The special memory used to store the micro	1.
routines of a computer is	Control table
	<mark>2.</mark>
	Control store
	3.
	Control mart
	4. Control shop
How many transistors does the 8086 have	1.29,000 2.10,000 3.129,000 4.110,000
Which of the following is a valid destructor	1. void ~Country()
of the class name "Country"	2. int ~Country(Country obj)
	3. int ~Country()
	4. Country()
	1.
requirement engineering?	Elicitation
	<mark>2.</mark>
	Design a model
	3. Analysis
	4.
	Documentation
	Documentation
	1.
multiplexers required to generate a 2- input AND gate and a 2-input ExOR gate?	<mark>1 and 2</mark>
Bate and a 2 mpat Exon Bate.	
	2.
	1 and 3

	3.
	1 and 1
	1 0110 1
	4. 2 and 2
Magnitude comparator compares using	1.
operation of	<mark>addition</mark>
	2. subtraction
	2. subtraction
	3. multiplication
	4.
	division
A 2 bit binary multiplier can be implemented	1.
using	2 input ANDs only
	2 input ANDS only
	<mark>2.</mark>
	2 input X-ORs and 4-input AND gates only
	3. XOR gates and shift registers
	4.
	Two (2) input NORs and one XNOR gate
VOLATILE MEMORY IS ?	1.COMPACT DISK 2.HARD DISK <mark>3.RANDOM</mark>
	ACCESS MEMORY 4.READ ONLY MEMORY
A J-K flip-flop is in a "no change" condition	1.J = 1, K = 1 2.J = 1, K = 0 3.J = 0, K = 1 <mark>4.J =</mark>
when	0, K = 0
	I .

If two interrupts and of higher priority and	1
	1.
other of lower priority occur simultaneously	interrupt of lower priority
then the service provided is for	interrupt or lower priority
	<mark>2.</mark>
	interrupt of higher priority
	interrupt of higher priority
	3.
	had had a talan and a
	both the interrupts
	4.
	none of the mentioned
What is an Accumulator?	1. A Flip flop
what is an Accommission.	
	2. A counter
	3. A Sequential Logic Circuit
	4. A Combinational Logic Circuit
The common and are a between the greet.	
The correspondence between the main	1.
memory blocks and those in the cache is	Hash function
given by	
	<mark>2.</mark>
	No. of the state of
	Mapping function
	3.
	Locale function 4.
	Assign function
How many different states does a 3-bit	1.2 2.4 <mark>3.8</mark> 4.16
asynchronous counter have?	
Deputer application of fire flag are	1 Chiff registers 2 Transfer register 2 Counters 4 All of
Popular application of flip-flop are.	1.Shift registers 2.Transfer register 3.Counters 4.All of
	these
What type of register would shift a complete	2
binary number	
,	

bits out one bit at a time?	1.PIPO 2.PISO 3.SIPO <mark>4.SISO</mark>
A certain 5-bit self-complementary code is used to	
represent the 10 decimal digits 0 through 9.	
Given that (246) in decimal is represented as	3.11001 11101 110114.11101 11011 11001
00010 00100 00110 in this code, what is the	
representation for (375)?	
How many flip-flops are required to make a	1.3 2.4 <mark>3.5</mark> 4.6
MOD-32 binary counter?	
To operate correctly, starting a ring counter	1.presetting all the flip-flops 2.clearing one flip-flop and
requires	presetting all the others 3.presetting one flip-flop and clearing all
	the others4.clearing all the flip-flops
Which one is not a self complementary	1.8 4 -2 -1
code?	2.4812
	3.4 4 3 -2
	4.2 4 2 1
An SR flip flop cannot accept the following	1.
input entry	
	Both input zero
	2.
	zero at R and one at S
	3. zero at S and one at R
	4.
	Both inputs one

The advantage of DBMS over file systems is	1.
	redundancy
	2.
	data dependence
	3. multiple user
	4.
	single user
How many stages are there in process	1. three
improvement?	2. four
	3. five
	4. six
Given the language L = {ab, aa, baa}, which of the following strings are in L*?	1.
	1, 2 and 3
 abaabaaabaa aaaabaaaa 	
3) baaaaabaaaab 4) baaaaabaa	2.
	2, 3 and 4
	2
	3.
	<mark>1, 2 and 4</mark>
	4.
	1, 3 and 4
The decimal equivalent of hexadecima	1.43286 <mark>2.42368</mark> 3.43288 4.48632
number of 'A580' is	

Using 10's complement 72532- 3250 is	1.
	<mark>69282</mark>
	2.
	69272
	3.
	69252
	4.
	69232
	05202
X=1010100 and Y=1000011 using 1's	1.
complement Y-X is	-10111
	2.
	-10011
	3.
	-10001
	4.
	-11001
Following can be used to implement a SOP	1.MUX 2.PLA 3.ROM 4.DeMUX
function without changing it into minterms	
A comparison between ring and Johnson	1.A ring counter has fewer flip-flops but requires more decoding
counters indicates that:	circuitry 2.A ring counter has an inverted feedback path 3.A Johnson counter has more flip-flops but less decoding circuitry
	4.A Johnson counter has an inverted feedback path

One application of a digital multiplexer is to	1.data generation 2.serial-to-parallel conversion 3.data
facilitate:	selector4.parity checking
	1.For the given PS and NS what will be the inputs 2.For the given PS and NS what will be the outputs 3.For the given PS and NS what will be the type of flip-flops 4.For the given PS and NS what will be the values of NS and PS respectively
How is a J-K flip-flop made to toggle?	1.J = 0, K = 0 2.J = 0, K = 1 3.J = 1, K = 0 4.J = 1, K = 1
The combination of Sixteen adjacent squares in four variable K-map represent the function equal to	1.Four literal 2.One literal <mark>3.Unity</mark> 4.Zero
K-map follow following code for marking	1.84-2-1
adjacent variables	<mark>2.Gray Code</mark> 3.2421 4.8421
	2. 0 + (0 + 10)* 3. (0 + 1)* 10(0 + 1)* 4. (0+1)*
The total number of pins for the IC 8255 is	 2. 40 3. 30 4. 20

The IC 8237 is a	1.
	DMA Controller
	2.
	Interrupt Controller
	3.
	Keyboard controller
	4.
	Serial Interface Controller
IC 8237 hasmany pins	1. 40
	2. 28
	2. 24
	3. 24
	4.
	20
IC 8257 hasmany channels fo	11.
data transfer	1
	2.
	2
	3.
	3
	4.
	4

The MC 1488 is	<mark>1.</mark>
	TTL to RS 232C Level converter
	<mark>2.</mark>
	RS-232 to TTL level converter
	3.
	Bidirectional Level converter
	<mark>4.</mark>
	Unidirectional level converter
The IC Number for USART is	1. IC 8251A
	2.
	IC8259
	3.
	IC5255
	4.
	IC 8254
The IC 8251 A hasmany pins	1. 24
	<mark>2. 28</mark>
	3. 40
	4. 30
	30

What is the software that runs a computer,	1. driver
including scheduling tasks, managing	
storage, and handling communication with	
peripherals?	2. application suitex
	3 <mark>.</mark>
	operating system
	4.
	bluetooth technology
is the minimal super key	1
is the minimal super key	1.
	Partial Key
	2.
	Condidate Kov
	Candidate Key
	3.
	Surrogate Key
	4.
	Unique Key
ODBC stands for	1.
obbe starius for	
	Object Database Connectivity.
	2.
	Oral Database Connectivity.
	3.
	Oracle Database Connectivity.
	oracic bacabase connectivity.
	4.
	Open Database Connectivity.
How many bits are required to store one	1.1 2.2 3.3 <mark>4.4</mark>
BCD digit?	
STACK is also known as	1.LIFO 2.FILO 3.FIFO 4.LILO

WHICH NUMBER SYSTEM HAS A BASE OF 16	1.DECIMAL 2.OCTAL <mark>3.HEXADECIMAL</mark>
	4.BINARY
WHICH NUMBER SYSTEM HAS A BASE OF 2	1.BINARY 2.OCTAL 3.DECIMAL
	4.HEXADECIMAL
which of these sets of logic gates are	1.XOR , XNOR <mark>2.NOR , NAND</mark> 3.AND,OR
designated as universal gates	4.NOT,AND
If a hexadecimal number needs to convert to	1 1 2 2 3 4 4 8
binary, for each hexadecimal digit there will	1.1 2.2 3.7 4.0
be how many bits	
1 Kilo bits is equal to	1.1000 bits 2.1024 bits 3.1012 bits 4.1008 bits
Time sits is equal to	2.100 bits 2.102 i bits 3.1012 bits 1.1000 bits
in digital system 1 byte is equal to	1.8 2.4 3.2 4.1
bits	
In boolean algebra A+A is	1.A 2.2A 3.3A 4.4A
Octal number system has a base of	1.2 2.4 <mark>3.8</mark> 4.16
Multiplexer is a device which has	1.many input and one output 2.one input and many output 3.7
	input 3 output 4.3 input and 7 output
Demultiplexer is a device which has	1.3 input 4 output 2.4 input 3 output 3.one input and many
	outputs 4.7 input and 4 output
what is the Boolean expression for 2 input	1.A+B <mark>2.A.B</mark> 3.A-B 4.A/B
AND Gate	
What is the Boolean expression for three	1.A+B+C 2.A+B-C 3.A-B-C 4.A.B.C
input OR Gate	
One's complement of 11001010 is	1.00001111 2.11110000 3.10101010 <mark>4.00110101</mark>
Convert the binary number	1.1010 <mark>2.F0F0</mark> 3.0F0F 4.5050
(1111000011110000) to hexadecimal	
number	
When will be the output of AND gate is high	1.A=1, B=1,C=1 2.A=1,B=1,C=0
if there are three inputs A,B and C?	3.A=0,B=0,C=0 4.A=0,B=1,C=1
In Boolean algebra A+A' is	1.A 2.0 3.B <mark>4.1</mark>
In Boolean algebra AA' is	1.0 2.1 3.2 4.3

The decimal number (15) in binary is equal	1.1010 2.0101 <mark>3.1111</mark> 4.0001
	1.1010 2.0101 <mark>3.1111</mark> 4.0001
to What is the best case for linear search	1 O(n) 2 O(1) 2 O(log n) 4 O(2n)
What is the best case for linear search	1.O(n) <mark>2.O(1)</mark> 3.O(log n) 4.O(2n)
What is the time complexity for insertion	1.O(log n) 2.O(n) 3.O(n^2) 4.O(1)
sort	
How do you check queue is full in array	1.if(rear==size) 2.if(front==size) 3.if(rear==-
implementation	1) 4.if(front==-1)
	,
Let G be a graph with n vertices and m	
edges, What is the tightest upper bound on	
the running time on Depth First	
	1.O(n) 2.O(m+n) 3.O(mn) <mark>4.O(n^2)</mark>
represented using adjacency matrix	
In an E-R diagram attributes are represented	1. rectangle
by	, and the second
,	2.
	۷.
	square
	3.
	<mark>ellipse</mark>
	4.
	triangle
A B-tree of order m has maximum of	1.
children	
	<mark>m</mark>
	2. m + 1
	2 m 1
	3. m - 1
	4.
	m/2
	,
A linear collection of data elements where	1.primitive list 2.node list <mark>3.linked list</mark>
the linear node is given by means of pointer	
is called	

Which amongst the following refers to	1.
Absolute addressing mode	move R1, R2
	2.
	move LOC1, LOC2
	51
	5.
	move LOC1, R2
	<mark>4.</mark>
	move LOC2, R1
The mechanism that bring a page into	1.
memory only when it is needed is called	Segmentation
	2.
	Fragmentation
	3.
	Demand Paging
	4.
	Page Replacement
Demand paged memory allocation	<mark>1.</mark>
	allows the virtual address space to be independent of the
	physical memory
	2.
	allows the virtual address space to be a multiple of the physical memory size
	3.
	allows deadlock to be detected in paging schemes
	4.
	is present only in Windows NT

Assuming today is , 10 July 2000, what is returned by this statement: SELECT to_char(Last_DAY(sysdate), 'DD-MONRR') FROM dual;	1. 17-JUL-00 2. 10-JUL-00 3. 31-DEC-00
	31-JUL-00
Which one of the following algorithm is not used in asymmetric-key cryptography?	 RSA algorithm diffie-hellman algorithm
	3. electronic code book algorithm 4. ECC
In Priority Scheduling a priority number (integer) is associated with each process. The CPU is allocated to the process with the highest priority (smallest integer = highest priority). The problem of, Starvation ? low priority processes may never execute, is resolved by	1. Terminating the process. 2. Aging 3. Mutual Exclusion 4. Semaphore

Which of the following language feature is	1. internal
not an access specifier in C++?	2. protected
	3. public
	4. private
The 16 bit flag of 8086 microprocessor is	1.
responsible to indicate	the condition of result of ALU operation
	2.
	the condition of memory
	3. the result of addition
	4.
	the result of subtraction
Th	
The microprocessor can read/write 16 bit data from or to	1.
	memory Programme Transfer of the Control of the Con
	2.
	I /O device
	3.
	processor
	4.
	register
The intel 8086 microprocessor is aprocessor	1. 8 bit
	2. 16 bit
	3. 32 bit
	4. 4bit

Software engineering includes system engineering.	1.	True
	2.	False
	3.	4.
In software engineering development, if	1.	True
there are no applicable theories, people		
often use adhoc approach.	2.	False
	3.	4.
Symantec Antivirus is a customized product.	1.	True
	2	Falsa
	2.	False False
	3.	4.
Which of the below given sorting techniques	1 hut	phle sort 2 insertion sort 3 quick sort
		ection sort
Suppose T is a binary tree with 14 nodes.	1.	
What is the minimum possible depth of T?	0	
	<mark>2.</mark>	
	<mark>3</mark>	
	3.	
	4	
	4.	
	5	

The term m45 should be made up of at least	1. 6
literals.	
	<mark>2. 31</mark>
	3. 4
	4. 5
Abstraction is	1.Having public members 2.having private member and public
	function 3.friend function 4.friend classes
A collection of unused memory reserved for	1. Heap 2. Static 3. array 4. stack dynamic
dynamic allocation is called	
The levels of hierarchy in inheritance helps	1.flexibility 2.complexity 3.detailed information 4.security
to handle	
Run time polymorphism is achieved by	1.friend function 2.virtual function 3.operator overloading
	4.function overloading
Additive rule	1.cyan+ magenta+ Yellow= white 2.Red + Green + Blue = white
	3.cyan+ Green+
	Yellow= white 4.cyan+ magenta+ Yellow= Black
What is a Software ?	1.
	Software is set of programs
	2.
	Software is documentation and configuration of data
	3.
	Software is set of programs and Software is documentation and configuration of data
	comiguration of data
	4.
	Software is a set of documents.
What is the status of the inputs SO, S1, and	1. S0 = 1, S1 = 0, S2 = 1
S2 of the 74151 eight-line multiplexer in	2. S0 = 1, S1 = 1, S2 = 0
order for the output Y to be a copy of input 15?	3. S0 = 0, S1 = 1, S2 = 0
	4. SO = 0, S1 = 0, S2 = 1
	,,

The negative numbers in the binary system	1. 10's Complement
can be represented by	2. 2's complement
	2. 23 complement
	3.
	Sign magnitude
	4.
	l's complement
The binary value for 0.4375 is	1.
,	
	0.1111
	2 <mark>.</mark>
	0.0111
	0.0111
	3.
	0.0011
	4. 0.1010
In computers, subtraction is generally	1.
carried out by	9's complement
	2. 2's complement
	3.
	10's complement
	4.
	1's complement

Floating point representation is used to	1.
store	Boolean values
	Boolean values
	2 <mark>.</mark>
	real integers
	3. integers 4.
	whole numbers
·	1.
(MAN) can be used as	pure ethernet
	2.
	ethernet over SDH
	3.
	ethernet over MPLS
	<mark>4.</mark>
	combination of all of the above mentioned
A point-to-point protocol over ethernet is a	1.
network protocol for	encapsulating PPP frames inside ethernet frames
	2.
	encapsulating ethernet frames inside PPP frames
	3. for security of ethernet frames
	4.
	for security of PPP frames

A set of possible data values is called	1. attribute
	2.
	degree
	<mark>3.</mark>
	<mark>domain</mark>
	4.
	tuple
-24 is 2's complement form is	1.
24 is 2 s complement form is	11101000
	11101000
	2.
	01111111
	3.
	01001000
	4 00111111
Zero address instruction format is used for	4. 00111111 1.
	Von-Neuman architecture
	Von Weaman dremeestare
	2.
	RISC architecture
	3.
	CISC architecture

	4. Stack-organized architecture
Which of the following is correct for a gated	1
D flip-flop?	
	The output toggles if one of the inputs is held HIGH.
	2.
	Only one of the inputs can be HIGH at a time.
	only one of the inputs can be men at a time.
	3.
	The output complement follows the input when enabled.
	The output complement follows the input when chasica.
	4. Q output follows the input D when the enable is HIGH.
	4. Q output follows the input b when the enable is filed.
Which of the following is/are main	Hardware and software costs
parameters that you should use when	2. Effort costs (the costs of paying software engineers and
computing the costs of a software	managers)
development project?	
	3. Travel and training costs
	4. All the parameters required given in the option.
	The parameters required given in the option.

ASCII, EBCDIC, and Unicode are examples of	1. integrated circuits
	2. binary coding schemes
	3. two-state systems
	4. adapter cards
For which of the following flip-flop the	1.
output clearly defined for all combinations of two inputs?	D type flip-flop
	2.
	R S type flip-flop
	2
	J K flip-flop
	T flip-flop
What is an ALU?	1. A Combinational Logic Circuit
	2. A Sequential Logic Circuit
	3. A Combination of Combinational Circuit and Sequential Circuit
	4. A flip flop
LOCK profix is used most often	1.during normal execution. 2.during DMA accesses 3.during
LOCK prefix is used most often	interrupt servicing.
	4.during memory accesses
Duality principle is used when SE is	1.square 2.symmetric 3.asymmetricd
	4.translated

Decimal number 9 in Gray code is	1. 1111
	<mark>2.</mark>
	1101
	3.
	1100
	4.
	1110
Virtual memory is	A type of memory used in super computers
	2. An illusion of extremely large main memory
	3. An extremely large main memory
	4. An extremely large secondary memory
How many possible outputs would a	1. 16
decoder have with a 6bit binary input?	<mark>2. 64</mark>
	3. 128
	4. 32
What is the condition for setting the	1. Last two sum bits are different
Overflow flag in status register?	
	 Last two carrys are same Last two sum bits are same
	4. Last two carrys are different
	ı

	1.
memory, it is called	Memory Read cycle
	2
	2 <mark>.</mark>
	Fetch cycle
	3.
	Instruction cycle
	,
	4.
	Memory write cycle
If a register containing binary data (11001100) is subjected to arithmetic shift	1 <mark>. (10011000)</mark>
left operation, then the content of the	2.
register after 'ashl' shall be	(11001100)
	3.
	(1101100)
	4.
	(10011001)
A Stack-organised Computer uses instruction	<mark>1.</mark>
of	Zero addressing
	2.
	Two-addressing

	3.
	Indirect addressing
	an eet daar essing
	4. Index addressing
Content of the program counter is added to	
the address part of the instruction in order	
to obtain the effective address is called.	index addressing mode.
	2.
	register mode.
	3. implied mode.
	4.
	valetiva address made
	<mark>relative address mode.</mark>
A registrar stores the	1.
intermediate arithmetic and logic results in	Address registrar
it.	
	2. Program counter
	2
	3.
	Index registrar
	<mark>4.</mark>
	Accumulator Accumulator

The processor 80386/80486 and the	1.
Pentium processor uses bits address	
bus:	36
	<mark>2.</mark>
	<mark>32</mark>
	3.
	- .
	16
	4. 64
The number of full and half-adders required	1.
to add 16-bit numbers is	8 half-adders, 8 full-adders
	,
	2.
	<u> </u>
	1 half-adders, 15 full-adders
	3.
	16 half-adders, 0 full-adders
	4. 4 half-adders, 12 full-adders

	1. both are under union
Two automata are equal when	
	2. both are under same language
	3. both are having equal number of states
	4. both are having same number of final states
is commonly used in wireless LAN.	time division multiplexing
is commonly used in wheless LAN.	1. time division multiplexing
	2. orthogonal frequency division
	multiplexing
	3. space division multiplexing
	Space division materpressing
	4.
	long division multiplexing
	iong division multiplexing
What is Wired Equivalent Privacy(WEP)?	security algorithm for ethernet
, , ,	, ,
	2. security algorithm for wireless networks
	3. security algorithm for USB
	4.
	None

1.
wireless maximum communication
<mark>2.</mark>
worldwide interoperability for microwave access
3.
worldwide international standard for
microwave access
4.
none of the mentioned
1. binary phase shift keying modulation
2.
quadrature phase shift keying modulation
3.
quadrature amplitude modulation
<mark>4.</mark>
all of the mentioned
1. higher transport layers and physical layer
2. application layer and network layer
3. data link layer and network layer
4.
none of the mentioned

In cryptography, the order of the letters in a	1	transpositional ciphers
message is rearranged by	1.	transpositional cipilers
litiessage is rearranged by	2	aubatitutian ainkan
	2.	substitution ciphers
	2	hath (a) and (b)
	3.	both (a) and (b)
	4	
	4.	
	none of	f the mentioned
Cryptanalysis is used	1.	
5.76.6.13.76.6.16.66.6		some insecurity in a cryptographic scheme
	2.	to increase the speed
	3.	to encrypt the data
	4.	
	none of	f the mentioned
Which one of the following is a	1.	
cryptographic protocol used to secure HTTP	1.	
connection?	stream	control transmission protocol (SCTP)
	2.	transport layer security (TSL)
	۷.	transport layer security (152)
	3.	explicit congestion notification (ECN)
	J.	explicit confection notification (ECM)
	4.	
	resourc	e reservation protocol
	1	

Voice privacy in GSM cellular telephone	1.
protocol is provided by	A5/2 cipher
	2. b5/4 cipher
	3. b5/6 cipher
	4.
	b5/8 cipher
Cryptographic hash function takes an arbitrary block of data and returns	1.
and the state of t	fixed size bit string
	2.
	variable size bit string
	3. both (a) and (b)
	4.
	None
IPSec is designed to provide the security at the	1. transport layer
	2.
	network layer
	3. application layer
	4.
	session layer

In tunnel mode IPsec protects the	1. entire IP packet
	2.
	IP header
	3.
	IP payload
	4.
	none of the mentioned
Network layer firewall works as a	1.
	frame filter
	<mark>2.</mark>
	<mark>packet filter</mark>
	3. both (a) and (b)
	4.
	none of the mentioned
Which one of the following event is not possible in wireless LAN.	1. collision detection
	2.
	Acknowledgement of data frames
	3.
	multi-mode data transmission
	4.
	none of the mentioned

Data Members of the base class that are	1. are directly accessible in the derived class
marked private:	i. are directly accessible in the derived class
	2. are visible in the derived class
	3. exist in memory when the object of the
	derived class is created the derived class
	4. does exist in memory when the object of the derived class is created
	cannot access any of its class data members
function of a class?	2. cannot modify values of its class data members
	3. cannot modify values of its class data members which are mutable
	4. can modify values of its class data members
The call to the parameterized constructor of base class in the derived class	1. appears inside the definition of the derived class
	2. ppears inside the definition of the derived class constructor
	3. appears at the statement where the derived class object
	<mark>is created</mark>
	4. appears in the member initialization list of the derived class constructor
What is the return type of the conversion	1. no return type
operator function?	2. int
	3. void
	4. float
All member functions are to it's class	1. constant
by default	2. non static
	3. dynamic
	4. <mark>static</mark>

In C++, dynamic memory allocation is	1. new
accomplished with the operator	2. this
	3. malloc
	4. delete
The members of a class in c++ by default,	1. private
are	2. protected
	3. public
	4. mandatory to specify
Which of the following is not a type of	1. Copy Constructor
constructor?	2. Friend Constructor
	3. Default Constructor
	4. Parametrized Constructor
If X is the name of the class, what is the	1. X(class X* arg)
correct way to declare copy constructor of X?	2. X(X& arg)
	3. X(X* arg)
	4. X(X arg)
What does the following declaration mean?	1 .ptr is array of pointers to 10 integers 2.ptr is a pointer to an
int (*ptr)[10];	array of 10 integers 3.ptr is an array of 10 integers 4.ptr is an
	pointer to array
How will you free the allocated memory ?	1.remove(var-name); 2.free(var-name);
	3.delete(var-name);4.dalloc(var-name);
What do the 'c' and 'v' in argv stands for?	1.'c' means argument count 'v' means argument vector 2.'c'
	means argument count 'v' means argument vertex 3.'c' means
	argument configuration 'v' means argument visibility 4.'c' means
	argument control 'v' means argument vector
	1. <mark>SOLUTION & FINITE</mark> 2.PROBLEM &
THE PROBLEM	INFINITE 3.SOLUTION &
IN NUMBER OF STEPS	INFINITE4.PROBLEM & FINITE

THE DATA TYPE IS ALL ABOUT	1.NAME VALUE ADDRESS 2.BITS BYTES
	WORD 3.SIZE LIMITS RESTRICTIONS 4.TYPE SIZE RANGE
Multiple variable declaration of same data	1.array 2.identifiers 3.functions 4.Pointer
type can be avoided by?	
String length is found by the condition	1.str[i]!=NULL 2.str[i]!=sizeof(str)
	3.str[i]>='\0'
Specify the 2 library functions to dynamically	1.alloc() and memalloc() 2.malloc() and calloc() 3.memalloc() and
allocate memory?	faralloc()
	4.malloc() and memalloc()
What keyword covers unhandled	1.other 2 <mark>.default</mark> 3.contingency 4.all
possibilities?	
WHICH OF THE BELOW IS CALLED CLASSLESS	1.
ADDRESS?	191.168.1.1/24
	<mark>2.</mark>
	191.168.1.1/16
	3.
	191.168.1.1/8
	4.
	191.168.1.1/4

WE RECEIVED "404 – PAGE NOT FOUND"	1.
MESSAGE, WHEN WE BROWSE THE WEB	
PAGE. WHICH PROTOCOL PROVIDES THIS	IGP
MESSAGE?	
	2. EGP
	3.
	SNMP
	4
	4.
	ICMP
class n{ int a=0;}obj; what will happen?	1. nothing
index in the design what this happen.	
	2. initializes the data member with 0
	3. error
	4 total trace the orbit of with 0
	4. initializes the object with 0
Identify the invalid statement from the	1. for (; ;)
following	2. if (1)
	2 hreat/0)
	3. break(0)
	4. while(false)
A variable P is called pointer if	1.P contains the address of an element in DATA 2 .P contain the
	DATA and the address of DATA 3.P can store only memory
	addresses 4.P points to the address of first element in DATA
SELECT THE HIGHEST PRIORITY OPERATOR	1.&& 2., 3.?: <mark>4.++</mark>
Which of the following function sets first n	1.strset() 2.strnset() 3.strinit() 4.strcset()
characters of a string to a given character?	V
	1 structur() 2 locatetur() 2 structur() 4 structur()
The library function used to find the last	1.strnstr() 2.laststr() <mark>3.strrchr()</mark> 4.strstr()
occurrence of a character in a string is	
Which one of the following is a requirement	1.
that fits in a developer's module?	Availability
	,

	2
	2.
	Testability
	3.
	Usability
	4.
	Flexibility
Consider the following	
function double	
f(double x)	
{	
if (abs(x*x - 3) < 0.01) return x;	1.1.723 <mark>2.1.732</mark> 3.0.732 4.1.733
else return $f(x/2 + 1.5/x)$;	
}	
Give a value q (to 2 decimals) such that f(q)	
will return q:	
Which header file should be included to use	1.string.h 2.dos.h 3.memory.h 4. <mark>stdlib.h</mark>
functions like malloc() and calloc()?	,
Consider the	
following C	
declaration struct {	
short s [5] union {	
float y;	
long z;	1.10 bytes <mark>2.18 bytes</mark> 3.22 bytes 4.14 bytes
}u;	
} t;	
Assume that objects of the type short, float	
and long occupy 2 bytes, 4 bytes and 8	
bytes, respectively. The memory	
requirement for variable t, ignoring	
alignment considerations, is	
If a class C is derived from class B, which is	1.protected and public data only in C and B
derived from class A, all through public	2.protected and public data only in C.
inheritance, then a class C member function	3.private data in A and B. 4.protected data in A and B.
can access	
class n{ int a;}; how much memory the	1.0 2.2 3.depends on compiler <mark>4.4</mark>
compiler allocates for this class	

The two statements that can be used to change the flow of control are	1.switch and do-while 2.if and while 3.if and switch 4.break and continue
If p and q are assigned the values 2 and 3 respectively then the statement P = q++	1.assigns a value 5 to p 2.assigns a value 3 to p 3.gives an error message 4.assigns a value 4 to p
Creating additional function similar to template function is called	1.implicit specialization 2.explicit specialization 3.abstraction 4.template overriding
A parameterized constructor with all arguments initialized is same as	1. default constructor 2. parameterized constructor 3. overriding 4. overloading
Compile time polymorphism is	1. function overloading 2. template 3. function overriding 4. abstraction
Which of the following correctly describes C++ language?	1.Statically typed language 2.Dynamically typed language 3.Both Statically and dynamically typed language 4.Type-less language
Routine is not loaded until it is called. All routines are kept on disk in a relocatable load format. The main program is loaded into memory & is executed. This type of loading is called	1.Static loading 2.Dynamic loading 3.Dynamic linking 4.Overlays
A static data member is given a value	1. Within the class definition 3. When the program is exeuted 4. Never
which of the following is an incorrect definition inside a class ?	1.void * operator new(size_t size) { } 2.void * operator new () { } 3.void operator delete(void * ptr) { } 4.int operator ++() { }
The stream insertion operator should be overloaded as	1 .friend functions 2.member function 3.non member functions 4.static functions
Data Members of the base class that are marked private:	1.does exist in memory when the object of the derived class is created2.exist in memory when the object of the derived class is created the derived class 3.are visible in the derived class 4.are directly accessible in the derived class

The call to the parameterized constructor of	1 .ppears inside the definition of the derived class
base class in the derived class	constructor2.appears in the member initialization list of the
	derived class constructor 3.appears inside the definition of the
	derived class4.appears at the
	statement where the derived class object is created
Which of the following statements is NOT	1.Overloaded operator must have at least one operand of its class
valid about operator overloading?	type. 2.Only existing operators can be overloaded. 3.The
	overloaded operators follow the syntax rules of the original
	operator. 4. The arity of the operator can be changed
Which of the following statements are true	1.Class members are public by default. 2.Structures can not have
in c++?	functions as members. 3.Classes can not have data as public
	members. 4.Structures can have functions
Which of these is incorrect ?	1
which of these is incorrect?	1.
	Software engineering belongs to Computer science
	2.
	Software engineering is a part of more general form of System Engineering
	3.
	Computer science belongs to Software engineering
	4.
	Software engineering is concerned with the practicalities of
	developing and delivering useful software

The Incremental Model is a result of	1.
combination of elements of which two	Build & FIX Model & Waterfall Model
models?	2.
	Linear Model & RAD Model
	3.
	Linear Model & Prototyping Model
	4.
	Waterfall Model & RAD Model
Which one of the following models is no	1.
suitable for accommodating any change?	Build & Fix Model
	2.
	Prototyping Model
	3.
	RAD model
	4.
	Waterfall Model
Which model can be selected if user is	1.
involved in all the phases of SDLC?	Waterfall Model
	2.
	Prototyping Model
	3.
	RAD Model
	4.
	Prototyping Model and RAD model

Which is one of the most important	1.
stakeholder from the following?	Entry level personnel
	Entry level personnel
	2.
	Middle level stakeholder
	3.
	Managers
	4.
	Users of the software
Which of these does not belong to the basic	1. Adequacy
principles of good product design ?	2. Feasibility
	3. Portability
	4. Economy
The project planner examines the statement	1. Association
of scope and extracts all important software	
functions which is known as	2. Decomposition
	3. Planning process
	4. ALL
66.6% risk is considered as	1. very low
	2.
	low
	3.
	moderate
	4. <mark>high</mark>
1	I and the second se

Risk management is one of the most	1. Client
important jobs for a	
	2. Investor
	3.
	Production team
	4.
	Project manager
Which of the following term is best defined by the statement: "The underlying	1.
technology on which the system is built is	Technology change
superseded by new technology."?	2.
	Product competition
	3.
	Requirements change
	4.
	None
	1.
mitigation and revise these when you learn more about the risk?	Risk monitoring
	2.
	Risk planning
	3.
	Risk analysis
	4.
	Risk identification

Which of the following risks are derived	1.
from the organizational environment where	
the software is being developed?	People risks
	2.
	Technology risks
	3.
	Estimation risks
	4 <mark>.</mark>
	Organizational risks
Which of the following risks are derived	1.
from the software or hardware technologies	Managerial risks
that are used to develop the system?	
	2.
	Technology risks
	3.
	Estimation risks
	4.
	Organizational risks
Which of the following term is best defined	1.
in the design."?	Underestimated development time
	2.
	Organizational restructuring
	3.
	Requirements changes
	4.
	None

What is the maximum number of reduce moves that can be taken by a bottom-up parser for a Which one of the following is a top-down parser?	 n/2 n-1 2n-1 2^n An LR(k) parser. An LALR(k) parser
	3. Operator precedence parser.4. Recursive descent parser.
Which of the following derivations does a	1. Leftmost derivation
top-down parser use while parsing an input string? The input is assumed to be scanned in left to right order.	2. Leftmost derivation traced out in reverse 3. Rightmost derivation 4. Rightmost derivation traced out in reverse
An LALR(1) parser for a grammar G can have	1. The LR(1) parser for G has S-R conflicts.
shift-reduce (SR) conflicts if and only if	 The LR(0) parser for G has S-R conflicts. The LALR(1) parser for G has reducereduce conflicts The SLR(1) parser for G has S-R conflicts.
	1. Useless Code 2. Strength Reduction 3. Induction Variable 4. Loop unwinding 1. M1 OR M2
When we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain a machine with final state same as that of	1. M1 OR M2 2. M1 AND M2 3. M2 4. M1

The number of states in a machine M	1.
recognizing L1UL2 will be	
where n is the	m-n
number of states in M1 and m is the number	
of states in M2 .	
	2.
	m+n
	IIITII
	3.
	m+n+1
	4. n-m
	1.
language L1 and has m states out of which	1.
two are final states then the machine M	m+2
recognizing L1 complement will have	
final states.	
mar states.	2.
	m
	3.
	m-2
	4. 2
	l l

then M2 recognizing L* constructed Using	1. n+2	
	<mark>2. ı</mark>	n+1
	3. ၊	n
	4. ı	n-1
	1. Quadr	raples
language can be used in intermediate code generation?	<mark>2. Postfi</mark>	x notation and Three address code
	3. Triple:	S
	4. Infix n	otation and two address code
A finite automata that will accept only string X of length n will have many	1. 1	n
states	2. ı	n/2
	3. ı	n+1
	4. i	infinite
	1. y	ух
cxpression	2.	хух
$L = (x)^* (x yx)$, then which of the following is not a legal string within L ?	3.	
	x 4 <mark>.</mark>	
	<mark>x y x y x</mark>	

	1.
Number of final state require to accept	4
$\Phi(phi)$ in minimal finite automata.	2.
	3
	3.
	1
	<mark>4.</mark> _
	<u>o</u>
is used to check	1.
whether the language is not regular.	Pumping Lemma
	2. RE
	3.
	MN Theorem
	With Medicin
	4.
	Pigeon hole principle
	- Geometric principle
	1.
Which of the following statements is/are	1 and 4 only 2.
FALSE?	,
(1) For every non-deterministic Turing	1 and 3 only
machine, there exists an equivalent	3 <mark>. 2 only</mark>
deterministic Turing machine. (2) Turing recognizable languages are	S. Z. Olliy
closed under union and complementation.	4.
(3) Turing decidable languages are	
closed under intersection and	
complementation	
(4) Turing recognizable languages are	
closed under union and intersection.	

	3 only
Which of the following statement is true?	1.NFA is more powerful than DFA
	2.DFA is more powerful than NFA
	3.
	NFA and DFA have equal power
	4.None
A language is represented by a regular	1.
expression (a)*(a+ba). Which of the following string	aaa
does not belong to the regular set	2.
represented by the above expression.	aba
	3.
	<mark>ababa</mark>
	4. aa
such as Java needs the power of which one of the following machine models in a necessary and sufficient sense?	1.
	Deterministic pushdown automata
	2.
	Finite state automata
	3.
	Non-deterministic pushdown automata
	4.
	Turing machine
A minimum state DFA accepting the language L={w/w belongs {0,1}*} number of	1.
Os and 1s in w are divisible by 3 and 5,	15 states
respectively} has	2.
	7 states

	3. 9 states 4.
	5. 5 states 4.
	8 states
	1.
Which of the following regular expression	(a+b+aa+bb+aba+bba)*
denotes a language comprising of all	(atutaatuutauatuua)
	2.
possible strings over Σ= {a,b} of length n	
where n is a multiple of 3?	(aaa+bbb)*
	3.
	J.
	((a+b) (a+b) (a+b))*
	4.
	4 .
	(aaa+ab+a)+(bbb+bb+a)
	1. 2 states 2. 4 states 3. 6 states
What is the minimum number of states	4.
needed to a DFA over Σ = (a, b) which accept	
those words from $\boldsymbol{\Sigma}$ such that the number of	5 states
a is even and the number of b is divisible by	
three.	

