Relatório de Inteligência Artificial Trabalho 2 - Question Answering

Flavio Cruz, Hugo Carneiro, Mariana Werneck, Thiago Ururay

¹Instituto de Computação – Universidade Federal Fluminense (UFF)

{flaviocruz, hugocarneiro, marianawerneck, taraujo}@id.uff.br

Resumo. O objetivo desse relatório é fazer a implementação, análise e comparação entre dois algoritmos de questionario, utilizando como base de conhecimento dos algoritmos o artigo da Wikipedia sobre a biografia de Henrique VIII, um famoso monarqua inglês. Os algoritmos a serem comparados são foward chaining utilizando um grafo de conhecimento e uma máquina de inferência em Prolog.

1. Introdução

Iniciamos o nosso trabalho com a escolha do texto, a biografia de Henrique VIII, retirado do artigo sobre o mesmo na Wikipedia. A escolha foi feita baseada na complexidade das relações políticas daquela época, especialmente com relação a um dos personagens mais icônicos da monarquia inglesa. Sendo responsável pelo rompimento com a igreja católica e criação da igreja anglicana, uma série de casamentos em busca de um herdeiro homem e incontáveis traições, a vida de Henrique VIII é marcada por intrigas políticas dentro e fora da corte inglesa.

Com a decisão do tema do trabalho, nos propomos a construir um grafo baseado no texto selecionado descrevendo as relações entre os vários personagens da corte inglesa e Henrique VIII. Para análise do artigo nos baseamos na utilização da base de conhecimento DBpedia em conjunto com a ferramenta LODmilla para visualização dos grafos, que serão explicados em mais detalhes na próxima sessão.

2. Metodologia

Antes de falar sobre a metodologia propriamente dita, vamos discorrer um pouco sobre as ferramentas utilizadas. Para a obtenção da nossa base de conhecimento, utilizamos a BDpedia, um projeto iniciado na Universidade de Leipzig para extração de conteúdo de páginas da Wikipédia. Enquanto a maioria do conteúdo disponível uma página comum da Wikipedia seja considerado informação pública, DBpedia também trata estruturas pertencentes à página, tais como índices, links, tabelas, imagens, etc[Auer et al. 2007]. Logicamente, a facilidade de interação com a plataforma foi o motivo principal para a utilização da DBpedia.

Entre os aplicativos que são disponibilizados para os usuários da ferramenta encontra-se o LODmilla, um serviço de visualização de grafos LOD (Link Open Data) desenvolvido pela MTA SZTAKI (Hungarian Academy of Sciences Institute for Computer Science and Control) para ser utilizado em conjunto com a DBpedia[Micsik et al. 2013].

Figure 1. LODmilla utilizado em conjunto com DBpedia

Sendo a LODmilla criada para gerar grafos através da informação recebida pela DBpedia e a DBpedia feita para extrair dados diretamente da Wikipedia, não tivemos nenhum problema em utilizar diretamente as informações retiradas do artigo sobre Henrique VIII.

A partir do artigo da Wikipedia, LODmilla cria um grafo baseado nas relações existentes entre os objetos descritos no artigo. As arestas desses grafos descrevem a natureza da relação entre dois vértices quaisquer, de forma a gerar a representação sujeito-predicado que será explorada para o desenvolvimento do algoritmo. Baseados na estrutura supracitada nos dividimos entre a implementação de dois métodos de questionário, que serão avaliados mais tarde: a utilização do algoritmo de Forward Chaining em conjunto com o grafo de conhecimento e, utilizando o paradigma da programação lógica, implementar uma máquina de inferência em Prolog utilizando como fatos as relações sujeito-predicado descritas no grafo.

