Una introducción a los Grupos de Coxeter

Jassiel Eduardo Coronado Piña

Diciembre del 2023

1. Introducción

Estas notas fueron escritas durante el periodo de Agosto - Noviembre 2023 con supervisión de Oscar Armando Hernández Morales. Para este proyecto se realizó el estudio y análisis del tema de *Grupos de Coxeter*, específicamente el análisis de los grupos de Coxeter formados por los *Sistemas de Coxeter de 3 variables*, además de analizar las relaciones que llegan a tener estos grupos y sus sistemas.

2. Conceptos Importantes

Definición 1. Sea S un conjunto. Una matriz

$$m: S \times S \rightarrow \{1, 2, \dots \infty\}$$

se le conoce como matriz de Coxeter si satisface las siguientes propiedades:

$$m(s,s') = m(s',s) \tag{2.1}$$

$$m(s,s') = 1 \iff s = s'. \tag{2.2}$$

Es decir, una matriz de Coxeter tiene la siguiente forma:

$$\begin{pmatrix} 1 & n & m & \dots \\ n & 1 & l & \dots \\ m & l & 1 & \dots \end{pmatrix}$$

donde
$$l, n, m \dots \in \mathbb{Z}^+ - \{1\}$$
. [1]

Definición 2. La matriz m puede ser representada por un **grafo de Coxeter** (o diagrama de Coxeter), cuyo conjunto de nodos está formado por S y sus aristas son los pares desordenados s,s' tal que $m(s,s') \geq 3$. Si $m(s,s') \geq 4$, la arista asociada tendrá como etiqueta el valor de m(s,s') (Si m(s,s') = 2, no

existirá una arista que conecte a los nodos s y s'). [1] **Ejemplo**: Con la siguiente matriz de Coxeter finita

Sea $S^2_{fin}=\left\{(s,s')\in S^2: m(s,s')\neq\infty\right\}$. Una matriz de Coxeter m determina un grupo W con las siguientes propiedades:

Generador:
$$S$$
 (2.3)
Relaciones: $(s \ s')^{m(s,s')} = e$ para todo $(s,s') \in S^2_{fin}$

("e" representa el elemento identidad de un grupo).

En el caso de que s = s', es decir, m(s,s') = 1, tendremos que

$$s^2 = e \quad para \ todo \ s \in S. \tag{2.4}$$

Entonces, si $s \neq s'$, tendremos que $(ss')^{m(s,s')}$ será igual a

$$s s' s s' \dots s s' = s' s s' s s' s$$

$$\uparrow \qquad \qquad \uparrow$$

$$m(s, s') \qquad m(s', s).$$

$$(2.5)$$

Definición 3. El grupo W que tenga las mismas propiedades de (2,3) es conocida como **Grupo de Coxeter**. El par (W,S) se le llama **Sistema de Coxeter**. La cardinalidad de S es nombrada el **grado** de (W,S). [1]

3. Sistemas de Coxeter formados por 3 elementos

3.1. Matrices de Coxeter de 3×3

De acuerdo con la **Definición 1**, se llegan a formar las siguientes matrices de Coxeter de 3×3 :

$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & a & 2 \\ a & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 2 & b \\ 2 & 1 & 2 \\ b & 2 & 1 \end{pmatrix} \quad D = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & c \\ 2 & c & 1 \end{pmatrix}$$

$$E = \begin{pmatrix} 1 & d & e \\ d & 1 & 2 \\ e & 2 & 1 \end{pmatrix} \quad F = \begin{pmatrix} 1 & f & 2 \\ f & 1 & g \\ 2 & g & 1 \end{pmatrix} \quad G = \begin{pmatrix} 1 & 2 & h \\ 2 & 1 & i \\ h & i & 1 \end{pmatrix}$$

$$H = \begin{pmatrix} 1 & j & k \\ j & 1 & m \\ k & m & 1 \end{pmatrix}$$

donde $a, b, c, d, e, f, g, h, i, j, k, m \ge 3$.

3.2. Grafos de Coxeter

Siguiendo ahora con la **Definición 2**, un *Grafo de Coxeter* es formado en base a lo siguiente:

- 1. Los vértices del grafo son formados en base a los elementos del conjunto S.
- 2. Las aristas que conectan a cada vértice depende del valor de m(s,s'), visto en la definición 2.

