信号处理原理

2018年6月23日

目录

1	记号	与定义	3
	1.1	记号	3
	1.2	定义	3
	1.3	其他	4
2	傅里	叶级数	4
	2.1	三角函数形式的傅里叶级数	4
	2.2	复数形式的傅里叶级数	5
3	CT	FT	5
	3.1	定义	5
	3.2	抽样信号	6
		3.2.1 抽样定理	6
		3.2.2 抽样应用	7
4	\mathbf{DT}	FT	8
	4.1	前置定理	8
	4.2	定义	8
	4.3	时间/频率归一化	8
5	\mathbf{DF}'	r 1	10
	5.1	定义	10
	5.2	补零和回绕	10
	5.3	和诸傅里叶变换的相关性	11

	5.4	性质	1
	5.5	例子	1
	5.6	FFT	3
6	STI	FT 13	3
	6.1	时变信号	3
	6.2	STFT	3
7	Way	velet Transform 14	4
	7.1	基本思想	4
		7.1.1 背景	4
		7.1.2 小波定义	4
		7.1.3 连续小波变换	4
		7.1.4 Haar 小波变换	4
8	系统	10	6
	8.1	基本概念 10	6
	8.2	时域描述 10	6
		8.2.1 差分方程	6
		8.2.2 流图	7
		8.2.3 冲激响应	8
	8.3	频域描述 1	9
		8.3.1 定义	9
	8.4	Z 变换	9
		8.4.1 定义	9
		8.4.2 收敛域	0
	8.5	函数空间的理解2	0
	8.6	唯一性	0
		8.6.1 性质	1
		8.6.2 逆变换求解	1
	8.7	系统函数 2	2
		8.7.1 和差分方程的关系	3
	8.8	滤波器的设计	3
		8.8.1 FIR 低通滤波器的设计	3

1	记号与定义	3
	8.8.2 FIR 其他滤波器	23
	8.8.3 IIR 滤波器的实现	24
9	好题	2 4
10	好题解析	2 5
11	其他技巧	2 5
	11.1 卷积求法	25

1 记号与定义

1.1 记号

记号	解释和性质
u(t)	单位阶跃信号
$\delta(t)$	单位冲激信号 $\delta(t) = \frac{1}{a}\delta(\frac{t}{a})$
G(t)	原点单位脉冲信号, $G(t) = \begin{cases} 1 & -\frac{1}{2} < t < \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$
Sa(t)	Sample 函数, $Sa(t) = \begin{cases} \frac{\sin t}{t} & t \neq 0\\ 1 & t = 0 \end{cases}$
$\Delta_T(t)$	周期单位冲激序列, $\Delta_T(t) = \sum_n \delta(t - nT)$
	其有特别的性质: $\int_{\mathbb{R}} f(t) \Delta_T(t) dt = \sum_n f(nT)$
$\delta(n)$	单位冲激序列 $\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$

1.2 定义

信号能量 对于连续函数, $\mathbf{ENERGY}[f(t)] = \int_{-\infty}^{+\infty} \|f(t)\|^2 \, \mathrm{d}\, t$. 对于离散函数, $\mathbf{ENERGY}[x(t)] = \sum_{n=-\infty}^{\infty} \|x(n)\|^2$.

信号功率 对于连续函数, $\mathbf{POWER}[f(t)] = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} \|f(t)\|^2 \, \mathrm{d} \, t.$ 对于离散函数, $\mathbf{POWER}[x(t)] = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} \|x(n)\|^2.$

2 傅里叶级数 4

1.3 其他

Dirichlet 积分 $\int_{-\infty}^{\infty} \operatorname{Sa}(t) dt = \pi$

Gaussian 积分 $\int_{-\infty}^{\infty} e^{-t^2} dt = \sqrt{\pi}$

冲激函数的筛选特性 $\int_{-\infty}^{\infty} f(t)\delta(t-t_0) = f(t_0)$

冲激函数的位移特性 $f(t)*\delta(t-t_0)=f(t-t_0)$, 注意冲激函数点乘得值, 卷 积得函数

卷积的性质 一般的卷积满足交换律,结合律,分配律.

不收敛的求和 $\sum_{n=-\infty}^{+\infty} e^{-jn\omega T_1} = \omega_1 \Delta_{\omega_1}(\omega)$

2 傅里叶级数

2.1 三角函数形式的傅里叶级数

性质足够良好的周期函数都可以表达为

$$f(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos n\omega t + b_n \sin n\omega t)$$

其中 T 为函数的周期, $\omega = \frac{2\pi}{T}$.

求解系数 要求 $n, m \in \mathbb{Z}^+$, 则函数基性质为

$$\int_{0}^{T} \sin nt \sin mt \, dt = \delta_{nm} \frac{T}{2}$$

$$\int_{0}^{T} \cos nt \cos mt \, dt = \delta_{nm} \frac{T}{2}$$

$$\int_{0}^{T} \sin nt \cos mt \, dt = 0$$

直接由函数基性质

$$a_0 = \frac{1}{T} \int_T f(t) dt$$

$$a_n = \frac{2}{T} \int_T f(t) \cos n\omega t dt$$

$$b_n = \frac{2}{T} \int_T f(t) \sin n\omega t dt$$

3 CTFT 5

2.2 复数形式的傅里叶级数

性质足够良好的周期函数都可以表达为

$$f(t) = \sum_{n = -\infty}^{\infty} F_n e^{jn\omega t}$$

其中 T 为函数的周期, $\omega = \frac{2\pi}{T}$.

注意这里指数没有负号,与傅里叶变换中形式不同.

求解系数 利用函数基性质

$$\int_T e^{jn\omega t} e^{j(-m)\omega t} \, \mathrm{d} \, t = T \delta_{nm}$$

有

$$F_n = \frac{1}{T} \int_T f(t) e^{-jn\omega t} \, \mathrm{d} t$$

3 CTFT

3.1 定义

注意信号的傅里叶变换不一定存在. 本课程中不考虑不存在的情况.

对于非周期信号 f(t) 的 CTFT 定义为

$$\mathbf{CTFT}[f(t)] = F(\omega) = \int_{-\infty}^{+\infty} f(t) \ e^{-j\omega t} \, \mathrm{d} t$$

可以看成 f(t) 和基函数 $e^{j\omega t}$ 的内积.1

逆变换定义为

$$\mathbf{ICTFT}[F(\omega)] = f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(t) \ e^{j\omega t} \, \mathrm{d}t$$

对于周期信号 设周期为 T_1 , 周期信号 f 的单周期截断是 f_0 , 显然 $f = f_0 * \Delta_T$, 则有

$$\mathbf{CTFT}[f(t)] = \omega_1 \Delta_{\omega_1}(\omega) \, \mathbf{CTFT}[f_0(t)], \quad \omega_1 = \frac{2\pi}{T_1}$$

¹这里内积是酉空间内积, 需满足共轭交换

3 CTFT 6

线性性 $\mathbf{CTFT}[\alpha f + \beta g] = \alpha \mathbf{CTFT}[f] + \beta \mathbf{CTFT}[g]$ 唯一性 ICTFT[CTFT[f(t)]] = f(t), 由此有 $ICTFT = \frac{1}{2\pi} \mathbf{R} \cdot \mathbf{CTFT}$, 其中 \mathbf{R} 是反转算子 $\mathbf{CTFT}[\mathbf{CTFT}[f(t)]] = 2\pi f(-t),$ 对偶性 $\mathbf{CTFT}[F(\nu)] = f(-t)$ 特别注意最后的负号 $\mathbf{CTFT}[f(-t)] = F(-\omega)$ 反褶 共轭 $\mathbf{CTFT}[f^*(t)] = F^*(-\omega)$ $\mathbf{CTFT}[f(at)] = \frac{1}{|a|} F(\frac{\omega}{a})$ 时移 $\mathbf{CTFT}[f(t+\tau)] = F(\omega)e^{j\omega\tau}$ 频移 CTFT $[f(t)e^{j\omega_0t}] = F(\omega - \omega_0)$ 微分 CTFT[D f(t)] = $j\omega F(\omega)$ $\mathbf{CTFT}[-j\omega f(t)] = \mathbf{D} F(\omega)$ 卷积 $\mathbf{CTFT}[fg] = \frac{1}{2\pi}\mathbf{CTFT}[f] * \mathbf{CTFT}[g]$ $\mathbf{CTFT}[f*g] = \mathbf{CTFT}[f]\mathbf{CTFT}[g]$ 和 FS 的关系 f(t) 是周期为 T_1 的函数, 傅里叶级数为 $f(t) = \sum_{n} F_n e^{jn\omega_1 t}$, 则 $F_0(n\omega_1) = T_1 F_n$, 且 $F(\omega) = \sum_{n} 2\pi F_n \delta(\omega - n\omega_1)$

表 1: CTFT 的性质

3.2 抽样信号

3.2.1 抽样定理

抽样过程 自然地, 采用冲激串抽样 $f_S(T) = f(t) \cdot \Delta_{T_S}(t)$

抽样后傅里叶变换 $F_S(\omega) = \mathbf{CTFT}[f_S(t)] = \frac{1}{T_S} \sum_n F(\omega - n\omega_S)$. 可以看出,信号经过 T_S 抽样之后,其 CTFT 变成一个周期为 ω_S 的周期函数.

抽样定理 容易通过上面的和式证明如下定理. 对于截止频率为 ω_c 的信号 f(t), 若 $\omega_S \geq 2\omega_c$, 则 F_S 是周期为 ω_S 的函数, 并且.

$$\forall \omega \in \mathbb{R} : F_S(\omega) = \frac{1}{T_S} F(\omega \mod \omega_S)$$

其一个重要特例就是 $\forall \omega \in \left[-\frac{\omega s}{2}, \frac{\omega s}{2}\right]$: $F_S(\omega) = \frac{1}{T_S} F(\omega)$. 其中 $2\omega_c$ 称为 Nyquist 频率.

3 CTFT 7

f(t)	$F(\omega)$
$e^{-at} u(t), a > 0$	$\frac{1}{a+j\omega}$
$e^{at} u(t), a \in \mathbb{R}$	不存在
$e^{j\omega_0 t}, a \in \mathbb{R}$	$2\pi\delta(\omega-\omega_0)$
G(t)	$\operatorname{Sa}(\omega/2)$
$\delta(t)$	1
1	$2\pi\delta(\omega)$
u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$
$\cos(\omega_0 t)$	$\pi\delta(\omega-\omega_0)+\pi\delta(\omega+\omega_0)$
$\sin(\omega_0 t)$	$\int j\pi\delta(\omega+\omega_0) - j\pi\delta(\omega-\omega_0)$
$\Delta_{T_1}(t)$	$\omega_1 \Delta_{\omega_1}(\omega), \omega_1 = \frac{2\pi}{T_1}$ $e^{j(\omega_0 - \omega)\beta} - e^{j(\omega_0 - \omega)\alpha}$
$e^{j\omega_0 t} [\alpha \le t < \beta]$	$\frac{e^{j(\omega_0 - \omega)\beta} - e^{j(\omega_0 - \omega)\alpha}}{j(\omega_0 - \omega)}$
$\operatorname{sgn}(t)$	$rac{2}{j\omega}$
$\frac{1}{t}$	$-j\pi\operatorname{sgn}(\omega)$
Sa(t)	$\pi G\left(\frac{\omega}{2}\right)$

