CLAIMS

What is claimed is:

du?	K ² ₃
J	

1

- A method, comprising:
 detecting that a processor is overheated, and
 automatically removing power from the processor.
- 1 2. The method of claim 1, further comprising rebooting a computer system,
- 2 the computer system including the processor.
- 1 3. The method of claim 2, further comprising throttling the processor
- 2 following the reboot.
- 1 4. The method of ϕ laim 2, further comprising applying a reduced voltage to
- 2 the processor during and subsequent to the reboot.
- 1 5. The method of claim 3, wherein rebooting the computer system includes
- 2 rebooting the computer system after a predetermined period of time following the
- 3 detection of the overheated condition.
- 1 6. The method of claim 3, wherein rebooting the computer system includes
- 2 rebooting the computer system after the processor has cooled to a predetermined
- 3 temperature.

1	7. The method of claim 3, further comprising:
2	detecting for a second time that the processor is overheated;
3	automatically removing power from the processor for a second time; and
4	again rebooting the computer system.
14	./
1	8. An apparatus, comprising:
2	a processor interface unit to monitor a thermal trip signal from a processor; and
3	a voltage regulator module interface to assert a power off signal to a voltage
4	regulator module in response to an assertion of the thermal trip signal.
1	9. The apparatus of claim 8, wherein the processor interface periodically
2	asserts a stop clock signal to the processor in response to a system reboot following the
3	assertion of the thermal trip signal.
1	10. The apparatus of claim 9, further including a status bit that is set in
2	response to the assertion of the thermal trip signal, the status bit to indicate that the
3	system reboot is in response to the assertion of the thermal trip signal.
1	11. A system, comprising:
2	a processor/including a thermal trip signal output that is asserted in response to an

overheat condition;

3

4	a power management device to receive the thermal trip signal, the power
5	management device to assert a power off signal in response to an assertion of the thermal
6	trip signal; and
7	a power supply device to deliver power to the processor, the power supply device
8	to receive the power off signal and to cease to deliver power to the processor in response
Je .	to an assertion of the power off signal.
1	12. The system of claim 11, wherein the power supply device is a voltage
2	regulator module.
1	13. The system of claim 11, further comprising reset logic to cause a system
2	reset in response to the assertion of the thermal trip signal.
1	14. The system of claim 13/, the reset logic to cause the system reset in
2	response to the assertion of the thermal trip signal after a predetermined period of time
3	had elapsed following the assertion of the thermal trip signal.
1	15. The system of claim 13, the reset logic to cause the system reset in
2	response to the assertion of the thermal trip signal after the processor has cooled to a
3	predetermined temperature.
1	16. The system of claim 14, the power management device to periodically

2

assert a stop clock signal to the processor during and following the system reset.