Lista de Exercícios - Lógica

PCS3438 - Inteligência Artificial

Outubro 2019

1 Sugestão de leitura para estudo

Sobre esta parte da matéria, sugere-se a leitura dos seguintes capítulos do livro Inteligência Artificial, 5^a edição:

Capítulo 7: Agentes Lógicos

Capítulo 8: Lógica de Primeira Ordem

Capítulo 9: Inferência em Lógica de Primeira Ordem

Além disso, recomenda-se que estudem os *slides* da disciplina e o material sobre transformação de sentenças de lógica de primeira ordem para a forma clausal (material complementar no *site* da disciplina).

2 Resumo

2.1 Conectivos Lógicos

- ¬ negação (não)
- \(\text{conjunção} \((e) \)
- ∨ disjunção (ou)
- $\bullet \to \text{implicação} \text{ (condicional, se ... então)}$
- $\bullet \leftrightarrow \text{bicondicional (se e somente se)}$

2.2 Resolução

$$\alpha \vee \beta$$
, $\neg \alpha \vee \gamma \models \beta \vee \gamma$

2.3 Propriedades

- Comutatividade em \wedge : $\alpha \wedge \beta \equiv \beta \wedge \alpha$
- Comutatividade em \vee : $\alpha \vee \beta \equiv \beta \vee \alpha$
- Associatividade de \wedge : $(\alpha \wedge \beta) \wedge \gamma \equiv \alpha \wedge (\beta \wedge \gamma)$

- Associatividade de \vee : $(\alpha \vee \beta) \vee \gamma \equiv \alpha \vee (\beta \vee \gamma)$
- Eliminação da dupla negação: $\neg(\neg \alpha) \equiv \alpha$
- Contraposição: $(\alpha \to \beta) \equiv (\neg \beta \to \neg \alpha)$
- Eliminação da implicação: $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$
- Exclusão da bicondicional: $(\alpha \leftrightarrow \beta) \equiv (\alpha \to \beta) \land (\beta \to \alpha)$
- De Morgan: $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \beta)$
- De Morgan: $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \beta)$
- Distribuição de \land sobre \lor : $(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$
- Distribuição de \vee sobre \wedge : $(\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma))$

2.4 Transformação em Cláusulas

- 1. $\alpha \leftrightarrow \beta$ substitui por $(\alpha \to \beta \land \beta \to \alpha)$
- 2. $\alpha \to \beta$ substitui por $\neg \alpha \lor \beta$
- 3. Trata negação: $\neg(\neg \alpha) \equiv \alpha$; $\neg(\alpha \land \beta) \equiv \neg \alpha \lor \neg \beta$; $\neg(\alpha \lor \beta) \equiv \neg \alpha \land \neg \beta$
- 4. $\alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$

3 Exercícios

- 1. Decida se cada uma das sentenças a seguir é válida (tautologia), insatisfazível (contradição) ou nenhuma das opções. Verifique suas decisões usando tabelas-verdade ou as propriedades definidas na seção 2.
 - (a) Fumaça → Fumaça
 - (b) Fumaça \rightarrow Fogo
 - (c) $(Fumaça \rightarrow Fogo) \rightarrow (\neg Fumaça \rightarrow \neg Fogo)$
 - (d) Fumaça \vee Fogo $\vee \neg$ Fogo
 - (e) $((Fumaça \land Calor) \rightarrow Fogo) \leftrightarrow ((Fumaça \rightarrow Fogo) \lor (Calor \rightarrow Fogo))$
 - (f) $(Fumaça \rightarrow Fogo) \rightarrow ((Fumaça \land Calor) \rightarrow Fogo)$
 - (g) Grande \vee Burro \vee (Grande \rightarrow Burro)

- 2. Converta o seguinte conjunto de sentenças para a forma clausal.
 - S1: $A \leftrightarrow (B \lor E)$
 - S2: $E \to D$
 - S3: $C \wedge F \rightarrow \neg B$
- 3. Considere um vocabulário com os símbolos seguintes:
 - Ocupação(p,o): Predicado. A pessoa p tem a ocupação o;
 - Cliente(p1,p2): Predicado. A pessoa p1 é cliente da pessoa p2;
 - Chefe(p1,p2): Predicado. A pessoa p1 é chefe da pessoa p2.
 - Médico, Cirurgião, Advogado, Ator: Constantes que indicam ocupações.
 - Emilia, Joe: Constantes que indicam pessoas.

Use estes símbolos para escrever as seguintes asserções em lógica de primeira ordem.

- (a) Emília é cirurgiã ou advogada;
- (b) Joe é um ator, mas ele também tem outro trabalho;
- (c) Todos os cirurgiões são médicos;
- (d) Joe não tem um advogado (isto é, não é cliente de nenhum advogado);
- (e) Emília tem um chefe que é advogado;
- (f) Há um advogado cujos clientes são todos médicos;
- (g) Todo cirurgião tem um advogado.
- 4. Complete os itens a seguir:
 - (a) Redigir em palavras:

 $\forall x,y,l, Falaidioma(x,l) \land Falaidioma(y,l)$

- \rightarrow Compreende(x,y) \land Compreende(y,x)
- (b) Traduza as frases a seguir em lógica de primeira ordem.
 - i) Compreender leva à amizade.
 - ii) A amizade é intransitiva.

Utilize as seguintes definições: Compreende(x,y) para x compreende y e Amigo(x,y) para x é amigo de y.

