Q1

1. What's the information gain for the \Price" attribute? Please show your calculation. Ans:

In total, P: 7, NP: 5

Info(D) = I(7, 5) = -7/12\*log(7/12) - 5/12\*log(5/12) = 0.97987

|    | Low | Medium | High |
|----|-----|--------|------|
| Р  | 4   | 2      | 1    |
| NP | 1   | 1      | 3    |

Info\_price(D) = 5/12\*I(4, 1) + 3/12\*I(2, 1) + 4/12\*I(1, 3)

= 5/12\*(-4/5\*log base 2 (4/5) - 1/5\*log base 2 (1/5)) + 3/12\*(-1/3\*log base 2 (1/3) - 2/3\*log base 2 (2/3)) + 4/12\*(-1/4\*log base 2 (1/4) - 3/4\*log base 2 (3/4))

= 0.800803

So Gain(Price) = Info(D) - Info\_price(D) =0.179067

2. Now suppose we want to use Gini Index as attribute selection measure. What's the Gini index for the attribute Parking? What's the reduction in impurity in terms of Gini Index? Please show your calculation.

Ans: Parking partitions D into {No} and {Available}.

|    | No | Available |
|----|----|-----------|
| P  | 2  | 5         |
| NP | 2  | 3         |

$$Gini(D) = 1-(5/12)^2 - (7/12)^2 = 0.48611$$

 $Gini_parking(D) = 4/12*Gini(2,2) + 8/12*Gini(5,3)$ 

$$= \frac{4}{12} * \left(1 - \frac{1^2}{2} - \frac{1^2}{2}\right) + \frac{8}{12} * \left(1 - \frac{3^2}{8} - \frac{5^2}{8}\right) = \frac{23}{48} \approx 0.47917$$

Reduction in impurity = Gini(D) -  $Gini_parking(D)$  = 1/144 = 0.00694

3. Based on the training data, we want to construct a Naive Bayes classifier. Please estimate the following terms (No smoothing is required, and please show your calculation):

Ans:

- a) Pr(Popularity = P') = 7/12; and Pr(Popularity = N') = 5/12
- b) Pr(Price = 'Low', Parking = `Available', Cuisine = `Mexican' | Popularity = `P')
- = Pr(Low|P)\*Pr(Available|P)\*Pr(Mexican|P) = 4/7\*5/7\*2/7 = 40/343
- c) Pr(Price = 'Low', Parking = `Available', Cuisine = `Mexican' | Popularity = `N')
- = Pr(Low|NP)\*Pr(Available|NP)\*Pr(Mexican|NP) = 1/5\*3/5\*2/5 = 6/125
- 4. Suppose a restaurant has the values: Price = 'Low', Parking = 'Available', Cuisine
- = `Mexican'. Based on the calculation in 3, is this restaurant classified as popular?

```
P1 = P(P \mid Price = 'Low', Parking = `Available', Cuisine = `Mexican')
= \frac{P(Price = low, Parking = `Available', Cuisine = `Mexican' \mid P)*P(P)}{P(Price = 'Low', Parking = `Available', Cuisine = `Mexican')}
= \frac{\left(\frac{40}{343} * \frac{7}{12}\right)}{P(Price = 'Low', Parking = `Available', Cuisine = `Mexican')}
P2 = P(NP \mid Price = 'Low', Parking = `Available', Cuisine = `Mexican')
= \frac{P(Price = low, Parking = `Available', Cuisine = `Mexican' \mid NP)*P(NP)}{P(Price = 'Low', Parking = `Available', Cuisine = `Mexican')}
= \frac{\left(\frac{6}{125} * \frac{5}{12}\right)}{P(Price = 'Low', Parking = `Available', Cuisine = `Mexican')}
```

As P1 > P2, it is classified as Popular.

Q2:

1. According to training data, we know that red is +1, blue is -1. For each test data, we compute and compare the distance to all training points to get the K=3 nearest neighbors and assign labels according to it.

| train |     |    |          | Euclidean dist^2 (Test to train) |       |       |       |
|-------|-----|----|----------|----------------------------------|-------|-------|-------|
| x1    | x2  | у  |          | 1                                | 2     | 3     | 4     |
| 1     | 0.5 | 1  |          | 7. 73                            | 2.5   | 4. 25 | 0. 29 |
| 2     | 1.2 | 1  |          | 2. 74                            | 0. 29 | 1.94  | 0.68  |
| 2.5   | 2   | 1  |          | 0. 53                            | 1     | 1.25  | 2. 69 |
| 3     | 2   | 1  |          | 0. 58                            | 1. 25 | 2.5   | 4. 24 |
| 1.5   | 2   | -1 |          | 1. 93                            | 2     | 0. 25 | 1.09  |
| 2.3   | 3   | -1 |          | 0. 25                            | 4. 04 | 0.89  | 5. 21 |
| 1.2   | 1.9 | -1 |          | 2.89                             | 2.5   | 0.45  | 0.81  |
| 0.8   | 1   | -1 |          | 6. 5                             | 2.89  | 2.74  | 0. 16 |
|       |     |    | Label(y) | 1                                | 1     | -1    | 1     |

