Experiment 5

Aim: Perform Regression Analysis using Scipy and Sci-kit learn.

Theory:

1. Linear Regression:

We'll use Linear Regression to predict the Sale Price of cars, which is a continuous variable. The goal is to find the relationship between features like Car Make, Car Model, Car Year, and Commission Rate with the Sale Price.

2. Logistic Regression:

We'll use Logistic Regression to classify whether a car's Sale Price is "high" or "low" based on the median price. This will be a binary classification task, where:

Implementation:

1. Import necessary libraries and load the dataset

```
[ ] import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.metrics import mean_squared_error, r2_score, accuracy_score
```

[] df = pd.read_csv('diabetes_dataset_with_notes.csv')											
]	df.	if.head()									
₹		year	gender	age	location	race:AfricanAmerican	race:Asian	race:Caucasian	race:Hispanic	race:Other	hypertension
	0	2020	Female	32.0	Alabama	0	0	0	0	1	0
	1	2015	Female	29.0	Alabama	0	1	0	0	0	0
	2	2015	Male	18.0	Alabama	0	0	0	0	1	C
	3	2015	Male	41.0	Alabama	0	0	1	0	0	0
	4	2016	Female	52.0	Alabama	1	0	0	0	0	C

[&]quot;1" means the price is above the median.

[&]quot;0" means the price is below or equal to the median.

<pre>df.describe()</pre>						
		year	age	race:AfricanAmerican	race:Asian	race:Caucasian
	count	100000.000000	100000.000000	100000.000000	100000.000000	100000.000000
	mean	2018.360820	41.885856	0.202230	0.200150	0.198760
	std	1.345239	22.516840	0.401665	0.400114	0.399069
	min	2015.000000	0.080000	0.000000	0.000000	0.000000
	25%	2019.000000	24.000000	0.000000	0.000000	0.000000
	50%	2019.000000	43.000000	0.000000	0.000000	0.000000
	75%	2019.000000	60.000000	0.000000	0.000000	0.000000
	max	2022.000000	80.000000	1.000000	1.000000	1.000000

2. Check for missing values and anomalies

```
print("\nMissing values after handling:\n", X.isnull().sum())
Missing values after handling:
                       0
gender
bmi
                       0
hbA1c_level
                       0
hypertension
heart_disease
bmi_age_interaction
hbA1c_blood_glucose
dtype: int64
numeric columns = df.select dtypes(include=[np.number]).columns
imputer = SimpleImputer(strategy="median")
df[numeric_columns] = imputer.fit_transform(df[numeric_columns])
df["bmi_age_interaction"] = df["bmi"] * df["age"]
df["hbA1c blood glucose"] = df["hbA1c level"] * df["blood glucose level"]
df = df[df["blood_glucose_level"] < df["blood_glucose_level"].quantile(0.99)]</pre>
```

3. Choose your columns and convert categorical values into numerical values for better classification

```
df["gender"] = df["gender"].map({"Male": 0, "Female": 1})
df["smoking_history"] = df["smoking_history"].astype('category').cat.codes
```

```
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

4. Train dataset using linear regression

```
[35]
     df = df.drop(columns=["location", "clinical_notes", "smoking_history", "gender"])
     # Define features (X) and target (y)
     X = df.drop(columns=["diabetes"])
     y = df["diabetes"]
     # Split data into training and testing sets
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
     # Initialize and train linear regression model
     model = LinearRegression()
     model.fit(X train, y train)
     # Predictions
     y_pred = model.predict(X_test)
     # Evaluate the model
     mse = mean_squared_error(y_test, y_pred)
     r2 = r2_score(y_test, y_pred)
     print(f"Mean Squared Error: {mse}")
     print(f"R-squared Score: {r2}")
```

5. Finding out Mean Squared error and goodness of fit

Mean Squared Error: 0.041312657154867635 R-squared Score: 0.25314264247732976

6. Using Logistic Regression, find out accuracy store

```
X = df.drop(columns=["diabetes"])
y = df["diabetes"]

# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Initialize and train logistic regression model
model = LogisticRegression(max_iter=1000)
model.fit(X_train, y_train)

# Predictions
y_pred = model.predict(X_test)

# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
report = classification report(y_test, y_pred)

print(f"Accuracy: {accuracy}")
print("Classification Report:")
print(report)
```

Accuracy Score:

Accuracy: 0.962550087331758 Classification Report: precision rec

	precision	recall	f1-score	support
0.0	0.97	0.99	0.98	18322
1.0	0.82	0.47	0.59	1144
accuracy			0.96	19466
macro avg	0.89	0.73	0.79	19466
weighted avg	0.96	0.96	0.96	19466

Conclusion:

Linear Regression Results:

- The Mean Squared Error (MSE) of 0.0413 indicates that the model's predictions are relatively close to the actual values.
- The R-squared score of 0.2531 shows that the independent variables explain about 25% of the variance in diabetes presence.

Logistic Regression Results:

- The model achieved an accuracy of 96.25%.
- The classification report shows that it performs well for non-diabetic cases (0) with high precision and recall.

-	For diabetic cases (1), the recall is 0.47, meaning that while many diabetic cases are correctly identified, some are still being misclassified.			