Problem: Circle – Bài Tập: Đường Tròn

Nguyễn Quản Bá Hồng*

Ngày 1 tháng 3 năm 2024

Tóm tắt nội dung

Last updated version: GitHub/NQBH/elementary STEM & beyond/elementary mathematics/grade 9/circle/problem: set \mathbb{Q} of circles [pdf]. 1 [TeX] 2 .

Mục lục

1 Sự Xác Định Đường Tròn. Tính Chất Đối Xứng của Đường Tròn	2
2 Đường Kính & Dây của Đường Tròn. Liên Hệ Giữa Dây & Khoảng Cách Từ Tâm Đến Dây	4
3 Vị Trí Tương Đối của Đường Thẳng & Đường Tròn. Dấu Hiệu Nhận Biết Tiếp Tuyến của Đường Tròn	6
4 Vị Trí Tương Đối của 2 Đường Tròn	9
5 Tính Chất của 2 Tiếp Tuyến Cắt Nhau	14
6 Đường Tròn Nội Tiếp Tam Giác	14
7 Đường Tròn Bàng Tiếp Tam Giác	16
8 Đường Tròn & Phép Vị Tự	16
9 Dựng Hình	16
10 Toán Cực Trị	18
11 Góc ở Tâm. Số Đo Cung. Liên Hệ Giữa Cung & Dây	19
12 Góc Nội Tiếp	20
13 Góc Tạo Bởi Tia Tiếp Tuyến & Dây Cung	2 1
14 Góc Có Đỉnh Ở Bên Trong, Bên Ngoài Đường Tròn	23
15 Cung Chứa Góc	23
16 Tứ Giác Nội Tiếp	24
17 Đường Tròn Ngoại Tiếp, Nội Tiếp Đa Giác	28
18 Độ Dài Đường Tròn, Cung Tròn	30
19 Diện Tích Hình Tròn, Hình Quạt Tròn	30
20 Quỹ Tích	31
21 Dựng Hình	33
22 Toán Cực Trị	34

^{*}Independent Researcher, Ben Tre City, Vietnam

e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

¹URL: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_9/circle/problem/NQBH_circle_problem.pdf.

²URL: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_9/rational/problem/NQBH_circle_problem.tex.

23 Miscellaneous	35
Tài liệu	37

1 Sự Xác Định Đường Tròn. Tính Chất Đối Xứng của Đường Tròn

- 1 ([BBN23a], p. 99). Tại sao các nan hoa của bánh xe đạp dài bằng nhau?
- 2 ([BBN23a], H1, p. 101). Có bao nhiêu đường tròn bán kính R đi qua 1 điểm cho trước? Tâm các đường tròn đó nằm ở đâu?
- 3 ([BBN23a], H2, p. 101). Qua 3 điểm bất kỳ có luôn vẽ được 1 đường tròn?
- 4 ([BBN23a], H3, p. 101). Vẽ đường tròn nhận đoạn thẳng AB cho trước làm đường kính.
- 5 ([BBN23a], H4, p. 101). Tính đường kính các đường tròn $(O; 2R), (O; aR), \forall a \in \mathbb{R}, a > 0$.
- 6 ([BBN23a], H5, p. 101). Đ/S? (a) Dây vuông góc với đường kính thì bị đường kính chia làm đôi. (b) Dây vuông góc với đường kính thì chia đôi đường kính. (c) Đường kính đi qua trung điểm 1 dây thì vuông góc với dây ấy. (d) Đường trung trực của 1 dây là truc đối xứng của đường tròn.
- 7 ([BBN23a], VD1, p. 101). Chứng minh: (a) Tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm cạnh huyền. (b) Nếu 1 tam giác có 1 cạnh là đường kính đường tròn ngoại tiếp thì tam giác đó là tam giác vuông (đường kính là cạnh huyền). (c) Các đính góc vuông của các tam giác vuông có chung cạnh huyền cùng thuộc 1 đường tròn đường kính là cạnh huyền chung đó. (d) Mọi hình chữ nhật đều nội tiếp được trong đường tròn.
- 8 ([BBN23a], VD2, p. 102). Khi nào thì tâm của đường tròn ngoại tiếp tam giác nằm: (a) trong tam giác? (b) ngoài tam giác?
- 9 ([BBN23a], VD3, p. 102). Cho $\triangle ABC$ có AB=13 cm, BC=5 cm, CA=12 cm. Xác định tâm & tính bán kính đường tròn ngoại tiếp $\triangle ABC$.
- 10 ([BBN23a], VD4, p. 103). Cho đường tròn đường kính AB, điểm M bất kỳ. Chứng minh M nằm trong đường tròn khi \mathcal{E} chỉ khi $\widehat{AMB} > 90^{\circ}$.
- 11 ([BBN23a], VD5, p. 103). Cho đường tròn (O; R) & 2 điểm A, B nằm trong đường tròn. Chứng minh tồn tại 1 đường tròn (C) đi qua 2 điểm A, B & nằm hoàn toàn bên trong (O).
- 12 ([BBN23a], VD6, p. 103). Có 1 miếng bìa hình tròn bị khoét đi 1 lỗ thủng cũng hình tròn. Dùng kéo cắt (theo 1 đường thẳng) để chia đôi miếng bìa đó.
- 13 ([BBN23a], VD7, p. 104). Cho đoạn thẳng AB, điểm M thuộc đoạn AB. Dựng 2 đường tròn đường kính AB \mathcal{E} đường kính BM. 1 đường thẳng d vuông góc với AB tại N cắt đường tròn đường kính AB tại E, F, cắt đường tròn đường kính BM tại P, Q. Chứng minh: (a) EP = FQ. (b) $\widehat{BMP} > \widehat{BAE}$.
- 14 ([BBN23a], VD8, p. 104). Cho đường tròn (O;R) & điểm A nằm ngoài đường tròn. Dựng qua A cát tuyến cắt đường tròn tại B,C sao cho B là trung điểm AC.
- 15 ([BBN23a], VD9, p. 105). Cho đường tròn (O,6cm), 2 dây $AB \parallel CD$. (a) Chứng minh AC = BD, AD = BC. (b) Tính khoảng cách từ O đến AC biết khoảng cách từ O đến AB là 2 cm, khoảng cách từ O đến CD là 4 cm.
- 16 ([BBN23a], 4.1., p. 106). Cho ΔABC vuông tại A, đường trung tuyến AM, AB=6 cm, AC=8 cm. Trên tia AM lấy 3 điểm D, E, F sao cho AD=9 cm, AE=11 cm, AF=10 cm. Xác định vị trí của mỗi điểm D, E, F đối với đường tròn ngoại tiếp ΔABC .
- 17 ([BBN23a], 4.2., p. 106). Cho $\triangle ABC$ vuông tại A, đường cao AH. Từ điểm M bất kỳ trên cạnh BC kẻ $MD\bot AB$, $ME\bot AC$. Chứng minh 5 điểm A, D, M, H, E cùng nằm trên 1 đường tròn.
- **18** ([BBN23a], 4.3., p. 106). Tứ giác ABCD có $\hat{A} = \hat{C} = 90^{\circ}$. So sánh AC, BD.
- 19 ([BBN23a], 4.4., p. 106). Cho đường tròn đường kính AB, C, D là 2 điểm khác nhau thuộc đường tròn, C, D không trùng với A, B. 2 điểm E, F thuộc đường tròn sao cho $CE \bot AB$, $DF \bot AB$. Chứng minh CF, ED, AB đồng quy.
- **20** ([BBN23a], 4.5., p. 106). Cho đường tròn (O; R) & dây AB = 2a, a < R. Từ O kẻ đường thẳng vuông góc với AB cắt đường tròn tại D. Tính AD theo a, R.
- **21** ([BBN23a], 4.6., p. 106). Cho tứ giác ABCD có $\hat{C} + \hat{D} = 90^{\circ}$. M, N, P, Q lần lượt là trung điểm AB, BD, DC, CA. Chứng minh 4 điểm M, N, P, Q cùng thuộc 1 đường tròn.
- 22 ([BBN23a], 4.7., p. 106). Cho $\triangle ABC$ cân tại A, nội tiếp đường tròn (O). Đường cao AH cắt (O) ở D. Biết BC=24, AC=20. Tính chiều cao AH & bán kính (O).
- **23** ([BBN23a], 4.8., p. 106). Cho đường tròn (O; R) & dây AB. Kéo dài AB về phía B lấy điểm C sao cho BC = R. Chứng $minh \ \widehat{AOC} = 180^{\circ} 3\widehat{ACO}$.

- **24** ([BBN23a], 4.9., p. 106). Cho đường tròn (O;R) & điểm A nằm ngoài đường tròn. Xác định vị trí của điểm M trên đường tròn sao cho đoạn MA là ngắn nhất, dài nhất.
- **25** ([BBN23a], 4.10., p. 107). Cho đường tròn (O;R) & điểm P nằm bên trong nó. 2 dây AB,CD thay đổi luôn đi qua P & vuông góc với nhau. Chứng minh $AB^2 + CD^2$ là đại lượng không đổi.
- **26** ([BBN23a], 4.11., p. 107). Cho đường tròn (O; R), đường kính AB, E là điểm nằm trong đường tròn, AE cắt đường tròn tại C, BE cắt đường tròn tại D. Chúng minh $AE \cdot AC + BE \cdot BD = 4R^2$.
- 27 ([BBN23a], 4.12., p. 107). Cho tứ giác ABCD. Chứng minh 4 hình tròn có đường kính AB, BC, CD, DA phủ kín miền tứ giác ABCD.
- 28 ([BBN23a], 4.13., p. 107). Cho nửa đường tròn đường kính AB & điểm M nằm trong nửa đường tròn. Chỉ bằng thước kẻ, dựng qua M đường thẳng vuông góc với AB.
- 29 ([Tuy23], VD5, pp. 113–114). Trên đường tròn (O;R) đường kính AB lấy 1 điểm C. Trên tia AC lấy điểm M sao cho C là trung điểm AM. (a) Xác định vị trí của điểm C để AM lớn nhất. (b) Xác định vị trí của điểm C để $AM = 2R\sqrt{3}$. (c) Chứng minh khi C di động trên đường tròn (O) thì điểm M di động trên 1 đường tròn cổ định.
- **30** ([Tuy23], 36., p. 114). Cho $\triangle ABC$ cân tại A, đường cao AH = BC = a. Tính bán kính đường tròn ngoại tiếp $\triangle ABC$.
- 31 ([Tuy23], 37., p. 114). Cho ΔABC. D, E, F lần lượt là trung điểm BC, CA, AB. Chứng minh: các đường tròn (AFE), (BFD), (CDE) bằng nhau & cùng đi qua 1 điểm. Xác định điểm chung đó.
- 32 ([Tuy23], 38., p. 114). Cho hình thơi ABCD cạnh 1, 2 đường chéo cắt nhau tại O. R_1 & R_2 lần lượt là bán kính các đường tròn ngoại tiếp các ΔABC , ΔABD . Chứng minh: $\frac{1}{R_1^2} + \frac{1}{R_2^2} = 4$.
- **33** ([Tuy23], 39., p. 115). Cho hình bình hành ABCD, cạnh AB cố định, đường chéo AC = 2 cm. Chứng minh điểm D di động trên 1 đường tròn cố đinh.
- **34** ([Tuy23], 40., p. 115). Cho đường tròn (O; R) & 1 dây BC cố định. Trên đường tròn lấy 1 điểm A $(A \not\equiv B, A \not\equiv C)$. G là trọng tâm của $\triangle ABC$. Chứng minh khi A di động trên đường tròn (O) thì điểm G di động trên 1 đường tròn cố định.
- **35** ([Tuy23], 41., p. 115). Trong mặt phẳng cho 2n + 1 điểm, $n \in \mathbb{N}$, sao cho 3 điểm bất kỳ nào cũng tồn tại 2 điểm có khoảng cách nhỏ hơn 1. Chứng minh: trong các điểm này có ít nhất n + 1 điểm nằm trong 1 đường tròn có bán kính bằng 1.
- **36** ([Tuy23], 42., p. 115). Cho hình bình hành ABCD, 2 đường chéo cắt nhau tại O. Vẽ đường tròn tâm O cắt các đường thẳng AB, BC, CD, DA lần lượt ở M, N, P, Q. Xác định dạng của tứ giác MNPQ.
- 37 ([Tuy23], 43., p. 115). 2 người chơi 1 trò chơi như sau: Mỗi người lần lượt đặt lên 1 chiếc bàn hình tròn 1 cái cốc. Ai là người cuối cùng đặt được cốc lên bàn thì người đó thắng cuộc. Muốn chắc thắng thì phải chơi theo "chiến thuật" nào? (các chiếc cốc đều như nhau).
- 38 ([Bìn23a], VD8, p. 95). Cho hình thang cân ABCD. Chứng minh tồn tại 1 đường tròn đi qua cả 4 đỉnh của hình thang.
- **39** ([Bìn23a], 50., p. 95). (a) Cho $\triangle ABC$ cân tại A nội tiếp đường tròn (O), AC = 40 cm, BC = 48 cm. Tính khoảng cách từ O đến BC. (b) Mở rộng cho AC = b, BC = a.
- **40** ([Bìn23a], 51., p. 96). Cho $\triangle ABC$ cân tại A nội tiếp đường tròn (O), cạnh bên bằng b, đường cao AH = h. Tính bán kính đường tròn (O).
- 41 ([Bìn23a], 52., p. 96). Cho $\triangle ABC$ nhọn nội tiếp đường tròn (O;R). M là trung điểm BC. Giả sử O nằm trong $\triangle AMC$ hoặc O nằm giữa A & M. I là trung điểm AC. Chứng minh: (a) Chu vi $\triangle IMC$ lớn hơn 2R. (b) Chu vi $\triangle ABC$ lớn hơn 4R.
- 42 ([Bìn23a], 53., p. 96). Cho $\triangle ABC$ nội tiếp đường tròn (O). D, E, F lần lượt là trung điểm BC, CA, AB. Kẻ 3 đường thẳng DD', EE', FF' sao cho $DD' \parallel OA, EE' \parallel OB, FF' \parallel OC$. Chứng minh 3 đường thẳng DD', EE', FF' đồng quy.
- 43 ([Bìn23a], 54., p. 96). Cho 3 điểm A, B, C bất kỳ \mathcal{E} đường tròn (O;1). Chứng minh tồn tại 1 điểm M nằm trên đường tròn (O) sao cho $MA + MB + MC \geq 3$.
- **44** ([Bìn+23], VD1, p. 20). Cho đường tròn (O), đường kính AB, 2 dây AC, BD. Chứng minh AC \parallel BD \Leftrightarrow CD là đường kính.
- **45** ([Bìn+23], VD2, p. 20). Cho đường tròn (O), 2 dây AB, CD song song với nhau. E, F là trung điểm AB, CD. Chứng minh E, F, O thẳng hàng.
- **46** ([Bìn+23], VD3, p. 20). Dựng 1 đường tròn nhận đoạn thẳng AB cho trước làm dây cung có bán kính r cho trước.
- 47 ([Bìn+23], VD4, p. 21). Cho đường tròn (O; R) & dây AB. Kéo dài AB về phía B lấy điểm C sao cho BC = R. Chứng minh $\widehat{AOC} = 180^{\circ} 3\widehat{ACO}$.
- **48** ([Bìn+23], VD5, p. 21). Cho ΔABC. Từ trung điểm 3 cạnh kể các đường vuông góc với 2 cạnh kia tạo thành 1 lục giác. Chứng minh diện tích ΔABC gấp 2 lần diện tích lục giác.

- **49** ([Bìn+23], VD6, p. 21). Cho đường tròn (O), 2 dây AB,CD kéo dài cắt nhau tại điểm M ở ngoài đường tròn. H,E là trung điểm AB,CD. Chứng minh $AB < CD \Leftrightarrow MH < ME$.
- 50 ([Bìn+23], VD7, p. 22). Cho đường tròn (O) & điểm A nằm trong đường tròn, $A \neq O$. Tìm trên đường tròn điểm M sao cho \widehat{OMA} lớn nhất.
- 51 ([Bìn+23], VD8, p. 22). Cho đường tròn (O), A,B,C là 3 điểm trên đường tròn sao cho AB = AC. I là trung điểm AC, G là trọng tâm của $\triangle ABI$. Chứng minh $OG \bot BI$.
- **52** ([Bìn+23], VD9, p. 23). Dựng $\triangle ABC$. Biết $\widehat{A} = \alpha < 90^{\circ}$, đường cao BH = h & trung tuyến CM = m.
- **53** ([Bìn+23], VD10, p. 23). Cho $\triangle ABC$ nhọn, nội tiếp đường tròn (O;r), $AB = r\sqrt{3}$, $AC = r\sqrt{2}$. Giải $\triangle ABC$.
- 54 ([Bìn+23], VD11, p. 23). Cho đoạn thẳng BC cố định, I là trung điểm BC, điểm A trên mặt phẳng sao cho AB = BC. H là trung điểm AC, đường thẳng AI cắt đường thẳng BH tại M. Chứng minh M nằm trên 1 đường tròn cố định khi A thay đổi.
- 55 ([Bìn+23], VD12, p. 24). Cho hình chữ nhật ABCD, kể $BH \perp AC$. Trên cạnh AC, CD lấy 2 điểm M, N sao cho $\frac{AM}{AH} = \frac{DN}{CD}$. Chứng minh 4 điểm B, C, M, N nằm trên 1 đường tròn.
- **56** ([Bìn+23], VD13, p. 24). Cho đường tròn (O;R), dây AB = 2a, a < R. Từ O kể đường thẳng vuông góc với AB cắt đường tròn tại D. Tính AD theo a, R.
- 57 ([Bìn+23], VD14, p. 25). Cho đường tròn (O;R), đường kính AB, điểm E nằm trong đường tròn, AE cắt đường tròn tại C, BE cắt đường tròn tại D. Chứng minh AE cot $AC + BE \cdot BD$ không phụ thuộc vào vị trí của điểm E.
- **58** ([Bìn+23], VD15, p. 25). Cho tứ giác lồi ABCD. Chứng minh 4 hình tròn có đường kính AB, BC, CD, DA phủ kín miền tứ giác ABCD.
- 59 ([Bìn+23], 4.1., p. 26). Tính cạnh của tam giác đều, bát giác đều, n-giác đều nội tiếp đường tròn (O; R).
- 60 ([Bìn+23], 4.2., p. 26). Cho đường tròn (O), điểm P ở trong đường tròn. Xác định dây lớn nhất & dây ngắn nhất đi qua P.
- **61** ([Bìn+23], 4.3., p. 26). Cho đường tròn (O), 2 bán kính OA, OB vuông góc với nhau. Kể tia phân giác của \widehat{AOB} , cắt đường tròn ở D, M là điểm chuyển động trên cung nhỏ AB, từ M kể $MH\bot OB$ cắt OD tại K. Chứng minh $MH^2 + KH^2$ có giá trị không phụ thuộc vào vị trí điểm M.
- **62** ([Bìn+23], 4.4., p. 26). Chứng minh bao giờ cũng chia được 1 tam giác bất kỳ thành 7 tam giác cân, trong đó có 3 tam giác bằng nhau.
- **63** ([Bìn+23], 4.5., p. 26). Cho đường tròn (O), 1 dây cung EF có khoảng cách từ tâm O đến dây là d. Dựng 2 hình vuông nội tiếp trong mỗi phần đó, sao cho mỗi hình vuông có 2 đỉnh nằm trên đường tròn, 2 đỉnh còn lại nằm trên dây EF. Tính hiệu của 2 cạnh hình vuông đó theo d.
- **64** ([Bìn+23], 4.6., p. 26). Cho 2 đường tròn đồng tâm. Dựng 1 dây cắt 2 đường tròn theo thứ tự tại A, B, C, D sao cho AB = BC = CD.
- **65** ([Bìn+23], 4.7., p. 26). Cho $\triangle ABC$ nội tiếp đường tròn (O;R), $AB=R\sqrt{2-\sqrt{3}}$, $AC=R\sqrt{2+\sqrt{3}}$. Giải $\triangle ABC$.
- 66 ([Bìn+23], 4.8., p. 26). Cho hình thoi ABCD. R_1 là bán kính đường tròn ngoại tiếp ΔABC , R_2 là bán kính đường tròn ngoại tiếp ΔABD . Tính cạnh của hình thoi ABCD theo R_1, R_2 .
- **67** ([Bìn+23], 4.9., p. 26). Mỗi điểm trên mặt phẳng được tô bởi 1 trong 3 màu xanh, đỏ, vàng. Chứng minh tồn tại ít nhất 2 điểm được tô cùng 1 màu mà khoảng cách giữa 2 điểm đó bằng 1.
- 68 ([Bìn+23], 4.10., p. 26). Cho đường tròn (O;R) & dây AB cố định. Từ điểm C thay đổi trên đường tròn dựng hình bình hành CABD. Chứng minh giao điểm 2 đường chéo của hình bình hành CABD nằm trên 1 đường tròn cố định.

2 Đường Kính & Dây của Đường Tròn. Liên Hệ Giữa Dây & Khoảng Cách Từ Tâm Đến Dây

- **69** ([BBN23a], H1, p. 109). Giải thích kết luận "Đường kính là dây lớn nhất trong đường tròn" dựa vào so sánh khoảng cách từ tâm đến dây.
- **70** ([BBN23a], H2, p. 109). Cho đường tròn (O), 2 dây $AB \parallel CD \ \& AB = CD$, A, D cùng thuộc nửa mặt phẳng bờ BC. Tứ giác ABCD là hình gì?
- **71** ([BBN23a], H3, p. 109). Cho 1 đường tròn (O; R) & dây CD thay đổi nhưng có độ dài bằng a không đổi. Tập hợp các trung điểm dây CD là đường nào?
- 72 ([BBN23a], H4, p. 110). Cho 2 đường tròn đồng tâm O & cát tuyến ABCD. So sánh AB, CD.

- 73 ([BBN23a], VD1, p. 110). Cho đường tròn (O;R) & 1 điểm M nằm trong đường tròn. Vẽ qua M 2 dây AB,CD sao cho $AB\perp OM$. (a) So sánh độ dài 2 dây AB,CD. (b) Chứng minh $\widehat{ODM}<\widehat{OBM}$. (c) Xác định vị trí của dây đi qua M sao cho độ dài của nó là nhỏ nhất, lớn nhất.
- **74** ([BBN23a], VD2, p. 111). Cho 2 dây MN, EF bằng nhau $\mathscr E$ cắt nhau tại 1 điểm A nằm trong đường tròn (O;R). Chứng $minh\ EM=FN\ hoặc\ EN=FM$.
- 75 ([BBN23a], VD3, p. 111). Cho nửa đường tròn đường kính AB. Trên đoạn thẳng AB lấy 2 điểm C, D sao cho AC = BD. Từ C, D kẻ các đường thẳng song song với nhau cắt nửa đường tròn tương ứng tại M, N. (a) Chứng minh tứ giác CMND là hình thang vuông. (b) Xác định vị trí của M, N để CM + DN nhỏ nhất.
- 76 ([BBN23a], VD4, p. 112). Cho đường tròn (O), 2 dây AB,CD kéo dài cắt nhau tại điểm M ở ngoài đường tròn. H,E lần lượt là trung điểm AB,CD. Chứng minh: $AB < CD \Leftrightarrow HM < EM$.
- 77 ([BBN23a], 5.1., p. 112). Cho đường tròn (O) có tâm O nằm trên đường phân giác \widehat{xIy} , (O) cắt tia Ix ở A, B sao cho A nằm giữa B, I, cắt tia Iy ở C, D sao cho C nằm giữa D, I. Chứng minh: (a) AB = CD. (b) IA = IC, IB = ID.
- 78 ([BBN23a], 5.2., p. 112). Cho 2 đường tròn đồng tâm O, bán kính $r_1 > r_2$. Từ điểm M trên $(O; r_1)$ vẽ 2 dây ME, MF theo thứ tự cắt $(O; r_2)$ tại A, B & C, D. H, K lần lượt là trung điểm AB, CD. Biết AB > CD. So sánh: (a) ME, MF. (b) MH, MK.
- 79 ([BBN23a], 5.3., p. 112). Cho đường tròn tâm O, bán kính 5 cm & dây AB = 8 cm. (a) Tính khoảng cách từ tâm O đến dây AB. (b) Lấy điểm I trên dây AB sao cho AI = 1 cm. Kẻ dây CD đi qua I & vuông góc với AB. Chứng minh AB = CD.
- 80 ([BBN23a], 5.4., p. 112). Cho đường tròn tâm O đường kính AB & dây CD. 2 đường vuông góc với CD tại C, D tương ứng cắt AB ở M, N. Chứng minh AM = BN.
- 81 ([BBN23a], 5.5., p. 113). Cho đường tròn (O), 2 dây AB,CD bằng nhau & cắt nhau tại điểm I nằm trong đường tròn. Chứng minh: (a) IO là tia phân giác của 1 trong 2 góc tạo bởi 2 đường thẳng AB,CD. (b) Điểm I chia AB,CD thành 2 cặp đoạn thẳng bằng nhau đôi một.
- 82 ([BBN23a], 5.6., p. 113). Cho đường tròn (O,6cm) & 2 dây AB = 8,CD = 10. M là trung điểm AB, N là trung điểm CD.
 (a) So sánh OMN, ONM trong trường hợp 2 dây AB, CD không song song. (b) So sánh diện tích ΔOCD, ΔOAB.
- 83 ([BBN23a], 5.7., p. 113). Cho đường tròn (O) đường kính AB & dây CD cắt đường kính AB tại I. Hạ AH, BK vuông góc với CD. Chứng minh CH = DK.
- **84** ([BBN23a], 5.8., p. 113). Cho 2 đường tròn (O), (O') cắt nhau tại A, B. Qua A kẻ 2 cát tuyến CAF, DAE, C, $D \in (O)$, E, $F \in (O')$, sao cho $\widehat{CAB} = \widehat{EAB}$. Chứng minh CF = DE.
- 85 ([BBN23a], 5.9., p. 113). Cho $\triangle ABC$ cân tại A nội tiếp đường tròn (O). I là trung điểm của AC, G là trọng tâm của $\triangle ABI$. Chứng minh $OG \bot BI$.
- 86 ([BBN23a], 5.10., p. 113). Cho $\triangle ABC$ nhọn nội tiếp đường tròn (O;r) biết $AB=r\sqrt{3}, AC=r\sqrt{2}$. Giải $\triangle ABC$.
- 87 ([Bìn23a], VD9, p. 96). Cho $\triangle ABC$ nhọn nội tiếp đường tròn (O). Điểm M bất kỳ thuộc cung BC không chứa A. D, E lần lượt là các điểm đối xứng với M qua AB, AC. Tìm vị trí của M để DE lớn nhất.
- 88 ([Bìn23a], VD10, p. 97). Cho (O) bán kính OA = 11 cm. $Diểm\ M$ thuộc bán kính $OA\ \mathcal{E}$ cách $O\ 7$ cm. Qua M kể dây CD dài 18 cm. $Tính\ MC$, $MD\ với\ MC < MD$.
- 89 ([Bìn23a], VD11, p. 97). Cho (O) bán kính 15 cm, điểm M cách O 9 cm. (a) Dựng dây AB đi qua M & dài 26 cm. (b) Có bao nhiều dây đi qua M & có độ dài là 1 số nguyên cm?
- **90** ([Bìn23a], 55., p. 98). Tứ giác ABCD có $\widehat{A} = \widehat{C} = 90^{\circ}$. (a) Chứng minh $AC \leq BD$. (b) Trong trường hợp nào thì AC = BD?
- 91 ([Bìn23a], 56., p. 98). Cho (O) đường kính AB, 2 dây AC, AD. Điểm E bất kỳ trên đường tròn, H, K lần lượt là hình chiếu của E trên AC, AD. Chứng minh $HK \leq AB$.
- 92 ([Bìn23a], 57., p. 98). Cho (O), dây AB = 24 cm, dây AC = 20 cm ($\widehat{BAC} < 90^{\circ}$ & điểm O nằm trong \widehat{BAC}). M là trung điểm AC. Khoảng cách từ M đến AB bằng 8 cm. (a) Chứng minh ΔABC cân tại C. (b) Tính bán kính đường tròn.
- 93 ([Bìn23a], 58., p. 98). Cho (O) bán kính 5 cm, 2 dây AB & CD song song với nhau có độ dài theo thứ tự bằng 8 cm & 6 cm. Tính khoảng cách giữa 2 dây.
- 94 ([Bìn23a], 59., p. 98). Cho (O), đường kính AB = 13 cm. Dây CD dài 12 cm vuông góc với AB tại H. (a) Tính AH, BH. (b) M, N lần lượt là hình chiếu của H trên AC, BC. Tính diện tích tứ giác CMHN.
- 95 ([Bìn23a], 60., p. 99). Cho nửa đường tròn tâm O đường kính AB, dây CD. H, K lần lượt là chân 2 đường vuông góc kể từ A, B đến CD. (a) Chứng minh CH = DK. (b) Chứng minh $S_{AHKB} = S_{ABC} + S_{ABD}$. (c) Tính diện tích lớn nhất của tứ giác AHKB biết AB = 30 cm, CD = 18 cm.
- 96 ([Bìn23a], 61., p. 99). Cho ΔABC, 3 đường cao AD, BE, CF. Đường tròn đi qua D, E, F cắt BC, CA, AB lần lượt ở M, N, P. Chứng minh 3 đường thẳng kẻ từ M vuông góc với BC, kẻ từ N vuông góc với AC, kẻ từ P vuông góc với AB đồng quy.
- $\textbf{97} \ ([\underline{\texttt{Bin23a}}], 62., \text{p. } 99). \ \Delta ABC \ c\hat{a}n \ tại \ A \ nội \ tiếp \ (O). \ D \ là trung điểm \ AB, E \ là trọng tâm của \\ \Delta ACD. \ Chứng \ minh \ OE \bot CD.$

3 Vị Trí Tương Đối của Đường Thẳng & Đường Tròn. Dấu Hiệu Nhận Biết Tiếp Tuyến của Đường Tròn

- 98 ([BBN23a], H1, p. 116). Đường thẳng & đường tròn có thể có 3 điểm chung không?
- 99 ([BBN23a], H2, p. 116). Cho đường tròn (O, a cm) & 1 đường thẳng d cắt đường tròn tại 2 điểm A, B. H là trung điểm của AB. Tìm khoảng giá tri của OH.
- 100 ([BBN23a], H3, p. 116). Qua 1 điểm nằm trong đường tròn có thể kẻ được tiếp tuyến với đường tròn này không?
- 101 ([BBN23a], H4, p. 116). Qua 1 điểm ở trên đường tròn có thể kẻ được bao nhiều tiếp tuyến với đường tròn đó?
- 102 ([BBN23a], H5, p. 116). Tâp hợp tâm các đường tròn (O; R) tiếp xúc với đường thẳng d cố đinh là đường nào?
- 103 ([BBN23a], VD1, p. 116). Cho đường tròn (O;R) tiếp xúc với đường thẳng d tại A. Trên đường thẳng d lấy điểm M. Vẽ đường tròn (M,MA) cắt (O;R) tại điểm thứ 2 là $B \neq A$. Chứng minh MB là tiếp tuyến của (O;R).
- **104** ([BBN23a], VD2, p. 117). Cho hình thang ABCD, $\widehat{A} = \widehat{B} = 90^{\circ}$, có I là trung điểm AB & $\widehat{CID} = 90^{\circ}$. Chứng minh CD là tiếp tuyến của đường tròn đường kính AB.
- 105 ([BBN23a], VD3, p. 117). Cho đường tròn (O), đường kính AB. Trong cùng nửa mặt phẳng bờ AB vẽ 2 tiếp tuyến Ax, By với đường tròn. 1 đường thẳng d tiếp xúc với đường tròn tại E, cắt Ax, By theo thứ tự tại M, N. (a) Chứng minh tích AM · BN không đổi khi d thay đổi. (b) Xác định vị trí của d để AM + BN nhỏ nhất.
- 106 ([BBN23a], VD4, p. 118). Cho đường tròn (I) nội tiếp ΔABC vuông tại A, BC = a, CA = b, AB = c. Giả sử (I) tiếp xúc với BC tại D. Chứng minh $S_{ABC} = BD \cdot CD$.
- 107 ([BBN23a], VD5, p. 118). Cho tứ giác ABCD có tất cả các cạnh tiếp xúc với đường tròn (O), đồng thời tất cả các cạnh kéo dài của nó tiếp xúc với đường tròn (O'). Chứng minh 2 đường chéo của tứ giác ABCD vuông góc với nhau.
- 108 ([BBN23a], VD6, p. 118). Cho hình vuông ABCD. Tia Ax quay xung quanh A, luôn nằm trong \widehat{BAD} . 2 tia phân giác của \widehat{BAx} , \widehat{DAx} lần lượt cắt BC, CD tại M, N. Chứng minh MN luôn tiếp xúc với 1 đường tròn cố định.
- 109 ([BBN23a], VD7, p. 119). Cho đường tròn (O, 5 cm) & 1 điểm A nằm ngoài đường tròn. Dựng 1 cát tuyến đi qua A, cắt đường tròn theo 1 dây dài 8 cm.
- **110** ([BBN23a], VD8, p. 119). Trong các tam giác vuông có cùng cạnh huyền, tìm tam giác có bán kính đường tròn nội tiếp lớn nhất.
- 111 ([BBN23a], 6.1., p. 120). Cho nửa đường tròn (O), đường kính AB. 1 đường thẳng d tiếp xúc với nửa đường tròn tại M. Từ A, B hạ AE, BF vuông góc với d, E, $F \in d$. (a) Chứng minh AE + BF không đổi khi M chạy trên nửa đường tròn. (b) K^e $MD \perp AB$. Chứng minh $MD^2 = AE \cdot BF$. (c) Xác định vị trí của M để tích $AE \cdot BF$ lớn nhất.
- 112 ([BBN23a], 6.2., p. 120). Cho 2 đường tròn (O;R), (O;r) đồng tâm, R > r. Từ điểm $A \in (O;r)$ kẻ 2 tiếp tuyến với (O;r), 2 tiếp điểm là M,N. 2 tiếp tuyến đó cắt (O;R) tương ứng tại B,C. (a) Chứng minh AB = AC. (b) Chứng minh $AO \perp BC$. (c) Tính diện tích $\triangle ABC$ theo R,r.
- 113 ([BBN23a], 6.3., p. 120). Cho đường tròn (O), dây AB khác đường kính. Tại A, B kẻ 2 tiếp tuyến Ax, By với đường tròn. Trên Ax, By lấy lần lượt 2 điểm M, N sao cho AM = BN. Chứng minh hoặc AB || MN hoặc AB đi qua trung điểm của MN.
- 114 ([BBN23a], 6.4., p. 120). Cho $\triangle ABC$. Đường tròn (I) nội tiếp & đường tròn (J) bàng tiếp trong \widehat{A} của tam giác tiếp xúc với BC theo thứ tự tại M,N. Chứng minh M,N đối xứng nhau qua trung điểm BC.
- 115 ([BBN23a], 6.5., p. 120). Cho 2 đường thẳng d || d'. 1 đường tròn (O) tiếp xúc với d, d' tương ứng tại C, D, điểm A cố định trên d, nằm ngoài (O). Chỉ dùng êke, tìm trên d' điểm B sao cho AB là tiếp tuyến của (O).
- 116 ([BBN23a], 6.6., p. 120). Từ điểm A ở ngoài đường tròn (O; R), kẻ 2 tiếp tuyến AB, AC với đường tròn, B, C là 2 tiếp điểm. 1 điểm M bất kỳ trên đường thẳng đi qua 2 trung điểm P, Q của AB, AC. Kẻ tiếp tuyến MK của (O). Chứng minh MK = MA.
- 117 ([BBN23a], 6.7., p. 121). Từ 1 điểm A ở ngoài đường tròn (O;R) kẻ 2 tiếp tuyến AM,AN với đường tròn, MO cắt tia AN tại E, NO cắt tia AM tại E, E0 Chứng minh $EF \parallel MN$. E1 Biết E3 E4 tiếp tuyến E5, tính khoảng cách từ E4 đến E7.
- 118 ([BBN23a], 6.8., p. 121). Cho nửa đường tròn (O), đường kính AB = 2R. Điểm M di động trên nửa đường tròn đó, $M \neq A, M \neq B$. Vẽ đường tròn (M) tiếp xúc với AB tại H. Từ A, B kẻ 2 tiếp tuyến AC, BD với (M), C, D là 2 tiếp điểm. (a) Chứng minh C, M, D thẳng hàng. (b) Chứng minh CD là tiếp tuyến của (O). (c) Giả sử CD cắt AB tại K. Chứng minh $CA^2 = OB^2 = OH \cdot OK$.
- 119 ([BBN23a], 6.9., p. 121). Cho đường tròn (O), đường kính AB, dây $CD\bot OA$ tại $H\in OA$. A' là điểm đối xứng với A qua H, DA' cắt BC tại I. Chứng minh: (a) $DI\bot BCm$ HI=HC. (b) HI là tiếp tuyến của đường tròn đường kính A'B.

