Helly-type Theorems for Hollow Axis-aligned Boxes

Konrad J. Swanepoel

ABSTRACT. A hollow axis-aligned box is the boundary of the cartesian product of d compact intervals in \mathbb{R}^d . We show that for $d \geq 3$, if any 2^d of a collection of hollow axis-aligned boxes have non-empty intersection, then the whole collection has non-empty intersection; and if any 5 of a collection of hollow axis-aligned rectangles in \mathbb{R}^2 have non-empty intersection, then the whole collection has non-empty intersection. The values 2^d for $d \geq 3$ and 5 for d = 2 are the best possible in general. We also characterize the collections of hollow boxes which would be counterexamples if 2^d were lowered to $2^d - 1$, and 5 to 4, respectively.

1. General Notation and Definitions

We denote the cardinality of a set S by #S. Let $\Pi(\mathbf{S},k)$ denote the property that any subcollection of \mathbf{S} of at most k sets has non-empty intersection (where k is any positive integer), and $\Pi(\mathbf{S})$ the property that \mathbf{S} has non-empty intersection. For any set $S \subseteq \mathbb{R}^d$, we denote the convex hull, interior and boundary by co S, int S and bd S, respectively. An *axis-aligned box* in \mathbb{R}^d is the cartesian product of d compact intervals, i.e. a set of the form

$$\prod_{i=1}^{d} [a_i, b_i] = \{(x_1, \dots, x_d) \in \mathbb{R}^d : a_i \le x_i \le b_i, i = 1, \dots, d\}, \quad (a_i < b_i).$$

An axis-aligned hollow box in \mathbb{R}^d is the boundary of a box, i.e. a set of the form

$$\operatorname{bd} \prod_{i=1}^{d} [a_i, b_i], \quad (a_i < b_i).$$

In the rest of the paper, the word *axis-aligned* is implicit whenever we refer to boxes or hollow boxes. In the next section we state our results (Theorems 1 and 2), together with examples showing that they are the best possible. In Section 3 we derive a combinatorial lemma needed in the proofs of these theorems in Section 4.

2. Helly-type Theorems

A Helly-type theorem may be loosely described as an analogue of

HELLY'S THEOREM ([6]). Let S be a collection of convex sets in \mathbb{R}^d that is finite, or contains at least one compact set. Then

$$\Pi(\mathbf{S}, d+1) \implies \Pi(\mathbf{S}).$$

1991 Mathematics Subject Classification. Primary 52A35. Key words and phrases. Helly-type Theorem, box, cube, hypercube.

FIGURE 1. Five rectangles with no common boundary point, yet any 4 have a common boundary point

There is an abundance of literature on Helly-type theorems; see the surveys [1, 3, 5]. Most of these analogues consider collections of *convex* sets, exactly as in Helly's Theorem. Here are two examples where non-convex sets are considered.

THEOREM (Motzkin [8, 2]). Let S be a collection of sets in \mathbb{R}^d , each of which is the set of common zeroes of a set of real polynomials in d variables of degree at most k. Then

$$\Pi(\mathbf{S}, \binom{d+k}{k}) \implies \Pi(\mathbf{S}).$$

THEOREM (Maehara [7, 4]). Let **S** be a collection of at least d+3 euclidean spheres in \mathbb{R}^d . Then

$$\Pi(\mathbf{S}, d+1) \implies \Pi(\mathbf{S}).$$

In both these theorems the sets are algebraic. In this paper we find Helly-type theorems for certain non-algebraic sets, namely hollow boxes. It is well-known (and immediately follows from the one-dimensional Helly theorem) that for any collection \mathbf{S} of boxes in \mathbb{R}^d ,

$$\Pi(\mathbf{S}, 2) \implies \Pi(\mathbf{S}).$$

If we want the boxes to intersect only in their boundaries, then the value 2 has to be greatly enlarged, as the following examples show.

EXAMPLE 1. A class of collections **S** of hollow boxes in \mathbb{R}^d such that $\Pi(\mathbf{S}, 2d)$ holds, but not $\Pi(\mathbf{S}, 2d+1)$.

Choose any box $B = \prod_{i=1}^d [x_i^0, x_i^1]$, (where $x_i^0 < x_i^1$), and $p = (p_1, \dots, p_d) \in$ int B. For $i = 1, \dots, d$ and j = 0, 1, let F_i^j denote the facet of B contained in the hyperplane $\{x \in \mathbb{R}^d : x_i = x_i^j\}$. Let **S** be any collection of hollow boxes such that

- (1) $\operatorname{bd} B \in \mathbf{S}$,
- (2) $p \in D$ for all $D \in \mathbf{S} \setminus \{ \operatorname{bd} B \}$,
- (3) for each $D \in \mathbf{S} \setminus \{ \text{bd } B \}$ there is a facet of B contained in D,
- (4) for each facet F of B there exists some $D \in \mathbf{S} \setminus \{ \operatorname{bd} B \}$ such that $F \subseteq D$.

It is clear that there exist such collections **S**, (even infinite ones provided $d \neq 1$). Note that the facet in (3) is unique, by (2). See Figure 1 for an example in \mathbb{R}^2 .

Choose any subcollection $\mathbf{T} \subseteq \mathbf{S}$ of 2d hollow boxes. If $\mathrm{bd} B \notin \mathbf{T}$, then by (2), $\bigcap_{D \in \mathbf{T}} D \neq \emptyset$. Otherwise, by (3), there is a facet of B not contained in any $D \in \mathbf{T} \setminus \{\mathrm{bd} B\}$, say F_1^0 . Then it easily follows from (2) and (3) that $(x_1^1, p_2, p_3, \ldots, p_d) \in \bigcap_{D \in \mathbf{T}} D$. It follows that $\Pi(\mathbf{S}, 2d)$ holds.

FIGURE 2. Four rectangles with no common boundary point, yet any 3 have a common boundary point

Secondly, use (4) to choose for each facet F_i^j of B a $D_i^j \in \mathbf{S}$ containing F_i^j . Then $F_i^{1-j} \cap D_i^j = \emptyset$ by (2). It follows that $(\operatorname{bd} B) \cap \bigcap_{i=1}^d (D_i^0 \cap D_i^1) = \emptyset$, and $\Pi(\mathbf{S}, 2d+1)$ does not hold.

Example 2. A class of collections **S** of hollow boxes in \mathbb{R}^d such that $\Pi(\mathbf{S}, 2^d - 1)$

holds, but not $\Pi(\mathbf{S}, 2^d)$. Let $B = \prod_{i=1}^d [x_i^0, x_i^1], (x_i^0 < x_i^1)$, and let \mathbf{S} be any collection of hollow boxes such that

- $B \subseteq \operatorname{co} D$ for all $D \in \mathbf{S}$, (5)
- for each vertex v of B there exists a $D \in \mathbf{S}$ not containing v, (6)
- (7)each $D \in \mathbf{S}$ contains all the vertices of B except at most one.

It is clear thus there exist such collections, even infinite ones. See Figure 2 for an example in \mathbb{R}^2 . Given a subcollection of 2^d-1 hollow boxes, then by (7), some vertex of B is contained in all these boxes. Thus $\Pi(\mathbf{S}, 2^d - 1)$ holds.

Secondly, (6) gives a subcollection of 2^d boxes D_v with $v \notin D_v$. But then, using also (5), it follows from Lemma 4.2 that for any vertex w of B, $\bigcap_{v\neq w} D_v = \{w\}$. Thus, $\bigcap_v D_v = \emptyset$, and $\Pi(\mathbf{S}, 2^d)$ does not hold.

The following two theorems show that the collections in Example 1 in the case d=2, and the collections in Example 2 in the case d>3 are the worst cases.

