Roll No			

National Institute of Technology Goa

End Semester Examination, May-2015 Department of Humanities and Sciences

Course Name: MATHEMATICS-II

Date: May 1, 2015

Duration: 3Hours.

Course Code: MA 150

Time:9:30 AM

Max. Marks: 100

ANSWER ALL QUESTIONS

PART - A

 $(10 \times 2 = 20)$

- 1. Prove or disprove: If $S = \{v_1, v_2, v_3, v_4, v_5, v_6\}$ is linearly dependent set of vectors in \mathbb{R}^5 then each vector of S must be a linear combination of the remaining vectors of S.
- 2. Let A be an $n \times n$ matrix such that the system of equations AX = 0 has a non-trivial solution. Is it possible that the system of equation $A^tX = b$ has a unique solution for some $b \in \mathbb{R}^n$? Justify.
- 3. Find a 2×2 matrix A that has $u = [2, 2]^t$ and $v = [4, 5]^t$ as eigenvectors with associated eigenvalues 3 and 1 respectively.
- 4. Prove or disprove: There exist 2×2 matrices A and B such that $AB BA = I_2$.
- 5. Consider the square matrix $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$
 - (a) If 3 is an eigenvalue of A then find the eigenvalue of adj(A)
 - (b) Find the nature of eigen vectors.
- 6. Prove that the eigen values of a skew-Hermitian matrix are purely imaginary.
- 7. Find the Laplace transform of the following functions

(a)
$$e^{t^2}$$

(b)
$$(t^2-1)H(t-1)$$

- 8. Find the relation between H(t-a) and $\delta(t-a)$
- 9. If $\int_1^5 t^n \delta(t-2) dt = 8$, what is the exponent n?
- 10. Compute t * t * t

[5M]

- 11. (a) Solve: $y' = e^{x-y} (e^x e^y)$
- (b) Find the orthogonal trajectories of the family of curve $x^2 y^2 = c$ and also sketch the relevant

graphs

[10M]

12. Apply the variation of parameters method to solve the differential equation:

$$x^3y''' - 3x^2y'' + 6xy' - 6y = x^4 \ln x.$$

- 13. (a) Let λ_1 and λ_2 be two distinct eigenvalues of a matrix A and let u_1 and u_2 be eigenvectors of A corresponding to λ_1 and λ_2 , respectively. Show that $u_1 + u_2$ is not an eigenvector of A.
 - (b) Determine the eigenvalues and eigenvectors of $B = 2A^2 (A/2) + 3I$ where $A = \begin{pmatrix} 8 & -4 \\ 2 & 2 \end{pmatrix}$
- 14. Reduce the following quadratic form to standard form by making an approximate change of variables, X = QY where Q is an orthogonal matrix

$$6x^2 + 3y^2 + 3z^2 - 2yz + 4zx - 4xy$$

15. (a) Find the Laplace inverse transform of

[5M]

$$ln\left[1+\frac{\omega^2}{s^2}\right]$$

(b) Using the Laplace transform, solve the integral equation

[5M]

$$y(t) = 1 - \sinh t + \int_0^t (1+\tau)y(t-\tau)d\tau$$

16. (a) Let S be the subspace of \mathbb{R}^5 spanned by $\langle 1, 1, -1, 0, 0 \rangle$, $\langle 0, 2, 1, 0, 0 \rangle$ and $\langle 0, 1, -2, 0, 0 \rangle$. Find

(b) Determine whether the following points are collinear: $\langle -1, 1, 6 \rangle$, $\langle 2, 0, 1 \rangle$ and $\langle 3, 0, 0 \rangle$. If not, [5M] determine the equation for the plane containing these points.

17. (a) Solve the following the linear system of equation:

[5M][5M]

$$\begin{cases} 7x_1 - 3x_2 + 4x_3 & = -7 \\ 2x_1 + x_2 - x_3 + 4x_4 = 6 \\ x_2 & -3x_4 = -5 \end{cases}$$

(b) Find the least square line for the data points given below: [1, 3.8], [3, 11.7], [5, 20.6], [7, 26.5], and [9, 35.2].

