Question One - Preliminary question P8-2

Draw a clear force diagram.

Determine M to cause impending motion of the cylinder. In other words what is M needed so the overall moment is 0?

What is the torque or moment caused by the friction force = so how big does M have to be overcome that moment?

Weight = 100 N Floor A is not smooth μ_{static} = 0.1 μ_{static} kinetic = 0.05 Wall B is smooth Radius r = 1 m Answers: NA is the normal force up

NB is the normal force to the left, no upwards force there as it is smooth Friction force to the right $FA = 0.1 \times NA$

You have to use <u>mu static</u> as the idea is that the cylinder does not move.

Sum of the forces in the y direction are zero Up is positive

$$NA - 100 = 0$$
 so $NA = 100 N up$

Friction = coefficient x normal force so $FA = 0.1 \times 100 = 10 \text{ N}$ to the right

Sum of the moments about O have to be zero

NB does not produce a moment as the lever arm is zero

$$0 = (FA)(1 \text{ meter}) - M$$

$$0 = 10 - M$$

so M = 10 Nm

Answers:

Sum of forces = 0 $FA = \frac{0.333}{0.333} \times 100 = 33.3 \text{ N to the right}$ Sum of the moments = 0 0 = (FA)(1 meter) - M so $M = \frac{33.3 \text{ Nm}}{33.3 \text{ Nm}}$ (-3 marks if did not read coefficients carefully and used mu kinetic)

Sum of forces = 0 FA = $\frac{0.444x}{100}$ 100 = 44.4 N to the right Sum of the moments = 0 0 = (FA)(1 meter) – M so M = $\frac{44.4 \text{ Nm}}{44.4 \text{ Nm}}$

Sum of forces = 0 FA = $\frac{0.555}{100}$ x 100 = 55.5 N to the right Sum of the moments = 0 0 = (FA)(1 meter) – M so M = $\frac{55.5}{100}$ Nm PHYS 1170 Your Name:

Due at the end of class.

Your final answer must have 3 sig. figs. Your mark: /10

Question One - Preliminary question P8-2

Draw a clear force diagram.

Determine M to cause impending motion of the cylinder. In other words what is M needed so the overall moment is 0.

Weight = 100 N
Floor A is not smooth
Wall B is smooth
Radius r = 1 m

 μ static = 0.333

 μ $_{\text{kinetic}}$ = 0.222

PHYS 1170 Your Name:

Due at the end of class.

Your final answer must have 3 sig. figs. Your mark: /10

Question One - Preliminary question P8-2

Draw a clear force diagram.

Determine M to cause impending motion of the cylinder. In other words what is M needed so the overall moment is 0.

Weight = 100 N Floor A is not smooth Wall B is smooth

Radius r = 1 m

 μ_{kinetic} = 0.333

 $\mu_{\text{static}} = 0.44$

PHYS 1170 Your Name:

Due at the end of class.

Your final answer must have 3 sig. figs. Your mark: /10

Question One - Preliminary question P8-2

Draw a clear force diagram.

Determine M to cause impending motion of the cylinder. In other words what is M needed so the overall moment is 0.

Weight = 100 N Floor A is not smooth Wall B is smooth Radius r = 1 m $\mu_{\text{ kinetic}} = 0.444$

 μ static = 0.555