Heroes Of Pymoli Data Analysis by Alex Koynoff

- 1. 84% of the unique users is made up of male.
- 2. Females and Other/non-disclosed spend more on average per person compared to male.
- 3. More than 44% of the unique players are in the 20-24 age group, with the next group being the 15-19 age group at 18.58%.
- 4. Age group 35-39 has the highest average purchase price compared to the rest of the age groups, as well as the highest average total per person.

Note

• Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps.

```
In [220]: # Dependencies and Setup
import pandas as pd
import numpy as np

# File to Load (Remember to Change These)
file_to_load = "Resources/purchase_data.csv"

# Read Purchasing File and store into Pandas data frame
purchase_data = pd.read_csv(file_to_load)
purchase_data.head(5)
```

Out[220]:

	Purchase ID	SN	Age	Gender	Item ID	Item Name	Price
0	0	Lisim78	20	Male	108	Extraction, Quickblade Of Trembling Hands	\$3.53
1	1	Lisovynya38	40	Male	143	Frenzied Scimitar	\$1.56
2	2	Ithergue48	24	Male	92	Final Critic	\$4.88
3	3	Chamassasya86	24	Male	100	Blindscythe	\$3.27
4	4	Iskosia90	23	Male	131	Fury	\$1.44

Player Count

· Display the total number of players

Purchasing Analysis (Total)

- Run basic calculations to obtain number of unique items, average price, etc.
- Create a summary data frame to hold the results
- · Optional: give the displayed data cleaner formatting
- · Display the summary data frame

```
In [222]: #Create various metrics based on csv file info
unique_items = purchase_data['Item ID'].nunique()
average_price = purchase_data['Price'].mean()
count_purchases = purchase_data['Item ID'].count()
total_revenue = purchase_data['Price'].sum()

#Summary table of above metrics
summary = pd.DataFrame(
{'Number of Unique Items':[unique_items],
'Average Price': [average_price],
'Number of Purchases':[count_purchases],
'Total Revenue': [total_revenue]})

#Formatting Table
pd.options.display.float_format = '${:,.2f}'.format
summary
```

Out[222]:

 Number of Unique Items	Average Price	Number of Purchases	Total Revenue
0 183	\$3.05	780	\$2,379.77

Gender Demographics

- · Percentage and Count of Male Players
- Percentage and Count of Female Players
- Percentage and Count of Other / Non-Disclosed

```
In [223]: #Create variables for each gender and perform calculations
          unique players = purchase data['SN'].nunique()
          male = purchase data[purchase data["Gender"] =="Male"]["SN"].nunique()
          female = purchase data[purchase data["Gender"] =="Female"]["SN"].nunique()
          other = purchase_data[purchase_data["Gender"] =="Other / Non-Disclosed"]["SN"].nunique()
          male percentage = ((male/unique players)*100)
          female percentage = ((female/unique players)*100)
          other percentage = ((other/unique players)*100)
          #Set up data frame and column names
          gender demographics = pd.DataFrame(
              {"Gender":["Male", "Female", "Other / Non-Disclosed"], "Total Count":[male, female, other],
               "Percentage of Players": [male percentage, female percentage, other percentage]})
          #Formatting and displaying of data frame. Setting up the index by Gender
          pd.options.display.float_format = '{:,.2f}%'.format
          gender_demographics=gender_demographics.set index("Gender")
          gender demographics
```

Out[223]:

Total Count Percentage of Players

Gender		
Male	484	84.03%
Female	81	14.06%
Other / Non-Disclosed	11	1.91%

Purchasing Analysis (Gender)

- Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. by gender
- Create a summary data frame to hold the results
- Optional: give the displayed data cleaner formatting
- · Display the summary data frame

```
In [224]:
          #Calculate values by setting up seperate variables
          male purch count = purchase data[purchase data["Gender"] =="Male"]["Price"].count()
          female purch count = purchase data[purchase data["Gender"] =="Female"]["Price"].count()
          other purch count = purchase data[purchase data["Gender"] =="Other / Non-Disclosed"]["Price"].count()
          male purch avg = purchase data[purchase data["Gender"] =="Male"]["Price"].mean()
          female purch avg = purchase data[purchase data["Gender"] =="Female"]["Price"].mean()
          other purch avg = purchase data[purchase data["Gender"] =="Other / Non-Disclosed"]["Price"].mean()
          male purch total = purchase data[purchase data["Gender"] =="Male"]["Price"].sum()
          female purch total = purchase data[purchase data["Gender"] =="Female"]["Price"].sum()
          other purch total = purchase data[purchase data["Gender"] =="Other / Non-Disclosed"]["Price"].sum()
          male purch per = male purch total/male
          female purch per = female purch total/female
          other purch per = other purch total/other
          #Set up data frame with column names and the values from above
          purchase analysis gender = pd.DataFrame(
              {"Gender":["Male", "Female", "Other / Non-Disclosed"], "Purchase Count":[male purch count, female purch count
          ,other purch count],
               "Average Purchase Price": [male purch avg, female purch avg, other purch avg],
               "Total Purchase Value": [male purch total, female purch total, other purch total],
               "Avg Total Purchase per Person": [male purch per, female purch per, other purch per]})
          #Formatting and displaying of the data frame. Setting up the index by Gender and sorting the Gender column
          pd.options.display.float format = '${:,.2f}'.format
          purchase analysis gender=purchase analysis gender.set index("Gender")
          purchase analysis gender=purchase analysis gender.sort values("Gender")
          purchase analysis gender
```

