

Esercitazione Matlab per il calcolo della distribuzione di *p* e T in ugello monodimensionale ed isentropico

Richiami teorici

Obiettivi ed ipotesi

➤ Obiettivi

- 1. Determinare gli andamenti di pressione e temperature all'interno dell'ugello
- 2. Determinare la posizione dell'onda d'urto

> Ipotesi

- Moto mono-dimensionale (lungo l'asse dell'ugello)
- Ugello isentropico (no attrito, no viscosità)
- Gas ideale e caloricamente perfetto (EoS gas ideale + c_p costante)
- Flusso sonico in gola (ugello bloccato, $M_{th}=1$)

Dati noti

- ➤ Condizioni in ingresso
 - $p_0 = 200000$ Pa
 - $T_0 = 300 \text{ K}$
- > Fluido

•
$$\gamma = \frac{c_p}{c_v} = 1.4$$
 (-)

- R = 287.1 (J/kg/K)
- Pressione in uscita (back pressure)
 - Valore da imporre e variabile (ma noto all'inizio della simulazione)

Elementi fondamentali

• La relazione $M_i = f(A_i)$ viene risolta numericamente

$$\frac{A_i}{\bar{A}} = \frac{\bar{M}}{M_i} \left[\frac{1 + (\gamma - 1)/2 \cdot M_i}{1 + (\gamma - 1)/2 \cdot \bar{M}} \right]^{\frac{\gamma + 1}{2(\gamma - 1)}}$$
Ossia:

Ossia:

Calcolo $M_x = M(A_x)$

• $M_i = f(A_i)$ ha due soluzioni in M, quindi devo scegliere quale delle due soluzioni accettare (o in quale parte del dominio cercare la soluzione)

$$\begin{cases} 0 < M \le 1 \\ M > 1 \end{cases}$$

• In quale parte del dominio cercare la soluzione dipende da dove ci si trova all'interno dell'ugello

Dove cercare la soluzione di $M_i = f(A_i)$

- Nell'ipotesi che il moto sia sonico nella gola ($M_{th} = 1$)
- Ho quattro casistiche
 - a. $x \le x_{th}$ Flusso subsonico nel convergente: $M \in (0,1)$
 - b. $x_{th} \le x \le x_{th} + L_{th}$ (nella gola) Flusso sonico nella gola: $M \in (0,1)$ $M_{th} = 1$
 - c. $x \ge x_{th} + L_{th}$ & "Prima dell'urto" Flusso supersonico nel divergente: $M \in (1, +\infty)$
 - d. $x \ge x_{th} + L_{th}$ & "Dopo dell'urto" Flusso subsonico nel divergente: $M \in (0,1)$

Effetto dell'onda d'urto

Effetto dell'onda d'urto

$$\dot{m} = \rho v A = \frac{p}{RT} v A = \frac{p}{RT} A M \sqrt{\gamma RT} = p A M \sqrt{\frac{\gamma}{RT}} = \frac{p_0 A M \sqrt{\gamma/(RT_0)}}{[1 + (\gamma - 1)M^2/2]^{(\gamma + 1)/[2(\gamma - 1)]}}$$

$$T_0 = cost.$$

$$\dot{m}_1 = \dot{m}_2 \rightarrow \frac{\dot{m}_2}{\dot{m}_1} = 1 = \frac{p_{02} A_2 M_2 \sqrt{\gamma/(RT_{\theta})}}{\left[1 + (\gamma - 1) M_2^2/2\right]^{(\gamma + 1)/[2(\gamma - 1)]}} \cdot \frac{\left[1 + (\gamma - 1) M_1^2/2\right]^{(\gamma + 1)/[2(\gamma - 1)]}}{p_{01} A_1 M_1 \sqrt{\gamma/(RT_{\theta})}}$$

$$\frac{A_1}{A_2} = \frac{p_{02}}{p_{01}} \cdot \frac{M_2}{M_1} \cdot \left[\frac{1 + (\gamma - 1)M_1^2/2}{1 + (\gamma - 1)M_2^2/2} \right]^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

