AL/2017/02/S-I සිටලු ම හිමිනම් ඇතිරුත්/ යුදාලට පැතිවාල් source, was / All Rights Reserved) අධාායක පොදු සහකික පතු (උසස් පෙළ) විභාගය, 2017 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரின்ச, 2017 ஓக்எந் General Certificate of Education (Adv. Level) Examination, August 2017 පැය දෙකයි රසායන විදුනව இரண்டு மணித்தியாலம் இரசாயனவியல் Two hours Chemistry උರදෙස්: 🔆 ආවර්තිතා වගුවක් සපයා ඇත. 💥 මෙම පුශ්න පතුය පිටු 08 කින් යුක්ත වේ. * සියලු ම ප්‍රශ්නවලට පිළිතුරු සපයන්න. ※ ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ. * උත්තර පතුයේ නියමිත ස්ථානයේ එබේ විගාග අංකය ලියන්න. * උත්තර පතුයේ පිටුපස දී ඇති අනෙක් උපදෙස් සැලකිලිමත් ව කියවන්න. * 1 සිට 50 තෙක් එක් එක් පුශ්නයට (1), (2), (3), (4), (5) යන පිළිතුරුවලින් **නිවැරදි හෝ ඉතාමත් ගැළපෙන ගෝ** පිළිතුර තෝරා ගෙන, එය **උත්තර පතුයේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරයක්** (X) **යොද දක්වන්න**. සාර්වනු වායු නියනය $R = 8.314 \,\mathrm{J \ K^{-1} \ mol^{-1}}$ ඇවගාඩ්රෝ තියකය $N_A = 6.022 \times 10^{23} \, \text{mol}^{-1}$ ප්ලැන්ක්ගේ නියකය $h = 6.626 \times 10^{-34} \text{ J s}$ ආලෝකයේ පුවේගය $c = 3 \times 10^8 \,\mathrm{m \, s}^{-1}$ පරමාණුවක වපුහය පිළිබඳ ව කොම්සත්තේ 'ප්ලම් ප්‍රඩිං' ආකෘතිය වැරදි බව ඔප්පු කළ විදහාඥයා වනුයේ. (2) රොබට් මිලිකත්. (3) නීල්ස් බෝර්. අර්නස්ට් රදර්ෆඩ්. (4) ඉයුජින් හෝල්ඩ්ස්ටයින්. (5) හෙන්රි මෝස්ලි. 2. පහත අණු සම්බන්ධයෙන් මින් කුමන වගන්තිය අයනා වන්නේ ද? CO₂, BF₃, PF₃, CF₄, XeF₄, SF₆ (1) සියලු ම අණුවලට ධුැවිය සහසංයුජ බන්ධන ඇත. (2) සියලු ම අණුවලට වෙනස් හැඩයන් ඇත. (3) සියලු ම අණු අෂ්ටක නීතිය අනුගමනය නොකරයි. (4) සියලු ම අණු නිර්ධැවීය වේ. (5) අණු දෙකක පමණක් ඒවායෙහි මධා පරමාණු සතුව එකසර ඉලෙක්ටුෝන යුගල් පවතී. 3. පහත දැක්වෙන සංයෝගයේ IUPAC නාමය කුමක් ද? н-с≡с-сн-сн-сн,сн, (2) 4-formyl-3-hydroxyhex-1-yne (1) 4-formylhex-1-yn-3-ol (3) 2-ethyl-3-hydroxy-4-ynepentanal (4) 3-hydroxy-4-ethyl-1-ynepentanal (5) 2-ethyl-3-hydroxypent-4-ynal 4. නයිට්රජන්හි ඔක්සිකරණ අවස්ථාව -1 වන්නේ, (3) NO,F (1) N_2O_4 (2) N₂O (4) NH, (5) NH₂OH 5. මධා පරමාණුව වටා නියානති ද්විපිරම්ඩාකාර ඉලෙක්ටුෝන යුගල් ජනාමිකිය පදනම් කර ගනිමින් ජනනය වී ඇති අණුවල හැඩයන් කිහිපයක් ඇත. ඒවා නම්, (1) රේඛීය, කෝණික, සි-සෝ. (2) රේඛීය, T - හැඩය, සී-සෝ. (3) ජේවීය, නියානසි පිරම්ඩාකාර, T - හැඩය. (4) සලීය නිකෝණාකාර, කෝණික, T - හැඩය. (5) රේඛීය, කලිය නිකෝණාකාර, සී-සෝ. 6. ඇමෝනියම් නයිට්රේට් ඉහළ උෂ්ණක්වයේ දී, නයිට්රජන් වායුව, ඔක්සිජන් වායුව හා ජල වාෂ්ප සාදමින් ස්ඓඩ්ටික ලෙස වියෝජනය වේ. සම්මත උෂ්ණත්වයේ දී හා පීඩනයේ දී ඇමෝනියම් නයිට්රේට 240 g වියෝජනය වීමෙන් සැදෙන මුළු වායු ලීටර සංඛ්යාව වනුයේ, (H = 1, N = 14, O = 16, සම්මත උෂ්ණත්වයේ දී හා පීඩනයේ දී වායු ඔවුල එකක පරිමාව ලීවර 22,4 වේ.) (1) 33.6 (2) 67.2 (3) 100.8 (5) 235.2 (4) 134.4

