Домашна работа No 2 Първата задача – на лист, втората и третата – в Mathematica

Задача 1. Вземайки предвид данните

a	c	1	2	2.5	3	4	5
f(x)	0	5	6.5	7	3	1

намерете приближение за f(3.4), като използвате последователно интерполационни полиноми от степени 1, 2, 3. За целта избирайте последователността от интерполационни възли от таблицата така, че да получите възможно най-добра точност.

Забележа. Обърнете внимание, че не е е необходимо да започвате изчисленията отначало при пресмятането на полиномите от по-висока степен. Достатъчно е да добавите още един ред в таблицата с разделените разлики и още един член във формулата на Нютон – всичко останало е същото, както при полинома от по-ниска степен. Това именно е и едно от предимствата на формулата на Нютон пред формулата на Лагранж.

Задача 2. Да се напише в Mathematica функция $LagrangeBasis[nodes_, k_]$, която построява k-тия базисен полином на Лагранж $l_k(x)$ за списъка с възли nodes. Като се използва тази функция, да се напише функция $LagrangePolynomial[nodes_,values_,x_]$, която приема списъците nodes (възлите на интерполация) и values (съответните им стойности) и връща полинома на Лагранж $L_n(x)$ за дадените възли и стойности.

Задача 3. Земното ускорение g на височина h над морското равнище се задава с таблицата

h, m					120000
$g, m/s^2$	9.81	9.7487	9.6879	9.6278	9.5682

Като използвате имплементираната в задача 2 функция, определете приблизително земното ускорение на височина 55000m (Възлите на интерполация да се вземат от автоматично генериран по подходящ начин списък).

Илюстрирайте графично как g се изменя в замисимост от h в границите на интерполация.