Entonces, para los casos a analizar, se definirá al conjunto S como

$$S = \{x, y, z\}.$$

Y, en base a las matrices realizadas en la sección 3.1, se tendrán los siguientes grafos:

Para la matriz A, solamente se podrá formar un sólo grafo:

Para la matriz B, se tendrá dos grafos, los cuales dependerán del valor de $m\left(x,y\right)=a.$

En base a la matriz C, se construirán los dos grafos siguientes, donde depende el valor de $m\left(x,z\right)=b.$

Para la matriz D, se formarán dos grafos distintos, donde depende el valor de $m\left(y,z\right)=c.$

Para la matriz E, 4 grafos pueden formarse, donde dependen los valores de $m\left(x,y\right)=d$ y de $m\left(x,z\right)=e.$

Para la matriz F, se pueden formar 4 grafos, donde dependen los valores de $m\left(x,y\right)=f$ y de $m\left(y,z\right)=g.$

Para la matriz G, se pueden formar 4 grafos, donde dependen los valores de

m(x,z) = h y de m(y,z) = i.

En base a la matriz H, 8 grafos se pueden formar, donde dependen los valores de m(x,y) = j, de m(x,z) = k y de m(y,z) = m.

Se puede observar que existe un número de similitudes en algunos de los grafos anteriores, ya sea en la cantidad de aristas, vertices y/o en cómo están construídos. Entonces, se pueden analizar si los grafos son isomorfos o no. Para el análisis de isomorfismos de grafos, solamente se tomarán en cuenta a los grafos formados sin ninguna etiqueta, puesto que el análisis de los demás grafos es recíproco al análisis siguiente.

[2] Sean $G_1 = (V_1, E_1)$ y $G_2 = (V_2, E_2)$ dos grafos simples, donde V_1 y V_2 representen los vertices de G_1 y G_2 , respectivamente; y E_1 y E_2 representen las aristas de G_1 y G_2 , de manera respectiva. G_1 es **isomorfo** a G_2 si existe $f: V_1 \longrightarrow V_2$ función biyectiva tal que

$$e = \{v_1, v_2\} \in E_1 \longleftrightarrow \{f(v_1), f(v_2)\} \in E_2$$

Sean A_{G_1} y A_{G_2} matrices de adyacencia de los grafos respectivos, donde las posiciones de la matriz A_{G_2} dependen de la función f; si $A_{G_1} = A_{G_2}$ entonces G_1

es **isomorfo** a G_2 .

Para considerar si pueden ser isomorfos o no, necesitan cumplir las siguientes condiciones:

- Los dos grafos deben de tener la misma cantidad de aristas $(|E_1| = |E_2|)$.
- Los dos grafos deben de tener la misma cantidad de vértices $(|V_1| = |V_2|)$.

Si cumple el punto anterior:

■ Los dos grafos deben de tener la misma cantidad de vértices de grado "n". Si $v \in V_1 \longrightarrow \delta(v) = \delta(f(v))$.

Con estas condiciones, el grafo (W_1) y el grafo (W_8) no llegan a ser isomorfos con los demás grafos puesto a que no cumplen la primera condición $(|E_1| = 0; |E_8| = 3)$

En el caso contrario, los grafos (W_2) , (W_3) y (W_4) cumplen las 3 condiciones antes mencionadas:

- $|E_2| = |E_3| = |E_4| = 1$
- $|V_1| = |V_2| = |V_3| = 3$
- Los 3 grafos contienen dos vértices de grado 1 y 1 vértice de grado 0.

Entonces sean

$$f: W_2 \longrightarrow W_3$$
$$g: W_3 \longrightarrow W_4$$
$$h: W_4 \longrightarrow W_2$$

tal que

$$f(x_2) = x_3$$
 $f(y_2) = z_3$ $f(z_2) = y_3$
 $g(x_3) = y_4$ $g(y_3) = x_4$ $g(z_3) = z_4$
 $h(x_4) = z_2$ $h(y_4) = y_2$ $h(z_4) = x_2$

Para la función f se forman las siguientes matrices de adyacencia

$$A_{W_2} = \begin{pmatrix} x_2 & y_2 & z_2 & x_3 & z_3 & y_3 \\ x_2 & 0 & 1 & 0 \\ 1 & 0 & 0 \\ z_2 & 0 & 0 & 0 \end{pmatrix}, A_{W_3} = \begin{pmatrix} x_3 & 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Como $A_{W_2} = A_{W_3}$ entonces W_2 es **isomorfo** a W_3 .

Para la función g se forman las siguientes matrices de adyacencia

$$A_{W_3} = \begin{pmatrix} x_3 & y_3 & z_3 & y_4 & x_4 & z_4 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, A_{W_4} = \begin{pmatrix} y_4 & 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Como $A_{W_3} = A_{W_4}$ entonces W_3 es **isomorfo** a W_4 .

