The listing of claims will replace all prior versions, and listings, of claims in this application:

Listing of Claims

Cancel Claims 5, 9 and 15, without prejudice.

Amend Claims 1-4, 6-8, 10-12, 14 and 16-17, as follows:

Claim 1. (currently amended) A compound of formula I'

wherein each of A¹ and A² is independently-C[[or N]];

wherein A¹-A² form part of a ring A selected from pyridinyl5-or 6-membered heteroaryl;

$$\mathbb{Z}$$
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^5

wherein X is

wherein Z is oxygen or sulfur;

Y is selected from [
$$R^{z}$$
 R^{a} R^{b} , R^{z} , R^{b} R^{c} R^{b} , R^{c} R^{c} , R^{c} R^{c} , R^{c}

wherein p is [[0 to]] 2,

wherein R^a and R^b are independently selected from H, halo, cyano, NHR^a and C, alkyl substituted with R^a, or wherein R^a and R^b together form C_a C_b cycloalkyl;

wherein R² is selected from C₂-G₆-alkylenyl, where one of the CH₂-groups may be replaced with an oxygen atom or an -NH-group; wherein one of the CH₂-groups may be substituted with one or two radicals selected from halo, cyano, -NHR⁶ and C₁-alkyl substituted with R¹;

wherein R^d is cycloalkyl;

wherein R¹ is one or more substituents independently selected from H, halo, -OR², oxo, -SR², -CO₂R², -COR², -CONR²R², -NR²R², -NR²R², -NR²C(O)OR², -NR²C(O)R², optionally substituted cycloalkyl, optionally substituted phenylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted phenyl, lower alkyl, cyano, lower hydroxyalkyl, lower carboxyalkyl, nitro, lower alkenyl, lower alkynyl, lower aminoalkyl, lower alkylaminoalkyl and lower haloalkyl;

wherein R2 is selected from

- a) substituted or unsubstituted phenyl6-10 membered aryl,
- b) substituted or unsubstituted 5-6 membered heterocyclyl,
- e) substituted or unsubstituted 9-14 membered bicyclic or tricyclic heterocyclyl,
- d) eyeloalkyl, and
- e) cycloalkenyl,

wherein substituted R² is substituted with one or more substituents independently selected from halo, -OR², oxo, -SR², -CO₂R², -CONR²R², -COR², -NR²R², -NH(C₁-C₄ alkylenylR³), -SO₂R², -SO₂NR²R², -NR²C(O)OR², -NR²C(O)R², -NR²C(O)NR²R², optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted phenyl, halosulfonyl, cyano, alkylaminoalkoxy, alkylaminoalkoxyalkoxy, nitro, lower alkyl substituted with R¹, lower alkenyl substituted with R¹, and lower alkynyl substituted with R¹;

wherein R³ is selected from phenyl[[aryl]] unsubstituted or substituted with one or more substituents independently selected from halo, -OR², -SR², -SO₂R², -CO₂R², -CONR²R², -COR², -NR²R², -SO₂NR²R², -NR²C(O)OR², -NR²C(O)R², optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted phenyl, nitro, alkylaminoalkoxyalkoxy, cyano, alkylaminoalkoxy, lower alkyl substituted with R¹, lower alkenyl substituted with R¹, and lower alkynyl substituted with R¹;

wherein R⁴ is selected from a direct bond, C_{24} -alkylenyl, C_{24} -alkenylenyl and C_{24} -alkynylenyl, where one of the CH₂-groups may be substituted with an oxygen atom or an NH-, wherein R⁴-is optionally substituted with hydroxy;

wherein R⁵ is selected from H, lower alkyl, optionally substituted phenyl and lower aralkyl; wherein R^{5a} is selected from H, lower-alkyl, optionally substituted phenyl and lower-aralkyl;

wherein R⁶ is selected from H or G, alkyl; and

wherein R^7 is selected from H, lower alkyl, optionally substituted phenyl, optionally substituted heterocyclyl, optionally substituted C_3 - C_6 -cycloalkyl, optionally substituted phenyl- $C_{1.6}$ -alkyl, optionally substituted heterocyclyl- $C_{1.6}$ -alkyl, optionally substituted C_3 - C_6 cycloalkyl- $C_{1.6}$ -alkyl, alkylaminoalkyl, and lower haloalkyl; and

wherein R⁹ is selected from H, optionally substituted phenyl, optionally substituted 5-6 membered heterocyclyl and optionally substituted C₃-C₅ cycloalkyl;

and pharmaceutically acceptable derivatives thereof;

provided R² is not 3-trifluoromethylphenyl when A is pyridyl, when X is -C(O)NH-, when Y is -NH-CH₂-, when R¹ is H and R³ is 3-(N-methylamino-carbonyl)phenyl, 4-hydroxyphenyl, 3-hydroxyphenyl or phenyl; further provided R² is not substituted with -SO₂NR⁷R⁷ when Y is -NHSO₂-;

further provided R² is not substituted with -SO₂R⁷ when Y is -NHSO₂- and when R⁷ is fluoro or 6-membered nitrogen-containing heterocyclyl;

further provided R² is not 3-trifluoromethylphenyl when A is pyridyl, when X is -C(O)NH-, when Y is -N(benzyl)-CH₂-, when R⁴ is H and when R³ is phenyl;

further provided R² is not cyclohexyl when A is pyridyl, when X is -C(O)NH-, when Y is -NH-CH₂-, when R⁴ is H and when R⁸ is 2-methoxyphenyl or 3-methoxyphenyl;

further provided R1 is not 2-hydroxymethylpyrrol-5-yl when A is pyridyl;

further provided R¹ is not 4 (methoxyaminocarbonylamino)phenyl when A is thienyl;

further provided R⁴ is not 2-pyridylmethoxy when A is pyrimidyl, when X is -C(O)NH-, and when Y is -NH-CH₂-; further provided R⁴ is not 4-methylpiperidyl when A is pyrimidyl, when X is -C(O)NH-, when Y is -NH-CH₂-, and when R⁸ is 3-chloro-4-methoxyphenyl;

further provided R¹ is not brome when A is pyrimidyl, when X is -C(O)NH-CH₂-, when Y is -NH-CH₂-, and when R³ is 3-chlore-4-methoxyphenyl:

further provided R2-is not 2-chloro-3-pyridyl when A is pyridyl; and

further provided R² is not 2-methoxyphenyl when A is pyridyl, when X is -C(O)NH-, when Y is -NH-CH₂-, when R¹ is H and R³ is phenyl.

