

Plans à probabilités inégales

Exercice 1: Une population est composée de 6 ménages de tailles respectives 2; 4; 3; 9; 1 et 2 (la taille x_k d'un ménage k est le nombre de personnes physiques qu'il comprend). On tire 3 ménages sans remise, avec une probabilité proportionnelle à leur taille.

1. On a pour tout $k: \pi_k = n\frac{x_k}{t_x}$ avec n=3 et $t_x=2+4+3+9+1+2=21$ donc

$$\pi_k = \frac{x_k}{7}, \quad k \in U$$

pour k=4 on voit bien que $\pi_4=\frac{9}{7}>1$ alors on assigne la valeur 1 à π_4 ($\pi_4=1$) et

$$\pi_k = (n-1)\frac{x_k}{t_x - 9}$$
 pour $k = 1; 2; 3; 5; 6$

donc on recalcule les π_k pour les autres unités, selon :

$$\pi_k = 2 \frac{x_k}{12} = \frac{x_k}{6}$$

Finalement, les probabilités d'inclusion sont présentées dans le tableau suivant

k	1	2	3	4	5	6
π_k	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{2}$	1	$\frac{1}{6}$	$\frac{1}{3}$

On peut vérifier que $\sum_{k} \pi_k = 3$.

2. On tire un réel aléatoire u entre 0 et 1, et on s'intéresse aux probabilités cumulées présentées dans le tableaux suivant

k	1	2	3	4	5	6
$c_k = \sum_{j=1}^k \pi_j$	$\frac{1}{3}$	1	$\frac{3}{2}$	$\frac{5}{2}$	16 6	18 6

Pour u = 0, 4 on a $c_1 = \frac{1}{3} \le 0, 4 < 1 = c_2$ donc on sélectionne le 2.

Pour u+1=1,4 on a $c_2=1\leq 1,4<\frac{3}{2}=c_3$ donc on sélectionne le 3.

On s'arrête puisqu'on doit choisir 3 éléments et puisque le 4 est choisi d'office l'échantillon comporte le 2, 3 et 4.

3. On a:

$$\overline{x} = \frac{1}{6} \sum_{k \in s} \frac{x_k}{\pi_k}$$

$$= \frac{1}{6} \left(\frac{x_2}{\pi_2} + \frac{x_3}{\pi_3} + \frac{x_4}{\pi_4} \right)$$

$$= \frac{1}{6} \left(\frac{4}{\frac{2}{3}} + \frac{3}{\frac{1}{2}} + 9 \right)$$

$$= \frac{1}{6} (6 + 6 + 9) = \frac{21}{6} = 3, 5$$

Comme $\pi_k = \frac{x_k}{6} \ \forall k$ alors les π_k et les x_k sont parfaitement proportionnels, par construction on a une variance nulle, donc un estimateur est parfait pour la moyenne.

Exercice 2: Puisqu'il y 'a une relation à peu près proportionnelle entre le chiffre d'affaire et l'effectif salarié, le tirage à probabilité inégales proportionnellement au chiffres d'affaires est justifié.

On a pour tout $k: \pi_k = n \frac{x_k}{t_x}$ avec n = 3 et $t_x = 60$

Puisque $\pi_1 = 3 \times \frac{40}{60} = 2 > 1$ alors l'unité 1 est sélectionnée d'office et éliminée de la poplation, ce qui entraine

$$t_x = \sum_{k \in U \setminus \{1\}} x_k = 20$$

et

$$\pi_2 = \frac{(n-1)x_2}{t_x} = 2 \times \frac{10}{20} = 1$$

l'unité 2 est aussi sélectionnée d'office et éliminée de la population. Il reste à sélectionner une unité parmi les identifiants 3, 4, 5 et 6.

