Lie groups of Poisson diffeomorphisms

Friday Fish Seminar

Wilmer Smilde Based on my master's thesis, supervised by Ioan Mărcuț 13-11-2020

Contents

Overview and the problem

Linearization

Applications

Log-symplectic structures

Overview and the problem

Algebraic Aspects

Global

- $\mathsf{Diff}(M,\pi) = \{\mathsf{Poisson diffeomorphisms}\}$
- Fol $(M, \pi) = \{$ Poisson diffeomorphisms preserving each symplectic leaf $\}$
- $\mathsf{Ham}_{\mathsf{loc}}(M,\pi) = \{\mathsf{Time}\text{-}1 \; \mathsf{flows} \; \mathsf{of} \; (\mathsf{time}\text{-}\mathsf{dep.}) \; \mathsf{locally} \; \mathsf{Hamiltonian} \; \mathsf{vector} \; \mathsf{fields} \}$
- $\bullet \ \ \mathsf{Ham}(M,\pi) = \{\mathsf{Time}\text{-}1 \ \mathsf{flows} \ \mathsf{of} \ \mathsf{(time}\text{-}\mathsf{dependent)} \ \mathsf{Hamiltonian} \ \mathsf{vector} \ \mathsf{fields}\}$

Infinitesimal

- $\mathfrak{X}(M,\pi) = \{ \text{Poisson vector fields} \}$
- $fol(M, \pi) = \{Poisson \ vf's \ tangent \ to \ the \ symplectic \ foliation\}$
- $\mathfrak{ham}_{\mathrm{loc}}(M,\pi) = \{\pi^{\sharp}(\alpha) : \alpha \in \Omega^{1}(M) \text{ closed}\}$
- $\mathfrak{ham}(M,\pi)=\{\mathsf{Hamiltonian}\ \mathsf{vector}\ \mathsf{fields}\}=\{\pi^\sharp(\mathit{df}): f\in C^\infty(M)\}$

Examples

Example

Symplectic manifold (M, ω)

$$\mathsf{Ham}(M,\omega) \subset \mathsf{Ham}_{\mathrm{loc}}(M,\omega) = \mathsf{Fol}(M,\omega) = \mathsf{Diff}_0(M,\omega)$$

The difference $\operatorname{Ham}_{loc}/\operatorname{Ham}$ is described by (a quotient of) $H^1(M)$.

Example

A manifold M with $\pi = 0$

$$\{\mathsf{id}\} = \mathsf{Ham}(M,0) = \mathsf{Ham}_{\mathrm{loc}}(M,0) = \mathsf{Fol}(M,0) \subset \mathsf{Diff}(M,0) = \mathsf{Diff}(M)$$

4

The problem

Problem

Can we make sense of $Diff(M, \pi)$ as a Lie group with Lie algebra $\mathfrak{X}(M, \pi)$? What about its subgroups?

First, understand manifold structure on Diff(M)

The local nature of the diffeomorphism group

Manifold charts for Diff(M)

- Any map $\varphi: M \to M$ induces a graph $\operatorname{gr}_{\varphi}: M \to M \times M$
- In a tubular neighbourhood of Δ ,

```
 \left\{ \begin{array}{l} \text{diffeomorphisms} \\ C^1\text{-close to id} \end{array} \right\} \stackrel{1:1}{\longleftrightarrow} \left\{ \begin{array}{l} \text{sections of } N\Delta \\ C^1\text{-close to 0} \end{array} \right\}
```

- $N\Delta \cong TM$
- Diff(M) is a Lie group with Lie algebra $(\mathfrak{X}(M), [\cdot, \cdot])$

The local nature of the group of bisections

Manifold charts for Bis(G)

- A bisection of $\mathcal{G} \rightrightarrows M$ is $\sigma: M \to \mathcal{G}$ s.t. $s \circ \sigma = \mathrm{id}_M$ and $t \circ \sigma$ is a diffeomorphism
- In a tubular neighbourhood of $M \subset \mathcal{G}$,

