

Universidade Federal da Paraíba Centro de Ciências Aplicadas à Educação Departamento de Ciências Exatas

Disciplina: Cálculo I

Professora: Juliana Aragão

Curso: LCC

Limites – Parte 1

Limites – Definição Intuitiva

Temos uma função $f(x) = \frac{x^2-1}{x-1}$, cujo domínio é $\mathbb{R} - \{1\}$, e, como não podemos calcular f(1), desejamos saber como esta função se comporta quando x assume valores próximos de 1.

Limites – Definição Intuitiva

Tabalaka	0,999	0,99	0,95	0,9	0,5	0	x
Tabela 1a	1,999	1,99	1,95	1,9	1,5	1	f(x)
Tabela 1b	1,001	1,01	1,05	1,1	1,5	2	x
	2,001						

Observamos, das tabelas 1a e 1b, que quanto mais x se aproxima de 1 mais f(x) se aproxima de 2. Representamos este comportamento dizendo que

$$\lim_{x \to 1} f(x) = 2$$

Limites – Definição Informal

Definição 1: Seja f uma função definida em algum intervalo aberto que contenha a, exceto possivelmente no próprio a. Então escrevemos

$$\lim_{x \to a} f(x) = L$$

E dizemos "o limite de f(x), quando x tende a a, é igual a L" se pudermos tornar os valores de f(x) tão próximos de L quanto quisermos, tornando x suficientemente próximo de a (por ambos os lados de a), mas não igual a a.

Limites – Observações

• Dizer que $\lim_{x\to a} f(x) = L$ não é o mesmo que dizer que f(a) = L. Podemos ter $\lim_{x\to a} f(x) = L$ e f(a) = L ou $f(a) \neq L$ ou até mesmo f(a) não existir.

Limites – Observações

Exemplo 1:
$$f(x) = \frac{x-1}{x^2-1}$$

Exemplo 1:
$$f(x) = \frac{x-1}{x^2-1}$$
 $f(x) = \begin{cases} \frac{x-1}{x^2-1}, & x \neq 1 \\ 0,5, & x = 1 \end{cases}$

Limites – Observações

• A função $f(x) = \sin\left(\frac{\pi}{x}\right)$ não tem limite quando $x \to 0$

• A função $f(x) = \frac{1}{x^2}$ não tem limite quando $x \to 0$

Para determinarmos $\lim_{x\to 1} f(x)$ da função $f(x) = \frac{x^2-1}{x-1}$, construímos duas tabelas.

x	0	0,5	0,9	0,95	0,99	0,999	\boldsymbol{x}	2	1,5	1,1	1,05	1,01	1,001
f(x)	1	1,5	1,9	1,95	1,99	1,999	f(x)	3	2,5	2,1	2,05	2,01	2,001
			(a)							(b)		

Observamos que quanto mais x se aproxima de 1, por valores menores (a) ou maiores (b) que 1, mais f(x) se aproxima de 2. Assim, dizemos, respectivamente, que

$$\lim_{x \to 1^{-}} f(x) = 2 e \lim_{x \to 1^{+}} f(x) = 2$$

Limites Laterais – Definição Informal

Definição 2: Escrevemos

$$\lim_{x \to a^{-}} f(x) = L \text{ (Limite Lateral à Esquerda)}$$

E dizemos que o limite de f(x) quando x tende a a pela esquerda é igual a L se pudermos tornar os valores de f(x) arbitrariamente próximos de L, para x suficientemente próximo de a, mas menores que a.

Limites Laterais – Definição Informal

Definição 3: Escrevemos

$$\lim_{x \to a^+} f(x) = L \text{ (Limite Lateral à Direita)}$$

E dizemos que o limite de f(x) quando x tende a a pela direita é igual a L se pudermos tornar os valores de f(x) arbitrariamente próximos de L, para x suficientemente próximo de a, mas maiores que a.