- 120 ([BBN23a], 6.10., p. 121). Cho đường tròn (O) & điểm A cố định nằm trên đường tròn đó. Kẻ tiếp tuyến xAy với đường tròn. Trên tia Ax lấy điểm M, kẻ tiếp tuyến MB với đường tròn. (a) Chứng minh M, O, trọng tâm, trực tâm ΔAMB thẳng hàng. (b) H là trực tâm của ΔAMB. Chứng minh tứ giác OAHB là hình thoi. (c) Tìm tập hợp các điểm H khi M thay đổi.
- 121 ([BBN23a], 6.11., p. 121). Cho 2 điểm A, B nằm cùng phía đối với đường thẳng xy, AB không vuông góc với xy. Tìm điểm $M \in xy$ sao cho MB là phân giác của góc giữa 2 đường thẳng AM, xy.
- 122 ([BBN23a], 6.12., p. 121). Cho đường thẳng xy & 2 điểm A, B nằm cùng phía đối với xy. Tìm trên xy điểm M sao cho $\widehat{BMy} = 2\widehat{AMx}$.
- 123 ([BBN23a], 6.13., p. 121). Tứ giác ABCD có 4 cạnh tiếp xúc với 1 đường tròn & 2 đường chéo của nó vuông góc với nhau. Chứng minh 1 trong 2 đường chéo là truc đối xứng của tứ giác.
- 124 ([BBN23a], 6.14., p. 121). Trong các $\triangle ABC$ có chung đáy BC & có cùng diện tích S, tìm tam giác có bán kính đường tròn nội tiếp lớn nhất.
- 125 ([BBN23a], 6.15., p. 122). Đường tròn (O;r) nội tiếp ΔABC . Các tiếp tuyến với đường tròn (O) song song với 3 cạnh của tam giác $\mathcal E$ chia tam giác thành 3 tam giác nhỏ. r_1, r_2, r_3 lần lượt là bán kính đường tròn nội tiếp 3 tam giác nhỏ đó. Chứng minh $r_1 + r_2 + r_3 = r$.
- **126** ([BBN23a], 6.16., p. 122). Cho đường tròn (I) nội tiếp ΔABC , tiếp xúc với cạnh AB tại D. Chứng minh: ΔABC vuông tại $C \Leftrightarrow AC \cdot BC = 2AD \cdot BD$.
- 127 ([BBN23a], 6.17., p. 122). Cho hình bình hành ABCD. Trong các tam giác tạo bởi 2 cạnh liên tiếp & 1 đường chéo ta vẽ các đường tròn nội tiếp. Chứng minh các tiếp điểm của chúng với 2 đường chéo tạo thành 1 hình chữ nhật.
- 128 ([BBN23a], 6.18., p. 122). Cho \widehat{xOy} , 2 điểm A,B theo thứ tự chuyển động trên Ox,Oy sao cho chu vi $\triangle OAB$ không đổi. Chứng minh AB luôn tiếp xúc với đường tròn cố định.
- 129 ([BBN23a], 6.19., p. 122). Cho $\widehat{xOy} = 90^{\circ}$, đường tròn (I) tiếp xúc với 2 cạnh Ox, Oy lần lượt ở A,B. 1 tiếp tuyến của (I) tại điểm E cắt Ox, Oy lần lượt ở C,D, $C \in OA$, $D \in OB$. Chứng minh: $\frac{1}{3}(OA + OB) < CD < \frac{1}{2}(OA + OB)$.
- 130 ([BBN23a], 6.20., p. 122). Cho đường tròn (O) & điểm M ngoài đường tròn. Từ M kẻ 2 tiếp tuyến MA, MB với (O). Vẽ đường tròn (M, MA). (a) Chứng minh OA, OB là 2 tiếp tuyến của đường tròn (M, MA). (b) Giả sử OM cắt (M, MA) tại E, F, E nằm giữa O, M. Chứng minh $\widehat{OAE} = \widehat{AFM}$.
- 131 ([BBN23a], p. 123). Chứng minh: (a) Mọi đa giác đều luôn ngoại tiếp được 1 đường tròn, i.e., tồn tại 1 đường tròn tiếp xúc với tất cả các cạnh của đa giác đều. (b) Tứ giác ABCD ngoại tiếp được 1 đường tròn \Leftrightarrow AB + CD = AD + BC.
- 132 ([Bìn23a], VD12, p. 99). Cho ΔABC vuông tại A, AB < AC, đường cao AH. Điểm E đối xứng với B qua H. Đường tròn có đường kính EC cắt AC ở K. Chứng minh HK là tiếp tuyến của đường tròn.
- 133 ([Bìn23a], VD13, p. 100). Cho 1 hình vuông 8×8 gồm 64 ô vuông nhỏ. Đặt 1 tấm bìa hình tròn có đường kính 8 sao cho tâm O của hình tròn trùng với tâm của hình vuông. (a) Chứng minh hình tròn tiếp xúc với 4 cạnh của hình vuông. (b) Có bao nhiêu ô vuông nhỏ bị tấm bìa che lấp hoàn toàn? (c) Có bao nhiêu ô vuông nhỏ bị tấm bìa che lấp 1 phần $\mathfrak E$ che lấp hoàn toàn)?
- 134 ([Bìn23a], 63., pp. 100–101). Cho nửa đường tròn tâm O đường kính AB, điểm M thuộc nửa đường tròn. Qua M vẽ tiếp tuyến với nửa đường tròn. D, C lần lượt là hình chiếu của A, B trên tiếp tuyến ấy. (a) Chứng minh M là trung điểm CD. (b) Chứng minh AB = BC + AD. (c) Giả sử $\widehat{AOM} \geq \widehat{BOM}$, gọi E là giao điểm của AD với nửa đường tròn. Xác định dạng của tứ giác BCDE. (d) Xác định vị trí của điểm M trên nửa đường tròn sao cho tứ giác ABCD có diện tích lớn nhất. Tính diện tích đó theo bán kính R của nửa đường tròn đã cho.
- 135 ([Bìn23a], 64., p. 101). Cho $\triangle ABC$ cân tại A, I là giao điểm của 3 đường phân giác. (a) Xác định vị trí tương đối của đường thẳng AC với đường tròn (O) ngoại tiếp $\triangle BIC$. (b) H là trung điểm BC, IK là đường kính đường tròn (O). Chứng minh $\frac{AI}{AK} = \frac{HI}{HK}$.
- 136 ([Bìn23a], 65., p. 101). Cho nửa đường tròn tâm O đường kính AB, Ax là tiếp tuyến của nửa đường tròn (Ax & nửa đường tròn nằm cùng phía đối với AB), điểm C thuộc nửa đường tròn, H là hình chiếu của C trên AB. Đường thẳng qua O & vuông góc với AC cắt Ax tại M. I là giao điểm của MB, CH. Chứng minh IC = IH.
- 137 ([Bìn23a], 66., p. 101). Cho hình thang vuông ABCD, $\widehat{A} = \widehat{D} = 90^{\circ}$, có $\widehat{BMC} = 90^{\circ}$ với M là trung điểm AD. Chứng minh: (a) AD là tiếp tuyến của đường tròn có đường kính BC. (b) BC là tiếp tuyến của đường tròn có đường kính AD.
- 138 ([Bìn23a], 67., p. 101). Cho nửa đường tròn tâm O đường kính AB, điểm C thuộc nửa đường tròn, H là hình chiếu của C trên AB. Qua trung điểm M của CH, kẻ đường vuông góc với OC, cắt nửa đường tròn tại D & E. Chứng minh AB là tiếp tuyến của (C; CD).

- 139 ([Bìn23a], 68., p. 101). Cho đường tròn tâm O đường kính AB. d, d' lần lượt là 2 tiếp tuyến tại A, B của đường tròn, $C \in d$ bất kỳ. Dường vuông góc với OC tại O cắt d' tại D. Chứng minh CD là tiếp tuyến của (O).
- 140 ([Bìn23a], 69., p. 101). Cho nửa đường tròn tâm O đường kính AB, điểm C thuộc nửa đường tròn. Qua C kẻ tiếp tuyến d với nửa đường tròn. Kẻ 2 tia Ax, By song song với nhau, cắt d theo thứ tự tại D, E. Chứng minh AB là tiếp tuyến của đường tròn đường kính DE.
- 141 ([Bìn23a], 70., pp. 101–102). Cho đường tròn tâm O có đường kính AB = 2R. d là tiếp tuyến của đường tròn, A là tiếp điểm. Điểm M bất kỳ thuộc d. Qua O kẻ đường thẳng vuông góc với BM, cắt d tại N. (a) Chứng minh tích $AM \cdot AN$ không đổi khi điểm M chuyển đông trên đường thẳng d. (b) Tim GTNN của MN.
- 142 ([Bìn23a], 71., p. 102). Cho $\triangle ABC$ cân tại A có $\widehat{A} = \alpha$, đường cao AH = h. Vẽ đường tròn tâm A bán kính h. 1 tiếp tuyến bất kỳ ($\neq BC$) của đường tròn (A) cắt 2 tia AB, AC theo thứ tự tại B', C'. (a) Chứng minh $S_{ABC} = S_{AB'C'}$. (b) Trong các $\triangle ABC$ có $\widehat{A} = \alpha$ & đường cao AH = h, tam giác nào có diện tích nhỏ nhất?
- 143 ([Bìn+23], 1, p. 28). Chứng minh: Nếu I là tâm đường tròn nội tiếp $\triangle ABC$ thì $\widehat{BIC} = 90^{\circ} + \frac{\widehat{A}}{2}$.
- 144 ([Bìn+23], 2, p. 28). Chứng minh: Nếu I nằm trong $\triangle ABC$ & $\widehat{BIC} = 90^{\circ} + \frac{\widehat{A}}{2}$, $\widehat{AIC} = 90^{\circ} + \frac{\widehat{B}}{2}$ thì I là tâm đường tròn nôi tiếp $\triangle ABC$.
- 145 ([Bìn+23], 3, p. 28). Chứng minh: Nếu J là tâm đường tròn bàng tiếp \widehat{A} của $\triangle ABC$ thì $\widehat{BJC} = 90^{\circ} \frac{\widehat{A}}{2}$.
- $\textbf{146} \ ([\underline{\text{Bin}+23}], \ 4, \ \text{p. 28}). \ \textit{Cho} \ \Delta \textit{ABC}, \ \textit{dặt} \ \textit{BC} = \textit{a}, \textit{CA} = \textit{b}, \textit{AB} = \textit{c}, \ \textit{a} + \textit{b} + \textit{c} = 2\textit{p}, \ \textit{r} \ \textit{là} \ \textit{bán kính đường tròn nội tiếp, S là diện tích } \Delta \textit{ABC}. \ \textit{Chứng minh:} \ r = (\textit{p}-\textit{a}) \tan \frac{\textit{A}}{2} = (\textit{p}-\textit{b}) \tan \frac{\textit{B}}{2} = (\textit{p}-\textit{c}) \tan \frac{\textit{C}}{2}, \ \textit{S} = \textit{pr}.$
- 147 ([Bìn+23], 5, p. 28). Dường tròn nội tiếp $\triangle ABC$ tiếp xúc với AB, AC tại F, E. Chứng minh: $AE = AF = \frac{1}{2}(AB + AC BC)$.
- 148 ([Bìn+23], VD1, p. 29). Cho $\widehat{xOy} = 90^{\circ}$, đường tròn (I) tiếp xúc với 2 cạnh Ox, Oy tại A, B. 1 tiếp tuyến của đường tròn (I) tại điểm E cắt Ox, Oy tại C, D.
- 149 ([Bìn+23], VD2, p. 29). Cho \widehat{xOy} , 2 điểm A, B lần lượt chuyển động trên Ox & Oy sao cho chu vi $\triangle OAB$ không đổi. Chứng minh AB luôn tiếp xúc với đường tròn cố định.
- 150 ([Bìn+23], VD3, p. 29). Cho hình vuông ABCD, lấy điểm E trên cạnh BC & điểm F trên cạnh CD sao cho AB = 3BE = 2DF. Chứng minh EF tiếp xúc với cung tròn tâm A, bán kính AB.
- 151 ([Bìn+23], VD4, p. 30). Cho đường tròn (O; R), & đường thẳng a cắt đường tròn tại A, B. M là điểm trên a & nằm ngoài đường tròn, qua M kẻ 2 tiếp tuyển MC, MD. Chứng minh khi M thay đổi trên a, đường thẳng CD luôn đi qua 1 điểm cố định.
- 152 ([Bìn+23], VD5, p. 31). Cho $\triangle ABC$, gọi I là tâm đường tròn nội tiếp tam giác. Qua I dựng đường thẳng vuông góc với IA cắt AB, AC tại M, N. Chứng minh: (a) $\frac{BM}{CN} = \frac{BI^2}{CI^2}$. (b) $BM \cdot AC + CN \cdot AB + AI^2 = AB \cdot AC$.
- 153 ([Bìn+23], VD6, p. 31). Cho $\triangle ABC$, D, E, F lần lượt là 3 tiếp điểm của đường tròn nội tiếp $\triangle ABC$ với 3 cạnh BC, CA, AB, H là hình chiếu của D trên EF. Chứng minh DH là tia phân giác của \widehat{BHC} .
- 154 ([Bìn+23], VD7, p. 32). I là tâm đường tròn nội tiếp ΔABC . D, E lần lượt là giao điểm của đường thẳng BI, CI với cạnh AC, AB. Chứng minh ΔABC vuông tại $A \Leftrightarrow BI \cdot CI = \frac{1}{2}BD \cdot CF$.
- 155 ([Bìn+23], VD8, p. 32). Cho đường tròn (O; R) & điểm M cách tâm O 1 khoảng bằng 3R. Từ M kẻ 2 đường thẳng tiếp xúc với đường tròn (O; R) tại A, B, gọi I, E lần lượt là trung điểm MA, MB. Tính khoảng cách từ O đến IE.
- 156 ([Bìn+23], VD9, p. 33). Cho $\triangle ABC$ cân tại A. O là trung điểm BC, dựng đường tròn (O) tiếp xúc với AB, AC tại D, E. M là điểm chuyển động trên cung nhỏ \widehat{DE} , tiếp tuyến với đường tròn (O) tại M cắt 2 cạnh AB, AC lần lượt ở P, Q. Chứng minh: (a) $BC^2 = 4BP \cdot CQ$. Từ đó xác định vị trí của M để diện tích $\triangle APQ$ đạt GTLN. (b) Nếu $BC^2 = 4BP \cdot CQ$ thì PQ là tiếp tuyến.
- 157 ([Bìn+23], VD10, p. 34). Cho đường tròn (O), điểm M ở ngoài đường tròn. Qua M kẻ 2 tiếp tuyến cắt đường tròn tại A, B, MA > MB, gọi CD là đường kính vuông góc với AB, đường thẳng MC, MD cắt đường tròn tại E, K, giao điểm của DE, CK là H, I là trung điểm MH. Chứng minh IE, IK là 2 tiếp tuyến của đường tròn (O).
- 158 ([Bìn+23], VD11, p. 34). Cho $\triangle ABC$, đường cao AH. AD, AE là đường phân giác của 2 góc $\widehat{B}A\widehat{H},\widehat{C}A\widehat{H}$. Chứng minh tâm đường tròn nội tiếp $\triangle ABC$ trùng với tâm đường tròn ngoại tiếp $\triangle ADE$.
- 159 ([Bìn+23], VD12, p. 35). Cho $\triangle ABC$ vuông tại A. I là tâm đường tròn nội tiếp $\triangle ABC$, 3 tiếp điểm trên BC, CA, AB lần lượt là D, E, F. M là trung điểm AC, đường thẳng MI cắt cạnh AB tại N, đường thẳng DF cắt đường cao AH của $\triangle ABC$ tại P. Chứng minh $\triangle ANP$ cân.

- **160** ([Bìn+23], VD13, p. 36). Tính \widehat{A} của $\triangle ABC$ biết đỉnh B cách đều tâm 2 đường tròn bàng tiếp của \widehat{A}, \widehat{B} của $\triangle ABC$.
- 161 ([Bìn+23], VD14, p. 36). Cho $\triangle ABC$ có AB=2AC & đường phân giác AD. r,r_1,r_2 lần lượt là bán kính đường tròn nội tiếp $\triangle ABC, \triangle ACD, \triangle ABD$. Chứng minh $AD=\frac{pr}{3}\left(\frac{1}{r_1}+\frac{2}{r_2}\right)-p$ với p là nửa chu vi $\triangle ABC$.
- **162** ([Bìn+23], VD15, p. 37). Cho đường tròn (O) & điểm A cố định nằm ngoài đường tròn. Kẻ tiếp tuyến AB & cát tuyến qua A cắt đường tròn tại C, D, AC < AD. Hỏi trọng tâm ΔBCD chạy trên đường nào khi cát tuyến ACD thay đổi?
- 163 ([Bìn+23], 5.1., p. 38). Cho nửa đường tròn bán kính AB = 2R. C là điểm trên nửa đường tròn, khoảng cách từ C đến AB là h. Tính bán kính đường tròn nội tiếp ΔABC theo R, h.
- 164 ([Bìn+23], 5.2., p. 38). Cho $\triangle ABC$, D là điểm trên BC. Đường tròn nội tiếp $\triangle ABD$ tiếp xúc với cạnh BC tại E, đường tròn nội tiếp $\triangle ADC$ tiếp xúc với cạnh BC tại F, đồng thời 2 đường tròn này cùng tiếp xúc với đường thẳng $d \neq BC$, đường thẳng d cắt AD tại I. Chứng minh $AI = \frac{1}{2}(AB + AC BC)$.
- 165 ([Bìn+23], 5.3., p. 38). Cho ΔABC vuông tại A, đường cao AH. Đường tròn đường kính BH cắt cạnh AB tại M, đường tròn đường kính HC cắt cạnh AC tại N. Chứng minh MN là tiếp tuyến chung của 2 đường tròn đường kính BH, CH.
- **166** ([Bìn+23], 5.4., p. 38). Cho ΔABC cân tại A, đường cao AK. H là trực tâm ΔABC, đường tròn đường kính AH cắt 2 cạnh AB, AC tại D, E. Chứng minh KD, KE là 2 tiếp tuyến của đường tròn đường kính AH.
- 167 ([Bìn+23], 5.5., p. 38). Cho đường tròn (O) & điểm M ở ngoài đường tròn. Từ M kẻ tiếp tuyến MA, MB với đường tròn, A, B là 2 tiếp điểm, tia OM cắt đường tròn tại C, tiếp tuyến tại C cắt tiếp tuyến MA, MB tại P, Q. Chứng minh diện tích ΔMPQ lớn hơn $\frac{1}{2}$ diện tích ΔABC .
- 168 ([Bìn+23], 5.6., p. 38). Trong tất cả các tam giác có cùng cạnh a, đường cao kẻ từ đỉnh đối diện với cạnh a bằng h, xác định tam giác có bán kính đường tròn nội tiếp lớn nhất.
- 169 ([Bìn+23], 5.7., p. 38). Cho $\triangle ABC$, I là tâm đường tròn nội tiếp tam giác. Qua I kẻ đường thẳng vuông góc với IA cắt 2 cạnh AB, AC tại D, E. Chứng minh $\frac{BD}{CE} = \left(\frac{IB}{IC}\right)^2$.
- 170 ([Bìn+23], 5.8., p. 38). Cho 3 điểm A, B, C cố định nằm trên 1 đường thắng theo thứ tự đó. Đường tròn (O) thay đổi luôn đi qua B, C. Từ A kẻ 2 tiếp tuyến AM, AN với đường tròn (O), M, N là 2 tiếp điểm. Đường thắng MN cắt AO tại H, gọi E là trung điểm BC. Chứng minh khi đường tròn (O) thay đổi tâm của đường tròn ngoại tiếp ΔOHE nằm trên 1 đường thẳng cố định.
- 171 ([Bìn+23], 5.9., p. 39). Cho $\triangle ABC$, $\widehat{A}=30^{\circ}$, BC là cạnh nhỏ nhất. Trên AB lấy điểm D, trên AC lấy điểm E sao cho BD=CE=BC. O,I là tâm đường tròn ngoại, nội tiếp $\triangle ABC$. Chứng minh OI=DE & $OI\perp DE$.
- 172 ([Bìn+23], 5.10., p. 39). Cho $\triangle ABC$ ngoại tiếp đường tròn (I;r), kẻ các tiếp tuyến với đường tròn $\mathcal E$ song song với 3 cạnh $\triangle ABC$. Các tiếp tuyến này tạo với 3 cạnh $\triangle ABC$ thành 3 tam giác nhỏ, gọi diện tích 3 tam giác nhỏ là S_1, S_2, S_3 $\mathcal E$ diện tích $\triangle ABC$ là S. Tim GTNN của biểu thức $\frac{S_1 + S_2 + S_3}{S}$.
- 173 ([Bìn+23], 5.11., p. 39). Cho $\triangle ABC$, gọi I là tâm đường tròn nội tiếp, I_A là tâm đường tròn bàng tiếp \widehat{A} & M là trung điểm BC. H,D là hình chiếu của I,I_A trên cạnh BC. Chứng minh M là trung điểm DH, từ đó suy ra đường thẳng MI đi qua trung điểm AH.
- 174 ([Bìn+23], 5.12., p. 39). Cho đường tròn (O;r) $\mathcal E$ điểm A cố định trên đường tròn. Qua A dựng tiếp tuyến d với đường tròn (O;r). M là điểm chuyển động trên d, từ M kẻ tiếp tuyến đến đường tròn (O;r) có tiếp điểm là $B \neq A$. Tâm của đường tròn ngoại tiếp $\mathcal E$ trực tâm của ΔAMB chạy trên đường nào?
- 175 ([Bìn+23], 5.13., p. 39). Cho nửa đường tròn đường kính AB, từ điểm M trên đường tròn kẻ tiếp tuyến d. H,K là hình chiếu của A,B trên d. Chứng minh AH + BK không đổi từ đó suy ra đường tròn đường kính HK luôn tiếp xúc với AH,BK,AB.
- 176 ([Bìn+23], 5.14., p. 39). Cho ΔABC , điểm M trong tam giác, gọi H, D, E là hình chiếu của M thứ tự trên BC, CA, AB. Xác định vị trí của M sao cho giá trị của biểu thức $\frac{BC}{MH} + \frac{CA}{MD} + \frac{AB}{ME}$ đạt GTNN.
- 177 ([Bìn+23], 5.15., p. 39). Cho $\triangle ABC$ vuông tại A. O,I là tâm đường tròn ngoại & nội tiếp $\triangle ABC$. Biết $\triangle BIO$ vuông tại I. Chứng minh $\frac{BC}{5} = \frac{CA}{4} = \frac{AB}{3}$.

4 Vị Trí Tương Đối của 2 Đường Tròn

178 ([BBN23a], H1, p. 126). Cho ΔABC. 2 đường tròn (B, AB), (C, AC) có thể tiếp xúc nhau được không?

- 179 ([BBN23a], H2, p. 126). Đ/S? Cho 2 đường tròn (O;R), (O';r) có R>r. (a) Nếu OO'< R+r thì 2 đường tròn cắt nhau. (b) Nếu OO'=R-r thì 2 đường tròn tiếp xúc nhau. (c) Nếu 2 đường tròn tiếp xúc ngoài nhau thì OO'=R+r. (d) Nếu OO'>R+r thì 2 đường tròn ngoài nhau.
- **180** ([BBN23a], VD1, p. 127). Cho đường tròn (O,OA) \mathcal{E} đường tròn (O',OA). (a) Xác định vị trí tương đối của 2 đường tròn (O), (O'). (b) Dây AD của đường tròn (O) cắt đường tròn (O') ở C. Chứng minh AC = CD.
- 181 ([BBN23a], VD2, p. 127). Xác định vị trí tương đối của 2 đường tròn (O;R), (O';R') trong 2 trường hợp: (a) R=6, R'=4, d=OO'=2. (b) R=5, R'=3, d=6.
- 182 ([BBN23a], VD3, p. 127). Cho 2 đường tròn (O,6), (O',8) cắt nhau tại A, B sao cho OA là tiếp tuyến của (O'). Tính độ dài dây chung AB & khoảng cách từ O đến AB.
- **183** ([BBN23a], VD4, p. 128). Cho 2 đường tròn (O), (O') tiếp xúc với nhau tại A. Qua A vẽ cát tuyến cắt (O), (O') lần lượt ở $M \neq A$, $N \neq A$. Chứng minh 2 tiếp tuyến với (O), (O') lần lượt ở M, N song song với nhau.
- 184 ([BBN23a], VD5, p. 128). Cho $\triangle ABC$ cân tại A. (a) Chứng minh đường tròn bàng tiếp trong \widehat{A} & đường tròn nội tiếp $\triangle ABC$ tiếp xúc nhau tại 1 điểm thuộc BC. (b) Tính bán kính 2 đường tròn biết AB = 8, BC = 6.
- 185 ([BBN23a], VD6, p. 129). Cho 2 đường tròn (O;R), (O';R') tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài MN, $M \in (O), N \in (O')$. Tiếp tuyến chung tại A của 2 đường tròn cắt MN tại E. (a) Chứng minh E là trung điểm của MN. (b) Chứng minh ΔAMN vuông \mathcal{E} MN tiếp xúc với đường tròn đường kính OO'. (c) Tính MN biết bán kính (O), (O') lần lượt là R = 4, R' = 5.
- 186 ([BBN23a], VD7, p. 129). Cho $\triangle ABC$. Dựng 3 đường tròn tâm A,B,C đôi một tiếp xúc ngoài nhau.
- 187 ([BBN23a], VD8, p. 130). Cho 2 đường tròn (O), (O') ngoài nhau, AB, CD là 2 tiếp tuyến chung ngoài, đường thẳng AD cắt (O), (O') theo thứ tự tại M, N. Chứng minh AM = DN.
- 188 ([BBN23a], VD9, p. 130). Cho 2 đường tròn $(O_1, r_1), (O_2, r_2)$ cắt nhau tại A, B, O_1, O_2 nằm khác phía đối với AB. 1 cát tuyến PAQ quay quanh A. Lấy $P \in (O_1), Q \in (O_2)$ sao cho A nằm giữa P, Q. Xác định vị trí của cát tuyến PAQ trong mỗi trường hợp: (a) PQ có độ dài lớn nhất. (b) Chu vi ΔBPQ đạt GTLN. (c) Diện tích ΔBPQ đạt GTLN.
- **189** ([BBN23a], 7.1., p. 131). Cho 2 đường tròn (O; R), (O'; R'), độ dài đường nối tâm OO' = d. Xác định vị trí tương đối của 2 đường tròn vào bảng:

R	R'	d	Vị trí tương đối
$5~\mathrm{cm}$	$3 \mathrm{~cm}$	$7~\mathrm{cm}$	
11 cm	$4 \mathrm{~cm}$	$3 \mathrm{~cm}$	
9 cm	$6~\mathrm{cm}$	$15~\mathrm{cm}$	
$7 \mathrm{~cm}$	$2 \mathrm{~cm}$	10 cm	
$7 \mathrm{~cm}$	$3 \mathrm{~cm}$	$4 \mathrm{~cm}$	
$6~\mathrm{cm}$	$2 \mathrm{~cm}$	$7~\mathrm{cm}$	

- 190 ([BBN23a], 7.2., p. 131). Cho 2 đường tròn (O), (O') cắt nhau tại A,B,O,O' nằm khác phía đối với AB. Qua A kẻ đường thẳng vuông góc với AB cắt (O) tại C & cắt (O') tại D. Cát tuyến EAF cắt (O) tại E, cắt (O') tại E. (a) Chứng minh $\widehat{CEB} = \widehat{DFB} = 90^{\circ}$. (b) Chứng minh $OO' \parallel CD$. Tính CD biết AB = 9.6 cm, OA = 8 cm, O'A = 6 cm. (c) Dựng qua A cát tuyến EAF, $E \in (O)$, $F \in (O')$, sao cho AE = AF.
- 191 ([BBN23a], 7.3., p. 132). Cho 3 đường tròn (O_1) , (O_2) , (O_3) tiếp xúc ngoài với nhau từng đôi một. 3 tiếp điểm (O_1) , (O_2) là A, $(O_2, (O_3)$ là B, (O_3) , (O_1) là C. 2 tia AB, AC kéo dài cắt (O_3) lần lượt ở P, Q. Chứng minh P, Q, O_3 thẳng hàng.
- 192 ([BBN23a], 7.4., p. 132). Cho 2 đường tròn (O, 2 cm) & (O', 3 cm) có khoảng cách giữa 2 tâm là 6 cm. E, F tương ứng là giao của tiếp tuyến chung trong & ngoài với đường thẳng OO'. (a) Xác định vị trí tương đối của 2 đường tròn. (b) Tính độ dài đoạn EF.
- 193 ([BBN23a], 7.5., p. 132). Cho 2 đường tròn đồng tâm O. 1 đường tròn (O') cắt đường tròn nhỏ tâm O lần lượt ở A, B & cắt đường tròn còn lại lần lượt ở C, D. Chứng minh $AB \parallel CD$.
- 194 ([BBN23a], 7.6., p. 132). Cho 2 đường tròn (O;R), (O';r) cắt nhau ở A,B sao cho O,O' thuộc 2 nửa mặt phẳng bờ AB. Dựng 1 cát tuyến PAQ, $P \in (O;R)$, $Q \in (O';r)$, sao cho A nằm giữa P,Q & 2AP = AQ.
- 195 ([BBN23a], 7.7., p. 132). Cho 2 đường tròn bằng nhau (O), (O') có bán kính R cắt nhau tại A, B. Từ O, O' dựng Ox, O'y song song với nhau $\mathscr E$ cùng thuộc nửa mặt phẳng bở OO', 2 tia này cắt (O) tại C $\mathscr E$ (O') tại D. C' đối xứng với C qua O, D' đối xứng với D qua O'. (a) Chứng minh CD', OO', C'D đồng quy. (b) Tìm tập hợp trung điểm M của CD khi Ox, O'y thay đổi. (c) Tính góc hợp bởi tiếp tuyến tại A của (O) với OO' biết $OO' = \frac{3}{2}R$.
- 196 ([BBN23a], 7.8., p. 132). Cho 2 đường tròn (O, 3 cm) tiếp xúc ngoài với đường tròn (O', 1 cm) tại A. Vẽ 2 bán kính OB, O'C song song với nhau thuộc cùng 1 nửa mặt phẳng bờ OO'. (a) Tính \widehat{BAC} . (b) I là giao điểm của BC, OO'. Tính độ dài OI.

