Расчёт магнитного поля дипольного источника, заключённого внутри магнитопаузы заданной формы.

Выполнил Лапин Ярослав. 1 июня 2011.

Постановка задачи

В данной работе ищется численное решение задача Неймана методом Нелдера-Мида

Задача формулируется следующим образом:

- Внутреннее магнитное поле ограниченно дипольными источниками, которые считаются с помощью утилиты DIP_08
- Магнитопауза симметрична относительно оси X и задана в виде уравнения $r = R(\theta)$, где $r = \sqrt{X^2 + Y^2 + Z^2}$, а угол $\theta = \arccos X/R$ (угол от положитель-ного направления оси X)
- Так как поле диполя не должно проникать вне магнитосферы, то на границе должно выполняться условие $\vec{B} \cdot \vec{n} = 0$
- Где В это суммарное поле диполя и токов экранировки (СF-токи, Chapman-Ferraro), текущих по магнитопаузе, а n это вектор нормали.
- ullet Из условия $ec{B}_{CF}\cdotec{n}=-ec{B}_d\cdotec{n}$ на границе нужно найти $ec{B}_{CF}$

Поле $ec{B}_{CF}$

- Внутри магнитосферы поле \vec{B}_{CF} потенциально, то есть можно представить его в виде $\vec{B}_{CF} = -\nabla U$.
- ullet Из уравнения Максвелла $abla \cdot \vec{B}_{CF} = 0$ следует, что $abla^2 U = 0$
- ullet Так же из $abla U\cdot ec{n}=-ec{B}_d\cdot ec{n}$ получаем $rac{\partial U}{\partial n}=ec{B}_d\cdot ec{n}$
- Таким образом система уравнений $\nabla^2 U = 0$ и $\frac{\partial U}{\partial n} = \vec{B}_d \cdot \vec{n}$ образует задачу Неймана для скалярного потенциала U.
- Решение будем искать в виде суммы гармонических функций:

$$U = \sum_{i=1}^{N} a_i f_i(\vec{r}, b_1, b_2, ..., b_K)$$

• Коэффициенты a_i, b_i получаются из условия минимизации среднеквадратичного отклонения $\nabla U \cdot \vec{n} - \vec{B}_d \cdot \vec{n}$ по ансамблю М точек на поверхности магнитопаузы:

$$\sigma = \sqrt{\frac{\sum_{i=j}^{M} [\vec{B}_d(\vec{r}_j) \cdot \vec{n}_j - \nabla U(\vec{r}_j) \cdot \vec{n}_j]^2}{M}}$$

Потенциал U

• В качестве базисных функций f_i использовались "коробчатые" гармоники, являющиеся решением уравнения Лапласа

$$f_i = \exp(\sqrt{2}b_iX)\cos(b_iY)\sin(b_iZ)$$

ullet b_i имеет смысл обратной величины пространственного масштаба i-ой гармоники.

Генерация набора

- Первое, что необходимо сделать, это создать набор M точек на магнитопаузе равномерно распределённый от "лобовой" точки $X=R_0$ до области удалённого хвоста $X=-100R_E$.
- Форма магнитопаузы по модели Shue et al. [JGR, 1998]

$$R(\theta) = R_0 \left(\frac{2}{1 + \cos \theta}\right)^{\alpha}$$

• R_0 , α зависят от условий ММП: B_z , P_{dyn} , в данной работе было взято $B_z=0$, $P_{dyn}=2nPa$, $R_0=10.252$, $\alpha=0.5896$

Форма магнитопаузы

Форма магнитопаузы

Форма магнитопаузы

Поиск коэффициентов

• Рассмотрим для примера N = 3. Тогда потенциал U будет вида:

$$U = a_1 \exp(\sqrt{2}b_1X)\cos(b_1Y)\sin(b_1Z)$$
$$+a_2 \exp(\sqrt{2}b_2X)\cos(b_2Y)\sin(b_2Z)$$
$$+a_3 \exp(\sqrt{2}b_3X)\cos(b_3Y)\sin(b_3Z)$$

- Получаем 3 нелинейных коэффициента и 3 линейных.
- Задав некоторый начальный набор нелинейных коэффициентов линейные можно посчитать методом наименьших квадратов:
 - Допустим мы имеем М уравнений вида:

$$a_1x + b_1y + \dots = n_1$$
$$a_2x + b_2y + \dots = n_2$$
$$a_nx + b_ny + \dots = n_n$$

- Где a_i заданные числа, а х,у,.. неизвестные, которые нужно найти
- Тогда нужно сначала умножить каждое i-ое уравнение на a_i , сложить все уравнения и получится первое "нормальное" уравнение. Потом умножить каждое i-ое уравнение на b_i и так далее. В итоге получится количество "нормальных" уравнений равное количеству неизвестных переменных.
- Система нормальных уравнений может быть решена уже обычным способом.
- Поиск нелинейных коэффициентов происходит методом Нелдера—Мида.
 - Это метод по поиску оптимального направления движения в n-мерном пространстве нелинейных параметров в котором значение функции от этих параметров будет уменьшаться.
- Тогда наша задача может быть переформулирована в терминах поиска минимума функции $\sigma(\{r\},\{a\},\{b\})$, при условии, что для каждого набора b_i методом наименьших квадратов ищутся соответствующие a_i .

Результаты

• C помощью TRACE_08 были построены картинки