# Algorithms – Chapter 8 Sorting in Linear Time



Juinn-Dar Huang Professor jdhuang@mail.nctu.edu.tw

August 2007 Rev. '08, '11, '12, '15, '16, '18, '19, '20, '21

## **Counting Sort**

Assume that each of the n input elements is an integer in the range 0 to k for some integer k

COUNTING\_SORT(A,B,k)

- 1 for  $i \leftarrow 0$  to k
- 2 **do**  $c[i] \leftarrow 0$
- 3 for  $j \leftarrow 1$  to length[A]
- 4 **do**  $c[A[j]] \leftarrow c[A[j]] + 1$
- $5 \triangleright c[i]$  now contains the number of elements equal to i

- 6 for  $i \leftarrow 1$  to k
- 7 **do**  $c[i] \leftarrow c[i] + c[i-1]$
- $8 \triangleright c[i]$  now contains the number of elements less than or equal to i
- 9 **for**  $j \leftarrow length[A]$  **downto** 1
- 10 **do**  $B[c[A[j]]] \leftarrow A[j]$
- 11  $c[A[j]] \leftarrow c[A[j]] 1$

**Sort Array A into Array B** 

### **Example**



### **Time Complexity**

- Time complexity
  - -O(n+k)
  - special case: O(n) when k = O(n)
- Stable sort
  - numbers with the same value appear in the output array in the same order as they do in the input array
- Counting sort is stable
- Counting sort is not in-place

### **Radix Sort**

RADIX\_SORT(*A*,*d*)

1 for  $i \leftarrow 1$  to d

2 **do** use a stable sort to sort array A on digit i

| 329 | ·····ij]h· | 720 |  | 720 | ]]]]) | 329 |
|-----|------------|-----|--|-----|-------|-----|
| 457 |            | 355 |  | 329 |       | 355 |
| 657 |            | 436 |  | 436 |       | 436 |
| 839 |            | 457 |  | 839 |       | 457 |
| 436 |            | 657 |  | 355 |       | 657 |
| 720 |            | 329 |  | 457 |       | 720 |
| 355 |            | 839 |  | 657 |       | 839 |

# **Time Complexity (1/2)**

### Lemma

Given n d-digit numbers in which each digit can take on up to k possible values, RADIX-SORT correctly sorts these number in  $\Theta(d(n+k))$  time

When d is a constant and k = O(n), Radix Sort runs in linear time

Radix Sort is not in-place

## **Time Complexity (2/2)**

### Lemma

Given n b-bit numbers and any positive integer  $r \le b$ , RADIX- SORT correctly sorts these numbers in  $\Theta((b/r)(n+2^r))$  time.

**Proof**: Choose 
$$d = \lceil b/r \rceil$$

If 
$$b < \underline{ \lg n \rfloor} \rightarrow 2^r < n \rightarrow (n + 2^r) = \Theta(n)$$
  
choose  $r = b \rightarrow \Theta((b/r)(n+2^r)) = \Theta(n)$ 

If 
$$b \ge \lfloor \lg n \rfloor$$
  $\Rightarrow$  choose  $r = \lfloor \lg n \rfloor$   $\Rightarrow$   $\Theta((b/r)(n+2^r)) = \Theta(bn/\lg n)$ 

### **Bucket Sort**

### **Assumptions**

- 1. 0 ≤ input < 1
- 2. uniform distribution

### BUCKET\_SORT(*A*)

- 1  $n \leftarrow length[A]$
- 2 for  $i \leftarrow 1$  to n
- 3 **do** insert A[i] into list  $B[\lfloor nA[i] \rfloor]$
- 4 for  $i \leftarrow 0$  to n-1
- 5 **do** sort list B[i] with **insertion sort**
- 6 concatenate B[0], B[1], ..., B[n-1] together in order