Comme

$$t_x = \sum_{k \in U \setminus \{1,2\}} x_k = 10$$

$$\pi_3 = \frac{8}{10} = 0, 8 \quad \pi_4 = 0, 1 \quad \pi_5 = 0, 05 \quad \text{et } \pi_6 = 0, 05$$

Les probabilités d'inclusion cumulées valent (en notant $c_k = \sum_{j=1}^k \pi_j$)

$$c_3 = 0, 8$$
 $c_4 = 0, 9$ $c_5 = 0, 95$ et $c_6 = 1$

Comme $c_3=0, 8\leq 0, 83 < c_4=0, 9 \Rightarrow$ l'unité 4 est sélectionnée. L'échantillon finalement sélectionné est $s=\{1,2,4\}$

Si on modifie l'ordre du fichier les 2 plus grosses unités (x = 40) et (x = 10) sont toujours retenues d'office, quel que soit l'ordre initial. Avec le nombre tiré au hasard entre 0 et 1, tout dépend de la position de l'unité (x = 8) lorsqu'on considère les 4 unités restantes (x = 0,5; 0,5; 1; 8). Si l'unité (x = 8) est dans la position 2, 3 ou 4 alors elle est toujours retenue (facile à vérifier). Si elle est en position 1, alors on peut retenir n'importe quelle valeur des 3 restantes.

L'ordre de fichier influe donc sur l'échantillon sélectionné.

Exercice 3: Soit une population de 5 unités. On veut sélectionner par un tirage systématique à probabilités inégales un échantillon de deux unités avec des probabilités d'inclusion proportionnelles aux valeurs x_i suivantes 1; 1; 6; 6; 6.

1. Avec n=2, on a

$$t_x = \sum_{k=1}^{5} x_k = 20, \quad \pi_k = n \frac{x_k}{t_x} \quad k = 1; \dots; 5$$

2. Le nombre de permutation est $C_5^2 = \frac{5!}{2!3!} = \frac{5 \times 4}{2} = 10$

1	1	1	6	6	6
2	1	6	1	6	6
3	1	6	6	1	6
4	1	6	6	6	1
5	6	1	1	6	6
6	6	1	6	1	6
7	6	1	6	6	1
8	6	6	1	1	6
9	6	6	1	6	1
10	6	6	6	1	1

On peut remarquer que les permutations se décomposent en deux catégories

— les permutations où les 2 petites valeurs sont consécutives.

Figure 1 - Cas 1: les deux petites valeurs sont adjacentes

— les permutations où les 2 petites valeurs sont séparées par une grande valeur.

Figure 2 – Cas 2 : les deux petites valeurs ne sont pas adjacentes

Donc pour examiner toutes les permuations, il suffit de se borner à examiner les 2 cas suivant

1	1	6	6	6
1	6	1	6	6

Les probabilités d'inclusion à l'ordre un valent respectivement pour les deux ordres

$\overline{0,1}$	0,1	0,6	0,6	0,6
0,1	0,6	0,1	0,6	0,6

Dans les deux cas, il est impossible de choisir conjointement les 2 petites valeurs parce que le pas de tirage est 1, donc ceci est valide pour toutes les permutations possibles et donc leur probabilité d'inclusion d'ordre 2 est nulle. La conséquence principale est qu'il n'y a pas d'estimateur sans biais de la variance.

Exercice 4: Soit une population U composée de 6 unités. On connaît les valeurs prises par un caractère auxiliaire x sur toutes les unités de la population :

$$x_1 = 200, x_2 = 80, x_3 = 50, x_4 = 50, x_5 = 10, x_6 = 10.$$

1. On a pour tout $k: \pi_k = n \frac{x_k}{t_x}$ avec n=4 et $t_x=400$

Puisque $\pi_1 = 4 \times \frac{200}{400} = 2 > 1$ alors l'unité 1 est sélectionnée d'office et éliminée de la poplation, ce qui entraine

$$t_x = \sum_{k \in U \setminus \{1\}} x_k = 200$$

et

$$\pi_2 = (n-1) \times \frac{x_2}{t_n} = 3 \times \frac{80}{200} = 1, 2 > 1$$

l'unité 2 est aussi sélectionnée d'office et éliminée de la population.

