PE VO 3 1 2004

CASE II/2-21851/A/PCT/RCE

CERTIFICATE OF MAILING

I hereby earthy that this paper (along with any paper referred to as being attached or enclosed) is being deposited with the United States Postal Service on the date shown below with sufficient postage as first class mail in an envelope addressed to the: Assistant Commissioner for Patents, Washington, D.C. 20231.

Lynn Girolamo

Lynn Licolomo
Signature

3/29/04 Date

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF

Group Art Unit: 1752

SURULIAPPA GOWPER JEGANATHAN ET AL.

Examiner: A. C. Walke

APPLICATION NO: 09/806,360

FILED: MARCH 29, 2001

FOR: COLOUR PHOTOGRAPHIC MATERIAL

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

TRANSMITTAL LETTER

Sir:

Enclosed herewith are three copies of the Appeal Brief in the above-identified application.

- Please charge Deposit Account No. 03-1935 in the amount of \$330.00 for payment of the fee.

 Two additional copies of this paper are here enclosed. The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment, to Account No. 03-1935.
- Enclosed is a Petition for Extension of time.

Respectfully submitted,

Ciba Specialty Chemicals Corporation Patent Department 540 White Plains Road P.O. Box 2005 Tarrytown, NY 10591-9005 (914) 785-2783

TAS/lg Enc.

Date: March 29, 2004

Tyler A. Stevenson Agent for Applicants Reg. No. 46,388

CASE II/2-21851/A/PCT/RCE

CERTIFICATE OF MAILING

I hereby certify that this paper (along with any paper referred to as being attached or enclosed) is being deposited with the United States Postal Service on the date shown below with sufficient postage as first class mail in an envelope addressed to the: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Type or print name

dynn Juolamo

3/29/04

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF

Group Art Unit: 1752

SURULIAPPA GOWPER JEGANATHAN ET

Examiner: Amanda C. Walke

AL.

APPLICATION NO: 09/806,360

FILED: MARCH 29, 2001

FOR: COLOUR PHOTOGRAPHIC MATERIAL

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

04/01/2004 AWDNDAF1 00000047 031935 09806360

330.00 DA

APPEAL BRIEF

Sir:

01 FC:1402

This appeal is from the final rejection of claims 1-10, 12, 14 and 15 of the Office Action, Paper No. 14, dated August 29, 2003.

The Notice of Appeal was mailed to the U.S. Patent and Trademark Office by first class mail with a Certificate of Mailing on November 25, 2003. The return receipt postcard accompanying the Notice of Appeal was date stamped in the PTO mail room November 28, 2003, making this Brief due January 28, 2004. A petition for a two month extension of time is attached herewith, extending the timely period for response up to and including Monday, March 29, 2004.

This Brief is timely filed.

The Commissioner is hereby authorized to charge any necessary fee or credit any overpayment to Deposit Account No. 03-1935.

2

1. Real Party of Interest

The real party of interest, by virtue of an assignment recorded in the U.S. Patent and Trademark Office on February 26, 2003, Reel/Frame 013788/0013, is:

Ciba Specialty Chemicals P.O. Box 2005 540 White Plains Road Tarrytown, New York 10591

2. Related Appeals and Interferences

To the knowledge of the undersigned, there are no related interferences or appeals.

3. Status of the Claims

Claims 1-10, 12, 14 and 15 are pending and are under consideration.

All claims 1-10, 12, 14 and 15 are finally rejected in the Office Action dated August 29, 2003.

4. Status of the Amendments

The most recent attempt to amend the present claims is in the Amendment filed November 13, 2002. Said Amendment was entered with the Request for Continued Examination under Rule 114 filed February 26, 2003.

Said Amendment brings up to date the status of the claims.

Appealed claims 1-10, 12, 14 and 15 are present in the attached Appendix.

5. Summary of the Invention

\$

The present invention pertains to color photographic material comprising certain lactone (benzofuranone) compounds of the formula (I). In particular, the present invention pertains to a process for preventing migration of oxidized developer *via* the use of compounds of the formula (I) as scavengers for the oxidized developer (Dox-scavenger). The primary subject of the invention is a process for preventing migration of the oxidized developer in a color photographic material from one color sensitive layer to another by incorporating a compound of formula (I) into said material. The compound of formula (I) is incorporated for example in an interlayer between light sensitive layers. See for example the Abstract and page 1 and page 18 of the specification.

In particular, the present compositions comprise compounds of formula (IV), a subset of formula (I), page 13 of the specification.

The invention also discloses new compounds of formula (V), and a process for stabilizing organic material by incorporating therein a compound of formula (V), see pages 22-24 of the specification.

6. Issues

Two issues are presented for review:

Whether claims 1-10 and 12 are anticipated under 35 USC 102(b) by Birbaum, et al., U.S. Pat. No. 5,597,854 (Birbaum) and

Whether claims 14 and 15 are unpatentable under 35 USC 103(a) over Birbaum in view of Hinsken, et al., U.S. Pat. No. 4,325,863 (Hinsken).

7. Grouping of the Claims

The following three groups of claims are argued separately:

- 1) Claims 1-10, pertaining to a process for preventing migration of oxidized developer,
- 2) Claim 12, aimed at color photographic material or digital recording material and
- 3) Claims 14 and 15, aimed at compounds of formula (V) and a process for stabilizing organic material by incorporating therein a compound of formula (V).

8. Argument

The Examiner rejects claims 1-10 and 12 under 35 USC 102(b) as being anticipated by Birbaum. Appellants respectfully rebut this rejection.

The Examiner states that Birbaum discloses a silver halide photographic material containing benzofuranones. This statement assumes that the triazine UV absorbers disclosed by Birbaum can also contain stabilizers of classes 1-14 (col. 23-29), which includes benzofuranones (col. 29). Stabilizers of classes 1-14 are taught as optionally added to the Birbaum compositions since they are active in organic polymer materials (col. 20, lines 14-23). Appellants submit that, with the exception of the hydroquinones (class 1.3), none of the compounds of classes 1-14 had been shown to function as an oxidized developer scavenger. This problem was not addressed in the Birbaum patent.

To define the benzofuranones as stabilizers (class 14) Birbaum refers to a number of patents, such as, for example:

U.S. Pat. Nos. 4,325,863 and 4,338,244 both entitled "Benzofuranone or indolinone compounds useful as stabilizers for organic materials"; U.S. Pat. No. 5,175,312 entitled 3-"Phenylbenzofuran-2-ones" and describing organic material stabilized by means of 3-phenylbenzofuran-2-ones against thermal, oxidative and actinic degradation and to the use of 3-phenylbenzofuran-2-ones for stabilizing organic materials; U.S. Pat. No. 5,216,052 entitled

"Bisbenzofuran-2-one" and describing the use of bisbenzofuran-2-one for stabilizing organic materials and to the stabilized organic material thereby obtained; **U.S. Pat. No. 5,252,643** entitled "Thiomethylated benzofuran-2-ones" describing compounds which are benzofuran-2-ones having two organothiomethyl substituents directly attached to the benzo ring are suitable for stabilizing organic materials against thermal, oxidative or light-induced degradation.

