Napredni povratni modeli i pažnja

Martin Tutek, Petra Bevandić, Josip Šarić, Siniša Šegvić 2023.

Ponavljanje

Obični povratni model (RNN označava povratnu ćeliju)

Osnovna povratna ćelija

Ažuriranje skrivenog stanja:

$$h^{(t)} = tanh(\underbrace{W_{hh}h^{(t-1)} + W_{xh}x^{(t)} + b_h}_{a^{(t)}})$$

Projiciranje izlaza:

$$o^{(t)} = W_{hy}h^{(t)} + b_o (1)$$

Obični povratni model obrađuje cijeli slijed jednim slojem:

- često nedovoljno za učenje složenih ovisnosti među elementima slijeda
- može se poboljšati dodavanjem latentnih slojeva između ulaza i predikcija

Duboki povratni modeli

Duboki (višerazinski) povratni modeli

Duboki povratni modeli

Možete li vidjeti problem na prethodnoj slici?

- · $x^{(t)}$ i $h^{(t)}$ mogu imati različitu dimenzionalnost
- · dimenzionalnost $W_{xh} \in \mathbb{R}^{h \times h}$ može se mijenjati preko slojeva

Sloj n = 1:

$$h_n^{(t)} = tanh(\underbrace{W_{nhh}h_n^{(t-1)} + W_{nxh}x^{(t)} + b_{nh}}_{a_n^{(t)}})$$
 (2)

Sloj n > 1:

$$h_n^{(t)} = tanh(\underbrace{W_{nhh}h_n^{(t-1)} + W_{nxh}h_{n-1}^{(t)} + b_{nh}}_{a_n^{(t)}})$$
(3)

[!!] Ovu izmjenu ne morate raditi ručno: okviri nude povratne ćelije koje automatski prilagođavaju dimenzionalnost parametara.

Duboki povratni modeli: backprop

Duboki povratni modeli: sažetak

Povratni modeli duboki su kroz slojeve (vertikalno) i vrijeme (horizontalno):

- praktične konfiguracije imaju 4 to 8 slojeva ovisno o količini podataka za učenje
- više od 8 povratnih slojeva ne dovodi do značajno bolje generalizacije (čak i za napredne ćelije)

Dimenzionalnost ulaza tipično je različita od dimenzionalnosti skrivenih slojeva:

- · to najčešće ne komplicira programsku izvedbu
- slojeve konfiguriramo zadavanjem argumenata konstruktora odabrane povratne ćelije.

Problemi

Koliko je **receptivno polje** povratne ćelije?

Problemi

Koliko je receptivno polje povratne ćelije?

Problemi: receptivno polje

Povratna ćelija (u bilo kojem sloju) u trenutku t vidi samo $x^{(t)} \le t$:

- predikcija u trenutku t određena je samo s do tada viđenim ulazima!
- ako zadatak ne pretpostavlja skrivanje budućeg konteksta, htjeli bismo omogućiti modelu da vidi cijeli slijed prije donošenja odluke.

Ideja: ako ciljno stanje $h^{(t)}$ ćelije koja gleda s lijeva na desno vidi $x^{(t)} \leq t$, tada će ćelija koja gleda u suprotnom smjeru vidjeti sve preostale ulaze $x^{(t)} > t$

· zajedno, te dvije ćelije vide cijeli ulazni niz

Bidirekcionalni povratni modeli

Dvosmjerni povratni modeli

Dodajemo **nezavisan** povratni model (\overline{RNN}) koji gleda u **suprotnom** smjeru s obzirom na originalni model (\overline{RNN})

Dvosmjerni povratni modeli: agregiranje stanja

Kako agregirati izlaze povratnih ćelija prije predikcije?

Dvosmjerni povratni modeli: detalji

Dvosmjerni povratni model (BiRNN) sastoji se od dvija odvojena povratna modela koji funkcioniraju u suprotnim smjerovima:

- · RNN čita s lijeva na desno
- · RNN čita s desna na lijevo

Kako agregirati skrivena stanja?

1. konkateniranjem:

$$h^{(t)} = [\overrightarrow{h}^{(t)}, \overleftarrow{h}^{(t)}]$$

- · ovo udvostručuje dimenzionalnost sljedećeg sloja
- · podrazumijevani izbor u postojećim okvirima
- 2. usrednjavanjem
- 3. proizvoljnom (parametriziranom) funkcijom

Dvosmjerni povratni modeli: receptivno polje

Dvosmjerni povratni modeli: sažetak

Dvosmjerni modeli sastoje se od dva povratna modela koji napreduju u suprotnim smjerovima:

 konkateniranje stanja sljedećem sloju omogućava pregled svih ulaza

Konkatenacija povećava dimenzionalnost sljedećih slojeva:

- · podrazumijevano ponašanje
- · alternative: usrednjavanje, sažmanje + projekcija, ...

Važno je razmotriti **dozvoljava** li zadatak pristup cjelokupnom ulazu (prognoziranje vs gusta predikcija).