- 197 ([BBN23a], 7.9., p. 132). Cho đường tròn (O;R), (I;2R) đi qua O. 2 tiếp tuyến chung ngoài của 2 đường tròn này là ADB, AEC. (a) Xác định dạng \mathcal{E} giải ΔABC . (b) Xác định dạng \mathcal{E} giải tứ giác BDEC.
- 198 ([BBN23a], 7.10., p. 133). Cho 2 đường tròn (O_1) , (O_2) cắt nhau tại H, K. Đường thẳng O_1H cắt (O_1) tại A, cắt (O_2) tại $B \neq H$, O_2H cắt (O_1) tại C & cắt (O_2) tại $D \neq H$. Chứng minh 3 đường thẳng AC, BD, HK đồng quy tại 1 điểm.
- **199** ([BBN23a], 7.11., p. 133). Cho 2 đường tròn (O;R), (O';R') tiếp xúc ngoài, tiếp tuyến chung ngoài $AB, A \in (O;R), B \in (O';R')$. Dường tròn (I;r) tiếp xúc với AB & 2 đường tròn (O;R), (O';R'). Chứng minh: $\frac{1}{\sqrt{r}} = \frac{1}{\sqrt{R}} + \frac{1}{\sqrt{R'}}$.
- **200** ([BBN23a], 7.12., p. 133). Cho $\triangle ABC$. Vẽ 3 đường tròn tâm A, B, C đôi một tiếp xúc ngoài nhau tại M, N, P. Chứng minh đường tròn đi qua 3 điểm M, N, P là đường tròn nội tiếp $\triangle ABC$.
- **201** ([BBN23a], 7.13., p. 133). Cho 1 tứ giác. Vẽ các đường tròn có đường kính là 4 cạnh của tứ giác đó. Chứng minh 4 đường thẳng chứa các dây chung của 4 đường tròn cắt nhau tạo thành 1 hình bình hành.
- **202** ([BBN23a], 7.14., p. 133). Cho 3 đường tròn (O_1) , (O_2) , (O_3) bằng nhau & ở ngoài nhau. Dựng 1 đường tròn tiếp xúc ngoài (hoặc tiếp xúc trong) với cả 3 đường tròn (O_1) , (O_2) , (O_3) .
- **203** ([BBN23a], 7.15., p. 133). Cho 3 đường tròn không biết tâm, tiếp xúc ngoài với nhau tại A, B, C. Tìm tâm của chúng chỉ bằng thước thẳng.
- **204** ([BBN23a], 7.16., p. 133). Cho đường tròn (O) \mathcal{E} đường thẳng d không cắt (O). $P \in d$ là điểm cố định. Dựng đường tròn (K) tiếp xúc với (O) \mathcal{E} tiếp xúc với d tại P.
- **205** ([Bìn23a], VD20, p. 112). Cho 2 đường tròn (O; R), (O'; r) tiếp xúc ngoài tại A. Kể tiếp tuyến chung ngoài BC, $B \in (O)$, $C \in (O')$. (a) Tính \widehat{BAC} . (b) Tính BC. (c) D là giao điểm của CA với (O), $D \neq A$. Chứng minh 3 điểm B, O, D thẳng hàng. (d) Tính AB, AC.
- **206** ([Bìn23a], VD21, p. 112). Cho điểm B nằm giữa A, C sao cho AB = 14 cm, BC = 28 cm. Vẽ về 1 phía của AC 3 nửa đường tròn tâm I, K, O có đường kính theo thứ tự AB, BC, CA. Tính bán kính đường tròn (M) tiếp xúc ngoài với 2 nửa đường tròn (I), (K) E tiếp xúc trong với nửa đường tròn (O).
- **207** ([Bìn23a], VD22, p. 114). Cho 2 đường tròn (O), (O') có cùng bán kính, cắt nhau tại A, B. Kể cát tuyến chung DAE của 2 đường tròn, $D \in (O)$, $E \in (O')$. Chứng minh BD = BE.
- **208** ([Bìn23a], VD23, p. 114). Cho 2 đường tròn (O), (O') ở ngoài nhau. Kẻ 2 tiếp tuyến chung ngoài AB, CD, A, $C \in (O)$, B, $D \in (O')$. Tiếp tuyến chung trong GH cắt AB, CD lần lượt ở E, F, $G \in (O)$, $H \in (O')$. Chứng minh: (a) AB = EF. (b) EG = FH.
- **209** ([Bìn23a], 109., p. 115). 2 đường tròn (O;R), (O';R) cắt nhau tại A,B. Đoạn nối tâm OO' cắt 2 đường tròn (O), (O') theo thứ tự ở C,D. Tính R biết AB=24 cm, CD=12 cm.
- **210** ([Bìn23a], 110., p. 115). 2 đường tròn (O;R), (O';R) cắt nhau tại A,B, với $\widehat{OAO'} = 90^{\circ}$. Vẽ cát tuyến chung MAN, $M \in (O), N \in (O')$. Tính $AM^2 + AN^2$ theo R.
- **211** ([Bìn23a], 111., p. 115). Cho 3 đường tròn tâm O_1, O_2, O_3 có cùng bán kính $\mathscr E$ cùng đi qua 1 điểm I. 3 giao điểm khác I của 2 trong 3 đường tròn đó là A, B, C. Chứng minh: (a) $\Delta ABC = \Delta O_1 O_2 O_3$. (b) I là trực tâm ΔABC .
- **212** ([Bìn23a], 112., pp. 115–116). Cho điểm A nằm ngoài đường tròn tâm O. Vẽ đường tròn tâm A bán kính AO. CD là tiếp tuyến chung của 2 đường tròn, $C \in (O), D \in (A)$. Doạn nối tâm OA cắt đường tròn (O) tại H. Chứng minh DH là tiếp tuyến của (O).
- **213** ([Bìn23a], 113., p. 116). Cho 2 đường tròn (O), (O') cắt nhau tại A, B. Vẽ hình bình hành OBO'C. Chứng minh ACOO' là hình thang cân.
- **214** ([Bìn23a], 114., p. 116). Cho 2 đường tròn (O), (O') cắt nhau tại A, B. (a) Nêu cách dựng cát tuyến chung CAD, $C \in (O)$, $D \in (O')$, sao cho A là trugn điểm CD. (b) Tính CD biết OO' = 5 cm, OA = 4 cm, O'A = 3 cm.
- **215** ([Bìn23a], 115., p. 116). Cho $\widehat{xOy} = 90^{\circ}$. 2 điểm A, B theo thứ tự di chuyển trên 2 tia Ox, Oy sao cho OA + OB = k với hằng số k. Vẽ 2 đường tròn (A, OB), (B, OA). (a) Chứng minh 2 đường tròn (A), (B) luôn cắt nhau. (b) M, N là 2 giao điểm của 2 đường tròn (A), (B). Chứng minh đường thẳng MN luôn đi qua 1 điểm cố định.
- **216** ([Bìn23a], 116., p. 116). 2 đường tròn (O; R), (O'; r) tiếp xúc ngoài tại A. Kể tiếp tuyến chung ngoài BC, $B \in (O)$, $C \in (O')$. (a) Cho R = 3 cm, r = 1 cm. Tính AB, AC. (b) Cho AB = 19.2 cm, AC = 14.4 cm. Tính R, r.
- **217** ([Bìn23a], 117., p. 116). Cho 3 đường tròn (O_1) , (O_2) , (O_3) tiếp xúc với 2 cạnh của 1 góc nhọn & (O_1) tiếp xúc ngoài với (O_2) , (O_2) tiếp xúc ngoài với (O_3) . Biết bán kính 2 đường tròn (O_1) , (O_3) là a, b. Tính bán kính đường tròn (O_2) .
- 218 ([Bìn23a], 118., p. 116). Cho 2 đường tròn (O), (O') tiếp xúc ngoài tại A. AB là đường kính của đường tròn (O), AC là đường kính của đường tròn (O'), DE là tiếp tuyến chung của 2 đường tròn, $D \in (O)$, $E \in (O')$, K là giao điểm của BD, CE. (a) Tứ giác ADKE là hình gì? (b) Chứng minh AK là tiếp tuyến chung của 2 đường tròn (O), (O'). (c) M là trung điểm BC. Chứng minh $MK \perp DE$.

- **219** ([Bìn23a], 119., pp. 116–117). 2 đường tròn (O; R), (O'; r) tiếp xúc ngoài tại A. BC, DE là 2 tiếp tuyến chung của 2 đường tròn, B, $D \in (O)$. (a) Chứng minh BDEC là hình thang cân. (b) Tính diện tích hình thang BDEC.
- 220 ([Bìn23a], 120., p. 117). 2 đường tròn (O;R), (O';r) tiếp xúc ngoài nhau. AB là tiếp tuyến chung của 2 đường tròn, $A \in (O), B \in (O')$. (a) Tính độ dài AB. (b) Cho R = 36 cm, r = 9 cm. Tính bán kính đường tròn (I) tiếp xúc với đường thẳng AB & tiếp xúc ngoài với 2 đường tròn (O), (O').
- **221** ([Bìn23a], 121., p. 117). Trong 1 hình thang caan có 2 đường tròn tiếp xúc ngoài nhau, mỗi đường tròn tiếp xúc với 2 cạnh bên & tiếp xúc với 1 đáy của hình thang. Biết bán kính 2 đường tròn đó bằng 2 cm, 8 cm. Tính diện tích hình thang.
- **222** ([Bìn23a], 122., p. 117). Cho $\triangle ABC$ đều nội tiếp dường tròn (O;R). (O') là đường tròn tiếp xúc trong với đường tròn (O) & tiếp xúc với 2 cạnh AB, AC theo thứ tự tại M, N. (a) Chứng minh 3 điểm M, O, N thẳng hàng. (b) Tính bán kính đường tròn (O') theo R.
- **223** ([Bìn23a], 123., p. 117). Cho $\triangle ABC$ vuông cân tại A nội tiếp đường tròn (O;R). (O') là đường tròn tiếp xúc trong với đường tròn (O) & tiếp xúc 2 cạnh AB, AC. Tính bán kính đường tròn (O') theo R.
- **224** ([Bìn23a], 124., p. 117). Cho đường tròn (O) đường kính AB, đường tròn (O') tiếp xúc trong với đường tròn (O) tại A. 2 dây BC, BD của đường tròn (O) tiếp xúc với đường tròn (O') lần lượt ở E, F. I là giao điểm của EF, AB. Chứng minh I là tâm của đường tròn nội tiếp ΔBCD .
- **225** ([Bìn23a], 125., p. 117). Cho 3 đường tròn bán kính r tiếp xúc ngoài đôi một. Tính bán kính của đường tròn tiếp xúc với cả 3 đường tròn đó.
- **226** ([Bìn23a], 126., p. 117). Cho đường tròn (O; R). Vẽ về 1 phía của đường kính AB 2 tia tiếp tuyến Am, Bn. (I), (K) là 2 đường tròn tiếp xúc ngoài nhau $\mathcal E$ tiếp xúc ngoài đường tròn (O), trong đó đường tròn (I) tiếp xúc với tia Am, đường tròn (K) tiếp xúc với tia Bn. x, y là bán kính của 2 đường tròn (I), (K). Chứng $minh R = 2\sqrt{xy}$.
- 227 ([Bìn23a], 127., p. 117). Cho nửa đường tròn (O) đường kính AB. OC là bán kính vuông góc với AB, d là tiếp tuyến với nửa đường tròn tại C. (I) là đường tròn tiếp xúc trong với nửa đường tròn (O) & tiếp xúc với đường kính AB. Chứng minh điểm I cách đều đường thẳng d & điểm O.
- 228 ([Bìn23a], 128., p. 118). Cho nửa đường tròn (O) với đường kính AB = 2R. OE là bán kính vuông góc với AB. Về đường tròn (C) có đường kính OE. (D) là đường tròn tiếp xúc ngoài với đường tròn (C), tiếp xúc trong với đường tròn (O) & tiếp xúc với đoạn thẳng OB. Tính bán kính của (D).
- **229** ([Bìn23a], 129., p. 118). Cho điểm C thuộc đoạn thẳng AB, AC = 4 cm, BC = 8 cm. Vẽ về 1 phía của AB 2 nửa đường tròn có đường kính lần lượt là AC, AB. Tính bán kính của đường trình (I) tiếp xúc v ới 2 nửa đường tròn đó \mathcal{E} tiếp xúc với đoạn thẳng AB.
- **230** ([Bìn23a], 130., p. 118). Cho $\triangle ABC$ vuông tại A, AB=6 cm, BC=10 cm. Tính bán kính của đường tròn (O') tiếp xúc với AB, AC & tiếp xúc trong với đường tròn ngoại tiếp $\triangle ABC$.
- 231 ([Bìn23a], 131., p. 118). Cho 2 đường tròn (O,9 cm), (O', 3 cm) tiếp xúc ngoài nhau. 1 đường thẳng bị 2 đường tròn đó cắt tạo thành 3 đoạn thẳng bằng nhau. Tính độ dài mỗi đoạn thẳng đó.
- **232** ([Bìn23a], 132., p. 118). Cho 2 đường tròn (O), (O') ở ngoài nhau, OO' = 65 cm. AB là tiếp tuyến chung ngoài, CD là tiếp tuyến chung trong, $A, C \in (O)$, $B, D \in (O')$. Tính bán kính 2 đường tròn (O), (O') biết AB = 63 cm, CD = 25 cm.
- 233 ([Bìn23a], 133., p. 118). Cho 2 đường tròn (O), (O') ở ngoài nhau. Kể tiếp tuyến chung ngoài AB & tiếp tuyến chung trong EF, $A, E \in (O)$, $B, D \in (O')$. (a) M là giao điểm của AB, EF. Chứng minh $\Delta AOM \backsim \Delta BMO'$. (b) Chứng minh $AE \bot BF$. (c) N là giao điểm của AE, BF. Chứng minh 3 điểm O, N, O' thẳng hàng.
- 234 ([Bìn23a], 134., p. 118). Cho 2 đường tròn (O), (O') ở ngoài nhau. Qua O, kẻ 2 tiếp tuyến với đường tròn (O'), chúng cắt đường tròn (O) tại A, B. Qua O', kẻ 2 tia tiếp tuyến với đường tròn (O), chúng cắt đường tròn (O') ở C, D. Chúng minh A, B, C, D là 4 đỉnh của 1 hình chữ nhật.
- **235** ([Bìn23a], 135., p. 118). Cho 2 đường tròn (O; R), (O; r), R > r. Dây BC của đường tròn lớn cắt đường tròn nhỏ tại D, E. EA là đường kính của đường tròn nhỏ. Chứng minh $AD^2 + BD^2 + CD^2 = 2(R^2 + r^2)$.
- 236 ([Bìn23a], 136–137., p. 119). 2 dây $ABC \parallel CD$ của đường tròn (O) là tiếp tuyến của đường tròn (O'). Biết đường kính của đường tròn (O') bằng 7 cm, tính bán kính của đường tròn (O) khi: (a) AB = 10 cm, CD = 24 cm. (b) AB = 6 cm, CD = 8 cm.
- **237** ([Bìn+23], VD1, p. 42). Cho 2 đường tròn (O), (O') cắt nhau tại A, B. Qua A kẻ cát tuyến CAD & EAF, $C, E \in (O)$, $D, F \in (O')$, sao cho AB là phân giác của \widehat{CAF} . Chứng minh CD = EF.
- 238 ([Bin+23], VD2, pp. 42-43). Cho hình chữ nhật ABCD & 4 đường tròn $(A;R_A),(B;R_B),(C;R_C),(D;R_D)$ sao cho $R_A+R_C=R_B+R_D<AC$. d_1,d_3 là 2 tiếp tuyến chung ngoài của $(A;R_A),(C;R_C),\ d_2,d_4$ là 2 tiếp tuyến chung ngoài của $(B;R_B),(D;R_D)$. Chứng minh tồn tại 1 đường tròn tiếp xúc với cả 4 đường thẳng d_1,d_2,d_3,d_4 .
- 239 ([Bìn+23], VD3, p. 43). Cho 2 đường tròn (O), (O') ngoài nhau, AB, CD là 2 tiếp tuyến chung ngoài của 2 đường tròn, đường thẳng AD cắt đường tròn (O) tại M, cắt đường tròn (O') tại N. Chứng minh AM = DN.

- **240** ([Bìn+23], VD4, p. 44). Cho 3 đường tròn (O_1) , (O_2) , (O_3) tiếp xúc ngoài với nhau từng đôi một. các tiếp điểm của (O_1) , (O_2) là A, của (O_2) , (O_3) là B, của (O_3) , (O_1) là C. AB, AC kéo dài cắt đường tròn (O_3) tại Q, P. Chứng minh P, O_3 , Q thẳng hàng.
- **241** ([Bìn+23], VD5, p. 44). Cho 2 đường tròn (O;R), (O';R') tiếp xúc ngoài, tiếp tuyến chung ngoài AB, $A \in (O)$, $B \in (O')$. Dường tròn (I;r) tiếp xúc với AB & 2 đường tròn (O), (O'). Chứng minh: (a) $AB = 2\sqrt{RR'}$. (b) $\frac{1}{\sqrt{r}} = \frac{1}{\sqrt{R}} + \frac{1}{\sqrt{R'}}$.
- **242** ([Bìn+23], VD6, p. 45). Cho 3 đường tròn (A,a), (B,b), (C,c) tiếp xúc với nhau từng đôi một. Tại tiếp điểm D của đường tròn (A,a), (B,b), kẻ tiếp tuyến chung cắt đường tròn (C,c) tại M,N. Tính MN theo a,b,c.
- **243** ([Bìn+23], VD7, p. 45). Cho 2 đường tròn (O), (O') có bán kính bằng nhau, cắt nhau tại A,B. Trong nửa mặt phẳng bờ OO' có chứa điểm B, kẻ 2 bán kính $OC \parallel O'D$. Chứng minh B là trực tâm của ΔACD .
- **244** ([Bìn+23], VD8, p. 46). Cho 2 đường tròn (O;R), (O';R') tiếp xúc ngoài tại A, $\widehat{xOy} = 90^{\circ}$ thay đổi luôn đi qua A, cắt đường tròn (O;R), (O';R') tại B, C. H là hình chiếu của A trên BC. Xác đinh vi trí của B, C để AH có đô dài lớn nhất.
- **245** ([Bìn+23], VD9, p. 47). Cho 2 đường tròn (O;R), (O';R'), R>R' cắt nhau tại A,B. Kể đường kính AC & đường kính AD. Tính độ dài BC, BD biết CD=a.
- 246 ([Bìn+23], VD10, p. 47). Cho ΔABC. Tìm điểm M sao cho ΔMAB, ΔMBC, ΔMCA có chu vi bằng nhau.
- **247** ([Bìn+23], VD11, p. 48). Cho đường tròn (O) & dây cung AB. M là điểm trên AB. Dựng đường tròn (O₁) qua A, M & tiếp xúc với (O), đường tròn (O₂) qua B, M & tiếp xúc với (O), 2 đường tròn này cắt nhau tại điểm thứ 2 là N. Chứng minh $\widehat{MNO} = 90^{\circ}$.
- **248** ([Bìn+23], VD12, p. 48). Cho 2 đường tròn (O), (O') ngoài nhau, tiếp tuyến chung trong CD & tiếp tuyến chung ngoài AB, $A, C \in (O)$, $B, D \in (O')$. Chứng minh AC, BD, OO' đồng quy.
- **249** ([Bìn+23], VD13, p. 49). Dựng 2 đường tròn tiếp xúc ngoài với nhau có tâm là 2 điểm A, B cho trước, sao cho 1 trong 2 tiếp tuyến chung ngoài đi qua điểm M cho trước.
- **250** ([Bìn+23], 6.1., p. 50). Cho đường tròn (O;R) ngoại tiếp ΔABC đều. Đường tròn (O') tiếp xúc với 2 cạnh AB,AC & đường tròn (O;R). Tính khoảng cách từ O' đến B theo R.
- **251** ([Bìn+23], 6.2., p. 50). Cho nửa đường tròn đường kính AB, điểm C trên nửa đường tròn sao cho CA < CB, H là hình chiếu của C trên AB. I là trung điểm CH, đường tròn (I, CH/2) cắt nửa đường tròn tại D \mathcal{E} cắt \mathcal{L} cạnh CA, CB thứ tự tại M, N, đường thẳng CD cắt AB tại E. Chứng minh: (a) CMHN là hình chữ nhật. (b) E, I, M, N thẳng hàng.
- **252** ([Bìn+23], 6.3., p. 50). Cho 3 đường tròn O_1, O_2, O_3 có cùng bán kính R cắt nhau tại điểm O cho trước. A, B, C là 3 giao điểm còn lại của 3 đường tròn. Chứng minh đường tròn ngoại tiếp ΔABC có bán kính R.
- **253** ([Bìn+23], 6.4., p. 50). 3 đường tròn có bán kính bằng nhau cùng đi qua điểm O, từng đôi cắt nhau tại điểm thứ 2 là A, B, C. Chứng minh O là trực tâm $\triangle ABC$.
- **254** ([Bìn+23], 6.5., p. 50). Cho 2 đường tròn (O_1) , (O_2) cắt nhau tại A, B, kẻ dây AM của đường tròn (O_1) tiếp xúc với đường tròn (O_2) tại A, kẻ dây AN của (O_2) tiếp xúc với đường tròn (O_1) tại A. Trên đường thẳng AB lấy điểm D sao cho BD = AB. Chứng minh 4 điểm A, M, N, D nằm trên 1 đường tròn.
- **255** ([Bìn+23], 6.6., p. 50). Cho đường tròn (O; R), 1 điểm A trên đường tròn \mathcal{E} đường thẳng d không đi qua A. Dựng đường tròn tiếp xúc với (O; R) tại A \mathcal{E} tiếp xúc với đường thẳng d.
- **256** ([Bìn+23], 6.7., p. 51). Cho 2 đường tròn (O), (O') có cùng bán kính R sao cho tâm của đường tròn này nằm trên đường tròn kia, chúng cắt nhau tại A, B. Tính bán kính đường tròn tâm I tiếp xúc với 2 cung nhỏ \widehat{AO} , $\widehat{AO'}$ đồng thời tiếp xúc với OO'.
- 257 ([Bìn+23], 6.8., p. 51). Cho đường tròn (O) & dây AB cố định, điểm M tùy ý thay đổi trên đoạn thẳng AB. Qua A, M dựng đường tròn tâm I tiếp xúc với đường tròn (O) tại A. Qua B, M dựng đường tròn tâm I tiếp xúc với (O) tại B. 2 đường tròn tâm I, J cắt nhau tại điểm thứ 2 N. Chứng minh MN luôn đi qua 1 điểm cố định.
- 258 ([Bìn+23], 6.9., p. 51). Cho đoạn thẳng AB có độ dài bằng a cho trước & 2 tia Ax, By vuông góc với AB, nằm về cùng 1 phía đối với AB. (O), (O') là 2 đường tròn thay đổi thỏa mãn đồng thời: (a) (O) tiếp xúc với (O'). (b) Đường tròn (O) tiếp xúc với Ax, AB. (c) Đường tròn (O') tiếp xúc với By & tiếp xúc với BA. Tính GTLN của diện tích hình thang HOO'E, trong đó H, E là hình chiếu của O, O' trên AB.
- **259** ([Bìn+23], 6.10., p. 51). Cho 2 đường tròn $(O_1; R_1)$, $(O_2; R_2)$ tiếp xúc ngoài tại A. 1 đường tròn (O) thay đổi tiếp xúc ngoài với 2 đường tròn $(O_1; R_1)$, $(O_2; R_2)$. Giả sử MN là đường kính đường tròn (O) sao cho $MN \parallel OO'$. H là giao điểm của MO_2 , NO_1 . Chứng minh điểm H thuộc 1 đường thẳng cố định.

5 Tính Chất của 2 Tiếp Tuyến Cắt Nhau

- **260** ([Bìn23a], VD14, p. 102). Cho đoạn thẳng AB. Trên cùng 1 nửa mặt phẳng bờ AB, vẽ nửa đường tròn (O) đường kính AB & 2 tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn này, kẻ tiếp tuyến cắt Ax, By lần lượt ở C, D. N là giao điểm của AD & BC. Chứng minh $MN \bot AB$.
- **261** ([Bìn23a], VD15, p. 103). Cho (O), điểm K nằm bên ngoài đường tròn. Kể 2 tiếp tuyến KA, KB với đường tròn (A, B là 2 tiếp điểm). Kể đường kính AOC. Tiếp tuyến của đường tròn (O) tại C cắt AB tại E. Chứng minh: (a) Δ KBC \backsim Δ OBE. (b) $CK\bot OE$.
- 262 ([Bìn23a], 72., p. 103). Cho nửa đường tròn tâm O có đường kính AB = 2R. Vẽ 2 tiếp tuyến Ax, By với nửa đường tròn \mathcal{E} tia $Oz \perp AB$, 3 tia Ax, By, Oz cùng phía với nửa đường tròn đối với AB. E là điểm bất kỳ của nửa đường tròn. Qua E vẽ tiếp tuyến với nửa đường tròn, cắt Ax, By, Oz theo thứ tự ở C, D, M. Chứng minh khi điểm E thay đổi vị trí trên nửa đường tròn thì: (a) Tích $AC \cdot BD$ không đổi. (b) Điểm M chạy trên 1 tia. (c) Tứ giác ACDB có diện tích nhỏ nhất khí nó là hình chữ nhật. Tính diện tích nhỏ nhất đó.
- 263 ([Bìn23a], 73., p. 104). Cho đoạn thẳng AB. Vẽ về 1 phía của AB 2 tia Ax || By. (a) Dựng đường tròn tâm O tiếp xúc với đoạn thẳng AB & tiếp xúc với 2 tia Ax, By. (b) Tính \widehat{AOB} . (c) 3 tiếp điểm của đường tròn (O) với Ax, By, AB lần lượt là M, N, H. Chứng minh MN là tiếp tuyến của đường tròn có đường kính AB. (d) Tìm vị trí của 2 tia Ax, By để HM = HN?
- **264** ([Bìn23a], 74., p. 104). Cho hình thang vuông ABCD, $\widehat{A} = \widehat{D} = 90^{\circ}$, tia phân giác của \widehat{C} đi qua trung điểm I của AD. (a) Chứng minh BC là tiếp tuyến của đường tròn (I,IA). (b) Cho AD = 2a. Tính $AB \cdot CD$ theo a. (c) H là tiếp điểm của BC với đường tròn (I). K là giao điểm của AC, BD. Chứng minh $KH \parallel CD$.
- **265** ([Bìn23a], 75., p. 104). Cho đường tròn tâm O có đường kính AB, điểm D nằm trên đường tròn. 2 tiếp tuyến của đường tròn tại A, D cắt nhau ở C. E là hình chiếu của D trên AB, gọi I là giao điểm của BC, DE. Chứng minh ID = IE.
- **266** ([Bìn23a], 76., p. 104). Cho $\triangle ABC$ cân tại A, O là trung điểm BC. Vẽ đường tròn (O) tiếp xúc với AB, AC tại H, K. 1 tiếp tuyến với đường tròn (O) cắt 2 cạnh AB, AC ở M, N. (a) Cho $\widehat{B}=\widehat{C}=\alpha$. Tính \widehat{MON} . (b) Chứng minh OM, ON chia tứ giác BMNC thành 3 tam giác đồng dạng. (c) Cho BC=2a. Tính $BM\cdot CN$. (d) Tìm vị trí tiếp tuyến MN để BM+CN nhỏ nhất.
- **267** ([Bìn23a], 77., p. 104). Cho $\triangle ABC$ vuông tại A, đường cao AH, BH=20 cm, CH=45 cm. Vẽ đường tròn tâm A bán kính AH. Kể 2 tiếp tuyến BM, CN với đường tròn, $M \neq H$, $N \neq H$ là 2 tiếp điểm. (a) Tính diện tích tứ giác BMNC. (b) K là giao điểm của CN, AH. Tính AK, KN. (c) I là giao điểm của AM, BC. Tính IB, IM.
- 268 ([Bìn23a], 78., p. 105). Cho đường tròn (O,6 cm). 1 điểm A nằm bên ngoài đường tròn sao cho 2 tiếp tuyến AB,AC với đường tròn vuông góc với nhau, B,C là 2 tiếp điểm. Trên 2 cạnh AB,AC của \widehat{A} , lấy 2 điểm D,E sao cho AD=4 cm, AE=3 cm. Chứng minh DE là tiếp tuyến của đường tròn (O).
- **269** ([Bìn23a], 79., p. 105). Cho hình vuông ABCD có cạnh bằng a. Với tâm B & bán kính a, vẽ cung AC nằm trong hình vuông. Qua điểm E thuộc cung đó, vẽ tiếp tuyến với cung AC, cắt AD, CD theo thứ tự tại M, N. (a) Tính chu vi ΔDMN . (b) Tính số đo \widehat{MBN} . (c) Chứng minh $\frac{2a}{3} < MN < a$.
- **270** ([Bìn23a], 80., p. 105). Cho hình vuông ABCD. 1 đường tròn tâm O tiếp xúc với 2 đường thẳng AB, AD & cắt mỗi cạnh BC, CD thành 2 đoạn thẳng có độ dài 2 cm, 23 cm. Tính bán kính đường tròn.

6 Đường Tròn Nội Tiếp Tam Giác

- **271** ([Bìn23a], VD16, p. 105). Đường tròn (O) nội tiếp ΔABC tiếp xúc với cạnh AB tại D. Tính \widehat{C} biết $AC \cdot BC = 2AD \cdot BD$.
- **272** ([Bìn23a], VD17, p. 106). $\triangle ABC$ có chu vi 80 cm ngoại tiếp đường tròn (O). Tiếp tuyến của đường tròn (O) song song với BC cắt AB, AC theo thứ tự ở M, N. (a) Biết MN=9.6 cm. Tính BC. (b) Biết AC-AB=6 cm. Tính AB, BC, CA để MN có GTLN.
- **273** ([Bìn23a], VD18, p. 107). r là bán kính đường tròn nội tiếp 1 tam giác vuông & h là đường cao ứng với cạnh huyền. Chứng minh $2 < \frac{h}{r} < 2.5$.
- 274 ([Bìn23a], 81., p. 107). Cho ΔABC vuông tại A, AB = 15 cm, AC = 20 cm. I là tâm của đường tròn nội tiếp tam giác. Tính khoảng cách từ I đến đường cao AH của ΔABC.
- 275 ([Bìn23a], 82., p. 107). Tính 3 cạnh của tam giác vuông ngoại tiếp đường tròn biết: (a) Tiếp điểm trên cạnh huyền chia cạnh đó thành 2 đoạn thẳng 5 cm, 12 cm. (b) 1 cạnh góc vuông bằng 20 cm, bán kính đường tròn nội tiếp bàng 6 cm.
- 276 ([Bìn23a], 83., p. 107). Tính diện tích tam giác vuông biết 1 cạnh góc vuông bằng 12 cm, tỷ số giữa bán kính 2 đường tròn nội tiếp & ngoại tiếp tam giác đó bằng 2 : 5.

