

CS5228: Knowledge Discovery and Data Mining

Lecture 11 — Data Stream Mining

Course Logistics

- Reminder for submission deadlines
 - A4: Nov 14, 11.59 pm
 - Project Report: Nov.4, 11.59 pm
- Project submission
 - Submission = project report (PDF, max 8 pages) + source code
 - Only 1 submission per team needed
 - Submission files should include team name
- Last Lecture Quiz
 - Friday, Nov 15, ~19:15 (30 min)
 - MCQs/MRQs, Lectures 7-11

Quick Recap — Graph Mining

- Community Detection
 - Identification of "interesting" subgraphs
 (≈ nodes in subgraph more tightly compared to other nodes)
 - Similar to the task of clustering (clustering algorithms can be adopted to find communities)

- No single definition of "community"
 - → Many algorithms for community detection
 - Similarity between nodes (e.g., AGNES)
 - Density-based (modularity + Louvain algorithm)
 - Split-based (Edge Betweenness, Min-Cut)

Girvan Newman algorithm

Karger's algorithm

Shared focus: connectedness

Quick Recap — Graph Mining

- Centrality = importance of a node
 - Based on a node's topological position in a graph
 - Different centrality measures focusing on different topological features
 - Not all measures applicable to all types of graphs
- Popular centrality measures covered
 - Local measures (Degree, InDegree, OutDegree)
 - Eigenvector-based measures (Eigenvector Centrality, PageRank)
 - Distance-based or path-based measures (Closeness, Betweenness)

Outline

- Motivation
 - Basic setup
 - Example Applications
- Core Techniques
 - Sampling
 - Filtering
 - Counting (distinct items)
- Summary

Data Stream Mining

- Data Mining so far
 - Access to complete dataset (at the same time)
 - Virtually unlimited storage and computing resources (also: runtime of algorithms typically not that important, compared to the results)
 - Support of arbitrary complex patterns
- Now: data items arrive one-by-one in real time...like a stream
 - All data never fully available
 - Often very high arrival speeds
 - Often limited amount of resources
 - Often time-critical decisions (common: execution in main memory only)

→ Focus on simple patterns (but not too simple)

Quick Quiz

Given is a stream of temperature sensor values in °C.

What is the only **non-trivial** pattern to monitor?

A

temp > 100 °C

B

Average of all temperature values

C

Median of all temperature values

D

Maximum range of all temperature values

(Self-Driving) Cars

Sensor data generated during a 40-minutes trip: 30 GB (13 MBps)

Source: Exploring big volume sensor data with Vroom (Moll et al., 2017)

Smart Cities

• Example: Lamppost-as-a-Platform (LaaP)

Source: https://www.developer.tech.gov.sg/technologies/sensor-platforms-and-internet-of-things/lamppost-as-a-platform

- Camera
- Temperature
- Humidity
- Gas (e.g., carbon monoxide)
- Air quality
- Rain

Health Monitoring

Consumer Health Wearables

Source: https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001953

- Smartphones
- Smartwatches
- Fitness bands
- Body cameras

Social Media

Example: Daily data volume on Facebook

Source: https://blog.wishpond.com/post/115675435109/40-up-to-date-facebook-facts-and-stats

- 4.5 billion Likes
- 17 billion location-tagged posts
- 350 million photos uploaded
- 4.75 billion items shared
- 10 billion messages sent

Quick Sidenotes

- Covered techniques and algorithms not specific to streams
 - Applicable to many use cases involving large volumes of data
- Not of interest here: sliding window approaches
 - Keep the k most recent data items
 - Ignore all older items (delete from window)

→ window = complete dataset (snapshot)

- Commonly used throughout the lecture: hash functions
 - We will assume "well-behaved" hash functions (same input → same output, minimize duplication, avalanche effect)
 - No deeper discussion what this means here

Outline

- Motivation
 - Basic setup
 - Example Applications
- Core Techniques
 - Sampling
 - Filtering
 - Counting (distinct items)
- Summary

Sampling

- Sampling basic definition
 - Process of selecting members of a population of interest (e.g., HDB residents)
 - Consideration of whole population typically impractical (e.g., too costly to survey all HDB residents)
 - Goal: statistical analysis of population (e.g., average happiness, most common complaints)
- Sampling data streams
 - Population = stream of incoming data items
 - Time and/or resource constraint generally make it impossible to consider all data items
 - Relevant patterns based on statistical analysis

→ Core challenge: How to get a representative sample?