- $NM \cong \mathcal{A} = Lie(\mathcal{G})$
- Bis(\mathcal{G}) is a Lie group with Lie algebra $(\Gamma(\mathcal{A}), [\cdot, \cdot])$

Local nature of the symplectomorphism group

Let (M, ω) be a symplectic manifold

- $\varphi \in \text{Diff}(M)$ is symplectic if and only if $\text{gr}_{\varphi} \subset (M \times M, \omega \times (-\omega))$ is Lagrangian
- Lagrangian tubular neighbourhood theorem:

$$(T^*M, \omega_{\operatorname{can}}) \xrightarrow{\operatorname{local}} (M \times M, \omega \times (-\omega))$$

• In this tubular neighbourhood of Δ ,

$$\left\{ \begin{array}{l} \text{symplecto-} \\ \text{morphisms} \\ C^1\text{-close to id} \end{array} \right\} \overset{1:1}{\longleftrightarrow} \left\{ \begin{array}{l} \text{closed sections} \\ \text{of } T^*M \\ C^1\text{-close to 0} \end{array} \right\}$$

Local nature of the Poisson diffeomorphism group

Let (M, π) be a Poisson manifold

- $\varphi \in \text{Diff}(M)$ is Poisson if and only if $\operatorname{gr}_{\varphi} \subset (M \times M, \pi \times (-\pi))$ is coisotropic
- Local nature is of Diff(M, π) is about coisotropic deformations of Δ !
- Problem: rarely, the deformations of $\Delta \subset M \times M$ are easily described

Strategy

Observations: let $(\mathcal{G}, \Pi) \rightrightarrows M$ be a Poisson groupoid

- Coisotropic bisections $\mathsf{Bis}(\mathcal{G},\Pi) \subset \mathsf{Bis}(\mathcal{G})$
- Induced homomorphism

$$\mathsf{Bis}(\mathcal{G},\Pi) \to \mathsf{Diff}(M,\pi)$$

• Local nature of $\mathsf{Bis}(\mathcal{G},\Pi)$ is about coisotropic deformations of $M\subset\mathcal{G}$

Strategy

Given a Poisson manifold (M, π) , find a Poisson groupoid $(\mathcal{G}, \Pi) \rightrightarrows (M, \pi)$ so that

- 1. Bis(\mathcal{G} , Π) is an interesting group;
- 2. $Bis(\mathcal{G}, \Pi)$ is a Lie group.

Linearization

The linearization problem

ullet $\mathcal{A}
ightarrow \mathcal{L}$ a Lie algebroid induces a linear Poisson structure on \mathcal{A}^*

Let $L \subset (M, \pi)$ be a coisotropic submanifold

- The conormal bundle $N^*L \to L$ is a subalgebroid of $\pi^{\sharp}: T^*M \to M$
- Induced linear Poisson structure π_{lin} on NL is the linearization of π around L
- ullet Upshot: π is linear \Longrightarrow coisotropic deformation space is linear
- If π is linear, then L is Lagrangian

$$(TL)^{\perp_{\pi}} = TL \cap \operatorname{Im} \pi^{\sharp}$$

Problem

Let $L \subset (M, \pi)$ be a Lagrangian submanifold. When is π_{lin} locally isomorphic to π ?

Proposition

If $(\mathcal{G},\Pi) \rightrightarrows M$ is a Poisson groupoid. Then M is a Lagrangian submanifold of \mathcal{G} .

