JUN 2 8 2004 CA

AIR-STIRRING BLADE FOR AN INTERNAL COMBUSTION ENGINE

Cross-Reference to Related Application

5 This application is a continuation application of International Application Number PCT/IB01/01198, filed June 29, 2001.

Technical Field of Invention

10

This invention relates to an inlet for air from the atmosphere into an internal combustion engine attached particularly before the engine air filter and after the combustion engine.

15

20

25

Background of Invention

In order to be leading in current technology, an internal combustion engine mounted in automotive vehicles should reveal a good performance. To have a good performance, an internal combustion engine should have a sufficient acceleration and an optimal use of fuel. These requirements can be met by improving quality of the combustion process of air-fuel mixture within the engine.

Another way of improving the quality of combustion process of air-fuel mixture within an automotive engine is to improve the quality of air-fuel mixture. A qualified combustion process of air-fuel mixture requires that an agitating effect should occur within the mixture. An

15

agitating effect is a phenomenon triggered and left by a stirring effect in air before the air is mixed with the fuel.

The stirring effect is recently produced by providing auxiliaries such as grooves in the air inlet. The grooves are of many types and each has its own advantage and drawback.

The prior art related to this present invention is Air- Stirring Device for Automotive Vehicles (PCT/IB99/00029).

This invention thus improves the quality of air-fuel mixture by generating a twisting effect, maintain it as long as possible and increase the turbulency of the air-fuel mixture leaving the outlet side of the air-stirring blade.

Summary of The Invention

As disclosed above, the subject of this invention is a device which enables the atmosphere to flow turbulently into the engine of automotive vehicles. Compared with the prior art cited above, i.e., PCT /1B99/00029, one of the advantages possessed by embodiments of the present invention is an increasing turbulency of the air-fuel mixture leaving the outlet part of this air-stirring blade due to lesser air-resistance or loss of head.

The location of this air stirring blade with carburetor within an automotive engine is shown

schematically in Fig. 1. Air-stirring blade (F) is mounted after or on air channel (B) and before carburetor (C). Fig. 2 shows schematically the air- stirring blade if mounted within an internal combustion engine on channel (B) after 5 air filter (A) and before engine combustion chamber (E) by means of an injection system.

The preferred embodiment of this invention (shown in Fig.3) comprises a cylindrical body (1) whose mid portion is provided with blade (2) constructed in such a way that the inner side of the blade (2a) takes the form of stirred grooves with dip angle (3) of about 10° to 80° or typically 30°. The shape of the outer side of the blade (2b) is the same with that of the inner side (2a) of the blade. There are four tangent lines between blade (2) and body (1). The four tangent lines form a channel with cap-shaped cross-section (5) which is twisted along body (1).

Figure 3 is a preferred embodiment of this invention whilst Figure 4 and 5 are its modifications. It can be seen from Figures 3, 4 and S that the air flowing from this airstirring blade is in stirred condition enabling the occurrence of an agitating effect within the air-fuel mixture.

Brief Description of the Drawings

25

10

15

20

Figure 1 shows schematically the mounting of an airstirring blade within an internal combustion engine with carburetor where A, B, C, D, E are successively air filter,

20

air channel, carburetor, intake manifold, engine combustion chanter, and air-stirring device;

Figure 2 shows schematically the mounting of airstirring device within an internal combustion engine using an injection system, where A, B, D, E and F are successively air filter, air channel, intake manifold, engine combustion chamber, and air-stirring device;

Figure 3 is a perspective cut-out view of a preferred embodiment of this invention where (1), (2), (3), (4) and (5) are successively body, blade, dip of twisting, tangent lines, and twisted channel;

Figure 4 is a perspective cut-out view of a modification of the embodiment shown in Figure 3 in the form blade only, without body;

15 Figure 5a is a perspective cut-out view of yet another embodiment, showing an air-stirring device which is provided with lips on its body;

Figure 5b is a perspective cut-out view of yet another embodiment, showing an air stirring device acting as a joint for air channel;

Figure 5c is a perspective cut-out view of another embodiment, showing an air stirring device which is integrally constructed with an air channel;

Figure 6 is a table showing performance of an internal combustion engine of standard type equipped successively with an air twisting device disclosed in PCT/1B99/00029 and an embodiment of the air-stirring device of the present invention; and

25

Figure 7 is a experimentally-derived graph showing the relation between fuel consumed and power yielded by an internal combustion engine of standard type, equipped with air twisting-device disclosed in PCT/IB99/00029, and equipped with one embodiment of the air-stirring device of the present invention.

Detailed Description of the Preferred Embodiments

10 This invention improves the performance of an automotive engine without any significant changes in the previous design of the engine. A satisfied result in the form of a well stirred air flowing into the automotive engine can be performed by optionally attaching an airstirring device on the engine.

