Assignment 3 – Due 7/16/2017

Part II. Exercise Set 6.1 [12, 16]; Set 6.2 [4, 10, 14]; Set 6.3 [12, 37, 42]

Set 6.1 [12, 16]

12Q: Let the universal set be the set R of all real numbers and let $A = [x \in R] -3 \le x \le 0]$, $B = [x \in R] -1 < x < 2]$, and $C = [x \in R] -3 \le x \le 8]$. Find each of the following:

- a) $A \cup B = [-3, 2)$
- b) $A \cap B = (-1, 0]$
- c) $A^c = (-\infty, -3) \cup (0, \infty)$
- d) $A \cup C = [-3, 0] \cup (6, 8]$
- e) $A \cap C = \emptyset$ //The two sets don't intersect
- f) $B^c = (-\infty, -1] \cup [2, \infty)$
- g) $A^c \cap B^c = (-\infty, -3) \cup [2, \infty)$
- h) $A^c \cup B^c = (-\infty, -1] \cup (0, \infty)$
- i) $(A \cap B)^c = (-\infty, -1] \cup (0, \infty)$
- j) $(A \cup B)^c = (-\infty, -3] \cup (2, \infty)$

16Q: Let A= [a, b, c], B = [b, c, d], and C = [b, c, e]

a) Find A \cup (B \cap C), (A \cup B) \cap C, and (A \cup B) \cap (A \cup C). Which of these sets are equal?

$$A \cup (B \cap C) = [a, b, c]$$

$$(A \cup B) \cap C = [b, c]$$

$$(A \cup B) \cap (A \cup C) = [a, b, c]$$

Therefore $A \cup (B \cap C)$ and $(A \cup B) \cap (A \cup C)$ are equal.

b) Find $A \cap (B \cup C)$, $(A \cap B) \cup C$, and $(A \cap B) \cup (A \cap C)$. Which of these sets are equal?

$$A \cap (B \cup C) = [b, c]$$

$$(A \cap B) \cup C = [b, c, e]$$

$$(A \cap B) \cup (A \cap C) = [b, c]$$

Therefore $A \cap (B \cup C)$ and $(A \cap B) \cup (A \cap C)$ are equal.

c) Find (A - B) - C and A - (B - C). Are these sets equal?

$$(A - B) - C = \{a\}$$

$$A - (B - C) = \{a, b, c\}$$

Therefore $(A - B) - C \neq A - (B - C)$

Set 6.2 [4, 10, 14]

4Q: The following is a proof that for all sets A and B, if $A \subseteq B$, then $A \cup B \subseteq B$. Fill in the blanks.

A: Proof: Suppose A and B are any sets and A \subseteq B. [We must show that $A \cup B \subseteq B$.] Let $x \in A \cup B$. [We must show that $x \in B$. By definition of unions, $x \in A$ or $x \in B$. In case $x \in A$, then since $A \subseteq B$, $x \in B$. In case $x \in B$, then clearly $x \in B$. So in either case, $x \in B$ [as was to be shown].

Use an element argument to prove each statement in 7-19. Assume that all sets are subsets of a universal set U.

10Q: For all sets A, B, and C,

$$(A-B)\cap (C-B)=(A\cap C)-B$$

A:

First we must show that $(A - B) \cap (C - B)$ is a subset of $(A \cap C) - B$.

Suppose there is an element x in $(A - B) \cap (C - B)$. By definition of intersection, $x \in (A - B)$ and $x \in (C - B)$.

 $\mathbf{x} \in (A - B) \leftrightarrow \mathbf{x} \in A$ and $\mathbf{x} \notin B$ //By set definition $\mathbf{x} \in (C - B) \leftrightarrow \mathbf{x} \in C$ and $\mathbf{x} \notin B$ // By set definition

 $x \in A$ and $x \in C$ is $x \in (A \cap C)//By$ definition of intersection

We get $x \in (A \cap C)$ and $x \notin B$ which shows $x \in (A \cap C)$ – B by definition of set difference.

Because we showed that $(A - B) \cap (C - B) \rightarrow x \in (A \cap C) - B$, we proved that $(A - B) \cap (C - B) \subseteq (A \cap C) - B$.

14Q: For all sets A, B, and C, if $A \subseteq B$ then $A \cup C \subseteq B \cup C$

A:

Suppose A, B, and C are sets and $A \subseteq B$. We must show that $A \cup C \subseteq B \cup C$.

Let $x \in A \cup C$. By definition of union, $x \in A$ or $x \in C$.

Examining $x \in A$ and $x \in C$, we can assume that $x \in B$ because $A \subseteq B$.

Hence, $x \in B$ or $x \in C$, which is $x \in B \cup C$ by definition of union.

Therefore, if $A \subseteq B$ then $A \cup C \subseteq B \cup C$

Set 6.3 [12, 37, 42]

For each of 5-21 prove each statement that is true and find a counterexample for each statement that is false. Assume all sets are subsets of a universal set U.

12Q: For all sets A, B, and C,

$$A \cap (B - C) = (A \cap B) - (A \cap C)$$

A: Show that $A \cap (B - C) \subseteq (A \cap B) - (A \cap C)$ and $(A \cap B) - (A \cap C) \subseteq A \cap (B - C)$

Let $x \in A \cap (B - C)$, $x \in A$, $x \in (B - C)$ // By def. of intersection

Which means $x \in A$, $x \in B$, and $x \notin C$ //by set difference.

= $x \in (A \cap B)$ and $x \notin (A \cap C)$ //by intersection

 $= x \in (A \cap B) - (A \cap C)$

Let $x \in (A \cap B) - (A \cap C)$

 $x \in (A \cap B)$ and $x \notin (A \cap C)$ // By set difference

Which means $x \in A$, $x \in B$, and $x \notin C$

 $x \in A$ and $x \in (B - C)$

 $x \in A \cap (B - C)$.

Therefore, $A \cap (B - C) = (A \cap B) - (A \cap C)$

37Q: For all sets A and B, $(B^c \cup (B^c - A))^c = B$

A:

 $(B^c \cup (B^c - A))^c = (B^c \cup (B^c \cap A^c))^c //By$ Difference

= $(B^c)^c \cap (B^c \cap A^c)^c$ //By DeMorgan's

= $(B^c)^c \cap (B^c)^c \cup (A^c)^c$ //By DeMorgan's

 $= B \cap (B \cup A) //By$ double complement

= B //By Absorption

42Q: Simplify: $(A - (A \cap B)) \cap (B - (A \cap B))$

A:

 $(A - (A \cap B)) \cap (B - (A \cap B)) = (A \cap (A \cap B)^c) \cap (B \cap (A \cap B)^c)$ //By difference

- = $(A \cap (A^c \cup B^c) \cap (B \cap (A^c \cup B^c) // By DeMorgan's)$
- = ((A \cap A^c) \cup (A \cap B^c) \cap ((B \cap A c) \cup (B \cap B^c) // By Distributive
- = $(\emptyset \cup (A \cap B^c)) \cap ((B \cap A^c) \cup \emptyset) // By Complementation$
- = $(A \cap B^c) \cap (B \cap A^c)$ //By Identity
- = $(A \cap A^c) \cap (B \cap B^c)$ //By Associative
- = Ø ∩ Ø // By Complementation
- = Ø // By Universal Bound Law