

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования ПЕРМСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра ИТАС

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

на соискание академической степени бакалавра на тему

«Автоматизированная система управления движением колёсного робота.»

Выполнил: ЭВТ-11бз Брюханов В.П.

Руководитель ВКР:

к.т.н., доцента, Курушин Д.С.

Консультант по предметной области:

к.т.н., доцента, Курушин Д.С.

Пермь - 2016

Цель и задачи

Цель работы: разработать автоматизированную систему управления движением колесного робота, основанную на наборе регуляторов, обеспечивающих перемещение МРК в заданном режиме.

Задачи работы:

- 1. Идентифицировать задачи, которые должны решать регуляторы
- 2. Идентифицировать режимы, которые будут решать задачу передвижения МРК (мобильного роботизированного комплекса) при помощи тягового двигателя и тормозных усилий колес
 - 3. Выбрать типы регуляторов, которые обеспечат работу режимов
 - 4. Выбрать метод поиска оптимальных коэффициентов регуляторов
- 5. Описать режимы регулирования, объекты управления, протекание отдельного цикла регулирования
- 6. Экспериментально установить величины, необходимые для разработки регулятора и рассчитать первичные коэффициенты регуляторов
 - 7. Оптимизировать коэффициенты регуляторов
- 8. Реализовать режимы регулирования движения МРК (мобильного роботизированного комплекса)

Структурная схема ПО МРК (фрагмент)

Функциональная схема ИНТАС ПО МРК (фрагмент)

Схема АСУ «остановка» ИТАС

 $\mathbf{K}_{\mathbf{n}}$ – преобразование линейной скорости в угловую

 $\mathbf{F_t}$ - таймер

 $\mathbf{F}_{\mathbf{a}}$ – контроль угла наклона

 $\mathbf{F}_{\mathbf{k}}$ – проверка условий активации тормоза

 W_p – регулятор

W_т - тормозная система и

колеса

 $\omega_{\rm H}(t)$ и $\omega_{\rm D}(t)$ – целевая и реальная угловая скорость колес

 $\varepsilon(t)$ – ошибка

A(t) – угол наклона

 $\mathbf{u}_{t}(t)$ – сигнал таймера

 $u_a(t)$ — сигнал угла

 $\mathbf{u}_{\mathbf{r}}(\mathbf{t})$ — сигнал активации

тормоза

 $\mathbf{u}_{s}(t)$ – управляющий сигнал регулятора

Поиск коэффициентов

Метод Цинглера-Никольса (с реакцией объекта на ступенчатое воздействие)

	\mathbf{k}_{π}	k _n	\mathbf{k}_{π}
П-регулятор	$\frac{T}{k\tau}$		
ПИ-регулятор	$0.9\frac{k}{\tau}$	$0.3 \frac{T}{k\tau^2}$	
ПИД-регулятор	$1,2\frac{T}{k\tau}$	$0.6 \frac{T}{k\tau^2}$	$0,6\frac{T}{k}$

$$W(s) = \frac{k}{T_{s+1}}e^{-\tau s}$$

Графики Scilab

Выходной сигнал при начальных значениях

Kn = 97

Ku = 242

Kд = 9,7

Выходной сигнал при новых значениях

Kn = 120

Ku = 242

Кд = 5

Внутренний протокол МРК


```
# список команд применимых к шасси
# получаем текущую скорость
                       = 'http://iisu/orientation/speed'
cmd_get_speed
# получаем текущее положение
cmd get orientation = 'http://iisu/orientation/get'
# остановка робота с включением тормозов
cmd_engine_stop = 'http://iisu/engine/stop'
#установить направление и скорость
cmd_move_set_acc_steer = 'http://iisu/move/set_acc_steer'
#параметры, передаваемые в команде
prm_move_set_acc_steer = "req_acc_pos=%i&rgt_brk=%i&lgt_brk=%i&req_str_pos=%i"
#возвращает состояние
              = 'http://iisu/state'
cmd_get_state
#текущее значение желаемой скорости
cmd_get_accpos = 'http://iisu/engine/get_pos'
# Пример запроса, с использованием протокола
def get_acc_pos(self):
   while not self.end:
       try:
            = get json url to dict(cmd get accpos)
           if ['ok']:
               self.Acceleration.pos1 = ['currentAccelPos']
           else:
               self.Acceleration.pos1 = None
       except KeyError:
           self.Acceleration.pos1 = None
       sleep(0.3)
```


Заключение

Разработана автоматизированную система управления движением колесного робота, основанная на наборе регуляторов, обеспечивающих перемещение МРК в заданном режиме.

Были выполнены задачи:

- 1. Идентифицированы задачи, которые должны решать регуляторы
- 2. Идентифицированы режимы, которые будут решать задачу передвижения МРК при помощи тягового двигателя и тормозных усилий колес
 - 3. Выбраны типы регуляторов, которые обеспечат работу режимов
 - 4. Выбран метод поиска оптимальных коэффициентов регуляторов
- 5. Описаны режимы регулирования, объекты управления, протекание отдельного цикла регулирования
- 6. Экспериментально установлены величины, необходимые для разработки регулятора и рассчитать первичные коэффициенты регуляторов
 - 7. Оптимизированы коэффициенты регуляторов
 - 8. Реализованы режимы регулирования движения МРК

СПАСИБО ЗА ВНИМАНИЕ!

Брюханов Валентин Павлович

тел.: +79026389706

e-mail: medvezjut83@gmail.com