Modèles de la programmation et du calcul

L3 Informatique

Université de Bordeaux

Année 2023/24

Équipe pédagogique

- Cours : Anca Muscholl (lundi 8h00-9h20)
- ► A1 : Pierre Bonnet jeudi 14h-16h50
- A2 : Mikhail Raskin lundi 14h-16h50
- ► A3 : Vincent Penelle lundi 14h-16h50
- ► A4 : Anca Muscholl vendredi 9h30-12h20

Modalités du cours

- ▶ 12 cours, 12 TD.
- ► Contrôle continu (CC) : 2 tests durant les séances de TD et DS le 23 octobre 2023.
- ▶ Note finale session 1 et 2 :

1/2 Examen + 1/2 CC.

Supports de cours et TD :

https://amuschol.pages.emi.u-bordeaux.fr/mpc/

Objectifs (fiche UE)

- Comprendre les fondaments des modèles de calcul utilisés en programmation et compilation.
- 2. Comprendre et savoir utiliser 4 notions :
- a. automates finis,
- b. expressions rationnelles,
- c. grammaires algébriques,
- d. automates à pile.
- 3. Maîtriser l'algorithmique de ces objets et savoir formaliser et justifier leurs propriétés.

Bibliographie

- O. Carton.
 Langages formels, Calculabilité et Complexité.
 Vuibert, 2008.
- ▶ J.M. Autebert. Théorie des langages et des automates. Masson, 1997.
- ▶ J.E. Hopcroft, R. Motwani, J. D. Ullman. Introduction to Automata Theory, Languages & Computation. Addison-Wesley, 2005.

Comment réussir l'UE?

- ► Assiduité en cours et TD.
- ► Travail personnel 1h à 2h / semaine.
- Participation en cours et TD.

Comment réussir l'UE?

- ► Assiduité en cours et TD.
- ► Travail personnel 1h à 2h / semaine.
- Participation en cours et TD.

Questions?

Plan du cours

- 1. Mots et langages
- 2. Expressions rationnelles
- 3. Automates finis
- 4. Grammaires algébriques
- 5. Automates à pile

Plan du cours

- 1. Mots et langages
- 2. Expressions rationnelles
- 3. Automates finis
- 4. Grammaires algébriques
- 5. Automates à pile
- 6. Logique

Qu'est-ce qu'un langage?

Objectif: comprendre, définir, manipuler, transformer des langages.

Alphabet = ensemble fini de lettres.

Mot = séquence finie de lettres d'un alphabet donné.

Langage = ensemble de mots.

Exemples

- ► Alphabet {*A*, *C*, *G*, *T*} génétique
- ▶ Alphabet $\{A, C, ..., Y\}$ acides aminés (décrire des protéines)
- ► Alphabet binaire {0, 1} nombres en base 2
- ► Alphabet décimal {0,1,...,9} nombres en base 10
- ▶ Alphabet hexadécimal $\{0, 1, ..., 9, A, ..., F\}$ nombres en base 16
- Mots

$$2022 = (11111100110)_2 = (7E6)_{16} = MMXXII$$

Mots

▶ On écrit les mots comme $w = a_1 \dots a_n$. Chaque a_i représente une lettre d'un alphabet donné A.

Exemples:

▶ La longueur (ou taille) du mot $w = a_1 \dots a_n$, notée |w|, est n.

Exemples:

 \blacktriangleright Mot vide, noté ϵ : séquence vide (de longueur 0)

Exemples de langages (1)

▶ Tous les mots binaires (= mots sur l'alphabet $A = \{0, 1\}$).

ightharpoonup Le langage vide \varnothing .

► Le langage {011}.

Les mots sur l'alphabet $A = \{a, b\}$ de longueur paire.

Les mots sur l'alphabet $\{A, C, G, T\}$ qui contiennent le motif TAC.

Exemples de langages (2)

➤ Tous les mots qui sont des noms de variables permis dans un langage de programmation donné (compilation : analyse lexicale)

➤ Tous les mots qui représentent des programmes dans un langage de programmation donné (compilation : parsing)

Tous les mots qui représentent des algorithmes de tri en C.

Quel intérêt de s'intéresser aux mots et langages?

Toute information numérique peut être représentée par une séquence (mot) binaire.

- Nombreuses façons pour coder en binaire.
- Codages binaires standardisés pour des ensembles de caractères : ASCII, ISO-8859-1, Unicode, UTF, JIS, . . .
- Codages d'objets « numériques »

Exemple: arbres binaires

Mots: définitions et exemples (1)

ightharpoonup Alphabet A =ensemble fini de lettres (ou symboles)

► Mot = séquence finie sur alphabet A

Langage = ensemble (fini ou infini) de mots

Mots: définitions et exemples (2)

► Longueur |w|

► Mot vide €

► Concaténation ou produit de mots : $u \cdot v$ (ou uv) est la juxtaposition de u et v.

▶ La concaténation est associative : u(vw) = (uv)w

L'ensemble des mots sur l'alphabet A est noté A*.

Mots: définitions et exemples (3)

- ▶ Si le mot w s'écrit comme produit w = uv, alors on dit que
 - ▶ u est préfixe de w, et
 - v est suffixe de w.

▶ Si le mot w s'écrit comme produit w = x u v, alors on dit que u est facteur de w.

Question:

Quel est le préfixe le plus court de n'importe quel mot w? Et le plus préfixe le plus long?

Qu'est-ce qu'un langage?

Définition : Un langage est un ensemble (fini ou infini) de mots sur alphabet donné A.

On écrit $L \subseteq A^*$ pour désigner un langage L sur l'alphabet A.

D'autres exemples :

- ▶ Un nom de variable (identificateur) en Java est une suite de caractères (lettres minuscules/majuscules, chiffres, \$ ou _) qui ne commence pas par un chiffre.
- ▶ Une expression arithmétique est construite à partir des identificateurs en utilisant les opérateurs +, -, *, / et les parenthèses (,).

Objectif : définir de façon simple des langages utiles.

Plan du cours

- 1. Mots et langages
- 2. Expressions rationnelles
- 3. Automates finis
- 4. Grammaires algébriques
- 5. Automates à pile
- 6. Logique

Les expressions rationnelles (S. Kleene)

De nombreux langages utiles sont

construits avec 3 opérations simples.

Union de 2 langages.

Produit (ou concaténation) de 2 langages.

Étoile (ou itération) d'un langage.

Contexte : proposées dans les années '50, utilisées dans les éditeurs de texte (Unix : grep, sed), le traitement automatique des langages, le développement logiciel, etc.

Union de 2 langages

▶ Union

Un langage est un ensemble de mots.

L'union de 2 langages est l'union de ces deux ensembles de mots.

Exemples

- ▶ $L_1 = \{\epsilon, a, ab\}$, $L_2 = \{a, b, aab\}$ $L_1 \cup L_2 = \{\epsilon, a, b, ab, aab\}$
- $ightharpoonup L_1 = \{\epsilon, a, aa, aaa, ...\}, L_2 = \{b, bb, bbb, ...\}$

 $L_1 \cup L_2$ = ensemble des mots sur $A = \{a, b\}$ constitués soit uniquement de a, ou uniquement de b

Produit (ou concaténation) de 2 langages

► Produit

Le produit des langages L_1, L_2 est

$$L_1 \cdot L_2 = \{uv \mid u \in L_1, v \in L_2\}$$

Exemples

- ▶ $L_1 = \{\epsilon, a, ab\}, L_2 = \{a, b, aab\}$ $L_1 \cdot L_2 = \{a, b, aab, aa, ab, aaab, aba, abb, abaab\}$
- ▶ $L_1 = \{\epsilon, a, aa, aaa, ...\}$, $L_2 = \{\epsilon, b, bb, bbb, ...\}$

 $L_1 \cdot L_2$ = ensemble des mots formés d'une suite de a, suivie par une suite de b.

