Mathematische Brückenkurs

Dr. Joseph Rudzinski

Abteilung Theorie der Polymere, Max-Planck-Institut für Polymer Forschung

Wintersemester 2021/22

Die Ableitung

Definition

Seien $D \subset \mathbb{R}$ und $f:D \to \mathbb{R}$ eine Funktion. f nennt man im Punkte $x \in D$ differenzierbar, falls es mindestens eine Folge $(\xi_n) \in D \setminus x$ mit $\lim \xi_n = x$ gibt und für jede solche Folge der Grenzwert $n \rightarrow \infty$

$$f'(x) = \lim_{n \to \infty} \frac{f(\xi_n) - f(x)}{\xi_n - x} = \lim_{\xi \to x} \frac{f(\xi) - f(x)}{\xi - x}$$

existiert.

DR. JOSEPH RUDZINSKI (MPIP)

Man schreibt auch
$$f'(x) = \frac{\mathrm{d}f(x)}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x} f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{(x+h) - x}$$

Geometrische Bedeutung der Abteilung

Die Abteilung $f'(x_0)$ gibt die Steigung der Tangente, im Punkte x_0 an:

Quiz

Die Funktion

$$f(x) = \begin{cases} 0 & x \le 0 \\ \sin(x) & x > 0 \end{cases}$$

ist im Punkte x = 0

- (A) differenzierbar
- (B) nicht differenzierbar

Quiz

Die Funktion

$$f(x) = \begin{cases} 1 & x \le 0 \\ \cos(x) & x > 0 \end{cases}$$

ist im Punkte x = 0

- (A) differenzierbar
- (B) nicht differenzierbar

Sätze über Ableitungen

DR. JOSEPH RUDZINSKI (MPIP)

Satz

Seien $f, g: D \to \mathbb{R}$ in $x \in D$ differenzierbare Funktionen und $\lambda \in \mathbb{R}$. Dann sind auch die Funktionen f + g und λf in x differenzierbar und es gilt

$$(f+g)'(x) = f'(x) + g'(x),$$
 $(\lambda f)'(x) = \lambda f'(x).$

Produktregel

Mit den Voraussetzungen wie oben ist auch die Funktion $f \cdot g$ in xdifferenzierbar und es gilt

$$(f \cdot g)'(x) = f(x)g'(x) + g(x)f'(x)$$
.

Beweis der Produktregel

$$(f \cdot g)'(x) = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left[f(x+h)g(x+h) - f(x+h)g(x) + f(x+h)g(x) - f(x)g(x) \right]$$

$$= \lim_{h \to 0} f(x+h) \frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} g(x) \frac{f(x+h) - f(x)}{h}$$

$$= (f \cdot g)'(x) = f(x)g'(x) + f'(x)g(x) = f(x)g'(x) + g(x)f'(x)$$

<u>Die Produktregel</u>

Beispiel

$$f(x) = \underbrace{x^2}_{f_1(x)} \sin(x)$$

$$f_2(x)$$

$$f'(x) = \underbrace{x^2} \cdot \cos(x) + \underbrace{\sin(x)} \cdot \underbrace{(2x)} = x^2 \cos(x) + 2x \sin(x)$$

$$f_1(x) \qquad f'_2(x) \qquad f_2(x) \qquad f'_1(x)$$

Sätze über Ableitungen

Quotientenregel

Ist weiter $g(x) \neq 0$, $\forall x \in D$, so ist auch die Funktion f/g in x differenzierbar und es gilt

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{f}{g}\right)(x) = \frac{g(x)f'(x) - f(x)g'(x)}{g(x)^2}.$$

<u>Die Quotientenregel</u>

Beispiel

$$f(x) = \frac{2x - 3}{x + 1}$$

$$f'(x) = \frac{(x+1)\cdot(2) - (2x-3)\cdot(1)}{(x+1)^2} = \frac{2x+2-2x-3}{(x+1)^2} = \frac{5}{(x+1)^2}$$

