

#### Departamento de Matemática Aplicada

# E. T. S. I. Informática - 19/11/2012

Segundo examen parcial - Curso 2012/2013

## Cálculo para la Computación

Grados Ing. Informática, Sotware y Computadores

| Apellidos y Nombre: |                                                                                                                                                                                                                                     |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DNI:                | Titulación: Grupo: Grupo:                                                                                                                                                                                                           |
| Normas par          | ra la realización del examen:                                                                                                                                                                                                       |
|                     | eben justificar adecuadamente las respuestas<br>car los resultados más importantes que se aplican en cada momento.                                                                                                                  |
| ■ Se de             | ebe escribir con bolígrafo azul o negro (no usar lápiz).                                                                                                                                                                            |
| ■ No se             | e puede utilizar la calculadora.                                                                                                                                                                                                    |
| 1. (Hasta           | a $1$ punto) Determine si las siguientes funciones son, o no son, infinitésimos equivalentes en $0$ . $f(x)=x\mathrm{e}^x-\sin x$ y $g(x)=x^2$                                                                                      |
| 2. (Hasta           | a <b>2</b> puntos) Consideremos la ecuación                                                                                                                                                                                         |
|                     | $x^3 + x^2 = 1$                                                                                                                                                                                                                     |
| <i>b</i> ) F        | Utilice el método de Newton para definir una sucesión convergente a una solución de la ecuación.  Para la sucesión anterior, proporcione una acotación del error al tomar cada término de la sucesión como solución de la ecuación. |
| 3. (Hasta           | a $2,5$ puntos) Determine el campo de convergencia de la serie de potencias                                                                                                                                                         |
|                     | $\sum_{n=0}^{\infty} \frac{(n!)^3}{(3n)!} (x-5)^n$                                                                                                                                                                                  |
| 4. (Hasta           | a <b>2</b> puntos) Sume la serie de potencias                                                                                                                                                                                       |
|                     | 00 2 4                                                                                                                                                                                                                              |

5. (Hasta 2,5 puntos) Considere la función  $f(x)=x\cos(x^2)$ . Utilize las series de Taylor para aproximar  $f\left(\frac{1}{2}\right)$  con tres cifras decimales exactas.



## FORMULARIO - Tema 2 - Cálculo para la Computación

Grados Ing. Informática, Sotware y Computadores E. T. S. I. Informática - Curso 2012/2013

### Criterios de convergencia de sucesiones:

$$lacksquare$$
 Stöltz: lím  $rac{a_n}{b_n}=$  lím  $rac{a_{n+1}-a_n}{b_{n+1}-b_n}$ 

$$lacksquare$$
 Raíz-Cociente: lím  $\sqrt[n]{x_n}=\limrac{x_{n+1}}{x_n}$ 

Infinitos/infinitésimos equivalentes:

$$\sin x \sim x$$
 $ag x \sim x$ 
 $1-\cos x \sim x^2/2$ 
 $rc \sin x \sim x$ 
 $rc tg x \sim x$ 
 $rc tg x \sim x$ 
 $lpha^x - 1 \sim x$ 
 $lpha^x - 1 \sim x$ 
 $1+1/2+\cdots+1/n \sim \log n$ 
 $n^n e^{-n} \sqrt{2\pi n} \sim n!$ 

## Métodos numéricos:

■ Bisecciones: f(a)f(b) < 0

$$egin{aligned} r_0 &= a \ r_1 &= b \end{aligned} \} \quad r_{n+1} &= rac{r_n + r_m}{2} \ m &= \max\{k < n \mid f(r_n) \cdot f(r_k) < 0\} \ \ arepsilon_n &= |r_n - lpha| \leq rac{b-a}{2^{n-1}} \end{aligned}$$

■ Newton: f(a)f(b) < 0,  $f'(x) \neq 0 \neq f''(x)$ 

$$a_0 = \left\{egin{array}{ll} a & ext{si} & f(a)f''(a) > 0 \ b & ext{si} & f(a)f''(a) < 0 \end{array}
ight. \ a_{n+1} = a_n - rac{f(a_n)}{f'(a_n)} \ & arepsilon_n = |a_n - lpha| < \left|rac{f(a_n)}{m}
ight| \ & m \leq \min\{|f'(a)|, |f'(b)|\} \end{array}$$

lacksquare Punto medio:  $x_k = a + k rac{b-a}{n}$ 

$$egin{aligned} t_n &= rac{b-a}{n} \sum_{k=1}^n f\left(rac{x_{k-1} + x_k}{2}
ight) \ &\left|t_n - \int_a^b f(x)\,dx
ight| \leq rac{M(b-a)^3}{24n^2} \ &M = ext{máx}\{|f''(x)|: a \leq x \leq b\} \end{aligned}$$

#### Criterio de convergencia de series:

lacksquare Condensación:  $\sum a_n \sim \sum 2^k a_{2^k}$ 

lacksquare Comparación:  $\sum a_n \sim \sum b_n$  si lím  $rac{a_n}{b_n} \in (0,\infty)$ 

lacksquare Raíz/Cociente:  $\ell = \lim \sqrt[n]{a_n}$  ó  $\ell = \lim rac{a_{n+1}}{a_n}$ 

ullet Si  $\ell < 1$  la serie  $\sum a_n$  converge

ullet Si  $\ell > 1$  la serie  $\sum a_n$  diverge

Acotación del error para el criterio del cociente:

$$r_n=rac{a_{n+1}}{a_n}\leq r<1$$
 para todo  $n\geq N$   $S-S_N\leqrac{a_{N+1}}{1-r}$   $r=\limrac{a_{n+1}}{a_n}$  si  $r_n$  creciente  $r=r_N<1$  si  $r_n$  decreciente

lacksquare Raabe:  $\ell = \lim n \left( 1 - rac{a_{n+1}}{a_n} 
ight)$ 

ullet Si  $\ell > 1$  la serie  $\sum a_n$  converge

ullet Si  $\ell < 1$  la serie  $\sum a_n$  diverge

lacksquare Leibniz:  $\sum (-1)^n a_n$  converge si  $a_n \downarrow 0$ 

$$|S - S_N| \le a_{N+1}$$

#### Series de Potencias-Taylor

lacktriangle Teorema de Lagrange: Existe c entre x y  $x_0$  y tal que:

$$E_n = f(x) - T_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

$$lacksquare e^x = \sum_{n=0}^\infty rac{x^n}{n!} \ , \ x \in \mathbb{R}$$

• 
$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$
 ,  $x \in \mathbb{R}$ 

$$\bullet \cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} \quad , \quad x \in \mathbb{R}$$

$$\qquad \qquad \blacksquare \quad (1+x)^\alpha = \sum_{n=0}^\infty \binom{\alpha}{n} x^n \ \begin{cases} x \in [-1,1] & \alpha > 0 \\ x \in (-1,1] & -1 < \alpha < 0 \\ x \in (-1,1) & \alpha \leq -1 \end{cases}$$

$$lacksquare \cot x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} \ , \ |x| \leq 1$$