STR/LTML/ 96-20 1/162

Document de conception TRIO_U Version 1

Juillet 1996

M. Farvacque, Ph. Emonot, O. Cueto

STR/LMTL/9620

Table des matières

INTRODUCTION	5
1. LES CONCEPTS DE L'APPROCHE OBJET	5
2. Modèle objet OMT	
3. STRUCTURE DE TRIO_U VERSION 1	
4. NOTATIONS DU DOCUMENT	
5. SI VOUS VOULEZ DES PRÉCISIONS	8
TRIO_U: LE NOYAU	9
1-NOYAU : LES PROBLEMES	10
2-NOYAU : LES EQUATIONS	
3-NOYAU: LES OPERATEURS	16
4-NOYAU : LES SOURCES	19
5-NOYAU : SOLVEUR MASSE	
6-NOYAU : MILIEU	
7-NOYAU: DISCRETISATION EN TEMPS	
8-NOYAU: DISCRETISATION EN ESPACE	
8.1 La discrétisation	
8.3 Discrétisation des zones :	
8.4 Discrétisation des Frontières :	
8.5 Discrétisation des conditions limites:	
9-NOYAU : CONDITIONS LIMITES	
10-NOYAU : LES CHAMPS	
10.1 Champ_Inc	
10.2 Champ_Don	
10.3 Champ_Fonc	
10.4 Champ_front	30
11-NOYAU : POSTRAITEMENT	
11.1 Postraitement	
11.2 Sonde11.3 Operateur_Statistique_tps	
11.5 Operateur_statistique_tps	
TRIO_U : CHAMPS	
-	
1- Champ_Uniforme2- Champ_front_uniforme	
TRIO_U: CHAMPS_DIS	
1- DISCRÉTISATION DES CHAMP_INC	
2- DISCRÉTISATION DES CHAMP_FONC	47
TRIO_U: STATISTIQUES_TEMPS	49
MOYENNE ET ECART TYPE D'UN CHAMP	50
TRIO_U: THHYD	51
1- THHYD : LES PROBLEMES	
1.1 Problèmes thermohydrauliques traités en laminaire :	
1.2 Problèmes thermohydrauliques traités avec un modèle de turbulence :	52
2- ThHyd : LES EQUATIONS.	
2.1 Les équations de Navier_Stokes	
2.2 Les équations de Convection_Diffusion	57
2.3 Equations de transport pour K, ε :	
3- THHYD: MILIEU	
4- THHYD: DISCRÉTISATION	
5- THHYD: CONDITIONS LIMITES	
5.1 Conditions limites de type Dirichlet	
5.3 Conditions limites de type Neumann	

5.4 Conditions limites de type Echange_impose	
6- THHYD : SOLVEUR PRESSION7- THHYD : MODELES DE TURBULENCE	84
7- THHYD: MODELES DE TURBULENCE	
7.1 Modeles de turbulence (nya)	
7.3 Lois de paroi	
8- ThHyd : Termes SOURCE	96
8.1 Boussinesq	
8.2 Puissance thermique	
TRIO_U: THSOL	
_	
1- THSOL : LES PROBLEMES	
2- THSOL : LES EQUATIONS	
3- ThSol : MILIEU	
TRIO_U: OPERATEURS	109
1- LES OPÉRATEURS DE DIFFUSION:	
2- LES OPÉRATEURS DE CONVECTION:	110
3- LES OPÉRATEURS DE DIVERGENCE:	
4- LES OPÉRATEURS DE GRADIENT:	111
TRIO_U: GEOMETRIE	123
1- Geometrie / Domaine	124
2- Geometrie / Zone	
3- Geometrie / Frontiere	
4- Geometrie / Sous_Zone, Frontiere_utilisateur	
5- GEOMETRIE / ELEM_GEOM	
TRIO_U: SCHEMAS_TEMPS	143
1- Schemas Temps/ Schema Euler explicite	
TRIO_U: VF	
1- VF / Zones	
2- VF / Eléments	149
TRIO_U: VDF	150
1- VDF / ZONES : Zone VDF	153
2- VDF / ZONES : ZONE_CL_VDF	
3- VDF / Elements	
4- VDF / DISCRÉTISATION	
5- VDF / OPERATEURS	182
5.1 Les itérateurs VDF :	
5.2 Classes particulières des opérateurs VDF pour la diffusion :	
5.3 Classes particulières des opérateurs VDF pour la convection:	
5.4 Classes particulières des opérateurs VDF pour la divergence:	
5.5 Classes particulières des opérateurs VDF pour le gradient:	
6- VDF / SOURCES	
6.2 Termes sources VDF traités directement :	
7- VDF / Solveur_Masse	
/ VDI / GOEVEOR_IVINGGE	
8- VDF / Solveur Pression	
8- VDF / Solveur_Pression	
9- VDF / Turbulence	241
	241 241
9- VDF / Turbulence :	241 241 241 247
9- VDF / Turbulence : 9.1 Modèles de turbulence : 9.2 Lois de paroi : 10- VDF / Cond_Lim 11- VDF / Champs	241 241 247 247
9- VDF / TURBULENCE 9.1 Modèles de turbulence : 9.2 Lois de paroi : 10- VDF / COND_LIM 11- VDF / CHAMPS 11.1 Classes Champ_Inc implémentées pour les VDF:	
9- VDF / Turbulence : 9.1 Modèles de turbulence : 9.2 Lois de paroi : 10- VDF / Cond_Lim 11- VDF / Champs	
9- VDF / TURBULENCE 9.1 Modèles de turbulence : 9.2 Lois de paroi : 10- VDF / COND_LIM 11- VDF / CHAMPS 11.1 Classes Champ_Inc implémentées pour les VDF:	

STR/LTML/ 96-20 4/162

STR/LTML/ 96-20 5/162

INTRODUCTION

1. Les concepts de l'approche objet

Ces concepts sont maintenant largement diffusés. On rappelleici quelques définitions et on renvoie à la bibliographie pour une présentation complète de ces concepts.

Modélisation et conception orientées objet. J. RUMBAUGH (1995) Éditions Masson. Prentice Hall

Les concepts

Un objet regroupe: des données,

destraitements,

des états, des comportements,

d'autresobjets.

Une classe rassembleles objets ayant les mêmescaractéristiques et les mêmescomportements.

Un objet fournit des services à l'extérieur.

L'interface d'un objet (ou la classe) est l'ensembledes services proposés par l'objet (ou la classe).

La mise en oeuvre est la réalisation de l'interface.

Une requête est l'appeld'un service (par l'envoid'un message).

Une opération représentela miseen oeuvred'un service.

Surcharge d'opération: représente la mise en oeuvre d'un service par plusieurs opérations de signatures différentes.

L'encapsulation assure l'indépendance de l'interface vis-à-vis de la mise en oeuvre. La mise en oeuvre peut changermais l'interface est conservée.

Pour supporter l'encapsulation, le paradigmeobjet prévoit le *masquage* de l'information: une partie de l'interfacen'est disponible que pour certains clients.

On regroupeles classes de mêmecaractéristique et de mêmecomportement. Les classes sont ordonnées par deux mouvements contraires: la *généralisation* et la *spécialisation*

L'héritage est le procédépar lequel une classe dite sous classe reçoit une partie de sa définition d'une autre classe, dite super classe. On dit aussi que la sous classe dérive de sa super classe.

Les caractéristiques de la classe ancêtres ont transmises à la classe dérivée.

Les mises en oeuvre d'opérations de la classe ancêtre sont applicables à la classe dérivée.

La classe ancêtre prévoit des comportements pour la classe dérivée.

La classe dérivée peut redéfinir un comportement hérité de la classe ancêtre: on dit qu'il y a surcharge

Un attribut est un caractère propre à la classe.

On définit des relations (ou associations) entre les classes.

L'agrégation est une forme d'association forte dans la quelle un objet agrégat est fait de composants. Deux objets distincts sont englobés, l'un des deux est *une partie* de l'autre.

TRIO U Version1

STR/LTML/ 96-20 6/162

Polymorphisme fonctionnalité qui permet d'associer plusieurs implémentations de méthodes à un seul identificateur. Le polymorphisme est implémenté par liaison dynamique. Il confère autant de puissance que de souplesse au code qui en fait usage.

2. Modèle objet OMT

Les concepts objets sont utilisés dans TRIO_U. Le modèle objet OMT permet la représentation de la structure statique du système.

On définit rapidement ci-dessous le formalisme OMT utilisé dans ce document.

1.1 Représentation OMT utilisée dans le modèle objet:

- l'héritage:

ex: Fluide_Incompressible dérive(hérite)deMilieu_base Fluide_Incompressible estunespécialisationdeMilieu_base

- les agrégations simples :

ex: Equation_base contientun objet Zone_Cl_dis

- les agrégations multiples : elles sont mises en oeuvrevia un vecteur, ou une liste.

directement:

ex:

Zone_VF contientplusieursobjetsFront_VF.
Zone_VF porteunVECT de Front_VF:

ou par héritage:

ex:

 ${\tt Zone} \ \textbf{contient l'objet} \\ {\tt Bords}.$

Bords héritede la classe LIST (Bord)

- les associations : En phase de conception on peut indiquer la direction du lien.

STR/LTML/ 96-20 7/162

ex: Equation_base a une référence à un objet Zone_dis

- les opérations virtuelles pures notées oper{} qui rendent abstraite la classe qui les porte.

1.2 Les objets dits "génériques" dans TRIO_U: ces objets permettent la mise en oeuvre du polymorphisme et l'écriture d'opérations génériques.

Dansce document cette relation (qui n'est pas formalisée par OMT) est représentée par un double trait.

Par exemple, il faut lire la relation entre les classes Probleme et Probleme_base de la façon suivante: "la classe Probleme représenteure classe dérivée que lconque de la classe Probleme_base": soit la classe Pb_Hydraulique, Ou Pb_Concentration, Ou Pb_Conduction, Ou Pb_Thermohydraulique Ou Pb_Hyd_Therm_Concen.

Ce lien est mis en oeuvre dans Trio_Upar l'intermédiaire de la classe Deriv soit:

```
class Probleme : public DERIV(Probleme_base)
```

1.3 Les liens d'associations ont mis en oeuvre dans Trio_Upar l'intermédiaire de la classe Ref. exemple:

```
class Convection_Diffusion_std
{ ---
protected:
REF(Champ_Inc) la_vitesse_transportante;
}
```

STR/LTML/ 96-20 8/162

3. Structure de TRIO_U Version 1

TRIO_Uest structuré en modules. Ce document décrit chaque module.

Noyau Ensembled'objets que peuvent se partager plusieurs applications.

ThHyd Objets pour la thermohydraulique

ThSol Objets pour le calcul de la température dans un solide

Operateurs Opérateurs pour la thermohydraulique ou la thermique

Geometrie Description du maillage

Champs_dis Discrétisation des champs

Schemas_temps Discrétisation en temps: Schémasen temps

Statistiques_temps Traitementstatistiquedes champs

VF Objets communsaux méthodes de discrétisation "volumes finis"

VDF Objets pour une discrétisation spatiale de type "volumes différences finies"

VEF Objets pour une discrétisation spatiale de type "volumes éléments finis" (à écrire)

Utilitaires Gestion des objets et des communications dans TRIO_U

Math Module mathématique.

Ces deux derniers modules seront décrits dans un autre document.

4. Notations du document

Dans le texte, les noms des classes et de leurs membres sont écrits avec la police Courier : exemple, la classe Probleme.

Une classe représente une entité. Dans le texte, on assimile souvent le nom de la classe et l'entité qu'elle représente. On écrit par exemple: "un problème porte des équations" au lieu de "un objet de type Probleme porte des objets de type Equation", ce qui ne prête pas à confusion.

Ce documenta été saisi avec WORD5; les diagrammessaisis avec Mac Draw Pro, sont insérés dans le texte.

5. Si vous voulez des précisions

Contactezl'équipeTRIO_U!

E-Mail: triou@alpes.cea.fr

TRIO U Version1

Introduction

STR/LTML/ 96-20 9/162

TRIO_U: LE NOYAU

Le NOYAUde TRIO_Uest un module qui contient un ensemble d'objets que peuvent se partager les différentes applications de la thermo-hydraulique: fluide incompressible ou compressible, monophasique ou diphasique, monoou poly-constituants. D'autrestypes d'applications peuvent être aussi déduites de ce noyau: calculs thermiques, mécaniques, ...

On trouve surtout dans le noyau des classes de base et des classes génériques obtenues à partir des classes de base. Les classes instanciables appartiennent à des modules spécialisés.

Le Noyaucontientles familles de classes uivantes:

Problème
Equation
Opérateur
Source
Solveur_Masse
Milieu
Discrétisation en temps
Discrétisation en espace
Conditionslimites
Champ
Postraitement

STR/LTML/ 96-20 10/162

1-NOYAU: LES PROBLEMES

Généralités: Le rôle d'un problème est la résolution sur un domaine des équations qui le composent. Un

schéma de discrétisation en temps ainsi qu'un schéma de discrétisation en espace lui sont

associés.

