AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (currently amended): An ink set comprising a plurality of inks different in hues, wherein the plurality of inks includes a black ink containing a coloring agent that is a dye having: a λmax of 500 nm to 700 nm; a half value width of 100 nm or more in an absorption spectrum of a dilute solution normalized to an absorbance of 1.0; and a forced fading rate constant of 5.0X10⁻² [hour⁻¹] or less, in which the forced fading rate constant is decided by dissolving and/or dispersing the dye in an aqueous medium to form an ink composition for ink jet recording, printing the ink composition on a reflection type medium, thereafter measuring a reflection density through a Status A filter, specifying one point having a reflection density (D_B) in an yellow region of 0.90 to 1.10 as an initial density of the ink, forcedly fading the printed matter by use of an ozone fading tester that can regularly generate 5 ppm of ozone, and determining the time taken until the reflection density reaches 80% of the initial density.

wherein the dye is a compound represented by the following general formula (1):

$$A + N = N + B + \frac{1}{m^{3}n} N = N - C$$
 (1)

2

wherein A, B and C each independently represents an aromatic group or a heterocyclic group, which may be substituted, m is an integer of 1 or 2, and n is an integer of 0 or more, with the proviso that at least one of A, B and C is a heterocyclic group which may be substituted.

2. (original): An ink set comprising a plurality of inks different in hues, wherein the plurality of inks includes a black ink containing a coloring agent that is a dye represented by the following general formula (1), the dye having: a λ max of 500 nm to 700 nm; and a half value width of 100 nm or more in an absorption spectrum of a dilute solution normalized to an absorbance of 1.0:

$$A + N = N + B + M + N = N - C$$
 (1)

wherein A, B and C each independently represents an aromatic group or a heterocyclic group, which may be substituted, m is an integer of 1 or 2, and n is an integer of 0 or more, with the proviso that at least one of A, B and C is a heterocyclic group which may be substituted.

- 3. (canceled).
- 4. (original): The ink set described in claim 1 or 2, which further comprises at least one dye having a λ max of 350 nm to 500 nm.

- 5. (currently amended): The ink set described in elaim 2 or 3 claim 1 or 2, wherein n and m in the formula (1) are 1.
- 6. (currently amended): The ink set described in elaim 2 or 3 claim 1 or 2, wherein at least two of A, B and C in the general formula (1) are a heterocyclic group which may be substituted.
- 7. (original): The ink set described in claim 1 or 2, which further comprises at least a coloring agent represented by the following general formula (M-I) as the magenta ink:

$$A^{1}-N=N \xrightarrow{B^{2}=B^{1}} N \xrightarrow{R^{5}} R^{6}$$

$$G^{1}$$

$$R^{6}$$

wherein A¹ represents a residue of a 5-membered heterocyclic diazo component A¹-NH₂; B¹ and B² each represent a nitrogen atom, -CR¹= and -CR²=, and when one of B¹ and B² represents a nitrogen atom, the other represents -CR¹= or -CR²=; R⁵ and R⁶ each independently represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a carbamoyl group, an alkyl- or arylsulfonyl group or a sulfamoyl group, which may further have a substituent group; G¹, R¹ and R² each independently represents a hydrogen atom, a halogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, a carboxyl group, a carbamoyl group, an

4

alkoxycarbonyl group, an aryloxycarbonyl group, a heterocyclic oxycarbonyl group, an acyl group, a hydroxyl group, an alkoxyl group, an aryloxy group, a heterocyclic oxy group, a silyloxy group, an acyloxy group, a carbamoyloxy group, an alkoxycarbonyloxy group, an aryloxycarbonyloxy group, an amino group (containing a heterocyclic amino group and an anilino group), an acylamino group, a ureido group, a sulfamoylamino group, an alkoxycarbonylamino group, an aryloxycarbonylamino group, an alkyl- or arylsulfonylamino group, a heterocyclic sulfonylamino group, a nitro group, an alkyl- or arylthio group, an alkyl- or arylsulfonyl group, a heterocyclic sulfonyl group, a sulfamoyl group, a sulfo group or a heterocyclic thio group, which may be further substituted; and R¹ and R⁵, or R⁵ and R⁶ may combine with each other to form a 5- or 6-membered ring.

8. (original): The ink set described in claim 1 or 2, which further comprises a coloring agent represented by the following general formula (C-I) as the cyan ink:

$$(X_3)b_3$$

$$(X_3)a_3$$

$$(Y_2)b_2$$

$$(X_2)a_2$$

$$(X_4)a_4$$

$$(Y_4)b_4$$

$$(Y_1)b_1$$

$$(Y_1)b_1$$

$$(Y_2)b_2$$

wherein X_1 , X_2 , X_3 and X_4 each independently represents -SO- Z_1 , -SO₂- Z_1 , -SO₂NR₂₁R₂₂, -CONR₂₁R₂₂ or -CO₂R₂₁; Z_1 represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted heterocyclic group; R_{21} and R_{22} each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted heterocyclic group; Y_1 , Y_2 , Y_3 and Y_4 each independently represents a univalent substituent group; x_1 to x_2 and x_3 and x_4 and x_4 and x_5 to x_4 and x_5 are each independently represents a number of 0 to 4, but there is no case where all are 0 at the same time, x_5 to x_5 and x_5 and x_5 and x_5 and x_5 and x_5 are each independently represents a number of 0 to 4, and when x_5 and x_5 and x_5 are each independently represents a number of 0 to 4, and when x_5 and x_5 and x_5 are each independently represents a number of 0 to 4, and when x_5 and x_5 and x_5 are each independently represents a number of 0 to 4, and when x_5 and x_5 and x_5 are each independently represents a number of 0 to 4, and when x_5 and x_5 and x_5 are each independently represents a number of 0 to 4, and when x_5 and x_5 and x_5 are each independently represents a number of 0 to 4, and when x_5 and x_5 are each independently represents a number of 0 to 4, and when x_5 and x_5 are each independently represents a number of 0 to 4, and when x_5 and x_5 are each independently represents a number of 0 to 4, and when x_5 and x_5 are each independently represents a number of 0 to 4, and when