18. Consider the differential equation y''' - 2y'' - y' + 2y = 0. Convert given differential equal to three

[10M]

- 1. a) Draw the following Miller Planes and Directions of the unit cell.
 - (i) Planes: [210], [110], [231], [101] and (ii) Directions: [100] and [111] (6M)
 b) The spacing between the principle planes in sodium chloride crystal is 2.82 Å. It is found that the first order Bragg reflection of a monochromatic beam of X-rays occur at an angle of 10°. (a) What is the wavelength of X-rays? (b) At what angle would be second order reflection occur? (4M)
 - c) Determine the Miller-Bravais indices for the plane shown in the hexagonal unit cell. (4M)

- d) If the average energy required to produce a Frenkel defect in an ionic crystal is 1.4 eV. Find out the ratio of the number of Frenkel defects at 20°C and 300°C in one gram of the crystal. (4M)
- 2. a) Calculate the Fermi energy of sodium at 0K assuming that it has one free electron per atom and density of sodium is 970 kg/m³ and atomic weight is 23. (3M)
 - b) Discuss the Kronig-Penney model for the motion of an electron in a periodic potential and derive an expression for the density of energy states and carrier concentration in a solid material (Metal) by using Fermi distribution function.

 (7M)
 - c) Show that the probability of finding an electron of energy ΔE above the Fermi level is same as probability of not finding an electron at energy ΔE below the Fermi level. (4M)
 - d) In a Hall co-efficient experiment, a current of 0.25 Amp is sent through a metal strip having thickness 0.2 mm and width 5 mm. The Hall voltage is found to be 0.15 mv when a magnetic field of 2000 gauss is used. (a) What is carrier concentration (b) What is the drift velocity of carrier. (3M)

