

Pré-processamento é processo de preparação dos dados para o uso em algoritmos de aprendizado de máquina.

E é usado para:

- Melhorar a qualidade dos dados;
- Reduzir a complexidade computacional;
- Selecionar os atributos mais relevantes para aplicação;
- Adequar os dados aos formatos de entrada dos algoritmos;

Técnicas para preparação de dados podem ser agrupadas em:

- Eliminação manual de atributos
- Integração de dados;
- Amostragem de dados;
- Dados desbalanceados
- Limpeza de dados;
- Transformação de dados;
- Redução de dimensionabilidade.

Eliminação manual de atributos

- Especialistas no domínio da aplicação podem analisar os dados e indicar os atributos mais relevantes;
- Existem atributos irrelevantes que são facilmente identificados e podem ser removidos já no inicio do pre-processamento.

ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	М	79	Concentradas	38,0	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39,5	4	MG	Doente
4039	Luiz	49	M	92	Espalhadas	38,0	2	RS	Saudável
1920	José	18	M	43	Inexistentes	38,5	8	MG	Doente
4340	Cláudia	21	F	52	Uniformes	37,6	1	PE	Saudável
2301	Ana	22	F	?	Inexistentes	38,0	3	RJ	Doente
1322	Marta	19	F	87	Espalhadas	39,0	6	AM	Doente
3027	Paulo	34	M	67	Uniformes	38,4	2	GO	Saudável

Integração de dados

- O processo de integração visa construir um repositório de dados: data warehouse;
- A integração geralmente exige tratamento dos dados:
 - Inconsistências
 - Ruídos
 - Exige transformação e correção

Amostragem de dados

- Alguns algoritmos tem dificuldades em lidar com muitos objetos;
- Quanto mais dados geralmente mais alta é a acurácia (taxa de predições corretas). Porém isso impacta no custo computacional, deixando o tempo de processamento mais longo.
- Para reduzir o custo computacional, pode-se trabalhar com amostras pequenas, mas representativas.

Amostragem de dados

- Abordagens que podem ser usadas para amostragem:
 - Aleatória simples: busca exemplos dos dados originais de forma aleatória;
 - Estratificada: busca exemplos de cada classe de forma proporcional a quantidade original ou mantendo o mesmo numero de amostras;
 - Progressivas: comeca com uma amostra pequena e vai aumentando ao longo do desenvolvimento;

Dados desbalanceados

- Vários algoritmos de machine learning tem seu desempenho prejudicado por causa de dados desbalanceados;
- Os algoritmos tendem a favorecer a classe majoritária, com mais amostras;
- Técnicas para amenizar o desbalanceamento:
 - Redefinir o tamanho do conjunto de dados;
 - Uso de modelos binários para reconhecer as classes;

Dados desbalanceados

- Podem provocar:
 - Overfitting(sobreajuste ou superajuste) e Underfitting(sub-ajuste) em Machine Learning são conceitos que se referem ao ajuste do modelo.

https://datahacker.rs/018-pytorch-popular-techniques-to-prevent-the-overfitting-in-a-neural-networks/

Limpeza dos Dados

- Muitos dados do mundo real são potencialmente incorretos (falha no instrumento de leitura, erro humano ou de máquina, não obrigatoriedade, erro de transmissão).
- Os dados podem ser:
 - **Incompletos**: falta de valores de atributos, falta de certos atributos de interesse ou contendo apenas dados agregados. Por exemplo, Ocupação = "" (dados faltantes).
 - Ruidosos: contendo ruído, erros ou outliers. Por exemplo, Salário = "- 10" (um erro)
 - Inconsistentes: contendo discrepâncias em códigos ou nomes. Exemplos: Idade = "42" e Aniversário = "03/07/2010"; ora a é classificação "1, 2, 3" ora é "A, B, C"; "01 de janeiro" como o aniversário de todos? CEP de todos 90000-000?
 - Redundantes: pode ter objetos e atributos redundantes

• O que fazer com dados incompletos ?

ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	М	79	Concentradas	38,0	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39,5	4	MG	Doente
4039	Luiz	49	М	92	Espalhadas	38,0	2	RS	Saudável
1920	José	18	M	43	Inexistentes	38,5	8	MG	Doente
4340	Cláudia	21	F_	52	Uniformes	37,6	1	PE	Saudável
2301	Ana	22	F	?	Inexistentes	38,0	3	RJ	Doente
1322	Marta	19	F	87	Espalhadas	39,0	6	AM	Doente
3027	Paulo	34	M	67	Uniformes	38,4	2	GO	Saudável

- O que fazer com dados incompletos ?
 - Eliminar os objetos com dados faltantes:
 - Pode ser usada quando o dado faltante é a classe;
 - Não é indicada quando
 - poucos atributos do objeto possuem valores ausentes;
 - o conjunto de dados é pequeno;
 - o dado faltante é diferente para cada objeto;
 - Definir e preencher manualmente: tedioso e inviável para muitos dados.

