Virtual Private Overlays: Secure Group Communication over Decentralized Public Overlays in NAT-Constrained Environments

David Isaac Wolinsky and Renato Figueiredo Advanced Computing Information Systems Lab University of Florida

Abstract-Structured P2P overlays provide a framework for building distributed applications that are self-configuring, scalable, and resilient to node failures. Such systems have been successfully adopted in large-scale Internet services such as content delivery networks and file sharing; however, widespread adoption in small/medium scales has been limited due in part to security concerns and difficulty bootstrapping in NAT-constrained environments. Nonetheless, P2P systems can be designed to provide guaranteed look-up times, NAT traversal, point-to-point overlay security, and a distributed data store. In this paper we propose a novel way of creating overlays that are both secure and private and can be bootstraped from a public overlay. Private overlay nodes use the public overlay's distributed data store to discover each other, and the public overlay's connections to assist with NAT hole punching and as relays providing STUN and TURN NAT traversal techniques. The security framework utilizes groups, which are created and managed by users through a web interface that can be hosted on the Internet or the public overlay. Each group acts as a Public Key Infrastructure (PKI) relying on the use of a centrally-managed web site providing an automated Certificate Authority (CA). We present a reference implementation providing a P2P VPN (Virtual Private Network). Additionally, we evaluate our contributions using both the P2P VPN in the PlanetLab wide-area testbed as well as with eventdriven simulations of the overlay using simulated time delays.

I. INTRODUCTION

While Structured P2P overlays provide a scalable, resilient, and self-managing platform for distributed applications, their adoption rate has been slow outside data distribution services such as BitTorrent and eDonkey. General use of structured P2P systems, especially in applications targeting home and small/medium businesses (SMBs), has been limited in large part due to the difficult nature of securing such systems to the level required by these users. Applications in home and SMBs may need a greater level of trust than what can be guaranteed by anonymous contributors in free-to-join overlays, but these users lack the resources for bootstrapping private P2P overlays particularly in constrained wide-area network environments where a significant amount of or all peers are behind Network Address Translation devices (NAT). This paper presents a novel approach that enables virtual private overlays to be created and managed by members of small/medium groups, leveraging public overlays for bootstrapping, NAT traversal and relaying.

There are many different P2P applications used in home and small business, primarily for collaboration and sharing, including data storage, media sharing, chat, and system maintenance and monitoring. Applications that currently provide these functionalities fall into two categories: anonymous, fully decentralized free-to-join P2P systems and distributed systems with P2P communcation that rely on a third party to provide discovery and management. While using a third party service provides a desirable level of trust for many users, it has significant drawbacks such as vendor lock-in, which may result in lost data, down time, and scalability constraints.

An example of a useful small business application that falls into the latter category is LogMeIn's [1] software products LogMeIn Pro and Hamachi. LogMeIn Pro allows users to remotely manage and connect with their machines so long as they are willing to use LogMeIn's software and infrastructure. Hamachi allows users to establish decentralized VPN links using centralized session management. Both applications assist in the remote maintenance and monitoring of computers without requiring the user to implement the networking infrastructure provided by LogMeIn.

Some examples of P2P applications for homes and small businesses in development are P2PSIP and P2Pns. P2PSIP enables users to initiate, through decentralized means, visual and audio communication, while P2Pns allows users to deploy a decentralized naming service. Both applications allow users to contribute and benefit from all members of the system without the regulation of a third party, but lack the ability to allow users to centrally secure and manage their own subset of the systems.

Distributed data store applications like Dynamo [2] and BigTable [3] have the ability to store data using a completely decentralized system. Though these systems are highly scalable and fault tolerant, the software uses an untrusted overlay. Therefore all instances need to run in a secure environment, whether that be in a single institution or across a largely distributed environment using a VPN.

In this paper, we describe the architecture of a system that attempts to balance the benefits of third party services with P2P infrastructures. Two main contributions of this paper are the architecture of a P2P messaging framework that integrates existing datagram-based security and supports bootstrapping multiple virtual private overlays that efficiently multiplex a

peer's network resources subject to constraints such as NATs. Our system relies on a completely open infrastructure using mechanisms that reduce the maintenance and deployment burden that exist with decentralized P2P systems without the loss of ownership due to use of third party systems. The components of our system follow:

- An application layer security system based upon an existing datagram-based transport security (DTLS) framework to provide secure end-to-end (EtE) and point-to-point (PtP) in P2P overlays¹ while transparently handling security concerns of relay NAT traversal.
- 2) The bootstrapping of private P2P overlays using existing public overlays. The term "public overlay" refers to a free-to-join bootstrap overlay; nodes in the public overlay are not required to have public IP addresses and can be behind NATs.
- A group web interface providing an automated front-end handler for a Public Key Infrastructure (PKI) that allows users to create their own secure systems relying on P2P overlays.

Our approach provides an easy mechanism to create trusted overlays in constrained environments using a publicly available untrusted overlay as illustrated in Figure 1. Akin to other virtualization techniques, the virtual private overlay model allows developers to focus on the application, while complexities associated with enforcing isolation and security and messaging are abstracted away. This approach also has benefits for system deployers, whereas insecure systems would require modifying the overlay software to support security, application level security, or the deployment of a decentralized and scalable VPN in addition to the overlay software.

Fig. 1. The use of a single, public overlay to bootstrap multiple, isolated private overlays. The center pool is the public pool. Each node in the private pools has a corresponding partner in the public pool, the relationship is represented by a dashed line. A public overlay node can be multiplexed by more than one private overlay.

The rest of this paper is organized as follows. Section II-A provides background and related work. Section III describes our contributions. In Section IV, we present different usage models and present a real system using the techniques described in this paper, the GroupVPN. In Section V, we use both

¹For our discussion a point-to-point or PtP relationship refers to direct connections between two peers, such as a UDP or TCP socket; whereas, an end-to-end or EtE relationship refers to messages passed through the overlay, which may be routed over many PtP links.

real and simulated systems to provide further understanding of the approach. We conclude the paper in Section VI.