Claim 2. (currently amended) Compound of Claim 1 wherein A is selected from thienyl, furanyl, pyrrolyl, thiazolyl, oxazolyl, imidazolyl, pyrazolyl, isoxazolyl, triazolyl, isothiazolyl, pyridyl, pyridyl, pyridyl, pyridyl, pyridinyl, pyridinyl, pyridazinyl and triazinyl;

wherein X is selected from

13

$$\begin{array}{c}
0 \\
N \\
R^{5a}
\end{array}$$
and
$$\begin{array}{c}
0 \\
N \\
R^{5a}
\end{array}$$

wherein Y is selected from

wherein R^a and R^b are independently selected from H, halo, and G₁₂-alkyl substituted with R⁴, or wherein R^a and R^b-together form G₂-G₄-cycloalkyl;

wherein R^z is G_2 - G_3 -alkylenyl, where one of the CH_2 -groups may be replaced with an oxygen atom or an -NH-; wherein R^1 is one or more substituents independently selected from] $H[, halo, -OR^2, oxo, -SR^2, -CO_2R^2, -CO_2R^2, -CO_2R^2, -NR^2R^2, -SO_2NR^2R^2, -NR^2C(O)OR^2, -NR^2C(O)R^2, optionally substituted <math>G_{as}$ -cycloalkyl, optionally substituted phenyl- G_{as} -alkyl, optionally substituted 4-6 membered heterocyclyl- G_{as} -alkyl, cyano, G_{as} -alkyl, cyano, G_{as} -alkyl, G_{a

wherein R² is selected from substituted or unsubstituted aryl selected from phenyl, naphthyl, indanyl, indenyl and tetrahydronaphthyl,

substituted or unsubstituted 5-6 membered heteroaryl,

substituted or unsubstituted Gas-eyeloalkyl and

substituted or unsubstituted 9-10 membered bicyclic or 13-14 membered tricyclic saturated or partially unsaturated heterocyclyl

wherein substituted R^2 is substituted with one or more substituents independently selected from halo, $-OR^7$, oxo, $-SR^7$, $-SO_2R^7$, $-CO_2R^7$, $-CONR^7R^7$, $-COR^7$, $-NR^7R^7$, $-NH(C_1-C_2-alkylenylR^9)$, $-(C_1-C_2-alkylenyl)NR^7R^7$, $-SO_2NR^7R^7$, $-NR^7C(O)OR^7$, $-NR^7C(O)R^7$, $-C_1C_6-alkylamino-C_1C_6-alkoxy$, $-C_1C_6-alkylamino-C_1C_6-alkoxy$, halosulfonyl, optionally substituted 4-6 membered heterocyclyl-carbonylalkyl, $-C_1$

alkoxycarbonylamino-C_{1,6}-alkyl, OR Rg , optionally substituted C_{3,6}-cycloalkyl, optionally substituted 4-6 membered heterocyclyl, optionally substituted phenyl, optionally substituted phenyl-C_{1,6}-alkylenyl,

optionally substituted 4-6 membered heterocyclyl- C_1 . C_6 -alkylenyl, 4-6 membered heterocyclyl- C_2 . C_6 -alkenylenyl, $C_{1.4}$ -alkyl, cyano, $C_{1.4}$ -hydroxyalkyl, nitro and $C_{1.4}$ -haloalkyl;

wherein R³ is phenyl substituted with one or more substituents independently selected from halo, -OR¹, -SR¹,
CO₂R¹, -CONR¹R¹, -COR¹, -NR¹R¹, -SO₂NR¹R¹, -NR¹C(O)OR¹, -NR¹C(O)R¹, C₃₅-cycloalkyl, optionally
substituted 5-6 membered heterocyclyl, optionally substituted phenyl, C₁₄-alkyl, C₁₄-aminoalkyl, cyano, C₁₄hydroxyalkyl, nitro and C₁₄-haloalkyl;

wherein R^{4a} is G₂₄-alkylenyl where one of the CH₂ groups may be replaced with an oxygen atom or -NH-, wherein R^{4a} is optionally substituted with hydroxy;

wherein R⁵ is selected from H [and C, C, alkyl];

wherein R5a is [selected from] H; and C, C,-alkyl; and

wherein R^7 is selected from H, C_{14} -alkyl, optionally substituted phenyl, optionally substituted phenyl- C_{14} -alkyl, optionally substituted 4-6 membered heterocyclyl, optionally substituted 4-6 membered heterocyclyl- C_{14} -alkyl, optionally substituted C_3 - C_6 cycloalkyl, C_{12} -alkylamino- C_{14} -alkyl and C_{12} -haloalkyl;

wherein R° and R¹ are independently selected from H and C1,2-haloalkyl; and

wherein R^0 is selected from H, $C_{1.6}$ -alkyl, optionally substituted phenyl- $C_{1.6}$ -alkyl, 4-6 membered heterocyclyl, optionally substituted 4-6 membered heterocyclyl- $C_{1.0}$ -alkyl, $C_{1.4}$ -alkoxy- $C_{1.4}$ -alkyl and $C_{1.4}$ -alkoxy- $C_{1.4}$ -alkyl;

and pharmaceutically acceptable derivatives thereof.

Claim 3. (currently amended) Compound of Claim 2 wherein A is selected from pyridyl and pyrimidinyl;

) N

wherein X is ; wherein Y is -NH-CH $_2$ -; wherein R 1 is one or more substituents independently selected from H, halo, hydroxy, G_{+2} -alkoxy, G_{+2} -haloalkoxy, amino, G_{+2} -alkylamino, optionally substituted 5-6 membered heterocyclyl- G_{+2} -alkylamino, aminosulfonyl, G_{+4} -alkyl, optionally substituted 5-6 membered heterocyclyl, optionally substituted phenyl, G_{+4} -alkyl, cyano, G_{+2} -hydroxyalkyl, G_{+3} -carboxyalkyl, nitro, G_{+4} -alkenyl, G_{+4} -alkyl, cyano, G_{+2} -hydroxyalkyl, G_{+3} -carboxyalkyl, nitro, G_{+4} -alkenyl, G_{+4} -alkynyl and G_{+2} -haloalkyl; wherein R^2 is unsubstituted or substituted and selected from phenyl, naphthyl, indanyl, indenyl and tetrahydronaphthyl, substituted or unsubstituted 5-6 membered heterocyclyl; wherein substituted or unsubstituted 9-10 membered bicyclic or 13-14 membered tricyclic heterocyclyl; wherein substituted R^2 is substituted with one or more substituents independently selected from halo, G_{+4} -alkyl, optionally substituted G_{+4} -cycloalkyl, optionally substituted phenyl, optionally substituted phenyl- G_{+6} -alkylenyl, G_{+6} -haloalkoxy, optionally substituted phenyloxy, optionally substituted beterocyclyl- G_{+6} -alkylenyl, G_{+6} -haloalkoxy, optionally substituted phenyloxy, optionally substituted beterocyclyl- G_{+6} -alkylenyl, G_{+6} -alkylenyl, G_{+6} -alkylenyl, optionally substituted phenyloxy, optionally substituted beterocyclyl- G_{+6} -alkylenyl, G_{+6} -alkylenyl,