Questions:

Est-ce que le mot vide (ϵ) appartient à $L_1 \cdot L_2$?

$$\varnothing \cdot L = ?$$

 $\{\epsilon\} \cdot L = ?$

Étoile d'un langage

► Étoile

On définit

$$L^0 = \{\epsilon\}, \qquad L^{n+1} = L \cdot L^n$$

Question : Qui est L^1 ?

L'étoile (itération) du langage L est définie par

$$L^* = \bigcup_{n>0} L^n = L^0 \cup L^1 \cup L^2 \cup \cdots$$

Question : $\emptyset^* = ?$

De manière équivalente :

$$L^* = \{w_1w_2\cdots w_n \mid w_i \in L \text{ pour tout } i, n \geq 0\}$$

Exemples

- ightharpoonup Si A est un alphabet, alors A^* est l'ensemble des mots sur l'alphabet A.
- $ightharpoonup L = \{\epsilon, a, ab\}$

$$L^* = \{\epsilon, a, aa, ab, aaa, aab, aba, \dots\}$$

Les expressions rationnelles

Les expressions atomiques sont : $a \in A$ (les éléments de A), ε (le mot vide) et \emptyset (le langage vide).

Les expressions rationnelles sont obtenues à partir des expressions atomiques en utilisant 3 opérations simples :

+ qui représente l'union.

Si e_1 , e_2 sont des expressions, alors $(e_1 + e_2)$ est une expression.

• qui représente le produit.

Si e_1 , e_2 sont des expressions, alors $(e_1 \cdot e_2)$ est une expression.

* qui représente l'étoile.

Si **e** est une expression, alors (e^*) est une expression.

Expressions rationnelles - exemples

Comme pour les expressions arithmétiques, on peut omettre certaines parenthèses (ordre de priorité : $* > \cdot > +$).

Langages associées aux expressions rationnelles

A chaque expression rationnelle \mathbf{e} on associe un langage $L(\mathbf{e})$:

$$ightharpoonup L(a) = \{a\}, L(\epsilon) = \{\epsilon\}, L(\emptyset) = \emptyset$$

$$ightharpoonup L(\mathbf{e}_1 + \mathbf{e}_2) = L(\mathbf{e}_1) \cup L(\mathbf{e}_2)$$

$$L(\mathbf{e}_1 \cdot \mathbf{e}_2) = L(\mathbf{e}_1) \cdot L(\mathbf{e}_2)$$

$$L(e^*) = L(e)^*$$

Question : pourquoi pas $L(\emptyset) = {\emptyset}$?

Remarque : les expressions rationnelles sont de la syntaxe, et ici on définit leur sémantique.

Expressions rationnelles: exemples (1)

▶ Ensemble des mots sur l'alphabet $\{a,b\}$ qui commencent par a.

▶ Ensemble des mots sur l'alphabet $\{a, b\}$ qui contiennent aba.

▶ Ensemble des mots sur l'alphabet $\{a,b\}$ qui ne contiennent pas ab.

Expressions rationnelles : exemples (2)

► Ensemble des adresses mail valides.

► Représentations des entiers divisibles par 2 (base 2).

▶ Représentations des entiers divisibles par 5 (base 10).

Expressions rationnelles : exemples (3)

▶ Langage des mots sur l'alphabet $\{a, b\}$ de longueur paire.

Langage des mots sur l'alphabet $\{a,b\}$ qui ont un nombre pair de a.

Expressions rationnelles: exemples (4)

► Mots sur l'alphabet {0, 1} qui ne contiennent ni 00, ni 11.

Mots sur alphabet $\{0,1\}$ qui contiennent le facteur 010 mais pas 101, et qui commencent et finissent par 0.

Expressions rationnelles: exemples (5)

Représentations des nombres en base 10 divisibles par 3 ?

Nombres en base 10 qui ont autant de 1 que de 2 ??

► Programmes C syntaxiquement corrects ???.

Questions

A vous...

- Tous les langages sont-ils décrits par une expression rationnelle?
- Sinon comment être sûr(e) qu'un langage n'a aucune expression?
- Pourquoi est-ce important?
- ► Utiliser le complément ou l'intersection permet-il d'exprimer plus?

Plan du cours

- 1. Mots et langages
- 2. Expressions rationnelles
- 3. Automates finis
- 4. Grammaires algébriques
- 5. Automates à pile
- 6. Logique

Les automates finis

Michael O. Rabin, Dana Scott

Les automates

Qu'est-ce que c'est?

Machine abstraite très simple qui permet aussi de définir des langages.

Quelle différence par rapport aux expressions?

- Une expression exprime globalement une propriété.
- Un automate exprime localement l'enchaînement des lettres.

On peut voir les expressions comme des propriétés (très simples) de programme, et les automates finis comme des programmes (très simples).

Pourquoi les automates?

Quel intérêt par rapport aux expressions?

- Ça s'implémente (contrairement à une expression).
- On peut passer d'une expression à un automate équivalent...
- ...et vice-versa.
- C'est un graphe : algorithmes et logiciels disponibles.
 - ► http://www.jflap.org
 - http://www.cs.usfca.edu/~jbovet/vas.html

Automates : un exemple

- Lit un mot en entrée
- Accepte ou rejette ce mot.
- Capacités de calcul très limitées : chaque lettre lue ne peut qu'influencer une mémoire finie : les états.

Automates : définition

Un automate est donné par 5 ensembles : (A, Q, δ, I, F)

- ► Alphabet *A*.
- Ensemble fini d'états Q.
- ightharpoonup Ensemble de transitions δ , étiquetées sur l'alphabet A.
- ightharpoonup États initiaux $I \subseteq Q$.
- ightharpoonup États finaux (ou acceptants) $F \subseteq Q$.

flèches entrantes flèches sortantes

Fonctionnement d'un automate

- ightharpoonup Calcul sur un mot w: chemin étiqueté par w depuis un état initial.
- ► Mot w accepté si au moins un calcul sur w va à un état acceptant.
- ► Langage de l'automate : ensemble des mots acceptés.

Fonctionnement d'un automate

- ightharpoonup Calcul sur un mot w: chemin étiqueté par w depuis un état initial.
- ► Mot w accepté si au moins un calcul sur w va à un état acceptant.
- ► Langage de l'automate : ensemble des mots acceptés.

Ici :
$$(ab^*b(a+b))^*ab^*b$$
.

Fonctionnement d'un automate

Remarque importante : Il y a 2 façons de lire le mot abb dans cet automate.

- une façon mène à l'état 0, qui n'est pas un état final.
- une autre façon mène à l'état 2, qui est un état final.

Le mot est accepté, dès qu'il y a au moins une façon de le lire depuis un état initial jusqu'à un état final.

Définition formelle d'un automate

Un automate est donné par $\mathcal{A} = (A, Q, I, F, \delta)$ où

- A est l'alphabet (parfois sous-entendu),
- Q est l'ensemble fini des états,
- ► I est l'ensemble des états initiaux. S'il n'y a qu'un état initial q_i , on peut écrire q_i au lieu de $\{q_i\}$.
- F est l'ensemble des états finaux (ou acceptants).
- ▶ δ est l'ensemble des transitions : $\delta \subseteq Q \times A \times Q$.

Une transition de p à q par la lettre a peut se noter : (p, a, q) ou $p \xrightarrow{a} q$.

Langage d'un automate

Un calcul sur un mot u est une suite de transitions consécutives

- partant d'un état initial,
- ightharpoonup dont la suite des lettres des transitions est $u=a_1\cdots a_n$.

$$q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \cdots \xrightarrow{a_n} q_n$$

Ce calcul est acceptant si le dernier état, q_n , est final.

Q : quand est-ce que ϵ est accepté?

On dit que u est un mot accepté par l'automate s'il existe un calcul acceptant sur u.

Le langage accepté par un automate A est l'ensemble des mots acceptés.

On note ce langage par L(A).

Automates : complet, déterministe

Un automate est déterministe si pour chaque état p et chaque lettre $a \in A$ il a au plus un état q tel que $p \stackrel{a}{\longrightarrow} q$, et |I| = 1.

