Provinha VII

Neste problema nós vamos discutir o espalhamento de uma partícula de massa m_1 e velocidade inicial v_0 que será espalhada por uma outra partícula de massa m_2 , inicialmente em repouso. A interação aqui estudada é associada a algum potencial central repulsivo (e.g. partículas com cargas opostas com repulsão elétrica). Já que estamos trabalhando com conceitos como conservação de momento linear e referencial de centro de massa, a natureza desta interação não é muito importante (inclusive, várias expressões de espalhamento que encontramos no regime clássico coincidem com aquelas encontradas no regime quântico!). A partícula incidente é espalhada por um ângulo ϑ e possui uma velocidade final v_1 .

Figura 1: Espalhamento no referencial do laboratório.

- (a) Sendo R a posição do referencial do CM, escreva a equação vetorial para r_1 , que é a posição da particula incidente no referencial do laboratório, em função da posição desta mesma partícula no referencial do CM, r'_1 . Derive esta equação em relação ao tempo para encontrar a relação entre as velocidades nos diferentes referenciais. Considere que a velocidade do centro do referencial CM é V.
- (b) Utilizando a conservação do momento linear total encontre a expressão para a velocidade V do CM em função das massas e v_0 . Sua resposta

quando escrita em função da massa reduzida $\mu \equiv m_1 m_2/(m_1+m_2)$ deve ser:

$$V = \frac{\mu}{m_2} v_0 \tag{1}$$

Uma vez sabendo a velocidade do CM, escreva as condições iniciais do problema neste referencial. Como um observador neste referencial irá ver as partículas antes de ocorrer o espalhamento? E depois? Seus argumentos devem coincidir com o que está mostrado na Figura 2.

(c) Escreva a lei dos cossenos para a expressão vetorial que relaciona v_1' com v_1 e V (encontrada no ítem a). A expressão terá o seguinte formato:

$$v_1^2 = v_1'^2 + V^2 + 2v_1'V\cos X. \tag{2}$$

Argumente qual ângulo devemos usar para substituir X.(Dica: lembre que V é paralelo à v_0). No resto da provinha você deve substituir o X pelo ângulo que você encontrou aqui.

(d) Utilizando o resultado do ítem anterior e definindo $\rho \equiv \frac{\mu}{m_2} \frac{v_0}{v_1'}$, mostre que a lei dos cossenos pode ser escrita como

$$\frac{v_1^2}{v_0^2} = \left(\frac{\mu}{m_2 \rho}\right)^2 \left[1 + 2\rho \cos X + \rho^2\right]. \tag{3}$$

(e) O parâmetro ρ definido acima é bastante interessante pois ele carrega a informação de que a colisão será inelástica ou não. Primeiro, perceba que podemos eliminar v_1' em função da velocidade relativa entre as duas partículas, v^1

$$v_1' = \frac{\mu}{m_1} v \to \rho = \frac{m_1}{m_2} \frac{v_0}{v}.$$
 (4)

Mostre agora que para o caso de colisão elástica, devemos ter que $\rho = \frac{m_1}{m_2}$.

¹Se você não estiver confortável com este passo, dê uma olhada na primeira seção do cap. 8 do livro Curso de Física Básica vol.1; H.Moysés.

(f) Considerando uma colisão elástica mostre que a razão entre as energias cinéticas da partícula 1 depois do espalhamento, E_1 , e antes, E_0 , é dada por:

$$\frac{E_1}{E_0} = \frac{1 + 2\rho \cos X + \rho^2}{(1 + \rho)^2}$$
 (Colisão elástica). (5)

Mesmo que a colisão seja elástica nós temos que o espalhamento é *inelástico*! Ou seja, a partícula incidente doa parte de sua energia cinética para a partícula alvo.

- (g) Faça $m_1 = m_2$ na eq.(5). Neste caso, é possível que a partícula 1 perca toda sua energia cinética? Se sim, qual será o ângulo de espalhamento?
- (h) Ainda no caso de colisão elástica, é possível que a energia doada para a partícula alvo seja desprezível? Tome as condições apropriadas deste caso para ρ na eq.(5) e argumente.

Figura 2: Espalhamento das partículas no referencial do CM.

