■ Chapitre 4 ■

Déterminants

Notations.

- \blacksquare \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .
- $\blacksquare n$ désigne un entier naturel non nul.
- $\blacksquare E$ désigne un \mathbb{K} -espace vectoriel de dimension n.

I. Déterminants de matrices carrées

I.1 Définition

Définition 1 (Alternée, Antisymétrique).

Soit $f: \mathcal{M}_n(\mathbb{K}) \to \mathbb{K}$.

- (i). f est multilinéaire si, pour tous $(X_1, \ldots, X_n) \in \mathscr{M}_{n,1}(\mathbb{K})^n$ et $i \in [1, n]$, l'application $x \mapsto f([X_1, \ldots, X_{i-1}, x, X_{i+1}, \ldots, X_n])$ est une forme linéaire.
- (ii). La forme linéaire f est alternée si pour tous $(X_1, \ldots, X_n) \in \mathcal{M}_{n,1}(\mathbb{K})^n$ et $(i, j) \in [1, n]^2$ tel que $1 \leq i < j \leq n$,

 $f([X_1,\ldots,X_{i-1},X_i,X_{i+1},\ldots,X_{j-1},X_i,X_{j+1},\ldots,X_n])=0.$

(iii). La forme linéaire f est antisymétrique si pour tous $(X_1, \ldots, X_n) \in \mathcal{M}_{n,1}(\mathbb{K})^n$ et $(i,j) \in [1,n]^2$ tel que $1 \leq i < j \leq n$,

 $f([X_1, \dots, X_{i-1}, X_i, X_{i+1}, \dots, X_{j-1}, X_j, X_{j+1}, \dots, X_n]) = -f([X_1, \dots, X_{i-1}, X_j, X_{i+1}, \dots, X_{j-1}, X_i, X_{j+1}, \dots, X_n])$

Exercice 1. Soit $f: \mathcal{M}_2(\mathbb{K}) \to \mathbb{K}$ une forme bilinéaire antisymétrique et alternée. Pour toute matrice M, exprimer f(M) en fonction de $f(I_2)$.

Propriété 1 (Alternée et Antisymétrique).

Soit $f: \mathcal{M}_n(\mathbb{K}) \to \mathbb{K}$ une forme multilinéaire. L'application f est alternée si et seulement si elle est antisymétrique.

Théorème 1.

L'ensemble des formes multilinéaires alternées sur $\mathcal{M}_n(\mathbb{K})$ est un \mathbb{K} -espace vectoriel de dimension 1.

Définition 2 (Déterminant).

L'unique forme multilinéaire alternée sur $\mathcal{M}_n(\mathbb{K})$ satisfaisant $f(I_n) = 1$ est le déterminant, notée det.

Exercice 2.

- **1.** Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Exprimer $\det(M)$.
- **2.** Soit $M = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$. Exprimer $\det(M)$.

I.2 Premières propriétés

Les matrices d'opérations élémentaires sont :

- Les dilatations : $D_i(\lambda) = \text{Diag}(1, \ldots, 1, \lambda, 1, \ldots, 1)$, où $\lambda \neq 0$ est à la position i.
- Les transpositions : $P_{i,j} = (I_n E_{i,i} E_{j,j}) + E_{i,j} + E_{j,i}$.
- Les transvections : $T_{i,j}(\lambda) = I_n + \lambda E_{i,j}$.

Propriétés 2 (Opérations élémentaires).

Soit $A \in \mathscr{M}_n(\mathbb{K})$.

- (i). $\det(AD_i(\lambda)) = \lambda \det(A)$.
- (ii). $\det(AP_{i,j}) = -\det(A)$. (iii). $\det(AT_{i,j}(\lambda)) = \det(A)$.

Exercice 3. Calculer $\det(D_i(\lambda))$, $\det(P_{i,j})$ et $\det(T_{i,j}(\lambda))$ ainsi que le déterminant de leurs transposées.

Propriété 3 (Matrices triangulaires).

Soit
$$T = (t_{i,j})_{1 \leq i,j \leq n}$$
 une matrice triangulaire. Alors, $\det(T) = \prod_{k=1}^{n} t_{k,k}$.

Exercice 4.

- **1.** Soit $D = \text{Diag}(\lambda_1, \dots, \lambda_n)$. Calculer $\det(D)$.
- **2.** Soit $(s_1, \ldots, s_n) \in \mathbb{K}^n$. Déterminer $\Delta_n = \begin{vmatrix} s_1 & s_1 & \cdots & s_1 \\ s_1 & s_2 & \cdots & s_2 \\ \vdots & \vdots & \ddots & \end{vmatrix}$.

Théorème 3 (Inversibilité).

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors, A est inversible si et seulement si $\det(A) \neq 0$.

Exercice 5.

