Trigonométrie et nombres complexes

Une transformation

QCOP TRGCPLX.1

1. Soient $z, z' \in \mathbb{C}$. Montrer que

$$\begin{cases} \mathfrak{Re}(zz') = \mathfrak{Re}(z)\mathfrak{Re}(z') - \mathfrak{Im}(z)\mathfrak{Im}(z') \\ \mathfrak{Im}(zz') = \mathfrak{Re}(z)\mathfrak{Im}(z') + \mathfrak{Im}(z)\mathfrak{Re}(z'). \end{cases}$$

- **2.** Soit $x \in \mathbb{R}$.
 - a) Calculer

$$\mathfrak{Re}\Big((1-\mathrm{i})\big(\cos(x)+\mathrm{i}\sin(x)\big)\Big).$$

b) En déduire que

$$\cos(x) + \sin(x) = \sqrt{2}\cos\left(x - \frac{\pi}{4}\right).$$

Factorisation par l'angle moitié

QCOP TRGCPLX.2

- 1. Définir l'ensemble $\ensuremath{\mathbb{U}}$ et en donner une description.
- **2.** Montrer les formules d'Euler exprimant $cos(\theta)$ et $sin(\theta)$ pour $\theta \in \mathbb{R}$.
- 3. Soient $\theta, \theta_1, \theta_2 \in \mathbb{R}$. Factoriser $\begin{aligned} 1 + \mathrm{e}^{\mathrm{i}\theta}, & 1 \mathrm{e}^{\mathrm{i}\theta}, \\ \mathrm{e}^{\mathrm{i}\theta_1} + \mathrm{e}^{\mathrm{i}\theta_2}. & \mathrm{e}^{\mathrm{i}\theta_1} \mathrm{e}^{\mathrm{i}\theta_2} \end{aligned}$

QCOP TRGCPLX.3

- **1.** Définir, pour $\theta \in \mathbb{R}$, le nombre $e^{i\theta}$.
- **2.** Soit $\theta \in \mathbb{R}$ tel que $e^{i\theta} \neq 1$. Soit $n \in \mathbb{N}$.
 - a) Factoriser $1 e^{i\theta}$ et $1 e^{i(n+1)\theta}$.
 - **b)** Calculer la somme $\sum_{k=0}^{n} e^{ik\theta}$.
- **3.** En déduire, pour $\theta \in \mathbb{R}$ et $n \in \mathbb{N}$, les valeurs des sommes

$$\sum_{k=0}^{n} \cos(k\theta) \quad \text{et} \quad \sum_{k=0}^{n} \sin(k\theta).$$

Délinéarisation

QCOP TRGCPLX.4 *

- 1. Énoncer et démontrer la formule de Moivre.
- **2.** Soit $\theta \in \mathbb{R}$.
 - a) Soit $n \in \mathbb{N}$. Montrer que

$$\begin{cases} \cos(n\theta) = \sum_{p=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \binom{n}{2p} (-1)^p \sin^{2p}(\theta) \cos^{n-2p}(\theta) \\ \sin(n\theta) = \sum_{p=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} \binom{n}{2p+1} \sin^{2p+1}(\theta) \cos^{n-1-2p}(\theta). \end{cases}$$

b) Exprimer $\cos(3\theta)$ et $\sin(3\theta)$ en fonction de puissances de $\cos(\theta)$ et $\sin(\theta)$. On n'appliquera pas directement les formules précédentes mais on s'inspirera de la méthode de leur démonstration.