表 2: 常见函数的 CTFT

3.2.2 抽样应用

欠采样 事实上, 利用 $F_S(\omega) = \frac{1}{T_S} \sum_n F(\omega - n\omega_S)$, 可以使用低于 Nyquist 频率的采样, 得到无损结果. 这要求信号的频率宽度小于采样频率 $|\{\omega \mid F(\omega) \neq 0\}| < \omega_S$. (这里 |S| 是 \mathbb{R} 上的长度测度)

这样上面和式中只有一项非 0, 因此

$$\forall \omega \in \mathbb{R} : \exists k \in \mathbb{Z} : F_S(\omega) = \frac{1}{T_S} F(\omega + k\omega_S)$$

如果我们再知道抽样前函数的频率范围,就可以无损的得到原函数的 CTFT.

超采样 主要是工程应用, 略.

4 DTFT 8

4 DTFT

4.1 前置定理

抽样离散定理 由定义可证下式

$$F_S(\omega) = \sum_{n=-\infty}^{\infty} f(nT_S)e^{-j\omega nT_S}$$

过程如下

$$F_S(\omega) = \int_{-\infty}^{\infty} f(t) \cdot \Delta_{T_S}(t) \cdot e^{-j\omega t} dt$$
$$= \int_{-\infty}^{\infty} f(t) \cdot e^{-j\omega t} \cdot \Delta_{T_S}(t) dt$$
$$= \sum_{n=-\infty}^{\infty} f(nT_S) e^{-j\omega nT_S}$$

可以看成是一种抽样近似的思想, 因为在 Nyquist 区间内, 有

$$F(\omega) = \frac{1}{T_S} F_S(\omega)$$

$$\int_{-\infty}^{+\infty} f(t) e^{-j\omega t} dt = \frac{1}{T_S} \sum_{n=-\infty}^{+\infty} f(nT_S) e^{-j\omega nT_S}$$

4.2 定义

x(n) 为频率/时间归一化的信号, $x(n) = f(nT_S)$, 则有

$$\mathbf{DTFT}[x(n)] = \sum_{n=-\infty}^{+\infty} x(n)e^{-j\omega n}$$

并且定义逆变换为

$$\mathbf{IDTFT}[X(\omega)] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} \, \mathrm{d}\,\omega$$

4.3 时间/频率归一化

CTFT 处理, f(t), $F(\omega)$ 中的 t, ω 是物理空间中的时间/频率, 称为模拟时间/频率. DTFT 中, 以上定义中 x(n), $X(\omega)$ 中的 n, ω 是数字时间/频率.

4 DTFT 9

数字时间用 n 表示, 范围是整数集 \mathbb{Z} , 而模拟时间 t 的范围是实数集 \mathbb{R} . 数字 (角) 频率的范围是一个 Nyquist 区间 $[0,2\pi)$, 而模拟频率的范围也是整个实数集 \mathbb{R} .

当且仅当完成无损采样的情况下,数字时间/频率才有意义.数字时间n,数字频率 ω_D ,模拟时间 t 和模拟频率 ω_A 的关系如下式.

$$n \Rightarrow t = nT_S$$

$$t \Rightarrow n = \begin{cases} \frac{t}{T_S} & \frac{t}{T_S} \in \mathbb{Z} \\ \text{undefined} & \text{otherwise (not on sampled point)} \end{cases}$$

$$\omega_A \Rightarrow \omega_D = \frac{\omega_A}{\omega_S} 2\pi$$

$$\omega_D \Rightarrow \omega_A = \frac{\omega_D}{2\pi} \omega_S$$

上式中 T_S 是符合 Nyquist 要求的采样周期, $\omega_S = \frac{2\pi}{T_S}$. 可以看出, 数字时间的范围是离散的 \mathbb{Z} .

和 CTFT 关系 DTFT
$$[x](\omega) = \text{CTFT}[f_S](\frac{\omega}{T_S})$$
 如果采样频率在 Nyquist 区间内,则有 $X(\omega) = \frac{1}{T_S}F\left(\frac{\omega}{T_S}\right)$ 线性性 DTFT $[\alpha x + \beta y] = \alpha$ DTFT $[x] + \beta$ DTFT $[y]$ 周期性 $X(\omega + 2\pi) = X(\omega)$ 反褶 DTFT $[x(-n)] = X(-\omega)$ 共轭 DTFT $[x^*(n)] = X^*(-\omega)$ 用方 DTFT $[x^*(n)] = X(\omega)$, $a \in \mathbb{Z}$ 时移 DTFT $[x(n/a)] = X(\omega)e^{j\omega n_0}$ 频移 DTFT $[x(n)e^{j\omega n_0}] = X(\omega - \omega_0)$ 微分 DTFT $[nx(n)] = j$ D $X(\omega)$ 卷积 DTFT $[x * y] = XY$, DTFT $[xy] = \frac{1}{2\pi}X * Y$ 其中的 卷积 $X * Y$ 是周期函数的卷积 $\int_{-p_i}^{\pi} X(\vartheta)Y(\omega - \vartheta) \, \mathrm{d}\vartheta$ 能量 ENERGY $[x] = \frac{1}{2\pi}$ ENERGY $[DTFT[x]]$, 亦称 Parseval 定理

表 3: DTFT 的性质

5 DFT

10

DFT 5

5.1 定义

数字信号 x 是长度为 L 的信号 $x(0), x(1) \dots x(L-1)$, 考虑 X =**DTFT**[x] 在 ω_k 上的值 $X(\omega_k)$. 其中 $\omega_0 = 0, \omega_1 = \frac{2\pi}{N} \dots \omega_{N-1} = \frac{(N-1)\cdot 2\pi}{N}$ 是 Nyquist 区间 $[0,2\pi)$ 上均匀分布的 N 个频率. 这样即得到 DFT 的定义

$$X(k) = X(\omega_k) = \mathbf{DFT}[x(n)] = \sum_{n=0}^{L-1} x(n) W_N^{nk}, \quad 0 \le k \le N-1$$

称为其 N 点 DFT. 其中 W_N 是 N 次单位根倒数 $W_N = e^{-j\frac{2\pi}{N}}$.

另外定义其逆变换 IDFT 为

$$\hat{x}(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-nk}, \quad 0 \le n \le N-1$$

5.2 补零和回绕

对于 $L \neq N$ 的 x(n), 可以通过补零和回绕, 得到一个 L = N 的 $\hat{x}(n)$, 满足 $\hat{X}(k) = X(k)$. 注意补零和回绕只会改变 L.

补零 如果
$$L < N$$
,考虑 $\hat{x}(n) = \begin{cases} x(n) & 0 \le n \le L - 1 \\ 0 & \text{otherwise} \end{cases}$

回绕 如果
$$L>N$$
,考虑 $\hat{x}(n)=\begin{cases} \sum_{m}x(n+mN) & 0\leq n\leq N-1\\ 0 & \text{otherwise} \end{cases}$

由定义, 从 IDFT 只能得到回绕序列 \hat{x} , 即 DFT 不满足唯一性 **IDFT**[**DFT**[x]] \neq x. 但是在 N = L 的情况下, DFT 仍然满足唯一性.

信号在时间上的约定 归一化情况下, 对于 n < 0 或者 $n \ge L$, x(n) 的取值 有多种约定

- 1. $x(n) = x(n \mod L), n < 0, n \ge L$
- 2. x(n) = 0, $n < 0, n \ge L$
- 3. x(n) 未定义, n < 0, n > L

不同的作者,不同的上下文会选择不同的约定.

5 DFT 11

5.3 和诸傅里叶变换的相关性

和 DTFT DFT 可以看成 DTFT 抽样, 其只取 Nyquist 区间中等间距的 N 个点 $\frac{k}{2}2\pi$. 因此 N 越大, DFT 越接近 DTFT.

和 CTFT CTFT 经过可能有损失的时域抽样和有损失的加窗,以及频域抽样到 DFT, 损失了很多信息. 引入的误差包括

- f(t) 时域抽样时, 如果不满足 Nyquist 定理, 引入混叠
- x(n) 加窗时, 引入的频率泄露. 这个在课程中一般忽略.
- $X(\omega)$ 抽样时, 损失的细节信息. 这个没有严密讨论过.

在课程中,一般认为只要满足 Nyquist 定理的采样,DFT 都可以大致反映 CTFT. 对于无法满足 Nyquist 定理的情况,如频域在 \mathbb{R} 上都有,一般先在 频域加窗,即通过一个低通滤波器.

例如 f(t) 峰值频率在 ω_p , 在符合 Nyquist 定理的采样条件下, DFT 的 峰值应在 round $\left(\frac{\omega_p}{\omega_S}N\right)$.

采样分辨率 即频域分辨率. 它是一个没有严格定义的概念, 意义就是频谱分量 (i.e. 频谱中明显较高的峰) 之间的最小可分辨距离, 即所谓的"波峰可分辨"性.

DTFT 的结果已经在抽样定理中讨论过.

对于 DFT, 如果希望达到 $\Delta\omega$ 的分辨率, 假设 $\Delta\omega$ 是数字频率, 有充要条件 $L \geq \frac{2\pi}{\Delta\omega}$.

5.4 性质

基本与 DTFT 性质相同. 另外容易看出, 可以使用矩阵乘法计算 DFT.

5.5 例子

以下均假设 DFT 为 N 点 DFT.

5 DFT 12

和 DTFT 的关系 DFT
$$[x](k) = DTFT[x](\frac{k}{N}2\pi)$$
 注意 DTFT 参数是有限长的 $x(n), n \in [0, L)$ 而不是通常的 $f(nT_S), n \in \mathbb{Z}$ 如果采样符合 Nyquist 频率,则有 $X(k) \approx \frac{1}{T_S}$ CTFT $[f](\frac{k}{N}\omega_S)$ 其中 f 是原函数, $f_{0...LT_S}$ 是 f 截断到区间 $[0, LT_S)$ 的函数, $x(n) = f(nT_S)$,不是严格等于因为加窗的引入的误差 TODO: check (课件上写的,时间缘故我没还有证明) $\frac{1}{N}X(k) = F_k$,要求 f 是周期的,一个周期抽样 N 个点,为 N 点 DFT. 线性性 DFT $[\alpha x + \beta y] = \alpha$ DFT $[x] + \beta$ DFT $[y]$ 周期性 $X(k+N) = X(k)$ 对偶性 DFT $[x(k)] = Nx(-n)$ 反褶 DFT $[x(-n)] = X(-k)$ 共轭 DFT $[x^*(n)] = X^*(-k)$ 时移 DFT $[x^*(n)] = X^*(-k)$ 时移 DFT $[x^*(n)] = X^*(-k)$ 时移 DFT $[x^*y] = \frac{1}{N}X * Y$ 其中的卷积 $X * Y$ 是周期函数的卷积 $\sum_{m=0}^{N-1} X(m)Y(n-m)$ 能量 ENERGY $[x] = \frac{1}{N}$ ENERGY $[DFT[x]]$,亦称 Parseval 定理

