Table des matières

Ι	Définitions et premières propriétés	1
	I. 1 Définitions	1
	I. 2 Premières propriétés	2
	I. 2 Premières propriétés	3
II	Noyau et image d'une application linéaire	5
	II. 1 Définition du noyau et de l'image d'une application linéaire	5
	II. 2 Lien avec l'injectivité, la surjectivité et la bijectivité d'une application linéaire	6
II	ILes différents liens entre les matrices et les applications linéaires	8
	III. 1 Matrices associées à une application linéaire	8
	III. 2Lien entre les opérations sur les applications linéaires et les matrices	Ö
	III. 3Calcul du noyau et de l'image d'une application linéaire grâce aux matrices	10
I	VRang d'une application linéaire	11
	IV. 1Définition du rang d'une application linéaire	11
	IV. 2Théorème du rang et conséquences	12

Chapitre 20 : Applications linéaires

Dans tout ce chapitre \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

I Définitions et premières propriétés

I. 1 Définitions

Définition d'une application linéaire

Définition 1. Soit $E = \mathbb{K}^n$ et $F = \mathbb{K}^p$ avec n et p deux entiers naturels non nuls.

- \bullet Soit f une application de E dans F. On dit que f est une application linéaire de E dans F si
- ullet L'ensemble des applications linéaires de E dans F est noté

Méthodes pour montrer que $f \in \mathcal{L}(E, F)$

- Vérifier que f va bien de l'espace E dans l'espace $F: f: E \to F$.
- Soit $u \in E$, soit $v \in E$, soit $\lambda \in \mathbb{K}$. Montrer que $f(\lambda u + v) = \lambda f(u) + f(v)$.

Exercice 1. 1. Montrer que f(x, y, z) = (y, 0, x + z, 3x + y - 2z) est une application linéaire.

- 2. Soit f définie par f(x, y, z) = (x + y, 2x y, 4z). Montrer que $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$.
- 3. Soit g l'application définie par g(x, y, z) = (x y + 4z, 3x z). Montrer que $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$.

Exemples. • L'application nulle :
$$f: \begin{bmatrix} \mathbb{K}^n \to \mathbb{K}^p \\ u \mapsto \dots \end{bmatrix}$$
 est une application linéaire.

- L'application identité : $Id: \begin{vmatrix} \mathbb{K}^n \to \mathbb{K}^n \\ u \mapsto \dots \end{vmatrix}$ est une application linéaire.
- Soit $\alpha \in \mathbb{K}$, on appelle homothétie vectorielle dans \mathbb{K}^n de rapport α , l'application : $f: \begin{bmatrix} \mathbb{K}^n \to \mathbb{K}^n \\ u \mapsto \dots \end{bmatrix}$ Les homothéties sont des applications linéaires.
- La projection canonique par rapport à la *i*-ème coordonnée est définie par π_i : $\begin{pmatrix} \mathbb{K}^n \to \mathbb{K} \\ (x_1, \dots, x_n) \mapsto \dots \end{pmatrix}$. C'est une application linéaire.

Définition 2. Définitions supplémentaires :

Exercice 2. Montrer que $f \in \mathcal{L}(\mathbb{R}^3)$ avec f(x,y,z) = (x-2y+z,2x+3y-5z,x+y+z).

I. 2 Premières propriétés

Proposition 1. Soit $f \in \mathcal{L}(E, F)$ avec $E = \mathbb{K}^n$ et $F = \mathbb{K}^p$ (n et p deux entiers naturels non nuls). On a :

- $f(0_E) =$
- Pour tout $p \in \mathbb{N}^*$, pour toute famille de vecteurs $(u_1, \ldots, u_p) \in E^p$, pour tous scalaires $(\lambda_1, \ldots, \lambda_p) \in \mathbb{K}^p$, on a :

Preuve

Méthodes pour montrer qu'une fonction n'est pas une application linéaire

- Méthode 1 : montrer que $f(0_E) \neq 0_F$ (car si f est une application linéaire alors on a forcément $f(0_E) = 0_F$).
- Méthode 2 : trouver un contre-exemple : trouver $u \in E, v \in E$ et $\lambda \in \mathbb{K}$ tel que $f(\lambda u + v) \neq \lambda f(u) + f(v)$.

