3.1. Первый вариант

1. Найдите радиус, диаметр и центр данного дерева (рисунок 3.1).

Puc. 3.1

2. При помощи графа де Брюина найдите все слова наименьшей длины, которые содержат подстроки

$$UXC, CXC, CUX, XCE, XCX, EXC, AEX, XCU. \\$$

3. Найдите хроматический многочлен данного графа (рисунок 3.2):

Puc. 3.2

4. Постройте код Прюфера для данного дерева (рисунок 3.3):

5. Постройте дерево по коду Прюфера:

6. При помощи алгоритм Косарайю и Шарира найдите компоненты силь-

ной связности данного графа (рисунок 3.4):

Puc. 3.4

7. Постройте эйлеров путь в графе, заданном своей матрицей смежности (таблица 3.1):

	v_1	v_2	v_3	v_4	v_5	v_6	v_7
v_1	0	1	0	1	1	1	0
v_2	1	0	1	1	1	0	0
v_3	0	1	0	0	1	0	0
v_4	1	1	0	0	1	1	0
v_5	1	1	1	1	0	1	1
v_6	1	0	0	1	1	0	1
v_7	0	0	0	0	1	1	0

Таблица 3.1

8. Найдите максимальный поток через данную сеть (рисунок 3.5):

Puc. 3.5

9. Найдите наибольшее паросочетание в двудольном графе, заданном набором ребер: (a,γ) (a,η) (a,θ) (b,η) (c,θ) (d,ε) (d,ζ) (e,η) (f,α) (f,β) (f,γ) (g,γ) (g,δ) (h,γ) (h,ε)

- 10. Постройте стягивающее дерево минимального веса для графа на рисунке 3.6
 - а) алгоритмом Прима (построение с вершины B);
 - b) модифицированным алгоритмом Краскала.

Puc. 3.6

- 11. Для графа на рисунке 3.7:
- а) вычислите длины кратчайших путей от вершины A до остальных вершин с помощью алгоритма Дейкстры;
- b) с помощью алгоритма Флойда определите кратчайшие пути между всеми парами вершин. Выпишите кратчайший путь от вершины D до вершины C и его длину;
- с) с помощью алгоритма Уоршелла постройте граф и матрицу достижимости.

12. Отношение T задано на множестве целых чисел

$$\{60, 25, 01, 71, 68, 50, 20, 24\}$$

Puc. 3.7

следующим условием:

 $xTy\Leftrightarrow$ в наборе имеется элемент z, такой что (x-z)(y-z)<0.

- а) проверить, является ли отношение рефлексивным, антирефлексивным, симметричным, асимметричным, антисимметричным, транзитивным;
 - b) построить матрицу и граф этого отношения;
- с) определить, является ли отношение отношением эквивалентности, частичного порядка, линейного порядка;
 - d) для отношения *эквивалентности* построить классы эквивалентности;
- е) для отношения $частичного\ порядка$ применить алгоритм топологической сортировки и получить отношение линейного порядка.