Air-stirring device that can be attached without necessarily changing the engine construction has been disclosed in PCT/1B99/00029.

The turbulency of the air-fuel mixture leaving the outlet part of the air-stirring device disclosed in PCT/IB99/00029 is considerably lower than that of embodiments according to this invention.

Based on that fact, embodiments of this present invention ensures as well as increases the turbulency of the air-fuel mixture leaving the outlet part of the device disclosed in PCT/1B99/00029 by means of a twisted air channel (5) attached on the solid portion of the air-stirring device disclosed in PCT/IB99/00029.

The attachment of an embodiment of the air-stirring device presently invented on an internal combustion engine is shown in Figure 1. This air-stirring device (F) is attached after the air channel (B) or on the air channel (B) but before the carburetor (C). Such position of attachment is intended to provide an airflow which has been twisted before entering the carburetor (C). Since the air has been twisted before entering the carburetor (C), the air-fuel mixture entering the engine combustion chamber (E) 10 will have been twisted as well as agitated. To achieve an optimal agitating effect, this air-stirring device (F) is attached in an internal combustion engines not in one place only, but in other places as well, such as on the air channel (B) or in the front of an intake manifold (D).

15 The preferred embodiment of this invention (shown in Figure 3) comprises a cylindrical body (1) provided with blade (2) which is shaped in such a way that the inner side of the blade (2a) takes the form of stirred grooves with dip angle (3) of about 10° to 80° or typically 30° with 20 respect to vertical axis of the body. The outer side of the blade (2b) is of the same shape with the inner side (2a) thereof. The four tangent lines between blade (2) and body (1) form a channel of cap-shaped cross-section (5) which is twisted along the body (1). The number of tangent lines (4) 25 between the body (1) and the blade (2) is dictated by the number of grooves formed on the blade (2). The number of tangent lines is not always four as cited above, and may vary in different embodiments. The minimum number of grooves is usually two but more grooves are allowed when 30 needed.

10

15

20

25

Tests are conducted by comparing measured parameters of an internal combustion engine mounted on powered vehicles using an injection system on standard condition (without an air-stirring device), using an air-stirring device disclosed in PCT/1B99/00029, and using an embodiment of the air-stirring blade presently invented. The parameters were measured for each condition under specified rpms of the internal combustion engine. Parameters observed in the test are the time needed to use up 25 ml of fuel, the engine rpm at that time and the related power of the engine. Power is measured by dynamometer.

The data obtained are tabulated in Figure 6. The fuel consumed per second calculated from data shown in Figure 6 is then interrelated to the power of the engine. The graph produced is shown in Figure 7.

Figure 7 shows that to produce the same power at all rpms, the internal combustion engine equipped with the airstirring blade presently invented consumes less fuel than the same engine equipped with an air-stirring device disclosed in PCT/1B99/00029 and the internal combustion engine equipped with nothing. With respect to PCT/1B99/00029, at rpms below 3500, the internal combustion engine equipped with an embodiment of the air-stirring blade presently invented consumes less fuel to produce power at the same rate. However at an rpm of 1500, the internal combustion engine equipped with the embodiment of the air-stirring blade presently invented and the internal combustion engine equipped with the device disclosed in PCT/1B99/00029 consume fuel of the same amount.

15

Figure 3 is a preferred embodiment of this invention whilst Figure 4 and S show modifications thereof. The modification in Figure 4 is in the form of blade (2) only following the omission of the cylindrical parts of its body (1). Modification in Figure 4 can be made if the airstirring blade acts as an inserting part, and body (1) of the air-stirring blade is of such construction to be integrated with the air channel within the internal combustion engine.

10 Figure 5a shows another modification of this embodiment of the invention where the body (1) is equipped with an additional lip (6).

Figure 5b is another modification of this embodiment of the invention in which the blade acts as a joint for an air channel, and Figure 5c is an air-stirring device which is integrally constructed with the body of an air channel.

In one embodiment, most of those modifications are made of nonmetal materials such as polymer. Only a few of them are made of metal.

It should necessarily be understood that the scope of this invention is not limited by the embodiments represented by the appended drawings. All modifications made by the people skilled in this art are still part of this invention as long as the principles underlying the modifications still exist within the scope of the invention.

EAJ PAS571378.1-*-06/24/04 3:20 PM

AIR-STIRRING BLADE FOR AN INTERNAL COMBUSTION ENGINE

Cross-Reference to Related Application

5 This application is a continuation application of International Application Number PCT/IB01/01198, filed June 29, 2001.