Those 3 yellow cells in each column corresponds to the 3 nearest points to current test point. We get the classification labels shown in green. The error is the  $4^{th}$  point label, which should be -1 in this case, with error rate = 1/4

2. 
$$sign(w^Tx) = sign(w_0 + w_1x_1 + w_2x_2) = sign(1 + 0.5 * 0.8 - 1 * 1) = sign(0.4) = 1$$
 which is not -1. So it is NOT correctly classified.

Adjustment: Update  $w = w + \eta xy$ 

$$w_0 = w_0 - 0.1 * 1 = 0.9$$

$$w_1 = w_1 - 0.1 * 0.8 = 0.42$$

$$w_2 = w_2 - 0.1 * 1 = -1.1$$

# Q3:

## 1. Note: Triangles represent cluster centers

| Initial   | Center Cord x | Center Cord y |
|-----------|---------------|---------------|
| Cluster 1 | 4             | 5             |
| Cluster 2 | 3.5           | 4.5           |
| Cluster 3 | 6             | 5             |



| Round 2:  | Center Cord x | Center Cord y |
|-----------|---------------|---------------|
| Cluster 1 | 4.25          | 5             |
| Cluster 2 | 2.7           | 2.8           |
| Cluster 3 | 6             | 3             |



| Round 3:  | Center Cord x | Center Cord y |
|-----------|---------------|---------------|
| Cluster 1 | 4.1           | 5             |
| Cluster 2 | 1.25          | 1.5           |
| Cluster 3 | 5.5           | 1             |



## 2. Note: Triangles represent cluster centers

| Initial   | Center Cord x | Center Cord y |
|-----------|---------------|---------------|
| Cluster 1 | 2.5           | 5.5           |
| Cluster 2 | 3.5           | 4.5           |
| Cluster 3 | 6             | 1             |



| Round 2   | Center Cord x | Center Cord y |
|-----------|---------------|---------------|
| Cluster 1 | 2.5           | 5.5           |
| Cluster 2 | 3.416667      | 3.75          |
| Cluster 3 | 5.5           | 1             |



1) They are different because:

It terminates at local optimal. As for the 2<sup>nd</sup>, the cluster graphs is more distorted by the outliers.

2) The first one is better. As can be seen from the two graphs below: The  $1^{\text{st}}$  one produced high quality clusters with more cohesive within clusters and distinctive between clusters than the  $2^{\text{nd}}$  one.



- 3) Quality measurement criteria: We can calculate the total distance among each clusters and add them up. The smaller this value is, the better the cluster is. For this example, the  $1^{st}$  case is better, because the  $2^{nd}$  one have spread yellow cluster.
- 4) We can try to exclude outliers from the initial cluster center or try out multiple starting points and choosing the clustering with lowest cost (just like the above process).

#### Mini-Mp:

#### 1. Binary Attribute:



#### 2. J48 Result:

```
=== Evaluation on test split ===
=== Summary ===
```

| Correctly Classified Instances   | 1426      | 91.1765 % |
|----------------------------------|-----------|-----------|
| Incorrectly Classified Instances | 138       | 8.8235 %  |
| Kappa statistic                  | 0.8131    |           |
| Mean absolute error              | 0.1229    |           |
| Root mean squared error          | 0.2782    |           |
| Relative absolute error          | 25.7356 % |           |
| Root relative squared error      | 56.9163 % |           |
| Total Number of Instances        | 1564      |           |

=== Detailed Accuracy By Class ===

|               | TP Rate | FP Rate | Precision | Recall | F-Measure | ROC Area | Class |
|---------------|---------|---------|-----------|--------|-----------|----------|-------|
|               | 0.949   | 0.146   | 0.909     | 0.949  | 0.929     | 0.937    | 0     |
|               | 0.854   | 0.051   | 0.917     | 0.854  | 0.884     | 0.937    | 1     |
| Weighted Avg. | 0.912   | 0.108   | 0.912     | 0.912  | 0.911     | 0.937    |       |

=== Confusion Matrix ===

```
a b <-- classified as
899 48 | a = 0
90 527 | b = 1
```





Interesting Rule: Word freq with credit turns out more likely to be classified as spam

### 3. Play with weka:

1) **Confidencefactor** is used for pruning. I chose 0.8, larger than default 0.25, then, the tree get much bigger.



2) **MinnumberObj** is to ensure the instances of leaves is bigger than this number. After I change this from 2 to 3, the leaves decreases with bigger instance.



#### 4. Na we Bayes:

