試験開始の合図があるまで、この問題冊子の中を見てはいけません。

2014年度 第1回 全統マーク模試問題

(100点 60分)

2014年5月実施

I 注 意 事 項

1 解答用紙は,第1面(表面)及び第2面(裏面)の両面を使用しなさい。 解答用紙に,正しく記入・マークされていない場合は,採点できないことがあります。特に,解答用紙の**解答科目欄にマークされていない場合又は複数の科目にマークされている場合は、**0点となることがあります。

解答科目については、間違いのないよう十分に注意し、マークしなさい。

2 出題科目、ページ及び選択方法は、下表のとおりです。

〔新教育課程履修者〕

	出題科目		ページ	選	択	方	法
数	学	\prod	4~14	左の2科	目のうち	から1科目	を選択し,
数	学Ⅱ・数学	В	15~28	解答しなさ	5 V 1 °		

〔旧教育課程履修者〕

出題科目	ページ	選	択	方	法
数 学 Ⅱ	4~14	ナの2割	日のふた	かた 1 彩目	目を選択し,
数学Ⅱ·数学B	15~28	妊の3科		から1件目	日を選択し、
旧数学Ⅱ・旧数学B	29~45	牌合しなる	V 10		

- 3 試験中に問題冊子の印刷不鮮明,ページの落丁・乱丁及び解答用紙の汚れ等に 気付いた場合は、手を高く挙げて監督者に知らせなさい。
- 4 選択問題については、解答する問題を決めたあと、その問題番号の解答欄に解答しなさい。ただし、**指定された問題数をこえて解答してはいけません**。
- 5 問題冊子の余白等は適宜利用してよいが、どのページも切り離してはいけません。

Ⅱ 解答上の注意

解答上の注意は、裏表紙に記載してあるので、この問題冊子を裏返して必ず読みなさい。

河合塾

-1 -

数 学 Ⅱ

(全 問 必 答)

第1問 (配点 30)

[1] $0 \le \theta < 2\pi$ において、 θ の関数 $f(\theta) = \cos 2\theta - \cos \theta$ を考える。 $\cos 2\theta = \boxed{\mathbf{r}} \cos^2 \theta - \boxed{\mathbf{f}}$ であるから、 $\cos \theta = t$ とすると、 $f(\theta)$ は t を用いて

$$f(\theta) = \boxed{7} t^2 - t - \boxed{1}$$

と表される。

(1) $f(\theta) = (\boxed{\dot{\mathbf{D}}} t + \boxed{\mathbf{I}})(t - \boxed{\mathbf{J}})$ と変形できるから、 $0 \le \theta < 2\pi$ において θ の方程式 $f(\theta) = 0$ を解くと

(2) θ が $0 \le \theta < 2\pi$ の範囲を動くとき, $f(\theta)$ の最小値を与える θ のうち, $0 < \theta < \frac{\pi}{2}$ であるものを α とすると

$$\sin 2\alpha = \frac{\sqrt{\forall \flat}}{\boxed{\exists}}$$

である。

(数学Ⅲ 第1問 は次ページに続く。)

(3) k を実数とする。 $0 \le \theta < 2\pi$ において, θ の方程式 $f(\theta) = k$ が異なる 4 個の実数解をもつような k の値の範囲は

であり、この4個の実数解の和は $\boxed{}$ π である。

(数学Ⅲ第1問は次ページに続く。)

数学Ⅱ

[2] xの不等式

$$2\log_2(x-1) \le \log_2(2x^2 - 7x + 7)$$
(*)

について考える。

すべての実数 x に対して $2x^2-7x+7>0$ であるから,真数が正となるような x の値の範囲は x> である。この条件のもとで,(*) を変形すると

となるから、(*)を満たすxのとり得る値の範囲は

である。

(数学Ⅲ 第1問 は次ページに続く。)

次に, xの不等式

$$\frac{1}{4} < 2^x < 16\sqrt{2}$$
 (**)

を解くと

$$JN < x < \boxed{E}$$

である。

(*)かつ (**)を満たすxのうちで、 $\log_{\sqrt{3}}x$ が整数となるようなxの値は

へ 個ある。

数学Ⅱ

第2問 (配点 30)

xの関数 $f(x) = -\frac{1}{3}x^3 + 2x^2 - 3$ があり、曲線 y = f(x) を C_1 とする。

f(x) の導関数 f'(x) は

$$f'(x) = \boxed{\mathcal{P}} x^2 + \boxed{1} x$$

であるから, f(x) は

をとる。

(1) *k*を正の実数とする。

 $0 \le x \le k$ における f(x) の最小値が エオ 未満となるような k の値の範囲は

$$k > \Box$$

である。

(数学Ⅲ第2問は次ページに続く。)

