Feuille d'exercice n° 26 : Espaces euclidiens – Correction

Exercice 1

- 1) Oui.
- 2) Non : on remarque que $\chi(P,P) = \int_{-1}^{1} 2P'P = [P^2]_{-1}^{1} = P^2(1) P^2(-1)$. Si P = X, $\chi(X,X) = 0$. Ainsi $P \neq 0$ mais $\chi(P) = 0$. Ou encore : $\chi(X 1, X 1) = -4 < 0$.
- **3)** Oui.

Exercice 2 $\langle Q, P \rangle = (b_0 + b_1)a_0 + (b_0 + 3b_1)a_1 + 3b_2a_2 = (a_0 + a_1)b_0 + (a_0 + 3a_1)b_1 + 3a_2b_2$ après développement. Donc $\langle Q, P \rangle = \langle P, Q \rangle$.

Si $R = c_0 + c_1 X + c_2 X^2 \langle P, Q + \lambda R \rangle = (a_0 + a_1)(b_0 + \lambda c_0) + (a_0 + 3a_1)(b_1 + \lambda c_1) + 3a_2(b_2 + \lambda c_2) = \langle P, Q \rangle + \lambda \langle P, R \rangle$, donc nous avons la linéarité par rapport à la première variable. La symétrie assure la linéarité par rapport à la seconde variable.

 $\langle P, P \rangle = (a_0 + a_1)a_0 + (a_0 + 3a_1)a_1 + 3a_2a_2 = a_0^2 + 2a_0a_1 + 3a_1^2 + 3a_2^2 = (a_0 + a_1)^2 + 2a_1^2 + 3a_2^2 \ge 0.$ De plus $\langle P, P \rangle = 0$ ssi $(a_0 + a_1) = a_1 = a_2 = 0$ ssi $a_0 = a_1 = a_2 = 0$ ssi P = 0. Il s'agit donc bien d'un produit scalaire.

Exercice 3 Grâce à l'inégalité triangulaire sur E,

$$\left\| \sum_{i=1}^{n} v_i \right\|^2 \leqslant \left(\sum_{i=1}^{n} \|v_i\| \right)^2.$$

Ensuite, par l'inégalité de Cauchy-Schwarz sur \mathbb{R}^n muni de sa structure euclidienne canonique, avec

$$v = \begin{pmatrix} \|v_1\| \\ \vdots \\ \|v_n\| \end{pmatrix}, \ u = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix},$$

$$\left(\sum_{i=1}^{n} \|v_i\|\right)^2 = \langle v, u \rangle^2 \leqslant \|u\|^2 \|v\|^2 = n \left(\sum_{i=1}^{n} \|v_i\|^2\right).$$

Exercice 4

- 1) Inégalité de Cauchy-Schwarz sur \mathscr{C}^0 muni du ps. usuel.
- **2)** Appliquer avec g constante.

Exercice 5

- 1) Facile, correspond à la norme euclidienne sur $\mathbb{R}^{n \times n}$.
- 2) Avec $A_{*,j}$ la colonne j de A, $A_{i,*}$ la ligne i de A et $\|\cdot\|$ la norme euclidienne sur \mathbb{R}^n , on a

$$N(A)^{2} = \sum_{i=1}^{n} \|A_{i,*}\|^{2} = \sum_{j=1}^{n} \|A_{*,j}\|^{2}.$$

Si $x \in \mathbb{R}^n$, on a alors par l'inégalité de Cauchy-Schwarz sur \mathbb{R}^n :

$$||Ax||^2 = \sum_{i=1}^n \langle A_{i,*}, x \rangle^2 \leqslant \sum_{i=1}^n ||A_{i,*}||^2 ||x||^2 = N(A) ||x||^2$$

Alors,

$$N(AB) = \sum_{j=1}^{n} \|(AB)_{*,j}\|^2 = \sum_{j=1}^{n} \|A \times B_{*,j}\|^2 \leqslant \sum_{j=1}^{n} N(A) \|B_{*,j}\|^2 = N(A)N(B).$$

3) Inégalité de Cauchy-Schwarz avec $B = I_n$.

- 1) Prendre $x = e_j$: $1 = ||e_j||^2 = \sum_{i=1}^n (e_j|e_i)^2 = 1 + \sum_{i=1, i \neq j}^n (e_j|e_i)^2$, donc $0 = \sum_{i=1, i \neq j}^n (e_j|e_i)^2$. Ainsi pour tout $i \neq j$, $(e_i|e_j) = 0$.
- 2) Prendre x dans $Vect(e_1, ..., e_n)^{\perp}$: alors $||x||^2 = \sum_{i=1}^n (x|e_i)^2 = 0$, donc x = 0. Ainsi $Vect(e_1, ..., e_n)^{\perp} = 0$ $\{0\}$, et donc $\text{Vect}(e_1,\ldots,e_n)=E$. La famille est donc génératrice. Or elle est libre car orthormale.