Problems with Naive Approach

- Toy example setup
 - Stream of search queries items are tuples (user, query, time)
 - Goal: Fraction of queries issued more than once (here: twice) in the last 24h (by the average user)
 - Restriction only 10% of all tuples should be stored
- Naive approach: Store latest tuple with a probability of 1/10
 - Let s = number of time a user issued a query **once**
 - Let *d* = number of time a user issued a query **twice**

Correct estimate:

(assuming all tuples)

$$\frac{d}{s+d}$$

Estimate based on naive sample:

$$\frac{d}{10s + 19d}$$

Problems with Naive Approach — Explanation

- The issue: of *d* queries issued twice
 - d/100 will be both in the sample

- $\left(\frac{1}{10}\right)\left(\frac{1}{10}\right) \cdot d = \frac{1}{100}d$
- 18d/100 will be only once in the sample

$$2 \cdot \left(\frac{1}{10}\right) \left(\frac{9}{10}\right) \cdot d = \frac{18}{100}d$$

(i C)

Fractions of queries issued twice in the sample:

$$\frac{\frac{1}{100}d}{\frac{1}{100}d + \frac{18}{100}d + \frac{1}{10}s} = \frac{d}{10s + 19d}$$

Sample with a Given Probability

- General Approach
 - Given: items/tuples with *n* components, e.g., (user, query, time)
 - Select subset of components as key on which the selection of the sample is based
 - (for toy example: key = "user" → consider only 10% of users instead of arbitrary tuples)
 - Choice of key depends on goal of analysis
- Question: How to obtain a sample consisting of any fraction a/b of keys?
 (in other words: How to decide whether to keep or discard a new tuple?)
- Common implementation via hash function
 - Define hash function h that maps h(key) in to b buckets 1..b
 - For each new tuple, if $h(key) \le a$ (with $a \le b$), add tuples to sample

Sample with a Given Size Limit — Reservoir Sampling

- Goal: Maintain a uniform random sample of fixed size B
 - Uniform random = each item has the same probability to be sampled
 - Allows to approximate basic statistics such as mean, variance, median, etc.
- Basic algorithm
 - Input stream of items $\{a_1, a_2, ...\}$
 - Maximum reservoir size B
 - It can be shown that each item in the reservoir was sampled with the same probability B/t (at any time t)

- 1) Add a_t with $t \le B$ to reservoir
- When receiving a_t with t > B:
 with probability <u>B/t</u>, replace random item in reservoir with new item a_t

• Initialization: t = 0, B = 3

Stream:

t = 1	Α
t = 2	В
t = 3	С
t = 4	Α
t = 5	С
t = 6	В
t = 7	В
t = 8	Α
t = 9	С

Reservoir:

- 1) Add a_t with $t \le B$ to reservoir
- 2) When receiving a_t with t > B: with probability B/t, replace random item in reservoir with new item a_t

•
$$t = 3$$

Stream:

	t = 1	A
	t = 2	В
\Rightarrow	t = 3	С
	t = 4	A
	t = 5	С
	t = 6	В
	t = 7	В
	t = 8	A
	t = 9	С

Reservoir:

Α	
В	
С	

- 1) Add a_t with $t \le B$ to reservoir
- 2) When receiving a_t with t > B: with probability B/t, replace random item in reservoir with new item a_t

Just fill up the reservoir...

•
$$t = 4$$

Stream:

t = 1	Α
t = 2	В
t = 3	С
t = 4	Α
t = 5	С
t = 6	В
t = 7	В
t = 8	Α
t = 9	С

Reservoir:

A
В
⊄ A

Probability B/t = 3/4

- \rightarrow Randomized decision: add a_{4} = A to reservoir
- \rightarrow Replace random element here B_3 = C with A

P(getting kicken on) = 1R

- 1) Add a_t with $t \le B$ to reservoir
- 2) When receiving a_t with t > B: with probability *BIt*, replace random item in reservoir with new item a,

•
$$t = 5$$

Stream:

	t = 1	Α
	t = 2	В
	t = 3	С
	t = 4	Α
\Rightarrow	t = 5	С
	t = 6	В
	t = 7	В
	t = 8	Α
	t = 9	С

Reservoir:

Α
⋉ C
Α

- 1) Add a_t with $t \le B$ to reservoir
- 2) When receiving a_t with t > B: with probability B/t, replace random item in reservoir with new item a_t

