Scilab Textbook Companion for Fundamentals of Electronic Devices and Circuits by J. B. Gupta¹

Created by
Waseem Ahmad Ansari
B.Tech
Electronics Engineering
UTU
College Teacher
Mr. Mohd Rizwan
Cross-Checked by
K. V. P. Pradeep

May 8, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Fundamentals of Electronic Devices and Circuits

Author: J. B. Gupta

Publisher: Kataria & Sons, New Delhi

Edition: 1

Year: 2013

ISBN: 978-93-5014-442-8

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
1	Crystal Structure Of Materials	8
2	Crystal Structure Of Materials	21
3	Magnetic Materials	23
4	Transistor Amplifiers	26
5	Amplifier Frequency Response	44
6	Feedback Amplifiers	53
7	Oscillators	68
8	Multistage Amplifiers	79
9	Tuned Amplifiers	90
10	Multivibrators	91

List of Scilab Codes

Exa 1.1	Fraction of the total number of electrons	8
Exa 1.2	Ratio of electron to hole concentration	8
Exa 1.3	Resistivity of conductor	9
Exa 1.4	Relaxation time of conducting electorns	10
Exa 1.5	Charge density of free electrons	10
Exa 1.6	Dopant density	11
Exa 1.7	Concentration of acceptor atoms required	12
Exa 1.8	Drift velocity	12
Exa 1.9	Electron and hole densities	13
Exa 1.10	Density of free electrons	14
Exa 1.11	Mobility of electrons and holes	14
Exa 1.12	Conductivity of intrinsic Ge	15
Exa 1.13	Electron and hole drift velocity	16
Exa 1.14	Ratio of electron to hole	17
Exa 1.15	Diffusion coefficients of electrons	17
Exa 1.16	Intrinsic carrier concentration in Si	18
Exa 1.17	Mobility of electrons	18
Exa 1.18	New position of Fermi Level	19
Exa 1.19	New position of Fermi Level	20
Exa 2.3	Density of copper crystal	21
Exa 2.4	Interplaner distance in a crystal	22
Exa 2.5	Wavelength of X ray	22
Exa 3.1	Hysteresis loss per cubic merter per cycle	23
Exa 3.2	Hysteresis loss	24
Exa 3.3	Loss of energy	24
Exa 3.4	Eddy current loss	25
Exa 4.1	DC and AC load line	26
Exa 4.2	Voltage gain	27

Exa 4.3	Base current
Exa 4.4	Alpha Bita and IE
Exa 4.5	Dynamic input resistance
Exa 4.6	Base current
Exa 4.7	Base and collector current
Exa 4.8	Current gain and base current
Exa 4.9	Dynamic input resistance
Exa 4.10	Dynamic output resistance
Exa 4.11	Collector emitter voltage and base current
Exa 4.12	Bita dc and leakage current
Exa 4.13	IC IE ICEO and alpha
Exa 4.14	h parameters
Exa 4.15	Hybrid parameters
Exa 4.16	Current gain and input impedance
Exa 4.17	Hybrid parameters
Exa 4.18	Input and output resistance
Exa 4.19	Ri Ro Av Ai and Ap
Exa 4.20	Current gain and overall current gain
Exa 4.21	Voltage gain of amplifier circuit
Exa 4.22	Voltage gain and output resistance 40
Exa 4.23	RD and Rs
Exa 4.24	RD and Rs
Exa 4.25	Input and output impedance voltage gain
Exa 5.1	fbita and bita
Exa 5.2	Cut off frequency
Exa 5.3	Voltage gain and lower cut off frequency 45
Exa 5.4	Lower cut off frequency
Exa 5.5	Input capacitance
Exa 5.6	Miller capacitance
Exa 5.7	Value of gm
Exa 5.8	All hybrid parameters
Exa 5.9	The midband gain and upper 3 dB frequency 50
Exa 5.10	The midband gain and upper 3 dB frequency 51
Exa 6.1	Voltage gain and power gain
Exa 6.2	Voltage gain
Exa 6.3	Gain of a negative feedback amplifier
Exa 6.4	Voltage gain with feedback
Exa 6.5	Gain in dB

Exa 6.6	Gain with feedback	56
Exa 6.7	Feedback factor	56
Exa 6.8	Percentage of output	57
Exa 6.9	Voltage gain without feedback	57
Exa 6.10	Amount of feedback in dB	58
Exa 6.11	Change in overall gain	58
Exa 6.12	Feedback ration and factor	59
Exa 6.13	Av and bita	60
Exa 6.14	Percentage change in closed loop gain	60
Exa 6.15	Percentage change in closed loop gain	61
Exa 6.16	Open and closed loop gain	61
Exa 6.17	Distortion of the amplifier	62
Exa 6.18	Gain and output voltage with feedback	62
Exa 6.19	Required input signal	63
Exa 6.20	Voltage gain and input output resistance	63
Exa 6.21	Feedback factor and percentage change in overall gain	64
Exa 6.22	Amplifier voltage gain	65
Exa 6.23	Feedback factor and bandwidth	65
Exa 6.24	New bandwidth and gain	66
Exa 6.25	Input impedance	67
Exa 7.1	Frequency of oscillation	68
Exa 7.2	Range of required capacitor	68
Exa 7.3	Transformer winding turn ratio	69
Exa 7.4	Operating frequency	70
Exa 7.5	Range of inductance	71
Exa 7.6	Frequency of oscillation	71
Exa 7.7	Frequency of oscillations	72
Exa 7.8	Resonance frequencies	72
Exa 7.9	Value of inductance	73
Exa 7.10	Percentage by parallel resonant frequency greater than	
	series	74
Exa 7.11	Frequency of oscillations	74
Exa 7.12	Value of resistances	75
Exa 7.13	RC elements of a Wien bridge oscillator	75
Exa 7.14	RC elements of a Wien bridge oscillator	76
Exa 7.15	Frequency of oscillations	77
Exa 7.16	Pulse repetition frequency	77
Exa 8.1	Overall voltage gain in dB	79

Exa 8.2	Voltage gain of the first stage in dB
Exa 8.3	Overall voltage gain
Exa 8.4	Input and output impedance and overall voltage gain . 80
Exa 8.5	Input and output impedance voltage gain 81
Exa 8.7	Transformer turn ratio
Exa 8.8	Transformer turn ratio
Exa 8.9	Transformer turn ratio and load voltage 83
Exa 8.10	Av2 and Av1 and Av in dB
Exa 8.11	Voltage gain and input resistance
Exa 8.12	Voltage gain and input output impedance and output
	voltage
Exa 8.13	Upper and lower 3dB frequency 88
Exa 8.14	Z matrix for idential T1 and T2 88
Exa 9.1	Resonant frequency and Q factor and bandwidth 90
Exa 10.1	Time period and frequency 91
Exa 10.2	Astable multivibrator
Exa 10.3	Check up the saturation of the transistor 93
Exa 10.4	Component value of monostable mutivibrator 94
Exa 10.5	Stable current and voltages 95

Chapter 1

Crystal Structure Of Materials

Scilab code Exa 1.1 Fraction of the total number of electrons

```
1 // Exa 1.1
2 clc;
3 clear;
4 close;
5 format('v',9);
6 // Given data
7 E_G = 0.72; // in eV
8 E_F = (1/2)*E_G; // in eV/
9 k = 8.61*10^-5; // in eV/K
10 T = 300; // in K
11 // The fraction of the total number of electrons
12 n_C_by_n = 1/(1 + (%e^((E_G-E_F)/(k*T))));
13 disp(n_C_by_n, "The fraction of the total number of electrons is");
```

Scilab code Exa 1.2 Ratio of electron to hole concentration

```
1 // Exa 1.2
```

```
2 clc;
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 n_i = 1.4*10^18; // in /m^3
8 N_D = 1.4*10^24; // in /m^3
9 n = N_D; // in /m^3
10 p = (n_i^2)/n; // in /m^3
11 // Ratio of electron to hole concentation,
12 ratio = n/p;
13 disp(ratio, "Ratio of electron to hole concentration is");
```

Scilab code Exa 1.3 Resistivity of conductor

```
1  // Exa 1.3
2  clc;
3  clear;
4  close;
5  format('v',10)
6  // Given data
7  e = 1.6*10^-19; // in C
8  m = 9.1*10^-31; // in kg
9  miu_e = 7.04 * 10^-3; // in m^2/V-s
10  n = 5.8*10^28; // in /m^3
11  torque = (miu_e/e)*m; // in sec
12  disp(torque, "The relaxation time in sec is");
13  sigma = n*e*miu_e;
14  rho = 1/sigma; // in ohm—m
15  disp(rho, "The resistivity of conductor in ohm—m is")
    ;
```

Scilab code Exa 1.4 Relaxation time of conducting electorns

```
1 // Exa 1.4
2 clc;
3 clear;
4 close;
5 format('v',10)
6 // Given data
7 e = 1.601*10^-19; // in C
8 m = 9.107 * 10^{-31}; // in kg
9 E = 100; // in V/m
10 n = 6*10^28; // in /m<sup>3</sup>
11 rho = 1.5*10^-8; // in ohm—m
12 \text{ sigma} = 1/\text{rho};
13 torque = (sigma*m)/(n*(e^2));// in second
14 disp(torque, "The relaxation time in second is");
15 format('v',6)
16 v = ((e*E)/m)*torque; // in m/s
17 disp(v, "The drift velocity in m/s is");
```

Scilab code Exa 1.5 Charge density of free electrons

```
1 // Exa 1.5
2 clc;
3 clear;
4 close;
5 format('v',10)
6 // Given data
7 d = 2; // in mm
8 d = d * 10^-3; // in m
9 sigma = 5.8*10^7; // in S/m
10 miu_e = 0.0032; // in m^2/V-s
11 E = 20; // in mV/m;
12 E = E * 10^-3; // in V/m
13 e = 1.6*10^-19; // in C
```

Scilab code Exa 1.6 Dopant density

```
1 // Exa 1.6
2 clc;
3 clear;
4 close;
5 format('v',9)
6 // Given data
7 1 = 1; // in cm
8 1 = 1 * 10^-2; // in m
9 A = 1; // in mm^2
10 A = A * 10^-6; // in m^2
11 R = 100; // in ohm
12 rho = (R*A)/1; // in ohm—m
13 \text{ sigma} = 1/\text{rho};
14 e = 1.6*10^-19; // in C
15 miu_e = 1350; // in cm<sup>2</sup>/V-s
16 miu_e = miu_e * 10^-4; // in m^2/V-s
17 n = sigma/(e*miu_e); // in /m^3
18 disp(n, "The dopant density in /m^3");
19
20 // Note: The unit of the answer is wrong because
      0.0463*10^23/\text{m}^3 = 4.63*10^21/\text{m}^3, not in /cm<sup>3</sup>
```

Scilab code Exa 1.7 Concentration of acceptor atoms required

```
1 // Exa 1.7
2 clc;
3 clear;
4 close;
5 format('v',9)
6 // Given data
7 R = 1; // in k ohm
8 R = R * 10^3; // in ohm
9 L = 400; // in m
10 L = L * 10^--6; // in m
11 W = 20; // in m
12 W = W * 10^-6; // in m
13 a = L*W; // in m^2
14 \ 1 = 4; // in mm
15 \ 1 = 1 * 10^-3; // in m
16 rho_i = (R*a)/1; // in ohm-m
17 sigma_i = 1/\text{rho_i}; // in S/m
18 e = 1.6*10^-19; // in C
19 miu_h = 480; // in cm^2/V-s
20 miu_h = miu_h * 10^-4; // in m^2/V-s
21 // sigma_i = p*e*miu_h;
22 p = sigma_i/(e*miu_h); // in /m^3
23 disp(p,"The concentration of acceptor atom in /m<sup>3</sup>
      is");
```

Scilab code Exa 1.8 Drift velocity

```
1 // Exa 1.8
2 clc;
```

```
3 clear;
4 close;
5 format('v',8)
6 // Given data
7 rho = 0.5; // in ohm—m
8 J = 100; // in A/m^2
9 miu_e = 0.4; // \text{ in } \text{m}^2/\text{V-s}
10 e = 1.6*10^-19; // in C
11 \text{ sigma} = 1/\text{rho};
12 E = J/sigma;
13 v = miu_e*E; // in m/s
14 disp(v, "The drift velocity in m/s is");
15 D = 10; // distance of travel in m
16 D = D * 10^-6; // in m
17 // Time taken by electron
18 t= D/v; // time taken in second
19 disp(t,"The time taken in second is");
```

Scilab code Exa 1.9 Electron and hole densities

```
1 // Exa 1.9
2 clc;
3 clear;
4 close;
5 format('v',9)
6 // Given data
7 rho = 0.039; // in ohm-cm
8 sigma_n = 1/rho; // in mho/cm
9 miu_e = 3600; // in cm^2/V-s
10 e = 1.602*10^-19; // in C
11 // sigma_n = n*e*miu_e = N_D*e*miu_e;
12 N_D = sigma_n/(e*miu_e); // in /cm^3
13 n = N_D; // in /cm^3
14 disp(n, "The electrons density per cm^3 is");
15 n_i = 2.5*10^13; // in /cm^3
```

```
16 p = (n_i^2)/n; // in /cm^3
17 disp(p, "The hole density per cm^3 is");
```

