

Figure 5.2 Orthonormal vectors in a plane.

Since the vectors $a_i = (b_i, \alpha_i)$ are linearly independent, the equality (5.2) only holds when all the coefficients β_i and γ are all zero. This in turns implies that the vectors c_1, \ldots, c_{k-1} are linearly independent. By the induction hypothesis $k-1 \leq n-1$, so we have established that $k \leq n$.

5.3 Orthonormal vectors

A collection of vectors a_1, \ldots, a_k is orthogonal or mutually orthogonal if $a_i \perp a_j$ for any i, j with $i \neq j, i, j = 1, \ldots, k$. A collection of vectors a_1, \ldots, a_k is orthonormal if it is orthogonal and $||a_i|| = 1$ for $i = 1, \ldots, k$. (A vector of norm one is called normalized; dividing a vector by its norm is called normalizing it.) Thus, each vector in an orthonormal collection of vectors is normalized, and two different vectors from the collection are orthogonal. These two conditions can be combined into one statement about the inner products of pairs of vectors in the collection: a_1, \ldots, a_k is orthonormal means that

$$a_i^T a_j = \begin{cases} 1 & i = j \\ 0 & i \neq j. \end{cases}$$

Orthonormality, like linear dependence and independence, is an attribute of a collection of vectors, and not an attribute of vectors individually. By convention, though, we say "The vectors a_1, \ldots, a_k are orthonormal" to mean "The collection of vectors a_1, \ldots, a_k is orthonormal".

Examples. The standard unit *n*-vectors e_1, \ldots, e_n are orthonormal. As another example, the 3-vectors

$$\begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}, \qquad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \qquad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \tag{5.3}$$

are orthonormal. Figure 5.2 shows a set of two orthonormal 2-vectors.

Linear independence of orthonormal vectors. Orthonormal vectors are linearly independent. To see this, suppose a_1, \ldots, a_k are orthonormal, and

$$\beta_1 a_1 + \dots + \beta_k a_k = 0.$$

Taking the inner product of this equality with a_i yields

$$0 = a_i^T(\beta_1 a_1 + \dots + \beta_k a_k)$$

= $\beta_1(a_i^T a_1) + \dots + \beta_k(a_i^T a_k)$
= β_i ,

since $a_i^T a_j = 0$ for $j \neq i$ and $a_i^T a_i = 1$. Thus, the only linear combination of a_1, \ldots, a_k that is zero is the one with all coefficients zero.

Linear combinations of orthonormal vectors. Suppose a vector x is a linear combination of a_1, \ldots, a_k , where a_1, \ldots, a_k are orthonormal,

$$x = \beta_1 a_1 + \dots + \beta_k a_k.$$

Taking the inner product of the left-hand and right-hand sides of this equation with a_i yields

$$a_i^T x = a_i^T (\beta_1 a_1 + \dots + \beta_k a_k) = \beta_i,$$

using the same argument as above. So if a vector x is a linear combination of orthonormal vectors, we can easily find the coefficients of the linear combination by taking the inner products with the vectors.

For any x that is a linear combination of orthonormal vectors a_1, \ldots, a_k , we have the identity

$$x = (a_1^T x)a_1 + \dots + (a_k^T x)a_k.$$
 (5.4)

This identity gives us a simple way to check if an n-vector y is a linear combination of the orthonormal vectors a_1, \ldots, a_k . If the identity (5.4) holds for y, i.e.,

$$y = (a_1^T y)a_1 + \dots + (a_k^T y)a_k,$$

then (evidently) y is a linear combination of a_1, \ldots, a_k ; conversely, if y is a linear combination of a_1, \ldots, a_k , the identity (5.4) holds for y.

Orthonormal basis. If the *n*-vectors a_1, \ldots, a_n are orthonormal, they are linearly independent, and therefore also a basis. In this case they are called an *orthonormal basis*. The three examples above (on page 95) are orthonormal bases.

If a_1, \ldots, a_n is an orthonormal basis, then we have, for any *n*-vector x, the identity

$$x = (a_1^T x)a_1 + \dots + (a_n^T x)a_n. \tag{5.5}$$

To see this, we note that since a_1, \ldots, a_n are a basis, x can be expressed as a linear combination of them; hence the identity (5.4) above holds. The equation above is sometimes called the *orthonormal expansion formula*; the right-hand side is called the *expansion of* x *in the basis* a_1, \ldots, a_n . It shows that any n-vector can be expressed as a linear combination of the basis elements, with the coefficients given by taking the inner product of x with the elements of the basis.

As an example, we express the 3-vector x = (1, 2, 3) as a linear combination of the orthonormal basis given in (5.3). The inner products of x with these vectors

are

$$\begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}^T x = -3, \qquad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}^T x = \frac{3}{\sqrt{2}}, \qquad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}^T x = \frac{-1}{\sqrt{2}}.$$

It can be verified that the expansion of x in this basis is

$$x = (-3) \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} + \frac{3}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right) + \frac{-1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right).$$

5.4 Gram-Schmidt algorithm

In this section we describe an algorithm that can be used to determine if a list of n-vectors a_1, \ldots, a_k is linearly independent. In later chapters we will see that it has many other uses as well. The algorithm is named after the mathematicians Jørgen Pedersen Gram and Erhard Schmidt, although it was already known before their work.

If the vectors are linearly independent, the Gram–Schmidt algorithm produces an orthonormal collection of vectors q_1, \ldots, q_k with the following properties: For each $i=1,\ldots,k,$ a_i is a linear combination of q_1,\ldots,q_i , and q_i is a linear combination of a_1,\ldots,a_i . If the vectors a_1,\ldots,a_{j-1} are linearly independent, but a_1,\ldots,a_j are linearly dependent, the algorithm detects this and terminates. In other words, the Gram–Schmidt algorithm finds the first vector a_j that is a linear combination of previous vectors a_1,\ldots,a_{j-1} .

Algorithm 5.1 Gram-Schmidt algorithm

given n-vectors a_1, \ldots, a_k

for $i = 1, \ldots, k$,

- 1. Orthogonalization. $\tilde{q}_i = a_i (q_1^T a_i)q_1 \dots (q_{i-1}^T a_i)q_{i-1}$
- 2. Test for linear dependence. if $\tilde{q}_i = 0$, quit.
- 3. Normalization. $q_i = \tilde{q}_i / \|\tilde{q}_i\|$

The orthogonalization step, with i = 1, reduces to $\tilde{q}_1 = a_1$. If the algorithm does not quit (in step 2), *i.e.*, $\tilde{q}_1, \ldots, \tilde{q}_k$ are all nonzero, we can conclude that the original collection of vectors is linearly independent; if the algorithm does quit early, say, with $\tilde{q}_j = 0$, we can conclude that the original collection of vectors is linearly dependent (and indeed, that a_j is a linear combination of a_1, \ldots, a_{j-1}).

Figure 5.3 illustrates the Gram–Schmidt algorithm for two 2-vectors. The top row shows the original vectors; the middle and bottom rows show the first and second iterations of the loop in the Gram–Schmidt algorithm, with the left-hand side showing the orthogonalization step, and the right-hand side showing the normalization step.