More on linear Poisson structures

Example: $A = TL \rightarrow L$

ullet On T^*L , canonical one-form $\lambda_{\operatorname{can}}\in\Omega^1(T^*L)$

$$(\lambda_{\operatorname{can}})_{\alpha}(v) = \alpha(T_{\alpha}p(v))$$

- The symplectic form $\omega_{\rm can}=d\lambda_{\rm can}$ induces the linear Poisson structure on T^*L
- The image of a section $\alpha: L \to T^*L$ is Lagrangian if and only if

$$\alpha^* \omega_{\rm can} = d\alpha = 0$$

 Lagrangian neighbourhood theorem: symplectic structures are linearizable around Lagrangian submanifolds

More on linear Poisson structures (de Leon, Marrero, Martinez '04)

Let $\mathcal{A} \to \mathcal{L}$ be a Lie algebroid, and let $p: \mathcal{A}^* \to \mathcal{L}$ be the projection

ullet The algebroid $ho^! {\mathcal A} o {\mathcal A}^*$ has a canonical one form $\lambda_{\operatorname{can}} \in \Omega^1(
ho^! {\mathcal A})$

$$(\lambda_{\operatorname{can}})_{\alpha}(v) = \alpha(p_!(v))$$

• The two-form $\omega_{\mathrm{can}} = d\lambda_{\mathrm{can}} \in \Omega^2(p^!\mathcal{A})$ is symplectic and induces the linear Poisson structure

$$(\rho^{!}\mathcal{A})^{*} \stackrel{\omega_{\mathrm{can}}^{\flat}}{\longleftarrow} \rho^{!}\mathcal{A}$$
 $\rho^{*} \uparrow \qquad \qquad \downarrow \rho$
 $T^{*}\mathcal{A} \stackrel{\pi_{\mathrm{lin}}}{\longrightarrow} T\mathcal{A}$

• The image of a section $\alpha:L\to \mathcal{A}^*$ is Lagrangian if and only if

$$\alpha^* \omega_{\rm can} = d\alpha^* \lambda_{\rm can} = d\alpha = 0$$

• Coisotropic deformations of $L \subset A^*$ are Lagrangian deformations

A Lagrangian neighbourhood theorem

Definition

Let $(A, \omega) \to M$ be a symplectic Lie algebroid. A Lagrangian transversal is a submanifold $i: L \to M$ that is transverse to A and $(i!A)^{\perp_{\omega}} = i!A$.

Theorem

Let $(A, \omega) \to M$ be a symplectic Lie algebroid. Let $i: L \to M$ be a Lagrangian transversal. Then around L there is a local symplectomorphism

$$(\mathcal{A} \to \mathcal{M}, \omega) \xrightarrow{\text{local}} (p^! i^! \mathcal{A} \to (i^! \mathcal{A})^*, \omega_{\text{can}})$$

that restricts the identity on L.

Key ingredients for the proof

- ullet Splitting theorem for Lie algebroids $p^!i^!\mathcal{A}\cong\mathcal{A}|_U$ (Bursztyn-Lima-Meinrecken '17)
- A Moser-Weinstein stability result (also announced by Sjamaar in June '20)

Examples

 $(\mathcal{A},\omega) o M$ symplectic Lie algeboid, i:L o M a Lagrangian transversal

- A = TM
- $(\mathcal{F}, \omega) \subset TM$ a symplectic foliation
- $A = {}^bT_ZM$, the log-tangent bundle, and $L \pitchfork Z$
- \bullet b^k -tangent bundle, elliptic tangent bundle etc...

Applications

Application: Lagrangian bisections (Ping Xu '97, Rybicki '01)

Let $(\mathcal{G},\Omega)
ightrightarrows (M,\pi)$ be a symplectic groupoid

- Lagrangian bisections $\sigma: M \to \mathcal{G}$ form a subgroup $\mathsf{Bis}(\mathcal{G}, \Omega) \subset \mathsf{Bis}(\mathcal{G})$
- Lagrangian tubular neighbourhood theorem:

$$(T^*M, \omega_{\operatorname{can}}) \supset U \xrightarrow{\Phi} V \subset (\mathcal{G}, \Omega)$$

• In this tubular neighbourhood of Δ ,

$$\left\{ \begin{array}{l} \text{Lagrangian} \\ \text{bisections} \\ C^1\text{-close to id} \end{array} \right\} \overset{1:1}{\longleftrightarrow} \left\{ \begin{array}{l} \text{closed sections} \\ \text{of } T^*M \\ C^1\text{-close to 0} \end{array} \right\}$$

• Bis (\mathcal{G}, Ω) is a Lie group with Lie algebra $(\Omega^1_{\mathrm{cl}}(M), [\cdot, \cdot]_{\pi})$

Application: Log-symplectic structures

Definition

A Poisson structure π on M is log-symplectic if $\wedge^n \pi: M \to \wedge^{2n} TM$ is transverse to the zero section.

