Binarne drzewo poszukiwań

1. Czym jest BST?

3 0 0	Binarne drzewo poszukiwań (ang. binary search tree - BST) to szczególny rodzaj drzewa binarnego, czyli jednej z fundamentalnych struktur danych.
	Elementy drzewa nazywa się węzłami lub wierzchołkami - i to w nich przechowywane są dane.
8 (0) core (1) (1) (2) (3)	Węzeł nadrzędny w drzewie to tzw. rodzic (ojciec). Węzły potomne danego węzła to tzw. potomki (bądź następniki, ang. <i>child node</i>).
1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	Każde drzewo binarne ma dokładnie jeden korzeń (<i>root node</i>), czyli węzeł nieposiadający rodzica.
B B D management of management	Wszystkie węzły to różne komórki w pamięci połączone wskaźnikami (tak jak pokazują strzałki na rysunku). Strzałki te oznaczają, że węzeł wskazywany (potomek) jest pamiętany przez węzeł, z którego wychodzi strzałka (ojciec).
B Regula drzewa binarnego 3 10 4 7 13	Wszystkie węzły drzewa spełniają tzw. regułę drzewa binarnego:
Bagala drawn historreps Therese contributes historreps (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	przy każdorazowym dodawaniu do drzewa kolejnego elementu pierwsza wartość trafia do korzenia ,
Bagda deresa Noverego 3 - Nesses mandre (n/c Autoria) 3 - Nesses mandre (n/c Autoria) 3 - Nesses mandre (n/c Autoria) 4 - O O O O O O O O O O O O O O O O O O	2. Później mniejsze elementy trafiają do lewego poddrzewa,
Begala di revesa bibarrengo 1. Francisio amedici fulfici dei descrissore. 2. Pringuis amedici fulfici dei descrissore. 2. Pringuis amedici fulfici dei descrissore. 2. Pringuis ameginario.	3. Większe elementy do prawego.

Reguła ta obowiązuje wszystkie poddrzewa. Śledząc dla przykładu jak wstawiana jest wartość 4:

- najpierw sprawdzamy czy jest mniejsza czy większa od korzenia? Jest mniejsza więc trafia zgodnie z regułą drzewa binarnego do lewego poddrzewa.
- 2. Następnie porównujemy ją z 3. 4>3 a więc trafia tym razem do prawego poddrzewa.
- 3. Po porównaniu z 6 wychodzi, że 4<6 czyli ląduje w lewym poddrzewie.

W analogiczny sposób wstawiana jest każdy z elementów. **Po co nam takie ułożenie danych?**

Dzięki przestrzeganiu reguły drzewa binarnego, można użyć metody "dziel i zwyciężaj",

w której przy poszukiwaniu danego elementu, w ciągu 1 iteracji odrzucamy połowę możliwych węzłów- właśnie dzięki takiemu segregowaniu elementów przy wstawianiu.

Aby lepiej zobrazować regułę drzewa binarnego przygotowałam krótki program konsolowy.

Mamy tu 2 funkcje: dodawania i znajdowania elementu.

- Wypełniam program wartościami: 123, 55, 77, 77 założenie w kodzie jest takie, że większy bądź równy element trafia do prawej gałęzi dlatego 77 trafiła do prawego poddrzewa.
- Wyszukuję pierwsze wystąpienie elementu 77 znaleziono w węźle numer 5 - i to się zgadza licząc wg założeń że korzeń ma indeks 1.
- 3. Następnie uzupełniam liczbami większymi od korzenia (130, 140 150, 160). Gdy **zabraknie** węzłów, otrzymamy stosowny komunikat, bo zaprojektowany tablica w programie nie jest w stanie pomieścić więcej elementów.

Dodatkowo mam procedurę, która umożliwia ustawienie kursora w konsoli w odpowiednim Są 2 rodzaje implementacji: wskaźnikowa i tablicowa. Ja zastosowałam tablicową, gdzie korzeniowi przypisałam nr indeksu 1, przez to index lewego potomka danego k-tego węzła wynosi 2k, a prawego potomka 2k+1.

Elementy przechowuję w tablicy intów. Dodatkowa tablica typu bool zwraca true jeśli dana komórka jest jeszcze pusta - oraz false jeśli jest już zapełniona.

W funkcji add() szukanie elementu odbywa się za pomocą metody "dziel i zwyciężaj" zgodnie z regułą drzewa. Wewnątrz pętli while poruszam się cały czas w głąb lewego lub prawego poddrzewa wierszu i kolumnie.
Przydaje mi się to w
rysowaniu drzewa w
późniejszej
metodzie
ShowTree()
wyświetlającej
drzewo na konsoli.

zależnie od porównania wartości aktualnie wstawianej ze sprawdzanym właśnie węzłem JUŻ istniejącym w drzewie.

Po znalezieniu wolnego miejsca ustawiam flagę bool na wartość true (bo znalazłam miejsce) co kończy pętlę while szukającą dla tej liczby miejsca. Pętla skończy się również gdy wyjdziemy poza 15 węzeł - bo to oznacza, że ta liczba nie zmieści się w zadeklarowanej przeze mnie tablicy.

Analogicznie postępuję w funkcji szukającej liczby, w każdym kroku odrzucając mniej więcej połowę pozostałych elementów.

Binarne drzewo wyszukiwań ma logarytmiczną złożoność obliczeniową wyszukiwania elementu, która w przypadku pesymistycznym degraduje się do czasu liniowego. Zależność ta w dużej mierze jest uzależniona od średniej wysokości drzewa (czyli zależy od danych wejściowych).

Binarnych drzew poszukiwań używa się m.in. w bazach danych, a konkretniej specjalnego ich rodzaju, są to tzw. B-drzewa. Baza danych także jest strukturą drzewiastą, <u>dlatego właśnie</u> jest ona w stanie zwrócić jeden konkretny rekord z milionów znajdujących się w niej w ciągu zaledwie ułamków sekund - wyszukuje rekordy przy pomocy metody "dziel i zwyciężaj" analogicznie jak pokazałam to na początku.

Reasumując:

Płacąc niewielką mocą obliczeniową i ilością czasu przy wstawianiu elementów do drzewa, zyskujemy później możliwość użycia metody "dziel i zwyciężaj" do przeszukiwania jego zawartości w bardzo korzystnym czasie.

Źródła

 Bhargava Aditya Y.: "Algorytmy, Ilustrowany przewodnik": Wydawnictwo Helion, 2017, str. 203-206. ISBN 978-83-283-3445-8

Zelent M.: "Struktury danych: stos, kolejka, lista, drzewo binarne" [online] https://miroslawzelent.pl/kurs-c+/struktury-danych-stos-kolejka-lista-drzewo-binarne/

Dziękuję.