Può essere utilizzata nei due tratti isentropici considerando $p_0=\cos t$. ma diversa nei due tratti

Effetto dell'onda d'urto

Prima dell'urto

$$\begin{split} M_{th} &= 1 \\ p_{00} &= p_{01} = cost. \\ \frac{A_x}{A_{th}} &= \frac{1}{M_x} \cdot \left[\frac{1 + (\gamma - 1)M_x^2/2}{1 + (\gamma - 1)/2} \right]^{\frac{\gamma + 1}{2(\gamma - 1)}} \end{split}$$

Dopo l'urto

$$\begin{split} M_2 &= f(M_1) \\ p_{02} &= g(M_1, p_{01}) = cost. \\ \frac{A_x}{A_2} &= \frac{M_2}{M_x} \cdot \left[\frac{1 + (\gamma - 1)M_x^2/2}{1 + (\gamma - 1)M_2^2/2} \right]^{\frac{\gamma + 1}{2(\gamma - 1)}} \end{split}$$

Come se
stessi
considerando
due ugelli
distinti

Ma dove avviene l'urto?

- \triangleright Deve valere $x > x_{th}$
- ightharpoonup La pressione in uscita p_{out} (back pressure) deve essere inferiore a quella che blocca l'ugello
- Non devo avere già avuto urti
- Posso cominciare a cercare l'urto quando la pressione nell'ugello diventa inferiore a quella in uscita $(p(x) \le p_{out})$
 - ☐ Suppongo avvenga l'urto e calcolo M_2^* e p_{02}^* (* = variabile di tentativo)
 - $lue{}$ Uso la relazione fra A e M nel tratto divergente rimanente e calcolo la p_{out}^*
 - $lue{}$ Controllo se $p_{out}^* = p_{out}$

ightharpoonup Si: la $x^* = x_{shock}$

ck

No: continuo a cercare

Ricalcolo la
pressione totale e
risolvo il resto
dell'ugello
considerando M<1

Approccio usato per risolvere l'esercizio

Step 1

- Considero la i-esima sezione dell'ugello
- In funzione della discretizzazione scelta determino la posizione lungo l'asse dell'ugello nell'iterazione i-esima $\rightarrow x(i) = x_i$
- Dalla distribuzione dell'area con la posizione assiale, calcolo $A_i = f(x_i)$

Step (1/2)

Risolvo numericamente l'equazione che lega i Mach alla distribuzione di area (impongo $M_{th} = 1$)

$$\frac{A_i}{\bar{A}} = \frac{\bar{M}}{M_i} \left[\frac{1 + (\gamma - 1)/2 \cdot M_i}{1 + (\gamma - 1)/2 \cdot \bar{M}} \right]^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

- Ho quattro casistiche possibili (prima/dopo gola e moto subsonico/supersonico)
 - a. $x \le x_{th} \rightarrow M \in (0,1)$
 - b. $x_{th} \le x \le x_{th} + L_{th} \rightarrow M_{th} = 1$
 - c. $x \ge x_{th} + L_{th}$ & "Prima dell'urto" \to M $\in (1, +\infty)$
 - d. $x \ge x_{th} + L_{th}$ & "Dopo dell'urto" \rightarrow M \in (0,1)

- Calcolo $A_i = f(x_i)$
- Risolvo $M_i = f(A_i, ...)$
- Calcolo 3 $p_i = f(M_i, p_0)$ $T_i = g(M_i, T_0)$
- Può esserci urto?

Calcolo $p_{0.sh}^*$ e M_{sh}^* (valori di tentativo dopo l'urto) e verifico 5 condizione di uscita $p_{out}^* = f(M_{out}^*, p_{0,sh}^*) = p_{out}$?

