Gossip Online Learning: Exchanging Local Models to Tracking Dynamics

January 4, 2019

Abstract

ddd

1 Problem setup

For any $i \in [n]$ and $t \in [T]$, the random variable $\xi_{i,t}$ is subject to a distribution $D_{i,t}$, that is,

$$\xi_{i,t} \sim D_{i,t}$$
.

Besides, a set of random variables $\Xi_{n,T}$ and the corresponding set of distributions are defined by

$$\Xi_{n,T} = \{\xi_{i,t}\}_{1 \le i \le n, 1 \le t \le T}, \text{ and } \mathcal{D}_{n,T} = \{D_{i,t}\}_{1 \le i \le n, 1 \le t \le T},$$

respectively. For math brevity, we use the notation $\Xi_{n,T} \sim \mathcal{D}_{n,T}$ to represent that $\xi_{i,t} \sim D_{i,t}$ holds for any $i \in [n]$ and $t \in [T]$.

For any online algorithm $A \in \mathcal{A}$, define its dynamic regret as

$$\mathcal{R}_T^A = \mathbb{E}_{\Xi_{n,T} \sim \mathcal{D}_{n,T}} \left(\sum_{i=1}^n \sum_{t=1}^T f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) - f_{i,t}(\mathbf{x}_t^*; \xi_{i,t}) \right),$$

where, for any \mathbf{x} ,

$$f_{i,t}(\mathbf{x}; \xi_{i,t}) := \beta q_{i,t}(\mathbf{x}) + (1-\beta)h_t(\mathbf{x}; \xi_{i,t})$$

with $0 < \beta < 1$, and $\xi_{i,t}$ is a random variable drawn from an unknown distribution $D_{i,t}$. $g_{i,t}$ is an adversary loss function. $h_t(\cdot, \xi_{i,t})$ is a given loss function depending on the random variable $\xi_{i,t}$. Besides, we denote

$$H_t(\cdot) = \mathbb{E}_{\xi_{i,t} \sim D_{i,t}} h_t(\cdot; \xi_{i,t}),$$

and

$$F_{i,t}(\cdot) = \mathop{\mathbb{E}}_{\xi_{i,t} \sim D_{i,t}} f_{i,t}(\cdot; \xi_{i,t}).$$

The budget of the dynamics is defined as

$$\sum_{t=1}^{T} \|\mathbf{x}_{t+1}^* - \mathbf{x}_t^*\| \le M. \tag{1}$$

Algorithm 1 DOG: Decentralized Online Gradient.

```
Require: The learning rate \eta, number of iterations T, and the confusion matrix \mathbf{W}.
 1: for t = 1, 2, ..., T do
           For the i-th node with i \in [n]:
 2:
                   Predict \mathbf{x}_{i,t}.
  3:
                   Observe the loss function f_{i,t},
                   and suffer loss f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}).
                   Query a sub-gradient \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}).
 4:
                  \mathbf{x}_{i,t+1} = \sum_{j=1}^{n} \mathbf{W}_{i,j} \mathbf{x}_{j,t} - \eta \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}).
```

$\mathbf{2}$ Algorithm

5:

The decentralized online gradient method, namely DOG, is presented in Algorithm 1. Comparing with the sequential online gradient method, every node needs to collect the decision variables from its neighbours. and then update its decision variable. The update rule is

$$\mathbf{x}_{i,t+1} = \sum_{j=1}^{n} \mathbf{W}_{i,j} \mathbf{x}_{j,t} - \eta \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}).$$

Here, $\mathbf{W} \in \mathbb{R}^{n \times n}$ is the confusion matrix. It is a doublely stochastic matrix, which implies that every element of **W** is non-negative, $\mathbf{W1} = \mathbf{1}$, and $\mathbf{1}^{\mathrm{T}}\mathbf{W} = \mathbf{1}^{\mathrm{T}}$.

3 Theoretical analysis

3.1Assumptions

Assumption 1. We make the following assumptions.

• For any $i \in [n]$, $t \in [T]$, and \mathbf{x} , there exists a constant G such that

$$\max \left\{ \mathbb{E}_{\xi_{i,t} \sim D_{i,t}} \left\| \nabla h_t(\mathbf{x}; \xi_{i,t}) \right\|^2, \left\| \partial g_{i,t}(\mathbf{x}) \right\|^2 \right\} \leq G,$$

and

$$\underset{\xi_{i,t} \sim D_{i,t}}{\mathbb{E}} \left\| \nabla h_t(\mathbf{x}; \xi_{i,t}) - \nabla H_t(\mathbf{x}) \right\|^2 \le \sigma^2.$$

- For any \mathbf{x} and \mathbf{y} , we assume $\|\mathbf{x} \mathbf{y}\|^2 \leq R$.
- For any $i \in [n]$ and $t \in [T]$, we assume the function $f_{i,t}$ is convex, but may be non-smooth. Furthermore, we assume the function H_t has L-Lipschitz gradients. In a nutshell, $g_{i,t}$ may be non-convex, nonsmooth. H_t is smooth, but may be non-convex. $f_{i,t}$ is convex, but may be non-smooth.

Theorem 1. Denote

$$C_0 := \frac{1}{\sqrt{\beta^2 + \eta}} + 4;$$

$$C_1 := \frac{\beta}{2\eta} + L + \frac{\sqrt{\beta^2 + \eta}}{2\eta} + 2\eta L^2 + C_0(1 - \beta)^2 L^2 \eta.$$

Using Assumption 1, and choosing $\eta > 0$ in Algorithm 1, we have

$$\mathbb{E}_{\pi,T} \sum_{t=1}^{T} \sum_{i=1}^{n} f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) - f_{t}(\mathbf{x}_{t}^{*}; \xi_{i,t}) \\
\leq \eta T \left(n\beta G + (1-\beta)\sigma^{2} \right) + n(1-\beta)C_{0} \left(\mathbb{E}_{\pi,T} \sum_{t=1}^{T} \left(H_{t}(\bar{\mathbf{x}}_{t}) - H_{t}(\bar{\mathbf{x}}_{t+1}) \right) \right) \\
+ (1-\beta) \frac{nT\eta^{2}GC_{1}}{(1-\rho)^{2}} + n(1-\beta)C_{0} \left(4T\beta^{2}\eta G + \frac{TGL\eta^{2}}{2} \right) + \frac{n}{2\eta} \left(4\sqrt{R}M + R \right).$$

Corollary 1. Recall that

$$C_0 = \frac{1}{\sqrt{\beta^2 + \eta}} + 4.$$

Using Assumption 1, and choosing

$$\eta = \sqrt{\frac{nM}{T\left(n\beta G + (1-\beta)\sigma^2\right)}}$$

in Algorithm 1, we have

$$\mathcal{R}_{T}^{DOG} \lesssim \sqrt{nMT \left(\beta nG + (1-\beta)\sigma^{2}\right)} + n(1-\beta)C_{0} \underset{\Xi_{n,T} \sim \mathcal{D}_{n,T}}{\mathbb{E}} \sum_{t=1}^{T} \left(H_{t}(\bar{\mathbf{x}}_{t}) - H_{t}(\bar{\mathbf{x}}_{t+1})\right).$$

Appendix

Proof to Theorem 1:

Proof.

