Regressi

Table des matières

Calculs	
Fonctions de gestion des dates	4
Complexes	
Dérivée et intégrale	
Fonctions particulières	5
Fonctions	
Equations	9
Trigonomètrie	10
Filtres	10
Méthode d'Euler (simulation)	12
Incertitudes	13
Indexation	14
Fourier	15
Options Fourier	15
Fenêtre Fourier	16
Modélisation	18
Généralités sur la modélisation	18
Sauvegarde de la modélisation	. 22
Options de modélisation	22
Bornes	23
Résidus	23
Divergence d'une modélisation	24
Erreur de domaine de définition	
Ecart modélisation expérience	25
Modélisation graphique	
Time-out	
Tableau	25
Paramètre "volatil"	25
Algorithme	
Origine	
Statistiques	
Options statistique	
Fenêtre statistique	
Fonctions statistiques	
Graphique	
Options graphe	
Outils graphiques	
Options texte	
Options des vecteurs	
Sauvegarde Position	
Coordonnées	
Fenêtre graphe	
Animation	
Origine de l'axe x	
Méthode de Cornish-Bowden	
Suppression de points	
pp	

Regressi

Incertitudes graphiques	40
Fenêtre grandeurs	40
Valeurs	40
Grandeurs	41
Constantes	42
Expressions	42
Entrée de données au clavier	43
Python	44
Général	46
Index Regressi	46
Menu Fichier	47
Barre d´outils	49
Menu Edition	50
Barre d´état	51
Unités	51
Options	
Edition Coller données	
Editeur	
Fenêtre grandeurs	
Fichier Ouvrir	
Fenêtre graphe des paramètres	
Liens	
Fichier Nouveau Simulation	59
Fichier Fusionner	
Impression	60
Fichier Imprimer	
Configuration	
Pages	
Page calculée	
Page copiée	
Menu Pages	62
	64
Video	
Chronophotographie	
Interférences	
Arduino/micro:bit	
Remerciements	74

Calculs

Créé avec HelpNDoc Standard Edition: Créer des livres électroniques facilement

Fonctions de gestion des dates

- TODATE(t) convertit t exprimée en seconde en une date d'origine le jour d'aujourd'hui
- EXTMOIS(date) extrait le mois de la date
- EXTJOUR(date) extrait le jour de la date
- EXTANNEE(date) extrait l'année de la date

Créé avec HelpNDoc Standard Edition: Produire des livres électroniques facilement

Complexes

Le système reconnaît j (j^2=-1) et les fonction suivantes:

- RE partie réelle
- IM partie imaginaire
- ARG argument Arg(x+j*y) renvoie l'angle entre - π et + π en radian ou -180 +180 en degré
- ABS module, norme

En argument de ces fonctions vous ne pouvez utiliser que les quatre opérations et la carré SQR. Le résultat final doit être réel ! Ex : modélisation d'un filtre passe-bas d'ordre 2 : G(f)=G0/abs(1+j*f/f0/Q-sqr(f/f0)).

Cas particulier vous pouvez définir G=filtre(G0/(1+j*f/f0/Q-sqr(f/f0))) qui est une grandeur complexe mais qui ne sera accessible telle quelle que dans le graphe de Fourier, et qui dans le graphe temporel vous donnera la réponse impulsionnelle du filtre.

Créé avec HelpNDoc Standard Edition: Générateur de documentation complet

Dérivée et intégrale

- **diff**(y,x): calcule la dérivée =d(y)/d(x): la méthode de calcul est modifiable par l'intermédiaire du menu <u>Options</u>. On effectue un lissage sur N points par un polynôme d'ordre p (N et p sont paramétrables directement dans l'expression: diff(y,x,p,N) ou dans les options, onglet calcul), puis on détermine la dérivée par calcul de la valeur de la dérivée du polynôme. Si vous avez des données avec une haute fréquence d'échantillonnage ou beaucoup de bruit, vous avez intérêt à prendre N grand. On peut aussi utiliser la syntaxe d(y)/d(x).
 - o Le choix linéaire convient la plupart du temps. Le choix parabolique est utile

pour déterminer convenablement les dérivées aux extrémités. Pour les points extrêmes, le problème est que le point courant n'est pas au centre du lissage. Cela fausse donc le résultat. Si on prend le cas d'une concavité initiale vers le bas, la valeur de la dérivée sera systématiquement affectée d'une erreur par défaut. Si on effectue un lissage parabolique, la valeur obtenue devient correcte aux extrémités pour une parabole, et cela se généralise aux courbes "raisonnables".

- **diff2**(y,x) : calcule la dérivée seconde =d2y/dx2. A utiliser de préférence à deux dérivées successives : la dérivation numérique est générateur de bruit.
- intg(f,x): intégrale numérique pour le point courant numéro i :
 - o valeur en i = somme pour i variant de 2 à i de (f(i-1)+f(i))/2)*(x(i-1)-x(i)). x étant ordonné dans le sens croissant.
 - Exemple : vous avez enregistré l'intensité d'une force F en fonction de la position x, vous pouvez créer Ep, énergie potentielle, en prenant comme variable x et comme fonction -F.
 - \circ Ces deux fonctions doivent apparaître seules dans une définition y=diff(x,t) mais pas y=diff(x,t)*3.
- **intg**(f,x,a,b) : intégrale numérique de a à b : cette fonction renvoie un paramètre.
- **intgd**(a,inf,sup,f): a est la variable <u>muette</u> d'intégration, inf et sup sont les bornes inférieure et supérieure d'intégration et f la fonction à intégrer. Cette fonction peut apparaître à l'intérieur d'une expression. Le résultat est somme de f(a) da, a variant de inf à sup.

Créé avec HelpNDoc Standard Edition: Créer des documents d'aide PDF facilement

Fonctions particulières

- **Ech**(x): échelon vaut 0 si x<0 et 1 si x>0
- Creneau(exp,f,r): signal créneau, considéré comme fonction de l'expression exp, symétrique (±1), de fréquence f et de rapport cyclique r (durée à l'état haut divisée par la période), vaut +1 si exp modulo la période est inférieur au rapport cyclique, -1 sinon. Le créneau débute à 0. Exemples:
 - o creneau(t,1000,0.5)
 - o creneau(t-0.2,1000,0.5) pour décaler le début du créneau
- Triangle(exp,f,r): signal triangulaire, considéré comme fonction de l'expression exp, alternatif d'amplitude 1, de fréquence f et de rapport cyclique r (durée avec pente positive divisée par la période)

- Rand(x) renvoie une valeur aléatoire entre 0 et x avec une répartition uniforme
- **Noise**(x) : valeur aléatoire centrée d'écart-type x avec une répartition gaussienne
- **If**(test,expression si test vrai, expression sinon): Fonction conditionnelle. Exemple: dosage d'une base faible par un acide fort pH=IF(v<ve,pKa+log(ve-v)/v),a-log((v-ve)/(v+v0))). On peut utiliser XOR OR AND. voir les fichiers d'exemple <u>H3PO4</u> et <u>acide acétique</u>. On peut utiliser si à la place de if.
- **PieceWise**([test,expression si test vrai], expression sinon), le terme entre crochets pouvant être répété. Exemple : z=PieceWise(x<5,2,x<10,2*x,x<20,3*x,-10). On peut utiliser XOR OR AND.
- **Aire**(y,x) donne la surface à l'intérieur de la courbe x(y) calculé par une méthode des trapèzes :
 - z[i] := z[i-1]+(y[i]+y[i-1])/2)*(x[i]-x[i-1]). Le résultat est un paramètre.
 - Le calcul se fait entre le premier point et le point qui permet d'effectuer un tour (égal au premier point à mieux que 1/16 de l'étendue des mesures)
- **LisseF**(y): supprime les points " incorrects " puis effectue un lissage de y par filtrage numérique d'ordre 1 avec comme temps caractéristique N fois la période d'échantillonnage. Sous la forme lisseF(y,N), on peut imposer N, sinon cette valeur de N est paramétrable dans les options, onglet calcul (N entier entre 1 et 32).
- **LisseC**(y): supprime les points " incorrects " puis effectue un lissage de y centré avec N points à droite et N points à gauche. Sous la forme lisseC(y,N), on peut imposer N, sinon cette valeur de N est paramétrable dans les options, onglet calcul (N entier entre 1 et 32).
- Init(x): valeur initiale de x. Le résultat est un paramètre.
- **Pos**(x,expression,option): renvoie la valeur de x tel que l'expression soit vérifiée (cas où l'expression est du type f(x)=g(x)) ou soit nulle (cas où l'expression est du type f(x)). Le troisième terme, facultatif, peut être up (resp. down) ce qui signifiera que l'équation doit être vérifiée et x croisant (resp. décroissant). Si le troisième terme est mini (resp. maxi), pos donne la valeur de x correspondant au mini (resp. maxi) de l'expression.
- **Sign**(x) : signe = $-1 \sin x < 0 \text{ et } +1 \sin x > 0$.
- **Peigne**(t,dt): pseudo-peigne de Dirac de pas dt.

Créé avec HelpNDoc Standard Edition: Créer des documents d'aide PDF facilement

Fonctions

Dérivée, intégrale

Filtres

Fonctions <u>particulières</u> : Échelon, Test, Créneau, Aléatoire, Lissage , Surface...

Equations : f(x)=0 et différentielles

Fonctions statistiques

Fonctions de gestion de date

Utilisation des complexes

Méthode d'Euler

Fonctions reconnues:

- SIN COS TAN EXP ABS SH CH TH
- DegDec(x) convertit des degrés sexagésimaux en degrés décimaux. Cette fonction est désormais obsolète : les calculs se font toujours en décimaux quelque soit le mode d'entrée ou d'affichage des angles.
- ASIN(x) arcsinus à valeur dans $\pi/2..+\pi/2$
- ACOS(x) arccosinus à valeur dans $0..\pi$
- ATAN(x) arctangente à valeur dans $\pi/2..+\pi/2$ (voir aussi Arg); pour une valeur entre dans - π et + π , utiliser arg(x+j*y)
- SINC(x) sinus cardinal sin(x)/x
- J1C(x) fonction de Bessel d'ordre 1 cardinal (sic) = J1(x)/x. Limité à |x|<15 (au-delà=0).
- BESSEL(n,x) fonction de Bessel d'ordre entier n = Jn(x). Limité à |x| < 30 (au-delà=0).
- SQRT(x) racine
- SQR(x) carré
- SIGN(x) signe
- LN(x) népérien
- LOG(x) décimal

- ERF(x)fonction d'erreur
- INT(x)partie entière
- NOT(x) renvoie 0 si x est différent de 0 et 1 si x=0
- MIN(exp); MAX(exp); MOY(exp); SOMME(exp) renvoie la valeur minimale, maximale, la moyenne ou la somme de l'expression exp. Pour faire une moyenne de x pondérée par n taper xm=somme(x*n)/somme(n).
- sommeF(exp) ou sumF effectue la somme mais dans l'espaces des fréquences donc sur la valeur des "harmoniques", la variable temps (première colonne) n'est bien sûr pas permise, mais vous avez accès à la fréquence (f par défaut). De même moyF(exp) ou meanF pour la moyenne.
- INT(x) partie entière
- FRAC(x) partie fractionnaire
- FACT(x) factorielle
- GAMMA(x) fonction gamme
- CEIL(x) plafond
- ERF(x) fonction d'erreur

Le système reconnaît π (Ctrl+P) ou pi ou Pi...

Le nom des fonctions peut être écrit indifféremment en majuscule ou minuscule.

L'exponentiation s'écrit y^x avec x nombre positif ou y^x (expression).

Les nombres doivent commencer par un chiffre et utiliser la notation informatique : 1.23E+5.

On peut indexer les variables et les paramètres à l'aide de crochets []:

Pour les **variables**, à l'intérieur de [], i désigne la ligne courante, la première ligne étant numérotée 0. La désignation de la valeur de la grandeur G d'une autre ligne se fait par G[expression fonction de i], i n'étant interprété ainsi qu'à l'intérieur des crochets. Si l'expression renvoie une valeur non entière, on prend l'entier le plus proche. Lorsque la valeur désigne un numéro de ligne inférieur (resp. supérieur) à la première (resp. dernière), on ne prend pas en compte la ligne. Donc G[i-1] désigne la valeur de G à la ligne précédent la ligne courante, on peut donc définir une vitesse par v=(x[i+1]-x[i-1])/(t[i+1]-t[i-1]) et les premier et dernier points n'auront pas de vitesse définies. Pour les affectations de variables, les seules syntaxes permises sont v[i]= et v[0]=, autrement dit pas d'expression possible à l'intérieur des crochets.

A l'extérieur des crochets pour repérer une ligne, utiliser iLigne pour éviter des confusions avec une grandeur appelée i. Ex : z=iLigne*10 crée une variable de valeur 0 10 20 ...

Pour les **paramètres**, la valeur entre crochets [] désigne la page et donc L[3] désigne la valeur de L dans la troisième page, on peut donc faire des calculs entre pages de type M=(L[3]-L[4])/4.

Créé avec HelpNDoc Standard Edition: Sites web iPhone faciles

Equations

- **x=solve(f(x),x1,x2)** définit x et résout l'équation f(x)=0. La recherche peut d'une part ne pas aboutir et d'autre part trouver une racine qui n'est pas celle recherchée. Dans ces deux cas il faut initialiser la recherche en tapant dans le tableau du dossier Valeurs une valeur approchée. x1 et x2 sont deux paramètres facultatifs qui permettent d'une part de limiter les valeurs possibles des résultats à x1<x<x2 et d'autre part initialisent la recherche à (x1+x2)/2. Exemple, y étant déjà définie, pour résoudre 2x2+xy+1=0, il faut entrer x=solve(2*x*x+x*y+1). Autre forme : **x=solve(f(x)=g(x),x1,x2)** qui résout l'équation f(x)=g(x).
- **y**'=**f**(**x**,**y**) résout l'équation différentielle y'=dy/dx=f(x,y) avec y(initial)=y0. Dans le cas d'une simulation le paramètre y0 est créé automatiquement (il faut donner sa valeur dans le feuillet paramètres), sinon y0 est la valeur initiale expérimentale. Exemple l'équation de charge d'un condensateur s'écrit Uc'=(E-Uc)/RC.
- **y**´´=**f**(**x**,**y**,**y**´) résout l'équation différentielle y´´=d2y/dx2=f(x,y,y´) avec y(initial)=y0 et y´(initial)=y´0. Dans le cas d'une simulation y´0 et y0 sont des paramètres expérimentaux à définir dans le feuillet paramètres. Dans le cas d'une modélisation y0 est la valeur initiale expérimentale et y´0 un paramètre de modélisation. Exemple pour résoudre l'équation de Van der Pol, il faut entrer quelque chose du type y´´=-y-2*y´*if(abs(y)<S,-0.15,0.52). Voir fichier d'exemple vdp.rw3. x est obligatoirement la première variable. Dans les options de modélisation, on peut imposer aussi la recherche de y0 (case à cocher valeur initiale).

Ces deux fonctions ne sont disponibles que pour la modélisation ou en mode simulation.

Pour créer un système d'équations différentielles en mode simulation, il faut prédéfinir les variables par une fonction "vide" $y' = ou \ y'' = .$ Par exemple pour résoudre le système x' = -kx - kk.y y' = -ky - kk.x avec x(0) = 0 et y(0) = 1, il faut taper :

$$y' = -k*y-kk*x$$

et entrer les valeurs 0 et 1 pour x0 et y0 dans le feuillet paramètres.

Voir le fichier d'exemple oscillateurs couplés.

Dans le cas d'une modélisation, la présence de plusieurs équations différentielles est interprétée comme un système. Il y a incompatibilité entre les trois types de modélisation : fonction, équations différentielles d'ordre 1 et d'ordre. Si vous avez un système d'équations avec une d'ordre 1 et l'autre d'ordre 2, il faut transformer celui-ci de manière à avoir trois équations d'ordre 1.

La technique est la même pour créer un système à résoudre par la méthode d'Euler : voir chuteEuler.rw3 et oscillateur

Créé avec HelpNDoc Standard Edition: Générateur complet d'aides multi-formats

Trigonomètrie

Le bouton ou disponible dans la fenêtre grandeurs indique le mode sélectionné et permet la modification en cliquant dessus. Les calculs en degrés se font en degrés décimaux indépendamment de l'entrée ou l'affichage des données qui peut se faire en sexagésimal. Le mode par défaut peut être choisi par le menu options (onglet calcul), le logiciel est initialement en mode degré.

Créé avec HelpNDoc Standard Edition: Générateur de documentation complet

Filtres

- **filtre**(x,G(f)) : filtre la variable x dans l'espace des fréquences G(f) étant le gain du filtre.
 - Ex 1 : z=filtre(x,1/(1+j*f/1000)) qui traverse un passe-bas de fréquence de coupure 1 kHz.
 - Ex 2 : z=filtre(x,exp(j*pi/6)) qui déphase toutes les harmoniques de pi/6 (même spectre mais pas même fonction !).
 - Si vous " oubliez " la variable x, F=filtre(1/(1+j*f/1000)), cela définit un filtre : il est alors possible de tracer la courbe de réponse en norme dans la fenêtre FFT. Dans la fenêtre temporelle vous aurez la réponse impulsionnelle du filtre.Vous pouvez utiliser ensuite ce filtre : z=filtre(x,F).
 - Voir le fichier d'exemple filtre.rw3
- **env(x)**: détermine l'enveloppe haute d'un signal x par dérivation pour repérer les

maxima. Pour le lissage éventuellement nécessaire, cette fonction utilise les paramètres de la dérivée.

- **env(x,FFT)** : détermine l'enveloppe haute d'un signal x comme la norme du signal analytique déterminé par une FFT.
- **env(x,mini)** : détermine l'enveloppe basse d'un signal x.
 - \circ Ces fonctions doivent apparaître seules dans une définition y=env(x) mais pas y=env(x)*3.
 - Voir le fichier d'exemple osccoup.rw3
- **env(x,equation)** : détermine les valeurs d'une fonction lissée entre les points obéissant à l'équation.
- **harm**(x,debut,fin) : reconstitue un signal obtenu par un filtre idéal coupant les composantes de Fourier en dehors de l'intervalle début à fin. Début et fin sont des entiers et représentent le numéro de l'harmonique.
 - Exemple 1 : harm(x,1,1) donne le fondamental de x si la FFT est effectuée sur une période.
 - Exemple 2 : harm(x,1,5) somme les cinq premières harmoniques de x si la FFT est effectuée sur une période.
 - Voir le fichier d'exemple harm.rw3
- **corr**(x,y): fonction de corrélation de x et y. Le résultat de cette fonction est relatif au décalage t. Pour que la courbe soit interprétée correctement, il faut donc utiliser en abscisse ce décalage qui est fourni par la fonction **tcorr(t)**: si le temps, supposé être la première colonne, va de t1 à t1+duree, le retard va de –duree/2 à +duree/2. Voir les fichiers d'exemple RTL et phase
 - ATTENTION : pour ces fonctions, on utilise une FFT, si vous voulez avoir des résultats qui aient un sens ne pas oublier les conditions d'utilisation de la FFT. Souvenez-vous en particulier qu'une FFT suppose implicitement que le signal est périodique de période la durée d'acquisition : en cas de résultat bizarre, essayer de vous représenter votre fonction périodisée. On peut définir la période du signal et le fenêtrage en ouvrant la <u>fenêtre Fourier</u>, modifier les paramètres de FFT.

