2022 제10회 빅콘테스트 데이터분석리그 퓨처스부문 최종보고서

앱 사용성 데이터를 통한 대출신청 예측분석

Team KUBIG B

김상옥 quadrat1c@korea.ac.kr 노연수 1020nys@korea.ac.kr 이수찬 eliot1113@korea.ac.kr

INDEX

Ch. A

데이터 활용 및 EDA

00 메타데이터 요약

01 활용 라이브러리 소개

02 데이터 임포트 및 EDA

03 Train / Test 데이터 추출

Ch. B

데이터 전처리

04 주요 전처리

결측치와 '무응답' 변수

로그변환 및 더미변수

K-means 클러스터링

05 로그 데이터 축소

Ch. C

활용 알고리즘과 예측 결과

06 기초 예측 및 모델 검토

07 분할 모델링

08 결론 및 제언

Chapter A. 데이터 활용 및 EDA

Ch. A | 00 메타데이터 요약

사용자 신용정보

user_spec.csv

- 생년월일, 성별 등 개인사항
- 소득, 근로형태 등 직업 변수
- 기존 대출, 개인회생 등 신용 변수

대출 결과

loan_result.csv

- 신청서 및 상품 id (Key)
- 신청 여부(Yes/No) (Target)
- 승인한도 및 금리 등 대출 정보

사용자 로그

log_data.csv

- Finda 어플리케이션 사용 정보
- 앱 실행, 로그인, 신용정보 및 한도조회 등 활동 기록

Ch. A | 01 활용 라이브러리

수치 및 데이터프레임 연산

머신러닝 모델 피팅 및 평가

데이터 EDA &결과 시각화

사용자 신용정보

user_spec.csv

140만개 가량의 row, 일부 열에서 10만개~100만개 정도의 결측치

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1394216 entries, 0 to 1394215 Data columns (total 17 columns):

memory usage: 180.8+ MB

#	Column	Non-Null Count	Dtype
0	application_id	1394216 non-null	int64
1	user_id	1394216 non-null	int64
2	birth_year	1381255 non-null	float64
3	gender	1381255 non-null	float64
4	insert_time	1394216 non-null	object
5	credit_score	1289101 non-null	float64
6	yearly_income	1394126 non-null	float64
7	income_type	1394131 non-null	object
8	company_enter_month	1222456 non-null	float64
9	employment_type	1394131 non-null	object
10	houseown_type	1394131 non-null	object
11	desired_amount	1394131 non-null	float64
12	purpose	1394131 non-null	object
13	personal_rehabilitation_yn	806755 non-null	float64
14	personal_rehabilitation_complete_yn	190862 non-null	float64
15	existing_loan_cnt	1195660 non-null	float64
16	existing_loan_amt	1080442 non-null	float64
dtyp	es: float64(10), int64(2), object(5)		

사용자 신용정보

user_spec.csv

고르게 분포하는 변수도 있으나… (credit score 등)

금액 관련 변수는 극단적 이상치 존재

(yearly_income, desired_amount, existing_loan_amt 등)

대출 결과 loan_result.csv

타겟 변수(is_applied)와 대출 정보(loan_limit/_rate), 마찬가지로 **금액 변수의 극단값** 확인

	event	timestamp	mp_os	mp_app_version	date_cd
count	17843993	17843993	17843013	17183396	17843993
unique	11	6879764	4	259	122
top	OpenApp	2022-04-11 11:40:30	Android	3.14.0	2022-06-27
freq	3460762	23	12331688	2339899	267738

Finda 앱에서 유저 사용 기록 및 시간, 기기 OS와 앱 버전 등 1,700만개 가량의 row가 있는 대형 데이터

Ch. A 03 Train / Test 데이터 추출

신청서 번호에 맞춰 병합 (application_id)

user_spec $(1,394,216 \times 17)$

loan_result $(13,527,337 \times 7)$

타겟(is_applied)이 존재 $(10,269,424 \times 23)$

Test set

평가용 데이터셋

타겟(is_applied)이 NAN $(3,257,034 \times 23)$

데이터 중 일부를 유저 번호로 매칭 (user_id)

