Instituto Tecnológico Buenos Aires

Matemática I - 93.17

Resumen Práctico

Alejandro Nahuel Heir

2021

Disclaimer

Usar el presente material a modo de refuerzo y/o repaso de los contenidos.

No contiene ninguna justificación teórica.

Fue realizado principalmente a modo de práctica para con IATEX.

Al final del documento se encuentran dos PDF de terceros sobre trigonometría, útiles para las identidades.

Cualquier sugerencia, correción o similar sobre los contenidos y/o formato del documento, es bienvenida: aheir@itba.edu.ar.

Las actualizaciones del documento pueden encontrarse en su repositorio en GitHub

Índice

Ι	Pri	mer Parcial	3
1.	Lím	ites	3
	1.1.	Cambio de variable	3
	1.2.	Cero por acotada	3
	1.3.	Lema del Sandwich	3
	1.4.	Sobre límites laterales	3
	1.5.	Límites importantes	3
		1.5.1. Trigonométricos	3
		1.5.2. Relativos a <i>e</i>	4
	1.6.	Sobre límites infinitos	4
2.	Con	atinuidad	4
	2.1.	Definición	4
		Propiedades	4
	2.3.	Funciones continuas en todo su dominio	4
	2.4.		5
		Discontinuidades	5
	2.0.	2.5.1. Evitables	5
		2.5.2. No evitables o esenciales	5
	2.6.	Teorema de Bolzano - T.B.	6
	2.0.	2.6.1. Uso	6
	2.7.		6
	4.1.	2.7.1. Uso	6
	2.8.	Teorema del Valor Intermedio - T.V.I.	6
	2.9.		7
	2.9.	reorema para evaluar sobreyectividad	1
3.	Der	ivadas	7
	3.1.	Ecuaciones de rectas	7
		3.1.1. Recta tangente	7
		3.1.2. Recta normal	7
	3.2.	Derivada por definición	7
	3.3.	Teorema en relación a la continuidad	7
		Reglas de derivación	8
	_	Regla de la cadena	8
	3.6.	Derivadas notables	8
	3.7.	Sobre funciones partidas	8
	3.8.	Teorema de la Función Inversa	9
	3.9.	Aproximación lineal de un función	9
		Aproximación diferencial de una función	9
1	Тоо	rema del Valor Medio	9
т.	4.1.	Teorema del Valor Intermedio - T.V.I	9
	4.2.	Teorema de Fermat	9
	4.2.	Teorema de Weierstrass - T.W.	
			10 10
	4.4.	Teorema de Rolle - T.R	
	4.5.	Corolario del Teorema de Rolle - C.T.R	10
	4.6.	1	10
		4.6.1. Afirmar inyectividad de una función	10
			10
	4.7.	Teorema del Valor Medio de Lagrange - T.V.M.L	11

	4.8. Corolarios del T.V.M.L.	11		
	4.8.1. Corolario I	11		
	4.8.2. Corolario II	11		
	4.8.3. Corolario III (para desiguldades entre funciones)	11		
	4.8.4. T.V.M.L. para desigualdades	11		
	4.9. Teorema del Valor Medio de Cauchy			
	4.10. Regla de L'Hospital	12		
II	Segundo Parcial	13		
5.	Aplicaciones de la Derivada	13		
	5.1. Asíntotas	13		
	5.1.1. Horizontales	13		
	5.1.2. Verticales	13		
	5.1.3. Oblicuas	13		
	5.2. Monotonía (implica inyectividad)	13		
	5.3. Extremos locales o relativos	13		
	5.4. Puntos críticos de una función - PC	13		
	5.5. Criterio de la 1ra derivada para extremos locales	14		
	5.6. Concavidad	14		
	5.7. Puntos de inflexión - P.Inf	14		
	5.8. Criterio de la 2da derivada para extremos	14		
	5.9. Optimización de funciones	14		
	5.9.1. Conceptos	14		
	5.9.2. Análisis en funciones definidas en un intervalo cerrado	15		
	5.9.3. Análisis en funciones definidas en un intervalo genérico	15		
6.	Polinomios de Taylor	15		
7.	Integral Indefinida - Primitivas	15		
8.	. Integral Definida			
9.	Aplicaciones de la Integral	15		
Ín	ndice de figuras			
	1. Gráfico de la función $\sin \frac{1}{x}$	5		
Ín	ndice de cuadros			
	1 Derivadas notables	Q		

