基 礎 徹 底 演 習 基本問題プリント

式と証明 複素数と方程式①

74 二項定理

 $(x+y)^5$ の展開式における x^3y^2 の係数は アイ である。また、 $(x+y)^5(3x-y)^2$ の展開式における x^4y^3 の係数は ウエ である。

75 多項式の除法

- (2) 多項式 A を $x^2 + 2x + 3$ で割ると、商が x + 1、余りが 3x 1 である。このとき、 $A = x^3 + \boxed{ x } x^2 + \boxed{ オ } x + \boxed{ カ }$ である。

76 分数式の計算

(1)
$$\frac{x^2 + 2x - 3}{x^2 - 4} \times \frac{x - 2}{x - 1} = \frac{x + 7}{x + 7}$$
 である。

(2)
$$\frac{1}{x^2+x-2} + \frac{1}{x^2+7x+10} = \frac{7}{(x-1)(x+1)}$$
 である。

77 比例式

$$\frac{a}{3} = \frac{b}{2}$$
, $ab = 0$ のとき, $\frac{a^2 + b^2}{ab} = \frac{\overline{r}}{\overline{r}}$ である。

年 組 番 名前

78 恒等式(1)

- (1) $2x^2 + x + 3 = a(x+1)^2 + b(x+1) + c$ が x についての恒等式であるとき、定数 a, b, c の値は、 $a = \boxed{r}$ 、 $b = \boxed{r}$ 、 $c = \boxed{\bot}$ である。
- (2) $\frac{3x+4}{(x-2)(2x+1)} = \frac{a}{x-2} + \frac{b}{2x+1}$ が x についての恒等式であるとき、定数 a, b の値は、a = オー、b = かも である。

79 恒等式(2)

(2k+1)x+(k-2)y-8k+1=0 が k のどのような値に対しても成り立つとき、x= ア y= てある。

80 相加平均・相乗平均の関係

a>0 のとき、 $a+\frac{9}{a}$ の最小値は $extbf{P}$ であり、このとき、a= $extbf{T}$ である。

また、a>0、b>0 のとき、 $\left(a+\frac{1}{b}\right)\left(b+\frac{4}{a}\right)$ の最小値は っ であり、このとき、ab= エ である。