Machine Learning Application in Private Education Business

IEOR 142 - Machine Learning & Data Analytics

Sunny Sun, Yinglu Deng, Cloris Zhang

Table of Contents

Next Steps

Goal and Motivation

- 1. Successful Sales Prediction
- 2. Sales Representative Performance

Increase sales, reduce cost & save time.

Increase effective customer check-ins, reduce data collection, customize the assignment of different customers to sales rep, and etc.

Dataset

- **Sources:** Private Education Company's Customer Profile and Sales Data from Jan to Oct 2021.
- Number of Columns: 190
- **Number of Observations:** 10835 Customers
- Number of Successful Customers: 298
- **Total Sales:** ¥52, 107, 050

Variables

- **(c) Customer Source:** Online Operations, Teaching Center, etc
- (c)Status: Collected, Self-Configured, etc
- (c)Business Registration: Yes, No, unknown
- **(c)Interest Category:** A~G (Different check-in frequency)
- (c)Business Category: Custom, Employed, Study Abroad, etc
- (c)Customer Type: Individual, Channel, Education Abroad, etc
- (c)Customer Pool: Entire, Entire-Collectible, East, East-1, etc
- (c)Province: Shanghai, Guangdong, Beijing, Xinjiang, etc
- (c)City: Shanghai, Beijing, Xiamen, Wuxi, etc

- (n)Customer Update Status: 1, 0
- (n)Customer Rating: 0~100 (Potential to purchase)
- (n)Total Sales Amount: Sales amount of signed contract
- (n)Program Sales Total: Total Price of Interested Program(s)
- (n)Expected Sales: Initial Price of Interested Program
- (n)Number of Calls: Number of Sale Calls
- (d) Input Date: Date of Data Input
- (d) Recent Change Date: Date of the most recent activity

Key:

(c) -character (n)-numeric (d)-datetime

Data Cleaning/Feature Engineering

- Data types: Convert column types to appropriate data types
- Missing values: Replaced "null" with "unknown"
- Extract Actual Sales columns to avoid direct causal relationship with target variable(success)
- Delete columns with similar information & high correlation
 - Customer Rating & Interest Category
- Categorize specific programs names into general groups(MBA, EMBA, FDBA, etc)
- Calculate Deltatime for most recent date and input date

Market Analysis

MARKET ANALYSIS (EDA)

9 Important Categorical Features:

- The majority of customer sources are from online operations.
- Most of the status are self-configured.
- There are more businesses with registering.
- Most of the customers' type are individual.
- More two stars rating customer source.
- The number of finished customers is low which means we have a lot of potential customers.

About Customer Source

Clients Source from Whole Dataset **VS.** Successful Customers Source

Clients Source by Medium (Secondary Classification)

- Top 3 main clients source: Shanghai, Beijing, Guangdong.
- Potential customers are mainly from coastal areas such as Jiangsu, Shanghai, Zhejiang, Fujian, Guangdong.

About Programs

- Total 80 different programs
- Top three most popular programs are all DBA
- However, the trending products are totally different (no DBA programs in the top 3)

The proportion of customers' interested program in the whole dataset

The proportion of success clients' program

Correlation Matrix

Findings:

- 1. For effective sales amount, there are moderate correlations (r = 0.68, 0.73, 0.65) between the effective sales amount and amount received, actual amount collected, total sales amount respectively.
- 2. And there is a strong correlation (r = 0.9) between the effective sales amount and finished customer.

Range: [-1, 1]

- No correlation r=0
- Very weak correlation: r<20
- Weak correlation: between 0.20-0.49
- Moderate correlation: between 0.5-0.79
- Strong correlation: between 0.8-0.99
- Perfect correlation: r=1

- 0.6

- 0.4

- 0.2

Number of Calls

Effective Sales Amount	0	1	2	3	4	5	6	7	8	9	10	11	12	13
1	55	20	8	7	4	1	3	3	1		2	1	1	1
2	101	21	16	8	6	3	5	2	1	2	1		1	
3	13	2	3		1									
4	9													
5	1	1												
6														

Models

Select a list of base models (no hyperparameter tuning)

