

Comparing Online and Offline Partisan Segregation Using a Novel Panel of Twitter Users

Tiago Ventura¹, Megan Brown², Jonathan Nagler³, and Joshua A. Tucker³

¹ Georgetown University, ² University of Michigan, ³ Center for Social Media and Politics, NYU

 $IC^2S^2 - 07/18/2024$

Motivation

OPINION > CAMPAIGN

THE VIEWS EXPRESSED BY CONTRIBUTORS ARE THEIR OWN AND NOT THE VIEW OF THE HILL

How social media fuels U.S. political polarization — what to do about it

BY PAUL BARRETT, JUSTIN HENDRIX AND GRANT SIMS, OPINION CONTRIBUTORS - 09/13/21 4:00 PM ET

How the polarizing effect of social media is speeding up

September 9, 2022 · 5:01 AM ET

By Ari Shapiro, Michael Levitt, Christopher Intagliata

Social media

Echo Chambers

Reduce cross-cutting exposure

Polarization

Most of the literature:

Social media

Echo Chambers

Reduce cross-cutting exposure

Polarization

Our contributtion

- **→ To solve the causal chain**, we need to measure online segregation relative to other channels through which voters **consume information or interact** with ingroup and outgroup voters
- Previous related studies:
 - TV news Consumption (Muise et. al. 2022)
 - Self-reported online vs offline networks (Gentzkow and Shapiro 2011)
- We provide meaningful comparisons for the same social media users between levels of **offline and online segregation**

Research Question

What is the relationship between offline partisan sorting and online echo-chambers?

Data Infrastructure

Offline Information: Voter Files

Voter Files

Data Collection for every matched voters:

- Voter file demographics (gender, race, partisanship, religion)
- Residential location (9 digits lat and long)
- Closest 1.000 neighboors + their partisanship.

Online Information: Twitter Data

Data Collection for every matched voters:

- Collect their full network (people they follow and follow them) ~ 57M
- Collect their most recent timelines (3200 tweets) + 900k * 3,2k
- Parse their timelines.

Offline Partisan Segregation

$$ext{Offline Outgroup Proximity} = rac{\sum_{k=1}^{1000} rac{1}{d+1} (p_k = q_i)}{\sum_{k=1}^{1000} rac{1}{d+1}}$$

Where:

- *i* is a matched voters
- *k* is a given neighbor
- ullet d is the distance in meters between the neighbor and the individual
- p_k is the partisanship of the neighbor
- q_i is the opposite party of the individual whose exposure is being measured.

Online Partisan Segregation

Online Outgroup Proximity
$$=rac{\sum_{k=1}^n\log(a+1)(p_k=q_i)}{\sum_{k=1}^n\log(a+1)}$$

Where:

- *i* is a matched voter
- *k* is a friend (followed by) the matched voter
- ullet a is the number of interactions between the friend and a user i
- p_k is the partisanship of the friend
- q_i is the opposite party of the individual whose exposure is being measured.

Online vs Offline Exposure

Online vs Offline Exposure by Quantiles

Comparing Offline and Online Exposure Across Subgroups

Table 2 Comparing Online and offline outgroup proximity Across Subgroups

Variable	Online Outgroup Proximity	Offline Outgroup Proximity	Paired-difference	Z-Score(p-Value)
Sociodemographics				
Male	0.306	0.259	0.047	151.094 * * *
Female	0.280	0.249	0.030	79.614 * * *
White	0.300	0.278	0.022	$76.691 \star \star \star$
Non-White	0.287	0.212	0.074	178.788 ***
Age: <35	0.297	0.242	0.055	$141.319 \star \star \star$
Age: 35 - 60	0.296	0.259	0.037	$112.312\star\star\star$
Age: $+60$	0.289	0.274	0.013	$18.051 \star \star \star$
Political Variables				
Democrat	0.261	0.212	0.050	$144.023 \star \star \star$
Republican	0.356	0.329	0.023	44.661 * * *
Blue States	0.256	0.205	0.049	147.366 * * * *
Swing States	0.304	0.270	0.033	66.905 * * *
Red States	0.331	0.293	0.036	83.729 * * *

Note: Significance of differences between the datasets were tested with a two-sided mean difference paired z-test ($\star \star \star$ means p-value < 0.001)

Correlation between online and offline exposure

Modeling Online Echo Chambers

Dependent Variable:	Online Proximity		
Model:	(1)	(2)	(3)
Variables			
Age: 35-60	-0.0126**	-0.0122***	-0.0103***
	(0.0059)	(0.0023)	(0.0012)
Age: +60	0.0094	0.0114*	0.0132***
	(0.0170)	(0.0058)	(0.0019)
Male	-0.0260***	-0.0247***	-0.0243***
	(0.0082)	(0.0028)	(0.0011)
White	0.0193^{***}	0.0161^{***}	0.0141^{***}
	(0.0043)	(0.0020)	(0.0012)
Republican	0.0113	0.0143^{***}	0.0165^{***}
	(0.0133)	(0.0033)	(0.0013)
Log of Friends on Twitter	-0.0406***	-0.0427***	-0.0431***
	(0.0022)	(0.0008)	(0.0005)
Offline Proximity	-0.3205***	-0.2593***	-0.2361***
	(0.0523)	(0.0129)	(0.0041)
Fixed-effects			
State-Level (50)	Yes		
Congressional Districts (500)		Yes	
census_tract (47,680)			Yes
Fit statistics			
Observations	599,707	599,707	599,707
\mathbb{R}^2	0.05349	0.06785	0.15011
Within R ²	0.03496	0.03166	0.02992
Signif Codes: ***. 0.01 **.	0.05 * 0.1		

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Robustness Check: Yougov Survey

Discussion and Next Steps

- We provide initial evidence that:
 - Twitter users indeed live in segregated online communities with overall lower levels of exposure to outgroup users in their networks;
 - But these levels of segregation are not particularly distinct from their geographical offline levels of proximity to outgroup voters;
 - These differences hold across distinct political, racial, ethnical and age groups.
- Future work: Focus on the effects of partisan segregation on online behavior
 - Toxicity
 - Outgroup Hostility
 - Sharing of low-quality content

Thank you!