# MAT 272 Labs

This is a collection of labs to be used during the 2019 Fall semester.

These labs have been typed and compiled by Ethan A. Smith using the LaTeX typesetting language. Any questions, errata, or comments regarding these labs should be sent to esmith845@cvcc.edu.

This document was last updated January 5, 2023.

#### Contents

| 1  | Calculus I Review                          | 1         |
|----|--------------------------------------------|-----------|
| 2  | u-Substitution                             | 5         |
| 3  | Integration by Parts                       | 9         |
| 4  | Partial Fractions and Algebraic Techniques | 13        |
| 5  | Trigonometric Integrals                    | <b>17</b> |
| 6  | Trigonometric Substitutions                | 23        |
| 7  | Unit 1 Review Questions                    | 27        |
| 8  | Volumes by Slicing – Part 1                | 29        |
| 9  | Volumes by Slicing – Part 2                | 35        |
| 10 | Volumes by Shells                          | 37        |
| 11 | Arc Length and Surface Area                | 43        |
| 12 | Introduction to Sequences                  | 47        |
| 13 | The Integral Test                          | 53        |
| 14 | The Comparison Tests                       | 57        |
| 15 | The Ratio and Root Tests                   | 61        |
| 16 | Alternating Series Test                    | 65        |

### 1 Calculus I Review

- 1. Compute the derivative of the following functions.
  - (a)  $\sin(x)$

(d) 3x

 $(g) \frac{1}{x^2}$ 

(b)  $\cos(x)$ 

(e)  $e^x$ 

(h)  $x^{\pi}$ 

(c)  $x^3$ 

(f)  $\frac{1}{x}$ 

- (i)  $\arctan(x)$
- 2. Computer the derivative of the following expressions using derivative rules.
  - (a)  $2\sin(x) + \cos(x)$

(e) sec(x)

(b)  $e^{\sin(x)}$ 

(f)  $xe^x$ 

(c)  $\frac{x+3}{x^2-x}$ 

(g)  $(2x+1)^9$ 

(d) tan(x)

(h)  $\sin(x)\cos(x^2)$ 

| 3. | Find $\frac{dy}{dx}$ as a function of x and y for the implicit curve: |
|----|-----------------------------------------------------------------------|
|    | $xy + y^2 + x^2 = 3.$                                                 |
|    |                                                                       |
|    |                                                                       |
|    |                                                                       |
|    |                                                                       |
|    | $d \left( a \right) 100$                                              |
| 4. | Find $\frac{d}{dx} (f(x)^{100})$ :                                    |
|    |                                                                       |
|    |                                                                       |
|    |                                                                       |
|    |                                                                       |
| 5. | Find $\frac{d}{dx} (\ln (f(x)) * g(x))$                               |
|    |                                                                       |
|    |                                                                       |
|    |                                                                       |
|    |                                                                       |
|    |                                                                       |

(a) 
$$\int \sin(x) dx$$

(d) 
$$\int dx$$

(g) 
$$\int \frac{1}{x^2} \, dx$$

(b) 
$$\int \cos(x) \, dx$$

(e) 
$$\int e^x dx$$

(h) 
$$\int x^{\pi} dx$$

(c) 
$$\int x^3 dx$$

(f) 
$$\int \frac{1}{x} dx$$

(i) 
$$\int \sec(x) \tan(x) dx$$

7. Calculate the definite integral using one of the Fundamental Theorems of Calculus.

(a) 
$$\int_{2}^{4} (x^2 + 1) dx$$





| _                                                                                         |                                               |
|-------------------------------------------------------------------------------------------|-----------------------------------------------|
| 9. Find the area between the curves $f(x) = \sin(x)$ and $g(x) = \cos(x)$ on the interval | $\left[\frac{\pi}{4}, \frac{5\pi}{4}\right].$ |
|                                                                                           |                                               |
|                                                                                           |                                               |
|                                                                                           |                                               |
|                                                                                           |                                               |
|                                                                                           |                                               |
|                                                                                           |                                               |
|                                                                                           |                                               |
| 10. Calculate $\frac{d}{dx} \left( \int_x^{x^2} e^{t^2} dt \right)$ .                     |                                               |
|                                                                                           |                                               |
|                                                                                           |                                               |
|                                                                                           |                                               |
|                                                                                           |                                               |
|                                                                                           |                                               |
|                                                                                           |                                               |
|                                                                                           |                                               |
|                                                                                           |                                               |

#### 2 u-Substitution

1. Determine a u to use to integrate the given indefinite integral. Do not actually solve the integral.

| (a) | ſ | $\sqrt{1-}$ | $\frac{1}{x}$ | dx |
|-----|---|-------------|---------------|----|
| (a) | J | $x^2$       |               | aa |







| (d) | $\int z\sqrt{2-7z}dz$ |
|-----|-----------------------|
|     |                       |
|     |                       |

2. Evaluate the definite integral using the u-substitution with the given u.

(a) 
$$\int_0^2 2x\sqrt{1+x^2} \, dx$$
;  $u = 1+x^2$ 

| (a) $\int$            | $3x^2e^{x^3-2x^2+7} - 4xe^{x^3-2x^2+7} dx$ |  |
|-----------------------|--------------------------------------------|--|
|                       |                                            |  |
|                       |                                            |  |
|                       |                                            |  |
|                       |                                            |  |
|                       |                                            |  |
|                       |                                            |  |
|                       | $\ln(w)$                                   |  |
| (b) $\int$            | $\frac{\ln(w)}{w} dw$                      |  |
|                       |                                            |  |
|                       |                                            |  |
|                       |                                            |  |
|                       |                                            |  |
|                       |                                            |  |
|                       |                                            |  |
|                       | 3.5                                        |  |
| (c) $\int_0^{\infty}$ | $y^2e^{y^3}dy$                             |  |
|                       | ,                                          |  |
|                       |                                            |  |
|                       |                                            |  |
|                       |                                            |  |
|                       |                                            |  |
|                       |                                            |  |

| (d) | $\int \left(\sqrt{1+\sqrt{\alpha}}\right) d\alpha$           |
|-----|--------------------------------------------------------------|
|     |                                                              |
|     |                                                              |
|     |                                                              |
|     |                                                              |
|     |                                                              |
| (e) | $\int_{-\pi/2}^{\pi/2} \sin^3(\theta) \cos(\theta)  d\theta$ |
|     |                                                              |
|     |                                                              |
|     |                                                              |
|     |                                                              |
|     |                                                              |
|     |                                                              |
| (f) | $\int_0^{\pi/4} \frac{e^{\tan(x)}}{\cos^2(x)}  dx$           |
|     |                                                              |
|     |                                                              |
|     |                                                              |
|     |                                                              |
|     |                                                              |
|     |                                                              |

