ECE 3334 Group 4 Week 4 Presentation

Solar Panel Powered Microgrid and Monitoring Station

Kenneth Cody

Computer Engineer

Justin Price

Computer Engineer

Juan Torres

Electrical Engineer

Jared Tulio

Electrical Engineer – Team Lead

February 14, 2018

System Description

- The microgrid will use a solar panel to charge a battery while the different sections of the grid are monitored using sensors.
- System data is set via Xbee Wi-Fi Modules to a base station built using a Raspberry Pi where data about the system is displayed on a touchscreen.

Hardware Flowchart

Division of Labor

Base Station Software and UI: Kenneth

Micro-grid Sensors and Communication: Justin

Battery and Power: Juan

Power Conversion and Grid Construction: Jared

Deliverables for Previous Week

- Research monitoring sensors Completed
- Research Python Completed
- Research Kivy- Incomplete
- Research DC-AC Converter Completed
- Research 100W solar panel Completed
- Research XBee Complete
- Submit budget Complete

Safety

- Be sure to have safety certificates for Lab Bench
- Check for frayed or worn wires
- Be sure not to daisy chain wires
- Be sure not to overload a powerstrip

Grape Solar 100W Panel

Model	GS-STAR-100W		
Maximum Power P _{max}	100 W* (0%, +6%)		
Voltage at Maximum Power Point V _{mpp}	18.0 V		
Current at Maximum Power Point Impp	5.56 A		
Open Circuit Voltage V _{oc}	21.9 V		
Short Circuit Current Isc	6.13 A		
Module Efficiency (%)	14.63%		
Temperature Coefficient of V₀c	-0.32% /°C		
Temperature Coefficient of Isc	+0.04% /°C		
Temperature Coefficient of P _{max}	-0.45% /°C		
Weight	8.9 kg (19.66 lbs)		
Module Dimension (L x W x T)	1020mm x 670mm x 35mm (40.16" x 26.37" x 1.38")		

Other Performance Data

Power Tolerance	Operating Temperature	Max Series Fuse Rating	NOCT*
0%, +6%	-40 °C to +85 °C	10A	45 +/-2°C

[1]

Buck Converter – High Amperage

SMAKN® DC-DC High Power 20A Buck

*Input voltage: DC10V-40V 10V enter below the undervoltage protection

*Output voltage: 0.8V-13V (onboard potentiometer adjustable)

*Cooling: natural cooling

*Rated power: 150W (natural cooling)

*Rated power: 250W (plus fan forced cooling)

*Current Rating: 20A

*Peak current: 30A ≥35A enter overcurrent

*Efficiency: 96% (24V switch 12V / 10A measured)

*Output Ripple: 200-300mV and input-output differential and power-related

*Operating frequency: 100KHz

*Load regulation ≤1% (0-30A output drop of about 50mV)

*Short circuit protection: There can be a long short re-power recovery

*Reverse protection: reverse current is 0

*Over-temperature protection: There reaches a certain temperature automatically shut down output

Dimensions and wiring instructions:

*Dimensions: 64 * 61.5 * 32mm including heat sink, fan-free

*Fixation: four M3 screws

*Wiring: high-current-free solder terminals

Vin +, Vin- input positive and negative

OUT +, OUT- output positive and negative

[2] *Work instructions: blue for the output voltage is normal.

*Scope: 12V turn 5V, 3.3V, 24V switch 12V, 9V, 5V, 3.3V, 36V switch 12V, other voltage conversion deration is required.

Buck Converter

[3]

Charge Controller

ALLPOWERS 20A Solar Charger Controller

Specification:

*Voltage: DC 12V/24V

*Self-consuming: 10MA

*Rated Charge Current: 20A

*Rated Load Current: 20A

*Over charge Protection: 14.4V/28.8V *Over charge Floating charge: 13.7V/27.4V *Charge recover voltage: 12.6V/25.2V *Over discharge Protection: 10.7V/21.4V *Over discharge Recover: 12.6V/25.2V

*USB output: 5V/3A

*Operating temperature: -35°C-60°C *Size:150 * 78 * 35mm / 5.9 * 3 * 1.4in

Features:

- --Automatically manage the working of solar panel and battery in solar system.
- --Overloading and short-circuit protection.
- --Build-in short-circuit protection, open-circuit protection, reverse protection, over-load protection.
- -- Protection from lightning strike.
- --Prolong the battery life cycle and keep the load work well.
- -- Easy to set up and operate.
- --Suitable for small solar energy system.

[4]

- The focus of a DC to AC inverter or DAC is to transform DC power to AC power similar to that of a wall outlet
- There are two forms of a DAC's output: a modified sine wave and a pure sine wave.

Figure 1: Pure Sine Wave vs Modified Sine Wave [5]

- A pure sine wave output is identical to that of a normal wall outlet.
- In order to create a pure sine wave a Oscillator was utilized.
- Oscillation occurs when the feedback system can not find a stable steady-state because its transfer function can not be satisfied.
- The key to designing an oscillator is forcing the denominator in Fig 3 to zero.
- AB must be set to -1 this requires a phase shift of 180° .

Figure 2: Feedback System [6]

$$\frac{V_{OUT}}{V_{IN}} = \frac{A}{1 + A\beta}$$

Figure 3: Loop Equation [6]

- In order to have an AB of -1 and a phase shift of 180° a Bubba Oscillator is utilized.
- A Bubba Oscillator can create pure sine waves using op amps and RC circuits.
- The RC networks within the Bubba oscillator schematic ensure a phase shift will not occur over time.
- A Bubba Oscillator is made up of four op amps running in series with RC networks.
- Each op amp provides a 45° phase shift resulting in a total phase shift of 180°.
- The total attenuation of the circuit is ¼ of the original signal therefore A or gain must be equal to 4.

$$A\beta = A\left(\frac{1}{RCs + 1}\right)^4$$

Figure 4: Bubba Loop Equation [6]

$$\phi = \tan^{-1}(1) = 45^{\circ}$$

Figure 5: Phase of Bubba [6]

$$|\beta| = \left| \left(\frac{1}{j+4} \right)^4 = \frac{1}{\sqrt{2}^4} = \frac{1}{4} \right|$$

Figure 6: Magnitude of Bubba [6]

- In the region where the phase shift is 180°, the frequency of oscillation is very sensitive to the phase shift. Therefore, the circuit requires that the phase shift be kept within narrow limits so that the changes in frequency are small at 180°.
- Each op amp gets the circuit more stable with four sections being the most stable frequency stability.

Figure 7: Phase Plot of RC Sections [6]

- Black Box shows the Gain being set to 4
- Blue Boxes sets the desired frequency using the equation:

$$f = \frac{1}{2\pi RC} = \frac{1}{2\pi (5.6k)(470n)} = 60.4$$
Hz

Figure 8: Bubba Oscillator Schematic

- Each graph shows output at each op amp.
- B A is the length of a period of the sinusoid $B A = \frac{1}{16.58*10^{-3}} = 60.31 \text{Hz}$

Figure 9: Bubba Oscillator Schematic

17

• LM348 Quadruple Operational Amplifier

LM348 [, OR NS	
10UT [1	14	40UT
1IN-[2	13	4IN-
1 IN+[3	12	4IN+
V _{CC+} [4	11	V _{CC} -
2IN+[5	10	3IN+
2IN-[6	9	3IN-
2OUT [7	8	3OUT

Figure 10: LM348 Pinout [7]

Complexed to a V - V - V - V - V - V - V - V - V - V
Supply voltage, V _{CC+} (see Note 1): LM148
LM248, LM348
Supply voltage, V _{CC} (see Note 1): LM148
LM248, LM34818 \
Differential input voltage, V _{ID} (see Note 2): LM148
LM248, LM348
Input voltage, V _I (either input, see Notes 1 and 3): LM148
LM248, LM348
Duration of output short circuit (see Note 4)
Operating virtual junction temperature, T _{.1}
Package thermal impedance, θ _{JA} (see Notes 5 and 6): D package
N package
NS package
Package thermal impedance, θ _{JC} (see Notes 7 and 8):FK package
J package 15.05°C/V
Case temperature for 60 seconds: FK package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: J package
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: D, N, or NS package 260°C
Storage temperature range, T _{stg} —65°C to 150°C
Figure 11: LM348 Datasheet [7]

Digi XB24-AWI-001

RF DATA RATE		250 kbps	
INDOR/URBAN RANGE		100 ft (30 m)	
OUTDOOR/RF LINE-OF-SIGHT RANGE		300 ft (100 m)	
COTTO OTOTO OT STO	111 11100000	*	
SERIAL DATA INTERFACE		OS UART	
	3.3V OM		

SUPPLY VOLTAGE	2.8 - 3.4VDC
RANSMIT CURRENT	45 mA @ 3.3VDC
RECEIVE CURRENT	50 mA @ 3.3VDC
POWER-DOWN CURRENT	<10 uA @ 25° C

- Outdoor range of 300 ft (Blue box)
- Connects to Microcontroller using UART (Orange box)
- Configured with AP commands
- VCC of 3.3V (Green box)

XBEE module Specifications [10]

XB24-AWI-001 Pinout

Module Pinout [2]

Pin#	Name	Direction	Description		
1	VCC	120	Power supply		
2	DOUT	Output	UART Data Out		
3	DIN / CONFIG	Input	UART Data In		
4	DO8*	Output	Digital Output 8		
5	RESET	Input	Module Reset (reset pulse must be at least 200 ns)		
6	PWM0 / RSSI	Output	PWM Output 0 / RX Signal Strength Indicator		
7	PWM1	Output	PWM Output 1		
8	[reserved]		Do not connect		
9	DTR / SLEEP_RQ / DI8	Input	Pin Sleep Control Line or Digital Input 8		
10	GND	(*)	Ground		
-11	AD4 / DIO4	Either	Analog Input 4 or Digital I/O 4		
12	CTS / DIO7	Either	Clear-to-Send Flow Control or Digital I/O 7		
13	ON / SLEEP	Output	Module Status Indicator		
14	VREF	Input	Voltage Reference for A/D Inputs		
15	Associate / AD5 / DIO5	Either	Associated Indicator, Analog Input 5 or Digital I/O 5		
16	RTS / AD6 / DIO6	Either	Request-to-Send Flow Control, Analog Input 6 or Digital I/O		
17	AD3 / DIO3	Either	Analog Input 3 or Digital I/O 3		
18	AD2 / DIO2	Either	Analog Input 2 or Digital I/O 2		
19	AD1 / DIO1	Either	Analog Input 1 or Digital I/O 1		
20	AD0 / DIO0	Either	Analog Input 0 or Digital I/O 0		

Pin Definitions [11]

MSP430G2553 ADC

- 10 bit ADC with references V+=3.3 and V-=0, giving a minimum step of around 3mV
- Result of conversion written to ADC10MEM
- Up to 8 channels can be read sequentially with CONSEQx = 01
- Starts at channel selected with INCHx and goes down to A0
- Can start the conversion by toggling the ADC10SC bit [12]

Base Station: Raspberry Pi 3 Model B

Specifications:

SoC: Broadcom BCM2837

CPU: 4× ARM Cortex-A53, 1.2GHz

GPU: Broadcom VideoCore IV **RAM:** 1GB LPDDR2 (900 MHz)

Networking: 10/100 Ethernet, 2.4GHz 802.11n wireless

Bluetooth: Bluetooth 4.1 Classic, Bluetooth Low Energy

Storage: microSD

GPIO: 40-pin header, populated

Ports: HDMI, 3.5mm analogue audio-video jack, 4× USB

2.0, Ethernet, Camera Serial Interface (CSI), Display

Serial Interface (DSI)

Power: 5V, 2A power supply necessary to power the

Raspberry Pi and the attached touchscreen

Raspberry Pi 3 Model B[13]

Base Station: Raspberry Pi 3 7" Touchscreen

Features & Benefits of the Pi LCD Touch Screen:

- Multi-touch capacitive touch
- 7 inch display
- 800 x 480 pixel resolution at 60 frames per second
- No electronic interference
- Full Raspbian OS functionality without a keyboard
- Kivy touch screen development software available
- Connects to the Raspberry Pi board using the DSI port
- Adapter board is used to power the display
- Will require the latest version of Raspbian OS to operate

Raspberry Pi 7" Touchscreen[14]

Base Station: GUI Software

"Open source Python library for rapid development of applications that make use of innovative user interfaces, such as multi-touch apps."[15]

Kivy allows for touchscreen compatible GUI development on the Raspberry Pi 3.

<u>KivyPie</u> - Image for Raspberry Pi containing Kivy <u>Installation for Raspberry</u> Pi

532 Mb

Base Station: GUI

24

The GUI displayed on the touchscreen will allow users to select any section of the microgrid to access detailed information about the specific section. The GUI will also display basic information by default without any buttons being pressed.

System Diagram with Interactive Touch
Buttons

Data Display

Raspberry Pi Touchscreen Display

Base Station: Kivy Application

To create the interactive system diagram, the box layout is used and two horizontal rectangles are created, the top box contains the system diagram graphic with touch events dedicated to each separate system part.

```
layout = BoxLayout(orientation='vertical')
btn1 = Button(text='Hello')
btn2 = Button(text='World')
layout.add_widget(btn1)
layout.add_widget(btn2)
```

Example Box Layout Initialization[17]

Base Station: Kivy Application Cont'd.

The second horizontal rectangle will display the system information about the selected part until another part is selected via touch. To do this the Kivy text module is used and the data passed to the Raspberry Pi from the Xbee will be displayed in the box.[18] The data that will be shown includes the current and voltage of solar panel, power consumption of the load. A button to remotely shut down the system will also be included.

Base Station: Learning Python

Resources:

- 1. The Python Tutorial, Python.org [19]
- 2. Learn Python in 10 Minutes, Stavros.io [20]
- 3. Hands on Python, Dr. Andrew N. Harrington [21]

Total Budget

Lab 1 - Group 2	Running Total			Total Estimate			Start Date	2/1/2018	
D:								0/7/0040	
Direct Labor:	D-4- # I-	Live		D-4- # I	11		Today	2/7/2018	
Category or individual:	Rate/Hr	Hrs	044400	Rate/Hr	Hrs	00.070.00		F/F/0040	
Kenneth	18		\$144.00			\$3,870.00	End Date		
Jared	18		\$144.00	18		\$3,870.00	Days Past		
Justin	18		\$144.00	18		\$3,870.00	Total Days		
Juan	18	8	\$144.00	18	215	\$3,870.00	Days Left	87	
DL Subtotal (DL)		Subtotal:	\$576.00		Subtotal:	\$15,480.00			
Labor Overhead	rate:	100%	\$576.00	rate:	100%	\$15,480.00			
Total Direct Labor (TDL)			\$1,152.00			\$30,960.00			
Contract Labor:									
_ab 1 Help	\$15	0	\$0.00	\$15	0	\$0.00			
Lab 2 Help	\$18	0	\$0.00	\$18	0	\$0.00			
Lab 3 Help	\$18	0	\$0.00	\$18	10	\$180.00			
Lab 4 Help	\$18	0	\$0.00	\$18	15	\$270.00			
Lab 5 Help	\$25	0	\$0.00	\$25	10	\$250.00			
Tutors	\$40	0	\$0.00	\$40	15	\$600.00			
Lab Assistants	\$40	0	\$0.00	\$40	15	\$600.00			
Voodcock	\$100	0	\$0.00	\$100	5	\$500.00			
Prof. Rav	\$200	0	\$0.00	\$200	20	\$4,000.00			
Total Contract Labor (TCL)	\$200	U	\$0.00	\$200	20	\$6,400.00			
Total Contract Labor (TCL)			\$0.00			\$6,400.00			
Direct Material Costs:			\$0.00			\$650.00			
(from Material Cost worksheet)								<u>l</u>	
Total Direct Material Costs: (TDM)			\$0.00			\$650.00			
Equipment Rental Costs:	Value	Rental Rate		Value	Rental Rate		Date begin	Date end (or	today)
Oscilloscope	\$5,300.00		\$63.60			\$985.80	2/1/2018	5/5/2018	,,
Function Generator	\$500.00		\$6.00			\$93.00	2/1/2018	5/5/2018	
DMM	\$958.00		\$11.50			\$178.19	2/1/2018	5/5/2018	
Power Supply	\$1,700.00	0.20%	\$20.40	\$1,700.00		\$316.20	2/1/2018	5/5/2018	
Soldering Station	\$100	0.20%	\$1.20	\$100.00	0.20%	\$18.60	2/1/2018	5/5/2018	
outoning outside.		0.20%	******	V 100.00	0.2070	710.00		0.0.2010	
Total Rental Costs: (TRM)			\$101.50			\$1,573.19			
Total TDL+TCL+TDM+TRM			\$1,253,50			\$39,583,19			
Business overhead		100%	\$1,253.50		100%	\$39,583.19			
Total Cost:		Current	\$2,506.99		Estimate	\$79,166.38			

Total Budget Cont'd

Name	Cost Q	uantity Web	site Notes	Purchase Date	Total	TOTAL
ESP8266 WiFi Module	\$6.95	2 SparkFun	NA		\$13.90	\$538.38
100W-Solar Panel - Grape Solar	\$97.00	1 Home Depot	NA		\$97.00	
35Ah 12V Lead Acid Battery	\$64.99	1 Amazon	NA		\$64.99	
7Ah 12V Lead Acid Battery	\$28.49	1 Amazon	Pack of 2		\$28.49	
Buck Converter - High Amperage	\$26.00	2 Amazon	NA		\$52.00	
Buck Converter - Low Amperage	\$8.00	4 Amazon	NA		\$32.00	
Rasberry Pi 3	\$35.00	1 Allied Electro	nics NA		\$35.00	
Rasberry Pi Touch Screen	\$70.00	1 Allied Electro	nics NA		\$70.00	
Rechargeable Battery	\$15.00	1 Amazon	NA		\$15.00	
Current Sensor	\$20.00	3 Mouser	NA		\$60.00	
Power Inverter	\$70.00	1 Amazon	NA		\$70.00	

Gantt Chart

Deliverables for Next Week

- Work on ADC Code Justin
- Work on Raspberry Pi Code Kenneth
- Continue to Research Kivy Application Kenneth
- Research Power Controller System Jared, Juan

References

- [1] https://www.homedepot.com/catalog/pdflmages/1d/1d1b46a0-4979-46fa-b5d2-73cc1f950f30.pdf
- [2] https://www.amazon.com/SMAKN%C2%AE-Adjustable-Converter-10-40V-0-8-13V/dp/B00VY1CYL2
- [3] https://en.wikipedia.org/wiki/Buck_converter
- [4] https://www.walmart.com/ip/PWM-30A-Solar-Charge-Controller-Intelligent-LCD-Display-Solar-Panel-Controller-12V-24V-Solar-Panel-Charge-
- $\frac{Regulator/949471097?wmlspartner=wlpa\&selectedSellerId=15389\&adid=2222222222227093695580\&wmlspartner=wmtlabs\&wl0=\&wl1=g\&wl2=c\&wl3=216277860649\&wl4=pla-eqwl2=c&wl3=c&wl3$
- [5] https://www.altestore.com/blog/2015/10/pure-sine-wave-vs-modified-sine-wave-whats-the-difference/
- [6] https://www.ti.com/lit/an/sloa060/sloa060.pdf
- [7] https://www.hscott.net/bubba.pdf
- [8] https://web.wpi.edu/Pubs/E-project/Available/E-project-042507-092653/unrestricted/MQP D 1 2.pdf
- [9] http://www.ti.com/lit/ds/symlink/lm348.pdf
- [10] https://www.mouser.com/ds/2/111/ds xbeemultipointmodules-19140.pdf

References

- [11] https://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf
- [12] http://www.ti.com/lit/ug/slau144j/slau144j.pdf
- [13] https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
- [14] https://www.alliedelec.com/raspberry-pi-raspberry-pi-7-touchscreen/
- [15] https://kivy.org/#home
- [16] https://kivy.org/docs/api-kivy.core.window.html#kivy.core.window.WindowBase.on_touch_down
- [17] https://kivy.org/docs/api-kivy.uix.boxlayout.html#module-kivy.uix.boxlayout
- [18] https://kivy.org/docs/api-kivy.core.text.html
- [19] https://docs.python.org/3/contents.html
- [20] https://www.stavros.io/tutorials/python/
- [21] http://anh.cs.luc.edu/handsonPythonTutorial/

Questions?