- O que fazer com dados incompletos ?
 - •
 - Preencher automaticamente (uso de algum método ou heurística):
 - uma constante global: por exemplo, "desconhecido"
 - média: a média ou mediana do atributo para todas as amostras pertencentes à mesma classe ou moda, em caso de valor simbólico (uma boa opção)
 - valor mais provável: baseado em inferência (uso de uma fórmula bayesiana ou árvore de decisão)

• O que fazer com dados ruidosos ?

ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	M	79	Concentradas	38,0	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39,5	4	MG	Doente
4039	Luiz	49	M	92	Espalhadas	38,0	2	RS	Saudável
1920	José	18	M	43	Inexistentes	38,5	8	MG	Doente
4340	Cláudia	21	F	52	Uniformes	37,6	1	PE	Saudável
2301	Ana	22	F	3000	Inexistentes	38,0	3	RJ	Doente
1322	Marta	19	F	87	Espalhadas	39,0	6	AM	Doente
3027	Paulo	34	М	67	Uniformes	38,4	2	GO	Saudável

- O que fazer com dados ruidosos ?
- Encestamento
 - 1. Classificar os dados e organizá-los em cestas ou faixas (de frequência igual)
 - 2. Suavizar o ruído, substituindo os valores pela média ou mediana dos valores pertencentes à mesma faixa de valor.
- Agrupamento: detectar e remover outliers (atributos que não formarem grupos)
- Regressão: Ajustando os dados por meio de funções de regressão e por classificação, no caso de dados simbólicos.
- **Distância**: técnicas baseadas em distância verificam a que classe pertencem objetos mais próximos a x. Se x for de outra classe, ele pode ser um ruído. Borderlines devem ser eliminados.

• O que fazer com dados inconsistentes ?

ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico	
4201	João	28	М	79	Concentradas	38.0	2	SP	Doente	
3217	Maria	18	F	67	Inexistentes	39,5	4	MG	Doente	?
4039	LUIZ	49	IVI	92	Espainadas	38,0	2	H5	Saudavei	
1920	José	18	M	43	Inexistentes	38,5	8	MG	Doente	
4340	Cláudia	21	F	52	Uniformes	37.6	1	PE	Saudável	
2301	Ana	18	F	67	Inexistentes	39,5	4	RJ	Saudável	?
1322	Marta	19	F	87	Espalhadas	39,0	6	AM	Doente	
3027	Paulo	34	M	67	Uniformes	38,4	2	GO	Saudável	

- O que fazer com dados inconsistentes ?
- Como geralmente são dados gerados por processos de integração e que violam regras de relações conhecidas, pode-se utilizar algoritmos para analisar os dados e identificar as inconsistências.
 - escalas diferentes para uma mesma medida (m, cm)
 - codificação diferente para representar um atributo relacionado a tamanho (pequeno e grande; médio e enorme).

- O que fazer com dados inconsistentes ?
 - Podem ser identificados pelo cálculo de correlação (mede o quanto duas variáveis tendem a mudar juntas) e análise de covariância (mede a relação linear entre duas variáveis).

Covariancia(x,y)=
$$1/(n-1)\sum_{i=1}^{n} ((x_i - \bar{x}_i)(y_i - \bar{y}_i))$$

Correlação $\rho = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \cdot \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$

 Quando as inconsistências não puderem ser corrigidas, esses dados devem ser removidos.

• O que fazer com dados redundantes ?

ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico	
4201	João	28	М	79	Concentradas	38.0	2	SP	Doente	
3217	Maria	18	F	67	Inexistentes	39,5	4	MG	Doente	?
4039	Luiz	49	M	92	Espainadas	38,0	2	H5	Saudavei	
1920	José	18	M	43	Inexistentes	38,5	8	MG	Doente	
4340	Cláudia	21	F	52	Uniformes	37.6	1	PE	Saudável	
2301	Ana	18	F	67	Inexistentes	39,5	4	MG	Doente	?
1322	Marta	19	F	87	Espalhadas	39,0	6	AM	Doente	
3027	Paulo	34	M	67	Uniformes	38,4	2	GO	Saudável	

- O que fazer com dados redundantes ?
 - Eliminar dados redundantes: tuplas cujos atributos possuem os mesmos valores (ou muito próximos).
 - Eliminar atributos redundantes (atributos que podem ser deduzidos a partir de outros). Ex: idade e data de nascimento; quantidade de vendas, valor por venda e venda total

- Algumas técnicas em aprendizado de máquina só trabalham com um tipo de dado: apenas numérico ou apenas simbólico.
- As transformações pode ser:
 - Conversão Simbólico-Numérico
 - Conversão Numérico-Simbólico
 - Normalização
 - Simplificação

- Conversão Simbólico-Numérico
 - Algoritmos como Redes Neurais só trabalham com valores numéricos.