		Derive the expression $n = (2N_D)^{1/2} \left[\frac{2\pi m_e^2 kT}{h^2}\right]^{3/4} exp\left[\left(\frac{E_D - E_C}{2kT}\right)\right]$ for majority carrier concentratives the expression $n = (2N_D)^{1/2} \left[\frac{2\pi m_e^2 kT}{h^2}\right]^{3/4} exp\left[\left(\frac{E_D - E_C}{2kT}\right)\right]$ for majority carrier concentratives the expression $n = (2N_D)^{1/2} \left[\frac{2\pi m_e^2 kT}{h^2}\right]^{3/4} exp\left[\left(\frac{E_D - E_C}{2kT}\right)\right]$ for majority carrier concentrative the expression $n = (2N_D)^{1/2} \left[\frac{2\pi m_e^2 kT}{h^2}\right]^{3/4} exp\left[\left(\frac{E_D - E_C}{2kT}\right)\right]$ for majority carrier concentrative the expression $n = (2N_D)^{1/2} \left[\frac{2\pi m_e^2 kT}{h^2}\right]^{3/4} exp\left[\left(\frac{E_D - E_C}{2kT}\right)\right]$ for majority carrier concentrative the expression $n = (2N_D)^{1/2} \left[\frac{2\pi m_e^2 kT}{h^2}\right]^{3/4} exp\left[\left(\frac{E_D - E_C}{2kT}\right)\right]$ for majority carrier concentrative the expression $n = (2N_D)^{1/2} \left[\frac{2\pi m_e^2 kT}{h^2}\right]^{3/4} exp\left[\left(\frac{E_D - E_C}{2kT}\right)\right]$ for majority carrier concentrative the expression $n = (2N_D)^{1/2} \left[\frac{2\pi m_e^2 kT}{h^2}\right]^{3/4} exp\left[\left(\frac{E_D - E_C}{2kT}\right)\right]$ for majority carrier concentrative the expression $n = (2N_D)^{1/2} \left[\frac{2\pi m_e^2 kT}{h^2}\right]^{3/4} exp\left[\left(\frac{E_D - E_C}{2kT}\right)\right]$ for majority carrier concentrative the expression $n = (2N_D)^{1/2} \left[\frac{2\pi m_e^2 kT}{h^2}\right]^{3/4} exp\left[\left(\frac{E_D - E_C}{2kT}\right)\right]$ for majority carrier concentrative the expression $n = (2N_D)^{1/2} \left[\frac{2\pi m_e^2 kT}{h^2}\right]^{3/4} exp\left[\left(\frac{E_D - E_C}{2kT}\right)\right]$ for majority carrier concentrative the expression $n = (2N_D)^{1/2} \left[\frac{2\pi m_e^2 kT}{h^2}\right]^{3/4} exp\left[\left(\frac{E_D - E_C}{2kT}\right)\right]$ for majority carrier concentrative the expression $n = (2N_D)^{1/2} \left[\frac{2\pi m_e^2 kT}{h^2}\right]^{3/4} exp\left[\left(\frac{E_D - E_C}{2kT}\right)\right]$ for majority carrier concentrative the expression $n = (2N_D)^{1/2} \left[\frac{2\pi m_e^2 kT}{h^2}\right]^{3/4} exp\left[\left(\frac{E_D - E_C}{2kT}\right)\right]$ for majority carrier concentrative the expression $n = (2N_D)^{1/2} \left[\frac{2\pi m_e^2 kT}{h^2}\right]^{3/4} exp\left[\left(\frac{E_D - E_C}{2kT}\right)\right]$	ntration in
		r(Fo-Fc)] for majority carrier	(5M)
		Derive the expression $n = (2N_D)^{1/2} \left[\frac{2\pi m_e^2 kT}{h^2}\right]^{3/4} exp\left[\left(\frac{E_D - E_C}{2kT}\right)\right]$ for majority for majority of intrinsic semiconductors (n-type & p-type) at temperatures. 1. The productivity of intrinsic silicon at room temperature is due to (a) election and 300K.	atures 0 K
		$n = (2N_D)^{7/2} \left[\frac{1}{h^2} \right]$ at temperature $\frac{g}{h^2}$ $\frac{g}{h^2}$ $\frac{g}{h^2}$	(3M)
3.	a)	Derive the expression at low temperatures.	etrons and
		n-type semiconductor at hand diagrams of extrinsic semiconductor at the is due to (a) ele	(4M)
	b)	Draw the energy band prom temperature is respectively	y. (41V1)
		and 300K. and 0.048 m 7 v.s	132 cm on
	c)	n-type semiconductor at low temperatures. n-type semiconductor at low temperatures. Draw the energy band diagrams of extrinsic semiconductors (n-type & p of p). Draw the energy band diagrams of extrinsic semiconductors (n-type & p of p). Draw the energy band diagrams of extrinsic semiconductors (n-type & p of p). The energy band diagrams of extrinsic semiconductors (n-type & p of p). The energy band diagrams of extrinsic semiconductors (n-type & p of p). The energy band diagrams of extrinsic semiconductors (n-type & p of p). The energy band diagrams of extrinsic semiconductors (n-type & p of p). The energy band diagrams of extrinsic semiconductors (n-type & p of p). The energy band diagrams of extrinsic semiconductors (n-type & p of p). The energy band diagrams of extrinsic semiconductors (n-type & p of p). The energy band diagrams of extrinsic semiconductors (n-type & p of p). The energy band diagrams of