Para la función h se forman las siguientes matrices de advacencia

$$A_{W_4} = \begin{pmatrix} x_4 & y_4 & z_4 & & z_2 & y_2 & x_2 \\ x_4 & 0 & 0 & 0 \\ 0 & 0 & 1 \\ z_4 & 0 & 1 & 0 \end{pmatrix}, A_{W_2} = \begin{pmatrix} z_2 & y_2 & x_2 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ x_2 & 0 & 1 & 0 \end{pmatrix}$$

Como $A_{W_4} = A_{W_2}$ entonces W_4 es **isomorfo** a W_2 . Por tanto, los grafos W_2 , W_3 y W_4 son **isomorfos**.

Además, los grafos (W_5) , (W_6) y (W_7) cumplen las 3 condiciones necesarias:

- $|E_5| = |E_6| = |E_7| = 2$
- $|V_5| = |V_6| = |V_7| = 3$
- Los 3 grafos contienen dos vértices de grado 1 y 1 vértics de grado 2.

Pero, no son isomorfos con los grafos (W_2) , (W_3) y (W_4) pues el grupo de grafos mencionados contiene 1 arista por grafos y los grafos (W_5) , (W_6) y (W_7) contienen dos aristas cada grafo $(Y por tanto, no cumplen la 1^{ra} condición)$

Entonces sean

$$F: W_5 \longrightarrow W_6$$

 $G: W_6 \longrightarrow W_7$
 $H: W_7 \longrightarrow W_5$

tal que

$$F(x_5) = y_6$$
 $F(y_5) = x_6$ $F(z_5) = z_6$
 $G(x_6) = x_7$ $G(y_6) = z_7$ $G(z_6) = y_7$
 $H(x_7) = z_5$ $H(y_7) = y_5$ $H(z_7) = x_5$

Para la función F se forman las siguientes matrices de adyacencia

$$A_{W_5} = egin{array}{cccc} x_5 & y_5 & z_5 & & y_6 & x_6 & z_6 \ 0 & 1 & 1 \ 1 & 0 & 0 \ 1 & 0 & 0 \ \end{pmatrix}, \ A_{W_6} = egin{array}{c} y_6 & 0 & 1 & 1 \ 1 & 0 & 0 \ 1 & 0 & 0 \ \end{pmatrix}$$

Como $A_{W_5} = A_{W_6}$ entonces W_5 es **isomorfo** a W_6 .

Para la función G se forman las siguientes matrices de adyacencia

$$A_{W_6} = \begin{array}{c} x_6 & y_6 & z_6 \\ x_6 & 0 & 1 & 0 \\ 1 & 0 & 1 \\ z_6 & 0 & 1 & 0 \end{array}\right), \ A_{W_7} = \begin{array}{c} x_7 & z_7 & y_7 \\ x_7 & 0 & 1 & 0 \\ 1 & 0 & 1 \\ y_7 & 0 & 1 & 0 \end{array}\right)$$

Como $A_{W_6} = A_{W_7}$ entonces W_6 es **isomorfo** a W_7 .

Para la función H se forman las siguientes matrices de advacencia

$$A_{W_7} = \begin{array}{c} x_7 & y_7 & z_7 \\ x_7 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ z_7 & 1 & 1 & 0 \end{array}, A_{W_5} = \begin{array}{c} z_5 & y_5 & x_5 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{array}$$

Como $A_{W_7} = A_{W_5}$ entonces G_7 es **isomorfo** a W_5 . Por tanto, los grafos W_5 , W_6 y W_7 son **isomorfos**.

3.3. Grupos de Coxeter

Para terminar este texto, se analizarán las semejanzas que llegan a tener los grupos de Coxeter ($Es\ decir$, $se\ verificará\ si\ los\ grupos\ son\ isomorfos$). [3] Como recordatorio, se dice que dos grupos (G,*) y (H,*) son **isomorfos** si existe una función biyectiva $\phi: G \longrightarrow H$ que preserve la operación de grupo, es

$$\phi(a,b) = \phi(a) * \phi(b)$$

 $\forall a,b \in G$. Si G es isomorfo a H, se denotan como $G \cong H$. Además, la función ϕ se le conoce como **isomorfismo**.

Para esta sección, se hará uso de cuatros grupos específicos de Coxeter, para analizar las características y las relaciones que lleguen a tener entre sí.

