Control Systems Presentation

N Yashodhan Reddy ES17BTECH11015

5th March 2020

Question

- ► A second-order real system has the following properties:
 - a) the damping ratio $\zeta=0.5$ and undamped natural frequency $\omega_n=10 {\it rad/s}$
 - b) the steady state value of the output, to a unit step input, is 1.02.

The transfer function of the system is

(A)
$$\frac{1.02}{s^2+5s+100}$$
 (B) $\frac{102}{s^2+10s+100}$

(C)
$$\frac{100}{s^2+10s+100}$$
 (D) $\frac{102}{s^2+5s+100}$

Solution

Characteristic equation of second order system is as follows $s^2+2\zeta\omega_n s+\omega_n^2=0$ Given $\zeta=0.5$ and $\omega_n=10 rad/s$ Therefore the equation becomes $s^2+10s+100=0$ Denominator of the Transfer Function is characteristic equation. From this we can eliminate A and D options

We know that output of the system in s domain is C(s) = T(s)R(s)

and $R(s) = \frac{1}{s}$ as it is unit step input. Steady state output is given by $C(\infty) = \lim_{s \to 0} sC(s)$

Steady state output is 1.02 for only option B Therefore, transfer function of the system is

$$\frac{102}{s^2 + 10s + 100}$$