Original Expression:
$$-(xy+z)^{\complement}(x+z)$$

Apply De Morgan's Law to
$$(xy+z)^{\complement}$$
:
$$(xy+z)^{\complement} = (xy)^{\complement} \cdot z^{\complement} \quad \text{(De Morgan's Law)}$$

Apply De Morgan's Law to
$$(xy)^{\complement}$$
:
 $(xy)^{\complement} = x^{\complement} + y^{\complement}$ (De Morgan's Law)
 $(xy + z)^{\complement} = (x^{\complement} + y^{\complement}) \cdot z^{\complement}$

Substitute into the original expression:

$$(x^{\complement} + y^{\complement}) \cdot z^{\complement} \cdot (x+z)$$

Distribute
$$(x^{\complement} + y^{\complement}) \cdot z^{\complement}$$
 over $(x + z)$:
$$[(x^{\complement} + y^{\complement}) \cdot z^{\complement} \cdot x] + [(x^{\complement} + y^{\complement}) \cdot z^{\complement} \cdot z] \quad \text{(Distributive Law)}$$

Simplify the terms:

$$(x^{\complement} \cdot z^{\complement} \cdot x) + (y^{\complement} \cdot z^{\complement} \cdot x)$$
 (Distributive Law)

$$x^{\complement} \cdot z^{\complement} \cdot x = 0$$
 (Complement Law)
 $y^{\complement} \cdot z^{\complement} \cdot x$

For the second term:

$$(x^{\complement} \cdot z^{\complement} \cdot z) + (y^{\complement} \cdot z^{\complement} \cdot z)$$
 (Distributive Law)

$$x^{\complement} \cdot z^{\complement} \cdot z = 0$$
 (Complement Law)

$$y^{\complement} \cdot z^{\complement} \cdot z = 0$$
 (Complement Law)

Combine the results:

$$y^{\mathbf{C}} \cdot z^{\mathbf{C}} \cdot x$$