THEOREM 1. Let **S** be a collection of hollow boxes in \mathbb{R}^2 . Then

$$\Pi(\mathbf{S}, 5) \implies \Pi(\mathbf{S}).$$

If S is furthermore not of the form in Example 1, then

$$\Pi(\mathbf{S},4) \implies \Pi(\mathbf{S}).$$

THEOREM 2. Let $d \geq 3$, and **S** a collection of hollow boxes in \mathbb{R}^d . Then

$$\Pi(\mathbf{S}, 2^d) \implies \Pi(\mathbf{S}).$$

If S is furthermore not of the form in Example 2, then

$$\Pi(\mathbf{S}, 2^d - 1) \implies \Pi(\mathbf{S}).$$

Note that in \mathbb{R}^1 , a hollow box is a two-point set. It is trivially seen that for a collection **S** of two-point sets,

$$\Pi(\mathbf{S}, 2) \implies \Pi(\mathbf{S}),$$

except if $\mathbf{S} = \{\{a,b\},\{b,c\},\{c,a\}\}\$ for some distinct elements a,b,c, i.e. if \mathbf{S} is as in Example 1.

3. Combinatorial Preparation

A string of length d over the alphabet A is any d-tuple from A^d , and is written as $\varepsilon = \varepsilon_1 \dots \varepsilon_d$. We say that ε_i is in position i. A pattern is a string over $\{0,1,*\}$. A string $\varepsilon_1 \dots \varepsilon_d$ over $\{0,1\}$ matches a pattern $\rho_1 \dots \rho_d$ if for all $i=1,\dots,d$, $\rho_i=0 \Rightarrow \varepsilon_i=0$ and $\rho_i=1 \Rightarrow \varepsilon_i=1$. Thus, a * in a pattern is a "wildcard" matching 0 or 1. A cover of $\{0,1\}^d$ is a set of patterns $\mathbf{C} \subseteq \{0,1,*\}^d$ such that any string in $\{0,1\}^d$ matches some pattern in \mathbf{C} . A minimal cover of $\{0,1\}^d$ is a cover \mathbf{C} of $\{0,1\}^d$ such that no proper subset of \mathbf{C} is a cover of $\{0,1\}^d$.

LEMMA 1. Let \mathbf{C} be a minimal cover of $\{0,1\}^d$. Then, for each $i=1,\ldots,d$, $E_i:=\{\varepsilon_i:\varepsilon_1\ldots\varepsilon_d\in C\}$ is equal to either $\{*\}$, $\{0,1\}$ or $\{0,1,*\}$. Let $s:=\#\{i:E_i=\{*\}\}$. Then $\#\mathbf{C}\leq 2^{d-s}$, with equality iff $\mathbf{C}=\{\varepsilon:\varepsilon_i=*$ for all $i\in J\}$ for some $J\subseteq\{1,2,\ldots,d\}$ with #J=s.

PROOF. We first show that any minimal cover \mathbf{C} satisfies $\#\mathbf{C} \leq 2^d$, with equality iff $\mathbf{C} = \{0,1\}^d$. For each pattern $\rho \in \mathbf{C}$, the set $\mathbf{C} \setminus \{\rho\}$ is not a cover of $\{0,1\}^d$, and there exists a string $\varepsilon_{\rho} \in \{0,1\}^d$ that matches ρ but does not match any other pattern in \mathbf{C} . Thus,

$$\phi: \mathbf{C} \to \{0,1\}^d; \rho \mapsto \varepsilon_{\rho}$$

is an injection, and $\#\mathbf{C} \leq 2^d$. If equality holds, ϕ is a bijection, and any string in $\{0,1\}^d$ matches a unique pattern in \mathbf{C} . Thus \mathbf{C} defines a partition of $\{0,1\}^d$: a block of the partition consists of all strings matching a given pattern in \mathbf{C} . Since there are 2^d blocks, each block must contain exactly 1 element. Thus no pattern in \mathbf{C} contains a *, and $\mathbf{C} = \{0,1\}^d$.

