逸出功的测量-实验报告

姓名: <u>夏弘宇</u> 学号: <u>2023011004</u> 实验日期: <u>20250305</u> 实验组/台号: <u>L4</u> 【实验目的】

- 1. 了解热电子发射的规律。
- 2. 掌握里查孙直线法,测定阴极材料(钨)的电子逸出功的方法。
- 3. 了解真空电子管的发展历程、电子二极管的结构及实现原理。

【实验仪器】

- KEITHLEY2231A 型直流稳压稳流电源
- UTP1003S 型直流稳压稳流电源
- 数字电压表 (mV): 量程 200mV
- •实验板:安装有标准二极管,灯丝 KH 两端已经并联由两个相同电阻 R(千 欧量级) 串联而成的电阻,两个电阻的连接点用 C表示。
 - 导线
 - 实验面包板及元件:可以搭建如图 8 所示的线路。

图 8 电压 Ue'、Ua测量电路

【数据处理】

1. 记录的原始数据

其中的温度数值是通过查表+相邻数据线性插值得到的,代码及结果如下

```
from scipy import interpolate
                                                                                0.50
                                                                                        1726.0
                                                                                0.51
                                                                                        1742.6
# 原始数据
                                                                                0.52
                                                                                        1759.2
                                                                                0.53
                                                                                        1775.8
A_{\text{original}} = [0.500, 0.550, 0.600, 0.650, 0.700, 0.750]
                                                                                0.54
                                                                                        1792.4
T original = [1726, 1809, 1901, 1975, 2059, 2136]
                                                                                0.55
                                                                                        1809 0
                                                                                0.56
                                                                                        18274
                                                                                        1845.8
                                                                                0.57
                                                                                0.58
                                                                                        1864.2
                                                                                        1882.6
                                                                                0.59
f = interpolate.interp1d(A original, T original, kind='linear'
                                                                                0.60
                                                                                        1901.0
                                                                                0.61
                                                                                        1915.8
                                                                                0.62
                                                                                        1930.6
                                                                                0.63
                                                                                        1945.4
                                                                                0.64
                                                                                        1960.2
print("A\t\tT(K)")
                                                                                0.65
                                                                                        1975.0
                                                                                0.66
                                                                                        1991.8
                                                                                0.67
                                                                                        2008.6
                                                                                0.68
                                                                                        2025 4
                                                                                0.69
                                                                                        2042.2
for a_value in range(50, 76): # 从50到75, 对应0.50到0.75
                                                                                0.70
                                                                                        2059 0
     a = a_value / 100.0 # 转换为浮点数
                                                                                0.71
                                                                                        2074 4
                                                                                0.72
                                                                                        2089 8
     t = f(a) # 计算插值
                                                                                        2105.2
                                                                                0.73
                                                                                0.74
                                                                                        2120.6
     print(f"{a:.2f}\t\t{t:.1f}")
                                                                                0.75
                                                                                        2136.0
```

段样电阻 (Ω	If (A)/T(K)	a(V)/Ue'(mV	1	2	3	4	5	6	7	8
2700	0.5	Ua	23.73	33.72	43.7	53.7	63.69	73.69	83.68	93.68
2700	1726	Ue'	2.84	2.89	2.94	2.97	3.04	3.08	3.09	3.12
2700	0.54	Ua	23.55	33.57	43.54	53.54	63.53	73.58	83.51	93.52
2700	1792.4	Ue'	10.25	10.45	10.6	10.74	10.89	11.02	11.14	11.25
2700	0.58	Ua	23.37	33.36	43.33	53.33	63.33	73.33	83.32	93.31
2700	1864.2	Ue'	32.28	32.95	33.46	33.89	34.28	34.65	35	35.34
2700	0.62	Ua	23.18	33.16	43.16	53.15	63.15	73.14	83.13	93.13
2700	1930.6	Ue'	92.24	93.84	95.19	96.28	97.38	98.45	99.47	100.16
270	0.66	Ua	22.96	32.95	42.93	52.92	62.92	72.91	82.91	92.91
270	1991.8	Ue'	24.24	24.67	24.95	25.38	25.46	25.73	25.98	26.19
270	0.7	Ua	22.75	32.75	42.73	52.73	62.71	72.71	82.7	92.7
270	2059	Ue'	58.35	59.34	60.14	60.88	61.47	62.11	62.64	63.11

