

Konzepte der Informatik

Informationscodierung und -speicherung

Barbara Pampel

Universität Konstanz, WiSe 2023/2024

Inhalt

1 Informationscodierung

- Unäre Zahlensysteme
 - Jede natürliche Zahle wird durch eine Anzahl von Zeichen (Symbolen) repräsentiert z.B. "Strichsystem"

- Unäre Zahlensysteme
 - Jede natürliche Zahle wird durch eine Anzahl von Zeichen (Symbolen) repräsentiert z.B. "Strichsystem"
- Stellenwertsysteme
 - bestehen aus endlich vielen Ziffernsymbolen
 - Vorschrift, wie man aus der Reihung der Symbole beliebig große Zahlen darstellen kann

- Unäre Zahlensysteme
 - Jede natürliche Zahle wird durch eine Anzahl von Zeichen (Symbolen) repräsentiert z.B. "Strichsystem"
- Stellenwertsysteme
 - bestehen aus endlich vielen Ziffernsymbolen
 - Vorschrift, wie man aus der Reihung der Symbole beliebig große Zahlen darstellen kann
- Beispiele
 - Römisches Zahlensystem
 - hybrid teilweise unär, Stelle hat aber auch Bedeutung
 - III = 3, MMXI = 2011, MCMLXXIX = 1979
 - Arabisches Zahlensystem (modern-arabisch)
 - Stellenwertsystem
 - nur 10 verschiedene Ziffern, inklusive Darstellung für 0

Arabisches Zahlensystem

- Stellenwertsysteme zur Basis β
- Basis β wird auch *Radix* genannt
 - Radix 10: Dezimaldarstellung
 - Radix 2: Binärdarstellung
 - Radix 8: Oktaldarstellung
 - Radix 16: Hexadezimaldarstellung
- Kennzeichnung der Basis β im Zweifelsfall als Subskript
 - $7_{10} = 7_8 = 111_2$
 - $9_{10} = 11_8 = 1001_2$

Umrechnungen zwischen Zahlensystemen I

Umrechnungen zwischen Zahlensystemen I

- Überführung einer Oktalzahl ins Binärsystem
 - Ziffern 0 − 7 genau mit 3 Binärstellen darstellbar
 - ⇒ jede einzelne Ziffer als 3-stellige Binärzahl angeben

Umrechnungen zwischen Zahlensystemen I

- Überführung einer Oktalzahl ins Binärsystem
 - Ziffern 0 − 7 genau mit 3 Binärstellen darstellbar
 - ⇒ jede einzelne Ziffer als 3-stellige Binärzahl angeben
- Überführung einer Hexadezimal ins Binärsystem
 - Ziffern 0-9 und BuchstabenA-F mit genau 4 Binärstellen darstellbar
 - ⇒ jede einzelne Ziffer als 4-stellige Binärzahl angeben

- $-2345_8 = 010011100101_2$
- $-65C7_{16} = 0110010111000111_2$

Umrechnungen zwischen Zahlensystemen II

- Überführung einer l-stelligen Binärzahl $n \ge 0$ ins Dezimalsystem

Umrechnungen zwischen Zahlensystemen II

- Überführung einer l-stelligen Binärzahl $n \ge 0$ ins Dezimalsystem (n_k bezeichne die k—te Stelle von n)

Algorithmus

```
Schritt 1: k := 0; sum := 0
```

Schritt 2: $sum := sum + n_k \cdot 2^k$; k := k + 1

Schritt 3: Falls k < l gehe zu Schritt 2

Schritt 4: Gib sum aus

Umrechnungen zwischen Zahlensystemen II

- Überführung einer l-stelligen Binärzahl $n \ge 0$ ins Dezimalsystem (n_k bezeichne die k—te Stelle von n)

Algorithmus

```
Schritt 1: k := 0; sum := 0
Schritt 2: sum := sum + n_k \cdot 2^k; k := k + 1
Schritt 3: Falls k < l gehe zu Schritt 2
Schritt 4: Gib sum aus
```

Allgemein für *l*-stellige Zahl *n* zur Basis β

$$- \sum_{k=0}^{l-1} n_k \cdot \beta^k$$

- Nachkommastellen analog
- Bei Umrechnung zwischen anderen Systemen empfiehlt sich der Umweg über das Dezimalsystem

Beispiele

Wert einer Dezimalzahl

- $234_{10} = 4 \cdot 10^0 + 3 \cdot 10^1 + 2 \cdot 10^2$

Oktal nach Dezimal

- $657_8 = 7 \cdot 8^0 + 5 \cdot 8^1 + 6 \cdot 8^2 = 431_{10}$

Hexadezimal nach Dezimal

- $4B6_{16} = 6 \cdot 16^0 + 11 \cdot 16^1 + 4 \cdot 16^2 = 1206_{10}$

Umrechnungen zwischen Zahlensystemen III

- Überführung von Dezimalzahl $n \ge 0$ zu Binärzahl

Umrechnungen zwischen Zahlensystemen III

- Überführung von Dezimalzahl $n \ge 0$ zu Binärzahl (x_k) bezeichne die k—te Stelle der Binärzahl)

