ADVISOR

STUDENT

Master. RYU

홍준표, 양문기,김동휘, 유아람,이정훈

Attention Model 논문 분석

[Effective Approaches to Attention-based Neural Machine Translation]

코리아IT아카데미

		Page
I	Overview	3
II	Background(NMT, Seq2Seq)	4
III	Global Attention Model	7
IV	Local Attention Model	9
V	Input Feeding Model	10
VI	Experiment & Result	11
VII	Conclusion & Discussions	15

- I Overview
 - Better NMT
 - 어텐션 메커니즘(Attention Mechanism)
 - Global approach & Local approach
 - English -> German

II Background - NMT

NMT 란

- Neural Machine Translation(신경망 기계 번역)
- End-to-End Learning
- 문맥 고려
- 장거리 종속성
- 다국어 번역 지원

II Background - Seq2Seq

Seq2Seq 란

- 입력 시퀀스를 다른 형태의 출력 시퀀스로 변환하는 딥러닝 모델 아키텍처
- 긴 문장 처리에 용이
- 가변 길이의 입출력을 위한 인코더/디코더 구조 채택
- 인코더가 출력하는 벡터 사이즈가 고정되어 있기 때문에 입력으로 들어오는 단어의 수가 매우 많아지면 성능이 떨어진다는 한계
 - Seq2Seq 의 등장 배경

II Background - Attention Mechanism

Attention Mechanism

- Soft Attention
- Hard Attention
- Global Attention(Soft)
- Local Attention(Soft + Hard)

III Global Attention Model - 1

- Global Attention : 입력 시퀀스의 모든 요소에 가중치를 계산 (Soft)
- Local Attention : 입력 시퀀스의 부분 요소에 가중치를 계산 (Soft + Hard)

모델이 입력 시퀀스의 각 요소에 동적으로 가중치를 부여하여 출력에 영향을 미친다.

현재 타겟 단어 y_t 를 예측하는 데 도움이 되도록 소스 정보가 담긴 $Context\ Vector(c_t)$ 를 구하는 것이 목표

□I can do this all day. -> I can do this ___ _.

III Global Attention Model - 2

목표는 Context Vector를 구하는 것!!

$$h_t \to a_t \to c_t \to \tilde{h_t}$$

- Input sequence의 모든 위치를 고려하여 output 예측.
- Alignment vector(at)는 중요도 정보를 담고있고 길이는 input sequence와 동일.

$$a_{t}(s) = align(h_{t}, \bar{h}_{s})$$

$$= \frac{exp(score(h_{t}, \bar{h}_{s}))}{\sum_{\grave{s}} exp(score(h_{t}, \bar{h}_{\grave{s}}))}$$

$$\operatorname{score}(m{h}_t, ar{m{h}}_s) = egin{cases} m{h}_t^ op ar{m{h}}_s & dot \ m{h}_t^ op m{W}_a ar{m{h}}_s & general \ m{v}_a^ op anh \left(m{W}_a [m{h}_t; ar{m{h}}_s]
ight) & concat \end{cases}$$

$$a_t = \operatorname{softmax}(W_a h_t)$$
 location

IV Local Attention Model - 1

Global Attention은 입력 시퀀스의 길이가 길어질수록 모델의 계산 복잡도가 증가하고 메모리 사용량도 증가할 수 있다.

이러한 단점을 극복하기 위해 도입된것이 Local Attention

$$[p_t - D, p_t + D]$$

Context Vector의 차원 2D+1

IV Local Attention Model - 2

$$p_t = t$$

Predictive alignment (local-p)

$$p_t = S \cdot sigmoid(v_p^T tanh(W_p h_t))$$

I can do this all day. -> I can do this ____.