$$\mathbb{E}_{\mathbf{x}_{n,t} \sim \mathcal{D}_{n,t}} \frac{1}{n} \sum_{i=1}^{n} f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) - f_{i,t}(\mathbf{x}_{t}^{*}; \xi_{i,t})$$

$$\leq \mathbb{E}_{\mathbf{x}_{n,t} \sim \mathcal{D}_{n,t}} \frac{1}{n} \sum_{i=1}^{n} \left\langle \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}), \mathbf{x}_{i,t} - \mathbf{x}_{t}^{*} \right\rangle$$

$$= \mathbb{E}_{\mathbf{x}_{n,t} \sim \mathcal{D}_{n,t}} \frac{1}{n} \sum_{i=1}^{n} \beta \left\langle \partial g_{i,t}(\mathbf{x}_{i,t}), \mathbf{x}_{i,t} - \mathbf{x}_{t}^{*} \right\rangle + (1 - \beta) \mathbb{E}_{\mathbf{x}_{n,t} \sim \mathcal{D}_{n,t}} \frac{1}{n} \sum_{i=1}^{n} \left\langle \nabla h_{t}(\mathbf{x}_{i,t}; \xi_{i,t}), \mathbf{x}_{i,t} - \mathbf{x}_{t}^{*} \right\rangle$$

$$= \mathbb{E}_{\mathbf{x}_{n,t} \sim \mathcal{D}_{n,t}} \frac{1}{n} \sum_{i=1}^{n} \beta \left(\left\langle \partial g_{i,t}(\mathbf{x}_{i,t}), \mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t} \right\rangle + \left\langle \partial g_{i,t}(\mathbf{x}_{i,t}), \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \right\rangle + \left\langle \partial g_{i,t}(\mathbf{x}_{i,t}), \bar{\mathbf{x}}_{t+1} - \mathbf{x}_{t}^{*} \right\rangle$$

$$+ \frac{1}{n} \mathbb{E}_{\mathbf{x}_{n,t} \sim \mathcal{D}_{n,t}} \sum_{i=1}^{n} (1 - \beta) \left(\left\langle \nabla h_{t}(\mathbf{x}_{i,t}; \xi_{i,t}), \bar{\mathbf{x}}_{i,t} - \bar{\mathbf{x}}_{t} \right\rangle + \left\langle \nabla h_{t}(\mathbf{x}_{i,t}; \xi_{i,t}), \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \right\rangle$$

$$+ \frac{1}{n} \mathbb{E}_{\mathbf{x}_{n,t} \sim \mathcal{D}_{n,t}} \sum_{i=1}^{n} (1 - \beta) \left(\left\langle \nabla h_{t}(\mathbf{x}_{i,t}; \xi_{i,t}), \bar{\mathbf{x}}_{t+1} - \mathbf{x}_{t}^{*} \right\rangle \right)$$

$$= \mathbb{E}_{\mathbf{x}_{n,t} \sim \mathcal{D}_{n,t}} \frac{1}{n} \sum_{i=1}^{n} \beta \left(\left\langle \partial g_{i,t}(\mathbf{x}_{i,t}), \mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t} \right\rangle + \left\langle \partial g_{i,t}(\mathbf{x}_{i,t}), \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \right\rangle \right)$$

$$= \mathbb{E}_{\mathbf{x}_{n,t} \sim \mathcal{D}_{n,t}} \frac{1}{n} \sum_{i=1}^{n} \beta \left(\left\langle \partial g_{i,t}(\mathbf{x}_{i,t}), \mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t} \right\rangle + \left\langle \partial g_{i,t}(\mathbf{x}_{i,t}), \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \right\rangle \right)$$

$$+\underbrace{\mathbb{E}_{n,t} \sim \mathcal{D}_{n,t}}_{I_{2}(t)} \frac{1}{n} \sum_{i=1}^{n} (1-\beta) \left(\left\langle \nabla h_{t}(\mathbf{x}_{i,t}; \xi_{i,t}), \mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t} \right\rangle + \left\langle \nabla h_{t}(\mathbf{x}_{i,t}; \xi_{i,t}), \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \right\rangle \right)}_{I_{2}(t)}$$

$$+\underbrace{\mathbb{E}_{n,t} \sim \mathcal{D}_{n,t}}_{I_{3}(t)} \left\langle \frac{1}{n} \sum_{i=1}^{n} \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}), \bar{\mathbf{x}}_{t+1} - \mathbf{x}_{t}^{*} \right\rangle}_{I_{3}(t)}$$

Now, we begin to bound $I_1(t)$.

$$I_{1}(t) \stackrel{\mathbb{O}}{\leq} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \frac{\beta}{n} \sum_{i=1}^{n} \left(\frac{\eta}{2} \| \partial g_{i,t}(\mathbf{x}_{i,t}) \|^{2} + \frac{1}{2\eta} \| \mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t} \|^{2} + \frac{\eta}{2} \| \partial g_{i,t}(\mathbf{x}_{i,t}) \|^{2} + \frac{1}{2\eta} \| \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \|^{2} \right)$$

$$\leq \beta G \eta + \frac{\beta}{2n\eta} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \sum_{i=1}^{n} \| \mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t} \|^{2} + \frac{\beta}{2\eta} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \| \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \|^{2}.$$

① holds due to $\langle \mathbf{a}, \mathbf{b} \rangle \leq \frac{\eta}{2} \|\mathbf{a}\|^2 + \frac{1}{2\eta} \|\mathbf{b}\|^2$ holds for any $\eta > 0$. Now, we begin to bound $I_2(t)$.

$$I_2(t) = (1 - \beta) \left(\underbrace{\mathbb{E}_{n,t \sim \mathcal{D}_{n,t}} \frac{1}{n} \sum_{i=1}^n \left\langle \nabla h_t(\mathbf{x}_{i,t}; \xi_{i,t}), \mathbf{x}_{i,t} - \bar{\mathbf{x}}_t \right\rangle}_{J_1(t)} + \underbrace{\mathbb{E}_{n,t \sim \mathcal{D}_{n,t}} \left\langle \frac{1}{n} \sum_{i=1}^n \nabla h_t(\mathbf{x}_{i,t}; \xi_{i,t}), \bar{\mathbf{x}}_t - \bar{\mathbf{x}}_{t+1} \right\rangle}_{J_2(t)} \right).$$

For $J_1(t)$, we have

$$J_{1}(t) = \frac{1}{n} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \sum_{i=1}^{n} \left\langle \nabla h_{t}(\mathbf{x}_{i,t}; \xi_{i,t}), \mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t} \right\rangle$$

$$= \frac{1}{n} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \sum_{i=1}^{n} \left\langle \nabla h_{t}(\mathbf{x}_{i,t}; \xi_{i,t}) - \nabla H_{t}(\bar{\mathbf{x}}_{t}), \mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t} \right\rangle + \frac{1}{n} \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \sum_{i=1}^{n} \left\langle \nabla H_{t}(\bar{\mathbf{x}}_{t}), \mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t} \right\rangle$$

$$= \frac{1}{n} \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \sum_{i=1}^{n} \left\langle \nabla H_{t}(\mathbf{x}_{i,t}) - \nabla H_{t}(\bar{\mathbf{x}}_{t}), \mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t} \right\rangle + \frac{1}{n} \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \sum_{i=1}^{n} \left\langle \nabla H_{t}(\bar{\mathbf{x}}_{t}), \mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t} \right\rangle$$

$$\stackrel{\mathcal{C}}{\leq} \frac{L}{n} \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \sum_{i=1}^{n} \|\mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t}\|^{2} + \frac{1}{n} \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \sum_{i=1}^{n} \left\langle \nabla H_{t}(\bar{\mathbf{x}}_{t}), \mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t} \right\rangle$$

$$\stackrel{\mathcal{C}}{\leq} \frac{L}{n} \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \sum_{i=1}^{n} \|\mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t}\|^{2} + \frac{\eta}{2\nu} \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \|\nabla H_{t}(\bar{\mathbf{x}}_{t})\|^{2} + \frac{\nu}{2\eta n} \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \sum_{i=1}^{n} \|\mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t}\|^{2}. \quad (2)$$

① holds due to H_t has L-Lipschitz gradients. ② holds because that $\langle \mathbf{a}, \mathbf{b} \rangle \leq \frac{\nu}{2} \|\mathbf{a}\|^2 + \frac{1}{2\nu} \|\mathbf{b}\|^2$ holds for any $\nu > 0$.