# 3 Integration by Parts

| 1. | Solve t | the fol | lowing | integral | using | the | Tabular | Method | for | repeated | Integration | by | Parts. |  |
|----|---------|---------|--------|----------|-------|-----|---------|--------|-----|----------|-------------|----|--------|--|
|----|---------|---------|--------|----------|-------|-----|---------|--------|-----|----------|-------------|----|--------|--|

| (a) | $\int x^3 e^{4x}  dx$ |
|-----|-----------------------|
| ( ) |                       |



|     | ſ                   |    |
|-----|---------------------|----|
| (b) | $\int x^2 \sin(5x)$ | dx |



| 2. | Eval | uate the following integrals using integration by parts. |  |  |  |  |  |
|----|------|----------------------------------------------------------|--|--|--|--|--|
|    | (a)  | $\int xe^{-2x}  dx$                                      |  |  |  |  |  |
|    |      |                                                          |  |  |  |  |  |
|    |      |                                                          |  |  |  |  |  |
|    |      |                                                          |  |  |  |  |  |
|    |      |                                                          |  |  |  |  |  |
|    |      |                                                          |  |  |  |  |  |
|    |      |                                                          |  |  |  |  |  |
|    |      |                                                          |  |  |  |  |  |
|    |      |                                                          |  |  |  |  |  |
|    | (b)  | $\int e^{2\theta} \cos(3\theta)  d\theta$                |  |  |  |  |  |
|    |      |                                                          |  |  |  |  |  |
|    |      |                                                          |  |  |  |  |  |
|    |      |                                                          |  |  |  |  |  |
|    |      |                                                          |  |  |  |  |  |
|    |      |                                                          |  |  |  |  |  |
|    |      |                                                          |  |  |  |  |  |
|    |      |                                                          |  |  |  |  |  |
|    |      |                                                          |  |  |  |  |  |

| (c) | $\int x^8 \ln(x)  dx$               |
|-----|-------------------------------------|
|     |                                     |
|     |                                     |
|     |                                     |
|     |                                     |
|     |                                     |
|     |                                     |
|     |                                     |
|     |                                     |
|     |                                     |
|     |                                     |
|     | $\int^{e^2}$                        |
| (1) | 1 - 21 - 7 - 11                     |
| (d) | $\int_{2}^{e^2} x^2 \ln(x)  dx$     |
| (d) | $\int_{2} x^{2} \ln(x) dx$          |
| (d) | $\int_{2}^{\infty} x^{2} \ln(x) dx$ |
| (d) | $\int_{2}^{\infty} x^{2} \ln(x) dx$ |
| (d) | $\int_{2}^{\infty} x^{2} \ln(x) dx$ |
| (d) | $\int_{2}^{\infty} x^{2} \ln(x) dx$ |
| (d) | $\int_{2}^{\infty} x^{2} \ln(x) dx$ |
| (d) | $\int_{2} x^{2} \ln(x) dx$          |
| (d) | $\int_{2} x^{2} \ln(x) dx$          |
| (d) | $\int_{2} x^{2} \ln(x) dx$          |
| (d) | $\int_{2}^{\infty} x^{2} \ln(x) dx$ |

| (e) | $\int_0^1 e^{2y} \sin\left(e^{2y}\right)  dy$ |
|-----|-----------------------------------------------|
|     | $J_0$                                         |
|     |                                               |
|     |                                               |
|     |                                               |
|     |                                               |
|     |                                               |
|     |                                               |
|     |                                               |
|     |                                               |
|     |                                               |
|     |                                               |
|     |                                               |
| (f) | $\int_0^4 e^{\sqrt{w}} dw$                    |
| (1) | $\int_0^{\infty} du$                          |
|     |                                               |
|     |                                               |
|     |                                               |
|     |                                               |
|     |                                               |
|     |                                               |
|     |                                               |
|     |                                               |
|     |                                               |
|     |                                               |
|     |                                               |
|     |                                               |

## 4 Partial Fractions and Algebraic Techniques

1. Use find the partial fraction decomposition of the following rational expressions.

(a) 
$$\frac{12x-11}{x^2-x}$$



(b)  $\frac{z^2 + 20z - 15}{z^3 + 4z^2 - 5z}$ 

| 2. | Eval | uate the following integrals.             |
|----|------|-------------------------------------------|
|    | (a)  | $\int \frac{x^2 + 3}{x^3 - 2x^2 + x}  dx$ |
|    |      |                                           |
|    |      |                                           |
|    |      |                                           |
|    |      |                                           |
|    |      |                                           |
|    |      |                                           |
|    |      |                                           |
|    |      |                                           |
|    | (b)  | $\int \frac{8}{x^3 - 2x^2 - 4x + 8}  dx$  |
|    |      |                                           |
|    |      |                                           |
|    |      |                                           |
|    |      |                                           |
|    |      |                                           |
|    |      |                                           |

| (c) | $\int \frac{2x+3}{x^2+4}  dx$                                                                                           |
|-----|-------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
| (d) | Use the fact that $\sec(x) = \frac{\cos(x)}{1 - \sin^2(x)}$ and partial fractions to find $\int \sec \theta  d\theta$ . |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |

| (e) | $\int \frac{\sin(\theta)}{\cos(\theta) + \cos^2(\theta)}  d\theta.$ |
|-----|---------------------------------------------------------------------|
|     |                                                                     |
|     |                                                                     |
|     |                                                                     |
|     |                                                                     |
|     |                                                                     |
| (f) | $\int \frac{e^x}{e^{2x} - 4e^x}  dx.$                               |
|     |                                                                     |
|     |                                                                     |
|     |                                                                     |
|     |                                                                     |
|     |                                                                     |
|     |                                                                     |

# 5 Trigonometric Integrals

| Use an approx $(a) \int \sin^3(a) da$ | opriate trigonome $(x) dx$ | tric integral to | evaluate tne | ionowing integ | grais. |  |
|---------------------------------------|----------------------------|------------------|--------------|----------------|--------|--|
|                                       |                            |                  |              |                |        |  |
|                                       |                            |                  |              |                |        |  |
|                                       |                            |                  |              |                |        |  |
|                                       |                            |                  |              |                |        |  |
|                                       |                            |                  |              |                |        |  |
|                                       |                            |                  |              |                |        |  |
|                                       |                            |                  |              |                |        |  |
|                                       |                            |                  |              |                |        |  |
| <i>f</i>                              |                            |                  |              |                |        |  |
| (b) $\int \cos^3(x) dx$               | (x) dx                     |                  |              |                |        |  |
|                                       |                            |                  |              |                |        |  |
|                                       |                            |                  |              |                |        |  |
|                                       |                            |                  |              |                |        |  |
|                                       |                            |                  |              |                |        |  |
|                                       |                            |                  |              |                |        |  |
|                                       |                            |                  |              |                |        |  |
|                                       |                            |                  |              |                |        |  |
|                                       |                            |                  |              |                |        |  |

