Stratégies de Résolution

de problèmes

ECL - 2A - MI

2021-2022

Chapitre 1 (transparents)

Analyse d'algorithmes

Éléments de calcul de complexité

Alexandre Saidi (ECL-LIRIS)

I- Quelques références bibliographiques

- 1. Optimisation Combinatoire: M. Sakarovitch, Hermann, 1984
- 2. Design and Analysis of Algorithms: cours notes: Samir Khuller, 1994
- 3. Graphes & Algorithmes: M. Gondran & M.Minoux, Eyrolles, 1995
- 4. Foundation of Algorithms: R. Neapolitan, K. Naimipour, D.C. Health & Co.1996
- 5. The algorithm design Manual: S.S. Skiena, Springer Verlag, 1997
- 6. Complexity of Algorithms: Peter Gacs, LNCS 1999
- 7. The Art of Computer Programming: 2nd edition, Knuth, 1999
- 8. Data structures & Algorithm Analysis in C++: M.A; Weiss, Addison-Wesley, 1999
- 9. The algorithm design: G. Kleinberg & E. Tardos, Addison Wesley 2005
- 10. The Standard Template Library, Alexander Stepanov (le site du SGI)
- 11. Algorithm + Data structure = Programs, N. Wirth, Prentice Hall 1976
- 12. The Design and Analysis of Computer Algorithms, Aho, Hopcroft, Ullman, 1974 Ad.w.
- 13. Notes personnelles "Cahier de Complexité" (A.S.) 1995-2005

II- Objectifs du cours et éléments abordés

Rigueur dans les algorithmes (preuve)

Calcul du coût (complexité) des algorithmes

On entends souvent: " Mon programme marche donc il est juste!"

⇒ Pouvez-vous le prouver ?

La Connaissance de quelques méthodes importantes aident.

Éléments abordés dans ce module :

- Sensibilisation aux exigences des (bons!) algorithmes
- Analyse, preuve, calcul de Complexité des algorithmes, outil de mesure de complexité

MI-ECL-2A-20-21

- Différents outils et stratégies de résolution de problèmes :
 - ✓ Stratégies de résolution : Diviser / séparer pour Régner, Gloutonne, Programmation Dynamique, B&B, A*, etc.
 - ✓ Graphes et algorithmes remarquables, TAS & Arbres, Dijkstra, MST, etc.
 - √ Récursivité & analyse récursive
- A travers l'Étude de quelques problèmes combinatoires connus.

III- Pourquoi faut-il des algorithmes?

- Certains problèmes (p. ex. TSP, tournée de véhicules, ...) n'ont pas de formulation
 Mathématique.
- Ils Peuvent avoir une 'Modélisation Mathématique (p.ex. Coloration minimale),
- Pour d'autres, on n'a pas de 'formule' pour calculer une sortie / décision / etc.
 - → Il faut les résoudre par un algorithme (+ heuristiques dans certains cas)
- Cet algorithme va décrire la démarche de résolution du problème.
- Il doit satisfaire quelques conditions (pour être 'utile' et 'effectif').
- Il décrira le QUOI (données, méthode) : La Logique
 et le COMMENT (description des étapes) : Le Contrôle

IV- Qu'est-ce qu'un algorithme ? Exemples

Exemple : trier une séquence de N entiers S[1..N] dans l'ordre <u>ascendant</u>.

- \rightarrow La solution pour *S* de taille 6 = [10, 7, 11, 5, 13, 8] \rightarrow [5, 7, 8, 10, 11, 13]
- → S est une instance (1 exemplaire) du problème traité par un algorithme de tri.

Un algorithme de TRI décrit la méthode sous forme d'une suite d'<u>instructions</u>
<u>précises</u> exécutée pour S de taille N.

Parmi une pléthore de méthodes, on dira par exemple (Tri Insertion):

- Soit Si, i=1..N un élément de S, commencer à partir de S1 jusqu'à S(N-1)
- Itérer en comparant S_i aux $S_{j, j=i+1...N}$ et permuter S_i et S_j si $S_i > S_j$.
- Recommencer avec S₂ S_N
- \rightarrow Notion d'assertion/invariant : ici, après une itération sur i : S_i = min($S_{i...N}$)

IV.1- Exemple :Tours de HANOI

Un algorithme pour HANOI décrit la méthode de déplacement de N disques :

--> Les N disques au départ sur le pieu 'A' doivent aller sur B en s'aidant de C

Exemple d'algorithme de solution : Hanoi(N, Dep, Arr, Aux)

- Commencer par déplacer N-1 disques depuis Dep vers Aux en s'aidant de Arr

Il restera un disque sur Dep : déplacez-le sur Arr

- Recommencer : déplacer les N-1 disques restants de Aux vers Arr à l'aide de Dep

Appel initial: Hanoi(N, Dep=A, Arr = B, Aux =C)

IV.2- Exemple : mariages stables (stable matching)

Construction / vérification d'un couplage stable dans un graphe.

Un couplage est *instable* s'il contient 2 personnes A et B qu'on n'a pas <u>connectées</u> (ensemble) alors qu'ils se préféraient (p/r aux conjoints que l'on leur a affectés).

P. Exemple, on a 'fêté' ces mariages (f,F,g,G): F est mariée avec g

G est mariée avec f

Mais 'ça' ne tiendra pas (instable) car : F préfère G à g

G préfère F à f

Questions:

- Commet vérifier qu'un couplage est stable?
- Un couplage stable existe-il toujours? Si oui, peut-on le trouver (par un algo?)

Voir solutions et applications en Annexes. Mariages stables (stable matching)

V- Ce que l'on peut attendre des algorithmes

- Un algorithme a un domaine de définition :
 - l'ensemble potentiellement infini des instances (In/Out) du problème.
- Un algorithme doit être juste (et au besoin complet)
 - Un algorithme juste doit fonctionner sur toutes les instances d'un problème.
 - --> Par Ex.: un algorithme de recherche d'un élément dans un tableau
- Un algorithme complet doit trouver toutes les solutions justes.
- Un algorithme doit "finir" (terminaison) en un temps fini.
- Selon les cas, on pourra apporter les preuves de :
 - Existence / Unicité (éventuelle) de la solution, un Délai donné, Etc...

VI- Autres remarques

Algorithme = Logique + Contrôle (une logique + une stratégie)

Programme = Algorithme + Structures de données

Un algorithme décrit une solution dans un espace d'états (initiaux / finaux).

- Un état final = une solution
- Le contrôle dit : comment aller d'initial au final (étant donné la Logique).
- Parfois, une logique juste ne donne pas forcément un algorithme:

Exemple:
$$(n+1)! = (n+1).n! \ d'où n! = \frac{(n+1)!}{n+1}$$

Même si le "Contrôle" de l'algo. du calcul de ce n! respecte sa logique.

Autres:

- Notion de décidabilité / calculabilité (traçabilité, en anglais : tractable)
 - Ex.: un programme pour détecter si un programme boucle?

- Itératif / Récursif: indépendant de la complexité, transformable
 - Souvent on a le choix entre récursif/itératif, parfois pas (e.g. Hanoï, ...).

VII- Idée de la complexité

• Il y a souvent plusieurs méthodes (algorithmes) pour résoudre un problème.

Dans Logique + Contrôle : plusieurs Contrôles possibles pour une même logique.

Exemple de TRI de S: on peut permuter S jusqu'à tomber juste!!

<u>Un Exemple</u> (trivial):

On a 15 boîtes de vis de différentes longueurs rangées dans un bloc de rangement

avec 15 tiroirs.

→ Comment faut-il ranger ces vis afin de les retrouver facilement?

- 1 Naïve: ranger n'importe comment, rechercher de gauche à droite.
 - --> En moyenne: 8
- 1'-Variante: ranger les vis selon la fréquence des demandes.
 - \rightarrow tjs 8 en moyenne.
- 2- Naïve 'Las Vegas': Naïve mais plus démocratique
 Recherche aléatoire (au lieu de gauche-droite) → tjs 8 en moyenne.
- 3- Tri: on range les vis selon la longueur de la plus petite à la plus grande. On cherche par la méthode Dichotomique.
 - → En moyenne 3,26 comparaison
- Voir détails de cet exemple en annexes Détails Ex. "Idée de la complexité"

VIII- Complexité et Contrôle

<u>Définition</u>: la **complexité** d'un algorithme A est une définition $C_A(N)$ donnant le nombre d'instructions caractéristiques exécutées par A (dans le <u>pire des cas</u>, pour une donnée de <u>taille N.</u>

Cette mesure donne un ordre de croissance de l'algorithme A.

N.B. la fonction de complexité d'un algorithme en temps est noté T(N).

• L'analyse de la complexité peut être

```
Pessimiste (le cas pire : W(n)) : \rightarrow T<sub>max</sub>(n) = max(Temps(d)| d donnée de taille n)

Optimiste (meilleur cas : B(n)) : \rightarrow T<sub>min</sub>(n) = min(Temps(d)| d donnée de taille n)
```

Moyenne
$$(A(N))$$
 $\rightarrow T_{moy}(n) = \sum p(d)^* Temps(d) \mid p(d) : proba de d$

La connaissance du cas pire est critique pour les applications Temps Réels (contrôle aérien, robots, automatismes, freinage, systèmes d'alarme, etc.) où il faut borner le temps nécessaire aux calculs.

- N.B.: accompagné de la complexité du cas pire, la complexité moyenne (* la moyenne des complexités) donne une indication intéressante.
- N.B.: Problème Q-sort (Tri rapide)

Dans Q-sort, le cas favorable est N.log(N) mais le cas pire est $O(N^2)$.

--> On doit considérer quand-même le cas pire (e.g. si le tableau est déjà trié).

VIII.1- Exemple 1 : Comparatif recherche d'une "vis"

• Recherche séquentielle ou Dichotomique dans l'ensemble 5 (de vis) :

Taille de S	Recherche séquentielle	Recherche binaire		
128 (2 ⁷)	128	8		
1024 (210)	1024	11		
1.048576 (2 ²⁰)	1048576	21		
4.294.967.296 (2 ³²)	4.294.967.296	33		

L'efficacité d'un algorithme de recherche binaire semble évidente.

VIII.2- Exemple 2 : séquence de Fibonacci

```
fib(0) = 0,
fib(1) = 1,
fib(n) = fib(n-1) + fib(n-2)
```

- 1 La solution <u>récursive</u> naïve (cf. la déf.) avec beaucoup de calculs redondants. Le nombre de termes calculés T(n) est de l'ordre de $2^{n/2}$ (voir plus loin).
- 2- il existe une solution récursive (de complexité $O(2^n)$, voir + loin):

$$fib(2n) = fib(n)^2 + 2fib(n).fib(n-1)$$
 cas pair
 $fib(2n+1) = fib(n)^2 + fib(n+1)^2$ cas impair

3- La solution utilisant un tableau pour stocker (Pr. D):

Le coût
$$T(n) = n+1$$

VIII.3- Exemple 3 : Comparatif Fibonacci

Comparatif du **temps d'exécution** de Fib sur une machine qui calcule chaque terme en une nanoseconde (10⁻⁹ sec.) pour les <u>deux méthodes</u> précédentes

n	2 ^{n/2}	Temps Algorithme Linéaire (n+1 termes)	Temps Algorithme Récursif (naïf, non Pr. D.)
60	1.1 * 109	61 ns	1 s
80	1.1 * 1012	81 ns	18 min.
100	1.1 * 1015	101 ns	13 jours
120	1.2 * 1018	121 ns	36 années
200	1.3 * 1030	201 ns	4 * 10 ¹³ années

- Remarque: dans ce cours, on ne traitera pas la complexité en espace.
- Certaines stratégies peuvent mettre à mal les capacités (ressources, temps,

espace) des machines récentes :

Exemples :

fib(N),

 $prime(p) : (2^{p-1} \% p == 1) pour p>2,$

Tri par permutation successives!,

$$n! = \frac{(n+1)!}{n+1}$$

• • •

IX- Tableau des croissances relatives

Dans l'ordre croissant avec des exemples :

```
→ accès à un élément dans un tableau
         constante
         logarithmique
                         → couper un ensemble en 2 parties égales, recouper ....
 log N
\sqrt{N}
                         → utilisation dans le calcul des nombres premiers
 log<sup>2</sup> N log. au carré → recherche dans un B-arbre, dans une forêt
         linéaire
                         → parcours linéaire d'un ensemble de données
 N.logN
                         \rightarrow couper un ens. en 2 + parcours de chaque partie
 N^2
                         → parcourir un ensemble une fois par élément d'un autre
         quadratique
                             ensemble de la même taille (cf. tri bulle)
 N^3
         cubique
                         → triple boucle (voir exemple réf. des sommes)
 2<sup>N</sup>
                         → générer tous les sous-ens. d'un ens. de données
         exponentiel
         exponentiel
                         \rightarrow toutes les permutations d'un ens. (ex. tri bête!)
 N!
```

IX.1- Comparaisons des courbes des croissances usuelles

IX.2- Comparaison de qq. ordres de de complexité

--> Le temps de calcul suppose une microseconde par instruction de haut niveau

(i.e. pas en assembleur) sur une machine avec un processeur >= 386/486.

