integracion, pruebas y resultados

Yo

15 de septiembre de 2023

${\rm \acute{I}ndice}$

1.	Prir	ner grafo													3
	1.1.	Resultados de Qiskit													3

En las ejecuciones de QAOA, con el fin de medir la eficacia de los resultados obtenidos entre métricas distintas, se han realizado los siguientes tipos de pruebas:

- Estadística máxima: Con este método se busca obviar el ruido presente en cada ejecución. Para ello se realizan n iteraciones distintas sobre el algoritmo y para cada una de ellas:
 - 1. Se ejecuta el optimizador clásico para hallar los parámetros óptimos (esto supone la ejecución del circuito cuántico el número de veces necesario para que el optimizador encuentre un mínimo local).
 - 2. Se ejecuta el circuito una vez más con los parámetros óptimos.
 - 3. Se obtiene el camino dado por el algoritmo para recorrer el grafo y se añade dicho camino a un diccionario para su posterior revisión. En el caso de la figura 2 el resultado sería 10101, es decir, el camino con mayor valor.
- Estadística global: A diferencia de la estrategia previamente explicada, al realizar el paso 3 se toman todos los caminos resultantes de la ejecución del circuito con los parámetros β_{opt} y γ_{opt} . De esta forma, una ejecución como la dada en la figura 2 se ve condicionada por todos los resultados, no únicamente por el camino con valor máximo.
- Función gamma: Se ha utilizado para comprobar la forma general que tiene la función $execute_circuit$, a minimizar por el optimizador clásico. Para ello se han realizado circuitos de una sola capa y se ha mantenido el parámetro $\beta=1$. Se ha decidido así porque dicho parámetro se encarga del ángulo de rotación de los operadores σ_x , de construcción trivial en comparación con los operadores dependientes de γ . Al variar γ y graficar la función resultante se puede intuir la probabilidad de encontrar mínimos locales en lugar del mínimo global. Esto se traduce como la posibilidad de encontrar un resultado subóptimo para el problema, es decir, que el algoritmo falle.

A continuación se mostrarán los resultados de ejecución utilizando ambos paradigmas, esto es, QAOA y Quantum Annealing, además de explorar el rendimiento de las ejecuciones en Qiskit variando los métodos para construir la función de coste.

1. Primer grafo

Figura 1: Grafo del artículo original

1.1. Resultados de Qiskit

En las siguientes muestras se ha buscado replicar los resultados del artículo. Esto ha sido probado ya que, empleando los parámetros $\beta=0.28517317$ y $\gamma=-5.05969577$ dados como óptimos, se obtiene un gráfico muy similar al dado:

Figura 2:

De esta forma, se tiene que los resultados del artículo deberían ser equivalentes a los obtenidos en esta instancia del algoritmo.

nº Capas	Estadística máxima (%)	Estadística global (%)
p = 1	91.3%	39.34%
p=2	64.6%	24.16%
p = 3	63.4%	18.82%

Cuadro 1: Resultados de la ejecución de la versión de QAOA del artículo

El primer resultado notable en la tabla 1 es un empeoramiento de los resultados a medida que se aumenta el número de capas, lo cual es contrario a lo esperado teóricamente.

Además, la gran diferencia entre los resultados dados por la estadística máxima y la estadística global denotan una gran cantidad de ruido al ejecutar el algoritmo, lo cual se corrobora viendo los resultados de ejecuciones concretas, como los dados en la figura 2.

El resultado de la función gamma es el siguiente:

Figura 3: Función gamma. Caso del artículo

Se puede ver que existen un gran número de mínimos locales, lo cual dificulta la tarea del optimizador clásico. Esto se corrobora ya que, al inicializar los parámetros como $\beta=1,0$ $\gamma=0,5$, para p=1 se obtiene el camino óptimo el $100\,\%$ de las ejecuciones.

Este proceso de inicializar los parámetros con valores concretos no sería una solución válida, ya que se trata de una metodología no automática en la que, para ejecutar correctamente el algoritmo, se necesitaría conocer antes su propio resultado. Además la ejecución correcta sucede para p=1, pero al igual que el caso por defecto ($\beta=1,0$ $\gamma=1,0$), no escala correctamente al aumentar el número de capas.