|     | $\int \cos^4(2x)  dx$          |
|-----|--------------------------------|
|     |                                |
|     |                                |
|     |                                |
|     |                                |
|     |                                |
|     |                                |
|     |                                |
|     |                                |
|     |                                |
|     |                                |
|     |                                |
| (d) | $\int \sin^2(x) \cos^2(x)  dx$ |
|     |                                |
|     |                                |
|     |                                |
|     |                                |
|     |                                |
|     |                                |
|     |                                |
|     |                                |
|     |                                |
|     |                                |
|     |                                |

| <i>J</i>          | $\cos^5(x) dx$ |  |  |
|-------------------|----------------|--|--|
|                   |                |  |  |
|                   |                |  |  |
|                   |                |  |  |
|                   |                |  |  |
|                   |                |  |  |
|                   |                |  |  |
|                   |                |  |  |
|                   |                |  |  |
|                   |                |  |  |
|                   |                |  |  |
|                   |                |  |  |
|                   |                |  |  |
| C                 |                |  |  |
| $\int \sin^4(5a)$ | c) dx          |  |  |
|                   |                |  |  |
|                   |                |  |  |
|                   |                |  |  |
|                   |                |  |  |
|                   |                |  |  |
|                   |                |  |  |
|                   |                |  |  |
|                   |                |  |  |
|                   |                |  |  |
|                   |                |  |  |
|                   |                |  |  |
|                   |                |  |  |
|                   |                |  |  |

| C                    |    |  |  |  |
|----------------------|----|--|--|--|
| $\int \tan^3(x)  dx$ | dx |  |  |  |
| $\int \tan^3(x)  dx$ | dx |  |  |  |
| $\int \tan^3(x)  a$  | dx |  |  |  |
| $\int \tan^3(x)  dx$ | dx |  |  |  |
| $\int \tan^3(x)  dx$ | dx |  |  |  |
| $\int \tan^3(x)  dx$ | dx |  |  |  |
| $\int \tan^3(x)  dx$ | dx |  |  |  |
| $\int \tan^3(x)  dx$ | dx |  |  |  |
| $\int \tan^3(x)  dx$ | dx |  |  |  |

| (i) | $\int \tan(x)\sec^3(x)dx$           |
|-----|-------------------------------------|
|     |                                     |
|     |                                     |
|     |                                     |
|     |                                     |
|     |                                     |
|     |                                     |
|     |                                     |
|     |                                     |
|     |                                     |
|     |                                     |
|     |                                     |
|     |                                     |
|     |                                     |
|     |                                     |
| (j) | $\int \sqrt{\tan(x)} \sec^4(x)  dx$ |

#### Trigonometric Substitutions 6

| 1  | Solve | the | following | integral | using | the | appropriate | trigo | nometric  | substitution |  |
|----|-------|-----|-----------|----------|-------|-----|-------------|-------|-----------|--------------|--|
| т. | DOLVE |     | TOHOWING  | micgiai  | using | OHE | appropriate | ungo  | TOILLEUIC | Substitution |  |

| (a) | ſ | 1               | dx |
|-----|---|-----------------|----|
| (a) | J | $\sqrt{25-x^2}$ | ax |



| (h) | ſ | $x^2$       |                  | d <sub>m</sub> |
|-----|---|-------------|------------------|----------------|
| (D) |   | $\sqrt{1-}$ | $\overline{x^2}$ | ax             |

| (c) | $\int \frac{1}{(4-x^2)^{3/2}}  dx$ |
|-----|------------------------------------|
|     |                                    |
|     |                                    |
|     |                                    |
|     |                                    |
|     |                                    |
|     |                                    |
|     |                                    |
| (d) | $\int \sqrt{(81+x^2)}  dx$         |
|     |                                    |
|     |                                    |
|     |                                    |
|     |                                    |
|     |                                    |
|     |                                    |
|     |                                    |

| (e) | $\int_{\frac{1}{\sqrt{3}}}^{1} \frac{1}{x^2 \sqrt{1+x^2}}  dx$ |
|-----|----------------------------------------------------------------|
|     |                                                                |
|     |                                                                |
|     |                                                                |
|     |                                                                |
|     |                                                                |
|     |                                                                |
| (f) | $\int_{1}^{2} \frac{1}{x^2 \sqrt{4 - x^2}}  dx$                |
|     |                                                                |
|     |                                                                |
|     |                                                                |
|     |                                                                |
|     |                                                                |

| 2. A total charge $Q$ is distributed uniformly on a line segment of length $2L$ along the $y$ -axis. The $x$ -component of the electric field at a point $(a,0)$ on the $x$ -axis is given by |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_x(a) = \frac{kQa}{2L} \int_{-L}^{L} \frac{1}{(a^2 + y^2)^{3/2}} dy,$                                                                                                                       |
| where $k$ is a physical constant and $a > 0^1$ .                                                                                                                                              |
| (a) Use a trigonometric substitution to find an explicit formula for $E_x(a)$ .                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |

(b) Let  $\rho = \frac{Q}{2L}$  be the charge density on the line segement. Show that if  $L \to \infty$ , then  $E_x(a) = \frac{2k\rho}{a}$ .

<sup>&</sup>lt;sup>1</sup>A detailed derivation of this can be found at http://newb.kettering.edu/wp/experientialcalculus/wp-content/uploads/sites/15/2017/05/the-electric-field-of-a-line-of-charge.pdf.

## 7 Unit 1 Review Questions

1. 
$$\int te^{t^2} dt$$

$$10. \int \sec^3(2\phi) \ d\phi$$

19. 
$$\int e^x \cos 2x \ dx$$

$$2. \int te^{2t} dt$$

$$11. \int \sqrt{4+7t} \, dt$$

$$20. \int x^5 \ln x \ dx$$

$$3. \int t^3 \cos(t^2) dt$$

$$12. \int \sqrt{4+7t^2} \, dt$$

$$21. \int \sin 3x \cos 4x \ dx$$

4. 
$$\int \ln(x^3) \ dx$$

$$13. \int \sqrt{1-6t^2} \, dt$$

$$22. \int \frac{x}{1+2x^2} \, dx$$

$$5. \int \frac{dx}{\sqrt{1-x}}$$

14. 
$$\int t^2 \sqrt[3]{1 - 7t^3} \, dt$$

$$23. \int \frac{dx}{4+x^2}$$

6. 
$$\int \sec(5\theta) \ d\theta$$

15. 
$$\int t^2 \sin(2t) dt$$

$$24. \int \frac{dx}{1-x^2}$$

7. 
$$\int \sin^2 x \ dx$$

$$16. \int te^{-t^2} dt$$

25. 
$$\int \frac{2x}{(x^2+1)(x-1)^2} \, dx$$

8. 
$$\int \cot(3\alpha) \ d\alpha$$

17. 
$$\int \cos(\sqrt{t}) dt$$

26. 
$$\int \frac{4t+1}{t^2+t-2} \, dt$$

9. 
$$\int \cos^3 x \ dx$$

$$18. \int \sin^8 x \cos^5 x \ dx$$

$$27. \int \frac{u^2 + 11}{u^2 + 4u + 5} \, du$$

Determine if the following improper integrals are convergent or divergent. If they are convergent, determine the value to which they converge.

