VV156 RC For Midterm 1

Derivatives and Differentiation

Li Junhao

UM-SJTU Joint Institute

October 14, 2022

RC Overview

① Derivatives

Introduction & Definition

Differentiation

Differential formulas

Chain rule

Implicit differentiation

Derivatives of Inverse Functions

Comprehensive Application of Differential Formulas

- Q&A
- 3 Reference

Derivatives

Introduction & Definition

Differentiation

Differential formulas

Chain rule

Implicit differentiation

Derivatives of Inverse Functions

Comprehensive Application of Differential Formulas

- 2 Q&A
- Reference

Derivative

The **derivative of a function** f at a number a, denoted by f(a), is

$$f(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

if this limit exists.

The slope of the tangent line of a function is the corresponding derivative.

Derivative: Another Definition

The **derivative of a function** f at a number a, denoted by f'(x), is

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

if this limit exists.

The slope of the tangent line of a function is the corresponding derivative.

Notations

Newton:

ÿ

Leibniz:

 $\frac{dy}{dx}$

Lagrange:

f(x)

Jacobi: (Partial Derivatives)

 $\frac{\partial f}{\partial x}$

Exercise

Suppose that the derivative of function f(x) at $x = x_0$ is $f'(x_0)$. calculate the limit

$$\lim_{h\to 0}\frac{f(x_0+\alpha h)-f(x_0-\beta h)}{h}$$

Exercise

Suppose that the derivative of function f(x) at $x = x_0$ is $f'(x_0)$. calculate the limit

$$\lim_{h\to 0}\frac{f(x_0+\alpha h)-f(x_0-\beta h)}{h}$$

Solution

$$\lim_{h\to 0} \frac{f(x_0 + \alpha h) - f(x_0 - \beta h)}{h} = \lim_{h\to 0} \frac{[f(x_0 + \alpha h) - f(x_0)] - [f(x_0 - \beta h) - f(x_0)]}{h} = \alpha f(x_0) + \beta f(x_0)$$

Derivatives

Introduction & Definition

Differentiation

Differential formulas

Chain rule

Implicit differentiation

Derivatives of Inverse Functions

Comprehensive Application of Differential Formulas

- 2 Q&A
- Reference

Definition of Differentiation

Increment and Difference

Give a function y = f(x), if there is an increment Δx at $x = x_0$, the increment of y should be

$$\Delta y = f(x_0 + \Delta x) - f(x_0)$$

Definition (not required)

Suppose x_0 is in the domain of the function y = f(x). If there exist a number $g(x_0)$, which is only dependent on x_0 , such that when $x \to 0$, we have

$$\Delta y = g(x_0)\Delta x + o(\Delta x)$$

Then we say that f(x) is differentiable on x_0 .

Definition of Differentiation: Example

Example

Suppose $y = f(x) = x^2$, at any point $x \in D$, we take an increment Δx and we have

$$\Delta y = (x + \Delta x)^2 - x^2 = 2x\Delta x + \Delta x^2$$

Suppose that $x \sim 1$ and $\Delta x \sim 10^{-10}$, what is Δy ? Are there any terms can be ignored?

Definition of Differentiation: Example

Example

Suppose $y = f(x) = x^2$, at any point $x \in D$, we take an increment Δx and we have

$$\Delta y = (x + \Delta x)^2 - x^2 = 2x\Delta x + \Delta x^2$$

Suppose that $x \sim 1$ and $\Delta x \sim 10^{-10}$, what is Δy ? Are there any terms can be ignored?

When $\Delta x \rightarrow 0$, we have

$$dy = d(x^2) = 2xdx$$

This is equivalent to

$$\frac{dy}{dx} = 2x$$

Differentiable

Differentiable

A function f is differentiable at a if f(a) exists. It is differentiable on an open interval (a,b) [or (a,∞) or $(-\infty,a)$ or $(-\infty,\infty)$] if it is differentiable at every number in the interval.

Differentiable and Continuity

If f is differentiable at a, then f is continuous at a.

NOTE The converse of Theorem is false; that is, there are functions that are continuous but not differentiable. For instance, the function f(x) = |x| is continuous at 0 because

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} |x| = 0 = f(0)$$

Derivatives

Introduction & Definition

Differentiation

Differential formulas

Chain rule
Implicit differentiation
Derivatives of Inverse Functions
Comprehensive Application of Differentiation

- 2 Q&A
- Reference

$$\frac{d}{dx}(c) = 0$$

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$(cf)' = cf'$$

$$(f+g)' = f' + g'$$

$$(f-g)' = f' - g'$$

$$(fg)' = fg' + gf'$$

$$(\frac{f}{g})' = \frac{gf' - fg'}{g^2}$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}(\csc^{-1}x) = -\frac{1}{x\sqrt{x^2-1}}$$

$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2-1}}$$

$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$

$$\frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1+x^2}$$

$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$$
$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$
$$\frac{d}{dx} \ln |x| = \frac{1}{x}$$

Calculate the Derivative

1.

$$f(x) = \frac{1 - xe^x}{x + e^x}$$

2.

$$f(x) = xe^x \csc x$$

$$f(x) = x \ln x - x$$

Solutions

$$f(x) = \frac{1 - xe^{x}}{x + e^{x}}$$

$$= \frac{(x + e^{x})(-xe^{x})' - (1 - xe^{x})(1 + e^{x})}{(x + e^{x})^{2}}$$

$$= \frac{(x + e^{x})[-(xe^{x} + e^{x} \cdot 1)] - (1 + e^{x} - xe^{x} - xe^{2x})}{(x + e^{x})^{2}}$$

$$= \frac{-x^{2}e^{x} - xe^{x} - xe^{2x} - e^{2x} - 1 - e^{x} + xe^{x} + xe^{2x}}{(x + e^{x})^{2}}$$

$$= \frac{-x^{2}e^{x} - e^{2x} - e^{x} - 1}{(x + e^{x})^{2}}$$

Solutions

2.

$$(fgh)' = [(fg)h]' = (fg)'h + (fg)h' = (f'g + fg')h + (fg)h'$$

$$= f'gh + fg'h + fgh'$$

$$f'(x) = (x)'e^{x}\csc x + x(e^{x})'\csc x + xe^{x}(\csc x)'$$

$$= 1e^{x}\csc x + xe^{x}\csc x + xe^{x}(-\cot x\csc x)$$

$$= e^{x}\csc x(1 + x - x\cot x)$$

$$f(x) = x \ln x - x \Rightarrow f'(x) = x \cdot \frac{1}{x} + (\ln x) \cdot 1 - 1 = 1 + \ln x - 1 = \ln x$$

Derivatives

Introduction & Definition Differentiation Differential formulas

Chain rule

Implicit differentiation
Derivatives of Inverse Functions
Comprehensive Application of Differential Formulas

- 2 Q&A
- 3 Reference

Chain rule

Chain Rule

If g is differentiable at x and f is differentiable at g(x), then the composite function $F = f \circ g$ defined by F(x) = f(g(x)) is differentiable at x and x is given by the product

$$F'(x) = f(g(x)) \cdot g'(x)$$

In Leibniz notation, if y = f(u) and u = g(x) are both differentiable functions, then

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$

Chain rule

The Power Rule Combined with the Chain Rule

If n is any real number and u = g(x) is differentiable, then

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

Alternatively,

$$\frac{d}{dx}[g(x)]^n = n[g(x)]^{n-1} \cdot g'(x)$$

Calculate the Derivative

1.

$$F(t) = (3t-1)^4 (2t+1)^{-3}$$

2.

$$y = \left(\frac{x^2 + 1}{x^2 - 1}\right)^3$$

$$y = \sqrt{1 + 2e^{3x}}$$

Solutions

$$F(t) = (3t-1)^{4}(2t+1)^{-3} \Rightarrow$$

$$F'(t) = (3t-1)^{4}(-3)(2t+1)^{-4}(2) + (2t+1)^{-3} \cdot 4(3t-1)^{3}(3)$$

$$= 6(3t-1)^{3}(2t+1)^{-4}[-(3t-1) + 2(2t+1)]$$

$$= 6(3t-1)^{3}(2t+1)^{-4}(t+3)$$

Solutions

$$y' = 3\left(\frac{x^2+1}{x^2-1}\right)^2 \cdot \frac{d}{dx}\left(\frac{x^2+1}{x^2-1}\right)$$

$$= 3\left(\frac{x^2+1}{x^2-1}\right)^2 \cdot \frac{(x^2-1)(2x) - (x^2+1)(2x)}{(x^2-1)^2}$$

$$= 3\left(\frac{x^2+1}{x^2-1}\right)^2 \cdot \frac{2x[x^2-1 - (x^2+1)]}{(x^2-1)^2}$$

$$= 3\left(\frac{x^2+1}{x^2-1}\right)^2 \cdot \frac{2x(-2)}{(x^2-1)^2}$$

$$= \frac{-12x(x^2+1)^2}{(x^2-1)^4}$$

Solutions

$$y = \sqrt{1 + 2e^{3x}} \Rightarrow$$

$$y' = \frac{1}{2} (1 + 2e^{3x})^{-1/2} \frac{d}{dx} (1 + 2e^{3x})$$

$$= \frac{1}{2\sqrt{1 + 2e^{3x}}} (2e^{3x} \cdot 3)$$

$$= \frac{3e^{3x}}{\sqrt{1 + 2e^{3x}}}$$

Derivatives

Introduction & Definition
Differentiation
Differential formulas
Chain rule

Implicit differentiation

Derivatives of Inverse Functions
Comprehensive Application of Differential Formulas

