

Large Scale Data Processing

Prof. Ramesh Ragala VIT Chennai

Introduction

- Course Objective:
 - Understand different characteristics of big data.
 - Understand the requirement of big data frameworks
 - Learn the concepts of distributed file system
 - Provide MapReduce programming environment
 - Understand need of inverted indexing and graph data analytics

Introduction

Expected Course Outcome:

- Define the characteristics of big data and explain the data science life cycle.
- Differentiate between conventional and contemporary distributed framework.
- Characterize storage and processing of large data.
- Implement and demonstrate the use of the Hadoop eco- system
- Compare scalable frameworks for large data.

Introduction

• Expected Course Outcome:

- Identify independent tasks in a program that may be parallelized.
- Decompose a problem into map and reduce operations for implementation.
- Recognize different input output formats for map reduce programs.
- Design programs to analyze large scale text data.
- Identify problems suitable for use of graph mining in large data processing.

UNIT – I: Introduction to Big Data and Analytics

- Big Data Overview
- Characteristics of Big Data
- Business Intelligence vs Data Analytics

Module – II: Need of Data Analytics

- Data Analytics Life Cycle
- Data Analytics in Industries
- Exploring Big Data
- Challenges in handling Big Data

Module – III: Big Data Tools

- Need of Big Data Tools
- Understanding Distributed System
- Overview of Hadoop
- Comparing SQL databases and Hadoop
- Hadoop Eco System
- HDFS: Distributed File System
- Design of HDFS
- Writing Files to HDFS
- Reading Files from HDFS

Module – IV: Hadoop Architecture

- Hadoop Daemons
- Hadoop Cluster Architecture
- YARN Yet Another Resource Negotiator
- Advantages of YARN

Module – V: Introduction to MapReduce

- Developing MapReduce Program
- Anatomy of MapReduce Code
- Simple MapReduce Code
 - Counting Things
- Map Phase
- Shuffle and Sorting Phase
- Reduce Phase
- Master Slave Architecture
- Job Processing in Hadoop
- MapReduce Pipelining

Module – VI: MapReduce Programming Concepts

- Use of Combiner
- Block Vs Split Size
- Working with Input and Output Formats
 - Key
 - Text
 - Sequence
 - Nline File format
 - XML file Format

Module – VII: Inverted Indexing and Graph Analytics

- Web Crawling
- Inverted Index
- Baseline and revised Implementation
- Graph Representation
- Parallel Breath First Search
- Page Rank
- Issues with graph Processing

Module – VIII: Recent Trends

Guest Lecture from Industry Expert

Text Books

Tom White, Hadoop The Definitive Guide, O'Reilly, 4th Edition, 2015

Alex Holmes, Hadoop in Practice, Manning Shelter Island, 2012

Chuck Lam, Hadoop in Action. Manning Shelter Island, 2011

Jimmy Lin and Chris Dyer, Data-Intensive Text Processing with Map Reduce, 2010

Anand Rajaraman and Jeffrey David Ullman, Mining of Massive Datasets, 2011

Lab Experiments

- Setting up Hadoop in Single node and Multinode environment
- Command line interface with HDFS
- Counting things using MapReduce
- Map Reduce Program to show the need of Combiner
- Map Reduce I/O Formats key- value, Text
- Map Reduce I/O Formats N line
- Multiline I/O
- Parallel Breadth First Search
- Sequence file Input / Output Formats

Lab Experiments

- Baseline Inverted Indexing using Map Reduce
- Revised Inverted Indexing using Map Reduce
- Matrix Factorization using Map Reduce
- Video Processing using Map Reduce
- BioInformatics (Protein/Gene Sequence etc) processing with MapReduce

Thank you