Homework #4 of the course: Theory of Computer Games.

1. For the above UCT, assume that the playout sequence is P1, P2, P3, P4, P5, P6. Calculate all the values of Q(s,a), $\sim Q(s,a)$, N(s,a), $\sim N(s,a)$, after each playout. Note: $\sim Q(s,a)$ and $\sim C(s,a)$ are the RAVE version of Q(s,a) and C(s,a).

	P1	P2	P3	P4	P5	P6
Q(s, a)	0/1	0/1	0/1	0/1	0/2	0/2
N(s, a)	1	1.	1	1	2	2
~Q(s, a)	0/1	1/2	2/3	2/3	2/4	3/5
~N(s, a)	1	2	3	3	4	5

2. Calculate Q(s,a), $\sim Q(s,a)$, N(s,a), $\sim N(s,a)$, again, assuming the following prior knowledge:

$$H(s,a) = 0.6, H(s,b) = 0.55, H(s,c) = 0.5$$

$$C(s,a) = 5$$
, $C(s,b) = 5$, $C(s,c) = 4$

$$\sim C(s,a) = 8, \sim C(s,b) = 6, \sim C(s,c) = 6$$

Note: H(s,a) is the initial value of Q(s,a) and $\sim Q(s,a)$, while C(s,a) and $\sim C(s,a)$ are the initial values of N(s,a) and $\sim N(s,a)$,.

P1:
$$Q(S,a) = \frac{0.6 \times 5 + 0}{5 + 1} = \frac{3}{6}$$

 $Q(S,a) = \frac{0.6 \times 8 + 0}{8 + 1} = \frac{4.8}{9}$
 $N(S,a) = 5 + 1 = 6$
 $N(S,a) = 8 + 1 = 9$

P3: Q(S,a) =
$$\frac{3}{6}$$

$$Q(S,a) = \frac{5.8+1}{10+1} = \frac{6.8}{11}$$

$$N(S,a) = 6$$

$$N(S,a) = 10+1 = 11$$

P5:
$$Q(S, \alpha) = \frac{3+0}{6+1} = \frac{3}{17}$$

$$Q(S, \alpha) = \frac{6,8+0}{11+1} = \frac{6,8}{12} \checkmark$$

$$N(S, \alpha) = \frac{6+1}{11+1} = \frac{7}{12}$$

$$N(S, \alpha) = \frac{6+1}{11+1} = \frac{7}{12}$$

P2:
$$Q(S,a) = \frac{3+0}{6+0} = \frac{3}{6}$$

$$\widehat{Q}(S,a) = \frac{4.8+1}{9+1} = \frac{5.8}{10}$$

$$N(S,a) = 6$$

$$N(S,a) = 9+1 = 10$$

P4:
$$Q(S_1 a) = \frac{3}{6}$$
 $Q(S_1 a) = \frac{6.8}{11}$
 $N(S_1 a) = 6$

P6:
$$Q(S,a) = \frac{3}{7}$$
 $Q(S,a) = \frac{6.8 + 1}{12 + 1} = \frac{7.8}{13}$
 $N(S,a) = 7$
 $N(S,a) = 12 + 1 = 13$