Parte I

Primer Parcial

1. Limites

1.1. Cambio de variable

Sean $\lim_{y\to b} g(y) = L, \lim_{x\to a} f(x) = b, f(x) \neq b$ en un entorno reducido de a, entonces

$$\lim_{x \to a} g(f(x)) = \lim_{y \to b} g(y) = L \tag{1}$$

1.2. Cero por acotada

Sean $\lim_{x\to a} g(x) = 0, \nexists \lim_{x\to a} f(x)$, con f acotada en un entorno reducido de a, entonces

$$\lim_{x \to a} \overbrace{f(x)}^{acotada} g(x) = 0 \tag{2}$$

1.3. Lema del Sandwich

Sean $f(x) \leq g(x) \leq h(x), \forall x \in E^*_{(a,r)}$ con r > 0. Si $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, entonces

$$\lim_{x \to a} g(x) = L \tag{3}$$

Observación

Sea $\lim_{x\to a} |f(x)| = 0$, y sabiendo que $-|f(x)| \le f(x) \le |f(x)|$, se deduce por Lema del Sandwich que

$$\lim_{x \to a} |f(x)| = 0 \Rightarrow \lim_{x \to a} f(x) = 0 \tag{4}$$

1.4. Sobre límites laterales

$$\sharp \lim_{x \to a} f(x) \text{ si } \begin{cases}
\lim_{x \to a^{+}} f(x) = L_{1} \\
\lim_{x \to a^{-}} f(x) = L_{2}
\end{cases}$$

$$L_{1} \neq L_{2}$$

$$\sharp \lim_{x \to a} f(x) \text{ si } \begin{cases}
\lim_{x \to a^{+}} f(x) = L \\
\sharp \lim_{x \to a^{-}} f(x)
\end{cases}$$

$$\therefore \lim_{x \to a} f(x) = L \Leftrightarrow \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L \tag{5}$$

1.5. Límites importantes

1.5.1. Trigonométricos

a.
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
 c. $\lim_{x \to 0} \frac{\tan x}{x} = 1$ e. $\lim_{x \to 0} \frac{\arctan x}{x} = 1$ b. $\lim_{x \to 0} \frac{x}{\sin x} = 1$ d. $\lim_{x \to 0} \frac{x}{\tan x} = 1$

1.5.2. Relativos a e

Igualdad importante

$$f(x)^{g(x)} = e^{g(x)\ln(f(x))}$$
 (6)

a.
$$\lim_{x \to a} \left(1 + \frac{1}{f(x)} \right)^{f(x)} = e$$
, $\sin \lim_{x \to a} f(x) = \infty$

b.
$$\lim_{x \to a} (1 + f(x))^{\frac{1}{f(x)}} = e$$
, $\sin \lim_{x \to a} f(x) = 0$

c.
$$\lim_{x \to a} \frac{\ln(1 + f(x))}{f(x)} = 1$$
, $\sin \lim_{x \to a} f(x) = 0$

d.
$$\lim_{x \to a} \frac{e^{f(x)} - 1}{f(x)} = 1$$
, $\sin \lim_{x \to a} f(x) = 0$

1.6. Sobre límites infinitos

a.
$$\lim_{x \to 0} \frac{k}{x} = \infty$$
, con $k \in \mathbb{R} - \{0\}$

c.
$$\lim_{x \to \infty} kx = \infty$$
, $\operatorname{con} k \in \mathbb{R} - \{0\}$

b.
$$\lim_{x \to \infty} \frac{k}{x} = 0$$
, $\cos k \in \mathbb{R}$

d.
$$\lim_{x \to \infty} k + x = \infty$$
, con $k \in \mathbb{R}$

2. Continuidad

2.1. Definición

f es continua en $a \in \mathbb{R}$ si:

- $a \in Dom(f)$
- $\blacksquare \exists \lim_{x \to a} f(x)$
- $\lim_{x\to a} f(x) = f(a)$

2.2. Propiedades

Sean f y g continuas en $a \in \mathbb{R}$:

- cf es continua en $a, \forall c \in \mathbb{R}$
- ej es concinad en a, ve c
- $f \pm g$ es continua en a

- $\blacksquare fg$ es continua en a
- $\frac{f}{g}$ es continua en a, si $g(a) \neq 0$

2.3. Funciones continuas en todo su dominio

- Polinómicas
- Trigonométricas (directas o inversas)
- Exponenciales

- Logarítmicas
- Raíces (excepto $\sqrt[n]{x}$ en x = 0 para n pares)

2.4. Composición

Si f es continua en x = a, y g(z) es continua en z = f(a), entonces $h(x) = (g \circ f)(x)$ es continua en a.

