МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е. АЛЕКСЕЕВА»

РАЗВИТИЕ И БЕЗОПАСНОСТЬ

№ 4

16+ УДК 338 ББК 65 Р 17

Развитие и безопасность / НГТУ им. Р.Е. Алексеева. — Нижний Новгород, 2022. № 4 (16). — 120 с.

ISSN: 2713-2633

Выходит 4 раза в год

Главный редактор Митяков Сергей Николаевич, д.ф.-м.н., профессор, г. Н. Новгород

Заместители главного редактора: Городецкий Андрей Евгеньевич, д.э.н., профессор, г. Москва Сильвестров Сергей Николаевич, д.э.н., профессор, г. Москва Ширяев Михаил Виссарионович, д.э.н., доцент, г. Н. Новгород

Ответственный секретарь Фролова Марина Михайловна, к.э.н., доцент, г. Н. Новгород

Члены редколлегии:

Гринберг Руслан Семенович, чл.-корр. РАН, д.э.н., профессор, г. Москва Дмитриев Михаил Николаевич, д.э.н., профессор, г. Н. Новгород Захаров Павел Николаевич, д.э.н., профессор, г. Владимир Казанцев Сергей Владимирович, д.э.н., профессор, г. Новосибирск Кузнецов Олег Леонидович, д.т.н., профессор, г. Москва Кшакевич Казимеж, д.э.н., профессор, г. Познань, Польша Лапаев Дмитрий Николаевич, д.э.н., профессор, г. Н. Новгород Миронова Ольга Алексеевна, д.э.н., профессор, г. Йошкар-Ола Митяков Евгений Сергеевич, д.э.н., доцент, г. Москва Морозова Галина Алексеевна, д.э.н., профессор, г. Н. Новгород Павленко Юрий Григорьевич, д.э.н., профессор, г. Москва Старовойтов Владимир Гаврилович, д.э.н., г. Москва Трофимов Олег Владимирович, д.э.н., профессор, г. Н. Новгород Хорев Александр Иванович, д.э.н., профессор, г. Воронеж

Учредитель и издатель: федеральное государственное бюджетное образовательное учреждение высшего образования «Нижегородский государственный технический университет им. Р.Е. Алексеева» (603950, Нижегородская обл., г. Нижний Новгород, ул. Минина, д. 24)

Электронная версия журнала: https://ds.nntu.ru

Свидетельство о регистрации в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций периодического печатного издания ПИ № ФС77-81687 от 06 августа 2021 г.

© Нижегородский государственный технический университет им. Р.Е. Алексеева, 2022

СОДЕРЖАНИЕ

ОСНОВЫ ЭКОНОМИЧЕСКОЙ БЕЗОПАСНОСТИ	4
Корнилов Д.А., Мурашова Н.А., Миронов А.С. Влияние трансформации мировой экономики на отечественный фондовый рынок	20
ИННОВАЦИОННОЕ И ПРОМЫШЛЕННОЕ РАЗВИТИЕ Лапаева О.Н., Митякова Е.В. Концептуальная модель обеспечения инновационной деятельности монопрофильных территорий	31 31
Колесов К.И., Болоничева Т.В., Смирнова Д.А., Верещагина А.С. Устойчивое развитие промышленных предприятий: сравнение рейтингов ESG	43
СОЦИАЛЬНЫЕ АСПЕКТЫ РАЗВИТИЯ И БЕЗОПАСНОСТИ Летягина Е.Н., Перова В.И., Федорова Н.Ю. Нейронные сети в исследовании человеческого капитала России как детерминанта	55
национальной безопасности страны	55 71
Миронов Р.Ю., Григорьева Е. М. Роль финансовых инструментов в формировании эффективного устойчивого перехода национальной экономики.	83
Гусева И.Б. Вопросы обеспечения кадровой безопасности региона в сфере услуг (на примере развития сферы услуг Нижегородской области)	97
Козлова Н.А., Осипенко А.В., Егле Г.Р., Васильев Е.И. Математическая модель оценки благонадежности контрагентов – индивидуальных предпринимателей	107
HAIIIN ARTOPHI	115

УДК 519.87

DOI 10.46960/2713-2633_2022_4_107

Н.А. Козлова, А.В. Осипенко, Г.Р. Егле, Е.И. Васильев

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ОЦЕНКИ БЛАГОНАДЕЖНОСТИ КОНТРАГЕНТОВ – ИНДИВИДУАЛЬНЫХ ПРЕДПРИНИМАТЕЛЕЙ

Томский государственный университет систем управления и радиоэлектроники *Томск, Россия*

Разработана и усовершенствована математическая модель оценки благонадежности контрагентов – индивидуальных предпринимателей (ИП), основанная на нормативно-правовых актах РФ. С использованием машинного обучения проведен сравнительный анализ нескольких методов для будущего использования в автоматизированной системе по оценке благонадежности, а также проверка на корректность изменений. Подсчитана точность моделей как до, так и после добавления новых критериев. Анализ проводился с использованием выборки более чем из 7000 ИП Томской области с учетом их разных характеристик: наличия в реестре недобросовестных поставщиков, заблокированных счетов и др. В результате повторной апробации получена модифицированная модель, являющаяся более точной версией в сравнении с первоначальным вариантом. Модели, построенные с помощью машинного обучения, а именно – дерево принятия решений и метод k-ближайших соседей - верно классифицировали одинаковое количество контрагентов, тогда как метод опорных векторов дал на один верный результат больше. Полученные результаты и модель применимы для определения благонадежности контрагента с целью минимизации и предотвращения рисков, которые могут возникнуть при работе с ИП.

Ключевые слова: математическая модель, оценка благонадежности, индивидуальный предприниматель, машинное обучение, сравнительный анализ, апробация, риски.

Введение. В современных условиях восстановления после пандемии правительство РФ предпринимает меры, способствующие развитию малого бизнеса. По данным Федеральной службы информации, 18 июля 2022 г. количество записей в Едином государственном реестре индивидуальных предпринимателей превысило 17 млн, хотя еще в 2021 г. составляло всего 3621580 чел. [1]. Такой резкий рост числа индивидуальных предпринимателей (ИП) порождает риск столкнуться с непорядочным контрагентом. Именно поэтому необходима модель оценки благонадежности ИП, способная корректно определить актуальное состояние потенциального партнера

и свести к минимуму убытки правового и финансового характера, которые могут возникнуть в процессе договорных отношений.

По данным МВД РФ, за нарушение в сфере предпринимательской деятельности в 2020 г. осуждено 2431 ИП, в 2021 г. — 3090. [2]. Из статистики несложно предположить, что, как по причине увеличения общего количества предпринимателей, так и из-за текущей экономической ситуации, число подобных преступлений будет только расти. Это, в свою очередь, сильно увеличивает шанс столкнуться с ИП, который не исполняет свои обязательства. Как следствие, также резко возрастает необходимость проверки и оценки контрагента на благонадежность.

Проверка контрагентов-физических лиц является важным условием предотвращения рисков, связанных с неисполнением условий договора, а также денежными потерями. Для оценки физических лиц необходимо руководствоваться перечнем критериев, которые позволяют корректно оценить ИП на наличие отрицательных факторов, указывающих на их неблагоналежность.

Математическая модель и ее показатели. В настоящее время существуют три основных нормативно-правовых акта (НПА), влияющих на оценку благонадежности контрагента: ФЗ «О государственной регистрации физических лиц и индивидуальных предпринимателей», Приказ ФНС «Об утверждении концепции системы планирования выездных налоговых проверок», ФЗ «О несостоятельности (банкротстве)» [3-5]. На основе анализа данных документов были выделены следующие критерии:

- наличие ИП в реестре недобросовестных поставщиков;
- лицо привлечено к субсидиарной ответственности;
- находится в реестре перечня лиц, на которое распространяется мораторий на банкротство;
- наличие сообщения кредитора о намерении обратиться в суд с заявлением о банкротстве;
- наличие заблокированных счетов;
- принято решение о процедуре исключения недействующего ИП из ЕГРИП;
- отсутствуют сведений в ЕГРИП;
- наличие незавершенных исполнительных производств;
- участие в закупках;
- индивидуальный предприниматель имеет недоимку или задолженность;
- наличие арбитражных дел в роли ответчика;
- наличие отзывов покупателей, которые покупали товар/пользовались услугами ИП;

• отсутствие лицензий для осуществления видов деятельности согласно ФЗ «О лицензировании отдельных видов деятельности» [6].

Для проверки контрагента по выделенным критериям необходимо ссылаться на достоверные источники, которые содержат информацию, необходимую для определения благонадежности. Ими будут являться: реестр дисквалифицированных лиц, ФНС России, ФСИН, МВД РФ, реестр недобросовестных поставщиков, ФССП, реестр государственных контрактов, Росфинмониторинг, реестр субъектов малого и среднего предпринимательства, единый федеральный реестр сведений о банкротстве. Использование критериев для проверки контрагента подразумевает рассмотрение и изучение информации, содержащейся в официальных источниках об интересующих показателях, а также составление отчета об индивидуальном предпринимателе.

Для определения благонадежности ИП была построена математическая модель, которая позволяет осуществлять доступную и объективную проверку без привлечения дополнительных специалистов и является приближенным описанием объектов реального мира на языке математики [7]. Разработанная модель оценивает контрагента по критериям законодательства РФ, что позволяет определять негативные факторы, которые могут возникнуть при сотрудничестве с недобросовестными ИП. Благодаря такой оценке снижается риск невыполнения обязательств, и, как следствие, сокращается число преступлений в сфере предпринимательской деятельности.

Общий вид математической модели оценки благонадежности контрагентов представлен в формуле (1):

БИП =
$$\sum_{i=1}^{7} \mathbf{K}_i \cdot \mathbf{C} \mathbf{\phi}_1 \cdot \mathbf{C} \mathbf{\phi}_2 \cdot \mathbf{C} \mathbf{\phi}_3$$
, (1)

где БИП – благонадежность индивидуального предпринимателя.

На вход в ней идут данные об анализируемом контрагенте, на выходе – итоговая оценка его благонадежности. Выявленные критерии, используемые при расчетах модели, были разбиты на две группы:

- 3 стоп-фактора (СФ) факторы, наличие которых говорит о неблагонадежности контрагентов; к ним относятся: наличие сообщения кредитора о намерении обратиться в суд с заявлением о банкротстве; решение о процедуре исключения недействующего ИП из ЕГРИП; отсутствие сведений в ЕГРИП;
- 7 критериев оценки (К), таких как: привлечение лица к субсидиарной ответственности; наличие ИП в реестре недобросовестных поставщиков; нахождение ИП в реестре перечня лиц, на которое распространяется мораторий на банкротство; наличие заблокированных счетов; наличие незавершенных исполнительных производств и (или) ИП

имеет недоимку/задолженность; участие в закупках; наличие арбитражных дел в роли ответчика.

Каждому критерию оценивания и стоп-фактору присваиваются баллы. Если стоп-фактор не был выявлен, то 1 балл, выявлен — 0 баллов. Если у анализируемого контрагента будет выявлен хотя бы один СФ, то контрагент считается неблагонадежным и дальнейшая проверка на благонадежность не производится. Аналогично рассчитываются и критерии оценки: 1 балл присваивается, если критерий не содержит негативных факторов, иначе: 0 баллов. В данной модели благонадежным считается контрагент, который набрал 4 балла и более, что составляет более половины от максимального числа возможных баллов.

Для проверки данной модели использовалась выборка из 7653 ИП Томской области, в которой за итоговый результат была принята оценка ИАС СПАРК [8]. В результате точность математической модели достигла показателя в 95,28 % [9]. С целью улучшения точности системы были предприняты меры по использованию методов анализа, направленных на работу с большим количеством данных — методов машинного обучения. С их помощью есть возможность закрыть пробелы в показателях модели и основываться на корреляции нескольких критериев между собой, что было невозможно достичь с формулой (1).

При апробации новых моделей с лучшей точностью на бинарных входных данных ИП проявили себя три метода машинного обучения: метод к-ближайших соседей [10], дерево принятия решений [11], и метод опорных векторов [12]. Они легли в основу системы по определению благонадежности контрагентов и впоследствии сравнивались по нескольким критериям: время обучения, время анализа, точность, вес модели и визуализация. Каждый показатель имел место для будущих моделей и мог продемонстрировать себя с разных сторон в системе по оценке благонадежности. Так, метод к-ближайших соседей смог показать наилучшую точность (99,96 %), но худший вес модели (902 КБ) и время анализа (173 мс), внимание на которые также обращается при оценке. В большинстве критериев среди трех выбранных методов наилучшим оказывается дерево принятия решений, так как демонстрирует лучшие время обучения, время анализа, способность к визуализации и точность в 99,93 %, что несравнимо с показателем предыдущей математической модели.

Все критерии по сравнительному анализу используемых методов машинного обучения приведены в табл. 1.

Критерий оценивания	Дерево принятия решений	Метод опорных векторов	Метод k-ближайших соседей
Время обучения, мкс	3042	11103	9624
Время анализа, мкс	552	1792	173558
Точность, %	99.93	99.93	99.96
Вес модели, КБ	3.1	2.2	902
Визуализация	возможна	невозможна	невозможна

Таблица 1. Сравнительный анализ методов машинного обучения

Усовершенствование математической модели. За время проведения исследований законодательства РФ коснулось нескольких нововведений в сфере предпринимательской деятельности. В свете данных изменений математическая модель была усовершенствована — добавлены критерий (наличие аффилированности) и стоп-фактор (ИП входит в реестр недобросовестных поставщиков), которые позволяют более точно оценить состояние потенциального партнера.

С учетом добавления общий вид математической модели преобразовался в следующий (формула (2)):

БИП =
$$\sum_{i=1}^{8} \mathsf{K}_i \cdot \mathsf{C} \varphi_1 \cdot \mathsf{C} \varphi_2 \cdot \mathsf{C} \varphi_3 \cdot \mathsf{C} \varphi_4$$
, (2)

где С φ_4 — это список недобросовестных поставщиков, в котором содержатся участники государственных закупок, нарушившие обязательства контракта; K_8 — критерий аффилированности, представляющий влияние анализируемого ИП на деятельность других физических лиц, которые занимаются предпринимательской деятельностью. Именно наличие аффилированности у контрагента позволяет снизить финансовые риски.

Усовершенствование уже имеющейся модели формирует актуальное представление о состоянии ИП в РФ, так как эффективность сотрудничества с контрагентом во многом зависит именно от того, насколько благонадежным является предприниматель в данный момент времени. Добавление новых критериев в модель способствует предотвращению и минимизации рисков и негативных факторов, которые могут возникнуть при сотрудничестве.

С помощью повторной апробации проверяется корректность изменения модели. Результаты как до, так и после изменения модели представлены в табл. 2.

Дерево Метод Метод Точность моделей принятия опорных k-ближайших решений векторов соседей до усовершенствования, % 99.93 99.93 99.96 после усовершенствования, % 99.97 99.98 99.97

Таблица 2. Результаты повторной апробации математической модели

Полученные модифицированные модели обучались и тестировались с использованием кросс-валидации. Усредненные модели после обучения и были использованы для предсказания на всем наборе данных. Модели, построенные на методе дерева принятия решений и k-ближайших соседей, верно классифицировали 7651 из 7653 ИП. Метод опорных векторов и вовсе ошибся лишь единожды, определив верно 7652 контрагента.

Таким образом, удалось убедиться, что с добавлением в расчет новых критериев математическая модель оценки благонадежности действительно оказалась усовершенствована. С помощью изменений также удалось повысить точность оценивания на 0.05 %, что играет значительную роль при проверке большого количества контрагентов и снижает риски работы с неблагонадежным ИП.

Заключение. После внедрения машинного обучения и добавления новых критериев удалось минимизировать имеющиеся ошибки математической модели при расчете благонадежности и повысить точность итогового результата. После апробации была получена модель, которая является более корректной в сравнении с первоначальным вариантом. Повышенную точность можно объяснить появлением дополнительной информации, благодаря которой спорные случаи стали классифицироваться верно.

© Козлова Н.А., Осипенко А.В., Егле Г.Р, Васильев Е.И., 2022

Библиографический список

- [1] Официальный сайт ФИС [Электронный ресурс]. URL: https://xn--h1ari.xn--p1ai/.
- [2] Официальный сайт МВД РФ [Электронный ресурс]. URL: https://xn-b1aew.xn--p1ai/.
- [3] ФЗ «О государственной регистрации физических лиц и индивидуальных предпринимателей» [Электронный ресурс]. URL: http://www.consultant.ru/document/cons_doc_LAW_32881/.
- [4] Приказ ФНС «Об утверждении концепции системы планирования выездных налоговых проверок» [Электронный ресурс]. URL: http://www.consultant.ru/document/cons_doc_LAW_55729/.
- [5] ФЗ «О несостоятельности (банкротстве) [Электронный ресурс]. URL:

- http://www.consultant.ru/document/cons_doc_LAW_39331/.
- [6] ФЗ «О лицензировании отдельных видов деятельности» [Электронный ресурс]. Режим доступа: http://www.consultant.ru/document/cons LAW 113658/.
- [7] Козлова Н.А. Модель оценки благонадежности индивидуальных предпринимателей / Н.А. Козлова, А.С. Колтайс, А.О. Устинов // Перспективы развития фундаментальных наук: сб. науч. тр. XVIII Междунар. конф. студентов, аспирантов и молодых ученых. Томск. 2021. С. 53–55.
- [8] Информационно-аналитическая система СПАРК. [Электронный ресурс]. URL: https://www.spark-interfax.ru.
- [9] Козлова, Н.А. Модель оценки благонадежности индивидуальных предпринимателей / Козлова Н.А., Колтайс А.С., Устинов А.О. // Сборник научных трудов XVIII Международной конференции студентов, аспирантов и молодых ученых «Перспективы развития фундаментальных наук». Томск, 2021. С. 53-55.
- [10] Hastie T., Tibshirani R., Friedman J. k-Nearest-Neighbor Classifiers // The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2009. 463-474 c.
- [11] Деревья решений. [Электронный ресурс]. URL: https://scikit-learn.org/sta-ble/modules/tree.htm .
- [12] Метод опорных векторов SVM. [Электронный ресурс]. URL: https://scikit-learn.org/stable/modules/svm.html.

N.A. Kozlova, A.V. Osipenko, G.R. Egle, E.I. Vasiliev

MATHEMATICAL MODEL FOR ASSESSING THE RELIABILITY OF CONTRACTORS – INDIVIDUAL ENTREPRENEURS

Tomsk State University of Control Systems and Radio electronics *Tomsk, Russia*

Abstract. The article describes the creation and improvement of a mathematical model for assessing the reliability of counterparties – individual entrepreneurs. Each of the models is based on regulations in the Russian Federation. Using machine learning, a comparative analysis of several methods was carried out for future use in an automated system for evaluating the reliability, as well as checking for the correctness of the changes. In the process of research, the accuracy of the models was calculated both before and after the addition of new criteria. The analysis was carried out using a sample of more than 7,000 individual entrepreneurs in the Tomsk region, taking into account their different status: the presence of unscrupulous suppliers in the register, blocked accounts and other criteria. As a result of repeated testing, a modified model was obtained, which is a more accurate version in comparison with the original version. Models built using machine learning, namely the decision tree and the k-nearest neighbor method, correctly classified the same number of counterparties, while the support vector machine method gave one more correct result.

