USN

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

III Semester B.E. Fast Track Examinations January - 2023

Computer Science and Engineering

FOUNDATIONS OF COMPUTER SYSTEMS DESIGN

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1.9	Write the assembly code for the expression $C = A + B * D$.	02
1.10	A computer has a single cache (off-chip) with a 2ns hit time and a	
	98% hit rate. Main memory has a 40ns access time. What is the	
	computers effective access time?	02

PART-B

2	а	Design a three input, one output minimal two-level gate combinational network that has a logic-1 output, when the majority	
		of inputs are logic 1 and has a logic – 0 output when the majority of	
	b	its inputs are logic -0 . Using a $4-bit$ binary adder, design a network to convert a decimal	05
	D	digit in 8421 code into a decimal digit in excess 3 code.	05
	c	Realize the Boolean expression $f(w, x, y, z) = \sum m(4, 5, 7, 8, 10, 12, 15)$	
		using a 4 to 1 line multiplier and external gates.	
		i) Let w and x appear on the select lines S_1 and S_0 respectively ii) Let y and z appear on the select lines S_1 and S_0 respectively	06
		$\frac{11}{1}$ Let y and z appear on the select lines s_1 and s_0 respectively	00
3	a	A logic diagram and a function table for a proposed gated JK latch is	
		shown in Fig. 3.a. Discuss the problems that can be encountered with	
		this network and under what constraints proper JK flipflop behavior	
		is achieved? $I K C Q^+ \bar{Q}^+$	
		$egin{array}{ c c c c c c c c c c c c c c c c c c c$	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		$X X 0 Q \bar{Q}$	
		Fig. 3.a	04
	b	Design a register incorporating four multiplexer and four positive	
		edge triggered D flipflops, having the behavior specified in the below	
		table 3.b. Table. 3.b	
		Select lines Register operations	
		S_1 S_0	
		0 0 <i>Hold</i>	
		0 1 Synchronous clear	
		1 0 Complement contents 1 1 Circular shift right	04
	С	Design a synchronous mod-6 counter whose counting sequence is	
		$000 \rightarrow 001 \rightarrow 100 \rightarrow 110 \rightarrow 111 \rightarrow 101 \rightarrow 000$ etc by obtaining its minimal	
		sum equations use positive edge triggered D-flipflop.	08
		OR	
4	a	Design and explain $4 - bit$ binary ripple up-counter using a positive	
		edge triggered D-flipflop. Do not include a count enable line.	08
	b	Verify the characteristic equation for the JK, D and T flipflops by	08
		constructing appropriate K-maps and obtaining the minimal sums.	UO

5	а	For the clocked synchronous sequential network shown in Fig. 5.a,	
		construct the excitation table, transition table, state table and state	
		diagram.	
		J @ Z	
		X La ap	
		× \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		The about	
		CIK!	10
	b	Fig. 5.a List the steps needed to execute the machine instruction $SUB(R_1), R_2$.	10
	D	Explain the steps in terms of basic operational concept of the	
		computer. Assume that the instruction is stored in memory at	
		location <i>X</i> and the address of same in the PC register.	06
		OR	
6	а	Obtain a minimal state table for a clocked synchronous sequential	
		network having a single input line x , in which the symbols 0 and 1	
		are applied, and a single output line z . The network is to produce an	
		output of 1 coincident with each input 1 if it is immediately preceded	
		by at least three 1's. At all other times the network is to produce output as 0. An example of input/output that satisfies the condition	
		is given below.	
		x = 01100111111 000111101	
		$z = 00000000111 \ 000000100$	06
	b	The state table of a clocked synchronous sequential network is given	
		below. Assigning codes in binary order to the states, determine minimal sum excitation and output expressions for the sequential	
		network assuming the use of a D flipflops.	
		Present state Next state Output (z)	
		$Input(x) \qquad Input(x)$	
		x = 0 x = 1 x = 0 x = 1	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		$egin{array}{ c c c c c c c c c c c c c c c c c c c$	
		$egin{array}{ c c c c c c c c c c c c c c c c c c c$	10
			10
7	а	Explain the instruction execution and straight line sequencing with a	
		neat diagram and also explain branching with example program.	06
	b	Define addressing mode with an example for each explain any five	10
		addressing modes.	10

8	а	The size of the physical address space of a processor is 2^p bytes. The	
		word length is 2^w bytes. The capacity of cache memory is 2^N bytes.	
		The size of each cache block is 2^{M} words. For a K-way set associative	
		cache memory, determine the length of the tag field.	04
	b	A block set associative memory consists of 128 blocks divided into	
		four block sets. The main memory consists of 16,384 blocks and each	
		block contains 256 eight bit words.	
		i) How many bits are required for addressing the main	
		memory?	
		ii) How many bits are needed to represent the TAG, SET and	
		WORD fields.	06
	С	Explain the single bus organization of the data path inside a	
		processor with supporting block diagram.	06