ලවන් පිටුව කලන්න

7.	$\mathbf{A}\mathbf{X}$ සහ $\mathbf{B}\mathbf{X}_{j}$ යනු ජලයෙහි අල්ප වශයෙන් දුාවා ලවණ දෙකකි. කාමර උෂ්ණත්වයේ දී ඒවායෙහි	දාවාතා ගුණිත
	පිළිවෙළින් K සහ K වේ. $\mathbf{A}\mathbf{X}$ හි දුාවානතාව p වන අතර $\mathbf{B}\mathbf{X}_2$ හි එම අගය q වේ. එක් එක් ලවණය	ා එහි සංකෘප්ත
	ද්‍රාවණය සමග සමතුලිකතාවයෙහි ඇති විට $\frac{K_{\mathrm{sp}_1}}{\left[\mathbf{A}_{(\mathrm{aq})}^+\right]} = \frac{K_{\mathrm{sp}_2}}{\left[\mathbf{B}_{(\mathrm{aq})}^{2+}\right]}$ වේ නම්, පහත සඳහන් ඒවායින් කුමක්	නිවැරදි වේ ද?
	$\begin{bmatrix} \mathbf{A}_{(\mathbf{aq})}^{T} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_{(\mathbf{aq})}^{T} \end{bmatrix}$	

 $(1) \quad p = q^2$

(2) $p^2 = q$

 $(3) 4p = q^2$

(4) $p = 4q^2$

 $(5) \quad p = 2q^2$

8. ක්ෂාර හා ක්ෂාරීය පාංශු ලෝහ සම්බන්ධයෙන් මින් කුමන වගන්තිය **අසතන** වේ ද?

සියලු ම ක්ෂාරීය පාංශු ලෝහ N₂ වායුව සමග ඉහළ උෂ්ණත්වයේ දී ප්‍රතිකියා කරයි.

(2) ක්ෂාරීය පාංශු ලෝහවිල දුවාංක එම ආවර්තයේම ඇති ක්ෂාර ලෝහවල දුවාංකවලට වඩා වැඩි ය.්

(3) ක්ෂාර ලෝහවල දෙවන අයනීකරණ ශක්තීන් එම ආවර්තයේම ඇති ක්ෂාරීය පාංගු ලෝහවල එම අගයයන්ට වඩා බොහෝ වැඩි ය.

(4) ක්ෂාරීය පාංගු ලෝහ සාදන සියලු ම හයිඩුොක්සයිඩ පුබල හස්ම වේ.

(5) ක්ෂාර ලෝහ හයිඩොක්සයිඩවල දුාවානාව කාණ්ඩයේ පහළට වැඩි වේ.

9. ලිතියම්හි (Li) සංයුජතා ඉලෙක්ටුෝනයට දැනෙන සඵල නාෂ්ටික ආරෝපණය,

(Li, Z = 3 හා සාපේක්ෂ පරමාණුක ස්කන්ධය = 7)

(1) +3 ට සමාන ය.

(2) +3 ට වඩා අඩු ය.

(3) +3 ට වඩා වැඩි ය.

(4) +7 ට සමාන ය.

(5) +7 ව වඩා අඩු ය.

10. දී ඇති උෂ්ණත්වයක දී සංවෘත දෘඪ භාජනයක් තුළ පහත සමතුලිකතාවය පවතී.

$$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$$

එම උෂ්ණත්වයේ දී භාජනය තුළට අමතර $O_{\mathbf{y}}(\mathbf{g})$ පුමාණයක් එකතු කරන ලදී. සමතුලිතතාවයට නැවත එළඹුණු පසු මුල් සමතුලිකතාවයෙහි තිබූ අගය<mark>ට සන්සන්ද්<mark>නාත්මකව</mark> වඩා අඩු අගයයක් තිබෙන්නේ මින් කුමක ද?</mark>

(1) පුතිකුියාවේ සමතුලිකතා <mark>නියතය</mark>

(2) පද්ධතියේ මුළු පීඩනය

(3) පද්ධතියේ ඇති SO (g) පුමාණය

(4) පද්ධතියේ ඇති SO₂(g) පුමාණය

(5) පද්ධතියේ ඇති O₂(g) පුමාණය

11. නයිට්රජන් විශේෂයන්හි O—N—O කෝණය සම්බන්ධයෙන් පහත සඳහන් කුමක් **යත**න වේ ද?

(1) $NO_{2}^{+} > NO_{2}^{-} > NO_{2}^{-} > NO_{4}^{3-}$ (2) $NO_{4}^{3-} > NO_{2}^{+} > NO_{2}^{-} > NO_{2}^{-}$ (3) $NO_{2}^{+} > NO_{2}^{-} > NO_{2}^{-} > NO_{4}^{-}$ (4) $NO_{4}^{3-} > NO_{2}^{-} > NO_{2}^{-} > NO_{2}^{-}$

(5) $NO_{3}^{+} > NO_{3}^{-} > NO_{3}^{-} > NO_{3}^{-}$

12. ලාම්පුවක් දෘශා අාලෝකයේ නිල් කලාපයෙහි ($470~\mathrm{nm}$) තත්පරයට $6.0~\mathrm{J}$ ශක්තියක් නිපදවයි. ෆෝටෝන $1.0 imes 10^{20}$ ජනනය කිරීම සඳහා ලාම්පුව කොපමණ කාලයක් දැල්විය යුතු ද?

(1) 2.4s

(2) 7.1 s

(3) 8.5 s

(4) 9.2 s

(5) 10.5 s

13. පුතිකියාවක් 298 K හා 100 kPa පීඩනයේ දී ස්වයංසිද්ධ වන අතර එය ඉහළ උෂ්ණත්වයේ දී හා එම පීඩනයේ දී ස්වයංසිද්ධ නොවේ. මෙම පුතිකුියාව සඳහා 298 K හි දී හා 100 kPa පීඩනයේ දී පහත සඳහන් කුමක් සතන වේ ද?

