Solutions to Practice Problems

1. Row reduce the augmented matrix:

$$\begin{bmatrix} 1 & 4 & -5 & 0 \\ 2 & -1 & 8 & 9 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & -5 & 0 \\ 0 & -9 & 18 & 9 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 4 \\ 0 & 1 & -2 & -1 \end{bmatrix}$$
$$x_1 + 3x_3 = 4$$
$$x_2 - 2x_3 = -1$$

Thus $x_1 = 4 - 3x_3$, $x_2 = -1 + 2x_3$, with x_3 free. The general solution in parametric vector form is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 - 3x_3 \\ -1 + 2x_3 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}$$

The intersection of the two planes is the line through \mathbf{p} in the direction of \mathbf{v} .

2. The augmented matrix $\begin{bmatrix} 10 & -3 & -2 & 7 \end{bmatrix}$ is row [1 -.3 -.2 .7], and the general solution is $x_1 = .7 + .3x_2 + .2x_3$, with x_2 and x_3 free. That is,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} .7 + .3x_2 + .2x_3 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} .7 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} .3 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} .2 \\ 0 \\ 1 \end{bmatrix}$$
$$= \mathbf{p} + x_2 \mathbf{u} + x_3 \mathbf{v}$$

The solution set of the nonhomogeneous equation $A\mathbf{x} = \mathbf{b}$ is the translated plane $\mathbf{p} + \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}\$, which passes through \mathbf{p} and is parallel to the solution set of the homogeneous equation in Example 2.

3. Using Theorem 5 from Section 1.4, notice

$$A(\mathbf{p} + \mathbf{v}_h) = A\mathbf{p} + A\mathbf{v}_h = \mathbf{b} + \mathbf{0} = \mathbf{b},$$

hence $\mathbf{p} + \mathbf{v}_h$ is a solution to $A\mathbf{x} = \mathbf{b}$.

1.6 Applications of Linear Systems

You might expect that a real-life problem involving linear algebra would have only one solution, or perhaps no solution. The purpose of this section is to show how linear systems with many solutions can arise naturally. The applications here come from economics, chemistry, and network flow.

A Homogeneous System in Economics

The system of 500 equations in 500 variables, mentioned in this chapter's introduction, is now known as a Leontief "input-output" (or "production") model. 1 Section 2.6 will examine this model in more detail, when more theory and better notation are available. For now, we look at a simpler "exchange model," also due to Leontief.

¹ See Wassily W. Leontief, "Input-Output Economics," Scientific American, October 1951, pp. 15–21.

Suppose a nation's economy is divided into many sectors, such as various manufacturing, communication, entertainment, and service industries. Suppose that for each sector we know its total output for one year and we know exactly how this output is divided or "exchanged" among the other sectors of the economy. Let the total dollar value of a sector's output be called the **price** of that output. Leontief proved the following result.

There exist *equilibrium prices* that can be assigned to the total outputs of the various sectors in such a way that the income of each sector exactly balances its expenses.

The following example shows how to find the equilibrium prices.

EXAMPLE 1 Suppose an economy consists of the Coal, Electric (power), and Steel sectors, and the output of each sector is distributed among the various sectors as shown in Table 1, where the entries in a column represent the fractional parts of a sector's total output.

The second column of Table 1, for instance, says that the total output of the Electric sector is divided as follows: 40% to Coal, 50% to Steel, and the remaining 10% to Electric. (Electric treats this 10% as an expense it incurs in order to operate its business.) Since all output must be taken into account, the decimal fractions in each column must sum to 1.

Denote the prices (in dollar values) of the total annual outputs of the Coal, Electric, and Steel sectors by p_C , p_E , and p_S , respectively. If possible, find equilibrium prices that make each sector's income match its expenditures.

TABLE I A Simple Economy

Distribution of Output from					
Coal	Electric	Steel	Purchased by		
.0	.4	.6	Coal		
.6	.1	.2	Electric		
.4	.5	.2	Steel		

SOLUTION A sector looks down a column to see where its output goes, and it looks across a row to see what it needs as inputs. For instance, the first row of Table 1 says that Coal receives (and pays for) 40% of the Electric output and 60% of the Steel output. Since the respective values of the total outputs are $p_{\rm E}$ and $p_{\rm S}$, Coal must spend $.4p_{\rm E}$ dollars for its share of Electric's output and $.6p_{\rm S}$ for its share of Steel's output. Thus Coal's total expenses are $.4p_{\rm E}+.6p_{\rm S}$. To make Coal's income, $p_{\rm C}$, equal to its expenses, we want

$$p_{\rm C} = .4p_{\rm E} + .6p_{\rm S}$$
 (1)

The second row of the exchange table shows that the Electric sector spends $.6p_{\rm C}$ for coal, $.1p_{\rm E}$ for electricity, and $.2p_{\rm S}$ for steel. Hence the income/expense requirement for Electric is

$$p_{\rm E} = .6p_{\rm C} + .1p_{\rm E} + .2p_{\rm S} \tag{2}$$

Finally, the third row of the exchange table leads to the final requirement:

$$p_{\rm S} = .4p_{\rm C} + .5p_{\rm E} + .2p_{\rm S} \tag{3}$$

To solve the system of equations (1), (2), and (3), move all the unknowns to the left sides of the equations and combine like terms. [For instance, on the left side of (2), write $p_{\rm E} - .1p_{\rm E}$ as $.9p_{\rm E}$.

$$p_{\rm C} - .4p_{\rm E} - .6p_{\rm S} = 0$$

 $-.6p_{\rm C} + .9p_{\rm E} - .2p_{\rm S} = 0$
 $-.4p_{\rm C} - .5p_{\rm E} + .8p_{\rm S} = 0$

Row reduction is next. For simplicity here, decimals are rounded to two places.

$$\begin{bmatrix} 1 & -.4 & -.6 & 0 \\ -.6 & .9 & -.2 & 0 \\ -.4 & -.5 & .8 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -.4 & -.6 & 0 \\ 0 & .66 & -.56 & 0 \\ 0 & -.66 & .56 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -.4 & -.6 & 0 \\ 0 & .66 & -.56 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & -.4 & -.6 & 0 \\ 0 & 1 & -.85 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -.94 & 0 \\ 0 & 1 & -.85 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The general solution is $p_C = .94p_S$, $p_E = .85p_S$, and p_S is free. The equilibrium price vector for the economy has the form

$$\mathbf{p} = \begin{bmatrix} p_{\rm C} \\ p_{\rm E} \\ p_{\rm S} \end{bmatrix} = \begin{bmatrix} .94p_{\rm S} \\ .85p_{\rm S} \\ p_{\rm S} \end{bmatrix} = p_{\rm S} \begin{bmatrix} .94 \\ .85 \\ 1 \end{bmatrix}$$

Any (nonnegative) choice for p_8 results in a choice of equilibrium prices. For instance, if we take p_S to be 100 (or \$100 million), then $p_C = 94$ and $p_E = 85$. The incomes and expenditures of each sector will be equal if the output of Coal is priced at \$94 million, that of Electric at \$85 million, and that of Steel at \$100 million.

Balancing Chemical Equations

Chemical equations describe the quantities of substances consumed and produced by chemical reactions. For instance, when propane gas burns, the propane (C_3H_8) combines with oxygen (O_2) to form carbon dioxide (CO_2) and water (H_2O) , according to an equation of the form

$$(x_1)C_3H_8 + (x_2)O_2 \rightarrow (x_3)CO_2 + (x_4)H_2O$$
 (4)

To "balance" this equation, a chemist must find whole numbers x_1, \ldots, x_4 such that the total numbers of carbon (C), hydrogen (H), and oxygen (O) atoms on the left match the corresponding numbers of atoms on the right (because atoms are neither destroyed nor created in the reaction).