Créé avec HelpNDoc Standard Edition: Créer des aides HTML, DOC, PDF et des manuels depuis une même source

Méthode d'Euler (simulation)

On peut programmer la méthode d'Euler en utilisant la syntaxe z[i], i étant le point courant, i=0 étant le premier point. z[0]= permet d'initialiser z. i étant le point courant, ne peut intervenir dans la partie droite à calculer que des termes d'indice inférieur ou égal à i. Dans la partie gauche à affecter, ne peut intervenir que [i].

On peut omettre du côté gauche [i] : z=x[i]+x[i-1] est équivalent à z[i]=x[i]+x[i-1]

La boucle "for i := 1 to N-1 do begin ... end;" qui est sous-entendue s'étend de la première ligne contenant un terme du type z[i] jusqu'à la dernière ligne du même type.

On peut écrire explicitement la boucle mais c'est juste pour faire " joli " : le memo expressions (i.e. expressions des diverses grandeurs) n'est pas un memo programme. Seuls [0], [1] ou [i] sont possibles du côté gauche (grandeur à affecter). Le symbole = signifie affecter (:= du Pascal). Tout ceci est à taper directement dans le mémo "expressions" (ne pas utiliser le bouton Y+ pour créer v ou y).

Exemples:

'Chute ; y étant l'axe vertical orienté vers le haut

$$g=-9.81_m/s2 => g=-9.81 m/s^2$$

't est rempli automatiquement de manière régulière

$$\Delta t = t[1] - t[0]_s$$

Initialisation

$$y[0]=0_m => y[0]=0 m$$

$$v[0]=0_m/s => v[0]=0 m/s$$

'sous-entendu ou explicite

for i := 1 to N-1 do begin

$$v[i]=v[i-1]+q*\Delta t_m/s$$

$$y[i]=y[i-1]+v[i-1]*\Delta t_m$$

'sous-entendu ou explicite

'end;

$$yth=y[0]+v[0]*t+g*t*t/2_m$$

Remarque (méthode de Heun) : on peut prendre

```
y[i]=y[i-1]+(v[i-1]+v[i])^*\Delta t/2
au lieu de
y[i]=y[i-1]+v[i-1]^*\Delta t
w0=1\_rad/s
\Delta t=t[1]-t[0]\_s
Initialisation
y[0]=1\_m=>y[0]=1
v[0]=0\_m/s=>v[0]=0
m/s
Prédéfinition de y (forward) car utilisée par le calcul de la vitesse v
<math display="block">y=
for i := 1 to N-1 do begin
v[i]=v[i-1]-sqr(w0)^*y[i-1]^*\Delta t
y[i]=y[i-1]+v[i-1]^*\Delta t\_m
end;
yth=cos(w0*t)
```

Créé avec HelpNDoc Standard Edition: Créer des documents d'aide PDF facilement

Incertitudes

Les incertitudes définies pour les grandeurs expérimentales devraient être des incertitudes-type de manière à ce que la loi de propagation (par addition des variances) puisse s'appliquer (Les options de tracé des ellipses le supposent également).

u(x) renvoie l'incertitude de la grandeur x.

Expression de l'incertitude type

- Pour une mesure avec des graduations de longueur pas, l'incertitude-type est : pas/sqrt(12)
- Pour un instrument avec une erreur de justesse maximale donnée : erreur/sqrt(3)
- Pour un appareil de précision p, l'incertitude-type est p/sqrt(3)

Pour un appareil type voltmètre avec une précision de (pc % de lecture + N . chiffre le moins significatif), l'incertitude sur x est donnée par (x*pc+N*ms)/sqrt(3) avec ms

valeur correspondant à l'unité du dernier chiffre. On suppose que le constructeur donne un intervalle de distribution rectangulaire, ce qui n'est pas garanti et n'est indiqué nulle part.

La propagation des incertitudes (incertitudes composées) se fait par addition des variances.

Exemple:
$$U=R I$$
, $u(U)^2/U^2=u(R)^2/R^2+u(I)^2/I^2$

L'incertitude sur les paramètres peut-être affectée (voir les <u>options de modélisation</u>) d'un coefficient d'élargissement de Student correspondant à un niveau de confiance de 95%.

Le test du χ^2 (chi2) affiche un χ^2 réduit qui devrait être proche de 1, si le modèle est correct et si les incertitudes données pour les grandeurs sont des incertitudes-type.

Le test du χ^2 s'active en cliquant sur le bouton "Options" de la modélisation et en cochant l'élément adéquat.

L'affichage des ellipses d'incertitude suppose qu'il n'y a pas corrélation entre les deux grandeurs.

Si on a entré des incertitudes-type

- avec une loi normale, une ellipse de demi-axe u correspondra à un intervalle de confiance de 68%, 2u de 95% et 3u de 99,7%.
- pour une loi rectangulaire u correspondra à 58%, 2u à 106% (sic) et 3u à 173% (resic)

Créé avec HelpNDoc Standard Edition: Générateur d'aides CHM gratuit

Indexation

On peut indexer les variables et les paramètres à l'aide de crochets []:

Pour les **variables**, à l'intérieur de [], i désigne la ligne courante, la première ligne étant numérotée 0. La désignation de la valeur de la grandeur G d'une autre ligne se fait par G[expression fonction de i], i n'étant interprété ainsi qu'à l'intérieur des crochets. Si l'expression renvoie une valeur non entière, on prend l'entier le plus proche. Lorsque la valeur désigne un numéro de ligne inférieur (resp. supérieur) à la première (resp. dernière), on peut, selon l'option choisie dans Options, onglet Calcul, soit ne pas

prendre pas en compte la ligne (utile pour les dérivations centrées aux extrémités v[i] = (x[i+1]-x[i-1])/(t[i+1]-t[i-1]), soit considérer la valeur comme nulle (utile pour les premiers points d'un filtre numérique s[i]=e[i]-0.2*s[i-1]. Donc G[i-1] désigne la valeur de G à la ligne précédent la ligne courante, on peut donc définir une vitesse par v=(x[i+1]-x[i-1])/(t[i+1]-t[i-1]) et les premier et dernier points n'auront pas de vitesse définies. Pour les affectations de variables, les seules syntaxes permises sont v[i]=et v[0]=, autrement dit pas d'expression possible à l'intérieur des crochets.

Pour les **paramètres**, la valeur entre crochets [] désigne la page et donc L[3] désigne la valeur de L dans la troisième page, on peut donc faire des calculs entre pages de type M=(L[3]-L[4])/4.

Créé avec HelpNDoc Standard Edition: Avantages d'un outil de création d'aide

Fourier

Créé avec HelpNDoc Standard Edition: Outils facile d'utilisation pour créer des aides HTML et des sites web

Options Fourier

Onglet calcul

- Fréquence réduite: tracé en fonction de f/f0 où f0 est le pas de fréquence.
 Dans le cas où vous avez sélectionné une période, celle-ci est la fréquence du signal, l'axe est alors gradué en numéro d'harmonique.
 - On suppose que les points sont répartis régulièrement entre t=0 et t final.
- Lorsque le nombre de points n'est pas une puissance de 2, on effectue un
 " Zero padding " i.e. qu'on complète avec des zéros jusqu'à avoir 2n points.
- Fenêtre: rectangulaire ou naturelle, Hamming (pour meilleure résolution en fréquence) ou sommet plat (pour meilleure résolution en amplitude) et naturelle corrigée (avec élimination, autant que faire se peut, des artefacts liés à la non synchronisation; cela suppose que votre signal soit une somme de fonctions périodiques de période nettement plus petite que la durée d'acquisition).
 - La fenêtre de Hamming est $0.54-0.46*\cos(2 \pi t/T)$.
 - La fenêtre à toit plat est une moyenne de 9 pics autour d'un pic i avec les coefficients suivants :
 - i:1;i1:0,934516;i2:0,597986;i3:0,179644;i4:0,015458.

Onglet superposition

- Enveloppe: trace, sous forme de ligne, le spectre a un pas plus fin (calcul sur 1024 points) que l'inverse du temps d'acquisition pour mettre en évidence les problèmes liés à la non-synchronisation (leakage). Cette enveloppe ne présente de l'intérêt que pour des points expérimentaux en petit nombre. Voir le fichier d'exemple fft.rw3.
- Superpose page : cocher cette case pour afficher plusieurs pages simultanément. On peut choisir les pages à superposer à l'aide du bouton

(toutes les pages par défaut). Remarque : pour superposer des graphes de différents fichiers, fusionner d'abord ceux-ci (menu Fichier Fusionner ou Page Nouvelle Fichier).

• Onglet représentation

- Nombre d'harmoniques : permet de limiter le nombre d'harmoniques affichées.
- o **Décalage** : écart en pixels entre les différents spectres.
- Décibel : axe Y gradué en dB. Dans ce cas, mini dB permet d'éliminer du graphe les harmoniques trop faibles.

Créé avec HelpNDoc Standard Edition: Produire des livres EPub gratuitement

Fenêtre Fourier

Le calcul de FFT est **TOUJOURS** effectué sans vérification d'aucune sorte. La variable temporelle est supposée être la première variable. La variable fréquentielle est appelée f (pour graduation des axes et utilisation dans la fonction filtre). Le résultat peut être aberrant si vos données ne respectent pas un minimum de précaution. Si l'option complément à zéro est activée, on complète les mesures effectuées par des zéros de manière à avoir un nombre de points égal à une puissance de 2 (c'est le mode de fonctionnement "normal" d'une FFT et c'est la valeur par défaut), sinon on effectue une **INTERPOLATION** (pour que l'interpolation soit correcte on doit être très **LOIN** de la limite de Shannon). On effectue la FFT sur le résultat.

Le menu local (clic droit) et la barre de boutons permettent :

variables : choix des variables à représenter.

zoom : fonctionne uniquement sur l'axe des fréquences.

copie le tableau des raies dans le presse-papiers pour récupération dans un traitement de texte.

copie le spectre dans le presse-papiers au format WMF pour récupération dans un traitement de texte.

copie de même le graphe temporel.

fonction du temps: affiche la fonction du temps correspondante. Fonctionne en bascule. On peut modifier la hauteur par glissement de la ligne séparant les deux graphes. On peut définir la zone sur laquelle s'effectue la FFT en glissant les lignes verticales.

tableau : affiche le tableau de valeurs correspondant. Fonctionne en bascule. On peut modifier la largeur par glissement de la ligne séparant le tableau des graphes. Les phases affichées respectent la convention : signal réel=partie réelle de a.exp(jf).exp(jwt), autrement dit a.cos(jωt+φ). La phase est donc celle d'un cosinus.

Le menu coordonnées : choix des variables à représenter.

période : recherche automatique (donc ne marche pas à tous les coups !) de la période.

sélection de tous les points dans l'espace temporel pour calculer la FFT.

<u>options</u>: permet de choisir le type de fenêtrage, le nombre maximum d'harmoniques à afficher, l'ordre du lissage. Ces options agissent aussi sur les <u>fonctions</u> utilisant la FFT: filtre, harm, corr, env.

sonagramme : axe horizontal temporel, vertical fréquentielle, niveau indiqué en fausses couleurs ou en niveau de gris. On peut choisir d'afficher en dB. On a le choix du pas de tracé et de calcul. Si le pas de calcul est plus grand ...

On peut choisir un curseur fréquence qui indique la valeur du point le plus proche du pointeur de la souris. S'il y a plusieurs grandeurs superposées, pour choisir la grandeur active cliquer sur le nom de celle-ci au sommet de l'axe des Y. La frappe de la touche F10 (ou le menu local "enregistrer la fréquence") permet de sauvegarder la valeur de la fréquence courant dans un paramètre. Après avoir cliqué sur "OK" dans la boite de

dialogue, ces valeurs pourront être retrouvées dans la fenêtre "Grandeurs", onglet "Paramètres". Un clic garde l'état actuel comme référence et permet d'indiquer l'écart entre le curseur et la référence. Un deuxième clic désactive cette référence. On peut ajuster la fréquence maximale du graphe en cliquant/glissant l'axe des f.

Conseils d'utilisation:

Mes conclusions PERSONNELLES : suite aux différents articles du BUP à ce sujet, je pense qu'il faut distinguer deux utilisations :

- calcul de série de Fourier : dans ce cas il faut une période, un fenêtrage rectangulaire, un lissage à 0 et l'interpolation ne devrait pas poser de problème. Remarque : dans ce cas, on élimine autant que faire se peut les artefacts liés à la non synchronisation.
- analyse spectrale (modulation, musique ...) : dans ce cas le signal n'est même pas périodique en pratique (Par exemple porteuse et signal de pulsation non commensurables), il faut un grand nombre de périodes de la porteuse, et un fenêtrage et un lissage peut être utile. On risque d'être près de la limite de Shannon.

La boite liste permet de choisir entre différents modes :

Le curseur fréquence indique la valeur du point le plus proche du pointeur de la souris.

Créé avec HelpNDoc Standard Edition: Produire facilement des livres électroniques Kindle

Modélisation

Créé avec HelpNDoc Standard Edition: Créer des livres électroniques EPub facilement

Généralités sur la modélisation

On ouvre la boite de modélisation par ou le menu local (clic droit) du graphe ou en cliquant sur la barre verticale "modélisation". On le referme par le même bouton ou par le menu local de la modélisation " fermer ". Remarque : on peut laisser active la modélisation lorsque la boite est fermée en choisissant dans la boite de dialogue options graphique l'option "points et modèle". On peut aussi cliquer sur le bouton

qui remplira le mémo à votre place.

Le choix du menu " Mise à jour " (raccourci F2 ou touche Entrée du pavé numérique) ou

du bouton MàJ effectue la prise en compte du mémo.

Voir aussi modélisation graphique qui permet le choix de modélisations prédéfinies. Ce bouton peut être éventuellement inactif.

On entre les modélisations sous la forme y(x)=f(x) par exemple $y(x)=a^*x+b$. Le texte

sera pris en compte à la suite de deux frappes de la touche entrée (une première interprétée comme passage à la ligne, le deuxième comme une validation), on peut

aussi utiliser F2 ou le bouton \footnote{M} . Les fonctions entrées sous la forme y(x):=f(x) trace la fonction sans faire d'ajustement. Exemple :

$$y=A*(1-exp(-t/\tau))$$

y := A

 $y:=A*t/\tau$

déterminent A et τ à l'aide de la première fonction et trace l'asymptote et la dérivée à l'aide des deux autres. Voir le fichier d'exemple charge.rw3.

On peut définir plusieurs fonctions chacune ayant son propre intervalle de définition. Les bornes de ces intervalles apparaissent sous forme de croix ou de barres verticales. Il suffit pour cela d'entrer autant de fonctions que nécessaires (en les séparant par la

touche Entrée) **PUIS** de définir les bornes par le bouton cela ouvre un menu dont les n premières lignes permettent de tracer, par glisser déplacer, un rectangle contenant les points à modéliser. L'item suivant permet d'ajouter un modèle dans l'autre sens : vous définissez les bornes d'un intervalle **PUIS** vous entrez la fonction dans la boite de dialogue qui s'ouvre alors. Attention cela peut être ambiguë si les coordonnées du graphe ne correspondent pas au modèle. L'item suivant est une remise à zéro (modélisation de l'ensemble des données). On peut ensuite déplacer les losanges de définition des bornes à la souris. Ces bornes sont tracées sous forme de losange pour le début et de carré pour la fin ou de barres verticales dans le cas où l'abscisse est la variable de contrôle de la modélisation. Remarque : dans l'état initial (modélisation sur l'ensemble des données), ces barres sont peu visibles car confondues avec les axes (on voit uniquement un triangle).

Si vous définissez plusieurs modèles sur des intervalles distincts, le logiciel renvoie l'intersection des modélisations. Celle-ci est calculée par dichotomie dans la zone se trouvant entre les deux intervalles, zone dans laquelle on peut penser que chacun des deux modèles s'applique par extrapolation. Une intersection dans un des intervalles de définition serait par nature douteuse puisque l'une des modélisations est correcte et pas l'autre. S'il n'y a pas affichage de l'intersection, écartez un peu les zones des deux modèles.

On peut aussi exclure un point particulier en le sélectionnant par clic, puis en frappant la barre d'espace (fonctionnement en bascule), ce qui permet de détecter les points d'influence.

On peut entrer les valeurs des paramètres dans la grille en dessous, on sélectionne le

paramètre en cliquant sur sa valeur dans le tableau. On visualise le résultat SI le graphe comporte les variables y et x et si la case " tracé automatique " est cochée. Les boutons permettent de modifier à la souris les paramètres : un clic sur les petites flèches de la barre fait varier le paramètre de 2 %, un clic sur les grandes multiplie ou divise par 2. Le bouton permet de changer de signe. On peut ajuster par le bouton " Ajuster " ... Le résultat s'affiche dans le mémo du dessous. On peut empêcher le calcul et le tracé automatique à chaque modification de la valeur d'un paramètre en décochant la case " tracé automatique ". Ceci peut être utile lors du réglage initial des paramètres pour empêcher des calculs inutiles ou éviter des erreurs de calcul. Dans ce cas, il faudra cocher cette case pour effectuer le calcul et tracer le modèle.

Si le modèle est une <u>équation différentielle</u> d'ordre 2 un bouton " y´ " permet d'affecter à la valeur initiale de la dérivée sa valeur expérimentale.

L'option "Échelle selon modélisation dans la boite d'options du graphe permet de régler la taille du graphe selon le modèle (activée par la modélisation graphique).

