$IV_double_check.R$

georges

2022-03-19

Sanity check

Check: Maybe I'm wrong. Maybe an IV only needs to be orthogonal to **some** blocking confounder, not to all!!

• **Test it with causalsim.** Is it true that an IV will be worse than the worst unconfounded regression model????

Let's build the variance matrix for Z, I, X, Y. We can scale I, Z and X so they have unit variance and zero means. This eliminates irrelevant nuisance parameters.

Mention: we assume multivariate normality

Taking

$$Var\begin{pmatrix} Z\\I\\X \end{pmatrix} = \begin{pmatrix} 1 & 0 & a\\0 & 1 & b\\a & b & 1 \end{pmatrix}$$

with $a^2 + b^2 < 1$.

Focus first on the assignment model, i.e. the model that determines the value of X from the values of Z, I and U_X .

Letting $c^2 = 1 - a^2 - b^2$, c^2 represents the portion of the variance in X that is not attributed to the instrument, I, nor to the confounder, Z.

Define

$$\rho_I = \frac{b^2}{b^2 + c^2}$$

which is the proportion of variance in X not due to Z that is 'explained' by I.

For an instrument that captures all of the variation not due to the confounder, $c^2 = 0$ and $\rho_I = 1$.

Focusing next on the model generating Y, let

$$Y = \alpha X + \beta Z + \gamma \varepsilon$$

with $\varepsilon \sim N(0,1)$, independent of other variables.

The variance matrix is:

$$Var\begin{pmatrix} Z \\ I \\ X \\ Y \end{pmatrix} = \begin{pmatrix} 1 & 0 & a & a\alpha + \beta \\ 0 & 1 & b & b\alpha \\ a & b & 1 & \alpha + a\beta \\ a\alpha + \beta & b\alpha & \alpha + a\beta & v_{yy} \end{pmatrix}$$

where $v_{yy} = \alpha^2 + \beta^2 + 2a\alpha\beta + \sigma_{\varepsilon}^2$

We can verify the regression coefficients for the regression of Y on X and Z are

$$\begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix}^{-1} \begin{pmatrix} \alpha + a\beta \\ a\alpha + \beta \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

The variance of the least-squares estimator of α based on a regression on X and the confounder Z is:

$$\operatorname{Var}(\hat{\alpha}) \approx \frac{1}{n} \frac{\sigma_{\epsilon}^{2}}{1 - a^{2}}$$
$$= \frac{1}{n} \frac{\gamma^{2}}{b^{2} + c^{2}}$$

The asymptotic expectation of the instrumental variable estimator $\tilde{\alpha}$ is

$$\sigma_{IX}^{-1}\sigma_{IY} = \frac{1}{b} \times b\alpha = \alpha$$

The variance of $\tilde{\alpha}$ is (Fox 2016, 241):

$$\operatorname{Var}(\tilde{\alpha}) \approx \frac{1}{n} \, \sigma_{\epsilon IV}^2 \sigma_{IX}^{-1} \sigma_{II} \sigma_{XI}^{-1} = \frac{1}{n} \, (\beta^2 + \gamma^2) \frac{1}{b^2}$$

Thus the variance inflation factor – which is the same as the 'sample size inflation factor to achieve the same power – using IV estimation instead of controlling for a confounder (assuming that both approaches are available) is:

$$IVVIF = \frac{\operatorname{Var}(\tilde{\alpha})}{\operatorname{Var}(\hat{\alpha})}$$

$$= \frac{\beta^2 + \gamma^2}{b^2} / \frac{\gamma^2}{b^2 + c^2}$$

$$= \frac{\beta^2 + \gamma^2}{\gamma^2} / \frac{b^2}{b^2 + c^2}$$

$$= \left(1 + \frac{\beta^2}{\gamma^2}\right) \times \left(1 + \frac{c^2}{b^2}\right)$$

$$= \frac{1}{1 - R_{Y,Z|X}^2} \times \frac{1}{R_{X,I|Z}^2}$$

The first term is structural in the sense that it is a consequence of the problem, specifically the degree of confounding relative to the residual error variance in the model. For a given problem, the IV has no impact on this, so it represents a lower bound for the IVVIF. The second term

clarifies that it is not the correlation of the IV with X directly that affects the IVVIF, but its partial correlation adjusted for the relationship of X with confounders.

PLAN —

- Continue, express factors as partial R^2 thereby clearly showing scaling invariance.
- Generate some example.
- Discuss how this shows that it isn't specifically correlation with of I with X that matters but the partial R^2 having adjusted for Z although we can't compute it not having Z.

See also:

NOTES —

- Partial R^2 for I in X ~ Z + I is $\frac{b^2}{b^2+c^2}$
- Partial R for I in $X \sim Z + I$ is $b^2 + c$ Partial R^2 for Z in $Y \sim Z + X$ is ... $R_{y,Z|X}^2 = \frac{SSR(X,Z) SSR(X)}{SSE(X)}$ $= \frac{SSE(X) SSE(X,Z)}{SSE(X)}$
- Conclusions: In any situation where you have a choice, controlling for confounders will do better than using an IV, even with the worst confounder model, i.e. one that 'overpredicts' X (not in the sense of overfitting but in the sense of predicting better than necessary to unconfound). Fitting with IVs does not take the same advantage of a model with a small error variance that a regression model does. The lower bound for error variance created by the confounder would usually swamp the benefit of small residual variance in the generating model. In contrast, a regression model takes full proportional advantage of a reduction in residual error.

• In practice, of course, we don't have Z. That's why we're using an IV.

Is this I an IV?

We can block the backdoor path by conditioning on Z_Y . I_2 would seem to be an IV for the model for which Z_Y is a confounder.

Are thee factors favoring using I_2 over I_1 ? Actually, won't satisfy exclusion restrictions.

References

Fox, John. 2016. Applied Regression Analysis and Generalized Linear Models. 3rd ed. Sage Publications.