מטלת מנחה (ממיין) 17

הקורס: 20276 - מתמטיקה דיסקרטית

חומר הלימוד למטלה: קומבינטוריקה - פרקים 6 - 7

מספר השאלות: 4 נקודות 4 מספר השאלות: 4 נקודות

סמסטר: 23.12.07 מועד אחרון להגשה: יום אי

אנא שים לב:

מלא בדייקנות את הטופס המלווה לממיין בהתאם לדוגמה שלפני המטלות. העתק את מספר הקורס ומספר המטלה הרשומים לעיל.

שאלה 1 (25 נקודות)

 a_n , $\{0,1,2\}$ מספר הסדרות באורך a_n , שאיבריהן שייכים לקבוצה

ואין בהן הופעות צמודות של 1, אין הופעות צמודות של 2, ואין הופעה של 2 מיד לפני או אחרי 1. בקיצור: אין הופעות של אף אחד מארבעת הרצפים האלה: 11, 22, 12, 21.

. 100201 :6 דוגמא לסדרה **מותרת** באורך

דוגמאות לסדרות **אסורות** באורך 6: 100210 (יש 11), 110200 (יש 11).

- . a_n רשמי יחס נסיגה עבור . a_0 , a_1 , a_2 ישיר את ישוב ישיר בעזרת . רשמי יחס נסיגה . בדקי שהערכים שרשמת עבור a_0 , a_1 , a_2 שרשמת עבור בדקי שהערכים שרשמת עבור .
 - a_n ב. פתרי את יחס הנסיגה וקבלי נוסחה מפורשת עבור (15) בדקי את הנוסחה שקיבלת בעזרת תנאי ההתחלה.

המשך המטלה עוסק בפונקציות יוצרות. ראו בעמוד הבא רשימה של נוסחאות שימושיות.

שאלה 2 (24 נקודות)

- א. כתוב פונקציה יוצרת עבור מספר פתרונות המשוואה $x_1+x_2+x_3+x_4=n$ בשלמים, . $0 \le x_4 \le 4$, $0 \le x_3 \le 4$, $2 \le x_2 \le 6$, $1 \le x_1 \le 5$
 - ב. בעזרת הפונקציה שרשמת מצא את מספר פתרונות המשוואה הנייל בתנאים הנייל, הn = 11 כאשר n = 11

שאלה 3 (24 נקודות)

$$g(x) = \frac{f(x)}{1-x} = \sum_{i=0}^{\infty} b_i x^i$$
 ותהי , $f(x) = \sum_{i=0}^{\infty} a_i x^i$ תהי

.ים. a_i א. הבע את b_n (לכל b_n לכל את הבע

.םי- b_i בעזרת טבעי) בעזרת ה (לכל a_n לכל ב.

שאלה 4 (27 נקודות)

דוגמא לתרגיל מסוג זה נמצאת בסוף הקובץ "מבוא לפונקציות יוצרות" שבאתר הקורס.

.
$$m = 2b + 1$$
 מספר אי-זוגי, $m = 2b + 1$ יהי m מספר אי-זוגי, $(1 + x)^n (1 - x)^n = (1 - x^2)^n$

מצא את המקדם של בכל אחד מהאגפים של הזהות הנייל. x^m

m=3 , n=3 בדוק עבור עבור עבור המקרה . בדוק את הזהות הקומבינטורית המתקבלת

להלן סיכום כמה נוסחאות שימושיות בפונקציות יוצרות:

$$\sum_{i=0}^{\infty} x^i = \frac{1}{1-x}$$
 : אינסופי: $\sum_{i=0}^{n} x^i = \frac{1-x^{n+1}}{1-x}$: יפום טור הנדסי סופי: (i)

: כפל פונקציות יוצרות (ii)

$$f(x)\cdot g(x)=\sum_{i=0}^\infty c_i x^i$$
ים $g(x)=\sum_{i=0}^\infty b_i x^i$, $f(x)=\sum_{i=0}^\infty a_i x^i$ אז $c_k=\sum_{i=0}^k a_i b_{k-i}$ אז $c_k=\sum_{i=0}^k a_i b_{k-i}$

.
$$\frac{1}{(1-x)^n}=(1+x+x^2+\dots)^n=\sum_{k=0}^\infty D(n,k)x^k$$
 !(iii) . $D(n,k)$ הוא $\frac{1}{(1-x)^n}$ הוא בפיתוח הביטוי $\frac{1}{(1-x)^n}$ הוא פאלה 7.10 בעמי 129 בספר).