alkylenyl, optionally substituted 5-6 membered heterocyclyl-C₂.C₄-alkenylenyl, optionally substituted 5-6 membered heterocyclyloxy, optionally substituted 5-6 membered heterocyclylsulfonyl, optionally substituted 5-6 membered heterocyclylsulfonyl, optionally substituted 5-6 membered heterocyclylcarbonyl, optionally substituted 5-6 membered heterocyclyl-C_{1,4}-alkylcarbonyl, C_{1,2}-haloalkyl, C_{1,4}-aminoalkyl, nitro, amino, hydroxy, cyano, aminosulfonyl, C_{1,2}-alkylsulfonyl, halosulfonyl, C_{1,4}-alkylsulfonyl, C_{1,3}-alkylsulfonyl, C_{1,3}-alkylsulfonyl, C_{1,4}-alkoxy, C_{1,4}-alkylsulfonyl, C_{1,3}-alkylsulfonyl, C_{1,4}-alkoxy, C_{1,4}-alkylsulfonyl, C_{1,3}-alkoxy, C_{1,4}-alkylsulfonyl, C_{1,4}-alkoxy, C_{1,4}-alkylsulfonyl, C_{1,4}-alkoxy, C_{1,4}-alkylsulfonyl, C_{1,4}-alkylsulfonyl

alkoxycarbonyl, C_{14} -alkoxycarbonylamino- C_{14} -alkyl, C_{14} -hydroxyalkyl, C_{14} -hydroxyalkyl, C_{14} -alkoxy; wherein R^3 is phenyl substituted with one or more substituents independently selected from halo, hydroxy, C_{14} -alkyl, C_{12} -alkoxy, optionally substituted 5-6 membered heterocyclyl- C_{12} -alkoxy, amino, C_{12} -alkylamino, aminosulfonyl, C_{12} -alkoxy, optionally substituted 5-6 membered heterocyclyl, optionally substituted phenyl, nitro, C_{12} -alkylamino- C_{12} -alkoxy- C_{12} -alkoxy- C_{12} -alkoxy, cyano, C_{12} -alkylamino- C_{12} -alkylamino- C_{12} -alkylamino- C_{23} -alkynyl, C_{12} -hydroxyalkyl, C_{12} -aminoalkyl, C_{12} -haloalkyl, optionally substituted 5-6 membered heterocyclyl- C_{23} -alkynyl; and wherein R^7 is selected from H, methyl, phenyl, cyclopropyl, cyclohexyl, benzyl, morpholinylmethyl, 4-methylpiperazinylmethyl, 4-methylpiperdinylmethyl, 4-morpholinylmethyl, 4-morpholinyll-2,2-dimethylpropyl, 1-piperdinylethyl, 1-piperdinylpropyl, 1-pyrrolidinylpropyl and trifluoromethyl; wherein R^8 and R^1 are independently - C_{13} - and wherein R^9 is selected from H, C_{13} -alkyl, optionally substituted 5-6 membered heterocyclyl- C_{13} -alkyl, C_{13} -alkyl, and pharmaceutically acceptable derivatives thereof.

Claim 4. (currently amended) Compound of Claim 3 wherein A is pyridyl; wherein R¹ is ene or more substituents independently selected from H, chloro, and fluoro; wherein R² is selected from phenyl, tetrahydronaphthyl, indanyl, naphthyl, imidazolyl, exazolyl, furyl, pyrrolyl, isoxazolyl, pyrazolyl, thiazolyl, thiadiazolyl, thienyl, pyridyl, pyrimidinyl, pyridazinyl, cyclohexyl, 1,2-dihydroquinolyl, 1,2,3,4-tetrahydro-isoquinolyl, 1,2,3,4-tetrahydro-quinolyl, 2,3-dihydro-1H-indolyl, 2,3,4,4a,9,9a-hexahydro-1H-3-aza-fluorenyl, 5,6,7-trihydro-1,2,4-triazolo[3,4-a]isoquinolyl, 3,4-dihydro-2H-benzo[1,4]exazinyl, and benzo[1,4]diexanyl; wherein substituted R² is substituted with one or more substituents independently selected from bromo, chloro, fluoro, iodo, nitro, amino, cyano, aminoethyl, Boc-aminoethyl, hydroxy, aminosulfonyl, 4-methylpiperazinylsulfonyl, cyclohexyl, phenyl, phenylmethyl, morpholinylmethyl, methylpiperazinylmethyl, morpholinylpropyl, piperidinylmethyl, piperidinylpropyl, piperidinylpropyl, pyrrolidinylpropyl, morpholinylpropyl, methylpiperidinylmethyl, piperidinylethyl, piperidinylpropyl, pyrrolidinylpropyl,

