Московский физико-технический институт

Лабораторная работа 3.3.6

Влияние магнитного поля на проводимость полупроводников

выполнил студент 924 группы ФОПФ Панферов Андрей Цель работы: Измерение зависомости сопротивления полупроводников от магнитного поля в них.

В работе используются: стабилизированный источник постоянного тока и напряжения, электромагнит, цифровой вольтметр, амперметр, миллиамперметр, реостат, измеритель магнитной индукции III1-10, образцы (InSb) монокристаллического антимонида индия n-типа.

Экспериментальная установка: Схема установки для исследования магнетосопротивления полупроводников и геометрического резистивного эффекта представлена на рис. 1.

Рис. 1. Схема установки для исследования влияния магнитного поля на проводимость полупроводников

В зазоре электромагнита создаётся постоянное магнитное поле. Ток питания магнита подаётся от источника постоянного напряжения GPR-11H30D, регулируется ручками управления источника (R_1) и измеряется амперметром источника A_1 . Магнитная индукция в зазоре электромагнита определяется при помощи измерителя магнитной индукции Ш1-10 (описание прибора расположено на установке).

Образец в форме кольца (диск Корбйно) или пластинки, смонтирован- ный в специальном держателе, подключается к источнику постоянного напряжения 5 В. При замыкании ключа К сквозь образец течёт ток, величина которого измеряется миллиамперметром A_2 и регулируется реостатом R_2 Балластное сопротивление R_0 ограничивает ток через образец. Измеряемое напряжение подаётся на вход цифрового вольтметра B7-78/1

1 Калибровка магнита

I, mA	B, mT
0	12
50	81
100	144
150	197
200	248
250	304
300	338
350	360
390	370
$\sigma I = 10 \mathrm{mA}$	$\delta B = 0.01$

Измерим зависимость напряженности магнитного поля в зазоре электромагнита от тока через него. Занесем результаты в Taблицу 1. Построим $\Gamma pa fu \kappa$ 1 зависимости $B(I_M)$:

Таблица 1: Калибровка магнита

2 Результаты измерений

2.1 Диск Корбино

U, mV	I, mA	U_{down}, mV	$B^2, {\rm m}({ m T})^2$	R, Om	
779	Без поля				
783	0	782	0.1	31.3	
920	50	917	6.6	36.8	
1280	100	1245	20.7	51.2	
1724	150	1744	38.8	69	
2367	200	2357	61.5	94.7	
2950	250	2985	92.4	118	
3338	300	3395	114.2	133.5	
3608	350	3616	129.6	144.3	
3818	400	3797	136.9	152.7	
Параметры:	$D = 18 \mathrm{mm}, d = 3 \mathrm{mm}, H = 1.8 \mathrm{mm}$				

Таблица 2: Диск Корбино

Измерим зависимость напряжения на образце от тока через электромагнит. Занесем результаты в Таблицу 2.1. Расчитаем сопротивления образца и квадраты величин напряженности магнитного поля. Также занесем в таблицу размеры образца.

2.2 Параллелепипед

U, mV	I, mA	U_{\perp}, mV	B^2 , m(T) ²	R, Om	R_{\perp} , Om
2775	Без поля				
2759	0	2758	0.1	275.9	275.8
2818	50	2803	6.6	281.8	280.3
2904	100	2888	20.7	290.4	288.8
3035	150	2968	38.8	303.5	296.8
3177	200	3063	61.5	317.7	306.3
3283	250	3158	92.4	328.3	315.8
3370	300	3213	114.2	337	321.3
3427	350	3276	129.6	342.7	327.6
3454	400	3454	136.9	345.4	345.4

Таблица 3: Параллелепипед

Измерим зависимость напряжения на образце от тока через электромагнит. Занесем результаты в *Таблицу 2.2*. Расчитаем сопротивления образца для обеих положений и квадраты величин напряженности магнитного поля.

3 Обработка данных

Построим $\Gamma pa\phi$ ик 3 зависимости $R(B^2)$ для всех трех серий измерений. Из графика найдем подвижность носителей и другие параметры материала (InSb) диска Корбино, сравним с табличными:

$$\mu^{2} = \frac{dR}{d(B^{2})}$$

$$\mu_{InSb} = 30 \pm 1 \, m^{2}/(V \cdot s)$$

$$\mu_{tab} = 7.7 \, m^{2}/(V \cdot s)$$

$$\sigma_{0} = \frac{1}{2\pi h R_{0}} ln \frac{r_{2}}{r_{1}} = (0.517 \pm 0.007) \, 1/(Om \cdot m)$$

$$\sigma_{tab} = 2.2 \cdot 10^{4} \, 1/(Om \cdot m)$$

$$n = \frac{\sigma}{q\mu} = (1.07 \pm 0.04) \cdot 10^{17} 1/m^{3}$$

$$n_{tab} = 1.78 \cdot 10^{22} 1/m^{3}$$

4 Вывод

Мы измерили концентрацию носителей заряда и их подвижность для антимонида индия. Результаты не попали даже в порядок табличных величин. У данных высокая воспроизводимость и относительно низкая погрешность, которая никак не может объяснить расхожения. Вероятно, ошибка в параметрах образца или диапазонах измерения приборов.