Q1 Finite State Automata

5 Points

The following questions concern both deterministic and nondeterministic finite state automata.

Q1.1 Finite state machine basics

1 Point

From the following statements select all that are true.

The alphabet of a finite state machine is finite.
A finite state machine must have an accepting state.
A finite state machine may have more than one start state.
The empty string (ϵ) is accepted by every finite state machine.
A finite state machine may either $accept$, $reject$ or $decline$ a string.
A finite state machine accepts a string when the machine transitions to an accepting state.
A finite state machine will terminate on every input. The following questions concern both deterministic and non-deterministic finite state automata.

Q1.2 Finite state machine diagrams

1 Point

Consider the following finite state automata with alphabet $\Sigma=\{1,0\}.$

From the following statements select all that are true.

- $ightharpoonup q_0$ is the start state.
- ☐ The language of the machine is empty.
- The machine is non-deterministic.
- ightharpoonup The machine accepts the empty string (ϵ).
- \checkmark The machine accepts all strings over $\{0,1\}^*$ containing neither the substring 10 nor 01.
- \Box The alphabet of the machine is $\{0,1,\epsilon\}$.
- ☐ The machine accepts all strings of even length.
- $ightharpoonup q_0,\,q_1,\,{
 m and}\,\,q_3$ are "accept" states.

Q1.3 Acceptance of strings

1 Point

Consider the following deterministic finite state automata.

Which of the following strings are in the language of the above machine?

Q1.4 Non-deterministic finite state machine basics 1 Point

Which of the following statements about non-deterministic finite state automata are true?

✓ A deterministic finite state automata is a non-deterministic finite state automata.
 ✓ For every non-deterministic finite state automata there exists a deterministic finite state automata that is equivalent.
 ✓ The codomain of the transition function is the powerset of the set of states.
 ✓ The set of accepting states maybe empty.
 A non-deterministic finite automata accepts a string if and only if every computation terminates in an accepting state.
 A non-deterministic finite automata always accepts the empty string.
 A non-deterministic finite automata may have many initial states.

Q1.5 Finite state machine design

1 Point

Design a deterministic finite state machine that accepts the following language.

$$\{w \in \{0,1\}^* \mid w \text{ contains at least one 1 and exactly one 0} \}$$

Provide a finite state automata diagram of your machine.

▼ 1.5.png	≛ Download

Q2 Regular Languages

5 Points

Q2.1 Regular languages

1 Point

Which of the following languages are regular languages?

- $\square \ \{w \in \{0,1\}^* \mid w \text{ is a palindrome}\}\$
- $leve{\epsilon}$
- $leftw \{w \in \{0,1\}^* \mid |w| > 7\}$
- left $\{w_1abbaw_2 \mid w_1 \in \{0,1\}^*, w_2 \in \{0,1\}^*\}$
- $\square \left\{ 0^n 1^l 0^k \mid k \le n + l \right\}$

Q2.2 Properties of regular languages

1 Point

Which of the following are properties of regular languages?

For every regular language there exists a non-deterministic finite state automata with 3 states that recognises it.

For every regular language there exists a minimal deterministic finite state machine that recognises it.

There exists a regular language such that no non-deterministic finite state machine recognises it.

For every two regular languages A and B we have that $\{w_1w_2 \mid w_1 \in A \land w_2 \in B\}$ is regular.

Regular languages are closed with respect to every binary

Q2.3 Intersection of regular languages 2 Points

Using the intersection closure property of regular languages, provide a diagram of a finite state machine that recognises $A\cap B$, where $\Sigma=\{0,1\}$,

 $A = \{w \mid w \text{ ends with a 0}\}$, and $B = \{w \mid w \text{ has at most one 1}\}$.

operator.

▼ 2.3.png ♣ Download

Q2.4 Pumping lemma

1 Point

Which of the following statements are true.

- ✓ The pumping lemma applies to all regular languages.
- lacksquare Given a regular language A, every $w \in A$ can be "pumped".
- ightharpoonup Let A be a regular language and let $w\in A$ such that $|w|\geq p$, where p is the pumping length. Let xyz be a division of w as described in the pumping lemma, then $xz\in A$.
- Let A be a regular language and let $w \in A$ such that $|w| \geq p$, where p is the pumping length. Let xyz be a division of w as described in the pumping lemma, then $xy^{11}z \in A$.
- The pumping lemma proves all languages are regular.

Q3 Generalised finite state automata descriptions

5 Points

Let $L_n=\{0^k\mid k\mod n=0\}$. Prove that L_n is a regular language for every $n\in\mathbb{N}$.

Alternatively you may upload a pdf of your answer.

Q4 Taking advantage of non-determinism

5 Points

Prove the following statement.

For every deterministic finite state automata there exists a equivalent non-deterministic finite state automata with exactly one accepting state.

Alternatively you may upload a pdf of your answer.

▼ 4.png

≛ Download

4. We can design a DFA to accept a string only containing on where $Z = \{0,1\}$.

And we can find a equivalent NTA with DFA

According to the theorem we know that DFA is equal to NFA. SO in this diagram we know that there is only a coept in it, and also only a accepting seate in MA.

Coursework 1 - Regular Languages & Finite State • UNGRADED Automata

STUDENT

Yuheng Liu

TOTAL POINTS

- / 20 pts

QUESTION 1

GOLOTTON			
Finit	e State Automata	5 pts	
1.1	Finite state machine basics	1 pt	
1.2	Finite state machine diagrams	1 pt	
1.3	Acceptance of strings	1 pt	
1.4	Non-deterministic finite state machine basics	1 pt	
1.5	Finite state machine design	1 pt	
QUESTION 2			
Regular Languages		5 pts	
2.1	Regular languages	1 pt	
2.2	Properties of regular languages	1 pt	
2.3	Intersection of regular languages	2 pts	
2.4	Pumping lemma	1 pt	
QUESTION 3			
Gen	eralised finite state automata descriptions	5 pts	
QUESTION 4			
Taking advantage of non-determinism		5 pts	