

From Cascades to Multifractal Processes

Rolf Riedi

Dept of Statistics

WAMA2004, Cargese, July 2004

Report Documentation Page			Form Approved OMB No. 0704-0188	
<p>Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.</p>				
1. REPORT DATE 07 JAN 2005	2. REPORT TYPE N/A	3. DATES COVERED -		
4. TITLE AND SUBTITLE From Cascades to Multifractal Processes			5a. CONTRACT NUMBER	
			5b. GRANT NUMBER	
			5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)			5d. PROJECT NUMBER	
			5e. TASK NUMBER	
			5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Rice University			8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)	
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited				
13. SUPPLEMENTARY NOTES See also ADM001750, Wavelets and Multifractal Analysis (WAMA) Workshop held on 19-31 July 2004., The original document contains color images.				
14. ABSTRACT				
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT UU	18. NUMBER OF PAGES 75
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	19a. NAME OF RESPONSIBLE PERSON	

Reading on this talk

- www.stat.rice.edu/~riedi
- This [talk](#)
- Intro for the “untouched mind”
 - [Explicit computations on Binomial](#)
- Monograph on “Multifractal processes”
 - [Multifractal formalism \(proofs, references\)](#)
 - [Multifractal subordination \(warping\)](#)
- Papers, links

Why Cascades

Turbulence: models wanted

- Kolmogorov 1941 :
 $\langle [v(x+r) - v(x)]^q \rangle \sim r^{q/3}$
- Kolmogorov 1962 :
 $\langle [v(x+r) - v(x)]^q \rangle \sim r^{H(q)}$
- ...and beyond

Courtesy P. Chainais

Measured Data

- Networks
- Geophysics
- WWW
- Stock Markets

Multifractal Analysis

Toy Example

The Toy: Binomial Cascade

- Start with unit mass
- Redistribute uniformly portion $p < \frac{1}{2}$ to the left portion $1-p$ to the right

- Iterate
- Converges to measure μ

$$t = \sum_{k=1}^{\infty} \epsilon_k / 2^k \quad \text{with } \epsilon_k = 0, 1$$

$$I(\epsilon_1 \dots \epsilon_n) := [\sum_{k=1}^n \epsilon_k / 2^k, \sum_{k=1}^n \epsilon_k / 2^k + 1/2^n)$$

$$l_n(t) := \#\{k \leq n : \epsilon_k = 1\} = \sum_{k=1}^n \epsilon_k$$

$$\mu(I(\epsilon_1 \dots \epsilon_n)) = p^{n-l_n(t)} (1-p)^{l_n(t)}$$

Multifractal Spectrum

- Oscillate $\sim |t|^\alpha \rightarrow$ local strength α

$$\alpha(t) := \liminf_n \alpha_n(t)$$

$$\alpha_n(t) = \frac{\log \Delta I_n(t)}{\log |I_n(t)|}$$

$I_n(t)$: dyadic interval containing t

$\Delta I_n(t)$: oscillation indicator
total increment over I_n ,
max increment in I_n ,
wavelet coefficients,...

- Collect points t with same α :

$$E_a := \{t : \alpha(t) = a\}$$

Dim(E_a)

- Dim(E_a): Spectrum
 \rightarrow prevalence of α

Recall

$$\alpha(t) := \liminf_n \alpha_n(t)$$

$$\alpha_n(t) = \frac{\log \Delta I_n(t)}{\log |I_n(t)|}$$

$$l_n(t) = \#\{k \leq n : \epsilon_k = 1\}$$

We take dyadic partition:

$$I_n(t) = I(\epsilon_1 \dots \epsilon_n) := \left[\sum_{k=1}^n \epsilon_k / 2^k, \sum_{k=1}^n \epsilon_k / 2^k + 1 / 2^n \right)$$

$$\begin{aligned}\Delta I_n(t) &= \mu(I_n(t)) \\ &= p^{l_n(t)}(1-p)^{n-l_n(t)}\end{aligned}$$

$$\alpha_n(t) = -\frac{n - l_n(t)}{n} \log_2(p) - \frac{l_n(t)}{n} \log_2(1-p)$$

Range of exponents:

$$t = 0: l_n = 0, \alpha_n \rightarrow a_\infty := -\log_2(p) < 1$$

$$t = 1: l_n = n, \alpha_n \rightarrow a_{-\infty} := -\log_2(1-p) > 1$$

$$\alpha(t) := \liminf_n \alpha_n(t)$$

$$\alpha_n(t) = \frac{\log \Delta I_n(t)}{\log |I_n(t)|}$$

$$l_n(t) = \#\{k \leq n : \epsilon_k = 1\}$$

“Typical” exponents

$t=0, t=1$ seem “atypical”.