(2) C_1 上の点 A(3,6) における C_1 の接線 ℓ の方程式は

$$y = \boxed{ \forall x - \boxed{\flat} }$$

である。点 A と異なる点 B を C_1 上にとる。点 B における C_1 の接線 m が ℓ と

平行であるとき,Bの座標は
$$\left(\begin{array}{c} \mathbf{Z} \end{array}\right)$$
、 $\left(\begin{array}{c} \mathbf{z} \end{array}\right)$ であり, m の方程式は

$$y = \boxed{ } y - \boxed{ \boxed{ fy} }$$

である。

次に、xの 2 次関数 g(x) があり、放物線 y=g(x) を C_2 とする。 C_2 は点 A において直線 ℓ と接し、さらに点 B を通る。このとき

$$g(x) = \frac{\boxed{\mathsf{F}}}{\boxed{\Xi}} x^2 + \boxed{\mathsf{R}} x - \boxed{\grave{\mathsf{R}}}$$

である。

放物線 C_2 ,直線 ℓ および y 軸で囲まれた部分を D とすると,D の面積は D であり,D は直線 m によって面積比が D である二つの部分に分けられる。

数学Ⅱ

第3問 (配点 20)

O を原点とする座標平面上に、直線 ℓ_1 : $y = \frac{1}{2}x + 5$ がある。

である。

点 O と直線 ℓ_1 の距離は $\boxed{ 2 }$ $\sqrt{ \boxed{ f }}$ であり、 ℓ_1 に平行で点 O との距離が $\boxed{ 2 }$ $\sqrt{ \boxed{ f }}$ である直線のうち ℓ_1 でない方を ℓ_3 とすると、 ℓ_3 の方程式は

$$y = \frac{1}{2}x - \square$$

である。

(数学Ⅲ第3問は次ページに続く。)

3 直線 ℓ_1 , ℓ_2 , ℓ_3 のすべてに接し、中心が不等式 y> エオ x- カキ で表される領域にある円 C_1 の方程式は

$$(x+\boxed{y})^2+(y+\boxed{y})^2=\boxed{z}$$

である。

点 P が円 C_1 の周上を動くとき、点 B(8,4) と点 P を結ぶ線分 BP の中点 Q の軌跡は

$$\exists C_2 : (x - y)^2 + (y - y)^2 = F$$

であり、点Oは円 C_2 の $\boxed{\boldsymbol{y}}$ にある。 $\boxed{\boldsymbol{y}}$ に当てはまるものを、次の $\boxed{\boldsymbol{0}} \sim \boxed{\boldsymbol{0}}$ のうちから一つ選べ。

(0) 内部

① 周上

2 外部

連立不等式

$$\begin{cases} (x - y)^2 + (y - y)^2 \le f \end{cases}$$

$$x \ge 0$$

$$y \ge 0$$

で表される領域の面積は
$$\begin{bmatrix} \overline{r} \end{bmatrix} + \begin{bmatrix} \overline{k} \end{bmatrix}_{\pi}$$
 である。

数学Ⅱ

第4問 (配点 20)

a, b を実数とし, x の整式 P(x) を

$$P(x) = x^3 + (2a+1)x^2 + (5a-1)x + b$$

とする。また、P(-1)=0 が成り立っている。

$$b = \boxed{ \mathcal{P} } a - \boxed{ 1 }$$

であり, P(x) は

と因数分解される。

x の 3 次方程式 P(x)=0 が虚数解をもつような α のとり得る値の範囲は

であり、このとき、二つの虚数解を α 、 β とする。

(数学Ⅲ 第4問 は次ページに続く。)

解と係数の関係により

であるから, $\alpha^2 + \beta^2 = 0$ を満たすような a の値は \boxed{v} と \boxed{y} である。

以下,
$$a=$$
 とする。

(1)
$$\alpha^{50} + \beta^{50} =$$
 チ である。

(2)
$$\alpha^4 = \beta^4 =$$
 ツテ である。また, n を自然数とするとき
$$\alpha^{4n-1} + \beta^{4n-1} = \boxed{ \mathbf{F} } \left(\boxed{ \mathbf{J} \mathbf{\Xi} } \right)^n$$
 である。

(下書き用紙)