2.1. Prolog

Prolog é a mais famosa das linguagens de programação que utilizam o paradigma de programação lógica[Clocksin and Mellish 2012]. Ao contrário das linguagens procedurais, que são baseadas em comandos sequenciais, programação lógica se baseia em fatos lógicos e regras de inferência. Com relação ao nosso trabalho, esses fatos são baseados nas relações do grafo de conhecimento utilizado.

```
File Edt Browse Compile Prolog Pce Help

herriques witi, eduardo_i).

pai(henrique_viii, eduardo_i).

mae(sabel blount, henrique_fitzRoy).

mae(ana_bolena, isabel_i).

mae(catarina_de_araqo,maria_i).

mae(colarina_de_araqo,maria_i).

mae(colarina_de_araqo,marique_viii).

homen (eduardo_i).

homen (eduardo_i).

homen (henrique_viii).

mulher(isabel_i).

mulher(isabel_i).

relacionamento_amoroso(henrique_viii, sabel_blount).

relacionamento_amoroso(henrique_viii, yan_bolena).

relacionamento_amoroso(henrique_viii, yan_bolena).

relacionamento_amoroso(henrique_viii, yan_bolena).

relacionamento_amoroso(henrique_viii, joan_a swymour).

relaci
```

Figure 2. Implementação do algoritmo em prolog

As regras de inferência são utilizadas para que a máquina possa tirar conclusões lógicas a partir dos fatos, no caso do trabalho isso significa fornecer o contexto do texto no

qual os fatos foram baseados. A única outra ferramenta que o Prolog fornece é a consulta, que utilizaremos para fazer os questionamentos do trabalho.

2.2. Foward Chaining

Foward Chaining é uma estratégia de implementação altamente utilizada em máquinas de inferência. O oposto do Backward Chaining, a idéia do algoritmo pode ser interpretada como uma série de iterações utilizando a regra de *Modus Ponens*, isto é, se utilizar de atribuições já dadas como verdadeiras no sistema para inferir verdades mais complexas[Salvat 1998].

Figure 3. Descrição visual do Forward Chaining

Nós escolhemos fazer a implementação do Forward Chaining em Python3, e conforme as regras do trabalho nos utilizamos somente dos fatos lógicos dados pelo grafo. Infelizmente, devido a um erro do LODmilla o grafo precisou se implementado à mão, e utilizamos a estrutura de dicionário como uma substitutição para uma lista de adjacência para determiná-lo. Para que as relações ficassem mais claras, cada nó chave possui uma lista de valores que indicam o significado de cada aresta no grafo original, com sua própria lista de nós que completam a relação.

Figure 4. Grafo representado como uma lista de adjacência

3. Resultados

Tendo montado o grafo de conhecimento, cada membro do grupo escolheu uma pergunta para ser feita para os programas:

- Quem herdou o trono de Henrique VIII?
- Quem foi filho bastardo de Henrique VIII?
- Quem foi amante de Henrique VIII?

• Quem foi avô de Henrique VII?

Para poder responder essas perguntas em Prolog, o grupo implementou regras de inferência para que a máquina pudesse obter contexto sobre as perguntas. Dessa forma, por exemplo, foi possível determinar que um herdeiro ao trono teria de ser um filho legítimo e homem. Após essa fase, o programa não teve dificuldade em responder as perguntas.

Em Python, nos utilizamos da estrutura de dicionário para apurar as cláusulas necessárias para o algoritmo poder realizar as inferências lógicas. Além disso, como o Python não é projetado para consultas como Prolog, precisamos tratar as entradas de forma a evitar erros ou confusões que seriam possíveis em linguagem natural. De fato, as perguntas foram implementadas dentro do programa para evitar confusão entre os membros do grupo.

4. Conclusão

Prolog se revelou uma linguagem bem adaptada para a consulta de questões lógicas, possuindo uma máquina de inferência excepcionalmente robusta, além de não exigir tratamentos de entrada como Python. Mesmo com o Forward Chaining, a implementação em Prolog se revelou o melhor algortimo.

References

- Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., and Ives, Z. (2007). Dbpedia: A nucleus for a web of open data. In *The semantic web*, pages 722–735. Springer.
- Clocksin, W. F. and Mellish, C. S. (2012). *Programming in Prolog: Using the ISO standard*. Springer Science & Business Media.
- Micsik, A., Tóth, Z., and Turbucz, S. (2013). Lodmilla: Shared visualization of linked open data. In *International Conference on Theory and Practice of Digital Libraries*, pages 89–100. Springer.
- Salvat, E. (1998). Theorem proving using graph operations in the conceptual graph formalism. In *ECAI*, pages 356–360.