Exercice 3. 1. Soit f définie par : f(x, y, z) = (x + y + z + 1, z). Étude de la linéarité de f.

2. Soit h une application définie par : $h(x, y, z) = x^2 + y + z$. Étudier la linéarité de h.

I. 3 Opérations sur les applications linéaires

Proposition 2. Somme et multiplication par un scalaire

- Soient $f \in \mathcal{L}(E, F), g \in \mathcal{L}(E, F)$ et $(\alpha, \beta) \in \mathbb{K}^2$, alors
- Autrement dit:

 - * La multiplication d'une application linéaire par un scalaire est

Preuve

Remarque. Ainsi, comme vous le verrez en BCPST2, $|\mathcal{L}(E,F),+,.)$ est

Exercice 4. On définit

$$u: \left| \begin{array}{ccc} \mathbb{R}^3 & \to & \mathbb{R}^2 \\ (x,y,z) & \mapsto & (x-y,7z) \end{array} \right| \quad \text{et} \quad v: \left| \begin{array}{ccc} \mathbb{R}^3 & \to & \mathbb{R}^2 \\ (x,y,z) & \mapsto & (y+2z,3x+y-z). \end{array} \right|$$

Montrer que u et v sont bien des applications linéaires et calculer 2u - 3v.

Composition des applications linéaires

Proposition 3. Soient
$$E = \mathbb{K}^q$$
, $F = \mathbb{K}^p$ et $G = \mathbb{K}^n$. Si $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$ alors

La composition de deux applications linéaires est

Preuve

Exercice 5. On définit :

$$f: \left| \begin{array}{ccc} \mathbb{R}^3 & \to & \mathbb{R}^2 \\ (x,y,z) & \mapsto & (x-y-2z,-x+3y-z) \end{array} \right| \quad \text{et} \quad g: \left| \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & (2x-y,x+3y). \end{array} \right|$$

Déterminer l'expression analytique de $g \circ f$.

Comme pour les applications, $g \circ f$ peut être bien définie mais pas $f \circ g$ (cf exemple ci-dessus) et même lorsque $g \circ f$ et $f \circ g$ sont toutes les deux bien définies, elles ne sont pas égales en général. Si $f \circ g = g \circ f$, on dit que les applications f et g.

Cas particulier des endomorphismes Dans l'ensemble des endomorphismes $\mathcal{L}(E)$ avec $E = \mathbb{K}^n$, on peut composer les éléments entre eux sans restriction. Attention, $f \circ g$ et $g \circ f$ sont dans ce cas précis toujours bien définies, mais elles ne sont pas égales en général.

Définition 3. Soit $E = \mathbb{K}^n$ et f un endomorphisme non nul de $\mathcal{L}(E)$. On définit f^k dans $\mathcal{L}(E)$ pour tout entier naturel k par la récurrence

$$\begin{cases} f^0 = Id_E \\ \forall k \in \mathbb{N}, \quad f^{k+1} = \dots \end{cases}$$

Exemples. Soient $f \in \mathcal{L}(E)$ et $g \in \mathcal{L}(E)$.

- Calculer $(f+g) \circ (f-g)$:
- Calculer $(f+g)^2$:

Proposition 4. Soient $E = \mathbb{K}^n$ et $(f,g) \in \mathcal{L}(E)^2$. Si f et g commutent, alors pour tout entier naturel $n \in \mathbb{N}$, on a:

Bijection réciproque d'une application linéaire bijective

Proposition 5. Si $f \in \mathcal{L}(E)$ avec $E = \mathbb{K}^n$ est un automorphisme de E alors f^{-1} est ...

Exercice 6. Soit $f \in \mathcal{L}(E)$ définie par f(x,y) = (x+2y,2x+y). Montrer que f est un automorphisme et vérifier que f^{-1} est linéaire.

II Noyau et image d'une application linéaire

II. 1 Définition du noyau et de l'image d'une application linéaire

Définition 4. Soit $f \in \mathcal{L}(E, F)$.

