Теория Графов. Теорема Кёнига

Д. В. Карпов

Extended edition

2023

В двудольном графе $G = (L, R, E) : \alpha'(G) = \beta(G)$.

Доказательство.

Будем доказывать теорему при помощи теоремы Холла.

- Рассмотрим наименьшее вершинное покрытие (обозначим $B, \beta(G) = |B|$). Перестроим двудольный граф следующим образом: $G' = (B, V(G) \backslash B, E')$ (в левую долу поместим выбранные в B вершины, остальные поместим в правую).
- ightharpoonup В правой доле рёбер нет: иначе B не является вершинным покрытием. Удалим все рёбра между вершинами левой доли – правомерность будет объяснена позже.

Д.В.Карпов

Преобразование графа

lacktriangle Для того, чтобы доказать, что lpha'(G)=eta(G), достаточно доказать, что $lpha'(G)\geqslant eta(G)$ и $lpha'(G)\leqslant eta(G)$.

- $\alpha'(G) \geqslant \beta(G)$
 - ▶ Проверим наличие паросочетания размера $|B| = \beta(G)$. Достаточно проверить условие Холла для B.
 - ▶ Если это не так, то $\exists S \subset B : |N_{G'}(S)| < |S|$ и, заменив S на $N_G(S)$, мы получим, что множество рёбер, которое покрывается, остаётся прежним (\Rightarrow условие для покрытия сохраняется), а размер покрытия станет меньше, противоречие с минимальностью B.

- Единственный вариант улучшить паросочетание каким-то образом добавить удалённые ранее рёбра.
- ightharpoonup Выделим покрывающее B паросочетание M. Будем преобразовывать его в M'.
- Выбрав одно удалённое ребро для M', нам придётся убирать рёбра паросочетания для двух инцидентных ребру вершин u,v, а значит, удалять по крайней мере 2 их ребра.
- $N_{G'}(u) \cup N_{G'}(v) \notin M'$, потому что в правой доле нет рёбер, а остальные вершины уже соединены рёбрами паросочетания M.
- Значит, паросочетание лишь уменьшится.

Д.В. Карпов