2.5. Discontinuidades

f es discontinua en $a \in \mathbb{R}$ si se cumple <u>al menos una</u> de las siguientes condiciones:

- $a \notin Dom(f)$
- $\nexists \lim_{x\to a} f(x)$
- $\lim_{x\to a} f(x) \neq f(a)$

2.5.1. Evitables

 $a \in \mathbb{R}$ es discontinuidad evitable si se cumple simultáneamente

•
$$f(a) = L_1 \in \mathbb{R}$$

$$\exists \lim_{x \to a} f(x) = L_2 \in \mathbb{R} \qquad \qquad L_1 \neq L_2 \neq \infty$$

•
$$L_1 \neq L_2 \neq \infty$$

Si se redefine f(x) en x = a como $f(a) = L_2$, f pasa a ser continua en a.

2.5.2. No evitables o esenciales

Tipo salto

 $a \in \mathbb{R}$ es discontinuidad esencial tipo salto si

$$\lim_{x \to a^{-}} f(x) = L_1 \neq \lim_{x \to a^{+}} f(x) = L_2, \quad L_1, L_2 \in \mathbb{R}$$

Tipo asíntota (vertical)

 $a \in \mathbb{R}$ es discontinuidad esencial tipo asíntota si se cumple alguna de las siguientes igualdades

$$\lim_{x \to a^{-}} f(x) = \infty \qquad \text{o} \qquad \lim_{x \to a^{+}} f(x) = \infty$$

"De otro tipo"

 $a \in \mathbb{R}$ es discontinuidad esencial de otro tipo si no es ninguna de las anteriores. Por ejemplo, $a = 0, f(a), \text{ con } f(x) = \sin \frac{1}{x}$

Figura 1: Gráfico de la función $\sin \frac{1}{x}$

5

2.6. Teorema de Bolzano - T.B.

Si f es continua en [a, b], y f(a)f(b) < 0 (tienen signos opuestos), entonces

$$\exists c \in (a,b)/f(c) = 0 \ (al \ menos \ una \ raiz) \tag{7}$$

Si f es continua en un intervalo abierto (a, b), se debe cumplir que $\lim_{x\to a^+} f(x) = f(a)$, y que $\lim_{x\to b^-} f(x) = f(b)$.

2.6.1. Uso

Hallar raíces mínimas de una función

Dada una f(x) igualada a 0, continua en un intervalo dado, hallar por tanteo dos valores de x (que pertenezcan al intervalo donde f es continua) para los cuales f(x) tenga distinto signo. Luego, por T.B., esa función tendrá al menos una raíz entre esos dos valores de x elegidos.

Cabe resaltar que esto puede emplearse también para conocer soluciones mínimas de una ecuación igualada a 0.

2.7. Corolario del Teorema de Bolzano - C.T.B.

Sea f continua en (a, b), con $f(x) \neq 0 \ \forall x \in (a, b)$, entonces f mantiene su signo en (a, b). Es decir:

$$f(x) > 0 \ \forall x \in (a,b) \qquad 6 \qquad f(x) < 0 \ \forall x \in (a,b) \tag{8}$$

2.7.1. Uso

Hallar conjuntos de positividad y negatividad de una función

Dada una función, y conociendo su dominio y conjunto de ceros, se puede "partir" el dominio de la función en intervalos donde la misma es continua y no nula (esto último sabiendo el conjunto de ceros). A lo largo de cada intervalo, si la función es continua en él, mantendrá su signo; basta tomar una x cualquiera en ese intervalo y evaluarla en la función para saber el signo en todo ese intervalo.