Résultats

Les valeurs des paramètres sont données sous la forme p±q. L'intervalle [p-q,p+q] correspond à un intervalle de confiance de Student à 95 %. La précision relative sur la fonction est le rapport entre la moyenne quadratique des écarts fonction théorique/expérimentale et la moyenne quadratique de la fonction expérimentale. Lorsque l'intervalle de confiance est plus grand ou de l'ordre de grandeur de la valeur du paramètre, le logiciel signale que ce paramètre n'est pas significatif en remplaçant la précision par un ?. De même, lorsque le logiciel trouve une précision relative trop importante, pour signaler que la fonction proposée est mal adaptée, le logiciel remplace la précision par un ?

Si les incertitudes sont actives, l'ajustement se fait selon la méthode du χ^2 (khi 2) et on donne la valeur de χ^2 /(N-p) avec N nombre de points et p nombre de paramètres. Pour le χ^2 , les points de y(t) sont pondérés par l'inverse de racine de $(uy^2+(dy/dt)^2ut^2)$ si uy et ut sont les incertitudes-type données dans l'onglet correspondant. Pour que les incertitudes soient actives, il faut qu'elles soient définies pour toutes les grandeurs expérimentales (double clic sur l'en-tête du tableau de valeurs pour l'éditer) et que vous ayez coché la case "méthode du khi2" dans la boite de dialogue options obtenue à l'aide du menu local de la modélisation accessible par le clic droit.

Le test du χ^2 (chi2) affiche un χ^2 réduit qui devrait être proche de 1, si le modèle est correct et si les incertitudes données pour les grandeurs sont des incertitudes-type. Le test du χ^2 s'active en cliquant sur le bouton "Options" de la modélisation et en cochant l'élément adéquat.

suivi du choix "sauver modèle" permet de sauvegarder les résultats de la modélisation

dans une variable ; suivi du choix "sauver paramètres" permet de sauvegarder les paramètres de modélisation dans des paramètres figés (sinon ces paramètres sont

supprimés lors d'une nouvelle modélisation). Ce même bouton permet le choix d'options et d'opérations diverses (affichage des résidus, titre du graphe, ...)

Quelques conseils pour la modélisation

En cas d'utilisation d'une fonction adimensionnée du type exp(-t/tau) le logiciel effectue en fait la recherche de 1/tau et renvoie tau de manière à assurer une convergence plus rapide.

La régression non linéaire est très sensible à l'initialisation en particulier si la fonction est rapidement variable (par exemple X^N avec N comme paramètre) ou si la fonction est périodique (vous risquez de tomber sur une harmonique ou une sous-harmonique).

Les équations différentielles conduisent à des temps de calcul importants et sont très sensibles à l'initialisation. Une recherche manuelle préalable est donc souvent nécessaire. La variable explicative est obligatoirement la première.

Si vous utilisez des fonctions avec des points singuliers, par exemple les formules approchées pour les dosages pHmètriques, les bornes des intervalles doivent être suffisamment loin de ces points singuliers, car la recherche des paramètres peut alors conduire à des erreurs. Vous pouvez aussi utiliser la fonction IF qui permet d'éviter ce genre d'erreur. Par exemple pour le dosage d'un acide faible par une base forte : pH=if(v<Ve,pKa+log(v/(Ve-v)),14-pcB+log((v-Ve)/(v+V0))

Si vous utilisez des fonctions définies par continuité en un point, la modélisation peut conduire à une erreur. Il faut donc supprimer ce point ou définir des intervalles l'excluant. Ex : $\sin(x)/x$ conduira à une erreur en x=0. Dans ce cas précis, la solution est d'utiliser $\sin(x)$ qui est définie en x=0.

N'essayez pas de déterminer deux paramètres alors que votre courbe ne dépend que d'un seul : le rapport des deux. Exemple trivial : J.dW/dt=-Cf donc W=W0-Cf/J*t. On ne peut entrer un tel modèle : on peut déterminer la pente de la droite Cf/J mais pas séparément Cf et J. Autre exemple : résonance en courant d'un circuit RLC : I=U/abs(R+j*L*w+1/(j*C*w)), on ne peut déterminer U, R, L, C!

Lorsque votre courbe ressemble à une droite, il ne faut pas espérer trouver plus de deux paramètres. Ceci arrive généralement lors d'une étude sur un intervalle limité.

Si vous avez des fonctions sigmoïdes sans modèle physique, vous pouvez essayer :

y=a/(b+(c-b)*exp(-x/x1)). (x=0 y=a/c) (asymptote y=a/b) (milieu x=x1*ln(b)). y=a*(1+b*exp(k*x))/(1+c*exp(k*x)). (x=0 y=a*(1+b)/(1+c)) (asymptote y=a*b/c). Remarque : de manière usuelle, un ajustement de courbe consiste à minimiser un critère. Le critère le plus classique est le moindre carré, si $y_{exp}[i]$ est la mesure pour x[i] et f la fonction d'ajustement, la grandeur à minimiser est C = Somme sur i $((y_{exp}[i] - f([x[i]))^2)$.

Dans le cas linéaire, on est capable de calculer la dérivée de C par rapport aux paramètres a et b (y=a*x+b) et de résoudre, dC/da=0 et dC/db=0. C'est ce que font les calculatrices.

Dans les cas plus compliqués, c'est une technique d'approximation successive : on linéarise la dérivée, on résout et on boucle jusqu'à ce que C ne varie plus.

Créé avec HelpNDoc Standard Edition: Générateur d'aides Web gratuit

Sauvegarde de la modélisation

Par le menu local de modélisation (clic droit) "sauver modèle", on peut choisir entre :

- "sauve les valeurs modélisées", les valeurs de la fonction seront sauvées dans une variable "expérimentale" dont il faudra alors indiquer le nom.
- "sauver les paramètres et le modèle page par page", les paramètres de modélisation seront transformés en paramètres expérimentaux, et le logiciel créera une grandeur calculée qui aura comme expression le modèle courant.
- "sauver les paramètres et le modèle globalement", les paramètres de modélisation seront transformés en paramètres expérimentaux globaux, et le logiciel créera une grandeur calculée qui aura comme expression le modèle courant, cette grandeur aura alors même valeur quelque soit la page.

Créé avec HelpNDoc Standard Edition: Documentation Qt Help facile

Options de modélisation

Ces options sont accessibles soit par clic droit dans la zone de modélisation soit par clic sur suivi du choix "options de modélisation".

- Tracé des ellipses d'incertitude: accessible uniquement si les incertitudes des grandeurs expérimentales sont définies.
- Inter/Extrapolation de la modélisation : si la case est cochée trace le modèle en dehors des bornes de définition de celui-ci et entre les points expérimentaux. On peut extrapoler quand la variable explicative est la 1ère colonne même si ce n'est pas l'abscisse : on définit les bornes d'extrapolation dans la dernière ligne, marquée (Mod) de la boite de dialogue « échelle manuelle ».

sinon la fonction n'est calculée que pour les points expérimentaux et ces points sont

joints par des segments de droite.

- Échelle selon modélisation : si la case est cochée détermine l'échelle du graphe selon le modèle courant
- Coeff. de corrélation : affichage de celui-ci et des P-valeurs correspondantes
- Intervalle de confiance : affichage de l'intervalle de confiance de la droite de régression
- **Intervalle de prédiction** : affichage de l'intervalle de prédiction, pour une observation individuelle
- P-valeur : affiche dans la zone de résultats les P-valeurs des coefficients
- **Test du \chi^2** (chi2): affiche un χ^2 réduit qui devrait être proche de 1
- Pages indépendantes : l'expression des modèles peut être différente selon la page concernée
- **Valeur initiale** : dans le cas d'une modélisation par équation différentielle, si la case est décochée, la valeur initiale est la valeur expérimentale ; si cochée, on considère la valeur initiale comme un paramètre à déterminer
- **Levenberg-Marquardt** : utilisation de cette méthode de recherche au lieu de Newton-Gauss. Après test, cette méthode s'est avérée plus fiable dans un cas : la fonction puissance y=a*x^n avec n comme paramètre.

Créé avec HelpNDoc Standard Edition: Créer des aides HTML, DOC, PDF et des manuels depuis une même source

Bornes

ouvre un menu avec trois sortes d'éléments :

- Modèle déjà défini : on définit alors les bornes de ce modèle en traçant par glisser déplacer un rectangle contenant la zone à modéliser.
- Nouveau modèle : on définit de la même manière les bornes de ce nouveau modèle ce qui ouvre ensuite une boite de dialogue dans laquelle on entre l'expression du modèle. S'il n'y a pas de modèle déjà défini, on peut grâce à dans l'onglet "prédéfini" choisir un modèle qui effectuera entre autre une initialisation des paramètres. On peut exclure un point particulier en le sélectionnant par clic, puis en frappant la barre d'espace (fonctionnement en bascule), ce qui permet de détecter les points d'influence.
- Remise à zéro : remet la première borne au début des données et la dernière à la fin.

Créé avec HelpNDoc Standard Edition: Générateur de documentation et EPub gratuit

Résidus

Tracé des résidus (écart entre valeur modélisée et valeur expérimentale) en fonction de la grandeur explicative ainsi que des incertitudes si celles-ci sont définies.

Ce graphe permet de voir s'il y a bien répartition aléatoire des écarts et de détecter les

points aberrants grâce au tracé de deux lignes correspondant au test de Student à 95% et 99%.

Remarque : on suppose que les écarts suivent une distribution gaussienne.

Dans la ligne d'état est indiquée la moyenne et l'écart type des résidus.

Si les incertitudes ne sont pas définies, on peut choisir d'afficher des résidus studentisés, résidus normalisés par l'estimation de la variance quand on a supprimé l'observation correspondante, les valeurs devraient donc se trouver à 95% entre -2 et +2.

Si les incertitudes sont définies, on peut choisir d'afficher des résidus normalisés par l'incertitude-type sur l'ordonnée.

Créé avec HelpNDoc Standard Edition: Générateur de documentation Qt Help gratuit

Divergence d'une modélisation

La divergence d'une modélisation peut provenir de trois choses :

- la fonction est totalement inadaptée (cela peut-être une faute de frappe) : relire votre modèle.
- une erreur de signe : comparer votre expression et le signe de vos paramètres.
- l'initialisation des paramètres est trop loin de la réalité. Cela arrive en cas de fonctions modélisables avec difficultés (équations différentielles, sinusoïdes) : il faut, dans ce cas, ajuster "à la main" avec les flèches de modification des paramètres avant de demander l'ajustement automatique par le bouton "ajuster".

Créé avec HelpNDoc Standard Edition: Produire des aides en ligne pour les applications Qt

Erreur de domaine de définition

Cette erreur survient pour des logarithmes d'argument négatif, des divisions par zéro...

Cela peut être du à une faute de frappe (signe), à une incohérence entre expression et valeur des paramètres. Cela peut également arriver lorsque lors de la boucle d'itération, l'ajustement de la valeur des paramètres part dans la mauvaise direction (volume d'équivalence d'un dosage) : dans ce cas, ajuster de manière plus précise vos paramètres avant de lancer l'optimisation.

Ce message d'erreur peut être gênant lorsqu'on se trouve dans la phase de réglage des valeurs initiales. On peut l'éviter en désactivant le tracé (case "Tracé auto." non cochée) jusqu'à ce qu'on ait réglé de manière approchée les paramètres. Il suffit de l'enfoncer de nouveau pour voir la courbe se tracer.

Créé avec HelpNDoc Standard Edition: Générateur de documentation iPhone gratuit

Ecart modélisation expérience

Si l'écart est trop grand entre modélisation et expérience, il se peut que la courbe modèle ne soit pas tracée parce qu'elle se trouve en dehors de l'échelle. On peut forcer cette courbe à se tracer en activant "échelle selon modélisation" dans la boite d'options graphiques.

Pour ne plus afficher ce message d'erreur, désactiver l'option "Initiation" dans Options Préférences.

Créé avec HelpNDoc Standard Edition: Générer facilement des livres électroniques Kindle

Modélisation graphique

Permet de tester rapidement un modèle en modifiant à la souris les paramètres à l'aide de points de contrôle. Lorsque ces points de contrôle ont une signification différente de la simple appartenance à la courbe, la signification de ces points est donnée dans la ligne d'aide. On peut terminer l'ajustement en cliquant sur le bouton ajuster. Les points de contrôle disparaissent lorsque vous fermez le panneau de modélisation. Pour réactiver ces points de contrôle, cliquer sur la courbe modélisée.

Remarque : ces points de contrôle n'existent que lorsqu'il y a un seul modèle (une fonction d'ajustement) présent.

Créé avec HelpNDoc Standard Edition: Outil de création d'aide complet

Time-out

Cette erreur survient au bout de 16 itérations de la boucle de recherche. Cela peut être du à une initialisation lointaine des paramètres et dans ce cas relancer l'ajustement par permettra de trouver la bonne valeur.

Créé avec HelpNDoc Standard Edition: Créer des documents d'aide PDF facilement

Tableau

Lorsqu'un modèle a été calculé le choix de "valeur modélisée" ouvre une boite de dialogue avec un tableau. Si vous donnez l'une des coordonnées, le logiciel calcule l'autre et trace des lignes de rappel sur le graphe.

Créé avec HelpNDoc Standard Edition: Générateur de documentation d'aide HTML gratuit

Paramètre "volatil"

Utilisation d'un paramètre susceptible de disparaître.

Vous utilisez un paramètre provenant d'un ajustement de courbe pour calculer une

nouvelle grandeur.

Si vous changez de fonction d'ajustement, ce paramètre va disparaître.

Vous pouvez rendre ce paramètre permanent en transformant à l'aide de la boite de dialogue "sauver paramètres". Ce menu est accessible soit par clic droit dans la zone de modélisation, soit grâce au bouton de la même zone.

Créé avec HelpNDoc Standard Edition: Générateur facile de livres électroniques et documentation

Algorithme

Voir les fichiers Regressi-modelisation.pdf et Regressi-incertitudes.pdf dans le répertoire de regressi.exe, accessible par le menu aide.

Créé avec HelpNDoc Standard Edition: Créer des aides HTML, DOC, PDF et des manuels depuis une même source

Origine

Signification de l'ordonnée à l'origine

Dans le cas d'une régression linéaire y=ax+b, on s'intéresse au test de l'hypothèse H $_0$: b=0, autrement dit la droite passe par l'origine.

Si Regressi indique b=0 au seuil critique α %, cela signifie qu'on ne rejette pas H₀ pour les seuils inférieurs à α , l'origine n'est pas significativement différente de 0. Plus précisément cela signifie que si b=0, la probabilité de trouver une valeur de b supérieure ou égale (en valeur absolue) à la valeur estimée actuelle est de α %,

Créé avec HelpNDoc Standard Edition: Création d'aide CHM, PDF, DOC et HTML d'une même source

Statistiques

Créé avec HelpNDoc Standard Edition: Générateur d'aides Web gratuit

Options statistique

On choisit la grandeur (variable ou paramètre) à traiter dans la liste.

Les cases à cocher permettent d'afficher ou non :

- la courbe de Gauss équivalente
- la distribution (segments de droite joignant les moyennes de chaque classe)
- les repères à \pm 2 σ ou \pm 3 σ , les bornes de l'intervalle de Student à 95 ou 99 %
- la valeur de la moyenne et de la médiane.

On peut choisir d'utiliser une cible et dans ce cas on donne la valeur de celle-ci.

On peut enfin paramétrer les classes soit de manière automatique, soit en en imposant le nombre ou l'amplitude.

Créé avec HelpNDoc Standard Edition: Créer des documents d'aide facilement

Fenêtre statistique

On peut supprimer des points localement à la fenêtre statistique en sélectionnant ceuxci par glisser déplacer puis en appuyant sur Suppr ou en sélectionnant supprimer dans le menu local (clic droit). On peut aussi utiliser la gomme (sélection d'un rectangle contenant ceux-ci par glisser déplacer).

Le menu local (clic droit) et les boutons permettent :

(menu caractéristiques) : affiche un tableau récapitulatif des différentes caractéristiques de la distribution. En particulier CV est le Coefficient de Variation : écart type divisé par la moyenne arithmétique exprimé en pour cent. C'est donc une dispersion relative. IC est l'abréviation de Intervalle de Confiance. ICm est l'intervalle de confiance sur la moyenne.

Options statistique: choix de la grandeur d'étude et des paramètres de représentation. On peut choisir d'afficher ou non:

- la distribution (ligne joignant la moyenne des classes
- les intervalles ± 2 ou ± 3 écart types, les intervalles de Student (μ 95 % et μ 99 %)
- la gaussienne équivalente
- la position de la moyenne et de la médiane.

On peut choisir les classes :

- automatique : dans ce cas l'amplitude d'une classe est la moitié de l'écart type
- amplitude imposée : on donne l'amplitude d'une classe et la borne inférieure de la première classe
- nombre imposé : on donne le nombre de classe, l'amplitude est l'étendue divisée par le nombre de classes
- effectif donné : on indique le nom de la grandeur qui donne l'effectif des classes

copie le graphe dans le presse-papiers pour récupération dans un traitement de texte.

copie le tableau dans le presse-papiers pour récupération dans un traitement de texte.

imprime le graphe et les tableaux.

permet de supprimer des points (sélection d'un rectangle contenant ceux-ci par glisser déplacer). Cette suppression ne joue que localement et n'a pas d'effet sur les données. Pour maintenir cette indépendance, il n'y a pas de mise à jour systématique de la fenêtre statistique lors d'une modification des données, sauf lors d'un ajout de données. Si vous voulez forcer une mise à jour, sélectionner la boite de dialogue options puis cliquer sur OK.

Cible : elle représente la valeur que devrait avoir la moyenne (notion utilisée par les biologistes). L'inexactitude absolue est l'écart Moyenne-Cible ; l'inexactitude relative la valeur absolue de cet écart divisée par la valeur de la cible.

Créé avec HelpNDoc Standard Edition: Créer des livres électroniques facilement

Fonctions statistiques

si y=ax+b **pente**(x,y)=a **origine**(x,y)=b

Autres fonctions : **eff**(x) valeur efficace de x ; **init**(x) valeur initiale; pos(x,expression,min/max) donne la valeur de x correspondant au mini ou maxi de l'expression.

Autres fonctions: **max**(exp); **min**(exp); **moy**(exp) valeur moyenne d'une expression; **stdev**(exp) écart-type ; **somme**(exp). La notation type calculatrice est permise : mean (pour moyenne) et sum (pour somme). Pour faire une moyenne de x pondérée par n taper xm=somme(x*n)/somme(n).

Attention valeur efficace est à prendre au sens signal : on considère que le signal est périodique, on cherche deux passages de seuil montant et on effectue le calcul entre ces deux seuils. En cas d'impossibilité le calcul est fait sur l'ensemble des données.