表 4: DFT 的性质

x(n) $X(k)$	
$G_N(n)$	$N\delta(k) = \begin{cases} N & k = 0 \end{cases}$
<i>□ [N (10)</i>	

表 5: DFT 的例子

6 STFT 13

5.6 FFT

设 N=2N', 令 $y(n)=x(2n),z(n)=x(2n+1),\quad 0\leq n\leq N'-1,$ 则有

$$\mathbf{DFT}_{N}[x] = \mathbf{DFT}_{N'}[y] + W_{N}^{k} \mathbf{DFT}_{N'}[z]$$

按照此原理, 容易得到 $\Theta(n \lg n)$ 的 DFT 算法, 而按定义计算是 $\Theta(n^2)$ 的.

6 STFT

6.1 时变信号

从物理的角度,一个信号在不同时间包含的分量是不同的. 如开来的火车笛声,最开始是较高,之后变低. 因此需要考虑信号在某个时间点/段的频域表示,然而传统 CTFT 只在整个 \mathbb{R} 上考虑.

6.2 STFT

对于时变信号 f(t), 定义其 STFT 为

$$\mathbf{STFT}[f(t)] = F(\tau, \omega) = \int_{-\infty}^{+\infty} f(t)w(t - \tau)e^{-j\omega t} \,\mathrm{d}\,t$$

其中 w(t) 是窗函数. 课程中不知为何积分中是 w^* , 本应是先将 f(t) 加窗之后再和傅里叶基求内积的. 因此为了自然这里稍有改动.

窗函数相关 显然窗函数 w 需要满足的性质是,只在一个小区间 $[-t_0,t_0]$ 中的值足够大,此区间外都可以看成 0. 这个区间的长度称为窗口大小.

显然, 窗口越小, 时间分辨率越好 i.e. $F(\tau,\omega)$ 越能反映在 τ 这个点而不是其附近一片的性质; 窗口越大, 频率分辨率越好.

窗函数可以选择矩形窗函数,但更常选择 Gaussian 窗 $w(t) = e^{-\frac{t^2}{2\sigma^2}}$

和原始 CTFT 的关系 显然有下式. 从中看出, STFT 事实上就是信号加窗的 CTFT.

$$\mathbf{STFT}[f(t)](\tau,\omega) = \mathbf{CTFT}[f(t)w(\tau - t)](\omega)$$

7 Wavelet Transform

7.1 基本思想

7.1.1 背景

STFT 的问题是, 窗函数是固定的 i.e. 窗口大小不能变化. 即, 时间分辨率/频率分辨率不能变.

而考虑现实情况, 比如人对于一个频率范围内的声音最敏感. 如同样的声高变化, 在 1000 Hz 左右比在 15000 Hz 左右更容易被察觉. 即, 在 1000 Hz 左右, 人耳的频率分辨率更高.

因此需要对于不同频率-时间点,有不同的分辨率.

7.1.2 小波定义

称 $\psi(t)$ 为小波基函数, 或小波母函数, 当且仅当

$$\int_{-\infty}^{+\infty} \psi(t) \, \mathrm{d} \, t = 0 \quad \wedge \quad \mathbf{ENERGY}[\psi(t)] < \infty$$

小波基的时移和压扩 单个小波基类似于 $e^{j\omega_0t}$, 只包含频率信息. 为了让其包含时间和窗口大小信息, 实际使用的基是 $\psi_{s\tau}(t)=\frac{1}{\sqrt{s}}\psi\left(\frac{t-\tau}{s}\right)$

可以看出, 时移用于确定时间; 压阔用于控制在这个时间-频率点上, 窗函数的大小; 而 🚜 用来使得能量不变.

7.1.3 连续小波变换

类似所有的基分解思想, f(t) 与基 $\psi_{s\tau}(t)$ 内积得到分量值, 如下式所示

$$\mathbf{CWT}[f(t), \psi(t)](s, \tau) = \int_{-\infty}^{+\infty} f(t) \psi_{s\tau}^{*}(t) \,\mathrm{d}\,t$$

其中频域信息 ω 被包含在了 $\psi(t)$ 中.

7.1.4 Haar 小波变换

Haar 小波变换用于图像编码, 利用了差分思想.

1 维情况 考虑长度为 $l=2^n$ 的整向量 \mathbf{v} , 则定义其 2 元差分 Haar 变换 (下称 1 维 Haar 变换或直接 Haar 变换) 为

$$\operatorname{HT}(\mathbf{v}) = \operatorname{HT}\left(\left\langle \frac{v_1 + v_2}{2} \dots \frac{v_{l-1} + v_l}{2} \right\rangle\right) \left\| \left\langle \frac{v_1 - v_2}{2} \dots \frac{v_{l-1} - v_l}{2} \right\rangle$$

$$\operatorname{HT}\left(\left\langle v_1 \right\rangle\right) = \left\langle v_1 \right\rangle$$

显然这是一个可逆变换.

- **2 维情况** 只考虑灰度图像 $I_{n \times m}$, 其中要求 m 是 2 的幂. 事先选取一个阈值 δ , 认为小于 δ 的差分值就是 0. 之后按照如下步骤编码
 - 1. 对所有行执行上述 1 位 Haar 小波变换
 - 2. 对所有列执行上述 1 位 Haar 小波变换
 - 3. (有损压缩) 将 I 中所有模小于 δ 的数置零

对结果依次执行列/行 Haar 逆变换就得到压缩后的图像.

