

Advanced Networks

(EENGM4211) Rasheed Hussain

rasheed.hussain@bristol.ac.uk

Best contact: Microsoft Team

bristol.ac.uk

Part 6: Quality of Service

Unit Outline

- Introduction
- Internet Routing and Switching
- IP Multicast
- Networking for Realtime Applications
- Routing in Wireless Networks
- Quality of Service

Outline & Topics

- Motivation
- Some practical principles
- How do we apply the principles to make QoS work?
 - Queue Management
- Case study: IP Quality of Service
 - O What? why?
 - Protocols

ILOs

- Continues from previous lecture
- To be able to demonstrate the knowledge of the working principles of IntServ and DiffServ
- Knowledge of RSVP and different QoS primitives and working principles associated with those primitives

Recap

- What did we learn in the last lecture?
- QoS principles
- Queuing
- Fairness
- Methods?

Queue management

Scheduling:

- which output queue to visit
- o which packet to transmit from output queue
- Queue management:
 - ensuring buffers are available: memory management
 - o organising packets within queue
 - o packet dropping when queue is full
 - congestion control

Queue management

Congestion:

- o misbehaving sources
- source synchronisation
- o routing instability
- network failure causing re-routing
- congestion could hurt many flows (case of aggregated traffic)

Drop packets:

- o drop "new" packets until queue clears?
- o admit new packets, drop existing packets in queue?

Packet dropping policies

- Drop-from-tail:
 - o easy to implement
 - delayed packets at within queue may "expire"
- Drop-from-head:
 - o old packets purged first
 - good for real time
 - better for TCP (detect early)
 - Usually more overhead
- Random drop:
 - fair if all sources behaving
 - misbehaving sources more heavily penalised

- Flush queue:
 - o drop all packets in queue
 - o simple
 - flows should back-off
 - "punish" misbehaving flows
 - Inefficient (bursts of retransmission)
 - Unacceptable for real-time
- Intelligent drop:
 - based on level 4 information
 - may need a lot of state information
 - should be fairer

RED

Random Early Detection:

- spot congestion before it happens
- drop packet → pre-emptive congestion signal
- o source slows down
- prevents real congestion
- Which packets to drop?
 - o monitor flows
 - cost in state and processing overhead vs. overall performance of the network

RED

- Probability of packet drop ∞ queue length
- Queue length value exponential average (EWMA):
 - smooths reaction to small bursts
 - o punishes sustained heavy traffic
- Packets can be dropped or marked as "offending":
 - RED-aware routers more likely to drop offending packets
- Source must be adaptive:
 - OK for TCP
 - real-time traffic → UDP ?

TCP-like adaptation for realtime flows

- Mechanisms like RED require adaptive sources
- How to indicate congestion?
 - packet drop OK for TCP
 - packet drop NO for real-time (+hurts real-time flows)
- Adaptation mechanisms:
 - explicit congestion notification (ECN)
 - layered audio/video codecs
 - TCP is unicast: real-time can be multicast

End system reaction to packet drops

- Now we have to be specific about the Internet!
- Non-real-time TCP:
 - packet drop → congestion → slow down transmission
 - slow start → congestion avoidance
 - o network is happy!
- Real-time UDP:
 - packet drop → fill-in at receiver → ??
 - o application-level congestion control required
 - o flow data rate adaptation not be suited to audio/video?
 - real-time flows may not adapt → hurts adaptive flows
- Queue management could protect adaptive flows:
 - o smart queue management required

Section 3

QoS and the Internet: Protocol case studies

IP Quality of Service

- Performance Guarantees delivery objectives
 - Throughput, Delay/Jitter, Packet Loss.
- Service Levels
 - Best Effort
 - fair to all
 - no guarantees
 - Qualitative
 - low delay, better than Best Effort
 - Olympic-like service class qualification Gold/Silver/Bronze
 - relative guarantees
 - Quantified
 - One-way Delay < 100ms, Packet Loss Ratio < 1 * 10E-6
 - quantified guarantees

RSVP: Resource ReSerVation Protocol

Reservation allows

- o end-to-end guaranteed service
- demand for bandwidth (unicast)
- indication of bandwidth requirement (multicast)

• Why?

- enable Quality of Service (QoS)
- real-time applications need a guaranteed flow across networks
- network-based filtering of flows

What is Reservation?