pyrrolidinylpropenyl, pyrrolidinylbutenyl, fluorosulfonyl, methylsulfonyl, methylsulfonyl, piperidinylmethylcarbonyl, methylpiperazinylcarbonylethyl, methoxycarbonyl, 3-ethoxycarbonyl-2-methyl-fur-5-yl, methylpiperazinyl, methylpiperidyl, 1-methyl-(1,2,3,6-tetrahydropyridyl), imidazolyl, morpholinyl, 4-trifluoromethyl-1-piperidinyl, hydroxybutyl, methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, sec-butyl, trifluoromethyl, pentafluoroethyl, nonafluorobutyl, dimethylaminopropyl, 1,1-di(trifluoromethyl)-1-hydroxymethyl, trifluoromethoxy, 1,1-di(trifluoromethyl)-1-(piperidinylethoxy)methyl, 1,1-di(trifluoromethyl)-1-(methoxyethoxyethoxy)methyl, 1-hydroxyethyl, 2-hydroxyethyl, 1-aminoethyl, 2-aminoethyl, 1-(N-isopropylamino)ethyl, 2-(N-isopropylamino)ethyl, dimethylaminoethoxy, 4-chlorophenoxy, phenyloxy, 1-methylpiperdin-4-yloxy, isopropoxy, methoxy and ethoxy; and wherein R³ is phenyl substituted with one or more substituents selected from chloro, fluoro, bromo, hydroxy, methoxy, amino, dimethylamino, diethylamino, 1-methylpiperidinylmethoxy, aminosulfonyl, cyclohexyl, dimethylaminopropynyl, dimethylaminoethoxy, 3-(4-morpholinyl)propyn-1-yl, dimethylaminoethoxyethoxy, optionally substituted piperidinyl, morpholinyl, optionally substituted piperazinyl, optionally substituted phenyl, methyl, ethyl, propyl, cyano, hydroxymethyl, aminomethyl, nitro and trifluoromethyl; and pharmaceutically acceptable derivatives thereof.

Claim 5 (canceled).

Claim 6. (currently amended) Compound of Claim 1 of formula II'

wherein each of A^3 and A^4 is independently CH or N, provided at least one of A^3 and A^4 is N; wherein A^4 is N;

wherein n is 1[[-2]];

wherein R¹ is one or more substituents independently selected from H, chloro, fluoro, bromo, hydroxy, methoxy, ethoxy, trifluoromethoxy, oxo, amino, dimethylamino, aminosulfonyl, carboxymethyl, cyclopropyl, optionally substituted phenyl, methyl, ethyl, propyl, cyano, hydroxymethyl, nitro, propenyl, propynyl,

morpholinylethylamino, trifluoromethyl and unsubstituted or substituted heteroaryl selected from thienyl, furanyl, pyridyl, imidazolyl and pyrazolyl;

wherein R² is selected from a substituted or unsubstituted ring selected from phenyl, tetrahydronaphthyl, indanyl, benzodioxolyl, indenyl, naphthyl, isoxazolyl, pyrazolyl, thiazolyl, thiadiazolyl, thienyl, pyridyl, pyrimidinyl, pyridazinyl, 1,2-dihydroquinolyl, 1,2,3,4-tetrahydro-isoquinolyl, 1,2,3,4-tetrahydro-quinolyl, isoquinolyl, indolyl, isoindolyl, 2,3-dihydro-1H-indolyl, naphthyridinyl, quinozalinyl, 2,3,4,4a,9,9a-hexahydro-1H-3-aza-fluorenyl, 5,6,7-trihydro-1,2,4-triazolo[3,4-a]isoquinolyl, indazolyl, 2,1,3-benzothiadiazolyl, 3,4-dihydro-2H-benzo[1,4]oxazinyl, benzodioxanyl, benzothienyl, benzofuryl, benzofuryl, benzofuryl, benzorazolyl and benzthiazolyl;

wherein substituted R² is substituted with one or more substituents independently selected from bromo, chloro, fluoro, iodo, nitro, amino, cyano, aminoethyl, Boc-aminoethyl, hydroxy, oxo, aminosulfonyl, 4methylpiperazinylsulfonyl, cyclohexyl, phenyl, phenylmethyl, morpholinylmethyl, 1-methylpiperazin-4ylmethyl, 1-methylpiperazin-4-ylpropyl, morpholinylpropyl, piperidin-1-ylmethyl, 1-methylpiperidin-4ylmethyl, 2-methyl-2-(1-methylpiperidin-4-yl)ethyl, morpholinylethyl, 1-(4-morpholinyl)-2,2dimethylpropyl, piperidin-4-ylethyl, 1-Boc-piperidin-4-ylethyl, piperidin-1-ylethyl, 1-Boc-piperidin-4ylethyl, piperidin-4-ylmethyl, 1-Boc-piperidin-4-ylmethyl, piperidin-4-ylpropyl, 1-Boc-piperidin-4-ylpropyl, piperidin-1-ylpropyl, pyrrolidin-1-ylpropyl, pyrrolidin-2-ylpropyl, 1-Boc-pyrrolidin-2-ylpropyl, pyrrolidin-1vlmethyl, pyrrolidin-2-ylmethyl, 1-Boc-pyrrolidin-2-ylmethyl, pyrrolidinylpropenyl, pyrrolidinylbutenyl, fluorosulfonyl, methylsulfonyl, methylcarbonyl, Boc, piperidin-1-ylmethylcarbonyl, 4-methylpiperazin-1ylcarbonylethyl, methoxycarbonyl, aminomethylcarbonyl, dimethylaminomethylcarbonyl, 3ethoxycarbonyl-2-methyl-fur-5-yl, 4-methylpiperazin-1-yl, 4-methyl-1-piperidyl, 1-Boc-4-piperidyl, piperidin-4-yl, 1-methylpiperidin-4-yl, 1-methyl-(1,2,3,6-tetrahydropyridyl), imidazolyl, morpholinyl, 4trifluoromethyl-1-piperidinyl, hydroxybutyl, methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, sec-butyl, trifluoromethyl, pentafluoroethyl, nonafluorobutyl, dimethylaminopropyl, 1,1-di(trifluoromethyl)-1hydroxymethyl, 1,1-di(trifluoromethyl)-1-(piperidinylethoxy)methyl, 1,1-di(trifluoromethyl)-1-(methoxyethoxyethoxy)methyl, 1-hydroxyethyl, 2-hydroxyethyl, trifluoromethoxy, 1-aminoethyl, 2aminoethyl, 1-(N-isopropylamino)ethyl, 2-(N-isopropylamino)ethyl, dimethylaminoethoxy, 4chlorophenoxy, phenyloxy, azetidin-3-ylmethoxy, 1-Boc-azetidin-3-ylmethoxy, pyrrol-2-ylmethoxy, 1-Boc-pyrrol-2-ylmethoxy, pyrrol-1-ylmethoxy, 1-methyl-pyrrol-2-ylmethoxy, 1-isopropyl-pyrrol-2ylmethoxy, 1-Boc-piperdin-4-ylmethoxy, piperdin-4-ylmethoxy, 1-methylpiperdin-4-yloxy, isopropoxy, methoxy and ethoxy; and

