NATURVITENSKAPELIGE UNIVERSITET

INSTITUTT FOR KJEMI

Institutt for kjemi, Realfagbygget Faglærer: Professor Vassilia Partali

Kontaktperson i eksamensdag: Vassilia Partali tel: 73 59 62 09 (kontor)

906 48 710 (mobil)

EKSAMEN I EMNE KJ1020

Fredag 10 juni 2011 Tid: 09.00-14.00

Oppgavesettet består av 5 sider Hjelpemidler: molekyl-byggesett Sensuren faller 1 juli 2011

OPPGAVE 1

A) Når alken 1 hydrogeneres dannes produkt A. Angi strukturen av produkt A. Hva blir den optiske dreining av A?

$$CH_3CH_2$$
 CH_3
 $CH_$

B) Bestem sammenhengen mellom strukturene i hvert av de fem parene under. Bruk følgende betegnelser: I for identiske molekyler, E for enantiomere, K for konstitusjonsisomere, D for diastereomere.

C) Bestem konfigurasjon (R eller S) i alle kirale sentre for de to molekylene nedenfor.

D) Tegn den mest stabile stol konformasjon av *trans-1-tert*-butyl-3-metyl-sykloheksan.

OPPGAVE 2

A) Skriv produktene som dannes i reaksjon 1 og 2. Hvilken type isomere er de to produktene?

reaksjon 1
$$Cl$$
 $C(CH_3)_3$ + SNa ?

reaksjon 2 $C(CH_3)_3$ + SNa ?

B) Vis struktur og stereokjemi for følgende forbindelser. Oppgi stereokjemisk forhold mellom D1 og D2.

a) (R)-(-)2-butanol TsCl A
$$\xrightarrow{CN}$$
 B $\xrightarrow{H_2SO_4}$ C LiAlH₄ $\xrightarrow{H_2O}$ D1

b) (R)-(-)2-butanol
$$\xrightarrow{PBr_3}$$
 A $\xrightarrow{CN^-}$ B $\xrightarrow{H_2SO_4}$ C LiAlH₄ H₂O

C) Under milde betingelser blir diolen 1 monodehydrert til en alkenol 2. Gi en forklaring på den selektive dannelsen av produktet. Skisser en reaksjonsmekanisme.

OPPGAVE 3

A) Hvilken av de to reaksjonene ville gi det beste utbyttet i syntese av isopropylmetyleter? Begrunn svaret og vis reaksjonsmekanismen for den valgte reaksjonen.

B) Paracetamol dannes ved selektiv acylering av NH₂-gruppen når 4-aminofenol reagerer med eddiksyreanhydrid. Skriv den detaljerte reaksjonsmekanismen. Hvis man bruker overskudd av edikksyreanhydrid, blir også OH-gruppen acylert. Forklar hvorfor NH₂-gruppen acyleres framfor OH gruppen.

C) Alkenene 1, 2 og 3 er eliminasjons produkter fra tre ulike alkylbromider. De tre alkylbromidene har samme molekylformel, $C_7H_{13}Br$. Vis strukturer for de tre alkylbromidene.

a)
$$CH_2$$
 b) CH_2 c) CH_2 3

D) Klassifiser følgende forbindelser/ioner som aromatiske eller ikke aromatiske. Begrunn svaret.

OPPGAVE 4

A) Forbindelse A gir negativ Tollens test mens forbindelse C gir positiv. Angi strukturer for A, B og C.

4-brombutanal
$$\xrightarrow{HO}$$
 OH A $(C_6H_{11}O_2B_1)$ $\xrightarrow{Mg, Et_2O}$ B $(C_6H_{11}MgO_2B_1)$ $(1) CH_3CHO$ $(2) H_3O^{\bigoplus}$ $C (C_6H_{12}O_2)$

B) Ibuprofen (1) er et smertestillende og antiinflammatorisk middel. Skriv de mellomproduktene som mangler i reaksjonen nedenfor uten å gi reaksjonsmekanismene.

C) Hvilket av de to produktene forventer man i reaksjonen nedenfor. Forklar ditt svar.

D) Når HCl adderes til 2-metyl-1, 3-butadien i en 1,4-addisjon er hovedproduktet 1-klor-3-metyl-2-buten. Veldig lite 1-klor-2-metyl-2-buten blir dannet. Forklar dette ved hjelp av reaksjonsmekanismer.

OPPGAVE 5

A) Tamoxifen (1) er et medikament som brukes i behandling mot brystkreft. Angi alle mellomprodukter og reaksjonsmekanismene når 1 reagerer først med PhMgBr og deretter med H₂SO₄.

B) Hvilket produkt dannes i hver av de to følgende Diels-Alder reaksjoner?

C) Når forbindelse 1 blir behandlet med en base dannes, i en intramolekular Aldol kondensasjon, forbindelse 2. Skriv detaljerte reaksjonsmekanismer.

D) Hvilke produkter dannes når hver av følgende forbindelse reagerer med Br₂ og FeBr₃ som katalysator.