Haar 变换的矩阵描述 为方便, 考虑 1 维情形, n=8. 迭代计算 Haar 变换, 第一次得到结果是 $\langle \frac{v_1+v_2}{2}, \frac{v_3+v_4}{2}, \frac{v_5+v_6}{2}, \frac{v_7+v_8}{2}, \frac{v_1-v_2}{2}, \frac{v_3-v_4}{2}, \frac{v_5-v_6}{2}, \frac{v_7-v_8}{2} \rangle$. 其等于 $[v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8]$ H_1 , 其中

$$H_1 = \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & -\frac{1}{2} \end{bmatrix}$$

同理可以构造 H_2 等, 且可证 H_i 可逆.

8.1 基本概念

理解 一般的看法是,信号进入一个系统,然后出来后变成另一个信号.即,系统对信号做了一个变换.因此,系统可以看作一个信号域上的算子.

以 F, G... 记系统.

滤波器也是系统, 但是着重强调其对于系统在频域上的变换.

课程限制 课程中只考虑离散时间系统, 信号的时域是离散的. 即信号域是 $x(n) \in \mathbb{C}, \ x \in \mathbb{Z},$ 输入输出信号都是这种形式. 滤波器也是数字滤波器, 频域只考虑一个 Nyquist 区间 $[0,2\pi)$ 或者 $[-\pi,\pi)$.

并且都满足线性性, 时不变性, 因果性.

另外假设输入 x 满足因果性, 即 x(n) = 0, $\forall n < 0$.

其他概念

线性性 $\mathcal{F}[\alpha x + \beta y] = \alpha \mathcal{F}[x] + \beta \mathcal{F}[y]$

时不变性 $\mathcal{F}[x(n+m)](k) = \mathcal{F}[x(n)](k+m)$

因果性 $y = \mathcal{F}[x]$, 则 y(n) 是 $\{x(k) | k < n\}$ 的函数

稳定性 $y = \mathcal{F}[x]$, 若 x 是有界的, 则 y 是有界的.

i.e.
$$||x||_{\infty} < \infty \Rightarrow ||y||_{\infty} < \infty$$

课程考虑的系统必定满足线性性,时不变性,因果性. 如不考虑 $x(n) \rightarrow x^2(n)$.

8.2 时域描述

8.2.1 差分方程

 $y = \mathcal{F}[x]$ 由以下方程确定

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$

称如上的系统为 N 阶滤波器.

8.2.2 流图

有三种单元: 延时单元, 加法单元, 乘法单元. 如图 1所示.

图 1: 三种流图单元

构建方法

- 直接 I 型构建法. 简单明白.
- 级联滤波器. 减少延时单元的深度, 降低因过深的延时单元链造成的指数级误差.
- 直接 II 型构建法. 减少了对输入和输出状态的存储, 即延时单元减少.

注意图 2和图 3中 a_k, b_k 和差分方程中的 a_k, b_k 定义不同. 下图中, 是

$$y(n) = \sum_{k=0}^{M} a_k x(n-k) + \sum_{k=1}^{N} b_k y(n-k)$$

直接I型实现

图 2: 直接 I 型

直接II型实现(STEP3)

图 3: 直接 II 型

8.2.3 冲激响应

 $\mathcal{F}[\delta(n)]$ 称为 \mathcal{F} 的冲激响应 (Impluse Response). 根据冲激响应是否在有限时间内收敛到 0, 也分为有限和无限冲激响应.

记 $h(n) = \mathcal{F}[\delta]$, 因为 $x(n) = \sum_k x(k)\delta(n-k) = x * \delta$, 故不严谨地有,

$$\mathcal{F}[x] = \mathcal{F}[x * \delta]$$

$$= \mathcal{F}\left[\sum_{k} x(k)\delta(n-k)\right]$$

$$= \sum_{k} x(k)\mathcal{F}[\delta(n-k)]$$

$$= \sum_{k} x(k)h(n-k)$$

$$= x * \mathcal{F}[\delta]$$

应用

稳定定理 $\sum_{n} |h(n)|$ 绝对收敛 $\Leftrightarrow \mathcal{F}$ 是稳定系统.

串联 设
$$\mathcal{F}[\delta] = h_{\mathcal{F}}, \, \mathcal{G}[\delta] = h_{\mathcal{G}}, \,$$
则 $\mathcal{F}\mathcal{G}[\delta] = h_{\mathcal{G}} * h_{\mathcal{F}}$
并联 $(\mathcal{F} + \mathcal{G})[\delta] = h_{\mathcal{F}} + h_{\mathcal{G}}$

8.3 频域描述

以下频域描述都采用 DTFT 而非 CTFT.

8.3.1 定义

 $X = \mathbf{DTFT}[x]$ 是信号的频域表示, $Y = \mathcal{F}[X]$, 则定义 $H(\omega) = \frac{X(\omega)}{Y(\omega)}$ 为滤波器的频率响应.

其中将 $|H(\omega)|$ 称为幅频响应, $\arg H(\omega)$ 称为相频响应.

和冲激响应的关系 对 y = x * h 两边 DTFT 得到 $Y = X \cdot \mathbf{DTFT}[h]$ 故有 $H = \mathbf{DTFT}[h]$, 其满足 DTFT 的所有性质.

8.4 Z 变换

8.4.1 定义

x(n) 是离散时域信号, 则 x 的 Z 变换定义为 $X(z) = \mathbf{ZT}[x(n)](z) = \sum_n x(n)z^{-n}$

形式上类似 DTFT 中 e^{-jwn} 换成了 z^{-n} , 变成了 Laurent 级数的形式. 但是注意 Laurent 级数是 $\sum_n x(n)z^n$, 而 Z 变换是 $\sum_n x(n)z^{-n}$.

