Fractional Precipitation

A solutions contains two of the following cations: Pb²⁺, Fe³⁺, Ca²⁺. Based upon the following experiments, determine which two cations are present!

You add 1M HCI(aq) to the solution.

No Pb2+ b/c Ce - forms
Pb Cez precipitale
You add 1M NaOH(aq) to the solution.

Fe COH)3 precipitate

No precipitate forms

You add (NH₄)₂HPO₄/NH₃ to the solution

Precipitate forms

Ca3 CPO4)2 precipitate

Solubility Rules for Ionic Compounds in Water

Compounds Containing the Following Ions Are Generally <u>Soluble</u>	Exceptions
Li+, Na+, K+, and NH ₄ +	None
NO ₃ -, CH ₃ COO-	None
Cl-, Br-, and I-	When these ions pair with Ag+, Hg ₂ ²⁺ , or Pb ²⁺ => insoluble compounds
SO ₄ ² -	When SO ₄ ² - pairs with Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺ , or Ag ⁺ => insoluble

Compounds Containing the Following lons Are Generally <i>Insoluble</i>	Exceptions
OH· and S²·	When these ions pair with Li+, Na+, K+, or NH ₄ + => soluble
	When S ²⁻ pairs with Ca ²⁺ , Sr ²⁺ or Ba ²⁺ => soluble
	When OH pairs with Ca2+, Sr2+ or Ba2+ => slightly soluble
CO ₃ ² - and PO ₄ ³ -	When these ions pair with Li⁺, Na⁺, K⁺, or NH₄⁺ => soluble

1

Precipitation Calculations

What mass of mercury I sultide can be produced when 50 ml of 0.0150 M mercury I withate is unaed with a Solution containing excens of sodium sultide

Given: Hg (NO3)2 50 ml 0.0150 M Na28 excen

Complete louic Equation

$$Hg^{2+}(aq) + 2No_3^{-}(aq) + 2No_4^{+}(aq) + S^{2-}(aq) \rightarrow HgS(s) + 2No_4^{+}(aq) + 2No_3^{-}(aq)$$

Net louic

Colculation

moles (Hgs) = 0.0150M · 0.0500L = 0.00075mol # moles (Hgs) = 0.00075mol (Hgs) . [mol (Hgs) | 1mol (Hgs)

mrles (Hgs) = 0.00075 mole
mass (Hgs) = 0.00075 mole. 232.7 g = 0.175 g

When aqueous solutions of Nazsoy and Pb CNO3) z are mixed PbSoy precipitates. Calculate the mass of PbSoy formed when 1.252 of 0.050014 Pb(NO3) z and 2.00 L of 0.0250 M Nazsoy cre mixed

Given:

1.252 of 0.050014 Pb (NO3), 2.002 of 0.025014 Naz So4

Complete louic

Pb2+(aq) + 2NO3-(aq) + 2Na+(aq) + 8042-(aq) ->
Pb304(s) + 2Na+(aq) + 2NO3-

Net louic

Pb2+ Caq) + So42-Caq) -> PbSo4 (s)

what is the limiting reagent?

 $m r les (Pb^{24}) = 1.25 L \cdot \frac{0.0500 \, mol}{1 L} = 0.0625 \, mol$ $m r les (PbSOy) = 0.0625 \, mol (Pb^{24}) \cdot \frac{l m r (PbSOy)}{1 m r l Pb^{24}}$ $= 0.0625 \, m r l$

wres $(So_4^{2-}) = 2.001$. $\frac{0.0250 \text{ mol}}{1L} = 0.0500 \text{ mol}$ writes $(PbSo_4) = 0.0500 \text{ mol}(So_4^{2-})$. $\frac{\text{Imol}(PbSo_4)}{1 \text{ mol}(So_4^{2-})}$ = 0.0500 mol

8042- is the cimiting reagent

mass (PbSoy) = 0.0500me. 303.39 = 15.29

Example 3: you mix 200 ml of 0.20M

Fe (SOy), solution with 250 ml of 0.20M

Naz Poy (reletion. what is the precipitate

that will form? what is its mass?

What is the conc. of the ion that is

in excess?

- 1. Net louic Equation

 Fe 3+ (ag) + Poy3-(ag) -> Fe Poy (s)
- 2. Dekruine limiting reagent

 # untles (fe3+) = 200 m l. 1L 1000m . 0.20 M (fe2(304)3)

 . \frac{2und Fe3+}{1 unox Fe2(\$04)3}

 = 0.080 mol

moles (POy3-) = ... = 0.050 mole liverhing reagent PUy3-

3. mass of Fe Poy

4. what is the conc. of the ion in excen?

moles (Fe3+) = 0.080 mol - 0.050 mol remaining (initial) consumed

= 0.030 mol

total volume: $200 \, \text{mL} + 250 \, \text{mL} = 450 \, \text{mL}$ = $0.45 \, \text{L}$ $MCFe^{3t}) = \frac{0.030 \, \text{moc}}{0.45 \, \text{L}} = 0.067 \, \text{M} = 67 \, \text{mM}$