Урок №34

Арифметичний квадратний корінь

Мета уроку:

- сформувати поняття квадратного кореня, арифметичного квадратного кореня,
- виробити вміння знаходити арифметичний квадратний корінь із числа, знаходити значення змінної, за яких має зміст вираз, що містить арифметичний квадратний корінь,
- розв'язувати найпростіші ірраціональні рівняння;

Актуалізація опорних знань

- 1. Квадрати яких чисел дорівнюють: а) 25; б) 0,04; в) 1; г) 0; д) -0,01 а) 5 і -5; б) 0,2 і -0,2; в) 1 і -1; г) 0; д) не існує
- 2. Чи існують числа, квадрати яких дорівнюють 64; 121; -5; -6; 0; -100
- так; так; ні; ні; так; ні

1. Квадратний корінь. Арифметичний квадратний корінь.

Квадратним коренем із числа *а* називається число, квадрат якого дорівнює *а*.

Арифметичним квадратним коренем із числа *а* називається невід'ємне число, квадрат якого дорівнює *а*.

$$\sqrt{a} = b \text{ (при } a \geq 0)$$
 $\begin{cases} b \geq 0 \\ b^2 = a \end{cases}$

Арифметичний квадратний корінь із числа a позначається \sqrt{a} (а – підкореневий вираз)

Приклади

1)
$$\sqrt{81} = 9$$
, оскільки $9 \ge 0$ і $9^2 = 81$;

2)
$$\sqrt{0} = 0$$
, оскільки $0 \ge 0$ і $0^2 = 0$;

3)
$$\sqrt{\frac{4}{9}} = \frac{2}{3}$$
, оскільки $\frac{2}{3} \ge 0$ і $\left(\frac{2}{3}\right)^2 = \frac{4}{9}$;

4)
$$\sqrt{1\frac{24}{25}} = \sqrt{\frac{49}{25}} = \frac{7}{5}$$
, оскільки $\frac{7}{5} \ge 0$ і $\left(\frac{7}{5}\right)^2 = \frac{49}{25} = 1\frac{24}{25}$.

Наприклад, не мають змісту вирази $\sqrt{-1}$; $\sqrt{-2,9}$.

Таблиця квадратів натуральних чисел

	0	1	2	3	4	5	6	7	8	9
1	100	121	144	169	196	225	256	289	324	361
2	400	441	484	529	576	625	676	729	784	841
3	900	961	1024	1089	1156	1225	1296	1369	1444	1521
4	1600	1681	1764	1849	1936	2025	2116	2209	2304	2401
5	2500	2601	2704	2809	2916	3025	3136	3249	3364	3481
6	3600	3721	3844	3969	4096	4225	4356	4489	4624	4761
7	4900	5041	5184	5329	5476	5625	5776	5929	6084	6241
8	6400	6561	6724	6889	7056	7225	7396	7569	7744	7921
9	8100	8281	8464	8649	8836	9025	9216	9409	9604	980

Виконання усних вправ

Приклад Знайдіть значення кореня $\sqrt{4096}$.

P озв'язання. За таблицею квадратів двоцифрових натуральних чисел маємо $64^2=4096$. Тому $\sqrt{4096}=64$.

$\sqrt{25}$	$\sqrt{16}$	$\sqrt{36}$	$\sqrt{144}$
$\sqrt{225}$	$\sqrt{1}$	$\sqrt{4}$	$\sqrt{361}$
$\sqrt{256}$	$\sqrt{81}$	$\sqrt{324}$	$\sqrt{196}$
$\sqrt{64}$	$\sqrt{100}$	$\sqrt{121}$	$\sqrt{289}$

2. Тотожність $(\sqrt{a})^2 = a$, a≥0.

При а≥0 $(\sqrt{a})^2$ =a

Приклад:

$$(\sqrt{9})^2 = 9$$
$$(\sqrt{7})^2 = 7$$

ovious

3. Добування квадратного кореня.

ona.

379.° Знайдіть значення арифметичного квадратного кореня:

1)
$$\sqrt{9}$$
;

5)
$$\sqrt{0,25}$$
;

9)
$$\sqrt{400}$$
;

2)
$$\sqrt{49}$$
;

6)
$$\sqrt{0.01}$$
;

10)
$$\sqrt{3600}$$
;

3)
$$\sqrt{100}$$
;

7)
$$\sqrt{1,21}$$
;

11)
$$\sqrt{\frac{1}{64}}$$
;

4)
$$\sqrt{225}$$
;

8)
$$\sqrt{1,96}$$
;

12)
$$\sqrt{\frac{4}{9}}$$
;

383.° Користуючись таблицею квадратів натуральних чисел, розміщеною на форзаці, знайдіть:

1)
$$\sqrt{484}$$
;

4)
$$\sqrt{5929}$$
;

7)
$$\sqrt{68,89}$$
;

2)
$$\sqrt{729}$$
;

5)
$$\sqrt{5,76}$$
;

8)
$$\sqrt{67600}$$
;

3)
$$\sqrt{1156}$$
;

6)
$$\sqrt{14,44}$$
;

9)
$$\sqrt{384400}$$
.

4. Рівняння $\sqrt{x} = a$.

$$\sqrt{x} = m, m -$$
число

Якщо $m \ge 0$, то $x = m^2$

Якщо m < 0, то коренів немає

Приклад 5. Розв'яжіть рівняння:

1)
$$\sqrt{x} = 7$$
;

2)
$$\sqrt{x} = -3$$
;

1)
$$\sqrt{x} = 7$$
; 2) $\sqrt{x} = -3$; 3) $\sqrt{2x-1} = 5$.

Розв'язання.

1)
$$x = 7^2$$
;

1) $x = 7^2$; 2) розв'язків немає; 3) $2x - 1 = 5^2$;

$$x = 49;$$

2x = 26;

$$x = 13$$
.

Відповідь. 1) 49; 2) розв'язків немає; 3) 13.

Розв'язування вправ

387.° Знайдіть значення виразу:

1)
$$(\sqrt{7})^2$$
;

4)
$$-(\sqrt{10})^2$$
;

7)
$$\left(-\frac{\sqrt{3}}{2}\right)^2$$
;

2)
$$(\sqrt{4,2})^2$$
;

5)
$$(2\sqrt{3})^2$$
;

8)
$$\left(\frac{1}{2}\sqrt{14}\right)^2$$
;

389.° Знайдіть значення виразу:

1)
$$\sqrt{16+9}$$
;

4)
$$\sqrt{36} \cdot \sqrt{49}$$
;

Раціональні числа Ірраціональні числа

-це числа, які **можна подати** у вигляді відношення, де m – ціле число, а n – натуральне.

$$Q = {\frac{m}{n}, m \in Z, n \in N}$$

Кожне раціональне число можна записати у вигляді:

-- скінченого дробу; -- нескінченого періодичного дробу - це всі дійсні числа, що не є раціональними — тобто не можуть бути записані як відношення цілих чисел, а лише нескінченними неперіодичними десятковими дробами.

Домашне завдання

- Повторити §9
- Опрацювати §14, правила вивчити
- Переглянути навчальне відео

https://www.youtube.com/watch?v=i4G1yKv YdMw&authuser=1

• Виконати завдання за посиланням https://vseosvita.ua/test/start/sef936 або №545, 549, 553