Doc. No. FP5 Appl. No. 09/894,018

WELTORGANISATION FUR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 5:

G01N 33/68, 33/564, C07K 7/04

(11) Internationale Veröffentlichungsnummer:

WO 92/21033

A1

(43) Internationales Veröffentlichungsdatum:

26. November 1992 (26.11.92)

(21) Internationales Aktenzeichen:

PCT/EP92/01072

(22) Internationales Anmeldedatum:

15. Mai 1992 (15.05.92)

(30) Prioritätsdaten:

P 41 16 256.0

17. Mai 1991 (17.05.91)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V. [DE/DE]; Bunsenstraße 10, D-3400 Göttingen (DE).

(72) Erfinder; und
(75) Erfinder/Anmelder (nur für US): RAMMENSEE, HansGeorg [DE/DE]; Sommerhalde 3, D-7400 Tübingen
(DE). FALK, Kirsten [DE/DE]; RÖTZSCHE, Olaf
[DE/DE]; Hundskapfklinge 42, D-7400 Tübingen (DE).
STEVANOVIC, Stefan [DE/DE]; Schulstraße 18, D7400 Tübingen (DE). JUNG, Günther [DE/DE]; Ob der
Grafenhalde 5, D-7400 Tübingen (DE).

(74) Anwälte: WEICKMANN, H. usw.; Kopernikusstraße 9, D-8000 München 80 (DE).

(81) Bestimmungsstaaten: AT, AT (europäisches Patent), AU, BB, BE (europäisches Patent), BF (OAPI Patent), BG, BJ (OAPI Patent), BR, CA, CF (OAPI Patent), CG (OAPI Patent), CH, CH (europäisches Patent), CI (OAPI Patent), CM, CM, CH (europäisches Patent), ES, ES (europäisches Patent), DK, DK (europäisches Patent), ES, ES (europäisches Patent), GB, GB (europäisches Patent), GN (OAPI Patent), GR (europäisches Patent), HU, IT (europäisches Patent), JP, KP, KR, LK, LU, LU (europäisches Patent), MC (europäisches Patent), MG, ML (OAPI Patent), MN, MR (OAPI Patent), MW, NL, NL (europäisches Patent), NO, PL, RO, RU, SD, SE, SE (europäisches Patent), SN (OAPI Patent), TD (OAPI Patent), TG (OAPI Patent), US.

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelasse-nen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.

(54) Title: DETERMINATION OF MOTIFS OF PEPTIDES ON MHC MOLECULES

(54) Bezeichnung: BESTIMMUNG VON PEPTIDMOTIVEN AUF MHC-MOLEKÜLEN

(57) Abstract

A process is disclosed for determining allele-specific motifs of peptides on molecules of the major histocompatibility complex (MHC) of classes I and II. Also disclosed are the motifs of peptides obtained by this process, as well as the use of the disclosed motifs of peptides for preparing diagnostic or therapeutical agents.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft ein Verfahren zur Bestimmung von allelspezifischen Peptidmotiven auf Molekülen des Major Histocompatibility Complex (MHC) der Klassen I und II sowie die durch das erfindungsgemäße Verfahren erhältlichen Peptidmotive. Weiterhin wird die Verwendung der erfindungsgemäßen Peptidmotive zur Herstellung eines diagnostischen oder therapeutischen Mittels offenbart.

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT AU BB BE BF BG CA CF CG CH CS DE* DK ES	Österreich Australien Barbados Belgien Burkina Faso Bulgarien Benin Brasilien Kanada Zentrale Afrikanische Republik Kongo Schweiz Cöte d'Ivoire Kamerun Tschechoslowakei Deutschland Dänemark Spamen	FI FR GA GB GN GR HU IE IT JP KP KR LI LK LU MC MG	Finnland Frankreich Gabon Vereinigtes Königreich Guinea Griechenland Ungarn Irland Italien Japan Demokratische Volksrepublik Korea Republik Korea Liechtenstein Sri Lanka Luxenburg Monaco Madagaskar Mali	MN MR MW NL NO PL RO SE SN SU TD TG US	Mongolei Mauritanien Malawi Niederlande Norwegen Polen Rumänien Russische Föderation Sudan Schweden Senegal Soviet Union Tschad Togo Vereinigte Staaten von Amerika
--	--	--	--	--	---

Bestimmung von Peptidmotiven auf MHC-Molekülen

Beschreibung

Die vorliegende Erfindung betrifft ein Verfahren zur Bestimmung von Peptidmotiven bzw. -epitopen auf Molekülen des Major Histocompatibility Complex (MHC) sowie die dadurch bestimmten Peptidmotive und ihre Verwendung zur Herstellung eines diagnostischen oder therapeutischen Mittels.

Die cytotoxischen T-Lymphozyten (CTL) erkennen antigene Peptidepitope in Verbindung mit MHC-kodierten Molekülen. Dieses Phänomen wird als MHC-Restriktion bezeichnet (1-5). Die Kristallographie von menschlichen MHC Klasse I-Molekülen, HLA-2 und Aw68, ergab einen Spalt, der durch die α l- und α 2-Domänen der schweren Ketten gebildet wird (3,6). Man nimmt an, daß dieser Spalt die Bindestelle für antigene Peptidepitope ist, da beide Kristalle Strukturen von Peptidgröße enthielten, die nicht mit MHC-Sequenzen kompatibel waren und sich an diesem Spalt befanden (6).

Es wird angenommen, daß diese Peptide von intrazellulären Proteinen stammen und an der Zelloberfläche präsentiert werden, um den cytotoxischen T-Lymphozyten zu erlauben, die Zellen auf abnormale Eigenschaften zu testen. Es wurden bereits MHC-assoziierte Peptide, die T-Zellepitope repräsentieren, aus normalen oder virusinfizierten Zellen extrahiert (2,4,5,7,8). Auf entsprechende Weise können auch Antigene, die durch die MHC Klasse II restringierten T-Zellen erkannt werden, durch künstliche Peptide nachgeahmt werden (9), und MHC-assoziierte antigene Peptide wurden von MHC Klasse II-Molekülen eluiert (10). Aufgrund ihrer Position in der Mitte von trimolekularen Komplexen, die aus T-Zellrezeptor, Peptid und MHC-Molekül bestehen (11), sind die T-Zellepitope ein zentraler Punkt des spezifischen Immunsystems und somit be-

steht ein großes Bedürfnis nach dem Verständnis der Gesetzmäßigkeiten ihres Auftretens sowie nach einem Bestimmungsverfahren (12-15).

Die erfindungsgemäße Aufgabe wird gelöst durch ein Verfahren zur Bestimmung von allelspezifischen Peptidmotiven auf Molekülen des Major Histocompatibility Complex (MHC) der Klassen I oder II, welches dadurch gekennzeichnet ist, daß man

- (a) durch Aufschluß von Zellen, die MHC-Moleküle enthalten, einen Zellextrakt erzeugt,
- (b) MHC-Moleküle mit den darauf befindlichen Peptidmischungen durch Immunpräzipitation aus dem Zellextrakt abtrennt,
- (c) die Peptidmischungen von MHC-Molekülen und sonstigen Proteinbestandteilen abtrennt,
- (d) einzelne Peptide oder/und ein Gemisch davon sequenziert, und
- (e) aus den erhaltenen Informationen, insbesondere aus der Sequenzierung eines Gemisches, oder aus der Sequenzierung einer Reihe von Einzelpeptiden, das allelspezifische Peptidmotiv ableitet.

Durch das erfindungsgemäße Verfahren werden Peptidmotive bestimmt, welche die Gesetzmäßigkeiten beinhalten, nach denen MHC-Moleküle Peptide auswählen und präsentieren.

Das erfindungsgemäße Verfahren kann sowohl mit MHC-Molekülen der Klasse I als auch mit MHC-Molekülen der Klasse II durchgeführt werden, wobei MHC-Moleküle der Klasse I bevorzugt sind. Besonders bevorzugt sind H-2Kd-, H-Kb-, H-2Db- H-2Kk, H-2Km' oder HLA-A*0201 oder A*0205-Moleküle.

Bei der Immunpräzipitation der MHC-Moleküle durch das erfindungsgemäße Verfahren werden günstigerweise Antikörper verwendet, die für die jeweils gewünschten MHC-Moleküle spezi-

fisch sind. Zur erfindungsgemäßen Verwendung bevorzugte MHC-Klasse I-Moleküle schließen die Moleküle A1, A2, A3, A9, A10, A11, A28, A29, Aw19, B5, B7, B8, B12 bis B18, B21, B35 und B37 mit ein, sind jedoch nicht darauf beschränkt. Bevorzugte MHC-Klasse II-Moleküle zur erfindungsgemäßen Verwendung schließen die Moleküle DR1, DR2, DR3, DR4, DR5, DRw6, DR7, Dw1, Dw2 und Dw3 mit ein, sind jedoch nicht darauf beschränkt. Zur Bestimmung von H-2Kd- oder H-2Db-Molekülen werden beispielsweise Kd-spezifische Antikörper (25) oder Dbspezifische Antikörper (26) verwendet. Vorzugsweise verwendet man monoklonale Antikörper, es ist jedoch auch die Verwendung eines entsprechend gereinigten polyklonalen Antiserums möglich. Antikörper, die erfindungsgemäß verwendet werden können, können mittels dem Fachmann gut bekannten Standardtechniken de novo hergestellt werden. Beispiele von Antikörpern, die in der Erfindung verwendet werden können, schließen alle Antikörper gegen HLA-Antigene, die in dem "Catalogue of Cell Lines and Hydridomas" des ATCC (American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD 20852) erwähnt sind, mit ein, ohne sich jedoch darauf zu beschränken. Bevorzugte Beispiele (in der ATCC-Nomenklatur) schließen HB82, 117, 166, 54, 122, 164, 95, 120, 116, 118, 94, 152, 178, 56, 115, 157, 119, 59, 105, 165, 144, 180, 103, 110, 109, 151 und 104 mit ein. Alle in dem Katalog erwähnten Antikörper gegen Maus-H-2-Antigene können ebenso in der Erfindung verwendet werden. Besonders bevorzugt erfolgt die Immunpräzipitation durch Festphasen-gebundene Antikörper. Festphasengebundene Antikörper lassen sich auf eine dem Fachmann bekannte Weise herstellen, z.B. durch Kopplung des Antikörpers an Bromcyan-aktivierte Sepharose 4B (Pharmacia LKB). Andere Beispiele von Festphasen, an die Antikörper zur erfindungsgemäßen Verwendung gebunden werden können, schließen Agarose, Cellulose, Sephadex, Protein-A-Sepharose und Protein-G-Sepharose mit ein, ohne sich darauf zu beschränken. Das bevorzugte Verfahren der Immunpräzipitation stellt Adsorptions-chromatographie mittels Antikörper, die an aus Cyanogenbromid-aktivierter Sepharose 4B (siehe Beispiel 1) hergestellten Kügelchen gekuppelt sind, dar.

