Modes of Operation

Topics

Overview of Modes of Operation

▶ EBC, CBC, CFB, OFB, CTR

Notes and Remarks on each modes

Modes of Operation

- Block ciphers encrypt fixed size blocks
 - eg. DES encrypts 64-bit blocks, with 56-bit key
- Need way to use in practise, given usually have arbitrary amount of information to encrypt
 - Partition message into separate block for ciphering
- A mode of operation describes the process of encrypting each of these blocks under a single key
- Some modes may use randomized addition input value

Quick History

1981

- ▶ Early modes of operation: **ECB**, **CBC**, **CFB**, **OFB**
 - DES Modes of operation http://www.itl.nist.gov/fipspubs/fip81.htm

2001

- Revised and including CTR mode and AES
 - Recommendation for Block Cipher Modes of Operation http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

2010

- New Mode : XTS-AES
 - Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode for Confidentiality on Storage Devices http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf

Modes of operation are nowadays defined by a number of national and internationally recognized standards bodies such as ISO, IEEE, ANSI and IETF. The most influential source is the US NIST

Modes of Operation Taxonomy

Current well-known modes of operation

Moe Technical Notes

Initialize Vector (IV)

a block of bits to randomize the encryption and hence to produce distinct ciphertext

Nonce : Number (used) Once

- Random of psuedorandom number to ensure that past communications can not be reused in replay attacks
- Some also refer to initialize vector as nonce

Padding

- final block may require a padding to fit a block size
- Method
 - Add null Bytes
 - ▶ Add 0x80 and many 0x00
 - Add the *n* bytes with value *n*

Electronic Codebook Book (ECB)

- Message is broken into independent blocks which are encrypted
- Each block is a value which is substituted, like a codebook, hence name

Each block is encoded independently of the other blocks

$$C_i = E_K (P_i)$$

Uses: secure transmission of single values

Topics

Overview of Modes of Operation

▶ EBC, CBC, CFB, OFB, CTR

Notes and Remarks on each modes

ECB Scheme

Encryption: $C_i = E_K(P_i)$

Decryption: $P_i = D_K(C_i)$

E: Encryption D: Decryption

 P_i : Plaintext block i C_i : Ciphertext block i

K: Secret key

Encryption

Decryption

Remarks on ECB

Strength: it's simple.

Weakness:

- Repetitive information contained in the plaintext may show in the ciphertext, if aligned with blocks.
- If the same message is encrypted (with the same key) and sent twice, their ciphertext are the same.

▶ Typical application:

 secure transmission of short pieces of information (e.g. a temporary encryption key)

Cipher Block Chaining (CBC)

- Solve security deficiencies in ECB
 - Repeated same plaintext block result different ciphertext block
- ▶ Each previous cipher blocks is chained to be input with current plaintext block, hence name
- Use Initial Vector (IV) to start process

$$C_i = E_K (P_i XOR C_{i-1})$$

 $C_0 = IV$

Uses: bulk data encryption, authentication

CBC scheme

E: Encryption D : Decryption

P_i: Plaintext block i C_i: Ciphertext block i IV: Initial vector (C_0) K: Secret key

Decryption

Encryption:

$$C_0 = IV$$
 $C_i = E_K (P_i \oplus C_{i-1})$

Decryption:

$$C_0 = IV$$

 $P_1 = D_{V_1}(C_1) \oplus$

Remarks on CBC

- The encryption of a block depends on the current and all blocks before it.
- ▶ So, repeated plaintext blocks are encrypted differently.
- Initialization Vector (IV)
 - May sent encrypted in ECB mode before the rest of ciphertext

Cipher FeedBack (CFB)

- Use Initial Vector to start process
- ▶ Encrypt previous ciphertext, then combined with the plaintext block using X-OR to produce the current ciphertext
- ▶ Cipher is fed back (hence name) to concatenate with the rest of IV
- Plaintext is treated as a stream of bits
 - Any number of bit (1,8 or 64 or whatever) to be feed back (denoted CFB-1, CFB-8, CFB-64)
- Relation between plaintext and ciphertext

```
C_i = P_i \text{ XOR SelectLeft}(E_K (ShiftLeft(C_{i-1})))

C_0 = IV
```

Uses: stream data encryption, authentication

CFB Scheme

Encryption: $C_i = P_i \oplus SelectLeft_r \{ E_K [ShiftLeft_r (S_{i-1}) \mid C_{i-1})] \}$ **Decryption:** $P_i = C_i \oplus SelectLeft_r \{ E_K [ShiftLeft_r (S_{i-1}) \mid C_{i-1})] \}$

E: Encryption D: Decryption S_i : Shift register

 P_i : Plaintext block i C_i : Ciphertext block i T_i : Temporary register

K: Secret key IV: Initial vector (S_1)

CFB Encryption/Decryption

CFB as a Stream Cipher

In CFB mode, encipherment and decipherment use the encryption function of the underlying block cipher.