- \bullet Le noyau de f est le sous-ensemble de E (espace de départ) noté $\ker\left(f\right)$ et défini par
- L'image de f est le sous-ensemble de F (espace d'arrivée) noté $\operatorname{Im}(f)$ et défini par

Proposition 6. Soit $f \in \mathcal{L}(E, F)$.

- L'ensemble $\ker(f)$
- ullet L'ensemble Im (f)

Preuve

Méthode pour déterminer une base et la dimension de $\ker(f)$

On a : $\ker(f) = \{u \in E, f(u) = 0_F\}.$

- $u \in \ker f \iff f(u) = 0_F$. On écrit le système linéaire que l'on doit résoudre.
- On échelonne le système linéaire.
- On trouve alors l'écriture vectorielle de $\ker(f)$ et on en déduit une base et la dimension de $\ker(f)$.

Exercice 7. Montrer que ces applications sont des applications linéaires et déterminer une base et la dimension de leur noyau.

- 1. f(x, y, z) = (x 2y + 3z, 2x + y 2z).
- 2. f(x,y,z) = (x-y+z, x+2y-z, 2x+z)
- 3. f(x,y,z) = (x-y-3z,2x-z,x+y+2z).
- 4. f(x, y, z, t) = (-y, my, x mz t, y), avec m paramètre réel.

Méthode 1 pour déterminer une base et la dimension de Im(f)

- On écrit $\mathfrak{Im} f = \{v \in F, \exists u \in E, v = f(u)\}$, et on obtient une écriture paramétrique de $\operatorname{Im} f$.
- ullet On en déduit la forme vectorielle, donc une famille génératrice de ${\rm Im}\, f$: attention, cette famille n'est pas nécessairement une base!
- On extrait de cette famille une base de $\operatorname{Im} f$.

Méthode 2 pour déterminer une base et la dimension de Im(f)

- On écrit $v \in \text{Im } f \iff \exists u \in E, \ v = f(u)$, et on échelonne le système linéaire correspondant.
- On cherche les équations de compatibilité : s'il en existe, ce sont le(s) équation(s) cartésienne(s) de $\operatorname{Im} f$.
- On passe de l'écriture cartésienne à l'écriture vectorielle afin d'obtenir une base et la dimension de ${\rm Im}\ f.$

Exercice 8. Déterminer une base et la dimension de l'image des applications linéaires de l'exercice 7.

II. 2 Lien avec l'injectivité, la surjectivité et la bijectivité d'une application linéaire

Proposition 7. Soit $f \in \mathcal{L}(E, F)$.

Remarque. On a toujours $\{0_E\} \subset \ker f$ car

Ainsi, pour montrer que $\ker f = \{0_E\}$, il suffit de montrer que

Preuve

Méthode pour montrer l'injectivité d'une application linéaire : calculer le noyau.

- Si $\ker(f) = \{0_E\}$ alors f est injective de E dans F.
- Sinon f n'est pas injective de E dans F.

Exercice 9. 1. Soit f définie de \mathbb{R}^2 dans \mathbb{R}^3 par f(x,y)=(x-y,x+y,2y-x). Montrer que f est linéaire. L'application f est-elle injective?

2. Soit f définie de \mathbb{R}^3 dans \mathbb{R}^2 par f(x,y,z)=(2x-z,y+2z). Montrer que f est linéaire. L'application f est-elle injective?

Proposition 8. Soit $f \in \mathcal{L}(E, F)$.

Remarque. On a toujours

Ainsi, pour montrer que $\operatorname{Im}(f) = F$, il suffit de montrer que

Preuve

Méthodes pour montrer la surjectivité d'une application linéaire : calculer l'image.

- Si $\operatorname{Im}(f) = F$ alors f est surjective de E dans F.
- Sinon f n'est pas surjective de E dans F.

Exercice 10. 1. Soit f définie de \mathbb{R}^2 dans \mathbb{R}^3 par f(x,y)=(x-y,x+y,2y-x). Montrer que f est linéaire. L'application f est-elle surjective?