log_data $(17,359,850 \times 6)$

Ch. A 03 Train 데이터 EDA

Correlation Matrix 상에서 타겟과의 상관계수 전반적으로 낮은 경향

loan_result&user_spec 병합 후에도 일부 극단적 분포

Chapter B. 데이터 전처리

Ch. B | 04 Train 결측치 제거, '무응답' 범주 추가

학습용 데이터셋(Train)에만 결측치가 있는 경우, 비율이 매우 낮으므로 결측행 제거

개인회생 관련 변수 더미화, 결측치의 경우 기록 없음으로 간주해 0으로 처리 #train에만 있는 결측치 비율 pd.options.display.float_format = '{:.6f}'.format train_loan[na_train].isnull().sum()/len(train_loan)

insert_time 0.000011 houseown type 0.000011 employment_type 0.000011 -0.000011purpose 0.000011 income_type 0.000011 user id desired_amount 0.000011 dtype: float64

#trian 데이터에서 'rehabilitation_complete','rehabilitation_incomplete' 변수 고유값 확인 train_loan2[['rehabilitation_complete','rehabilitation_incomplete']].value_counts()

rehabilitation_complete rehabilitation_incomplete dtype: int64

Ch. B | 04 로그변환, 극단적 이상치 완화

기하급수적 극단값 및 skewness 문제 있는 변수는 로그변환

(loan_limit,yearly_income,desired_amount,existing_loan_cnt,existing_loan_amt)

ln(1+p)로 변환 (np.log1p)

Ch. B | 04 더미변수 One-Hot Encoding

범주형 변수인 소득/고용/주거유형, 대출 목적 모두 (income_type, employment_type, houseown_type, purpose)

범주 간 순서가 존재하지 않으므로. One-hot encoding이 적절하다고 판단, 실행

One-hot encoding:

n개의 범주를 n개의 비트(0,1) 벡터로 표현, 서로 다른 범주를 독립적인 의미로 사용 가능

그러나 부작용으로 Feature 수가 **과하게 늘어**나는 문제 발생

loanapply_insert_time bank id product_id loan_limit loan_rate is applied user_id birth_year gender insert_time credit_score yearly_income company_enter_month desired_amount existing_loan_cnt existing_loan_amt rehabilitation_complete rehabilitation incomplete income_type_EARNEDINCOME income type EARNEDINCOME2 income_type_FREELANCER income_type_OTHERINCOME income type PRACTITIONER income_type_PRIVATEBUSINESS employment type 계약직 employment_type_7|E| employment_type_일용직 employment_type_정규직 houseown_type_기타가족소유 houseown_type_배우자 houseown_type_자가 houseown_type_전월세 purpose_BUSINESS purpose_BUYCAR purpose BUYHOUSE purpose_ETC purpose_HOUSEDEPOSIT purpose_INVEST purpose_LIVING purpose_SWITCHLOAN purpose_7/EH purpose_대환대출 purpose_사업자금 purpose_생활비 purpose_자동차구입 purpose_전월세보증금 purpose_주택구입 purpose_투자

application_id

차원의 저주 방지 위해 타겟과의 **상관계수** 0.03 미만 필터링, 19개 변수 제거

Ch. B | 04

Name: group, dtvpe: int64

K-Means 클러스터링 및 결측치 대치

	index	total	
13	existing_loan_cnt	1.935517	
11	company_enter_month	1.853272	
14	existing_loan_amt	1.718721	
6	birth_year	1.523486	
9	credit_score	1.499850	
7	gender	1.254627	
25	houseown_type_자가	1.035266	
10	yearly_income	0.833370	
12	desired_amount	0.751290	
24	houseown_type_기타가족소유	0.561244	
2	loan_limit	0.555600	

결측치 존재 변수와의 상관계수 절대값 합 상위 5개 변수 선택, (회색: 결측치 존재 변수 자신)