Exercice 7

- 1) Tout vecteur orthogonal à tout élément de G l'est à tout élement de F.
- **2)** $F \cap G \subset F + G$ d'où \subset . Réciproquement, soit $x \in F^{\perp} \cap G^{\perp}$, soit $y = f + g \in F + G$, alors $x \perp f$ et $x \perp G$ donc $x \perp y$, donc
- 3) On est dans un espace euclidien, par bi-orthogonalité $(F^{\perp} + G^{\perp}) = F \cap G$ et on passe encore à l'orthogonal.

Exercice 8

Soit $f \in F^{\perp}$.

Posons $g: t \mapsto tf(t)$.

On a g(0) = 0 et $g \in \mathcal{C}([0,1], \mathbb{R})$, donc $g \in F$. De plus on a $g \perp f$, donc $\int_0^1 t f(t)^2 dt = \int_0^1 g(t) f(t) dt = 0. \text{ Or } t \mapsto t f(t)^2 \text{ est une application continue à valeurs positives sur } [0,1], \text{ comme elle est d'intégrale nulle sur } [0,1], \text{ elle est donc nulle sur } [0,1].$

On a donc f = 0, donc $F^{\perp} \subset \emptyset$.

Donc $F^{\perp} = \emptyset$.

L'ensemble des matrices diagonales est $Vect(E_{1,1}, E_{2,2})$. Directement, ou passant par les Exercice 9 orthogonaux de Vect $E_{1,1}$ et de Vect $E_{2,2}$, l'orthogonal est Vect $(E_{1,2}, E_{2,1})$

L'ensemble des matrices symétriques est $Vect(E_{1,1}, E_{2,2}, E_{1_2} + E_{2,1})$. L'orthogonal recherché est un sev de dimension 1 du précédent. $xE_{1,2} + yE_{2,1} \perp E_{1,2} + E_{2,1}$ ssi x + y = 0 donc l'orthogonal recherché est celui des matrices antisymétriques.

Exercice 10
$$\det(e_1, e_2, e_3) = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 2 & 1 \end{vmatrix} = -1 \text{ donc il s'agit bien d'une base.}$$

Posons
$$v_1 = \frac{e_1}{\|e_1\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
.

Soit
$$z_2 = e_2 - (e_2 \cdot v_1)v_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} - \frac{3}{2} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
. POsons alors $v_2 = \frac{z_2}{\|z_2\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$.

Enfin, soit
$$z_3 = e_3 - (e_3.v_1)v_1 - (e_3.v_2)v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
. Donc posons $v_3 = \frac{z_3}{\|z_3\|} = z_3$.

Ainsi
$$\begin{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix} \end{pmatrix}$$
 est l'orthonormalisée de Gram-Schmidt de (e_1, e_2, e_3) .

Exercice 11 Par l'absurde, supposons qu'il existe un tel A. Alors posons $B = X \times A$. On a (B|A) = B(0) = 0.

Or $(B|A) = \int_0^1 tA(t)^2 dt$ et $t \mapsto tA(t)^2$ est une fonction continue à valeurs positives sur [0,1]. Son intégrale sur [0,1] étant nulle, cette fonction est donc nulle. On en déduit A = 0, donc (1|A) = 0 ce qui est absurde (on devrait avoir (1|A) = 1).

NB: Notons que le théorème de Riesz ne s'applique pas ici, puisqu'on n'est pas dans un espace euclidien mais seulement un préhilbertien ($\mathbb{R}[X]$ n'est pas de dimension finie). Si l'énoncé était posé dans $\mathbb{R}_n[X]$ et non dans $\mathbb{R}[X]$, le théorème de Riesz assurerait l'existence d'un tel A. Notons qu'alors on aurait deg A = n. En effet, si on avait deg A < n, le même raisonnement conduirait à une absurdité.

Exercice 12 Si p est orthogonal alors pour tout x $p(x) \perp x - p(x)$ et alors si $x \in E$, par le théorème de Pythagore,

$$||x|| = ||p(x) + x - p(x)|| = \sqrt{||p(x)||^2 + ||x - p(x)||^2} \ge ||p(x)||.$$

Réciproquement, soit $k \in \text{Ker } p$ et $i \in \text{Im } p$, soit $\lambda \in \mathbb{R}$. Alors, $p(i + \lambda k) = i$ donc $||i||^2 \le ||i||^2 + ||k||^2 + 2\lambda \langle i, k \rangle$, donc, pour tout $\lambda \in \mathbb{R}$, $||k||^2 + \lambda \langle i, k \rangle \geqslant 0$, ce qui n'est possible que si $i \perp k$.