### **Time Complexity (1/5)**

 Let n<sub>i</sub> be the random variable denoting the number of elements placed in bucket B[i]

$$T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)$$
 due to insertion sort

$$E[T(n)] = E\left[\Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)\right]$$

$$= \Theta(n) + \sum_{i=0}^{n-1} E[O(n_i^2)]$$

$$= \Theta(n) + \sum_{i=0}^{n-1} O(E[n_i^2])$$

## Time Complexity (2/5)

 Define indicator random variables  $X_{ij} = I \{ A[j] \text{ falls in bucket } i \},$ for i = 0, 1, ..., n-1 and j = 1, 2, ..., n

$$n_i = \sum_{j=1}^n X_{ij}$$

# **Time Complexity (3/5)**

$$E[n_{i}^{2}] = E\left[\left(\sum_{j=1}^{n} X_{ij}\right)^{2}\right]$$

$$= E\left[\sum_{j=1}^{n} \sum_{k=1}^{n} X_{ij} X_{ik}\right]$$

$$= E\left[\sum_{j=1}^{n} X_{ij}^{2} + \sum_{1 \le j \le n} \sum_{\substack{1 \le k \le n \\ k \ne j}} X_{ij} X_{ik}\right]$$

$$= \sum_{j=1}^{n} E[X_{ij}^{2}] + \sum_{1 \le j \le n} \sum_{1 \le k \le n} E[X_{ij} X_{ik}]$$

Copyright © 2007-2021

 $k \neq j$ 

### **Time Complexity (4/5)**

- Indicator random variable X<sub>ii</sub>
  - is 1 with probability 1/n
  - is 0 otherwise

$$E[X_{ij}^{2}] = 1 \cdot \frac{1}{n} + 0 \cdot \left(1 - \frac{1}{n}\right) = \frac{1}{n}$$

When  $k \neq j$ , the variables  $X_{ij}$  and  $X_{ik}$  are independent

$$E[X_{ij}X_{ik}] = E[X_{ij}]E[X_{ik}] = \frac{1}{n} \cdot \frac{1}{n} = \frac{1}{n^2}$$

## **Time Complexity (5/5)**

$$E[n_i^2] = \sum_{j=1}^n \frac{1}{n} + \sum_{1 \le j \le n} \sum_{\substack{1 \le k \le n \\ k \ne j}} \frac{1}{n^2}$$

$$= n \cdot \frac{1}{n} + n(n-1) \cdot \frac{1}{n^2}$$

$$= 1 + \frac{n-1}{n}$$

$$= 2 - \frac{1}{n}$$



$$E[T(n)] = \Theta(n) + \sum_{i=0}^{n-1} O[E(n_i^2)] = \Theta(n) + n \cdot O(2 - 1/n) = \Theta(n)$$

# **Summary**

| Comparison-based sorters Runtime |              |              |              |           |  |  |  |  |  |
|----------------------------------|--------------|--------------|--------------|-----------|--|--|--|--|--|
|                                  |              |              |              |           |  |  |  |  |  |
| Algorithm                        | Best case    | Average case | Worst case   | In-place? |  |  |  |  |  |
| Insertion                        | O(n)         | $O(n^2)$     | $O(n^2)$     | Yes       |  |  |  |  |  |
| Merge                            | $O(n \lg n)$ | $O(n \lg n)$ | $O(n \lg n)$ | No        |  |  |  |  |  |
| Heap                             | $O(n \lg n)$ | $O(n \lg n)$ | $O(n \lg n)$ | Yes       |  |  |  |  |  |
| Quicksort                        | $O(n \lg n)$ | $O(n \lg n)$ | $O(n^2)$     | Yes       |  |  |  |  |  |
| Non-comparison-based sorters     |              |              |              |           |  |  |  |  |  |
| Counting                         | O(n+k)       | O(n+k)       | O(n+k)       | No        |  |  |  |  |  |
| Radix                            | O(d(n+k'))   | O(d(n+k'))   | O(d(n+k'))   | No        |  |  |  |  |  |
| Bucket                           | -            | O(n)         | -            | No        |  |  |  |  |  |