Secondly, we show that if 0 does not occur in the first position of any string in \mathbb{C} , there are only *s in the first position. Let

$$\mathbf{C}^* = \{ \varepsilon_2 \dots \varepsilon_n : *\varepsilon_2 \dots \varepsilon_n \in \mathbf{C} \}.$$

It is easily seen that \mathbf{C}^* is a cover for $\{0,1\}^{d-1}$: For any $\varepsilon \in \{0,1\}^{d-1}$, 0ε matches some pattern in \mathbf{C} starting with *. But then, by putting back * in the first position of every pattern in \mathbf{C}^* , we already obtain a cover of $\{0,1\}^d$. Thus, 1 does not occur in the first position in any string in \mathbf{C} . Similarly, if 1 does not occur in the first position, then there are again only *s in the first position.

Finally, to complete the proof, delete the positions for which $E_i = \{*\}$, to obtain $\mathbf{C}' \subseteq \{0,1,*\}^{d-s}$. Then \mathbf{C}' is clearly a minimal cover of $\{0,1\}^{d-s}$, and $\#\mathbf{C} = \#\mathbf{C}'$. Now apply the first part of the proof.

We omit the proof of the following elementary inequality.

LEMMA 2. Let $d \ge s \ge 0$ be integers. Then $2^{d-s} < 2^d - 2s$, except in the following cases:

- (1) If (d, s) = (1, 1) or (d, s) = (2, 2), the opposite inequality holds;
- (2) If s = 0, or (d, s) = (2, 1), there is equality.

LEMMA 3. With the hypothesis of Lemma 1, $\#\mathbb{C} < 2^d - 2s$, except in the following cases:

- (1) If $\mathbf{C} = \{*\}$ or $\mathbf{C} = \{**\}$ then $\#\mathbf{C} > 2^d 2s = 0$;
- (2) If $C = \{0, 1\}^d$ or $C = \{0, 1\}^d$ or $C = \{*0, *1\}$ then $\#C = 2^d 2s$.

PROOF. It is easy to check everything for d=1 and d=2: The only minimal covers for d=1 are $\{*\}$ and $\{0,1\}$, and for d=2, are equivalent (up to permutation of the positions, and interchange of 0 and 1) to one of

$$\{**\}, \{0*, 1*\}, \{0*, 10, 11\}, \{0*, *0, 11\}, \{00, 01, 10, 11\}.$$

For $d \ge 3$, if $s \ge 1$, then $\#\mathbf{C} \le 2^{d-s} < 2^d - 2s$, by Lemmas 1 and 2. Otherwise, s = 0, and by Lemma 1, $\#\mathbf{C} < 2^d$ unless $\mathbf{C} = \{0, 1\}^d$.

4. Proofs of Theorems 1 and 2

We first prove a rather technical lemma, which gives some insight into the (not easily visualizable) intersections of hollow boxes.

LEMMA 4. Let $B = \prod_{i=1}^d [x_i^0, x_i^1]$, with $x_i^0 \le x_i^1$ for each $i = 1, \ldots, d$. (Thus B is not necessarily full-dimensional.) For each string $\varepsilon \in \{0, 1\}^d$, let $x_\varepsilon := (x_1^{\varepsilon_1}, x_2^{\varepsilon_2}, \ldots, x_d^{\varepsilon_d})$, and let D_ε be a hollow box such that $x_\varepsilon \notin D_\varepsilon$ and $B \subseteq \operatorname{co} D_\varepsilon$. (Thus $\{x_\varepsilon : \varepsilon \in \{0, 1\}^d\}$ is the vertex set of B, with repetitions if $\dim B < d$.) Then,

- (1) $B \cap \bigcap_{\varepsilon} D_{\varepsilon} = \emptyset$,
- (2) for any $\gamma \in \{0,1\}^d$, $B \cap \bigcap_{\varepsilon \neq \gamma} D_{\varepsilon} \subseteq \{x_{\gamma}\}$,
- (3) for any $\gamma, \delta \in \{0, 1\}^d$,

$$B \cap \bigcap_{\varepsilon \neq \gamma, \delta} D_{\varepsilon} \subseteq \begin{cases} \operatorname{co}\{x_{\gamma}, x_{\delta}\} & \textit{if } x_{\gamma} \textit{ and } x_{\delta} \textit{ differ in exactly one coordinate,} \\ \{x_{\gamma}, x_{\delta}\} & \textit{otherwise.} \end{cases}$$

PROOF. Clearly, part 1 follows from part 2: If B is a single point, each D_{ε} is disjoint from B. Otherwise, choose γ, γ' such that $x_{\gamma} \neq x_{\gamma'}$. Then, by part 2, $B \cap \bigcap_{\varepsilon} D_{\varepsilon} = \emptyset$.