	ΔG	ΔΗ	ΔS
(1)	ධන	ධන	ධන
(2)	කණ	සාණ	සාණ
(3)	සාණ	ඎණ	ධන
(4)	සාණ	ධන	සාණ
(5)	ರಿಕಾ	On	Man atten

14. නොදන්නා X නමැති වායුවක මවුලික ස්කන්ධය සෙවීම සඳහා පහත සඳහන් කුමය භාවිත කරන ලදී. පළමුව, වියළි වාතය අඩංගු පරිමාව V වන දෘඪ භාජනයක ස්කන්ධය $m_{
m j}$ ලෙස මනින ලදී. ඉන්පසු, වියළි වාතය ඉවත් කොට භාජනය නොදන්නා X වායුවෙන් පුරවා ස්කන්ධය $m_{_{\! 2}}$ ලෙස මනින ලදී. වියළි වාතය සහ නොදන්නා වායුව යන දෙකුම එකම උෂ්ණත්වයේ (T) හා පීඩනයේ (P) පැවතුණි. වියළි වාතයෙහි ඝනත්වය d වේ. පහත සඳහන් කුමන පුකාශනය මගින් නොදන්නා වායුවෙහි මවුලික ස්කන්ධය ලබා දෙයි ද?

 $(2) \quad \left[\frac{m_2 - \left(m_1 - dV \right) \right] RT}{PV}$

 $(3) \quad \frac{\left(m_1 - m_2\right)RT}{PV}$

(5)
$$\frac{\left[m_1 - \left(m_2 - dV\right)\right]RT}{PV}$$

15.	ඒකතාස්මික දුබල අමලයකින් V_{\parallel} පරිමාවක්, ඒකආමලික පුබල හස්මයකින් V_{χ} පරිමාවක් සමග මිශු කිරීමෙන් ස්වාරක්ෂක
	දාවණයක් සාදන ලදී. දුබල අම්ලයෙහි හා පුබල හස්මයෙහි ආරම්භක සාන්දුණ පිළිවෙළින් C හා C_2 වේ. දුබල අම්ලයෙහි
	අමල විකටන නියනය K_a වේ. ස්වාරක්ෂක දුංචණයෙහි pH අගය p $K_a = 1$ හා p $K_a + 1$ අතර පවත්වා ගැනීමට නම් පනත
	සඳහන් කුමන පුකාශනය මගින් C ₁ , C ₂ , V ₁ සහ V ₂ සඳහා නිවැරදි සම්බන්ධතාව ලබාදේ ද?

(1)
$$\frac{1}{10} < \frac{C_2 V_2}{C_1 V_1 - C_2 V_2} < 10$$

$$(1) \quad \frac{1}{10} < \frac{C_2 V_2}{C_1 V_1 - C_2 V_2} < 10 \qquad (2) \quad \frac{1}{10} < \frac{C_1 V_1}{C_1 V_1 - C_2 V_2} < 10 \qquad (3) \quad \frac{1}{10} < \frac{C_2 V_2}{C_1 V_1} < 10$$

(3)
$$\frac{1}{10} < \frac{C_2 V_2}{C_1 V_1} < 10$$

(4)
$$\frac{1}{10} < \frac{C_1 V_1 - C_2 V_2}{C_2 V_2} < 10$$
 (5) $1 < \frac{C_1 V_1}{C_2 V_2} < 10$

(5)
$$1 < \frac{C_1 V_1}{C_2 V_2} < 10$$

16. ඇනිලින් හි සම්පුයුක්ත වනුහයක් නොවන්නේ පහත දැක්වෙන ඒවායින් කුමක් ද?

17. ඉතා පෙළ පුතිකියාවක ආරම්භක ශීලතාව $R_{
m o}$ හා වේග නියකය k වේ. ආරම්භක සාන්දුණය 50% කින් අඩු වූ වීට පුතිකියාවේ ශීකතාව වනුයේ,

(4) $\frac{R_0}{2}$ (5) $\frac{R_0}{4}$

18. ${
m Ni}^{2+}({
m aq},1.0\,{
m M})/{
m Ni}({
m s})$ හා ${
m Cu}^{2+}({
m aq},1.0\,{
m M})/{
m Cu}({
m s})$ අර්ධ කෝෂ, චෝල්ට්මීටරයක් මගින් හා ලවණ සේකුවකින් සම්බන්ධ කිරීමෙන් විදාුත් රසායනික කෝපයක් ගොඩන<mark>ගන ලදී.</mark> සම්පූර්ණ කෝප පුතිතියාව හා මෙම අර්ධ <mark>කෝෂ දෙක සම්</mark>බන්ධ කළ විට වෝල්ට්මීවරයෙහි ආරම්භක පාඨාංකය වනුයේ,

$$\left(E_{Ni^{2+}/Ni}^{\circ} = -0.24V \cos E_{Cu^{2+}/Cu}^{\circ} = +0.34V\right)$$

- (1) $Ni^{2+}(aq) + Cu(s) \longrightarrow Ni(s) + Cu^{2+}(aq)$
- (2) $Cu^{2+}(aq) + Ni(s) \longrightarrow Cu(s) + Ni^{2+}(aq)$ (3) $Cu^{2+}(aq) + Ni(s) \longrightarrow Cu(s) + Ni^{2+}(aq)$