Exercice 13 Soit un parallélogramme défini par deux vecteurs u et v. Alors ses deux diagonales sont portées par les vecteurs u + v et u - v.

- 1) Ce parallélogramme est un rectangle ssi u.v = 0 ssi (identité de polarisation) $||u+v||^2 ||u-v||^2 = 0$ ssi ses deux diagonales ont même longueur.
- 2) Les deux diagonales sont orthogonales ssi (u+v).(u-v)=0 ssi $||u||^2+u.v-u.v-||v||^2=0$ ssi ||u||=||v|| ssi ce parallélogramme est un losange.

Exercice 14 Faire un dessin donne tout de suite la solution!

- 1) Si ||x|| = ||y||, alors $x + y \perp x y$. De plus, $x = \frac{1}{2}(x + y) + \frac{1}{2}(x y)$ et $y = \frac{1}{2}(x + y) \frac{1}{2}(x y)$, donc il suffit de prendre $H = (x y)^{\perp}$ si $x \neq y$, ou tout hyperplan passant par x sinon.
- 2) Si $\langle x, y \rangle = ||y||^2$, alors $x y \perp y$. Alors x = y + x y, donc il suffit de prendre $H = (x y)^{\perp}$ si $x \neq y$, ou tout hyperplan passant par x sinon.
- 3) Dans chaque cas, si x = y, il n'y a pas unicité. Sinon
 - a) Si H est un hyperplan avec s la symétrie orthogonale demandée, alors s(x-y) = y-x donc $x-y \in H^{\perp}$ donc (dimension) $H = (x-y)^{\perp}$.
 - b) Si H est un hyperplan avec p la projection orthogonale demandée, alors p(x-y)=0 donc $x-y\in H^\perp$ donc (dimension) $H=(x-y)^\perp$.

Donc il y a unicité!

Exercice 15 Posons $E = \text{Vect}(1, \text{Id}, \exp)$ qui est bien euclidien. Il s'agit de calculer $d^2(\exp, \mathbb{R}_1[X])$. Pour cela calculons le projeté orthogonal de exp sur $\mathbb{R}_1[X]$.

Une b.o.n de Vect(1, Id) est $(1, \sqrt{3}(2X - 1))$.

$$\langle \exp, 1 \rangle = \int_0^1 e^t dt = e - 1.$$

$$\langle \exp, 2X - 1 \rangle = 2 \int_0^1 t e^t dt - \int_0^1 e^t dt = 2 - e.$$

Le projeté orthogonal de exp sur $\mathbb{R}_1[X]$ est donc P = e - 1 + 3(2 - e)(2X - 1) = 4e - 7 + 6(2 - e)X.

Alors
$$d^2(\exp, \mathbb{R}_1[X]) = \|\exp -P\|^2 = \|\exp\|^2 - \|P\|^2$$
 par Pythagore, donc $d^2(\exp, \mathbb{R}_1[X]) = \int_0^1 e^{2t} dt - \frac{1}{2} e^{2t} dt$

$$\int_0^1 (4e - 7)^2 + 12(4e - 7)(2 - e)t + 36(2 - e)^2 t^2 dt = 16e^2 + 49 - 56e + 6(8e - 4e^2 - 14 + 7e) + 12(4 + e^2 - 4e) = 4e^2 - 8e + 13.$$

Exercice 16 L'existence et l'unicité des polynômes de Tschebychev est un résultat classique qui constitue un exercice à lui seul : nous avons tout de suite $P_0 = 1$ et $P_1 = X$. Si $k \ge 1$, $\cos((k+1)\theta) = 2\cos(k\theta)\cos(\theta) - \cos((k-1)\theta)$, donc par récurrence forte (ou double) nous obtenons : P_{k+1} existe, $P_{k+1} = 2XP_k - P_{k-1}$, et aussi deg $P_{k+1} = k+1$, et son coefficient dominant est 2^k .