Les cases vides : > 1000 milliards d'années (> l'age estimé de l'univers).

complexité \ taille	20	50	100	200	500	1000
10^3 . n	0.02 s	0.05 s	0.1 s	0.2 s	0.5 s	1 s
10^3 . $n \log_2 n$	0.9 s	0.3 s	0.6 s	1.5 s	4.5 s	10 s
$100 \ n^2$	0.04 s	0.25 s	1 s	4 s	25 s	2 mn
$10 n^3$	0.02 s	1 s	10 s	1 mn	21 m	27 h
$n^{\log n}$	0.4 s	1.1 h	220 ј	12500 ans	5.10 ¹⁰ ans	
$n^{n/3}$	0.001 s	0.1 s	2.7 h	3.10^6 ans		
2^n	1 s	36 ans				
3^n	58 m	2.10 ¹¹ ans				
n!	77100 ans					

N.B.: pour se faire une idée, lancer le calcul <u>récursif</u> de **fib(100)** --> $O(5/3)^{100}$

x- Éléments d'analyse de la complexité

- Comment un algorithme <u>se comporte</u> et <u>quelles ressources</u> (temps et espace) il demande.
- Sous quelle forme <u>le temps d'exécution augmente</u> si la taille des données en entrée augmente.
- Cette analyse doit être indépendante des aspects d'un contexte particulier.
- Dans la complexité d'un algorithme, on :
- --> <u>ne calcule pas</u> le nombre de cycles du CPU (dép. d'une machine particulière).
- --> ne compte pas le nombre d'instructions exécutées dépendant d'un langage.
- --> <u>ne tient pas compte</u> de la classe du langage (impérative /fonctionnelle / logique) ni du compilateur employé.
 →
- Mais on décide en général d'une opération de base caractéristique.

--> L'opération de base peut changer d'un algorithme à un autre.

Exemples:

- <u>l'ajout</u> d'un élément à un tableau <u>pour</u> *fib* linéaire : *T(n)=n*
- la comparaison de deux éléments pour le tri par échange : T(n) = n.(n-1)/2
- la multiplication de 2 valeurs pour la multiplication de matrices: $T(n) = n^3$
- On peut rendre un algorithme plus efficace (par une cst.) sans forcément modifier sa complexité (Exemple BE1, AES et la fonction *prometteur*).
- ullet La complexité notée T(n) doit tenir compte de tous les cas possibles

(Every-case complexity ≠ Average-case complexity).

XI- Sensibilité à la puissance des machines

Principe d'invariance (opinionem dissimilis):

malgré les différences technologiques, la complexité d'un même algorithme sur deux machines différentes <u>ne varie que</u> par un facteur constant.

Exemple (ce n'est pas ce que l'on croit!)

Soit T = le temps nécessaire pour exécuter un programme sur une machine M1. Supposons disposer du même temps T pour exécuter le même programme sur une machine M2 10 fois plus rapide que M1.

--> De quel facteur (p/r à M1) peut-on augmenter la taille des données traitées sur M2 ?

Question légitime: la complexité dépend de la taille des données (n).

ullet Soit n la taille des données sur M1, n' celle sur M2 pour la même durée T.

- Pour une complexité linéaire, on a n' = 10 n (10 fois plus de données)

- Pour une complexité en n^2 , on a $n'^2 = 10 n^2$

d'où n' = $\sqrt{10}n$ = 3,16 n

- Pour une complexité 2^n , on a $2^{n'} = 10 2^n$

d'où n' = n + log 10 = n + 3,3

Pour ce cas, on peut augmenter les données de seulement 3 !!

Détaillons :

- l'évolution de n pour M2 (pour le même temps t)
- l'évolution du temps t si $n \rightarrow 10n$ (sur la même M1)

Complexités	1	log2(n)	n	nlog2(n)	n ²	n ³	2 ⁿ
Évolution du temps t quand la taille des données n → 10n	†	log(10n) = t+3,3	10 t	(10+ε) †	10 ² †	10 ³ †	† ¹⁰
Évolution de la taille n quand le temps alloué t → 10t	∞	n ¹⁰	10 n	(10-ε)n	n√10= 3,16 n	2,15 n	n+3,3

La valeur de ϵ est négligeable devant la croissance de la fonction.

• dans la complexité n log(n), lorsque $n \rightarrow 10n$, on aura :

$$(10n)\log(10n)=10n[\log(n)+3,3]=10n.\log(n)+33n$$

= $n\log(n)[10+33/\log(n)]=n.\log(n)[10+\epsilon]=+(10+\epsilon)$

- \bullet dans log(n), $lorsque <math>t \rightarrow 10t$, on aura : $log(n) \rightarrow 10 log(n) = log(n^{10}) \rightarrow n' = n^{10}$
- dans **n** log(n), lorsque $t \to 10t$, on aura : n.log(n) $\to 10$ n.log(n) = 10 n.log[10 n / 10] = 10nlog(10n) -10n*3,3=10nlog(10n) - ϵ (n.log(n))= (10- ϵ)t
- le cas de la complexité n² a été traité plus haut...

On constate que :

- Les progrès en puissance des machines sont négligeables face aux progrès en algorithmique
 - ⇒ Les algorithmes remarquables sont plus rares.
- Parfois, ces progrès valent révolution (e.g. Fourrier)!

XII- Déf. de big-oh (upper bound, pessimiste)

Idée informelle: la limite supérieure d'une fonction (modulo un facteur constant)

Si g(n) est une limite supérieure de f(n), il est alors possible de trouver une valeur (n_0) telle que $f(n) \le c.g(n)$, pour tout $n \ge n_0$ et c une constante.

Définition : soit f et g deux fonctions de $\mathbb R$ dans $\mathbb R$.

On dit que f est d'ordre inférieur ou égal à g (ou d'ordre au plus g) si l'on peut trouver un réel x0 et un réel positif c tels que $\forall x \ge x0$, $f(x) \le c$. g(x).

- --> g devient +grand que f à partir d'une certaine valeur x_0 à un facteur c près.
- --> On remarque que des cas d'égalité sont possibles.

Remarques: on écrit

f est O(g), f est en O(g) ou f=O(g) prononcé "grand O de g".

Pour le calcul de complexité, on utilise plutôt des fonctions de $\mathbb{N} \to \mathbb{R}$.

- \rightarrow O(g) est un ensemble de fonctions, celles d'ordre au plus g :
- \rightarrow On préfère écrire $f \in O(g)$.

Un exemple simple: $5N = O(0.5 \text{ N}^2) \text{ car } 5N \leq 0.5 \text{ N}^2 \text{ àpd. } N \geq 10.$

O(f(n)) veut dire qu'une fonction est \leq à une autre fonction modulo une constante au sens "asymptotique", lorsque n croît (par f) vers l'infini (cf. $n \geq n_0$).

$$T(n) = O(cn^2) = O(n^2)$$

XII.1- Exemples de big-oh

I- Recherche du maximum dans un tableau de taille n

Cette recherche peut prendre (2n-1) opérations de base (comparaisons).

On dira que 2n-1 est O(n) car on peut trouver une constante réelle c>0 et $(n_0 \ge 1)$ tels que 2n-1 < c.n, pour tout $n \ge n_0$.

--> Ici, on peut choisir par exemple c=2 et $n_0=1$.

Ce choix n'est qu'une possibilité car tout réel c >2 et tout $n_0 \ge 1$ convient.

II- Montrer que 20 n^3 + 10 n log n + 5 est $O(n^3)$

- \rightarrow 20 n^3 + 10 $n \log n + 5 < c. n^3$ pour $n \ge 1$
- \rightarrow Ici, c=35 et n₀=1 conviennent

III) Montrer que $n^2 + 2n + 1$ is $O(n^2)$

Il faut montrer: $n^2 + 2n + 1 \le c * n^2$ avec $n >= n_0$.

Avec $n_0 >= 1$ un entier positif, posons $n_0=1$

--> $n^2 + 2n + 1 \le c \cdot n^2$ avec $n \ge 1$. Divisons par n^2

On a: $(n^2 + 2n + 1) / n^2 \le c$ quand $n \ge 1$.

Sachant que $(n^2 + 2n + 1) / n^2 \le (n^2 + 2n^2 + n^2) / n^2$ avec $n \ge 1$

On cherche c tel que $(n^2 + 2n + 1) / n^2 \le (n^2 + 2n^2 + n^2) / n^2 \le c$ avec $n \ge 1$.

--> $(n^2 + 2n^2 + n^2) / n^2 \le c \text{ lorsque } n \ge 1.$

On simplifie sur n^2 : $(1+2+1)/1 \le c$ pour $n \ge 1$

--> 4 \le c et n \ge 1

D'où : $n^2 + 2n + 1 \le c * n^2$ pour $c = 4, n \ge 1$

IV) Montrer que $n^2/2 - 3n \in O(n^2)$

Il faut trouver un réel no et un réel c>0 tels que

$$\forall n \ge n0, n^2/2 - 3n \le c. n^2$$

Divisons par n^2 (avec n>=1), on a:

--> 1/2 - $3/n \le c$ pour $n \ge 1$ et $c \ge 1/2$

Et $0 \le n^2/2 - 3n \le c$. n^2 pour $n \ge n_0 = 6$ et $c \ge 1/2$

D'où $n^2/2 - 3n \in O(n^2)$

(V) Soit $f1(n) = 5n^3 + 2n^2 + 22n + 6$.

Montrer que $f1(n) = O(n^3)$.

Pour c=6 et n0=10, on a $5n^3 + 2n^2 + 22n + 6 \le 6n^3$ pour $n \ge 10$.

En plus, f1 (n) = $O(n^4)$ car $n^4 >= n^3 --> n4$ est une borne sup. Asymptotique pour f1.

N.B.: f1 (n) n'est pas $O(n^2)$ car qq soit c et n_0 , la déf de O(.) ne se vérifie pas.

(VI) Montrer que $3n \log_2 n + 5n \log_2 \log_2 n + 2$ est $O(n \log n)$

Pour n>=2, c=6, on a $3n \log_2 n + 5n \log_2 \log_2 n + 2 <= n \log n$

N.B. sachant que log_b n = $log_2(n) / log_2(b)$, on peut omettre la base dans O(n log n).

tout polynôme de degré k est $O(n^k)$.

XIII- La fonction Ω (lower bound : optimiste)

La fonction Oméga (Ω) place une borne inférieure asymptotique.

Définition de la fonction oméga :

Pour une fonction de complexité f(x), $\Omega(f(x))$ est un ensemble de fonctions de complexité g(x) pour lequel il y a un réel positif c et une constante non négative x0

tels que $\forall x \ge x0$, $f(x) \leftarrow c. g(x)$.

N.B.: on dira que $f(n) = \Omega(g(n))$ si g(n) = O(f(n))

La notation est plus précise mais le big-oh est plus simple à calculer.

→ cherche à donner une meilleure estimation de la complexité.

Exemple: montrer que $n^2/2 - 3n \in \Omega(n^2)$

Par définition :

$$\Omega(n^2) = \{f : N \rightarrow N \ tq. \ \exists n0 \ge 0, \ \exists c > 0, \ \forall n \ge n0, \ f(n) \ge cn^2 \ge 0\}$$

On peut trouver les constantes n_0 et c telles que :

$$0 \le c.n^2 \le 1/2n^2 - 3n$$
 pour $n \ge 7$ et $c \ge 1/14$

D'où:

$$1/2n^2 - 3n \in \Omega(n^2)$$

XIV- La fonction Θ (égalité entre O et Ω)

• Si une fonction \mathbf{f} est à la fois $O(n^2)$ et $\Omega(n^2)$, sa courbe se place à la fois audessous d'une certaine fonction quadratique **pure** (de la forme ax^2+bx+c) et audessus d'une certaine autre fonction quadratique (pure).

La fonction f est donc <u>aussi bonne / mauvaise</u> (que ces 2 fonctions).

Donc, l'accroissement de f est <u>similaire</u> à une fonc. quad. pure : ordre Θ :

L'ordre Θ dit que 2 foncs. sont asymptotiquement égales (modulo un facteur cst.).

Définition : pour une fonction de complexité f(x), $(f(x)) = O(f(x)) \cap \Omega(f(x))$.

Ce qui veut dire que $\Theta(f(x))$ est l'ensemble de fonctions de complexité g(x) pour lequel il y a les réels positifs c et d et une constante non négative x0 tels que :

 $\forall x \ge x0$, c. g(x) $f(x) \le d$. g(x).

Exemples de Θ (Théta)

- f(n) = n(n-1)/2 est à la fois $O(n^2)$ et $\Omega(n^2)$ (cf. sections précédentes)
 - \rightarrow dans ce cas, $f(n) = \Theta(n^2)$
- $n^2 + 10n \in \Theta(n^2)$ car $n^2 + 10n \in O(n^2)$ et $n^2 + 10n \in \Omega(n^2)$ pour n grand.

