

Prédiction de l'abondance et de la richesse totales des vers de terre

Présenté par : M. Abdou DIALLO

Encadrants: M. Walid HORRIGUE

M. Daniel CLUZEAU

M. Kevin HOEFFNER

REGION BOURGOGNE FRANCHE COMTE

Prédiction de l'abondance et de la richesse totales des vers de terre

Sommaire

- 1 Présentation des données
- 2 Analyses exploratoires:

Pré-traitement des données, sélection des variables et partitionnement des données

3 Modèles utilisés :

- Modèles linéaires généralisés (GLM)
- Modèles additifs généralisés (GAM)
- Random Forest (RF)
- Gradient Boosting Machine (GBM)
- Réseau de neurones artificiels (ANN)

4 Résultats & discussion

Présentation des données TIGA

Les variables à expliquer

Le dataset comportait 386 observations pour 153 colonnes

Abondance totale (ind. /m²)

Richesse totale (nb. sp. par site)

Présentation des données TIGA

Les variables explicatives

Nettoyage des données

Partitionnement des données

Train data (80 %)
 307 observations

Test data (20 %)79 observations

(a) Abundance: Train

(b) Abundance: Test

Variables considérées dans les modèles de prédiction

Variables considérées dans les modèles de prédiction

	Descriptions
Variables ————————————————————————————————————	Descriptions
GPS_X	Coordonnée GPS X
GPS_Y	Coordonnée GPS Y
pH_eau	pH du sol dans l'au
SableF	Fraction fine de sable
SableG	Fraction grossière de sable
LimonF	Fraction fine de limon
LimonG	Fraction grossière de limon
Argile	Teneur en argile
C_org	Carbone organique
C.N	Ratio Carbone/Azote
Details_Milieu_Niv3	Occupation du sol
Sables	Teneur en sables
Limons	Teneur en limons
MO	Matière organique
C_tot	Carbone total
N_tot	Azote total

Algorithmes d'apprentissage automatique

Variables considérées dans les modèles de prédiction

Variables	Descriptions
GPS_X	Coordonnée GPS X
GPS_Y	Coordonnée GPS Y
pH_eau	pH du sol dans l'au
SableF	Fraction fine de sable
SableG	Fraction grossière de sable
LimonF	Fraction fine de limon
LimonG	Fraction grossière de limon
Argile	Teneur en argile
C_org	Carbone organique
C.N	Ratio Carbone/Azote
Details_Milieu_Niv3	Occupation du sol
Sables	Teneur en sables
Limons	Teneur en limons
МО	Matière organique
C_tot	Carbone total
N_tot	Azote total

Algorithmes d'apprentissage automatique

Algorithmes de régression traditionnels

Résultats

☐ Abondance totale

$$\overline{m}_{test} = 218 \text{ ind.}/m^2$$

Modèles	R2_adj_train	R2_test	RMSE
Modèles linéaires généralisés	0.09	0.01	166
Modèles additifs généralisés	0.26	0.08	155
Random Forest	0.4	0.11	152
Gradient Boosting Machine	0.29	0.10	156
Réseau de neurones artificiels	0.00	0.08	248

- R² ajusté du modèle
- R² (Coefficient de détermination d'une régression)
- RMSE (Erreur Quadratique Moyenne)

Résultats

☐ Richesse totale

$$\overline{m}_{test} = 2.1 \, sp./site$$

Modèles	R2_adj_train	R2_test	RMSE
Modèles linéaires généralisés	0.18	0.11	0.92
Modèles additifs généralisés	0.32	0.14	0.93
Random Forest	0.33	0.18	0.91
Gradient Boosting Machine	0.35	0.14	0.92
Réseau de neurones artificiels	-0.10	0.16	0.96

- R² ajusté du modèle
- R² (Coefficient de détermination d'une régression)
- RMSE (Erreur Quadratique Moyenne)

Résultats (avec transformation des données)

☐ Abondance totale

 $\overline{m}_{test} = 14.76 \text{ ind./m}^2$

Modèles	R2_adj_train	R2_test	RMSE
Modèles linéaires généralisés	0.12	0.07	6.75
Modèles additifs généralisés	0.21	0.06	6.77
Random Forest	0.52	0.19	6.33
Gradient Boosting Machine	0.29	0.16	6.4
Réseau de neurones artificiels	-0.07	0.04	7.16

- R² ajusté du modèle
- R² (Coefficient de détermination d'une régression)
- RMSE (Erreur Quadratique Moyenne)

Résultats (avec transformation des données)

☐ Richesse totale

$$\overline{m}_{test} = 2.1 \, sp./site$$

Modèles	R2_adj_train	R2_test	RMSE
Modèles linéaires généralisés	0.13	0.10	0.95
Modèles additifs généralisés	0.21	0.18	0.83
Random Forest	0.53	0.26	0.82
Gradient Boosting Machine	0.30	0.24	0.82
Réseau de neurones artificiels	-0.13	0.13	0.96