1. 
$$\int_{2}^{\infty} \frac{2x}{x^2 + 1} dx$$

$$3. \int_{-\infty}^{0} \frac{1}{1+x^2} \, dx$$

$$5. \int_0^\infty \frac{e^x}{e^{2x} + 1} \, dx$$

$$2. \int_0^\infty x e^{-x} \, dx$$

$$4. \int_3^\infty \frac{1}{\sqrt{x}} \, dx$$

$$6. \int_{4/\pi}^{\infty} \frac{1}{x^2} \sec^2\left(\frac{1}{x}\right) dx$$

## 8 Volumes by Slicing – Part 1

1. Find the volume of the solid whose base is the region bounded by the semicircle  $y = \sqrt{4 - x^2}$  and the x-axis and whose cross sections through the solid perpendicular to the x-axis are squares. For a 3D graph, go to https://sagecell.sagemath.org/?q=ixkvvn.



Figure 1: For a better view, go to https://sagecell.sagemath.org/?q=rvlawp.



2. Find the volume of the solid whose base is the region bounded by  $y = x^2$  and the line y = 4 and whose cross sections are equilateral triangles parallel to the x-axis.



Figure 2: For a better view, go to https://sagecell.sagemath.org/?q=rvlawp.



- 3. Let R be the region bounded by the following curves. Use the disk (or washer) method to find the volume of the solid generated when R is revolved about the x-axis.
  - (a)  $y = e^{-x}$  and the x-axis on the interval  $[0, \ln(4)]$



Figure 3: Region bounded by  $y=e^{-x}$  and the x-axis on the interval  $[0, \ln(4)]$ 



(b) y = x and  $y = \sqrt[4]{x}$ 



Figure 4: Region bounded by  $y = \sqrt[4]{x}$  and the y = x



4. Let R be the region bounded by the following curves. Use the disk (or washer) method to find the volume of the solid generated when R is revolved about the y-axis.

(a)  $y = 16 - x^2$  and the x-axis



Figure 5: Region bounded by  $y = 16 - x^2$  and the x-axis

(b) 
$$y = \frac{x}{2}$$
 and  $y = \sqrt{x}$ 



Figure 6: Region bounded by  $y = 16 - x^2$  and the x-axis



## 9 Volumes by Slicing – Part 2

1. Use disk (or washer) method to find the volume of the solid of revolution obtain by rotating the given region, R, about the specified axis of rotation.

(a) 
$$y = x + 2$$
 and  $y = x^2$  about the line  $y = 5$ 



Figure 1: Region between y = x + 2 and  $y = x^2$ 



(b) y = 2 and  $y = \sqrt{x}$  about the line x = -2



Figure 2: Region between y=2 and  $y=\sqrt{x}$ 



## 10 Volumes by Shells

- 1. Let R be the region shown in the figure below.
  - (a) Draw an example of a shell created by revolving a Riemann rectangle at  $x_k^*$  in the interval  $[0, \sqrt{\pi}]$  about the y-axis.



Figure 1: Region bounded between  $f(x) = \sin(x^2)$  and the x-axis

| o) Draw the | image that corr  | responds to uni | raveling the sh | nell and label it | · |  |
|-------------|------------------|-----------------|-----------------|-------------------|---|--|
|             |                  |                 |                 |                   |   |  |
|             |                  |                 |                 |                   |   |  |
|             |                  |                 |                 |                   |   |  |
| ) What is t | he length of the | e shell?        |                 |                   |   |  |
|             |                  |                 |                 |                   |   |  |
|             |                  |                 |                 |                   |   |  |
|             |                  |                 |                 |                   |   |  |
|             |                  |                 |                 |                   |   |  |

| (e) | What is the width of the shell?                                                                                                                         |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
| (f) | Use this information to construct the Riemann sum that would calculate the volume of the solid of revolution.                                           |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
| (g) | Use your information from the previous part to construct and evaluate the definite integral that would calculate the volume of the solid of revolution. |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |

2. Let R be the region shown in the figure below.

(a) Draw an example of a shell created by revolving a Riemann rectangle at  $x_k^*$  in the interval [0,2] about the line x=3.



Figure 2: Region bounded between  $g(x) = x(x-2)^2$  and the x axis

| ( | h)  | Draw the | image | that | corresponds | to | unraveling | the s | hell | and | lahel | it  |
|---|-----|----------|-------|------|-------------|----|------------|-------|------|-----|-------|-----|
| l | IJΙ | Diaw une | mage  | unat | Corresponds | υO | umavenng   | one s | пеп  | anu | laber | IU. |

(c) What is the length of the shell?

| ١ |  |  |
|---|--|--|
| ı |  |  |
| ı |  |  |
| ı |  |  |
| ı |  |  |
| ı |  |  |
| ١ |  |  |
| ı |  |  |
| ı |  |  |
| ı |  |  |
| ١ |  |  |

(d) What is the height of the shell?

| (e) | What is the width of the shell?                                                                                                                         |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
| (f) | Use this information to construct the Riemann sum that would calculate the volume of the solid of revolution.                                           |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
| (g) | Use your information from the previous part to construct and evaluate the definite integral that would calculate the volume of the solid of revolution. |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |
|     |                                                                                                                                                         |

# 11 Arc Length and Surface Area

1. Find the arc length of the specified function over the given domain.

(a)  $f(x) = x^2/2$ ; [0, 2]