Which of the following strategies means that	1.
the impact of the risk will be reduced?	Avoidance strategies
	2.
	Minimization strategies
	3.
	Contingency plans
	4.
	ALL
Which of the following term is best defined	1.
organizational management with different	Staff turnover
priorities."?	2.
	Technology change
	3.
	Management change
	4.
	Product competition
Which of the following are decidable?	1. I and II
I. Whether the intersection of two regular languages is infinite	2. I and IV
II. Whether a given context-free language is regular	3.
III. Whether two push-down automata	<mark>II and III</mark>
accept the same language	4.
IV. Whether a given grammar is context-free	I and III

Which of the following problems is	1
Which of the following problems is undecidable?	1.
	Membership problem for CFGs
	2.
	Ambiguity problem for CFGs.
	3.
	Finiteness problem for FSAs
	4.
	Equivalence problem for FSAs.
Which of the following problems is undecidable?	1 <mark>.</mark>
undecidable?	Deciding if a given context-free grammar is ambiguous.
	2.
	Deciding if a given string is generated by a given context-free grammar
	3.
	Deciding if the language generated by a given context-free grammar is empty
	4.
	Deciding if the language generated by a given context-free grammar is finite.
S -> aSa bSb a b; The language generated	1.
by the above grammar over the alphabet	All palindromes
{a,b} is the set of	
	2.
	All odd length palindromes.
	3.
	Strings that begin and end with the same symbol
	4.
	All even length palindromes

	Two level directory structure
most Operating System?	Acyclic directory structure
	Single level directory structure
	4. Tree directory structure
Which one of the following languages over the alphabet {0,1} is described by the regular	1.
expression:	The set of all strings containing the substring 00.
(0+1)*0(0+1)*0(0+1)*?	2.
	The set of all strings containing at most two 0's.
	3.
	The set of all strings containing at least two 0's.
	4. The set of all strings that begin and end with either 0 or 1.
Which of the following scheduling algorithm	1. FCFS
comes under preemptive scheduling?	2. Round Robin
	3. Multilevel Queue Scheduling
	4. Largest Job First
External Fragmentation of the file system	1. can be avoided by paging
	2. occurs only if the file system is used improperly
	3. can be removed by compaction
	4.can be avoided by Segmentation

For purposes of behavior modeling a state is	1.
any	consumer or producer of data.
	2. data object hierarchy.
	3. observable mode of behavior.
	4.
	well defined process.
Which of the following is a dynamic model	1.
that shows how the system interacts with its	
environment as it is used?	system context model
	2. <mark>interaction model</mark>
	2
	3.
	environmental model
	4.
	both system context and interaction
Which of the following is golden rule for	1.
interface design?	Place the user in control
	2.
	Reduce the user's memory load
	3.
	Make the interface consistent
	4. ALL

In a compiler, keywords of a language are	1. parsing of the program
recognized during	
	2.
	the code generation
	3 <mark>. the lexical analysis of the program</mark>
	4.
	dataflow analysis
Match all items in Group 1 with correct	1. P-4. Q
options from those given in Group 2.	4.5.2.6.2
Group 1 Group 2	-1, R-2, S-3 2.
P. Regular expression 1. Syntax analysis	P-3, Q-1, R-4, S-2
Q. Pushdown automata 2. Code	3.
generation	
R. Dataflow analysis 3. Lexical analysis	P-3, Q-4, R-1, S-2 4.
S. Register allocation 4. Code	
optimization	P-2, Q-1, R-4, S-3
Consider the following code segment.	1.
X	6
=	2.
u	8
_	2
	3.
	9
t	4. 10
;	
У	
=	

1	
X	
*	
v	
;	
X	
=	
y	
,	
+	
W	
,	
x =	
t	
<u> </u>	
z	
,	
У	
=	
x	

The minimum number of total variables required to convert the above code segment to static single assignment form is Consider the intermediate code given below: 1. i = 1 2. j = 1 3. t1 = 5 * i 4. t2 = t1 + j 5. t3 = 4 * t2 6. t4 = t3 7. a[t4] = -1 8. j = j + 1 9. if j <= 5 goto(3) 10. i = i + 1 11. if i < 5 goto(2) The number of nodes and edges in the control-flow-graph constructed for the above code, respectively, are Which of the following is the worst type of module coupling? Control Coupling 2. Stamp Coupling 3. External Coupling 4. Content Coupling	*	
The minimum number of total variables required to convert the above code segment to static single assignment form is Consider the intermediate code given below: 1. i = 1 2. j = 1 3. t1 = 5 * i 1. 5 and 7 2. 6 and 7 3. 5 and 4. t2 = t1 + j 5. t3 = 4 * t2 6. t4 = t3 7. a[t4] = -1 8. j = j + 1 9. if j <= 5 goto(3) 10. i = i + 1 11. if i < 5 goto(2) The number of nodes and edges in the control-flow-graph constructed for the above code, respectively, are Which of the following is the worst type of module coupling? Control Coupling 2. Stamp Coupling 3. External Coupling 4.		
required to convert the above code segment to static single assignment form is Consider the intermediate code given below: 1. i = 1 2. j = 1 3. t1 = 5*i 1. 5 and 7 2. 6 and 7 3. 5 and 4. t2 = t1 + j 2. d. 5. t3 = 4 * t2 7 and 8 6. t4 = t3 7. a[t4] = -1 8. j = j + 1 9. if j <= 5 goto(3) 10. i = i + 1 11. if i < 5 goto(2) The number of nodes and edges in the control-flow-graph constructed for the above code, respectively, are Which of the following is the worst type of module coupling? Control Coupling 2. Stamp Coupling 3. External Coupling 4.	y	
to static single assignment form is Consider the intermediate code given below: 1. i = 1 2. j = 1 3. t1 = 5 * i 1. 5 and 7 2. 6 and 7 3. 5 and 4. t2 = t1 + j 5. t3 = 4 * t2 6. t4 = t3 7. a[t4] = -1 8. j = j + 1 9. if j <= 5 goto(3) 10. i = i + 1 11. if i < 5 goto(2) The number of nodes and edges in the control-flow-graph constructed for the above code, respectively, are Which of the following is the worst type of module coupling? Control Coupling 2. Stamp Coupling 3. External Coupling 4.	The minimum number of total variables	
Consider the intermediate code given below: 1. i = 1 2. j = 1 3. t1 = 5 * i 4. t2 = t1 + j 5. t3 = 4 * t2 6. t4 = t3 7. a[t4] = -1 8. j = j + 1 9. if j <= 5 goto(3) 10. i = i + 1 11. if i < 5 goto(2) The number of nodes and edges in the control-flow-graph constructed for the above code, respectively, are Which of the following is the worst type of module coupling? Control Coupling 2. Stamp Coupling 3. External Coupling 4.		
below: 1. i = 1 2. j = 1 3. t1 = 5 * i 4. t2 = t1 + j 5. t3 = 4 * t2 6. t4 = t3 7. a[t4] = -1 8. j = j + 1 9. if j <= 5 goto(3) 10. i = i + 1 11. if i < 5 goto(2) The number of nodes and edges in the control-flow-graph constructed for the above code, respectively, are Which of the following is the worst type of module coupling? Control Coupling 2. Stamp Coupling 3. External Coupling 4.		
2. j = 1 3. t1 = 5 * i 4. t2 = t1 + j 5. t3 = 4 * t2 6. t4 = t3 7. a[t4] = -1 8. j = j + 1 9. if j <= 5 goto(3) 10. i = i + 1 11. if i < 5 goto(2) The number of nodes and edges in the control-flow-graph constructed for the above code, respectively, are Which of the following is the worst type of module coupling? Control Coupling 2. Stamp Coupling 3. External Coupling 4.		
3. t1 = 5 * i 4. t2 = t1 + j 5. t3 = 4 * t2 6. t4 = t3 7. a[t4] = -1 8. j = j + 1 9. if j <= 5 goto(3) 10. i = i + 1 11. if i < 5 goto(2) The number of nodes and edges in the control-flow-graph constructed for the above code, respectively, are Which of the following is the worst type of module coupling? Control Coupling 2. Stamp Coupling 3. External Coupling 4.	1. i = 1	
4. t2 = t1 + j 5. t3 = 4 * t2 6. t4 = t3 7. a[t4] = -1 8. j = j + 1 9. if j <= 5 goto(3) 10. i = i + 1 11. if i < 5 goto(2) The number of nodes and edges in the control-flow-graph constructed for the above code, respectively, are Which of the following is the worst type of module coupling? Control Coupling 2. Stamp Coupling 3. External Coupling 4.		
5. t3 = 4 * t2 6. t4 = t3 7. a[t4] = -1 8. j = j + 1 9. if j <= 5 goto(3) 10. i = i + 1 11. if i < 5 goto(2) The number of nodes and edges in the control-flow-graph constructed for the above code, respectively, are Which of the following is the worst type of module coupling? Control Coupling 2. Stamp Coupling 3. External Coupling 4.	3. t1 = 5 * i	1. 5 and 7 <mark>2. 6 and 7</mark> 3. 5 and
7 and 8 6. t4 = t3 7. a[t4] = -1 8. j = j + 1 9. if j <= 5 goto(3) 10. i = i + 1 11. if i < 5 goto(2) The number of nodes and edges in the control-flow-graph constructed for the above code, respectively, are Which of the following is the worst type of module coupling? Control Coupling 2. Stamp Coupling 3. External Coupling 4.	4. t2 = t1 + j	2 4.
7. a[t4] = -1 8. j = j + 1 9. if j <= 5 goto(3) 10. i = i + 1 11. if i < 5 goto(2) The number of nodes and edges in the control-flow-graph constructed for the above code, respectively, are Which of the following is the worst type of module coupling? Control Coupling 2. Stamp Coupling 3. External Coupling 4.	5. t3 = 4 * t2	7 and 8
8. $j = j + 1$ 9. if $j <= 5$ goto(3) 10. $i = i + 1$ 11. if $i < 5$ goto(2) The number of nodes and edges in the control-flow-graph constructed for the above code, respectively, are Which of the following is the worst type of module coupling? Control Coupling 2. Stamp Coupling 3. External Coupling 4.	6. t4 = t3	
9. if j <= 5 goto(3) 10. i = i + 1 11. if i < 5 goto(2) The number of nodes and edges in the control-flow-graph constructed for the above code, respectively, are Which of the following is the worst type of module coupling? Control Coupling 2. Stamp Coupling 3. External Coupling 4.	7. $a[t4] = -1$	
10. i = i + 1 11. if i < 5 goto(2) The number of nodes and edges in the control-flow-graph constructed for the above code, respectively, are Which of the following is the worst type of module coupling? Control Coupling 2. Stamp Coupling 3. External Coupling 4.	8. $j = j + 1$	
The number of nodes and edges in the control-flow-graph constructed for the above code, respectively, are Which of the following is the worst type of module coupling? Control Coupling 2. Stamp Coupling 3. External Coupling 4.	9. if j <= 5 goto(3)	
The number of nodes and edges in the control-flow-graph constructed for the above code, respectively, are Which of the following is the worst type of module coupling? Control Coupling 2. Stamp Coupling 3. External Coupling 4.	10. i = i + 1	
control-flow-graph constructed for the above code, respectively, are Which of the following is the worst type of module coupling? Control Coupling 2. Stamp Coupling 3. External Coupling 4.	11. if i < 5 goto(2)	
above code, respectively, are Which of the following is the worst type of module coupling? Control Coupling 2. Stamp Coupling 3. External Coupling 4.		
Which of the following is the worst type of module coupling? Control Coupling 2. Stamp Coupling 3. External Coupling 4.		
control Coupling 2. Stamp Coupling 3. External Coupling 4.		1.
Stamp Coupling 3. External Coupling 4.	module coupling?	Control Coupling
3. External Coupling 4.		2.
External Coupling 4.		Stamp Coupling
4.		3.
4.		External Coupling
Content Coupling		4.
content coupling		Content Coupling

Which of the following is the best type of	f1.
module cohesion?	Functional Cohesion
	2.
	Temporal Cohesion
	3.
	Functional Cohesion
	4.
	Sequential Cohesion
Some code optimizations are carried out or	1.
the intermediate code because	they enhance the portability of the compiler to other target
	processors
	2.
	program analysis is more accurate on intermediate code than on machine code
	3.
	the information from dataflow analysis cannot otherwise be used for optimization
	4.
	the information from the front end cannot otherwise be used for optimization

Which one of the following is FALSE?	1.
	A basic block is a sequence of instructions where control enters the sequence at the beginning and exits at the end.
	2.
	Available expression analysis can be used for common
	subexpression elimination.
	3.
	Live variable analysis can be used for dead code elimination.
	4.
	x = 4 * 5 => x = 20 is an example of common subexpression elimination.
One of the purposes of using intermediate	1.
code in compilers is to	make parsing and semantic analysis simpler
	2. improve error recovery and error reporting
	3.
	increase the chances of reusing the machine-independent code
	optimizer in other compilers.
	4. improve the register allocation.
A ring counter is same as.	1.up-down counter 2.parallel adder 3.shift register 4.ALU
A shift register can be used for.	1. Digital delay line 2. Serial to parallel conversion 3. All of
	these4.Parallel to serial conversion
	1.combinational gates 2.flip-flops 3.both flip-flops and latches
of.	4. both combinational gates and flip-flops

Count function in SQL returns the number of	1 <mark>. values</mark>
	2.
	distinct values
	3.
	groups
	4.
	columns
In what type of coupling, the complete data structure is passed from one module to	1.Control Coupling
another?	2. <mark>Stamp Coupling</mark>
	3.External Coupling
	4.Content Coupling
If all tasks must be executed in the same	1.
time-span, what type of cohesion is being exhibited?	Functional Cohesion
	2.
	Temporal Cohesion
	3.
	Functional Cohesion
	4.
	Sequential Cohesion

Which of the following pattern is the basis	of <mark>1. architecture</mark>
interaction management in many web-base	ed
systems?	 repository pattern 3.
	model-view-controller
	4.
	different operating system
Data Store Symbol in DFD represents a	1.
	Physical file
	2.
	Data Structure
	3.
	Logical file
	4.
	ALL
How many diagrams are here in Unified Modelling Language?	1. six
	2.
	seven
	3.
	eight
	4. nine

Which of the following is not considered as a	1.
risk in project management?	Specification delays
	2.
	Product competition
	3. Testing
	4.
	Staff turnover
Interaction Diagram is a combined term for	1.
	Sequence Diagram + Collaboration Diagram
	2.
	Activity Diagram + State Chart Diagram
	3.
	Deployment Diagram + Collaboration Diagram
	4.
	None
Miliah afaha fallawian ingaha COA glag fag	
Which of the following is not a SQA plan for a project?	1.
- F. SJCCC	evaluations to be performed
	2.
	amount of technical work
	3.
	audits and reviews to be performed
	4. documents to be produced by the SQA group
	documents to be produced by the SQA group

Which of the following process is concerned	1.
with analyzing the costs and benefits of	Change management
proposed changes?	
	2.
	Version management
	3.
	System building
	4.
	Release management
Which of the following term is best defined	1.
by the statement "The creation of a new	Branching
codeline from a version in an existing codeline"?	
codellile :	2.
	Merging
	3. Codeline
	4.
	Mainline
Which of the following is a project	1.
scheduling method that can be applied to software development?	PERT
	2.
	СРМ
	3.
	СММ
	4.
	both PERT and CPM
Which granularity level of testing checks the	1.
behavior of module cooperation?	Unit Testing

	2.
	Integration Testing
	3.
	Acceptance Testing
	4.
	Regression Testing
Which of the following is a black box testing	
strategy?	All Statements Coverage
	2.
	Control Structure Coverage
	3.
	Cause-Effect Graphs
	4.
One of the fault base testing techniques is	ALL 1.
de la companya de la	unit testing. 2.
	differences in general control of the control of th
	beta testing.
	3.
	Stress testing.
	4.
	mutation testing.
Changes made to an information system to	1.
add the desired but not necessarily the	
required features is called	Preventative maintenance.
	2.
	Adaptive maintenance.
	3.
	Corrective maintenance.

	1.
	4.
	Perfective maintenance.
If every requirement stated in the Software	1.
Requirement Specification (SRS) has only one interpretation, SRS is said to be	correct.
	2.
	<mark>unambiguous.</mark>
	3.
	consistent.
	4.
	verifiable.
The importance of software design can be	1.
summarized in a single word	accuracy
	2.
	complexity
	3. efficiency
	4. quality
Polymorphism reduces the effort required to	1. Coupling objects together more tightly
extend an object system by	2.
	enabling a number of different operations to share the same name.
	3. making objects more dependent on one another
	4.
	removing the barriers imposed by encapsulation.

A fault simulation testing technique is	1.
	Mutation testing
	2.
	Stress testing
	3.
	Black box testing
	4.
	White box testing
SRS is also known as specification of	1.
	White box testing
	2.
	Stress testing
	3.
	Integrated testing
	4.
	Black box testing
A COCOMO model is	1.
	Common Cost Estimation Model.
	2.
	Constructive Cost Estimation Model.
	3.
	Complete Cost Estimation Model.
	4.
	Comprehensive Cost Estimation Model.

In the spiral model 'risk analysis' is	1.
performed	In the first loop
	in the hist loop
	2.
	in the first and second loop
	3.
	In every loop
	in every loop
	4.
	before using spiral model
Thresholding function in contrast stretching	1.binary image 2.high quality image 3.low quality image
creates	4.enhanced image
For a well understood data processing	1.
application it is best to use	The waterfall model
	The waterian model
	2.
	prototyping model
	3. the evolutionary model
	4.
	the spiral model
Modifying the software to match changes in	1.
the ever changing environment is called	adaptive maintenance
	adaptive maintenance
	2.
	corrective maintenance
	3.
	perfective maintenance
	4.
	preventive maintenance

Which statement is true:	1. Standard form must consists of minterms
	2.All standard form are canonical forms 3.Canonical form can
	consist of a term with a literal missing 4.All canonical form are
	standard form
A binary code that progresses such that only	1 <mark>.Gray code</mark> 2.excess-3 code 3.8421 code
one bit changes between two successive	4.nine's-complement code
codes is:	
Identify the proper data direction and	1.Port A as output 2.Port C lower as output 3.Port C upper as
modes of operation of the 8255 ports if the	<mark>inpu</mark> t4.Port B as output
control word written into it is 9BH.	
Which of the following command words	1.ICW1 and ICW2 2.ICW1, ICW2 and ICW4 3.ICW2 and ICW3
need to be programmed to operate a single	4.ICW1 and ICW4
PIC in fully nested mode with an 8086	
microprocessor	
When operated in slave mode, the PIC	
outputs its type	
number only if the cascaded address	1.ICW1 2.ICW2 3.ICW3 4.ICW4
received on CASOCAS2 matches the address	
programmed in bits D0D2	
The truth table	1 <mark>.</mark>
X Y f(X,Y)	v
0 0 0	
0 1 0	
1 0 1	
1 1 1	2.
	X+Y
represents the Boolean function	
	3. X'Y'
	D. A T
	4.
	Y

Consider a main memory system that	1.
consists of 8 memory modules attached to	5535
the system bus, which is one word wide.	5535
When a write request is made, the bus is	
occupied for 100 nanoseconds (ns) by the	
data, address, and control signals. During	2.
the same 100 ns, and for 500 ns thereafter,	65335
the addressed memory module executes	
one cycle accepting and storing the data.	3.
The (internal) operation of different memory	/ 53892
modules may overlap in time, but only one	55672
request can be on the bus at any time. The	4.
maximum number of stores (of one word	
each) that can be initiated in 1 millisecond is	10000
Multiprogramming systems	1.
	Are easier to develop than single programming systems
	2.
	Execute each job faster
	Execute each job laster
	3.
	5.
	Execute more jobs in the same time
	4.
	Are used only on large main frame computers

The performance of cache memory is	1. hit ratio
frequently measured in terms of a quantity	1. Interesto
called	
	2.
	miss ratio
	illiss ratio
	3. average ratio
	4.
	ratio
Consider the following two sets of LR(1)	
items of an LR(1) grammar.	
X -> c.X, c/d	1. 1 only 2. 2 only
X -> .cX, c/d	
V > 1 -/-1	3.
X -> .d, c/d	1 and 4 only
X -> c.X, \$	
X -> .cX, \$	4.
Λ -> .cλ, ψ	1,2,3,4
X -> .d, \$	
Which of the following statements related to	
merging of the two sets in the	
corresponding LALR parser is/are FALSE?	
1. Council has manned since leads about and	
1. Cannot be merged since look aheads are different.	
2. Can be merged but will result in S-R	
conflict.	
3. Can be merged but will result in R-R conflict.	
connect.	
4. Cannot be merged since goto on c	
will lead to two different sets.	
Which of the following statements are	
TRUE?	
I. There exist parsing algorithms for some	
programming	

languages whose	1. I and II
complexities are less than	2 de la contraction de la cont
O(n3).	2. I and IV
	3.
II. A programming language which	III and IV
allows recursion can be implemented	
with static storage allocation.	4.
III. No L-attributed definition can be	I, II and III
evaluated in The framework of bottom-	
up parsing.	
IV. Code improving transformations	
can be performed at both source	
language and intermediate code level.	
Which of the following describes a handle (as applicable to LR-parsing) appropriately?	1.
(as applicable to EN-parsing) appropriately:	It is the position in a sentential form where the next shift
	or reduce operation will occur
	2.
	It is non-terminal whose production will be used for reduction in
	the next step
	3.
	It is a production that may be used for reduction in a future step
	along with a position in the sentential form where the next shift or reduce operation will occur
	or reduce operation will occur
	4.
	It is the production p that will be used for reduction in
	the next step along with a position in the sentential form where
	the right hand side of the production may be found

The grammar A \rightarrow AA (A) ϵ is not suitable	1.
for predictive parsing because the grammar	ambiguous
is	
	2.
	left-recursive
	3. right-recursive
	4.
	an operator-grammar
Consider the grammar	1.
$S \rightarrow (S) \mid a$	n1 <n2<n3< td=""></n2<n3<>
Let the number of states in SLR(1), LR(1) and	2.
LALR(1) parsers for the grammar be n1, n2 and n3 respectively. The following	<mark>n1=n3<n2< mark=""></n2<></mark>
relationship holds good	3.
	n1=n2=n3
	4.
	n1>n2>n3
Which of the following grammar rules	1.
violate the requirements of an operator grammar ? P, Q, R are nonterminals, and r, s,	1 and 3 only
t are terminals.	2. 1 only
1. P → Q R	
	3.
2. $P \rightarrow Q s R$	2 and 3 only
3. P → ε	·
4. P → Q t R r	4.
	1,2,3 and 4 only

Consider the grammar with the following	1.
translation rules and E as the start symbol.	
	200
$E \rightarrow E1 \# T \{ E.value = E1.value * T.value \}$	2.
T{ E.value = T.value }	400
	180
$T \rightarrow T1 \& F \{T.value = T1.value + F.value \}$	3.
F{ T.value = F.value }	<mark>160</mark>
$F \rightarrow \text{num } \{ \text{ F.value} = \text{num.value } \}$	
Compute Evalue for the root of the parse	4.
Compute E.value for the root of the parse tree for the expression: 2 # 3 & 5 # 6 & 4.	40
thee for the expression. 2 # 3 & 3 # 0 & 4.	
In a bottom-up evaluation of a syntax	1.
directed definition, inherited attributes can	
	always be evaluated
	2.
	be evaluated only if the definition is L-attributed
	3.
	be evaluated only if the definition has synthesized attributes
	4.
	never be evaluated
	never be evaluated
If the PIC outputs the type number of C8H,	1.00320H - 00323H 2.00324H - 00327H
the CPU will retrive the vector stored in the	3.00223H - 00226H 4.00140H - 00143H
address	A A A . J. 2 C J C. II J J. A A . J.
Which Instruction word is used to specify	1.Mode 2.Command followed by Mode
the number of stop bits, data bits, parity bit and the baud rate clock factor for the 8251A	3.Command 4.Mode followed by command
USART	
How many operating modes are available in	11223613
8253A.	1.1 2.2 <mark>3.0</mark> 4.3
What does microprocessor speed depends	1.Clock 2.Address bus width 3.Data bus width 4.Size of register
on	2. Glock 2.7 Marcos was Width 3. Data bas Width 4. Size of register

Consider the grammar shown below.	1. LL(1)
S → C C	
C → c C d	2.
The grammar is	SLR(1) but not LL(1)
The grantina is	3.
	LALR(1) but not SLR(1)
	4.
	LR(1) but not LALR(1)
	1.IRET 2.CALL <mark>3.PUSH</mark> 4.POP
instruction is executed	
A 32-bit address bus allows access to a	1.1 GB 2.16 MB 3.64 MB <mark>4.4 GB</mark>
memory of capacity	1.
	Architectural design
	2.
	Component-level design
	3.
Which design model is analogous to the detailed drawings of the access points and	Data design
external utilities for a house?	4.
	Interface design
1. The 40-20-40 rule suggests that the	1.Estimation and planning 2.
least amount of development effort can be spent on	Analysis and design
	3 <mark>. Coding</mark>
	4.
	Testing

Consider the translation scheme shown	1.9+5+2
below	
$S \rightarrow T R$	2.95+2+
$R \rightarrow + T \{ print ('+'); \} R \mid \epsilon$	3.952++
$T \rightarrow \text{num {print (num.val);}}$	
Here num is a token that represents an	4. + + 9 5 2
integer and num.val represents the	
corresponding integer value. For an input	
string '9 + 5 + 2', this translation scheme will	
print	
In 8086 microprocessor one of the following	1.Coprocessor is interfaced in MAX mode
statements is not true	2. Coprocessor is interfaced in MIN mode
	3.I/O can be interfaced in MAX / MIN mode
	4.Supports pipelining
Which one of the following is True at any	1.
valid state in shiftreduce parsing?	Viable prefixes appear only at the bottom of the stack and not inside
	2.
	Viable prefixes appear only at the top of the stack and not inside
	3.
	The stack contains only a set of viable prefixes
	4.
	The stack never contains viable prefixes
Match the following:	
List-I List-II	

A. Lexical analysis 1. Graph coloring	1. a 2. b <mark>3. c</mark> 4. d
B. Parsing 2. DFA minimization	
C. Register allocation 3. Post-order traversal	
D. Expression evaluation 4. Production tree	
Codes:	
ABCD	
(a) 2 3 1 4	
(b) 2 1 4 3	
(c) 2 4 1 3	
(d) 2 3 4 1	
Among simple LR (SLR), canonical LR, and	1.
look-ahead LR (LALR), which of the following	
pairs identify the method that is very easy to	SLR , LALR
implement and the method that is the most	2.
powerful, in that order?	
	CLR , LALR
	3.
	SLR , CLR
	4. SLR
adds to the costs of Software	1.
Development because it usually means that	Dieture quelity
work that has been completed has to be	Picture quality
redone	2.
	Production
	3.
	Software speed
	4.
	Change

	I
1. Graphical representation of the	1.Gantt Chart
project, showing each task and activity as	2. Structure Chart
horizontal bar whose length is proportion to	
time taken for a completion of that activity	3. Pert Chart
is called	4. Time Line
	In thine Line
Software deteriorates rather than wears	1.
out because	
	Software suffers from exposure to hostile environments
	2.
	2.
	Defects are more likely to arise after software has been used
	often
	3.
	J.
	Multiple change requests introduce errors in component
	<u>interactions</u>
	4.
	Software spare parts become harder to order
1. The prototyping model of software	1.
development is	
	A reasonable approach when requirements are well defined
	2.
	A Useful approach when a customer cannot define requirements
	<mark>clearly</mark>
	3.
	The best approach to use projects with larger development teams
	4.
	A risky model that rarely produces a meaningful product

A professional software engineer must:	1. be loyal to the organization
	2. build trust from customers
	3. socialize with customers
	4.
	be loyal to the organization and build trust from customers
The status that cannot be operated by direct	1.Z 2.Cy 3.P <mark>4.AC</mark>
instructions is	
Consider the CFG with {S,A,B) as the non-	1.
terminal alphabet, {a,b) as the terminal alphabet, S as the start symbol and the	aaaabb
following set of production rules	2.
S> aB S> bA	aabbbb
B> b A> a	3.
B> bS A> aS	<mark>aabbab</mark>
B> aBB A> bAA	4.
Which of the following strings is generated	abbbba
by the grammar?	
The first processor to include Virtual	1.Pentium 2.80486 <mark>3.80286</mark> 4.80386
memory in the Intel microprocessor	
familywas	

Generic process models are:	1.	waterfall, componet-based, iterative
deficite process models are.	1.	waterially componed basea, iterative
	2	waterfall structural component based
	2.	waterfall, structural, component-based
	2	
	3.	
	sequen	tial, waterfall, iterative
	4.	
	<mark>compo</mark>	nent-based, object-oriented, iterative
It is ok to have a single ideal approach to	1.	True
develop a software.		
	2.	False
	3.	4.
	_	
The language L= $\{0i21i \mid i \ge 0\}$ over the	1.	not recursive
alphabet {0,1, 2} is:	2	
	<mark>2.</mark>	is recursive and is a
	<mark>determ</mark>	ninistic CFL
	3.	
		is a regular language
	4.	
	is not a	deterministic CFL but a CFL
In mysql_fetch_array(),if two or more	e 1.	the first column will take
columns of the result have the same field	4	
names, what action is taken?	preced	ence
	2	the column is skinned
	2.	the column is skipped
	2	
	3.	

	t <mark>he last column will take precedence</mark>
	4.
	an error is thrown.
	1.
for file upload via form?	enctype='multipart/form-data'
	2. enctype='singlepart/data'
	3.
	enctype='file'
	4.
	enctype='form-data/file'
What library do you need in order to process images?	1.
images:	GD library
	2.
	ZIP library
	3.
	Win32 API library
	4.
	BOGUS library
You need to check the size of a file in PHP function. \$size = X(filename); Which function	1 <mark>.</mark>
will suitably replace 'X'?	<mark>filesize</mark>
	2. size
	3.
	sizeofFile
	4.
	getSize
	Become

Which of the following function is used to terminate the script execution in PHP?	1. break() 2.
	quit()
	3.
	die()
	4.
	exit()
Which method is used to search for a substring?	1. stringVariable.substring(subString)
	2. stringVariable.find(subString)
	3. stringVariable.indexOf(subString) 4.
	stringVariable.indexOf(charAt(0))
Adhirl in the second se	
Which is the correct way to write a JavaScript array?	1. var txt = new Array(1:"tim",2:"kim",3:"jim")
	2.
	var txt = new
	Array:1=("tim")2=("kim")3=("jim")
	3. var txt = new Array("tim","kim","jim")
	4.
	var txt = new Array="tim","kim","jim"

The method of an Array object	1. Slice
adds and/or removes elements from an	1. Slice
array.	2.
	Reverse
	3. Shift
	4.
	T.
	Splice Sp
Consider the following code: var a = [];	
a.unshift(1);	
	1.1 2.[4,5] 3.[3,4,5] 4.Exception
a.shift(); a.shift();	
a.shift(); The final output for the shift() is	
What does /[^(]* regular expression indicate	1. Match one or more characters that are not open parenthesis
,	2. Match zero or more characters that are open paranthesis
	3. Match zero or more characters that are not open paranthesis
	4. Match one or more characters that are open paranthesis
What gets printed? \$str = 'a\\b\n'; echo \$str;	1.ab(newline) 2.a\b(newline) <mark>3.a\b\n</mark>
	4.a\\b(newline)
What is the strpos() function used for?	1.Find the last occurrence of the string within a string 2.Find the
• •	first occurrence of the string within a string 3.Find both last and
	first occurence 4.Search for all occurrence within a string
	6
The simplest image processing technique is	1.coordinates transformation 2.intensity transformation 3.spatial
	transformation
	4.domain transformation
	1.1 <mark>2.0</mark> 3.positive 4.negative
values of constant intensities must be	
If inspected in a browser, what will be the	
total width of the	
I control of the second of the	ı

div in the following code snippet?	1 <mark>.664px</mark> 2.660px 3.644px 4.600px
#container { width: 600px; border: 2px solid	
#CCCCCC; padding: 30px 20px; margin: 20px	
10px 40px 10px;}	
Which of the following is not a valid	1.TEXT 2.NAME 3.SIZE 4.MAXLENGTH
attribute of the INPUT tag?	
Which of these sets of HTML5 attributes can	1.required, pattern, min and max 2.auto, fixed, number
be used for form validation?	3.number, text, currency
	4.input, radio,checkbox
Which item is an example of a physical	1.IP address 2.MAC address 3.Workstation name
network address?	4.www.proprofs.com
What is the following style an example of?	1.Attribute Match 2.Exact Value Match
img[alt~="Pie"]	3. Contains Value Match4. Subcode Match
What is the correct CSS syntax for making all	1.p {font-weight:bold;} 2.p style="textsize:bold" 3.p {text-
the elements bold?	size:bold} 4.p style="font-size:bold">
How can you specify default text in an input	1.Using JavaScript 2.Using the 'text'
field?	attribute 3.Using the 'placeholder' element
	4. <mark>Using the 'placeholder' attribute</mark>
The language {am bn Cm+n m, n ≥ 1} is	1.
	Regular language
	2. context free but not regular
	2. Context free but not regular
	3. context sensitive but not context free
	4.
	type-0 but not context sensitive
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

The language accepted by a Pushdown	1. Regular
Automation in which the stack is limited to	
10 items is best described as	2.
	context free
	3.
	Recursive
	4.
	Deterministic context free
Currently there is no single standard file	1.Use JavaScript to determine the web browser in use 2.Use
type that can be used to play audio using the	Adobe Flash to play the audio 3. Include multiple audio file
audio element consistently on all browsers.	formats in the src attribute 4.No Solution
Which is the solution that the audio element	
provides to resolve this conflict?	
Which of the following statements is true?	1.An INPUT field of type password provides excellent security
	2. An INPUT field of type password provides a masked field but
	no real security 3.A maximum length can not be set for a
	password field 4.A password
	INPUT field can only be included in a FORM that uses the get
	METHOD
How do we prevent margins, borders and	1.Setting zero paddings and margins 2.By displaying our list as
padding from overlapping?	block elements 3.Using table cells 4.By displaying our list as inline elements
Which of the following ways below is correct	
to write a CSS?	2.p {color:red;text-align:center}
	3.p {color:red;text-align:center;}
	4.p (color:red;text-align:center;)
Which of the following explains cookies	1.Non Volatile 2.Volatile 3.Intransient
nature?	4 <mark>.Transient</mark>
Consider the following code snippet: var a =	1.Returns [1,2,3] 2.Returns [4,5] 3.Returns
[1,2,3,4,5];	[1,2,3,4] 4.Returns [1,2,3,4,5]
a.slice(0,3); What is the possible output for	
the above code snippet?	
Which property is used to obtain browser	1.modal 2.version 3.browser <mark>4.navigator</mark>
vendor and version information?	

had a color of the color of the color	451 07 2044
What is the result of the following code	1.False <mark>2.True</mark> 3.0 4.1
snippet? window.location === document.location	
	4 Window 2 Flowart 2 History 4 Decument
The length property belongs to which of the	1. Window 2 <mark>.Element</mark> 3. History 4. Document
following objects?	
is a built - in JavaScript function	1.Timeout() 2.TimeInterval() 3.setTimeout
which can be used to execute another	() 4.All of the above
function after a given time interval.	
How do substring() and substr() differ?	1.One is not a method of the String object. 2.substr() takes three
	arguments, substring() only two. 3.Only one accepts a desired
	string length as an argument.
	4.Besides the spelling, nothing.
What is the most essential purpose of	1.Define pattern matching techniques
paranthesis in regular expressions?	2. Define subpatterns within the complete pattern 3. Define
	portion of strings in the regular expression4.All of the mentioned
Which of the falls wing languages are	1.11 and 1.2 anh; 2
Which of the follo wing languages are context-free?	1.L1 and L2 only 2.
L1 = {ambnanbm	L1 and L3 only
L2 = {ambnambn m	3.
,	
n	
≥	
1	
}	
m	
,	
n	
≥	
4	
1	
}	

L3 = {ambn m = 2n + 1}	L3 only 4.
	L1 only
Which of the following is not possible using PHP?	1.Deleting files from the server 2.Redirect a visitor to another page3.Set the value of the window statusbar 4.Obtain the IP address of a Visitor
Which one of the following is the very first task executed by a session enabled page?	Delete the previous session 2.Start a new session 3.Check whether a valid session exists 4.Handle the session
What would be the output of the below code fragment? var a = ["s","a","v","e"]; document.write(a.join(""));	
The property specifies the stack order of an element	1.d-index 2.s-index 3.x-index 4. <mark>z-index</mark>
Which of the following property allows you to specify an element's position with respect to the browser window?	1. relative 2. fixed 3. static 4. absolute
Internet Explorer usesproperty to create transparent images.	1moz-opacity:x <mark>2.filter: alpha(opacity=x)</mark> 3.filter: beta(opacity=x) 4IE-opac:y
If para1 is the DOM object for a paragraph, what is the correct syntax to change the text within the paragraph?	1."New Text"? 2.para1.value="New Text";3.para1.firstChild.nodeValue= "New Text"; 4.para1.nodeValue="New Text";
The syntax of Eval is	1.[objectName.]eval(numeriC) 2.[objectName.]eval(string) 3.[EvalName.]eval(string) 4.[EvalName.]eval(numeriC)
Join is equal to	 Cartesian Product Combination of Union and Cartesian product Combination of selection and Cartesian product Combination of intersection and Cartesian product

Which of the following statement is false?	1. For $R = R1^*$, $L(R)$ is empty if and only if $L(R1)$ is empty
	2. For $R = (R1)$, $L(R)$ is empty if and only if $L(R1)$ is empty
	3. For $R = R1R2$, $L(R)$ is empty if and only if either $L(R1)$ or $L(R2)$ is empty.
	4. If $R = R1 + R2$, $L(R)$ is empty if and only if both $L(R1)$ and $L(R2)$ are empty.
The system having memory elements are	1. sequential circuits
called.	1. Sequential circuits
curred.	2. complex circuits
	3. combinational circuits
	4. logic circuits
The ESC instruction of 8086 may have two	
formats. In one	
of the formats, no memory operand is	1.64 <mark>2.128</mark> 3.256 4.512
used. Under this format, the number of	
external op-codes (for the co- processor)	
which can be specified is	
DB, DW and DD directives are used to place	1.f ull address of labels 2.offsets of full address of labels and
data in particular location or to	variables3.full address of variables 4.offsets
simplyallocate space without preassigning	
anything to space. The DW and DD	
directories areused to generate	
	1.maskable and non-vectored 2.nonmaskable and
·	vectored <mark>3.maskable and vectored</mark> 4.non-maskable and non-
, , ,	vectored
but the interrupt can be delayed or rejected.	
Such aninterrupt is	
	1.IFB 2.INTR 3 <mark>.INTE</mark> 4.NMI
it is an internal bit programmed via the	
PC4(Port A) or PC2(Port B)bits	

Functions that combines to produce f(x,y)	1.illumination and frequency 2.intensity and reflectance3.illumination and radiance4.illumination and reflectance
bit in ICW1 indicates whether the 8259A	1.LTIM=0 2.LTIM=1 3.SNGL=1 4.SNGL=0
is cascade mode or not	
Number of the times the instruction	
sequence below will	
loop before coming out of loop is, MOV AL, 00h A1: INC AL JNZ A1	1.255 2.01 3.00 <mark>4.256</mark>
The worst case running time to search for an	1.theta(n log n) 2.theta(n*2^n) 3.theta(n)
element in a balanced binary search tree	4.theta(log n)
with n*2^n elements is	
8086 microprocessor is interfaced to 8253 a programmable	
interval timer. The maximum number by	<mark>1.216</mark> 2.28 3.210 4.220
which the clock frequency on one of the	
timers is divided by	
signal prevent the	1.pipelining <mark>2.handshaking</mark> 3.controlling
microprocessor from reading the same data	4.signaling
more than one	
T	1.Transmit buffer 2.Receive buffer 3.Data bus buffer 4.Modem
that receives a parallel byte for conversion	control
into a serial signal and further transmission	
onto the communication channel.	
How to create a Date object in JavaScript?	1. <mark>dateObjectName = new</mark>
	Date([parameters]) 2.dateObjectName.new Date([parameters])
	3.dateObjectName := new Date([parameters])4.dateObjectName
	Date([parameters])
What is the code to start displaying the time	1.onload = displayTime; 2.window. = displayTime;
when document loads?	3.window.onload = displayTime; 4.window.onload = start;
1	1.00010111B 2. <mark>0001X111B</mark> 3.00010101B 4.00110111B
operate counter 0, Read/Write LSB only,	
Mode 2, BCD countdown.	

