Title: Solo's coders-page:

Amiga Advanced Graphics Architecture (AGA) documentation.

ADKCON

NAME	rev	ADDR	type	chip	Description
ADKCON	-	09E	W	Р	Audio, Disk, Uart, Control write
ADKCONR	-	010	R	Р	Audio, Disk, Uart, Control read

BITS	USE	DESCRIP	TION			
15	Set/Clear	Set/clear control bit. Determines if bits written with a 1 get set or				
			ts written with a zero are always unchanged.			
14-13	Precomp	1 - 0				
	CODE PREC	OMP	VALUE			
	00		none			
	01		140 ns			
	10		280 ns			
	11		560 ns			
12	MFMPREC	(1 = MFM precomp / 0 = GCR precomp)				
11	UARTBRK	Forces a UART break (clears TXD) if true.				
10	WORDSYNC	Enables disk read synchronizing on a word equal to DISK SYNC CODE,				
		Located in address DSKSYNC (7E).				
09	MSBSYNC	Enables of	disk read synchrinizing on the MSB (most signif bit) appl type			
		GCR.				
08	FAST	Disk data	a clock rate control 1=fast(2us) 0=slow(4us)			
07	USE3PN	Use audio	o channel 3 to modulate nothing			
06	USE2P3	Use audio	o channel 2 to modulate period of channel 3			
05	USE1P2	Use audio	o channel 1 to modulate period of channel 2			
04	USE0P1	Use audio	o channel 0 to modulate period of channel 1			
03	USE3VN	Use audio	o channel 3 to modulate nothing			
02	USE2V3	Use audio	o channel 2 to modulate volume of channel 3			
01	USE1V2	Use audio	o channel 1 to modulate volume of channel 2			
00	USE0V1	Use audio	o channel 0 to modulate volume of channel 1			

Note: If both period and volume are modulated on the same channel, the period and volume will be alternated. First AUDxDAT word is used for V6-V0 of AUDxVOL. Second AUDxDAT word is used for P15-P0 of AUDxPER. This alternating sequence is repeated.

AUDxLCH

NAME	rev	ADDR	type	chip	Description
AUDxLCH	h	0A0	W	Α	Audio channel x location (high 5 bits) (old-3 bits)

AUDxLCL

NAME	rev	ADDR	type	chip	Description
AUDxLCL	_	0A2	W	Α	Audio channel x location (low 15 bits)

This pair of registers contains the 20 bit starting address(location) of audio channel x = 0,1,2,3) DMA data. This is not a pointer reg and therfore only needs to be reloaded if a diffrent memory location is to be outputted.

AUDxLEN

NAME	rev	ADDR	type	chip	Description
AUDxLEN	-	OA4	W	Р	Audio channel x length

This reg contains the length (number of words) of audio channel x DMA data.

AUDxPER

NAME	rev	ADDR	type	chip	Description
AUDxPER	h	0A6	W	Р	Audio channel x period

This reg contains the period (rate) of audio channel x DMA data transfer. The minimum period is 124 clocks. This means that the smallest number that should be placed in this reg is 124.

AUDxVOL

NAME	rev	ADDR	type	chip	Description
AUDxVOL	-	0A8	W	Р	Audio channel x volume

This reg contains the volume setting for audio channel x. Bits 6,5,4,3,2,1,0 specify 65 linear volume levels as shown below.

BITS	USE
15-07	Not used
06	Forces volume to max (64 ones, no zeros)
05-00	Sets one of the 64 levels (000000 = no output, 111111 = 63 ones, one
	zero)

AUDxDAT

NAME	rev	ADDR	type	chip	Description
AUDxDAT	-	OAA	W	Р	Audio channel x data

This reg is the audio channel x (x=0,1,2,3) DMA data buffer. It contains 2 bytes of data (each byte is a twos complement signed integer) that are outputed sequentially (with digital to analog conversion) to the audio output pins. With maximum volume, each byte can drive the audio outputs with 0.8 volts(peak to peak,typ). The audio DMA channel controller automatically transfers data to this reg from RAM. The processor can also write directly to this reg. When the DMA data is finished (words outputted=lentgh) and the data in this reg has been used, an audio channel interrupt request is set.

BEAMCONO

NAME	rev	ADDR	type	chip	Description
BEAMCONO	h	1DC	W	Α	Beam counter control bits

BIT#	FUNCTION
15	(unused)
14	HARDDIS
13	LPENDIS
12	VARVBEN
11	LOLDIS
10	CSCBEN
9	VARVSYEN
8	VARHSYEN
7	VARBEAMEN
6	DUAL
5	PAL
4	VARCSYEN
3	(unused, formerly BLANKEN)
2	CSYTRUE
1	VSYTRUE
0	HSYTRUE

- HARDDIS = This bit is used to disable the hardwire vertical horizontal window limits. It is cleared upon reset.
- LPENDIS = When this bit is a low and LPE (BPLCON0,BIT 3) is enabled, the light-pen latched value(beam hit position) will be read by VHPOSR, VPOSR and HHPOSR. When the bit is a high the light-pen latched value is ignored and the actual beam counter position is read by VHPOSR, VPOSR, and HHPOSR.
- VARVBEN = Use the comparator generated vertical blank (from VBSTOP, VBSTOP) to run the internal chip stuff-sending RGA signals to Denise, starting sprites, resetting light pen. It also disables the hard stop on the vertical display window.
- LOLDIS = Disable long line/short toggle. This is useful for DUAL mode where even multiples are wanted, or in any single display where this toggling is not desired.
- CSCBEN = The variable composite sync comes out on the HSY pin, and the variable conosite blank comes out on the VSY pin. The idea is to allow all the information to come out of the chip for a DUAL mode display. The normal monitor uses the normal composite sync, and the variable composite sync &blank come out the HSY & VSY pins. The bits VARVSTEN & VARHSYEN (below) have priority over this control bit.
- VARVSYEN = Comparator VSY -> VSY pin. The variable VSY is set vertically on HSSTRT, reset vertically on VSSTOP, with the horizontal position for set set & reset HSSTRT on short fields (all fields are short if LACE = 0) and HCENTER on long fields (every other field if LACE = 1).
- VARHSYEN = Comparator HSY -> HSY pin. Set on HSSTRT value, reset on HSSTOP value.
- VARBEAMEN = Enables the variable beam counter comparators to operate (allowing diffrent beam counter total values) on the main horiz counter. It also disables hard display stops on both horizontal and vertical.
- DUAL = Run the horizontal comparators with the alternate horizontal beam counter, and starts the UHRES pointer chain with the reset of this counter rather than the normal one. This allows the UHRES pointers to come out more than once in a horizontal line, assuming there is some memory bandwidth left (it doesn`t work in 640*400*4 interlace mode) also, to keep the two displays synced, the

horizontal line lentghs should be multiples of each other. If you are amazingly clever, you might not need to do this.

PAL = Set appropriate decodes (in normal mode) for PAL. In variable beam counter mode this bit disables the long line/short line toggle- ends up short line.

VARCSYEN = Enables CSY from the variable decoders to come out the CSY (VARCSY is set on HSSTRT match always, and also on HCENTER match when in vertical sync. It is reset on HSSTOP match when VSY and on both HBSTOP & HBSTOP matches during VSY. A reasonable composite can be generated by setting HCENTER half a horiz line from HSSTRT, and HBSTOP at (HSSTOP-HSSTRT) before HCENTER, with HBSTRT at (HSSTOP-HSSTRT) before HSSTRT. HSYTRUE, VSYTRUE, CSYTRUE = These change the polarity of the HSY*, VSY*, & CSY* pins to HSY, VSY, & CSY respectively for input & output.