A systematic method for balancing chemical equations is to set up a vector equation that describes the numbers of atoms of each type present in a reaction. Since equation (4) involves three types of atoms (carbon, hydrogen, and oxygen), construct a vector in \mathbb{R}^3 for each reactant and product in (4) that lists the numbers of "atoms per molecule," as follows:

$$C_3H_8$$
: $\begin{bmatrix} 3 \\ 8 \\ 0 \end{bmatrix}$, O_2 : $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$, CO_2 : $\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$, H_2O : $\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$ \leftarrow Carbon \leftarrow Hydrogen \leftarrow Oxygen

To balance equation (4), the coefficients x_1, \ldots, x_4 must satisfy

$$x_1 \begin{bmatrix} 3 \\ 8 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$$

To solve, move all the terms to the left (changing the signs in the third and fourth vectors):

$$x_{1} \begin{bmatrix} 3 \\ 8 \\ 0 \end{bmatrix} + x_{2} \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} + x_{3} \begin{bmatrix} -1 \\ 0 \\ -2 \end{bmatrix} + x_{4} \begin{bmatrix} 0 \\ -2 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Row reduction of the augmented matrix for this equation leads to the general solution

$$x_1 = \frac{1}{4}x_4$$
, $x_2 = \frac{5}{4}x_4$, $x_3 = \frac{3}{4}x_4$, with x_4 free

Since the coefficients in a chemical equation must be integers, take $x_4 = 4$, in which case $x_1 = 1$, $x_2 = 5$, and $x_3 = 3$. The balanced equation is

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$

The equation would also be balanced if, for example, each coefficient were doubled. For most purposes, however, chemists prefer to use a balanced equation whose coefficients are the smallest possible whole numbers.

Network Flow

Systems of linear equations arise naturally when scientists, engineers, or economists study the flow of some quantity through a network. For instance, urban planners and traffic engineers monitor the pattern of traffic flow in a grid of city streets. Electrical engineers calculate current flow through electrical circuits. Economists analyze the distribution of products from manufacturers to consumers through a network of wholesalers and retailers. For many networks, the systems of equations involve hundreds or even thousands of variables and equations.

A *network* consists of a set of points called *junctions*, or *nodes*, with lines or arcs called *branches* connecting some or all of the junctions. The direction of flow in each branch is indicated, and the flow amount (or rate) is either shown or is denoted by a variable.

The basic assumption of network flow is that the total flow into the network equals the total flow out of the network and that the total flow into a junction equals the total flow out of the junction. For example, Figure 1 shows 30 units flowing into a junction through one branch, with x_1 and x_2 denoting the flows out of the junction through other branches. Since the flow is "conserved" at each junction, we must have $x_1 + x_2 = 30$. In a similar fashion, the flow at each junction is described by a linear equation. The problem of network analysis is to determine the flow in each branch when partial information (such as the flow into and out of the network) is known.

EXAMPLE 2 The network in Figure 2 shows the traffic flow (in vehicles per hour) over several one-way streets in downtown Baltimore during a typical early afternoon. Determine the general flow pattern for the network.

FIGURE 1 A junction or node.

FIGURE 2 Baltimore streets.

SOLUTION Write equations that describe the flow, and then find the general solution of the system. Label the street intersections (junctions) and the unknown flows in the branches, as shown in Figure 2. At each intersection, set the flow in equal to the flow out.

Intersection	Flow in	Flow out
A	300 + 500 =	$x_1 + x_2$
В	$x_2 + x_4 =$	$300 + x_3$
C	100 + 400 =	$x_4 + x_5$
D	$x_1 + x_5 =$	600

Also, the total flow into the network (500 + 300 + 100 + 400) equals the total flow out of the network (300 + x_3 + 600), which simplifies to x_3 = 400. Combine this equation with a rearrangement of the first four equations to obtain the following system of equations:

$$x_{1} + x_{2} = 800$$

$$x_{2} - x_{3} + x_{4} = 300$$

$$x_{4} + x_{5} = 500$$

$$x_{1} + x_{5} = 600$$

$$x_{3} = 400$$

Row reduction of the associated augmented matrix leads to

$$x_1$$
 + $x_5 = 600$
 x_2 - $x_5 = 200$
 x_3 = 400
 $x_4 + x_5 = 500$

The general flow pattern for the network is described by

$$\begin{cases} x_1 = 600 - x_5 \\ x_2 = 200 + x_5 \\ x_3 = 400 \\ x_4 = 500 - x_5 \\ x_5 \text{ is free} \end{cases}$$

A negative flow in a network branch corresponds to flow in the direction opposite to that shown on the model. Since the streets in this problem are one way, none of the variables here can be negative. This fact leads to certain limitations on the possible values of the variables. For instance, $x_5 \le 500$ because x_4 cannot be negative. Other constraints on the variables are considered in Practice Problem 2.

