Maximum Likelihood Estimation

Charles H. Franklin franklin@polisci.wisc.edu

University of Wisconsin - Madison

Lecture 7
Binary Response Models

Last Modified: June 13, 2005

Maximum Likelihood Estimation – p.1/26

The Binary Response DGP

- We have already encountered a distribution for outcomes which take on only two values, the Bernoulli distribution:

$$y_i \sim \begin{array}{c|c} y & p(y) \\ \hline 1 & \pi \\ 0 & 1 - \pi \end{array}$$

- where the event occurs with probability π and fails to occur with probability 1π .
- **●** All our binary outcome models rest on this Bernoulli distribution of y_i .

Binary Response Models

- There are many naturally binary social outcomes:
- A citizen votes or does not.
- A cabinet forms or does not.
- A child is born or not.
- A refrigerator is bought or not.

Maximum Likelihood Estimation - p.2/26

Limitations of the Bernoulli

- This could serve as a model of dichotomous choice if each event had the same chance of occurring.
- But it is not so good a model for widely variable outcomes.
- For example, it is silly to represent all voters as having the same probability of supporting Labour.
- Without some modification, the Bernoulli distribution is far too restrictive to be interesting.

Reparameterizing the Bernoulli

- We need to let π vary across cases. That is we need $\pi \to \pi_i$.
- This keeps the Bernoulli form but allows us to capture variation across cases in the probability.
- It also represents outcomes as inherently stochastic, not random only due to "error" of some kind. This is a substantively better way of thinking about behavior.

Maximum Likelihood Estimation - p.5/26

$\pi_i = \mathbf{what?}$

- Reparameterizing π_i raises the same identification issues as we saw with μ_i and σ_i^2 in regression.
- We need to write $\pi_i = f(x_i, \beta)$ in order to both reduce the number of parameters and to add substantive explanatory variables.
- But π_i represents a *probability* so the reparameterization must be a probability and so must remain bounded by (0,1).
- So $\pi_i = x_i \beta$ is a bad idea since this function is unbounded and so might well fall outside the (0,1) interval.

Maximum Likelihood Estimation - p.6/26

Functions for π_i

- Since π_i is a probability we can take *any* probability distribution function as the basis for reparameterizing π_i .
- So long as $f(x_i, \beta)$ is a probability distribution function, it will necessarily obey the restriction that π_i remain in the (0, 1) interval.
- **Proof.** Because there are *many* probability distributions, this gives us many to choose from, so long as we can let $x_i\beta$ serve as the location on the distribution function.

What could be used

- Aside from taking a continuous, unbounded $x_i\beta$ as an argument, and returning a probability, there is really very little constraint on this function.
- While much of the literature focuses on modest (sometimes minute!) differences among symmetric distributions, somewhat less attention has been paid to alternative asymmetric forms.
- Long mentions the log-log model.
- Nagler's Scobit model offers a nice innovation by allowing the degree of asymmetry to depend on a parameter which is estimated as part of the model. (Now available in Stata.)

Future Alternatives

- A generalization of this approach, would be to adopt a probability distribution in which a shape parameter determines the form of the distribution and use the data to estimate where marginal effects are maximized.
- A gamma distribution might be an interesting application here, since gamma can be symmetric or not, and converges to a normal under certain conditions.
- The beta distribution also offers some interesting possibilities, since it can be symmetric, skew right or left, near uniform, and even bimodal.
- Despite these potential developments, by far the most popular specifications are the normal and logistic distributions.

Maximum Likelihood Estimation - p.9/26

The Probit Model

- The probability density function or pdf is the function that plots the familiar "bell shaped curve" of introductory statistics texts.
- For the normal, the pdf is

$$\phi(\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right)$$

This is the function we've used in constructing the joint density for the normal regression model.

What the CDFs Look Like

CDFs for Binary Response Models

XB Maximum Likelihood Estimation - p.10/26

The Probit Model

- **●** The *cumulative distribution function* or cdf, is the integral of the pdf, from $-\infty$ to a point of interest.
- This gives the probability that a realization from this distribution will be less than the point of interest. For the normal this is
- $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right) dx$

which gives the probability of a value less than (or equal to) x.

The Probit Model

- In modelling binary outcomes, we parameterize the probability of success, π_i as the cdf of a chosen distribution.
- So for the normal we have

$$\pi = \Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right) dx$$

• This integral does not have a closed form, so we usually just abbreviate it as $\Phi(x)$ and rely on numerical approximation. (See Johnson, Kotz and Balakrishnan, *Continuous Univariate Distributions*, Vol I, 2nd edition, pp. 113-121.)

Maximum Likelihood Estimation - p.13/26

The Logit Model

The (standardized) logistic distribution has pdf of

$$\lambda(x) = \frac{e^x}{[1 + e^x]^2}$$

In this case, the cdf is a very convenient closed form:

$$\Lambda(x) = \int_{-\infty}^{x} \frac{e^x}{[1 + e^x]^2} dx$$
$$= \frac{e^x}{1 + e^x}$$
$$= \frac{1}{1 + e^{-x}}$$

(Derive the last step from the previous one.)