- **277** ([Bìn23a], 84., p. 107). Cho 1 tam giác vuông có cạnh huyền bằng 10 cm, diện tích bằng 24 cm². Tính bán kính đường tròn nội tiếp.
- **278** ([Bìn23a], 85., p. 107). Cho $\triangle ABC$ vuông tại A, AB=5. Tính AC, BC biết số đo chu vi $\triangle ABC$ bằng số đo diện tích $\triangle ABC$.
- 279 ([Bìn23a], 86., pp. 107–108). Cho $\triangle ABC$ vuông tại A, đường cao AH. (O;r), (O_1,r_1) , (O_2,r_2) lần lượt là 3 đường tròn nội tiếp $\triangle ABC$, $\triangle ABH$, $\triangle ACH$. (a) Chứng minh $r+r_1+r_2=AH$. (b) Chứng minh $r^2=r_1^2+r_2^2$. (c) Tính độ dài O_1O_2 biết AB=3 cm, AC=4 cm.
- **280** ([Bìn23a], 87., p. 108). Đường tròn (O;r) nội tiếp ΔABC . 3 tiếp tuyến với đường tròn (O) song song với 3 cạnh của ΔABC cắt từ ΔABC thành 3 tam giác nhỏ. r_1, r_2, r_3 lần lượt là bán kính đường tròn nội tiếp 3 tam giác nhỏ đó. Chứng minh $r_1 + r_2 + r_3 = r$.
- 281 ([Bìn23a], 88., p. 108). Đường tròn tâm I nội tiếp ΔABC tiếp xúc với BC, AB, AC lần lượt ở D, E, F. Qua E kẻ đường thẳng song song với BC cắt AD, DF lần lượt ở M, N. Chứng minh M là trung điểm EN.
- **282** ([Bìn23a], 89., p. 108). $\triangle ABC$ vuông tại A ngoại tiếp đường tròn tâm I bán kính r. G là trọng tâm $\triangle ABC$. Tính 3 cạnh $\triangle ABC$ theo r biết $IG \parallel AC$.
- **283** ([Bìn23a], 90., p. 108). $\triangle ABC$ vuông tại A có AB=9 cm, AC=12 cm. I là tâm của đường tròn nội tiếp, G là trọng tâm $\triangle ABC$. Tính IG.
- **284** ([Bìn23a], 91., p. 108). Cho $\triangle ABC$ ngoại tiếp đường tròn (O). D, E, F lần lượt là tiếp điểm trên 3 cạnh BC, AB, AC. H là chân đường vuông góc kẻ từ D đến EF. Chứng minh $\widehat{BHE} = \widehat{CHF}$.
- **285** ([Bìn23a], 92., p. 108). Cho $\triangle ABC$ có AB = AC = 40 cm, BC = 48 cm. O, I lần lượt là tâm của 2 đường tròn ngoại tiếp \mathcal{E} nội tiếp $\triangle ABC$. Tính: (a) Bán kính đường tròn nội tiếp. (b) Bán kính đường tròn ngoại tiếp. (c) Khoảng cách OI.
- **286** ([Bìn23a], 93., p. 108). Tính 3 cạnh 1 tam giác cân biết bán kính đường tròn nội tiếp bằng 6 cm, bán kính đường tròn ngoại tiếp bằng 12.5 cm.
- 287 ([Bìn23a], 94., p. 108). Bán kính của đường tròn nội tiếp 1 tam giác bằng 2 cm, tiếp điểm trên 1 cạnh chia cạnh đó thành 2 đoạn thẳng 4 cm, 6 cm. Giải tam giác.
- **288** ([Bìn23a], 95., p. 108). Tính 3 góc của 1 tam giác vuông biết tỷ số giữa 2 bán kính đường tròn ngoại tiếp \mathcal{E} đường tròn nội tiếp bằng $\sqrt{3}+1$.
- 289 ([Bìn23a], 96., pp. 108–109). Cho ΔABC . Đường tròn (O) nội tiếp ΔABC tiếp xúc với BC tại D. Vẽ đường kính DN của đường tròn (O). Tiếp tuyến của đường tròn (O) tại N cắt AB, AC lần lượt ở I, K. (a) Chứng minh $\frac{NI}{NK} = \frac{DC}{DB}$. (b) F là giao điểm của AN, BC. Chứng minh BD = CF.
- $\textbf{290} \ ([\underline{\text{Bin23a}}], 97., \text{ p. } 109). \ \textit{Cho đường tròn (O) nội tiếp } \Delta ABC \ \textit{đều. 1 tiếp tuyến của đường tròn cắt 2 cạnh } AB, AC \ \textit{lần lượt ở } M, N. (a) Tính diện tích } \Delta AMN \ \textit{biết } BC = 8 \text{ cm}, \ MN = 3 \text{ cm}. \ (b) \ \textit{Chứng minh } MN^2 = AM^2 + AN^2 AM \cdot AN. \ (c) \ \textit{Chứng minh } \frac{AM}{BM} + \frac{AN}{CN} = 1.$
- **291** ([Bìn23a], 98., p. 109). Cho $\triangle ABC$ có BC = a, CA = b, AB = c. (I) là đường tròn nội tiếp tam giác. Dường vuông góc với CI tại I cắt AC, AB lần lượt ở M, N. Chứng minh: (a) $AM \cdot BN = IM^2 = IN^2$. (b) $\frac{IA^2}{bc} + \frac{IB^2}{ca} + \frac{IC^2}{ab} = 1$.
- **292** ([Bìn23a], 99., p. 109). Cho ΔABC có AB < AC < AB. Trên 2 cạnh AB, AC lấy 2 điểm D, E sao cho BD = CE = BC. O, I lần lượt là tâm của 2 đường tròn ngoại tiếp, nội tiếp ΔABC . Chứng minh bán kính đường tròn ngoại tiếp ΔADE bằng OI.
- **293** ([Bìn23a], 100., p. 109). R, r lần lượt là 2 bán kính 2 đường tròn ngoại tiếp \mathcal{E} nội tiếp 1 tam giác vuông có diện tích S. Chứng minh $R + r \ge \sqrt{2S}$.
- **294** ([Bìn23a], 101., p. 109). Trong các $\triangle ABC$ có BC = a, chiều cao tương ứng bằng h, tam giác nào có bán kính đường tròn nội tiếp lớn nhất?
- **295** ([Bìn23a], 102., p. 109). Trong các tam giác vuông ngoại tiếp cùng 1 đường tròn, tam giác nào có đường cao ứng với cạnh huyền lớn nhất?
- **296** ([Bìn23a], 103., p. 109). (a) Cho đường tròn (I;r) nội tiếp ΔABC . Chứng minh $IA + IB + IC \geq 6r$. (b) Cho ΔABC nhọn nội tiếp đường tròn (O;R). P,Q,N lần lượt là tâm của 3 đường tròn ngoại tiếp $\Delta BOC, \Delta COA, \Delta AOB$. Chứng minh $OP + OQ + ON \geq 3R$.
- **297** ([Bìn23a], 104., p. 109). Độ dài 3 đường cao của ΔABC là các số tự nhiên, bán kính đường tròn nội tiếp bằng 1. Chứng minh ΔABC đều $\mathcal E$ tính độ dài 3 đường cao của ΔABC .
- **298** ([Bìn23a], 105., p. 110). h_a, h_b, h_c là 3 đường cao ứng với 3 cạnh a, b, c của 1 tam giác, r là bán kính đường tròn nội tiếp. Chứng minh: (a) $h_a + h_b + h_c \ge 9r$. (b) $h_a^2 + h_b^2 + h_c^2 \ge 27r^2$. Khi nào xảy ra đẳng thức?

7 Đường Tròn Bàng Tiếp Tam Giác

299 ([Bìn23a], VD19, p. 110). Cho $\triangle ABC$. Chứng minh các tiếp điểm trên cạnh BC của đường tròn bàng tiếp trong \widehat{A} \mathcal{E} của đường tròn nội tiếp đối xứng với nhau qua trung điểm của BC.

300 ([Bìn23a], 106., p. 111). a,b,c lần lượt là 3 cạnh của $\triangle ABC$, h_a,h_b,h_c là 3 đường cao tương ứng, R_a,R_b,R_c là bán kính 3 đường tròn bàng tiếp tương ứng, r là bán kính đường tròn nội tiếp, p là nửa chu vi $\triangle ABC$, S là diện tích $\triangle ABC$. Chứng minh: (a) $S = R_a(p-a) = R_b(p-b) = R_c(p-c)$. (b) $\frac{1}{r} = \frac{1}{R_a} + \frac{1}{R_b} + \frac{1}{R_c}$. (c) $\frac{1}{R_a} = \frac{1}{h_b} + \frac{1}{h_c} - \frac{1}{h_a}$.

301 ([Bìn23a], 107., p. 111). Tính cạnh huyền của 1 tam giác vuông biết r là bán kính đường tròn nội tiếp, R là bán kính đường tròn bàng tiếp trong góc vuông.

302 ([Bìn23a], 108., p. 111). Cho $\triangle ABC$. (P),(Q),(R) lần lượt là 3 đường tròn bàng tiếp trong $\widehat{A},\widehat{B},\widehat{C}$. (a) tiếp điểm của (Q),(R) trên đường thẳng BC lần lượt là E,F. Chứng minh CE=BF. (b) H,I,K lần lượt là tiếp điểm của 3 đường tròn (P),(Q),(R) với 3 cạnh BC,CA,AB. Nếu AH=BI=CK thì $\triangle ABC$ là tam giác gì?

8 Đường Tròn & Phép Vị Tự

304 ([Bìn23a], 138., p. 120). Cho 2 đường tròn (I;r), (K,r) tiếp xúc trong với đường tròn (O;R) theo thứ tự tại A,B. C là 1 điểm thuộc đường tròn (O), CA cắt đường tròn (I) tại điểm D, BC cắt đường tròn (K) tại điểm E. Chứng minh $DE \parallel AB$.

305 ([Bìn23a], 139., p. 121). Cho 2 đường tròn (O;R), (O';R') tiếp xúc ngoài tại A,R>R'. Vẽ 2 bán kính $OB \parallel O'B', B,B'$ thuộc ùng 1 nửa mặt phẳng có bờ OO'). 2 đường thẳng BB',OO' cắt nhau tại K. (a) Tính $\widehat{BAB'}$. (b) Tính OK theo R,R'. (c) Chứng minh tiếp tuyến chung ngoài của 2 đường tròn trên cũng đi qua điểm K. (d) Khi 2 bán kính OB,O'B' di chuyển thì trọng tâm G của $\triangle ABB'$ di chuyển trên đường nào?

306 ([Bìn23a], 140., p. 121). Cho 2 đường tròn (O; R), (O'; R') cắt nhau tại A, B, R > R'. Tiếp tuyến chung ngoài CD cắt OO' ở $K, C \in (O), D \in (O')$. E là giao điểm thứ 2 của AK & đường tròn (O'). Chứng minh $AC \parallel ED$.

9 Dựng Hình

307 ([Bìn23a], VD25, p. 122). Dựng đường tròn đi qua 1 điểm cho trước & tiếp xúc với 2 cạnh của 1 góc cho trước.

308 ([Bìn23a], VD26, p. 124). Cho $\triangle ABC$ có B,C là 2 góc nhọn. Dựng đường thẳng vuông góc với BC chia tam giác thành 2 phần có diện tích bằng nhau.

309 ([Bìn23a], VD27, p. 125). Cho hình vuông ABCD. Dựng đường kính đi qua C cắt 2 tia AB, AD theo thứ tự ở M, N sao cho MN có độ dài bằng k cho trước.

310 ([Bìn23a], 141., p. 126). Cho đường tròn (O) với 2 bán kính OA, OB & O, A, B không thẳng hàng. Dựng dây CD sao cho 2 bán kính OA, OB chia dây CD thành 2 phần bằng nhau.

311 ([Bìn23a], 142., p. 126). Cho đường tròn (O), đường kính AB, điểm C thuộc đường kính ấy. Dựng dây $DE \perp AB$ sao cho $AD \perp EC$.

312 ([Bìn23a], 143., p. 126). Cho đường tròn (O) & 2 điểm A, B nằm bên ngoài đường tròn. Dựng 2 đường thẳng theo thứ tự đi qua A, B song song với nhau & cắt đường tròn (O) tạo thành 2 dây bằng nhau.

313 ([Bìn23a], 144., p. 127). Cho đường tròn (O) & đường thẳng d không giao với đường tròn. Dựng điểm $M \in d$ sao cho nếu vẽ 2 tiếp tuyến MC, MD với đường tròn thì $\widehat{COD} = 130^{\circ}$.

314 ([Bìn23a], 145., p. 127). Qua điểm M nằm bên trong đường tròn (O) & không trùng O, dựng dây AB sao cho MA-MB=a, a là độ dài cho trước.

315 ([Bìn23a], 146., p. 127). Cho 2 đường tròn (O), (O') bằng nhau, tiếp xúc ngoài tại B, có 2 đường kính theo thứ tự là AB, BC. Dựng đường thẳng đi qua A cắt (O) tại D, cắt (O') ở E, F sao cho E là trung điểm của DF.

316 ([Bìn23a], 147., p. 127). Dựng tam giác vuông biết độ dài 2 đường trung tuyến ứng với 2 cạnh góc vuông.

317 ([Bìn23a], 148., p. 127). Dựng $\triangle ABC$ biết $\widehat{A} = \alpha$, đường cao AH = h, bán kính đường tròn nội tiếp bằng r.

318 ([Bìn23a], 149., p. 127). Dựng ΔABC biết AC - AB = d, đường cao AH = h, bán kính đường tròn nội tiếp bằng r.

- 319 ([Bìn23a], 150., p. 127). Cho 2 điểm O, O' nằm về 1 phía của đường thẳng d. Dựng 2 đường tròn (O), (O') tiếp xúc ngoài sao cho tiếp tuyến chung ngoài song song với d.
- **320** ([Bìn23a], 151., p. 127). Cho đường tròn (I) & đường thẳng m không giao nhau, điểm A thuộc đường tròn. Dựng đường tròn (O) tiếp xúc với đường tròn (I) tại A & tiếp xúc với đường thẳng m.
- **321** ([Bìn23a], 152., p. 127). Cho đường tròn (I) \mathcal{E} đường thẳng m không giao nhau, điểm C thuộc đường thẳng m. Dựng đường tròn (O) tiếp xúc với đường thẳng m tại C \mathcal{E} tiếp xúc với đường tròn (I).
- **322** ([Bìn23a], 153., p. 127). Cho 2 đường thẳng a,b cắt nhau & điểm A nằm ngoài 2 đường thẳng ấy. Dựng đường tròn (A) cắt 2 đường thẳng a,b tạo thành 2 dây có tổng bằng 2k.
- **323** ([Bìn23a], 154., p. 127). Cho \widehat{xOy} & diểm M nằm trong góc đó. Dựng đường thẳng đi qua M cắt 2 cạnh của góc ở A, B sao cho OA + OB = k.
- **324** ([Bìn23a], 155., p. 127). Dựng tam giác cân biết độ dài của đoạn nối 2 tiếp điểm của đường tròn nội tiếp với 2 cạnh bên & đường cao h ứng với cạnh bên.
- **325** ([Bìn23a], 156., p. 127). Cho 3 điểm H, D, M thẳng hàng theo thứ tự ấy, trong đó HD = 2, DM = 3. Dựng ΔABC vuông tại A nhận AH là đường cao, AD là đường phân giác, AM là trung tuyến.
- 326 ([Bìn23a], 157., p. 128). Cho $\triangle ABC$ vuông tại A, đường cao AH, M là trung điểm BC, D là tiếp điểm của đường tròn nội tiếp trên cạnh huyền. (a) E là tâm của đường tròn nội tiếp $\triangle AHM$. Chứng minh MD = ME bằng cách tính 2 tỷ số $\frac{ME}{MF}$, $\frac{MD}{MF}$ theo 3 cạnh $\triangle ABC$. (b) Suy ra cách dựng $\triangle ABC$ vuông biết 3 điểm H, D, M theo thứ tự thuộc 1 đường thẳng.
- **327** ([Bìn23a], 158., p. 128). Cho đường thẳng xy, điểm A & đường tròn (O) nằm cùng phía đối với xy. Dựng điểm $M \in xy$ sao cho nếu vẽ tiếp tuyến MB với đường tròn (O) thì $\widehat{AMx} = \widehat{BMy}$.
- **328** ([Bìn23a], 159., p. 128). Cho đường thẳng xy, điểm A & đường tròn (O) nằm cùng phía đối với xy. Dựng điểm $A \in xy$ sao cho 2 tiếp tuyến kẻ từ A đến 2 đường tròn nhận xy là đường thẳng chứa tia phân giác.
- **329** ([Bìn23a], 160., p. 128). Cho đường thẳng xy, điểm A & đường tròn (O) nằm cùng phía đối với xy. Dựng hình vuông ABCD có $A \in (O), C \in (O'), B, D \in xy$.
- **330** ([Bìn23a], 161., p. 128). Cho 2 đường tròn (O), (O') cắt nhau ở A, B. Dựng đường thẳng đi qua A bị 2 đường tròn cắt thành 2 dây có hiệu bằng a.
- **331** ([Bìn23a], 162., p. 128). Cho 2 đường tròn (O), (O') & 1 đường thẳng d. Dựng đường thẳng song song với d & bị 2 đường tròn cắt thành 2 dây bằng nhau.
- 332 ([Bìn23a], 163., p. 128). Cho 2 đường tròn (O), (O') & 1 đường thẳng d. Dựng đường thẳng song song với d & bị 2 đường tròn cắt thành 2 dây có tổng bằng a.
- 333 ([Bìn23a], 164., p. 128). Cho 2 đường tròn (O), (O') & 1 đường thẳng d. Dựng đường thẳng song song với d & bị 2 đường tròn cắt thành 2 dây có hiệu bằng a.
- **334** ([Bìn23a], 165., p. 128). Cho đường tròn (O), điểm $A \neq O$ nằm bên trong đường tròn. Dựng dây BC đi qua A sao cho AB = 2AC.
- **335** ([Bìn23a], 166., p. 128). Cho 2 đường tròn tâm O, điểm A thuộc đường tròn lớn. Dựng dây AB của đường tròn lớn sao cho đường tròn nhỏ chia AB thành 3 phần bằng nhau.
- **336** ([Bìn23a], 167., p. 128). Cho đoạn thẳng AB. Dựng điểm H thuộc đoạn thẳng ấy sao cho $AH \cdot BH = a^2$ với a là 1 độ dài cho trước.
- 337 ([Bìn23a], 168., p. 129). Dựng hình vuông có diện tích bằng diện tích 1 hình thang cho trước.
- 338 ([Bìn23a], 169., p. 129). Dựng tam giác đều có diện tích bằng diện tích 1 tam giác cho trước.
- 339 ([Bìn23a], 170., p. 129). Dựng $\triangle ABC$ biết 2 cạnh AB = c, AC = b, đường phân giác AD = d.
- **340** ([Bìn23a], 171., p. 129). Cho $\triangle ABC$. Dựng đường thẳng song song với BC chia $\triangle ABC$ thành 2 phần có diện tích bằng nhau.
- **341** ([Bìn23a], 172., p. 129). Cho 1 hình thang. Dựng đường thẳng song song với 2 đáy chia hình thang thành 2 phần có diện tích bằng nhau.
- **342** ([Bìn23a], 173., p. 129). Cho hình thang ABCD, $AB \parallel CD$. Dựng đường thẳng EF song song với 2 đáy, $E \in AD, F \in BC$, sao cho $BE \parallel DF$.
- **343** ([Bìn23a], 174., p. 129). Cho nửa đường tròn (O) đường kính AB = 2R. BB' là tiếp tuyến của nửa đường tròn. Dựng điểm M nằm trên nửa đường tròn sao cho MA bằng khoảng cách từ M đến BB'.

10 Toán Cực Trị

- **344** ([Bìn23a], VD28, p. 130). Cho điểm A nằm bên trong dải tạo bởi 2 đường thẳng song song d \parallel d'. Dựng điểm $B \in d, C \in d'$ sao cho $\triangle ABC$ vuông tại A & có diện tích nhỏ nhất.
- **345** ([Bìn23a], VD29, p. 131). Cho $\widehat{x'Oy'}$ & điểm M nằm trong góc. Dựng đường thẳng đi qua M cắt Ox', Oy' lần lượt ở A, B sao cho tổng OA + OB có GTNN.
- **346** ([Bìn23a], VD30, p. 131). Cho $\triangle ABC$ cân tại A. Đường tròn (O) tiếp xúc với AB tại B, tiếp xúc với AC tại C. Qua A vẽ cát tuyến ADE bất kỳ. Vẽ dây CK || DE. Xác định vị trí của cát tuyến ADE để $\triangle AKE$ có diện tích lớn nhất.
- **347** ([Bìn23a], 175., p. 132). Cho nửa đường tròn (O) đường kính AB = 2R. Dựng điểm $C \in (O)$ sao cho ΔC có diện tích lớn nhất, trong đó CH là đường cao của ΔABC , CE, CF là 2 đường phân giác của ΔCHA , ΔCHB .
- **348** ([Bìn23a], 176., p. 132). Cho đường tròn (O), điểm $A \neq O$ nằm bên trong đường tròn. Dựng điểm $B \in (O)$ sao cho \widehat{OBA} có số đo lớn nhất.
- **349** ([Bìn23a], 177., p. 132). Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Dựng đường thẳng đi qua A, cắt đường tròn ở B, C sao cho tổng AB + AC có GTLN.
- **350** ([Bìn23a], 178., p. 132). Cho đường tròn (O) & đường thẳng d không giao nhau. Dựng điểm $M \in d$ sao cho nếu kẻ 2 tiếp tuyến MA, MB với đường tròn thì AB có độ dài nhỏ nhất.
- **351** ([Bìn23a], 179., p. 132). Cho 2 đường tròn (O), (O') tiếp xúc ngoài tại A. Qua A, dựng 2 tia vuông góc với nhau sao cho chúng cắt 2 đường tròn (O), (O') lần lượt ở B, C tạo thành ΔABC có diện tích lớn nhất.
- 352 ([Bìn23a], 180., p. 132). Cho đoạn thẳng AB, 2 tia Ax, By vuông góc với AB & nằm về 1 phía của AB. Dựng 2 đường tròn (I), (K) tiếp xúc ngoài với nhau, tiếp xúc với đoạn AB, đường tròn (I) tiếp xúc với tia Ax, đường tròn (K) tiếp xúc với tia By sao cho tứ giác CIKD có diện tích lớn nhất với C, D lần lượt là 2 tiếp điểm của 2 đường tròn (I), (K) với AB.
- **353** ([Bìn23a], 181., p. 133). Cho \widehat{xAy} , đường tròn (O) nằm trong góc ấy. Dựng điểm $M \in (O)$ sao cho tổng các khoảng cách từ M đến 2 cạnh của góc có GTNN.
- **354** ([Bìn23a], 182., p. 133). Cho đường tròn (O,2) & đường thẳng d đi qua O. Dựng điểm A nằm bên ngoài đường tròn sao cho 2 tiếp tuyến kẻ từ A tới đường tròn cắt d tại B,C tạo thành ΔABC có diện tích nhỏ nhất.
- 355 ([Bìn23a], 183., p. 133). Cho \widehat{xOy} , đường tròn (I) tiếp xúc với 2 cạnh của góc tại A,B. Dựng tiếp tuyến với cung nhỏ AB của đường tròn (I) cắt 2 cạnh của góc tại C,D sao cho: (a) CD có độ dài nhỏ nhất. (b) $\triangle OCD$ có diện tích lớn nhất.
- **356** ([Bìn23a], 184., p. 133). (a) Cho \widehat{xOy} & điểm M nằm bên trong góc đó. Dựng đường thẳng đi qua M cắt 2 cạnh của góc ở A, B sao cho chu vi ΔOAB bằng 2p. (b) Cho \widehat{xOy} . Dựng 2 điểm C, D lần lượt nằm trên Ox, Oy sao cho chu vi ΔOCD bằng 2p cho trước & ΔOCD có diện tích lớn nhất.
- **357** ([Bìn23a], 185., p. 133). Cho \widehat{xOy} & 1 điểm M nằm bên trong góc đó. Dựng đường thưang đi qua M cắt Ox, Oy ở A, B sao cho $\triangle OAB$ có chu vi nhỏ nhất.
- **358** ([Bìn23a], 186., p. 133). Cho đoạn thẳng AD & trung điểm của nó. Dựng ΔABC nhận AD là đường cao, H là trực tâm sao cho BC có độ dài nhỏ nhất.
- **359** ([Bìn23a], 187., p. 133). Cho đường tròn (O). Dựng điểm A nằm bên ngoài đường tròn sao cho đường vuông góc với OA tại O tạo thành với 2 tiếp tuyến của đường tròn kẻ từ A 1 tam giác có diện tích nhỏ nhất.
- 360 ([Bìn23a], 188., p. 133). Chứng minh trong các tam giác có cùng chu vi, tam giác đều có diện tích lớn nhất.
- 361 ([Bìn23a], 189., p. 133). Cho hình vuông ABCD cạnh a. 2 điểm M,N lần lượt chuyển động trên 2 cạnh BC,CD sao cho $\widehat{MAN}=45^{\circ}$. (a) Chứng minh khoảng cách từ A đến MN & chu vi ΔCMN không đổi. (b) Dựng 2 điểm M,N để MN có độ dài nhỏ nhất. (c) Chứng minh khi MN có độ dài nhỏ nhất thì ΔCMN có diện tích lớn nhất.
- **362** ([Bìn23a], 190., p. 133). Cho hình vuông ABCD. Dựng đường thẳng đi qua C cắt 2 tia AB, AD tại 2 điểm M, N sao cho đoạn thẳng MN có độ dài nhỏ nhất.
- **363** ([Bìn23a], 191., p. 134). Cho điểm C thuộc tia phân giác của \widehat{A} . Dựng đường thẳng đi qua C cắt 2 cạnh của \widehat{A} tại 2 điểm M,N sao cho đoạn thẳng MN có độ dài nhỏ nhất.
- **364** ([Bìn23a], 192., p. 134). (a) Chứng minh trong các $\triangle ABC$ có diện tích S \mathcal{E} có số đo \widehat{A} không đổi, tam giác có cạnh BC nhỏ nhất là tam giác cân tại A. (b) Cho $\triangle ABC$. Dựng điểm M thuộc tia AB, điểm N thuộc tia AC sao cho $S_{AMN} = \frac{1}{2}S_{ABC}$ \mathcal{E} MN có độ dài nhỏ nhất.
- **365** ([Bìn23a], 193., p. 134). Cho nửa đường tròn (O) đường kính MN. Dựng hình chữ nhật ABCD nội tiếp nửa đường tròn với $A, D \in MN$, B, C thuộc nửa đường tròn, sao cho hình chữ nhật đó: (a) Có diện tích lớn nhất. (b) Có chu vi lớn nhất.
- **366** ([Bìn23a], p. 134, Golden ratio Tỷ lệ vàng φ). Cho 1 đoạn thẳng có độ dài a. Dựng đoạn thẳng có độ dài x sao cho x bằng trung bình nhân của đoạn thẳng đã cho a \mathcal{E} phần còn lại a-x.
- 367 ([Bìn23a], p. 136). Dùng thước & compa, chia 1 đường tròn thành 5 phần bằng nhau.

11 Góc ở Tâm. Số Đo Cung. Liên Hệ Giữa Cung & Dây

- Tho đường tròn (O;R), $\widehat{AOB} = \alpha \in [0^\circ, 180^\circ]$: góc ở tâm. Nếu $0^\circ < \alpha < 180^\circ$, cung nhỏ \widehat{AmB} có số đo cung sđ $\widehat{AmB} = \alpha$, cung lớn \widehat{AnB} có số đo cung sđ $\widehat{AmB} = 360^\circ \alpha$. Nếu $\alpha = 0^\circ$, cung không có số đo 0° & cung cả đường tròn có số đo 360° . Nếu $\alpha = 180^\circ$, 2 cung \widehat{AmB} , \widehat{AnB} là 2 nửa đường tròn với sđ $\widehat{AmB} = \operatorname{sd}\widehat{AnB} = 180^\circ$. $\boxed{2}$ Trên cùng 1 đường tròn (O;R) hoặc trên 2 đường tròn bằng nhau (O;R), (O';R), $O \neq O'$, sđ $\widehat{AB} = \operatorname{sd}\widehat{CD} \Leftrightarrow \widehat{AB} = \widehat{CD} \Leftrightarrow AB = CD$, sđ $\widehat{AB} < \operatorname{sd}\widehat{CD} \Leftrightarrow \widehat{AB} < \widehat{CD} \Leftrightarrow AB < CD$. Tính chất này không còn đúng khi xét trên 2 đường tròn không bằng nhau (O;R), (O',R') với $R \neq R'$. $\boxed{3}$ $B \in \widehat{AC} \Rightarrow \operatorname{sd}\widehat{AB} + \operatorname{sd}\widehat{BC} = \operatorname{sd}\widehat{AC}$. $\boxed{4}$ 2 cung chắn giữa 2 dây song song thì bằng nhau.
- **368** ([BBN23b], H1, p. 76). D/S? Nếu sai, sửa cho đúng. (a) 2 cung tròn bằng nhau thì có cùng số đo. (b) 2 cung tròn có số đo bằng nhau thì bằng nhau. (c) Trong 2 cung tròn, cung nào có số đo lớn hơn thì lớn hơn. (d) Trong 2 cung tròn trên 1 đường tròn, cung nào có số đo nhỏ hơn thì nhỏ hơn.
- **369** ([BBN23b], H2, p. 76). Dường tròn (O;1) có dây cung $AB = \sqrt{2}$. Tính \widehat{AOB} .
- **370** ([BBN23b], H3, p. 76). Cho $\triangle ABC$ nội tiếp đường tròn (O), $\widehat{A} = 60^{\circ}$, $\widehat{B} = 70^{\circ}$. Sắp xếp tăng: \widehat{AB} , \widehat{BC} , \widehat{CA} .
- **371** ([BBN23b], VD1, p. 76). Trong 1 đường tròn. Chứng minh: (a) Đường kính vuông góc với 1 dây cung thì chia đôi cung căng dây. (b) Đảo lại, đường kính đi qua điểm chính giữa của 1 cung thì vuông góc với dây căng cung.
- 372 ([BBN23b], VD2, p. 77). 2 tiếp tuyến tại A,B của đường tròn (O) cắt nhau tại P. Biết $\widehat{APB} = 50^{\circ}$. Tính số đo cung lớn AB.
- 373 ([BBN23b], VD3, p. 77). Cho đường tròn (O;R), 2 dây AB,CD sao cho $\widehat{AOB}=120^{\circ},\widehat{COD}=60^{\circ}$. Chứng minh CD < AB < 2CD.
- **374** ([BBN23b], VD4, p. 78). Cho 2 đường tròn (O; R), (O'; R') tiếp xúc ngoài tại A. M,N lần lượt chạy trên 2 đường tròn (O; R), (O'; R') bắt đầu từ A cùng chiều kim đồng hồ sao cho sắ $\widehat{AM} = \operatorname{sắ}\widehat{AN}$. Chứng minh A,M,N thẳng hàng.
- 375 ([BBN23b], VD5, p. 78). Cho đường tròn (O;R) có dây cung $AB = R\sqrt{2}$. M là điểm chính giữa cung nhỏ AB. Tính độ dài AM theo R.
- 376 ([BBN23b], 1.1., p. 79). Cho $\triangle ABC$ cân tại A, $\widehat{A}=70^{\circ}$, nội tiếp đường tròn (O). So sánh 3 cung nhỏ AB, AC, BC.
- 377 ([BBN23b], 1.2., p. 79). Cho đường tròn (O; R) có dây cung $AB = R\sqrt{3}$. M là điểm chính giữa cung nhỏ AB. Tính độ dài AM theo R.
- 378 ([BBN23b], 1.3., p. 79). Cho đường tròn (O;R), $\left(O;\frac{R\sqrt{2}}{2}\right)$. Tiếp tuyến của đường tròn nhỏ cắt đường tròn lớn tại A,B. Tính số đo cung nhỏ AB của (O;R).
- 379 ([BBN23b], 1.4., p. 79). Từ điểm A trên đường tròn (O;1) đặt liên tiếp các cung có dây là $AB=1, BC=\sqrt{3}, CD=\sqrt{2}$. Chứng minh: (a) AC là đường kính của (O). (b) $\triangle ACD$ vuông cân.
- **380** ([BBN23b], 1.5., p. 79). Cho đường tròn (O; R) \mathcal{E} dây AB. M,N lần lượt là điểm chính giữa 2 cung nhỏ AB, cung lớn AB, P là trung điểm dây cung AB. (a) Chứng minh M,N,O,P thẳng hàng. (b) Xác định số đo cung nhỏ AB để tứ giác ABMO là hình thơi.
- 381 ([BBN23b], 1.6., p. 79). Cho đường tròn (O;R) nội tiếp ΔABC . D,E,F lần lượt là tiếp điểm của đường tròn với cạnh BC,CA,AB. $Bi\acute{e}t$ $\frac{{\rm sd}\widehat{EF}}{3}=\frac{{\rm sd}\widehat{FD}}{4}=\frac{{\rm sd}\widehat{DE}}{5}$. Tính số đo 3 góc ΔABC .
- **382** ([BBN23b], 1.7., p. 79). Cho $\triangle ABC$ nhọn nội tiếp đường tròn (O). Vẽ đường cao AH, cắt đường tròn tại 1 điểm thứ 2 là D. M,N lần lượt là trung điểm AB,AC. Chứng minh $OM = \frac{1}{2}CD,ON = \frac{1}{2}BD$.
- 383 ([Tuy23], VD11, p. 127). Chứng minh nếu 1 tiếp tuyến song song với 1 dây thì tiếp điểm chia đôi cung căng dây.
- **384** ([Tuy23], 70., p. 127). Cho $\triangle ABC$ vuông góc tại A, $AB = \frac{1}{2}BC$. Đường tròn (O) nội tiếp $\triangle ABC$, tiếp xúc với BC, CA, AB lần lượt tại D, E, F. Chứng minh sắ \widehat{EF} : sắ \widehat{FD} : sắ $\widehat{DE} = 3:4:5$.
- **385** ([Tuy23], 71., p. 127). Từ 1 điểm A ở ngoài đường tròn (O;R) vẽ 2 tiếp tuyến AB,AC với B,C là 2 tiếp điểm, chúng tạo với nhau 1 góc α . Trên cung nhỏ \widehat{BC} lấy 1 điểm D. Tiếp tuyến tại D cắt AB,AC lần lượt tại E,F. 2 tia OE,OF cắt đường tròn tại M,N. (a) Chứng minh cung nhỏ \widehat{MN} có số đo không đổi. (b) Muốn cho sđ $\widehat{MN}=60^\circ$ thì điểm A phải cách O 1 khoảng bao nhiêu?
- **386** ([Tuy23], 72., p. 127). Cho $\triangle ABC$, $\widehat{B}=60^{\circ}$, đường trung tuyến AM, đường cao CH. Vẽ đường tròn ngoại tiếp $\triangle BHM$. Chứng $\widehat{BM}=\widehat{MH}=\widehat{HB}$.