Probability B/t = 3/5

- → Randomized decision: add a_5 = C to reservoir
- \rightarrow Replace random element here B_2 = B with C

•
$$t = 6$$

Stream:

t = 1	Α
t = 2	В
t = 3	С
t = 4	Α
t = 5	С
t = 6	В
t = 7	В
t = 8	Α
t = 9	С

Reservoir:

Α	
С	
Α	

- 1) Add a_t with $t \le B$ to reservoir
- 2) When receiving a_t with t > B: with probability B/t, replace random item in reservoir with new item a_t

Probability B/t = 3/6

 \rightarrow Randomized decision: discard a_6 = B

Stream:

t = 1	Α
t = 2	В
t = 3	С
t = 4	Α
t = 5	С
t = 6	В
t = 7	В
t = 8	Α
t = 9	С

Reservoir:

- 1) Add a_t with $t \le B$ to reservoir
- 2) When receiving a_t with t > B: with probability B/t, replace random item in reservoir with new item a_t

Probability B/t = 3/7

- \rightarrow Randomized decision: add a_7 = B to reservoir
- \rightarrow Replace random element here B_3 = A with B

Proof Sketch — All Elements in *B* sampled with *B / t*

- Obvious case: i = t
 - \blacksquare a, was inserted into B with probability B/t (direct result from algorithm)

- Otherwise: i < t
 - Observation: in step *i*, an item gets replaced with probability B/i * 1/B = (1/i)
 - Probability of an item in reservoir

Probability that a_i was inserted in B

Probability that a_i was NOT replaced in B at step (i+1)

Probability that a_i was NOT replaced in B at step (i+2)

Probability that a_i was NOT replaced in B at step t

Outline

- Motivation
 - Basic setup
 - Example Applications
- Core Techniques
 - Sampling
 - Filtering
 - Counting (distinct items)
- Summary

Filtering Data Streams

- Goal: Only accept items that meet certain criterion
- Simple: criterion is a property of item that can be (easily) calculated, e.g.:
 - Search queries with more than 2 keywords
 - Sensor values with valid status code
- Challenge: criterion involves lookup for membership in a (very large) set S, e.g.:
 - Emails with sender addresses that are whitelisted (spam filter)
 - Page visits to a predefined set of websites
 - Tweets from a selected group of users

Basic Solution — Create Hash Table for Set S

Example: spam filter **Buckets Entries** Only accept emails from senders 001 with whitelisted email addresses bob@yahoo.com 002 **Keys** 003 alice@gmail.com . . . 151 bob@yahoo.com 152 alice@gmail.com chris@comp.nus.edu.sg 153 dave@outlook.com dave@outlook.com 154 erin@hotmail.com . . . 254 255 chris@comp.nus.edu.sg → Requires to store complete set S 256 erin@hotmail.com → What if there is not enough memory?

Hashing without Storing S

- Create lookup table
 - Create bit array B with 1..*n* bits and B[i] = 0
 - Choose hash function $h(key) \in [1, n]$
 - For each key $s \in S$ set B[h(s)] = 1
- Filter step for new data item with key k
 - Accept if B[h(k)] = 1, discard otherwise

- → Problem: False Positives
 - $a \in S$, $b \notin S$ and h(a) = h(b)

How bad is it?

Quick Quiz

No Yes, but the probability is negligible Can false negatives occur? Yes, but they do not matter for the application context. Yes, and that's why this is a bad approach.

False Positive Rate — Analysis

Probability of B[i] = 1 after inserting **one key** from S:

$$\frac{1}{|B|}$$

$$e^p = \left[\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n\right]^p$$

Probability of B[*i*] = 0 after inserting **one key** from S: $1 - \frac{1}{|B|}$

$$1 - \frac{1}{|B|}$$

Probability of B[/] = 0 after inserting **all keys** from S:
$$\left(1 - \frac{1}{|B|}\right)^{|S|} = \left(1 - \frac{1}{|B|}\right)^{|B|\frac{|S|}{|B|}} \approx e^{-\frac{|S|}{|B|}}$$

Probability of B[i] = 1 after inserting **all keys** from S:

$$1 - e^{-\frac{|S|}{|B|}}$$

Probability of
$$B[h(s)] = 1$$
 with key $s \notin S$:

(probability of a false positive)

$$1 - e^{-\frac{|S|}{|B|}}$$

False Positive Rate — Visualization

- Effect of ratio |S|/|B| on false positive rate
- Example calculation
 - $|S| = 10^9$ whitelisted email addresses
 - $|B| = 8.10^9$ (1 GB of main memory)
- → |S|/|B| = 1/8
- → False positive rate: $1 e^{-1/8} = 11.75\%$

How to reduce false positive rate?

