Отчет по лабораторной работпе №7

Команды безусловного и условного переходов в Nasm. Программирование ветвлений.

Жукова София Виктровна

Содержание

Цель работы	Ę
Задание	6
Выполнение лабораторной работы	7
Выводы	18

Список иллюстраций

1	Создаем каталог и фаил	./
2	Заполняем файл	8
3	Запускаем файл и смотрим на его работу	8
4	Изменяем файл	9
5	Проверяем работу файл	9
6	Изменяем файл	10
7	Запускаем файл	10
8	Создаем файл	10
9	Создаем файл	11
10	Проверяем работу	11
11	Проверем работу	12
12	Создаем файл	12
13	Открываем файл	12
14	Открываем файл	13
15	Строчки	13
16	Открываем файл	14
17	Трвансируем файл	14
18	Проверяем	14
19	Проверяем	15
20	Создаем	15
21	Заполняем файл	16
22	Проверяем работу прораммы	16
23	Создаем исполняемый файл	17
24	Заполняем файл	17
25	Проверяем работу файда	17

Список таблиц

Цель работы

Изучить команды условного и безусловного переходов. Приобрести навыки написания программ с использованием переходов. Познакомиться с назначением и структурой файла листинга.

Задание

Написать программы для решения системы выражений.

Выполнение лабораторной работы

Порядок выполнения лабораторной работы

1. Реализация переходов в NASM Создадим каталог для программ лабораторной работы N° 7, перейдем в него и со-здадим файл lab7-1.asm (рис. [-@fig:001]).

```
!4/report$ mkdir ~/work/arch-pc/lab07
svzhukova@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/labs/lab0
!4/report$ cd ~/work/arch-pc/lab07
svzhukova@fedora:~/work/arch-pc/lab07$ touch lab7-1.asm
svzhukova@fedora:~/work/arch-pc/lab07$
```

Рис. 1: Создаем каталог и файл

Откроем файл lab7-1.asm в Midnight Commander и введем текст программы из листинга 7.1. (рис. [-@fig:002]).

Рис. 2: Заполняем файл

Создадим исполняемый файл и запустим его. (рис. [-@fig:003]).

```
svzhukova@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-1.asm
svzhukova@fedora:~/work/arch-pc/lab07$ ld -n elf_i386 -o lab7-1 lab7-1.o
ld: cannot find elf_i386: No such file or directory
svzhukova@fedora:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o
svzhukova@fedora:~/work/arch-pc/lab07$ ./lab7-1
Сообщение № 2
Сообщение № 3
svzhukova@fedora:~/work/arch-pc/lab07$
```

Рис. 3: Запускаем файл и смотрим на его работу

Изменим программу таким образом, чтобы она выводила сначала 'Сообщение N° 2', потом 'Сообщение N° 1' и завершала работу. (рис. [-@fig:004]).

```
Lab7-1.asm [----] 6 L:[ 3+26 29/29] *(483 / 492b) 0099 0

SECTION .data
msg1: DB 'Сообщение № 1',0
msg2: DB 'Сообщение № 2',0
msg3: DB 'Сообщение № 3',0

...

SECTION .text
GLOBAL _start
   _start:
...

jmp _label2
...

_label1:
mov eax, msg1
call sprintLF
jmp _end
...

_label2:
mov eax, msg2
call sprintLF
jmp _label1
...

_label3:
mov eax, msg3
call sprintLF
...

_end:
_eall quit
```

Рис. 4: Изменяем файл

Создадим исполняемый файл и проверим его работу. (рис. [-@fig:005]).

```
svzhukova@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-1.asm svzhukova@fedora:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o svzhukova@fedora:~/work/arch-pc/lab07$ ./lab7-1 Сообщение № 2 сообщение № 1 svzhukova@fedora:~/work/arch-pc/lab07$
```

Рис. 5: Проверяем работу файл

Снова открываем файл для редактирования и изменяем его (рис. [-@fig:006]).

