ASSIGNMENT 2 – REPORT

Loss Function:

This function is used to estimate the error in classifying the data using sigmoid function with respect to that of the skylearn's logistic regression function. This is also called error function.

We know that,

y_hat =
$$\sigma(z)$$
, where z= $\Sigma w_i x_i$; $x_i = coefficient of the point or feature value; $w_i = weight factor$$

Also, Maximum likelihood function is the product of probabilities of data points being correctly classified. This function can be used to compare models only when the volume of the data set is small. When considering larger data sets the value becomes comparatively inconvenient and hence this method can't be used to decide the best fit model to classify data. To avoid this problem, negative of logarithm is applied to the maximum likelihood function which returns the summation of negative logarithm of probabilities of all the data points. This is called **cross-entropy.** For a data set of 'n' points classified as 0|1, average log loss/ binary cross entropy is given as follows:

$$\begin{aligned} & \mathsf{L} = \frac{1}{n} \; \sum_{i=1}^{n} - y_{i} \; \mathsf{log} \; (y_hat_{i}) - (1 - y_{i}) \; \mathsf{log} \; (y_hat_{i}) \\ & \mathsf{L} = -\frac{1}{n} \left[\mathsf{y} \; \mathsf{log}(\mathsf{y}_hat) + (1 - \mathsf{y}) \; \mathsf{log}(1 - \mathsf{y}_hat) \right]; \; \mathsf{y}_hat = \sigma(wx) \end{aligned}$$

This error function does not have a closed form solution. So, the weight vector 'w' is calculated such that the error function has an optimized/minimal value. Hence, gradient descent is applied on the loss function to calculate the logistic regression of a specific dataset.

Gradient Descent:

The dataset that is provided is of size (152,14). The last column is the 'y'. The weight vector for this dataset will have 14 elements (13 coefficients and 1 intercept). The predicted output 'y_hat' will have a size of (152,1).

We know that,

$$\frac{dL}{dW} = -\frac{1}{n} (y - y_hat) X$$

Updating the co-efficients:

$$W = W - \eta \frac{dL}{dW}$$

$$W = W + \eta \frac{1}{n} (y - y_hat) X$$

Analysis on Training data:

Apply the loop on training data for different no. of iterations and update the weight vector with learning rate of 10^-5.

Iterations	Time Taken	
10000	0.29973673820495605	
100000	3.130495309829712	
1000000	23.955679655075073	

Here, we can see that as the no. of iterations increase the time taken increases keeping the eta /learning rate constant.

Cross entropy error before updating the weight vector (i.e., considering zero vector) on training data =

0.6931471805599453

Cross entropy error after updating the weight vector = 0.5847145522443018

Accuracy = 0.8157894736842105Cross validation error/classification error = 0.18421052631578946

Effect of learning rate: Changing the learning rate and keeping the number of iterations constant (1 million) for training data

Eta	Accuracy	Classification error	Cross-entropy error
0.00001	0.8157894736842105	0.18421052631578946	0.43535260915252544
0.0001	0.8289473684210527	0.17105263157894737	0.4191702834417414
0.001	0.8355263157894737	0.16447368421052633	1.3588274758118926
0.01	0.6776315789473685	0.3223684210526316	Nan

We can see only a little variation in accuracy when eta value is altered between 10^-5 to 10^-3. But when eta value is further increased, there's a significant drop in accuracy from 83% to 67%. As the eta value becomes large the accuracy decreases and classification error increases.

Iterations vs log loss/cross- entropy error: After updating the weight vector log loss is calculated for different no. of iterations on training data. The results are as follows:

Iterations	Cross-entropy error (training dataset)
1000	0.616818027996214
10000	0.5847145522443018
100000	0.49370175927710563
1000000	0.43535260915252544

As the number of iterations increase the log loss/cross-entropy error on the training dataset decreases.

Comparing with standard function:

Using the "LogisticRegressionCV()" function from the skylearn library on the training-set.

Accuracy using inbuilt function = 0.8421052631578947

Accuracy using the gradient descent = 0.8157894736842105

Normalizing the data and changing eta:

Eta	Time Taken	No. of iterations before loop termination	Accuracy
0.000001	27.83063793182373	1000000	0.5657894736842105
0.000003	27.75358486175537	1000000	0.6710526315789473
0.000005	27.197702646255493	1000000	0.7039473684210527
0.000007	27.26084041595459	1000000	0.6973684210526315
0.000009	27.49708080291748	1000000	0.6907894736842105

Miner Username: ds18; Rank: 15; Accuracy score: 0.89; language used: python; Software requirement: google collab