

GLOBAL ACADEMY OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

(Accredited by NBA 2019-22)

Academic Year: 2020 - 21 ODD Sem

Subject Name	Project Work	Subject Code	17CSP78		
Student Name	C.P. YASHWANTH	USN	1GA17CS035		
	MADDALI SOWMYA		1GA17CS080		
	RAKSHITHA MURTHY		1GA17CS118		
	SWARAJ PARIDA		1GA17CS163		
Domain	DEEP LEARNING	Group No:	11		
Project Title	"LANDMARK RECOGNITION USING CONVOLUTIONAL NEURAL NETWORKS"				
Under taken at	GLOBAL ACADEMY OF TECHNOLOGY				
Guide Name	Mr. KAMLESHWAR KUMAR YADAV				

Agenda

- Introduction
- Literature Survey
- Gaps in Literature Survey
- Objectives
- Problem statement
- Requirements Specification
- Architecture Diagram
- Module Split-ups and algorithms used
- Bibliography

Introduction

• In the field of Artificial Intelligence (AI) and Computer Vision recognition of objects has become very common, feasible and realistic.

 Looking ahead, there will come a time where instance-specific recognition will become a trend and be an everyday problem.

• Artificial Intelligence (AI) especially Convolutional Neural Network (CNN) concept can be used to ease up the life of others.

Literature Survey

Title of the paper and year	Methodology	Advantages	Disadvantages
Rich feature hierarchies for accurate object detection and semantic segmentation - 2014	 extracts around 2000 bottom-up region proposals computes features for each proposal using a large convolutional neural network (CNN), and then 	 provides higher accuracy than CNNs (R- CNN achieves a mean average precision (MAP) of 53.7% on PASCAL VOC 201 for comparison, reports 35.1% MAP) 	 training is multi-stage pipeline training is expensive in time and space object detection is slow

Literature Survey

Title of the paper and year	Methodology	Advantages	Disadvantages
Fast R-CNN - 2015	 the image is processed with several convolutions each feature vector is fed into a fully connected layers that finally branches into two outputs 	 training is single-stage, using a multi-task loss training can update all network layers no disk storage is required for feature caching 	 most of the time taken by Fast R-CNN during detection is a selective search region proposal generation algorithm. Hence, it is the bottleneck of this architecture.
Large-Scale Image Retrieval with Attentive Deep Local Features - 2017	 extract dense features from an image by applying a fully convolutional network using RANSAC and employ the number of inliers as the score for retrieved images 	 DELF clearly outperforms all other techniques significantly DELF has higher recall Attention helps more than fine-tuning 	 pipeline requires less than 8GB memory to index 1 billion descriptors challenges in query image with no correct match

Gaps in the literature survey

Even though all the papers try to perform image detection there are still few challenges which are not completely eradicated by those methods

- Partial occlusion
- Multiple landmarks
- Queries with no match
- Local features lack semantic information
- Patch-level annotations are expensive
- Existing datasets are small/medium

Objectives

 To make a model which recognises landmarks from an image using different algorithms such as Visual Geometry Group (VGG) and DEep Local Feature (DELF)

 To improve our model such that it performs better than the present primitive models/ techniques.

Problem Statement

• Landmark recognition on Google landmark dataset using various algorithms. The goal is to efficiently recognize objects in an image at an instance level, just not at the base level.

Dept. of CSE, GAT 2020-21

Requirements Specification

Hardware Requirements

- Intel i3 6th gen
- 4gb ram
- 2gb graphics card
- 100gb HDD

Software Requirements

- Python 3.x
- TensorFlow 1.x
- Anaconda 3

Architecture Diagram of the project

Dept. of CSE, GAT 2020-21 10

Modules Split-ups

Landmark recognition

- Used transfer learning from VGG to detect landmarks from google landmark dataset.
- o To load DELF module and run RANSAC over the returned descriptors.

Deployment

Our customized model is deployed and will be ready to use.

Bibiliography

[1] Hyeonwoo Noh, Andre Araujo, Jack Sim, Tobias Weyand, Bohyung Han. "Large-Scale Image Retrieval With Attentive Deep Local Features". Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017, pp. 3456-3465

[2] Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik. "Rich feature hierarchies for accurate object detection and semantic segmentation tech report (v5)". IEEE, 2014

[3] Ross Girshick. "Fast R-CNN". Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1440 - 1448

Dept. of CSE, GAT 2020-21 12

Thank You

Q & A