Scilab code Exa 1.10 Density of free electrons

```
1 // Exa 1.10
2 clc;
3 clear;
4 close;
5 format('v',10)
6 // Given data
7 rho_i = 0.47; // in ohm-m
8 \text{ sigma_i} = 1/\text{rho_i}; // \text{ in } S/m
9 miu_e = 0.39; // in m<sup>2</sup>/V-s
10 miu_h = 0.19; // in m<sup>2</sup>/V-s
11 e = 1.6*10^-19; // in C
12 // \operatorname{sigma_i} = \operatorname{n_i} *e *(\operatorname{miu_e+miu_h});
13 n_i = sigma_i/(e*(miu_e+miu_h)); // in /m^3
14 disp(n_i, "The density of electrons per m^3 is");
15 E = 10^4;
16 v_n = miu_e*E; // in m/s
17 disp(v_n, "The drift velocity for electrons in m/s is
      ");
18 v_h = miu_h*E; // in m/s
19 disp(v_h, "The drift velocity for holes in m/s is");
```

Scilab code Exa 1.11 Mobility of electrons and holes

```
1 // Exa 1.11
2 clc;
3 clear;
4 close;
5 format('v',10)
```

```
6 // Given data
7 \text{ rho} = 3000; // \text{ in ohm-m}
8 n = 1.1*10^6; // in /m^3
9 = 1.6*10^-19; // in C
10 // \text{miu_e} = 3* \text{miu_h}
                          ( i )
11 // miu_e + miu_h = 1/(rho*e*n)
                                        (ii)
12 // From eq (i) and (ii)
13 miu_h = (1/(\text{rho}*e*n))/4; // \text{ in } m^2/V-s
14 disp(miu_h, "The holes mobility in m^2/V-s is");
15 miu_e = 3*miu_h; // in m^2/V_s
16 disp(miu_e, "The electron mobility in m^2/V-s is");
17
18 // Note: The calculated value of hole mobility is
      wrong .
```

Scilab code Exa 1.12 Conductivity of intrinsic Ge

```
1 // Exa 1.12
2 clc;
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 \text{ n_i} = 2.5*10^13; // \text{ in /cm}^3
8 miu_e = 3800; //in cm^2/V-s
9 miu_h = 1800; // in m^2/V-s
10 e = 1.6*10^-19; // in C
11 sigma_i = n_i*e*(miu_e+miu_h); // in (ohm-cm)^-1
12 disp(sigma_i, "The intrinsic conductivity in (ohm-cm)
      ^{-1} is");
13 n = 4.4*10^22;
14 impurity = 10^-7;
15 N_D = n*impurity; // in /cm<sup>3</sup>
16 n = N_D; // in /cm<sup>3</sup>
17 p = (n_i^2)/N_D; // in holes/cm^3
```

Scilab code Exa 1.13 Electron and hole drift velocity

```
1 // Exa 1.13
2 clc;
3 clear;
4 close;
5 format('v',9)
6 // Given data
7 e = 1.6*10^-19; // in C
8 miu_e = 0.38; // in m<sup>2</sup>/V-s
9 \text{ miu_h} = 0.18; // \text{ in } \text{m}^2/\text{V-s}
10 V = 10; // in V
11 \ 1 = 25; // in mm
12 \ 1 = 1 * 10^{-3}; // in m
13 w = 4; // in mm
14 \text{ w} = \text{w} * 10^-3; // in m
15 t= 1.5*10^-3; // in m
16 E = V/1; // in V/m
17 v_e = miu_e*E; // in m/s
18 disp(v_e, "The electron drift velocity in m/s is");
19 v_h = miu_h*E; // in m/s
20 disp(v_h, "The hole drift velocity in m/s is");
21 \text{ n_i} = 2.5*10^19; // in /m^2
22 sigma_i = n_i*e*(miu_e+miu_h); // in (ohm-cm)^-1
23 disp(sigma_i,"The interinsic conductivity of Ge in (
      ohm-cm)^-1 is");
24 A = w*t; // in m^2
25 I = sigma_i*E*A; // in A
26 I = I * 10^3; // in mA
27 disp(I, "The total current in mA is");
```

Scilab code Exa 1.14 Ratio of electron to hole

```
1 // Exa 1.14
2 clc;
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 I_electrons = 3/4;
8 I_holes= 1/4;
9 v_h = 1;
10 v_e = 3;
11 ratio = (I_electrons/I_holes)*(v_h/v_e);
12 disp(ratio," Ratio of electrons to holes is");
```

Scilab code Exa 1.15 Diffusion coefficients of electrons

```
1 // Exa 1.15
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 miu_e = 0.17; // in m^2/V-s
8 miu_h = 0.025; // in m^2/V-s
9 e = 1.602*10^-19; // in C
10 T = 27; // in degree C
11 T = T + 273; // in K
12 kdas = 1.38*10^-23; // in J/K
13 De = miu_e*( (kdas*T)/e ); // in m^-2/s
14 De = De * 10^4; // in cm^2/s
```

```
15 disp(De,"The diffusion coefficients of electrons in
        cm^2/s");
16 Dh = miu_h*( (kdas*T)/e ); // in m^2/s
17 Dh = Dh * 10^4; // in cm^2/s
18 disp(Dh,"The diffusion coefficients of holes in cm
        ^2/s");
```

Scilab code Exa 1.16 Intrinsic carrier concentration in Si

```
1 // Exa 1.16
2 clc;
3 clear;
4 close;
5 format('v',9)
6 // Given data
7 N = 3*10^25; // in /m^3
8 e = 1.602*10^-19; // in C
9 E_G = 1.1; // in eV
10 E_G = E_G * e; // in J
11 kdas = 1.38*10^-23; // in J/K
12 T = 300; // in K
13 miu_e = 0.14; // in m^2/V-s
14 miu_h = 0.05; // in m<sup>2</sup>/V-s
15 n_i = N*(\%e^((-E_G)/(2*kdas*T))); // in /m^3
16 disp(n_i,"The interinsic carrier concentration in /m
      ^3 is");
17 sigma = n_i*e*(miu_e+miu_h); // in S/m
18 disp(sigma, "The conductivity of silicon in S/m is");
```

Scilab code Exa 1.17 Mobility of electrons

```
1 // Exa 1.17
2 clc;
```

```
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 Je = 360; // \text{ in A/cm}^2
8 T = 300; // in K
9 d = 1.5; // in mm
10 d = d * 10^-1; // in cm
11 e = 1.6*10^-19; // in C
12 del = 2*10^18-5*10^17; // assumed
13 \text{ dnBYdx} = \text{del/d};
14 De = Je/(e*dnBYdx); // in cm^2/s
15 \ V_T = T/11600;
16 miu_e = De/V_T; // in cm<sup>2</sup>/V-s
17 disp(miu_e, "The mobility of electrons in cm^2/V-s is
      ");
```

Scilab code Exa 1.18 New position of Fermi Level

```
1 // Exa 1.18
2 clc;
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 E_{\text{cminus}}E_{\text{F}} = 0.24; // in eV
8 T = 300; // in K
9 \text{ T1} = 350; // \text{ in } K
10 // E_CminusE_F = K*T*log(n_c/N_D) (i)
11 // E_CminusE_F1 = K*T1*log(n_C/N_D) (ii)
12 // From eq(i) and (ii)
13 E_CminusE_F1 = E_CminusE_F*(T1/T); // in eV
14 disp("The new position of the Fermi level lies"+
      string(E_CminusE_F1)+" eV below the conduction
      band")
```

Scilab code Exa 1.19 New position of Fermi Level

```
1 // Exa 1.19
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 E_FminusE_V = 0.39; // in eV
8 kT = 0.026; // in ev
9 //N_A1 = n_V * (%e^(-E_FminusE_V)/kT)
10 // N_A2=3*N_A1=n_V * (%e^(-E_F2minusE_V)/kT)
11 //From eq(i) and (ii)
12 E_F2minusE_V = kT*(15-log(3)); // in eV
13 disp(E_F2minusE_V,"The new position of fermi level in eV is");
```

Chapter 2

Crystal Structure Of Materials

Scilab code Exa 2.3 Density of copper crystal

```
1 // Exa 2.3
2 clc;
3 clear;
4 close;
5 // Given data
6 format('v',8)
7 r = 1.278; // in angstrum
8 At = 63.5; // atomic weight
9 N_A = 6.023*10^23; // Avagadro number
10 a = (4*r)/sqrt(2); // in angstrum
11 a = a * 10^-10; // in m
12 m = At/N_A; // in gm
13 \text{ m} = \text{m} * 10^-3; // in kg
14 V = (a^3); // in m^3
15 n = 4; // number of atoms present in one unit cell of
       Cu
16 rho = (m*n)/V; // in kg/m^3
17 disp(rho, "The density of crystal in kg/m^3 is");
```

Scilab code Exa 2.4 Interplaner distance in a crystal

```
1 // Exa 2.4
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 lembda = 1.539; // in angstrum
8 theta = 22.5; // in degree
9 n = 1; // first order
10 // n*lembda = 2*d*sind(theta);
11 d = lembda/(2*sind(theta)); // in angstrum
12 disp(d,"The interplaner distance in angstrum is");
```

Scilab code Exa 2.5 Wavelength of X ray

```
1 // Exa 2.5
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 n = 2; // second order
8 d = 0.4; // in nm
9 d = d * 10^-9; // in m
10 theta = 16.8/2; // in degree
11 // n*lembda = 2*d*sind(theta) (using Bragg's
     equation)
12 lembda = (2*d*sind(theta))/n;//in m
13 lembda = lembda * 10^10;// in angstrum
14 disp(lembda, "The wavelength of x-rays in angstrum is
     ");
```

Chapter 3

Magnetic Materials

Scilab code Exa 3.1 Hysteresis loss per cubic merter per cycle

```
1 // Exa 3.1
2 clc;
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 x = 1000; // in AT/m assumed
8 y = 0.2; // in T assumed
9 \ a = 9.3; // area in cm^2
10 // Hysteresis loss/m<sup>3</sup>/cycle
11 H = a*x*y; // in J/m^3/cycle
12 disp(H," Hysteresis loss per cubic meter per cycle in
       J/m^3/cycle is");
13 f = 50; // in Hz
14 // Hystersis loss per cubic meter at a frequency of
     50 Hz
15 h = H*f; // in W
16 h = h * 10^-3; // in kW
17 disp(h, "Hystersis loss per cubic meter at a
      frequency of 50Hz in kW is");
```

Scilab code Exa 3.2 Hysteresis loss

```
1 // Exa 3.2
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 = 93; // in cm^2
8 x = 0.1; // in Wb/m^2
9 \ y = 50; // in AT/m
10 // Hysteresis loss/m<sup>3</sup>/cycle
11 H = a*x*y; // in J/m^3/cycle
12 f = 65; // in Hz
13 V = 1500; // in cm<sup>3</sup>
14 V = V * 10^-6; // in m^3
15 Ph = H*f*V; // in W
16 disp(Ph, "The hysteresis loss in W is");
```

Scilab code Exa 3.3 Loss of energy

```
1 // Exa 3.3
2 clc;
3 clear;
4 close;
5 format('v',8)
6 // Given data
7 Eta =628; // in J/m^3
8 Bmax = 1.3; // in T
9 f = 25; // in Hz
10 m = 50; // in kg
11 rho = 7.8*10^3; // in kg/m^3
```

Scilab code Exa 3.4 Eddy current loss

```
1 // Exa 3.4
2 clc;
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 Pe1 = 1600; // in W
8 Bmax1 = 1.2; // in T
9 f1 = 50; // in Hz
10 Bmax2 = 1.5; // in T
11 f2 = 60; // in Hz
12 Pe2 = Pe1*(Bmax2/Bmax1)^2*(f2/f1)^2; // in W
13 disp(Pe2, "The eddy current loss in W is");
```

Chapter 4

Transistor Amplifiers

Scilab code Exa 4.1 DC and AC load line

```
1 // Exa 4.1
2 clc;
3 clear;
4 close;
5 format('v',8)
6 // Given data
7 \text{ V_CC} = 20; // \text{ in V}
8 I_C = 2*10^-3; // in A
9 \quad I_CQ = I_C; // in A
10 I_E=I_C;// in A
11 R_C = 3; // in k ohm
12 R_C = R_C * 10^3; // in ohm
13 R_L = 12; // in k ohm
14 R_L = R_L * 10^3; // in ohm
15 R_E = 2; // in k ohm
16 R_E = R_E * 10^3; // in ohm
17 V_CE=0:0.1:20;// in V
18 I_C_sat= (V_CC-V_CE)/(R_C+R_E)*10^3;// in mA
19 subplot (121)
20 plot(V_CE,I_C_sat);
21 xlabel("V_CE in volts")
```

```
22 ylabel("I_{-}C in mA")
23 title("DC load line")
24 Rac= R_C*R_L/(R_C+R_L); // in ohm
V_{CEQ} = V_{CC-I_CQ} * (R_C+R_E); // in V
26 I_Csat= I_CQ+V_CEQ/Rac; // in A
27 I_Csat=I_Csat*10^3; // in mA
28 V_CEoff = V_CEQ+I_CQ*Rac; // in V
29 subplot (122)
30 plot([V_CEoff 0],[0,I_Csat])
31 xlabel("V_CE in volts")
32 ylabel("I_{-}C in mA")
33 title("AC load line")
34 // Maximum peak output signal
35 POSmax = I_CQ*Rac; // in V
36 // Peak-to-peak value of output signal
37 \text{ PP\_out\_sig= } 2*POSmax; // in V
38 disp(PP_out_sig,"Peak-to-peak value of output signal
       in volts is : ")
39 disp("DC and AC load line shown in figure.")
```