The above mentioned patents clearly show that benzofuranone compounds have been added to the triazine UV absorbers to further stabilize organic material. None of the patents give any hint that benzofuranone compounds can function as developed oxidizer scavengers.

Moreover, Appellants point out that the teaching of Birbaum as to the optional stabilizers of classes 1-14 is very broad (columns 23-29). Some of the classes in turn are divided in distinct subclasses of a considerable number, e.g. classes 1 and 2. The extensive list of optional stabilizers is followed by patentee's statement that the Birbaum compositions preferably comprise additional light stabilizers, such as given in subclasses 2.1, 2.6 and 2.8, e.g. sterically hindered amines (Column 29, line 56 to column 30, line 11), in particular, if component A is a binder for coatings (column 30, lines 17-19). Furthermore, it is to be mentioned that the only application example given in Birbaum (columns 58–59) refers to the stabilization of such a coating which contains a sterically hindered amine. The indicated teaching neither directs someone of ordinary skill to add benzofuranones of class 14 as the optional component, nor does it advise the optional component to be added to photographic material.

The first part (columns 1-34) of Birbaum deals with the use of triazine UV absorbers for stabilizing organic material. In the middle of column 34 (starting with line 25) it is said that the triazines can also be used in photographic material. Furthermore, it is said that the triazine UV absorbers can be combined with further UV absorbers when used in photographic material. As further UV absorbers, among others, compounds belonging to class 2 of the extensive list of optional stabilizers are mentioned (hydroxyphenylbenzotriazoles corresponding to subclass 2.1, benzophenones corresponding to subclass 2.2, oxanilides corresponding to subclass 2.7, cyanoacrylates corresponding to subclass 2.4, salicylates corresponding to subclass 2.3, acrylonitriles and thiazolines). There is absolutely no reference to the addition of stabilizers of class 14. In other words, the part of Birbaum dealing with photographic material does not list benzofuranones of class 14 as an optional component. In fact some of the compounds of classes 1-14 will have a negative effect on the stability of the dyes. Especially negative effects would result from the use of

09/806,360 - 5 - II/2-21851/A/PCT/RCE

the compounds listed in class 1.19, aminic antioxidants including phenolic compounds, which would behave as cyan couplers if incorporated into photographic material. See column 40 formula (E) and column 41 formula (E-7) and (E-8).

4)

ť.

Claim 1 defines a process for preventing the migration of the oxidized developer in a color photographic material from the light sensitive silver halide emulsion layer in which it has been formed into another silver halide emulsion layer containing color couplers comprising the steps of **incorporating** a benzofuranone compound of the formula (I) into an interlayer between the light sensitive silver halide emulsion layers and **scavenging** the oxidized form of a developer when migrating from the light sensitive silver halide emulsion layer in which it has been formed to the interlayer. The teachings in Birbaum do not disclose or suggest practicing a process as claimed herein. Birbaum does not anticipate or render the claimed process unpatentable. The Examiner's reasoning for rejection appears to be based on a hindsight interpretation of the prior art. There is no indication given in the prior art which would motivate someone of ordinary skill to use benzofuranones of class 14 in photographic materials for the claimed process.

Therefore, present claims 1-10, aimed at the process of claim 1, are not anticipated by Birbaum.

Likewise, claim 12, aimed at a color photographic or digital recording material containing a compound of formula (IV) is also not anticipated by Birbaum.

The Examiner rejects claims 14 and 15 under 35 USC 103 as being unpatentable over Birbaum in view of Hinsken. Appellants respectfully traverse this rejection.

The Examiner noted that the rejection was premised on the compounds of formula VI. Compounds of formula VI are removed in the Amendment filed Nov. 13, 2002.

In view of the above discussion, Appellants submit that the present 35 USC 102(b) and 35 USC 103(a) rejections are addressed and are successfully rebutted.

Appellants aver that these rejections are in error as outlined above and respectfully request that they be reversed.

Ciba Specialty Chemicals Corp. 540 White Plains Road P.O. Box 2005 Tarrytown, NY 10591-9005 Tel. (914)785-2783 Fax (914)785-7102

MAR 29 2004

Attachments: Appendix with claims on appeal

Petition for a two month extension

Respectfully submitted,

Tyler A. Stevenson Agent for Appellants Reg. No. 46,388

- 9. Appendix Appealed claims 1-10, 12, 14 and 15
- 1. (previously presented) A process for preventing the migration of oxidised developer in a colour photographic material from a light sensitive silver halide emulsion layer in which it has been formed into another silver halide emulsion layer containing colour couplers comprising the steps of: incorporating a compound of the formula I

wherein, if n = 1,

R₁ is a cyclic residue selected from naphthyl, phenanthryl, anthryl, 5,6,7,8-tetrahydro-2-naphthyl, 5,6,7,8-tetrahydro-1-naphthyl, thienyl, benzo[b]thienyl, naphtho[2,3-b]thienyl, thianthrenyl, dibenzofuryl, chromenyl, xanthenyl, phenoxathiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, β-carbolinyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl, biphenyl, terphenyl, fluorenyl or phenoxazinyl, each of which is unsubstituted or substituted by C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, hydroxy, halogen, amino, C₁-C₄alkylamino, phenylamino or di(C₁-C₄-alkyl)amino; or R₁ is a radical of formula II

$$R_7$$
 R_{10}
 R_{11}
 R_{11}
 R_{11}

and, if n = 2,

 R_1 is unsubstituted or C_1 - C_4 alkyl- or hydroxy-substituted phenylene or naphthylene; or $-R_{12}$ -X- R_{13} -; R_2 , R_3 , R_4 and R_5 are each independently of one another hydrogen; chloro; hydroxy; C_1 - C_{25} -alkyl; C_7 - C_9 phenylalkyl; unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; C_1 - C_{18} alkoxy; C_1 - C_{18} alkylthio; C_1 - C_4 alkylamino; di(C_1 - C_4 -alkyl)amino; C_1 -

 C_{25} alkanoyloxy; C_1 - C_{25} alkanoylamino; C_3 - C_{25} alkenoyloxy; C_3 - C_{25} alkanoyloxy which is interrupted by oxygen, sulphur or $N-R_{14}$; C_6 - C_9 cycloalkylcarbonyloxy; benzoyloxy or C_1 - C_{12} alkyl-substituted

benzoyloxy; or R₂ and R₃, or R₃ and R₄, or R₄ and R₅, together with the linking carbon atoms, form a benzene ring;

or R_4 is $-C_mH_{2m}$ -COR₁₅, -O-(C_vH_{2v})-COR'₁₅, -O-(CH_2)_q-OR₃₂, -OCH₂-CH(OH)-CH₂-R'₁₅, -OCH₂-CH(OH)-CH₂-OR₃₂, or $-(CH_2)_q$ OH;

or, if R₃, R₅ and R₆ are hydrogen, R₄ is additionally a radical of formula III

$$R_{2}$$

$$R_{16}$$

$$R_{17}$$

$$R_{16}$$

$$R_{17}$$

$$R_{17}$$

$$R_{18}$$

$$R_{19}$$

$$R_{19}$$

$$R_{19}$$

$$R_{19}$$

$$R_{19}$$

$$R_{19}$$

wherein R_1 is as defined above for n = 1;