Un automate est complet si pour chaque état p et chaque lettre $a \in A$ il a au moins un état q tel que $p \stackrel{a}{\longrightarrow} q$.

Remarque : notre automate exemple n'est ni complet, ni déterministe

Question: pourquoi?

Automates : complet, déterministe

- Si un automate est déterministe, alors pour chaque mot il a au plus un calcul sur ce mot.
- Si un automate est complet, alors pour chaque mot il a au moins un calcul sur ce mot.

S'il n'est pas complet, certains mots ne peuvent pas être lus par l'automate (en particulier, ils ne sont pas acceptés).

On complète un automate $\mathcal{A} = (A, Q, I, F, \delta)$ en rajoutant un état $d \notin Q$ (appelé état puits), et des transitions (q, a, d) si δ ne contient aucun triplet (q, a, *); on rajoute aussi (d, a, d), pour tout $a \in A$.

Le langage de l'automate complété reste le même.

Automates: exemples (1)

▶ Ensemble des mots sur $\{a,b\}$ qui commencent par un a.

ightharpoonup Ensemble des mots sur $\{a,b\}$ qui contiennent aba.

ightharpoonup Ensemble des mots sur $\{a,b\}$ qui ne contiennent pas ab.

Automates: exemples (2)

► Ensemble des identificateurs en C.

► Représentations des entiers divisibles par 2 (base 2).

► Représentations des entiers divisibles par 5 (base 10).

Automates: exemples (3)

 \blacktriangleright Ensemble des mots sur $\{a,b\}$ qui contiennent un nombre pair de a.

▶ Sur alphabet $\{0,1\}$, mots qui contiennent le motif (facteur) 010 mais pas 101.

► Mots qui ne contiennent ni 00, ni 11.

Automates: exemples (4)

Représentations des entiers divisibles par 3 (base 2) ??

► Nombres en base 10 qui ont autant de 1 que de 2 ???

► Programmes C syntaxiquement corrects ????.

Automates: exemples

 \mathcal{A} :

On écrit $p \xrightarrow{w} q$ s'il existe au moins un calcul sur le mot w qui part de l'état p et qui finit dans l'état q.

Exemple: $L(A) = \{ w \in A^* \mid p \xrightarrow{w} q \text{ t.q. } p \in I, q \in F \}.$

Transformer un automate en expression rationnelle

... et inversement

Transformer un automate en expression

Intérêt?

Permettra de prouver que les automates et les expression rationnelles définissent les mêmes langages.

Plusieurs **algorithmes** classiques :

- McNaughton-Yamada
 Similaire à Floyd-Warshall.
- Brzozowski-McCluskey.
- Équations, méthode basée sur le Lemme d'Arden.

D'un automate à une expression équivalente

- \triangleright X_k = langage des mots acceptés en prenant q_k comme état initial.
- \triangleright Si depuis q_0 , on a les transitions

alors
$$X_0 = \begin{cases} a_1 X_1 + \dots + a_n X_n + \varepsilon & \text{si } q_0 \text{ est final} \\ a_1 X_1 + \dots + a_n X_n & \text{sinon} \end{cases}$$

A partir d'un automate, on obtient donc des "équations du 1er degré".

Lemme d'Arden. Si U, V et X sont des langages tels que :

$$X = UX + V$$

alors, le seul langage X solution est

$$X = U^*V$$

On montre que

- ► Toute solution X de X = UX + V contient le langage U^*V .
- Si $\epsilon \notin U$ alors U^*V est la plus grande solution de X = UX + V.

Rq : $UX \subseteq X$ et $V \subseteq X$

Rq : plus grande par rapport à \subseteq

On montre que

- ► Toute solution X de X = UX + V contient le langage U^*V .
- Si $\epsilon \notin U$ alors U^*V est la plus grande solution de X = UX + V.

Rq : $UX \subseteq X$ et $V \subseteq X$

Rq : plus grande par rapport à \subseteq

Toute solution X contient U^nV , pour tout $n \ge 0$: récurrence sur n

- $ightharpoonup n = 0 : V \subseteq X$ ok
- ► Si $U^nV \subseteq X$ alors $U^{n+1}V = UU^nV \subseteq UX \subseteq X$ ok

On montre que

- ▶ Toute solution X de X = UX + V contient le langage U^*V .
- Si $\epsilon \notin U$ alors U^*V est la plus grande solution de X = UX + V.

Rq : plus grande par rapport à \subseteq

On montre que

- ▶ Toute solution X de X = UX + V contient le langage U^*V .
- Si $\epsilon \notin U$ alors U^*V est la plus grande solution de X = UX + V.

Rq : plus grande par rapport à \subseteq

Soit X une solution de X = UX + V et $w \in X$. Deux cas possibles :

- 1. Soit $w \in V$, donc $w \in U^*V$,
- 2. Ou on écrit w = uv, avec $u \in U, v \in X$.

Comme $\epsilon \notin U$ on a $|\mathbf{v}| < |\mathbf{w}|$.

En appliquant une récurrence sur |w| on déduit que $v \in U^*V$.

Donc $w = uv \in U^*V$.

D'un automate à une expression : exemple

On commence par appliquer Arden à la dernière équation :

$$X_2 = (b+c)^*(aX_1 + \epsilon)$$

On substitue cette dernière expression dans la deuxième équation et on obtient :

$$X_1 = cX_1 + b(b+c)^*(aX_1 + \epsilon) + \epsilon$$

= $(c + b(b+c)^*a)X_1 + b(b+c)^* + \epsilon$

On applique Arden sur la dernière équation et obtient :

$$X_1 = (c + b(b + c)^*a)^*(b(b + c)^* + \epsilon)$$

On substitue la dernière expression dans la première équation et on obtient :

$$X_0 = (b+c)X_0 + a(c+b(b+c)^*a)^*(b(b+c)^*+\epsilon) + \epsilon$$

Une dernière application de Arden donne :

$$L(A) = X_0 = (b+c)^*(a(c+b(b+c)^*a)^*(b(b+c)^*+\epsilon)+\epsilon)+\epsilon$$

Intérêt?

Intérêt?

- 1. Analyse lexicale!
- 2. On peut manipuler les automates par des algorithmes.

Intérêt?

- 1. Analyse lexicale!
- 2. On peut manipuler les automates par des algorithmes.

Exemple on verra comment calculer un automate qui reconnaît

- le complémentaire d'un langage reconnu par un automate.
- l'intersection de 2 tels langages.

Ces opérations ne sont pas évidentes sur les expressions.

Inversement

on peut transformer les automates en expressions équivalentes.

Automates: union et intersection

Idée : on « synchronise » deux calculs

Produit de deux automates $A_1 = (A, Q_1, I_1, F_1, \delta_1)$, $A_2 = (A, Q_2, I_2, F_2, \delta_2)$:

automate
$$A_1 \times A_2 = (A, Q_1 \times Q_2, I_1 \times I_2, F, \delta)$$

 $(q_1,q_2) \stackrel{a}{\longrightarrow} (q_1',q_2')$ si $q_1 \stackrel{a}{\longrightarrow} q_1'$ dans \mathcal{A}_1 , et $q_2 \stackrel{a}{\longrightarrow} q_2'$ dans \mathcal{A}_2

Le langage de l'automate produit $\mathcal{A}_1 \times \mathcal{A}_2$ est

- ▶ $L(A_1) \cap L(A_2)$ avec $F = F_1 \times F_2$
- ▶ $L(A_1) \cup L(A_2)$ avec $F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$ si A_1 et A_2 sont complets

Automates : complémentation

Le complémentaire d'un langage $L \subseteq A^*$ est le langage $L^{co} = A^* \setminus L$.

