

Benchmarking, Monitoring, Observability, and Experimenting for Big Data and Machine Learning Systems

Hong-Linh Truong
Department of Computer Science
<u>linh.truong@aalto.fi</u>, <u>https://rdsea.github.io</u>

Learning objectives

- Able to analyze the role of measurement, monitoring and observability in real-world cases for R3E
- Understand and develop methods with key steps and important tools for benchmarking, monitoring, observability and experimenting
- Able to apply these methods for big data/ML systems

The role of measurement, monitoring and observability

Development vs Runtime activities

Design, test and benchmark R3E

- R3E for individual components
- model/capture complex dependencies
- design logs, metrics and traces for capturing states and complex dependencies

Monitoring/observability and runtime adaptation

- runtime monitoring and observability
- states, performance and failure analytics
- runtime controls (constraints, rules, actions)

Measurement, monitoring, and observability for R3E

Instrumentation and sampling

- instrumentation: insert probes into systems to measure system behaviors directly or produce logs
- sampling: use components to sample system behaviors

Monitoring

 perform sampling or instrumentation to collect and share metrics, logs, traces; visualize what has been happened

Observability

- evaluate and interpret measurements for specific contexts
- understand and explain the systems states, dependencies, etc.

Recall: strongly interdependencies

Any problem would lead to a huge waste (engineering effort, operation cost, societal impact due to wrong inference/prediction)

Methods

What/Which, Where, When, Who and How

Understand W4H aspects for analytics of big data/ML systems

Key steps – What/Which

- Understand and identify indicators/metrics characterizing your systems
- Common metrics vs specific (big data/ML) ones
 - different relevance/importance based on specific contexts
- Most critical problems are due to complex dependencies that are not common
 - root cause analysis will be tricky
- For which purposes?
 - SRE, benchmarking, Test-Driven Development (TDD)

Key steps – Where and When

- Where: as a "space" dimension
 - tightly coupled or isolated/loosely coupled
 - different places
 - software/system layers, components and systems boundaries
 - dependencies among components
 - development/configuration pipelines
- When: as a "time" dimension
 - design, test/training, or runtime (DevOps)
 - further divided into sub states

Key steps - How

- Characterize dependencies among components
 - understand the system as a whole
 - include also development processes, data, software artefacts and execution environments
- Select tools for capturing metrics
- Understand what kind of changes/designs we must do
- Do monitoring and analysis
- Integrate many types of data for monitoring and observability

Apply W4H for benchmarking, monitoring, validation and experimenting

- Determines clearly system boundaries
 - the system under study, the system used to judge, and the environment
 - "domain-driven/oriented" and bounded context principles
- Understands dependencies
 - among components in distributed big data/ML systems in distributed computing platforms
 - single layer as well as cross-layered dependencies
- Determines types of metrics and failures and break down problems along the dependency path (how)

Boundaries and dependencies

Example of a ML service for object recognition (used in our hands-on)

- Subjects for testing/debugging
 - Data?
 - Model?

Time

- Underlying service platform?
- Or all of them?

What are the most critical metrics for your cases? Quality Time Quality **Utilization** Efficiency **Behaviors** of data Response Throughput Latency Accuracy Completeness

Industry view: https://quidingmetrics.com/content/cloud-services-industrys-10-most-critical-metrics/ NIST: https://www.nist.gov/sites/default/files/documents/itl/cloud/RATAX-CloudServiceMetricsDescription-DRAFT-20141111.pdf

Contradiction/Tradeoffs between Efficiency versus Resiliency Metrics for an ML model =! Metrics for ML system

time

Common performance metrics

Timing behaviors

- Communication
 - Latency/Transfer time
 - Data transfer rate, bandwidth
- Processing
 - Response time (service latency/time)
 - Throughput
- Utilization
 - Network utilization
 - CPU utilization
 - Service utilization
- Efficiency/Scalability
 - Concurrent executions

Examples

Types of Failure

But unforeseen failures cannot be determined in advance design for handling failure

Check: https://arxiv.org/pdf/1910.11015.pdf for a "Taxonomy of Real Faults in Deep Learning Systems"

Metrics for Data

- Completeness
- Timeliness
- Currency
- Validity
- Format
- Accuracy
- Data Drift

Often evaluation methods are different for different types of data

(examples with real mobile data)

Metrics for ML models

- Confusion matrix
- Accuracy
- Loss
- True positive rate
- False positive rate
- F1 Score/F-measure
- Etc.

(see

https://towardsdatascience.com/metrics-to-evaluate-your-machin e-learning-algorithm-f10ba6e38234)

How would we define "reliable function" of the model? E.g., when should we "retrain" the model?

Benchmarking and Observability

Benchmarking

- Benchmark: for comparing big data/ML systems w.r.t. selected (standard/common) workloads
- Where to be benchmarked
 - benchmark individual subsystems: message brokers and data ingestion, databases and ingestion/query, data processing, ML models, serving platform
- What to be benchmarked
 - data ingestion throughput, processing throughput and time, component CPU and memory
 - training and inferencing time and accuracy

Benchmarking

What should we do for a big data system?