2. 消除肖特基效应影响, 计算准确的 I e 值

$$\lg I_e ' = \lg I_e + \frac{4.39}{2.303T} \frac{1}{\sqrt{r_1 \ln \left(r_2/r_1\right)}} \sqrt{U_a}$$

由上述线性关系,每两行数据可以拟合一条直线,得出一个 T 下的 I_e 值。代码如下:

```
# 记录每个温度下拟合得到的截距(即lg(I_e))
I e data = {} # 将存储温度T和对应的I e值
# 创建结果保存表格
for i, (If, values) in enumerate(data.items()):
   T = values["T"]
   # 计算I'e (mA)
   I_e = [ue / values["R"] for ue in values["Ue"]] # 单位为A
   I_e = [ie * 1000 for ie in I_e] # 转换为mA
   # 计算sqrt(Ua)和lg(I'e)
   sqrt_Ua = [math.sqrt(ua) for ua in values["Ua"]]
   lg_Ie = [math.log10(ie) for ie in I_e]
   # 线性拟合
   slope, intercept = np.polyfit(sqrt_Ua, lg_Ie, 1)
   r = np.corrcoef(sqrt_Ua, lg_Ie)[0, 1]
   # 保存截距值,这是lg(I e)
   I_e_data[T] = intercept
   # 计算拟合线
   fit_line = [slope * x + intercept for x in sqrt_Ua]
```

得到如下图像:

输出的信息: 零场发射电流 I e 值:

T = 1726K: $lg(I_e) = -0.0213$, $I_e = 9.5215e-01$ mA T = 1792.4K: $lg(I_e) = 0.5387$, $I_e = 3.4574e+00$ mA T = 1864.2K: $lg(I_e) = 1.0397$, $I_e = 1.0958e+01$ mA T = 1930.6K: $lg(I_e) = 1.4980$, $I_e = 3.1478e+01$ mA T = 1991.8K: $lg(I_e) = 1.9214$, $I_e = 8.3442e+01$ mA T = 2059K: $lg(I_e) = 2.3017$, $I_e = 2.0033e+02$ mA

3. 利用里查孙直线法计算逸出功的值

$$\lg \frac{I_e}{T^2} = \lg AS - 5.039 \times 10^3 \frac{\varphi}{T}$$

依据上述线性关系,以及第二步中得出的6组数据,可以拟合一条直线,此时我们关注直线的斜率。代码如下:

```
# 第二步: 根据Richardson-Dushman方程拟合 lg(I_e/T^2) vs 1/T plt.figure(figsize=(10, 6))

# 处理之前得到的裁距(lg(I_e))数据

temps = list(I_e_data.keys())
lg_I_es = list(I_e_data.values())

# 计算1g(I_e/T^2)和1/T
x_data = [1/T for T in temps] # 1/T
y_data = [lg_I_e - 2*math.log10(T) for lg_I_e, T in zip(lg_I_es, temps)] # lg(I_e/T^2) = lg(I_e) - lg(T^2)

# 线性拟合
slope, intercept = np.polyfit(x_data, y_data, 1)
r = np.corrcoef(x_data, y_data)[0, 1]

# 计算拟合线
x_fit = np.linspace(min(x_data), max(x_data), 100)
y_fit = [slope * x + intercept for x in x_fit]
```

计算步骤如下,直接推导了原始式子,在计算过程中更为精确

```
k = 1.380649e-23 # 玻尔兹曼常数 J/K
e = 1.602176634e-19 # 电子电荷 C
# 逸出功计算: φ = -k*slope/e * ln(10)
phi = -k * slope / e * math.log(10)
```

拟合结果图示如下

输出的计算结果如下:

斜率 = -2.3146e+04

截距 = 6.9250

相关系数 r=-0.9998

逸出功 Φ = 4.5927 eV

得出结论, 所测逸出功为 4.5927eV。

查阅资料知钨电子逸出功为 4.54eV

相对误差
$$E = \frac{|\phi - \phi_0|}{\phi} \times 100\% = \frac{|4.54 - 4.5927|}{4.54} = 1.16\%$$

【实验总结】

本实验的巧妙之处在于通过取对数、作图拟合等方法,消除了肖特基效应的影响,并绕开了 A、S 等物理量的测量,难点在于理解实验原理后电路的搭建。总体说来,以下几点是本次实验的收获与总结:

本次实验总计要拟合 7 组数据,用 excel 半自动地处理工作量自然很大,因此我在本次实验中数据处理的部分利用 Python 既有的线性拟合库以及便捷的向量处理简化了上述过程,并使得数据在中间过程几乎不会丢失精度,极大提高了数据处理的效率。

作为电学实验,实验数据的准确度也比较高,在拟合过程中,可以看到|r|值非常接近于1,拟合误差很小,最终的结果也可以看出相对误差仅1%。

实验过程中,一开始我发现测得的U'e 仅有不到3mV,身边同学基本是20mV 左右及以上,就怀疑实验仪器有问题。但经过分析,以及实验后续结果测试后,发现这事实上是在预期范围内的。经思考,这应该是因为不同的灯丝情况不同,自然会有个体差异。所以不应该直接从数值上与周边同学进行对比,而是在原理上验证自身数据的合理性。

最后感谢助教老师在实验过程中对我的悉心指导,受益匪浅!

【原始数据记录】

附录 实验测量数据记录参考表格

实验题目: 海出功的测量

(1)灯丝电流 I_f 从 0.500A 开始,每改变 0.025~0.03A(最大电流不超过 0.700A)测定加速电压 U_a 和阳 极电流 I_e' (采样电阻上的电压 U_e')的关系:

 $(2)U_a$ 从 25V 开始逐步增加,最大不超过 100V。每个灯丝温度下测 7 组数据,按照 U_a 从低到高的顺序测量。

(3)灯丝电流 I_f 对应的灯丝温度 T由表 1中相邻两组数据采用线性插值法计算得出。

采样电阻 (Ω)	$I_f(A)/T(K)$	$U_a(V)/U_e'(mV)$	1	2	3	4	5	6	7	8
$R_e = 2.7k$	$I_{11} = 0.5$	$U_a=$	23.73	33.72	43.70	53.70	63.69	73.69	83.68	93.68
	T1= 1726	U_e '=	2.84	2.89	2.94	2.97	3.04	3.08	3.09	3.12
Re=2.7k	In= 0.54	$U_a=$	23.55	33 57	43.54	53.54	63.53	73 58	83.51	93.52
2.15	Ti=1792.4	<i>U_e</i> '=	10.25	10.45	10.60	10.74	10.89	11.02	11.14	11.25
Re=2.7K	In= 0.58	$U_a=$	23.37	33.36	43.33	53.33	63.33	73.33	83.32	93.31
2.10	T1=1864.2	U_e '=	32.28	32.95	33.46	33.89	34.28	34.65	35.00	35.34
Re=2.7K	In= 0.62	$U_a=$	23,18	33.4	43.6	53.15	63.15	73, 14	83.13	93 13
2.70	T1=1930.6	U_e =	92.24	9384		96.28	97.38	98.45	99.41	100.16
Re = 270	In= 0.66	$U_a=$	22.96	32.95	42.93	52.92	6292	72.91	82.91	9291
	$T_1 = 1991.8$	U_e =	24.24	24.67	24.95	25.38	25.46	25.73	25.98	26.19
$R_e = 270$	In= D]	U_a	22.75	32.75	42.73	52.73	62.71	72.71	82.70	92.70
	$T_1 = 2059.0$	Ue'	\$8.35	59.34	60.14	60.88	61.47	62.11	62.64	63.11

