# 21-235 Math Studies Analysis I

Rohan Jain

# Contents

| Chapter 1 |                                                                 | Page 2 |
|-----------|-----------------------------------------------------------------|--------|
| 1.        | 1 Ordered Fields (Review)                                       | 2      |
| 1         | 2 Types of Ordered Fields                                       | 3      |
| 1.        | 3 Dedekind Completion                                           | 4      |
|           | Ordering $\mathbb{F}^*$ — 5 • Addition — 6 • Multiplication — 7 |        |
| 1         | 4 Robert Reci                                                   | 7      |
| 1.        | 5 Completeness                                                  | 9      |

# Chapter 1

# 1.1 Ordered Fields (Review)

#### Definition 1.1.1: Order

Let E be a set. An order on E is a relation < on E such that for all  $x, y, z \in E$ :

- 1. (Trichotomy) Exactly one of the following holds: x < y, x = y, or x > y.
- 2. (Transitivity) If x < y and y < z, then x < z.

# Example 1.1.1 (Examples of Ordered Sets)

- 1. This definition develops orders on basic number systems: e.g.  $\mathbb{Z}$ ,  $\mathbb{Q}$ , and  $\mathbb{R}$ .
- 2. Define  $\lesssim$  on  $\mathbb Z$  as follows: We say that  $m \lesssim n$  for  $m,n \in \mathbb Z$  if:
  - (a) m is even and n is odd
  - (b) m, n are even and m < n
  - (c) m, n are odd and m < n.

#### Key Concepts:

- upper/lower bounds of sets
- bounded sets
- max/min
- supremum/infimum
- supremum/infimum property: An ordered set E satisfies such a property if every nonempty set  $A \subseteq E$  that's bounded above/below has a supremum/infimum in E.
- Fact: sup prop  $\implies$  inf prop

#### Definition 1.1.2: Ordered Field

Let  $\mathbb{F}$  be a field with order  $\prec$ . We say that  $\mathbb{F}$  is an ordered field provided that:

- 1. For all  $x, y, z \in \mathbb{F}$ , if x < y, then x + z < y + z.
- 2. For all  $x, y \in \mathbb{F}$ , if 0 < x and 0 < y, then  $0 < x \cdot y$ .

#### Example 1.1.2

O is a field.

Facts of any ordered field:

- 1. 0 < 1
- 2.  $\nexists x \in \mathbb{F}$  such that  $x^2 = -1$ .

# Definition 1.1.3: Ordered Subfield, Homomorphism, Isomorphism

Let **F** be an ordered field.

- 1. A set  $\mathbb{K} \subseteq \mathbb{F}$  is called an *ordered subfield* if mathbbK is an algeraic subfield and  $\mathbb{K}$  is an ordered field equipped with < from  $\mathbb{F}$ .
- 2. Let  $\mathbb{G}$  be an ordered field and let  $f : \mathbb{F} \to \mathbb{G}$ . We say that f is an ordered field homomorphism if it's a field homomorphism and f(x) < f(y) whenever x < y.
- 3. f is an ordered field isomorphism if f is an ordered field homomorphism and f is bijective.

#### Note:

- 1. If  $f: \mathbb{F} \to \mathbb{G}$  is an ordered field homomorphism,  $f(\mathbb{F})$  is an ordered subfield of  $\mathbb{G}$ .
- 2. OF property  $\implies f$  is injective.
- 3. : every ordered field homomorphism  $f: \mathbb{F} \to \mathbb{G}$  is such that f induces a bijection  $f: \mathbb{F} \to f(\mathbb{F}) \subseteq \mathbb{G}$ .

**Theorem 1.1.1**  $\mathbb Q$  is the smallest ordered field. More precisely, if  $\mathbb F$  is an ordered field, then there exists a canonical ordered field homomorphism  $f:\mathbb Q\to\mathbb F$ .

Upshot/notation abuse: We identify  $f(\mathbb{Q}) = \mathbb{Q}$  to view  $\mathbb{Q} \subseteq \mathbb{F}$ . In turn,  $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subseteq \mathbb{F}$ .