To determine the architectural style or combination of styles that best fits the	1. algorithmic complexity
proposed system, requirements engineering	2. characteristics and constraints
is used to uncover	3. control and data
	4.
	design patterns
	1. to convert the 4-bit BCD into Gray code
must a code converter be utilized?	2. to convert the 4-bit BCD into 7-bit code
	3. to convert the 4-bit BCD into 10-bit code
	4. No conversion is necessary
The instruction is used to specify the number of stop bits, data bits, parity bit, and baud rate clock factor for the 8251 UART	1.bit set/reset 2 <mark>.Mode</mark> 3.Command 4.Code
Using the 8259A, the INT input of the 8086 can be expanded to accomodeate up toprioritized interrupt inputs	1.60 <mark>2.64</mark> 3.16 4.32
Which element is used to draw graphics images on a web page?	1.script 2.audio 3.embed <mark>4.canvas</mark>
One of the main advantage of using src attribute is	1.It becomes self-cached 2.It makes the HTML file modular 3.It restricts
	manipulation in the HTML file 4 <mark>.It simplifies the HTML files</mark>
How do you get information from a form that is submitted using the "get" method?	1.Request.QueryString; 2.\$_GET[]; 3 .Reque st.Form; 4.\$_POST[];
What does explode function in php do	1. Used to convert a string to an array 2. Used to split a given string into the number of chunks specified 3. Used to split a string by a string 4. Used to split string into two equal halves

Which command we use to set an image on	1.image-background:url('R4R_Logo.jpg')
background?	2.background-image:url('R4R_Logo.jpg') 3.bg-
	image:url('R4R_Logo.jpg')4.backgroundimage:href('R4R_Logo.jpg'
	1.
Let L be a set accepted by a	
nondeterministic finite automaton. The	
number of states in non-deterministic finite	2.
automaton is Q . The maximum number of	2 Q
states in equivalent finite automaton that	3.
accepts L is	5.
	2 raise to power Q *1
	4.
	2 raise to power Q
If AL 75H and in the ADD ALAIS	· · ·
If AL= 7FH and instruction ADD AL,1 is given, specify the contents of the six status flag	
specify the contents of the six status hag	. 2.CF=0,PF=1,AF=0,ZF=0,SF=1,OF=1 3 .CF=0,PF=1,AF=1,ZF=0,SF=1,OF=14.CF=0,P
	F=0,AF=1,ZF=0,SF=1,OF=0
The starting address for counter 0 of 8253 is	
0038H, then port address for control word	1.4411 2.4311 3.4211 4.4011
register is	
The counters of 8253 can be operated in	-1.4 2.3 <mark>3.6</mark> 4.5
modes of operation.	
The other name for MODE 0 in 8253 timer is	1.software triggered strobe
	2.Programmable one shot 3.Interrupt on terminal count 4.Square
	wave rate generator
Given the frequency f=1.5MHZ for 8253	1.10ms <mark>2.0.66us</mark> 3.1ms 4.100ms
timer the value of time period T is	
The number of counters available in internal	1.2 2.1 3.3 4.4
block diagram of 8253 is	
The internal block diagram of 80286	1.6 2.4 3.2 4.8
contains functional parts.	1.0
·	
The 16-bit stack segment value is 5D27H and the offset is	11.5FFEOH 2.5FAE0H <mark>3.5FEA0H</mark> 4.12500H
LITE OTISEL IS	

2C30H. calculated physical address is	
Given the Extra segment ES = 52B9H and the offset BX=D470H. Calculated physical address is	
Identify the addressing mode for the instruction MOV AH,47H	1.Immediate addressing mode
The 16-bit data segment value is 1000H and the offset is	
2000H. calculated physical address is	
Given the Code segment CS = 1000H and the offset BX=0050H. Calculated physical address is	1.10000H <mark>2.10050H</mark> 3.11050H 4.11000H
If AL=COH, Determine the content of the	1.E0H <mark>2.80H</mark> 3.0CH 4.0EH
register AL after SAL AL,1 instruction is executed.	
Assume the base address of CS is 3000H and	1 <mark>.32000H</mark> 2.3000H 3.30000H 4.2000H
IP is 2000H. Calculate the memory address.	
Identify different segments in a program	1.only code segment 2.data and code segment 3.only data segment4.data, code, stack and extra segments
what is the need of segmenting the memory	1.Increase the memory accessibility
in 8086	2 . Increase the memory addressibility 3.easy
	to retrieve data 4.faster access
How many select lines would be required for	1. 2
an 8-line-to-1line multiplexer?	2. 4
	3. 3
	4. 8
The value in AL=11011010 after the	1.AX=1101 1010 1111 1111 2.AX=1101
operation of CBW, the result is	1010 0000 0000
	. 3.AX=1111 1111 1101 1010 4.AX=0000
	0000 1101 1010

Given CF=0, BX=00111011 01110101 ROF	1.CF=1 BX=10011101 10111010 2.CF=1
BX,1. The result is	BX=10100111 01101110 3.CF=0 BX=01001110 11011101 4.CF=0
	BX=01010011 10110111
Consider 2 scenarios:	
C1: For DFA (φ, Σ, δ, qo, F),	1.
if F = φ , then L = Σ^*	Both are true
C2: For NFA (φ, Σ, δ, qo, F),	2.
if F = φ,	Both are False
then L = Σ*	3.
Where F =	C1 is true, C2 is false 4.
Final states	C1 is false, C2 is true
set φ = Total	er is faise, ez is true
states set	
Choose the correct option ?	
Which of the following paging algorithms is	1.
most likely to be used in a virtual memory	FIFO
system?	
	2.
	Second chance
	3.
	Least Recently Used
	4.
	Least Frequently Used
One can safely state that the output lines for	1. input data select lines
a demultiplexer are under the direct control of the:	2. the internal OR gate
	3. the internal AND gates
	4. Input data line

What is the main difference between traps 1.	
and interrupts?	How they are initiated
	2.
	The kind of code that's used to handle them
	3.
	Whether or not the scheduler is called
	4.
	How the operating system returns from them
Having more than one constructor in a class	1. not possible
lis 	2. compile time polymorphism
	3. constructor overriding
	4. error
FAT file system is	1. Indexed Allocation and used in Windows OS
	2. used in Windows OS
	3. about storage in RAM
	4. Indexed Allocation.
Quantitative methods for assessing the	1.
quality of proposed architectural designs are readily available.	
,	TRUE
	2.
	FALSE THE STATE OF
	3. 4.

Which of the following is a complete function?	1. void funct(int) { printf(?Hello"); }
	2. int funct();
	3. void funct(x) { printf(?Hello"); }
	4. int funct(int x) { return x=x+1; }
IF Y is a subset of X then	1. X> Y
	2. Y>X
	3.
	Y>> X
	4.
	X is a sub set of Y
Overloading the function operator	1.usually make use of a constructor that takes arguments.
	2.allows you to create objects that act syntactically like functions.
	3. requires a class with an overloaded operator. 4. requires a class
	with an overloaded [] operator.
The node type for document returns the value	1.2 2.9 3.3 <mark>4.8</mark>
Which of the following is NOT a valid PHP comparison operator?	1.!= 2.>= <mark>3.&&&</mark> 4.===
\$a = array(null => 'a', true => 'b', false => 'c', 0 => 'd', 1 => 'e', '' => 'f'); echo count(\$a), "\n"; What will be printed?	1.2 <mark>2.3</mark> 3.4 4.5
\$a = array(); if (\$a[1]) null; echo count(\$a), "\n"; What will be printed?	1.0 2.1 3.2 4.Code wont work
How do we access the value of 'd' later? \$a = array('a', 3 => 'b', 1 => 'c', 'd');	1.\$a[0] 2.\$a[1] 3.\$a[2] 4 <mark>.\$a[4]</mark>

A major problem with priority scheduling is	1.
·	Definite blocking
	2.
	Starvation
	3.
	Low priority
	4 .
	None of these
Buffering is useful because	1.
	It makes it seem like there's more memory in the computer
	2.
	It reduces the number of memory copies required
	3.
	It allows all device drivers to use the same code
	4.
	It allows devices and thee CPU to operate asynchronously
When the overall flow in a segment of a data	1. low coupling
flow diagram	1. Tow coupling
is largely sequential and follows straight-line	2.
paths, is present.	good modularity
	3.
	transaction flow

	4.
	transform flow
What is the difference between echo and print?	1.They both behave the same. 2.Print can take multiple parameters where as echo cannot 3.Echo can take multiple
	parameters where as print cannot 4.Print is a function where as echo is not.
How many flip-flops are required to construct a mod10 counter?	1.10 2.8 3.5 <mark>4.4</mark>
It is difficult to design asynhronous sequential circuit because.	1.External clock is to be provided 2.It is using Flip flops 3.It is more complex 4. Generally they involve stability problem
Memory elements in clocked sequential circuits are called.	1.latches 2.gates 3.signals 4.flipflop
How can we count the number of elements in an array?	1.Using sizeof() 2.count() 3.Writing a user defined function and using array_search() 4.using sizeof() and count()
How do I create PHP arrays in a HTML?	1.< input name= MyArray[]/> 2.< input ="MyArray[]" /> 3.< input name="MyArray[]" /> 4.< input MyArray[] />
What is the default size of a file set in upload_max_filesize?	1.1 MB <mark>2.2 MB</mark> 3.2.5 MB 4.3 MB
What happens if no file path is given in include() function?	1.PHP continues to execute the script. 2.Results in a fatal error3.Include_path is made use of the script.
What is the default execution time set in set_time_limit()?	1.20 secs <mark>2.30 secs</mark> 3.40 secs 4.50 secs
When the pre-order and post-order traversal of a Binary Tree generates the same output, the tree can have maximum	1.Three nodes 2.Two nodes <mark>3.One node</mark> 4.Any number of nodes

Drop SQL clause	1.
Stop SQL Gladse	
	Drops only the values from the table
	2.
	drops structure of the table along with values
	3.
	None of the options
	4.
	changes the structure of the table
The function used to remove the leading	1 <mark>.</mark>
spaces is	<mark>ltrim</mark>
	2. lpad
	3.
	rpad
	4.
	rtrim
6 11 1 212	
	1.header() 2.headers_list() 3.header_sent()
of response headers sent (or ready to send)	4.neader_send()
is a high speed cache used to	1.
hold recently referenced page table entries	Translation Look-aside buffer
as a part of paged virtual memory	
	2.
	Inverse page table
	3.
	Segmented page table
	4.
	Hierarchical page table

Synchronous counters eliminate the delay	1.input clock pulses are applied
problems encountered with asynchronous	simultaneously to each stage 2.input clock pulses are applied only
(ripple) counters because the.	to the first and last stages 3.input clock pulses are applied only to
(hippie) counters because the.	
	the last stage 4 .input clock pulses are not used to activate any of the counter stages
	of the counter stages
SR Flip flop can be converted to T-type flip-	1. is connected to Q
flop if?	1. is connected to Q
HOP II :	
	2.R is connected to Q
	3.Both S and R are shortend
	S.Both S and R are shortend
	4.S and R are connected to Q and Q' respectively
In any undirected graph, the sum of the	1. is twice number of edges 2. is always ODD
degrees of all nodes is:	3.need not be even4.must be even
The management along management and the chift	
The number of clock pulses needed to shift	1 10 2 12 3 16 4 32
one byte of data from input to the output of	1.10 2.12 <mark>3.10</mark> 4.32
a 4-bit shift register is.	d ways of the way 2. A secretary dealy twice are all the office flags at a
What is asynchronous counter.	1.none of them 2.A master clock triggers all the flip-flops at a
	time 3.all the flip-flop are combined to common clock 4.each flip-
	flop has it own clock
Given the language L = {ab, aa, baa}, which	1.
of the following strings are in L*?	1, 2 and 3 <mark>2.</mark>
4) alaa ka aa ka aa	1, 2 and 5 <mark>2.</mark>
1) abaabaaabaa	
2) aaaabaaaa	<mark>1, 2 and 4</mark> 3.
3) baaaaabaaaab	1, 3 and 4 4.
4) baaaaabaa	
,	2, 3 and 4

The Hardware mechanism that enables a	1. Polling
device to notify the CPU is called	
·	2.
	Interrupt
	3.
	Systems Call
	4.
	None of these
In the running state	1.
	only the process which has control of the processor is found
	2.
	all the processes waiting for I/O to be completed are found
	3.
	all the processes waiting for the processor are found
	4.
	everything in these options are found
	1. attributes and operations
	2. instances of each class
	3.
	roles for each actor (device or user)
	4.
In the context of object-oriented software engineering a component contains	a set of collaborating classes

What is meant by parallel-loading the register?	1.Shifting the data in all flip-flops simultaneously 2.Loading data in two of the
	flip-flops 3.Loading data in all flip-flops at the same
	time4.Momentarily disabling the synchronous SET and RESET inputs
What is the condition for resetting(s=0) the	1.MSB of the result is One 2.MSB of the result is zero 3.LSB of the
S flag in status register?	result is one 4 .LSB of the result is zero
Let w be any string of length n is {0,1}*. Let L	1.
be the set of all substrings of w. What is the minimum number of states in a non-	n+1
deterministic finite automaton that accepts L?	2. n
	3. n-1
	4.
	2n+1
Which one of the following is FALSE?	1.
	There is unique minimal DFA for every regular language
	2.
	Every NFA can be converted to an equivalent PDA
	3.
	Complement of every context-free language is recursive
	4.
	Every nondeterministic PDA can be
	converted to an equivalent deterministic PDA

Classes and components that exhibit	1. true
functional, layer, or communicational	
cohesion are relatively easy to implement,	2.
test, and maintain.	2.
	false
	3. 4.
Which of the following statements is false?	1.
statements is raise.	
	Every NFA can be converted to an equivalent DFA
	2.
	Every non-deterministic Turing machine can be converted to an equivalent deterministic Turing machine
	3.
	Every regular language is also a contextfree language
	4.
	Every subset of a recursively enumerable set is recursive
In PHP, which of the following function is	1.include[] 2.#include() 3.include()
used to insert content of one php file into	4.#include{}
another php file before server executes it	
The kernel keeps track of the state of each	1.
task by using a data structure called	Process control block
	2.
	Process Status Word
	3.
	Memory control block
	4.
	None of these

The major source of data for other systems	1.
are:	
	Electronic Switching System
	2. Transaction Processing Systems
	3. Decision Support System
	4. Management Information System
Consider an undirected random graph of	1. 1/8
eight vertices. The probability that there is	
an edge between a pair of vertices is ½.	2.
What is the expected number of unordered	
cycles of length three?	
	<mark>з.</mark>
	<mark>7</mark>
	4.
	8
What type of declaration is this:	1.
unsigned num;	num is unsigned integer
	2. num is unsigned float
	3.
	5.
	num is unsigned character
	4.
	Invalid declaration
Which of the following statements best	1.In general, the counter can be reve rsed at any point in its
describes the operation of a synchronous	counting sequence. 2.The counter can be reversed, but must be
up-/down-counter?	reset before counting in the other
	direction. 3.The counter can count in either direction, but must
	continue in that direction once started. 4.The count sequence
	cannot be reversed, once it has begun, without first resetting the
	counter to zero.

Which segments of a seven-segment display	1.a, c, d, f, and g 2.a, b, c, d, and g <mark>3.a, b, d, e, and g</mark> 4.a, b, c, d, e,
would be active to display the decimal digit	and f
2?	
In the absolute the addressing mode	1.
	The operand is inside the instruction
	2.
	The address of the operand is inside the instruction
	3.
	The register containing the address of the operand is specified inside the instruction
	4.
	The location of the operand is implicit
Which of the following addressing modes	1. 1 and 4
are suitable for program relocation at run	
time?	2.
1. Absolute addressing	
2. Based addressing	
3. Relative addressing	1 and 2 3. 2 and 3
4. Indirect addressing	
	<mark>4.</mark>
	1,2 and 4
What is the minimum number of NAND	1.0 2.1 3.2 4.3
gates required to implement A + AB` + AB`C?	

Which of the following is TRUE?	1.
	Every subset of a regular set is regular.
	2.
	Every finite subset of a non-regular set is regular.
	3.
	Every finite subset of a non-regular set is regular.
	4.
	Infinite union of finite sets is regular.
Which of the following is not a form of	1.
memory ?	Instruction cache
	2.
	Instruction register
	3.
	Instruction opcode
	4.
	Translation-a-side buffer
Which JavaScript function is most useful for finding errors?	1.Confirm 2.Prompt <mark>3.Debug</mark> 4.Alert
JavaScript RegExp Object has modifier 'i' to	1.Perform case-sensitive
	matching 2.Perform case-insensitive matching 3.Perform both
	case-sensitive &
	case-insensitive matching 4.None of the these
You can find the element you want to	1.getElementById()
manipulate by way?	2.getElementsByTagName() 3 .getElements
	ByClassName() 4 <mark>.All of the these</mark>

does the job of allocating a	1.
process to the processor.	Long term scheduler
	2.
	Short term scheduler (CPU Scheduler)
	3.
	Medium term scheduler
	4.
	<mark>Dispatcher</mark>
The length of the shortest string NOT in the language (over	1.
$\Sigma = \{a, b\}$) of the following regular expression	2
is	<mark>2.</mark>
a*b*(ba)*a*	<mark>3</mark>
	3.
	4
	4.
	5
	1.
11111)*. The minimum number of states in any DFA accepting this languages is:	3
, , , , ,	2.
	5
	3.
	8
	<mark>4.</mark>
	<mark>9</mark>

The smallest finite automation which	1. 2 states 2. 3 states 3. 4 states
accepts the language $\{x \mid length of x is \}$	4.
divisible by 3} has :	T.
	5 states
The DMA controller has registers	1.
registers	
	4
	2.
	2
	<mark>3.</mark>
	3
	4.
The rate at which a computer clock devictor	1
The rate at which a computer clock deviates from a perfect reference clock is called as	1.
	Clock rate
	2.
	Clock speed
	3.
	clock drift rate
	4.
	Too managing in an Danada si dala
	Transmission Bandwidth
Consider a join (relation algebra) between relations r(R) and s(S) using the nested loop	1.
method. There are 3 buffers each of size	Relation r(R) is in the outer loop.
equal to disk block size, out of which one	
	2.

buffer is reserved for intermediate results.	
Assuming size(r(R))	
	Relation s(S) is in the outer loop.
	3.
	Join selection factor between r(R) and s(S) is more than 0.5
	4.
	Join selection factor between r(R) and s(S) is less than 0.5.
Consider a DFA over $\Sigma = \{a, b\}$ accepting all	1.
strings which have number of a's divisible by	
6 and number of b's divisible by 8. What is	8
the minimum number of states that the DFA	2. 14
will have?	
	3. 15
	4.
	<mark>48</mark>
How many minimum states are required in a	1.
DFA to find whether a given binary string has	
odd number of 0's or not, there can be any	1
number of 1's.	<mark>2.</mark>
	<mark>2</mark>
	3.
	3
	4.
	4

A Stack-organized Computer uses instruction	1.
of	Indirect addressing
	indirect addressing
	2.
	Two-addressing
	3.
	Zero addressing
	4.
	Index addressing
A graphical display of the fundamental	1.
products in a truthtable is known as	Mapping
	iviapping
	2.
	Graphing
	Graphing
	3.
	T-map
	4.
	Karnaugh-Map
What is the maximum number of reduce moves that can be taken by a bottom-up	1. n/2
	<mark>2. n-1</mark>
unit-production (i.e., of type A -> ε and A ->	Z. II-I
a) to parce a string with p tokens?	3. 2n-1
	4.
	2^n
	<u>z</u> 11

Consider the following two sets of LR(1) items of an LR(1) grammar.	1. 1 only 2. 2 only
X -> c.X, c/d X -> .cX, c/d	3. 3 and 4 only
X -> .d, c/d X -> c.X, \$	4. <mark>1,2,3,4</mark>
X -> .cX, \$ X -> .d, \$	
Which of the following statements related to merging of the two sets in the corresponding LALR parser is/are FALSE? 1. Cannot be merged since look aheads are different.	
 Can be merged but will result in S-R conflict. Can be merged but will result in R-R conflict. 	
4. Cannot be merged since goto on c will lead to two different sets.	
Consider a 6-stage instruction pipeline, where all stages are perfectly balanced. Assume that there is no cycle-time overhead of pipelining. When an application is executing on this 6-stage pipeline, the speedup achieved with respect to non-pipelined execution if 25% of the instructions incur 2 pipeline stall cycles is	
Which of these contains an executable statement?	1.// var a = 0; // var b = 0; 2./* var a = 0; // var b = 0; */ 3./* var a = 0; */ var b = 0; */ var a = 0; /* var b = 0; */

scheduler selects the jobs from	1.
the pool of jobs and loads into the ready	Long torm
queue.	Long term
	2.
	Short trem
	3.
	Medium term
	4.
	None of these
	1. a*
Automaton accepting the regular expression of any number of a 's is:	2. a
	3.
	a*b*
	4. abc
The minimum number of page frames that	1. the instruction set
must be allocated to a running process in a virtual memory environment is determined	<mark>architecture</mark>
by	2. page size
	3.
	physical memory size
	4.
	number of processes in memory

Finite automata recognizesgrammars	1.
	type-1
	2.
	type-3
	type-3
	3. type-0
	4.
	type-2
The main difference between JK and RS flip-	1.
flop is that?	JK flip-flop does not need a clock pulse
	2. there is feedback in JK flip-flop
	3.
	JK flip-flop accepts both inputs as 1
	4.
	JK flip-flop is acronym of junction cathode multivibrator
	and the production of junction outlined a maintained
Radix of binary number system is?	1.
	0
	2.
	1
	3.
	<u> </u>
	4.
	A&B

_	1.Octal code
code?	
	2.Grey code
	3.Binary code
	S.Biridi y code
	4.
	Excess 3 code
	1.
"QUAD" indicate?	4 circuits 2.
	2 circuits 3.
	O simulita 4
	8 circuits 4.
	6 circuits
	0.000
register keeps tracks of the	1.
instructions stored in program stored in	
memory.	AR (Address Register)
	2.
	XR (Index Register)
	3.
	PC (Program Counter)
	4.
	AC (Accumulator)
	<u> </u>

The language is $L=\{0^p1^q0^r \mid p,q,r^30,p^1r\}$ is	Context-sensitive but not context-free
	Recursive but not Context-free
	3. Regular
	4. Context-free
Write Through technique is used in which	1.
memory for updating the data .	
	Virtual memory
	2.
	Main memory
	3.
	Auxiliary memory
	4.
	Cache memory
Which of the following is not hardware:	1.
	Magnetic tape
	2. Printer
	3.
	VDU terminal
	4.
	Assembler

Multiple choice examination answer sheets	1.
can be evaluated automatically by	Optical Mark Reader
	2.
	Optical Character Reader
	3.
	Magnetic tape reader
	4.
	Magnetic ink character reader.
Which of the following would cause quickest	1.
access	direct access from a magnetic tape
	2.
	direct access from a hard disk
	3.
	direct access from a floppy disk
	4.
	direct access from a cassette tape
The process of retaining data for future use is called	1. reading
is called	2.
	writing
	3. storing
	4.
	coding

Magnetic tapes are good storage media for	1.
	backup and low volume data
	2.
	backup and high volume data
	Sacrap and high volume data
	3.
	storing original but low volume data
	4.
hall at all and the sisting of DANA are any and any	storing original but high volume data
What characteristic of RAM memory makes it not suitable for permanent storage?	1. too slow
	2.
	unreliable
	3.
	<mark>it is volatile</mark>
	4.
	too bulky
The average time required to reach a	1 cook time
The average time required to reach a storage location in memory and obtain its	1. seek time
contents is called the	2.
	turnaround time
	3 <mark>. access time</mark>
	4.
	transfer time
Which of the following is lowest in maman:	1
Which of the following is lowest in memory hierarchy?	1.
	1

	Cache memory
	2.
	Secondary memory
	3.
	Registers
	4.
	RAM
One operation that is not given by	1.
magnitude comparator	equal
	2. <mark>less</mark>
	3. greater
	4.
	addition
An unambiguous grammar has	1. Exactly one leftmost derivation for a string w
	At most one leftmost and one rightmost derivation for a string w
	3. At most one rightmost derivation for a string w
	 Exactly one leftmost and rightmost derivation for a string
A stack organized computer has	1.Three-address Instruction

	2. Two-address Instruction
	3.One-address Instruction
	4. Zero-address Instruction
, .	1.
most of the Operating Systems?	Single level directory structure
	2.
	Two level directory structure
	3.
	Tree directory structure
	4.
	Acyclic directory structure
The memory unit that communicates	1.
directly with the CPU is called the	main memory
	2.
	Secondary memory
	3.
	shared memory
	4.
	auxiliary memory
In which addressing mode the operand is	1. Absolute
given explicitly in the instruction	1. Absolute
	2.
	Immediate
	3.
	Indirect

	4.
	Direct
Resource locking	1.
	Allows multiple tasks to simultaneously use resource
	2.
	Forces only one task to use any resource at any time
	3.
	Can easily cause a dead lock condition
	4.
	Is not used for disk drives
The load instruction is mostly used to designate a transfer from memory to a	1.
processor register known as	<mark>Accumulator</mark>
	2.
	Instruction Register
	3.
	Program counter
	4.
	Memory address Register
A group of bits that tell the computer to	1.
as	Instruction code
	2.
	Micro-operation
	3.
	Accumulator
	4.
	Register

Memory unit accessed by content is	1.
called	
	Read only memory
	2.
	Programmable Memory
	3.
	Virtual Memory
	4.
	Associative Memory
PSW is saved in stack when there is a	1. interrupt recognized
	2. execution of RST instruction
	3.
	Execution of CALL instruction
	4.
	All of these
	1.
whose removal disconnects a graph. Which one of the following statements is true?	A tree has no bridges
	2.
	A bridge cannot be part of a simple cycle
	3.
	Every edge of a clique with size 3 is a bridge (A clique is any compete sub graph of a graph)
	4.
	A graph with bridges cannot have a cycle

	1. True
Software coupling is a sign of poor	
architectural design and can always be	2.
avoided in every system.	False False
	3. 4.
Generally Dynamic RAM is used as main	1.
memory in a computer system as it	Consumes less power
	2. has higher speed
	3. has lower cell density
	4.
	needs refreshing circuitry
Cache memory acts between	1.
	CPU and RAM
	2.
	RAM and ROM
	3.
	CPU and Hard Disk
	4.
	None of these

Which of the following is not the attribute of	1.
FCB?	File permissions
	2.
	Program Counter
	3.
	Access Control List
	4.
	Pointers to file control blocks
ALE stands for	1. address latch enable
	2.
	address level enable
	3. address leak enable
	4.
	address leak extension
	1.
	design model
	2.
	implementation model
	3. user model
	4.
users of a computer system?	client model

•	1.
automaton (NFA). with N states, the	N^2
maximum number of states in an equivalent	IN^2Z
minimized DFA is at least.	
	2.
	2N
	3.
	2^N
	
	4. N!
In 8086, Example for Non maskable	1.
interrupts are	TDAD
	TRAP
	2. RST6.5
	3.
	INTR
	4.
	RST6.6
Address line for TRAP is?	1.
	0023H
	2
	2.
	<mark>0024Н</mark>
	3.
	0033H
	4.
	0099Н

Access time is faster for	1.
	ROM
	<mark>2.</mark>
	SRAM
	3.
	DRAM
	4.
	ERAM
	1. cost estimation
normally associated with the user interface	
design processes?	2.
	interface construction
	3. interface validation
	4.
	user and task analysis
	, , , , , , , , , , , , , , , , , , , ,
Which method bypasses the CPU for certain	1.
types of data transfer?	Software interrupts
	2.
	Interrupt-driven I/O
	3.
	Polled I/O
	4.
	Direct memory access (DMA)

A 20-bit address bus can locate	1.
	1,048,576 locations 2.
	2,097,152 locations 3.
	4,194,304 locations 4.
	8,388,608 locations
•	1.
transferred	from I/O to memory
	2.
	from memory to I/O
	3.
	from memory to I/O
	4.
	from I/O to I/O
Direction flag is used with	1.
	String instructions
	2.
	Stack instructions.
	3.
	Arithmetic instructions
	4.
	Branch instructions

EPROM is generally erased by using	1.
Li Now is generally crused by using	1.
	Ultraviolet rays
	2. infrared rays
	2. Illitateu tays
	2
	3.
	12 V electrical pulse 4.
	24 V electrical pulse
N/high is used to store suiting pieces of date	d. Charalt
Which is used to store critical pieces of data	1. Stack
during subroutines and interrupts	
	2.
	Queue
	3.
	5.
	Accumulator
	4.
	Data register
Usability questionnaires are most	1.
meaningful to the interface designers when	1.
completed by	customers
	2.
	experienced programmers
	3 <mark>. product users</mark>
	4.
	project managers

An optimizing compiler	1. I	s optimized to occupy less space
	2. (Optimized the code
	3. I	s optimized to take less time for execution
	4. 5	Secured Code
The external system bus architecture is created using from	1. Pascal	
architecture	2.	
	Dennis R	litchie
	3.	
	Charles I	Babbage
	4.	
	<mark>Von Neu</mark>	ı <mark>mann</mark>
Most software continues to be custom built	1.	
because	Compon	ent reuse is common in the software world.
	2.	
	Reusak	ole components are too expensive to use.
	3.	
	Software compone	e is easier to build without using someone else's ents
	4.	
	Off-the-	shelf software components are unavailable in many
	<mark>applicati</mark>	<mark>ion domains.</mark>
A binary tree in which if all its levels except	1.	
possibly the last, have the maximum number of nodes and all the nodes at the last level	full bina	iry tree
and a second of the second of	2. AVL tr	ee
	3.	

	threaded tree
	4.
	complete binary tree
	1. true
Class testing of object-oriented software is	2.
equivalent to unit testing for traditional	false
software.	3. 4.
	1. true
	1. true
	2.
Performance testing is only important for	<mark>false</mark>
real-time or embedded systems.	3. 4.
Which statement does not require	1. goto xyz
semicolon?	2.
	int x = 20
	3.
	#define MAX 100
	4.
	do { }while(count<=100)
	4 4
	1. true
	2.
Stress testing examines the pressures	<mark>false</mark>
placed on the user during system use in extreme environments	
	3. 4.
Program flow graphs are identical to	1.
program flowcharts.	true

	<mark>2.</mark>
	<mark>false</mark>
	3. 4.
	1. true
When testing object-oriented software it is important to	2.
test each class operation separately as part	<mark>false</mark>
of the unit testing process.	3. 4.
If L and L' are recursively enumerable, then L is	1. regular
13	2. context-free
	3. context-sensitive
	4.
	recursive
Let L1 be a recursive language, and let L2 be	1.
a recursively enumerable but not a recursive language. Which one of the following is	
TRUE?	<mark>2.</mark>
L1'> Complement of L1	L1' is recursive and L2' is not recursively enumerable
L2'> Complement of L2	3.
	L1' and L2' are recursively enumerable
	4.
	L1' is recursively enumerable and L2' is recursive

Which of the following is true?	1.
	The complement of a recursive language is recursive.
	2.
	The complement of a recursively enumerable language is recursively enumerable
	3.
	The complement of a recursive language is either recursive or recursively enumerable
	4.
	The complement of a contextfree language is context-free
Boolean algebra is also called	1 <mark>.</mark>
	switching algebra
	2.
	arithmetic algebra
	3.
	linear algebra
	4.
	algebra
A quadruple is a record structure with fields.	1. 3
	<mark>2. 4</mark>
	3. 1
	4. 2

In the types of Three-Address statements,	1. The value of x is assigned to y or the value of y is assigned
copy statements of the form x := y means	t o x.
	2. The value of x is assigned to y and the value of y is assigned t o x.
	3. The value of y is assigned to x.
	4. The value of x is assigned to y.
The set of all strings over the alphabet {a,b} (including epsilon} is denoted by	1. (a+b)^+
	2.
	a^+b^+
	3. a*b*
	S. a · u ·
	4.
	(a+b)*
Which one of the following languages over	
alphabet {0,1} is described by the regular expression:	The set of all strings containing at least two 0's
(0+1)*0(0+1)*0(0+1)*?	
	2. The set of all strings that begin and end with either 0 or 1.
	3.
	The set of all strings containing at most two 0's.
	4.
	The set of all strings containing the substring 00.
	The set of all strings containing the substring 00.

	1. true
The focus of validation testing is to uncover	
places that a	2.
	6-1
user will be able to observe failure of the	false
software to conform to its requirements.	3. 4.
How many DFAs exit with two state over the	1.
input alphabet (a,b)	16
	2.
	26
	3.
	32
	<mark>4. 64</mark>
Which one of the following regular expressions over {0,1} denotes the set of all	1.
strings not containing 100 as a substring?	0*(11*0)*
	2 0*1*01
	2. 0*1*01
	3.
	0*(10+1)*
	4.
	0*1010*

1. true
2.
E-1
<mark>false</mark>
3. 4.
1.
S1 is a serializable schedule
f ² ·
A deadlock will occur if 2PL is used
3.
S1 is a conflict serializable schedule
4.
S1 is a view serializable schedule
1.
PROJECTION
2.
SELECTION
3.
UNION
4.
JOIN
1.selection sort 2.merge sort 3.quick and merge sorts 4.indexed
sequential search
1.Q[REAR] = item; REAR ++ 2.item =
1.Q[REAR] = item; REAR ++ 2.item = Q[FRONT]; FRONT++ 3.item = Q[REAR];

If there are n relations how many number of	1.
join conditions has to be applied to retrieve	
the data from all the n relations?	N+1
	2.
	N
	3. N-1
	4.
	A Number in the range 0 toN.
In access lists and groups which one of the	1.
following is correct for the 'RWX' notation of the order 'group, owner, public'	111110001
	<mark>2.</mark>
	110111001
	3.
	001111110
	4.
	001110111
Which of the following statement is false?	If there is a PDA by acceptance state that accept L, then
	there is also a PDA by empty stack that accept L
	If there is a NPDA that accept L, then there is also a DPDA
	that accept L.
	3. If there is a PDA by empty stack, then there is also a CFG
	G that accept L.
	4. If there is a CFG G that accepts L, then there is also a PDA
	that accept L.

transmission takes place in both directions,	1.simplex 2.four wired 3.full duplex 4.halfduplex
but only in one direction at a time is called	
Which of the following statements is true?	1.Quadraples have some disadvantages over triples notation for an optimizing compiler 2.For optimizing compiler, moving a statement that defines a temporary value requires us to change
	all references to that statements. It is an overhead for triples
	notation 3.For optimizing compiler, triples notation has important benefit where statements are often moved around as it incurs no movements or change 4.All the statements are false
The addressing mode used in an instruction of the form ADD R1, R2 is	1. Absolute
	2.
	Indirect
	3. Index
	4.
	Register
A binary tree T has 20 leaves. The number of nodes in T having two children is	
	2. 99
	3.
	7
	4.
	19

Which of the following asymptotic notation	1.	n + 9378
is the worst among all?		
	2.	2^ n-1
	3.	2^ n - 1
	4.	
	2n ? 1	
When there is complete DFA with Five states	1. 3	
out of which two are final states if F is	2. 2	
modified such that it recognizes	2. 2	
complement of the original language then	<mark>3. 5</mark>	
there will be at leastfinal states.	4. 7	
How many address bits are needed to select	1.	
all memory locations in the 16K × 1 RAM?	8	
	2.	10
	<mark>3.</mark>	14
	4.	
	16	
Bit stuffing refers to	1.inser	ting a '0' in user data stream to differentiate it with a
0		serting a '0' in flag data stream to avoid ambiguity
		nding a nibble to the flag sequence 4.appending a nibble to
		r data stream

Which one of these is characteristic of RAID	1.
5?	Distributed parity
	Distributed parity
	2.
	No Parity
	3.
	All parity in a single disk
	4.
	Double Parity
The set of fundamental assumptions about	1. organizational culture.
what products the organization should produce, how and where it should produce	2. behavioral model.
them, and for whom they should be produced is	3. rational model.
	4. agency theory.
The set of fundamental assumptions about	1. organizational culture.
what products the organization should produce, how and where it should produce	2. behavioral model.
them, and for whom they should be produced is	3. rational model.
produced is	4. agency theory.
A network that contains multiple hubs is most likely configured in which topology?	1.Mesh <mark>2.Tree</mark> 3.Bus 4.Star
Which one of the following models is not	1. Build & Fix Model
suitable for accommodating any change?	2. RAD Model
	3. Waterfall Model
	4. Prototyping Model

Content of the program counter is added to	1.	
the address part of the instruction in order	relative address mode.	
to obtain the effective address is called	relative address mode.	
	2.	
	index addressing mode.	
	3.	
	register mode	
	4.	
	implied mode	
The three key levels at which responsibility	1. Team, Organization, contractor	
can be defined is at the,,	2. Project, Strategic, Activity	
	3. Project, Activity, WBS	
	4. Project, Organization, Team	
Usecase analysis focuses upon	1. Actors	
	2. Objects	
	3. Data	
	4. Entities	
The data-in register of I/O port is	1. read by host to get input	
	2. read by controller to get input	
	 written by host to send output 	
	4.	
	written by host to start a command	

Which one of the following is a valid project	t1. Master schedule.
Key Performance Indicator (KPI)?	2. Staff appraisals.
	3. Management buy in.
	4. Milestone achievement.
If M1 machine recognizing L with n states, then M2 recognizing L* constructed Using Thompson construction will havestates.	 n+2 n+1 n n
	4. 11-1
Which one of the following uses 8B/6T encoding scheme	1.100 Base-T1 2.100 Base-T4 3.100 Base TX 4.100 Base-FX
A packet switching network	1.can reduce the cost of using an information utility 2.allows communications channel to be shared among more than one user 3.can reduce the cost of using an information utility and allows communications channel to be shared among more than one user 4.is free
The main purpose of a data link content monitor is to	1.detect problems in protocols 2.determine the type of switch used in a data link 3.determine the flow of data 4.determine the type of switching used in data link
Which of the following is a wrong example of	f <mark>1.X.25 level 2-ISO</mark> 2.Source routing and
network layer	Domains Naming Usenet3.X.25 packet land protocols (PLP-ISO) 4.Internet protocol (I/P) ARPA NET
Logical addressing is used in layer	1. Network 2. Transport 3. Physical 4. Session
functions as a request-response protocol in the client-server computing model.	1.HTTP 2.IP 3.TCP 4.UDP

In context of OSI or TCP/IP computer	1.Major difference between LAN and WAN is that the later uses	
network models, which of the following is	switching element 2.Network layer is connection oriented 3.A	
false?	repeater is used just to forward bits from one network to anothe	
	one 4.A gateway is used to connect incompatible networks	
	one in gateway is used to connect incompatible networks	
All devices/host connect to a central switch	1.Star 2.Ring 3.Bus 4.Tree	
in topology.		
Calculate the person months for a project	1. 2	
that was completed in two months with two	2.4	
people working on it.	<mark>2. </mark>	
	3. 1	
	4. 8	
When FA M is given which recognizes	1.	
language L and reverse of L is found by	Two	
using M then there can be	1 WO	
Final states		
	2.	
	Three	
	Timee	
	3.	
	Only one	
	City one	
	4. Any number	
Who owns the Project Management Plan (PMP)?	1. The project team.	
	2. The chief executive.	
	3. The project manager.	
	4. The project support office.	

