CS 4400 Exam 2

Practice

ANSWER KEY

Completely fill in the box corresponding to your answer choice for each question.

1.	[A]	[B]	[C]	
2.		[B]	[C]	[D]
3.	[A]	[B]	[C]	
4.	[A]	[B]	[C]	
5.	[A]	[B]	[C]	
6.	[A]		[C]	[D]
7.	[A]		[C]	[D]
8.	[A]	[B]	[C]	
9.	[A]		[C]	[D]
10.	[A]		[C]	[D]
11.	[A]	[B]		[D]
12.		[B]	[C]	[D]
13.	[A]	[B]		[D]
14.	[A]	[B]		[D]
15.	[A]	[B]		[D]
16.		[B]	[C]	[D]
17.	[A]		[C]	[D]
18.	[A]	[B]	[C]	
19.		[B]	[C]	[D]
20.	[A]	[B]		[D]
21.	[A]	[B]		[D]
22.	[A]		[C]	[D]
23.		[B]	[C]	[D]
24.	[A]		[C]	[D]
25.	[A]	[B]		[D]
			_	

Number missed: _____ Final Score: ____

Pubs Database Schema

 $author(\underline{author_id}, first_name, last_name)$

 $author_pub(\underline{author_id},pub_id,author_position)$

 $book(\underline{book_id}, book_title, month, year, editor)$

 $pub(pub_id, title, book_id)$

- author_id in author_pub is a foreign key referencing author
- pub_id in $author_pub$ is a foreign key referencing pub
- $\bullet \ book_id$ in pub is a foreign key referencing book
- editor in book is a foreign key referencing $author(author_id)$
- Primary keys are underlined

Pubs Database State

r(author)

author_id	$first_name$	last_name
1	John	McCarthy
2	Dennis	Ritchie
3	Ken	Thompson
4	Claude	Shannon
5	Alan	Turing
6	Alonzo	Church
7	Perry	White
8	Moshe	Vardi
9	Roy	Batty

 $r(author_pub)$

author_id	pub_id	author_position
1	1	1
2	2	1
3	2	2
4	3	1
5	4	1
5	5	1
6	6	1

r(book) r(pub)

(00010)					(Puo)		
book_id	book_title	month	year	editor	pub_id	title	book_id
1	CACM	April	1960	8	1	LISP	1
2	CACM	July	1974	8	2	Unix	2
3	BST	July	1948	2	3	Info Theory	3
4	LMS	November	1936	7	4	Turing Machines	4
5	Mind	October	1950	NULL	5	Turing Test	5
6	AMS	Month	1941	NULL	6	Lambda Calculus	6
7	AAAI	July	2012	9			
8	NIPS	July	2012	9			

Figure 1: Relational Database Schema

Name:	GTAccount:	Section:

Scratch page

	Name: _	GTAccount: Section:
[4]	A B C	of the following statements is true with regard to the relational data model? A domain for an attribute is a set of atomic values. Several attributes in one relation schema may have the same domain. A tuple in a relation consists of one value from each attribute domain of that relation. All of the above
[4]	2. Which of A	of the following is the mathematical definition of a relation, $r(R)$, of degree n ? i. $r(R) \subseteq dom(A_1) \times dom(A_2) \times \times dom(A_n)$ i. $r(R) \subseteq dom(A_1) \cap dom(A_2) \cap \cap dom(A_n)$ i. $r(R) \subseteq dom(A_1) \cup dom(A_2) \cup \cup dom(A_n)$ i. none of the above
[4]	A B C	of the following are properties of the relational model? Attribute values in tuples are indivisible. Facts not asserted explicitly are assumed to be false. Relations are sets. All of the above.
[4]	A B C	of the following is true about a minimal superkey? There can be only one. The default superkey is always a minimal superkey. Every minimal superkey is a primary key. Every superkey contains a minimal superkey as a subset.
[4]	there? A B	ation schema with 3 attributes, each of which is a candidate key, how many superkeys are . 1 3. 3 5. 6 6. 7
[4]	6. In a relation for the part of the part	ation schema with 3 attributes, each of which is a candidate key, how many choices are there primary key? 1. 1 2. 3 3. 6 7. 7
[4]	Α	uple in a relation have a NULL value for a foreign key attribute? . Yes . No
[4]	A	uple in a relation have a NULL value for a primary key attribute? . Yes . No
[4]	9. Which l	kind of constraint cannot be specied in the relational model? The referential integrity constraints is semantic constraints, a.k.a., business rules is entity integrity constraints.
[4]	10. Meow!	. True