 R_6 is hydrogen or, when R_4 is hydroxy, R_6 can also be $C_1\text{-}C_{25}\text{alkyl}$ or $C_3\text{-}C_{25}\text{alkenyl};$

R₇ and R₉, are each independently of one another hydrogen; halogen; C₁-C₂₅alkyl; C₂-C₂₅alkyl which is

interrupted by oxygen, sulphur or $N-R_{14}$; C_1-C_{25} alkylthio; C_3-C_{25} -alkenyl; C_3-C_{25} alkenyloxy; C_3-C_{25} -alkenyloxy; C_3-

 C_{25} alkynyl; C_3 - C_{25} alkynyloxy; C_7 - C_9 phenylalkyl; C_7 - C_9 phenylalkoxy; unsubstituted or C_1 - C_4 alkyl-substituted phenoxy; unsubstituted or C_1 - C_4 alkyl-substituted phenoxy; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkoxy; C_1 - C_4 alkylamino; di(C_1 - C_4 alkyl)amino; C_1 - C_2 5alkanoyl; C_3 - C_2 5alkanoyl which is interrupted by oxygen,

sulphur or $N-R_{14}$; C_1-C_{25} alkanoylamino; C_3-C_{25} alkenoyl; C_3-C_{25} alkenoyl which is interrupted by

oxygen, sulphur or $N-R_{14}$; C_3-C_{25} alkenoyloxy; C_3-C_{25} alkenoyloxy which is interrupted by

oxygen, sulphur or $N-R_{14}$; C_6-C_9 cycloalkylcarbonyl; C_6-C_9 cycloalkylcarbonyloxy; benzoyl or C_1-C_9 cycloalkylcarbonyloxy

 C_{12} alkyl-substituted benzoyl; benzoyloxy or C_1 - C_{12} alkyl-substituted benzoyloxy; C_1 - C_1 -C

 R_{8} , R_{10} and R_{11} are each independently of one another hydrogen; halogen; hydroxy; C_1 - C_2 salkyl; C_2 - C_2 salkyl which is interrupted by oxygen, sulphur or $N-R_{14}$; C_1 - C_2 salkoxy; C_2 - C_2 salkoxy which is interrupted by oxygen, sulphur or $N-R_{14}$; C_1 - C_2 salkylthio; C_3 - C_2 salkenyl; C_3 - C_2 salkenyloxy; C_3 - C_2 salkynyl; C_3 - C_2 salkynyloxy; C_7 - C_9 phenylalkyl; C_7 - C_9 phenylalkoxy; unsubstituted or C_1 - C_4 alkyl-substituted phenoxy; unsubstituted or C_1 - C_4 alkyl-substituted phenoxy; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkoxy; C_1 - C_4 alkylamino; di(C_1 - C_4 alkyl)amino; C_1 - C_2 salkanoyl; C_3 - C_2 salkanoyl which is interrupted by oxygen, sulphur or $N-R_{14}$; C_1 - C_2 salkanoylamino; C_3 - C_2 salkenoyl; C_3 - C_2 salkenoyl which is interrupted by oxygen, sulphur or $N-R_{14}$; C_1 - C_2 salkenoylamino; C_3 - C_2 salkenoyly; C_3 - C_2 salkenoyl which is interrupted by oxygen, sulphur or $N-R_{14}$; C_3 - C_2 salkenoyloxy; C_3 - C_2 salkenoyloxy which is interrupted by oxygen, sulphur or $N-R_{14}$; C_3 - C_2 salkenoyloxy; C_3 - C_2 salkenoyloxy which is interrupted by oxygen, sulphur or $N-R_{14}$; C_3 - C_2 salkenoyloxy; C_3 - C_2 salkenoyloxy which is interrupted by oxygen, sulphur or $N-R_{14}$; C_3 - C_2 salkenoyloxy; C_3 - C_2 salkenoyloxy which is interrupted by oxygen, sulphur or $N-R_{14}$; C_3 - C_2 salkenoyloxy; C_3 - C_2 salkenoyloxy; benzoyl or C_1 - C_1 2alkyl-

substituted benzoyl; benzoyloxy or C_1 - C_{12} alkyl-substituted benzoyloxy; $-O-C-C-R_{15}$ or R_{19}

$$R_{20}$$
 R_{21} .
 R_{20} R_{21} .
 R_{20} R_{21} .
 R_{20} or, in formula II, R_{7} and R_{8} , or R_{8} and R_{11} , together with the linking carbon R_{11} R_{22}

atoms, form a benzene ring;

R₁₂ and R₁₃ are each independently of the other unsubstituted or C₁-C₄alkyl-substituted phenylene or naphthylene;

R₁₄ is hydrogen or C₁-C₈alkyl;

 $R_{15} \text{ and } R'_{15} \text{ independently are hydroxy; } \left[\underbrace{--O^{-}\frac{1}{r}M^{r+}}_{} \right] \text{ ; } C_{1}\text{-}C_{20} \text{alkoxy; } C_{3}\text{-}C_{20} \text{alkoxy interrupted by } C_{15} \text{ and } C_{15}$

O and/or substituted by a radical selected from OH, phenoxy, C7-C15alkylphenoxy, C7-

$$C_{15}$$
alkoxyphenoxy; or are C_5 - C_{12} cycloalkoxy; C_7 - C_{17} phenylalkoxy; phenoxy; $N_{R_{25}}$; or a group

of the formula IIIa or IIIb

$$\begin{array}{c|c}
 & R_3 & R_2 \\
\hline
 & R_5 & R_1 & H
\end{array}$$
(IIIb);

 R_{16} and R_{17} are each independently of the other hydrogen, CF_3 , C_1 - C_{12} alkyl or phenyl, or R_{16} and R_{17} , together with the linking carbon atom, are a C_5 - C_8 cycloalkylidene ring which is unsubstituted or substituted by 1 to 3 C_1 - C_4 alkyl;

 R_{18} and R_{19} are each independently of the other hydrogen, C_1 - C_4 alkyl or phenyl; R_{20} is hydrogen or C_1 - C_4 alkyl;