II. BACKGROUND

In this section, we begin by reviewing structured P2P overlays, followed by constraints that make the creation of secure and private P2P overlays difficult, and related work.

A. Structured P2P Systems

Structured P2P systems provide distributed look up services with guaranteed search time in $O(\log N)$ to $O(\log_2 N)$ time, in contrast to unstructured systems, which rely on global knowledge/broadcasts, or stochastic techniques such as random walks [4]. Some examples of structured systems can be found in [5], [6], [7], [8], [9]. In general, structured systems are able to make these guarantees by self-organizing a structured topology, such as a 2D ring or a hypercube.

The node ID, drawn from a large address space, must be unique to each peer, otherwise an address collision occurs which can prevent nodes from participating in the overlay. Furthermore, having the node IDs well distributed assist in providing better scalability as many algorithms for selection of shortcuts depend on having node IDs uniformly distributed across the entire address space. A simple mechanism to ensure this is to have each node use a cryptographically strong random number generator. Another mechanism for distributing node IDs involves the use of a trusted third party to generate node IDs and cryptographically sign them [10].

As with unstructured P2P systems, in order for an incoming node to connect with the system it must know of at least one active participant. A list of nodes that are running on public addresses should be maintained and distributed with the application, available through some out-of-band mechanism, or possibly using multicast to find pools [5].

Depending on the protocol, a node must be connected to closest neighbors; optimizations for fault tolerance suggest that it should be between 2 to $\log(N)$ on both sides. Having multiple peers on both sides assist in stabilizing the overlay structure when experiencing churn, particularly when peers leave without warning.

Overlay shortcuts enable efficient routing in ring-structured P2P systems. The different shortcut selection methods include: maintaining large tables without using connections and only verifying usability when routing messages [5], [8], maintaining a connection with a peer every set distance in the P2P address space [6], or using locations drawn from a harmonic distribution in the node address space [7].

Most structured P2P overlays support decentralized storage/lookup of information by mapping keys to specific node IDs in an overlay. At a minimum, the data is stored at the node ID either smaller or larger to the data's node ID and for fault tolerance the data can be stored at other nodes nearby. This sort of mapping and data storage is called a distributed hash table (DHT) and is a typical component of most structured P2P systems.

B. Constraints in Structured P2P Systems

- 1) Communication Between Nodes: There are two mechanisms for message routing in a P2P overlay: iterative or recursive. In iterative routing, the sender of a packet will contact each successive member in a path directly until it find the destination node, at which point it sends the packet directly to the destination. In recursive routing, messages are sent through the overlay via forwarding from one peer to the next until arriving at the destination. Iterative routing can easily be secured using stream and datagram based security such as TLS [11] and DTLS [12], because the sender initiates all messages. In contrast, in recursive routing, EtE communication cannot be secured in the same fashion by the sender because messages are routed through intermetiate nodes, rendering TLS and DTLS not easily applicable.
- 2) Private and Secure Overlay Subsets: While EtE authentication and privacy is key for many applications, it does not increase the reliability of the structured overlay. In a freeto-join system, malicious peers can easily intercept packets for eavesdropping, discard or tamper them. To deal with this issue, each overlay node could participate with a subset of other nodes in a secure system where each peer would maintain a routing table containing a subset of those involved. Each node would have to distinguish between the different messages, handing them to unique routers for each group, handle connectivity of the subset during churn, and providing a distributed data store for use by this subset. Achieving this functionality can require substantial modifications to the core overlay messaging and storage primitives. In this paper we advocate a virtualization approach that multiplexes private overlays that provide the same abstraction of the underlying public overlay, and thus can reuse core overlay primitives without modifications.
- 3) NATs: Another key issue faced by P2P systems is the handling of NATs. In environments where there are NATs, iterative routing can be significantly more difficult to deploy, since each message sent may require multiple NAT traversals. With an added layer of security, iterative routing can become too expensive to deploy. Additionally, TURN or relay style NAT traversal presents issues similar to EtE in recursive routing, where each node may authenticate itself with the relay, but they will not be able to easily use TLS and DTLS to verify each other.

C. Related Works

BitTorrent [13], a P2P data sharing service, supports stream encryption between peers sharing files. The purpose of BitTorrent security is not to keep messages private but to obfuscate packets to prevent traffic shaping due packet sniffing. Thus BitTorrent security uses a weak stream cipher, RC4, and lacks peer authentication as symmetric keys are exchanged through an unauthenticated Diffie-Hellman process.

Hamachi [14] provides central group management and a security infrastructure through a Web interface. Their security system has gone through two revisions as documented in [15]. Initially peers learn of each other through Hamachi's

central system, which leads to the creation of secure links. In their original approach, they use a system similar to a Key Distribution Center (KDC), which requires that all security sessions initiate through Hamachi's central servers. In the latest version, this model has been retained but with the addition of an external PKI, which avoids the man-in-the-middle attack but with has the additional cost of maintaining both an external CA and certificate revocation list (CRL). Hamachi also supports STUN, or NAT hole punching, and TURN style NAT traversal, though TURN requires the use of Hamachi's own relay servers. Because Hamachi is closed, it disables users from hosting their own infrastructures including session management and relay servers.

Skype [16], like P2PSIP, allows for decentralized audio and video communication. Unlike P2PSIP, Skype is well-established and has millions of users and is also closed. While Skype does not provide documentation detailing the security of its system, researchers [17], [18] have discovered that Skype supports both EtE and PtP security. Though similar to Hamachi, Skype uses a KDC and does not let users setup their own systems.