Although part 2 also easily follows from part 3, we first prove part 2, as it clears the way for a proof of part 3. For each ε , write $D_{\varepsilon} = \operatorname{bd} \prod_{i=1}^{d} [a_{i}^{\varepsilon}, b_{i}^{\varepsilon}]$. Let $x = (x_{1}, x_{2}, \ldots, x_{d}) \in B \cap \bigcap_{\varepsilon \neq \gamma} D_{\varepsilon}$. Then $x_{i}^{0} \leq x_{i} \leq x_{i}^{1}$ for each i. Define ε by

$$\varepsilon_i := \begin{cases} \gamma_i & \text{if } x_i = x_i^{\gamma_i}, \\ 1 - \gamma_i & \text{otherwise.} \end{cases}$$

Since $x_{\varepsilon} \subseteq B \subseteq \operatorname{co} D_{\varepsilon}$, but $x_{\varepsilon} \notin D_{\varepsilon}$, we have $a_{i}^{\varepsilon} \le x_{i}^{0} \le x_{i}^{1} \le b_{i}^{\varepsilon}$ and $a_{i}^{\varepsilon} < x_{i}^{\varepsilon_{i}} < b_{i}^{\varepsilon}$ for all i. If $\varepsilon_{i} = \gamma_{i}$, then $x_{i}^{\varepsilon_{i}} = x_{i}^{\gamma_{i}} = x_{i}$. If $\varepsilon_{i} = 1 - \gamma_{i}$, then $x_{i} \ne x_{i}^{\gamma_{i}}$, and either $\gamma_{i} = 1$ and $x_{i}^{\varepsilon_{i}} = x_{i}^{0} \le x_{i} < x_{i}^{1}$, or $\gamma_{i} = 0$ and $x_{i}^{\varepsilon_{i}} = x_{i}^{1} \ge x_{i} > x_{i}^{0}$. In all cases, $a_{i}^{\varepsilon} < x_{i} < b_{i}^{\varepsilon}$, and it follows that $x \notin D_{\varepsilon}$. Thus $\varepsilon = \gamma$, and $x_{i} = x_{i}^{\gamma_{i}}$ for all i. It follows that $x = x_{\gamma}$.

Now let $x \in B \cap \bigcap_{\varepsilon \neq \gamma, \delta} D_{\varepsilon}$, and suppose $x \neq x_{\gamma}, x_{\delta}$. Let j be any position such that $x_j \neq x_j^{\gamma_j}$. Define ε by

$$\varepsilon_i := \begin{cases} 1 - \gamma_i & \text{if } i = j, \\ \delta_i & \text{if } x_i = x_i^{\delta_i}, i \neq j, \\ 1 - \delta_i & \text{if } x_i \neq x_i^{\delta_i}, i \neq j. \end{cases}$$

As in the proof of part 2, for each i we obtain $a_i^{\varepsilon} < x_i < b_i^{\varepsilon}$, and therefore, $x \notin D_{\varepsilon}$. Thus, $\varepsilon = \gamma$ or $\varepsilon = \delta$. But, since $\varepsilon_j \neq \gamma_j$, we must have $\varepsilon = \delta$. Thus, $\gamma_j = 1 - \delta_j$, and for all $i \neq j$, $x_i = x_i^{\delta_i}$. Since $x \neq x_{\delta}$ we then must have $x_j \neq x_j^{\delta_j}$. By repeating the above argument with x_{δ} instead of x_{γ} , we also obtain that for all $i \neq j$, $x_i = x_i^{\gamma_i}$. It follows that $x \in \operatorname{co}\{x_{\gamma}, x_{\delta}\}$, and x_{γ} and x_{δ} differ in only one coordinate. \square

