20UNNERS Marcis

Aucun document n'est permis

Exercice 1: Relever les affirmations correctes (7 points)

- 1- Soit la réaction suivante : $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$ avec Al Ir° = 673 keal/mol et ΔG r° = 691 keal/mol
 - Cette réaction est une réaction de combustion
 - b. Cette réaction est endothermique
 - c. Cette réaction est exothermique
 - d. Cette réaction est endergonique
 - c. Cette réaction n'est pas thermodynamiquement possible
 - f. Cette réaction est thermodynamiquement possible
 - g. Aucune des propositions n'est juste
- 2- Le nombre d'oxydations de S dans les molécules : SO_4 ; H_2S ; HSO_3^- sont respectivement :
 - a- S+III; S+V; S+IV
 - b- S-1; S+IV: S+V
 - c- S+VIII: S-II: S+ IV
 - d- S+II; S-II; S+VII
 - e- Aucune des propositions n'est juste
- 3- Une lame de Zinc (Zn) est plongée dans une solution de nitrate de Plomb (Pb²⁺). Les potentiels redox standards des couples étant : E_1° (Pb²⁺/Pb) = 0,8V E_2° (Zn²⁺/Zn) = -0,76V.
 - a- Un électron est échangé
 - b- Le zinc recouvre de plomb
 - c- Le plomb recouvre le zinc
 - d- La concentration de l'ion plomb diminue
 - e- La concentration en ions zinc diminue
 - f- Le plomb subira une réduction
 - g- L'anode est constituée de zinc
 - h- Aucune des propositions n'est juste

Exercice 2 (8 points)

On plonge une lame de zinc dans 150 cm³ d'une solution de nitrate d'argent (Ag⁴) de concentration égale à 0,20 mol. L⁻¹.

- a- Ecrire l'équation de la réaction qui a lieu spontanément.
- b- Quelle est la masse d'argent déposé quand la quasi-totalité des ions Ag+ a disparu ?
- c- Quelle est la perte de masse subie par la lame de zinc ?

Exercice 4 (5 points)

Soit la réaction de préparation de méthanol : $CO(g) + 2H_2(g)$ ———— $CH_3OH(g)$. A 25°C, sous 1 bar, la variation d'enthalpie de cette réaction pour une mole de méthanol formé vaut $\Delta H = -92.7$ kJ.

Calculer l'énergie interne (\Delta U) de cette réaction.

On donne: La constante des gaz parfaits: R= 8,314 J.mol⁻¹. K⁻¹