Chương 4 Khai phá dữ liệu

Nội dung

- 1. Tiền xử lý dữ liệu.
- 2. Phương pháp khai phá bằng luật kết hợp.
- Phương pháp cây quyết định.
- Các phương pháp phân cụm.
- 5. Các phương pháp khai phá dữ liệu phức tạp.

- Dữ liệu phát sinh trong quá trình tác nghiệp gọi
 là dữ liệu thô (raw/original data),
- Dữ liệu thô:
 - ✓ Từ các nguồn file/cơ sở dữ liệu (database),
 - Không hoàn chỉnh: thiếu thuộc tính, giá trị cần.
 - Chứa giá trị nhiễu: có lỗi hoặc có giá trị lệch,
 - Không nhất quán.
- Để có thể khai phá các khía cạnh khác của chúng cần phải biến đổi về dạng thích hợp,

Chất lượng dữ liệu

- Tính chính xác (accuracy): giá trị được ghi nhận đúng với giá trị thực,
- Tính hiện hành (currency/timeliness): giá trị được ghi nhận không bị lỗi thời.
- Tính toàn vẹn (completeness): tất cả các giá trị dành cho một biến/thuộc tính đều được ghi nhận.
- Tính nhất quán (consistency): tất cả giá trị dữ liệu đều được biểu diễn như nhau trong tất cả các trường hợp.

- Các kỹ thuật tiền xử lý:
- Tích hợp dữ liệu (Data integration):
 - Làm tăng lượng thông tin.
 - Tuy nhiên có thể làm dư thừa và không nhất quán.
- Làm sạch dữ liệu (Data cleaning):
 - ✓ Bổ sung giá trị thiếu,
 - ✓ Loại dữ liệu nhiễu,
 - ✓ Loại giá trị lệch,
 - Nhất quá hóa dữ liệu.

- Các kỹ thuật tiền xử lý (tt):
- Chuyển dạng dữ liệu (Data transformation):
 - Chuẩn hóa (normalization),
 - ✓ Gộp nhóm (aggregation).
- Rút gọn dữ liệu (Data reduction):
 - ✓ Giảm số chiều,
 - ✓ Giảm biểu diễn số lớn,
 - Lựa chọn tập thuộc tính,

√

- Tóm tắt mô tả về dữ liệu:
 - Xác định các thuộc tính (properties) tiêu biểu của dữ liêu về xu hướng chính (central tendency) và sự phân tán (dispersion) của dữ liệu.
 - Làm nối bật các giá trị dữ liệu nên được xem như nhiễu (noise) hoặc phần tử biên (outliers), cung cấp cái nhìn tổng quan về dữ liệu.

- Các yếu tố cần quan tâm khi nghiên cứu khai phá dữ liệu:
 - Xu hướng tập trung (central tendency): đặc trưng bởi các đại lượng thống kê: trung bình (Mean), trung vị (Median), mode, khoảng trung bình (midrange), ...
 - Sự phân ly (dispersion): tứ nhân vị (quartile), khoảng tứ phân vị (interquartile range), phương sai (variance), độ lệch chuẩn (standard deviation)

Công thức tính của các độ đo xu hướng chính của dữ liệu:

> Mean:
$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N} = \frac{x_1 + x_2 + \dots + x_N}{N}$$

> Weighted arithmetic mean: $\bar{x} = \frac{\sum\limits_{i=1}^{N} w_i x_i}{\sum\limits_{i=1}^{N} w_i} = \frac{w_1 x_1 + w_2 x_2 + \cdots + w_N x_N}{w_1 + w_2 + \cdots + w_N}$

> Median:
$$Median = \begin{cases} x_{\lceil N/2 \rceil} \\ (x_{N/2} + x_{N/2+1})/2 \end{cases}$$

S

- Công thức tính của các độ đo xu hướng chính của dữ liệu (tt):
 - Mode: giá trị xuất hiện thường xuyên nhất trong tập dữ liệu
 - Midrange: Giá trị trung bình của các trị lớn nhất và nhỏ nhất trong tập dữ liệu.

- Công thức tính của các độ đo về sự phân tán của dữ liệu (tt):
 - Quartiles (tứ phân vị):
 - ✓ The first quartile: Q1 = 25 * (n+1) / 100,
 - \checkmark The second quartile: Q2 = 50 * (n+1) / 100,
 - \checkmark The third quartile: Q3 = 75 * (n+1) / 100.
 - Interquartile Range (IQR) = Q3 Q1
 - ✓ Outliers (trị biên): trên Q3/dưới Q1 = 1.5*IQR

> Variance:
$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2 = \frac{1}{N} \left[\sum_{i=1}^{N} (x_i - \bar{x})^2 \right]$$
 (phương sai)

11

- Công thức tính của các độ đo về sự phân tán của dữ liệu (tt):
 - Tính quartiles:
 - Sắp xếp các số theo thứ tự tăng dần,
 - Cắt dãy số thành 4 phàn bằng nhau,
 - Tứ phân vị là các giá trị tại vị trí cắt
 - Ví dụ: Cho dãy số 5, 8, 4, 4, 6, 3, 8
 - Sắp xếp: 3, 4, 4, 5, 6, 8, 8
 - \Rightarrow Q1 = 4; Q2 = 5; Q3 = 8

Nếu vị trí cắt ở giữa 2 số thì tứ phân vị là giá trị trung bình của 2 số đó.