PROOF OF THEOREM 2. Note that the first part of the theorem follows from the second part, since $\Pi(\mathbf{S}, 2^d)$ does not hold in Example 2. By compactness, we only have to prove the theorem for finite \mathbf{S} . We assume that $\Pi(\mathbf{S}, 2^d - 1)$. Let $B = \bigcap_{D \in \mathbf{S}} \operatorname{co} D = \prod_{i=1}^d [x_i^0, x_i^1]$. (Since any two Ds intersect, $x_i^0 \leq x_i^1$ for all i.) We denote the vertices of B by x_{ε} , $\varepsilon \in \{0, 1\}^d$, as in Lemma 4. We now show that if $x_{\varepsilon} \notin \bigcap_{D \in \mathbf{S}} D$ for all ε , then \mathbf{S} is as in Example 2.

For each ε , choose $D_{\varepsilon} = \operatorname{bd} \prod_{i=1}^{d} [a_{i}^{\varepsilon}, b_{i}^{\varepsilon}] \in \mathbf{S}$ such that $x_{\varepsilon} \notin D_{\varepsilon}$, and let $X_{\varepsilon} := \{x_{\delta} : \delta \in \{0,1\}^{d}, x_{\delta} \notin D_{\varepsilon}\}.$

Then $X_{\varepsilon} = \{x_{\delta} : \delta \text{ matches } \rho_{\varepsilon}\}$, where $\rho_{\varepsilon} = \rho_{1} \dots \rho_{d}$ is the pattern defined by

$$\rho_i := \begin{cases} 0 & \text{if } a_i^{\varepsilon} < x_i^0 \text{ and } x_i^1 = b_i^{\varepsilon}, \\ 1 & \text{if } a_i^{\varepsilon} = x_i^0 \text{ and } x_i^1 < b_i^{\varepsilon}, \\ * & \text{if } a_i^{\varepsilon} < x_i^0 \text{ and } x_i^1 < b_i^{\varepsilon}. \end{cases}$$

Thus $\mathbf{C} := \{\rho_{\varepsilon} : \varepsilon \in \{0,1\}^d\}$ is a cover of $\{0,1\}^d$. If $\rho_{\varepsilon} = \rho_{\varepsilon'}$, then $x_{\varepsilon'} \notin D_{\varepsilon}$, so we may choose the D_{ε} s such that if $\rho_{\varepsilon} = \rho_{\varepsilon'}$, then $D_{\varepsilon} = D_{\varepsilon'}$. We now write D_{ρ} for D_{ε} whenever $\rho = \rho_{\varepsilon} \in \mathbf{C}$. Let \mathbf{C}' be a minimal cover contained in \mathbf{C} . For each $\varepsilon \in \{0,1\}^d$ there now exists a $\rho \in \mathbf{C}'$ matching ε such that $x_{\varepsilon} \notin D_{\rho}$. Applying Lemma 4.1 to $\{D_{\rho} : \rho \in \mathbf{C}'\}$, we find $B \cap \bigcap_{\rho} D_{\rho} = \emptyset$. Let $J \subseteq \{1, \ldots, d\}$ be the set of positions in which there are only *s in \mathbf{C}' . For each $j \in J$, choose $D_j^0 = \mathrm{bd} \prod_{i=1}^d [r_i^j, s_j^i]$ and $D_j^1 = \mathrm{bd} \prod_{i=1}^d [t_i^j, u_i^j]$ from \mathbf{S} such that $r_j^j = x_j^0$ and $u_j^j = x_j^1$ (which is possible since \mathbf{S} is finite). Since (by Lemma 1) for each $i \notin J$ there exist $\rho, \rho' \in \mathbf{C}'$ such that $\rho_i = 0$ and $\rho_i' = 1$, we obtain

$$\bigcap_{j\in J} (\operatorname{co} D_j^0 \cap \operatorname{co} D_j^1) \cap \bigcap_{\rho \in \mathbf{C}'} \operatorname{co} D_\rho = B.$$