Učenje povratnih modela

Nestajući i eksplodirajući gradijenti

Gradijenti povratnih modela podložni numeričkoj nestabilnosti:

- · uzrokovani dijeljenjem parametara u uzastopnim operacijama
- \cdot preciznije: uzastopno množenje s W_{hh}

Podsjetnik:

$$h^{(t)} = tanh(W_{hh}h^{(t-1)} + W_{xh}x^{(t)} + b_h)$$

Prvo razmatramo skalarni kontekst:

$$h^{(t)} = tanh(\underbrace{w_{hh}h^{(t-1)} + w_{xh}x^{(t)} + b_h}_{a^{(t)}})$$

· Vrijedi: $w_{hh}, w_{xh}, b_h, h, x \in \mathbb{R}$

Gradijenti u skalarnom slučaju

$$h^{(t)} = \tanh(\underbrace{w_{hh}h^{(t-1)} + w_{xh}x^{(t)} + b_h}_{a^{(t)}})$$

Razmatramo gradijent između susjednih stanja:

$$\begin{array}{l} \frac{\partial h^{(t)}}{\partial h^{(t-1)}} = \frac{\partial h^{(t)}}{\partial a^{(t)}} \frac{\partial a^{(t)}}{\partial h^{(t-1)}} \\ = \frac{\partial t h(a^{(t)})}{\partial a^{(t)}} W_{hh} \\ = \left(1 - th^2(a^{(t)})\right) W_{hh} \end{array} \qquad \begin{array}{c} tanh = th \\ \frac{\partial t h(x)}{\partial x} = 1 - th^2(x) \end{array}$$

Derivacija hiperbolnog tangensa ograničena na jedinični interval:

$$tanh(x) \in (-1,1)$$

$$\frac{\partial tanh(x)}{x} = (1 - tanh^{2}(x)) \in (0,1)$$

Gradijenti u skalarnom slučaju (2)

$$\frac{\partial h^{(t)}}{\partial h^{(t-1)}} = (1 - th^2(a^{(t)})) w_{hh}$$

Primijenimo supstituciju:

$$\gamma_{\rm t} = \partial {\rm tanh}(x)/\partial x \big|_{a^{({\rm t})}} < 1$$

Slično:
$$\gamma_{\sigma t} = \partial \sigma(x)/\partial x|_{\sigma^{(t)}} < 1/4$$

$$\begin{array}{ll} \frac{\partial h^{(t)}}{\partial h^{(t-1)}} = \gamma_t W_{hh} \\ \frac{\partial h^{(T)}}{\partial h^{(t_0)}} = \prod_{t_0}^T \gamma_t W_{hh} \\ \frac{\partial h^{(T)}}{\partial h^{(t_0)}} = (\overline{\gamma} W_{hh})^{T-t_0} \end{array} \right) t \to T$$

Gradijenti u skalarnom slučaju (3)

$$\frac{\partial h^{(T)}}{\partial h^{(t_0)}} = (\overline{\gamma} w_{hh})^{T-t_0}$$

Kod dugih slijedova imamo: $T - t_0 \gg 0$

· numerička stabilnost gradijenta ovisi o $\overline{\gamma}w_{hh}$:

$$(\overline{\gamma}w_{hh})^{T-t_0} \to \begin{cases} \infty & \text{if } \overline{\gamma}w_{hh} > 1 \text{ (eksplodira)} \\ 0 & \text{if } \overline{\gamma}w_{hh} < 1 \text{ (nestaje)} \\ 1 & \text{if } \overline{\gamma}w_{hh} \approx 1 \text{ (stabilan)} \end{cases}$$

Ako pretpostavimo $\bar{\gamma}=$ 1, tada gore navedeni uvjet primijenjujemo na **parameta**r w_{hh} .

Nastavljamo s analizom u kontekstu vektorskog skrivenog stanja.

Gradijenti u vektorskom slučaju: spektralna norma

Razmatramo svojstva spektralne norme kvadratne matrice A:

 norma produkta manja je ili jednaka produktu normi (vrijedi za sve matrične norme):

$$\|AB\| \leq \|A\| \|B\|$$

- · spektralna norma odgovara najvećoj singularnoj vrijednosti
 - · ili, ekvivalentno, korijenu najveće svojstvene vrijednosti $A^{\top}A$
- · spektralna norma inducirana je L2-normom:

$$||Ax|| \le ||A|| \, ||x||$$

Gradijenti u vektorskom slučaju: jedan korak

Ažuriranje skrivenog stanja (podsjetnik):

$$h^{(t)} = tanh(\underbrace{W_{hh}h^{(t-1)} + W_{xh}x^{(t)} + b_h}_{a^{(t)}})$$

Gledamo gradijent između dva uzastopna stanja:

$$\frac{\partial h^{(t)}}{\partial h^{(t-1)}} = \frac{\partial h^{(t)}}{\partial a^{(t)}} W_{hh}$$

Postavljamo gornju ogradu gradijenta:

$$\left\| \frac{\partial h^{(t)}}{\partial h^{(t-1)}} \right\| \le \left\| \frac{\partial h^{(t)}}{\partial a^{(t)}} \right\| \|W_{hh}\| \le \gamma_{\max} \lambda_1$$

- · λ_1 ... najveća singularna vrijednost W_{hh}
- $\gamma_{\max} = \max(\frac{\partial tanh(a^{(t)})}{\partial a^{(t)}})$... gornja ograda gradijenta aktivacije

Gradijenti u vektorskom slučaju: svi koraci

Razmatamo prethodnu jednadžbu kroz vrijeme:

$$\frac{\partial h^{(T)}}{\partial h^{(t_0)}} \leq (\gamma_{\max} \lambda_1)^{T-t_0}$$