wherein R⁸ is one or more substituents independently selected from H, chloro, fluoro, bromo, hydroxy, methoxy, ethoxy, -O-CH₂-O-, trifluoromethoxy, 1-methylpiperidinylmethoxy, dimethylaminoethoxy, amino,

dimethylamino, dimethylaminopropyl, diethylamino, aminosulfonyl, cyclohexyl, dimethylaminopropynyl, 3-(4-morpholinyl)propyn-1-yl, dimethylaminoethoxyethoxy, 3-(4-morpholinyl)propylamino, optionally substituted piperidinyl, morpholinyl, optionally substituted piperazinyl, optionally substituted phenyl, methyl, ethyl, propyl, cyano, hydroxymethyl, aminomethyl, nitro and trifluoromethyl;

and pharmaceutically acceptable salts thereof;

provided R² is not 3-trifluoromethylphenyl when A³ is N, when A⁴ is CH, when n is 1, when R¹ is H and R⁸ is 4-hydroxy, 3-hydroxy or H; further provided R² is not 2-chloro-3-pyridyl when A³ is N, when A⁴ is CH, when n is 1, when R³ is H or 4-methoxy; and further provided R² is not 2-methoxyphenyl when A³ is N, when A⁴ is CH, when n is 1, when R¹ is H and R⁸ is H.

Claim 7. (currently amended) Compound of Claim 1 of Formula III

B

wherein R¹ is Hone or more substituents independently selected from

Η,

halo,

hydroxy,

amino,

G alkyl,

G. -haloalkyl,

G__a-alkoxy,

G, -alkylamino;

aminosulfonyl,

Gas-eyeloalkyl;

eyano,

0X0,

G, -hydroxyalkyl;

nitro,

G__-alkenyl,

Ga-alkynyl,

G. haloalkoxy,

G₊₆-carboxyalkyl,

5-6-membered-heterocyclyl-G, c-alkylamino,

unsubstituted or substituted phenyl and

unsubstituted or substituted 5-6 membered heterocyclyl;

wherein R2 is selected from unsubstituted or substituted phenyl, and

9-10 membered bicyclic and 13-14 membered tricyclic unsaturated or partially unsaturated heterocyclyl,

wherein substituted R² is optionally substituted with one or more substituents selected from halo, C_{1,6}-alkyl, optionally substituted C_{3,6}-cycloalkyl, optionally substituted phenyl, optionally substituted phenyl-C₁,C₄-alkyl, C_{1,2}-haloalkoxy, optionally substituted phenyloxy, optionally substituted 4-6 membered heterocyclyl-C₂,C₄-alkenyl, optionally substituted 5-6 membered heterocyclyl, optionally substituted 4-6 membered heterocyclyloxy, optionally substituted 4-6 membered heterocyclyloxy, optionally substituted 5-6 membered heterocyclylsulfonyl, optionally substituted 5-6 membered heterocyclylamino, optionally substituted 5-6 membered heterocyclylcarbonyl, optionally substituted 5-6 membered heterocyclylcarbonyl-C_{1,4}-alkyl, optionally substituted 5-6 membered heterocyclyl-C_{1,4}-alkylcarbonyl, C_{1,4}-haloalkyl, C_{1,4}-aminoalkyl, nitro, amino, hydroxy, oxo, cyano, aminosulfonyl, C_{1,2}-alkylsulfonyl, halosulfonyl, C_{1,4}-alkylcarbonyl, amino-C₁, alkylcarbonyl, C_{1,3}-alkylamino-C_{1,3}-alkylamino-C_{1,3}-alkoxy, C_{1,3}-alkylamino-C_{1,3}-alkoxy-C

wherein R° and R' are independently selected from H and C1,2-haloalkyl;

wherein R⁷ is selected from H, C_{1.3}-alkyl, optionally substituted phenyl-C_{1.3}-alkyl, 4-6 membered heterocyclyl, and optionally substituted 4-6 membered heterocyclyl-C_{1.}C₃-alkyl;

wherein R^o is selected from H, C_{1,3}-alkyl, optionally substituted phenyl-C_{1,3}-alkyl, 4-6 membered heterocyclyl, and optionally substituted 4-6 membered heterocyclyl-C_{1,2}-alkyl, C_{1,3}-alkoxy-C_{1,2}-alkyl; and C_{1,3}-alkoxy-C_{1,3}-alkyl; and

wherein R⁸ is one or more substituents independently selected from H, halo, amino, hydroxy, C_{1.6}-alkyl, C_{1.6}-haloalkyl, C_{1.6}-alkoxy, C_{1.6}-alkyl, C_{1.6}-alkyl, C_{1.6}-alkoxy, C_{1.6}-alkyl, optionally substituted phenyl, optionally substituted heterocyclyl-C_{1.6}-alkoxy, aminosulfonyl, C_{3.6}-cycloalkyl, C_{1.6}-alkylamino, C_{1.6}-alkylamino-C_{1.6}-alkyl, optionally substituted heterocyclyl-C_{1.6}-alkylamino, optionally substituted heterocyclyl-C_{1.6}-alkylamino-C_{1.6}-alkylamino-C_{1.6}-alkylamino-C_{1.6}-alkylamino-C_{1.6}-alkylamino-C_{1.6}-alkylamino-C_{1.6}-alkoxy, C_{1.6}-alkylamino-C_{1.6}-alkoxy, and optionally substituted heterocyclyl-C_{2.4}-alkynyl; and pharmaceutically acceptable isomers and derivatives thereof;

provided R^2 is not 3-trifluoromethylphenyl when R^1 is H and R^8 is 4-hydroxy, 3-hydroxy or H; and further provided R^2 is not 2-methoxyphenyl when R^1 is H and R^8 is H.