- R² ajusté du modèle
- R² (Coefficient de détermination d'une régression)
- RMSE (Erreur Quadratique Moyenne)

Random Forest

☐ Abondance: importances des variables

Random Forest

☐ Richesse: importances des variables

Discussion et perspectives

- Peu de variabilité dans les données
- Amélioration des modèles
- * Références & diagnostiques

Prédiction de l'abondance et de la richesse totales des vers de terre

Présenté par : M. Abdou DIALLO

Encadrants: M. Walid HORRIGUE

M. Daniel CLUZEAU

M. Kevin HOEFFNER

REGION BOURGOGNE FRANCHE COMTE

https://rpubs.com/Abdou_diallo/12026

The permutation feature importance algorithm based on Fisher, Rudin, and Dominici (2018):

Input: Trained model \hat{f} , feature matrix X, target vector y, error measure $L(y,\hat{f})$.

- 1. Estimate the original model error $e_{orig} = L(y, \hat{f}(X))$ (e.g. mean squared error)
- 2. For each feature $j \in \{1, \ldots, p\}$ do:
 - \circ Generate feature matrix X_{perm} by permuting feature j in the data X. This breaks the association between feature j and true outcome y.
 - \circ Estimate error $e_{perm} = L(Y, \hat{f}(X_{perm}))$ based on the predictions of the permuted data.
 - \circ Calculate permutation feature importance as quotient $FI_j = e_{perm}/e_{orig}$ or difference $FI_j = e_{perm} e_{orig}$
- 3. Sort features by descending FI.

Show = entries	Search:	
	Numbers*	
111_Forêt de feuillus	75	
210_Prairie agricole permanente	55	
214_Culture annuelle	230	
218_Vignes et autres Cultures pérennes	56	
Showing 1 to 4 of 4 entries	Previous 1 Next	

Pro Division manager, mieux produi

Modeling strategy

FRANCHE

ODMAP protocol: Overview, Data, Model, Assessment, Prediction (zurell et al., 2020)

Results and discussions

Superiority of ensemble methods in predicting earthworm communities compared to traditional regression models

Algorithms	Response variables	R²	RMSE
GLM		0.22	34.57
GAM	Total	0.26	33.06
RF	Total abundance	0.43	25.20
GBM		0.43	25.30
ANN		0.35	28.94
GLM		0.23	10.69
GAM	Total	0.24	10.50
RF	biomass	0.35	8.76
GBM		0.32	9.30
ANN		0.27	10.50
GLM		0.36	2.18
GAM	Total	0.44	2.04
RF	taxonomic	0.59	1.75
GBM	richness	0.59	1.75
PRÉFET DE LA RÉGION BOURGOSNE- FRANCHE-COMTÉ JAMES AND LE COST JAMES	FRANCE FRANCE COMTE	0.40	2.16

- Ensemble methods (Breiman, 2001; Li & Wang, 2013)
- Better captures nonlinear relationships (Breiman, 2001)

Require large amounts of data (Yiu, 2021)

Poor interpretability

Results and discussions

Predicted spatial distribution of earthworm total abundance

Results and discussions

Predicted spatial distribution of earthworm diversity

Model fitting and calibration 6.

Machine learning algorithms

Random Forests (RF)

Default model

$$Y3 = randomForest (data[-rep.var], data[[rep.var]], importance = TRUE)$$

RF model tuning by grid

- ntree = 100 to 2000 in increments of 200
- mtry = 2 to 10 in increments of 1
- maxnodes = NULL and 2 to 15 in increments of 1

$$Y3 = randomForest (data[-rep.var], data[[rep.var]], mtry = 3,$$
 $ntree = 500, maxnodes = NULL, importance = TRUE)$

6. Model fitting and calibration

Machine learning algorithms

Generalized Boosted Models (GBM)

Default model

 $Y4 = gbm(y \sim ., data = data, distribution = 'gaussian')$

GBM model tuning by grid

- *n.trees* = 500 to 2000 in increments of 100
- *shrinkage* = 0.01, 0.02, 0.05, 0.001, 0.002 and 0.005
- *interaction.depth* = 1, 3, 5, 6, 8 and 10
- *n.minobsinnode* = 2, 5, 10, 20, 30 and 50

 $Y4 = gbm(y \sim ., data = data, distribution = 'gaussian', n. trees = 1000,$ shrinkage = 0.01, interaction. depth = 5, n. minobsinnode = 10)

6. **Model fitting and calibration**

Machine learning algorithms

Artificial Neural Networks (ANN)

Tunning

```
runs = tuning_run("Experiment.R", flags = list(dense_units1 = c(64, 32),
                                              dense_units2 = c(16, 32),
```

dense units3 = c(8, 16),

 $dense_units4 = c(4, 8),$

dropout1 = c(0.4, 0.5),

dropout2 = c(0.3, 0.4),

dropout3 = c(0.2, 0.3),

dropout4 = c(0.1, 0.2),

batch_size = c(32, 64)))