- (4) $Cu^{2+}(aq) + Ni(s) \longrightarrow Cu(s) + Ni^{2+}(aq)$

(5)
$$Cu(s) + Ni(s) \longrightarrow Cu^{2+}(aq) + Ni^{2+}(aq) + 4c ; +0.58 V$$

19. කාමර උෂ්ණක්වයේ දී ඝන ඩයිඅයඩින් පෙන්ටොක්සයිඩ් (IှO_ද) කාබන් මොනොක්සයිඩ් සමග පුතිකිුයා කර කාබන් ඩයොක්සයිඩ් හා අයඩින් සාදයි. වායු සාම්පලයක ඇති කාබන් මොනොක්සයිඩ් පුමාණය මැනීම සඳහා මෙය භාවිත කළ හැක. $5.0\,\mathrm{dm}^3$ වායු සාම්පලයක් $\mathrm{I_2O_2}$ අඩංගු නළයක් තුළින් යවා, මුදාහැරෙන අයඩීන් ජලීය KI දාවණයකට (වැඩිපුර KI ඇත.) එකතු කරන ලදී. ලැබෙන දුාවණය පිෂ්ටය දර්ශකය ලෙස යොදා 0.005 mol dm⁻³ Na₂S₂O₄ දුාවණයක් සමග අනුමාපනය කරන ලදී. අවශා වූ $\mathrm{Na_2S_2O_3}$ පරිමාව $10.00\,\mathrm{cm}^3$ වේ. වායු සාම්පලයේ කාබන් මොනොක්සයිඩ් සාන්දුණය (ppm වලින්) වනුයේ, (C = 12, O = 16, වායු සාම්පලයේ ඝනත්වය = $1.40 \times 10^{-3} \,\mathrm{g \ cm^{-3}}$)

- (1) 100
- (2) 250
- (4) 700
- (5) 1000

20. සල්ෆර් සහ එහි සංයෝග සම්බන්ධයෙන් පහත සඳහන් කුමන වගන්සිය අස්සුන වන්නේ ද?

- S යනු ඔක්සිකරණ අවස්ථා -2 සිට +6 පරාසයක් ඇති අලෝහයකි.
- (2) එක් එලයක් ලෙස SO ලබා දෙමින් සාන්දු H_sSO සමග S පුතිකිුයා කරයි.
- (3) පක්සිකාරකයක් සහ මක්සිහාරකයක් යන දෙආකාරයටම SO ව කියා කළ හැක.
- (4) විශාල පුමාණයන්ගෙන් S දහනය කිරීම අමල වැසිවලට දායක් වේ.
- (5) සාන්දු H₃SO ුට පුබල අම්ලයක්, ඔක්සිකාරකයක් සහ විජලකාරකයක් ලෙස කියා කළ හැක.

21. 298 K හි දී, N₂(g) + 3 F₂(g) —→ 2 NF₃(g) පුතිකියාව සඳහා ΔH° = −263 kJ mol⁻¹ වේ. N≡N හා N—F ඛන්ධන විසටන එන්නැල්පි අගයයන් පිළිවෙළින් 946 kJ mol⁻¹ හා 272 kJ mol⁻¹ වේ. F—F බන්ධනයේ බන්ධන විසටන එන්නැල්පි අගය (kJ mol⁻¹ වලින්) වනුයේ,

- (1) -423
- (2) -393
- (3) -141

त्यव्यक्ति एक्स एक्स्विक्व

- 22. 3d ගොනුවේ මූලදුවා සම්බන්ධයෙන් පහත කුමන වගන්තිය **අසක** වේ ද?
 - (I) Sc, Ti සහ Zn විචලා සංයුජතා පුදර්ශනය නොකරයි.
 - (2) 3d ගොනුවේ මූලදුවා හොඳ කාර්මික උත්පේුරක වේ.
 - (3) Mn, ආමලික, උභයගුණි සහ භාස්මික ඔක්සයිඩ සාදයි.
 - (4) 3d ගොනුවේ සියලු ම මූලදවා අකුරෙන් අඩුම දුවාංකය ඇක්තේ Zn ට ය.
 - (5) V හි ධන මක්සිකරණ අවස්ථා +2 සිට +5 පරාසයක ඇත.
- 23. $3NO(g) \rightleftharpoons NO_2(g) + N_2O(g)$ පුතිකිුයාව සඳහා පහත තාප රසායනික දක්ත දී ඇත.

$$\Delta H_{f_{\text{NO}_2(g)}}^{\circ} = 35 \text{ kJ mol}^{-1}, \quad \Delta H_{f_{\text{NO}_2(g)}}^{\circ} = 80 \text{ kJ mol}^{-1}, \quad \Delta H_{f_{\text{NO}_2(g)}}^{\circ} = 90 \text{ kJ mol}^{-1}$$

ඉහත පුතිකියාව සඳහා පහත සඳහන් කුමන පුකාශය යත්ෂ වේ ද?

