1 z.B. Widerstand, Teilversuch 4.1

1.1 Versuchsbeschreibung

Aus dem Ohm'schen Gesetz folgt:

$$R = \frac{U}{I}$$

Aus der am Widerstand anliegenden Spannung U und dem durch den Widerstand fließenden Strom I wird hier der Wert für den Widerstand R berechnet.

1.2 Versuchsaufbau und Durchführung

Der erste Versuch bestand aus Rauschmessungen in denen jeweils die Spannung U und der Strom I bei konstanten Spannungen aufgezeichnet wurde. Bei den Messungen wurde jeweils 1000 Werte über ein Messzeitraum von von 10ms aufgezeichnet. Die Spannung wurde in einem Messbereich von -10V bis +10V und der Strom von -0, 1A bis +0, 1A gemessen. Anschließend wurde die Spannung variiert um den Messbereich abzudecken und eine eventuelle relative Abhängigkeit des Fehlers von der Spannung auszuschließen.

1.3 Versuchsauswertung

Aus den Daten der Strom- und Spannungsmessung wurden anschließend die Mittelwerte von U und I mit deren statistischen Fehler bestimmt. Die statistischen Fehler wurden dann mittels Fehlerfortpflanzung der aus den Herstellerangaben entnommenen $\sigma_{U,sys}$ und $\sigma_{I,sys}$ errechnet. Aus den jeweils berechneten Werten für R konnte dann der Mittelwert und damit das Endergebnis angegeben werden.

1.3.1 Rohdaten

1.3.2 Analyse

Formeln:

$$R = \frac{\bar{U}}{\bar{I}} \qquad \qquad \sigma_R = \sqrt{(\frac{1}{\bar{I}})^2 \cdot \sigma_{\bar{U}}^2 + (\frac{\bar{U}}{\bar{I}^2})^2 \cdot \sigma_{\bar{I}}^2} \qquad \qquad \frac{\sigma_R}{R} = \sqrt{(\frac{\sigma_{\bar{U}}}{\bar{U}})^2 + (\frac{\sigma_{\bar{I}}}{\bar{I}})^2}$$

Aus den Fehlerrechnungen der statistischen Fehlern aus der Messung und den systematischen Fehlern aus den Herstellerangaben des Sensor-Cassy berechneten wir folgende Werte für R:

Tabelle	1:	1.	Messung
---------	----	----	---------

$ar{U}$	$\sigma_{ar{U}}$	$ar{I}$	$\sigma_{ar{I}}$	R	ΔR_{stat}	ΔR_{sys}
1.71V	0.00009V	0.002A	0.00002A	855Ω	8.55Ω	233.27Ω
3.88V	0.00008V	0.004A	0.00002A	970Ω	4.85Ω	135.8Ω
5.82V	0.00007V	0.006A	0.00003A	970Ω	4.85Ω	101.84Ω
7.68V	0.00009V	0.008A	0.000026A	960Ω	2.4Ω	74Ω