- ullet π is symplectic away from a hypersurface Z
- on Z, it induces a corank-one Poisson structure
- ullet Equivalently, π comes from a symplectic form on the log-tangent bundle bTM

Let (M,π) be a log-symplectic manifold

• Problem: $\pi \times (-\pi)$ is **not** linearizable around Δ

Let (M, π) be a log-symplectic manifold

- Solution: Blow-up $Z \times Z$ in $M \times M$ to Pair_Z(M) (Gualtieri-Li)
- (Pair_Z(M), Π) \Rightarrow (M, π) is a Poisson groupoid, and Π is log-symplectic
- M is transverse to degeneracy locus of Π
- Apply Lagrangian neighbourhood theorem to obtain a manifold structure on Bis(Pair_Z(M), Π)

Theorem

Let M be a manifold, $Z \subset M$ a hypersurface. Then

$$\mathsf{Bis}(\mathsf{Pair}_{\mathcal{Z}}(M)) \cong \mathsf{Diff}(M,\mathcal{Z})$$

is a Lie group with Lie algebra $\Gamma({}^bT_ZM)$. Let (M,π) be a log-symplectic manifold. Then

$$\mathsf{Bis}(\mathsf{Pair}_{\mathcal{Z}}(M),\Pi) \cong \mathsf{Diff}(M,\pi)$$

is a Lie group with Lie algebra ${}^b\Omega^1_{\rm cl}(M)\cong \mathfrak{X}(M,\pi).$

What about foliated diffeomorphisms?

Infinitesimally:

$${}^b\Omega^1_{\mathrm{cl}}(M)\cong \mathfrak{X}(M,\pi), \quad \Omega^1_{\mathrm{cl}}(M)\cong \mathfrak{fol}(M,\pi)$$

- Under additional assumptions, (Pair $_{\pi}(M), \Omega$) symplectic groupoid obtained by a blowup in Pair $_{Z}(M)$ (Gualtieri-Li)
- $\operatorname{Fol}(M,\pi) \cong \operatorname{Bis}(\operatorname{Pair}_{\pi}(M),\Omega)$

$$\begin{split} \mathsf{Bis}_{\mathrm{ex}}(\mathsf{Pair}_{\pi}(M),\Omega) &\to \mathsf{Bis}_{0}(\mathsf{Pair}_{\pi}(M),\Omega) \to \mathsf{Bis}(\mathsf{Pair}_{\pi}(M),\Omega) \to \mathsf{Bis}(\mathsf{Pair}_{Z}(M),\Pi) \\ &\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong \\ &\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong \\ &\downarrow \mathsf{Ham}(M,\pi) &\longrightarrow \mathsf{Ham}_{\mathrm{loc}}(M,\pi) &\longrightarrow \mathsf{Fol}(M,\pi) &\longrightarrow \mathsf{Diff}(M,\pi) \end{split}$$

Other Lie groups

• Scattering manifolds (M, Z, ω)

$$\mathsf{Ham}(M,\omega) \subsetneq \mathsf{Ham}_{\mathrm{loc}}(M,\omega) \subsetneq \mathsf{Fol}_0(M,\omega) \subsetneq \mathsf{Diff}_0(M,\omega)$$

- Poisson structures coming from cosymplectic structures
- Poisson manifolds of strong proper type (an application of a recent linearization result by Aldo Witte)