The obtained results and the model can be applied to determine the reliability of the counterparty in order to minimize and prevent the risks that may arise when working with an individual entrepreneur.

Keywords: mathematical model, reliability assessment, individual entrepreneur, machine learning, comparative analysis, approbation, risks.

References

- [1] Official website of the FIS [Electronic resource]. Available at: https://xn--h1ari.xn--p1ai/.
- [2] Official site of the Ministry of Internal Affairs of the Russian Federation [Electronic resource]. Available at: https://xn--b1aew.xn--p1ai/.
- [3] Federal Law "On State Registration of Individuals and Individual Entrepreneurs" [Electronic resource]. Available at: http://www.consultant.ru/document/cons_doc_LAW_32881/.
- [4] Order of the Federal Tax Service "On approval of the concept of the planning system for field tax audits" [Electronic resource]. Available at: http://www.consultant.ru/document/cons_doc_LAW_55729/.
- [5] Federal Law "On insolvency (bankruptcy) [Electronic resource]. Available at: http://www.consultant.ru/document/cons_doc_LAW_39331.
- [6] Federal Law "On Licensing Certain Types of Activities" [Electronic resource]. Available at: http://www.consultant.ru/document/cons_LAW_113658/.
- [7] Kozlova N.A., Koltais A.S., Ustinov A.O. (2021). [Model for assessing the reliability of individual entrepreneurs]. *Tomsk* [Tomsk]. pp. 53-55. (In Russ).
- [8] Information-analytical system SPARK [Electronic resource]. Available at: https://www.spark-interfax.ru/.
- [9] Kozlova, N.A. (2021). [Model for assessing the reliability of individual entrepreneurs]. *Tomsk* [Tomsk]. pp. 53-55. (In Russ).
- [10] Hastie, T., Tibshirani, R., Friedman, J. k-Nearest-Neighbor Classifiers. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, pp. 463-474. (In Russ).
- [11] Decision Trees [Electronic resource]. Available at: https://scikit-learn.org/sta-ble/modules/tree.html.
- [12] Support vector machine [Electronic resource]. Available at: https://scikit-learn.org/stable/modules/svm.html.

НАШИ АВТОРЫ

ОСНОВЫ ЭКОНОМИЧЕСКОЙ БЕЗОПАСНОСТИ

Казанцев Сергей Владимирович – главный научный сотрудник отдела темпов и пропорций промышленного производства Института экономики и организации промышленного производства СО РАН, главный научный сотрудник сектора экономической безопасности Института экономики РАН, д.э.н., профессор; **kzn-sv@yandex.ru**

Корнилов Дмитрий Анатольевич — профессор кафедры «Управление инновационной деятельностью» Института экономики и управления Нижегородского государственного технического университета им. Р.Е. Алексеева, д.э.н., профессор; **Kornilov-d@yandex.ru**

Мурашова Наталья Александровна – профессор кафедры «Управление инновационной деятельностью» Института экономики и управления Нижегородского государственного технического университета им. Р.Е. Алексеева, д.э.н., доцент; **murashova_nat@mail.ru**

Миронов Александр Сергеевич – студент Нижегородского государственного технического университета им. Р.Е. Алексеева; alexanderblcegl@mail.ru

ИННОВАЦИОННОЕ И ПРОМЫШЛЕННОЕ РАЗВИТИЕ

Лапаева Ольга Николаевна — профессор кафедры «Управление инновационной деятельностью» Института экономики и управления Нижегородского государственного технического университета им. Р.Е. Алексеева, д.э.н., доцент; **innov@nntu.ru**

Митякова Екатерина Владимировна – ассистент кафедры информатики МИРЭА – Российского технологического университета; **mityakova@mirea.ru**

Колесов Кирилл Игоревич — доцент кафедры «Цифровая экономика» Института экономики и управления Нижегородского государственного технического университета им. Р.Е. Алексеева, к.э.н., доцент; **kikolesov@mail.ru**