- 1) Facile et classique. Le seul point plus subtil est $\langle P, P \rangle = 0 \Rightarrow P = 0$. Soit un tel P. Alors $t \mapsto P^2(\cos(t))$ est continue, positive et d'intégrale nulle, donc est nulle sur $[0, \pi]$. Or $\cos(t)$ prend une infinité de valeurs différentes sur $[0, \pi]$ ([-1, 1] précisément), donc le polynôme P est nul.
- 2) Si $i \neq j$, $\langle P_i, P_j \rangle = \int_0^{\pi} \cos(it) \cos(jt) dt = \frac{1}{2} \left(\int_0^{\pi} \cos((i+j)t) dt + \int_0^{\pi} \cos((i-j)t) dt \right) = 0$ car $i+j\neq 0$ et $i-j\neq 0$. Comme les P_i sont échelonnés en degré (de 0 à n), ils forment une famille libre. Comme ils sont au nombre de n+1, ils forment une base (orthogonale) de $\mathbb{R}_n[X]$.

Exercice 17 Notons F et G les matrices de f et de g dans cette bon. Soit u un vecteur de E, on note u sa matrice dans cette base.

$$\langle f(u), g(u) \rangle = (Fu)^{\top} Gu = u^{\top} F^{\top} Gu = u^{\top} FGU = u^{\top} GFu = -u^{\top} G^{\top} Fu = -\langle g(u), f(u) \rangle.$$

On conclut directement.

Exercice 18

1) Un vecteur normal est de coordonnées n=(1,-2,3). Une base orthogonale du plan est (u=(2,1,0); v=(-3;6;5)). Ensuite :

$$s(x) = \frac{\langle x, u \rangle}{\|u\|^2} u + \frac{\langle x, v \rangle}{\|v\|^2} v - \frac{\langle x, n \rangle}{\|n\|^2} n.$$

2)

$$p(x) = \frac{\langle x, u \rangle}{\|u\|^2} u + \frac{\langle x, v \rangle}{\|v\|^2} v$$

3) On se place dans la bond $(a,b,c) = \left(\frac{1}{\sqrt{17}}(1,0,-4),(0,1,0),\frac{1}{\sqrt{17}}(4,0,1)\right)$, dans laquelle la matrice de cette symétrie est $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$, et donc dans la base (i,j,k) la matrice de cette symétrie est

$$\begin{pmatrix} \frac{1}{\sqrt{17}} & 0 & \frac{4}{\sqrt{17}} \\ 0 & 1 & 0 \\ -\frac{4}{\sqrt{17}} & 0 & \frac{1}{\sqrt{17}} \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \cdot t \begin{pmatrix} \frac{1}{\sqrt{17}} & 0 & \frac{4}{\sqrt{17}} \\ 0 & 1 & 0 \\ -\frac{4}{\sqrt{17}} & 0 & \frac{1}{\sqrt{17}} \end{pmatrix} = \begin{pmatrix} -\frac{15}{17} & 0 & -\frac{8}{17} \\ 0 & -1 & 0 \\ -\frac{8}{17} & 0 & \frac{15}{17} \end{pmatrix}.$$

4) On se place dans la bond $(a, b, c) = \left(\frac{1}{\sqrt{17}}(1, 0, -4), (0, 1, 0), \frac{1}{\sqrt{17}}(4, 0, 1)\right)$, dans laquelle la matrice

de cette symétrie est $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, et donc dans la base (i, j, k) la matrice de cette symétrie est

$$\begin{pmatrix}
\frac{1}{\sqrt{17}} & 0 & \frac{4}{\sqrt{17}} \\
0 & 1 & 0 \\
-\frac{4}{\sqrt{17}} & 0 & \frac{1}{\sqrt{17}}
\end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \end{pmatrix} \cdot {}^{t} \begin{pmatrix} \frac{1}{\sqrt{17}} & 0 & \frac{4}{\sqrt{17}} \\
0 & 1 & 0 \\
-\frac{4}{\sqrt{17}} & 0 & \frac{1}{\sqrt{17}} \end{pmatrix} = \begin{pmatrix} \frac{1}{17} & 0 & -\frac{4}{17} \\
0 & 0 & 0 \\
-\frac{4}{17} & 0 & \frac{16}{17} \end{pmatrix}.$$

Exercice 19

- 1) $p(x) = \langle x, u \rangle u$ donc $p(e_j) = a_j u$ donc la matrice est $P = (a_i a_j) = (a_i) \times (a_i)^{\top}$.
- 2) Projection sur $D^{\perp}: P'=I_n-P.$ Symétrie / $D: S+I_n=2P$ donc $S=2P-I_n.$ Symétrie / $D^{\perp}: S'+I_n=2P'$ donc $S'=2P'-I_n=I_n-2P.$