张森主. 2025.3.5

【完整代码】

1. 插值.py

```
from scipy import interpolate

# 原始数据
A_original = [0.500, 0.550, 0.600, 0.650, 0.700, 0.750]
T_original = [1726, 1809, 1901, 1975, 2059, 2136]

# 创建线性插值函数
f = interpolate.interp1d(A_original, T_original, kind='linear')

# 打印表头
print("A\t\tT(K)")
```

```
# 生成从 0.50 到 0.75, 步长为 0.01 的 A 值, 并计算对应的 T 值
for a_value in range(50, 76): # 从 50 到 75, 对应 0.50 到 0.75
a = a_value / 100.0 # 转换为浮点数
t = f(a) # 计算插值
    print(f"{a:.2f}\t\t{t:.1f}")
```

2. 数据处理与画图.py

```
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
import math
import sys
# 设置全局字体为黑体
plt.rcParams['font.sans-serif'] = ['SimHei']
#解决坐标轴负号显示问题
plt.rcParams['axes.unicode minus'] = False
class OutputRedirector:
   def init (self, filename):
       self.terminal = sys.stdout
       self.file = open(filename, 'w', encoding='utf-8')
   def write(self, message):
       self.terminal.write(message)
       self.file.write(message)
   def flush(self):
       self.terminal.flush()
       self.file.flush()
   def close(self):
       self.file.close()
# 设置输出重定向
sys.stdout = OutputRedirector('实验结果.txt')
# 实验数据
data = {
   # If(A), T(K), 采样电阻(Ω), [Ua1...Ua8](V),
[Ue'1...Ue'8](mV)
   0.50: {"T": 1726, "R": 2700, "Ua": [23.73, 33.72, 43.7,
53.7, 63.69, 73.69, 83.68, 93.68],
```

```
"Ue": [2.84, 2.89, 2.94, 2.97, 3.04, 3.08, 3.09,
3.12]},
   0.54: {"T": 1792.4, "R": 2700, "Ua": [23.55, 33.57, 43.54,
53.54, 63.53, 73.58, 83.51, 93.52],
          "Ue": [10.25, 10.45, 10.6, 10.74, 10.89, 11.02,
11.14, 11.25]},
   0.58: {"T": 1864.2, "R": 2700, "Ua": [23.37, 33.36, 43.33,
53.33, 63.33, 73.33, 83.32, 93.31],
          "Ue": [32.28, 32.95, 33.46, 33.89, 34.28, 34.65, 35,
35.34]},
   0.62: {"T": 1930.6, "R": 2700, "Ua": [23.18, 33.16, 43.16,
53.15, 63.15, 73.14, 83.13, 93.13],
          "Ue": [92.24, 93.84, 95.19, 96.28, 97.38, 98.45,
99.47, 100.16]},
   0.66: {"T": 1991.8, "R": 270, "Ua": [22.96, 32.95, 42.93,
52.92, 62.92, 72.91, 82.91, 92.91],
          "Ue": [24.24, 24.67, 24.95, 25.38, 25.46, 25.73,
25.98, 26.19]},
   0.70: {"T": 2059, "R": 270, "Ua": [22.75, 32.75, 42.73,
52.73, 62.71, 72.71, 82.7, 92.7],
          "Ue": [58.35, 59.34, 60.14, 60.88, 61.47, 62.11,
62.64, 63.11]}
# 第一步: 创建图 1: lg(I'e) ~ sqrt(Ua)
plt.figure(figsize=(10, 6))
colors = ['red', 'blue', 'green', 'purple', 'orange', 'brown']
markers = ['o', 's', '^', 'D', 'x', '*']
# 记录每个温度下拟合得到的截距(即 lg(I e))
|I e data = {} # 将存储温度 T 和对应的 I e 值
# 创建结果保存表格
for i, (If, values) in enumerate(data.items()):
   T = values["T"]
   # 计算 I'e (mA)
   I e = [ue / values["R"] for ue in values["Ue"]] # 单位为 A
