Grupo de Ciencia Computacional HIMFG

Advertencia para quienes se adentran en espacios multidimensionales

CC Creative Commons

EspaciosMultidimensionales

¿Por qué correr el riesgo?

necesitan de múltiples coordenadas para determinar su estado

La mayoría de sistemas que estudiamos

4 partículas distinguibles en una caja bidimensional cerrada...

$$\vec{r} = (x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4)$$

 $\vec{r} = (0.6, 0.9, 1.7, 2.1, 2.2, 0.6, 3.2, 2.8)$

 $\vec{r} = (2.1, 1.8, 0.6, 1.7, 1.6, 1.2, 3.1, 1.2)$

¿Comerías una papa multidimensional pelada o sin pelar?

Sea una papa hiperesférica de volumen:

$$V_n(r) = \frac{\pi^{n/2} \cdot r^n}{\Gamma(n/2+1)}$$

¿Qué porcentaje de volumen representa la fina capa exterior?

$$\frac{V_n(r)-V_n(r-\epsilon)}{V_n(r)}\cdot 100$$

¿Qué otras "paradojas" encontrarás en un hiperespacio?

- Fenómeno de la distancia de concentración
- Paradoja de Borel
- Separabilidad en espacios de alta dimensionalidad
- Maldición de la dimensionalidad
- Concentración de la medida

- ...

Pero espera...

...observamos los sistemas multidimensionales a través de sus proyecciones.

Caso 0

Time

The protein folding paradigm

Caso 0

Caso 0

¿Te vas a atrever...?

Más documentación y foro técnico de soporte en:

github.com/Ciencia-Computacional-HIMFG