Student1 Student2 Student3	Fakultet elektrotehnike i računarstva Zavod za automatiku i računalno inženjerstvo ELEMENTI SUSTAVA AUTOMATIZACIJE	.00
	Davači impulsa Vježba broj 3	5.10.2010.

PRIPREMA ZA VJEŽBU

5. a) T postupak n = 100 okr./min. $Q_n = 5\% \text{ od } n => Q_n = 5, P = 150 \text{ okr./min.,}$ $S_2, f_c = ?$ $Q_n = \frac{n}{(S2-1)} => S_2 = 21$ $n = \frac{60 \text{ fc}}{PS2} => f_c = 5250 \text{ Hz}$

b)
$$S_1 = 255$$
 (maksimalna moguća vrijednost na ekranu) $T_d = \frac{S2}{fc}$ $T_d = T_c = 81.92*10^{-3} \text{ s}$ $n_{max} = 60*f_c* \frac{SI}{PS2}$ (pošto je $T_c = T_d = S_2*f_c$) => $n_{max} = 60* \frac{SI}{PTc}$ ($S_1 = 255$) $za P = 150 => n_{max} = 1245.12 \text{ okr./min.}$ $za P = 500 => n_{max} = 373.54 \text{ okr./min.}$

VJEŽBA

Cilj ove vježbe je bio provesti digitalno mjerenje brzine vrtnje uporabom davača impulsa za P, T i P/T postupak pri različitim brzinama. P postupak se temelji na brojanju impulsa iz davača u zadanom intervalu T_d dok se T postupak temelji na sinkronizaciji s impulsima iz davača. T postupak uvijek počinje na rastući brid impulsa i završava s rastućim bridom slijedećeg impulsa, a mjerenje perioda T_p (trajanje određenog broja impulsa) se radi tako da se dobiveno usporedi s izvorom impulsa poznate frekvencija f_c. P/T postupak objedinjuje dobre strane oba postupka i on je najčešće korišteni postupak u industriji jer omogućava mjerenje u širokom rasponu brzine.

1. Prvo mjerenje je provedeno za P postupak s početnom brzinom od 50 okr./min. koja je povećavana za 100 okr./min. do maksimalne moguće brzine (koja je ograničena 8-bitnim brojilom što znači da je najveći broj koji se može prikazati na zaslonu 255 pa se ne može dobiti mjerenje za stvarnu maksimalnu moguću brzinu uređaja (2260 okr./min.)). Dobiveni su sljedeći rezultati prikazani u tablici 1.1:

n [okr./min.]	S
$n_1 = 50$	$S_1 = 14$
$n_2 = 150$	$S_2 = 32$
$n_3 = 250$	$S_3 = 34$
$n_4 = 350$	$S_4 = 57$
$n_5 = 450$	$S_5 = 98$
$n_6 = 550$	$S_6 = 109$
$n_7 = 650$	$S_7 = 132$
$n_8 = 750$	$S_8 = 149$
$n_9 = 850$	$S_9 = 171$
$n_{10} = 950$	$S_{10} = 191$
$n_{11} = 1050$	$S_{11} = 200$
$n_{12} = 1150$	$S_{12} = 226$
$n_{13} = 1250$	$S_{13} = 242$
$n_{14} = 1350$	$S_{14} = 255$
$n_{15} = 1390$	$S_{15} = 255$

Tablica 1.1 Ovisnost brzine vrtnje motora i broja pristiglih impulsa kod P postupka

Grafička ovisnost brzine vrtnje i broja pristiglih impulsa kod P postupka je prikazana slikom 1.2:

Slika 1.2: Grafički prikaz ovisnosti brzine vrtnje motora i broja pristiglih impulsa kod P postupka

Iz dobivenih podataka iz tablice **1.1** i sa slike **1.2** može se zaključiti da P postupak sve bolji kako se povećava broj okretaja motora. To je posljedica toga što P postupak mjeri brzinu vrtnje tako što broji impulse iz davača u unaprijed zadanom vremenskom intervalu T_d koji može započeti neposredno nakon početka jednog impulsa i završiti pred kraj nekog drugog impulsa pa se ta dva impulsa neće registrirati. Utjecaj te greške se smanjuje kako brzina raste pa stoga zaključujemo da je P postupak najbolje koristiti pri većim brzinama vrtnje.