On a également $n^2 \in \Theta(n^2 + 10n)$ v. (3) ci-dessous

g est une borne approchée asymptotique de f

Remarques:

- (1) Si $f(n) = \Theta(q(n))$, alors f(n) est à la fois O(q(n)) et $\Omega(q(n))$.
- (2) Si $f(x) = \Theta(g(n))$, on dira que g(x) est l'ordre de f(x).
- (3) Si I'on a O(N) et $N = \Theta(x)$, alors on a O(x).
- (4) Si $q(n) \in \Theta(f(n))$ ssi $f(n) \in \Theta(q(n))$ (Θ porte l'égalité)

Exemple:

Montrer que $1/2n^2 - 3n$ est $\Theta(n^2)$.

On doit montrer que:

 $c_1 n^2 <= n^2/2 - 3n <= c_2 n^2$ pour tout n >= n0.

On divise par n^2 :

$$c_1 <= 1n/2 - 3/n <= c_2$$

--> Pour $c_2 >= 1/2$, on a l'inégalité à droite.

--> Pour la partie gauche, $n \ge 7$ et c1 <= 1/14.

Donc, avec $n_0=7$, c1=1/14 et $c_2=1/2$, nous aurons

$$T(1/2n^2 - 3n) = \Theta(n^2)$$
.

Exemple:

Montrer que $6n^3 \neq \Theta(n^2)$.

Preuve par contradiction / réfutation.

Supposons que c'est le cas.

Il existe alors c_2 and n_0 tels que $6n^3 \leftarrow c_2 n^2$.

En divisant par n^2 (pour $n \ge 1$), on aura $6n \le c_2$.

Or, pour une constante c_2 donnée, la relation $6n \leftarrow c_2$ n'est pas valide pour tout n.

XV- Illustration des 3 fonctions o, Ω, Θ

Quelques exemples courants de ces 3 fonctions de complexité pour n².

- Voir Annexes pour les famille little-oh (o(N)) et little-oméga (o(ω))
- N.B.: Réflexivité:
 - On a $f \in O(f)$ et $f \in \Omega(f)$ donc $f \in \Theta(f)$.
 - Il n'y a pas de réflexivité pour little-oh : f(n) n'est jamais o(f(n))

XVI- Calculs : le Modèle (de la machine)

<u>Nécessité</u>: il faut un modèle de calcul pour estimer la complexité.

En générale, on considère que les hypothèses suivantes sont vérifiées :

- Ordinateur normal (séquentiel) avec des instructions simples (+,-,*,/).
- Chaque opération prend une unité de temps.
- Les entiers sont de taille fixe (32 / 64 bits)
- L'opération caractéristique de base n'est pas compliquée comme la multiplication ou inversion de matrices ou le tri (qui demandent >> 1 unité).
- La quantité de RAM est illimitée (dans la limite du raisonnable!).
- On est indépendant du langage: certains langages peuvent diminuer/augmenter le temps (paramètres par réf, copie de tableau en paramètre, etc.), voir + loin.

XVII- Règles basiques et empiriques de calcul

On repère les instructions caractéristiques (on dit aussi fondamentales)

• Règle des opérations simples :

```
if (A > B):

A = A - 1

B = 2 * B
```

Trois instructions (test+2 instruction) si A>B et, une (le test) instruction sinon.

Le traitement est O(1) car le nombre d'opérations est borné par une cste.

• Règle des Séquences:

On additionne les complexités on prend le maximum selon la règle de somme

• Règle de la Conditionnelle :

 $O(\text{conditionnelle}) = \max(O(S1), O(S2)) + \text{cout}(C\text{ond})$

Règle de la boucle (for, while, ...):

Le temps d'exécution des instructions à l'intérieur * le nombre d'itérations.

Boucles imbriquées:

Le temps de la boucle interne <u>multiplié</u> par le nombre d'itérations externes

Exemple (de complexité = $O(N^2)$)

```
for i in range(n):
for j in range(n):
    k = k + 1
```

Autres règles générales :

- -On analyse de l'intérieur vers l'extérieur.
- -Pour un appel de fonction, on analyse d'abord la fonction

Cas de la récursivité :

Parfois, une fonction récursive est en fait une itération «cachée»

Exemple (O(N)) où l'opération caractéristique est "*" ou un appel à "fact"

```
def fact(n: int)→ long
if (n <= 1): return 1
return n * fact(n-1)
```

Remarque : le calcul de complexité formelle des algorithmes récursifs est souvent

plus simple!

--> Leur preuve de justesse aussi!

XVIII- Quelques exemples de calculs simples

XVIII.1- Exemple : calcul de la médiane d'une suite

Calculer la médiane M dans une suite d'entiers S de taille N (on note |S| = N) telle que :

La moitié des nombres de S soient plus petits que M et l'autre moitié plus grande.

- Sol 1- Pour calculer la médiane, il suffit de trier 5 puis de choisir le milieu.
 - \rightarrow Complexité: celle de l'algorithme de tri (au mieux O(N.Log(N))).
- **Sol 2** Construire un TAS (voir + loin, min_heap, O(N)) puis retirer k éléments (k= $\lfloor N/2 \rfloor$).
 - \rightarrow Complexité: $O(N.log_2 N)$ pour $N \ge 4$
- **Sol 3** Meilleure méthode pour trouver le $k^{ième}$ plus petit élément de S (ici $k=\lfloor |S|/2 \rfloor$).
 - → Le point fort de cette méthode est de ne trier que la plus petite sous séquence de S contenant le kième plus petit élément.
 - → Voyons quelques détails

XVIII.1.1- Solution : un stratégie Diviser pour régner

Pour une séquence S, la méthode <u>se généralise</u> pour k = 1..|S|

(k = |S|/2 pour la médiane)

Pour une valeur v appartenant à S, on peut scinder S en S sous tableaux:

- Sg: contenant les éléments plus petits que v
- Sv: contenant les éléments = v (contenant v lui-même)
- Sd : contenant les éléments de S plus grands que v

Exemple: $S = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$, |S| = 11 et $\mathbf{v} = 5$ (p. ex.):

$$\rightarrow$$
 Sg=<2, 4, 1>, Sv = <5, 5>, Sd=<36, 21, 8, 13, 11, 20>

 $v \in S$ sera choisi aléatoirement (mais V= le 1e élément est plus simple).

Pour trouver le kième plus petit élément, il suffit de repérer le sous tableau susceptible de contenir cet élément et de traiter celui-ci.

Exemple: si k=8, on sait que le 8e plus petit élément ne peut être que dans Sd car pour $\mathbf{v} = 5$, la somme des tailles de Sg et Sv: |Sg| + |Sv| = 5.

On notera : selection(S, k=8) = selection(Sd, k=3) sachant |Sg| = 3 et |Sv|=2.

Généralisation: selection(S,k) = selection(Sg,k) si k = < |Sg|

 $= \mathbf{v}$ si |Sg| < k = < |Sg| + |Sv|

= selection(Sd, k-(|Sg| + |Sv|)) si k > |Sg| + |Sv|

On répétera ce traitement (récursif) sur le sous-tableau concerné jusqu'à arriver à un <u>singleton</u> qui est le résultat recherché (voir l'algorithme en Annexes).

™Le découpage déséquilibré des 5d et 5g peut donner une complexité défavorable

<u>MAho & al</u> montrent : en moyenne, 2 divisions suffisent pour trouver la médiane :

→ Voir [Aho & al], [Wirth] pour 2 algorithmes de complexité moyenne O(n)

pour obtenir le kième plus petit élément de 5.

XVIII.1.2- Détails du déroulement pour cet exemple

Trouver la médiane de $S=\langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$ avec |S|=11 k=6

Appel initial de l'algo : selection(5,6) (6e plus petit élément)

```
selection(5,6): V1=2, Sg1=<1> Sv1=<2> Sd1=<36, 5, 21, 8, 13, 11, 20, 5, 4>
       k > |Sg1| + |Sv1| \rightarrow selection(Sd1, 6 - |Sg1| - |Sv1|) = selection(Sd1, 4)
 selection(Sd1,4): V2=36, Sg2=<5, 21, 8, 13, 11, 20, 5, 4> Sv2=<36> Sd2=<>
       k < | Sg2 |
                 \rightarrow selection(Sg2, 4)
 selection(Sg2,4): V3=5, Sg3=<4> Sv3=<5,5> Sd3=<21, 8, 13, 11, 20>
       k > |Sg3| + |Sv3| \rightarrow selection(Sd3, 4 - |Sg3| - |Sv3|) = selection(Sd3, 1)
 selection(Sd3,1): V4=21, Sq4=<8, 13, 11, 20> Sv4=<21> Sd4=<>
       k < |Sg4| \rightarrow selection(Sg4, 1)
 selection(Sg4,1): V5=8, Sg5=<>
                                               Sv5=<8>
                                                           Sd5=<13, 11, 20>
        |Sg5| < k = < |Sg5| + |Sv5| car 0 < 1 = < 1
       \rightarrow le résultat est = V5 = 8 (8 est le 6° plus petit élément de 5)
```

Vérification:

si on trie 5, on aura 5_trié= <1, 2, 4, 5, 5, 8, 11, 13, 20, 21, 36> dont '8' est le 6e PP.

XVIII.2- Exemple : séquence de somme maximale

- \bullet Soit une suite d'entiers $A1 \dots An$ (la suite peut contenir des entiers négatifs)
 - --> But: trouver la séquence contiguë de somme maximale.
- Hypothèse : on pose la somme maximum = 0 si tous les entiers sont négatifs.
- Exemples: pour (on commence à l'indice 1):
 - \rightarrow la séquence : -2, 11, -4, 13, -5, -2 La réponse = 20 (A2..A4)
 - \rightarrow la séquence : 4, -3, 5, -2, -1, 2, 6, -2 --> La réponse = 11 (A1..A7)
- Ce problème a de multiples applications (dont le pb. d'appariement de sousintervalles)
 - → E.g., pour estimer le max de vraisemblance d'un motif dans une image.
- Cet ex. est intéressant car il y a plusieurs algorithmes possibles (4 cités ici):
 - --> $O(N^3)$ à O(N). Comparons les temps en fonction de N

Rappel : le tableau suivant donne une idée comparative de ces temps en secondes :

↓N / T(N)→	O(N ³)	O(N ²)	O(N. Log N)	O(N)
10	0.00103	0.00045	0.00066	0.00034
100	0.47015	0.01112	0.00486	0.00063
1000	448.77	1.12330	0.05843	0.00333
10000	NA	111.13	0.68631	0.03042
100000	NA	NA	8.01130	0.29832

- O(n³): naïf, basique sans opti. (aucun résultat/somme intermédiaire conservé)
- \bullet $O(n^2)$: optimisation dans les sommes partielles
- O(n log n): approche dichotomique:

la somme recherchée est soit dans la moitié gche, soit dte, soit au milieu des 2.

 O(n): approche récursive (petit inconvénient : il manquera les indices de l'intervalle) Exemple : le cas Dichotomique par la stratégie "Diviser-pour-régner" (O(n log n)) la somme recherchée est soit dans la moitié gche., soit dte., soit au milieu des 2.

- Les 2 premiers cas (soit à gauche, soit à droite) ont une solution récursive directe;
- Le 3^e peut être obtenu en faisant la <u>somme</u> de
 - la plus grande somme dans la 1° moitié qui inclut le dernier élément de cette moitié et
- la plus grande somme de la 2^e moitié <u>qui inclut</u> <u>le 1^e élément</u> de cette moitié (continuité de la sous-séquence).
- Ces deux sommes pourront ensuite être additionnées (étape Régner).

Exemple1:

la séquence A:

- Meilleure somme de la 1e moitié = 6 (A1..A3) et celle de la 2e moitié = 8 (A6..A7).
- Meilleure somme de la 1e moitié qui inclut le dernier élément de cette moitié est 4 (A1..A4);
- pour l'autre moitié, ce sera 7 (A5..A7)

On fait la somme des deux :

In meilleure somme: 4+7=11 (A1..A7).

• Exemple 2:

la séquence précédente (tableau B):

- La meilleure somme de la 1^e moitié = 11 (B2) et celle de la 2^e moitié = 13 (B4).
- La meilleure somme de la 1^e moitié qui inclut le dernier élément de cette moitié est 7 (B2..B3)
- et pour l'autre moitié, c'est 13 (B4).
 - la meilleure somme = 20 (B2..B4).

• Exemple 3:

nombre impaire de données (C): 1 2 3 4 5 5 6 7 <== indices

4 -3 5 -2 -12 -6 <== élés.

- La meilleure somme de la 1^e moitié = 6 (C1..C3) et celle de la 2^e moitié = 2 (C6).
- La meilleure somme de la 1^e moitié qui inclut le dernier élément de cette moitié est 4 (C1..C4) et pour l'autre moitié, c'est 1 (C5..C6).
 - la meilleure somme est dans la première moitié =6 (C1..C3).