Intuition: for a “typical” t :

$$l_n(t) \simeq n/2$$

Rigorously: Law of Large Numbers

- Binary digits ϵ_k are independent, $P[\epsilon_k=0] = P[\epsilon_k=1] = 1/2$:
- t is uniformly distributed (i.e., with Lebesgue measure \mathcal{L})

•

$$\frac{l_n(t)}{n} = \frac{1}{n} \sum_{k=1}^n \epsilon_k \rightarrow \mathbb{E}_{\mathcal{L}}[\epsilon] = 1/2$$

- “Typical” exponent:

$$\begin{aligned} \alpha_n(t) &= -\frac{n - l_n(t)}{n} \log_2(p) - \frac{l_n(t)}{n} \log_2(1-p) \\ &\rightarrow a_0 := -\frac{1}{2} \log_2(p) - \frac{1}{2} \log_2(1-p) > 1 \end{aligned}$$

A first point on the Spectrum

Conclusion:

- $\mathcal{L}(E_{a_0}) > 0$
- Mass Distribution Principle
(Lebesgue measure \mathcal{L} is 1-dim Hausdorff measure)

$$\dim E_{a_0} = 1$$

“Where” and “how many” are the other exponents?

- Choose digits “unfairly”, e.g., prefer 1 over 0.

Recall

$$\alpha_n(t) = \frac{\log \Delta I_n(t)}{\log |I_n(t)|}$$

$$l_n(t) = \#\{k \leq n : \epsilon_k = 1\}$$

Other exponents

The measure μ prefers 1 over 0 (ratio $1-p$ to p).

Intuitive:

$$l_n(t) \simeq n(1 - p)$$

Rigorously: **Law of Large Numbers using μ**

- Binary digits ϵ are independent, $P[\epsilon_k=0]=p$, $P[\epsilon_k=1]=1-p$:
- t is distributed according to μ
-

$$\frac{l_n(t)}{n} = \frac{1}{n} \sum_{k=1}^n \epsilon_k \rightarrow \mathbb{E}_\mu[\epsilon] = 1 - p$$

- μ -typical exponent

$$\begin{aligned} \alpha_n(t) &= -\frac{n - l_n(t)}{n} \log_2(p) - \frac{l_n(t)}{n} \log_2(1 - p) \\ &\rightarrow a_1 := -p \log_2(p) - (1 - p) \log_2(1 - p) < 1 \end{aligned}$$

A second point on the Spectrum

Conclusion:

- $\mu(E_{a_1}) > 0$
- Mass Distribution Principle $\rightarrow \dim E_{a_1} \geq a_1$
(Hausdorff dimension of μ ? It is $a_1 < 1$!)

$$\alpha_n(t) = \frac{\log \mu(I_n(t))}{\log |I_n(t)|} \rightarrow a_1$$

- All exponents: Inspiration from Large Deviation Theory

RICE

Large Deviations

and the
Multifractal Formalism

Box Spectrum

$$I_n(t) = I(\epsilon_1 \dots \epsilon_n)$$

$$\alpha_n(t) = \frac{\log \Delta I_n(t)}{\log |I_n(t)|}$$

$$E_a := \{t : \alpha(t) = a\}$$

- Notation:

$$N_n(a, \delta) := \#\{(\epsilon_1 \dots \epsilon_n) : a - \delta \leq \alpha_n(\epsilon_1 \dots \epsilon_n) < a + \delta\}.$$

$$f(a) := \lim_{\delta \downarrow 0} \limsup_{n \rightarrow \infty} \frac{1}{n} \log_2 N_n(a, \delta)$$

Proof

Fix a . To prove the first part of the lemma consider an arbitrary $\gamma > f(a)$, and choose $\eta > 0$ such that $\gamma > f(a) + 2\eta$. Then, there is $\varepsilon > 0$ and integer m_0 such that

$$N_n(a, \varepsilon) \leq 2^{n(f(a)+\eta)}$$

for all $n > m_0$. Let us define $J(m) := \cup\{k_n : n \geq m \text{ and } a - \varepsilon \leq \alpha_n^k \leq a + \varepsilon\}$. Then, for any m the intervals I_n^k with $k_n \in J(m)$ form a cover of E_a . These intervals are of length less than 2^{-m} . Moreover, for any $m > m_0$ we have

$$\begin{aligned} \sum_{k_n \in J(m)} |\alpha_n^k|^\gamma &= \sum_{n \geq m} N_n(a, \varepsilon) \cdot 2^{-n\gamma} \\ &\leq \sum_{n \geq m} 2^{-n(\gamma-f(a)-\eta)} \leq \sum_{n \geq m} 2^{-n\eta} \end{aligned}$$

tends to zero with $m \rightarrow \infty$. We conclude that the γ -dimensional Hausdorff measure of E_a is zero, hence, $\dim E_a \leq \gamma$. Letting $\gamma \rightarrow f(a)$ completes the proof.

[www.stat.rice.edu/~riedi]

- Thm: we always have

$$\dim E_a \leq f(a)$$

- Beware the folklore: $f(a)$ is NOT the box-dim of E_a

Recall

$$I_n(t) = I(\epsilon_1 \dots \epsilon_n)$$

$$\alpha_n(t) = \frac{\log \Delta I_n(t)}{\log |I_n(t)|}$$

$$E_a := \{t : \alpha(t) = a\}$$

Legendre spectrum

- Notation: partition sum and function

$$S_n(q) := \sum_{\epsilon_1 \dots \epsilon_n} |\Delta I_n(\epsilon_1 \dots \epsilon_n)|^q = \sum_{\epsilon_1 \dots \epsilon_n} |2^n|^q \alpha_n(\epsilon_1 \dots \epsilon_n).$$