Scilab code Exa 4.2 Voltage gain

```
1  // Exa 4.2
2  clc;
3  clear;
4  close;
5  format('v',6)
6  // Given data
7  delV_BE = 0.02; // in V
8  delI_B = 10; // in A
9  delI_B = delI_B * 10^-6; // in A
10  delI_C = 1; // in mA
11  delI_C = delI_C * 10^-3; // in A
12  R_C = 5; // in k ohm
13  R_C = R_C * 10^3; // in ohm
```

```
14 R_L = 10; // in k ohm
15 R_L = R_L * 10^3; // in ohm
16 Zin = delV_BE/delI_B;// in ohm
17 Zin = Zin * 10^-3; // in k ohm
18 disp(Zin, "The input impedance in k ohm is");
19 Zin= Zin*10^3; // in ohm
20 Beta = delI_C/delI_B; // unit less
21 disp(Beta, "The current gain is");
22 Rac = (R_C*R_L)/(R_C+R_L); // in ohm
23 Rac= Rac*10^-3; // in k ohm
24 disp(Rac,"The AC load resistance in k ohm is");
25 Rac= Rac*10^3; // in ohm
26 Rin = 2; // in k ohm
27 \text{ Rin} = \text{Rin} * 10^3; // \text{ in ohm}
28 \text{ Av} = \text{Beta*}(\text{Rac/Rin});
29 disp(Av, "The voltage gain is");
30 Ai = 100; // unit less
31 Ap = Av*Ai;//unit less
32 disp(Ap, "The power gain is");
```

Scilab code Exa 4.3 Base current

```
1 // Exa 4.3
2 clc;
3 clear;
4 close;
5 format('v',8)
6 // Given data
7 Alpha = 0.988; // unit less
8 I_E = 1.2; // in mA
9 I_E = I_E * 10^-3; // in A
10 I_CO = 0; // in A
11 I_C = Alpha*I_E + I_CO; // in A
12 I_B = I_E - I_C; // in A
13 I_B = I_B * 10^6; // in A
```

```
14 disp(I_B, "The base current in A is");
```

Scilab code Exa 4.4 Alpha Bita and IE

```
1 // Exa 4.4
2 clc;
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 I_B = 45; // in A
8 I_B = I_B * 10^-6; // in A
9 I_C = 5.45; // in mA
10 I_C = I_C * 10^-3; // in A
11 I_E = I_B + I_C; // in A
12 I_E = I_E * 10^3; // in mA
13 disp(I_E, "The value of I_E in mA is");
14 I_E = I_E * 10^- 3; // in A
15 Alpha = I_C/I_E; // unit less
16 disp(Alpha, "The value of Alpha is");
17 format('v',5)
18 Beta = I_C/I_B; // unit less
19 disp(Beta, "The value of Beta is");
20 I_C = 10; // in mA
21 I_C = I_C * 10^-3; // in A
22 I_B = I_C/Beta; // in A
23 I_B = I_B * 10^6; // in
                           A
24 disp(I_B, "The required base current in A is");
```

Scilab code Exa 4.5 Dynamic input resistance

```
1 // Exa 4.5 2 clc;
```

```
3 clear;
4 close;
5 format('v',8)
6 // Given data
7 delV_EB = 200; // in mV
8 delI_E = 5; // in mA
9 // Dynamic input resistance for CB configuration,
10 r_in = delV_EB/delI_E; // in ohm
11 disp(r_in, "The dynamic input resistance of transistor in ohm is");
```

Scilab code Exa 4.6 Base current

```
1 // Exa 4.6
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 R_L = 4; // in k ohm
8 R_L = R_L * 10^3; // in ohm
9 V_across_RL = 3; // in V
10 I_C = V_across_RL/R_L; // in A
11 I_C = I_C * 10^3; // in mA
12 Alpha = 0.96; // unit less
13 I_E = I_C/Alpha; // in mA
14 I_B = I_E - I_C; // in mA
15 disp(I_B, "The base current in mA is");
```

Scilab code Exa 4.7 Base and collector current

```
1 // Exa 4.7
2 clc;
```

```
3 clear;
4 close;
5 format('v',8)
6 // Given data
7 I_E = 3; // in mA
8 I_CO = 10; // in A
9 I_CO = I_CO * 10^-3; // in mA
10 Alpha = 0.98; // unit less
11 I_C = (Alpha*I_E) + I_CO; // in mA
12 disp(I_C, "The collector current in mA is");
13 I_B = I_E - I_C; // in mA
14 disp(I_B, "The base current in mA is");
```

Scilab code Exa 4.8 Current gain and base current

```
1 // Exa 4.8
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 I_E = 2; // in mA
8 I_C = 1.97; // in mA
9 I_B = I_E-I_C; // in mA
10 disp(I_B, "The base current in mA is");
11 I_CO = 12.5; // in A
12 I_CO = I_CO * 10^-3; // in mA
13 Alpha = (I_C-I_CO)/I_E; // unit less
14 disp(Alpha, "The current gain is");
```

Scilab code Exa 4.9 Dynamic input resistance

```
1 // Exa 4.9
```

```
2 clc;
3 clear;
4 close;
5 format('v',8)
6 // Given data
7 delV_BE = 250; // in mV
8 delV_BE = delV_BE * 10^-3; // in V
9 delI_B = 1; // in mA
10 delI_B = delI_B * 10^-3; // in A
11 r_in = delV_BE/delI_B; // in ohm
12 disp(r_in, "The dynamic input resistance in ohm is");
```

Scilab code Exa 4.10 Dynamic output resistance

```
1  // Exa 4.10
2  clc;
3  clear;
4  close;
5  format('v',8)
6  // Given data
7  V1 = 10; // in V
8  V2 = 5; // in V
9  I1 = 5.8; // in mA
10  I2 = 5; // in mA
11  delV_C = V1-V2; // in V
12  delI_C = I1-I2; // in mA
13  r_out = delV_C/delI_C; // in k ohm
14  disp(r_out, "The dynamic output resistance in k ohm is");
```

Scilab code Exa 4.11 Collector emitter voltage and base current

```
1 // Exa 4.11
```

```
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 \text{ V_CC} = 8; // \text{ in V}
8 I_CR_C = 0.5; // in V
9 R_C = 800; // in ohm
10 V_CE = V_CC - I_CR_C; // in V
11 disp(V_CE, "The collector emitter voltage in V is");
12 I_C = I_CR_C/R_C; // in A
13 Alpha = 0.96; // unit less
14 Beta = Alpha/(1-Alpha);
15 I_B = I_C/Beta; // in A
16 I_B = I_B * 10^6; // in
17 disp(I_B, "The Base current in A is");
```

Scilab code Exa 4.12 Bita dc and leakage current

```
1 // Exa 4.12
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 I_E = 5; // in mA
8 \text{ I\_C} = 4.95; // \text{ in mA}
9 \text{ I_CEO} = 200; // \text{ in } A
10 I_B = I_E - I_C; // in mA
11 Beta_dc = I_C/I_B; // unit less
12 disp(Beta_dc, "The value of Beta_dc is");
13 Alpha_dc = Beta_dc/(1+Beta_dc);// unit less
14 I_CBO = I_CEO * (1-Alpha_dc); // in A
15 disp(I_CBO, "The collector-to-base leakage cuurent in
        A is");
```

Scilab code Exa 4.13 IC IE ICEO and alpha

```
1 // Exa 4.13
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 I_B = 25; // in
8 I_B = I_B * 10^-6; // in A
9 I_CBO = 100; // in nA
10 I_CBO = I_CBO * 10^-9; // in A
11 Beta = 100; // unit less
12 I_C = (Beta*I_B) + ((Beta+1)*I_CBO); // in A
13 I_C = I_C * 10^3; // in mA
14 disp(I_C, "The value of I_C in mA is");
15 I_C = I_C * 10^-3; // in A
16 I_E = I_C + I_B; // in A
17 I_E = I_E * 10^3; // in mA
18 disp(I_E, "The value of I_E in mA is");
19 I_E = I_E * 10^-3; // in A
20 Alpha = Beta/(1+Beta); // unit less
21 disp(Alpha, "The value of Alpha is");
22 I_CEO = I_CBO/(1-Alpha); // in A
23 I_CEO = round(I_CEO *10^6); // in A
24 disp(I_CEO, "The value of I_CEO in A is");
```

Scilab code Exa 4.14 h parameters

```
1 // Exa 4.14
2 clc;
```

```
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 \text{ R1} = 4; // \text{ in ohm}
8 R2 = 8; // in ohm
9 R3 = 8; // in ohm
10 i1= 1; // in A (assumed)
11 h11= R1+R2*R3/(R2+R3); // in ohm
12 disp(h11, "The value of h11 in ohm is: ")
13 i2= -1/2*i1;// in A
14 h21= i2/i1;// unit less
15 disp(h21, "The value of h21 is: ")
16 v2=1;// in V (assumed)
17 i2 = v2/(R3+R2); // in A
18 v1= v2/2; // in V
19 h12= v1/v2;// unit less
20 disp(h12, "The value of h12 is: ")
21 h22= i2/v2; // in s
22 disp(h22, "The value of h22 in s is:")
```

Scilab code Exa 4.15 Hybrid parameters

```
1  // Exa 4.15
2  clc;
3  clear;
4  close;
5  format('v',9)
6  // Given data
7  Ib = 20; // in A
8  Ib = Ib * 10^-6; // in A
9  I_C = 1; // in mA
10  I_C = I_C * 10^-3; // in A
11  Vbe = 22; // in mV
12  Vbe = Vbe * 10^-3; // in V
```

```
13 Vce = 0; // \text{ in } V
14 h_ie = Vbe/Ib; // in ohm
15 h_{ie} = h_{ie} * 10^{-3}; // in k ohm
16 disp(h_ie, "The value of h_ie in k ohm is");
17 h_fe = I_C/Ib; // unit less
18 disp(h_fe, "The value of h_fe is");
19 Ib = 0;
20 Vbe = 0.25; // in mV
21 Vbe = Vbe * 10^-3; // in V
22 I_C = 30; // in A
23 I_C = I_C * 10^-6; // in A
24 Vce = 1; // in V
25 h_re = Vbe/Vce;// unit less
26 disp(h_re, "The value of h_re is");
27 \text{ h_oe} = I_C/Vce; // in S
28 \text{ h_oe} = \text{h_oe} * 10^6; // in
29 disp(h_oe, "The value of h_oe in S is");
```

Scilab code Exa 4.16 Current gain and input impedance

```
1 // Exa 4.16
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 h_fe = 50; // unit less
8 h_ie = 0.83; // in k ohm
9 h_ie = h_ie * 10^3; // in ohm
10 h_fb = -h_fe/(1+h_fe); // unit less
11 disp(h_fb, "The current gain is");
12 h_ib = h_ie/(1+h_fe); // in ohm
13 disp(h_ib, "The input impedance in ohm is");
```

Scilab code Exa 4.17 Hybrid parameters

```
1 // Exa 4.17
2 clc;
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 \text{ h_ie} = 2600; // \text{ in ohm}
8 h_fe = 100;
9 \text{ h_re} = 0.02*10^-2;
10 h_oe = 5*10^-6; // in S
11 h_{ic} = h_{ie}; // in ohm
12 disp(h_ic, "The value of h_ic in ohm is");
13 h_fc = -(1+h_fe);
14 disp(h_fc, "The value of h_fc is");
15 h_{rc} = 1 - h_{re};
16 h_{rc} = 1;
17 disp(h_rc, "The value of h_rc is");
18 \text{ h_oc} = \text{h_oe;} // \text{ in } S
19 disp(h_oc, "The value of h_oc in S is");
```

Scilab code Exa 4.18 Input and output resistance

```
1 // Exa 4.18
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 h_ie = 1000; // in ohm
8 h_fe = 50; // unit less
```

```
9 \text{ h_re} = 2.5*10^-4; // unit less
10 h_oe = 25*10^-6; // in A/V
11 R_L = 10; // in k ohm
12 R_L = R_L * 10^3; // in ohm
13 Rs = 100; // in ohm
14 Ai = -h_fe/(1 + (h_oe*R_L)); // unit less
15 disp(Ai, "The current gain is");
16 Rin = h_{ie} - ( (h_{re}*h_{fe})/(h_{oe}+(1/R_L)) ); // in
      ohm
17 disp(Rin, "The input resistance in ohm is");
18 Av = Ai*(R_L/Rin);//unit less
19 disp(Av, "The voltage gain is");
20 Ais = Ai * (Rs/(Rin+Rs)); // unit less
21 Avs = Av*(Rin/(Rin+Rs)); // unit less
22 Gout = h_{oe} - ( (h_{fe}*h_{re})/(h_{ie}+Rs) ); // in S
23 Rout = 1/Gout; // in ohm
24 Rout = Rout * 10^-3; // in k ohm
25 disp(Rout,"The output resistance in k ohm is");
26 Ap = Avs*Ais; // unit less
27 disp(Ap, "The power gain is");
```

Scilab code Exa 4.19 Ri Ro Av Ai and Ap

```
1 // Exa 4.19
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 h_ie = 2; // in k ohm
8 h_ie = h_ie * 10^3; // in ohm
9 h_re = 2*10^-4; // unit less
10 h_fe = 50; // unit less
11 h_oe = 20*10^-6; // in A/V
12 R_L = 4; // in k ohm
```

```
13 R_L = R_L * 10^3; // in ohm
14 Rs = 200; // in ohm
15 Ai = -h_fe/(1+(h_oe*R_L)); // unit less
16 disp(Ai, "The value of Ai is");
17 Ri = h_{ie} - ( (h_{re}*h_{fe})/(h_{oe}+(1/R_L)) ); // in
      ohm
18 disp(Ri, "The value of Ri in ohm is");
19 / \text{Av} = -\text{h_fe}/((\text{h_oe} + (1/\text{R_L}))*\text{Rin}) = \text{Ai}*(\text{R_L}/\text{Rin})
20 Av = Ai*(R_L/Ri); // unit less
21 disp(Av, "The value of Av is");
22 Gout = h_oe - ((h_fe*h_re)/(h_ie+Rs)); // in S
23 Rout = 1/Gout; // in ohm
24 Rout = Rout * 10^-3; // in k ohm
25 disp(Rout, "The value of Rout in k ohm is");
26 Ais = Ai * (Rs/(Ri+Rs)); // unit less
27 Avs = Av * (Ri/(Ri+Rs)); // unit less
28 Ap = Av*Ai; // unit less
29 disp(Ap,"The value of Ap is");
```