The number of states in a machine M	1.
recognizing L1UL2 will be	
where n is the	m-n
number of states in M1 and m is the number	
of states in M2 .	
	2.
	<mark>m+n</mark>
	3.
	m+n+1
	4. n-m
A Program Counter contains a number 825	1.
and address part of the instruction contains	849
the number 24. The effective address in the	049
relative address mode, when an instruction	
is read from the memory is	2 <mark>.</mark>
	<mark>850</mark>
	3.
	801
	4.
	802
How many two state FA can be drawn over	1.
alphabet{0,1} which accepts(0+1)*	12
	144
L	1

	2.
	14
	3 <mark>.</mark>
	<mark>20</mark>
	<u>20</u>
	4. 15
When there is more than one final state in	1. dot
the reduced FA, then its regular expression	
will contain operator surely	2. binary +
	3. star
	4. <mark>unary +</mark>
When an instruction is read from the	1.
memory, it is called	1.
,	Memory Read cycle
	2.
	Fetch cycle
	3.
	Instruction cycle
	instruction cycle
	4.
	Memory write cycle
A data structure where elements can be	
added or removed at either end but not in	
the middle	
The Epsilon-Closure of any state q will	1. p
contain the state	2. Epsilon
irrespective of q.	
	<mark>3. q</mark>
	4. Final State
The minimum length for strings in the	1. Infinite
regular expression (2.0%
10* + 001*)* is	2. One
	3. <mark>Zero</mark>

A variable P is called pointer if 1. P contains the address of an element in DATA 2. P contain the DATA and the address of DATA 3.P can store only memory addresses 4.P points to the address of first element in DATA Which of the following regular expression denotes a language comprising of all possible strings over {a,b} of length n where n is a multiple of 3? 1. (aaa+ab+a)+(bbb+bb+a) 2. ((a+b) (a+b) (a+b))* 3. (aaa+bbb)* 4. (a+b+aa+bb+aba+bba)* Let G(x) be the generator polynomial used for CRC checking. What is the condition that should be satisfied by G(x) to detect odd number of bits in error? 2. G(x) does not divide 1+x^k, for any k not exceeding the frame length 3. 1+x is a factor of G(x) 4. G(x) has an odd number of terms. What is the data structures used to perform recursion? The restriction while using the binary search is?		4. Two
denotes a language comprising of all possible strings over {a,b} of length n where n is a multiple of 3? ((a+b) (a+b))* 3. (aaa+bbb)* 4. (a+b+aa+bb+aba+bba)* Let G(x) be the generator polynomial used for CRC checking. What is the condition that should be satisfied by G(x) to detect odd number of bits in error? 2. G(x) does not divide 1+x^k, for any k not exceeding the frame length 3.	A variable P is called pointer if	DATA and the address of DATA 3.P can store only memory
(aaa+bbb)* 4. (a+b+aa+bb+aba+bba)* Let G(x) be the generator polynomial used for CRC checking. What is the condition that should be satisfied by G(x) to detect odd number of bits in error? 2. G(x) does not divide 1+x^k, for any k not exceeding the frame length 3. 1+x is a factor of G(x) 4. G(x) has an odd number of terms. What is the data structures used to perform recursion? The restriction while using the binary search 1. G(x) contains more than two terms 2. G(x) does not divide 1+x^k, for any k not exceeding the frame length 3. 1+x is a factor of G(x) 4. G(x) has an odd number of terms.	denotes a language comprising of all possible strings over {a,b} of length n where	2.
Let G(x) be the generator polynomial used for CRC checking. What is the condition that should be satisfied by G(x) to detect odd number of bits in error? 1. G(x) contains more than two terms 2. G(x) does not divide 1+x^k, for any k not exceeding the frame length 3.		
for CRC checking. What is the condition that should be satisfied by G(x) to detect odd number of bits in error? 2. G(x) does not divide 1+x^k, for any k not exceeding the frame length 3. 1+x is a factor of G(x) 4. G(x) has an odd number of terms. What is the data structures used to perform recursion? The restriction while using the binary search 1. List should be small in number 2. List should be large in		
length 3. 1+x is a factor of G(x) 4. G(x) has an odd number of terms. What is the data structures used to perform recursion? The restriction while using the binary search 1.List should be small in number 2.List should be large in	for CRC checking. What is the condition that should be satisfied by G(x) to detect odd	G(x) contains more than two terms
4. G(x) has an odd number of terms. What is the data structures used to perform 1.list 2.queue 3.stack 4.Tree recursion? The restriction while using the binary search 1.List should be small in number 2.List should be large in		length
recursion? The restriction while using the binary search 1.List should be small in number 2.List should be large in		4.
	•	1.list 2.queue <mark>3.stack</mark> 4.Tree
	The restriction while using the binary search	

Which Data structure is best suited for the	1.Both Stack and Queues 2.Queues 3. <mark>Stack</mark>	
UNDO operation in Windows	4.Arrays	
Which of the following logic expression is incorrect?	1. 1⊕ 0 = 1	
	2. 1⊕ 1⊕0=1	
	3. 1⊕ 1⊕1 = 1	
	4. 1⊕ 1 = 0	
Effective software project management	1. people, product, process, project	
focuses on four P's which are	2. people, product, performance, process	
	3. people, performance, payoff, product	
	4. people, process, payoff, product	
The difference between linear array and a record is	1.A record form a hierarchical structure but a linear array does not2.All of above 3.An array is suitable for homogeneous data	
	but the data items in a record may have different data type 4.In	
	a record, there may not be a natural ordering in opposed to linear array	

Caratha tha and halana and 1444		
Consider the regular language L = (111 +	1.	
11111)*. The minimum number of states in	3	
any DFA accepting the language is		
	2.	
	5	
	3.	
	8	
	<mark>4. 9</mark>	
The postfix expression for * + a b - c d is?	1.ab + cd - * 2.ab + cd * - 3.ab + - cd * 4.ab cd + - *	
The postfix expression for + a b - c d is:	2.ab + cu - 3.ab + - cu 4.ab cu + -	
What is the recommended distribution of 1.50-20-30		
effort for a software project?		
	2. 50-30-20	
	3. 30-40-30	
	4. <mark>40-20-40</mark>	
Which of the following algorithm design	1.Greedy method 2.Backtracking 3.Divide and conquer 4.Dynamic	
technique is used in the quick sort	programming	
algorithm?		
State the acronym of POMA in software	Project Organization Monitoring Adopting	
project management		
	2. Planning Origanizing Monitoring Adjusting	
	3. project oriented maintenance and administration	
	4. Project Orientation Mapping Adjusting	
You have to sort a list L consisting of a	1.Bubble sort 2.Selection sort 3.Quick sort	
sorted list followed by a few "random"	4. Insertion sort	
elements. Which of the following sorting		
methods would be especially suitable for		
such a task?		
Sucii a task!		

Which one of the following connects high-	1.
speed highbandwidth device to memory subsystem and CPU.	expansion bus
	2. PCI bus
	3. SCSI bus
	4. none of the mentioned
Which one of the following statements best	·
defines the purpose of a Product Breakdown Structure (PBS)?	2. To establish the extent of work required prior to project commissioning and the handover 3. To define how the products are produced by identifying derivations and dependencies
	4. To define the hierarchy of deliverables that are required
	to be produced on the project
Simplified form of the boolean expression ($X + Y + XY$) ($X + Z$) is	
	2. XY + YZ
	3.
	X + YZ
	4.
	XZ + Y

/ <mark>1. mall</mark> d	oc() and calloc()
2. mallo	oc() and memalloc()
3. alloc	() and memalloc()
4. mem	alloc() and faralloc()
1. defect i	There is no relationship between the phase in which a s discovered and its repair cost
2.	The most expensive defect to correct is the one detected
during t	the implementation phase.
3.	The most expensive defect to correct is the one detected
during t	the requirements phase.
4.	The cost of fixing either defect will usually be similar.
<mark>1.</mark>	Exactly one leftmost derivation for a string w
2. string w	At most one leftmost and one rightmost derivation for a
3.	At most one rightmost derivation for a string w
4. w	Exactly one leftmost and rightmost derivation for a string
e1 two le	eaf nodes in the general tree 2.its right child and sibling in
	ral tree 3.its left child and sibling in the general tree 4.its
left and	right child in the general tree
	2. mallo 3. alloc 4. mem 1. defect i 2. during t 4. 1.

A property which is not true for classes is	Can closely model objects in the real world.
that they	2. bring together all aspects of an entity in one place.
	 permit data to be hidden from other classes.
	4. are removed from memory when not in use.
la Cui dimania manani allagation i	
In C++, dynamic memory allocation in achieved with the operator	s1. mailoc()
define ved with the operator	2. delete
	3. new
	4. this
Which of the following statements about	1.Queues are first-in, first-out (FIFO) data structures 2.Queues
queues is incorrect?	can be implemented using arrays 3.Queues can be implemented
ľ	using linked lists 4. New nodes can only be added at the front of
	the queue
Which of the following statements is/are	1. Turing recognizable languages are closed under union and
FALSE?	complementation.
	2. Turing decidable languages are closed under intersection
	and complementation
	3. Turing recognizable languages are closed under union and intersection.
	intersection.
	4. For every non-deterministic Turing machine, there exists
	an equivalent deterministic Turing machine.
If you have an empty queue and you insert characters 'r',	1.'r', 'a', 't' 2.'t', 'a', 'r' 3.'r', 't', 'a' 4.'t', 'r', 'a'
'a', 't' (in this order only), what is the order	
of the characters when you dequeue all the	
elements?	

Which two RAID types use parity for data	1. F	RAID 1
protection?	1.	MID I
	2. F	RAID 4
	3.	
	RAID 1+0	
	4.	
	RAID 5	
Which of the following conversion is not	1	and deterministic PDA to deterministic PDA
Which of the following conversion is not possible (algorithmically)?	1. r	nondeterministic PDA to deterministic PDA
possible (algorithmically):		
	2. r	nondeterministic FSA to deterministic FSA
	3. r	egular grammar to context-free grammar
	4 -	nondeterministic TM to deterministic TM
	4. r	iondeterministic fivi to deterministic fivi
The minimum number of arithmetic		
operations required to		
• •	1.6 <mark>2.7</mark> 3.	.8 4.9
$P(X)=X^5+4X^3+6^X+5$ for a given value of X		
using only one temporary variable.		
Write the regular expression to denote the	1. a*b*	
language L over ? ={ a,b} such that all the	<mark>2. b*a*</mark>	
string do not contain the substring " ab".	<u> 2. D a</u>	
	3. (ab)*	
	4. (ba)*	
How many nodes in a tree have no	1.2 2.n <mark>3</mark> .	.1 4.0
ancestors.		

Which of the following regular expression	1. r* s* = r* + s*
identities are true?	2. (<mark>r + s)* = (r*s*)*</mark>
	3. $(r + s)^* = r^* + s^*$
	4. $(r + s)^* = r^* s^*$
The number of components in a graph with	1.n 2.n-2 <mark>3.n-1</mark> 4.n-3
n nodes and 1 edge are	
The number of components in a graph with	1.n 2.n-2 <mark>3.n-1</mark> 4.n-3
n nodes and 1 edge are	
Consider two strings A ='qpqrr' and B =	
ˈpqprqrpˈ. Let x be	
the length of the LCS between A and B and	1.42 <mark>2.34</mark> 3.32 4.30
let y be the number of such longest common	
subsequences between A and B. Then x +	
10y =	
A grammar that produces more than one	
parse tree for some sentence is called	4. Unambiguous
Pee hole optimization	1.Local optimization 2.Loop optimization
	3. Constant folding 4. Data flow analysis
Using linked list node representation,	1 .not possible 2.by merging with an existing node 3.after
	introducing a new link 4.after converting to binary tree
efficently	
	ı

The 16-bit 2's complement representation of	1.
an integer is	
1111 1111 1111 0101, its decimal	
representation is	2.
	2
	3.
	3
	4 <mark>.</mark>
	<mark>-11</mark>
The cyclomatic complexity metric provides	1. cycles in the program
the designer with information regarding the number of	
	2. errors in the program
	3. independent logic paths in the
	program
	p. 05. u.n
	4.
	statements in the program
	- Caromonio III die program
In operator precedence parsing , precedence	1.To delimit the handle 2.For all pair of terminals 3.For all pair of
relations are defoned	non terminals 4. Only for a certain pair of terminals
If the associativity of a processor cache is	1.
doubled while keeping the capacity and block size unchanged, which one of the	Width of tag comparator
following is guaranteed to be NOT affected?	2.
	Width of set index decoder
	3.
	Width of way selection multiplexer
	4.
	Width of processor to main memory data bus

An intermediate code form is	1.Postfix notation 2.Syntax trees 3.Three address code 4.Postfix
	notation, Syntax trees and Three address code
Relocating bits used by relocating loader are	1.Relocating loader itself <mark>2.Linker</mark>
specified by	3.Assembler 4.Macro processor
The tightest upper bound for the worst case	
performance	
of quicksort implemented on an array of n	1.T(n! logn) 2.O(n logn) <mark>3.O(n^2)</mark> 4.O(n^3)
elements by always chosing the pivot as the	
central element is	
Synthesized attribute can be easily	1.LR grammar 2.Ambiguous grammar 3.LL grammar 4.LF
simulated by a	grammer
Any code inside a loop that always computes	
the same value can be moved before the	2.Interchange of statements3.inducation variable 4.Algebraic
loop. This is called	Transformation
which of the following intermediate	1.Postfix notation and Three address code 2.Quadraples
language can be used in intermediate code	3. Triples 4. Infix notation and two address code
generation?	
Postorder Tree travsersal is recursive	1.LDR <mark>2.LRD</mark> 3.DLR 4.DRL
In the context of abstract-syntax-tree (AST)	1.In both AST and CFG, let node N2 be the successor of node N1.
and controlflow-graph (CFG), which one of	In the input program, the code corresponding to N2 is present
the following is True?	after the code corresponding to N1 2.For any input program,
	neither AST nor CFG will contain a cycle 3.Each node in AST and
	CFG corresponds to at most one statement in the input program
	4.The maximum number of successors of a node in an AST and a
	CFG
	depends on the input program
In an array representation of binary tree, the left child of i th node is located at	1.2i+2 2.(i-1)/2 3.(i-2)/2 <mark>4.2i+1</mark>
Local and loop optimization in turn provide	1.Peephole optimization 2.DFA and
motivation for	Constant folding 3.Basic Code Analysis
	4.Data flow analysis
In a syntax directed translation schema ,if	1.Inherited attributes 2.Synthesized attributes 3.Canonical
value of an attribute of a node is function of	

the values of the attributes of its children ,	
then it is called	
Minterms are arranged in map in a sequence	1
of	1
	binary sequence
	2.
	gray code
	3. binary variables
	4.
	BCD code
	4.5.11 (FRONT-4)
Suppose a circular queue of capacity $(n-1)$	1.Full: (FRONT+1) mod n == REAR, empty: REAR == FRONT 2.Full:
elements is implemented with an array of n elements. Assume that the insertion and	REAR == FRONT, empty: (REAR+1) mod n == FRONT 3.Full:
deletion operation are carried out using	(REAR+1) mod n == FRONT, empty:
REAR and FRONT as array index variables,	(FRONT+1) mod n == REAR 4.Full: (REAR+1) mod n == FRONT,
respectively. Initially, REAR = FRONT = 0. The	empty: REAR == FRONT
conditions to detect queue full and queue	
empty are	
Condition testing is a control structure	1. rely on basis path testing
testing technique where the criteria used to	
design test cases is that they	2.
	exercise the logical conditions in a program module
	3.
	select test paths based on the locations and uses of variables
	4.
	focus on testing the validity of loop constructs
	rocus on testing the validity of loop constitucts
A friend function to a class A cannot access	1. the data members of the derived class of A.
Thena function to a class A calliot access	1. the data members of the delived class of A.

	public data members and member functions.
	2. public data members and member functions.
	3. private data members and member functions. protected
	data members and member functions.
	4.
William of the falls to talk on a constant	
Which one of the following is the recurrence	
equation for	4 T/v) 2T/v /2\ v v
	1.T(n)=2T(n/2)+cn 2.T(n)=T(n-1)+T(0)+cn 3.T(n)=T(n/2)+cn
	4.T(n)=2T(n–2)+cn
numbers? In the recurrence equations given	
in the options below, c is a constant.	4
Waterfall model of software development is also termed as	1 .
also termed as	The linear sequential model
	2
	2.
	Fountain model
	3.
	Spiral model
	4.
	Concurrent development model
Which searching technique is better, if	1.Radix search <mark>2.Linear search</mark> 3.Binary search 4.Indexd
unsorted array is given as input	sequential search
What will be the output of the following	1.005
code #include void main() { int i; int a[3]=5;	2.500
for (i=2;i>=0;i) { printf(?%d\n?,a[i]); } }	2.500
	3. 5 garbage garbage
	4. 5 null null
Which of the following tree may have	1.B+ Tree 2.AVL Tree 3.Binary tree 4.Binary search Tree
smaller elements in its left subtree and	
larger element in its right subtree	

Variables inside parenthesis of functions	1. Local
declarations have level access.	2. Global
	3. Module
	4. Universal
Which of the following statements is/are	1.P Only 2.Q Only 3.Both P and Q 4.Neither
TRUE for an undirected graph?P:Number of	P nor Q
odd degree vertices is even,Q: Sum of	
degrees of all vertices is even	
What is the worst case for Selection sort	1.O(log n) 2.O(2n) 3.O(n) 4.O(n^2)
Consider a software program that is	1.
artificially seeded with 100 faults. While	
testing this program, 159 faults are	121
detected, out of which 75 faults are from	2.
those artificially seeded faults. Assuming	
that both are and seeded faults are of same	175
	3.
estimated number of undetected real fault is	432
	<mark>04.</mark>
	<mark>428</mark>
System reactions to external events is	1.
depicted by	State diagram
	2.
	Activity diagram
	3.
	Usecase diagram
	4.
	Sequence diagram
The postfix form of the expression (A+	1.AB + CD* E - *F *G / 2.AB + CD* E - F **G
B)*(C*D- E)*F / G is	/ 3.AB+ CD*E - FG /** 4.AB + CDE * - * F *G
Considerable following and of classes	V
Consider the following array of elements.	

{89,19,50,17,12,15,2,5,7,11,6,9,100}.The	1.4 2.2 3.5 <mark>4.3</mark>
minimum number of interchanges needed	
to convert it into a max-heap is	
	1. analysis, design,coding,testing
includes framework activities such as	
	2.
	planning,analysis,design,coding
	3. planning,analysis,coding,testing
	4.
	planning, design, coding, testing
	promises designs country testing
Which of the following algorithm is used to	1. Dijiktra's algorithm 2. Prim's algorithm
find the shortest path between two nodes in	3.Kruskal's algorithm 4.Merge algorithm
graph	
Which of the following case does not exist in	1.Average case 2.Worst case 3.Best case
complexity theory?	4. <mark>Null case</mark>
Important capability needed for an agile	1. Trust
software developer is	
	2.
	Competence
	3.
	Decision-making
	4.
	Live de la descripción de la constantina della c
	HardworkKey
Which of the following is the insertion	1. /*
operator?	2. //
	3. <<
	4. >>
Given an array that represents elements of	
arithmetic	
	·

1.theta(n) 2.theta(nLogn) <mark>3.theta(Logn)</mark> 4.theta(1)
1.different names and different argument lists 2.different names and the same argument list 3.the same name and different argument lists4.the same name and the same argument list
1. Analysis
2. Coding
3. Planning 4. TestingKey
all parameters to the left of that variable must have default values
2. all parameters to the right of that variable must have default values
3. all other parameters in the function prototype must have default values
4. no other parameters in that prototype can have default values
1.Sorting 2.Merging 3.Inserting 4.Traversal
1. ptr is array of pointers to 10 integers
2. ptr is a pointer to an array of 10 integers
3. ptr is an array of 10 integers4. ptr is an pointer to array

Register renaming is done is pipelined	1.
processors	As an alternative to register allocation at compile time
	is an alternative to register anotation at complic time
	2.
	For efficient access to function parameters and local variables
	3.
	To handle certain kinds of hazards
	4.
	As part of address translation
Which of the following calls a function	1. call displayName
named displayName, passing it no actual arguments?	2. call displayName ()
	3. displayName
	4. displayName()
Consider a binary tree T that has 200 leaf	1.199 2.200 3.Any number between 0 and
nodes. Then, the number of nodes in T that	199 4.Any number between 100 and 200
have exactly two children are	
The preorder traversal sequence of a binary	1.10,20,15,23,25,35,42,39,30
search tree is 30,20,10,15,25,23,39,35,42.	2.15,10,25 ,23,20,42,35,39,303.15,20,10,23,
Which one of the following is the postorder	25,42,35,39,30
traversal sequence of the same tree?	4.15,10,23,25,20,35,42,39,30
If you want to use a class to define objects in	1. text
many different programs, you should define the class in a C++ file	2. source
	3. header
	4. program

A software requirements specification (SRS) document should avoid discussing which one of the following?	 User interface issues 2. Non-functional requirements 3. Design specification 4.Interfaces with third party softwareKey
How will you free the allocated memory ?	 delete(var-name); dalloc(var-name); free(var-name); remove(var-name);
Binary search algorithm can not be applied to	1.sorted linked list 2.sorted binary trees3.sorted linear array 4.pointer array
is the 1st step in the testing process	1. Analyze results 2. Plan test 3. Release product 4. Conduct tests
Files whose names end in .h are called files	1. helper2. header3. handy4. helping

Overloading involves writing two or more	1. different names and different argument lists
functions with	
	2. different names and the same argument list
	3. the same name and the same argument list
	4. the same name and different argument lists
The city sties where in a limbed list	1 overflow 2 verdentless 2 become full
The situation when in a linked list START=NULL is	1.overflow <mark>2.underflow</mark> 3.housefull 4.saturated
Which of the following is not a Life-critical System?	1.
System:	Fire Dispatch Systems
	2.
	Nuclear Reactors
	3.
	Power Utilities
	4.
	Inventory Management
Which of the following name does not relate	1.FIFO lists 2.LIFO list 3.Push-down lists
to stacks?	4.Piles
Two access specifiers in C++ are	1. void and free
	2. public and private
	3. int and double
	4. formal and informal
BCD to seven segment is a	1. encoder
	2. carry look ahead
	3. comparator
	4. <mark>decoder</mark>

1. This is a software development process	1.waterfall model 2.
model	Incremental model
	incremental model
	3.
	Boehm's Spiral model
	4. all
The degree sequence of a simple graph is	
the sequence of the degrees of the nodes in	
the graph in decreasing order.	
Which of the following sequences can not be	1.IV only 2.III and IV 3.I and II <mark>4.II and IV</mark>
the degree sequence of any graph?I. 7, 6, 5,	
4, 4, 3, 2, 1 II. 6, 6, 6, 6, 3, 3, 2, 2 III. 7, 6, 6, 4,	
4, 3, 2, 2 IV. 8, 7, 7, 6, 4, 2, 1, 1	
The smallest element of an array's index is	1.lower bound 2.range
called its	D. extract 3.upper bound 4.ion
The space factor when determining the	1.Counting the average memory needed by the algorithm
efficiency of algorithm is measured by	2.Counting the minimum memory needed by the algorithm
	3.Counting the maximum memory needed by the algorithm
	3.Counting the maximum memory needed by the algorithm 4.Counting the maximum disk space needed by the algorithm
The time complexity to build a heap with a list	4.Counting the maximum disk space needed by the algorithm
The time complexity to build a heap with a list of n numbers is	4.Counting the maximum disk space needed by the algorithm
of n numbers is	4.Counting the maximum disk space needed by the algorithm 1.O(n logn) 2.O(n) 3.O(log n) 4.O(n2)
of n numbers is 1. What is the type of software design that	4.Counting the maximum disk space needed by the algorithm 1.O(n logn) 2.O(n) 3.O(log n) 4.O(n2) 1. architectural design
of n numbers is 1. What is the type of software design that defines interfaces between system	4.Counting the maximum disk space needed by the algorithm 1.O(n logn) 2.O(n) 3.O(log n) 4.O(n2) 1. architectural design
of n numbers is 1. What is the type of software design that	4.Counting the maximum disk space needed by the algorithm 1.O(n logn) 2.O(n) 3.O(log n) 4.O(n2) 1. architectural design 2.
of n numbers is 1. What is the type of software design that defines interfaces between system	4.Counting the maximum disk space needed by the algorithm 1.O(n logn) 2.O(n) 3.O(log n) 4.O(n2) 1. architectural design
of n numbers is 1. What is the type of software design that defines interfaces between system	4.Counting the maximum disk space needed by the algorithm 1.O(n logn) 2.O(n) 3.O(log n) 4.O(n2) 1. architectural design 2.
of n numbers is 1. What is the type of software design that defines interfaces between system	4.Counting the maximum disk space needed by the algorithm 1.O(n logn) 2.O(n) 3.O(log n) 4.O(n2) 1. architectural design 2. Interface Design
of n numbers is 1. What is the type of software design that defines interfaces between system	4.Counting the maximum disk space needed by the algorithm 1.O(n logn) 2.O(n) 3.O(log n) 4.O(n2) 1. architectural design 2. Interface Design 3.
of n numbers is 1. What is the type of software design that defines interfaces between system	4.Counting the maximum disk space needed by the algorithm 1.O(n logn) 2.O(n) 3.O(log n) 4.O(n2) 1. architectural design 2. Interface Design 3. component Design 4.
of n numbers is 1. What is the type of software design that defines interfaces between system	4.Counting the maximum disk space needed by the algorithm 1.O(n logn) 2.O(n) 3.O(log n) 4.O(n2) 1. architectural design 2. Interface Design 3. component Design
of n numbers is 1. What is the type of software design that defines interfaces between system components?	4.Counting the maximum disk space needed by the algorithm 1.O(n logn) 2.O(n) 3.O(log n) 4.O(n2) 1. architectural design 2. Interface Design 3. component Design 4.
of n numbers is 1. What is the type of software design that defines interfaces between system	4.Counting the maximum disk space needed by the algorithm 1.O(n logn) 2.O(n) 3.O(log n) 4.O(n2) 1. architectural design 2. Interface Design 3. component Design 4.

S1: It is a data structure in which the intrinsic ordering of the elements does determine the result of its basic operations.	1.Both S1 and S2 are incorrect 2.S1 is correct and S2 is incorrect3.Both S1 and S2 are correct 4.S1 is incorrect and S2 is correct
S2: The elements of a priority queue may be complex structures that are ordered on one or several fields.	
Which of the following is correct?	
The library function used to find the last	1. strnstr()
occurrence of a character in a string is	2. strrchr()
	3. laststr()
	4. strstr()
Suppose you want to delete the name that occurs before	
'Vellore' in an alphabetical listing.	1.Circular linked list <mark>2.Dequeue</mark> 3.Linked list 4.Doubly linked list
Which of the following data structures shall	
be most efficient for this operation?	
The efficient data structure to insert/delete	1.Queue 2.Linked list 3.Doubly linked list 4.Binary tree
a number in a stored set of numbers is	
What is a type of software design that	1. architectural design
designs system data structures to be used	
in a database?	2. interface Design
	3.
	component Design
	<mark>4.</mark>
	Database design
Prim's algorithm is a method available for	
finding out the	
minimum cost of a	1.O(1) 2.O(n*n) <mark>3.O(n logn)</mark> 4.O(n)
spanning tree. Its time	
complexity is given by:	

Which activity most easily lends itself to	1.
incremental design?	United to the form
	User Interfaces
	2.
	Web Services
	3.
	Enterprise resource planning
	4.
	Embedded Sofftware
The minimum number of NAND gates	1. Zero
required to implement the Boolean function. A + AB' + AB'C is equal to	
Tunction. A PAB PAB C 13 Equal to	2.
	1
	3.
	4
	4.
	7
Skewed binary trees can be efficiently	1.Arrays 2.Linked lists 3.Stacks 4.Queues
represented using	1. developer
	1. developei
	2. end users
	3. test team
	4.
Acceptance tests are normally conducted by the	systems engineers

	1.software developers do not need to do any testing
	2.a test team will test the software more thoroughly
	2.a test team will test the software more thoroughly
	3.testers do not get involved with the project until testing begins
	4.arguments between developers and
	testers are reduced
The best reason for using Independent	
software test teams is that	
Consider the data of previous question.	1.
Suppose that the sliding window protocol is	16ms
used with the sender window size of 2^i	
where is the number of bits identified in the	2.
previous question and acknowledgments are	
always piggybacked. After sending 2^i	18ms
frames, what is the minimum time the	3.
sender will have to wait before starting	
transmission of the next frame? (Identify the	20ms
closest choice ignoring the frame processing	4.
time).	
	22ms
A computer system implements 8 kilobyte	1. 33
pages and a +32bit physical address space.	
Each page table entry contains a	2. 35
valid bit, a dirty bit, three permission bits,	
	3. 34
the page table of a process is 24 megabytes,	
the length of the virtual address supported	4.
by the system is bits.	
	<mark>36</mark>

What is the normal order of activities in	1.
which traditional software testing is	a d c b
organized? a. integration testing b.	a, d, c, b
system testing c. unit testing d.validation	2.
testing	b, d, a, c
	3. c, a, d, b
	3. c, a, d, b 4. d, b, c, a
Consider two processors P1 and P2	1.
executing the same instruction set. Assume that under identical conditions, for the same	1.5
input, a program running on P2 takes 25%	2.
less time but incurs 20% more CPI (clock	
cycles per instruction) as compared to the	1.6
program running on P1 If the clock frequency of P1 is 1GHz, then the clock	3.
frequency of P2 (in GHz) is	1.7
	4.
	1.8
A circuit that converts n inputs to 2^n	1.
outputs is called	Encoder
	2.
	Decoder
	3.
	Comparator
	4.
	Carry Look Ahead

Which level of RAID refers to disk mirroring	1.
with block striping?	RAID level 1 2.
	RAID level 2 3.
	RAID level 0
	4.
	RAID level 3
To build a mod-19 counter the number of flip	1. 3
flops required is	<mark>2. 5</mark>
	3. 7
	4. 9
The smallest integer than can be	1.
represented by an 8-bit number in 2?s complement form is	-256
	<mark>2128</mark>
	3.
	-127
	4.
	1

If the associativity of a processor cache is	1. Width of tag comparator
doubled while keeping the capacity and	
block size unchanged, which one of the following is guaranteed to be NOT affected?	2.Width of set index decoder
Tonowing is guaranteed to be No Function.	
	3.Width of way selection multiplexer
	4. Width of processor to main memory data bus
	T. Wideli of processor to main memory adda bas
The main difference between JK and RS flip-	1.
flop is that	JK flip flop needs a clock pulse
	p - p
	2.
	There is a feedback in JK flip-flop
	3.
	JK flip-flop accepts both inputs as 1
	4.
	JK flip-flop is acronym of Junction cathode multi-vibrator
Which of the following unit will choose to transform decimal number to binary code?	1.
transform decimal number to bindry code :	Encoder
	2.
	Decoder
	3.
	Multiplexer
	4.
	Counter

A processor can support a maximum memory of 4 GB, where the memory is word-addressable (a word consists of two bytes). The size of the address bus of the processor is at least bits	 30 31 32 4. 33
The capacity of a memory unit is defined by the number of words multiplied by the number of bits/word. How many separate address and data lines are needed for a memory of 4 K × 16?	1. 10 address, 16 data lines 2. 11 address, 8 data lines 3. 12 address, 12 data lines 4. 12 address, 16 data lines
Suppose a circular queue of capacity (n ? 1) elements is implemented with an array of n elements. Assume that the insertion and deletion operations are carried out using REAR and FRONT as array index variables, respectively. Initially, REAR = FRONT = 0. The conditions to detect queue full and queue empty are	full: (REAR+1) mod n==FRONT empty: REAR ==FRONT 2. (REAR) mod n==FRONT empty: REAR ==FRONT 3. (REAR+1) mod n==Rear empty: REAR ==FRONT 4. full: (FRONT+1) mod n==FRONT empty: REAR ==FRONT

A one to many relationship (of table A to	1. Where each record in table A can have one or more matching
Table B) is	records in table B
	2. Where each record in table B can have one or more matching
	records in table A
	3.Where each record in Table B is required to have a match in
	table A
	4.Where each record in table A is required to have a match in
	table B
Station A year 22 byte madrate to transmit	1. 20
Station A uses 32 byte packets to transmit messages to Station B using a sliding window	
protocol. The round trip delay between A	2. 40
and B is 80 milliseconds and the bottleneck	
bandwidth on the path between A and B is 128 kbps. What is the optimal window size	3. 160
that A should use?	4. 320
The IC 8279 hasmany pins	1. 20
	2. 30
	240
	3. 40
	4. 10

The IC 8254 hasmany pins	1. 24
	2. 28
	3. 34
	4.
	40
The IC 8254 hasmany 16 bit	1. 1
counters	2. 2
	3. 3
	4. 4
Each counter of IC 8254 can work in	1.6
differnt modes of operation	2.5
	3.4
	4.3
DCL stands for	1.
	Data Control Language
	2.
	Data Console Language
	3.
	Data Console Level
	4.
	Data Control Level

Two computers C1 and C2 are configured as follows. C1 have IP address as 203.197.2.53 and netmask 255.255.128.0. C2 have IP address as 203.197.75.201 and netmask 255.255.192.0. Which one of the following statements is true?	C1 and C2 both assume they are on the same network 2.
	3. C1 assumes C2 is on same network, but C2 assumes C1 is on a different network
	4. C1 and C2 both assume they are on different networks.
Relations produced from an E - R model will always be in	1.3 NF 2.B CNF 3.2 NF 4.1 NF
There are n stations in a slotted LAN. Each station attempts to transmit with a probability p in each time slot. What is the	1. (1-p)^(n-1)
probability that only one station transmits in a given time slot?	2. np(1-p)^(n-1)
	3. p(1-p)^(n-1)
	4. 1-(1-p)^(n-1)
The following is not a Relational Model	1.Referential Integrity Constraint 2.Check
Constraint	Constraint 3.Foreign Key Constraint 4.Entity Integrity Constraint
An advantage of the database approach is	1.Elimination of the data redundancy2.Ability to associate related data3.Increase security 4.All of the options

In the multi-programming environment, the	1.
main memory consisting of	Greater than 100
number of process.	Greater than 100
	2.
	only one
	3.
	Greater than 50
	4.
	More than one
In a token ring network the transmission	1.
speed is 10^7 bps and the propagation speed is 200 metres/micro second.	500 metres of cable. 2.
The 1-bit delay in this network is equivalent	200 metres of cable.
to:	
	<mark>3.</mark>
	20 metres of cable. 4.
	50 metres of cable.
	50 metres of cable.
	1. true
Security testing attempts to verify that protection	2
protection	2.
mechanisms built into a system protect it	false
from improper penetration	3. 4.
_	1.Complex logical relationships 2.Treelike structure 3.Tables
of a relational database model	4.Records
The relational model uses some unfamiliar	1.record 2.field 3.file 4.database
terminology. A tuple is equivalence to a:	

A relational database is	1.the same as a flat file database
A Telational actuabase is	Traine same as a flat me database
	2.one that consists of two or more tables that are joined in some
	way
	3.one that consists of two or more tables
	4.a database that is able to process tables, queries, forms,
	reports and macros
Desirable properties of relational database	1.All of the options
design include	
	2 minimizing undate anomalies
	2.minimizing update anomalies
	3.minimizing redundancy
	4.minimizing insertion/deletion anomalies
A software package designed to store and	1.Database
manage databases	2.DBMS
	3.Data Model
	4.Data
In the architecture of a database system	1.view level
external level is the	
	2 concentual level
	2.conceptual level
	3.logical level
	4.physical level

is a logical unit of access to	1.Transaction
a DBMS	2.Optimization
	3.Schema
	4.Data
The RDBMS terminology for a row is	1.attribute
	2.relation
	3.degree
	4.tuple
An Entity from an ER diagram can be	1.relation
represented in the relational model by a	
	2.domain
	3.functional dependency
	4.single attribute
	4.Single attribute
Which one of the following is not the	1.provide security
responsibility of the DBA?	2.develop applications
	3.periodically tunes the database
	4.restores the system after a failure
Which of the following is TRUE?	1.
	Every relation in 2NF is also in BCNF
	2. A relation R is in 3NF if every non-prime
	attribute of R is fully functionally dependent on every key of R
	3. Every relation in BCNF is also in 3NF
	4. No relation can be in both BCNF and 3NF
1	1

