Bayesian Networks Learning: A Survey

JIAQI YANG
Department of Computer Science, Graduate Center, CUNY
jyang2@gradcenter.cuny.edu

Bayesian Networks

```
0,2,0,1,2,2,1,3,3,1,3,1,1,1,0,0,0,2,0,0,0,0,0,0,2,2,0,0,0,1,0,0,0,3,0,0,2
3 0,2,0,1,2,2,0,1,3,1,3,1,1,1,0,0,0,2,0,0,0,0,0,0,2,2,2,0,2,1,0,0,0,3,0,0,2
4 0,2,0,1,2,2,0,1,3,1,3,1,1,1,0,0,0,2,0,0,0,0,0,0,2,2,2,0,0,1,1,1,2,3,0,0,2
5 0,2,0,1,2,2,0,2,0,1,0,1,0,0,0,1,0,0,1,2,0,1,0,0,1,1,2,2,2,0,0,0,1,1,0,1,1
0,2,0,0,2,2,0,1,3,1,1,1,1,0,0,0,0,1,0,0,0,0,0,0,2,2,2,0,1,1,0,0,0,1,1,0,2
8 0,2,0,1,2,2,0,1,3,1,3,1,1,1,0,0,0,1,0,0,0,0,0,0,2,2,2,0,1,1,0,2,0,3,0,0,2
11 1,2,0,1,2,2,0,1,3,0,3,1,1,1,0,0,0,1,0,0,0,0,0,0,2,2,2,0,1,1,0,2,0,3,0,0,2
14 0,2,0,1,2,2,0,1,3,1,3,1,1,1,0,0,0,2,0,2,0,1,1,0,0,1,2,2,2,1,0,0,1,3,0,1,0
16 \quad 0, 2, 0, 1, 2, 2, 0, 1, 3, 1, 3, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 3, 1, 0, 1
17 0,2,0,1,2,2,0,1,3,1,3,0,1,1,0,0,0,1,0,0,0,0,0,0,2,2,2,0,1,1,0,2,0,3,0,0,2
20 0,2,0,1,2,2,0,1,3,1,3,1,1,1,0,0,0,0,0,0,0,0,0,0,2,2,2,0,0,1,0,2,0,3,0,0,2
21 0,2,0,1,2,2,0,1,3,1,3,1,1,1,0,0,0,2,0,0,0,1,0,0,0,1,1,1,1,1,0,0,0,3,0,0,0
22 0,2,0,1,2,2,1,3,3,1,3,0,1,1,0,0,0,2,0,0,0,0,0,0,2,2,2,0,0,1,0,2,0,3,0,0,2
23 0,2,0,1,2,2,0,1,3,1,3,1,1,1,0,0,0,1,0,0,0,1,0,0,2,2,0,1,1,0,0,0,1,0,0,0
26 0,2,0,1,2,2,0,1,3,1,3,1,1,1,0,0,0,2,0,0,0,0,1,0,0,0,1,2,2,0,0,1,0,3,0,0,0
28 0,2,0,1,2,2,0,1,3,1,3,1,1,1,0,0,0,2,0,0,0,0,0,0,2,2,2,2,0,0,1,1,0,2,3,0,0,2
29 0,2,0,1,2,2,0,1,3,1,3,1,1,0,0,0,0,0,1,2,0,1,1,0,0,0,2,2,0,1,0,2,1,3,0,1,0
31 0,2,0,1,2,2,0,1,3,1,3,1,1,1,0,0,0,0,0,0,0,2,0,0,1,1,2,0,0,1,0,2,0,3,0,0,1
32 0,2,0,1,2,2,0,1,3,1,3,1,1,1,0,0,0,2,0,0,1,2,0,0,1,1,2,0,0,1,0,2,0,3,0,2,1
33 0,2,0,1,2,2,0,1,3,1,3,1,1,1,0,0,0,2,0,0,0,1,0,0,0,1,1,1,1,1,0,0,0,3,0,0,0
```

• The raw dataset for learning. (37 * 1000)

BN	p	n	palim	 PaSets 	1.4.1	1.6	1.6.1
Diabetes	413	100	2	4441	1135	191	170
Diabetes	413	1000	2	21493	2754	550	437
Diabetes	413	10000	2	262129	5497	2007	1479
Link	724	100	2	7431402	411	496	358
Link	724	1000	2	2379361	1150	892	1424
Link	724	10000	2	2421283	9005	6373	4502
Mildew	35	100	3	3520	17	8	10
Mildew	35	1000	3	161	64	25	12
Mildew	35	10000	3	463	167	79	19
Pigs	441	100	2	2692	151	99	63
Pigs	441	1000	2	15847	203	189	213
Pigs	441	10000	2	304219	2082	1270	832
Water	32	100	3	482	1	1	1
Water	32	1000	3	573	1	1	1
Water	32	10000	3	961	7	2	1
alarm	37	100	3	907	1	1	1
alarm	37	1000	3	1928	3	2	1
alarm	37	10000	3	6473	16	6	2
asia	8	100	∞	41	1	1	1
asia	8	1000	∞	112	1	1	1
asia	8	10000	∞	169	1	1	1
carpo	60	100	3	5068	5	8	2
carpo	60	1000	3	3827	14	12	7
carpo	60	10000	3	16391	99	24	6
hailfinder	56	100	3	244	20	17	3
hailfinder	56	1000	3	761	39	49	10
hailfinder	56	10000	3	3768	124	214	26
insurance	27	100	3	279	1	1	1
insurance	27	1000	3	774	1	1	1
insurance	27	10000	3	3652	5	2	1
kredit	18	1000	3	70	1	1	1
kredit	18	1000	∞	70	248	2370	207