V Input Feeding Model

Input Feeding Model

- 과거의 Alignment Information 이 지금의
 Alignment Deisicion 에 고려되게 만들기 위한 방법
- Decoder 의 이전 출력을 현재 Step 의 입력으로 추가 하거나 연결
- 병렬성이 침해되고 속도가 느려진다는 단점

VI Experiment & Result

□하이퍼파라미터 설정에 newstest2013 사용 테스트에 newstest2014, 2015 사용

System	Ppl	BLEU
Winning WMT'14 system – phrase-based + large LM (Buck et al., 2014)		20.7
Existing NMT systems	•	
RNNsearch (Jean et al., 2015)		16.5
RNNsearch + unk replace (Jean et al., 2015)		19.0
RNNsearch + unk replace + large vocab + ensemble 8 models (Jean et al., 2015)		21.6
Our NMT systems	•	
Base	10.6	11.3
Base + reverse	9.9	12.6 (+1.3)
Base + reverse + dropout	8.1	14.0 (+1.4)
Base + reverse + dropout + global attention (location)	7.3	16.8 (+2.8)
Base + reverse + dropout + global attention (location) + feed input	6.4	18.1 (+1.3)
Base + reverse + dropout + local-p attention (general) + feed input	5.9	19.0 (+0.9)
Base + reverse + dropout + local-p attention (general) + feed input + unk replace	3.9	20.9 (+1.9)
Ensemble 8 models + unk replace		23.0 ()+2.1)

사용된 평가 지표 tokenized12 BELU NIST13 BELU

Base + reverse + dropout 보다 5.0 높음

VI Experiment & Result

System	Ppl	BLEU
Winning WMT'14 system – phrase-based + large LM (Buck et al., 2014)		20.7
Existing NMT systems		
RNNsearch (Jean et al., 2015)		16.5
RNNsearch + unk replace (Jean et al., 2015)		19.0
RNNsearch + unk replace + large vocab + ensemble 8 models (Jean et al., 2015)		21.6
Our NMT systems		
Base	10.6	11.3
Base + reverse	9.9	12.6 (+1.3)
Base + reverse + dropout	8.1	14.0 (+1.4)
Base + reverse + dropout + global attention (<i>location</i>)	$ \bar{7.3} $	16.8 (+2.8)
Base + reverse + dropout + global attention (location) + feed input	6.4	18.1 (+1.3)
Base + reverse + dropout + local-p attention (general) + feed input	5.9	19.0 (+0.9)
Base + reverse + dropout + local-p attention (general) + feed input + unk replace		20.9 (+1.9)
Ensemble 8 models + unk replace		23.0 (+2.1)

SOTA 기존 SOTA보다 1.4 BLEU 높음

VI Experiment & Result

System	BLEU
Top - NMT + 5-gram rerank (Montreal)	24.9
Our ensemble 8 models + unk replace	25.9

WMT'15 English-German results

System	Ppl.	BLEU
WMT'15 systems		
SOTA – phrase-based (Edinburgh)		29.2
NMT + 5-gram rerank (MILA)		27.6
Our NMT systems	•	
Base (reverse)	14.3	16.9
+ global (<i>location</i>)	12.7	19.1 (+2.2)
+ global (location) + feed	10.9	20.1 (+1.0)
+ global (dot) $+$ drop $+$ feed	0.7	22.8 (+2.7)
+ global (dot) + drop + feed + unk	9.7	24.9 (+2.1)

WMT'15 German-English results

VI Experiment & Result - Analysis

□WMT'14 English-German의 결과에 대해서만 분석

test 데이터에 대한 성능

문장 길이에 따른 BLEU

VII Conclusion & Discussions

English -> German

System	Ppl	BLEU		
System	Before		After unk	
global (location)	6.4	18.1	19.3 (+1.2)	
global (dot)	6.1	18.6	20.5 (+1.9)	
global (general)	6.1	17.3	19.1 (+1.8)	
local-m (dot)	>7.0	Х	х	
local-m (general)	6.2	18.6	20.4 (+1.8)	
local-p (dot)	6.6	18.0	19.6 (+1.9)	
local-p (general)	5.9	19	20.9 (+1.9)	

Method	AER
global (location)	0.39
local-m (general)	0.34
local-p (general)	0.36
ensemble	-0.34
Berkeley Aligner	0.32

+dropout

+input-feeding

코리아IT아카데미

ADVISOR

Master. RYU

STUDENT

홍준표, 양문기,김동휘, 유아람,이정훈

Thank you for listening!

<u>참고</u>