SLAM Vehicle

An asteroid sample return mission

Structures Engineer: Audrey Wiebe Propulsion Engineer: Leah Moore Payload Engineer: Siya Narayan Power Systems Engineer: Elle Evans

Design Objectives

Maximize sample mass

Reliability

Trip Duration

Requirement	Success
Optimize sample mass obtained per trip	bringing back20.0kg per trip
Ensure vehicle is as reliable as possible	• 0.982
Minimize trip time to increase efficiency	• 139.84 days (under half of allotted time)

Mission Parameters

Description	Reliability	Mass
Units	-	kg
Value	0.982	1860
Limits	0.95	3000

Cost	Sample	
\$	kg	
\$2,986,500.00	20.00	
\$3,000,000.00		

Trip Time	delta-V
d	m/s
139.84	20454.51
365.25	

Power Generation	Power Required
W	W
3500.00	3200.00

- High reliability with relatively low mass
- Within budget
- Half of required duration and relatively high delta V
- Generating excess power

Vehicle Subsystem Breakdown

Propulsion: Electrothermal

- Specific impulse = 600 s, Mass = 720 kg
- Higher power to expedite mission

Power storage: LiSO2

Specific energy = 120 Wh/kg, Mass = 300 kg

Power generation: Solar Thermal Dynamic

- Specific power = 14 W/kg, mass = 260 kg
- Generates 3500 W compared to required 3200 W

Payload: De-Spin & Anchor

- Sample mass 20.0 kg, mass = 220 kg
- Budget allowed for high cost & power requirement

Design Cost

• Cost breakdown reflects mission priorities while staying under the \$3 million budget

• Vehicle design incorporates reliable components able to return with a large asteroid

sample

Cost Breakdown

Subsystem	Value
Propulsion	\$2,070,000.00
Power Storage	\$99,000.00
Power Generation	\$437,500.00
Payload	\$380,000.00

Vehicle Sketch & Build Plan

- Took inspiration from the NASA NEAR Shoemaker spacecraft, designed for an asteroid sample return mission
- Incorporating footpads for landing gear and a robotic arm for anchoring & scoop sample collection

Closing Thoughts

 The SLAM vehicle is designed to return up to 20 kg of an asteroid sample with a mission duration of ~139 days, under half of the required duration.

 Prioritizing efficiency of the vehicle's subsystems yields a higher cost, yet allows for a more reliable mission and sample collection.