Il reste de sélectionner 2 unités parmi 4 :

on a

$$t_x = \sum_{k \in U \setminus \{1, 2\}} x_k = 120$$

ce qui entraine

$$\pi_3 = \pi_4 = 2 \times \frac{50}{120} = \frac{5}{6}$$
 et $\pi_5 = \pi_6 = 2 \times \frac{10}{120} = \frac{1}{6}$

Les probabilités d'inclusion cumulées valent (en notant $c_k = \sum_{j=3}^k \pi_j$)

$$c_3 = \frac{5}{6}$$
 $c_4 = \frac{10}{6}$ $c_5 = \frac{11}{6}$ et $c_6 = 2$

d'où on sélectionne l'échantillon $\{1;\ 2;\ 3;\ 4\}$

FIGURE 3 – Tirage systématique de 2 unités

2. Remarquons que pour tous k et l, si $\pi_k = 1$ alors $\pi_{kl} = \pi_l$.

Soit u la valeur donnée par $\mathcal{U}(0;1)$

- si $0 \le u \le \frac{4}{6}$ alors on tombe dans les intervalles n° 1 et 2, les deux unités sélectionnées sont $\{3; 4\}$
- si $\frac{4}{6} < u \le \frac{5}{6}$ alors on tombe dans les intervalles n° 1 et 3, les deux unités sélectionnées sont $\{3; 5\}$
- si $\frac{5}{6} < u \le 1$ alors on tombe dans les intervalles n° 2 et 4, les deux unités sélectionnées sont $\{4; 6\}$

donc

$$\pi_{34} = \frac{4}{6} \quad \text{et} \quad \pi_{35} = \pi_{46} = \frac{1}{6}$$

Les autres combinaisons donnent bien $\pi_{kl}=0$. En fin la matrice d'inclusion d'ordre deux est donnée par.

$$\begin{pmatrix}
-1 & \frac{5}{6} & \frac{5}{6} & \frac{1}{6} & \frac{1}{6} \\
1 & -\frac{5}{6} & \frac{5}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\
\frac{5}{6} & \frac{5}{6} & -\frac{4}{6} & \frac{1}{6} & 0 \\
\frac{5}{6} & \frac{5}{6} & \frac{4}{6} & -0 & \frac{1}{6} \\
\frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 & -0 \\
\frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{6} & 0 & -
\end{pmatrix}$$

3. d'après ce qui précède il y'a que 3 échantillons possible de taille 4 à savoir $\{1;\ 2;\ 3;\ 4\}$, $\{1;\ 2;\ 3;\ 5\}$ et $\{1;\ 2;\ 4;\ 6\}$. Le vrai total $t_y=200$

On rappelle que

$$\widehat{t}_{y,\pi} = \sum_{k \in S} \frac{y_k}{\pi_k}.$$

$$\widehat{\mathbf{Var}}\left(\widehat{t}_{y,\pi}\right) = -\frac{1}{2} \sum_{k \in s} \sum_{\substack{l \in s \\ l \neq k}} \left(\frac{y_k}{\pi_k} - \frac{y_l}{\pi_l}\right)^2 \frac{\pi_{kl} - \pi_k \pi_l}{\pi_{kl}}$$

On sait bien que $\hat{t}_{y,\pi}$ est sans biais de t_y .

s	$\widehat{t}_{y,\pi}$	$\widehat{ ext{Var}}\left(\widehat{t}_{y,\pi} ight)$	p(s)
{1; 2; 3; 4}	196	0,75	$\frac{4}{6}$
{1; 2; 3; 5}	226	-48	$\frac{1}{6}$
{1; 2; 4; 5}	190	0	$\frac{1}{6}$

conformément à la théorie $\mathbb{E}[\widehat{t}_{y,\pi}] = \sum p(s)\widehat{t}_{y,\pi}(s) = 200$ et $\mathbb{E}[\widehat{\mathbf{Var}}[\widehat{t}_{y,\pi}]] < 0$ ce qui implique $\mathbb{E}[\widehat{\mathbf{Var}}[\widehat{t}_{y,\pi}]] \neq \mathbf{Var}[t_{y,\pi}] \geq 0$ car $\pi_{kl} = 0$.