(b)  $g(x) = \frac{1}{2} (e^x + e^{-x}); [0, \ln(5)]$ 

| (c) | $h(x) = \ln(\cos x);  [0, \pi/4]$                                        |
|-----|--------------------------------------------------------------------------|
|     |                                                                          |
|     |                                                                          |
|     |                                                                          |
|     |                                                                          |
|     |                                                                          |
|     |                                                                          |
|     |                                                                          |
|     |                                                                          |
| (d) | $k(x) = \frac{1}{12}x^5 + \frac{1}{5x^3};  \left[\frac{1}{10}, 1\right]$ |
|     |                                                                          |
|     |                                                                          |
|     |                                                                          |
|     |                                                                          |
|     |                                                                          |
|     |                                                                          |
|     |                                                                          |

| The solid    | formed by rev | volving $y = x^2$ | on [0, 1] about t | the $y$ -axis. |  |
|--------------|---------------|-------------------|-------------------|----------------|--|
| o) The solid | formed by rev | volving $y = x^2$ | on [0, 1] about t | the y-axis.    |  |
| o) The solid | formed by rev | volving $y = x^2$ | on [0, 1] about t | the y-axis.    |  |
| o) The solid | formed by rev | volving $y = x^2$ | on [0, 1] about t | the y-axis.    |  |
| o) The solid | formed by rev | volving $y = x^2$ | on [0, 1] about t | the y-axis.    |  |
| The solid    | formed by rev | volving $y = x^2$ | on [0, 1] about t | the y-axis.    |  |
| The solid    | formed by rev | volving $y = x^2$ | on [0, 1] about t | the y-axis.    |  |
| o) The solid | formed by rev | volving $y = x^2$ | on [0, 1] about t | the y-axis.    |  |
| The solid    | formed by rev | volving $y = x^2$ | on [0, 1] about t | the y-axis.    |  |
| The solid    | formed by rev | volving $y = x^2$ | on [0, 1] about t | the y-axis.    |  |
| The solid    | formed by rev | volving $y = x^2$ | on [0, 1] about t | the y-axis.    |  |

| (6) | The solid formed by revolving $y = \sqrt{x}$ on [0, 4] about the x-axis.             |
|-----|--------------------------------------------------------------------------------------|
|     |                                                                                      |
|     |                                                                                      |
|     |                                                                                      |
|     |                                                                                      |
|     |                                                                                      |
|     |                                                                                      |
|     |                                                                                      |
|     |                                                                                      |
|     |                                                                                      |
|     |                                                                                      |
|     |                                                                                      |
|     |                                                                                      |
|     |                                                                                      |
|     |                                                                                      |
|     |                                                                                      |
| (4) | The solid formed by revolving $y = \sqrt{a^2 - x^2}$ on $[-a, a]$ about the x-axis.  |
| (a) | The solid formed by levolving $y = \sqrt{u}$ is on $[u, u]$ about the $u$ axis.      |
| (a) | The solid formed by revolving $y = \sqrt{u}$ . $u$ on $[u, u]$ about the $u$ taxes.  |
| (a) | The solid formed by revolving $y = \sqrt{u}$ . $u$ on $[-u, u]$ about the $u$ taxis. |
| (a) |                                                                                      |
| (a) |                                                                                      |
| (a) |                                                                                      |
| (d) |                                                                                      |

#### 12 Introduction to Sequences

1. Consider the following sequence of number:

$$\{1, 3, 6, 10, 15, 21, \dots\}.$$

These are called *triangular numbers* because they are the number of vertices as pictured below.



Figure 1: Triangular Numbers

(a) Write a recursive definition for this sequence.

| - 1 |  |  |  |
|-----|--|--|--|
| l   |  |  |  |
|     |  |  |  |
|     |  |  |  |
|     |  |  |  |
|     |  |  |  |
| l   |  |  |  |
| ı   |  |  |  |

(b) Find an *explicit* formula for this sequence where n = 1 is the first term of the sequence.

| 1 |  |  |  |
|---|--|--|--|
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |

(c) Determine what  $T_{100}$  would be.

2. Determine if the sequence has a least upper bound (supremum) and a greatest lower bound (infimum). If so, what are they?

(a) 
$$\left\{e^{-k}\right\}_{k=0}^{\infty}$$

(a) \_\_\_\_\_

(b) 
$$\{(-1)^k k\}_{k=0}^{\infty}$$

(b) \_\_\_\_\_

(c) 
$$\left\{ 3 + \frac{1}{k^2 + 1} \right\}_{k = -\infty}^{\infty}$$

(c) \_\_\_\_\_

3. Match the formulas with the descriptions of the behavior of the sequence as k goes to infinity. List the first five values in the sequence as justification of your answer.

(a) 
$$\left\{\frac{(-1)^n}{n+1}\right\}_{n=1}^{\infty}$$

(a) 
$$\left\{\frac{(-1)^n}{n+1}\right\}_{n=1}^{\infty}$$
 (c)  $\left\{-4 + \frac{(-1)^m}{m}\right\}_{m=0}^{\infty}$  (e)  $\left\{n(n-1) - n\right\}_{n=-2}^{\infty}$ 

(e) 
$$\{n(n-1)-n\}_{n=-2}^{\infty}$$

(b) 
$$\left\{\sin\left(\frac{1}{k}\right)\right\}_{k=1}^{\infty}$$

(b) 
$$\left\{\sin\left(\frac{1}{k}\right)\right\}_{k=1}^{\infty}$$
 (d)  $\left\{\frac{n\cos(n)}{2n+3}\right\}_{n=12}^{\infty}$  (f)  $\left\{-\frac{p!}{(p+1)!}\right\}_{p=0}^{\infty}$ 

(f) 
$$\left\{-\frac{p!}{(p+1)!}\right\}_{p=0}^{\infty}$$

- I. \_\_\_\_\_ Converges to  $\frac{1}{2}$  from above and below.
- II. \_\_\_\_\_ Converges to 0 through positive numbers.
- III. \_\_\_\_\_ Converges to 0 from above and below.
- IV. \_\_\_\_\_ Converges to 0 through negative numbers.
- V. \_\_\_\_\_ Diverges to  $\infty$ .
- VI. \_\_\_\_\_ Converges to -4 from above and below.

| Many of the developed a :  (a) Complete | se drugs have a<br>new synthetic op | half-life of<br>iate with<br>table to | of about 5<br>a half-life<br>describe th | hours. Surof 6 hours. | ppose a ph  | narmaceutic      | e Mayo Clinic <sup>2</sup> . cal company has 0mg of the new |
|-----------------------------------------|-------------------------------------|---------------------------------------|------------------------------------------|-----------------------|-------------|------------------|-------------------------------------------------------------|
|                                         | hour                                | 0                                     | 6                                        | 12                    | 18          | 24               |                                                             |
|                                         | amount (mg)                         |                                       |                                          |                       |             |                  |                                                             |
| (b) Write an                            | n explicit equatio                  | on that m                             | odels this o                             | data of the           | form $N(t)$ | $= a_0(r)^{kt}.$ |                                                             |

| ,   |     |      |    |     |        |       |      |       |       | _    |
|-----|-----|------|----|-----|--------|-------|------|-------|-------|------|
| (c) | ) V | Vhat | is | the | hourly | decay | rate | of th | ne di | rug? |

(c) \_\_\_\_\_

(d) As  $t \to \infty$ , what happens to the amount opiates?