Calcolo nuovo valore di pressione totale

Step 2 (2/2)

inlet

• Risolvo numericamente l'equazione che lega i Mach alla distribuzione di area (impongo $M_{th} = 1$)

$$\frac{A_i}{\bar{A}} = \frac{\bar{M}}{M_i} \left[\frac{1 + (\gamma - 1)/2 \cdot M_i}{1 + (\gamma - 1)/2 \cdot \bar{M}} \right]^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

- Ho quattro casistiche possibili (prima/dopo gola e moto subsonico/supersonico)
 - a. $x \le x_{th} \rightarrow M \in (0,1)$ b. $x_{th} \le x \le x_{th} + L_{th} \rightarrow M_{th} = 1$

- Utilizzo due versioni della relazione fra Area e Mach
- > Fra le due versioni, cambia la sezione presa a riferimento

$$\frac{A_i}{A_{th}} = \frac{1}{\bar{M}} \left[\frac{2}{\gamma + 1} \left(1 + \frac{\gamma - 1}{2} \right) M_i \right]^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

$$\frac{A_i}{A_{Sh}} = \frac{M_{Sh}}{M_i} \left[\frac{1 + (\gamma - 1)/2 \cdot M_i}{1 + (\gamma - 1)/2 \cdot M_{Sh}} \right]^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

15

outlet

Step 3

 Calcolo le condizioni statiche nell'ugello a partire dalle condizioni totali in ingresso (invariate lungo l'ugello <u>isentropico</u>)

$$p_{i} = p_{0} \left(1 + \frac{\gamma - 1}{2} M_{i}^{2} \right)^{\frac{-\gamma}{\gamma - 1}}$$

$$T_{i} = T_{0} \left(1 + \frac{\gamma - 1}{2} M_{i}^{2} \right)^{-1}$$

 Ricavo la densità (se mi dovesse essere utile) dall'equazione dei gas perfetti

$$\rho_i = \frac{RT_i}{p_i}$$

Step 4

- Controllo se le condizioni in termini di pressione statica nella sezione i-esima dell'ugello sono tali da poter avere l'onda d'urto.
- Per poter aver l'onda d'urto, devono essere verificate <u>contemporaneamente</u> le tre condizioni seguenti

a.
$$x_i > x_{th} + L_{th}$$

b.
$$p_i \leq p_{out} / \otimes$$

- Se ho almeno un

 , procedo con le iterazioni normalmente
- Se ho tre , controllo se si verifica l'onda d'urto

Step 5

 Verifico che l'urto avvenga effettivamente. Assumo di avere l'urto nella sezione i-esima – what if...?
 Il Mach dopo l'urto:

$$M_{sh}^* = \sqrt{\frac{(\gamma - 1)M_i^2 + 2}{2\gamma M_i^2 - \gamma + 1}}$$
 (* = valore di tentativo)

Calcolo la nuova pressione totale

$$p_{0,sh}^* = p_0 \left[\frac{(\gamma+1)M_i^2}{(\gamma-1)M_i^2 + 2} \right]^{\frac{\gamma}{\gamma-1}} \left[\frac{(\gamma+1)}{2\gamma M_i^2 - (\gamma-1)} \right]^{\frac{1}{\gamma-1}}$$

• Risolvo $M_i = f(A_i)$ per la sezione di uscita (M_{Sh}^* noto)

$$\frac{A_{out}}{A_{sh}^*} = \frac{M_{sh}^*}{M_{out}^*} \left[\frac{1 + (\gamma - 1)/2 \cdot M_{out}^*}{1 + (\gamma - 1)/2 \cdot M_{sh}^*} \right]^{\frac{\gamma + 1}{2(\gamma - 1)}} \longrightarrow M_{out}^*$$

 Calcolo la pressione di uscita e la confronto con quella imposta

$$p_{out}^* = p_{0,sh}^* \left[1 + \frac{\gamma - 1}{2} (M_{out}^*)^2 \right]^{\frac{-\gamma}{\gamma - 1}} = p_{out}$$
 ?

