:** alta TE (>100 °C), em condições ambiente passam lentamente para o estado de vapor.
- + **Voláteis:** baixa TE (<100 °C), em condições ambiente passam rapidamente para o estado de vapor.

ÁCIDOS FIXOS – EXEMPLOS

ácido sulfúrico — $H_2SO_4(aq)$: 340 °C

ácido fosfórico — $H_3PO_4(aq)$: 213 °C

ácido bórico — $H_3BO_3(aq)$: 185 °C

ÁCIDOS VOLÁTEIS – EXEMPLOS

ácido clorídrico — HCℓ(aq): −85 °C

ácido sulfídrico — $H_2S(aq)$: —59,6 °C

ácido nítrico — HNO₃(aq): 86 °C

ESTABILIDADE DOS ÁCIDOS

- + **Ácidos estáveis:** não sofrem decomposição numa faixa de temperatura e pressão próxima à ambiente. São a maioria dos ácidos.
- + **Ácidos instáveis:** sofrem decomposição parcial ou total à temperatura e pressão ambientes.

ÁCIDOS INSTÁVEIS

$$1 < H_2CO_3(aq) > \longrightarrow 1 H_2O(\ell) + 1 CO_2(g) \uparrow$$
ácido carbônico
$$1 < H_2SO_3(aq) > \longrightarrow 1 H_2O(\ell) + 1 SO_2(g) \uparrow$$
ácido sulfuroso
$$8 < H_2S_2O_3(aq) > \longrightarrow 8 H_2O(\ell) + 8 SO_2(g) \uparrow + S_8(s) \downarrow$$
ácido tiossulfúrico

ÁCIDOS INSTÁVEIS

- + O símbolo <> indica instabilidade.
- + As setas indicam o estado de agregação do produto formado.
- + Seta para cima (↑): **produto no estado gasoso**.
- + Seta para baixo (↓): **produto no estado sólido**, denominado **precipitado**.

ATIVIDADE DE CASA

+ Atividade de leitura:

Ler as **páginas 248 a 258** do livro de Química.

+ Resolução de exercícios:

Responder as **questões 5 a 9** da **página 259** do livro de Química.

REFERÊNCIAS

FELTRE, Ricardo. **Química:** Volume 1. 6 ed. São Paulo: Moderna, 2004.

FONSECA, Martha Reis Marques da. **Química 1:** ensino médio. 2 ed. São Paulo: Ática, 2016.