$$\tau(q) := \liminf_{n \rightarrow \infty} -\frac{1}{n} \log_2 S_n(q)$$

- Thm: we always have

$$f(a) \leq \tau^*(a) := \inf_q (qa - \tau(q))$$

Proof

$$\begin{aligned} \sum_{\epsilon_1 \dots \epsilon_n} |\Delta I_n(\epsilon_1 \dots \epsilon_n)|^q &\geq \sum_{\alpha_n(\epsilon_1 \dots \epsilon_n) \in [a-\delta, a+\delta]} |\Delta I_n(\epsilon_1 \dots \epsilon_n)|^q \geq N_n(a, \delta) 2^{-n(qa + |q|\delta)} \\ &\geq 2^{-n(qa - f(a) + \delta' + |q|\delta)} \end{aligned}$$

Legendre spectrum

- Thm: provided $\alpha_n(t)$ are bounded we have

$$f(a) = \tau^*(a) \quad \text{for } a = \tau'(q).$$

- Proof idea: steepest ascent (**large deviations**)

$$\begin{aligned} \sum_{\epsilon_1 \dots \epsilon_n} |\Delta I_n(\epsilon_1 \dots \epsilon_n)|^q &\leq \sum_{l=1}^m \sum_{\alpha_n(\epsilon_1 \dots \epsilon_n) \in [l\delta - \delta, l\delta + \delta]} |\Delta I_n(\epsilon_1 \dots \epsilon_n)|^q \\ &\leq \sum_{l=1}^m N_n(l\delta, \delta) 2^{-n(ql\delta - |q|\delta)} \\ &\leq \sum_{l=1}^m 2^{-n(ql\delta - f(l\delta) - \delta' - |q|\delta)} \leq m 2^{-n(\inf_a (qa - f(a)) - \delta' - |q|\delta)} \end{aligned}$$

- Thus: $\underline{\tau(q) = f^*(q) = \inf_a (qa - f(a))}$ for all q .
- τ is concave, non-decreasing, differentiable with exceptions
- Recover $f=f^{**}$ at $a=\tau'(q)$ using lower semi-continuity

Legendre transform 101

- Elementary calculus:

$$\tau^*(a) := \inf_q (qa - \tau(q)) = \bar{q}a - \tau(\bar{q})$$

where \bar{q} is defined by $a = \tau'(\bar{q})$

- Tangent of **slope a** to $\tau(q)$
- Intersection with ordinate yields **$-\tau^*(a)$**
- Dual holds

Binomial Spectrum

continued

back

Partition function of the Binomial

$$\begin{aligned} S_n(q) &= \sum_{\epsilon_1 \dots \epsilon_n} |\Delta I_n(\epsilon_1 \dots \epsilon_n)|^q \\ &= \sum_{\epsilon_1 \dots \epsilon_n} [p^{n-l_n(\epsilon_1 \dots \epsilon_n)}(1-p)^{l_n(\epsilon_1 \dots \epsilon_n)}]^q \\ &= \sum_{l=0}^n \binom{n}{k} [p^{n-l}(1-p)^l]^q \\ &= [p^q + (1-p)^q]^n. \end{aligned}$$

- (Upper) envelop of $\dim(E_a)$:

$$\begin{aligned} \tau(q) &= \liminf_{n \rightarrow \infty} -\frac{1}{n} \log_2 S_n(q) \\ &= -\log_2 [p^q + (1-p)^q] \end{aligned}$$

Insight from Large Deviations

- From steepest ascent:

$$\begin{aligned} S_n(q) &= \sum_{\epsilon_1 \dots \epsilon_n} |\Delta I_n(\epsilon_1 \dots \epsilon_n)|^q \simeq 2^{-n(\inf_a (qa - f(a)))} \\ &= 2^{-n(q\bar{a} - f(\bar{a}))} \simeq \sum_{\alpha_n(\epsilon_1 \dots \epsilon_n) \simeq a} |\Delta I_n(\epsilon_1 \dots \epsilon_n)|^q \end{aligned}$$

- Dominant terms in $S_n(q)$, for fixed q , are the ones with

$$\alpha_n(\epsilon_1 \dots \epsilon_n) = \frac{\log \Delta I_n}{\log |I_n|} \simeq \bar{a} = \tau'(q)$$

- ...and vice versa: these terms contribute such that

$$S_n(q) \simeq 2^{-n\tau(q)} = (p^q + (1-p)^q)^n$$

For the Binomial these correspond
to mass re-distribution in ratio p^q to $(1-p)^q$

Locating the exponents

Fix q .

Consider the measure μ_q defined as μ but with mass ratio p^q to $(1-p)^q$. Intuitively, we have then:

$$l_n(t) = \#\{k \leq n : \epsilon_k = 1\} \simeq n \frac{(1-p)^q}{p^q + (1-p)^q} = n(1-p)^q 2^{\tau(q)}$$

Rigorously: Law of Large Numbers using μ_q

- Binary digits ϵ : indep, $P[\epsilon_k=0]=p^q 2^{\tau(q)}$, $P[\epsilon_k=1]=(1-p)^q 2^{\tau(q)}$
- t is distributed according to μ_q
- $$\frac{l_n(t)}{n} = \frac{1}{n} \sum_{k=1}^n \epsilon_k \rightarrow \mathbb{E}_{\mu_q}[\epsilon] = (1-p)^q 2^{\tau(q)}$$
- μ -typical exponent

$$\begin{aligned}\alpha_n(t) &= -\frac{n - l_n(t)}{n} \log_2(p) - \frac{l_n(t)}{n} \log_2(1-p) \\ &\rightarrow a_q := -p^q 2^{\tau(q)} \log_2(p) - (1-p)^q 2^{\tau(q)} \log_2(1-p)\end{aligned}$$

Completing the Spectrum

Conclusion:

- $\mu_q(E_{a_q}) > 0$
- $a_q = \tau'(q)$

- Hausdorff dimension of μ_q :

$$\begin{aligned}\frac{\log \mu_q(I_n(t))}{\log |I_n(t)|} &= -\frac{n - l_n(t)}{n} \log_2[p^q 2^{\tau(q)}] - \frac{l_n(t)}{n} \log_2[(1-p)^q 2^{\tau(q)}] \\ &= -\tau(q) + q\alpha_n(t) \\ &\rightarrow qa_q - \tau(q) = \tau^*(a_q)\end{aligned}$$

- Mass Distribution Principle

$$\dim E_{a_q} \geq \tau^*(a_q)$$

Recall

$$\tau(q) = -\log_2[p^q + (1-p)^q]$$

$$a_q = -p^q 2^{\tau(q)} \log_2(p) - (1-p)^q 2^{\tau(q)} \log_2(1-p)$$

Lessons

Binomial cascade: $\dim E_a = f(a) = \tau^*(a)$

- Points with exponent $\log \mu(I(t))/\log |I(t)| \sim a = \tau'(q)$
 - Are concentrated on the **support of μ_q**
 - Dominate the **partition sum $S_n(q)$**
- Partition function allows to bound/estimate $\dim(E_a)$

Random Cascades

A further multifractal envelop
Convergence and Degeneracy

Multifractal Spectra and Randomness

- $\Delta I_n(t)$: oscillation indicator for process or measure
- Pathwise

$$\dim E_a \leq f(a) \leq \tau^*(a)$$

Recall

$$E_a = \{t : \alpha(t) = a\}$$

$$N_n(a, \varepsilon) \simeq 2^{nf(a)}$$

$$S_n(q) \simeq 2^{-n\tau(q)}$$

- $S_n(q)$ is q-th moment estimator.
- Replace by true moment:

$$T(q) := \liminf_{n \rightarrow \infty} -\frac{1}{n} \log_2 \mathbb{E} S_n(q)$$

Recall

$$S_n(q) = \sum_{\epsilon_1 \dots \epsilon_n} |\Delta I_n(\epsilon_1 \dots \epsilon_n)|^q$$

- ...analytically easier to handle and often sufficient
- $T(q)$ is concave like $\tau(q)$, but NOT always increasing

Pathwise and deterministic envelop

- Lemma: With probability one for all q with $T(q) < \infty$.

$$\tau(q, \omega) \geq T(q)$$

[Proof: www.stat.rice.edu/~riedi]

- Cor: $\tau^*(a, \omega) \leq T^*(a)$

$$\mathbb{E}[\log(X)] \leq \log \mathbb{E}[X]$$

- Weaker result from Chebichev inequality:

$$\mathbb{E}[\tau(q, \omega)] \geq T(q)$$

Quenched Average

Annealed Average

- Material science: free energy is “self-averaging” iff quenched and annealed averages are equal.

Multifractal Envelops

- Almost surely, for all a :

Recall at $a = \tau'(q)$
 $f(a) = \tau^*(a)$

$$\dim E_a \leq f(a) \leq \tau^*(a) \leq T^*(a)$$

- Holds always provided use same ΔI_n in all spectra
- Choice of scales I_n
 - I_n is here dyadic, could be any sub-exponential
 - This could affect/change f , τ and/or T due to boundary effects
 - Robust: ΔI_n = oscillation in I_n and its neighbor intervals
- Choice of oscillation indicator ΔI_n
 - For true Hölder regularity ΔI_n = max increment “around” I_n
 - ΔI_n = Wavelet coefficient: only a proxy to Hölder regularity!
 - For measures supported on $[0,1]$: $\Delta I_n = \mu(I_n)$ gives Hölder!

Multifractal Envelops

Recall at $a = \tau'(q)$
 $f(a) = \tau^*(a)$

- Almost surely, for all a :

$$\dim E_a \leq f(a) \leq \tau^*(a) \leq T^*(a)$$

- Special feature:

- If a property of
“bounded total variation”
holds then the spectrum f
touches the bi-sector:

If $\sum_{\epsilon_1 \dots \epsilon_n} \Delta I_n(\epsilon_1 \dots \epsilon_n) \leq C$ for all n
then $\tau(1) = 0$.

Multifractal Envelops

- Almost surely, for all a :

Recall at $a = \tau'(q)$
 $f(a) = \tau^*(a)$

$$\dim E_a \leq f(a) \leq \tau^*(a) \leq T^*(a)$$

- Terminology:

- Multifractal formalism “**holds**” if
 - $\dim(E_a) = f(a) = \tau^*(a)$ with your preferred oscillation indicators ΔI_n , e.g., Holder exponent in E_a , wavelet decay in $f(a)$.
[First step: show T is same for Holder and wavelets.]
- Falconer: “A concise definition of a multifractal tends to be **avoided**.”
- Others: “An object is multifractal if the formalism holds for it.”
- Others: “An object is multifractal if it has more than one singularity exponent”. (**not mono-fractal**)

Multifractals and classical regularity

Besov spaces

- For oscillation indicator from wavelets:

$$\sup\{s : Y \in B_v^s(L^u)\} = \frac{\tau(u) + 1}{u}$$

- Proof: use wavelet coefficients $C_{j,k} = \Delta I_j(k2^j)$ and equivalent Besov norm

$$\left(\sum_k |D_{0,0}|^v \right)^{1/v} + \left(\sum_{j \geq J_0} \left(\sum_k 2^{jsu} 2^{-j} |2^{j/2} C_{j,k}|^u \right)^{v/u} \right)^{1/v}.$$

Kolmogorov

- Thm [Kolmogorov]:
 - If $E[| A(s) - A(t) |^b] < C | s-t |^{1+d}$ then almost all paths of A are of (global) Hölder-continuity for all $h < d/b$,
 - i.e., for all $h < T(q)/q$.
- The best such h is $\min(a : T^*(a) > 0)$.
 - $T(q)/q = \text{slope of tangent through the origin.}$

Binomial Spectrum

continued

back

Binomial with Random Multipliers

- Random re-distribution
- Multipliers Independent between scales

$$\underline{\mu_n}(I(\epsilon_1 \dots \epsilon_n)) = M_{\epsilon_1} \dots M_{\epsilon_1 \dots \epsilon_n}$$

- Conservative:

$$M_{\epsilon_1 \dots \epsilon_n 0} + M_{\epsilon_1 \dots \epsilon_n 1} = 1$$

- Conservation is too restrictive for stationarity!
- "Martingale de Mandelbrot":

$$\mathbb{E}[M_{\epsilon_1 \dots \epsilon_n 0} + M_{\epsilon_1 \dots \epsilon_n 1}] = 1$$

Convergence of Random Binomial

- Conservative:

- $M_{\epsilon_1 \dots \epsilon_n 0} + M_{\epsilon_1 \dots \epsilon_n 1} = 1$

- For all $m > n$

$$\mu_m(I(\epsilon_1 \dots \epsilon_n)) = M_{\epsilon_1 \dots \epsilon_1 \dots \epsilon_n}$$

- Thus converges to

$$\mu(I(\epsilon_1 \dots \epsilon_n)) = M_{\epsilon_1 \dots \epsilon_1 \dots \epsilon_n}$$

Convergence of Random Binomial

- “Martingale de Mandelbrot”:
 - A **price** to pay towards stationarity
 - $\mathbb{E}[M_{\epsilon_1 \dots \epsilon_n 0} + M_{\epsilon_1 \dots \epsilon_n 1}] = 1$
 - Martingale: For all $m > n$

$$\mathbb{E}[\mu_m(I(\epsilon_1 \dots \epsilon_n)) | \mathcal{F}_n] = M_{\epsilon_1 \dots \epsilon_n} = \mu_n(I(\epsilon_1 \dots \epsilon_n))$$

- Thus converges almost surely (but may **degenerate**)
- We have

$$\mathbb{E}[\mu(I(\epsilon_1 \dots \epsilon_n)) | \mathcal{F}_n] = M_{\epsilon_1 \dots \epsilon_n}$$

Envelope for Random Binomial

- By independence of multipliers
 - Martingale of Mandelbrot:

$$\mathbb{E}[S_n(q)] = \sum_{\epsilon_1 \dots \epsilon_n} \mathbb{E}|\Delta I_n(\epsilon_1 \dots \epsilon_n)|^q = \sum_{\epsilon_1 \dots \epsilon_n} \mathbb{E}|M_{\epsilon_1} \dots M_{\epsilon_1 \dots \epsilon_n}|^q = 2^n \mathbb{E}[M^q]^n.$$

$$T(q) = -1 - \log_2 \mathbb{E}[M^q]$$

- Conservative: similar

$$\begin{aligned}\mathbb{E}[S_n(q)] &= \sum_{\epsilon_1 \dots \epsilon_n} \mathbb{E}[M^q]^{n-l_n(\epsilon_1 \dots \epsilon_n)} \mathbb{E}[(1-M)^q]^{l_n(\epsilon_1 \dots \epsilon_n)} \\ &= (\mathbb{E}[M^q] + \mathbb{E}[(1-M)^q])^n \\ &= (2\mathbb{E}[M^q])^n.\end{aligned}$$

Kahane-Peyrière theory for the Martingale of Mandelbrot

- Martingale “**degenerates**”

- iff $\mu([0,1])=0$ almost surely zero
- iff $E \mu([0,1])=0$
- iff $T'(1) \leq 0$

- Intuition:

- $T'(1) = a_1$ = dimension of the carrier of μ .
- If $T'(1) > 0$ then
 - $\exists q > 1$ with $T(q) > 0$
 - μ converges in L_q
 - $E[\mu([0, 1])] = \lim_n E[\mu_n([0, 1])] = 1$

Multifractal formalism holds

- Thm for random **binomial** [Barral, Arbeiter-Patschke, Falconer]:
 - Set $\Delta I_n = \mu(I_n)$.
 - Assume M has a **finite** moment of some **negative order**
 - Then, with probability 1: for all a such that $T^*(a) > 0$
- Note:
 - $T^*(a) > 0$ means $a = T'(q)$ with q limited by tangents through the origin: $T'(q) = T(q)/q$.
 - Little known in general for other a ... or q ! Possible: $\tau(q) > T(q)$
 - Proofs: Use Mass distortion Principle with factors M^q

Wavelets for the Binomial

- Compactly supported wavelet
 - ΔI_n =wavelet coefficient corresponding to I_n
 - ΔI_n same rescaling property as measure itself
 - Same $T(q)$
 - Multifractal formalism holds

Toy examples

White noise

Cascade

Log-Normal Binomial

- Deterministic envelope is a parabola: [Mandelbrot]

$$T(q) = (q-1) \left(1 - \frac{\sigma^2}{2 \ln(2)} q \right) \quad \text{for } q < q_{\text{crit}} := 2 \ln(2) / \sigma^2.$$

- Zeros: $q=1$, $q=q_{\text{crit}}$

- Non-Degeneracy: $T'(1) > 0 \Leftrightarrow q_{\text{crit}} > 1 \Leftrightarrow 2 \ln(2) > \sigma^2$

- Spectrum is parabola as well

$$T^*(a) = 1 - \frac{\ln(2)}{2\sigma^2} \left(a - 1 - \frac{\sigma^2}{2 \ln(2)} \right)^2$$

- Partition function $\tau(q)$ is non-decreasing,
thus $\tau(q) > T(q)$ (at least) for $q > (1+q_{\text{crit}})/2$

Multifractal Product of Pulses

together with
I. Norros and P. Mannersalo

Network Traffic is Multifractal

- Visually striking
- Scaling of impressive quality
(Levy Vehel & RR '96,
Norros & Mannersalo '97,
Willinger et al '98)
- Statistical models:
 - Binomial cascades with scale dependent multipliers
(Crouse & RR '98, Willinger et al '98)
- Not stationary!
 - Cumbersome for statistics
 - and probability (Queueing)

Multifractal paradigm

Multiplicative Processes:

- From **redistributing** mass to multiplying pulses

$$A(t) = \lim_{n \rightarrow \infty} \int_0^t \Lambda_0(s) \dots \Lambda_n(s) ds$$

Binomial Cascade

- $\Lambda_n(s)$ is constant on dyadic intervals
- Conservative:
 $\Lambda_n(2k/2^n) + \Lambda_n((2k+1)/2^n) = 2$
- Martingale de Mandelbrot:
 $E \Lambda_n(s) = 1$
- Not stationary

Multifractal paradigm

- Multiplicative Processes:

$$A(t) = \lim_{n \rightarrow \infty} \int_0^t \Lambda_0(s) \dots \Lambda_n(s) ds$$

- Stationary Cascade

- $\Lambda_n(s)$ is stationary

- Conservation:

$$\mathbb{E}\Lambda_n(t) = 1$$

- "self-similarity":

$$\Lambda_n(s) =_d \Lambda_1(sb^n)$$

Parameters and Scaling

- Parameter estimation
 - $\Lambda_i(s)$: i.i.d. values with Poisson arrivals (λ_i):
 - $Z(s) = \log [\Lambda_1(s) \Lambda_2(s) \dots \Lambda_n(s)]$
 - $\text{Cov}(Z(t)Z(t+s)) = \sum_{i=1..n} \exp(-\lambda_i s) \text{Var } \Lambda_i(s)$
- Performance of predictors / simulations

- Multifractal Envelope
(with Norros and Mannersalo)
 $T(q) = q - 1 - \log_2 E[\Lambda^q]$

RICE

RICE

Interlude

Self-similar processes

RICE

Statistical Self-similarity

- Self-similarity: canonical form
 - $B(at) =^{\text{fdd}} C(a) B(t)$ B: process, C: scale function
 - Iterate: $B(abt) =^{\text{fdd}} C(a)C(b) B(t)$
 - $C(a)C(b)=C(ab)$
 - $C(a) = a^H$: Powerlaw is default

- H-self-similar:

$$B(at) =^{\text{fdd}} a^H B(t)$$

- Examples

- Gaussian: fractional Brownian motion $B_H(t)$ is unique H-self-similar Gaussian process with stationary increments.
- Stable: not unique in general, $a=1/H$: Levy motion

Statistical Self-similarity

- How do self-similar processes occur?
 - X_k : stationary time series
 - $U(t) := X_1 + \dots + X_{[t]}$
 - If $U(nt)/f(n) \xrightarrow{\text{f.d.d.}} Z(t)$
 - then necessarily $H = \lim_{n \rightarrow \infty} \log f(n) / \log(n)$ exists and $Z(t)$ is H -self-similar.
 - If X_k are iid with finite variance,
then $H=1/2$ and Z is **Brownian motion**
 - If X_k are LRD, then $H > 1/2$ and Z is **fractional Brownian motion**
- Prediction and estimation windows

Self-similar Processes

- What do they model?

- Sustained excursions above/below the mean

- Different from (finite order) linear models

- Auto-Regressive
 - ARMA
 - (G)ARCH
 - Exponential decay of correlations

- Corresponds to infinite order AR models

- FARIMA
 - FIGARCH

$$fBm(t) = \int_{-\infty}^t K(t,s) dW(s)$$

Multifractal Subordination

Processes with
multifractal oscillations

Multifractal time warp

$B_H(M(t))$: B_H fBm, dM independent measure

A versatile model

- $M(t)$: Multifractal Time change **Trading time**
- B : Brownian motion **Gaussian fluctuations**

Hölder regularity

- Levy modulus of continuity:

- With probability one for all t

$$|B_H(t + \delta) - B_H(t)| \simeq |\delta|^H$$

- Thus, exponent gets stretched:

$$|B_H(M(t+\delta)) - B_H(M(t))| \simeq |M(t+\delta) - M(t)|^H \simeq |\delta|^{H\alpha(t)}$$

- and spectrum gets squeezed:

$$\dim E_a[B_H(M)] = \dim E_{a/H}[M]$$

Multifractal formalism for $B_H(M(t))$

- Conditioning on M one finds:

$$\begin{aligned}\mathbb{E}|B_H(M(t + \delta)) - B_H(M(t))|^q &= \mathbb{E}|B_H(1)|^q \mathbb{E}|M(t + \delta) - M(t)|^{qH} \\ &\simeq |\delta|^{T_M(qH)}\end{aligned}$$

- thus

$$T_{B(M)}(q) = T_M(qH)$$

- which confirms the stretched exponent:

$$T'_{B(M)}(q) = HT'_M(qH)$$

- and matches with warp formula before:

$$T^*_{B(M)}(a) = T^*_M(a/H)$$

- If the formalism holds for M , then also for $B_H(M(t))$

Auto-Correlation

- **Conditioned** on knowing $M(t)$:

- $E[B(M(t)) B(M(s)) | M] = (\sigma^2/2) [M^{2H}(t) + M^{2H}(s) - M^{2H}(t-s)]$
- Non stationary **Gaussian** Process
- Increments: $X(t) = B(M(t+1)) - B(M(t))$
- $E[X(t) X(s) | M] = (\sigma^2/2) \times ([M(t+1) - M(s)]^{2H} - [M(t) - M(s)]^{2H} - [M(t+1) - M(s+1)]^{2H} + [M(t) - M(s+1)]^{2H})$

- **Unconditioned:** For $H=1/2$ and $E[M(t)]=t$

- $E[B(M(t)) B(M(s))] = \sigma^2 \min(s, t)$
- $E[X(t+k) X(t)] = E[M(k+1) - 2M(k) + M(k-1)] = 0$
- Uncorrelated increments, stationary, 2nd order
- But **not Gaussian**
- Dependence of higher order through $M(t)$

Estimation: Wavelets decorrelate

(with P. Goncalves)

- $W_{jk} = \int \Psi_{jk}(t) B(M(t)) dt$
N: number of vanishing moments
- $E[W_{jk} W_{jm}]$
 $= \int \int \Psi_{jk}(t) \Psi_{jm}(s) E[B(M(t)) B(M(s))] dt ds$
 $= \int \int \Psi_{jk}(t) \Psi_{jm}(s) E[|M(t) - M(s)|^{2H}] dt ds$
 $\sim O(|k-m|^{T(2H)+1-2N}) \quad (|k-m| \rightarrow \infty)$

Multifractal Estimation for $B(M(t))$

- Weak Correlations of Wavelet-Coefficients:
(with P. Goncalves)

Haar

Daubechies2

- Improved estimator due to weak correlations
- Multifractal Spectrum

$$M(t+s) - M(t) \sim s^{\alpha}(t)$$

$$B(t+u) - B(t) \sim u^H \quad (\forall t)$$

→

$$B(M(t+s)) - B(M(t)) \sim s^{H^*\alpha}(t)$$

Estimation

From
Multiplicative Cascades
to
Infinitely Divisible Cascades

with

P. Chainais and P. Abry

Independent work:

Castaing, Schmidt,

Barral-Mandelbrot, Bacry-Muzy

Adapting to the real world

Real world data

- can deviate from powerlaws: traffic
- has no preference for dyadic scales

Lukacs: if the data does not fit to the model then too bad for the data.

Experimental results

Courtesy P. Chainais

$H(q)$

$n(a)$: non-powerlaw

Beyond Self-similarity

- Self-similarity revisited:

- $B(at) =^d C(a) B(t)$ B: process, C: scale function
- $B(abt) =^d C(a)C(b) B(t)$
- $C(a)C(b)=C(ab) \rightarrow C(a) = a^H$
- $E[|B(a^n)|^q] = c(q) (a^{qH})^n$
- linear in q (mono-fractal)

Beyond Self-similarity

- Self-similarity revisited:
 - $B(at) =^d C(a) B(t)$ B: process, C: scale function
 - $B(abt) =^d C(a)C(b) B(t)$
 - $C(a)C(b)=C(ab) \rightarrow C(a) = a^H$
 - $E[|B(a^n)|^q] = c(q) (a^{qH})^n$
 - linear in q (mono-fractal)
- More flexible rescaling “Ansatz”:
 - $C=C(a,t) ?$: non-stationary increments
 - C= independent r.v. for every re-scaling :
 - $X(a...at) = X(a^n t) = C_1(a)...C_n(a) X(t)$: multiplicative
 - $E[|X(a^n)|^q] = c(q) E[|C(a)|^q]^n$
 - non-linear in q; powerlaw

Infinitely divisible scaling

Self-similarity: $\mathbb{E}[|B(t + \delta) - B(t)|^q] \simeq \delta^{qH}$

Multifractal scaling: $\mathbb{E}[|M(t + \delta) - M(t)|^q] \simeq \delta^{1+T(q)}$

IDC scaling: $\mathbb{E}[|X(t + \delta) - X(t)|^q] \simeq \exp[n(\delta)\zeta(q)]$

- Multifractal scaling reduces to self-similarity if T is linear in q . (sometimes called **mono-fractal**)
- IDC reduces to multifractal scaling if $n(\delta) = -\log(\delta)$
- In general $n(\delta)$ gives the speed of the cascade

Geometry of Binomial Pulses

- Time-Scale plane: codes shape of pulses
 - **Position** ($T=$ center)
 - **Size** ($R=$ length)

Pulses:

$$P_i(t) = \begin{cases} W_i & \text{if } |t-t_i| < r_i/2 \\ 1 & \text{else} \end{cases}$$

←
For Binomial:
Strict dyadic
geometry

Stationary geometry

Compound Poisson Cascade

Poisson points (t_i, r_i) in time-scale plane with marks W_i

Cone of influence at t

$$C(r, t) = \{(t_i, r_i) : t - r_i < t_i < t, r_i > r\}$$

Cascade Process:

$$Q_r(t) = \prod_{(t_i, r_i) \in C(r, t)} W_i$$

- Poisson Cascades exhibit scaling properties akin to IDC scaling

$$m(\mathcal{C}(r, t)) = m(\mathcal{C}(r, 0)) = \mathbb{E}[\#\{(t_i, r_i) \in \mathcal{C}(r, t)\}]$$

$$\mathbb{E} Q_r(t)^q = \exp [-\varphi(q) m(\mathcal{C}(r, *))]$$

Cascade and AR processes

- Continuous version (IDC):

$$\begin{aligned} Q(t) &= \exp M(C(t)) \\ &= \exp \int k_C(t, s) dM(s) \end{aligned}$$

- M is an infinitely divisible measure

- Classic theory to be exploited:

- AR-type processes

$$B_H(t) = \int \tilde{k}_H(s, t) dW(s)$$

- kernel estimate of the random measure dM

Cascades: Invariance and scaling

Infinitely divisible nature
and scaling of the cascade:

$$\begin{aligned} Q_r(t) &= \prod_{C(r,t)} W_i = \frac{\prod W_i}{\underline{C_b}} \times \frac{\prod W_i}{\underline{C_r^b}} \\ &= Q_b(t) \times \underbrace{\prod_{C_r^b} W_i}_{\text{in the scale-invariant case only!}} \end{aligned}$$

Rescaled version of $Q_{r/b}$
in the scale-invariant case only!

Poisson Cascade has **re-scaling properties**;
in scale invariant case: akin to Product of Processes

Multifractal scaling

- Multifractal formalism holds in self-similar case [Barral-Mandelbrot]
- Infinitely Divisible Scaling

Recall

$$\mathbb{E} Q_r(t)^q = \exp [-\varphi(q)m(\mathcal{C}(r,*))]$$

$$\mathbb{E} A(t)^q \simeq t^q \exp [-\varphi(q)m(\mathcal{C}(t,*))]$$

- powerlaw only if $m(\mathcal{C}(t,*)) = -\log(t)$
- for IDC in self-similar case [Bacry-Muzy,Barral]
- for CPC and log-normal IDC in certain non-powerlaw cases [Chenais-R-Abry]

Simulations

- Stationary Cascade:
- Non-powerlaw scaling

“Never happy”: More flexibility

- Better control of scaling
- Wider range of known non-powerlaw scaling
- Higher dimensions: anisotropy
 - “As expected” in generic cases [Falconer, Olsen]
 - Formalism may break if directional preferences [McMullen, Bedford, Kingman, R]

Overall Lessons

- Multifractal spectrum \leftrightarrow regularity
 - Besov spaces
 - Global Hölder regularity
- Powerful modeling via multiplication through scales
 - Poisson product of Pulses
 - Multifractal warping
 - Degeneracy: price to pay for stationarity
- Estimation via wavelets
 - Multifractal envelopes
 - numerical $\tau(q)$,
 - Analytical $T(q)$
 - Choice of wavelet, of order q
 - Interpretation: what kind of spectrum did you estimate
 - Hölder exponent
 - Wavelet decay

To take away

- Cascades matured to versatile multifractal models
- There remains much to do.

Reading on this talk

- www.stat.rice.edu/~riedi
- This talk
- Intro for the “untouched mind”
 - Explicit computations on Binomial
- Monograph on “Multifractal processes”
 - Multifractal formalism (proofs)
 - Multifractal subordination (warping)
- Papers, links