Za dugačke slijedove ($T-t_0\gg 0$) numerička stabilnost radijenta ovisi o $\gamma_{\max}\,\lambda_1$:

$$(\gamma_{\mathsf{max}} \, \lambda_1)^{\mathsf{T}-t_0} \to \begin{cases} \infty & \mathsf{if} \; \gamma_{\mathsf{max}} \, \lambda_1 > 1 \; (\mathsf{eksplodira}) \\ 0 & \mathsf{if} \; \gamma_{\mathsf{max}} \, \lambda_1 < 1 \; (\mathsf{nestaje}) \\ 1 & \mathsf{if} \; \gamma_{\mathsf{max}} \, \lambda_1 \approx 1 \; (\mathsf{stabilan}) \end{cases}$$

- Matrica W_{hh} mora zadovoljiti stroge uvjete ako želimo stabilnu optimizaciju
- za detaljniju analizu preporučamo pogledati [pascanu13icml]: Razvan Pascanu, Tomás Mikolov, Yoshua Bengio: On the difficulty of training recurrent neural networks. ICML 2013.

Učenje dugih veza

Povratni modeli konzistentno podbacuju na dugim slijedovima:

 problem nastaje zbog numeričke nestabilnosti gradijenata uslijed uzastopnog množenja s W_{hh}:

[bengio94tnn] Y Bengio, PY Simard, P Frasconi: Learning long-term dependencies with gradient descent is difficult, IEEE TNN 1994.

Simptome možemo ublažiti:

- osiguravanjem umjerenih singularnih vrijednosti povratne veze
 M Arjovsky, A Shah, Y Bengio: Unitary Evolution Recurrent Neural Networks. ICML 2016
- · izostavljanjem matričnog množenja iz povratne veze.

Rješenje: razdvojiti zadatke povratne veze

- W_{hh} i W_{xh} sprežu filtriranje inforacija, pamćenje ulaza i projekciju novih elemenata u skriveno stanje
- skriveno stanje h spreže projekciju izlaza i pamćenje informacija za buduće izlaze.

memorijom (LSTM: Long short-term memory)

Povratna ćelija s dugoročnom

LSTM: notacija

Sada skriveno stanje $h^{(t)}$ koristimo samo za računanje izlaza.

Uvodimo stanje ćelije $c^{(t)}$ koji samo pamti viđenu informaciju.

Uvodimo **doprinos stanju ćelije** $\hat{c}^{(t)}$ s obzirom na ulaz u trenutku t.

Uvodimo logičke vektore $f^{(t)}$ i $i^{(t)}$:

- f^(t) nazivamo propusnicom (vratima) zaboravljanja
- \cdot $i^{(t)}$ nazivamo propusnicom (vratima) ulaza

Izbacujemo matrično množenje iz povratne jednadžbe stanja ćelije:

$$c^{(t)} = c^{(t-1)} + \hat{c}^{(t)}$$

$$\frac{\partial c^{(t)}}{\partial c^{(t-1)}} = \mathbb{I}$$

[hochreiter96nips] LSTM can solve hard long time lag problems

LSTM: jednadžbe

$$c^{(t)} = c^{(t-1)} + \hat{c}^{(t)}$$

LSTM ćelija zaboravlja dio informacije iz prethodnog stanja:

$$f^{(t)} = \sigma (W_{fhh} h^{(t-1)} + W_{fxh} x^{(t)} + b_{fh}) = \sigma(a_f^{(t)})$$

· svaka vrata imaju svoj vlastiti skup parametara W_{hh}, W_{xh}, b_h .

LSTM ćelija propušta samo podskup ulaza:

$$i^{(t)} = \sigma(W_{ihh}h^{(t-1)} + W_{ixh}x^{(t)} + b_{ih}) = \sigma(a_i^{(t)})$$

· povratni put stanja ćelije upotpunjavamo vratima f i i:

$$c^{(t)} = f^{(t)} \odot c^{(t-1)} + i^{(t)} \odot \hat{c}^{(t)}$$

LSTM: intuicija

$$c^{(t)} = f^{(t)} \odot c^{(t-1)} + i^{(t)} \odot \hat{c}^{(t)}$$

Hadamardov produkt (⊙): tenzorsko množenje po elementima

$$a \odot b = \left(\begin{array}{c} a_0 b_0 \\ \dots \\ a_i b_i \end{array}\right)$$

Svrha vrata: filtriranje informacije ($\sigma : \mathbb{R} \to (0,1)$).

Sigmoidna funkcija može se probabilistički interpretirati kao **dio** informacije koji želimo zadržati.

Ograničavanje $f^{(t)}$ i $i^{(t)}$ na jedinični interval (0,1) eliminira eksplodirajuće gradijente

- · u teoriji, kodomena sigmoide je otvorena ($\sigma(x) < 1 \quad \forall x$)
- · u praksi imamo podljev izraza exp(-x) zbog konačne preciznosti

LSTM: detalji

$$c^{(t)} = f^{(t)} \odot c^{(t-1)} + i^{(t)} \odot \hat{c}^{(t)}$$

Izraz za računanje doprinosa stanju ćelije ĉ:

$$\hat{c}^{(t)} = tanh(W_{chh}h^{(t-1)} + W_{cxh}x^{(t)} + b_{ch}) = tanh(a_c^{(t)})$$

· određujemo ga kao afinu transformaciju **skrivenog stanja** i ulaza.

