Quiz on Section 1 Results for SevdanurGenc

(!) Correct answers are hidden.

Score for this attempt: 11.5 out of 12

Submitted Jun 17 at 11:16pm This attempt took 10 minutes.

Question 1

1 / 1 pts

Given that $x_1+x_2+x_3+x_4+x_5 \leq 5$ should hold, select the penalty term corresponding to this constraint.

 $(x_1+x_2+x_3+x_4+x_5+5)^2 = 0$ where s is a non-negative slack variable.

 $(x_1+x_2+x_3+x_4+x_5+s_5)^2 = 0$ where s is a non-negative slack variable.

 $(x_1+x_2+x_3+x_4+x_5-5)^2$

 $(x_1+x_2+x_3+x_4+x_5-s-5)^2 = 0$ where s is a non-negative slack variable.

Question 2

1 / 1 pts

Select the penalty terms that correspond to the constraint x = y.

✓ (x-y)^2

ху-х-у

x+y-2xy

ху

Question 3

1 / 1 pts

What is the objective value we can obtain for a feasible solution of the graph coloring problem?

- 0 10
- 0
- **-5**
- Not enough information

Question 4

1 / 1 pts

Suppose that Q is the QUBO matrix representing a graph coloring problem with two nodes and two colors.

$$Q = egin{pmatrix} -1 & 2 & 1 & 0 & 1 & 0 \ 0 & -1 & 0 & 1 & 0 & 1 \ 0 & 0 & -1 & 2 & 1 & 0 \ 0 & 0 & 0 & -1 & 0 & 1 \ 0 & 0 & 0 & 0 & -1 & 2 \ 0 & 0 & 0 & 0 & 0 & -1 \end{pmatrix}$$

Find out if the vector $\boldsymbol{x}=(0,1,1,1,0,1)$ provides a feasible solution to the graph coloring problem or not.

- The vector provides an infeasible solution.
- The vector provides a feasible solution.

Question 5	1 / 1 pts
Greedy approach can always find an optimal solution to a graph coloproblem.	ouring
O True	
False	

A path through a graph that visits each vertex exactly once is called a Hamiltonian path. True False

Question 7	1 / 1 pts
Variables in a QUBO problem must always be	
Integer	
O Continuous	
Binary	

Question 8

1 / 1 pts

Find the right QUBO matrix representation for the following objective function

$$f(x_1,x_2,x_3) = -10x_1 - 2x_2 + 5x_3 + 3x_1x_2 + x_1x_3 + 2x_2x_3$$

- $\begin{bmatrix}
 -10 & 3 & 1 \\
 0 & -2 & 2 \\
 0 & 0 & 10
 \end{bmatrix}$
- $\begin{bmatrix}
 -5 & 4 & 8 \\
 0 & -3 & 2 \\
 0 & 0 & -8
 \end{bmatrix}$
- $\begin{bmatrix}
 -1 & 3 & 1 \\
 0 & 0 & 2 \\
 0 & 0 & 5
 \end{bmatrix}$

Question 9

1 / 1 pts

The objective function of the max-cut problem is

$$\min \sum_{(i,j) \in E} x_i + x_j - 2x_i x_j$$

- True
- False

Question 10

1 / 1 pts

The maximum cut of a bipartite graph is equal to the total number of edges in the graph.

- True
- False

Question 11

1 / 1 pts

Suppose we have the penalty term $P\sum_{i=0}^5 \left(\sum_{t=0}^5 x_{i,t} - 1$ in our objective function and P=5 .

Given that the following binary variables are equal to 1 in the solution, what can you conclude about the penalty included in the objective value due to the above term?

$$x_{2.0} = 1, \ x_{3.1} = 1, x_{5.2} = 1, \ x_{5.3} = 1, \ x_{4.4} = 1, \ x_{1.5} = 1$$

- -5
- 0
- < 10
- 5

Partial

Question 12

0.5 / 1 pts

Suppose that Q is the QUBO matrix representing a TSP instance with 4 cities and the penalty coefficient is set to P=4. Suppose for a given x, the value of x^TQx is-20. Which one of the followings can you conclude with certainty?

The found route is feasible.
Optimal solution has a cost less than or equal to 12.
Optimal route has cost 12.
The cost of the found route is 12.
The found route is optimal.

Quiz Score: 11.5 out of 12