RESUMEN PROBABILIDAD Y ESTADISTICA B CAPITULO 7

Def: PROCESO DE POISSON

T: "tiempo entre 2 eventos consecutivos"

Props:

- 1. La cantidad de eventos en intervalos de tiempo no superpuestos son VA independientes.
- 2. La distribución de la cantidad de eventos es igual para cualquier intervalo de misma longitud.
- 3. La probabilidad de obtener 2 o mas eventos en un intervalo lo suficientemente pequeño es despreciable

Def: TEOREMA DE ADELGAZAMIENTO

Si en un PP(λ), para cada marca sorteamos una variable de Ber(p), se tiene para cada tipo, 2 PP independientes.

: MARCA Poi

: ÉXITO Ber

 $N_1(t)$: "PP de exitos de Bernoulli"

 $N_1(t) = PP(\lambda \cdot p)$

 $N_2(t)$: "PP de no exitos de Bernoulli"

 $N_2(t) = PP(\lambda \cdot (1-p))$

 $N_1(t)$ y $N_2(t)$ son indep.

RESUMEN PROBABILIDAD Y ESTADISTICA B CAPITULO 7

Def: TEOREMA DE SUPERPOSICION

Teniendo 2 PP $N_1(t)$, $N_2(t)$. $N(t) = N_1(t) + N_2(t)$ define un PP de tasa $\lambda = \lambda_1 + \lambda_2$

Def: TEOREMA DE ARRIBOS EXACTOS

Bajo la condición de que ocurrieran exactamente n arribos en el intervalo [0,t], los tiempos de los n arribos $S_1,S_2, ...,S_n$ considerados como variables aleatorias desordenadas, son independientes y están distribuidas uniformemente sobre [0,t].

$$\mathbb{P}_{(S_1 < s \mid N_{(t)} = 1)} = \frac{s}{t}$$

 $S_1, S_2, \dots S_n \mid N_{(t)} = n$ son indep. $y \mathcal{U}(0, t)$

 $N_{(s)}|N_{(t)} = n$: "# arribos en (0, s) de n arribos en (0, t)"

$$Y = \left(N_{(s)} | N_{(t)} = n \right)$$

$$Y \sim Bin\left(n, \frac{s}{t}\right)$$

 $\mathbb{P}("el\ arribo\ i\ llegue\ en\ (0,s)\ si\ N_{(t)}=n")=\mathbb{P}(Y=i)$

Def: TEOREMA DE MULTINOMIAL

Si I_1 , I_2 , ..., I_k es una partición del intervalo I

y N(I_i): # arribos en I_i

entonces
$$\left(\left(N_{(I_1)},N_{(I_2)},\dots,N_{(I_k)}\right)|\ N_{(I)}=n\right)\sim\mathcal{M}\left(n,p_i=\frac{|I_i|}{|I|}\right)$$