Algorithmus

```
Schritt 1: k := 0
```

Schritt 2: $x_k := n \mod 2$; $n := \lfloor \frac{n}{2} \rfloor$; k := k + 1

Schritt 3: Falls n > 0 gehe zu Schritt 2

Schritt 4: Gib $x_{k-1}...x_0$ aus

Umrechnungen zwischen Zahlensystemen IV

- Nachkommastellen n zu Binärzahl 0, $x_{-1}x_{-2}x_{-3}...$

Algorithmus

```
Schritt 1: k := -1
```

Schritt 2: $x_k := \lfloor n \cdot 2 \rfloor$; $n := n \cdot 2 - x_k$; k := k - 1

Schritt 3: Falls n > 0 gehe zu Schritt 2

Schritt 4: Gib 0, $x_{-1}x_{-2}...x_{k+1}$ aus

Umrechnungen zwischen Zahlensystemen V

- Überführung von Dezimalzahl in $n \ge 0$ zu Hexadezimalzahl .. $x_2x_1x_0$
- Für $x_k > 9$
 - $10_{10} = A_{16}$
 - $11_{10} = B_{16}$
 - -

Algorithmus

```
Schritt 1: k := 0
```

Schritt 2: $x_k := n \mod 16$; $n := \lfloor \frac{n}{16} \rfloor$; k := k + 1

Schritt 3: Falls n > 0 gehe zu Schritt 2

Schritt 4: Gib $x_{k-1}..x_2x_1x_0$ aus

Umrechung analog f
ür alle anderen nat
ürlichen Zahlensysteme

Kodierung von Zahlen I

Repräsentation im Rechner immer als Binärzahl (fester Länge)

- 133, $25_{10} = 1 \cdot 2^7 + 1 \cdot 2^2 + 1 \cdot 2^0 + 1 \cdot 2^{-2} = 10000101, 01_2$
- $-1, 1_{10} =$

Kodierung von Zahlen I

Oktal- und Hexadezimalzahlen gruppieren Binärzahlen

Beispiele

- Dreiergruppen im Oktalsystem: 010|000|101, 010 = 205, 28
- Vierergruppen im Hexadezimalsystem: 1100|0101, 0100 = C5, 4₁₆
- Repräsentation im Rechner immer als Binärzahl (fester Länge)

- 133, $25_{10} = 1 \cdot 2^7 + 1 \cdot 2^2 + 1 \cdot 2^0 + 1 \cdot 2^{-2} = 1000 \ 0101, \ 01_2$
- 1, $1_{10} = 1$, $00011001100110..._2$
- BCD = binary coded decimal
 - jede Dezimalziffer wird durch vier Binärziffern dargestellt

Kodierung von Zahlen II

- Vorteile: exakte Überführung zwischen dezimal und binär möglich
- Nachteil: Verschwendung von sechs Werten

- $133, 25_{10} = 0001 \ 0011 \ 0011, 0010 \ 0101_{BCD}$
- 1, $1_{10} = 0001$, 0001_{BCD}

Negative Zahlen I

Negative Zahlen I

- Verschiebung des Nullpunkts in die Mitte der k Stellen
 - $z' = z 2^{k-1} + 1$
 - feste Verschiebung f
 ür alle Zahlen, viele Werte nicht nutzbar
 - einfache binäre Arithmetik funktioniert nicht mehr

Negative Zahlen I

- Verschiebung des Nullpunkts in die Mitte der k Stellen
 - $z' = z 2^{k-1} + 1$
 - feste Verschiebung f
 ür alle Zahlen, viele Werte nicht nutzbar
 - einfache binäre Arithmetik funktioniert nicht mehr
- Einerkomplement
 - höchstwertiges Bit gibt Vorzeichen an
 - k − 1 Stellen zur Darstellung des Betrags
 - Negation durch Invertieren der Zahl (bitweises Vertauschen von 0 und 1)

- zwei Darstellungen für 0: 0000 0000 \equiv 1111 1111
- Subtraktion als gesonderte Rechenoperation

Beispiele Einerkomplement (1 Byte)

$$32_{10} = 0010\ 0000_2$$
 $-37_{10} = 1101\ 1010_2$
 $1111\ 1010_2 = -5_{10}$
 $37_{10} = 0010\ 0101_2$
 $-37_{10} = 1101\ 1010_2$
 $1111\ 1111_2 = 0_{10}$
 $38_{10} = 0010\ 0110_2$
 $-37_{10} = 1101\ 1010_2$
 $0000\ 0000_2 = 0_{10}$
 $45_{10} = 0010\ 1101_2$
 $-37_{10} = 1101\ 1010_2$
 $0000\ 0111_2 = 7_{10}$

Negative Zahlen II

- Zweierkomplement
 - Invertieren der Zahl UND anschließend Addition von 1

Beispiel

-37

Positive Darstellung $37_{10} = 0010 \ 0101_2$ Invertieren $1101 \ 1010_2$ Addition von 1 $1101 \ 1011_2 = -37_{10}$

- nur eine Darstellung für 0
- Subtraktion durch Addition durchführbar

Negative Zahlen II

- Zweierkomplement
 - Invertieren der Zahl UND anschließend Addition von 1

Beispiel

-37

```
Positive Darstellung 37_{10} = 0010 \ 0101_2
Invertieren 1101 \ 1010_2
Addition von 1 1101 \ 1011_2 = -37_{10}
```

- nur eine Darstellung für 0
- Subtraktion durch Addition durchführbar

$$45_{10} = 0010 \ 1101_2$$
$$-37_{10} = 1101 \ 1011_2$$
$$0000 \ 1000_2 = 8_{10}$$

Zweierkomplement