R₂₁ is hydrogen; unsubstituted or C₁-C₄alkyl-substituted phenyl; C₁-C₂₅alkyl; C₂-C₂₅alkyl which is interrupted by oxygen, sulphur or N—R₁₄; C₇-C₉phenylalkyl which is unsubstituted or substituted at the phenyl moiety by 1 to 3 C₁-C₄alkyl; C₇-C₂₅phenylalkyl which is interrupted by oxygen, sulphur or N—R₁₄ and which is unsubstituted or substituted at the phenyl moiety by 1 to 3 C₁-C₄alkyl; or R₂₀ and R₂₄ together with the linking carbon atoms, form a C₅-C₁₂cycloalkylene ring which is

and R_{21} , together with the linking carbon atoms, form a C_5 - C_{12} cycloalkylene ring which is unsubstituted or substituted by 1 to 3 C_1 - C_4 alkyl;

R₂₂ is hydrogen or C₁-C₄alkyl;

R₂₃ is hydrogen; C₁-C₂₅alkanoyl; C₃-C₂₅alkenoyl; C₃-C₂₅alkanoyl which is interrupted by oxygen,

sulphur or $N - R_{14}$; $C_2 - C_{25}$ alkanoyl which is substituted by a di($C_1 - C_6$ alkyl)phosphonate group;

C₆-C₉cycloalkylcarbonyl; thenoyl; furoyl; benzoyl or C₁-C₁₂alkyl-substituted benzoyl;

$$-C - C_{s}H_{2s} - C - C_{h_{2}} + C_{h_{2}}$$

R₂₄ and R₂₅ are each independently of the other hydrogen or C₁-C₁₈alkyl;

R₂₆ is hydrogen or C₁-C₈alkyl;

R₂₇ is a direct bond; C₁-C₁₈alkylene; C₂-C₁₈alkylene which is interrupted by oxygen, sulphur or

 $N - R_{14}$; $C_2 - C_{18}$ alkenylene; $C_2 - C_{20}$ alkylidene; $C_7 - C_{20}$ phenylalkylidene; $C_5 - C_8$ cycloalkylene; $C_7 - C_{20}$ phenylalkylidene; $C_7 - C_8$ cycloalkylene; $C_7 - C_8$ cycloa

 C_8 bicycloalkylene; unsubstituted or C_1 - C_4 alkyl-substituted phenylene;

$$\sqrt{s}$$

$$R_{28}$$
 is hydroxy, $\left[-0^{-\frac{1}{r}M}^{r+}\right]$, C_1 - C_{18} alkoxy or $-N$
 R_{26} ;

R₂₉ is oxygen or -NH-;

R₃₀ is C₁-C₁₈alkyl or phenyl;

R₃₁ is hydrogen or C₁-C₁₈alkyl;

R₃₂ is C₁-C₁₈alkanoyl; C₁-C₈alkanoyl substituted by phenyl or C₇-C₁₅alkylphenyl; C₃-C₁₈alkenoyl; cyclohexylcarbonyl; or naphthylcarbonyl;

L is a linking group of valency (k+1) and is as a divalent group

-O-;

Q-C2-C12alkylene-Q;

-O-CH₂-CH(OH)-CH₂-O-;

-Q-C₂-C₁₂alkylene-Q-CO-C₂H₂₂-O-;

-O-C₂-C₁₂alkylene-O-CH₂-CH(OH)-CH₂-O-;

Q-phenylene-Q or

Q-phenylene-D-phenylene-Q with D being C₁-C₄alkylene, O, S, SO or SO₂;

L as a trivalent group is Q-capped C₃-C₁₂alkanetriyl, a trivalent residue of a hexose or a hexitol, or a group $(-O-CH_2)_3C-CH_2OH$; $-Q-C_aH_{2a}-N(C_bH_{2b}-Q-)-C_cH_{2c}-Q-$;

-Q-C₃-C₁₂alkanetriyl(-Q-CO-C_vH_{2v}-O-)₂;

-O-C₃-C₁₂alkanetriyl(-O-CH₂-CH(OH)-CH₂-O-)₂; and

L as a tetravalent group is a tetravalent residue of a hexose or a hexitol;

-Q-C₄-C₁₂alkanetetryl(-Q-CO-C_vH_{2v}-O-)₃;

-O-C₄-C₁₂alkanetetryl(-O-CH₂-CH(OH)-CH₂-O-)₃; Q-capped C₄-C₁₂alkanetetryl; a group

M is an r-valent metal cation;

Q is oxygen or -NH-;

X is a direct bond, oxygen, sulphur or -NR₃₁-;

Z is a linking group of valency (k+1) and is as a divalent group C_2 - C_{12} alkylene; Q-interrupted C_{4} - C_{12} alkylene; phenylene or phenylene-D-phenylene with D being C_1 - C_4 alkylene, O, S, SO or SO₂; Z as a trivalent group is C_3 - C_{12} alkanetriyl, a trivalent residue of a hexose or a hexitol, a group (- C_{12} - C_{12} -

Z as a tetravalent group is a tetravalent, carbon-ended residue of a hexose or a hexitol, C4-

$$C_{12}$$
 alkanetetryl, a group C_{H} or a group C_{C} $C_$

a, b, c and k independently are 1, 2 or 3;

m is 0 or a number from the range 1-12;

n is 1 or 2;

q is 1, 2, 3, 4, 5 or 6;

r is 1, 2 or 3; and

s is 0, 1 or 2;

v is 1, 2, 3, 4, 5, 6, 7 or 8;

provided that, when R_7 is hydroxy, alkanoyloxy or alkanoyloxy interrupted by O, S or $N(R_{14})$ and R_9 is hydrogen, R_{10} is not identical with R_4 ; and when R_9 is hydroxy, alkanoyloxy or alkanoyloxy interrupted by O, S or $N(R_{14})$ and R_7 is hydrogen, R_8 is not identical with R_4 ,

into an interlayer between the light sensitive silver halide emulsion layers thus scavenging the oxidized form of developer when migrating from the light sensitive silver halide emulsion layer in which it has been formed to the interlayer.

2. (original) Process according to claim 1, wherein in the compound of formula I R_7 and R_9 are each independently of one another hydrogen; halogen; C_1 - C_{25} alkyl; C_2 - C_{25} alkyl which is interrupted by oxygen, sulphur or $N-R_{14}$; C_2 - C_{25} alkoxy which is interrupted by oxygen, sulphur

or $N - R_{14}$; $C_1 - C_{25}$ alkylthio; $C_3 - C_{25}$ alkenyl; $C_3 - C_{25}$ alkenyloxy; $C_3 - C_{25}$ alkynyloxy; $C_7 - C_{25}$

 C_9 phenylalkyl; C_7 - C_9 phenylalkoxy; unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkoxy; C_1 - C_4 alkylamino; di(C_1 - C_4 alkyl)amino; C_1 - C_2 5alkanoyl; C_3 -

 C_{25} alkanoyl which is interrupted by oxygen, sulphur or $N-R_{14}$; C_1-C_{25} alkanoylamino; C_3-C_{25} alkanoylamino;

 C_{25} alkenoyl; C_3 - C_{25} alkenoyl which is interrupted by oxygen, sulphur or $N-R_{14}$; C_6 - C_{9-}

cycloalkylcarbonyl; benzoyl or C_1 - C_{12} alkyl-substituted benzoyl; — O— C— C— C— C0 or R_{19}