• Grupo formado por la matriz

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 3 & 2 & 1 \end{pmatrix}$$

Generador: S = (x, y, z)Relaciones:

1.
$$x^2 = y^2 = z^2 = e$$

2.
$$(xy)^2 = (yz)^2 = (xz)^3 = e$$

3.
$$xy = yx$$

decir:

4.
$$yz = zy$$

5.
$$xzx = zxz$$

 $W_1 = \{e, x, y, z, xy, xz, zx, yz, xzx, xyz, yzx, yxzx\}$

$$(W_1, *) =$$

*	x	y	\mathbf{z}	xy	xz	zx	$\mathbf{y}\mathbf{z}$	xyx	xyz	yzx	yxzx	e
x	е	xy	XZ	У	z	XZX	xyz	ZX	yz	xyzx	zyx	x
y	yx	e	yz	X	yxz	yzx	Z	yxzx	XZ	ZX	XZX	У
\mathbf{z}	ZX	zy	е	zxy	ZXZ	X	У	XZ	zxzy	xy	yxz	Z
xy	У	х	xyz	е	XZ	xyzx	XZ	yzx	Z	XZX	ZX	xy
XZ	XZX	xzy	X	xzxy	ZX	е	xy	Z	zxy	У	yz	XZ
ZX	Z	zxy	ZXZ	zy	е	XZ	zxzy	X	У	xzy	xy	ZX
$\mathbf{y}\mathbf{z}$	zyx	Z	У	yx	zyxz	yx	е	yxz	ZXZ	X	XZ	yz
xzx	XZ	xzxy	ZX	xzy	X	z	zxy	е	xy	zy	У	XZX
xyz	yxzx	XZ	xy	XZX	yzx	у	X	yz	ZX	е	Z	xyz
yzx	yz	ZX	yzxz	Z	у	yxz	ZXZ	yx	е	XZ	X	yzx
yxzx	yxz	XZX	yzx	XZ	yx	yz	ZX	У	x	Z	e	yxzx
e	x	у	Z	xy	XZ	ZX	yz	XZX	xyz	yzx	yxzx	е

Por las relaciones, tenemos que

- xyz=xzy=yxz
- yzx=zyx=zxy
- xzyx=xyzx=yxzx=yzxz=zyxz=zxzy=xzxy
- ullet Grupo formado por la matriz

$$\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

Generador: S = (x, y, z)

Relaciones:

1.
$$x^2 = y^2 = z^2 = e$$

2.
$$(xy)^2 = (xz)^2 = (yz)^3 = e$$

$$3. \ xy = yx$$

4.
$$xz = zx$$

5.
$$yzy = zyz$$

$$W_2 = \{e, x, y, z, xy, xz, yz, zy, zyz, xyz, xzy, zyzx\}$$

$$(W_2, *) =$$

*	x	y	\mathbf{z}	xy	xz	$\mathbf{y}\mathbf{z}$	zy	zyz	xyz	xzy	zyzx	e
x	е	xy	XZ	у	Z	xyz	xzy	xyzy	yz	zy	zyz	X
У	yx	e	yz	X	yxz	Z	yzy	zy	XZ	yzyx	zyx	У
\mathbf{z}	ZX	zy	е	zyx	X	zyz	У	yz	zyzx	yx	yxz	Z
xy	У	X	xyz	e	yz	XZ	yzyx	yzx	xzy	Z	zyz	xy
xz	Z	xzy	x	zy	e	xzyz	xy	xyz	zyz	У	yz	XZ
yz	yzx	yzy	У	yzyx	yx	zy	e	Z	zyx	X	ZX	yz
zy	zyx	Z	zyz	yx	yzyx	е	yz	У	X	yzx	yx	zy
yzy	yzyx	yz	zy	zyx	yzx	У	z	e	yx	ZX	X	yzy
xyz	yz	xyzy	yx	yzy	У	xzy	x	XZ	zy	e	z	xyz
xzy	zy	XZ	xzyz	z	zyz	X	xyz	xy	е	z	у	xzy
zyzx	yzy	yxz	xzy	yz	zy	yx	XZ	X	у	z	е	zyzx
e	x	У	z	xy	XZ	yz	zy	yzy	xyz	xzy	zyzx	e

Por las relaciones, se tiene que:

- xyz=yxz=yzx
- zyx=zxy=xzy
- $\qquad \qquad zyzx = yzyx = yzxy = yxzy = xyzy = xzyz = zxyz = zyxz$

Observamos que W_1 y W_2 son de orden 12 ($|W_1|=|W_2|=12$). Además, $W_1\cong W_2$.