Die Abtrennung der zu bestimmenden Peptidmischungen von MHC-Molekülen und sonstigen Proteinbestandteilen erfolgt günstigerweise durch ein chromatographisches Verfahren, vorzugsweise über Reversed Phase-HPLC. Dabei hat es sich als günstig erwiesen, daß die Abtrennung in einem Trifluoressigsäure/H2O-Trifluoressigsäure/Acetonitril-Gradienten erfolgt. Andere Verfahren, die erfindungsgemäß zur Abtrennung von Peptidmischungen von MHC-Molekülen verwendet werden können, schließen Ionenaustausch, Gelfiltration, Elektrofokussierung, High Performance Capillar Elektrophorese (HPCE) und Gelelektrophorese mit ein, sind jedoch nicht darauf beschänkt. Ein anderes Mittel zur Durchführung der Trennung stellt Ultrafiltration dar, wobei eine Membran mit einer Permeabilität von 3000 oder 5000 oder 10000 Da verwendet wird. Bevorzugt wird die Trennung mittels HPLC durchgeführt.

Bei der chromatographischen Auftrennung der Peptidgemische kann man in manchen Fällen eine einzige Peptidspezies isolieren. Somit besteht Schritt (d) des erfindungsgemäßen Verfahrens entweder in der Sequenzierung eines Peptidgemisches, wodurch eine Konsensussequenz für die auf dem jeweiligen MHC-Molekül befindlichen Peptidmotive bestimmt werden kann, oder/und in der Sequenzierung eines definierten Peptids.

Als Ausgangsmaterial für die Bestimmung von Peptidmotiven können normale Zellen, Tumorzellen, als auch durch Viren oder sonstige Erreger infizierte Zellen sowie in vitro kultivierte Zellen des Menschen oder von Tieren verwendet werden. Normale Zellen, die in der Erfindung verwendet werden können, schließen frische Zellen, wie z.B. periphere Blutlymphozyten, Zellen der Milz, der Lunge, des Thymus oder Zellen von einem

- 5 -

anderen Gewebe, das MHC-Moleküle exprimiert mit ein, sind jedoch nicht darauf beschränkt. In der Erfindung verwendete Tumorzellinien schließen die Tumorzellen EL4 und P815 mit ein, sind jedoch ebenfalls nicht darauf beschränkt. Virusinfizierte Zellen, die in der Erfindung verwendet werden können, schließen, ohne darauf beschränkt zu sein, JY-Zellen, die durch den Epstein-Barr-Virus transformierte menschliche B-Zellen sind, mit ein. Die durch das erfindungsgemäße Verfahren bestimmten Peptidmotive entsprechen dem folgenden Grundprinzip:

- a) Sie weisen eine allelspezifische Peptidlänge von 8, 9, 10 oder Il Aminosäuren bei MHC-Klasse I-Molekülen sowie von 8 bis 15 Aminosäuren bei MHC-Klasse II Molekülen auf,
- b) sie besitzen zwei Ankerpositionen (die Bezeichnung "Ankerposition" wird verwendet, wenn eine Position ein starkes Signal für einen einzigen Aminosäurerest zeigt oder wenn eine Position durch einige wenige Aminosäurereste mit sehr nahe verwandten Seitenketten besetzt wird), wovon sich eine Ankerposition immer am C-terminalen Ende befindet und häufig aliphatisch ist, und
- c) die Peptide werden natürlicherweise auf MHC-Molekülen von normalen, virusinfizierten, anderweitig infizierten oder mit Genen transfizierten oder mit Antigen beladenen Zellen präsentiert.

Die Sequenzierung der Selbstpeptidgemische aus den MHC-Klasse I-Molekülen H2K^d, H2K^b, H2D^b und HLA-A2 zeigt ein jeweils unterschiedliches allelspezifisches Peptidmotiv, das von jedem der Klasse I-Moleküle präsentiert wird. Die von K^d, D^b und A2 präsentierten Peptide sind Nonamere, während die K^b-

- 6 -

präsentierten Peptide Octamere sind, wobei die korrespondierenden Peptidmotive zwei Ankerpositionen enthalten, die durch einen einzigen Aminosäurerest oder durch einen aus einer geringen Anzahl von Aminosäureresten mit nahe verwandten Seitenketten besetzt sind. Diese Ankerpositionen befinden sich bei den unterschiedlichen Motiven nicht an derselben Stelle, sie können etwa an Position 5 und 9 (Db) oder 2 und 8 (Kd, A2) oder 5 und 8 (Kb) sein. Die C-terminalen Ankerreste aller Motive sind hydrophobe Aminosäuren. Die nicht an Ankerpositionen befindlichen Aminosäurereste können ziemlich variabel sein, einige jedoch werden vorzugsweise durch bestimmte Aminosäuren besetzt, beispielsweise findet man häufig Pro an Position 4 des Kd-Motivs, Tyr an Position 3 des Kb-Motivs und hydrophobe Reste herrschen an den Positionen 3 des Db-Motivs und 6 des A2 Motivs vor. Für H-2Ld war ein Ankerrest Prolin an Position 2.

Die durch das erfindungsgemäße Verfahren gewonnenen Ergebnisse entsprechen sehr gut der Struktur des kristallographisch gefundenen Spalts bei MHC-Klasse I-Molekülen (3,6). Unterschiedliche MHC-Klasse I-Allele unterscheiden sich an diesem Spalt durch das Vorhandensein unterschiedlicher Taschen, was vermutlich darauf zurückzuführen ist, daß die Taschen jeweils unterschiedliche Aminosäuren aufnehmen können. Daher stellen die allelspezifischen Taschen in den MHC-Kristallen und die Seitenketten der allelspezifischen Ankerreste vermutlich komplementäre Strukturen dar.

Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Peptidmotive bei einem Verfahren zur Herstellung eines diagnostischen oder therapeutischen Mittels. Ein mögliches Anwendungsgebiet der Peptidmotive ist der diagnostische Nachweis von MHC-Molekülen. Da die MHC-Moleküle durch ihre individuelle spezifische Bindung von Peptiden charakterisiert sind, kann ein Bindungsnachweis über

- 7 -

Peptide einer Markierungsgruppe erfolgen, wobei als Markierungsgruppe beispielsweise eine Biotin- oder eine Fluoreszenzgruppe an das Peptid gekoppelt wird. Andere dem Fachmann bekannte Markierungen können ebenso in der Erfindung verwendet werden. Diese Markierungen schließen, ohne sich darauf zu beschränken, radioaktive Markierungen wie z.B. an Thyrosinreste von Peptiden gebundenes 131 I oder 125 I, oder 3 H oder 14 C (beide während deren Synthese in die Peptide eingebaut) mit ein. Bindung der Markierungen an die Peptide kann nach dem Fachmann gut bekannten Verfahren erreicht werden. Die Markierung erfolgt vorzugsweise an Nicht-Ankerpositionen. Die auf solche Weise gefundenen Korrelationen zwischen dem Auftreten von Autoimmunkrankheiten und der Expression von MHC-Molekülen mit krankheitsspezifischen Peptidmotiven können diagnostisch verwertet werden. Beispiele von in vitro diagnostischen Verwendungen der erfindungsgemäßen Peptidsequenzen schließen, ohne sich darauf zu beschränken, Messung der Bindungsspezifität von MHC-Molekülen, Korrelierung der Bindungsspezifität von MHC-Molekülen mit Krankheiten, und Bestimmung der Sequenz von T-Zellepitopen unbekannten Ursprungs durch Inkubieren geeigneter Zellen, die die interessierenden MHC-Moleküle exprimieren mit HPLC-Fraktionen einer Peptid-Bank (Mischung von Peptiden, die in das untersuchte Motiv passen) und Bestimmung der durch die T-Zelle erkannten Peptide, gefolgt von chromatographischem Vergleich des natürlichen T-Zellepitops mit dem als T-Zellepitop erkannten synthetischen Peptid (Nature 348: 252-254 (1990)) mit ein.

Ein weiterer Gegenstand der Erfindung ist die Verwendung der erfindungsgemäßen Peptidmotive bei einem Verfahren zur Herstellung eines Arzneimittels zur Therapie von Störungen des Immunsystems oder von Tumorerkrankungen. Insbesondere können die erfindungsgemäßen Peptidmotive für die Intervention bei Autoimmunkrankheiten (Prophylaxe und Therapie), beispielsweise durch Blockierung bestimmter MHC-Moleküle sowie durch die

Induktion peptidspezifischer Nicht-Reaktivität von T-Zellen, verwendet werden. Weiterhin ist eine Intervention bei Transplantatabstoßungen und Graft-versus-Host-Reaktionen auf analoge Weise möglich. Ferner können die erfindungsgemäßen Peptide für die Induktion oder die Verstärkung bzw. Vermehrung von gegen Tumorzellen gerichteten T-Zellen in vitro und in vivo eingesetzt werden, insbesondere für die Vakzinierung gegen Tumorerkrankungen und für die Therapie bestehender Tumorerkrankungen, wobei insbesondere der sogenannte Graftversus-Leukämia-Effekt (Sullivan et al., N.Engl.J.Med. 320: 828-834) ausgenutzt werden kann. Die erfindungsgemäßen Peptide können ebenso dazu verwendet werden, T-Zellantworten gegen infektiöse oder maligne Krankheiten zu verstärken, indem MHCbindende Peptide, die spezifisch für das infektiöse Mittel oder für Tumore sind, in vivo eingesetzt werden. Alternativ können T-Zellen aus Tieren gewonnen werden, ihre Anzahl in vitro durch Verwendung von Peptiden und geeigneten Wachstumsbedingungen, einschließend Cytokine, wie z.B. Interleukin 2, Interleukin 4 oder Interleukin 6 vermehrt und anschließend in den Patienten zurückgeführt werden. Die erfindungsgemäßen Peptide können weiterhin dazu verwendet werden, alle Tumore, die durch T-Zellen angreifbare Antigene exprimieren, einschließlich, ohne darauf zu beschränken, Melanome, Brustkrebs, Tumore viralen Ursprungs, wie z.B. Burkittslymphom und solche Tumore, die durch menschlichen Papillomavirus wie zervikales Karzinom und andere anogenitale Tumore zu behandeln. Peptide, die von T-Zellrezeptor-Molekülen oder Antikörpermolekülen abstammen, können auch für die gezielte Manipulation immunregulatorischer Mechanismen eingesetzt werden, insbesondere für die Bekämpfung von Autoimmunkrankheiten und Transplantatabstoßungen, sowie Graft-versus-Host-Reaktionen. In vivo-Verwendungen der erfindungsgemäßen Proteine zur Prävention schließen ihre Verwendung, ohne darauf beschränkt zu sein, als Peptidvakzine gegen infektiöse oder maligne Krankheiten und Verwendung der in dieser Erfindung gesammelten

Information bezüglich geeigneter T-Zellepitope zu ihrem Einbau in alle anderen Arten von Impfstoffen einschließlich rekombinante Impfstoffe (einschließlich Viruse wie Vaccinia oder Bakterien wie Salmonella oder Mycobacteria) und Proteine, die durch Verwendung von rekombinanten Bakterien (z.B. E.coli) oder anderen Zellen, einschließlich Hefe-, Insekten-, Maus- oder menschlichen Zellen hergestellt wurden, mit ein.

