C.d.L. in Informatica e T.P.S.

Analisi matematica

Programma d'esame – A.A. 2016/17 Prof. Lorenzo Pisani

Insiemi numerici

Campo ordinato dei numeri reali: compatibilità tra operazioni e relazione d'ordine, regole di calcolo algebrico, valore assoluto, intervalli, assioma di completezza. Numeri interi e razionali; parte intera. Rappresentazione dei numeri, calcolo numerico e rappresentazione simbolica. Retta reale e piano cartesiano. Richiami di geometria analitica.

Funzioni e successioni reali

Esempi. Rappresentazione del grafico nel piano cartesiano. Generalità sulle successioni. Successioni definite per ricorrenza; potenze ad esponente naturale; successione delle somme.

Proprietà delle funzioni reali – Funzioni elementari

Simmetria e periodicità. Monotonia. Convessità (in un intervallo); lemma sui rapporti incrementali. Minimi e massimi assoluti, minoranti e maggioranti, estremo inferiore e superiore, funzioni limitate. Algebra delle funzioni. Trasformazioni elementari dei grafici. Generalità su equazioni e disequazioni. Funzioni elementari (potenze ad esponente naturale e radici, polinomio di II grado, potenze ad esponente razionale e reale, esponenziali e logaritmi, funzioni circolari con le rispettive inverse). Cenni su polinomi e funzioni polinomiali/razionali; fattorizzazione e decomposizione in frazioni parziali. Disequazioni relative alle funzioni elementari e alle funzioni razionali/irrazionali.

Limiti di successioni

Successioni convergenti. Unicità del valore a cui una successione converge e definizione di limite finito. Successioni divergenti. Successioni regolari e non. Regolarità delle successioni monotone; il numero di Nepero. Retta ampliata ed intorni, definizione unificata di limite. Teoremi di permanenza del segno, confronto, divergenza e convergenza obbligata. Cenni sulle successioni estratte. Disuguaglianza di Bernoulli e progressione geometrica. Successione delle medie.

Limiti e continuità per funzioni di una variabile

Punti di accumulazione. Definizione sequenziale di limite (finito ed infinito) per le funzioni. Continuità in un punto. Carattere locale del limite. Limite unilaterale; regolarità delle funzioni monotone; asintoti verticali. Teoremi sui limiti. Calcolo dei limiti: limiti delle funzioni elementari, comportamento rispetto alle operazioni, forme indeterminate, limite della funzione composta.

Equivalenze asintotiche: polinomi, equivalenze notevoli per infinitesimi, regole per l'uso delle equivalenze nella risoluzione dei limiti. Confronto di infiniti notevoli. Differenze di infiniti.

Prolungamento per continuità. Funzioni continue in un intervallo: teorema di Weierstrass; teorema degli zeri e applicazioni alla risoluzione qualitativa di equazioni.

Comportamenti asintotici: funzioni divergenti all'infinito (classificazione della crescita all'infinito, asintoti obliqui); funzioni infinitesime in un punto (classificazione dell'ordine di infinitesimo, contatto tra due grafici).

Serie numeriche

Serie numeriche. Esempi di calcolo delle somme parziali: serie geometrica e serie telescopiche. Teoremi sulle serie convergenti, condizione necessaria. Somme approssimate e resto. Serie a termini non negativi: regolarità; criteri di confronto e di confronto asintotico; serie armonica generalizzata; stime per il calcolo della somma approssimata; criteri del rapporto e degli infinitesimi, confronto di

efficienza. Serie a termini di segno variabile: criterio di Leibnitz per le serie a segno alterno; assoluta convergenza, serie assolutamente convergenti.

Serie di potenze; intervallo di convergenza e teorema di D'Alambert. Funzioni generatrici; applicazione alla successione di Fibonacci e formula di Binet.

Introduzione al calcolo differenziale

Rapporto incrementale, derivata. Esempi. Derivata destra e sinistra. Continuità delle funzioni derivabili. Retta tangente; caratterizzazione tramite l'ordine di contatto. Flessi a tangente verticale. Interpretazione del segno della derivata: monotonia rispetto ad un punto, punti stazionari. Semirette tangenti; punti angolosi e cuspidali con rispettivi esempi. Derivate delle funzioni elementari. Algebra delle derivate. Derivata della funzione composta e della funzione inversa. Massimi e minimi locali; teorema di Fermat; controesempi.

Funzioni derivabili e derivate di ordine superiore

Lemma di Rolle; teorema del valor medio di Lagrange. Caratterizzazione delle funzioni costanti su un intervallo; caratterizzazione delle funzioni monotone su un intervallo; criterio di stretta monotonia; controesempi. Teoremi di de L'Hospital; calcolo della derivata unilaterale. Funzioni convesse: posizione rispetto alla retta tangente, caratterizzazione tramite la derivata.

Derivata seconda; lemma fondamentale e interpretazione del segno. Condizione sufficiente per punti di estremo locale. Caratterizzazione delle funzioni convesse tramite la derivata seconda.

Studio del grafico di una funzione.

Derivate di ordine superiore. Parabola osculatrice: definizione e proprietà di approssimazione. Polinomi di Taylor e teorema sull'ordine di contatto; valutazione del resto secondo Lagrange; cenni sulle serie di Taylor.

Primitive ed integrazione indefinita

Primitive ed integrale indefinito. Struttura dell'integrale indefinito su un intervallo. Integrali indefiniti immediati, per scomposizione (linearità), per sostituzione, per parti. Integrazione indefinita delle funzioni razionali.

Integrali di Riemann, definiti, impropri

Somme inferiori e superiori di una funzione limitata. Le somme inferiori e superiori costituiscono due insiemi separati. Integrabilità secondo Riemann ed integrale di Riemann; esempi. Interpretazione geometrica. Classi di funzioni integrabili (monotone, continue, continue quasi ovunque); proprietà di linearità. Proprietà dell'integrale di Riemann: media e relativo teorema, positività, confronto; additività e continuità rispetto al dominio.

Integrale definito e relative proprietà. Teorema Fondamentale del Calcolo: derivabilità della funzione integrale. Formula fondamentale del Calcolo integrale.

Integrali impropri: funzioni non limitate e/o intervalli illimitati. Integrabilità di $1/x^{\alpha}$, su (0,1] e su $[1,+\infty)$. Criteri di integrabilità per funzioni a segno costante, assoluta integrabilità. Criterio dell'integrale per le serie numeriche; applicazione al calcolo di somme approssimate.

Testi consigliati

Appunti del corso, a cura del docente, disponibili su piattaforma didattica a cui si accede con registrazione.

Le dispense, ripubblicate man mano che vengono aggiornate, non coprono tutto il corso: non sono trattati alcuni argomenti ritenuti di routine. Per tali argomenti si può consultare un qualsiasi manuale di livello universitario. In particolare si segnalano:

Bramanti, Pagani, Salsa, Analisi matematica 1, Zanichelli

Bramanti, Esercitazioni di Analisi Matematica 1, Esculapio

Conti, Ferrario, Terracini, Verzini, Analisi matematica, Volume 1, Apogeo.