Scilab code Exa 4.20 Current gain and overall current gain

```
1 // Exa 4.20
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 R_S = 200; // in ohm
8 R_L = 1200; // in ohm
9 h_ib = 24; // in ohm
10 h_rb = 4*10^-4; // unit less
11 h_fb = -0.98; // unit less
12 h_ob = 0.6; // in A/V
13 h_ob = h_ob * 10^-6; // in A/V
```

```
14 Ai = -h_fb/(1+(h_ob*R_L)); // unit less
15 disp(Ai, "The current gain is");
16 Ri = h_ib + (h_rb*Ai*R_L); // in ohm
17 disp(Ri, "The input impedance in ohm is");
18 Av = round((Ai*R_L)/Ri); // unit less
19 disp(Av, "The Voltage gain is");
20 Ais = (Ai*R_S)/(Ri+R_S); // unit less
21 disp(Ais, "The overall current gain is");
```

Scilab code Exa 4.21 Voltage gain of amplifier circuit

```
1 // Exa 4.21
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 g_m = 2500; // in S
8 g_m = g_m * 10^-6; // in S
9 R_L = 12; // in k ohm
10 R_L = R_L * 10^3; // in ohm
11 //Av = -g_m*(r_d || R_D || R_L);
12 Av = -g_m*R_L;
13 disp(Av, "The voltage gain is");
```

Scilab code Exa 4.22 Voltage gain and output resistance

```
1 // Exa 4.22
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
```

```
7 R_D = 5; // in k ohm
8 R_D = R_D * 10^3; // in ohm
9 r_d = 35; // in k ohm
10 r_d = r_d * 10^3; // in ohm
11 miu = 50; // amplifier factor
12 g_m = miu/r_d; // in S
13 Av = -g_m*( (r_d*R_D)/(r_d+R_D) );
14 disp(Av, "The voltage gain is");
15 Rout = (R_D*r_d)/(R_D+r_d); // in ohm
16 Rout= Rout*10^-3; // in k ohm
17 disp(Rout, "The output resistance in k ohm is");
```

Scilab code Exa 4.23 RD and Rs

```
1 // Exa 4.23
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 \text{ V_GS} = -1.0; // in V
8 V_DS = 4.0; // in V
9 I_DS = 1; // in mA
10 I_DS = I_DS * 10^-3; // in A
11 I_G = 0; // in A
12 R_G = 500; // in k ohm
13 R_G = R_G * 10^3; // in ohm
14 V_DD = 10; // in V
15 V_DS = 4; // in V
16 V_G = I_G*R_G; // in V
17 Vs = V_G-V_GS; // in V
18 R_S = Vs/I_DS; // in ohm
19 R_S = R_S * 10^- 3; // in k ohm
20 disp(R_S, "The value of R_S in k ohm is");
21 R_S = R_S * 10^3; // in ohm
```

Scilab code Exa 4.24 RD and Rs

```
1 // Exa 4.24
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 \text{ V}_{GS} = -1; // \text{ in } V
8 \text{ V_DS} = -4; // \text{ in V}
9 I_DS = 1; // in mA
10 I_DS = I_DS * 10^-3; // in A
11 g_m = 5*10^-3; // in mhos
12 Rds = 20; // in k ohm
13 Rds = Rds * 10^3; // in ohm
14 R_S = 1; // in k ohm
15 R_S = R_S * 10^3; // in ohm
16 R_D = 5; // in k ohm
17 R_D = R_D * 10^3; // in ohm
18 / \text{Av} = \text{Vout/Vin} = -g_{\text{-m}} * (r_{\text{-d}} | | R_{\text{-D}} | | R_{\text{-L}}) = -g_{\text{-m}} * ((R_{\text{-D}} | R_{\text{-D}}))
       *Rds)/(R_D+Rds));
19 Av = -g_m*((R_D*Rds)/(R_D+Rds));
20 disp(Av, "The voltage gain is");
21 R_G = 500; // in k ohm
22 R_G = R_G * 10^3; // in ohm
23 Rin = R_G; // in ohm
24 Rin= Rin*10^-3; // in k ohm
25 disp(Rin, "The value of Rin in k ohm is");
26 Rin= Rin*10^3; // in ohm
```

```
27 Rout = (R_D*Rds)/(R_D+Rds); // in ohm

28 Rout = Rout*10^-3; // in k ohm

29 disp(Rout, "The value of Rout in k ohm is");
```

Scilab code Exa 4.25 Input and output impedance voltage gain

```
1 // Exa 4.25
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 R1 = 4; // in M ohm
8 R2 = 2; // in Mohm
9 R_G = (R1*R2)/(R1+R2); // in Mohm
10 Zin = R_G; // in Mohm
11 disp(Zin, "The input impedance in Mohm is");
12 R_S = 2.5; // in k ohm
13 R_S = R_S * 10^3; // in ohm
14 R_L = 25; // in k ohm
15 R_L = R_L * 10^3; // in ohm
16 \text{ g_m} = 2500; // in
17 \text{ g_m} = \text{g_m} * 10^-6; // in S
18 Zout = (R_S*(1/g_m))/(R_S+(1/g_m)); in ohm
19 disp(Zout, "The output impedance in ohm is");
20 \text{ Av} = g_m*((R_S*R_L)/(R_S+R_L))/(1+g_m*((R_S*R_L)/(1+g_m)))
      R_S+R_L)) );// unite less
21 disp(Av, "The voltage gain is");
```

Chapter 5

Amplifier Frequency Response

Scilab code Exa 5.1 fbita and bita

```
1 // Exa 5.1
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Alpha_o = 0.978; // unit less
8 f_Alpha = 2.5; // in MHz
9 f_Beta = (1-Alpha_o)*f_Alpha; // in MHz
10 disp(f_Beta,"The value of f_Beta in MHz is");
11 Beta = (0.707*Alpha_o)/(1-Alpha_o); // unit less
12 disp(Beta,"The value of Beta is");
```

Scilab code Exa 5.2 Cut off frequency

```
1 // Exa 5.2
2 clc;
3 clear;
```

```
4 close;
5 format('v',6)
6 // Given data
7 C = 0.15; // in F
8 C = C * 10^-6; // in F
9 R = 7.5; // in k ohm
10 R = R * 10^3; // in ohm
11 f1 = 1/(2*%pi*R*C); // in Hz
12 disp(f1, "The cutoff frequency in Hz is");
```

Scilab code Exa 5.3 Voltage gain and lower cut off frequency

```
1 // Exa 5.3
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 \text{ R_S} = 1; // \text{ in k ohm}
8 R1 = 20; // in k ohm
9 R2 = 10; // in k ohm
10 R_C = 2; // in k ohm
11 R_E = 2; // in k ohm
12 R_L = 2; // in k ohm
13 V_BE = 0.7; // in V
14 \ V_T = 26*10^-3; // in V
15 Beta = 100; // unite less
16 V_{CC} = 15; // in V
17 Cin = 10; // in
18 C_E = 20; // in
                      \mathbf{F}
19 Cout = 1; // in
20 \text{ V}_B = R2/(R1+R2) *V_CC; // in V
21 / I_E = V_E/R_E = (V_B-V_BE)/(R_E*10^3); // in A
22 I_E = (V_B-V_BE)/(R_E*10^3); // in A
23 r_e = V_T/I_E; // in ohm
```

```
24 \text{ r_e= r_e*10^-3; // in k ohm}
25 // \text{Av} = \text{Vout/Vin} = ( (-(R_C * R_L) / (R_C + R_L)) / r_e );
26 \text{ Av} = ((-(R_C*R_L)/(R_C+R_L))/(r_e));
27 \text{ Rin} = (R1*R2*Beta*r_e)/((R1*R2)+(R2*Beta*r_e)+(Beta*)
      r_e*R1));// in k ohm
28 Zin = Rin; // in k ohm
29 // Vin = (Rin/(Rin+R_S))*V_S;
30 Vin_by_V_S = Rin/(Rin+R_S);
31 Avi = Av*Vin_by_V_S; // unite less
32 disp(Avi, "The voltage gain is");
33 f_Li = 1/(2*\%pi*(R_S+Rin)*10^3*Cin*10^-6);//in Hz
34 disp(f_Li, "The lower cutoff frequency in Hz is");
35
36 // Note: The wrong value is putted of Rin to
      evaluating the value of f_Li, So there is some
      difference between coding and the answer of the
      book.
```

Scilab code Exa 5.4 Lower cut off frequency

```
1 // Exa 5.4
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Cin = 0.02*10^-6; // in F
8 Cout = 0.47*10^-6; // in F
9 Cs = 2.2*10^-6; // in F
10 Rsignal = 12*10^3; // in ohm
11 R_G = 2*10^6; // in ohm
12 R_D = 1.5*10^3; // in ohm
13 Rout = 1.5*10^3; // in ohm
14 Rs = 2*10^3; // in ohm
15 R_L = 2.7*10^3; // in ohm
```

```
16  I_DSS = 15*10^-3; // in A
17  V_P = -4; // in V
18  V_GSQ = -2; // in V
19  V_DD = 30; // in V
20  g_mo = (-2*I_DSS)/V_P; // in S
21  g_m = g_mo * (1-(V_GSQ/V_P)); // in S
22  fLi = 1/( 2*%pi*(Rsignal+R_G)*Cin ); // in Hz
23  fLo = 1/( 2*%pi*(Rout+R_L)*Cout ); // in Hz
24  Req = (Rs*(1/g_m))/(Rs+(1/g_m)); // in ohm
25  fLs = 1/(2*%pi*Req*Cs); // in Hz
26  disp(fLs, "The lower cutoff frequency in Hz is");
```

Scilab code Exa 5.5 Input capacitance

```
1 // Exa 5.5
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Ccb = 5; // in pF
8 Cbe = 12; // in pF
9 h_fe = 100; // unite less
10 h_ie = 1.5; // in k ohm
11 R_C = 12; // in k ohm
12 Av = (-h_fe/h_ie)*R_C;
13 Cin = Cbe + (1-Av)*Ccb; // in pF
14 disp(Cin, "The input capacitance in pF is");
```

Scilab code Exa 5.6 Miller capacitance

```
1 // Exa 5.6
2 clc;
```

```
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ V_DD} = 10; // \text{ in V}
8 Cds = 0.5*10^-12; // in F
9 Cgs = 5*10^-12; // in F
10 Cgd = 4*10^-12; // in F
11 R_D = 2*10^3; // in ohm
12 I_DSS = 10*10^-3; // in A
13 V_P = -4; // in V
14 \ V_{GSQ} = -2; // in \ V
15 g_mo = (-2*I_DSS)/V_P;// in S
16 \text{ g_m} = \text{g_mo} * (1-(V_GSQ/V_P)); // in S
17 Av = -R_D*g_m; // circuit mid-frequency gain
18 // Miller capacitance
19 C_M = (1-Av)*Cgd; // in F
20 \text{ C_M= C_M*10^12;} // \text{ in pF}
21 disp(C_M, "The miller capacitance in pF is");
```

Scilab code Exa 5.7 Value of gm

```
1 // Exa 5.7
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 I_C = 1; // in mA
8 V_T = 26; // in mV
9 g_m = I_C/V_T; // in S
10 disp(g_m*10^3, "The value of g_m in mS is");
11 h_fe = 224; // unit less
12 r_b_desh_e = h_fe/g_m; // in ohm
13 disp(r_b_desh_e*10^-3, "The value of r_b''e in k ohm
```

```
is");

14 h_ie = 6; // in k ohm

15 h_ie = h_ie *10^3; // in ohm

16 r_b_desh_b= h_ie - r_b_desh_e; // in ohm

17 disp(r_b_desh_b, "The value r_b''b in ohm is");

18 fT = 80; // in MHz

19 fT = fT * 10^6; // in Hz

20 C_b_desh_c = 12; // in pF

21 C_b_desh_c = C_b_desh_c* 10^-12; // in F

22 C_b_desh_e= (g_m/(2*%pi*fT)) - C_b_desh_c; // in F

23 C_b_desh_e=C_b_desh_e*10^12; // in pF

24 disp(C_b_desh_e, "The value of C_b''e in pF is");
```

Scilab code Exa 5.8 All hybrid parameters

```
1 // Exa 5.8
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 I_C = 10; // in mA
8 I_C = I_C * 10^-3; // in A
9 \text{ V_CE} = 10; // \text{ in V}
10 h_ie = 500; // in ohm
11 h_oe = 4*10^-5; // in A/V
12 h_fe = 100; // unit less
13 h_re = 10^-4; // unit less
14 V_T = 26; // in mV
15 \ V_T = V_T * 10^-3; // in V
16 g_m = I_C/V_T; // in S
17 \text{ g_m} = \text{g_m} * 10^3; // \text{ in mS}
18 disp(g_m, "The value of g_m in mS is");
19 g_m = g_m * 10^-3; // in S
20 \text{ r_b_desh_e} = \text{h_fe/g_m;} // \text{ in ohm}
```

```
21 disp(r_b_desh_e, "The value of r_b''e in ohm is");
22 \text{ r_b_desh_b} = \text{h_ie} - \text{r_b_desh_e}; // \text{ in ohm}
23 disp(r_b_desh_b, "The value of r_b''b in ohm is");
24 r_b_desh_c = r_b_desh_e/h_re; // in ohm
25 \text{ r_b_desh_c= r_b_desh_c } *10^-6; // \text{ in M ohm}
26 disp(r_b_desh_c, "The value of r_b''c in Mohm is");
27 r_b_desh_c= r_b_desh_c *10^6; // in ohm
28 g_b_desh_c = 1/r_b_desh_c;// unit less
29 g_ce = h_oe - (1+h_fe)*g_b_desh_c;// in S
30 format('v',11)
31 disp(g_ce, "The value of g_ce in S is");
32 \text{ Cob} = 3; // \text{ in pF}
33 Cbdasc = Cob; // in pF
34 disp(Cbdasc, "The value of C_b''c in pF is: ")
35 format('v',6)
36 	ext{ fT} = 50; // 	ext{ in } 	ext{MHz}
37 	ext{ fT} = 	ext{fT} * 10^6; // 	ext{in Hz}
38 Cbdase = (g_m/(2*\%pi*fT))-Cbdasc * 10^-12; // in F
39 Cbdase = Cbdase *10^12; // in pF
40 disp(Cbdase, "The value of C_b''e in pF is");
```