- a. Decision Tree Classifier
- b. Decision Tree Regressor
- c. KNeighbors Classifier
- d. Support Vector Machines Classifier
- e. Multi-layer Perceptron Classifier
- f. Linear Discriminant Analysis
- g. Logistic Regression Classifier
- h. Random Forest Classifier
- i. Gradient Boosting Classifier

Decision Tree Classifier

```
# The Decision tree Classifier
from sklearn.tree import DecisionTreeClassifier
# Create Decision Tree classifier object
dtc = DecisionTreeClassifier()
# Train Decision Tree Classifier
dtc.fit(X_train, y_train)
#Predict the response for test dataset
y_pred = dtc.predict(X_test)
# model Evaluation
acc_dtc = accuracy_score(y_pred, y_test)
acc_dtc
```

	precision	recall	f1-score	support
False	1.00	1.00	1.00	3147
True	0.91	0.94	0.92	103
accuracy			1.00	3250
macro avg	0.95	0.97	0.96	3250
weighted avg	1.00	1.00	1.00	3250

Decision Tree Regressor

```
from sklearn.tree import DecisionTreeRegressor
# build model
dtr = DecisionTreeRegressor()
# fit classifiers
dtr.fit(X_train, y_train)
# Prediction
y_pred = dtr.predict(X_test)
# model Evaluation
acc_dtr = accuracy_score(y_test, y_pred)
acc_dtr
```

	precision	recall	fl-score	support
False	1.00	1.00	1.00	3147
True	0.92	0.95	0.93	103
accuracy			1.00	3250
macro avg	0.96	0.97	0.97	3250
weighted avg	1.00	1.00	1.00	3250

KNeighbors Classifier

```
# The KNN Classifier
from sklearn.neighbors import KNeighborsClassifier
# build model
knn_model = KNeighborsClassifier()
# fit classifiers
knn_model.fit(X_train, y_train)
# Prediction
y_pred = knn_model.predict(X_test)
# model Evaluation
acc_knn = accuracy_score(y_test, y_pred)
acc_knn
```

	precision	recall	fl-score	support
False	0.99	1.00	0.99	3147
True	0.85	0.74	0.79	103
accuracy			0.99	3250
macro avg	0.92	0.87	0.89	3250
weighted avg	0.99	0.99	0.99	3250

Support Vector Machines Classifier

	precision	recall	f1-score	support
False	0.97	1.00	0.98	3147
True	0.00	0.00	0.00	103
accuracy			0.97	3250
macro avg	0.48	0.50	0.49	3250
weighted avg	0.94	0.97	0.95	3250

```
# the SVM Classifier
from sklearn import svm
# build model
svm_model = svm.SVC()
# fit classifiers
svm_model.fit(X_train, y_train)
# Prediction
y_pred = svm_model.predict(X_test)
# model Evaluation
acc_svm = accuracy_score(y_test, y_pred)
acc_svm
```

Multi-layer Perceptron Classifier

	precision	recall	fl-score	support
False	0.97	1.00	0.98	3147
True	0.44	0.07	0.12	103
accuracy			0.97	3250
macro avg	0.70	0.53	0.55	3250
weighted avg	0.95	0.97	0.96	3250

```
from sklearn.neural_network import MLPClassifier
mlp_model = MLPClassifier()
# fit classifiers
mlp_model.fit(X_train, y_train)
# Prediction
y_pred = mlp_model.predict(X_test)
# model Evaluation
acc_mlp = accuracy_score(y_test, y_pred)
acc_mlp
```

Linear Discriminant Analysis

```
# Linear Discriminant Analysis
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
# build model
lda = LinearDiscriminantAnalysis()
# fit classifiers
lda.fit(X_train, y_train)
# Prediction
y_pred = lda.predict(X_test)
# model Evaluation
acc_lda = accuracy_score(y_test, y_pred)
acc_lda
```

	precision	recall	f1-score	support
False	0.99	0.99	0.99	3147
True	0.74	0.78	0.76	103
accuracy			0.98	3250
macro avg	0.87	0.88	0.88	3250
weighted avg	0.98	0.98	0.98	3250