# 1.2 Types of Ordered Fields

#### Definition 1.2.1: Archimedean, Dedekind complete

Let **F** be an ordered field.

- 1. We say that  $\mathbb{F}$  is Archimedean if  $\forall 0 < x \in \mathbb{F}$ ,  $\exists n \in \mathbb{N}$  such that n > x.
- 2. We say that  $\mathbb{F}$  is Dedekind complete if it satisfies the supremum property.

## Facts:

- 1.  $\mathbb{Q}$  is Archimedean.
- 2. If  $\mathbb{F}$  is Dedekind complete, then  $\forall 0 < x \in \mathbb{F}$  and  $\forall 0 < n \in \mathbb{N}, \exists ! \ 0 < y \in \mathbb{F}$  such that  $y^n = x$ .
- 3.  $\mathbb{Q}$  is not Dedekind complete. ( $\sqrt{2}$  is a counterexample.)

### Theorem 1.2.1

Suppose  $\mathbb{F}$  is a Dedekind complete ordered field. Then  $\mathbb{F}$  is Archimedean.

*Proof.* If not, then  $\mathbb{N} \subset \mathbb{F}$  is bounded above, and so the supremum property provides  $x \in \mathbb{F}$  such that  $x = \sup \mathbb{N}$ . But then x - 1 is an upper bound for  $\mathbb{N}$ , so there exists  $n \in \mathbb{N}$  such that x - 1 < n. Hence x < n + 1, which contradicts the definition of x as an upper bound. Therefore,  $\mathbb{F}$  is Archimedean.

# 1.3 Dedekind Completion

Throughout this section, let **F** be an Archimedean ordered field.

#### Definition 1.3.1: Dedekind cut

We say a set  $C \subseteq \mathbb{F}$  is Dedekind cut if:

- 1.  $C \neq \emptyset$  and  $C \neq \mathbb{F}$ .
- 2. If  $p \in C$  and  $q \in \mathbb{F}$  such that q < p, then  $q \in C$ .
- 3. If  $p \in C$ , then  $\exists r \in C$  such that p < r.

We will write  $\mathbb{F}^*$  for the set of all Dedekind cuts in  $\mathbb{F}$ . It is called the *Dedekind completion* of  $\mathbb{F}$ .

# Note:

Let  $C \subseteq \mathbb{F}$  be a cut. Then:

- 1. If  $p \in C$ , then  $q \notin C$ , then p < q.
- 2. If  $r \notin C$ , and  $r < s \in \mathbb{F}$ , then  $s \notin C$ .

## Example 1.3.1 (Cut examples)

1. Let  $q \in \mathbb{F}$  and define  $C_q = \{ p \in \mathbb{F} \mid p < q \}$ . Then  $C_q$  is a cut.

Proof. (a)  $q-1 < q \implies q-1 \in C_q$ .  $q \nleq q \implies q \notin C_q \implies C_q \neq \mathbb{F}$ .

- (b) Let  $p \in C_q$ . Suppose  $s \in \mathbb{F}$  such that s < p. Then  $s < q \implies s \in C_q$ .
- (c) Let  $p \in C_q$ . Then  $p < \frac{p+q}{2} < q \implies \frac{p+q}{2} \in C_q$ .

2. Suppose  $\mathbb{F}$  is such that  $\nexists x \in \mathbb{F}$  such that  $x^2 = 2$ . Let  $C = \{ p \in \mathbb{F} \mid p \leq 0 \text{ or } 0 < p^2 < 2 \}$ . Then C is a cut.

*Proof.* (a)  $1 \in C$  and  $1^2 = 1 < 2$ .  $2 \notin C$  and  $2^2 = 4 > 2$ .