Scilab code Exa 5.9 The midband gain and upper 3 dB frequency

```
1 // Exa 5.9
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 V_CC = 12; // in V
8 V_EE = V_CC; // in V
9 I = 1; // in mA
10 I = I * 10^-3; // in A
11 R_B = 120; // in k ohm
12 R_B = R_B * 10^3; // in ohm
```

```
13 R_C = 10; // in k ohm
14 R_C = R_C * 10^3; // in ohm
15 Rsig = 5; // in k ohm
16 Rsig = Rsig * 10^3; // in ohm
17 R_L = 5; // in k ohm
18 R_L = R_L * 10^3; // in
19 Beta = 125;// unit less
20 \text{ V}_A = 200; // \text{ in V}
21 Cmiu = 1; // in pF
22 Cmiu = Cmiu * 10^-12; // in F
23 fT = 1000; // in MHz
24 	ext{ fT} = 	ext{fT} * 10^6; // in Hz
25 \text{ r_x} = 50; // \text{ in ohm}
26 \text{ V}_T = 25; // \text{ in mV}
27 \text{ V}_T = \text{V}_T * 10^-3; // in \text{ V}
28 g_m = I/V_T; // in A/V
29 r_pie = Beta/g_m; // in ohm
30 \text{ r_o} = V_A/I; // \text{ in ohm}
31 Cpie = (g_m/(2*\%pi*fT))-Cmiu; // in F
32 \text{ RdasL} = (r_o*R_C*R_L)/((r_o*R_C)+(R_C*R_L)+(R_L*r_o)
      ) );// in ohm
33 Gm = g_m*RdasL; // unit less
34 R = (R_B*Rsig)/(R_B+Rsig); // in ohm
35 A_VM = (-R_B/(R_B+Rsig)) * (r_pie/(r_pie+r_x+R)) *
36 disp(A_VM, "The mid band gain is");
37 \text{ Avm} = 20*\log(abs(A_VM)); // in dB
38 Cin = Cpie+Cmiu*(1+Gm); // in F
39 Rdassig = (r_pie*(r_x+R))/(r_pie+(r_x+R)); in ohm
40 f2 = 1/(2*\%pi*Cin*Rdassig); // in Hz
41 	ext{ f2} = 	ext{f2} * 10^-3; // in kHz
42 disp(f2, "The upper 3-dB frequency in kHz is");
```

Scilab code Exa 5.10 The midband gain and upper 3 dB frequency

```
1 // Exa 5.10
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 R_G = 3.9*10^6; // in ohm
8 R_L = 18*10^3; // in ohm
9 R_D = R_L; // in ohm
10 g_m = 2*10^-3; // in A/V
11 r_o = 250*10^3; // in ohm
12 Cgs = 1*10^-12; // in F
13 Cgd = 0.25*10^-12; // in F
14 Rsig = 50*10^3; // in ohm
15 A_VM = -R_G/(R_G+Rsig)*g_m*r_o*R_D*R_L/(r_o*R_D+R_D*R_D)
     R_L+R_L*r_o);
16 disp(A_VM, "The midband gain is");
17 RdasL = (r_o*R_D*R_L)/((r_o*R_D) + (R_D*R_L) + (R_L*
      r_o) );// in ohm
18 Ceq = (1 + g_m*RdasL)*Cgd; // in F
19 Cin = Cgs + Ceq; // in F
20 	ext{ f2} = 1/( 2*\%pi*Cin*( (Rsig*R_G)/(Rsig+R_G) ) ); // in
      Hz
21 	 f2 = f2 * 10^-3; // in kHz
22 disp(f2, "The upper 3dB frequency in kHz is");
```

Chapter 6

Feedback Amplifiers

Scilab code Exa 6.1 Voltage gain and power gain

```
1 // Exa 6.1
2 clc;
3 clear;
4 close;
5 format('v',8)
6 // Given data
7 Rs = 10; // in k ohm
8 \text{ Rs} = \text{Rs} * 10^3; // \text{ in ohm}
9 Rin = 10; // in ohm
10 Rout = 10; // in k ohm
11 Rout = Rout * 10^3; // in ohm
12 R_L = 10; // in ohm
13 Ai = 1000; // unit less
14 VinBY_Iin= Rin; // in ohm
15 VoutBY_Iin= Ai*Rout*R_L/(Rout+R_L); // in V
16 Av= VoutBY_Iin/VinBY_Iin;// unit less
17 disp(Av, "The voltage gain is: ")
18 Ai= (VoutBY_Iin/R_L)/((Rs+Rin)/Rs);// unit less
19 Ap= Av*Ai; // unit less
20 disp(Ap, "The power gain is: ")
```

Scilab code Exa 6.2 Voltage gain

```
1 // Exa 6.2
2 clc;
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 Beta = 0.01; // feedback fraction
8 // Voltage gain with negative feedback
9 A = 3000; // unit less
10 Af = A/(1+(Beta*A)); // unit less
11 disp(Af, "The voltage gain of the amplifier is");
```

Scilab code Exa 6.3 Gain of a negative feedback amplifier

```
1 // Exa 6.3
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 A = 75; // internal gain
8 Beta = 1/15; // feedback fraction
9 Af = A/(1+(Beta*A)); // voltage gain with negative feedback
10 disp(Af, "The voltage gain with negative feedback is" );
11 A_desh = 2*A; // unit less
12 A_desh_f = A_desh/(1+(Beta*A_desh)); // unit less
13 disp(A_desh_f, "The new value of gain is");
```

Scilab code Exa 6.4 Voltage gain with feedback

```
1 // Exa 6.4
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 A = 40;// open loop voltage gain
8 Beta = 10/100;// feedback ratio
9 Af = A/(1+(Beta*A));// voltage gain with feedback
10 disp(Af,"The voltage gain with feedback is");
11 Amount = 20*log10(abs( 1/(1+(Beta*A)) ));// Amount of feedback in dB
12 disp(Amount,"Amount of feedback in dB is");
13 Loopgain = A*Beta;// unit less
14 disp(Loopgain,"The Loop gain is");
```

Scilab code Exa 6.5 Gain in dB

```
1 // Exa 6.5
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 A = 60; // in dB
8 A = 10^(A/20); // unit less
9 Beta = 1/20; // feedback fraction
10 Af = A/(1+(Beta*A)); // gain with feedback
11 Af = 20*log10(Af); // in dB
12 disp(Af, "The gain with feed back in dB is");
```

Scilab code Exa 6.6 Gain with feedback

```
1 // Exa 6.6
2 clc;
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 A = 2500; // open loop gain
8 // Desensitivity of transfer gain
9 trnsfr_gain_densitivity = 40; // in dB
10 trnsfr_gain_densitivity = 10^(
     trnsfr_gain_densitivity/20);
11 Af = A/trnsfr_gain_densitivity;// unit less
12 disp(Af, "The gain with feed back is");
13 I = A/Af; // assumed
14 disp("The input for same output will become "+string
     (I)+" times the input without feedback.")
```

Scilab code Exa 6.7 Feedback factor

```
1 // Exa 6.7
2 clc;
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 A = 60; // in dB
8 A = 10^(A/20); // unit less
9 Af = 40; // in dB
10 Af = 10^(Af/20); // unit less
```

```
11 // Af = A/(1+(A*Beta));
12 BetaIntoA = (A/Af)-1; // feedback factor
13 disp(BetaIntoA, "The feed back factor is");
```

Scilab code Exa 6.8 Percentage of output

```
1 // Exa 6.8
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 A = 600; // unit less
8 Af = 50; // unit less
9 // Af = A/(1+(A*Beta));
10 Beta = ((A/Af)-1)/A; // unit less
11 //P = Vf/Vout = Beta*100;
12 P = Beta*100; // percentage of output voltage in % is");
```

Scilab code Exa 6.9 Voltage gain without feedback

```
1 // Exa 6.9
2 clc;
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 Vout = 12.5; // in V
8 Vin = 0.25; // in V
9 Av = Vout/Vin; // unit less
10 disp(Av, "The voltage gain without feed back is ");
11 Vin = 1.5; // in V
```

```
12 Avf = round(Vout/Vin); // unit less
13 // Avf = Av/(1+(Beta*Av));
14 Beta = ((Av/Avf)-1)/Av; // unit less
15 Beta = Beta*100; // in %
16 disp(Beta, "The value of in % is");
```

Scilab code Exa 6.10 Amount of feedback in dB

```
1 // Exa 6.10
2 clc;
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 Af = -100; // unit less
8 Vin = 0.06; // in V
9 Vout = Af*Vin; // in V
10 Vin = 50; // in mV
11 Vin = Vin * 10^-3; // in V
12 A = Vout/Vin; // unit less
13 //Af = A/(1+(A*Beta));
14 Beta = (abs(A)-abs(Af))/(Af*A);//unit less
15 disp(Beta, "The value of is");
16 Amount = 20*log10(abs(1/(1+(-Af*Beta)))); in dB
17 disp(Amount, "The Amount of feed back in dB is");
```

Scilab code Exa 6.11 Change in overall gain

```
1 // Exa 6.11
2 clc;
3 clear;
4 close;
5 format('v',4)
```

```
6 // Given data
7 A = 1000; // unit less
8 Beta = 0.002; // unit less
9 Af = A/(1+(A*Beta)); // unit less
10 // When open-loop gain is reduced by
11 A_desh = (1-15/100)*A; // unit less
12 A_desh_f = A_desh/(1+(A_desh*Beta)); // unit less
13 P = ((Af-A_desh_f)/Af)*100; // percentage change in overall gain in %
14 disp(P, "The change in overall gain in % is");
```

Scilab code Exa 6.12 Feedback ration and factor

```
1 // Exa 6.12
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ R_C} = 2.5; // \text{ in k ohm}
8 R_C = R_C * 10^3; // in ohm
9 R_E = 1; // in k ohm
10 R_E = R_E * 10^3; // in ohm
11 h_ie = 1.1; // in k ohm
12 h_ie = h_ie * 10^3; // in ohm
13 h_fe = 200; // unit less
14 Beta = 200; // unit less
15 A = round((-h_fe/h_ie)*R_C);// unit less
16 disp(A, "The voltage gain without feed back is");
17 Af = -R_C/R_E; // unit less
18 disp(Af,"The voltage gain with feed back is");
19 // Af = A/(1+(A*Beta));
20 Beta = (abs(A)-abs(Af))/(A*Af);//unit less
21 disp(Beta, "The feed back ratio is");
22 feedbackfactor = round(abs(A)*Beta);// unit less
```

Scilab code Exa 6.13 Av and bita

```
// Exa 6.13
clear;
close;
format('v',7)
// Given data
davByAv = 20/100;// variation in open loop gain
davf_by_Avf = 1/100;// variation in closed loop gain
BetaAv = (dAvByAv/dAvf_by_Avf)-1;// feedback factor
Avf = 100;//unit less
Av = Avf*(1+BetaAv);// open loop voltage gain
disp(Av,"The value of Av is");
Beta = ((Av/Avf)-1)/Av;// unit less
disp(Beta,"The value of is");
```

Scilab code Exa 6.14 Percentage change in closed loop gain

```
1 // Exa 6.14
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Av =10000; // open loop gain
8 Beta = 1/10; // feedback ratio
9 Avf = Av/(1+(Av*Beta)); // closed loop gain
10 dAvByAv = 50/100; // change in open loop gain
11 dAvByAvf = 1/(1+(Beta*Av))*dAvByAv*100; // change in closed loop gain in %
```

12 disp(dAvByAvf, "The percentage change in closed loop gain in % is");

Scilab code Exa 6.15 Percentage change in closed loop gain

```
1 // Exa 6.15
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 BetaAvPlus1 = 10; // in dB
8 BetaAvPlus1 = 10^(BetaAvPlus1/20); // unit less
9 BetaAv = BetaAvPlus1 - 1; // unit less
10 dAvByAv = 0.05; // unit less
11 // Beta*Av = (dAvByAv/dAvfByAvf) -1;
12 dAvfByAvf = dAvByAv/( BetaAv+1 ); // unit less
13 dAvfByAvf = dAvfByAvf * 100; // in %
14 disp(dAvfByAvf, "The percentage change in the closed loop gain in % is");
```

Scilab code Exa 6.16 Open and closed loop gain

```
1  // Exa 6.16
2  clc;
3  clear;
4  close;
5  format('v',7)
6  // Given data
7  D = 10/100; // distortion without feedback
8  Df = 1/100; // distortion with feedback
9  Beta = 10/100; // feedback ratio
10  // Df = D/(1+(Beta*A));
```

```
11 A = ((D/Df)-1)/Beta;// open loop gain
12 disp(A,"The open loop gain is");
13 Af = A/(1+(Beta*A));// closed loop gain
14 disp(Af,"The closed loop gain is");
```

Scilab code Exa 6.17 Distortion of the amplifier

```
1 // Exa 6.17
2 clc;
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 A = 150;// open loop voltage gain
8 Beta = 10/100;// feedback ratio
9 D = 5/100;// distortion without feedback
10 Df = D/(1+(Beta*A));// distortion with feedback
11 Df = Df * 100;// in %
12 disp(Df, "The distortion of the amplifier with feed back in % is");
```