数学Ⅱ·数学B

問題	選択方法					
第1問	必答					
第2問	必答					
第3問						
第4問	いずれか2問を選択し, 					
第5問						

数学Ⅱ・数学B (注) この科目には、選択問題があります。(15ページ参照。)

第 1 問 (必答問題) (配点 30)

[1] $0 \le \theta < 2\pi$ において、 θ の関数 $f(\theta) = \cos 2\theta - \cos \theta$ を考える。

$$\cos 2\theta =$$
 ア $\cos^2 \theta -$ イ であるから、 $\cos \theta = t$ とすると、 $f(\theta)$ は t を用いて

$$f(\theta) = \boxed{\mathcal{V}} t^2 - t - \boxed{1}$$

と表される。

と変形できるから、 $0 \le \theta < 2\pi$ において θ の方程式 $f(\theta) = 0$ を解くと

$$\theta = \boxed{\begin{array}{ccc} \hbar \end{array}}, \quad \boxed{\begin{array}{ccc} + \\ \hline 2 \end{array}} \pi, \quad \boxed{\begin{array}{ccc} \tau \\ \hline \end{array}} \pi$$

(2) θ が $0 \le \theta < 2\pi$ の範囲を動くとき, $f(\theta)$ の最小値を与える θ のうち, $0 < \theta < \frac{\pi}{2}$ であるものを α とすると

$$\sin 2\alpha = \frac{\sqrt{\forall 5}}{\Box 3}$$

である。

(数学Ⅱ・数学B第1問は次ページに続く。)

(3) k を実数とする。 $0 \le \theta < 2\pi$ において, θ の方程式 $f(\theta) = k$ が異なる 4 個の実数解をもつような k の値の範囲は

(数学**Ⅱ**・数学B 第1問 は次ページに続く。)

数学Ⅱ·数学B

[2] xの不等式

$$2\log_2(x-1) \le \log_2(2x^2 - 7x + 7)$$
(*)

について考える。

すべての実数 x に対して $2x^2-7x+7>0$ であるから,真数が正となるような x の値の範囲は x> である。この条件のもとで,(*) を変形すると

となるから、(*)を満たすxのとり得る値の範囲は

である。

(数学Ⅱ・数学B 第1問 は次ページに続く。)

$$\frac{1}{4} < 2^x < 16\sqrt{2}$$
 (**)

を解くと

$$JN < x < \boxed{E}$$

である。

(*)かつ (**) を満たす x のうちで、 $\log_{\sqrt{3}} x$ が整数となるような x の値は

へ 個ある。

数学Ⅱ·数学B

第 2 問 (必答問題) (配点 30)

xの関数 $f(x) = -\frac{1}{3}x^3 + 2x^2 - 3$ があり、曲線 y = f(x) を C_1 とする。

f(x) の導関数 f'(x) は

$$f'(x) = \boxed{r} x^2 + \boxed{1} x$$

であるから, f(x) は

$$x = \boxed{ \dot{\mathbf{p}} }$$
 のとき 極小値 $\boxed{\mathbf{T}\mathbf{f}}$

をとる。

(1) *k*を正の実数とする。

 $0 \le x \le k$ における f(x) の最小値が | エオ | 未満となるような k の値の範囲は

$$k > \Box$$

である。

(数学Ⅱ・数学B第2問は次ページに続く。)

(2) C_1 上の点 A(3,6) における C_1 の接線 ℓ の方程式は

$$y = \boxed{ } \forall x - \boxed{ }$$

である。点 A と異なる点 B を C_1 上にとる。点 B における C_1 の接線 m が ℓ と

平行であるとき,Bの座標は
$$\left(\begin{array}{c} \mathbf{Z} \end{array}\right)$$
、 $\left(\begin{array}{c} \mathbf{z} \end{array}\right)$ であり, m の方程式は

$$y = \boxed{ } y - \boxed{ \boxed{ fy} }$$

である。

次に、xの 2 次関数 g(x) があり、放物線 y=g(x) を C_2 とする。 C_2 は点 A において直線 ℓ と接し、さらに点 B を通る。このとき

$$g(x) = \frac{\boxed{\begin{subarray}{c} \begin{subarray}{c} \begin{subarr$$

である。

放物線 C_2 ,直線 ℓ および y 軸で囲まれた部分を D とすると,D の面積は D であり,D は直線 m によって面積比が D である二つの部分に分けられる。

数学Ⅱ・数学B 第3問~第5問は, いずれか2問を選択し, 解答しなさい。

第 3 問 (選択問題) (配点 20)

