# Algebraic Geometry Buzzlist

Fredrik Meyer

## 1 Algebraic Geometry

## 1.1 General properties

## 1.1.1 Complete variety

Let X be an integral, separated scheme over a field k. Then X is **complete** if is proper.

#### 1.1.2 Crepant resolution

A **crepant resolution** is a resolution of singularities  $f: X \to Y$  that does not change the canonical bundle, i.e. such that  $\omega_X \simeq f^*(\omega_Y)$ .

## 1.1.3 Normal variety

A variety X is **normal** if all its local rings are **normal** rings.

## 1.1.4 Proper morphism

A morphism  $f:X\to Y$  is **proper** if it separated, of finite type, and universally closed.

#### 1.1.5 Resolution of singularities

A morphism  $f: X \to Y$  is a **resolution of singularities of** Y if X is non-singular and f is birational and proper.

#### 1.1.6 Separated morphism

Let  $f: X \to Y$  be a morphism of schemes. Let  $\Delta: X \to X \times_Y X$  be the diagonal morphism. We say that f is **separated** if  $\Delta$  is a closed immersion.

#### 1.2 Results and theorems

#### 1.2.1 Adjunction formula

Let X be a smooth algebraic variety Y a smooth subvariety. Let  $i:Y\hookrightarrow X$  be the inclusion map, and let  $\mathcal I$  be the corresponding ideal sheaf. Then  $\omega_Y=i^*\omega_X\otimes_{\mathscr O_X}\det(\mathcal I/\mathcal I^2)^\vee$ , where  $\omega_Y$  is the canonical sheaf of Y.

In terms of canonical classes, the formula says that  $K_D = (K_X + D)|_{D}$ 

### 1.2.2 Bertini's Theorem

Let X be a nonsingular closed subvariety of  $\mathbb{P}^n_k$ , where  $k=\bar{k}$ . Then the set of of hyperplanes  $H\subseteq \mathbb{P}^n_k$  such that  $H\cap X$  is regular at every point) and such that  $H\not\subseteq X$  is a dense open subset of the complete linear system |H|. See [1, Thm II.8.18].

#### 1.2.3 Euler sequence

If A is a ring and  $\mathbb{P}_A^n$  is projective n-space over A, then there is an exact sequence of sheaves on X:

$$0 \to \Omega_{\mathbb{P}^n_A/A} \to \mathscr{O}_{\mathbb{P}^n_A}(-1)^{n+1} \to \mathscr{O}_{\mathbb{P}^n_A} \to 0.$$

See [1, Thm II.8.13].

### 1.2.4 Kodaira vanishing

If k is a field of characteristic zero, X is a smooth and projective k-scheme of dimension d, and  $\mathcal L$  is an ample invertible sheaf on X, then  $H^q(X,\mathcal L\otimes_{\mathscr O_X}\Omega^p_{X/k})=0$  for p+q>d. In addition,  $H^q(X,\mathcal L^{-1}\otimes_{\mathscr O_X}\Omega^p_{X/k})=0$  for p+q< d.

#### 1.2.5 Lefschetz hyperplane theorem

Let X be an n-dimensional complex projective algebraic variety in  $\mathbb{P}^n_{\mathbb{C}}$  and let Y be a hyperplane section of X such that  $U = X \setminus Y$  is smooth. Then the natural map  $H^k(X,\mathbb{Z}) \to H^k(Y,\mathbb{Z})$  in singular cohomology is an isomorphism for k < n-1 and injective for k = n-1.

#### 1.2.6 Riemann-Roch for curves

The **Riemann-Roch theorem** relates the number of sections of a line bundle with the genus of a smooth curve C. Let  $\mathcal{L}$  be a line bundle  $\omega_C$  the

canonical sheaf on C. Then

$$h^0(C, \mathcal{L}) - h^0(C, \mathcal{L}^{-1} \otimes_{\mathscr{O}_C} \omega_C) = \deg(\mathcal{L}) + 1 - g.$$

This is [1, Theorem IV.1.3].

### 1.2.7 Semi-continuity theorem

Let  $f: X \to Y$  be a projective morphism of noetherian schemes, and let  $\mathscr{F}$  be a coherent sheaf on X, flat over Y. Then for each  $i \geq 0$ , the function  $h^i(y,\mathscr{F}) = \dim_{k(y)} H^i(X_y,\mathscr{F}_y)$  is an upper semicontinuous function on Y. See [1, Chapter III, Theorem 12.8].

