# CPU — Scheduling-Part 2

CS3600

Spring 2022

## FCFS,SJF, SRT Solution

| Process | Arrival time | Burst<br>Time |
|---------|--------------|---------------|
| P1      | 0            | 8             |
| P2      | 1            | 4             |
| Р3      | 2            | 9             |
| P4      | 3            | 5             |

Using the formula calculate the turn around time and wait time, Compare with FCFS, SJF,SRT

- Arrival Time (AT)
- Burst Time (BT)
- Completion Time (CT)
- Turn Around Time (TT) = CT –AT
- Waiting Time (WT) = TT –BT



## Performance of the algorithms

- Objective:
  - Maximize the number of processes completed per unit of time.
  - Minimise waiting Time.
- Compare algorithms
  - We take average Turn Around Time (TT) for each Algorithm .
- Another important objective is to guarantee fairness.
- *Starvation* is the indefinite postponement of a process while other processes are allowed to proceed. Both SJF and SRT can lead to starvation.

## Assumptions and Metrics

- Assumptions
  - All jobs only use the CPU (i.e., they perform no I/O)
  - The run-time of each job is known.

- Performance Metrics
  - Turnaround Time
  - Response Time

```
Turn Around Time (TT) = CT –AT
Waiting Time (WT) = TT –BT
Response Time (RT) = First Instance of CPU -AT
```

## Improve Response Time

Time slice for each process

- Design Considerations
  - Amortization
  - Response time

## RR scheduling algorithm

- A *time quantum*, Q, is a small amount of time (typically 10 to 100 milliseconds) during which a process is allowed to use the CPU.
- The round-robin (RR) algorithm uses a single queue of processes.
  - The priority is determined solely by a process's position within the queue. The process at the head of the queue has the highest priority and is allowed to run for Q time units.
  - When Q ends, the process is moved to the tail of the queue and the next process now at the head of the queue is allowed to run for Q time units.

## RR scheduling algorithm

• Three processes p1,p2,p3 with total CPU times of 4, 4, and 2 start executing under RR.



## Scheduling of Interactive processes

 Interactive processes must time-share the CPU using pre-emptive scheduling to give each process a chance to make progress in a timely manner.

# Multilevel scheduling algorithm

- Multilevel (ML) scheduling maintains a separate queue of processes at each priority level.
  - Within each level, processes are scheduled using RR.







# Multilevel Feedback (MLF) scheduling algorithm

- Multilevel feedback scheduling is similar to ML but addresses the problems of starvation and fairness by:
  - using a different time quantum at each priority level
  - changing the priority of every process dynamically

#### MLF

- Under *MLF algorithm* a newly arriving process enters the highestpriority queue, N, and is allowed to run for Q time units.
- When Q is exceeded, the process is moved to the next lower priority queue, N-1, and is allowed to run for 2Q time units.
- The quantum size is doubled with each decreasing priority level. Thus, at priority level L, the maximum time allowed is  $2^{(16-L)}Q$  time units.

### MLF

MLF maintains N priority levels. Starting with a quantum Q at level N, the maximum time allowed at each level doubles with each lower level.



#### Worksheet 3

• Q1)Two processes, p1 and p2 arrive at time 0 and start executing using RR scheduling. (p1 starts before p2) The total CPU time of p1 is 30-time units, and p2 is 50. The quantum is Q = 10. The context switching time is S = 0.Find Turnaround Time(TT) of P1,P2 and Average Turnaround Time(ATT).

- Q2) Two processes, p1 and p2 are executing using RR scheduling. The context switching time is S = 5.
  - Determine the maximum quantum size Q such that the gap between the end of a process pi's quantum and the start of pi's next quantum does not exceed M = 30time units.
  - Determine the percentage of CPU time wasted on context switching.

# Scheduling of real-time processes

- A *real-time process* is characterized by continual input, which must be processed fast enough to generate nearly instantaneous output.
- Each arriving input item is subject to a deadline.
  - Example: Streaming of audio or video, processing and displaying radar data, control of robots or of fly-by-wire aircraft.

• A *period* is a time interval (typically in milliseconds or even microseconds) within which each input item must be processed. The end of each period is the implicit deadline for processing the current item.

## RM scheduling algorithm

• The *rate monotonic (RM)* algorithm schedules processes according to the period. The shorter the period, the higher the priority.



| Process | Period | Tot. CPU |
|---------|--------|----------|
| p1      | 4      | 1        |
| p2      | 5      | 3        |

Two periodic processes. p1 and p2, with the given periods and total CPU times, are scheduled using RM.

## EDF Scheduling algorithm

• The *earliest deadline first (EDF)* algorithm schedules processes according to the shortest remaining time until the deadline. The shorter the remaining time, the higher the priority.

| Process | Period | Tot. CPU |
|---------|--------|----------|
| p1      | 8      | 3        |
| p2      | 10     | 6        |



#### Performance of the algorithms

- A schedule is *feasible* if the deadlines of all processes can be met.
- The fraction of CPU time used by a process i, is  $\frac{Ti}{Di}$  where Ti is the total CPU time and Di is the period of process i.
- CPU utilization (U) is the sum of the individual fractions of CPU times used by each process.

- If U = 1 then the CPU is utilized 100%. A feasible schedule exists as long as U ≤ 1. No schedule is feasible if U > 1, since the total CPU time of all processes would exceed 100%.
- EDF is an optimal algorithm in that a feasible schedule is always guaranteed if U ≤ 1.
- RM U is less than approximately 0.7 (empirical evidence)

## Worksheet Q3

- Three periodic processes with the following characteristics are to be scheduled: (D is the period and T is the total CPU time).
- Determine if a feasible schedule exists.

Determine how many more processes, each with T = 3 and D = 20, can run concurrently under EDF.

|    | D   | Т  |
|----|-----|----|
| p1 | 20  | 5  |
| p2 | 100 | 10 |
| рЗ | 120 | 42 |

## Worksheet 03 - Q4

• Do it as a team, only single document has to be submitted from 1 team in Canvas with team members names.

Submit the solution in Worksheet 03\_classwork in Canvas



Weekly Quiz

Complete Worksheet 03

• HW3 based on scheduling algorithms