Classegénérique: Probleme

Classedebase: Probleme_base

Méthodesvirtuellespures à implémenterpar les classes dérivées de Probleme_base:

nombre_d_equations(): renvoiele nombre d'équations portées par une classe dérivée

de Probleme_base

equation(int i): renvoiel'équation de rangi. L'ordre des équations est fixé par

la classedérivée

Méthodespermettant de définir des algorithmesgénéraux, pouvant être éventuellement redéfinies par un problème particulier:

Les opérations suivantes sont déléguées à chaque équation composant le problème.

calculer_pas_de_temps():
calculde la valeur du prochain pas de temps

sauvegarder(Sortie&): sauvegardeduproblèmesurfichier.

reprendre (Entree&): lecture d'un fichier pour une reprise.

Méthodes d'acquisition et d'instanciation:

completer(): remplissage des références, opération déléguée aux

équations

discretiser(Discretisation_base&): discretisationdu domaine et de chaque équation

associer(): envoiesa référence de Probleme_base aux équations

associer(const Schema_Temps_base&): remplit la référence le_schema_en_temps et la

transmetaux équations

associer(const Milieu_base&): transmetla référenceMilieu_base auxéquations

associer(const Domaine&): transmetla référenceDomaine au Domaine_dis

Autresméthodes:

traiter_postraitement(): exécution du postraitement

STR/LTML/ 96-20 11/162

Méthodesd'accès aux membres privés:

non décrites dans ce document

STR/LTML/ 96-20 12/162

Noyau: Probleme

STR/LTML/ 96-20 13/162

2-NOYAU: LES EQUATIONS

Généralités: Le rôle d'une équation est le calcul d'un ou plusieurs champs comptetenu des choix suivants:

- un schémaen temps,

- un schémade discrétisation spatiale,

- des conditions aux limites,

- destermessources et des opérateurs.

Une équation est portée par un Problèmeet possède une référence qui permet de remonter

au problèmequi la porte:

(Probleme_base le_probleme).

par la méthode:

Probleme base& probleme();

Classegénérique: Equation

Classedebase: Equation_base

Méthodesvirtuellespures à implémenterpar les classes dérivées de Equation_base:

```
nombre_d_operateurs(): renvoie le nombre d'opérateurs portés par une classe dérivée
```

de Equation_base

operateur (int i): renvoie l'opérateur de rang i. L'ordre des opérateurs est fixé

par la classedérivée

inconnue() renvoiele Champ_Inc calculé par l'équation.

milieu() renvoiel'objetMilieu associé à l'équation.

associer(const Milieu_base&): associeun objetMilieu à l'équation

Méthodespermettant de définir des algorithmesgénéraux, pouvant être éventuellement redéfinies par une équation particulière:

```
calculer_pas_de_temps(): calcul du prochain pas de temps (opération déléguée aux
```

opérateurs)

sauvegarder (Sortie&): Sauvegarde du problème sur fichier. Opération déléguée au

champinconnue().

reprendre (Entree&): Lecture d'un fichier pour une reprise. Opération déléguée au

champ inconnue().

derivee_en_temps_inco(...) : méthode générale pour le calcul de la dérivée du champ

inconnue par rapport au temps. L'implémentation de la

méthodeest décrite ci-dessous:

```
DoubleTable& derivee_en_temps_inco(DoubleTable& derivee )
{
```

STR/LTML/ 96-20 14/162

Méthodes d'acquisition et d'instanciation:

```
remplissage de la référence la_zone_dis , typage du solveur_masse

associer(Probleme_base&)

remplissage de la référence mon_probleme, et envoi de sa référence d'Equation_base aux Sources et aux Operateurs.

associer(cons Schema_Temps_base&): remplitla référencele_schema_en_temps

completer():

Opérationdéléguéeaux Sources et aux Operateurs.
```

Autresméthodes:

Méthodes d'accès aux membres privés : nondécritesici

STR/LTML/ 96-20 15/162

Noyau: Equation

STR/LTML/ 96-20 16/162

3-NOYAU: LES OPERATEURS

Généralités: Les opérateurs sont des parties d'une équation. Ils héritent à la fois de la classe Objet_U

et de la classe MorEqn (pour "morceau d'équation") qui est hors de la hiérarchie de

TRIO U.

La classeMorEgn possèdeune référence qui permet de remonter à l'équation qui la porte :

(Equation_base mon_equation) et les méthodes: const Equation_base& equation() const;

Equation_base& equation() ;

Classegénérique: Operateur

La classe Operateur est une classe générique particulière car elle n'hérite pas de

DERIV(Operateur_base). Elle hérite uniquement de la classe Mor Eqn

Classede base: Operateur_base qui hérite à la fois de la classeObjet_U et de la classeMorEqn.

La classeOperateur porte les opérations virtuelles pures suivantes:

a jout de la contribution de l'opérateur au second membre de

l'équation.

calculer(...) calculde la contribution de l'opérateur.

typer () instanciation de l'opérateur du type nécessaire au calcul. Le

type est calculé, il dépend notamment des données de

l'utilisateur, du choix de la discrétisation,...

1_op_base() renvoidel'Operateur_base correspondant.

Autresopérationsgénérales:

inconnue() renvoiele Champ_Inc de l'équation qui contient l'opérateur

discretisation(): renvoiela discrétisation supportée par l'équation

 $\label{lagrange} La \ classe \ \ \ \ \ porte \ les \ op\'erations virtuelles pures suivantes:$

a jouter(...) : ajout de la contribution de l'opérateur au second membre de l'équation.

calculer(...) : calculde la contribution de l'opérateur.

 ${\tt associer}({\tt const} \ {\tt Zone_dis\&}, \ {\tt const} \ {\tt Zone_Cl_dis\&}, \ {\tt const} \ {\tt Champ_Inc\&}): {\tt association}$

des références (protected)

Autre opération:

mettre_a_jour() miseàjourdel'opérateur.

Méthodes d'acquisition et d'instanciation:

completer(): appel de l'opération associer(const

Zone_dis&, ...)

STR/LTML/ 96-20 17/162

Remarque: Si un opérateur est implicité, il participe à la construction de la matrice du système. Leur contribution se fait alors par une méthode as sembler(), non écrite dans TRIO_UVersion 1.

STR/LTML/ 96-20 18/162

Noyau: Operateur_base, Operateur, MorEqn

STR/LTML/ 96-20 19/162

4-NOYAU: LES SOURCES

Généralités: Les sources sont des termes apparaissant au second membre d'une équation.

La plupart des termes sources sont définis dans le jeu de données par l'utilisateur, et

quelques uns sont générés automatiquement par les constructeurs des équations.

L'équation porte l'objet de type Sources, classe qui hérite de LIST (Source) et de la

classeMorEqn.

Classegénérique: Source

Classedebase: Source_base

La classe source porte les opérations suivantes:

typer (. . .) : instanciation de la source du type nécessaire au calcul. Le

type est calculé, il dépend notamment des données de

l'utilisateur, du choix de la discrétisation,...

et les opérations d'accès aux opérations de la classe Source_base.

La classe source_base porte les opérations virtuelles pures suivantes:

ajout er (. . .) : ajout de la contribution de la source au second membre de

l'équation.

calculer(...) : calculde la contribution de la source.

associer_zones(const Zone_dis&, const Zone_Cl_dis&) : association des références

(méthodeprotégée)

associer_pb(const Probleme_base&): association des références (méthode protégée)

Autre opération:

mettre_a_jour(): miseàjourdelasource.

Méthodes d'acquisition et d'instanciation:

completer(): appel des opérations associer_zones(...) et

associer_pb(...)

STR/LTML/ 96-20 20/162

Noyau: Source, Source_base

STR/LTML/ 96-20 21/162

5-NOYAU: SOLVEUR MASSE

Généralités: L'intégration des équations de bilan à l'aide du théorème de Gauss sur des volumes de

contrôle conduit à un systèmelinéaire dans lequel intervient une matrice de masse.

Masse* X = second membre

Le type du champX dépendde l'équation et de la discrétisation.

Suivant le type d'équation et de problème, la masse représente ravraiment la masse (ρ^*V) ou

se limitera au volume.

Le Solveur_Masseest porté par une équation.

Classegénérique: Solveur_Masse

Cette classe hérite aussi de la classe Mor Eqn.

Possèdela méthodetyper () pour instancier la classe du type nécessaire au calcul.

Classede base: Solveur_Masse_base

La classe Solveur_Masse_base porte les opérations virtuelles pures suivantes:

Noyau: Solveur_Masse

STR/LTML/ 96-20 22/162

6-NOYAU: MILIEU

Généralités: Description du milieufluide ou solide qu'on modélise

Le Milieu est associéau problème et aux équations.

Classegénérique: Milieu

Classedebase: Milieu_base

 $\label{lem:continuity} \textbf{Cette classe contient les "principaux"} \textit{Champ_Don qui vont caract\'eriser le milieu:}$

- la massevolumique,

- la diffusivité,

- la conductivité,

- la capacité calorifique,

- la variation de la masse volumique en fonction de la température (dilatabilité)

STR/LTML/ 96-20 23/162

7-NOYAU: DISCRETISATION EN TEMPS

Généralités: Schémade discrétisation en temps choisi par l'utilisateur.

Le Schema_temps est associé au problème et aux équations.

Classegénérique: Schema_temps

Classedebase: Schema_temps_base

Possèdela méthodevirtuelle pure:

faire_un_pas_de_temps(Equation_base&)

Noyau: Schema_temps

STR/LTML/ 96-20 24/162

8-NOYAU: DISCRETISATION EN ESPACE

8.1 La discrétisation

Généralités: Schémade discrétisationen espacechoisi par l'utilisateur.

La discrétisation est associée au problème.

Classegénérique: Discretisation

Classedebase: Discretisation_base

Les méthodes:

 ${\tt zone_Cl_dis\{---\}}$: méthode virtuelle pure à implémenter par les classes

dérivées.

Discrétisation et typage de la Zone_Cl_dis

Noyau: Discretisation

STR/LTML/ 96-20 25/162

8.2 Le Domaine discrétisé

Généralités: Le problème porte le domaine discrétisé Domaine dis.

Domaine_dis La classe Domaine_dis représente le domaine discrétisé. Cette classe porte la classe

Zones_dis qui contient elle même autant de Zone_dis qu'il y a de Zone dans le

Domaine. (Rappel: dansTRIO_UVersion1 il n'y a qu'une Zone par domaine.)

Possèdeune référence au Domaine.

8.3 Discrétisation des zones :

Classegénérique: La classezone dis représenteunezone discrétisée.

Classedebase: Zone_dis_base

Classede base représentant la discrétisation appliquée à une zone.

Possèdeune référence à la zone correspondante.

Méthodesvirtuelles pures de la classe Zone dis base :

discretiser() construction de tous les tableaux et les connectivités

nécessaires au calcul pour la discrétisation choisie.

STR/LTML/ 96-20 26/162

8.4 Discrétisation des Frontières :

Classedebase: Frontiere_dis_base

Classede base représentant la discrétisation appliquée à une frontière.

Noyau: Frontiere_dis_base

STR/LTML/ 96-20 27/162

8.5 Discrétisation des conditions limites:

Généralités: Les conditions aux limites (Cond_lim) sont associées aux équations. Les objets

Zone_Cl_dis contiennent les conditions limites et les connectivités nécessaires à la

discrétisation des conditions limites.

Classegénérique: Zone_Cl_dis

Classedebase: Zone_Cl_dis_base

Noyau: Zone_Cl_dis

STR/LTML/ 96-20 28/162

9-NOYAU: CONDITIONS LIMITES

Généralités: Un objet condition aux limites sert à définir, pour une équation donnée, des conditions limites

sur une frontière d'un domaine.

Classegénérique: Cond_lim

Classedebase: Cond_lim_base

Porte un objet de type Champ_front qui contient les valeurs imposées sur la frontière.

Remarque: les conditions aux limites (classe Conds_lim) sont portées par la classe Zone_Cl_dis affectée à une équation.

Noyau: Cond_lim

STR/LTML/ 96-20 29/162

10-NOYAU: LES CHAMPS

Généralités: L'objet Champ représente un champde valeurs.

Les données suivantes définissent un champ: un nom, une unité, un instant, des valeurs. Si le champ n'est pas uniforme en espace, les valeurs sont définies en référence à une géométrie discrétisée; la localisation des valeurs dépend de la discrétisation (faces,

noeuds,...).

L'objet Champcontient en outre des méthodes telles que:

des opérations arithmétiques,des méthodes d'accès aux valeurs,

- des méthodes de postraitement (formattage, interpolation...)

Classede base: Champ_base

Cette classe possède les méthodes virtuelles pures valeur_a(---) , valeur_aux(---) qui interpolent les valeurs du champen des points donnés. Toutes

les classes de champdevront implémenter ces méthodes.

Prototypefonctionnel: Champ Proto. Tous les champs vont hériter de cette classe

On distinguedeux grandstypes de champ:

- les champscalculés par une équation: les Champ_Inc. On doit garderen mémoireun certain nombre d'états de ces champs: t^{n-1} , t^n , t^{n+1} , ... C'est le schémaen temps qui gère ce nombre d'états.

- tous les autres champs: les Champ_Don champconstant,

champfonction du temps,

champfonctiond'un ou plusieurs champs

Ceschampsvont posséder la méthodeme_calculer() pour en déterminer les valeurs.

10.1 Champ Inc

Généralités: Les Champ_Inc sont des champscalculés par une équation.

Une Roue leur est associée. Cette Roue permet de gérer le nombre de valeurs du temps pour lesquels le champ reste en mémoire. Dans le cas d'un schéma en temps explicite, il

suffit de conserver les valeurs du champaux temps tⁿ et tⁿ⁺¹.

