

Normal Linear Model Regressors

Why

We use a normal linear model to predict the function at inputs not included in the design.

Definition

Let $(x : \Omega \to \mathbb{R}^d, A \in \mathbb{R}^{n \times d}, e : \Omega \to \mathbb{R}^n)$ be a normal linear model over the probability space $(\Omega, \mathcal{A}, \mathbf{P})$.

Predictive density

We are modeling $h_{\omega}: \mathbf{R}^d \to \mathbf{R}$ by $h_w(a) = x(\omega)^{\top} a$. The *predictive density* for a dataset $c^1, \ldots, c^m \in \mathbf{R}^d$ is the conditional density of the random vector $(h_{(\cdot)}(c^1), \ldots, h_{(\cdot)}(c^m))$ given y.

Proposition 1. The predictive density for $c^1, \ldots, c^m \in \mathbb{R}^d$ (with data matrix $C \in \mathbb{R}^{m \times d}$) is normal with mean

$$g(a) = (C\Sigma_x A^{\top}) \left(A\Sigma_x A^{\top} + \Sigma_e \right)^{-1} \gamma.$$

and covariance

$$C\Sigma_x C^{\top} - C\Sigma_x A^{\top} \left(A\Sigma_x A^{\top} + \Sigma_e \right)^{-1} A\Sigma_x C^{\top}.$$

Proof. Define (as usual) $y:\Omega\to \mathbb{R}^n$ and $z:\Omega\to \mathbb{R}^m$ by

$$y = Ax + e$$
$$z = Cx.$$

Recognize (x, y, z) as jointly normal, and use Normal Conditionals).

Predictor

The normal linear model predictor or normal linear model regressor for the normal linear model (x, A, e) is the predictor which assigns to a new point $a \in \mathbb{R}^d$ the mean of the predictive density at a. That is, the predictor $g : \mathbb{R}^d \to \mathbb{R}$ defined by

$$g(a) = a^{\mathsf{T}} \Sigma_x A^{\mathsf{T}} \left(A \Sigma_x A^{\mathsf{T}} + \Sigma_e \right)^{-1} \gamma.$$

In the above we have substituted a^{\top} for C. In the case of normal random vectors this corresponds with the MAP esetimate and the MMSE estimate.¹

Use of a normal linear model predictor is often referred to as *Gaussian process regression*. The upside is that a gaussian process predicor interpolates the data, is smooth, and the so-called variance increases with the distance from the data. This is also called *Bayesian linear regression*.

¹Future editions will have discussed this and include a reference to the sheet.