Un isomorfismo $\phi:W_1\longrightarrow W_2$ está dado por:

$$\begin{array}{lll} \phi: & \phi\left(z_{1}x_{1}\right)=z_{2}y_{2} \\ \phi\left(e\right)=e & \phi\left(y_{1}z_{1}\right)=x_{2}z_{2} \\ \phi\left(x_{1}\right)=y_{2} & \phi\left(x_{1}z_{1}x_{1}\right)=y_{2}z_{2}x_{2} \\ \phi\left(y_{1}\right)=x_{2} & \phi\left(x_{1}y_{1}z_{1}\right)=y_{2}x_{2}z_{2} \\ \phi\left(z_{1}\right)=z_{2} & \phi\left(y_{1}z_{1}x_{1}\right)=x_{2}z_{2}y_{2} \\ \phi\left(x_{1}y_{1}\right)=y_{2}x_{2} & \phi\left(y_{1}x_{1}z_{1}x_{1}\right)=x_{2}y_{2}z_{2}y_{2} \\ \phi\left(x_{1}z_{1}\right)=y_{2}z_{2} & \phi\left(y_{1}x_{1}z_{1}x_{1}\right)=x_{2}y_{2}z_{2}y_{2} \end{array}$$

ullet Grupo formado por la matriz

$$\begin{pmatrix} 1 & 3 & 3 \\ 3 & 1 & 2 \\ 3 & 2 & 1 \end{pmatrix}$$

Generador: S = (a, b, c)Relaciones:

refaciones.

1.
$$a^2 = b^2 = c^2 = e$$

2.
$$(ab)^3 = (ac)^3 = (bc)^2 = e$$

3.
$$aba = bab$$

- 4. aca = cac
- 5. bc = cb

 $W_3 = \{e, a, b, c, ab, ba, ac, ca, cb, aba, aca, abc,\\ cba, cab, bac, abac, acab, caba, baca, acba, bacba, abcab, bacbab, bacbab\}$

 $(W_3, *) =$

*	а	q	၁	ab	ba	ac	ca	cp	apa	aca	apc	cba
а	е	ab	ac	q	aba	c	aca	acb	ba	ca	bc	acba
q	ba	е	pc	bab	ಜ	bac	bca	၁	bbab	baca	babc	ca
C	ca	cp	е	cab	cba	cac	а	q	caba	ac	cacb	ba
ab	aba	а	apc	ba	е	abac	abca	ac	q	abaca	bac	aca
ba	q	bab	bac	е	ab	bc	baca	bacb	а	bca	၁	babca
ac	aca	acb	а	acab	abca	ca	е	ab	acaba	С	cab	aba
ca	С	cab	cac	qə	caba	е	ac	cacp	cba	а	cpc	cacba
$^{\mathrm{cp}}$	cba	၁	q	cbab	ca	bcac	ba	е	cab	bac	cbabc	bca
aba	ab	ba	abac	а	Р	abc	abaca	bac	е	acpa	ac	baca
aca	ac	acap	ca	acb	acaba	а	С	cab	acba	е	ab	caba
abc	abca	ac	qe	qeqoe	aca	abcac	aba	в	acap	abac	abacab	е
cba	qə	cpap	cpac	Э	cab	q	bac	qərəq	ca	pa	е	cbabca
cap	caba	ca	capc	cpa	С	cabac	cabca	cac	cp	capaca	cbac	ac
\mathbf{bac}	baca	bacb	ba	bacab	bacba	bca	Р	bab	bacaba	$^{ m pc}$	bcab	ab
abac	abaca	bac	aba	pacpap	baca	abca	ab	pa	bcacb	apc	acbab	q
acap	acaba	aca	cab	acpa	ac	cabcac	caba	cs	acb	cabac	acbac	$^{\mathrm{c}}$
capa	cab	cba	cabac	ca	cp	capc	cabaca	baca	С	cacba	cac	bac
baca	bac	bacab	cba	pacp	baca	ba	cp	capa	abaca	q	bab	cab
acba	acb	acbab	abcac	ac	acab	ab	abac	acabac	aca	aba	а	bcacb
bacba	bacb	bacbab	abca	bac	bacab	bab	abc	abcab	baca	ab	ba	capc
abcab	acab	abca	abacab	aca	abc	cab	bacab	abcac	ac	caba	ca	abac
bacab	cabaca	baca	bcab	bacba	bac	abcab	cab	bca	bacb	cabc	abca	bc
bacbab	bacab	acbab	bacba	baca	bacb	bcab	acab	abca	bac	cab	bca	abc
е	а	q	С	ab	ba	ac	ca	cp	aba	aca	abc	cba

