TECHNISCHE UNIVERSITÄT BERLIN

SoSe 2018

Fakultät II - Mathematik und Naturwissenschaften

Institut für Mathematik

Dozent: W. König

Assistent: A. Schmeding Abgabe: 07.05. - 11.05.2018

3. Übung Analysis II für Mathematiker(innen)

(Topologie, Konvergenz, Spurtopologie)

Themen der Großen Übung am 03.05.

Kompakte Mengen, u.a. Beweis von Beispiel 49:

Eine Teilmenge A eines metrischen Raumes (X, d) ist kompakt genau dann, wenn Sie als Teilmenge von (A, d_A) kompakt ist.

Wir verwenden den Banach'schen Fixpunktsatz um folgenden Satz zu beweisen:

Satz über die Umkehrfunktion (Juniorversion)

Seien $a < x_0 < b$ und $f: [a, b] \to \mathbb{R}$ eine stetig differenzierbare Abbildung mit $f'(x_0) \neq 0$. Dann existiert eine offene Umgebung U von x_0 , so dass $f|_U$ bijektiv ist und eine stetige Umkehrfunktion hat.

Tutoriumsvorschläge

5. Gruppenübung

Sei (X, d) ein metrischer Raum. Zeigen Sie, dass

- (i) jede endliche Teilmenge E von X abgeschlossen ist.
- (ii) der Grenzwert einer konvergenten Folge $(a_k)_{k\in\mathbb{N}}$ eindeutig ist.

Gelten die Aussagen, wenn X ein topologischer Raum mit der Hausdorff-Eigenschaft ist?

6. Gruppenübung

Sei (X, \mathcal{T}) ein topologischer Raum, und $A \subseteq B \subseteq X$ Teilmengen, welche wir mit der Spurtopologie \mathcal{T}_A , bzw. \mathcal{T}_B versehen. Zeigen Sie, dass

- (i) die Topologie \mathcal{T}_A mit der Spurtopologie, welche von \mathcal{T}_B induziert wird, übereinstimmt.
- (ii) falls A offen ist in X und $U \subseteq A$, so gilt $U \in \mathcal{T}_A$ genau dann, wenn $U \in \mathcal{T}$. Bleibt dies richtig, wenn A nicht offen ist?

7. Gruppenübung

Sei (X, d) ein metrischer Raum und für $a \in X$ definieren wir

$$\mathcal{U}(a) := \{ U \subseteq X \mid \exists \varepsilon > 0, \ B_{\varepsilon}(a) \subseteq U \}.$$

*

Zeigen Sie, dass

- (i) $\{\mathcal{U}(a)\}_{a\in X}$ ein Umgebungsfilter (vgl. Übungsblatt 2) von a ist.
- (ii) eine Folge $(a_k)_k$ genau dann gegen a konvergiert, wenn es zu jedem $U \in \mathcal{U}(a)$ ein $k_0 \in \mathbb{N}$ gibt mit $a_k \in U$ für alle $k > k_0$.

8. Gruppenübung

Wir betrachten \mathbb{R}^2 mit der Standardmetrik d_2 . Für $i \in \{0, 2\}$ definieren wir $A_i := \{x \in \mathbb{R}^2 \mid d_2(x, (i, 0)) \leq 1\}$ und $B := \{x \in \mathbb{R}^2 \mid d_2(x, (1, 0)) < 1\}$.

- (i) Skizzieren Sie die Mengen A_0, A_2 und B.
- (ii) Betrachten Sie die Mengen $A_0 \cup A_2$ und $A_0 \cup A_2 \cup B$ jeweils mit der Spurtopologie $\mathcal{T}_{A_0 \cup A_2}$, bzw. $\mathcal{T}_{A_0 \cup A_2 \cup B}$ und entscheiden Sie ob A_0, A_2 in den Topologien $\mathcal{T}, \mathcal{T}_{A_0 \cup A_2}$ und $\mathcal{T}_{A_0 \cup A_2 \cup B}$ offen oder abgeschlossen sind.