- (1) $\Delta H^\circ = -155 \, \mathrm{kJ \ mol}^{-1}$ වන අතර උෂ්ණත්වය වැඩි වීමත් සමග පුතිකිුිිිියාවේ සමතුලිකතා නියකයේ අගය අඩු වේ.
- (2) ΔH° = 155 kJ mol වන අතර උප්ණත්වය වැඩි වීමත් සමග පුකිකියාවේ සමතුලිකතා නියකයේ අගය අඩු වේ.
- (3) ΔH° = –25 kJ mol⁻¹ වන අතර උෂ්ණත්වය වැඩි වීමත් සමග පුතිකිුිිියාවේ සමතුලිතතා නියතයේ අගය අඩු වේ.
- (4) ΔH° = 25 kJ mol⁻¹ වන අකර උෂ්ණත්වය වැඩි වීමත් සමග පුතිකිුයාවේ සමතුලිකතා නියකයේ අගය අඩු වේ.
- (5) $\Delta H^{\circ} = -155 \text{ kJ mol}^{-1}$ වන අතර උෂ්ණක්වය වැඩි වීමත් සමග සමතුලිකතා නියතයේ අගය වැඩි වේ.
- 24. පහත දැක්වෙන පුතිකිුිිිිිිිිිිිිිිි සලකන්න.

D හි වපුනය වීමට වඩාත් ම ඉ<mark>ඩ ඇත්තේ,</mark>

(1)
$$\bigcirc -C - CH_2 - O - \bigcirc -C -$$

25. $\bf A$ සංයෝගය LiAl $\bf H_4$ සමග පුතිකියා කර $\bf B$ ලබා දෙයි. $\bf A$ ට වඩා $\bf B$ හාස්මික ය. $\bf B$, $0-5\,^{\circ}{\rm C}$ දී NaNO $_2$ /HCl සමග පිරියම් කළ විට $\bf N_2$ මුක්ත කරයි. $\bf A$ සහ $\bf B$ දෙකම ඇමෝනීය $\bf A$ gNO $_3$ සමග පුතිකියා කර අවක්ෂේප ලබා දේ. $\bf A$ හි වනුනය විය හැක්කේ.

$$(1) \begin{array}{c} CONH_2 \\ CH_2C \equiv CH \end{array}$$

$$(2) \begin{array}{c} CONH_2 \\ C \equiv C - CH_3 \end{array}$$

$$(3) \begin{array}{c} CH_2 - C - CH_3 \\ CH_2 - C - CH_3 \end{array}$$

$$(4) \begin{array}{c} CONH_2 \\ CH_2 - C - CH_3 \\ CH_2 - C - CH_3 \end{array}$$

- 26. ඕසෝන් ස්ථරයේ ක්ෂය වීම පිළිබඳ ව මින් කුමන වගන්තිය ශකා වේ ද?
 - ම්සෝන් සමග ක්ලෝරොෆ්ලුවොරොකාබන් (CFCs) සාජුව ම ප්‍රතිකියා කර ඕසෝන් ස්ථරය ක්ෂය කරයි.
 - (2) පෘථිවි පෘෂ්ඨය මතට IR කිරණ පතිත වීම ඕසෝන් ස්ථරයෙහි ක්ෂය වීම මගින් දිරිගැන්වේ.
 - (3) ම්කෝන් ස්ථරයේ ක්ෂය වීම සඳහා හයිඩොෆ්ලුවොරොකාබන් (HFCs) දායක වේ.
 - (4) පාරජම්බුල කිරණ ඇති විට ඕසෝන් ස්ථරයේ පවතින ඕසෝන් ස්වාභාවිකව වියෝජනයට භාජනය වේ.
 - (5) CIO ඉක්ත බණ්ඩ මගින් පමණක් ඕසෝන් ස්ථරයේ ක්ෂය වීම සිදු වේ.

[පත්වෑන් පිටුව බලක්ක

- 27. විදහුත් විච්ඡේදා කෝෂයක් තුළ සිදු වන ${
 m AIF}_6^{3-}({
 m aq})+3{
 m e}
 ightarrow {
 m AI}({
 m s})+6~{
 m F}^-({
 m aq})$ අර්ධ පුතිකිුියාව සම්බන්ධයෙන් පහත සඳහන් කුමක් සතන වේ ද?
 - (1) Al ඔක්සිකරණය වේ.

 - (2) AIF 3- ඔක්සිහරණය වේ.
 (3) AI හි ඔක්සිකරණ අවස්ථාව -3 සිට 0 දක්වා වෙනස් වේ.
 - (4) F මක්සිතාරකයක් ලෙස කියා කරයි.
 - (5) F ඔක්සිහරණය වේ.

28.
$$CH_3CHO \xrightarrow{OH^-} P \xrightarrow{H^+} Q \xrightarrow{(1) CH_3MgBr} R$$

ඉහත දැක්වෙන පුතිකිුයා අනුකුමයෙහි P, Q සහ R හි වනුහ පිළිවෙළින් වනුයේ,

OH
$$CH_3$$
CH CH_2 CHCHO , CH_3 CH=CHCHO , CH_3 CH=CHCHO CH_3 CH CH

OH
$$CH_3$$
 (2) CH_3 CHCH $_2$ CHO , CH_3 CH=CHCHO , CH_3 CH=CH $_2$ CH $_3$

29. ස්වාභාවික රබර් හි පුනරාවර්තන ඒකකය වන්නේ,

(1)
$$\begin{array}{c} CH_{3} & H \\ CC - C \\ CH \end{array}$$
(2)
$$\begin{array}{c} CH_{3} & CH_{2} \\ CH_{2} & CH_{2} \end{array}$$
(3)
$$\begin{array}{c} CH_{3} & H \\ CH_{2} & CH_{2} \end{array}$$
(4)
$$\begin{array}{c} CH_{3} & CH_{2} \\ CH_{2} & CH_{2} \end{array}$$
(5)
$$\begin{array}{c} H & H \\ CCH_{2} & CH_{2} \end{array}$$

