2.4 Linear Congruential Generators with Known Module

This section uses elementary methods only and is independent of the general theory from the preceding sections of Chapter [2]

Assume the parameters a and b of the linear congruential generator $x_n = ax_{n-1} + b \mod m$ are unknown, whereas the module m is known.

We'll show that for predicting the complete output sequence we only need 3 successive elements x_0, x_1, x_2 of the sequence, even for a composite module m. Starting with the relation

$$x_2 - x_1 \equiv a(x_1 - x_0) \pmod{m}$$

we immediately get (assuming for the moment that $x_1 - x_0$ and m are coprime)

$$a = \frac{x_2 - x_1}{x_1 - x_0} \mod m,$$

where the division is $\mod m$ (using the extended Euclidean algorithm). The increment b is given by

$$b = x_1 - ax_0 \bmod m.$$

So we found the defining formula and may predict the complete sequence.

A typical tool for this simple case was the sequence of differences

$$y_i = x_i - x_{i-1}$$
 for $i \ge 1$.

It follows the rule

$$y_{i+1} \equiv ay_i \pmod{m}$$
.

Note that the y_i may be negative lying between the bounds $-m < y_i < m$. Since m is known we might replace them by y_i mod m, but this was irrelevant in the example, and for an unknown m—to be considered later on—it is not an option.

Lemma 6 (on the sequence of differences) Assume the sequence (x_i) is generated by the linear congruential generator with module m, multiplier a, and increment b. Let (y_i) be the sequence of differences, $c = \gcd(m, a)$, and $d = \gcd(m, y_1)$. Then:

- (i) The following statements are equivalent:
 - (a) The sequence (x_i) is constant.
 - (b) $y_1 = 0$.
 - (c) $y_i = 0$ for all i.
- (ii) $gcd(m, y_i)|gcd(m, y_{i+1})$ for all i.
- (iii) $d|y_i$ for all i.

- (iv) If $gcd(y_1, ..., y_t) = 1$ for some $t \ge 1$, then d = 1.
- (v) $c|y_i$ for all $i \geq 2$.
- (vi) If $gcd(y_2, ..., y_t) = 1$ for some $t \ge 2$, then c = 1.
- (vii) $m|y_iy_{i+2} y_{i+1}^2$ for all i.
- (viii) If \tilde{a} , \tilde{m} are integers, $\tilde{m} \geq 1$, with $y_i \equiv \tilde{a}y_{i-1} \pmod{\tilde{m}}$ for $i = 2, \ldots, r$, then $x_i = \tilde{a}x_{i-1} + \tilde{b} \pmod{\tilde{m}}$ for all $i = 1, \ldots, r$ with $\tilde{b} = x_1 \tilde{a}x_0 \pmod{\tilde{m}}$.

Proof. (i) Note that $y_i = 0$ implies that all following elements are 0.

- (ii) If e divides y_i and m, then it also divides $y_{i+1} = ay_i + k_i m$.
- (iii) is a special case of (ii).
- (iv) follows from $d | \gcd(y_1, \ldots, y_t)$, and this, from (iii).
- (v) Let $m = c\tilde{m}$ and $a = c\tilde{a}$. Then $y_{i+1} = c\tilde{a}y_i + k_i c\tilde{m}$, hence $c|y_{i+1}|$ for i > 1.
 - (vi) follows from $c|\gcd(y_2,\ldots,y_t)$ and this, from (v).
 - (vii) $y_i y_{i+2} y_{i+1}^2 \equiv a^2 y_i a^2 y_i \pmod{m}$.
- (viii) by induction: For i=1 the assertion is the definition of \tilde{b} . For $i\geq 2$ we have

$$x_i - \tilde{a}x_{i-1} - \tilde{b} \equiv x_i - \tilde{a}x_{i-1} - x_{i-1} + \tilde{a}x_{i-2} \equiv y_i - \tilde{a}y_{i-1} \equiv 0 \pmod{\tilde{m}},$$

as claimed. \Diamond

The trivial case of a constant sequence merits no further care. However it shows that in general the parameters of a linear congruential generator are not uniquely determined by the output sequence. For the constant sequence may be generated with an arbitrary module m and an arbitrary multiplier a if only the increment is set to $b = -(a-1)x_0 \mod m$. Even if m is fixed a is not uniquely determined, not even $a \mod m$.

Previously we considered the case where y_1 and m are coprime, yielding $a = y_2/y_1 \mod m$. In the general case it might happen that division mod m is not unique. This happens if and only if m and y_1 have a non-trivial common divisor, hence $d = \gcd(m, y_1) > 1$. The **sequence of reduced differences** $\bar{y}_i = y_i/d$ (see (iii) in Lemma 6) then follows the recursive formula

$$\bar{y}_{i+1} \equiv \bar{a}\bar{y}_i \pmod{\bar{m}}$$

with the reduced module $\bar{m} = m/d$ and reduced multiplier $\bar{a} = a \mod \bar{m}$, from which we get a unique $\bar{a} = \bar{y}_2/\bar{y}_1$. Setting $\tilde{a} = \bar{a} + k\bar{m}$ with an arbitrary integer k and $\tilde{b} = x_1 - \tilde{a}x_0 \mod m$, from Lemma (6) (viii) we also get $x_i = \tilde{a}x_{i-1} + \tilde{b} \mod m$ for all $i \geq 1$. This proves:

Proposition 7 Assume the sequence (x_i) is generated by a linear congruential generator with known module m, but unknown multiplier a and increment b. Then the complete output sequence is predictable from its first three

elements x_0, x_1, x_2 . If the sequence (x_i) is not constant, then the multiplier a is uniquely determined up to a multiple of the reduced module \bar{m} .

Thus also in this situation we sometimes have to content ourselves with predicting the sequence without revealing the parameters used for its generation. Here is a simple concrete example: For m=24, a=2k+1 with $k \in [0...11]$, $b=12-2k \mod 24$, and initial value $x_0=1$ we always get the sequence (1,13,1,13,...).