<sup>&</sup>lt;sup>2</sup>https://www.mayomedicallaboratories.com/test-info/drug-book/opiates.html

- 5. In this question, you will look at a sequence of functions, rather than a numerical sequence. Consider the function defined by  $f_n(x) = \left(1 + \frac{x}{n}\right)^n$  and the sequence defined by  $\{f_n(x)\}_{n=0}^{\infty}$ . Go to https://www.desmos.com/calculator/wjwfifwfnn to help with this question.
  - (a) Below are the first 5 terms of this sequence of functions:

What patterns or sequences of numbers do you notice?

(b) Use the Desmos graph that has been provided to record the different values of  $f_n(1)$  to four decimal places.

| n        | 0 | 1 | 10 | 100 | 1000 | $\infty$ |
|----------|---|---|----|-----|------|----------|
| $f_n(1)$ |   |   |    |     |      |          |
| $f_n(2)$ |   |   |    |     |      |          |

(c) What function do you hypothesize this sequence of functions converges to as  $n \to \infty$ ? Give a justification of your answer. [Hint:  $\lim_{n\to\infty} (1+1/n)^n = e$ ]

| ] | etermine if the sequence is bounded or unbounded, then use nonotonicity of the given sequence. | e an appropriate test to analyze the |
|---|------------------------------------------------------------------------------------------------|--------------------------------------|
|   | (a) $\left\{\frac{n}{n+3}\right\}_{n=0}^{\infty}$                                              |                                      |
|   |                                                                                                |                                      |
|   |                                                                                                |                                      |
|   |                                                                                                |                                      |
|   |                                                                                                |                                      |
|   |                                                                                                |                                      |
|   |                                                                                                |                                      |
|   | b) $\left\{ \frac{k^3}{(k-1)!} \right\}_{k=0}^{\infty}$                                        |                                      |
|   |                                                                                                |                                      |
|   |                                                                                                |                                      |
|   |                                                                                                |                                      |
|   |                                                                                                |                                      |
|   |                                                                                                |                                      |
|   |                                                                                                |                                      |
|   | (c) $\{e^{-k}k^3\}_{k=0}^{\infty}$                                                             |                                      |
|   |                                                                                                |                                      |
|   |                                                                                                |                                      |
|   |                                                                                                |                                      |
|   |                                                                                                |                                      |
|   |                                                                                                |                                      |
|   |                                                                                                |                                      |

## 13 The Integral Test

For each of the following series, determine if the series converges or diverges. You must use a test or a well-known series (i.e. geometric or telescoping) to prove convergence AND divergence. If the series is geometric or telescoping, find the value to which the series converges.

| $1. \sum_{k=1}^{\infty} \frac{1}{8^k}$ | Converges / Diverges. |
|----------------------------------------|-----------------------|
| Proof                                  |                       |
|                                        |                       |
|                                        |                       |
|                                        |                       |
|                                        |                       |
|                                        |                       |
|                                        |                       |
|                                        |                       |
|                                        |                       |
|                                        |                       |
| $2\sum_{k=0}^{\infty}\frac{8}{k}$      |                       |
| 2. \                                   | Converges / Diverges  |

| $\underset{k=1}{\overset{\sim}{\longleftarrow}} \sqrt{k}$ | , |
|-----------------------------------------------------------|---|
| $\sum_{k=1}^{\infty} \sqrt{k}$ Proof                      |   |
|                                                           |   |
|                                                           |   |
|                                                           |   |
|                                                           |   |
|                                                           |   |
|                                                           |   |
|                                                           |   |
|                                                           |   |
|                                                           |   |
|                                                           |   |
|                                                           |   |
|                                                           |   |
|                                                           |   |
|                                                           |   |

| 3. $\sum_{k=1}^{\infty} \frac{7}{\sqrt[3]{k+1}}$ Proof | Converges / Diverges. |
|--------------------------------------------------------|-----------------------|
|                                                        |                       |
|                                                        |                       |
|                                                        |                       |
| $4. \sum_{k=1}^{\infty} \frac{1}{\ln\left(5\right)^k}$ | Converges / Diverges. |

| 5. | $\sum_{k=1}^{\infty} k^2 e^{-k}$ Proof         | Converges / | DIVERGES. |
|----|------------------------------------------------|-------------|-----------|
|    |                                                |             |           |
|    |                                                |             |           |
|    |                                                |             |           |
|    |                                                |             |           |
| 6. | $\sum_{k=1}^{\infty} \frac{3k}{k^2 + 4}$ Proof | Converges / | DIVERGES. |
|    |                                                |             |           |

- 7. Which of the following is required condition for applying the integral test to the sequence  $\{a_k\}_k$ , where  $a_k = f(k)$ .
  - I. f(k) is everywhere positive
  - II. f(k) is eventually monotonically decreasing
  - III. f(k) is eventually always continuous
    - A. I only
    - B. II only
    - C. III
    - D. I & II only
    - E. I & III only
    - F. II & III only
    - G. I, II, & II
- 8. Which of the following statements is false?
  - A.  $\sum_{k} \frac{1}{k^p}$  converges if p > 1 and diverges otherwise.
  - B. If  $a_k$  and f(k) satisfy the requirements of the Integral Test, and if  $\int_1^\infty f(k) dk$  converges,

then 
$$\sum_{k=1}^{\infty} a_k = \int_1^{\infty} f(k) dk.$$

- C.  $\sum_{k=2}^{\infty} \frac{1}{k (\ln k)^p} \text{ converges if } p > 1.$
- D. The integral test does not apply to divergent sequences.
- 9. Which of the following sequences DO NOT meet the conditions of the Integral Test?

I. 
$$\{k(\sin(k)+1)\}_k$$

II. 
$$\left\{\frac{1}{k^p+p}\right\}_k$$

III. 
$$\left\{\frac{1}{k\sqrt{k}}\right\}_k$$

- A. I only
- B. II only
- C. III only
- D. I & II only
- E. I & III only
- F. II & III only
- G. I, II, & II

#### 14 The Comparison Tests

1. For each of the following, determine if the series converges or diverges, then use the direct comparison test to prove your answer.

| (a) | $\sum_{\infty}$       |                  | 1 |   |
|-----|-----------------------|------------------|---|---|
| (a) | $\sum_{k=1}^{\infty}$ | $\overline{2^k}$ | + | k |

Converges / Diverges.

| ŀ | k=1   |  |  |
|---|-------|--|--|
| ] | Proof |  |  |
|   |       |  |  |
|   |       |  |  |
|   |       |  |  |
|   |       |  |  |
|   |       |  |  |
|   |       |  |  |
|   |       |  |  |
|   |       |  |  |
|   |       |  |  |
|   |       |  |  |
|   |       |  |  |
|   |       |  |  |
|   |       |  |  |
|   |       |  |  |
|   |       |  |  |

| (b) | $\sum_{\infty}$ | 1                    |  |  |
|-----|-----------------|----------------------|--|--|
| (b) | $\sum_{n=1}$    | $\overline{(n+1)^2}$ |  |  |

