计算理论导论 第四次作业

周书予

2000013060@stu.pku.edu.cn

April 29, 2022

1

考虑建立 Vertex-Cover = $\{\langle G, k \rangle | G \text{ has a subset of } k \text{ vertices that covers all edges} \}$ 到 Dominating-Set = $\{\langle G, k \rangle | G \text{ has a subset of } k \text{ vertices that covers all vertices} \}$ 的多项式时间规约, 从而证明 Dominating-Set \in NP-complete.

对于 G=(V,E), 记 G 中孤立点 (度数为 0 的点) 的集合为 $\mathrm{iso}(G)$, 考虑映射 $f(\langle G,k\rangle)=\langle G',k+|\mathrm{iso}(G)|\rangle$, 其中 G'=(V',E') 满足

$$V' = V \cup E$$

$$E' = E \cup \bigcup_{(u,v) \in E} \{((u,v),u),((u,v),v)\}$$

也即, G' 保留 G 中所有点与边, 并对原图中的每条边 (u,v) 建立一个新点, 并连接两点 u,v. 容易发现 f 是多项式时间可计算的. 考虑验证 $\langle G,k\rangle \in \text{Vertex-Cover} \Leftrightarrow f(\langle G,k\rangle) \in \text{Dominating-Set:}$

- 如果 $\langle G, k \rangle \in \text{Vertex-Cover}$, 则存在大小为 k 的覆盖集 $S \subseteq V$, 满足对任意 $(u, v) \in E$ 都有 $u \in S$ 或者 $v \in S$. 我们验证 $S \cup \text{iso}(G)$ 是 G' 的一个支配集:
 - 对于任意 $u \in V \subseteq V'$, 要么 $u \in \text{iso}(G)$, 要么存在一条边 $(u,v) \in E$, 说明 $u \in S$ 与 $v \in S$ 至少一者 成立, 两种情况下 u 均被 $S \cup \text{iso}(G)$ 支配.
 - 对于任意 $(u,v) \in E \subseteq V'$, $u \in S$ 与 $v \in S$ 至少一者成立, 从而 (u,v) 被 $S \cup iso(G)$ 支配.
 - 从而 V' 被 $S \cup \text{iso}(G)$ 支配. 而 $|S \cup \text{iso}(G)| \leq |S| + |\text{iso}(G)| = k + |\text{iso}(G)|$, 随便补充一些点使支配 集大小达到 k + |iso(G)| 即可说明 $f(\langle G, k \rangle) \in \text{Dominating-Set}$.
- 如果 $f(\langle G, k \rangle) \in \mathsf{Dominating}$ -Set, 则存在大小为 $k + |\mathsf{iso}(G)|$ 的支配集 $S' \subseteq V'$, 满足对于任意 $v' \in V'$, 都要么 $v' \in S'$, 要么存在 $(u', v') \in E'$ 使得 $u' \in S'$.
 - 如果 $S' \subseteq V$,即 S' 中的点都是原 G 中的点,则直接构造 $S = S' \setminus \mathrm{iso}(G)$ 即为 G 的一个覆盖集(因为每条边都被覆盖了).注意到 S' 是支配集,从而必然有 $\mathrm{iso}(G) \subseteq S'$,说明 $|S| = |S' \setminus \mathrm{iso}(G)| = k$,故 $\langle G, k \rangle \in \mathsf{Vertex-Cover}$ 成立.
 - 如果 S' 中存在某个点 $(u,v) \in E$ 不是原 G 中的点, 注意到选择 (u,v) 时支配的点集只有 $\{u,v,(u,v)\}$, 而通过把 (u,v) 的选择改成 u 或者 v, 也可以支配这个点集. 换句话说, 如果 S' 包含 (u,v) 是支配集, 则 $S'\setminus\{(u,v)\}\cup\{u\}$ 也是支配集, 同时有 $|S'\setminus\{(u,v)\}\cup\{u\}| \leq |S'|$. 因此可以不断替换 S' 中不是原 G 中的点, 将 S' 转化为第一种情形. 替换过程中可能发生 |S'| 变小的情况, 但这是无足轻重的, 因为存在较小的支配集/覆盖集总能推出存在更大的支配集/覆盖集.

故 Vertex-Cover \leq_p Dominating-Set, 从而证明了 Dominating-Set \in **NP**-complete.

 $\mathbf{2}$

假设存在 **NP**-complete 的 unary language L, 则存在多项式时间可计算函数 $f: \mathrm{CNF} \to 1^*$ 满足 $\varphi \in \mathrm{SAT} \Leftrightarrow f(\varphi) \in L$. 由于 f 多项式时间可计算, 故存在常数 c 使得 $\forall \varphi \in \mathrm{CNF}, |f(\varphi)| \leq |\varphi|^c$.

我们通过设计一个判定 SAT 的多项式时间算法来证明 P = NP.

${\bf Algorithm} \ {\bf 1} \ {\sf SAT} \ {\rm in} \ {\rm polynomial} \ {\rm time}$

```
Require: a boolean formula \varphi on n variables x_1, x_2, \dots, x_n
```

- 1: $S_0 \leftarrow \langle f(\varphi), \varphi \rangle$
- 2: for $i=1 \rightarrow n$ do
- $S_i \leftarrow \emptyset$
- 4: **for** $\langle f(\phi), \phi \rangle$ in S_{i-1} **do**

- $\triangleright \phi$ is a boolean formula on variables $x_i, x_{i+1}, \cdots, x_n$
- 5: substitute $x_i = \text{True}$ and then $x_i = \text{False}$ in ϕ , obtaining boolean formulas ϕ_T and ϕ_F
- 6: insert $\langle f(\phi_T), \phi_T \rangle$ and $\langle f(\phi_F), \phi_F \rangle$ into S_i
- 7: for each $n \in \mathbb{N}$, retain only one element of form $\langle 1^n, \psi \rangle$ in S_i and drop the others
- 8: if $\langle f(\mathsf{True}), \mathsf{True} \rangle \in S_n$ then
- 9: **return** φ is satisfiable
- 10: **else**
- 11: **return** φ is not satisfiable

如果 φ 是可满足的,则在任意 S_i 中,都包含元素 $\langle f(\phi), \phi \rangle$,其中 ϕ 是可满足的 (这是因为 $f(\phi) = f(\psi)$ 能 说明 ϕ , ψ 可满足性相同,故不会因缩减 S_i 的规模而导致可满足的 CNF 全部被丢弃),从而 S_n 中包含可满足的 CNF True, 算法输出 φ 是可满足的.

如果 φ 是不可满足的,则显然任意 S_i 中不会有可满足的 ϕ 形成 $\langle f(\phi), \phi \rangle$ 出现,因此 S_n 中也不会包含 True,算法输出 φ 是不可满足的.

注意到因为代入只会使表达式长度变短,算法中涉及到的任意 ϕ 都有 $|\phi| \leq |\varphi|$,故 $f(\phi) \leq |\phi|^c \leq |\varphi|^c$,这说明任意 S_i 在缩减规模后大小都不超过 $|\varphi|^c$,因此算法的运行时间是关于 $|\varphi|$ 的多项式.

3

$$\mathsf{SPACE-TM} = \{ \langle M, w, 1^n \rangle | \mathsf{DTM} \ M \text{ accepts } w \text{ in space } n \}$$

- SPACE-TM \in **PSPACE**: 构造判定 SPACE-TM 的图灵机 D 为, 使用通用图灵机 U 模拟 M 在输入 w 上运行, 并时刻检查是否只使用了不超过 n 的运行空间. 由于通用图灵机模拟只需要常数的额外空间, 故 D 的运行空间关于输入规模呈线性. 显然 L(D) = SPACE-TM, 故 $\text{SPACE-TM} \in \text{PSPACE}$.
- SPACE-TM \in **PSPACE**-hard: 对于任意 **PSAPCE** 语言 L, 都存在一台运行空间为 $O(n^c)$ 的图灵机 M 满足 L(M) = L. 取映射 f 满足 $f(x) = \langle M, x, 1^{|x|^c} \rangle$, 显然 f 是多项式时间可计算的, 且 $x \in L \Leftrightarrow f(x) \in$ SPACE-TM, 于是 $L \leqslant_p$ SPACE-TM, 故 SPACE-TM \in **PSPACE**-hard.

综上, SPACE-TM \in **PSPACE**-complete.

4

 $\mathsf{EXACT}\text{-}\mathsf{INDSET} = \{\langle G, k \rangle | \text{ the largest independent set of } G \text{ is of size } k \}$

4.1

图 G 的最大独立集大小为 k, 当且仅当存在大小为 k 的独立集, 且不存在大小为 k+1 的独立集.

$$\mathsf{EXACT}\text{-}\mathsf{INDSET} = \mathsf{INDSET} \cap \overline{\mathsf{INDSET}'}$$

其中

INDSET =
$$\{\langle G, k \rangle | G \text{ has an independent set of size } k \} \in \mathbf{NP}$$

$$\overline{\mathsf{INDSET}'} = \overline{\{\langle G, k \rangle | G \text{ has an independent set of size } k+1\}}$$

$$= \{\langle G, k \rangle | G \text{ has no independent set of size } k+1 \} \in \mathbf{coNP}$$

故 EXACT-INDSET \in **DP**.

4.2

回顾 3SAT \leq_p INDSET 的证明,我们对 3CNF φ 的每个大小为 $l \leq 3$ 的 clause 建立了不超过 2^l 个点表示能使这个 clause 为 True 的赋值方式,并在所有会产生冲突的赋值方式之间连边.记这张图为 G, φ 一共有 k 个 clause,此时有 $\varphi \in 3$ SAT $\Leftrightarrow \langle G, k \rangle \in EXACT-INDSET.$

可以考虑对构造的图进行一些修改: 建立 k-1 个新点, 分别与原先的所有点连边, 这样一来 G 的最大独立集必然是 k 或者 k-1, 且有 $\varphi \in 3SAT \Leftrightarrow \langle G, k \rangle \in EXACT-INDSET$, $\varphi \notin 3SAT \Leftrightarrow \langle G, k-1 \rangle \in EXACT-INDSET$.

回到原问题. 对于任意 $L \in \mathbf{DP}$, 存在 $L_1, L_2 \in \mathbf{NP}$, 使得 $x \in L \Leftarrow x \in L_1, x \notin L_2$. 考虑多项式时间可计 算函数 f, g 分别将 L_1, L_2 规约到 3SAT, 设 f(x), g(x) 两个 3CNF 分别有 k_1, k_2 个 clause, 按照前述的方式对 f(x), g(x) 建图得到 G_1, G_2 , 则有

$$x \in L \Leftrightarrow x \in L_1, x \notin L_2 \Leftrightarrow f(x) \in \mathsf{3SAT}, g(x) \notin \mathsf{3SAT} \Leftrightarrow \langle G_1, k_1 \rangle, \langle G_2, k_2 - 1 \rangle \in \mathsf{EXACT-INDSET}$$

对于图 $G_1=(V_1,E_1),G_2=(V_2,E_2),$ 建立其"笛卡尔积" $G=G_1\times G_2=(V,E),$ 其中 $V=V_1\times V_2,$ $((u_1,u_2),(v_1,v_2))\in E$ 当且仅当 $(u_1,v_1)\in E_1$ <u>或者</u> $(u_2,v_2)\in E_2.$ 可以验证 $\langle G_1,k_1\rangle,\langle G_2,k_2\rangle\in \mathsf{EXACT\text{-}INDSET}$ \Rightarrow $\langle G,k_1k_2\rangle\in \mathsf{EXACT\text{-}INDSET}.$

记 $\langle G = G_1 \times G_2, k_1(k_2 - 1) \rangle = h(x)$, 其中 G_1, G_2, k_1, k_2 如前述定义. 接下来将证明 $x \in L \Leftrightarrow h(x) \in \mathsf{EXACT\text{-}INDSET}$.

- $x \in L \Rightarrow \langle G_1, k_1 \rangle, \langle G_2, k_2 1 \rangle \in \mathsf{EXACT\text{-}INDSET} \Rightarrow \langle G, k_1(k_2 1) \rangle \in \mathsf{EXACT\text{-}INDSET},$ 这个方向是容易的
- 如果 $x \notin L$, 则要么 $x \notin L_1 \Rightarrow \langle G_1, k_1 1 \rangle \in \mathsf{EXACT\text{-}INDSET}$, 要么 $x \in L_2 \Rightarrow \langle G_2, k_2 \rangle \in \mathsf{EXACT\text{-}INDSET}$, 这将导致 (1) $\langle G, (k_1 1)(k_2 1) \rangle$, (2) $\langle G, k_1 k_2 \rangle$, (3) $\langle G, (k_1 1)k_2 \rangle$, 三者中存在某一者属于 EXACT-INDSET. 为了与 $\langle G, k_1 (k_2 1) \rangle \in \mathsf{EXACT\text{-}INDSET}$ 产生矛盾,需要额外保证 $k_1 \neq 0, k_2 \neq 0, k_1 \neq k_2$,注意到 k_1, k_2 分别是两个 3CNF 的 clause 数量,只需要在构造 f(x), g(x) 时重复部分 clause 即可实现这样的保证.

所以 h 是从 L 到 EXACT-INDSET 的多项式时间规约, 说明 $L \leqslant_p$ EXACT-INDSET.

5

 $STR-CON = \{\langle G \rangle | G \text{ is a strongly connected directed graph} \}$

欲证明 STR-CON ∈ NL-complete, 只需证明:

• STR-CON \in NL: 按照 NL 的 certificate definition, 只需要证明存在 $O(\log n)$ 空间图灵机 (verifier) M, 对于任意有向图 G = (V, E), G 强连通当且仅当存在多项式规模的 certificate u 满足 M(G, u) = 1.