Exemples:
$$\varnothing^{co} = A^*$$
 $((ab)^*)^{co} = b(a+b)^* + (a+b)^*a + (a+b)^*(aa+bb)(a+b)^*$

Si un automate $\mathcal{A} = (A, Q, I, F, \delta)$ est déterministe et complet, alors on obtient un automate qui accepte $L(\mathcal{A})^{co}$ en remplaçant F par $Q \setminus F$:

$$\mathcal{A}' = (A, Q, I, Q \setminus F, \delta)$$

 $L(\mathcal{A}') = (L(\mathcal{A})^{co})$

Question: est-il nécessaire de demander « déterministe » ? et « complet » ?

Premier algorithme : Algorithme de Thomson.

Principe

- Induction sur la structure des expressions.
- ightharpoonup On construit des automates pour $a,b,\cdots \, arepsilon.$
- Supposant qu'on sait faire pour e_1 et e_2 , on le fait pour $e_1 \cdot e_2$, $e_1 + e_2$, e_1^* .
- \triangleright On utilise des transitions ε .

Automates avec transitions ϵ

Automate avec transitions ϵ :

$$\mathcal{A} = (A, Q, I, F, \delta)$$
 $\delta \subseteq Q \times (A \cup \{\epsilon\}) \times Q$

Calcul sur un mot w: chemin étiqueté par w depuis un état initial.

Différence : certaines transitions sont étiquetées par ϵ . Mais si on concatène toutes les étiquettes du chemin, on obtient w.

Automates avec transitions ϵ

Automate avec transitions ϵ :

$$A = (A, Q, I, F, \delta)$$
 $\delta \subseteq Q \times (A \cup \{\epsilon\}) \times Q$

Calcul sur un mot w: chemin étiqueté par w depuis un état initial.

Différence : certaines transitions sont étiquetées par ϵ . Mais si on concatène toutes les étiquettes du chemin, on obtient w.

Elimination des transitions ϵ . Tout automate \mathcal{A} avec transitions ϵ peut être transformé en un automate équivalent \mathcal{A}' sans transitions ϵ .

▶ On rajoute une transition $p \xrightarrow{a} q$ chaque fois qu'on a un chemin

$$p \xrightarrow{\epsilon} p_1 \xrightarrow{\epsilon} p_2 \cdots \xrightarrow{\epsilon} p_k \xrightarrow{a} q$$

On rend un état p acceptant chaque fois qu'on a un état acceptant q et un chemin

$$p \xrightarrow{\epsilon} p_1 \cdots \xrightarrow{\epsilon} p_k = q$$

▶ On supprime toutes les transitions ϵ .

► Union.

Produit

► Union.

► Produit

► Union.

Produit

Question : est-ce que c'est correct de juste identifier les états finaux du premier automate avec les états initiaux du deuxième? pourquoi pas?

► Étoile.

► Étoile.

- ▶ On part d'automates à 1 ou 2 états pour expressions atomiques a, ε , \varnothing .
- La construction utilise des transitions ε (qu'on peut supprimer ensuite).
- On assure d'avoir un unique état initial et un unique état final.

Algorithme de Glushkov

La construction de Thomson produit (beaucoup) de transitions ε .

Idée de Glushkov

L'automate mémorise la position de l'expression à laquelle on peut être.

On commence par renommer les lettres pour avoir des noms uniques. **Nom = position**. Par exemple :

$$a(ab+b)^*b \hookrightarrow a_1(a_2b_1+b_2)^*b_3.$$

Algorithme de Glushkov

Chaque état correspond à une des (nouvelles lettres)

On a un état supplémentaire : ε .

L'automate calcule de façon incrémentale l'état suivant.

$$a(ab+b)^*b \hookrightarrow a_1(a_2b_1+b_2)^*b_3.$$

Les transitions allant à un état sont étiquetées par la lettre de l'état.

Les transitions allant à un état sont étiquetées par la lettre de l'état.

Algorithme de Glushkov : idée

- \triangleright L'état ε est le seul initial.
- Les transitions depuis ε vont vers les états dont les lettres peuvent commencer un mot du langage.
- Les états finaux sont ceux étiquetés par les lettres qui peuvent terminer un mot du langage, ainsi que ε s'il est dans le langage.
- ► Il y a une transition de l'état a_i vers l'état b_k si un mot du langage contient le facteur a_ib_k .

Les sous-expressions effaçables

Algorithme récursif pour déterminer les expressions qui "contiennent" ε . On note Effaçable(E) si l'expression E génère ε .

Les premières lettres

Algorithme récursif pour déterminer les premières lettres possibles.

Premier(
$$E$$
) $\stackrel{\text{def}}{=}$ { $a \in A \mid \exists u, \ au \in \mathcal{L}(E)$ }

Exemple Premier $(a^*b^*cd^*) = \{a, b, c\}.$

$$\mathsf{Premier}(\varepsilon) = \varnothing$$

Premier(
$$a$$
) = { a }

$$Premier(E_1 + E_2) = Premier(E_1) \cup Premier(E_2)$$

$$Premier(E_1E_2) = \begin{cases} Premier(E_1) \cup Premier(E_2) & \text{si Effaçable}(E_1) \\ Premier(E_1) & \text{sinon} \end{cases}$$

$$Premier(E^*) = Premier(E)$$

Les transitions

Algorithme récursif pour déterminer les **dernières** lettres : idem. Algorithme récursif pour déterminer les **transitions** :

$$\mathsf{Trans}(E) \stackrel{\mathsf{def}}{=} \{ ab \mid ab \text{ est facteur d'un mot de } \mathcal{L}(E) \}$$

Exemple

Trans
$$((a^+b)^*) = \{aa, ab, ba\}.$$

$$\mathsf{Trans}(\varepsilon) = \mathsf{Trans}(a) = \varnothing$$

$$\mathsf{Trans}(E_1 + E_2) = \mathsf{Trans}(E_1) \cup \mathsf{Trans}(E_2)$$

$$\mathsf{Trans}(E_1E_2) = \mathsf{Trans}(E_1) \cup \mathsf{Trans}(E_2) \cup \mathsf{Dernier}(E_1) \cdot \mathsf{Premier}(E_2)$$

$$\mathsf{Trans}(E^*) = \mathsf{Trans}(E) \cup \mathsf{Dernier}(E) \cdot \mathsf{Premier}(E)$$

Automates et expressions : langages réguliers

Résumé : 2 algorithmes "inverses" l'un de l'autre :

- ightharpoonup Celui basé sur les équations et le lemme d'Arden : automate \longrightarrow expression.
- ► Glushkov : expression → automate (non déterministe).

Conclusion : les automates et les expressions rationnelles permettent d'exprimer les mêmes langages : les langages réguliers (appelés aussi rationnels).

Un langage $L \subseteq A^*$ est régulier s'il existe un automate fini \mathcal{A} qui l'accepte ($L = L(\mathcal{A})$), ou, de manière équivalente, s'il existe une expression régulière E qui le décrit (L = L(E)).

Opérations booléennes sur les automates : Complémentaire

Le complémentaire

Problème pour complémenter en échangeant final ↔ non-final :

- certains mots ne peuvent pas être lus.
- L'automate n'est pas complet.

Facile à corriger : ajouter

- un nouvel état non final.
- les transitions manquantes vers cet état.

Le complémentaire

- ▶ Note : Répéter la complétion ne change plus l'automate.
- ► Question : Avoir un automate complet suffit-il pour que l'échange final ↔ non-final fonctionne pour la complémentation?

La déterminisation

La construction par sous-ensemble

- > permet de construire un automate déterministe équivalent.
- Partant d'un automate à n états, le nombre d'état de l'automate déterminisé est au pire 2^n .
- Cette borne peut être atteinte.