- **freq**(x) : fréquence du signal x le temps étant la première colonne
- **phase**(x,y) : phase de y para rapport à x = f(y)-f(x)
- Gauss(x, moyenne, écart type) : gaussienne
- **Poisson**(n, paramètre) : distribution de Poisson
- **Cnp**(n,p : integer) : coefficient binomial
- **Binom**(a : reel;n,m : integer) : distribution binomiale

Méthode de calcul de fréquence, phase et valeur efficace : cela fonctionne comme sur les oscilloscopes numériques :

Etape 1 : on cherche les maxi et mini, on détermine la référence = (maxi+mini)2.

Etape 2 : on cherche un front montant t0 au passage par la référence puis le front montant suivant t1.

Etape 3: on calcule Freq(x)=1/(t1-t0) et Phase(x,y)=t0y-t0x traduit en phase

Si t1 existe (nécessité de deux périodes pour en être sûr), on applique la définition des valeurs efficace entre t0 et t1. Sinon on effectue le calcul sur l'ensemble des points Remarque : avoir un grand nombre de points permet d'avoir des t0 et t1 précis et de pouvoir confondre la moyenne discrète et la moyenne continue.

Voir aussi la fenêtre statistique.

Créé avec HelpNDoc Standard Edition: Éditeur complet de livres électroniques ePub

Graphique

Créé avec HelpNDoc Standard Edition: Création d'aide CHM, PDF, DOC et HTML d'une même source

Options graphe

Remarque : le mode de tracé ci-dessous est le mode par défaut, vous pouvez définir un autre mode pour une courbe particulière dans la boite de dialogue <u>coordonnées</u>.

- **Tracé (par défaut) : points** (trace uniquement les points) ou **segment** (relie les points par des segments de droite).
- Ordre de lissage (de la B-spline) : plus l'ordre est grand plus la courbe est proche des points. Remarque : le tracé se fait selon une B-spline de 128 points : à utiliser pour avoir une courbe lisse avec un faible nombre de points. Pour lisser les défauts d'une courbe avec un grand nombre de points calculer plutôt une nouvelle grandeur avec la fonction lisse(y,n), ou une sauvegarde de modélisation. Le lissage par une B-spline est un polynôme d'approximation de Bernstein.
 - La représentation de type Shannon est une application du théorème de Shannon : on reconstruit une fonction en interpolant avec des fonctions sinus cardinal.
- Taille des points: 1 représente 1 pixel quelque soit le périphérique. Au-delà, n
 représente n pixels pour un écran VGA et la sortie sur imprimante se fera de
 manière proportionnelle. On peut rendre visibles ou non les points en cas de tracé
 différent de " points ". Lorsque les incertitudes sont utilisées, elles sont prioritaires
 sur les motifs de points.
- Tracé de grille : active ou non.

- Gras: si la case est cochée, le texte est en gras et les lignes sont épaissies, utile pour visualisation par une classe et pour impression dans le cas où vous trouver le tracé trop fin.
- **Tracé des ellipses d'incertitude**: actif uniquement si les incertitudes des grandeurs expérimentales ont été définies.
- ouvre une boite de dialogue de personnalisation des couleurs. Ceci concerne les options générales correspondant à des préférences et donc à faire une fois pour toutes. Les options liées plus intimement aux courbes sont à choisir dans la boite de dialogue coordonnée.
- **L'onglet page** permet de sélectionner la couleur, le motif et le type de lignes des différentes pages lorsque celles-ci sont superposées. On sélectionne la page à paramétrer dans la liste du haut puis on choisit une couleur, un motif de points et un type de ligne.
- L'onglet courbe permet de sélectionner la couleur, le motif et le type de lignes des différentes courbes. On sélectionne le numéro de courbe à paramétrer à l'aide du " compteur " du haut puis on choisit une couleur, un motif de points et un type de ligne. Remarque : lorsque les incertitudes sont utilisées, elles sont prioritaires sur les motifs de points.
- L'onglet modèle permet de sélectionner la couleur de tracé des modélisations. On sélectionne le numéro de courbe à paramétrer à l'aide du " compteur " du haut puis on choisit une couleur, un motif de points et un type de ligne. Il y a une exception : s'il y a un seul modèle qui concerne toutes les données, la courbe modélisée est tracée de la même couleur que les points de données.

Créé avec HelpNDoc Standard Edition: Outil de création d'aide complet

Outils graphiques

La boite liste déroulante en haut à gauche du graphe dans la barre de boutons permet de choisir un "outil" entre :

- Réticule données: trace un ou deux curseurs déplaçables par glisser déplacer et indique selon la configuration donnée par les cases à cocher la valeur de l'abscisse, de l'ordonnée, l'écart entre les deux curseurs ainsi que la pente de la droite joignant les deux curseurs. Pour avoir l'écart et la pente, il est nécessaire d'avoir deux curseurs et il faut donc sélectionner dans les deux boites listes la même variable. On peut récupérer la position du curseur dans un paramètre à l'aide de la touche F10.
- Curseur tangente : indique la tangente courante. Si on sélectionne l'option méthode des tangentes, cliquer sur un point avant une équivalence trace la

tangente courante, recherche la tangente parallèle et détermine le point d'équivalence ; en rouge est tracée la courbe lissée qui a permis de déterminer la tangente (il n'y a pas de trace si le logiciel ne trouve pas l'équivalence). On peut visualiser le tableau des points d'équivalence par clic droit et sélection de "Tableau des tangentes". On peut faire une remise à zéro par clic droit et sélection de "RàZ tangentes". La stœchiométrie des réactions est supposée par défaut être 1-1 (cas des dosages classiques acide base), la droite d'équivalence est tracée à mi-chemin des tangentes. Un clic sur une tangente déjà existante l'efface (existante voulant dire à 1% près de la valeur courante). On indique les valeurs de la pente (et des volume et pH en cas de méthode des tangentes) sur le graphe si la position est suffisamment différente d'une tangente déjà marquée (différente voulant dire d'au moins 10 % par rapport à l'échelle). L'option tangente déplaçable signifie que vous pouvez déplacer séparément le point de contact des tangentes supérieures et inférieures : les tangentes sont dans ce cas créées lors de la sélection du curseur tangente. On peut récupérer la position du curseur dans un paramètre à l'aide de la touche F1. On peut régler la stœchiométrie en indiquant les coefficients du becher et de la burette, cela peut être utile dans le cas d'un dosage redox ; mais on rappelle que lors des dosages redox, le potentiel de l'électrode n'est pas forcément le potentiel attendu en particulier avec des couples de potentiel supérieur à celui de l'eau, pour cause de potentiel mixte (ex : dosa}}ge Fe-Ce).

- Réticule libre: indique les coordonnées du pointeur. Un double clic ou la frappe de la barre d'espace trace des lignes de rappel et remplit un tableau avec les valeurs de l'abscisse et l'ordonnée. Un clic garde une trace du pointeur courant et permet d'indiquer les écarts et pentes entre cette trace et le pointeur (un autre clic fait disparaître cette trace). L'ordonnée "active" est celle qui correspond à l'axe à gauche. Ce tableau est visualisable par le menu local (clic droit) "Tableau des points". On peut faire une remise à zéro par le menu local "RàZ tableau". Ces traces fonctionnent en bascule, i.e. que si vous refaites la même opération au même endroit (à 8 pixels près), cela efface la trace. On peut récupérer la position du réticule dans un paramètre à l'aide de la touche F10.
- **Ligne**: tracé de lignes définies par les extrémités (glisser déplacer). Par la suite, si on sélectionne les extrémités, on déplace celles-ci sinon on translate le segment. Un double clic sur le segment permet le choix de la couleur, du type de tracé et d'indiquer une légende (équation, pente...). L'appui de la touche majuscule pendant le tracé permet d'obliger la ligne à être horizontale ou verticale.
- **Texte**: écriture de texte. Un texte est défini par deux points: le premier (appui sur le bouton) où sera positionné le point de référence et le deuxième (relâche du bouton) où sera placé le texte (centré). Dans le texte lui-même %X (resp. Y) indique d'écrire la valeur de l'abscisse (resp. ordonnée) du point de référence. Le point de référence peut être relié au texte par une ligne de rappel. Le point de référence peut

être marqué par différents motifs : flèche (sur la ligne de rappel), croix, ligne horizontale (repérage d'un maxi, d'une bande passante à - 3dB) ou verticale (repérage d'une équivalence, d'un instant particulier). On peut enfin choisir la page concernée par les " commande " %S (signification de la page), %Ci (valeur du i ème paramètre expérimental), %Pi (valeur du i ème paramètre de modélisation). Si vous voulez donc écrire un titre fonction de la page courante, le plus simple est de mettre celui-ci en commentaire de page : éditeur sur la ligne en dessous des menus et donner comme texte %S.

Une fois qu'un élément (ligne ou texte) est défini, le curseur **standard** permet de déplacer par glissement ou de modifier les paramètres par double clic. Lorsqu'on sélectionne une ligne par ses extrémités, on déplace cette extrémité, sinon on translate le segment. Pour le texte, on sélectionne le texte en cliquant dans le texte et dans ce cas on déplace le texte, sinon on déplace le point de référence. Un clic permet de se positionner sur le point expérimental le plus proche avec mise à jour du dossier « variables » de la fenêtre grandeurs. Le point sélectionné peut être supprimé en appuyant sur la touche Suppr. Lors d'une modélisation, le point sélectionné peut être activé/désactivé en frappant la barre d'espace (permet de tester les points d'influence).

Attention : les éléments de type texte, ligne ... sont fugitifs : ils servent à préparer une impression ou une copie vers le presse-papiers, en particulier ils sont effacés lors d'un changement de coordonnées.

- Gomme: cliquer sur l'élément à effacer. Si on dessine un rectangle par glisserdéplacer, cela supprime les points correspondants du graphe. La gomme est automatiquement désactivée après une utilisation pour éviter des effacements intempestifs. Pour faire des effacements successifs, appuyez sur la touche Ctrl pendant la manipulation.
- **Origine abscisse**: permet de redéfinir l'origine des abscisses (par ex dans le cas d'une synchronisation avec préacquisition) en cliquant sur la nouvelle origine.
- Calcul sur modèle: si une modélisation a été effectuée, par ex. y(x), ouvre une boite de dialogue avec un tableau de valeurs x y. Si l'on remplit la cellule x (resp. y) et que l'on valide, la valeur de y (resp. x) est calculée et reportée sur le graphe. On note la présence de deux boutons "RàZ" (remise à zéro) et "Imprime" (imprime le graphe et le tableau).

En mode simulation, vous pouvez modifier à la souris, par cliquer glisser une graduation, l'échelle de l'abscisse. Si l'axe des X est la variable de contrôle, cela mettra à jour le maximum de celle-ci.

Créé avec HelpNDoc Standard Edition: Environnement de création d'aide complet

Options texte

Un élément texte est défini par deux points, le point sur lequel on clique initialement qui est le point de référence où sera inscrit un motif et le point où l'on relâche le bouton qui est l'endroit où s'affichera le texte proprement dit.

L'onglet texte permet de définir le texte à écrire. On peut insérer dans le texte des " commandes " précédées par %. %X et %Y se réfère au point de référence. Le mémo du bas rappelle les différentes commandes. En cas de plusieurs pages, on peut indiquer la page concernée par les commandes en incrémentant / décrémentant par les boutons fléchés. Cette indication concerne la valeur des paramètres et le commentaire de page. Si donc vous voulez un titre dépendant de la page modifier les commentaires de pages (zone d'édition en dessous du menu) et indiquer %C comme commande.

L'onglet option permet de choisir la taille du texte, de l'entourer d'un cadre, de mettre le texte en position verticale, de choisir la couleur du texte et des motifs associés, de tracer une ligne de rappel entre le texte et le motif et enfin de choisir le motif : flèche (sur la ligne de rappel), croix, ligne horizontale (repérage d'un maxi, d'une bande passante à - 3dB) ou verticale (repérage d'une équivalence, d'un instant particulier).

Créé avec HelpNDoc Standard Edition: Générateur de documentation d'aide HTML gratuit

Options des vecteurs

- **Taille des vecteurs** : on indique la taille maximale du vecteur en % de la taille du graphe.
- **Nombre maximal** de vecteurs tracés : si le nombre de valeurs est plus grand, on trace un vecteur sur N.
- On peut imposer les composantes des vecteurs : celles-ci sont définies par défaut à partir des grandeurs calculées du type Diff(x,t). Vous pouvez imposer une composante parce que :
 - o vous l'avez obtenue autrement que par Diff(x,t)
 - o vous voulez tracer la quantité de mouvement ou la force
 - vous désirez faire autre chose que de la mécanique.
- **Prolongement** les vecteurs accélérations : on trace le vecteur et le prolongement jusqu'à la limite du graphe.

Créé avec HelpNDoc Standard Edition: Générer facilement des livres électroniques Kindle

Sauvegarde Position

Lors de l'utilisation du réticule, de la tangente, la frappe de la touche F10 (ou le menu

local "enregistrer la position") ouvre une boite de dialogue dans laquelle vous pouvez cocher les valeurs à sauvegarder. Parmi celles-ci se trouve dans tous les cas la position actuelle du réticule. Si vous avez créé un deuxième réticule en cliquant, il y également les valeurs des écarts entre les deux réticules.

Vous donnez un nom aux paramètres dans les boites d'édition au milieu de la boite de dialogue.

Après avoir cliqué sur "OK", ces valeurs pourront être retrouvées dans la fenêtre "Grandeurs", onglet "Paramètres".

Ces valeurs sont bien sûres utilisables dans tout calcul.

Créé avec HelpNDoc Standard Edition: Générateur facile de livres électroniques et documentation

Coordonnées

Accessible par le menu local (clic droit) ou le bouton de la barre d'outils

La liste des courbes actuelles s'affichent en haut. La courbe active sur laquelle agira la sélection est l'onglet sélectionné. On peut ajouter une courbe à l'aide du bouton ajouter (avec un maximum de six) et supprimer la courbe courante en cliquant sur supprimer.

Les ordonnées s'affichent de trois manières différentes : axe à gauche (principal), à droite (secondaire) et sans axe (pour les courbes dont la valeur numérique n'a pas d'importance : par ex. la dérivée d'une courbe de dosage). Les échelles des trois axes sont indépendantes. Les courbes relatives à un même axe ont la même échelle. Le titre de l'axe est soit le symbole de la grandeur soit sa signification : pour paramétrer ce choix, double cliquer sur l'en-tête du tableau de valeurs.

- **Zéro** permet d'imposer la présence du zéro sur l'axe.
- Le mode "courbes séparées" superpose les courbes à la verticale. On peut imposer aux axes d'être à la même échelle en cochant la case "Échelles identiques ". Si on sélectionne en même temps superposition des pages, c'est la superposition des pages qui se fait de cette manière.
- Zéro Y identiques permet d'avoir la même origine pour les différents axes.
- Abscisse identique impose une abscisse commune (cas général), sinon on peut imposer séparément les abscisses mais l'axe est le même pour tous (cas d'une superposition de deux courbes d'hystérésis, de deux portraits de phase ou de deux mobiles).
- Superposition des pages : comme son nom l'indique. On peut choisir les pages à

superposer à l'aide du bouton (toutes les pages par défaut). Remarque : pour superposer des graphes de différents fichiers identiques, fusionner d'abord ceux-ci (menu Fichier Fusionner ou Page Nouvelle Fusionner).

• **Fil de fer** (dans l'onglet mécanique) : active si abscisse identique est décochée. Les points correspondants des différentes courbes x, y sont reliés. Cela peut être utile si les coordonnées sont en fait les x(t) et y(t) de différents points d'un même système. On visualise alors l'évolution de ce système (mouvement d'un solide tournant en chute libre, mouvement d'un système bielle manivelle). L'<u>animation</u> de ce graphe peut alors être utile.

On choisit les types de tracés qui ne s'appliquent qu'à la courbe courante. Les valeurs par défaut sont modifiables dans "options graphiques". On a le choix entre :

- **Ligne**: tracé de ligne entre les points même si le tracé par défaut est point. Puis choix entre segments joignant les points, modélisation, lissage (par B-spline) ou interpolation de Shannon (par sinus cardinal).
- **Point** : tracé de points même si le tracé par défaut est ligne.
 - o Pour le mode point, on a le choix du motif avec quelques cas particuliers :
 - Barre: tracé pour le point numéro n d'un rectangle de base x(n) x(n-1) et de hauteur y
 - o **Trait**: trait vertical depuis l'axe jusqu'au point
 - o **Pixel**: juste un point
 - Incertitude
 - Échantillon : comme trait mais avec un motif au sommet
 - Réticule: traits vertical et horizontal depuis les axes jusqu'au point

Pour alléger la boite de dialogue on peut cacher les options ci-dessous en décochant la case " plus d'options ".

- Niveau de gris (onglet optique): tracé de lignes verticales de niveau de gris 1+a log(abs(y/ymax)), 1 étant blanc et 0 noir (les valeurs négatives sont ramenées à 0). Le tracé se fait de façon logarithmique sur un nombre de décade à définir à l'aide du curseur contraste. Certaines imprimantes peuvent ne pas fonctionner pour des problèmes de taille mémoire, dans ce cas allez dans la boite de dialogue Options onglet Impression et cochez la case " problème mémoire " les niveaux de gris ne seront alors plus imprimés.
- Vecteur vitesse (onglet mécanique) : cette option est disponible si l'abscisse n'est

pas la variable de contrôle (première colonne, a priori le temps). Elle permet de tracer en chaque point (x, y) le vecteur vitesse v. Par défaut le vecteur vitesse est défini par les variables Diff(x,t) et Diff(y,t), on peut imposer un autre vecteur (calculé autrement ou représentant la quantité de mouvement par exemple).

- **Vecteur accélération** (onglet mécanique) : même condition que ci-dessus en remplaçant dérivée par dérivée seconde. Elle permet de tracer en chaque point (x,y) le vecteur accélération a.
 - Les options des vecteurs sont accessibles par le bouton <u>"Options des</u> vecteurs"
- Indicateur coloré (onglet chimie): permet de tracer les points de la courbe avec comme couleur celle d'un indicateur coloré à choisir dans la liste à côté. On peut modifier cette liste en cliquant sur le bouton "outils" à côté. Il vaut mieux prendre dans ce cas comme motif de tracé un motif plein (disque par exemple). L'indicateur est défini par sa valeur de virage (pKa) et les deux couleurs extrêmes, la transition s'effectuant sur un intervalle de 1,5. On peut changer d'indicateur directement sur le graphe par un clic droit sur l'échelle de teinte.
- **Onglet texte** concerne un cas particulier, celui où l'ordonnée est une grandeur textuelle, dans ce cas, le texte correspondant est écrit comme une légende à côté du point de l'autre courbe (il en faut donc au moins une !). On peut régler la taille et le nombre de légendes écrites.
- **Spectre** (onglet chimie) : indique sur l'axe des x supposé être celui des longueurs d'onde, la couleur correspondant à la longueur d'onde.
- **Onglet astronomie** : permet les représentations usuelles en astronomie en inversant le sens des axes.