For $J_2(t)$, we have

 $J_2(t)$

$$\begin{split} &= \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\langle \frac{1}{n} \sum_{i=1}^{n} \nabla h_{t}(\mathbf{x}_{i,t}; \xi_{i,t}), \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \right\rangle \\ &\leq \frac{\eta}{2} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\| \frac{1}{n} \sum_{i=1}^{n} \nabla h_{t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\|^{2} + \frac{1}{2\eta} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \|\bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1}\|^{2} \\ &\leq \frac{\eta}{2} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\| \frac{1}{n} \sum_{i=1}^{n} \left(\nabla h_{t}(\mathbf{x}_{i,t}; \xi_{i,t}) - \nabla H_{t}(\mathbf{x}_{i,t}) + \nabla H_{t}(\mathbf{x}_{i,t}) \right) \right\|^{2} + \frac{1}{2\eta} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \|\bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1}\|^{2} \\ &\leq \eta \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\| \frac{1}{n} \sum_{i=1}^{n} \left(\nabla h_{t}(\mathbf{x}_{i,t}; \xi_{i,t}) - \nabla H_{t}(\mathbf{x}_{i,t}) \right) \right\|^{2} + \eta \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \left\| \frac{1}{n} \sum_{i=1}^{n} \nabla H_{t}(\mathbf{x}_{i,t}) \right\|^{2} \\ &+ \frac{1}{2\eta} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\| \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \right\|^{2} \\ &\leq \frac{\eta}{n} \sigma^{2} + \eta \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \left\| \frac{1}{n} \sum_{i=1}^{n} \left(\nabla H_{t}(\mathbf{x}_{i,t}) - \nabla H_{t}(\bar{\mathbf{x}}_{t}) + \nabla H_{t}(\bar{\mathbf{x}}_{t}) \right) \right\|^{2} \\ &+ 2\eta \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \left\| \nabla H_{t}(\bar{\mathbf{x}}_{t}) \right\|^{2} + \frac{1}{2\eta} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\| \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \right\|^{2} \\ &\leq \frac{\eta}{n} \sigma^{2} + \frac{2\eta}{n} \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \sum_{i=1}^{n} \|\nabla H_{t}(\bar{\mathbf{x}}_{i,t}) - \nabla H_{t}(\bar{\mathbf{x}}_{t}) \right\|^{2} \\ &+ 2\eta \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \sum_{n,t-1}^{n} \mathbb{E} \|\nabla H_{t}(\bar{\mathbf{x}}_{t}) - \nabla H_{t}(\bar{\mathbf{x}}_{t}) \|^{2} \\ &\leq \frac{\eta}{n} \sigma^{2} + \frac{2\eta L^{2}}{n} \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \sum_{i=1}^{n} \|\nabla H_{t}(\bar{\mathbf{x}}_{i,t}) - \nabla H_{t}(\bar{\mathbf{x}}_{t}) \|^{2} \\ &\leq \frac{\eta}{n} \sigma^{2} + \frac{2\eta L^{2}}{n} \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \sum_{i=1}^{n} \|\nabla H_{t}(\bar{\mathbf{x}}_{t}) \|^{2} + \frac{1}{2\eta} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \|\bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \|^{2} \\ &\leq \frac{\eta}{n} \sigma^{2} + \frac{2\eta L^{2}}{n} \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \|\bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \|^{2} \\ &\leq \frac{\eta}{n} \sigma^{2} + \frac{2\eta L^{2}}{n} \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \|\bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \|^{2} \\ &\leq \frac{\eta}{n} \sigma^{2} + \frac{2\eta L^{2}}{n} \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \|\bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \|^{2} \\ &\leq \frac{\eta}{n} \sigma^{2} + \frac{2\eta L^{2}}{n}$$

(I) holds due to

$$\mathbb{E}_{\mathbf{x}_{n,t} \sim \mathcal{D}_{n,t}} \left\| \frac{1}{n} \sum_{i=1}^{n} \left(\nabla h_{t}(\mathbf{x}_{i,t}; \xi_{i,t}) - \nabla H_{t}(\mathbf{x}_{i,t}) \right) \right\|^{2}$$

$$= \frac{1}{n^{2}} \mathbb{E}_{\mathbf{x}_{n,t-1} \sim \mathcal{D}_{n,t-1}} \left(\sum_{i=1}^{n} \mathbb{E}_{\xi_{i,t} \sim D_{i,t}} \left\| \nabla h_{t}(\mathbf{x}_{i,t}; \xi_{i,t}) - \nabla H_{t}(\mathbf{x}_{i,t}) \right\|^{2} \right)$$

$$+ \frac{1}{n^{2}} \mathbb{E}_{\mathbf{x}_{n,t-1} \sim \mathcal{D}_{n,t-1}} \left(2 \sum_{i=1}^{n} \sum_{j=1,j\neq i}^{n} \left\langle \mathbb{E}_{\xi_{i,t} \sim D_{i,t}} \nabla h_{t}(\mathbf{x}_{i,t}; \xi_{i,t}) - \nabla H_{t}(\mathbf{x}_{i,t}), \mathbb{E}_{\xi_{j,t} \sim D_{j,t}} \nabla h_{t}(\mathbf{x}_{j,t}; \xi_{j,t}) - \nabla H_{t}(\mathbf{x}_{j,t}) \right\rangle \right)$$

$$= \frac{1}{n^{2}} \mathbb{E}_{\mathbf{x}_{n,t-1} \sim \mathcal{D}_{n,t-1}} \sum_{i=1}^{n} \mathbb{E}_{\xi_{i,t} \sim D_{i,t}} \left\| \nabla h_{t}(\mathbf{x}_{i,t}; \xi_{i,t}) - \nabla H_{t}(\mathbf{x}_{i,t}) \right\|^{2} + 0$$

$$\leq \frac{1}{n} \sigma^{2}.$$

② holds due to H_t has L Lipschitz gradients. Therefore, we obtain

$$I_2(t)$$

= $(1 - \beta)(J_1(t) + J_2(t))$

$$\begin{split} &= (1-\beta) \left(\frac{L}{n} \mathop{\mathbb{E}}_{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}} \sum_{i=1}^{n} \|\mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t}\|^{2} + \frac{\eta}{2\nu} \mathop{\mathbb{E}}_{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}} \|\nabla H_{t}(\bar{\mathbf{x}}_{t})\|^{2} + \frac{\nu}{2\eta n} \mathop{\mathbb{E}}_{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}} \sum_{i=1}^{n} \|\mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t}\|^{2} \right) \\ &+ (1-\beta) \left(\frac{\eta}{n} \sigma^{2} + \frac{2\eta L^{2}}{n} \mathop{\mathbb{E}}_{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}} \mathop{\mathbb{E}}_{\sum_{i=1}^{n}} \|\mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t}\|^{2} \right) \\ &+ (1-\beta) \left(2\eta \mathop{\mathbb{E}}_{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}} \|\nabla H_{t}(\bar{\mathbf{x}}_{t})\|^{2} + \frac{1}{2\eta} \mathop{\mathbb{E}}_{\Xi_{n,t} \sim \mathcal{D}_{n,t}} \|\bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1}\|^{2} \right) \\ &\leq (1-\beta) \left(\frac{L}{n} + \frac{\nu}{2\eta\eta} + \frac{2\eta L^{2}}{n} \right) \mathop{\mathbb{E}}_{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}} \mathop{\mathbb{E}}_{\sum_{i=1}^{n}} \|\mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t}\|^{2} + \left(\frac{\eta}{2\nu} + 2\eta \right) (1-\beta) \mathop{\mathbb{E}}_{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}} \|\nabla H_{t}(\bar{\mathbf{x}}_{t})\|^{2} \\ &+ \frac{\eta (1-\beta)\sigma^{2}}{n} + \frac{1-\beta}{2\eta} \mathop{\mathbb{E}}_{\Xi_{n,t} \sim \mathcal{D}_{n,t}} \|\bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1}\|^{2}. \end{split}$$

