4 Page 32

- **4.1** (a) transitive.
 - (b) reflexive, transitive.
 - (c) symmetric.
 - (d) \subseteq : reflexive, transitive. \subset : transitive.
 - (e) reflexive, transitive, symmetric.
 - (f) symmetric and transitive.
- **4.2** (a) for every $a \in A$, f(a) = f(a) since f is a function, thus aEa and E is reflexive. Let aEb, then for some $a, b \in A$ we have f(a) = f(b) but also f(b) = f(a), thus bEa, therefore E is symmetric. Suppose that aEb and bEc, then we get f(a) = f(b) and f(b) = f(c), since f is a function we have f(a) = f(c), thus aEc, E is transitive.
- (b) We define $\phi: A/E \to B$ such that $\phi([a]_E) = f(a)$ for every $[a]_E \in A/E$, if $[a]_E = [a']_E$ then aEa', by definition we get f(a) = f(a') which means that $\phi([a]_E) = \phi([a']_E)$.
- (c) for every $a \in A$ we have $\phi \circ j(x) = \phi(j(a)) = \phi([a]_E) = f(a)$, because f and j have the same domain we can conclude $\phi \circ j = f$.
- **4.3** Because for every $(r, \gamma) \in P$ we have r = r and $\gamma \gamma = 0 = 2\pi \times 0$ which 0 is an integer multiple of 2π , we get $(r, \gamma) \sim (r, \gamma)$. Now let $(r, \gamma) \sim (r', \gamma')$, then r = r' and $\gamma \gamma' = 2\pi k$ is an integer, because $\gamma' \gamma = -(\gamma \gamma') = 2\pi (-k)$ is also an integer, together with symmetricity of = we get r' = r, so we conclude that $(r', \gamma') \sim (r, \gamma)$, thus \sim is symmetric.

Let $(r, \gamma) \sim (r', \gamma')$ and $(r', \gamma') \sim (r'', \gamma'')$, by transitivity of identity we simply get r = r'', also $\gamma - \gamma' = 2\pi k$ and $\gamma' - \gamma'' = 2\pi k'$ such that k, k' are both integer, but then $\gamma - \gamma'' = (\gamma - \gamma') + (\gamma' - \gamma'') = 2\pi k + 2\pi k' = 2\pi (k + k')$ clearly is an integer, thus $(r, \gamma) \sim (r'', \gamma'')$.

Consider (r, γ) , then there is some (r, γ') such that $\gamma - \gamma' = 2\pi k$ and is an integer. then $\gamma' = \gamma - 2\pi k$, we argue that for some integer k' we have $0 \le \gamma - 2\pi k' \le 2\pi$, if there is no such k' that satisfies last inequality then we also do not have $-\gamma \le -2\pi k' \le 2\pi - \gamma$ and also $\gamma - 2\pi \le 2\pi k' \le \gamma$, dividing by 2π yields that there is no $\gamma/2\pi - 1 \le k' \le \gamma/2\pi$, but it contradicts the fact tht for any real number X there is an integer $X - 1 \le k' \le X$, so we can take $(r, \gamma - 2\pi k')$.