Multiple testing with prior information identifies loci for exceptional longevity

Edgar Dobriban¹ Kristen Fortney² Stuart K. Kim³ Art B. Owen¹

¹Stanford Statistics ²Stanford Dev. Bio. & Genetics ²BioAge Labs

Background

- Multiple testing: test the effect of a large number of genetic variants (drugs, interventions)
- To avoid false positives, set stringent significance levels costly, reduces power
- Can benefit from independent prior information about the effects.
- Example: Two-stage testing

Example: Human Longevity

- Human lifespan has a heritable component of 25--30~%.
- Only one DNA polymorphysm (APOE/TOMM40) replicably associated with exceptional longevity.
- Typical study: GWAS. Compare centenarians vs controls. Test 500K SNPs.
- Challenges: Few centenarians. Small effects of many SNPs.
- Large Prior GWAS: coronary artery disease n > 20K, Type II diabetes, etc.

P-value Weighting

Weighted Bonferroni Method (rev. in [5])

- reject H_i if $P_i \leq qw_i$
- weights $w_i \ge 0$, $\sum_{i=1}^J w_i = J$
- controls FWER at $\alpha := Jq$

Spjøtvoll weights optimize expected number of discoveries [6, 1]:

$$\max_{w \in \mathbb{R}^J} \sum_{i=1}^J \mathbb{P}_{H_i=1}(P_i \le qw_i)$$
s.t. $w_i \ge 0, \sum_{i=1}^J w_i = J.$

requires pilot estimates of effects

Acknowledgements

AFAR/EMF, NIH/NIA, NSF, HHMI.

Figure 1: Bayes weights as a function of prior mean and variance.

New Bayes weights

- prior information about effects μ_i : $\mu_i \sim \mathcal{N}(\eta_i, \sigma_i^2)$.
- maximize expected discoveries [3]:

$$\max_{w \in \mathbb{R}^J} \mathbb{E}_{\mu} \mathbb{E}_{T} R(w)$$
s.t. $w_i \ge 0, \sum_{i=1}^J w_i = J.$

- Fig. 1: Weights as function of (η, σ^2) .
- scales to large problems (e.g., J=2 million)
- only requires summary statistics
- Simulation (Fig. 2): sparse means $\eta_i \sim \pi_0 \delta_m + \pi_1 \delta_M, \, m = -10^{-3}, \, M = -2, \\ q = 10^{-2}, \, \pi_1 \in [0, 0.1]. \, \sigma_i = \sigma \in \{0, 1\}.$
- Bayes weights improve power wrt unweighted, have a worst-case advantage wrt Spjøtvoll weights.

Figure 2: Deterministic (left) and average (right) power as a function of the proportion of large means π_1 : Unweighted (solid); Spjøtvoll (dashed); Bayes (dotted).

Discoveries

In [4], discovered four SNPs associated with exceptional longevity

- prior information: GWAS on 8 diseases and 13 traits (Fig. 3)
- studies: New England Centenarian Study (NECS), largest centenarian GWAS (n= 801)
- 90Plus: n=5406 over age 90
- pipeline (Fig. 4)

Software

R package pweight on CRAN
MATLAB at github.com/dobriban

Longevity Data Analysis

Disease	Acronym	# Cases	Reference	
Age-related macular degeneration	AMD	17,000	[17]	
Type 2 diabetes	DIA	34,000	[68]	
Rheumatoid arthritis	ART	5,500	[69]	A Diseases
Chronic kidney disease	CKD	5,807	[70]	\square
Late-onset Alzheimer's disease ^a	LOAD	8,000	[29]	iGWAS • Weight longevity
Coronary artery disease	CVD	22,233	[71]	
Pancreatic cancer	PANC	3,800	[72]	
Lung cancer	LUNG	14,900	[73]	
Trait	Acronym	# Samples	Reference	
Bone density	BMD	32,961	[74]	Disease Cross-disease Informed weights Significant P values P values Longevity SNPs
High-density lipoprotein ^b	HDL	100,184	[19]	
Low-density lipoprotein ^b	LDL	100,184	[19]	В
Triglycerides ^b	TRIG	100,184	[19]	APOE APOE
Total cholesterol	TC	100,184	[19]	NECS TOMM40 90 PLUS TOMM40
Body mass index	ВМІ	123,865	[75]	12 7
Waist-hip ratio ^b	WHR	123,865	[75]	10 - CDKN2B
Systolic blood pressure ^{a,b}	SBP	69,395	[76]	• 15 − • • • • • • • • • • • • • • • • • •
Diastolic blood pressure ^a	DBP	69,395	[76]	SH2B3 SH2B3 ATXN2
Beta-cell function ^b	HOMAB	46,186	[77]	δ 6 · - · · · · ·
Insulin resistance ^b	HOMAIR	46,186	[77]	O' O' HLA ABO KCNT2 LPA FADS1
Fasting insulin	INS	46,186	[77]	
Adiponectin	ADIP	49,981	[78]	2 -
Control	Acronym	# Samples	Reference	
Schizophrenia	SCZ	9394 cases	[79]	0
Major Depressive Disorder	MDD	9240 cases	[80]	1 3 5 7 9 12 16 21 1 3 5 7 9 12 16 21
Attention Deficit Hyperactivity Disorder	ADHD	2,064 trios	[81]	

^aDirection of effect was unavailable for these diseases and traits

^bThese traits were excluded from the cross-disease analysis

doi:10.1371/journal.pgen.1005728.t001

Figure 4: Pipeline.

Replicated discoveries

Source	SNP	Candidate Gene(s)	Combined P ^a
NECS	rs2075650	TOMM40/APOE	2.40E-13
NECS	rs4977756	CDKN2B/ANRIL	2.82E-03
NECS	rs3763305	HLA	ns
NECS	rs3184504	SH2B3/ATXN2	9.41E-03
Source	SNP	Candidate Gene(s)	Combined Pa
90PLUS	rs4420638	TOMM40/APOE	
90PLUS	rs514659	ABO	6.55E-03
90PLUS	rs10737670	KCNT2	ns
90PLUS	rs12194148	HLA	ns
90PLUS	rs174555	FADS1	ns
90PLUS	rs10455872	LPA	

A general framework

In [2], proposed a more general framework for multiple testing with prior information

- allows any convex constraints
- monotone+bounded, stratified, smooth weights,
- performs well

The future

- new applications
- new optimality criteria

References

- [1] Y. Benjamini and Y. Hochberg. Multiple hypotheses testing with weights. Scandinavian Journal of Statistics, 24(3):407–418, 1997.
- [2] E. Dobriban. A general convex framework for multiple testing with prior information. $arXiv\ preprint\ arXiv:1603.05334,\ 2016.$
- [3] E. Dobriban, K. Fortney, S. K. Kim, and A. B. Owen. Optimal multiple testing under a Gaussian prior on the effect sizes. *Biometrika*, 102(4):753–766, 2015.
- [4] K. Fortney, E. Dobriban, P. Garagnani, C. Pirazzini, D. Monti, D. Mari, G. Atzmon, N. Barzilai, C. Franceschi, A. B. Owen, and S. K. Kim. Genome-wide scan informed by age-related disease identifies loci for exceptional human longevity. *PLoS Genet*, 11(12): e1005728, 2015.
- [5] K. Roeder and L. Wasserman. Genome-wide significance levels and weighted hypothesis testing. Statistical Science, 24(4):398–413, 2009
- [6] E. Spjøtvoll. On the optimality of some multiple comparison procedures. *The Annals of Mathematical Statistics*, 43(2):398–411, 1972.