#### 1.2.8 Serre vanishing

One form of Serre vanishing states that if X is a proper scheme over a noetherian ring A, and  $\mathcal{L}$  is an ample sheaf, then for any coherent sheaf  $\mathscr{F}$  on X, there exists an integer  $n_0$  such that for each i>0 and  $n\geq n_0$  the group  $H^i(X,\mathscr{F}\otimes_{\mathscr{O}_X}\mathcal{L}^n)=0$  vanishes. See [1, Proposition III.5.3].

#### 1.3 Sheaves and bundles

#### 1.3.1 Ample line bundle

A line bundle  $\mathcal L$  is **ample** if for any coherent sheaf  $\mathscr F$  on X, there is an integer n (depending on  $\mathscr F$ ) such that  $\mathscr F\otimes_{\mathscr O_X}\mathcal L^{\otimes n}$  is generated by global sections. Equivalently, a line bundle  $\mathcal L$  is ample if some tensor power of it is very ample.

#### 1.3.2 Invertible sheaf

A locally free sheaf of rank 1 is called **invertible**. If X is normal, then, invertible sheaves are in 1-1 correspondence with line bundles.

#### 1.3.3 Anticanonical sheaf

The **anticanonical sheaf**  $\omega_X^{-1}$  is the inverse of the canonical sheaf  $\omega_X$ , that is  $\omega_X^{-1} = \mathscr{H}_{om\,\mathscr{O}_X}(\omega_X,\mathscr{O}_X)$ .

#### 1.3.4 Canonical divisor

The canonical divisor  $K_X$  is the class of the canonical sheaf  $\omega_X$  in the divisor class group.

#### 1.3.5 Canonical sheaf

If X is a smooth algebraic variety of dimension n, then the canonical sheaf is  $\omega := \wedge^n \Omega^1_{X/k}$  the n'th exterior power of the cotangent bundle of X.

#### 1.3.6 Normal sheaf

Let  $Y \hookrightarrow X$  be a closed immersion of schemes, and let  $\mathcal{I} \subseteq \mathcal{O}_X$  be the ideal sheaf of Y in X. Then  $\mathcal{I}/\mathcal{I}^2$  is a sheaf on Y, and we define the sheaf  $\mathcal{N}_{Y/X}$  by  $\mathscr{H}_{\mathscr{Om}_{\mathcal{O}_Y}}(\mathcal{I}/\mathcal{I}^2, \mathcal{O}_Y)$ .

#### 1.3.7 Reflexive sheaf

A sheaf  $\mathscr{F}$  is  $\mathbf{reflexive}$  if the natural map  $\mathscr{F} \to \mathscr{F}^{\vee\vee}$  is an isomorpism. Here  $\mathscr{F}^{\vee}$  denotes the sheaf  $\mathscr{H}_{om}{}_{\mathscr{O}_X}(\mathscr{F},\mathscr{O}_X)$ .

#### 1.3.8 Very ample line bundle

A line bundle  $\mathcal L$  is **very ample** if there is an embedding  $i:X\hookrightarrow \mathbb P^n_S$  such that the pullback of  $\mathscr O_{\mathbb P^n_S}(1)$  is isomorphic to  $\mathcal L$ . In other words, there should be an isomorphism  $i^*\mathscr O_{\mathbb P^n_S}(1)\simeq \mathcal L$ .

## 1.4 Toric geometry

#### 1.4.1 Polarized toric variety

A toric variety equipped with an ample T-invariant divisor.

#### 1.5 Types of varieties

#### 1.5.1 Calabi-Yau variety

In algebraic geometry, a **Calabi-Yau** variety is a smooth, proper variety X over a field k such that the canonical sheaf is trivial, that is,  $\omega_X \simeq \mathscr{O}_X$ , and such that  $H^j(X, \mathscr{O}_X) = 0$  for  $1 \leq j \leq n-1$ .

#### 1.5.2 Fano variety

A variety X is  $\mathbf{Fano}$  if the anticanonical sheaf  $\omega_X^{-1}$  is ample.

