Versuchsplanung

Peter Büchel

HSLU TA

Stoc: Block 07

Versuchsplanung: Experiment versus Erhebung

• Experiment : Kontrolle über (einige) Einflussgrössen, die systematisch

variiert werden

- Beispiele:
 - Klinische Versuche: z.B. Impfstoff gegen Polio
 - Physikalisches Experiment: Schwingkreis mit unterschiedlichen Anregungsfrequenzen

Versuchsplanung: Experiment versus Erhebung

- Erhebung: Subjekte/Objekte im Rahmen einer existierenden Situation beobachtet
- Einflussgrössen nicht direkt einstellbar

Beispiele:

- Konsumverhalten : Fleischkonsum pro Haushalt pro Jahr
- ► Luftqualität in Mensa

Verschiedene Sorten von Erhebungen

- Querschnitts-Studie
 - Zeitaufnahme (Snapshot) einer Population zu einem bestimmten Zeitpunkt
 - Bsp. Fleischkonsum pro Haushalt por Jahr
- Prospektive Kohortenstudie
 - "Was wird passieren, wenn…?"
 - ▶ Bsp. Risiko von Rauchern, an Lungenkrebs zu erkranken
- Retrospektive Fall-Kontroll-Studie
 - "Warum hat es sich auf diese Art und Weise entwickelt?"
 - Bsp.: Vergleich zwischen gesunden und kranken Menschen in Bezug auf ihre Lebensart

Prospektive Kohortenstudie versus Retrospektive Fall-Kontroll-Studie

Prospektive Kohortenstudie

Retrospektive Fall-Kontroll-Studie

Ursache-Wirkung Beziehung

 Typischerweise werden Daten gesammelt, um eine Kausalität (Ursache-Wirkungsbeziehung) herzustellen:

• Mit Experimenten sind kausale Zusammenhänge i.A. viel einfacher nachzuweisen als mit Erhebungen

Kausalität und Erhebungen

- In Erhebung: weder Kontrolle über Einflussgrössen noch über Mechanismus, wie Versuchsobjekte den unterschiedlichen Behandlungsgruppen zugeordnet werden - im Gegensatz zu Experimenten
- ullet Unter Umständen beeinflussen versteckte Einflussgrössen sowohl die "Behandlungsart" wie auch die Zielgrösse ullet confounders
- In einer Erhebung wird unter Umständen eine Beziehung zwischen Behandlungsart und Zielgrösse festgestellt, obwohl es keine Ursache-Wirkungsbeziehung gibt

Beispiel von zufälligen Beziehungen: Nobelpreisdichte versus Schokoladenkonsum

New England Journal of Medicine

http://www.tylervigen.com/spurious-correlations

Ziele der statistischen Versuchsplanung

- Ziel: Planung des Experiments, so dass die Daten mit statistischen Methoden zielführend ausgewertet werden können
- Aspekte der Versuchsplanung:
- Vergleich von Behandlungen:
 - Bsp.: sechs Weizensorten werden verglichen bezüglich ihres Ertrages und ihrer Resistenz gegen versalzene Böden
- Variablen-Screening:
 - ► Falls viele potentiell einflussreiche Grössen in einem System: In Screening-Experiment werden wichtige Grössen identifiziert

Ziele der statistischen Versuchsplanung

- Bestimmen von optimalen Einstellungen:
 - Einstellung suchen, die zu einem optimalen Prozessverhalten (z.B. Ertrag) führt
- Systemrobustheit:
 - Optimierung der Systemeinstellungen, so dass das System oder der Prozess möglichst unempfindlich gegen unkontrollierbare Störungen ist

Grundelemente der Versuchsplanung - Beispiel Polio

- Polio verursachte in der ersten Hälfte des letzten Jahrhunderts Hunderttausende von Todesfällen
- 1950: Entwicklung diverser Impfstoffe, darunter jener von Jonas Salk
- 1954: Geshundeitsbehörden beschliessen, eine klinische Studie zur Wirksamkeit des Impfstoffes durchzuführen
- Wie sollte die Wirksamkeit des Imfpstoffes "gemessen" werden?
- Naives Vorgehen:
 - Wir verabreichen einer sehr grossen Anzahl von Kindern den Impfstoff
 - ► Vergleich der Auftretenshäufigkeit von Polio mit Auftretenshäufigkeit vom vorangehenden Jahr
 - ▶ Problem: Polio ist eine sich epidemisch verbreitende Krankheit

Versuchsplan - Beispiel Polio

- Wir könnten aufgrund von diesem naiven Versuchsplan nicht zwischen dem Effekt vom Jahr und dem Effekt des Impfstoffes unterscheiden
- Effekte sind vermischt (eng. confounded)
- Kontrollgruppe

Kontrollgruppe - Beispiel Polio

- Frage: Wie bilden wir die Kontrollgruppe?
- Vorschlag: Kinder, deren Eltern in die Studie einwilligen, kommen in die Behandlungsgruppe, die anderen in die Kontrollgruppe
- Einwand:

- Reiche Eltern willigen eher in die Studie ein; deren Kinder sind aus Hygienegründe weniger resistent gegen Polio
- Lösung: Randomisierung zufällige Zuordnung der Kinder mit Einwilligung der Eltern in Kontroll- und Behandlungsgruppe

Randomisierte Doppelblind-Studie : Beispiel Polio

- Kindern in der Kontrollgruppe wurde ein Placebo verabreicht weder Kinder noch behandelnde Ärzte wissen, ob es sich um ein Placebo oder um den zu testenden Impfstoff handelt \rightarrow *Doppelblind-Studie*
- Grund: Sicherstellen, dass der Effekt beim Versuch auf Impfstoff zurückzuführen ist und nicht auf die "Idee", behandelt zu werden

	Group size	Rate (= per 100'000)	
Treatment	200'000	28	
Control	200'000	71	
No consent	350'000	46	< P

 Hochsignifikanter Unterschied zwischen den Infektionsraten zwischen Behandlungsgruppe und Kontrollgruppe

Grundelemente der Versuchsplanung

- Unterscheidung zwischen primären und sekundären Variablen
 - Primäre Variablen: erklärende Variablen, die direkt mit der Fragestellung der Studie zusammenhängen (Prüf-Faktor)
 - Sekundäre Variablen: erklärende Variablen, die nicht direkt mit Fragestellung zusammenhängen, aber kontrollierbar sind (Stör-Faktor)
- Blockbildung: Unterscheidung zwischen homogenen Untersuchungseinheiten (Teilmengen der Versuchseinheiten), z.B.
 - ▶ Produktions-Los, Herkunft von Rohmaterialien, Altersgruppen von Patienten, Schulklassen, Ställe, Äcker, Würfe von Versuchstieren usw.
 - Unterscheidung zwischen Behandlungseffekt und Blockeffekt
- Randomisierung: Zufällige Zuordnung von Versuchseinheiten zu Behandlungsart \rightarrow Schutz vor Confounding; Bsp. Polio-Impfung
- Wiederholungen führt zu höherer Genauigkeit der Schätzung

Versuchspläne

- Vollständig randomisierter Versuchsplan:
 - Plan mit einer Faktor-Variablen (= primärer Faktor) mit mehreren Stufen
 - ► Pro Stufe wird eine oder mehrere Messungen gemacht, aber immer gleich viele
- Block-Design:
 - ▶ Neben primärem Faktor wird auch ein sekundärer Stör-Faktor berücksichtigt. Falls jede Stufe des ersten Faktors (z.B. Behandlung) in jedem Block mindestens einmal zur Anwendung kommt \rightarrow Versuchsplan mit vollständigen Blöcken

Versuchspläne

- Vollständiger faktorieller Versuchsplan:
 - ▶ Plan enthält k Faktoren (Variablen) mit zwei oder mehr Stufen
 - vollständiger faktorieller Versuchsplan : enthält alle Kombinationen der Versuchsbedingungen
- 2^k-faktorieller Versuchsplan: jeweils nur zwei Stufen (z.B. "hoch" gegen "tief") pro Faktor