- **387** ([Tuy23], 73., p. 128). Từ 1 điểm A trên đường tròn (O;1), đặt liên tiếp các cung \widehat{AB} , \widehat{BC} , \widehat{CD} có 3 dây căng cung bằng $1,\sqrt{3},\sqrt{2}$. Chứng minh: (a) AC là đường kính của đường tròn (O). (b) $\triangle ACD$ vuông cân.
- **388** ([Tuy23], 74., p. 128). Cho đường tròn (O; R), dây $AB = R\sqrt{3}$. Vẽ đường kính $CD \perp AB$, C thuộc cung lớn AB. Trên cung AC lấy 1 điểm M. Vẽ dây $AN \parallel CM$. Tính MN.
- **389** ([Tuy23], 75., p. 128). Trên đường tròn (O), lấy 1 số cung sao cho bất kỳ 2 cung nào cũng không có điểm chung & tổng số đo các cung đó nhỏ hơn 180°. Chứng minh trên các cung còn lại, có thể tìm được 2 điểm A, B sao cho A, B, O thẳng hàng.
- **390** ([Bìn23b], VD31, p. 83). Cho đường tròn (O), dây AB. 2 điểm C, D di chuyển trên đường tròn sao cho $\widehat{AC} = \widehat{BD}$. Trong trường hợp nào thì dây CD có độ dài không đổi?
- **391** ([Bìn23b], 194., p. 84). Tính bán kính của đường tròn (O) biết dây AB của đường tròn có độ dài bằng 2a & khoảng cách từ điểm chính giữa của cung AB đến dây AB bằng h.
- **392** ([Bìn23b], 195., p. 84). Cho nửa đường tròn đường kính AB = 2 cm, dây $CD \parallel AB$, $C \in \widehat{AD}$. Tính độ dài các cạnh của hình thang ABDC biết chu vi hình thang bằng 5 cm.
- 393 ([Bìn23b], 196., p. 84). Cho nửa đường tròn (O) đường kính AB=20 cm. C là điểm chính giữa của nửa đường tròn. Điểm H thuộc bán kính OA sao cho OH=6 cm. Đường vuông góc với OA tại H cắt nửa đường tròn ở D. Vẽ dây $AE \parallel CD$. K là hình chiếu của E trên AB. Tính diện tích $\triangle AEK$.
- **394** ([Bìn23b], 197., p. 84). Cho ΔABC đều có diện tích S, nội tiếp đường tròn (O). Trên 3 cung AB, BC, CA, lấy lần lượt 3 điểm A', B', C' sao cho 3 cung ÂA', BB', ĈC' đều có số đo bằng 30°. Tính diên tích phần chung của ΔABC, ΔA'B'C'.
- **395** ([Bìn23b], 198., p. 84). R, r lần lượt là bán kính 2 đường tròn ngoại tiếp, nội tiếp 1 tam giác. Chứng minh $R \ge 2r$.

12 Góc Nội Tiếp

- **396** ([Tuy23], VD12, p. 129). Cho đường tròn (O) đường kính AB. C là 1 điểm cố định trên đường tròn \mathcal{E} điểm M di động trên đường tròn đó, M,O,C không thẳng hàng. 2 đường thẳng CM,AB cắt nhau tại D. Chứng minh đường tròn ngoại tiếp ΔOMD luôn đi qua 2 điểm cố định.
- **397** ([Tuy23], VD13, p. 130). Cho $\triangle ABC$ nội tiếp đường tròn (O). Qua A vẽ tiếp tuyến xy. Từ B vẽ $BM \parallel xy, M \in AC$. Chứng minh: (a) $AB^2 = AM \cdot AC$. (b) AB là tiếp tuyến của đường tròn ngoại tiếp $\triangle BCM$.
- **398** ([Tuy23], 76., p. 131). Cho $\triangle ABC$ trực tâm H nội tiếp đường tròn (O;R). Chứng minh $AH^2 + BC^2 = BH^2 + AC^2 = CH^2 + AB^2 = 4R^2$.
- **399** ([Tuy23], 77., p. 131). Trên 1 nửa đường tròn đường kính AB lấy 2 điểm M,N sao cho sắ $\widehat{AM}=\text{så}\widehat{BN}<90^\circ$. 2 dây AN,BM cắt nhau tại I. Biết $\widehat{AIM}=\alpha=90^\circ$, tính tỷ số diện tích $\Delta MNI,\Delta ABI$.
- **400** ([Tuy23], 78., p. 131). Cho 2 đường tròn (O;R), (O';r') cắt nhau tại A,B. Qua B vẽ 1 cát tuyến cắt 2 đường tròn này lần lượt tại M,N. (a) Chứng minh ΔAMN luôn đồng dạng với chính nó. (b) Tìm vị trí của MN để ΔAMN có diện tích lớn nhất. Tính diên tích lớn nhất đó nếu $\widehat{OAO'} = 120^{\circ}$.
- **401** ([Tuy23], 79., pp. 131–132). Cho $\triangle ABC$ nội tiếp đường tròn (O;R). 3 đường cao AD,BE,CF cắt nhau tại H, cắt đường tròn lần lượt tại A',B',C'. (a) Chứng minh A',B',C' lần lượt đối xứng với H qua BC,CA,AB. (b) Chứng minh 3 đường tròn ngoại tiếp $\triangle HAB, \triangle HBC, \triangle HCA$ có bán kính bằng nhau. (c) Khi BC cố định, đỉnh A di động trên đường tròn (O) thì trực tâm H di động trên đường nào?
- **402** ([Tuy23], 80., p. 132). Cho $\triangle ABC$. Dường tròn (I) tiếp xúc với BC, CA, AB lần lượt tại D, E, F. Gọi giao điểm của IA, IB, IC với (I) lần lượt là A', B', C'. Chứng minh A'D, B'E, C'F đồng quy.
- $\textbf{403} \ ([\texttt{Tuy23}], \ 81., \ \textbf{p.} \ 132). \ \textit{Cho} \ \Delta \textit{ABC} \ \textit{d\`eu} \ \textit{nội tiếp dường tròn (O)}. \ \textit{Trên cung nhỏ} \ \widehat{BC} \ \textit{lấy 1 diểm M. (a) Chứng minh } \\ MB + MC = MA. \ \textit{(b) Gọi H là giao điểm của MA với BC. Chứng minh } \\ \frac{1}{MB} + \frac{1}{MC} = \frac{1}{MH}.$
- **404** ([Tuy23], 82., p. 132). Cho đường tròn (O) đường kính AB, 1 điểm H cố định trên AB. Từ B vẽ tiếp tuyến xy & trên xy lấy điểm K di động. Vẽ đường tròn (K; KH) cắt đường tròn (O) tại C, D. Chứng minh đường thẳng CD luôn đi qua 1 điểm cố định.
- **405** ([Bìn23b], VD32, p. 85). $\triangle ABC$ nội tiếp đường tròn (O;R) có AB=8 cm, AC=15 cm, đường cao AH=5 cm. Tính bán kính đường tròn.
- **406** ([Bìn23b], VD33, p. 85). Cho $\triangle ABC$ nội tiếp đường tròn (O;R), gọi (I;r) là đường tròn nội tiếp $\triangle ABC$, H là tiếp điểm của AB với đường tròn (I), D là giao điểm của AI với đường tròn (O), DK là đường kính của đường tròn (O). d là độ dài OI. Chứng minh: (a) $\triangle AHI \sim \triangle KCD$. (b) DI = DB = DC. (c) $IA \cdot ID = R^2 d^2$. (d) (định lý Euler) $d^2 = R^2 2Rr$.
- $\begin{array}{l} \textbf{407} \ ([\underline{\text{Bin23b}}], \ 199., \ \text{p. 86}). \ \textit{Cho} \ \Delta \textit{ABC} \ \textit{nhọn có} \ \textit{BC} = \textit{a}, \textit{CA} = \textit{b}, \textit{AB} = \textit{c} \ \textit{\& nội tiếp đường tròn (O; R)}. \ \textit{Chứng minh} \\ \frac{\textit{a}}{\sin \textit{A}} = \frac{\textit{b}}{\sin \textit{B}} = \frac{\textit{c}}{\sin \textit{C}} = 2\textit{R}. \end{array}$

- **408** ([Bìn23b], 200., p. 86). Cho đường tròn (O) có đường kính AB = 12 cm. 1 đường thẳng d đi qua A cắt đường tròn (O) ở M & cắt tiếp tuyến của đường tròn tại B ở N. I là trung điểm MN. Tính AM biết AI = 13 cm.
- **409** ([Bìn23b], 201., p. 86). Cho đường tròn (O; R), 2 đường kính $AB \perp CD$. I là trung điểm OB. Tia CI cắt đường tròn ở E, EA cắt CD ở K. Tính DK.
- **410** ([Bìn23b], 202.,. p. 86). Cho nửa đường tròn đường kính BC. 2 điểm M, N thuộc nửa đường tròn sao cho $\widehat{BM} = \widehat{MN} = \widehat{NC}$. 2 điểm D, E thuộc đường kính BC sao cho BD = DE = EC. A là giao điểm của MD, NE. Chứng minh $\triangle ABC$ đều.
- 411 ([Bìn23b], 203., p. 86). Cho $\triangle ABC$ nhọn nội tiếp đường tròn (O), 3 đường cao AD, BE, CF cắt đường (O) lần lượt ở M, N, K. Chứng minh: $\frac{AM}{AD} + \frac{BN}{BE} + \frac{CK}{CF} = 4$.
- **412** ([Bìn23b], 204., p. 87). Cho đường tròn (O), đường kính AB có dây $CD \perp AB$. Điểm $M \in (O)$ bất kỳ, MC không song song với AB, E là giao điểm của MD, AB, F là giao điểm của MC, AB. Chứng minh $\frac{AE}{BE} = \frac{AF}{BF}$.
- 413 ([Bìn23b], 205., p. 87). Qua điểm A nằm bên ngoài đường tròn (O) vẽ cát tuyến ABC. E là điểm chính giữa cung BC, DE là đường kính của đường tròn. AD cắt đường tròn tại I, IE cắt BC tại K. $Chứng minh <math>AC \perp BK = AB \cdot KC$.
- 414 ([Bìn23b], 206., p. 87). Cho nửa đường tròn (O), đường kính AB, bán kính OC = R. 2 điểm M, N lần lượt thuộc 2 cung AC, BC. E, G lần lượt là hình chiếu của M, N trên AB. F, H lần lượt là hình chiếu của M, N trên OC. Chứng minh EF = GH.
- **415** ([Bìn23b], 207., p. 87). Trong đường tròn ngoại tiếp ΔABC , vẽ 3 dây $AA' \parallel BC, BB' \parallel AC, CC' \parallel AB$. Trên 3 cung AA', BB', CC', lấy 3 cung AD, BE, CF lần lượt bằng $\frac{1}{3}$ các cung trên. Chứng minh ΔDEF đều.
- **416** ([Bìn23b], 208., p. 87). 2 đường cao BH,CK của ΔABC cắt đường tròn ngoại tiếp lần lượt ở D,E. Tính \widehat{A} biết DE là đường kính đường tròn.
- 417 ([Bìn23b], 209., p. 87). Cho $\triangle ABC$ nội tiếp đường tròn (O). H là trực tâm, I là tâm đường tròn nội tiếp $\triangle ABC$. (a) Chứng minh AI là tia phân giác \widehat{OAH} . (b) Cho $\widehat{BAC} = 60^{\circ}$, chứng minh IO = IH.
- 418 ([Bìn23b], 210., p. 87). Tính \widehat{A} của $\triangle ABC$ biết khoảng cách từ A đến trực tâm $\triangle ABC$ bằng bán kính đường tròn ngoại tiếp $\triangle ABC$.
- 419 ([Bìn23b], 211., p. 87). Cho $\triangle ABC$ đều nội tiếp đường tròn (O; R). 1 điểm M bất kỳ thuộc cung BC. (a) Chứng minh MA = MB + MC. (b) D là giao điểm của MA, BC. Chứng minh $\frac{DM}{BM} + \frac{DM}{CM} = 1$. (c) Tính $MA^2 + MB^2 + MC^2$ theo R.
- $\textbf{420} \ ([\underline{\texttt{Bin23b}}], \ 212., \ \textbf{p. 87}). \ \textit{Cho} \ \Delta \textit{ABC} \ \textit{co} \ \widehat{B} = 54^{\circ}, \\ \widehat{C} = 18^{\circ} \ \textit{nội tiếp đường tròn } (O; R). \ \textit{Chứng minh } AC AB = R.$
- **421** ([Bìn23b], 213., pp. 87–88). 2 đường tròn (O;R), (O';R) cắt nhau ở A,B. 1 đường thẳng d $\parallel OO'$ cắt 2 đường tròn này tại 4 điểm C,D,E,F theo thứ tự trên d, $C,E\in (O),D,F\in (O')$. (a) Chứng minh CDO'O là hình bình hành. (b) Tính CD biết AB=a. (c) Chứng minh \widehat{CAD} không phụ thuộc vào vị trí của đường thẳng d, d luôn luôn song song với OO'.
- **422** ([Bìn23b], 214., p. 88). Cho điểm C thuộc nửa đường tròn đường kính AB, H là hình chiếu của C trên AB. 2 điểm D, E thuộc nửa đường tròn đó sao cho HC là tia phân giác của \widehat{DHE} . Chứng minh $CH^2 = DH \cdot EH$.
- **423** ([Bìn23b], 215., p. 88). 1 đường tròn (O) đi qua đỉnh A & 2 trung điểm D, E của 2 cạnh AB, AC của ΔABC sao cho BC tiếp xúc với (O) tại K. Chứng minh $KA^2 = KB \cdot KC$.
- **424** ([Bìn23b], 216., p. 88). Cho $\triangle ABC$ có AB=5, BC=7, CA=6. Chứng minh tồn tại 1 điểm E thuộc cạnh AC sao cho 3 độ dài AE, BE, CE là 3 số tự nhiên.
- **425** ([Bìn23b], 217., p. 88). Cho $\triangle ABC$ cân tại A, điểm M thuộc cạnh BC. Chứng minh $AB^2 AM^2 = MB \cdot MC$ (bằng cách vẽ đường tròn (A,AB)).
- **426** ([Bìn23b], 218., p. 88). Cho $\triangle ABC$, đường phân giác AD. Chứng minh $AD^2 = AB \cdot AC DB \cdot DC$ (bằng cách vẽ giao điểm E của AD với đường tròn ngoại tiếp $\triangle ABC$).
- 427 ([Bìn23b], 219., p. 88). 2 đường tròn (O), (O') cắt nhau ở A,B. 2 điểm M,N lần lượt di chuyển trên 2 đường tròn (O), (O') sao cho chiều từ A đến M & từ A đến N trên 2 đường tròn đều theo chiều quay của kim đồng hồ & 2 cung \widehat{AM} , \widehat{AN} có số đo bằng nhau. Chứng minh đường trung trực của MN luôn đi qua 1 điểm cố định.

13 Góc Tạo Bởi Tia Tiếp Tuyến & Dây Cung

428 ([Tuy23], 83., p. 132). Cho 2 đường tròn (O), (O') cắt nhau tại A, B. Vẽ dây AC của đường tròn (O) tiếp xúc với đường tròn (O') & dây AD của đường tròn (O') tiếp xúc với đường tròn (O). Chứng minh: (a) $BC \cdot BD = AB^2$. (b) $\frac{BC}{BD} = \frac{AC^2}{AD^2}$.

- 429 ([Tuy23], 84., p. 132). Cho 2 đường tròn (O), (O') cắt nhau tại A, B. 1 tiếp tuyến chung ngoài tiếp xúc với (O) tại C & tiếp xúc với đường tròn (O') tại D. Dường tròn (I) ngoại tiếp ΔACD cắt đường thẳng AB tại 1 điểm thứ 2 là E. Chứng minh: (a) $\widehat{CAD} + \widehat{CBD} = 180^{\circ}$. (b) Tứ giác BCED là hình bình hành.
- **430** ([Tuy23], 85., p. 132). Cho đường tròn $(O; \sqrt{22})$. M là 1 điểm bên ngoài đường tròn, N là 1 điểm bên trong đường tròn. Doan thẳng MN cắt đường tròn tai A. Biết AM = AN = 3, ON = 2. Tính đô dài tiếp tuyến MT với đường tròn.
- 431 ([Tuy23], 86., p. 133). Cho nửa đường tròn (O) đường kính AB. Trên tia đối của tia AB lấy 1 điểm M. Từ M vẽ tia Mx tiếp xúc với nửa đường tròn tại C. H là hình chiếu của C trên AB. (a) Chứng minh CA, CB là 2 tia phân giác của 2 góc tạo bởi tiếp tuyến Mx với tia CH. (b) Cho AM = a, CM = 2a. Tính AB, CH.
- 432 ([Tuy23], 87., p. 133). Cho nửa đường tròn đường kính AB, C là điểm chính giữa của nửa đường tròn. Trên cung BC lấy 1 điểm M. Trên tia AM lấy điểm N sao cho AN = BM. (a) Chứng minh ΔCMN vuông cân. (b) Qua N vẽ đường thẳng $d \perp AM$. Chứng minh d luôn đi qua 1 điểm cố định.
- 433 ([Tuy23], 88., p. 133). Cho $\triangle ABC$ đều nội tiếp đường tròn (O). Trên cung nhỏ \widehat{BC} lấy 1 điểm M. Vẽ đường tròn (I) tiếp xúc trong với đường tròn (O) tại M, cắt 3 dây MA, MB, MC lần lượt tại A', B', C'. (a) Chứng minh $\triangle A'B'C'$ đều. (b) Từ A, B, C vẽ 3 tiếp tuyến AD, BE, CF với đường tròn (I). Chứng minh AD = BE + CF.
- 434 ([Bìn23b], VD34, p. 89). Cho 2 đường tròn (O), (O') ở ngoài nhau. Đường nối tâm OO' cắt (O), (O') tại 4 điểm A, B, C, D theo thứ tự trên đường thẳng. Kể tiếp tuyến chung ngoài EF, $E \in (O)$, $F \in (O')$. M là giao điểm của AE, DF, N là giao điểm của BE, CF. Chứng minh: (a) MENF là hình chữ nhật. (b) $MN \bot AD$. (c) $MA \cdot ME = MD \cdot MF$.
- **435** ([Bìn23b], VD35, p. 89). Từ điểm A ở bên ngoài đường tròn (O), kẻ 2 tiếp tuyến AB, AC với (O). Dây BD của (O) song song với AC, E là giao điểm của AD với (O), I là giao điểm của BE, C. Chứng minh I là trung điểm AC.
- **436** ([Bìn23b], 220., p. 90). Cho $\triangle ABC$. Vẽ đường tròn (O) đi qua A & tiếp xúc với BC tại B. Kể dây $BD \parallel AC$. I là giao điểm của CD với (O). Chứng minh $\widehat{IAB} = \widehat{IBC} = \widehat{ICA}$.
- 437 ([Bìn23b], 221., p. 90). Cho đường tròn (O') tiếp xúc trong với đường tròn (O) tại A. Dây BC của đường tròn lớn tiếp xúc với đường tròn nhỏ tại H. D, E lần lượt là giao điểm \neq A của AB, AC với đường tròn nhỏ. Chứng minh: (a) DE \parallel BC. (b) AH là tia phân giác \widehat{BAC} .
- 438 ([Bìn23b], 222., p. 90). Cho điểm B thuộc đoạn thẳng AC. Vẽ về 1 phía của AC 3 nửa đường tròn có đường kính AC, AB, BC có tâm lần lượt là O, O_1 , O_2 . EF là tiếp tuyến chung của 2 nửa đường tròn (O_1) , (O_2) , $E \in (O_1)$, $F \in (O_2)$. Dường vuông góc với AC tại B cắt nửa đường tròn (O) $\mathring{\sigma}$ D. Chứng minh BEDF là hình chữ nhật.
- 439 ([Bìn23b], 223., p. 90). Cho đường tròn (O) đường kính AB. Vẽ đường tròn (A) cắt đường tròn (O) ở C, D. Kể dây BN của (O), cắt (A) tại điểm E ở bên trong (O). Chứng minh: (a) $\widehat{CEN} = \widehat{EDN}$. (b) $NE^2 = NC \cdot ND$.
- **440** ([Bìn23b], 224., p. 91). $\triangle ABC$ vuông tại A nội tiếp đường tròn (O, 2.5 cm). Tiếp tuyến với (O) tại C cắt tia phân giác của \widehat{B} tại K. Tính BK biết BK cắt AC tại D, BD = 4 cm.
- 441 ([Bìn23b], 225., p. 91). Tứ giác ABCD có 2 đường chéo cắt nhau ở E. Vẽ 2 đường tròn ngoại tiếp $\Delta ABE, \Delta CDE$. Tìm điều kiện của tứ giác để 2 đường tròn tiếp xúc nhau.
- 442 ([Bìn23b], 226., p. 91). Cho $\triangle ABC$ nội tiếp đường tròn (O). Tiếp tuyến tại A cắt BC ở I. (a) Chứng minh $\frac{BI}{CI} = \frac{AB^2}{AC^2}$. (b) Tính IA, IC biết AB = 20 cm, BC = 24 cm, CA = 28 cm.
- **443** ([Bìn23b], 227., p. 91). Cho hình vuông ABCD có cạnh dài 2 cm. Tính bán kính của đường tròn đi qua A, B biết đoạn tiếp tuyến kẻ từ D đến đường tròn đó bằng 4 cm.
- 444 ([Bìn23b], 228., p. 91). Cho $\triangle ABC$ cân tại A, đường trung trực của AB cắt BC ở K. Chứng minh AB là tiếp tuyến của đường tròn ngoại tiếp $\triangle ACK$.
- **445** ([Bìn23b], 229., p. 91). Cho hình thang ABCD, $AB \parallel CD$, có $BD^2 = AB \cdot CD$. Chứng minh đường tròn ngoại tiếp ΔABD tiếp xúc với BC.
- **446** ([Bìn23b], 230., p. 91). Cho hình bình hành ABCD, $\widehat{A} \leq 90^{\circ}$. Đường tròn ngoại tiếp ΔBCD cắt AC ở E. Chứng minh BD là tiếp tuyến của đường tròn ngoại tiếp ΔABE .
- 447 ([Bìn23b], 231., p. 91). Cho 2 đường tròn (O), (O') cắt nhau ở A,B. tiệpKể tiếp tuyến chugn CC', $C \in (O)$, $C' \in (O')$, kể đường kính COD. E,F lần lượt là giao điểm của OO' với C'D, CC'. Chứng minh: (a) $\widehat{EAF} = 90^{\circ}$, A,C,C' nằm cùng phía đối với OO'. (b) FA là tiếp tuyến của đường tròn ngoại tiếp $\Delta ACC'$.
- 448 ([Bìn23b], 232., p. 91). Cho 2 đường tròn (O), (O') cắt nhau ở A, B, trong đó tiếp tuyến chung CD song song với cát tuyến chung EBF, $C, E \in (O)$, $D, F \in (O')$, B nằm giữa E, F. M, N lần lượt là giao điểm của AD, AC với EF. I là giao điểm của CE, DF. Chứng minh: (a) $\Delta ICD = \Delta BCD$. (b) IB là đường trung trực của MN.

14 Góc Có Đỉnh Ở Bên Trong, Bên Ngoài Đường Tròn

- Số đo góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo 2 cung bị chắn. $\boxed{2}$ Số đo của góc có đỉnh ở bên ngoài đường tròn bằng nửa hiệu số đo 2 cung bị chắn. Định lý vẫn đúng trong trường hợp 1 cạnh hoặc 2 cạnh của góc có đỉnh ở bên ngoài đường tròn là tiếp tuyến. $\boxed{3}$ Cho đường tròn (O), dây MN. 3 điểm A,B,C lần lượt nằm ngoài, nằm trên, nằm trong đường tròn, A,B,C cùng nằm trên 1 nửa mặt phẳng bờ MN: $\widehat{MAN} < \widehat{MBN} < \widehat{MCN}$.
- **449** ([Tuy23], VD14, p. 134). Cho đường tròn (O), dây AB. Trên 2 cung AB lần lượt lấy 2 điểm M, N. 2 tia AM, NB cắt nhau tại C. 2 tia AN, MB cắt nhau tại D. Biết $\widehat{ACN} = \widehat{ADM}$, chứng minh $AB \perp CD$.
- **450** ([Tuy23], 89., p. 135). Cho đường tròn (I) nội tiếp ΔABC. 3 tia AI, BI, CI cắt đường tròn ngoại tiếp ΔABC lần lượt tại D, E, F. Dây EF cắt AB, AC lần lượt tại M, N. Chứng minh: (a) DI = DB. (b) AM = AN. (c) I là trực tâm ΔDEF.
- **451** ([Tuy23], 90., p. 135). Từ 1 điểm A ở ngoài đường tròn (O), vẽ tiếp tuyến AB & cát tuyến ACD. Tia phân giác \widehat{BAC} cắt BC, BD lần lượt tại M, N. Vẽ dây BF \(\text{LM}\)N, cắt MN tại H, cắt CD tại E. Chứng minh: (a) \(\Delta\text{BMN}\) cân. (b) FD² = FB \cdot FE.
- **452** ([Tuy23], 91., p. 135). Cho đường tròn (O; R), 2 đường kính $AB \perp CD$. Trên đường kính AB lấy điểm E sao cho $AE = R\sqrt{2}$. Vẽ dây CF đi qua E. Tiếp tuyến của đường tròn tại F cắt đường thẳng CD tại M, vẽ dây AF cắt CD tại N. Chứng minh: (a) $MF \parallel AC$. (b) Tia CF là tia phân giác \widehat{BCD} . (c) MN, OD, OM là độ dài 3 cạnh 1 tam giác vuông.
- **453** ([Tuy23], 92., p. 135). Cho $\triangle ABC$ nội tiếp đường tròn (O;R). Đường phân giác trong $\mathscr E$ ngoài của $\widehat A$ cắt đường thẳng BC lần lượt tại D,E. Biết AD=AE,AB=1.4,C=4.8, tính R.
- **454** ([Tuy23], 93., p. 135). Cho đa giác lồi 100 đỉnh. Chứng minh có thể chọn ra 3 đỉnh trong số 100 đỉnh của đa giác mà đường tròn đi qua 3 đỉnh đó sẽ chứa tất cả các đỉnh còn lại của đa giác.
- **455** ([Tuy23], 94., p. 135). Cho 2 đường thẳng a,b cắt nhau tại 1 điểm ở ngoài phạm vi tờ giấy. Làm thế nào đo được góc nhọn giữa 2 đường thẳng đó nếu trong tay chỉ có 1 thước đo góc với bán kính đủ dùng.
- **456** ([Bìn23b], VD36, p. 92). Cho ΔABC đều nội tiếp đường tròn (O). Điểm D di chuyển trên cung AC. E là giao điểm của AC, BD, F là giao điểm của AD, BC. Chứng minh: (a) $\widehat{AFB} = \widehat{ABD}$. (b) $\widehat{AE} \cdot \widehat{BF}$ không đổi.
- **457** ([Bìn23b], 233., p. 92). Tứ giác ABCD có 2 góc \widehat{B} , \widehat{D} tù. Chứng minh AC > BD.
- **458** ([Bìn23b], 234., p. 92). Cho đường tròn (O, 2 cm), 2 bán kính $OA \perp OB$. M là điểm chính giữa của cung AB. C là giao điểm của AM, OB, H là hình chiếu của M trên OA. Tính diện tích hình thang OHMC.
- **459** ([Bìn23b], 235., p. 92). $\triangle ABC$ nội tiếp đường tròn (O), 3 điểm M, N, P là điểm chính giữa của 3 cung AB, BC, CA. D là giao điểm của MN, AB, E là giao điểm của PN, AC. Chứng minh $DE \parallel BC$.
- **460** ([Bìn23b], 236., p. 93). Cho $\triangle ABC$ nội tiếp đường tròn (O;R). I là tâm đường tròn nội tiếp $\triangle ABC$, M,N,P lần lượt là tâm của 3 đường tròn bàng tiếp trong 3 góc $\widehat{A}, \widehat{B}, \widehat{C}$. K là điểm đối xứng với I qua O. Chứng minh K là tâm của đường tròn ngoại tiếp $\triangle MNP$.

15 Cung Chứa Góc

- **461** ([Tuy23], VD15, p. 136). Cho nửa đường tròn (O; R), đường kính AB, dây CD thay đổi nhưng luôn có độ dài bằng R trong đó $C \in \widehat{AD}$. 2 đường thẳng AC, BD cắt nhau tại M. Tìm quỹ tích của điểm M.
- **462** ([Tuy23], 95., p. 138). Cho $\triangle ABC$ đều nội tiếp đường tròn (O), 2 điểm M, N lần lượt di động trên 2 cạnh AB, AC sao cho AM = CN. I là giao điểm của BN, CM. Chứng minh 4 điểm B, C, I, O cùng thuộc 1 đường tròn.
- 463 ([Tuy23], 96., p. 138). Cho đường tròn (O) nội tiếp ΔABC , tiếp xúc với 3 cạnh BC, CA, AB lần lượt tại D, E, F. Tia AO cắt DE tại H. (a) Chứng minh B, D, F, H, O cùng thuộc 1 đường tròn. (b) Cho AB cố định, $\widehat{A} = \alpha$ không đổi, C di động. Chứng minh DE luôn đi qua 1 điểm cố định.
- **464** ([Tuy23], 97., p. 138). Cho đường tròn (O), dây AB. Tìm trên cung lớn $\stackrel{\frown}{AB}$ 1 điểm M sao cho chu vi $\triangle ABM$ lớn nhất.
- **465** ([Tuy23], 98., p. 138). Cho trước điểm A trên đường thẳng xy, 2 điểm C,D thuộc 2 nửa mặt phẳng đối nhau bờ xy. Tìm trên xy 1 điểm B sao cho $\widehat{ACB} = \widehat{ADB}$.
- **466** ([Tuy23], 99., p. 138). Cho nửa đường tròn (O; R), dây $AB = R\sqrt{3}$. Điểm C di động trên cung nhỏ AB. Vẽ đường tròn tâm C tiếp xúc với AB. Từ A, B vẽ 2 tiếp tuyến khác AB với (C), chúng cắt nhau tại M. Từm quỹ tích của điểm M.
- **467** ([Tuy23], 100., p. 138). Cho 2 đường tròn (O), (O') tiếp xúc trong với nhau tại A. Qua A vẽ tia Ax cắt 2 đường tròn (O), (O') lần lượt tại B, C. Tìm quỹ tích trung điểm M của BC khi tia Ax quay quanh A.
- **468** ([Tuy23], 101., p. 138). Cho nửa đường tròn (O) đường kính AB, 1 điểm C di động trên nửa đường tròn. Vẽ ΔACD đều với D thuộc nửa mặt phẳng bờ AC không chứa B. Tìm quỹ tích trung điểm M của CD.