Valor ordinal	Valor inteiro
Primeiro	1
Segundo	2
Terceiro	3
Quarto	4
Quinto	5

Valor ordinal	Valor inteiro
Pequeno	1
Medio	2
Grande	3

Valor ordinal	Valor inteiro
Positivo	+1
Neutro	0
Negativo	-1

Estado Civil	Código
Solteiro	1
Casado	2
Divorciado	3
Desquitado	4
Viúvo	5

Estado	Sigla	Código
Rondônia	RO	11
Acre	AC	12
Amazona	AM	13
Roraima	RR	14
Para	PA	15

- Conversão Numérico-Simbólico
 - Alguns algoritmos trabalham apenas com dados qualitativos.
 - Se o valor discreto ou binário, esta transformação e' simples.
 - Algumas estratégias de transformação:
 - Larguras iguais: divide o intervalo original de valores em subintervalos com mesma largura. (outliers podem prejudicar essa estratégia)
 - Frequências iguais: divide o intervalo original por frequência (pode gerar subintervalos de tamanhos bem diferentes).
 - Uso de algum algoritmo de agrupamento
 - Inspeção Visual

Normalização

- Recomendada quando os limites de valores de atributos distintos são muito diferentes;
- Evita que um atributo predomine sobre outro;
- A normalização pode ser por amplitude ou distribuição:
 - **Distribuição:** muda a escala de valores de um atributo. Ex: ordena os valores e substitui seus valores pela sua posição no ranking. (Valores: 19,8,7,2,7; substitui por 4,3,2,1,2)
 - Se todos os valores forem distintos, a distribuição é uniforme

- Normalização
 - **Amplitude:** pode ser por reescala ou padronização (padronização lida melhor com outliers).
 - Reescala: define uma nova escala, com limites mínimo (min) e máximo(max) novos para todos os atributos. Menor e maior são os limites atuais.

$$valor_{novo} = min + \frac{valor_{atual} - menor}{maior - menor} (max - min)$$

 Padronização: define um valor central e um valor de espalhamento comuns a todos os atributos (σ= covariancia e μ=media)

$$valor_{novo} = \frac{valor_{atual} - \mu}{\sigma}$$

Simplificação:

- transformação para um valor mais facilmente manipulável.
- Ex: idade ao invés de data de nascimento.

- Muitos problemas possuem um número elevado de atributos, especialmente textos e imagens.
- As técnicas que visam reduzir dimensionabilidade seguem as abordagens:
 - agregação
 - seleção de atributos

- Agregação: combina os atributos originais por meio de funções lineares ou não lineares.
 - Análise de Componentes Principais (PCA Principal Component Analysis): técnica bem conhecida que correlaciona estatisticamente os exemplos, reduzindo a dimensionalidade do conjunto de dados original pela eliminação de redundâncias.
 - Obs: Essa técnica leva a perda dos valores originais. Em várias aplicações (áreas de biologia, finanças, medicina, etc), os valores originais são importantes para a interpretação dos resultados. Por isso, técnicas de seleção de atributos em determinadas areas são mais usadas.

- A seleção de atributos busca um subconjunto ótimo de atributos para o problema.
- Ela permite:
 - identificar atributos importantes;
 - melhorar o desempenho dos algoritmos de aprendizado;
 - reduzir exigência de memória e processamento;
 - eliminar atributos irrelevantes e ruídos;
 - simplificar o modelo gerado e, consequentemente, sua compreensão;
 - facilitar a visualização dos dados;

- A seleção de atributos não é uma tarefa trivial, pois pode existir:
 - número muito grande de exemplos;
 - número muito grande de atributos;
 - relações complexas entre atributos, que dificultam a descoberta de relações entre eles.

- Abordagens usadas para seleção de atributos:
 - Embutida: o próprio algoritmo define os atributos. Ex: arvore de decisão.
 - Baseada em filtro: podem usar a correlação entre os dados como critério de seleção.
 - Baseada em wrapper: nessa abordagem o algoritmo de classificação é executado para cada subconjunto e a avaliação geralmente é feita em termos da acurácia preditiva retornada pelo algoritmo. O subconjunto que trouxer o melhor desempenho de aprendizado é definido como o melhor subconjunto de atributos.
 - Estratégias: Backward Generation(inicia com todos e remove um por vez); Forward Generation(vai acrescentando um por vez); Estocástica; ...

- Existem várias técnicas que visam selecionar atributos, as mais simples são baseadas em ordenação.
- Ordena de acordo com algum critério (exemplo frequência) e seleciona por:
 - Ranking: escolhe os n primeiros
 - Relevância: escolhe todos os atributos cujo valor está acima de um limiar n.