Database Systems: The Complete Book

▼□Chapter 22

▼□Section 1

▼□1

- □a 25%
- □b 0%
- □c33%
- □d 40%
- □e 50%
- □f{milk, beer}
 {milk, pepsi}
 {beer, pepsi}
- □g {milk, beer}
- □h {pepsi} => milk
 has confidence 75%

▼□Section 2

□1 F₁ = {milk, coke, beer, pepsi, juice}
 F₂ = {milk, beer}, {milk, pepsi}, {beer, pepsi}
 F₃ = { }

▼□2

- \Box a a[n], where n = i₁ + n*i₂ + 2*n*i₃ + 3*n*i₄ + ...
- □b n²
- \Box c Hash the tuple (i₁, i₂, ..., i_n) to locate the entry to store the count.
- □d pn

▼□3

- \Box a (1/10)(sb) + (1/100)(sb)
- \Box b $(1/10)^{2(sb)}$ + $(1/1000)^{(sb)}$ + $(1/10000)^{(sb)}$

▼□4

- \Box a (1/10)(sb) + (1/100)(sb)
- \Box b (1/10)^{2(sb)} + (1/1000)^(sb) + (1/10000)^(sb)

▼□5

- \Box a $(1/10)^{2(sb)} + (1/1000)^{(sb)} + (1/10000)^{(sb)}$
- \Box b $(1/1000)^{(sb)} + (1/10000)^{(sb)} + (1/10000000)^{(sb)} + (1/1000000)^{(sb)}$

$\mathbf{V} \square 6$

- a Map: Each processor counts all local items.
 Reduce: Each processor is assigned to count a single item.
- □b Map: Each processor counts all local items.

Reduce: Each processor is assigned to count pairs for a bucket.

▼□Section 3

• $\Box 1 \{1, 2, 3, 4, 5\} \{1, 6, 7\} \Rightarrow 2/7$ $\{1, 6, 7\} \{2, 4, 6, 8\} \Rightarrow 1/6$ $\{1, 2, 3, 4, 5\} \{2, 4, 6, 8\} \Rightarrow 1/7$

• □2 'abc '

'bc d'

'c de'

' def'

'def '

'ef g'

'f gh'

'ghi'

▼□3

- \Box a{3, 3, 9}
- \Box b{2, 5, 0}
- $\Box c\{2, 7, 4\}$

	Estimated	Jaccard similarity
{a,b}	1/5	1/6
{b,c}	1/5	2/5
{a,c}	0	1/5

▼□4

- □a{3, 6, 3}
- \Box b $\{7, 5, 5\}$
- $\Box c\{7, 5, 5\}$

	Similarity	Jaccard similarity
{a, b}	0	1/5
{b, c}	1	2/5
{a, c}	0	1/5

• 🗆

▼□5

• \Box a Map: Compute minhash for each row.

Reduce: Process results locally.

• 🗆 b Map: Each processor computer minhash-so-far. Do until all data has been processed.

▼□Section 4

▼□1

- □a 890,000
- □b 70%
- □c30%

▼□2

b	r	s
24	1	1
12	2	.97
8	3	.67
6	4	.32
4	6	.06
3	8	.01
2	12	0
1	24	0

• □a

b	r	s
24	1	.03
12	2	.24
8	3	.44
6	4	.57
4	6	.73
3	8	.82
2	12	.90
1	24	.97

• □b

▼□Section 5

▼□1

	Α	В	С	D
В	4	3	5	4
С	4	8	3	2
D	5	6	5	
E	7	8		
F	5			

• □a

	Α	В	С	D
В	3	2	3	3
B C	2	4	3	1
D	4	5	3	
E	5	5		
F	5			

- □b
- $\Box 21$. d(x,y) >= 0 for all x,y summation of positive numbers are always postive

2.
$$d(x,y) = 0$$
 if $x=y$ if $(x,y) = 0$, then every $xi - yi = 0 \Rightarrow xi = yi$

3.
$$d(x,y) = d(y,x)$$

|x-y| = |y-x|

4.
$$d(x,y) \le d(x,z) + d(z,y)$$

$$(|x_1-y_1|^r+...+|x_n-y_n|^r)^{1/r} <= (|x_1-z_1|^r+...+|x_n-z_n|^r)^{1/r}+(|z_1-y_1|^r+...+|z_n-y_n|^r)^{1/r}$$

Let
$$z_n = y_n + a_n$$
.

$$(|x_1 - y_1|^r + ... + |x_n - y_n|^r)^{1/r} \le (|x_1 - y_1 - a_1|^r + ... + |x_n - y_n - a_n|^r)^{1/r} + ...$$

Notice that
$$|x_i - y_i|^r < |x_i - y_i - a_i|^r$$

Therefore, 4 is true.

	Α	В	С	DF	Е
E	5.39	5.10	3.00	2.55	
DF	4.53	5.70	3.54		
С	2.83	2.24			
В	3.00				
Α					

	Α	ВС	DF	E
E	5.39	4.03	2.55	
DF	4.53	4.61		
ВС	2.69			
Α				

	Α	BC	DFE
DFE	4.71	4.30	
ВС	2.69		
Α			

• □a

Clusters: {ABC, DFE}

	Α	BF	С	D	Е
E	5.39	5.10	3.00	3.16	
D	4.12	5.66	3.61		
С	2.83	3.61			
BF	4.00				
Α					

	Α	BFD	С	Е
Е	5.39	5.10	3.00	
С	2.83	3.61		
BFD	4.12			
Α				

	AE	BFD	С
С	3.61	3.61	
BFD	5.10		
AE			

• □b

Clusters: {BFDAE, C}

	Α	В	С	D	Е	F
F	5	5	3	1	2	
E	5	5	3	3		
D	4	4	3			
С	2	2				
В	3					
Α						

	AE	В	С	D	F
F	5	5	3	1	
D	4	4	3		
С	3	2			
В	5				
AE					

	AEB	C	D	F
F	5	3	1	
D	4	3		
С	3			
AEB				

	AEBF	C	D
D	4	3	
С	3		
AEBF			

• **□**4

Clusters: {AEBFC, D}

▼□5

- □aB, F, A
- □b C, F, A
- □6 N = 4

 $SUM_i = (6, 12)$

 $SUMSQ_i = (14, 46)$

▼□7

- □a 2.12
- □b3.20