Лабораторная работа 4.3.2 Дифракция света на ультразвуковой волне в жидкости

Сафиуллин Роберт 22 февраля 2019 г.

1 Цель работы:

изучение дифракции света на синусоидальной акустической решетки и наблюдение фазовой решетки методом темного поля

2 В работе используются:

оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор УЗ-частоты, линза, микроскоп.

3 Установка

Источник света Л через светофильтр Ф и конденсор К освещает щель S, которая расположена в фокусе объектива О1. Выходящий из объектива параллельный пучок света проходит через кювету С перпендикулярно направлению распространения УЗ-волн. Эти волны возбуждаются в жидкости пьезокварцевой пластинкой Q, прикреплённой к стенке кюветы. На кварцевую пластинку подаётся напряжение ультразвуковой частоты от генератора (на рис. 2 не показан). В фокальной плоскости второго объектива О2 образуется дифракционная картина, наблюдаемая при помощи микроскопа М. При этом обязательно применяют монохроматическое излучение (красный светофильтр).

4 Ход работы

Определение скорости ультразвука по дифракционной картине

1) Погрузили в жидкость излучатель Q на нужную глубину, такую, что

на расстоянии от излучателя до противоположной стенки кюветы укладывалось целое число длин полуволн.

- 2) Оценили таким способом длину волны Λ как удвоенное расстояние между двумя наиболее интенсивными дифракционными картинами. Для УЗ-волны частоты $\nu=1.076~{\rm M}\Gamma$ ц длину волны $\Lambda=2*65*10=1300~{\rm M}$ км.
- 3) Используя формулу $v=\Lambda*\nu$ найдем скорость УЗ-волны в жидкости $v=1400~{\rm m/c}~(v_{tabl}=1480~{\rm m/c})$
- 4) Для разных частот определим координаты дифракционных полос. Результаты занесем в таблицу:

ν, МГц	y_{-1} , MKM	y_0 , MKM	y_1 , mkm
1.077	-126	0	126
1.2	-130	0	130
1.36	-164	0	164
1.423	-172	0	172

5) Используя формулу $\Lambda = m*f*\frac{\lambda}{l_m}$, найдем Λ ($\lambda = 640\pm 20$ нм, f = 28 cm), а также v. Результаты занесем в таблицу:

ν , М Γ ц	l_1 , mkm	Λ , mkm	v, м/с
1.077	126	1422 ± 44	1531 ± 47
1.2	130	1378 ± 43	1654 ± 52
1.36	164	1093 ± 34	1487 ± 46
1.423	172	1042 ± 33	1483 ± 47

Определение скорости ультразвука методом темного поля

- 6) Разместим линзу между микроскопом и щелью, чтобы снова сделать пучок лучей параллельными.
- 7) Откалибруем шкалу микроскопа с помощью квадратной сетки. (1мм = 23 деления шкалы)
- 8) Установили ширину щели 30 мкм.
- 9) Закрыли центральную гармонику проволокой, находящейся на расстоянии f от кюветы.
- 10) Зафиксируем с помощью откалиброванной окулярной шкалы координаты первой и последней из хорошо видимых темных полос, а также их количество.(для разных частот)
- 11) Результаты запишем в таблицу:

ν МГц	$\frac{1}{\nu}$	r, mm	N, ед	Λ , mkm
1.044	0.96	5.074	7	1450
1.058	0.95	4.191	6	1397
1.5	0.67	3.435	8	859
1.59	0.63	3.913	9	870
1.899	0.53	3.913	11	712
2.07	0.48	3.261	9	725

12) Построим график $\Lambda(\frac{1}{\nu})$

Отсюда скорость ультразвука в воде 1452 м/с $(v_{tabl}=1480~{\rm m/c})$