- 1. Déterminer l'équation cartésienne de la droite de \mathbb{R}^2 passant par le point A de coordonnées (x_0, y_0) et dirigée par le vecteur non nul \overrightarrow{u} de coordonnées (u_1, u_2) .
- **2.** Déterminer l'équation cartésienne du plan de \mathbb{R}^3 passant par le point A de coordonnées (x_0, y_0, z_0) et dirigé par les vecteurs non colinéaires $(\overrightarrow{u}, \overrightarrow{v})$ de coordonnées respectives (u_1, u_2, u_3) et (v_1, v_2, v_3) .

Corollaire 4 (Forme multiplicative).

Soit
$$(A, B) \in \mathcal{M}_n(\mathbb{K})^2$$
. Alors, $\det(AB) = \det(A)\det(B)$.

Exercice 6. Montrer que le déterminant est un invariant de similitude.

Théorème 5 (Transposée).

Soit
$$M \in \mathscr{M}_n(\mathbb{K})$$
. Alors, $\det(A) = \det({}^tA)$.

Exercice 7. Exprimer le déterminant des matrices triangulaires inférieures en fonction de leurs coefficients diagonaux.

Chapitre 4. Déterminants PSI

I.3 Développement selon les lignes / colonnes

On suppose dans cette partie que $n \ge 2$.

<u>Définition 3 (Cofacteurs).</u>

Soient $A = (a_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{K})$ et $i, j \in [1,n]$. On note Δ_{ij} le déterminant de la matrice de $\mathcal{M}_{n-1}(\mathbb{K})$ obtenue à partir de A en supprimant la ligne i et la colonne j.

- (i). Le mineur d'indice i, j de A est Δ_{ij} .
- (ii). Le cofacteur d'indice i, j de A est $(-1)^{i+j}\Delta_{ij}$.

Chapitre 4. Déterminants

Théorème 6 (Développement selon une ligne / colonne).

Soit $A = (a_{ij})_{1 \leq i,j \leq n} \in \mathscr{M}_n(\mathbb{K})$.

(i). Pour tout
$$j \in [1, n]$$
, $\det(A) = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} \Delta_{ij}$

(i). Pour tout
$$j \in [1, n]$$
, $\det(A) = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} \Delta_{ij}$.
(ii). Pour tout $i \in [1, n]$, $\det(A) = \sum_{j=1}^{n} a_{ij} (-1)^{i+j} \Delta_{ij}$.

Exercice 8.

1. Soit
$$x \in [-1, 1]$$
. Déterminer $A_n(x) = \begin{vmatrix} 2x & 1 & & 0 \\ 1 & 2x & \ddots & \\ & \ddots & \ddots & 1 \\ 0 & & 1 & 2x \end{vmatrix}$.

2. Soit $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$. Montrer que si A et B sont semblables sur \mathbb{C} , alors elles sont semblables sur \mathbb{R} .

PSI

Propriété 4 (Déterminant par blocs).

Soient
$$T_1, \ldots, T_p$$
 des matrices carrées et $A = \begin{pmatrix} T_1 & * & \cdots & * \\ 0 & T_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & T_p \end{pmatrix}$. Alors,
$$\det(A) = \prod_{i=1}^p \det(T_i).$$

Exercice 9.

1. Soit
$$(a, b, c, d, \alpha, \beta, \gamma, \delta) \in \mathbb{K}^4$$
. Calculer $\begin{vmatrix} a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & \gamma & \delta \end{vmatrix}$.
2. Soit $(A, B, C, D) \in \mathcal{M}_n(\mathbb{K})^4$. A-t-on $\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A)\det(D) - \det(B)\det(C)$?

2. Soit
$$(A, B, C, D) \in \mathcal{M}_n(\mathbb{K})^4$$
. A-t-on $\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A)\det(D) - \det(B)\det(C)$?

II. Déterminants d'endomorphismes et de familles de vecteurs

Définition 4 (Déterminant d'un endormorphisme).

Soient $f \in \mathcal{L}(E)$ et $\mathcal{B}, \mathcal{B}'$ deux bases de E. Alors,

$$\det(\operatorname{Mat}_{\mathscr{B}}(f)) = \det(\operatorname{Mat}_{\mathscr{B}'}(f)).$$

Cette valeur commune est le déterminant de l'endomorphisme f, noté det(f).

Propriété 5.

Soit $f \in \mathcal{L}(E)$. L'endomorphisme f est inversible si et seulement si $\det(f) \neq 0$.

Définition 5 (Déterminant d'une famille de vecteurs).

Soient E un espace vectoriel de dimension $n, (v_1, \ldots, v_n)$ des vecteurs de E et \mathscr{B} une base de E. Le déterminant de la famille (v_1, \ldots, v_n) dans la base \mathscr{B} est le scalaire

$$\det_{\mathscr{B}}(v_1,\ldots,v_n) = \det\left(\operatorname{Mat}_{\mathscr{B}}(v_1,\ldots,v_n)\right).$$

Exercice 10. Soient \mathscr{B} et \mathscr{B}' deux bases de E. Exprimer $\det_{\mathscr{B}'}(v_1,\ldots,v_n)$ en fonction de $\det_{\mathscr{B}}(v_1,\ldots,v_n)$.