Problema extra Vamos agora aplicar estes conceitos para o espalhamento de um fóton por um elétron, fenômeno conhecido como espalhamento Compton. O objetivo deste problema é mostrar para vocês

que as leis de conservação vistas no curso são aplicáveis nos mais diversos contextos. Aqui, vamos considerar um fóton² com momento $p = \frac{h}{\lambda}$, energia $E = \frac{hc}{\lambda} = pc$ que incide sobre um elétron que inicialmente está em repouso. Depois da interação, o fóton é espalhado por um ângulo θ , enquanto que o elétron passa a ter momento linear não nulo e faz um ângulo ϕ com a direção de incidência (Figura 3).

Figura 3: Representação do espalhamento Compton.

Para descrever a energia do elétron vamos introduzir o conceito de energia relativística. Primeiro temos a contribuição da energia cinética E_c , que é não nula quando o elétron está em movimento. Porém, mesmo quando o elétron está parado, ele possui o que chamamos de energia de repouso $E_0 = mc^2$, devido a sua massa. Portanto, a energia do elétron é

$$E = E_c + E_0 = E_c + mc^2. (6)$$

Além disso, introduzimos a relação de dispersão 3 (lembrem-se da provinha 3!) relativística

$$E^2 = p^2 c^2 + m^2 c^4. (7)$$

²Estas expressões para energia e momento de um fóton serão vistas de maneira mais detalhada no futuro da graduação.

³A relação de dispersão estabelece a relação entre energia e momento.

Combinando as equações, obtemos uma relação para o momento do elétron que será útil posteriormente

$$p^2 = \frac{E_c^2}{c^2} + 2E_c m. (8)$$

Considere que depois do espalhamento, o fóton terá momento $p' = \frac{h}{\lambda'}$ e energia $E' = p'c = \frac{hc}{\lambda'}$, e o elétron terá momento p_e e energia cinética E_c .

(a) Use a conservação do momento nas direções x e y para mostrar que

$$p = p'\cos\theta + p_e\cos\phi \tag{9}$$

$$p'\sin\theta = p_e\sin\phi\tag{10}$$

(b) Discuta porque podemos escrever a conservação da energia como

$$E + mc^2 = E' + E_c + mc^2. (11)$$

(c) Mostre que podemos eliminar a dependência com o ângulo ϕ e obter

$$p^2 - 2pp'\cos\theta + p'^2 = p_e^2. (12)$$

Dica: Some o quadrado das equações 9 e 10.

(d) Substitua a equação 8 no lado direito da equação 12 para obter

$$p^{2} - 2pp'\cos\theta + p'^{2} = \frac{E_{c}^{2}}{c^{2}} + 2E_{c}m.$$
 (13)

O lado esquerdo da equação acima só depende do momento. Então, se pudermos reescrever a energia cinética também em termos do momento, teremos uma equação inteira em função do momento! De fato, utilizando a equação 11 e lembrando que E=pc, temos

$$E_c = E - E' = c(p - p').$$
 (14)

Por fim, se substituirmos a equação (14) na (13) e realizarmos alguns passos algébricos, é possível concluir que:

Primeiro Semestre – 2020

$$\frac{1}{p'} - \frac{1}{p} = \frac{1}{m_0 c} (1 - \cos \theta) \tag{15}$$

Multiplicando a equação (15) por h e definindo $\lambda_c = h/m_0 c$, chegamos na famosa equação do espalhamento Compton:

$$\Delta \lambda = \lambda' - \lambda = \lambda_c (1 - \cos \theta). \tag{16}$$

Esta equação relaciona a variação de energia do fóton antes e depois de ser espalhado (lembre que a energia do fóton pode ser escrita em função de λ). A correção do comprimento de onda é no máximo λ_c e ocorre para o ângulo de espalhamento $\theta = \frac{\pi}{2}$. Se o comprimento de onda do fóton incidente for muito maior que λ_c , podemos ver que $\lambda' \sim \lambda$, que é o resultado clássico.

A equação 16 foi verificada em 1923 por Arthur Holly Compton, o que lhe acabou rendendo um premio nobel. Como este efeito só pode ser explicado através de fótons, ele serviu como motivação para a interpretação corpuscular da luz.