Which one of the following statements if	1
_	1.
FALSE?	Any relation with two attributes is in BCNF
	2.
	A relation in which every key has only one attribute is in 2NF
	3.
	A prime attribute can be transitively dependent on a key in a 3 NF relation.
	<mark>4.</mark>
	A prime attribute can be transitively dependent on a key in a
	BCNF relation.
Let E1 and E2 be two entities in an E/R	1. 2
diagram with simple single-valued	1. 2
attributes. R1 and R2 are two relationships	<mark>2. 3</mark>
between E1 and E2, where R1 is one-to-	2.4
many and R2 is many-to-many. R1 and R2 do	3. 4
not have any attributes of their own. What is	
the minimum number of tables required to	,
represent this situation in the relational	
model?	
moder:	
Select operation in SQL is equivalent to	the selection operation in relational algebra
	2.
	the selection operation in relational algebra, except that select in SQL retains duplicates
	3.
	the projection operation in relational algebra
	<mark>4.</mark>
	the projection energtion in relational algebra, execut that as less
	the projection operation in relational algebra, except that select in SQL retains duplicates
	in oquiretes

Grant and revoke are statements.	1. DDL
	2. TCL
	2. TCL
	3. DCL
	4. DML
command can be used to modify a	1. alter
column in a table	2. update
	3. set
	4. create
Data independence means	1.
	data is defined separately and not included in programs.
	2.
	programs are not dependent on the physical attributes of data
	3.
	programs are not dependent on the logical attributes of data
	4. programs are not dependent on both physical and logical
	<mark>attributes of data</mark>
is preferred method for	1. Constraints
enforcing data integrity	2. Stored Procedure
	3. Triggers
	4.6
	4. Cursors
	<u> </u>

Which of the following is not a binary	1. Join
operator in relational algebra?	
	2. Semi-Join
	2. Assignment
	3. Assignment
	<mark>4. Project</mark>
Which of the following is/are the DDL	1. Create
statements?	
	2. Drop
	3. Alter
	4. All of the options
Which database level is closest to the users?	
	2. Conceptual
	3. Internal
	4. Physical
data type can store unstructured data	1. RAW
	2. CHAR
	3. NUMERIC
	4. VARCHAR
A table can have only one	1. Secondary key
	2. Alternate key
	3. Unique key
	4. Primary key

When a new row is inserted the constraints	1. Primary Key constraint
that can be violated are	2. Referential Integrity Constraint
	3. all of the options
	4. Domain Constraint
Which of the following is not a property of a transaction?	1. atomicity
	2. consistency
	3. dirty read
	4. <mark>durability</mark>
The work of EU is	1. encoding
	2. decoding
	3. processing
	4. calculations

CPU Scheduling is the basis of	1. Batch
operating system	
	2.
	Real Time
	3.
	Multi-programming
	4.
	network
Which one of the file allocation scheme	1. Linked allocation
cannot be adopted for dynamic storage allocation	2. Fixed Indexed allocation
	3. Variable Indexed allocation
	4. Contiguous allocation
	1. 59
management of files system with number of bits per word is 8, the bit vector is	2. 51
	2. 31
0001101010101, offset of first 1 bit is 3	3. 45
	4. 53
	4. 53
Which of the following is a problem of file	1. difficult to update
management system?	2. lack of data independence
	3. data redundancy
	4. all options given

The call to the parameterized constructor of	1.ppears inside th e definition of the derived class
base class in the derived class	constructor2.appears in the member initialization list of the
	derived class constructor 3.appears inside the definition of the
	derived class 4.appears at the statement where the derived class
	object is created
Which directory implementation method	1.
creates more dangling pointers?	Single level directories
	2. Two level directories
	3. Tree Structured Diretories
	4. Acyclic graph directories
Consider the join of a relation R with	1. mn
relation S. If R has m tuples and S has n	2. m+n
tuples, then the maximum size of join is:	3. (m+n)/2
	4. 2(m+n)
Select the conflicting operation:	1. r1(x), w2(y)
	2. r1(x), w1(x)
	3. w1(y), w2(x)
	4. r1(x), w2(x)

	1. a file
mean?	2. a record
	3. a disk block
	S. a disk block
	A. H. Cit.
	4. all of the options
DML is provided for	1.
	Description of logical structure of database.
	2.
	Addition of new structures in the database system.
	3.
	Manipulation & processing of database.
	4.
	Definition of physical structure of database system.
Consider the relation R1(employee_name,	1. 2NF
project_name, dependent_name). If	
{{employee_name>->	2. 3NF
project_name}, {employee_name>->	3. BCNF
dependent_name}}, what is the highest	
normal form it satisfies?	4.4NF

Which one of the following is not a windows	1. FAT
file system?	2. NTFS
	3. FAT32
	4. EXT
The stream insertion operator should be	1.friend functions 2.member function 3 .non member functions
overloaded as	4.static functions
Spurious tuples are formed because of	1. join operation done on a non-key
	<mark>attribute</mark>
	2. outer join operation
	3. transitive dependencies
	4. inner join
Query Tree uses	1. Relational Algebra
	2. Tuple Relational Calculus
	3. Domain Relational Calculus
	4. All of the options

What is the highest normal form level	1. 1 NF
satisfied by the following table design?	
R={A1,A2,A3,A4,A4} F={A1-> A3, A3>A4}Key ={A1,A2}	2. 2 NF
- (11,112)	2 2 15
	3. 3 NF
	4.
	BCNF
-	1.The information from data flow analysis cannot otherwise be
the intermediate code because	used for optimization
	2.They enhance the portability of the complier to other target
	processors 3. The information from the front end cannot otherwise be used
	for optimization
	4.Program analysis is name accurate on intermediate code than
	on machine code
Why 'critical section' is not imposed on file	1. Time consuming
systems instead 'file locks' when more than	2. Decease automatic to anitical continue many along the file
one process tries to access the file?	2. Process entered in to critical section may close the file
	3. we cannot satify the three conditions of mutual exclusion,
	progress and bounded waiting
	4. we cannot use semaphore
The virtual file system provides us the	1. Object oriented file implementation
following	2. Structured programming file implementation
	3. Linked file allocation
	4. Indexed file allocation
	1

A client process P needs to make a TCP	1. connect () system call returns successfully
connection to a server process S. Consider	
the following situation: the server process S	2. connect () system call blocks
executes a socket(), a bind() and a listen()	
system call in that order, following which it	3. connect () system call returns an error
is preempted. Subsequently, the client	Comment (Formation Comments and Comments)
process P executes a socket() system call	4 connect () system call results in a core dumn
followed by connect() system call to connect	4. connect () system call results in a core dump
to the server process S. The server process	
has not executed any accept() system call.	
Which one of the following events could	
take place?	
In a circular linked list	1.components are arranged hierarchically
	2.there is no beginning and no end
	3.forward and backward traversal within the list is
	permitted4.components are arranged from top to bottom
How to create a memory without a name	1.malloc() 2.Queue 3.stack 4.list
during the execution of the program?	
The minimum number of nodes in a binary	v1 2d - 1 2 d + 1 3 2d + 1 - 1 4 d
tree of depth d (root at level 0) is	y1.2u - 1 <mark>2.u + 1</mark> 3.2u + 1 - 1 4.u
tree of depth d (root at level o) is	
Interpolation search is an improved variant	1.in sorted form and equally distributed 2.in sorted form and but
of binary search.	not equally distributed 3.equally distributed but not sorted
It is necessary for this search algorithm to	4.unsorted and not evenly
work that data collection should be	distributed
Let $T(n)$ be the function defined by $T(n) = 1$	1.T(n) = O(n) 2.T(n) = O(log2n) 3.T(n) = O(n)
and $T(n) = 2T$	4.T(n) = O(n2)
(n/2) + n, which	
of the following	
is TRUE ?	
What is the time complexity for binary	1.O(log n) 2.O(n^2) 3.O(1) 4.O(2n)
search	-10(108 11) 2.0(11 2) 3.0(1) 4.0(211)
Consider a hash table with 9 slots. The hash	h
function is h(k)	"
HUHCHOH IS HIK)	

= k mod 9. The collisions are resolved by	1.3, 3, and 3 <mark>2.3, 0, and 1</mark> 3.4, 0, and 1 4.3,
chaining. The following 9 keys are inserted in	0, and 2
the order: 5, 28, 19, 15, 20, 33, 12, 17, 10.	
The maximum, minimum, and average chain	
lengths in the hash table, respectively, are	
The data structure required for Breadth First	1.tree 2.array 3.stack <mark>4.queue</mark>
Traversal on a graph is	
You have an array of n elements, Suppose	
you implement quicksort by always choosing	1.O(log n) 2.O(n) <mark>3.O(n^2)</mark> 4.O(1)
the central element of the array as the pivot,	
Then the tightest upper bound for the worst	
case performance is	
Architecture of the database can be viewed	1. two levels
as	
	2. four levels
	3. three levels
	4. one level
Suppose P, Q, R, S, T are sorted sequences having lengths	1.672 2.740 <mark>3.358</mark> 4.354
20, 24, 30, 35, 50 respectively. They are to be	
merged into a	
single sequence by merging together two	
sequences at a time, The number of	
comparisons that will be needed in the	
worst case by the optimal algorithm for	
doing this is	
Let P be a QuickSort Program to sort numbers	
in ascending	
order using the first element as pivot, Let t1	1.t1=5 <mark>2.t1>t2</mark> 3.t1 <t24.t1=t2< td=""></t24.t1=t2<>
and t2 be the number of comparisons made	
by P for the inputs {1, 2, 3, 4, 5} and {4, 1, 5,	
3, 2} respectively, Which one of the following	
holds?	

If the disk size is 2^30 bytes and block size is	1. 2^42
2^12 bytes then find how many such blocks	
are there?	<mark>2. 2^18</mark>
	3. 2^360
	4. 2^30
Which of the following file access method	1 Contiguous allocation
needs a relative block number 'n'?	
needs a relative stock nameer in .	2. Linked allocation
	3. Direct access
	4. Sequential access
la constitución de contitución de constitución	5 mark North
	1.not Null
may be	
	2.Null
	2 a foreign kov
	3.a foreign key
	4.any value

In an E. D. diagram an antity set is represent	1 vestavale
In an E-R diagram an entity set is represent	1. rectangle
by a	
	2.
	ellipse
	3.
	<u> </u>
	diamond box
	4.
	circle
Which of the following is a legal expression	1.
in SQL?	CELECT NULL EDOMA FAMOLOVEE.
	SELECT NULL FROM EMPLOYEE;
	<mark>2.</mark>
	SELECT NAME FROM EMPLOYEE;
	3.
	J.
	SELECT NAME FROM EMPLOYEE WHERE SALARY = NULL;
	4.
	None of the options
Which of the following is a comparison	1. =
operator in SQL?	2 1445
	2. LIKE
	3. BETWEEN
	4 all afaba antique
	4. all of the options
l	

Consider the join of a relation R with	1. mn
relation S. If R has m tuples and S has n	2. m + n
tuples, then the maximum size of join is:	2. 111 + 11
	3. (m + n) / 2
	4. 2(m + n)
	4. 2(111 + 11)
is a basic unit of CPU	1. Process
utilization	
	2. Thread
	3. Process Control Block
	4. Program Counter
SELECT department_id, COUNT(last_name)	1. Displays a error
FROM employees;	2. Displays the department ID along with the number of
	employees in each department.
	3. None of the options
	4. Dsiplays department ID and a null value

SELECT department_id, AVG(salary) FROM employees	1. Displays the department ID along with the average salary of
WHERE AVG(salary) > 8000 GROUP BY	employees in each department if their average of salary is greater
department_id	than 8000.
department_id	2. Displays a error
	3. Displays the department ID along with the average salary of employees
	4. None of the options
what is the output for the following	1. 10***24000
function? LPAD(salary,10,'*')	2. <mark>*****24000</mark>
	3. 24000****
	4. error

SELECT employee_id, last_name FROM	1. Displays the employee_id and name of employees who gets
employees WHERE salary = (SELECT MIN(salary) FROM employees GROUP BY	minimum salary in their department
department_id);	2. Error
	3. None of the options
	4. Displays the employee_id, name of employees and their salary
when you were asked to design a relation,	1. Primary Key
you come across a situation, where passport	
number is to be included for the people. All	2. Not Null
the students wont be having passport. So	
what constraint you would be using?	3. Default
	4. Unique
Parallelism and concurrency is fully achieved	1. <mark>Many-to-one model</mark>
in which of the following thread model	2. Many-to-many
	3. one-to-one model
	4. All the models

create table student_\$(id number(4),	1. Error
namee varchar2(10)); reponse would be	
	2. Table created
	3. Table created with error
	4. Table created with data
The high paging activity is called	1. Inter process communication
	2. Thrashing
	3. Context Switching
	4. Working Set
	5 5 5 5
The worst case running time to search for an	1.theta(n log n) 2.theta(n*2^n) 3.theta(n)
element in a balanced in a binary search tree	
with n*2^n elements is	
Suppose a circular queue of capacity $(n-1)$	1.Full: (REAR+1) mod n == FRONT, empty:
elements is implemented with an array of n	REAR == FRONT 2.Full: (REAR+1) mod n ==
elements. Assume that the insertion and	FRONT, empty: (FRONT+1) mod n == REAR 3.Full: REAR == FRONT,
deletion operation are carried out using	empty: (REAR+1) mod n == FRONT 4.Full: (FRONT+1) mod n
REAR and FRONT as array index variables,	== REAR, empty: REAR == FRONT
respectively. Initially, REAR = FRONT = 0. The	
conditions to detect queue full and queue	
empty are	
System prototypes allow users	1. to see how well the system supports their work
	2. to start working on the system
	2. to start working on the system
	3. to put the system to production
	5. to put the system to production
	4. to program the software
	The to program the software

1. 45
2. 67
2.
3. 34
J. J4
4. 78
4. 70
1.2n
2. (2n-1)/2
<mark>3.2e</mark>
4. pow(e,2)/2
1. INSTR
2. SUBSTRING
3. SUBSTR
4. POS
4. FO3

	T
The UNION SQL clause can be used with	1. none of the options
	D
	2. the SELECT clause only
	2
	3.
	the UPDATE clause only
	4.
	the DELETE and UPDATE clauses
Which is a major problem with SQL?	1. SQL cannot support object-orientation
	2. The same query can be written in many ways, each with
	vastly different execution plans.
	3. SQL syntax is too difficult for non-computer professionals to
	use
	4. SQL creates excessive locks within the database
Which SQL functions is used to count the	1. Sum
number of rows in a SQL query?	2. Count
	3. Max
	4. ALL

The SQL BETWEEN operator	1. Specifies a range to test
	2. specifies between which tables the data is present
	3. specifies the columns between which columns the data is present
	4. None of the options
Which date function is used to obtain the date of next Wednesday	1. NEXT_DAY
,	2. LAST_DAY
	3. NEXT_DATE
	4. All of the options
Insert into Emp(101, 'XXX') gives the	1. missing Select keyword
following error	2. Missing Values
	3. both of the errors
	4. No of the errors

The following SQL is which type of join: SELECT CUSTOMER_T. CUSTOMER_ID, ORDER_T. CUSTOMER_ID, NAME, ORDER_ID FROM CUSTOMER_T,ORDER_T;	 Equi-join Natural join Outer join Cartesian join
Which of the following can be a valid column	1. Column
name?	2. 1966_Invoices
	3. Catch_#22
	4. #Invoices
Which one of the following regular 100 as a	1 a and h
substring (a) 0*(11)*0* (b) (0*1010)* (c)	
0*1*010 (d) 0*(10)*01*	2. b and c
	3. only c
	4. only b

The number of states in DFA isthan	1. Greater
the number of states in NFA for the same	
Language.	2. less
	3. greater equal
	4. equal
In a virtual memory environment	1. segmentation and page tables are stored in the cache and do
	not add any substantial overhead
	2. slow down the computer system considerable
	3. segmentation and page tables are stored in the RAM
	4. only page table is stored in cache
When there are infinite distinguishable	1. automata
strings then there cannot be a	
	2. finite automata
	3. regular expression
	4. both finite automata and regular expression
1	I

A NFA converted to DFA has more than one	1. True
final state.	
	2. False
	3.
	may be true
	4.
	always true
	1. n
If M1 machine recognizing L with n states, then M2 recognizing L* constructed Using	2. n+1
Thompson construction will have	3. n+2
states.	4. n-1
When we concatenate two languages L1 and	1. M2
L2 recognized by machine M1 and M2 we obtain a machine with final state same as	2. M1 and M2
	3. M1
	4. M1 or M2

The intersection of CFL and regular language	1 Is always regular and context free
The intersection of CL and regular language	1. Is always regular and context free
	2. Is always regular
	3. Is always context free
	4. Need not be regular
Consider S->SS a what is the number of	1. 5
different derivation trees for aaaaa	2. 3
	3. 1 4
	4. 7
	4. /
Which is not part of the waterfall method?	1. Requirements Definition
	System and Software Design
	3. Implementation and Unit Testing
	4 <mark>. System Validation</mark>
What is based on the idea of dayslaning an	The Waterfall Method
What is based on the idea of developing an initial implementation, exposing this to user	
comment and evolving it through several	2. Incremental Development
versions until an adequate system has been	
developed?	

	,
	3. Reuse-oriented Software Engineering
	4. Implementation And Unit Testing
If all page frames are initially empty, and a	1. 10
process is allocated 3 page frames in real	
memory and references its pages in the	2. 7
order 1 2 3 2 4 5 2 3 2 4 1 and the page	
replacement is FIFO, the total number of	3. 8
page faults caused by the process will be	<mark>4. 9</mark>
This software process model takes the	1. Incremental development
fundamental activities of specification,	
development, validation, and evolution and	2. The waterfall model
represents them as separate process phases	3. Reuse-oriented software engineering
such as requirements specification, software	
design, implementation, testing, and so on	4. Boehm's spiral model
	1. It is possible to gather more of the requirements up front
Incremental development over the waterfall	2. Time to market is faster because there is less overhead
model	
	3. It is easier to get customer feedback on the development work that's been done
	work that's been done
	4. It is easier to reuse existing components.

memory management scheme	1. Best Fit
will produce least fragement	
	2. Worst Fit
	3. First Fit
	4. None of these
Replace the page that has not be used for	FIFO Page replacement algorithm
the longest period of time. This principle is	
adopted by	2. Optimal Page replacement algorithm
	3. Round robin scheduling algorithm
	4. LRU Page replacement algoorithm
In incremental development system	1. degrade
structure tends to as many new	2. improve
increments are added.	
	3. develop its own AI
	4. shrink
A computer on a 10Mbps network is	1. 1.6 seconds
regulated by a token bucket. The token	
bucket is filled at a rate of 2Mbps. It is	
initially filled to capacity with 16Megabits.	
What is the	

maximum duration for which the computer	2 2 seconds
can transmit at the full 10Mbps?	2. 2 Seconds
can transmit at the full 1000bps:	3. 5 seconds
	4. 8 seconds
In incremental delivery the	1. quickest to complete
services are typically delivered first	
services are typisally delivered lines	2. highest-priority
	3. cheapest
	4. most fun to code
A page fault occurs	1. when the page is not in the main memory
	2. when the page is in the cache memory
	3. when the process enters the blocked state
	·
	4. when the process is in the ready state
Which of the following system calls results ir	1. socket
the sending of SYN packets?	
,	2. bind
	3. listen
	4. connect
	4. Connect

In the class start phase of the TCD	1 dans not increase
In the slow start phase of the TCP	1. does not increase
congestion control algorithm, the size of the	
congestion window	2. increases linearly
	3. increases quadratically
	5. mercuses quadratically
	4. increases exponentially
	4. Increases exponentially
If a class B network on the Internet has a	1. 1024
subnet mask of 255.255.248.0, what is the	
maximum number of hosts per subnet?	2. 1023
	<mark>3. 2046</mark>
	4 2047
	4. 2047
Software specifications are intended to	1. of the developers to the clients
communicate the system needs	
	2. to marketing
	3. of the clients to the developers
	4. to the general public
Activities such as documentation and	1. Primary
software configuration management are	2. Validation
what kind of process activities?	3. Design
	, and the second
	4. supporting

An organization has a class B network and	1. 255.255.0.0
wishes to form subnets for 64 departments. The subnet mask would be:	2. 255.255.64.0
	3. 255.255.128.0
	<mark>4. 255.255.252.0</mark>
What is a software process model?	1. A simplified representation of a software process
	2. A presentation put together in Powerpoint
	3. A work flow model of the software's components
	4. A prototype of the final software product
Routine is not loaded until it is called. All	1. Static loading
routines are kept on disk in a relocatable	2. Dynamic loading
load format. The main program is loaded into memory & is executed. This type of	3. Dynamic linking
loading is called	4. Overlays
The result evaluating the postfix expression $(10.5 + 60.6 / *8 -)$ is	1.284 2 <mark>.142</mark> 3.213 4.71
Packets of the same session may be routed	1. TCP, but not UDP
through different paths in:	2. TCP and UDP
	3. UDP, but not TCP
	4. Neither TCP nor UDP

	1. Finding the IP address using DNS
used for:	2. Finding the IP address of the default gateway
	3. Finding the IP address that corresponds to a MAC address
	4. Finding the MAC address that corresponds to an IP address
The removal of process from active	1. Interrupt
contention of CPU and reintroduce them into memory later is known as	2. Swapping
<u> </u>	3. Signal
	4. Thread
Paging	1. solves the memory fragmentation problem
	2. allows modular programming
	3. allows structured programming
	4. avoids deadlock

	T
Which of the following memory allocation	1. Segmentation
scheme suffers from External fragmentation?	2. Pure Demand Paging
	3. swapping
	4. paging
One of the header fields in an IP datagram is	1. It can be used to priortize packets
the Time to Live (TTL) field. Which of the following statements best explains the need	2. It can be used to reduce delays
for this field?	3. It can be used to optimize throughput
	4. It can be used to prevent packet looping
A system uses FIFO policy for page	1. 196
replacement. It has 4 page frames with no pages loaded to begin with. The system first	2. 192
accesses 100 distinct pages in some order	3. 197
and accesses the same 100 pages but now in	4. 195
the reverse order how many page faults will occur?	133
What will be the status of a computer during	1. High paging activity
storage compaction	2. Thrasing happens
	3. Working set model developed
	4. It will sit idle
A leave of firewall account	4 block UTTD to ffin during 0.00004 and 5.00004
A layer-4 firewall cannot	1. block HTTP traffic during 9:00PM and 5:00AM
	2. block all ICMP traffic
	3. stop incoming traffic from a specific IP address but allow outgoing traffic to same IP
	4. block TCP traffic from a specific user on a specific IP address on multi-user system during 9:00PM and 5:00AM

Consider an instance of TCP's Additive Increase Multiplicative Decrease(AIMD) algorithm where the window size at the start of the slow start phase is 2 MSS and the threshold at the start of the first transmission is 8 MSS. Assume that a time out occurs during the fifth transmission. Find the congestion window size at the end of the tenth transmission.	1. 8 MSS 2. 14 MSS 3. 7 MSS 4. 12 MSS
The MMU (Memory Management Unit) is a	1. Hardware 2. Software
	3. Firmware 4. Malware
Which of the following is true?	 Segmentation is faster than paging Paging is faster than segmentation Pages are unequal sized pieces Segments are equal sized pieces
Which question no longer concerns the modern software engineer?	1. Why does computer hardware cost so much? 2. Why does software take a long time to finish? 3. Why does it cost so much to develop a piece of software? 4. Why can't software errors be removed from products prior to delivery?

Tadas the transport of the CO	4 T 2 false 2 4
computer has brought about an	1 <mark>. True</mark> 2. false 3. 4.
abandonment of the practice of team	
development of software	
Software is a product and can be	1. True
manufactured using the same technologies	
used for other engineering artifacts.	2. False
	3. 4.
Change cannot be easily accommodated in	1. True
most software systems, unless the system	
was designed with change in mind.	2. False
	2. Taise
	3. 4.
The linear sequential model of software	1. A reasonable approach when requirements are well defined.
development is	21.77 reasonaste approach when requirements are wen actined.
development is	2. A good approach when a working program is required quickly.
	3. The best approach to use for projects with large development teams.
	4. An old fashioned model that cannot be used in a modern context.
The linear sequential model of software	1. Classical life cycle model
development is also known as the	
·	2. Spiral model
	3. Waterfall model
	4. Incremental Model
	4. Incremental Woder
Data Members of the base class that are	1.does exist in memory when the object of the derived class is
marked private:	created
·	2.exist in memory when the object of the derived class is
	created
	the derived class
	3.are visible in the derived class
	4.are directly accessible in the derived class

The incremental model of software	1. A reasonable approach when requirements are well defined.
development is	2. A good approach when a working core product is required quickly.
	3. The best approach to use for projects with large development teams.
	4. A revolutionary model that is not used for commercial products.
	Another name for component-based development.
	2. Another name for component-based development.
	3. A high speed adaptation of the linear sequential model.
The rapid application development model is	4. ALL
Given the code	1. s1 == s2
String s1 = ? VIT?;	
String s2 = ? VIT ?; String s3 = new String (s1);	2. s1 = s2
Which of the following would equate to	3. s3 == s1
true?	4. s3=s1
is referred to as Static Web	1. Web 1.0
	2. Web 2.0
	3. Web 3.0
	4. Web 4.0
How do you write "Hello World" in PHP?	using System.out.println
	2. using Document.Write("Hello World")
	3. "Hello World"
	4. using echo("Hello World")
I	

What does JSP stand for?	1.
Wildt does is stalld for !	1.
	Java Scripting Pages
	2.
	Java Service Pages
	<mark>3.</mark>
	Java Server Pages
	4.
	Java Script Program
What are the parameters of the service	ServletRequest and ServletResponse
method?	2. HttpServletRequest and HttpServletResponse
	3. HttRequest and HttpResponse
	4. Request and Response
	1. GET
on content size when a form is submitted.	2. HEAD
	3. POST
	4. PUT
I	

```
The following function computes the
                                             1. a != n
maximum value contained in an integer
array p[] of size n (n >= 1). int max(int
                                             2. b != 0
*p, int n) { int a=0, b=n-1;
                                             3. b > (a+1)
while
                                             4. b != a
<= p[b]) { a
= a+1; } else
{ b = b-1; }
return p[a];
The missing loop condition is
Consider the following recursive C function. 1.
                                                      15
Void get (int n)
                                                      25
{if (n<1) return;
get (n-1)
                                             3.
                                                      43
get (n-3);
printf ("%d",n);
                                             4. 24
If get(6) function is being called in main ()
then how many times will the get() function
be invoked before returning to the main ()?
Which of the following is/are example(s) of 1. and (ii) only
stateful application layer protocols?
                                             2. ii and (iii) only
(i)HTTP
(ii)FTP
                                             3. (ii) and (iv) only
(iii)TCP
(iv)POP3
                                             4. (iv) only
What will be the output of the
                                             1.312213444
following C program? void count(int
n){ static int d=1;
```

```
printf("%d ", n);
printf("%d ", d);
                                            2.
d++;
                                            312111222
if(n>1) count(n-1);
printf("%d ", d);
                                            3122134
void main(){
count(3);
                                            3121112
Consider
                                            1.
                 the
following program:
int f(int *p, int n)
if (n <= 1) return 0;
else return max ( f (p+1, n-1),p[0]-p[1]);
int main()
int a[] = {3,5,2,6,4};
printf("%d", f(a,5));
The value printed by this program is
To prevent any method from overriding, the 1. static
method has to declared as,
                                            2. const
                                            3. final
                                            4.extends
```

1. both as a server and a client
2. As Client always
3. As Server always
4. Neither client nor server
1. 7
2. 8
3 . 9
4. 0
1. Google
2. Archie
3. AltaVista
4. WAIS
1. BSD Unix
2. Windows
3. Linux
4. Mac

NATIONAL PROPERTY OF THE PARTY	
What will be printed as the output of the following program?	1. I = 0
public class testincr	2. I = 1
{ public static void main(String args[])	3. I = 2
{	5.1 - 2
int i = 0;	4. I = 3
i = i++ + i;	
System.out.println(" I = " +i);	
}	
Which transmission media has the highest transmission speed in a network?	1. coaxial cable
transmission speed in a network.	2. twisted pair cable
	- Chilosop pan canno
	3. optical fiber
	4. electrical cable
	Cicetrical cable
Bits can be send over guided and unguided	1. digital modulation
media as analog signal using	
	2. amplitude modulation
	3. frequency modulation
	4. phase modulation
An abject of class A massives a survey of	4. Comparations
An object of class A receives a message with an argument that is an instance of class B.	1. Generalization
Identify the type of relationship between	2. Association
class A and Class B:	3. Aggregation
	4. Realization
	T. Neunzacion

A graphical HTML browser resident at a network client machine Q accesses a static HTML webpage from a HTTP server S. The static HTML page has exactly one static embedded image which is also at S. Assuming no caching, which one of the following is correct about the HTML webpage loading (including the embedded image)?

- 1. Q needs to send at least 2 HTTP requests to S, each necessarily in a separate TCP connection to server S
- 2. Q needs to send at least 2 HTTP requests to S, but a single TCP connection to server S is sufficient
- 3. A single HTTP request from Q to S is sufficient, and a single TCP connection between Q and S is necessary for this
- 4. A single HTTP request from Q to S is sufficient, and this is possible without any

TCP connection between Q and S

Consider the following function written the C programming language.

```
void foo (char * a ) {
if (* a & & * a ! =' ' ){
putchar (*a);
}
```

The output of the above function on input 'ABCD EFGH' is

1. ABCD EFGH

- 2. ABCD
- 3. HGFE DCBA
- 4. DCBA

Given the following structure template,	1. stud[2].marks[4]
choose the correct syntax for accessing the	
5th subject marks of the 3rd student: struct	2. stud[4].marks[2]
stud	3. s[2].marks[4]
{	4. s[4].marks[2]
int	
marks	
[6];	
char	
sname	
[20];	
char	
rno[10	
];	
}s[10];	
The portion of physical layer that interfaces	1. physical signalling sublayer
with the media access control sublayer is	
called	2. physical data sublayer
	3. physical address sublayer
	4. none of the mentioned

```
Consider
                                               1. 2
                  the
following program:
                                               2. 1
int f(int *p, int n)
                                               <mark>3. 3</mark>
if (n <= 1) return 0;
                                               4. 4
else return max ( f (p+1, n-1),p[0]-p[1]);
int main()
int a[] = {3,5,2,6,4};
printf("%d", f(a,5));
The value printed by this program is
Physical layer provides
                                               1. mechanical specifications of electrical connectors and cables
                                               2. electrical specification of transmission line signal level
                                               3. specification for IR over optical fiber
                                               4. all of the mentioned
The physical layer is responsible for
                                               1. line coding
                                               2. channel coding
                                               3. modulation
                                               4. all of the mentioned
Calculate the EAT(Effective access time) if 5 | 1. 6.2 micro second
micro second is associative look-up time and
                                               2. 7.8 micro second
0.80 is the hit-ratio in paging hardware with
TLB
                                               3. 2.2 micro second
                                               4. 3.2 micro second
```

In asynchronous serial communication the	1.start and stop signalling
physical layer provides	2.flow control
	2 hoth (a) and (b)
	3.both (a) and (b)
	4.none of the mentioned
The physical layer translates logical	1. data link layer
communication requests from the	
into hardware specific operations.	2. network layer
	3. trasnport layer
	4. application layer
	Define the specification for computerbased system
	Develop defect free computer-based systems
	3. Verify the correctness of computer-based systems
	4. ALL
The formal methods model of software	
development makes use of mathematical	
methods to	
Which is not related to deadlock avoidance?	1. Safe State
	2. Unsafe State

	Safe Sequence Resource sequence
The translates internet domain and host names to IP address.	domain name system routing information protocol
	3. network time protocol
	4. internet relay chat
Application layer protocol defines	1. types of messages exchanged
	2. message format, syntax and semantics
	3. rules for when and how processes send and respond to messages
	4. all of the mentioned
team?	1. Competence
	2. Decision-making ability3. Mutual trust and respect
	4. ALL

Which one of the following allows a user at	1. HTTP
one site to establish a connection to another	2. FTP
site and then pass keystrokes from local host	Z. FIF
to remote host?	3. telnet
	4. none of the mentioned
A single channel is shared by multiple signals	1. analog modulation
by	2. digital modulation
	3. multiplexing
	4. none of the mentioned
Wireless transmission can be done via	1. radio waves
	2. microwaves
	3. infrared
	4. all of the mentioned
Which one of the following is not the	Killing a process
process of Deadlock Recovery?	2. Rollback to the previous state
	3. Selecting a Victim
	4. Delaying the process
Which of the following is not one of	1. All design should be as simple as possible, but no simpler
Hooker's core principles of software engineering practice?	2. A software system exists only to provide value to its users.
	3. Pareto principle (20% of any product requires 80% of the effort)
	4. Remember that you produce others will consume

Software engineers collaborate with	1.Customer visible usage scenarios 2. Important software features
_	3.System inputs and outputs 4. ALL
	1. reduce the granularity of the plan
	2. analyze requirements in depth
	3. get all team members to "sign up" to the plan
	4. begin design
Everyone on the software team should be involved in the planning activity so that we can	
When displaying a web page, the application layer uses the	1. HTTP protocol
layer uses the	2. FTP protocol
	3. SMTP protocol
	4. IMAP Protocol
Which one of the following protoco	1. simple mail transfer protocol
delivers/stores mail to reciever server?	
	2. post office protocol
	3. internet mail access protocol
	4. hypertext transfer protocol

1. base 64 encoding
2. base 32 encoding
3. base 16 encoding
4. base 8 encoding
1. session initiation protocol
2. session modelling protocol
3. session maintenance protocol
4. none of the mentioned
1. media gateway protocol
2. dynamic host configuration protocol
3. resource reservation protocol
4. session initiation protocol
1. m,n
2. n,m
3. m-n,m
<mark>4. m-n,n</mark>
Develop overall project strategy
2. Identify the functionality to deliver in each software increment
3. Create a detailed schedule for the complete software project
4. Devise a means of tracking progress on a regular basis

What is x+ mode in fopen() used for?	1. Read/Write. Creates a new file. Returns FALSE and an error if file already exists
	2. Write only. Creates a new file. Returns TRUE and an error if file already exists
	3. Read/Write. Opens and clears the contents of file
	4. Write. Opens and clears the contents of file
In the network HTTP resources are located by	1. uniform resource identifier
	2. unique resource locator
	3. unique resource identifier
	4. unique resource identifier
Which method is used for loading the driver	1. getDriver() method
in Java JDBC.	2. class.forName()
	3. createStatement()
	4. getConnection()
Which of the following input controls that	1. Text
cannot be placed using <input/> tag?	2. Password
	3. Submit
	4. Textarea
_	1.
left align the content inside a table cell?	2. <tdleft></tdleft>
	3.
	4.

WiMAX provides	1. simplex communication
	2. half duplex communication
	3. full duplex communication
	4. none of the mentioned
WiMAX uses the	1. orthogonal frequency division multiplexing
	2. time division multiplexing
	3. space division multiplexing
	4. all of the mentioned
Which of the following operators has an associativity from Right to Left?	1.+= 2.== 3.<< 4.<=
ElGamal encryption system is	1. symmetric key encryption algorithm
	2. asymmetric key encryption algorithm
	3. not an encryption algorithm
	4. none of the mentioned
WHICH OF THE BELOW IS NOT AN EMAIL	1. SMTPMP
PROTOCOL?	2. IMAP
	3. POP
	4. SNMP
Which of the following statements explains portability in non-functional requirements?	1. It is a degree to which software running on one platform can easily be converted to run on another platform.
	2. It can be enhanced by using languages, OS' and tools that are universally available and standardized.
	3. The ability of the system to behave consistently in a user-acceptable manner when operating within the environment for which the system was intended.
	4. It is a degree to which software running on one platform can easily be converted to run on another platform as well as It can be enhanced by using languages, OS' and tools that are universally available and standardized.