K-Means 클러스터링 후 **군집별 중앙값**으로 결측치 대치

군집 시각화, 5개 변수 이용했으므로 2차원 상에서는 **경향성 차이만** 드러남

Ch. B | 05 로그데이터 축소

로그 데이터 특성상 대부분의 경우 복수의 행이 한개의 user_id에 대응하므로 user_id 기준 병합 사실상 불가

	user_id	event	timestamp	mp_os	mp_app_version	date_cd
0	576409	StartLoanApply	2022-03-25 11:12:09	Android	3.8.2	2022-03-25
1	576409	View Loan Apply Intro	2022-03-25 11:12:09	Android	3.8.2	2022-03-25
2	72878	EndLoanApply	2022-03-25 11:14:44	Android	3.8.4	2022-03-25
3	645317	OpenApp	2022-03-25 11:15:09	iOS	3.6.1	2022-03-25
4	645317	UseLoanManage	2022-03-25 11:15:11	iOS	3.6.1	2022-03-25
5	640185	UseLoanManage	2022-03-25 11:41:53	iOS	3.6.1	2022-03-25
6	640185	ViewLoanApplyIntro	2022-03-25 11:42:38	iOS	3.6.1	2022-03-25
7	640185	UsePrepayCalc	2022-03-25 11:43:07	iOS	3.6.1	2022-03-25
8	640185	UseLoanManage	2022-03-25 11:43:57	iOS	3.6.1	2022-03-25
9	640185	UseLoanManage	2022-03-25 11:44:04	iOS	3.6.1	2022-03-25

Ch. B | 05 로그데이터 축소

따라서 병합하는 대신, user_id별 event 실행 여부 추출

event별 타겟과의 상관계수 체크 전반적으로 높지는 않은 경향…

```
cor3 = train_loan5[list(log_data['event'].unique())].corrwith(other = train_loan5['is_applied'])
cor3 = cor3.reset_index()
cor3.sort_values(0, ascending=False)
```

0

0	StartLoanApply	0.041596
2	EndLoanApply	0.039095
3	OpenApp	0.036774
4	UseLoanManage	0.035475
1	ViewLoanApplyIntro	0.025215
9	SignUp	0.024246
7	${\sf CompleteIDCertification}$	0.024220
10	GetCreditInfo	0.023731
6	Login	0.020620
5	UsePrepayCalc	0.000309
8	UseDSRCalc	-0.007152

index

```
[ ] for i in list(log_data['event'].unique()):
       print(i)
       log_limit = log_data[log_data['event']==i]
       log_limit = log_limit[['user_id']]
       log_limit[i] = 1
       log_limit = log_limit.drop_duplicates(ignore_index = True)
       log_limit = log_limit.drop(log_limit[~log_limit['user_id'].isin(train_user['user_id'])].index)
       print(log_limit.shape)
       train_user = train_user.merge(log_limit, on='user_id', how='left')
       train user = train user.fillna(0)
       train_loan5[i] = train_user[i]
       train_user = train_loan5[['user_id']]
     StartLoanApply
     /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:5: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row indexer.col indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html
     (205694, 2)
     ViewLoanApplyIntro
     (208407, 2)
     EndLoanApply
     (211758, 2)
     OpenApp
     (199218, 2)
     UseLoanManage
     (159545, 2)
     UsePrepayCalc
     (3098, 2)
     Login
     (169612, 2)
     CompleteIDCertification
     (203151, 2)
     UseDSRCalc
     (2373, 2)
     SignUp
                                                                                                     18
     (12463, 2)
     Get Credit Info
```

(205325, 2)

page

KUBIG B 2022 빅콘테스트 데이터분석 퓨처스

Ch. B | 05 로그데이터 축소

타겟과의 상관계수가 그나마 있는 대출 신청 완료 여부 (EndLoanApply),

그 다음으로 유의하면서 상호 상관성이 과하지 않은 **대출관리 서비스 이용 여부** (UseLoanManage) 를 최종 활용

```
[] Use = ['EndLoanApply', 'UseLoanManage']
Not_Use = list(set(log_data['event'].unique()) - set(Use))
train_loan6 = train_loan5.drop(Not_Use, axis=1)
train_loan6.info()
```

```
1
```

```
[] for i in Use:
    print(i)
    test_user = test_loan4[['user_id']]
    log_limit = log_data[log_data['event']==i]
    log_limit = log_limit[['user_id']]
    log_limit[i] = 1
    log_limit = log_limit.drop_duplicates(ignore_index = True)
    log_limit = log_limit.drop(log_limit[~log_limit['user_id'].isin(train_user['user_id'])].index)
    print(log_limit.shape)
    test_user = test_user.merge(log_limit, on='user_id', how='left')
    test_user = test_user.fillna(0)
    test_loan4[i] = test_user[i]
```