- 30. මූලදුවාායක කලාප සටහන රූපයෙහි දක්වා ඇත. මෙම මූලදුවායෙහි කලාප සටහන සම්බන්ධයෙන් පහත සඳහන් කුමන වගන්තිය අගත් වේ ද?
 - (1) $S_1^{}, S_2^{}$ හා G කලාප සමතුලිනතාවයේ පවතින ${f T}, {f P}$ තත්ත්ව එකක් ඇත.
 - (2) S₁, S₂ හා Lකලාප සමතුලිකතාවයේ පවතින **T, P** තත්ත්ව එකක් ඇත.
 - (3) S₂, L හා G කලාප සමතුලිනතාවයේ පවතින T, P තත්ත්ව එකක් ඇත.
 - (4) S₁, L හා G කලාප සමතුලිකතාවයේ පවතින T, P තත්ත්ව එකක් ඇත.
 - (5) කලාප දෙකකට වැඩි ගණනක් සමතුලිතතාවයේ පවතින T, P තත්ත්ව තුනක් කලාප සටහනෙහි දැක්වේ.

(ක්කමැති පිටුව ඔහුන්න

- අංක 31 සිට 40 තෙක් එක් එක් පුශ්නය සඳහා දී ඇති (a),(b),(c) සහ (d) යන පුතිචාර හතර අතුරෙන්, එකක් හෝ වැඩි සංඛනාවක් හෝ නිවැරදි ය. නිවැරදි පුකිචාරය/පුතිචාර කවරේ දැ'යි තෝරා ගන්න.
 - (a) සහ (b) පමණක් නිවැරදි නම් (1) මත ද
 - (b) සහ (c) පමණක් නිවැරදි නම් (2) මත ද
 - (c) සහ (d) පමණක් නිවැරදි නම් (3) මත ද
 - (d) සහ (a) පමණක් නිවැරදි නම් (4) මත ද

වෙනත් පුනිචාර සංඛණවක් හෝ සංයෝජනයක් හෝ නිවැරදි නම් (5) මත ද

උත්තර පතුයෙහි දැක්වෙන උපදෙස් පරිදි ලකුණු කරන්න.

ඉහතු උපදෙස් සම්පිණ්ඩනය

			306		
Γ	(1)	(2)	(3)	(4)	(5)
	(a) සහ (b) පමණක්	(b) සහ (c) පමණක්	(<i>c</i>) සහ (<i>d</i>) පමණක්	(<i>d</i>) සහ (<i>a</i>) පමණක්	වෙනත් පුතිචාර සංධානවක් තෝ
	නිවැරදියි	නිවැරදියි	නිවැරදියි	නිවැරදියි	සංයෝජනයක් හෝ නිවැරදියි

- 31. $T_1, T_2 (T_2 > T_1)$ යන උෂ්ණත්වයන් දෙකෙහි දී සහ නියත පීඩනයේ දී $A(g) \rightleftharpoons B(g)$ හි පුතිකියා පුමාණය (extent of reaction) සමග සම්මත තිබ්ස් ශක්තියෙහි විචලනය රූප සටහනෙහි දක්වා ඇත. පහත දී ඇති කුමන වගන්තිය/ වගන්ති මෙම පුතිකිුයාව සඳහා **නිවැරදී** වේ ද?
 - (a) T හි දී සමතුලිකතා නියකය T හි දී ට වඩා විශාල වේ.
 - (b) ප්‍රතිකියාව තාපාවශෝෂක වේ.
 - (c) පුතිකුියාව සඳහා ධන ΔS° අගයක් ඇත.
 - (d) ප්‍රතිකියාව තාපදායක වේ.

ඉතන දක්වා ඇති පුතිකුියාව සඳහා පහත දී ඇති වගන්තිවලින් <mark>නිවැරදි</mark> වන්නේ කුමක් ද?/කුමන ඒවා ද?

- (a) මෙම ප්‍රතිකියාව නියුක්ලියෝෆිලික ආකලන ප්‍රතිකියාවකි.
- (b) P පුධාන එලය වේ.
- (c) පුතිකුියාවේ පළමු පියවරේ දී කාබොකැටායනයක් සැදේ.
- (d) Q පුධාන එලය වේ.
- 33. පතක සඳහන් වගන්ති කාර්මික කියාවලි සමහරක් සම්බන්ධයෙන් වේ. මින් කුමන වගන්තිය / වගන්ති **නිවැරදි** වේ ද?
 - (a) KOH භාවිත කර ළදරු සබන් නිපදවයි.
 - (b) ස්පර්ශ කුියාවලියේ දී SO ුලබා ගැනීමට SO ුහා O ුඅතර පුතිකුියාව සඳහා අඩු පීඩන තත්ත්ව අනුගුහය දක්වයි.
 - (c) සොල්වේ කුමයෙන් K,CO_ද සංශ්ලේෂණය කළ හැක.
 - (d) ඩවුන්ස් කෝසෙ භාවිතයෙන් Na නිෂ්පාදනයේ දී Na හා ක්ලෝරීන් වායුව පුතිකියා කිරීම වැළැක්වීමට කැතෝඩ තා ඇතෝඩ කුටීර පුාචීරයකින් වෙන්කර ඇත.
- 34. බහු-පියවර පුතිකිුයාවක වඩාන් ම සෙමින් සිදු වන පියවර සඳහා පහත කුමන වගන්හිය / වගන්හි සැම විට ම **නිවැරදි** වේ ද?
 - (a) එහි අණුකතාවය පූර්ණ සංඛ්යාවක් වේ.
 - (b) එහි අණුකතාවය ප්‍රතිකියාවේ සමස්ත පෙළව වඩා වැඩි වේ.
 - (c) එහි ශීකතාව මත සමස්ත පුකිකියාවෙහි ශීකතාව රදා පවතී.
 - (d) එහි අණුකතාවය පුතිකියාවෙහි පියවර සංඛ්යාවට සමාන වේ.
- 35. ආලෝකය හමුවේ දී CH ු සමග Cl ු පුතිකිුයා කිරීමේ දී සිදු **කොවීම**ට වඩාත් ම ඉඩ ඇති පුතිකිුයා පියවර පහත දැක්වෙන ජීවායින් කුමක් ද?/ කුමන ජීවා ද**ි**
 - (a) $CH_3 + CI_2 \longrightarrow CH_3CI + CI$
- (b) $CH_3 + Cl \longrightarrow CH_3Cl$
- (c) CH₄ + Cl --- CH₂Cl + H
- (d) $Cl' + H' \longrightarrow HCl$
- 36. NH හා NF සම්බන්ධයෙන් මින් කුමන වගන්තිය/වගන්ති **නිවැරදී** වේ ද?
 - (a) NH ් වඩා NF හි මන්ධන යුතේ විකර්ෂණය දුර්වල වේ. (b) NH ් වඩා පැඩි ද්විමුදව ශූර්ණයක් NF ්ට ඇත.