8.4.2 收敛域

X(z) 的收敛域 (ROC) 定义为 $\{z \mid X(z)$ 收敛 $\}$. Laurent 级数收敛域是一个环, 但是课程中不考虑环的边界.

收敛域求解 Ω 为 Laurent 级数 x(n), $n \in \mathbb{Z}$ 的收敛环, 则

$$\forall z \in \mathring{\Omega} : \sum_{n} x(n)z^{-n}$$
 收敛 $\Leftrightarrow \sum_{n} x(n)z^{-n}$ 绝对收敛

收敛环可以通过比值法或根值法求出.

零─极点图 在复平面上用 × 表示极点, ○ 表示零点, 画出所有零点和极点, 即得到零─极点图.

8.5 函数空间的理解

可以认为, 基函数是 $u_n(z)=z^{-n}, n\in\mathbb{Z}$, 由 Laurent 级数容易得到基函数的完备性.

设 C 是任何一个以 O 为圆心的圆环, 内积定义为

$$\langle u_n(z), u_m(z) \rangle = \oint_C u_n(z) u_m^*(z) z^{-1} \, \mathrm{d} z$$

$$= \oint_C z^{-n} (z^{-m})^* z^{-1} \, \mathrm{d} z$$

$$= \oint_C r^{-n} e^{-i\theta n} r^{-m} e^{-i\theta m} r^{-1} e^{-i\theta} \, \mathrm{d} z$$

$$= \int_0^{2\pi} i r^{-n-m-1} e^{i\theta(m-n)} \, \mathrm{d} \theta$$

$$= 2\pi i r^{-n-m-1} \delta_{nm}$$

其中假设 C 是半径为 r 的圆环, δ 是 Kronecker delta 记号.

8.6 唯一性

Z 变换不具有唯一/可逆性. 这一点可以从 Laurent 展开的非唯一性看出. 一般地, 有如下性质:

Z 变换级数展开 如果 f(z) 的极点 (即复函数的奇点) 有 N 种不同的模 (即 $N = |\{|z_p|\}|$) 则存在 N+1 个不同的信号,使得它们的 ZT 都是 f(z). 若将其极点的模从小到大排成 $\langle a_1, a_2 \dots a_N \rangle$,则这些信号的 ROC 是 $\langle r1 = 0, r2 = a_1 \rangle$, $\langle r1 = a_1, r2 = a_2 \rangle \dots \langle r1 = a_N, r2 = \infty \rangle$.

例如, 对于 $f(z) = \frac{1}{1-a^{-1}z}$, 显然 $x(n) = a^n u(n)$ 和 $y(n) = -a^n u(-n-1)$ 的 ZT 都是 f(z). 两者的收敛域分别是 $\langle r1 = a, r2 = \infty \rangle$ 和 $\langle r1 = 0, r2 = a \rangle$

8.6.1 性质

线性性 $\mathbf{ZT}[\alpha x + \beta y] = \alpha \mathbf{ZT}[x] + \beta \mathbf{ZT}[y]$

反褶
$$\mathbf{ZT}[x(-n)] = X(z^{-1})$$

共轭
$$\mathbf{ZT}[x^*(n)] = X^*(z^*)$$

压扩
$$\mathbf{ZT}\left[x(\frac{n}{a})\right](z) = \mathbf{ZT}[x](z^a)$$
, 其中如果 $\frac{n}{a}$ 不是整数则 $x(\frac{n}{a}) = 0$

时移
$$\mathbf{ZT}[x(n+m)] = \mathbf{ZT}[x]z^m$$

頻移
$$\mathbf{ZT}[a^n x(n)] = \mathbf{ZT}[x] \left(\frac{x}{a}\right)$$

卷积
$$\mathbf{ZT}[x*y] = XY,$$
 $\mathbf{ZT}[xy] = \frac{1}{2\pi i} \oint X(v) Y\left(\frac{z}{v}\right) v^{-1} dv$

初值
$$x(0) = \lim_{z \to \infty} X(z)$$
, 当然极限不存在时此式无效

终值
$$\lim_{n \to \infty} x(n) = \lim_{z \to 1} (z - 1) X(z)$$
,当然极限不存在时此式无效

8.6.2 逆变换求解

数值方法 如果 X(z) 是有理函数,则可以通过多项式除法来求解.可以依次求出 x(0), x(1)...

留数法 根据留数定理,可求得 $x(n) = \sum_{z_p \neq w_n} \text{Res}[X(Z)z^{n-1}, z_p]$. 设 z_0 是 f(z) 的 n 级极点,则 $\text{Res}[f(z), z_0] = \frac{1}{(n-1)!} \lim_{z \to z_0} \mathbf{D}^{n-1}((z-z_0)^n f(z))$. 可以一次得到对于一个 n 的 x(n).

x(n)	X(z)	ROC(r1, r2)
$\delta(n)$	1	$[0,\infty]$
u(n)	$\frac{1}{1-z^{-1}}$	$(1,\infty]$
$G_N(n)$	$\frac{1 - z^{-N}}{1 - z^{-1}}$	$(0,\infty]$
a^n	不存在	空
$a^n u(n)$	$\frac{1}{1 - az^{-1}}$	$(a ,\infty]$

表 6: 常见信号的 Z 变换

有理函数展开法 类似生成函数,直接求根展开有理函数,可以一次得到所有 x(n). 基本原理是,任何有理函数 $R(z^{-1}) = \frac{P(z^{-1})}{Q(z^{-1})}$ 可以写成一个多项式 $S(z^{-1})$ 和若干 $\frac{T(z^{-1})}{(1-z_pz^{-1})^l}$ 之和,其中 $T(z^{-1})$ 是多项式且 $\deg T < l$,并且 z_p 是 l 级极点.

