$\mathcal{U} = \{e_1, e_2, e_3, e_4\}$ be the canonical basis of \mathbb{R}^4 . The change of basis matrix $W = P_{\mathcal{W},\mathcal{U}}$ from \mathcal{U} to \mathcal{W} is given by

$$W = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \end{pmatrix},$$

and we easily find that the inverse of W is given by

$$W^{-1} = \begin{pmatrix} 1/4 & 0 & 0 & 0 \\ 0 & 1/4 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1/2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix}.$$

Observe that the second matrix in the above product is W^{\top} and the first matrix in this product is $(W^{\top}W)^{-1}$. So the vector v = (6, 4, 5, 1) over the basis \mathcal{U} becomes $c = (c_1, c_2, c_3, c_4)$ over the Haar basis \mathcal{W} , with

$$\begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \begin{pmatrix} 1/4 & 0 & 0 & 0 \\ 0 & 1/4 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1/2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} 6 \\ 4 \\ 5 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ 1 \\ 2 \end{pmatrix}.$$

Given a signal $v = (v_1, v_2, v_3, v_4)$, we first transform v into its coefficients $c = (c_1, c_2, c_3, c_4)$ over the Haar basis by computing $c = W^{-1}v$. Observe that

$$c_1 = \frac{v_1 + v_2 + v_3 + v_4}{4}$$

is the overall average value of the signal v. The coefficient c_1 corresponds to the background of the image (or of the sound). Then, c_2 gives the coarse details of v, whereas, c_3 gives the details in the first part of v, and c_4 gives the details in the second half of v.

Reconstruction of the signal consists in computing v = Wc. The trick for good compression is to throw away some of the coefficients of c (set them to zero), obtaining a compressed signal \hat{c} , and still retain enough crucial information so that the reconstructed signal $\hat{v} = W\hat{c}$ looks almost as good as the original signal v. Thus, the steps are:

input $v \longrightarrow \text{coefficients } c = W^{-1}v \longrightarrow \text{compressed } \widehat{c} \longrightarrow \text{compressed } \widehat{v} = W\widehat{c}.$

This kind of compression scheme makes modern video conferencing possible.

It turns out that there is a faster way to find $c = W^{-1}v$, without actually using W^{-1} . This has to do with the multiscale nature of Haar wavelets.

Given the original signal v = (6, 4, 5, 1) shown in Figure 5.1, we compute averages and half differences obtaining Figure 5.2. We get the coefficients $c_3 = 1$ and $c_4 = 2$. Then