Combine those bounds of $I_1(t)$ and $I_2(t)$. We thus have

$$\begin{split} &I_{1}(t) + I_{2}(t) \\ &\leq \beta G \eta + \frac{\beta}{2n\eta} \sum_{i=1}^{n} \mathop{\mathbb{E}}_{\mathbf{z}_{n,t-1} \sim \mathcal{D}_{n,t-1}} \|\mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t}\|^{2} + \frac{\beta}{2\eta} \mathop{\mathbb{E}}_{\mathbf{z}_{n,t} \sim \mathcal{D}_{n,t}} \|\bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1}\|^{2} \\ &+ (1-\beta) \left(\frac{L}{n} + \frac{\nu}{2n\eta} + \frac{2\eta L^{2}}{n}\right) \mathop{\mathbb{E}}_{\mathbf{z}_{n,t-1} \sim \mathcal{D}_{n,t-1}} \sum_{i=1}^{n} \|\mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t}\|^{2} + \left(\frac{\eta}{2\nu} + 2\eta\right) (1-\beta) \mathop{\mathbb{E}}_{\mathbf{z}_{n,t-1} \sim \mathcal{D}_{n,t-1}} \|\nabla H_{t}(\bar{\mathbf{x}}_{t})\|^{2} \\ &+ \frac{\eta (1-\beta)\sigma^{2}}{n} + \frac{1-\beta}{2\eta} \mathop{\mathbb{E}}_{\mathbf{z}_{n,t} \sim \mathcal{D}_{n,t}} \|\bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1}\|^{2} \\ &= \eta \left(\beta G + \frac{(1-\beta)\sigma^{2}}{n}\right) + (1-\beta) \left(\frac{\beta}{2n\eta} + \frac{L}{n} + \frac{\nu}{2n\eta} + \frac{2\eta L^{2}}{n}\right) \sum_{i=1}^{n} \mathop{\mathbb{E}}_{\mathbf{z}_{n,t-1} \sim \mathcal{D}_{n,t-1}} \|\mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t}\|^{2} \\ &+ \frac{1}{2\eta} \mathop{\mathbb{E}}_{\mathbf{z}_{n,t} \sim \mathcal{D}_{n,t}} \|\bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1}\|^{2} + \left(\frac{\eta}{2\nu} + 2\eta\right) (1-\beta) \mathop{\mathbb{E}}_{\mathbf{z}_{n,t-1} \sim \mathcal{D}_{n,t-1}} \|\nabla H_{t}(\bar{\mathbf{x}}_{t})\|^{2}. \end{split}$$

Therefore, we have

$$\begin{split} & \sum_{t=1}^{T} (I_{1}(t) + I_{2}(t)) \\ \leq & \eta T \left(\beta G + \frac{(1-\beta)\sigma^{2}}{n} \right) + (1-\beta) \left(\frac{\beta}{2n\eta} + \frac{L}{n} + \frac{\nu}{2n\eta} + \frac{2\eta L^{2}}{n} \right) \underset{\Xi_{n,T-1} \sim \mathcal{D}_{n,T-1}}{\mathbb{E}} \sum_{i=1}^{n} \sum_{t=1}^{T} \left\| \mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t} \right\|^{2} \\ & + \frac{1}{2\eta} \underset{\Xi_{n,T} \sim \mathcal{D}_{n,T}}{\mathbb{E}} \sum_{t=1}^{T} \left\| \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \right\|^{2} + \left(\frac{\eta}{2\nu} + 2\eta \right) (1-\beta) \underset{\Xi_{n,T-1} \sim \mathcal{D}_{n,T-1}}{\mathbb{E}} \sum_{t=1}^{T} \left\| \nabla H_{t}(\bar{\mathbf{x}}_{t}) \right\|^{2}. \end{split}$$

Now, we begin to bound $I_3(t)$. Recall that the update rule is

$$\mathbf{x}_{i,t+1} = \sum_{j=1}^{n} \mathbf{W}_{ij} \mathbf{x}_{j,t} - \eta \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}).$$

According to Lemma 3, we have

$$\bar{\mathbf{x}}_{t+1} = \bar{\mathbf{x}}_t - \eta \left(\frac{1}{n} \sum_{i=1}^n \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right). \tag{3}$$

Denote a new auxiliary function $\phi(\mathbf{z})$ as

$$\phi(\mathbf{z}) = \left\langle \frac{1}{n} \sum_{i=1}^{n} \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}), \mathbf{z} \right\rangle + \frac{1}{2\eta} \|\mathbf{z} - \bar{\mathbf{x}}_{t}\|^{2}.$$

It is trivial to verify that (3) satisfies the first-order optimality condition of the optimization problem: $\min_{\mathbf{z} \in \mathbb{R}^d} \phi(\mathbf{z})$, that is,

$$\nabla \phi(\bar{\mathbf{x}}_{t+1}) = \mathbf{0}.$$

We thus have

$$\begin{split} \bar{\mathbf{x}}_{t+1} &= \operatorname*{argmin}_{\mathbf{z} \in \mathbb{R}^d} \phi(\mathbf{z}) \\ &= \operatorname*{argmin}_{\mathbf{z} \in \mathbb{R}^d} \left\langle \frac{1}{n} \sum_{i=1}^n \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}), \mathbf{z} \right\rangle + \frac{1}{2\eta} \|\mathbf{z} - \bar{\mathbf{x}}_t\|^2 \,. \end{split}$$

Furthermore, denote a new auxiliary variable $\bar{\mathbf{x}}_{\tau}$ as

$$\bar{\mathbf{x}}_{\tau} = \bar{\mathbf{x}}_{t+1} + \tau \left(\mathbf{x}_{t}^{*} - \bar{\mathbf{x}}_{t+1} \right),$$

where $0 < \tau \le 1$. According to the optimality of $\bar{\mathbf{x}}_{t+1}$, we have

$$0 \leq \phi(\bar{\mathbf{x}}_{\tau}) - \phi(\bar{\mathbf{x}}_{t+1})$$

$$= \left\langle \frac{1}{n} \sum_{i=1}^{n} \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}), \bar{\mathbf{x}}_{\tau} - \bar{\mathbf{x}}_{t+1} \right\rangle + \frac{1}{2\eta} \left(\|\bar{\mathbf{x}}_{\tau} - \bar{\mathbf{x}}_{t}\|^{2} - \|\bar{\mathbf{x}}_{t+1} - \bar{\mathbf{x}}_{t}\|^{2} \right)$$

$$= \left\langle \frac{1}{n} \sum_{i=1}^{n} \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}), \tau(\mathbf{x}_{t}^{*} - \bar{\mathbf{x}}_{t+1}) \right\rangle + \frac{1}{2\eta} \left(\|\bar{\mathbf{x}}_{t+1} + \tau(\mathbf{x}_{t}^{*} - \bar{\mathbf{x}}_{t+1}) - \bar{\mathbf{x}}_{t}\|^{2} - \|\bar{\mathbf{x}}_{t+1} - \bar{\mathbf{x}}_{t}\|^{2} \right)$$

$$= \left\langle \frac{1}{n} \sum_{i=1}^{n} \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}), \tau(\mathbf{x}_{t}^{*} - \bar{\mathbf{x}}_{t+1}) \right\rangle + \frac{1}{2\eta} \left(\|\tau(\mathbf{x}_{t}^{*} - \bar{\mathbf{x}}_{t+1})\|^{2} + 2 \left\langle \tau(\mathbf{x}_{t}^{*} - \bar{\mathbf{x}}_{t+1}), \bar{\mathbf{x}}_{t+1} - \bar{\mathbf{x}}_{t} \right\rangle \right).$$

Note that the above inequality holds for any $0 < \tau \le 1$. Divide τ on both sides, and we have

$$I_{3}(t) = \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\langle \frac{1}{n} \sum_{i=1}^{n} \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}), \bar{\mathbf{x}}_{t+1} - \mathbf{x}_{t}^{*} \right\rangle$$

$$\leq \frac{1}{2\eta} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left(\lim_{\tau \to 0^{+}} \tau \| (\mathbf{x}_{t}^{*} - \bar{\mathbf{x}}_{t+1}) \|^{2} + 2 \left\langle \mathbf{x}_{t}^{*} - \bar{\mathbf{x}}_{t+1}, \bar{\mathbf{x}}_{t+1} - \bar{\mathbf{x}}_{t} \right\rangle \right)$$

$$= \frac{1}{\eta} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\langle \mathbf{x}_{t}^{*} - \bar{\mathbf{x}}_{t+1}, \bar{\mathbf{x}}_{t+1} - \bar{\mathbf{x}}_{t} \right\rangle$$

$$= \frac{1}{2\eta} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left(\| \mathbf{x}_{t}^{*} - \bar{\mathbf{x}}_{t} \|^{2} - \| \mathbf{x}_{t}^{*} - \bar{\mathbf{x}}_{t+1} \|^{2} - \| \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \|^{2} \right). \tag{4}$$