Naša notacija malo je **različita** nego u knjizi

- u knjizi: $s^{(t)} := c^{(t)}$; $g^{(t)} := i^{(t)}$; $q^{(t)} := o^{(t)}$
- \cdot umjesto estetske supstitucije $\hat{c}^{(t)}$, knjiga ima razmotani izraz:

$$s^{(t)} = f^{(t)}s^{(t-1)} + g^{(t)}\left(tanh(Wh^{(t-1)} + Ux^{(t)} + b_s)\right)$$

LSTM: skriveno stanje

$$c^{(t)} = f^{(t)} \odot c^{(t-1)} + i^{(t)} \odot \hat{c}^{(t)}$$

Skriveno stanje računamo kao funkciju stanja ćelije:

$$h^{(t)} = o^{(t)} \odot tanh(c^{(t)})$$

Logički vektor o^(t) nazivamo izlaznim vratima:

$$o^{(t)} = \sigma(W_{ohh}h^{(t-1)} + W_{oxh}X^{(t)} + b_{oh}) = \sigma(a_o^{(t)})$$

Sažetak:

- Razdvojili smo stanje ćelije ("memoriju") $c^{(t)}$ od skrivenog stanja $h^{(t)}$ iz kojeg se računa izlaz
- · arhitektura ne dopušta lako mijenjanje stanja ćelije
- imamo 4× više parametara

LSTM: vizualizacija

Prikazujemo nekoliko slika s [bloga] Cristophera Olaha

Pitanje: koji je redoslijed vrata na skici?

LSTM: vizualizacija stanja ćelije

Stanje ćelije mijenjamo množenjem po elementima i zbrajanjem - informacijski tok je jednostavan

 Stanje ćelije je teško izmijeniti: svaku promjenu moraju podržati dvoja vrata.

LSTM: vizualizacija vrata zaboravljanja

$$c^{(t)} = f^{(t)} \odot c^{(t-1)} + i^{(t)} \odot \hat{c}^{(t)}$$

$$f^{(t)} = \sigma(W_{fhh}h^{(t-1)} + W_{fxh}X^{(t)} + b_{fh})$$

LSTM: vizualizacija ulaznih vrata

$$c^{(t)} = f^{(t)} \odot c^{(t-1)} + i^{(t)} \odot \hat{c}^{(t)}$$

$$i^{(t)} = \sigma(W_{ihh}h^{(t-1)} + W_{ixh}X^{(t)} + b_{ih})$$
$$\hat{c}^{(t)} = tanh(W_{chh}h^{(t-1)} + W_{cxh}X^{(t)} + b_{ch})$$

LSTM: vizualizacija ulaznih vrata (2)

$$\hat{c}^{(t)} = tanh(W_{chh}h^{(t-1)} + W_{cxh}x^{(t)} + b_{ch})$$

Prema literaturi, doprinos stanju $\hat{c}^{(t)}$ može biti aktiviran sigmoidom ili hiperbolnim tangensom

PyTorch i Tensorflow koriste tanh

LSTM: vizualizacija ažuriranja stanja

LSTM: vizualizacija izlaznih vrata

LSTM: sažetak

Obične povratne modele nije lako naučiti

- \cdot često susrećemo eksplodirajuće i nestajuće gradijente zbog uzastopnog množenja s W_{hh}
- · skriveno stanje mora pamtiti informacije i voziti izlaz
- · zbog toga se ovi modeli loše ponašaju na dugim slijedovima.

Zbog toga smo uveli ćeliju s dugoročnim pamćenjem (LSTM)

$$c^{(t)} = f^{(t)} \odot c^{(t-1)} + i^{(t)} \odot \hat{c}^{(t)}$$
$$h^{(t)} = o^{(t)} \odot tanh(c^{(t)})$$

- izostavili smo matrično množenje iz unaprijednog i povratnog puta
- · uveli smo troja vrata za filtriranje informacija
- · raspregnuta **odgovornost** olakšava pritisak na stanje ćelije.

LSTM: backprop

$$c^{(t)} = f^{(t)} \odot c^{(t-1)} + i \odot \hat{c}^t$$

Razmatramo gradijent za povratnu vezu:

$$\frac{\partial c^{(t)}}{\partial c^{(t-1)}} = f^{(t)} = \sigma(a_f^{(t)}) \in (0,1)$$

Pravilo ulančavanja daje:

$$\frac{\partial c^{(T)}}{\partial c^{(t_0)}} = \prod_{t=t_0}^T f^{(t)} \le 1$$

Čini se da ova jednadžba ne dozvoljava eksplodirajuće gradijente!

- · Je li uistinu tako?
- · LSTM ćelija ima *dvojno* skriveno stanje ($c^{(t)}$, $h^{(t)}$)

LSTM: backprop (2)

$$h^{(t)} = o^{(t)} \odot tanh(c^{(t)})$$

Pogledajmo izlazna vrata:

$$o^{(t)} = \sigma(a_o^{(t)}) = \sigma(W_{ohh}h^{(t-1)} + W_{oxh}X^{(t)} + b_{oh})$$

Primjećujemo sličan oblik kao u običnoj povratnoj ćeliji:

$$\frac{h^{(t)}}{\partial h^{(t)}} = \sigma(W_{ohh} h^{(t-1)} + W_{oxh} x^{(t)} + b_{oh}) \odot \tanh(c^{(t)})$$

$$\frac{\partial h^{(t)}}{\partial h^{(t-1)}} = \frac{\partial h^{(t)}}{\partial a_o^{(t)}} \frac{\partial a_o^{(t)}}{\partial h^{(t-1)}} = \frac{\partial h^{(t)}}{\partial a_o^{(t)}} W_{ohh} = \dots$$

