

Air University (Final-Term Examination: Spring 2024)

Subject:

Digital Logic Design

Course Code:

EE-123 **BS-CYS**

Class: Semester:

II

Section:

A & B

HoD Signatures:_

Total Marks:

100

8th June, 2024

Time:

Date:

13:30-16:30

Duration: FM Name: 2 Hours Dr. Bahman R. Alyaei

FM Signatures:

Note:

This is closed book exam, All questions must be attempted.

This examination carries 45% weight towards the final grade.

Calculators are not allowed

	Q. No. 1 (CLO 3)	李名道 [6]		25 Marks
a	For the following Boolean expressions Draw the logic circuit diagram using appropriate logic gates: 1) $X = A(BC)$. 2) $Y = (A + B)C$.			10
b	Apply the rules of Boolean Algebra to Evaluate the standard POS expression for the following digital system. $Z = (A + B + \bar{C})(A + C)$			5
c	Apply the method of Numerical Expansion to generate the following Boolen Expression. $M = \bar{A} + A\bar{B} + ABC$	the Standar	d SOP form of	5
d	Using rules of Boolean Algebra, Express the equation of the following digital system in minimum form. $N = A + AB + \overline{(A + AB)}C$			5
	Q. No. 2 (CLO 3)	Contract of the second	的政策的	30 Mark
	For the truth table shown, Evaluate the following: (i) The standard SOP expression of the output variable. (ii) The standard POS expression of the output	Inputs A B C 0 0 0	Output X	
а	variable. (iii)The simplified SOP expression of the output variable using K-Map.	0 0 1	0 0	5+5+10
		0 1 1	1	
		100	1 x	
		110	0	
		111	1	
b	For the non-standard Boolean expression given below, Generate the truth table. $X = \bar{A} + AB$			10

	Q. No. 3 (CLO 4)	25 Marks
a	Using the method of Truth Table and word comparison (not bit by bit method), Design the two bit word comparator that produces the following output: 1) Equal. 2) Greater than or equal. 3) Less than or equal. Note: Strict greater and less is not required.	
	Q. No. 4 (CLO 4)	10 Marks
a	 Design the following digital systems using block level design method. Four bit adder using the blocks Full-Adder. Four bit Multiplier using blocks of 4-bit adders and necessary logic gates. 	5+5
13 Mar	Q. No. 5 (CLO 4)	10 Marks
a	 Design the following digital systems using appropriate MUX blocks. 1) Using appropriate Multiplexer (MUX) block, design the following digital system. Y = A2A1A0 + A2A1A0 + A2A1A0 2) Using 8 × 1 MUX with Enable (EN) input and necessary logic gates, implement 16 × 1 MUX. 	

************** End of Question Paper ************