Tóm tắt mô tả về dữ liệu:

- (a): Dữ liệu cân đối
- (b): Dữ liệu lệch dương
- (c): Dữ liệu lệch âm
- Minimum < Q1 < Median < Q3 < Maximum</p>

- Tóm tắt mô tả về dữ liệu:
 - Độ lệch chuẩn (Standard deviation):

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_N}{N} = \frac{1}{N} \sum_{i=1}^{N} x_i.$$

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^2},$$

- Làm sạch dữ liệu:
 - Xử lý dữ liệu bị thiếu (missing data),
 - Nhận diện phần tử biên (outliers) và giảm thiếu nhiễu (noisy data),
 - Xử lý dữ liệu không nhất quán (inconsistent data)

- Làm sạch dữ liệu (tt):
 - Xử lý dữ liệu bị thiếu (missing data):
 - Định nghĩa của dữ liệu bị thiếu
 - Dữ liệu không có sẵn khi cần được sử dụng
 - ✓ Nguyên nhân gây ra dữ liệu bị thiếu
 - Khách quan (không tồn tại lúc được nhập liệu, sự cố, ...)
 - Chủ quan (tác nhân con người)

- Làm sạch dữ liệu (tt):
 - Xử lý dữ liệu bị thiếu (missing data):
 - Giải pháp cho dữ liệu bị thiếu
 - Bổ qua
 - Xử lý tay (không tự động, bán tự động),
 - Dùng giá trị thay thế (tự động): hằng số toàn cục, trị phổ biến nhất, trung bình toàn cục, trung bình cục bộ, trị dự đoán, ...
 - Ngăn chặn dữ liệu bị thiếu: thiết kế tốt CSDL và các thủ tục nhập liệu (các ràng buộc dữ liệu).

- Làm sạch dữ liệu (tt):
 - Nhận diện phần tử biên (outliers) và giảm thiểu nhiễu (noisy data):
 - Outliers: những dữ liệu (đối tượng) không tuân theo đặc tính/hành vi chung của tập dữ liệu (đối tượng).
 - Noisy data: outliers bị loại bỏ (rejected/discarded outliers) như là những trường hợp ngoại lệ (exceptions).

- Làm sạch dữ liệu (tt):
 - Nhận diện phần tử biên (outliers) và giảm thiểu nhiễu (noisy data):
 - Giải pháp nhận diện phần tử biên
 - Dựa trên phân bố thống kê (statistical distribution based)
 - Dựa trên khoảng cách (distance-based)
 - Dựa trên mật độ (density-based)
 - Dựa trên độ lệch (deviation-based)

- Làm sạch dữ liệu (tt):
 - Nhận diện phần tử biên (outliers) và giảm thiểu nhiễu (noisy data):
 - Giải pháp giảm thiểu nhiễu
 - Hồi quy (regression)

- Làm sạch dữ liệu (tt):
 - Nhận diện phần tử biên (outliers) và giảm thiểu nhiễu (noisy data):
 - Giải pháp giảm thiểu nhiễu
 - Phân tích cụm (cluster analysis)

- Làm sạch dữ liệu (tt):
 - Nhận diện phần tử biên (outliers) và giảm thiểu nhiễu (noisy data):
 - Giải pháp xử lý dữ liệu không nhất quán (inconsistent)
 - Tận dụng siêu dữ liệu, ràng buộc dữ liệu, sự kiểm tra của nhà phân tích dữ liệu cho việc nhận diện.
 - Điều chỉnh dữ liệu không nhất quán bằng tay.
 - Biến đổi, chuẩn hóa dữ liệu tự động.

- 2. Biến đổi dữ liệu: Tạo tính tương thích giữa dữ liệu của nhiều nguồn khác nhau.
 - Làm mịn: loại bỏ trường hợp nhiễu.
 - Tổng hợp: Rút gọn dữ liệu và tạo khối dữ liệu cho việc phân tích.
 - Khái quát hóa: Chuyển dữ liệu mức thấp sang mức cao.
 - Chuẩn hóa: Chuyển khoảng giá trị rộng thành
 khoảng giá trị nhỏ hơn ([10..1.000] -> [0.0..1.0])
 - Xác định thêm thuộc tính.

- 2. Biến đổi dữ liệu:
 - Một số phương pháp biến đổi:
 - ✓ Min-Max:

$$v' = \frac{v - \min_{A}}{\max_{A} - \min_{A}} (\text{new_max}_{A} - \text{new_min}_{B}) + \text{new_min}_{A}$$

- min_A, max_A: giá trị lớn nhất và nhỏ nhất của thuộc tính A
- New_min_A, new_max_A: miền giá trị mới.

- 2. Biến đổi dữ liệu:
 - Một số phương pháp biến đổi:
 - ✓ Z-score:

$$\mathbf{v}' = \frac{\mathbf{v} - \overline{\mathbf{A}}}{\sigma_{\mathbf{A}}}$$

- Ā: giá trị trung bình của thuộc tính A,
- $-\sigma_{\scriptscriptstyle A}$: độ lệch chuẩn.
- ✓ Thay đổi tỷ lệ.
- Lựa chọn tập thuộc tính con