Et enfin, pour la 4^e solution (le cas linéaire) :

```
def max_sous_sequence(V):
    max_finissant_ici = meilleur_max_jsq_ici = 0
    for x in V:
        max_finissant_ici = max(0, max_finissant_ici + x)
        meilleur_max_jsq_ici = max(meilleur_max_jsq_ici, max_finissant_ici)
    return meilleur_max_jsq_ici
```

Explication : considérons l'indice de chaque élément x dans V :

A chaque indice, on calcule le max (somme > 0) du sous-séquence finissant à cet indice.

Cette sous-séquence est soit vide (somme=0) soit contient un élément de plus que la sous-séquence finissant à l'indice précédent.

L'algorithme ci-dessus ne donne pas les indices. \rightarrow

N.B.: L'algorithme ci-dessus ne donne pas les indices.

Pour pallier l'inconvénient de cette 4^e sol. :

- Modifier (légèrement) l'algorithme pour trouver le début et la fin de la sousséquence de somme max.

MI-ECL-2A-20-21

- Pour le début, on doit conserver le dernier indice de la dernière somme négative calculée.
- Du fait de conserver la meilleur somme max jusqu'à la position précédente, on est en présence de la PrD (voir le chapitre 2).

Notes sur les applications de max_sum :

- * En dimension 2, l'intervalle de max_sum est un estimateur du MLE de certains motifs dans les images numériques.
- * Utilisation en méthodes de segmentation dans l'analyse des séquences de protéine (et l'ADN).
 - → On y utilise (également) min_sum pour supprimer des séquences alignées de Protéine (source : plusieurs papiers recherche en bio-info).

XIX- A propos de la complexité moyenne A(n)

Un exemple: la recherche de X dans S[1:n]

- -La probabilité pour que S[k]=X, $1 \le k \le n$ est 1/n,
- -Pour arriver à l'indice k=1..n, on aura fait les comparaisons :

$$A(n) = \sum_{k=1}^{n} \left(k \cdot \frac{1}{n} \right) = \frac{1}{n} \cdot \sum_{k=1}^{n} k = \frac{1}{n} \cdot \frac{n(n+1)}{2} = \frac{n+1}{2} \text{ opérations de base } \underline{\text{si X est}}$$

$$\text{dans S}$$

Mais pour être complet, il faut tenir compte du cas où X n'est pas dans S:

- Si $Pr(X \in S) = p$ alors Pr(X notin S) = 1-p et pour k donné, Pr(S[k] = X) = p/n
- On fait k comparaisons pour arriver à k tel que S[k]=X
 - et n comparaisons si X n'est pas dans S.

4

La complexité moyenne (dépendra de p) :

$$A(n) = \sum_{k=1}^{n} \left(k \cdot \frac{p}{n} \right) + n(1-p) = \frac{p}{n} \cdot \frac{n(n+1)}{2} + n(1-p) = n \left(1 - \frac{p}{2} \right) + \frac{p}{2}$$

$$\Rightarrow \sin p = 1, \ A(n) = (n+1)/2$$

$$\Rightarrow \sin p = \frac{1}{2}, \ A(n) = 3n/4 + \frac{1}{4} \quad --> \text{ seul } \frac{3}{4} \text{ de S est recherché en moyenne}$$

$$\Rightarrow \sin p = 0, \ A(n) = O(n) = n.$$

Remarques sur A(n):

On a supposé une probabilité identique pour chaque élément du tableau.

- --> à changer si l'on connaît une distribution différente de taille/valeurs:
- → c-à-d. telle valeur est plus fréquente que telle autre...
- La complexité moyenne est un très bon indicateur mais son calcul est souvent difficile (et donc rare) car les probas nécessaires ne sont pas toujours connues/disponibles.

xx-Propriétés des limites de fonctions

 \bullet On peut calculer le taux relatif de croissance de 2 fonctions f et g en calculant

$$\lim_{n \to \infty} \frac{f(N)}{g(N)}$$

Si f et g admettent des limites, on a alors les propriétés suivantes :

- Si $\lim_{n\to\infty} \frac{f}{g} = c > 0$, f et g sont du même ordre, f = O(g) et g = O(f) --> f = O(g).
- Si $\lim_{n\to\infty}\frac{\mathrm{f}}{\mathrm{g}}=0$, alors $\mathrm{f}=\mathrm{o}(\mathrm{g})$ et f est d'ordre inférieur à g .
- Si $\lim_{n\to\infty}\frac{\mathrm{f}}{\mathrm{g}}=+_{\infty}$, f est d'ordre supérieur à g.
- On note $f=\Omega(g)$ qui est équivalent à g=o(f)

4

On pourra (également) utiliser la règle de l'"Hôpital":

Si f et g sont définies sur [a,b[, dérivables en a telles que f(a)=g(a) $\neq 0$ Alors $\lim_{n \to \infty} \frac{f(N)}{g(N)} = \lim_{n \to \infty} \frac{f'(N)}{g'(N)}$ si la limite existe.

Plus précisément, si g'(N) ≠0 Alors

Si
$$\lim_{\alpha} f(N) = \lim_{\alpha} g(N) = 0$$
 et $\lim_{n \to \infty} \frac{f'(N)}{g'(N)} = L$ Alors $\lim_{n \to \infty} \frac{f(N)}{g(N)} = L$
Si $\lim_{\alpha} f(N) = \lim_{\alpha} g(N) = +infini$ et $\lim_{n \to \infty} \frac{f'(N)}{g'(N)} = L$ Alors $\lim_{n \to \infty} \frac{f(N)}{g(N)} = L$

Utilisation des limites

On peut utiliser les propriétés des limites pour trouver une idée de la complexité (lorsqu'elle est difficile à trouver).

XX.1- Exemple trivial d'utilisation des limites

- On a vu : pour a > 0, $a^n \in o(n!)$ car
 - avec les propriétés des limites : $\lim_{n\to\infty} \frac{a^n}{n!} = 0$
 - --> **a**ⁿ est d'ordre inférieur à **n!**.
- On peut montrer que $\log n \in o(n)$:

$$\lim \frac{\log x}{x} = \lim \frac{\frac{d(\log x)}{dx}}{\frac{dx}{dx}} = \lim \frac{\frac{1}{x \log 2}}{1} = \lim \frac{1}{(x \log 2)} = \lim \frac{1}{x} = 0$$

XX.2- Application : approximation de la complexité par programme

On utilise la règle "limite" pour calculer la complexité empirique par programme.

Pour montrer qu'un algorithme est O(g(N)), on calcule les valeurs de T(N)/f(N) pour un intervalle de N habituellement espacé par un **facteur de 2**, puis d'étudier la limite de T(N)/g(N).

Rappel des règles de la limite :

- Si $\lim_{n\to\infty}\frac{f}{g}=c>0$, f et g sont du même ordre, f=O(g) et g=O(f) --> f=O(g).
- Si $\lim_{n\to\infty}\frac{\mathrm{f}}{\mathrm{g}}=0$, alors $\mathrm{f}=\mathrm{o}(\mathrm{g})$ et f est d'ordre inférieur à g .
- Si $\lim_{n\to\infty}\frac{\mathrm{f}}{\mathrm{g}}=+_{\infty}$, f est d'ordre supérieur à g.
- On note $f=\Omega(g)$ qui est équivalent à g=o(f)

- Dans la méthode utilisée, f(N) = T(N) = le temps empirique observé.
- On calcule également différentes fonc. de complexité g(N) (e.g. $\log N$, N^2 , N^3 ...)
- Calculer ensuite f(N)/g(N) et observez sa limite (empirique)
 - \rightarrow Si la limite converge vers une cste > 0 alors g est une estimation de la complexité Θ
 - \rightarrow Si f(N) est surestimée, les valeurs convergent vers 0, c-à-d. f=o(g).
 - \rightarrow Si f(N) est sous estimée, les valeurs divergent (tendent vers l'infini) : g=o(f)
- Le taux de convergence / divergence signale aussi le degré de justesse de T(n).

XX.3- Exemple 1

- 1- Montrer que la probabilité pour que deux entiers distincts et aléatoires I, $J \le N$ soient premiers entre eux approche $6/\Pi^2 = 0.608$ (pour N grand).
- 2- Estimer la complexité de la solution.

On propose l'algorithme (simplifié) suivant :

La complexité : 2 Boucles (O(N²) et la complexité de pgcd est O(log N)

```
--> N^2 \log N --> O(N^2 \log (N))
```

XX.3.1- Estimation empirique de la complexité de l'exemple

• Le tableau obtenu sur une machine Centrino 1,6 avec 512Mo de mémoire

Taille	Ln	Ln * Ln	N	N In	N+N Ln	N * N	N * N * N
50	0,0000702961	0,0000179692	0,0000055000	0,0000014059	0,0000011197	0,0000001100	0,0000000022
75	0,0001528667	0,0000354064	0,0000088000	0,0000020382	0,0000016549	0,0000001173	0,0000000016
112	0,0003401506	0,0000720887	0,0000143304	0,0000030371	0,0000025060	0,0000001279	0,000000011
168	0,0008050408	0,0001571129	0,0000245536	0,0000047919	0,0000040094	0,0000001462	0,0000000009
252	0,0016952926	0,0003065945	0,0000371984	0,0000067274	0,0000056970	0,0000001476	0,0000000006
378	0,0175406665	0,0029555146	0,0002754021	0,0000464039	0,0000397125	0,0000007286	0,0000000019
567	0,0194570992	0,0030687692	0,0002175750	0,0000343159	0,0000296409	0,0000003837	0,0000000007
8500	0,7441067491	0,0822415378	0,0007920641	0,0000875420	0,0000788294	0,0000000932	0,0000000000
1275	0,0227007100	0,0031746130	0,0001273145	0,0000178045	0,0000156201	0,0000000999	0,0000000001
1912	0,0419171490	0,0055476013	0,0001656496	0,0000219232	0,0000193608	0,0000000866	0,0000000000
2868	0,0851187651	0,0106914718	0,0002362838	0,0000296788	0,0000263669	0,0000000824	0,0000000000
4302	0,1815649459	0,0217005521	0,0003531204	0,0000422048	0,0000376990	0,0000000821	0,0000000000
6453	0,3971829320	0,0452769414	0,0005399362	0,0000615501	0,0000552517	0,0000000837	0,0000000000
9679	0,8774637252	0,0956080934	0,0008320189	0,0000906564	0,0000817491	0,0000000860	0,0000000000
14518	1,9480021329	0,2032737924	0,0012858511	0,0001341784	0,0001214999	0,0000000886	0,0000000000
21777	4,4913626210	0,4496484276	0,0020600849	0,0002062434	0,0001874746	0,0000000946	0,0000000000

Rappel: la vitesse de la machine n'a pas d'effet car les rapports T(N)/g(N) et les constantes C (de la définition de big-Oh) sont négligées.

Ici, chaque colonne représente T(N) / g(N) et on étudie la limite.

Ici, $N^2 \log(N)$ n'est pas prise en compte, on sera $\Omega(N^2)$.

Deuxième tableau (des écarts types): vers une décision automatique

Taille	Ln	Ln * Ln	N	N In	N+N Ln	N * N	N * N * N
100	0,0002692626	0,0000584696	0,0000124000	0,0000026926	0,0000022122	0,0000001240	0,000000012
200	0,0010877038	0,0002052923	0,0000288150	0,0000054385	0,0000045750	0,0000001441	0,000000007
300	0,0186707681	0,0032734012	0,0003549800	0,0000622359	0,0000529522	0,0000011833	0,000000039
400	0,0175603142	0,0029308884	0,0002630300	0,0000439008	0,0000376216	0,0000006576	0,0000000016
500	0,0195906159	0,0031523494	0,0002434960	0,0000391812	0,0000337504	0,0000004870	0,0000000010
600	0,0209661521	0,0032775336	0,0002235317	0,0000349436	0,0000302195	0,0000003726	0,000000006
700	0,0204386137	0,0031198844	0,0001912786	0,0000291980	0,0000253313	0,0000002733	0,000000004
800	0,0231905766	0,0034692481	0,0001937750	0,0000289882	0,0000252160	0,0000002422	0,0000000003
1000	0,0255741544	0,0037022380	0,0001766600	0,0000255742	0,0000223401	0,0000001767	0,0000000002
1200	0,0304775258	0,0042986171	0,0001800733	0,0000253979	0,0000222585	0,0000001501	0,000000001
1500	0,0377177202	0,0051574707	0,0001838920	0,0000251451	0,0000221204	0,0000001226	0,000000001
2000	0,0513148277	0,0067511493	0,0001950195	0,0000256574	0,0000226743	0,0000000975	0,0000000000
2500	0,0671867215	0,0085872094	0,0002102688	0,0000268747	0,0000238291	0,0000000841	0,0000000000
3500	0,1237624829	0,0151660077	0,0002885617	0,0000353607	0,0000315006	0,0000000824	0,0000000000
6500	0,4037839057	0,0459913735	0,0005453914	0,0000621206	0,0000557685	0,0000000839	0,0000000000
10000	0,9451901502	0,1026227167	0,0008705523	0,0000945190	0,0000852618	0,0000000871	0,000000000
15000	2,0837667777	0,2167022598	0,0013358064	0,0001389178	0,0001258318	0,0000000891	0,0000000000
25000	5,7303253575	0,5658669007	0,0023211556	0,0002292130	0,0002086126	0,0000000928	0,000000000
45000	18,5556198471	1,7318365074	0,0044180592	0,0004123471	0,0003771471	0,0000000982	0,000000000
90000	76,7338421380	6,7265750823	0,0097260699	0,0008525982	0,0007838822	0,0000001081	0,000000000
150000	213,5554605627	17,9181458481	0,0169682493	0,0014237031	0,0013134956	0,0000001131	0,0000000000

La colonne

N*N représente le minimum d'écart type par rapport aux autres.

