Algorithms for Big Data

Spring Semester 2022

Exercise Set 14

Here is a formalization of MPC model (one of many possible, equivalent):

- Input size N, distributed among machines.
- Machine memory is $S = N^{\alpha}$ for some $0 < \alpha < 1$.
- Machines are numbered with unique ID's, 1 .. $\frac{N}{S}$.
- After each round machines send messages addressed to other machines. Each machine can send $\mathcal{O}(S)$ atomic messages in total and receive $\mathcal{O}(S)$ atomic messages in total.

Exercise 1:

Show an algorithm for maximum computation: input array x[1..N]. Output: $\max\{x[i]\}$ (on a single machine), in time $\mathcal{O}(\frac{1}{\alpha})$.

Exercise 2:

Show an algorithm for broadcasting: as an input one machine has a message m of size $\mathcal{O}(S)$. Output: all machines have m. Show $\mathcal{O}(\frac{1}{\alpha})$ algorithm.

Exercise 3:

Show that broadcasting cannot be done faster: that there is no $o(\frac{1}{\alpha})$ algorithm.

Exercise 4:

Show an algorithm for prefix sums: input array x[1 ... N]. Output: array y[1 ... N] where y[i] = x[1] + ... + x[i]. Time: $\mathcal{O}(\frac{1}{\alpha})$.

Exercise 5:

Show an algorithm for offsets: input array x[1 ... N] and S values $a_1, ..., a_S$. Output: values $j_1, ..., j_S$ where j_k is the position of a_k in sorted x[1 ... N]. Time: $\mathcal{O}(\frac{1}{\alpha})$.

Exercise 6:

Show an algorithm for pivot: input array x[1..N] and S values $a_1, ..., a_{S-1}$. Output: reshuffle x so that some prefix of machines holds all the values from x smaller than a_1 , then next batch of machines holds all values from x between a_1 and a_2 , etc. Time: $\mathcal{O}(\frac{1}{\alpha})$.

Exercise 7: (2 pts.)

Sorting: input array x[1 ... N]. Output: x sorted. Time: $\mathcal{O}(\frac{1}{\alpha^2})$. Idea:

- Pick sample of size S.
- Use it as a pivot.
- Show that whp subproblems are of size $\widetilde{\mathcal{O}}(\frac{N}{\sqrt{S}})$.
- $\bullet\,$ Recurse on subproblems.