2. Soit f définie de \mathbb{R}^3 dans \mathbb{R}^2 par f(x,y,z)=(2x-z,y+2z). Montrer que f est linéaire. L'application f est-elle surjective?

Proposition 9. Soit $f \in \mathcal{L}(E)$.

Méthodes pour déterminer la bijectivité d'une application linéaire et calculer f^{-1}

- \bullet On montre que f est à la fois injective et surjective.
- Pour le calcul de f^{-1} : on prend un vecteur $v \in F$, et on cherche $u \in E$ tel que v = f(u).
- ullet On échelonne le système linéaire correspondant afin d'exprimer les coordonnées de u en fonction des coordonnées de v.
- Comme $v = f(u) \Leftrightarrow u = f^{-1}(v)$, on en déduit l'expression de f^{-1} .

Exercice 11. Soit f(x, y, z) = (x + y + z, x + y, y + z). Montrer que f est un automorphisme de \mathbb{R}^3 et calculer f^{-1} .

III Les différents liens entre les matrices et les applications linéaires

III. 1 Matrices associées à une application linéaire

Passage de l'application linéaire aux matrices

Définition 5. Matrices d'une application linéaire

Ainsi la j-ième colonne de $M_{\mathcal{B},\mathcal{C}}(f)$ représente les coordonnées du vecteur $f(u_j)$ dans la base \mathcal{C} .

- Si $f \in \mathcal{L}(E)$ avec $\mathcal{B} = (u_1, \dots, u_n)$ base de E, on appelle matrice de f dans la base \mathcal{B} la matrice définie par $M_{\mathcal{B}}(f) = M_{\mathcal{B},\mathcal{B}}(f)$.
- On calcule les vecteurs $f(u_1), f(u_2), ..., f(u_n)$. Le plus souvent, on les obtient dans la base canonique de F.
- On calcule (si besoin) les coordonnées de ces vecteurs dans la base $\mathcal{C} = (v_1, \dots, v_p)$.
- On remplit colonne par colonne la matrice associée à f.

Exercice 12. 1. Soit f définie par : f(x, y, z) = (2x - y, x + z).

- * Calculer la matrice de f relativement aux bases canoniques \mathcal{B}_3 et \mathcal{B}_2 de \mathbb{R}^3 et \mathbb{R}^2 .
- * On pose $\mathcal{C} = (f_1, f_2, f_3)$ avec $f_1(1, 0, 0)$, $f_2(1, 1, 0)$, $f_3(1, 1, 1)$ et $\mathcal{D} = (u_1, u_2)$ avec $u_1(1, 0)$ et $u_2(1, 1)$. Montrer que \mathcal{C} et \mathcal{D} sont respectivement des bases de \mathbb{R}^3 et \mathbb{R}^2 . Calculer la matrice de f relativement aux bases \mathcal{C} et \mathcal{D} .
- 2. Soit f définie de \mathbb{R}^3 dans \mathbb{R}^2 par f(x,y,z)=(x+2y+3z,x-y-z).
 - \star On considère les bases canoniques \mathcal{B}_3 et \mathcal{B}_2 de \mathbb{R}^3 et de \mathbb{R}^2 . Donner la matrice M de f relativement à ces bases.
 - * On garde maintenant pour \mathbb{R}^2 la base canonique mais on prend pour \mathbb{R}^3 la base suivante : $\mathcal{B} = (u_1, u_2, u_3)$ définie par $u_1 = (1, 1, 1), u_2 = (0, 1, -1)$ et $u_3 = (1, 1, 0)$. Calcul de $M_1 = M_{\mathcal{B}, \mathcal{B}_2}(f)$.
 - * On prend maintenant la base canonique de \mathbb{R}^3 et on prend la base $\mathcal{C} = (v_1, v_2)$ pour \mathbb{R}^2 définie par $v_1 = (1, 1)$ et $v_2 = (1, -1)$. Calcul de $M_2 = M_{\mathcal{B}_3, \mathcal{C}}(f)$.

