In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

In [3]:

```
diabetes = pd.read_csv('diabetes.csv')
```

In [4]:

```
diabetes.head()
```

Out[4]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFu
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	

In [5]:

```
from sklearn.model_selection import train_test_split
```

In [6]:

In [7]:

```
from sklearn.linear_model import LogisticRegression
```

```
In [8]:
logmodel = LogisticRegression()
logmodel.fit(X train,y train)
/usr/local/lib/python3.7/dist-packages/sklearn/linear model/ logis
tic.py:818: ConvergenceWarning: lbfgs failed to converge (status=
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as
shown in:
   https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver opti
   https://scikit-learn.org/stable/modules/linear model.html#logi
stic-regression
  extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,
Out[8]:
LogisticRegression()
In [9]:
predictions = logmodel.predict(X_test)
In [10]:
from sklearn.metrics import accuracy score
score=accuracy score(y test,predictions)
score
Out[10]:
```

0.7922077922077922

In []: