Curso: Análisis Númerico, Tarea # 1

Instructor: Imelda Trejo Lorenzo

Para entregar el 29 de Enero 2025, antes de clase.

Libros de clase: Burden, R. L. & Faires, J.D. Numerical Analysis (7th edition). David Kincaid and Ward Cheney, Numerical Analysis of Scientific Computing, 1991.

Problema 3. Demuestra que el

$$\lim_{x \to 2} (\frac{1}{x}) = \frac{1}{2}$$

usando la definición $\epsilon - \delta$.

1. Demuestra que

$$\lim_{n \to \infty} \frac{2n}{n+1} = 2.$$

- 2. Demuestra que la sucesion $\{x_n\} = \{6n\}$ no converge.
- Problema 4. Para la función $f(x) = 3 2x + x^2$ en el intervalo [a, b] = [1, 3] encontrar el número ξ para el cual se satisface el TVM.
- Problema 17. Prueba que la función $f(x) = x^2$ es continua en todo los reales.
- Problema 18. Demuestra que si f es una función diferenciables entones es una función continua.
- Problema 19. (a) Calcula la serie de Taylor para la fuanción $f(x) = \ln(x+1)$ at the point c=0. Give the expresion fo the remainder. Determina el número de términos necesarios de la serie tal que el error de $\ln(1.5)$ sea menor de 10^{-8} . (c) Determina el número de terminos necesarios de la serie para calcular $\ln(1.6)$ con un error de 10^{-10} .
- Problema 20. Para valores pequeños de x, la aproximación $\sin(x) \approx x$ es usada con frecuencia. Estimar el error de esta approximación usando el Teorema de Taylor. ¿Para que rango de valores de x esta aproximación resulta correcta con seis decimales?
- Problema 25. ¿Cuál es el tercer termino de la expanción de Taylor de $f(x) = x^2 + x 2$ al rededor del punto x = 3?
- Problema 26. Using the series for e^x , how many terms are needed to compute e^2 correctly to four decimal places?