2. U drugom mjerenju se uspoređivala postotna greška kod P postupka pri brzini vrtnje od 20 okr./min. za davač s 150 imp./min. i 500 imp./min.. Isto je napravljeno i za T postupak pri brzini vrtnje od 800 okr./min.

Za P postupak je dobiveno sljedeće: brzina za 150 imp./min. je $n_{150} = 43.94$ okr./min., a za 500 imp./min je $n_{500} = 23.38$ okr./min.. Usporedbom ta dva podatka dolazi se do toga da postotna pogreška iznosi 84%.

Za T postupak je dobiveno sljedeće: n_{150} = 651 okr./min, n_{500} = 800 okr./min.. Usporedbom ta dva podatka dobivamo da je postotna pogreška 18.63%.

3. Treće mjerenje je provedeno za T postupak s početnom brzinom vrtnje motora koja je povećavana za 100 okr./min. do maksimalne moguće izmjerljive brzine. Dobiveni su rezultati prikazani u tablici **1.3**:

n [okr./min.]	S
$n_1 = 50$	$S_1 = 14$
$n_2 = 150$	$S_2 = 13$
$n_3 = 250$	$S_3 = 8$
$n_4 = 350$	$S_4 = 6$
$n_5 = 450$	$S_5 = 5$
$n_6 = 550$	$S_6 = 4$
$n_7 = 650$	$S_7 = 3$
$n_8 = 750$	$S_8 = 3$
$n_9 = 850$	$S_9 = 2$
$n_{10} = 950$	$S_{10} = 2$
$n_{11} = 1050$	$S_{11} = 2$
$n_{12} = 1150$	$S_{12} = 2$
$n_{13} = 1250$	$S_{13} = 1$
$n_{14} = 1350$	$S_{14} = 1$

Tablica 1.3 Ovisnost brzine vrtnje motora i broja pristiglih impulsa kod T postupka

Grafička ovisnost brzine vrtnje i broja pristiglih impulsa kod P postupka je prikazana slikom **1.4**:

Slika 1.4: Grafički prikaz ovisnosti brzine vrtnje motora i broja pristiglih impulsa kod P postupka

Iz dobivenih podataka iz tablice **1.3** i sa slike **1.4** može se zaključiti da T postupak bolji pri nižim brzinama okretaja motora. To je posljedica toga što T postupak mjeri brzinu vrtnje uspoređujući broj pristiglih impulsa s izvorom impulsa visoke frekvencije f_c što nam omogućuje da precizno mjerimo male brzine vrtnje motora. Posljedica takve sinkronizacije je da T postupak nije precizan kod visokih brzina vrtnje pa se zaključuje da je T postupak bolje koristiti pri niskim brzinama vrtnje, a za visoke koristiti P postupak.

4. U četvrtom mjerenju se trebala usporediti izmjerena vrijednost dobivenih impulsa za T postupak pri brzini vrtnje motora od 100 okr./min. s dobivenom vrijednošću iz pripreme za laboratorijsku vježbu. Također je trebalo izmjeriti broj pristiglih impulsa kod brzine vrtnje od 150 okr./min. i izračunati rezoluciju mjerenja pri toj brzini.

Kod brzine vrtnje od 100 okr./min. izmjereno je da je pristiglo 20 impulsa što uspoređeno s dobivenom vrijednošću od 21 impuls daje da je odstupanje između izmjerenog i izračunatog 5%.

Za 150 okr./min. izmjereno je da je stiglo 13 impulsa a izračunata rezolucija mjerenja Q_n je 11.54 min⁻¹.

5. U petom mjerenju se koristio P/T postupak u kojem se trebao izmjeriti broj pristiglih impulsa za brzinu 10% manju od izračunate vrijednosti iz b) dijela zadatka za pripremu. Ta brzina je 1120 okr./min. (izračunata vrijednost u b) dijelu je 1245.12 okr./min.) i izmjereno je da pristigne 222 impulsa pri toj brzini. Maksimalna moguća brzina koju je moguće mjeriti ovim postupkom je 1290 okr./min. za koju je broj pristiglih impulsa 255. Pošto je digitalno brojilo 8-bitno to je i najveći broj koji se može prikazati na zaslonu (2⁸ = 256, što odgovara rasponu od 0-255) pa je najveća moguća brzina koja se može mjeriti najmanja ona za koju se postiže da je broj pristiglih impulsa jednak 255.