--> A titre d'indication, une fois ces valeurs harmonisées (toute valeur multipliée par $\frac{1}{min}$ où *min* est le minimum \neq 0 de la colonne), les écarts types seront :

30749140888, 4628790867, 103855, 15560, 19636, 9, 1361751 avec la valeur 9 pour la colonne N*N d'où $O(N^2)$.

Stratégie de résolution de problèmes (S7) MI-ECL-2A-20-21 P. 70/132

XX.4- Exemple 2

Tableau Tri Bulle (Bubble-Sort) de complexité O(N²). Colonne N² quasi constante.

Tableau de Merge_sort : O(N.log N) : Colonne N.log N quasi constante.

Taille Ln(N)	Ln^2(N)	N	N. Ln (N)	N+N.Ln(N)	N^2	N^2.Ln(N)	N_3	2^N
20 0.000000000000	0.0000000000000	0.0000000000000	0.0000000000000	0.0000000000000	0.000000000000	0.000000000000	0.000000000000	0.000000000000
26 0.0000000000000	0.000000000000	0.000000000000	0.000000000000	0.000000000000	0.000000000000	0.000000000000	0.000000000000	0.000000000000
33 0.000000000000	0.000000000000	0.000000000000	0.000000000000	0.000000000000	0.000000000000	0.000000000000	0.000000000000	0.000000000000
42 0.000000000000	0.000000000000	0.0000000000000	0.0000000000000	0.000000000000	0.000000000000	0.0000000000000	0.0000000000000	0.000000000000
54 0.000000000000	0.000000000000	0.000000000000	0.000000000000	0.000000000000	0.000000000000	0.000000000000	0.000000000000	0.000000000000
			0.0000000000000					0.000000000000
		0.000000000000				0.0000000000000	0.0000000000000	0.000000000000
118 0.209613520641		0.008474576271				0.000015054117	0.000000608631	0.000000000000
153 0.000000000000		0.0000000000000	0.000000000000				0.0000000000000	0.000000000000
198 0.000000000000		0.0000000000000						0.000000000000
	0.032475708970 0.0000000000000		0.000701206926				0.000000058912 0.0000000000000	0.000000000000
			0.0000000000000 0.000379405659					0.000000000000
	0.024917204881			0.000323704332			0.000000012233	0.000000000000
			0.000206794960		0.000003143703		0.0000000002539	0.0000000000000
952 0.145803093639	0.021258542115		0.000153154510			0.000000160877	0.000000001159	0.000000000000
1237 0.280881346079	0.039447165288						0.000000001057	0.000000000000
1608 0.406352841781	0.055040877341	0.001865671642	0.000252706991	0.000222560906	0.000001160244	0.000000157156	0.000000000722	0.000000000000
2090 0.523223309431	0.068440657883	0.001913875598	0.000250346081	0.000221387328	0.000000915730	0.000000119783	0.000000000438	0.000000000000
2717 0.505862720699	0.063974273048	0.001472211999	0.000186184292	0.000165281815	0.000000541852	0.000000068526	0.000000000199	0.000000000000
3532 0.734428323702	0.089897493776	0.001698754247	0.000207935539	0.000185258967	0.000000480961	0.000000058872	0.000000000136	0.000000000000
			0.000180828847				0.0000000000072	0.000000000000
5968 1.150196429032	0.132295182536					0.000000032293	0.000000000047	0.000000000000
	0.162057317612			0.000168301411				0.000000000000
10085 1.952530840292	0.211798704572		0.000193607421			0.000000019198		0.000000000000
13110 2.320398376743						0.000000013501		0.000000000000
17043 2.873712200424 22155 3.697848412953		0.001642903245			0.000000096398	0.0000000009894	0.0000000000006	0.000000000000
22155 3.697848412953 28801 4.674642274198		0.001670051907 0.001666608798				0.000000007534 0.000000005636	0.0000000000003	0.000000000000
37441 5.792685499111	0.550085332649			0.000147904183				0.000000000000
	0.712530429948		0.000157998382		0.000000035035			0.000000000000
	0.859119846084		0.000150105372					0.0000000000000
82256 12.635197034268								0.000000000000
106932 15.889535400806								0.000000000000
139011 149.379660482026							0.0000000000001	0.0000000000000
180714 25.279497580931	2.088408490014	0.001693283310	0.000139886769	0.000129212196	0.000000009370	0.000000000774	0.000000000000	0.000000000000
234928 31.939751148044	2.582652413668	0.001681366206	0.000135955489	0.000125784535	0.000000007157	0.000000000579	0.000000000000	0.000000000000
305406 117.503627658629								
			0.000132659249		0.000000004308			0.000000000000
516135 85.144402683852				0.000153310439				0.000000000000
670975 86.162643502352								0.000000000000
872267 183.494946159270								
1133947 147.046006845825 1474131 179.884236229371								
1916370 324.970165644709								
19103/0 324.9/0103044/09	22,404430/30230	0.002433073340	0.000109373699	0.000136011427	0.00000001280	0.00000000000	0.000000000000000	0.000000000000

XXI- Éléments du calculs de la complexité

XXI.1- Équation de récurrence

- Analyse de la complexité des fonctions non récursives est relativement simple.
 - → cf. les règles simples de calcul vues plus haut.
- Cette analyse (& la preuve) devient plus simple avec les fonctions récursives.

Une définition nécessaire : on appelle une récurrence la forme :

$$a_0t_n + a_1t_{n-1} + ... + a_kt_{n-k} + c = 0$$
 où c, k, ai sont des constantes

= l'équation de récurrence linéaire et homogène à coefficients constants.

Par exemple, dans le schéma récursif :

```
def factorielle(n) :
  if (n==1) : return 1
  return n*factorielle(n-1)
```

L'équation de récurrence sera :

$$t_n - t_{n-1} - 1 = 0 < --> T(n) = T(n-1) + 1$$

On retrouve:

$$a_0 + a_1 + a_{n-1} + ... + a_k + c = 0$$

où c, k, a; sont des constantes

- Le but sera d'exprimer T(n) sous forme de récurrence.
- Puis de résoudre cette équation.

XXI.2- Résolution de l'équation récurrente

● Pour "résoudre" une récurrence, on cherche une forme fermée (ou close).

MI-ECL-2A-20-21

- \rightarrow Une forme fermée pour T(n) est une équation pour T(n) sans utiliser T.
- Par exemple, pour la spécification :

$$T(n) = T(n-1) + 1$$

 $T(1)=1$

- \rightarrow une forme fermée est T(n)=n.
- Pour cette résolution :
 - Il faut (au moins) une condition initiale pour trouver une telle solution.

Remarque : si absence de condition initiale, on aura une famille de formes closes.

- → Peu exploitable, voire non-exploitable.
- → Avec une condition initiale, <u>une seule</u> de ces formes satisfait la récurrence.

Pour l'exemple factoriel, selon la condition initiale :

$$\rightarrow$$
 T(n)=T(n-1)+1 avec T(1)=0 donne T(n)=n-1

$$\rightarrow$$
 T(n)=T(n-1)+1 avec T(1)=1 donne T(n)=n

$$\rightarrow$$
 T(n)=T(n-1)+1 avec T(1)=2 donne T(n)=n+1

Résultats obtenus par substitution; voir pages suivantes.

P. 76/132

Il existe plusieurs méthodes et techniques pour "résoudre" une récurrence.

I) Pour les cas simples :

- Par la définition de fonctions (voir TD)
- Substitution ascendante
- Substitution descendante
- Calculer, faire une hypothèse et vérifier ...

... avec une preuve simple pour les schémas non complexes via une :

II) Pour les cas moins simples, utiliser :

- Équation caractéristique
- Méthodes ad-hoc (Boîte à outils)
- Théorème ou **Méthode Principale** (ou MM: master method).

XXII- Cas simples : proposer et vérifier

Pour calculer la complexité dans les cas simples,

on peut faire une substitution ascendante ou descendante.

Substitution ascendante:

Exemple factorielle où T(n)=T(n-1)+1 (avec T(1)=1)

 \rightarrow T(1)=1 supposons cette valeur arbitraire!

$$\rightarrow$$
 T(2) = T(1) + 1 = 1+1 = 2

....

$$\rightarrow$$
 T(n-1) = ... n-1

→
$$T(n) = T(n-1)+1$$
= $(n-1)+1 = n$ --> Semble être $O(N)$

La forme fermée pour la Factorielle sera T(n)=n.

Exemple chiffré: pour N=5 et la condition initiale T(1)=1

$$\rightarrow$$
 T(1)=1

$$\rightarrow$$
 T(2) = T(1) + 1 = 1+1 = 2

....

$$\rightarrow$$
 T(5) = T(4)+1 = 4+1=5

- --> Cela suffit comme vérification
- --> on peut au besoin faire une preuve par Induction

Substitution descendante:

$$T(n) = T(n-1) + 1$$

$$= [T(n-2)+1]+1$$

$$= [[T(n-3)+1]+1]+1$$
...
$$= [...[[T(n-(n-1))+1]+1]....+1]+1 \qquad avec (n-1) fois '1'$$

$$= T(n-(n-1))+ (n-1) = = n$$

 \rightarrow La forme fermée pour la Factorielle sera T(n)=n.

Exemple chiffré: pour N=5 et condition initiale T(1)=1

$$\rightarrow$$
 T(5) = T(4)+1 = (T(3)+1)+1 = ... = (T(1)+1)+1...+1=1+1+1+1=5 \rightarrow O(N)

• La vérification des résultats pour ces cas simples peut être triviale.

Remarque : ces techniques basiques sont utilisées pour les cas simples.

Mais elles ne marchent pas (ou sont fastidieuses) pour tous les cas moins simples.

Exemple : pour

$$Fib(n) = Fib(n-1) + Fib(n-2)$$
 et $Fib(1..2) = 1$.

- Dans tous les cas, il faudra apporter la preuve de nos calculs.
- Une preuve de la solution proposée nous dira si la solution est fausse (ou pas).

XXIII- Cas général : Preuve

On peut systématiser une preuve de l'hypothèse (une vérif.) de la complexité.

Comme toute preuve, celle de la complexité calculée peut être faite par différentes méthodes :

- intuitivement (cas simples),
- "réécriture" (algébriquement),
- induction mathématique,
- etc...

XXIII.1- Exemple de preuve : Hanoi

Action hanoi(entier n, Dep, Aux, Arr): Si (n =< 0) rien Sinon hanoi(n-1, Dep, Arr, Aux) déplacer le disque sur Dep vers Arr hanoi(n-1, Aux, Dep, Arr)

• T(n)=2.T(n-1)+1 = 2.(2.T(n-2)+1)+1 = 2.(2.(2.T(n-3)+1)+1)+1 == $2^k T(n-k) + 2^{k-1} + 2^{k-2} + ... + 2^0$ substitutions ascendantes

• Hypothèse: on a la forme close $T(n)=2^n-1$ avec T(1)=1 (et t(0)=0): ok?

<u>Vérification</u>: T(n)=2.T(n-1)+1 <u>posons</u> S(n)=T(n)+1

S(n)=T(n)+1=[2.T(n-1)+1]+1=2[T(n-1)+1] et donc S(n)=2.S(n-1), n>0

On voit clairement que $S(n) = 2^n$ d'où $T(n)=2^{n-1}$.

XXIII.2- Exemple de preuve : recherche Dichotomique

Renvoie -1 si $X \notin T$, sinon renvoie l'indice I tel que T[I]=X

```
fonction Recherche_binaire(indice Inf, indice Sup, val X, tableau T) =
Si (Inf > Sup) Alors -1  // par convention, '-1' vaut X ∉ T
milieu = (Inf+Sup)/2
Si (X=T[milieu]) Alors milieu
Sinon Si (X < T[milieu]) Alors Recherche_binaire(Inf, milieu-1, X, T)
Sinon Recherche_binaire(milieu+1, Sup, X, T)
```

```
• On a (hyp. n=2<sup>k</sup>) T(1)=1 , T(2)=T(1)+1=2, T(4)=T(2)+1=3 , T(8)=T(4)+1=4 , ... T(n)=T(n/2)+1
```

On "devine"

$$T(n) = lg(n) + 1$$
 pour $n=2^k$

Est-ce vrai?