- 5. Este exercício usa os predicados $\operatorname{Em}(x,y)$, Fronteira(x,y) e $\operatorname{País}(x)$, cujos argumentos são regiões geográficas junto a símbolos constantes para as várias regiões. Em cada um dos seguintes ítens expressamos uma sentença e um número de expressões lógicas candidatas. Para cada uma das expressões lógicas, determine se ela (1) expressa corretamente a sentença; (2) é inválida sintaticamente e portanto não tem significado; ou (3) é válida sintaticamente mas não expressa o significado da sentença.
 - (a) Paris e Marseilles localizam-se na França.
 - (i) Em(Paris ∧ Marselha, França).
 - (ii) Em(Paris, França) ∧ Em(Marselha, França).
 - (iii) Em(Paris, França) ∨ Em(Marselha, França).
 - (b) Existe um país que faz fronteira tanto com o Iraque como com o Paquistão.
 - (i) \exists c País(c) \land Fronteira(c, Iraque) \land Fronteira(c, Paquistão).
 - (ii) \exists c País(c) \rightarrow [Fronteira(c, Iraque) \land Fronteira(c, Paquistão)].
 - (iii) $[\exists c \ País(c)] \rightarrow [Fronteira(c, Iraque) \land Fronteira(c, Paquistão)].$
 - (iv) \exists c Fronteiras(País(c), Iraque \land Paquistão).
 - (c) Todos os países que fazem fronteira com o Equador estão na América do Sul.
 - (i) \forall c País(c) \land Fronteira(c, Equador) \rightarrow Em(c, América do Sul).
 - (ii) \forall c País(c) \rightarrow [Fronteira(c, Equador) \rightarrow Em(c, América do Sul)].
 - (iii) \forall c [País(c) \rightarrow Fronteira(c, Equador)] \rightarrow Em(c, América do Sul).
 - (iv) \forall c País(c) \land Fronteira(c, Equador) \land Em(c, América do Sul).
 - (d) Nenhuma região da América do Sul faz fronteira com qualquer região da Europa.
 - (i) $\neg [\exists c, d Em(c, América do Sul) \land Em(d, Europa) \land Fronteira(c, d)].$
 - (ii) \forall c, d [Em(c, América do Sul) \land Em(d, Europa) $\rightarrow \neg$ Fronteira(c, d)].
 - (iii) $\neg \forall$ c Em(c, América do Sul) $\rightarrow \exists$ d Em(d, Europa) $\land \neg$ Fronteira(c, d).
 - (iv) \forall c Em(c, América do Sul) \rightarrow \forall d Em(d, Europa) \rightarrow \neg Fronteira(c, d).
- 6. Assumindo os predicados PaiOuMãe(p, θ) e Feminino(p) e as constantes Joan e Kevin, com os significados óbvios, expresse cada uma das seguintes sentenças em lógica de primeira ordem (você pode usar a abreviatura \exists^1 para significar "existe exatamente um").

- (a) Joan tem uma filha (possivelmente mais do que uma e, possivelmente, filhos também);
- (b) Joan tem exatamente uma filha (mas pode ter filhos também);
- (c) Joan tem exatamente um filho ou filha;
- (d) Joan e Kevin têm exatamente um filho ou filha juntos;
- (e) Joan tem pelo menos um filho ou filha com Kevin e não tem filhos com mais ninguém.
- 7. Represente as sentenças a seguir em lógica de primeira ordem usando um vocabulário consistente (que você mesmo deve definir):
 - (a) Alguns alunos cursaram francês na primavera de 2001;
 - (b) Todos os alunos que cursam aulas de francês passam;
 - (c) Somente um aluno cursou grego na primavera de 2001;
 - (d) Toda pessoa que compra um seguro é inteligente;
 - (e) Ninguém compra um seguro caro;
 - (f) Existe um agente que só vende seguros às pessoas que não têm seguro;
 - (g) Existe um barbeiro que faz a barba de todos os homens na cidade que não fazem a própria barba;
 - (h) Uma pessoa nascida no Reino Unido, que tem um de seus pais um cidadão do Reino Unido ou um residente do Reino Unido, é um cidadão do Reino Unido de nascença;
 - (i) Uma pessoa nascida fora do Reino Unido, que tem um de seus pais um cidadão de nascença do Reino Unido, é um cidadão do Reino Unido por descendência;
 - (j) Os políticos podem enganar algumas pessoas todo o tempo, podem enganar todas as pessoas por algum tempo, mas não podem enganar todas as pessoas todo o tempo;
 - (k) Todos os gregos falam a mesma língua. (Use Fala(x, l) para dizer que a pessoa x fala o idioma l.

8. Dadas as sentenças:

- João estuda ou não está cansado.
- Se João estuda, então dorme tarde.
- João não dorme tarde ou está cansado.

Provar que "João está cansado se e somente se estuda", (isto é, deduzir que "Se João está cansado então estudou" e "Se João estudou então está cansado"), usando lógica proposicional, adotando a seguinte nomeação:

- "João estuda" = p;
- "João está cansado" = q;
- "João dorme tarde" = r.
- 9. Considere as seguintes sentenças:
 - Todos os cães gostam de comer carne;
 - Se um animal for pastor alemão, então este animal é um cão;
 - Toda linguiça é carne;
 - Calabresa é uma linguiça;
 - Totó é um pastor alemão.
 - (a) Traduza estas sentenças para lógica de predicados;
 - (b) Mostrar uma prova para "Totó gosta de comer calabresa" utilizando prova direta por resolução;

10. Dadas as sentenças:

- Todos que amam todos os animais são amados por alguém.
- Qualquer um que mate um animal não é amado por ninguém.
- Jack ama todos os animais.
- O gato, chamado Tuna, foi morto por Jack ou por Ana.

Use refutação por resolução para saber se Ana matou o gato.