The spiral model was originally proposed by	1. IBM
	3 Parry Pachm
	2. Barry Boehm
	3. Pressman
	4. Royce
Which of the following view is the failure of	4. Dona dona di cial
Which of the following risk is the failure of a purchased component to perform as	1. Product risk
expected?	2. Project risk
	3. Business risk
	4. Programming risk
Which of the following suffices to convert ar	1. Removing left recursion alone
arbitrary CFG to an LL(1) grammar?	2. Factoring the grammar alone
	3. Removing left recursion and factoring the grammar
	4. Removing left recursion, left factoring and ambiguity of
	the grammar
	1. (a + b)
The CFG	
s> as bs a b is	2. (a + b) (a + b)*
equivalent to regular	3. (a + b) (a + b)
expression	4. (a + b) (a + b)(a + b) (a + b)
Ελβιεσσίοι	
The grammar C \ aCa bC a is	1. LL(1) but not LR(1)
The grammar S → aSa bS c is	
	2. LR(1)but not LR(1)
	3. Both LL(1)and LR(1)
	4. Neither LL(1)nor LR(1)

```
Consider the following C code segment.
                                            1. The code contains loop invariant computation
for (i = 0, i<n; i++)
                                            2. There is scope of common sub-expression elimination in this
                                            code
                                            3. There is scope of strength reduction in this code
  for (j=0; j<n; j++)
                                            4. There is scope of dead code elimination in this code
  {
    if (i%2)
    {
      Х
+= (4*j +
5*i);
y += (7 +
4*j);
    }
All the modules of the system are integrated 1. Bottom up testing
and tested as complete system in the case of
                                            2. Top-down testing
                                            3. Sandwich testing
                                            4. Big-Bang testing
NOR Gate does NOT follow
                                            1.DeMorgan's Theorem 2.Associative Law
                                            3.Commutative Law4.Distributive Law
The _____ ensures that only one IC is
                                            1.control bus 2.control instructions
active at a time to avoid a bus conflict
                                            3.address decoder 4.CPU
caused by two ICs writing different data to
the same bus
In the following code snippet, what is the
                                            1.10px 2.5px 3.20px 4.15px
correct value of the left margin? margin:
10px 5px 20px 15px;
When used with the datalist element, what | 1.Local databases 2.Drop down lists
is the list attribute in HTML5 used to
                                            3.Autocompletion 4.Global Databases
accomplish?
```

Marinia af the afall a standard standard	T.
Which of the following boolean expressions	1 .
is not logically equivalent to all of the rest?	ab + (cd)' + cd + bd'
	2.
	a (b + c) + cd
	3. ab + ac + (cd)'
	4. bd' + c'd' + ab + cd
The size of the data count register of a DMA	1. 454
controller is 16 bits. The processor needs to transfer a file of 29,154 kilobytes from disk	2. 455
to main memory. The memory is byte	3. 456
addressable. The minimum number of times	;
the DMA controller needs to get the control	4. 457
of the system bus from the processor to	
transfer the file from the disk to main	
memory is	
How do we submit form data without a	1.Using header() function 2 .Using Javascript 3.Using
Sumbit button?	fdf_set_submit_form_action() fucntion 4.using header() and
	javascript javascript
When a single item that triggers other data	1. high coupling
flow along one of many paths of a data flow	
diagram, characterizes the information flow.	2. poor modularity
	3. transaction flow
	4. transform flow

The embedded c program is converted by cross compiler to	the machine code corresponding to the processor of the PC used for application development
	2. the machine code corresponding to a processor which is different from the processor of the PC used for application development
	3. code for all the microcontrollers
	4. assemble code of the PC used for application development
In Assembly language programming,	1. Zero
minimum number of operands required for	
an instruction is/are	2. One
	3. Two
	4. Three
	1. 19
with a capacity of 16 KB is built using a block	
size of 8 words. The word length is 32 bits.	2. 20
The size of the physical address space is 4	
GB. The number of bits for the TAG field is	3. 21
	4. 22
baa*c denotes the set	1. {b^na^mc^p n,m,p>=1}
	2. {ba^nc n>=0}
	3. {ba^nc n>=1}
	4. {w w is a string of a,b,c}
Functional requirements of a system is	1. Use-case Diagram
modelled using	2. Sequence Diagram
	3. Class Diagram
	4. Package Diagram
I	

	4. {ac^nd^nb n>=1}
	3. { a(cd)^na n>=0}U{a(cd)^nb n>=0}U{b(cd)^ na n>=0}U{b(cd)^nb n>=0}
· · · · · · · · · · · · · · · · · · ·	2. {a(cd)^n>=1}U{b(cd)^n n>=1}
(a+b)(cd)*(a+b) denotes the following set	1. {a(cd)^nb n>=1}
	4. Random-access memory
	 Dynamic random access memory EEPROM
The Firmware are stored in read-only memory or chips.	Flash memory Dynamic random assess memory
In software quality assurance work there is no difference between software verification and software validation.	3. 4.
	1. true 2. false
	<mark>4. 24</mark>
bits	3. 23
The width of the physical address on a machine is 40 bits. The width of the tag field in a 512 KB 8-way set associative cache is	1. 21 2.22
	4. 20 bits
cache memory shall be	3. 16 bits
cache memory is of 2K words. It uses associative mapping. Then each word of	2. 21 bits
If the main memory is of 8K bytes and the	1. 11 bits

Which of the following statements is/are	1.P Only 2.Q Only 3.Both P and Q 4.Neither
TRUE for an undirected graph?P:Number of	-
	PhoriQ
odd degree vertices is even,Q: Sum of	
degrees of all vertices is even	41114
Which of the following is useful in traversing	1.List <mark>2.Queue</mark> 3.Set 4.Stack
a given graph by breadth first search?	
In excitation table of D flipflop next state is	1. Next State
equal to	2 Power Chair
	2. Present State
	3. Previous State
	4. D State
The fundamental notions of software	1. Software reuse
engineering does not account for ?	2. Software Security
	3. Software Validation
	4. Software processes
Which of the following is not a technology	1. Collaborative technologies
1	
driver for an information system?	2. Knowledge asset management
driver for an information system?	2. Knowledge asset management 3. Enterprise applications
driver for an information system?	
driver for an information system? In linear search algorithm the Worst case	3. Enterprise applications
	Enterprise applications Object technologies
In linear search algorithm the Worst case	3. Enterprise applications4. Object technologies1.The item is somewhere in the middle of the array 2.The item is
In linear search algorithm the Worst case	3. Enterprise applications4. Object technologies1. The item is somewhere in the middle of the array 2. The item is not in the array at all 3. The item is the last element in the array
In linear search algorithm the Worst case	3. Enterprise applications4. Object technologies1. The item is somewhere in the middle of the array 2. The item is not in the array at all 3. The item is the last element in the array
In linear search algorithm the Worst case occurs when	 3. Enterprise applications 4. Object technologies 1. The item is somewhere in the middle of the array 2. The item is not in the array at all 3. The item is the last element in the array 4. The item is the last element in the array or is not there at all
In linear search algorithm the Worst case occurs when	 Enterprise applications Object technologies The item is somewhere in the middle of the array 2. The item is not in the array at all 3. The item is the last element in the array The item is the last element in the array or is not there at all double funct(char x)
In linear search algorithm the Worst case occurs when	 Enterprise applications Object technologies The item is somewhere in the middle of the array 2. The item is not in the array at all 3. The item is the last element in the array The item is the last element in the array or is not there at all double funct(char x) void funct();
In linear search algorithm the Worst case occurs when	 Enterprise applications Object technologies The item is somewhere in the middle of the array 2. The item is not in the array at all 3. The item is the last element in the array The item is the last element in the array or is not there at all double funct(char x) void funct(); char x();
In linear search algorithm the Worst case occurs when Which is not a proper prototype? Suppose P, Q, R, S, T are sorted sequences	 Enterprise applications Object technologies The item is somewhere in the middle of the array 2. The item is not in the array at all 3. The item is the last element in the array The item is the last element in the array or is not there at all double funct(char x) void funct(); char x();

	1.368 2.338 3.348 <mark>4.358</mark>	
sequences at a time. The number of		
comparisons that will be needed in the		
worst case by the optimal algorithm for		
doing this is		
The searching technique that takes O (1) time	1.Binary Search 2.Linear Search 3.Tree	
to find a data is	Search <mark>4.Hashing</mark>	
Suppose x is dead, that is, never		
subsequently used, at the		
point where the statement x=y+z appears in	1.Common subexpression elimination 2.Dead code	<u> </u>
a basic block. Then this statement may be	elimination3.Renaming temporary variables 4.Loop)
safely removed without changing the value	invarient	
of the basic block. This transformation is		
known as		
Shift reduce parsers are	1. Vertical parser 2.top down and bottom up parser 3.Bottor	<mark>n up</mark>
	parser 4.Top down parser	
Cross-compiler is a compiler	1.which is written in a language that is same as the source	
·	language. 2.that runs on one computer but produces object	code
	for different type of computer. 3.that generates object code	e for
	its host machine.4.which is written in a language that is diffe	erent
	from the source language.	
While inserting the elements	s 1.65 <mark>2.67</mark> 3.83 4.69	
71,65,84,69,67,83 in an empty binary search	n	
tree(BST)in the sequence shown, the		
element in the lowest level is		
Given a hash table T with 25 slots that stores	5 <mark>1.80</mark> 2.0.0125 3.8000 4.1.25	
2000 elements, the load factor a for T		
is		
Many programmers separate a class into	1. one for the primary functions and one for the auxilia	ary
two files:	functions	
	2. one for the public data and one for the private data	
	3. one for the void functions and one for the other fun	ctions
	4. one for the declarations and one for the	
	implementations employees the second control of the second control	

	T
In a connected graph, a bridge is an edge	1.A tree has no bridge 2.A bridge cannot be part of a simple
whose removal disconnects a graph. Which	cycle3.Every edge of a clique with size>=3 is a bridge (A clique is
one of the following statements is True?	any complete subgraph of a graph) 4.A graph with bridges cannot
	have a cycle
Network models are complicated by physica	1.Slower because it uses logical keys
keys, but the relation model is	2.Slower because it uses physical keys
	3.Faster because it uses physical keys
	4.Faster because it uses logical keys
Trigger is a	1 .Statement that enables to start any DBMS 2.Statement that is
	executed by the user when debugging an application
	program3.Statement that is executed automatically by the
	system as a side effect of a modification to the database
	4. Condition the system tests for the validity of the database user
Normalisation of database is used to	1.Minimise Errors 2.Improve Security
	3.Eliminate redundancy4.Improve security
Given the basic ER and relational models,	1. An attributes of an entity can have more that one value
which of the following is INCORRECT?	
	2. An attribute of an entity can be composite
	3. In a row of a relational table, an attribute can have more than
	<mark>one value</mark>
	4. In a row of a relational table, an attribute can have exactly one
	value or a NULL value
Foreign Key is	1. A field in a table that matches a key field in another table
	2. A field in a table that contains data that is also contained
	elsewhere in another table
	2. A key that consists of more than an field
	3. A key that consists of more than one field
	4. A field in a table that has the same name as a key field in
	another table

implies the need for an entire table to implement?	1. A binary relationship 2. A ternary relationship 3. A recursive relationship
produces the relation that has	4. An identifying relationship 1. Cartesian product
attributes of R1 and R2	2. Difference
	3. Intersection 4. Product
	1. Partial Dependencies 2. Transitive Dependencies 3. Multivalued Attributes 4. Both Partial dependencies and Multivalued Dependencies
Two sets of functional dependencies E and F are equivalent if E+ = F+ .This statement is	1. True 2. False
	3. Cant Say 4.

Contraction and alternative at the state of	L
Cartesian product in relational algebra is	1. a Unary operator
	2. a Binary operator
	3. a Ternary operator
	4.
	not defined
	1.if(rear==size) 2.if(new_node==0)
of a linked queue through code(note:	3.if(front==size)4.if(new_node==null)
new_node is a newly created node in a	
memory) What is NOT part of the design process	1. Architectural design
Wilde is NOT part of the design process	
	2. Database design
	3. Component design
	4. Validation testing
Which of the following is not a part/product	1. Feasibility study
of requirements engineering?	Requirements validation
	3. System models
	4. Architectural design

The number of auxiliary memory required	1. 0
for a Push Down Machine (PDM) to behave	2. 2
like a Finite State Machine (FSM) is	
	3. 4
	4. 1
	1. component analysis
last stage is	2. requirements modification
	3. system validation
	4. system design
Thrashing occurs	1. when excessive swapping takes place
	2. when you thrash your computer
	3. whenever deadlock occurs
	4. when no swapping takes place
#include	1. 43
int main ()	
{	<mark>2. 140</mark>
static int a[]={10, 20, 30 40, 50}; static int	3. 89
*p[]= {a, a+3, a+4, a+1, a+2};	
int **ptr=p;	4. 78
ptr++; printf	
("%d%d", ptr p,	
**ptr);	
}	
The output of the program is	
In CMM, the life cycle activities of	1. Software Product Engineering
requirements analysis, design, code, and	
test are described in	2. Software Quality Assurance
	3. Software Subcontract Management
	4. Software Quality Management

	L "
A set of documents in which a given	1. Hypermedia message
document can contain text, graphics video and audio clips as well as embedded	2. Hypertext document
references to other documents world wide	3. Hypermedia Documents
web pages are called as	4. Path rectangular grid of Pixels
Which of the following is not one of the	1. Create unit tests before you begin coding
principles of good coding?	2. Create a visual layout that aids understanding
	3. Keep variable names short so that code is compact
	4. Write self-documenting code, not program documentation
Mnemonic codes and variable names are	1. Machine language
used in	2. Assembly language
	3. high level language
	4. Used nowhere
	in osea normere
Consider the following	1. text==pattern
statements var text =	2. text.equals(pattern)
"testing: 1, 2, 3"; // Sample	
text	3. text.test(pattern)
teat	
var pattern = /\d+/g // Matches all instances	4. pattern.test(text)
of one or more digits	
In order to check if the pattern matches with)
the string "text", the statement is	
text, the statement is	

	21 / 21 / 25 /
Consider the following javascript	1. $x = ^{\sim}(-y)$; $w = (x = (y = z))$; $q = a?b:(c?d:(e?f:g))$;
statements	
x =	2.
~-y;	$x = a?b:(c?d:(e?f:g)); q = \sim(-y); w = (x = (y = z));$
ha/ =	
w =	3.
x =	
	$x = (x = (y = z)); w = ^(-y); q = a?b:(c?d:(e?f:g));$
y =	
	4. $x = ^{(-y)}; w = (x = (y = z)); q = (c?d:(e?f:g));$
z; q	() -) , q (e.a.(eg))
a?b	
:c?d	
:e?f	
·a:	
:g;	
The above code snippet is equivalent to:	
The javascript statement a===b refers to	1. Both a and b are equal in value, type and reference address
,	2. Both a and b are equal in value
	2. Both a and b are equal in value
	3. Both a and b are equal in value and type
	4. There is no such statement
Which of these methods has no restrictions	1. GET
on content size when a form is submitted.	
	2. HEAD
	3. POST
	3. FO31
	4. PUT
<u> </u>	ı

Consider the	1. 1
following program:	2. 2
int f(int *p, int n)	2. 2
{	3. 3
if (n <= 1) return 0;	4. 4
else return max (f (p+1, n-1),p[0]-p[1]);	H. 4
}	
int main()	
{	
int a[] = {3,5,2,6,4};	
printf("%d", f(a,5));	
}	
The value printed by this program is	
	1. priming
loop because the loop condition is tested at the beginning of the loop	2. pretest
	3. initial
	4. beginning
The word case used in the switch statement	1. global variable in the C++ language
represents a	2. function in the C++ language
	3. keyword in the C++ language
	4. data type in the C++ language
	1. TRUE
	2. FALSE
	3. 4.
Teams using agile software practices never create models.	
In HTTP pipelining	1. multiple HTTP requests are sent on a single TCP connection
F F - 'O	without waiting for the corresponding responses
	multiple HTTP requests can not be sent on a single TCP connection
	3. multiple HTTP requests are sent in a queue on a single TCP connection
	4. none of the mentioned

LITTE client requests by establishing a	1 data avana avata aal
HTTP client requests by establishing a	1. user datagram protocol
connection to a particular port	2. transmission control protocol
on the server.	'
	3. broader gateway protocol
	5. broader gateway protocor
	4. RIP
FTP server listens for connection on port	1. 20
number	2. 21
	3. 22
	4. 23
	7. 23
In FTP protocol, client contacts server using	1. transmission control protocol
as the transport protocol.	
	2. user datagram protocol
	2. doct datagram protoso.
	3. datagram congestion control protocol
	4. stream control transmission protocol
Arrange the operators according to thei	r <mark>1->, %, +, =</mark>
precedence: +, %, >, =	
, , ,	2=, +, %, ->
	3.%, +, =, ->
	4.%, ->, =, +
The file to refer to the line is the state of	4 Literatura de la contraction del contraction de la contraction d
The file transfer protocol is built on	1. data centric architecture
	2. service oriented architecture
	3.client server architecture
	4.peer to peer architecture

elationships between data objects nctions that transform the data flow how data are transformed by the system system reactions to external events cations components components components management components
elationships between data objects nctions that transform the data flow how data are transformed by the system system reactions to external events cations components components components
elationships between data objects nctions that transform the data flow how data are transformed by the system system reactions to external events cations components components components
nctions that transform the data flow how data are transformed by the system system reactions to external events cations components components components
how data are transformed by the system system reactions to external events cations components components components
cations components components components
cations components components components
components
components
·
management components
res provide facilities for organizing the names in a avoid name clashes 2. Namespaces refer to space e names in a program reserved to the memory space allocated for names ogram 4. Namespaces refer to the space for names.
s of which stream is an object. 2.Using cin, the data
from user's terminal. 3.It represents standard input.
ect of istream class.

Which of the following statements is NOT	1.Overloaded operator must have at least one operand of its class
valid about operator overloading?	type. 2.Only existing operators can be overloaded. 3.The
	overloaded operators follow the syntax rules of the original
	operator. 4.The arity of the operator can be changed
If the class name is X, what is the type of its	1.X* 2.const X* const 3.X& 4.X* const
"this" pointer?	
If a constructor function is defined in private	1.The object cannot be created 2.Only its member functions and
section of a class, then	friends may declare objects of the class 3.Only its friends may
	declare objects of the class 4.Only its
	member functions may declare objects of the class
Which of the following operator can be	1> 2.= 3.() <mark>4.*</mark>
overloaded through friend function?	
	1. TRUE
	2. FALSE
	3. 4.
Many of the tasks from the generic task sets	
for analysis modeling and design can be	
conducted in parallel with one another.	
The system engineering process usually	1. detailed view
begins with the	1. detailed view
begins with the	2 domain view
	2. domain view
	3. element view
	4. world view
A process	1. 3
executes the	2. 4
code fork ();	
fork (); fork ();	<mark>3. 7</mark>
The total number of child processes created	4. 8
is	

If class A is friend of class B and if class B is	1.Class C is friend of Class A 2.Class A is friend of Class C 3.Class A
friend of class C, which of the following is	and Class C don't have any friend relationship 4.Class A and
true?	Class C are mutual friends
By following modern system engineering	1. True
practices simulation of reactive systems is	
no longer necessary.	2. FALSE
	3. 4.
Which of the following (in file scope) leads to	o1.const int a=90; 2.const int f1() { return 100; } 3.int f2() const {
a compiletime error?	return 200; } 4.const int f3(const int i) { return 300;}
The default copy constructor performs	1.Deep Copy 2.Shallow Copy 3.Soft Copy
.,	4.Hard Copy
which of the following is an incorrect	1.void * operator new(size_t size) { } 2.void * operator new () { }
definition inside a class ?	3.void operator flew(size_t size) { } 2.void operator flew () { } 4.int operator ++() { }
Which is the correct CSS syntax?	1. body:color=black
Willett is the correct ess syntax:	1. body.color-black
	2. {body;color:black}
	3.{body:color=black(body}
	4. body {color: black}
To link your Web page to a style sheet, you	1. <stylesheet></stylesheet>
must use the tag	2. <style></td></tr><tr><td></td><td>Z. CSTTLE?</td></tr><tr><td></td><td>3. <link></td></tr><tr><td></td><td>4. <web></td></tr><tr><td></td><td></td></tr><tr><td>What does the following bit of JavaScript print out?</td><td>1. 5, undefined, undefined</td></tr><tr><td>print out:</td><td>2.5,3,undefined</td></tr><tr><td>var a = [1,,3,4,5];</td><td>2. F.O. undefined</td></tr><tr><td>console.log([a[4],</td><td>3. 5,0,undefined</td></tr><tr><td>a[1], a[5]]);</td><td>4. 5,null,undefined</td></tr><tr><td>Usually a pure virtual function</td><td>1. Will be called only to delete an object 2. Is defined only in</td></tr><tr><td></td><td>derived class 3. Will never be called 4. Has complete function body</td></tr><tr><td></td><td></td></tr><tr><td></td><td></td></tr></tbody></table></style>

Which of the following is not the	1.They should be declared in the public section.
characteristic of constructor?	. 2.They do not have return type. 3.They can not be inherited.
	4.They can be virtual.
How many instances of an abstract class can	1.13 2.5 3.1 <mark>4.0</mark>
be created?	
What will be the result of the expression 13	1.25 2.38 <mark>3.9</mark> 4.12
& 25	
In which case is it mandatory to provide a	1.Class for which copy constructor is defined 2.Class for which
destructor in a class?	two or more than two objects will be created 3.Almost in every
	class 4.Class whose objects will be created dynamically
If we create a file by 'ifstream', then the	1.ios :: out 2.ios :: in 3.ios :: app 4.ios ::
default mode of the file is	binary
overloading + operator requires return type	1.reference parameter has to be returned 2.binary addition
as object because,	requires that 3.all overloading functions require that 4.chain of
	additions
To create an alias Objects have to be passed	1.address 2.reference 3.value 4.field by field
by	
	1. applications, data, technology infrastructure
	2. communications, organization, financial infrastructure
	3. network, database, reporting structure
	4. systems, requirements, data structure
During business process engineering, three different architectures are examined	
different architectures are examined	
The goal of product engineering is to	1. TRUE
translate the customer's desire for a set of	
defined capabilities into a working product.	2. FALSE
	3. 4.

	1. data, hardware, software, people
	2. data, documentation, hardware, software
	3. data, hardware, software, procedures
	4.documentation, hardware, people, procedures
The architecture components for product engineering are	
The following HTML element	1. <form></form>
contains meta data which is not displayed inside the document	2. <title></td></tr><tr><td></td><td>3.</td></tr><tr><td></td><td>4. <frame></td></tr><tr><td></td><td>1. Function, performance and constraints of a computer-based system</td></tr><tr><td></td><td>2. implementation of each allocated system</td></tr><tr><td></td><td>3. element software architecture</td></tr><tr><td></td><td>4.time required for system simulation</td></tr><tr><td>The system specification describes the</td><td></td></tr></tbody></table></title>

	1. examine the system model for errors
	2. have the customer look over the requirements
	3. send them to the design team and see if they have any concerns
	4. use a checklist of questions to examine each requirement
The best way to conduct a requirements validation review is to	
	1. TRUE
	2. False
A stakeholder is anyone who will purchase	
the completed software system under	3. 4.
development.	
The job of the requirements engineer is	1. True
to categorize all stakeholder information in a way that allows decision makers to	2. False
choose an internally consistent set of	3. 4.
requirements.	
The nature of collaboration is such that all	1. TRUE
system requirements are defined by	2. FALSE
consensus of a committee of customers and	
developers.	3. 4.
	<u> </u>

High speed ethernet works on	1. coaxial cable
	2. twisted pair cable
	3. optical fiber
	4. none of the mentioned
Which of these will create a shuffled list?	1. 2. 3. <dl></dl>
	4.
	Nested list
<h2 style="color:blue">I am Blue</h2> is way of styling HTML elements	1. Internal Style
way or styling trivit elements	2. Inline Style
	3. External Style
	4. Default

	4
	1. cannot be a member of the software team
	2. cannot be a customer
	3. controls and facilitates the process
	4. must be an outsider
In collaborative requirements gathering, the facilitator	
The maximum size of payload field in	1. 1000 bytes
ethernet frame is	2. 1200 bytes
	3. 1300 bytes
	4. 1500 bytes
What is interframe gap?	1. idle time between frames
	2. idle time between frame bits
	3. idle time between packets
	4.
	none of the mentioned
The following HTML element helps making	1.
animated text	2. <ins></ins>
	3. <mark></mark>
	4. <marquee></marquee>
	1. size of the budget

The work products produced during requirement elicitation will vary depending on the	2. size of the product being built3. software process being used4. stakeholders needs
What is cell padding?	1. Used to separate cell walls from their contents
	2. Used to set space between cells
	3. Used to provide width to a cell
	4. Used to merge two cells
What is the correct HTML for making a text	1. <input type="text"/>
input field?	2. <textfield></textfield>
	3. <input type="textfield"/>
	4. <textinput type="text"></textinput>
HTTP is implemented over	1. UDP
	2. TCP
	3. SMTP
	4. POP
An ethernet frame that is less than the IEEE	1.short frame
802.3 minimum length of 64 octets is called	2.runt frame
	3.mini frame
	4.man frame
	4 TDUE
In win-win negotiation, the customer's	1. TRUE
needs are met even though the developer's need may not be.	2. FALSE
need may not be.	3. 4.

Consider the following program in C	1. Compilation fails.
language:	2. Execution results in a run-time error.
#include main()	3. On execution, the value printed is 5 more than the address of variable i
int i;	4. On execution, the value printed is 5 more than the integer
int *pi = &i	value entered
scanf(?%d?,pi);	
printf(?%d\n?, i+5);	
}	
Which one of the following statements is TRUE?	
is used to define a special CSS style	1. Class attribute
for a group of HTML elements	2. name attribute
	3. group attribute
	4. id attribute
Which of these is a stand alone tag?	1. form
	2. frame
	3. table
	4. anchor
The following HTML element is used to	1.
display horizontal line	
	2. <h></h>
	3. <hr/>
	4. <h2></h2>
I	

The attribute defines the action to	1. method attribute
be performed when the form is submitted	2. action attribute
	3. onSubmit attribute
	4. onClick attribute
Which attribute is used to extend the lifetime of a cookie?	1. higher-age
	2. increase-age
	3. max-age
	4. lifetime
How can you make a list that lists the items with numbers?	1. <list></list>
	2. 3. <dl> 4.</dl>
	
Which method is used to get the year of a date object in YYYY format in Javascript.	1. getYear()
	2. getYYYY()
	3. getFullYear()
	4. get4Year()

Which one of the following is a cryptographic	Stream Control Transmission Protocol (SCTP).
protocol used to secure HTTP connection?	2. Transport Layer Security (TSL).
	3. Explicit Congestion Notification (ECN).
	4. Resource Reservation Protocol.
In HTTP, which method gets the resource as	1. GET
specified in the URI	2. POST
	3. PUT
	4. TRACE
Which of these is not a valid attribute of	1. valign
element?	2. bgcolor
	3.align
	4. rowspan
Java package is a grouping mechanism with the purpose of	1. Providing the library for the Java program
the purpose of	2. Controlling the visibility of the classes, interfaces and methods
	3. Replacing header file used in C/C++
	4. An application framework

```
Consider the C function
                                             1. The function returns 0 for all values of j.
given below. int f(int j)
                                              2. The function prints the string something for all values of j.
                                              3. The function returns 0 when j = 50.
                                              4. The function will exhaust the runtime stack or run into an
                                             infinite loop when j = 50.
printf("something");
k = f(i);
return 0;
else return 0;
Which one of the following is TRUE?
Use of _____ allows for some processes 1. multiprogramming
to be waiting on I/O while another process
                                             2. multiuser interfacing
executes.
                                             3. Random scheduling
                                             4. Variable cpu cycles
```

OS pays more attention on the	1. Distributed
meeting of the time limits.	2 Maturada
	2. Network
	3. Real time
	4. Desktop
The purpose of a TLB is	1.
	To cache page translation information
	To cache page translation information
	<mark>2.</mark>
	To cache frequently used data
	3.
	To hold register values while a process is waiting to be run
	4.
	To hold the start and length of the page table
For automatic objects, constructors and	1. enter and leave scope
destructors are called each time the objects	
	2. inherit parent class
	3. are constructed
	4. are destroyed
	I

Which of the following statement is correct about destructors?	1. A destructor has void return type.
	2. A destructor has integer return type.
	3. A destructor has no return type.
	4. A destructors return type is always same as that of main()
Given a variable \$email containing the string	1. substr(\$email, strpos(\$email, "@"));
user@example.com, which of the following PHP statements would extract the string	2. strstr(\$email, "@");
example.com?	3. strchr(\$email, "@");
	4. substr(\$email, strpos(\$email, "@")+1);
Consider the code snippet	1. The omitted value takes "undefined"
given below var count =	2. This results in an error
[1,,3];	3. This results in an exception
What is the observation made?	4. Can't predict
Consider the following code snippet	1. true false
var a1 =	2. false true
[,,,]; var	3. true true
a2 = new	
Array(3);	4. false true
0 in a1	
0 in a2	
Result of Javascript is:	
The pop() method of the array in javascript	1. decrements the total length by 1
does which of the following task?	2. increments the total length by 1
	3. prints the first element but no effect on the length
	4. don't return the value of deleted element

	L
When there is an indefinite or an infinity	1. Prints an exception error
value during an arithmetic value computation, javascript	2. Prints an overflow error
	3. Displays "Infinity"
	4. Prints the value as such
Given a comma-separated list of values in a	
string, which function from the given list can create an array of each individual value with	2. extract
a single call in PHP?	3. explode()
	4. strtok()
In PHP, array values are keyed by	1. Float, string
values (called indexed arrays) or using values (called associative arrays). Of	2. Positive number, negative number
course, these key methods can be combined as well.	3. String, Boolean
	4. Integer, String

```
What will the following script output?
                                                       78
<?php
                                                       19
                                              2.
$array = array (1, 2, 3, 5, 8, 13, 21, 34, 55);
sum = 0;
                                              3.
for (\$i = 0; \$i < 5; \$i++) 
                                              NULL
$sum += $array[$array[$i]];
                                              4.
echo $sum;
?>
What elements will the following script
                                              1. 1 => 'b'
output?
                                              2. True => 'a', a => 'b'
<?php
                                              <mark>3. NULL</mark>
$array = array (true => 'a', 1 => 'b');
                                              4. 0 => 'a', 1 => 'b'
var_du
mp
($array)
; ?>
Assume you would like to sort an array in
                                              1. ksort( )
ascending order by value while preserving
                                              2. asort()
key associations. Which of the following PHP
sorting functions would you use?
                                              3. krsort()
                                              4. sort()
If a university sets up web-based
                                              1. intranet
information system that faculty could access 2. ERP
to record student grades and to advise
students, that would be an example of an
                                              3. extranet
                                              4. CRM
Which of the following gives the memory
                                              1. a;
address of a variable pointed to by pointer
                                              2. *a;
a?
                                              3. &a;
                                              4. address(a);
```

A default constructor is one that	1. that takes all default arguments
	2. have to be called explictly
	3. gets called automatically
	4. does take many parameters
A constructor without any arguments is	1. default constructor
	2. parameterized constructor
	3. none
	4. overloading
Which of the following functions compares	1. compare();
two strings?	2. cmp();
	3. stringcompare();
	4. strcmp();
A class is a	1. Structure
	2. Memory
	3. Template
	4. Function
class n{ public: int *a;}o,p; assigning o=p is	1. deep copy
called?	2. shallow copy
	3. error
	4. constructor
Templates improve	1. inheritance
	2. reusability
	3. class
	4. functions

Access to private data is	1.	Restricted to methods of the same class
	2.	Restricted to methods of other classes
	3.	Available to methods of the same class and other classes
	4.	Not an issue because the program will not compile
A priority queue is implemented as a Max-	1. 10, 8	, 7, 3, 2, 1, 5
Heap. Initially, it has 5 elements. The level-order traversal of the heap is: 10, 8, 5, 3, 2.	2. 10, 8	3, 7, 2, 3, 1, 5
Two new elements 1 and 7 are inserted into the heap in that order. The level-order	3. 10, 8	, 7, 1, 2, 3, 5
traversal of the heap after the insertion of the elements is:	4. 10, 8	, 7, 5, 3, 2, 1
For the array (77 ,62,114,80,9,30,99), write	1. 80 30	0 62 114 77 9 99
the order of the elements after two passes using the Radix sort	2. 114 3	80 62 77 9 99
	<mark>3. 9 114</mark>	30 62 77 80 99
	4. 9 30	62 77 80 99 114
Consider a B+ tree in which the search Answer is 12 bytes long, block size is 1024	1.	40
bytes,record pointer is 10 bytes long and	2.	50
block pointer is 8 bytes long. The maximum number of keys that can be accommodated	3.	co
in each non-leaf node of the tree is	3.	60
	4. 70	

•	1. 63
1, 2, 3, 4, 5, 6, 7 can be inserted in an empty binary search tree, such that the resulting tree has height 6, is	<mark>2. 64</mark>
	3. 65
	4. 66
What is the maximum size of data that the application layer can pass on to the TCP	1. Any size2. 2^16 bytes-size of TCP header
layer below?	3. 2^16 bytes
	4. 1500 bytes
Consider an undirected graph G where self-loops are not allowed. The vertex set of G is	1. 505
$\{(i, j): 1 = i = 12, 1 = j = 12\}$. There is an edge between (a, b) and (c, d) if $ a - c = 1$ and	2. 506 3. 507
b - d = 1. The number of edges in this graph is	4. 508
Consider the following New-order strategy for traversing a binary tree:	1. + - 1 6 7 * 2 ? 5 - 3 4 *
1)Visit the root;	2+1*67?2-5*34
2)Visit the right subtree using New-order; 3)Visit the left subtree using New-order; The New-order traversal of the expression tree	3 + 1 * 76?2 - 5 * 43 4 176 * + 2543 * -? -
corresponding to the reverse polish expression 3 4 * 5 - 2 ?	
6 7 * 1 + - is given by:	
A complete binary min-heap is made by including each integer in [1;1023] exactly once. The depth of a node in the heap is the	1. 7 2. 8
length of the path from the root of the heap	
to that node. Thus, the root is at depth 0. The maximum depth at which integer 9 can appear is	4. 10
αμμσαι ιδ	

has a dedicated communication path between stations	1.Circuit switching 2.Frame relay 3.Packet switching 4.ATM
What is the order of the stages in the	1. Requirements Definition, System &
waterfall mode?	Software Design, Implementation & Unit Testing, Integration &
	System Testing, Operation & Maintenance.
	2. Requirements Definition, Integration &
	System Testing, System & Software Design, Implementation & Unit Testing, Operation & Maintenance.
	3. System & Software Design, Requirements
	Definition, Operation & Maintenance, Implementation & Unit Testing, Integration & System Testing.
	4. Implementation & Unit Testing,
	Requirements Definition, System &
	Software Design, Integration & System Testing, Operation &
	Maintenance.
is an initial version of a	1. Prototype
software system that is used to demonstrate	2. Architectural Design
concepts, try out design options, and find out more about the problem and its possible	
solutions.	3. Subsystem
	4. Module
messages are typically used for	
diagnostic or control purposes or generated	1.ICMP 2.TCP 3.UDP 4.IP
in response to errors in IP operations.	
appends to the address a slash	1.CIDR 2.TCP 3.UDP 4.IP
character and the decimal number of	
leading bits of the routing prefix.	
algorithm is used for the flow	1.Dijkstra 2.RIP 3.Leaky bucket <mark>4.Go Back N</mark>
control of data between sender and	
receiver.	

cryptography refers to encryption	1.Symmetric 2.Asymmetric 3.Ceaser key
methods in which both the sender and	
receiver share the same key.	4.Asymmetric key
	1 Data link layer 2 Naturals layer
is responsible for the final	1.Data link layer 2.Network layer
	3.Application layer 4.Session layer
frames that are sent over the network using	
the physical layer.	
The switching method fixes the path from	
source to destination is	3.Packet switching 4.Frame Relay
There is no connection setup phase in	1.Frame relay 2.Virtual Circuit Switching
	<mark>3.Datagram</mark> 4.ATM
Which of these is not an element of an	1. Behavioral elements
object-oriented analysis model?	2. Class-based elements
	3. Data elements
	4. Scenario-based elements
gives the number of bits that can be	
transmitted over a network in a fixed time	1.Latency 2.Jitter <mark>3.Bandwidth</mark> 4.Delay
period.	
Overloading a prefix increment operator by	1. Three arguments
means of a member function takes	2. Two arguments
	3. No argument
	5. No argument
	4. One argument
is assigned to an organization by a	1.Subnet ID 2.Supernet ID 3.Host ID
global authority.	4.Network ID
should keep track of multiple file	1.Transport layer 2.Application layer 3.Presentation layer
downloads requested by a particular FTP	4.Session layer
application, or multiple telnet connections	
from a single terminal client, or web page	
retrievals from a web server.	
Which of the following ways are legal to	1. this.x
access a class data member using this	
pointer?	2. *this.x
	3. this->x
	4. *this-x
	<u>I</u>

Class IP addresses are used for large	1.A 2.B 3.D 4.C
organizations	
Which one of the following is the correct	1. virtual void Display(void){0};
way to declare a pure virtual function?	2. void Display(void) = 0;
	3. virtual void Display(void) = 0;
	4. virtual void Display = 0;
Simple network management protocol	1.the nodes 2.the server 3.the hubs 4.a separate PC that
(SNMP) is implemented with a daughter board in	managers the network
which of the following is an incorrect	1. void * operator new () { }
definition inside a class ?	2. int operator ++() { }
	3. void operator delete(void * ptr) { }
	4. void * operator new(size_t size) { }
-	1. int f2() { static int i; i++; return i; }
time error?	2. int f3(static int i) { return 300;}
	3. static int f1() { return 100; }
	4. static int a;
A view is a	1. virtual table
	2. subset of the table
	3. base table
	4. super table
The state diagram	1. depicts relationships between data objects
	2. depicts functions that transform the data flow
	3. indicates how data are transformed by the system
	4. indicates system reactions to external events

	1. Mapping
another in DBMS architecture is called as	2. Communication
	3. Relational
	4. network
If every node u in G adjacent to every other node v in G, A graph is said to be	1. isolated
	2. complete
	3. finite
	4. strongly connected
The BIU contains FIFO register of size	1. 8
bytes	<mark>2. 6</mark>
	3. 4
	4. 12
	1. queue
memory and store them in	1. queue 2. register
memory and store them in	
memory and store them in	2. register
memory and store them in	2. register 3. memory
memory and store them in	2. register 3. memory
memory and store them in	2. register 3. memory
memory and store them in	2. register 3. memory
memory and store them in	2. register3. memory4. stack
The 1 MB byte of memory can be divided	2. register3. memory4. stack
The 1 MB byte of memory can be divided into segment	 register memory stack 1 Kbyte

The IP is	bits in length	1. 8 bits
	2. 4 bits	
		3. 16 bits
		4. 32 bits
IMUL source i	s a signed	1. multiplication
		2. addition
		3. subtraction
		4. division
	cessor determines pecified condition exists	1. carry flag
	ing the	2. conditional flag
		3. common flag
		4. sign flag
	control bus signal So,S1 and S2	1. shared
are sent out if	n form	2. decoded
		3. encoded
		4. unshared
		1. internal
signals to pro	duce the control bus signal	2. data
		3. <mark>external</mark>
		4. address

To interface memory with the	1. single
microprocessor, connect register the lines of	
the address bus must be added to address	2. memory
lines of the chip.	3. multiple
	4. triple
In which year, 8086 was introduced?	1. 1978
	2. 1979
	3. 1977
	4. 1981
	1. rely on basis path testing
Data flow testing is a control structure	2. exercise the logical conditions in aprogram module3. select test paths based on the locations and uses of variables
the state of the s	4. focus on testing the validity of loop constructs
design test cases is that they	4. focus on testing the validity of loop constructs
	1.rely basis path testing
	2.exercise the logical conditions in a program module
	3. select test paths based on the locations and uses of variables
	4. focus on testing the validity of loop constructs
Loop testing is a control structure testing	
technique where the criteria used to design	
test cases is that they	
	1. true
	2. false
Boundary value analysis can only be used to	2.4
do white-box testing.	3. 4.