- **469** ([Tuy23], 102., p. 138). Cho đường tròn (O) đường kính AB, 1 điểm C di động trên đường tròn. H là hình chiếu của C trên AB. Trên bán kính OC lấy điểm M sao cho OM = CH. Tìm quỹ tích của điểm M.
- 470 ([Tuy23], 103., p. 138). Cho $\triangle ABC$, AB cố định, đường cao AH. Biết AH = BC. Tìm quỹ tích của điểm C.
- 471 ([Bìn23b], VD37, p. 93). Từ điểm M ở bên ngoài đường tròn (O), kể cát tuyến MAB đi qua O & 2 tiếp tuyến MC, MD. K là qiao điểm của AC, BD. Chứng minh: (a) 4 điểm B, C, M, K thuộc cùng 1 đường tròn. (b) MK \perp AB.
- 472 ([Bìn23b], 237., p. 94). Cho hình bình hành ABCD có $\widehat{A} < 90^{\circ}$. Dường tròn (A,AB) cắt đường thẳng BC ở điểm thứ 2 E. Dường tròn (C,BC) cắt đường thẳng AB ở điểm thứ 2 K. Chứng minh: (a) DE = DK. (b) 5 điểm A,C,D,E,K thuộc cùng 1 đường tròn.
- **473** ([Bìn23b], 238., p. 94). Qua điểm M thuộc cạnh đáy BC của ΔABC cân, kẻ 2 đường thẳng song song với 2 cạnh bên, chúng cắt AB, AC lần lượt ở D, E. I là điểm đối xứng với M qua DE. Chứng minh: (a) Điểm I thuộc đường tròn ngoại tiếp ΔABC. (b) Khi điểm M di chuyển trên cạnh BC thì đường thẳng IM đi qua 1 điểm cố định.
- 474 ([Bìn23b], 239., p. 94). Cho ΔABC nhọn có đường cao AD, điểm M nằm giữa B,C. Đường trung trực của BM cắt AB ở E, đường trung trực của CM cắt AC ở F. N là điểm đối xứng với M qua EF, I là giao điểm của MN, AD. Chứng minh 5 điểm A,B,C,I,N thuộc cùng 1 đường tròn.
- **475** ([Bìn23b], 240., p. 94). Cho hình thang ABCD, $AB \parallel CD$, O là giao điểm của 2 đường chéo. Trên tia OA lấy điểm M sao cho OM = OB. Trên tia OB lấy điểm N sao cho ON = OA. Chứng minh: (a) 4 điểm C, D, M, N thuộc cùng 1 đường tròn. (b) $\widehat{ACN} = \widehat{BDM}$.
- **476** ([Bìn23b], 241., p. 94). Cho $\triangle ABC$, AB < AC. Đường tròn (O) nội tiếp $\triangle ABC$ tiếp xúc với AB, BC ở D, E. M, N lần lượt là trung điểm của AC, BC. K là giao điểm của MN, AI. Chứng minh: (a) C, E, I, K thuộc cùng 1 đường tròn. (b) D, E, K thẳng hàng.
- 477 ([Bìn23b], 242., p. 94). Cho $\triangle ABC$, đường cao AH, đường trung tuyến AM, H, M phân biệt & thuộc cạnh BC, thỏa mãn $\widehat{BAH} = \widehat{MAC}$. Chứng minh $\widehat{BAC} = 90^{\circ}$.

16 Tứ Giác Nội Tiếp

- 478 ([Tuy23], VD16, p. 139). Cho ΔABC , AB < AC, đường trung tuyến AD, đường phân giác AE. Đường tròn ngoại tiếp ΔADE cắt AB, AC lần lượt tại M, N. Chứng minh BM = CN.
- **479** ([Tuy23], 104., p. 140). Từ giác ABCD nội tiếp đường tròn có AB = BC. 1 đường tròn (O) đi qua B,D cắt 2 đường thẳng AD,CD lần lượt tại E,F. Chứng minh $OB \perp EF$.
- **480** ([Tuy23], 105., p. 140). Cho 2 đường tròn (O), (O') cắt nhau tại A, B. Tia OA cắt đường tròn (O') tại C, tia O'A cắt đường tròn (O) tại D. Chứng minh: (a) Tứ giác OO'CD nội tiếp đường tròn. (b) B, C, D, O, O' cùng nằm trên 1 đường tròn.
- **481** ([Tuy23], 106., p. 141). Chứng minh nếu ABCD là tứ giác nội tiếp thì $AB \cdot CD + AD \cdot BC = AC \cdot BD$.
- **482** ([Tuy23], 107., p. 141). Tứ giác ABCD có 2 đường chéo vuông góc với nhau tại O. M, N, P, Q lần lượt là hình chiếu của O trên 4 cạnh AB, BC, CD, DA. Chứng minh MNPQ nội tiếp đường tròn.
- **483** ([Tuy23], 108., p. 141). Từ giác ABCD có 2 đường chéo vuông góc, nội tiếp đường tròn đường kính AC. M, N, P, Q lần lượt là tâm đường tròn nội tiếp $\Delta ABC, \Delta BCD, \Delta CDA, \Delta DAB$. Cho biết dạng của tứ giác MNPQ.
- **484** ([Tuy23], 109., p. 141). Cho hình vuông ABCD, điểm M trên cạnh AB. Dường thẳng qua C \mathcal{E} vuông góc với CM cắt 2 tia AB, AD lần lượt tại E, F, tia CM cắt đường thẳng AD tại N. Chứng minh: (a) 2 tứ giác AMCF, ANEC nội tiếp đường tròn. (b) CM + CN = EF.
- **485** ([Tuy23], 110., p. 141). Cho hình vuông ABCD, 2 điểm E, F di động lần lượt nằm giữa B, C & C, D sao cho $\widehat{EAF} = 45^{\circ}$. 2 đoạn thẳng AE, AF lần lượt cắt BD tại M, N. Vẽ $AH \perp EF$. Chứng minh: (a) 3 đường thẳng AH, FM, EN đồng quy. (b) Đường thẳng EF luôn tiếp xúc với 1 đường tròn cố định. (c) Diện tích ΔAMN bàng diện tích tứ giác MNFE.
- **486** ([Tuy23], 111., p. 141). Cho ΔABC cân tại A. Trên cạnh AB lấy điểm M di động, trên tia đối của tia CA lấy điểm N sao cho BM = CN. Chứng minh đường tròn ngoại tiếp ΔAMN luôn đi qua 1 điểm cố định khác A.
- 487 ([Tuy23], 112., p. 141). Cho 2 điểm O, P cố định. 1 góc \widehat{xOy} có số đo bằng 60° quay quanh điểm O sao cho điểm P luôn nằm trong góc đó. H, K lần lượt là hình chiếu của P trên Ox, Oy. Đường thắng PK cắt Ox tại A, đường thắng PH cắt Oy tại B. (a) Chứng minh HK, AB có độ dài không đổi. (b) M, N lần lượt là trung điểm của OP, AB. Chứng minh tứ giác MKNH nội tiếp đường tròn. (c) Chứng minh trung điểm I của HK di đông trên 1 đường tròn cố đinh.
- 488 ([Tuy23], 113., pp. 141–142). Cho đường tròn (O;R), đường kính AB cố định \mathcal{E} 1 đường kính CD quay quanh O. 2 đường thẳng AC, AD cắt tiếp tuyến tại B của đường tròn tại E, F. (a) Chứng minh tứ giác CDFE nội tiếp đường tròn. (b) P là tâm đường tròn ngoại tiếp tứ giác CDFE. Chứng minh điểm P di động trên 1 đường thẳng cố định.

- **489** ([Tuy23], 114., p. 142). Cho $\triangle ABC$ vuông góc tại A nội tiếp đường tròn (O). Điểm D thuộc tia đối của tia BA, điểm E thuộc tia đối của tia CA sao cho BD = CE = BC. M là 1 điểm trên cung \widehat{BC} không chứa A. (a) Chứng minh $MA + MB + MC \leq DE$. (b) Tìm vị trí của điểm M để MA + MB + MC = DE.
- **490** ([Tuy23], VD17, p. 142). Cho \widehat{xAy} . Trên tia Ax lấy 1 điểm B cố định, trên tia Ay lấy điểm C di động. Vẽ đường tròn (O) nội tiếp ΔABC , tiếp xúc với 3 cạnh BC, CA, AB lần lượt tại D, E, F. 2 đường thẳng DE, OA cắt nhau tại G. Chứng minh: (a) B, D, F, G, O cùng nằm trên 1 đường tròn. (b) Dường thẳng DE luôn đi qua 1 điểm cố định.
- **491** ([Tuy23], VD18, p. 143). Từ 1 điểm A ở ngoài đường tròn (O), vẽ 2 tiếp tuyến AB, AC với (O). Lấy điểm D nằm giữa B, C. Qua D vẽ 1 đường thẳng vuông góc với OD cắt AB, AC lần lượt tại E, F, cắt đường tròn tại M, N. (a) Chứng minh ME = NF. (b) Khi điểm D di động trên BC, chứng minh đường tròn (AEF) luôn đi qua 1 điểm cổ định khác A.
- **492** ([Tuy23], VD19, p. 144). Cho $\triangle ABC$ nội tiếp đường tròn (O). Trên đường tròn lấy 1 điểm M bất kỳ. D, E, F lần lượt là hình chiếu của M trên 3 đường thẳng BC, CA, AB. (a) (Đường thẳng Simpson) Chứng minh 3 điểm D, E, F cùng nằm trên 1 đường thẳng. (b) H là hình chiếu của M trên tiếp tuyến Ax của đường tròn (O). Chứng minh $MH \cdot MD = ME \cdot MF$.
- **493** ([Tuy23], VD20, p. 145). Cho hình vuông ABCD, tâm O. 1 đường thẳng xy quay quanh O cắt 2 cạnh AD, BC lần lượt tại M, N. Trên CD lấy điểm K sao cho DK = DM. H là hình chiếu của K trên xy. Tìm quỹ tích của điểm H.
- **494** ([Tuy23], VD21, p. 146). Cho $\triangle ABC$ nhọn, AB < AC, điểm D đi động trên cạnh BC. Vẽ $DE \perp AB$, $DF \perp AC$. Tìm vị trí điểm D để EF: (a) Ngắn nhất. (b) Dài nhất.
- **495** ([Tuy23], 115., p. 147). Tứ giác ABCD có $\hat{B} = \hat{D} = 90^{\circ}$. Vẽ $AH \perp BD$, $CK \perp BD$. Biết AH = 2, BH = 1, DH = 3. Tính CK.
- **496** ([Tuy23], 116., p. 147). Cho tứ giác ABCD nội tiếp nửa đường tròn đường kính AD, 2 đường chéo AC, BD cắt nhau tại O. Vẽ $OH \perp AD$. Chứng minh O là tâm đường tròn nội tiếp ΔBCH . M, N lần lượt là trung điểm của OA, OD. Chứng minh B, C, H, M, N cùng nằm trên 1 đường tròn.
- **497** ([Tuy23], 117., p. 147). Cho $\triangle ABC$ nội tiếp đường tròn (O) với AB < AC. Trên cạnh AB, AC lần lượt lấy 2 điểm D, E. Vẽ $DH \perp BC$, $EK \perp BC$. Biết $HK = \frac{1}{2}BC$. Chứng minh đường tròn (ADE) luôn đi qua 1 điểm cố định khác A.
- **498** ([Tuy23], 118., p. 147). Đường tròn (O) nội tiếp ΔABC, tiếp xúc các cạnh AB, AC lần lượt tại F, E. H là hình chiếu của B trên CO, K là hình chiếu của C trên BO. Chứng minh E, F, H, K thẳng hàng.
- **499** ([Tuy23], 119., p. 147). Cho nửa đường tròn đường kính AB, điểm C cố định nằm giữa A, B. Lấy D trên nửa đường tròn. Qua D vẽ 1 đường thẳng vuông góc với CD lần lượt cắt 2 tiếp tuyến Ax, By tại M, N. P là giao điểm của AD, CM, Q là giao điểm của BD, CN. Chứng minh: (a) $PQ \parallel AB$. (b) $CM \cdot CN \geq 2CA \cdot CB$.
- **500** ([Tuy23], 120., p. 148). Cho $\triangle ABC$ cân tại A nội tiếp đường tròn (O). Điểm M di động trên đáy BC. Vẽ hình bình hành ADME, $D \in AC$, $E \in AB$. N đối xứng với M qua đường thẳng DE. Chứng minh điểm N di động trên 1 cung tròn cố định.
- 501 ([Tuy23], 121., p. 148). Cho đường tròn (O;R), (O';R'), R>R' tiếp xúc trong với nhau tại A. Đường kính qua A cắt đường tròn (O) tại B \mathcal{E} cắt đường tròn (O') tại C. 1 điểm I di động giữa A, C. Qua I vẽ đường thẳng vuông góc với AB cắt (O), (O') lần lượt tại E, F sao cho E, F thuộc 2 nửa mặt phẳng đối nhau bờ AB. 2 đường thẳng BE, CF cắt nhau tại M. Tìm quỹ tích của điểm M.
- **502** ([Tuy23], 122., p. 148). Cho ΔABC nhọn nội tiếp đường tròn (O). M là 1 điểm trên cung ÂBC. Vẽ MD⊥BC, ME⊥CA, MF⊥AB. Tìm vị trí của M để EF dài nhất.
- **503** ([Bìn23b], VD38, p. 95). $\triangle ABC$ nội tiếp đường tròn (O;R) có AB=8 cm, AC=15 cm, đường cao AH=5 cm, H nằm ngoài cạnh BC. Tính R.
- **504** ([Bìn23b], VD39, p. 95). Chứng minh chân các đường vuông góc kẻ từ 1 điểm thuộc đường tròn ngoại tiếp 1 tam giác đến 3 cạnh của tam giác ấy nằm trên 1 đường thẳng.
- **505** ([Bìn23b], VD40, p. 96). Qua điểm A ở bên ngoài đường tròn (O), kể cát tuyến ABC với (O). 2 tiếp tuyến của (O) tại B, C cắt nhau ở K. Qua K kể đường thẳng vuông góc với AO, cắt AO tại H & cắt (O) tại E, F, E nằm giữa K, F. M là giao điểm của OK, BC. Chứng minh: (a) EMOF là tứ giác nội tiếp. (b) AE, AF là 2 tiếp tuyến của (O).
- 506 ([Bìn23b], 243., pp. 96-97). Cho ΔABC vuông tại A, AB < AC. Lấy điểm I thuộc cạnh AC sao cho ÂBI = Ĉ. Đường tròn (O) đường kính IC cắt BI ở D & cắt BC ở M. Chứng minh: (a) CI là tia phân giác của DCM. (b) DA là tiếp tuyến của (O).
- **507** ([Bìn23b], 244., p. 97). Cho ΔABC vuông tại A, I là trung điểm BC, D là điểm nằm giữa I, C. E, F lần lượt là tâm của 2 đường tròn ngoại tiếp ΔABD, ΔACD. Chứng minh E, F nằm trên đường tròn ngoại tiếp ΔAID.
- **508** ([Bìn23b], 245., p. 97). Cho $\triangle ABC$ nội tiếp đường tròn (O), đường phân giác AD. H, K lần lượt là tâm của 2 đường tròn ngoại tiếp $\triangle ABD$, $\triangle ACD$. Chứng minh OH = OK.
- **509** ([Bìn23b], 246., p. 97). Cho $\triangle ABC$ nhọn, 3 đường cao AD, BE, CF cắt nhau tại H. Chứng minh: (a) $BH \cdot BE + CH \cdot CF = BC^2$. (b) $AH \cdot AD + BH \cdot BE + CH \cdot CF = \frac{1}{2}(AB^2 + BC^2 + CA^2)$.

- **510** ([Bìn23b], 247., p. 97). Cho $\triangle ABC$ nhọn, đường cao AD, trực tâm H. AM, AN là 2 tiếp tuyến với đường tròn (O) đường kính BC, M, N là 2 tiếp điểm. Chứng minh: (a) AMDN là tứ giác nội tiếp. (b) M, H, N thẳng hàng.
- 511 ([Bìn23b], 248., p. 97). Cho $\triangle ABC$ nội tiếp đường tròn (O;R), đường cao AH. Chứng minh: (a) $AB \cdot AC = 2R \cdot AH$. (b) $S = \frac{abc}{4R}$ với BC = a, CA = b, AB = c, S là diện tích $\triangle ABC$.
- **512** ([Bìn23b], 249., p. 97). Cho $\triangle ABC$ nội tiếp đường tròn (O). 3 tia phân giác của \widehat{A} , \widehat{B} , \widehat{C} cắt (O) lần lượt ở D, E, F. Chứng minh: (a) 2AD > AB + AC. (b) AD + BE + CF lớn hơn chu vi $\triangle ABC$.
- **513** ([Bìn23b], 250., pp. 97–98). Cho $\triangle ABC$ nội tiếp đường tròn (O). Tia phân giác của \widehat{A} cắt BC ở D, cắt (O) ở E. M, N lần lượt là hình chiếu của D trên AB, AC. I, K lần lượt là hình chiếu của E trên AB, AC. Chứng minh: (a) AI + AK = AB + AC. (b) Diện tích tứ giác AMEN bằng diện tích $\triangle ABC$.
- $\textbf{514 ([Bìn23b]}, 251., \text{ p. 98).} \ \textit{Cho} \ \Delta \textit{ABC nội tiếp đường tròn (O), điểm M thuộc cung BC không chứa A. MH, MI, MK lần lượt là 3 đường vuông góc kể từ M đến BC, AB, AC. Chứng minh <math>\frac{BC}{MH} = \frac{AB}{MI} + \frac{AC}{MK}.$
- **515** ([Bìn23b], 252., p. 98). Cho $\triangle ABC$ nhọn, 3 đường cao AD, BE, CF. I, K lần lượt là hình chiếu của B, C trên EF. Chứng $minh\ DE + DF = IK$.
- 516 ([Bìn23b], 253., p. 98). Cho $\triangle ABC$ nhọn, 2 đường cao BD, CE. Vẽ ở phía ngoài $\triangle ABC$ 2 nửa đường tròn có đường kính lần lượt là AC, AB. I, K lần lượt là giao điểm của BD, CE với 2 nửa đường tròn đó. Chứng minh AI = AK.
- **517** ([Bìn23b], 254., p. 98). Cho đường tròn (O) & 2 điểm $B, C \in (O)$, 2 tiếp tuyến với đường tròn tại B, C cắt nhau ở A. M là 1 điểm thuộc cung nhỏ BC. Tiếp tuyến với (O) tại M cắt AB, AC lần lượt ở D, E. I, K lần lượt là giao điểm của OD, OE với BC. Chứng minh: (a) OBDK, DIKE là 2 tứ giác nội tiếp. (b) 3 đường thẳng OM, DK, EI đồng quy.
- **518** ([Bìn23b], 255., p. 98). Từ điểm A ở bên ngoài đường tròn (O), vẽ 2 tiếp tuyến \overrightarrow{AB} , AC, B, C là 2 tiếp điểm. H là giao điểm của OA, BC. Kẻ dây EF bất kỳ đi qua H. Chứng minh AO là tia phân giác của \overrightarrow{EAF} .
- **519** ([Bìn23b], 256., p. 98). Từ điểm A ở bên ngoài đường tròn (O), vẽ 2 tiếp tuyến AB, AC, B, C là 2 tiếp điểm, & cát tuyến ADE. Đường thẳng đi qua D & vuông góc với OB cắt BC, BE lần lượt ở H, K. Chứng minh DH = HK.
- **520** ([Bìn23b], 257., p. 98). Cho đường tròn (O). Qua điểm K ở bên ngoài đường tròn, kẻ 2 tiếp tuyến KB, KD, B, D là 2 tiếp điểm, kẻ cát tuyến KAC. (a) Chứng minh $AB \cdot CD = AD \cdot BC$. (b) Vẽ dây $CN \parallel BD$. I là giao điểm của AN, BD. Chứng minh I là trung điểm BD.
- **521** ([Bìn23b], 258., p. 98). Cho 2 đường tròn (O), (O') tiếp xúc ngoài tại A. Từ điểm $B \in (O')$, kẻ 2 tiếp tuyến BC, BD với (O), C, D là 2 tiếp điểm. E, F lần lượt là 2 giao điểm thứ 2 của AC, AD với (O'). Chứng minh $AF \cdot BE = AE \cdot BF$.
- **522** ([Bìn23b], 259., p. 99). Cho ΔABC nhọn, AB > AC, nội tiếp đường tròn (O) đường kính AD. E là hình chiếu của B trên AD, B là hình chiếu của A trên BC, B là trung điểm BC. Chứng minh AB B cân.
- **523** ([Bìn23b], 260., p. 99). Tứ giác ABCD có AB = AD + BC, cạnh AB & 2 tia phân giác của \widehat{C}, \widehat{D} đồng quy. Chứng minh tứ giác ABCD là hình thang hoặc tứ giác nội tiếp.
- **524** ([Bìn23b], 261., p. 99). Cho $\triangle ABC$. I là tâm của đường tròn nội tiếp $\triangle ABC$, K là tâm của đường tròn bàng tiếp trong \widehat{A} . Chứng minh $AI \cdot AK = AB \cdot AC$.
- **525** ([Bìn23b], 262., p. 99). Đường tròn (O) ngoại tiếp ΔABC cắt đoạn nối 2 tâm B', C' của 2 đường tròn bàng tiếp trong \widehat{B}, \widehat{C} tại điểm $M \neq A$. Chứng minh M là trung điểm B'C'.
- **526** ([Bìn23b], 263., p. 99). 1 hình thang cân nội tiếp đường tròn (O), cạnh bên được nhìn từ O dưới góc 120° . Tính diện tích hình thang biết đường cao của hình thang bằng h.
- **527** ([Bìn23b], 264., p. 99). Cho hình thang ABCD, $AB \parallel CD$, AB = a, CD = b, a < b. 1 đường tròn (O) đi qua A, B, cắt 2 cạnh bên AD, BC lần lượt ở M, N. Tính độ dài Mn theo a, b biết 2 tứ giác ABNM, CDMN có diện tích bằng nhau.
- 528 ([Bìn23b], 265., p. 99). Cho $\triangle ABC$ nhọn, 3 đường cao AD, BE, CF. R là bán kính đường tròn ngoại tiếp $\triangle ABC$, r là bán kính đường tròn nội tiếp $\triangle DEF$. (a) Chứng minh $OA \bot EF$. (b) Tính tỷ số diện tích $\triangle DEF, \triangle ABC$ theo R, r.
- **529** ([Bìn23b], 266., p. 99). Cho $\triangle ABC$ vuông tại A, $\widehat{C}=40^{\circ}$, đường cao AH, điểm I thuộc cạnh AC sao cho $AI=\frac{1}{3}AC$, điểm K thuộc tia đối của tia HA sao cho $HK=\frac{1}{2}AH$. Tính \widehat{BIK} .
- **530** ([Bìn23b], 267., p. 99). $\triangle ABC$ cân có $\widehat{A} = 100^{\circ}$. Diểm D thuộc nửa mặt phẳng không chứa A có bờ BC sao cho $\widehat{CBD} = 15^{\circ}$, $\widehat{BCD} = 35^{\circ}$. Tính \widehat{ADB} .
- **531** ([Bìn23b], 268., p. 99). $\triangle ABC$ nhọn, trực tâm H. Vẽ hình bình hành ABCD. Chứng minh $\widehat{ABH} = \widehat{ADH}$.
- **532** ([Bìn23b], 269., p. 100). Cho $\triangle ABC$. I nằm trong $\triangle ABC$ sao cho $\widehat{ABI} = \widehat{ACI}$. Vẽ hình bình hành BICK. Chứng minh $\widehat{BAI} = \widehat{CAK}$.

- **533** ([Bìn23b], 270., p. 100). Cho điểm I nằm trong hình bình hành ABCD sao cho $\widehat{IAB} = \widehat{ICB}$. Chứng minh $\widehat{IBC} = \widehat{IDC}$.
- **534** ([Bìn23b], 271., p. 100). Cho ΔABC đều, M thuộc cạnh BC. D đối xứng với M qua AB, E đối xứng với M qua AC. Vẽ hình bình hành DMEI. Chứng minh: (a) D, A, I, E thuộc cùng 1 đường tròn. (b) AI || BC.
- **535** ([Bìn23b], 272., p. 100). Cho hình thang cân ABCD, $AB \parallel CD$, E nằm giữa C, D. Vẽ đường tròn (O) đi qua E & tiếp xúc với AD tại D. Vẽ đường tròn (O') đi qua E & tiếp xúc với AC tại C. K là giao điểm thứ 2 của 2 đường tròn đó. Chứng minh: (a) A, B, C, D, K thuộc cùng 1 đường tròn. (b) B, E, K thẳng hàng.
- 536 ([Bìn23b], 273., p. 100). Cho $\triangle ABC$ nội tiếp đường tròn (O), I là điểm chính giữa của \widehat{BC} không chứa A. Vẽ đường tròn (O₁) đi qua I & tiếp xúc với AB tại B, vẽ đường tròn (O₂) đi qua I & tiếp xúc với AC tại C. K là giao điểm thứ 2 của 2 đường tròn (O₁), (O₂). (a) Chứng minh B, C, K thẳng hàng. (b) Lấy điểm D bất kỳ thuộc cạnh AB, điểm E thuộc tia đối của tia CA sao cho BD = CE. Chứng minh đường tròn ngoại tiếp $\triangle ADE$ luôn đi qua 1 điểm cổ định khác A.
- 537 ([Bìn23b], 274., p. 100). Cho đường tròn (O) đường kính AB, điểm C cố định trên đường kính ấy, $C \neq O$. M chuyển động trên (O). Dường vuông góc với AB tại C cắt MA, MB lần lượt ở E, F. Chứng minh đường tròn ngoại tiếp ΔAEF luôn đi qua 1 điểm cố định khác A.
- **538** ([Bìn23b], 275., p. 100). Cho $\widehat{xAy} = 90^{\circ}$, $B \in Ay$ cố định, C di chuyển trên Ax. Đường tròn (I) nội tiếp ΔABC tiếp xúc với AC, BC lần lượt ở M, N. Chứng minh đường thẳng MN luôn đi qua 1 điểm cố đinh.
- 539 ([Bìn23b], 276., pp. 100–101). Cho đường tròn (O) đường kính BC, $A \in (O)$. H là hình chiếu của A trên BC. Vẽ đường tròn (I) có đường kính AH, cắt AB, AC lần lượt ở M, N. (a) Chứng minh $OA \perp MN$. (b) Vẽ đường kính AOK của (O). E là trung điểm HK. Chứng minh E là tâm của đường tròn ngoại tiếp tứ giác BMNC. (c) Cho BC cố định. Xác định vị trí của điểm A để bán kính đường tròn ngoại tiếp tứ giác BMNC lớn nhất.
- **540** ([Bìn23b], 277., p. 101). Cho $\triangle ABC$ vuông tại A, đường cao AH. (P), (Q) lần lượt là đường tròn nội tiếp $\triangle ABH$, $\triangle ACH$. Kể tiếp tuyến chung ngoài khác BC của (P), (Q), cắt AB, AH, AC lần lượt ở M, K, N. Chứng minh: (a) $\triangle ABC \hookrightarrow \triangle HPQ$. (b) $KP \parallel AB$, $KQ \parallel AC$. (c) BMNC là tứ giác nội tiếp. (d) A, M, N, P, Q thuộc cùng 1 đường tròn. (e) $\triangle ADE$ vuông cân, D, E lần lượt là giao điểm của PQ với AB, AC.
- 541 ([Bìn23b], 278., p. 101). Cho đường tròn (O), dây AB. M di chuyển trên cung lớn AB. 2 đường cao AE, BF của ΔABM cắt nhau ở H. (a) Chứng minh OM⊥EF. (b) Đường tròn (H, HM) cắt MA, MB lần lượt ở C, D. Chứng minh đường thẳng kẻ từ M & vuông góc với CD luôn đi qua 1 điểm cố định. (c) Chứng minh đường thẳng kẻ từ H & vuông góc với CD cũng đi qua 1 điểm cố định.
- **542** ([Bìn23b], 279., p. 101). Cho ΔABC nội tiếp đường tròn (O). 1 đường tròn (I) tùy ý đi qua B,C, cắt AB,AC lần lượt ở M,N. Đường tròn (K) ngoại tiếp ΔAMN cắt (O) tại điểm thứ 2 D. Chứng minh: (a) AKIO là hình bình hành. (b) $\widehat{ADI} = 90^{\circ}$.
- **543** ([Bìn23b], 280., p. 101). Dựng ra phía ngoài 1 tứ giác nội tiếp các hình chữ nhật mà mỗi hình chữ nhật có 1 cạnh là của tứ giác, cạnh kia bằng cạnh đối diện của tứ giác. Chứng minh giao điểm các đường chéo của 4 hình chữ nhật là 4 đỉnh của 1 hình chữ nhật.
- **544** ([Bìn23b], 281., p. 102). Cho đường tròn đường kính AC, dây $BD \perp AC$. E, F, G, H lần lượt là tâm của 4 đường tròn nội tiếp ΔABC , ΔABD , ΔACD , ΔBCD . Chứng minh EFGH là hình vuông.
- **545** ([Bìn23b], 282., p. 102). Cho đường tròn (O), dây AB, $M \in (O)$. Ax, By là 2 tiếp tuyến của đường tròn, H, I, K lần lượt là chân các đường vuông góc kẻ từ M đến AB, Ax, By. Chứng minh: (a) $MH^2 = MI \cdot MK$. (b) $MI + MK \ge 2MH$.
- **546** ([Bìn23b], 283., p. 102). M bất kỳ thuộc đường tròn (O) ngoại tiếp tứ giác ABCD. Khoảng cách từ M đến 4 đường thẳng AB, BC, CD, DA lần lượt là MH, MK, MI, MN. Chứng minh $MH \cdot MI = MK \cdot MN$.
- **547** ([Bìn23b], 284., p. 102). Cho ΔABC , đường trung tuyến AM, đường phân giác AD. Đường tròn ngoại tiếp ΔADM cắt AB, AC lần lượt ở E, F. Chứng minh BE = CF.
- **548** ([Bìn23b], 285., p. 102). Cho nửa đường tròn (O) đường kính AB, C thuộc bán kính OA. Đường vuông góc với AB tại C cắt (O) ở D. Đường tròn (I) tiếp xúc với nửa đường tròn $\mathscr E$ tiếp xúc với $\mathscr E$ đoạn thẳng AC, CD. E là tiếp điểm trên AC của (I). (a) Chứng minh BD = BE. (b) Suy ra cách dựng (I).
- **549** ([Bìn23b], 286., p. 102). Cho $\triangle ABC$ cân tại A, AB = 16, BC = 24, đường cao AE. Dường tròn (O) nội tiếp $\triangle ABC$ tiếp xúc với AC tại F. (a) Chứng minh OECF là tứ giác nội tiếp \mathcal{E} BF là tiếp tuyến của đường tròn ngoại tiếp tứ giác đó. (b) M là giao điểm của BF với (O). Chứng minh BMOC là tứ giác nội tiếp.
- 550 ([Bìn23b], 287., p. 102). Cho đường tròn (O') tiếp xúc trong với đường tròn (O) tại A. 2 dây BC, BD của (O) tiếp xúc với (O') lần lượt ở E, F. I là giao điểm của EF với tia phân giác \widehat{CAD} . Chứng minh: (a) $\widehat{DAF} = \frac{1}{2}\widehat{DCB}$. (b) $\widehat{DAF} = \widehat{IAE}$. (c) I là tâm đường tròn nội tiếp ΔBCD .
- 551 ([Bìn23b], 288., p. 103). Cho ΔABC nhọn, 3 đường cao AD, BE, CF. Lấy điểm M ∈ DF bất kỳ, kẻ MN || BC, N ∈ DE. Lấy điểm I trên đường thẳng DE sao cho MAI = BAC. Chứng minh: (a) ΔAMN cân. (b) AMNI là tứ giác nội tiếp. (c) MA là tia phân giác FMI.