- (b) Let  $p \in C$  and  $q \in \mathbb{F}$  such that q < p. If  $q \le 0$ , then  $q \in C$  trivially. Suppose 0 < q < p. Then  $0 < q^2 < p^2 < 2$ , so  $q \in C$ .
- (c) Let  $p \in C$ . If  $p \le 0$ , then  $1 \in C$  and p < 1, so we're done. Suppose  $0 < p^2 < 2$ . Note,  $0 < 2 p^2$ , so  $\frac{2p+1}{2-p^2} > 0$ . Then we can define  $r = 1 + \frac{2p+1}{2-p^2} \ge \max(1, \frac{2p+1}{2-p^2})$ . Then  $(p+1/r)^2 = p^2 + \frac{2p}{r} + \frac{1}{r^2}$ . We have:

$$p^{2} + \frac{2p}{r} + \frac{1}{r^{2}} < p^{2} + \frac{2p}{r} + \frac{1}{r}$$

$$= p^{2} + \frac{2p+1}{r}$$

$$\leq p^{2} + 2 - p^{2}$$

$$= 2.$$

So,  $p and <math>p + 1/r \in C$ .

⊜

(2)

# 1.3.1 Ordering $\mathbb{F}^*$

#### Lenma 1.3.1

The following hold:

- 1. If  $\mathcal{A}, \mathcal{B} \in \mathbb{F}^*$ , then exactly one holds:
  - $\mathcal{A} \subset \mathcal{B}$
  - $\mathcal{A} = \mathcal{B}$
  - $\mathcal{B} \subset \mathcal{A}$
- 2. If  $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathbb{F}^*$  and  $\mathcal{A} \subset \mathcal{B}$  and  $\mathcal{B} \subset \mathcal{C}$ , then  $\mathcal{A} \subset \mathcal{C}$ .

*Proof.* Proof of 2 is trivial, as well as the equality part for 1.

- If  $\mathcal{A} = \mathcal{B}$ , we're done.
- Suppose  $\exists b \in \mathcal{B} \setminus \mathcal{A}$ . If  $a \in \mathcal{A}$ , then a < b, but  $\mathcal{B}$  is a cut so  $a \in \mathcal{B}$ , so  $\mathcal{A} \subset \mathcal{B}$ .
- Suppose  $\exists a \in \mathcal{A} \setminus \mathcal{B}$ . Then a < b for all  $b \in \mathcal{B}$ , so  $a \in \mathcal{B}$ , so  $\mathcal{B} \subset \mathcal{A}$ .

#### Definition 1.3.2: Order on cuts

Given  $\mathcal{A}, \mathcal{B} \in \mathbb{F}^*$ , we say that  $\mathcal{A} < \mathcal{B}$  if  $\mathcal{A} \subset \mathcal{B}$ . The lemma above shows that this is infact an order.

(2)

#### Lenma 1.3.2

Let  $E \subseteq \mathbb{F}^*$  be nonempty and bounded above. Then  $\mathcal{B} = \bigcup_{\mathcal{A} \in E} \mathcal{A}$  is a cut.

*Proof.* 1. Since  $E \neq \emptyset$ , there exists  $\mathcal{A} \in E$ . So  $\mathcal{A} \neq \emptyset$ , hence  $\mathcal{B} \neq \emptyset$ .

Since E is bounded above, there exists  $C \in \mathbb{F}^*$  such that  $\mathcal{A} \subset C$  for all  $\mathcal{A} \in E$ . Since C is a cut, there is  $q \in \mathbb{F}$  such that  $q \notin C$ . Then  $q \notin \mathcal{A}$  for all  $\mathcal{A} \in E$ , so  $q \notin \mathcal{B}$ .

- 2. Let  $p \in \mathcal{B}$  and  $q \in \mathbb{F}$  such that q < p. Since  $\mathcal{B}$  is a union of cuts, it follows that  $p \in \mathcal{A}$  for some  $\mathcal{A} \in E$ . Since  $\mathcal{A}$  is a cut,  $q \in \mathcal{A} \subseteq \mathcal{B}$ .
- 3. Let  $p \in \mathcal{B}$ . Then  $p \in \mathcal{A}$  for some  $\mathcal{A} \in E$ . Since  $\mathcal{A}$  is a cut, there exists  $r \in \mathcal{A}$  such that p < r. Since  $\mathcal{A} \subset \mathcal{B}$ , we have  $r \in \mathcal{B}$ .

#### Theorem 1.3.1

 $\mathbb{F}^*$  equipped with the order < satisfies the supremum property.