● Vérification intuitive : si l'hypothèse lg(n) est fondée, on aura

$$T(n) = T(n/2)+1 = [lg(n/2)+1]+1=[lg(n)-lg(2)+1]+1=lg(n)+1 \leftarrow Yes!$$

XXIII.3- Preuve par Induction

- A partir de l'équation de récurrence
- \bullet Simplification des écritures : on note T(n) par t_n
- Exemple:

```
def fact(n) :
if (n == 0) : return 1
return n * fact(n - 1)
```

Si t_n = nombre de multiplications nécessaires pour un n donné (= nbr d'appels),

Alors on a $t_n = t_{n-1} + 1$

 t_{n-1} est la valeur de t dans les appels récursifs et 1 le coût de la multiplication

 \Rightarrow $t_n = t_{n-1} + 1$ est l'équation de récurrence recherchée.

La condition initiale (nécessaire à la résolution) est ici $t_0 = 0$

XXIII.3.1- Exemple 1 : Factorielle

```
def fact(n) :
  if (n == 0) : return 1
  return n * fact(n - 1)
```

On décide $t_0=1$ mais $t_0=0$ ne modifiera la complexité (linéaire) de fact.

 \rightarrow cette constante sera bien négligeable devant la limite de n.

On peut alors calculer tn pour différentes valeurs de n (par une subs. desc.) :

$$t_1 = t_{1-1} + 1 = t_0 + 1 = 1,$$
 $t_2 = t_{2-1} + 1 = t_1 + 1 = 2,$

On constate (hypothèse):

 $t_n = \dots = n$ appelée solution de l'équation de récurrence

 \square Maintenant, prouvons que $t_n = n$ est bien une solution (?)

Vérification par Induction :

Base de l'induction : $t_0=0$

Hypothèse d'induction: supposons avoir t_n=n

Étape d'induction : démontrer, par induction que : $t_{n+1} = n+1$

Facile!: il existe plusieurs autres "preuves" triviales

selon l'équation
$$t_n = t_{n-1} + 1 \rightarrow T_{(n+1)} = T_{(n+1)-1} + 1 = T_n + 1$$

CQFD!

Rappel: une induction ne peut pas <u>trouver</u> une solution mais permet de <u>vérifier</u> si une solution proposée en est une.

Notons cependant que l'induction constructive peut aider à trouver une solution.

XXIII.3.2- Exemple 2

$$t_n = t_{n/2} + 1$$
 pour $n > 1$, $n=2^k$ (une puissance de 2) $t_1 = 1$

Quelques valeurs de t_n :

$$t_1 = 1$$

$$t_2 = t_{2/2} + 1 = t_1 + 1 = 2$$

$$t_2 = t_{2/2} + 1 = t_1 + 1 = 2$$
 $t_4 = t_{4/2} + 1 = t_2 + 1 = 3$

$$t_8 = 4$$

On propose une solution (constatée, flairée!) : $t_n = log n + 1$.

Verifions:

Base: $t_1 = 1$

Hypothèse: $t_n = log n + 1$

Étape d'induction : $t_{2n} = \log(2n) + 1$? si $n = 2^k$: la prochaine val. pour n est 2n

- --> De l'algorithme lui-même, on a : $t_{2n} = t_{(2n)/2} + 1 = t_n + 1$
- --> et de l'hypothèse, on a : $t_n = log(n) + 1$

D'où
$$t_{2n} = t_{n+1} = \log(n) + 1 + 1 = \log(n) + \log(2) + 1 = \log(2n) + 1$$

CQFD.

XXIII.3.3- Exemple 3 (à démontrer)

Soit la récurrence :

$$t_n = 7t_{n/2}$$
 pour n > 1, *n* une puissance de 2 $t_1 = 1$

Quelques valeurs de tn:

$$t_1 = 1$$
 $t_2 = 7t_{2/2} = 7t_1 = 7$ $t_4 = 7t_{4/2} = 7t_2 = 7^2$ $t_8 = 7^3$ $t_{16} = 7^4$...

On constate une solution:

$$t_n = 7^{\log n}$$
 à démontrer par l'induction Math.

Remarque: on sait $7^{\log n} = n^{\log 7}$ --> $t_n = n^{\log 7} \simeq n^{2.81}$

XXIII.3.4- Exemple 4 (cas défavorable)

$$t_n = 2t_{n/2} + n - 1$$
 pour $n > 1$, n une puissance de 2 $t_1 = 0$

On a quelques valeurs de t_n :

$$t_1 = 0$$
 $t_2 = 2t_{2/2} + 2 - 1 = 2t_1 + 1 = 1$ $t_4 = 2t_{4/2} + n - 1 = 2 + 4 - 1 = 5$ $t_8 = 17$ $t_{16} = 49$...

Il n'y a pas de solution candidate comme dans les exemples précédents.

--> On ne peut donc pas vérifier celle-ci puisque l'induction sert à vérifier si une solution candidate est juste.

NB: la complexité sera de la forme $t_n = n$. $log(n) - (n-1) = n \cdot log(n) - n+1$ (voir + loin)

XXIII.3.5- Un autre cas défavorable : Fib

Rappel Fib: $t_n = t_{n-1} + t_{n-2}$ $t_0 = 0$ $t_1 = 1$

On peut écrire la première équation par :

$$t_n - t_{n-1} - t_{n-2} = 0$$

- → On est vite bloqué dans l'approche par équation de récurrence!
- \rightarrow Au mieux, une forme exponentielle se dégage (si on fait des substitutions).

MI-ECL-2A-20-21

La suite Fibonacci est définie par une équation linéaire homogène.

Comment résoudre ce type d'équation?

→ On va le voir après quelques exemples introductifs simples.

XXIV- Résolution de l'équation caractéristique

Supposons l'équation suivante (l'exemple Fib est traité à la suite) :

$$t_n - 5t_{n-1} + 6t_{n-2} = 0$$

pour n>1

$$t_0 = 0$$

$$t_1 = 1$$

Si l'on note

$$t_n = r^n$$

On aura alors

$$t_n - 5t_{n-1} + 6t_{n-2} = r^n - 5r^{n-1} + 6r^{n-2}$$

Dans ce cas, $t_n = r^n$ est une solution à cette récurrence si r est la racine de l'équation

$$r^{n} - 5r^{n-1} + 6r^{n-2} = 0$$

../..

Résolution:

On a
$$r^n - 5r^{n-1} + 6r^{n-2} = r^{n-2} (r^2 - 5r + 6)$$

les racines :
$$r=0$$
 et celles de $r^2 - 5r + 6 = 0$

qui sont obtenues par
$$r^2 - 5r + 6 = (r-3)(r-2) = 0$$

Les racines de l'équation : r=0, r=3 et r=2

C'est à dire:

$$t_n=0$$
, $t_n=3^n$ et $t_n=2^n$ sont tous trois solutions à l'équation Réc.

../ ..

On note:

Si 0, 3ⁿ et 2ⁿ sont des solutions,

Alors toute solution de la forme générale (= une combinaison linéaire des t_n):

$$t_n = c_1 3^n + c_2 2^n$$

(c₁ et c₂ sont des constantes arbitraires)

Est aussi une solution (voir le théorème-1 suivant).

N.B.: On peut démontrer que ce sont <u>les seules</u> solutions.

- On a une infinité de solutions (suivant c₁ et c₂) mais laquelle choisir?
 - --> Ce choix est déterminé par les conditions initiales :

$$t_1 = 1$$
.

D'où

$$t_0 = c_1 3^0 + c_2 2^0 = 0$$

$$t_1 = c_1 3^1 + c_2 2^1 = 1$$

4

L'ensemble se simplifie par :

$$c_1 + c_2 = 0$$

$$3 c_1 + 2 c_2 = 1$$

On obtient:

$$c_1 = 1$$
 et $c_2 = -1$

La solution à l'équation de récurrence sera :

$$t_n = 1 (3^n) - 1 (2^n) = 3^n - 2^n$$

N.B.: avec les conditions initiales $t_0=1$ et $t_1=2$, on aurait la solution $t_n=2^n$

Cela veut dire que la récurrence représente une classe de fonctions.

NB: l'équation (r^2 - 5r + 6 = 0) est appelée l'équation caractéristique de la récurrence.

Cette équation est définie comme suit

XXIV.1- Théorème 1

Théorème 1 (preuve dans le support "long" du cours):

- L'équation caractéristique de l'équation de récurrence linéaire et homogène à

coefficients constants
$$a_0t_n + a_1t_{n-1} + ... + a_kt_{n-k} = 0$$

est définie par : $a_0r^k + a_1r^{k-1} + ... + a_kr^0 = 0$
avec k racines distinctes $r_1, r_2 ... r_k$

- L'unique solution à la récurrence sera alors (ci constantes arbitraires):

$$t_n = c_1 r_1^n + c_2 r_2^n + ... + c_k r_k^n$$

Par exemple:

L'équation caractéristique pour $5t_n - 7t_{n-1} + 6t_{n-2} = 0$ est $5r^2 - 7r + 6 = 0$ avec un ordre k=2.

XXIV.1.1- Exemple

Résoudre l'équation de récurrence :

$$t_n - 3t_{n-1} - 4t_{n-2} = 0$$
 pour n>1
 $t_0 = 0$
 $t_1 = 1$

L'équation caractéristique
$$r^2 - 3r - 4 = 0 = (r - 4)(r + 1)$$

D'où $r = 4$ et $r = -1$

 \rightarrow N.B.: la racine r=0 n'apporte aucune information.

La solution générale : $t_n = c_1 4^n + c_2 (-1)^n$

Trouver les constantes c1 et c2 en utilisant les conditions initiales :

--> D'où
$$c_1 = 1/5$$
 et $c_2 = -1/5$

On obtient la solution finale

$$t_n = 1/5 4^n - 1/5 (-1)^n$$

XXIV.1.2- Une autre définition de Fib

Nous avons vu plus haut une autre définition récursive pour Fib :

$$fib(2n) = fib(n)^2 + 2fib(n).fib(n-1)$$
 pour tout entier n pair $fib(2n+1) = fib(n)^2 + fib(n+1)^2$ pour tout entier n impair

Pour Simplifier, on considère le premier cas. <u>Il est représentatif</u>.

Le 2^e cas a un terme supplémentaire.

$$T_{2n} = (T_n)^2 + 2T_n \cdot T_{n-1}$$

 \rightarrow Hyp: le coût de $(T_n)^2$ est simplement le coût de $T_n + X$ (X disparaîtra!)

$$T_{2n} = \frac{T_{n+} \times + 2T_{n}.T_{n-1}}{T_{n-1}}$$

$$D'où \rightarrow r^{2n} = r^{n} + X + 2r^{n} r^{n-1}$$

../..

$$\rightarrow$$
 rⁿ . rⁿ = rⁿ + X + 2rⁿ rⁿ⁻¹

$$\rightarrow r^{n} \cdot r^{n} - r^{n} - X - 2r^{n} r^{n-1} = 0$$

$$\rightarrow r^{n} (r^{n} - X/r^{n} - 2r^{n-1}) = 0$$

$$\rightarrow$$
 r = 0est une racine

$$\rightarrow$$
 r = 0est une racine et rⁿ - X/rⁿ - 2 rⁿ⁻¹ = 0

$$\rightarrow r^{n-1}(r - X/r^{2n-1} - 2) = 0$$

 \rightarrow r = 0 (on le sait déjà), la quantité X/r²ⁿ⁻¹ est négligeable

$$\rightarrow$$
 r - 2 = 0

$$\rightarrow$$
 r = 2

Pour CETTE VERSION de Fib, on a une complexité $O(2^N)$.

Comparer r=2 à 3/2 < r < 5/3 de ci-dessus.

xxv- Cas de racines multiples : théorème-2

◆ Le théorème-1 ci-dessus indique que les k racines de l'équation caractéristique sont distinctes.

Comment utiliser ce théorème dans le cas d'une équation caractéristique

de la forme
$$(r-1)(r-2)^3 = 0$$

C-à-d. le terme (r-2) est à la puissance 3?

- Dans ce cas, la racine r=2 est appelée la racine de multiplicité 3 de l'équation.
- Le théorème suivant permet alors à une racine d'avoir une multiplicité.

XXV.1- Théorème 2

Si r est une racine de multiplicité m de l'équation caractéristique.

Alors:

$$t_n = r^n$$
, $t_n = n r^n$, $t_n = n^2 r^n$, $t_n = n^3 r^n$, ..., $t_n = n^{m-1} r^n$

sont toutes des solutions à la récurrence.

C'est-à-dire, pour chacune de ces solutions, un terme est inclus dans la solution générale de la récurrence.