Technical Field of Invention

10

This invention relates to an inlet for air from the athmosphere atmosphere into an internal combustion engine attached particularly before the engine air filter and after the combustion engine.

15

20

Background of invention Invention

In order to be leading in current technology, an internal combustion engine mounted in automotive vehicles should reveal a good performance. To have a good performance, an internal combustion engine should have a sufficient accelereration and an optimal use of fuel. These requirements can be met by improving quality of the combustion process of air-fuel mixture within the engine.

Another way of improving the quality of combustion process of air-fuel mixture within an automotive engine is to improve the quality of air-fuel mixture. A qualified combustion process of air-fuel mixture requires that an agitating effect should occur within the mixture. An

15

agitating effect is a phenomenon triggered and left by a stirring effect in air before the air is mixed with the fuel.

The stirring effect is recently produced by providing auxiliaries such as grooves in the air inlet. The grooves are of many types and each has its own advantage and drawback.

The prior art related to this present invention is Air- Stirring Device for Automotive Vehicles (PCT/IB99/00029).

The object of the invention [[is]] thus [[to]] improves the quality of air-fuel mixture by generating a twisting effect, maintain it as long as possible and increase the turbulency of the air-fuel mixture leaving the oulet outlet—side of the air- stirring blade.

Summary of The iInvention

As disclosed above, the subject of this invention is a device which enables the athmosphere atmosphere to flow turbulently into the engine of automotive vehicles.

Compared with the prior art cited above, i.e., PCT /1B99/00029, one of the advantages possessed by embodiments

25 of [[this]] the-present invention is an increasing turbulency of the air-fuel mixture leaving the outlet part of this air-stirring blade due to lesser air-resistance or loss of head.

The location of this air stirring blade with carburetor within an automotive engine is shown schematically in Fig. 1. Air-stirring blade (F) is mounted after or on air channel (B) and before carburetor (C). Fig. 2 shows schematically the air- stirring blade if mounted within an internal combustion engine on channel (B) after air filter (A) and before engine combustion chamber (E) by means of an injection system.

The preferred embodiment of this invention (shown in Fig.3) comprises a cylindrical body (1) whose mid portion is provided with blade (2) constructed in such a way that the inner side of the blade (2a) takes the form of stirred grooves with dip angle (3) of about 10° to 80° or typically 30°. The shape of the outer side of the blade (2b) is the same with that of the inner side (2a) of the blade. There are four tangent lines between blade (2) and body (1). The four tangent lines form a channel with cap-shaped cross-section (5) which is twisted along body (1).

Figure 3 is a preferred embodiment of this invention

20 whilst Figure 4 and 5 are its modifications. It can be seen from Figures 3, 4 and S that the air flowing from this airstirring blade is in stirred condition enabling the occurrence of an agitating effect within the air-fuel mixture.

25

Brief Description of the Drawing Drawings

Figure 1 shows schematically the mounting of an air-

stirring blade within an internal combustion engine with carburetor where A, B, C, D, E are successively air filter, air channel, carburetor, intake manifold, engine combustion chanter, and air-stirring device-;

- 5. Figure 2 shows schematically the mounting of airstirring device within an internal combustion engine using
 an injection system, where A, B, D, E and F are
 successively air filter, air channel, intake manifold,
 engine combustion chamber, and air-stirring device-;
- 10. Figure 3 is a <u>perspective cut-out view</u> of a preferred embodiment of this invention where where (1), (2), (3), (4) and (5) are successively body, blade, dip of twisting, tangent lines, and twisted channel—;

Figure 4 is a <u>perspective cut-out view of a</u>

15 modification of this invention the embodiment shown in Figure 3 in the form blade only, without body;

Figures 5a, 5b and 5c are other modifications of this invention where—Figure 5a is a perspective cut-out view of yet another embodiment, showing an air-stirring device which is provided with lips on its body—;

Figure 5b is a perspective cut-out view of yet another embodiment, showing an air stirring device acting as a joint for air channel; and

Figure 5c is a perspective cut-out view of another

embodiment, showing an air stirring device which is integrally constructed with an air channel;

Figure 6 is a table showing performance of an internal combustion engine of standard type equipped successively with an air twisting device disclosed in PCT/1B99/00029 and

15

20

an embodiment of the air-stirring device of the present invention; and

Figure 7 is a experimentally-derived graph showing the relation between fuel consumed and power yielded by an internal combustion engine of standard type, equipped with air twisting-device disclosed in PCT/IB99/00029, and equipped with one embodiment of the air-stirring device of

10 Detailed Description of the Invention Preferred Embodiments

the present invention, respectively.

