Riemannian and Lorentzian Geometry

Rasmus Curt Raschke

October 14, 2025

Contents

1	Introduction	2
	1.0 Review of important topics	2
2	Riemannian Geometry	5

Chapter 1

Introduction

1.0 Review of important topics

Definition 1.1 (Riemannian and Lorentzian Metrics). Let $\nu \in \mathbb{N}$ with $0 \le \nu \le n$. A **semi-Riemannian metric** of **index** ν is a (0,2)-tensor field such that

$$g_p: T_pM \times T_pM \to \mathbb{R}$$

is a symmetric non-degenerate bilinear form on T_pM with index ν . We say:

- $\nu = 0$: g is **Riemannian**.
- $\nu = 1$: g is Lorentzian.

In the Lorentzian case, we take the convention (-, +, +, ...).

Theorem 1.2 (Levi-Civita Connection). Given a semi-Riemannian manifold (M,g), there exists exactly one connection ∇^g , called the **Levi-Civita** connection, such that:

- ∇^g is symmetric: $\nabla_X Y \nabla_Y X = [X, Y]$
- ∇^g is compatible with $g: Zg(X,Y) = g(\nabla_Z X,Y) + g(X,\nabla_Z Y)$
- The Koszul identity is satisfied.

Definition 1.3 (Geodesic). A \mathcal{C}^{∞} -curve $\gamma:(a,b)\to M$ is called a **geodesic** if $\dot{\gamma}$ is ∇^g -parallel along γ , i.e.

$$\ddot{\gamma}(t) = \nabla^g_{\frac{d}{dt}} \dot{\gamma} = 0.$$

In local coordinates, one finds the geodesic equation

$$0 = \frac{d^2}{dt^2}(x^i \circ \gamma) + (\Gamma^i_{kl} \circ \gamma) \frac{d}{dt}(x^k \circ \gamma) \frac{d}{dt}(x^l \circ \gamma).$$

Theorem 1.4 (Maximal Geodesic). For all $v \in TM$, there is exactly one geodesic

$$\gamma_v: I_v \to M$$

such that $\gamma_v(0) = \pi ||v||$ and $\dot{\gamma}_v(0) = v$ and I_v is maximal.

Exponential Map

Definition 1.5 (Exponential Map). Define the (Riemannian) **exponential** map

$$\exp_p: \mathcal{D}_p \subseteq T_pM \to M$$

by

$$(p, v) \mapsto \exp_p(v) := \gamma_v(1)$$

where γ_v is the unique maximal geodesic.

We always have

$$\mathcal{D}_p \supseteq \{tv \in T_pM \mid t \in [0,1]\}.$$

We can consider $s \mapsto \gamma_v(st)$ for fixed $t \in \mathbb{R}$. Then, we have

$$\dot{\gamma}_v(st) = t\dot{\gamma}_v(0) = tv = \dot{\gamma}_{tv}(s)$$

for all s, and therefore $\gamma_{tv}(s) = \gamma_v(ts)$. This yields the useful formula

$$\exp_p(tv) = \gamma_{tv}(1) = \gamma_v(t).$$

Lemma 1.6. For all $p \in M$,

$$d(\exp_p)_0: T_0(T_pM) \cong T_pM \to T_pM$$

is the identity $d(\exp_p)_0 = id$ under the identification $id(v^i \partial_{u_i}|_0) = v^i \partial_{x_i}|_p$.

Definition 1.7 (Normal Neighbourhood). An open set $U \ni p$ is a **normal neighbourhood** of p if there exists an open set $\tilde{U} \ni o_p \subseteq \mathcal{D}_p$ which is star-shaped such that

$$\exp_p|_{\tilde{U}}: \tilde{U} \to U$$

is a diffeomorphism.

Theorem 1.8 (Existence of Normal Neighbourhoods). For any $p \in M$, there is a normal neighbourhood around p.

Proof. Inverse function theorem.

Definition 1.9 (Convex Neighbourhood). U is a **convex neighbourhood** if it is a normal neighbourhood for all $q \in U$.

Remark. If U is a normal neighbourhood of p, then for all $q \in U$ there is exactly one geodesic γ_{pq} in U from p to q, called **radial geodesic**.

Theorem 1.10 (Normal Coordinate Lines). For all $p \in M$ and a basis $\{v_1, \ldots, v_n\}$ of T_pM exists a chart $(U, (x^1, \ldots, x^n))$ such that:

- 1. U is a normal neighbourhood of p.
- $2. \ \partial_i|_p = v$
- 3. $\Gamma_{ij}^k = 0$ for all i, j, k.

If the basis $\{v_1, \ldots, v_n\}$ is orthonormal, we also have

$$g_{ij}(p) = \epsilon_i \delta_{ij}$$

and

$$\partial_k g_{ij}(p) = 0.$$

The chart $(U,(x^1,\ldots,x^n))$ is called **normal coordinate chart**.

Chapter 2

Riemannian Geometry

In this chapter, we are concerned with Riemannian manifolds as metric spaces. The main goal is to prove the theorem of Hopf-Rinow.

Definition 2.1 (Regular Curve). A piecewise C^1 -curve

$$\gamma: [a,b] \to M$$

is called regular if

$$\forall s \in [a, b] : \dot{\gamma}(s) \neq 0$$

and

$$\dot{\gamma}_+(t_i) \neq 0$$

at all C^1 -break-points.

Definition 2.2 (Arc-length). Let (M,g) be a semi-Riemannian manifold and $\gamma:[a,b]\to M$ a (piecewise) \mathcal{C}^1 -curve. The **arc-length** is defined to be the functional

$$L[\gamma] = \int_a^b \sqrt{|g(\dot{\gamma}(t), \dot{\gamma}(t))|} dt.$$

Remark. 1. In the Riemannian case, the $|\cdot|$ is redundant.

- 2. In semi-Riemannian geometry, there are curves with $L[\gamma] = 0$.
- 3. The arc-length functional is invariant under length parametrization.
- 4. If γ is regular, there exists a strictly monotonous reparametrization

$$\varphi: [\tilde{a}, \tilde{b}] \to [a, b]$$

such that $\tau := \gamma \circ \varphi$ satisfies $g(\dot{\tau}, \dot{\tau}) = 1$. This is a reparametrization by arc-length:

$$L[\tau_{[\tilde{a},s]}] = s - \tilde{a}$$

for all $s \in [\tilde{a}, \tilde{b}]$.

Theorem 2.3 (Gauß' Lemma). The exponential map is a radial isometry: For any $p \in M$, $x \in \mathcal{D}_p$ and $v, w \in T_x(T_pM) \cong T_pM$ with $v = \alpha x$ for some $\alpha \in \mathbb{R}$, the equations

$$g_{\exp_p(x)}(d(\exp_p(v))_x, d(\exp_p(w))_x) = g_p(v, w)$$

and

$$\dot{\gamma}(t) = \frac{d}{dt} \exp_p(tv)$$

hold.