กลุ่มลูกหมี

01

PROJECT_DWDM

ข้อมูลชุดที่ 1 จำนวนผู้ลงทะเบียนใช้บริการอินเทอร์เน็ตความเร็วสูง

In [4]: data_subscriber = pd.read_csv(os.path.join(path,'10broadband-subscribers.csv')) #สานวนผู้ลงทะเบียนใช้บริการอินเทอร์เน็ตความเร็วสูงเก็บไว้ในตัวแปร data_subscriber data_subscriber

Out[4]:

	no.	quarter	Thailand Internet Users_subscriber	year	value_subscriber
0	4	4	Total Internet subscribers	2003	652726.00
1	3	3	Total Internet subscribers	2003	529530.00
2	2	2	Total Internet subscribers	2003	453043.00
3	1	1	Total Internet subscribers	2003	365219.00
4	8	4	Total Internet subscribers	2004	1231344.00
			•••		•••
68	72	4	Total Internet subscribers	2020	11478264.92
69	71	3	Total Internet subscribers	2020	11282645.58
70	70	2	Total Internet subscribers	2020	10912996.14
71	69	1	Total Internet subscribers	2020	10264995.67
72	73	1	Total Internet subscribers	2021	11876158.44

73 rows × 5 columns

4

ข้อมูลชุดที่ 2 อัตราการเข้าถึงของบริการอินเทอร์เน็ต ความเร็วสูงต่อจำนวนครัวเรือน

In [6]: data_household = pd.read_csv(os.path.join(path,'12broadband-penetration-per-household-.csv')) #ฮัตราการเข้าถึงของบริการอินเทอร์เน็ตความเร็วสูงต่อจำนวนครัวเรือนเก็บไว้ในด้วนปร data_household data_household

Out[6]:

	no.	type_household	quarter	year	value_household
0	4	per household (%)	4	2003	0.000649
1	3	per household (%)	3	2003	0.000459
2	2	per household (%)	2	2003	0.000343
3	1	per household (%)	1	2003	0.000281
4	8	per household (%)	4	2004	0.008716
68	72	per household (%)	4	2020	0.514683
69	71	per household (%)	3	2020	0.515873
70	70	per household (%)	2	2020	0.498972
71	69	per household (%)	1	2020	0.469344
72	73	per household (%)	1	2021	0.532524

73 rows × 5 columns

4

ข้อมูลชุดที่ 3 อัตราการเข้าถึงของบริการอินเทอร์เน็ตความเร็วสูง ต่อจำนวนประชากร

In [8]: data_population = pd.read_csv(os.path.join(path,'11broadband-penetration-per-population-.csv')) #อัตราการเข้าถึงของบริการอินเทอร์เน็ตความเร็วสูงต่อจำนวนประชากร ชื่อ data_population data_population

Out[8]:

	no.	type_population	quarter	year	value_population
0	1	per population (%)	1	2003	0.0001
1	2	per population (%)	2	2003	0.0001
2	3	per population (%)	3	2003	0.0001
3	4	per population (%)	4	2003	0.0002
4	5	per population (%)	1	2004	0.0005
68	69	per population (%)	1	2020	0.1510
69	70	per population (%)	2	2020	0.1605
70	71	per population (%)	3	2020	0.1659
71	72	per population (%)	4	2020	0.1685
72	73	per population (%)	1	2021	0.1740

73 rows × 5 columns

.

