1 Introduzione

L'obiettivo di questo progetto è calcolare l'energia dello stato fondamentale di un sistema di ⁴He in un potenziale esterno armonico con il metodo di Monte Carlo Variazionale. L'operatore hamiltoniano che descrive il sistema è dunque

$$H = -\frac{\hbar^2}{2m} \sum_{i=1}^{N} \nabla_i^2 + \frac{1}{2} \omega^2 \sum_{i=1}^{N} r_i^2 + \sum_{i < j} V(r_{ij}) \quad \text{con} \quad V(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right],$$

che è il potenziale di Lennard-Jones classico. Per usare unità di Å per le lunghezze e K per le energie, nel caso dell'elio si hanno

$$\varepsilon = 10.22 \text{ K}, \quad \sigma = 2.556 \text{ Å}, \quad \frac{\hbar^2}{2m} = 6.0596 \text{ Å}^2 \text{ K}.$$

Sia $\Psi_{\alpha}(\mathbf{R}) = \langle \mathbf{R} | \Psi_{\alpha} \rangle$ una funzione d'onda parametrica per il sistema, in cui $\mathbf{R} = (\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N)$ e α è il set di parametri liberi. Il metodo variazionale permette di affermare che

$$\min_{\alpha} E_{\alpha} = \min_{\alpha} \frac{\langle \Psi_{\alpha} | H | \Psi_{\alpha} \rangle}{\langle \Psi_{\alpha} | \Psi_{\alpha} \rangle} \ge E_0$$

ed E_{α} si può valutare con una simulazione Monte Carlo usando $P(\mathbf{R}) = |\Psi_{\alpha}(\mathbf{R})|^2$, mentre gli osservabili si calcoleranno con

$$O_{\alpha} = \frac{1}{M} \sum_{k=1}^{M} \frac{O\Psi_{\alpha}(\mathbf{R}_k)}{\Psi_{\alpha}(\mathbf{R}_k)}.$$

La scelta intrapresa per la funzione d'onda, con $\alpha = (\alpha, \beta_1, \beta_2)$, è

$$\Psi_{\alpha}(\mathbf{R}) = \exp\left(-\frac{1}{2\alpha} \sum_{i=1}^{N} r_i^2 - \frac{1}{2} \sum_{i < j} u_{\beta}(r_{ij})\right) \quad \text{con} \quad u_{\beta}(r) = \left(\frac{\beta_1}{r}\right)^{\beta_2}.$$

1.1 Energia cinetica

Per la forma della funzione d'onda usata, conviene calcolare il contributo della particella i-esima all'energia cinetica nel seguente modo:

$$T_i = -\frac{\hbar^2}{2m} \left(\nabla_i^2 \log \Psi + (\nabla_i \log \Psi)^2 \right),\,$$

che in funzione di $u_{\beta}(r)$ e delle sue derivate prima e seconda diventa

$$T_{i} = \frac{\hbar^{2}}{2m} \left[\frac{3}{\alpha} + \frac{1}{2} \sum_{j \neq i} u_{\beta}''(r_{ij}) + \sum_{j \neq i} \frac{u_{\beta}'(r_{ij})}{r_{ij}} - \frac{1}{\alpha^{2}} r_{i}^{2} - \frac{1}{\alpha} \sum_{j \neq i} u_{\beta}'(r_{ij}) \mathbf{r}_{i} \cdot \hat{\mathbf{r}}_{ij} - \frac{1}{4} \left(\sum_{j \neq i} u_{\beta}'(r_{ij}) \hat{\mathbf{r}}_{ij} \right)^{2} \right]$$