

Multimedia Systems

Dr Laura Toni

l.toni@ucl.ac.uk

University College London

Today Lecture

Introduction to Information compression

- Source Coding
- Information and Entropy
- Variable length coding
- Quantization

Multimedia Systems

- Image and Lossy Compression
 - Transforms
 - JPEG Quantization
 - JPEG Lossless Compression
- Video Compression
 - Motion Compensation

Source Coding

Source Coding

Shannon's first theorem (1948)

Expected code length relates to the source entropy

Source recovered with a distortion D (function of the coding rate)

Why do we compress?

These are related to the 3 types of redundancy in images/videos:

Interpixel redundancy

Psychovisual redundancy

Coding redundancy

Coding Redundancy

- Some colors are more common than others
- For example, black, brown, and red hardly appear in this picture
- This is sometimes called coding redundancy

Interpixel Redundancy

- Blue pixels tend to occur next to other blue pixels; yellow pixels are near other yellow pixels
- This spatial correlation is sometimes called interpixel redundancy
- There are also interspectral and interframe redundancy

Psychovisual Redundancy

- Some parts of the scene are very homogeneous (sky)
- Other parts are very busy (flowers) and could hide noise
- This is sometimes called psychovisual redundancy

Why Lossy?

Human Visual System Issues

- We can get away with lossy compression because your eye doesn't see everything anyway
 - Contrast sensitivity function
 - Mach bands
 - Spatial masking
 - Oblique effect

Spatial Masking

- A stimulus is harder to see in the presence of large visible spatial and temporal changes in luminance
- Line presented near a luminance edge is harder to see as it gets closer

Spatial Masking

Implication: Can allow more error in busy parts of the picture

How well is the compression doing?

 We would like to have a low bit rate and yet a high image/video quality
(there are also other factors – not covered todaysuch as complexity, error resilience, delay etc.)

 If you use lossy compression, need to be able to measure the quality

MSE Metric

The most common computable measures are the MSE

$$MSE = \frac{1}{N \times M} \sum_{i=1}^{N} \sum_{j=1}^{M} (F(i, j) - G(i, j))^{2}$$

where F is the input image, G is the output image, and the images are of size N by M

PSNR Metric

 The MSE is often reported in logarithmic form as a signal-to-noise ratio:

$$SNR = 10\log_{10} \frac{D_0}{MSE} dB$$

where D₀ is a normalization factor

- D_o often chosen to be the square of the maximum possible input value (e.g., 255²)
- Then it's called a "peak SNR" or PSNR

JPEG Example

Original

 $1\;{\rm bpp}$

 $0.5~\mathrm{bpp}$

 $0.25~\mathrm{bpp}$

Thank You