Stock Price Prediction for Income Generation using RNN and Machine Learning Models

Abstract

This research project aims to create predictive models for generating income through stock trading, with a focus on the NASDAQ Composite. The approach employs a blend of Recurrent Neural Networks (RNNs), XGBoost, custom loss functions, and meticulous data preprocessing techniques.

Introduction

Stock price prediction has traditionally focused on predicting various metrics like close prices and candle colors. This project goes a step further by optimizing predictive models to facilitate profitable trading while minimizing risk.

Methodology

Data Preprocessing

1. Data Collection:

 The study uses historical NASDAQ Composite data, enriched with technical indicators like SMA, EMA, MACD, RSI, and external indices from other stock markets, cryptocurrencies, and commodities.

Technical Indicators

To capture market psychology and trading patterns, various technical indicators were also added:

- Trend Indicators: SMA (Simple Moving Average), MACD (Moving Average Convergence Divergence)
- Momentum Indicators: RSI (Relative Strength Index), Momentum, Stochastic Oscillator
- Volatility Indicators: Bollinger Bands, ATR (Average True Range)
- Volume Indicator: OBV (On-Balance Volume)

These indicators provide insights into market direction, volatility, momentum, and trading volume, which are essential for accurate stock price prediction.

External Indices, Cryptocurrencies, and Commodities

To provide a more holistic view of the market conditions and trends, the following external indices, cryptocurrencies, and commodities were integrated into the dataset:

- Stock Indices: ^DJI, ^GSPC, ^FTSE, ^GDAXI, ^FCHI, ^N225, ^HSI, ^AXJO, ^KS11, ^BSESN, ^BVSP
- Commodities: GC=F (Gold Futures), SI=F (Silver Futures), CL=F (Crude Oil WTI Futures), NG=F (Natural Gas Futures), ZC=F (Corn Futures), ZW=F (Wheat Futures)
- Cryptocurrencies: BTC-USD (Bitcoin against the US Dollar)
- Volatility Index: ^VIX (CBOE Volatility Index)

These features offer a broad economic context that may influence the NASDAQ Composite, enhancing the model's predictive power.

2. Time Features:

- Day of the week and week of the year were added to capture temporal patterns.
- Cycle encoding was used on these time features to maintain their cyclical nature.

Advantages of Cycle Encoding

Cycle encoding captures the cyclical nature of certain features like days of the week or weeks of the year, allowing the model to better understand periodic fluctuations and improve its predictive capability.

3. Data Cleaning:

- Features with heavy tails were log-transformed. Negative values were offset by adding the absolute minimum of the feature distribution to each data point before log transformation.
- Outliers beyond 1.5 IQR from the median were suppressed.

4. Data Normalization:

- A MinMax scaler was applied to the features.
- Correlated features were dropped using the Feature Engine library.
- These steps were conducted within a pipeline.

Model Architecture

1. RNN Models:

- SimpleRNN, LSTM, and GRU were used.
- A custom function was developed for hyperparameter tuning, taking multiple inputs including layer count, neuron count, batch size, activation and loss functions.

2. Machine Learning Models:

XGBoost was used, and hyperparameters were tuned using Optuna.

3. Custom Loss Functions:

• Two custom loss functions were designed for percentage change prediction, one to maximize profit and another to minimize loss.

Evaluation Metrics

RMSE was used for close price prediction, and F1 Score was used for candle color prediction. Custom loss functions were employed for percentage change prediction.

Results

- 1. Close Price: RNN models outperformed XGBoost but did not beat naive predictions.
- 2. Candle Color: XGBoost was more effective but not significantly better than naive models.
- 3. **Percentage Change**: The LSTM model trained with the custom loss function aimed at maximizing profit was the most profitable in simulated trading scenarios.

RNN Model Performance

The table below presents the trading performance results for the RNN models:

Explanation	Cumulative Profit	Compounded Profit	Nr of Loss Days	Nr of Profit Days
SimpleRNN Without Custom Loss Function	-236.20	-91.06	238	962
LSTM Without Custom Loss Function	-382.08	-97.93	236	964
GRU Without Custom Loss Function	-274.42	-93.98	275	955
SimpleRNN With Custom Loss Function	-282.24	-94.46	297	933
LSTM With Custom Loss Function	-371.71	-97.73	236	964
GRU With Custom Loss Function	-377.81	-97.87	264	936
SimpleRNN With Custom Loss Function, Technical Indicators and Indices	146.54	314.24	331	899
LSTM With Custom Loss Function, Technical Indicators and Indices	453.85	9020.32	20	1210
GRU With Custom Loss Function, Technical Indicators and Indices	175.85	473.72	91	1139

XGBoost Model Performance

The table below outlines the trading performance results for the XGBoost models:

Explanation	Cumulative Profit	Compounded Profit	Nr of Loss Days	Nr of Profit Days
Only technical indicators	105.54	181.30	85	1115
Technical indicators and Other indices	151.42	338.41	196	1004
Technical indicators, Other indices and Feature engine	160.95	384.18	171	1029
Only technical indicators with custom loss	159.34	382.80	75	1125
Technical indicators and Other indices with custom loss	155.25	356.11	192	1008
Technical indicators, Other indices and Feature engine with custom loss	161.84	389.58	154	1046
Only technical indicators with custom loss (maximize)	142.65	308.85	70	1130
Technical indicators and Other indices with custom loss(maximize)	194.61	578.39	128	1072
Technical indicators, Other indices and Feature engine with custom loss(maximize)	163.20	396.29	152	1048

Trading Profit/Loss Evaluation

A function was created to evaluate the actual trading performance based on the model's predictions. XGBoost models using custom loss functions showed significant profitability, particularly the model optimized for profit maximization.

Discussion

The project shows the potential of custom loss functions and machine learning models like XGBoost in achieving the goal of profitable trading.

Conclusion

While RNN models did not perform as expected for trading, XGBoost models trained with custom loss functions generated significant profits, highlighting the effectiveness of specialized machine learning techniques and loss functions.

Future Work

- 1. **Generalizability**: To test the model's robustness across different stocks or indices.
- 2. **Time Frame**: To evaluate the model's performance on weekly or monthly data.
- 3. **Optimization**: Further tuning of the custom loss functions and other hyperparameters.