Déterminisation

A partir d'un automate (non-déterministe) $\mathcal{A} = (A, Q, I, F, \delta)$ on construit l'automate « des sous-parties » $\mathcal{B} = (A, \mathcal{P}(Q), \{I\}, \mathcal{F}, \Delta)$:

ightharpoonup les états sont les sous-ensembles des états de \mathcal{A} .

$$\mathcal{P}(Q) = \{X \mid X \subseteq Q\}$$

- l'état initial est l'ensemble I
- $\blacktriangleright \mathcal{F} = \{ X \subseteq Q \mid X \cap F \neq \emptyset \}$
- $\rightarrow X \xrightarrow{a} Y si$

$$Y = \{ q \in Q \mid p \xrightarrow{a} q \text{ pour un } p \in X \}$$

Dans l'automate « des sous-parties » $\ensuremath{\mathcal{B}}$ on a :

On calcule l'<u>ensemble</u> des états atteignables en lisant un mot w

$$X \xrightarrow{w} Y$$
 si et seulement si $Y = \{q \in Q \mid p \xrightarrow{w} q \text{ pour un } p \in X\}.$

$$L(\mathcal{B}) = \{ w \in A^* \mid I \xrightarrow{w} X \text{ pour un } X \in \mathcal{F} \} = L(\mathcal{A})$$

Pourquoi L(B) = L(A)?

Déterminisation : exemple

Les résiduels

Question

Quand est-ce qu'un langage est régulier?

- Montrer qu'un langage est régulier : facile.
 On donne un automate.
- Montrer qu'un langage n'est pas régulier : pas évident.
 On ne peut pas passer en revue tous les automates.

Les résiduels

Question

Quand est-ce qu'un langage est régulier?

- Montrer qu'un langage est régulier : facile.
 On donne un automate.
- Montrer qu'un langage n'est pas régulier : pas évident.
 On ne peut pas passer en revue tous les automates.

Solution (I): les résiduels

Résiduels

 $L \subseteq A^*$ langage, $w \in A^*$ mot.

$$\mathbf{w}^{-1}L = \{\mathbf{v} \in \mathbf{A}^* \mid \mathbf{w} \, \mathbf{v} \in L\}$$

 $w^{-1}L$ s'appelle « résiduel de L par w »

Exemple:

$$a^{-1}(a^*b^*) =$$

$$b^{-1}(a^*b^*) =$$

$$c^{-1}(a^*b^*) =$$

Question : $\epsilon^{-1}L = ?$

Rq : un résiduel est un langage

Régularité et résiduels

Soit $A = (A, Q, \{q_i\}, F, \delta)$ un automate déterministe, qui accepte le langage L.

Question : Que sait-on sur les résiduels $u^{-1}L$ et $v^{-1}L$?

Régularité et résiduels

Soit $A = (A, Q, \{q_i\}, F, \delta)$ un automate déterministe, qui accepte le langage L.

Question : Que sait-on sur les résiduels $u^{-1}L$ et $v^{-1}L$?

$$u^{-1}L=v^{-1}L$$

Tout langage régulier a un nombre fini de résiduels.

Q: combien?

L'automate minimal

Question

2 automates/expressions représentent-ils le même langage?

Solution

Objet "canonique" : un automate qui ne dépend que du langage.

Automate minimal: principe

On se donne un automate $A = (A, Q, q_I, F, \delta)$ déterministe.

- ightharpoonup On note L_q le langage des mots acceptés à partir de l'état q.
- ▶ Si $L_p = L_q$, on note $p \sim q$ (p équivalent à q).
- Automate minimal : obtenu en identifiant les états équivalents.

Automate minimal: principe

On se donne un automate $A = (A, Q, q_I, F, \delta)$ déterministe.

- ightharpoonup On note L_q le langage des mots acceptés à partir de l'état q.
- ▶ Si $L_p = L_q$, on note $p \sim q$ (p équivalent à q).
- ► Automate minimal : obtenu en identifiant les états équivalents.

Si on identifie $p \sim q$, on conserve un automate déterministe car :

$$p \sim q \implies \delta(p, a) \sim \delta(q, a)$$
 pour toute lettre a

Pourquoi?

Automate minimal: exemple

Automate minimal: algorithme

On calcule une suite de relations d'équivalence sur l'ensemble Q des états :

$$\sim_0, \sim_1, \sim_2, \dots$$

$$p \sim_k q$$
 si $L_p \cap A^{\leq k} = L_q \cap_{} A^{\leq k}$

$$A^{\leq k} = A^0 \cup A^1 \cup \cdots \cup A^k$$

 $p \sim_k q$ si l'automate accepte à partir de p les mêmes mots jusqu'à la longueur k qu'à partir de q.

▶ La relation \sim_0 a 2 classes d'équivalence :

Automate minimal: algorithme

▶ On calcule une suite de relations d'équivalence sur l'ensemble Q des états :

$$\sim_0, \sim_1, \sim_2, \dots$$

$$p \sim_k q$$
 si $L_p \cap A^{\leq k} = L_q \cap_{} A^{\leq k}$

$$A^{\leq k} = A^0 \cup A^1 \cup \cdots \cup A^k$$

 $p \sim_k q$ si l'automate accepte à partir de p les mêmes mots jusqu'à la longueur k qu'à partir de q.

▶ La relation \sim_0 a 2 classes d'équivalence : F et $Q \setminus F$

Exemple (bis)

	classes de \sim_k
k = 0	$\{1,3,4,6\}$ et $\{2,5\}$
k = 1	$\{1\}$, $\{3,4,6\}$, et $\{2,5\}$
<i>k</i> = 2	$\{1\}, \{6\}, \{3,4\}, \text{ et } \{2,5\}$
<i>k</i> = 3	{1,3,4,6} et {2,5} {1}, {3,4,6}, et {2,5} {1}, {6}, {3,4}, et {2,5} {1}, {6}, {3,4}, et {2,5}

Exemple (bis): minimisation

\sim_k	classes de \sim_k
k = 0	{1,3,4,6} et {2,5}
k = 1	$\{1\}$, $\{3,4,6\}$, et $\{2,5\}$
<i>k</i> = 2	{1}, {3,4,6}, et {2,5} {1}, {6}, {3,4}, et {2,5}
<i>k</i> = 3	$\{1\}, \{6\}, \{3,4\}, \text{ et } \{2,5\}$

Automate minimal: algorithme

On calcule une suite de relations d'équivalence sur l'ensemble Q des états :

$$\sim_0, \sim_1, \sim_2, \dots$$

$$p \sim_k q$$
 si $L_p \cap A^{\leq k} = L_q \cap A^{\leq k}$

$$A^{\leq k} = A^0 \cup A^1 \cup \cdots \cup A^k$$

 $p \sim_k q$ si l'automate accepte à partir de p les mêmes mots jusqu'à la longueur k qu'à partir de q.

$$p \sim_{k+1} q$$
 implique $p \sim_k q$

$$\sim_{k+1}$$
 raffine \sim_k

Chaque classe d'équivalence de \sim_k est une union de classes d'équivalence de \sim_{k+1} .

Automate minimal: algorithme

▶ On calcule une suite de relations d'équivalence sur l'ensemble Q des états :

$$\sim_0, \sim_1, \sim_2, \dots$$

$$p \sim_k q$$
 si $L_p \cap A^{\leq k} = L_q \cap A^{\leq k}$

$$A^{\leq k} = A^0 \cup A^1 \cup \cdots \cup A^k$$

 $p \sim_k q$ si l'automate accepte à partir de p les mêmes mots jusqu'à la longueur k qu'à partir de q.

$$p \sim_{k+1} q$$
 implique $p \sim_k q$

$$\sim_{k+1}$$
 raffine \sim_k

Chaque classe d'équivalence de \sim_k est une union de classes d'équivalence de \sim_{k+1} .

Question : est-ce que la suite $\sim_0, \sim_1, \sim_2, \ldots$ se stabilise? Quand?

Automate minimal : algorithme très naïf

- ► Chaque classe d'équivalence de \sim_k est une union de classes d'équivalence de \sim_{k+1} .
- ▶ On a $\sim_k = \sim_{k+1}$ dès que $k \ge |Q|$

Automate minimal: algorithme très naïf

- ► Chaque classe d'équivalence de \sim_k est une union de classes d'équivalence de \sim_{k+1} .
- ▶ On a $\sim_k = \sim_{k+1}$ dès que $k \ge |Q|$

Comment calculer la relation \sim_k ? Directement?

