Push forward / Jup rule for the
$$2 - 20ss$$

Losquard $2 norm$
 $2 + 2 = 2$
 $2 + 2 = 2$

Los typical in regressions

Year

Lear

 $2 + 2 = 2$

Lear $2 + 2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$
 $2 = 2$

 $=\frac{2}{2}\sum_{j=1}^{N}2ly^{2}-y^{2}\left(\frac{3+j}{3}\right)$ $\left(\frac{3-y^{2}}{3}\right)$ $\left(\frac{3-y^{2}}{3}\right)$ $=\frac{4}{2}\sum_{i=1}^{N}2(y_{0}-y_{i}^{*})$ \int_{0}^{∞} = \frac{1}{2} 2 (\frac{1}{2}; -y; \frac{1}{2}) = 4:- 4:0

$$= \underbrace{2} \underbrace{\sum_{j=1}^{2} 2(y_{j} - y_{j}^{*})}_{3y_{j}} \underbrace{\left(\underbrace{3y_{j}^{*}} \right)}_{3y_{j}^{*}}$$

$$= \underbrace{4} \underbrace{\sum_{j=1}^{2} 2(y_{j} - y_{j}^{*})}_{3y_{j}^{*}} \underbrace{\left(\underbrace{3y_{j}^{*}} \right)}_{3y_{j}^{*}} \underbrace{\left(\underbrace{3y_{j}^{*}} \right)}_{3$$