(without increasing the size of bit array B)

Bloom Filters

- Bloom Filters basic idea
 - Create bit array B with 1..n bits and B[i] = 0
 - Choose *m* independent hash functions $h_i(key) \in [1, n]$
 - For each key $s \in S$ set $B[h_i(s)] = 1$, with $1 \le i \le m$
- Example
 - 3 hash functions: h₁, h₂, h₃
- Filter step for new data item with key k
 - Accept if B[h_i(k)] = 1 for all $1 \le i \le m$, discard otherwise

False Positive Rate — Analysis

Probability of B[h(s)] = 1 with key $s \notin S$: (probability of a false positive)

$$1 - e^{-\frac{|S|}{|B|}}$$

from 1 to *m* hash functions

Probability of B[h_i(s)] = 1 (1 \le i \le m) with key s \in S: (probability of a false positive)

$$\left(1-e^{-\frac{m}{2}\frac{|S|}{|B|}}\right)^{\frac{m}{2}}$$

False Positive Rate — Visualization

- Effect of number of hash functions m on false positive rate
 - Here, |S|/|B| = 1/8 (see previous example)
- Global optimum intuition: large m
 - More hash results need all be 1
 - But: also more 1s in bit array
- Optimal value for m

$$\underline{m_{best}} = \frac{|B|}{|S|} ln2$$

$$m_{best} = \frac{8}{1}ln2 = 5.5 \approx \underline{6}$$

→ False positive rate: 2.2%

Bloom Filter — Discussion

- Memory and space consumption
 - Time complexity: O(m)
 - Space complexity: O(|B|)
- Limitation: no support of removing keys from S
 - E.g.: not able to remove a whitelisted email address
 - Only workaround: rebuild lookup table (bit array) from scratch

Why?

Extension — Counting Bloom Filters

Counting Bloom Filters

- Replace bits for counters (typically 3-4 bits per counter)
- Increased size of lookup table (3-4 times)

Operations

- Insert s: $B[h_i(s)] += 1$, with $1 \le i \le m$
- Delete s: $B[h_i(s)] = 1$, with $1 \le i \le m$
- Lookup k: Accept if B[h_i(k)] > 0 for all $1 \le i \le m$

• False positive rate
• Same as normal Bloom Filter:
$$\left(1 - e^{-m\frac{|S|}{|B|}}\right)^m$$

Outline

- Motivation
 - Basic setup
 - Example Applications
- Core Techniques
 - Sampling
 - Filtering
 - Counting (distinct items)
- Summary

Counting Unique/Distinct Elements

Applications

- Number of unique Facebook visitors (identified by user id)
- Number of unique website visitors (identified by IP address)
- Number of unique words in a (large) text document

Straightforward solution

- Maintain set S of items seen so far
- Number distinct elements $\rightarrow |S|$
- → What if set S can grow very large?

```
1  S = set()
2
3  with open('data/ip-only-nasa-access.log') as file:
4   for line in file:
5     ip = line.strip() # Get IP address
6     S.add(ip) # Add IP address to set
7
8  print('|S| = {}'.format(len(S)))

|S| = 7637
```

Flajolet-Martin Algorithm

TP > 0110 -- 11001000

- Approximation approach

 - Accept errors but minimize their probability
- IP +

Basic algorithm

- (1) Choose hash function that maps each of the *n* the elements to at least $log_{2}n$ bits
- (2) For each element s in the stream
 - (a) Calculate hash h(s) → bit string of length log₂n
 - (b) Let r(s) = number of trailing 0s in h(s)
 - (c) Keep track of largest $r(s) \rightarrow R$
- (3) Return estimate for distinct count as 2^R

