FIZIKA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

2021. október 28. 14:00

Időtartam: 120 perc

Pótlapok száma	
Tisztázati	
Piszkozati	

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fizika
középszint

Név: osztály:.....

Fontos tudnivalók

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét!

A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázatok.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, a megoldást a feladatlap üres oldalain, illetve pótlapokon folytathatja a feladat számának feltüntetésével.

Itt jelölje be, hogy a második rész 3/A és 3/B feladatai közül melyiket választotta (azaz melyiknek az értékelését kéri):

3/

Fizika
középszint

Név: osztály:.....

ELSŐ RÉSZ

Az alábbi kérdésekre adott válaszlehetőségek közül pontosan egy jó. Írja be ennek a válasznak a betűjelét a jobb oldali fehér négyzetbe! (Ha szükségesnek tartja, kisebb számításokat, rajzokat készíthet a feladatlapon.)

1. Három súlyzókorong nyugszik egymáson az ábra szerint. Mekkora erővel nyomja a C korong a B korongot?

- A) 70 N erővel.
- **B)** 130 N erővel.
- **C)** 120 N erővel.

- 2. Egy szobahőmérsékletű test hőmérséklete 1000 J közölt hő hatására 3 °C-kal növekszik. Mennyit változik ugyanennek a testnek a hőmérséklete 2000 J hőközlés hatására? (A hőveszteség a melegítés során elhanyagolható, a test nem megy át halmazállapot-változáson.)
 - A) Pontosan 6 °C-ot változik, a kezdeti hőmérsékletétől függetlenül.
 - **B)** A test kezdeti hőmérsékletétől függően 6 °C-nál többet vagy kevesebbet is változhat.
 - C) A test anyagi minőségétől függően 6 °C-nál többet vagy kevesebbet is változhat.

2 pont	

- 3. Mi az atomerőművekben lejátszódó láncreakció működésének alapja?
 - A) A magfúzió.
 - B) A radioaktivitás.
 - C) A maghasadás.
 - **D)** Mindhárom jelenség szerepet játszik.

4. Az ábrán látható "T" alakú homogén rúd súlypontját keressük. Hol található?

- A) A vízszintes rúd közepén.
- B) A vízszintes rúd jobb oldali végén.
- C) A vízszintes rúd közepe és jobb oldali vége között.
- **D)** A vízszintes rúd bal oldali végén.

2 pont

5. Egy gázkeverék tartályához folyadékmanométer csatlakozik. Az ábra szerint a külső légnyomás vagy a gáztartályban lévő gáz nyomása nagyobb?

- A) A külső légnyomás a nagyobb.
- B) A gáztartályban lévő gáz nyomása a nagyobb.
- C) A két nyomás megegyezik.

2 pont

6. Egy ideális telepre sorosan kötünk egy állandó és egy változtatható ellenállást az ábra szerint. Az áramkörben van két mérőműszer is. Ha a tolóellenállás csúszkáját a nyíl irányába mozgatjuk, melyik állítás lesz igaz az alábbiak közül?

- A) Az ampermérő által mutatott érték növekszik.
- B) A voltmérő által mutatott érték növekszik.
- C) Sem az A, sem a B állítás nem igaz.

Fizika
középszint

Név:	osztály:.
------	-----------

7. Mit állíthatunk a képen látható, fehér falon létrejött árnyékot okozó fényforrásról?

- A) Egy darab pontszerű fényforrásról van szó.
- B) Két darab pontszerű fényforrásról van szó.
- C) Egy darab kiterjedt fényforrásról van szó.

2 pont

8. A mellékelt ábrán látható kapcsolásban világíthat-e az izzó?

- A) Igen, mert az izzót egy-egy elem pozitív, illetve negatív sarka közé kötöttük.
- **B)** Nem, mert ha egy elem pozitív sarkát összekötöm egy másik elem negatív sarkával, rövidzár jön létre.
- C) Igen, de csak akkor, ha egyik elem sincs kimerülve.
- **D)** Nem, mert nem jön létre zárt áramkör.

2 pont

9. Két ugyanolyan anyagból készült, ugyanakkora labda úszik két egyforma pohárban, de különböző folyadékban úgy, hogy a két labda pontosan ugyanolyan magasan helyezkedik el az asztal fölött, amint azt az ábra mutatja. Melyik folyadék a sűrűbb?

- A) A bal oldali pohárban lévő.
- **B)** A jobb oldali pohárban lévő.
- C) Egyforma sűrű a két folyadék.

