APM462: Nonlinear Optimization

Tianyu Du

September 18, 2019

${\bf Contents}$

1	\mathbf{Pre}	Preliminaries		
	1.1	Mean Value Theorems and Taylor Approximations	2	
	1.2	Implicit Function Theorem		
2	Cor	Convexity		
	2.1	Terminologies		
	2.2	Basic Properties of Convex Functions	9	
	2.3	Characteristics of C^1 Convex Functions	4	
	2.4	Minimum and Maximum of Convex Functions	ţ	
3	Bas	sics of Unconstrained Optimization	6	

1 Preliminaries

1.1 Mean Value Theorems and Taylor Approximations.

Definition 1.1. Let $f: S \subset \mathbb{R}^n \to \mathbb{R}$, the **gradient** of f at $x \in S$, if exists, is a vector $\nabla f(x) \in \mathbb{R}^n$ characterized by the property

$$\lim_{v \to 0} \frac{f(x+v) - f(x) - \nabla f(x) \cdot v}{||v||} = 0 \tag{1.1}$$

Theorem 1.1 (The First Order of Mean Value Theorem). Let f be a C^1 real-valued function defined on \mathbb{R}^n , then for any $x, v \in \mathbb{R}^n$, there exists some $\theta \in (0, 1)$ such that

$$f(x+v) = f(x) + \nabla f(x+\theta v) \cdot v \tag{1.2}$$

Proof. Let $x, v \in \mathbb{R}^n$, define $g(t) : \mathbb{R} \to \mathbb{R} := f(x+tv)$, which is C^1 . By the mean value theorem on $\mathbb{R}^{\mathbb{R}}$, there exists $\theta \in (0,1)$ such that $g(0+1) = g(0) + g'(\theta)(1-0)$, that is, $f(x+v) = f(x) + g'(\theta)$. Note that $g'(\theta) = \nabla(x + \theta v) \cdot v$, what desired is immediate.

Proposition 1.1 (The First Order Taylor Approximation). Let $f: \mathbb{R}^n \to \mathbb{R}$ be a C^1 function, then

$$f(x+v) = f(x) + \nabla f(x) \cdot v + o(||v||)$$
(1.3)

that is

$$\lim_{||v|| \to 0} \frac{f(x+v) - f(x) - \nabla f(x) \cdot v}{||v||} = 0 \tag{1.4}$$

Proof. By the mean value theorem, $\exists \theta \in (0,1)$ such that $f(x+v)-f(x)=\nabla f(x+\theta v)\cdot v$. The limit becomes $\lim_{||v||\to 0} \frac{[\nabla f(x+\theta v)-\nabla f(x)]\cdot v}{||v||} = \lim_{||v||\to 0; x+\theta v\to x} \frac{[\nabla f(x+\theta v)-\nabla f(x)]\cdot v}{||v||}$. Since $f\in C^1$, $\lim_{x+\theta v\to x} \nabla f(x+\theta v) = \nabla f(x)$. And $\frac{v}{||v||}$ is a unit vector, and every component of it is bounded, as the result, the limit of inner product vanishes instead of explodes.

Theorem 1.2 (The Second Order Mean Value Theorem). Let $f: \mathbb{R}^n \to \mathbb{R}$ be a C^2 function, then for any $x, v \in \mathbb{R}^n$, there exists $\theta \in (0,1)$ satisfying

$$f(x+v) = f(x) + \nabla f(x) \cdot v + \frac{1}{2}v'H_f(x+\theta v) v$$
(1.5)

where H_f is the Hessian matrix of f, may also be written as $\nabla^2 f$.

Proposition 1.2 (The Second Order Taylor Approximation). Let $f: \mathbb{R}^n \to \mathbb{R}$ be a C^2 function, and $x, v \in \mathbb{R}^n$, then

$$f(x+v) = f(x) + \nabla f(x) \cdot v + \frac{1}{2}v'H_f(x) \ v + o(||v||^2)$$
(1.6)

that is

$$\lim_{\|v\|\to 0} \frac{f(x+v) - f(x) - \nabla f(x) \cdot v - \frac{1}{2}v'H_f(x) \ v}{\|v\|^2} = 0 \tag{1.7}$$

Proof. By the second mean value theorem, there exists $\theta \in (0,1)$ such that the limit is equivalent to

$$\lim_{||v|| \to 0} \frac{1}{2} \left(\frac{v}{||v||} \right)' \left[H_f(x + \theta v) - H_f(x) \right] \frac{v}{||v||}$$
(1.8)

Since $f \in C^2$, the limit of $[H_f(x + \theta v) - H_f(x)]$ is in fact $\mathbf{0}_{n \times n}$. And every component of unit vector $\frac{v}{||v||}$ is bounded, the quadratic form converges to zero as an immediate result.

It is often noted that the gradient at a particular $x_0 \in dom(f) \subset \mathbb{R}^n$ gives the direction f increases most rapidly. Let $x_0 \in dom(f)$, and v be a <u>unit vector</u> representing a feasible direction of change. That is, there exists $\delta > 0$ such that $x_0 + tv \in dom(f) \ \forall t \in [0, \delta)$. Then the rate of change of f along feasible direction v can be written as

$$\frac{d}{dt}\Big|_{t=0} f(x_0 + tv) = \nabla f(x_0) \cdot v = ||\nabla f(x_0)|| \ ||v|| \cos(\theta)$$
(1.9)

where $\theta = \angle(v, \nabla f(x_0))$. And the derivative is maximized when $\theta = 0$, that is, when v and ∇f point the same direction.

1.2 Implicit Function Theorem

Theorem 1.3 (Implicit Function Theorem). Let $f: \mathbb{R}^{n+1} \to \mathbb{R}$ be a C^1 function, let $(a,b) \in \mathbb{R}^n \times \mathbb{R}$ such that f(a,b) = 0. If $\nabla f(a,b) \neq 0$, then $\{(x,y) \in \mathbb{R}^n \times \mathbb{R} : f(x,y) = 0\}$ is locally a graph of a function $g: \mathbb{R}^n \to \mathbb{R}$.

Remark 1.1. $\nabla f(x_0) \perp$ level set of f near x_0 .

2 Convexity

2.1 Terminologies

Definition 2.1. Set $\Omega \subset \mathbb{R}^n$ is **convex** if and only if

$$\forall x_1, x_2 \in \Omega, \ \lambda \in [0, 1], \ \lambda x_1 + (1 - \lambda)x_2 \in \Omega \tag{2.1}$$

Definition 2.2. A function $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$ is **convex** if and only if Ω is convex, and

$$\forall x_1, x_2 \in \Omega, \ \lambda \in [0, 1], \ f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2) \tag{2.2}$$

Definition 2.3. A function $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$ is **strictly convex** if and only if Ω is convex and

$$\forall x_1, x_2 \in \Omega, \ \lambda \in (0, 1), \ f(\lambda x_1 + (1 - \lambda)x_2) < \lambda f(x_1) + (1 - \lambda)f(x_2)$$
(2.3)

2.2 Basic Properties of Convex Functions

Definition 2.4. A function $f: \Omega \to \mathbb{R}$ is **concave** if and only if -f is **convex**.

Proposition 2.1. (i) If f_1, f_2 are convex on Ω , so is $f_1 + f_2$;

- (ii) If f is convex on Ω , then for any a > 0, af is also convex on Ω ;
- (iii) Any sub-level/lower contour set of a convex function f

$$SL(c) := \{ x \in \mathbb{R}^n : f(x) \le c \}$$

$$(2.4)$$

is convex.

Proof of (iii). Let $c \in \mathbb{R}$, and $x_1, x_2 \in SL(c)$. Let $s \in [0, 1]$. Since $x_1, x_2 \in SL(c)$, and $f(\cdot)$ is convex, $f(sx_1 + (1-s)x_2) \le sf(x_1) + (1-s)f(x_2) \le sc + (1-s)c = c$. Which implies $sx_1 + (1-s)x_2 \in SL(c)$. ■

Example 2.1. $f(x): \mathbb{R}^n \to \mathbb{R} := ||x||$ is convex.

Proof. Note that for any $u, v \in \mathbb{R}^n$, by triangle inequality, $||u - (-v)|| \le ||u - 0|| + ||0 - (-v)|| = ||u|| + ||v||$. Consequently, let $u, v \in \mathbb{R}^n$ and $s \in [0, 1]$, then $||su + (1 - s)v|| \le ||su|| + ||(1 - s)v|| = s||u|| + (1 - s)||v||$. Therefore, $||\cdot||$ is convex. ■

2.3 Characteristics of C^1 Convex Functions

Theorem 2.1 (C^1 criterions for convexity). Let $f \in C^1$, then f is convex on a convex set Ω if and only if

$$\forall x, y \in \Omega, \ f(y) \ge f(x) + \nabla f(x) \cdot (y - x) \tag{2.5}$$

that is, the linear approximation is never an overestimation of value of f.

Proof. (\Longrightarrow) Suppose f is convex on a convex set Ω . Then $f(sy+(1-s)x) \leq sf(y)+(1-s)f(x)$ for every $x,y \in \Omega$ and $s \in [0,1]$, which implies, for every $s \in (0,1]$:

$$\frac{f(sy + (1-s)x) - f(x)}{s} \le f(y) - f(x) \tag{2.6}$$

By taking the limit of $s \to 0$,

$$\lim_{s \to 0} \frac{f(x + s(y - x)) - f(x)}{s} \le f(y) - f(x) \tag{2.7}$$

$$\implies \frac{d}{ds}\Big|_{s=0} f(x + s(y - x)) \le f(y) - f(x) \tag{2.8}$$

$$\implies \nabla f(x) \cdot (y - x) \le f(y) - f(x)$$
 (2.9)

 (\Leftarrow) Let $x_0, x_1 \in \Omega$, let $s \in [0,1]$. Define $x^* := sx_0 + (1-s)x_1$, then

$$f(x_0) > f(x^*) + \nabla f(x^*) \cdot (x_0 - x^*) \tag{2.10}$$

$$\implies f(x_0) \ge f(x^*) + \nabla f(x^*) \cdot [(1-s)(x_0 - x_1)] \tag{2.11}$$

Similarly,

$$f(x_1) \ge f(x^*) + \nabla f(x^*) \cdot (x_1 - x^*) \tag{2.12}$$

$$\implies f(x_1) \ge f(x^*) + \nabla f(x^*) \cdot [s(x_1 - x_0)] \tag{2.13}$$

Therefore, $sf(x_0) + (1-s)f(x_1) \ge f(x^*)$.

Theorem 2.2 (C^2 criterion for convexity). $f \in C^2$ is a convex function on a convex set $\Omega \subset \mathbb{R}^n$ if and only if $\nabla^2 f(x) \geq 0$ for all $x \in \Omega$.

Remark 2.1. When f is defined on \mathbb{R} , the C^2 criterion becomes $f''(x) \geq 0$.

Proof. (\iff) Suppose $\nabla^2 f(x) \geq 0$ for every $x \in \Omega$, let $x, y \in \Omega$. By the second order MVT,

$$f(y) = f(x) + \nabla f(x) \cdot (y - x) + \frac{1}{2}(y - x)^T \nabla^2 f(x + s(y - x))(y - x) \text{ for some } s \in [0, 1]$$
 (2.14)

$$\implies f(y) \ge f(x) + \nabla f(x) \cdot (y - x) \tag{2.15}$$

So f is convex by the C^1 criterion of convexity.

 (\Longrightarrow) Let $v\in\mathbb{R}^n$. Suppose, for contradiction, that for some $x\in\Omega,\,\nabla^2 f(x)\not\succeq 0$. If such $x\in\partial\Omega$, note that $v^T\nabla^2 f(\cdot)v$ is continuous because $f\in C^2$, then there exists $\varepsilon>0$ such that $\forall x'\in V_\varepsilon(x)\cap\Omega^{int},\,v^T\nabla^2 f(x')v<0$

0. Hence, one may assume with loss of generality that such $x \in \Omega^{int}$. Because $x \in \Omega^{int}$, exists $\varepsilon' > 0$, such that $V_{\varepsilon'}(x) \subseteq \Omega^{int}$. Define $\hat{v} := \frac{v}{\sqrt{\varepsilon'}}$, then for every $s \in [0,1]$, $\hat{v}^T \nabla^2 f(x+s\hat{v})\hat{v} < 0$. Let $y = x+\hat{v}$, by the mean value theorem, $f(y) = f(x) + \nabla f(x) \cdot (y-x) + \frac{1}{2}(y-x)^T \nabla^2 f(x+s(y-x))(y-x)$ for some $s \in [0,1]$. This implies $f(y) < f(x) + \nabla f(x) \cdot (y-x)$, which contradicts the C^1 criterion for convexity.

2.4 Minimum and Maximum of Convex Functions

Theorem 2.3. Let $\Omega \subset \mathbb{R}^n$ be a convex set, and $f:\Omega \to \mathbb{R}$ is a convex function. Let

$$\Gamma := \left\{ x \in \Omega : f(x) = \min_{x \in \Omega} f(x) \right\} \equiv \underset{x \in \Omega}{\operatorname{argmin}} f(x)$$
 (2.16)

If $\Gamma \neq \emptyset$, then

- (i) Γ is convex;
- (ii) any local minimum of f is the global minimum.

Proof (i). Let $x, y \in \Gamma$, $s \in [0, 1]$, then $sx + (1 - s)y \in \Omega$ because Ω is convex. Since f is convex, $f(sx + (1 - s)y) \le sf(x) + (1 - s)f(y) = \min_{x \in \Omega} f(x)$. The inequality must be equality since it would contradicts the fact that $x, y \in \Gamma$. Therefore, $sx + (1 - s)y \in \Gamma$.