ข้อมูลชุดที่ 4 จำนวนเลขหมายโทรศัพท์เคลื่อนที่ ที่ใด้รับการจดทะเบียน

[16]: data_mobile = pd.read_csv(os.path.join(path,'05mobile-subscribers.csv')) #สานวนเลขหมายโทรศัพท์เคลื่อนที่ที่ได้รับการจดทะเบียน เก็บในตัวแปรชื่อdata_mobile data_mobile

[16]:

	no.	Mobile Market Report	quarter	year	value_mobile
0	4	Mobile Subscribers	4	2002	17449890
1	3	Mobile Subscribers	3	2002	15743776
2	2 Mobile Subscribers		2	2002	12416261
3	1	Mobile Subscribers	1	2002	9669909
4	8	Mobile Subscribers	4	2003	21616910
					•••
72	76	Mobile Subscribers	4	2020	116294420
73	75	Mobile Subscribers	3	2020	119169759
74	74	Mobile Subscribers	2	2020	131881072
75	73	Mobile Subscribers	1	2020	132594791
76	77	Mobile Subscribers	1	2021	117562201

77 rows × 5 columns

4

ปัญหาและวัตถุประสงค์

ปัญหา

เราไม่สามารถพยากรณ์ข้อมูลปี ต่อๆไปได้ เนื่องจากยังไม่ทราบ ความสัมพันธ์ของข้อมูลปัจจุบัน ที่มีอยู่

<u>วัตถุประสงค์</u>

เพื่อศึกษาความสัมพันธ์ของ ตารางที่ 1 ถึง 4 ว่าความ สัมพันธ์ที่ได้จากการคาดเดาปี ต่อๆไปเป็นยังใง?

Preprocessing

In [20]: merge_table3 = data_mobile3.merge(merge_table2,how="left", left_on="no.", right_on="no.") # เชื่อมตาราง merge_table2 และ data_mobile เโดยให้ตาราง merge_table2 เป็ นตารางหลักอยู่ที่ด้านซ้าย merge_table3

Out[2

	no.	Mobile Market Report	value_mobile	quarter	Thailand Internet Users_subscriber	year	value_subscriber	type_population	value_population	type_household	value_househ
0	5	Mobile Subscribers	18763102	1.0	Total Internet subscribers	2004.0	785931.00	per population (%)	0.0005	per household (%)	0.001556
1	6	Mobile Subscribers	19788956	2.0	Total Internet subscribers	2004.0	914400.00	per population (%)	0.0007	per household (%)	0.002265
2	7	Mobile Subscribers	20655866	3.0	Total Internet subscribers	2004.0	1091652.00	per population (%)	0.0015	per household (%)	0.004964
3	8	Mobile Subscribers	21616910	4.0	Total Internet subscribers	2004.0	1231344.00	per population (%)	0.0026	per household (%)	0.008716
4	9	Mobile Subscribers	23217311	1.0	Total Internet subscribers	2005.0	1197942.00	per population (%)	0.0045	per household (%)	0.015449
:											
68	73	Mobile Subscribers	132594791	1.0	Total Internet subscribers	2021.0	11876158.44	per population (%)	0.1740	per household (%)	0.532524
69	74	Mobile Subscribers	131881072	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
70	75	Mobile Subscribers	119169759	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
71	76	Mobile Subscribers	116294420	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
72	77	Mobile Subscribers	117562201	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

73 rows × 11 columns

จากนั้นทำการตรวจสอบค่า Missing

```
[23] 1 # เช็ค missing ตาราง merge_table3
2 merge_table3.isnull().any()
```

```
False
no.
                                       False
Mobile Market Report
value_mobile
                                       False
                                        True
quarter
Thailand Internet Users_subscriber
                                        True
                                        True
year
value_subscriber
                                        True
type_population
                                        True
value_population
                                        True
type_household
                                        True
value_household
                                        True
dtype: bool
```

พบว่ามีค่า missing อยู่

In [22]: merge_table3_drop = merge_table3.dropna() #จัดการกับ Missing ด้วยการ dropna merge_table3_drop