8.7 系统函数

记
$$X(z) = \mathbf{ZT}[x], Y(z) = \mathbf{ZT}[y]$$
,则定义
$$H(z) = \frac{Y(z)}{X(z)}$$

称 H(z) 为系统的响应函数.

性质 频率响应基本相同, 另有

因果性 H(z) 是因果系统的充要条件是其收敛域无界, 即 $r2 = \infty$

不唯一性 不同的系统可能有同样的系统函数, 但是 ROC 不同

稳定性 某系统是稳定系统的充要条件是单位圆环在其系统函数的 ROC 内部.

8.7.1 和差分方程的关系

对于差分方程描述 $\sum_{k=0}^N a_k y(n-k) = \sum_{k=0}^M b_k x(n-k),$ 两边做 ZT 即有

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$

8.8 滤波器的设计

8.8.1 FIR 低通滤波器的设计

理想滤波器 显然 $\mathbf{CTFT}[\frac{\sin(t\omega_C)}{t\pi}] = G(\frac{\omega}{2\omega_C})$. 因此在数字频率上, $\frac{\sin(n\omega_C)}{n\pi}$ 是一个理想滤波器,其中 ω_C 是数字截止频率 $\omega_C = 2\pi \frac{f_C}{f_S}$.

设计步骤 基本有如下几步

- 1. 选择 ω_C , 为理想滤波器的数字截止频率
- 2. 计算 $h(n) = \frac{\sin(n\omega_C)}{n\pi}$
- 3. 根据阻带衰减, 选择窗函数
- 4. 查表计算得到窗长 N (N 舍入到最近奇数, N=2k+1)
- 5. 根据 N 计算窗函数的表达式 w(n)
- 6. FIR 表达式为 h(n)w(n), $|n| \leq k$
- 7. 平移 FIR, 得到因果 FIR 为 h(n-k)w(n-k)

FIR 滤波器必定是稳定的.

8.8.2 FIR 其他滤波器

高通和带通 将低通最终得到的 $h_1(n) = h(n-k)w(n-k)$ 移位即可 $h_2(n) = h_1(n)\cos(n\omega_0)$.

另外带通也可以通过低通且高通的方法实现.

带阻 带足就等于低通加高通.

9 好题 24

8.8.3 IIR 滤波器的实现

双线性变换 双线性变换将 H(s) 变为 H(z), 式为

$$s = 2f_S \frac{z - 1}{z + 1}$$

巴特沃斯滤波器 对于一阶,是 $H(s)=\frac{\Omega_{p1}}{s+\Omega_{p1}}$,其中 $s=j\Omega$. 因此 $|H(\Omega)|=\frac{1}{\sqrt{\left(\frac{\Omega}{\Omega_{p1}}\right)^2+1}}$

求解步骤

- 1. 根据题目写出模拟边缘频率 f_{p1} , f_{s1} . 其中 f_{p1} 是 -3 dB 的频率
- 2. 计算阻带边缘增益, $\delta_S=10^{x/20},$ 其中 f_{s1} 的增益是 x dB
- 3. 计算得到数字边缘频率 $\omega_{p1}=2\pi\frac{f_{p1}}{f_S}$, 以及 $\omega_{s1}=2\pi\frac{f_{s1}}{f_S}$
- 4. 用预扭曲方程求出滤波器的边缘频率 $\Omega_{p1}=2f_S\tan\frac{\omega_{p1}}{2},$ 以及 $\Omega_{s1}=2f_S\tan\frac{\omega_{s1}}{2}$
- 5. 根据方程

$$n \ge \frac{\lg\left(\delta_S^{-2} - 1\right)}{2\lg\left(\frac{\Omega_{s1}}{\Omega_{p1}}\right)}$$

求得 IIR 的阶数 n

6. 如果 n=1, 利用上述一阶公式计算 H(z)

9 好题

CTFT 不用暴力求 $F(\omega)$, 其中 $f(t) = \begin{cases} |\sin(\pi t)| & |t| < 1 \\ 0 & \text{otherwise} \end{cases}$

10 好题解析 25

10 好题解析

CTFT 不用暴力求
$$F(\omega)$$
, 其中 $f(t) = \begin{cases} |\sin(\pi t)| & |t| < 1 \\ 0 & \text{otherwise} \end{cases}$ 考虑 $f(t) = \sin(\pi t) \cdot (G(t - 0.5) + -G(-t + 0.5))$ 答案是 $\left[\operatorname{Sa}\left(\frac{\omega - \pi}{2}\right) - \operatorname{Sa}\left(\frac{\omega + \pi}{2}\right)\right] \cos\frac{\omega}{2}$

11 其他技巧

11.1 卷积求法

序列线卷积可以撕纸来求. 注意项数要足够! 圆卷积的是先填零/回绕之后再求. 也可采用类似乘法的方法, 例如

x(6)	x(5)	x(4)	x(3)	x(2)	x(1)	x(0)
			1	2	3	4
		×	4	3	2	1
			1	2	3	4
		2	4	6	8	
	3	6	9	12		
4	8	12	16			
4	11	20	30	20	11	4

表 7: 线卷积

11 其他技巧 26

x(6)	x(5)	x(4)	x(3)	x(2)	x(1)	x(0)
			1	2	3	4
		×	4	3	2	1
			1	2	3	4
		2	4	6	8	
	3	6	9	12		
4	8	12	16			
			1	2	3	4
			4	6	8	2
			9	12	3	6
			16	4	8	12
			30	24	22	24

表 8: 圆卷积