ĆWICZENIA I

(algebra zbiorów)

Reguly zaliczenia przedmiotu

- odbędą się trzy sprawdziany po 45 min.:
 - o sprawdzian I, zajęcia IV, zakres materiał: ćwiczenia I-III,
 - o sprawdzian II, zajęcia IX, zakres materiału: ćwiczenia IV i VIII,
 - o sprawdzian III, zajęcia XIV, zakres materiał: ćwiczenia IX i XIII,
 - o brak możliwości poprawiania sprawdzianów,
- punkty do zdobycia:
 - \circ sprawdziany 3 x 16 pkt. = 48 pkt.,
- skala ocen:

ocena	pkt. od	pkt. do
2	0	23
3	24	28
3,5	29	33
4	34	38
4,5	39	43
5	44	48

• osoby, które zgromadzą mniej niż 24 pkt. będą miały możliwość zaliczenia ćwiczeń na ostatnich zajęciach (test z całego semestru).

Zadania

- 1. Ile elementów ma zbiór:
 - (a) $A = \{x : x \text{ jest stolica państwa leżącego w Europie w całości lub częściowo}\},$
 - (b) $B = \{x : x \text{ jest studentem Twojej grupy i } x \text{ lubi piosenki Jennifer Lopez}\},$
 - (c) $C = \{x : x \text{ jest studentem Twojej grupy i } x \text{ nie lubi używać systemu operacyjnego Windows}\},$
 - (d) $D = \{x : x \in \mathbb{N} \text{ i } x \text{ jest dzielnikiem liczby } 15\},$
 - (e) $E = \{x : x \in \mathbb{N}, x \text{ jest wielokrotnością liczby 4 i } x < 50\},$
 - (f) $F = \{2 + (-1)^n : n \in \mathbb{N}\},\$
 - (g) $G = \{3z + 1 : z \in \mathbb{Z} \ i \ |z| < 4\},\$
 - (h) $H = \emptyset$,
 - (i) $I = \{\emptyset\},\$
 - (j) $J = \{\emptyset, \{\emptyset\}\},\$
 - (k) $K = \{\emptyset, \emptyset, \emptyset\}$?

Ile podzbiorów ma każdy z wymienionych zbiorów?

- 2. Wyznacz elementy zbioru:
 - (a) $A = ((-5, 6] \setminus \{-2, 3\}) \cap \mathbb{Z}$,
 - **(b)** $B = ((-5, 6] \setminus [-2, 3)) \cap \mathbb{N},$

- (c) $C = (\{-5, 3\} \setminus [-2, 3]) \cap \mathbb{R}_+,$
- (d) $D = (\{-5, 3\} \cap \mathbb{R}_+) \cup ([-2, 3] \cap \mathbb{Z}_-).$
- 3. Wyznacz zbiory potęgowe zbiorów \emptyset , $\{\emptyset\}$, $\{a\}$, $\{0, 10, 11\}$.
- 4. Przez $\mathbb{Z}(n)$ oznaczamy zbiór wszystkich liczb całkowitych podzielnych przez n $(n \in \mathbb{N} \setminus \{0\})$. Które z poniższych zależności są prawdziwe?
 - (a) $\mathbb{Z}(2) \cap \mathbb{Z}(3) = \mathbb{Z}(6)$,
 - **(b)** $\mathbb{Z}(3) \subset \mathbb{Z}(6)$,
 - (c) $\mathbb{Z}(6) \cup \mathbb{Z}(3) = \mathbb{Z}(3)$,
 - (d) $\mathbb{Z}(2)\backslash\mathbb{Z}(4) = \emptyset$.
- 5. Niech $n \in \mathbb{N} \setminus \{0\}$ i niech $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$.
 - (a) Czy zbiór \mathbb{Z}_5 jest podzbiorem zbioru \mathbb{Z}_6 ?
 - (b) Wymień wszystkie elementy zbioru $\mathcal{P}(\mathbb{Z}_2)$.
 - (c) Czy zbiory $A = (\mathbb{Z}_6 \backslash \mathbb{Z}_4) \cup \mathbb{Z}_3$ i $B = \mathbb{Z}_5$ są równe?
 - (d) Wyznaczyć \mathbb{Z}_3' przy założeniu, że zbiorem uniwersalnym jest \mathbb{Z}_{10} .
- 6. Niech $\Sigma=\{a,b\},\ A=\{a,b,aa,bb,aaa,bbb\},\ B=\{w\in\Sigma^*: \text{długość }(w)\leq 2\} \text{ i } C=\{w\in\Sigma^*: \text{długość }\geq 2\} \text{ oraz niech }\Sigma^* \text{ będzie zbiorem uniwersalnym. Wyznacz:}$
 - (a) $B', B' \cap C',$
 - **(b)** $A \cap C$, $A \setminus C$, $\Sigma \setminus B$,
 - (c) $\mathcal{P}(\Sigma)$.
- 7. A i B oznaczają zbiory niepuste. Jaki jest związek między tymi zbiorami, jeśli:
 - (a) $(A \cup B) \subseteq B$,
 - **(b)** $A \subseteq (A \cap B)$,
 - (c) $A \subseteq (A \backslash B)$,
 - (d) $A \cup B = B$.
- 8. Czy istnieją zbiory A, B i C takie, że $A \cap B \neq \emptyset$, $A \cap C = \emptyset$, $(A \cap B) \setminus C = \emptyset$?
- 9. Wskaż, które ze zdań są prawdziwe, a które fałszywe. Dla każdego fałszywego zdania podaj kontr-przykład.
 - (a) Jeśli $A \cap B = A \cap C$, to B = C.
 - **(b)** $(A \cap \emptyset) \cup B = B$ dla wszystkich zbiorów A, B.
 - (c) $A \cap (B \cup C) = (A \cap B) \cup C$ dla wszystkich zbiorów A, B, C.
- 10. Różnicą symetryczną dwu zbiorów A i B nazywamy zbiór $A \oplus B = (A \setminus B) \cup (B \setminus A)$. Dowieść, że:
 - (a) $A \oplus B = B \oplus A$,
 - **(b)** $A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$.
- 11. Udowodnić następujące tożsamości:
 - (a) $(A \cup B)' = A' \cap B'$,
 - **(b)** $A \setminus B = A \setminus (A \cap B),$
 - (c) $A \setminus (A \setminus B) = A \cap B$,
 - (d) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.
- 12. Udowodnić, że:

- (a) $A \cap B \subseteq C \Rightarrow A \subseteq B' \cup C$,
- **(b)** $(A \backslash B) \cup B = A \Rightarrow B \subseteq A$.
- 13. Niech $A = \{z \in \mathbb{Z} : |z| < 3\}$ i $B = \{n \in \mathbb{N} : 3^n < 28\}$. Wypisz lub narysuj elementy zbioru:
 - (a) $\{(m,n) \in A \times B : m < n\},\$
 - **(b)** $\{(m,n) \in B \times A : m < n\},\$
 - (c) $\{(m,n) \in A \times B : \min\{m,n\} < 0\},\$
 - (d) $\{(m,n) \in B \times A :: m+n \text{ jest liczba pierwsza}\}.$
- 14. Sprawdzić, czy prawdziwe są następujące równości:
 - (a) $A \times (B \cup C) = (A \times B) \cup (A \times C)$,
 - **(b)** $A \cap (B \times C) = (A \cap B) \times (A \cap C)$.
- 15. Korzystając z zależności $A\cap B\subseteq C\Leftrightarrow A\subseteq B'\cup C$ oraz $A\subseteq B\cup C\Leftrightarrow A\cap B'\subseteq C$ rozwiązać układy równań:
 - (a) $\left\{ \begin{array}{l} A\cap X=B \\ A\cup X=C \end{array} \right. , \; \text{gdzie} \; A, \; B, \; C \; \text{są danymi zbiorami oraz} \; B\subseteq A\subseteq C,$
 - **(b)** $\begin{cases} A \backslash X = B \\ X \backslash A = C \end{cases}$, gdzie A, B, C są danymi zbiorami oraz $B \subseteq A, A \cap C = \emptyset$.
- 16. Wyznaczyć $\bigcap_{t \in T} A_t$ oraz $\bigcup_{t \in T} A_t$ gdy:
 - (a) $T = \{2, 3, 4\}, A_t = \mathbb{Z}_t,$
 - **(b)** $T = \{1, 2, 3\}, A_t = [t 3, t + 1].$
- 17. Wyznaczyć $\bigcap_{n=1}^{\infty} A_n$ oraz $\bigcup_{n=1}^{\infty} A_n$ gdy:
 - (a) $A_n = \mathbb{Z}_n$,
 - (b) $A_n = \mathbb{Z}(n)$,
 - (c) $A_n = [0, \frac{1}{n}].$
- 18. Udowodnić, że dla dowolnych rodzin $\{A_t\}_{t\in T}$ oraz $\{B_t\}_{t\in T}$:
 - (a) $\bigcap_t (A_t \cap B_t) = \bigcap_t A_t \cap \bigcap_t B_t$,
 - **(b)** $\bigcup_t (A_t \cap B_t) \subseteq \bigcup_t A_t \cap \bigcup_t B_t$.