EE 2000 SIGNALS AND SYSTEMS

Ch. 6 Discrete-Time System

SIGNAL

- Discrete-time signal
 - The time takes discrete values

$$x(n) = \cos\left(\frac{n}{4}\right)$$

$$x(n) = \frac{1}{2} \exp\left(\frac{n}{4}\right)$$

SIGNAL: CLASSIFICATION

- Energy signal v.s. Power signal
 - Energy:

$$E = \lim_{N \to \infty} \sum_{n=-N}^{N} |x(n)|^2$$

- Power:

$$P = \lim_{N \to \infty} \frac{1}{2N + 1} \sum_{n = -N}^{N} |x(n)|^{2}$$

- Energy signal: $E < \infty$
- Power signal: $P < \infty$

SIGNAL: CLASSIFICATION

- Periodic signal v.s. aperiodic signal
 - Periodic signal x(n) = x(n+N)
 - The smallest value of *N* that satisfies this relation is the fundamental periods.
 - Is $\cos(\omega n)$ periodic?

$$cos(\omega n)$$
 is periodic if $\frac{2k\pi}{\omega}$ is integer for integer k.

- Example: cos(3n)

 $\cos(\pi n)$

$$\cos(\frac{3}{4}\pi n)$$

SIGNAL: ELEMENTARY SIGNAL

Unit impulse function

$$\delta(n) = \begin{cases} 1, n = 0, \\ 0, n \neq 0. \end{cases}$$

Unit step function

$$u(n) = \begin{cases} 0, n < 0, \\ 1, n \ge 0. \end{cases}$$

Relation between unit impulse function and unit step function

$$\delta(n) = u(n) - u(n-1)$$

$$u(n) = \sum_{k=-\infty}^{n} \delta(k)$$

SIGNAL: ELEMENTARY SIGNAL

Exponential function

$$x(n) = \exp(\alpha n)$$

Complex exponential function

$$x(n) = \exp(j\omega_0 n) = \cos(\omega_0 n) + j\sin(\omega_0 n)$$

OUTLINE

- Discrete-time signals
- Discrete-time systems
- Z-transform

SYSTEM: IMPULSE RESPONSE

- Impulse response of LTI system
 - The response of the system when the input is $\delta(n)$

LTI system

- System response for arbitrary input
 - Any signal can be decomposed as the sum of time-shifted impulses

$$x(n) = \sum_{k=-\infty}^{+\infty} x(k)\delta(n-k)$$

Time invariant

Linear

$$\sum_{k=-\infty}^{+\infty} x(k) \delta(n-k)$$
System
$$\sum_{k=-\infty}^{+\infty} x(k) h(n-k)$$

LTI system

LTI system

SYSTEM: CONVOLUTION SUM

Convolution sum

- The convolution sum of two signals x(n) and h(n) is

$$x(n) \otimes h(n) = \sum_{k=-\infty}^{+\infty} x(k)h(n-k)$$

Response of LTI system

 The output of a LTI system is the convolution sum of the input and the impulse response of the system.

SYSTEM: CONVOLUTION SUM

• Example

$$-1$$
. $x(n) \otimes \delta(n-m)$

$$-2. \quad x(n) = \alpha^n u(n), \qquad h(n) = \beta^n u(n)$$
$$x(n) \otimes h(n) =$$

SYSTEM: CONVOLUTION SUM

• Example:

- Let
$$x(n) = [1,3,-1,-2]$$
 $h(n) = [1,2,0,-1,1]$, be two sequences, find $x(n) \otimes h(n)$

STSTEM: COMBINATION OF SYSTEMS

Combination of systems

Two systems in series

Two systems in parallel

SYSTEM: DIFFERENCE EQUATION REPRESENTATION

Difference equation representation of system

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$

OUTLINE

- Discrete-time signals
- Discrete-time systems
- Z-transform

Z-TRANSFORM

Bilateral Z-transform

$$X(z) = \sum_{n=-\infty}^{+\infty} x(n)z^{-n}$$

Unilateral Z-transform

$$X(z) = \sum_{n=0}^{+\infty} x(n)z^{-n}$$

• Z-transform:

- Ease of analysis
- Doesn't have any physical meaning (the frequency domain representation of discrete-time signal can be obtained through discrete-time Fourier transform)
- Counterpart for continuous-time systems: Laplace transform.

Z-TRANSFORM

• Example: find Z-transforms

$$-1. \quad x(n) = \delta(n)$$

$$-2. \quad x(n) = \left(\frac{1}{2}\right)^n u(n)$$

Z-TRANSFORM

Example

- 3.
$$x(n) = -\left(\frac{1}{2}\right)^n u(-n-1)$$

• Region of convergence (ROC)

Region of convergence

Z-TRANSFORM: CONVERGENCE

Convergence of causal signal

$$x(n) = \alpha^n u(n)$$

Convergence of anti-causal signal

$$x(n) = \beta^n u(-n-1)$$

Z-TRANSFORM: TIME SHIFTING PROPERTY

Time Shifting

- Let x(n) be a causal sequence with the Z-transform X(z)
- Then

$$Z[x(n+n_0)] = z^{n_0}X(z) - z^{n_0}\sum_{m=0}^{n_0-1}x(m)z^{-m}$$

$$Z[x(n-n_0)] = z^{-n_0}X(z) + z^{-n_0}\sum_{m=-n_0}^{-1}x(m)z^{-m}$$

Z-TRANSFORM: LTI SYSTEM

• LTI System

Difference equation representation

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$

Z-domain representation

$$\left[\sum_{k=0}^{N} a_k z^{-k}\right] Y(z) = \left[\sum_{k=0}^{M} b_k z^{-k}\right] X(z)$$

Transfer function

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\left[\sum_{k=0}^{M} b_k z^{-k}\right]}{\left[\sum_{k=0}^{N} a_k z^{-k}\right]}$$

Z-TRANSFORM: LTI SYSTEM

Example

 Find the transfer function of the system described by the following difference equation

$$y(n) - 2y(n-1) + 2y(n-2) = x(n) + \frac{1}{2}x(n-1)$$

Z-TRANSFORM: STABILITY

Stability

$$H(z) = \frac{z}{z - a} \qquad h(n) = a^n u(n)$$

- A LTI system is BIBO stable is all the poles are within the unit circle (|a| < 1)
- A LTI system is unstable is at least one pole is on or outside of the unit circult ($|a| \ge 1$)