Proactive Control of Traffic in Smart Cities

Benjamín Zavala and Germán H. Alférez

Global Software Lab, School of Engineering and Technology, Montemorelos University, Mexico

Traffic Congestion in Big Cities

- In recent years, the world has experienced mass migration from the countryside to the city.
- For example, in Mexico today over
 70% of the population lives in the city [1].

International Business Times

- This phenomenon leads to many problems.
 - Traffic congestions negatively affect the quality of life of citizens by increasing:
 - Travel time
 - Stress
 - Economic lost
 - Environmental pollution

Time for red or green = 15 seconds Vehicles that come to the queue = 0 - 9 cars Average crossing time = 3 seconds

Reactive Vs. Proactive

Reactive solutions

to control traffic in smart cities wait for an **event to happen** (i.e., a long queue at a traffic light) to generate an action to try to solve this event.

Examiner

Reactive Vs. Proactive (Cont.)

For cities to become truly intelligent, they need "proactive" solutions that anticipate traffic problems and prevent these problems from becoming evident.

Basis of Our Solution

Basis of Our Solution (Cont.)

Machine Learning

Forecasting is the process of making statements about events whose actual outcomes have not yet been observed [9].

Basis of Our Solution (Cont.)

Autonomic Computing

- The AC initiative is inspired by the human body's autonomic nervous system (monitors unconsciously heartbeat, blood sugar level, body temperature).
- It has evolved as a discipline to create self-managing software to overcome the complexities to maintain systems effectively.
- IBM's reference model for autonomic control loops (which is sometimes called the MAPE-K loop) [10].

Our Solution

Monitor

- Monitoring involves capturing properties of the context that are meaningful to the selfproperties of the system.
- Traffic Observer: observes the traffic through sensors.
 - The Traffic Observer periodically checks the activity in the traffic simulation.

Monitor (Cont.)

- The Traffic Observer detects if the number of vehicles queued at a certain moment at the traffic light is greater than the Service Level Agreement (SLA), i.e., a violation of the SLA.
 - If so, this event is saved in a log file with .arff extension.

@relation A @attribute seconds numeric @attribute cars numeric @data 60, 7

Analysis

The objective of this phase is to **detect**, in a **proactive** manner, the **traffic problems** that may occur according to the results captured in the log generated by the Traffic Observer.

Analysis (Cont.)

- In order to accomplish the prediction of traffic problems, we use the **Weka Forecasting plugin.**
 - This plugin can load or import a time series forecasting model and use it to generate a forecast for future time steps beyond the end of incoming historical data [13].
 - Multilayer Perceptron.

Analysis (Cont.)

The forecaster predicts SLA violation: 35 cars in queue

Planning

- The objective of this phase is to plan how to automatically solve the traffic problems predicted in the analysis phase.
 - Adaptation Planner:
 plans changes in traffic
 light timers.

Planning (Cont.)

1. The **Adaptation Planner** keeps in a variable the text recovered from the file generated in the previous phase.

For example, the **Adaptation Planner** takes the data of 35 vehicles in queue that will violate the SLA at some future time (after training) according to forecasting.

Planning (Cont.)

2. The **Adaptation Planner** performs the following operation:

newTimer = (int) (d * tCross)

d = numbers of cars that could violate the SLA according to forecasting

tCross = average time that a car takes to cross an intersection

The value of the "newTimer" variable, which corresponds to the solution to a problem (i.e., a possible violation of the SLA), is saved.

Planning (Cont.)

For example,

- A vehicle takes around 3 seconds to cross the intersection (tCross)
- There are 35 expected vehicles that will arrive at the traffic light (d).

The result of **newTimer** is **105 seconds** (newTimer = (int) (d * tCross))

It means that 35 vehicles take 105 seconds to cross the intersection.

Execution

- The objective of this phase consists of making changes in the timers of the traffic lights according to the results of the planning phase.
- Actuators are in charge of making changes in traffic light temporizers (according to "newTimer").

Running Prototype

Running Prototype (Cont.)

- During training, the number of times that the SLA was violated is pretty high at each traffic light:
 - 59 violations at the traffic light A
 - 57 violations at the traffic light B
- By using forecasting the number of SLA violations descended dramatically
 - 17 violations at the traffic light A
 - 26 violations in traffic light B

Running Prototype (Cont.)

Conclusions and Future Work

- A proactive solution to traffic control by means of Machine Learning and Autonomic Computing.
- As future work, we will implement a computer vision module for live traffic control through cameras.
 - The Traffic Observer will collect this data.
- We will also develop a mobile application to help users make queries about the status of the traffic.

Thank you!