1

AE 42

EE23BTECH11048-Ponugumati Venkata Chanakya*

QUESTION: Consider the equation $\frac{dy}{dx} + ay = \sin \omega x$, where a and ω are constants. Given y = 1 at x = 0, correct all the correct statement(s) from the following as $x \to \infty$.

- (A) $y \rightarrow 0$ if $a \neq 0$
- (B) $y \rightarrow 1$ if a = 0
- (C) $y \rightarrow Aexp(|a|x)$ if a < 0; A is constant
- (D) $y \rightarrow B \sin(\omega x + C)$ if a > 0; B and C are constants (GATE AE 2023)

Solution::

y(0) = 1

$$\frac{dy}{dx} + ay = \sin \omega x \tag{1}$$

Taking laplace transform on both sides

Function	Laplace transform
$\frac{dy}{dx}$	xY - y(0)
у	Y
$\sin \omega x$	$\frac{\omega}{\omega^2 + x^2}$
TARLEÖ	

LAPLACE TRANSFORM

$$xY - y(0) + aY = \frac{\omega}{\omega^2 + x^2}$$
 (2)

$$xY - 1 + aY = \frac{\omega}{\omega^2 + x^2} \tag{3}$$

$$\implies Y(x) = \frac{1}{x+a} \left(\frac{\omega}{\omega^2 + x^2} + \frac{1}{x+a} \right)$$
 (4)

$$Y(x) = \frac{A}{x+a} + \frac{Bx+C}{\omega^2 + x^2} \tag{5}$$

Taking inverse laplace transform on both sides

$$y(x) = \mathcal{L}^{-1}{Y(s)} = Ae^{-ax} + (B\cos(\omega x) + C\sin(\omega x))$$
(6)

$$y(x) = \mathcal{L}^{-1}{Y(s)} = Ae^{-ax} + B\sin(\omega x + C)$$
 (7)

now as $x \to \infty$

- 1) $y \to 0$ if $a \ne 0$ is not true as y depend on a, ω
- 2) $y \rightarrow 1$ if a = 0 is not true as y depend on ω

3) $y \to Aexp(|a|x)$ if a < 0 is true as $B\sin(\omega x + C)$ is neglected compared to Ae^{-ax}

4) $y \to B \sin(\omega x + C)$ if a > 0; is true as $Ae^{-ax} \to 0$

:. C,D are correct options