- **552** ([Bìn23b], 289., p. 103). Cho 2 đường tròn (O), (O') cắt nhau ở A, B. Kẻ tiếp tuyến chung CD, $C \in (Oin)$, $D \in (O')$. H, K lần lượt là hình chiếu của C, D trên OO'. Chứng minh $\widehat{OAO'} = \widehat{HAK}$.
- 553 ([Bìn23b], 290., p. 103). Cho 2 hình vuông ABCD, AB'C'D' sao cho nếu vẽ các đường tròn ngoại tiếp các hình vuông thì chiều từ A lần lượt qua B,C,D & chiều từ A lần lượt qua B',C',D' đều theo chiều quay của kim đồng hồ. I là giao điểm của BB',DD'. Chứng minh: (a) I thuộc đường tròn ngoại tiếp mỗi hình vuông. (b) CC' cũng đi qua điểm I.
- **554** ([Bìn23b], 291., p. 103). Cho tứ giác ABCD nội tiếp đường tròn (O). Đường vuông góc với AD tại A cắt BC ở E. Đường vuông góc với AB tại A cắt CD ở F. Chứng minh E, F, O thẳng hàng.
- **555** ([Bìn23b], 292., p. 103). Cho $\triangle ABC$. Đường tròn nội tiếp $\triangle ABC$ tiếp xúc với BC, CA, AB lần lượt ở D, E, F. Biết $\triangle ABC \hookrightarrow \triangle DEF$, chứng minh $\triangle ABC$ đều.
- **556** ([Bìn23b], 293., p. 103). Cho 2 đường tròn (O), (O') ở ngoài nhau. Kẻ 2 tiếp tuyến chung ngoài AB, A'B', 2 tiếp tuyến chung trong CD, EF, A, A', C, $E \in (O)$, B, B', D, $F \in (O')$. M là giao điểm của AB, EF, N là giao điểm của A'B', CD, H là giao điểm của MN, OO'. Chứng minh: (a) $MN\bot OO'$. (b) O', B, M, H, F thuộc cùng 1 đường tròn. (c) O, A, M, E, H thuộc cùng 1 đường tròn. (d) B, D, H thẳng hàng. (e) A, C, H thẳng hàng.
- 557 ([Bìn23b], 294., pp. 103–104). Cho đường tròn (O), 2 điểm A, B ở vị trí đối xứng với nhau qua 1 bán kính của (O). Vẽ dây CD đi qua A, dây EF đi qua B. 2 đường thẳng CE, DF cắt đường thẳng AB lần lượt ở M, N. Chứng minh AN = BM.
- 558 ([Bìn23b], 295., p. 104). Cho ABCD là tứ giác nội tiếp có các cạnh đối không song song, F là giao điểm của AB,CD,E là giao điểm của AD,BC. H,G lần lượt là trung điểm AC,BD. Chứng minh: (a) Tia phân giác \widehat{BED} cũng là tia phân giác \widehat{HEG} . (b) 2 tia phân giác $\widehat{BED},\widehat{BFD}$ gặp nhau tại 1 điểm nằm trên GH.
- **559** ([Bìn23b], 296., p. 104). Cho tứ giác ABCD. Vẽ 4 đường tròn, mỗi đường tròn đi qua trung điểm các cạnh của 1 trong ΔABC, ΔBCD, ΔCDA, ΔDAB. Chứng minh 4 đường tròn đó cùng giao nhau tại 1 điểm.
- 560 ([Bìn23b], 297., p. 104). Cho $\triangle ABC$, đường cao AH. Kể ra ngoài $\triangle ABC$ 2 tia Ax, Ay lần lượt tạo với AB, AC các góc nhọn bằng nhau. I là hình chiếu của B trên Ax, K là hình chiếu của C trên Ay, M là trung điểm BC. Chứng minh: (a) MI = MK. (b) I, H, K, M thuộc cùng I đường tròn.
- 561 ([Bìn23b], 298., p. 104). Cho $\triangle ABC$, trực tâm H. Kẻ 3 đường thẳng AA', BB', CC' sao cho 3 tia phân của $\widehat{A'AH}, \widehat{B'BH}, \widehat{C'CH}$ song song với nhau. Chứng minh 3 đường thẳng AA', BB', CC' đồng quy tại 1 điểm thuộc đường tròn ngoại tiếp $\triangle ABC$.
- **562** ([Bìn23b], 299., p. 104). Cho $\triangle ABC$ nội tiếp đường tròn (O), M thuộc cung AC, Ax là tiếp tuyến tại A. H, I, K, N lần lượt là chân 4 đường vuông góc kẻ từ M đến AB, AC, BC, Ax. Chứng minh $MH \cdot MI = MK \cdot MN$.
- **563** ([Bìn23b], 300., p. 104). Cho $\triangle ABC$ & 2 điểm M,N thuộc đường tròn ngoại tiếp $\triangle ABC$. Biết các đường thẳng Simpson của M,N vuông góc với nhau. Chứng minh MN là đường kính của đường tròn.
- **564** ([Bìn23b], 301., p. 104). Cho tứ giác ABCD nội tiếp đường tròn (O). H,I lần lượt là hình chiếu của B trên AC,CD. M,N lần lượt là trung điểm của AD,HI. Chứng minh: (a) $\triangle ABD \hookrightarrow \triangle HBI$. (b) $\widehat{MNB} = 90^{\circ}$.
- **565** ([Bìn23b], 302., p. 105). Cho ΔABC, điểm M bất kỳ thuộc đường tròn (O) ngoại tiếp ΔABC. D đối xứng với M qua AB, E đối xứng với M qua BC. Chứng minh khi điểm M di chuyển trên (O) thì DE luôn đi qua 1 điểm cố định.
- **566** ([Bìn23b], 303., p. 105, định lý Plolémée). Chứng minh trong 1 tứ giác nội tiếp, tích 2 đường chéo bằng tổng các tích của 2 cặp cạnh đối.
- **567** ([Bìn23b], 304., p. 105, định lý Carnot). Vận dụng định lý Plolémée để chứng minh tổng các khoảng cách từ tâm của đường tròn ngoại tiếp 1 tam giác nhọn đến 3 cạnh của tam giác bằng tổng các bán kính đường tròn ngoại tiếp & đường tròn nội tiếp tam giác đó.

17 Đường Tròn Ngoai Tiếp, Nôi Tiếp Đa Giác

- **568** ([Tuy23], VD25, p. 149). Cho đa giác đều 9 cạnh $A_1A_2...A_9$. Chứng minh $A_1A_2+A_1A_3=A_1A_5$.
- **569** ([Tuy23], 123., p. 150). Cho đường tròn (O) nội tiếp tứ giác ABCD, tiếp xúc với 4 cạnh AB, BC, CD, DA lần lượt tại M, N, P, Q. Biết $\widehat{B} = \widehat{D}$, chứng minh MP = NQ.
- **570** ([Tuy23], 124., p. 150). Cho tứ giác ABCD nội tiếp đường tròn đường kính AC. Chứng minh nếu ABCD ngoại tiếp đường tròn thì BD⊥AC.
- 571 ([Tuy23], 125., p. 150). Cho tứ giác ABCD. 2 đường tròn nội tiếp $\triangle ABC$, $\triangle ADC$ tiếp xúc với AC lần lượt tại E,F. Chứng minh tứ giác ABCD ngoại tiếp đường tròn khi $\mathcal E$ chỉ khi $E\equiv F$.
- **572** ([Tuy23], 126., p. 150). Cho đường tròn (O) nội tiếp tứ giác ABCD, tiếp xúc với 4 cạnh AB, BC, CD, DA lần lượt tại M, N, P, Q. Chứng minh MP, NQ, AC, BD đồng quy.

- **573** ([Tuy23], 127., p. 150). Cho $\triangle ABM$ cân tại M nội tiếp đường tròn (O), $\widehat{M} = \frac{1}{7}\widehat{A}$. Biết AB cũng là cạnh của 1 đa giác đều nội tiếp đường tròn này. Tính số cạnh của đa giác đều đó.
- **574** ([Tuy23], 128., p. 150). Cho đa giác đều $A_1A_2 \dots A_{2n}$ có 2n cạnh. Biết $A_nA_{2n}=a$, tính tổng bình phương các khoảng cách từ 1 đỉnh bất kỳ đến các đỉnh còn lại.
- 575 ([Tuy23], 129., p. 150). Tô màu xanh hoặc đỏ tất cả các cạnh của 1 đa giác lồi. Biết tổng độ dài các cạnh màu xanh nhỏ hơn nửa chu vi đa giác & không có 2 cạnh liền nhau nào được tô màu đỏ. Chứng minh không thể có đường tròn nội tiếp đa giác.
- **576** ([Bìn23b], VD41, p. 105). Chứng minh định lý "Nếu tứ giác ABCD có tổng các cạnh đối bằng nhau AB + CD = BC + AD thì tứ giác đó ngoại tiếp được 1 đường tròn" bằng cách chứng minh 4 tia phân giác của $\widehat{A}, \widehat{B}, \widehat{C}, \widehat{D}$ cùng gặp nhau tại 1 điểm.
- **577** ([Bìn23b], VD42, p. 106). 2 đường trung tuyến BD, CE của ΔABC cắt nhau tại I. Cho biết tứ giác ADIE ngoại tiếp được 1 đường tròn. Chứng minh ΔABC cân.
- 578 ([Bìn23b], VD43, p. 107). Cho 1 lục giác đều nội tiếp đường tròn bán kính R. Kẻ các đường chéo nối các đỉnh cách nhau 1 đỉnh. Tính diện tích lục giác có đỉnh là giao điểm của các đường chéo đó.
- **579** ([Bìn23b], 305., p. 107). Hình thang vuông ABCD, $\widehat{A} = \widehat{D} = 90^{\circ}$, ngoại tiếp đường tròn (O). Tính diện tích hình thang biết: (a) OB = 10 cm, OC = 20 cm. (b) AB = b, CD = a.
- **580** ([Bìn23b], 306., p. 107). Hình thang ABCD ngoại tiếp đường tròn (O), đáy nhỏ AB = 2 cm, E là tiếp điểm của (O) trên cạnh BC. Biết BE = 1 cm, CE = 4 cm. Chứng minh ABCD là hình thang cân & tìm diện tích của nó.
- **581** ([Bìn23b], 307., p. 107). Tính các cạnh của 1 hình thang cân ngoại tiếp đường tròn (O, 10 cm) biết khoảng cách giữa 2 tiếp điểm trên cạnh bên bằng 16 cm.
- **582** ([Bìn23b], 308., p. 107). Đường tròn (O) nội tiếp hình vuông ABCD, tiếp điểm trên AB là M. 1 tiếp tuyến với đường tròn (O) cắt 2 cạnh BC, CD lần lượt ở E, F. Chứng minh: (a) $\Delta DFO \hookrightarrow \Delta BOE$. (b) $ME \parallel AF$.
- **583** ([Bìn23b], 309., p. 107). Cho tứ giác ABCD, 2 đường tròn nội tiếp $\triangle ABC$, $\triangle ACD$ tiếp xúc nhau. Chứng minh các đường tròn nội tiếp $\triangle ABD$, $\triangle BCD$ tiếp xúc nhau.
- **584** ([Bìn23b], 310., p. 108). Cho tứ giác ABCD ngoại tiếp 1 đường tròn. Chứng minh nếu 1 đường thẳng chia tứ giác thành 2 phần có diện tích bằng nhau & chu vi bằng nhau thì đường thẳng đó đi qua tâm của đường tròn đó.
- **585** ([Bìn23b], 311., p. 108). Cho hình thang ABCD, $AB \parallel CD$, ngoại tiếp đường tròn (O), tiếp điểm trên AB,CD lần lượt là E,F. Chứng minh AC,BD,EF đồng quy.
- 586 ([Bìn23b], 312., p. 108). Chứng minh trong 1 tứ giác ngoại tiếp đường tròn, các đường thẳng nối các tiếp điểm trên các cạnh đối đồng quy tại giao điểm 2 đường chéo của tứ giác.
- **587** ([Bìn23b], 313., p. 108). Cho tứ giác ABCD ngoại tiếp được tròn (O). I, K lần lượt là trung điểm của 2 đường chéo BD, AC. Chứng minh: (a) $S_{OAB} + S_{OCD} = \frac{1}{2}S_{ABCD}$. (b) I, K, O thẳng hàng.
- 588 ([Bìn23b], 314., p. 108). Cho đường tròn (O), 2 dây $AB\perp CD$. 4 tiếp tuyến với (O) tại A,B,C,D cắt nhau lần lượt ở E,F,G,H. Chứng minh EFGH là tứ giác nội tiếp.
- **589** ([Bìn23b], 315., p. 108). Tứ giác ABCD ngoại tiếp đường tròn (O), đồng thời nội tiếp 1 đường tròn khác, AB = 14 cm, BC = 18 cm, CD = 26 cm. H là tiếp điểm của CD & (O). Tính CH, DH.
- **590** ([Bìn23b], 316., p. 108). Từ giác ABCD ngoại tiếp đường tròn (O; r), đồng thời nội tiếp 1 đường tròn khác. E, F, G, H lần lượt là hình chiếu của O trên AB, BC, CD, DA. Chứng minh: (a) $r^2 = AE \cdot CG = BF \cdot DH$. (b) Diện tích tứ giác ABCD bằng \sqrt{abcd} với AB = a, BC = b, CD = c, dA = d.
- **591** ([Bìn23b], 317., p. 108). Cho lục giác ABCDEF nội tiếp 1 đường tròn $\mathscr E$ có 2 cặp cạnh đối song song là $AB \parallel DE, BC \parallel EF$. Chứng minh 2 cạnh đối còn lại cũng song với nhau.
- **592** ([Bìn23b], 318., p. 108). Lục giác ABCDEF nội tiếp 1 đường tròn có 3 cạnh AB, CD, EF bằng bán kính của đường tròn. Chứng minh 3 trung điểm của 3 cạnh còn lại là 3 đính của 1 tam giác đều.
- **593** ([Bìn23b], 319., p. 109). *Tính diện tích bát giác đều cạnh a*.
- **594** ([Bìn23b], 320., p. 109). Cho đa giác đều 20 cạnh $A_1A_2...A_{20}$ nội tiếp đường tròn (O; R). $M \in (O; R)$ bất kỳ. Tính tổng $\sum_{i=1}^{20} MA_i^2 = MA_1^2 + MA_2^2 + \cdots + MA_{20}^2$.
- **595** ([Bìn23b], 321., p. 109). Cho $\triangle ABC$ đều \mathcal{E} hình vuông ADEF cùng nội tiếp đường tròn (O; R). Tính diện tích phần chung của tam giác \mathcal{E} hình vuông.

18 Độ Dài Đường Tròn, Cung Tròn

- **596** ([Tuy23], VD26, p. 151). Cho đường tròn (O;R), dây AB căng cung $\widehat{AB}=120^{\circ}$. Dựng ΔABC vuông cân tại C. 2 tia AC, BC cắt đường tròn lần lượt tại M, N. Biết độ dài cung nhỏ \widehat{MN} là 2π cm. Tính: (a) Bán kính R của đường tròn. (b) Độ dài cung lớn \widehat{MN} .
- **597** ([Tuy23], 130., p. 151). 1 lục giác đều nội tiếp đường tròn. Tính tỷ số độ dài của cung nhỏ căng 1 cạnh với độ dài của cạnh đó.
- **598** ([Tuy23], 131., p. 151). Cho 2 đường tròn bán kính khác nhau. So sánh tỷ số số đo 2 góc ở tâm chắn 2 cung có cùng độ dài với tỷ số của 2 bán kính tương ứng.
- **599** ([Tuy23], 132., p. 151). Nếu đường kính của 1 hình tròn tăng $\frac{1}{\pi}$ đơn vị thì chu vi của nó tăng thêm bao nhiêu?
- **600** ([Tuy23], 133., p. 152). Tứ giác ABCD ngoại tiếp 1 đường tròn. Dựng ra phía ngoài của tứ giác các nửa đường tròn có đường kính lần lượt là các cạnh của tứ giác. Chứng minh tổng độ dài của 2 nửa đường tròn đường kính AB, CD bằng tổng độ dài của 2 nửa đường tròn đường kính BC, AD.
- **601** ([Tuy23], 134., p. 152). Chứng minh trong 1 hình thang vuông, hiệu bình phương độ dài 2 đường tròn có đường kính là 2 đường chéo bằng hiệu 2 bình phương độ dài 2 đường tròn có đường kính là 2 đáy.
- **602** ([Tuy23], 135., p. 152). Cho hình vuông ABCD. Vẽ đường tròn (D;DC), đường tròn (O) đường kính BC, chúng cắt nhau tại 1 điểm thứ 2 là M nằm trong hình vuông. Chứng minh: (a) $\widehat{AMC} = \widehat{BMC}$. (b) Độ dài của cung \widehat{BM} bằng nửa độ dài của cung \widehat{CM} của đường tròn (D).
- **603** ([Bìn23b], VD44, p. 109). Cho $\triangle ABC$ nội tiếp đường tròn (O). Độ dài 3 cung AB, BC, CA lần lượt bằng $3\pi, 4\pi, 5\pi$. Tính diện tích $\triangle ABC$.
- **604** ([Bìn23b], 322., p. 110). Cho đường tròn (O), cung AB bằng 120°. 2 tiếp tuyến của (O) tại A, B cắt nhau ở C. (I) là đường tròn tiếp xúc với 2 đoạn thẳng AC, BC & cung AB. So sánh độ dài của (I) với độ dài cung AB của (O).
- **605** ([Bìn23b], 323., p. 110). Cho 2 đường tròn đồng tâm. Biết khoảng cách ngắn nhất giữa 2 điểm thuộc 2 đường tròn bằng 1 m. Tính hiệu các độ dài của 2 đường tròn.
- **606** ([Bìn23b], 324., p. 110). Cho hình quạt tròn có cung BC bằng 120°, tâm A bán kính R. Tính độ dài đường tròn nội tiếp hình quạt đó với đường tròn nội tiếp hình quạt là đường tròn tiếp xúc với cung BC & với 2 bán kính AB, AC.
- 607 ([Bìn23b], 325., p. 110). Lấy 4 điểm A, B, C, D lần lượt trên đường tròn (O) sao cho sđÂB = 60°, sđBC = 90°, sđCD = 120°.
 (a) Tứ giác ABCD là hình gì? (b) Tính độ dài (O) biết diện tích tứ giác ABCD bằng 100 m².

19 Diện Tích Hình Tròn, Hình Quạt Tròn

- 608 ([Tuy23], VD27, p. 153). Cho $\triangle ABC$ nội tiếp nửa đường tròn đường kính BC. Vẽ ra phía ngoài của tam giác 2 nửa đường tròn đường kính AB, AC. Chứng minh tổng diện tích 2 hình trăng khuyết giới hạn bởi 3 nửa đường tròn bằng diện tích $\triangle ABC$ (hình trăng khuyết Hippocrates).
- **609** ([Tuy23], p. 154). Chứng minh diện tích hình tròn có đường kính bằng cạnh huyền của 1 tam giác vuông bằng tổng diện tích của 2 hình tròn có đường kính bằng 2 cạnh góc vuông.
- 610 ([Tuy23], 136., p. 154). Nghịch đảo bán kính của 1 hình tròn đúng bằng chu vi của nó. Tính diện tích hình tròn đó.
- **611** ([Tuy23], 137., p. 154). Cho 2 đường tròn (O;R), (O';r) tiếp xúc ngoài với nhau, R>r. 1 tiếp tuyến chung ngoài tiếp xúc với đường tròn lớn tại A, tiếp xúc với đường tròn nhỏ tại B. 2 đường thẳng AB, OO' cắt nhau tại M. Biết AB=BM=6 cm. Tính diện tích hình tròn lớn.
- **612** ([Tuy23], 138., p. 154). Gọi a, r lần lượt là độ dài cạnh huyền & bán kính đường tròn nội tiếp 1 tam giác vuông. Tính tỷ số diên tích của tam giác với diên tích của hình tròn.
- [Tuy23], 139., p. 154.
- **613** ([Tuy23], 140., p. 154). Cho a,b,c là độ dài 3 cạnh của 1 tam giác. Chứng minh tổng diện tích 2 hình tròn có đường kính là a,b thì lớn hơn nửa diện tích của hình tròn có đường kính là c.
- **614** ([Tuy23], 141., p. 154). 1 hình vành khăn có diện tích 25π cm². Tính độ dài dây cung của đường tròn lớn tiếp xúc với đường tròn nhỏ.
- **615** ([Tuy23], 142., p. 154). 1 hình vành khăn có diện tích bằng $\frac{3}{4}$ diện tích hình tròn lớn. Tính tỷ số $\frac{r}{R}$ với R, r lần lượt là bán kính của đường tròn lớn, đường tròn nhỏ.

- **616** ([Tuy23], 143., p. 154). Cho nửa đường tròn (O) đường kính AB = 24 cm. Vẽ 1 dây cung $CD \parallel AB$, cách AB 6 cm. Tính diện tích hình viên phân tạo bởi dây CD $\mathscr E$ cung tròn \widehat{CD} .
- **617** ([Tuy23], 144., p. 154). Cho đường tròn (O; R). Đoạn thẳng AB = 2a di động & tiếp xúc với đường tròn tại trung điểm M của AB. Khi AB di động nó tạo ra 1 hình, tính diện tích hình đó.
- **618** ([Tuy23], 145., p. 155). Cho đường tròn (O; R), 2 đường kính $AB \perp CD$. Dựng cung \widehat{AB} tâm C, bán kính CA, cung này nằm trong đường tròn (O) cắt CD tại M. Chứng minh: (a) Diện tích hình quạt CAMBC bằng $\frac{1}{2}$ diện tích hình tròn (O). (b) Diện tích hình trăng khuyết AMBDA bằng diện tích ΔABC .
- **619** ([Tuy23], 146., p. 155). Cho đường tròn (O), 2 đường kính AB,CD tạo với nhau 1 góc $\alpha \in (0^{\circ}, 180^{\circ})$. Đường thẳng CD cắt tiếp tuyến ở A của đường tròn tại điểm M. Biết diện tích của hình "tam giác khuyết" ADM gấp 179 lần diện tích quạt tròn BCO. Chứng minh $\tan \alpha = \pi \alpha$.
- **620** ([Bìn23b], VD45, p. 110). Cho tam giác đều tâm O, cạnh 3 cm. Vẽ đường tròn (O, 1 cm). Tính diện tích phần tam giác nằm ngoài hình tròn.
- **621** ([Bìn23b], 326., p. 111). Cho 1 hình thang ngoại tiếp 1 đường tròn. So sánh tỷ số giữa diện tích hình tròn & diện tích hình thang với tỷ số giữa chu vi hình tròn & chu vi hình thang.
- 622 ([Bìn23b], 327., p. 111). Cho 1 hình tròn & 1 hình vuông có cùng chu vi, hình nào có diện tích lớn hơn?
- **623** ([Bìn23b], 328., pp. 111–112). O là trung điểm của đoạn thẳng AB = 2R. Vẽ về 1 phía của AB 3 nửa đường tròn có đường kính lần lượt là OA, OB, AB. Vẽ đường tròn (I) tiếp xúc 3 nửa đường tròn này. (a) Tính bán kính đường tròn (I). (b) Tính diện tích phần hình tròn lớn nằm ngoài hình tròn (I) & nằm ngoài 2 nửa hình tròn nhỏ.
- **624** ([Bìn23b], 329., p. 112). Cho 2 đường tròn đồng tâm, đường tròn nhỏ chia hình tròn lớn thành 2 phần có diện tích bằng nhau. Chứng minh diện tích phần hình vành khăn giới hạn bởi 2 tiếp tuyến song song của đường tròn nhỏ bằng diện tích hình vuông nội tiếp đường tròn nhỏ.
- 625 ([Bìn23b], 330., p. 112). Cho đa giác đều n cạnh, độ dài mỗi cạnh bằng a. Vẽ 2 đường tròn ngoại tiếp & nội tiếp đa giác.
 (a) Tính diện tích hình vành khăn giới hạn bởi 2 đường tròn. (b) Tính chiều rộng của hình vành khăn đó.
- **626** ([Bìn23b], 331., p. 112). 1 hình quạt có chu vi bằng 28 cm & diện tích bằng 49 cm² (chu vi hình quạt bằng độ dài cung hình quạt cộng với 2 lần bán kính). Tính bán kính của hình quạt.
- **627** ([Bìn23b], 332., p. 112). Cho 3 đường tròn cùng bán kính r & tiếp xúc ngoài đôi một. (a) Tính diện tích "tam giác cong" có đỉnh là các tiếp điểm của 2 trong 3 đường tròn đó. (b) Kẻ 3 đường thẳng, mỗi đường thẳng tiếp xúc với 2 đường tròn & không giao với đường tròn thứ 3. Tính diện tích tam giác tạo bởi 3 đường thẳng đó.
- **628** ([Bìn23b], 333., p. 112). Cho $\triangle ABC$ vuông tại A, AB=15, AC=20, đường cao AH. Vẽ đường tròn (A,AH). Kể 2 tiếp tuyến BD, CE với đường tròn, D, E là 2 tiếp điểm. Tính diện tích hình giới hạn bởi 3 đoạn thẳng BD, BC, CE & cung DE không chứa H của đường tròn.
- **629** ([Bìn23b], 334., p. 112). 1 hình viên phân có số đo cung 90° , diện tích $2\pi 4$. Tính độ dài dây của hình viên phân.
- **630** ([Bìn23b], 335., p. 112). Cho $\triangle ABC$ đều có cạnh bằng 2a. (I) là đường tròn nội tiếp $\triangle ABC$. Tính diện tích phần chung của hình tròn (I) $\[mathbb{E}$ hình tròn (A,a).
- **631** ([Bìn23b], 336., p. 112). Cho đường tròn (O; R), cung AB bằng 60° . Vẽ cung OB có tâm A bán kính R. Vẽ cung OA có tâm B bán kính R. Chứng minh diện tích hình giới hạn bởi 3 cung OA, OB, AB nhỏ hơn $\frac{1}{4}$ diện tích hình tròn (O; R).
- **632** ([Bìn23b], 337., p. 113). Cho đường tròn (O; R). 1 đường tròn (O') cắt đường tròn (O) ở A, B sao cho cung AB của (O') chia (O) thành 2 phần có diện tích bằng nhau. Chứng minh độ dài cung AB của (O') lớn hơn 2R.
- 633 ([Bìn23b], 338., p. 113). Cho $\triangle ABC$ có diện tích S. S_1 là diện tích hình tròn ngoại tiếp $\triangle ABC$, S_2 là diện tích hình tròn nội tiếp $\triangle ABC$. Chứng minh $2S < S_1 + S_2$.
- **634** ([Bìn23b], 339., p. 113). Cho hình viên phân BC có dây BC = a, $cung \stackrel{\frown}{BC} = 90^{\circ}$. (a) Tính diện tích hình viên phân. (b) Tính diện tích hình vuông DEFG nội tiếp trong viên phân đó, $D, E \in BC$, G, H thuộc cung BC.
- **635** ([Bìn23b], 340., p. 113). Tính bán kính hình viên phân BC có dây BC = 6 cm, cạnh hình vuông MNPQ nội tiếp viên phân ây bằng 2 cm, $M, N \in BC$, P, Q thuộc cung BC.

20 Quỹ Tích

- **636** ([Bìn23b], VD49, p. 118). Cho cung AB cố định tạo bởi 2 bán kính OA⊥OB, I chuyển động trên cung AB. Trên tia OI lấy điểm M sao cho OM bằng tổng các khoảng cách từ I đến OA & đến OB. Tìm quỹ tích các điểm M.
- **637** ([Bìn23b], VD50, p. 120). Cho ΔABC cân tại A. 2 điểm M, N lần lượt di chuyển trên 2 cạnh AB, AC sao cho AM = CN. Tim quỹ tích các tâm O của đường tròn ngoại tiếp ΔAMN.

- **638** ([Bìn23b], VD51, p. 121). Tìm quỹ tích trực tâm H của các $\triangle ABC$ có BC cố định, $\widehat{A} = \alpha$ không đổi.
- **639** ([Bìn23b], VD52, p. 122). Cho ABCD là 1 tứ giác nội tiếp. (I) là đường tròn bất kỳ đi qua A, B, (K) là đường tròn đi qua C, D & tiếp xúc với (I). M là tiếp điểm của (I), (K). Điểm M di chuyển trên đường nào?
- **640** ([Bìn23b], VD53, p. 123). Cho đường tròn (O) & dây BC cố định. Điểm A di chuyển trên đường tròn. Đường trung trực của AB cắt AC ở M. Tìm quỹ tích các điểm M.
- **641** ([Bìn23b], VD54, p. 124). Tìm quỹ tích các điểm M mà từ đó ta nhìn 1 hình vuông cho trước dưới 1 góc vuông (điểm M gọi là nhìn 1 hình vuông dưới \widehat{AMB} nếu 2 điểm A, B thuộc cạnh hình vuông & hình vuông thuộc miền trong của \widehat{AMB}).
- **642** ([Bìn23b], 356., p. 124). Cho nửa đường tròn đường kính AB, C là điểm chính giữa của nửa đường tròn. Điểm M di chuyển trên cung BC. N là giao điểm của AM, OC. Tìm quỹ tích các tâm I của đường tròn ngoại tiếp ΔCMN.
- **643** ([Bìn23b], 357., pp. 124–125). Tứ giác ABCD có AC cố định, $\widehat{A}=45^{\circ}$, $\widehat{B}=\widehat{D}=90^{\circ}$. (a) Chứng minh BD có độ dài không đổi. (b) E là giao điểm của BC, AD, F là giao điểm của AB, CD. Chứng minh EF có độ dài không đổi. (c) Tìm quỹ tích các tâm I của đường tròn ngoại tiếp ΔAEF .
- **644** ([Bìn23b], 358., p. 125). Cho \widehat{xOy} & 1 điểm I cố định thuộc tia phân giác của \widehat{xOy} . 1 đường tròn (I) bán kính thay đổi cắt 2 tia Ox, Oy lần lượt ở M, N, M không đối xứng với N qua OI. (a) Tìm quỹ tích các tâm O' của đường tròn ngoại tiếp ΔOMN. (b) Đường vuông góc với Ox tại M & đường vuông góc với Oy tại N cắt nhau ở P. Tìm quỹ tích các điểm P.
- **645** ([Bìn23b], 359., p. 125). Cho $\triangle ABC$ đều. Tìm quỹ tích các điểm M nằm trong $\triangle ABC$ sao cho $MA^2 = MB^2 + MC^2$.
- **646** ([Bìn23b], 360., p. 125). Cho $\triangle ABC$ vuông cân tại A. Tìm quỹ tích các điểm M nằm trong $\triangle ABC$ sao cho $2MA^2 = MB^2 MC^2$.
- **647** ([Bìn23b], 361., p. 125). Cho M là 1 điểm thuộc đường tròn (O';R). Đường tròn này lăn (không trượt) trong đường tròn (O,2R). Tìm quỹ tích các điểm M.
- **648** ([Bìn23b], 362., p. 125). Tim quỹ tích đỉnh C của các $\triangle ABC$ có AB cố định, đường cao BH bằng cạnh AC.
- **649** ([Bìn23b], 363., p. 125). Cho 2 đường tròn (O), (O') cắt nhau ở A, B. 1 đường thẳng d bất kỳ luôn đi qua A cắt (O), (O') lần lượt ở C, D. (a) Tim quỹ tích các trung điểm M của CD. (b) Cho biết bán kính của (O), (O') là 3 cm, 2 cm. Tính tỷ số BC:BD. (c) Dường thẳng d có vị trí nào thì đoạn thẳng CD có độ dài lớn nhất, với A nằm giữa C, D?
- **650** ([Bìn23b], 364., p. 125). Cho đường tròn (O), điểm A cố định trên đường tròn. Trên tiếp tuyến tại A lấy 1 điểm B cố định. Goi (O') là đường tròn tiếp xúc với AB tại B & có bán kính thay đổi. Tìm quỹ tích các điểm I là trung điểm của dây chung MN của (O), (O').
- **651** ([Bìn23b], 365., p. 125). Cho đường tròn (O), 1 điểm A ở bên trong đường tròn. Điểm B di chuyển trên đường tròn. Qua O kẻ đường vuông góc với AB, cắt tiếp tuyến tại B của (O) ở điểm M. Tìm quỹ tích các điểm M.
- **652** ([Bìn23b], 366., p. 126). Cho đường tròn (O), đường kính AB vuông góc với dây CD. Điểm E di chuyển trên (O). 2 đường thẳng AE, BE cắt đường thẳng CD lần lượt ở I, K. Tim quỹ tích tâm O' của đường tròn ngoại tiếp ΔBIK .
- 653 ([Bìn23b], 367., p. 126). Cho 3 điểm cố định A, B, C thẳng hàng theo thứ tự đó. 1 đường tròn (O) thay đổi luôn đi qua A, B. Kẻ 2 tiếp tuyến CD, CE với đường tròn, D, E là 2 tiếp điểm. (a) Tìm quỹ tích các điểm D, E. (b) Tìm quỹ tích các trung điểm K của DE. (c) MN là đường kính của (O) vuông góc với AB, F là giao điểm của CM với (O). Chứng minh AB, DE, FN đồng quy.
- **654** ([Bìn23b], 368., p. 126). Cho đường tròn (O), dây AB. Điểm C di chuyển trên đường thẳng AB & nằm ngoài (O). Kẻ 2 tiếp tuyến CD, CE với (O), D, E là 2 tiếp điểm. Tìm quỹ tích giao điểm K của OC, DE.
- 655 ([Bìn23b], 369., p. 126). Cho đường tròn (O; R), điểm A cố định ở bên ngoài đường tròn. BC là 1 đường kính thay đổi. (a) Tìm quỹ tích tâm O_1 của đường tròn ngoại tiếp ΔABC . (b) D, E lần lượt là giao điểm của AB, AC với (O). Tìm quỹ tích tâm O_2 của đường tròn ngoại tiếp ΔADE . (c) F là giao điểm khác A của $(O_1), (O_2)$. Chứng minh AF, BC, DE đồng quy.
- **656** ([Bìn23b], 370., p. 126). Cho đường tròn (O), dây BC cố định. Điểm A di chuyển trên (O). M là trung điểm AC. Tìm quỹ tích hình chiếu H của M trên AB.
- **657** ([Bìn23b], 371., p. 126). Cho $\widehat{xOy} = 90^{\circ}$, 1 điểm A cố định nằm trong \widehat{xOy} . 1 góc vuông đỉnh A có 2 cạnh thay đổi cắt Ox, Oy lần lượt ở B, C. M đối xứng với A qua BC. (a) Tìm quỹ tích các điểm M. (b) Chứng minh $\frac{AB}{AC}$ là hằng số.
- **658** ([Bìn23b], 372., p. 126). Cho đường tròn (O), điểm A cố định ở bên ngoài đường tròn. Kể tiếp tuyến AB, B là tiếp điểm. 1 cát tuyến AMN luôn đi qua A. Tìm quỹ tích trọng tâm G của ΔBMN .
- **659** ([Bìn23b], 373., p. 127). Cho đường tròn (O; R), 1 điểm H cố định ở bên trong đường tròn. Xét các ΔABC nội tiếp (O) & nhận H làm trực tâm. Tìm quỹ tích: (a) Chân các đường cao của ΔABC. (b) Chân các đường trung tuyến của ΔABC.