▶ pour chaque p, q, tester si p, q acceptent les mêmes mots de longueur $\leq k$.

Coût? Prenons |A| = m, |Q| = n.

Automate minimal: algorithme très naïf

- ► Chaque classe d'équivalence de \sim_k est une union de classes d'équivalence de \sim_{k+1} .
- ▶ On a $\sim_k = \sim_{k+1}$ dès que $k \ge |Q|$

Comment calculer la relation \sim_k ? Directement?

▶ pour chaque p, q, tester si p, q acceptent les mêmes mots de longueur $\leq k$.

Coût? Prenons |A| = m, |Q| = n.

- Quel est le coût d'une étape?
- Combien d'étapes?

Q : combien il y a des mots de longueur k?

n+1

Automate minimal: algorithme très naïf

- \triangleright Chaque classe d'équivalence de \sim_k est une union de classes d'équivalence de \sim_{k+1} .
- ightharpoonup On a $\sim_k = \sim_{k+1}$ dès que $k \geq |Q|$

Comment calculer la relation \sim_k ? Directement?

▶ pour chaque p, q, tester si p, q acceptent les mêmes mots de longueur $\leq k$.

Coût? Prenons |A| = m, |Q| = n.

- Quel est le coût d'une étape?
- Combien d'étapes?

$$O(m^{n+1} \cdot n^2 \cdot n)$$

Q : combien il y a des mots de longueur k?

n + 1

mauvais

Automate minimal: algorithme moins naïf

Idée : exploiter le calcul de \sim_k pour calculer \sim_{k+1} :

$$p \sim_{k+1} q \iff p \sim_k q \text{ et } (\delta(p, a) \sim_k \delta(q, a) \text{ pour tout } a).$$

Coût ?
$$|A| = m$$
, $|Q| = n$.

Automate minimal: algorithme moins naïf

Idée : exploiter le calcul de \sim_k pour calculer \sim_{k+1} :

$$p \sim_{k+1} q \iff p \sim_k q \text{ et } (\delta(p, a) \sim_k \delta(q, a) \text{ pour tout } a).$$

Coût?
$$|A| = m$$
, $|Q| = n$.

$$O(mn^3)$$
 mieux!

Automate minimal: algorithme moins naïf

Idée : exploiter le calcul de \sim_k pour calculer \sim_{k+1} :

$$p \sim_{k+1} q \iff p \sim_k q \text{ et } (\delta(p, a) \sim_k \delta(q, a) \text{ pour tout } a).$$

Coût?
$$|A| = m$$
, $|Q| = n$.

$$O(mn^3)$$
 mieux!

Question: peut-on faire encore mieux?

Automate minimal : algorithme de Moore

On utilise le tri lexicographique pour passer de

 $O(mn^3)$

à

 $O(mn^2)$.

À chaque étape, on veut identifier les états qui ont le même mot

$$x_{p} = C(p) C(\delta(p, a_{1})) \dots C(\delta(p, a_{m})).$$

où C(p) est la classe de l'état p.

Les mots x_p sont des mots de longueur |A|+1=m+1 sur un alphabet de taille n=|Q| au plus.

Tri lexicographique

Trier n mots de longueur k en temps O(kn).

Myhill-Nerode

Résiduels d'un langage $L \subseteq A^*$: langages $u^{-1}L = \{v \in A^* \mid uv \in L\}$

Théorème de Myhill-Nerode :

Un langage $L \subseteq A^*$ est régulier si et seulement si il a un nombre fini de résiduels.

Exemple :
$$L_p = \{w \in \{a,b\}* \mid |w| \text{ pair}\}$$

$$\epsilon^{-1}L_p = L_p$$
 $a^{-1}L_p = \{v \in \{a,b\}^* \mid |v| \text{ est impair}\}$
 $b^{-1}L_p = \{v \in \{a,b\}^* \mid |v| \text{ est impair}\}$
 $(aa)^{-1}L = L_p$

Automate des résiduels

Exemple : $L_p = \{w \in \{a,b\}^* \mid |w| \text{ pair}\}$

 L_p a deux résiduels : L_p et $L_i = \{w \in \{a,b\}^* \mid |w| \text{ est impair}\}$

L'automate pour L_p a deux états :

Automate des résiduels

Exemple : $L_p = \{ w \in \{a, b\}^* \mid |w| \text{ pair} \}$

 L_p a deux résiduels : L_p et $L_i = \{w \in \{a,b\}^* \mid |w| \text{ est impair}\}$

L'automate pour L_p a deux états :

Automate des résiduels de L :

- ▶ pour chaque résiduel $u^{-1}L$: un état q_u
- ightharpoonup état initial : q_{ϵ}
- ightharpoonup transitions : $q_{au} \stackrel{a}{\longrightarrow} q_u$
- ▶ états finaux : $F = \{q_u \mid u \in L\}$

Automate des résiduels

Exemple : $L_p = \{ w \in \{a, b\}^* \mid |w| \text{ pair} \}$

 L_p a deux résiduels : L_p et $L_i = \{w \in \{a,b\}^* \mid |w| \text{ est impair}\}$

L'automate pour L_p a deux états :

Automate des résiduels de L :

- ▶ pour chaque résiduel $u^{-1}L$: un état q_u
- ightharpoonup état initial : q_{ϵ}
- ightharpoonup transitions : $q_{au} \stackrel{a}{\longrightarrow} q_u$
- ▶ états finaux : $F = \{q_u \mid u \in L\}$

Pour tout langage régulier L: l'automate des résiduels de L est l'automate minimal qui accepte L.

Lemme de pompage pour les langages réguliers

Soit $L \subseteq A^*$ un langage régulier.

Il existe un entier N > 0 tel que tout mot $x \in L$ de longueur au moins N peut être décomposé en x = uvw tel que les conditions suivantes sont satisfaites :

- $\mathbf{v} \neq \epsilon$
- |v| < N
- ▶ $u v^k w \in L$ pour tout $k \ge 0$

Lemme de pompage pour les langages réguliers

Soit $L \subseteq A^*$ un langage régulier.

Il existe un entier N > 0 tel que tout mot $x \in L$ de longueur au moins N peut être décomposé en x = uvw tel que les conditions suivantes sont satisfaites :

- $\mathbf{v} \neq \epsilon$
- |v| < N
- ▶ $u v^k w \in L$ pour tout $k \ge 0$

variante : |uv| < N

Preuve:

- ightharpoonup N est le nombre d'états d'un automate $\mathcal A$ qui accepte $\mathcal L$
- ▶ tout calcul acceptant de A sur un mot $x \in L$ de longueur au moins N doit contenir une boucle : x = uvw, avec v boucle v = v première boucle
- répéter la boucle $k \ge 0$ fois ne change pas l'acceptation

Comment utiliser le lemme de pompage

Pour montrer qu'un langage n'est pas régulier on peut appliquer la contreposée du lemme : L n'est pas régulier si

- **▶** Pour tout *N* > 0...
- ▶ il existe un mot $x \in L$ de longueur $\geq N...$
- ▶ tel que pour toute decomposition x = uvw qui satisfait |uv| < N, $v \neq \epsilon$...
- ▶ il existe $k \ge 0$ tel que $uv^k w \notin L$.

Exemple : $\{a^nb^n \mid n \geq 0\}$

Langages non-réguliers

Pour montrer qu'un langage ...

- ... est régulier : on donne une expression rationnelle, ou un automate fini qui reconnaît le langage
- … n'est pas régulier : on applique le lemme de pompage, ou on montre que le nombre de résiduels du langage est infini.

Langages non-réguliers

Pour montrer qu'un langage ...

- ... est régulier : on donne une expression rationnelle, ou un automate fini qui reconnaît le langage
- … n'est pas régulier : on applique le lemme de pompage, ou on montre que le nombre de résiduels du langage est infini.

Remarque : pour montrer que $L = \{w \in \{a,b\}^* \mid |w|_a = |w|_b\}$ n'est pas régulier, on peut raisonner plus simplement.

