Problem Solving on Windows Functions

Relevel by Unacademy

Instructions for the class

Instructions:

• We will use mode.com for this set of questions.

Tutorial.sat_scores

Description:

This dataset is related to SAT scores. SAT is an exam used in USA to provide admission. SAT contains of three subjects - writing, verbal, and math. This dataset has following columns:

- Teacher: Name of the teacher who taught the student
- Student_id: The id for each student(a unique identifier)
- Sat_writing: marks scored in writing
- Sat verbal: marks scored in verbal
- Sat maths: marks scored in math
- Hrs_studied: hours spent in studying
- Id: unique identifier for the dataset

Question-1:

Write a query to add column - avg_sat_writing. Each row in this column should include average marks in the writing section of the student per school.

Answer-1:

SELECT

*,

AVG(sat_writing)OVER(PARTITION BY school) AS avg_sat_writing

FROM

Tutorial.sat_scores

Question-2:

In the above question, add an additional column - count_per_school. Each row of this column should include number of students per school

Answer-2:

SELECT

*,

AVG(sat_writing)OVER(PARTITION BY school) AS avg_sat_writing,

COUNT(student_id)OVER(PARTITION BY school) AS count_per_school

FROM

Tutorial.sat_scores

Question-3:

In the above question, add two additional columns - max_per_teacher and min_per_teacher. Each row of this column should include maximum and minimum marks in maths per teacher respectively.

Answer-3:

SELECT

*,

AVG(sat_writing)OVER(PARTITION BY school) AS avg_sat_writing,

COUNT(student_id)OVER(PARTITION BY school) AS count_per_school,

MAX(sat_math)OVER(PARTITION BY teacher) AS max_per_teacher,

MIN(sat_math)OVER(PARTITION BY teacher) AS min_per_teacher

FROM

tutorial.sat

Question-4:

For the dataset, write a query to add the two columns cum_hrs_studied and total_hrs_studied. Each row in cum_hrs_studied should display the cumulative sum of hours studied per school. Each row in the total_hrs_studied will display total hours studied per school. Order the data in the ascending order of student id

Answer-4

SELECT

*,

SUM(hrs_studied) OVER(PARTITION BY school ORDER BY student_id) AS cum_hrs_studied,

SUM(hrs_studied) OVER(PARTITION BY school ORDER BY student_id ROWS BETWEEN

UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS total_hrs_studied

FROM

Tutorial.sat_scores

Question-5:

For the dataset, write a query to add column sub_hrs_studied and total_hrs_studied. Each row in sub_hrs_studied should display the sum of hrs_studied for a row above, a row below, and current row per school. Order the data in the ascending order of student id

Answer-5:

SELECT

*,

SUM(hrs_studied) OVER(PARTITION BY school ORDER BY student_id ROWS BETWEEN 1

PRECEDING AND 1 FOLLOWING) AS sub_hrs_studied

FROM

Tutorial.sat_scores

Question-6:

Write a query to rank the students per school on the basis of scores in verbal. Use both rank and dense_rank function. Students with the highest marks should get rank 1.

Answer-6:

SELECT

RANK() OVER(PARTITION BY school ORDER BY sat_verbal DESC) AS score_verbal_rank,

DENSE_RANK() OVER(PARTITION BY school ORDER BY sat_verbal DESC) AS

score_verbal_dense_rank

FROM

tutorial.sat_scores

Question-7:

Write a query to rank the students per school on the basis of scores in writing. Use both rank and dense_rank function. Student with the highest marks should get rank 1.

Answer-7:

SELECT

RANK() OVER(PARTITION BY teacher ORDER BY sat_writing DESC) AS score_writing_rank,

DENSE_RANK() OVER(PARTITION BY teacher ORDER BY sat_writing DESC) AS

score_writing_dense_rank

FROM

Tutorial.sat_scores

Question-8:

Write a query to find the top 5 students per teacher who spent maximum hours studying.

Answer-8:

```
SELECT
school,
student_id
FROM
SELECT
ROW_NUMBER()OVER(PARTITION BY teacher ORDER BY hrs_studied DESC) AS ranknum
FROM
tutorial.sat_scores
) a
WHERE
ranknum <6
```


Question-9:

Write a query to find the worst 5 students per school who got minimum marks in sat_math

Answer-9:

```
SELECT
school,
student_id
FROM
SELECT
ROW_NUMBER()OVER(PARTITION BY school ORDER BY sat_math ) AS ranknum
FROM
tutorial.sat_scores
) a
WHERE
ranknum <6
```


Question-10:

Write a query to divide the dataset into quartile on the basis of marks in sat_verbal.

Answer-10:

SELECT

*,

NTILE(4)OVER(ORDER BY sat_verbal) AS quartile

FROM

tutorial.sat_scores

Question-11:

For 'Petersville HS' school, write a query to arrange the students in the ascending order of hours studied. Also, add a column to find the difference in hours studied from the student above(in the row). Exclude the cases where hrs_studied is null.

Answer-11:

SELECT

*,

hrs_studied - LAG(hrs_studied)OVER(ORDER BY hrs_studied) AS diff_hrs

FROM

tutorial.sat_scores

WHERE

school ='Petersville HS'

AND hrs_studied IS NOT NULL

Question-12:

For 'Washington HS' school, write a query to arrange the students in the descending order of sat_math. Also, add a column to find the difference in sat_math from the student below(in the row).

Answer-12:

SELECT

*

sat_math - LEAD(sat_math)OVER(ORDER BY sat_math DESC) AS diff_marks

FROM

tutorial.sat_scores

WHERE

school ='Washington HS'

Question-13:

Write a query to return 4 columns - student_id, school, sat_writing, difference in sat_writing and average marks scored in sat_writing in the school.

