GWpy (and other LIGO software)

Katerina Chatziioannou Flatiron Institute

3rd HEL.A.S. and DAAD School, October 11th

Gravitational Wave Open Science Center

Getting Started

Data

Events

Bulk Data

Tutorials

Software

Detector Status

Timelines

My Sources

GPS ↔ UTC

About the detectors

Projects

Acknowledge GWOSC

Data Releases for Observed Transients

Data Releases: Compact Object Mergers

Click icons below for data and documentation:

Parameter Estimation Posterior Samples

Posterior samples used for parameter esimation are available for some events:

- O1 Binary Black Hole Mergers: see parameter estimation samples
- Binary Neutron Star Merger GW170817 see results from two publications: P1800115 | P1800061

Audio files

Listen to audio files from LIGO detections.

Skymaps

Visualize the source sky localization estimated from LIGO and Virgo observations.

https://www.gw-openscience.org/events/

Open data workshop

LIGO Scientific Collaboration

Open Data Workshop #1

Sunday - Tuesday, March 25 - 27, 2018

Data Workshop Location Lodging Transportation Registration Program Lecture Videos

Workshop Web Course

Overview

These are materials from the 2018 LSC Open Data Workshop. The web course:

- · includes 5 hours of lecture
- includes 10-30 hours of data analysis programming exercises
- is intended for people holding or pursuing a graduate degree in physics, astronomy, or a related field
- targets learning objectives related to gravitational wave data analysis using LIGO and Virgo

LIGO VIRGO

Open data workshop

gwpy	gwpy: readded missing notebook
intro	intro
parameter_estimation	pe: use lalsuite pypi package for lal
pycbc	inverse spectrum truncation in tutorial 4 as well
setup	Frozen software versions
skymaps	Adding subject directories

https://github.com/gw-odw/odw-2018/

GWpy

- A free python package for GW astrophysics
- Widely used for detector characterization
- Helpful data visualization
- Data filtering and signal processing
- Free!

GWpy: a free python package for GW Astro

- ◆ Documentation, examples https://gwpy.github.io/
- ◆ If you want to run GWpy locally
 - \$ virtualenv GWpy
 - \$ source GWPy/bin/activate
 - \$ pip install gwpy

- ◆ Tutorials and set up https://github.com/gw-odw/odw-2018/
- * Run the tutorials and do the challenges!

