

Quenching of spectroscopic factors in ^{10,12}Be transfer reactions

M. Lozano-González, A. Matta, B. Fernández-Domínguez, F. Delaunay, J. Lois-Fuentes

USC-IGFAE and LPC-Caen

ASTRANUCAP and CPAN Days 2024

A recap on spectroscopic factors

Spectroscopic factors shed light on the occupancy of single-particle states:

$$\left. \frac{d\sigma}{d\Omega} \right|_{\mathrm{exp}} = C^2 S \cdot \left. \frac{d\sigma}{d\Omega} \right|_{\mathrm{SP}}, \quad \sum C^2 S = (2j+1) \ \mathrm{in} \ \mathrm{IPSM}$$

Experimentally:

Reduction of $\sim 65 \%$!

- **Short-range** correlations: tensor forces,...
- Long-range: vibrations, giant resonances,...

CPAN | SF quenching

A long-standing puzzle

A trend with asymmetry energy $\Delta S \equiv \pm \left(S_p - S_n\right)$ is found depending on the experimental **probe!**

T. Aumann et al. Prog. Part. Nucl. Phys. 118 (2021)

 \Rightarrow measure towards more exotic nuclei: $|\Delta S| \uparrow$

CPAN | SF quenching Page 2/15

Importance of GMF

Towards exotic nuclei (loosely bound or halo), a **geometrical mismatch factor** emerges from the very different w.f. in the overlap:

N. K. Timofeyuk, private communication (in E748 proposal)

 \Rightarrow Need to correct C^2S by its value!

CPAN | SF quenching Page 3/15

Physics case of E748

E748 @ GANIL back in 2017. Using ^{10,12}Be(d,t|³He) reactions to:

CPAN | SF quenching Page 4/15

Experimental technique

Tradional solid target experiment @ LISE

CPAN | SF quenching

A glance at the analysis

3 E_x from missing mass technique $E_{\mathrm{beam}} + (E,\theta)_{\mathrm{Lab}} \to E_x$

CPAN | SF quenching Page 6/15

Results: (In)elastic ^{10,12}Be(d,d)^{10,12}Be

The **ground state** provides a means to test our normalization

First 2^+ is seen in both cases but not yet exploited!

CPAN | SF quenching Page 7/15

Results: (In)elastic ^{10,12}Be(d,d)^{10,12}Be

Experimental cross-section formula:

$$\frac{d\sigma}{d\Omega} = \frac{N}{N_{\mathsf{beam}} N_{\mathsf{targets}} \epsilon \Delta \Omega} = \frac{N}{N_{\mathsf{beam}} \alpha \epsilon_{\mathsf{sim}} \Delta \Omega}$$

- Target thickness not measured during experiment:
 - Set it from normalization of elastic

- ZDD had a poor performance.
- \blacksquare Estimated ~ 20 –30 %

Agglutination of unknown factors: $\alpha = N_{\text{targets}} \cdot \epsilon_{\text{instrinsic, ZDD}}$

CPAN | SF quenching Page 7/15

Results: (In)elastic ^{10,12}Be(d,d)^{10,12}Be

The best OMP potentials can also be deduced from the fit quality.

CPAN | SF quenching

Results: transfer

The **ground states** of the heavy recoils are populated.

First state at 2.7 MeV of ⁹Li is seen too! •

Results: transfer

Fresco is employed to perform the <code>DWBA</code> calculations.

OMP

- In: set from elastic
- Out: Pang or HT1p
 D. Y. Pang et al., PRC 79, 91 (2009, 2015)

Light overlap

 $\langle \mathsf{t}, \overline{\mathsf{s}} \mathsf{He} | \mathsf{d} \otimes \mathsf{n}, \mathsf{p} \rangle$

Accurate GFMC

I. Brida et al., PRC 84 (2011)

Heavy overlap

 $\langle ^{10,12}\text{Be}|^{9,11}\text{Be}, \text{Li}\otimes \text{n}, \text{p}\rangle$

A standard WS $r_0=1.25\,\mathrm{fm}$, $a=0.65\,\mathrm{fm}$

Heavy overlap

 $\langle {}^{10,12}\text{Be}|{}^{9,11}\text{Be},\text{Li}\otimes n,p\rangle$

WS from novel Source Term Approach (STA)

N. Timofeyuk PRC 81 (2010)

CPAN | SF quenching Page 8/15

Results: transfer

Angular distributions for all the states

Results: ¹⁰Be(d,t)⁹Be

SM calculation using **SFO-tls** interaction

T. Suzuki, T. Otsuka PRC 78 (2008)

 ${\bf STA}$ yields $40\,\%$ of SM value. Better accord with exp values

CPAN | SF quenching Page 10/15

Results: ¹⁰Be(d, ³He)⁹Li

Same significant differences SM-STA

Worse agreement within STA data $\sim 40\,\%$ discrepancies

Results: ¹²Be(d, ³He)¹¹Li

Gigantic quenching, signature of **GMF** playing a role

No STA predictions. In contact with N.Timofeyuk to develop them

Overall results

The reduction factor $R_S = C^2 S_{\text{exp}}/C^2 S_{\text{SM}}$ is computed:

SM compatible with current systematics!

¹¹Li requires GMF correction (pending) **STA** improves SRC modelling but falls short

CPAN | SF auenchina

Conclusions

Angular distributions for ⁹Be, Li and ¹¹Li have been extracted and compared with DWBA

R_S for SM agrees with literature, while STA still understimates NN correlations

¹¹Li needs correction for a major geometrical mismatch value

STA requires further developments to reach ¹¹Li

CPAN | SF quenching Page 14/15

Acknowledgments

The E748 collaboration:

- Santiago:B. FernándezI PC-Caen:
- A. Matta F. Delaunay
 - N. L. Achouri F. Flavigny
 - J. Gibelin
 - M. Marques N Orr
- IJCLab:
 - D. Beaumel M. Assié
 - IVI. ASSIE
 - Y. Blumenfeld
 - S. Franchoo
 - A. Georgiadou
 - V. Girard-Alcindor
 - F. Hammache
 - N. de Séreville
 - A. Meyer
 - I Stefan

- GANIL:
 - B. Jacquot
 - O. Kamalou
 - A. Lemasson
 - M. Rejmund
 - T. Roger
 - O. Sorlin
 - J.C. Thomas
 - M. Vandebrouck
 - B. Bastin
 - F. de Oliveira
 - C. Stodel
- RIKEN:S. Koyama
 - D. Suzuki
- Surrey:N. Timofeyuk

Status with light isotopes

Several experiments allowed for the extraction of C^2S with Li-induced (d, 3 He) reactions:

Several challenges in this region:

Dealing with **unbound** nuclei (¹⁰He)

2 Many-body dynamics and/or core excitations

CPAN | SF quenching Page 15/15

What happens with ¹¹Be?

It shows a strong inhibition of the ground state.

Impossible to disentangle excited states 😕

Kinematical lines

CPAN | SF quenching Page 15/15