Si l'échelle manuelle est activée, un texte en rouge vous le rappelle et vous pouvez la désactiver en cliquant sur 🔯

ouvre une boite de dialogue de personnalisation des couleurs des pages, modèles...

Créé avec HelpNDoc Standard Edition: Produire des livres électroniques facilement

Fenêtre graphe

Le menu local (clic droit) et la barre de boutons permettent

Loupe (menu Echelle Zoom avant)

(menu Echelle Zoom arrière)

(menu Echelle manuelle)

(menu Echelle automatique)

ouvre une boite de dialoque permettant le choix des coordonnées

ouvre (ou ferme) le volet modélisation

permet d'identifier les pages (en cas de superposition) ou les ordonnées : place le commentaire de page (ou le nom de l'ordonnée) sur la courbe correspondante.

animation du graphe.

permet d'écouter la courbe courante : cela n'est possible que s'il y a plus de 1000 de points avec une fréquence d'échantillonnage correcte (de préférence 22050 ou 11025 Hz).

permet de recalculer toutes les données dans le cas d'utilisation de fonctions aléatoires et ainsi de faire un nouveau tirage (raccourci clavier F4).

Deuxième graphe: le menu local (clic droit) ou le bouton permet d'ouvrir un deuxième graphe indépendant du premier. Lorsque les deux graphes sont ouverts, le graphe actif, sur lequel portera la prochaine action (choix des coordonnées par exemple), est le dernier dans lequel on a cliqué, il est indiqué par soulignement des ordonnées.

La boite liste dans la barre de boutons permet de choisir un outil.

Le menu local **Copier** permet d'envoyer le graphe sous forme de bitmap (BMP), de metafile (WMF) ou de fichier traceur (PLT, fichier uniquement) vers le presse-papiers ou un fichier pour récupération par un traitement de texte. Remarque : si vous utilisez les graduations centimétriques, elles sont prévues pour une dimension de graphe de 16 cm x 10 cm, mais MSWord imprime avec une taille inférieure de 2,5 % si l'on passe par le presse-papiers et avec une taille supérieure de 2,5 % si l'on passe par un fichier ! Dans Word, le mieux est de faire « collage spécial » « métafichier Windows ».

Remarque 1 : Word OpenOffice peuvent récupérer les metafile (*.EMF) par le presse-

papiers. Le copier simple (bouton) envoie sous forme de Metafile. Cela fonctionne sous Windows7.

Remarque 2: pour diminuer la taille occupée par le graphe et faciliter la visualisation et l'impression avec votre traitement de texte, il peut être utile de prendre comme dimension des points 1 (les points expérimentaux seront représentés uniquement sous forme de points).

Un clic positionne sur le point le plus proche avec mise à jour du tableau de valeurs.

La frappe de la touche Suppr **supprime** le point le plus proche du curseur. Pour supprimer un ensemble de point utiliser la <u>gomme</u>.

Les unités sont affichés sur les axes

- sous la forme F(N) ce qui signifie que l'unité des axes est le newton
- ou sous la forme de Guggenheim F/N ce qui signifie que les nombres sans dimension affichés ont comme valeur la force F divisée par la force de 1 newton.

Créé avec HelpNDoc Standard Edition: Créer des livres électroniques EPub facilement

Animation

Le choix de (animation) dans la barre de boutons du graphe conduit à un menu permettant de choisir entre :

- animation en fonction de la **variable de contrôle**Cette variable est celle de la première colonne, typiquement le temps. Les boutons de "magnétophone" permettent de faire défiler point par point, en défilement avec une vitesse réglable par la glissière en haut, d'aller directement à la première ou dernière valeur. Une case à cocher permet un défilement en boucle. Une autre permet de laisser une trace des affichages successifs et donc de voir apparaître progressivement la courbe. Pour visualiser le mouvement d'un solide, activer l'option "fil de fer "dans la boite de dialogue coordonnées (cette option n'est visible que s'il y a plusieurs points différents x(t) y(t) donc si la case abscisse unique est décochée). C'était l'idée de départ : visualisation d'un mouvement (voir les fichiers d'exemple bille ou barre).
- animation en fonction de la valeur des paramètres expérimentaux.
 On change la valeur des paramètres par les curseurs. Dans ce cas, l'idée est de voir l'influence d'un paramètre sur une courbe (rôle des pages de Regressi) de manière automatique. On peut faire défiler automatiquement le paramètre courant à l'aide du bouton de "magnétophone". La vitesse est réglable par la glissière en haut à droite. Un clic sur les curseurs ouvre une boite de dialogue de paramétrage : choix des paramètres actifs, valeur de début et fin, nombre de pas, mode logarithmique. Une case à cocher permet un défilement en boucle. Une autre permet de laisser une trace

des affichages successifs.

Créé avec HelpNDoc Standard Edition: Qu'est-ce qu'un outil de création d'aide ?

Origine de l'axe x

accessible par le bouton outils de la fenêtre graphe

Cette fonction permet de redéfinir l'origine des abscisses. Par exemple si celle-ci est incorrecte pour des problèmes de synchronisation. On détermine la nouvelle origine en cliquant avec la souris sur la nouvelle origine. On a alors le choix entre changer la valeur de l'abscisse courante ou définir une variable secondaire translatée.

Créé avec HelpNDoc Standard Edition: Sites web iPhone faciles

Méthode de Cornish-Bowden

Accessible par le menu local (clic droit) de la fenêtre graphe

C'est une méthode d'étude des cinétiques type Michaelis. Soit une fonction y=a*x/(b+x), c'est une hyperbole d'asymptote y=a et x=-b. Si on trace l'ensemble des droites définies par les deux points (0,y) et (x,0), ces droites se coupent en x=-b et y=a. On a ainsi une méthode de détermination des asymptotes. Dans le cas d'une cinétique b=KM (constante de Michaélis) et a=vitesse limite =Vlim.

Méthode numérique: on sélectionne dans le menu local du graphe (clic droit) Cornish-Bowden, ce qui ouvre une fenêtre de type statistique. Le logiciel calcule l'ensemble des intersections et effectue les calculs statistiques sur ceux-ci. On peut

faire apparaître les valeurs en cliquant sur (fonctionne en bascule). permet de définir différentes options et entre autre de choisir soit une représentation statistique (Km ou Vm) soit un nuage de point (Km, Vm). Les valeurs ainsi déterminées sont considérées comme des paramètres expérimentaux et sont manipulables comme tels. La valeur est la médiane et la précision l'intervalle de Student à 95%.

Les options de copie et impression fonctionne de manière identique à la fenêtre statistique.

L'option de suppression de points aberrants n'est pas installée.

Créé avec HelpNDoc Standard Edition: Créer des documentations web iPhone

Suppression de points

On peut supprimer des points de trois manières.

• En mode tableau, sélectionner les lignes à supprimer en enfonçant la touche Maj. et

en déplaçant avec les flèches, puis frapper la touche Suppr. ou cliquer sur sélectionner dans le menu local (clic droit) supprimer sélection. On peut aussi sélectionner à la souris par cliquer déplacer qui sélectionne des lignes entières. Remarque : si une cellule est active, la touche Suppr. supprime le caractère courant. Il est nécessaire de sélectionner une ligne (et non une cellule de la ligne) pour supprimer cette ligne.

- En mode graphique
 - avec le curseur standard cliquer sur le point à supprimer, puis frapper la touche Suppr. Lors d'une modélisation, le point sélectionné peut être activé/désactivé en frappant la barre d'espace (permet de tester les points d'influence).
 - avec l'outil gomme (boite déroulante au-dessus du graphe), tracer un carré par glisser déplacer, cela supprimera les points à l'intérieur après confirmation. Pour effectuer plusieurs suppressions successives, enfoncer la touche Ctrl pendant la sélection.

Créé avec HelpNDoc Standard Edition: Produire des livres EPub gratuitement

Incertitudes graphiques

L'affichage des ellipses d'incertitude suppose qu'il n'y a pas corrélation entre les deux grandeurs.

Si on a entré des incertitudes-type

- avec une loi normale, une ellipse de demi-axe u correspondra à un intervalle de confiance de 68%, 2u de 95% et 3u de 99,7%.
- pour une loi rectangulaire u correspondra à 58%, 2u à 106% (sic) et 3u à 173% (resic)

Créé avec HelpNDoc Standard Edition: Générer facilement des livres électroniques Kindle

Fenêtre grandeurs

Créé avec HelpNDoc Standard Edition: Éditeur de documentation CHM facile

Valeurs

Si on crée un fichier par <u>Fichier Nouveau Clavier</u>, la barre de boutons du dossier valeurs permet la création d'une variable expérimentale et les boutons suivants sont disponibles :

Si le bouton est présent, il permet d'ajouter une variable expérimentale. Cette variable peut être sous forme texte ce qui permet d'attacher des étiquettes aux points d'un graphe.

La sélection d'une ligne ou d'un bloc par Maj+flèches puis Suppr. permet de supprimer des lignes de données, on peut aussi sélectionner par " cliquer déplacer " à la souris.

Si le bouton est présent, il permet de supprimer une variable expérimentale. Pour supprimer une grandeur calculée, il faut la supprimer du mémo expressions et valider deux fois ou cliquer sur.

permet d'indiquer la variable de tri du tableau. Cette variable se placera alors en première colonne. Rappel : la première colonne est la variable " explicative " au sens des statisticiens et c'est par rapport à elle que l'on dérive lorsqu'on utilise les équations différentielles. Remarque : si un logiciel de mécanique ne mets pas t en premier, il faut le replacer en premier pour avoir des graphes corrects et utiliser la modélisation par équations différentielles. Le tri est automatique par défaut mais on peut le désactiver dans la boite de dialogue "tri" ou dans le menu options, onglet acquisition.

Un double clic dans la zone d'en-tête du tableau (nom, unité) permet d'ouvrir une <u>boite</u> <u>de dialogue</u> permettant de modifier le format d'affichage de la grandeur, son unité, son nom (à manipuler avec précautions !), et l'expression de son incertitude si c'est une grandeur expérimentale. Elle permet également de choisir entre l'affichage du symbole de la grandeur ou un nom plus explicite : pour cela renseigner la zone " signification " et cocher la case adéquate en bas.

Créé avec HelpNDoc Standard Edition: Éditeur de documentation CHM facile

Grandeurs

Grandeur

Cette boite de dialogue permet de modifier le nom d'une grandeur expérimentale. Attention, il n'y a pas de vérification de cohérence. Elle permet également de définir l'incertitude de cette grandeur expérimentale à l'aide d'une fonction. Si vous laisser l'expression de cette fonction vide, vous pourrez taper les valeurs dans le tableau (attention, dans ce cas, les valeurs ne seront sauvegardées que si toutes les incertitudes sont définies, éventuellement à zéro). Elle permet enfin de donner l'unité.

Pour les grandeurs non expérimentales, elle permet de forcer l'unité.

On peut choisir le format d'affichage de la colonne concernée :

- Défaut : mode choisi dans le menu Options, onglet format.
- **Scientifique**: 1.234E+4; on donne le nombre de chiffres.
- **Fixe**: 123.56; on donne le nombre de décimales.

- Ingénieur: 12.3k; on donne le nombre de chiffres.
- Hexadécimal: 1Fh; on donne le nombre de bits.
- **Binaire**: 01110; on donne le nombre de bits.
- **Longue durée** : permet d'afficher des durées en seconde sous la forme hh:mm:ss Les formats ci-dessous sont relatifs à des données de type date et heure, c'est-à-dire sous Windows des valeurs en jours à partir du 01/01/1900.
- Date et heure: affiche sous la forme définie dans Windows typiquement jj/mm/aa hh:mm:ss
- **Date**: idem mais la date uniquement
- **Heure**: idem mais l'heure uniquement

Créé avec HelpNDoc Standard Edition: Générateur d'aide complet

Constantes

Si on crée un fichier par <u>Fichier Nouveau Clavier</u>, la barre de boutons permet la gestion des paramètres expérimentaux.

permet si présent d'ajouter un paramètre expérimental.

permet si présent de supprimer un paramètre expérimental.

permet de trier les pages selon le paramètre courant.

copie le tableau dans le presse-papiers pour récupération dans un traitement de

Pour modifier une cellule, se placer sur celle-ci grâce aux flèches du clavier puis frapper sur F2 pour passer en mode édition. On peut aussi cliquer une fois pour sélectionner, puis une deuxième fois à l'endroit voulu pour se mettre en mode édition.

Créé avec HelpNDoc Standard Edition: Documentation Qt Help facile

Expressions

Dans le mémo, on tape soit des commentaires (faire commencer la ligne par $\hat{}$) soit des définitions de grandeur sous la forme y=f(x) ce qui va créer la grandeur y et la calculer par f(x). Pour créer véritablement il faut appuyer sur le bouton mise à jour $\boxed{\checkmark}$ ou

sélectionner le menu " Mise à jour " (raccourci F2) ou encore frapper la touche Entrée du pavé numérique (la touche Entrée fait passer à la ligne). Le panneau sur le côté affiche les grandeurs disponibles (un clic sur l'une d'elle l'insère dans le mémo). Dans ce même panneau se trouve les différentes fonctions disponibles (l'aide en ligne donne alors la syntaxe). La grandeur créée peut être une variable (cas général) mais aussi un paramètre calculé (fonction de type moyenne...) ou un paramètre indépendant de la page (constante: par ex g=9.81). Les paramètres expérimentaux dépendant de la page

doivent être créés à l'aide du bouton

Le nom des grandeurs peut comporter uniquement des lettres ou des chiffres : pas de "prime" (réservé aux équations différentielles) de parenthèse, crochet etc. Dans le nom des grandeurs, on distingue minuscule de majuscule, cela permet d'étudier T(t), MAIS les boites listes de Windows sont incapables de le faire, donc faire attention dans celles-ci.

On peut indiquer l'unité à la suite de l'expression en séparant celle-ci par un blanc souligné _ (touche 8). V2=a*x+b_V crée la grandeur V2 et lui donne le volt comme unité.

Si on crée un fichier par <u>Fichier Nouveau Simulation</u>, le panneau au-dessus du mémo permet de définir la variable de contrôle.

Si le calcul d'une fonction conduit à une erreur (division par zéro ...), la valeur correspondante sera vide (un point singulier permis), s'il y a plus d'une erreur, toutes les valeurs à partir de celle ayant causé la deuxième erreur seront vides.

permettent de basculer du mode radian vers degré et réciproquement. L'affichage du bouton représente le mode actuellement utilisé.

La liste à gauche vous donne les grandeurs définies. Un clic sur une grandeur insère celle-ci dans le texte.

Créé avec HelpNDoc Standard Edition: Créer des documents d'aide facilement

Entrée de données au clavier

Menu: Fichier Nouveau Clavier

Création d'un nouveau fichier avec entrée de données au clavier avec mise en mosaïque du tableau de valeurs et du graphe.

On définit les grandeurs (nom, unité) et dans le cas des variables les limites du graphe par défaut.

La première variable est censée être l'abscisse et les autres les ordonnées. Le graphe est actif si les limites sont définies. Si les données entrées dépassent les limites, vous pouvez cliquer sur (menu Echelle automatique) pour faire une mise à l'échelle automatique. Si vous voulez rétablir des limites de graphe par défaut, sélectionner

La première variable est aussi celle selon laquelle se fait le tri. On peut changer cette

variable de tri par . Ce tri est automatique par défaut mais on peut le désactiver dans la boite de dialogue "tri" ou dans le menu options, onglet acquisition.

La case à cocher en bas " incrémentation automatique " autorise le remplissage automatique de la dernière ligne du tableau lorsqu'elle est créée. Cela se fait à partir des données des deux lignes précédentes.

Pour modifier une cellule, se placer sur celle-ci grâce aux flèches du clavier puis frapper sur F2 pour passer en mode édition. On peut aussi cliquer une fois pour sélectionner, puis une deuxième fois à l'endroit voulu pour se mettre en mode édition.

Pour entrer une valeur non définie (sic), tapez 1/0 ce qui générera une valeur NAN (not a number), mais permettra de considérer la ligne comme remplie.

Créé avec HelpNDoc Standard Edition: Produire des livres Kindle gratuitement

Python

On peut créer des grandeurs en faisant tourner un script Python. Les tests on été faits avec Python 3.7, 3.8 et l'installation de Python de Python.org

Cela impose d'importer et d'exporter les valeurs des grandeurs de Regressi dans Python. On utilise pour cela un module Regressi :

import Regressi avec la syntaxe import Regressi as R éventuellement pour alléger la frappe.

La syntaxe from Regressi import * est à éviter : si z n'est pas déjà définie dans Regressi, comment savoir si z= désigne le calcul d'une grandeur intermédiaire ou celui d'une grandeur à renvoyer à Regressi ?

Les grandeurs ont le même nom que dans Regressi avec le préfixe Regressi (ou R en cas de import as)

Les variables sont importées sous Python sous forme de liste et les paramètres sous forme de flottant.

On peut alors taper qqch du genre (avec des grandeurs expérimentales (non calculées) dans Regressi x y et t) :

```
import Regressi as R
N=len(R.t)
R.xmoy=0
k=2
for i in range(0,N,1):
    R.z[i]=(R.x[i]**2)*k
    R.xmoy+=R.x[ï]
R.xmoy=R.xmoy/N
```

Cela va créer dans le memo expressions les deux lignes nécessaires pour récupérer les valeurs (vous pouvez taper ces lignes préalablement) :

```
xmoy=PyPar()
z=Python()
```

k est un intermédiaire et ne sera pas récupéré.

Vous pouvez importer les modules de base : sys, time, math, array, cmath, itertools, errno, os, random

Pour les autres modules, il faut que ceux-ci soient accessibles dans votre répertoire Python, cela devrait marcher automatiquement sans aucune configuration particulière. En cas de problème, essayer de lancer pip :

```
python -m pip install --user numpy
python -m pip install --user matplotlib
```

Tests faits pour numpy avec le script ci-dessous :

```
import numpy as np
from pylab import *

X = np.linspace(-np.pi, np.pi, 256)
C,S = np.cos(X), np.sin(X)
plot(X,C,'go-',label='cos')
plot(X,S)
axis()
show()
```

Attention : la fonction show() de matplotlib est bloquante, si vous ne fermez pas la fenêtre graphique Python, les résultats des calculs ne seront pas récupérés dans Regressi et la fermeture de Regressi posera problème.