The RobotCA [19] provides an automated approach for decentralized PKI. A RobotCAs receives request via e-mail, verifies that the sender's e-mail address and embedded PGP key match, signs the request, and mails it back to the sender. RobotCAs are only as secure as the underlying e-mail infrastructure and provide no guarantees about the person beyond their ownership of an e-mail address. A RobotCA does not provide features to limit the signing of certificates nor does it provide user-friendly or intuitive mechanisms for certificate revocation.

Three approaches that propose a public overlay to create sub-overlays are [20], [21], and [22]. The approach desribed in [20] proposes the use of a universal overlay as a discovery plane for service overlay. The argument is that a participant of an overlay must support all services provided by that overlay such as multicast, DHT, or distributed search. Our work has the same foundations as this paper, but takes the idea further by using the universal overlay for NAT traversal. In our approach, the service overlays are made private applying PKI techniques for PtP/EtE messaging. Similarly, Randpeer [21] uses a common overlay along with a subnetting service to create individual networks for applications and services, though the project has seen little activity and lacks implementation details. Unlike the previous two, [22] limits the sub-overlay for the purpose of establishing multicast groups, though their approach lacks discussion on how nodes discover and form a new overlay as such their approach is limited to simulations.

Distributed data store applications like [2], [3] require that all machines have symmetric connectivity additionally like [23], suggesting the use of a third party application to ensure trust amongst all overlay participants. This is an example use case that is explicitly targeted by our system on the presumption that there are not sufficiently easy to use decentralized VPN software applications [24], [25] and

even if there were it is undesirable to have additional setup requirements.

While there has been much research [10] in securing overlays through decentralized mechanisms that attempt to prevent a collusion known as a Sybil attack [26], these mechanisms do not create private overlays. While one approach mentioned does provide a natural lead into such environments, which is the use of a pay-to-use service to mitigate the chances of an overlay attack, whereby the pay to use service uses a CA to sign node IDs. The work does not describe how to efficiently implement such a system. Other similar research attempts to create trusted systems [27], [28] but with anonymous members, though it could be reasonably argued these services are not applicable to small or medium business, which would prefer to have a private overlay. None of the works discuss how to apply such models to systems that are contrained in network connectivity, e.g by NATs.

III. BOOTSTRAPPING SECURE AND PRIVATE OVERLAYS

In this section, we explain the individual components of our contribution. We begin by describing how apply a DTLS-like protocol for EtE and PtP security in P2P systems. It leads to a discussion of using a group web interface to provide a user-friendly PKI, and conludes with our approach to bootstrapping private and secure overlays in constrained environments using public overlays. DTLS is attractive because it supports the ability to handle situations where there are no guarantees about communication reliability: it handles both out-of-order and dropped packets.

A. Secure Overlays

Securing EtE and PtP communication in overlays using iterative routing with servers using static IP addresses can easily be done using TLS or DTLS with certificates bound to the servers static IP address. This approach does not port well to systems that use recursive routing. First, TLS cannot easily be used because overlay routing in NAT-constrained environments is traditionally done through datagrams and not streams, which would require overlays to implement a reliable stream to use TLS. DTLS can be applied because it supports lost and out of order messages, though the implementation must support usage without a socket. The problem then becomes how to deal with identity. In this section, we discuss how to bind security protocols and a certificate model to an overlay system.

The key to our approach is abstracting the communication layer, making EtE and PtP traffic appear identical. In this approach, all messages are datagrams that are sent over abstracted senders and receivers as filters illustrated in Figure 2. This allows us to use secure tunnels over these links with no application changes.

Exchanged certificates need a mechanism to verify authenticity. Like an Internet browser, this verification should happen automatically with no user intervention. Typically for TLS and DTLS, the certificates have the Web site's IP address or domain name as part of the certificate's common name field.

Fig. 2. An example of the abstraction of senders and receivers using a EtE secured chat application. Each receiver and sender use the same abstracted model and thus the chat application requires only high-level changes, such as verifying the certificate used is Alice's and Bob's, to support security.

In our system, we bind the certificate to each individual node ID. That way, a single certificate cannot be used for multiple peers in the overlay, making it difficult for an adversary to launch Sybil attacks.

1) Forming the Connection: In overlay systems, a peer's connection manager requests to make an outgoing connection to another peer in the system. This triggers the creation of a socket (UDP or TCP), which is wrapped in the abstracted sender and receiver models. The abstracted models arrive into the security handler, which authenticates in both directions and creates a secure session. The session is wrapped in the same abstracted model and presented to the overlay system as a direct connection to the remote peer. To keep the system abstract, the security model and the wrapped sockets know nothing about the overlay, and so the overlay should verify the certificate to ensure identity.

Because EtE communication is application-specific, it requires a slightly different path. For that purpose, we have a specific module that allows an application to request a secure EtE sender; the application needs to be prepared to deal with the process of handling verification. Once an application requests the sender, the module passes a sender / receiver model to the security handler, like in the PtP process. Once the security initialization has completed, the resulting sender / receiver is verified automatically for proper identity. If that succeeds, messages sent using the EtE sender will arrive at the remote party, decrypted and authenticated by the security handler, and delivered to the overlay application, who will deliver to the remote party's handler for such messages. Since overlay application will be sending and receiving unencrypted as well as encrypted EtE traffic, the handler must verify that the packet was sent from a secure end point. This assumes that an application using an overlay has already implemented verification of node ID to some application mapping. For example, an application could be aware that node ID X maps

to user Y, therefore if a secure message coming from node ID Z says that it is user Y, an application should drop the packet.