*Proof.* Let  $E \subseteq \mathbb{F}$  be a nonempty set that is bounded above. From last time, we know that  $\mathcal{B} = \bigcup_{\mathcal{A} \in E} \mathcal{A}$  is a cut. We claim that  $\mathcal{B} = \sup E$ .

If  $\mathcal{A} \in E$ , then  $\mathcal{A} \subseteq \mathcal{B}$ . And so  $\mathcal{A} \leqslant \mathcal{B}$ , so  $\mathcal{B}$  is an upper bound for E.

Next, suppose that  $C \in \mathbb{F}^*$  is an upper bound of E. This means that  $\mathcal{A} \leq C$  for every  $\mathcal{A} \in E$ , meaning  $\mathcal{A} \subseteq C \forall \mathcal{A} \in E$ . So  $\mathcal{B} \subseteq C$ . As such,  $\mathcal{B} \leq C$ , so  $\mathcal{B} = \sup E$ .

Remark: In none of the results leading up to this theorem did we use that  $\mathbb{F}$  is anything other than an ordered set. This shows that the cut construction of Dedekind works in general for ordered sets and yields  $\mathbb{F}^*$  that satisfies the supremum property. Also,  $\{C_p \mid p \in \mathbb{F}\} \subseteq \mathbb{F}^*$ .

# 1.3.2 Addition

Idea:  $\mathbb{F} \cong \{C_p \mid p \in \mathbb{F}\}.$ 

#### Lenma 1.3.3

Let  $\mathcal{A}, \mathcal{B} \in \mathbb{F}^*$ . Then  $C = \{a + b \mid a \in \mathcal{A}, b \in \mathcal{B}\}$  is a cut.

*Proof.* Claim:  $\mathcal{A}, \mathcal{B} \neq \emptyset \implies C \neq \emptyset$ .

 $\mathcal{A}, \mathcal{B}$  are cuts, so  $\exists M_1, M_2 \in \mathbb{F}$  such that  $a < M_1$  for all  $a \in \mathcal{A}$  and  $b < M_2$  for all  $b \in \mathcal{B}$ . Then  $a + b < M_1 + M_2$  for all  $a \in \mathcal{A}, b \in \mathcal{B}$ , so  $a + b < M_1 + M_2$ , meaning  $M_1 + M_2 \notin C$ .

Also, let  $c = a + b \in C$  for  $a \in \mathcal{A}, b \in \mathcal{B}$ . Let  $q < c \implies q - a < b \implies q - a \in \mathcal{B}$ . Hence,  $q = a + (q - a) \in C$ . Thirdly, let  $c = a + b \in C$  for  $a \in \mathcal{A}, b \in \mathcal{B}$ . Since  $\mathcal{A}, \mathcal{B} \in \mathbb{F}^*$ ,  $\exists r_a, r_b$  such that  $a < r_a \in \mathcal{A}, b < r_b \in \mathcal{B}$ . Then  $c = a + b < r_a + r_b$ , so  $r_a + r_b \in C$ .

As such, C is a cut.

Before we define addition, we need to define the negative of a cut.

Heuristic: What we want is that  $-C_1 = C_{-1}$ . The way we do this is by defining  $C_{-p} = \{q \in \mathbb{F} \mid \exists p > q : p \in -C_p^C\}$ . This is the same as  $\{q \in \mathbb{F} \mid \exists p > q : -p \notin C_p\}$ .

Now we study  $\{q \in \mathbb{F} \mid \exists p > q : -p \notin C\}$ .

#### Lenma 1.3.4

Let  $C \in \mathbb{F}^*$ . Then  $\{q \in \mathbb{F} \mid \exists p > q : -p \notin C\}$  is a cut.