Identification in Probit Model

- The normal distribution has location parameter μ and scale parameter σ^2 . There is not enough information in a binary y to identify these two parameters.
- We can solve this problem by setting $\mu = 0$ and $\sigma^2 = 1$. This has the effect of rescaling the β as β/σ . However, this does not change the predicted probabilities, so this is innocuous.
- The revised CDF is now:

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x)^{2}\right) dx$$

Maximum Likelihood Estimation - p.14/26

Binary Response Likelihood

- Let $F(x_i\beta)$ stand for either the cumulative normal or logistic.(Actually $F(x_i\beta)$ could be *any* proper cdf defined for $x_i\beta$.)
- Then the likelihood for these dichotomous choice models is:

$$L = \prod_{i=1}^{N} \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$
$$= \prod_{i=1}^{N} [F(x_i \beta)]^{y_i} [1 - F(x_i \beta)]^{1 - y_i}$$

Take the log of this to get the log likelihood:

$$lnL = \sum_{i=1}^{N} y_i ln F(x_i \beta) + (1 - y_i) ln (1 - F(x_i \beta))$$

Binary Response Likelihood

- Now substitute either the probit of the logit cdf for $F(x_i\beta)$.
- The probit model becomes

$$lnL = \sum_{i=1}^{N} y_i ln \Phi(x_i \beta) + (1 - y_i) ln(1 - \Phi(x_i \beta))$$

The logit model is

$$\ln L = \sum_{i=1}^{N} y_{i} \ln \Lambda(x_{i}\beta) + (1 - y_{i}) \ln(1 - \Lambda(x_{i}\beta))$$

$$= \sum_{i=1}^{N} y_{i} \ln \left(\frac{1}{1 + e^{-x_{i}\beta}}\right) + (1 - y_{i}) \ln \left(1 - \frac{1}{1 + e^{-x_{i}\beta}}\right)$$

Maximum Likelihood Estimation - p.17/26

Binary Response Estimation

9 Both of these functions are nonlinear, so no closed form solutions for β exist, but numerical maximization is easy since both are globally concave.

Maximum Likelihood Estimation - p.18/26

Cauchy model

• Another symmetric distribution is the Cauchy. This distribution has pdf (here $\pi \approx 3.14159$):

$$f(x) = \frac{1}{\pi(1+x^2)}$$

and cdf

$$F(x) = \pi^{-1}\arctan(x) + \frac{1}{2}$$

- This distribution is equivalent to a t-distribution with one degree of freedom. Compared to the normal, the Cauchy has very heavy tails.
- The Cauchy is also unusual because it has no moments. The expected value of the Cauchy is ∞ , so other moments do not exist. However, the integral is perfectly well defined.

Complementary Log-Log Model

- Two asymmetric distributions are the complementary log-log and the log-log models.
- The c-log-log CDF is $\pi_i = 1 \exp(-\exp(x_i\beta))$
- So the log likelihood is

$$\ln L = \sum_{i=1}^{N} y_i \ln(1 - \exp(-\exp(x_i \beta)))$$
$$+ (1 - y_i) \ln(-\exp(-\exp(x_i \beta)))$$

Maximum Likelihood Estimation - p.19/26

Log-Log Model

- The CDF of the log-log model is $\exp(-\exp(-x_i\beta))$
- and log-likelihood is

$$lnL = \sum_{i=1}^{N} y_i \ln(\exp(-\exp(-x_i\beta)))
+ (1 - y_i) \ln(1 - \exp(-\exp(-x_i\beta)))$$

Maximum Likelihood Estimation - p.21/26

What the CDFs Look Like

CDFs for Binary Response Models

Maximum Likelihood Estimation - p.22/26

How'd he do that?

```
## Create example plots of CDF for binary model
x < -seq(-5,5,.01)
x2<-1.7*x
               # Adjust for different Logit scale
Px < -pnorm(x)
Lx<-1/(1+exp(-x2))
FCLL < -1-exp(-exp(x))
FLL < -exp(-exp(-x))
FC < -pi^(-1)*atan(x) + .5
postscript("c:/txt/sp/sp02/lecs/lec08/CDF1.eps",onefile=FALSE, hor=FALSE, wid=6,he=6)
plot(Px \sim x, type="l", lty=1, col=1, lwd=3,
    main="CDFs for Binary Response Models",
    xlab="XB",
    ylab="Prob(Y=1)")
lines(Lx \sim x, type="1", lty=2, col=2, lwd=2)
lines(FCLL~x,type="l",lty=3,col=3,lwd=2)
lines(FLL~x,type="l", lty=4,col=4,lwd=2)
lines(FC~x,type="1",lty=5,col=5,lwd=2)
leg.txt=c("Probit","Logit","CLogLog","LogLog","Cauchy")
legend(-5,.85,leg.txt,lty=c(1,2,3,4,5),
    col=c(1,2,3,4,5),lwd=c(3,2,2,2,2))
 dev.off()
```

Probit vs. Logit

- Very little important difference between these two parameterizations.
- The simplicity of the logit model provides some modest edge.
- When extensions such as heteroskedasticity are considered, the normal cdf of the probit becomes more tractable than the logit.
- But when extended to multiple outcomes the logit is more tractable than probit!

Example: AFLCIO PAC Contributions

- 1992 contributions to 347 incumbent House members.
- give is 1 if a contribution was made, 0 otherwise.
- Independent variables are years in office (senior), vote won in 1990 (vote90) and ideological distance of member from the AFLCIO (distance).
- I fit both a probit and a logit model.

Comparative Results

	Probit			Logit		
Variable	Coefficient	SE	Z	Coefficient	SE	Z
Constant	2.64868	0.47895	5.530	4.64165	0.84098	5.519
Seniority	-0.03138	0.01083	-2.898	-0.05306	0.01839	-2.886
Vote 1990	-0.01713	0.00631	-2.715	-0.02997	0.01078	-2.779
Distance	-1.63813	0.18312	-8.945	-3.00226	0.37883	-7.925

- Comparison of Probit and Logit Estimates for AFLCIO PAC contributions model.
- While the coefficients differ in size due to different scalings of the normal and logistic distributions, the substantive conclusions (and the predicted probabilities) are very similar.

Maximum Likelihood Estimation - p.26/26