Integers are represented as n-bit vectors (series of 1's and 0's)

$$B = b_{n-1} \dots b_1 b_0$$

The unsigned value represented is:

$$V(B) = b_{n-1} \times 2^{n-1} + \dots + b_1 \times 2^1 + b_0 \times 2^0$$

The b's are the coefficients in a powers of 2 polynomial

The number of bits (n) determines the range that can be covered

0 to
$$2^{n} - 1$$

Unsigned overflow exists if an operation yields a value out of range

The total number of patterns = 2^n where n is the number of bits This is called the modulus of the system Incrementing the largest pattern (all 1's) rolls over to 0

Signed systems use some of the patterns for negative values

- Sign-and-magnitude
- One's complement
- Two's complement
- Biased (or excess)

Two's complement is by far the most common Biased is used for integer exponents in floating point numbers

The first three systems are compared below (using 4 bits):

$b_3 b_2 b_1 b_0$	Sign and magnitude	1's complement	2's complement
0 1 1 1	+7	+7	+7
0 1 1 0	+6	+6	+6
0 1 0 1	+ 5	+ 5	+ 5
0 1 0 0	+ 4	+ 4	+ 4
0 0 1 1	+ 3	+ 3	+ 3
0 0 1 0	+ 2	+ 2	+ 2
0 0 0 1	+1	+ 1	+ 1
0 0 0 0	+0	+ 0	+0
1000	-0	-7	-8
1 0 0 1	- 1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1 1 0 0	-4	-3	-4
1 1 0 1	-5	-2	-3
1 1 1 0	-6	-1	-2
1111	_ 7	-0	-1
	- ,	_	-

$b_3 b_2 b_1 b_0$	Sign and magnitude	1's complement	2's complement
0 1 1 1	+7	+7	+7
0 1 1 0	+6	+6	+6
0 1 0 1	+ 5	+ 5	+ 5
0 1 0 0	+4	+ 4	+ 4
0 0 1 1	+ 3	+ 3	+ 3
0 0 1 0	+ 2	+ 2	+ 2
0 0 0 1	+ 1	+ 1	+ 1
0 0 0 0	+0	+0	+ 0
1000	-0	-7	-8
1001	– 1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1 1 0 0	-4	-3	-4
1 1 0 1	-5	– 2	-3
1 1 1 0	-6	– 1	-2
1111	-7	-0	-1

In each system, the MSB is 0 for positive and 1 for negative values Positive values have identical representations for each system

Same as for the unsigned value

They differ in how negative values are represented

Only negative values require complementing

Signed Integer Representations

Sign-and-magnitude:

MSB only indicates sign (0 for +, 1 for -) Remaining bits give the magnitude

One's complement

Invert each bit to get the negative Same as adding negative value to modulus-1 e.g. -5 is represented as -5 + (16-1) = 10

Two's complement

Invert each bit and add 1 to get negative Same as adding negative value to modulus e.g. -5 represented as -5 + 16 = 11

$b_3 b_2 b_1 b_0$	Sign and magnitude	1's complement	2's complement
0 1 1 1	+7	+7	+7
0 1 1 0	+6	+6	+6
0 1 0 1	+ 5	+ 5	+ 5
0 1 0 0	+ 4	+ 4	+4
0 0 1 1	+ 3	+ 3	+ 3
0 0 1 0	+ 2	+ 2	+ 2
0 0 0 1	+ 1	+ 1	+ 1
0 0 0 0	+0	+0	+0
1000	-0	-7	-8
1001	- 1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1 1 0 0	-4	-3	-4
1 1 0 1	-5	-2	-3
1 1 1 0	-6	- 1	-2
1111	-7	-0	- 1

Sign-and-magnitude properties:

two distinct representations for 0

+0 → 0 sign bit and all 0's for magnitude

-0 → 1 sign bit and all 0's for magnitude

Range = $-(2^{n-1}-1)$ to $+2^{n-1}-1$

One's complement:

two distinct representations for 0

 $+0 \rightarrow$ bits are all 0's

 $-0 \rightarrow$ bits all 1's

Range = $-(2^{n-1}-1)$ to $+2^{n-1}-1$

Two's complement:

Unique representation of 0 (all 0 bits)

Range = -2^{n-1} to $+2^{n-1}-1$

Extra negative pattern (-2^{n-1}) has MSB=1, all other bits = 0