

FAKULTÄT FÜR PHYSIK Praktikum Moderne Physik

Praktikum: P4 Gruppe: 22 Mo Mi WS20/21
Namen: Paul Filip useba[at]student.kit.edu
Namen: Janic Beck
Versuch: Tiefe Temperaturen
Betreuer: Daria Gusenkova Durchgeführt am: 18.01.202
Wird vom Betreuer ausgefüllt.
1. Abgabe am:
Rückgabe am: Kommentar:
2. Abgabe am: Ergebnis: + / 0 / - Handzeichen: Datum: Kommentar:

Contents

1	The	ory & Preparation	
	1.1	Aim of the experiment	
	1.2	Electrical resistance of metals	
	1.3	Semiconductors	
		1.3.1 Intrinsic semiconductor	
		1.3.2 Extrinsic semiconductor	
	1.4	Superconductors	
	1.5	Experimental setup	
2	Experiment & Evaluation		
	2.1	Experimental setup	
	2.2	Conclusion	

1. Theory & Preparation

1.1 Aim of the experiment

The low temperature properties of different solids are determined in the experiment. Especially the electrical resistance of metals, semiconductors and superconductors. We expect a phase shift for the superconductor which requires special consideration.

1.2 Electrical resistance of metals

A simple description with the Drude model can be used for metals. The electrons are accelerated in an electric field and scattered at the atomic cores after a mean free path. It follows for the electrical conductivity:

$$\sigma = \frac{ne^2\tau}{m_e} \tag{1.1}$$

where n is the charge carrier density, τ is the mean free time, and e is the elementary charge. The temperature dependent conductivity follows from the mean free time τ . This is due to the scattering of electrons by phonons and impurities in the lattice. The resistivity is given by $\sigma = \frac{1}{a}$ to Matthiessen's rule:

$$\rho = \rho_{ph}(T) + \rho_{im} \tag{1.2}$$

The scattering at impurities is independent of temperature and is reflected in a constant residual resistance. The following temperature dependencies apply to phonon scattering:

• For high temperatures ($T > \Theta_D$, with Θ_D Debye temperature).

$$\rho_{ph} \propto T$$
(1.3)

• For low temperatures
$$(T < \Theta_D)$$

$$\rho_{ph} \propto T^5 \tag{1.4}$$

Where for high temperatures, according to Grüneisen-Bornelius, one can determine the Debye temperature with:

$$R_T = 1,17 \frac{R(\Theta_D)}{\Theta_D} T - 0,17 \cdot R(\Theta_D)$$

$$\tag{1.5}$$

1.3 Semiconductors

Semiconductors are very different from normal conductors like metals. For $T \to 0$ the valence band is completely filled and the conduction band is empty. One can distinguish between intrinsic and extrinsic semiconductors.

Figure 1.1: Temperature dependent charge carrier concentration in extrinsic semiconductors.

1.3.1 Intrinsic semiconductor

Since neither a full valence band nor an empty conduction band contributes to charge transport, the electrons have to overcome an energy gap E_{gap} to the next band. This is done by thermal excitation, which is obviously temperature dependent. Thus for the electrical conductivity follows:

$$\sigma_{tot} = \sigma_e + \sigma_h = n_i e(\mu_e + \mu_h) \tag{1.6}$$

where n_i corresponds to the electron / hole density and μ to the corresponding mobility. In the end, the following equation is obtained:

$$\sigma_i = C_i \exp\left(-\frac{E_{gap}}{2k_B T}\right) \tag{1.7}$$

Thus, the electrical conductivity approaches the constant C_i asymptotically.

1.3.2 Extrinsic semiconductor

By doping a semiconductor, its conductivity can be strongly increased. In this process impurities of the neighboring main group are added. These atoms either donate electrons (donors) or accept electrons (acceptors) and produce a n/p doped semiconductor. Subenergy levels are created in the band gap which can be excited more easily. This results in a complicated temperature profile with $\sigma = en\mu$.

1.4 Superconductors

1.5 Experimental setup

2. Experiment & Evaluation

- 2.1 Experimental setup
- 2.2 Conclusion