

SENSORS AND ACTUATORS

DC MOTOR AND MAGNETOMETER

Laboratory Guide

IDENTIFICATION

Weekday	Date	Hour	Group	Students	
				• •	

INTRODUCTION

The magnetoresistance effect is the increase in electrical resistance to the flow of electrons in a given direction in the presence of a magnetic field. This increase is due to the scattering of the conduction electrons caused by the magnetic field which results in less overall current flowing through the device. This happens in transition metals like Nickel where most charge carriers are electrons in the 4s orbital. Those electrons scatter more when traveling parallel to the magnetization.

A DC motor also uses the interaction between a magnetic field and an electric current to produce, in this case, a movement of rotation. The stator consists of a permanent magnet. The rotor includes one coil driven by a DC current. The current direction switches every half revolution of the rotor so that torque is always in the same direction which leads to a continuous rotation of the motor.

In this work one wants to measure the rotational speed of the DC motor using an anisotropic magnetoresistive effect sensor, model HMC5883 from Honeywell, to detect the change in the magnetic field of a permanent magnet attached to the motor shaft. A microcontroller is used which receives information from the magnetoresistive sensor and generates a PWM (pulse width modulation) signal to control the speed and direction of rotation of the motor.

Recommended reading: https://en.wikipedia.org/wiki/Magnetoresistance and https://en.wikipedia.org/wiki/DC_motor.

EXECUTION

1) Driving the DC Motor

oth directions. F	Present the electric	al circuit assemb	oled.			
tach the perm oximity in order ages of rotation	to detect the pres	vailable to the steed or absence or absence or absence or to the microco	naft of the DC me of the magnetic ontroller and deve	otor. Place the control of the control of the software	magnetoresistive s by these magnets in e to determine the f the measurement	n vari rotat

3) ,	Angular Velocity versus Voltage Transfer Function	
	rive different values of voltage applied to the motor (determined by the duty cycle of the PWM signal asure the rotational speed. Plot the graph of the rotational speed versus voltage. Comment the result.	I)
		l

MATERIAL

- 1 DC motor.
- 1 magnetoresistive sensor Honeywell HMC5883.
- 1 board with an Arduino UNO microcontroller.
- 1 Ardumoto Motor Driver Shield (H-Bridge).
- A set of permanent magnets.