extrinsic semiconductors (n-type & p of p). The energy band diagrams of extrinsic semiconductors (n-type & p of p). The energy band diagrams of extrinsic semiconductors (n-type & p of p). The energy band diagrams of extrinsic semiconductors (n-type & p of p). The energy band diagrams of extrinsic semiconductors (n-type & p of p). The energy band diagrams of extrinsic semiconductors (n-type & p of p). The energy band diagrams of extrinsic semiconductors (n-type & p of p). The energy band diagrams of extrinsic semiconductors (n-type & p of p). The energy band diagrams of extrinsic semiconductors (n-type & p of p). The energy band diagrams of extrinsic semiconductors (n-type & p of p). The energy band diagrams of extrinsic semiconductors (n-type & p of p). The energy band diagrams of extrinsic semiconductors (n-type & p of p). The energy band diagrams of extrinsic semiconductors (n-type & p of p). The energy band diagram of extrinsic semiconductors (n-type & p). The energy band diagram of extrinsic semiconductors (n-type & p). The energy band diagram of extrinsic semiconductors (n-typ	= 2.25 \
		-fthe two sides of an harrier at 100"	(4IVI)
	d)	The results the height of the potential $2 \text{ W } c \text{ and } k = 1.38 \times 10^{-3} \text{ M}$	tor current
		$10^{18}/cm^3$, $\mu_e = 3800 cm^2/V \cdot s \mu_h = 1000 cm^2/V$	s the base
	ره	head by the clinites	(6M)
	6)	n-side. Calculate the collection of p-n-p transistor and ii) In an n-p-n transistor circuit, the collector, what i i) Explain the operation of p-n-p transistor and ii) In an n-p-n transistor circuit, the collector, what i is 15 mA. If 95% of the electrons emitted by the emitter reach the collector, what i	ο σ. total
		is 15 mA. If 95% of the electrons emitted by the current? A sphere of radius 'a' is polarized along the radius vector such that $\vec{P} = P_0 \vec{\tau}$. Determine there \vec{R} and \vec{E} .	μ, ο,
4	a)	A sphere of radius 'a' is polarized along the radius	(41/1)
٠.	-,	A sphere of radius a is polarized charge, \vec{D} and \vec{E} Consider an electron of charge '-e ' moving in a circular orbit of radius 'a' about a charge consider an electron of charge '-e ' moving in a circular orbit. Show that the polarization is right angles, to the plane of the orbit. Show that the polarization is right angles, to the plane of the orbit.	e +e ma
	b)	Consider an electron of charge '-e' moving in a circular orbit of fadius a according to the plane of the orbit. Show that the polarization field directed at right angles, to the plane of the orbit.	oility a is
	-,	field directed at right ungles,	(4M)
		approximately $4\pi\epsilon_0 a^2$.	(5M)
	c)	Derive the Clausius-Mosotti equation for non-polar solids like $\epsilon_r = 4.94$ and $n^2 = 2.69$. Calculate the ratio between electric material has $\epsilon_r = 4.94$ and $n^2 = 2.69$.	tronic and
	d)	A dielectric material has $\varepsilon_r = 4.94$ and $n = 2.05$. Calculate	(4M)
		ionic polarizability of this material.	
,		What are intrinsically conducting polymers? How they are classified and explain the	m with an
٥.		200 Y00000	(4M)
		ample each. Define nanotechnology and explain the effect on physical properties due to nanoscale.	(4M)
	170	Write the applications of SEM (Scanning Electron Microscope) and TEM (Transmission	,
	٠,	Microscope)	
			(3M)
6.	a)	What is meant by Hysteresis? Explain hysteresis loss. How would you use the hysteresis	
	sel	ect material for the construction of permanent magnets?	s curves to
30	D)	A magnetic material happy and the second sec	(4M) · 🐚
m		Wb/m ² Calculate magnetizing force and relative permittivity of the material. $[\mu_0]$	of 0.00314
		$10^{-7} H/m$].	$= 12.57 \times$
	c)	What is the significance of critical temperature, critical magnetic field and critical current for superconductors? Explain Meissner effect.	(3M)
	11	for superconductors? Explain Meissner effect.	rent density
	a)	Calculate the critical current for a wire of lead having	(4M)
		Calculate the critical current for a wire of lead having a diameter of 1mm at 4.2 K. temperature for lead is 7.18 K and $H_C(0) = 6.5 \times 10^4 A/m$.	The anitian
		A/m.	
			(4M)