Passage de la matrice à l'application linéaire canoniquement associée

Définition 6. Application linéaire canoniquement associée à une matrice Si $A \in \mathcal{M}_{pn}(\mathbb{K})$ est une matrice fixée, on appelle application linéaire canoniquement associée à A

l'application $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^p)$ telle que $f(x_1, \dots, x_n) = (y_1, \dots, y_p)$, où :

Méthode pour trouver f canoniquement associée à A : Calculer AX.

Exercice 13. 1. On considère la matrice suivante $A = \begin{pmatrix} 2 & -1 & 3 \\ -3 & 2 & -1 \\ -1 & 1 & 2 \end{pmatrix}$. Déterminer l'application linéaire f canoniquement associée à A.

2. Faire de même avec
$$A = \begin{pmatrix} 1 & 2 & 1 \\ -3 & 1 & 4 \\ -3 & 4 & -5 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & -5 \end{pmatrix}$.

 ${\bf Exercice}$ 14. Calcul de l'image d'un vecteur grâce aux matrices.

- 1. Soit $f \in \mathcal{L}(\mathbb{R}^3)$ de matrice relativement à la base canonique $M = \begin{pmatrix} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & 3 \end{pmatrix}$. Calcul de f(u) avec u = (1, 0, -1).
- 2. Soit $f \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$ de matrice relativement à la base canonique $A = \begin{pmatrix} 1 & 2 \\ 3 & -2 \\ 1 & 1 \end{pmatrix}$. Calcul de f(u) avec u = (3, 4).

III. 2 Lien entre les opérations sur les applications linéaires et les matrices

Soient $f \in \mathcal{L}(E, F)$, $g \in \mathcal{L}(E, F)$ et $h \in \mathcal{L}(F, G)$. On fixe les bases $\mathcal{B} = (u_1, \dots, u_n)$, $\mathcal{C} = (v_1, \dots, v_p)$ et $\mathcal{D} = (w_1, \dots, w_r)$ respectivement bases de E, F et de G et on note $A = M_{\mathcal{B},\mathcal{C}}(f)$, $B = M_{\mathcal{B},\mathcal{C}}(g)$ et $C = M_{\mathcal{C},\mathcal{D}}(h)$.

Proposition 10. Soit $(\alpha, \beta) \in \mathbb{K}^2$.

La matrice de l'application linéaire $\alpha f + \beta g$ dans les bases $\mathcal B$ à $\mathcal C$ est

Exercice 15. On définit f l'application linéaire canoniquement associée à A avec $A = \begin{pmatrix} -1 & 1 & 2 & 3 \\ 1 & -2 & 1 & 0 \\ 4 & 1 & 2 & -5 \end{pmatrix}$. Et soit g l'application linéaire définie par : g(x,y,z,t) = (x-y-z+2t,5x-6y+3t,x-z+2t). Calculer 2f-3g.

Proposition 11. Composition d'applications linéaires

Proposition 12. Cas particulier important des endomorphismes

Ici E = F et $f \in \mathcal{L}(E)$ avec \mathcal{B} base de E et $A = M_{\mathcal{B}}(f)$.

Pour tout $n \in \mathbb{N}$, la matrice de l'application linéaire f^n dans la base \mathcal{B} est

Exercice 16. 1. On définit les applications linéaires suivantes

$$f: \left| \begin{array}{cccc} \mathbb{R}^3 & \to & \mathbb{R}^2 \\ (x,y,z) & \mapsto & (x-y-2z,-x+3y-z) \end{array} \right| \quad \text{et} \quad g: \left| \begin{array}{cccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & (2x-y,x+3y). \end{array} \right|$$

Donner l'expression analytique de $g \circ f$. Puis déterminer les matrices de f, g et $g \circ f$ dans les bases canoniques. Vérifier sur cet exemple la propriété ci-dessus.

- 2. On définit f l'application linéaire canoniquement associée à A avec $A = \begin{pmatrix} -1 & 1 & 2 \\ 1 & -2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$. Donner f^3 .
- 3. Soit $f \in \mathcal{L}(\mathbb{R}^3)$ et $M \in \mathcal{M}_3(\mathbb{R})$ sa matrice dans la base canonique de \mathbb{R}^3 . Traduire matriciellement l'égalité $f^2 2f + Id_{\mathbb{R}^3} = 0$.