## Definition 1.3.3: Addition

For  $\mathcal{A}, \mathcal{B} \in \mathbb{F}^*$ , we define  $\mathcal{A} + \mathcal{B} = \{a + b \mid a \in \mathcal{A}, b \in \mathcal{B}\}$  and  $-\mathcal{A} = \{q \in \mathbb{F} \mid \exists p > q : -p \notin \mathcal{A}\}.$ 

#### Theorem 1.3.2

Define  $0 = C_0 \in \mathbb{F}^*$ . The following hold:

- 1.  $\mathcal{A}, \mathcal{B} \in \mathbb{F}^* \implies \mathcal{A} + \mathcal{B} \in \mathbb{F}^*$ .
- $2. \ \mathcal{A}, \mathcal{B} \in \mathbb{F}^* \implies \mathcal{A} + \mathcal{B} = \mathcal{B} + \mathcal{A}.$
- 3.  $\mathcal{A}, \mathcal{B}, C \in \mathbb{F}^* \implies (\mathcal{A} + \mathcal{B}) + C = \mathcal{A} + (\mathcal{B} + C).$
- $4. \ \mathcal{A} \in \mathbb{F}^* \implies \mathcal{A} + 0 = \mathcal{A}.$
- 5.  $\mathcal{A} \in \mathbb{F}^* \implies \mathcal{A} + (-\mathcal{A}) = 0$ .

*Proof.* Easy proof, too lazy to write out.

Also:  $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathbb{F}^*$  and  $\mathcal{A} < \mathcal{B} \implies \mathcal{A} + \mathcal{C} < \mathcal{B} + \mathcal{C}$ .

Important Remark: The Archimedean property is actually needed for the above theorem in orer to prove the 5th condition.

⊜

# 1.3.3 Multiplication

#### Lenma 1.3.5

Let  $\mathcal{A}, \mathcal{B} \in \mathbb{F}^*$  such that  $\mathcal{A}, \mathcal{B} > 0$ . Then  $C = \{ p \in \mathbb{F} \mid p \leq 0 \} \cup \{ ab \mid a \in \mathcal{A}, b \in \mathcal{B}, a, b > 0 \}$  is a cut.

#### Lenma 1.3.6

Let  $\mathcal{A} \in \mathbb{F}^*$  be such that  $\mathcal{A} > 0$ . Then  $C = \{ p \in \mathbb{F}^* \mid p \leq 0 \} \cup \{ 0 < q \in \mathbb{F} \mid \exists p > q : p^{-1} \notin \mathcal{A} \}$  is a cut.

# Definition 1.3.4: Multiplication

Let  $\mathcal{A}, \mathcal{B} \in \mathbb{F}^*$ . We define multiplication as:

- 1. If  $\mathcal{A}, \mathcal{B} > 0$ , then  $\mathcal{A} \cdot \mathcal{B} = \{ab \mid 0 < a \in \mathcal{A}, 0 < b \in \mathcal{B}\}$ .
- 2. If  $\mathcal{A} = 0$  or  $\mathcal{B} = 0$ , then  $\mathcal{A} \cdot \mathcal{B} = 0$ .
- 3. If  $\mathcal{A} > 0$  and  $\mathcal{B} < 0$ , then  $\mathcal{A} \cdot \mathcal{B} = -(\mathcal{A} \cdot (-\mathcal{B}))$ .
- 4. If  $\mathcal{A} < 0$  and  $\mathcal{B} > 0$ , then  $\mathcal{A} \cdot \mathcal{B} = -((-\mathcal{A}) \cdot \mathcal{B})$ .
- 5. If  $\mathcal{A}, \mathcal{B} < 0$ , then  $\mathcal{A} \cdot \mathcal{B} = (-\mathcal{A}) \cdot (-\mathcal{B})$ .

We define multiplication inversion via:

- 1. If  $\mathcal{A} > 0$ , then  $\mathcal{A}^{-1} = \{ q \in \mathbb{F} \mid \exists p > q : p^{-1} \notin \mathcal{A} \}$ .
- 2. If  $\mathcal{A} < 0$ , then  $\mathcal{A}^{-1} = -(-\mathcal{A})^{-1}$ .

# Theorem 1.3.3

Set  $1 = C_1$ . The following hold:

- 1. If  $\mathcal{A}, \mathcal{B} \in \mathbb{F}^*$ , then  $\mathcal{A} \cdot \mathcal{B} \in \mathbb{F}^*$ .
- 2. If  $\mathcal{A}, \mathcal{B} \in \mathbb{F}^*$ , then  $\mathcal{A} \cdot \mathcal{B} = \mathcal{B} \cdot \mathcal{A}$ .
- 3. If  $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathbb{F}^*$ , then  $(\mathcal{A} \cdot \mathcal{B}) \cdot \mathcal{C} = \mathcal{A} \cdot (\mathcal{B} \cdot \mathcal{C})$ .
- 4. If  $\mathcal{A} \in \mathbb{F}^*$ , then  $\mathcal{A} \cdot 1 = \mathcal{A}$ .
- 5. If  $\mathcal{A} \in \mathbb{F}^*$ , then  $\mathcal{A} \cdot \mathcal{A}^{-1} = 1$ .