Hausaufgaben

9. Aufgabe (6 Punkte)

Sei (X, \mathcal{T}) ein topologischer Raum, und $A, B \subseteq X$. Beweisen oder widerlegen Sie die folgenden Gleichheiten:

- (i) $\overline{A \cup B} = \overline{A} \cup \overline{B}$
- (ii) $\overline{A \cap B} = \overline{A} \cap \overline{B}$,
- (iii) $\overline{A \setminus B} = \overline{A} \setminus \overline{B}$.

Falls eine der Gleichheiten **nicht** gilt, bestimmen Sie, ob stattdessen " \subseteq " oder " \supseteq " gilt. **Hinweis:** Gilt eine Gleichheit nicht, so gibt es (Gegen-)Beispiele dafür in (\mathbb{R}, d_2) !

10. Aufgabe (5 Punkte)

Sei (X, d) ein metrischer Raum und $A \subseteq X$ eine Teilmenge mit der induzierten Metrik d_A .

- (i) Beweisen Sie, dass $B \subseteq A$ in (A, d_A) offen ist, wenn es eine offene Teilmenge V in (X, d) gibt mit $B = A \cap V$.
- (ii) Sei $f: X \to Y$ eine Abbildung und $\mathcal{F} := \{W \subseteq Y \mid f^{-1}(W) \text{ ist offen in } (X, d)\}$. Zeigen Sie, dass \mathcal{F} eine Topologie auf Y ist, und beschreiben Sie die Spurtopologie auf der Teilmenge $Y \setminus \{f(x) \mid x \in X\}$.

11. Aufgabe (5 Punkte)

Sei (X, d) ein metrischer Raum. Zeigen Sie, dass

(i) für konvergente Folgen $x_n \to x$ und $y_n \to y$ stets $d(x_n, y_n) \to d(x, y)$ gilt.

Sei nun (X,d) vollständig und $f\colon X\to X$ eine kontrahierende Abbildung, d.h. für alle $x,y\in X$ gilt $d(f(x),f(y))\leq \lambda d(x,y)$ für festes $\lambda\in]0,1[$. Wir wählen $x_0\in X$ und setzen $x_{n+1}:=f(x_n)$ für $n\in \mathbb{N}$.

(ii) Nach dem Banachschen Fixpunktsatz gilt dann $\lim_{n\to\infty} x_n = x^*$. Zeigen Sie, dass dann auch die folgenden Fehlerabschätzungen gelten

$$d(x_{n+1}, x^*) \le \frac{\lambda}{1-\lambda} d(x_n, x_{n+1})$$
 und $d(x_n, x^*) \le \frac{\lambda^n}{1-\lambda} d(x_1, x_0)$.

12. Aufgabe (4 Punkte)

Sei X eine Menge, zusammen mit einem Umgebungsfilter $(\mathcal{U}(a))_{a\in X}$ (vgl. Übungsblatt 2). Wir sagen, eine Teilmenge $M\subseteq X$ ist \mathcal{U} -offen, falls es zu jedem $a\in M$ ein $U\in \mathcal{U}(a)$ gibt, so dass $U\subseteq M$ gilt. Zeigen Sie, dass

- (i) die Menge $\mathcal{T} := \{U \subseteq X \mid U \text{ ist } \mathcal{U}\text{-offen}\}$ eine Topologie auf X ist. (Damit ist die Bezeichnung " $\mathcal{U}\text{-offen}$ " also eigentlich überflüssig.)
- (ii) der Umgebungsfilter $\{\mathcal{U}(a)\}_{a\in X}$ mit dem Umgebungsfilter

 $\mathcal{N}(a) := \{ M \subseteq X \mid M \text{ ist eine Umgebung bzgl. } \mathcal{T} \text{ von } a \}, (\text{vgl. Übungsblatt 2})$

übereinstimmt.

Aus der Aufgabe folgt, dass eine Kollektion von Umgebungsfiltern eine alternative (und äquivalente!) Beschreibung einer Topologie liefert.

Gesamtpunktzahl: 20