Université Paris-Sud Mathématiques

Durée : 1 heure. Aucun document n'est autorisé. Une rédaction propre et soignée sera appréciée à sa juste valeur. Si vous rendez plusieurs feuilles, inscrivez s'il vous plaît votre nom sur chacune d'entre elles et numérotez-les. Bon travail!

Exercice 1. Soit $f: \mathbb{R}^n \to \mathbb{R}^p$ une application linéaire injective. A-t-on, pour tout sous-espace vectoriel $E \subset \mathbb{R}^n$, dim $f(E) = \dim E$?

Exercice 2. Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ une application linéaire telle que im f contient $u_1 = (1,0,0)$, $u_2 = (2,1,0)$ et $u_3 = (3,2,1)$. L'application f est-elle surjective? Que vaut ker f?

Exercice 3. Soit $P = \begin{pmatrix} 4 & 5 \ 3 & 4 \end{pmatrix}$ et soit (u_1, u_2) la famille des vecteurs colonnes de P. Montrer que (u_1, u_2) est une base de \mathbb{R}^2 , que la matrice P est inversible et calculer P^{-1} . Donner les coordonnées de u = (2, 1) dans la base (u_1, u_2) .

Exercice 4. On considère les vecteurs suivants de \mathbb{R}^3 :

$$u_1 = (1, 2, -1), \quad u_2 = (2, 0, -1), \quad u_3 = (1, -2, 0)$$

et

$$v_1 = (1, 1, 1), \quad v_2 = (0, 1, 2), \quad v_3 = (-1, 0, 1).$$

On pose $E = \text{Vect}(u_1, u_2, u_3)$ et $F = \text{Vect}(v_1; v_2, v_3)$. Donner une base de E et de F, puis de E + F et de $E \cap F$.