- 2 Q&A
- Reference

Implicit Differentiation

Find y' if $\sin(x+y) = y^2 \cos x$

Differentiating implicitly with respect to x and remembering that y is a function of x, we get

$$\cos(x+y)\cdot(1+y')=y^2(-\sin x)+(\cos x)(2yy')$$

(Note that we have used the Chain Rule on the left side and the Product Rule and Chain Rule on the right side.) If we collect the terms that involve y', we get

$$\cos(x+y) + y^2 \sin x = (2y\cos x)y' - \cos(x+y) \cdot y'$$

So

$$y' = \frac{y^2 \sin x + \cos(x+y)}{2y \cos x - \cos(x+y)}$$

Implicit Differentiation

Find
$$y''$$
 if $x^4 + y^4 = 16$

Solutions

Differentiating the equation implicitly with respect to x, we get

$$4x^3 + 4y^3y' = 0$$

Solving for y:

$$y' = -\frac{x^3}{y^3}$$

To find y'' we differentiate this expression for y' using the Quotient Rule and remembering that y is a function of x:

$$y'' = \frac{d}{dx} \left(-\frac{x^3}{y^3} \right) = -\frac{y^3 (d/dx) (x^3) - x^3 (d/dx) (y^3)}{(y^3)^2}$$
$$= -\frac{y^3 \cdot 3x^2 - x^3 (3y^2y')}{y^6}$$

Solutions (Continued)

If we now plug the value of y' into this expression, we get

$$y'' = -\frac{3x^2y^3 - 3x^3y^2\left(-\frac{x^3}{y^3}\right)}{y^6}$$
$$= -\frac{3\left(x^2y^4 + x^6\right)}{y^7} = -\frac{3x^2\left(y^4 + x^4\right)}{y^7}$$

But the values of x and y must satisfy the original equation $x^4 + y^4 = 16$. So the answer simplifies to

$$y'' = -\frac{3x^2(16)}{y^7} = -48\frac{x^2}{y^7}$$

① Derivatives

Introduction & Definition
Differentiation
Differential formulas
Chain rule
Implicit differentiation

Derivatives of Inverse Functions

Comprehensive Application of Differential Formulas

- 2 Q&A
- Reference

Derivatives of Inverse Functions

Theorem

If the function y = f(x) is differentiable and its inverse function $x = f^{-1}(y)$ exists, then we have

$$[f^{-1}(y)]' = \frac{1}{f(x)}$$

Useful Formulas

$$\frac{dy}{dx} \cdot \frac{dx}{dy} = 1, \frac{d}{dx}f = \left(\frac{d}{dy}f\right) \cdot \frac{dy}{dx}$$

Example

If
$$\frac{dx}{dy} = \frac{1}{y'}$$
, show that: (i) $\frac{d^2x}{dy^2} = \frac{-y''}{(y')^3}$ (ii)

(ii)
$$\frac{d^3x}{dy^3} = \frac{3(y'')^2 - y'y''}{(y')^5}$$

① Derivatives

Introduction & Definition
Differentiation
Differential formulas
Chain rule

Comprehensive Application of Differential Formulas

- **2** Q&A
- Reference

Abstract Functions

Exercises

Suppose that f(x) is derivable. Calculate the derivatives of the following abstract functions:

(1)
$$\operatorname{arctan} f(x)$$
. (2) $\sin(f(\sin x))$.

(3)
$$f(\frac{1}{f(x)})$$
. (4) $\frac{1}{f(f(x))}$.

$$(4) \ \frac{1}{f(f(x))}.$$

Abstract Functions

Exercises

Suppose that f(x) is derivable. Calculate the derivatives of the following abstract functions:

(1)
$$\arctan f(x)$$
.

(1)
$$\operatorname{arctan} f(x)$$
. (2) $\sin(f(\sin x))$.

(3)
$$f(\frac{1}{f(x)})$$
. (4) $\frac{1}{f(f(x))}$.

$$(4) \ \frac{1}{f(f(x))}$$

Solutions

(3)
$$[f(\frac{1}{f(x)})]' = f'(\frac{1}{x})(\frac{1}{x})' = -\frac{f'(x)}{f^2(x)}f'(\frac{1}{f(x)}).$$

(3)
$$[f(\frac{1}{f(x)})]' = f'(\frac{1}{x})(\frac{1}{x})' = -\frac{f'(x)}{f^2(x)}f'(\frac{1}{f(x)}).$$

(4) $[\frac{1}{f(f(x))}]' = -\frac{f'(f(x))}{f^2(f(x))}[f(x)]' = -\frac{f'(f(x))f'(x)}{f^2(f(x))}.$

Calculation Tricks

Exercises

Calculate the derivatives of the following functions:

(1)
$$f(x) = (x^3 + \sin x)^{\frac{1}{x}}$$

(1)
$$f(x) = (x^3 + \sin x)^{\frac{1}{x}}$$
.
(2) $f(x) = x \frac{\sqrt{1 - x^2}}{\sqrt{1 + x^3}}$.