Classegénérique: Champ_Inc

Classedebase: Champ_Inc_base

STR/LTML/ 96-20 30/162

10.2 Champ_Don

Généralités: Ce sont les champsqui, entre autres, fournissent une caractéristique physique du milieu.

Classegénérique: Champ_Don

Classedebase: Champ_Don_base

10.3 Champ_Fonc

Généralités: Champ_Don particuliers qui sont fonction d'autres champs.

Classegénérique: Champ_Fonc

Classede base: Champ_Fonc_base

10.4 Champ front

Généralités: Un Champ_front est un objet qui définit un champ sur une frontière d'un domaine. Cet

objet sera associé par exemple à une condition limite.

Les Champ_front héritent de la classe prototype Champ_Proto.

Classegénérique: Champ_front

Classedebase: Champ_front_base

Relations avec les autres classes: L'utilisation des champsest multiple. Néanmoins on peut donner les utilisations les plus fréquentes dans TRIO_U.

Les Champ_Inc sont portés par les équations.

Les Champ_Don sont portés par le Milieu.

 $Pour l'instant on trouve des \verb|Champ_Fonc| dans les modèles de turbulence.$

Les Champ_front sont portés par les conditions aux limites.

STR/LTML/ 96-20 31/162

Noyau: Champ_base, Champ_Proto

STR/LTML/ 96-20 32/162

STR/LTML/ 96-20 33/162

Noyau: Champ_Don

STR/LTML/ 96-20 34/162

Noyau: Champ_Fonc

STR/LTML/ 96-20 35/162

Noyau: Champ_front

STR/LTML/ 96-20 36/162

Intégrale d'un champ

Integrale_tps_Ch_puissance: représente l'intégrale en temps d'un champ élevé à une puissance entière et positive entre un temps initial et un temps courant. Cette classe est hors hiérarchie.

Integrale_tps_Champ: casparticulier de Integrale_tps_Ch_puissance pour une puissance de 1 Integrale_tps_carre_Champ: casparticulier de Integrale_tps_Ch_puissance pour le champ élevéau carré.

Noyau: Integrale_tps_Champ_puissance

STR/LTML/ 96-20 37/162

11-NOYAU: POSTRAITEMENT

11.1 Postraitement

Postraitement: Cette classe permetle postraitement suivant deux approches:

- à l'aide de sondes (valeurs d'un champen un ou plusieurs points en fonction du temps)

- à l'aide de champssélectionnés

<u>Lienavecles autresobjets</u>: L'objet Postraitement est porté par un objet Probleme_base

Noyau: Postraitement

STR/LTML/ 96-20 38/162

11.2 Sonde

Sonde:

Ensemble de points sur lesquels on veut connaître un champ en fonction du temps. La méthodemettre_a_jour() écrit sur le fichier.

<u>Lienavecles autresobjets</u>: L'objet Postraitement porte les Sondes.

STR/LTML/ 96-20 39/162

11.3 Operateur_Statistique_tps

Operateur_Statistique: classegénérique
Operateur_Statistique_tps_base: classede basedes opérateurs statistiques sur les champs.

<u>Lienavecles autresobjets</u>: <u>L'objet Postraitement porteles</u> Operateurs_Statistiques_tps.

Noyau: Opérateurs statistiques

STR/LTML/ 96-20 40/162

11.4 Champ_Post

Champ_Post: Un Champ_Post est un objet qui définit un champà postraiter. Il porte donc une référence

à ce champ.

<u>Lienavecles autresobjets</u>: <u>L'objet Postraitement porte les Champs_Post.</u>

Noyau: Champ_Post

STR/LTML/ 96-20 41/162

TRIO_U : Champs

Le Module **Champs** contient des classes contenant des champs particuliers, non discrétisés.

On a défini les familles d'objets suivantes:

1 Champ_Uniforme

2 Champ_front_uniforme

STR/LTML/ 96-20 42/162

1- Champ_Uniforme

Hiérarchie:

Classedebase: Champ_Don_base (Noyau)
Classegénérique: Champ_Don (Noyau)

 ${\tt Champ_Uniforme:} \quad \textbf{champconstant dans I'espace et dans le temps}$

Champ_Uniforme_inst: champconstantdansl'espacemais dépendant du temps

Champs: Champ_Uniforme

STR/LTML/ 96-20 43/162

2- Champ_front_uniforme

Hiérarchie:

Classedebase: Champ_front_base (Noyau)

Classegénérique: Champ_front (Noyau)

 ${\tt Champ_front_uniforme:} \textbf{champconstant dans l'espace et dans le temps d\'efinisur une fronti\`ere}$

 $Champs: Champ_front_uniform \varepsilon$

STR/LTML/ 96-20 45/162

TRIO_U: Champs_dis

Le Module Champs_dis contient les classes de base pour la discrétisation des champs.

On a défini les familles d'objets suivantes:

Discrétisation des Champ_Inc
 Discrétisation des Champ_Fonc

STR/LTML/ 96-20 46/162

1- Discrétisation des Champ_Inc

Hiérarchie:		
Classede base:	Champ_Inc_base	(Noyau)
Classegénérique:	Champ_Inc	(Noyau)

Champ_P0: classe de base pour un Champ_Inc de type P0 (champ constant par élément). Pour

l'instant il existe deux classes dérivées instanciables : Champ_P0_VDF (Module VDF) et

Champ_P0_VEF (ModuleVEF).

Champ_P1: classedebasepourunChamp_Inc detypeP1

Champs_dis: Champ Inc

STR/LTML/ 96-20 47/162

2- Discrétisation des Champ_Fonc

Hiérarchie:

Classede base: Champ_Fonc_base (Noyau)

Classegénérique: Champ_Fonc (Noyau)

Champ_Fonc_P0: classedebasepourunChamp_Fonc detypeP0

Champs_dis: Champ Fonc

STR/LTML/ 96-20 49/162

TRIO_U : Statistiques_temps

Le Module **Statistiques_temps** contient les classes de base pour les calculs statistiques relatifs aux champs.

On calcule:

Moyenned'un champ Ecarttyped'un champ STR/LTML/ 96-20 50/162

Moyenne et Ecart type d'un champ

Hiérarchie:			
Classede base:	Operateur_Statistique_tps_base	(Noyau)	
Classegénérique:	Operateur_Statistique_tps	(Noyau)	

Moyenne_base: classede base pour le calcul de la moyenned un champ. Il faut connaître la discrétisation du

champpour définir la classe instanciable correspondante.

Ecart_type_base: classe de base pour le calcul de l'écart type d'un champ. Il faut connaître la discrétisation du

champpour définir la classe instanciable correspondante.

<u>Lienavecles autres classes</u>: <u>La classe Postraitement porte des Operateur_Statistique_tps.</u>

STR/LTML/ 96-20 51/162

TRIO_U: ThHYD

Le Module ThHydcontient les objets nécessaires au calcul de la thermohydraulique.

On a défini les familles d'objets suivantes:

- 1. Problème
 - 1.1 Écoulementlaminaire
 - 1.1 Écoulementturbulent
- 2. Équation
 - 2.1 Navier_Stokes
 - 2.2 Convection Diffusion
 - 3.3 Transport_K_Eps
- 3. Milieu
- Discrétisation
- 5. Conditions limites
 - 5.1 Dirichlet
 - 5.2 Neumann
 - 5.3 Symétrie
 - 5.4 Échangeimposé
- 6. Solveur Pression
- 7. Modèles de turbulence
 - 7.1 Modèles de turbulence (hyd)
 - 7.2 Modèles de turbulence (scalaire)
 - 7.3 Lois de paroi
- 8. Sources
 - 8.1 Boussinesq
 - 8.2 Puissancethermique

STR/LTML/ 96-20 52/162

1- ThHyd: LES PROBLEMES

Hiérarchie:			
Classede base:	Probleme_base	(Noyau)	
Classegénérique:	Probleme	(Noyau)	

1.1 Problèmes thermohydrauliques traités en laminaire :

Pb_Hydraulique: problème d'hydraulique standard dans lequel on résout les équations de Navier_Stokes en

régime la minaire pour un fluide in compressible. La formulation est de type vites se pression.

Pb_Thermohydraulique: problème d'hydraulique standard dans lequel on résout en régime la minaire pour un fluide incompressibe et faiblement dilatable:

- les équations de Navier_Stokes,
- l'équations d'énergie.

L'hydraulique et la thermique sont couplées par des forces de volume (approximation de Boussinesq).

Pb_Hydraulique_Concentration: problème d'hydraulique avec transport d'un ou plusieurs constituants.

On résouten régime la minaire pour un fluide incompressible:

- les équations de Navier Stokes,
- les équations de convection diffusion pour un ou plusieurs constituants.

Si on transporte plusieurs constituants, on utilise une seule équation de convection diffusion avec une inconnue vectorielle.

En général on couple les deux équations par l'intermédiaire du terme source des forces de volume de Navier_Stokes dans lequel on prend en compte de petites variations de la masse volumique en fonction du (ou des) constituant(s).

Pb_Thermohydraulique_Concentration : problème de thermohydraulique avec transport d'un ou plusieurs constituants. On résouten régime la minaire pour un fluide incompressible:

- les équations de Navier_Stokes,
- l'équations d'énergie.
- les équations de convection diffusion pour un ou plusieurs constituants.

Si on transporte plusieurs constituants, on utilise une seule équation de convection diffusion avec une inconnue vectorielle.

1.2 Problèmes thermohydrauliques traités avec un modèle de turbulence :

Pb_Hydraulique_Turbulent: problème d'hydraulique standard dans lequel on résout les équations de Navier_Stokesen régime turbulent pour un fluide incompressible.

La formulation est de type vites se pression.

Pb_Thermohydraulique_Turbulent : problème d'hydraulique standard dans lequel on résout en régime turbulentpour un fluide incompressible:

TRIO U Version1

STR/LTML/ 96-20 53/162

- les équations de Navier_Stokes,
- les équations d'énergie.

L'hydraulique et la thermique sont couplées par des forces de volume (approximation de Boussinesq).

Pb_Hydraulique_Concentration_Turbulent: problèmed'hydrauliqueavectransportd'unou plusieurs constituants. On résouten régime turbulent pour un fluide incompressible:

- les équations de Navier_Stokes,
- les équations de convection diffusion pour un ou plusieurs constituants.

Pb_Thermohydraulique_Concentration_Turbulent: problème d'hydraulique standard dans lequel on résouten régime turbulent pour un fluide incompressible:

- les équations de Navier_Stokes,
- les équations d'énergie
- les équations de convection diffusion pour un ou plusieurs constituants.

STR/LTML/ 96-20 54/162

ThHyd: Pb_Hydraulique, Pb_Thermohydraulique

ThHyd: Pb_Hydraulique_Concentration Pb_Thermohydraulique_Concentration

STR/LTML/ 96-20 55/162

ThHyd: Pb_Hydraulique, Pb_Thermohydraulique traités en turbulent

ThHyd: Pb_Hydraulique_Concentration_Turbulent, Pb_Thermohydraulique_Concentration_Turbulent

STR/LTML/ 96-20 56/162

2- ThHyd: LES EQUATIONS

Hiérarchie:			
Classede base:	Equation_base	(Noyau)	
Classegénérique:	Equation	(Noyau)	

Les équations sont décrites dans le document de présentation de TRIO_U [PRES1])

2.1 Les équations de Navier Stokes

L'équation Navier_Stokes décrit les équations de quantité de mouvement.

$$\frac{ \breve{Z} \vec{U} }{ \breve{Z} t } + \overset{\rightarrow}{\nabla} \; (\; \vec{U} \times \vec{U} + \; \overline{\vec{u} \times \vec{u}} \; + \; \frac{P^*}{\rho_0} - \Pi \; - \; \nu \overset{\rightarrow}{\nabla} \vec{U}) \; - \; \vec{F} = 0$$

(voir TRIO_UDocument de présentation [PRES1])

 $\vec{U} \times \vec{U}$ termeconvectif

 $u \overrightarrow{\nabla} \overrightarrow{U}$ termediffusif

 $\vec{u} \times \vec{u}$ composantes du tenseur de Reynolds

 \vec{F} Les forces de volume

 P^{*} la sommede la pression statique et de sa composante hydrostatique

On considère le fluide comme in compressible (div U = 0). On considère la masse volumique constante (égale à ρ_0), sauf dans le terme des forces de gravité (hypothèse de Boussinesq).

Sous ces hypothèses, on utilise la forme suivante des équations de Navier_Stokes:

$$\frac{DU}{dt} = \text{div (terme_visqueux)} - \frac{\text{gradP}}{\rho_0} + \beta (\text{T-T0})g + \frac{\text{sources}}{\rho_0} = 0 \quad \text{et} \quad \text{div } U = 0$$

<u>DU</u>

dt dérivée particulaire de la vitesse

P₀ massevolumique de référence

β coefficient de dilatabilité du fluide

g gravité

Les classes:

Navier_Stokes_std: Equation de la dynamique pour un fluide incompressible en régime la minaire sans modélisation de la turbulence.

STR/LTML/ 96-20 57/162

L'inconnueest le champde vitesse.

Navier_Stokes_Turbulent: Cette classe représente l'équation Navier_Stokes pour un écoulement **turbulent**. Elle va donc porter un modèle de turbulence et instancier un opérateur de diffusionqui tient comptede la viscosité la minaire et turbulente.