3. (previously presented) Process according to claim 1 wherein in the compound of formula I R_1 is naphthyl, phenanthryl, anthryl, 5,6,7,8-tetrahydro-2-naphthyl, 5,6,7,8-tetrahydro-1-naphthyl, thienyl, benzo[b]thienyl, naphtho[2,3-b]thienyl, thianthrenyl, dibenzofuryl, chromenyl, xanthenyl, phenoxathiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, \Box -carbolinyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl, biphenyl, terphenyl, fluorenyl or phenoxazinyl, each of which is unsubstituted or substituted by C_1 - C_4 alkyl, C_1 - C_4 alkylthio, hydroxy, halogen, amino, C_1 - C_4 alkylamino, phenylamino or di(C_1 - C_4 -alkyl)amino, or R_1 is a radical of formula II

$$R_7$$
 R_{10}
 R_{11}
 R_{11}
 R_{11}

and, if n = 2,

 R_1 is unsubstituted or C_1 - C_4 alkyl- or hydroxy-substituted phenylene or naphthylene; or $-R_{12}$ -X- R_{13} -, R_2 , R_3 , R_4 and R_5 are each independently of one another hydrogen, chloro, hydroxy, C_1 - C_{25} -alkyl, C_7 - C_9 phenylalkyl, unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; C_1 - C_{18} alkoxy, C_1 - C_{18} alkylthio, C_1 - C_4 alkylamino, di(C_1 - C_4 -alkyl)amino, C_1 - C_{25} alkanoyloxy, C_1 - C_{25} alkanoyloxy, C_3 - C_{25} alkanoyloxy; C_3 - C_{25} alkanoyloxy which is interrupted by

oxygen, sulphur or $N - R_{14}$; $C_6 - C_9$ cycloalkylcarbonyloxy, benzoyloxy or $C_1 - C_{12}$ alkyl-substituted

benzoyloxy; or R₂ and R₃, or R₃ and R₄, or R₄ and R₅, together with the linking carbon atoms, form a benzene ring; or R₄ is

-C_mH_{2m}-COR₁₅ or -(CH₂)_qOH or, if R₃, R₅ and R₆ are hydrogen, R₄ is additionally a radical of formula III

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ R_{16} & & & \\ \hline \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & \\ & & \\ \end{array} \begin{array}{c} & \\ & \\ \end{array} \begin{array}{c} \\ & \\ \end{array} \begin{array}{c} & \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array}$$

wherein R_1 is as defined above for n = 1;

R₆ is hydrogen or, when R₄ is hydroxy, R₆ can also be C₁-C₂₅alkyl or C₃-C₂₅alkenyl;

R₇, R₈, R₉, R₁₀ and R₁₁ are each independently of one another hydrogen, halogen, hydroxy, C₁-

 C_{25} alkyl; C_2 - C_{25} alkyl which is interrupted by oxygen, sulphur or $N - R_{14}$; C_1 - C_{25} alkoxy; C_2 -

 C_{25} alkoxy which is interrupted by oxygen, sulphur or $N - R_{14}$; $C_1 - C_{25}$ alkylthio, $C_3 - C_{25}$ -alkenyl, C_3 -

 C_{25} alkenyloxy, C_3 - C_{25} alkynyl, C_3 - C_{25} alkynyloxy, C_7 - C_9 phenylalkyl, C_7 - C_9 phenylalkoxy, unsubstituted or C_1 - C_4 alkyl-substituted phenoxy; unsubstituted or C_1 - C_4 alkyl-substituted phenoxy; unsubstituted or C_1 -

 C_4 alkyl-substituted C_5 - C_8 cycloalkyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkoxy; C_1 - C_4 alkylamino, di(C_1 - C_4 alkyl)amino, C_1 - C_2 5alkanoyl; C_3 - C_2 5alkanoyl which is interrupted by oxygen,

sulphur or $N - R_{14}$; $C_1 - C_{25}$ alkanoyloxy; $C_3 - C_{25}$ alkanoyloxy which is interrupted by oxygen, sulphur

or $N - R_{14}$; $C_1 - C_{25}$ alkanoylamino, $C_3 - C_{25}$ alkenoyl; $C_3 - C_{25}$ alkenoyl which is interrupted by oxygen,

sulphur or $N - R_{14}$; $C_3 - C_{25}$ alkenoyloxy; $C_3 - C_{25}$ alkenoyloxy which is interrupted by oxygen, sulphur

or $N - R_{14}$; $C_6 - C_9$ cycloalkylcarbonyl, $C_6 - C_9$ cycloalkylcarbonyloxy, benzoyl or $C_1 - C_{12}$ alkyl-

substituted benzoyl; benzoyloxy or C_1 - C_{12} alkyl-substituted benzoyloxy; $-C_1$ - C_1 - C_2 - C_3 - C_4 - C_5 - $C_$

$$R_{20}$$
 R_{21} R_{21} R_{22} R_{23} or, in formula II, R_7 and R_8 , or R_8 and R_{11} , together with the linking carbon R_{22}

atoms, form a benzene ring,

R₁₂ and R₁₃ are each independently of the other unsubstituted or C₁-C₄alkyl-substituted phenylene or naphthylene,

R₁₄ is hydrogen or C₁-C₈alkyl,

$$R_{15}$$
 is hydroxy, $\left[--0^{-\frac{1}{r}}M^{r+}\right]$, C_1 - C_{20} alkoxy, $-N$
 R_{25} , or a group of the formula IIIa

$$-Q-z = \begin{bmatrix} O & R_3 & R_2 \\ Q & C_m H_{2m} & O \\ R_5 & R_1 & H \end{bmatrix}$$
 (IIIa);

 R_{16} and R_{17} are each independently of the other hydrogen, CF_3 , C_1 - C_{12} alkyl or phenyl, or R_{16} and R_{17} , together with the linking carbon atom, are a C_5 - C_8 cycloalkylidene ring which is unsubstituted or substituted by 1 to 3 C_1 - C_4 alkyl;

 $R_{18}\, and \,\, R_{19}$ are each independently of the other hydrogen, $C_1\text{-}C_4 alkyl$ or phenyl,

R₂₀ is hydrogen or C₁-C₄alkyl,

R₂₁ is hydrogen, unsubstituted or C₁-C₄alkyl-substituted phenyl; C₁-C₂₅alkyl; C₂-C₂₅alkyl which is

interrupted by oxygen, sulphur or $N-R_{14}$; C_7-C_9 phenylalkyl which is unsubstituted or substituted

at the phenyl moiety by 1 to 3 C₁-C₄alkyl; C₇-C₂₅phenylalkyl which is interrupted by oxygen, sulphur or

N-R₁₄ and which is unsubstituted or substituted at the phenyl moiety by 1 to 3 C₁-C₄alkyl, or R₂₀

and R_{21} , together with the linking carbon atoms, form a C_5 - C_{12} cycloalkylene ring which is unsubstituted or substituted by 1 to 3 C_1 - C_4 alkyl;