Thus, letting $\mathbf{T} := \{D_{\rho} : \rho \in \mathbf{C}'\} \cup \{D_{j}^{0}, D_{j}^{1} : j \in J\}$, we obtain $\bigcap_{D \in \mathbf{T}} D = \emptyset$. Thus, $\#\mathbf{T} \geq 2^{d}$. Also, $\#\mathbf{T} \leq \#\mathbf{C}' + 2\#J$. Thus, by Lemma 3, $\mathbf{C}' = \{0, 1\}^{d}$. It follows that $x_{\delta} \notin D_{\varepsilon}$ iff $\delta = \varepsilon$. Thus, all x_{ε} s are distinct, and B is full-dimensional. Also, $J = \emptyset$ and $B = \bigcap_{\varepsilon} \operatorname{co} D_{\varepsilon}$. In fact, if we take any ε and ε' which differ in each position, then $B = \operatorname{co} D_{\varepsilon} \cap \operatorname{co} D_{\varepsilon'}$.

We already have that **S** satisfies (5) and (6) in Example 2. Consider any $D \in \mathbf{S}$ with $D \neq D_{\varepsilon}$ for all ε . Suppose there exist distinct γ, δ such that $x_{\gamma}, x_{\delta} \notin D$. By Lemma 4.3, $D \cap B \cap \bigcap_{\varepsilon \neq \gamma, \delta} D_{\varepsilon} = \emptyset$. But there exist $\varepsilon, \varepsilon' \notin \{\gamma, \delta\}$ differing in each position. Thus $\bigcap_{\varepsilon \neq \gamma, \delta} D_{\varepsilon} \subseteq B$, and $D \cap \bigcap_{\varepsilon \neq \gamma, \delta} D_{\varepsilon} = \emptyset$, contradicting $\Pi(\mathbf{S}, 2^d - 1)$. Thus D contains all x_{ε} s, except at most one, and (7) is satisfied.

PROOF OF THEOREM 1. Proceeding as in the proof of Theorem 2, we assume that $\Pi(\mathbf{S},4)$ holds, and that no vertex of B is in $\bigcap_{D\in\mathbf{S}}D$, and obtain $\mathbf{C}'=\{**\}$ and $\#\mathbf{T}=5$.

We now show that **S** is as in Example 1. Since $\mathbf{C}' = \{**\}$, there is only one D_{ρ} , say $D = D_{**}$, which is disjoint from B. Also, $\mathbf{T} = \{D_1^0, D_1^1, D_2^0, D_2^1, D\}$, with the D_j^i s as in the proof of Theorem 2. Thus $\bigcap_{i,j}$ co $D_j^i = B$.

Suppose that for each $\varepsilon \in \{0,1\}^2$ there exists a D_j^i not containing x_{ε} . Then by Lemma 4.1, $\bigcap_{i,j} D_j^i = \emptyset$, contradicting $\Pi(\mathbf{S},4)$. Thus, some $x_{\varepsilon} \in \bigcap_{i,j} D_j^i$, say x_{00} .

Suppose that B is two-dimensional, i.e. $x_1^0 < x_1^1$ and $x_2^0 < x_2^1$. Then, since $x_{00} \in D_1^1$, D_1^1 contains at least two sides of B, and it follows that $B = \operatorname{co} D_1^1 \cap \operatorname{co} D_2^0 \cap \operatorname{co} D_2^1$ or $B = \operatorname{co} D_1^1 \cap \operatorname{co} D_1^0 \cap \operatorname{co} D_2^1$. Thus $D_1^1 \cap D_2^0 \cap D_2^1 \cap D = \emptyset$ or $D_1^1 \cap D_1^0 \cap D_2^1 \cap D = \emptyset$, both cases contradicting $\Pi(\mathbf{S}, 4)$.