2) Datagram Constraints: Since UDP is connectionless, applications that use it can easily be victims of denial of service attacks. This is because packets sent to the receiver can have a spoofed source address, unless the outgoing gateway prevents this from occurring. Whereas with TCP, it would be signficantly harder to perform the same attack unless performed as a man-in-the-middle. To reduce the potential of these spoofing attacks prior to establishing a secure connection, DTLS (like Photuris [29]) uses a stateless cookie for each remote peer. In DTLS, the cookie is usually based upon the remote peer's IP and the current time. In our model, which deals with abstracted systems and IP addresses are likely to be NAT-translated, this approach does not work. Because we are building on existing senders and receivers that already have state, we use the object's memory pointer or hash value instead.

B. Private Overlays

The main components involved in the starting and maintaining a private overlay are 1) dissemination of the security credentials and its name, 2) connecting with and storing data in the public overlay, and 3) discovering and connecting with peers in the private overlay. Step 1) can be application-specific; we propose a generic interface that is useful in many applications, through the use of groups as described in Section Section III-C. For 2), we presume the usage of a structured overlay as described in Section II-A. In this section, we discuss 3), the steps involved in creating and connecting to a private overlay after the user has obtained group information and has connected to a public overlay.

To connect with and create a private overlay, the application performs the following steps:

- 1) Connect to the public overlay
- Store node ID in the public overlay's DHT at the private group's key
- Query the public overlay's DHT at the private group's key
- 4) Start an instance of the private overlay with the well-known end points being those of the node IDs retrieved from the DHT
- 5) Upon forming a link with a member in the private overlay, the node follows the general approach for linking to neighbors and shortcuts but using security to restrict connections to only members of the private overlay

The node should maintain membership in the public overlay when connected with the private overlay. This is needed for two reasons: first, so that other peers can discover the node while following the same set of steps; and second, for NAT traversal purposes, as discussed in the next paragraph. Because the public overlay and its DHT provides a means for discovery, nodes must maintain their node ID in the public key's DHT. A data inserter must constantly update the lease for the data object, otherwise the data will be removed. This is because DHTs are implemented as leasing systems or as soft state,

whereby data objects are inserted with a time to live and removed upon expiration.

During the formation of the private overlay, peers may find that they are unable to form direct connections with other members of the private overlay even while using STUN based NAT traversal. We propose two solutions to address this problem: 1) to use TURN NAT traversal in the nodes overlay as discussed in [25] and 2) use the public overlay as an extra routing massive TURN infrastructure. The TURN NAT traversal technique has both peers connect with each others near neighbors in order to form a 2-hop connection with each other. The 2-hop route can either be enforced through a static route or through EtE greedy routing. Due to the abstractions in the system, the public overlay can be treated as another mechanism to create PtP links, thus while packets may use EtE routing on the public overlay the private overlay nodes treat it as a PtP connection thus all communication is secured. This approach can be further enhanced by allowing the private overlay to apply the TURN NAT traversal technique to the public overlay. To do this, the private overlay must be capable of requesting a direct connection between its node and the remote peer in the public overlay. This would trigger the eventual creation of a 2-hop relay connection as presented in Figure 3.

Fig. 3. Creating relays across the node address space, when direct connectivity is not possible. Two members, A and B, desire a direct connection but are unable to directly connect, perhaps due to NATs or firewalls. They exchange private, 1, and public, 2, neighbor information through the private overlay and connect to one of each other's neighbors, creating an overlap. The overlap then becomes a PtP relay path (represented by directed, dashed lines), improving performance over routing across the entire overlay.

Another concern we address is the cost of having to maintain additional connections for each additional private overlay. For this, we propose the use of *pathing*, which multiplex a single UDP or TCP socket to support multiple overlay nodes. This model is supported because of the abstraction done on senders and receivers. Thus a UDP or TCP connection can be easily wrapped inside an abitrary packet, in this case, a pathing

connection. Upon sending a packet, the message is prepended with path information. When the remote side receives a packet, it parses and removes this pathing information and relays it to the appropriate receiver, i.e., overlay node. To validate this approach, we present the tradeoffs in Figure 4, which presents the network latency versus memory costs, for various sized pathing systems.

In progress...

Fig. 4. Pathing evalution.

When overlays are small and have significant churn, it is easy for data stored in the overlay's DHT to be lost. This can be improved by also supporting broadcast in the private overlay. In this model, each peer acts as a storage point for all data critical to itself. If another peer cannot successfully find data stored at a specific key in the overlay, it can use MapReduce to broadcast the request to the entire overlay in an attempt to find the result. We present a comparison of the time and network cost for both approaches in Figure 5.

In progress...

Fig. 5. Broadcast cost.

During our evalution, we discovered that in certain cases the private overlay would not form a proper well-formed state but rather more than one distinct or partitioned overlays creating a fragmented overlay. The underlying issue was that the pratitioned overlays believed they were in a well-formed state and thus never reviewed the DHT list to determine if there were peers that should be their neighbors. This caused the overlay to remain fragmented until either a new peer joined or enough peers left causing the nodes to believe they are in a non-well-formed state adn require bootstrapping links or a more proactive method. The reason the issue even existed was that states of significant churn, especially during a bootstrapping of a significant amount of new nodes in the system, the DHT list can become unstable with each set of node potentially seeing different lists. Of course by the end, the lists would be well-formed, but at that point, the overlay would have already fragmented.

To proactively solve the fragmentation issue, the node performs the following steps: 1) continuously query the DHT; 2) upon receiving the DHT query result, the node determines if there is a peer with whom it should be connected to such as that it is closer in the address space then any of its current neighbors; 3) form a connection with that peer; and 4) the system should automatically at this point in time realize the network fragmentation and heal itself. In our system, this involved creating a bootstrapping connection with the peer.

Upon a successful connection, the system automatically causes the networks to heal.