Fizika középszint	Név:	os	sztály:
	nr-féle atommodell szerint a hidrogénatom elektronja alapálla otba kerülhet. Hogyan?	potból ge	erjesztett
A) B) C) D)	Egy foton elnyelése révén. Egy foton kibocsájtása révén. Egy proton elnyelése révén. Egy proton kibocsájtása révén.		
		2 pont	
	ldon azonos magasságból leejtett tollpihe és kalapács azonos Mi ennek az oka?	idő alatí	t éri el a
A) B) C) D)	Az, hogy a Holdon nincs gravitáció. Az, hogy a Holdon gyengébb a gravitáció, mint a Földön. Az, hogy a Holdon nagyobb a centripetális erő. Az, hogy a Holdon nincs légkör.		
		2 pont	
induk tekint	is, elektromosan töltött részecske egy bolygó mágneses terébe cióvektor a részecske sebességével párhuzamos és a mágneses hető. Hogyan mozog a részecske ebben a térrészben, ha csal át vesszük figyelembe, és az egyéb hatásokat elhanyagolhatjuk	tér hom k a mági	ogénnek
A) B) C)	A részecske egyenes vonalú egyenletes mozgással repül tovább. A részecske elkanyarodik, de a sebessége állandó marad. A részecske lelassul.		
		2 pont	
állítha	tőernyős ernyőjét hosszabb esést követően egy rántással atunk az ejtőernyősre ható eredő erő irányáról az ejtőernyő l atban?	_	
A) B)	Az eredő erő a mozgás irányába, azaz lefelé mutat. Az eredő erő nulla, hiszen az ébredő erő-ellenerő pár kioltja egyn	nás	

B) Az eredő erő nulla, hiszen az ébredő erő-ellenerő pár kioltja egymás hatását.

C) Az eredő erő felfelé mutat, hiszen az ejtőernyős lassul.

- 30 cm. B)
- C) 40 cm.

18. Az ábrán egy nyúl vázlatos út-idő grafikonját láthatjuk. Az alábbi időpillanatok közül melyikben volt a legnagyobb a nyúl sebessége?

- \mathbf{A}) \mathbf{t}_1
- **B**) t₂
- **C**) t₃
- **D)** t₄

2 pont

- 19. Tegyük fel, hogy egy távoli galaxisban ebben a pillanatban felrobban egy hatalmas csillag, óriási energiájú sugárzást bocsátva ki. Körülbelül mikor észlelhetik ezt a földi csillagászok?
 - A) Azonnal.
 - B) Pár perc elteltével.
 - C) Csak évmilliók vagy akár évmilliárdok múlva.

2 pont	
--------	--

- 20. Egy radioaktív izotópokat tartalmazó minta aktivitása négy nap alatt körülbelül a tizenhatodára csökkent. Mekkora lehet az izotóp felezési ideje?
 - **A)** 4 nap.
 - **B)** 1 nap.
 - **C)** 1/4 nap.

Fizika
középszint

Név:	 osztálv:
1101.	 obziały

MÁSODIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

- 1. Egy állólámpa izzója a fehér faltól 4,4 méter távolságra van. Egy üveglencse az izzószálról tízszeres nagyítású képet vetít a falra.
 - a) Hol helyezkedik el a lencse?
 - b) Hány dioptriás a lencse?

a)	b)	Összesen
10 pont	5 pont	15 pont

Fizika	Név: osztály:
középszint	5

2. A jégtakaró olvadása a legrosszabb forgatókönyvet követi

Grönland és az Antarktisz jégtakarója, amely összességében annyi fagyott vizet tartalmaz, ami a világóceánok szintjét 65 méterrel tudná megemelni, olyan gyorsasággal olvad, amit a korábbi előrejelzések legrosszabb forgatókönyvként emlegettek – figyelmeztetnek tudósok a Nature Climate Change folyóiratban. A 2007 és 2017 között mért, a tengerbe jutó olvadékvíz és leváló jég miatti jégtömegveszteséget alapul véve ez önmagában a világóceánok 40 cm-es szintemelkedését okozza majd 2100-ig. Már ekkora emelkedésnek is pusztító hatásai lennének világszerte az erősen megemelkedő vihardagályok és egyre gyakoribbá váló áradások miatt. A 21. századig a nyugat-antarktiszi és a grönlandi jégtakaró általában ugyanakkora tömeggel gyarapodott a téli hóesések miatt, mint amennyi nyáron az olvadék miatti veszteség volt. Az utolsó két évtizedben azonban a globális felmelegedés felborította ezt az egyensúlyt. 2019-ben a grönlandi jégtakaró tömege rekordot jelentő 532 milliárd tonnával lett kisebb. Az északi sarkvidék jege a felmelegedés miatt szintén eltűnőben van. Azonban ez a jég a tenger felszínén úszva alakul ki, ezért olvadása nem járul hozzá a tengerszint emelkedéséhez.