Exercice 20

- 1) Montrons la double inclusion (on pourrait n'en montrer qu'une et montrer l'égalité des dimensions grâce au théorème du rang).
 - Soit $x \in \text{Ker}(f-\text{Id})$. Alors x = f(x). Soit $y \in \text{Im}(f-\text{Id})$. Alors il existe $z \in E$ tel que y = f(z) z. On a : (x|y) = (x|f(z) z) = (x|f(z)) (x|z) = (f(x)|f(z)) (x|z). Or f est orthogonal donc préserve le produit scalaire, et ainsi (x|z) = (f(x)|f(z)). D'où : (x|y) = (x|z) (x|z) = 0, et $x \in \text{Im}(f-\text{Id})^{\perp}$.
 - Soit $x \in \text{Im}(f-\text{Id})^{\perp}$. Puisque $f(x)-x \in \text{Im}(f-\text{Id})$, on a (x|f(x)-x)=0, soit (x|f(x))=(x|x)=(f(x)|f(x)). On a alors $(f(x)-x|f(x)-x)=\|f(x)\|^2+\|x\|^2-2(x|f(x))=\|f(x)\|^2+\|x\|^2-2\|x\|^2=0$, donc f(x)-x=0, i.e. $x \in \text{Ker}(f-\text{Id})$.
- 2) $(f \operatorname{Id})^2 = 0$ signifie que $\operatorname{Im}(f \operatorname{Id}) \subset \operatorname{Ker}(f \operatorname{Id})$, et d'après la question précédente on a $\operatorname{Im}(f \operatorname{Id}) \subset \operatorname{Im}(f \operatorname{Id})^{\perp}$. On a donc $\operatorname{Im}(f \operatorname{Id}) \cap \operatorname{Im}(f \operatorname{Id})^{\perp} = \operatorname{Im}(f \operatorname{Id})$. Or E est de dimension finie donc $\operatorname{Im}(f \operatorname{Id}) \cap \operatorname{Im}(f \operatorname{Id})^{\perp} = \{0\}$, d'où $\operatorname{Im}(f \operatorname{Id}) = \{0\}$, et ainsi $f \operatorname{Id} = 0$.

Exercice 21

- 1) On remarque que les vecteurs colonnes de A forment une b.o.n, et det A=-1, donc A est la matrice d'une symétrie orthogonale. De plus, $A=\begin{pmatrix}\cos\theta&\sin\theta\\\sin\theta&-\cos\theta\end{pmatrix}$ avec $\theta=\operatorname{Arccos}\left(-\frac{7}{25}\right)$. Donc A est la symétrie orthogonale par rapport à la droite dirigée par le vecteur $\begin{pmatrix}\cos\left(\theta/2\right)\\\sin\left(\theta/2\right)\end{pmatrix}$.
- 2) Idem : B est la symétrie orthogonale par rapport à la droite dirigée par le vecteur $\begin{pmatrix} \cos(\theta/2) \\ \sin(\theta/2) \end{pmatrix}$ avec $\theta = \operatorname{Arccos}\left(\frac{3}{5}\right)$.
- 3) On remarque que les vecteurs colonnes de C forment une b.o.n, et det C=1, donc C est la matrice d'une rotation. De plus, $C=\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$ avec $\theta=\operatorname{Arccos}\left(\frac{3}{5}\right)$. Donc C est la rotation d'angle $\operatorname{Arccos}\left(\frac{3}{5}\right)$.

Exercice 22

- 1) On remarque que les deux vecteurs définis par les colonnes de A sont de norme 1 et orthogonaux entre eux, donc A est une matrice orthogonale. De plus, det A=1 donc A est une rotation. Son angle est θ tel que $\cos\theta = \frac{\sqrt{3}}{2}$ et $\sin\theta = \frac{1}{2}$. Ainsi A est la rotation d'angle $\frac{\pi}{3}$.
- 2) $B = \frac{1}{2} \begin{pmatrix} \sqrt{3} & 1 \\ 1 & -\sqrt{3} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$ avec $\theta = \frac{\pi}{3}$. Donc B est la symétrie orthogonale par rapport à la droite dirigée par le vecteur $\begin{pmatrix} \cos (\theta/2) \\ \sin (\theta/2) \end{pmatrix}$.

Exercice 23 $r \circ s \circ s$ est une réflexion, $s \circ r \circ s$ une rotation, réfléchir, faire un joli dessin en jouant sur l'axe de s et l'angle de r.

Puis le coup qui tue : $r \circ s$ est une réflexion donc $r \circ s \circ r \circ s = \mathrm{Id}$, donc $r \circ s \circ r = s$ et $s \circ r \circ s = r^{-1}$.