 Configure routers in a path (or multicast tree) to discriminate between packets for forwarding

Functions

- classify arriving packets according to filter specifications
- schedule packet transmission according to flow specifications
- admission control to limit number of flows
- apply policies to prioritise admission

RSVP: major features

- Enables applications to signal their E2E QoS requirements for a flow
- Uses existing network routing protocol
- Simplex
 - Resource requests only for one flow direction
- Routers with 'soft state'
 - path & reservation needs to be refreshed periodically (typically 30 seconds)
- Uses IP multicast for message distribution
- Receiver-controlled reservation requests
 - Receivers decide when to join/leave groups
 - Receivers decide what QoS needed
- Flexible control over sharing of reservations

RSVP Concepts: Call Setup

- Contract between network and application
 - o both network and application should abide by rules
 - network guarantees performance
 - o application guarantees traffic behaviour
 - peak rate
 - average rate
 - burst size
- Approaches
 - one pass
 - o two pass

RSVP Operational Models: One Pass

- Sender or receiver oriented
- Source (or receiver) sends resource reservation to receivers (or source)
- Cannot specify / guarantee QoS
 - No confirmation / acceptance
- Periodic refreshes of state

RSVP Operational Models: Two Pass

- Sender or receiver initiated
- Forward phase
 - check for resources at each link
- Reverse phase
 - inform routers if call request is admitted
 - reserve resources
- Reserve maximum resources
- Resource reclamation phase can be added
 - Passive originators tears down the requests
 - Active routers do it as failures propagate

RSVP Problems

Scalability

- maintaining state per microflow & soft state refreshes
 - problem for backbones, not for campus/enterprise networks
- Does not work well with shared media networks
 - hence need for SBM (Subnetwork Bandwidth Manager), for example
 - but it works well with networks of point to point links.

IP QoS - Two Approaches

Integrated Services (IntServ)

- Reservation end-to-end
- Influenced by traditional telecom thinking about networks
- Fundamental unit is the flow

Differentiated Services (DiffServ)

- Architecture matches the IP architecture
 - No explicit resource reservation: each node provides mechanisms to implement the required QoS behaviour
- Fundamental unit is the aggregate (a collection of flows)
- Recognises that Internet is made up of independently administered domains
 - Domain (AS) boundaries are modelled explicitly
 - This is where policy and control are done

IntServ Architecture Components

- QoS Requirements
 - Expressed in terms of traffic (TSpec) and service requirement (RSpec) - Flow Specs
- A resource reservation protocol (RSVP)
 - The means by which the QoS requirements are exchanged between nodes in the IntServ transit path.
 - but IntServ is not the only QoS schema that uses RSVP; RSVP can be used with a variety of other QoS control schemas and architectures.
- Resource-sharing requirements
 - Allocation of resources is done on per-flow basis
 - But several flows share the same link fairness must be ensured
 - Uses Weighted Fair Queuing (WFQ)
- Allowances for packet dropping
 - Provide for control of packet dropping policy e.g., classifying packets as pre-emptable.

IntServ - Integrated Services

- IntServ supports two services
 - Guaranteed Service (RFC2212)
 - delay bounded & no loss
 - targeted at real-time intolerant applications
 - Controlled Load (RFC2211)
 - service is equivalent to lightly loaded best effort network
 - targeted at real-time tolerant applications
 - protects flows from one another up to a point
 - No RSpec!

Differentiated Services (DiffServ) Architecture

- DiffServ network supports a small number of service classes
- Service classes have relative priority
- Traffic entering DiffServ domain is classified into a service class
 - Service Classes are distinguished by DiffServ Code Points (DSCPs) - 6 bit field in IPv4 header
 - Most significant 6 bits of the TOS (Type of Service) field
- Each service class is given a particular forwarding treatment at each router
 - according to the Per Hop Behaviour (PHB) associated with the DSCP