- \times iter. i+1: moto supersonico e p_0 invariata
- \checkmark iter. i+1: moto subsonico e aggiorno p_0

Step 6

• Aggiorno il valore della pressione totale tenendo conto delle dissipazioni avvenute nell'urto (p aumenta, ma p_0 diminuisce)

$$p_0 = p_{0,sh}$$

 Nelle prossime iter., la nuova pressione totale sarà utilizzata per il calcolo delle condizioni statiche

$$p_i = p_0 \left(1 + \frac{\gamma - 1}{2} M_i^2 \right)^{\frac{-\gamma}{\gamma - 1}} = p_{0,sh} \left(1 + \frac{\gamma - 1}{2} M_i^2 \right)^{\frac{-\gamma}{\gamma - 1}}$$

$$T_i = T_0 \left(1 + \frac{\gamma - 1}{2} M_i^2 \right)^{-1}$$
 (T_0 si conserva nell'urto)

• Nelle prossime iter., la soluzione dell'equazione $M_i = f(A_i)$ sarà subsonica (M $\in (0,1)$)

Dettagli implementativi

Requisiti

- ➤ Il codice è stato sviluppato con Matlab 2023a
- Richiede la presenza di 3 file:
 - La geometria dell'ugello
 - I dati per il confronto fra il modello monodimensionale ed il CFD
 - I file si chiamano:
 - a «nozzle_geometry.mat»
 - «cfd_data_freeslip.mat»
 - a «cfd_data_noslip.mat»
- ➤ Il codice non richiede nessun toolbox aggiuntivo (Matlab base)
- □ Il codice e questa presentazione sono disponibili presso https://github.com/guidoffrate/Nozzle-exercise

Nota sui Metodi utilizzati

- Il codice utilizza funzionalità standard per caricare dati (*load()*), scegliere fra varie condizioni (*if...else*) e raffigurare I risultati (*plot()*)
- L'operazione più «avanzata» che viene effettuata è la risoluzione numerica di una equazione in una variabile (risoluzione numerica di $M_i=f(A_i)$)
 - Per la risoluzione viene utilizzata fzero()
 https://it.mathworks.com/help/matlab/ref/fzero.html
 https://en.wikipedia.org/wiki/Brent's_method
 - fzero() richiede di definire una funzione ($M_i = f(A_i)$) e cerca la soluzione intorno ad un punto x_0 specificato dall'utente o, come nel nostro caso, all'interno di un intervallo specificato, ad es. (0,1) o (1,5)

```
Funzione

% Supersonic flow in divergent section before shock
% Area-Mach relation (solved numerically)
func = @(M) A(i)/A_throat - 1/M * (2/(gamma+1) * (1 + (gamma-1) / 2 * M^2))^((gamma+1) / (2*(gamma-1)));
M(i) = fzero(func, [1+1e-8 5]);

Intervallo
(1, +\infty)
```


Esempio di risultati

Andamenti assiali ($p_b = 1.35$ bar)

- Area, grandezze statiche e Mach lungo l'asse
- Pressione in uscita pari a 1.35 bar

- a. $M \in (0,1)$
- b. $M_{th} = 1$
- c. $M \in (1, +\infty)$
- d. $M \in (0,1)$

Confronto CFD (1/2)

- CFD senza attrito né forze viscose
- Pressione in uscita pari a 1.35 bar

Accordo fra modello Matlab monodimensionale e CFD molto buono!

Confronto CFD (2/2)

- CFD con attrito e forze viscose
- Pressione in uscita pari a 1.35 bar

Accordo fra modello Matlab monodimensionale e CFD molto scarso!

Esercitazione Matlab per il calcolo della distribuzione di *p* e T in ugello monodimensionale ed isentropico