Liens avecles autres classes

Navier_Stokes_std est porté par les classes des problèmes:

Pb_Hydraulique

Pb_Thermohydraulique

Pb Concentration.

Navier_Stokes_Turbulent estporté par les classes des problèmes:

Pb_Hydraulique_Turbulent

Pb_Thermohydraulique_Turbulent.

2.2 Les équations de Convection_Diffusion

Les classes de la hiérarchie Convection_Diffusionreprésentent l'équation de transport d'un scalaire dans un écoulement de fluide visqueux incompressible.

$$\frac{\check{Z}T}{\check{Z}t} + \overrightarrow{\nabla} \left(T\overrightarrow{U} + \overrightarrow{\theta u} - \alpha \overrightarrow{\nabla} T \right) - S_T = 0$$

Si T est le scalaire transporté (la température par exemple),

 $\theta \vec{u}$ est le flux de chaleur turbulent

S_T est le terme source Q/rho/Cp

Q est la puissance volumique dégagée au sein du fluide

α la diffusivité de la température dans le fluide

Convection_Diffusion_std Classe de base pour l'équation de transport d'un scalaire en régime laminaire.

La classe porte une référence au champ de la vitesse transportante.

Convection_Diffusion_Temperature: casparticulier de Convection_Diffusion_std pour le transport de la température. L'inconnue est le champde température.

Convection_Diffusion_Concentration: cas particulier de Convection_Diffusion_std pour le transport d'un ou plusieurs constituants. Dans le cas de plusieurs constituants, le Champ_Inc de concentration et le Champ_Don de la diffusivité ont plusieurs composantes. L'inconnueest le champde concentration.

Convection_Diffusion_Turbulent Classe de base pour l'équation de transport d'un scalaire en régimeturbulent. Cette classe est définie hors hiérarchie Objet_U.

La classe porte un modèle de turbulence.

Convection_Diffusion_Temperature_Turbulent : équation pour le transport de la température en régime turbulent. L'inconnue est le champde température.

STR/LTML/ 96-20 58/162

Convection_Diffusion_Concentration_Turbulent_: équation pour le transport de constituants en régime turbulent. L'inconnue est le champde concentration.

2.3 Equations de transport pour K, ϵ :

 $\label{transport_K_Eps:equation} \textbf{Transport_K_Eps: \'equation de transport de l'énergie cinétique turbulente K et du taux de dissipation ϵ, associée au modèle de turbulence Kϵ. Le champ "inconnue" possède 2 composantes scalaires: K et ϵ au modèle de turbulence Kϵ. Le champ "inconnue" possède 2 composantes scalaires: K et ϵ au modèle de turbulence Kϵ. Le champ "inconnue" possède 2 composantes scalaires: K et ϵ au modèle de turbulence Kϵ. Le champ "inconnue" possède 2 composantes scalaires: K et ϵ au modèle de turbulence Kϵ. Le champ "inconnue" possède 2 composantes scalaires: K et ϵ au modèle de turbulence Kϵ. Le champ "inconnue" possède 2 composantes scalaires: K et ϵ au modèle de turbulence Kϵ. Le champ "inconnue" possède 2 composantes scalaires: K et ϵ au modèle de turbulence Kϵ. Le champ "inconnue" possède 2 composantes scalaires: K et ϵ au modèle de turbulence Kϵ. Le champ "inconnue" possède 2 composantes scalaires: K et ϵ au modèle de turbulence Kϵ. Le champ "inconnue" possède 2 composantes scalaires: K et ϵ au modèle de turbulence Kϵ. Le champ "inconnue" possède 2 composantes scalaires: K et ϵ au modèle de turbulence Kϵ. Le champ "inconnue" possède 2 composantes scalaires au modèle de turbulence Kϵ. Le champ "inconnue" possède 2 composantes scalaires au modèle de turbulence Kϵ. Le champ "inconnue" possède 2 composantes scalaires au modèle de turbulence Kϵ. Le champ "inconnue" possède 2 composantes scalaires au modèle de turbulence Kϵ. Le champ "inconnue" possède 2 composantes scalaires au modèle de turbulence Kϵ. Le champ "inconnue" possède 2 composantes scalaires au modèle de turbulence Kϵ. Le champ "inconnue" possède 2 composantes scalaires au modèle de turbulence A composantes scalaires au modèle au modèle de turbulence A composantes scalaires au modèle au m$

Liens avecles autres classes

Transport_K_Eps estportéparla classe: Modele_turbulence_hyd_K_Eps.

STR/LTML/ 96-20 59/162

STR/LTML/ 96-20 60/162

ThHyd: Convection_Diffusion

STR/LTML/ 96-20 61/162

ThHyd /Turbulence: Convection_Diffusion

STR/LTML/ 96-20 62/162

ThHyd / Turbulence : Transport_K_Eps

STR/LTML/ 96-20 63/162

3- ThHyd: MILIEU

Hiérarchie:

Classedebase: Milieu_base (Noyau)
Classegénérique: Milieu (Noyau)

Généralités: Les classes Milieu portent les Champ_Don contenant les propriétés du milieu fluide ou

solide qu'on modélise.

 ${\tt Fluide_Incompressible}: \textbf{Cette classe contient des champs utiles au calcul hydraulique}:$

Le champmu : viscosité dynamique (donnée utilisateur)

STR/LTML/ 96-20 64/162

Le champ nu : viscosité cinématique (

STR/LTML/ 96-20 65/162

STR/LTML/ 96-20 66/162

)

Le champ beta_co : dilatabilité du constituant (donnée utilisateur) ou le coefficient de variation de la massevolumique en fonction de la concentration d'un constituant.

Constituant :

Cette classe contient le champ alpha de diffusivité d'un constituant. Quand l'équation calcule la diffusion de plusieurs constituants, ce champa autant de composantes qu'il y a de constituants.

Liens avecles autres classes

Fluide_Incompressible estréférencéparles équations de type:

Navier_Stokes_std

 $\hbox{\tt Convection_Diffusion_Temperature}$

Transport_K_Eps

Constituant est référencé par les équations de type:

Convection_Diffusion_Concentration

67/162

STR/LTML/ 96-20

STR/LTML/ 96-20	68/162

TRIO_U Version1 Module **ThSol**

STR/LTML/ 96-20 69/162

STR/LTML/ 96-20 70/162

4- ThHyd: Discrétisation

Hiérarchie:

Classedebase: Discretisation_base (Noyau)
Classegénérique: Discretisation (Noyau)

Discret_Thyd: Classe de base décrivant la discrétisation spatiale appliquée aux problèmes thermo-

hydrauliques.

Discret_Thyd_Turb: Classe de base décrivant la discrétisation spatiale appliquée aux problèmes thermo-

hydrauliquesturbulents.

Liens avecles autres classes

Discretisation_base estassociéàlaclasseProbleme_base.

Les méthodes virtuelles pures sont à implémenter pour chaque type de discrétisation pour typer et discrétiser les Champ_Inc et les Champ_Fonc portéspar les équations de la thermohydraulique.

TRIO U Version1

STR/LTML/ 96-20	71/162

STR/LTML/ 96-20 72/162

5- ThHyd: CONDITIONS LIMITES

Hiérarchie:			
Classede base:	Cond_lim_base	(Noyau)	
Classegénérique:	Cond_lim	(Noyau)	

Liens avecles autres classes

Conds_lim , vecteur des conditions aux limites concernant une équation est porté par la classe Zone_Cl_dis_base.

5.1 Conditions limites de type Dirichlet

Les conditions aux limites de type **Dirichlet** imposent sur une frontière la valeur du champin connue. Les valeurs sont contenues dans le champ front, portépar la classe de base Cond lim base.

Dirichlet_paroi_defilante: imposela vitessede paroidans une équation de type Navier_Stokes.

Dirichlet_paroi_fixe:représenteuneparoiimmobiledansuneéquationdetypeNavier_Stokes.

Entree_fluide_vitesse_imposee : impose la vitesse d'entrée du fluide dans une équation de type Navier_Stokes.

Entree_fluide_temperature_imposee: impose la température d'entrée du fluide dans une équation de type Convection_Diffusion_Temperature.

Temperature_imposee_paroi : impose la température dans la paroi dans une équation de type Convection_Diffusion_Temperature.

Entree_fluide_concentration_imposee: imposela concentrationd'entréedu fluide dans une équation de type Convection_Diffusion_Concentration.

5.2 Conditions limites de type Neumann

2) Les conditions aux limites de type **Neumann** imposent un flux sur un bord. Les valeurs du flux imposé sont contenues dans le_champ_front, portépar la classe de base Cond_lim_base.

STR/LTML/ 96-20 73/162

Neumann_paroi: correspond à un flux imposé pour l'équation de transport d'un scalaire: par exemple, une paroichauffantepour l'équation de transport de la température.

Neumann_paroi_adiabatique : définit une paroi adiabatique dans une équation de type Convection_Diffusion_Temperature.. Le flux de température est nul à la frontière.

Neumann_sortie_libre: représente une frontière ouverte. Pour la classe Neumann_sortie_libre et les classes qui en dérivent, les flux diffusifs sont nuls à la frontière. Par contre pour traiter les flux convectifs, il faut distinguer pour chaque face de bord les deux cas:

- le fluide est sortant,
- le fluide est entrant parce qu'il y a recirculation. Dans ce cas, le schéma de convection imposede connaître le scalaire convecté ou la vitesse du fluide à l'extérieur. C'est pour quoi la classe porte un champ_ext.
- Neumann_sortie_libre: représente une frontière ouverte pour une équation de transport d'un scalaire. On met dans champ_ext la valeur du scalaire calculé à l'extérieur du domaine.
- $Sortie_libre_pression_imposee: \textbf{La classe représente une frontière ouverte avec condition de pression} imposée dans une \'equation de \texttt{Navier_Stokes.}$

le_champ_front contient la pression et la fonction flux_impose renvoie les valeurs de cette pression.

champ_ext contient une valeur de la vitesse du fluide à l'extérieur accessible par la méthodeval ext().

5.3 Conditions limites de Symetrie

Symétrie: Dans une équation de transport d'un scalaire (température, concentration, Κ, ε), la condition

Symétrie metles gradients des grandeurs scalaires à 0.

Dans une équation de Navier_Stokes, elle impose la composante normale de la vitessenulle (condition de glissement).

5.4 Conditions limites de type Echange impose

4) Les conditions de type Echange_impose utilisées pour l'équation d'énergie imposent un échange de chaleur avec l'extérieur du domaine. Cet échange se fait en imposant une température extérieure T extet un coefficient d'échangeh imp.

Le termede flux calculé à partir du couple (h_imp, T_ext) s'écrit:

h_t* (T_ext - T_int)* surface

Il figure au secondmembrede l'équation d'énergie.

On dérive ensuite des classes qui calculent chacune à sa manière le coefficient d'échange h_t.

Echange_externe_impose : sert à calculer un coefficient d'échange h_t qui tient compte du coefficient d'échange de la paroi donné par l'utilisateur via la conductivité, et la diffusion dans la demimaille près de la paroi.

Les champsh_imp_ et T_ext_ sont uniformes.

STR/LTML/ 96-20 74/162

STR/LTML/ 96-20 75/162

En laminaire, dist = distancedu centre de la maille à la paroi. En turbulent, il faut calculer une distance équivalente d' qui dépend de la distance à la paroi et de la vitesse de frottement U*.

·		

R/LTML/ 96-20	78/162

TRIO_U Version1 Module **ThSol**

TRIO_U Version1 Module **ThSol**

STR/LTML/ 96-20 83/162

STR/LTML/ 96-20 84/162

6- ThHYd: SOLVEUR PRESSION

Généralités: Les solveurs pression vont résoudre le système:

Matrice* P = second_membre La pressionest un champscalaire.

Classegénérique: Solveur_Pression

Classedebase: Solveur_Pression_base

Liens avecles autres classes

Solveur_Pression est portépar la classe équation de type Navier_Stokes_std.

Solveur_Pression_GCP_ssor: gradient conjugué avec pré-conditionnement SSOR. Cette classe porte la

matrice(detypeMatrice_Morse_Sym).

Cette classe n'est pas instanciable. On doit dériver des classes pour chaque type de

discrétisation.

STR/LTML/ 96-20 85/162

TRIO_U Version1 Module **ThSol**

STR/LTML/ 96-20 86/162

STR/LTML/ 96-20 87/162

7- ThHyd: MODELES DE TURBULENCE

On distingue:

- les modèles de turbulence associés à l'équation de Navier Stokes
- les modèles de turbulence associés à l'équation de transport d'un scalaire.

7.1 Modèles de turbulence (hyd)

Généralités: Les modèles de turbulence utilisés par l'équation de Navier Stokes contiennent:

la viscosité turbulente v_t,
les lois de paroi turbulente,

- une référence à l'équation hydraulique.

Classegénérique: Mod_turb_hyd

Classedebase: Mod_turb_hyd_base

Modèles de turbulence codés: [PRES1]

Modèle K-ε:

 ${\tt Modele_turbulence_hyd_K_Eps}: \textbf{\textit{représente la modélisation K-}} \epsilon \textbf{\textit{de la turbulence pour une \'equation}}$

hydraulique.

Cette classe porte une équation de transport de l'énergie cinétique K et du taux de dissipation turbulente E . La résolution de cette équation permet de calculer la viscosité turbulente.