BLTxPTH

NAME	rev	ADDR	type	chip	Description
BLTxPTH	h	050	W	Α	Blitter Point to x (High 5 bits)

See also: BLTxPTL

BLTxPTL

NAME	rev	ADDR	type	chip	Description
BLTxPTL	h	052	W	Α	Blitter Pointer to x (Low 15 bits)

This pair of registers (see also: BLTxPTH) contains the 20 bit address of Blitter source (X=A,B,C) or dest. (x=D) DMA data. This pointer must be preloaded with the starting address of the data to be processed by the blitter. After the Blitter is finished it will contain the last data address (plus increment and modulo).

BLTxMOD

NAME	rev	ADDR	type	chip	Description
BLTxMOD	-	064	W	Α	Blitter Modulo x

This register contains the Modulo for Blitter source (x=A,B,C) or Dest (X=D). A Modulo is a number that is automatically added to the address at the end of each line, in order that the address then points to the start of the next line. Each source or destination has it's own Modulo, allowing each to be a different size, while an identical area of each is used in the Blitter operation.

BLTAFWM

Ī	NAME	rev	ADDR	type	chip	Description
	BLTAFWM	1	044	W	Α	Blitter first word mask for source A

See also: BLTALWM

BLTALWM

NAME	rev	ADDR	type	chip	Description
BLTALWM	-	046	W	Α	Blitter last word mask for source A

The patterns in these two registers (see also: BLTAFWM) are "anded" with the first and last words of each line of data from Source A into the Blitter. A zero in any bit overrides data from Source A. These registers should be set to all "ones" for fill mode or for line drawing mode.

BLTxDAT

NAME	rev	ADDR	type	chip	Description
BLTxDAT	_	074	W	Α	Blitter source x data req.

This register holds Source x (x=A,B,C) data for use by the Blitter. It is normally loaded by the Blitter DMA channel, however it may also be preloaded by the microprocessor.

BLTDDAT

NAME	rev	ADDR	type	chip	Description
BLTDDAT	_	000	W	Α	Blitter destination data register

This register holds the data resulting from each word of Blitter operation until it is sent to a RAM destination. This is a dummy address and cannot be read by the micro. The transfer is automatic during Blitter operation.

BLTSIZE

NAME	rev	ADDR	type	chip	Description
BLTSIZE	_	058	W	Α	Blitter start and size (win/width, height)

This register contains the width and height of the blitter operation (in line mode width must = 2, height = line length). Writing to this register will start the Blitter, and should be done last, after all pointers and control registers have been initialized.

BIT# 13, 10, 09, 08, 07, 06, 05, 04, 03, 15, 14, 12, 11, 02, 01, 00 H9 H8 H7 Н6 Н5 H4 Н3 H2 H1 HO W5 W4 W3 W2 W1 WO

H = Height = Vertical lines (10 bits = 1024 lines max)

W = Width = Horiz pixels (6 bits = 64 words = 1024 pixels max)

BLTCONO

NAME	rev	ADDR	type	chip	Description
BLTCON0	-	040	W	Α	Blitter control register 0
BLTCONOL	Н	05A	W	A	Blitter control register 0 (lower 8 bits) This is to speed up software the upper bits are often the same.
BLTCON1	h	042	W	Α	Blitter control register 1

These two control registers are used together to control blitter operations. There are 2 basic modes, are and line, which are selected by bit 0 of BLTCON1, as show below.

AREA	MODE ("nor	mal")	LINE MODE (line draw)				
BIT#	BLTCONO	BLTCON1	BIT#	BLTCONO	BLTCON1		
15	ASH3	BSH3	15	ASH3	BSH3		
14	ASH2	BSH2	14	ASH2	BSH2		
13	ASH1	BSH1	13	ASH1	BSH1		
12	ASA0	BSH0	12	ASH0	BSH0		
11	USEA	0	11	1	0		
10	USEB	0	10	0	0		
09	USEC	0	09	1	0		
08	USED	0	08	1	0		
07	LF7	DOFF	07	LF7	DPFF		
06	LF6	0	06	LF6	SIGN		
05	LF5	0	05	LF5	OVF		
04	LF4	EFE	04	LF4	SUD		
03	LF3	IFE	03	LF3	SUL		
02	LF2	FCI	02	LF2	AUL		
01	LF1	DESC	01	LF1	SING		
00	LFO	LINE (= 0)	00	LFO	LINE (= 1)		

ASH3-0	Shift value of A source
BSH3-0	Shift value of B source and line texture
USEA	Mode control bit to use source A
USEB	Mode control bit to use source B
USEC	Mode control bit to use source C
USED	Mode control bit to use destination D
LF7-0	Logic function minterm select lines
EFE	Exclusive fill enable
IFE	Inclusive fill enable
FCI	Fill carry input
DESC	Descending (dec address)control bit
LINE	Line mode control bit
SIGN	Line draw sign flag
OVF	Line/draw r/l word overflow flag

SUD Line draw, Sometimes up or down (=AUD)
SUL Line draw, Sometimes up or left
AUL Line draw, Always up or left
SING Line draw, Single bit per horiz line
DOFF Disables the D output- for external ALUs The cycle occurs normally, but the data bus is

tristate (hires chips only)

BLISIZH				
NAME	rev	ADDR	type	chip

BLTSIZH h 05E W A Blitter H size & start (11 bit width)

BIT# 13 12 10 09 80 07 04 03 00 15 14 11 06 05 02 01 Х Х Х Х w10 w9 w8 w7 w6 w5 w4 w3 w2 w0

Description

See also: BLTSIZV

BLTSIZV

DI TOLZII

NAME BLTSIZV	rev h		DDR 5C	type W	nip 4	Description Blitter V size (15 bit height)								
BIT# 15		13 h13				08 h8		06 h6	05 h5	04 h4	03 h3	02 h2	01 h1	00 h0

These are the blitter size regs for blits larger than the earlier chips could accept. The original commands are retained for compatibility. BLTSIZV should be written first, followed by BLTSIZH, which starts the blitter. BLTSIZV need not be rewritten for subsequent blits if the vertical size is the same. Max size of blit 32k pixels * 32k lines, x's should be written to 0 for upward compatibility.

BPLHDAT

NAME	rev	ADDR	type	chip	Description
BPLHDAT	h	07A	W		Ext logic UHRES bit plane identifier

This is the number (sign extended) that is added to the UHRES bitplane pointer (BPLHPTL,H) every line, and then another 2 is added, just like the other modulos.

BPLHMOD

NAME	rev	ADDR	type	chip	Description
BPLHMOD	h	1E6	W	Α	Uhres bit plane modulo

This is the number (sign extended) that is added to the UHRES bitplane pointer (BPLHPTL,H) every line, and then another 2 is added, just like the other modulos.

BPLHPTH

NAME	rev	ADDR	type	chip	Description
BPLHPTH	h	1EC	W	Α	UHRES (VRAM) bit plane pntr (high 5 bits)

When UHRES is enabled, this pointer comes out on the 2nd 'free' cycle after the start of each horizontal line. It's modulo is added every time it comes out. 'free' means priority above the copper and below the fixed stuff (audio,sprites....). BPLHDAT comes out as an identifier on the RGA lines when the pointer address is valid so that external detectors can use this to do the special cycle for the VRAMs, The SHRHDAT gets the first and third free cycles.

BPLHPTL

NAME	rev	ADDR	type	chip	Description
BPLHPTL	h	1EE	W	Α	UHRES (VRAM) bit plane pntr (low 15 bits)

When UHRES is enabled, this pointer comes out on the 2nd 'free' cycle after the start of each horizontal line. It`s modulo is added every time it comes out. 'free' means priority above the copper and below the fixed stuff (audio,sprites....). BPLHDAT comes out as an identifier on the RGA lines when the pointer address is valid so that external detectors can use this to do the special cycle for the VRAMs, The SHRHDAT gets the first and third free cycles.

BPLHSTOP

NAME	rev	ADDR	type	chip	Description
BPLHSTOP	р	1D6	W	Α	UHRES bit plane vertical stop

BIT#	Name
15	BPLHWRM
14-11	Unused
10-0	V10-V0

BPLHWRM = Swaps the polarity of ARW* when the BPLHDAT comes out so that external devices can detect the RGA and put things into memory (ECS and later versions).

