ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA CƠ KHÍ BỘ MÔN CƠ ĐIỆN TỬ

BÁO CÁO BÀI TẬP LỚN ĐỘNG LỰC HỌC VÀ ĐIỀU KHIỂN

GVHD: PGS. TS. VÕ TƯỜNG QUÂN

SINH VIÊN THỰC HIỆN:

Họ và tên	MSSV
Đào Trọng Chân	2210350
Trần Quang Đạo	2210647
Võ Hữu Dư	2210604
Dương Quang Duy	2210497

Mục lục

1	KHẢO SÁT TÍNH ỔN ĐỊNH CỦA HỆ THỐNG1.1 Biểu đồ Bode	
	ĐÁNH GIÁ CHẤT LƯỢNG HỆ THỐNG ĐIỀU KHIỂN 2.1 Các tiêu chuẩn về xác lập	£5

Chương 1

KHẢO SÁT TÍNH ỔN ĐỊNH CỦA HỆ THỐNG

Ta có hàm truyền đã tìm được ở trên là:

$$G(s) = \frac{4.85}{s^2 + 53.51}$$

Hệ vòng kín với phản hồi là:

$$T(s) = \frac{G(s)}{1 + G(s)}$$

Phương trình đặc tính:

$$1 + G(s) = 0$$

$$\Leftrightarrow 1 + \frac{4.85}{s^2 + 53.51} = 0$$

$$\Leftrightarrow s^2 + 58.36 = 0$$

 \Leftarrow Hệ không ổn định do hệ số của s^1 là 0.

1.1 Biểu đồ Bode

$$G(s) = \frac{4.85}{s^2 + 53.51}$$

Phân tích:

- 1 khâu khuếch đại: K = 4.85.
- 1 khâu dao động bậc 2.

Tần số cộng hưởng:

$$\omega_n = \sqrt{53.51} = 7.315 (rad/s)$$

Đặc tính tần số:

$$G_1(j\omega) = \frac{4.85}{-\omega^2 + 53.51}$$

Biên đô:

$$M(\omega) = |G(j\omega)| = \frac{4.85}{|-\omega^2 + 53.51|}$$

$$\Rightarrow L(\omega) = 20log(M(\omega)) = 20log(4.85) - 20log(|-\omega^2 + 53.51|)$$

- Khi $0 < \omega < 7.315$: biên độ tăng từ -20.85dB đến $+\infty$
- Với $\omega > 7.315$:

$$\begin{split} &20log(4.85)-20log(\left|-\omega^2+53.51\right|)\approx 20log(4.85)-20log(\omega^2)\\ &=20log(4.85)-40log(\omega)\\ &\Rightarrow \text{Dộ dốc giảm: }-40dB/decade\\ &\Rightarrow \text{Với }\omega>7.315: \text{ biện độ giảm từ }+\infty\text{ về }-\infty \end{split}$$

Pha:

•
$$\omega < 7.314$$
: $-\omega^2 + 53.509 > 0$, pha $\angle G_1(j\omega) = 0^\circ$,

•
$$\omega = 7.314$$
: $-\omega^2 + 53.509 = 0$, pha nhảy từ 0° xuống -180° ,

•
$$\omega > 7.314$$
: $-\omega^2 + 53.509 < 0$, pha $\angle G_1(j\omega) = -180^\circ$.

Tính độ dự trữ biên độ (GM):

• Tìm tần số cắt pha (ω_{pc}) : Đây là tần số mà pha đạt -180° .

– Từ phân tích pha,
$$\angle G_1(j\omega) = -180^\circ$$
 khi $\omega \geq 7.314$.

– Vậy
$$\omega_{pc} = 7.314 \text{ rad/s}.$$

• Tính biên độ tại ω_{pc} :

$$|G_1(j\omega_{pc})| = \left| \frac{4.848}{-(7.314)^2 + 53.509} \right| = \frac{4.848}{0} \to \infty$$

 $|G_1(j\omega_{pc})|_{dB} \to +\infty \text{ dB}$

 \bullet Độ dự trữ biên độ:

GM (dB) =
$$-20 \log_{10} |G_1(j\omega_{pc})| \to -\infty dB$$

Tính độ dự trữ pha (ϕ_M) :

• Tìm tần số cắt biên độ (ω_{gc}) : Đây là tần số mà $|G_1(j\omega)| = 1$ (0 dB).