Converges / Diverges.

| Proof |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

| (c) | $\sum_{\theta=0}^{\infty} \frac{1 + \cos(\theta)}{10^{\theta}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Converges / | DIVERGES |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|
|     | Proof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |
|     | $^{\infty}$ $_{l_{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |          |
| (d) | $\sum_{k=0}^{\infty} \frac{k!}{(k+1)!}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Converges / | Diverges |
|     | Proof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |
|     | I and the second |             |          |

| a) $\sum_{k=1}^{\infty} \frac{k-2}{k\sqrt{k}}$ | Converges / Diverges |
|------------------------------------------------|----------------------|
|                                                | ,                    |
| Proof                                          |                      |
|                                                |                      |
|                                                |                      |
|                                                |                      |
|                                                |                      |
|                                                |                      |
|                                                |                      |
|                                                |                      |
|                                                |                      |
|                                                |                      |
|                                                |                      |
| $\sum_{n=1}^{\infty} \frac{\sqrt[n]{e}}{n}$    | Converges / Diverges |
|                                                | ,                    |
| Proof                                          |                      |
|                                                |                      |
|                                                |                      |
|                                                |                      |
|                                                |                      |
|                                                |                      |
|                                                |                      |
|                                                |                      |
|                                                |                      |

| (c) | $\sum_{n=1}^{\infty} \frac{n!}{n^n}$      | Converges / Diverges |
|-----|-------------------------------------------|----------------------|
|     | Proof                                     |                      |
|     |                                           |                      |
|     |                                           |                      |
|     |                                           |                      |
|     |                                           |                      |
|     |                                           |                      |
|     |                                           |                      |
|     |                                           |                      |
|     |                                           |                      |
|     |                                           |                      |
|     |                                           |                      |
| (d) | $\sum_{k=1}^{\infty} \frac{k^5}{k^6 - 2}$ | Converges / Diverges |
|     | Proof                                     |                      |
|     |                                           |                      |
|     |                                           |                      |
|     |                                           |                      |
|     |                                           |                      |
|     |                                           |                      |
|     |                                           |                      |
|     |                                           |                      |
|     |                                           |                      |

#### 15 The Ratio and Root Tests

|    |                   |                | _                 |              | _                    |              |
|----|-------------------|----------------|-------------------|--------------|----------------------|--------------|
| 1. | For each of the f | following, use | the ratio test to | determine if | the series converges | or diverges. |

| (2) | $\sum_{\infty}$       | 1              |
|-----|-----------------------|----------------|
| (a) | $\sum_{k=1}^{\infty}$ | $\overline{k}$ |

Converges / Diverges.

| $\overline{k=1}$ $h$ :     |
|----------------------------|
| $\overline{k=1}^{n}$ Proof |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |

| (b) | $\sum_{\infty}$ | $3^n$               |
|-----|-----------------|---------------------|
| (p) | $\sum_{n=1}$    | $\overline{(n+1)!}$ |

Converges / Diverges.

| Proof |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

| (c) | $\sum_{k=0}^{\infty} k^4 2^{-k}$                 | Converges / Diverges. |
|-----|--------------------------------------------------|-----------------------|
|     | Proof                                            |                       |
|     |                                                  |                       |
|     |                                                  |                       |
|     |                                                  |                       |
|     |                                                  |                       |
|     |                                                  |                       |
|     |                                                  |                       |
| (d) | $\sum_{k=0}^{\infty} \frac{(k!)^2}{(2k)!}$       | Converges / Diverges. |
| (d) | $\sum_{k=0}^{\infty} \frac{(k!)^2}{(2k)!}$ Proof | Converges / Diverges. |
| (d) |                                                  | Converges / Diverges  |

| (a) $\sum_{k=1}^{\infty} \left( \frac{k^2 - 2k + 3}{7k^3 + k - 111} \right)^k$ | Converges / Diverges. |
|--------------------------------------------------------------------------------|-----------------------|
| Proof                                                                          |                       |
|                                                                                |                       |
|                                                                                |                       |
|                                                                                |                       |
|                                                                                |                       |
|                                                                                |                       |
|                                                                                |                       |
|                                                                                |                       |
|                                                                                |                       |
|                                                                                |                       |
|                                                                                |                       |
| $\infty$ ( $\sim n^2$                                                          |                       |
| (b) $\sum_{n=1}^{\infty} \left(1 + \frac{2}{n}\right)^{n^2}$                   | Converges / Diverges. |
| Proof                                                                          |                       |
|                                                                                |                       |
|                                                                                |                       |
|                                                                                |                       |
|                                                                                |                       |
|                                                                                |                       |
|                                                                                |                       |
|                                                                                |                       |

| (c) | $\sum_{n=1}^{\infty} \left( \frac{n}{n+2} \right)^{3n^2}$     | Converges / Diverges |
|-----|---------------------------------------------------------------|----------------------|
|     | Proof                                                         |                      |
|     |                                                               |                      |
|     |                                                               |                      |
|     |                                                               |                      |
|     |                                                               |                      |
|     |                                                               |                      |
|     |                                                               |                      |
|     |                                                               |                      |
| (d) | $\sum_{k=1}^{\infty} \left( \sqrt[k]{k} - 1 \right)^{5k}$     | Converges / Diverges |
| (d) | $\sum_{k=1}^{\infty} \left(\sqrt[k]{k} - 1\right)^{5k}$ Proof | Converges / Diverges |
| (d) |                                                               | Converges / Diverges |

## 16 Alternating Series Test

| 1. | For e | each c | of the  | following    | determine if  | the series  | converges  | absolutely  | conditionally, | or diverges  |
|----|-------|--------|---------|--------------|---------------|-------------|------------|-------------|----------------|--------------|
| т. | 101   | CUCII  | or orre | TOTIO WITIS. | doublining in | UIIC DCLICD | COLLYCIACO | abboratory, | Community,     | or arverges. |

(a) 
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1}$$

Proof

(b) 
$$\sum_{n=1}^{\infty} \left( (-1)^n \left( \frac{n}{3+n} \right)^n \right)$$

Abs. / Cond. / Diverges.