ModèleSimulation de grandes échelles (ditSGE ou LES):

 ${\tt Mod_turb_hyd_ss_maille: Ce\,mod\`ele\,repose\,sur\,le\,calcul\,d'unefonction\,de\,structure\,qui\,permet\,de\,calculer}$

la viscosité turbulente.

Cette classe n'est pas instanciable. On doit dériver des classes pour chaque type de discrétisation.

7.2 Modèles de turbulence (scalaire)

Généralités: Les modèles de turbulence portés par une équation de convection diffusion contiennent:

- la diffusivité turbulente αt,

une référenceaux lois de paroiturbulente,
une référence à l'équation the mique.

Classegénérique: Modele_turbulence_scal

TRIO U Version1

STR/LTML/ 96-20 88/162

Classedebase: Modele_turbulence_scal_base

Modèles de turbulence codés

Modèle de **Prandti** : $\alpha_t = v_t / \text{Prdt}$

La constante Prdtl vaut 0.9.

Les classes possèdent donc une référence au champ de viscosité turbulente.

Modele_turbulence_scal_Prandtl: classe instanciable, utilisée pour l'équation de convection diffusion

quand l'hydrauliqueest calculéepar le modèle de turbulenceK-€.

 $\verb|Modele_turb_scal_Prandtl_sous_maille|: \textbf{c'est le modèle de Prandtl pour l'équation de convection}|$

diffusion quand l'hydraulique est calculée par le modèle de turbulence sous maille.

Cette classe n'est pas instanciable. On doit dériver des classes pour chaque type de

discrétisation.

7.3 Lois de paroi

Généralités: Traitement de la turbulenceau voisinage de la paroi.

Classegénérique: Turbulence_Paroi

Classedebase: Turbulence_Paroi_base

Liens avec les autres classes

Mod_turb_hyd estportéparla classeNavier_Stokes_Turbulent.

Modele_turbulence_scal estportéparla classeConvection_Diffusion_Turbulent.

Les lois de paroi Turbulence_Paroi sont portées par le modèle turbulent hydraulique et référencées par le modèle turbulent scalaire.

=		

STR/LTML/ 96-20	91/162

STR/LTML/ 96-20 92/162

-		

STR/LTML/ 96-20	94/162

TRIO_U Version1 Module **ThSol**

STR/LTML/ 96-20 95/162

STR/LTML/ 96-20 96/162

8- ThHyd: Termes SOURCE

8.1 Boussinesq

Généralités: Les classes de Boussinesgreprésentent le terme de gravité (qui figure dans l'équation de la

dynamique divisée par la masse volumique de référence). On est dans le cas de l'hypothèse de Boussinesq: la masse volumique est supposée constante et égale à sa valeur de référence sauf dans le terme des forces de volume où on prend en compte une petite variation de la masse volumique en fonction d'un ou plusieurs scalaires transportés par

l'écoulement.

Classede base: Terme_Boussinesq_base. Cette classe est hors hiérarchie Objet_U.

Terme_Boussinesq_Temperature : cas particulier du terme de Boussinesq pour la température. Le

termede gravité a pour expression:

beta t * (T-T0)

où beta_t représentela dilatabilité et TO la température de référence.

Terme_Boussinesq_Concentration : cas particulier du terme de Boussinesqpour la concentration. Le terme de gravité a pour expression:

beta_c[0] * (C[0]-C0[0]) +...+beta_c[i] * (C[i]-C0[i])

où beta_c[i] représentela variation de la massevolumique en fonction de C[i].

Terme_Boussinesq: termede Boussinesqpour la concentration et la température.

Remarque: Ces 3 classes ne sont pas des classes instanciables. Elles contiennentseulementtout ce qui

est nécessaire au calcul mais pas l'implémentation des termes qui dépendra de leur

discrétisation.

TR/LTML/ 96-20	98/162

TRIO_U Version1 Module **ThSol**

STR/LTML/ 96-20 99/162

8.2 Puissance thermique

Généralités: Ces classes représentent le dégagement volumique de puissance thermique.

 ${\tt Terme_Puissance_Thermique} \; : \; \; {\tt contient \, la \, puissance \, (donn\'ee \, utilisateur) \, et \, les \, r\'ef\'erences \`a \, la \, masse}$

volumiqueet la chaleurspécifique.

Remarque: Cette classe n'est pas instanciable. Elle contient seulement tout ce qui est nécessaire au

calcul mais pas l'implémentation des termes qui dépendra de leur discrétisation.

Terme_Puissance_Thermique (ThHyd)

Teme_Puissance_Thermique()

associer_champs(const Champ_Don&, Champ_Don&)
lire_donnees(Entree&)

Champ_Don

rho_ref la_puissance
Cp

STR/LTML/ 96-20 100/162

TRIO_U: ThSol

Le Module ThSol contient les objets nécessaires au calcul de la thermique dans un milieus olide.

On a défini les familles d'objets suivantes:

1	Problème
2	Equation
3	Milieu
4	Discrétisation

STR/LTML/ 96-20 102/162

2- ThSol: LES EQUATIONS

Hiérarchie:		
Classede base:	Equation_base	(Noyau)
Classegénérique:	Equation	(Noyau)
Conduction:	Equation d'évolution de la températ. L'inconnue est le champ de tempéra	
Liensavecles autres class Conduction est porté	ses parlaclassePb_Conduction	

STR/LTML/ 96-20	103/162

TRIO_U Version1 Module **ThSol**

STR/LTML/ 96-20 104/162

STR/LTML/ 96-20 105/162

3- ThSol: MILIEU

Hiérarchie:

Classedebase: Milieu_base (Noyau)
Classegénérique: Milieu (Noyau)

Généralités: Les classes Milieu portent les Champ_Don contenant les propriétés du milieu fluide ou

solide qu'on modélise.

Solide: Cette classe définit un milieus olide. La classe Milieu_base porte déjà les champsutiles

au calcul de la conduction dans un solide.

Liens avecles autres classes

Solide estréférencéparla classe équation de type Conduction.

TR/LTML/ 96-20	106/16

TRIO_U Version1 Module **ThSol**

STR/LTML/ 96-20 107/162

STR/LTML/ 96-20 108/162

4- ThSol: Discrétisation

Hiérarchie:		
Classede base:	Discretisation_base	(Noyau)
Classegénérique:	Discretisation	(Noyau)
Discret_Thermiqu	ae: Classe de base décrivant la dis thermiques.	scrétisation spatiale appliquée aux problèmes
<u>Liensavecles autresclas</u> Discretisation_k	sses base estassociéàlaclasse Probleme_b	ase.
Méthodes: temperature{}	: méthodevirtuelle pure pour typer et disc	crétiserles Champ_Inc de température

STR/LTML/ 96-20 109/162

TRIO_U: OPERATEURS

Le Module "Operateurs" contient les objets qui définissent les opérateurs, indépendamment du type de discrétisation spatiale.

On a défini les familles d'objets suivantes:

1	Opérateurs de diffusion
2	Opérateurs de convection
3	Opérateurs de divergence
4	Opérateurs de gradient

Toutes les classes héritent de la classe de base Operateur_base.

Hiérarchie:		
Classede base:	Operateur_base	(Noyau)
Classegénérique:	Operateur	(Noyau)

STR/LTML/ 96-20 110/162

1- Les opérateurs de diffusion:

Généralités: Représente le terme de diffusion dans une équation. Le choix du terme dépend de la

modélisation la minaire ou turbulente de l'écoulement, de la discrétisation et du type du champ

de diffusivité.

Les classes des opérateurs de diffusion héritent de la classe MorEqn (voir Operateur

ou Operateur base dans Noyau).

Classegénérique: Operateur_Diff hérite des classes et qui Operateur

DERIV(Operateur_Diff_base).

Classede base: Operateur_Diff_base est la classe de base de tous les opérateurs de diffusion.

Classe Op_Diff_negligeable: classe instanciable dérivant de Operateur_Diff_base pour négliger

dans une équation les effets de la diffusion.

Classe Op_Diff_Turbulent_base: classe de base pour les opérateurs de diffusion pour un écoulement

Classe Op Diff K Eps base: classe de base pour les opérateurs de diffusion pour l'équation de transport des

champsKetε.

ClasseOp_Diff_K_Eps: classegénériquepour les opérateurs de diffusion pour l'équation de transport des champs

Ketε.

Liens avecles autres classes

Operateur_Diff est porté par les classes des équations:

Navier_Stokes_std (ThHyd),

Convection_Diffusion_std (ThHyd)

Conduction (ThSol)

La méthode typer() qui calcule le type de la classe à instancier est portée par la classe générique

Operateur Diff .

Ces classes ont une référence au champde diffusivité (ou viscosité) laminaire (porté par le Milieu) et au champde

diffusivité (ou viscosité) turbulente (porté par le modèle de turbulence).

Op_Diff_K_Eps estportéparla classe: Transport_K_Eps

2- Les opérateurs de convection:

Généralités: Représente le terme de convection dans une équation. Le choix du terme dépend du choix du

modèle de convection et de la discrétisation.

Les classes des opérateurs de convection héritent de la classe MorEqn (voir

Operateur ou Operateur base dans Noyau).

STR/LTML/ 96-20 111/162

Classegénérique: Operateur_Conv qui hérite des classes Operateur et

DERIV(Operateur_Conv_base).

Classede base: Operateur_Conv_base est la classede basede tous les opérateurs de convection.

ClasseOp_Conv_negligeable: cet opérateur permet de négliger dans une équation les effets de la convection.

<u>Liens avec les autres classes</u> Operateur_Conv est portée par les classes des équations:

Navier_Stokes_std, Convection_Diffusion_std

Transport_K_Eps

La méthode typer() qui calcule le type de la classe à instancier est portée par la classe générique Operateur Conv .

3- Les opérateurs de divergence:

Généralités: Calcul de la divergence d'un champ.

Classegénérique: Operateur_Div : qui hérite des classes Operateur et

DERIV(Operateur_Div_base).

Classedebase: Operateur_Div_base

Liens avec les autres classes La divergence est portée par la classe Navier_Stokes_std pour le calcul de

div(U).

4- Les opérateurs de gradient:

Généralités: Calcul du gradient d'un champs calaire.

Classegénérique: Operateur_Grad: qui hérite des classes Operateur et

DERIV(Operateur_Grad_base)

Classedebase: Operateur_Grad_base

Liens avecles autres classes Le gradient est porté par la classe Navier Stokes std pour le calcul de grad (P).

STR/LTML/ 96-20

112/162

STR/LTML/ 96-20 114/162

STR/LTML/ 96-20 115/162

STR/LTML/ 96-20 119/162

STR/LTML/ 96-20 120/162

STR/LTML/ 96-20 122/162

STR/LTML/ 96-20 123/162

TRIO_U: GEOMETRIE

 $Le\,module\,"Geometrie\," contient les informations que fournit un mailleur.$

- 1. Domaine
- 2 Zone
- 3. Frontières
- 4. Sous_Zone,Frontière utilisateur
- 5. Elem_geom

STR/LTML/ 96-20 124/162

1- Geometrie / Domaine

Un Domaine est un espacegéométrique maillé.

On va résoudre un **Probleme** sur un **Domaine**. On peut vouloir résoudre conjointement des problèmes de type différent sur plusieurs domaines. Géométriquement, les domaines sont alors couplés par des surfaces qu'on appelle **Raccord**.

Si les problèmes sont résolus dans TRIO_U les raccords sont dits **locaux**. Si un problème est résolu dans TRIO_U et l'autre dans un autre code, le raccordest dit **distant**.

Exemplede couplagede domaines: un domainefluide sur lequel on veut résoudre un problèmede type Pb_Hydraulique, est couplé à un domainesolide auquel on associe un problèmede type Pb_Conduction.

Un domaine contient une ou plusieurs objets de type **Zone**. Par définition une zone est une partie du domaine à laquelle on va associer un schémade discrétisation spatial. Une zone possède un et un seul schémade discrétisation. Si par exemple, on veut résoudre un problème avec à la fois une discrétisation de type structuré et une autre de type dé-structuré, il faudra définir autant de zones que de types de discrétisation.

Remarque: dans TRIO_UVersion 1, les domainessont constitués d'une seule zone.

On appelle Bord la surface qui borde le domaine. Pour une équation donnée, l'utilisateur doit associer une condition aux limites à chaquebord.

L'objet de type Joint: Au niveau géométrique, la mise en oeuvre d'une méthode de décomposition de domaine pour la parallélisation des calculs consiste à:

- effectuer une partition du maillage (avec un découpeur),
- distribuerun morceauà chaqueprocesseur.

STR/LTML/ 96-20 125/162

STR/LTML/ 96-20 126/162

STR/LTML/ 96-20 127/162

Chaque processeur possèdealors un domaine, une zone avec des bords et des joints.

Lesfaces internes définissentdes surfaces internes au maillage.

Une ${\tt Sous_Zone}$ est un ensemblede mailles dans une zone.

Bord_utilisateur: Regroupement de bords élémentaires pour faciliter l'entrée des données de Trio_U.

STR/LTML/ 96-20 128/162

STR/LTML/ 96-20 130/162

2- Geometrie / Zone

131/162

STR/LTML/ 96-20 132/162

3- Geometrie / Frontiere

La classeFrontiere est la classede basepour représenter un ensemble de faces dans un maillage, soit:

- les bords: limite du maillageavec l'extérieur,
- les joints : surfacede découpagedu maillage pour du calcul parallèle avec méthode de décomposition de domaine
- les raccords: surfacede séparation de deux problèmes
- les faces internes: faces à l'intérieur d'un maillage

STR/LTML/ 96-20 133/162

4- Geometrie / Sous_Zone, Frontiere_utilisateur

Une Sous_Zone est un ensemble de mailles dans une zone.