BPLHSTRT

NAME	rev	ADDR	type	chip	Description
BPLHSTRT	h	1D4	W	Α	UHRES bit plane vertical stop

This controls the line when the data fetch starts for the BPLHPTH, L pointers. V10-V0 on DB10-0.

BPLxPTH

NAME	rev	ADDR	type	chip	Description
BPLxPTH	-	OEO	W	Α	Bit plane x pointer (high 5 bits)
	OEO	V 1 2	2 4 5	470	
-	0E8	X = 1, 2,	3, 4, 5,	0, 7, 8	
-	OEC				
-	OFO				
-	OF4				
p	OF8				
p	OFC				

BPLxPTL

NAME	rev	ADDR	type	chip	Description
BPLxPTL	-	0E2	W	Α	Bit plane pointer (low 15 bits)
- - - - p	OEA OEE OF2 OF6 OFA	This poin	nter must sor to po	t be rein oint to th	=1,2,3,4,5,6,7,8) DMA data. itialized by the processor or ne beginning of bit plane data
р	OFE				

BPLxDAT

NAME	rev	ADDR	type	chip	Description				
BPLxDAT	-	110	W	Α	Bit plane x data (parallel to serial convert)				
- - - - p	112 114 116 118 11A 11C	These rebit plan They me they act to 8 me convers	egs recie e addres ay also k t as a 8 v emory 'bi sion id tri	eve the I as pointe be rewrit word pa t planes iggered ng the c	DMA data fetched from RAM by the ers described above. Iten by either micro. Iten to serial buffer for up In x=1-8 the parallel to serial whenever bit plane #1 is completion of all bit planes for				
р	11E	written, indicating the completion of all bit planes for that word (16/32/64 pixels). The MSB is output first, and is therefore always on the left.							

BPLxMOD

NAME	rev	ADDR	type	chip	Description
BPL1MOD	-	108	W	Α	Bit plane modulo (odd planes)
BPL2MOD	-	10A	W	Α	Bit plane modulo (even planes)

These registers contain the modulos for the odd and even bit planes. A modulo is a number that is automaitcally added to the address at the end of each line, in order that the address then points to the start of the next line. Since they have seperate modulos, the odd and even bit planes may have sizes that are different from each other, as well as different from the display window size. If scan-doubling is enabled, BPL1MOD serves as the primary bitplane modulos and BPL2MOD serves as the alternate. Lines whose LSBs of beam counter and DIWSTRT match are designated primary, whereas lines whose LSBs don`t match are designated alternate.

BPLCONO

NAME	rev	ADDR	type	chip	Description
BPLCONO	р	100	W	D	Bit plane control reg. (misc, control bits)

BIT#	BPLCONO	DESCRIPTION				
15	HIRES	HIRES = High resoloution (640*200/640*400 interlace) mode				
14	BPU2	Bit plane use code 000-100 (NODE thru 8 inclusive)				
13	BPU1					
12	BPU0					
11	HAM	Hold and modify mode, now using either 6 or 8 bit planes.				
10	DPF	Double playfield (PFI=odd FP2= even bit planes) now available in all resoloutions. (If BPU=6 and HAM=0 and DPF=0 a special mode is defined that allows bitplane 6 to cause an intensity reduction of the other 5 bitplanes. The color register output selected by 5 bitplanes is shifted to half intensity by the 6th bit plane. This is called EXTRA-HALFBRITE Mode.				
09	COLOR	Enables color burst output signal				
08	GAUD	Genlock audio enable. This level appears on the ZD pin on denise during all blanking periods, unless ZDCLK bit is set.				
07	UHRES	Ultra hi res enables the UHRES pointers (for 1k*1k) (also needs bits in DMACON (hires chips only). Disables hard stops for vert, horiz display windows				
06	SHRES	Super hi-res mode (35ns pixel width)				
05	BYPASS=0	Bitplanes are scrolled and prioritized normally, but bypass color table and 8 bit wide data appear on R(7:0)				
04	BPU3=0	See above (BPU0/1/2)				
03	LPEN	Light pen enable (reset on power up)				
02	LACE	Interlace enable (reset on power up)				
01	ERSY	External resync (HSYNC, VSYNC pads become inputs) (reset on power up)				
00	ECSENA=0	When low (default), the following bits in BPLCON3 are disabled: BRDRBLNK,BRDNTRAN,ZDCLKEN,BRDSPRT, and EXTBLKEN. These 5 bits can always be set by writing to BPLCON3, however there effects are inhibited until ECSENA goes high. This allows rapid context switching between pre-ECS viewports and new ones.				

BPLCON1

NAME rev ADDR type chip Description

BPLCON1 p 102 W D Bit plane control reg. (horiz, scroll counter)

BIT#	BPLCON1	DESCRIPTION
15	PF2H7=0	(PF2Hx =) Playfield 2 horizontal scroll code, x=0-7
14	PF2H6=0	
13	PF2H1=0	
12	PF2H0=0	
11	PF1H7=0	(PF1Hx =) Playfield 1 horizontal scroll code, x=0-7
10	PF1H6=0	where PFyH0=LSB=35ns SHRES pixel (bits have been
09	PF1H1=0	renamed, old PFyH0 now PFyH2, ect). Now that the scroll
08	PF1H0=0	range has been quadrupled to allow for wider (32 or 64 bits) bitplanes.
07	PF2H5	
06	PF2H4	
05	PF2H3	
04	PF2H2	
03	PF1H5	
02	PF1H4	
01	PF1H3	
00	PF1H2	

BPLCON2

NAMErevADDRtypechipDescriptionBPLCON2p104WDBit plane control reg. (new control bits)

BIT#	BPLCON2	DESCRIPTION
15	Х	don`t care- but drive to 0 for upward compatibility!
14	ZDBPSEL2	
13	ZDBPSEL1	3 bit field which selects which bitplane is to be used for ZD when ZDBBPEN is set - 000 selects BP1 and 111 selects BP8.
12	ZDBPSELO	
11	ZDBPEN	Causes ZD pin to mirror bitplane selected by ZDBPSELx bits. This does not disable the ZD mode defined by ZDCTEN, but rather is "ored" with it.
10	ZDCTEN	Causes ZD pin to mirror bit #15 of the active entry in high color table. When ZDCTEN is reset ZD reverts to mirroring color (0).
09	KILLEHB	Disables extra half brite mode.
08	RDRAM=0	Causes color table address to read the color table instead of writing to it.
07	SOGEN=0	When set causes SOG output pin to go high
06	PF2PRI	Gives playfield 2 priority over playfield 1.
05	PF2P2	Playfield 2 priority code (with resp. to sprites).
04	PF2P1	
03	PF2P0	
02	PF1P2	Playfield 1 priority code (with resp. to sprites).
01	PF1P1	
00	PF1P0	

BPLTCON3

NAMErevADDRtypechipDescriptionBPLCON3p106WDBit plane control reg. (enhanced features)

