Programming and Data Structures

Week 5 Assignment

Reminder: All work must be your own!

Question 1) Use the following selection sort algorithm to answer the questions below:

```
void swap(int *xp, int *yp) {
      int temp = *xp;
      *xp = *yp;
      *yp = temp;
}
// A function to implement selection sort
void selectionSort(int arr[], int n) {
      // One by one move boundary of unsorted subarray
      for (int i = 0; i < n-1; i++) {
            // Find the minimum element in unsorted array
            int min idx = i;
            for (int j = i+1; j < n; j++) {
                  if (arr[j] < arr[min idx]) {</pre>
                        min idx = j;
                        swap(&arr[min_idx], &arr[i]);
                  }
            }
      }
}
```

a) Identify the straight-line code in the above algorithm. You can describe or underline.

I have underlined the straight-line code in the above algorithm.

b) Fill in the following table that counts the number of times that the innermost piece of code will be executed.

Iteration #	Value of i	# of executions
1	0	n-1
2	1	n-2
3	2	n-3
•••		
n-1	n-2	n-(i+1)
n	n-1	0

c) Sum the last column of the table and simplify as much as you can.

The number of executions of the innermost piece of code is equal to $\sum_{i=1}^{n-1} i$. For example, an array of size 8 would execute the innermost piece of code 7+6+5+4+3+2+1=28 times.

d) Based on your answer to **c** what is the runtime of the algorithm?

We know that $\sum_{1}^{n} i = \frac{n*(n+1)}{2}$. Substituting "n-1" for "n" yields $\frac{n(n-1)}{2}$. The expression simplifies to $\frac{1}{2}(n^2-n)$. Dropping the constant " $\frac{1}{2}$ " and the lower-ordered term "n", the runtime of the selectionSort algorithm is $O(n^2)$.

Question 2) For each code snippet, state its runtime in terms of N, you can assume that the '...' represents straight line code.

a) for (int i = N; i >= 0; i -= 4) { ... }
$$\frac{0-N}{-4} = \frac{1}{4} * N$$

Runtime = O(N)

b) for (int i = 1; i < N; i *= 5)
$$\{ \dots \}$$

Loop will run until
$$5^k \ge N$$

 $\log_5(5^k) = \log_5 N$
 $k = \log_5 N$
Runtime = $O(\log(N))$

Outer loop:
$$\frac{N-0}{1} = O(N)$$

Inner loop will run until $\frac{N}{2^k} \le 0$
 $\log_2(2^k) = k = \log_2 N$

Inner loop: $O(\log(N))$

Since the two loops have no dependencies on variables, the total runtime is the product of the runtime of each loop.

 $Total\ Runtime = O(N * \log(N))$

Iteration	i	Inner Iterations
0	0	N
1	1	N-1
2	2	N-2
k	k	N-k
N	N	N-N = 0

$$\sum_{k=0}^{N} (N-k) = \frac{N(N+1)}{2} = \frac{1}{2}(N^2 + N)$$

Removing the constant and lower ordered term, the runtime is $O(N^2)$

Iteration	i	Inner Iterations
0	1	1
1	2	2
2	4	4
k	2^k	2^k
$Log_2(N)$	$2^{Log_2N} = N$	N

$$\sum_{k=0}^{\log_2 N} 2^k = \frac{2^{\log_2 N + 1} - 1}{2 - 1} = \frac{2N - 1}{1} = 2N - 1$$

Removing the constant terms yields a runtime of O(N)

Question 3) For each of the following function pairs (f & g), give an M and x_0 that holds that $f(x) \in O(g(x))$. You do not need to write a proof of such, just state an M and x_0 that the formula holds for. For some M and x_0 , $f(x) \le M * g(x)$, for all $x > x_0$. For all questions, it is true that f(x) = O(g(x)).

Hint: Consider setting the two formulas equal and solving for x.

a)
$$f(x) = 100x + 10$$

 $g(x) = 5x$

$$\frac{\mathbf{M} = 21}{\mathbf{X}_0 = 2}$$

b)
$$f(x) = 10x$$

 $g(x) = 1/2 x^2$

$$\mathbf{M} = 1$$
$$\mathbf{X}_0 = 20$$

c)
$$f(x) = 1000x^2$$

 $g(x) = x^3$

$$\mathbf{M} = 1$$
$$\mathbf{X}_0 = 1000$$

Question 4) For each of the following function pairs, use the limit rule to determine which of the following options best applies:

$$i) f(x) \in O(g(x))$$

ii)
$$f(x) \in \Omega(g(x))$$

iii)
$$f(x) \in \theta(g(x))$$

a)
$$f(x) = 3x^2$$

 $g(x) = 15x^2$

$$\left(\frac{3x^2}{15x^2}\right) = \frac{3}{15} = \lim_{x \to \infty} \left(\frac{3}{15}\right) = \frac{3}{15} = \frac{1}{5} = C$$

Therefore, iii) $f(x) \in \theta(g(x))$

b)
$$f(x) = x^2$$

 $g(x) = 3x^3$

$$\left(\frac{x^2}{3x^3}\right) = \frac{1}{3x} = \lim_{x \to \infty} \left(\frac{1}{3x}\right) = \frac{1}{\infty} = 0 = C$$

Therefore, i) $f(x) \in O(g(x))$

c)
$$f(x) = log_2(x)$$

 $g(x) = log_3(x)$

$$\lim_{x \to \infty} \left(\frac{\log_2 x}{\log_3 x} \right) = \frac{\infty}{\infty}$$

Apply L'Hopital's Rule.

Say $y = \log_2 x$ which is f(x) (the numerator). Then $2^y = x$.

$$y * \ln(2) = \ln(x)$$

$$\frac{dy}{dx} * \ln(2) = \frac{1}{x}$$

$$\frac{dy}{dx} = \frac{1}{x(\ln(2))}$$

The same can be done for the denominator g(x). Then we have:

$$\frac{\frac{1}{x * \ln(2)}}{\frac{1}{x * \ln(3)}} = \frac{\ln(3)}{\ln(2)} = C$$

Therefore, iii) $f(x) \in \theta(g(x))$

$$d) f(x) = x * log(x)$$
$$g(x) = 5x$$

$$\lim_{x \to \infty} \left(\frac{x \log(x)}{5x} \right) = \frac{\log(x)}{5} = \frac{\infty}{5} = \infty = C$$

Therefore, ii) $f(x) \in \Omega(g(x))$

e)
$$f(x) = 2^{\log 2(x)}$$

 $g(x) = 2x$

$$\lim_{x \to \infty} \left(\frac{2^{\log_2 x}}{2x} \right) = \frac{x}{2x} = \frac{1}{2} = C$$

Therefore, iii) $f(x) \in \theta(g(x))$