Also if  $\mathcal{A}, \mathcal{B} \in \mathbb{F}^*$  and  $\mathcal{A}, \mathcal{B} > 0$ , then  $\mathcal{A} \cdot \mathcal{B} > 0$ .

#### Theorem 1.3.4

If  $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathbb{F}^*$ , then  $\mathcal{A} \cdot (\mathcal{B} + \mathcal{C}) = \mathcal{A} \cdot \mathcal{B} + \mathcal{A} \cdot \mathcal{C}$ .

We now know that  $\mathbb{F}^*$  is an ordered field.

# 1.4 Robert Reci

# Theorem 1.4.1

 $\mathbb{Q}$  is the smallest ordered field.

*Proof.* Let  $\mathbb{F}$  be any ordered field. Let  $1 \in \mathbb{F}$ . Let  $\iota : \mathbb{N} \to \mathbb{F}$ ,  $n \mapsto 1 + \dots + 1$  n times. Then  $\iota(-n) = -\iota(n)$  for  $n \in \mathbb{N}_0$  and  $-n \in \mathbb{Z}^-$ .

Then we say  $\iota(p/q) = \iota(p)\iota(q)^{-1}$  for  $p/q \in \mathbb{Q}$ .

☺

Corollary 1.4.1 Every ordered field is infinite

 $\iota[\mathbb{Q}] \subseteq \mathbb{F}$  is infinite.

#### Roots

Let  $\mathbb{F}$  be a Dedekind complete ordered field,  $0 < x \in \mathbb{F}$ ,  $n \in \mathbb{N}$ . Then  $\exists ! y \in \mathbb{F}$  such that y > 0 and  $y^n = x$ .

*Proof.* n=1 is silly. Assume  $n \ge 2$ . Let  $E=\{z \in \mathbb{F} \mid z>0 \text{ and } z^n < x\}$ . Then E is nonempty and bounded above by x. Let  $y=\sup E$ . We claim that  $y^n=x$ .

We want to show that  $y^n \geq x$  and  $y^n \leq x$ .

### Lenma 1.4.1

In any commutative ring R,  $b^n - a^n = (b - a)(b^{n-1} + b^{n-2}a + \dots + ba^{n-2} + a^{n-1}).$ 

And hence for 0 < a < b in  $\mathbb{F}$ , we have  $0 < b^n - a^n = (b - a)nb^{n-1}$ .

Suppose  $y^n < x$ , so  $x - y^n > 0$ . We define  $h = \frac{1}{2} \min \left( 1, \frac{x - y^n}{n(y + 1)^{n - 1}} \right)$ . 0 < h < 1, also  $0 < h < \frac{x - y^n}{n(y + 1)^{n - 1}}$ .

Then, by the inequality below the lemma, we have

$$0 < (y+h)^{n} - y^{n}$$

$$< hn(y+h)^{n-1}$$

$$< hn(y+1)^{n-1}$$

$$< x - y^{n},$$

so  $(y+h)^n < x$ , which contradicts the definition of y as the supremum.

#### Definition 1.4.1: Ring\*

A ring is a field where actually we don't care about inverses anymore.

# Definition 1.4.2: Domain

R is a domain when  $xy = 0 \implies x = 0 \land y = 0$ .

Let R be a ring. For  $(r,s) \in R \times R \setminus \{0\}$ , we say  $(r,s) \sim (r',s')$  if rs' = r's.

The field of fractions,  $\operatorname{Frac}(R)$  is the set of equivalence classes of  $R \times R \setminus \{0\}$  under  $\sim$  equipped with the operations [(r,s)] + [(r',s')] = [(rs' + r's,ss')] and  $[(r,s)] \cdot [(r',s')] = (rr',ss')$ .