Besides, we have

$$\begin{aligned} & \left\| \mathbf{x}_{t+1}^{*} - \bar{\mathbf{x}}_{t+1} \right\|^{2} - \left\| \mathbf{x}_{t}^{*} - \bar{\mathbf{x}}_{t+1} \right\|^{2} \\ &= \left\| \mathbf{x}_{t+1}^{*} \right\|^{2} - \left\| \mathbf{x}_{t}^{*} \right\|^{2} - 2 \left\langle \bar{\mathbf{x}}_{t+1}, -\mathbf{x}_{t}^{*} + \mathbf{x}_{t+1}^{*} \right\rangle \\ &= \left(\left\| \mathbf{x}_{t+1}^{*} \right\| - \left\| \mathbf{x}_{t}^{*} \right\| \right) \left(\left\| \mathbf{x}_{t+1}^{*} \right\| + \left\| \mathbf{x}_{t}^{*} \right\| \right) - 2 \left\langle \bar{\mathbf{x}}_{t+1}, -\mathbf{x}_{t}^{*} + \mathbf{x}_{t+1}^{*} \right\rangle \\ &\leq \left\| \mathbf{x}_{t+1}^{*} - \mathbf{x}_{t}^{*} \right\| \left(\left\| \mathbf{x}_{t+1}^{*} \right\| + \left\| \mathbf{x}_{t}^{*} \right\| \right) + 2 \left\| \bar{\mathbf{x}}_{t+1} \right\| \left\| \mathbf{x}_{t+1}^{*} - \mathbf{x}_{t}^{*} \right\| \end{aligned}$$

$$\leq 4\sqrt{R} \|\mathbf{x}_{t+1}^* - \mathbf{x}_t^*\|.$$

The last inequality holds due to our assumption, that is, $\|\mathbf{x}_{t+1}^*\| = \|\mathbf{x}_{t+1}^* - \mathbf{0}\| \le \sqrt{R}$, $\|\mathbf{x}_t^*\| = \|\mathbf{x}_t^* - \mathbf{0}\| \le \sqrt{R}$, and $\|\bar{\mathbf{x}}_{t+1}\| = \|\bar{\mathbf{x}}_{t+1} - \mathbf{0}\| \le \sqrt{R}$.

Thus, telescoping $I_3(t)$ over $t \in [T]$, we have

$$\sum_{t=1}^{T} I_{3}(t)$$

$$\leq \frac{1}{2\eta} \underset{\Xi_{n,T} \sim \mathcal{D}_{n,T}}{\mathbb{E}} \left(4\sqrt{R} \sum_{t=1}^{T} \left\| \mathbf{x}_{t+1}^{*} - \mathbf{x}_{t}^{*} \right\| + \left\| \bar{\mathbf{x}}_{1}^{*} - \bar{\mathbf{x}}_{1} \right\|^{2} - \left\| \bar{\mathbf{x}}_{T}^{*} - \bar{\mathbf{x}}_{T+1} \right\|^{2} \right) - \frac{1}{2\eta} \underset{\Xi_{n,T} \sim \mathcal{D}_{n,T}}{\mathbb{E}} \sum_{t=1}^{T} \left\| \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \right\|^{2}$$

$$\leq \frac{1}{2\eta} \left(4\sqrt{R}M + R \right) - \frac{1}{2\eta} \underset{\Xi_{n,T} \sim \mathcal{D}_{n,T}}{\mathbb{E}} \sum_{t=1}^{T} \left\| \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \right\|^{2}.$$

Here, M the budget of the dynamics, which is defined in (1).

Combining those bounds of $I_1(t)$, $I_2(t)$ and $I_3(t)$ together, we finally obtain

$$\begin{split} & \underset{\Xi_{n,T} \sim \mathcal{D}_{n,T}}{\mathbb{E}} \sum_{t=1}^{I} \sum_{i=1}^{n} f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) - f_{t}(\mathbf{x}_{t}^{*}; \xi_{i,t}) \\ & \leq n \sum_{t=1}^{T} \left(I_{1}(t) + I_{2}(t) + I_{3}(t) \right) \\ & \leq \eta T \left(n\beta G + (1-\beta)\sigma^{2} \right) + (1-\beta) \left(\frac{\beta}{2\eta} + L + \frac{\nu}{2\eta} + 2\eta L^{2} \right) \underbrace{\mathbb{E}}_{\mathbf{z}_{n,T} \sim \mathcal{D}_{n,T}} \sum_{i=1}^{n} \sum_{t=1}^{T} \left\| \mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t} \right\|^{2} \\ & + n \left(\frac{\eta}{2\nu} + 2\eta \right) (1-\beta) \underbrace{\mathbb{E}}_{\mathbf{z}_{n,T-1} \sim \mathcal{D}_{n,T-1}} \sum_{t=1}^{T} \left\| \nabla H_{t}(\bar{\mathbf{x}}_{t}) \right\|^{2} + \frac{n}{2\eta} \left(4\sqrt{R}M + R \right) \\ \underbrace{\mathbb{E}}_{\eta T} \left(n\beta G + (1-\beta)\sigma^{2} \right) + n(1-\beta) \left(\frac{1}{\nu} + 4 \right) \left(\underbrace{\mathbb{E}}_{\mathbf{z}_{n,T} \sim \mathcal{D}_{n,T}} \sum_{t=1}^{T} \left(H_{t}(\bar{\mathbf{x}}_{t}) - H_{t}(\bar{\mathbf{x}}_{t+1}) \right) \right) \\ & + (1-\beta) \left(\frac{\beta}{2\eta} + L + \frac{\nu}{2\eta} + 2\eta L^{2} + \left(\frac{1}{\nu} + 4 \right) (1-\beta)^{2} L^{2} \eta \right) \underbrace{\mathbb{E}}_{\mathbf{z}_{n,T} \sim \mathcal{D}_{n,T}} \sum_{t=1}^{T} \sum_{i=1}^{n} \left\| \bar{\mathbf{x}}_{t} - \mathbf{x}_{i,t} \right\|^{2} \\ & + n(1-\beta) \left(\frac{1}{\nu} + 4 \right) \left(4T\beta^{2}\eta G + \frac{TGL\eta^{2}}{2} \right) + \frac{n}{2\eta} \left(4\sqrt{R}M + R \right) \end{aligned}$$

$$\underbrace{\mathbb{E}}_{n,T} \left(n\beta G + (1-\beta)\sigma^{2} \right) + n(1-\beta) \left(\frac{1}{\nu} + 4 \right) \left(\mathbb{E}}_{\mathbf{z}_{n,T} \sim \mathcal{D}_{n,T}} \sum_{t=1}^{T} \left(H_{t}(\bar{\mathbf{x}}_{t}) - H_{t}(\bar{\mathbf{x}}_{t+1}) \right) \right) \\ + (1-\beta) \left(\frac{\beta}{2\eta} + L + \frac{\nu}{2\eta} + 2\eta L^{2} + \left(\frac{1}{\nu} + 4 \right) (1-\beta)^{2} L^{2} \eta \right) \frac{nT\eta^{2}G}{(1-\rho)^{2}} \\ & + n(1-\beta) \left(\frac{1}{\nu} + 4 \right) \left(4T\beta^{2}\eta G + \frac{TGL\eta^{2}}{2} \right) + \frac{n}{2\eta} \left(4\sqrt{R}M + R \right) .\end{aligned}$$

① holds due to Lemma 2. That is, we have

$$\frac{\eta}{2} \underset{\Xi_{n,T-1} \sim \mathcal{D}_{n,T-1}}{\mathbb{E}} \sum_{t=1}^{T} \|\nabla H_{t}(\bar{\mathbf{x}}_{t})\|^{2}$$

$$\leq \underset{\Xi_{n,T} \sim \mathcal{D}_{n,T}}{\mathbb{E}} \sum_{t=1}^{T} (H_{t}(\bar{\mathbf{x}}_{t}) - H_{t}(\bar{\mathbf{x}}_{t+1})) + 4T\beta^{2}\eta G + \frac{(1-\beta)^{2}L^{2}\eta}{n} \underset{\Xi_{n,T-1} \sim \mathcal{D}_{n,T-1}}{\mathbb{E}} \sum_{t=1}^{T} \sum_{i=1}^{n} \|\bar{\mathbf{x}}_{t} - \mathbf{x}_{i,t}\|^{2} + \frac{TGL\eta^{2}}{2}.$$
(5)