数列 $\{a_n\}$ は $a_2=6$, $a_3=12$ である等比数列である。数列 $\{a_n\}$ の公比は \red{P} であり, $a_1=$ \red{I} である。 $a_n<500$ を満たす最大の自然数 n は $\red{\dot D}$ である。また,数列 $\{a_n\}$ の初項から第 n 項までの和を S_n とすると

$$S_n = \boxed{ I (\boxed{ J}^n - \boxed{ J}) (n = 1, 2, 3, \cdots) }$$

である。

次に、数列 $\{b_n\}$ は等差数列であり、 $T_n = \sum_{k=1}^n b_k (n=1, 2, 3, \cdots)$ とすると

$$b_5 = 21$$
, $T_5 = 55$

を満たしている。

$$b_{n} = \boxed{\ddagger} n - \boxed{7} \quad (n = 1, 2, 3, \dots)$$

$$T_{n} = \boxed{\frac{\tau}{\Box}} n^{2} - \boxed{\frac{\forall}{\dot{\flat}}} n \quad (n = 1, 2, 3, \dots)$$

である。

(数学Ⅱ・数学B第3問は次ページに続く。)

数列 $\{a_n\}$ か数列 $\{b_n\}$ の少なくとも一方に現れる数を、小さいものから順に並べてできる数列を $\{c_n\}$ とする。ただし、数列 $\{a_n\}$ にも数列 $\{b_n\}$ にも現れる数は、数列 $\{c_n\}$ には一度だけ現れるものとする。 c_n < 500 を満たす最大の自然数 n は

スセソ であり

$$\sum\limits_{k=1}^{|\mathcal{A} ext{ty}|} c_k = \boxed{ extbf{9} ext{#} ext{y} ext{F} ext{F}}$$

である。

数学Ⅱ・数学B 第3問~第5問は, **いずれか**2問を選択し, 解答しなさい。

第 4 問 (選択問題) (配点 20)

平行四辺形 OABC において, $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OC} = \overrightarrow{c}$ とする。

線分BCの中点をMとすると

$$\overrightarrow{OM} = \frac{\overrightarrow{P}}{\boxed{1}} \overrightarrow{a} + \overrightarrow{c}$$

である。また、三角形 ABC の重心を G とすると

$$\overrightarrow{OG} = \frac{\overrightarrow{7}}{\boxed{I}}(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC})$$

$$= \frac{\cancel{7}}{\cancel{7}}\overrightarrow{a} + \frac{\cancel{7}}{\cancel{7}}\overrightarrow{c}$$

である。

(1) 点 D を $\overrightarrow{OD} = 2\overrightarrow{c}$ となるようにとり、直線 OM と直線 BD の交点を E とする。 このとき、 \overrightarrow{OE} を \overrightarrow{a} と \overrightarrow{c} を用いて表そう。

点 \mathbf{E} が直線 \mathbf{OM} 上にあることから,実数 \mathbf{s} を用いて $\overrightarrow{\mathbf{OE}} = \mathbf{s}\overrightarrow{\mathbf{OM}}$ と表されるので

$$\overrightarrow{OE} = \frac{\overrightarrow{7}}{\boxed{1}} s\overrightarrow{a} + s\overrightarrow{c}$$

となる。さらに、点 E が直線 BD 上にあることから、実数 t を用いて $\overrightarrow{BE} = t\overrightarrow{BD}$ と表されるので

$$\overrightarrow{\mathrm{OE}} = (\boxed{\mathbf{7}} - t)\overrightarrow{a} + (\boxed{\mathbf{3}} + t)\overrightarrow{c}$$

となる。これらから

$$\overrightarrow{OE} = \frac{\cancel{\forall}}{\cancel{\triangleright}} \overrightarrow{a} + \frac{\cancel{\square}}{\cancel{\triangledown}} \overrightarrow{c}$$

である。

(数学Ⅱ・数学Β第4問は次ページに続く。)

また、三角形 DME の面積は平行四辺形 OABC の面積の y 倍である。

(2)
$$|\vec{a}| = 2$$
, $|\vec{c}| = \sqrt{3}$, $\cos \angle AOC = \frac{1}{\sqrt{3}}$ とする。このとき $\vec{a} \cdot \vec{c} = \boxed{\mathcal{F}}$

