

Finanzmathematik

Aufarbeitung der Übungen

Tobias Wedemeier

16. November 2014 gelesen von PD Dr. Paulsen

ttel 1	1
Aufgabe 1	1
Aufgabe 3	1
ttel 2	1
Aufgabe 1	1
Aufgabe 2	2
Aufgabe 4	2
ttel 3	2
Aufgabe 1	2
dex	Α
bildungsverzeichnis	В

Zettel 1

Aufgabe 1

Bear Spread:

long put, strike K_2 , short put, strike $K_1 < K_2$

Abbildung 1: Bear Spread

Profit:
$$(K_2 - S_T)^+ - p_2 + p_1 - (K_1 - S_T)^+ = (K_2 - K_1) + (p_1 - p_2)$$

Aufgabe 3

Exchange-Option:

Analog zur Put-Call-Parität.

Zettel 2

Aufgabe 1

Eigenschaften des Put-Preises:

(i) innerer Wert: $P(S_0, T, K) \ge \max\{0, K \cdot B(0, T) - S_0\}$

(ii) obere Grenze: $P(S_0, T, K) < K$

(iii) Monoton im strike: $K_1 \leq K_2 \Rightarrow P(S_0, T, K_1) \leq P(S_0, T, K_2)$

(iv) $B(0,T)(K_2-K_1) \ge P(K_2) - P(K_1) \quad \forall K_1 \le K_2$

(v) Konvexität in K:

$$P(K_2) \leq \lambda P(K_1) + (1-\lambda)P(K_3) \quad \forall K_1 < K_2 < K_3 \text{ mit } \lambda = \frac{K_3 - K_2}{K_3 - K_1}$$

Beweise analog zum Call-Preis.

Aufgabe 2

Gelte No-Arbitrage und keine Deflation, d.h. 0 < B(0,T) < 1.

Dann ist der Call-Preis monoton in der Zeit, also

$$T_1 < T_2 : C(T_1) \le C(T_2)$$

Beweis:

Sei $C(T_1)$ der Preis eines Calls auf ein Underlying mit Laufzeit T_1 , strike K und Anfangspreis S_0 und $C(T_2)$ der Preis eines Calls auf ein Underlying mit demselben strike und Anfangspreis, aber mit Laufzeit $T_2 > T_1$.

Angenommen, $C(T_1) > C(T_2)$.

Dann gehe am Anfang short im Call mit Laufzeit T_1 und long im Call mit Laufzeit T_2

 \Rightarrow risikoloser Gewinn von $C(T_1) - C(T_2) > 0$.

in T_1 : Ist $S_{T_1} \leq K$, wird der Call-Inhaber die Option nicht nutzen. Dann nutzen wir unsere Call-Option in T_2 ebenfalls nicht und haben insgesamt einen risikolosen Gewinn.

Ist $S_{T_1} > K$, leihen wie uns das Underlying von der Bank um die Verpflichtung des Calls zu erfüllen. Wir erhalten dafür K und gehe damit $\frac{K}{B(T_1,T_2)} \times \text{long}$ in einen Zero-Bond mit Laufzeit bis T_2 .

 $\underline{\text{in }T_2}$: Wir erhalten für die Anleihe $(\frac{K}{B(T_1,T_2)}.$

Ist $K < S_{T_2}$, nutze die Option und gebe das Underlying an die Bank zurück. Ist $K \ge S_{T_2}$, kaufe das Underlying für S_{T_2} und lasse die Option verfallen, dann gebe das Underlying ebenfalls zurück. In T_2 erhalten wir also

$$\frac{K}{B(T_1, T_2)} - \min\{S_{T_2, K}\} \ge \frac{K}{B(T_1, T_2)} - K \ge 0$$

da $B(T_1,T_2)\in (0,1) \;\Rightarrow\;$ risikoloser Gewinn $\not\subset No-Arbitrage$ Also $C(T_1)\leq C(T_2)$

Aufgabe 4

Terminzinssatz

Der Kunde zahlt jedes Jahr $K\pounds$ an die Versicherung, die dafür eine bestimmte, im voraus festgelegte Rendite R zusichert. Erstelle einen geeigneten Sparplan.

Annahme: Kunde zahlt immer am Jahresanfang. Die Versicherung muss heute, in t_0 , $n \cdot K \pounds$ anlegen um die garantierte Rendite zu gewährleisten.

in t_0 short in Zero-Bonds:

$$K \cdot B(t_0, 1), K \cdot B(t_0, 2), \cdot, K \cdot B(t_0, n - 1)$$

Also zu jedem $j=1,\ldots,n-1$ muss die Versicherung $K\pounds$ an die Bank zurück zahlen, dies wird gerade durch die jährlichen Prämien der Kunden getilgt.

Also hat die Versicherung am Anfang ein Kapital von $K + \sum_{j=1}^{n-1} K \cdot B(t_0, j)$ zur Verfügung. Lege dies in Zero-Bonds an mit Laufzeit n Jahren an:

$$\left(K \cdot \sum_{j=1}^{n-1} K \cdot B(t_0,j)\right) imes \mathsf{long} \; \mathsf{in} \; \mathsf{n}\mathsf{-}\mathsf{Zero}\mathsf{-}\mathsf{Bonds}$$

Daher Auszahlung bei T = n:

$$R = \left(K \cdot \left(1 + \sum_{j=1}^{n-1} B(t_0, j)\right)\right) \cdot \frac{1}{B(t_0, n)}$$

R ist dann die mögliche garantierte Auszahlung.

Zettel 3 Aufgabe 1

Index

Die Seitenzahlen sind mit Hyperlinks zu den entsprechenden Seiten versehen, also anklickbar!

Exchange-Option, 1

Strategien

Bear Spread, 1

Index A

Abbildungsverzeichnis

1	Bear Spread																					1	

B Abbildungsverzeichnis