   I_e = [ie * 1000 for ie in I_e] # 转换为 mA
   # 计算 sqrt(Ua)和 lg(I'e)
```

```
sqrt_Ua = [math.sqrt(ua) for ua in values["Ua"]]
   lg Ie = [math.log10(ie) for ie in I e]
   # 线性拟合
   slope, intercept = np.polyfit(sqrt_Ua, lg_Ie, 1)
   r = np.corrcoef(sqrt Ua, lg Ie)[0, 1]
   # 保存截距值,这是 lg(I e)
   I_e_data[T] = intercept
   # 计算拟合线
   fit_line = [slope * x + intercept for x in sqrt_Ua]
   # 绘制散点和拟合线
   plt.scatter(sqrt_Ua, lg_Ie, marker=markers[i],
color=colors[i], s=50)
   plt.plot(sqrt Ua, fit line, color=colors[i],
            label=f'If={If}A, T={T}K,
y={slope:.3f}x+{intercept:.5f}, r={r:.3f}')
plt.xlabel('\frac{U}{y} a} (\frac{V^{1/2}}{y}, fontsize=12)
plt.ylabel('$lg(I\' e) (lg(mA))$', fontsize=12)
plt.title('l$g(I\' e) \sim \sqrt{U a}$线性拟合', fontsize=14)
plt.grid(True)
plt.legend(loc='best', fontsize=9)
plt.tight layout()
plt.savefig('lg Ie vs sqrt Ua fitted.png', dpi=300)
# 第二步: 根据 Richardson-Dushman 方程拟合 lg(I e/T^2) vs 1/T
plt.figure(figsize=(10, 6))
# 处理之前得到的截距(lg(I e))数据
temps = list(I e data.keys())
lg I es = list(I e data.values())
# 计算 lg(I e/T^2)和 1/T
x_{data} = [1/T for T in temps] # 1/T
y data = [lg I e - 2*math.log10(T) for lg I e, T in
zip(lg_I_es, temps)] # lg(I_e/T^2) = lg(I_e) - lg(T^2)
# 线性拟合
slope, intercept = np.polyfit(x data, y data, 1)
```

```
r = np.corrcoef(x_data, y_data)[0, 1]
# 计算拟合线
x_fit = np.linspace(min(x_data), max(x_data), 100)
y_fit = [slope * x + intercept for x in x_fit]
# 绘制散点和拟合线
plt.scatter(x_data, y_data, marker='o', s=60, color='blue')
plt.plot(x_fit, y_fit, '--', color='red',
        label=f'拟合线: y={slope:.5e}x+{intercept:.2f},
r = \{r : .4f\}'
plt.xlabel('$1/T ~~ (K^{-1})$', fontsize=12)
plt.ylabel('\frac{I e}{T^2} \sim (lg(mA/K^2))',
fontsize=12)
plt.title('$lg\\frac{I_e}{T^2} \sim \\frac{1}{T}$',
fontsize=14)
plt.grid(True)
plt.legend(loc='best', fontsize=10)
plt.tight layout()
plt.savefig('Richardson_Dushman_fit.png', dpi=300)
# 计算物理量: 逸出功
# 根据 Richardson-Dushman 方程: ln(I e/T^2) = ln(A) - eφ/(kT)
# 斜率 = -e\phi/(k*ln(10))
k = 1.380649e-23 # 玻尔兹曼常数 J/K
e = 1.602176634e-19 # 电子电荷 C
# 逸出功计算: \phi = -k*slope/e * ln(10)
phi = -k * slope / e * math.log(10)
plt.show()
# 打印逸出功结果到一个表格
print("\n======= 实验结果总结 =======")
print("零场发射电流 I e 值:")
for T, lg_I_e in I_e_data.items():
   I e = 10**lg I e # 单位为 mA
   print(f"T = {T}K: lg(I_e) = {lg_I_e:.4f}, I_e = {I_e:.4e}
mA")
print(f"\n 斜率 = {slope:.4e}")
```

```
print(f"截距 = {intercept:.4f}")
print(f"相关系数 r = {r:.4f}")
print(f"逸出功 φ = {phi:.4f} eV")

sys.stdout.close()
# 恢复标准输出
    sys.stdout = sys.__stdout__
```