Болоничева Татьяна Владимировна — доцент кафедры «Цифровая экономика» Института экономики и управления Нижегородского государственного технического университета им. Р.Е. Алексеева, к.э.н., доцент;

bolonicheva@mail.ru

Смирнова Дарья Александровна – студент Нижегородского государственного технического университета им. Р.Е. Алексеева;

dasha-smirnova2002@mail.ru

Верещагина Анжелика Сергеевна — студент Нижегородского государственного технического университета им. Р.Е. Алексеева; vereshagina.anzhelika@yandex.ru

СОЦИАЛЬНЫЕ АСПЕКТЫ РАЗВИТИЯ И БЕЗОПАСНОСТИ

Летягина Елена Николаевна — заведующий кафедрой управления в спорте Национального исследовательского Нижегородского государственного университета им. Н.И. Лобачевского, к.э.н., доцент; len@fks.unn.ru

Перова Валентина Ивановна — доцент кафедры математического моделирования экономических процессов Национального исследовательского Нижегородского государственного университета им. Н.И. Лобачевского, к.ф.-м.н., доцент; **perova vi@mail.ru**

Федорова Наталья Юрьевна — доцент кафедры теории и методики спортивной подготовки Национального исследовательского Нижегородского государственного университета им. Н.И. Лобачевского; natalya.fedorova@fks.unn.ru

Митяков Евгений Сергеевич – профессор кафедры информатики МИРЭА – Российского технологического университета, д.э.н., доцент; **iyao@mail.ru**

Лимасов Андрей Михайлович — специалист по программам корпоративной социальной ответственности ООО «Исследовательский центр Самсунг»; a.limasov@samsung.com

Миронов Роман Юрьевич — научный сотрудник международной научно-исследовательской лаборатории финансов и финансовых рынков Российского университета дружбы народов; **Mr.mironov2001@yandex.ru**

Григорьева Елена Михайловна — заместитель декана по научной работе, доцент кафедры «Экономика бизнеса и финансы» Российского университета дружбы народов, к.э.н.; **grigorieva-elena@rudn.ru**

Гусева Ирина Борисовна – профессор кафедры «Экономика и гуманитарные дисциплины» Арзамасского Политехнического Института НГТУ им. Р.Е. Алексеева, д. э. н., профессор; **iran_guseva@mail.ru**

Козлова Надежда Андреевна – преподаватель кафедры «Комплексная информационная безопасность электронно-вычислительных систем» Томского государственного университета систем управления и радиоэлектроники; nadine.99@mail.ru

Осипенко Альбина Владимировна – студент Томского государственного университета систем управления и радиоэлектроники; **pstskaa@yandex.ru**

Егле Герман Робертович — студент Томского государственного университета систем управления и радиоэлектроники; **germanegle@mail.ru**

Васильев Егор Иванович — студент Томского государственного университета систем управления и радиоэлектроники; **egg.or.no@gmail.com**

MINISTRY OF SCIENCE AND HIGHER EDUCATION OF THE RUSSIAN FEDERATION

NIZHNY NOVGOROD STATE TECHNICAL UNIVERSITY n.a. R.E. ALEKSEEV

DEVELOPMENT AND SECURITY

№ 4

Development and Security / NNSTU n. a. R.E. Alekseev. – Nizhny Novgorod, 2022. N. 4 (16). – 120 p.

ISSN: 2713-2633

The journal is issued 4 times a year

Editor-in-Chief S.N. Mityakov, Doctor of Sciences, Professor, N. Novgorod

Assistant editors:

Gorodetsky Andrey Evgenievich, Doctor of Economics, Professor, Moscow Silvestrov Sergey Nikolaevich, Doctor of Economics, Professor, Moscow Shiryaev Mikhail Vissarionovich, Doctor of Economics, N. Novgorod

Executive Secretary

Frolova Marina Michailovna, Candidate of Economics, N. Novgorod

Members of the Editorial Board:

Grinberg Ruslan Semenovich, Corr. RAS, Doctor of Economics, Professor, Moscow
Dmitriev Mikhail Nikolaevich, Doctor of Economics, Professor, N. Novgorod
Zakharov Pavel Nikolaevich, Doctor of Economics, Professor, Vladimir
Kazantsev Sergey Vladimirovich, Doctor of Economics, Professor, Novosibirsk
Kuznetsov Oleg Leonidovich, Doctor of Technical Sciences, Professor, Moscow
Kshakevich Kazimezh, Doctor of Economics, Professor, Poznan, Poland
Lapaev Dmitry Nikolaevich, Doctor of Economics, Professor, N. Novgorod
Mironova Olga Alekseevna, Doctor of Economics, Professor, Yoshkar-Ola
Mityakov Evgeny Sergeevich, Doctor of Economics, Moscow
Morozova Galina Alekseevna, Doctor of Economics, Professor, N. Novgorod
Pavlenko Yuri Grigorievich, Doctor of Economics, Professor, Moscow
Starovoitov Vladimir Gavrilovich, Doctor of Economics, Moscow
Trofimov Oleg Vladimirovich, Doctor of Economics, Professor, N. Novgorod
Khorev Alexander Ivanovich, Doctor of Economics, Professor, Voronezh

Founder and publisher: federal state budgetary educational institution of higher education «Nizhny Novgorod State Technical University n.a. R.E. Alekseev» (603950, Nizhny Novgorod Region, Nizhny Novgorod, Minin St., 24)

Electronic version of the journal: https://ds.nntu.ru

Certificate of registration at the Federal Supervision Service in the field of communications, information technologies and mass communications of the periodical printed edition # Φ C77-81687 dated August 06, 2021

© Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 2022

CONTENTS

BASICS OF ECONOMIC SECURITY	4
Kazantsev S.V. Strategies for the Russian economy development under	
Kornilov D.A., Murashova N.A., Mironov A.S. The impact of the transformation of the world economy on the domestic stock market	4 20
INNOVATIVE AND INDUSTRIAL DEVELOPMENT	31
INNOVATIVE AND INDUSTRIAL DEVELOPMENT	31
Lapaeva O.N., Mityakova E.V. Conceptual model of ensuring innovative activities of single-industry territories	31
Sustainable development of industrial enterprises: ESG ranking comparison	43
SOCIAL ASPECTS OF DEVELOPMENT AND SECURITY	55
Letiagina E.N., Perova V.I., Fedorova N.YU. Neural networks in the study of human capital in Russia as a determinant of the national security of the country	55
Mityakov E.S., Limasov A.M. Methodology analysis of the needs of the	33
Russian economy for it specialists	71
the formation of an effective sustainable transition of the national economy	83
Guseva I.B. Issues of ensuring region personnel security in the service industry (the case of the development of the Nizhny Novgorod region ser-	
vice industry)	97
Kozlova N.A., Osipenko A.V., Egle G.R., Vasiliev E.I. Mathematical model for assessing the reliability of contractors – individual entrepreneurs	107
AUTHORS	115

РАЗВИТИЕ И БЕЗОПАСНОСТЬ

№ 4

Научный редактор Д.Н. Лапаев Редактор В.И. Казакова

Редакиия:

603950, г. Нижний Новгород, ул. Минина, д. 28а Тел. +7(831) 436-01-55. E-mail: ds@nntu.ru

Свободная цена

Подписано в печать 09.12.2022. Дата выхода в свет 12.12.2022 Формат $60x84^{1}/_{16}$. Бумага офсетная. Печать трафаретная. Усл. печ. л. 7,5. Тираж 300 экз. Заказ

Нижегородский государственный технический университет им. Р.Е. Алексеева. 603950, г. Нижний Новгород, ул. Минина, д. 24 Отпечатано в полном соответствии с представленным оригинал-макетом в ООО «Печатная мастерская РАДОНЕЖ» 603002, Нижний Новгород, ул. Интернациональная, д. 100 Тел. +7(831) 418-53-23