 - (c) NH 0 00: NI gac god adoud of.
 - (d) NH ව N හා H අතර විදුසුත් සංකතා වෙනසන් NF හි N හා F අතර එම අගයන් බොහෝ දුරට සමාන වේ.

CALCAL CALL CALACAD

- 37. 1000 K දී $2 \text{ NO(g)} + \text{Br}_2(g) \rightleftharpoons 2 \text{ NOBr}(g)$ පුතිතියාව සඳහා සමතුලිකතා නියතය $1.25 \times 10^{-2} \, \text{mol}^{-1} \, \text{dm}^3$ වේ. මෙම උෂ්ණත්වයේ දී පහත සඳහන් කුමන පුකාශය/පුකාශ **නිවැරදි** වේ ද?
 - (a) සමතුලිත මියුණයෙහි NO(g) හා $Br_2(g)$ පුමුබව ඇති අතර ආපසු පුතිකියාව සඳහා සමතුලිකතා නියකය 80 mol dm^3 වේ.
 - (b) සමතුලිත මිශුණයෙහි NOBr(g) පුමුබව ඇති අතර ආපසු පුතිකිුයාව සඳහා සමතුලිකතා නියතය 80 mol dm⁻³ වේ.
 - (c) සමතුලින මිශුණයෙහි NO(g) හා $Br_2(g)$ පුමුබව ඇති අතර ආපසු පුතිතියාව සඳහා සමතුලිනතා නියතය $1.25 \times 10^{-2} \, \mathrm{mol}^{-1} \, \mathrm{dm}^3$ වේ.
 - (d) සමතුලිත මිශුණයෙහි NOBr(g) පුමුබව ඇති අතර ආපසු පුතිකියාව සඳහා සමතුලිනනා නියනය $1.25 \times 10^{-2} \, \mathrm{mol}^{-1} \, \mathrm{dm}^3$ වේ.
- 38. වායු කලාපයේ සිදුවන ද්විඅණුක මූලික පුතිකියාවක් සම්බන්ධයෙන් පහත සඳහන් කුමන වගන්තිය/වගන්ති **නිවැරදි** වේ ද?
 - (a) පුතිකියාවෙහි පරීක්ෂණාත්මකව නිර්ණය කරන ලද පෙළ දෙක වන්නේ පුතිකියකයන්හි සාන්දුණ සමාන වූ විට පමණි.
 - (b) පුතිකියකවල සාන්දුණ අනුපාත 1:3 වන විට පුතිකියාවෙහි පරීක්ෂණාත්මකව නිර්ණය කරන ලද පෙළ තුන වේ.
 - (c) එක් පුතිකියකයක සාන්දුණය අනිකට වඩා සන්සන්දනාත්මකව විශාල වශයෙන් වැඩි වන විට පුතිකියාවෙහි ශීසුතාව එම පුතිකියකයෙහි සාන්දුණයෙන් ස්වායත්ත වේ.
 - (d) නියත උෂ්ණත්වයක දී පුතිකියක අඩංගු බඳුනෙහි පරිමාව අඩු කළ විට පුතිකියක අතර ගැටුම් ඇති වීමේ ශීසුතාව වැඩි වේ.
- 39. පහස සඳහන් කුමන වගන්සිය/වගන්සි මෙසිල් බෙන්සීන් (ටොලුවීන්) සඳහා **නිවැරදි** වේ ද?