Claim 8. (currently amended) Compound of Claim 7 wherein R¹ is selected from H, chloro, fluoro, bromo, amino, hydroxy, methyl, ethyl, propyl, oxo, dimethylamino, aminosulfonyl, cyclopropyl, cyano, hydroxymethyl, nitro, propenyl, trifluoromethyl, methoxy, ethoxy, trifluoromethoxy, carboxymethyl, morpholinylethylamino, propynyl, unsubstituted or substituted phenyl and unsubstituted or substituted heteroaryl selected from thienyl,

furanyl, pyridyl, imidazolyl, and pyrazolyl;

wherein R2 is selected from phenyl, 1,2-dihydroquinolyl, 1,2,3,4-tetrahydro-isoquinolyl, 1,2,3,4-tetrahydroquinolyl, 2,3-dihydro-1H-indolyl, 2,3,4,4a,9,9a-hexahydro-1H-3-aza-fluorenyl, 5,6,7-trihydro-1,2,4triazolo[3,4-a]isoquinolyl, 3,4-dihydro-2H-benzo[1,4]oxazinyl, and benzo[1,4]dioxanyl, where R2 is unsubstituted or substituted with one or more substituents selected from bromo, chloro, fluoro, iodo, nitro, amino, cyano, aminoethyl, Boc-aminoethyl, hydroxy, oxo, aminosulfonyl, 4-methylpiperazinylsulfonyl, cyclohexyl, phenyl, phenylmethyl, morpholinylmethyl, 1-methylpiperazin-4-ylmethyl, 1-methylpiperazin-4vlpropyl, morpholinylpropyl, piperidin-1-ylmethyl, 1-methylpiperidin-4-ylmethyl, 2-methyl-2-(1methylpiperidin-4-yl)ethyl, morpholinylethyl, 1-(4-morpholinyl)-2,2-dimethylpropyl, piperidin-4-ylethyl, 1-Bocpiperidin-4-ylethyl, piperidin-1-ylethyl, 1-Boc-piperidin-4-ylethyl, piperidin-4-ylmethyl, 1-Boc-piperidin-4vlmethyl, piperidin-4-ylpropyl, 1-Boc-piperidin-4-ylpropyl, piperidin-1-ylpropyl, pyrrolidin-1-ylpropyl, pyrrolidin-2-ylpropyl, 1-Boc-pyrrolidin-2-ylpropyl, pyrrolidin-1-ylmethyl, pyrrolidin-2-ylmethyl, 1-Bocpyrrolidin-2-ylmethyl, pyrrolidinylpropenyl, pyrrolidinylbutenyl, fluorosulfonyl, methylsulfonyl, methylcarbonyl, Boc, piperidin-1-ylmethylcarbonyl, 4-methylpiperazin-1-ylcarbonylethyl, methoxycarbonyl, aminomethylcarbonyl, dimethylaminomethylcarbonyl, 3-ethoxycarbonyl-2-methyl-fur-5-yl, 4methylpiperazin-1-yl, 4-methyl-1-piperidyl, 1-Boc-4-piperidyl, piperidin-4-yl, 1-methylpiperidin-4-yl, 1-methyl-(1,2,3,6-tetrahydropyridyl), imidazolyl, morpholinyl, 4-trifluoromethyl-1-piperidinyl, hydroxybutyl, methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, sec-butyl, trifluoromethyl, pentafluoroethyl, nonafluorobutyl,

dimethylaminopropyl, 1,1-di(trifluoromethyl)-1-hydroxymethyl, 1,1-di(trifluoromethyl)-1- (piperidinylethoxy)methyl, 1,1-di(trifluoromethyl)-1-(methoxyethoxyethoxy)methyl, 1-hydroxyethyl, 2-hydroxyethyl, trifluoromethoxy, 1-aminoethyl, 2-aminoethyl, 1-(N-isopropylamino)ethyl, 2-(N-isopropylamino)ethyl, dimethylaminoethoxy, 4-chlorophenoxy, phenyloxy, azetidin-3-ylmethoxy, 1-Boc-azetidin-3-ylmethoxy, pyrrol-2-ylmethoxy, 1-Boc-pyrrol-2-ylmethoxy, pyrrol-1-ylmethoxy, 1-methyl-pyrrol-2-ylmethoxy, 1-Boc-piperdin-4-ylmethoxy, piperdin-4-ylmethoxy, 1-methylpiperdin-4-yloxy, isopropoxy, methoxy and ethoxy; and

wherein R⁸ is one or more substituents independently selected from H, chloro, fluoro, bromo, hydroxy, methoxy, ethoxy, -O-CH₂-O-, trifluoromethoxy, 1-methylpiperidinylmethoxy, dimethylaminoethoxy, amino, dimethylamino, dimethylaminopropyl, diethylamino, aminosulfonyl, cyclohexyl, dimethylaminopropynyl, 3-(4-morpholinyl)propyn-1-yl, dimethylaminoethoxyethoxy, 3-(4-morpholinyl)propylamino, optionally substituted piperidinyl, morpholinyl, optionally substituted piperazinyl, optionally substituted phenyl, methyl, ethyl, propyl, cyano, hydroxymethyl, aminomethyl and trifluoromethyl;

Claim 9 (canceled).

and pharmaceutically acceptable derivatives thereof.

Claim 10. (currently amended) Compound of Claim 8 wherein R¹ is selected from H, chloro or fluoro; wherein R² is selected from phenyl optionally substituted with one or more substituents selected from bromo, chloro, fluoro, morpholinylmethyl, 1-methylpiperazin-4-ylmethyl, 1-methylpiperazin-4-ylpropyl, morpholinylpropyl, piperidin-1-ylmethyl, 1-methylpiperidin-4-ylmethyl, 2-methyl-2-(1-methylpiperidin-4yl)ethyl, morpholinylethyl, 1-(4-morpholinyl)-2,2-dimethylpropyl, piperidin-4-ylethyl, 1-Boc-piperidin-4-ylethyl, piperidin-1-ylethyl, 1-Boc-piperidin-4-ylethyl, piperidin-4-ylmethyl, 1-Boc-piperidin-4-ylmethyl, piperidin-4vlpropyl, 1-Boc-piperidin-4-ylpropyl, piperidin-1-ylpropyl, pyrrolidin-1-ylpropyl, pyrrolidin-2-ylpropyl, 1-Bocpyrrolidin-2-ylpropyl, pyrrolidin-1-ylmethyl, pyrrolidin-2-ylmethyl, 1-Boc-pyrrolidin-2-ylmethyl, 4methylpiperazin-1-yl, 4-methyl-1-piperidyl, 1-Boc-4-piperidyl, piperidin-4-yl, 1-methyl-(1,2,3,6tetrahydropyridyl), methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, sec-butyl, trifluoromethyl, pentafluoroethyl, dimethylaminopropyl, dimethylaminoethoxy, 4-chlorophenoxy, phenyloxy, azetidin-3vlmethoxy, 1-Boc-azetidin-3-ylmethoxy, pyrrol-1-ylethoxy, 1-methyl-pyrrol-2-ylmethoxy, pyrrol-2-ylmethoxy, 1-Boc-pyrrol-2-ylmethoxy, 1-Boc-piperdin-4-ylmethoxy, piperdin-4-ylmethoxy, and 1-methylpiperdin-4-yloxy; and wherein R⁸ is one or more substituents independently selected from H. chloro, fluoro, bromo, cyano, methoxy, -O-CH,-O-, amino, trifluoromethyl, trifluoromethoxy, 3-(4-morpholinyl)propyn-1-yl, dimethylaminopropyl, and 3-(4-morpholinyl)propylamino;

Claim 11. (currently amended) A pharmaceutical composition comprising a pharmaceutically-acceptable carrier and a compound of Claim 1 as in any of Claims 1-10.

