ROBEM I Find the solution of $6x^3 + 27x^2 + 17x + 20 \equiv 0 \pmod{30}$.

ROBEM II Find the solution of $31x^4 + 57x^3 + 96x + 191 \equiv 0 \pmod{225}$.

 $\mathbb{R}^{\!O\!B\!\not\equiv\!M} \text{ III Prove: } 5x^2+11y^2\equiv 1 \pmod{m}. \quad \mathbb{R}^{\!O\!B\!\not\equiv\!M} \text{ IV If } n\mid p-1,n>1, (a,p)=1, \text{ prove: } 1$

- 1. $x^n \equiv a \pmod{p}$ has solution $\iff a^{\frac{p-1}{n}} \equiv 1 \pmod{p}$.
- 2. If $x^n \equiv a \pmod{p}$ has solution, then it has n solution.

ROBEM V $n \in \mathbb{N}^+$, $\gcd(a, m) = 1$, $x^n \equiv a \pmod{m}$ has one solution $x \equiv x_0 \pmod{m}$. Prove all the solution of $x^n \equiv a \pmod{m}$ have the form of $x \equiv yx_0 \pmod{m}$, where y is the solution of $y^n \equiv 1 \pmod{m}$.