2.8. Teorema del Valor Intermedio - T.V.I.

Sea f continua en [a, b], f(a) = c, f(b) = d, $c \neq d$, entonces:

a.
$$c < d \Rightarrow [c, d] \subset f([a, b])$$

b.
$$d < c \Rightarrow [d, c] \subset f([a, b])$$

Generalización

Sea f continua en (a,b), $\lim_{x\to a^+} f(x) = c$, $\lim_{x\to b^-} f(x) = d$, entonces:

a.
$$c < d \Rightarrow [c, d] \subset f([a, b])$$

b.
$$d < c \Rightarrow [d, c] \subset f([a, b])$$

2.9. Teorema para evaluar sobreyectividad

Sea f continua en (a, b), donde a podría ser $-\infty$ y $b + \infty$. Si

$$\lim_{x \to a^+} f(x) = -\infty \quad \wedge \quad \lim_{x \to b^-} f(x) = +\infty$$

0

$$\lim_{x \to a^+} f(x) = +\infty \quad \wedge \quad \lim_{x \to b^-} f(x) = -\infty$$

entonces

$$f((a,b)) = \mathbb{R}, : f \text{ es sobreyectiva}$$

3. Derivadas

3.1. Ecuaciones de rectas

Sea $x_0 \in \mathbb{R}$ el punto en el cual la recta es tangente o normal a la función f.

3.1.1. Recta tangente

$$r_T(x) = f(x_0) + f'(x_0)(x - x_0)$$
(9)

3.1.2. Recta normal

$$r_N(x) = f(x_0) + \left(\frac{-1}{f'(x_0)}\right)(x - x_0) \tag{10}$$

3.2. Derivada por definición

La derivada de f en x_0 es, si existe, el valor del límite del siguiente cociente incremental:

$$f'(x_0) = \lim_{x \to x_0} \frac{\Delta f}{\Delta x} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$= \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
(11)

3.3. Teorema en relación a la continuidad

- Si $\exists f'(x_0) \Rightarrow f$ es continua en x_0
- Si f es discontinua en $x_0 \Rightarrow \nexists f'(x_0)$

f continua en x_0 NO necesariamente implica $\exists f'(x_0)$. Por ejemplo:

$$f(x) = |x|$$
 es continua en \mathbb{R}

$$\lim_{x \to 0} \frac{|x| - 0}{x} = \lim_{x \to 0} sg(x), \quad \text{pero} \quad \nexists \lim_{x \to 0} sg(x)$$

$$|x|$$
 NO es derivable en $x_0 = 0$

3.4. Reglas de derivación

Sean f y g derivables en $x_0 \in \mathbb{R}$:

1.
$$(cf)'(x_0) = cf'(x_0), \quad \forall c \in \mathbb{R}$$

2.
$$(f \pm g)'(x_0) = f'(x_0) \pm g'(x_0)$$

3.
$$(fg)' = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

4.
$$\left(\frac{f}{g}\right)' = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}, \quad g(x_0) \neq 0$$

3.5. Regla de la cadena

Sea f(x) derivable en x_0 , y g(y) derivable en y_0 , entonces $h(x) = (g \circ f)(x)$ es derivable en x_0 , y:

$$h'(x_0) = (g \circ f)'(x) = g'(f(x_0)) \cdot f'(x_0)$$
(12)

3.6. Derivadas notables

f(x)	f'(x)	f(x)	f'(x)
$c \in \mathbb{R}$	0	$\cosh x$	$\sinh x$
x	1	$\sinh x$	$\cosh x$
a^x	$\ln(a)a^x, a > 0$	$\tanh x$	$\frac{1}{\cosh^2 x}$
$\ln x$	$\frac{1}{x}$	$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}, x \in (-1,1)$
$\log_a x$	$\frac{1}{x \ln a}$	$\arccos x$	$\frac{1}{\sqrt{1-x^2}}, x \in (-1,1)$ $\frac{-1}{\sqrt{1-x^2}}, x \in (-1,1)$
x	$sg(x), x \neq 0$	$\begin{vmatrix} & & & & & & & & & & & & & & & & & & &$	$\frac{1}{1+x^2}, x \in \ \mathbb{R}$
x^n	$nx^{n-1}, x > 0, \ n \in \mathbb{R}$	$\operatorname{arcsinh} x$	$\frac{1}{\sqrt{1+x^2}}, x \in \mathbb{R}$
$\sin x$	$\cos x$	$\operatorname{arccosh} x$	$\frac{1}{\sqrt{x^2 - 1}}, x > 1$
$\cos x$	$\sin x$	$\begin{vmatrix} & & & & & & & & & & & & & & & & & & &$	$\frac{1}{x^2 - 1}, x \in (-1, 1)$
$\tan x$	$\frac{1}{\cos^2 x}$		

Cuadro 1: Derivadas notables

3.7. Sobre funciones partidas

Siempre se debe analizar por definición la continuidad y derivabilidad en los valores de x donde la función se parte.