Claim 12. (currently amended) A method of treating cancer in a subject, said method comprising administering [[an]] a therapeutically effective amount of a compound of Claim 1 as in any of Claims 1-10.

13. (original) The method of Claim 12 comprising a combination with a compound selected from antibiotic-type agents, alkylating agents, antimetabolite agents, hormonal agents, immunological agents, interferon-type agents and miscellaneous agents.

Claim 14. (currently amended) A method of treating angiogenesis in a subject, said method comprising administering [[an]]a therapeutically effective amount of a compound of Claim 1 as in any of Claims 1-10.

Claim 15 (canceled).

Claim 16. (currently amended) A method of treating KDR-related disorders in a mammal, said method comprising administering an effective amount of a compound of Claim 1 as in any of Claims 1-10.

Claim 17. (currently amended) A method of treating proliferation-related disorders in a mammal, said method comprising administering [[an]]a therapeutically effective amount of a compound of Claim 1 as in any of Claims 1-10.

Add New claims 18-42 as follows:

--18. (New) Compound of Claim 1 and pharmaceutically acceptable salts thereof selected from N-(4-Chlorophenyl){3-[benzylamino](2-pyridyl)}carboxamide;

N-(4-Chlorophenyl)(3-{[(4-nitrophenyl)methyl]amino}(2-pyridyl))-carboxamide;

(2-[[(4-methoxyphenyl)methyl]amino](2-pyridyl))-N-(3-fluoro-4-methylphenyl)carboxamide;

2-(3-Fluoro-benzylamino)-N-(4-phenoxy-phenyl)-nicotinamide;

 $N-(4-Phenoxyphenyl)[2-(\{[3-(trifluoromethyl)phenyl]methyl]amino)(3-pyridyl)] formamide;\\$

(2-{[(4-Fluorophenyl)methyl]amino}(3-pyridyl))-N-(4-phenoxyphenyl)formamide;

- N-(4-Phenoxyphenyl)[2-([[4-(trifluoromethyl)phenyl]methyl}amino)(3-pyridyl)]formamide;
- (2-{[(2-Bromophenyl)methyl]amino}(3-pyridyl))-N-(4-phenoxyphenyl)formamide;
- N-(4-Phenoxyphenyl)[2-({[4-(trifluoromethoxy)phenyl]methyl}amino)(3-pyridyl)]formamide;
- 2-{[(2,3-Difluorophenyl)methyl]amino}(3-pyridyl))-N-(4-phenoxyphenylformamide;
- N-(4-Chlorophenyl)(2-{[(4-cyanophenyl)methyl]amino}(3-pyridyl))carboxamide;
- N-(4-Chlorophenyl)(2-{[(2-cyanophenyl)methyl]amino}(3-pyridyl))carboxamide;
- N-(4-sec-butylphenyl)-2-[(4-fluorobenzyl)amino]nicotinamide;
- N-(4-tert-Butylphenyl)-2-[(4-fluorobenzyl)amino]nicotinamide;
- N-(4-Isopropyl-phenyl)-2-(3-methoxy-benzylamino)-nicotinamide;
- (2-{[(4-Fluorophenyl)methyl]amino}(3-pyridyl))-N-[4-(methylethyl)phenyl]carboxamide;
- (2-[[(4-Fluorophenyl)methyl]amino)(3-pyridyl))-N-[3-(trifluoromethyl)phenyl]carboxamide;
- (2-[[(3,4-Dimethoxyphenyl)methyl]amino)(3-pyridyl))-N-[3-(trifluoromethyl)phenyl]carboxamide;
- {2-[Benzylamino](3-pyridyl)}-N-[3-(trifluoromethyl)phenyl]-carboxamide;
- (2-{[(3-Chlorophenyl)methyl]amino}(3-pyridyl))-N-[3-(trifluoromethyl)phenyl]carboxamide;
- (2-{[(4-Bromophenyl)methyl]amino}(3-pyridyl))-N-[3-(trifluoromethyl)phenyl]carboxamide;
- (2-{[(4-Chlorophenyl)methyl]amino}(3-pyridyl))-N-[3-(trifluoromethyl)phenyl]carboxamide;
- (2-[[(2,4-Difluorophenyl)methyl]amino}(3-pyridyl))-N-[3-(trifluoromethyl)phenyl]carboxamide;
- (2-{[(4-Fluorophenyl)ethyl]amino}(3-pyridyl))-N-[3-(trifluoromethyl)phenyl]carboxamide;
- (2-[[(3,4-Difluorophenyl)methyl]amino](3-pyridyl))-N-[3-(trifluoromethyl)phenyl]carboxamide;
- (2-[[(2,3-Difluorophenyl)methyl]amino}(3-pyridyl))-N-[3-(trifluoromethyl)phenyl]carboxamide;
- (2-{[(2-Fluorophenyl)methyl]amino}(3-pyridyl))-N-[3-(trifluoromethyl)phenyl]carboxamide;
- (2-{[(2,6-Difluorophenyl)methyl]amino}(3-pyridyl))-N-[3-(trifluoromethyl)phenyl]carboxamide;
- (2-{[(3-Bromophenyl)methyl]amino}(3-pyridyl))-N-[3-(trifluoromethyl)phenyl]carboxamide;
- (2-{[(4-Fluorophenyl)methyl]amino}(3-pyridyl))-N-[4-(trifluoromethyl)phenyl]carboxamide;
- N-{3-[3-(Dimethylamino)propyl]-5-(trifluoromethyl)phenyl}(2-{[(4-fluorophenyl)methyl]amino}(3-pyridyl))carboxamide;
- {2-[({3-[3-(Dimethylamino)propyl]-4-fluorophenyl}methyl)amino](3-pyridyl)}-N-[4-(tert-butyl)phenyl]carboxamide;
- {2-[({3-[3-(Dimethylamino)propyl]-4-fluorophenyl}methyl)amino](3-pyridyl)}-N-[4-(trifluoromethyl)phenyl]carboxamide;
- {2-[({3-[3-(Dimethylamino)propyl]-4-fluorophenyl}methyl)amino](3-pyridyl)}-N-(4-bromo-2-fluorophenyl)carboxamide;
- 2-[(4-Fluorobenzyl)amino]-N-[4-tert-butyl-3-(1,2,3,6-tetrahydropyridin-4-yl)phenyl]nicotinamide;