 As definições de limite lateral à esquerda e limite lateral à direita diferem apenas no modo como x se aproxima de a.

Teorema 1: $\lim_{x \to a} f(x) = L$ se, se somente se,

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = L$$

Exemplo 2:

$$\lim_{x \to 2^-} f(x) = 3$$

$$\lim_{x \to 2^+} f(x) = 1$$

 $\lim_{x\to 2} f(x)$ não existe

$$\lim_{x \to 5^-} f(x) = 2$$

$$\lim_{x \to 5^+} f(x) = 2$$

$$\lim_{x\to 2} f(x) = 2$$

Exemplo 3: Use o gráfico dado de f para dizer o valor de cada quantidade, se ela existir. Se não existir, explique por quê

a)
$$\lim_{x \to 2^{-}} f(x)$$
 b) $\lim_{x \to 2^{+}} f(x)$

c)
$$\lim_{x\to 2} f(x)$$
 d) $f(2)$

e)
$$\lim_{x \to 4} f(x)$$
 f) $f(4)$

Exemplo 4:

a)
$$\lim_{x \to -3^-} f(x)$$

b)
$$\lim_{x\to -3^+} f(x)$$
 c) $\lim_{x\to -3} f(x)$

c)
$$\lim_{x \to -3} f(x)$$

d)
$$f(-3)$$
 e) $\lim_{x\to 0^{-}} f(x)$

f)
$$\lim_{x\to 0^+} f(x)$$

f)
$$\lim_{x\to 0^+} f(x)$$
 g) $\lim_{x\to 0} f(x)$

i)
$$\lim_{x \to 2} f(x)$$

j)
$$f(2)$$

k)
$$\lim_{x\to 5^-} f(x)$$

h)
$$f(0)$$
 i) $\lim_{x\to 2} f(x)$ j) $f(2)$ k) $\lim_{x\to 5^{-}} f(x)$ l) $\lim_{x\to 5^{+}} f(x)$

Cálculo de Limites

O cálculo de $\lim_{x\to a} f(x)$ através da construção de uma tabela, como foi feito anteriormente, é meramente intuitivo. Sendo assim, pode resultar em conclusões erradas, como pode ser visto a seguir.

Cálculo de Limites

Exemplo 5:
$$\lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2}$$

t	$\frac{\sqrt{t^2+9}-3}{t^2}$
±1,0	0,16228
±0,5	0,16553
±0,1	0,16662
±0,05	0,16666
±0,01	0,16667

0,2	-	
0, 1-		
		I

t	$\frac{\sqrt{t^2+9}-3}{t^2}$
±0,0005	0,16800
±0,0001	0,20000
±0,00005	0,00000
±0,00001	0,00000

Supondo que c seja uma constante e que os limites $\lim_{x\to a} f(x)$ e

 $\lim_{x\to a} g(x)$ existam. Então:

1.
$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

$$2. \lim_{x \to a} [cf(x)] = c \lim_{x \to a} [f(x)]$$

3.
$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

4.
$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$
, desde que $\lim_{x \to a} g(x) \neq 0$

5.
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$$
, $n \in \mathbb{R}$, desde que $\left[\lim_{x \to a} f(x)\right]^n$ exista

Exemplo 6: Usando as propriedades de limites e o gráfico a seguir, calcule o valor dos limites.

a.
$$\lim_{x \to -2} [f(x) + 5g(x)] \approx 1.4$$

b.
$$\lim_{x\to 1} [f(x) \cdot g(x)]$$
 não existe

$$6. \lim_{x \to a} c = c$$

$$7. \lim_{x \to a} x = a$$

Exemplo 7: Calcule o valor dos limites a seguir justificando cada passagem com as propriedades vistas anteriormente.