Which of the following acts as a	1.Mixture of air and water system
heterogeneous system?	2.Mixture of water and steam3.Solution of ammonia in water
	4.Mixture of octane and heptane
For liquid water in equilibrium with a	1.0 2.1 3.2 4.3
mixture of water vapour and nitrogen, the	
number of degrees of freedom is	
The critical coefficient (RTc/PcVc) for all	1. 3/8
gases obeying VanderWaals equation of state is equal to	
state is equal to	2. 8/3
	3. 5/2
	4. 2/5
An equimolar mixture of benzene and	1.
toluene is contained in a piston/cylinder	451.2 mm Hg
arrangement at a temperature T. What is	431.2 mm ng
the maximum pressure below which the	2.
mixture exists as a vapour phase alone? At	456.2
the given T, the vapour pressure	456.2 mm Hg
of benzene and toluene are 765 and 320 mm	3.
Hg respectively. Assume Raoult's law is valid	
	466.2 mm Hg
	4.
	481.2 mm Hg
At a given temperature the volume of a gas	1.Increases 2.Decreases 3.Remains unchanged 4.Uncertain
dissolved in a solventwith	
increase in pressure	
If vapour pressure at two temperatures of a	1. Maxwells's equation 2. Clayperon Claussius equation 3. Vander
solid phase in equilibrium with its liquid	Waals equation 4.Nernst Heat Theorem
phase are known, then latent heat of fusion	
can be calculated by	
When water is heated from 2 oC to 4 oC, it	1.Expands 2.Contracts 3.Density remains the same 4.Volume remains the same
What is the mole fraction of methane, x1,	
dissolved in a light oil at 200K and 25 bar?	
Henry's law is valid for the liquid phase and	
gas may be assumed to be an ideal	

solution. Data: At this condition Henry's law constant for methane in oil is 250 bar, fugacity coefficient of pure methane gas is 0.90 at y = 0.95 mole fraction of methane in gas phase. At a given temperature k1; k2 and k3 are the equilibrium constants for the following reaction respectively Then k1; k2; and k3 are related as	1. k3=k1*k2 2. k3=(k1*k2) ^{0.5} 3. k3=(k1*k2) ²
	4. k3=sqrt (k1*k2)
Match the followings and select correct	1.
answer from the codes given below the lists	A - 3; B - 1; C- 2; D – 4 2.
	A - 2; B - 3; C- 4; D – 1 3.
	A - 4; B - 1; C- 2; D – 3 4.
	A - 1; B - 2; C- 4; D – 3
A methanol-water vapor liquid system is at	1.
equilibrium at	0.3
60°C and 60 kPa. The mole fraction of methanol in liquid is 0.5 and in vapor is 0.8.	
Vapor pressure of methanol and water at	2.1.2 3.
60°C are 85 kPa and 20 kPa respectively.	1.6
Assuming vapor phase to be an ideal gas	4.
mixture, what is the activity coefficient of	··
water in the liquid phase ?	7.5

A mixture of A and B conforms closely to	1.
Raoults law. The pure component vapour	89.6% A
pressures at T°C are given by	
	2.
If the bubble point of a certain mixture of A	82.6% A
and B is 80°C at a total pressure of 90kPa,	3.
find the composition of the first vapour.	02 60/ 4
	82.6% A
	4.
	92.5% A
Mass velocity is independent of temperature	1.unsteady through unchanged crosssection. 2.steady through
& pressure, when the flow is	changing crosssection. 3.steady and the cross-section is
pressure, when the now is	unchanged4.unsteady and the crosssection is changed.
	unchangeu4.unsteady and the crosssection is changed.
A mercury (specific gravity = 13.6)	
manometer connected across an	
orificemeter fitted in a pipe shows a	
manometer	
reading of 2 cms. If the manometer liquid is	1 17 2 42 2 19 4 1 9
changed to carbon tetrachloride (specific	1.17 2.42 3.10 4.1.0
gravity = 1.6), then for the same flow rate of	
water the new manometer reading will be	
cms	
	1.1 x 10-3 to 2 x 10-3 kg/m.s 2.0.5 x 10-3 to 1 x 10-3 kg/m.s 3.1 to
Viscosity of water at 10 clies in the range of	2 kg/m.s 4.0.5 to 1 kg/m.s
A centrifugal pump has the following	
specifications:	
Power = 4 H.P.; Speed = 800 rpm Head = 8	1.500 2.200 3.1000 4.750
metres Flow = 1000 litres/minutes. If its	
speed is halved, the new discharge will be	
litres/minute.	
If two capillary tubes of dia 0.5 mm and 1	1.same in both the tubes. 2.greater in 1 mm dia tube. 3.greater in
mm are dipped in a pot containing mercury,	
then the rise of mercury is	and the control of th

Pressure drop (Δp) for a fluid flowing in turbulent flow through a pipe is a function	1.	V _{1.8}
of velocity (V) as	2.	V-0.2
	3.	V _{2.7}
	5.	V 2.7
	4.	
	V 2.0	
A pressure of 10 m head of water is equivalent to kN/m².	1. 98	
	2.	
	147	
	3.	
	196	
	4.	
	49	
Drag co-efficient C _D , in Stoke's law range is given by	1.	
	2.	
	3.	
	4.	
	1	

The phenomenon occuring during pumping of a liquid solution containing dissolved	1. evaporation
	2.
giving rise to gas pockets, is termed as	cavitation
	3.
	sublimation
	4.
	stripping
The softness or hardness of a grinding wheel	1.
depends upon the type & amount of bonding material used. For general purpose	hard
	2. soft
is normally used.	3.
	silicon carbide
	4.
	aluminium oxide
Fog is an example of colloidal system of	1.
	solid dispersed in gas.
	2.
	solid dispersed in liquid.
	3.
	liquid dispersed in gas. 4.
	gas dispersed in liquid.
Evaporative cooling process employs a combination of cooling and humidification in	1.sensible heat is added. 2.sensible heat is removed and the latent heat is
which the	added. 3.latent heat is removed. 4.sensible heat is added and latent heat is removed

Spherical shape of mercury droplets is due	1.high viscosity. 2.low surface tension. 3.high density. 4.high
to its	surface tension.
Which of the following is the most suitable	1.Aluminium 2.Copper 3.Titanium 4 .Stainles
material of construction for the condenser	s steel
tubes, where the cooling medium is brine	
(salty water)?	
The minimum temperature to which the	1.ambient 2.dry bulb 3.dew point 4.wet bulb
water can be cooled in a cooling tower is the	
temperature of air.	
Volumetric composition of flue gas analysed	1.pure oxygen has been used for combustion. 2.nitrogen
with the Orsat apparatus is : CO2 = 12%, O2	percentage in the fuel is very high. 3.excess air has been used for
= 8%, CO = nil, N2 = 80%. This flue gas	combustion. 4.hydrogen is not present in the fuel.
composition indicates that	and the fact in the fact.
For a series of reactions	1.
roi a series of reactions	1.
	2.
having k as k the reaction system can be	
having $k_1 \ll k_2$, the reaction system can be	
approximated as	
	3.
	4.
For nearly isothermal operation involving	1.
large reaction time in a liquid-phase	stirred tank
reaction, the most suitable reactor is a	Stilled talik
reactor.	2.
	tubular flow
	3.
	batch
	4.
	fixed bed
	incu deu

In a reversible chemical reaction having two	1.
reactants in equilibrium, if the concentration	
of the reactants are doubled, then the	remain the same
equilibrium constant will	2.
	become one fourth 3. be halved
	4. also be. doubled
For the liquid phase zero order irreversible	1.
reaction A B, the conversion of A in a CSTR is found to be 0.3 at a space velocity of 0.1min	0.15
¹ . What will be the conversion for a PFR	2.
with a space velocity of 0.2 min ⁻¹ ? Assume that all the other operating conditions are	0.30
the same for CSTR and PFR.	3.
	0.60
	4.
	0.90
In Langmuir treatment of adsorption,	1.
	whole surface of the catalyst does not have the same activity for adsorption and there is attraction between the adsorbed molecule.
	2.
	whole surface of the catalyst is essentially uniform and the adsorbed molecule has no effect on the rate of adsorption per site.
	<u> </u>

	3.
	all the adsorption does not take place by the same mechanism.
	4.
	extent of adsorption is more than one complete monomolecular layer on the surface.
A particle A of diameter 10 microns settles in	1. same as that of A.
an oil of specific gravity 0.9 and viscosity 10 poise under Stoke's law. A particle B with	2
diameter 20 microns settling in the same oil	2.
will have a settling velocity	one fourth as that of A.
	3. twice as that of A
	4.
	four times as that of A.
	iour times as that of A.
A centrifugal pump is used to pump water	1.
through a horizontal distance of 150 m, and then raised to an overhead tank 10 m above.	10 m
The pipe is smooth with an I.D of 50 mm.	
What head (m of water) must the pump	2.
generate at its exit (E) to deliver water at a	11 m
flow rate of 0.001 m ³ /s? The Fanning friction	3.
factor, f is 0.0062.	
	20 m
	4.
	22 m
Foot valves are provided in the suction line	1.
of a centrifugal pump to	
	avoid priming, every time we start the pump.
	2.
	remove the contaminant present in the liquid.
	3.

	minimise the fluctuation in discharge.
	4.
	control the liquid discharge.
	1.
fuel does not contribute to its calorific value.	sulphur
	2.
	oxygen
	3.
	hydrogen
	4.
	carbon
moisture content to the critical moisture content of 15%. How much longer it will take to dry the solid to 10% moisture content,	
equilibrium moisture content of the solid is 5%).	94 min
In extractive distillation, solvent is	1.
	added to alter the relative volatility of the mixture.
	2.
	of high volatility.
	3. present in overhead stream.
	4.
	of high viscosity to give high tray efficiency.

Which of the following is the most commonly used leaching solvent in vegetable oil industry?	Phenol 2.
	hexane
	3. Furfurol
	4.
	Liquid SO ₂
Mechanism of moisture removal in case of freeze drying of food stuff is by	1. evaporation
	2.
	dehydration
	3.
	adsorption
	4.
	sublimation
	1.
screen has a diameter of 0.074 mm (74 micron). The same passing through 50 mesh	0.007
	2.
	0.03
	3. 50
	4.
	0.014
Three material A, B and C of equal thick-nes	1. 70
and of thermal conductivity of 20, 40 & 60 kcal/hr. m. °C respectively are joined	
together. The temperature outside of A and C are 30°C and 100°C respectively. The	2. 90

interface between B and C will be at a	
temperature of°C.	
	2.50
	3. 60
	_
	4.
	50
The equation, $(N_{St} \times N^{2/3}_{Pr}) = f/2$, is the	1. Colburn
analogy.	
	2.
	Reynolds
	ixeyriolus
	3. Prandtl
	4.
	Reynolds Transport
	·
	1. increase
used for condensing saturated steam over	
the inner tube, if the entrance and exit conditions of the coolant are interchanged,	2. decrease
than the rate of condensation will	
then the rate of condensation will	3.
	remain unchanged
	4.
	either increase or decrease; depends on the coolant flow rate

The thermal boundary layer at $N_{Pr} > 1$	1.
	is thicker than hydrodynamic boundary layer.
	is thicker than hydrodynamic boundary layer.
	2.
	is thinner than hydrodynamic boundary layer.
	3.
	and the hydrodynamic boundary layer are identical.
	4.
	disappears.
The units of resistance to heat transfer is	1.
	J.m-2.K-1
	2.
	J.m ₋₁ .K ₋₁
	3.
	W.m-2.K-1
	4.
	W-1m2K
	1.
shell and tube heat exchanger for clean surfaces is $U_0 = 400 \text{ W/m}^2$.K. The fouling	1200W/m².K
factor after one year of operation is found to	2.
be h_{d0} = 2000 W/m ² .K. The overall heat transfer co-efficient at this time is	894 W/m².K
	3.
	333 W/m².K
	4.
	287 W/m².K

ratio of the actual mesh dimension of any	1. 1
	2.
	1.41
	3.
	1.71
	4.
	2
bv	1.
	slow compression
	2. cutting
	3.
	attrition
	4.
	impact
In which type of impeller used in liquid agitation, the flow is coaxial?	1. Turbine
	2.
	Propeller
	3. Paddle
	4.
	SMX

Power number is proportional to the ratio of 1.		
	drag force acting on a unit area of impeller to the inertial stress	
	2.	
	gravity force acting on a unit area of impeller to the inertial stress	
	3.	
	the inertial stress to the gravitational force per unit area acting on the fluid	
	4.	
	Inertial force to viscous force	
Identify the group in which all the polymers	1.	
mentioned can be used to make fibers	Butadiene copolymers, Polyamides, Urea aldehydes	
	2.	
	Cellulose derivatives, Polyisoprene, Polyethylene	
	3.	
	Cellulose derivatives, Polyamides, Polyurethanes	
	4.	
	Polypropylenes, Polyvinyl-chloride, Silicones	

Which of the following is a detergent ?	1.
	Benzene hexachloride
	2.
	Cellulose nitrate
	3.
	Polyvinyl chloride
	4.
	Alkyl benzene sulfonate
Butyl rubber is a copolymer of –	1.
	1-butene with a small amount of isobutene,
	2.
	isobutene with a small amount of 2methylbutadiene (isoprene)
	3.
	butadiene with a small amount of propylene,
	4.
	1-butene with a small amount of butadiene,
What is Vinegar?	1.
	dilute solution of acetic acid
	2.
	double distilled alcohol
	3.
	food grade phosphoric acid
	4.
	5% saline solution

Raw materials for the production of urea are	1.
_	carbon dioxide and sodium chloride,
	2.
	carbon dioxide and ammonia,
	3.
	ammonia and carbon disulfide
	4.
	Sodium chloride, ammonia and carbon disulfide
	1.
commercial sample of bleaching powder is	15 to 17 %,
	2.
	35 to 37 %,
	3.
	53 to 56 %,
	4.
	69 to 71.5%
Which of the following is an important reinforcing agent for various elastomers?	1. sodium sulfate,
	2.
	barium carbonate
	3. sodium sesquisilicate,
	4.
	carbon black

1.
perfluorinated polymers with occasional sulfonate and/or
carboxylate groups,
2.
nylon 6, 6,
3. polyvinyl acetate,
S. polyviny: decide,
4.
high density polyethylene,
1. Sucrose
2. Starch
3. Glucose
4.
Fructose
1. 2 litres
2.
2 litres per hour
3. 2 h ⁻¹
4.
4 litres per hour
1. 80.38

	2. 80
	3.
	79.62
	4.
	78.51
An aqueous solution of 2.45% by weight	1.
H ₂ SO ₄ has a specific gravity of 1.011. The composition expressed in normality is	0.2528
	2.
	0.2000
	3.
	0.500
	4.
	0.5055
Cavitation will not occur if the sum of the	1.
velocity and pressure heads at the suction is	much larger than the vapour pressure of the liquid
	2. zero
	3.
	much smaller than the vapour pressure of the liquid
	4.
	equal to the vapour pressure of the liquid.
At the stagnation point,	1. pressure is zero
At the stagnation point,	1. pressure is zero
	2.
	velocity is zero
	3.

	both pressure and velocity is zero
	4.
	neither pressure non velocity is zero
The pressure within the soap bubble is	1.
	Less than the external pressure
	2. greater than the external pressure
	3.
	Equal to the external pressure
	4.
	Equal to the vapour pressure at the prevailing temperature
Rain drops fall from a great height under	1.
gravity. Select the only correct statement from the following?	Their velocity go on increasing until they hit the earth with the same velocity
	2.
	Their velocity go on increasing until they hit the earth with the same velocity, but final velocities of different drops are different.
	3.
	They fall with a terminal velocity which is the same for every drop
	4.
	They fall with terminal velocities which are different for drops of different size.
The crushing energy required to create new	1.
surface is given by	Ficks' law
	2.
	Rittingers's law
	3.

	Fouriers's law
	4.
	Kopp's law
For transportation of grain, asphalt, crushed	1.
coal, ashes, gravel and sand to a short distance we may use a	Screw conveyor
,	2.
	Ribbon conveyor
	3.
	Flight conveyor
	4.
	Slat conveyor
	1.
	3
	2.
	4
	3.
	5
	4.
	6
data structure used in pushdown automata.	1. Stack
	2. array
	3.
	queue
	4.
	linked list

Where in an HTML document is the correct	1. In the section
place to refer to an external style sheet?	2. In the section
	3. At the end of the document
	4. At the top of the document
Pick the odd one out.	1.[] 2.() <mark>3.::</mark> 4.~
class n{ public: int a;}	1. error
obj; obj.a=10; cout << a; <obj.a;< p="" style="box-sizing:</td><td>2. 10</td></tr><tr><td>border-box;"></obj.a;<>	3. 1
	4. 0
Which of the regular expressions given below represent the following DFA?	1. I and II only
l) 0*1(1+00*1)*	2. I and III only
	3. II and III only
II) 0*1*1+11*0*1	4. 1,11,111
III) (0+1)*1	
Consider the DFAs M and N given above. The	2 <mark>1. 0</mark>
number of states in a minimal DFA that	2. 1
accepts the language L(M) ∩ L(N) is	
·	3. 2
	4. 3
I	ı

What is data encryption standard (DES)?	1. block cipher
, , ,	
	2. stream cipher
	3. bit cipher
	4. none of the mentioned
The physical layer concerns with	1 <mark>. bit-by-bit delivery</mark>
	2. process to process delivery
	3. application to application delivery
	4. Hop by hop delivery
The maximum window size for data	1.
transmission using the selective reject	
protocol with n-bit frame sequence numbers	2^n
is:	2. 2^(n-1)
	3. 2 ⁿ – 1
	4.
	2^(n-2)
ElGamal encryption system is:	symmetric key encryption algorithm
	2. asymmetric key encryption algorithm
	3. not an encryption algorithm
	B. Hot an encryption algorithm
	4. none of the mentioned
Network operating system that does not	1.Banyan (VINES) 2.Microsoft NT advanced server 3.SCO Unix
support symmetric multi-processing (SMP)	4.Novell Network 3.X
is	

The topology with highest reliability is	1.ring topology 2.star topology 3.bus topology 4.mesh topology
In which topology, if there are n devices in a network, each device has n-1 ports for cables?	1.Mesh 2.Star 3.Ring 4.Bus
Frames of 1000 bits are sent over a 10^6 bps duplex link between two hosts. The propagation time is 25ms. Frames are to be transmitted into this link to maximally pack them in transit (within the link). What is the minimum number of bits, i will be required to represent the sequence numbers distinctly? Assume that no time gap needs to be given between transmission of two frames.	
Station A needs to send a message consisting of 9 packets to Station B using a sliding window (window size 3) and gobacknerror control strategy. All packets are ready and immediately available for transmission. If every 5th packet that A transmits gets lost (but no acks from B ever get lost), then what is the number of packets that A will transmit for sending the message to B?	1. 12 2. 14 3. 16 4. 18
Suppose the round trip propagation delay for a 10 Mbps Ethernet having 48-bit jamming signal is 46.4 micro sec. The minimum frame size is:	1. 94 2. 416 3. 464 4.512

In a network of LANs connected by bridges, packets are sent from one LAN to another through intermediate bridges. Since more than one path may exist between two LANs, packets may have to be routed through multiple bridges. Why is the spanning tree algorithm used for bridgerouting?	 For shortest path routing between LANs For avoiding loops in the routing paths For fault tolerance For minimizing collisions
Which one of the following is an internet standard protocol for managing devices on IP network?	 dynamic host configuration protocol simple network management protocol internet message access protocol media gateway protocol
In wireless distribution system	1. multiple access point are inter-connected with each other 2. there is no access point 3. only one access point exists 4. none of the mentioned
What is WPA?	2. wired protected access 3. wired process access 4. wi-fi process access
int main() {	

```
1. x=100,y=200
  int x,y;
                                            2. x=200,y=200
                                            3. ERROR
x=(100,200)
                                            4. x=200,y=100
y=100,200;
     printf("x=%d,y=%d",x,y);
   return 0;
Find the output
It would be ideal if all of computer science
                                            1. False
theories can be used in software
                                                    True
engineering.
                                            3.
                                                    4.
                                            1.Inorder successor of the root 2.
Consider the following:
                                            Maximum element in the right subtree of root
temp=root->left; while(temp->right!=NULL) 3. Minimum element in the right subtree of root
temp=temp->right;
                      return temp;
                                            4. Inorder predecessor of the root
  The above code snippet for a BST with the
address of the root node in pointer 'root'
returns
```

Let G be a weighted connected undirected	1. P Only
graph with distinct positive edge weights.If	-
every edge weight is increased by the same	2. Q Only
value, then which of the following	3. Neither P nor Q
statements is/are TRUE ? P: Minimum	4. Both P and Q
spanning tree of G does not change. Q:	
Shortest path between any pair of vertices	
does not change	
Which multiple access technique is used by	1. CDMA
IEEE 802.11 standard for wireless LAN?	0.00044 (0.4
	2. CSMA/CA
	3. ALOHA
	4. CSMA/CD
	1. 1000
to be joined with another table S with 10000	2. 10000
records. What is the maximum number of	3. 1,00,00,000
records that would result in if we join R with	4 44000
	4. 11000
primary key?	
The maximum number of superkeys for the relation schema	1. 7
	2.8
R(E,F,G,H) with E as the key is	
	3. 9
	4. 6
The best index for exact match query is	1. Bucket Hash
	2. Quad tree
	3. B Tree
	4. B+ Tree

The use of traceability tables helps to	1. debug programs following the detection of run-time errors
	2. determine the performance of algorithm implementations
	3. identify, control, and track requirements changes
	4.Analyze design changes
	1. Ends with the delivery of the software product
	2. Is not more chaotic than the incremental model
	3.Do not Include project risks evaluation during each iteration 4.Includes feasibility risks
The spiral model of software development	
	Are not iterative in nature
	2. Can easily accommodate product requirements changes
Evolutionary software	Can easily accommodate product requirements changes Generally produce throwaway systems
Evolutionary software process models	
	3. Generally produce throwaway systems 4. Are not specific to applications
process models	3. Generally produce throwaway systems 4. Are not specific to applications
process models An activity is said to be critical if slack time is	3. Generally produce throwaway systems 4. Are not specific to applications 1. 0
process models An activity is said to be critical if slack time is	 3. Generally produce throwaway systems 4. Are not specific to applications 1. 0 2. 1
process models An activity is said to be critical if slack time is	 3. Generally produce throwaway systems 4. Are not specific to applications 1. 0 2. 1 3. 2 4. 3
An activity is said to be critical if slack time is equal to	 3. Generally produce throwaway systems 4. Are not specific to applications 1. 0 2. 1 3. 2 4. 3
An activity is said to be critical if slack time is equal to The preorder traversal sequence of a binary search tree is 30, 20, 10, 15, 25, 23, 39, 35, 42. Which one of the following is the	 Generally produce throwaway systems Are not specific to applications 0 1 2 3 4 3 1 10,20,15,23,25,35,42,39,30

Assessment that the second sec	A D. C. alaka a sala aka Kalla a akka Da sala a sala aka	
	1.Derived class constructor followed by Base class constructor.	
for both base class and derived class. Now	2.Base class constructor followed by derived class constructor.	
consider the declaration in main(). Base * P	3.Base class constructor will not be called. 4.Derived class	
= New Derived; in what sequence will the	constructor will not be called.	
constructor be called ?		
Which of these is asymptotically bigger?	1. 79n²+43n	
	<mark>2. 65n³+34n</mark>	
	3. 6*2 ⁿ	
	4. 5*2n	
If a, b, c, are three nodes connected in	1. a->next=c	
sequence in a singly linked list, find the valid	2 h a manta a	
statement that may help to change this list	2.b->next=c	
to a circular linked list?	3. a->next=c	
	4. c->next=b	
class n{ public: int a=7;}p,q; cout<< n.a; <a;<< td=""><td>1. 0</td></a;<<>	1. 0	
p="" style="box-sizing: border-box;">	2. <mark>error</mark>	
	3. depends on compiler	
	4. 7	
By default, any real number in C is treated as	1. a float	
	2. a double	
	3. a long double	
	4. depends on the memory model	

With a single resource, deadlock occurs	1. if there are more than two processes competing for that resource	
	2. if there are only two process completing for that resource	
	3. if there is a single process competing for that resource	
	4. it never occur in this case	
Consider the following javascript code	1. 1	
snippet : var a = [];	2. [4,5]	
a.unshift(1);	3. [3,4,5]	
a.unshift(22);	4 Evention	
a.shift();	4. Exception	
a.unshift(3,[4,5]);		
a.shift();		
a.shift();		
a.shift();		
The final output for the shift() is		

```
Consider the following C program.
                                                1. 434
#include <stdio.h>
                                                <mark>2. 230</mark>
in
                                                3. 43
                                                4. 432
(v
oi
d
oi
int main ()
int x=1;
x+=f1()+
f2()+f3()+
f2();
printf("%
d", x);
return 0;
int f1(){int x=25; x++;
return x;} int f2(){static
int x =50; x++;return
x;} int f3(){x*=10;
return x};
The output of the program is____
```

```
1. 31
Consider the following C
code segment: int a, b, c =
                                                41
0; void prtFun(void);
                                                42
main()
{ static int a =
                                                2. 42
1; /* Line 1 */
                                                61
prtFun(); a +
                                                61
= 1; prtFun( )
                                                3. 42
printf("\n %d %d", a, b);
                                                62
void prtFun(void)
                                                20
{ static int a=2;
                                                <mark>4. 42</mark>
/* Line 2 */ int
b=1; a+=++b;
                                                <mark>42</mark>
printf("\n %d %d", a, b);
                                                <mark>20</mark>
What output will be generated by the given
code segment if:
Line 1 is replaced by auto int a = 1;
Line 2 is replaced by register int a = 2;
Consider the following code
snippet function oddsums(n)
```

```
let total = 0,
                                             1. Returns [1,4,9,16,25]
result=[];
           for(let x
                                            2. Returns [1,2,3,4,5]
= 1; x <= n; x++)
                                            3. Returns [3,6,9,12,15]
                                            4. Returns [1,3,5,7,9]
  {
    let odd =
2*x-1;
total += odd;
result.push(tot
al);
  }
   return result;
What would be the output if
oddsums(5);
An incorrectly typed command will cause
                                            1. a prompt
the operating system to display
                                            2. an error message
                                            3. a question mark
                                            4. causes exception
```

Round Robin scheduling is the strategy of	1. After the CPU time slice expires	
temporarily suspending a running process	2. to allow starving processes to run	
	3. when it requests IO	
	4. when OS wait	
Which one of the following statements is	1. A cookie is a piece of code that has the potential to	
NOT correct about HTTP cookies?	compromise the security of an internet user	
	2. A cookie gains entry to the user's work area through an HTTP header	
	3. A cookie has an expiry date and time	
	4. Cookies can be used to track the browsing pattern of a user at a particular site	

```
Find the output of the following program?
                                           1. 62010206
                                            2. 72010107
#include
<iostrea
                                            3.71020106
m.h>
                                           4. 10720107
using
namesp
ace std;
typedef
int *
IntPtr;
int
main()
In
tΡ
tr
В,
in
D,
Ε;
A = new int(3);
B = new int(6);
C = new int(9);
D = 10;
E = 20;
*A = *B;
B = \&E;
D = (*B)++;
*C=
(*A)++ *
(*B)--;
E= *C++
- *B--;
cout<<*A<<*B<<*C<<d<e;
return 0;
}</d<<e;
```

```
Find the output of the following program?
                                                3332
#include <iostream.h>
                                               3233
                                        2.
using namespace std;
                                        3. 3.3232
void myFunction(int& x, int* y,
int* z) { static int temp=1;
                                        4.3133
temp += (temp +
temp) - 1; x +=
*(y++ + *z)+ temp -
++temp;
*z= x;
cout<<x<*y<<*z<<temp;<x<<*y<<*z<<tem
```

```
int j[] = {0, 1, 2, 3,
4, 5, 6, 7, 8, 9};
i=i++ - ++i;
myFunction(i, j,
&i); return 0;
</x<<*y<<*z<<temp;
```

	T	
Choose the correct HTML to left-align the	1. <tdleft></tdleft>	
content inside a table cell	2.	
	3.	
	4.	
Which of these is Server side technology?	1. CGI	
	2. HTML	
	3. JavaScript	
	4. CSS	
Which of the following is included in the head section of	1. title,body,form and script	
HTML	2. title,meta tag,script and CSS	
	3. title , meta tag,css and form	
	5. title , meta tag,css and form	
	4.	
	title, body,script and CSS	

```
#include
                                             1. 10012,12100
< stdio.h
                                             2. 0,0
> int
                                             3. Error
main()
                                             4.
                                             10012,10012
  typedef struct
    int empid;
    int bsal;
  }EMP;
  EMP E={10012,15100};
printf("%d,%d",E.empid,E.bsal);
  return 0;
Find the output
#include < stdio.h >
                                             1. var=100
                                             2. var=Al
int main()
                                             3. ar=0
  typedef
                                             <mark>4. Error</mark>
auto int
AI; AI
var=100;
printf("va
r=%d",var
```

```
return 0;
Find the output
#include
                                              1. 11, 11 2. 10, 11
int main()
                                              <mark>3. Error</mark>
  char ch=10; void *ptr=&ch;
                                              4.
printf("%d,%d",*(char*)ptr,++(*(
                                              10, 10
char*)ptr)); return 0;
Find the output
#include <stdio.h>
```

```
1. 2004
int main()
                                          <mark>2. 2001</mark>
{ void *ptr;
                                          3. 2000
++ptr;
                                          4. ERROR
printf("%u",ptr);
return 0;
Find the output
#include < stdio.h > int
                                          1. Error
main()
                                          2. 10,10,10,10
                                          3. 10,20,30,40
  typedef int AAA,BBB,CCC,DDD;
                                          4. AAA,BBB,CCC,DDD
AAA aaa=10;
BBB
     bbb=20;
CCC ccc=30; DDD ddd=40;
printf("%d,%d,%d,%d",aaa,bbb,ccc,ddd);
  return 0;
Find the output
```

```
#include < stdio.h > int
                                        1. myName=ABCDEFG(size=7)
main()
                                         2. Error
                                         3. myName=ABCDEFG(size=4)
                                         4. myName=ABCDEFG(size=8)
 typedef char* string;
  string myName="ABCDEFG";
  printf("myName=%s
(size=%d)",myName,sizeof(myName));
  return 0;
Find the output
#in
clu
de
voi
fun
(int
*pt
  *ptr=100;
```

}	1.
int main()	100,100
{	2. 50,50
int num=50;	3. 50,100
int *pp=#	3. 30,100
fun(& *pp);	4.
printf("%d,%d	Error in function calling
",num,*pp);	
return 0;	
}	
Find the output	
<u>.</u>	1.
	5
<mark>n</mark>	<mark>2.</mark>
c	<mark>5.0</mark>
	<mark>3.</mark>
<mark>u</mark>	ERROR
d	<mark>4.</mark>
e	No output
n	
t	
<mark>m</mark>	
a	

```
int a=10,b=2;
*pa=&a,*pb=&b;
printf("value =
%d", *pa/*pb);
  return 0;
                                           1. Error
Find the output
                                           2. IncludeHelp
#include <stdio.h>
int main()
                                            3. I
                                           4. *1
  char
*str="IncludeHel
p";
printf("%c\n",*&
*str); return 0;
Find the output
#include <stdio.h>
```

```
1.
int main()
                                             Complie time error
                                             <mark>2. 10</mark>
  int
                                             3.
anyVar=10
                                             Run Time error
printf("%d
                                             No output
",10);
return 0;
extern int anyVar;
Find the output
#includ
                                             1.
                                             ERROR
<stdio.
                                             2.
h> int
                                             200...200 3.
main()
                                             100...100
  int var=100;
    int var=200;
```

```
printf("%d...",var);
                                                <mark>4. 200...100</mark>
  }
printf("%d"
,var);
return 0;
Find the output
#include <stdio.h>
#define MAX 99
int main()
                                                99...0
                                                2.
printf("%d...",
                                                99...99
MAX);
                                               <mark>3. Error</mark>
#undef MAX
                                                4.
printf("%d",MA
                                                MAX...MAX
X);
  return 0;
Find the output
#include
```

```
1. sum=30
#define SUM(x,y) int s; s=x+y;
                                          2.
                                                  10,20
printf("sum=%d\n",s); int main()
                                          3.
                                                  Error
                                          4.
                                          sum=0
SUM(1
0,20);
return
0;
Find the output
#include
<stdio.h>
char*
strFun(voi
d)
  char *str="IncludeHelp";
```

```
1.
                                                    str value= Garbage value
  return str;
                                                    str value = IncludeHelp
int main()
                                            3.
                                                    Error
{ char *x;
x=strFun();
printf("str
                                            No output
value =
%s",x);
return 0;
Find the output
#include <stdio.h>
                                            1. VAR2+10
#define VAR1 VAR2+10
                                            2. VAR1+20
#define VAR2 VAR1+20
                                            <mark>3. Error</mark>
                                            4. 10
int main()
printf("%d",V
AR1);
return 0;
Find the output
```

```
#include
                                          1. BBBBB
int main()
                                          2. CCCCC
                                          3. BBB
  char *str
                                          4. Error
[]={"AAAAA","BBBBB","CCCCC","DDDDD"};
 char **sptr
[]={str+3,str+2,str+1,str}; char
***pp;
  pp=sptr;
++pp;
printf("%s",
**++pp+2);
return 0;
Find the output
#include <stdio.h>
#define TEXT
                                          1. IncludeHelp
IncludeHelp
                                          2. TEXT
int main()
                                          3. Error
                                          4. TEXT IncludeHelp
printf("%s",T
EXT);
return 0;
```

}	
Find the output	
Register is a 	1.Set of capacitor used to register input instructions in a digital computer 2.Set of paper tapes and cards put in a file 3. Temporary storage unit within the CPU having dedicated or general purpose use 4.Part of the auxiliary memory
#include <stdio.h></stdio.h>	1. 1122
#define OFF 0 #if debug == OFF int a=11; #endif	2. Error 3. 1111 4. 2222
int main() { int	
b=22;	
printf("%	
d%d",a,	
b); return 0;	
}	
Find the output	

```
#include <stdio.h>
                                             1. a=10,b=20,largest=20
#define LARGEST(x,y)
                                             2. a=11,b=21,largest=20
(x>=y)?x:y int main()
                                             3. a=11,b=21,largest=21
                                             4. a=11,b=22,largest=21
  int a=10,b=20,l=0;
I=LARGEST(a++,b++);
printf("a=%d,b=%d,largest=
%d",a,b,l); return 0;
                                             1. Error
Find the output
                                             2. 10...10
#include <stdio.h>
#define
                                             3. 20...20
FUN(x,y)
                                             <mark>4. 10...20</mark>
x##y int
main()
int a1=10,a2=20;
printf("%d...%d",FUN(a,1),FU
N(a,2)); return 0;
Find the output
```

```
#includ
                                            1. Error
                                            2. value =50,size= 4 value =65,size= 4
<stdio.
                                            3. value =50,size= 4 value =65,size= 1
h> int
                                            4. Garbage value
main()
  int iVal;
char cVal;
void *ptr; //
void pointer
iVal=50;
cVal=65;
  ptr=&iVal; printf("value =%d,size=
%d\n",*(int*)ptr,sizeof(ptr));
  ptr=&cVal; printf("value =%d,size=
%d\n",*(char*)ptr,sizeof(ptr)); return 0;
```

```
1. 2
Find the output
                                            <mark>2. 12864</mark>
#include
                                            3. 40
#define FUN(x) x*x
int main()
                                            4. 1
int val=0;
val=128/FUN
(8);
printf("val=%
d",val);
return 0;
Find the output
#include <stdio.h>
#define MAX 100
                                            1. Error
int main()
                                            2. MAx=100...
                                            3. MAx=20...
#define MAX 20
                                            4. MAX=10020
printf("MAX=%d...
",MAX); return 0;
Find the output
```

#include int fooo(void) { static int num=0;	1. step1: 1 step2: 1 step3: 1
num++; return num; } int main() { int val; val=fooo(); printf("step1: %d\n",val); val=fooo(); printf("step2: %d\n",val);	2. step1: 1 step2: 2 step3: 3
	3. step1: 0 step2: 0 step3: 0
<pre>val=fooo(); printf("step3: %d\n",val); return 0; }</pre>	
0,]	
Find the output	

#include <stdio.h></stdio.h>	1. Start debuggingIncludeHelp
int main()	2. IncludeHelp
{	3. Error
#ifdef debug	
printf("Start	4.
debugging");	debug
#endif	
printf("Includ	
eHelp");	
return 0;	
}	
Find the output	
If you don't want the frame windows to be	1. save
resizeable, simply add what to the lines?	2. dontresize
	3. noresize
	4. Delete

```
#include
                                            1. ERROR
<stdio.h>
                                            2. Hello,Hello
char*
                                            3. Hello, Garbage
fun1(void)
                                            4. Garbage, Hello
  char
str[]="Hello";
return str;
char* fun2(void)
  char
*str="Hello";
return str;
int main()
printf("%s,%s",fun1(),fu
n2()); return 0;
Find the output
```

```
#includ
                                               1. 10,10
                                               2. 10,0
<stdio.
                                               3. 0,10
h> int
                                               <mark>4. Error</mark>
main()
  union test
              int j;
{ int i;
 };
  union test var=10;
printf("%d,%d\n",var.i,var.j);
Find the output
```

```
#includ
                                           1. Name: Mike, Age: 26
                                           2. Name: Garbage, Age: Garbage
<stdio.
                                           3. Name: Null, Age: 26
h> int
                                           4. Error
main()
  struct std
    char
name[30
int age;
  };
  struct std
s1={"Mike",26};
struct std s2=s1;
  printf("Name: %s, Age:
%d\n",s2.name,s2.age);
Find the output
```

```
#include <stdio.h>
                                              1. ERROR
int main()
                                              2. IHelp, 10
                                              3. IHelp, 0
  typedef struct tag{
                                              <mark>4. Ihelp, 10</mark>
char
str[1
0];
int a;
  }har;
  har
h1,h2={"IHelp",
10}; h1=h2;
h1.str[1]='h';
printf("%s,%d",
h1.str,h1.a);
return 0;
Find the output
```

```
#inclu
                                             1. A,B,0
de
                                             2. A,B,16961
<stdio.
                                             3. B,B,66
h> int
                                             4. A,A,65
main()
  union values
  {
int
intVa
char
chrV
al[2];
  };
  union values val;
val.chrVal[0]='A';
val.chrVal[1]='B';
printf("\n%c,%c,%d",val.chrVal[0],val.chrVal[
1],val.intVal)
  return 0;
```

```
#incl
                                           1. ld: 3, Age: 24, Name: Mike 2.
ude
                                           Id: 3, Age: 23, Name: Mike
<stdi
o.h>
                                           3. Id: 3, Age: 30, Name: AAA
stru
                                           4. Error
ct
emp
loye
e{
int
emp
ld;
char
*na
me;
  int age;
int main()
  struct employee emp []={ {1,"Mike",24},
{2,"AAA",24}, {3,"BBB",25}, {4,"CCC",30} };
  printf("Id: %d, Age: %d, Name: %s",
emp[2].empId,3[emp].age,(*(emp+1)).name
  return 0;
Find the output
#include <stdio.h>
```

```
1. 0
struct sample
                                               <mark>2. 100</mark>
                                               3. ERROR
                                               4. arning
}sample;
int main()
  sample.a=100;
printf("%d",sample.a);
  return 0;
Find the output
```

```
#include <stdio.h>
                                          1. Mike Thomas
#include < string.h >
                                          2. Mike Mike
                                          3. ThomasThomas
struct student
                                          4. ThomasMike
  char name[20];
}std;
char * fun(struct student *tempStd)
  strcpy(tempStd-
>name,"Thomas"); return
tempStd->name;
int main()
  strcpy(std.name,"Mike ");
printf("%s%s",std.name,fun(&std));
  return 0;
Find the output
#include <stdio.h>
                                          1.
```

int main()	12, 12	
{	2. 1	2, 0
struct sample{	3. E	Error
	<mark>4. 12, 4</mark>	
i		
n		
t		
a		
;		
i		

n	
t	
b	
;	
sample *s;	
}t;	
printf("%d,%d",sizeof(sample),sizeof	
(t.s)); return 0;	
}	
Find the output	
Find the output	
#include	
<stdio.h></stdio.h>	
struct	
sample	
k	