Proof (ii). Let $x \in \Omega$ be a local minimizer for f, but assume, for contradiction, it is not a global minimizer. That is, there exists some other y such that f(y) < f(x). Since f is convex,

$$f(x+t(y-x)) = f((1-t)x+ty) \le (1-t)f(x) + tf(y) < f(x)$$
(2.17)

for every $t \in (0,1]$. Therefore, for every $\varepsilon > 0$, there exists $t^* \in (0,1]$ such that $x + t^*(y - x) \in V_{\varepsilon}(x)$ and $f(x + t^*(y - x)) < f(x)$, this contradicts the fact that x is a local minimum.

Theorem 2.4. Let $\Omega \subset \mathbb{R}^n$ be a convex set, and $f:\Omega \to \mathbb{R}$ is a convex function. Then

$$\max_{x \in \Omega} f(x) = \max_{x \in \partial\Omega} f(x) \tag{2.18}$$

Proof. As we assumed, Ω is closed, therefore $\partial\Omega\subseteq\Omega$. Hence, $\max_{x\in\Omega}f\geq\max_{x\in\partial\Omega}f$. Suppose $\max_{x\in\Omega}f>\max_{x\in\partial\Omega}f$, let $x^*:= \operatorname{argmax}_{x\in\Omega}f\in\Omega^{int}$. Then we can construct a straight line through x^* and intersects $\partial\Omega$ at two points, $y_1,y_2\in\partial\Omega$, such that $x^*=sy_1+(1-s)y_2$ for some $s\in(0,1)$. Further, since f is convex, $\max_{x\in\Omega}f(x)=f(x^*)\leq sf(y_1)+(1-s)f(y_2)\leq s\max_{\partial\Omega}f+(1-s)\max_{\partial\Omega}f=\max_{\partial\Omega}f$, which leads to a contradiction. Therefore, $\max_{x\in\Omega}f=\max_{x\in\partial\Omega}f$.

Proposition 2.2. For p, g ; 1 and $\frac{1}{p} + \frac{1}{q} = 1$,

$$|ab| \le \frac{1}{p}|a|^p + \frac{1}{g}|b|^g \tag{2.19}$$

Proof.

$$(-\log)|ab| = (-\log)|a| + (-\log)|b| \tag{2.20}$$

$$= \frac{1}{p}(-\log)|a|^p + \frac{1}{q}(-\log)|b|^p$$
 (2.21)

$$(\because (-\log) \text{ is convex}) \ge (-\log) \left(\frac{1}{p}|a|^p + \frac{1}{g}|b|^p\right)$$
(2.22)

And since $(-\log)$ is monotonically decreasing,

$$|ab| \le \frac{1}{p}|a|^p + \frac{1}{g}|b|^p \tag{2.23}$$

Corollary 2.1.

$$|ab| \le \frac{|a|^2 + |b|^2}{2} \tag{2.24}$$

3 Basics of Unconstrained Optimization

Theorem 3.1 (Extreme Value Theorem). Let $f: \mathbb{R}^n \to \mathbb{R}$ is continuous and $K \subset \mathbb{R}^n$ be a compact set, then the minimization problem $\min_{x \in K} f(x)$ has a solution.

Proposition 3.1. Let $K \subset \mathbb{R}^n$, then K is compact if and only if K is closed and bounded.

Proposition 3.2. Let $\{h_i\}$ and $\{g_i\}$ be sets of continuous functions on \mathbb{R}^n , the set of all points in \mathbb{R}^n that satisfy

$$\begin{cases} h_i(x) = 0 \ \forall i \\ g_j(x) \le 0 \ \forall j \end{cases}$$
 (3.1)

is a closed set. Moreover, if the qualified set is also bounded, then it is compact.

Example 3.1. The set $\{(x,y) \in \mathbb{R}^2 : x^2 - y^2 - 1 = 0\}$ is closed and bounded, therefore it is compact.

Corollary 3.1. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous function, if there exists $a \in \mathbb{R}^n$ such that $f(x) \geq f(a)$ for every $x \notin \mathcal{B}(r, a)$, then f attains its minimum in $\mathcal{B}(r, a)$.

Proposition 3.3. When $\Omega = \mathbb{R}^n$, the unconstrained minimization has the following properties

- (i) $\operatorname{argmax} f = \operatorname{argmin}(-f)$;
- (ii) $\max f = -\min(-f)$