- (a) සියලු ම කාබන් පරමාණු එ<mark>කම හල</mark>යක පිහිටයි.
- (b) සියලු ම කාබන් කාබන් බ<mark>න්ධනවල දි</mark>ග එකිනෙකට සමාන වේ.
- (c) සියලු ම කාඛන් හයිඩ්රජන<mark>් බන්ධනව</mark>ල දිග එකිනෙකට සමාන වේ.
- (d) වනෑම C-C-C බන්ධන කෝණයක් 120° ක් වේ.
- 40. වායු දූෂණය සම්බන්ධයෙන් පහත දී ඇති කුමන වගන්තිය / වගන්ති **නිවැරදී** වේ ද?
 - (a) ජල ස්කන්ධවල ඇති සල්ෆේට වායුගෝලීය H₂S හි පුභවයකි.
 - (b) NO(g) මගින් SO₂(g), SO₂(g) බවට පරිවර්තනය වීම ශීසු කරයි.
 - (c) පොසිල ඉන්ධන දහනයේ දී පිටවන NO(g) වාහු දූපකයක් ලෙස නොසැලකේ.
 - (d) වායුගෝලයේ ඇති SO₂(g) අකුණු කෙටීම මගින් ඉවත් වේ.
- අංක 41 සිට 50 තෙක් එක් එක් ප්‍රශ්නය සඳහා ප්‍රකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. එම ප්‍රකාශ යුගලයට හොඳින් ම ගැළපෙනුයේ පනත වගුවෙහි දැක්වෙන පරිදි (1),(2),(3),(4) සහ (5) යන ප්‍රතිචාරවලින් කවර ප්‍රතිචාරය දැ'යි තෝරා උත්තර පත්‍රයෙහි උචිත ලෙස ලකුණු කරන්න.

පුතිවාරය	පළමුවැනි දකාශය	දෙවැනි පුකාශය
(1)	සතාහ වේ.	සතා වන අතර, පළමුවැනි පුකාශය නිවැරදි ව පහදා දෙයි.
(2)	සතා වෙේ.	සතා වන නමුත් පළමුවැනි පුකාශය නිවැරදි ව පහදා නොදෙයි .
(3)	සතාව වේ.	අසතා වේ.
(4)	අසතා වේ.	සතා වේ.
(5)	අසතන වේ.	අසතා වේ.

	පළමුවැනි පුකාශය	දෙවැනි පුකාශය
41.	බයිකාබනේට් අයනයෙහි C—O බන්ධන සර්වසම වේ.	බයිකාබනේට් අයනය ස්ථායි සම්පුයුක්ත වයුහ තුනක සම්පුයුක්ත මුහුමක් වේ.
42.	HOCH CH Br වියළි ඊතර මාධනයේ දී Mg සමග පුතිකියා කිරීමෙන් සීනාඩ පුතිකාරකයක් පිළියෙල කළ නොහැකි ය.	හයිඩොක්සිල් කාණ්ඩයක් අඩංගු සංයෝග සමග ගුීනාඩ් පුතිකාරකය පුතිකියා නොකරයි.
43.	The state of the s	නියත උෂ්ණත්වයේ දී රසායනික සමතුලිතතාවයෙහි ඇති වායුමය මිශුණයක පීඩනය වැඩි කිරීමේ දී මවුල සංඛනාව අඩු වන පරිදි පුතිකියාව සිදු වේ.

[අවවැති පිටුව කුතේත

<u>උළම්වැනු පිසාලය</u>	දෙවැනි පුකාශය
II කාණ්ඩයේ සල්ෆේට හා කාබනේටවල දුාවාතාව කාණ්ඩයේ පහළට යන විට අඩුවන අතර හයිඩොක්සයිඩ සඳහා එයට විරුද්ධ නිරීක්ෂණයක් ලැබේ.	අයනික සංයෝගයක දුාවානාව එහි සජලන ශක්තිය මන පමණක් රඳා පවතී.
ඉලෙක්ටුෝෆයිල කෙරෙහි ඇල්කේනවල පුකිකියාකාරීත්වය ඇල්කීනවලට වඩා අඩු ය.	කාබන් හා හයිඩ්රජන් පරමාණු අතර විදසුත සාණතාවයෙහි වෙනස කුඩා නිසා හයිඩොකාබනවල C—H බන්ධනවල ධුැවීයතාවය අඩු ය.
සංවෘත භාජනයක් තුළ ඇති ජල වාෂ්ප ඝනීතවනය වන විට අවට පරිසරයෙහි එන්ටොපිය වැඩි වේ.	සංවෘත පද්ධතියක් මගින් අවශෝෂණය කළ තාපය අවට පරිසරයෙහි තාපමය චලනය වැඩි කරයි.
NaOH නිෂ්පාදනයේ දී භාවිත වන පටල කෝෂයේ කැතෝඩ කුටීරය හා ඇතෝඩ කුටීරය අයන වරණීය පටලයකින් වෙන් කර ඇත.	පටල කෝෂයේ භාවිත වන අයන වරණීය පටලය
2-butene පාරතුිමාන සමාවයවිකතාව පෙන්වයි.	එකිනෙකෙහි දර්පණ පුතිබිම්බ නොවන වසුහ දෙකක 2-butene සඳහා තිබිය හැක.
තාමර උෂ්ණත්වයේ දී MnS(s) හි ජලයේ දුාවානාව pH අගය මත රඳා නොපවතී.	
d-ගොනුවේ මූලදුවාවල දුවාංක s-ගොනුවේ මූලදුවාවල දුවාංකවලට වඩා වැඩි ය.	d-ගොනුවේ මූලදුවාවල ලෝහක බන්ධන සෑදීමේ දී විස්ථානගත වීම සඳහා, d සහ s ඉලෙක්ලෝන ඇත.

ආවර්තිතා චගුව

	-								7	C .			7			A		11
	1								100		7 :				1			2
1	H	170	,					, P						-	1000			He
9	3	4	U 1949										5	6	7	8	9	10
2	Li	Be											В	C	N	0	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg				17		= 9		9	pul u		Al	Si	P	S	CI	Ar
V.	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
1	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
,	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
5	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113		100	1-0	1.44	I Adii
,	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	10					

													70	
													Yb	
													102	
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Ct	Es	Fm	Md	No	Lr