Рис. 6: Изменяем файл

Создаем исполняемый файл и запускаем его (рис. [-@fig:007]).

```
svzhukova@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-1.asm svzhukova@fedora:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o svzhukova@fedora:~/work/arch-pc/lab07$ ./lab7-1 Сообщение № 3 Сообщение № 2 Сообщение № 1 svzhukova@fedora:~/work/arch-pc/lab07$
```

Рис. 7: Запускаем файл

Создадим файл lab7-2.asm в каталоге ~/work/arch-pc/lab07. (рис. [-@fig:008]).

```
svzhukova@fedora:~/work/arch-pc/lab07$ touch lab7-2.asm
svzhukova@fedora:~/work/arch-pc/lab07$
```

Рис. 8: Создаем файл

Внимательно изучим текст программы из листинга 7.3 и введем в lab7-2.asm. (рис. [-@fig:009]).

Рис. 9: Создаем файл

Создадим исполняемый файл и проверим его работу для разных значений В. (рис. [-@fig:010]).

```
svzhukova@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-2.asm
svzhukova@fedora:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-2 lab7-2.o
svzhukova@fedora:~/work/arch-pc/lab07$ ./lab7-2
Введите В: 33
Наибольшее число: 50
svzhukova@fedora:~/work/arch-pc/lab07$
```

Рис. 10: Проверяем работу

(рис. [-@fig:012]).

```
svzhukova@fedora:~/work/arch-pc/lab07$ ./lab7-2
Введите В: 22
Наибольшее число: 50
svzhukova@fedora:~/work/arch-pc/lab07$ ./lab7-2
Введите В: 1
Наибольшее число: 50
svzhukova@fedora:~/work/arch-pc/lab07$ ./lab7-2
Введите В: 55
Наибольшее число: 55
```

Рис. 11: Проверем работу

2. Изучение структуры файлы листинга

Создадим файл листинга для программы из файла lab7-2.asm (рис. [-@fig:011]).

```
svzhukova@fedora:~/work/arch-pc/lab07$ nasm -f elf -l lab7-2.lst lab7-2.asm svzhukova@fedora:~/work/arch-pc/lab07$
```

Рис. 12: Создаем файл

Открываем файл листинга с помощью команды mcedit (рис. [-@fig:013]).

```
svzhukova@fedora:~/work/arch-pc/lab07$ mcedit lab7-2.lst
```

Рис. 13: Открываем файл

Изучаем файл (рис. [-@fig:014]).

Рис. 14: Открываем файл

(рис. [-@fig:015]).

Рис. 15: Строчки

51: 00000038-адрес в сегменте кода, 50-машинный код, mov eax, 0АН-копируем значение переменой 0АН в eax 52: 00000039-адрес в сегменте кода, 89Е0-машинный код, push eax присвоение переменной eax значения 53: 0000003B-адрес в сегменте кода, E8CFFFFFF-машинный код, call sprint вызывает функцию

Откроем файл с программой lab7-2.asm и в инструкции с двумя операндами удалим один операнд. (рис. [-@fig:016]).

```
Winclude 'in_out.asm'
section .data

msgl db 'Введите В: ',0h
msg2 db "Наибольшее число: ",0h
A dd '20'
c dd '50'
section .bss
max resb 10
B resb 10
section .text
global _start
_start:
mov eax,msgl
call sprint
mov ecx,B
mov edx
call sread
mov eax,B
call atoi
mov [8],eax
mov ecx,[A]
mov [max],ecx
cmp ecx,[C]
jg check_B
mov ecx,[C]
mov[max],ecx
```

Рис. 16: Открываем файл

Выполним трансляцию с получением файла листинга: (рис. [-@fig:017]).

```
svzhukova@fedora:~/work/arch-pc/lab07$ nasm -f elf -l lab7-2.lst lab7-2.asm
lab7-2.asm:16: error: invalid combination of opcode and operands
svzhukova@fedora:~/work/arch-nc/lah07$
```

Рис. 17: Трвансируем файл

При трансляции файла, выдается ошибка, но создаются исполнительный файл lab7-2 и lab7-2.lst (рис. [-@fig:018]).

```
svzhukova@fedora:~/work/arch-pc/lab07$ ls
in_out.asm lab7-1 lab7-1.asm lab7-1.o lab7-2 lab7-2.asm lab7-2.lst
```

