

Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 8 Martie 2014

CLASA a XI-a

Problema 1. (a) Daţi un exemplu de două matrice A şi B din $\mathcal{M}_2(\mathbb{R})$, astfel încât $A^2 + B^2 = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}$.

(b) Arătaţi că, dacă A şi B sunt două matrice din $\mathcal{M}_2(\mathbb{R})$, astfel încât $A^2 + B^2 = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}$, atunci $AB \neq BA$.

Gazeta Matematică

Problema 2. (a) Arătaţi că, dacă $f: \mathbb{R} \to \mathbb{R}$ este o funcţie, astfel încât funcţiile $g: \mathbb{R} \to \mathbb{R}$, g(x) = f(x) + f(2x), şi $h: \mathbb{R} \to \mathbb{R}$, h(x) = f(x) + f(4x), sunt continue pe \mathbb{R} , atunci şi f este continuă pe \mathbb{R} .

(b) Daţi un exemplu de funcţie discontinuă $f: \mathbb{R} \to \mathbb{R}$, care are următoarea proprietate: există un interval $I \subset \mathbb{R}$, astfel încât, oricare ar fi a în I, funcţia $g_a: \mathbb{R} \to \mathbb{R}$, $g_a(x) = f(x) + f(ax)$, este continuă pe \mathbb{R} .

Problema 3. (a) Fie A o matrice din $\mathcal{M}_2(\mathbb{C})$, $A \neq aI_2$, oricare ar fi $a \in \mathbb{C}$. Arătați că o matrice X din $\mathcal{M}_2(\mathbb{C})$ comută cu matricea A, adică AX = XA, dacă și numai dacă există două numere complexe α și α' , astfel încât $X = \alpha A + \alpha' I_2$.

(b) Fie A, B şi C trei matrice din $\mathcal{M}_2(\mathbb{C})$, astfel încât $AB \neq BA$, AC = CA şi BC = CB. Arătați că C comută cu orice matrice din $\mathcal{M}_2(\mathbb{C})$.

Problema 4. Fie $f \colon \mathbb{N} \to \mathbb{N}^*$ o funcție strict crescătoare. Arătați că:

- (a) Există un şir descrescător de numere reale strict pozitive, $(y_n)_{n\in\mathbb{N}}$, convergent la 0, astfel încât $y_n \leq 2y_{f(n)}$, oricare ar fi $n \in \mathbb{N}$;
- (b) Dacă $(x_n)_{n\in\mathbb{N}}$ este un şir descrescător de numere reale, convergent la 0, atunci există un şir descrescător de numere reale, $(y_n)_{n\in\mathbb{N}}$, convergent la 0, astfel încât $x_n \leq y_n \leq 2y_{f(n)}$, oricare ar fi $n \in \mathbb{N}$.