(1) The three figures below depict streamline patterns for flow near a circular region. Explain the differences in the patterns in terms of the hydraulic conductivity within the circular region and the surrounding region.

Streamline Pattern	Explanation
	hydraulic conductivity inside circle much smaller than hydraulic conductivity ovisible circle
5	Ayaradic conductivity inside circle is equal to hydraulic conductivity outside circle
6 5 4 3 2 1 0	hydraulic conductivity inside circle much greater thun hydraulic conductivity orbine circle

(2) A pumping test was conducted in a confined aquifer with no known recharge or no-flow boundaries. The observation well is located 250 meters from the pumped well and the pumping rate was 1.0 cubic meters/minute. The corrected data below were obtained from the test. Estimate the aquifer transmissivity and storage coefficient. A blank sheet of log-log paper and a type curve are attached.

Time (minutes)	Drawdown (meters)	t/r ²	
. 1	0.66	1.60E-05	
1.5	0.87	2.40E-05	
2	0.99	3.20E-05	
2.5	1.11	4.00E-05	
3	1.21	4.80E-05	
4	1.36	6.40E-05	
5	1.49	8.00E-05	
10	1.86	1.60E-04	
14	2.08	2.24E-04	
30	2.49	4.80E-04	
60	2.88	9.60E-04	
120	3.28	1.92E-03	

Match point values

$$T = \frac{Q}{4\pi} \frac{\omega(u)^*}{s^*} = \frac{Im^3/min}{4\pi} \frac{(1.0)}{(0.6)} = 0.13 \, m^2/min$$

$$S = 4T(\frac{t}{r^{2}})U^{*} = \frac{4(0.13)(7-10^{-5})(0.1)}{2} = \frac{2-0004}{2} 4-10^{-6}$$

$$T = \frac{Q}{4\pi x^2} \omega(\omega^2)$$

$$S^* = \frac{Q}{4\pi T} W(U)^* \qquad T = \frac{Q}{4\pi S^*} W(U^*)$$
and
$$V^* = \frac{S^2}{4TL^*} \qquad S = \frac{U^* L^* 4T}{r^2}$$

(3) Use the Cooper-Jacobs approximation to construct a sketch of the piezometric surface for the case shown below. Assume that $T=14,600\,$ ft²/day and S=0.00011. Q= 192,000 ft³/day and the predevelopment head is 35 feet. Plot the profile after 365 days of pumping.

$$s(r,t) = \frac{Q}{4\pi T} [-0.57722 - \ln(\frac{r^2 S}{4Tt})]$$

$$\frac{Q}{4\pi T} = \frac{192,000}{4\pi (14600)} = 1.046$$

Impermeable boundary

Res.	P S/RF		naje S(Zx)	Real+ Image	35'-R+I		
-1000	15.03 13.58 12.13	-1500 -2000 -3000 750	10.68	26.70 24.87 22.82 20.52 27.23 27.23	8.29 10.12 12.17 14.47 7.73 7.82	_	

(4) Consider the infiltration of water into a dry soil without any capillary effects as depicted in the three figures below. The hydraulic conductivity is K and the porosity is ω . Assume that the porous medium is completely saturated above the wetting front, z(t) and completely dry below.

- a) What volume of water is contained in the soil at any given position of the wetting front in terms of the porosity and the front position? Assume that the area over which infiltration occurs is unity.
- b) What is the total hydraulic head at the surface?
- c) What is the water pressure at the wetting front?
- d) What is the elevation at the wetting front?
- e) What is the total hydraulic head at the wetting front?
- f) What is the hydraulic gradient from the ground surface to the wetting front?
- g) Express the wetting front velocity in terms of porosity, hydraulic conductivity, and hydraulic

gradient.
$$\frac{dz}{dt} = ?$$

h) After a very longtime has elapsed, what is the wetting front velocity?

f) hydraulie gradient =
$$\frac{H - (-2(t))}{2(t)} = \frac{H + 2}{2}$$

h)
$$t \Rightarrow large \Rightarrow large \Rightarrow \frac{dz}{dt} \approx \frac{K}{\omega} \frac{z}{z} = \frac{K}{\omega}$$

5) Consider the non-homogeneous aquifer below. Sketch the flownet for the aquifer system. Be sure to indicate the streamlines and equipotentials (lines of constant head). Be sure that your equipotential spacing accurately reflects the non-homogeneous character of the aquifer.