The purpose of tThis invention is to improves the performance of an automotive engine without any significant changes in the previous design of the engine. A satisfied result in the form of a well stirred air flowing into the automotive engine can be performed by optionally attaching an air-stirring device on the engine.

Air-stirring device that can be attached without necessarily changing the engine construction has been disclosed in PCT/1B99/00029.

The turbulency of the air-fuel mixture leaving the outlet part of the air-stirring device disclosed in PCT/IB99/00029 is considerably lower than that of embodiments according to this invention.

25 Based on that fact, the aim of embodiments of this present invention is thus to insure ensures as well as [[to]] increases the turbulency of the air-fuel mixture leaving the outlet part of the device

10

15

20

25

30

disclosed in PCT/1B99/00029 by means of a twisted air channel (5) attached on the solid portion of the airstirring device disclosed in PCT/IB99/00029.

The attachment of <u>an embodiment of</u> the air-stirring device presently invented on an internal combustion engine is shown in Figure 1. This air-stirring device (F) is attached after the air channel (B) or on the air channel (B) but before the carburetor (C). Such position of attachment is intended to provide an airflow which has been twisted before entering the carburetor (C). Since the air has been twisted before entering the carburetor (C), the air-fuel mixture entering the engine combustion chamber (E) will have been twisted as well <u>and</u> as agitated. To achieve an optimal agitating effect, this air-stirring device (F) is attached in an internal combustion engines not <u>on in</u> one place only, but <u>on in</u> other places as well, such as on the air channel (B) or in the front of an intake manifold (D).

The preferred embodiment of this invention (shown in Figure 3) comprises a cylindrical body (1) provided with blade (2) which is shaped in such a way that the inner side of the blade (2a) takes the form of stirred grooves with dip angle (3) of about 10° to 80° or typically 30° with respect to vertical axis of the body. The [[the]] outer side of the blade (2b) is of the same shape with the inner side (2a) thereof. The four tangent lines between blade (2) and body (1) form a channel of cap-shaped cross-section (5) which is twisted along the body (1). The number of tangent lines (4) between the body (1) and the blade (2) is dictated by the number of grooves performed on the blade (2).+ [[it]] The number of tangent lines is not always four

as cited above, and may vary in different embodiments. The minimum number of grooves is usually two but more grooves are allowed when needed.

of an internal combustion engine mounted on powered vehicles using an injection system on standard condition (without an air-stirring device), using an air-stirring device disclosed in PCT/1B99/00029, and using an embodiment of the air-stirring blade presently invented. The parameters were measured for each condition under specified rpms of the internal combustion engine. Parameters observed in the test is are the time needed to use up a 25 ml of fuel, the engine rpm at that time and the related power of

The data obtained are tabulated in Figure 6. The fuel consumed per second calculated from data shown in Figure 6 is then interrelated to the power of the engine. The graph produced is shown in Figure 7.

the engine. Power is measured by dynamometer.

rpms, the internal combustion engine equipped with the airstirring blade presently invented consumes less fuel than the same engine equipped with an air-stirring device disclosed in PCT/1B99/00029 and the internal combustion engine equipped with nothing. With respect to

25 PCT/1B99/00029, at rpms below 3500, the internal combustion engine equipped with an embodiment of the air-strirring stirring blade presently invented consumes less fuel to produce power of at the same rate. However at an rpm of 1500, the internal combustion engine equipped with the embodiment of the air-stirring blade presently invented and

10

15

20

the internal combustion engine equipped with the device disclosed in PCT/1B99/00029 consume fuel of the same amount.

Figure 3 is a preferred embodiment of this invention whilst Figure 4 and S show modifications thereof. The Modification modification in Figure 4 is in the form of blade (2) only following the omission of the cylindrical parts of its body (1). Modification in Figure 4 is possible can be made if the air-stirring blade acts as an inserting part, and body (1) of the air-stirring blade is of such construction that it looks to be integrated with the air channel within the internal combustion engine.

Figure 5a shows another modification of this $\underline{\text{embodiment of the }}$ invention where $\underline{\text{the }}$ body (1) is equipped with an additional lip (6).

Figure 5b is another modification of this embodiment
of the
invention
in which the blade acts a as a joint for an air channel, and Figure 5c is an air-stirring device which is integrally constructed with the body of an air channel.

In one embodiment, mMost of those modifications are made of nonmetal materials such as polymer. Only a few of them are made of the metal.

It should necessarily be understood that the scope of this invention is not limited by the embodiments represented by the appended drawings. All modifications made by the people skilled in this art are still part of this invention as long as the principles underlying the

COMPARE COPY

modifications still exist within the scope of the invention.

RAH PAS571377.1 * 06/24/04 11:05 AMEAJ PAS571377.1-*-06/24/04 3:20 PM