CSCI E-124 DATA STRUCTURES AND ALGORITHMS — Spring 2015

PROBLEM SET 1

Due: 11:59pm, Monday, February 9th

See homework submission instructions at http://sites.fas.harvard.edu/~cs124/e124/problem_sets.html

1 Problem 1

Indicate for each pair of expressions (A, B) in the table below the relationship between A and B. Your answer should be in the form of a table with a "yes" or "no" written in each box. For example, if A is O(B), then you should put a "yes" in the first box. If the base of a logarithm is not specified, you should assume it is base-2.

A	B	O	0	Ω	ω	Θ
$\log_2 n$	$\log_3 n$					
$\log \log n$	$\sqrt{\log n}$					
$\frac{1}{2^{\log^7 n}}$	n^7					
$n^2 2^n$	3^n					
n!	n^n					
$\log(n!)$	$\log(n^n)$					
$(n^2)!$	n^n					
$(n!)^2$	n^n					

2 Problem 2

For all of the problems below, when asked to give an example, you should give a function mapping positive integers to positive integers. (No cheating with 0's!)

- Show that if f is o(g), then fh is o(gh) for any function h.
- Give a proof or a counterexample: if f is not O(g), then f is $\Omega(g)$.
- Find (with proof) a function f such that f(2n) is O(f(n)).
- Find (with proof) a function f such that f(n) is o(f(2n)).
- Show that for all $\epsilon > 0$, $\log n$ is $o(n^{\epsilon})$.

3 Problem 3

InsertionSort is a simple sorting algorithm that works as follows on input $A[0], \ldots, A[n-1]$:

InsertionSort(A):

```
for i = 1 to n-1
j = i
while j > 0 and A[j-1] > A[j]
  swap A[j] and A[j-1]
  j = j - 1
```

Show that for any function T = T(n) satisfying $T(n) = \Omega(n)$ and $T(n) = O(n^2)$, there exists an infinite sequence of inputs $\{A_n\}_{n=1}^{\infty}$ such that (1) A_n is an array of length n, and (2) if f(n) denotes the running time of InsertionSort on A_n , then $f(n) = \Theta(T(n))$.

4 Problem 4

Give asymptotic bounds for T(n) in each of the following recurrences. Hint: You may have to change variables somehow in the last one.

- $T(n) = 2T(n/2) + n^3$.
- T(n) = 5T(n/4) + n.
- $T(n) = 9T(n/3) + n^2$.
- $T(n) = T(\sqrt{n}) + 1$.

5 Problem 5

It is known that every integer n > 1 can be uniquely factored as a product of primes. For example, $4 = 2 \times 2$, $6 = 2 \times 3$, and $90 = 2 \times 3 \times 3 \times 5$. Let p(n) be the number of distinct prime divisors of n, so p(6) = 2 but p(4) = 1.

- (a) Show that $p(n) = O(\log n)$.
- (b) Show that $p(n) = O(\frac{\log n}{\log \log n})$.
- (c) It is a fact, which you may assume without proof, that there are $\Theta(t/\log t)$ primes between 1 and t. Use this fact to show that it is not true that $p(n) = o(\frac{\log n}{\log \log n})$.

6 Programming Problem

Solve "Problem B - Implications" on the programming server; see the "Problem Sets" part of the course web page for the link. **Hint:** If A is the adjacency matrix of a graph, when is $(A^2)_{i,j}$ non-zero? How about $(A^3)_{i,j}$?