Classical vs high-dimensional theory

Statistical Learning CLAMSES - University of Milano-Bicocca

Aldo Solari

References

 Sur, Candès, E. J. (2019). A modern maximum-likelihood theory for high-dimensional logistic regression. Proceedings of the National Academy of Sciences, 116, 14516–14525

Classical theory

- It concerns the behaviour when the *sample size* $n \to \infty$
- Suppose $Y_1,\ldots,Y_n\stackrel{i.i.d.}{\sim} Y_{p\times 1}$ with mean $\mu=\mathbb{E}(Y)$ and finite variance $\Sigma=\mathbb{V}\mathrm{ar}(Y)$
- Law of large numbers: the sample mean $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n Y_i$ converges in probability to μ
- Central limit theorem: the rescaled deviation $\sqrt{n}(\hat{\mu}_n \mu)$ converges in distribution to a centered Gaussian with covariance matrix Σ
- Consistency of maximum likelihood estimation
- Etc.

Suppose that we are given n=1000 samples from a statistical model in p=500 dimensions

Will theory that requires $n \to \infty$ with the dimension p remaining fixed provide useful predictions?

High-dimensional data

 The data sets arising in many parts of modern science have a "high-dimensional flavor", with p on the same order as, or possibly larger than n

$$p \gg n$$

- Classical "large n, fixed p" theory fails to provide useful predictions
- Classical methods can break down dramatically in high-dimensional regimes

Classification problem

- Let's turn to the classification problem involving the allocation of the observed unit *x* to one of two classes *A* and *B*
- For a Bayesian analysis suppose that the prior probabilities are $\pi_A \equiv P(Y=A)$ and $\pi_B \equiv P(Y=B)$ with $\pi_A + \pi_B = 1$. Then the posterior probabilities satisfy

$$\frac{P(Y=B|X=x)}{P(Y=A|X=x)} = \frac{\pi_B}{\pi_A} \frac{f_B(x)}{f_A(x)}$$

giving the class with the higher posterior probability

- As a special case, suppose that the two classes are distributed as multivariate Gaussians $X_A \sim N(\mu_A, I_p)$ and $X_B \sim N(\mu_B, I_p)$, with $\pi_A = \pi_B = 1/2$

Optimal decision

The optimal decision rule is to threshold the log-likelihood ratio

$$\Psi(x) = \langle \mu_A - \mu_B, \left(x - \frac{\mu_A + \mu_B}{2}\right) \rangle$$

where $\langle x, z \rangle = x^t z = \sum_{j=1}^p x_j z_j$ denotes the Euclidean inner product in \mathbb{R}^p

- If $\Psi(x) > 0$ then classify *A*, otherwise *B*
- Error probability of the optimal rule:

$$\operatorname{Err}(\Psi) = \frac{1}{2} P(\Psi(X_A) < 0) + \frac{1}{2} P(\Psi(X_B) \ge 0) = \Phi\left(-\frac{\gamma}{2}\right)$$

where $\gamma = \|\mu_A - \mu_B\|$, $\|\mu\| = \sqrt{\mu^t \mu}$, and Φ is the cdf of a standard normal variable

$$\langle \mu_A - \mu_B, \left(x - \frac{\mu_A + \mu_B}{2} \right) \rangle = 0$$

source: Wainwright

Linear Discriminant Analysis

– Fisher's LDA: uses the plug-in principle based on n_A samples from class A and n_B samples from class B

$$\hat{\Psi}(\mathbf{x}) = \langle \hat{\mu}_A - \hat{\mu}_B, \mathbf{x} - \frac{\hat{\mu}_A + \hat{\mu}_B}{2} \rangle$$

Error probability of LDA (is itself a random variable)

$$\operatorname{Err}(\hat{\Psi}) = \frac{1}{2} P(\hat{\Psi}(X_A) < 0) + \frac{1}{2} P(\hat{\Psi}(X_B) \ge 0)$$

- Classical theory: if $(n_A, n_B) \to \infty$ and p remains fixed, then $\hat{\mu}_A \overset{prob.}{\to} \mu_A$, $\hat{\mu}_B \overset{prob.}{\to} \mu_B$ and the asymptotic error probability is $\operatorname{Err}(\hat{\Psi}) \overset{prob.}{\to} \operatorname{Err}(\Psi) = \Phi(-\gamma/2)$

High-Dimensional Theory

- What happens if (n_A, n_B, p) → ∞ with
 - $p/n_A \rightarrow \delta$ with $\delta > 0$
 - $p/n_B \rightarrow \delta$
 - $-\|\mu_{A} \mu_{B}\|_{2} \to \gamma > 0$
- Kolmogorov (1960) showed that

$$\operatorname{Err}(\hat{\Psi}) \stackrel{prob.}{\to} \Phi\left(-\frac{\gamma^2}{2\sqrt{\gamma^2 + 2\delta}}\right)$$

- If $p/n \to 0$, then the asymptotic error probability is $\Phi(-\gamma/2)$ as is predicted by classical theory
- If $p/n \to \delta > 0$, then the asymptotic error probability is strictly larger than $\Phi(-\gamma/2)$

The error probability of $\hat{\Phi}$, for the finite triple

$$(p, n_A, n_B) = (400, 800, 800)$$

is better described by the classical $\Phi(-\gamma/2)$, or the high-dimensional analog $\Phi(-\gamma^2/(2\sqrt{\gamma^2+2\delta}))$?

circles correspond to the empirical error probabilities, averaged over 10 trials

What can help us in high dimensions?

- An important fact is that high-dimensional phenomena are unavoidable
- If the ratio p/n stays bounded strictly above zero, then it is not possible to achieve the optimal classification rate
- Our only hope is that the data is endowed with some form of low-dimensional structure

- What is the underlying cause of the inaccuracy of the prediction for the LDA in high-dimensions?
- The squared Euclidean error

$$\|\hat{\mu} - \mu\|^2 = \sum_{i=1}^p (\hat{\mu}_i - \mu_i)^2$$

concentrates sharply around p/n, i.e. for $t \in (0,1)$

$$P\left(\left|\|\hat{\mu}-\mu\|^2-\frac{m}{n}\right|\geq \frac{p}{n}t\right)=P\left(\left|\frac{1}{p}\sum_{j=1}^p Z_j^2-1\right|\geq t\right)\leq 2e^{-\frac{pt^2}{8}}$$

where $Z_j = \sqrt{n}(\hat{\mu}_j - \mu_j) \sim N(0, 1)$; for the upper bound see Wainwright (2019), Example 2.11

Sparsity

- Suppose that the *p*-vector μ is *sparse*, with only *s* of its *p* entries being nonzero, for some sparsity parameter $s \ll p$
- If sparsity holds, we can obtain a better estimator by thresholding the sample means

$$\tilde{\mu}_j = \hat{\mu}_j \mathbb{1}\{|\hat{\mu}_j| > \lambda\}$$

where

$$\lambda = \sqrt{\frac{2\log p}{n}}$$

Thresholded mean

Suppose to replace $\hat{\mu}$ by the thresholded mean $\tilde{\mu}$, then

$$ilde{\Psi}(extbf{ extit{x}}) = \langle ilde{\mu}_{ extit{A}} - ilde{\mu}_{ extit{B}}, extit{ extit{x}} - rac{ ilde{\mu}_{ extit{A}} + ilde{\mu}_{ extit{B}}}{2}
angle$$

approaches the optimal $\operatorname{Err}(\Psi)$ if $\log \binom{p}{s}/n \to 0$. For s=5:

circles correspond to the empirical error probabilities, averaged over 10 trials