Même problème avec les fenêtres PyQt5.

Si vous voulez utiliser des modules personnels, indiquer le chemin correspondant dans Options, onglet répertoire. Vous pouvez imprimer par print : la sortie est dans le memo résultat en-dessous du memo source.

Dans ce même memo, vous aurez les messages d'erreur de Python.

En cas de problème

Vous devez avoir installé Python (32 bits nécessaire pour converser avec la DLL!) sur votre ordinateur, Regressi utilisera la version la plus récente. Python est trouvé grâce à la variable d'environnement PATH de Windows dans laquelle votre installation de Python a créé un chemin qui est chez moi :

C:\Users\JMM\AppData\Local\Programs\Python\Python37-32\

Le bouton en bas à droite "Chemins Lib, DLL" écrira dans le memo résultat les chemins de la DLL Python (par ex. de python37.dll) et ceux des bibliothèques (numpy, ...) et des DLL des modules (par ex. sql ou tk).

Il faut un installateur de Python, pas simplement récupérer la DLL. La distributions "Python software fondation" Python.org convient. EduPython n'installe pas la DLL. Python 3.7 du Microsoft Store ne convient pas. Les distributions Enthought Canopy, Anaconda ne marchent pas non plus.

Créé avec HelpNDoc Standard Edition: Générateur d'aides Web gratuit

Général

Créé avec HelpNDoc Standard Edition: Produire des livres EPub gratuitement

Index Regressi

La <u>barre d'outils</u> sous la ligne des menus permet de sélectionner la fenêtre (Ctrl-F6 permet de basculer d'une fenêtre à l'autre). Elle sert également à sélectionner les pages. Les paramètres et le commentaire de la page courante sont affichés, on peut modifier le commentaire et choisir les paramètres affichés en cliquant dessus.

La barre de titre sert de ligne d'aide. En particulier elle détaille les indications des bulles d'aide.

On peut, la plupart du temps, dérouler un menu local en cliquant avec le bouton droit de la souris.

La présence de signifie qu'il y a eu une modification non encore prise en compte (modification de l'expression d'une fonction, de la valeur d'un paramètre...), cliquer sur ce bouton effectue la mise à jour. Le menu local (clic droit) correspondant s'appelle "Mise à jour" et a pour raccourci clavier F4.

Le logiciel ne peut être lancé qu'une fois sauf si vous le lancez avec l'option N (pour nouveau) : pour cela clic droit sur le raccourci, choisir propriétés et modifier la cible se trouvant dans l'onglet raccourci : remplacer "...regressi" par "...regressi" /N. Remarque : /N doit être à l'extérieur des guillemets.

Menus

Fichier

Edition

Fenêtres : il y a cinq sortes de fenêtres :

Grandeurs

Graphe

Fourier

Statistique

Graphe paramètres

Ces fenêtres peuvent être disposées de différentes manières (mosaïque, cascade ...). L'état est sauvegardé, en particulier, dans le cas de disposition manuelle, la position et la taille des fenêtres sont enregistrées.

<u>Pages</u>

Aide

La police est la police par défaut de Windows Segoe UI. Sous Wine et Linux :

- 1 Navigate to HKEY_CURRENT_USER\Software\Wine\Fonts\Replacements in the Wine registry editor (wine regedit).
- 2 Create a new string value called Segoe UI, and set its value to Droid Sans (or any other sans-serif font name).
- 3 Close the registry editor and run wineboot to restart Wine.

Créé avec HelpNDoc Standard Edition: Créer des aides HTML, DOC, PDF et des manuels depuis une même source

Menu Fichier

Nouveau

Clavier

Simulation

_				
Pres	se-	nai	nie	rs
		J		

Enregistrer

Enregistrer sous

Envoyer

Recevoir

Fusionner

Importer traitements : récupère les définitions des variables calculées et la modélisation d'un fichier .RW3

Imprimer

Choix imprimante

Les dernières lignes donnent les derniers fichiers utilisés.

Quitter

On peut échanger des fichiers avec Excel par l'intermédiaire du format tableur. Sous Regressi ou Excel sélectionner Fichier|Enregistrer sous et sélectionner comme type "Tableur texte avec tabulations "pour sauvegarder. Pour lire sélectionner Fichier|Ouvrir et sélectionner ce même type (extension*.txt en général).

Formats de fichiers importés

.rw3 : Regressi Windows

• .txt ou .csv : fichier Ascii avec séparateur espace, tabulation, virgule ou point-virgule

• .wav ou .mp3 : fichier audio

avi ou .mpg : fichier video

.csv : Pasco Capstone

.lab : Jeulin

.cpt : CRAB

• .cmbl ou .xmbl : Logger

• .eps : CCD Micrelec

.fit : Spectre FITS

.fits : Votable IMCE

.xml : Regressi XML

• .rrr : Regressi DOS

• .h5 : fichiers HDF (Hierarchical Data Format) .h5 générés par les oscilloscopes Keysight. En cas de problème avec des fichiers .h5 d'autres oscilloscopes, envoyez un fichier exemple à regressi@orange.fr. Il est nécessaire d'installer la DLL hdf5.dll fournie par le HDF Group dans le répertoire de Regressi : http://jean-michel.millet.pagesperso-orange.fr/zip/hdf5.dll. Cette DLL compilée avec Visual Studio 2015 nécessite VCRuntime140.dll ; si nécessaire installer la version 32 bits : vc_redist.x86 même sur un Windows 64 bits : https://www.microsoft.com/fr-fr/download/details.aspx?id=48145. Remarque : l'importation des fichiers .h5 générés par les oscilloscopes Keysight peut être utile en cas de nécessité d'une résolution temporelle élevée (typiquement modulation) : on récupère 50k points au lieu de 2k pour un fichier .csv.

Créé avec HelpNDoc Standard Edition: Générateur complet d'aides multi-formats

Barre d'outils

sélection de la fenêtre du graphe

sélection de la fenêtre du graphe dans l'espace des fréquences (transformée de Fourier)

sélection de la fenêtre statistique

sélection de la fenêtre " texte " des grandeurs (définition et valeurs)

sélection de la fenêtre du graphe des paramètres

bascule vers le programme d'acquisition si l'acquisition a été faite par un programme extérieur.

Gestion des pages : si le nombre de pages est supérieur à un, il y a apparition de

boutons permettant de changer de page :

première page,

page précédente

(raccourci F7), page suivante (raccourci F8) et dernière page. En cas de superposition de pages, le numéro de la page courante est affiché avec la couleur du

graphe correspondant et permet de sélectionner les pages actives. La valeur des paramètres de la page courante est affichée à la suite ainsi que le commentaire (modifiable). Pour choisir les paramètres affichés cliquer dans la zone correspondante.

Créé avec HelpNDoc Standard Edition: Générateur gratuit de livres électroniques et documentation

Menu Edition

Le menu Edition vous permet de déplacer du texte de et vers le presse-papiers.

- **Annuler...** annuler la dernière opération. Remarque : dans les mémos le raccourci est Ctrl+Z.
- **Copier** copie le texte ou le graphe vers le presse-papiers. Raccourci : Ctrl+Ins ou Ctrl+C
- **Annuler** xxx :annule la dernière action. xxx peut être grouper, supprimer un point une page ou une grandeur.
- **Couper** supprime le texte et le place dans le presse-papiers. Raccourci : Ctrl+Suppr ou Ctrl+X
- Coller récupère le texte dans le presse-papiers. Raccourci : Maj+Ins ou Ctrl+V
- <u>Coller données</u> récupère des données dans le presse-papiers sous forme d'un nouveau document.
- <u>Coller page</u> récupère des données dans le presse-papiers sous forme d'une nouvelle page.
- **Récupération** permet de récupérer le dernier état du logiciel (avant plantage !) : la sauvegarde est effectuée à chaque ajout de page, de mesures ou de grandeurs calculées.

Remarque : les boutons locaux aux fenêtres permettent de copier les tableaux sans problème de fontes.

La police utilisée est Segoe UI, police par défaut de Windows à partir de Windows 7.

Créé avec HelpNDoc Standard Edition: Avantages d'un outil de création d'aide

Barre d'état

La barre de titre sert de ligne d'aide. En particulier elle détaille les indications des bulles d'aide.

Créé avec HelpNDoc Standard Edition: Générateur de documentation complet

Unités

Dans le mémo expression : x=a+b_unite (_ obtenu par Maj+8)							
Longueur mètre				m			
Masse			kilogramme		kg		
Temps			seconde			S	
courant électrique	ampè	re		Α			
température		kelvin			K		
quantité de matière	mole			mol			
intensité lumineuse	cande	la		cd			
fréquence		hertz			Hz		
volume			litre			L	
angle			radian			rad	
angle			degré			0	
angle			tour			tr	
temps			heure			h	
masse			tonne			t	
inductance		henry			Н		
capacité			farad			F	
résistance		ohm			Ω		
conductance		sieme	ns		S		
conductivité		sieme	ns par mètre	S/m			
résistivité			ohm-mètre		W.m		

induction magnétique	tesla		Т				
flux d'induction magnétique weber Wb							
champ magnétique ampère par mètre A/m							
potentiel électrique	volt		V				
champ électrique	volt par mètre	V/m					
charge électrique	coulomb		С				
moment dipolaire	coulomb mètre	e C.m					
concentration	mole pa	r litre	mol/L				
force	newton			Ν			
moment d'une force	newton-mètre	N.m					
pression	pa	ascal		Pa			
pression	ba	ar			bar		
énergie	jo	oule		J			
puissance	watt		W				
tension superficielle	newton par mè	etre N/m					
entropie	jo	oule par kel	vin J/K				
capacité thermique massi		J/(kg.K)					
conductivité thermique			W/(m.K)				
température degré	Celsius		°C				
flux lumineux	lumen		lm				
activité	be	ecquerel		Bq			
viscosité dynamique poiseuille PI							
vergence dioptrie			δ				

Créé avec HelpNDoc Standard Edition: Création d'aide CHM, PDF, DOC et HTML d'une même source

Options

• Onglet affichage

On choisit le format par défaut des nombres : 1.12E+4 ou 11.2k ainsi que le nombre de chiffres significatifs. Un clic sur la première ligne d'une colonne permet de choisir un format propre à cette colonne.

Choix de la taille de la police écran et des couleurs du mémo expressions.

Onglet "Acquisition"

Ajout de programme d'acquisition dans le menu Fichier Nouveau. La case à cocher en bas permet d'autoriser la modification des données et éventuellement de créer une variable expérimentale supplémentaire à entrer au clavier.

• Onglet "Calcul"

Unités: la case "Calcul avec prise en compte des unités" permet de faire les calculs "corrects" même si les grandeurs expérimentales sont données avec une unité avec préfixe, sinon les unités ne sont gérées que pour l'affichage.. Cela reste une option pour plusieurs raisons : option non testée de manière systématique, cela n'est pas forcément une bonne idée, c'en est même sûrement une mauvaise pour les chimistes.

Incertitudes : elles sont définies comme des incertitudes-type pour les grandeurs expérimentales et propagées de manière statistique par addition des variances.

On indique la méthode désirée pour le calcul de la dérivée : on effectue un lissage sur N points (3 à 9) par un polynôme d'ordre p (1 à 3 donc linéaire, parabolique ou cubique), puis on détermine la dérivée par calcul de la valeur de la dérivée du polynôme.

Remarque : on peut aussi utiliser diff(x,t,ordre,nombre de points) ou la syntaxe v=(x[i+1]-x[i])/(t[i+1]-t[i]).

On indique l'ordre du lissage appliqué aux courbes expérimentales.

permet de définir les valeur et commentaire des constantes disponibles dans l'onglet constantes du panneau à gauche des expressions.

• Onglet "Imprimante"

Certaines imprimantes peuvent ne pas fonctionner pour des problèmes de taille mémoire, si cette case est cochée, le logiciel essaie d'éviter les problèmes (pas de niveaux de gris, taille des points à 1...).

Choix de la taille de la police imprimante.

Impression des graphes en gras permet d'avoir des graphes plus lisibles éventuellement.

Permutation des colonnes et lignes permet aux tableaux de prendre moins de place. De

toute manière, le nombre de lignes d'un tableau à l'impression est limité à 64 (si dépassement on prend une ligne sur N). Cette option est également active pour l'envoi d'un tableau dans le presse-papiers.

Options d'impression des graphes en mode centimétrique.

Onglet "Fichiers Répertoire"

On peut indiquer le répertoire des données par défaut, le répertoire des données partagées (utilisé par Fichier/Envoyer et Recevoir). La taille par défaut des images générées dans les fichiers.

• Onglet "Préférences"

On peut choisir de permettre ou non l'accès à certaines fonctions (par exemple on peut cacher les modélisations prédéfinies en décochant la case correspondante).

• Onglet "Graphique"

Permet de choisir les options par défaut du graphe, c'est-à-dire celles qui seront activées lorsqu'on commencera un nouveau fichier. Si on charge un fichier, les options seront celles de ce fichier.

ouvre une boite de dialoque de personnalisation des couleurs des graphes.

Créé avec HelpNDoc Standard Edition: Produire facilement des livres électroniques Kindle

Edition | Coller données

Menu: Edition Coller données

Récupère dans le presse-papiers les données s'y trouvant sous forme tableur ASCII :

TAB (#9) séparateur dans une ligne et CR (#13) entre les lignes

Première ligne : nom de l'exécutable avec chemin (facultative, utilisée par les programmes d'acquisition pour se faire rappeler) sans tabulation

Deuxième ligne : commentaire général sans tabulation

Troisième ligne : commentaire de page sans tabulation

Sans tabulation signifie que vous ne pouvez le faire à partir d'un tableur qui les ajoute automatiquement, mais uniquement à partir d'un programme générant le format tel qu'indiqué. Le format à partir d'un tableur commence donc ici.

Quatrième ligne : Noms des variables séparés par des tabulations. Si le nom d'une variable est sigma_nom elle est interprétée comme l'incertitude de la variable nom.

Cinquième ligne: Unités des variables séparées par des tabulations

Sixième ligne : Significations des variables séparées par des tabulations

Lignes suivantes : Valeurs séparées par des tabulations

On peut éventuellement envoyer aussi des constantes :

Une ligne vide de séparation puis même format que les variables

(n+1)ième ligne : noms des constantes séparés par des tabulations

(n+2)ième ligne : unités des constantes séparées par des tabulations

(n+3)ième ligne : significations des constantes séparées par des tabulations

(n+4)ième ligne : valeurs des constantes séparées par des tabulations

Exemple:

c:\essai\bidule.exe

ligne de commentaire général

ligne de commentaire de page

t y z

s m m

temps altitude distance

001

0.1 0.1 2

0.2 0.3 5

0.3 0.4 6

g

m/s2

accélération

9.81

Import depuis Synchronie

Sous Synchronie, enregistrer les acquisitions dans le "Presse-papiers" en réalisant les

opérations suivantes :

- passer en mode 'Tableur' choisir 'Arrondi' : [1E-8]
- 'Ajouter' les variables manquantes. Remarque: auparavant, avec Synchronie 2000, pour obtenir les variables dans l'ordre désiré, on pourra sélectionner l'option 'Choix utilisateur' ou 'Tout enlever' dans le menu 'Variables'. Dans le menu 'Edition', réaliser successivement:
- 'Tout sélectionner'
- 'Copier' (et pas clic droit copier: marche pas sous Win98)
- Dans REGRESSI : Fichier/Nouveau/"presse papiers". Et les données sont importées.

Créé avec HelpNDoc Standard Edition: Créer facilement des fichiers Qt Help

Editeur

Pour avoir des lettres grecques, on utilise le raccourci de Maths Type : Ctrl+G suivi de la lettre latine associée (éventuellement en majuscule).

```
a=\alpha b=\beta d=\delta e=\epsilon f=\phi

g=\gamma h=\eta j=\phi k=\kappa l=\lambda n=\nu

p=\pi q=\theta r=\rho s=\sigma t=\tau

w=\omega x=\xi z=\zeta
```

L'édition des **nombres** obéit à la syntaxe informatique usuelle mais vous pouvez entrer des calculs simples $(2*\pi)$ ou des nombres avec la syntaxe : 1.52k (=1520).

On peut entrer les angles en degré sous les formes suivantes :

- 12.36 interprétée comme 12 degrés 36 centièmes
- 12°24'35" interprétée comme 12 degrés 24 minutes 35 secondes
- 12:24:35 interprétée de la même manière que ci-dessus mais plus facile à taper.

La touche Entrée effectue un retour à la ligne.

La touche Entrée du pavé numérique valide l'expression courante.

Créé avec HelpNDoc Standard Edition: Créer de la documentation iPhone facilement

Fenêtre grandeurs

C'est une fenêtre avec trois onglets permettant de sélectionner les dossiers :

<u>Paramètres</u> tableau de valeurs des paramètres expérimentaux et de modélisation

Variables tableau de valeurs des variables.

Expressions expression des grandeurs calculées

La gestion des unités et incertitudes se fait dans les tableaux en cliquant sur l'en-tête.

Créé avec HelpNDoc Standard Edition: Créer des sites web d'aide facilement

Fichier | Ouvrir

On peut ouvrir un fichier de type

*.RRR: Regressi DOS

*.RW3 : Regressi Windows 3.1

*.RXML : Regressi XML

• *.XML : fichier Votable de l'IMCE (Institut mécanique céleste)

- *.LAB : généré par VTT et Généris (récupération des données expérimentales)
- *.CSV (fichier texte avec comme séparateur la virgule) ; pour les fichiers PASCO
 Capstone, préciser Pasco csv (les fichiers txt de Pasco sont aussi lisibles)
- *.FIT : fichier de spectre Votable
- *.TXT : tableur ASCII obéissant au même format que le presse-papiers. En particulier, on peut échanger des fichiers avec Excel par l'intermédiaire de ce format. Sous Regressi ou Excel sélectionner Fichier|Enregistrer sous et sélectionner comme type "Tableur texte avec tabulations" pour sauvegarder. Pour lire sélectionner Fichier| Ouvrir et sélectionner ce même type (extension *.txt en général). On récupère ainsi les données fourni par les oscilloscopes Velleman. et ceux fourni par les stations météo.
- *.H5: les fichiers .h5 sont des fichiers HDF (Hierarchical Data Format) générés par les oscilloscopes Keysight. L'importation de ces fichiers peut être utile en cas de nécessité d'une résolution temporelle élevée (typiquement modulation): on récupère 50k points au lieu de 2k pour un fichier .csv. En cas de problème avec des fichiers .h5 d'autres oscilloscopes, envoyez un fichier exemple à regressi@orange.fr. Il est nécessaire d'installer la DLL hdf5.dll fournie par le HDF Group dans le répertoire de Regressi. Vous pouvez la télécharger à : http://jean-michel.millet.pagesperso-orange.fr/zip/hdf5.dll. La DLL hdf5.dll du HDF Group est compilée avec Visual Studio 2015. Il faut que soit installé le redistribuable Microsoft Visual Studio 2015 32 bits, vc_redist.x86, même sur un Windows 64 bits. Vous pouvez la télécharger à : https://www.microsoft.com/fr-fr/download/details.aspx? id=48145.

