1 Grupy

Zadanie 1. Pomyśl o liczbach całkowitych i dodawaniu lub o permutacjach zbioru 0,1,2 i składaniu funkcji oraz uzupełnij definicję grupy:

Grupa to para (G,*), gdzie G jest zbiorem, a funkcja $*:G\times G\to G$ (będziemy pisać g*h lub gh zamiast *(g,h)) ma następujące własności:

- 1. istnieje element $e \in G$ taki, że Będziemy nazywać go elementem neutralnym.
- 2. dla każdego $g \in G$ istnieje element $g^{-1} \in G$ taki, że Nazywamy go elementem odwrotnym do g.
- 3. dla dowolnych $f,g,h \in G$ zachodzi równość

Zadanie 2. Ile istnieje grup czteroelementowych?¹

Zadanie 3. Pomyśl o izometriach płaszyczny (przekształceniach zachowujących odległości, jak symetrie, przesunięcia czy obroty). Co jest złożeniem dwóch symetrii? Co jest złożeniem symetrii i przesunięcia? Czy do każdej takiej izometrii umiemy łatwo podać izometrię odwrotną?

Zadanie 4. Pokaż, że każda grupa izomorficzna jest do grupy permutacji jakiegoś zbioru.

2 Topologia

2.1 Przestrzenie metryczne

Czasami mamy na zbiorze zadaną $metrykę~d\!:\! X\!\times\! X\!\to\! \mathbb{R}$ o własnościach:

- 1. $d(x,y) = 0 \Leftrightarrow x = y$
- 2. d(x,y) = d(y,x) dla wszystkich $x,y \in X$
- 3. $d(x,y) \leq d(x,k) + d(k,x)$ dla wszystkich $x,y,k \in X$

W takim wypadku definiujemy kule o środku w x i promieniu r>0:

$$B(x,r) = \{ y \in X : d(x,y) < r \}$$

Zadanie 5. Narysuj kule w przestrzeniach:

- 1. X, d(x,y)=1 dla $x\neq y$
- 2. \mathbb{R} , $d(x_1,x_2) = |x_1-x_2|$
- 3. \mathbb{R}^2 , $d(x_1,y_1,x_2,y_2) = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2}$
- 4. \mathbb{R}^2 , $d(x_1,y_1,x_2,y_2) = |x_1-x_2|+|y_1-y_2|$
- 5. \mathbb{R}^2 , $d(x_1,y_1,x_2,y_2) = \max(|x_1-x_2|,|y_1-y_2|)$

 $^{^1}$ Z dokładnością do izomorfizmu. Heurystycznie chodzi o grupy, które mają taką samą strukturę, np. $\mathbb Z$ oraz $2\mathbb Z$ wyglądają dokładnie tak samo, poza tym, że mają inaczej nazwane elementy.

2.2 Przestrzenie topologiczne

Przestrzeniq topologiczną nazywamy parę (X,\mathcal{T}) , gdzie X jest zbiorem, a \mathcal{T} jest rodziną podzbiorów X o następujących własnościach:

- 1. $\varnothing X \in \mathcal{T}$
- 2. jeśli $A_i \in \mathcal{T}$ dla $i \in I$, to ich suma też należy do $\mathcal{T} \colon \bigcup_{i \in I} A_i \in \mathcal{T}$
- 3. jeśli $A,B \in \mathcal{T}$, to $A \cap B \in \mathcal{T}$

Zbiór \mathcal{T} nazywamy topologią, a jego elementy - zbiorami otwartymi.

Zadanie 6. Rozważmy przestrzeń metryczną (X,d). Mówimy, że zbiór $A \subseteq X$ jest otwarty jeśli dla każdego $a \in A$ istnieje $r_a > 0$ takie, że

$$B(a,r_a)\subseteq A$$
.

Pokaż, że tak zdefiniowane zbiory otwarte rzeczywiście zadają topologię.

Zadanie 7. Jak wyglądają zbiory otwarte topologii wyznaczonych przez odległość bezwzględną na zbiorach $\mathbb{R}, \mathbb{Z}, \mathbb{Q}$?

Przykład 1. Topologia "rzeka", prosta z dwoma początkami.

Zadanie 8. Ile jest topologii na zbiorze {0,1,2}? (Z dokładnością do homeomorfizmu.)

Zadanie 9. Niech X będzie dowolnym zbiorem, a \mathcal{T} będzie rodziną zawierającą zbiór pusty oraz dopełnienia wszystkich skończonych podzbiorów X. Pokaż, że \mathcal{T} jest topologią.

