

Introduction to NLP

Information Retrieval

Introduction

- People search the Web daily
- Search engines
 - Google
 - Bing
 - Baidu
 - Yandex
- Information Retrieval is about search engines

Yahoo Search

Amazon Search

Library of Congress Search

Examples Of Search Engines

- Conventional (library catalog)
 - Search by keyword, title, author, etc.
- Text-based (Lexis-Nexis, Google, Yahoo!)
 - Search by keywords. Limited search using queries in natural language.
- Image-based
 - shapes, colors, keywords
- Question answering systems (ask.com)
 - Search in (restricted) natural language
- Clustering systems (Vivísimo, Clusty)
- Research systems (Lemur, Nutch)

Sample Queries

- How to get rid of stretch marks
- Dodge
- Kourtney Kardashian
- How many calories are in pumpkn pie
- Angelina Jolie and Brad Pitt
- How to vote
- Derek Jeter
- Interstellar trailer
- What is Ebola?

The Size Of The World Wide Web

- The size of the indexed world wide web pages (by 2014)
 - Indexed by Google: about 45 Billion pages
 - Indexed by Bing: about 25 Billion pages

Web Statistics

- Twitter hits 400 million tweets per day
 - June, 2012. Dick Costolo, CEO at Twitter
- Over 2.5 billion photos uploaded to Facebook each month (2010)
 - blog.facebook.com
- Google's clusters process a total of more than 20 petabytes of data per day.
 - 2008. Jeffrey Dean from Google

Challenges

- Dynamically generated content
- New pages get added all the time
- The size of the blogosphere doubles every 6 months

Characteristics Of User Queries

- Sessions
 - users revisit their queries
- Very short queries
 - typically 2 words long
- A large number of typos
- A small number of popular queries
 - A long tail of infrequent ones
- Almost no use of advanced query operators
 - with the exception of double quotes

Information Retrieval

- Baseline Process
 - Given a collection of documents
 - And a user's query
 - Find the most relevant documents

Key Terms Used in IR

Query

 a representation of what the user is looking for - can be a list of words or a phrase.

Document

an information entity that the user wants to retrieve

Collection

a set of documents

Index

a representation of information that makes querying easier

Term

word or concept that appears in a document or a query

Documents

- Not just printed paper
- Can be records, pages, sites, images, people, movies
- Document encoding (Unicode)
- Document representation
- Document preprocessing (e.g., removing metadata)
- Words, terms, types, tokens

Search Engine Architecture

- Decide what to index
- Collect it
- Index it (efficiently)
- Keep the index up to date
- Provide user-friendly query facilities

Search Engine Architecture

Document Representations

- Term-document matrix (m x n)
- Document-document matrix (n x n)
- Typical example in a medium-sized collection
 - n=3,000,000 documents
 - m = 50,000 terms
- Typical example on the Web
 - n=30,000,000,000
 - m=1,000,000
- Boolean vs. integer-valued matrices

Storage Issues

- Imagine a medium-sized collection with n=3,000,000 and m=50,000
- How large a term-document matrix will be needed?
- Is there any way to do better? Any heuristic?

Inverted Index

- Instead of an incidence vector, use a posting table
 - VERMONT: D1, D2, D6
 - MASSACHUSETTS: D1, D5, D6, D7
- Use linked lists to be able to insert new document postings in order and to remove existing postings.
- Can be used to compute document frequency
- Keep everything sorted! This gives you a logarithmic improvement in access.

Basic Operations On Inverted Indexes

- Conjunction (AND)
 - iterative merge of the two postings: O(x+y)
- Disjunction (OR)
 - very similar
- Negation (NOT)
 - can we still do it in O(x+y)?
 - Example: VERMONT AND NOT MASSACHUSETTS
 - Example: MASSACHUSETTS OR NOT VERMONT
- Recursive operations
- Optimization
 - start with the smallest sets

The Vector Model

Queries as Documents

- Advantages:
 - Mathematically easier to manage
- Problems:
 - Different lengths
 - Syntactic differences
 - Repetitions of words (or lack thereof)

Vector Queries

- Each document is represented as a vector
- Non-efficient representation
- Dimensional compatibility

									$ \mathbf{W}_{10} $
C_1	C_2	C_3	\mathbb{C}_4	\mathbb{C}_5	C_6	\mathbb{C}_7	\mathbb{C}_8	C ₉	C ₁₀

The Matching Process

- Document space
- Matching is done between a document and a query (or between two documents)
- Distance vs. similarity measures.
 - Euclidean distance (define)
 - Manhattan distance (define)
 - Word overlap
 - Jaccard coefficient

Similarity Measures

The Cosine measure (normalized dot product)

$$\sigma\left(D,Q\right) = \frac{\left|D \cap Q\right|}{\sqrt{\left|D\right| \cdot \left|Q\right|}} = \frac{\sum \left(d_i \cdot q_i\right)}{\sqrt{\sum \left(d_i\right)^2} \cdot \sqrt{\sum \left(q_i\right)^2}}$$

The Jaccard coefficient

$$\sigma(D,Q) = \frac{|D \cap Q|}{|D \cup Q|}$$

Exercise

- Compute the cosine scores
 - $-\sigma(D_1,D_2)$
 - $\sigma (D_1, D_3)$
- for the documents
 - $-D_1 = \langle 1, 3 \rangle$
 - $-D_2 = <100,300>$
 - $-D_3 = <3,1>$
- Compute the corresponding Euclidean distances,
 Manhattan distances, and Jaccard coefficients.

Phrase-based Queries

- Examples
 - "New York City"
 - "Ann Arbor"
 - "Barack Obama"
- We don't want to match
 - York is a city in New Hampshire

Positional Indexing

- Keep track of all words and their positions in the documents
- To find a multi-word phrase, look for the matching words appearing next to each other

Document Ranking

- Compute the similarity between the query and each of the documents
- Use cosine similarity
- Use TF*IDF weighting
- Return the top K matches to the user

IDF: Inverse Document Frequency

- Motivation
- Example

N: number of documents

 d_k : number of documents containing term k

 f_{ik} : absolute frequency of term k in document i

 w_{ik} : weight of term k in document i

$$idf_k = log_2(N/d_k) + 1 = log_2N - log_2d_k + 1$$