(2) holds due to Lemma 4

$$\mathbb{E}_{\Xi_{n,T-1} \sim \mathcal{D}_{n,T-1}} \sum_{i=1}^{n} \sum_{t=1}^{T} \|\mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t}\|^{2} \le \frac{nT\eta^{2}G}{(1-\rho)^{2}}.$$

Letting $\nu = \sqrt{\beta^2 + \eta}$, we have

$$\mathbb{E}_{\Xi_{n,T} \sim \mathcal{D}_{n,T}} \sum_{t=1}^{T} \sum_{i=1}^{n} f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) - f_{t}(\mathbf{x}_{t}^{*}; \xi_{i,t})$$

$$\leq \eta T \left(n\beta G + (1-\beta)\sigma^{2} \right) + n(1-\beta) \left(\frac{1}{\sqrt{\beta^{2} + \eta}} + 4 \right) \left(\mathbb{E}_{\Xi_{n,T} \sim \mathcal{D}_{n,T}} \sum_{t=1}^{T} \left(H_{t}(\bar{\mathbf{x}}_{t}) - H_{t}(\bar{\mathbf{x}}_{t+1}) \right) \right)$$

$$+ (1-\beta) \left(\frac{\beta}{2\eta} + L + \frac{\sqrt{\beta^{2} + \eta}}{2\eta} + 2\eta L^{2} + \left(\frac{1}{\sqrt{\beta^{2} + \eta}} + 4 \right) (1-\beta)^{2} L^{2} \eta \right) \frac{nT\eta^{2}G}{(1-\rho)^{2}}$$

$$+ n(1-\beta) \left(\frac{1}{\sqrt{\beta^{2} + \eta}} + 4 \right) \left(4T\beta^{2} \eta G + \frac{TGL\eta^{2}}{2} \right) + \frac{n}{2\eta} \left(4\sqrt{R}M + R \right).$$

It completes the proof.

Lemma 1. Using Assumption 1, we have

$$\mathbb{E}_{\Xi_{n,t} \sim \mathcal{D}_{n,t}} \|\partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t})\|^2 \le G.$$

Proof.

$$\mathbb{E}_{\Xi_{n,t} \sim \mathcal{D}_{n,t}} \|\partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t})\|^{2}$$

$$= \mathbb{E}_{\Xi_{n,t} \sim \mathcal{D}_{n,t}} \|\beta \partial g_{i,t}(\mathbf{x}_{i,t}) + (1-\beta)\nabla h_{t}(\mathbf{x}_{i,t}; \xi_{i,t})\|^{2}$$

$$\leq \beta \|\partial g_{i,t}(\mathbf{x}_{i,t})\|^{2} + (1-\beta) \mathbb{E}_{\Xi_{n,t} \sim \mathcal{D}_{n,t}} \|\nabla h_{t}(\mathbf{x}_{i,t}; \xi_{i,t})\|^{2}$$

$$\leq G.$$

Lemma 2. Using Assumption 1, and setting $\eta > 0$ in Algorithm 1, we have

$$\frac{\eta}{2} \underset{\Xi_{n,T-1} \sim \mathcal{D}_{n,T-1}}{\mathbb{E}} \sum_{t=1}^{T} \|\nabla H_t(\bar{\mathbf{x}}_t)\|^2 \tag{6}$$

$$\leq \underset{\Xi_{n,T} \sim \mathcal{D}_{n,T}}{\mathbb{E}} \sum_{t=1}^{T} \left(H_{t}(\bar{\mathbf{x}}_{t}) - H_{t}(\bar{\mathbf{x}}_{t+1}) \right) + 4T\beta^{2}\eta G + \frac{(1-\beta)^{2}L^{2}\eta}{n} \underset{\Xi_{n,T-1} \sim \mathcal{D}_{n,T-1}}{\mathbb{E}} \sum_{t=1}^{T} \sum_{i=1}^{n} \left\| \bar{\mathbf{x}}_{t} - \mathbf{x}_{i,t} \right\|^{2} + \frac{TGL\eta^{2}}{2}.$$

Proof.

$$\begin{split} & & \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} H_t(\bar{\mathbf{x}}_{t+1}) \\ \leq & \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} H_t(\bar{\mathbf{x}}_t) + \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\langle \nabla H_t(\bar{\mathbf{x}}_t), \bar{\mathbf{x}}_{t+1} - \bar{\mathbf{x}}_t \right\rangle + \frac{L}{2} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\| \bar{\mathbf{x}}_{t+1} - \bar{\mathbf{x}}_t \right\|^2 \end{split}$$

$$= \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} H_{t}(\bar{\mathbf{x}}_{t}) + \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\langle \nabla H_{t}(\bar{\mathbf{x}}_{t}), -\frac{\eta}{n} \sum_{i=1}^{n} \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\rangle + \frac{L}{2} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\| \frac{\eta}{n} \sum_{i=1}^{n} \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\|^{2} \\
= \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} H_{t}(\bar{\mathbf{x}}_{t}) + \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \left\langle \nabla H_{t}(\bar{\mathbf{x}}_{t}), -\frac{\eta}{n} \sum_{i=1}^{n} \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\rangle + \frac{L}{2} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\| \frac{\eta}{n} \sum_{i=1}^{n} \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\|^{2}. \tag{7}$$