Proposition 13. On a l'équivalence suivante :

f bijective de E dans $F \iff \dots$

Et dans ce cas la matrice de f^{-1} est

Méthode matricielle pour étudier la bijectivité de f

- ullet On calcule la matrice A de f canoniquement associée.
- \bullet On étudie l'inversibilité de A.
- Si A est inversible, alors f est bijective de E dans F et f^{-1} est canoniquement associée à A^{-1} .

Exercice 17. 1. Soit $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ et f l'application linéaire canoniquement associée à A. Montrer que f est bijective et calculer f^{-1} .

2. Montrer que l'application linéaire f de \mathbb{R}^3 dans \mathbb{R}^3 définie par f(x,y,z)=(x+2y+3z,3x+5y+4z,2x+y+5z) est bijective et calculer l'expression de f^{-1} par les deux méthodes disponibles.

Conclusion

- f + g se traduit matriciellement par A + B.
- λf se traduit matriciellement par λA .
- $h \circ f$ se traduit matriciellement par $C \times A$.
- $f \circ f$ se traduit matriciellement par A^2 .
- $f^n = f \circ f \circ f \circ \cdots \circ f$ se traduit matriciellement par A^n .
- f bijective $\Leftrightarrow A$ inversible et alors f^{-1} se traduit matriciellement par A^{-1} .

III. 3 Calcul du noyau et de l'image d'une application linéaire grâce aux matrices.

Proposition 14. Soient $A \in \mathcal{M}_{pn}(\mathbb{K})$ et f_A l'application linéaire canoniquement associée à A.

1. Étude du noyau de l'application linéaire f canoniquement associée à $A = \begin{pmatrix} 2 & -1 & 3 \\ -3 & 2 & -1 \\ -1 & 1 & 2 \end{pmatrix}$. Exercice 18.

2. Étude du noyau de l'application linéaire g canoniquement associée à $B = \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & -2 & 3 \\ -1 & 2 & 0 & -1 \end{pmatrix}$.

• Méthode 1 : Matriciellement en utilisant une famille génératrice

Proposition 15. Soit $f \in \mathcal{L}(E, F)$ avec $E = \mathbb{K}^n$ et $F = \mathbb{K}^p$. Si $(u_1, u_2, u_3, \dots, u_n)$ est une base de E alors

Soit (u_1, u_2, \ldots, u_n) une base de l'espace de départ : alors $(f(u_1), f(u_2), \ldots, f(u_n))$ est une famille génératrice de $\operatorname{Im}(f)$, donc :

- Les colonnes de la matrice donnent une famille génératrice de $\operatorname{Im}(f)$.
- On étudie alors la liberté de la famille $(f(u_1), \ldots, f(u_n))$.
- On enlève les éventuelles relations de liaison entre les vecteurs pour obtenir à la fin une base $\operatorname{de}\operatorname{Im}(f).$
- 2 Méthode 2 : Matriciellement en utilisant la définition de l'image

Proposition 16. Soient $A \in \mathcal{M}_{pn}(\mathbb{K})$ et f_A l'application linéaire canoniquement

 $v \in \text{Im}\left(f\right) \iff \dots$ revient à résoudre matriciellement

Exercice 19. Déterminer une base et la dimension de l'image de f lorsque f est l'application linéaire canoniquement

1.
$$A = \begin{pmatrix} 2 & -1 & 3 \\ -3 & 2 & -1 \\ -1 & 1 & 2 \end{pmatrix}$$

1.
$$A = \begin{pmatrix} 2 & -1 & 3 \\ -3 & 2 & -1 \\ -1 & 1 & 2 \end{pmatrix}$$
2.
$$B = \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & -2 & 3 \\ -1 & 2 & 0 & -1 \end{pmatrix}$$

$$3. \ C = \left(\begin{array}{cccc} 0 & 1 & 2 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 1 \end{array}\right)$$

Rang d'une application linéaire

Définition du rang d'une application linéaire IV. 1

Définition 7. Soient $E = \mathbb{K}^n$ et $F = \mathbb{K}^p$ et soit $f \in \mathcal{L}(E, F)$.