*	cab	bac	apac	acab	capa	baca	acpa	bacba	abcab	bacab	bacbab	е
а	acab	abac	bac	cab	acapa	abaca	cba	baca	bcab	babcab	bacab	а
q	bcab	ac	abc	bacab	cab	aca	babca	acba	babcab	acab	acbab	q
c	ab	cbac	cabac	acb	aba	bac	acaba	bacbab	acba	bacb	bacba	С
ab	abcab	၁	pc	cabaca	acab	ca	baca	cba	bacab	cab	cbab	ab
ba	bacab	abc	ac	bcab	cabaca	abca	ca	aca	cab	abcab	acab	ba
ac	q	abcac	bacaba	qə	ba	abac	caba	bacab	cba	bac	baca	ac
ca	acb	cabac	cbac	ab	acpa	cabaca	ba	bac	bab	bacba	bacb	ca
cp	bab	cac	capc	bacb	ab	ac	abacab	cacba	bacba	acb	acba	cp
aba	abacab	pc	၁	acpap	acabac	bca	aca	ca	acab	bcab	cab	aba
aca	cp	acabac	abcac	q	cba	cabac	aba	abac	ba	cbac	bac	aca
abc	ba	ca	cab	bac	Р	၁	bacab	caba	baca	cp	cba	abc
cba	bacb	capc	cac	bab	babca	capca	я	ac	ab	acba	q	cba
cap	acpa	е	q	acpac	acb	а	bac	ba	bacb	ab	bab	cab
\mathbf{bac}	е	abca	acpap	С	а	abc	cab	acab	ca	ac	aca	bac
abac	а	bca	caba	ac	е	pc	acab	cab	aca	၁	ca	abac
acab	cba	а	ap	cbac	cp	е	abac	aba	bac	Р	ba	abac
caba	bacba	q	е	acpa	bacb	ba	ac	а	acb	bab	ab	caba
baca	С	acaba	abca	е	ca	cabc	ac	abc	a	aca	ac	baca
acba	bacab	cab	ca	ba	baca	caba	е	С	þ	cba	cb	acba
bacba	ac	bcab	bca	а	aca	cab	q	bc	е	ca	С	bacba
abcab	baca	ab	а	cba	bac	aba	c	е	cp	ba	q	abcab
bacab	ca	ba	bab	cac	bac	q	abc	ab	ac	е	а	bacab
bacbab	aca	bab	ba	ca	bac	ab	bc	b	С	a	е	bacbab
е	cab	bac	abac	acab	caba	baca	acba	bacba	abcab	bacab	bacbab	е

Por las relaciones, se obtiene lo siguiente:

- acb=abc
- bca=cba
- acba=abca
- abac=babc=bacb
- acab=cacb=cabc
- caba=cbab=bcab
- baca=bcac=cbac
- bacba=babca=abaca=abcac=acbac
- abcab=acbab=acaba=caba=cabca
- bacab=bcacb=bcabc=cbabc=cabac
- acabac=cacbac=cabcac=abacab=bacbab=bacbab=bacbab=bacba=cabaca=cabaca=cabaca
- Grupo formado por la matriz

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 3 & 1 \end{pmatrix}$$

Generador: S = (a, b, c)Relaciones:

1. $a^2 = b^2 = c^2 = e$

2.
$$(ab)^2 = (ac)^3 = (bc)^3 = e$$

- 3. ab = ba
- 4. aca = cac
- 5. bcb = cbc

 $W_4 = \{e, a, b, c, ab, ac, ca, bc, cb, aca, bcb, abc, \\ acb, bca, cba, abcb, acab, baca, bcba, cabc, bacba, cabca, acbac, cabcab\}$