Sätze über Ableitungen

Kettenregel

Seien $f: D_1 \to W_1$ und $g: D_2 \to W_2$ Funktionen mit $W_1 \subset D_2$. Falls f im Punkte $x \in D_1$ differenzierbar ist und g im Punkte $y = f(x) \in D_2$ differenzierbar ist, so ist die zusammengesetzte Funktion $g \circ f: D_1 \to W_2$ in x differenzierbar und es gilt

$$(g \circ f)'(x) = g'(f(x))f'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(g \circ f)(x) = \frac{\mathrm{d}g(f(x))}{\mathrm{d}f(x)} \frac{\mathrm{d}f(x)}{\mathrm{d}x}$$

Die Kettenregel

Beispiel

$$f(x) = \sin\left(3x^2 + 4x + 5\right)$$

$$f'(x) = \cos(3x^2 + 4x + 5) \cdot \frac{d(3x^2 + 4x + 5)}{dx} = \cos(3x^2 + 4x + 5) \cdot (6x + 4)$$

$$= (6x + 4) \cdot \cos (3x^2 + 4x + 5)$$

Sätze über Ableitungen

Abteilung der Umkehrfunktion

Sei $D \subset \mathbb{R}$ ein abgeschlossenes Intervall, $f: D \to W$ eine stetige, steng monotone Funktion und $f^{-1}: W \to D$ die Umkehrfunktion.

Ist f im Punkt $x \in D$ differenzierbar und ist $f'(x) \neq 0$, so ist f^{-1} im Punkt y = f(x) differenzierbar und es gilt

$$(f^{-1})'(y) = \frac{1}{f'(x)} = \frac{1}{f'(f^{-1}(y))}$$

Die Abteilung der Umkehrfunktion

Beispiel

Die Ableitung des Logarithmus erhält man mit Hilfe der Regel über Umkehrfunktion.

Wir beginnen mit der Exponentialfunktion: $f(x) = e^x$, $f'(x) = e^x$. Die Umkehrfunktion ist der Logarithmus:

$$f^{-1}(y) = \ln(y)$$

Nun ist

Num ist
$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} = \frac{1}{\exp(\ln(y))} = \frac{1}{y}$$
also $f(x) = \ln(x)$, $f'(x) = \frac{1}{x}$.

also
$$f(x) = \ln(x)$$
, $f'(x) = \frac{1}{x}$

<u>Abteilungen</u>

Beispiel

Die Ableitung von Sinus und Kosinus erhält man aus der Darstellung

$$\sin x = \frac{1}{2i}(e^{ix} - e^{-ix}), \qquad \cos x = \frac{1}{2}(e^{ix} + e^{-ix})$$

$$f(x) = \sin(x) \Rightarrow f'(x) = \cos(x), \qquad f(x) = \cos(x) \Rightarrow f'(x) = -\sin(x)$$

$$\frac{d}{dx}\sin(x) = \frac{d}{dx} \left[\frac{1}{2i} (e^{ix} - e^{-ix}) \right] = \frac{1}{2i} \left(\frac{d}{dx} e^{ix} - \frac{d}{dx} e^{-ix} \right)$$
$$= \frac{1}{2i} \left(ie^{ix} + ie^{-ix} \right) = \frac{1}{2} \left(e^{ix} + e^{-ix} \right) = \cos(x)$$

WISE 2021/22

Wichtige Ableitungen

DR. JOSEPH RUDZINSKI (MPIP)

Abteilung einiger Grundfunktionen:

$$f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$$

$$f(x) = e^x \Rightarrow f'(x) = e^x$$

Die Ableitung des Logarithmus erählt man mit Hilfe der Regel über Umkehrfunktionen:

$$f(x) = \ln(x) \Rightarrow f'(x) = \frac{1}{x}$$

Die Ableitung von Sinus und Kosinus erählt man mit Hilfe der Darstellung der Exponentialfunktion:

$$f(x) = \sin(x) \Rightarrow f'(x) = \cos(x)$$
, $f(x) = \cos(x) \Rightarrow f'(x) = -\sin(x)$