Zbog toga, eksplodirajući gradijent je **ipak moguć** pri unatražnom prolazu kroz $h^{(t)}$

· međutim, to se rijetko događa u praksi

LSTM varijante: ćelija sa špijunkom

Uključiti stanje ćelije $c^{(t-1)}$ u jednadžbu za računanje vrata:

$$f^{(t)} = \sigma(\underbrace{W_{fch}c^{(t-1)} + W_{fhh}h^{(t-1)} + W_{fxh}x^{(t)} + b_{fh}}_{a_f^*(t)})$$

Ova ideja može se primijeniti na sva vrata.

- Prednost: dodatna informacija može pomoći [gers00ijcnn]
- · Nedostatak: veći broj parametara
- Nedostatak: još jedan put kroz koji može dovesti do eksplodirajućeg gradijenta.

LSTM varijante: spojena vrata (eng. fused gates)

$$c^{(t)} = f^{(t)} \odot c^{(t-1)} + i^{(t)} \odot \hat{c}^{(t)}$$

Ideja: ako smo neku informaciju zaboravili, trebamo je zamijeniti

$$c^{(t)} = f^{(t)} \odot c^{(t-1)} + (1 - f^{(t)}) \odot \hat{c}^{(t)}$$

- · Prednost: 25% manje parametara
- Nedostatak: radi lošije od standardnog LSTM-a (više parametara pomaže)
- Nedostatak: smanjuje izražajnost modela (nemogućnost akumulacije)

LSTM varijante: propusna povratna ćelija

Propusna ćelija (eng. gated recurrent unit): pojednostavnjeni LSTM

- · izvrsno radi iako ne izdvaja stanje ćelije iz latentnog stanja
- · ovo sugerira da su naše intucije u vezi LSTM-ova nepotpune.

LSTM varijante: propusna povratna ćelija (2)

GRU ćelije imaju dvoja vrata: $r^{(t)}$ and $u^{(t)}$:

· u^(t) nazivamo vratima *ažuriranja* (eng. update gate)

$$u^{(t)} = \sigma \left(W_{uhh} h^{(t-1)} + W_{uxh} X^{(t)} + b_{uh} \right)$$
 (4)

· r^(t) nazivamo vratima resetiranja (eng. reset gate)

$$r^{(t)} = \sigma \left(W_{rhh} h^{(t-1)} + W_{rxh} X^{(t)} + b_{rh} \right)$$
 (5)

Važan međurezultat: privremeno stanje $\hat{h}^{(t)}$

$$\hat{h}^{(t)} = \sigma \left(W_{hh} \left(r^{(t)} \odot h^{(t-1)} \right) + W_{xh} X^{(t)} + b_h \right)$$
 (6)

Povratno stanje $h^{(t)}$ ponovo ima višestruke odgovornosti:

$$h^{(t)} = u^{(t)}h^{(t-1)} + (1 - u^{(t)})\hat{h}^{(t)}$$
(7)

LSTM varijante: sažetak

Eksplodirajući i nestajući gradijenti mogu se pojaviti i u LSTM-ovima

· međutim, oni se javljaju znatno rjeđe u praksi

Uspjeh LSTM-ova doveo je do razvoja više varijanti.

1. LSTM sa špijunkom:

- stanje ćelije koristi se u jednadžbi ažuriranja
- ima smisla jer LSTM-ovi ionako ne uspijevaju u potpunosti izbjeći numeričke probleme s gradijentom

2. LSTM sa spojenim vratima

 spajanje vrata zaboravljanja s vratima ulaza dovodi do veće učinkovitosti i manjeg broja parametara

3. Propusna povratna ćelija (GRU)

- · spojena vrata i izmjenjena semantika stanja
- slična generalizacijska moć kao i LSTM-ovi unatoč spregnutom stanju

Analiza: slijed-u-slijed

Strojno prevođenje

Želimo naučiti generirati prijevod danog ulaznog slijeda:

- · model cilja izlazne slijedove **unknown length**.
- prediktiramo kategoričku distribuciju preko izlaznog rječnika u svakom izlaznom elementu.

Skupovi podataka: WMT, IWSLT (povremeno se ažuriraju):

- https://www.statmt.org/wmt15/translation-task.html
- https://sites.google.com/site/iwsltevaluation2015/mt-track

Primjer ulaza i izlaza za jedan primjer WMT-14 en-de skupa:

Parliament Does Not Support Amendment Freeing Tymoshenko Keine befreiende Novelle für Tymoshenko durch das Parlament

Strojno prevođenje: pretpostavke

Ciljne varijable:

- slijed riječi ciljanog jezika: {keine, befreiende, Novelle, . . .}
- · ciljne varijable pretvaramo u indekse: $\{0, \dots, V_{out}\}$
- · biramo veličinu ciljnog vokabulara.