Proof

| $\sum_{k=0}^{\infty} \frac{(-1)^k}{k^2 + 10}$ Proof                        | Abs. | / | Cond. | / | Diverges |
|----------------------------------------------------------------------------|------|---|-------|---|----------|
|                                                                            |      |   |       |   |          |
|                                                                            |      |   |       |   |          |
|                                                                            |      |   |       |   |          |
| $\sum_{k=0}^{\infty} \left( (-1)^{k+1} \frac{(k!)^3}{(3k)!} \right)$ Proof | ABS. | / | Cond. | / | Diverges |
|                                                                            |      |   |       |   |          |
|                                                                            |      |   |       |   |          |

| (e) $\sum_{k=0}^{\infty} \left( (-1)^k \left( \frac{k^2 - 2k + 3}{7k^3 + k - 111} \right) \right)$<br>Proof | Abs. / Cond. / Diverges. |
|-------------------------------------------------------------------------------------------------------------|--------------------------|
|                                                                                                             |                          |
|                                                                                                             |                          |
|                                                                                                             |                          |
| (f) $\sum_{n=1}^{\infty} \left( -\frac{1}{e} \right)^n$ Proof                                               | Abs. / Cond. / Diverges. |

| (g) | $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$                         | ABS. | / | Cond. | / | DIVERGES |
|-----|-------------------------------------------------------------------------|------|---|-------|---|----------|
|     | Proof                                                                   |      |   |       |   |          |
|     |                                                                         |      |   |       |   |          |
|     |                                                                         |      |   |       |   |          |
|     |                                                                         |      |   |       |   |          |
| (h) | $\sum_{k=0}^{\infty} \left( -\frac{2k + \cos((k+1)\pi)}{k+1} \right)^k$ | ABS. | / | Cond. | / | Diverges |
|     | Proof                                                                   |      |   |       |   |          |
|     |                                                                         |      |   |       |   |          |

# 17 Convergence Test Review

| 1. | Give | an example of a series that satisfies the given criteria.                                                |
|----|------|----------------------------------------------------------------------------------------------------------|
|    | (a)  | A series that is absolutely convergent.                                                                  |
|    |      |                                                                                                          |
|    |      |                                                                                                          |
|    |      |                                                                                                          |
|    | (b)  | A series that is conditionally convergent.                                                               |
|    |      |                                                                                                          |
|    |      |                                                                                                          |
|    | (c)  | A series that is divergent, but the limit of the summand goes to zero.                                   |
|    | (-)  |                                                                                                          |
|    |      |                                                                                                          |
|    |      |                                                                                                          |
|    |      | An alternating series that DOES NOT contain $(-1)^k$ . [Hint: think about your trigonometric functions.] |
|    |      |                                                                                                          |
|    |      |                                                                                                          |
|    |      |                                                                                                          |
| 2. | Expl | ain why the series $\sum_{k=1}^{\infty} \frac{\sqrt[k]{k}}{k}$ is divergent.                             |
|    |      | n-1                                                                                                      |
|    |      |                                                                                                          |
|    |      |                                                                                                          |
|    |      |                                                                                                          |

| 3. Indoor | licate if the given series converges or divour claim by correctly using one of the | verges by circling your choice. You must provide proof series tests. |
|-----------|------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| (a)       | $\sum_{k=1}^{\infty} \frac{k}{3^k}$                                                | Converges / Diverges.                                                |
|           | Proof                                                                              |                                                                      |
|           |                                                                                    |                                                                      |
|           |                                                                                    |                                                                      |
|           |                                                                                    |                                                                      |
|           |                                                                                    |                                                                      |
|           |                                                                                    |                                                                      |
| (b)       | $\sum_{k=1}^{\infty} \frac{\sqrt{k}}{k}$                                           | Converges / Diverges.                                                |
|           | $\kappa=1$                                                                         | •                                                                    |
|           | Proof                                                                              |                                                                      |
|           |                                                                                    |                                                                      |
|           |                                                                                    |                                                                      |
|           |                                                                                    |                                                                      |
|           |                                                                                    |                                                                      |
|           |                                                                                    |                                                                      |
| (c)       | $\sum_{k=0}^{\infty} \frac{1}{2^k + \sin(k)}$                                      | Converges / Diverges.                                                |
|           | Proof                                                                              |                                                                      |
|           |                                                                                    |                                                                      |
|           |                                                                                    |                                                                      |
|           |                                                                                    |                                                                      |
|           |                                                                                    |                                                                      |
|           |                                                                                    |                                                                      |

| (d) $\sum_{k=0}^{\infty} \frac{1 \cdot 4 \cdot 7 \cdots (3k+1)}{100^k}$ | Converges / Diverges |
|-------------------------------------------------------------------------|----------------------|
| Proof                                                                   |                      |
|                                                                         |                      |
|                                                                         |                      |
|                                                                         |                      |
|                                                                         |                      |
|                                                                         |                      |
| $(e) \sum_{k=1}^{\infty} \left( -2ke^{-k^2} \right)$                    | Converges / Diverges |
| Proof                                                                   |                      |
|                                                                         |                      |
|                                                                         |                      |
|                                                                         |                      |
|                                                                         |                      |
|                                                                         |                      |
| (f) $\sum_{k=1}^{\infty} \frac{(k+1)^k}{(2k)^k}$                        | Converges / Diverges |
| Proof                                                                   |                      |
|                                                                         |                      |
|                                                                         |                      |
|                                                                         |                      |
|                                                                         |                      |
|                                                                         |                      |

|   | ndio<br>lain |                                                                   | converges absolutely, converges conditionally, or diverges. Prove | your |
|---|--------------|-------------------------------------------------------------------|-------------------------------------------------------------------|------|
|   | (a)          | $\sum_{k=1}^{\infty} \frac{(-2)^k}{1+3^k}$                        | Absolutely / Conditionally / Diverg                               | ES.  |
|   |              | Proof                                                             |                                                                   |      |
|   |              |                                                                   |                                                                   |      |
|   |              |                                                                   |                                                                   |      |
|   |              |                                                                   |                                                                   |      |
|   |              |                                                                   |                                                                   |      |
|   |              |                                                                   |                                                                   |      |
|   |              |                                                                   |                                                                   |      |
|   |              |                                                                   |                                                                   |      |
|   |              |                                                                   |                                                                   |      |
|   |              |                                                                   |                                                                   |      |
|   |              |                                                                   |                                                                   |      |
|   |              |                                                                   |                                                                   |      |
| ( | (b)          | $\sum_{k=1}^{\infty} \left( (-1)^k \frac{\sqrt{k}}{3k-1} \right)$ | Absolutely / Conditionally / Diverg                               | ES.  |
|   |              | Proof                                                             |                                                                   |      |
|   |              |                                                                   |                                                                   |      |
|   |              |                                                                   |                                                                   |      |
|   |              |                                                                   |                                                                   |      |
|   |              |                                                                   |                                                                   |      |
|   |              |                                                                   |                                                                   |      |
|   |              |                                                                   |                                                                   |      |
|   |              |                                                                   |                                                                   |      |
|   |              |                                                                   |                                                                   |      |
|   |              |                                                                   |                                                                   |      |