である。

また、点Gを通り直線ACに垂直な直線と、直線ACとの交点をHとすると

$$\overrightarrow{OH} = \frac{\cancel{y}}{\boxed{\overline{\tau}}} \overrightarrow{a} + \frac{\boxed{h}}{\boxed{\tau}} \overrightarrow{c}$$

であり

$$\left|\overrightarrow{GH}\right| = \frac{\boxed{\Box}\sqrt{\boxed{\upbeta}}}{\boxed{\grave{\upbeta}}}$$

である。

数学Ⅱ・数学B 「第3問~第5問は, いずれか2問を選択し, 解答しなさい。

第 5 問 (選択問題) (配点 20)

袋の中に1と記されたカードが2枚、2と記されたカードが1枚、4と記されたカードが1枚ある。

この袋からカードを1枚取り出し、そのカードに記されている数字を記録し、このカードを袋に戻す。この操作をTとする。

(1) 操作 T を 1 回行ったときに記録される数字を X とし、操作 T を 2 回行ったときに記録される数字のうち小さくない方を Y とする。

確率変数 X の期待値 (平均)は P であり,分散は 1 である。 2 である。 2 であり,分散は 2 であり,分散は 2 である。 2 であり,分散は 2 である。 2 である。 2 であり。 2 であり。 2 であり。 2 である。 2 であり。 2 であり。 2 であり。 2 である。 2 である。 2 であり。 2 であり。 2 である。 2 であり。 2 であり。 2 である。 2 である。 2 であり。 2 であり。 2 であり。 2 である。 2 であり。 2 であり。

<u>シス</u> セ である。

(数学Ⅱ・数学B 第5問 は次ページに続く。)

(2) 操作 T を 10 回行う。このとき、数字 1 が記録される回数を W とする。

(下書き用紙)

「旧教育課程履修者」だけが選択できる科目です。 「新教育課程履修者」は、選択してはいけません。

旧数学Ⅱ·旧数学B

問題	選択方法					
第1問	必答					
第2問	必答					
第3問	いずれか2問を選択し,					
第4問						
第5問	解答しなさい。					
第6問						

旧数学Ⅱ・旧数学B (注) この科目には、選択問題があります。(29ページ参照。)

第 1 問 (必答問題) (配点 30)

[1] $0 \le \theta < 2\pi$ において、 θ の関数 $f(\theta) = \cos 2\theta - \cos \theta$ を考える。

 $\cos 2\theta =$ $\boxed{\mathcal{P}}\cos^2 \theta \boxed{\mathbf{1}}$ であるから、 $\cos \theta = t$ とすると、 $f(\theta)$ は t を用いて

$$f(\theta) = \boxed{\mathcal{V}} t^2 - t - \boxed{1}$$

と表される。

(1) $f(\theta) = (\boxed{ \ \ \, } t + \boxed{ \ \ \, })(t - \boxed{ \ \ \, })$

と変形できるから、 $0 \le \theta < 2\pi$ において θ の方程式 $f(\theta) = 0$ を解くと

$$\theta = \boxed{\begin{array}{c|c} h \end{array}}, \quad \boxed{\begin{array}{c|c} + \end{array}} \pi, \quad \boxed{\begin{array}{c|c} f \end{array}} \pi$$

(2) θ が $0 \le \theta < 2\pi$ の範囲を動くとき, $f(\theta)$ の最小値を与える θ のうち, $0 < \theta < \frac{\pi}{2}$ であるものを α とすると

$$\sin 2\alpha = \frac{\sqrt{\forall 5}}{\Box}$$

である。

(旧数学II・旧数学B 第1問 は次ページに続く。)

(3) k を実数とする。 $0 \le \theta < 2\pi$ において, θ の方程式 $f(\theta) = k$ が異なる 4 個の実数解をもつような k の値の範囲は

(旧数学Ⅱ・旧数学B 第1問 は次ページに続く。)

旧数学Ⅱ·旧数学B

[2] xの不等式

$$2\log_2(x-1) \le \log_2(2x^2 - 7x + 7)$$
(*)

について考える。

すべての実数 x に対して $2x^2-7x+7>0$ であるから,真数が正となるような x の値の範囲は x> である。この条件のもとで,(*) を変形すると

となるから、(*)を満たすxのとり得る値の範囲は

である。

(旧数学Ⅱ・旧数学B 第1問 は次ページに続く。)

次に,xの不等式

$$\frac{1}{4} < 2^x < 16\sqrt{2}$$
(**)

