Course 6 Regular Expressions

Applications of Regular Expressions

- Unix environments heavily use regular expressions
 - E.g., bash shell, grep, vi & other editors, sed
- Perl scripting good for string processing
- Lexical analyzers such as Lex or Flex
- Pattern matching (detection of DoS Vulnerabilities in Java Programs - http://www.cs.utexas.edu/~marijn/publications/evil-regexes.pdf, Web programming, Programming web interfaces)

Regular Expressions vs. Finite Automata

- Offers a declarative way to express the pattern of any string we want to accept
 - E.g., 01*+ 10*
- Automata => more machine-like
 - < input: string , output: [accept/reject] >
- Regular expressions => more program syntax-like

Regular Expressions

4

Regular Expressions

Let *V*- alphabet.

The *regular expressions* (*r.e*) are words over the alphabet $V \cup \{\bullet,*,|\} \cup \{(,),\emptyset\}$.

Symbols •, *, | are considered operators.

Note: The following are equivalent: (1) • and .; (2) +, U and |.

R.e. are inductively defined as:

- λ and Ø are r.e.;
- for all $a \in V$, the word a is r.e.;
- if R and S are r.e., then R|S, $R \cdot S$, R^* are r.e.;
- any r.e. is built by applying the rules (1)-(3) finitely many times.

Language Operators

- Union of two languages:
 - **LUM** = all strings that are either in L or M (L|M)
 - Note: A union of two languages produces a third language
- Concatenation of two languages:
 - L.M = all strings that are of the form xy or x y s.t., $x \in L$ and $y \in M$
 - The dot operator is usually omitted
 - i.e., LM is same as L.M

"i" here refers to how many strings to concatenate from the parent language L to produce strings in the language Lⁱ

Kleene Closure (the * operator)

- Kleene Closure of a given language L:
 - $L^0 = \{\epsilon\}$
 - \downarrow L¹= {w | for some w \in L}
 - L^2 = { $w_1w_2 | w_1 \in L, w_2 \in L \text{ (duplicates allowed)}}$
 - Li= { w₁w₂...w₁ | all w's chosen are ∈ L (duplicates allowed)}
 - (Note: the choice of each w_i is independent)
 - L* = U_{i≥0} Lⁱ (arbitrary number of concatenations)

Example:

- Let L = { 1, 00}
 - $L^0 = \{\epsilon\}$
 - $L^1 = \{1,00\}$
 - L²= {11,100,001,0000}
 - $L^3 = \{111,1100,1001,10000,000000,00001,00100,0011\}$
 - $L^* = L^0 U L^1 U L^2 U ...$

Building Regular Expressions

- Let E be a regular expression and the language represented by E is L(E)
- Then:
 - **■** (E) = E
 - L(E + F) = L(E) U L(F) (+ can be replaced with |)
 - L(E F) = L(E) L(F) (the operator between E,F, resp L(E), L(F) can be replaced with •)
 - L(E*) = (L(E))*

Simplification of regular expressions

$$\lambda + \alpha \alpha^* \equiv \alpha^*$$

$$\alpha + \beta \equiv \beta + \alpha$$

$$\lambda + \alpha^* \alpha \equiv \alpha^*$$

$$\alpha$$
+ Ø $\equiv \alpha$

$$\alpha + \alpha \equiv \alpha$$

$$\alpha(\beta\delta) \equiv (\alpha\beta)\delta$$

$$\alpha\lambda \equiv \lambda\alpha \equiv \alpha$$

$$\alpha(\beta + \delta) \equiv \alpha\beta + \alpha\delta$$

$$(\alpha + \beta)\delta \equiv \alpha\delta + \beta\delta$$

$$\alpha \emptyset \equiv \emptyset \alpha \equiv \emptyset$$

•

Building Regular Expressions

- Let E be a regular expression (r.e.) and the language represented by E is L(E)
- Then:
 - **■** (E) = E
 - L(E + F) = L(E) U L(F)
 - L(E F) = L(E) L(F)
 - L(E*) = (L(E))*

