Ejercicio 1: Error de redondeo.

Alexis Palomares Olegario.

19 de agosto del 2021.

Forma normalizada de los números de máquina:

Parte fraccionaria = dígitos significativos $\pm \ 0.d_1d_2d_3...d_k \ge B^e$

- d_1 : Dígitos con valores 1 a (B-1).
- d_1 : Dígitos con valores 0 a (B-1).
- B : Base numérica (2, 16, 10).
- k : Número de dígitos significativos (precisión).
- e : Exponente entero.

Números de Máquina por tamaño de palabra.

Núm. de dígitos	Signo	Parte característica	Mantisa	Rango del exponente	Exponente (e)
32	1	7	24	- (2 ⁶ - 1) a 2 ⁶	c - (2 ⁶ - 1)
64	1	11	52	- (2 ¹⁰ - 1) a 2 ¹⁰	c - (2 ¹⁰ - 1)
N = p + q + 1	1	p	q	$-(2^{p-1}-1)$ a 2^{p-1}	$c - (2^{p-1} - 1)$

1. Sea una computadora con: B = 2, 3 bits para el exponente (p) y 4 bits para la mantisa (q).

• Crea el conjunto de números que puede representar.

De acuerdo a la fórmula $-(2^{p-1}-1)$ a 2^{p-1} tenemos que el rango del exponente es $-(2^{3-1}-1)=-3$ a $2^{3-1}=4$.

$\pm 0.1000_2 \times 2^e$	$\pm 0.1001_2 \mathbf{x} \ 2^e$	$\pm 0.1010_2 \ \mathbf{x} \ 2^e$	$\pm 0.1100_2 \ \mathbf{x} \ 2^e$	$\pm 0.1101_2 \mathbf{x} \ 2^e$	$\pm 0.1110_2 \ \mathbf{x} \ 2^e$	$\pm 0.1111_2 \times 2^e$
1.1000×2^{-3}	1.1001×2^{-3}	0.1010×2^{-3}	1.1100×2^{-3}	1.1101×2^{-3}	0.1110×2^{-3}	1.1111×2^{-3}
1.1000×2^{-2}	1.1001×2^{-3}	1.1010×2^{-3}	1.1100×2^{-3}	1.1101×2^{-3}	0.1110×2^{-3}	1.1111×2^{-3}
1.1000×2^{-1}	1.1001×2^{-1}	1.1010×2^{-1}	1.1100×2^{-1}	1.1101×2^{-1}	1.1110×2^{-1}	1.1111×2^{-1}
1.1000×2^{0}	1.1001×2^0	1.1010×2^0	1.1100×2^0	1.1101×2^0	0.1110×2^0	1.1111×2^{0}
$1.1000 \ge 2^1$	$1.1001 \ \mathrm{x} \ 2^{1}$	$0.1010 \ge 2^1$	$0.1100 \ge 2^1$	1.1101×2^{1}	1.1110×2^{1}	$1.1111 \times 2^1 =$
1.1000×2^2	1.1001×2^2	1.1010×2^2	1.1100×2^2	1.1101×2^2	1.1110×2^2	1.1111×2^2
$1.1000 \ge 2^3$	1.1001×2^3	1.1010×2^3	1.1100×2^3	0.1101×2^3	1.1110×2^3	1.1111×2^3
1.1000×2^4	1.1001×2^4	1.1010×2^4	1.1100×2^4	1.1101×2^4	1.1110×2^4	1.1111×2^4

• Indica los números más pequeño y más grande que se puede representar.

El número más pequeño que se puede representar es: 1.1000 x $2^{-3} = 0.1875$ de acuerdo a la tabla.

El número más grande que se puede representar es: $1.1111 \times 2^4 = 1.9375$ de acuerdo a la tabla.

- 2. Sea una computadora con un tamaño de palabra de 12 bits y $B=2;\,1$ bit del signo, 4 del exponente y 7 bits de la matisa.
- Determina el rango del exponente.

De acuerdo a la fórmula $-(2^{p-1}-1)$ a 2^{p-1} tenemos que el rango del exponente es $-(2^{4-1}-1)=-7$ a $2^{4-1}=8$.

• Indica los números más grande y más pequeño que se pueden representar.

Como el primer bit de la parte fraccionaria se mantiene en 1, entonces tenemos que que el número más pequeño es: $(1+0.1000000) \times 2^{-7} = (\frac{3}{2})(\frac{1}{128}) = \frac{3}{256}$ Por otra parte el número más grande es : $(1+0.11111111 \times 2^8) = (1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}) \times (256)$ = $(\frac{255}{128})(256) = 510$

3. Determinar el número que representa el siguiente número máquina, además de los números anterior y posterior que pueden representarse.

$$(-1)^s 2^e (1+f)$$

$$e = c - (2^{p-1} - 1)$$

S	Exponente								Mantisa (24 bits)														
0	1	0	0	0	0	1	0	1	0	1	1	0	0	0	0	0	1	0	0			0	0

- p = 7 y q = 24, s = 1
- Exponente: $c = (1000010)_2 = (66)_{10}$, entonces e = 66 63 = 3
- El número decimal que representa es : $(-1)^0 2^3 (1 + 0.6884765625) = (8)(1 + 0.6884765625) = 13.5078125$

Restando el último bit tenemos:

1000	tostando el altimo sit tenemos.																						
S	Exponente							Mantisa (24 bits)															
0	1	0	0	0	0	1	0	1	0	1	1	0	0	0	0	0	0	1	1			1	1

•
$$p = 7 y q = 24, s = 1$$

- Exponente: $c = (1000010)_2 = (66)_{10}$, entonces e = 66 63 = 3
- $\begin{array}{l} \bullet \ \, \text{Mantisa o parte fraccionaria}: \ \, \mathbf{1011000000111111111111111} = \frac{1}{2} + \frac{1}{8} + \frac{1}{16} + \frac{1}{2048} + \frac{1}{4096} + \frac{1}{8192} \\ + \frac{1}{16384} + \frac{1}{32768} + \frac{1}{65536} + \frac{1}{131072} + \frac{1}{262144} + \frac{1}{524288} + \frac{1}{1048576} + \frac{1}{2097152} + \frac{1}{4194304} + \frac{1}{8388608} + \frac{1}{16777216} = (0.6884765029)_{10} \\ \end{array}$
- El número decimal que representa es : $(-1)^0 2^3 (1 + 0.6884765029) = (8)(1 + 0.6884765029) = 13.50781202$

Sumando el último bit tenemos:

S	Exponente							Mantisa (24 bits)															
0	1	0	0	0	0	1	0	1	0	1	1	0	0	0	0	0	1	0	0			0	1

- p = 7 y q = 24, s = 1
- Exponente: $c = (1000010)_2 = (66)_{10}$, entonces e = 66 63 = 3
- El número decimal que representa es : $(-1)^0 2^3 (1 + 0.6884766221) = (8)(1 + 0.6884766221) = 13.50781298$

El número máquina es: 13.5078125

El número anterior es: 13.50781202

El número posterior es: 13.50781298