を解くと

$$JN < x < \boxed{E}$$

である。

(*)かつ (**) を満たす x のうちで、 $\log_{\sqrt{3}} x$ が整数となるような x の値は

へ 個ある。

旧数学Ⅱ·旧数学B

第 2 問 (必答問題) (配点 30)

xの関数 $f(x) = -\frac{1}{3}x^3 + 2x^2 - 3$ があり、曲線 y = f(x) を C_1 とする。

f(x) の導関数 f'(x) は

$$f'(x) = \boxed{7} x^2 + \boxed{1} x$$

であるから, f(x) は

$$x = \boxed{ \dot{\mathbf{p}} }$$
 のとき 極小値 $\boxed{\mathbf{T}\mathbf{f}}$

をとる。

(1) *k*を正の実数とする。

 $0 \le x \le k$ における f(x) の最小値が エオ 未満となるような k の値の範囲は

$$k > \Box$$

である。

(旧数学Ⅱ・旧数学B 第2問 は次ページに続く。)

(2) C_1 上の点 A(3,6) における C_1 の接線 ℓ の方程式は

$$y = \boxed{ \forall x - \boxed{\flat}}$$

である。点 A と異なる点 B を C_1 上にとる。点 B における C_1 の接線 m が ℓ と平

行であるとき,Bの座標は
$$\left(\begin{array}{c} \mathbf{Z} \end{array} \right)$$
、 $\left(\begin{array}{c} \mathbf{z} \end{array} \right)$ であり, m の方程式は

である。

次に、xの 2 次関数 g(x) があり、放物線 y=g(x) を C_2 とする。 C_2 は点 A において直線 ℓ と接し、さらに点 B を通る。このとき

$$g(x) = \frac{\boxed{\mathsf{F}}}{\boxed{\Xi}} x^2 + \boxed{\mathsf{R}} x - \boxed{\grave{\mathsf{R}}}$$

である。

放物線 C_2 , 直線 ℓ および y 軸で囲まれた部分を D とすると,D の面積は D であり,D は直線 m によって面積比が D である二つの部分に分けられる。

旧数学Ⅱ・旧数学B 「第3問~第6問は、いずれか2問を選択し、解答しなさい。

第 3 問 (選択問題) (配点 20)

数列 $\{a_n\}$ は $a_2=6$, $a_3=12$ である等比数列である。数列 $\{a_n\}$ の公比は \red{P} であり, $a_1=$ \red{I} である。 $a_n<500$ を満たす最大の自然数 n は \red{D} である。また,数列 $\{a_n\}$ の初項から第 n 項までの和を S_n とすると

$$S_n = \boxed{\text{I}} (\boxed{\text{J}}^n - \boxed{\text{J}}) (n = 1, 2, 3, \cdots)$$

である。

次に、数列 $\{b_n\}$ は等差数列であり、 $T_n = \sum_{k=1}^n b_k (n=1, 2, 3, \cdots)$ とすると

$$b_5 = 21$$
, $T_5 = 55$

を満たしている。

$$b_{n} = \boxed{\ddagger} n - \boxed{7} \quad (n = 1, 2, 3, \dots)$$

$$T_{n} = \boxed{\frac{\tau}{\Box}} n^{2} - \boxed{\frac{\forall}{\dot{\flat}}} n \quad (n = 1, 2, 3, \dots)$$

である。

(旧数学Ⅱ・旧数学B 第3問 は次ページに続く。)

数列 $\{a_n\}$ か数列 $\{b_n\}$ の少なくとも一方に現れる数を、小さいものから順に並べてできる数列を $\{c_n\}$ とする。ただし、数列 $\{a_n\}$ にも数列 $\{b_n\}$ にも現れる数は、数列 $\{c_n\}$ には一度だけ現れるものとする。 c_n < 500 を満たす最大の自然数 n は

スセソ であり

である。

旧数学Ⅱ・旧数学B 「第3問~第6問は、いずれか2問を選択し、解答しなさい。

第 4 問 (選択問題) (配点 20)

平行四辺形 OABC において、 $\overrightarrow{OA} = \overrightarrow{a}$ 、 $\overrightarrow{OC} = \overrightarrow{c}$ とする。

線分BCの中点をMとすると

$$\overrightarrow{\mathrm{OM}} = \frac{\overrightarrow{r}}{\boxed{1}} \overrightarrow{a} + \overrightarrow{c}$$

である。また、三角形 ABC の重心を G とすると

$$\overrightarrow{OG} = \frac{\overrightarrow{7}}{\boxed{I}}(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC})$$

$$= \frac{\cancel{7}}{\cancel{7}}\overrightarrow{a} + \frac{\cancel{7}}{\cancel{7}}\overrightarrow{c}$$

