In [1]: import numpy as np from matplotlib import pyplot as plt

```
In [2]: def remove_first_line(log_file):
            with open(log file, 'r') as fin:
                data = fin.read().splitlines(True)
            with open(log file, 'w') as fout:
                fout.writelines(data[1:])
        def plot l and a(log file):
            t = np.loadtxt(log file, delimiter=',')
            training accuracy, = plt.plot(t[:,1],'r', label='training accurac
        y')
            validation accuracy, = plt.plot(t[:,3],'b', label='validation acc
            plt.legend(handles=[training accuracy, validation accuracy], bbox
        to anchor=(0., 1.02, 1., .102), loc=3,
                   ncol=2, mode="expand", borderaxespad=0.)
            plt.show()
            training loss, = plt.plot(t[:,2],'r', label='training loss')
            validation_loss, = plt.plot(t[:,4],'b', label='validation_loss')
            plt.legend(handles=[training loss, validation loss], bbox to anch
        or=(0., 1.02, 1., .102), loc=3,
                   ncol=2, mode="expand", borderaxespad=0.)
            plt.show()
```


In [10]: remove_first_line('basic_cnn_training_7303_log')

In [11]: plot_l_and_a('basic_cnn_training_250_log')

In [12]: plot_l_and_a('basic_cnn_training_1000_log')

In [13]: plot_l_and_a('basic_cnn_training_20000_log')

In [18]: plot_l_and_a('basic_cnn_training_7303_log')

In []:

4000

5000

3000

0.2

1000

2000

7000

8000

6000