Zadanie 10. Rozważmy rodzinę zespolonych wielomianów

$$S = \{w_i : i \in I\}, w_i : \mathbb{C} \ni z \mapsto a_n z^n + \dots + a_1 z + a_0 \in \mathbb{C}.$$

Afiniczną rozmaitością algebraiczną V(S) będziemy oznaczać zbiór liczb zespolonych, na których zerują się wszystkie wielomiany rodziny S. Pokaż, że dopełnienia wszystkich afinicznych rozmaitości algebraicznych tworzą topologię na \mathbb{C} (nazywamy ją topologią Zariskiego).

3 Kategorie

Zadanie 11. Pomyśl o zbiorach i funkcjach lub grupach i homomorfizmach oraz uzupełnij definicję kategorii: Kategoriq nazywamy kolekcję obiektów A,B,C..., taką, że dla każdych dwóch obiektów A,B istnieje zbiór Hom(A,B) morfizmów z A do B, które można składać symbolem \circ . Mają one następujące własności:

- 1. Jeśli $f: A \rightarrow B$ oraz $g: B \rightarrow C$, to
- 2. Dla dowolnych trzech morfizmów $f: A \rightarrow B, g: B \rightarrow C, h: C \rightarrow D$ mamy równość:
- 3. Dla każdego obiektu X istnieje morfizm $\mathrm{Id}_X: X \to X$, taki że

Zadanie 12. Pokaż, że Set, Top, Grp, Set*, Top* są kategoriami.

Przykład 2. Kategoria z trzema morfizmami.

Rysunek 1: Produkt - definicja

3.1 Epi/mono/izo-morfizmy

Wprowadzimy pewne określenia morfizmów. Otóż niech $f:A \rightarrow B$ będzie morfizmem.

- 1. f jest epimorfizmem jeśli dla dowolnego obiektu C oraz morfizmów $g,g':B\to C$ z równości $g\circ f=g'\circ f$ wynika, że g=g'.
- 2. f is monomorfizmem jeśli dla dowolnego obiektu C oraz morfizmów $g,g':X\to A$ z równości $f\circ g=f\circ g'$ wynika, że g=g'.
- 3. f jest izomorfizmem jeśli istnieje $f': B \to A$ takie, że $f \circ f' = \mathrm{Id}_B$ oraz $f' \circ f = \mathrm{Id}_A$

Zadanie 13. Czym są epi/mono/izo-morfizmy w Set?

Zadanie 14. Scharakteryzuj (nie musi być formalnie) powyższe morfizmy w kategoriach Top i Grp.

Zadanie 15. Pokaż, że złożenie epi/mono/izo-morfizmów jest epi/mono/izo-morfizmem.

3.2 Podobiekt

Podobiektem obiektu A będziemy nazywać monomorfizm $g: B \to A$. Rozważając jednak kategorię, w której obiekty są pewnymi zbiorami, a morfizmy funkcjami, możemy myśleć o obrazie g (czyli zbiorze z dodatkową strukturą) jako o podobiekcie (np. podobiektem zbioru w kategorii **Set** jest podzbiór).

Zadanie 16. Pokaż, że podobiekt podobiektu jest podobiektem.

Zadanie 17. Scharakteryzuj podobiekty w Set, Top, Grp. Dlaczego w Top istnieje kilka topologii jakie można nadać podzbiorowi aby był nadal podobiektem?

3.3 Produkt

Rozważmy dwa obiekty A,B jakiejś kategorii. Ich produktem będziemy nazywać trójkę $(A \times B, \pi_A, \pi_B)$ taką, że:

- $A \times B$ jest obiektem
- $\pi_A: A \times B \to A, \pi_B: A \times B \to B$ to morfizmy
- jeśli weźmiemy dowolny obiekt X oraz morfizmy $f_A: X \to A, f_B: X \to B$ to istnieje dokładnie jeden morfizm $f: X \to A \times B$ taki, że diagram 2 komutuje (czyli $f_A = \pi_A \circ f$, $f_B = \pi_B \circ f$).

Zadanie 18. Pokaż, że produkt, jeśli istnieje, jest unikatowy z dokładnością do izomorfizmu. Podpowiedź: niech $(\tilde{A} \times B, \tilde{\pi}_A, \tilde{\pi}_B)$ będzie drugim produktem. Wtedy diagram 2 komutuje.

Zadanie 19. Czym jest produkt w Set i Grp? W jaki sposób skonstruować go w Top?

Zadanie 20. Czy produkt zawsze musi istnieć?