#### 1.5.3 K3 surface

A K3 surface is a complex algebraic surface X such that the canonical sheaf is trivial,  $\omega_X \simeq \mathscr{O}_X$ , and such that  $H^1(X, \mathscr{O}_X) = 0$ . These conditions completely determine the Hodge numbers of X.

## 2 Commutative algebra

#### 2.1 Modules

## 2.1.1 Depth

Let R be a noetherian ring, and M a finitely-generated R-module and I an ideal of R such that  $IM \neq M$ . Then the I-depth of M is (see Ext):

$$\inf\{i \mid \operatorname{Ext}_R^i(R/I, M) \neq 0\}.$$

This is also the length of a maximal M-sequence in I.

## 2.2 Rings

## 2.2.1 Cohen-Macaulay ring

A local Cohen-Macaulay ring (CM-ring for short) is a commutative noetherian local ring with Krull dimension equal to its depth. A ring is Cohen-Macaulay if its localization at all prime ideals are Cohen-Macaulay.

#### 2.2.2 Depth of a ring

The depth of a ring R is its depth as a module over itself.

#### 2.2.3 Gorenstein ring

A commutative ring R is Gorenstein if each localization at a prime ideal is a Gorenstein local ring. A Gorenstein local ring is a local ring with finite injective dimension as an R-module. This is equivalent to the following:  $\operatorname{Ext}_R^i(k,R)=0$  for  $i\neq n$  and  $\operatorname{Ext}_R^n(k,R)\simeq k$  (here  $k=R/\mathfrak{m}$  and n is the Krull dimension of R).

#### 2.2.4 Normal ring

An integral domain R is **normal** if all its localizations at prime ideals  $\mathfrak{p} \in \operatorname{Spec} R$  are integrally closed domains.

## 3 Convex geometry

#### 3.1 Cones

#### 3.1.1 Gorenstein cone

A cone  $C \subset M_{\mathbb{R}}$  is **Gorenstein** if there exists a point  $n \in N$  in the dual lattice such that  $\langle v, n \rangle = 1$  for all generators of the semigroup  $C \cap M$ .

#### 3.1.2 Simplicial cone

A cone C generated by  $\{v_1, \dots, v_k\} \subseteq N_{\mathbb{R}}$  is **simplicial** if the  $v_i$  are linearly independent.

## 3.2 Polyhedra

## 3.2.1 Dual (polar) polyhedron

If  $\Delta$  is a polyhedron, its dual  $\Delta^{\circ}$  is defined by

$$\Delta^{\circ} = \{ x \in N_{\mathbb{R}} \mid \langle x, y \rangle \ge -1 \,\forall \, y \in \Delta \} \,.$$

## 3.2.2 Gorenstein polytope of index r

A lattice polytope  $P \subset \mathbb{R}^{d+r-1}$  is called a **Gorenstein polytope of index** r if rP contains a single interior lattice point p and rP-p is a reflexive polytope.

#### 3.2.3 Reflexive polytope

A polytope  $\Delta$  is reflexive if the following two conditions hold:

- 1. All facets  $\Gamma$  of  $\Delta$  are supported by a ne hyperplanes of the form  $\{m\in M_{\mathbb{R}}\mid \langle m,v_{\Gamma}\rangle\}$  for some  $v_{\Gamma}\in N$ .
- 2. The only interior point of  $\Delta$  is 0, that is:  $Int(\Delta) \cap M = \{0\}$ .

## 4 Homological algebra

#### 4.1 Derived functors

#### 4.1.1 Ext

Let R be a ring and M,N be R-modules. Then  $\operatorname{Ext}^i_R(M,N)$  is the right-derived functors of the  $\operatorname{Hom}(M,-)$ -functor. In particular,  $\operatorname{Ext}^i_R(M,N)$  can

be computed as follows: choose a projective resolution C of N over R. Then apply the left-exact functor  $\operatorname{Hom}_R(M,-)$  to the resolution and take homology. Then  $\operatorname{Ext}^i_R(M,N)=h^i(C)$ .

#### 4.1.2 Tor

Let R be a ring and M,N be R-modules. Then  $\operatorname{Tor}_R^i(M,N)$  is the right-derived functors of the  $-\otimes_R N$ -functor. In particular  $\operatorname{Tor}_R^i(M,N)$  can be computed by taking a projective resolution of M, tensoring with N, and then taking homology.

## References

[1] Robin Hartshorne. *Algebraic geometry*. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.