a)
$$\lim_{x \to 5} (2x^2 - 3x + 4) = \lim_{x \to 5} (2x^2) - \lim_{x \to 5} (3x) + \lim_{x \to 5} (4) =$$
 (Prop. 1)

$$= 2 \lim_{x \to 5} (x^2) - 3 \lim_{x \to 5} (x) + 4 =$$
 (Prop. 2 e 6)

$$= 2 \left(\lim_{x \to 5} x\right)^2 - 3 \cdot 5 + 4 =$$
 (Prop. 5 e 7)

(Prop. 5)

 $= 2(5)^2 - 3 \cdot 5 + 4 = 39$

b)
$$\lim_{x \to -2} \left(\frac{x^3 + 2x^2 - 1}{5 - 3x} \right) = \frac{\lim_{x \to -2} (x^3 + 2x^2 - 1)}{\lim_{x \to -2} (5 - 3x)}$$
 (Prop. 4)
$$= \frac{\lim_{x \to -2} (x^3) + \lim_{x \to -2} (2x^2) - \lim_{x \to -2} (1)}{\lim_{x \to -2} (5) - \lim_{x \to -2} (3x)}$$
 (Prop. 1)
$$= \frac{\lim_{x \to -2} (x^3) + 2 \lim_{x \to -2} (x^2) - 1}{5 - 3 \lim_{x \to -2} (x)}$$
 (Prop. 2 e 6)
$$= \frac{\left(\lim_{x \to -2} (x)\right)^3 + 2\left(\lim_{x \to -2} (x)\right)^2 - 1}{5 - 3 \lim_{x \to -2} (x)}$$
 (Prop. 5)
$$= \frac{(-2)^3 + 2(-2)^2 - 1}{5 - 3(-2)} = \frac{-1}{11}$$
 (Prop. 7)

Teorema 2: Se f for uma função polinomial ou racional e a estiver no domínio de f então:

$$\lim_{x \to a} f(x) = f(a)$$

Teorema 3: Se f(x) = g(x) quando $x \neq a$, então

 $\lim_{x \to a} f(x) = \lim_{x \to a} g(x), \text{ desde que o limite exista.}$

Os gráficos de f e g são dados. Use-os para calcular cada limite. Caso não exista, explique por quê.

$$y = g(x)$$

$$0 \quad 1$$

$$x$$

(a)
$$\lim_{x\to 2} [f(x) + g(x)]$$

(b)
$$\lim_{x \to 1} [f(x) + g(x)]$$

(c)
$$\lim_{x\to 0} [f(x)g(x)]$$

(d)
$$\lim_{x \to -1} \frac{f(x)}{g(x)}$$

(e)
$$\lim_{x\to 2} [x^3 f(x)]$$

(f)
$$\lim_{x \to 1} \sqrt{3 + f(x)}$$

3-9 Calcule o limite justificando cada passagem com as Propriedades dos Limites que forem usadas.

3.
$$\lim_{x \to -2} (3x^4 + 2x^2 - x + 1)$$

4.
$$\lim_{x \to -1} (x^4 - 3x)(x^2 + 5x + 3)$$

5.
$$\lim_{t \to -2} \frac{t^4 - 2}{2t^2 - 3t + 2}$$
 6. $\lim_{u \to -2} \sqrt{u^4 + 3u + 6}$

6.
$$\lim_{u \to -2} \sqrt{u^4 + 3u + 6}$$

7.
$$\lim_{x\to 8} \left(1 + \sqrt[3]{x}\right) (2 - 6x^2 + x^3)$$
 8. $\lim_{t\to 2} \left(\frac{t^2 - 2}{t^3 - 3t + 5}\right)^2$

8.
$$\lim_{t\to 2} \left(\frac{t^2-2}{t^3-3t+5}\right)^t$$

9.
$$\lim_{x\to 2} \sqrt{\frac{2x^2+1}{3x-2}}$$

11–32 Calcule o limite, se existir.

