ДЗ по дискретной математике на 11.02.2022

Кожевников Илья 2112-1

10 февраля 2022 г.

$N_{\overline{2}}1$

Заметим, что $0.8 \cdot 0.5 + 0.8 \cdot 0.5 + 0.5 \cdot 0.2 = 0.9$. Значит, события A и B независимы. Но из этого следует, что Pr[A|B] = Pr[A] = 0.8

Ответ: 0.8

№2

По условию вероятности попадания каждого числа от -10 до 10 одинаковы и равняются $\frac{1}{21}$. Поэтому сумма модулей всех чисел, умноженных на вероятность их попадания в S, будет равна

 $\frac{1}{21}\cdot|-10|+\frac{1}{21}\cdot|-9|+...+\frac{1}{21}\cdot|9|+\frac{1}{21}\cdot|10|=\frac{110}{21}$ Теперь найдем мат ожидание количества чисел в S. Оно будет равно $\frac{21}{2}$ Тогда искомое мат ожидание будет равно $\frac{110}{21}\cdot\frac{21}{2}=55$

Ответ: 55

№3

Пускай у нас будет два события A и B: X > 1 и Y > 1 соответственно. Тогда $P[A\cap B]\geq \frac{1}{3}$ (т.к. $P[A]+P[B]-1=P[A\cap B]$). Тогда получается, что с вероятностью $\frac{1}{3}$ или более XY будет > 1 и с вероятностью $\frac{2}{3}$ или менее будет ≥ 0 . Значит, $E[XY]\geq \frac{1}{3}$ Ч.Т.Д.

№4

Т.к. один шар уже лежит в первой коробке, всего у нас осталось 3 шара и 2 коробки. Шары можно разложить 2^3 способами. Но при этом есть два варианта, когда в одной из коробок лежит 2 шара, а в другой - один. Такие случаи нам не подходят, а, значит, вероятность подходящего варианта равна $\frac{6}{8} = \frac{3}{4}$

Otbet: $\frac{3}{4}$

$N_{\overline{2}}5$

Допустим, могут. Тогда будет выполняться равенство $P[B] = P[A \cup B]P[B]$. Значит, $A \cup B$ и В могут быть независимы, только если $P[A \cup B]$ будет равняться 1. Но т.к. вероятность объединения событий может равняться 1, то и $A \cup B$ и В могут быть независимы.

Ответ: да, могут

№6

Посчитаем E[L]. $E[L]=\frac{1}{2}\cdot 28=14.$ Посчитаем E[R]. $E[R]=\frac{1}{2}\cdot 14=7.$ Т.к. события независимы (что очевидно), E[LR]=98.

Ответ: 98