R₂₂ is hydrogen or C₁-C₄alkyl,

R₂₃ is hydrogen, C₁-C₂₅alkanoyl, C₃-C₂₅alkenoyl; C₃-C₂₅alkanoyl which is interrupted by oxygen,

sulphur or $N-R_{14}$; C_2-C_{25} alkanoyl which is substituted by a di(C_1-C_6 alkyl)phosphonate group;

 C_6 - C_9 cycloalkylcarbonyl, thenoyl, furoyl, benzoyl or C_1 - C_{12} alkyl-substituted benzoyl;

 R_{24} and R_{25} are each independently of the other hydrogen or C_1 - C_{18} alkyl, R_{26} is hydrogen or C_1 - C_8 alkyl,

R₂₇ is a direct bond, C₁-C₁₈alkylene; C₂-C₁₈alkylene which is interrupted by oxygen, sulphur or $N - R_{14} \; ; \; C_2 - C_{18} alkenylene, \; C_2 - C_{20} alkylidene, \; C_7 - C_{20} phenylalkylidene, \; C_5 - C_8 cycloalkylene, \; C_7 - C_7 - C_8 cycloalkylene, \; C_8 - C_8 cycloalkylene, \; C_8 - C_8 - C_8 cycloalkylene, \; C_8 - C_8 -$

 C_8 bicycloalkylene, unsubstituted or C_1 - C_4 alkyl-substituted phenylene,

$$\sqrt{}$$
 or

$$R_{28}$$
 is hydroxy, $\left[--0^{-\frac{1}{r}}M^{r+}\right]$, C_1 - C_{18} alkoxy or $-N$
 R_{25}

R₂₉ is oxygen or -NH-,

R₃₀ is C₁-C₁₈alkyl or phenyl,

R₃₁ is hydrogen or C₁-C₁₈alkyl,

M is an r-valent metal cation,

Q is oxygen or -NH-,

X is a direct bond, oxygen, sulphur or -NR₃₁-,

Z is a linking group of valency (k+1) and is as a divalent group C_2 - C_{12} alkylene, Q-interrupted C_4 - C_{12} alkylene, phenylene or phenylene-D-phenylene with D being C_1 - C_4 alkylene, O, S, SO or SO₂; Z as a trivalent group is C_3 - C_{12} alkanetriyl, a trivalent residue of a hexose or a hexitol, a group (- C_1 - C_2 - C_3 - C_4 - C_4 - C_4 - C_5 - C_6

Z as a tetravalent group is a tetravalent residue of a hexose or a hexitol, C₄-C₁₂alkanetetryl, a group

a, b, c and k independently are 1, 2 or 3, m is 0 or a number from the range 1-12, n is 1 or 2, q is 1, 2, 3, 4, 5 or 6, r is 1, 2 or 3, and

s is 0, 1 or 2;

provided that, when R_7 is hydroxy, alkanoyloxy or alkanoyloxy interrupted by O, S or $N(R_{14})$ and R_9 is hydrogen, R_{10} is not identical with R_4 .

4. (original) Process according to claim 1, wherein in the compound of formula I

 R_2 , R_3 and R_5 , independently, are H, Cl, hydroxy, C_1 - C_{25} alkyl, C_7 - C_9 phenylalkyl, unsubstituted or C_1 - C_4 alkyl-substituted phenyl; C_1 - C_{18} alkoxy, C_1 - C_{25} alkanoyloxy, C_3 - C_{25} alkenoyloxy; and where R_4 is Cl, hydroxy, C_1 - C_{25} alkyl, C_7 - C_9 phenylalkyl, unsubstituted or C_1 - C_4 alkyl-substituted phenyl; C_1 - C_{18} alkoxy, C_1 - C_{25} alkanoyloxy, C_3 - C_{25} alkenoyloxy or is a group - C_mH_{2m} - COR_{15} , -O- (C_vH_{2v}) - COR'_{15} , -O- $(CH_2)_q$ - OR_{32} , - OCH_2 -CH(OH)- CH_2 - R'_{15} , - OCH_2 -CH(OH)- CH_2 - OR_{32} , or where R_3 , R_5 and R_6 are H, R_4 may be a residue of formula III, or where R_8 or R_{10} are other than H, R_4 may also

R₆ is H,

be hydrogen;

R₇ and R₉ are each independently of one another hydrogen; halogen; C₁-C₂₅alkyl; C₂-C₂₅alkyl which is

interrupted by oxygen, sulphur or $N-R_{14}$; C_3-C_{25} -alkenyl; C_3-C_{25} alkynyl; C_7-C_9 phenylalkyl;

unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; R_8 , R_{10} and R_{11} independently are H, halogen, hydroxy, C_1 - C_{25} alkyl, O interrupted C_2 - C_{25} alkyl; C_1 - C_{25} alkoxy, O interrupted C_2 - C_{25} alkoxy, C_3 - C_{25} alkenyl, C_3 - C_{25} alkenyloxy, C_7 - C_9 phenylalkyl, C_7 - C_9 phenylalkoxy, unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl substituted phenoxy; unsubstituted or C_1 - C_4 alkyl substituted C_5 - C_8 cycloalkyl; unsubstituted or C_1 - C_4 alkyl substituted C_5 - C_8 cycloalkyl; unsubstituted or C_1 - C_4 alkyl substituted C_5 - C_8 cycloalkylcarbonyl, C_6 - C_9 cyclo

substituted benzoyl; benzoyloxy or C_1 - C_{12} alkyl substituted benzoyloxy; $-O-C-C-C-R_{15}$ or R_{19}

$$R_{20}$$
 R_{21} R_{20} R_{21} R_{20} R_{20} , or where in formula II R_7 and R_8 or R_8 and R_{11} together with the carbon R_{22}

atoms, they are bonded to, form a phenyl ring;

 R_{15} and R'_{15} independently are C_1 - C_{18} alkoxy; C_3 - C_{20} alkoxy interrupted by O and/or substituted by a radical selected from OH, phenoxy, C_7 - C_{15} alkylphenoxy, C_7 - C_{15} alkoxyphenoxy; or are C_5 - C_{12} cycloalkoxy; C_7 - C_{17} phenylalkoxy; phenoxy; or -NR₂₃R₂₄; or a group of formula IIIa or IIIb;

 R_{16} and R_{17} independently are H, CF_3 , C_1 - C_{12} alkyl or phenyl; or R_{16} and R_{17} together with the bonding carbon atom form an unsubstituted or 1-3 C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkylidene ring;

R₁₈ and R₁₉ independently are H, C₁-C₄ alkyl or phenyl;

R₂₀ is H or C₁-C₄alkyl;

 R_{21} is H, unsubstituted or C_1 - C_4 alkyl substituted phenyl; C_1 - C_{25} alkyl, unsubstituted or on the phenyl ring 1-3 C_1 - C_4 alkyl-substituted C_7 - C_9 phenylalkyl;