Rappels:

Proposition 17. Le rang de f est égal au

Méthodes pour calculer le rang d'une application linéaires :

- Méthode 1 : par la définition en calculant la dimension de l'image de f.
- \bullet Méthode 2 : en calculant le rang de la matrice canoniquement associée à f par le pivot de Gauss.

Exercice 20. Calculer le rang des applications linéaires suivantes :

- 1. f(x,y,z) = (x+2y+z, -3x+y+4z, -3x+4y-5z)
- 2. f(x, y, z, t) = (x + y + z + t, x, x + y, x + z)

Conséquence : Méthode rapide pour déterminer une base et la dimension de l'image de f

- ullet On calcule le rang r de la matrice associée à f par le pivot de Gauss. Cela nous donne le rang de f.
- \bullet On cherche r vecteurs libres parmi les colonnes de la matrice associée.
- On a ainsi trouvé r vecteurs libres qui sont dans $\mathfrak{Im}(f)$, donc on a trouvé une base de $\mathfrak{Im}(f)$.

Exercice 21. 1. Soit f l'application canoniquement associée à la matrice $M = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 3 & 0 \\ 0 & 2 & 1 \\ 2 & 6 & 0 \end{pmatrix}$. Base et la dimension de l'image?

2. Déterminer le rang et une base de l'image des endomorphismes de \mathbb{R}^4 dont les matrices dans la base canonique de \mathbb{R}^4 sont respectivement

$$A = \begin{pmatrix} 3 & 0 & 1 & 2 \\ 4 & 0 & 3 & 1 \\ 3 & 0 & 0 & 3 \\ 1 & 0 & 3 & -2 \end{pmatrix} \qquad \text{et} \qquad B = \begin{pmatrix} 1 & -1 & 1 & 0 \\ -2 & 0 & -4 & 4 \\ 0 & 1 & 1 & -2 \\ 3 & -2 & 4 & -2 \end{pmatrix}.$$

IV. 2 Théorème du rang et conséquences

Proposition 18 (Théorème du rang). Soit $f \in \mathcal{L}(E,F)$ avec E de dimension finie. On a :

Si on connaît le noyau:

- Par le théorème du rang : on en déduit le rang de f.
- En regardant les colonnes de toute matrice associée à f, on obtient une base de l'image de f.

Si on connaît le rang de f:

Par le théorème du rang :

On en déduit la dimension du novau.

Exercice 22. 1. Soit l'application de \mathbb{R}^3 dans \mathbb{R}^3 définie par : f(x,y,z) = (x+y-z,x-2y-2z,x-5y-3z). Donner la dimension et une base du noyau et de l'image de f.

2. Même chose pour f l'application canoniquement associée à la matrice $M = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 3 & -2 \\ 1 & 1 & 6 \end{pmatrix}$.

Proposition 19. Soit $f \in \mathcal{L}(E)$ (avec E de dimension finie).

Preuve

Remarques. • \triangle L'hypothèse que f soit un endomorphisme est essentielle.

- ullet De plus, l'hypothèse : E de dimension finie sera essentielle en BCPST2 où vous étudierez aussi des espaces vectoriels de dimension infinie.
- Ainsi ce théorème assure que pour les endomorphismes en dimension finie, on a équivalence entre injectivité, surjectivité et bijectivité.

Exercice 23. 1. Soit $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ et f l'endomorphisme canoniquement associé à A. Déterminer les valeurs de λ pour lesquelles $f - \lambda Id_{\mathbb{R}^3}$ n'est pas injective. Pour chacune de ces valeurs, déterminer $\ker(f - \lambda Id_{\mathbb{R}^3})$.

2. On considère la matrice $A = \frac{1}{3}\begin{pmatrix} 7 & 16 & 12 \\ -1 & -1 & -3 \\ -2 & -8 & -3 \end{pmatrix}$. On note f l'endomorphisme canoniquement associé à A. Déterminer, selon les valeurs de λ , le rang de la matrice $A - \lambda I_3$. En déduire que : $f - \lambda I d_{\mathbb{R}^3}$ non bijectif si et seulement si $\lambda = 1$ ou $\lambda = -1$.