- 9 -

Die Dosierung oder Konzentrationen der erfindungsgemäße Peptide können durch den Fachmann routinemäßig bestimmt werden. Diese können in vivo in einem Bereich von 10 μ g bis 1 g erwartet werden. In vitro-Konzentrationen können in einem Bereich von 1 Femtomol bis 1 Micromol erwartet werden. Die Verabreichung in vivo schließt, ohne sich darauf zu beschränken, einen subkutanen, intramuskulären, intravenösen, intradermalen und oralen Weg mit ein.

Vorzugsweise ist bei der therapeutischen Verwendung ein Peptid, das einem erfindungsgemäßen Peptidmotiv entspricht, Noder/und C-terminal mit lipophilen bzw. amphiphilen Gruppen, insbesondere lipophilen Peptid-Helices kovalent verknüpft. Ein Beispiel für eine derartige Gruppe ist Tripalmitoyl-S-glycerylcysteinyl-serylserin.

Die Erfindung soll weiter durch die folgenden Beispiele in Verbindung mit Figur 1 veranschaulicht werden.

Es zeigen

- Fig. la ein HPLC-Profil von Material, das mit Anti-Kd-Antikörpern aus P815 Lyssat abgetrennt wurde,
- Fig. 1b einen vergrößerten Ausschnitt des Chromatogramms aus 1a (Fraktionen 15 35),
- Fig. 1c eine Rechromatographie des in 1b mit einem Pfeil gekennzeichneten Selbstpeptids.

Beispiel 1

10 bis 20x109 P815-Tumorzellen (H-2Kd) wurden pelletiert und 30 Minuten mit 250 ml 0,5 % Nonidet P40 in Phosphat-gepufferter Salzlösung (PBS) mit 0,1 mmol/l Phenylmethylsulfonylfluorid (PMSF) bei 4°C gerührt. Der Überstand wurde 5 Minuten bei 250 g und 30 Minuten bei 150.000 g und 4°C) zentrifugiert und dann durch eine adsorptionschromatographische Anordnung geleitet. Die adsorptionschromatographische Anordnung bestand aus drei Säulen mit jeweils einem Bettvolumen von etwa 1 ml. Das Säulenmaterial bestand aus Antikörper-gekoppelten bzw. Glycin-gekoppelten Kügelchen, die aus Bromcyan-aktivierter Sepharose 4B (Pharmacia LKB) gemäß dem Protokoll des Herstellers hergestellt wurden. Als Antikörper wurden jeweils 5 mg von Kd-spezifischem Antikörper 20-8-45 (IgG 2a, kappa; 25) oder Db-spezifische Antikörper B22-249 (IgG 2a, kappa; 26) an 1 ml der Kügelchen gekoppelt. Der Überstand des Zellextrakts wurde zunächst durch eine Säule mit Glycin-gekoppelten Kügelchen, dann durch eine entsprechende Säule mit Anti-Kd-Kügelchen und dann für eine Scheinpräzipitation über Anti-Db-Kügelchen geleitet.

Die Kügelchen wurden aus allen drei Säulen entfernt und mit 0,1 % Trifluoressigsäure für 15 Minuten verwirbelt (7). Die Überstände wurden durch Vakuumzentrifugation getrocknet und durch Reverse Phase HPLC unter Verwendung einer Superpac Pep S Säule (C2/C18; 5 μ m Teilchen, 4,0 x 250 mm, Pharmacia LKB) und einer Pharmacia LKB-Apparatur abgetrennt (4). Elutionsmittel: Lösung A 0,1 % Trifluoressigsäure in H_2O (v/v), Lösung B 0,1 % Trifluoressigsäure in Acetonitril.

Für die in Figur la und b gezeigten chromatographischen Trennungen wurde der folgende Gradient verwendet:

0 bis 5 Minuten, 100 % A

5 bis 40 Minuten linearer Anstieg auf 60 % B,

40 bis 45 Minuten 60 % B,

45 bis 50 Minuten Abnahme auf 0 % B,

Flußrate: 1 ml/Minute, Fraktionsgröße: 1 ml.

Die einzelnen Fraktionen wurden gesammelt und durch Vakuumzentrifugation getrocknet.

Figur 1 zeigt die HPLC-Auftrennung von immunpräzipitierten und Trifluoressigsäure-behandelten Kd-Molekülen. Figur 1a zeigt ein HPLC-Profil von TFA-behandeltem Material, das aus P815-Lysat mit Anti-Kd (durchgehende Linie) bzw. mit Anti-Db (gestrichelte Linie) präzipitiert wurde. Zwischen den Fraktionen 20 und 28 wird heterogenes Material in geringen Mengen eluiert, bei dem es sich um die gesuchten allelspezifischen Peptidgemische handelt.

Die Fraktionen 20 bis 28 wurden sowohl aus dem Kd-Ansatz als auch von dem Scheinpräzipitat gesammelt. Beide Ansätze wurden unter Verwendung der Edman-Abbaumethode automatisch sequenziert (Edman et al., Eur.J.Biochem. 1: 80-91 (1967)). Der Edman-Abbau wurde in einem Protein Sequencer 477A, ausgestatet mit einem on-line PTH-Aminosäure Analysator 120A (Applied Biosystems, Foster City, CA, 94404, USA) durchgeführt. Glasfaserfilter wurden mit 1 mg BioPrene Plus beschichtet und nicht präzyklisiert. Die Sequenzierung wurde unter Verwendung der Standardprogramme BEGIN-1 und NORMAL-1 (Applied Biosystems) durchgeführt. Cystein wurde nicht modifiziert und konnte deshalb auch nicht nachgewiesen werden.

Das Edman-Verfahren beinhaltet eine sequenzielle Derivatisierung und Aminosäurenentfernung vom N-Terminus, von denen jede chromatographisch identifiziert wird. Da es ungewöhnlich ist,

komplexe Gemische von Peptiden zu sequenzieren, werden die direkt aus dem Sequenziergerät gewonnenen Daten präsentiert. Tabelle la und b zeigen die Ergebnisse aus zwei Sequenzierungsversuchen für Kd-eluierte Peptide. Tabelle 1c zeigt das Sequenzierungsergebnis einer Scheinelution mit Db-spezifischen Antikörpern auf P815-Lysaten. Die Kd-eluierten Peptide haben ein klares Aminosäuremuster für jede Position von 1 bis 9, während das scheineluierte Material durchgehend ein gleichförmiges Aminosäuremuster mit einer Abnahme der absoluten Menge jedes Rests bei jedem Zyklus zeigt. Bei den Kdeluierten Peptiden wurden nur die Reste, die mehr als 50 % Anstieg in der absoluten Menge im Vergleich mit dem vorherigen oder dem vorvorherigen Zyklus zeigten, als signifikant erachtet und unterstrichen. Die erste Position ist schwierig zu beurteilen, da es keinen vorherigen Zyklus gibt und überdies alle im HPLC-Pool vorhandenen freien Aminosäuren an dieser Position nachgewiesen werden. Für die zweite Position ist der einzige Rest, dessen Häufigkeit im Vergleich zum vorherigen Zyklus klar erhöht ist, Tyrosin (z.B. Tabelle la 60,9 pmol auf 875,6 pmol). Der einzige andere Rest, der einen (geringen) Anstieg zeigt, ist Phenylalanin, das eine zu Tyr ähnliche Seitenkette aufweist. Dies bestätigt die Annahme, die aus einem Vergleich des natürlichen Kd-restringierten Influenza-Epitops (mit der Sequenz TYQRTRALV) mit anderen Kdrestringierten Peptiden im Hinblick auf den Tyrosin-Rest an Position 2 resultiert. Dagegen gibt es keinen definierten Aminosäurerest, der für die folgenden Positionen 3 bis 8 charakteristisch ist. Es werden bis zu 14 unterschiedliche Reste in den einzelnen Positionen gefunden. An Position 9 werden Ile und Leu gefunden. Es gibt keinen Signalanstieg an Position 10, was darauf hindeutet, daß die meisten Kd-gebundenen Selbstpeptide nicht länger als 9 Reste sind. Das natürliche Kd-restringierte Influenza-Peptid ist somit ein Nonapeptid (4). Das Konsensussequenzmuster, das aus diesen Ergebnissen hervorgeht, ist in Tabelle 1c gezeigt. Am meisten

- 13 -

auffallend sind Tyr an Position 2 und Ile oder Leu an 9, während an allen anderen Positionen eine größere Anzahl an Resten gefunden wird. Ein Vergleich dieses Motivs mit Peptidsequenzen, die K^d-restringierte Epitope enthalten, zeigt, daß die meisten gut zu dem K^d-restringierten Konsensusmonomer-Motiv passen (Tabelle 1d).

Der durch einen Pfeil in Fraktion 29 von Figur 1b markierte Peak und die korrespondierende Fraktion der Scheinpräzipitation wurden unter höherer Auflösung erneut chromatographiert, wobei das Fraktionsvolumen 0,5 ml betrug (Fig. 1c). Der scharfe spezifische Peak stellte ein Peptid mit der Aminosäuresequenz SYFPEITHI dar, das durch direkte Sequenzierung bestimmt wurde. Die Identität dieses natürlichen Zellpeptids mit synthetischem SYFPEITHI-Peptid wurde durch Coelution auf HPLC bestätigt (Fig. 1c). Die Sequenz paßt zu dem Konsensusmotiv aus dem Pool der Fraktionen 20 bis 28 (Fig. 1a,b), wodurch das Vorhandensein eines spezifischen Kd-restringierten Peptidmotivs (Tabelle 1d) bestätigt wird.