Suppose B is one-dimensional, say $x_1^0 < x_1^1$ and $x_2^0 = x_2^1$. Then $D_2^0 \cap D_2^1$ is a horizontal segment containing B. If D_1^1 intersects $D_2^0 \cap D_2^1$ only in x_{00} and x_{10} , then $D_1^1 \cap D_2^0 \cap D_2^1 \cap D = \emptyset$, a contradiction. Thus, $B \subseteq D_1^1$. We may assume that D_2^1 and D_1^1 are on opposite sides of B (otherwise consider D_2^0 and D_1^1). Then $D_1^0 \cap D_1^1 \cap D_2^1 \subseteq B$ and $D_1^0 \cap D_1^1 \cap D_2^1 \cap D = \emptyset$, a contradiction.

Thus B is zero-dimensional, say $B = \{p\}$, where $p = x_{00} = (x_1, x_2)$ and $x_1 = x_1^0 = x_1^1$, $x_2 = x_2^0 = x_2^1$. Then $D_1^0 \cap D_1^1$ is a vertical line segment through p which must intersect $D_2^0 \cap D$ in a point $b \neq p$, and $D_2^1 \cap D$ in a point $a \neq p$. Similarly, $D_1^0 \cap D_1^1$ is a horizontal segment through p which must intersect $D_1^0 \cap D$

FIGURE 3.

in a point $d \neq p$, and $D_1^1 \cap D$ in a point $c \neq p$. See Figure 3. Now **S** already satisfies (1) and (4) of Example 1, if we take B there as co D.

Consider any $E \in \mathbf{S} \setminus \mathbf{T}$. By considering the intersection of three sets at a time from \mathbf{T} , we see that E must intersect each of the sets $\{a,b\}$, $\{c,d\}$, $\{p,a\}$, $\{p,b\}$, $\{p,c\}$, $\{p,d\}$. If $p \notin E$, then $a,b,c,d \in E$, and E=D, a contradiction.

Thus $p \in E$, and (2) is satisfied. Also, $a \in E$ or $b \in E$. We may assume without loss that $a \in E$, and similarly, $c \in E$. But then, since $E \cap D \cap D_2^0 \cap D_1^0 \neq \emptyset$, we must have either $b \in E$ or $d \in E$, and (3) is satisfied. It follows that **S** is as in Example 1.

Acknowledgement

This paper is based on part of the author's PhD thesis written under supervision of Prof. W. L. Fouché at the University of Pretoria. I thank the referee for pointing out a few small errors in a previous version of this paper.

References

- [1] L. Danzer, B. Grünbaum, and V. Klee, *Helly's theorem and its relatives*, Convexity (V. L. Klee, ed.), Proc. of Symposia in Pure Math., vol. 7, A.M.S., 1963, pp. 100–181.
- [2] M. Deza and P. Frankl, A Helly type theorem for hypersurfaces, J. Comb. Theory, Ser. A 45 (1987), 27–30.
- [3] J. Eckhoff, Helly, Radon, and Carathéodory type theorems, Handbook of Convex Geometry (P. M. Gruber and J. M. Wills, eds.), Elsevier Science Publishers B.V., 1993, pp. 389–448.
- [4] P. Frankl, Helly-type theorems for varieties, Europ. J. Combinatorics 10 (1989), 243–245.
- [5] J. E. Goodman, R. Pollack, and R. Wenger, Geometric transversal theory, New Trends in Discrete and Computational Geometry (J. Pach, ed.), Springer-Verlag, Heidelberg, 1993.
- [6] E. Helly, Über Mengen konvexer Körper mit gemeinschaftlichen Punkten, Jber. Deutsch. Math. Verein 32 (1923), 175–176.
- [7] H. Maehara, Helly-type theorems for spheres, Discrete Comp. Geom. 4 (1989), 279–285.
- [8] T. S. Motzkin, A proof of Hilbert's Nullstellensatz, Math. Zeitschr. 63 (1955), 341-344.

Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa

E-mail address: konrad@math.up.ac.za