Weitere Ableitungen

$$f(x) = \tan(x) \Rightarrow f'(x) = \frac{1}{\cos^2(x)}$$

$$f(x) = \arcsin(x) \Rightarrow f'(x) = \frac{1}{\sqrt{1 - x^2}}$$

$$f(x) = \arctan(x) \Rightarrow f'(x) = \frac{1}{1 + x^2}$$

$$f(x) = \sinh(x) \Rightarrow f'(x) = \cosh(x)$$

$$f(x) = \cosh(x) \Rightarrow f'(x) = \sinh(x)$$

$$f(x) = \tanh(x) \Rightarrow f'(x) = \frac{1}{\cosh^2(x)}$$

$$f(x) = \operatorname{arsinh}(x) \Rightarrow f'(x) = \frac{1}{\sqrt{1 + x^2}}$$

$$f(x) = \operatorname{artanh}(x) \Rightarrow f'(x) = \frac{1}{1 - x^2}$$

Quiz

$$f(x) = 3x^3 - 4$$

$$f'(x) = ?$$

(A)
$$\frac{3}{4}x^4 - 4x$$

(B)
$$9x^2 - 4$$

(C)
$$9x^2$$

(D)
$$3x^2 - 4$$

Quiz

$$f(x) = \sin(\cos(x))$$

$$f'(x) = ?$$

- (A) $2\cos(\cos(2x))$
- (B) $2\sin(2x) \cdot \cos(\cos(2x))$
- (C) $-2\cos(2x)\cdot\cos(\sin(2x))$
- (D) $-2\sin(2x)\cdot\cos(\cos(2x))$

<u>Höhere Ableitungen</u>

Sei $f: D \to \mathbb{R}$ eine differenzierbare Funktion. Ist $f': D \to \mathbb{R}$ ebenfalls wieder differenzierbar, so bezeichnet man mit

$$f''(x) = \frac{d^2 f(x)}{dx^2} = (f')'(x)$$

die zweite Ableitung. Ist auch f''(x) wieder differenzierbar, so erhält man durch Ableiten die dritte Ableitung f'''(x). Allgemein schreiben wir

$$f^{(n)}(x) = \frac{\mathrm{d}^n f(x)}{\mathrm{d} x^n}$$

Unter der 0-ten Ableitung einer Funktion versteht man die Funktion selbst.

Höhere Ableitungen

Beispiel

$$f(x) = 3x^{5} + 7x^{4} + 2x^{3} + x^{2} - x + 5$$

$$f'(x) = 15x^{4} + 28x^{3} + 6x^{2} + 2x - 1$$

$$f''(x) = 60x^{3} + 84x^{2} + 12x + 2$$

$$f'''(x) = 180x^{2} + 168x + 12$$

$$f^{(4)}(x) = 360x + 168$$

$$f^{(5)}(x) = 360$$

$$f^{(6)}(x) = 0$$

Höhere Ableitungen

Beispiel

$$f(x) = \sin(x)$$

$$f'(x) = \cos(x)$$

$$f''(x) = -\sin(x)$$

$$f'''(x) = -\cos(x)$$

$$f^{(4)}(x) = \sin(x)$$

Quiz

$$f(x) = e^{2x}$$

$$f(x) = e^{2x}$$

$$f^{(4)}(x) = ?$$

- (A) e^{2x}
- **(B)** $2e^{2x}$
- (C) $16e^{2x}$
- **(D)** $24e^{2x}$

Stetige Differenzierbarkeit

Definition

Eine Funktion f(x) nennt man stetig differenzierbar, falls sie differenzierbar ist und die Abteilung f'(x) stetig ist.

Definition

Eine Funktion f(x) nennt man n-mal stetig differenzierbar, falls sie n-mal differenzierbar ist und die n-te Abteilung $f^{(n)}(x)$ stetig ist.

Stetige Differenzierbarkeit

Beispiel

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

f ist differenzierbar im Punkt x = 0:

$$f'(x) = \lim_{h \to 0} \frac{h^2 \sin\left(\frac{1}{h} - 0\right)}{h} = 0$$

Somit

$$f'(x) = \begin{cases} 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 f' ist nicht stetig im Punkt $x = 0$.

Taylorreihen

Motivation:

- Wir haben bereits die Reihendarstellung einiger Funktionen, wie z.B. der Exponentialfunktion, Sinus oder Kosinus kennengelernt.
- In diesem Abschnitt geht es um die systematisch Entwicklung von Funktionen in Potenzreihen.