C. Group Overlays

To establish trusted links, we use the PKI model, where a centralized CA (for a group) signs all client certificates and clients can verify each other without CA interaction by using the CA's public certificate. However, setting up, deploying, and then maintaining security credentials can easily become a nonnegligible task, especially for non-experts. Most PKI-enabled systems require the use of command-line utilities and setting up your own methods for securely deploying certificates and policing users. While this can be applied to an overlay, our experience with real deployments indicates that usability is very important, leading us to find a model with easy to user interfaces. In this section, we present our solution, a partially automated PKI reliant on a redistributable group based web interface. Although this does not preclude other methods of CA interaction, our experience has shown that it provides a model that is satisfactory for many use cases.

1) Joining the Group Overlay: Membership of an overlay maps a set of users as a group. This led us to the model of using a group infrastructure as a means to apply a PKI. Using our system, a user can host an individual or multiple groups per Web site. The creator of the group becomes the default administrator, and users can request access to the group. Upon an administrator approving, users are able to download configuration data containing overlay information and a shared key used by the overlay application to communicate securely with the web interface. The shared key uniquely identifies the user to the web site allowing the application to securely send certificate requests. By default, the Web site automatically signs all certificate requests, but the application and Web site support different models. Two other models are 1) require the user to submit a request and wait for an administrator to verify each request and 2) set a maximum amount of automatic request signings and then require the administrator to reset the value upon using all of them.

As stated in Section III-A, the certificate request is bound to the application's node ID, which can be generated by the CA or the application. Additionally in the group system, the certificate also contains the user who made the request and the group for which the certificate is valid. Not only does this ensure that a single certificate can only be used for each node instance, but it reduces the amount of state necessary to revoke a user from a system. Specifically, to revoke a user, the CA would only need to provide a signed revocation notice containing the user's name and not every one of the previously signed certificates.

Upon receiving a signed certificate, the overlay application can connect to the overlay where all PtP traffic will be secured and, optionally, so can EtE traffic. It is imperative that any operations that involve the exchanging of secret information, such as the shared secret, be performed over a secure transport, such as HTTPS, which can be done with no user intervention.

2) Handling User Revocation: Unlike decentralized systems that use shared secrets, in which the creator of the overlay becomes powerless to control malicious users, a PKI enables the creator to effectively remove malicious users. The methods that we have incorporated include: a user revocation list hosted on the group server, DHT events requesting notification of peer removal from the group, and broadcasting to the entire P2P system the revocation of the peer.

A user revocation list offers an out-of-band distribution mechanism that can not easily tampered, whereas communication using the overlay can be hampered by Sybil attacks. The revocation list is maintained on the Web site and updated whenever an administrator removes a user, or a user leaves the group. Additionally it can be updated periodically so that a user can verify that the revocation list is up to date.

However, because the user revocation list requires centralization, users should not query it prior to every communication nor periodically during conversations. In addition to support for polling the revocation list, the use of the DHT and broadcast provides active notification of user revocation. Revocation through the DHT method allows a peer to request notification if another peer is revoked from the group. To subscribe for this notification, the peer inserts its node ID at the peer's revocation notification key, which we represent as a hash of its node ID. Upon revocation, the CA will first insert a revocation notice at this key and then query the key for all node IDs notifying each of them of the revocation. The insertion of the revocation notice handles a race condition, where a peer may insert its ID but never receive a notification. Thus after inserting the request for notification upon revocation, the peer should ensure that a revocation has not occurred by querying the DHT to verify the CA has not inserted a revocation.

When the group is securing PtP traffic, the DHT approach does not effectively seal the rogue user from the system until all peers have updated the revocation list. A peer may continuously connect to all peers in the system until they have all queried the DHT key prior to verification. Due to this issue, we do not employ this model in the group overlay. Instead a broadcast will ensure that all peers in the system do know about the revocation. The strength of the DHT approach exists when using a public free-to-join and an application secured by the group, as in [25].

In Figure 6, we present the cost of revoking a peer in varying sized networks. To evaluate the cost, we estimate that the average size of a revocation is 300 bytes, which includes information such as the user's name, the group, time of revocation, and a signature from the CA's private key. We then evaluate the bandwidth and latency cost using a network modeler that reuses the same code base, i.e. routing tables and routing algorithms, as our structured P2P overlay software. For latency estimation, we apply the MIT King data set [30].

Because the security framework is based on PKI, another approach that is also supported is the use of certificate revocation lists (CRL) found in most CA systems. The advantage of a CRL and revoking individual certificates is the ability to remove a subset of a user's node, particularly useful in the

In progress...

Fig. 6. Broadcast revocation.

case that the user was not malicious but that some of their nodes had been tampered or hijacked.

IV. APPLICATIONS

In this section, we present applications and potential ways to configure them to use a private overlay. The applications we investigate include instant message, VPNs, and social networks. The key to all these applications is that users can easily host their own services and be discovered through the use of a NAT-traversing, structured overlay network.

A. Chat Rooms

Chat rooms provide a platform for individuals with a common interest to find each other, group discussion, private chat, and data exchange. One of the most popular chat systems for the Internet is Internet Relay Chat (IRC). As described in [31], IRC supports a distributed tree system, where clients connect to a server, and servers use a mixture of unicast and multicast to distribute messages. The issues with IRC are documented by [32], namely, scalability due to all servers needing global knowledge, reliability due to connectivity issues between servers, and lack of privacy. Private overlays could be extended to support the features of IRC and potentially deal with these inherent issues. Each chat room would be mapped to a private overlay and the public overlay would be used as a directory to learn about available chat rooms and request access. Structured overlays do not require global knowledge and can be configured to handle connectivity issues. Additionally, IRC by default uses clear text messaging and even if security is used a server will be aware of the content of the message, two issues resolved by using PtP security in a private overlay chat room.