である。

(1) 点 D を $\overrightarrow{OD} = 2\overrightarrow{c}$ となるようにとり、直線 OM と直線 BD の交点を E とする。 このとき、 \overrightarrow{OE} を \overrightarrow{a} と \overrightarrow{c} を用いて表そう。

点 E が直線 OM 上にあることから,実数 s を用いて $\overrightarrow{OE} = s\overrightarrow{OM}$ と表されるの で

$$\overrightarrow{OE} = \frac{\overrightarrow{7}}{\boxed{1}} s\overrightarrow{a} + s\overrightarrow{c}$$

となる。さらに、点 E が直線 BD 上にあることから、実数 t を用いて $\overrightarrow{\mathrm{BE}}=t\overrightarrow{\mathrm{BD}}$ と表されるので

$$\overrightarrow{\mathrm{OE}} = (\boxed{\mathbf{r}} - t)\overrightarrow{a} + (\boxed{\mathbf{r}} + t)\overrightarrow{c}$$

となる。これらから

$$\overrightarrow{OE} = \frac{\cancel{\forall}}{\cancel{\triangleright}} \overrightarrow{a} + \frac{\cancel{\square}}{\cancel{\triangledown}} \overrightarrow{c}$$

である。

(旧数学Ⅱ・旧数学B 第4問 は次ページに続く。)

また,三角形 DME の面積は平行四辺形 OABC の面積の y 倍である。

(2)
$$|\vec{a}| = 2$$
, $|\vec{c}| = \sqrt{3}$, $\cos \angle AOC = \frac{1}{\sqrt{3}}$ とする。このとき $\vec{a} \cdot \vec{c} = \boxed{\mathcal{F}}$

である。

また、点Gを通り直線ACに垂直な直線と、直線ACとの交点をHとすると

$$\overrightarrow{OH} = \frac{\cancel{y}}{\boxed{\overline{\tau}}} \overrightarrow{a} + \frac{\boxed{\mathsf{h}}}{\boxed{\mathsf{f}}} \overrightarrow{c}$$

であり

$$\left|\overrightarrow{GH}\right| = \frac{\boxed{\Box}\sqrt{\boxed{\upbeta}}}{\boxed{\grave{\upbeta}}}$$

である。

旧数学Ⅱ・旧数学B 第3問~第6問は、いずれか2問を選択し、解答しなさい。

第 5 問 (選択問題) (配点 20)

10 人の生徒 A,B,……,J の二つのテストに関する得点をそれぞれ変量 x,y とし,それを記録したものが[資料 I] である。変量 y の平均値は 7 点である。また,変量 x の度数分布表が「資料 I] である。

ただし、テストの得点は0以上10以下の整数とする。

「資料 I]

	A	В	С	D	Е	F	G	Н	Ι	J
x (点)	a	a	4	a	b	3	b	a	b	8
y(点)	8	6	8	8	6	c	6	5	6	8

「資料Ⅱ]

<i>x</i> (点)	0	1	2	3	4	5	6	7	8	9	10
度数(人)	0	0	0	1	d	e	4	3	1	0	0

以下,小数の形で解答する場合,指定された桁数の一つ下の桁を四捨五入し,解答せよ。途中で割り切れた場合,指定された桁まで \bigcirc にマークすること。なお,必要なら, $\sqrt{5}=2.24$ として計算せよ。

(1) a, b, c, d, eの値を求めると

$$a = \mathbb{P}$$
, $b = \mathbb{I}$, $c = \mathbb{I}$, $d = \mathbb{I}$, $e = \mathbb{I}$

となる。

また,変量xの平均値は カ 点である。

(旧数学Ⅱ・旧数学B 第5問 は次ページに続く。)

(2)	変量 x の最頻値(モード)は 📘	で、変量 y の中央値(メジア	アン)は ク 点
-	である。			
	また、変量 x の分	分散 s_x^2 は $\boxed{ \boldsymbol{\tau} }$.	コ であり、変量 y の分	散 s_y^2 は
	サ . シ であ	5る。		
(3)	変量 x と変量 y の)共分散は スセ	ソ であり、相関係数に	最も近い値は
	タ である。	タ に当てはまる	のを,次の 0~6 のうちフ	から一つ選べ。
(0 - 1.5 ((1) -0.9	2 - 0.5 3 0.0)
		⑤ 0.9	6 1.5	