Le répertoire de travail est géré dans le menu principal options ; onglet fichiers, répertoires.

Remarque : on peut également indiquer un répertoire partagé. Cela permettra d'utiliser la commande Fichier/Envoyer qui envoie les données courantes dans un fichier tampon qui pourra être récupéré par un autre poste grâce à la commande Fichier/Recevoir.

Créé avec HelpNDoc Standard Edition: Générateur d'aide complet

Fenêtre graphe des paramètres

Fenêtre graphique dont les axes sont les paramètres expérimentaux ou de modélisation. Pour ce graphe, les curseurs données et tangentes ne sont pas disponibles.

Cette fenêtre est disponible s'il y a plus de deux pages (>2) et plus d'un paramètre (expérimental ou calculé)

Les données sont classées dans le même ordre que les pages. Vous pouvez changer l'ordre de tri en triant les pages selon un paramètre par le menu Page - Trier.

Un clic positionne sur la page correspondante au point le plus proche avec mise à jour de la barre d'état.

On peut prendre comme ordonnée (ou abscisse) une variable (disons y). Dans ce cas, la barre de défilement en bas permet de choisir l'indice du point pris en compte (notons le i) et la valeur de y utilisée est alors y[i]. Attention, dans ce cas, l'échelle automatique modifiant en continu les axes peut poser des problèmes d'interprétation de la visualisation; il est donc préférable dans ce cas de figer les axes en cliquant sur le

bouton échelle manuelle

dans le panneau modélisation permet de préciser quelles sont les pages utilisées pour la modélisation. On peut activer ou désactiver une page en double cliquant sur le point correspondant (fonctionne en bascule), les pages désactivées sont toujours tracées sous forme de points et sont de couleurs différentes.

Créé avec HelpNDoc Standard Edition: Créer des documents d'aide PDF facilement

Liens

Des exemples d'utilisation de Regressi Windows

http://www.sciences.univ-nantes.fr/physique/enseignement/tp/regw/regw.html

http://perso.wanadoo.fr/pmarchou/sp/

http://physique.paris.iufm.fr/exao/indexao.html

http://www.ac-nancy-metz.fr/enseign/physique/divers/fichesTP-stanislas/fiches-regressi.htm

• Des modes d'emploi

Un mode d'emploi détaillé :

http://www.fst.univ-mulhouse.fr/~capesic/capes_physique/Sommaire_Regressi.htm

Un mode d'emploi pour l'exploitation des dosages :

http://www.ac-nancy-metz.fr/enseign/physique/logiciels/tourop/tour-op.htm

Un mode d'emploi rapide :

http://www.lefloch.org/download/zip/Regressi_doc_rapide.zip

http://lefloch.org/exao/RegressiDocRapide.pdf

• Le site personnel de l'auteur

https://jean-michel-millet.pagesperso-orange.f/index.htm

Vous pouvez télécharger une mise à jour de l'exécutable à :

https://jean-michel-millet.pagesperso-orange.f/Regressi.zip

http://regressi.fr/WordPress/

• La liste de diffusion de Regressi

http://fr.groups.yahoo.com/group/regressi-demo

Modélisation

http://www.sciences.univ-nantes.fr/physique/perso/cortial/optim

Créé avec HelpNDoc Standard Edition: Créer des documents d'aide PDF facilement

Fichier | Nouveau | Simulation

Permet de transformer Regressi en grapheur. La variable de contrôle (temps en mécanique, volume pour un dosage...) se trouve dans le panneau au-dessus des expressions et les différentes options (nom, limites...) sont modifiables. On crée ensuite les fonctions normalement. Vous pouvez créer des constantes et modifier leurs valeurs dans le dossier constantes. L'ajout d'une ligne supplémentaire dans ce tableau crée une page supplémentaire et donc un graphe (qui est d'office en mode superposition de page). Les <u>équations différentielles</u> sont permises dans ce mode (avec création automatique de la dérivée première pour une équation du second ordre : non de la variable suivi de ´).

Remarque sur le remplissage : le premier point est le mini, le pas est défini par (maximini)/(nombre de points), le dernier point a, par conséquent, la valeur (maxi-pas). Ce n'est pas une erreur : le but n'est pas ici de calculer combien il faut de piquets distants de un mètre pour réaliser une clôture de dix mètres, mais de placer N points

échantillonnés tous les pas pour couvrir (maxi-mini), le point situé à maxi est en fait le début de la séquence suivante.

Créé avec HelpNDoc Standard Edition: Créer des documents d'aide facilement

Fichier | Fusionner

Ouvre un fichier et le fusionne comme nouvelles pages dans le fichier courant. Il doit comporter les mêmes variables expérimentales (même nombre, mêmes noms) que le fichier courant. Il permet par exemple de comparer par superposition les graphes de différents fichiers. On peut faire une sélection multiple pour ajouter plusieurs fichiers simultanément.

Créé avec HelpNDoc Standard Edition: Créer des aides HTML, DOC, PDF et des manuels depuis une même source

Impression

Fichier imprimer ouvre une boite de dialogue dans laquelle on coche ce qui doit être imprimé.

La taille du texte est modifiable dans les options générales. Grandeurs imprimera le mémo de définition des grandeurs. Modélisation imprimera le mémo de définition de la modélisation et les résultats de celle-ci.

Attention : cocher Tableau Variables imprime le tableau des variables qui peut être important, aussi cette impression est limitée à une page, si le tableau est plus grand, le logiciel refuse de la faire. Si pur une raison ou une autre vous voulez imprimer un grand tableau, il faut cocher "impression de grand tableau" dans la boite de dialogue Options onglet impression.

La zone d'options "Imprimer" permet en cochant des cases d'imprimer certains paramètres. L'en-tête est modifiable dans la zone d'édition du bas.

S'il y a plusieurs pages, on peut choisir par le bouton les pages à imprimer.

Créé avec HelpNDoc Standard Edition: Générateur complet de livres électroniques ePub

Fichier | Imprimer

Ouvre une boite de dialogue dans laquelle on choisit ce que l'on veut imprimer (ce n'est ni de la PAO ni un traitement de texte, utiliser le couper coller vers votre traitement de texte favori pour améliorer la présentation). On peut modifier le texte avant de l'imprimer et choisir la taille des caractères.

Si votre imprimante refuse d'imprimer les graphes, cela peut être du à un dépassement

de sa capacité, dans ce cas prendre comme dimension des points 1 (les points expérimentaux seront représentés uniquement sous forme de points). Vous pouvez automatiser cette méthode en allant dans la boite de dialogue Options onglet Impression et cochez la case " mémoire faible " la dimension des points à l'impression sera forcée à 1.

Si vous trouvez le tracé trop fin, activez l'option "Gras" dans le menu principal options onglet imprimante.

La case à cocher "graduations centimétriques" permet d'imposer que les graduations d'axe correspondent à des multiples du centimètre.

Créé avec HelpNDoc Standard Edition: Produire des livres Kindle gratuitement

Configuration

ConfigRegressi.exe permet d'imposer une configuration par défaut au démarrage de Regressi sur une machine.

Cela n'est utile que si chaque utilisateur se connecte sous une session différente.

Si vous voulez laisser chaque utilisateur libre de configurer comme il l'entend, cliquer sur le bouton "Libère".

Remarque : une partie des options est sauvée dans les fichiers de donnÈes et celles-ci sont prioritaires quand vous chargez le fichier. Les options que vous imposez sont celles au dÈmarrage de Regressi.

ConfigRegressi.exe doit se trouver dans le même répertoire que Regressi.exe. Le fichier de configuration se trouve dans le répertoire de Regressi.exe. Pour utiliser configRegressi vous devez avoir des droits de lecture et écriture dans ce répertoire. Pour que Regressi puisse utiliser ce fichier, l'utilisateur doit avoir des droits de lecture dans ce répertoire.

Vous pouvez donc transporter une configuration d'un ordinateur à un autre en transportant le fichier regressi.ini du répertoire de regressi (par dÈfaut c:\Program Files\Evariste\Regressi)

Il se peut que configRegressi ne puisse écrire dans le répertoire de Regressi.exe, il écrit également le même fichier Regressi.ini dans mes Documents\Regressi.

Il vous faudra alors le déplacer manuellement avec des droits suffisants dans le répertoire de Regressi.exe.

Créé avec HelpNDoc Standard Edition: Outils facile d'utilisation pour créer des aides HTML et des sites web

Pages

Créé avec HelpNDoc Standard Edition: Créer facilement des fichiers Qt Help

Page calculée

Menu: Pages/Nouvelle/Calculée

On peut ajouter une page calculée à partir des pages acquises soit en faisant une synthèse de toutes les pages (somme, moyenne...) soit en calculant une page de manière explicite. Par exemple, si la page 1 représente le spectre du solvant et la page 2 le spectre de la solution, pour obtenir le spectre du soluté sur la page calculée on donnera comme expression : page(2)-page(1) (cas d'un spectre en absorbance). Les calculs font intervenir uniquement les quatre opérations. La première variable est considérée comme commune (la longueur d'onde dans l'exemple ci-dessus, cela peut être le temps) et on prend la partie commune aux pages (dans l'idéal il est bien sûr souhaitable que l'échantillonnage soit identique sur les différentes pages). Les autres grandeurs expérimentales sont calculées selon votre choix.

Remarque importante : le calcul est fait uniquement au moment où vous définissez cette nouvelle page.

Créé avec HelpNDoc Standard Edition: Sites web iPhone faciles

Page copiée

Menu Pages/Nouvelle/Recopie

On peut ajouter une page recopiée à partir d'une page acquise soit telle quelle pour effectuer des modifications tout en gardant l'originale ou en effectuant des calculs sur le deux premières variables. Par exemple x=x-10 créera une page ayant les mêmes données mais translatées selon l'axe des x. Remarque importante : le calcul est fait uniquement au moment où vous définissez cette nouvelle page.

Les options de limitation du nombre de points permettent lorsque la case active est cochée de faire du sous échantillonnage : on ne conserve que les points significatifs c'est-à-dire différant suffisamment du précédent. Cela peut être utile pour avoir des calculs de dérivée raisonnables (cinétique chimique par ex.). Ces points peuvent être ajustés par lissage à partir des 5 points alentour.

On peut aussi imposer un nombre de points supérieur pour faire du sur échantillonnage. Celui-ci est fait par FFT avec tous les problèmes liés à celle-ci.

Créé avec HelpNDoc Standard Edition: Créer des fichiers d'aide Qt Help multi-plateformes

Menu Pages

Le menu Pages permet de manipuler différents tableaux de même structure et donc d'expériences identiques mais effectuées avec des paramètres différents.

Par exemple des enregistrements de cinétique à des températures différentes ou d'une résonance d'un circuit RLC pour diverses valeurs de R.

Chaque page est caractérisée par un commentaire et par les valeurs des paramètres expérimentaux, la température ou la résistance dans les exemples ci-dessus.

Le commentaire de la page courante est visible et modifiable dans la barre d'état.

Les paramètres expérimentaux sont visibles dans la barre d'état et modifiables dans le dossier <u>paramètres</u> de la fenêtre grandeurs.

Les différentes pages font partie du même fichier et leur nombre est limité à 32.

Lors d'une modélisation, un changement de page permet de calculer les valeurs des paramètres de modélisation dans une autre page mais les fonctions restent les mêmes. Pour effecteur la modélisation sur les différentes pages, il faut parcourir celles-ci par F7/F8 (ou les boutons de changement de pages) et cliquer sur Ajuster pour chaque page. La modélisation étant effectuée sur les différentes pages, vous pouvez comparer les paramètres en appelant la fenêtre graphique paramètres. Dans ce graphe, les variables sont les paramètres. Cela permet d'étudier la variation de ces paramètres, la constante de vitesse en fonction de la température ou la bande passante en fonction de R dans les exemples ci-dessus.

On crée une page en sélectionnant Page Nouvelle. Si l'acquisition a été faite au clavier, on ouvre une page vierge à remplir. Si les données proviennent d'une acquisition, la sélection de Page Nouvelle basculera sur le mode acquisition avec le réglage de la page précédente. La sauvegarde des paramètres d'acquisition se fait dans un fichier de même nom que le fichier de données mais avec une extension différente.

Pour changer de page taper F7 (Page Précédente) ou F8 (Page Suivante) ou boutons de la barre d'état.

On peut sélectionner les pages actives par le menu Page/Sélection ou le bouton

On peut trier les pages selon un paramètre par le menu Page / Trier ou le bouton lorsqu'on est dans l'onglet paramètres.

On peut regrouper plusieurs fichiers en un seul, l'ajout d'un fichier créant de nouvelles pages, à l'aide du menu Fichier Fusionner. On peut faire une sélection multiple pour ajouter plusieurs fichiers simultanément.

En mode simulation, le nombre de points peut être différents dans chaque page (remplir la colonne Nbre du tableau des paramètres).

Créé avec HelpNDoc Standard Edition: Générateur de documentation et EPub facile

Acquisition

Créé avec HelpNDoc Standard Edition: Générateur de documentation et EPub facile

Son

permet de charger un fichier

On extrait un morceau du fichier chargé en déplaçant les curseurs verticaux par cliquer glisser. Il faut en extraire un "petit" morceau, Regressi n'est pas prévu pour faire de l'étude musicale : pour cela voir Waver ou WavPad

(http://nch.com.au/wavepad/index.html) ou Audacity (http://audacity.sourceforge.net). La taille du fichier est elle-même limité à 4 Mo (4194304=2^22) soit 1,5 minute à 44100 Hz.

Plus précisément, le nombre d'échantillons transmis à Regressi est limité à 1048576 (2^20, 1Mo). Conséquence indirecte de cette limitation : la fréquence d'échantillonnage transmise peut être plus petite que celle d'acquisition (on prend un point sur N pour respecter la limite) : les deux valeurs de fréquence d'échantillonnage sont indiquées dans la zone supérieure à droite.

permet d'envoyer les données vers Regressi

permet de quitter.

On peut faire des enregistrements :

permet de régler le mode d'enregistrement : 8 ou 16 bits ; fréquence d'échantillonnage. Dans cette boite de dialogue, le bouton "volume" permet de faire apparaître le contrôle d'enregistrement de Windows pour éventuellement activer l'entrée micro et régler le volume de celui-ci.

permet de débuter l'enregistrement et

de l'arrêter

WavPad ou Audacity permettent l'édition de fichiers Wav

On peut charger des fichiers MP3 grâce à bass.dll qui doit être présent dans le répertoire de Regressi.

On peut charger des fichiers MP4, AAC, M4A grâce à bass_aac.dll qui doit être présent dans le répertoire de Regressi.

Créé avec HelpNDoc Standard Edition: Générer facilement des livres électroniques Kindle

Numérisation d'une courbe

Numérisation d'une courbe

permet de charger un fichier image

On peut faire des acquisitions d'image à partir de source compatible Twain (webcam,

scanner) en sélectionnant la source à l'aide de

puis en effectuant l'acquisition à

Une fois l'image chargée vous en avez deux représentations : une à droite sur laquelle vous avez toute l'image et une à gauche sur laquelle le zoom est actif. La position de la zone zoomée est représentée sur l'image de droite par un rectangle. Vous pouvez déplacer ce rectangle par cliquer / glisser. Il faut éventuellement choisir la couleur de tracé pour que les points soient nettement visibles.

permet de choisir de travailler avec

- un seul axe : dans ce cas on donne le nom, une longueur d'échelle et le vecteur tracé sur l'image sera utilisé pour déterminer l'échelle (longueur du vecteur) et la position de l'axe (croix en diagonale).
- deux axes comme ci-dessus mais avec deux variables.
- deux axes orthonormés parallèles aux côtés de l'image.

La grandeur de référence sert à indexer l'ordre d'acquisition des points. La valeur à donner est l'incrément. Cela peut être utile dans le cas d'une chronophotographie avec comme grandeur de référence le temps, il faut donner comme valeur l'intervalle de temps entre deux flash.

On indique le nombre de série de mesure à faire (cela peut correspondre à des courbes distinctes, des objets distincts d'une chronophotographie ou des points différents d'un même objet d'une chronophotographie). Les enregistrements se font successivement : on enregistre tous les points du premier objet puis choix de la deuxième série à l'aide du composant à droite de la barre des boutons.

Une fois ce choix fait, vous positionnez les vecteurs d'axes (flèches d'extrémité et cercle

à la base) et l'origine (croix verticale) puis vous cliquez sur le bouton 🚆 commencer l'enregistrement. Un clic enregistre le point. Vous pouvez déplacer les points déjà repérés par cliquer / glisser.

permet de supprimer un point quelconque en cliquant dessus.

effectue une remise à zéro.

permet d'éliminer le dernier point.

permet d'indiquer qu'on a terminé l'acquisition.

On peut éventuellement faire un zoom grâce au menu local accessible par un clic droit

ou grâce aux boutons fléchés de part et d'autre de l'indication de zoom.

permet d'envoyer les données vers Regressi une fois qu'il y a suffisamment de points acquis.

permet de quitter.

Lorsque les mesures ne sont pas actives, un déplacement de la souris avec le bouton gauche enfoncé donne la distance entre le point où l'on a cliqué et le point courant. Sur la droite se trouve un tableau indiquant les coordonnées des points acquis. Vous pouvez changer les tailles respectives des deux graphes et du tableau en déplaçant les bordures les séparant.

Créé avec HelpNDoc Standard Edition: Documentation Qt Help facile

Video

Ce module s'appuie sur ffmpeq

permet de charger un fichier vidéo.

On peut également faire une acquisition à partir d'une webcam. Dans ce cas, vous pouvez extraire la partie utile de la vidéo acquise, en vous positionnant dans la prévisualisation à droite, et en cliquant sur les boutons début/fin. Un clic sur le bouton "Traiter" ne prendra en compte que la partie de la vidéo entre début et fin.