 $(W_4, *) =$

*	а	q	ပ	ap	ac	ca	pc	cp	aca	pcb	apc	acb
а	е	ab	ac	q	၁	aca	abc	acb	ca	abcb	pc	cp
q	ba	е	pc	а	bac	bca	c	pcp	baca	cp	ac	bacb
၁	ca	cp	е	cab	cac	а	cpc	q	ac	bc	capc	cacb
ab	q	ಇ	abc	е	pc	abca	ac	abcb	bca	acb	၁	pcb
ac	aca	acb	В	acab	ca	е	acpc	ab	၁	abc	acabc	cab
ca	С	cab	cac	qə	е	ac	capc	cacp	я	capcp	cpc	q
bc	bca	pcb	q	bcab	bcac	ba	cp	е	bac	၁	bcabc	bcacb
$^{\mathrm{cp}}$	cba	၁	cpc	ca	cbac	cbca	е	pc	cbaca	q	cac	cbacb
aca	ac	acap	ca	acb	а	၁	acapc	cab	е	capc	acpc	ab
pcp	bcba	bc	сp	bca	bcbac	cba	q	၁	cbac	е	bcac	bcbacb
abc	baca	abcb	ab	abcba	bca	Р	acb	а	bc	ac	bcabcb	capc
acb	acpa	ac	acpc	aca	acapc	abcba	я	apc	abcbac	ab	ca	bcab
pca	pc	bcab	bcac	pcp	q	bac	bcabc	bcacb	ba	bcbacb	сp	е
$^{\mathrm{cba}}$	сp	ca	cbac	0	cpc	cbaca	cac	capcp	cbca	cacp	е	bc
abcb	abcba	abc	acb	abca	abcbac	acba	ab	ac	acbac	а	bca	bcabc
acap	acb	aca	acapc	ac	acpc	acabca	ca	capc	acbca	cab	а	abc
baca	bac	bacab	bca	bacb	ba	$^{\mathrm{pc}}$	bcabcb	pcap	q	bcabc	acb	а
bcba	pcp	bca	bcbac	pc	cp	cbac	bcac	bcbacb	cba	bcacb	Р	၁
cabc	capca	capcp	cab	capcpa	cbca	cp	cacb	ca	cpc	cac	beach	cbcab
bacba	bacb	baca	bacbac	bac	bacbc	acbac	bca	bcabc	acba	bcab	ba	ac
cabca	capc	cabcab	cpca	capcb	cab	$^{\mathrm{cpc}}$	acbca	bca	cb	bcac	cacb	ca
acbac	bcacbc	capc	acpa	cabca	acbca	acb	cab	aca	acpc	ca	bcab	abca
cabcab	capcp	cabca	bcacb	cacpc	cacp	acpc	cpca	bcac	acb	bca	cab	cac
е	а	q	၁	ab	ac	ca	bc	qə	aca	pcp	abc	acb

*	bca	cba	abcb	acab	baca	bcba	capc	bacba	capca	acbac	capcap	е
а	abca	acpa	pcb	cab	bca	abcba	acabc	bcba	acabca	cbac	cabca	В
p	ca	bcba	acb	bacab	aca	cba	bcabc	acba	cbac	bacbac	cbacb	q
၁	cpca	bacb	capcp	acb	cbaca	bca	abc	cbacba	abca	acpc	abcab	ပ
ab	aca	abcba	cp	bacb	ca	acba	bacabc	cba	acbac	bcbac	capc	ab
ac	acpca	q	capc	cp	acbaca	abca	bc	cabca	bca	cpc	bcab	ac
ca	capca	acb	pc	ap	cpca	cabcba	acpc	bca	acpca	bac	abca	ca
\mathbf{pc}	cba	а	bcabcb	bacb	cbac	ca	ac	cbacb	aca	acb	acab	pc
$^{\mathrm{cp}}$	В	bca	cacp	bcbacb	ac	ba	bcac	cacba	bac	bcacb	bacb	cp
aca	acapca	сp	abc	q	acbca	capca	cpc	abca	cbca	pc	abcab	aca
pcp	ba	ca	bcacb	cbacb	bac	а	cac	cbacba	ac	cacp	acb	pcb
abc	acpa	е	bcabc	pcp	acbac	aca	၁	capc	ca	cp	cab	abc
acb	е	abca	cab	cabca	С	р	bca	cp	bc	cbca	pcp	acb
\mathbf{pca}	cbac	pacp	С	а	cba	cbacb	acb	ca	acba	ac	aca	bca
cba	ac	cacbca	q	bca	а	acb	acb	ba	acpc	bcac	bac	cba
abcb	q	aca	bcab	capc	pc	е	ca	pcp	С	cab	cp	abcb
acab	С	capca	ab	abca	е	cp	cpca	q	cpc	bca	pc	acab
baca	acbac	pcp	ac	е	acba	cbac	cp	aca	cba	С	ca	baca
bcba	bac	cbacb	е	ca	ba	bacb	cacb	а	acb	cac	ac	bcba
cabc	acb	С	bcac	pc	acpc	ac	е	abc	а	q	ab	capc
bacba	pc	cbac	a	aca	p	pcp	cab	е	cp	ca	С	bacba
cabca	acpc	pc	cac	С	acb	bac	þ	ac	ba	е	а	cabca
acbac	cp	ac	bca	abc	$^{\mathrm{cpc}}$	С	а	bc	е	ab	q	acbac
cabcab	cpc	bac	ca	ac	cp	bc	ba	С	q	а	е	cabcab
е	bca	cba	abcb	acab	baca	bcba	cabc	bacba	cabca	acbac	cabcab	е