BIT#	BPLCON3	DI	ESC	RI	PTIC	ON							
15	BANK2=0	BA	BANK $x = $ Selects one of eight color banks, $x = 0 - 2$.										
14	BANK1=0												
13	BANK0=0												
12	PF20F2=0								able	offse	et wh	en p	layfield 2 has priority
						eld m							T
			20				.	1	LAN		1	1	OFFSET
		2	1	0	8	7	6	5	4	3	2	1	(decimal)
		0	0	0	-	-	-	-	-	-	-	-	None
		0	0	1	-	-	-	-	-	-	1	-	2
		0	1	0	-	-	-	-	-	1	-	-	4
		0	1	1	-	-	-	-	1	-	-	-	8 (default)
		1	0	0	-	-	-	1	-	-	-	-	16
		1	0	1	-	-	1	-	-	-	-	-	32
		1	1	0	-	1	-	-	-	-	-	-	64
		1	1	1	1	-	-	-	-	-	-	-	128
11	PF2OF1=1												
10	PF2OF0=1												
09	LOCT=0	Di	Dictates that subsequent color palette values will be written to a second										
									_				nus order bits. Writes to
										alette	auto	matt	ically copied to the low
						wards		•	-				
08	X								upwa				-
07	SPRES1=0	-						1	8 sp		-		
			PRE	<u>.S1</u>	-	SPRE	ESO		RITE			JTIC	DN
		О			()			S def				011050 70)
								+ -				140n	s,SHRES=70ns)
		0						+	RES	`			
		1)		+	RES (•			
		1				1		SH	RES	(35n	s)		
06	SPRES0=0												
05	BRDRBLNK=0	"В	ord	er a	rea"	is bla	nked	inste	ead of	colo	r (0).	Disa	bled when ECSENA low.
04	BRDNTRAN=0											pin is	low when border is
			•	-					SENA				
03	X								upwa		•		-
02	ZDCLKEN=0		•		•						_	_	coincides with hires
				-					nen s	et dis	ables	all c	ther ZD functions.
01	DDDCDDT 0					ESC			امم	! !		dia = l- '	ad whom ECCENA I
01	BRDSPRT=0												ed when ESCENA low.
00	EXTBLKEN=0								rogra ESCI			istea	d of reflecting internal
	<u> </u>	ПХ	leu	uec	Jues.	טואמ	มเยน	witen	ESU	LIVAI	OW.		

BPLCON4

NAME	rev	ADDR	type	chip	Description
BPLCON4	р	10C	W	D	Bit plane control reg. (display masks)

BIT#	BPLCON4	DESCRIPTION
15	BPLAM7=0	This 8 bit field is XOR` ed with the 8 bit plane color address, thereby altering the color address sent to the color table $(x = 1-8)$
14	BPLAM6=0	
13	BPLAM5=0	
12	BPLAM4=0	
11	BPLAM3=0	
10	BPLAM2=0	
09	BPLAM1=0	
08	BPLAM0=0	
07	ESPRM7=0	4 Bit field provides the 4 high order color table address bits for even sprites: SPR0,SPR2,SPR4,SPR6. Default value is 0001 binary. (x = 7-4)
06	ESPRM6=0	
05	ESPRM5=0	
04	ESPRM4=1	
03	OSPRM7=0	4 Bit field provides the 4 high order color table address bits for odd sprites: SPR1,SPR3,SPR5,SPR7. Default value is 0001 binary. (x = 7-4)
02	OSPRM6=0	
01	OSPRM5=0	
00	OSPRM4=1	

CLXCON

NAME	rev	ADDR	type	chip	Description
CLXCON	_	098	W	Α	Collision control

This register controls which bitplanes are included (enabled) in collision detection, and their required state if included. It also controls the individual inclusion of odd numbered sprites in the collision detection, by logically ORing them with their corresponding even numbered sprite. Writing to this register resets the bits in CLXCON2.

BIT#	FUNCTION	DESCRIPTION
15	ENSP7	Enable Sprite 7 (ORed with Sprite 6)
14	ENSP5	Enable Sprite 5 (ORed with Sprite 4)
13	ENSP3	Enable Sprite 3 (ORed with Sprite2)
12	ENSP1	Enable Sprite 1 (ORed with Sprite 0)
11	ENSP6	Enable bit plane 6 (match reqd. for collision
10	ENSP5	Enable bit plane 5 (match reqd. for collision
09	ENSP4	Enable bit plane 4 (match reqd. for collision
08	ENSP3	Enable bit plane 3 (match reqd. for collision
07	ENSP2	Enable bit plane 2 (match reqd. for collision
06	ENSP1	Enable bit plane 1 (match reqd. for collision
05	ENSP6	Match value for bit plane 6 collision
04	ENSP5	Match value for bit plane 5 collision
03	ENSP4	Match value for bit plane 4 collision
02	ENSP3	Match value for bit plane 3 collision
01	ENSP2	Match value for bit plane 2 collision
00	ENSP1	Match value for bit plane 1 collision

CLXCON2

NAME	rev	ADDR	type	chip	Description
CLXCON2	Р	10C	W	D	Extended collision control

This reg controls when bit planes 7 and 8 are included in collision detection, and there required state if included. Contents of this register are reset by a write to CLXCON.

BITS INITIALIZED BY RESET

BIT#	FUNCTION	DESCRIPTION
15-08		unused
07	ENBP8	Enable bit plane 8 (match reqd. For collision)
06	ENBP7	Enable bit plane 7 (match reqd. for collision)
05-02		unused
01	MVBP8	Match value for bit plane 8 collision
00	MVBP7	Match value for bit plane 7 collision

Note: Disable bit planes cannot prevent collisions. Therefore if all bitplanes are disabled, collision will be continuous, regardless of the match values.

CLXDAT

NAME	rev	ADDR	type	chip	Description
CLXDAT	_	00E	R	D	Collision data reg. (read and clear)

This address reads (and clears) the collision detection reg. The bit assignments are below

Note: Playfield 1 is all odd numbered enabled bit planes. Playfield 2 is all even numbred enabled bit planes.

BIT#	COLLISIONS REGISTERED
15	not used
14	Sprite 4 (or 5) to Sprite 6 (or 7)
13	Sprite 2 (or 3) to Sprite 6 (or 7)
12	Sprite 2 (or 3) to Sprite 4 (or 5)
11	Sprite 0 (or 1) to Sprite 6 (or 7)
10	Sprite 0 (or 1) to Sprite 4 (or 5)
09	Sprite 0 (or 1) to Sprite 2 (or 3)
08	Playfield 2 to Sprite 6 (or 7)
07	Playfield 2 to Sprite 4 (or 5)
06	Playfield 2 to Sprite 2 (or 3)
05	Playfield 2 to Sprite 0 (or 1)
04	Playfield 1 to Sprite 6 (or 7)
03	Playfield 1 to Sprite 4 (or 5)
02	Playfield 1 to Sprite 2 (or 3)
01	Playfield 1 to Sprite 0 (or 1)
00	Playfield 2 to Playfield 2

COLORx

NAME	rev	ADDR	type	chip	Description
COLORxx	-	180-	W		COLOR table xx
		1BE			

There 32 of these registers (xx=00-31) and together with the banking bits they address the 256 locations in the color palette. There are actually two sets of color regs, selection of which is controlled by the LOCT reg bit. When LOCT = 0 the 4 MSB of red, green and blue video data are selected along with the T bit for genlocks the low order set of registers is also selected as well, so that the 4 bits- values are automatically extended to 8 bits. This provides compatibility with old software. If the full range of palette values are desired, then LOCT can be set high and independant values for the 4 LSB of red, green and blue can be written. The low order color registers do not contain a transparency (T) bit.

The table below shows the color register bit usage.

BIT#	15, 14, 13, 12	11, 10, 09, 08	07, 06, 05, 04	03, 02, 01, 00
LOCT=0	T X X X	R7 R6 R5 R4	G7 G6 G5 G4	B7 B6 B5 B4
LOCT=1	X X X X	R3 R2 R1 R0	G3 G2 G1 G0	B3 B2 B1 B0

T = TRANSPARENCY, R = RED, G = GREEN, B = BLUE, X = UNUSED

T bit of COLOR00 thru COLOR31 sets ZD_pin HI, When that color is selected in all video modes.

COPCON

NAME	rev	ADDR	type	chip	Description
COPCON	h	02E	W	Α	Coproccessor control register

This is a-1 bit register that when set true, allows the coprocessor to access the blitter hardware. This bit is cleared power on reset, so that the coprocessor cannot access the blitter hardware.