Sequenzierung des Selbstyzptidgemisches, das aus immunpräzipitierten K $^{
m d}$ -Molekülen eluiert wurde

Tabelle 1

		>	Z V	130.9	10.8	150.2	41.5	104.2	106.8	36.1	63.2	'35.4	8.8		29.2	5.5	22.7	12.1	25.6	27.8	0.0	16.8	7.7	3.4		24.4	13.8	8.6	6.4	5.2	3.9	7.7	5.6	2.1	2.1
		>	1yr	6.03	075.6	66.1	14.7	8.8	35.9	112	47.9	9.4	43		15.1	187.7	16.9	3,8	1.7	5.5	5.0	8 2	1.8	1.2		12.7	6.9	4.3	3.1	2.6	1.9	1.7	0.2	0.1	0.1
		-	¥	73.3	9.J	22.0	19.9	47.6	26.5	1484	46.0	10.1	5,2		26.0	5.1	5.3	5.7	11.6	3.5	47.3	10.7	3.1	1.4		27.3	6.4	4.0	2.4	1.7	1.4	1.5	2.2	1.7	1.7
		S	Scr	145.2	14.6	24.0	<u> 26.2</u>	64.2	15.1	39.3	28.8	7.0	4.2		57.8	8.5	6.7	6.9	16.1	4.2	- 124	7.6	2.3	1.6		35.2	7.4	2.7	1.6	0.0	1.1	1.6	0.9	1.3	0.8
		<u>.</u>	Pro	56,7	14.0	13.5	226.0	87.8	33.6	16.9	10.8	7.2	4.7		35,3	8.6	9.9	009	20.7	0.4	1.5	0.8	0.5	1.5		47.0	18.4	16.1	10.7	7.9	6.5	4.3	3.6	9.3	2.7
		LE.	ž	35.3	57.7	41.5	5.8	2.6	27.5	5.1	19.3	5.0	3.1		11.5	19.6	230	2.1	0.0	4.5	1.1	4.2	1.5	1.3		10.8	5.8	4.2	2.7	2:5	1.9	1.7	1,1	1.1	1.3
		∑	ĶĢ	28.0	117	25.6	9.5	50 B.03	69.7	11.2	10.5	4.9	1.8		5.8	1.6	7.5	3.7	17.6	19.9	2.9	2.4	1,3	1.0		3.5	1.4	1.2	1.1	7.0	0.6	0.4	0,3	0.5	0.3
-	_	×	Lys	231,2	13.9	71.6	29,5	10.2	194.5	37.8	41.5	3.9	3.1		35,3	3.4	12.7	4.9	۲.4 ۲.4	31.4	5.0	5.0	0.0	0.0		0.4	4.5	2.7	2.8	2.3	1.9	2.1	1.7	1.7	1.4
	(in pmot	_ _	Leo	66,5	22.6	308.7	36.6	96,6	6.00	23.4	30.4	155.2	58.3		13.2	5,7	77.2	10.4	18.1	31.9	7.0	U.7	26.6	13.5		16.5	12.1	11.0	7.3	6.2	4.6	3.4	2.8	2.5	2.5
	G)	-	음	73.1	20.4	183.2	32.1	59.3	90.1 1	12.8	10.1	129.4	32.1		11,2	3,4	41.0	7.3	12.3	32.4	5.7	2,5	37.0	13.0		12.2	6.9	4.1	3.9	3.1	2.2	1.8	1.1	1.6	1.0
	ereste	Ξ	165	3.2	1.2	2.9	6.7	1.8	8.5	7.9	10.3	3.5	1.3		1.8	0.5	0.0	2.3	0.7	1.0	2,7	<u>د.۲</u>	٥.4	0.2	ials	2.3	1.3	1.2	0.0	1.0	1.1	0,5	9.0	0.2	0.2
	ນາວຣະເຄັນ	G	ਤੇ	171.6	71.9	62,5	85.2	154.5	139.1	65.8	59.0	20.5	14.6		62.5	20.0	26.2	34,3	41.5	35,9	16.0	19.5	10.6	7,5	-						12.6				
	THE SECTION	o	ຮັ	317.8	71.9	8.98	44.8	44.1	38.3	73.7	58.0	10.4	5.6		5.8	3.6	15.9	0.1	7.2	6.5	15.7	7.0	1.9	1.0	•						2.0				
		w	કે	73.5	10.7	23.1	53.3	12.1	10.6	47.0	75.8	14.4	4.2		5.0	2.2	7.	13.8	1.0	6.4	17.2	16.5	4.8	2.7	äzipit	0.3	7.9	6.6	5,7	5.0	4.1	3.5	0.2	0.0	0.1
		۵	Asp	13.6	7.7	10.0	17.9	22.9	13.0	25.8	22.4	10.7	6.1		3.5	1.0	2.5	5.5	0.0	5.0	11.0	7.3	4.2	3,1	rejano.	3.9	3.6	3.0	3.2	3.1	3.1	2.4	2.1	1.8	7.1 0.0 £.0
		z	Asn	9.1.0	10.1	51.5	31.9	42.2	42.6	125.1	48.9	20.1	7.8		5.8	1.2	10.3	11.7	11.7	7.9	27.7	1.8	4.0	1.3	les sel	3.6	3.1	2.5	2.2	2.1	1.6	1.6	00	0.0	0.0
		~	ΛĒ	46.1	14.1	26.7	14.2	30.1	29.2	7.67	29.0	8.3	4.4		0.4	0.5	4.4	1.4	1.7	24	1.1	34	2.6	1.0	arung G	5.6	2.5	0.0	1.0	1.4	1.1	1.0	0.3	90	. 0.3
	rinient 1	<	۸Ia	172.8	25.6	100 100	158.5	139.0	116.5	51.5	44.2	13.0	6.5	Experiment 2	54.5	14.1	22.4	40.3	35.2	32.3	11.2	10.7	4.1	2.5	ncnzie	63,5	24.8	15.2	11.5	10.5	8.8	6.8	0.0	0.1	0.2
-	(a) Experiment 1		/k.lus	بر	7	ت	4	5	ပ	2	8	O	10	(b) Expe	-	2	m	₹	5	ပ	7	8	CI	10	(c) Sec		7	က	4	ษ	၁	7	8	G	10

Tabelle 1d $\,$ Das K^d -restringierte Peptidmotiv

			Po	sit	ion	,			
	1	2	3	4	5	6	7	8	9
Dominante Ankerreste		Y							I
									L
stark			N	P	M	K	T		
			I	•		F	N		
•			L						
schwach	K	F	A	A	V	H	P	H	
	A		H	E	N	I	H	E	
	R		V	S	D	M	D	K	
	S		R	D	I	Y	E	V	
	٧		S	H	L	V	Q	٧	
	T		F	N	S	R	S	F	
			E		T	L		R	
			Q	•	G				
			K						
			M						
			T						

Bel	kan	nte	Ep	ito	*eqc	•				Literatur-
								•	Proteinquelle	stelle
T	Y	0	R	T	R	A	L	<u>v</u>	Influenza PR8 NP 147-154	4,29
<u>s_</u>	Y	F	P	E	I	T	H	<u>I</u>	Selbstpeptid P815	
I	Y	A	T	V	A	G	s	L	Influenza JAP HA 523-549	30,31
v	Y	·Q	I	L	A	I	Y	A	Influenza JAP HA 523-549	30,31
I	Y	S	T	v	A	s	s	L	Influenza PR8 HA 518-528	32
L	Y	Q	N	v	G	T	Y	v	Influenza JAP HA 202-221	30,31
R	Y	L	E	N	G	K	E	T L	нга-а24 170-18233	33
R	Y	L	ĸ	N	G	K	E	T L	HLA-Cw3 170-186	34
K	Y	Q	A	v	T	T	T	L	P815 Tumor-Antigen	35
S	Y	I	P	s	A	E	K	I	Plasmodium berghei CSP 249-2	60 36
S	Y	V	P	s	A	E	Q	ı	Plasmodium yoeli CSP 276-288	37

* Peptide, von denen bekannt ist, daß sie Kd-restringierte T-Zellepitope enthalten, wurden gemäß ihrer Tyr-Reste in Über-einstimmung gebracht. Peptide, von denen bekannt ist, daß sie natürlich prozessiert sind, sind unterstrichen.

Beispiel 2

Elution von Peptiden aus Kb- und Db-Molekülen

Detergenz-Lysate aus EL4-Tumorzellen (H-2b) wurden mit Kb
spezifischen und Db-spezifischen Antikörpern, wie in Beispiel

1 beschrieben, immunpräzipitiert. Als Db-Antikörper wurde

B22-249 (siehe Beispiel 1) und als Kb-Antikörper wurde K9-178

(IgG 2a, K, 27) verwendet. Die von MHC-Molekülen dissoziier
ten Peptide wurden durch Reverse Phase HPLC aufgetrennt.

Sowohl Kb- als auch Db-Material wurde mit Profilen eluiert,

die in etwa dem Kd-Material aus Beispiel 1 entsprachen, wobei

jedoch in dem heterogenen Material, das zwischen Fraktionen

20 und 28 eluierte, gewisse Unterschiede auftraten.

Db-restringiertes Peptidmotiv

Die vereinigten Fraktionen 20 bis 28 aus dem Db-Ansatz wurden sequenziert (Tabelle 2a,b). Die Positionen 2 bis 4 enthielten mehrere Reste. Dagegen gab Zyklus 5 ein starkes Signal für Asn. Der vorherrschende Rest an Position 5 der Db-eluierten Selbstpeptide ist somit Asn. Das schwache Signal für Asp wird durch Hydrolyse von Asn zu Asp unter den Sequenzierungsbedingungen verursacht. Die Positionen 6 bis 8 enthielten 5 bis 14 unterschiedliche nachweisbare Reste. Position 9 enthielt ein starkes Signal für Met, ein mittleres für Ile und ein schwaches für Leu (alle hydrophob). (Die Bedeutung von Met oder Ile in einem Db-restringierten Epitop wurde bereits berichtet, siehe 17). An Position 10 war kein Signal, was darauf hindeutet, daß Db-präsentierte Selbstpeptide Nonapeptide sind. Das durch diese Ergebnisse ermittelte Konsensusmotiv ist in Tabelle 2c gezeigt. Ein Vergleich dieses Motivs mit

dem natürlichen Db-restringierten Peptid und mit anderen Peptiden, die Db-restringierte Epitope enthalten, zeigt, daß Asn an Position 5 ein unveränderlicher Ankerrest des Db-restringierten Peptidmotivs sein kann. Die anderen Reste der Db-restringierten Epitope unterscheiden sich erheblich, mit Ausnahme von Position 9 (mit Met, Ile oder Leu), die wie eine zweite Ankerposition aussieht.

Scynenzierung des Solbstpeptidgemisches, das aus D^{b} -Molekülen eluiert wurde Tabelle 2

<u>.</u>	G	14.		C		Aminosii	urenest	- ق	(lovud uj)	:		,					
	για	: 8	٠ ,	خ ر		ء د	Ξ:	- .	_ _	×		u,	م	တ		> -	>
-	٥	Š	dev	3		<u> </u>	S	<u>≘</u>	Lec	Lys		Pic	Pro	Ser		1yr	ر د
~	10.2	21.6	1.3	0.1		1,00	2,3	22.0	21.2	203		51.1.	,,				
	7.2	5,4	6.8	7.4		116.2	6	2	C) U		5 1	, ,	מיוי די		0.0	10.1
	5,9	5,3	0	3.8		185.1) -	7 6		9 6			7 . 6	52.7		5.5	16.0
	0.1	4.2	4.6	32,4		49.3	1 5	32.7	9 2	5 5		ນ ເ ສີ ເ	000	8.3 0.0		, 5.2	73.2
	2.1	271.4	26.0	0.2		43.0	0.0	4.7	5.2	2 6		א כ פ	, KC.C	י ת קיים		0.0	165.2
	5,9	29.6	7.1	8.4		32.6		18.0	1484) c			77.6	i i);;	9.
	23.4	18.2	24.5	30.4	13.7	22.0	0	0	5 5	9 6	. c	77	(7) (7)	의 :	11.8	 	23.6
	10.1	11.3	9.6	23.2		18.2	6	0 6	Y -	· ·		ים מים	10.4	0.0		12.	320
	3.2	7.9	3.2	7		11.0	9 6) c	1 1	<u> </u>		0.0	G. 1	<u> 26.5</u>		12.5	20.7
	-	7.5	7 6	• •		4 1 4		ol :	13.7	ი. ე		3.0	2.5	2.0		3,6	3.5 8
	ţ ţ	?	÷.;	۲:3		17.5	0.3	4.2	8.5	0.4		1.8	2.1	1.6		1.9	1
	45.8	29.7	15.9	14.5	19.6		4.7	41.5		0 67	17.5	9	•	,			
	14.4	7.6	9,3	11.1	25.2		2.1	2		200	100) u	7.0	2000	0.68	4.4	1101
	3.3	0.9	6.3	0.0	5.3	1722	1 7	, C	ָרָ נְיֵּ ער גַּי	7	2 7) i	, .	0.4.	21.6	11.3	22.6
•	16.6	6.7	10.6	34.8	23.0		۲ a	3 6		9 6	7.7	υ.	5.5	12.1	2.0	7.6	25
	5,3	154.7	22.2	2			2 6	2 4			τ. ο	4.2	33.5	12.5	23.9	7.4	198.9
	8.4	30.8	15.7		• •		9 6	2 6			7.4	7.7	11.8	5.3	5,0	2.0	138
-	24.5	15.4	ייר ה מיני	2 5	9 3 1		[];	18.6		8.2	53	11.2	22.1	6.7	10.7	5.6	29,2
-	2 0	ָרָרָ מַלְּרָלָ		77.67	COT		1,6	11.3		3,3	3.7	3.6	14.3	7.5	47.3	6.9	35.5
	5 7	Y .	20.0	72.6	0.0		33.2	3.3		۸,3	2.8	5.1	0.7	20.8	19.3	12.9	23 6
	; ;	۲.0	13.0	12.1	5.6		0,3	19.8		1.2	30,8	3.9	4.4	4.8	5.6	12	6,0
	۲. ۲.	J	12.2	8.1	5.0		0.0	10.1		7.0	11.6	3.2	3.4	3.0	3.0	7.3	5.9

