Durée : 2 heures Epreuve à distance

PHYSIQUE DU SOLIDE ET NANOSCIENCES

Exercice 1. Cristallographie

Dans les cas suivants, indiquer le(s) vecteur(s) de base, la maille élémentaire, le motif. Les disques noirs sont appelés atomes A et les disques blancs, atomes B.

Cristal 1.

Cristal 2

Cristal 3 (cristal à une dimension)

Exercice 2: Gaz d'électrons libres

On considère N électrons, sans interaction, de masse m, se déplaçant librement à l'intérieur d'un fil de longueur L. Le potentiel constant à l'intérieur du solide est choisi comme origine des énergies, l'énergie des électrons est donc égale à leur énergie cinétique.

- 1) Ecrire l'équation de Schrödinger pour un électron. Donner la forme générale des solutions de cette équation et l'expression de l'énergie en fonction du vecteur d'onde k.
- 2) Que devient la fonction d'onde en utilisant la condition cyclique de Born von Karman ? Préciser la quantification de l'énergie.
- 3) Tracer la relation de dispersion E(k) et y reporter les premiers états quantifiés.
- 4) Calculer la densité n(k) d'états k permis, en considérant que n(k)dk correspond au nombre d'états permis entre k et k+dk.
- 5) On rappelle que le vecteur d'onde de Fermi k_F correspond au dernier état d'énergie occupé par un électron. Donner la valeur de k_F en fonction de N et L.

Exercice 3. Structure de bandes des électrons et des phonons dans MoS2.

Cette figure représente la **structure de bandes électronique** de MoS_2 , pour deux configurations cristallines : à gauche la configuration appelée « 1H » et à droite la configuration appelée « 1T ». Le zéro d'énergie correspond à l'énergie de Fermi à T=0K.

- 1) Dans quelle configuration cristalline, 1H ou 1T, MoS₂ est-il un métal ? un semiconducteur ? Justifier.
- 2) Dans le cas du semiconducteur, en quels points *k* se trouve le bas de la bande de conduction ? On admet que le haut de la bande de valence est en K. La bande interdite est-elle directe ou indirecte ?

- 3) Toujours dans le cas du semiconducteur, donner la valeur de la bande interdite. A quelle longueur d'onde correspond cette énergie ?
- 4) Qualitativement, comment varie la densité d'électrons dans la bande de conduction du semiconducteur intrinsèque en fonction de la température ?

On étudie maintenant la structure de bandes de phonons d'un feuillet de 1T-MoS₂.

- 5) Qu'est-ce qu'un phonon? Donner au moins un exemple de processus physique dans lequel les phonons ont un rôle.
- 6) Indiquer (au moins) un élément sur cette structure de bande permettant d'identifier que c'est vraisemblablement une structure de bandes de phonons et non d'électrons.
- 7) Combien y a-t-il de branches acoustiques? optiques?
- 8) A quelle condition un cristal peut il présenter uniquement des branches acoustiques ?

Exercice 4. Exercice exploratoire. Semiconducteurs

Dans un semiconducteur, les porteurs de charges sont les électrons et les trous. On montrera dans les prochains cours que les concentrations d'électrons dans la bande de conduction n et de trous dans la bande de valence p sont données par :

$$n = N_c exp\left(-\frac{E_c - E_F}{kT}\right)$$
 et $p = N_v exp\left(\frac{E_v - E_F}{kT}\right)$

Avec N_C et N_V des grandeurs supposées constantes, E_C l'énergie du bas de la bande de conduction, E_V l'énergie du bas de la bande de valence, E_F l'énergie de Fermi, k la constante de Boltzman et T la température.

- 1) En posant n = p, déterminer l'expression de l'énergie de Fermi.
- 2) En supposant que $kT \ln \left(\frac{N_V}{N_C}\right) \ll E_C + E_V$, déduire une expression simplifiée de E_F . En déduire où se situe l'énergie de Fermi par rapport à la bande interdite.