Exercise 4.1

The eigenvectors are as follows:

Pauli $Z: |0\rangle, |1\rangle$

Pauli $X: |0\rangle + |1\rangle, |0\rangle - |1\rangle$ Pauli $Y: |0\rangle + i |1\rangle, |0\rangle - i |1\rangle$ Bloch sphere representations:

1

Exercise 4.2

$$\exp(iAx) = \sum_{n} (iAx)^n = \sum_{n} (-1)^n x^{2n} I + \sum_{n} (-1)^n ix^n A = \cos(x) I + i\sin x A$$

Exercise 4.3

Up to a global phase:
$$T = \begin{bmatrix} e^{-i\pi/8} & 0 \\ 0 & e^{i\pi/8} \end{bmatrix} = \begin{bmatrix} e^{-i\frac{\pi}{4}/2} & 0 \\ 0 & e^{i\frac{\pi}{4}/2} \end{bmatrix} = R_z(\pi/4)$$

Exercise 4.4

First consider
$$R_z R_x R_z$$
:
$$R_z R_x R_z = \begin{bmatrix} \cos \frac{\theta}{2} e^{-i\theta} & -i \sin \frac{\theta}{2} \\ -i \sin \frac{\theta}{2} & \cos \frac{\theta}{2} e^{i\theta} \end{bmatrix}$$
For $\theta = \frac{\pi}{2}$:
$$R_z R_x R_z = \frac{1}{\sqrt{2}} \begin{bmatrix} e^{-i\frac{\pi}{2}} & e^{-i\frac{\pi}{2}} \\ e^{-i\frac{\pi}{2}} & e^{i\frac{\pi}{2}} \end{bmatrix}$$

$$R_z R_x R_z = \frac{1}{\sqrt{2}} \begin{bmatrix} e^{-i\frac{\pi}{2}} & e^{-i\frac{\pi}{2}} \\ e^{-i\frac{\pi}{2}} & e^{i\frac{\pi}{2}} \end{bmatrix}$$

Hence, by multiplying by $e^{i\frac{\pi}{2}}$ we get,

$$e^{i\frac{\pi}{2}}R_zR_xR_z = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} = H$$

Exercise 4.5

We have
$$n_x^2 + n_y^2 + n_z^2 = 1$$

 $\hat{n} \cdot \vec{\sigma} = \begin{bmatrix} n_z & n_x - in_y \\ n_x + in_y & n_z \end{bmatrix}$
Therefore,
 $(\hat{n} \cdot \vec{\sigma})^2 = \begin{bmatrix} n_x^2 + n_y^2 + n_z^2 & 0 \\ 0 & n_x^2 + n_y^2 + n_z^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$
Consider, $R_n(\theta)R_n(-\theta)$
 $I = R_n(\theta)R_n(-\theta) = (\cos(\frac{\theta}{2})I - \sin(\frac{\theta}{2})\hat{n} \cdot \vec{\sigma})(\cos(\frac{\theta}{2})I + \sin(\frac{\theta}{2})\hat{n} \cdot \vec{\sigma}) = \cos^2(\frac{\theta}{2})I + \sin^2(\frac{\theta}{2})(\hat{n} \cdot \vec{\sigma})^2 = (\cos^2(\frac{\theta}{2}) + \sin^2(\frac{\theta}{2}))I = I$

Exercise 4.6