- 19 -

Tabelle 2c
Das Db-restringierte Peptidmotiv

	•		Ро	sit	ion				
	1	2	3	4	5	6	7	8	9
Dominante Ankerreste			•		N				М
stark		M	I	K		L			I
·			L	E		F			
			P	Q					
			V	V					
									•
schwach	A	A	G	D		A	D	F	L
	N	Q		T		Y	E	H	
	I	D				T	Q	K	
	F					V	V	S	
	P					M	T	Y	
	S					E	Y		
-	T		•			Q			
	v					H			
						I			
						K			
						P			
						s			

Bekannte Epitope

												Literatur-
											Proteinquelle	stelle
<u>A</u>	s	N	E	N	M	E	T	<u>M</u>			Influenza NP 366-374 154	4,2
S	G	P	S	N	T	P	P	E	I		Adenovirus ElA	38
s	G	V	E	N	P	G	G	Y	С	L	Lymphozyten Choriameningiti:	3
											Virus GP 272-293	39
S	A	I	N	N	Y	•	•	•			Simian Virus 40 T 193-211	40

Kb-restringiertes Peptidmotiv

Die vereinigten Fraktionen 20 bis 28 aus dem Kb-Ansatz wurden sequenziert (Tabelle 3a,b). Position 3 enthielt ein starkes Signal für Tyr und ein schwaches für Pro. Position 4 zeigte schwache Signale für 5 Reste. Starke Signale für Phe und für Tyr machen diese beiden Reste an Position 5 vorherrschend. Die nächsten beiden Positionen enthielten 5 bzw. 3 Signale. Position 8 zeigte ein starkes Signal für Leu, ein mittleres für Met und schwächere für Ile und Val. Position 9 zeigte keinen Anstieg für irgendeinen Rest, was mit der Länge des bekannten Kb-restringierten natürlichen Peptids, das ein Octamer ist (5), übereinstimmt. Eine Analyse des Kb-restringierten Konsensusmotivs und Vergleich mit Epitopen zeigt zwei Ankerpositionen: Tyr oder Phe (beide mit ähnlichen aromatischen Seitenketten) an Position 5 und Leu, Met, Ile oder Val (alle mit ähnlichen hydrophoben Seitenketten) an Position 8.