←─ 활용할 event를 평가용 데이터에도 매치

EndLoanApply (211758, 2) UseLoanManage (159545, 2)

Chapter C. 활용 알고리즘과 예측 결과

Ch. C | 06 기초 예측과 모델 검토

모델 검토용 데이터 분할

Train 세트 내부에서 자체 train, 자체 test 분리(train_test_split) 자체 train에만 불균형 해소(SMOTE)

로지스틱 회귀 검토 및 피팅

피팅이 간단하고, 확률 계산에 장점 있음 자체 검토 시 f1 score 0.168 수준…기각

```
print(Ir_conf_matrix)
print("정확도: ", Ir_acc_score+100, "#nF1 score:", Ir_f1_score)
[[1776334 1136689]
   46381 11976511
```

정확도: 61.57826998128391 F1 score: 0.16837480669197244

랜덤 포레스트 검토 및 피팅

고차원 데이터에 강한 비모수적 방식인 결정 트리를 앙상블, 오버피팅 가능성이 낮고 비선형적 데이터에 강점

자체 검토 시 f1 score 0.256 수준

```
print(rf_conf_matrix)
print("정확도: ", rf_acc_score*100, "\nF1 score:", rf_f1_score)
[[2870639]
           423841
           30678]1
```

정확도: 94,22402602780166 F1 score: 0.25649643824621243

데이터 분할과 AutoML 모델링

자체 검토 결과로부터, **랜덤 포레스트 비롯한 결정 트리 계열의 모델** 사용 결정 모델 자체평가, 블렌딩, f1 점수 최적화 기능이 존재하는 AutoML로 최종 모델 도출 하드웨어 문제로 데이터를 분할해서 학습시킨 다음 각 모델의 예측 결과(확률)을 Soft Voting 불균형 완화 위해 타겟이 No인 데이터 20분할, Yes인 경우를 각 분할에 그대로 병합

Ch. C | 07 예측 결과 및 해석

Decision Tree, Random Forest, Extra Tree 블렌딩해 예측 분할 일부 예측 결과:

```
best_3 = compare_models(sort = 'f1', include = ['dt', 'rf', 'et'], n_select = 3, fold=3)
                     Model Accuracy
                                           AUC Recall Prec.
                                                                                     MCC TT (Sec)
                                                                      F1 Kappa
         Extra Trees Classifier
                                 0.8862 0.9610
                                                                                            129.6800
 et
                                                  0.8629
    Random Forest Classifier
                                         0.9583
                                                                                            169,1967
      Decision Tree Classifier
                                         0.8320
                                                  0.8328 0.8492 0.8409
                                                                                             10.6300
blended = blend_models(estimator_list = best_3, fold = 3, method = 'soft',optimize = 'f1')
                    AUC Recall Prec.
                                            F1 Kappa
                                                         MCC
        Accuracy
 Fold
   0
                 0.9534
                  0.9535
                                         0.8648
                 0.9524
                          0.8420 0.8842 0.8626 0.7138 0.7147
 Mean
                  0.9531
                                 0.8861
                                         0.8638 0.7164 0.7174
  Std
           0.0010 0.0005
                          0.0004 0.0016 0.0009 0.0021 0.0021
```

이후 분할별 예측 Soft Voting

Ch. C | 08 | 결론 및 제언

대형 데이터에 대한 효율적 병합 Method 필요

loan result의 1,000만개 타겟을 학습하고 300만개를 예측하는 대형 문제, application_id, user_id를 **키로 매칭, 키 중복으로 인한 거대화 문제를 완화**했으나 추후 더 진행된다면 보다 근본적인 효율화 방법 모색할 필요

고차원 데이터의 특성에 적합한 모델 탐색

고차원 데이터 특성에 따라 비모수적 Tree 모델이 실제로 성능이 더 나은 경향 확인 지속적인 예측 시스템은 비모수적 가정 하에서 구성되는 것이 적절하다고 사료됨

앱에서 사용자의 이벤트 발생 주목

특정 이벤트 발생 여부 뿐 아니라 빈도, 시간 등 다른 변인 또한 주목해야 할 것으로 파악됨

이상으로 발표를 마칩니다. 감사합니다!