Université des Sciences et de la Technologie d'Oran. 2023-2024 Faculté des Mathématiques – Informatique – LMD –Informatique - 1ère Année. Analyse1

Fiche deTD2 Nombres complexes

Exercice 1: Donner la forme algèbrique des nombres complexs suivants:

$$z_1 = (2-i)(3+8i), z_2 = (1+i)(1+i), z_3 = (1+i)^3.$$

 $z_4 = \frac{1}{1-2i}, z_5 = \frac{1-2i}{2-2i}.$

 $z_4 = \frac{1}{1+i}, z_5 = \frac{1-2i}{3+i}.$ **Exercice 2: 1.** Calculer le module et l'argument des nombres complexs suivants:

$$z_1 = 1 + i\sqrt{3}, z_2 = 1 - i, z_3 = \frac{1+i}{-1-i\sqrt{3}}, z_4 = (1+i)(-1-i\sqrt{3}).$$

2. Soit
$$z = \frac{4+4i}{1-i\sqrt{3}}$$

Mettre z sous la forme algèbrique.

Mettre z sous la la forme trigonométrque.

Mettre $\frac{1}{z}$, z^{2009} , \overline{z} sous la la forme trigonométrque.

3. Mettre sous la forme exponentielle les nombres complexs suivants:

$$z_1 = 2 - 2i, z_2 = 3\sqrt{3} - 3i, z_3 = \frac{5}{4}i, z_4 = -1.$$

Exercice 3: On considére les nombres complexs suivants:

$$z_1 = 1 + i\sqrt{3}, z_2 = 1 + i, z_3 = \frac{z_1}{z_2}.$$

- a) Ecrire z_3 forme algèbrique.
- b) Ecrire z_3 forme trigonométrque.
- c) En déduire les valeurs exactes de $\cos \frac{\pi}{12}$, $\sin \frac{\pi}{12}$.

Exercice 4 : 1. Calculer les racines carées de 1, i, 3 + 4i.

2. a) Résoudre dans \mathbb{C} les équations suivantes:

$$z^{2} + z + 1 = 0, z^{2} - (1+2i)z + i = 0.$$

b) Trouver la racine cubique de 2-2i.

Exercice 5:

soient a et b deux entiers naturels.

- 1. Déterminer a et b pour que $(a + b\sqrt{3})^2 = 4 + 2\sqrt{3}$
- 2. Résoudre dans \mathbb{C} l'équation suivante $z^2 \left(2 + \left(1 \sqrt{3}\right)i\right)z + 1 + \sqrt{3} + \left(1 \sqrt{3}\right)i = 0$
- 3. Soit z_1 et z_2 les solutions de l'équation précédente telles que $|z_1|<|z_2|$.

Ecrire alors $\left(\frac{z_1}{z_2}\right)$ sous forme algèbrique et sous forme trigonométrique.

En déduire
$$\sin\left(\frac{7\pi}{12}\right)$$
 et $\cos\left(\frac{7\pi}{12}\right)$.

Exercice 6:

Dans le plan complexe; muni du repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$; on considère les points A, B, C, E et F dont les affixes sont données par:

$$z_A = \sqrt{3} + i, z_B = \sqrt{3} - i, z_C = i, z_E = 2ie^{i\frac{2\pi}{3}}, z_F = 2e^{i\frac{\pi}{2}}.$$

- 1. Ecrire z_A, z_B sous la forme exponentielle et z_E et z_F sous la forme algèbrique. 2. Vérifier que $\left(\frac{z_A}{2}\right)^{2013} + \left(\frac{iz_E}{2}\right)^{2013} = -1 i$.
- Soit le nombre complexe $2\alpha = (-1 + \sqrt{3}) + i(1 + \sqrt{3})$,
- a) Déterminer le nombre complexe z_D tel que $z_D = \alpha^2$, puis l'écrire sous la forme exponentielle.
- b) Déterminer l'entier naturel $n \in \mathbb{N}$, tel que $\left(\frac{z_D}{z_E}\right)^n \in \mathbb{R}$.