R₂₂ is H or C₁-C₄alkyl;

 R_{23} is H, C_1 - C_{25} alkanoyl, C_3 - C_{25} alkenoyl; di(C_1 - C_6 alkyl)phosphonate-substituted C_2 - C_{25} alkanoyl; C_6 - C_9 cycloalkylcarbonyl, thenoyl, furoyl, benzoyl or C_1 - C_{12} alkyl-substituted benzoyl;

R₂₄ and R₂₅ independently are H or C₁-C₁₈alkyl;

R₂₆ is H or C₁-C₈alkyl;

R₂₇ is a direct bond, C₁-C₁₈alkylen, C₂-C₁₈alkenylen, C₇-C₂₀phenylalkyliden, C₅-C₈cycloalkylen,

unsubstituted or C₁-C₄alkyl-substituted phenylene, or √ ;

$$\sqrt{s}$$
 or \sqrt{s}

$$R_{28} C_1$$
- C_{18} alkoxy or $-N$
 R_{25}

R₂₉ is O or -NH-;

R₃₀ C₁-C₁₈alkyl or phenyl;

M a metal cation of the valency r;

X a direct bond, O, S or -NR₃₁-;

n 1 or 2;

m is a number from the range 1-8;

q 1, 2, 3, 4, 5 or 6;

r 1, 2 or 3; and

s is 0, 1 or 2.

5. (previously presented) Process according to claim 1 wherein the compound of formula I corresponds to the formula IV

wherein

 R_2 is H or C_1 - C_{20} alkyl;

R₃ is H or C₁-C₁₈alkyl;

 R_4 is C_1 - C_8 alkyl, H, C_1 - C_6 alkoxy or a group - C_mH_{2m} - COR_{15} ; -O-(C_vH_{2v})- COR_{15} ,

-O-(CH₂)₀-OR₃₂; -OCH₂-CH(OH)-CH₂-R₁₅; -OCH₂-CH(OH)-CH₂-OR₃₂;

or a group of the formula III

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ R_{\overline{16}} & C - R_{17} & \\ \end{array} \qquad \qquad \text{(III);}$$

R₅ is H or C₁-C₁₈alkyl;

 R_7 and R_9 are each independently of one another hydrogen; halogen; C_1 - C_{25} alkyl; C_3 - C_{25} -alkenyl; C_3 - C_{25} alkynyl; C_7 - C_9 phenylalkyl; unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl;

 R_8 , R_{10} and R_{11} independently are H, OH, chloro, C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy, di(C_1 - C_4 alkyl)amino, C_7 - C_9 phenylalkyl; unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl-substituted

$$C_5$$
- C_8 cycloalkyl; C_2 - C_{18} alkanoyloxy, C_3 - C_{18} -alkoxycarbonylalkoxy or C_5 - C_8 -

 R_{15} is C_1 - C_{18} alkoxy; C_3 - C_{20} alkoxy interrupted by O; or are cyclohexyloxy; C_7 - C_{17} phenylalkoxy; phenoxy; or a group of formula IIIa or IIIb;

R₁₆ and R₁₇ independently are H, C₁-C₁₂alkyl or phenyl; or R₁₆ and R₁₇ together with the bonding carbon atom form a C₅-C₈cycloalkylidene ring;

R₂₀, R₂₁ and R₂₂ independently are H or C₁-C₄alkyl;

$$R_{23}$$
 is H, C_2 - C_{18} alkanoyl or a group C_sH_{2s} C_sH_{2s} C_sH_{2s}

R₂₆ is C₁-C₄alkyl;

 R_{32} is C_1 - C_{18} alkanoyl; C_1 - C_8 alkanoyl substituted by phenyl or C_7 - C_{15} alkylphenyl; C_3 - C_{18} alkenoyl; cyclohexylcarbonyl; or naphthylcarbonyl;

L is a divalent group -O-; Q-C₂-C₁₂alkylene-Q; -O-CH₂-CH(OH)-CH₂-O-;

 $-Q-C_2-C_{12}$ alkylene $-Q-CO-C_vH_{2v}-O-$; $-O-C_2-C_{12}$ alkylene $-O-CH_2-CH(OH)-CH_2-O-$;

Q is oxygen;

Z is C2-C12alkylene;

k is 1;

m is 1, 2, 3, 4, 5 or 6;

v is 1 or 2; and

s is 0, 1 or 2.

6. (original) Process according to claim **5** wherein in the compound of formula IV R_2 is C_1 - C_{20} alkyl;

R₃ is H or C₁-C₁₈alkyl;

 R_4 is C_1 - C_6 alkyl, C_1 - C_6 alkoxy or a group - C_mH_{2m} - COR_{15} or a group of the formula III

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ R_{\overline{16}} & C - R_{17} \end{array} \hspace{1cm} (III);$$

 R_5 is H or C_1 - C_{18} alkyl;

R₇ and R₉ independently are H, chloro, C₁-C₁₈alkyl;

 R_8 , R_{10} and R_{11} independently are H, OH, chloro, C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy, di(C_1 - C_4 alkyl)amino,

 R_{15} is $C_1\text{-}C_{18}$ alkoxy or a group of the formula IIIa

 R_{20} , R_{21} and R_{22} are H;

$$H_3C$$
 CH_3
 CH_3
 CH_2
 CH_3
 CH_3

R₂₆ is C₁-C₄alkyl;

Q is oxygen;

Z is C₂-C₁₂alkylene;

k is 1;

m is 1, 2, 3, 4, 5 or 6 and

s is 0, 1 or 2.

- 7. (original) Process according to claim 5 wherein in the compound of formula IV, R_4 is C_1 - C_6 alkyl, or a group - C_mH_{2m} - COR_{15} , -O- (C_vH_{2v}) - COR_{15} , -O- $(CH_2)_q$ - OR_{32} , - OCH_2 -CH(OH)- CH_2 - R_{15} , - OCH_2 -CH(OH)- CH_2 - OR_{32} , or a group of the formula III.
- **8.** (original) Process according to claim 1, wherein the compound of formula I is incorporated into the colour photographic material in an amount from 10 to 1000 mg/m².
- **9.** (original) Process according to claim 1, wherein the compound of formula I is concentrated in one or more interlayers separating light sensitive layers of the colour photographic material.
- 10. (original) Process according to claim 9, wherein a green-sensitive layer containing a magenta coupler of the pyrazolo-azole class is adjacent to an interlayer containing the compound of formula I.