XXV.1.1- Exemple 1

Soit la récurrence :

$$t_n - 7 t_{n-1} + 15 t_{n-2} - 9 t_{n-3} = 0$$
 pour n>2
 $t_0 = 0$
 $t_1 = 1$
 $t_2 = 2$

• L'équation caractéristique

$$r^3 - 7 r^2 + 15r - 9 = 0$$

$$\rightarrow$$
 r³ - 7 r² + 15r - 9

$$= (r-1)(r-3)^2 = 0$$

où la racine 3 est de multiplicité 2.

→ La solution générale sera alors :

$$t_n = c_1 1^n + c_2 3^n + c_3 n 3^n$$

On introduit les termes 3ⁿ et n 3ⁿ car la racine 3 est de multiplicité 2.

Les conditions initiales (à l'aide de t_0 , t_1 et t_2) donnent

$$c_1 = -1$$

$$c_2 = 1$$

$$c_1 = -1$$
, $c_2 = 1$ et $c_3 = -1/3$

d'où:

$$t_n = (-1) 1^n + (1) 3^n + (-1/3) n 3^n$$

= -1 + 3n - n3ⁿ⁻¹

XXV.1.2- Exemple 2

Soit la récurrence :

$$t_n - 5 t_{n-1} + 7 t_{n-2} - 3 t_{n-3} = 0$$
 pour n>2
 $t_0 = 0$
 $t_1 = 2$
 $t_2 = 3$

On obtient l'équation caractéristique

$$r^3 - 5 r^2 + 7r - 3 = (r-3)(r-1)^2 = 0$$

- → La racine 1 est de multiplicité 2.
- \rightarrow La solution générale sera alors: $t_n = c_1 3^n + c_2 1^n + c_3 n 1^n$
- \rightarrow Conditions initiales: $c_1 = 0$, $c_2 = 1$ et $c_3 = 1$

XXVI- Récurrence linéaire non homogène

Le cas où le terme à droite de l'équation n'est pas = 0 mais f(n).

Une récurrence de le forme

$$a_0 t_n + a_1 t_{n-1} + ... + a_k t_{n-k} = f(n) \neq 0$$

où ai sont des constantes et f(n) une fonction non nulle appelée une

équation de récurrence linéaire non Homogène à coefficient constant.

● Il n'y a pas de méthode générale connue pour résoudre cette équation.

Par contre, on propose une solution pour une forme particulière où :

$$a_0t_n + a_1 t_{n-1} + ... + a_k t_{n-k} = b^n p(n)$$

Deux exemples:

$$t_n - 3t_{n-1} = 4^n$$

$$t_n - 3t_{n-1} = 4^n (8n+7)$$

XXVI.1- Théorème 3

Une équation de récurrence linéaire non Homogène à coefficient constant de la forme $a_0t_n + a_1 t_{n-1} + ... + a_k t_{n-k} = b^n p(n)$

peut être transformée en $(a_0r^k + a_1r^{k-1} + ... + a_k) (r-b)^{d+1} = 0$ où d = le degré de p(n) et P(n) est un polynôme en $IN \rightarrow IR$

 \rightarrow N.B.: noter l'origine de k (en rouge), b sera une <u>nouvelle</u> racine.

Résolution : cette équation est alors composée de 2 parties :

- 1- <u>l'équation caractéristique</u> pour la partie homogène (premier terme à gauche)
- 2- <u>un terme</u> obtenu de la partie <u>non homogène</u> de la récurrence.
- \Rightarrow S'il y a plus d'un terme de la forme **b**ⁿ **p(n)** à droite, chacun contribuera à un terme de l'équation caractéristique.

XXVI.1.1- Exemple 1

Soit

$$t_n - 3 t_{n-1} = 4^n (2n+1)$$
 pour n>1

$$t_0 = 0$$

$$t_1 = 12$$

Démarche :

1- On obtient l'équation caractéristique pour la partie homogène

$$t_n - 3 t_{n-1} = 0 \rightarrow r^1 - 3 = 0$$

2- On obtient de la partie non homogène de la forme bⁿ P(n):

$$4^{n}$$
 (2n¹+1) où $b = 4$ et $d = 1$ (degré de p(n))

Le terme de la partie non homogène sera : $(r - b)^{d+1} = (r - 4)^{1+1}$../.

3- On applique le théorème 3 pour obtenir une équation caractéristique :

L'équation caractéristique sera $(r-3)(r-4)^2$

- 4- La résolution de l'équation $(r 3) (r 4)^2 = 0$ donne les racines r=3 et r=4 r=4 est de multiplicité 2
- 5- Par le théorème 2: $t_n = c_1 3^n + c_2 4^n + c_3 n 4^n$.
- 6- Calcul des constantes : ici, on n'a que deux cas basiques (t_0 et t_1)
 - \rightarrow Mais on peut calculer t_2 par $t_2 3 t_1 = 4^2 (2 * 2 + 1)$ Sachant $t_1 = 12$, on obtient $t_2 = 116$.
 - \rightarrow La forme générale se la solution sera : $t_n = 20(3^n) 20(4^n) + 8 n 4^n$.

XXVI.1.2- Exemple 2

Soit la récurrence

$$t_n = 3 t_{n-1} + 2^n$$
 $t_0 = 1$

Rappel:

Une équation de récurrence linéaire non Homogène à coefficient constant de la forme

$$a_0t_n + a_1 t_{n-1} + ... + a_k t_{n-k} = b^n p(n)$$

peut être transformée en

$$(a_0r^k + a_1r^{k-1} + ... + a_k) (r-b)^{d+1} = 0$$

où $d = \text{le degr\'e de } p(n) \text{ et } P(n) \text{ est un polynôme en } IN \rightarrow IR$

- → la racine de la partie homogène est r=3
- \rightarrow la partie droite est de la forme $(r-2)^{0+1}$ et p(n)=1 d'où le degré d = 0.

La complexité sera de la forme $T(n)=c1 3^n + c2 2^n$

Et les calculs donneront c1=3 et c2=-2

d'où
$$T(n)=3.3^n-2.2^n$$

Remarque:

Si l'équation de récurrence (non homogène) est de la forme

$$a_0t_n + a_1 t_{n-1} + ... + a_k t_{n-k} = Cste$$
 (une constante)

Alors Cste représente P(n) et non bⁿ

Car si P(n) est constante, alors n=0.

Dans le cas contraire, on introduirait une racine supplémentaire r=b

→ incohérent!

Pour un exemple de ce cas : voir les tours de Hanoï.

XXVI.1.3- Exercice 1

Soit la somme
$$f(n) = \sum_{j=0}^{n} j^3 = 1^3 + 2^3 + 3^3 + \dots + n^3$$

dont l'équation de récurrence est donnée par :

$$t_0=0$$
, $t_1=1$, $t_2=9$, $t_3=36$, $t_4=100$
 $t_n=t_{n-1}+n^3$

On est dans le cas d'une équation de récurrence non homogène car $t_n - t_{n-1} = n^3$

- Calculer les détails cette complexité.
- Indication:

le résultat devrait être
$$t_n = c_1 + c_2 n + c_3 n^2 + c_4 n^3 + c_5 n^4$$

 \rightarrow Calculer les coefficients et en déduire une relation entre les fonctions f(n) des deux exemples précédents.

XXVI.1.4- Exercice 2

Calculer la complexité de

$$t_n = 7 t_{n-1} - 10 t_{n-2} + (2n+5) 3^n$$

et déduire qu'elle est $\Theta(5^n)$.

Indication:

dans la partie non homogène, on a $b^n = 3^n$ et p(n)=2n+5 d'où la partie homogène sera multipliée par $(r-3)^{1+1}$.

XXVII- Boite à outils (Cook Book)

La généralisation de certains de ces calculs a donné lieu à une boite à outils.

Il s'agit d'une méthode dite "principale" (main method) qui permet de calculer (rapidement) une complexité Θ (Théta).

Elles peuvent remplacer le calcul dans le cas d'équation non-homogènes.

XXVII.1- Méthode principale (MM) et la famille Thêta

- Cook-Book des cas fréquents calculés par différentes techniques.
- ullet Utilisé (souvent) pour trouver la complexité ullet (mais aussi O et Ω)
- Permet d'éviter des calculs détaillés et donne directement la solution.

● Le but (de MM): résoudre la récurrence de la forme générique:

$$\circ$$
 T(n) = a T(n/b) + cn^k avec n>1, n=b^m (n est une puissance de b, m>=0)

- \circ T(1) = d (condition initiale)
- o b >= 2, k >= 0 sont des constantes entières,
- \circ a > 0, c > 0, d >= 0 des constantes

Suivant l'algorithme étudié, on pioche dans le cook-book et on choisit un des cas :

I
$$T(n) = \Theta(n^k)$$
 si $a < b^k$
II $T(n) = \Theta(n^k \cdot lg(n))$ si $a = b^k$
III $T(n) = \Theta(n^{lg_b(a)})$ si $a > b^k$

- → Remarque : fournit une complexité Theta
- \rightarrow Pour big-Oh / Ω , remplacer "T(n)=" par "T(n) <=" ou "T(n) \ge "

XXVII.1.1- Exemples

Il suffit d'identifier simplement chaque cas de figure.

- \bullet T(n) = 16 T(n/4) + 5n³
 - \circ a=16, b=4, k=3 et 16 < 4³

donc cas (I): $T(n) = \Theta(n^k)$

si a < b^k

- $T(n) = \Theta(n^k) = \Theta(n^3)$
- T(n) = 2 T(n/2) + n
 - \circ a=2, b=2, k=1 et 2=2¹

donc cas (II): $T(n) = \Theta(n^k, \lg(n))$ si $a = b^k$

- $\circ \mathsf{T}(\mathsf{n}) = \Theta(\mathsf{n}^\mathsf{k} \, . \, \mathsf{lg}(\mathsf{n})) = \Theta(\mathsf{n}^\mathsf{1} \, . \, \mathsf{lg}(\mathsf{n}))$
- T(n) = 8 T(n/2) + n
 - \circ a=8, b=2, k=1 et 8 > 2¹

donc cas (III): $T(n) = \Theta(n^{\lg_b(a)})$ si $a > b^k$

 $\circ \mathsf{T}(\mathsf{n}) = \Theta(\mathsf{n}^{\mathsf{l}\mathsf{g}_{\mathsf{b}}}(\mathsf{a})) = \Theta(\mathsf{n}^{\mathsf{l}\mathsf{g}(8)}) = \Theta(\mathsf{n}^3)$

XXVII.2- Méthode principale généralisée (MMG)

Pour résoudre la récurrence : si on a les conditions suivantes

```
\circ T(n) = a T(n/b) + f(n) avec n>1, n=b<sup>m</sup> (n est une puissance de b)
```

MI-ECL-2A-20-21

- \circ T(1) = d (cond. initiale)
- \circ b >= 2 une constante entière et a > 0, d >= 0 des constantes

Suivant l'algorithme que l'on étudie, on choisit un des cas:

```
I') T(n) = (f(n)), si f(n) = (n \log_b (a+\epsilon)) et a.f(n/b) \leftarrow cf(n) pour c \leftarrow 1 cste et n \rightarrow \infty II') T(n) = (n \log_b (a)), si f(n) = (n \log_b (a)) g(n) = (n \log_b (a)) g(n)
```

Avec $\varepsilon > 0$, $|g_b|$ est important car le paramètre b est présent dans T(n)

Rappel:

```
I') T(n) = (f(n)), si f(n) = (n \log_b (a + \epsilon)) et a.f(n/b) <= cf(n) pour c <= 1 cste et n \to \infty

II') T(n) = (n \log_b (a) \cdot \log(n)), si f(n) = (n \log_b (a))

III') T(n) = (n \log_b (a)), si f(n) = O(n \log_b (a - \epsilon)) \log_b : \log en base b
```

Avec $\varepsilon > 0$, $|g_b|$ est important car le paramètre b est présent dans T(n)

• Le cas (I') peut être ré-écrite en $n^{lg_b(\alpha+\epsilon)} = O(f(n))$.

Car si
$$f(n)=\Omega(g(n)) \rightarrow g(n)=O(f(n))$$

Ce cas (I') est souvent ignoré à cause de sa condition complexe!

XXVII.2.1- Exemples

A partir de la récurrence T(n), identifier f(n) et extraire la complexité.

