Dérivation et intégration

Terminale S

Dérivée et tangente

Nombre dérivé de f en $a: f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

Tangente au point A(a, f(a)) : y = f'(a)(x - a) + f(a)

Primitive

Primitive de f sur I : fonction F continue, dérivable sur I telle que F'(x)=f(x) pour tout $x\in I$

Tableau dérivée-primitive

Sous condition d'existence des fonctions :

		dérivée	k	x^n	\sqrt{x}	$\frac{1}{x}$	e^x	$\ln(x)$	$\cos(x)$	$\sin(x)$
		uerioce	0	$n x^{n-1}$	$\frac{1}{2\sqrt{x}}$	$-\frac{1}{x^2}$	e^x	$\frac{1}{x}$	$-\sin(x)$	$\cos(x)$
dérivée	u + v	$u \times v$	ku	u^n	\sqrt{u}	$\frac{u}{v}$	e^u	$\ln(u)$	$\cos(u)$	$\sin(u)$
	u' + v'	u'v + uv'	ku'	$nu'u^{n-1}$	$\frac{u'}{2\sqrt{u}}$	$\frac{u'v - uv'}{v^2}$	$u' e^u$	$\frac{u'}{u}$	$-u'\sin(u)$	$u'\cos(u)$

Variations d'une fonction

- $\Leftrightarrow f$ croissante sur $I \Longleftrightarrow f'(x) \geqslant 0$ pour tout $x \in I$
- $\Leftrightarrow f$ décroissante sur $I \iff f'(x) \leqslant 0$ pour tout $x \in I$
- \Rightarrow f constante sur $I \Longleftrightarrow f'(x) = 0$ pour tout $x \in I$

Propriétés des primitives

- ♦ Toute fonction continue admet des primitives
- \Rightarrow Primitives de f: fonctions G telles que G(x) = F(x) + k

primitiv

 \Rightarrow Si de plus $F(x_0) = y_0$, la primitive est unique

Intégrale

Intégrale de f positive sur [a,b]: aire du domaine délimité par la courbe représentative \mathcal{C}_f de f, l'axe des abscisses et les droites d'équations x=a et x=b.

On note cette intégrale : $\int_a^b f(x) dx$

L'aire est exprimée en unités d'aire (u.a.) qui correspond à l'aire du rectangle de côtés OI et OJ

Si f est négative, l'aire vaut $-\int_a^b f(x) dx$

Calcul d'intégrales

- \Rightarrow Soit f continue positive sur $[a\,;\,b]$, la fonction F définie sur $[a\,;\,b]$ par $F(x)=\int_a^x f(t)\,\mathrm{d}t$ est dérivable de dérivée F'(x)=f(x)
- $\Rightarrow \int_a^b f(x)dx = [F(x)]_a^b = F(b) F(a)$
- \Rightarrow Valeur moyenne de f sur $[a;b]: \mu = \frac{1}{b-a} \int_a^b f(x) dx$

Propriétés des intégrales

f et g sont deux fonctions continues sur [a; b]:

$$\Rightarrow \int_a^b f(x) + g(x) \, \mathrm{d}x = \int_a^b f(x) \, \mathrm{d}x + \int_a^b g(x) \, \mathrm{d}x$$

$$\Rightarrow \int_{a}^{b} \lambda f(x) \, \mathrm{d}x = \lambda \int_{a}^{b} f(x) \, \mathrm{d}x$$

$$\Rightarrow f(x) \ge 0 \Longrightarrow \int_a^b f(x) \, \mathrm{d}x \ge 0$$

$$\Rightarrow f(x) \le g(x) \Longrightarrow \int_a^b f(x) \, \mathrm{d}x \le \int_a^b g(x) \, \mathrm{d}x$$

♦ Relation de Chasles

$$\int_a^b f(x) \, \mathrm{d}x = \int_a^c f(x) \, \mathrm{d}x + \int_c^b f(x) \, \mathrm{d}x$$