Besides, we have

$$\begin{split} & \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \sqrt{\nabla H_{t}(\bar{\mathbf{x}}_{t}), -\frac{\eta}{n} \sum_{i=1}^{n} \partial f_{i,t}(\mathbf{x}_{i,t})} \rangle \\ & = \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \frac{\eta}{2} \left(\left\| \nabla H_{t}(\bar{\mathbf{x}}_{t}) - \frac{1}{n} \sum_{i=1}^{n} \partial f_{i,t}(\mathbf{x}_{i,t}) \right\|^{2} - \left\| \nabla H_{t}(\bar{\mathbf{x}}_{t}) \right\|^{2} - \left\| \frac{1}{n} \sum_{i=1}^{n} \partial f_{i,t}(\mathbf{x}_{i,t}) \right\|^{2} \right) \\ & \leq \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \frac{\eta}{2} \left(\left\| \nabla H_{t}(\bar{\mathbf{x}}_{t}) - \frac{1}{n} \sum_{i=1}^{n} (\beta \partial g_{i,t}(\mathbf{x}_{i,t}) + (1 - \beta) \nabla H_{t}(\mathbf{x}_{i,t})) \right\|^{2} \right) - \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \frac{\eta}{2} \left\| \nabla H_{t}(\bar{\mathbf{x}}_{t}) - \frac{1}{n} \sum_{i=1}^{n} (\beta \partial g_{i,t}(\mathbf{x}_{i,t}) + (1 - \beta) \nabla H_{t}(\mathbf{x}_{i,t})) \right\|^{2} \right) \\ & \leq \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \frac{\eta}{2} \left\| \nabla H_{t}(\bar{\mathbf{x}}_{t}) - \frac{1}{n} \sum_{i=1}^{n} \partial g_{i,t}(\mathbf{x}_{i,t}) \right\|^{2} + 2(1 - \beta)^{2} \left\| \nabla H_{t}(\bar{\mathbf{x}}_{t}) - \frac{1}{n} \sum_{i=1}^{n} \nabla H_{t}(\mathbf{x}_{i,t}) \right\|^{2} \right) \\ & - \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \frac{\eta}{2} \left(2\beta^{2} \left\| \nabla H_{t}(\bar{\mathbf{x}}_{t}) - \frac{1}{n} \sum_{i=1}^{n} \partial g_{i,t}(\mathbf{x}_{i,t}) \right\|^{2} + \frac{2(1 - \beta)^{2}}{n} \sum_{i=1}^{n} \left\| \nabla H_{t}(\bar{\mathbf{x}}_{t}) - \nabla H_{t}(\mathbf{x}_{i,t}) \right\|^{2} \right) \\ & - \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \frac{\eta}{2} \left(2\beta^{2} \left\| \nabla H_{t}(\bar{\mathbf{x}}_{t}) - \frac{1}{n} \sum_{i=1}^{n} \partial g_{i,t}(\mathbf{x}_{i,t}) \right\|^{2} + \frac{2(1 - \beta)^{2}L^{2}}{n} \sum_{i=1}^{n} \left\| \bar{\mathbf{x}}_{t} - \mathbf{x}_{i,t} \right\|^{2} \right) - \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \frac{\eta}{2} \left\| \nabla H_{t}(\bar{\mathbf{x}}_{t}) \right\|^{2} + 4\beta^{2} \left\| \frac{1}{n} \sum_{i=1}^{n} \partial g_{i,t}(\mathbf{x}_{i,t}) \right\|^{2} + \frac{2(1 - \beta)^{2}L^{2}}{n} \sum_{i=1}^{n} \left\| \bar{\mathbf{x}}_{t} - \mathbf{x}_{i,t} \right\|^{2} \right) \\ & - \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \frac{\eta}{2} \left(4\beta^{2} \left\| \nabla H_{t}(\bar{\mathbf{x}}_{t}) \right\|^{2} + 4\beta^{2} \left\| \frac{1}{n} \sum_{i=1}^{n} \partial g_{i,t}(\mathbf{x}_{i,t}) \right\|^{2} + \frac{2(1 - \beta)^{2}L^{2}}{n} \sum_{i=1}^{n} \left\| \bar{\mathbf{x}}_{t} - \mathbf{x}_{i,t} \right\|^{2} \right) \\ & - \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \frac{\eta}{2} \left(8\beta^{2}G + \frac{2(1 - \beta)^{2}L^{2}}{n} \sum_{i=1}^{n} \left\| \bar{\mathbf{x}}_{t} - \mathbf{x}_{i,t} \right\|^{2} \right) - \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}}{\mathbb{E}} \frac{\eta}{2} \left\| \nabla H_{t}(\bar{\mathbf{x}}_{t}) \right\|^{2} \right) \\ & - \underbrace{\mathbb{E}}_{n,t-1} \frac{\eta}{2} \left\| \nabla H_{t}(\bar{\mathbf{x}}_{t}) \right\|^{2} + 4\beta^{2} \left\| \frac{1}{n} \sum_{i=1}^{n} \partial g_{i,t}(\mathbf{$$

(I) holds due to

$$\mathbb{E}_{\Xi_{n,t} \sim \mathcal{D}_{n,t}} \|\nabla H_t(\bar{\mathbf{x}}_t)\|^2 = \mathbb{E}_{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}} \|\nabla H_t(\bar{\mathbf{x}}_t)\|^2$$

$$= \mathbb{E}_{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}} \|\mathbb{E}_{\xi_{i,t} \sim D_{i,t}} \nabla h_t(\bar{\mathbf{x}}_t; \xi_{i,t})\|^2$$

$$\leq \mathbb{E}_{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}} \left(\mathbb{E}_{\xi_{i,t} \sim D_{i,t}} \|\nabla h_t(\bar{\mathbf{x}}_t; \xi_{i,t})\|^2\right), \quad \forall i \in [n]$$

$$\leq G,$$

and

$$\left\| \frac{1}{n} \sum_{i=1}^{n} \partial g_{i,t}(\mathbf{x}_{i,t}) \right\|^{2} \leq \frac{1}{n} \sum_{i=1}^{n} \left\| \partial g_{i,t}(\mathbf{x}_{i,t}) \right\|^{2} \leq G.$$

According to Lemma 1, we have

$$\mathbb{E}_{n,t} \left\| \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\|^2 \le G. \tag{9}$$

Substituting (8) and (9) into (7), and telescoping $t \in [T]$, we obtain

$$\mathbb{E}_{\Xi_{n,T} \sim \mathcal{D}_{n,T}} \sum_{t=1}^{I} H_{t}(\bar{\mathbf{x}}_{t+1})$$

$$\leq \mathbb{E}_{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}} H_{t}(\bar{\mathbf{x}}_{t}) + \mathbb{E}_{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}} \left\langle \nabla H_{t}(\bar{\mathbf{x}}_{t}), -\frac{\eta}{n} \sum_{i=1}^{n} \partial f_{i,t}(\mathbf{x}_{i,t}) \right\rangle + \frac{L}{2} \mathbb{E}_{\Xi_{n,t} \sim \mathcal{D}_{n,t}} \left\| \frac{\eta}{n} \sum_{i=1}^{n} \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\|^{2}$$

$$\leq \mathbb{E}_{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}} H_{t}(\bar{\mathbf{x}}_{t}) + \left(\mathbb{E}_{\Xi_{n,t} \sim \mathcal{D}_{n,t}} \frac{\eta}{2} \left(8\beta^{2}G + \frac{2(1-\beta)^{2}L^{2}}{n} \sum_{i=1}^{n} \|\bar{\mathbf{x}}_{t} - \mathbf{x}_{i,t}\|^{2} \right) - \mathbb{E}_{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}} \frac{\eta}{2} \|\nabla H_{t}(\bar{\mathbf{x}}_{t})\|^{2} \right) + \frac{GL\eta^{2}}{2}$$

$$= \mathbb{E}_{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}} H_{t}(\bar{\mathbf{x}}_{t}) + \left(4\eta\beta^{2}G + \frac{(1-\beta)^{2}L^{2}\eta}{n} \mathbb{E}_{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}} \sum_{i=1}^{n} \|\bar{\mathbf{x}}_{t} - \mathbf{x}_{i,t}\|^{2} - \mathbb{E}_{\Xi_{n,t-1} \sim \mathcal{D}_{n,t-1}} \frac{\eta}{2} \|\nabla H_{t}(\bar{\mathbf{x}}_{t})\|^{2} \right) + \frac{GL\eta^{2}}{2}$$

Telescoping over $t \in [T]$, we have

It completes the proof.

$$\frac{\eta}{2} \underset{\Xi_{n,T-1} \sim \mathcal{D}_{n,T-1}}{\mathbb{E}} \sum_{t=1}^{T} \|\nabla H_{t}(\bar{\mathbf{x}}_{t})\|^{2} \tag{10}$$

$$\leq \underset{\Xi_{n,T} \sim \mathcal{D}_{n,T}}{\mathbb{E}} \sum_{t=1}^{T} (H_{t}(\bar{\mathbf{x}}_{t}) - H_{t}(\bar{\mathbf{x}}_{t+1})) + 4T\beta^{2}\eta G + \frac{(1-\beta)^{2}L^{2}\eta}{n} \underset{\Xi_{n,T-1} \sim \mathcal{D}_{n,T-1}}{\mathbb{E}} \sum_{t=1}^{T} \sum_{i=1}^{n} \|\bar{\mathbf{x}}_{t} - \mathbf{x}_{i,t}\|^{2} + \frac{TGL\eta^{2}}{2}.$$

Lemma 3. Denote $\bar{\mathbf{x}}_t = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_{i,t}$. We have

$$\bar{\mathbf{x}}_{t+1} = \bar{\mathbf{x}}_t - \eta \left(\frac{1}{n} \sum_{i=1}^n \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right).$$

Proof. Denote

$$\begin{aligned} \mathbf{X}_t = & [\mathbf{x}_{1,t}, \mathbf{x}_{2,t}, ..., \mathbf{x}_{n,t}] \in \mathbb{R}^{d \times n}, \\ \mathbf{G}_t = & [\nabla f_{1,t}(\mathbf{x}_{1,t}; \xi_{1,t}), \nabla f_{2,t}(\mathbf{x}_{2,t}; \xi_{2,t}), ..., \nabla f_{n,t}(\mathbf{x}_{n,t}; \xi_{n,t})] \in \mathbb{R}^{d \times n}. \end{aligned}$$

Recall that

$$\mathbf{x}_{i,t+1} = \sum_{j=1}^{n} \mathbf{W}_{ij} \mathbf{x}_{j,t} - \eta \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}).$$

Equivalently, we re-formulate the update rule as

$$\mathbf{X}_{t+1} = \mathbf{X}_t \mathbf{W} - \eta \mathbf{G}_t.$$

Since the confusion matrix W is doublely stochastic, we have

$$\mathbf{W1} = \mathbf{1}$$
.