Practice Problems

- 1. Suppose an economy has three sectors: Agriculture, Mining, and Manufacturing. Agriculture sells 5% of its output to Mining and 30% to Manufacturing, and retains the rest. Mining sells 20% of its output to Agriculture and 70% to Manufacturing, and retains the rest. Manufacturing sells 20% of its output to Agriculture and 30% to Mining, and retains the rest. Determine the exchange table for this economy, where the columns describe how the output of each sector is exchanged among the three sectors.
- 2. Consider the network flow studied in Example 2. Determine the possible range of values of x_1 and x_2 . [Hint: The example showed that $x_5 \le 500$. What does this imply about x_1 and x_2 ? Also, use the fact that $x_5 \ge 0$.]

1.6 Exercises

1. Suppose an economy has only two sectors, Goods and Services. Each year, Goods sells 80% of its output to Services and keeps the rest, while Services sells 70% of its output to Goods and retains the rest. Find equilibrium prices for the annual outputs of the Goods and Services sectors that make each sector's income match its expenditures.

- 2. Find another set of equilibrium prices for the economy in Example 1. Suppose the same economy used Japanese yen instead of dollars to measure the value of the various sectors' outputs. Would this change the problem in any way? Discuss.
- 3. Consider an economy with three sectors, Chemicals & Metals, Fuels & Power, and Machinery. Chemicals sells 30% of its output to Fuels and 50% to Machinery and retains the rest. Fuels sells 80% of its output to Chemicals and 10% to Machinery and retains the rest. Machinery sells 40% to Chemicals and 40% to Fuels and retains the rest.
 - a. Construct the exchange table for this economy.
 - b. Develop a system of equations that leads to prices at which each sector's income matches its expenses. Then write the augmented matrix that can be row reduced to find these prices.

- I c. Find a set of equilibrium prices when the price for the Machinery output is 100 units.
- **4.** Suppose an economy has four sectors, Agriculture (A), Energy (E), Manufacturing (M), and Transportation (T). Sector A sells 10% of its output to E and 25% to M and retains the rest. Sector E sells 30% of its output to A, 35% to M, and 25% to T and retains the rest. Sector M sells 30% of its output to A, 15% to E, and 40% to T and retains the rest. Sector T sells 20% of its output to A, 10% to E, and 30% to M and retains the rest.
 - a. Construct the exchange table for this economy.
- **I** b. Find a set of equilibrium prices for the economy.

Balance the chemical equations in Exercises 5–10 using the vector equation approach discussed in this section.

5. Boron sulfide reacts violently with water to form boric acid and hydrogen sulfide gas (the smell of rotten eggs). The unbalanced equation is

$$B_2S_3 + H_2O \rightarrow H_3BO_3 + H_2S$$

[For each compound, construct a vector that lists the numbers of atoms of boron, sulfur, hydrogen, and oxygen.]

6. When solutions of sodium phosphate and barium nitrate are mixed, the result is barium phosphate (as a precipitate) and sodium nitrate. The unbalanced equation is

$$Na_3PO_4 + Ba(NO_3)_2 \rightarrow Ba_3(PO_4)_2 + NaNO_3$$

[For each compound, construct a vector that lists the numbers of atoms of sodium (Na), phosphorus, oxygen, barium, and nitrogen. For instance, barium nitrate corresponds to (0,0,6,1,2).

7. Alka-Seltzer contains sodium bicarbonate (NaHCO₃) and citric acid (H₃C₆H₅O₇). When a tablet is dissolved in water, the following reaction produces sodium citrate, water, and carbon dioxide (gas):

$$NaHCO_3 + H_3C_6H_5O_7 \rightarrow Na_3C_6H_5O_7 + H_2O + CO_2$$

8. The following reaction between potassium permanganate (KMnO₄) and manganese sulfate in water produces manganese dioxide, potassium sulfate, and sulfuric acid:

$$KMnO_4 + MnSO_4 + H_2O \rightarrow MnO_2 + K_2SO_4 + H_2SO_4$$

[For each compound, construct a vector that lists the numbers of atoms of potassium (K), manganese, oxygen, sulfur, and hydrogen.]