11. (canceled)

12. (original) A colour photographic material or digital recording material containing a compound of the formula IV

wherein

 R_2 is H or C_1 - C_{20} alkyl;

R₃ is H or C₁-C₁₈alkyl;

 R_4 is C_1 - C_8 alkyl, C_1 - C_6 alkoxy or a group - C_m H_{2m}- C_0 OR₁₅; -O-(C_v H_{2v})- C_0 OR₁₅, -O-(C_v H₂- C_0 CH₂- $C_$

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ R_{\overline{16}} & C - R_{17} \end{array} \qquad (III);$$

R₅ is H or C₁-C₁₈alkyl;

R₇ and R₉ independently are H, chloro, C₁-C₁₈alkyl or phenyl;

R₈, R₁₀ and R₁₁ independently are H, OH, chloro, C₁-C₁₈alkyl, C₁-C₁₈alkoxy, di(C₁-C₄alkyl)amino,

 R_{15} is C_1 - C_{18} alkoxy; C_3 - C_{20} alkoxy interrupted by O; or are cyclohexyloxy; C_7 - C_{17} phenylalkoxy; phenoxy; or a group of formula IIIa or IIIb;

$$-Q-z-Q-C_{m}H_{2m}$$

$$R_{5}$$

$$R_{1}$$

$$H$$

$$K$$
(IIIa);

$$\begin{array}{c|c}
 & R_3 \\
 & R_5 \\
 & R_1 \\
 & R_4
\end{array}$$
(IIIb);

R₁₆ and R₁₇ independently are H, C₁-C₁₂alkyl or phenyl; or R₁₆ and R₁₇ together with the bonding carbon atom form a C₅-C₈cycloalkylidene ring;

- 27 -

R₂₀, R₂₁ and R₂₂ independently are H or C₁-C₄alkyl;

$$R_{23}$$
 is H, C_2 - C_{18} alkanoyl or a group C_s H $_{2s}$ C_s H $_{2s}$ C_s H $_{2s}$

R₂₆ is C₁-C₄alkyl;

 R_{32} is C_1 - C_{18} alkanoyl; C_1 - C_8 alkanoyl substituted by phenyl or C_7 - C_{15} alkylphenyl; C_3 - C_{18} alkenoyl; cyclohexylcarbonyl; or naphthylcarbonyl;

L is a divalent group -O-; Q-C₂-C₁₂alkylene-Q; -O-CH₂-CH(OH)-CH₂-O-;

 $-Q-C_2-C_{12} \\ alkylene-Q-CO-C_v\\ \\ H_{2v}-O-; \\ -O-C_2-C_{12} \\ alkylene-O-CH_2-CH(OH)-CH_2-O-; \\ \\ -O-C_2-C_{12} \\ alkylene-O-CH_2-CH(OH)-CH(OH)-CH_2-CH(OH)-CH(OH)-CH_2-CH(OH)-CH(OH)-CH_2-CH(OH)-CH_2-CH(OH)$

Q is oxygen;

Z is C₂-C₁₂alkylene;

k is 1;

m is 1, 2, 3, 4, 5 or 6;

v is 1 or 2 and

s is 0, 1 or 2.

13. (canceled)

14. (previously presented) Compound of the formula V

wherein

 R_4 is -O-(C_vH_{2v})-COR₁₅; -O-(CH_2)_q-OR₃₂;

-OCH₂-CH(OH)-CH₂-R₁₅; or -OCH₂-CH(OH)-CH₂-OR₃₂;

 R_{15} is hydroxy, $\left[--0^{-\frac{1}{r}}M^{r+}\right]$, C_1 - C_{20} alkoxy; C_3 - C_{20} alkoxy interrupted by O and/or substituted by a

radical selected from OH, phenoxy, C7-C15alkylphenoxy, C7-C15alkoxyphenoxy; or R15 is C5-

 C_{12} Cycloalkoxy; C_7 - C_{17} phenylalkoxy; phenoxy; -N R_{24} ; or a group of formula IIIa or IIIb;

$$-Q-z = \begin{bmatrix} O & R_3 & R_2 \\ O & C_m H_{2m} & O \\ R_5 & R_1 & H \end{bmatrix}$$
 (IIIa);

$$\begin{array}{c|c} & R_3 & R_2 \\ \hline & O & \\ \hline & R_5 & R_1 & H \\ \hline \end{array}$$
 (IIIb);

 R_{32} is C_1 - C_{18} alkanoyl; C_1 - C_8 alkanoyl substituted by phenyl or C_7 - C_{15} alkylphenyl; C_3 - C_{18} alkenoyl; cyclohexylcarbonyl; or naphthylcarbonyl;

L is a linking group of valency (k+1) and is, as a divalent group,

-0-;

Q-C₂-C₁₂alkylene-Q;

-O-CH₂-CH(OH)-CH₂-O-;

-Q-C₂-C₁₂alkylene-Q-CO-C_vH_{2v}-O-;

-O-C2-C12alkylene-O-CH2-CH(OH)-CH2-O-;

Q-phenylene-Q or

Q-phenylene-D-phenylene-Q with D being C₁-C₄alkylene, O, S, SO or SO₂;

L, as a trivalent group, is Q-capped C_3 - C_{12} alkanetriyl, a trivalent residue of a hexose or a hexitol, or a group (-O-CH₂)₃C-CH₂OH; -Q-C_aH_{2a}-N(C_bH_{2b}-Q-)-C_cH_{2c}-Q-;

 $-Q-C_3-C_{12}$ alkanetriyl($-Q-CO-C_vH_{2v}-O-)_2$;

-O-C₃-C₁₂alkanetriyl(-O-CH₂-CH(OH)-CH₂-O-)₂; and

L, as a tetravalent group, is a tetravalent residue of a hexose or a hexitol;

-Q-C₄-C₁₂alkanetetryl(-Q-CO-C_vH_{2v}-O-)₃;

-O-C₄-C₁₂alkanetetryl(-O-CH₂-CH(OH)-CH₂-O-)₃; Q-capped C₄-C₁₂alkanetetryl; a group

Q is oxygen or -NH-,

Z is a linking group of valency (k+1) and is as a divalent group C_2 - C_{12} alkylene, Q-interrupted C_4 - C_{12} alkylene, phenylene or phenylene-D-phenylene with D being C_1 - C_4 alkylene, O, S, SO or SO₂; Z, as a trivalent group, is C_3 - C_{12} alkanetriyl, a trivalent residue of a hexose or a hexitol, a group (- C_4)₃C- C_4 CH₂OH, or a group - C_4 H_{2a}- C_4 Ch₂D- C_6 CH_{2c}-; and

Z, as a tetravalent group, is a tetravalent residue of a hexose or a hexitol, C₄-C₁₂alkanetetryl, a group

$$\begin{array}{c|c} CH_2 & H_2 & H_2 & H_2 \\ C & C & C & C \\ H & C & C & C \\ \end{array}$$
 or a group or a gro

a, b, c and k independently are 1, 2 or 3,m is 0 or a number from the range 1-12,

s is 1 or 2,

v is 1, 2, 3, 4, 5, 6, 7 or 8;

and all other residues are as defined in claim 1 for formula I if n is 1.

15. (previously presented) Process for stabilizing an organic material against deterioration by light, oxygen and/or heat, which process comprises incorporating a compound of the formula V according to claim 14 as stabilizer into said organic material.

16. (canceled)