Data Science and Machine Learning:

Mathematical and Statistical Methods

Errata

(Last Update 24th November 2020)

- 1. Page 38, lines 3,4 in second paragraph: replace $\ell_{\mathcal{T}_{-k}}$ symbol with ℓ_{C_k} .
- 2. Page 38, first line in displayed equation: replace $\ell_{\mathcal{T}_{-k}}$ symbol with $\ell_{\mathcal{C}_k}(g_{\mathcal{T}_{-k}})$.
- 3. Page 72, Line -2: ... in terms of the probability ... (remove repeated "the").
- 4. Page 100, Line -8: $(1 \alpha v)$ should be $(1 \alpha)v$.
- 5. Page 162: Line 12: $\Sigma^{1/2}x$ should be $\Sigma^{-1/2}x$.
- 6. Page 162: Lines 17 and 20: $\Sigma^{1/2}(x_i \mu)$ should be $\Sigma^{-1/2}(x_i \mu)$.
- 7. Page 178: fourth line below Table 5.1: replace "qualitative" with "quantitative".
- 8. Page 179, fourth line in Example 5.5: replace "row-wise" with "column-wise" and the vector \mathbf{y} with $\mathbf{y} = [9.2988, 8.2111, 9.0688, 8.2552, 9.4978, ..., 8.9485]^{\top}$.
- 9. Page 181, formula for R_{adjusted}^2 at the bottom: replace n-p-1 in the formula with n-p.
- 10. Page 184, formula for F_i should have the norms squared:

$$F_i = \frac{\|\mathbf{Y}^{(i)} - \mathbf{Y}^{(i-1)}\|^2 / p_i}{\|\mathbf{Y} - \mathbf{Y}^{(d)}\|^2 / (n-p)}.$$

- 11. Page 211, Exercise 12 (b): \mathbf{P}_{ii} should be $(1 \mathbf{P}_{ii})$; that is 1 minus the *i*-th leverage.
- 12. Page 221, Line 8: ... one obtains the so-called ...
- 13. Page 247, Algorithm 6.8.1, Line 1: \mathbb{R}^p should be \mathbb{R}^n .
- 14. Page 248, Algorithm 6.8.2, Line 1: Set $\mathbf{B} \leftarrow (n\gamma \mathbf{I}_p)^{-1}$.
- 15. Page 235, Line 7: $\int_0^1 (g''(x))^2 dx$ instead of $\int_0^1 (g'')^2 dx$.
- 16. Page 273, 3rd line under Figure 7.9: The results are summarized in Table 7.6.
- 17. Page 329, line 12 from below: change y_{i-k} to y_{i-k+1} .
- 18. Page 331, last displayed equation:

$$\frac{\partial C}{\partial \boldsymbol{b}_{l}} = \frac{\partial \boldsymbol{z}_{l}}{\partial \boldsymbol{b}_{l}} \frac{\partial C}{\partial \boldsymbol{z}_{l}} = \boldsymbol{\delta}_{l}, \quad l = 1, \dots, L.$$

19. Page 335, Algorithm 9.4.2, Line 2: ... using $\frac{\partial C}{\partial g} = 1$...

20. Page 340, second displayed line:

$$[p_0, p_1, p_2, p_3] = [1, 20, 20, 1].$$

- 21. Page 341, Line 3: Remove the line S = RELU.
- 22. Page 351, Exercise 7(b): In the displayed formula, **B** should be replaced with \mathbf{B}^{-1} .
- 23. Page 362, First sentence in paragraph above Theorem A.4: ... the matrix **P** projects any vector in $\mathcal V$ onto itself.
- 24. Page 362, Sentence above Theorem A.4: ... where U is not ...
- 25. Page 380, third line from below: change b_{i-k} to b_{i-k+1} .
- 26. Page 394, line 5: ... can be computed with the aid ... (missing "the")
- 27. Page 404, last two lines: replace H with **H**.
- 28. Page 414, Section B.3.4: Replace ℓ with ℓ_{τ} .
- 29. Page 456, Sentence under (C.47): Similar to the one-dimensional case (d = 1), replacing the factor 1/n with 1/(n-1) gives an unbiased estimator, called the *sample covariance matrix*.