BIT#	NAME	FUNCTION
01	CDANG	Coprocessor danger mode.
		Allows coprocessor access to all
		RGA registers if true. (if 0,
		access to RGA>7E) (On old
		chips access to only RGA>3E if
		CDANG=1) (see VPOSR)

COPJMP1

NAME	rev	ADDR	type	chip	Description
COPJMP1	-	088	S	Α	Coprocessor restart at first location

See: COPJMP2

COPJMP2

NAME	rev	ADDR	type	chip	Description
COPJMP2	_	08A	S	Α	Coprocessor restart at second location

These address are strobe address, that when written to cause the coprocessor to jump indirect useing the address contained in the first or second location regs described below. The coprocessor itself can write to these address, causeing it`s own jump indirect.

COP1LCH					
NAME	rev	ADDR	type	chip	Description
COP1LCH	h	080	W	Α	A Coprocessor first location reg (high 5 bits) (old-3 bits)
COP1LCL	-	082	W	Α	A Coprocessor first location reg (low 15 bits)
COP2LCH	h	084	W	Α	A Coprocessor second location reg (high 5 bits) (old-3 bits)
COP2LCL	-	086	W	Α	A Coprocessor second location reg (low 15 bits)

These regs contain the jump addresses described in COPINS

COPINS

NAME	rev	ADDR	type	chip	Description
COPINS	_	08C	W	Α	Coprocessor inst. fetch identify

This is a dummy address that is generated by the coprocessor whenever it is loading instructions into its own instruction register. This actually occurs every coprocessor cycle except for the second (IR2) cycle of the MOVE instruction. The three types of instructions are shown below.

MOVE: Move immediate to dest

WAIT: Wait until beam counter is equal to, or greater than. (Keeps coprocessor off of bus until

beam position has been reached)

SKIP: Skip if beam counter is equal to, or greater than. (Skips following MOVE inst. unless beam position has been reached)

	M	IOVE	WAIT	UNTIL	SKIP IF		
BIT#	IR1	IR2	IR1 IR2		IR1	IR2	
15	Х	RD15	VP7	BFD	VP7	BFD	
14	Х	RD14	VP6	VE6	VP6	VE6	
13	Х	RD13	VP5	VE5	VP5	VE5	
12	Х	RD12	VP4	VE4	VP4	VE4	
11	Х	RD11	VP3	VE3	VP3	VE3	
10	Х	RD10	VP2	VE2	VP2	VE2	
09	Х	RD09	VP1	VE1	VP1	VE1	
08	DA8	RD08	VPO	VEO	VP0	VEO	
07	DA7	RD07	HP8	HE8	HP8	HE8	
06	DA6	RD06	HP7	HE7	HP7	HE7	
05	DA5	RD05	HP6	HE6	HP6	HE6	
04	DA4	RD04	HP5	HE5	HP5	HE5	
03	DA3	RD03	HP4	HE4	HP4	HE4	
02	DA2	RD02	HP3	HE3	HP3	HE3	
01	DA1	RD01	HP2	HE2	HP2	HE2	
00	0	RD00	1	0	1	1	

IR1=First instruction register

IR2=Second insturction register

DA = Destination address for MOVE instruction. Fetched during IR1 time, used during IR2 time on RGA bus.

RD = RAM Data moved by MOVE instruction at IR2 time directly from RAM to the address given by the DA field.

VP = Vertical beam position comparison bit.

HP = Horizontal beam position comparison bit.

VE = Enable comparison (mask bit)

HE = Enable comparison (mask bit)

* Note: BFD = Blitter finished disable. When this bit is true, the blitter finished flag will have no effect on the coprocessor. When this bit is zero the blitter finished flag must be true (in addition to the rest of the bit comparisons) before the

coprocessor can exit from it`s wait state, or skip over an instruction. Note that the V7 comparison cannot be masked.

The coprocessor is basically a 2 cycle machine that requests the bus only during odd memory cycles. (4 memory cycles per in) It has priority over the blitter and micro.

There are only three types of instructions, MOVE immediate, WAIT until ,and SKIP if. All instructions require 2 bus cycles (and two instruction words). Since only the odd bus cycles are requested, 4 memory cycle times are required per instruction. (memory cycles are 280 ns)

There are two indirect jump registers COP1LCH and COP1LCH. These are 20 bit pointer registers whose contents are used to modify program counter for initalization or jumps.

They are transfered to the program counter whenever strobe address COPJMP1 or COPJMP2 are written. In addition COP1LC is automatically used at the beginning of each vertical blank time.

It is important that one of the jump registers be initalized and it`s jump strobe address hit, after power up but before coprocessor DMA is initalized. This insures a determined startup address, and state.

DDFSTRT

NAME	rev	ADDR	type	chip	Description
DDFSTRT	-	092	W	Α	Display data fetch start(horiz. position)
DDFSTOP	-	094	W	Α	Display data fetch stop (horiz. position)

These registers control the horizontal timing of the beginning and end of the bit plane DMA timing display data fetch. The vertical bit plane DMA timing is identical to the display windows described above. The bit plane Modulos are dependent on the bit plane horizontal size, and on this data fetch window size.

Register bit assignment

BIT#	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
USF	XX	Χ	Χ	Χ	Χ	Χ	Χ	H8	Н7	Н6	Н5	Н4	Н3	H2	Χ	

(X bits should always be driven with 0 to maintain upward compatability)

The tables below show the start and stop timing for different register contents

DDFSTRT (Left edge of display data fetch)

PURPOSE	Н8	H7	Н6	Н5	H4
Extra wide (max)	0	0	1	0	1
wide	0	0	1	1	0
normal	0	0	1	1	1
narrow	0	1	0	0	0

DDFSTOP (Right edge of display data fetch)

PURPOSE	Н8	H7	Н6	Н5	H4
narrow	1	1	0	0	1
normal	1	1	0	1	0
wide (max)	1	1	0	1	1

Note that these numbers will vary with variable beam counter mode set: (The maxes and mins, that is)

DIWSTRT

NAME	rev	ADDR	type	chip	Description
DIWSTRT	-	08E	W	A D	Display window start (upper left vert-hor pos)
DIWSTOP	-	090	W	A D	Display window stop (lower right vert-hor pos)

These registers control the display window size and position, by locating the upper left and lower right corners.

BIT# 15 14 13 10 09 80 07 05 04 03 01 00 12 11 06 02 V5 USE V7 V6 V4 V3 V2 V1 V0 Н9 H7 Н6 H5 Н3 H8 H4 H2

DIWSTRT is vertically restricted to the upper 2/3 of the display (v8=0), and horizontally restricted to the left 3/4 of the display (H8=0).*.

DIWHIGH

NAME	rev	ADDR	type	chip	Description
DIWHIGH	р	1E4	W	A D	Display window upper bits for start, stop

This is an added register for Hires chips, and allows larger start & stop ranges. If it is not written, the above (DIWSTRT,STOP) description holds. If this register is written, direct start & stop positions can be anywhere on the screen. It doesn't affect the UHRES pointers.

Take care (X) bits should always be written to 0 to maintain upwards compatibility. H1 and H0 values define 70ns amd 35ns increments respectively, and new LISA bits.

Note: In all 3 display window registers, horizontal bit positions have been renamed to reflect HIRES pixel increments, e.g. what used to be called H0 is now referred to as H2.

^{*} Poof.. (see DIWHIGH for exceptions)

DMACON

NAME	rev	ADDR	type	chip	Description
DMACON	-	096	W	ADP	DMA control write (clear or set)
DMACONR	-	002	R	ΑP	DMA control (and blitter status) read

This register controls all of the DMA channels, and contains blitter DMA status bits.