Bord_utilisateur: Regroupement de bords élémentaires pour faciliter l'entrée des données de Trio_U.

STR/LTML/ 96-20 134/162

5- Geometrie / Elem_geom

La classe Elem_geom définit le type d'éléments qui constituent une Zone.

Chaque classe instanciable doit implémenter les méthodes:

```
face_sommet(int i, int j):
                                          ièmesommetde la facej
nb_som():
                                          nombrede sommetsde l'élément
                                          nombrede faces de l'élément
nb_face():
                                          nombrede sommetsd'uneface
nb_som_face():
est structure():
                                          =1 si l'élémentest de type structuré
                                          renvoiele type des faces
type_face():
nom_lml():
                                          nomdutype de l'élément pour le fichier de sortie Iml
contient (const Double Vect& pos, int elem): le point de coordonnées pos estil situé dans
                                          l'élémentelem?
calculer_volumes(DoubleVect& vol): remplissage du tableau vol, du volume des éléments de la
                                          zone
reordonner():
                                          définit la renumérotation des sommets d'un élément.
```

Rectangle: 'el'ement utilis'e pour d'efinir un mail la gestructur'e en 2D.

Conventionde numérotationdes sommets:

STR/LTML/ 96-20 135/162 TRIO_U Version1 ${\sf Module} \textbf{Geometrie}$

STR/LTML/ 96-20 136/162

Héxaèdre : élément utilisé pour définir un maillage structuré en 3D. Convention de numérotation des sommets :

STR/LTML/ 96-20 138/162

STR/LTML/ 96-20 139/162

STR/LTML/ 96-20 141/162

STR/LTML/ 96-20 143/162

TRIO_U : Schemas_Temps

Le Module **Schemas_Temps** contient les classes des schémas de discrétisation en temps.

Une seule classe existe dans TRIO Version 1:

1 Schema_Euler_explicite

1- Schemas_Temps/ Schema_Euler_explicite

```
Hiérarchie:
Classede base:
                                                     (Noyau)
                  Schema_temps_base
Classegénérique:
                   Schema_temps
                                                     (Noyau)
```

```
Schema_Euler_explicite: définit le schémad'Euler explicite
                       U(n+1) = U(n) + dt * (dU/dt)(n)
```

Les méthodes:

```
nb_valeurs_temporelles():
                                        renvoie le nombre de pas de temps pour lesquels on stocke les
                                        Champ Inc.
                                        Renvoiele nombre2, soit: U(n) et U(n+1)
\texttt{faire\_un\_pas\_de\_temps}(\texttt{Equation\_base\&} \quad \texttt{eqn}) \quad \textbf{: Ex\'{e}cution d'un pas de temps pour l'\'{e}quation}
                                        eqn.
Codagedela méthode faire_un_pas_de_temps :
int Schema_Euler_explicite :: faire_un_pas_de_temps(Equation_base& eqn)
       DoubleTab& futur =
                          eqn.derivee_en_temps_inco(eqn.inconnue().futur());
       double acc_max_abs = futur.max_abs();
       stationnaire_atteint_ *= (acc_max_abs < seuil_statio_);</pre>
       DoubleTab& present = eqn.inconnue();
       futur *= dt_;
       futur += present;
       eqn.mettre_a_jour()
       return 1;
}
```

STR/LTML/ 96-20 145/162

TRIO_U: VF

Le Module ${f VF}$ contient les objets communs aux schémas de discrétisation de type ${\it volumes finis}$

On a défini les familles d'objets suivantes:

1 Zones

2 Eléments

STR/LTML/ 96-20 146/162

1- VF / Zones

Hiérarchie:

Classedebase: Zone_dis_base (Noyau)
Classegénérique: Zone_dis (Noyau)

La classe Zone_VF est la classe de base des Zone_dis pour toutes les discrétisations volumes finis (VDF, VEF, ...).

Elle contient les tableaux relatifs à l'ensemble des faces de la zone :

face_voisins_: les deux éléments voisins des faces (*)

face_sommets_: lessommetsdesfaces(*)

et les tableaux relatifs aux éléments:

elem_faces_: les faces des éléments volumes_: volumesdes éléments(*)

Lestableaux(*) sont remplis par la méthode Zone VF::discretiser().

La classe dérivée appliques es conventions de rangement pour remplir le tableau $elem_faces_$. Elle peut aussi décider de permuter les valeurs du tableau $face_voisins_pour satisfaire à ses conventions$.

STR/LTML/ 96-20 148/162

STR/LTML/ 96-20 149/162

2- VF / Eléments

La classe Face_base décrit une face pour une discrétisation de type Volumes_finis (VDF, VEF,...). Cette classe sert temporairement pour la construction des zones discrétisées.

Les membres:

elem1_etelem2_: numérodes éléments voisins de la face les_noeuds: numéros des sommets de la face.

VF / Elements : Face

STR/LTML/ 96-20 150/162

TRIO U: VDF

Le Module VDF contient les classes pour le schémade discrétisation Volumes Différences finis.

La discrétisation Volumes Différences Finies (VDF) de TRIO_U est le schéma qui a fait ses preuves dans TRIO VF. Référence[PRES1].

Quelquesaméliorationsont été apportées lors de la ré-écriture:

- on est passéde la notationi-j-k à une notation de type "élémentsfinis", plus souple et plus facile à mettre en oeuvre.
- on peut calculer du vrai 2D.

Le maillage est structuré: mailles rectangle en 2D, parallélipipè de en 3D pour des coordonnées cartésiennes. Le maillage en coordonnées cylindriques n'est pas décrit dans cette version du document.

Au maillage, correspondun maillage décalé, centré autour des faces. Dans la suite, on appellera ces volumes "volumes entrelacés" et leurs faces des "facettes".

Les équations de transport de scalaire sont discrétisées sur les éléments, tandis que Navier_Stokes est discrétisé sur le maillageentrelacé.

STR/LTML/ 96-20 151/162

STR/LTML/ 96-20 152/162

Le champde vitesse est de type ${\tt Champ_Face}$: on ne calcule que la composante normale aux faces.

Les champs scalaires (pression, température, concentration, K, Epsilon) sont de type $Champ_P0_VDF$ (constants dans la maille).

Le Module VDF contient les familles de classes uivantes:

1	Zone_VDF
2	Zone_CI_VDF
3	Eléments
4	Discrétisation
5	Opérateurs
6	Sources
7	SolveurMasse
8	Solveur Pression
9	Modèles de turbulence
10	Conditions limites
11	Champ
12	Statistiquestemps

STR/LTML/ 96-20 153/162

1- VDF / ZONES : Zone_VDF

Hiérarchie:

Classedebase: Zone_dis_base (Noyau)

Zone_VF (VF/Zones)

Classegénérique: Zone_dis (Noyau)

La classe Zone_VDF contient les informations géométriques que demande la méthode des Volumes différences finis. Cette discrétisation correspond à un maillage structuré (mailles rectangle en 2D, parallélipipède en 3D pour des coordonnées cartésiennes).

La Zone_VDF hérite de la convention de rangement des faces établies par Zone_VF. Les faces sont numérotées de la faconsuivante:

- les faces qui sont sur une **Zone_joint** apparaissent en premier (dans l'ordre de la liste mes_faces_joint de la Zone).
- les faces qui sont sur une **Zone_bord** apparaissent en suite (dans l'ordre de la liste mes_faces_bord de la Zone)
- les faces qui sont sur un **Raccord** apparaissent ensuite (dans l'ordre de la liste mes_faces_raccord de la Zone). Les raccords étant, dans le calcul, assimilés à des bords avec une condition aux limites adéquate, on ne les distingueplus dans Zone_VDF: on parle donc de Frontiere_dis qui sont associées à des conditions limites.
- les faces internes apparaissentenfin.

La Zone_VDFréordonneles faces de façon à les rangersuivant leur orientation.

A chaqueface on fait correspondreun entier qui indiques on **orientation**. On suppose qu'à l'intérieur de chaquefamille de faces (ioint, bord, interne) on trouve:

- le bloc des faces d'équation x=cte (face d'orientation 0),
- le bloc des faces d'équation y=cte (face d'orientation 1).
- le bloc des faces d'équation z=cte (face d'orientation 2),

On n'a pas besoin d'une numérotation particulière des éléments.

STR/LTML/ 96-20 154/162

STR/LTML/ 96-20 155/162

Figure: Numérotation des faces

-en2D:

TRIO_U Version1

STR/LTML/ 96-20 156/162

STR/LTML/ 96-20 157/162

-en3D:

STR/LTML/ 96-20 158/162

STR/LTML/ 96-20 159/162

Dans le tableau face_voisins_ (dans Zone_VF) qui contient les numéros des éléments voisins d'une face, on range les 2 voisins

On a introduit la notion d'arête pour le calcul des flux diffusifs et convectifs dans la conservation de la quantité de mouvement.

STR/LTML/ 96-20 160/162

STR/LTML/ 96-20 161/162

Figure: les arêtes

Le tableau Qdmcontient la connectivité arête/faces, à savoir les faces entourant une arête. Dans ce tableau les arêtes apparaissent dans l'ordre suivant:

- blocdesarêtesjoint,
- blocdesarêtescoin,
- blocdes arêtesbord.
- blocdesarêtesmixte,
- blocdes arêtes internes.

A l'intérieur de chaque bloc les arêtes apparaisent dans l'ordre suivant: arêtes XY, arêtes XZ et arêtes YZ.

Les membres:

axi_: = 1 en coordonnéescylindriques,=0 sinon

Tableauxassociésauxfaces:

face_surfaces_: surfacedechaqueface

volumes_entrelaces_: volumeentrelacéassociéà chaqueface xv_: coordonnées du centre de gravité des faces.

porosite_face_: porositésurfacique des faces.

orientation_: orientationdesfaces.

Tableauxassociésauxéléments:

xp : coordonnées du centre de gravité des éléments.

porosite_elem_: porositévolumiquedes éléments.

Tableauxassociésauxarêtes:

Odm: numérodesfaces entourant une arête

 $\verb|h_x_| : pasdu \, maillage \, en \, X. \, la \, plus \, petite \, distance entre 2 \, centres de \, faces \, dans \, la \, direction \, X = cte$

h_y_ , h_z_ : idemdans les directions y et z.

Les méthodes qui calculent:

Ces méthodes supposent l'ordre de rangement des faces:

```
inline int premiere_arete_coin() const;
inline int premiere_arete_bord() const;
inline int premiere_arete_mixte() const;
inline int premiere_arete_interne() const;
```

Méthodescalculant des distances:

Distanceentre les centres de gravité de 2 éléments n1 et n2 dans la direction k:

```
inline double dist_elem(int n1, int n2, int k) const;
```

STR/LTML/ 96-20 162/162

STR/LTML/ 96-20 163/162

Dimensiond'un élémentn1 dans la direction k:

inline double dim_elem(int n1, int k) const;

STR/LTML/ 96-20 164/162

STR/LTML/ 96-20 165/162

Distance entre les faces f1 et f2 dans la direction k:

STR/LTML/ 96-20 166/162

STR/LTML/ 96-20 167/162

Méthodesappeléespar le schémade convection Quick:

inline int amont_amont(int num_face, int i) const; Renvoieelem1ouelem2suivantla valeurdei (i vaut0ou1). STR/LTML/ 96-20 169/162

inline int face_amont_princ(int num_face, int i) const; Renvoiela facef1 ouf2 suivantla valeurdei (i vaut0 ou 1). STR/LTML/ 96-20 170/162

STR/LTML/ 96-20 171/162

inline int $face_amont_conj$ (int num_face, int k, int i) const; Renvoiela facef3c(respf4c) quandnum_facevautf3 (respf4). i vaut0 ou 1, k est l'orientation de la facef1.

STR/LTML/96

Distancenomalepo
inline o

Distancenormale pour une face de bord (coordonnées cartésiennes) in line double **dist_norm_bord**(int num_face) const;

STR/LTML/ 96-20 174/162

STR/LTML/ 96-20 175/162

Distancenormale pour une face que le coordonnées cartésiennes ou cylindriques): vautdist_norm(int num_face) pour une face interne, ou dist_norm_bord(int num_face) pour une face de bord.

inline double distance normale(int num face) const;

Méthodeutile au calcul de la fonction de structure pour le modèle sous-maille.

```
inline double delta C(int elem) const;
```

Liens avecles autres classes

La Zone_dis est portée par le Domaine_dis, lui même porté par le Probleme_base.

Pratiquement toutes les classes VDF ont une référence à la Zone_VDF. Certaines classes, pour avoir un accès rapide aux tableaux de Zone_VDF, partagent avec la Zone_VDF référence à ces tableaux.

La référenceest remplie de la facon suivante:

```
Evaluateur_VDF::associer_zones(const Zone_VDF& zone_VDF,...)
{...
porosite.ref(zone_VDF.porosite_face());
}
```

176/162

STR/LTML/ 96-20

STR/LTML/ 96-20 177/162

2- VDF / ZONES : Zone_CI_VDF

Hiérarchie:

Classedebase: Zone_Cl_dis_base (Noyau)

Classegénérique: Zone_Cl_dis (Noyau)

Membres:

type_arete_bord_: type des arêtes séparant 2 faces frontières

type=0: l'arête sépare2 faces de paroi type=1: l'arête sépare2 faces "fluide"

type=2: l'arête sépare une face de paroi et une face fluide

type=3: l'arête sépare2 faces de symétrie

Liens avecles autres classes

La Zone_Cl_dis est portée par l'Equation_base .