Remark on CFB

- The block cipher is used as a stream cipher.
 - enable to encrypt any number of bits e.g. single bits or single characters (bytes)
 - S=I : bit stream cipher
 - S=8 : character stream cipher)
- A ciphertext segment depends on the current and all preceding plaintext segments.
- A corrupted ciphertext segment during transmission will affect the current and next several plaintext segments.

Output FeedBack (OFB)

- Very similar to CFB
- But output of the encryption function output of cipher is fed back (hence name), instead of ciphertext
- Feedback is independent of message
- Relation between plaintext and ciphertext

$$C_i = P_i XOR O_i$$
 $O_i = E_K (O_{i-1})$
 $O_0 = IV$

Uses: stream encryption over noisy channels

CFB V.S. OFB

Cipher Feedback

Output Feedback

OFB Scheme

E: Encryption

D : Decryption
C : Ciphertext b

 S_i : Shift register

P_i: Plaintext block i K: Secret key

C_i: Ciphertext block i IV: Initial vector (S₁)

 T_i : Temporary register

Encryption

OFB Encryption and Decryption

OFB as a Stream Cipher

In OFB mode, encipherment and decipherment use the encryption function of the underlying block cipher.

Remarks on OFB

- ▶ Each bit in the ciphertext is independent of the previous bit or bits. This avoids error propagation
- Pre-compute of forward cipher is possible
- Security issue
 - when *j*th plaintext is known, the *j*th output of the forward cipher function will be known
 - Easily cover jth plaintext block of other message with the same IV
- Require that the IV is a nonce

Counter (CTR)

- Encrypts counter value with the key rather than any feedback value (no feedback)
- Counter for each plaintext will be different
 - can be any function which produces a sequence which is guaranteed not to repeat for a long time
- Relation

$$C_i = P_i XOR O_i$$

 $O_i = E_K (i)$

Uses: high-speed network encryptions

CTR Scheme

E : Encryption P_i : Plaintext block i

K : Secret key

IV: Initialization vector

C_i: Ciphertext block i

 k_i : Encryption key i

The counter is incremented for each block.

Encryption

CTR Encryption and Decryption

OFB as a Stream Cipher

Remark on CTR

Strengthes:

- Needs only the encryption algorithm
- Random access to encrypted data blocks
 - blocks can be processed (encrypted or decrypted) in parallel
- Simple; fast encryption/decryption

Counter must be

- Must be unknown and unpredictable
- pseudo-randomness in the key stream is a goal

Topics

Overview of Modes of Operation

▶ EBC, CBC, CFB, OFB, CTR

Notes and Remarks on each modes

Remark on each mode

- Basically two types:
 - block cipher
 - stream cipher
- ▶ CBC is an excellent block cipher
- ▶ CFB, OFB, and CTR are stream ciphers
- CTR is faster because simpler and it allows parallel processing

Modes and IV

- An IV has different security requirements than a key
- Generally, an IV will not be reused under the same key
- CBC and CFB
 - reusing an IV leaks some information about the first block of plaintext, and about any common prefix shared by the two messages
- OFB and CTR
 - reusing an IV completely destroys security

CBC and CTR comparison

CBC	CTR
Padding needed	No padding
No parallel processing	Parallel processing
Separate encryption and decryption functions	Encryption function alone is enough
Random IV or a nonce	Unique nonce
Nonce reuse leaks some information about initial plaintext block	Nonce reuse will leak information about the entire message

Comparison of Different Modes

Operation Mode	Description	Type of Result	Data Unit Size
ECB	Each <i>n</i> -bit block is encrypted independently with the same cipher key.	Block cipher	n
CBC	Same as ECB, but each block is first exclusive-ored with the previous ciphertext.	Block n cipher	
CFB	Each r-bit block is exclusive-ored with an r-bit key, which is part of previous cipher text	Stream cipher	$r \le n$
OFB	Same as CFB, but the shift register is updated by the previous <i>r</i> -bit key.	Stream cipher	$r \le n$
CTR	Same as OFB, but a counter is used instead of a shift register.	Stream cipher	n

Comparison of Modes

Mode	Description	Application
ECB	64-bit plaintext block encoded separately	Secure transmission of encryption key
CBC	64-bit plaintext blocks are XORed with preceding 64-bit ciphertext	Commonly used method. Used for authentication
CFB	s bits are processed at a time and used similar to CBC	Primary stream cipher. Used for authentication

Comparison of Modes

Mode	Description	Application
OFB	Similar to CFB except that the output is fed back	Stream cipher well suited for transmission over noisy channels
CTR	Key calculated using the nonce and the counter value. Counter is incremented for each block	General purpose block oriented transmission. Used for high-speed communications

Final Notes

- ▶ ECB, CBC, OFB, CFB, CTR, and XTS modes only provide confidentiality
- To ensure an encrypted message is not accidentally modified or maliciously tampered requires a separate Message Authentication Code (MAC)
- Several MAC schemes
 - HMAC, CMAC and GMAC
- But.. compositing a confidentiality mode with an authenticity mode could be difficult and error prone
- New modes combined confidentiality and data integrity into a single cryptographic primitive
 - CCM, GCM, CWC, EAX, IAPM and OCB

Q&A