- \bullet T(n) = 2 T(n/2) + n
 - \circ On souligne les cond. de la récurrence : a = 2, b = 2, f(n) = n, $lg_b(a) = lg(2)$

→ cas (II'):
$$f(n) = n = n^1 = \Theta(n^{|g_b(a)})$$

II')
$$\to$$
 T(n) = $\Theta(n^{|g_b|}(a), |g(n)|) = \Theta(n^{|g(2)|}, |g(n)|) = \Theta(n, |g(n)|)$

- \bullet T(n) = 8 T(n/2) + n
 - \circ On a a = 8, b = 2, f(n) = n, $lg_b(a) = lg(8) = 3$ et $2=2^1$

$$\rightarrow$$
 cas (III') : f(n) = n = $O(n^{3-1})$ avec $\varepsilon = 1$

III')
$$\rightarrow$$
 T(n) = $\Theta(n^{lg_b(a)})$ = $\Theta(n^{lg(8)})$ = $\Theta(n^3)$

Remarques:

- Les 3 cas de MM (I,II,III) sont des cas particuliers de MMG (I',II', III').
- P. ex. : Si $T(n) = a T(n/b) + cn^k$ satisfait la condition de (II) : $a=b^k$

Alors on peut écrire (en utilisant le cas II'):

$$a=b^k$$

$$lg_b(a) = lg_b(b^k) = k$$

$$\rightarrow$$
 f(n) = cn^k = cn^{lg_b(a)} $\in \Theta(n^{lg_b(a)})$ cf. la condition du cas général (II')

XXVIII- Complément technique

Ci-dessous, quelques exemples qui montrent différentes techniques employées pour le calcul de la complexité.

XXVIII.1- Changement de variable (cas homogène)

Nous avions vu un premier exemple de changement de variable :

Preuve par induction de la complexité de Hanoi.

D'autres exemples ci-après.

XXVIII.1.1- Exemple: Recherche dichotomique

Pour un cas dichotomique tel que:

$$T(n) = T(n/2) + 1$$
 $n>1$ et $n = k^2$ $T(1) = 1$.

- On pose $n=2^k \rightarrow k = \log n$ et donc $T(2^k) = T(2^k/2) + 1 = T(2^{k-1}) + 1$
- Poser ensuite $T(2^k) = t_k$ d'où $t_k = t_{k-1} + 1$
 - --> On sait résoudre cette équation par le théorème 3 et obtenir

$$t_k = c_1 + c_2 k$$
 et donc $T(2^k) = c_1 + c_2 k$

- Ensuite, on substitue *n* pour 2^k et log(n) pour $k \rightarrow T(n) = c_1 + c_2 log(n)$
- \bullet On obtiendra $c_1=c_2=1$ par ailleurs et au final :

$$T(n) = 1 + \log(n)$$

XXVIII.1.2- Exemple: Tri Fusion

On a T(1)=T(0)=0T(n) = 2 T(n/2) + n

- Soit n=2^k d'où k=log(n)
 - --> On aura $T(2^k) = 2 T(2^k/2) + 2^k$. -> $T(2^k) = 2 T(2^{k-1}) + 2^k$.
- Soit $t_k = T(2^k)$ pour tout entier k.
 - --> D'où l'équation de récurrence $t_k = 2t_{k-1} + 2^k$
 - \rightarrow l'éq. caractéristique $r^k = 2 r^{k-1} + 2^k$.
- En accord avec le théorème 3 (non homogène), on aura $(r^k 2 r^{k-1})(r-2)=0$.
 - \rightarrow qui donne (r-2)(r-2): une racine double r=2.
 - La forme générale de la solution tk= c₀+ c₁ 2^k+ c₂ k 2^k.
 - \rightarrow Et donc t_n = c1 n + c2 n log(n).
- Les calculs des coefficients donnent c1=0 et c2=1/2.
 - \rightarrow D'où t(n) = 1/2 n log(n) = O(n log(n))

N.B.: une autre technique ad-hoc pour ce même exemple :

On peut utiliser une soustraction pour aboutir aux mêmes résultats :

On avait (de la solution précédente) :

(1)
$$t_k = 2t_{k-1} + 2^k$$
.

Et on pose

(2)
$$t_{k-1} = 2t_{k-2} + 2^{k-1}$$
.

On multiplie (2) par 2:

(3)
$$2t_{k-1} = 4t_{k-2} + 2^k$$
.

On soustrait (1) et (3):

$$t_{k} = 4t_{k-1} - 4t_{k-2}$$
.

$$\rightarrow$$
 r^k - 4 r^{k-1} + 4 r^{k-2}=0

$$\rightarrow$$
 r^{k-2} (r² - 4r + 4)=0

$$\rightarrow$$
 $r^{k-2} (r^2 - 4r + 4) = 0 \rightarrow $(r^2 - 4r + 4) = (r-2)(r-2)$.$

Les racines : r=0, r=2 (racine double)

et la forme générale : t_k = c0+ c1 2^k + c2 k 2^k .

Le reste est identique à la solution précédente.

XXVIII.2- Changement de variable dans une cas non homogène

La récurrence de la forme

$$t_n = a t_{n/b} + f(n)$$

est résolu pour obtenir T(n) en posant

$$S(n) = T(b^k)$$
 et donc

$$s_k = t_b{}^k = a t_b{}^k/_b + f(b^k) = a t_b{}^{k-1} + f(b^k) = a s_{k-1} + f(b^k).$$

Ce qui nous ramène aux cas précédents.

Exemple: ../..

XXVIII.2.1- Exemple

Soit
$$t_n = 3 t_{n/2} + n lg(n)$$
 pour $n > 1$ et $t_1 = 2$
On pose $S(n) = T(2^k)$ avec $n = 2^k \rightarrow k = lg(n)$ et donc $s_k = t_2^k = 3 t_2^{k/2} + 2^k \cdot lg(2^k) = 3 t_2^{k-1} + 2^k \cdot k = 3 s_{k-1} + k \cdot 2^k$

La résolution de ce cas non homogène donnera :

$$(r-3)(r-2)^{1+1}=0$$
 et donc $s_k = c1 3^k + c2 \cdot 2^k + c3 k \cdot 2^k$.

Pour les conditions initiales sur 5 :

$$S(0) = T(2^{0}) = T(1) = 2$$

 $S(1) = T(2^{1}) = T(2) = 8$ que l'on calcule à l'aide du système initial
 $S(2) = T(2^{2}) = T(4) = 32$

• On peut maintenant calculer les constantes et obtenir :

$$S(k) = 8.3^{k} - 6.2^{k} - 2.k.2^{k}$$

On s'occupe maintenant de calculer T(n):

Avec
$$S(n) = T(2^k)$$
 et $k=lg(n)$, on a:
 $T(n) = S(lg(n))$

$$T(n) = 8.3^{\lg(n)} - 6.2^{\lg(n)} - 2.\lg(n).2^{\lg(n)}$$

N.B.:
$$3^{\lg(n)} = (2^{\lg(3)})^{\lg(n)} = (2^{\lg(n)})^{\lg(3)} = n^{\lg(3)}$$
.

- La forme finale de la complexité sera donc T(n)=8n^{lg(3)} 6n- 2nlg(n)
 - → Sachant que 1 < lg(3) < 2 (car $2^1 < 3 < 2^2$) on a une complexité $O(n^2)$ pour $n=2^k$.

Une remarque générale:

Une règle appelée la *règle de lissage* permet d'affirmer ceci.

si $T(n) = \Theta(f(n))$ pour **n** une puissance de b >= 2

et si f(n) est nice polynomiale

--> f(n) est dite nice si elle n'est ni exponentielle ni factorielle

alors T(n) est réellement $\Theta(f(n))$ pour toute valeur de n

Dans le cas de l'exemple présent, n > 1.

XXIX- Cas particulier : Racines imaginaires !

Il arrive (rarement) que l'on ait besoin de racines imaginaires.

XXIX.1- Un exemple

Soit
$$U_n = U_{n-1} - 2 U_{n-2}$$

 $U_0 = ...$

Pas très simple : les racines seront complexes.

On obtient (avec l'aide de Maple):
$$Un = \left(\frac{U_0}{2} - i\left(\frac{2u_1 - u_0}{2\sqrt{7}}\right)\right)r_1^n + \left(\frac{U_0}{2} + i\left(\frac{2u_1 - u_0}{2\sqrt{7}}\right)\right)r_2^n$$

La résolution donnera $r_1, r_2 = \frac{1 \pm i\sqrt{7}}{2}$

XXIX.2- Un autre exemple

Soit

$$t_n = 2 t_{n-1} - 2 t_{n-2}$$

$$t_0=0, t_1=2$$

Pour le cas $t_n = 2 t_{n-1} - 2 t_{n-2}$, dont l'équation caractéristique est $r^2 - 2r + 2 = 0$

- \rightarrow les racines seront r=1+i et r=1-i (et r=0 par ailleurs).
- \rightarrow dans ce cas, on aura $T(n) = c1 (1+i)^n + c2 (1-i)^n$.
- On obtient des conditions initiales c1+c2=0 et c1-c2=-2i
 - \rightarrow et donc T(n) = i.[(1-i)ⁿ (1+i)ⁿ]
 - \rightarrow Cette fonction oscille entre $\sqrt{2^n}$ et $-\sqrt{2^n}$ avec une période de 4 ; en particulier, on a T(4n) = 0 car $(1-i)^4=(1+i)^4=-4$
- N.B.: la présence de racine imaginaire laisse supposer un terme (ici la complexité) négatif, mais il se peut que T(n) > 0.
- P. Ex.: si les racines d'un équation sont 2, 1+i et 1-i on aura une complexité oscillant autour de c2ⁿ (supposons des conditions initiales ad-hoc) qui sera toujours positif.

xxx- Table des matières

I- Quelques références bibliographiques	2
II- Objectifs du cours et éléments abordés	3
III- Pourquoi faut-il des algorithmes ?	5
IV- Qu'est-ce qu'un algorithme ? Exemples	6
IV.1- Exemple :Tours de HANOI	
IV.2- Exemple : mariages stables (stable matching)	
V- Ce que l'on peut attendre des algorithmes	9
VI- Autres remarques	10
VII- Idée de la complexité	12
VIII- Complexité et Contrôle	14
VIII.1- Exemple 1 : Comparatif recherche d'une "vis"	
VIII.2- Exemple 2: séquence de Fibonacci	
VIII.3- Exemple 3 : Comparatif Fibonacci	
IX- Tableau des croissances relatives	
IX.1- Comparaisons des courbes des croissances usuelles	
X- Éléments d'analyse de la complexité	
XI- Sensibilité à la puissance des machines	
XII- Déf. de big-oh (upper bound, pessimiste)	
XII.1- Exemples de big-oh	
XIII- La fonction Ω (lower bound : optimiste)	
XIV- La fonction Θ (égalité entre O et Ω)	
XV- Illustration des 3 fonctions O, Ω , Θ	
XVI- Calculs : le Modèle (de la machine)	42
XVII- Règles basiques et empiriques de calcul	
XVIII- Quelques exemples de calculs simples	
·	

XVIII.1- Exemple : calcul de la médiane d'une suite	47
XVIII.1.1- Solution : un stratégie Diviser pour régner	48
XVIII.1.2- Détails du déroulement pour cet exemple	
XVIII.2- Exemple : séquence de somme maximale	51
XIX- A propos de la complexité moyenne A(n)	60
XX- Propriétés des limites de fonctions	
XX.1- Exemple trivial d'utilisation des limites	
XX.2- Application : approximation de la complexité par programme	
XX.3- Exemple 1	67
XX.3.1- Estimation empirique de la complexité de l'exemple	
XX.4- Exemple 2	
XXI- Éléments du calculs de la complexité	
XXI.1- Équation de récurrence	
XXI.2- Résolution de l'équation récurrente	
XXII- Cas simples : proposer et vérifier	77
XXIII- Cas général : Preuve	81
XXIII.1- Exemple de preuve : Hanoi	
XXIII.2- Exemple de preuve : recherche Dichotomique	
XXIII.3- Preuve par Induction	
XXIII.3.1- Exemple 1 : Factorielle	
XXIII.3.2- Exemple 2	
XXIII.3.3- Exemple 3 (à démontrer)	
XXIII.3.5- Un autre cas défavorable : Fib	
XXIV- Résolution de l'équation caractéristique	
XXIV.1- Théorème 1	95
XXIV.1.1- Exemple	
XXIV.1.2- Une autre définition de Fib	
XXV- Cas de racines multiples : théorème-2	
XXV.1- Théorème 2	
XXV.1.1- Exemple 1	
XXV.1.2- Exemple 2	
XXVI- Récurrence linéaire non homogène	
XXVI.1- Théorème 3	
XXVI.1.1- Exemple 1	

XXVI.1.3- Exercice 1	110
XXVI.1.4- Exercice 2	
XXVII- Boite à outils (Cook Book)	112
XXVII.1- Méthode principale (MM) et la famille Thêta	
XXVII.1.1- Exemples	115
XXVII.2- Méthode principale généralisée (MMG)	116
XXVII.2.1- Exemples	118
XXVIII- Complément technique	120
XXVIII.1- Changement de variable (cas homogène)	120
XXVIII.1.1- Exemple : Recherche dichotomique	121
XXVIII.1.1- Exemple : Recherche dichotomique	122
XXVIII.2- Changement de variable dans une cas non homogène	
XXVIII.2.1- Exemple	125
XXIX- Cas particulier : Racines imaginaires !	128
XXIX.1- Un exemple	128
XXIX.1- Un exempleXXIX.2- Un autre exemple	129
XXX- Table des matières	130