Теория и реализация языков программирования.

Задание 4: Замкнутость регулярных языков, теорема Майхилла-Нероуда и минимальные автоматы

Сергей Володин, 272 гр. задано 2013.09.25

Сделано позже срока сдачи.

Задача 2

Идея обсуждалась вместе с Владом Гончаренко.

- 1. В одну сторону утверждение из условия очевидно: если $L(\mathcal{A}) = L(\mathcal{B})$, то $\forall w \hookrightarrow w \in L(\mathcal{A}) \Leftrightarrow w \in L(\mathcal{B})$, в том числе и для тех, о которых говорится в условии.
- 2. Докажем в другую сторону. $M = \{w | |w| \leqslant |Q^{\mathcal{A}}| \cdot |Q^{\mathcal{B}}| \}$. Если входные автоматы не полные, пополним их.
 - 1. Утверждение: дан ДКА \mathcal{A} , |Q|=n, Состояние $q_i\in Q$ достижимо. Тогда кратчайший путь (слово) из q_0 в q_i не длиннее n. Действительно, пусть иначе (кратчайший путь w имеет большую длину). Значит (принцип Дирихле), автомат в какой-то вершине q_1 побывал дважды: w=xyz, $(q_0,w)\equiv (q_0,xyz)\vdash^* (q_1,yz)\vdash^* (q_1,z)\vdash^* (q_i,\varepsilon)$, |y|>0. Удалив y, получим w'=xz, также попадем в q_i : $(q_0,w')\equiv^* (q_0,xz)\vdash^* (q_1,z)\vdash^* (q_i,\varepsilon)$, но путь стал короче противоречие (xyz-самый короткий).
 - 2. Рассмотрим автомат \mathcal{C} , имитирующий работу двух входный автоматов \mathcal{A} и \mathcal{B} (такой построен в задаче 4.4). В нем $|Q^{\mathcal{A}}| \cdot |Q^{\mathcal{B}}|$ состояний. Кратчайшие пути до достижимых состояний не длиннее $|Q^{\mathcal{A}}| \cdot |Q^{\mathcal{B}}|$ (п. 1), поэтому, перебрав все $w \in M$ (то есть, слова, которые не длиннее $|Q^{\mathcal{A}}| \cdot |Q^{\mathcal{B}}|$, в том числе и те, которые могут быть кратчайшими путями), автомат \mathcal{C} побывает в каждом достижимом состоянии. Значит, пара $(q_i^{\mathcal{A}}, q_j^{\mathcal{B}})$ из конечных состояний входных автоматов после прочтения слов $w \in M$ достигнет всех своих возможных значений. То есть,

$$\forall q^i_j$$
 — достижимое $\hookrightarrow \exists m \in M \colon q^0_0 \stackrel{m}{\longrightarrow} q^i_j.$

3. Рассмотрим произвольное $w \in \Sigma^*$. Пусть $q_0^0 \stackrel{w}{\longrightarrow} q_j^i$ (здесь используется полнота автоматов). Значит, q_j^i — достижимое. Тогда (п.2) для него существует $m_0 \in M$: $q_0^0 \stackrel{m_0}{\longrightarrow} q_j^i$, иными словами, $q_0^A \stackrel{m_0}{\longrightarrow} q_i^A$, $q_0^B \stackrel{m_0}{\longrightarrow} q_j^B$. Из условия имеем $\forall m \in M \hookrightarrow m \in L(\mathcal{A}) \Leftrightarrow m \in L(\mathcal{B})$. В том числе это выполнено и для $m_0 : m_0 \in L(\mathcal{A}) \Leftrightarrow m_0 \in L(\mathcal{B})$. Значит, $q_i^A \in F^A \Leftrightarrow q_j^B \in F^B$. А это означает, что $w \in L(\mathcal{A}) \Leftrightarrow w \in L(\mathcal{B})$