Por las relaciones, tendremos lo siguiente:

- abc=bac
- cab=cba
- cabc=cbac
- acab=cacb=acba
- abcb=acbc=bacb
- baca=bcac=abca
- bcba=cbca=bcab
- cabcb=cbacb=cacbc=acabc=acbac
- cabca=cbaca=cbcac=bcbac=bcabc
- bacba=abcab=bacab=bcacb=abcba=acbca
- cabcba=cbacab=cbcacb=bcbacb=bcacbc=bacabc= abcabc=bacbac=abcbac=acbaca=acbaca=acabca

Observamos que W_3 y W_4 son de orden 24 ($|W_3| = |W_4| = 24$), por tanto no llegan a ser isomorfos a W_1 ni W_2 por tener orden distinto. Se llega a que $W_3 \cong W_4$ Un isomorfismo $\phi: W_3 \longrightarrow W_4$ está dado por:

```
\phi:
                                                                               \phi\left(c_3b_3a_3\right) = a_4b_4d_4
\phi(e) = e
                                                                               \phi(c_3a_3b_3) = a_4c_4b_4
\phi\left(a_3\right) = c_4
                                                                               \phi(b_3a_3c_3) = b_4c_4a_4
\phi\left(b_{3}\right)=b_{4}
                                                                               \phi (a_3b_3a_3c_3) = c_4b_4c_4a_4
\phi\left(c_{3}\right)=a_{4}
                                                                               \phi\left(a_{3}c_{3}a_{3}b_{3}\right) = c_{4}a_{4}c_{4}b_{4}
\phi\left(a_3b_3\right) = c_4b_4
                                                                               \phi\left(c_{3}a_{3}b_{3}a_{3}\right) = a_{4}c_{4}b_{4}c_{4}
\phi\left(b_3 a_3\right) = b_4 c_4
                                                                               \phi(b_3a_3c_3a_3) = b_4c_4a_4c_4
\phi\left(a_3c_3\right) = c_4a_4
                                                                               \phi\left(a_{3}c_{3}b_{3}a_{3}\right) = c_{4}a_{4}b_{4}c_{4}
                                                                               \phi \left( b_3 a_3 c_3 b_3 a_3 \right) = b_4 c_4 a_4 b_4 c_4
\phi(c_3a_3) = a_4c_4
\phi\left(c_3b_3\right) = a_4b_4
                                                                               \phi\left(a_3b_3c_3a_3b_3\right) = c_4b_4a_4c_4b_4
\phi\left(a_3b_3a_3\right) = c_4b_4c_4
                                                                               \phi (b_3 a_3 c_3 a_3 b_3) = b_4 c_4 a_4 c_4 b_4
\phi\left(a_3c_3a_3\right) = c_4a_4c_4
                                                                               \phi(b_3a_3c_3b_3a_3b_3) = b_4c_4a_4b_4c_4b_4
\phi(a_3b_3c_3) = c_4b_4a_4
```

4. Conclusiones

Con lo analizado en el texto, se pueden llegar a ciertas observaciones: Se llega a observar una relación entre los grafos isomorfos de Coxeter con los grupos isomorfos de Coxeter basados de dichos grafos, además de que todo grupo realizado en la investigación es de orden par, y por otra parte se vió que el orden de los grupos de Coxeter de 3 variables siguen una sucesión -el cual es más

notorio en los grupos de Coxeter de 2 variables (|W|=2n) -. Una idea a futuro sobre este estudio es analizar si se puede llegar a una conclusión general de las observaciones vistas, además de investigar si existen más isomorfismos entre los grupos de Coxeter y otros grupos existentes, debido a que esto ayudaría a analizar de manera más simple los grupos de Coxeter. Aunque lo que está en el texto no nos da una demostración completa de las conclusiones, si dan un gran paso en el estudio de los sistemas de Coxeter y el comportamiento de estos.

Referencias

- [1] Anders Björner and Francesco Brenti. Combinatorics of Coxeter groups, volume 231. Springer, 2005.
- [2] Germán Combariza. Una introducción a la teoría de grafos. 2003.
- [3] Marcos Ramírez Mejía, MARCOS RAMIREZ MEJIA, et al. Introducción a la teoría de grupos y anillos. B.S. thesis, 2015.