Out[224]:

Purchase Count Ave	verage Purchase Price	Total Purchase Value	Avg Total Purchase per Person
--------------------	-----------------------	----------------------	-------------------------------

Gender				
Female	113	\$3.20	\$361.94	\$4.47
Male	652	\$3.02	\$1,967.64	\$4.07
Other / Non-Disclosed	15	\$3.35	\$50.19	\$4.56

Age Demographics

- Establish bins for ages
- Categorize the existing players using the age bins. Hint: use pd.cut()
- Calculate the numbers and percentages by age group
- Create a summary data frame to hold the results
- Optional: round the percentage column to two decimal points
- Display Age Demographics Table

```
In [225]: #Set bins for the age groups
          bins = [0,9.99,14.99,19.99,24.99,29.99,34.99,39.99,100]
          group labels = ["<10","10-14","15-19","20-24","25-29","30-34","35-39","40+"]
          purchase data["Age Group"]=pd.cut(purchase data["Age"],bins, labels=group labels)
          #Set the variables for each age group by pulling the total unique values using the SN
          unique players = purchase data['SN'].nunique()
          ten = purchase data[purchase data["Age Group"] =="<10"]["SN"].nunique()
          lowteens= purchase data[purchase data["Age Group"] =="10-14"]["SN"].nunique()
          highteens= purchase data[purchase data["Age Group"] =="15-19"]["SN"].nunique()
          lowtwenty= purchase data[purchase data["Age Group"] =="20-24"]["SN"].nunique()
          hightwenty= purchase data[purchase data["Age Group"] =="25-29"]["SN"].nunique()
          lowthirty= purchase data[purchase data["Age Group"] =="30-34"]["SN"].nunique()
          highthirty= purchase data[purchase data["Age Group"] =="35-39"]["SN"].nunique()
          forty= purchase_data[purchase_data["Age Group"] =="40+"]["SN"].nunique()
          #Calculate the percentage of total count by age group
          ten percent = ten/unique players*100
          lowteens percent= lowteens/unique players*100
          highteens percent= highteens/unique players*100
          lowtwenty percent= lowtwenty/unique players*100
          hightwenty percent= hightwenty/unique players*100
          lowthirty percent= lowthirty/unique players*100
          highthirty percent= highthirty/unique players*100
          forty percent= forty/unique players*100
          #Set up Table
          age demographics=pd.DataFrame(
              {"Age Group":["<10","10-14","15-19","20-24","25-29","30-34","35-39","40+"],
               "Total Count": [ten,lowteens,highteens,lowtwenty,hightwenty, lowthirty,highthirty,forty],
               "Percentage of Players": [ten percent, lowteens percent, highteens percent, lowtwenty percent, hightwenty per
          cent, lowthirty percent, highthirty percent, forty percent])
          #Formatting and display
          pd.options.display.float format = '{:,.2f}%'.format
          age demographics=age demographics.set index("Age Group")
          age demographics
```

Out[225]:

Age Group		
<10	17	2.95%
10-14	22	3.82%
15-19	107	18.58%
20-24	258	44.79%
25-29	77	13.37%
30-34	52	9.03%
35-39	31	5.38%
40+	12	2.08%

Purchasing Analysis (Age)

