Biopotential Electrodes

Suresh Devasahayam Department of Bioengineering Christian Medical College, Vellore

Lecture - Outline

- Bioelectric measurement
 - Biopotential Measurement
 - Electrical Excitation
- Polarization and impedance
 - Implications for measurement
 - Frequency response
- Geometry considerations
 - Frequency response

Biopotentials

- Electrical potentials in excitable tissue
 - cardiac potentials ECG
 - Brain potentials EEG
 - Muscle and nerve EMG, ENG
- Change in position and magnitude of charge separation ("dipole")
- Generator potentials, action potentials, etc.

Measurement of biopotentials

- Measure the electrical field or potential at a point
- Conductive electrode placed in the tissue
- Record time-varying magnitude of potential
- Critical factors
 - Location of source
 - Orientation of nerve cells/muscle fibres along which dipole moves
 - Location and orientation of electrodes

Electrode Configuration for Biopotential Measurement

- Unipolar measurement
 - Measure potential at single point
 - Ground or Reference is an electrically inactive region
- Biopolar measurement
 - Differential measurement between two points
 - Ground or Reference at an inactive region
 - Differential Mode Measurement is signal
 - Common mode is noise

Measurement model

- Biological source electrical source and source impedance
- Electrode-tissue interface
 - polarization potential
 - Electrode-tissue impedance
- Biopotential amplifier
 - Input impedance
 - Impedance between Differential inputs
 - Impedance between input and ground

Measuring Biopotentials

- Measured potential
 - Biological source
 - Half cell potential
 - Ion mobility across gradient
 - Electrode impedance Ohmic drop
- $V_m(t) = V_b(t) + V_h + V_c(t) + V_R(t)$

Biopotential electrodes

- Electrodes have half-cell potential, ohmic potential drop, polarization potential
- Half-cell potentials w.r.t. hydrogen electrode

$$H_2 \rightarrow 2H^+ + 2e \Rightarrow 0V$$

 $Al \rightarrow Al^{+++} + 3e \Rightarrow -1.7V$
 $Cu \rightarrow Cu^{++} + 2e \Rightarrow +0.34V$
 $Ag + Cl \rightarrow AgCl + e \Rightarrow 0.233V$

- Separation of ionic solutions
 - Nernst potential

$$V_C = \frac{RT}{nF} \log_e \left(\frac{C_1}{C_{ref}} \right)$$

Electrochemical Cell Potentials

Half-cell potentials	
$Al \rightarrow Al^{3+} + 3e^{-}$	-1.709
$Ag \rightarrow Ag^+ + e^-$	+0.799
$Fe \rightarrow Fe^{2+} + 2e^{-}$	-0.409
$Cu \rightarrow Cu^{2+} + 2e^{-}$	+0.340
$Zn \rightarrow Zn^+ + 2e$	-0.763
$Ag+Cl^- \rightarrow AgCl+$	+0.223
e ⁻	

Artifacts in Biopotential recording

- Change in activation movement
- Polarization potentials
- Ag/AgCl Electrodes
- Movement artifacts
- Electrodes as filters

Measurement model

Electrode geometry and filtering – Bipolar electrodes

 Size and separation of electrodes

$$e_{S}(t) = \frac{I_{o}}{4\pi} \left\{ \frac{1}{\sqrt{(z-ut-w/2)^{2}+d^{2}}} - \frac{1}{\sqrt{(z-ut+w/2)^{2}+d^{2}}} \right\}$$

Types of electrodes

- Surface electrodes
- Needle electrodes
- Concentric needle electrodes
- Fine wire electrodes

Stimulation electrodes

- Short-term and long term stimulation
- Charge accumulation
 - Charge balancing of electrodes

End of Lecture