Carousel: Scalable Traffic Shaping at End Hosts

Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam, Carlo Contavalli, and Amin Vahdat

Packet sources

Overhead of managing a queue per configured rate

Shaper

We need new traffic shapers that can handle tens of thousands of flows and rates

Main Idea Replace the many queues with a single low-overhead queue

Apply backpressure

Outline

- Problems with Current Shapers
- Carousel Overview
- Single Queue Shaping
- Backpressure
- Evaluation

Problems with Current Shapers

FQ/Pacing

- Implements per TCP flow pacing
- Requires a queue per flow
 - Flows are kept in order of their scheduled transmission time
 - Flows are dequeued in order
- O(log n) operations per packet to operate on a sorted list of flows

CPU utilization for FQ/pacing and a NOOP Qdisc for the same load

FQ/Pacing introduces 10% more CPU overhead

Carousel Overview

- Relies on a single queue for all packets from all flows
- Requires a high frequency timer or busy polling
- Pinned to a single core

Single Queue Shaping

Single Queue Shaping

- All packet are sorted by their transmission time in one data structure
- A single queue for all traffic will need to handle tens of thousands of packets

Challenge:

Enqueue and dequeue in a data structure of sorted elements at line rate

Single Queue Shaping

- All packet are sorted by their transmission time in one data structure
- A single queue for all traffic will need to handle tens of thousands of packets
- Challenge:

Enqueue and dequeue in a data structure of sorted elements at

line rate

Timing Wheel [Varghese et al. SOSP '87]

- Bucket sort approach to Calendar Queue covering a time horizon
 - Relies on having a minimum rates
- Implemented as an array of buckets each a linked list of packets
 - Each bucket represents a certain time range

Timing Wheel Benchmark

- Measured overhead per enqueue/dequeue pairs
- Overhead per element is between 21-22 nanoseconds
 - Fixed for 2000 to 2 million sorted elements
 - 21 nanoseconds per packet = 500 Gbps (for 1500 byte packets)

Timestampers

- Packets are timestamped by policy enforcers in their transmission path
 - TCP timestamps a packet based on its pacing rate
 - Bandwidth enforcer timestamps a packet based on its policy-based aggregate rate
- Carousel picks the largest timestamp
- NextTimestamp = LastTimestamp + SizeOfPacket ConfiguredRate

A time step 0

A time step 0

A time step 0

 Without backpressure shaper queues get full with small number of flows causing

- Without backpressure shaper queues get full with small number of flows causing
 - Unnecessary drops (when the queue is full the queue tail drops)

- Without backpressure shaper queues get full with small number of flows causing
 - Unnecessary drops (when the queue is full the queue tail drops)
 - Head of Line Blocking

- Without backpressure shaper queues get full with small number of flows causing
 - Unnecessary drops (when the queue is full the queue tail drops)
 - Head of Line Blocking
- Backpressure allows shapers to control sender rate and avoid overwhelming the shaper

 Completions are signals from the NIC to the network stack to inform it that a packet has been transmitted

 Completions are signals from the NIC to the network stack to inform it that a packet has been transmitted

 Completions are signals from the NIC to the network stack to inform it that a packet has been transmitted

- Completions are signals from the NIC to the network stack to inform it that a packet has been transmitted
 - Completions are typically delivered in order

- Completions are signals from the NIC to the network stack to inform it that a packet has been transmitted
 - Completions are typically delivered in order
 - Completion should be controlled by the hypervisor not the virtual NIC

- Completions are signals from the NIC to the network stack to inform it that a packet has been transmitted
 - Completions are typically delivered in order
 - Completion should be controlled by the hypervisor not the virtual NIC
- Completions should be delivered out of order and completely controlled by Shapers

Evaluation

Evaluation Setup

Carousel deployed within a Software NIC

Evaluation Setup

- Carousel deployed within a Software NIC
- Evaluation on Youtube servers comparing Carousel and FQ/Pacing

Evaluation Setup

- Carousel deployed within a Software NIC
- Evaluation on Youtube servers comparing Carousel and FQ/Pacing
- Each server handles up to 50k sessions concurrently

Evaluation Metric

- Measures Gbps served per CPU utilization
 - Metric used is Gbps/CPU (higher is better)
 - Compare machines with similar CPU utilization
 - Measurements performed during peak 12-hours per day
- Evaluation is performed for:
 - Overall CPU utilization
 - Software NIC utilization

Overall CPU Utilization

Overall CPU Utilization

Carousel saves up to 8.2% of overall CPU utilization (5.9 cores on a 72 core machine)

SoftNIC Utilization

SoftNIC Utilization

Carousel improves even Software NIC utilization by 12% by increasing size of batches of packets enqueue in the Software NIC

Evaluation Summary

Performance improvement when Carousel starts on 5 different machines

Conclusion

- Carousel allows networks operators for the first time to shape tens of thousands of flows individually
- Carousel advantages make a strong case for providing single-queue shaping and backpressure in kernel, userspace stacks, hypervisors, and hardware

Questions?