BIT#	FUNCTION	DESCRIPTION
15	SET/CLR	Set/Clear control bit. Determines if bits written wit a 1 get set or cleared. Bits written witn a zero are unchanged.
14	BBUSY	Blitter busy status bit (read only)
13	BZERO	Blitter logic zero status bit. (read only)
12	X	-
11	X	-
10	BLTPRI	Blitter DMA prioiry (over CPU micro) (also called "blitter nasty") (disables /BLS pin, preventing micro from stealing any bus cycles while blitter DMA is running)
09	DMAEN	Enable all DMA below (also UHRES DMA)
80	BPLEN	Bit plane DMA enable
07	COPEN	Coprocessor DMA enable
06	BLTEN	Blitter DMA enable
05	SPREN	Sprite DMA enable
04	DSKEN	Disk DMA enable
03	AUD3EN	Audio chanel 3 DMA enable
02	AUD2EN	Audio chanel 2 DMA enable
01	AUD1EN	Audio chanel 1 DMA enable
00	AUD0EN	Audio chanel 0 DMA enable

DSKPT

NAME	rev	ADDR	type	chip	Description
DSKPTH	h	020	W	Α	Disk pointer (high 5 bits) (old-3 bits)
DSKPTL	_	022	W	Α	Disk pointer (low 15 bits)

This pair of registers contains the 20 bit address of disk DMA data. These address registers must be initalized by the processor or coprocessor before disk DMA is enabled.

DSKLEN

NAME	rev	ADDR	type	chip	Description
DSKLEN	-	024	W	Р	Disk length

This register contains the length (number of words) of disk DMA data. It also contains 2 control bits. These are a DMA enable bit, and a DMA direction (read/write) bit.

BIT#	FUNCTION	DESCRIPTION
15	DMAEN	Disk DMA enable
14	WRITE	Disk write (RAM or disk) if 1
13-0	LENGTH	Length (# of words) of DMA data.

DSKDAT

NAME	rev	ADDR	type	chip	Description
DSKDAT	_	026	W	Р	Disk DMA data write

DSKDATR

NAME	rev	ADDR	type	chip	Description
DSKDATR	-	800	ER	Р	Disk DMA data read (early read dummy address)

This register is the disk-DMA data buffer. It contains 2 bytes of data that are either sent to (write) or received from (read) the disk. The DMA controller automatically transfers data to or from this register and RAM, and when the DMA data is finished (length=0) it causes a disk block interrupt. See interrupts below.

DSKBYTR

NAME	rev	ADDR	type	chip	Description
DSKBYTR	_	01A	R	р	Disk data byte and status read

This register is the Disk-Microrocessor data buffer. Data from the disk (in read mode) is leaded into this register one byte at a time, and bit 15 (DSKBYT) is set true.

BIT#	FUNCTION	DESCRIPTION
15	DSKBYT	Disk byte ready (reset on read)
14	DMAON	DMAEN (DKSLEN) & DMAEN (DMACON) & DSKEN (DMACON)
13	DISKWRITE	Mirror of bit 14 (WRITE) in DSKLEN
12	WORDEQUAL	This bit true only while DSKSYNC register equals the data from disk
11-08	0	Not used
07-00	DATA	Disk byte data

DSKSYNC

NAME	rev	ADDR	type	chip	Description
DSKSYNC	-	07E	W	Р	Disk sync register, the match code for disk read synchronization. See ADKCON bit 10

FMODE

NAME	rev	ADDR	type	chip	Description Memory Fetch Mode	
FMODE	Р	1FC	W		Memory Fetch Mode	

This register controls the fetch mechanism for different types of Chip RAM accesses:

BIT#	FUNCTION	DESCRIPTION
15	SSCAN2	Global enable for sprite scan-doubling.
14	BSCAN2	Enables the use of 2nd P/F modulus on an alternate line basis to support bitplane scan-doubling.
13-04	Unused	-
03	SPAGEM	Sprite page mode (double CAS)
02	SPR32	Sprite 32 bit wide mode
01	BPAGEM	Bitplane Page Mode (double CAS)
00	BLP32	Bitplane 32 bit wide mode

BPAGEM	BPL32	Bitplane Fetch	Increment	Memory Cycle	Bus Width
0	0	By 2 bytes	(as before)	normal CAS	16
0	1	By 4 bytes	-	normal CAS	32
1	0	By 4 bytes	-	double CAS	16
1	1	By 8 bytes	-	double CAS	32

SPAGEM	SPR32	Sprite Fetch	Increment	Memory Cycle	Bus Width
0	0	By 2 bytes	(as before)	normal CAS	16
0	1	By 4 bytes	-	normal CAS	32
1	0	By 4 bytes	-	double CAS	16
1	1	By 8 bytes	-	double CAS	32

HBSTOP

NAME	rev	ADDR	type	chip	Description
HBSTOP	-	1C6	W	D	Horizontal STOP position
HBSTRT	-	1C4	W	D	Horizontal START position

Bits 7-0 contain the stop and start positions, respectively, for programed horizontal blanking in 280nS increments. Bits 10-8 provide a fine position control in 35nS increments.

BIT#	FUNCTION	DESCRIPTION
15-11	х	(unused)
10	H1	140nS
09	H1	70nS
08	НО	35nS
07	H10	35840nS
06	Н9	17920nS
05	Н8	8960nS
04	H7	4480nS
03	Н6	2240nS
02	H5	1120nS
01	H4	560nS
00	H3	280nS

HCENTER

NAME	rev	ADDR	type	chip	Description
HCENTER	Н	1E2	W	Α	Horizontal position (CCKs) of VSYNC on long field

This is necessary for interlace mode with variable beam counters. See BEAMCONO for when it affects chip outputs. See HTOTAL for bits.

HHPOSR

NAME	rev	ADDR	type	chip	Description
HHPOSR	Н	1DA	R	Α	DUAL mode hires Hbeam counter read
HHPOSW	Н	1D8	W	Α	DUAL mode hires Hbeam counter write

This the secondary beam counter for the faster mode, triggering the UHRES pointers & doing the comparisons for HBSTOP, STOP, HTOTAL, HSSRT, HSSTOP (See HTOTAL for bits)

HSSTOP

NAME	rev	ADDR	type	chip	Description
HSSTOP	Н	1C2	W	Α	Horiz line position for SYNC stop

Sets # of colour clocks for sync stop (HTOTAL for bits)

HSSTRT

NAME	rev	ADDR	type	chip	Description
HSSTRT	Н	1DF	W	Α	Horiz line position for HSYNC stop

Sets # of colour clocks for sync start (HTOTAL for bits)

See BEAMCONO for details of when these 2 are active.

HTOTAL

NAME		rev	Αſ	DDR	typ	е	chip	Des	Description							
НТОТА	L	Н	1	CO	W	'	Α	A Highest colour clock count in horiz line			Highest colour clock count in horiz line					
BIT#	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
USE	Х	x	Х	Х	Х	Х	Х	Х	h8	h7	h6	h5	h4	h3	h2	h1

(x`s should be driven to 0 for upward compatibility) Horiz line has this many + 1 280nS increments. If the pal bit & LOLDIS are not high, long line/skort line toggle will occur, and there will be this many +2 every other line. Active if VARBEAMEN = 1 or DUAL+1.

INTREQ

NAME	rev	ADDR	type	chip	Description
INTREQ	-	09C	W	Р	Interrupt request bits (clear or set)
INTREQR	-	01E	R	Р	Interrupt request bits (read)

This register contains interrupt request bits (or flags). These bits may be polled by the processor, and if enabled by the bits listed in the next register, they may cause processor interrupts. Both a set and clear operation are required to load arbitary data into this register. The bit assignments are identical to the enable register below.

INTENA

NAME	rev	ADDR	type	chip	Description
INTENA	-	09A	W	Р	Interrupt enable bits (clear or set bits)
INTENAR	-	01C	R	Р	Interrupt enable bits (read)

This register contains interrupt enable bits. The bit assignment for both the request, and enable registers is given below.