	1. Error
İ	2.0,A,10.5
n	3. 0,A,10.500000
t	
a	4. No Error, No Output
=	
0	
,	
С	
h	
a	
r	
b	
=	
A	
;	
†	
0	
a	
c _	
1	
0	
•	

```
int main()
  struct sample s;
printf("%d,%c,%f",s.a,s.
b,s.c); return 0;
#include <stdio.h>
                                               1. 50...5011...50
#includ
                                               <mark>2. 11...50</mark>
                                               3. 11...11
<string.
                                               4. 50...11
h> int
main()
  char str[50]="IncludeHelp";
printf("%d...%d",strlen(str),sizeof
(str)); return 0;
Find the output
```

```
#includ
                                           1. Inclu
<stdio.h
                                           2. IncluGARBAGE_VALUE
                                           3. Error
#includ
                                           4. IncludeHelp
<string.
h> int
main()
  char
s1[]="IncludeHel
p"; char s2[10];
strncpy(s2,s1,5); printf("%s",s2); return
Find the output
#includ
                                           \0IncludeHelpTRUE
<stdio.
                                           2.
h> int
                                           \0IncludeHelpFALSE
main()
                                           3.
  char result,str[]="\0IncludeHelp";
result=printf("%s",str);
```

```
Error
if(result
                                               <mark>4. FALSE</mark>
printf("
TRUE");
else
printf("
FALSE");
return
0;
Find the output
#include <stdio.h>
                                               1.
                                                       value is = %d
int main()
                                                       value is = %c
                                               2.
 char
                                               3. value is = 55
str[]="value is
                                               4. value is = 7
=%d"; int
a='7';
str[11]='c';
printf(str,a);
return 0;
Find the output
```

```
#includ
                                            1. HelloFriends HelloFriends
                                            2. Hello%s%dFriends Hello%s%dFriends
<stdio.
                                            3. Hello(null)0Friends
h> int
                                            Hello%s%dFriends
                                            4. Garbage value
main()
  char str[]="Hello%s%dFriends";
printf(str);
printf("\n"
printf("%s
",str);
return 0;
Find the output
#include <stdio.h>
                                            1. IncludeHelp.Com
#include <string.h> int main()
                                            2. udeHelp
                                            3. Error
 char str1[]="IncludeHelp",str2[]=".Com";
                                            4. IncludeHelp4
printf("%s",str1+strlen(str2)); return 0;
Find the output
```

A mailer that transforms a message body of 1. Browser enriched mail client	
an e-mail into a web page is called a	
	2. HTML-enabled mail client
	3. Rich Text mail client
	4. client server mail client

```
#include <stdio.h> int main()
                                           1. 44,44,300
                                           2. 1,2,300
  union values
                                           3. 2,2,300
                                           4. 256,256,300
    unsigned char a;
                           unsigned
char b;
          unsigned int c;
  };
unio
value
s val;
val.a
=1;
val.b
=2;
val.c
=300
printf("%d,%d,%d",val.a,val.b,
val.c); return 0;
Find the output
```

#include <stdio.h></stdio.h>	
int main()	1.
{	IncludeHelp
ahar	
	2. IncludeH
str[8]="Includ	3. Error
eHelp";	
printf("%s",str	4.
); return 0;	No output
3	
J	
Find the output	
#include <stdio.h<< td=""><td>1. Hello</td></stdio.h<<>	1. Hello
#include <string.h></string.h>	2 Fare
	2. Error
int main()	3. NULL
ι	4. NO OUTPUT
char	
str[]; strcpy(
str,"He	
llo");	
,,	
printf("%s	
",str);	
return 0;	
}	
Find the output	
Find the output #includ	
e	
<stdio.h< td=""><td></td></stdio.h<>	

```
#includ
<string.
h> int
main()
                                               <mark>3. -1</mark>
                                               Error
  char str[]="IncludeHelp.Com";
val=strcmp(str,"include
help.com");
printf("%d",val);
return 0;
Find the output
```

```
Function templates can accept
                                            1. Only parameters of the basic type
                                            2. Only one parameter
                                            3. Any type of parameters
                                            4. Only parameters of the derived type
#includ
                                             1.12345
                                            2.
<stdio.
                                             10
                                                     20 30 40 50 3.
h> int
                                                    22 33 44 55
main()
                                            4. Error
{ int
a[5]={1,2,3,4,5},b[5]={10,20,30,40,50},tally;
  for(tally=0;tally< 5;++tally)
    *(a+tally)=*(tally+a)+ *(b+tally);
  for(tally=0;tally<
5;tally++)
printf("%d ",*(a+tally));
  return 0;
Find the output
```

```
#inclu

de

<stdio

.h> int

main()

{ static int array[]={10,20,30,40,50};

printf("%d...%d",*array,*(array+3)* *array);

return 0;
}

Find the output
```

```
#inclu
                                                  1. Error
de
                                                 2. A,A,A
<stdio
                                                 B,B,B
.h> int
                                                 C,C,C
main()
                                                 D,D,D
{ static int x[]={'A','B','C','D','E'},tally;
                                                 E,E,E
for(tally=0;tally< sizeof(x)/sizeof(int);</pre>
                                                 <mark>3. B,B,B</mark>
tally+=1)
                                                 C,C,C
printf("%c,%c,%c\n",*(x+tally)+1,x[tally
                                                 D,D,D
]+1,*(tally+x)+1)
                                                 E,E,E
                                                 F,F,F
                                                 4. E,E,E
  return 0;
                                                 D,D,D
                                                 C,C,C
Find the output
                                                 B,B,B
                                                 A,A,A
class A { int a; static float b; }; What is the
                                                 1. sizeof( int ) * 2
size of class A?
                                                 2. sizeof( int ) + sizeof( float )
                                                 3. sizeof( int )
                                                 4. sizeof( float )
#include <stdio.h>
```

```
#define MAX 10
                                           1. Error
int main()
                                           2.134567891011
       int array[MAX]={1,2,3},tally;
                                           3.1230000000
for(tally=0;tally<
                                            4.0000000000
sizeof(array)/sizeof(int);tally+=1)
printf("%d ",*(tally+array));
                              return
0;
Find the output
Which of the following is shared between all 1. Register values
of the threads in a process? Assume a kernel

2. File descriptors
level thread implementation
                                           3. Scheduler priority
                                           4. Local variables
#include <stdio.h>
int main()
                                           1. size of array is = 20
                                           2. size of array is = 40
  int MAX=10; int
                                           3. size of array is = 4
array[MAX]; printf("size of
                                           4. Error
array is = %d",sizeof(array);
return 0;
Find the output
#includ
                                            1.01000
                                           2.02000
<stdio.
```

```
h> int
                                         3.00200
main()
                                         4.00000
static
int
var[5];
int
count=
0;
  var[++count]=++count;
for(count=0;count<5;count++)
    printf("%d ",var[count]);
  return 0;
Find the output
```

```
#incl
                                            1. Hello
ude
                                                                      Hello Hello Hello ... (infinite
                                           times)
<stdi
o.h>
                                           3. Hello (10 times)
#def
                                           4. Hello (11 times)
ine
TRU
E 1
int
mai
n()
                  while(printf("Hello ") &&
  int loop=10;
loop--);
Find the output
#include <stdio.h> void main()
```

```
1. After loop cnt= 1
  int cnt=1;
                                          2. 1, After loop cnt= 2
  while(cnt>=10)
                                          3. After loop cnt= 2
  {
                                          4. 11
    printf("%d,",cnt);
                      cnt+=1;
  }
  printf("\nAfter loop cnt=%d",cnt);
printf("\n");
Find the output
#include <stdio.h> void main()
                                          ABCDE
                                          ABCDE
  int i,j,charVal='A';
                                          ABCDE
                                          ABCDE
  for(i=5;i>=1;i--)
                                          ABCDE
  {
    for(j=0;j< i;j++)
                            printf("%c
",(charVal+j));
                                          ABCD
                                          ABCD
```

```
printf("\n");
                                             ABCDABCD
  }
                                             3.
                                             ABCD
                                             АВС
Identify the output
                                             ΑВ
                                             <mark>A B C D E</mark>
                                             <mark>A B C D</mark>
                                             A B C
                                             A B
#include <stdio.h> void
                                             1. #0#1#2#3#4#5#6###
main()
                                             2. #0#1#2#3#4#5#6#7#8#9#10
                                             3. #0#1#2#3#4#5##7#8#9#10
  int tally;
                                             4. #0#1#2#3#4#5#
for(tally=0;tally<10;++tally)
    printf("#");
if(tally>6)
continue;
printf("%d",tally);
  }
Find the output
```

```
Find the output
                                        1.012345678910
                                        2. 1 2 3 ... infinte times
#include <
                                         3.2345678910
stdio.h > int
                                         4.123456789
main()
 int
tally=0;
for(;;)
 {
if(tally==10)
break;
   printf("%d ",++tally);
 }
  return 0;
#include
<stdio.h> void
main()
```

```
1. Error
  int
                                           2. 12345includehelp.com
i=1;
while
                                           3. 1234includehelp.com
(i<=5)
                                           4. 1includehelp.com 2includehelp.com
                                           3includehelp.com 4includehelp.com
  {
                                           5includehelp.com
   printf("%d",i);
    if
(i==5)
goto print;
i++;
  }
fun()
  printf("includehelp.com");
Find the output
#include <stdio.h>
```

```
1. 1 2 ... infinity
void main()
                                              2. 2 2 ... 127
                                              3. 0
char cnt=0; for(;cnt++;printf("%d",cnt));
                                              4. 1
printf("%d",cnt);
Find the output
Consider the below code fragment:
                                              1.u = x + 10 and v = y
if(fork k() = = 0)
                                               2. u = x + 10 and v! = y
a = a+5; printf("%d, %d \n", a, &a);
                                               3. u + 10 = x and v = y
                                              4.u + 10= x and v != y
else
a= a ? 5;
printf("%d %d \n", 0, &a);
Let u, v be the values printed by parent
process and x, y be the values printed by
child process. Which one of the following is
true?
#include < stdio.h > void main()
                                              1. 0 1 2 ... 255
                                              2. 255
{ unsigned char var=0;
                                              3. 256
for(var=0;var<=255;var++);
                                              4. blank screen as output
    printf("%d ",var);
  }
Find the output
```

```
Which of the following is valid reason for
                                             1. Do not allows developers to make changes to the delivered
                                             increment
collecting customer feedback concerning
delivered software?
                                             2. Delivery schedule can be revised to reflect changes
                                             3. Developers can not identify changes to incorporate into next
                                             increment
                                             4.Delivery schedule can't be revised to reflect changes
                                             1. A 0 0 0 0 0 0 0 0 0
#include <stdio.h>
int main()
                                             2. A
                                             3. A 32 32 32 32 32 32 32 32 32
  char
                                             4. Error
X[10]={'A'},i;
for(i=0; i<10;
i++)
printf("%d
",X[i]); return
0;
Find the output
```

```
#include
                                           1. Case-2
<stdio.h>
                                           2. Error: case expression not constant
void main()
                                           3. Message
                                           Case-2
                                           4. Case-2
                                           Case-3
                                           Exit from switch
  int b=a;
  switch(b)
    case a:
      printf("Case-a\n"); break;
                                      case
3:
      printf("Case-3\n"); break;
default:
      printf("No option\n"); break;
  }
  printf("Exit from switch");
Find the output
```

```
#include <stdio.h> void main(){
                                           1. Case NULL
                                           2. Case ZERO
  int a=1;
  switch(a/2)
                                           3. Case DEFAULT
  {
                                           <mark>4. Error</mark>
    case NULL: printf("Case NULL\n");
                 case 0:
      break;
printf("Case ZERO\n");
                            break;
              printf("DEFAULT\n");
default:
break;
 }
Find the output
#include <stdio.h> void main()
```

```
1. Case-2
  int a=2; switch(a)
  {
                                             Message
    printf("Message\n");
                                             3.
    default:
                                             Message
      printf("Default\n");
                               case 2:
                                             Case-2
      printf("Case-2\n");
                               case 3:
                                              Case-2
      printf("Case-3\n");
                                              Case-3
  }
                                             Exit from switch
  printf("Exit from switch\n");
Find the output
                                             1. Garbage
#include <stdio.h>
                                             <mark>2. B</mark>
int main()
                                             3. Error
                                             4. Null
  char *text="Hi Babs.";
  char x=(char)(text[3]);
  printf("%c\n",x);
  return 0;
Find the output
```

```
#include <stdio.h>
int main()

{

Char *text="Hi Babs.";

char x=(char)(text+3);

printf("%c\n",x);

return 0;

}

I. Garbage

2. B

3. Error

4. Null

Find the output
```

```
#include <stdio.h>
                                            <mark>1. 0</mark>
void main(){     static int staticVar;
                                             2. 1
 int j;
                                             3. 2
  for(j=0;j<=5;j+=2) switch(j){
                                            4. Error
                                     case
1: staticVar++;
                            break;
   case 2:
staticVar+
=2;
case 4:
staticVar%
=2;
     j=-1;
continue;
default:
staticVar;
continue;
  }
  printf("%d",staticVar);
Find the output
```

```
Find the output
                                            1.
                                                    Error
#include <stdio.h>
                                                    65
                                            2.
int main()
                                            3. A
{ int x=65;
                                            4. NULL
const unsigned
char c=(int)x;
  printf("%c\n",c);
  return 0;
Find the output:
                                            1. Error
                                            2. 101,
#include <stdio.h>
int main()
                                            Value is = 103
                                            3. d ue is = 100
  int a=100;
                                            4. 100
printf("%d\n"+1,a
                                            100
); printf("Value
is = %d"+3,a);
return 0;
```

```
What will be the output?
                                            1. Declaration Error
#includ
                                            2. value of ok = 1000
                                            3.
                                                    value of ok = 0
<stdio.
h> int
main()
                                            Linking Error
  extern int ok;
printf("value of
ok = %d",ok);
return 0;
  extern int ok=1000;
Find the output:
                                                    23
#includ
                                                    Error
<stdio.
                                            3.
                                                    ;23;
h> int
                                            4. ;23
main()
  int a=23;
  ;printf("%d",a);
  return 0;
```

```
#include <stdio.h>
                                              1. Error
                                              2. 2.3,2
int main()
                                              3. 2.3000000,2
  int x=2.3; const char c1=(float)x; const \frac{4.2,2}{}
char c2=(int)x;
  printf("%d,%d\n",c1,c2);
  return 0;
Find the output
#include <stdio.h>
                                                      24, 24
int main()
                                                      24, 0
                                              3. Error: Illegal Initialization
  int intVar=24; static int x=intVar;
                                              4. Run time error
printf("%d,%d",intVar,x); return 0;
Find the output of this program, (program
name is:
static_ec.c)
```

```
#include <stdio.h> void main()
                                                     2 nd
                                                     22 nd
  short day=2; switch(day)
                                             3. Error
                                             4. 2 nd
    case 2: || case 22:
                                             22 nd
      printf("%d nd",day);
                               break;
              printf("%d th",day);
default:
break;
  }
Find the output
#include <stdio.h>
                                             1. 1, 0.8, 0.75
                                            2.0, 0.7, 0.75
int main()
                                             3. 0, 0.8, 0.75
  float a,b; a=3.0f; b=4.0f;
                                             4. Error: Invalid format Specifier
printf("%.0f,%.1f,%.2f",a/b,a/b,a/b);
return 0;
Find the output.
```

```
#include <stdio.h> void main()
                                           1. One...
                                           2. Two...
{ int a=2;
                                           3. Other...
  switch(a/2*1.5)
                                           <mark>4. Error</mark>
 {
    case 1:
     printf("One...");
break; case 2:
printf("Two..."); break;
default: printf("Other...");
break;
 }
Find the output
#include <stdio.h>
                                           1. 1.234
int main()
                                           2. 1.234000
{ int a=15; float b=1.234;
                                           3.
                                                  1.234000
printf("%*f",a,b); return 0;
                                           4. Error
Predict the output?
```

```
PREDICT THE OUTPUT: #include
                                           1.Value is =1250
<stdio.h> void main()
                                           2. Value is =80
                                           3. Value is =125
                                           4. Error
  int a=10,b=2,x=0; x=a+b*a+10/2*a;
  printf("value is =%d",x);
#includ
<stdio.
h> int
main()
  for(i=0; i< 5; i++)
```

```
1. 01Help 11Help 21Help 31Help 41Help
{
if(i*i >
30)
                                           OIHelp 1IHelp 2IHelp 4IHelp
goto
                                           3. 1lHelp
lbl;
                                           4.
else
                                           Error
printf(
"%d",i)
   lbl:
    printf("IHelp ");
  }
  return 0;
Find the output
#includ
                                                   10
                                           2. 10L
<stdio.
                                           3. 10L10
h> int
                                           4. Error
main()
```

T	
int	
int a=1	
0;	
0; if(1	
OL	
==	
a)	
prin tf("	
tf("	
10L	
");	
else	
if(1 0==	
a)	
prin	
tf("	
10")	
· ;	
els	
е	
pri	
ntf(
"0"	
);	
ret	
urn	
0;	
}	
Find the output.	

```
#includ
                                             1.00 01 02 03 04 2.
                                             04 03 02 01 00
<stdio.
                                             <mark>3. 04 03 02 01</mark> 4.
h> int
                                             01 02 03 04
main()
{ int a[5]={0x00,0x01,0x02,0x03,0x04},i;
hil
e(
a[i
    printf("%02d ",*a+i);
    --i;
  }
  return 0;
Find the output
```

```
#include <stdio.h>
                                          1. c = 12 2.
                                          c = 10
int main()
                                          3. c = 2
                                          4.c = 0
int
a=10
int
b=2;
int
c=(a & b);
printf("c= %d",c);
       return 0;
Find the output.
```

```
#include <stdio.h>
                                            1. I have purchased ...:
                                            2. I have purchased ...: Mobile, Lappy
                                            3. I have purchased ...: Mobile,
#define MOBILE 0x01
#define LAPPY 0x02
                                            4. I have purchased ...:Lappy
int main()
       unsigned char item=0x00;
       item
        |=MOBILE;
       item
        |=LAPPY;
       printf("I have purchased
       ...:"); if(item & MOBILE){
               printf("Mobile, ");
       }
       if(item & LAPPY){
               printf("Lappy");
       }
       return 1;
#include <stdio.h>
```

	1.	13
int main()	2.	d
{	-	ŭ
char flag=0x0f;	3.	22
	4.	
flag &= ~0x02;	10	
printf("%d",flag);		
return 0;		
}		
Predict the Output.		
#includ		
е		
<stdio.< td=""><td></td><td></td></stdio.<>		
h> int		
main()		
{		
- n		
t		
a		
=		
0		
;		

```
if(a==10)
                                            1. Hello...
  {
                                            2. Hello...OK
                                            3. OK...
printf("H
                                            4. Error
ello...");
break;
printf("O
k");
  }
  else
  {
   printf("Hii");
  }
  return 0;
Find the output.
Find the output: #include
                                            1. B
<stdio.h> void main()
                                            2. A
                                            3. ERROR
                                            4. 66
  const char var='A';
  ++var; printf("%c",var);
#include <stdio.h> int main()
```

```
int pn=100; if(pn>20)
                                              1. No output
if(pn<20)
                                              2. Hiiiii
printf("Heyyyyy"); else
                                              3. Неууууу
printf("Hiiiii"); return 0;
                                              4. HeyyyyyHiiiii
Find the output.
#include <stdio.h> int main()
                                              1. Condition is True
                                              2. Condition is False
                                              3. No output
  if( (-100 && 100)||(20 && -20))
                                              4. Error
printf("%s","Condition is true.");
  else
    printf("%s","Condition is
false."); return 0;
Find the output
#include
<stdio.h>
#define
TRUE 1
int main()
if(T
                                              <mark>2. Error</mark>
RU
                                              3.
E)
pri
```

pri ntf("2" "3); els e pri ntf("3" "3; pri ntf("4" "5); ret turn 0; }	ntf(4.
pri ntf("2"); els e pri ntf("3"); pri ntf("4"); ret urn 0;	"1"	12
pri ntf("2"); els e pri ntf("3"); pri ntf("4"); ret urn 0;);	
"2"); els e pri ntf("3"); pri ntf("4"); ret urn 0;	pri	
	ntf(
els e pri nntf("3"); pri nntf("4"); ret urn 0; }	"2"	
e pri ntf("3"); pri ntf("4"); ret urn 0; });	
pri ntf("3"); pri ntf("4"); ret urn 0; } Find the output.	els	
ntf("3"); pri ntf("4"); ret urn 0; }	е	
"3"); pri intf("4"); ret urn 0; } Find the output.	pri	
pri ntf("4"); ret urn 0; } Find the output.	ntf(
pri ntf("4"); ret urn 0; } Find the output.	"3"	
ntf("4"); ret urn 0; } Find the output.);	
"4"); ret urn 0; } Find the output.	pri	
ret urn 0; Find the output.	ntf(
ret urn 0; Find the output.	"4"	
urn 0; Find the output.);	
O; Find the output.	ret	
Find the output.	urn	
	0;	
	}	
	Find the output.	
#IIICIUUE \Stulo.II>	#include <stdio.h></stdio.h>	

```
1. Value of intVar=23, x=21
void main(){ int intVar=20,x;
                                            2. Value of intVar=23, x=23
x= ++intVar,intVar++,++intVar;
                                            3. Value of intVar=21, x=21
printf("Value of intVar=%d,
                                            4.ERROR
x=%d",intVar,x);
} Find the output
FIND THE OUTPUT:
                                            1. 44
#include <stdio.h> void main()
                                                   45
                                                    46
  int x=10; x+=(x++)+(++x)+x;
                                            4. 47
printf("%d",x);
#include <stdio.h> void main(){
                                            1.34
unsigned char c=290;
                                            2. 290
printf("%d",c);
                                            3. Garbage value
                                            4. Error
Find the output
#include <stdio.h> void main(){
                                            1. 2
                                            2. 1
  int a=0;
                                            3. 0
  a=5||2|1; printf("%d",a);
                                            4. 8
Find the output.
```

```
#include <stdio.h> int main()
                                            1. value of var = 250 includehelp.com
                                            2. value of var = 250
  int var=250; printf("value of var =
                                            includehelp
%d\n",var);
                                            3. Error
  200+50;
                                            4. value of var = 250
  "includehelp.com";
                                            Garbage
printf("%s\n","includeh
elp"); return 0;
Find the output
#include <stdio.h>
int main()
                                            1. ERROR
{ int var; var=- -
                                            2. value of var= -10 value of var= 10 3.
10; printf("value
                                            value of var= 10 value of var= 10
of var= %d\n",var);
                                            4. value of var= 10 value of var= 11
var=+ +10;
printf("value of var=
%d\n",var); return
0;
Find the output
#include <stdio.h>
```

```
int main()
                                          1.00121
                                          2.00132
  int i=-1,j=-1,k=0,l=2,m;
                                           3.00131
m=i++&&j++&&k++||I+
                                          4.0 1 1 3 1
+; printf("%d %d %d
%d %d",i,j,k,l,m);
  return 0;
Find the output
#include <stdio.h> int main(){
                                          1. x=100 x=100
                                          2. x=100 x=50
  int x;
                                          3. x=50 x=50
  x=100,30,50; printf("x=%d\n",x);
                                          4. x=50 x=100
x=(100,30,50); printf("x=%d\n",x);
return 0;
Find the output
#include <stdio.h>
```

```
1. Hello
#define TRUE 1
int main()
                                            2. ERROR
                                            3. No output
  switch(TRUE)
                                            4. Garbage
    printf("Hello");
  }
Find the output
#include <stdio.h> void main()
                                            1. One
                                            <mark>2. Two</mark>
                                            3. Else
  short a=2; switch(a)
                                            4. Error
                   printf("One\n");
    case 1L:
break;
           case 2L:
printf("Two\n");
                      break;
              printf("Else\n");
default:
break;
 }
Find the output
```

```
#include <stdio.h> int main(){
                                            1. value of a=10
  float a; (int)a= 10; printf("value of
                                            2. value of a=10.000000
a=%d",a); return 0;
                                            3. value of a=0
                                            4. L-Value required
Find the output
#include <stdio.h> int main(){
                                            1. -5 2. -6
char val=250; int ans;
                                            3.
  ans= val+ !val + ~val + ++val;
printf("%d",ans); return 0;
                                            4.
Find the output.
What is the output? #include
                                            1. 1,2 2. 3,2 3. 0,0 4.
<stdio.h> void main()
                                            2,3
  int a=3,b=2; a=a==b==0;
printf("%d,%d",a,b);
#include <stdio.h>
```

```
1.
void main()
                                           AABB1
{ int x;
                                           AABB1
  x= (printf("AA")||printf("BB"));
                                           2.
printf("%d",x); printf("\n");
                                           3.
  x= (printf("AA")&&printf("BB"));
                                           AABB1
printf("%d",x);
                                           AA1
                                           AA1
Find the output
                                           AABB1
Find the output: #include
                                           1. x= 60 2. x= 70
<stdio.h> void main()
                                           x= 0 4. x= 1
  int x=(20 || 40 ) && (10);
  printf("x= %d",x);
Find the output:
#include <stdio.h>
                                           ERROR: can not modify var.
void main()
                                           2. ERROR: L-Value required
                                           3. 12
  char var=10; printf("var is =
%d",++var++);
                                           ERROR: Expression syntax
#include <stdio.h>
```

```
void main()
                                             <mark>var : E, 69</mark> 2.
  unsigned short var='B';
                                             var : E, 68
var+=2; var++; printf("var:
                                             3.
%c , %d ", var,var);
                                             var : D, 69 4.
                                             var : D, 68
Find the output
#include <stdio.h> int
                                             1.
main(){
                                             Addition is = 202.
  int a,b,c;
                                             Addition is = 24
  a=0x10; b=010; c=a+b;
                                             3.
printf("\nAddition is= %d",c);
                                             Addition is = Garbage
return 0;
                                             4.
                                             Error
Find the output.
#include <stdio.h>
enum numbers
```

```
1. 0, 1, 2, 3, 3, 4, 5, 0, 1
                                              2. 0, 1, 2,3,3,1,2,3,4
  zero, one, two, three,
four=3,five,six,seven=0,eight
                                              3. 0,1,2,3,3,1,2,3,4
                                              4. 0, 1, 2, 3, 3, 4, 5, 0, 9
void main()
intf("%d,%d,%d,%d,%d,%d,%d,%d,%d",zero,
one,two,th ree,four,five,six,seven,eight);
} What will be the output.
                                              1.
The number of tokens in the following C
statement is
                                              2.
                                                      10
                                              3.
                                                      26
printf("i = %d, &i = %x", i, &i);
                                              21
```

```
#includ
<stdio.
                                                   <mark>2. -100</mark>
h> int
                                                   3.
main()
                                                   100
                                                   4. Error
  int ok=-100;
  -100;
printf("%
d",ok);
  return 0;
Find the output.
#incl
                                                   1.
ude
                                                   4, 4, 4
<stdi
                                                   1, 4
o.h>
                                                   2.
int
                                                   4, 4, 8
mai
                                                   1, 1
n(){
                                                   3.
float
                                                   4, 4, 4
a=12
                                                   1, 1
5.50
                                                   <mark>4, 4, 8</mark>
int
                                                   <mark>1, 4</mark>
b=1
25.5
```

0;	
char	
c='A'	
j;	
printf("%d,%d,%d\n",sizeof(a),sizeof(b),size	
of(125.50));	
printf("%d,%d\n",sizeof(c),sizeof(65));	
return 0;	
1	
}	
What will be the output on a 32 bit	
compiler.	
Replacement algorithm	1. Replace the page that will not be used for a longest period of time
	2. Replace the page that will not be used for a shortest period of
	time
	3. Replace the page that will be used for a longest period of time
	4. Replace the page that will be used for a shortest period of time
In which mode FTP, the client initiates both the control and data connections.	1. active mode
and control and data connections.	

	2. passive mode
	3. active mode and passive mode
	3. active mode and passive mode
	4.
	none of the mentioned
Which of the following special symbol is allowed in a variable name?	1 (underscore)
allowed in a variable name?	2 (hyphen)
	3. (pipeline)
	4. * (asterisk)
	1.2451 2.4950 3.9900 <mark>4.4851</mark>
nodes. The maximum number of edges to be	
included is	
The minimum number of arithmetic	
operations required to evaluate the polynomial P(X) = X^5 + 4X^3 +	162938 <mark>47</mark>
$6^{A}X + 5$ for a given value of X using only one	1.0 2.9 3.8 4.7
temporary variable is.	
The stage delays in a 4-stage pipeline are 800, 500, 400 and	1. 33
	2. 34
800 picoseconds) is replaced with a	2. 34
functionally equivalent design involving two	3. 35
stages with respective delays 600 and 350	J. 33
picoseconds. The throughput increase of the	4.
priperine is percent.	
	32

Adding 1001 and 0010 gives	1.
	<mark>1011</mark>
	2.
	1111
	3.
	0
	4.
	1010
	1. infrastructure mode
work in	2. ad-hoc mode
	3. both infrastructure and ad-hoc mode
	4. none
Multiple object can be sent over a TCP	1. persistent HTTP
connection between client and server in	2. nonpersistent HTTP
	3. both persistent HTTP and nonpersistent HTTP
	4. p-persistent HTTP

	h
	architecture, interface, component
	2. cost, risk, schedule
	3. Information, function, behavior
	4. NONE
What are the three Analysis models that depict software?	
Software prototyping helps to	1. generate code
	2. provide thorough testing
	3. explore possible software solutions
	4. collect initial software requirements
What is the most common approach for the	1. Incremental development
development of application system now?	2. Agile
	3. Waterfall
	4. None of the options
The design process related to data	1. Architectural design
structures and their representation is	2. Interface design
	3. Component design
	4. Database design
The commont assumbles Ciclosed if	
The segment number S is legal if	1.
	S < STBR 2.
	S > STBR

	3. S < STLR 4.
	S > STLR
Which of the following is example of in-place algorithm?	 Bubble Sort Merge Sort Insertion Sort 4.
Which one of the following is not correct?	application layer protocols are used by both source and destination devices during a communication session application layer protocols implemented on the source and destination host must match both the options
In 8086 microprocessor the following has the highest priority among all type interrupts	4. 1.TYPE 255 2.DIV 0 <mark>3.NMI</mark> 4.OVER FLOW
Assume that a mergesort algorithm in the worst case takes 30 seconds for an input of size 64. Which of the following most closely approximates the maximum input size of a problem that can be solved in 6 minutes?	1.256 2.2048 3.1024 <mark>4.512</mark>
A primary key, if combined with a foreign key creates	1.Many to many relationships between the tables that connect them2.Network model between the tables connect them 3.one to many relationship between the tables that connect them 4.Parent child relationship between the tables that connect them

In wireless network an extended service set	1. connected basic service sets
is a set of	
	2.
	all stations
	3.
	all access points
	4.
	all nodes
In binary heap, whenever the root is	1.To make sure that it is still complete binary tree 2.It is the
removed then the rightmost element of last	easiest possible way 3.Because left and right subtree might be
level is replaced by the root.	missing4.maximum value is contained by the root node
Why?	
Which of the following algorithm is	1.Dijiktra's algorithm 2.AVL Tree algorithm
Minimum Spanning Tree in graph	3.Kruskal's algorithm4.Merge algorithm
If X->Y and X->Z then	1. Y->Z
	2. Z->Y
	3. X->YZ
	4.
	Doesn't hold
If x> y then y> x. This statement is	1. True
ii x> y then y> x. This statement is	1. True
	2.
	False

	3.
	Can't Say
	4.
	Doesn't hold
Given the functional dependencies, {AB ->	1. is a key for R
CDE and A -> E}, for relation schema R = (A,B,C,D,E) we can infer the following:	2. BE is a key for R
	3. AB is a key for R
	4. is a key for R
What kind of schema it is?	1.Relaional
Student(sid, sname, dob, address, pincode)	2.Logical Schema
	3.Conceptual Schema
	4.External View
Which one of the following is currently the	1.Network Model
most popular data model?	2.Object Model 3.Notation Model
	4.Relational Model
Updating a database means	1.deleting database 2.modifying or adding record
	occurrences 3.revising the file structure 4.reorganizing the
	database
In Ethernet when Manchester encoding is	1. Half the baud rate.
used, the bit rate is:	2. Twice the baud rate.
	3. Same as the baud rate.
	4. Grows exponentially
In interactive environments such as time-	Shortest Remaining Time Next (SRTN) Scheduling
sharing systems, the primary requirement is	Priorities Based Preemptive Scheduling
to provide reasonably good response time	·
and in general, to share system resources	3. Round Robin Scheduling
equitably. In such situations, the scheduling algorithm that is most popularly applied is	4. First Come First Serve
<u> </u>	ı

A computer has a 256 KByte, 4-way set associative, write back data cache with block size of 32 Bytes. The processor sends 32 bit addresses to the cache controller. Each cache tag directory entry contains, in addition to address tag, 2 valid bits, 1 modified bit and 1 replacement bit. The size	1. 11 2. 14 3. 27
of the cache tag directory is	<mark>4. 16</mark>
programs automatically	1. Web Servers
connects to web sites and download documents and save them to local drive	2. Web Downloading Utilities
	3. Stay Connected
	4. Offline Browsers
What is the purpose of \$_SESSION[]?	1. Used to register a global variable
	2. Used to initialize a session
	3. Used to store variables of the current session
	4. Used to initialize a cookie
What is the correct way to connect to a	1 .mysqli_db(host,username,password,dbna me);
MySQL database?	2 .mysqli_connect(host,username,password
	,dbname);
	3 .mysqli_open(host,username,password,db name);
	4. mysqli_connect(,,)
What does parseFloat(9+10) evaluates to in JavaScript?	1.19 2.910 3.9109 4.91
	1.Error Page 2.Remains in the same page 3.about:blank 4.Open
open() is omitted?	the first page in the history
Which of the following can't be done with	1.Validating a form 2.Sending a form's contents by email
client-side JavaScript?	3.Storing the form's contents to a database file on the server
	4.Testing the form
In javascript, RegExp Object Method test() is	1.true or false 2.found value 3.index
used to search a string and returns	4.Matched or not matched
1	

Let G be the CFG, I be the number of left	1. I=P=r
most derivations, r be the number of right	
most derivations and P be the number of	2. I<=P>=r
parse trees. Assume I , r and P are computed	
for a particular string. For a given CFG 'G'	3. l>=P<=r
and given string 'w', what is the relation	
between I , P , r ?	4. I<=P<=r
A value that has no defined value is	1.undef 2.null 3.Cant Define 4.There is no such concept in PHP
expressed in PHP with the following	
keyword:	
The Document object is which part of the	1.Tree 2.System <mark>3.Window</mark> 4.Screen
object?	
#include <stdio.h> void main()</stdio.h>	1. Hello
{	
int a=10; switch(a){ case	2. OK
5+5:	3. Hello
	ок
printf("Hello\n"); default:	4. Error
printf("OK\n");	
}	
}	
Find the output	
·	

#include <iostream.h> using namespace std;</iostream.h>	d; <mark>1. </mark>
int main()	
{	2. 10
int x=20; if(!(!x)&&x)	
cout< <x; else<="" td=""><td>3.</td></x;>	3.
{	1
x=10; cout< <x; 0;<="" return="" td=""><td></td></x;>	
} <td>4.</td>	4.
	0
<td></td>	
}	
The recognizing capabilities of NDFSM and	1. may be different
DFSM	
	2. must be different
	3. must be same
	4. none of the mentioned
Pre-emptive scheduling is the strategy of	1. before the CPU time slice expires
temporarily suspending a running process	
	to allow starving processes to run
	3. when it requests IO
	S. When it requests to
	4. None of mentioned

Software Specification is the process	1. you decide what software you will use to program
where	2. you develop a prototype and show it to the client
	3. You find out what services are required from the system
	4. none
What is an advantage of incremental delivery?	everything is coded at once, so the customer receives the full product
	replacement systems are easily developed with full features that clients expected from the old system
	3. Customers can use prototypes and gain experience that informs their requirements for later systems
	4. none of the mentioned
Manager salary details are hidden from the employee. This is	1.Conceptual level data hiding 2.Physical level data hiding 3.External level data hiding 4.None of mentioned
SELECT last_name, SYSDATE-hire_date	Displays number of days an employee has worked in the
FROM employees;	company.
	Displays number of months an employee has worked in the company.
	3. Error
	4. None of the mentioned
The number of states in DFA is the	1. Greater then
number of states in NFA for the same Language.	2. equal to
	3. less then
	4. greater then or equal to
The access method used for magnetic tape	1. Direct
is	2. Random
	3. Sequential
	4. None of these

The language that the computer can	1. Machine language
understand and execute is called	2. Application software
	3. System program
	4. None of these
Syntax for creating a RegExp object: (i). var txt=new RegExp(pattern,modifiers); (ii). var txt=/pattern/modifiers; Which of the above mentioned syntax is correct?	1.(i) only 2.(ii) only <mark>3.Both (i) and (ii)</mark> 4 .None of these
A tree sturctured file directory system	1. allows easy storage and retrieval of file names
	2. is not essential when we have millions of files3. is a much debated unnecessary feature4. none of these
Information retrieval is faster from	Floppy disk Magnetic tape
	3. Hard disk 4. CD
A Winchester disk is a	1. Disk stack
	2. Removable disk
	3. Flexible disk
	4. None of these
for	1. giving programming versatility to the user by providing facilities as pointers to memory counters for loop control
	2. to reduce no. of bits in the field of instruction
	3. specifying rules for modifying or
	interpreting address field of the instruction
	4. All of these

The idea of cache memory is based	1. on the property of locality of reference
	2. on the heuristic 90-10 rule
	3. on the fact that references generally tend to cluster
	4. all of these
'Aging registers' are	1. Counters which indicate how long ago their associated pages have been referenced.
	2. Registers which keep track of when the program was last accessed
	3. Counters to keep track of last accessed instruction
	4. Counters to keep track of the latest data structures referred
Virtual memory is the portion of	1. RAM
	2. Cache Memory
	3. Hard Disc4. None of these
	4. INolle of these
•	•