Advanced Theory Of Communications

University of Tehran

Instructor: Dr. Ali Olfat Spring 2024

Homework 1 Due: 1402/12/14

Problem 1

Prove the following properties of the Hilbert transform:

1. If
$$x(t) = x(-t)$$
 then $\hat{x}(t) = -\hat{x}(-t)$

2. If
$$x(t) = -x(-t)$$
 then $\hat{x}(t) = \hat{x}(-t)$

3. If
$$x(t) = \cos \omega_0 t$$
 then $\hat{x}(t) = \sin \omega_0 t$

4. If
$$x(t) = \sin \omega_0 t$$
 then $\hat{x}(t) = -\cos \omega_0 t$

5.
$$\hat{x}(t) = -x(t)$$

6.
$$\int_{-\infty}^{\infty} x^2(t) dt = \int_{-\infty}^{\infty} \hat{x}^2(t) dt$$

7.
$$\int_{-\infty}^{\infty} x(t)\hat{x}(t) dt = 0$$

Problem 2

Let x(t) and y(t) denote two bandpass signals, and let $x_l(t)$ and $y_l(t)$ denote their lowpass equivalents with respect to center frequency f_0 . We know that in general $x_l(t)$ and $y_l(t)$ are complex signals.

a. Show that

$$\int_{-\infty}^{\infty} x(t)y(t)dt = \frac{1}{2}Re\left[\int_{-\infty}^{\infty} x_l(t)y_l^{\star}(t)dt\right]$$

b. Using the result of part (a) prove $\varepsilon_x = \frac{1}{2}\varepsilon_{x_l}$, i.e., the energy in a bandpass signal is one-half the energy in its lowpass equivalent.

Problem 3

Consider the four waveforms shown in Figure 1.

- 1. Determine the dimensionality of the waveforms and a set of basis functions.
- 2. Use the basis functions to represent the four waveforms by vectors $\mathbf{s}_1, \mathbf{s}_2, \mathbf{s}_3$ and \mathbf{s}_4 .
- 3. Determine the minimum distance between any pair of vectors.

Figure 1:

Problem 4

Suppose s(t) is real band-pass signal and let $s_l(t)$ denote its lowpass equivalent with respect to f_0 , i.e.,

$$s(t) = Re\{s_l(t)e^{j2\pi f_0 t}\}$$

We show Hilbert Transform of s(t) with $\hat{s}(t)$. Express $\hat{s}(t)$ in terms of $s_l(t)$ in a simple form.

Problem 5

x(t) is a bandpass signal with bandwidth W and Fourier Transform X(f). Let $x_i(t)$ and $x_q(t)$ denote the inphase and quadrature components of x(t) with respect to central frequency f_0 . Determine the Fourier Transform of $x_i(t)$ and $x_q(t)$ and show that they are both lowpass signals.

Problem 6

Determine a set of orthonormal functions for the four signals shown in Figure 2 and then derive signal space representation of them.

Figure 2:

Problem 7

Suppose m(t) is a bandpass signal with bandwidth of W. We define $s_i(t)$; i = 1, 2, 3, 4 as,

$$s_i(t) = m(t)\cos\left(2\pi f_0 t + \frac{(i-1)\pi}{4}\right)$$

where $f_0 \gg W$.

- 1. Determine a set of orthonormal bases function for the set of signals $s_i(t)$; i = 1, 2, 3, 4. What is the dimensionality of these signals?
- 2. Derive $s_{l,i}(t)$ the lowpass equivalent of $s_i(t)$; i = 1, 2, 3, 4. Determine a set of orthonormal lowpass signals for representation of $s_{l,i}(t)$; i = 1, 2, 3, 4. What is the dimensionality of the lowpass signals?