Examples

1. R = (a|b). Then $L(R) = \{a\} \cup \{b\} = \{a,b\}$ 2. R = (ab). Then $L(R) = \{ab\}$ 3. R = a(b|a). Then $L(R) = a\{b,a\} = \{ab,aa\}$ 4. $R = a^*$. Then $L(R) = \bigcup_{j=0}^{\infty} \{a^j\} = \{\lambda,a,a^2,...\} = \{w \in \{a^*\}\} = \{a^n|n \ge 0\}$ 5. $R = (a|b)^*$. Then $L(R) = (L_a \cup L_b)^* = (\{a\} \cup \{b\})^* = (\{a,b\})^*$ 6. $R = a(a|b)^*$. Then $L(R) = a(\{a,b\})^* = \{aw|w \in \{a,b\}^*\}$ 7. $R = (b|a)^*a$. Then $L(R) = (\{b,a\})^*a = \{wa|w \in \{a,b\}^*\}$ 8. $R = a(a|b)c)^*c$. Then $L(R) = \{awc|w \in \{a,b,c\}^*\}$ 9. $R = a(a|b)(a|b|c)^*$. Then $L(R) = \{aaw,abw|w \in \{a,b,c\}^*\} = \{w \in \{a,b,c\}^*\}$

Examples

- 1. $L(R) = \{w \text{ ends with } b \text{ and contains at least one } a\}.R = (a|b)^*a(a|b)^*b$
- L(R) = { $w \ word \ of \ a's \ and \ b's \ odd \ length}$. $R = ((a|b)(a|b))^*$
- L(R) = {w word of a's and b's with even number of b's}. $R = a^*(a^*ba^*ba^*)^*$
- 4. $L(R) = \{w \in \{a, b\}, w \text{ ends with aa or } bb\}. R = (a|b)^*(aa|bb)$
- 5. $L(R) = \{w \in \{1,0\}^*, w \text{ has alternating 0's and 1's}\}. R = (10)^* | (01)^* | 0(10)^* | 1(01)^*$
- 6. $L(R) = \{w \in \{a, b\}, |w| \equiv 1 \mod 4\}. R = ((a|b)(a|b)(a|b)(a|b))^*(a|b)$

Precedence of Operators

- Highest to lowest
 - * operator (star)
 - (concatenation)
 - + operator

Example:

$$\bullet$$
 01* + 1 = (0.((1)*)) + 1

Finite Automata (FA) & Regular Expressions

To show that they are interchangeable, consider the following theorems:

Proofs
in the book
Introduction to
Automata Theory
Languages and
Computation by
Hopcrof, Motwani,
Ullman

- <u>Kleene Theorem part 1</u>: For every DFA A there exists a r.e. R such that L(R)=L(A).
- Kleene Theorem part 2: For every r. e. R there exists an ε -NFA E such that L(E)=L(R).

Kleene Theorem

DFA to RE construction

Informally, trace all distinct paths (traversing cycles only once) from the start state to *each of the* final states and enumerate all the expressions along the way

Q) What is the language?

RE to ε-NFA construction

Given a r.e., we can always built an ε -NFA recognizing L(r.e.) using the following diagrams.

ε-NFA recogn. lang. ε

 ϵ -NFA recogn. word. a ϵ -NFA recogn. lang. Ø

 ε -NFA recogn. lang. RS; R,S – r.e.

 ε -NFA recogn. lang. R|S; R,S – r.e.

RE to ε-NFA construction

Example: (0+1)*01(0+1)*

Other examples

Construct ε-NFA for the following r.e.:

- a|b|c
- io|ma
- (a*b)|c*
- (a|b)b*

(see whiteboard)

Summary

- Regular expressions
- Equivalence to finite automata
- DFA to regular expression conversion
- Regular expression to ε-NFA conversion