- [2-({[4-Fluoro-3-(3-morpholin-4-ylprop-1-ynyl)phenyl]methyl}amino)(3-pyridyl)]-N-[3-(trifluoromethyl)phenyl]carboxamide;
- 2-(4-Fluoro-benzylamino)-N-[3-(2-pyrrolidin-1-yl-ethoxy)-4-trifluoromethyl-phenyl]-nicotinamide;
- 2-(4-Fluoro-benzylamino)-N-[3-(1-Boc-pyrrolidin-2-ylmethoxy)-4-pentafluoroethyl-phenyl]-nicotinamide;
- N-[4-tert-Butyl-3-(1-Boc-piperidin-4-ylmethoxy)-phenyl]-2-(4-fluoro-benzylamino)-nicotinamide;
- N-[3-(1-Boc-pyrrolidin-2-ylmethoxy)-5-trifluoromethyl-phenyl]-2-(4-fluoro-benzylamino)-nicotinamide;
- N-[4-tert-Butyl-3-(1-Boc-pyrrolidin-2-ylmethoxy)-phenyl]-2-(4-fluoro-benzylamino)-nicotinamide;
- 2-(4-Fluoro-benzylamino)-N-[3-(1-Boc-piperidin-4-ylmethoxy)-5-trifluoromethyl-phenyl]-nicotinamide.;
- 2-(4-Fluoro-benzylamino)-N-[3-(pyrrolidin-2-ylmethoxy)-4-pentafluoroethyl-phenyl]-nicotinamide;
- 2-(4-Fluoro-benzylamino)-N-[3-(pyrrolidin-2-ylmethoxy)-5-trifluoromethyl-phenyl]-nicotinamide;
- N-[4-tert-Butyl-3-(piperidin-4-ylmethoxy)-phenyl]-2-(4-fluoro-benzylamino)-nicotinamide;
- N-[4-tert-Butyl-3-(pyrrolidin-2-ylmethoxy)-phenyl]-2-(4-fluoro-benzylamino)-nicotinamide;
- 2-(4-Fluoro-benzylamino)-N-[3-(piperidin-4-ylmethoxy)-5-trifluoromethyl-phenyl]-nicotinamide;
- 2-(4-Fluoro-benzylamino)-N-[3-(1-methyl-pyrrolidin-2-ylmethoxy)-5-trifluoromethyl-phenyl]-nicotinamide; and 2-(4-Fluoro-benzylamino)-N-{4-[1-methyl-1-(1-methyl-piperidin-4-yl)-ethyl]-phenyl}-nicotinamide.--
- 19. (New) A method of treating cancer in a subject, said method comprising administering a therapeutically effective amount of a compound of Claim 2.
- 20. (New) A method of treating cancer in a subject, said method comprising administering a therapeutically effective amount of a compound of Claim 3.
- 21. (New) A method of treating cancer in a subject, said method comprising administering a therapeutically effective amount of a compound of Claim 4.
- 22. (New) A method of treating cancer in a subject, said method comprising administering a therapeutically effective amount of a compound of Claim 6.
- 23. (New) A method of treating cancer in a subject, said method comprising administering a therapeutically effective amount of a compound of Claim 7.
- 24. (New) A method of treating cancer in a subject, said method comprising administering a therapeutically effective amount of a compound of Claim 8.

- 25. (New) A method of treating cancer in a subject, said method comprising administering a therapeutically effective amount of a compound of Claim 10.
- 26. (New) A method of treating cancer in a subject, said method comprising administering a therapeutically effective amount of a compound of Claim 18.
- 27. (New) A method of treating angiogenesis in a subject, said method comprising administering a therapeutically effective amount of a compound of Claim 2.
- 28. (New) A method of treating angiogenesis in a subject, said method comprising administering a therapeutically effective amount of a compound of Claim 3.
- 29. (New) A method of treating angiogenesis in a subject, said method comprising administering a therapeutically effective amount of a compound of Claim 4.
- 30. (New) A method of treating angiogenesis in a subject, said method comprising administering a therapeutically effective amount of a compound of Claim 6.
- 31. (New) A method of treating angiogenesis in a subject, said method comprising administering a therapeutically effective amount of a compound of Claim 7.
- 32. (New) A method of treating angiogenesis in a subject, said method comprising administering a therapeutically effective amount of a compound of Claim 8.
- 33. (New) A method of treating angiogenesis in a subject, said method comprising administering a therapeutically effective amount of a compound of Claim 10.
- 34. (New) A method of treating angiogenesis in a subject, said method comprising administering a therapeutically effective amount of a compound of Claim 18.
- 35. (New) A method of treating proliferation-related disorders in a mammal, said method comprising administering a therapeutically effective amount of a compound of Claim 2.

- 36. (New) A method of treating proliferation-related disorders in a mammal, said method comprising administering a therapeutically effective amount of a compound of Claim 3.
- 37. (New) A method of treating proliferation-related disorders in a mammal, said method comprising administering a therapeutically effective amount of a compound of Claim 4.
- 38. (New) A method of treating proliferation-related disorders in a mammal, said method comprising administering a therapeutically effective amount of a compound of Claim 6.
- 39. (New) A method of treating proliferation-related disorders in a mammal, said method comprising administering a therapeutically effective amount of a compound of Claim 7.
- 40. (New) A method of treating proliferation-related disorders in a mammal, said method comprising administering a therapeutically effective amount of a compound of Claim 8.
- 41. (New) A method of treating proliferation-related disorders in a mammal, said method comprising administering a therapeutically effective amount of a compound of Claim 10.
- 42. (New) A method of treating proliferation-related disorders in a mammal, said method comprising administering a therapeutically effective amount of a compound of Claim 18.