Out[22]:

	no.	Mobile Market Report	value_mobile	quarter	Thailand Internet Users_subscriber	year	value_subscriber	type_population	value_population	type_household	value_househo
0	5	Mobile Subscribers	18763102	1.0	Total Internet subscribers	2004.0	785931.00	per population (%)	0.0005	per household (%)	0.001556
1	6	Mobile Subscribers	19788956	2.0	Total Internet subscribers	2004.0	914400.00	per population (%)	0.0007	per household (%)	0.002265
2	7	Mobile Subscribers	20655866	3.0	Total Internet subscribers	2004.0	1091652.00	per population (%)	0.0015	per household (%)	0.004964
3	8	Mobile Subscribers	21616910	4.0	Total Internet subscribers	2004.0	1231344.00	per population (%)	0.0026	per household (%)	0.008716
4	9	Mobile Subscribers	23217311	1.0	Total Internet subscribers	2005.0	1197942.00	per population (%)	0.0045	per household (%)	0.015449
		•••									
64	69	Mobile Subscribers	122173569	1.0	Total Internet subscribers	2020.0	10264995.67	per population (%)	0.1510	per household (%)	0.469344
65	70	Mobile Subscribers	124366678	2.0	Total Internet subscribers	2020.0	10912996.14	per population (%)	0.1605	per household (%)	0.498972
66	71	Mobile Subscribers	126137528	3.0	Total Internet subscribers	2020.0	11282645.58	per population (%)	0.1659	per household (%)	0.515873
67	72	Mobile Subscribers	129613743	4.0	Total Internet subscribers	2020.0	11478264.92	per population (%)	0.1685	per household (%)	0.514683
68	73	Mobile Subscribers	132594791	1.0	Total Internet subscribers	2021.0	11876158.44	per population (%)	0.1740	per household (%)	0.532524

69 rows × 11 columns

จัดการ Missing ด้วยการ dropna

จากนั้นทำการตรวจสอบค่า Missing ไม่พบค่าที่ missing แล้ว

```
[25] 1 # เช็ค missing ตาราง merge_table3_drop
2 merge_table3_drop.isnull().any()
```

```
False
no.
Mobile Market Report
                                       False
value_mobile
                                       False
                                       False
quarter
Thailand Internet Users_subscriber
                                       False
                                       False
year
value_subscriber
                                       False
                                       False
type_population
value_population
                                       False
type_household
                                       False
                                       False
value_household
dtype: bool
```

ต่อมาทำการตรวจสอบว่า การลบ missing ด้วยการ .dropna() จะเสียข้อมูลกี่เปอร์เซ็น

```
[26] 1 # จากการทำ dropna() ทำให้ข้อมูลหายไปกี่ %
2 removed = merge_table3.shape[0] - merge_table3_drop.shape[0]
3
4 print(f'size before drop = {merge_table3.shape[0]}')
5 print(f'size aftre drop = {merge_table3_drop.shape[0]}')
6 print(f'we loss {100*(removed/merge_table3.shape[0])}% of data')
```

size before drop = 73
size aftre drop = 69
we loss 5.47945205479452% of data

Classification

แก้ไขข้อมูลโดยกำหนดค่าในตาราง เพื่อให้ข้อมูลในตารางนำไปใช้ในการ Assosiation ได้ โดยการเพิ่ม column ใหม่ในตาราง merge_table3_drop และ column ที่สร้างใหม่นั้นจะ ตามหลังด้วย _group โดยการจัดกลุ่มให้ค่าทั้งหมดในแต่ละ column ซึ่งจัดกลุ่มดังนี้

ทำการ import package

```
In [27]: from pandas.api.types import CategoricalDtype
```

ดูชื่อ column ในตาราง merge_table3_drop

จากนั้นเพิ่ม column ใหม่ในตาราง merge_table3_drop โดยกำหนดให้ column ชื่อว่า subscriber_group