Lors du chargement du fichier, celui-ci est transformé en suite d'images pour faciliter le traitement, ce qui occasionne un délai au démarrage.

Le fichier video est copié dans un répertoire temporaire, répertoire qui contient également les images. On utilise comme répertoire local le répertoire Windows pointé par la variable d'environnment TEMP ou TMP (il faut donc veiller à ce que ceux-ci soit accessibles). Si les variables d'environnement sont non renseignées, le répertoire est c: \temp.

Je n'ai pas trouvé de méthode qui fonctionne avec tous les fichiers, j'ai donc implémenté deux méthodes différentes. Si vous rencontrez des problèmes, essayer de changer la méthode (choix à faire en haut à droite) et recharger le fichier vidéo. La méthode 1 utilise ffmpeg.preview et la 2 ffmeg.probe. Pour les fichiers 960 fps de Samsung, il faut utilisier la méthode 2.

Quelques options:

- On donne le nombre de points que l'on veut pointer sur chaque image.
- Les cases à cocher "axes" et "points" dans la barre de bouton supérieure permettent de laisser ou non des traces des points et de l'échelle. Les couleurs de tracé des

axes et des points enregistrés sont réglables dans la barre de bouton supérieure. S'il y a plusieurs points par image, on peut imposer des couleurs différentes : lorsque vous changez la couleur, vous imposez la couleur du prochain point acquis.

- On peut choisir d'avoir une origine mobile en cochant une case dans "Axes et échelle" : dans ce cas pour chaque image, on clique d'abord sur l'origine puis sur les points à repérer.
 - Remarque : une fois les points acquis dans un mode vous pouvez basculer dans l'autre mode, le point origine mobile devenant un point supplémentaire du mode origine fixe, et réciproquement le premier point du mode origine fixe devenant l'origine mobile.
- On peut déplacer l'origine fixe par cliquer-déplacer. On peut choisir d'avoir une orientation trigonométrique des axes (case à cocher sens trigonométrique dans "Axes et échelle"). On peut faire tourner les axes par glisser déplacer. Le bouton "RàZ axes" permet de remettre l'axe des abscisse vertical.
- Échelle : indiquer la longueur correspondante dans la zone d'édition du bandeau du milieu. Le logiciel suppose l'image orthonormée. On peut déplacer les extrémités de l'échelle par glisser déplacer.
- On peut faire tourner les axes, par exemple pour rectifier la verticalité d'une video ou suivre le mouvement sur un plan incliné. On peut remettre les axes parallèles aux bords de la video par le bouton "RàZ axes".

"Mesurer" permet de commencer les mesures. Un deuxième clic sur ce même bouton "STOP" permet d'arrêter.

permet de traiter les données dans Regressi une fois qu'il y a suffisamment de points acquis.

permet de quitter.

permet de lire la vidéo à une vitesse réglable par la barre de défilement "Vitesse".

On peut prendre une image sur N images par l'éditeur à côté de "1/".

On peut faire tourner la video d'un quart de tour par les boutons \circ ou \circ .

Sur la droite se trouve un tableau indiquant les coordonnées des points acquis. Vous pouvez changer la taille du tableau en déplaçant la bordure.

Il y a possibilité d'une loupe (mettre un facteur supérieur à 1) qui agit localement pendant la mesure ou le déplacement de l'origine et de l'échelle.

Si on coche la case "mesures automatiques", un clic sur le bouton "Mesurer"

vous demandera d'indiquer l'objet à suivre.

L'appui sur génère une chronophotographie, vous devrez donner le nom du fichier image puis indiquer la cible à suivre.

Obturateur déroulant (Rolling shutter) : les caméras à base de CMOS exposent les différentes lignes avec un décalage temporel : si l'image est censée être prise à t, la nième ligne sera en fait enregistrée à t+n*Deltat. On peut corriger cet effet en indiquant dans la zone d'édition à côté de "Correction obturateur déroulant", la valeur du décalage entre le haut et le bas de l'image. Pour plus de renseignement taper "Rolling Shutter vs. Global Shutter" dans votre moteur de recherche.

Dans l'état actuel, je n'ai pas trouvé comment détecter avec ffmpeg, le sens d'une vidéo iPhone/iPad. Il y a deux boutons permettant de tourner de 90° (sens trigonométrique et sens horaire).

Remarque: ces vidéos sont soumises au "Rolling Shutter", il faudra prévoir une correction négative si on prend l'iPhone "à l'envers", et selon l'axe des x en mode paysage. Les iPhones X ont réglé le problème, il va falloir une option manuelle pour régler ces problèmes (à faire...).

Créé avec HelpNDoc Standard Edition: Générateur complet d'aides multi-formats

Chronophotographie

Numérisation d'une chronophotographie

permet de charger un fichier image

Une fois l'image chargée vous en avez deux représentations : une à droite sur laquelle vous avez toute l'image et une à gauche sur laquelle le zoom est actif. La position de la zone zoomée est représentée sur l'image de droite par un rectangle. Vous pouvez déplacer ce rectangle par cliquer / glisser. Il faut éventuellement choisir la couleur de tracé pour que les points soient nettement visibles.

permet de définir l'échelle

La grandeur de référence sert à indexer l'ordre d'acquisition des points. La valeur à donner est l'incrément : intervalle de temps entre deux flash.

On indique le nombre de série de mesure à faire (cela peut correspondre à des objets distincts ou des points différents d'un même objet). Les enregistrements se font successivement : on enregistre tous les points du premier objet puis choix de la deuxième série à l'aide du composant à droite de la barre des boutons.

Une fois ce choix fait, vous positionnez les vecteurs d'axes (flèches d'extrémité et cercle à la base) et l'origine (croix verticale) par cliquer-déplacer dans l'image de gauche, puis

vous cliquez sur le bouton pour commencer l'enregistrement. Un clic enregistre le point. Vous pouvez déplacer les points déjà repérés par cliquer / glisser.

permet de supprimer un point quelconque en cliquant dessus.

effectue une remise à zéro

permet d'éliminer le dernier point.

permet d'indiquer qu'on a terminé l'acquisition.

permet d'envoyer les données vers Regressi une fois qu'il y a suffisamment de points acquis.

permet de quitter.

Sur la droite se trouve un tableau indiquant les coordonnées des points acquis. Vous pouvez changer les tailles respectives des deux graphes et du tableau en déplaçant les bordures les séparant.

Créé avec HelpNDoc Standard Edition: Produire des livres électroniques facilement

Interférences

Mesure d'intensité lumineuse

permet de charger un fichier

On peut aussi faire des acquisitions d'image à partir de source compatible Twain

(webcam, scanner) en sélectionnant la source à l'aide de 📮

l'acquisition à l'aide de

On déplace à la souris une droite selon laquelle se fera la lecture, la croix représente l'origine, le cercle permet de changer l'orientation. Pour ce qui est des dimensions on a le choix entre:

- Échelle : celle-ci est tracée sur l'écran et sa valeur est dans la boite d'édition " échelle " (passer sur la barre de boutons pour voir apparaître la signification de ceux-ci)
- Pixel: on donne dans ce cas dans la boite d'édition "pixel" la dimension du pixel (utile en cas d'acquistion directe à partir d'une barette CCD).

L'unité est à choisir dans la boite liste à côté (m, mm ou µm).

On peut déplacer la souris pixel par pixel à l'aide des flèches lorsqu'aucun des deux boutons n'est enfoncé, sinon (pour le glisser déplacer par exemple) il faut utiliser la pavé numérique (en mode bloqué : 8 pour monter par exemple).

La touche majuscule enfoncée oblige les droites à être verticales ou horizontales. On peut choisir la couleur de tracé de manière à rendre plus visible les lignes précédentes. Attention, le tracé se fait en mode NOT et la couleur dépend donc de l'image traitée.

On peut effecteur un lissage de l'intensité : les mesures se feront en moyennant x points à gauche et à droite de la droite de définition.

permet d'envoyer les données vers Regressi

permet de quitter.

Créé avec HelpNDoc Standard Edition: Générateur de documentation d'aide HTML gratuit

Arduino/micro:bit

Il y a deux modules d'acquisition à partir d'Arduino/micro:bit :

- l'un simple au niveau de l'Arduino, la gestion, en particulier temporelle, se faisant au niveau de Regressi mais prévu pour des phénomènes lents ;
- l'autre permettant d'avoir une fréquence d'échantillonnage plus importante, le prix à payer étant la complication du programme Arduino et la limitation en nombre de points.

Les deux modes supposent qu'un "sketch" a été téléchargé dans Arduino. Des exemples de "sketch" sont donnés dans le sous-répertoire Arduino du répertoire de Regressi.exe (programmes/Evariste/Regressi). Vous pouvez les modifier mais en respectant les règles de communication et de format indiquées ci-dessous.

Module Arduino/micro:bit oscilloscope

Le code est inspiré de Scopino - Scope application By Amit Zohar

Le logiciel s'attend à ce que l'Arduino envoie des lignes de données (par Serial.println pour Arduino), les données étant séparées par des virgules, la première donnée étant le temps en microseconde qui sera placé en abscisse.

Le temps doit être celui de Arduino pour des problèmes de temps de réponse de la voie série.

La vitesse doit être réglée en accord avec Serial.begin(x).

Le bouton Options permet de choisir la voie série. Dans cette boite de dialogue, on indique également le nombre de points d'une acquisition.

Dans cette boite de dialogue, on peut également demander un suréchantillonnage pour compenser les limites d'Arduino, mais bien sûr en respectant les contraintes liées au critère de Shannon.

Le choix du type de synchronisation déclenche l'envoi à Arduino de H0 pour le mode relaxé, H1 pour synchro sur seuil montant, H2 sur seuil descendant.

Attention, pour assurer un contrôle des commandes, celles-ci ont désormais un terminateur Linefeed (alias LF alias #10).

La barre de défilement sur le côté gauche permet de régler le seuil de déclenchement, le déclenchement devant faire dans le sketch Arduino : la modification du seuil envoie à Arduino G+la valeur du seuil (entier positif sur 10 bits).

Un clic sur acquisition déclenche l'envoi à Arduino de Start.

On a prévu une fréquence d'échantillonnage maxi de 100 kHz et minimale de 100 Hz. Le paramétrage se fait en envoyant la période d'échantillonnage par Txxx, xxx étant la période en microseconde.

Attention, dans la cas de Arduino Uno, elle est limitée matériellement à 10 kHZ.

Les valeurs sont sensées être des entiers positifs sur 8, 10 ou 12 bits (case à cocher Due ou Zero dans les options), ceci permettant d'avoir une vitesse suffisante. Le cas 8 bits est prévu pour des acquisitions rapides (>10 kHz) à base d'Arduino Uno : voir le site de Frédéric Legrand

La conversion se faisant par la troisième ligne du tableau, la valeur entière étant noté V. Par exemple, une conversion en tension 0..5 V en mode 10 bits s'écrira V/1024*5

Traitements envoie les données à Regressi.

Vous trouverez dans le sous-répertoire Arduino de Regressi trois exemples de logiciel pour Uno, Curie 101 ou Due, accessible par des boutons de la boite de dialogue Options.

Remarque : je n'ai pas réussi à faire fonctionner Due!

Module Arduino/micro:bit simple (et lent)

Le logiciel s'attend à ce que Arduino envoie des lignes de données (par Serial.println pour Arduino), les données étant séparées par des virgules.

Pour micro:bit cela peut se faire pour les données intermédiaires par : print(temps, end=',')

et pour la donnée finale qui impose le changement de ligne (LineFeed, "/n") par : print(tension)

Un clic sur Traitements envoie les données à Regressi.

La vitesse de la voie série doit être réglé en accord avec Serial.begin(x) et 115200 pour Micro:bit. Si vous voyez apparaître des caractères cabalistiques, pensez à vérifier l'accord entre les deux vitesses.

Mode point par point

La première donnée est supposée être l'abscisse.

Il y a deux possibilités de fonctionnement

• Arduino envoie des données en continu qui sont visualisées, un clic sur le bouton "

Acquisition" enregistre le point courant. On peut arrêter temporairement cet affichage en cliquant sur le bouton "Stop", puis remettre en route en appuyant sur le bouton "Connect.".

Arduino n'envoie des données que sur demande, dans ce cas un clic sur le bouton "

Acquisition" envoie la commande définie dans les options et acquiert le point courant.

On peut entrer des données au clavier par l'intermédiaire d'une zone d'édition. La valeur de cette zone sera prise en compte lors de l'enregistrement du point et remplacera l'index.

L'option à cocher est "Abscisse : donnée utilisateur (sinon index)".

Mode temporel

Le temps est soit géré par Regressi soit par Arduino/Micro:bit (à indiquer par la case à cocher correspondante, dans ce cas la première donnée sera le temps en seconde). L'abscisse est le temps.

Le nombre de points maximal est de 8192.

Detions permet de choisir la voie série et d'indiquer éventuellement une commande à envoyer à Arduino au démarrage qui peut servir à une action (ouvrir un électroaimant pour une chute libre, démarrer l'envoi des données ...), idem à l'arrêt (pour, par exemple, stopper un chauffage mis en route au démarrage). En plus de ces deux commandes, il y a trois boutons définis par l'utilisateur : un clic sur un bouton envoie la commande définie par l'utilisateur, cela peut servir à un réglage de zéro (potentiomètre de suivi d'un pendule par exemple), un étalonnage.

L'acquisition étant a priori plus lente et avec moins de points que dans le module oscilloscope, on s'attend à avoir des données "physiques" en volt par exemple.

Il y a trois modes de fonctionnement temporel : déclenché, relaxé, en rouleau (Roll).

L'acquisition s'arrête lorsqu'on atteint la durée indiquée ou lorsqu'on clique sur le bouton "Stop".

Exemple de code Arduino :

```
Serial.print(millis()/1000.0,3); // 3 : précision ms
Serial.print(",");
Serial.print(data1);
Serial.print(",");
Serial.println(data2);
```

o Exemple de procédure micro:bit :

```
def mesure():
    z = pin0.read_analog()
    tension0 = z*3.3/1024
    print(tension0, end=',')
    z = pin1.read_analog()
    tension1 = z*3.3/1024
    print(tension1, end=',')
    print(temperature())
```

Exemples complets

Vous trouverez dans le sous-répertoire Arduino de Regressi des exemples de logiciel Arduino/micro:bit, accessibles par des boutons Arduino de la boite de dialogue Options qui vont lancer l'IDE Arduino :

simplepoint: programme d'acquisition point par point

etalon : programme d'acquisition point par point avec une commande de mise à zéro

simpletemps: programme d'acquisition temporelle

tempsArduino: temps géré par Arduino avec Start/Stop

Pour Micro:bit les fichiers équivalents Python sont dans ce même répertoire, en particulier tempsMicrobit.py

Module Arduino Wifi

Arduino est connecté sur le réseau local. Cela peut poser des problèmes si l'administrateur du réseau est un peu pointilleux (il faut le mot de passe !). Le logiciel s'attend à ce que Arduino envoie une ligne de données en réponse à une demande du PC, les données étant séparées par des virgules.

En mode point par point, la première donnée est supposée être l'abscisse.

En mode temporel, le temps est géré par Regressi (on indique la durée maximale et la période d'échantillonnage). L'abscisse est le temps. Le nombre de points maximal est de 8192.

Le bouton Options permet d'indiquer l'adresse d'Arduino sur le réseau et le port utilisé à récupérer dans le moniteur série de Arduino.

On peut également définir trois commandes à envoyer à Arduino en réponse à un clic sur un bouton de la fenêtre principal (on peut envisager une remise à zéro, un étalonnage ...).

L'acquisition étant lente (fréquence d'échantillonnage maxi de 30 Hz), on s'attend à avoir des données "physiques" en volt par exemple.

L'acquisition s'arrête lorsqu'on atteint la durée indiquée.

En mode point par point, le logiciel demande en continu des données à Arduino (ces données s'affichent en bas de la fenêtre), l'acquisition d'un point se faisant par clic sur le bouton correspondant.

Exemple de code Arduino : voir simplePointWifi dans le sous-répertoire Arduino de Regressi, accessible par un bouton de la boite de dialogue Options.

Module Arduino Wifi-Direct (access point)

Arduino est connecté directement au PC en Wifi. On doit pouvoir se connecter sans demander l'avis à l'administrateur, sauf s'il a bloqué le Wifi des PC.

Le logiciel s'attend à ce que Arduino envoie une ligne de données en réponse à une demande du PC, les données étant séparées par des virgules.

En mode point par point, la première donnée est supposée être l'abscisse.

En mode temporel, le temps est géré par Regressi. L'abscisse est le temps. Le nombre de points maximal est de 8192.

Le bouton Options permet d'indiquer l'adresse d'Arduino (192.168.4.1) sur le réseau et le port utilisé (80).

On peut également définir trois commandes à envoyer à Arduino en réponse à un clic sur un bouton de la fenêtre principal (on peut envisager une remise à zéro, un étalonnage ...).

L'acquisition étant lente (fréquence d'échantillonnage maxi de 10 Hz), on s'attend à avoir des données "physiques" en volt par exemple.

L'acquisition s'arrête lorsqu'on atteint la durée indiquée.

En mode point par point, le logiciel demande en continu des données à Arduino (ces données s'affichent en bas de la fenêtre), l'acquisition d'un point se faisant par clic sur le bouton correspondant.

Exemple de code Arduino : voir PointWifiDirect dans le sous-répertoire Arduino de Regressi, accessible par un bouton de la boite de dialogue Options.

Créé avec HelpNDoc Standard Edition: Produire des livres EPub gratuitement

Remerciements

Bibliothèques utilisées :

ffmpeg VCL: http://www.delphiffmpeg.com

NativeXML de Nils Haeck M.Sc. pour la lecture des fichiers XML :

http://www.simdesign.nl/xml.html

TurboPower Async Professional pour la voie série :

http://sourceforge.net/projects/tpapro

Bass de Un4seen Developments Ltd. pour la lecture des fichiers .mp3 :

https://www.un4seen.com

HDF5 pour la lecture des fichiers .h5 des oscilloscopes :

https://www.hdfgroup.org/solutions/hdf5

Remerciements à :

Claude Cance pour la partie FFT

ALE Sup (V. Chauve, P. Cousot, H. Lehning, D. Monasse, C. Potier, R. Rolland, R. Smadja) pour le compilateur qui s'inspire fortement de la bibliothèque MODULOG Paulo Santos pour la partie acquisition à partir de Webcam

Créé avec HelpNDoc Standard Edition: Outils facile d'utilisation pour créer des aides HTML et des sites web