TSEA83: Datorkonstruktion, 8hp Fö1

Introduktion

Datorkonstruktion

Fö1: Agenda

- Inledning
 - -Mål, Resultat från tidigare år, Förändringar till årets kurs
- Formalia
 - -Planering, Föreläsningar, Laborationer, Kurslitteratur
- VHDL
 - -VHDL, Simulering, FPGA-kort
- Projekt
 - -Exempel på tidigare projekt
- Distansarbete
 - -Hur kan man arbeta hemifrån?

Inledning

Mål, Resultat från tidigare år, Förändringar till årets kurs

Datorkonstruktion 4

Mål

• Ni ska i grupper om 4 teknologer konstruera en inbyggd dator

Datorkonstruktion 5

Resultat från tidigare år

- 90 studenter gick kursen 2023
- 16 studenter svarade på utvärderingen i Evaliuate
- Helhetsbetyget var 4,69

Förändringar till årets kurs

- Ny FPGA-hårdvara : Basys3 (tidigare Nexys3)
- Ny programvara : Vivado
- Nya datorer

Formalia

Planering, Föreläsningar, Laborationer, Kurslitteratur

Datorkonstruktion Planering 2023, VT1 (2hp)

vecka	föreläsning	laboration	leverans
3	 Intro Mikroprog I Mikroprog II 		
4	4. Pipelining5. Cache	1. Mikroprog	
5	6. Minnen +Bussar 7. Grafik +Proj	2. Pipelining	
6	8. VHDL I 9. VHDL II		Bilda 4-grupp klar ti kl 12
7	10. VHDL III	3. UART (VHDL)	Kravspec 0.1 inlämn. ti kl 12
8	11. ALU	4. VGA (VHDL)	Kravspec 1.0 klar ti kl 12
9			Designspec 0.1 inlämn. ti kl 12
10			Designspec 1.0 klar ti kl 12

Datorkonstruktion Planering 2023, VT2 (6hp)

vecka	händelse	projekt	leverans
11	Omtenta-P ht2		
12	Tenta-P VT1		
13	(Påsk: to-fr)	Konstruktion	
14	(Påsk: må)	Konstruktion	Statusrapp. ti kl 12
15		Konstruktion	Statusrapp. ti kl 12
16		Konstruktion	Statusrapp. ti kl 12
17		Konstruktion	Statusrapp. ti kl 12 Milstolpe
18	(Valb.+1Maj: ti+on)	Konstruktion	Statusrapp. ti kl 12
19		Konstruktion	Statusrapp. ti kl 12
20		Konstruktion	Statusrapp. ti kl 12
21			Presentation ti + on, Tek.dok + återlämning fr kl 12

Datorkonstruktion Föreläsningar

- 1. Intro
- 2. Mikroprogrammering 1
- 3. Mikorprogrammering 2
- 4. Pipelining
- 5. Cache
- 6. Minnen + Bussar
- 7. Grafik + Projekt
- 8. VHDL₁
- 9. VHDL 2
- 10. VHDL 3
- 11. ALU/Projektstart

VHDL är språket i projektet

Alla PP-slides på hemsidan

Datorkonstruktion Laborationer

1. Mikroprogrammering (2 + 2 tim)

- Kan göras på egen hand och endast redovisas på labben
- **2. Pipelining** (2 + 2 tim)
 - Kan göras på egen hand och endast redovisas på labben
- **3.** UART (seriell kommunikation) (2 + 2 tim)
 - Kodning och simulering kan göras på egen hand. Syntetisering kräver FPGA-kort i labsal
- **4.** VGA(2 + 2 tim)
 - Kodning och simulering kan göras på egen hand. Syntetisering kräver FPGA-kort i labsal

Alla lab-pM på hemsidan

Datorkonstruktion Kurslitteratur - Datorteknikdelen

Patterson, Hennessy: Computer Organization and design → pipelining, e-bok

Olle Roos: Grundläggande datorteknik
→ mikroprogrammering

Datorkonstruktion Kurslitteratur - VHDL

Mealy, Tappero
Free Range VHDL
→ pdf

VHDL

VHDL, Simulering, FPGA-kort

Datorkonstruktion VHDL: 1.Problembeskrivning

Jag vill bygga en "synkronisering och enpulsare". När asynkron insignal går hög (o->1) ska en synkroniserad utpuls produceras. Pulsens längd ska vara 1 CP. Inpulsen måste vara hög vid minst en klockflank.

