Projekt WSYZ

Celem projektu z przedmiotu WSYZ jest pogłębienie wiedzy i umiejętności zdobywanych w trakcie wykładu i laboratoriów. Zakres projektu obejmuje:

- **Utworzenie modelu biznesowego** działania przedsiębiorstwa za pomocą notacji BPMN 2.0. Model ten powinien uwzględniać nie tylko proces przepływu czynności wewnątrz przedsiębiorstwa, ale także interakcje z partnerami oraz procesy wewnętrzne partnerów. Powinien także zawierać wyszczególnione obiekty danych, w szczególności te, które będą precyzowane w częściach dotyczących modeli optymalizacyjnych.
- Umiejscowienie wewnątrz modelu biznesowego modeli optymalizacyjnych, które jako wejście otrzymają pewne obiekty danych (np. wejściowy plan produkcji) i dostarczą wynik, który będzie innym, bądź uszczegółowionym, obiektem danych (np. harmonogram produkcji).
- **Każdy model optymalizacyjny** powinien być sformułowany jako model matematyczny w postaci: zbiorów, parametrów, zmiennych i ograniczeń. Komentarze powinny opisywać znaczenie i funkcję poszczególnych ograniczeń (grup ograniczeń) oraz poszczególnych składników funkcji celu.
- Zaproponowanie **danych wejściowych** dla całego procesu biznesowego (np. zapotrzebowanie każdego sklepu na towar), obliczenie wyników za pomocą solvera i ich prezentacja.
- **Podsumowanie projektu w raporcie**, opis: modelu biznesowego, modeli optymalizacyjnych, zaproponowane dane, wyniki obliczeń i ich krótka analiza (wsparta wykresami i tabelami).
- **Harmonogram pracy** wraz z przypisaniem osób do poszczególnych czynności.

Opis problemu.

Rozważana jest produkcja i dystrybucja podstawowych warzyw, tj. ziemniaków, kapusty, buraków i marchwi w Warszawie i okolicach.

Istnieją trzy rodzaje przedsiębiorstw:

 Grupa 6 produducentów: P1...P6. Każdy z producentów produkuje każdy rodzaj warzyw jednak w różnych maksymalnych ilościach rocznych podanych w poniższej tabeli [tony]:

	Ziemniaki	Kapusta	Buraki	Marchew
P1	120	80	120	60
P2	50	90	160	50
P3	160	70	190	90
P4	230	50	30	110
P5	220	230	180	100
P6	370	150	50	90

- Lokalizacja producentów to: Błonie, Książenice, Góra Kalwaria, Otwock, Wołomin, Legionowo.
- Sieć 3 magazynów-chłodni: M1..M3. Każdy magazyn ma określoną pojemność wyrażoną w tonach (800, 1200, 750) i może służyć do przechowywania dowolnych warzyw. Lokalizacje magazynów to Pruszków, Piaseczno, Zielonka.
- Sieć sklepów spożywczych usytuowanych w Warszawie (proszę zaproponować 10 sklepów rozlokowanych w różnych punktach Warszawy (adres i pozycja GPS)).

Każdy ze sklepów spożywczych składa zamówienie do centrali sieci magazynów (przez e-mail, telefon, lub specjalną aplikację) raz w tygodniu. Każdy sklep może być obsługiwany przez dowolny magazyn, lub kilka magazynów. Ilość zamawianego towaru wynika z aktualnego stanu zapasów w magazynie przysklepowym i prognozy sprzedaży (wyniki modelu optymalizacyjnego są wartością orientacyjną, ale pozwalają podjąć lepszą decyzję, z których magazynów są sprowadzane produkty).

Raz w roku (na jesieni) producenci dostarczają towar do magazynów. Ilość towaru jest wyliczana na podstawie oddzielnie przeprowadzonych obliczeń, zgodnych z prognozowanymi zapotrzebowaniami (patrz model optymalizacyjny)

Problem optymalizacyjny to model transportowy połączony z modelem zapasów (patrz np. https://ampl.com/BOOK/CHAPTERS/07-tut4.pdf). Model ten powinien umożliwić podjęcie decyzji, a) jakie warzywa w jakiej ilości powinny być transportowane raz w roku od każdego producenta do każdego magazynu, b) jakie warzywa i w jakiej ilości powinny być transportowane co tydzień z magazynów do poszczególnych sklepów, c) a także jaka część produktów powinna być w każdym tygodniu przechowywana w lokalnym magazynie każdego sklepu. Informacje, dostępne dla każdego sklepu to: prognozowana sprzedaż każdego z warzyw w ciągu roku z podziałem na poszczególne tygodnie (proszę przyjąć sensowne wartości, ale zmienne w ciągu roku, np. ziemniaki i kapusta jedzone głównie na wiosne i na jesieni, a buraki i marchew w lecie i w zimie) i pojemność magazynu przysklepowego (znowu proszę przyjąć sensowne wartości, np. dwukrotność średniej sprzedaży w tygodniu danego sklepu). Zapas warzyw nie powinien przekroczyć pojemności przysklepowego magazynu, ale także należy zachować minimalne zapasy każdego z warzyw (na wypadek błędów prognozy, należy przyjąć sensowne wartości, np. 10% średniej sprzedaży w tygodniu). Uwaga: towar dostarczany do sklepu uzupełnia zapas produktów w magazynie przysklepowym i dopiero stamtąd jest wydawany do sprzedaży w ciągu tygodnia.

Brakujące dane (odległości między producentami, magazynami, sklepami) należy pobrać z internetu (np. google maps). Założyć, że koszt przetransportowania jednej tony dowolnego produktu na odległość jednego kilometra wynosi 4zł.

Celem jest opracowanie strategii transportu minimalizującej całkowite roczne koszty transportu.

Proszę **NIE PROJEKTOWAĆ I NIE PISAĆ** aplikacji, która rozwiąże powyższy problem całościowo! Proszę zaproponować: model biznesowy, model optymalizacyjne, dane, i przeprowadzić obliczenia dla przykładowych danych. Proponuję też, żeby dane i wyniki gromadzić w arkuszu kalkulacyjnym.

W razie wątpliwości co do zadania, proszę o kontakt: <u>Tomasz.Sliwinski@pw.edu.pl</u> lub przez MS Teams.

Harmonogram

- 1. Model BPMN 11 kwietnia (patrz https://help.bizagi.com/bpm-suite/en/index.html?
 best-practices-in-process-mode.htm
 oraz
 https://www.bizagi.com/docs/Workflow/20Patterns%20using%20BizAgi%20Process%20Modeler.pdf)
- 2. Zadanie optymalizacji model + rozwiązanie 19 maja
- 3. Sprawozdanie całościowe 2 czerwca

Opóźnienia karane są utratą części punktów.