B. Social Networks

Social networks such as Facebook and MySpace provide an opportunity for users to indirectly share information with friends, family, and peers via a profile containing personal information, status updates, and pictures. Most social network structures rely on hosted systems, where they become the keepers of user data, which creates privacy and trust concerns. Private overlays can remove this third party, making users the only owner of their data. For this model, we propose that each user's profile be represented by a private overlay and that each of their friends become members of this overlay. The overlay will consist of a secured DHT, where only writes made by the overlay owner are valid and only members of the overlay have access to the content stored in it. In addition to bootstrapping the private overlays, the public overlay would be used as a directory for users to find and befriend each other. For fault tolerance and scalability, each user provides a copy of their profile locally, which will be distributed amongst the private

overlay in a read-only DHT, therefore, allowing the user's profile to be visible whether they are offline or online. Each user's social network would than consist of the accumulation of the individual private overlays and the public overlay.

C. P2P VPNs

As described in [25], private overlays enable P2P VPNs. The most common type of VPNs are centralized VPNs like OpenVPN, which requires that a centralized set of resources handle session initialization and communication. Another approach taken by Hamachi and many others is to maintain a central server for session initialization but allow communication to occur directly between peers and providing a central relay when NAT traversal fails. Using a structured private overlay allows users to host their own VPNs, where each VPN end points is responsible for its own session initialization and communication. The private overlay also provides mechanisms for handling failed NAT traversal attempts via relaying.

D. Multicast

The topic of secure multicast has been a focus of much research citations. Using an approach similator to CAN [22], a private ring can form a ring where all nodes are members of the multicast group with the additional feature that you can trust that your audience is limited to those in the overlay. The main advantage of such multicasting technologies would be for wide-area, distributed multicast for the purposes of systems supports different types of multicast applications such as light weight multicast DNS / DNS-SD (service discovery) or more heavy weight but fault tolerant like streaming audio and video.

V. IMPLEMENTATION DETAILS AND EVALUATION

In this section, we describe our prototype implementation of a secure, private overlay followed by evaluation to quantify network, memory, and CPU overheads.

A. Our Implementation - Brunet

Our implementation uses the Brunet [33] library, which is a P2P system based upon the concepts introduced by Symphony [7]. Its topology is a one-dimenesional ring, where peers connect with up to the four peers closest to themselves in both directions in the node ID space. Shortcuts are based upon a harmonic distribution and the use of of proximity [34]. The system supports distributed versions of STUN or holepunching and TURN-like or relay based NAT traversal [25]. The system uses a DHT as a distributed data store using a replication algorithm that spreads a single key, value pair throughout the ring as described in [35]. Additionally, the overlay has support for autonomic [36] and manual creation of single-hop connections and double-hop through relaying when NATs prevent direct connections. Furthermore, we have developed a P2P VPN on top of this stack, which has been used for over three years to support a ad hoc distributed grid [37], [38].

The focus of this paper is on security and the bootstrapping of private pools. In the previous sections, we have abstracted the implementation to generic overlays, while in this section, we will present our experiences and lessons learned in applying security protocols to the overlay. To provide security, we investigated two approaches: reusing OpenSSL's DTLS implementation or making our own platform-independent DTLS using C# and crytography routines provided by .NET. Because we are sending messages over unreliable mediums such as UDP sockets, relays, and an overlay, we could not reuse SSL or TLS. Additionally we want EtE security for relays and overlay communication, the security needed to be implemented through a filter or only in memory and not on a socket.

While OpenSSL is a de-facto standard, with US federal government approved code, and platform portability, during our use of the platform we experienced several issues. The portability provided by OpenSSL is limited to API (Application Programming Interface) and not ABI (Application Binary Interface), which requires a platform-specific library be either installed or distributed with the application. Whereas the purpose in using C#, like Java, is that a single binary can run on any platform. To use unmanaged libraries from a managed language requires a marshaling wrapper to handle the translation; there is such a wrapper for OpenSSL [39]. A constraint we found when using the library was the naming of the OpenSSL libraries was not consistent across platforms and, additionally, Windows lacked a formal installation method. In using the OpenSSL library with DTLS, in version 0.9.8k, renegotiation of security parameters was broken and would result in a deadlocked DTLS session, whereas in 1.0.0-beta3 (the latest released beta) DTLS renegotiation worked; however, it would often segmentation fault.

Due to the constraints of OpenSSL, we have architected the system to support multiple security frameworks; OpenSSL DTLS is one supported option, but the system also supports a custom stack written in C#. To provide for flexibility between the two approaches, we created a security overlord that treats each approach like a filter. Treating each implementation as a filter allows incoming control and data messages to be pushed into the object and data and control messages to be pulled out of the object. The handshake used is shown in Figure 7.

In progress...

Fig. 7. DTLS Handshake

Implementation of an OpenSSL DTLS filter was non-trivial, as documentation is sparse providing the possibility for varied approaches. Traditionally, DTLS uses the DGRAM (datagram) BIO (I/O abstraction) layer, which provides a reliable UDP layer. Because we need a filter, so that we can do both EtE and PtP traffic, we used one memory BIO for incoming traffic and another for outgoing traffic. Memory BIOs provide pipes using RAM: data written to the BIO can then be read in a first in, first out ordering. Incoming messages written to or outgoing messages read from the DTLS

read or write BIOs, respectively, are either encrypted data packets or handshake control messages. Sending and receiving clear text messages occur at the DTLS SSL object layer. The pathway for sending a clear text packet begins with the user performing an SSL_write operation, retrieving the encrypted data by performing a BIO_read on the write BIO, and sending the data over the network. At the remote end, the packet is passed to the SSL state machine by performing a BIO_write on the incoming BIO followed by a SSL_read; the result will be the original clear text message. This process also needs to handle control messages; we provide clear context in Figure 8. As an aside, OpenSSL supports a SSL filter BIO, though it will not work for this purpose as BIOs that are inserted are expected to have two pipes, like a socket or two memory buffers. Also the only benefit of using the filter BIO would be that it manages auto-renegotiation, which can be implemented in user code by monitoring time and received byte count. Other operations such as certificate verification and cookie generation are handled by SSL callbacks, which hook into our security framework.

