Homework Assignment-1

King Saud University	Name:
CSC-339 Theory of Computation	KSU ID:
Spring semester 2021	Section number:

Due date: Wednesday March 31st, 2021 at 11pm

Instructions

- 1. The solution to this assignment should be your own work. Collaboration of any kind is prohibited.
- 2. After completing the assignment, submit your solution as a PDF file.
- 3. You may type (using a keyboard) or write (by hand) your answers. In case you choose to write your answer, please make sure your handwriting is clear.
- 4. Plagiarism of any kind will result in a zero mark for the whole assignment.
- 5. There are 5 questions. Make sure you answer them all.

Question-1 (20 points)

Question 1 (20 points)	
Design a <u>DFA</u> for each of the following sets.	
a) The set of strings in {1,3,9} ending in 339. (e.g., 339, 9339, 1339)	
b) the set of strings in {a} whose length is divisible by 5. (e.g., aaaaa, aaaaaaaaa)	
c) the set of {0,1} containing the substring 110 or 001. (e.g., 000110, 001001110)	
d) the set of $\{a,b\}$ starting with an \underline{a} and ending with a \underline{b} , or starting with a \underline{b} and ending with (e.g., ab, ba, abab, bbaba, aaab)	an <u>a</u> .

Question-2 (20 points)

Give regular expressions that generate each of the following languages. You may assume the alphabet is $\Sigma = \{a,b\}$.

- 1) {*w* | *w* contains at least 3 a's or 2 b's}
- 2) $\{w \mid w \text{ ends in } aba \text{ and } |w| \text{ is even}\}$
- 3) $\{w \mid w \text{ ends in two different letters}\}$. For instance, *abba* belongs to the language, whereas *baa* does not.
- 4) $\{w \mid w \text{ starts and ends with the same letter}\}$.
- 5) $\{w \mid w \text{ starts with a double letter}\}$. A double letter is the same letter appearing twice (e.g., aa or bb).

Question-3 (20 points)

Answer the following questions about $L_1 = \{ww^Rw \mid w \in \Sigma^*\}$. You may assume the alphabet is $\Sigma = \{a,b\}$.

- 1) Informally describe L₁ (what kind of strings does it have?). Note: make sure your answer is complete.
- 2) Use the pumping lemma to prove that L_1 is not a regular language.

Question-4 (20 points)

Design a context-free grammar (CFG) that can generate strings for the following languages. You may assume that the alphabet $\Sigma = \{a,b,c\}$.	
1) $\{w \mid w \text{ contains at least three } c$'s $\}$ (e.g., ccc, acbcc, cacbc)	
2) $\{w \mid \text{the middle symbol is b and } w \text{ is odd} \}$ (e.g., abc, aba, bbb, b, acbab)	
3) $\{w \mid w \text{ contains the substring } cab\}$ (e.g., cab, cabac, bcaba)	
4) $\{w \mid w \text{ has an even number of } a\text{'s}\}$ (e.g., aba, acabaa, aa)	

Question-5 (20 points)

1) Construct a pushdown automaton (PDA) P_1 that can recognize the following language $L_1 = \{a^nb^{2n} \mid n > 0\}.$

2) Provide the formal definition for P_1 .