- ► $L \cap a^*b^* = \{a^nb^n \mid n \ge 0\}.$
- ▶ Si *L* était régulier, alors $\{a^nb^n \mid n \ge 0\}$ le serait aussi. Contradiction.

Limitations des langages réguliers

Les langages réguliers sont

- utiles pour décrire des ensembles de mots,
- ont une algorithmique simple,

mais ils sont limités :

- Des constructions très fréquentes en informatique ne sont pas rationnelles : mots bien parenthésés.
- De manière générale, avoir une quantité finie de mémoire est très limitant.

Grammaires hors-contexte et automates à pile

Autre moyen de décrire des langages :

- Grammaires hors-contexte.
- "Machines" associées : automates à pile.

Grammaires hors-contexte (algébriques)

Cf. cours analyse syntaxique.

$$G = (V, A, R, S)$$
 où

- A: alphabet (symboles terminaux)
- V: variables (symboles non-terminaux)
- R : règles de la forme

$$X \to \alpha$$
 avec $X \in V$ et $\alpha \in (A \cup V)^*$

 $ightharpoonup S \in V$: symbole de départ.

Utilisation d'une grammaire

► Etape de dérivation : si

$$X \to \alpha$$

est une règle, alors

$$u \times v \rightarrow u \alpha v$$
 $u, v \in (A \cup V)^*$

est une étape de dérivation.

- $ightharpoonup \alpha \xrightarrow{k} \beta$ si on passe de α à β en k étapes de dérivation.
- $ightharpoonup \alpha \stackrel{*}{\to} \beta$ si on passe de α à β en 0 ou plus étapes de dérivation.
- On peut représenter une dérivation par un arbre de dérivation.

(on perd l'ordre des étapes de dérivation).

Langages hors-contexte (algébriques)

Langage généré par G = (V, A, R, S) = mots sur l'alphabet A que l'on peut dériver à partir de S:

$$L(G) = \{u \in A^* \mid S \xrightarrow{*} u\}$$

▶ Un langage $L \subseteq A^*$ est hors-contexte (ou algébrique) s'il est généré par une grammaire hors-contexte G.

Exemples

► Le langage des mots de longueur impaire :

$$S \rightarrow a \mid b \mid aaS \mid abS \mid baS \mid bbS$$

- Tout langage régulier est hors-contexte.
- ► Le langage $\{a^nb^n \mid n \ge 0\}$:

$$S
ightarrow aSb \mid arepsilon$$

Le langage des mots de longueur impaire et de centre a

$$X \rightarrow a \mid aXa \mid aXb \mid bXa \mid bXb$$

- Le langage des mots bien parenthésés : (),()(()),...
- Le langage des expressions arithmétiques.

Grammaires réduites

Une grammaire G = (V, A, R, S) est réduite si toute variable est utile. Formellement :

1. Pour tout $X \in V$, il existe $u \in A^*$ tel que :

$$X \stackrel{*}{\rightarrow} u \in A^*$$

(la variable *X* est productive)

2. Pour tout $X \in V$, il existe $\alpha, \beta \in (V \cup A)^*$ tels que :

$$S \stackrel{*}{\rightarrow} \alpha X \beta$$

(la variable *X* est accessible).

Une variable $X \in V$ est donc utile si et seulement si elle apparaît dans la dérivation d'un mot de L(G).

Réduction des grammaires

Rendre une grammaire réduite sans changer le langage généré :

► Supprimer d'abord les variables qui ne génèrent aucun mot :

$$\mathcal{E}_0 = A$$

$$\mathcal{E}_{k+1} = \mathcal{E}_k \cup \{X \in V \mid X \to \alpha \text{ et } \alpha \in (\mathcal{E}_k)^*\}$$

- \triangleright $\mathcal{E}_0 \subsetneq \mathcal{E}_1 \subsetneq \cdots \subsetneq \mathcal{E}_p = \mathcal{E}_{p+1}$.
- \triangleright \mathcal{E}_p = variables pouvant produire un mot de A^* (variables productibles).
- ightharpoonup On peut donc supprimer les variables qui ne sont pas dans \mathcal{E}_p .

Cet algorithme permet de savoir si $L(G) \neq \emptyset$.

Réduction des grammaires

Rendre une grammaire réduite sans changer le langage généré :

► Supprimer ensuite les variables inaccessibles depuis S.

$$\mathcal{F}_0 = \{S\}$$

$$\mathcal{F}_{k+1} = \mathcal{F}_k \cup \{X \in V \mid Y \to \alpha X \beta \text{ et } Y \in \mathcal{F}_k, \ \alpha, \beta \in (V \cup A)^*\}$$

$$\mathcal{F}_0 \subsetneq \mathcal{F}_1 \subsetneq \cdots \subsetneq \mathcal{F}_p = \mathcal{F}_{p+1}$$

 \mathcal{F}_p = variables accessibles à partir de S

On peut réduire une grammaire hors-contexte avec n variables et ensemble de règles R en temps $O(n \cdot taille(R))$.

Comment?

Grammaires propres

Une grammaire est propre si elle n'a aucune règle de la forme :

- ▶ $X \to \varepsilon$ (sauf éventuellement $S \to \varepsilon$, si ε est dans le langage)
- ightharpoonup X o Y où Y est une variable.

Intérêt : permet de résoudre le problème d'analyse syntaxique.

On peut rendre une grammaire propre en préservant le langage généré. Si la grammaire a n variables et ensemble de règles R, ça se fait en temps $O(n \cdot taille(R))$.

Comment?

Forme normale quadratique

Une grammaire est en forme normale quadratique si toutes les règles ont la forme :

- ► $S \rightarrow \varepsilon$ si ε est dans le langage.
- ightharpoonup X
 ightharpoonup a où *a* est symbole terminal.
- ightharpoonup X
 ightharpoonup YZ où Y,Z sont des variables.

On peut mettre une grammaire en forme normale quadratique en préservant le langage généré. Si la grammaire a n variables et ensemble de règles R, ça se fait en temps $O(n \cdot \text{taille}(R))$.

Comment?

 $X \to Y_1 \cdots Y_k$ est remplacé par $X \to Y_1 Z_1$, $Z_1 \to Y_2 Z_2$, ..., $Z_{k-2} \to Y_{k-1} Y_k$ (les Z_i sont des nouvelles variables).

Algorithme de Cocke-Younger-Kasami (CYK)

Permet de répondre à la question $w \in L(G)$?

Idée : soit le mot $w = a_1 \dots a_n$ $(n \ge 0 \text{ et } a_i \in A, 1 \le i \le n)$.

On note w[i,j] le facteur $a_i \dots a_j$ $(1 \le i \le j \le n)$.

On va calculer les ensembles (de variables)

$$\mathcal{T}[i,j] = \{X \in V \mid X \xrightarrow{*} w[i,j]\}$$

A la fin on aura le résultat suivant pour $w \neq \epsilon$:

$$w \in L(G)$$
 si et seulement si $S \in \mathcal{T}[1, n]$

Cocke-Younger-Kasami (CYK)

$$\mathcal{T}[i,j] = \{X \in V \mid X \xrightarrow{*} w[i,j]\}$$

```
Input: Mot w = a_1 ... a_n (n > 0)
Output: w \in L(G)?
for i = 1, \ldots, n do
  \mathcal{T}[i,i] := \{X \in V \mid X \longrightarrow a_i\};
end
for d = 1, ..., n - 1 do
  for i = 1, ..., n - d do
   j = i + d;
    \mathcal{T}[i,j] := \emptyset;
    for k = i, \ldots, j - 1 do
       forall Y \in \mathcal{T}[i,k], Z \in \mathcal{T}[k+1,j] et X \longrightarrow YZ do
         rajouter X à \mathcal{T}[i,j]
       end
    end
  end
end
return oui si S \in \mathcal{T}[1, n], non sinon;
```

Lemme de pompage pour les langages hors-contexte

Soit $L \subseteq A^*$ un langage hors-contexte.