- Different databases.
- Some are synthetic data

https://www.cs.york.ac.uk/aig/sw/gobnilp/

Bayesian Networks

- A Bayesian Network is a directed acyclic graph (DAG) learned from given dataset.
- A Bayesian network joint probability distribution:

$$P(B,E,A,R,N) = P(N \mid A)P(R \mid E)P(A \mid B, E)P(E)P(B)$$

Local Scores

- Formulate the learning task as minimize local scores problem.
- Score-based structure learning(Minimum Description Length):

$$MDL(X_{i}|PA_{i}) = H(X_{i}|PA_{i}) + \frac{\log N}{2}K(X_{i}|PA_{i}),$$

$$H(X_{i}|PA_{i}) = -\sum_{x_{i},pa_{i}} N_{x_{i},pa_{i}} \log \frac{N_{x_{i},pa_{i}}}{N_{pa_{i}}},$$

$$K(X_{i}|PA_{i}) = (r_{i} - 1) \prod_{X_{l} \in PA_{i}} r_{l}.$$

$$MDL(G) = \sum_{i} MDL(X_{i}|PA_{i}),$$

- Shortest path = Minimum score of (X | PA).
- Optimal Bayesian Network

Local Scores

- Bayesian Networks learning problem NP-hard, and a combinatorial problem. (TSP for example)
- Local score table is also combinatorial. Calculate score for each variable with any possible parents combination.

- Format of local score: POPS
- Using some pruning tech to constraint the possible parent sets.
- For massive datasets, we can determine the indegree number of parents.
- Calculating the POPS is very time-consuming for large dataset.

Algorithms(Local Score Based)

- Integer Linear Programming(GOBNIP): https://www.cs.york.ac.uk/aig/sw/gobnilp/
- Depth-first Branch-and-Bound(DFBnB)
 https://cs.uwaterloo.ca/~vanbeek/Research/research_ml.html
- Breadth-first BnB (improve the scalability)
- A* search http://urlearning.org/
- Dynamic Programming(DP)

 2005 by Ajit P. Singh and Andrew W. Moore.

Algorithms(Local Score Based)

Neural Network

- I am working one this area now
- Not find anyone done this before
- Other combinatorial problem was solved by this method (Google Brain)
- RNN/ PointerNetwork/ Transformer ...
- Hopefully will deal with thousands of variables with better network compared to other methods.
- Increase the scalability using GPU.
- In the future, skip the local score form, combining with reinforcement learning to achieve goal.

A* search and constraints

Α	{D} 9.6	{C} 9.9	{E} 10.0	{} 15.4	
В	{C,D} 12.1	{C} 12.2	{E} 12.3	{} 14.1	
С	{E} 3.6	{D} 5.2	{A,B} 10.9	{A} 11.4	{} 17.0
D	{E} 3.6	{C} 5.2	{A,B} 10.9	{A} 11.4	{} 17.0
E	{D} 3.7	{A} 4.2	{A,B} 11.2	{C} 11.6	{} 17.0

- Heuristic (DP)
- Upper bound (local search)
- Symmetry-breaking
- Dominance constraints

> A representation of global optimal search

Score: 38.9

NN for BNs Learning

- Learning order of the variables.
- Using the order output to search through POPS for scores.
- Optimize the NN via minimizing the score.
- Better score → Better networks

Structure of Survey

- Abstract
- Introduction:
 - Global optimal search
 - Local search
 - Neural network related problems
- Background:
 - Local Score Functions
 - Learning Networks and NP-hard explanation
- Order-based local search algorithm (ILP)
- Dynamic Programming
- Shortest-path concept search
- Mixture of algorithms and their improvement
- Neural Network related search
- Comparison of different algorithms
- References

Papers

- Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, Samy Bengio. 'Neural Combinatorial Optimization With Reinforcement Learning'.
- Oriol Vinyal, Meire Fortunato, Navdeep Jaitly. 'Pointer Networks'.
- Mauro Scanagatta, Cassio P. de Campos, Giorgio Corani. 'Learning Bayesian Networks with Thousands of Variables'.
- Peter van Beek, Hella-Franziska Hoffmann. 'Machine learning of Bayesian networks using constraint programming'
- Changhe Yuan, Brandon Malone, and Xiaojian Wu. 'Learning Optimal Bayesian Networks Using A* Search'

Questions?