— Đặt
$$|G_1(j\omega)|=1$$
:
$$\left|\frac{4.848}{-\omega^2+53.509}\right|=1$$

– Khi
$$\omega < 7.314$$
, $|-\omega^2 + 53.509| = 53.509 - \omega^2$, nên:

$$\frac{4.848}{53.509 - \omega^2} = 1 \Rightarrow 53.509 - \omega^2 = 4.848 \Rightarrow \omega^2 = 53.509 - 4.848 = 48.661 \Rightarrow \omega_{gc} \approx \sqrt{48.661}$$

• Tính pha tại ω_{gc} :

- Tại
$$\omega_{qc} = 6.976 < 7.314$$
, pha $\angle G_1(j\omega_{qc}) = 0^{\circ}$.

• Độ dự trữ pha:

$$\phi_M = 180^{\circ} + \angle G_1(j\omega_{gc}) = 180^{\circ} + 0^{\circ} = 180^{\circ}$$

Nhận xét:

- Hệ thống vòng hở: G(s) có các cực trên trục ảo s=+-7.315 nên hệ thống ổn định biên. Đồ thị Bode cho thấy biên độ đạt đỉnh tại $\omega=7.315$ và pha nhảy xuống là -180° . Điều này xác nhận hệ thống dao động không suy giảm.
- Từ độ thị ta có thể thấy độ dữ trữ pha $G_M < 0dB$ nên đã vi phạm tiêu chuẩn ổn định của biểu đồ Bode \Rightarrow Hệ chưa ổn định.

Chương 2

ĐÁNH GIÁ CHẤT LƯỢNG HỆ THỐNG ĐIỀU KHIỂN

$$G(s) = \frac{4.85}{s^2 + 53.51}$$

2.1 Các tiêu chuẩn về xác lập

Hàm truyền vòng kín:

$$T(s) = \frac{G(s)}{1 + G(s)} = \frac{4.85}{s^2 + 58.36}$$

Xét với đầu vào bậc (step input, $R(s) = \frac{1}{s}$), sai số xác lập được tính bằng:

$$e_{xl} = \lim_{s \to 0} \frac{s \cdot R(s)}{1 + G(s)} = \lim_{s \to 0} \frac{1}{1 + k_p} \approx 0.92$$

Với
$$k_p$$
 là hệ số vị trí, $k_p = \lim_{s\to 0} G(s) \approx 0.09$

Khảo sát hệ thống là bậc 2

Hàm truyền hệ dao động bậc 2:

$$G_2(s) = \frac{K\omega^2}{s^2 + 2\zeta\omega s + \omega^2}$$

Đáp ứng quá độ:

$$C(s) = R(s) \cdot G_2(s) = \frac{1}{s} \cdot \frac{K\omega^2}{s^2 + 2\zeta\omega s + \omega^2}$$

⇒ Laplace ngược:

$$c(t) = K\{1 - \frac{e^{-\zeta\omega_n t}}{\sqrt{1-\zeta^2}} \cdot sin[(\omega_n \sqrt{1-\zeta^2}) \cdot t + \theta]\}$$

Qua đó ta thấy hệ dao động không giảm chấn với $\zeta=0$. Hệ dao động bậc 2 có 2 cặp cực phức: $p_{1,2}=\pm j$ 7,639

Từ đó xác định các thông số cơ bản

- Tần số tự nhiên: $\omega_n = 7{,}639$
- Hệ số giảm chấn: $\zeta = 0$
- Thời gian đạt đỉnh: $T_p = \frac{\pi}{\omega_n \sqrt{1-\zeta^2}} = 0,411s$
- Độ vọt lố: POT = $e^{\frac{-\zeta\pi}{1-\zeta^2}} \cdot 100 = 100\%$
- Thời gian xác lập: Với tiêu chuẩn 2% $\Rightarrow T_p = \frac{4}{\zeta \omega_n} \to \infty$
- Đáp ứng quá độ: $C(s) = R(s) \cdot T(s) = \frac{1}{s} \cdot \frac{4,85}{s^2 + 58,36}$

$$\Rightarrow c(t) = \frac{4.85}{7.639^2} \left[1 - \sin\left(7.639 \cdot t + \frac{\pi}{2}\right) \right] = 0.083 - 0.083\cos(7.639 \cdot t)$$

Nhận xét: Đáp ứng quá độ của khâu dao động bậc 2 có dạng dao động với biên độ giảm dần. Do $\zeta=0$, đáp ứng của hệ là dao động không suy giảm với tần số tự nhiên $\omega_n=7.639$.