Sequenzlerung des aus K^b-Molekülen eluierten Selbstpeptidgemisches

Tabelle 3

N N N D E Q G N N F N F P S Y Y Y Y Y Y Y Y Y	Coper	(a) Experiment 1						Anin	ossure	reste	(In pmol)								
4 h Atf Ash Atf Atf <th></th> <th><</th> <th>=</th> <th>z</th> <th>۵</th> <th>ш</th> <th>0</th> <th>ပ</th> <th>=</th> <th>-</th> <th>_</th> <th>×</th> <th>Z</th> <th>u.</th> <th>۵</th> <th>S</th> <th>پر</th> <th>>-</th> <th>></th>		<	=	z	۵	ш	0	ပ	=	-	_	×	Z	u.	۵	S	پ ر	>-	>
26.3 49.2 55.8 39.0 · 23.1 51.49 20.9 167.5 167.2 180.1 180.1 180.2 190.2 11.0 180.2 25.4 51.0 25.3 180.2 30.2 190.2 47.5 44.5	us	Αla	٩٠٤	Asn	Asp	3	ຮົ	ਲੁੰ	165	르	· Leu	Lys	₩et	<u>3</u>	Pro	Ser	ž	171	۱۹۹
39 37.3 41.0 23.5 20.3 475.7 6.9 44.5 43.1 72.6 12.6 25.4 51.0 253.1 60. 25.6 50.1 70.0 7		978.7	26.3	49.2	55.8	39.0 -	23.1	514.9	20.9	167.5	167.2	189.0	50.3	116.7	118.2	120.8	365.2	1760	757 5
1.4 14.7 37.0 17.7 9.0 358.0 5.9 8.2 19.0 26.9 4.1 60 32.5 56.2 20.0 75.0 3.5 10.0 45.3 30.0 9.2 246.7 5.0 4.9 7.0 17.7 2.4 1.0 146 20.0 13.2 50.0 13.0 13.0 13.0 13.2 2.46.7 5.0 4.9 7.0 17.7 2.4 1.0 146 20.0 1.0 13.0 <t< td=""><td></td><td>345.5</td><td>3.9</td><td>37.3</td><td>41.0</td><td>23.5</td><td>20.3</td><td>475.2</td><td>0.9</td><td>44.5</td><td>43.1</td><td>72.6</td><td>12.6</td><td>25.4</td><td>51.0</td><td>253.1</td><td>200</td><td>5.55</td><td>916</td></t<>		345.5	3.9	37.3	41.0	23.5	20.3	475.2	0.9	44.5	43.1	72.6	12.6	25.4	51.0	253.1	200	5.55	916
35 10.0 45.3 300 9.2 246.7 5.0 4.9 7.0 17.7 2.4 1.0 14.6 23.0 13.1 12.0 13 55 34.7 12.0 3.6 128.2 2.8 1.9 4.7 3.0 1.6 50.5 6.7 0.9 4.6 13.0 0.9 14.9 3.0 1.3 1.0 3.1 1.0 4.7 6.1 1.0 4.6 1.0 1.0 1.0 4.5 7.3 9.2 1.0 1.0 4.7 6.1 1.0 4.7 6.1 1.0 4.7 6.1 1.0 4.7 6.1 1.0 <t< td=""><td></td><td>129.0</td><td>1.4</td><td>14.7</td><td>37.0</td><td>17.72</td><td>9.6</td><td>350.0</td><td>5.9</td><td>8.2</td><td>19.0</td><td>26.9</td><td>4.1</td><td>6.0</td><td>32.5</td><td>56.2</td><td>2 6</td><td>75.6</td><td>25.0</td></t<>		129.0	1.4	14.7	37.0	17.72	9.6	350.0	5.9	8.2	19.0	26.9	4.1	6.0	32.5	56.2	2 6	75.6	25.0
13 55 34.7 120 36 128.2 2.8 1.9 4.7 3.0 1.6 50.5 6.7 1.9 4.8 3.2 0.8 5.6 32.7 130 3.7 77.9 2.4 3.1 3.5 3.9 6.5 7.3 9.2 18.3 7.3 1.4 5.1 22.7 6.0 3.3 29.2 0.6 1.0 3.4 9.2 0.5 1.0 4.1 3.1 2.5 1.5 1.2 2.7 6.0 3.3 29.2 0.6 1.0 3.4 9.2 0.5 1.0 3.0 4.1 3.1 2.5 1.5 1.0 2.0 3.2 2.1 0.9 0.9 0.9 0.9 1.0 1.0 3.0 3.7 3.1 3.2 3.0 3.0 3.1 3.2 3.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9		52.1	3.5	10.8	45.3	38.0	9.5	246.7	5.0	4.9	7.0	17.7	2.4	1.0	14.6	23.0	13.4	120	16.4
0.8 5.6 32.7 13.0 3.7 77.9 2.4 31 3.5 3.9 0.9 4.5 73 9.2 18.3 73. 0.9 1449 30.4 9.5 6.6 51.3 0.6 0.0 3.4 9.2 0.5 1.9 4.7 6.1 10.7 3.5 1.0 1.0 1.5 1.0 1.0 1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		18.9	13	55	34.7	12.0	3.6	128.2	2.8	1.9	4.7	3.0	1.6	50.5	6.7	0.0		27.5	. 0
0.9 149/2 30.4 9.5 6.6 51.3 0.6 0.0 3.4 9.2 0.5 1.9 4.7 6.1 10.7 3.5 1.4 5.1 2.1 1.0 3.0 3.7 2.1 1.0 3.0 3.7 2.5 1.9 1.5 2.6 19.9 4.5 2.3 21.1 0.9 0.9 6.9 1.0 1.0 3.0 3.7 2.2 1.9 0.5 1.9 17.5 1.0 17.5 1.0 0.0 0.9 1.0 1.0 1.0 3.0 3.7 2.2 1.9 4.1 2.2 1.0 3.0 3.7 2.2 1.9 4.1 2.2 1.9 4.0 3.0 3.7 3.5 1.0 3.0 3.1 2.0 3.0 3.1 2.0 3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.1 3.0		16.2	0.8	5.6	32.7	13.0	2.7	6.77	2.4	3.1	3.5	3.9	6.0	5.5	7.3	9.2	18.3	2	6.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		9.9	0.9	14.9	30.4	9.5	9.9	51.3	9.0	0.0	3.4	9.2	0.5	1.9	4.7	6.1	10.7	. 50	7 7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6.0	1.4	5.1	22.7	6.0	3.3	29.2	0.8	1.4	13.5	1.8.	2.1	1.0	3.8	4.1	3.1	2.5	۷۱ ۳
0.5 17.5 17.5 17.5 10.0 0.5 4.0 0.8 0.9 1.2 2.0 3.5 1.0 2.0 1.1 5.2 3.0 7.0 17.1 44.6 0.3 11.3 12.6 12.1 3.0 6.2 7.6 44.2 18.1 6.8 0.2 3.4 2.0 2.1 0.3 11.3 12.6 1.3 3.7 3.5 14.9 10.3 3.1 0.2 3.4 2.0 2.1 0.7 2.1 0.3 14.9 10.3 3.1 16.7 0.2 3.1 2.0 2.1 0.7 2.1 0.2 2.1 0.9 3.6 9.8 3.0 3.3 16.7 0.0 2.1 2.2 2.2 2.1 0.7 2.1 0.7 1.5 5.0 6.2 3.6 3.0 3.1 16.7 0.0 1.0 2.5 0.2 1.5 5.0 6.2 0.7 1.5 2.1 1.5 2.1 1.5 2.1 2.2 2.1		4.6	1.5	2.6	19.9	4.5	2,3	21.1	0.9	0.9	6.9	1.0	1.5	1.0	3.0	3.7	2.2	5	2 1 2
1.1 5.2 3.0 7.0 17.1 44.6 0.3 11.3 12.6 12.1 3.0 6.2 7.6 44.2 10.1 6.0 0.2 $\frac{9.4}{2}$ 2.0 5.1 8.0 4.7 6.3 4.0 1.3 3.7 3.5 14.9 10.3 3.1 0.3 2.1 2.0 2.1 0.7 1.5 5.0 5.0 3.0		3.9	5'0	1.9	17.5	3.7	2.1	17.5	1.0	0.5	4.0	0.8	6.0	1.2	2.0	3.5	1.0	2.0	1.5
1.1 5.2 3.0 7.0 17.1 44.6 0.3 11.3 12.6 12.1 3.0 6.2 7.6 44.2 18.1 6.8 0.2 9.4 2.0 5.1 6.3 4.0 1.3 3.7 3.5 14.9 10.3 3.1 0.3 2.1 2.6 3.9 4.0 25.1 0.7 2.0 2.1 0.9 3.6 9.9 3.0 3.1 16.7 1.3 2.7 5.2 7.5 4.1 24.5 0.2 1.5 5.0 1.5 5.9 3.0 3.0 2.1 0.0 1.0 2.0 1.7 0.4 1.5 0.7 1.5 5.9 3.0 2.0 0.0 1.0 2.0 1.0 2.4 1.5 0.4 2.3 3.5 1.3 2.0 2.0 0.1 8.2 3.3 3.2 10.4 0.6 0.4 2.3 1.2 2.1 1.9 <td>E Per</td> <td>inent 2</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td>	E Per	inent 2												•					
0.2 9.4 2.8 5.1 8.0 42.5 0.5 4.7 6.3 4.0 1.3 3.7 3.5 14.9 10.3 3.1 0.3 3.1 0.3 3.1 0.3 3.1 0.3 3.1 0.3 2.1 2.6 3.9 4.0 25.1 0.7 2.8 7.9 2.1 0.9 3.6 9.8 3.0 3.3 16.7 2.0 0.3 1.2 2.7 5.9 3.0 5.9 2.7 0.8 1.3 2.7 5.3 14.2 0.5 0.2 3.9 1.7 0.4 18.3 3.5 1.3 2.0 20.8 0.2 2.3 2.7 5.3 2.1 5.3 2.1 5.3 2.1 5.3 2.1 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3		42.4	1.1	5.2	3.0	7.0	17.1	44.6	0.3	11.3	12.6	12.1	3.0	6.2	7.6	44.2	18.1	S.	787
0.3 2.1 2.6 3.9 4.0 25.1 0.7 2.8 7.9 2.1 0.9 3.6 918 3.0 3.3 16.7 2.8 1.3 2.7 5.7 5.2 1.3 24.3 24.5 0.2 1.5 5.0 6.3 0.7 1.5 5.9 3.0 5.9 2.1 0.0 0.0 1.0 2.0 3.3 2.5 14.2 0.5 0.2 3.9 1.7 0.4 18.3 3.5 1.3 2.0 20.8 0.2 2.3 2.7 6.3 2.7 9.2 0.0 1.0 2.4 1.5 0.4 2.3 3.2 2.7 5.2 3.6 0.1 81.2 3.3 3.9 4.2 10.4 0.6 0.4 2.3 7.2 0.1 1.2 2.1 1.9 2.8 1.9 0.1 3.1 2.0 2.6 1.7 6.9 0.2 0.2 13.0 1.6 1.0 0.8 1.1 0.7 1.3 1.1 0.1 1.1 2.1 3.6 1.9 5.9 1.4 0.0 7.7 0.9 1.0 0.9 1.3 0.3 1.3 0.8 1.1 0.3 1.3 0.8 1.7 0.3 4.5 3.0 1.4 5.4 0.2 0.0 3.9 0.6 0.6 0.6 0.6 1.1 0.6 1.1 0.8		24.0	0.2	6.4	2.0	5.1	8.0	42.5	0.5	4.7	6.3	٧.0	1.3	3.7	3.5	14.9	10.3	3.1	6.9
1.3 2.7 5.7 7.5 4.1 24.5 0.2 1.5 5.0 6.3 0.7 1.5 5.9 3.0 5.9 2.7 0.0 1.0 2.0 3.3 2.5 14.2 0.5 0.2 3.9 1.7 0.4 18.3 3.5 1.3 2.0 20.8 0.2 0.1 1.2 2.1 2.2 2.2 2.2 3.6 0.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 3.6 0.1 3.3 3.9 3.9 3.2 3.0 3.9 0.2 0.1 1.2 2.1 1.9 2.8 1.9 0.9 0.1 3.1 0.1 0.1 3.1 2.1 3.6 1.9 5.9 1.4 0.0 7.7 0.9 1.0 0.9 1.3 0.3 1.3 0.8 1.7 0.3 4.5 3.0 1.4 5.4 0.2 0.0 3.9 0.6 0.6 0.6 0.6 1.1 0.6 1.1 0.8		10.4	0.3	2.1	5.6	3.9	4.0	25.1	0.7	2.0	7.9	2.1	0.0	3.6	9.8	3.0	3.3	16.7	10.0
0.0 1.0 2.0 3.3 2.5 14.2 0.5 0.2 3.9 1.7 0.4 18.3 3.5 1.3 20 20.8 0.2 2.3 2.7 5.3 2.0 20.8 0.2 2.3 2.7 5.3 2.0 20.8 0.1 2.3 2.7 5.3 2.0 2.0 2.0 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3		9.6	1.3	2.7	2.7	 Si	4.1	24.5	0.2	1.5	5.0	6.3	0.7	1.5	5.9	3.0	5.9	2.7	4.5
0.2 2.3 2.7 6.3 2.7 9.2 0.0 1.0 2.4 1.5 0.4 2.3 3.2 2.7 5.2 3.6 0.1 8.2 3.3 3.9 4.2 10.4 0.6 0.4 2.3 7.2 0.1 1.2 2.1 1.9 2.8 1.9 0.1 0.1 3.1 2.0 2.6 1.7 6.9 0.2 0.2 13.0 1.6 1.0 0.8 1.1 0.7 1.3 1.1 0.1 0.1 1.1 2.1 3.6 1.9 5.9 1.4 0.0 7.7 0.9 1.0 0.9 1.3 0.3 1.3 0.8 1.1 0.8 1.1 0.8 1.1 0.8 1.1 0.8		5.8	0.0	1.0	2.0	3.3	2.5	14.2	0.5	0.2	3.9	1.7	0.4	10.3	3.5	1.3	2.0	20.8	2.2
0.1 812 3.3 3.9 42 10.4 0.6 0.4 2.3 7.2 0.1 1.2 2.1 1.9 2.8 1.9 0.1 0.1 3.1 2.0 2.6 1.7 6.9 0.2 0.2 12.0 1.6 1.0 0.8 1.1 0.7 1.3 1.1 0.1 1.1 2.1 3.6 1.9 5.9 1.4 0.0 7.7 0.9 1.0 0.9 1.3 0.3 1.3 0.8 1.7 0.3 4.5 3.0 1.4 5.4 0.2 0.0 3.9 0.6 0.6 0.6 1.1 0.6 1.1 0.8		0.0	0.2	2.3	2.7	6.3	7.7	2.6	0.0	0.1	2.4	1.5	0.4	2.3	3.2	2.7	5.2	3.6	2.4
0.1 3.1 2.0 2.6 1.7 6.9 0.2 0.2 13.0 1.6 1.0 0.8 1.1 0.7 1.3 1.1 0.1 1.1 0.1 1.3 1.1 1.1 0.1 1.3 1.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 0.8 1.1 0.3 1.3 0.8 1.7 0.3 4.5 3.0 1.4 5.4 0.2 0.0 3.9 0.6 0.6 0.6 1.1 0.6 1.1 0.8		5.0	0.1	8.2	3.3	3.9	<u>4:2</u>	10.4	9.0	0.4	2.3	7.2	0.1	1.2	2.1	1.9	2.0	6.1	1.2
0.1 1.1 2.1 3.6 1.9 5.9 1.4 0.0 7.7 0.9 1.0 0.9 1.3 0.3 1.3 0.6 1.7 0.3 4.5 3.0 1.4 5.4 0.2 0.0 3.9 0.6 0.6 0.6 1.1 0.6 1.1 0.8		4.0	0.1	3.1	2.0	2.6	1.7	6.9	0.2	0.2	13.0	1.6	1.0	0.8	1.1	0.7	1.3	1.1	2.2
1.7 0.3 4.5 3.0 1.4 5.4 0.2 0.0 3.9 0.6 0.6 0.6 1.1 0.6 1.1 0.8		7.5	0.1	1.1	. 2.1	3.6	1.9	5.9	1	0.0	1.7	0.9	1.0	0.9	1.3	0.3	-	6	# 2
		3.9	1.7	0.3	4.5	3.0	1.4	5.4	0.2	0.0	3.9	9.0	9.0	9.0	1.1	0.6	17	0.8	1.1

PCT/EP92/01072

- 22 -

Tabelle 3c Das Kb-restringierte Peptidmotiv

			Po	sit	ion			
	1	2	3	4	5	6	7	8
Dominante Ankerreste					F			L
					Y			
stark			Y					M
								_
schwach	R	N	P	R		T	N	I
	I			D		I	Q	V
	L			E		E	K	
	s			K		s		
	A			T				

Bekannte Epitope

									Literatur-
								Proteinquelle	stelle
R	G	Y	v	Y_	0	G	<u>L</u>	Vesicular Stomatitis Virus	
								NP 52-59	5
s	т	т	พ	म	E	K	L	Ovalbumin 258-276	41
						A		Sendai Virus NP 321-332	42

Beispiel 3

HLA-A2.1-restringiertes Peptidmotiv

Ein Detergenz-Lysat von menschlichen JY-Zellen mit dem HLA-A2.1-MHC-Molekül (45) wurde mit A2-spezifischen Antikörpern (BB7.2, IgG2b, Literaturstelle 28) immunpräzipitiert. Die von A2-Molekülen dissoziierten Peptide wurden durch HPLC aufgetrennt. Es wurden die Fraktionen 20 bis 28 vereinigt und wie zuvor beschrieben sequenziert (Tabelle 4). Die zweite Position enthielt ein starkes Signal für Leu und ein mittleres für Met. An den Positionen 3 bis 5 wurden jeweils 6 bis 8

Reste gefunden. Position 6 enthielt Val, Leu, Ile und Thr. Die folgenden zwei Positionen zeigten jeweils 3 Signale. Position 9 zeigte ein starkes Val- und ein schwaches Leu-Signal. Position 10 zeigte keinen Anstieg für einen Rest, was darauf hinweist, daß A2-restringierte Epitope Nonapeptide sind. Leu oder Met an Position 2 und Val oder Leu an Position 9 scheinen die Ankerreste zu sein. Einige von bekannten Peptiden mit A2-restringierten Epitopen können mit dem Motiv in Übereinstimmung gebracht werden, während dies bei anderen nur teilweise möglich ist (Tabelle 4c). Die Existenz von mehreren Varianten von A2-Molekülen kann diese schlechte Übereinstimmung einiger Peptide mit dem Motiv verursachen.