Logistic Regression Classifier

```
# The Logistic Regression Classifier
from sklearn.linear_model import LogisticRegression
# build model
log_model = LogisticRegression()
# fit classifiers
log_model.fit(X_train, y_train)
# Prediction
y_pred = log_model.predict(X_test)
# model Evaluation
acc_log = accuracy_score(y_test, y_pred)
acc_log
```

	precision	recall	f1-score	support
False	0.98	0.99	0.98	3147
True	0.49	0.29	0.37	103
accuracy			0.97	3250
macro avg	0.73	0.64	0.67	3250
weighted avg	0.96	0.97	0.96	3250

Random Forest Classifier

```
# The Random Forest Classifier
from sklearn.ensemble import RandomForestClassifier
# build model
rf_model = RandomForestClassifier()
# Fitting the classifier
rf_model.fit(X_train, y_train)
# Prediction
y_pred = rf_model.predict(X_test)
# model Evaluation
acc_rf = accuracy_score(y_test, y_pred)
acc_rf
```

	precision	recall	fl-score	support
False	0.99	1.00	1.00	3147
True	0.93	0.84	0.88	103
accuracy			0.99	3250
macro avg	0.96	0.92	0.94	3250
weighted avg	0.99	0.99	0.99	3250

Gradient Boosting Classifier

```
# Gradient Boosting Classifier
from sklearn.ensemble import GradientBoostingClassifier
# build model
gbc = GradientBoostingClassifier()
# Fitting the classifier
gbc.fit(X_train, y_train)
# Prediction
y_pred = gbc.predict(X_test)
# model Evaluation
acc_gbc = accuracy_score(y_test, y_pred)
acc_gbc
```

	precision	recall	f1-score	support
False	1.00	1.00	1.00	3147
True	0.92	0.97	0.94	103
accuracy			1.00	3250
macro avg	0.96	0.98	0.97	3250
weighted avg	1.00	1.00	1.00	3250

Compare

- Accuracy
 - measure how often the algorithm classifies a data point correctly
- TPR: true positive rate/ sensitivity / recall
 - measure the percentage of actual positives which are correctly identified

	accuracy	TPR
Decision Tree Classifier	0.995077	0.941748
Decision Tree Regressor	0.995077	0.932039
KNeighbors Classifier	0.987692	0.737864
Support Vector Machines Classifier	0.968308	0.000000
Multi-layer Perceptron Classifier	0.968615	0.019417
Linear Discriminant Analysis	0.984308	0.776699
Logistic Regression	0.968000	0.291262
Random Forest Classifier	0.992308	0.834951
Gradient Boosting	0.996308	0.970874

Hyperparameter Tuning

- Random Forest
- TPR increases 0.03

```
# Random Forest Classifier with CV
                                          grid values = {'max features': ["auto"], 'min samples split': [2], 'n estimators': [100]}
                                          rf = RandomForestClassifier()
                                          rf cv = GridSearchCV(rf, param grid=grid values, cv=5,n jobs=-1)
                                          rf cv.fit(X train, y train)
                                          GridSearchCV(cv=5, estimator=RandomForestClassifier(), n jobs=-1,
                                                      param grid={'max features': ['auto'], 'min samples split': [2],
                                                                  'n estimators': [100]})
                                          y pred = rf cv.predict(X test)
                                          acc rf cv = accuracy score(y test, y pred)
                                          acc rf cv
df = pd.DataFrame(np.array([[acc_rf, tpr_rf], [acc_rf_cv, tpr_rf_cv]]),
                   columns=['accuracy', 'TPR'],
                   index=['Random Forest Classifier', 'Random Forest Classifier with CV'])
df
```

	accuracy	TPR
Random Forest Classifier	0.992308	0.834951
Random Forest Classifier with CV	0.993231	0.864078

Hyperparameter Tuning

- Decision Tree Regressor
- TPR increase 0.01

	accuracy	TPR
Decision Tree Regressor	0.995077	0.932039
Decision Tree Regressor with CV	0.995385	0.941748

Hyperparameter Tuning

Gradient Boosting

	accuracy	TPR
Gradient Boosting Classifier	0.996308	0.970874
Gradient Boosting Classifier with CV	0.996308	0.970874

Next Steps

- Do more cross-validation
- Try other machine learning models
- Use NLP to extract key information from Remarks Section to improve customer profile
- Conduct Feature_Importance to find key variables to reduce data collection process.

Thanks!