Scilab code Exa 6.18 Gain and output voltage with feedback

```
1  // Exa 6.18
2  clc;
3  clear;
4  close;
5  format('v',7)
6  // Given data
7  D = 10/100; // distortion without feedback
8  Df = 1/100; // distortion with feedback
9  A = 200; // unit less
10  // Df = D/(1+(Beta*A));
```

```
11  Beta = ((D/Df)-1)/A; // unit less
12  Af = A/(1+(Beta*A)); // unit less
13  disp(Af, "The gain voltage with feed back is");
14  Vs = 10; // in mV
15  Vs = Vs * 10^-3; // in V
16  Vout = Af*Vs; // in V
17  disp(Vout, "The output voltage with feed back in V is ");
```

Scilab code Exa 6.19 Required input signal

```
1 // Exa 6.19
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 A = 1000; // open loop gain
8 D = 10/100; // distortion without feedback
9 \text{ Vs} = 10; // \text{ in mV}
10 Vs = Vs * 10^-3; // in V
11 BetaA = 40; // in dB
12 BetaA = 10^(BetaA/20); // unit less
13 Vdesh_s = Vs*(1+BetaA); // in V
14 disp(Vdesh_s, "The required input signal in V is");
15 Df = (D/(1+BetaA))*100; // in \%
16 disp(Df,"The percentage second harmonic distortion
      in % is");
17 Af = A/(1+BetaA); // unit less
18 disp(Af, "The closed loop voltage gain is");
```

Scilab code Exa 6.20 Voltage gain and input output resistance

```
1 // Exa 6.20
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 A = 300; // voltage gain
8 \text{ Rin} = 1.5; // \text{ in k ohm}
9 Rout = 50; // in k ohm
10 Beta = 1/15; // unit less
11 Af = A/(1+(Beta*A)); // unit less
12 disp(Af, "The voltage gain is");
13 Rinf = (1+(Beta*A))*Rin; // in k ohm
14 disp(Rinf, "The input resistance in k ohm is");
15 Routf = Rout/(1+(Beta*A)); // in k ohm
16 disp(Routf, "The output resistance in k ohm is");
```

Scilab code Exa
 6.21 Feedback factor and percentage change in overall gain

```
1  // Exa 6.21
2  clc;
3  clear;
4  close;
5  format('v',6)
6  // Given data
7  dA_ByA = 0.1; // change in gain of internal amplifier
8  A = 60; // in dB
9  A = A * 16.666; // unit less
10  Zo = 12; // in k ohm
11  Zo = Zo * 10^3; // in ohm
12  Zoutf = 600; // in ohm
13  Beta = ((Zo/Zoutf)-1)/A; // unit less
14  disp(Beta, "The value of feed back factor is");
15  dAf_byAf = 1/(1+(A*Beta))*(dA_ByA)*100; // change in
```

```
overall gain in %
16 disp(dAf_byAf, "The percentage change in overall gain
    in % is");
```

Scilab code Exa 6.22 Amplifier voltage gain

```
1 // Exa 6.22
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 D = 5/100; // distortion without feedback
8 A = 1000; // open loop voltage gain
9 Beta = 0.01; // feedback ratio
10 Af = A/(1+(Beta*A)); // unit less
11 disp(Af, "The Amplifier voltage gain is");
12 f1 = 50; // in Hz
13 fdas1 = f1/(1+(Beta*A)); // in Hz
14 disp(fdas1,"The lower cutoff frequency with feedback
       in Hz is");
15 	ext{ f2} = 200; // in kHz
16 	ext{ f2} = 	ext{f2} * 10^3; // in Hz
17 fdas2 = f2*(1+(Beta*A)); // in Hz
18 fdas2 = fdas2 * 10^--6; // in MHz
19 disp(fdas2,"The upper cutoff frequency with feedback
       in MHz is");
20 Df = (D/(1+(Beta*A)))*100; // in \%
21 disp(Df, "The distortion with feed back in % is");
```

Scilab code Exa 6.23 Feedback factor and bandwidth

```
1 // Exa 6.23
```

```
2 clc;
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 Avm = 1500; // midband gain
8 Avmf = 150; // midband gain with feedback
9 // Avmf = Avm/(1+(Beta*Avm));
10 BetaAvm = (Avm/Avmf)-1; // feedback factor
11 disp(BetaAvm, "The value of feed back factor is");
12 bandwidth = 4; // in MHz
13 BWf = (1+BetaAvm)*bandwidth; // in MHz
14 disp(BWf, "The band width with feedback in MHz is");
```

Scilab code Exa 6.24 New bandwidth and gain

```
1 // Exa 6.24
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 A = 100; //mid frequency gain
8 \text{ BW} = 200; // \text{ in kHz}
9 Beta = 5/100; // feedback ratio
10 BWf = (1+(Beta*A))*BW; // in kHz
11 BWf = BWf * 10^-3; // in MHz
12 disp(BWf,"The bandwidth with feedback in MHz is");
13 Af = A/(1+(Beta*A)); // unit less
14 disp(Af, "The gain with feedback is");
15 BWf = 1000; // in kHz
16 Beta = ((BWf/BW)-1)/A*100; //feedback ratio in \%
17 disp(Beta, "The amount of feedback in % is");
```

Scilab code Exa 6.25 Input impedance

```
1 // Exa 6.25
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 \text{ V_CC} = 20; // \text{ in V}
8 R1 = 10; // in k ohm
9 R1 = R1 * 10^3; // in ohm
10 R2 = 10; // in k ohm
11 R2 = R2 * 10^3; // in ohm
12 R_E = 9.3; // in k ohm
13 R_E = R_E * 10^3; // in ohm
14 R_L = 18.6; // in k ohm
15 R_L = R_L * 10^3; // in ohm
16 V2 = (V_CC/(R1+R2))*R2;// in V
17 V_BE = 0.7; // in V
18 Ve = V2-V_BE; // in V
19 Ie = Ve/R_E; // in A
20 V_T = 25*10^-3; // in V
21 rdase = V_T/Ie;// in ohm
22 RdasE = (R_E*R_L)/(R_E+R_L); // in ohm
23 Beta = 100; // unit less
24 Zinbase = Beta*(rdase+RdasE);// in ohm
25 Zin =R1*R2*Zinbase/(R1*R2+R2*Zinbase+Zinbase*R1);//
      in ohm
26 \text{ Zin= Zin*}10^-3; // in k ohm
27 disp(Zin,"The input impedance in k ohm is");
```

Chapter 7

Oscillators

Scilab code Exa 7.1 Frequency of oscillaiton

```
1 // Exa 7.1
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 L = 29.3; // in H
8 L = L * 10^-6; // in H
9 C = 450; // in pF
10 C = C * 10^-12; // in F
11 f_o = 1/( 2*%pi*(sqrt( L*C )) ); // in Hz
12 f_o = f_o * 10^-6; // in MHz
13 disp(f_o, "The frequency of oscillation in MHz is");
```

Scilab code Exa 7.2 Range of required capacitor

```
1 // Exa 7.2
2 clc;
```

```
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ f_o} = 100; // \text{ in kHz}
8 f_o = f_o * 10^3; // in Hz
9 L = 100; //in H
10 L = L * 10^-6; // in H
11 //Formula f_{-0} = 1/(2*\%pi*(sqrt(L*C)));
12 C1 = 1/(4*(\%pi^2)*(f_o^2)*L); // in F
13 C1 = C1 * 10^12; // in pF
14 	ext{ f_o} = 1500; // in kHz
15 \text{ f_o} = \text{f_o} * 10^3; // \text{ in Hz}
16 C2 = 1/(4*(\%pi^2)*(f_o^2)*L); // in F
17 C2 = C2 * 10^12; // in pF
18 disp("The range of variable capacitor is "+string(C2
      )+" pF to "+string(C1)+" pF")
```

Scilab code Exa 7.3 Transformer winding turn ratio

```
1 // Exa 7.3
2 clc;
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 V_CC = 12; // in V
8 Pout = 88; // in mW
9 Plosses = 8; // in mW
10 Pin = Pout+Plosses; // in mW
11 Pin = Pin * 10^-3; // in W
12 I_C = Pin/V_CC; // in A
13 Gm = 10; // in mA/V
14 Gm = Gm * 10^-3; // in A/V
15 V_B = I_C/Gm; // in V
```

```
16 ratio = V_CC/V_B; // Transformer winding turn ratio
17 disp(ratio, "The Transformer winding turn ratio is");
```

Scilab code Exa 7.4 Operating frequency

```
1 // Exa 7.4
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 L = 100; // in
8 L = L * 10^-6; // in H
9 \text{ C1} = 0.001; // \text{ in } F
10 C1 = C1 * 10^--6; // in F
11 C2 = 0.01; // in F
12 C2 = C2 * 10^-6; // in F
13 f = (1/(2*\%pi))*(sqrt((1/(L*C1))+(1/(L*C2))));//
     in Hz
14 f = f * 10^-3; // in kHz
15 disp(f,"The opertaing frequency in kHz is");
16 Beta = C1/C2; // feedback fraction
17 disp(Beta, "The feed back fraction is");
18 Amin = 1/Beta; // minimum gain to sustain
      oscillations
19 disp(Amin, "The minimum gain to sustain oscillations
     is");
20 // A = R_{-}C/R_{-}E ;
21 R_C = 2.5; // in k ohm
22 R_C = R_C * 10^3; // in ohm
23 R_E = R_C/Amin; // in ohm
24 disp(R_E, "The emitter resistance in ohm is");
```

Scilab code Exa 7.5 Range of inductance

```
1 // Exa 7.5
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ f_o} = 950; // \text{ in kHz}
8 f_o = f_o *10^3; // in Hz
9 \text{ C1} = 100; // \text{ in pF}
10 C1 = C1 * 10^-12; // in F
11 C2 = 7500; // in pF
12 C2 = C2 * 10^-12; // in F
13 //Formula f_o = (1/(2*Pi))*(sqrt((1/(L*C1))+(1/(L*C1)))
      C2)))));
14 L1 = (1/(4*(\%pi^2)*(f_o^2)))*((1/C1) + (1/C2));//
      in H
15 L1 = L1 * 10^3; // in mH
16 	 f_o = 2050; // in kHz
17 \text{ f_o} = \text{f_o} * 10^3; // \text{ in Hz}
18 L2 = (1/(4*(\%pi^2)*(f_o^2)))*((1/C1) + (1/C2));//
      in H
19 L2 = L2 * 10^3; // in mH
20 disp("The range of inductance values is: "+string(
      L2)+" mH to "+string(L1)+" mH");
```

Scilab code Exa 7.6 Frequency of oscillation

```
1 // Exa 7.6
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
```

```
7 L1 = 30; // in mH
8 L1 = L1 * 10^-3; // in H
9 L2 = 1*10^-8; // in H
10 M = 0; // in H
11 L = L1+L2+(2*M); // in H
12 C = 100; // in pF
13 C = C * 10^-12; // in F
14 f_o = 1/(2*%pi*(sqrt(L*C))); // in Hz
15 f_o = f_o * 10^-3; // in kHz
16 disp(f_o, "The frequency of oscillation in kHz is");
```

Scilab code Exa 7.7 Frequency of oscillations

```
1 // Exa 7.7
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 \text{ L1} = 1; // \text{ in mH}
8 L1 = L1 * 10^-3; // in H
9 L2 = 100; // in H
10 L2 = L2 * 10^-6; // in H
11 M = 50; // in H
12 M = M * 10^-6; // in H
13 C = 100; // in pF
14 \ C = C * 10^-12; // in F
15 L = L1+L2+(2*M); // in H
16 \text{ f_o} = 1/(2*\%pi*(sqrt(L*C))); // in Hz
17 	ext{ f_o} = 	ext{f_o} * 10^-3; // in kHz
18 disp(f_o, "The oscillation frequency in kHz is");
```

Scilab code Exa 7.8 Resonance frequencies

```
1 // Exa 7.8
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 Rs = 5; // in k ohm
8 \text{ Rs} = \text{Rs} * 10^3; // \text{ in ohm}
9 \text{ Ls} = 0.8; // \text{ in } H
10 Cs = 0.08; // in pF
11 Cs = Cs * 10^-12; // in pF
12 C_P = 1; // in pF
13 C_P = C_P * 10^-12; // in F
14 f_s = 1/(2*\%pi*(sqrt(Ls*Cs))); // in Hz
15 f_s = f_s * 10^-3; // in kHz
16 disp(f_s, "The series resonant frequency in kHz is");
17 f_p = (1/(2*\%pi)) * (sqrt((1+(Cs/C_P))/(Ls*Cs)));
      // in Hz
18 f_p = f_p * 10^-3; // in kHz
19 disp(f_p, "The parallel resonant frequency in kHz is"
      );
```

Scilab code Exa 7.9 Value of inductance

```
1 // Exa 7.9
2 clc;
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 f_s = 1; // in MHz
8 f_s = f_s * 10^6; // in Hz
9 Cs = 0.1; // in pF
10 Cs = Cs * 10^-12; // in pF
11 // f_s = 1/(2*%pi*(sqrt(Ls*Cs)));
```

```
12 Ls = 1/(4*(%pi^2)*Cs*(f_s^2)); // in H
13 disp(Ls, "The value of inductance in H is");
```

Scilab code Exa 7.10 Percentage by parallel resonant frequency greater than series

```
1 // Exa 7.10
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 C = 0.04; // in pF
8 Cdesh = 2; // in pF
9 Per1 = (1/2)*(C/Cdesh)*100; // in %
10 Per2 = (sqrt(1+C/Cdesh)-1)*100; // in %
11 disp("Parallel resonant frequency is greater than series resonant frequency by "+string(Per2)+" %");
```