Sequenzierung des Selbstpeptidgenisches, das aus A2.1-Polekülen eluiert wurde Tabelle 4

(a) Experiment 1				-		Ž	ພະເວດ	rerestc	(lound)	ļ]				
=		z	٥			ပ	=	-	_	×	Z	Ľ					>
3 .V		γsυ	Ąsb	કે	ຮູ	ਲੇ	SE SE	음	Lev	Lys	Met	£	Pro S	Ser 11v		٠ <u>۲</u>	٧٥.
0.0		31.0	75.7			112.4	2.8	144.4	123.0	0'09	30,7	63,3					9
0.0		16.2	14.1			44.7	1,6	9'69	511.0	15,5	71.0	10.5					86.5
0.0		5.0	10.3	_		31.0	11.1	51.5	110.8	5.8	55.7	19.4					46.0
9.0		121	26.4			56.2	1,3	10.4	22.7	24.6	5.2	5.2					28.13
0.1		13.4	10.6			55.6	2.0	21.4	23.9	47.2	4.1	6.2					2 00
0.0		16.0	14.1	_		20.5	1,4	68.1	43.4	14.7	4.4	5.0					2 6
0.0		11.7	9,5	~		19.0	3.2	36.3	27.3	7.9	5.7	0.0					5.5
0.3		13.4	8.1			21.1	1.0	11.6	15.1	33.8	3.4	5.1					22.4
0.0		5.1	0.9	_		14.0	0.7	11.5	27.5	0.7	3.1	2.7					5
0.7		2.6	4.4			10.2	0.4	4.5	12.1	4.5	1.0	1.8					20.4
							•										
10.5	_	۸.0	.3.1	10.0	14.5	55.7	0.5	60.3	44.4	10.0	0.2	37.5					48.0
1.6		2.0	1.9	6.8	11.0	9.0	0.0	37.9	302.7	0.0	26.2	5.0					26.5
E.		5.0	1,0	4.9	10.0	12.6	0.1	35,7	71.5	0.0	24.5	13.0					19.6
- 2:	~	4.5	0.0	25.3	7.9	24.5	0.1	6,2	10.3	2.0	1.3	2.0					93
=	10	000	9.0	14.3	9.9	37.0	0.0	16.6	15.1	0.2	1.9	70.7					18.3
	m	9.9	3.6	6.4	6.2	10.1	0.1	30.7	27.1	0.0	1.4	2,7					39.2
Ä	0	4.7	2,5	7.7	0.0	5,6	0.2	22.3	16.1	0.0	1.9	3.9					27.2
Ŧ	~	37	1.3	7.9	6.3	6.9	0.3	4.7	6.7	0.0	9.0	2.0					5.3
o	ro.	60	0.8	2.9	2.0	2.7	. 0.2	3.0	11.5	0.4	0.3	9.0	2.0				10.8
0.0		0,5	0.5	1.0	0.0	1.8	0.3	1.6	5.1	0.4	0,3	0.3		0.4	0.3	0.2	3.6

ERSATZBLATT

PCT/EP92/01072

Tabelle 4c
Das HLA-A2.1-restringierté Peptidmotiv (HLA-A*0201)

			Po	sit	ion				
	1	2	3	4	5	6	7	8	9
Dominante Ankerreste		L							V
stark		M		E		v		K	
				K					
schwach	I		A	G	I	I	A	E	L
	L		Y	P	K	L	Y	S	
	F		F	D	Y	T	. Н		
	K		P	T	N				
	M		M		G				
•	Y		s		F				
	V		R		V	H			

Bekannte Epitope

											Literatur-
									•	Proteinquelle	stelle
I	L	K	E	P	v	H	G	v		HIV Reverse Transkriptase	
										461–485	43
G	I	L	G	F	v	F	T	L		Influenza Matrixprotein 57-68	3 44
I	L	G	F	v	F	T	L	T	V	Influenza Matrixprotein 57-68	3 44
F	L	Q	s	R	P	E	P	T		HIV Gag Protein 446-460	46
A	M	Q	M	L	K	E	•			HIV Gag Protein 193-203	46
P	I	A	P	G	Q	M	R	E		HIV Gag Protein 219-233	46
Q	M	K	D	С	T	E	R	Q		HIV Gag Protein 418-443	46

- 26 -

Tabelle 5
Das HLA-A*0205-restringierte Peptidmotiv

		Po	sit	ion				
1	2	3	4	5	6	7	8	9
								L
	v	Y	G	V	I	Q	K	
	L	P	E	Y	٧			
	I	F	D	L	T			
	Q	I	K	I	L			
	M		N		A			
					R			
	1	V L I	1 2 3 V Y L P I F Q I	1 2 3 4 V Y G L P E I F D Q I K	1 2 3 4 5 V Y G V L P E Y I F D L Q I K I	V Y G V I L P E Y V I F D L T Q I K I L M N A	1 2 3 4 5 6 7 V Y G V I Q L P E Y V I F D L T Q I K I L M N A	1 2 3 4 5 6 7 8 V Y G V I Q K L P E Y V I F D L T Q I K I L M N A

Tabelle 6 Das $E-2K^k$ -restringierte Peptidmotiv

			Pos	Position				
	1	2	3	4	5	6	7	8
Dominante Ankerreste		E						I
Stark			K					
			N					
			Y					
			M					
	•							
Schwach	V		Q	\mathbf{L}	A	N	T	
	F		I		G	K		
			L		P	H		
			F		T			
			P		V			
			H		F			
			T		S			

- 27 -

Tabelle 7 $\label{eq:definition} \text{Das } H-2K^{k\,m\,\prime}\text{-restringierte Peptidmotiv}$

	Position										
	1	2	3	4	5	6	7	8			
Dominante Ankerreste							I				
Stark		E	K								
			•								
Schwach		Q	N	P	A		R				
•		G	Q		R		Y				
		P	G		K						
			M								
			P								
			Y								

Literaturstellen

- Zinkernagel, R.M. & Doherty, P.C., Nature 248, 701-702 (1974).
- Townsend, A.R. et al., Cell 44, 959-968 (1986). 2.
- Bjorkman, P.J. et al., Nature 329, 512-518 (1987). 3.
- Rötzschke, O. et al., Nature 348, 252-254 (1990). 4.
- VanBleck, G.M. & Nathenson, S.G., Nature 348, 213-216 5. (1990).
- Garrett, T.P.J., Saper, M.A., Bjorkman, P.J., Strominger, J.L. & Wiley, D.C., Nature 343, 692-696 (1989). Rötzschke, O., Falk, K., Wallny, H.-J., Faath, S. & 6.
- 7. Rammensee, H.-G., Science 249, 283-287 (1990).
- Falk, K., Rötzschke, O. & Rammensee, H.-G., Nature 348, 8. 248-251 (1990).
- Shimorkevitz, R., Kappler, J., Marrack, P. & Grey H., 9. J.exp.Med. 158, 303-316 (1983).
- Demotz, S., Grey, H.M., Appella, E. & Sette, A., Nature 10. 343, 682-684 (1989).
- Bjorkman, P.J. et al., Nature 329, 506-512 (1987). 11.
- DeLisi, C. & Berzolsky, J.A., Proc.natn.Acad.Sci.USA 82, 12. 7048-7052 (1985).
- Rothbard, J.B. & Taylor, W.R., EMBO J. 7, 93-100 (1988). 13.
- Cornette, J.L., Margaht, H., DeLisi, C. & Berzolsky, 14. J.A., Meth.Enzym 178, 611-633 (1989).
- Sette, A. et al., Proc.natn.Acad.Sci.USA 86, 3296-3300 15. (1989).
- Maryanski, J.L., Verdini, A.S., Weber, P.C., Salemme, 16. F.R. & Corradin, G., Cell 60, 63-72 (1990).
- Bastin, J., Rothbard, J. Davey, J. Jones, I. & Townsend, 17. A., J.exp.Med. 165, 1508-1523 (1987).
- Bjorkman, P.J. & Davis, M.M., Cold Spring Harb.Symp. 18. quant.Biol. 54, 365-374 (1989).
- Boulliot, M. et al., Nature 339, 473-475 (1989). 19.
- Frelinger, J.A., Gotch, F.M., Zweerink, H., Wain, E. & McMichael, A.J., J.exp.Med. 172, 827-834 (1990). 20.
- Schild, H., Rötzschke, O., Kalbacher, H. & Rammensee, 21. H.-G., Science 247, 1587-1589 (1990).
- Townsend, A. et al., Nature 340, 443-448 (1989). 22.
- Elliott, T., Townsend, A. & Cerundolo, V., Nature 348, 23. 195-197 (1990).
- Cerundolo, V. et al., Nature 345, 449-452 (1990). 24.
- Rüsch, E., Kuon, W. & Hämmerling, G., J. Trans. Proc. 15, 25. 2093-2096 (1983).
- Lembke, H., Hämmerling, G.J. & Hämmerling U., Immu-26. nol.Rev. 47, 175-206 (1979).
- Ozato, K. & Sachs, D.H., J.Immun. 126, 317-321 (1981). 27.
- Parham, P. & Brodsky, F.M., Hum. Immun. 3, 277-299 28.
- Taylor, P.M., Davey, J., Howland, K., Rothbard, J.B. & 29. Askonas, B.A., Immunogenetics 26, 267-272 (1987).

- 30. Braciale, T.J. et al., J.exp.Med. 166, 678-692 (1987).
- 31. Braciale, T.J., Sweetser, M.T., Morrison, L.A., Kittlesen, D.J. & Braciale, V.L., Proc.natn.Acad.Sci.USA 86, 277-281 (1989).
- 32. Kuwano, K., Braciale, T.J. & Ennis, F.A., FASEB J. 2, 2221 (1988).
- 33. Maryanski, J.L., Pala, P., Cerottini, J.C. & Corradin, G.J., J.Exp.Med. 167, 1391-1405 (1988).
- Maryanski, J.L., Pala, P., Corradin, G., Jordan, B.R. & Cerottini, J.C., Nature 324, 578-579 (1986).
- Sibille, C. et al., J.exp.Med. 172, 35-45 (1990). Romero, P. et al., Nature 341, 323-326 (1989). Weiss, W.R. et al., J.exp.Med. 171, 763-773 (1990).
- 36.
- 37.
- 38. Kast, W.M. et al., Cell 59, 603-614 (1989).
- 39. Oldstone, M.B.A., Whitton, J.L., Lewicki, H. & Tishon, A., J.exp.Med. 168, 559-570 (1988).
- 40. Tevethia, S.S. et al., J. Virol. 64, 1192-1200 (1990).
- 41. Carbone, F.R. & Bevan, M.J., J.exp.Med. 169, 603-612
- 42. Schumacher, T.N.M. et al., Cell 62, 563-567 (1990).
- 43. Walker, B.D. et al., Proc.natn.Acad.Sci.USA 86, 9514-9518 (1989).
- 44. Gotch, F., McMichael, A. & Rothbard, J., J.exp.Med. 168, 2045-2057 (1988).
- Santos-Aguado, J., Commins, M.A.V., Mentzer, S.J., Burakoff, S.J. & Strominger, J.L., Proc.natn.Acad.Sci.USA 86, 8936-8940 (1989).
- Clavene, J.M. et al., Eur.J.Immun. 18, 1547-1553 (1988).
- 47. Falk, K. et al., J.exp.Med. A4, 425-434 (1991).