Answer-13:

SELECT

student_id,

school,

sat_writing,

sat_writing - AVG(sat_writing)OVER(PARTITION BY school) AS diff_avg

FROM

tutorial.sat_scores

Question-14:

Write a query to return 4 columns - student_id, teacher, sat_verbal, difference in sat_verbal and minimum marks scored in sat_verbal per teacher.

Answer-14:

SELECT

student_id,

teacher,

sat_verbal,

sat_verbal - MIN(sat_verbal)OVER(PARTITION BY teacher) AS diff_min

FROM

Tutorial.sat_scores

Question-15:

Write a query to return the student_id and school who are in bottom 20 in each of sat_verbal, sat_writing, and sat_math for their school.

Answer-15:

```
WITH data AS (
 SELECT
  student_id,
  school,
  ROW_NUMBER()OVER(PARTITION BY school ORDER BY sat_verbal) AS rank_verbal,
  ROW_NUMBER()OVER(PARTITION BY school ORDER BY sat_math) AS rank_math,
  ROW_NUMBER()OVER(PARTITION BY school ORDER BY sat_writing) AS rank_writing
 FROM
 tutorial.sat scores
SELECT
student id,
 school
FROM
 data
WHERE
rank_verbal < 21 AND rank_writing < 21 AND rank_math < 21
```


Question-16:

Write a query to find the student_id for the highest mark and lowest mark per teacher for sat_writing.

Answer-16:

SELECT DISTINCT

tutorial.sat scores

teacher,

FIRST_VALUE(student_id)OVER(PARTITION BY teacher ORDER BY sat_writing DESC ROWS
BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS max_marks_student,
LAST_VALUE(student_id)OVER(PARTITION BY teacher ORDER BY sat_writing DESC ROWS
BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS min_marks_student
FROM

Tutorial.city_populations

This dataset contains forecasts of the population of major cities of USA. The dataset has 4 columns:

- City: name of the city
- State: state name (in USA)
- Population_estimate_2012: forecast of population in 2012
- Id: the unique identifier of the dataset

Question-1:

Write a query to add an additional column - num_cities. Each row in the dataset should tell the number of cities in the dataset.

Answer-1:

SELECT*,

COUNT(city)OVER(PARTITION BY state) AS num_cities

FROM

Question-2:

Write a query to add an additional column - total_population. Each row in the dataset should tell the total population of the state.

Answer-2:

SELECT *,

SUM(population_estimate_2012)OVER(PARTITION BY state) AS

total_population

FROM

Question-3:

Write a query to return the rows where population is more than the average population of the state

Answer-3:

```
WITH data AS (
SELECT*,

AVG(population_estimate_2012)OVER(PARTITION BY state) AS avg_population

FROM

tutorial.city_populations
)

SELECT*

FROM data

WHERE

population_estimate_2012 > avg_population
```


Question-4:

Write a query to calculate the cumulative sum of population. Arrange the data in ascending order of the population.

Answer-4:

SELECT *,

SUM(population_estimate_2012)OVER(ORDER By population_estimate_2012) AS cum_population

FROM

Question-5:

Write a query to add a column rolling_avg. Each row in the dataset includes the average population for the two rows above and two rows below(including current row.

Answer-5:

SELECT*,

AVG(population_estimate_2012)OVER(ORDER By population_estimate_2012 ROWS BETWEEN 2

PRECEDING AND 2 FOLLOWING) AS rolling_avg

FROM

Question-6:

Write a query to rank the cities in California(CA) state in terms of population. City with the highest population is given rank 1. Use both rank and dense_rank function.

Answer-6:

SELECT*,

RANK()OVER(ORDER BY population_estimate_2012 DESC) AS population_rank,

DENSE_RANK()OVER(ORDER BY population_estimate_2012 DESC) AS population_dense_rank

FROM

tutorial.city_populations

WHERE

state ='CA'

Question-7:

Write a query to find the top 2 most populated cities per state.

Answer-7:

```
WITH data AS (
SELECT
   ROW_NUMBER()OVER(PARTITION BY state ORDER BY population_estimate_2012 DESC) AS
population_dense_rank
FROM
 tutorial.city_populations
SELECT
city,
 state,
population_dense_rank
FROM
data
WHERE
population_dense_rank < 3
```


Question-8:

Write a query to add a column - perc_pop. Each row in this column should represent the percentage of population a city contributes in that state.

Answer-8:

```
SELECT

*,

100.0*population_estimate_2012/SUM(population_estimate_2012)OVER(PARTITION BY state) AS

perc_pop

FROM

Tutorial.city_populations
```


Question-9:

Write a query to find the cities which lie in the top 10 decile in terms of population

Answer-9:

SELECT

*,

NTILE(10)OVER(ORDER BY population_estimate_2012 DESC) AS percentile

FROM

Question-10:

Write a query to arrange the cities in the descending order of population and add a column calculating difference in population from 2 rows below (in the dataset).

Answer-10:

SELECT

*

 $population_estimate_2012 - LEAD (population_estimate_2012) OVER (ORDER \ BY \ A population_estimate_2012) OVER (ORDER$

population_estimate_2012 DESC) AS diff_pop

FROM

Question-11:

Write a query to return the state, first city and last city (in terms of id number) in the state.

Answer-11:

SELECT DISTINCT

state,

FIRST_VALUE(city) OVER(PARTITION BY state) AS first_city,

LAST_VALUE(city) OVER(PARTITION BY state) AS last_city

FROM

tutorial.city_populations

ORDER BY

state