Pratiquementtoutes les classes VDF ont une référence à la Zone_C1_VDF.

STR/LTML/ 96-20 178/162

TRIO_U Version1 Module VDF

STR/LTML/ 96-20 179/162

STR/LTML/ 96-20 180/162

3- VDF / Elements

Ce	s classes permettent la dis	crétisation de la géométrie.
	Faces_VDF: Aretes:	Décrit un ensemblede faces pour la discrétisation VDF. Décrit un ensemble d'arêtes.

TRIO_U Version1 Module VDF

STR/LTML/ 96-20 181/162

4- VDF / Discrétisation

Hiérarchie:			
Classede base:	Discretisation_base	(Noyau)	
Classegénérique:	Discretisation	(Noyau)	
VDF_discretisat	•	ur la discrétisation VDF. Les méthoc lis et des Champ_Inc portésparles éc	

STR/LTML/ 96-20 182/162

5- VDF / Operateurs

Hiérarchie:			-
Classede base:	Operateur_base	(Noyau)	
Classegénérique:	Operateur	(Noyau)	
	Operateur_Diff	(Operateur)	
	Op_Diff_K_Eps	(ThHyd/Turbulent)	
	Operateur_Conv	(Operateur)	
	Operateur_Grad	(Operateur)	
	Operateur_Div	(Operateur)	

Les opérateurs VDF sont le fruit de l'association de 3 hiérarchies. Sur un exemplemontrons d'abord l'intérêt de ce découpage.

Exemple: opérateur de convection, de type schéma Amont [PRES1], VDF, équation de transport d'un scalaire S, méthode a jouter (. . .) :

STR/LTML/ 96-20 183/162

STR/LTML/ 96-20 184/162

Voici un algorithmequi calculerait le termede convection et l'ajouterait au second membre:

On s'aperçoit qu'il y a 2 types de tâches dans cet algorithme:

- un calcul de flux,
- une gestion des boucles, ainsi que la distribution des flux au secondmembre.

On va retrouvercette répartition dans tous les opérateurs VDF, VEF, etc... d'où l'idée de définir 3 hiérarchies:

- des évaluateurs de flux chargés du calcul de flux,
- des itérateurs responsables des boudes, réutilisables dans tous les opérateurs,
- des opérateurs portés par les équations, contenant un itérateur et un évaluateur.

STR/LTML/ 96-20 185/162

TRIO_U Version1

STR/LTML/ 96-20 186/162

Pour résumer:

- Les opérateurs, portés et instanciés par les équations, vont porter un itérateur.
- Il est nécessaire de définir deux types d'itérateurs: un premier pour gérer les calculs d'équations scalaires (boudes sur les faces et répartition des flux sur les éléments voisins), un second pour les équations de quantité de mouvement pour gérer les boudes sur les arêtes et répartition des flux sur les faces.
- Les itérateurs seront définis de façon générique en utilisant les templates (ou patron). Remarque, pour des raisons liés aux compilateurs des ordinateurs différents de HP, on a remplacé dans Version 1 les templates par des MACRO. Quand les compilateurs accepteront tous des template, on reviendra aux itérateurs template qui sont beaucoup plus lisibles que les macros.
- Les itérateurs vont porter un évaluateur de flux.
- Les évaluateurs de flux vont gérer le type des conditions aux limites pour les quelles ils doivent calculer un flux.
- Les opérateurs ne portent qu'un constructeur qui doit instancier l'itérateur choisi et le type d'évaluateur de flux porté par l'itérateur.

Intérêt de la hiérarchie:

L'écriture d'un opérateur particulier devient sûre et rapide. Les boucles sur les faces, les facettes ou les éléments existent déjà dans la hiérarchie des itérateurs. Il suffit de coder l'évaluateur de flux ad-hoc, c'est à dire juste le calcul du flux.

STR/LTML/ 96-20 187/162

5.1 Les itérateurs VDF :

Iterateur_VDF_Elem: Le calcul des flux sur les faces d'un élément revient à gérer les boucles sur les faces et à répartir le flux sur les éléments voisins de la face.

Méthodes

ajouter_interne(---): bouclesur les faces internes

Pour chaque face,

appel de la fonction flux_faces_interne() de l'évaluateur
répartition du flux sur les éléments voisins de la face.

 $\verb|ajouter_bords(---)|: boucle sur les frontières. Suivant le type de condition limite \verb|Cl| que porte la frontière: Pour chaque face,$

appelde la fonction flux_faces (---, cl,---) de l'évaluateur envoidu flux sur l'élément voisin de la face.

Iterateur_VDF_Face: Le calcul des flux sur les faces d'un volume entre lacé contient:

- la gestion des boucles sur les arêtes pour les facettes (1) à cheval sur deux faces

- et la gestion des boucles sur les facettes (2) à l'intérieur d'un élément.

Le flux est réparti sur les faces voisines

STR/LTML/ 96-20 188/162

TRIO_U Version1

STR/LTML/ 96-20 189/162

Méthodes

ajouter_aretes_internes(---): boucle sur les arêtes internes

Pour chaque arête,

appel de la fonction flux_arete_interne() de l'évaluateur pour les 2 facettes fy (resp. fx).

répartition du flux sur les faces voisines f2 et f3 (resp. f0 et f1).

TRIO_U Version1

STR/LTML/ 96-20 190/162

STR/LTML/ 96-20 191/162

ajouter_fa7_elem(---): bouclesur les facettes(2) à l'intérieur d'un élément.

Pour chaque facette, appel de la fonction flux_fa7_elem() de l'évaluateur, puis répartition sur les faces f1 et f2.

STR/LTML/ 96-20 192/162

STR/LTML/ 96-20 193/162

a jouter_aretes_bord(---): boucle sur les arêtes bord. Suivant le type de condition limite appliquée aux deux faces de bord entourant l'arête, appel des fonctions:

```
flux_arete_paroi()
flux_arete_fluide()
flux_arete_paroi_fluide()
flux_arete_symetrie()
```

de l'évaluateur, et envoidu flux sur la facef1.

STR/LTML/ 96-20 194/162

TRIO_U Version1 Module VDF

STR/LTML/ 96-20 195/162

```
\label{eq:appeldes} \verb| ajouter_aretes_mixtes(---)|: boundes ur les arêtes mixtes. Appel des fonctions: \\ \verb| flux_arete_mixte()| de l'évaluateur, et envoiduflux sur les faces entourant l'arête. \\ \end{aligned}
```

 $\verb|ajouter_fa7_sortie_libre(---)|: boucle sur les frontières pour trouver les frontières qui portent une conditon limite de type sortie_libre.$

calcul du flux à ajouter sur la face qui porte cette condition limite. La fonction flux_fa7_sortie_libre() del'évaluateurest appelée.

STR/LTML/ 96-20 196/162

STR/LTML/ 96-20 197/162

STR/LTML/ 96-20 198/162

Itérateur VDF

arguments des opérations (**) : const DoubleTab&, DoubleTab&

STR/LTML/ 96-20 199/162

5.2 Classes particulières des opérateurs VDF pour la diffusion :

1.) Opérateurs associés à une équation de transport

Le champ diffusé est **scalaire** de type Champ_PO_VDF (calculé au centre des éléments). L'itérateur associé à l'opérateurest du type Iterateur_VDF_Elem.

Le type des opérateurs de diffusion dépend:

- du type de l'écoulement: laminaire ou turbulent
- du type du champde diffusivité: uniforme (isotrope, constanten espace)

ou isotrope, variable en espace

- du nombre de composantes du champ de diffusivité. (l'équation Convection_Diffusion_Concentration peut calculer le transport de plusieurs constituants, le champde diffusivité a alors plusieurs composantes.)

1.1) l'écoulement est laminaire

Classeinstanciable	Evaluateur	Champde	nb
Op_Diff_VDF_Elem	correspondant Eval Diff VDF const Elem	diffusivité uniforme	Inc 1
op_bili_vbi_biem		dillonne	'
Op_Diff_VDF_var_Elem	Eval_Diff_VDF_var_Elem	variable	1
Op_Diff_VDF_Multi_inco_Elem		uniforme	>1
	const_Elem		
Op_Diff_VDF_Multi_inco_var_		variable	>1
Liem	_var_Elem		

1.2) l'écoulement est turbulent

Classeinstanciable	Evaluateur	Champde	nb
	correspondant	diffusivité	Inc
Op_Dift_VDF_Elem	Eval_Dift_VDF_const_Elem	uniforme	1
Op_Dift_VDF_var_Elem	Eval_Dift_VDF_var_Elem	variable	1
Op_Dift_VDF_Multi_inco_Elem	Eval_Dift_VDF_Multi_inco_ const_Elem	uniforme	>1
Op_Dift_VDF_Multi_inco_var_ Elem	Eval_Dift_VDF_Multi_inco _var_Elem	variable	>1

1.3) Opérateur de diffusion spécialisé pour l'équation de **transport** des champs \mathbf{K} et $\boldsymbol{\epsilon}$

TRIO U Version1

STR/LTML/ 96-20 200/162

Op_Diff_K_Eps_VDF_Elem:
L'évaluateurassociéaletypeEval_Diff_K_Eps_VDF_Elem

2.) Opérateurs associés à une équation de Navier Stokes

Le champ diffusé est **vectoriel**, calculé au centre des faces (de type Champ_Face). L'itérateur associé à l'opérateur est du type Iterateur_VDF_Face.

2.1) l'écoulement est laminaire

Classeinstanciable	Evaluateur	Champde viscosité
	correspondant	
Op_Diff_VDF_Face	Eval_Diff_VDF_const_Face	uniforme
Op_Diff_VDF_var_Face	Eval_Diff_VDF_var_Face	variable

2.2) l'écoulement est turbulent

Classeinstanciable	Evaluateur correspondant	Champde viscosité
Op_Dift_VDF_Face	Eval_Dift_VDF_const_Face	uniforme
Op_Dift_VDF_var_Face	Eval_Dift_VDF_var_Face	variable

STR/LTML/ 96-20 201/162

STR/LTML/ 96-20 202/162

Evaluateurs VDF Diffusion (champ à une inconnue)

203/162

STR/LTML/ 96-20

STR/LTML/ 96-20 204/162

TRIO_U Version1

STR/LTML/ 96-20 205/162

STR/LTML/ 9	6-20	206/162

STR/LTML/ 96-20	207/162

208/162

STR/LTML/ 96-20

STR/LTML/ 96-20 209/162

210/162

STR/LTML/ 96-20

STR/LTML/ 96-20 211/162

STR/LTML/ 96-20 212/162

STR/LTML/ 96-20 213/162

5.3 Classes particulières des opérateurs VDF pour la convection:

Les schémasde convection Amontet Quick sont décrits dans le document [PRES1]

1.) Opérateurs associés à une équation de transport :

Le champ convecté est **scalaire**, de type Champ_P0_VDF (calculé au centre des éléments). L'itérateur associé à l'opérateur du type Iterateur_VDF_Elem.

Op_Conv_Amont_VDF_Elem: schémade convection amont

Op_Conv_Quick_VDF_Elem: schémaQuick

2) Opérateurs associés à une équation de quantité de mouvement :

Le champconvecté est **vectoriel**, calculé au centre des faces (de type Champ_Face). L'itérateur associé à l'opérateur est du type Iterateur_VDF_face.

Op_Conv_Amont_VDF_Face: schémade convection amont

Op_Conv_Quick_VDF_Face: schémaQuick

214/162

STR/LTML/ 96-20

STR/LTML/ 96-20	215/162

TRIO_U Version1

STR/LTML/ 96-20 216/162

STR/LTML/ 96-20 217/162

5.4 Classes particulières des opérateurs VDF pour la divergence:

Op_Div_VDF_Elem: Divergenced'un champlocalisé aux faces dans une discrétisation VDF. Cette classe porte un itérateur de type Iterateur_VDF_Elem.

Cette classe va servirà calculer div(U).

Remarque: Le champ référencé par l'évaluateur devrait être l'inconnue de l'équation Navier_Stokes, soit le champ de vitesse. Or ce champ est de type Champ_Face. C'est pourquoion ne remplit pas la référence inconnue dans Eval_VDF_Elem.

5.5 Classes particulières des opérateurs VDF pour le gradient:

Op_Grad_VDF_Face: Gradient d'un champ scalaire P0 localisé au centre des mailles dans une discrétisation VDF.Cette classeporte un itérateur de type I terateur_VDF_Face.

Cette classeva servir à calculer Grad(P).

Remarque: Le champ référencé par l'évaluateur devrait être l'inconnue de l'équation Navier_Stokes, soit le champ de vitesse. Or on a besoin de la pression qui est de type Champ_P0_VDF. C'est pourquoi on ne remplit pas la référence inconnue dans Eval_VDF_Face.

STR/LTML/ 96-20	218/162

219/162

STR/LTML/ 96-20

STR/LTML/ 96-20 220/162

STR/LTML/ 96-20 221/162

6- VDF / Sources

Hiérarchie:

Classedebase: Source_base (Noyau)
Classegénérique: Source (Noyau)

Pour la discrétisation VDF, on a développé:

- destermessources dans une hiérarchie d'itérateurs et d'évaluateurs,
- et des termessourcedirects.