Fig. 8. The DTLS filter. To send a secure message, execute SSL_write and retrieve the encrypted packet at the WRITE BIO via a BIO_read. To verify and decrypt a packet, execute BIO_write on the READ BIO and retrieve the packet via SSL_read. When SSL_write or SSL_read return the error WANT_READ. This means that either it is waiting for a control message or one is available at the WRITE BIO. If a message is retrieved from the WRITE BIO, it is a control message. Because DTLS does not provide reliability when using the memory BIO, control messages should be sent using a reliable medium, such as a light-weight request/reply system.

We leave the choice of security implementation up to the user. While we believe OpenSSL's DTLS to be a superior choice due to its prevalence and being well studied, it is non-trivial to make available for all platforms. Because our goal is to provide a safe yet easy to use package, we leave the decision up to the user which protocol to use. We believe home users and those interested in testing the system will start with the .NET security stack and migrate to the OpenSSL DTLS stack.

B. Exploring Overheads Using Simulations

In this section, we evaluate the bandwidth consumed by our private overlay model and the amount of real time it takes for a node to achieve overlay connectivity. To simulate our system, we have developed a module that applies an event-driven time simulation to our P2P software. This allows us to verify correct behavior in the system prior to testing out on real systems, such as PlanetLab, as well as to perform experiments

in a controlled environment, simplifying the evaluation while faithfully modeling the overlay behavior.

In this experiment, we will determine 1) time to bootstrap a large amount of peers into the private overlay, 2) time to add one additional peer to a steady-state system, and 3) bandwidth used by the system over the experiment. To understand the cost of using security, we evaluate the system when the private overlay has PtP security disabled and enabled.

The steps in the experiment follow: We start with a base system where there are 20 nodes in a well-formed public pool that are in steady-state, that is 60 minutes after they have a well-formed overlay. We then introduce 500 peers with some subset joining a monitored private overlay. Our simulations were limited to 500 nodes due to the resource requirements necessary to simulate a system where there are over 500 privately secured nodes and 500 public nodes. We measure the time to bring the public overlay back to a well-formed state as well as the time to form the private overlay, presented in Figure 9. At which point, we wait another 60 minutes for steady-state to occur in both systems and we add a new node that joins both the public and private overlays and measure the time for both, presented in Figure 10. Thereupon, we calculate the bandwidth of the system for the entire time and end the simulation, presented in Figure 11.

In progress...

Fig. 9. 1000 Node Join

In progress...

Fig. 10. Single Node Join

In progress...

Fig. 11. Bandwidth

C. Exploring Overheads Using PlanetLab

For this experiment, we take the code used in simulation and deploy it in a real environment, PlanetLab. PlanetLab [40] consists of a consortium of research institutes sharing several hundred globally distributed network and computing resources. PlanetLab provides a very interesting environment as there is constant unexpected churn of machines due to the extreme load placed on the resources and system restarts. Unlike our simulations done in the previous experiment, this experiment will give us a glimpse of what to expect from the P2P software stack when used in more typical environments. As such our

experiments for this section focus on user perception and experience.

In this experiment, we will evaluate the bandwidth used by an abitrary sized system over the course of 24 hours. Afterwards, we will determine the time required to properly connect to the overlay, which is not the same measurement used in the simulation. In the simulation, we measured the time for the network to return to a complete state, in the case of a real system, this state becomes very difficult to obtain, as such we focus only on the local nodes perception of connectivity. While we attempt to place as many peers into the system, due to the fact that PlanetLab nodes may be on or off, power cycled, or even disconnected at any time, we cannot make guarantees about the size of the network. As such, we attempt to install the package on every PlanetLab node and at the end of the experiment, review the results for only those nodes which remained connected for the entire 24 hour period.

On average, a PlanetLab system usually has around 500 nodes online after 24 hours. Using this approximation, we configured the system to support 25 groups with an average of 20 participants each. This causes a distribution of having each peer in the public pool be a member of one of the private groups. We repeat the experiment with and without secure private overlays enabled. The results for bandwidth and connection time are presented in Figure 12 and Figure 13, respectively.

In progress...

Fig. 12. Single Node Join

In progress...

Fig. 13. Bandwidth

VI. CONCLUSION

In this paper, we presented a novel architecture for deploying secure, private overlays in constrained environments through the use of a public overlay. The public overlay at a minimum need only to support a distributed data store, like a DHT, so that peers of the private system can rendezvous with each other. For constrained environments, we used NAT traversal techniques like STUN and TURN with both private and public overlays supporting the relaying of packets. We evaluated the use of DTLS in our system and presented an improved CBC mode of operation for use in datagram systems that significantly speeded up our implementation. To deal with excessive amounts of sockets, we introduced the notion of pathing, which showed that system resource consumption can be reduced with negligible effect on network performance.

Most importantly, we presented how a group infrastructure can be used as a user-friendly and intuitive mechanism to create and maintain trusted overlays. For future work, we envision applying this approach to social networks and to establish multicast groups as done in [9].