旧数学Ⅱ・旧数学B 第3問~第6問は、いずれか2問を選択し、解答しなさい。

第6問 (選択問題) (配点 20)

座標平面上の点で、 x 座標、 y 座標がともに整数である点を格子点と呼ぶ。

いま、 $x \ge 0$ 、 $y \ge 0$ で表される領域内の格子点に、原点 O から順にある規則で番号をつけていくプログラムを、次のように考えた。

[プログラム1]

100 LET L=0

110 LET N=1

120 LET X=L

130 LET Y=0

140 PRINT N;"••(";X;",";Y;")"

150 IF L=0 THEN GOTO 250

160 LET DX=-1

170 LET DY=1

180 FOR K=1 TO L

190 LET N=N+1

200 LET X=X+DX

210 LET Y=Y+DY

220 PRINT N;"••(";X;",";Y;")"

230 NEXT K

240 IF N>=20 THEN GOTO 280

250 LET L=L+1

260 LET N=N+1

270 GOTO 120

280 END

(旧数学Ⅱ・旧数学B第6問は次ページに続く。)

このプログラムを実行すると、何行かにわたって出力が得られるが、その最初の 4 行は

であり、最後に出力される行は

である。

(旧数学Ⅱ・旧数学B 第6問 は次ページに続く。)

旧数学Ⅱ·旧数学B

次にこのプログラムの一部を変更して、次のような規則で番号をつけるプログラム を作ることにする。

<規則>

右図のように、Oを一つの頂点とし一辺の長さが自然数である正方形 OPQR の辺 PQ,QR 上の格子点を左回り(反時計回り)にたどりながら順に番号をつける。そして点 R に到達したら一辺の長さを1増やして同じ方法で格子点をたどりながら順に番号をつける。ただし,原点 O につける番号は1とする。すなわち

 $(0, 0) \rightarrow (1, 0) \rightarrow (1, 1) \rightarrow (0, 1) \rightarrow (2, 0) \rightarrow (2, 1) \rightarrow \cdots$ のようにたどりながら順に

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow \cdots$$

と番号をつける。

そのためには、まず

155 FOR A=1 TO 2 235 NEXT A

の2行を新たに挿入し、さらに

辺 PQ 上(プログラムでは A=1 のとき)では x 座標の増分が 0, y 座標の増分が 1 辺 QR 上(プログラムでは A=2 のとき)では x 座標の増分が -1, y 座標の増分が 0 となるように 160 行と 170 行を次のように変更すればよい。

(旧数学Ⅱ・旧数学B 第6問 は次ページに続く。)

- O A-1
- (1) A
- 2 A+1
- (3) A+2

- (4) 1-A
- **(5)** -A
- 6 2-A

正しく変更されたプログラムを実行すると最後に出力される行は

である。

さらに 240 行を

240 IF N>=200 THEN GOTO 280

と変更して出力を増やしたとき,途中に

が出力される。

Ⅱ 解答上の注意

- 1 解答は、解答用紙の問題番号に対応した解答欄にマークしなさい。

例 $\boxed{\mathbf{P}\mathbf{7}\mathbf{7}}$ に -8a と答えたいとき

なお,同一の問題文中に**ア**,**イウ** などが 2 度以上現れる場合, 2 度目以降は, ア , イウ のように細字で表記します。

3 分数形で解答する場合,分数の符号は分子につけ、分母につけてはいけません。

例えば,
$$\frac{\boxed{\mathtt{T} \, \mathtt{J}}}{\boxed{\mathtt{J}}}$$
 に $-\frac{4}{5}$ と答えたいときは, $\frac{-4}{5}$ として答えなさい。

また、それ以上約分できない形で答えなさい。

例えば、 $\frac{3}{4}$ 、 $\frac{2a+1}{3}$ と答えるところを、 $\frac{6}{8}$ 、 $\frac{4a+2}{6}$ のように答えてはいけません。

4 根号を含む形で解答する場合,根号の中に現れる自然数が最小となる形で答えなさい。

例えば、 $4\sqrt{2}$ 、 $\frac{\sqrt{13}}{2}$ 、 $6\sqrt{2a}$ と答えるところを、 $2\sqrt{8}$ 、 $\frac{\sqrt{52}}{4}$ 、 $3\sqrt{8a}$ のように答えてはいけません。

問題を解く際には,「問題」冊子にも必ず自分の解答を記録し,試験終了後 に配付される「学習の手引き」にそって自己採点し,再確認しなさい。