Stochastic Finance (FIN 519) Final Exam

Instructor: Jaehyuk Choi

2018-19 Module 3 (2019. 4. 19.)

BM stands for Brownian motion.

- 1. (4 points) Stochastic calculus. Choose all surviving terms (i.e., non-zero terms) in stochastic calculus. Assume that $dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dB_t$ for some functions μ and σ .
 - (a) $dX_t \cdot dt$
 - (b) $(dX_t)^2$
 - (c) $dX_t \cdot dB_t$
 - (d) $dB_t^1 \cdot dB_t^2$ for the two independent BMs, B_t^1 and B_t^2
- 2. (2×3 points) Option price and delta under the BSM model. You hold a call option with K = 100 maturing in 3 months. Assume that a stock's annual volatility is 32% of the current price. Also assume that r = q = 0. You may use the following CDF values for the standard normal distribution N(z).

	z	0.02	0.04	0.06	0.08	0.10	0.12	0.14	0.16
1	V(z)	0.508	0.516	0.524	0.532	0.540	0.548	0.556	0.564

- (a) The stock's current spot price is $S_0 = 100$. What is the price of the call option under the BSM model?
- (b) What is the delta (i.e., the sensitivity to S_0) of the option?
- (c) If the spot price changed to $S_0 = 100.5$, what is the new option price under the BSM model? Approximate the price with Taylor's expansion using the results from (a) and (b).
- 3. $(2\times3 \text{ points})$ Itô's lemma. The stochastic variance in Heston model is given by

$$dV_t = \alpha (V_{\infty} - V_t) dt + \sigma \sqrt{V_t} dB_t.$$

This process is also know as Cox-Ingersoll-Ross(CIR) model for stochastic interest rate. Additionally, the stochastic variance under the 3/2 model is also given as

$$dV_t = \lambda V_t (V_{\infty} - V_t) dt + \xi V_t \sqrt{V_t} dB_t.$$

- (a) Derive $E(V_t | \mathcal{F}_0)$ under the Heston model. (Hint: The transformation, $y_t = e^{\alpha t}(V_t V_\infty)$, used in the Ornstein-Uhlenbeck process is also useful in this problem. Then, use the martingale property.) What is $E(V_t | \mathcal{F}_0)$ as $t \to \infty$.
- (b) To solve the 3/2 model, the inverse variance, $Y_t = 1/V_t$, is helpful. Find the SDE satisfied by Y_t .
- (c) What is $E(1/V_t | \mathcal{F}_0)$ under the 3/2 model? (Hint: You should recognize a similarity between the SDEs for V_t under Heston model and Y_t under the 3/2 model.)
- 4. $(2\times4 \text{ points})$ SDE and martingale representation theorem.
 - (a) Apply Itô calculus to find the stochastic differentiation of $\cosh(B_t)$. Reminded that $\cosh x = (e^x + e^{-x})/2$.

- (b) Find λ such that $X_t = e^{\lambda t} \cosh(B_t)$ is a martingale (i.e., dX_t has no dt term.)
- (c) Using (b), find the martingale representation of $\cosh(B_T)$. In other words, find V_0 and ϕ_t satisfying

$$\cosh(B_T) = V_0 + \int_0^T \phi_t \, dB_t$$

- (d) Assume a stock price S_t follows $dS_t = \sigma dB_t$ and r = 0. What is the price of a derivative that pays $\cosh(S_T S_0)$ at time t = T?
- 5. (2×3 points) *T*-forward measure. In class, we learned that the forward price of buying a bond maturing at $T + \Delta$ at time t = T,

$$F_t = \frac{B(t, T + \Delta)}{B(t, T)},$$

is a martingale under the T-forward measure. We are going to prove this under an explicit setting. From a 2017 exam problem, we also know that

$$\frac{dB(t,T)}{B(t,T)} = r_t dt - \beta(T-t) dB_t^Q$$

when the risk-free rate changes according to $dr_t = \alpha dt + \beta dB_t^Q$. Here, B_t^Q is the standard BM under the risk-neutral measure.

- (a) Derive the SDE for F_t . (Hint. First compute $d \log F_t$ and compute dF_t/F_t)
- (b) If B_t^T is the standard BM under the *T*-forward measure, what is the relation between dB_t^Q and dB_t^T ?
- (c) From (a) and (b), finally derive the SDE for F_t under the T-forward measure. Is F_t a martingale? What is the volatility of dF_t/F_t ?

(Not Exam) HW 3-4 Exponential Ornstein-Uhlenbeck process Solve the following SDE:

$$\frac{dP_t}{P_t} = \alpha(\mu - \log P_t)dt + \sigma dB_t.$$

What are $E(P_t)$ and $Var(P_t)$ as $t \to \infty$? (Hint: use $X_t = \log P_t$.)

Solution. The SDE for X_t satisfies

$$dX_t = \frac{dP_t}{P_t} - \frac{(dP_t)^2}{2P_t^2} = \alpha \left(\mu - \frac{\sigma^2}{2\alpha} - X_t\right) dt + \sigma dB_t.$$

This is the Ornstein-Uhlenbeck with $X_{\infty} = \mu - \frac{\sigma^2}{2\alpha}$. Therefore,

$$X_t = X_{\infty} + e^{-\alpha t} (X_0 - X_{\infty}) + \frac{\sigma e^{-\alpha t}}{\sqrt{2\alpha}} B_{e^{2\alpha t} - 1}$$
$$\log P_t = \mu - \frac{\sigma^2}{2\alpha} + e^{-\alpha t} \left(\log P_0 - \mu + \frac{\sigma^2}{2\alpha} \right) + \frac{\sigma e^{-\alpha t}}{\sqrt{2\alpha}} B_{e^{2\alpha t} - 1}.$$

The mean and variance as $t \to \infty$ are given as

$$E(X_t) = X_{\infty} = \mu - \frac{\sigma^2}{2\alpha}, \quad Var(X_t) = \frac{\sigma^2}{2\alpha}.$$

For P_t , we apply the properties of the lognoraml distributions:

$$E(P_t) = \exp\left(X_{\infty} + \frac{1}{2} \operatorname{Var}(X_t)\right) = \exp\left(\mu - \frac{\sigma^2}{4\alpha}\right).$$

$$\operatorname{Var}(P_t) = \left(\exp\left(\frac{\sigma^2}{2\alpha}\right) - 1\right) \exp\left(2\mu - \frac{\sigma^2}{2\alpha}\right) = \left(1 - \exp\left(-\frac{\sigma^2}{2\alpha}\right)\right) e^{2\mu}$$