Exo₁

```
On trouve que

n = 187,

d = 83,

et y = 10^{27} mod 187 = 54

et x = 54^{83} mod 187 = 10
```

d = (83 + 160) % 160

d = 243 % 160

d = 83

```
TD3 - Exercice 1
                         Calcul de d, inverse modulaire de 27 modulo 160
                              Utilisation de l'algorithme d'Euclide étendu
d \equiv 27^{-1} \pmod{160}
160 % 27 = 25
27 % 25 = 2
25 \% 2 = 1 (le PGCD est 1 : 160 et 27 sont premiers entre eux)
2 % 1 = 0
INIT x=0 y=1
        x=1
                    y=0
                               x_1 = 0
                                           y,=1
                                                         a=1
                                                                  b=25 x = y_1 - \lfloor b/a \rfloor \times x_1
        x = -12
                   y=1
                               x_{1}=1
                                            y_1 = 0
                                                        a=2
        x = 13
                   y=-12
                               x_1 = -12
                                            y,=1
                                                        a=25
                                                                  b = \frac{27}{}
                    y=13
                               x_{1}=13
                                            y_1 = -12
                                                        a = 27
                                                                   b = 160
d = (-77 \% 160 + 160) \% 160
```

23

Exo 3

Point Detail

Point:	(4,2)
Inverse:	(4,3)
Order of subgroup:	5
Generated subgroup:	$(4,2) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (4,3) \rightarrow \infty$

Table of Point Additions

+	∞	(3,2)	(3,3)	(4,2)	(4,3)
00	00	(3,2)	(3,3)	(4,2)	(4,3)
(3,2)	(3,2)	(4,3)	8	(3,3)	(4,2)
(3,3)	(3,3)	8	(4,2)	(4,3)	(3,2)
(4,2)	(4,2)	(3,3)	(4,3)	(3,2)	8
(4,3)	(4,3)	(4,2)	(3,2)	8	(3,3)

(c) Sascha Grau, 2011, 2017

Exo 4

TD4 - Exercice 1 Résolution d'un système de congruences (2)

Exemple:

- $x \equiv 3 \pmod{5}$
- $x \equiv 1 \pmod{7}$
- $x \equiv 6 \pmod{8}$

On vérifie que PGCD(5, 7) = PGCD(5, 8) = PGCD(7, 8) = 1

<u>NB</u> : pour de petites valeurs, on peut calculer l'inverse modulaire sans l'algorithme d'Euclide étendu

$$\bullet \qquad 56x_1 \equiv 1 \; (\bmod \; 5)$$

$$\circ$$
 $x_1 \equiv 1 \pmod{5}$ car 56%5 = 1

$$\bullet \quad 40x_2 \equiv 1 \pmod{7}$$

$$5x_2 \equiv 1 \pmod{7}$$
 car $40\%7 = 5$

$$x_2 \equiv 3 \pmod{7}$$
 car $(3 \times 5)\%7 = 1$

 $\bullet \qquad 35x_3 \equiv 1 \pmod{8}$

$$3x_3 \equiv 1 \pmod{8}$$
 car 35%8 = 3

o
$$x_3 \equiv 3 \pmod{8}$$
 car $(3 \times 3)\%8 = 1$

b_{i}	N_{i}	x_{i}	$b_i N_i x_i$
3	56	1	168
1	40	3	120
6	35	3	630

Solution:

$$N=5\times7\times8=280$$

$$x = 168 + 120 + 630 = 918 \pmod{280}$$

$$x = 78 \pmod{280}$$

188