Figure 1.

	F
Compound	${f Z}$
1.	-OH [prior art]
2.	-NH-[chelator 1]
3.	-NH(CH ₂ CH ₂ O) ₃ (CH ₂) ₂ NH(CO)CH ₂ OCH ₂ CO-NH-[chelator 1]
4.	-NH(CH ₂ CH ₂ O) ₃ (CH ₂) ₂ NH ₂
5.	-NH(CH ₂ CH ₂ O) ₃ (CH ₂) ₂ NH(CO)CH ₂ Cl
6.	-NH(CH ₂ CH ₂ O) ₃ (CH ₂) ₂ NH(CO)CH ₂ S(CH ₂) ₃ F
7.	-NH-Lys(CO)NH-(CH ₂ CH ₂ O) ₃ (CH ₂) ₂ NH(CO)CH ₂ OCH ₂ CO-NH-Lys-[ϵ -
	chloroacetyl]-NH ₂
8.	-NH-Glu-NH ₂
9.	-NH-Lys-NH ₂
10.	-NH-Leu-NH ₂
11.	-NH-Lys-Glu-NH ₂
12.	-NH-Glu-Glu-NH ₂
13.	-NH-Leu-Glu-NH ₂
14.	-NH-Lys-Lys-NH ₂
15.	-NH-Gly-Lys-NH ₂
16.	-NH-Glu-Lys-NH ₂
17.	-NH-Leu-Lys-NH ₂
18.	-NH-Gly-Glu-NH ₂
19.	-NH-(Glu) ₅ -Tyr-NH ₂
20.	-NH(CH ₂ CH ₂ O) ₃ (CH ₂) ₂ NH(CO)CH ₂ OCH ₂ CO-NH-Tyr(3-iodo)-NH ₂
20A.	-NH(CH ₂ CH ₂ O) ₃ (CH ₂) ₂ NH(CO)CH ₂ OCH ₂ CO-NH-Tyr(3- ¹²³ I)-NH ₂
21.	-NH-(Glu) ₅ -Tyr(3-iodo)-NH ₂

21A.	-NH-(Glu) ₅ -Tyr(3- ¹²³ I)-NH ₂
22.	$-O-C_6F_5$
23.	-NH(CH ₂) ₂ -[C ₆ H ₄ -4-OH]
24.	-NH(CH ₂) ₂ -[C ₆ H ₃ -3-I-4-OH]
24A.	$-NH(CH_2)_2-[C_6H_3-3-^{123}I-4-OH]$
25.	-NH-C ₆ H ₄ -4-SnBu ₃
26.	-NH-C ₆ H ₄ -4-I
30.	-Lys-NH(CH ₂ CH ₂ O) ₃ (CH ₂) ₂ NH(CO)CH ₂ OCH ₂ CO-NH-Tyr(3-iodo)-NH ₂
30A.	-Lys-NH(CH ₂ CH ₂ O) ₃ (CH ₂) ₂ NH(CO)CH ₂ OCH ₂ CO-NH-Tyr(3- ¹²³ I)-NH ₂
31.	-Lys-NH(CH ₂ CH ₂ O) ₃ (CH ₂) ₂ NH(CO)CH ₂ OCH ₂ CO-NH-Tyr-NH ₂
32.	-NH(CH ₂ CH ₂ O) ₁₁ CH ₂ CH ₂ CONH(CH ₂ CH ₂ O) ₁₁ CH ₂ CH ₂ -CONH-Tyr(3-
	iodo)-NH ₂
32A.	-NH(CH ₂ CH ₂ O) ₁₁ CH ₂ CH ₂ CONH(CH ₂ CH ₂ O) ₁₁ CH ₂ CH ₂ -CONH-Tyr(3-
	$^{123}I)-NH_{2}$
33.	-NH(CH ₂ CH ₂ O) ₃ (CH ₂) ₂ NH(CO)CH ₂ OCH ₂ CO-NH-Tyr-NH ₂
34.	-Glu-NH(CH ₂ CH ₂ O) ₃ (CH ₂) ₂ NH(CO)CH ₂ OCH ₂ CO-NH-Tyr-NH ₂
35.	-Glu-NH(CH ₂ CH ₂ O) ₃ (CH ₂) ₂ NH(CO)CH ₂ OCH ₂ CO-NH-Tyr(3-iodo)-NH
36.	-NH(CH ₂ CH ₂ O) ₁₁ CH ₂ CH ₂ CONH(CH ₂ CH ₂ O) ₁₁ CH ₂ CH ₂ -CONH-Tyr-NH
37.	-(Glu) ₅ -NH(CH ₂ CH ₂ O) ₃ (CH ₂) ₂ NH(CO)CH ₂ OCH ₂ CO-NH-Tyr-NH ₂
38.	-(Glu) ₅ -NH(CH ₂ CH ₂ O) ₃ (CH ₂) ₂ NH(CO)CH ₂ OCH ₂ CO-NH-Tyr(3-iodo) NH ₂
39.	-NH-Tyr-NH ₂
40.	-NH-Tyr(3-iodo)-NH ₂
41.	-(Lys) ₅ -NH(CH ₂ CH ₂ O) ₃ (CH ₂) ₂ NH(CO)CH ₂ OCH ₂ CO-NH-Tyr-NH ₂
42.	-(Lys) ₅ -NH(CH ₂ CH ₂ O) ₃ (CH ₂) ₂ NH(CO)CH ₂ OCH ₂ CO-NH-Tyr(3-iodo) NH ₂

ATTICUTE CATE ON CALL CONTAINED AND
-NH(CH ₂ CH ₂ O) ₁₁ CH ₂ CH ₂ -CONH-Tyr-NH ₂
-NH(CH ₂ CH ₂ O) ₁₁ CH ₂ CH ₂ -CONH-Tyr(3-iodo)-NH ₂
-(Lys-α-NH ₂)ε-COCH ₂ O-NH ₂
-(Lys-α-NH ₂)ε-COCH ₂ O-N=CH-(4-F-phenyl)
-(Lys-α-NH ₂)ε-COCH ₂ O-N=CH-(4- ¹⁸ F-phenyl)
-NH(CH ₂ CH ₂ O) ₁₁ CH ₂ CCH ₂ CONH(CH ₂ CH ₂ O) ₁₁ CH ₂ CH ₂ -CONH-Lys-α-
NH ₂ -ε-COCH ₂ O-NH ₂ -NH(CH ₂ CH ₂ O) ₁₁ CH ₂ CH ₂ CONH(CH ₂ CH ₂ O) ₁₁ CH ₂ CH ₂ -CONH-Lys-α-
$NH_2-\epsilon$ -COCH ₂ O-N=CH-(4-F-phenyl)
-NH(CH ₂ CH ₂ O) ₁₁ CH ₂ CH ₂ CONH(CH ₂ CH ₂ O) ₁₁ CH ₂ CH ₂ -CONH-Lys-α-NH ₂ -ε-COCH ₂ O-N=CH-(4- ¹⁸ F-phenyl)

Note: the abbreviation [amino acid]-NH₂ indicates a terminal -CONH₂ amide group on the amino acid carboxy terminus.

Where Chelator 1 is:

Figure 2.

Compound	Structure
27.	OOH
	HO N S [prior art]
28.	HO N S O
	[prior art]
29.	HO N S O
	[prior art]

WO 2005/049005 PCT/GB2004/004792 5/5

Figure 3: In Vivo Images