Ulazne varijable:

- · biramo veličinu ulaznog vokabulara
- ulazne riječi pretvaramo u indekse koji odgovaraju indeksima u matrici ugrađivanja

Ovaj pristup je sličan gustoj predikciji (npr. predikciji vrste riječi), ali:

- 1. možemo započeti predikciju tek nakon što smo vidjeli cijeli ulaz
- 2. ne znamo broj izlaznih simbola
- 3. nije jasno o kojim ulazima ovisi tekući izlaz

Strojno prevođenje: naivno rješenje koje ne funkcionira

Slijed u slijed: pretpostavke

Započinjemo formalizacijom problema slijed-u-slijed (gore).

Nakon toga, prikazat ćemo neka konkretna rješenja.

Slijed u slijed: formalizacija

Predviđamo rješenje s dva modula:

- 1. **koder** ("čitač"): čita ulazni slijed i gradi skrivenu reprezentaciju izrečenog
- 2. **dekoder** ("pisač") generira prijevod na temelju skrivene reprezentacije

Slijed u slijed: formalizacija (2)

Posljednje stanje kodera određuje prvo stanje dekodera:

$$h_{dec}^{(0)} = f(h_{enc}^{(T)})$$

- · u praksi često imamo: $h_{dec}^{(0)} = h_{enc}^{(T)}$
- · f može biti bilo kakva parametrizirana glatka funkcija
- · pitanje: kada bi to bilo potrebno?

Koder ne prima gubitak izravno

· gradijenti prvo moraju proći kroz cijeli **dekoder**

Problem: što ulazi u povratne ćelije dekodera?

Slijed u slijed: ulazi dekodera

Povratne ćelije dekodera primaju izlaze iz prethodnog koraka obrade.

Slijed u slijed: generiranje izlaza

Ulaz dekodera u trenutcima t>0 sadrži najizgledniji izlaz iz prethodnog koraka:

- što se zbiva u koraku t = 0?
- na ulaz dekodera u t = 0 dovodimo poseban simbol koji označava početak slijeda (<sos>)

Kako znamo da je izlaz upotpunjen?

- model označava kraj prijevoda predkcijom posebnog simbola koji označava kraj slijeda (<eos>)
- · simbol <eos> dodajemo na kraj svakog ciljnog niza
- generiranje prijevoda zaustavljamo kada dobijemo simbol
 <eos> ili kada duljina slijeda premaši maksimalnu duljinu

Slijed u slijed: generiranje izlaza (2)

Prevođenje slijeda nije lako naučiti, a posebno u ranim fazama optimizacije.

Zato često koristimo **forsiranje učitelja** (engl. teacher forcing) gdje ulaze dekodera postavljamo stohastički na:

- točne simbole prethodnog koraka u p primjeraka za učenje
- · **predikcije** prethodnog koraka u 1 p primjera za učenje
- $p \in [0,1]$ je hiper-parametar koji započinje s p=1 i može se smanjiti kad učenje uznapreduje.

Slijed u slijed: zaključivanje

Pristupi za generiranje izlaza:

- 1. odabrati najvjerojatniju riječ u svakom koraku:
 - · pohlepni pristup, može biti suboptimalan
 - moguće je da najbolji prijevod ne sadrži najvjerojatniju riječ u svakom koraku
 - · nije dobro za uzorkovanje jer proizvodi determinističke sljedove
- 2. uzorkovanje s vjerojatnosnim težinama (roulette wheel selection):
 - uvodi slučajnost u postupak prevođenja i ohrabruje raznolikost izlaza
 - nije jasno je li nam prihvatljivo da model može izabrati lošu riječ s vjerojatnošću koja je **veća od nule** .
- 3. fokusirano uzorkovanje pretraživanjem zrakom:
 - · razmatramo k najboljih prijevoda u svakom koraku
 - · hiperparametar k označava širinu zrake

Slijed u slijed: pretraživanje zrakom

Slijed u slijed: pretraživanje zrakom (2)

Slijed u slijed: pretraživanje zrakom (3)

Slijed u slijed: pretraživanje zrakom (4)

Slijed u slijed: sažetak

Složenost prevođenja proizlazi iz varijabilne duljine ciljnog slijeda:

• umjesto "jednostavne" klasifikacije iz konteksta, model mora naučiti prediktirati cijele slijedove.

Ovom problemu pristupamo dekompozicijom na i) čitanje ulaznog slijeda i ii) generiranje izlaznog slijeda:

- · koder i dekoder imaju odvojene parametre
- ti parametri združeno se uče s kraja na kraj
- isti pristup prikladan i za multimodalno prevođenje: jezik -> slika, slika -> jezik

Slijed u slijed: sažetak (2)

Rana faza učenja je posebno problematična:

 može se olakšati forsiranjem učitelja ("učenjem prema šalabahteru") u nekom udjelu ulaznih primjera

Generiranje prijevoda je teško:

 želimo maksimizirati vjerojatnost slijeda umjesto vjerojatnost pojedinačnih dijelova

Primjer:

- \cdot Il est difficile à dire \rightarrow He is difficult to say (greedy)
- Il est difficile à dire \rightarrow It's hard to say. (optimal)

Tom problemu možemo pristupiti pretraživanjem zrakom

• u svakom koraku generiranja prijevoda pratimo *k* najvjerojatnijih slijedova.

Slijed u slijed: sažetak (3)

Slabost: višejezično prevođenje zahtijeva kvadratno mnogo modela

· potrebno naučiti po jedan model za svaki par jezika

Ovom problemu možemo pristupiti prikladnim zagrijavanjem generativnog modela:

• "I wish to translate from English to Croatian. If the English sentence is 'Learning is great', then the translation is ...".