Taylorentwicklung

Satz (Taylorsche Formel)

Sei $I \subset \mathbb{R}$ und $f: I \to \mathbb{R}$ eine (n+1)-mal stetig differenzierbare Funktionen. Dann gilt für $a \in I$ und $x \in I$

$$f(x) = f(a) + \frac{f'(a)}{1!} \cdot (x - a) + \frac{f''(a)}{2!} \cdot (x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!} \cdot (x - a)^n + R_{n+1}(x)$$

Für das Restglied gilt: Es gibt ein ξ zwischen a und x (d.h. $\xi \in [a,x]$ für x>a bzw. $\xi \in [x,a]$ für x<a), so dass

$$R_{n+1}(x) = \frac{f^{n+1}(\xi)}{(n+1)!} \cdot (x-a)^{n+1}.$$

Bemerkung: Dies ist eine Existenzaussage, ξ ist im allgemeinen schwer zu bestimmen.

Taylorentwicklung

- In der Praxis verwendet man die ersten *n* Terme der Taylorentwicklung, um eine Funktion zu approximieren und vernächlässt das Restglied.
- Das vernächlässtige Restglied liefert den Fehler dieser Abschätzung.

Taylorentwicklung

Beispiel

$$f(x) = \cos(x \cdot e^x) + \sin(x^2 \cdot e^{-x})$$

Taylorentwicklung um $x_0 = 0$:

$$f(x) = 1 + \frac{1}{2}x^2 - 2x^3 - \frac{11}{24}x^4 - \frac{2}{3}x^5 + \mathcal{O}(x^6)$$

Taylorreihen

Definition

Sei nun $f: I \to \mathbb{R}$ eine beliebig oft differenzierbare Funktion und $a \in I$.

Wir definieren die Taylorreihe einer Funktion f um den Entwicklungspunkt a:

$$T_f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} \cdot (x - a)^n$$

Taylorreihen

Bemerkungen:

- \Rightarrow Der Konvergenzradius der Taylorreihe ist nicht notwendig > 0.
- Falls die Taylorreihe von f konvergiert, konvergiert sie nicht notwendigerweise gegen f.
- Die Taylorreihe konvergiert genau für diejenigen $x \in I$ gegen f(x), für die das Restglied gegen Null konvergiert.

Taylorreihen

Beispiel

Wir geben ein Gegenbespiel zu Punkt 2 an: Wir betrachten die Taylorreihe der Funktion

$$f(x) = \begin{cases} \exp\left(-\frac{1}{x^2}\right) & x \neq 0 \\ 0 & x = 0 \end{cases}$$

im Punkte $a=0.\,f$ ist beliebig oft differenzierbar und es gilt

$$f^{(n)}(0) = 0$$

Die Taylorreihe von f um den Nullpunkt ist also identisch Null.

<u>Taylorreihen</u>

Die erste Regel von l'Hospital

Satz

Seien $f,g:D\to\mathbb{R}$ zwei in $x_0\in D$ stetige Funktionen mit $f(x_0)=g(x_0)=0$. Weiter seien f und g in einer Umgebung von x_0 differenzierbar. Existiert $\lim_{x\to x_0}f'(x)/g'(x)$ so gilt:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Die erste Regel von l'Hospital

Beispiel

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{\sin x}{2x} = \frac{1}{2} \lim_{x \to 0} \frac{\cos x}{1} = \frac{1}{2}$$

Die zweite Regel von l'Hospital

Satz

Ist
$$\lim_{x \to x_0} |f(x)| = \infty$$
 und $\lim_{x \to x_0} |g(x)| = \infty$ und existiert $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$,

so gilt ebenfalls

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Die zweite Regel von l'Hospital

Beispiel

$$\lim_{x \to 0} \frac{\ln x}{\frac{1}{x}} = \lim_{x \to 0} \frac{\frac{1}{x}}{\frac{-1}{x^2}} = \lim_{x \to 0} (-x) = 0$$

Bemerkung: Die l'Hospitalischen Regeln gelten auch für $x_0 \to \pm \infty$.

Quiz

$$\lim_{x \to \infty} \frac{3x - 4}{x^2 + 6x + 5} = ?$$

- **(A)** 0
- (B) $\frac{1}{2}$ (C) $\frac{3}{2}$

Quiz

$$\lim_{x \to \infty} \frac{7x^3 + 5x^2 - 3x - 1}{x^3 - 20x^2 + x + 10} = ?$$

- **(A)** 0
- **(B)** 10
- **(C)** 7
- **(D)** 21