BIT#	FUNCTION	LEVEL	DESCRIPTION
15	SET/CLR	-	Set/clear control bit. Determines if bits written with a 1 get set or cleared. Bits written with a zero are always unchanged.
14	INTEN	-	Master interrupt (enable only, no request)
13	EXTER	6	External interrupt
12	DSKSYN	5	Disk sync register (DSKSYNC) matches disk
11	RBF	5	Serial port receive buffer full
10	AUD3	4	Audio channel 3 block finished
09	AUD2	4	Audio channel 2 block finished
08	AUD1	4	Audio channel 1 block finished
07	AUD0	4	Audio channel 0 block finished
06	BLIT	3	Blitter has finished
05	VERTB	3	Start of vertical blank
04	COPER	3	Coprocessor
03	PORTS	2	I/O Ports and timers
02	SOFT	1	Reserved for software initated interrupt.
01	DSKBLK	1	Disk block finished
00	TBE	1	Serial port transmit buffer empty

JOYxDAT

NAME	rev	ADDR	type	chip	Description
JOYODAT	-	00A	R	D	Joystick-mouse 0 data (left vert, horiz)
JOY1DAT	_	00C	R	D	Joystick-mouse 1 data (right vert, horiz)

These addresses each read a 16 bit register. These in turn are loaded from the MDAT serial stream and are clocked in on the rising edge of SCLK. MLD output is used to parallel load the external parallel-to-serial converter. This in turn is loaded with the 4 quadrature inputs from each of two game controller ports (8 total) plus 8 miscellaneous control bits which are new for LISA and can be read in upper 8 bits of LISAID.

Register bits are as follows:

Mouse counter usage (pins 1, $3 = Y \operatorname{clock}$, pins 2, $4 = X \operatorname{clock}$)

BIT#	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
JOYODAT	Y7	Y6	Y5	Y4	Y3	Y2	Y1	YO	X7	Х6	X5	X4	Х3	X2	X1	XO
JOY1DAT	Y7	Y6	Y5	Y4	Y3	Y2	Y1	YO	X7	X6	X5	X4	Х3	X2	X1	ΧO

0=LEFT CONTROLLER PAIR, 1=RIGHT CONTROLLER PAIR. (4 counters total). The bit usage for both left and right addresses is shown below. Each 6 bit counter (Y7-Y2, X7-X2) is clocked by 2 of the signals input from the mouse serial stream. Starting with first bit recived:

Serial	Bit Name	Description
0	МОН	JOYODAT Horizontal Clock
1	MOHQ	JOYODAT Horizontal Clock (quadrature)
2	MOV	JOYODAT Vertical Clock
3	MOVQ	JOYODAT Vertical Clock (quadrature)
4	M1V	JOY1DAT Horizontall Clock
5	M1VQ	JOY1DAT Horizontall Clock (quadrature)
6	M1V	JOY1DAT Vertical Clock
7	M1VQ	JOY1DAT Vertical Clock (quadrature)

Bits 1 and 0 of each counter (Y1-Y0,X1-X0) may be read to determine the state of the related input signal pair. This allows these pins to double as joystick switch inputs. Joystick switch closures can be deciphered as follows:

Directions	Pin#	Counter bits				
Forward	1	Y1 xor Y0 (BIT#09 xor BIT#08)				
Left	3	Y1				
Back	2	X1 xor X0 (BIT#01 xor BIT#00)				
Right	4	X1				

JOYTEST

NAME	rev	ADDR	type	chip	Description
JOYTEST	-	036	W	D	Write to all 4 joystick-mouse counters at once.

Mouse counter write test data:

BIT#	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
JOYxDAT	Y7	Y6	Y5	Y4	Y3	Y2	xx	xx	X7	Х6	X5	X4	Х3	X2	XX	xx
JOYxDAT	Y7	Y6	Y5	Y4	Y3	Y2	XX	XX	X7	Х6	X5	X4	Х3	X2	XX	XX

LISAID

NAME	rev	ADDR	type	chip	Description
LISAID	Н	07C	R	D	Denise/Lisa (video out chip) revision level

The original Denise (8362) does not have this register, so whatever value is left over on the bus from the last cycle be there. ECS Denise (8373) returns hex (fc) in the lower 8 bits.Lisa returns hex (f8). The upper 8 bits of this Register are loaded from the serial mouse bus, and are for future hardware implentation.

The 8 low-order bits are encoded as follows:

BIT#	Description
7 - 4	Lisa/Denise/ECS Denise Revision level (decrement to bump revision level, hex F represents 0th rev. level)
3	Maintain as a 1 for future generation
2	When low indicates AA feature set (LISA)
1	When low indicates ECS feature set (LISA or ECS DENISE)
0	Maintain as a 1 for future generation

POTxDAT

NAME	rev	ADDR	type	chip	Description
POTODAT	h	012	R	Р	Pot counter data left pair (vert, horiz)
POT1DAT	h	014	R	Р	Pot counter data right pair (vert,horiz)

These addresses each read a pair of 8 bit pot counters. (4 counters total). The bit assignment for both addresses is shown below. The counters are stopped by signals from 2 controller connectors (left-right) with 2 pins each.

BIT#	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
RIGHT	Y7	Y6	Y5	Y4	Υ3	Y2	Y1	YO	X7	Х6	X5	X4	Х3	X2	X1	XO
LEFT	Y7	Y6	Y5	Y4	Y3	Y2	Y1	YO	X7	Х6	X5	X4	Х3	X2	X1	XΟ

	PAULA			
Loc.	Dir.	Sym	pin	pin
RIGHT	Υ	RX	9	33
RIGHT	Х	RX	5	32
LEFT	Υ	LY	9	36
LEFT	Х	LX	5	35

With normal (NTSC or PAL) horiz. line rate, the pots will give a full scale (FF) reading with about 500 k Ohms in one frame time. With proportionally faster horiz line times, the counters will count proportionally faster. This should be noted when doing variable beam displays.

POTGO

NAME	rev	ADDR	type	chip	Description
POTGO	-	034	W	Р	Pot port (4 bit) bi-direction and data, and pot
					counter start.

POTINP

NAME	rev	ADDR	type	chip	Description
POTINP	-	016	R	Р	Pot pin data read

This register controls a 4 bit bi-direction I/O port that shares the same 4 pins as the 4 pot counters above.

BIT#	FUNCTION	DESCRIPTION
15	OUTRY	Output enable for Paula pin 33
14	DATRY	I/O data Paula pin 33
13	OUTRX	Output enable for Paula pin 32
12	DATRX	I/O data Paula pin 32
11	OUTLY	Out put enable for Paula pin 36
10	DATLY	I/O data Paula pin 36
09	OUTLX	Output enable for Paula pin 35
08	DATLX	I/O data Paula pin 35
07-01	X	Not used
00	START	Start pots (dump capacitors, start counters)

REFPTR

NAME	rev	ADDR	type	chip	Description
REFPTR	_	028	W	Α	Refresh pointer

This register is used as a dynamic RAM refresh address generator. It is writeable for test purposes only, and should never be written by the microprocesor.

SERDAT

NAME	rev	ADDR	type	chip	Description
SERDAT	_	030	W	Р	Serial port data and stop bits write.

This address writes data to a transmit data buffer. Data from this buffer is moved into a serial shift register for output transmission whenever it is empty. This sets the interrupt request TBE (transmit buffer empty). A stop bit must be provided as part of the data word. The length the data word is set by the position of the stop bit.

Note: S = Stop bit = 1, D = data bits

SERDATR

NAME	rev	ADDR	type	chip	Description
SERDATR	_	018	R	Р	Serial port data and status read.

This address reads data from a receive data buffer. Data in this buffer is loaded from a receiving shift register whenever it is full. Several interrupt request bits are also read at this address, along with the data as shown below.

BIT#	FUNCTION	DESCRIPTION
15	OVRUN	Serial port receiver overun
14	RBF	Serial port receive buffer full (mirror)
13	TBE	Serial port transmit buffer empty (mirror)
12	TSRE	Serial port transmit shift reg. empty
11	RXD	RXD pin receives UART serial data for direct bit test by the micro.
10	X	Not used.
09	STP	Stop bit
08	STP-DB8	Stop bit if LONG, data bit if not.
07	DB7	Data bit.
06	DB6	Data bit.
05	DB5	Data bit.
04	DB4	Data bit.
03	DB3	Data bit.
02	DB2	Data bit.
01	DB1	Data bit.
00	DB0	Data bit.