Calculation Tricks: Logarithmic Transformation

Solutions

(1)
$$f'(x) = y' = (x^3 + \sin x)^{\frac{1}{x}} \left[\frac{3x^2 + \cos x}{x(x^3 + \sin x)} - \frac{\ln(x^3 + \sin x)}{x^2} \right]$$
. Hint:
 $\ln y = \frac{1}{x} \ln(x^3 + \sin x)$.

(2)
$$f'(x) = y' = \frac{x\sqrt{1-x^2}}{\sqrt{1+x^3}} \left[\frac{1}{x} - \frac{x}{1-x^2} - \frac{3x^2}{2(1+x^3)} \right].$$

If the given function is $f(x) = x \frac{\sqrt{1-x^2}\sqrt{1-2x^2}\sqrt{1-3x^2}}{\sqrt{1+x^3}}$, can you see the convenience brought by this method?

Exercises

- 1. Suppose f(x) is defined on \mathbb{R} . For any $x, y \in \mathbb{R}$,
- f(x+y) = f(x) + f(y) + 2xy, and f'(0) = a. What is f(x)?
- 2. Suppose that f(x) is differentiable. Show that:
- (1) If f(x) is an odd function, then f'(x) is an even function.
- (2) If f(x) is an even function, then f'(x) is an odd function.
- (3) If f(x) is an periodic function, then f'(x) is also an periodic function with the same period.

Exercises

1. Suppose f(x) is defined on \mathbb{R} . For any $x, y \in \mathbb{R}$, f(x+y) = f(x) + f(y) + 2xy, and f'(0) = a. What is f(x)?

Solutions

First let y=0 to get f(0)=0. Then let $y=\Delta x$ and that $f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim_{\Delta x\to 0}\frac{f(\Delta x)+2x\cdot \Delta x}{\Delta x}=\lim_{\Delta x\to 0}\frac{f(\Delta x)}{\Delta x}+2x=f'(0)+2x$. So $f(x)=f'(0)x+x^2+C$. Plug in f(0)=0 and we get $f(x)=f'(0)x+x^2$.

Exercises

1. Suppose f(x) is defined on \mathbb{R} . For any $x, y \in \mathbb{R}$, f(x+y) = f(x) + f(y) + 2xy, and f'(0) = a. What is f(x)?

Solutions

First let y=0 to get f(0)=0. Then let $y=\Delta x$ and that $f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim_{\Delta x\to 0}\frac{f(\Delta x)+2x\cdot \Delta x}{\Delta x}=\lim_{\Delta x\to 0}\frac{f(\Delta x)}{\Delta x}+2x=f'(0)+2x.$ So $f(x)=f'(0)x+x^2+C$. Plug in f(0)=0 and we get $f(x)=f'(0)x+x^2=x^2+ax$.

Exercises

- 2. Suppose that f(x) is differentiable. Show that:
- (1) If f(x) is an odd function, then f'(x) is an even function.
- (2) If f(x) is an even function, then f'(x) is an odd function.
- (3) If f(x) is an periodic function, then f'(x) is also an periodic function with the same period.

Solutions

$$(1) f'(-x) = \lim_{\Delta x \to 0} \frac{f(-x + \Delta x) - f(-x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{-f(x - \Delta x) + f(x)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{f(x + (-\Delta x)) - f(x)}{-\Delta x} = f'(x).$$

- (2) Similar to (1).
- (3) Suppose that the period is T, then f(x+T) =

$$\lim_{\Delta x \to 0} \frac{f(x + T + \Delta x) - f(x + T)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = f'(x).$$

Derivatives

Introduction & Definition
Differentiation
Differential formulas
Chain rule
Implicit differentiation
Derivatives of Inverse Functions

- 2 Q&A
- Reference

Q&A

Derivatives

Introduction & Definition
Differentiation
Differential formulas
Chain rule
Implicit differentiation
Derivatives of Inverse Functions

- 2 Q&A
- 3 Reference

References

- [1] Huang, Yucheng. VV156_RC2.pdf. 2021.
- [1] Huang, Yucheng. VV156_RC3.pdf. 2021.
- [3] Cai, Runze. Chapter02.pdf. 2021.
- [4] Cai, Runze. Chapter03.pdf. 2021.