- Bin the purchase_data data frame by age
- Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. in the table below
- Create a summary data frame to hold the results
- · Optional: give the displayed data cleaner formatting
- · Display the summary data frame

```
In [226]: #Set bins for the age groups
          bins = [0,9.99,14.99,19.99,24.99,29.99,34.99,39.99,100]
          group labels = ["<10","10-14","15-19","20-24","25-29","30-34","35-39","40+"]
          purchase data["Age Group"]=pd.cut(purchase data["Age"],bins, labels=group labels)
          #Calculate values by setting up seperate variables
          ten purch count = purchase data[purchase data["Age Group"]=="<10"]["Price"].count()</pre>
          lowteens purch count = purchase data[purchase data["Age Group"]=="10-14"]["Price"].count()
          highteens purch count = purchase data[purchase data["Age Group"]=="15-19"]["Price"].count()
          lowtwenty purch count = purchase data[purchase data["Age Group"]=="20-24"]["Price"].count()
          hightwenty purch count = purchase data[purchase data["Age Group"]=="25-29"]["Price"].count()
          lowthirty purch count = purchase data[purchase data["Age Group"]=="30-34"]["Price"].count()
          highthirty purch count = purchase data[purchase data["Age Group"]=="35-39"]["Price"].count()
          forty purch count = purchase data[purchase data["Age Group"]=="40+"]["Price"].count()
          ten purch avg = purchase data[purchase data["Age Group"]=="<10"]["Price"].mean()
          lowteens purch avg = purchase data[purchase data["Age Group"]=="10-14"]["Price"].mean()
          highteens purch avg = purchase data[purchase data["Age Group"]=="15-19"]["Price"].mean()
          lowtwenty purch avg = purchase data[purchase data["Age Group"]=="20-24"]["Price"].mean()
          hightwenty purch avg = purchase data[purchase data["Age Group"]=="25-29"]["Price"].mean()
          lowthirty purch avg = purchase data[purchase data["Age Group"]=="30-34"]["Price"].mean()
          highthirty purch avg = purchase data[purchase data["Age Group"]=="35-39"]["Price"].mean()
          forty purch avg = purchase data[purchase data["Age Group"]=="40+"]["Price"].mean()
          ten purch sum = purchase data[purchase data["Age Group"]=="<10"]["Price"].sum()
          lowteens purch sum = purchase data[purchase data["Age Group"]=="10-14"]["Price"].sum()
          highteens purch sum = purchase data[purchase data["Age Group"]=="15-19"]["Price"].sum()
          lowtwenty_purch_sum = purchase_data[purchase_data["Age Group"]=="20-24"]["Price"].sum()
          hightwenty_purch_sum = purchase_data[purchase_data["Age Group"]=="25-29"]["Price"].sum()
          lowthirty purch sum = purchase data[purchase data["Age Group"]=="30-34"]["Price"].sum()
          highthirty purch sum = purchase data[purchase data["Age Group"]=="35-39"]["Price"].sum()
          forty purch sum = purchase data[purchase data["Age Group"]=="40+"]["Price"].sum()
          ten purch avg person = ten purch sum/ten
          lowteens purch avg person = lowteens purch sum/lowteens
          highteens purch avg person = highteens purch sum/highteens
          lowtwenty purch avg person = lowtwenty purch sum/lowtwenty
          hightwenty purch avg person = hightwenty purch sum/hightwenty
          lowthirty purch avg person = lowthirty purch sum/lowthirty
          highthirty purch avg person = highthirty purch sum/highthirty
          forty purch avg person = forty purch sum/forty
```

```
#Set up Table
purchase analysis age=pd.DataFrame(
   {"Age Group":["<10","10-14","15-19","20-24","25-29","30-34","35-39","40+"],
     "Purchase Count": [ten purch count, lowteens purch count, highteens purch count, lowtwenty purch count, hight
wenty purch count, lowthirty purch count, highthirty purch count, forty purch count,
     "Average Purchase Price": [ten purch avg,lowteens purch avg,highteens purch avg,lowtwenty purch avg,hight
wenty purch avg, lowthirty purch avg, highthirty purch avg, forty purch avg,
], "Total Purcahse Value":[ten purch sum,lowteens purch sum,highteens purch sum,lowtwenty purch sum,hightwen
ty purch sum, lowthirty purch sum, highthirty purch sum, forty purch sum,
], "Avg Total Purchase Per Person": [ten purch avg person, lowteens purch avg person, highteens purch avg person
,lowtwenty purch avg person,hightwenty purch avg person,lowthirty purch avg person,highthirty purch avg perso
n, forty purch avg person,
1})
#Formatting and display
pd.options.display.float format = '${:,.2f}'.format
purchase analysis age=purchase analysis age.set index("Age Group")
purchase_analysis age
```

Out[226]:

	Purchase Count	Average Purchase Price	Total Purcahse Value	Avg Total Purchase Per Person
Age Group				
<10	23	\$3.35	\$77.13	\$4.54
10-14	28	\$2.96	\$82.78	\$3.76
15-19	136	\$3.04	\$412.89	\$3.86
20-24	365	\$3.05	\$1,114.06	\$4.32
25-29	101	\$2.90	\$293.00	\$3.81
30-34	73	\$2.93	\$214.00	\$4.12
35-39	41	\$3.60	\$147.67	\$4.76
40+	13	\$2.94	\$38.24	\$3.19

Top Spenders

- Run basic calculations to obtain the results in the table below
- Create a summary data frame to hold the results
- Sort the total purchase value column in descending order
- Optional: give the displayed data cleaner formatting
- Display a preview of the summary data frame

```
In [227]:
          #Reorganize the file data by assigning SN as the first column, then group by SN and create variables to calcu
          late various information
          purchase_data_sn = purchase_data[["SN","Purchase ID","Age","Age Group","Gender","Item ID","Item Name","Price"
          purchase data sn group = purchase data sn.groupby(["SN"])
          sn count = purchase data sn group["Price"].count()
          sn avg = purchase data sn group["Price"].mean()
          sn total = purchase data sn group["Price"].sum()
          #Set up the Data Frame using the variables above
          purchase data sn group = pd.DataFrame({"Purchase Count":sn count,
                                                  "Average Purchase Price":sn avg,
                                                  "Total Purchase Value":sn total})
          #Sort values, format and display
          purchase_data_sn_group=purchase_data_sn_group.sort_values("Total Purchase Value", ascending=False)
          pd.options.display.float format = '${:,.2f}'.format
          purchase data sn group.head()
```

Out[227]:

Purchase Count Average Purchase Price Total Purchase Value

SN			
Lisosia93	5	\$3.79	\$18.96
ldastidru52	4	\$3.86	\$15.45
Chamjask73	3	\$4.61	\$13.83
Iral74	4	\$3.40	\$13.62
Iskadarya95	3	\$4.37	\$13.10

Most Popular Items

- Retrieve the Item ID, Item Name, and Item Price columns
- Group by Item ID and Item Name. Perform calculations to obtain purchase count, item price, and total purchase value
- · Create a summary data frame to hold the results
- · Sort the purchase count column in descending order
- · Optional: give the displayed data cleaner formatting
- Display a preview of the summary data frame

Purchase Count Item Price Total Purchase Value

##Reorganize the file data by assigning SN as the first column, then group by Item ID and Item Name and creat In [228]: e variables to calculate various information purchase data popular = purchase data[["Item ID","Item Name","SN","Purchase ID","Age","Age Group","Gender","P rice"]] purchase data popular renamed=purchase data popular.rename(columns={"Price":"Item Price"}) purchase data popular renamed grouped=purchase data popular renamed.groupby(["Item ID","Item Name"]) popular count = purchase data popular renamed grouped["Item Price"].count() popular avg = purchase data popular renamed grouped["Item Price"].mean() popular total = purchase data popular renamed grouped["Item Price"].sum() #Set up the Data Frame using the variables above purchase data popular renamed grouped=pd.DataFrame({"Purchase Count":popular count, "Item Price":popular avg, "Total Purchase Value": popular total}) #Sort values, format and display purchase data popular renamed grouped=purchase data popular renamed grouped.sort values("Purchase Count", asc ending=False) pd.options.display.float_format = '\${:,.2f}'.format purchase data popular renamed grouped.head()

Out[228]:

		i dichase oodin	item i nee	Total I alchase Value
Item ID	Item Name			
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
145	Fiery Glass Crusader	9	\$4.58	\$41.22
108	Extraction, Quickblade Of Trembling Hands	9	\$3.53	\$31.77
82	Nirvana	9	\$4.90	\$44.10
19	Pursuit, Cudgel of Necromancy	8	\$1.02	\$8.16

Most Profitable Items

- Sort the above table by total purchase value in descending order
- · Optional: give the displayed data cleaner formatting
- Display a preview of the data frame

```
In [229]: #Resort by Total Purchase Value in descending order, format and display
    purchase_data_popular_renamed_grouped=purchase_data_popular_renamed_grouped.sort_values("Total Purchase Value", ascending=False)
    pd.options.display.float_format = '${:,.2f}'.format
    purchase_data_popular_renamed_grouped.head()
```

Purchase Count Item Price Total Purchase Value

Out[229]:

Item ID	Item Name			
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
82	Nirvana	9	\$4.90	\$44.10
145	Fiery Glass Crusader	9	\$4.58	\$41.22
92	Final Critic	8	\$4.88	\$39.04
103	Singed Scalpel	8	\$4.35	\$34.80

In []: