WS 2019/20, Obermayer/Kashef

Multilayer Perceptrons and Backpropagation Algorithm

Exercise T3.1: Cost functions

(tutorial)

- (a) What effect will the choice of error measure (particularly quadratic or linear) produce?
- (b) Outline the relation between the quadratic error function and the Gaussian conditional distribution for the labels.
- (c) Derive a suitable error function (*cross entropy*) for the following case: the output of a neural network is interpreted as the probability that the input belongs to the first of two classes.
- (d) Summarize the error measures and output layers for regression and classification.

Exercise T3.2: Parameter optimization

(tutorial)

- (a) Recap MLP architecture, outline gradient descent, and derive the back propagation algorithm (backprop) for a MLP with L layers.
- (b) Discuss the consequence of parameter space symmetries: (i) permutation of neuron indices within a layer, (ii) reversal of signs across consecutive layers.

Exercise H3.1: Binary Classification

(homework, 3 points)

For binary targets $y_T^{(\alpha)} \in \{0,1\}$ the network output $y(\underline{\mathbf{x}};\underline{\mathbf{w}}) \in (0,1)$ can be interpreted as a probability $P(y=1|\underline{\mathbf{x}};\underline{\mathbf{w}})$. A suitable error function for this problem is:

$$E^T = \frac{1}{p} \sum_{\alpha=1}^p e^{(\alpha)}$$

with

$$e^{(\alpha)} = -\left[y_T^{(\alpha)} \ln y(\underline{\mathbf{x}}^{(\alpha)}; \underline{\mathbf{w}}) + (1 - y_T^{(\alpha)}) \ln \left(1 - y(\underline{\mathbf{x}}^{(\alpha)}; \underline{\mathbf{w}})\right)\right].$$

(a) (1 point) Show that

$$\frac{\partial e^{(\alpha)}}{\partial y(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})} = \frac{y(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}}) - y_T^{(\alpha)}}{y(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}}) \left(1 - y(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})\right)}$$

(b) $_{(1 \, \mathrm{point})}$ Consider an MLP with one hidden layer. The nonlinear transfer function for the output neuron (i=1,v=2) is assumed to be

$$f(h_1^2) = \frac{1}{1 + \exp(-h_1^2)},$$

where h_1^2 is the total input of the output neuron. Show that its derivative can be expressed as

$$f'(h_1^2) = f(h_1^2)(1 - f(h_1^2)).$$

¹The total input of a neuron is sometimes referred to as a *logit*

(c) $_{(1 \text{ point})}$ Using the results from a) and b), show that the gradient of the error function $e^{(\alpha)}$ with respect to the weight w_{1j}^{21} between the the single output neuron (i=1,v=2) and neuron j of the hidden layer (j>0,v=1) is

$$\frac{\partial e^{(\alpha)}}{\partial w_{1j}^{21}} = \left(y(\underline{\mathbf{x}}^{(\alpha)}; \underline{\mathbf{w}}) - y_T^{(\alpha)} \right) f(h_j^1).$$

Exercise H3.2: MLP Regression

(homework, 7 points)

The task is to implement an MLP with one hidden layer and apply the backpropagation algorithm to learn its parameters for a regression task.

Training Data: The file RegressionData.txt from the ISIS platform contains a small training dataset $\{x^{(\alpha)},y_T^{(\alpha)}\}$, $\alpha=1,\ldots,p$ with p=10. The input values $\{x^{(\alpha)}\}$ in the first column are random numbers drawn from a uniform distribution over the interval [0,1]. The target values $\{y_T^{(\alpha)}\}$ were generated using the function $\sin\left(2\pi x^{(\alpha)}\right)$ and Gaussian noise with standard deviation $\sigma=0.25$ was added.

(A) Initialization:

- 1. Construct the MLP using a single hidden layer with 3 hidden nodes $(N_1 = 3)$ and an output layer with a single output neuron $(N_L = N_2 = 1)$.
- 2. Use the tanh transfer function for the hidden neurons and the linear transfer function (i.e. the identity) for the output neuron.
- 3. Set the weights and biases to random values from the interval [-0.5, 0.5].

(B) Iterative learning:

- 1. For each input value $x^{(\alpha)}$ of the training set, do:
 - (a) **Forward Propagation:** Calculate the activity of the hidden neurons and the output neuron.
 - (b) Compute the **output error** $e^{(\alpha)}$ using the quadratic error cost function.
 - (c) **Backpropagation:** Calculate the "local errors" δ_i^v for the output and the hidden layer for each training point.
 - (d) Calculate the gradient of the error function w.r.t. the first and second layer weights $w_{ij}^{1\,0}$ and $w_{ij}^{2\,1}$ respectively 2 .
- 2. Calculate the batch gradient in order to obtain the direction of the weight updates:

$$\Delta w_{ij}^{v'v} = -\frac{\partial E_{[\mathbf{w}]}^T}{\partial w_{ij}^{v'v}} = -\frac{1}{p} \sum_{\alpha=1}^p \frac{\partial e_{[\mathbf{w}]}^{(\alpha)}}{\partial w_{ij}^{v'v}}$$

where $j = 0, \dots, N_v$ and $i = 1, \dots, N_{v'}$

²The weights in the second layer are those connecting the hidden neurons with the output node. Since we only have one output neuron, w_{ij}^{21} is effectively w_{1j}^{21}

3. Weight update: Use gradient descent with a fixed learning rate $\eta=0.5$ to update the weights in each iteration according to

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \eta \Delta \mathbf{w}^{(t)}$$

(C) Stopping criterion:

Stop the iterative weight updates if the error E^T has converged, i.e. $|\Delta E^T|/E^T$ has fallen below some small value (e.g. 10^{-5}) or a maximum number of iterations $t_{max}=3000$ has been reached.

Devliverables:

- (a) $_{(2 \text{ point})}$ Plot the error E^T over the iterations.
- (b) (1 point) For the final network, plot the output of hidden units for all inputs.
- (c) (1 point) Plot the output values over the input space (i.e. the input-output function of the network) together with the training dataset.
- (d) (2 point) Plot (a)–(c) *twice* (i.e., for different initial conditions) next to each other and discuss: is there a difference, and if so, why?
- (e) (1 point) What might have been the motivation for using a quadratic error function here?

Total 10 points.