Рис. 18: Проверяем

Просматриваем файл листинга (рис. [-@fig:019]).

```
svzhukova@fedora:~/work/study/...
                                      svzhukova@fedora:~/work/arch-p..
                     -] 40 L:[ 31+13 44/218] *(2640/13160b) 0059 0x03B [*][)
 30 0000001A 58
 33 0000001D BB01000000
34 00000022 B804000000
35 00000027 CD80
 39 0000002B 5A
40 0000002C C3
                                 <1> ;
                                 <1> ; Функция печати сообщения с переводом
                                 <1> sprintLF:
                                                 sprint
50 00000033 B80A000000
51 00000038 50
53 0000003B E8CFFFFFF
```

Рис. 19: Проверяем

Задание для самостоятельной работы

ВАРИАНТ 7 1. Напишите программу нахождения наименьшей из 3 целочисленных переменных а,b и с. Создадим исполняемый файл (рис. [-@fig:020]).

```
svzhukova@fedora:~/work/arch-pc/lab07$ touch lab7-3.asm svzhukova@fedora:~/work/arch-pc/lab07$
```

Рис. 20: Создаем

Открываем файл и пишем программу, которая выберет наименьшую из трех переменных. (рис. [-@fig:021]).

Рис. 21: Заполняем файл

Транслируем файл и проверяем программу (рис. [-@fig:022]).

```
svzhukova@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-3.asm
svzhukova@fedora:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-3 lab7-3.o
svzhukova@fedora:~/work/arch-pc/lab07$ ./lab7-3
Введите В: 15
Наименьшее число: 15
svzhukova@fedora:~/work/arch-pc/lab07$
```

Рис. 22: Проверяем работу прораммы

2. Напишите программу, которая для введенных с клавиатуры значений х и а вычисляет значение заданной функции f(x) и выводит результат вычислений.

Создаем исполняемый файл (рис. [-@fig:023]).

```
svzhukova@fedora:~/work/arch-pc/lab07$ touch lab7-4.asm
svzhukova@fedora:~/work/arch-pc/lab07$
```

Рис. 23: Создаем исполняемый файл

Заполняем файл (рис. [-@fig:024]).

```
svzhukova@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/labs/lab...

lab7-4.asm [----] 13 L:[ 1+ 9 10/ 44] *(206 / 712b) 0010 0x00A
%include 'in_out.asm'
section .data
   msgl db 'Bведите x: ',0h
   msg2 db 'Bведите a: ',0h
   otv: DB 'F(x) = ',0h
section .bss
   x: RESB 80
   a: RESB 80
   a: RESB 80
   res: RESB 80
section .text global _start
_start:
   mov eax,msgl
   call sprint
   mov ecx,x
   mov edx,80
   call sread
   mov eax,x
   call atoi
   mov [x],eax
   mov eax,a
   mov eax,a
   call sread
   mov eax,a
   call stoi
   mov [x],eax
   mov eax,a
   call atoi
   mov [a],eax
   call atoi
   mov [a],eax
   call atoi
   mov eax,a
   call atoi
   mov eax,a
   call atoi
   mov eax,a
   call atoi
   mov eax,a
   call atoi
   mov eax,[a]
   jg check_A
   mov ecx,[a]
   mov [res],ecx
```

Рис. 24: Заполняем файл

Транслируем и проверяем работу файла для разных значений (рис. [-@fig:025]).

```
svzhukova@fedora:~/work/arch-pc/lab07$ ./lab7-4
Введите x: 1
Введите a: 1
F(x) = 6
svzhukova@fedora:~/work/arch-pc/lab07$ ./lab7-4
Введите x: 2
Введите a: 1
F(x) = 6
svzhukova@fedora:~/work/arch-pc/lab07$
```

Рис. 25: Проверяем работу файла

Выводы

Мы изучили команды условного и безусловного переходов, приобрели навыки написания программ с использованием переходов, познакомились с назначением и структурой файла листинга.