

Our Motivation

- Models have been created to predict avalanche occurrence in other mountainous regions of the world, but as far as we know never been created for Tuckerman Ravine
- Difficult problem due to lack of consistent avalanche and snow data
- Access to phenomenal weather data from Mount Washington Observatory
- Common place of recreation for backcountry skiing, hobby that Lowell and I have in common

Related Work

- Studies with high-dimensionality terrain, snow, weather, and avalanche data boast impressive results
- Researchers at the University of Iran published a paper in 2019 attempting to predict snow avalanche hazard paths using SVM with spatial data, achieved ROC AUC value of 90
- Studies without spatio-temporal data shown to predict the occurrence of an avalanche with a decent effectiveness of ~70% accuracy
- SVM and logistic regression were most successful models without spatial data
- All the studies examined tried to predict avalanche occurrence rather than the avalanche danger level

What Causes an Avalanche?

Requires Four Ingredients

- 1. A Slab
- 2. Weak Layer
- 3. Trigger:
 - Unnatural pressure (snow sports)
 - Higher temperatures
 - New snowfall
 - Wind-drifted snow
- 4. Slopes Steep Enough to Slide:
 - o Between 25-45 degrees
 - Most frequently between 36-38 degrees

The Data

- Weather data from the Mount Washington Observatory, recorded at summit of Mt. Washington
 - o 1935-Present
 - o Consistent, well-formatted
- Snow and avalanche data from Mount Washington Avalanche Center, recorded at Hermit Lake (near base of Tuckerman Ravine)
 - o 2010-2011 season to 2019-2020 season
 - o Inconsistent, many NULL values
- Combined these datasets into dataframe by joining on date column
- Total of 1,258 samples in 72 dimensions
- Also scraped avalanche occurrence data, turned out to be very small dataset, shifted focus from predicting avalanche occurrence to next day danger level

Data Cleaning

- Dropped Feature If:
 - Abundance of NULL values in a feature
 - O Domain knowledge, knew would not contribute significantly
 - Very low significance via random forest feature importance
 - Feature did not include consistent/useful data
 - Feature displayed extreme linear correlation with another feature
- Created boxplots for all numerical features to see if there were outliers or misentered values, found none
- Looked at the unique values of categorical features for odd entries, found in wind direction feature, fixed by creating one-hot encoded wind features, dropped bad value samples
- Total of 1,253 samples in 25 dimensions post-cleaning

Features We Dropped

- **PGTM**
- AVY CHARACTER
- WET DANGER
- DRY DANGER
- WET LOOSE
- WET SLAB
- WIND SLAB
- STORM SLAB
- CORNICE_FALL
- PERSISTENT SLAB
- DEEP SLAB
- DRY LOOSE
- GLIDE AVALANCHE
- LONG SLIDING FALL
- **CURRENT TEMP**
- WSF5 ATTRIBUTES
- **SKY CONDITION**
- PRECIP TYPE/RATE

- **PSUN**
 - **PRCP**
- PRCP ATTRIBUTES
- SNOW ATTRIBUTES
 - **SNWD**
 - SNWD ATTRIBUTES
 - **TMAX**
- TMAX ATTRIBUTES
- **TMIN**
- TMIN ATTRIBUTES
- **TSUN**
- TSUN ATTRIBUTES
- WDF5 ATTRIBUTES
- WSF5

- FORM/SIZE
- HN24 CM
- HW in Tube (MM)
- H24W in Can (MM)
- **DENSITY**
- **HST**
- water equivalent trace
- snow fall trace
- snow depth 6am trace Sunshine sum
 - Skycover sum
- skycover avg sunrisetosunset
- year y
- month y

day y

Completed Data Cleaning

#	Column		Null Count	Dtype
0	avi danger		non-null	float6
1	avg wind	1253	non-null	float6
2	temp max swing	1253	non-null	float6
3	temp_max_swing_from_avg	1253	non-null	float6
4	year		non-null	float6
5	month	1253	non-null	float6
6	day	1253	non-null	float6
7	temp_max	1253	non-null	int64
8	temp_min	1253	non-null	int64
9	water_equivalent	1253	non-null	float6
10	snow_fall	1253	non-null	float6
11	snow_depth_6am	1253	non-null	float6
12	wind_speed_sum	1253	non-null	int64
13	sunshine_percent	1253	non-null	int64
14	west_wind_hours	1253	non-null	int64
15	northwest_wind_hours	1253	non-null	int64
16	prevailing_wind_E	1253	non-null	int64
17	prevailing_wind_N	1253	non-null	int64
18	prevailing_wind_NE	1253	non-null	int64
19	prevailing_wind_NW	1253	non-null	int64
20	prevailing_wind_S	1253	non-null	int64
21	prevailing_wind_SE		non-null	int64
22	prevailing_wind_SW	1253	non-null	int64
23	prevailing_wind_W	1253	non-null	int64
24	next_day_avi_danger	1253	non-null	float6

Avoid all avalanche terrain.

⁴ High

Very dangerous avalanche conditions. Travel in avalanche terrain not recommended.

- Combined danger levels 4 and 5 due to lack of data
 - Only 2 samples of danger level 5
- Created new features:
 - three_day_snowfall

Feature Engineering

- five_day_snowfall
- o next_day_avi_danger
 - Dropped last day of each season so next day remains within same season
- month
- o day
- o year
- Prevailing wind features created via one-hot encoding
- Previous days features for every feature (1-day ago, 2-days ago)
 - Dropped first 2 days of each season so previous days remain within same season

Data Exploration - Unbalanced Data

- Avalanche danger levels skewed towards lower danger level
- Created balanced class_weight dictionary using sklearn.utils.class_weight function, applied to models to balance classes
 - Danger Level 1 = 353 samples, 0.89 weighted
 - \circ Danger Level 2 = 469 samples, 0.64 weighted
 - o Danger Level 3 = 332 samples, 0.94 weighted
 - \circ Danger Levels 4 & 5 = 70 samples, 3.96 weighted
- Attempted use of oversampling (Random Over Sampling, SMOTE), showed no improvement over class_weight

PCA of Our Chosen Features

Data Modeling

- Prior knowledge motivated us to focus on logistic regression and SVM models
- Instead of a binary classification we are dealing with a multiple classification problem where random forest or decision trees may perform best
- This motivated us to try a plethora of models including
 - Random Forest
 - Decision Trees
 - Logistic Regression
 - o SVM
 - Extra Trees
 - Gradient Boosting
 - o KNN

The Top 20 Features

Final Results

Extra Trees:

Accuracies reported with cross validation

•	Logistic Regression:	Accuracy Mean $= 0.534938$	Standard Deviation = 0.033049
•	Decision Tree:	Accuracy Mean = 0.519625	Standard Deviation = 0.062619
•	Random Forest:	Accuracy Mean = 0.605686	Standard Deviation = 0.034371
•	SVM:	Accuracy Mean = 0.584986	Standard Deviation = 0.037875
•	Gradient Boosting:	Accuracy Mean = 0.608887	Standard Deviation = 0.033662
•	K Nearest Neighbors:	Accuracy Mean = 0.570807	Standard Deviation = 0.028429

Standard Deviation = 0.039488

All models fit with Randomized Search CV for optimized hyperparameters

Accuracy Mean = 0.624188

Analysis of Results

Best Classifiers:

- Random Forest
- Gradient Boosting
- Extra Trees

Statistical Model Comparison

Ran the Wilcoxin Rank Sum test to get a non parametric comparison of each of the top models

- Random Forest vs. Gradient Boosting: p-value = 0.138860 no statistically significant difference
- Random Forest vs. Extra Trees: p-value = 0.448723 no statistically significant difference
- Gradient Boosting vs. Extra Trees: p-value = 0.043693 statistically significant difference

Due to multiple comparisons these p-values were corrected using the Benjamini/Hochberg procedure

Discussion and Conclusions

- More data necessary to create effective predictor
- Many approaches tried to fix unbalanced data, no improvements found, points to small dataset being limiting factor
- No features on snowpack layers, slope steepness, or avalanche occurrence
- This project could be redone in the future and will likely achieve better results with larger dataset and spatial data