Datorkonstruktion VHDL: 2.Lösning

a) Synkvippa + tillståndsgraf

b) Hårdvaruschema direkt

Datorkonstruktion VHDL: 3.VHDL-kod för b)

```
entity enpulsare is
 port(x,clk : in std_logic;
       w : out std_logic);
end enpulsare;
architecture func of enpulsare is
  signal y,z : std_logic;
begin
 w <= y and not z; -- kombinatoriken
  process(clk)
  begin
    if rising_edge(clk) then
                            -- synk-vippan
     y <= x;
                           -- tillståndsvippan
     z <= y;
   end if;
  end process;
end architecture;
```

entity: Gränssnitt mot omvärlden

architecture: Innehåll i kretsen

Datorkonstruktion VHDL: 4. Simulering med Model Sim

Datorkonstruktion VHDL: 5. Syntetisering till Basys 3

FPGA (Field Programmable Gate Array)

- 41600 vippor
- 20800 LUTs (Look Up Table)(64x1 RAM)
- 100 st 2kB blockRAM (1800Kbit)
- 90 st 18x18 multiplikatorer + (MAC)

Datorkonstruktion VHDL: FPGA Artix-7 35T

1 Slice ≈ logiken på en kopplingsplatta i digitaltekniken

Datorkonstruktion VHDL: FPGA Artix-7 35T

Innehåller också

100 st block RAM a 2kB a 9 bit

90 st DSP slices

Datorkonstruktion VHDL: Hur går det till?

- Skriv VHDL med Emacs el dyl. Vi kör Linux.
- make sim
 - ModelSim hoppar igång
- make bit
 - synthesize = "booleska ekvationer"
 - translate = "LUTtar och vippor"
 - place = "placera allting i schema"
 - route = "koppla ihop allting"
- make prog
 - filen design.bit programmeras i FPGA'n

Projekt

Exempel på tidigare projekt

Datorkonstruktion Vad kan man bygga?

"en grafikdator, som gör Game of Life"

Datorkonstruktion Vad har dom gjort förut?

Tetris Achtung die kurve!

Drag race Breakout
Snake Frogger
2048 Othello
Music Mania Synth

Mandelbrot Bomberman Space invaders

Grafisk räknare Asteroids

Pong

Pac-man <u>Counter Strike 2D</u>

Minesweeper <u>GameBoy</u>

MUX-OS

Tron

https://www.youtube.com/watch?v=HThvHjRpshE https://www.youtube.com/watch?v=EjhpCFiEj40

https://www.youtube.com/watch?v=9t4dSRWNqOM&feature=youtu.be

Distansarbete

Datorkonstruktion Distansarbete

Hur kan man arbeta hemifrån? Se menyvalet **Distansarbete** under Lisam

Sammanfattning

VT1

- Föreläsningar
- Laborationer
- Bilda 4-grupp (ti v.6)
- Skriv en kravspecifikation
 - **Vad** ska datorn göra
- Skriv en designspecifikation
 - Hur ska datorn konstrueras

VT2

- Konstruktion i 8 veckor
- Demo av fungerande dator (enl. kravspec)
- Föredrag v.21 (15 min)
- Skriv en Teknisk rapport

Datorkonstruktion 29

Vad behöver ni göra nu?

- Registrera er på kursen TSEA83
- Anmäl er till laborationerna, i Lisam
 - 2 tillfällen per lab, i grupper om 2 studenter

Anders Nilsson

www.liu.se