11.
$$\lim_{x\to 2} \frac{x^2+x-6}{x-2}$$

13.
$$\lim_{x\to 2} \frac{x^2 - x + 6}{x - 2}$$

15.
$$\lim_{t \to -3} \frac{t^2 - 9}{2t^2 + 7t + 3}$$

17.
$$\lim_{h\to 0} \frac{(-5+h)^2-25}{h}$$

19.
$$\lim_{x \to -2} \frac{x+2}{x^3+8}$$

21.
$$\lim_{h\to 0} \frac{\sqrt{9+h}-3}{h}$$

23.
$$\lim_{x \to -4} \frac{\frac{1}{4} + \frac{1}{x}}{4 + x}$$

25.
$$\lim_{t\to 0} \frac{\sqrt{1+t}-\sqrt{1-t}}{t}$$

12.
$$\lim_{x \to -4} \frac{x^2 + 5x + 4}{x^2 + 3x - 4}$$
 27. $\lim_{x \to 16} \frac{4 - \sqrt{x}}{16x - x^2}$

14.
$$\lim_{x \to -1} \frac{x^2 - 4x}{x^2 - 3x - 4}$$

16.
$$\lim_{x \to -1} \frac{2x^2 + 3x + 1}{x^2 - 2x - 3}$$

18.
$$\lim_{h\to 0} \frac{(2+h)^3-8}{h}$$

20.
$$\lim_{t\to 1} \frac{t^4-1}{t^3-1}$$

22.
$$\lim_{u \to 2} \frac{\sqrt{4u+1}-3}{u-2}$$

24.
$$\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^4 - 1}$$

26.
$$\lim_{t\to 0} \left(\frac{1}{t} - \frac{1}{t^2 + t}\right)$$

$$\lim_{x \to 16} \frac{4 - \sqrt{x}}{16x - x^2}$$
 28.
$$\lim_{h \to 0} \frac{(3 + h)^{-1} - 3^{-1}}{h}$$

14.
$$\lim_{x \to -1} \frac{x^2 - 4x}{x^2 - 3x - 4}$$
 29. $\lim_{t \to 0} \left(\frac{1}{t\sqrt{1+t}} - \frac{1}{t} \right)$ **30.** $\lim_{x \to -4} \frac{\sqrt{x^2 + 9} - 5}{x + 4}$

31.
$$\lim_{h\to 0} \frac{(x+h)^3 - x^3}{h}$$
 32. $\lim_{h\to 0} \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h}$

$$f(x) = \begin{cases} x^2 + 1 & \text{se } x < 1\\ (x - 2)^2 & \text{se } x \ge 1 \end{cases}$$

- (a) Encontre $\lim_{x\to 1^-} f(x)$ e $\lim_{x\to 1^+} f(x)$.
- (b) $\lim_{x\to 1} f(x)$ existe?
- (c) Esboce o gráfico de f.

Seja

$$g(x) = \begin{cases} x & \text{se } x < 1\\ 3 & \text{se } x = 1\\ 2 - x^2 & \text{se } 1 < x \le 2\\ x - 3 & \text{se } x > 2 \end{cases}$$

- (a) Determine as quantidades a seguir, se existirem.
 - (i) $\lim_{x \to 1^{-}} g(x)$ (ii) $\lim_{x \to 1} g(x)$ (iii) g(1)
 - (iv) $\lim_{x \to 2^{-}} g(x)$ (v) $\lim_{x \to 2^{+}} g(x)$ (vi) $\lim_{x \to 2} g(x)$
- (b) Esboce o gráfico de q.

6. Se
$$\lim_{x \to 1} \frac{f(x) - 8}{x - 1} = 10$$
, encontre $\lim_{x \to 1} f(x)$.

7. Se $\lim_{x\to 0} \frac{f(x)}{x^2} = 5$, encontre os seguintes limites.

(a)
$$\lim_{x\to 0} f(x)$$

(a)
$$\lim_{x \to 0} f(x)$$
 (b) $\lim_{x \to 0} \frac{f(x)}{x}$

8. Calcule $\lim_{x\to 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1}$