3.8. Teorema de la Función Inversa

Sea $f:(a,b)\to\mathbb{R}$ continua e inyectiva, entonces:

- 1° Im(f) es un intervalo (c,d), y $\exists f^{-1}:(c,d)\to(a,b)$, la cual es continua.
- 2° Si f es derivable en $x_0 \in (a, b)$, y $f'(x_0) \neq 0$, entonces f' es derivable en $y_0 = f(x_0)$, y

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$$
(13)

3.9. Aproximación lineal de un función

$$L(x)=f(x_0)+f'(x_0)(x-x_0),$$
 aproximación lineal de f en x_0
$$f(x)\simeq L(x) \text{ cuando } x-x_0\ll 1$$

3.10. Aproximación diferencial de una función

$$df = f'(x_0) \cdot \Delta x$$
, diferencial de f en x_0 (15) $\Delta f \simeq df$ cuando $\Delta x \ll 1$

4. Teorema del Valor Medio

4.1. Teorema del Valor Intermedio - T.V.I.

Sea f continua en [a, b], f(a) = c, f(b) = d, $c \neq d$:

a.
$$c < d \Rightarrow [c, d] \subset f([a, b])$$

b.
$$d < c \Rightarrow [d, c] \subset f([a, b])$$

Generalización

Sea f continua en (a,b), $\lim_{x\to a^+} f(x) = c \neq \lim_{x\to b^-} f(x) = d$, entonces:

a.
$$c < d \Rightarrow [c, d] \subset f([a, b])$$

b.
$$d < c \Rightarrow [d, c] \subset f([a, b])$$

4.2. Teorema de Fermat

Sea $f:(a,b)\to\mathbb{R}/f$ alcanza un extremo en un $x_0\in(a,b)$, entonces

$$\nexists f'(x_0) \qquad 6 \qquad f'(x_0) = 0
\tag{16}$$

4.3. Teorema de Weierstrass - T.W.

Sea $f:[a,b]\to\mathbb{R}$ continua, entonces f alcanza un M (máximo) y m (mínimo) en [a,b]. Además, por T.V.I.:

$$Im(f) = [m, M]$$

$$m \le f(x) \le M, \ \forall x \in [a, b]$$

Si $m = M \Rightarrow f(x)$ es constante en [a, b]

4.4. Teorema de Rolle - T.R.

Hipótesis

- $f:[a,b]\to\mathbb{R}$ continua; derivable en (a,b).
- f(a) = f(b)

Tesis

 $\exists c \in (a,b)/f'(c) = 0,$ se afirma al menos unas raiz de f'

4.5. Corolario del Teorema de Rolle - C.T.R.

Hipótesis

- f continua en $e[a,b]_{(a,b)}$; derivable en (a,b).
- f'(x) = 0 tiene exactamente k soluciones en (a, b)

Tesis

f(x) = 0 tiene como máximo k + 1 soluciones en $[a, b]_{(a,b)}$

4.6. Aplicaciones del C.T.R.

4.6.1. Afirmar inyectividad de una función

Sea f continua en $[a,b]_{(a,b)}$, derivable en (a,b), $f'(x) \neq 0 \ \forall x \in (a,b)$, entonces

f es inyectiva en $[a,b]_{(a,b)}$

"Si la derivada no se anula \Rightarrow f es inyectiva"

4.6.2. Determinar raíces de una función

Consiste en tomar una función igualada a 0, buscar sus soluciones máximas con C.T.R., y luego las soluciones mínimas con T.B. Si el número de ambas soluciones coinicide (deber'ia),

∴ se tiene la cantidad exacta de soluciones.

Es posible que para hallar las soluciones de f'(x) = 0 haya que aplicarle T.B. a f' y C.T.R. a f'', y concluir en el número de soluciones de f'(x) = 0, para luego, recién, tener soluciones máximas de f(x) = 0.

4.7. Teorema del Valor Medio de Lagrange - T.V.M.L.

Hipótesis

• f continua en [a, b], derivable en (a, b).