Service Classes

Service Class Name	DSCP Name	DSCP Value	Application Examples
Network Control	CS6	110000	Network routing
Telephony	EF	101110	IP Telephony bearer
Signaling	CS5	101000	IP Telephony signaling
Multimedia	AF41,AF42	100010,100100	H.323/V2 video
Conferencing	AF43	100110	conferencing (adaptive)
Real-Time			Video conferencing and
Interactive	CS4	100000	Interactive gaming
Multimedia	AF31,AF32	011010,0111000	Streaming video and
Streaming	AF33	011110	audio on demand
Broadcast Video	CS3	011000	Broadcast TV & live events
Low-Latency	AF21,AF22	010010,010100	Client/server transactions
Data	AF23	010110	Web-based ordering
OAM	CS2	010000	OAM&P
High-Throughput	AF11,AF12	001010,001100	Store and forward
Data	AF13	001110	applications
			Undifferentiated
Standard	DF (CS0)	000000	applications
Low-Priority			Any flow that has now BW
Data	CS1	001000	assurance

bristol.ac.uk

............

DiffServ Terminology

Resource Allocation

- Meter
- Mark (DSCP)
- Police/Shaping

Per Domain Behaviour

- E2E Performance
- Basis for SLS

DiffServ Traffic Conditioner

- Traffic Conditioners are usually found at the edges of DiffServ Domains
 - Classifier examines packet headers
 - Meter checks rate conformance
 - Mark set value for DSCP
 - Shaper make non-conformant traffic into conformant traffic

DiffServ Code Points

IPv4 ToS (Type of Service) field evolution:

P2 P1 P0 T3 T2 T1 T0 CU RFC 1349

Precedence Type of Service

DS5 DS4 DS3 DS2 DS1 DS0 CU CU RFC 2474

DiffServ Code Point ECN?

Per Hop Behaviour (PHB)

- Externally observable forwarding behaviour of node
- Implementation is not specified
- PHB is determined by three factors:
 - offered load
 - depends on Traffic Conditioning
 - resource allocation
 - depends on scheduler on output queue
 - packet discard policy
 - depends on congestion avoidance mechanisms
- Three PHBs have been standardized
 - Expedited Forwarding (EF)
 - Assured Forwarding (AF)
 - Class Selector (for backward compatibility with IP Precedence)

Per-Hop Behaviour (PHB)

Expedited Forwarding

- EF is designed to provide low loss, low delay, low jitter, assured bandwidth E2E service
 - Virtual Leased Line Service
- EF requires that the maximum arrival rate is less than the minimum departure rate
 - arrival rate is controlled through Traffic Conditioner
 - departure rate is controlled by PHB scheduler
 strict priority, WFQ,.....

Per Hop Behaviour (PHB)

Assured Forwarding

- Provides forwarding assurance through controlling the drop probability
 - could use RED
 - Four Classes have been defined
 - Each Class has up to three drop probabilities
 - Each Class has an ordering constraint
- Could be used to construct Olympic type services
 - Each colour relates to a Class
 - Use Traffic Conditioning to ensure less offered load for Gold than Silver, hence engineer lower average delay for Gold

Conclusions

- IP Quality of Service what is it?
- Integrated services
 - o guaranteed service, controlled load
 - RSVP models and operation
- Differentiated services
 - o per hop behaviours (Assured, Expedited)
 - packet marking using DSCPs

Reading and References

QoS in books

- Tanenbaum, A., "Computer Networks", 3d Ed., pp.397-417.
- Peterson, L., "Computer Networks: A Systems Approach"
 pp.457-464 for queuing, pp.488-512 for QoS.

RSVP

- RSVP: A New Resource ReSerVation Protocol,
 Zhang, L., Deering, S., Estrin, D., Shenker, S., and Zappala, D.,
 IEEE Network, September 1993.
- Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Specification
 Braden, R., Zhang, L., Berson, S., Herzog, S., Jamin, S., RFC 2205, September 1997, Proposed Standard.

Reading and References

IntServ

- Wroclawski, J., "Specification of the Controlled-Load Network Element Service", RFC 2211, September 1997.
- Partridge, C. and R. Guerin, "Specification of Guaranteed Quality of Service", RFC 2212, September 1997.

DiffServ

- Blake, S. et al., "An Architecture for Differentiated Services", RFC2475, December 1998 (status: informational)
- Nichols, K., et al., "Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers", RFC 2474, December 1998.

Thanks and acknowledgements

- The slides have been previously used by Dr. George Kanellos
- The material in this notes is based on direct contribution by Dr Alistair Munro.
- The lectures have been influenced directly by Raj Jain and John Crowcroft