Pažnja (ili pozornost)

Pažnja

Uspješnost strojnog prevođenja za rečenice različite duljine:

· RNNsearch modeli [bahdanau14iclr] koriste pažnju.

Čak i najbolje povratne ćelije znatno lošije prevode duge rečenice:

· to sugerira da povratni modeli imaju slabo pamćenje.

Pažnja: ideja

Motivacija (https://distill.pub/2016/augmented-rnns/):

• "When I'm translating a sentence, I pay special attention to the word I'm presently translating. When I'm transcribing an audio recording, I listen carefully to the segment I'm actively writing down. And if you ask me to describe the room I'm sitting in, I'll glance around at the objects I'm describing as I do so."

Naše skrivene reprezentacije **nisu** savršene (ograničena veličina).

Ako ćelija ne može zapamtiti sve, može li barem zaključiti gdje se tražena informacija može naći?

- · označimo tekuću reprezentaciju dekodera kao **upit**
- · označimo reprezentacije kodera kao ključeve (memoriju)
- · pronađimo sličnost između upita i ključeva
- aggregirajmo prethodne reprezentacije otežanim sažimanjem gdje težine odgovaraju sličnosti.

Pažnja: osnovna formulacija

Funkcija attn vraća skalarnu sličnost između dva vektora:

$$a^{(t_{\text{dec}},t_{\text{enc}})} = \text{attn}(q^{(t_{\text{dec}})},k^{(t_{\text{enc}})}), \qquad a \in \mathbb{R}, q \in \mathbb{R}^{d_q}, k \in \mathbb{R}^{d_k}.$$

· pri tome su
$$q^{(t_{dec})} = h_{dec}^{(t_{dec})}$$
 i $k^{(t_{enc})} = h_{enc}^{(t_{enc})}$ skrivena stanja modela

Treba nam sličnost između upita i svih ključeva:

$$a = \operatorname{attn}(q, K), \qquad a \in \mathbb{R}^{T}, K = [k^{(1)}, \dots, k^{(T)}].$$

Mjeru sličnosti normaliziramo na vjerojatnosnu distribuciju:

$$\alpha = \operatorname{softmax}(a)$$
.

Izlaz pažnje je linearna kombinacija skrivenih stanja kodera:

$$out_{\mathsf{attn}} = \sum^{\mathsf{T}} \alpha_t k^{(t)}$$
 .

Pažnja: osnovna formulacija (2)

Izlaz pažnje je linearna kombinacija skrivenih stanja kodera:

 rezultat konkateniramo sa stanjem dekodera neposredno prije generiranja izlaza (pažnja se ne koristi u povratnim ćelijama)

$$h_{dec}^{*(t)} = [h_{dec}^{(t)}; out_{attn}].$$

Kako formulirati funkciju sličnosti attn?

1. Diferencijabilni modul, npr. Bahdanauova funkcija s parametrima W_1 (matrica) i w_2 (vektor):

$$a^{(t)} = w_2^{\top} \cdot \tanh(W_1 \cdot [q^{(t)}; k^{(t)}])$$
.

2. Skalarni produkt (uvjet: dim(q) = dim(k)):

$$a^{(t)} = \frac{q^{(t)\top} \cdot k^{(t)}}{\sqrt{\dim(k)}}.$$

- · skaliranje s k čuva varijancu pod pretp. $q_i, k_i \sim \mathcal{N}(0, 1), q \perp k$
- pomoć: $var(q_i \cdot k_i) = 1$, $var(aX) = a^2 var(X)$

Pažnja: vizualizacija

Pažnja: vizualizacija (2)

Pažnja: vizualizacija sličnosti

Sličnost između skrivenih stanja kodera i dekodera za slučaj prijevoda iz francuskog u engleski jezik.

Pažnja: proširena formulacija

Uvodimo razliku između ključeva i vrijednosti:

$$k^{(t)} = f_k(h_{enc}^{(t)}), \qquad v^{(t)} = f_v(h_{enc}^{(t)}).$$

Funkcije f_k i f_v transformiraju skrivena stanja u **ključeve** i **vrijednosti**.

U praksi, f_k i f_v su projekcije:

$$k^{(t)} = W_k h_{enc}^{(t)}, \qquad v^{(t)} = W_v h_{enc}^{(t)} \; . \label{eq:kt}$$

Proširena pažnja:

$$\alpha = \operatorname{softmax}(\operatorname{attn}(q, K)),$$

$$out_{attn} = \sum_{t}^{T} \alpha_{t} v^{(t)}$$
.

Ova formulacija može biti korisna i izvan prevođenja iz slijeda u slijed

Pažnja: sažetak

Naši najbolji povratni modeli i dalje se muče s dugim rečenicama

Stoga uvodimo **pažnju** za modeliranje dalekih međuovisnosti

- izlaz pažnje je težinski zbroj skrivenih stanja (ili njihovih projekcija)
- · težine modeliraju **sličnost** ključeva i upita
 - značaj informacije ovisi o trenutnoj potrebi

U povratnim modelima za prevođenje sljedova, **upit** je trenutno skriveno stanje dekodera, a ključevi su skrivena stanja **kodera**

 proširene varijante mogu se primijeniti na klasifikaciju sljedova i gusto predviđanje

Pažnja: sažetak (2)

Načini definiranja sličnosti:

- Bahdanauova pažnja: diferencijabilni modul prima konkatenaciju upita i ključa
- pažnja skalarnim produktom: izravna usporedba (projiciranog) upita s (projiciranim) ključem

Pažnja se koristi u praktički svim modernim povratnim modelima.