We check that  $[(r,s)] \cdot [(s,r)] = [(rs,sr)] = [(1,1)].$ 

Let  $\mathbb{F}$  a field,  $\mathbb{F}^x$  its polynomial ring. Let  $\mathbb{F}(x)$  be the field of fractions of  $\mathbb{F}^x$ . Then  $\mathbb{F}(x) := \operatorname{Frac}(\mathbb{F}^x)$  is the field of rational functions in x with coefficients in  $\mathbb{F}$ .

Given  $p, q \in \mathbb{F}^x$ , say p/q > 0 if p and q have the same sign. Say  $f, g \in \mathbb{F}(x)$ , that f > g when f - g > 0.

#### Theorem 1.4.2

 $\mathbb{F}(x)$  is never Archimedean.

*Proof.* x is an upper bound for all  $n \in \mathbb{N}$ .

⊜

(2)

♦ Note:

If  $\mathbb{F}$  is Archimedean,  $|\mathbb{F}| \leq 2^{\aleph_0}$ .

#### Theorem 1.4.3

Let  $\lambda$  be an infinite cardinal. Then there is an ordered field of cardinality  $\lambda$ .

#### Corollary 1.4.2

The Archimedean property is not a first-order property.

# 1.5 Completeness

#### Lenma 1.5.1

Suppose  $\mathbb{F}$  is an ordered field that is not Dedekind complete. Then  $\exists$  and infinite  $E \subseteq \mathbb{F}$  such that:

- 1. E bounded above,  $\emptyset \neq U(E)$  is open,  $\emptyset \neq U(E)^C$  is open.
- $2. \ a \in U(E)^C, \, b \in U(E) \implies a < b.$
- 3.  $f: \mathbb{F} \to \mathbb{F}$  with  $f(x) = \begin{cases} 1 & x \in U(E) \\ 0 & x \in U(E)^C \end{cases}$  is differentiable with f' = 0.

#### Theorem 1.5.1 Characteristics of Dedekind Completeness

Let  $\mathbb{F}$  be an ordered field. The following are equivalent:

- 1. F is Dedekind complete.
- 2. F has the intermediate value property: If  $f:[a,b] \to \mathbb{F}$  is continuous and  $\min(f(a),f(b)) < c < \max(f(a),f(b))$ , then  $\exists x \in [a,b]$  such that f(x)=c.
- 3.  $\mathbb{F}$  satisfies the mean value property: If  $f:[a,b]\to\mathbb{F}$  is continuous and differentiable on (a,b), then  $\exists x\in(a,b)$  such that  $f'(x)=\frac{f(b)-f(a)}{b-a}$ .
- 4.  $\mathbb{F}$  satisfies Cauchy mean value property: If  $f,g:[a,b]\to\mathbb{F}$  are both continuous and differentiable on (a,b), then  $\exists x\in(a,b)$  such that  $\frac{f'(x)}{g'(x)}=\frac{f(b)-f(a)}{g(b)-g(a)}$ .
- 5.  $\mathbb{F}$  satisfies the extreme value property: If  $f:[a,b]\to\mathbb{F}$  is continuous, then f attains a maximum and minimum on [a,b].

*Proof.* 1 ⇒ 2: Let  $f:[a,b] \to \mathbb{F}$  and continuous. WLOG, assume f(a) < c < f(b). Define  $E = \{x \in [a,b] \mid f(x) < c\}$ . E is nonempty and bounded above by b. Let  $x = \sup E$ . We claim that f(x) = c. Since f is continuous,  $\exists \kappa > 0$  such that  $f(t) < c \ \forall t \in [a,a+\kappa]$  and  $f(t) > c \ \forall t \in [b-\kappa,b]$ . So,  $a + \frac{\kappa}{2} < x < b - \frac{\kappa}{2}$ .

Suppose BWOC f(x) < c. Again by continuity,  $\exists \delta > 0$  such that f(t) < c for all  $t \in B(x, \delta) \subseteq [a, b]$ . Then  $x + \frac{\delta}{2} \in E$ , contradiction.