Rysunek 2: Produkt - unikatowość

4 Funktor

Funktory to przekształcenia między kategoriami. Ściślej, funktor (kowariantny) $T: C \to B$ to para "funkcji" (obie oznaczane T). Jedna przekształca obiekty z B na obiekty na C, a druga morfizmy z B na morfizmy w C, tak żeby

- $T(1_b)\!=\!1_{T(b)}$ dla wszystkich obiektów b z B
- $T(f \circ g) = T(f) \circ T(g)$ dla wszystkich morfizmów $f, g \le B$

Funktor kontrawariantny jest zdefiniowany analogiczne, zmieniamy tylko drugie wymaganie na

• $T(f \circ g) = T(g) \circ T(f)$ dla wszystkich morfizmów $f, g \le B$

Przykład 3. Funktor identycznościowy dla kategorii B, to funktor $T: B \to B$ który dla każdego obiektu i morfizmu zwraca go spowrotem.

Przykład 4. Funktor zapominalski dla kategorii **Top**, to funktor $T: \mathbf{Top} \to \mathbf{Set}$ który dla każdej przestrzeni topologicznej (X, \mathcal{T}) zwraca (X) i nie zmienia morfizmów.

Przykład 5. Niech $F,G:\mathbf{Set} \to \mathbf{Set}$, to para funktorów $T:\mathbf{Top} \to \mathbf{Set}$ które dla każdego zbioru X zwracają zbiór potęgowy P(X). F zamienia morfizmy na branie obrazów, a G na branie przeciwobrazów. To znaczy dla $f:X \to Y$:

- $F(f): P(X) \ni U \to f(U) \in P(Y)$
- $G(f): P(Y) \ni U \to f^{-1}(U) \in P(X)$

Zadanie 21. Pokaż, że funktory zdefiniowane w przykładach spełniają akjomaty. Rozpoznaj które są funktorami kowariantnymi a który kontrawariantnymi. Czy potrafisz podać jakieś inne funktory?

5 Grupa fundamentalna

Grupe fundamentalną przestrzeni (X, p) z \mathbf{Top}_* oznaczamy $\pi(X, p)$. Jej elementami są klasy abstrakcji przekształceń:

$$f \colon \mathbb{S} \to X \colon f(0) = f(2\pi) = p$$

które są homotopijne:

$$f \sim g \iff \exists F: I \times \mathbb{S} \to X: F(0,\cdot) = f \land F(1,\cdot) = g$$

Wyborażamy sobie, że zmieniając pierwszy parametr przeciągamy jedną pętelkę na drugą (patrz tablica). Strukturę grupy dodajemy następująco:

- \bullet $\pi(X, p) \ni e = [x \mapsto p]$
- $[f] + [g] = \left[x \mapsto f(2x) \text{ kiedy } x \in [0, \frac{1}{2}] \text{ oraz } g(2x-1) \text{ kiedy } x \in [\frac{1}{2}, 1] \right]$

Zadanie 22. Sprawdzić, że rzeczywiście mamy dobrze zdefiniowana grupe.

Zadanie 23. Pokazać, że otrzymaliśmy funktor π : $\mathbf{Top}_* \rightarrow \mathbf{Grp}$

Zadanie 24. Pokazać, że jeżeli istnieje $f: I \to X$ takie, że $f(0) = p \land f(1) = q$ to $\pi(X, p)$ jest homeomorficzne z $\pi(X, q)$. W szczególności dla przestrzeni łukowo spójnych nie ma znaczenia jaki punkt wybierzemy, zawsze dostajeniemy tę samą grupę (z dokładnością do homeomorfizmu). W takich przypadkach piszemy po prostu $\pi(X)$.

Zadanie 25. Obliczyć $\pi(\mathbb{R}^2)$.

Zadanie 26. Obliczyć $\pi(\mathbb{R}^2 \setminus \{0\})$.

Zadanie 27. Udowodnij, że $\mathbb{R}^2 \setminus \{0\}$ nie jest homeomorficzne z \mathbb{R}^2 .

6 Funktor spójności

Przestrzeni topologiczna X jest niespójna jeżeli istnieje taki niepusty podzbiór $U \subset X$ (o niepustym dopełnieniu!) który jest jednocześnie otwarty i domknięty. Przestrzeń topologiczna jest spójna kiedy nie jest niespójna. Spójna składowa/ nazywamy maksymalny, spójny i niepusty podzbiór X.

Zadanie 28. Pokaż, że jeżeli A jest spójnym podzbiorem X, a U, V są otwartymi rozłącznymi pozdbiorami X, to:

$$A\!\subseteq\! U\!\cup\! V\Longrightarrow A\!\subseteq\! U\!\vee\! A\!\subseteq\! V$$

Zadanie 29. Pokaż, że spójne składowe tworzą partycję X.

Zadanie 30. Pokaż, że pod morfizmami obrazy zbiorów spójnych są spójne.

Zadanie 31. Skonstruuj funktor przypisujący przestrzeniem topologicznym zbiór ich spójnych składowych. W jaki sposób przekształca morfizmy?

Zadanie 32. Pokaż, że \mathbb{R} nie jest homeomorficzne z \mathbb{R}^2 .