Teorema de Bloch e as suas consequências

	Electrão livre	Electrão num cristal
Números		3 componentes do quase-momento,
quânticos	3 componentes do momento ,	variam de forma quase contínua ,
	variam continuamente ,	$-\infty < p_x, p_y, p_z < \infty; \Delta p_x = 2\pi \hbar/L_x, etc.$
	$-\infty < p_x, p_y, p_z < \infty$.	É suficiente considerar apenas
		os estados dentro da 1ª ZB.
Energia	$E_0(\vec{p}) = p^2 / 2m_0$	$E_0(\vec{p}) = E_0(\vec{p} + \hbar \vec{K})$, uma função
		periódica no espaço recíproco.
Função de onda	$\psi(\vec{r}) = \frac{1}{\sqrt{V}} \exp\left(i\frac{\vec{p}}{\hbar}\vec{r}\right)$	$\psi(\vec{r}) = u_{\vec{k}}(\vec{r}) \exp\left(i\frac{\vec{p}}{\hbar}\vec{r}\right); u_{\vec{k}}(\vec{r}) = u_{\vec{k}}(\vec{r} + \vec{a})$
	(onda plana)	(onda de Bloch)

A função de onda de Bloch (a cheio) é uma função complexa mas periódica, modulada por uma função harmónica (a tracejado).

Aproximação de electrões quase livres

Representação da energia do electrão em função do vector de onda na aproximação dos electrões quase livres, nas representações: estendida (a) e reduzida (b).

Efeito do potencial cristalino no espectro electrónico na vizinhança dos planos de Bragg $(2\vec{k} \cdot \vec{K} + K^2 = 0)$:

$$\begin{split} E(\vec{k}) &= \frac{1}{2} (E_0(\vec{k}) + E_0(\vec{k} + \vec{K})) \\ &\pm \sqrt{\frac{1}{4} (E_0(\vec{k}) - E_0(\vec{k} + \vec{K}))^2 + \left| V_{\vec{k}, \vec{k} + \vec{K}} \right|^2} \end{split}$$

Abrem-se *gaps* de largura $2|V_{\vec{k},\vec{k}+\vec{K}}|$.

Aproximação de ligação forte (tight-bimding approximation)

$$\psi(\vec{r}) = \sum_{j} a_{j} \varphi(\vec{r} - \vec{R}_{j});$$

 $\varphi_j \equiv \varphi(\vec{r} - \vec{R}_j)$ - orbital atómica

 $a_j = e^{i\vec{k}\vec{R}_j}$ - coeficiente correspondente ao átomo situado em \vec{R}_j

$$E(\vec{k}) = \varepsilon + \frac{\sum_{j} e^{i\vec{k}(\vec{R}_{j} - \vec{R}_{j'})} A(\vec{R}_{jj'})}{\sum_{j} e^{i\vec{k}(\vec{R}_{j} - \vec{R}_{j'})} S(\vec{R}_{jj'})};$$

Integrais de sobreposição:

$$A(\vec{R}_{jj'}) = \int (V_{ef} - U_{j}) \varphi_{j} \varphi_{j'}^{*} d\vec{r} ; \quad S(\vec{R}_{jj'}) = \int \varphi_{j} \varphi_{j'}^{*} d\vec{r}$$

A energia do electrão em função do vector de onda, ao longo de uma das direcções (100), calculada na aproximação de ligação

Densidade de estados numa banda

$$g(E) = \frac{2}{(2\pi)^3} \int_{\substack{\text{superficie} \\ E = const}} \frac{dA}{\left|\nabla_{\vec{k}} E(\vec{k})\right|}$$

Na vizinhança dos extremos (espectro parabólico):

$$g(E) = \frac{\sqrt{2} (m^*)^{3/2}}{\pi^2 \hbar^3} \sqrt{E - E_c}$$

Singularidades de Van Hove:

Ocupação dos níveis electrónicos. Classificação dos sólidos cristalinos

A função de distribuição de Fermi-Dirac para várias temperaturas

Ocupação dos estados a T=0

(BV = banda de valência, BC = banda de condução)

