Example 18

(2005 AIME II Problem 14) In $\triangle ABC$, AB = 13, BC = 15, and CA = 14. Point D is on BC with CD = 6. Point E is on BC such that $\angle BAE = \angle CAD$.

Given that BE = p/q, where p and q are relatively prime positive integers, find q.

Solution: 463.

Draw BF//AC to meet the extension of AE at G and AD at F. We know that AC//BF. So $\triangle ADC \sim \triangle FDB$ (figure 1). $\frac{AC}{BF} = \frac{DC}{BD} \Rightarrow$

$$\frac{14}{BF} = \frac{6}{9} \quad \Rightarrow \quad BF = \frac{14 \times 9}{6} = 21$$

We know that $\angle BAG = \angle BFA = \alpha$ and $\angle ABG = \angle ABF$ (figures 2 and 3). So $\triangle ABG \sim \triangle ABF$. $\frac{AB}{BF} = \frac{BG}{AB} \Rightarrow \frac{13}{21} = \frac{BG}{13} \Rightarrow BG = \frac{169}{21}$ We know that AC//BF. So $\triangle BGE \sim \triangle CAE$ (figure 4). $\frac{BG}{AC} = \frac{BE}{CE}$ $\Rightarrow \frac{169}{21} = \frac{x}{15-x}$ $\Rightarrow x = \frac{2535}{463}$.

$$\frac{BG}{AC} = \frac{BE}{CE}$$

$$\Rightarrow \frac{\frac{169}{21}}{14} = \frac{x}{15-x}$$

$$\Rightarrow x = \frac{2535}{463}.$$

The answer is 463.

Figures 2 and 3

Figure 4