Scilab code Exa 7.11 Frequency of oscillations

```
1 // Exa 7.11
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 R1 = 800; // in k ohm
8 R1 = R1 * 10^3; // in ohm
9 R2 = R1; // in ohm
10 R3 = R1; // in ohm
11 R = R1; // in ohm
```

```
12 C1 = 100; // in pF
13 C1 = C1 * 10^-12; // in F
14 C2 = C1; // in F
15 C3 = C1; // in F
16 C = C1; // in F
17 f_o = 1/(2*%pi*R*C*sqrt(6)); // in Hz
18 disp(f_o, "The frequency of oscillation in Hz is");
```

Scilab code Exa 7.12 Value of resistances

```
1 // Exa 7.12
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ C1} = 0.016; // \text{ in } F
8 \text{ C1} = \text{C1} * 10^-6; // \text{ in } \text{F}
9 C2 = C1; // in F
10 C3 = C1; // in F
11 C = C1; // in F
12 //f_o = 1/(2*\%pi*R*C*sqrt(10));
13 f_o = 1; // in kHz
14 \text{ f_o} = \text{f_o} * 10^3; // \text{ in Hz}
15 R = 1/(2*\%pi*f_o*C*sqrt(10)); // in ohm
16 disp(R, "The value of resistance in ohm is");
17 disp ("Standard value: 3.3 kohm")
```

Scilab code Exa 7.13 RC elements of a Wien bridge oscillator

```
1 // Exa 7.13
2 clc;
3 clear;
```

```
4 close;
5 format('v',5)
6 // Given data
7 f_o = 10; // in kHz
8 f_o = f_o * 10^3; // in Hz
9 R = 200; // in k ohm
10 R = R * 10^3; // in ohm
11 C = 1/(2*%pi*f_o*R); // in F
12 C=C*10^12; // in pF
13 disp(C, "The value of C in pF is");
14 R4 = R; // in ohm
15 R4= R4*10^-3; // in k ohm
16 disp(R4, "The value of R4 in k ohm is");
17 R3 = R4*2; // in k ohm
18 disp(R3, "The value of R3 in k ohm is");
```

Scilab code Exa 7.14 RC elements of a Wien bridge oscillator

```
1 // Exa 7.14
2 clc;
3 clear;
4 close;
5 format('v',4)
6 // Given data
7 f = 15; // in kHz
8 f = f * 10^3; // in Hz
9 R = 200; // in k ohm
10 R = R * 10^3; // in ohm
11 C = 1/(2*\%pi*f*R); // in F
12 C = C*10^12; // in pF
13 disp(C,"The value of C in pF is");
14 R4 = R; // in ohm
15 R4= R4*10^-3; // in k ohm
16 disp(R4, "The value of R4 in k ohm is");
17 R3 = R4*2; // in k ohm
```

Scilab code Exa 7.15 Frequency of oscillations

```
1 // Exa 7.15
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 R1 = 20; // in k ohm
8 R1 = R1 * 10^3; // in ohm
9 R2 = R1; // in ohm
10 R = R1; // in ohm
11 C1 = 1000; // in pF
12 \text{ C1} = \text{C1} * 10^-12; // \text{ in } \text{F}
13 C2 = C1; // in F
14 C = C1; // in F
15 f = 1/(2*\%pi*R*C); // in Hz
16 f = f*10^-3; // in kHz
17 disp(f, "The frequency of oscillations in kHz is");
```

Scilab code Exa 7.16 Pulse repetition frequency

```
1  // Exa 7.16
2  clc;
3  clear;
4  close;
5  format('v',5)
6  // Given data
7  R_E = 60; // in k ohm
8  R_E = R_E * 10^3; // in ohm
9  C = 0.25; // in F
```

```
10    C = C * 10^-6; // in F
11    Eta = 0.65;
12    f = 1/(2.3*R_E*C*log10(1/(1-Eta))); // in Hz
13    disp(f, "The pulse repetition frequency in Hz is");
```

Chapter 8

Multistage Amplifiers

Scilab code Exa 8.1 Overall voltage gain in dB

```
1 // Exa 8.1
2 clc;
3 clear;
4 close;
5 format('v',8)
6 // Given data
7 Av1 = 60; // voltage gain of first stage
8 Av2 = 100; // voltage gain of second stage
9 Av3 = 160; // voltage gain of third stage
10 Av = Av1*Av2*Av3; // overall voltage gain
11 Av_indB = 20*log10(Av); // overall voltage gain in dB
12 disp(Av_indB, "The overall voltage gain of the amplifier in dB is : ")
```

Scilab code Exa 8.2 Voltage gain of the first stage in dB

```
1 // Exa 8.2
2 clc;
```

```
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 Av = 80;// overall voltage gain in dB
8 Av2 = 20*log10(150);// voltage gain of second stage in dB
9 Av1= Av-Av2;//voltage gain of first stage in dB
10 disp(Av1,"The voltage gain of first stage in dB is");
```

Scilab code Exa 8.3 Overall voltage gain

```
1 // Exa 8.3
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 Av1 = -60; // voltage gain of first stage
8 R_C = 500; // in ohm
9 Rin = 1; // in k ohm
10 Rin = Rin * 10^3; // in ohm
11 h_fe = 50; // unit less
12 Av2 = -h_fe*(R_C/Rin); // voltage gain of second stage
13 Av = Av1*Av2; // overall voltage gain stage
14 disp(Av, "The overall voltage gain is");
```

Scilab code Exa 8.4 Input and output impedance and overall voltage gain

```
1 // Exa 8.4
2 clc;
```

```
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ R11} = 4; // \text{ in k ohm}
8 R21 = 20; // in k ohm
9 \text{ h_ie} = 1.1; // \text{ in k ohm}
10 R_C1=4; // in k ohm
11 R22= 10; // in k ohm
12 R12= 2; // in k ohm
13 Zb = h_{ie}; // in k ohm
14 Zin = (R11*R21*Zb)/((R11*R21)+(R21*Zb)+(Zb*R11));
      // in k ohm
15 disp(Zin,"The input impedance in k ohm is");
16 \text{ h_oe} = 0; // \text{ unit less}
17 Q2 = %inf;// output impedance of transistor
18 R_C2 = 2; // in k ohm
19 // \text{Zout} = 1/h_{-}\text{oe} | | R_{-}\text{C2} = R_{-}\text{C2}
20 Zout = R_C2; // in k ohm
21 disp(Zout, "The output impedance in k ohm is");
22 h_fe = 50; // unit less
23 R_L = 10; // in k ohm
24 \text{ Av2} = -h_fe/h_ie*(R_C2*R_L/(R_C2+R_L)); // voltage
      gain of second stage
25 \text{ Rac1} = 1/(1/R_C1+1/R22+1/R12+1/h_ie); // in k ohm
26 Av1= -h_fe/h_ie*Rac1;// voltage gain of first stage
27 Av= Av1*Av2; // overall voltage gain
28 disp(Av, "The overall voltage gain is:")
```

Scilab code Exa 8.5 Input and output impedance voltage gain

```
1 // Exa 8.5
2 clc;
3 clear;
4 close;
```

```
5 format('v',6)
6 // Given data
7 R1 = 10; // in k ohm
8 R2 = 5; // in k ohm
9 Zb = 1; // in k ohm
10 Zin = (R1*R2*Zb)/((R1*R2)+(R2*Zb)+(Zb*R1)); // in k
      ohm
11 disp(Zin, "The input impedance in k ohm is");
12 R_C1 = 2; // in k ohm
13 R_E1 = 2; // in k ohm
14 R_C2 = 2; // in k ohm
15 R_E2 = 2; // in k ohm
16 \text{ h_oe} = 0; // \text{ unit less}
17 Q2 = %inf; // output impedance of transistor
18 / Zout = 1 / h_oe | R_C2
19 Zout = R_C2; // in k ohm
20 disp(Zout, "The output impedance in k ohm is");
21 h_fe = 100; // unit less
22 h_ie = 1; // in k ohm
23 R_ac=0.222; // in k ohm
24 Av2= -h_fe/h_ie*R_C2;// voltage gain of second stage
25 \text{ Rac1} = 1/(1/R_C1+1/R1+1/R2+1/h_ie); // in k ohm
26 Av1= -h_fe/h_ie*R_ac;// voltage gain of first stage
27 Av = Av1*Av2; // overall voltage gain
28 disp(Av, "The overall voltage gain is:")
```

Scilab code Exa 8.7 Transformer turn ratio

```
1  // Exa 8.7
2  clc;
3  clear;
4  close;
5  format('v',5)
6  // Given data
7  Z_L = 16; // in ohm
```

```
8 Z_desh_L = 10; // in k ohm
9 Z_desh_L = Z_desh_L* 10^3; // in ohm
10 // a = N1/N2 = sqrt( ZdasL/Z_L );
11 a = sqrt( Z_desh_L/Z_L ); // ratio of primary to secondary turns of step-down transformer
12 disp(a, "The transformer turn ratio is");
```

Scilab code Exa 8.8 Transformer turn ratio

```
1  // Exa 8.8
2  clc;
3  clear;
4  close;
5  format('v',5)
6  // Given data
7  Z_L = 10; // in ohm
8  Z_desh_L = 1; // in k ohm
9  Z_desh_L = Z_desh_L * 10^3; // in ohm
10  Zs = Z_desh_L; // in ohm
11  // a = N1/N2 = sqrt(Z_desh_L/Z_L);
12  a = sqrt(Z_desh_L/Z_L); // turn ratio of the transformer
13  disp(a,"The turn ratio of the transformer is");
```

Scilab code Exa 8.9 Transformer turn ratio and load voltage

```
1 // Exa 8.9
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 Z_L = 25; // in ohm
```

```
8 Z_S = 10; // in k ohm
9 Z_S = Z_S * 10^3; // in k ohm
10 // Z_S = (a^2)*Z_L;
11 a = sqrt(Z_S/Z_L); // turn ratio of the transformer
12 disp(a, "The transformer turn ratio is");
13 //V2 = V1/a = Vs/a;
14 Vs = 8; // in V
15 V2 = Vs/a; // in V
16 V_L = V2; // in V
17 disp(V_L, "The load voltage in V is");
```

Scilab code Exa 8.10 Av2 and Av1 and Av in dB

```
1 // Exa 8.10
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 \text{ V_CC} = 12; // in V
8 \text{ r_e} = 25; // \text{ in mV}
9 \text{ r_e} = \text{r_e} * 10^-3; // in V
10 R1 = 1.2; // in Mohm
11 R1 = R1 * 10^6; // in ohm
12 R3 = 1.2; // in Mohm
13 R3 = R3 * 10^6; // in ohm
14 R4 = 8; // in k ohm
15 \text{ R4} = \text{R4} * 10^3; // \text{ in ohm}
16 R5 = 24; // in k ohm
17 R5 = R5 * 10^3; // in ohm
18 Beta1 = 100; // unit less
19 Beta2 = 100; // unit less
20 I_B2 = V_CC/R3; // in A
21 I_C2 = Beta2*I_B2; // in A
22 I_E2 = I_C2; // in A
```

```
23 \text{ r_e2} = \text{r_e/I_E2}; // \text{ in ohm}
24 \text{ Rac2} = (R4*R5)/(R4+R5); // in ohm
25 Av2 = -(Rac2/r_e2); // voltage gain of second stage
26 disp(Av2, "The voltage gain of second stage is");
27 \text{ Rac1} = (R3*(Beta2*r_e2))/(R3+(Beta2*r_e2)); // in
      ohm
28 L = 1; // in H
29 f = 4;// in kHz
30 f = f * 10^3; // in Hz
31 \text{ X_L} = 2*\%pi*f*L; // in ohm
32 \text{ r_e1} = \text{r_e2}; // \text{ in ohm}
33 Av1 = round(-Rac1/r_e1); // voltage gain of first
34 disp(Av1,"The voltage gain of first stage at 4 kHz
      is");
35 Av = Av1*Av2; // overall voltage gain
36 \text{ Av} = 20*\log 10 (\text{Av}); // \text{ in dB}
37 disp(Av, "The overall voltage gain in dB is");
```

Scilab code Exa 8.11 Voltage gain and input resistance

```
1  // Exa 8.11
2  clc;
3  clear;
4  close;
5  format('v',6)
6  // Given data
7  V_CC = 25; // in V
8  R1 = 180; // in k ohm
9  R1 = R1*10^3; // in ohm
10  R2 = 20; // in k ohm
11  R2 = R2 * 10^3; // in ohm
12  R_C2 = 20; // in k ohm
13  R_C2 = R_C2 * 10^3; // in ohm
14  R_C1 = R_C2; // in ohm
```

```
15 R_E1 = 1.8; // in k ohm
16 R_E1 = R_E1 * 10^3; // in ohm
17 R_E2 = 4.3; // in k ohm
18 R_E2 = R_E2 * 10^3; // in ohm
19 R_L = 30; // in k ohm
20 R_L = R_L * 10^3; // in ohm
V_BE = 0.7; // in V
22 Beta2 = 50; // unit less
23 Beta1 = 50; // unit less
V_{Th1} = (V_{CC}/(R1+R2))*R2; // in V
25 R_Th1 = (R1*R2)/(R1+R2); // in ohm
26 I_B = (V_Th1 - V_BE)/(R_Th1 + ((Beta1 + 1) * R_E1)); // in
      Α
27 I_E1 = (Beta1+1)*I_B; // in A
28 \text{ V}_T = 25; // \text{ in mV}
29 \text{ V}_T = \text{V}_T * 10^-3; // in V
30 \text{ r_e1} = V_T/I_E1; // in ohm
31 I_C1 = I_E1; // in A
32 \text{ V}_C1 = \text{V}_CC - (I_C1*R_C1); // in V
33 //V_E2 = V_B2-V_BE = V_C1-V_BE; // in V
34 \text{ V}_{E2} = \text{V}_{C1} - \text{V}_{BE}; // \text{ in } \text{V}
35 \text{ I}_{E2} = \text{V}_{E2}/\text{R}_{E2}; // \text{ in A}
36 \text{ r_e2} = V_T/I_E2; // \text{ in ohm}
37 \text{ Rac2} = (R_C1*R_L)/(R_C1+R_L); // \text{ in ohm}
38 Av2 = -Rac2/(r_e2+R_E2); // voltage gain of second
      stage
+R_E2)));// in ohm
40 Av1 = -Rac1/(r_e1+R_E1); // voltage gain of first
      stage
41 Av = Av1*Av2; // voltage gain
42 disp(Av, "The voltage gain is");
43 \text{ r_in} = R1*R2*Beta1*(r_e1+R_E1)/((R1*R2)+(R2*(Beta1))
      *(r_e1+R_E1))+((Beta1*(r_e1+R_E1))*R1));//in
44 r_{in} = r_{in} *10^{-3}; // in k ohm
45 disp(r_in, "The input resistance in k ohm is");
```