represents a number of 2 or more, pluralities of X_1 's to X_4 's and Y_1 's to Y_4 's may each be the same or different; and M is a hydrogen atom, a metal atom, or an oxide, hydroxide or halide thereof.

9. (original): The ink set described in claim 1 or 2, which further comprises a coloring agent represented by the following general formula (Y-I) as the yellow ink:

$$A^{11}-N=N-B^{11}$$

wherein A¹¹ and B¹¹ each independently represents a heterocyclic group which may be substituted.

- 10. (original): The ink set described in claim 7, wherein the magenta ink includes a set of two or more inks different in ink concentration, and the ink concentration of one magenta ink is 0.05 to 0.5 time that of the other magenta ink.
- 11. (original): The ink set described in claim 8, wherein the cyan ink includes a set of two or more inks different in ink concentration, and the ink concentration of one cyan ink is 0.05 to 0.5 time that of the other cyan ink.

7

- 12. (original): A color ink cartridge comprising at least a black ink, wherein the black ink includes the coloring agent described in claim 1 or 2.
- 13. (currently amended): The ink cartridge described in claim 12, which further comprises: a coloring agent represented by the following general formula (M-I) as the magenta ink; and a coloring agent represented by the following general formula (C-I) as the cyan ink:

$$A^{1}-N=N-X-N-N-R^{5}$$

$$R^{6}$$

$$R^{6}$$

wherein A¹ represents a residue of a 5-membered heterocyclic diazo component A¹-NH₂; B¹ and B² each represent a nitrogen atom, -CR¹= or -CR²=, and one of B¹ and B² represents a nitrogen atom, the other represents -CR¹= or -CR²=; R⁵ and R⁶ each independently represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a carbamoyl group, an alkyl- or arylsulfonyl group or a sulfamoyl group, which may further have a substituent group; G¹, R¹ and R² each independently represents a hydrogen atom, a halogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, a carboxyl group, a carbamoyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a heterocyclic oxycarbonyl group, an acyl group, a hydroxyl group, an alkoxyl group, an aryloxy group, a heterocyclic oxy group, a silyloxy group, an acyloxy group, a carbamoyloxy group, an alkoxycarbonyloxy group, an aryloxy group, an

oxycarbonyloxy group, an amino group [[()]containing a heterocyclic amino group and an anilino group[[)]], an acylamino group, a ureido group, a sulfamoylamino group, an alkoxycarbonylamino group, an aryloxycarbonylamino group, an alkyl- or arylsulfonylamino group, a heterocyclic sulfonylamino group, a nitro group, an alkyl- or arylthio group, an alkyl- or arylsulfonyl group, a heterocyclic sulfonyl group, an alkyl- or arylsulfinyl group, a heterocyclic sulfinyl group, a sulfamoyl group, a sulfo group or a heterocyclic thio group, which may be further substituted; and R¹ and R⁵, or R⁵ and R⁶ may combine with each other to form a 5- or 6-membered ring:

$$(X_3)a_3$$

$$(X_4)a_4$$

$$(Y_4)b_4$$

$$(X_3)a_3$$

$$(Y_2)b_2$$

$$(X_2)a_2$$

$$(X_4)a_4$$

$$(Y_4)b_4$$

$$(Y_1)b_1$$

$$(Y_1)b_1$$

wherein X_1 , X_2 , X_3 and X_4 each independently represents -SO- Z_1 , -SO₂- Z_1 , -SO₂NR₂₁R₂₂, -CONR₂₁R₂₂ or -CO₂R₂₁; Z_1 represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkenyl group, a substituted or

unsubstituted aralkyl group, a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group; R_{21} and R_{22} each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted heterocyclic group; Y_1 , Y_2 , Y_3 and Y_4 each independently represents a univalent substituent group; a_1 to a_4 and b_1 to b_4 each represents the substituent group number of X_1 to X_4 and Y_1 to Y_4 , respectively, a_1 to a_4 each independently represents a number of 0 to 4, but there is no case where all are 0 at the same time, a_1 to a_2 each independently represents a number of 0 to 4, and when a_1 to a_4 and a_1 to a_4 and a_2 each represents a number of 2 or more, pluralities of a_1 is to a_2 and a_2 is to a_3 is may each be the same or different; and a_2 is a hydrogen atom, a metal atom, or an oxide, hydroxide or halide thereof.

14. (original): The ink cartridge described in claim 12, which further comprises at least one coloring agent represented by the following general formula (Y-I) as the yellow ink:

$$A^{11}-N=N-B^{11}$$
 (Y-1)

wherein A¹¹ and B¹¹ each independently represents a heterocyclic group which may be substituted.

- 15. (currently amended): An ink jet printer using incorporating the ink set described in claim 1 or 2.
- 16. (currently amended): An image recording method comprising using forming an ink jet image by inkjet printing with the ink set described in claim 1 or 2 in conducting color printing.