Evolutionary epidemiology in the 21st century

Data integration and modelling strategies

Luiz Max Carvalho

Acknowledgements

Andrew Rambaut University of Edinburgh

Leo Santos CEMADEN

1

Who's this guy?

- Have a degree in Biology, can't tell an insect from a spider;
- PhD student in Evolutionary Biology (!) at the University of Edinburgh;
- Work mainly in Quantitative Biology;
- Interests include Markov chain Monte Carlo, complex networks and risk modelling.

Evolutionary epidemiology

Concepts and tools.

Evolutionary epidemiology

Concepts and tools.

Challenges and opportunities

Methodological issues, data collection and handling.

Evolutionary epidemiology

Concepts and tools.

Challenges and opportunities

Methodological issues, data collection and handling.

The role of mathematics

Which areas of mathematics are more heavily involved.

Evolutionary epidemiology

Concepts and tools.

Challenges and opportunities

Methodological issues, data collection and handling.

The role of mathematics

Which areas of mathematics are more heavily involved.

Much more work is needed

We should prepare for an era of plenty.

Motivation

Phylodynamics of fast-evolving viruses

Inferring spatial and temporal dynamics from genomic data:

Phylogenies*!

* plus complicated models

Trees and the coalescent

Let T_n denote the time for n lineages to *coalesce*, i.e., merge into one ancestral lineage, in a population of size N_ℓ . Then:

$$\begin{split} Pr(T_n = t) &= \lambda_n e^{-\lambda_n t} \\ \lambda_n &= \binom{n}{2} \frac{1}{N_e} = \binom{n}{2} \frac{1}{N_e \tau} \end{split}$$

where N_ℓ is the effective population size and τ is the generation time. Let T_{mrca} denote the age of the most recent common ancestor:

$$\begin{split} \mathbb{E}[T_{\text{mrca}}] &= \mathbb{E}[T_n] + \mathbb{E}[T_{n-1}] + \dots + \mathbb{E}[T_2] \\ &= 1/\lambda_n + 1/\lambda_{n-1} + \dots + 1/\lambda_2 \\ &= 2N_e(1 - \frac{1}{n}) \end{split}$$

Figure: Figure 4 from Volz et al. (2013).

Data Integration I: Ebola epidemics in West Africa

[animation]

Figure 4 | Predicted destination consequences of viral dispersal number of EBOV imports into e 63 regions in Guinea, Sierra Leo Liberia (including 7 without rec in Guinea) and the surrounding of the neighbouring countries of Bissau, Senegal, Mali and Côte d expected number of EBOV expe locations in the phylogeographic imports to any location were cal the basis of the phylogeographic estimates and associated predict extended to apparently EVD-fre Supplementary Methods). b, Pre cluster sizes from the Bayesian C case data.

Data Integration II: GPA82V mutation and mortality

Potential applications

- Human mobility + case data = epidemiological models of spread and maintenance;
- Genomic data + environmental data = predictions of flow and case counts (e.g. Leptospirosis).

Phylodynamics is a powerful tool

DNA sequences from pathogens + environmental/socio-economic data can give us insight

Phylodynamics is a powerful tool

DNA sequences from pathogens + environmental/socio-economic data can give us insight

Searching trees is hard

Developing better statistical models and computational tools is crucial.

Phylodynamics is a powerful tool

DNA sequences from pathogens + environmental/socio-economic data can give us insight

Searching trees is hard

Developing better statistical models and computational tools is crucial.

Data integration is crucial

We need more and better data.

Phylodynamics is a powerful tool

DNA sequences from pathogens + environmental/socio-economic data can give us insight

Searching trees is hard

Developing better statistical models and computational tools is crucial.

Data integration is crucial

We need more and better data.

Nature is complicated

We need better models to go along.

THE END