Tesis

$$\underbrace{\exists c \in (a,b)}_{\text{al menos upo}} / \frac{f(b) - f(a)}{b - a} = f'(c)$$

4.8. Corolarios del T.V.M.L.

4.8.1. Corolario I

Sea f continua en $[a,b]_{(a,b)}$, $f'(x)=0 \ \forall x \in (a,b)$

$$\Rightarrow$$
 f es constante $(f(x) = k \in \mathbb{R}) \quad \forall x \in [a, b]_{(a,b)}$

4.8.2. Corolario II

Sean f y g derivables en (a,b), $f'(x) = g'(x) \ \forall x \in (a,b)$

$$\Rightarrow \exists k \in \mathbb{R}/g(x) = f(x) + k, \ \forall x \in (a,b)$$

4.8.3. Corolario III (para desiguldades entre funciones)

Hipótesis

- $\bullet \ f$ y g continuas en $[a,b]_{[a,b)},$ derivables en (a,b).
- $f(a) \le g(a)$
- $f'(x) < g'(x), \ \forall x \in (a, b)$

Tesis

$$f(x) < g(x), \ \forall x \in (a, b]_{(a,b)}$$

4.8.4. T.V.M.L. para desigualdades

Tomar un f(x), aplicarle T.V.M.L. "entre a y b", acotar la f'(c) (ya que $c \in (a, b)$, (o usar lo que convenga)).

"Desarrollar"; evaluar f'(x) en c y usar las acotaciones; "acotando f'(c) se prueban desigualdades".

4.9. Teorema del Valor Medio de Cauchy

Hipótesis

- f y g continuas en [a, b], derivables en (a, b).
- $g'(x) \neq 0 \ \forall x \in (a,b)$ (implicando que g es inyectiva)

Tesis

$$\exists c \in (a,b) / \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

(generalización del T.V.M.L.)

4.10. Regla de L'Hospital

Sean fy g derivables en $E_{(a,r)}^* = (a-r,a+r) - \{a\},$ y

1°
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$

o
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \infty$$

$$2^{\circ} \quad g'(x) \neq 0 \ \forall x \in E^*_{(a,r)}$$

1°
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$
 o
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \infty$$

2°
$$g'(x) \neq 0 \ \forall x \in E^*_{(a,r)}$$
 y
$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = L, \ L \in \mathbb{R} \lor L = \infty$$

$$\Rightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = L$$

Parte II

Segundo Parcial

5. Aplicaciones de la Derivada

5.1. Asíntotas

5.1.1. Horizontales

Son de la forma $y = k \in \mathbb{R}$; tomar $\lim_{x \to \infty} f(x)$

5.1.2. Verticales

Son de la forma $x = k \in \mathbb{R}$; tomar $\lim_{x \to x_0} f(x)$, con $x_0 \notin Dom(f)$

5.1.3. Oblicuas

Son de la forma y = mx + b.

• Si
$$\exists m \Rightarrow m = \lim_{x \to \infty} \frac{f(x)}{x}$$
 $(m \in \mathbb{R}, m \neq \pm \infty)$

• Si
$$\exists b \Rightarrow b = \lim_{x \to \infty} (f(x) - mx)$$
 $(b \in \mathbb{R})$

5.2. Monotonía (implica inyectividad)

f es monótona en $I \Leftrightarrow$ es estríctamente creciente o decreciente en I

Teorema

Sea f continua en $I = [a,b]_{(a,b)}$ y derivable en (a,b)

a. Si
$$f'(x) > 0 \quad \forall x \in (a,b) \implies f$$
 es estríctamente creciente en $I = [a,b]_{(a,b)}$

b. Si
$$f'(x) < 0 \quad \forall x \in (a,b) \implies f$$
 es estríctamente decreciente en $I = [a,b]_{(a,b)}$

(de ser necesario, usar C.T.B. para asegurar signo de f' en diferentes intervalos)

5.3. Extremos locales o relativos

f alcanza un M (máximo) o m (mínimo) local en x_0 si

$$\exists \delta > 0 \ / \ f(x_0) \ \underbrace{\geq_{(M)}}_{\leq_{(m)}} f(x) \quad \forall x \in (x_0 - \delta, x_0 + \delta)$$

Un extremo local es un M o m local.