Il existe un entier N > 0 tel que tout mot $z \in L$ de longueur > N peut être décomposé en z = uvwxy tel que les conditions suivantes sont satisfaites :

- \triangleright $vx \neq \epsilon$
- ightharpoonup |vwx| < N
- $\blacktriangleright u v^k w x^k y \in L \text{ pour tout } k \geq 0$

Lemme de pompage pour les langages hors-contexte

Soit $L \subseteq A^*$ un langage hors-contexte.

Il existe un entier N > 0 tel que tout mot $z \in L$ de longueur > N peut être décomposé en z = uvwxy tel que les conditions suivantes sont satisfaites :

- \triangleright $vx \neq \epsilon$
- ightharpoonup |vwx| < N
- $ightharpoonup u v^k w x^k y \in L \text{ pour tout } k \geq 0$

Preuve:

- ightharpoonup L = L(G), G en forme normale quadratique avec M variables
- ► $N = 2^{M}$
- ▶ tout arbre de dérivation pour un mot $z \in L$ de longueur > N est de profondeur > M, donc il contient un chemin sur lequel une variable se répète
- on considère un tel chemin et la première variable répétée (des feuilles vers la racine):

$$S \xrightarrow{*} u\underline{X}y \xrightarrow{*} uv\underline{X}xy \xrightarrow{*} uv\underline{w}xy$$

Comment utiliser le lemme de pompage

Pour montrer qu'un langage n'est pas hors-contexte on peut appliquer la contreposée du lemme : L n'est pas hors-contexte si

- **▶** Pour tout *N* > 0...
- ▶ il existe un mot $z \in L$ de longueur > N...
- ▶ tel que pour toute decomposition z = uvwxy qui satisfait $vx \neq \epsilon$, $|vwx| \leq N...$
- ▶ il existe $k \ge 0$ tel que $uv^k wx^k y \notin L$.

Exemples:
$$\{a^n b^n c^n \mid n \ge 0\}$$
, $\{ww \mid w \in \{a, b\}^*\}$

Automates à pile

Un automate à pile ("pushdown automaton") est un automate fini auquel on rajoute une mémoire sous forme de pile ("last-in-first-out").

Un automate à pile est donné par 5 ensembles : $(A, B, Q, \delta, q_0, F, Z)$

- ► Alphabets A, B: les mots lus par l'automate sont sur l'alphabet A; la pile est un mot sur l'alphabet B.
- Ensemble fini d'états (de contrôle) Q.
- ▶ Ensemble de transitions $\delta \subseteq Q \times (A \cup \{\epsilon\}) \times B \times Q \times B^*$.
- ightharpoonup État initial $q_0 \in Q$.
- ightharpoonup États finaux (ou acceptants) $F \subseteq Q$.
- ▶ Symbole initial de pile $Z \in B$.

Une transition (p, a, X, q, v) peut être effectuée si l'état est p, le symbole actuel du mot d'entrée est a (pas de contrainte si $a = \epsilon$) et le sommet de la pile est X. L'effet de la transition est de changer l'état en q, remplacer le sommet de la pile X par le mot $v \in B^*$ et passer au symbole suivant de l'entrée si $a \neq \epsilon$.

Automates à pile : définition

$$\mathcal{A} = (A, B, Q, \delta, q_0, F, Z)$$

- ▶ Une configuration de A est une paire $(p, v) \in Q \times B^*$, constituée de l'état p et le contenu v de la pile (avec le sommet de pile à gauche).
- ► Transition $(p, Xw) \xrightarrow{a} (q, vw)$ si $(p, a, X, q, v) \in \delta$.
- On écrit $(p, w) \xrightarrow{u} (p', w')$ s'il existe une suite de transitions $(p, w) \xrightarrow{a_0} (p_1, w_1) \xrightarrow{a_1} \dots (p_n, w_n) \xrightarrow{a_n} (p', w')$ telle que $u = a_0 \dots a_n$.
- ightharpoonup Le langage accepté par $\mathcal A$ est

$$L(A) = \{ u \in A^* \mid (q_0, Z) \xrightarrow{u} (p, w) \in F \times B^* \}.$$

Remarque On peut aussi définir le langage accepté par pile vide :

$$L(\mathcal{A}) = \{ u \in A^* \mid (q_0, Z) \xrightarrow{u} (p, \epsilon), p \in Q \}$$

Ces deux variantes d'acceptation sont équivalentes, sauf pour les automates httd déterministes bordeaux.fr/mpc/

Exemples

L'automate suivant accepte le langage $\{a^mb^n \mid m \ge n > 0\}$:

Comment modifier pour $\{a^nb^n \mid n \geq 1\}$?

on rajoute 1 $\xrightarrow{\epsilon/Z,\epsilon}$ 2 et seulement 2 est état final

L'automate suivant accepte les palindromes de longueur paire. L'alphabet de pile est $B = \{Z, a, b\}$:

Automate à pile et grammaires

Pour tout langage hors-contexte L il existe un automate à pile (à un seul état) qui accepte L avec pile vide. Réciproquement, les langages acceptés par les automates à pile sont des langages hors-contexte.

Les automates à pile déterministes sont strictement moins expressifs (par exemple, le langage des palindromes ne peut pas être accepté par un automate à pile déterministe).

Des grammaires vers les automates à pile

Soit G = (V, A, R, S) une grammaire en forme normale quadratique. $X \longrightarrow YZ$ ou $X \longrightarrow a$.

On définit un automate à pile $\mathcal{A} = (A, A \cup V, \{q\}, \delta, q, -, S)$ qui accepte par pile vide :

$$\delta = \{ (q, \epsilon, X, q, YZ) \mid X \longrightarrow YZ \text{ dans } R \} \cup \{ (q, a, X, q, \epsilon) \mid X \longrightarrow a \text{ dans } R \}$$

On a :
$$L(G) = L(A)$$

Cet automate simule une dérivation de gauche (on remplace toujours la variable le plus à gauche).

Exemple :
$$S \longrightarrow aSb \mid SS \mid \epsilon$$

$$S \longrightarrow \underline{S}S \longrightarrow a\underline{S}bS \longrightarrow a\underline{a}\underline{S}bbS \longrightarrow a\underline{a}\underline{b}b \subseteq \longrightarrow a\underline{a}\underline{b}b$$

Des automates à pile vers les grammaires

Soit $\mathcal{A} = (A, B, Q, \delta, q_0, -, Z)$ un automate qui accepte avec pile vide.

On construit une grammaire *G* avec variables :

$$V = \{\langle p, X, q \rangle \mid p, q, \in Q, X \in B\}$$

Principe : $\langle p, X, q \rangle \stackrel{*}{\longrightarrow} w$ dans G si et seulement si $(p, X) \stackrel{w}{\longrightarrow} (q, \epsilon)$ dans A.

Pour toute transition $(p, a, X, q, Y_1 \dots Y_k) \in \delta$ de A on rajoute des règles

$$\langle p, X, r \rangle \longrightarrow a \langle q, Y_1, r_1 \rangle \langle r_1, Y_2, r_2 \rangle \ldots \langle r_{k-1}, Y_k, r \rangle$$

pour tous les états $r, r_1, \ldots, r_{k-1} \in Q$ possibles.

Propriétés algorithmiques

Les langages réguliers ont beaucoup de bonnes propriétés algorithmiques. Les langages hors-contexte en ont moins.

- ► Il existe des algorithmes pour savoir si le langage d'un automate fini, ou d'une grammaire (ou automate à pile) est non-vide.
- Le complémentaire d'un langage régulier est aussi régulier. Mais il existe des langages hors-contexte dont le complémentaire n'est pas hors-contexte.
- L'intersection de deux langages réguliers est un langage régulier. Mais il existe des langages hors-contexte dont l'intersection n'est pas hors-contexte.
- ► Il existe un algorithme pour savoir si l'intersection de deux langages réguliers est non-vide. Mais il n'existe pas d'algorithme qui permet de savoir si l'intersection de deux langages hors-contexte est non-vide.