- ถ้ามีค่าตั้งแต่ 0 2000000 จะให้เป็น low_subscriber
- ถ้ามีค่าตั้งแต่ 2000000 5000000 จะให้เป็น median_subscriber
- ถ้ามีค่าตั้งแต่ 5000000 12000000 จะให้เป็น high_subscriber

```
In [56]: bucket = ['low_subscriber', 'median_subscriber', 'high_subscriber']
merge_table3_drop['subscriber_group'] = pd.cut(merge_table3_drop.value_subscriber,
bins=[0,2000000,5000000,12000000],
labels=bucket,
right=False).astype(str).astype(CategoricalDtype(bucket,ordered=True))
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:5: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

column ชื่อว่า household_group

- ถ้ามีค่าตั้งแต่ O 0.1 จะให้เป็น low_household
- ถ้ามีค่าตั้งแต่ 0.1 0.3 จะให้เป็น median_household
- ถ้ามีค่าตั้งแต่ 0.3 0.6 จะให้เป็น high_household

column ชื่อว่า population_group

- ถ้ามีค่าตั้งแต่ O 0.05 จะให้เป็น low_population
- ถ้ามีค่าตั้งแต่ 0.05 0.10 จะให้เป็น median_population
- ถ้ามีค่าตั้งแต่ 0.10 0.18 จะให้เป็น high_population

column ชื่อว่า mobile_group

- ถ้ามีค่าตั้งแต่ 0 0.05 จะให้เป็น low_mobile
- ถ้ามีค่าตั้งแต่ 0.05 0.10 จะให้เป็น median_mobile
- ถ้ามีค่าตั้งแต่ 0.10 0.18 จะให้เป็น high_mobile

```
In [47]: bucket = ['low_mobile', 'median_mobile', 'high_mobile']
merge_table3_drop['mobile_group'] = pd.cut(merge_table3_drop.value_mobile,
bins=[0,50000000,100000000],
labels=bucket,
right=False).astype(str).astype(CategoricalDtype(bucket,ordered=True))

/usr/local/lib/python3_7/dist-packages/ipykernel_launcher.py:5: SettingWithCopyWarning:
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:5: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

```
In [58]: merge_table3_drop.columns
Out[58]: Index(['no.', 'Mobile Market Report', 'value_mobile', 'quarter', 'Thailand Internet Users_subscriber', 'year', 'value_subscriber', 'type_population', 'value_population', 'type_household', 'value_household', 'subscriber_group', 'household_group', 'population_group', 'mobile_group'], dtype='object')
```

In [59]: data_cut = merge_table3_drop[['subscriber_group', 'household_group', 'population_group', 'mobile_group']] data_cut

Out[59]:

	subscriber_group	household_group	population_group	mobile_group
0	low_subscriber	low_household	low_popution	low_mobile
1	low_subscriber	low_household	low_popution	low_mobile
2	low_subscriber	low_household	low_popution	low_mobile
3	low_subscriber	low_household	low_popution	low_mobile
4	low_subscriber	low_household	low_popution	low_mobile
			:	
64	high_subscriber	high_household	high_population	high_mobile
65	high_subscriber	high_household	high_population	high_mobile
66	high_subscriber	high_household	high_population	high_mobile
67	high_subscriber	high_household	high_population	high_mobile
68	high_subscriber	high_household	high_population	high_mobile

