Lecture 4: Advanced MPI

Collective MPI calls

- Which is the most characteristic property of a collective call?
- Experiment with ignoring it! (e.g. MPI/Coll1.c)

Need to be called by all processes (ranks) in the communicator!

 Sketch (e.g., on paper) the data placement before and after the MPI Gatherv call in MPI/Coll1.c!

Replace MPI_Gather[v] by MPI_Allgather[v]!
 What else needs to be changed?

Remove if (rank==root) • Collective computations (mainly reductions):

Add a reduction by MPI_Reduce of your choice to MPI/Coll_1.c and check the result!

Try also MPI_Allreduce!

Creating new communicators

Run and understand communicator splitting in MPI/Split_1.c!

Try a meaningful modification of the key argument of MPI_Comm_split!

Also: MPI/Comm_1.c, MPI/Split_2.c

User-defined datatypes in MPI

Run and understand MPI/Data_1.c!

Modify count, blocklength and stride of MPI_Type_vector!

What is a general datatype in MPI?

- sequence of basic datatypes ("type signature")
- sequence of integer (byte) displacements

One-sided communication

Clarify:
 origin vs. target process
 data source vs. data destination
 active vs. passive synchronization

- origin vs. target: active vs. passive process
- Put etc.: data source on origin, data destination on target
 Get etc.: data source on target, data destination on origin
- active sync: both origin and target

involved

passive sync: only origin

One-sided communication:

Run and understand MPI/One_sided_1.c!

Also: MPI/One_sided_2.c, MPI/One_sided_3.c