(A https://www.sciencealert.com/ice-sheet-melting-is-perfectly-in-line-with-our-worst-case-scenario-scientists-warn nyomán)

- a) Írja le részletesen a folyamatot, amely egyensúlyban tartotta a grönlandi jégtakaró tömegét a 20. században! Mitől fogy és hogyan gyarapszik a jégtakaró? Hogyan borult fel ez az egyensúly az utóbbi 20 évben?
- b) Miért okozza a grönlandi és antarktiszi jégtakaró olvadása a világóceánok szintjének emelkedését? Miért nem lép fel ilyen hatás az északi sarkvidék jegének olvadása nyomán?
- c) A tengerek hőmérsékletének emelkedése az olvadástól függetlenül is a tengerszint emelkedéséhez vezet egy bizonyos hőmérséklet felett. Miért?
- d) Ha a grönlandi jégtakaró által 2019-ben elveszített jég olvadékvize egyenletesen terülne el Magyarország területén, milyen mély víz takarná a földet? (Magyarország területe 93000 km², a víz sűrűsége 1000 kg/m³.)

2113 írásbeli vizsga 10 / 16 2021. október 28.

a)	b)	c)	d)	Összesen
3 pont	6 pont	2 pont	4 pont	15 pont

A 3/A és a 3/B feladatok közül csak az egyiket kell megoldania. A címlap belső oldalán jelölje be, hogy melyik feladatot választotta!

3/A A vas olvasztásának egy lehetséges módja az indukciós kemence. A kemence felépítését az ábra mutatja. Egy magas hőmérsékleten is hőálló tartályt egyenes tekercs vesz körül. A tekercsbe váltóáramot vezetnek. Ha a tartályba vasdarabokat helyeznek, azok vasmagként viselkedve felerősítik a tekercs mágneses terét, és egy idő után a bennük fellépő erős örvényáramok hőhatása miatt megolvadnak. Más fémek nem erősítik fel a mágneses teret úgy, mint a vas, az örvényáramok sokkal gyengébbek lesznek. Ezért a kemence csak vas olvasztására használható.

- a) Mutassa be, hogy milyen a mágneses tér egy váltóárammal táplált egyenes tekercs belsejében!
- b) Hogyan módosul a mágneses tér erőssége, ha a tekercsbe vasmagot helyezünk?
- c) Magyarázza el részletesen, hogy miért lépnek fel örvényáramok a kemencébe helyezett vasdarabokban!
- d) Mitől olvadnak meg a vasdarabok a kemencében?
- e) Lehet-e üveget olvasztani az indukciós kemencében?
- f) Miért nem olvad meg a réz és az alumínium a gyengébb örvényáramok hatására?
- g) Működne-e a kemence, ha egyenáramot vezetnénk a tekercsbe? Válaszát indokolja!
- h) Miért nem lehet a kemence tartálya vasból?

a)	b)	c)	d)	e)	f)	g)	h)	Összesen
2 pont	2 pont	4 pont	2 pont	3 pont	3 pont	3 pont	1 pont	20 pont

- 3/B Egy garázs bejáratát motoros alumíniumredőnnyel zárják be. A motor állandó fordulatszámmal forgat egy, a bejárat felett lévő hengert, amire a redőny feltekeredik, illetve amiről letekeredik. A redőny feltekeredésével a henger fordulatonként egyre vastagabb lesz, miközben a fordulatszáma állandó marad. A grafikonon a redőny aljának sebessége látható az idő függvényében.
 - a) Határozza meg a henger fordulatszámát 1/perc egységekben!
 - b) Mennyivel nő meg egy fordulat után a redőny aljának sebessége?
 - c) Mennyivel nő meg a henger sugara, azaz milyen vastag a redőny?
 - d) Határozzuk meg, hogy milyen hosszú a redőny, azaz milyen magas a bejárat!

A redőny aljának sebessége az idő függvényében

a)	b)	c)	d)	Összesen
4 pont	2 pont	8 pont	6 pont	20 pont

Fizika középszint	Név:	osztály:

	pontszám		
	maximális	elért	
I. Feleletválasztós kérdéssor	40		
II. Összetett feladatok	50		
Az írásbeli vizsgarész pontszáma	90		

dátum	javító tanár

	pontszáma egész számra kerekítve	
	elért programb beírt	
I. Feleletválasztós kérdéssor		
II. Összetett feladatok		
dátum	dá	tum

jegyző

javító tanár