6.1 Termes sources traités dans la hiérarchie des itérateurs et des évaluateurs

La hiérarchie est comparable à celle des opérateurs VDF. Ces termes sources portent un objet "Iterateur Source VDF" qui porte un objet "Evaluateur Source VDF".

LesIterateurs_Source_VDF:

Iterateur_Source_VDF_Elem : gestion des boucles sur les faces et répartition des flux sur les éléments voisins

Iterateur_Source_VDF_Face : gestion des boucles sur les arêtes et répartition des flux sur les faces voisines

Classede base: Source base

Terme_Source_VDF_base

Classeinstanciables:

Terme_Gravite_VDF_Face: terme gravité qui figure dans l'équation de Navier_Stokes divisée par la masse volumique.La masse volumique est supposée constante. Ce terme source porte un itérateur du type Iterateur_Source_VDF_Face. L'évaluateur porté est de type Eval Gravite VDF Face.

Terme_Puissance_Thermique_VDF_Elem: terme source dans l'équation de la transport de la température qui représente le dégagement volumique de puissance thermique. Ce terme source porte un itérateur du type Iterateur_Source_VDF_Elem. L'évaluateur porté est de type Eval_Puiss_Th_VDF_Elem.

STR/LTML/ 96-20	222/162

STR/LTML/ 96-20 224/162

STR/LTML/ 96-20 225/162

STR/LTML/ 96-20 226/162

Evaluateur_Source_VDF : Gravité
Puissance thermique

STR/LTML/ 96-20 227/162

6.2 Termes sources VDF traités directement :

On n'a pas intégré les classes qui suivent dans la hiérarchie Terme_Source_VDF_base parce que les termes sourcesque ces classes représentent demandent des traitements spécifiques pour certaines conditions aux limites.

6.2-1) Termes sources de Boussinesq:

Classesinstanciables:

2-1-1) L'équation de Convection_Diffusion transporte un scalaire. Le champbeta_ de variation de la masse volumique en fonction du scalaire est uniforme en espace:

Terme_Boussinesq_temper_VDF_Face: l'équation transportela température

 ${\tt Terme_Boussinesq_concen_VDF_Face:} \textbf{le scalaire transport\'e est la concentration}$

2-1-4) L'équation de Navier-Stokes est couplée avec une équation thermique et une équation de transport de la concentration

Terme_Boussinesq_VDF_Face: les champs beta sont uniformes.

STR/LTML/ 96-20 228/162

Terme Source de Boussinesq (VDF/Sources)

STR/LTML/ 96-20 229/162

6.2-2) Termes sources qui figurent dans l'<u>équation de transport du couple</u> (Κ,ε):

Rappel : l'équation Transport_K_Eps est contenue par le modèle de turbulence Modele_turbulence_hyd_K_Eps. Cette équation résout conjointement les deux équations de transport de l'énergiecinétiqueturbulenteK et du taux de dissipation turbulentε.

Les termes sources de ces équations sont eux aussi calculés ensemble, et ils sont ajoutés automatiquement.

Dansle calculde ces termes source, interviennent:

P la production de l'énergie cinétique turbulente par l'écoulement moyen

STR/LTML/ 96-20 230/162

STR/LTML/ 96-20 231/162

et G la productionou la destruction de cette énergie par les forces de flottabilité.

STR/LTML/ 96-20 232/162

STR/LTML/ 96-20 233/162

quisont calculés par la classe Calcul_Production_K_VDF.

Les classes représentant ces termes sources dérivent de la classe <code>Terme_Source_base</code> et de la classe <code>Calcul_Production_K_VDF</code>.

Source_Transport_K_Eps_VDF_Elem: L'équation de Navier_Stokes n'est pas couplée à une équation de transport d'un scalaire.

Source_Transport_K_Eps_anisotherme_VDF_Elem : L'équation de Navier_Stokes est couplée à l'équation de Convection-Diffusion de la température. On suppose que le coefficient de variation de la massevolumique en fonction de la température est uniforme.

Source_Transport_K_Eps_aniso_therm_concen_VDF_Elem : L'équation de Navier_Stokes est couplée à l'équation de Convection-Diffusion de la concentration et à l'équation de Convection-Diffusion de la température. Les champs beta_t et beta_c sont uniformes.

STR/LTML/ 96-20 235/162

7- VDF / Solveur Masse

Hiérarchie:

Classedebase: Solveur_Masse_base (Noyau)

Classegénérique: Solveur_Masse (Noyau)

Dansla discrétisation VDF, les matrices masses ont diagonales elles ne sont donc pas assemblées.

Masse_VDF_Elem: Cesolveurest utilisé pour l'équation de transport d'un scalaire dans une discrétisation

VDF. Le champ scalaire est de type Champ_P0_VDF L'équation est intégrée sur les 6

faces du volume de contrôle centré sur la maille.

L'écoulementest incompressible, la densité est supposée constante.

Le terme correspondant à une maille vaut :

vol(elem)= volumegéométrique(elem)* porosité volumique(elem)

La méthode appliquer () a en argument le vecteur sm définiau centre des mailles.

Elle renvoiece mêmevecteur sm après lui avoir appliqué le solveur masse:

sm(elem)= sm(elem)/vol(elem)

Masse_VDF_Face: Ce solveur est utilisé pour l'équation de Navier-Stokes dans une discrétisation VDF. La

vitesse est de type Champ face définie au centre des faces. L'équation est intégrée sur

les 6 faces du volume de contrôle entrelacé centré sur la face. L'écoulement est incompressible, la densité est supposée constante.

Le terme correspondant à une face vaut :

vol(face) = volumeentrelacé(face)* porosité surfacique(face).

La méthode appliquer () a en argument le vecteur sm définiau centre des faces.

Elle renvoiece mêmevecteursm après lui avoir appliqué le solveur masse:

sm(face) = sm(face) / vol(face)

Traitementdesbords:

Pour les conditions aux limites de type Dirichlet ou de type Dirichlet_homogèneou de type symétrie la vitesse normale doit rester égale à sa valeur initiale.

Solveur Masse écrit sm(face)=0.

Pour les autres bords: sm(face) = sm(face) / vol(face)

STR/LTML/ 96-20 237/162

STR/LTML/ 96-20 238/162

8- VDF / Solveur_Pression

Hiérarchie: Classede base:	Solveur_Pression_base		(ThHyd)
Classegénérique:	Solveur_Pression	(ThHyd)	
Solveur_Pression	n_GCP_ssor_VDF : Solveur pr conditionnementSSORpourla disc	•	· l'algorithme du gradient conjugué avec pré /DF.

STR/LTML/ 96-20 239/162

STR/LTML/ 96-20 240/162

STR/LTML/ 96-20 241/162

9- VDF / Turbulence

9.1 Modèles de turbulence :

Hiérarchie:			
Classede base:	Mod_turb_hyd_base	(ThHyd/Turbulence)	
Classegénérique:	Mod_turb_hyd	(ThHyd/Turbulence)	

 $\label{thm:constant} {\tt Turbulence_hyd_sous_maille_VDF} : {\tt classe instanciable rep\'esentant le modèle "simulation des grandes \'echelles" pour la discr\'etisation VDF.}$

 $La \, classe g\'{e}n\'{e}rique correspondante est {\tt Mod_turb_hyd} \,\,\, \textbf{(ThHyd)}.$

Hiérarchie:		
Classede base:	Modele_turbulence_scal_base	(ThHyd/Turbulence)
Classegénérique:	Modele_turbulence_scal	(ThHyd/Turbulence)

Modele_turb_scal_Prandtl_sm_VDF : classe instanciable repésentant le modèle de Prandtl pour la turbulence d'une équation de convection diffusion quand l'hydraulique est calculée par le modèle de turbulence sous maille.

9.2 Lois de paroi :

Hiérarchie:		
Classede base:	Turbulence_paroi_base	(ThHyd/Turbulence)
Classegénérique:	Turbulence_paroi	(ThHyd/Turbulence)

 ${\tt Paroi_std_hyd_VDF}: {\tt d\'eterminele\ cisaillement turbulent parla\ th\'eoriede\ la\ couche limite\ isotherme.}$

Calcule également les grandeurs K, ϵ , v_t au voisinage de la paroi.

Cette classe est instanciée quand le problème est de type Pb_Hydraulique_Turbulent.

Paroi_std_th_hyd_VDF : Cette classe est instanciée quand les problèmes sont de type

Pb_Thermohydraulique_Turbulent

OU

Pb_Hydraulique_Concentration_Turbulent OU

Pb_Thermohydraulique_Concentration_Turbulent .

Elle hérite de la classe précédente et calcule les distances équivalentes à utiliser pour le calcul des coefficients d'échange à la paroi.

Elle calcule également les grandeurs α_t de la diffusivité turbulente au voisinage de la paroi.

STR/LTML/ 96-20 246/162

STR/LTML/ 96-20 247/162

10- VDF / Cond_Lim

Hiérarchie:			
Classede base:	Cond_lim_base	(Noyau)	
Classegénérique:	Cond_lim	(Noyau)	

Sortie_libre_Gradient_Pression_impose: Frontière ouverte avec condition de gradient de pression imposédans une équation de Navier_Stokes

VDF / Cond_Lim

STR/LTML/ 96-20 248/162

11- VDF / Champs

11.1 Classes Champ Inc implémentées pour les VDF:

Hiérarchie:		
Classede base:	Champ_Inc_base	(Noyau)
Classegénérique:	Champ_Inc	(Noyau)

Champ_Face: Cette classe sert à calculer un champ vectoriel dont on ne calcule que les composantes

normales aux faces. Il n' a donc qu'une composante par face, et l'attribut nb_comp vaut 1. On peut néanmoins imposer toutes les composantes du champsur le bord d'un domaine. Si n est le nombre total de faces de la zone et nb_faces_bord le nombre de faces de bord, le

tableaude valeurs associé au champest construit commesuit:

n valeurspour représenter les composantes normales aux faces,
nb_faces_bord* dimension pour stocker les valeurs imposées au bord.

Champ_P0_VDF: Cette classe représente un champ discret P0 par élément associé à une zone discrétisée de

type VDF

STR/LTML/ 96-20 249/162

VDF / Champs

STR/LTML/ 96-20 250/162

11.2 Classes Champ_Fonc implémentées pour les VDF:

Hiérarchie:

Classedebase: Champ_Fonc_base (Noyau)

Classegénérique: Champ_Fonc (Noyau)

Champ_Fonc_Face: Cette classe contient un champ vectoriel dont on ne calcule que les composantes normales auxfaces. Il n'a donc qu'une composante par face, et l'attribut nb_comp vaut 1.

Champ_Fonc_P0_VDF: Cette classe représente un champ discret P0 par élément associé à une zone discrétisée de type VDF

Classes instanciées par le modèle de turbulence <code>Mod_turb_hyd_ss_maille</code> quandla discrétisation est de type VDF:

Classesservantau calcul de l'intégrale en temps de la pression:

Integrale_tps_Champ_P0_VDF
Integrale_tps_carre_Champ_P0_VDF

Classesservantau calcul de l'intégrale en temps de la vitesse:

Integrale_tps_Champ_Face
Integrale_tps_carre_Champ_Face

STR/LTML/ 96-20 251/162

VDF / Champ_Fonc

STR/LTML/ 96-20 252/162

VDF / Champ_Fonc

STR/LTML/ 96-20 253/162

VDF / Statistiques_temps

Hiérarchie:		
Classede base:	Operateur_Statistique_base	(Noyau)
Classegénérique:	Operateur_Statistique	(Noyau)

 $\label{lem:classes} \textbf{Classes} \textbf{r\'ealisantles} \textbf{ calculs} \textbf{ statistiques} \textbf{ des champs} \textbf{ det} \textbf{ per Champ} \textbf{ po} \textbf{ Los parapportantemps}.$ Ces classes sont instanci'ees par la classe Postraitement.

Moyenne_Champ_P0_VDF: calculde la moyenned'un Champ_P0_VDF
Moyenne_Champ_Face: calculde la moyenned'un Champ_Face

Ecart_Type_Champ_P0_VDF: calculdel'écarttyped'unChamp_P0_VDF
Ecart_Type_Champ_Face: calculdel'écarttyped'unChamp_Face

STR/LTML/ 96-20 254/162

VDF / Statistiques_temps

Méthodes des classes:

STR/LTML/ 96-20 255/162

REFERENCES

Documentation TRIO_U Version 1

STR/LTML/96-20 Documentde conception TRIO_UVersion 1

STR/LTML/96-21 Manueld'utilisation TRIO_UVersion1

STR/LTML/96-22 Manuelde validation TRIO_UVersion1

STR/LTML/96-23 Note de présentation TRIO_UVersion1 [PRES1]

Remarque1:

Dans l'attente de la parution de la "Note de présentation", on trouvera la description des schémas de discrétisation VDF (Volumesdifférencesfinies) dans la note de présentation de TRIO_VF:

STR/LML/95-349 TRIO-VF Note de Présentation

Version complète 8.6 de décembre 95

M. Villand

Le document à paraître comprendrales descriptions des schémas VDF et VEF.

Remarque2:

Un additif à ce document de conception paraîtra en septembre 96 : il comprendra le module VEF (Volumes Elements Finis) et un additif au module VDF pour l'introduction des coordonnées cylindriques.