Then suppose BWOC f(x) > c. Again,  $\exists \delta > 0$  such that f(t) > c for all  $t \in B(x, \delta) \subseteq [a, b]$ . Then  $\exists z \in E$  such that  $x - \frac{\delta}{2} < z \le x$  and f(z) < c. But then c < f(z) < c, contradiction.

So f(x) = c by trichotomy.

- 2 ⇒ 1: We'll show ¬1 ⇒ ¬2. Suppose  $\mathbb{F}$  is not Dedekind complete. Then we can let  $f: \mathbb{F} \to \mathbb{F}$  be the strange function from the lemma, and we can pick a < b with  $a \in U(E)^C$  and  $b \in U(E)$ . Then f is continuous on [a,b], f(a)-<1=f(b), but there is not  $x \in [a,b]$  with  $f(x)=\frac{1}{2}$ , by construction.
- $1 \implies 5$ : First we claim that if  $\mathbb F$  is Dedekind and  $f:[a,\tilde b] \to \mathbb F$  is continuous, then  $f([a,b]) \subseteq \mathbb F$  is a bounded set. We prove the claim.

Consider  $E = \{x \in [a,b] \mid f([a,x]) \text{ is bounded}\}$ .  $a \in E$  and E is bounded, so we can let  $s = \sup E$ . Next note that by continuity, if  $[c,d] \subseteq [a,b]$  such that f([c,d]) is bounded, then  $\exists \delta > 0$  such that  $f([a,b] \cap [c-\delta,d+\delta])$  is bounded. Using this, deduce in turn that a < s,  $s = \max E$ , and s = b.

So now suppose  $\mathbb F$  is Dedekind complete and let  $f:[a,b]\to\mathbb F$  be continuous. The claim establishes that  $f([a,b])\subseteq\mathbb F$  is a bounded set, so we can let  $\begin{cases} \mu=\inf f([a,b])\\ \lambda=\sup f([a,b]) \end{cases}$ . Suppose BWOC that  $f(x)<\lambda$  for all  $x\in[a,b]$ .

Then teh function  $g:[a,b]\to \mathbb{F}$  defined by  $g(x)=\frac{1}{\lambda-f(x)}$  is continuous and positive. So by the claim, there is k>0 such that  $g(x)\leq k$  for all  $x\in [a,b]$ . But then

$$\frac{1}{\lambda - f(x)} \leq k \implies \frac{1}{k} \leq \lambda - f(x) \implies f(x) \leq \lambda - \frac{1}{k},$$

for all  $x \in [a, b]$ . But this contradicts the definition of  $\lambda$ , as we just found a better upper bound.

Therefore, there does exists  $M \in [a, b]$  such that  $f(M) = \lambda$ , which is max f([a, b]).

The min follows from a similar argument.

 $5 \implies 4$ : Let  $f,g:[a,b] \to \mathbb{F}$  be continuous and differentiable on (a,b). Let  $h:[a,b] \to \mathbb{F}$  via h(x) = f(x)(g(b) - g(a)) - g(x)(f(b) - f(a)). It suffices to show  $\exists x \in (a,b)$  such that h'(x) = 0.

By construction, h(a) = h(b). If h(x) = h(a) for all  $x \in [a,b]$ , then h' = 0 and we're done. Suppose then that h is not constant. Then EVT shows that f attains its maximal/minimum values, and at least one must occur at the point  $x \in (a,b)$ , therefore h'(x) = 0.

 $4 \implies 3$ : Let g(x) = x. Done.

 $3 \implies 1$ . We'll show  $\neg 1 \implies \neg 3$ . Suppose  $\mathbb{F}$  is not Dedekind complete. Then we can let  $f: \mathbb{F} \to \mathbb{F}$  be the function from the lemma, and we can pick a < b with  $a \in U(E)^C$  and  $b \in U(E)$ . Then consider the restriction  $f: [a,b] \to \mathbb{F}$ . Then 1 = 1 - 0 = f(b) - f(a). Then,  $f'(x)(b-a) = 0 \cdot (b-a) = 0$  for all  $x \in \mathbb{F}$ .  $0 \ne 1$  so  $\neg 3$  as desired.