Thus, we have

$$\begin{split} \bar{\mathbf{x}}_{t+1} &= \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i,t+1} \\ &= \mathbf{X}_{t+1} \frac{1}{n} \\ &= \mathbf{X}_{t} \mathbf{W} \frac{1}{n} - \eta \mathbf{G}_{t} \frac{1}{n} \\ &= \mathbf{X}_{t} \frac{1}{n} - \eta \mathbf{G}_{t} \frac{1}{n} \\ &= \bar{\mathbf{x}}_{t} - \eta \left(\frac{1}{n} \sum_{i=1}^{n} \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right). \end{split}$$

Lemma 4. Using Assumption 1, and setting $\eta > 0$ in Algorithm 1, we have

$$\mathbb{E}_{\Xi_{n,T} \sim \mathcal{D}_{n,T}} \sum_{i=1}^{n} \sum_{t=1}^{T} \left\| \mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t} \right\|^{2} \leq \frac{nT\eta^{2}G}{(1-\rho)^{2}}.$$

Proof. Recall that

$$\mathbf{x}_{i,t+1} = \sum_{j=1}^{n} \mathbf{W}_{ij} \mathbf{x}_{j,t} - \eta \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}),$$

and according to Lemma 3, we have

$$\bar{\mathbf{x}}_{t+1} = \bar{\mathbf{x}}_t - \eta \left(\frac{1}{n} \sum_{i=1}^n \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right).$$

Denote

$$\mathbf{X}_t = [\mathbf{x}_{1,t}, \mathbf{x}_{2,t}, ..., \mathbf{x}_{n,t}] \in \mathbb{R}^{d \times n},$$

$$\mathbf{G}_t = [\nabla f_{1,t}(\mathbf{x}_{1,t}; \xi_{1,t}), \nabla f_{2,t}(\mathbf{x}_{2,t}; \xi_{2,t}), ..., \nabla f_{n,t}(\mathbf{x}_{n,t}; \xi_{n,t})] \in \mathbb{R}^{d \times n}.$$

By letting $\mathbf{x}_{i,1} = \mathbf{0}$ for any $i \in [n]$, the update rule is re-formulated as

$$\mathbf{X}_{t+1} = \mathbf{X}_t \mathbf{W} - \eta \mathbf{G}_t = -\sum_{s=1}^t \eta \mathbf{G}_s \mathbf{W}^{t-s}.$$

Similarly, denote $\bar{\mathbf{G}}_t = \frac{1}{n} \sum_{i=1}^n \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t})$, and we have

$$\bar{\mathbf{x}}_{t+1} = \bar{\mathbf{x}}_t - \eta \left(\frac{1}{n} \sum_{i=1}^n \partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right) = -\sum_{s=1}^t \eta \bar{\mathbf{G}}_s.$$
 (11)

Therefore,

$$\sum_{i=1}^{n} \left\| \mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t} \right\|^{2}$$

$$\underbrace{\mathbf{I}}_{s=1}^{n} \sum_{i=1}^{t-1} \left\| \sum_{s=1}^{t-1} \eta \bar{\mathbf{G}}_{s} - \eta \mathbf{G}_{s} \mathbf{W}^{t-s-1} \mathbf{e}_{i} \right\|^{2}$$

$$\underbrace{\mathbf{I}}_{s=1}^{t-1} \eta \mathbf{G}_{s} \mathbf{v}_{1} \mathbf{v}_{1}^{T} - \eta \mathbf{G}_{s} \mathbf{W}^{t-s-1} \right\|_{F}^{2}$$

$$\underbrace{\mathbf{I}}_{s=1}^{t-1} \eta \mathbf{G}_{s} \mathbf{v}_{1} \mathbf{v}_{1}^{T} - \eta \mathbf{G}_{s} \mathbf{W}^{t-s-1} \right\|_{F}^{2}$$

$$\underbrace{\mathbf{I}}_{s=1}^{t-1} \eta \rho^{t-s-1} \left\| \mathbf{G}_{s} \right\|_{F}^{2}$$

$$\underbrace{\mathbf{I}}_{s=1}^{t-1} \eta \rho^{t-s-1} \left\| \mathbf{G}_{s} \right\|_{F}^{2}$$

① holds due to \mathbf{e}_i is a unit basis vector, whose *i*-th element is 1 and other elements are 0s. ② holds due to $\mathbf{v}_1 = \frac{\mathbf{1}_n}{\sqrt{n}}$. ③ holds due to Lemma 5.

Thus, we have

$$\mathbb{E}_{\Xi_{n,T} \sim \mathcal{D}_{n,T}} \sum_{i=1}^{n} \sum_{t=1}^{T} \|\mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t}\|^{2}$$

$$\leq \mathbb{E}_{\Xi_{n,T} \sim \mathcal{D}_{n,T}} \sum_{t=1}^{T} \left(\sum_{s=1}^{t-1} \eta \rho^{t-s-1} \|\mathbf{G}_{s}\|_{F} \right)^{2}$$

$$\mathbb{E}_{\Xi_{n,T} \sim \mathcal{D}_{n,T}} \mathbb{E}_{\Xi_{n,T} \sim \mathcal{D}_{n,T}} \left(\sum_{t=1}^{T} \|\mathbf{G}_{t}\|_{F}^{2} \right)$$

$$= \frac{\eta^{2}}{(1-\rho)^{2}} \left(\mathbb{E}_{\Xi_{n,T} \sim \mathcal{D}_{n,T}} \sum_{t=1}^{T} \sum_{i=1}^{n} \|\partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t})\|^{2} \right)$$

$$\mathbb{E}_{\Xi_{n,T} \sim \mathcal{D}_{n,T}} \sum_{t=1}^{T} \sum_{i=1}^{n} \|\partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t})\|^{2}$$

$$\mathbb{E}_{\Xi_{n,T} \sim \mathcal{D}_{n,T}} \sum_{t=1}^{T} \sum_{i=1}^{n} \|\partial f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t})\|^{2}$$

(I) holds due to Lemma 6. (2) holds due to Lemma 1.

Lemma 5 (Appeared in Lemma 5 in [Tang et al., 2018]). For any matrix $\mathbf{X}_t \in \mathbb{R}^{d \times n}$, decompose the confusion matrix \mathbf{W} as $\mathbf{W} = \sum_{i=1}^n \lambda_i \mathbf{v}_i \mathbf{v}_i^{\mathrm{T}} = \mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{\mathrm{T}}$, where $\mathbf{P} = [\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n] \in \mathbb{R}^{n \times n}$, \mathbf{v}_i is the normalized eigenvector of λ_i . $\boldsymbol{\Lambda}$ is a diagonal matrix, and λ_i be its i-th element. We have

$$\left\|\mathbf{X}_{t}\mathbf{W}^{t} - \mathbf{X}_{t}\mathbf{v}_{1}\mathbf{v}_{1}^{\mathrm{T}}\right\|_{F}^{2} \leq \left\|\rho^{t}\mathbf{X}_{t}\right\|_{F}^{2},$$

where $\rho = \max\{|\lambda_2(\mathbf{W})|, |\lambda_n(\mathbf{W})|\}.$

Lemma 6 (Appeared in Lemma 6 in [Tang et al., 2018]). Given two non-negative sequences $\{a_t\}_{t=1}^{\infty}$ and $\{b_t\}_{t=1}^{\infty}$ that satisfying

$$a_t = \sum_{s=1}^t \rho^{t-s} b_s,$$

with $\rho \in [0,1)$, we have

$$\sum_{t=1}^{k} a_t^2 \le \frac{1}{(1-\rho)^2} \sum_{s=1}^{k} b_s^2.$$

References

H. Tang, S. Gan, C. Zhang, T. Zhang, and J. Liu. Communication Compression for Decentralized Training. arXiv.org, Mar. 2018.