ÁLGEBRA II (61.08 - 81.02)

Pionono Duración: 3 horas.

Segundo cuatrimestre -2023 6/XII/23 - 7:00 hs.

Apellido y Nombres:

Legajo:

Curso:

1. Usando la técnica de mínimos cuadrados, ajustar los siguientes datos

mediante una parábola $y = ax^2 + bx + c$.

2. Hallar la matriz de rotación de ángulo $\frac{\pi}{3}$ alrededor del eje generado por el vector $\begin{bmatrix} 2 & 2 & 1 \end{bmatrix}^T$

3. Sea $A \in \mathbb{R}^{3\times 3}$ la matriz simétrica tal que nul $\left(A - \frac{1}{2}I\right) = \left\{x \in \mathbb{R}^3 : 2x_1 + 2x_2 - x_3 = 0\right\}$ y traza(A) = 2. Hallar $\lim_{k \to \infty} A^k \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$.

4. Sea $A \in \mathbb{R}^{3 \times 3}$ la matriz de rango 2 tal que $\begin{bmatrix} 2 & -6 & 3 \end{bmatrix}^T \in \text{nul}(A)$ y

$$A \begin{bmatrix} 6 & -3 \\ 3 & 2 \\ 2 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -2 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} \frac{2}{3} & 0 \\ 0 & \frac{2}{9} \end{bmatrix}.$$

Hallar todas las soluciones por cuadrados mínimos de la ecuación $Ax = \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}$ y determinar la de norma mínima.

5. Hallar una matriz $A \in \mathbb{R}^{2\times 3}$ tal que $\begin{bmatrix} -1 & 2 & 2 \end{bmatrix}^T \in \text{nul}(A), A \begin{bmatrix} 2 & -1 & 2 \end{bmatrix}^T = \begin{bmatrix} 9 & 12 \end{bmatrix}^T$ y $\max_{\|x\|=1} \|Ax\| = 10.$

6. Sea $\Pi : \mathbb{R}^3 \to \mathbb{R}^3$ la proyección sobre el plano $\{x \in \mathbb{R}^3 : x_3 = 0\}$ en la dirección de la recta gen $\{\begin{bmatrix} -2 & 0 & 1\end{bmatrix}^T\}$. Hallar y graficar la imagen por Π de la esfera unitaria de \mathbb{R}^3 .