9. If possible, use exact arithmetic or rational format for calculations in balancing the following chemical reaction:

$$PbN_6 + CrMn_2O_8 \rightarrow Pb_3O_4 + Cr_2O_3 + MnO_2 + NO$$

10. The chemical reaction below can be used in some industrial processes, such as the production of arsene (AsH₃). Use exact arithmetic or rational format for calculations to balance this equation.

$$MnS + As_2Cr_{10}O_{35} + H_2SO_4$$

 $\rightarrow HMnO_4 + AsH_3 + CrS_3O_{12} + H_2O$

11. Find the general flow pattern of the network shown in the figure. Assuming that the flows are all nonnegative, what is the largest possible value for x_3 ?

- 12. a. Find the general traffic pattern in the freeway network shown in the figure. (Flow rates are in cars/minute.)
 - b. Describe the general traffic pattern when the road whose flow is x_4 is closed.
 - c. When $x_4 = 0$, what is the minimum value of x_1 ?

- 13. a. Find the general flow pattern in the network shown in the
 - b. Assuming that the flow must be in the directions indicated, find the minimum flows in the branches denoted by x_2, x_3 , x_4 , and x_5 .

14. Intersections in England are often constructed as one-way "roundabouts," such as the one shown in the figure. Assume that traffic must travel in the directions shown. Find the general solution of the network flow. Find the smallest possible value for x_6 .

Solutions to Practice Problems

1. Write the percentages as decimals. Since all output must be taken into account, each column must sum to 1. This fact helps to fill in any missing entries.

Distribution of Output from					
Agriculture	Mining	Manufacturing	Purchased by		
.65	.20	.20	Agriculture		
.05	.10	.30	Mining		
.30	.70	.50	Manufacturing		

Solutions to Practice Problems (Continued)

2. Since $x_5 \le 500$, the equations D and A for x_1 and x_2 imply that $x_1 \ge 100$ and $x_2 \le 700$. The fact that $x_5 \ge 0$ implies that $x_1 \le 600$ and $x_2 \ge 200$. So, $100 < x_1 < 600$, and $200 < x_2 < 700$.

1.7 Linear Independence

The homogeneous equations in Section 1.5 can be studied from a different perspective by writing them as vector equations. In this way, the focus shifts from the unknown solutions of $A\mathbf{x} = \mathbf{0}$ to the vectors that appear in the vector equations.

For instance, consider the equation

$$x_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \tag{1}$$

This equation has a trivial solution, of course, where $x_1 = x_2 = x_3 = 0$. As in Section 1.5, the main issue is whether the trivial solution is the *only one*.

DEFINITION

An indexed set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n is said to be **linearly independent** if the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution. The set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is said to be **linearly dependent** if there exist weights c_1, \dots, c_p , not all zero, such that

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p = \mathbf{0} \tag{2}$$

Equation (2) is called a **linear dependence relation** among $\mathbf{v}_1, \dots, \mathbf{v}_p$ when the weights are not all zero. An indexed set is linearly dependent if and only if it is not linearly independent. For brevity, we may say that $\mathbf{v}_1, \dots, \mathbf{v}_p$ are linearly dependent when we mean that $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a linearly dependent set. We use analogous terminology for linearly independent sets.

EXAMPLE 1 Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$.

- a. Determine if the set $\{v_1, v_2, v_3\}$ is linearly independent.
- b. If possible, find a linear dependence relation among v_1 , v_2 , and v_3 .

SOLUTION

a. We must determine if there is a nontrivial solution of equation (1) above. Row operations on the associated augmented matrix show that

$$\begin{bmatrix} 1 & 4 & 2 & 0 \\ 2 & 5 & 1 & 0 \\ 3 & 6 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 2 & 0 \\ 0 & -3 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$