PCT/EP92/01072

- 30 -

WO 92/21033

Patentansprüche

- Verfahren zur Bestimmung von allelspezifischen Peptidmotiven auf Molekülen des Major Histocompatibility Complex (MHC) der Klassen I oder II, dad urch gekennzeichnet, daß man
 - (a) durch Zellaufschluß von Zellen, die MHC-Moleküle enthalten, einen Zellextrakt erzeugt,
 - (b) MHC-Moleküle mit den darauf befindlichen Peptidmischungen durch Immunpräzipitation aus dem Zellextrakt abtrennt,
 - (c) die Peptidmischungen von MHC-Molekülen und sonstigen Proteinbestandteilen abtrennt,
 - (d) einzelne Peptide oder/und ein Gemisch davon sequenziert, und
 - (e) aus den erhaltenen Informationen, insbesondere aus der Sequenzierung eines Gemisches, oder aus der Sequenzierung einer Reihe von Einzelpeptiden, das allelspezifische Peptidmotiv ableitet.
- Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß man Peptidmotive auf MHC-Molekülen der Klasse I bestimmt.
- Verfahren nach Anspruch 2,
 d a d u r c h
 g e k e n n z e i c h n e t ,
 daß man Peptidmotive auf H-2Kd-, H-Kb-, H-2Db-, H-2Kk,
 H-2Km', oder HLA-A*0201 oder A*0205-Molekülen bestimmt.
- 4. Verfahren nach einem der vorhergehenden Ansprüche,
 d a d u r c h g e k e n n z e i c h n e t ,
 daß man für die Immunpräzipitation Antikörper verwendet,
 die für MHC-Moleküle spezifisch sind.

PCT/EP92/01072

WO 92/21033

- 31 -

- 5. Verfahren nach Ansprüch 4, gekennzeichnet, dadurch daß man Festphasen-gebundene Antikörper verwendet.
- Verfahren nach einem der vorhergehenden Ansprüche, 6. qekennzeichnet, dadurch daß die Abtrennung der Peptidmischungen von MHC-Molekülen und sonstigen Proteinbestandteilen chromatographisch erfolgt.
- 7. Verfahren nach Anspruch 6, gekennzeichnet, dadurch daß die Abtrennung über Reverse Phase-HPLC erfolgt.
- 8. Verfahren nach Anspruch 7, qekennzeichnet, dadurch daß die Abtrennung in einem Trifluoressigsäure/H2O-Trifluoressigsäure/Acetonitril-Gradienten erfolgt.
- 9. Peptidmotiv, erhältlich durch ein Verfahren nach einem der Ansprüche 1 bis 8.
- 10. Verwendung eines Peptidmotivs nach Anspruch 9 bei einem Verfahren zur Herstellung eines diagnostischen oder therapeutischen Mittels.
- 11. Verwendung nach Anspruch 10 für den diagnostischen Nachweis von MHC-Molekülen.
- 12. Verwendung nach Anspruch 11, gekennzeichnet, dadurch daß man ein Peptid, das einem Peptidmotiv entspricht, mit einer Markierungsgruppe, insbesondere einer Biotinoder einer Fluoreszenzgruppe koppelt.

- 13. Verwendung nach Anspruch 11 für die Therapie von Störungen des Immunsystems oder von Tumorerkrankungen.
- 14. Verwendung nach Anspruch 13 für die Therapie von Autoimmunkrankheiten, Transplantatabstoßungen oder/und Graftversus-Host-Reaktionen.
- 15. Verwendung nach Anspruch 10 oder 14,

 d a d u r c h g e k e n n z e i c h n e t ,

 daß ein Peptid, das einem Peptidmotiv entspricht, Noder/und C-terminal mit lipophilen bzw. amphiphilen
 Gruppen, insbesondere auch lipophilen Peptid Helices
 kovalent verküpft wird.
- 16. Verwendung nach Anspruch 15,
 d a d u r c h g e k e n n z e i c h n e t ,
 daß die lipophile bzw. amphiphile Gruppe Tripalmitoyl-Sglycerylcysteinyl-serylserin ist.

INTERNATIONAL SEARCH REPORT

International Application N.

PCT/EP 92/01072

I. CLASSIFI	CATION OF SUBJE	CT MATTER (if several classification :	symbols apply, indicate all) ⁶	
		Classification (IPC) or to both National (and the same of th	
	5 GO1N33/6		CO7K7/04	
II. FIELDS S	SEARCHED	Service Description		
	· · · · · · · · · · · · · · · · · · ·	Minimum Docum	entation Searched ⁷	
Classification	on System		Classification Symbols	·
Int.Cl.	5	GO1N ; CO7K		
			r than Minimum Documentation are Included in the Fields Searched ⁸	
			•	·
<u> </u>		D TO BE RELEVANT?		Relevant to Claim No.13
Category °	Citation of D	ocument, ¹¹ -with indication, where approp	riate, of the relevant passages 15	Relevant to Claim No
Х,Р	THE 12T 21 June pages 8 0.ROETZ peptide specifi	S: CHEMISTRY AND BIOL H. AMERICAN PEPTIDE SY 1991, CAMBRIDGE, MASS 32 - 834; SCHKE ET AL.: 'Sequenc s eluted from MHC mole c.' whole document	MPOSIUM. ACHUSETTS, USA e motifs of	1-16
X,P	pages 2 K.FALK by sequ molecul	1, 23 May 1991, 90 - 296; ET AL.: 'Allele-specif encing of self-peptide es.' whole document	ic motifs revealed s eluted from MHC	1-11,13,
"A" doc coa "E" earl fills "L" doc white cits "O" doc oth "P" doc	usidered to be of particilier document but pub ing date ument which may thruch is cited to establish those or other special reament referring to an er means	meral state of the art which is not made relevance lished on or after the international ow doubts on priority claim(s) or a the publication date of another eason (as specified) oral disciosure, use, exhibition or to the international filing date but	"T" later document published after the interms or priority date and not in conflict with the cited to understand the principle or theor invention "X" document of particular relevance; the classification of the considered novel or cannot be considered novel or cannot be involve an inventive step "Y" document of particular relevance; the classification to considered to involve an inventive and comment is combined with one or more of ments, such combination being obvious to in the art. "&" document member of the same patent fan	ne application but y underlying the imed invention considered to imed invention ive step when the other such docu- to a person skilled
IV. CERTI				
Date of the	_	the International Search MBER 1992	Date of Mailing of this International Season	rch Report
Internationa	i Searching Authority EUROPE	AN PATENT OFFICE	Signature of Authorized Officer HITCHEN C.E.	Chile

THE DESTROY SPHINSON ..

III. DOCUMEN	ITS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)	Relevant to Claim No.		
Category o	Citation of Document, with indication, where appropriate, of the relevant passages	Retrait to Call 110		
		1_10_12		
X,P	EUROPEAN JOURNAL OF IMMUNOLOGY	1-10,13,		
``'	vol. 21, November 1991,	17		
	pages 2891 - 2894;			
	O.ROETZSCHKE ET AL.: 'Exact prediction of a			
	natural T cell epitope.			
	see the whole document	.		
		1-3,6-10		
A	NATURE 1000			
	vol. 348, 15 November 1990,			
į	pages 252 - 254; O.ROETZSCHKE ET AL.: 'Isolation and analysis of			
	naturally processed viral peptides as recognised			
	naturally processed vital pepoless as			
	by cytotoxic T cells.' cited in the application			
	see the whole document			
	266 Cile Milote docament			
	NATURE	1-3		
A	vol. 317, 26 September 1985,			
	250 - 361·			
	h h bappitt et al . Rinding of Immunogenic			
	peptides to Ia histocompatibility molecules.			
	see abstract			
		1-16		
A	WO, A, 8 805 784 (THE BOARD OF TRUSTEES OF THE	1 10		
``	LELAND STANFORD JUNIOR UNIVERSITY) 11 August			
	1988	1		
İ	see page 13 - page 20			
		15,16		
A	VACCINE 5 Labour 1000			
	vol. 7, February 1989,			
	pages 29 - 33; K-H.WIESMUELLER ET AL.: 'Novel low-molecular			
	weight synthetic vaccine against foot-and-mouth			
	disease containing a potent B-cell and			
	macrophage activator.			
	see abstract			
		1.20		
A,P	THE JOURNAL OF EXPERIMENTAL MEDICINE	1-3,9		
۸,۲	vol. 174, no. 2, 1 August 1991,			
	nages 425 - 434:			
	V FAIR FT AI · 'Thentification of Naturally			
	number of Managementides Allows Inchr			
	Quantification in Infected Cells and Suggests an			
	Allele-specific T Cell Epitope.			
	see page 425 - page 426			
	-/			
	·			
1				

III. DOCUME	NTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)	
Category °	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No
A,P	THE JOURNAL OF EXPERIMENTAL MEDICINE . vol. 175, no. 3, 1 March 1991, pages 809 - 820; S.E.BUXTON ET AL.: 'Anchoring Pockets in Human Histocompatibility Complex Leukocyte Antigen (HLA) Class I Molecules: Analysis of the Conserved B ("45") Pocket of HLA-B27' see abstract	1-3
A,P	THE JOURNAL OF EXPERIMENTAL MEDICINE vol. 175, no. 4, 1 April 1992, pages 961 - 971; R.P.JOHNSON ET AL.: 'Identification of Overlapping HLA Class I-Restricted Cytotoxic T Cell Epitopes in a Conserved Region of the Human Immunodeficiency Virus Type 1 Envelope Glycoprotein: Definition of Minimum Epitopes and Analysis of the Effects of Sequence Variation.' see abstract	1-3,13,
A,P	NATURE vol. 353, 31 October 1991, pages 852 - 855; E.G.PALMER ET AL.: 'Precise prediction of a dominant class I MHC-restricted epitope of Listeria monocytogenes.' see the whole document	1-14
	·	
		▼
	•	

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO. EP 9201072 59958

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.

The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 10/09/92

date	P	date	
11-08-88	AU-B- AU-A- EP-A-	619458 1342388 0365525	30-01-92 24-08-88 02-05-90
		•	
	•		
	•		
		AU-A-EP-A-	AU-A- 1342388 EP-A- 0365525