按如下形式构造 M 和 u: 按照字典序升序, u 给出每对 $(i,j) \in V \times V$ "G 中存在 i 到 j 的有向路径"的 certificate, 每段 certificate 包含一个 G 的顶点序列 $v_0v_1 \cdots v_k$, 相邻 certificate 之间用特殊符号分隔. 显然这样的 u 是多项式规模的.

至于 verifier M, 它应该检查: (i) 是否按照升序完整给出了所有 (i,j) 对的 certificate, (ii) 每个 (i,j) 对的 certificate 是否合法, 即是否满足 $v_0 = i, v_k = j$, 且 $(v_t, v_{t+1}) \in E$ 对所有 $0 \le t < k$ 成立. 显然 M 只需要 $O(\log n)$ 的工作空间.

• STR-CON ∈ NL-hard: 考虑将

 $\mathsf{PATH} = \{ \langle G, s, t \rangle | G = (V, E) \text{ is a directed graph in which there is a path from } s \text{ to } t \}$

规约到 STR-CON. 构造映射 f, $f(\langle G, s, t \rangle) = G' = (V, E')$, 其中 G' 有与 G 相同的点集 V, 包含 G 中的所有边, 同时对于任意 $v \in V$ 都有 $(t, v), (v, s) \in E'$.

- -G' 的构造是简单的, 可以在 $O(\log n)$ 的工作空间中计算出 G' 邻接矩阵的每一位, 故 f 是隐对数空间可计算函数.
- 当 $\langle G, s, t \rangle$ ∈ PATH 时, G' 中存在 s 到 t 的有向路径, 因而对于任意 (i, j) ∈ $V \times V$ 都有 $i \to s \to t \to j$ 的有向路径, 说明 G' 强连通.
- 当 $\langle G, s, t \rangle$ ∈ PATH 时, G' 中不存在 s 到 t 的有向路径, 导致 G' 不强连通.

于是 $\langle G, s, t \rangle \in \mathsf{PATH} \Leftrightarrow f(\langle G, s, t \rangle) \in \mathsf{STR}\text{-}\mathsf{CON}$,说明 $\mathsf{PATH} \leqslant_l \mathsf{STR}\text{-}\mathsf{CON}$,说明 $\mathsf{STR}\text{-}\mathsf{CON} \in \mathbf{NL}\text{-}\mathsf{hard}$.

6

定义 1 (NL 的 certificate definition). 称语言 $L \in \mathbf{NL}$, 如果存在一台 DTM M 和多项式 $p: \mathbb{N} \to \mathbb{N}$, 满足 对于任意 $x \in \{0,1\}^*$, $x \in L \Leftrightarrow \exists u \in \{0,1\}^{p(|x|)}$, s.t. M(x,u) = 1, 其中 u 被放在 M 一条 <u>只能读一次的</u>纸带上,且 M 只能使用到 $O(\log |x|)$ 个工作纸带空间.

考虑去掉"只能读一次"的限制, 记新得到的语言类为 NL'. 以下证明 NL'= NP:

- NL'⊆NP: 显然, 因为只要在定义中去掉对 M 工作纸带空间的限制, 就变成了 NP 的定义.
- $\mathbf{NP} \subseteq \mathbf{NL'}$: 考虑证明任意 $L \in \mathbf{NP}$ 都满足 $L \leq_l \mathsf{SAT} \in \mathbf{NL'}$, 从而说明 $L \in \mathbf{NL'}$:
 - 任取 $L \in \mathbf{NP}$, 在 Cook Levin Theorem 中证明了 $L \leq_p \mathsf{SAT}$, 方式是考虑判定 L 的 oblivious TM M, 对 M 在输入 x 上运行过程的 snapshot 序列建立多项式规模的 CNF. 我们指出这个规约实际上还是 隐对数空间可计算的,因为构造出的这个 CNF 的长度以及任意一位比特都可以在对数空间内计算得 到. 所以 $L \leq_l \mathsf{SAT}$.
 - 对于 $\varphi \in \mathsf{SAT}$,将其一组可满足赋值作为其 certificate,构造 DTM M,其计算过程为顺序遍历输入 CNF φ 的每一个 clause,在给出的 certificate 中查询每一个文字的真值,判断是否每一个 clause 内都 存在至少一个为 True 的文字. M 的计算只需要 $O(\log|\varphi|)$ 额外空间,因此 M 符合 **NL** 的 certificate definition 中的要求,而 $L(M) = \mathsf{SAT}$,说明 $\mathsf{SAT} \in \mathsf{NL}$.