Table 1: Hold out validation results for DeepRAM, RNAProt, and PrismNet. AUC results for the first benchmark set, containing 23 CLIP-seq datasets from 20 different RBPs and various CLIP-seq protocols.

RBP	DeepRAM	RNAProt	PrismNet
ALKBH5 Baltz2012	72.62	65.66	69.25
C17ORF85 Baltz2012	82.20	77.21	80.56
C22ORF28 Baltz2012	75.87	74.85	77.42
CAPRIN1 Baltz2012	75.21	75.48	70.45
CLIPSEQ AGO2	74.82	74.57	77.29
CLIPSEQ ELAVL1	96.39	97.86	96.91
CLIPSEQ SFRS1	89.90	89.50	88.97
ICLIP HNRNPC	95.41	97.17	95.14
ICLIP TDP43	87.50	89.42	87.33
ICLIP TIA1	91.64	92.13	90.20
ICLIP TIAL1	89.77	90.34	87.31
PARCLIP AGO1234	78.70	81.79	75.47
PARCLIP ELAVL1A	96.22	97.33	97.36
PARCLIP ELAVL1	92.39	93.73	91.00
PARCLIP EWSR1	94.86	94.78	92.75
PARCLIP FUS	96.82	96.87	94.40
PARCLIP HUR	98.75	98.83	97.67
PARCLIP IGF2BP123	87.36	87.54	88.72
PARCLIP MOV10	77.04	80.11	73.89
PARCLIP PUM2	93.89	94.04	94.26
PARCLIP QKI	95.95	95.87	95.55
PARCLIP TAF15	95.99	97.69	96.69
ZC3H7B Baltz2012	71.43	69.80	70.07
AVG	87.42	87.50	86.46

Table 2: Hold out validation results for DeepRAM, RNAProt, and PrismNet. AUC results for the second benchmark set, containing $30~\rm eCLIP$ datasets from $30~\rm different$ RBPs.

RBP	DeepRAM	RNAProt	PrismNet
AGGF1 HepG2	86.89	86.38	85.95
BUD13 K562	87.91	85.35	86.12
CSTF2T $HepG2$	94.97	95.64	93.87
DDX55 HepG2	79.35	77.63	79.48
${\rm EFTUD2\ HepG2}$	90.07	90.38	88.82
EWSR1 K562	89.94	89.81	89.20
FASTKD2 HepG2	88.19	86.70	86.86
FMR1 K562	91.98	90.35	89.85
FUS HepG2	87.77	88.01	86.54
FXR2 K562	93.10	92.40	92.55
HNRNPA1 K562	92.02	94.00	92.68
$HNRNPC\ HepG2$	97.15	97.38	96.69
$HNRNPK\ HepG2$	97.66	98.23	98.08
${\rm IGF2BP1\ HepG2}$	85.84	87.23	88.05
KHDRBS1 K562	89.48	92.16	91.21
LIN28B K562	86.87	85.02	82.71
PCBP2 HepG2	97.41	97.81	97.95
PTBP1 HepG2	95.61	95.48	95.34
PUM2 K562	72.28	72.06	70.90
QKI HepG2	89.51	90.14	90.03
RBFOX2 K562	84.78	85.03	84.62
SF3B4 K562	87.36	86.38	84.42
SFPQ HepG2	82.05	81.34	80.24
SMNDC1 K562	89.44	88.48	87.94
SRSF1 HepG2	94.76	95.97	95.28
TAF15 HepG2	90.50	91.94	90.30
TARDBP K562	97.79	98.24	97.99
TIA1 K562	90.55	90.37	88.68
U2AF2 HepG2	92.68^{9}	94.07	92.74
UPF1 K562	74.61	76.25	74.64
AVG	89.28	89.34	88.66