	Name:	GTAccount:	Section:
[4] 11.	Refer to database schema in What is the degree of the aut	Figure 1 for the remaining questions. thor relation?	
	A. 2 B. 3 C. 9		
[4] 12.	The author_pub relation has A. 1 B. 2 C. 3	how many superkeys?	
[4] 13.	Can the tuple <6, 'Teen', integrity violation? A. Yes B. No	'Candles'> be inserted into the $author$ relation wi	thout causing an
[4] 14.	Can the tuple <10, NULL, 'integrity violation? A. Yes B. No	Pointers'> be inserted into the author relation wi	thout causing an
[4] 15.	The deletion of the second to integrity violation for which in A. author_pub B. book C. pub D. A and B above.	cuple in the <i>author</i> relation (<2, 'Dennis', 'Ritcher relations?	hie'>) causes an
[4] 16.	If cascading deletes is in effect how many other tuples will b A. 0 B. 2 C. 3	t for all relations and the tuple <2, 'Dennis', 'Rito be deleted from the database?	chie'> is deleted,
[4] 17.	How many tuples will be retu	urned by the following relational algebra query?	
		$\pi_{book_title}(book)$	
	A. 7		
	B. 5		
	C. 2 D. 1		

		Name:	GTAccount: Section:
[4]	18.	What qu	nestion does the following expression answer?
			$ \pi_{author_id}(author) - \pi_{editor}(book) $
			How many authors are book editors. How many authors are not book editors.
			What are the names of the authors who are book editors.
			What are the names of the authors who are not book editors.
[4]	19.	Which of editors?	f the following relational algebra expressions returns the names of all authors who are boo
		A.	$\pi_{first_name,last_name}((\pi_{author_id}(author) - \pi_{editor}(book)) * author)$
			$\pi_{first_name,last_name}(author \bowtie_{author_id=editor} book)$
		С.	$\pi_{first_name,last_name}(author*author_pub)$
[4]	20.	book edi	
			$\pi_{first_name,last_name}((\pi_{author_id}(author) - \pi_{editor}(book)) * author)$
			$\pi_{first_name,last_name}(author \bowtie_{author_id=editor} book)$
			$\pi_{first_name,last_name}(author*author_pub)$
[4]	21.	least one	f the following relational algebra expressions returns the names of all authors who have a publication in the database?
			$\pi_{first_name,last_name}((\pi_{author_id}(author) - \pi_{editor}(book)) * author)$
			$\pi_{first_name,last_name}(author \bowtie_{author_id=editor} book)$
r 43			$\pi_{first_name,last_name}(author*author_pub)$
[4]	22.	or after	
			$\sigma_{year<1960}(book) \wedge \sigma_{year>2000}(book)$
			$\sigma_{year<1960}(book) \cup \sigma_{year>2000}(book)$
F . 3			$\sigma_{year<1960 \land year>2000}(book)$
[4]	23.	How man	ny tuples are returned by the following relational algebra expression?
			$author \bowtie_{author_id=editor} book$
			. 8
			. 11
F . 3			. 13
[4]	24.	What qu	nestion does the following relational algebra expression answer?
			$author * (author_pub * (\sigma_{month='July'}(book) * pub))$
			Which authors were born in July?
			Which authors authored a pub that was published in July?
_			Which authors edited books that were published in July?
[4]	25.		ny tuples does the previous relational algebra expression return?
			. 1
			. 2 . 3
		C.	, u

D. 4