5.4. Puntos críticos de una función - PC

 x_0 es PC de f si $x_0 \in Dom(f)$ y

Si x_0 es un extremo local $\Rightarrow x_0$ es PC

5.5. Criterio de la 1ra derivada para extremos locales

Sea f continua en $(x_0 - \delta, x_0 + \delta) = E_{(x_0, \delta)}$, derivable en $(x_0 - \delta, x_0 + \delta) - \{x_0\} = E_{(x_0, \delta)}^*$:

1)
$$f'(x) > 0$$
 en $(x_0 - \lambda, x_0)$, y $f'(x) < 0$ en $(x_0, x_0 + \lambda)$
 $\Rightarrow x_0$ es máximo local

2)
$$f'(x) < 0$$
 en $(x_0 - \lambda, x_0)$, y $f'(x) > 0$ en $(x_0, x_0 + \lambda)$
 $\Rightarrow x_0$ es mínimo local

(nunca está de más hacer la recta con las flechas de creciendo y de decreciendo, representando el signo de la derivada a ambos lados del x_0)

5.6. Concavidad

Teorema

Sea $f:(a,b)\to\mathbb{R}$ dos veces derivable:

1)
$$f''(x) > 0 \quad \forall x \in (a, b,) \Rightarrow gr(f)$$
 es cóncavo positivo; es \cup .

2)
$$f''(x) < 0 \quad \forall x \in (a, b,) \Rightarrow gr(f)$$
 es cóncavo negativo; es \cap (de ser necesario, usar $C.T.B.$ para asegurar signos de f'')

5.7. Puntos de inflexión - P.Inf.

$$(x_0, f(x_0))$$
 es P.Inf. del $gr(f)$ si

- f es continua en $x_0 \in Dom(f)$
- gr(f) tiene concavidad distinta a ambos lados del probable P.Inf.

Observación

Por como está definido el P.Inf., puede ocurrir que $\nexists f''(x_0)$ y/o $\nexists f'(x_0)$

5.8. Criterio de la 2da derivada para extremos

Sea f dos veces derivable en x_0 :

1)
$$f'(x_0) = 0$$
 \wedge $\overbrace{f''(x_0) > 0}^{c\acute{o}nc.+}$ \Rightarrow $m \text{ local en } x_0$

2)
$$f'(x_0) = 0$$
 \wedge $\underbrace{f''(x_0) < 0}_{c\acute{q}nc}$ \Rightarrow M local en x_0

(regla que no aplica si $f''(x_0) = 0 \quad \lor \quad \nexists f''(x_0)$; en estos casos, puede o no \exists extremo)

5.9. Optimización de funciones

5.9.1. Conceptos

- S, supremo: toda la Im(f) es \leq al S; $S \in codf$, $S \in \mathbb{R}$, $S \neq \infty$.
- M, máximo: si $S \in Im(f) \Rightarrow \text{es } M$.
- i, infimo: toda la Im(f) es geq al i; $i \in cod(f)$, $i \in \mathbb{R}$, $i \neq \infty$.
- m, mínimo: si $i \in Im(f) \Rightarrow \text{es } m$.

5.9.2. Análisis en funciones definidas en un intervalo cerrado

$$f:[a,b]=I\to R$$

Por Weierstrass, ya se sabe que $\exists m \ y \ \exists M$.

- 1° Los extremos de f están en $a \lor b \lor \in (a,b)$
- 2° Si están en (a,b), el extremo ocurre en un PC.
- 3° Comparar f(a) con f(b) con $f(x_0)$, siendo x_0 cada PC. El mayor valor será M, el menor será m.

5.9.3. Análisis en funciones definidas en un intervalo genérico

$$f:I\to R,\,f$$
 continua, $I\subseteq\mathbb{R},\,I$ un intervalo

Premisas

- $\bullet \ a < b$ son extremos de $I, \, a \in \mathbb{R}$ o $a = -\infty, \, b \in \mathbb{R}$ o $b = +\infty$
- $a, b \in I$ o $a, b \notin I$ (o las otras dos posibilidades)
- $\lim_{x\to a^+} f(x) = L_a, \ L_a \in \mathbb{R} \quad \lor \quad L_a = \pm \infty$

Entonces, se tiene 2 casos:

1°
$$L_a = +\infty^{-\infty} \quad \lor \quad L_b = +\infty^{-\infty} \quad \Rightarrow \quad \sharp S \quad \Rightarrow \quad \sharp M$$

2° $L_a \neq \stackrel{-\infty}{+\infty} \land L_b \neq \stackrel{-\infty}{+\infty}$, comparar L_a con L_b con f evaluada en cada PC. El mayor será el $\stackrel{i}{S}$. Si $\stackrel{i}{S} \in Im(f) \Rightarrow \text{es }\stackrel{m}{M}$.

6. Polinomios de Taylor

7. Integral Indefinida - Primitivas

8. Integral Definida

9. Aplicaciones de la Integral