Scilab code Exa 8.12 Voltage gain and input output impedance and output voltage

```
1 // Exa 8.12
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 I_DSS = 15; // in mA
8 I_DSS = I_DSS * 10^-3; // in A
9 \ V_P = -4; // in V
10 g_{mo} = (-2*I_DSS)/V_P; // in S
11 V_{GSQ} = -2; // in V
12 g_m = g_m * (1-(V_GSQ/V_P)); // in S
13 R_D = 2.7; // in k ohm
14 R_D = R_D * 10^3; // in ohm
15 Av1 = -g_m*R_D; // voltage gain of first stage
16 Av2 = Av1; // voltage gain of second stage
17 Av = Av1*Av2; // overall voltage gain
18 disp(Av, "The overall voltage gain is");
19 R_G = 2; // in Mohm
20 Rin = R_G; // in Mohm
21 disp(Rin, "The input impedance in Mohm is");
22 Rout = R_D; // in ohm
23 Rout = Rout * 10^-3; // in k ohm
24 disp(Rout, "The output impedance in k ohm is");
25 Rout = Rout * 10^3; // in ohm
26 Vin = 15; // in mV
27 \text{ Vin} = \text{Vin} * 10^-3; // in V
28 Vout = Av*Vin; // in V
29 disp(Vout, "The output voltage in V is");
30 R_L = 15; // in k ohm
31 R_L = R_L * 10^3; // in ohm
```

```
32 V_L = (R_L/(Rout+R_L))*Vout; // in V
33 disp(V_L, "The output voltage across load resistance
    in V is");
```

Scilab code Exa 8.13 Upper and lower 3dB frequency

```
1 // Exa 8.13
2 clc;
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 	ext{ f2} = 100; // 	ext{ in kHz}
8 f_H = f2/(sqrt(2^(1/3)-1)); // in kHz
9 disp(f_H,"The upper 3-dB frequency of each stage in
     kHz is");
10 f1 = 25; // in kHz
11 f_L = f1/(sqrt(2^(1/3)-1)); // in kHz
12 disp(f_L,"The lower 3-dB frequency of each stage in
     kHz is");
13
14 // Note: The value of upper 3-dB frequency in the
     book is not accurate and the calculated value of
     f_L is wrong, because 25 will be divided by 0.51
     not multiplied.
```

Scilab code Exa 8.14 Z matrix for idential T1 and T2

```
1 // Exa 8.14
2 clc;
3 clear;
4 close;
5 format('v',5)
```

```
6 // Given data
7 \text{ R}_E = 1; // \text{ in k ohm}
8 \text{ h_ie= R_E;// in k ohm}
9 h_fe= 100; // unit less
10 /V1 = I1 * [h_ie + (1+h_fe) * h_ie + (1+h_fe)^2 * R_E] + I2 * R_E
             ( i )
11 //V2 = I1*(1+h_fe)^2*R_E + I2*R_E
                                                         (ii)
12 Z = [(h_ie + (1+h_fe)*h_ie + (1+h_fe)^2*R_E) R_E; (1+h_fe)
      ^2*R_E R_E]
13 Z11= Z(1); // k ohm
14 Z21 = Z(2); // k \text{ ohm}
15 Z12= Z(3); // k ohm
16 Z22 = Z(4); // k \text{ ohm}
17 disp(Z11*10^-3, "The value of Z11 in Mohm is : ")
18 disp(Z12, "The value of Z12 in Mohm is: ")
19 disp(Z21*10^-3, "The value of Z21 in M ohm is: ")
20 disp(Z22, "The value of Z22 in Mohm is:")
```

Chapter 9

Tuned Amplifiers

Scilab code Exa 9.1 Resonant frequency and Q factor and bandwidth

```
1 // Exa 9.1
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 R = 10; // in ohm
8 L = 20; // in mH
9 L = L * 10^-3; // in H
10 C = 0.05; // in F
11 C = C * 10^-6; // in F
12 f_r = (1/(2*\%pi))*sqrt((1/(L*C)) - ((R^2)/(L^2)));
     // in Hz
13 f_r = round(f_r * 10^-3); // in kHz
14 disp(f_r, "The resonant frequency in kHz is");
15 Q = (2*\%pi*f_r*10^3*L)/R;//Q factor of the tank
      circuit
16 disp(Q, "The Q factor of the tank circuit is");
17 BW = (f_r*10^3)/Q; // in Hz
18 disp(BW, "The band width of the amplifier in Hz is");
```

Chapter 10

Multivibrators

Scilab code Exa 10.1 Time period and frequency

```
1 // Exa 10.1
2 clc;
3 clear;
4 close;
5 format('v',5)
6 // Given data
7 R2 = 5; // in k ohm
8 R2 = R2 * 10^3; // in
                          ohm
9 R1 = R2; // in ohm
10 R_B = R2; // in ohm
11 R4 = 0.4; // in k ohm
12 R4 = R4 * 10^3; // in ohm
13 R3 = R4; // in ohm
14 R_C = R4; // in ohm
15 C2 = 0.02; // in F
16 C2 = C2 * 10^-6; // in F
17 C1 = C2; // in F
18 C = C2; // in F
19 T = 1.386*R_B*C; // in sec
20 T = T*10^3; // in ms
21 disp(T, "The time period in ms is");
```

```
22 f = 1/T; // in kHz
23 disp(f, "The frequency of circuit oscillation in kHz
        is");
24 Beta_min = R_B/R_C; //minimum value of transistor
25 disp(Beta_min, "The minimum value of transistor is ");
```

Scilab code Exa 10.2 Astable multivibrator

```
1 // Exa 10.2
2 clc;
3 clear;
4 close;
5 format('v',6)
6 // Given data
7 \text{ V_CC} = 20; // in V
8 \ V_BB = 20; // in V
9 R_C2 = 1; // in k ohm
10 R_C2 = R_C2 * 10^3; // in ohm
11 R_C1 = R_C2; // in ohm
12 f = 500; // in Hz
13 \text{ h_fe} = 50; // \text{ unit less}
14 PW = 0.2; // in ms
15 PW = PW * 10^-3; // in sec
16 V_{CEsat} = 0.3; // in V
17 V_BEsat = 0.7; // in V
18 I_CEsat = (V_CC - V_CEsat)/R_C1; // in A
19 I_Bmin= I_CEsat/h_fe;// in A
20 I_B = 1.5 * I_B min; // in A
21 R= (V_BB-V_BEsat)/I_B; // in ohm
22 R= floor(R*10^--3);// in k ohm
23 R1=R; // in k ohm
24 R2= R1; // in k ohm
25 T= 1/f; // in sec
26 D_cycle= PW/T;
```

```
27 T2= D_cycle*T; //sec

28 T1= T-T2; // in sec

29 C1= T1/(0.693*R2); // in mF

30 C1= C1*10^3; // in F

31 C2= T2/(0.693*R1); // in mF

32 C2= C2*10^3; // in F

33 disp(R1, "The value of R1 in k ohm is:")

34 disp(R2, "The value of R2 in k ohm is:")

35 disp(C1, "The value of C1 in F is:")

36 disp(C2, "The value of C2 in F is:")
```

Scilab code Exa 10.3 Check up the saturation of the transistor

```
1 // Exa 10.3
2 clc;
3 clear;
4 close;
5 format('v',7)
6 // Given data
7 \text{ V_CC} = 12; // in V
8 R_B = 20; // in k ohm
9 R_B = R_B * 10^3; // in ohm
10 R_C = 2; // in k ohm
11 R_C = R_C * 10^3; // in ohm'
12 C = 0.1; // in F
13 C = C * 10^-6; // in F
14 V_{CEsat} = 0.2; // in V
15 V_BEsat = 0.8; // in V
16 Beta = 50; // unit less
17 T = R_B * C * log((2*V_CC - V_BEsat)/(V_CC - V_BEsat)); //
      in S
18 disp(T*10^3, "The input pulse in ms is");
19 I_Csat = (V_CC - V_CEsat)/R_C; // in A
20 I_Csat = I_Csat * 10^3; // in mA
21 // Beta = h_fe;
```

Scilab code Exa 10.4 Component value of monostable mutivibrator

```
1 // Exa 10.4
2 clc;
3 clear:
4 close;
5 format('v',6)
6 // Given data
7 \text{ T= } 500*10^{-6}; // \text{ in sec}
8 \text{ h\_femin} = 25; // \text{ unit } \text{less}
9 I_CEsat = 5; // in mA
10 I_CEsat = I_CEsat * 10^-3; // in A
11 V_{CC} = 10; // in V
12 V_BB = 4; // in V
13 V_{CEsat} = 0.4; // in V
14 V_BEsat = 0.8; // in V
15 V_BEoff = -1; // in V
16 R_C2 = (V_CC-V_CEsat)/I_CEsat; // in ohm
17 R_C1 = R_C2; // in ohm
18 disp(R_C1*10^-3, "The value of R_C1 in k ohm is");
19 disp(R_C2*10^-3, "The value of R_C2 in k ohm is");
20 I_B2min = I_CEsat/h_femin; // in A
21 I_B2actual = 1.5*I_B2min; // in A
22 R = (V_CC-V_BEsat)/(I_B2actual);// in ohm
23 disp(R*10^-3, "The value of R in k ohm is");
```

```
24 C= T/(0.693*R); // in F
25 disp(C*10^6, "The value of C in F is:")
26 \text{ R1} = \text{poly}(0, 'R1');
27 R2 = 2.143 * R1; // in ohm
28 // I_B1actual = (V_CC-V_BE1sat)/(R_C+R1) - (V_BE1sat+
      V_BB)/R2 and R2 = 2.143*R1 so
29 R1= I_B2actual*R2*(R1+R_C1)-V_CC*R2+V_BEsat*R2+R1*
      V_BEsat+R1*V_BB+R_C1*V_BEsat+R_C1*V_BB;
30 R1= roots(R1); // in ohm
31 R1= R1(1); // in ohm
32 R1 = R1 * 10^- - 3; // in kohm
33 R2= 2.143*R1; // in k ohm
34 disp(R1, "The value of R1 in k is:")
35 disp(R2, "The value of R2 in k is: ")
36 \text{ R1} = \text{R1} * 10^3; // \text{ in ohm}
37 \text{ R1C1} = 1*10^-6; // \text{ in } F
38 C1= R1C1/R1; // in F
39 C1= C1*10^12; // in pF
40 disp(C1,"The value of C1 in pF is: ")
```

Scilab code Exa 10.5 Stable current and voltages

```
1  // Exa 10.5
2  clc;
3  clear;
4  close;
5  format('v',5)
6  // Given data
7  V_CC = 10; // in V
8  V_BB = -10; // in V
9  R_C2 = 1.2* 10^3; // in ohm
10  R_C1 = R_C2; // in ohm
11  R_B1 = 39 * 10^3; // in ohm
12  R_B2 = R_B1; // in ohm
13  R2 = 10* 10^3; // in ohm
```

```
14 R1 = R2; // in ohm
15 \text{ h_fe} = 30; // \text{ unit less}
16 V_CE2sat = 0; // in V
17 I1 = (V_CC - V_CE2sat)/R_C2;//in A
18 I2 = (V_CE2sat - V_BB)/(R1+R_B2); // in A
19 I_C2 = I1-I2; // in A
20 I_B2min = I_C2/h_fe; // in A
V_C2 = 0; // in V
22 V_B1 = V_C2 - (I2*R1); // in V
V_B2 = 0; // in V
24 \text{ V_C1} = 10; // \text{ in V}
25 	ext{ I3} = (V_CC - V_C1) / R_C1; // in A
26 \text{ V\_BE2sat} = 0; // \text{ in V}
27 	 I4 = (V_C1 - V_BE2sat)/R2; // in A
28 I_D = I3-I4; // in A
29 I5 = (V_BE2sat - V_BB)/R_B1; // in A
30 I_B2actual = I4-I5; // in A
31 \text{ I_B2actual= I_B2actual*10^3;// in mA}
32 I_C1 = 0; // in mA
33 I_B1 = 0; // in mA
34 I_C2 = I_C2 * 10^3; // in mA
35 disp(V_C1, "The value of V_C1 in V is");
36 disp(V_C2, "The value of V_C2 in V is");
37 disp(V_B1, "The value of V_B1 in V is");
38 disp(V_B2, "The value of V_B2 in V is");
39 disp(I_C1, "The value of I_C1 in mA is");
40 disp(I_C2, "The value of I_C2 in mA is");
41 disp(I_B1, "The value of I_B1 in mA is");
42 disp(I_B2actual, "The value of I_B2 in mA is");
```