Example: 2³² IPv4 addresses

→ at least 32 bits

Flajolet-Martin Algorithm — Example

a: IPv4 address	h(a)
13.66.139.0	01010100110100100110111000001001
157.48.153.185	11001010010010100100101101111100 ~(
157.48.153.185	110010100100101001001011011111100
216.244.66.230	0001110001010101100111010001001 <u>0</u>
54.36.148.92	010101010001011001011100001100
92.101.35.224	1010001110000110000000100000001
73.166.162.225	001001001001111001001011010111000
73.166.162.225	001001001001111001001011010111000
54.36.148.108	0000110001010001100000001010001
54.36.148.1	01100101100010100010110010000100
162.158.203.24	10111000010010010100111100010111 <u>0</u>
157.48.153.185	110010100100101001001011011011
157.48.153.185	11001010010010100100101101101100

R = 3 (largest number of trailing 0s so far)

 \rightarrow Estimate for distinct count: $2^3 = 8$

Quick "Quiz"

Someone is telling you that s/he flipped a fair coin **3 times** and got **3 Heads** after *k* tries?

Which **number of tries** is the most believable?

Flajolet-Martin Algorithm — Intuition & Proof Sketch

Basic intuition

- More distinct elements → more different hash values → "unusual" hash values more likely
- "Unusual" hash value = hash value with rare bit pattern (e.g., number of trailing 0s)

Probability that h(a) ends in at least k trailing 0s

Probability that h(a) ends in **less than** k trailing 0s

Given *m* distinct elements, probability that **all** h(a) end **in less** than k trailing 0s

Given m distinct elements, probability that $R \ge k$ (i.e., at least one of the m elements has h(a) with at least k trailing 0s)

k factors
$$\frac{1}{2} \cdot \frac{1}{2} \cdot \dots \cdot \frac{1}{2} = \frac{1}{2^k} = s^{-k}$$

$$1 - \frac{1}{2^k}$$

$$\left(1 - \frac{1}{2^k}\right)^m$$

$$1 - \left(1 - \frac{1}{2^k}\right)^m$$

Flajolet-Martin Algorithm — Proof Sketch

 $e^p = \left[\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n\right]^p$

Given m distinct elements, probability that $R \ge k$

(i.e., at least one of the m elements has h(a) with at least k trailing 0s)

$$1 - \left(1 - \frac{1}{2^k}\right)^m = 1 - \left(1 - \frac{1}{2^k}\right)^{\frac{2^k \frac{m}{2^k}}{2^k}} \approx 1 - e^{-\frac{m}{2^k}}$$

Case 1:
$$2^k \ll m \to 1 - e^{-\frac{m}{2k}} \approx 1 - 0 = 1$$

Case 2:
$$2^k \gg m \rightarrow 1 - e^{-\frac{m}{2k}} \approx 1 - \left(1 - \frac{m}{2^k}\right) \approx \frac{m}{2^k} \approx 0$$

$$e^x = 1 + \frac{x}{1!}$$
, if $x \ll 1$

First 2 terms of the Taylor expansion of
$$e^x$$
 $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$

Flajolet-Martin Algorithm — Proof Sketch

2

Interpretation

Case 1:
$$2^k \ll m \rightarrow P(R \ge k) \approx 1$$

The probability to get an h(a) with enough trailing 0s is rather high

Case 2:
$$2^k \gg m \rightarrow P(R \geq k) \approx 0$$

The probability to get an h(a) with too many trailing 0s is rather low

→ R is typically in the right ballpark

Flajolet-Martin Algorithm — Problems & Extensions

- Obvious problem with basic Flajolet-Martin algorithm given 2^R
 - An estimate is always a power of 2
 - If *R* is off by just 1, estimates doubles or halves

- Practical solution: use multiple hash functions h_i(a) e.g.:
 - $p \cdot q$ hash functions $\rightarrow p \cdot q$ R values $\rightarrow p \cdot q$ estimates for the distinct counts
 - Put all estimates into p groups, each of size q
 - Calculate median of each group $\rightarrow p$ medians
 - Calculate the mean over all p medians

Outline

- Motivation
 - Basic setup
 - Example Applications
- Core Techniques
 - Sampling
 - Filtering
 - Counting (distinct items)
- Summary

Summary

- Data streams main challenges
 - Large data volumes + high arrival speeds
 - Limited resources + real-time requirements

→ patterns = statistical analysis

Common tasks on streams

(or very large datasets in general)

- Sampling
- Filtering
- Counting (distinct elements)

→ trade-off: speed / resource-efficiency vs. accuracy / errors

Solutions to Quick Quizzes

• Slide 7: C

• Slide 30: A

• Slide 42: B