69 rows × 4 columns

Assosiation

```
In [52]: !pip install apyori
                              Requirement already satisfied: apyori in /usr/local/lib/python3.7/dist-packages (1.1.2)
                            from apyori import apriori
  In [53]:
  In [59]: transacs = [] ## กำหนด transacs ให้เป็น list ว่าง
                               for i in range(0,len(data_cut)):
                                 transacs.append([str(data_cut.values[i,j]) for j in range(0,4)])
                            Association = list(apriori(transacs, min_support = 0.40, min_cofidence = 0.40))
                               Association
Out[63]: [RelationRecord(items=frozenset({'high_subscriber'}), support=0.42028985507246375, ordered_statistics=[OrderedStatistic(items_base=frozenset(), items_add=frozenset())
                              et({'high_subscriber'}), confidence=0.42028985507246375, lift=1.0)]),
                               RelationRecord(items=frozenset({'low_population'}), support=0.4057971014492754, ordered_statistics=[OrderedStatistic(items_base=frozenset(), items_add=frozenset
                               ({'low_population'}), confidence=0.4057971014492754, lift=1.0)]),
                               RelationRecord(items=frozenset({'median_household'}), support=0.43478260869565216, ordered_statistics=[OrderedStatistic(items_base=frozenset(), items_add=frozenset()
                              enset({'median_household'}), confidence=0.43478260869565216, lift=1.0)]),
                               RelationRecord(items=frozenset({'median_mobile'}), support=0.4492753623188406, ordered_statistics=[OrderedStatistic(items_base=frozenset(), items_add=frozenset
                              ({'median_mobile'}), confidence=0.4492753623188406, lift=1.0)]),
                               RelationRecord(items=frozenset({'median_mobile', 'median_household'}), support=0.43478260869565216, ordered_statistics=[OrderedStatistic(items_base=frozenset
                              (), items_add=frozenset({'median_mobile', 'median_household'}), confidence=0.43478260869565216, lift=1.0), OrderedStatistic(items_base=frozenset({'median_household'}), orderedStatistic(items_base=frozenset({'media
                             hold'}), items_add=frozenset({'median_mobile'}), confidence=1.0, lift=2.225806451612903), OrderedStatistic(items_base=frozenset({'median_mobile'}), items_add=frozenset({'median_mobile'}), items_add=frozense
                             zenset({'median_household'}), confidence=0.967741935483871, lift=2.2258064516129035)])]
```

In [41]: # กำหนดข้อมูลให้เป็นค่าตัวเลข โดยชื่อข้อมูลที่ขึ้นต้นด้วย Low=0 , median=1 , high=2
data_cut['subscriber_group'] = data_cut['subscriber_group'].map({'low_subscriber':0,'median_subscriber':1,'high_subscriber':2})
data_cut['household_group'] = data_cut['household_group'].map({'low_household':0,'median_household':1,'high_household':2})
data_cut['population_group'] = data_cut['population_group'].map({'low_population':0,'median_population':1,'high_population':2})
data_cut['mobile_group'] = data_cut['mobile_group'].map({'low_mobile':0,'median_mobile':1,'high_mobile':2})
data_cut

Out[41]:

	subscriber_group	household_group	population_group	mobile_group
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
64	2	2	2	2
65	2	2	2	2
66	2	2	2	2
67	2	2	2	2
68	2	2	2	2

69 rows x 4 columns

```
[48] 1 from matplotlib import pyplot as plt

[49] 1 plt.plot(range(len(data_cut.iloc[:,:-3])),data_cut.iloc[:,:-3],'*:g',alpha=0.5,label='subscriber_group')
2 plt.plot(range(len(data_cut.iloc[:,1:-2])),data_cut.iloc[:,1:-2],'*:b',alpha=0.5,label='household_group')
3 plt.plot(range(len(data_cut.iloc[:,2:-1])),data_cut.iloc[:,2:-1],'*:y',alpha=0.5,label='population_group')
4 plt.plot(range(len(data_cut.iloc[:,3:])),data_cut.iloc[:,3:],'*:r',alpha=0.5,label='mobile_group')
5
6 plt.ylabel('value')
7 plt.xlabel('quantity')
8 plt.title('compare relationship')
9 plt.legend();
```


จากกราฟค่าข้อมูลจัดอยู่ในกลุ่มเดียวกัน ข้อมูลมีความสัมพันธ์ในตัวเอง แต่ไม่มีความสัมพันธ์กันกับข้อมูลชุดอื่น

รายชื่อสมาชิก(กลุ่มลูกหมี)

นางสาวมินตรา ทิพยรัตน์สุนทร
 623020041-2
 นางสาวกัลยารัตน์ แสนสมบัติ
 623020513-7
 นางสาวฐิติชญา ไกรวงค์
 623020520-0
 นางสาวนันทิชา วิชิต
 623020526-8
 นางสาวศศิกานต์ บุญมี
 623020539-9