- **660** ([Bìn23b], 374., p. 127). Cho đường tròn (O), 2 đường kính $AB \perp CD$. 2 điểm E, F chuyển động trên (O) sao cho $OE \perp OF$. Qua E kẻ đường thẳng vuông góc với CD, qua F kẻ đường thẳng vuông góc với AB, chúng cắt nhau ở M. Tìm quỹ tích các điểm M.
- **661** ([Bìn23b], 375., p. 127). Cho đường tròn (O), dây AB cố định. 2 điểm M,N di chuyển trên (O) sao cho AM = BN. Tìm quỹ tích giao điểm I của 2 đường thẳng AM,BN.
- **662** ([Bìn23b], 376., p. 127). Cho $\triangle ABC$ cân tại A. Tìm quỹ tích các điểm M sao cho MA là tia phân giác \widehat{BMC} .
- **663** ([Bìn23b], 377., p. 127). Cho ΔABC cân tại A. 1 đường thẳng d thay đổi luôn đi qua A. Trên d lấy điểm M sao cho MB + MC nhỏ nhất. Tìm quỹ tích các điểm M.
- 664 ([Bìn23b], 378., p. 127). Tìm quỹ tích các điểm M mà từ đó ta nhìn 1 hình vuông cho trước dưới 1 góc bằng 45°.
- **665** ([Bìn23b], 379., p. 127). Cho đường tròn (O), dây AB cố định. Điểm M di chuyển trên (O). Vẽ đường tròn (M) tiếp xúc với AB. I là giao điểm của 2 tiếp tuyến khác AB kẻ từ A, B với (M). Tìm quỹ tích của điểm I.
- **666** ([Bìn23b], 380., p. 127). Cho 2 đường tròn (O), (O') cắt nhau tại A, B. 1 đường thẳng thay đổi luôn đi qua A cắt (O), (O') lần lượt ở C, D. Tìm quỹ tích tâm I các đường tròn nội tiếp ΔBCD .
- **667** ([Bìn23b], 381., p. 127). Cho 2 đường tròn (O), (O') cắt nhau tại A, B. Qua A vẽ cát tuyến cố định CAD, $C \in (O)$, $D \in (O')$. 1 đường thẳng thay đổi luôn đi qua A cắt (O), (O') lần lượt ở M, N. Tìm quỹ tích giao điểm P của 2 đường thẳng CM, DN.
- **668** ([Bìn23b], 382., p. 127). Cho $\triangle ABC$ & điểm D cố định trên cạnh BC. 1 góc vuông đỉnh D có các cạnh thay đổi vị trí cắt 2 cạnh AB, AC lần lượt ở M, N. Tìm quỹ tích hình chiếu H của D trên MN.

21 Dung Hình

- **669** ([Bìn23b], VD55, p. 128). Cho $\triangle ABC$. Dựng $\triangle DEF$ đều có độ dài cạnh bằng a cho trước, 3 đỉnh nằm trên 3 cạnh của $\triangle ABC$.
- 670 ([Bìn23b], VD56, p. 129). Cho ΔABC , 1 điểm D nằm trong ΔABC . Dựng đường thẳng đi qua D cắt 2 cạnh AB, C lần lượt ở E, F sao cho BE = CF.
- **671** ([Bìn23b], VD57, p. 129). Cho đường tròn (O) & 2 điểm A, B ở bên ngoài (O). Dựng đường tròn (O') tiếp xúc với (O) & đi qua 2 điểm A, B.
- **672** ([Bìn23b], VD58, p. 130). Cho 2 điểm A, B nằm về 1 phía của đường thẳng xy. Dựng đường tròn đi qua A, B & tiếp xúc với đường thẳng xy.
- 673 ([Bìn23b], VD59, p. 131). Dựng $\triangle ABC$ vuông tại A biết cạnh huyền BC = a, đường phân giác AD = d.
- 674 ([Bìn23b], 383., p. 132). Cho 3 tia chung gốc Ox, Oy, Oz. Dựng tam giác đều cạnh a có 3 đỉnh thuộc 3 tia này.
- **675** ([Bìn23b], 384., p. 132). Cho \widehat{xOy} . Dung đoạn thẳng AB = a có $A \in Ox$, $B \in Oy$ sao cho OA + OB = m.
- 676 ([Bìn23b], 385., p. 132). (a) Dựng tam giác vuông biết chu vi bằng 2p & bán kính của đường tròn nội tiếp bằng r. (b) Dựng tam giác biết 1 cạnh bằng a, chu vi bằng 2p, & bán kính đường tròn nội tiếp bằng r.
- **677** ([Bìn23b], 386., p. 132). Dựng $\triangle ABC$ biết $\widehat{A} = \alpha$, đường cao AH = h, đường trung tuyến AM = m.
- 678 ([Bìn23b], 387., p. 132). Dựng $\triangle ABC$ biết $\widehat{A}=\alpha$, AC-AB=d, bán kính đường tròn nội tiếp bằng r.
- 679 ([Bìn23b], 388., p. 132). Dựng ΔABC biết 3 điểm I, O, P lần lượt là tâm của 3 đường tròn nội tiếp, ngoại tiếp, bàng tiếp.
- **680** ([Bìn23b], 389., p. 132). Dựng $\triangle ABC$ biết BC = a, bán kính r của đường tròn nội tiếp, bán kính R_a của đường tròn bàng tiếp trong \widehat{A} .
- **681** ([Bìn23b], 390., p. 132). Dựng $\triangle ABC$ biết $\widehat{A} = \alpha, AB BC = m, AC BC = n$.
- **682** ([Bìn23b], 391., p. 132). Dựng ΔABC biết BC = a, đường cao AH = h biết đường phân giác AD bằng trung bình nhân của BD, CD.
- **683** ([Bìn23b], 392., p. 132). Cho 4 điểm A, B, C, D. Dựng hình vuông EFGH có 4 cạnh (hoặc đường thẳng chứa cạnh) đi qua 4 điểm này (mỗi đường thẳng đi qua 1 điểm).
- **684** ([Bìn23b], 393., p. 132). Cho $\triangle ABC$ & điểm M nằm trong $\triangle ABC$. Dựng đường tròn đi qua A, M, cắt AB, AC lần lượt ở D, E sao cho $DE \parallel BC$.
- **685** ([Bìn23b], 394., p. 133). Cho đường thẳng d, 2 điểm A, B nằm cùng phía đối với d. Dựng điểm $M \in d$ sao cho AM + BM = a.
- **686** ([Bìn23b], 395., p. 133). Dựng $\triangle ABC$ biết $\widehat{B} \widehat{C} = \alpha$, đường cao AH = h, đường trung tuyến AM = m.

- **687** ([Bìn23b], 396., p. 133). Dựng $\triangle ABC$ biết BC = a, $\widehat{B} \widehat{C} = \alpha$, đường cao AH = h.
- **688** ([Bìn23b], 397., p. 133). Cho \widehat{xOy} nhọn, 2 điểm M,N nằm trong \widehat{xOy} . Dựng điểm $A \in Ox$ sao cho tia phân giác \widehat{MAN} vuông góc với Oy.
- **689** ([Bìn23b], 398., p. 133). Dựng tứ giác ABCD biết $AB = a, AD = b, b > a, AC = m, \widehat{B} \widehat{D} = \alpha$ sao cho AC là tia phân giác \widehat{A} .
- **690** ([Bìn23b], 399., p. 133). Dựng tứ giác ABCD có AB = a, AD = b, $\widehat{B} = \alpha$, $\widehat{D} = \beta$ biết tứ giác ABCD có thể ngoại tiếp được 1 đường tròn.
- **691** ([Bìn23b], 400., p. 133). Cho ΔABC nhọn. Dựng điểm M nằm trong ΔABC sao cho nếu lấy các điểm đối xứng với M qua trung điểm mỗi cạnh của ΔABC thì được 3 điểm thuộc đường tròn ngoại tiếp ΔABC .
- **692** ([Bìn23b], 401., p. 133). Cho \widehat{xOy} nhọn, điểm M nằm trong \widehat{xOy} . Dựng đường tròn (I) đi qua điểm M, cắt Ox, Oy thành 2 dây AB, CD sao cho $\widehat{AMB} = \widehat{CMD} = \widehat{xOy}$.
- **693** ([Bìn23b], 402., p. 133). Dựng hình vuông nội tiếp 1 hình viên phân cho trước (1 cạnh của hình vuông thuộc dây của viên phân, 2 đỉnh còn lại của hình vuông thuộc cung của viên phân).
- **694** ([Bìn23b], 403., p. 133). Cho ΔABC vuông tại A, AB < AC. Điểm D thuộc cạnh BC. Đường vuông góc với AD tại A cắt 2 đường vuông góc với BC tại B, C lần lượt ở M, N. Dựng điểm D sao cho diện tích ΔMDN gấp đôi diện tích ΔABC.
- **695** ([Bìn23b], 404., p. 133). Cho ABCD là tứ giác nội tiếp. Dựng điểm E thuộc cạnh CD sao cho $\widehat{DAE} = \widehat{CBE}$.
- **696** ([Bìn23b], 405., p. 133). Dựng $\triangle ABC$ biết $\widehat{A} = \alpha, BC = a$, đường phân giác AD = d.

22 Toán Cực Trị

- **697** ([Bìn23b], VD60, p. 134). Cho $\triangle ABC$ nội tiếp đường tròn (O). Điểm M chuyển động trên (O). D, E lần lượt là hình chiếu của M trên 2 đường thẳng AB, AC. Tìm vi trí điểm M sao cho DE có đô dài lớn nhất.
- **698** ([Bìn23b], VD61, p. 134). Trong các $\triangle ABC$ có BC = a, $\widehat{BAC} = \alpha$, tam giác nào có: (a) Diện tích lớn nhất? (b) Chu vi lớn nhất?
- **699** ([Bìn23b], VD62, p. 135). Cho đường thẳng xy, 2 điểm A,B nằm cùng phía đối với xy. Tìm điểm $M \in xy$ sao cho \widehat{AMB} lớn nhất.
- **700** ([Bìn23b], 406., p. 137). Cho đường thẳng d, 2 điểm A, B nằm về 2 phía của d. Dựng đường tròn (O) đi qua A, B sao cho nó cắt d thành 1 dây có độ dài nhỏ nhất.
- **701** ([Bìn23b], 407., p. 137). Trong các hình thang có 1 góc nhọn α nội tiếp 1 đường tròn cho trước, hình nào có diện tích lớn nhất $\alpha > 45^{\circ}$?
- 702 ([Bìn23b], 408., p. 137). Cho điểm I nằm trên đoạn thẳng AB, IA < IB. Trên cùng 1 nửa mặt phẳng bờ AB, vẽ nửa đường tròn đường kính AB & 2 tiếp tuyến Ax, By. Diểm M di chuyển trên nửa đường tròn đó. Dường vuông góc với IM tại M cắt Ax, By lần lượt ở D, E. (a) Chứng minh $AD \cdot BE$ có giá trị không đổi. (b) Tìm vị trí của điểm M để hình thang ABED có diện tích nhỏ nhất.
- 703 ([Bìn23b], 409., p. 137). Cho $\triangle ABC$ vuông tại A. Tìm vị trí điểm M thuộc đường tròn (O) ngoại tiếp $\triangle ABC$, sao cho nếu D, E lần lượt là 2 hình chiếu của M trên 2 đường thẳng AB, AC thì DE có độ dài lớn nhất.
- **704** ([Bìn23b], 410., p. 137). Cho đường tròn (O) & dây AB. Điểm M di chuyển trên cung nhỏ AB. I, K lần lượt là hình chiếu của M trên 2 tiếp tuyến tại A, B của (O). Tìm vị trí của M để MI · MK có GTLN.
- **705** ([Bìn23b], 411., pp. 137–138). Cho đường tròn (O) \mathcal{E} dây BC không đi qua O. Điểm A di chuyển trên (O) sao cho ΔABC là tam giác nhọn. H là trực tâm của ΔABC . Tìm vị trí của điểm A để tổng AH + BH + CH có GTLN.
- **706** ([Bìn23b], 412., p. 138). Cho đường tròn (O) \mathscr{C} dây AB. Tìm điểm C thuộc cung nhỏ AB sao cho tổng $\frac{1}{AC} + \frac{1}{BC}$ có GTNN.
- 707 ([Bìn23b], 413., p. 138). Cho $\triangle ABC$ đều nội tiếp đường tròn (O). Tìm điểm M thuộc cung BC sao cho nếu H, I, K lần lượt là hình chiếu của M trên AB, BC, CA thì tổng MA + MB + MC + MH + MI + MK có GTNN, GTLN.
- 708 ([Bìn23b], 414., p. 138). Cho $\triangle ABC$ đều. Vẽ 2 tia Bx, Cy cùng phía với A đối với BC sao cho $Bx \parallel AC$, $Cy \parallel AB$. 1 đường thẳng d đi qua A cắt Bx, Cy lần lượt ở D, E. I là giao điểm của CD, BE. Xác định vị trí của đường thẳng d để $\triangle BCI$ có chu vi nhỏ nhất.
- 709 ([Bìn23b], 415., p. 138). Cho $\triangle ABC$ vuông cân, AB = AC = 10 cm. (a) Chứng minh tồn tại vô số $\triangle DEF$ vuông cân ngoại tiếp $\triangle ABC$ (mỗi cạnh của $\triangle DEF$ đi qua 1 đỉnh của $\triangle ABC$). (b) Tính diện tích lớn nhất của $\triangle DEF$.

- **710** ([Bìn23b], 416., p. 138). Cho $\triangle ABC$. 2 điểm D, E lần lượt di chuyển trên 2 tia BA, CA sao cho BD = CE. (a) Vẽ hình bình hành BDEM. Tìm quỹ tích các điểm M. (b) Tìm vị trí của 2 điểm D, E sao cho độ dài DE nhỏ nhất.
- **711** ([Bìn23b], 417., p. 138). Cho đường tròn (O), M là điểm chính giữa của cung nhỏ AB, điểm C chuyển động trên cung lớn AB, D là giao điểm của AB, CM. (a) Tìm quỹ tích tâm I của đường tròn ngoại tiếp ΔACD . (b) Tìm vị trí điểm C để độ dài BI nhỏ nhất.
- 712 ([Bìn23b], 418., p. 138). Cho $\triangle ABC$. Điểm M di chuyển trên cạnh BC. Vẽ đường tròn (O_1) đi qua M & tiếp xúc với AB tại B. Vẽ đường tròn (O_2) đi qua M & tiếp xúc với AC tại C. N là giao điểm thứ 2 của 2 đường tròn. (a) Chứng minh điểm N thuộc đường tròn ngoại tiếp $\triangle ABC$. (b) Chứng minh đường thẳng MN luôn đi qua 1 điểm cố định. (c) Tìm vị trí điểm M để đoạn thẳng O_1O_2 có độ dài nhỏ nhất.
- 713 ([Bìn23b], 419., p. 139). Cho đường tròn (O;R), 1 điểm I nằm bên trong (O). Gọi AB,CD là 2 dây bất kỳ cùng đi qua I $\operatorname{\mathfrak{C}}$ vuông góc với nhau. M,N lần lượt là trung điểm của AB,CD. (a) Chứng minh khi 2 dây AB,CD thay đổi thì 3 tổng sau không đổi: $OM^2 + ON^2, AB^2 + CD^2, AC^2 + BD^2$. (b) Xác định vị trí của AB,CD để hình chữ nhật OMIN có: (i) diện tích lớn nhất; (ii) chu vi lớn nhất. (c) Xác định vị trí của AB,CD để tổng AB+CD lớn nhất, nhỏ nhất. (d) Xác định vị trí của AB,CD để tứ giác ACBD có diện tích lớn nhất, nhỏ nhất.
- **714** ([Bìn23b], 420., p. 139). Cho đường tròn (O) đường kính AB, đường thẳng d không giao với (O). Dựng điểm $M \in d$ sao cho 2 tia MA, MB cắt (O) ở D, E & độ dài DE nhỏ nhất.
- 715 ([Bìn23b], 421., p. 139). Cho nửa đường tròn (O) đường kính AB, dây CD. Tìm điểm M thuộc cung CD sao cho 2 tia MA, MB cắt dây CD ở I, K & IK có độ dài lớn nhất.

23 Miscellaneous

- 716 ([Tuy23], VD28, p. 155). Cho $\triangle ABC$ nội tiếp đường tròn (O), AB < AC. 1 điểm M di động trên cạnh BC. Vẽ đường tròn (P) đi qua B, M tiếp xúc với AB. Vẽ đường tròn (Q) đi qua C, M tiếp xúc với AC. 2 đường tròn (P), (Q) cắt nhau tại 1 điểm thứ 2 là N. (a) Chứng minh điểm N thuộc đường tròn (O). (b) Chứng minh 2 đường thẳng BP, CQ cắt nhau tại 1 điểm D cố định. (c) Tìm vị trí điểm M để $\triangle BCN$ có diện tích lớn nhất.
- 717 ([Tuy23], 147., p. 156). Cho nửa đường tròn đường kính AB. Tìm 1 điểm C trên nửa đường tròn sao cho diện tích của nửa hình tròn đường kính AB bằng diện tích hình tròn đường kính BC.
- 718 ([Tuy23], 148., p. 157). Từ điểm A ở ngoài đường tròn (O), vẽ 2 tiếp tuyến AB, AC. Vẽ dây BD || AC. Đoạn thẳng AD cắt đường tròn (O) tại 1 điểm thứ 2 là E. Tia BE cắt AC tại M. Chứng minh M là trung điểm AC.
- 719 ([Tuy23], 149., p. 157). Cho đường tròn (O), 2 dây AB, CD vuông góc với nhau tại M. H, K lần lượt là hình chiếu của A, C trên BD. Đường thẳng AH cắt CD tại E, đường thẳng CK cắt AB tại F. Chứng minh tứ giác ACFE là hình thoi.
- **720** ([Tuy23], 150., p. 157). Cho tứ giác ABCD nội tiếp đường tròn (O; R). Cho biết AC, BD vuông góc với nhau tại M. Tính theo R: (a) $MA^2 + MB^2 + MC^2 + MD^2$. (b) $AB^2 + BC^2 + CD^2 + DA^2$.
- 721 ([Tuy23], 151., p. 157). Từ giác ABCD có tổng các cặp góc đối bằng nhau, 2 đường chéo cắt nhau tại E. Đường tròn ngoại tiếp ΔCDE cắt AD, BC lần lượt tại M, N. Chứng minh: (a) $MN \parallel AB$. (b) ME là tiếp tuyến của đường tròn ngoại tiếp ΔDFM với F là giao điểm của MN, BD.
- 722 ([Tuy23], 152., p. 157). Cho đường tròn (O) đường kính AB & 1 điểm M di động trên 1 nửa đường tròn sao cho $\widehat{MA} \leq \widehat{MB}$. Vẽ vào trong đường tròn hình vuông AMCD. (a) Chứng minh đường thẳng DM luôn đi qua 1 điểm cố định E. (b) I là tâm đường tròn nội tiếp ΔABM . Chứng minh A, B, C, I cùng thuộc 1 đường tròn.
- **723** ([Tuy23], 153., p. 157). $\triangle ABC$ nội tiếp 1 đường tròn. 3 tia phân giác $\widehat{A}, \widehat{B}, \widehat{C}$ cắt đường tròn lần lượt tại D, E, F. Chứng minh $AD + BE + CF > P_{ABC}$.
- 724 ([Tuy23], 154., p. 157). Cho đường tròn (O;R) đường kính AB, 1 đường thẳng $d \perp AB$ tại điểm E thuộc bánh kính OA, $E \neq A, E \neq O$. Dường thẳng d cắt đường tròn tại C, D. 1 điểm M chuyển động trên đường tròn (O) với M khác A, B, C, D. 2 đường thẳng MA, MB cắt d lần lượt tại H, K. (a) Chứng minh $EH \cdot EK = \frac{1}{4}CD^2$. (b) Tìm quỹ tích tâm P của đường tròn ngoại tiếp ΔAHK .
- **725** ([Tuy23], 155., p. 157). Cho $\triangle ABC$ cân tại A. 1 điểm D di động trên tia đối của tia BC. 1 điểm M trên đường thẳng AD sao cho MB + MC nhỏ nhất. Tìm quỹ tích của điểm M.
- 726 ([Tuy23], 173., p. 167). Cho $\triangle ABC$ nhọn, nội tiếp đường tròn (O;R). D,E,F lần lượt là trung điểm BC,CA,AB. (a) Tính 3 cạnh $\triangle ABC$ theo góc đối diện & R. (b) Chứng minh $\sin A + \sin B + \sin C < 2(\cos A + \cos B + \cos C)$.
- 727 ([Tuy23], 174., p. 167). Cho ΔABC cân tại A, đường cao AH. Vẽ đường tròn (A;R) với R < AH. Từ B vẽ tiếp tuyến BM với đường tròn. Dường thẳng HM cắt đường tròn tại 1 điểm thứ 2 là N. Chứng minh: (a) $\Delta AMN \backsim \Delta ABC$. (b) Dường thẳng CN là tiếp tuyến của đường tròn (O).

- 728 ([Tuy23], 175., p. 167). Tứ giác ABCD nội tiếp 1 đường tròn. 2 đường chéo cắt nhau tại P. E, F, G, H lần lượt là hình chiếu của P trên AB, BC, CD, DA. Chứng minh tứ giác EFGH ngoại tiếp 1 đường tròn.
- 729 ([Tuy23], 176., p. 168). Cho $\triangle ABC$, đường cao AH. D, E lần lượt là trung điểm của AB, AC. (a) Chứng minh DE là tiếp tuyến chung của 2 đường tròn ngoại tiếp $\triangle BDH$, $\triangle CEH$. (b) F là giao điểm thứ 2 của 2 đường tròn (BDH), (CEH). Chứng minh HF đi qua trung điểm của DE. (c) Chứng minh đường tròn ngoại tiếp $\triangle ADE$ đi qua điểm F.
- 730 ([Tuy23], 177., p. 168). Cho tứ giác ABCD nội tiếp đường tròn (O), 2 đường chéo cắt nhau tại I. Qua I vẽ 1 đường thẳng vuôn góc với OI cắt 4 cạnh AB, BC, CD, DA lần lượt tại E, F, G, H. (a) M, N lần lượt là trung điểm của AD, BC. Chứng minh $\Delta AMI \sim \Delta BNI$. (b) Chứng minh GH = EF.
- 731 ([Tuy23], 178., p. 168). Cho đường tròn (O;R) & 1 điểm A ở ngoài đường tròn. Qua A vẽ đường thẳng d \perp OA. 1 điểm M di động trên đường thẳng d. Vẽ 2 tiếp tuyến MD, ME với đường tròn (O). (a) Chứng minh DE luôn đi qua 1 điểm cố định. (b) Tìm tập hợp tâm I các đường tròn nội tiếp Δ DEM. (c) r là bán kính đường tròn nội tiếp Δ DEM, $\widehat{MDE} = \alpha$. Chứng minh $\cos \alpha = \frac{R-r}{R}$. (d) Tính diện tích tứ giác MDOE theo R, α .
- 732 ([Tuy23], 179., p. 168). Cho đường tròn (O), 1 điểm A ở trong đường tròn. Qua A vẽ 2 dây $BC \perp DE$. (a) Chứng minh $AB^2 + AC^2 + AD^2 + AE^2$ không đổi. (b) Vẽ đường tròn (O;OA) cắt DE tại 1 điểm thứ 2 là H. Chứng minh trọng tâm G của ΔBCH cố định. (c) I,K lần lượt là trung điểm BE,CD. Chứng minh IK đi qua 1 điểm cố định.
- 733 ([Tuy23], 180., p. 168). 1 điểm M di động trên đoạn thắng AB cố định. Vẽ tia $My \perp AB$. Trên tia My lấy 2 điểm C,D sao cho MA = MC, MB = MD. Vẽ 2 đường tròn đường kính AC,BD, chúng cắt nhau tại M,N. (a) Chứng minh 3 điểm B,C,N thẳng hàng, 3 điểm A,D,N thẳng hàng. (b) Chứng minh MN luôn đi qua 1 điểm cố định. (c) Tìm vị trí của M trên đoạn thẳng OB sao cho $DA \cdot DN$ lớn nhất với O là trung điểm AB.
- **734** ([Bìn23b], p. 139). Nếu 2 tam giác có 2 cạnh tương ứng bằng nhau từng đôi một nhưng các góc xen giữa không bằng nhau thì 2 cạnh thứ 3 cũng không bằng nhau & cạnh nào đối diện với góc lớn hơn là cạnh lớn hơn.
- 735 ([Bìn23b], VD63, p. 140). Cho $\triangle ABC$ có 2 đường phân giác BD, CE bằng nhau. Chứng minh $\triangle ABC$ cân.
- **736** ([Bìn23b], VD64, p. 141, bài toán "con bướm"). Cho đường tròn (O), dây AB, 2 điểm C, E thuộc cung AB. Vẽ 2 dây CD, EF đi qua trung điểm I của AB. M, N lần lượt là giao điểm của CF, DE với AB. Chứng minh IM = IN.
- 737 ([Bìn23b], VD65, p. 142, bài toán chia 3 3 góc 1 tam giác của Morley). Cho $\triangle ABC$. Đặt $\widehat{A}=3\alpha,\widehat{B}=3\beta,\widehat{C}=3\gamma$. Lấy điểm K nằm trong $\triangle ABC$ sao cho $\widehat{ABK}=\beta,\widehat{ACK}=\gamma$. D là giao điểm của 3 đường phân giác $\triangle BCK$. Lấy điểm E thuộc đoạn thẳng BK, điểm F thuộc đoạn thẳng CK sao cho $\widehat{EDK}=\widehat{FDK}=30^\circ$. (a) Chứng minh $\triangle DEF$ đều. (b) M,N lần lượt đối xứng với D qua BK, CK. Chứng minh MEFN là hình thang cân, tính 4 góc của hình thang cân đó theo α . (c) Chứng minh A, E, F, M, N thuộc cùng 1 đường tròn \mathcal{E} 2 tia AE, AF chia \widehat{A} thành 3 góc bằng nhau.
- 738 ([Bìn23b], 422., p. 143). Cho $\triangle ABC$, $\widehat{B}=2\beta$, $\widehat{C}=2\alpha$, 2 đường phân giác BD, CE bằng nhau. Vẽ hình bình hành BDCK. (a) Tinh \widehat{BEK} , \widehat{BKE} theo α , β . (b) Chứng minh $\alpha=\beta$.
- 739 ([Bìn23b], 423., p. 144). Cho ΔABC , đường phân giác BD. d là đường phân giác của góc ngoài đỉnh B. M,Q lần lượt là hình chiếu của A,C trên d. Chứng minh $BD \cdot MQ = 2S_{ABC}$.
- **740** ([Bìn23b], 424., p. 144). Chứng minh nếu 1 tứ giác nội tiếp có 2 cạnh đối bằng nhau thì 2 cạnh đối kia song song $\mathcal E$ tứ giác đó là hình thang cân.
- 741 ([Bìn23b], 425., p. 144). Cho $\triangle ABC$. d_1, d_2 lần lượt là đường phân giác của góc ngoài tại B, C. M, Q lần lượt là hình chiếu của A, C trên d_1 . N, P lần lượt là hình chiếu của A, B trên d_2 . (a) Chứng minh $MN \parallel BC$. (b) Chứng minh MNPQ là tứ giác nội tiếp. (c) BD, CE là 2 đường phân giác của $\triangle ABC$. Chứng minh $BD \cdot MQ = CE \cdot NP$. (d) Chứng minh nếu BD = CE thì $\triangle ABC$ cân.
- 742 ([Bìn23b], 426., p. 144). Cho $\triangle ABC$ có 2 đường phân giác BD, CE bằng nhau & cắt nhau tại I. (a) Vẽ điểm N sao cho BN = AE, DN = AC, A, N cùng phía đối với BD. Chứng minh ANBD là tứ giác nội tiếp. (b) NK là đường phân giác $\triangle BDN$. Chứng minh ANKI là tứ giác nội tiếp. (c) Chứng minh ANBD là hình thang cân. (d) Chứng minh $\triangle ABC$ cân.
- **743** ([Bìn23b], 427., p. 144). Chứng minh nếu $\triangle ABC$, $\triangle EPQ$ có BC = PQ, $\widehat{A} = \widehat{E}$, 2 đường phân giác AD, EF bằng nhau thì $\triangle ABC = \triangle EPQ$.
- 744 ([Bìn23b], 428., p. 144). Cho ΔABC , điểm D thuộc đường phân giác AI. 2 đường thẳng BD, CD cắt AC, AB lần lượt ở M, N. Chứng minh nếu BM = CN thì ΔABC cân.
- 745 ([Bìn23b], 429., pp. 144–145). Cho tứ giác ABCD nội tiếp đường tròn (O), điểm E di chuyển trên cung AB. M,N lần lượt là giao điểm của CE, DE với AB. (a) Chứng minh đường tròn ngoại tiếp ΔCEM cắt đường thẳng AB tại 1 điểm K cố định. (b) Dặt AM = a, MN = b, BN = c. Chứng minh $\frac{ac}{b}$ có giá trị không đổi.
- $\textbf{746} \ ([\underline{\text{Bìn23b}}], \ 431., \ \text{p. } 145). \ \textit{Cho đường tròn } (O), \ \textit{dây AB}, \ \textit{2 điểm C}, E \ \textit{thuộc cung AB}, \ \textit{C thuộc cung AE}. \ \textit{Vẽ 2 dây CD}, EF \\ \textit{đi qua điểm I thuộc dây AB}. \ \textit{M}, \textit{N lần lượt là giao điểm của CF}, DE \ \textit{với AB}. \ \textit{Chứng minh } \frac{1}{AI} + \frac{1}{IN} = \frac{1}{BI} + \frac{1}{IM}.$

747 ([Bìn23b], 432., p. 145, bài toán của Napoléon Bonaparte). Cho $\triangle ABC$. (a) \mathring{O} phía ngoài $\triangle ABC$ vẽ $\triangle BCD$, $\triangle ACE$, $\triangle ABF$ đều. H,I,K lần lượt là trọng tâm của 3 tam giác đều ấy. Chứng minh $\triangle HIK$ đều. (b) \mathring{O} phía ngoài $\triangle ABC$ vẽ $\triangle BCH$, $\triangle ACI$, $\triangle ABK$ lần lượt có cạnh đáy là BC, CA, AB & góc ở đáy bằng 30°. Chứng minh $\triangle HIK$ đều.

748 ([Bìn23b], 433., p. 145, bài toán của Pascal). Chứng minh nếu 1 lục giác nội tiếp đường tròn có các cạnh đối không song song thì giao điểm của các cặp cạnh đối là 3 điểm thẳng hàng.

Tài liệu

- [BBN23a] Vũ Hữu Bình, Nguyễn Xuân Bình, and Phạm Thị Bạch Ngọc. *Bồi Dưỡng Toán 9 Tập 1*. Tái bản lần thứ 7. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 176.
- [BBN23b] Vũ Hữu Bình, Nguyễn Xuân Bình, and Phạm Thị Bạch Ngọc. *Bồi Dưỡng Toán 9 Tập 2.* Tái bản lần thứ 7. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 167.
- [Bìn+23] Vũ Hữu Bình, Nguyễn Ngọc Đạm, Nguyễn Bá Đang, Lê Quốc Hán, and Hồ Quang Vinh. *Tài Liệu Chuyên Toán Trung Học Cơ Sở Toán 9. Tập 2: Hình Học.* Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 240.
- [Bìn23a] Vũ Hữu Bình. Nâng Cao & Phát Triển Toán 9 Tập 1. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 275.
- [Bìn23b] Vũ Hữu Bình. Nâng Cao & Phát Triển Toán 9 Tập 2. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 290.
- [Tuy23] Bùi Văn Tuyên. *Bài Tập Nâng Cao & Một Số Chuyên Đề Toán 9*. Tái bản lần thứ 18. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 340.