SERPER

NAME	rev	ADDR	type	chip	Description
SERPER	_	032	W	Р	Serial port period and control.

This register contains the control bit LONG reffered to above, and a 15 bit number defining the serial portBaud rate. If this number is N, then the baud rate is 1 bit every $(N+1)^*.2794$ microseconds.

BIT#	FUNCTION	DESCRIPTION
15	LONG	Defines serial receive as 9 bit word.
14-00	RATE	Defines baud rate = $1/((N+1)^*.2794$ microseconds)

SPRHDAT

NAME	rev	ADDR	type	chip	Description
SPRHDAT	Н	078	W		Exe logic UHRES sprite identifier and data

This identifies the cycle when this pointer address is on the bus accessing the memory.

SPRHPTH

NAME	rev	ADDR	type	chip	Description
SPRHPTH	h	1E8	W	Α	UHRES sprite pointer (high 5 bits)
SPRHPTL	h	1EA	W	Α	UHRES sprite pointer (low 15 bits)

This pointer is activated in the 1st and 3rd `free` cycles see BPLHPTH,L) after horiz line start.It increments for the next line.

SPRHSTOP

NAME	rev	AD	DR	typ	е	chip	Desc	riptio	n							
SPRHSTOP	h		1D2	W		Α	UHRE	S spri	te ver	tical d	isplay	stop				
BIT#	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
SPRHWRM	Х	Х	Х	Х	х	v10	v9	v8	v7	v6	v5	v4	v3	v2	v1	v0

SPRHWRM = Swaps the polarity of ARW* when the SPRHDAT comes out so that external devices can detect the RGA and put things into memory. (ECS and later chips only)

SPRHSTRT

NAME		rev	ADD	R	type	chip) D	escrip	otion							
SPRHST	RT	h	1D	00	W	Α	U	HRES	sprite	vertica	al displ	ay sta	rt			
BIT#	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
USE	Х	х	Х	Х	x	v10	v9	v8	v7	v6	v5	v4	v3	v2	v1	v0

SPRxPTH

NAME	rev	ADDR	type	chip	Description
SPRxPTH	-	120	W	Α	Sprite x pointer (High 5 bits)
SPRxPTL	-	122	W	Α	Sprite x pointer (low 15 bits)

This pair of registers contains the 20 bit address of sprite x (x = 0, 1, 2, 3, 4, 5, 6, 7) DMA data. These address registers must be initalized by the processor or coprocessor every vertical blank time.

SPRxPOS

NAME	rev	ADDR	type	chip	Description
SPRxPOS	-	140	W	A D	Sprite x vert-horiz start position data.

BIT#	SYM	FUNCTION
15-08	SV7-SV0	Start vertical value. High bit (SV8) is in SPRxCTL register below.
07-00	SH10-SH3	Sprite horizontal start value. Low order 3 bits are in SPRxCTL register below. If SSCAN2 bit in FMODE is set, then disable SH10 horizontal coincidence detect. This bit is then free to be used by ALICE as an individual scan double enable.

SPRxCTL

NAME	rev	ADDR	type	chip	Description
SPRxCTL	р	142	W	A D	Sprite position and control data

BIT#	SYM	FUNCTION
15-08	EV7-EV0	End (stop) vert. Value, Low 8 bits
07	ATT	Sprite attach control bit (odd sprites only)
06	SV9	Start vert. value, 10th bit.
05	EV9	End (stop) vert. value 10th bit
04	SH1=0	Start horiz. value, 70nS increment
03	SH0=0	Start horiz. Value, 35nS increment
02	SV8	Start vert. Value, 9th bit
01	EV8	End (stop) vert. value 9th bit
00	SH2	Start horiz.value, 140nS increment

These 2 registers work together as position, size and feature sprite control registers. They are usually loaded by the sprite DMA channel, during horizontal blank, however they may be loaded by either processor any time. Writing to SPRxCTL disables the corresponding sprite.

SPRxDAT

NAME	rev	ADDR	type	chip	Description
SPRxDATA	-	144	W	D	Sprite x image data register A
SPRxDATB	_	146	W	D	Sprite x image data register B

These registers buffer the sprite image data. They are loaded by the sprite DMA channel but may be loaded by either processor at any time. When a horizontal occurs the buffers are dumped into shift registers and serially outputed to the display, MSB first on the left.

NOTE: Writing to the A buffer enables (arms) the sprite. Writing to the SPRxCTL registers disables the sprite. If enabled, data in the A and B buffers will be output whenever the beam counter equals the sprite horizontal position value in the SPRxPOS register. In lowres mode, 1 sprite pixel is 1 bitplane pixel wide. In HRES and SHRES mode, 1 sprite pixel is 2 bitplane pixels. The DATB bits are the 2SBs (worth 2) for the color registers, and MSB for SHRES. DATA bits are LSBs of the pixels.

STREQU

NAME	rev	ADDR	type	chip	Description
STREQU	-	038	S	D	Strobe for horiz sync with VB (vert blank) and EQU
STRVBL	-	038	S	D	Strobe for horiz sync with VB
STRHOR	р	03C	S	D	Strobe for horiz sync
STRLONG	h	03E	S	D	Strobe for identification of long horiz line (228CC)

One of the first 3 strobe addresses above, it is placed on the RGA bus during the first refresh time lot of every other line, to identify lines with counts (228- NTSC, HTOTAL+2- VARBEAMEN=1 chips only). There are 4 refresh time slots and any not used for strobes will leave a null (1FE) address on the RGA bus.

VBSTOP

NAME	rev	ADDR	type	chip	Description
VBSTOP	Н	1CE	W	Α	Vertical line for VBLANK stop
VBSRTR	Н	1CC	W	Α	Vertical line for VBLANK start

(V10 - 0 <- D10 - 0) Affects CSY pin if BLAKEN=1 and VSY pin if CSCBEN = 1 (see BEAMCONO)

VPOSR

NAME		rev	ADDR	type	chip	Desci	ription	1							
VPOSR	2	р	004	R	Α	Read	vert m	ost sig.	bits	(and fr	ame fl	lop)			
VPOSV	V	-	02A	W	Α	Write	most s	sig. bits	(and	frame	flop)				
BIT#	15	14	13	12 1	1 10	09	80	07	06	05	04	03	02	01	00
USE	LOF	16	15	14 13	12	I 1	10	LOL					V10	V9	V8

LOF = Long frame (auto toggle control bit in BPLCON0)

IO-I6 Chip identitication:

8361 (Regular) or 8370 (Fat) (Agnus-ntsc) = 10 8367 (Pal) or 8371 (Fat-Pal) (Agnus-pal) = 00 8372 (Fat-hr) (agnushr),thru rev4 = 20 Pal, 30 NTSC 8372 (Fat-hr) (agnushr),rev 5 = 22 Pal, 31 NTSC

8374 (Alice) thru rev 2 = 22 Pal, 32 NTSC 8374 (Alice) rev 3 thru rev 4 = 23 Pal, 33 NTSC

LOL = Long line bit. When low, it indicates short raster line.

v9,10 -- hires chips only (20,30 identifiers)

VHPOSR

NAME		rev	ADDR	type	chij	р	Descr	iption								
VHPOSR		-	006	R	Α		Read vert and horiz position of beam, or lightpen									
VHPOSW		-	02C	W	Α		Write vert horiz position of beam, or lightpen									
BIT#	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
USE	V7	V6	V 5	V4	V3	V2	V1	VO	Н8	H7	H6	H5	H4	НЗ	H2	H1
RESOLUTION = 1/160 of SCREEN WITH (280 nS)																

VSSTOP

NAME	rev	ADDR	type	chip	Description
VSSTOP	Н	1CA	W	Α	Vert position for VSYNC start
VTOTAL	Н	1C8	W	Α	Highest numbered vertival line (VARBEAMEN = 1)

It's the line number to reset the counter, so there's this many + 1 in a field. The exception is if the LACE bit is set (BPLCONO), in which case every other field is this many + 2 and the short field is this many + 1.