REFERENCES

- [1] LogMeIn, Inc. (2009) Logmein. http://logmein.com.
- [2] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, "Dynamo: amazon's highly available key-value store," in SOSP '07: Proceedings of twenty-first ACM SIGOPS symposium on Operating systems principles. New York, NY, USA: ACM, 2007, pp. 205–220.
- [3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, "Bigtable: a distributed storage system for structured data," in OSDI '06: Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation. Berkeley, CA, USA: USENIX Association, 2006, pp. 15–15.
- [4] M. Castro, M. Costa, and A. Rowstron, "Debunking some myths about structured and unstructured overlays," in NSDI'05: Proceedings of the 2nd conference on Symposium on Networked Systems Design & Implementation, 2005.
- [5] A. Rowstron and P. Druschel, "Pastry: Scalable, decentralized object location and routing for large-scale peer-to-peer systems," in IFIP/ACM International Conference on Distributed Systems Platforms (Middleware), November 2001.
- [6] I. Stoica and et al., "Chord: A scalable Peer-To-Peer lookup service for internet applications," in SIGCOMM, 2001.
- [7] G. S. Manku, M. Bawa, and P. Raghavan, "Symphony: distributed hashing in a small world," in USITS, 2003.
- [8] P. Maymounkov and D. Mazières, "Kademlia: A peer-to-peer information system based on the XOR metric," in *IPTPS* '02, 2002.
- [9] S. Ratnasamy, P. Francis, S. Shenker, and M. Handley, "A scalable content-addressable network," in *In Proceedings of ACM SIGCOMM*, 2001, pp. 161–172. [Online]. Available: http://citeseerx.ist.psu.edu/ viewdoc/summary?doi=10.1.1.19.8434
- [10] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach, "Security for structured peer-to-peer overlay networks," in 5th Symposium on Operating Systems Design and Implementation (OSDI'02), December 2002
- [11] T. Dierks and E. Rescorla. (2008, August) RFC 5246the transport layer security (TLS) protocol.
- [12] E. Rescorla and N. Modadugu. (2006, April) RFC 4347 datagram transport layer security.
- [13] ludde, uau, The 8472, Parg, and Nolar. (2007, December) Message stream encryption. http://www.azureuswiki.com/index.php/Message_ Stream_Encryption.
- [14] LogMeIn. (2009) Hamachi. https://secure.logmein.com/products/ hamachi2/.
- [15] LogMeIn, Inc. (2009) LogMeIn hamachi2 security.
- [16] S. Limited. Skype. http://www.skype.com.
- [17] D. Fabrice. (2005, November) Skype uncovered. http://www.ossir.org/ windows/supports/2005/2005-11-07/EADS-CCR_Fabrice_Skype.pdf.
- [18] S. Guha, N. Daswani, and R. Jain, "An experimental study of the skype peer-to-peer voip system," in *IPTPS'06*, 2006.
- [19] (2005, October) RobotCA. http://www.wlug.org.nz/RobotCA.
- [20] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, "One ring to rule them all: Service discover and binding in structured peer-to-peer overlay networks," in SIGOPS European Workshop, Sep. 2002.
- [21] Randpeer development team. (2007, May) Randpeer. http://www.randpeer.com.
- [22] S. Ratnasamy, M. Handley, R. M. Karp, and S. Shenker, "Application-level multicast using content-addressable networks," in NGC '01: Proceedings of the Third International COST264 Workshop on Networked Group Communication. London, UK: Springer-Verlag, 2001, pp. 14–29.
- [23] A. Rowstron and P. Druschel, "Storage management and caching in PAST, a large-scale, persistent peer-to-peer storage utility," in 18th ACM Symposium on Operating Systems Principles (SOSP'01), October 2001.
- [24] D. I. Wolinsky, Y. Liu, P. S. Juste, G. Venkatasubramanian, and R. Figueiredo, "On the design of scalable, self-configuring virtual networks," in *IEEE/ACM Supercomputing* 2009, November 2009.

- [25] D. I. Wolinsky, L. Abraham, K. Lee, Y. Liu, J. Xu, P. O. Boykin, and R. Figueiredo, "On the design and implementation of structured P2P VPNs," in *TR-ACIS-09-003*, October 2009.
- [26] J. R. Douceur, "The sybil attack," in *IPTPS '01: Revised Papers from the First International Workshop on Peer-to-Peer Systems*. London, UK: Springer-Verlag, 2002, pp. 251–260.
- [27] M. Jacob, "Design and implementation of secure trusted overlay networks," http://www.cs.princeton.edu/research/techreps/TR-865-09, August 2009.
- [28] R. Dingledine, "Tor: anonymity online," https://www.torproject.org/, August 2009.
- [29] P. Karn and W. Simpson, RFC2522 Photuris: Session-Key Management Protocol, March 1999.
- [30] K. P. Gummadi, S. Saroiu, and S. D. Gribble, "King: Estimating latency between arbitrary internet end hosts," in SIGCOMM IMW '02.
- [31] J. Oikarinen and D. Reed. (1993, May) RFC 1459 internet relay chat protocol.
- [32] C. Kalt. (2000, April) RFC 2810 internet relay chat: Architecture.
- [33] P. O. Boykin and et al., "A symphony conducted by brunet," http://arxiv. org/abs/0709.4048, 2007.
- [34] A. Ganguly and et al., "Improving peer connectivity in wide-area overlays of virtual workstations," in HPDC, 6 2008.
- [35] A. Ganguly, D. Wolinsky, P. Boykin, and R. Figueiredo, "Decentralized dynamic host configuration in wide-area overlays of virtual workstations," in *International Parallel and Distributed Processing Symposium*, March 2007.
- [36] A. Ganguly, A. Agrawal, P. O. Boykin, and R. Figueiredo, "Wow: Self-organizing wide area overlay networks of virtual workstations," in *Proceedings of the 15th IEEE International Symposium on High Performance Distributed Computing (HPDC)*, June 2006.
- [37] R. Figueiredo and et al., "Archer: A community distributed computing infrastructure for computer architecture research and education," in *CollaborateCom*, November 2008.
- [38] D. I. Wolinsky and R. Figueiredo. (2009, September) Grid appliance user interface. http://www.grid-appliance.org.
- [39] F. Laub. (2009, October) OpenSSL.NET. http://openssl-net.sourceforge. net.
- [40] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M. Bowman, "Planetlab: an overlay testbed for broad-coverage services," SIGCOMM Comput. Commun. Rev., 2003.