北京师范大学 2020 ~ 2021 学年第一学期期末考试试卷 (A卷)

课程名称:	偏征	数分方程	任课老师姓名:				_
卷面总分:	100 分	考试时长:	_120_分钟	考试类别:	闭卷図	开卷口	其他 🗆
院 (系): _	(系):				年级:_		
姓名: 学			号:				
题号		= =	рд	五	六	七	总分

阅卷老师(签字):

一. (10分):设 企是一个参数. 求出二阶方程

$$(2x + \alpha)u_{xx} + 2xyu_{xy} - y^2u_{yy} + u_x = y$$

的椭圆型区域.

得分

二. (10分): 求解定解问题

$$\begin{cases} u_{xy} = x^2 y, \\ u(0, y) = e^y, \ u(x, x) = \cos 2x. \end{cases}$$

三. (10分): 设 a, b 是正常数, 对电报方程 Cauchy 问题

$$\begin{cases} u_{tt} - a^2 u_{xx} + b u_t = 0, & -\infty < x < \infty, \ t > 0, \\ u(x, 0) = \varphi(x), \ u_t(x, 0) = \psi(x), & -\infty < x < \infty \end{cases}$$

做 Fourier 变换, 写出得到的常微分方程初值问题.

四. (15分): 已知 $\Omega \subset \mathbb{R}^n$ 是一个有界区域, $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ 在 Ω 中满足 $\Delta u \geq 0$, 试证

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u.$$

五. (15分): 设 a, R 是正常数, b(x,t), c(x,t) 是 $[-R, R] \times [0, +\infty)$ 上的有界函数. 证明初边值问题

$$\begin{cases} u_{tt} - a^2 u_{xx} + b(x,t)u_x + c(x,t)u_t = f(x,t), & -R < x < R, \ t > 0, \\ u(-R,t) = u(R,t) = 0, & t \ge 0, \\ u(x,0) = \varphi(x), \ u_t(x,0) = \psi(x), & -R \le x \le R \end{cases}$$

的解在 $C^2([-R,R] \times [0,+\infty))$ 中是唯一的.

六. (20分): 求解几何光学方程的 Cauchy 问题

$$\begin{cases} u_x^2 + u_y^2 = 1, \\ u(\cos s, \sin s) = 0, & 0 \le s \le 2\pi. \end{cases}$$

七. (20分): 求解放射衰变问题

$$\begin{cases} u_t = a^2 u_{xx} + A e^{-bx}, & 0 < x < l, \ t > 0, \\ u(x,0) = 0, & 0 \le x \le l, \\ u(0,t) = u(l,t) = 0, & t \ge 0, \end{cases}$$

其中 a, b, A, l 都是正常数.