Propriété 6.

Soit E un espace vectoriel de dimension n. La famille (v_1, \ldots, v_n) est une base de E si et seulement s'il existe une base \mathscr{B} de E telle que $\det_{\mathscr{B}}(v_1, \ldots, v_n) \neq 0$.

III. Application : Déterminant de Vandermonde

Théorème 7 (Déterminant de VANDERMONDE).

Soient $n \ge 2$ et $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$. Alors,

$$V(\lambda_1, \dots, \lambda_n) = \begin{vmatrix} 1 & \dots & 1 \\ \lambda_1 & \dots & \lambda_n \\ \vdots & \vdots & \vdots \\ \lambda_1^{n-1} & \dots & \lambda_n^{n-1} \end{vmatrix} = \prod_{1 \leq i < j \leq n} (\lambda_j - \lambda_i).$$

Définition 6 (Valeur propre, Vecteur propre).

Soit $M \in \mathscr{M}_n(\mathbb{K})$. Le scalaire λ est une valeur propre de M s'il existe un vecteur colonne X non nul, appelé vecteur propre, tel que $MX = \lambda X$.

Exercice 11. Soit D une matrice diagonale. Déterminer l'ensemble des valeurs propres de D.

Propriété 7.

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $\lambda_1, \ldots, \lambda_p \in \mathbb{K}$ des valeurs propres distinctes de A de vecteurs propres respectifs X_1, \ldots, X_p . Alors, (X_1, \ldots, X_p) est une famille libre.

64

Différentes approches des polynômes d'interpolation de LAGRANGE

Exercice 12. Soient $n \in \mathbb{N}$ et $((a_i, b_i))_{i \in [0,n]} \in (\mathbb{K}^2)^{n+1}$, où (a_0, \ldots, a_n) sont des scalaires deux à deux distincts. On souhaite montrer qu'il existe un unique polynôme $P \in \mathbb{K}_n[X]$ tel que, pour tout $i \in [0, n]$, $P(a_i) = b_i$.

1. Soit $P \in \mathbb{K}[X]$ de degré n+1. On note $P\mathbb{K}[X] = \{PQ, Q \in \mathbb{K}[X]\}$. Montrer que $\mathbb{K}_n[X]$ et $P\mathbb{K}[X]$ sont supplémentaires dans $\mathbb{K}[X]$, puis déterminer une base adaptée à la décomposition $\mathbb{K}[X] = \mathbb{K}_n[X] \oplus P\mathbb{K}[X]$.

Soit φ l'application de $\mathbb{K}[X]$ dans \mathbb{K}^{n+1} définie, pour tout $P \in \mathbb{K}[X]$, par

$$\varphi(P) = (P(a_0), \dots, P(a_n)).$$

- **2. a)** Déterminer $\operatorname{Ker} \varphi$, puis montrer que $\mathbb{K}_n[X]$ est un supplémentaire de $\operatorname{Ker} \varphi$.
 - **b)** En déduire que φ réalise un isomorphisme, noté φ_n , de $\mathbb{K}_n[X]$ dans \mathbb{K}^{n+1} .

c) En notant $(e_i)_{i \in [0,n]}$ la base canonique de \mathbb{K}^{n+1} , déterminer, pour tout entier $i \in [0,n]$, $L_i = \varphi_n^{-1}(e_i)$.

- **d)** Montrer que la famille $\mathscr{L}_n = (L_0, \dots, L_n)$ est une base de $\mathbb{K}_n[X]$. La famille \mathscr{L}_n est la base des polynômes d'interpolation de LAGRANGE associée à (a_0, \dots, a_n) .
 - **e)** Montrer que $\sum_{i=0}^{n} L_i = 1$.
- **3.** Déterminer la matrice de φ_n de la base $(1, X, \dots, X_n)$ dans la base (e_0, \dots, e_n) et retrouver la bijectivité de φ_n .
- **4.** Déterminer les applications linéaires coordonnées associées à la base \mathcal{L}_n de $\mathbb{K}_n[X]$.

Soit π l'application définie pour tout $P \in \mathbb{K}[X]$ par $\pi(P) = \sum_{i=0}^{n} P(a_i) L_i$.

- **5. a)** Montrer que π est un projecteur de $\mathbb{K}[X]$.
 - **b)** Déterminer le noyau et l'image de π .

Programme officiel (PCSI)

Matrices et déterminants - B - Déterminants (p. 26)

Programme officiel (PSI)

Algèbre linéaire

- A Compléments sur les espaces vectoriels, les endomorphismes et les matrices
- c) Déterminants (p. 7)

Mathématiciens

VANDERMONDE Alexandre-Théophile (28 fév. 1735 à Paris-1^{er} jan. 1796 à Paris).

LAGRANGE Joseph-Louis (25 jan. 1736 à Turin-10 avr. 1813 à Paris).

Gauss Johann Carl Friedrich (30 avr. 1777 à Brunswick-23 fév. 1855 à Göttingen).