

Prof. Dr. Alexander Struck Prof. Dr. Matthias Krauledat

Numerical Mathematics

9) Interpolation polynomials

Consider the function

$$f(x) = \ln(x) - \frac{2(x-1)}{x}$$

- a) Make a sketch of the function.
- **b**) Find the Newton interpolation polynomial for $x_0 = 1$, $x_1 = 2$, and $x_2 = 4$.
- c) Find the Lagrange interpolation polynomial using the same nodes as in a).
- **d**) Add another node at $x_3 = 8$. How does the Newton polynomial change?
- e) Calculate absolute and relative errors at x = 2.9 and x = 5.25 for all three polynomials.

10) Numerical differentiation

Consider the function

$$f(x) = x e^x + \cos(x^2)$$

- a) Find an approximation depending only on the nodes for $f^{(2)}(x)$, using the formula derived in lecture 10.
- **b)** Formulate $f^{(2)}(x)$ using $x_i = i\frac{\pi}{2}, i = 0, 1, ..., 2$.
- c) Calculate absolute and relative errors at x = 1 and x = 2.

