- 1. Odredite red od
 - (a) 5 modulo 17,
 - (b) 7 modulo 29.

Je li 5 primitivni korijen modulo 17? Je li 7 primitivni korijen modulo 29?

- 2. Neka je p neparan prost broj i $n = 3^p + 1$. Odredite red od 3 modulo n.
- 3. Neka je p prost broj te neka je red od a modulo p jednak 8. Ako je $x = a^2$, $y = a^3 a$, $z = a^3 + a$, dokažite da je $x^2 \equiv -1 \pmod{p}$, $y^2 \equiv 2 \pmod{p}$, $z^2 \equiv -2 \pmod{p}$.
- 4. Neka je p prost broj koji ne dijeli a, te neka je red od a modulo p jednak 3. Dokažite sljedeće tvrdnje:
 - (a) $p \equiv 1 \pmod{3}$,
 - (b) $a^2 + a + 1 \equiv 0 \pmod{p}$,
 - (c) $(2a+1)^2 \equiv -3 \pmod{p}$,
 - (d) red od a + 1 modulo p jednak je 6.
- 5. (a) Koliko ima primitivnih korijena modulo 43? Odredite najmanji među njima.
 - (b) Koliko ima primitivnih korijena modulo 59? Odredite najmanji među njima.
- 6. Odredite sve primitivne korijene
 - (a) modulo 31,
 - (b) modulo 23.
- 7. Odredite sve proste module koji imaju točno 32 primitivna korijena.
- 8. Riješite pomoću indeksa sljedeće kongruencije:
 - (a) $2x^{16} \equiv 5 \pmod{31}$,
 - (b) $36x^{15} \equiv 26 \pmod{37}$.
 - (c) $41x^9 \equiv 22 \pmod{43}$,
 - (d) $15x^6 \equiv 11 \pmod{53}$.
- 9. Riješite pomoću indeksa sljedeće kongruencije:
 - (a) $7^x \equiv 6 \pmod{17}$,
 - (b) $17^x \equiv 27 \pmod{31}$,
 - (c) $28^x \equiv 27 \pmod{43}$,
 - (d) $10^x \equiv 8 \pmod{59}$.