Pažnja je kritična komponenta suvremenih pristupa dubokog učenja.

Pažnja kao samostalna operacija

Pažnja u klasifikaciji slijedova

Ako upit dolazi iz iste reprezentacije kao i ključevi, onda se pažnja attn (k_i, K) može približiti jednojediničnom vektoru e_i :

- · može se izbjeći naučenim upitima
- · izgleda da računalni vid ne pati od ovog problema

Pažnja s naučenim upitima q_{ϕ} :

$$\hat{\alpha} = \text{softmax}(attn(\frac{q_{p}hi}{t}, K)),$$

$$out_{attn} = \sum_{t}^{T} \hat{\alpha}_{t} v^{(t)}.$$

Intuitivno, naučeni upiti odgovaraju apstraktnim konceptima kao što su formalni tekst, slang, nogomet, bliski istok, itd.

Pažnja u klasifikaciji slijeda: vizualizacija

Pažnja je ... sve što trebamo?

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡ illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions

Pažnja u računalnom vidu (klasifikacija videa)

Neki algoritmi računalnog vida modeliraju **daleke** međuovisnosti proširenom pažnjom bez naučenih upita

[wang18cvpr]

Ulaz: apstraktna reprezentacija X

- · tenzor 4. reda T×H×W×1024
- · gledamo ga kao THW×1024.
- · H visina, W širina, vrijeme

Izlaz: reprezentacija Z s poboljšanim dalekim vezama

Ulaz X projiciramo na upite (θ) , ključeve (ϕ) i vrijednosti (g).

Svaka značajka $x_i \in R^{1024}$ istovremeno je i upit i ključ.

Matrica sličnosti A (THW × THW) uspoređuje upite s ključevima.

Pažnja u računalnom vidu (detalji)

Matricu A dobivamo matričnim množenjem:

- · lako je umetnuti i drukčije formulacije sličnosti.
- tu bi dobro došlo i normaliziranje varijance ($\sqrt{1024}$)

$$A = (W_{\theta}X^{\top})^{\top} \cdot (W_{\phi}X^{\top}),$$

= $(XW_{\theta}^{\top}) \cdot (W_{\phi}X^{\top}).$

Matricu težina α dobivamo aktiviranjem redaka softmaksom.

· α_{ij} odražavan sličnost upita $W_{\theta}x_i$ i vrijednosti $W_{g}x_j$

$$\alpha = softmax(A, axis = 1)$$
.

- ' Izlazi $Z = \{z_i\}$ su linearne kombinacije vrijednosti $V = g(x_i)$:
 - · naravno, težine odgovaraju elementima matrice lpha

$$z_i = \sum_i \alpha_{ij} \cdot g(x_j) .$$

Pažnja za prevođenje slijedova

Detalji

Scaled Dot-Product Attention MatMul SoftMax Mask (opt.) Scale MatMul

Jednadžbe

$$\begin{aligned} \operatorname{Attention}(Q,K,V) &= \operatorname{softmax}\left(\frac{QK^{\top}}{\sqrt{d_k}}\right)V \\ \operatorname{MultiHead}(Q,K,V) &= \operatorname{Concat}(\operatorname{head}_1,\ldots,\operatorname{head}_h)W^O \\ \operatorname{gdje} & \operatorname{head}_i &= \operatorname{Attention}(QW_i^Q,\ KW_i^K,\ VW_i^V) \end{aligned} \\ \operatorname{MaskedAttention}(Q,K,V) &= \operatorname{softmax}\left(M + \frac{QK^{\top}}{\sqrt{d_k}}\right)V \\ \operatorname{PE}_{\operatorname{pos},2i} &= \sin\left(\frac{\operatorname{pos}}{10000^{2i/d_{\operatorname{model}}}}\right), \\ \operatorname{PE}_{\operatorname{pos},2i+1} &= \cos\left(\frac{\operatorname{pos}}{10000^{2i/d_{\operatorname{model}}}}\right) \end{aligned}$$
(8)

Gledanje pažnjom

Prednosti i nedostatci

Transformeri uče brže od povratnih modela

- · nema potrebe za propagiranjem stanja
- proslijeđivanje izlaza na ulaz tijekom učenja izbjegava teacher forcing

Nedostatci Vaswanijeve arhitekture:

- · prikladna samo za zadatke prevođenja
- višejezično prevođenje traži kvadratno mnogo modela
- · zahtijeva označene podatke (prijevode)

Generativno modeliranje teksta

Ideja: autoregresijsko pogađanje sljedećeg simbola

$$L(U) = \sum_{i} \log P(u_i|u_{i-k}, \dots, u_{i-1}|\Theta)$$

Arhitektura: Vaswanijev dekoder [radford18openai]!

$$h_0 = U \cdot W_e + W_p$$

$$h_l = \text{transformer_block}(h_{l-1}) \forall l \in [1, L]$$

$$P(u) = \text{softmax}(h_n \cdot W_e^{\top})$$
(9)

Pitanja?

Knjiga

· relevantna poglavlja: 10.1, 10.2, 10.3, 10.4, 10.5, 10.7, 10.10, 10.11