Check:

https://www.sciencedirect.com/science/article/pii/S0140366419312344

https://www.benchcouncil.org/BigDataBench/

Benchmarking

If you have an end-to-end ML system, does it make sense to benchmark the whole system?

Benchmarking - ML

Examples:

Result																					
Task	Image classification ImageNet ResNet			OpenImages (800x800) Retinanet			Medical imaging KITS19 30-UNet				Speech-to-text LibriSpeech RNN-T		Natural Language Processing SQuAD v1.1 BERT		Large Language Model CNN-DailyMail News						
Data																					
Model															gptj-99 gptj-99.9			1			
Accuracy	Single Multi		99.00				99.90		99.00		99.00		99.00		99.90		1				
Scenario Units			Offline	Single Multi Stream Stream		Offline	Single Stream		Single Stream		Single Stream		Single Stream	Offline	Server	Offline	Server	Offline]		
	latency in ms	latency in ms	samples/s	latency in ms	latency in ms	samples/s	latency in ms	samples/s	latency in ms	samples/s	latency in ms	samples/s	latency in ms	samples/s	Queries/s	Samples/s	Queries/s	Samples/s	Details	Code	Notes
	0.38	0.99	12,557.80	6.48	51.13	169.04	1,888.27	7 1.05	1,888.27	1.05	29.34	3,818.19	2.59	893.47					details	code	Powered by MLCommo
	0.83	2.60	6,049.73	13.21	102.46	84.13	4,724.60	0.46	4,724.60	0.46			6.39	435.81					details	code	Powered by MLComm
	215.09	515.62	18.41																details	code	Powered by MLCommo
	3.29	45.10	305.09																details	code	Powered by MLCommi
	7.86	64.63	234.45	454.10	3,801.10	4.25													details	code	Powered by MLCommi
	1.62	13.04	4,007.25	18.32	150.84	56.57													details	code	Powered by MLCommi
	8.01	54.81	253.92										265.39	4.50					details	code	Powered by MLCommo
											402.95	4.46							details	code	Powered by MLCommo
				437.92	3,673.79	2.35							277.90	3.98					details	code	Powered by MLCommo
	7.79	38.73	248.94																details	code	Powered by MLCommo
	7.82	39.06	252.08										228.07	4.41					details	code	Powered by MLCommo
	8.97	53.33	255.54																details	code	Powered by MLCommo
	1.65	3.81	3,857.76										6.71						details	code	Powered by MLCommo
													11.34	88.55					details	code	Powered by MLCommo
	2.04	4.80	2,131.38																details	code	Powered by MLCommo
	1.99	17.14	2,359.98										9.42	105.43					details	code	Powered by MLCommo
	51.10	409.59	20.06		1					1				1		1			details	code	Powered by MLCommo

Source: https://mlcommons.org/en/inference-edge-31/

Also check: https://www.benchcouncil.org/aibench/index.html

Service/Infrastructure monitoring tools

There are many powerful tools!

But only low-level, well-identified monitoring data (infrastructures): pre-defined metrics exposed through interfaces with push/pull mechanism

From: https://prometheus.io/

Instrumentation for observability

Code instrumentation: for many metrics and logs that cannot be obtained from the outside of the component

the developer can instrument the code to capture metrics/generate logs/traces

From: https://www.fluentd.org/

Lightweight shipper for logs

https://www.elastic.co/beats/filebeat

https://opentelemetry.io/

Monitoring data metrics on-the-fly

A couple of tools for data quality

- Generic tools/framework for checking data at rest
 - Great expectation: <u>https://github.com/great-expectations/great_expectations</u>
 - YData (<u>https://github.com/ydataai/ydata-quality</u>)
 - Alibi-Detect (<u>https://github.com/SeldonIO/alibi-detect</u>)
 - Why-log (https://docs.whylabs.ai/docs/whylogs-overview/)
- Integrated with processes in specific systems
 - https://aws.amazon.com/blogs/industries/how-to-architect-dat a-quality-on-the-aws-cloud/
- Working with specific data processing frameworks
 - https://github.com/awslabs/python-deequ

Visualization

Metrics and Visualization

- Easy to visualize many types of metrics
 - Human-in-the-loop
- But only you can specify, define and map them to your structured applications
- Not for complex process automation!
 - further integration and intelligence analytics

https://www.elastic.co/products/kibana

https://grafana.com/

Observability

- To monitor and understand the system as whole, end-to-end
 - every component must be monitored
 - dependencies/interactions must be captured
 - diverse metrics, logs, tracing, etc. are needed to be integrated
- Understand the states and behaviors of the whole systems
- Complex problems in big data/ML systems as these systems
 - large-scale number of microservices in large-scale virtualized infrastructures
 - multi-dimensional states (code, models and data)

Understand the structure of big data/ML application Dependency Structure

Composable method

- divide a complex structure into basic common structures
- each basic structure has different ways to analyze specific failures/metrics
- Interpretation based on context/view
 - client view or service provider view?
 - conformity versus specific requirement assessment

Support an end-to-end view or not

End-to-end reflects the entire system

- e.g., data reliability: from sensors to the final analytics/inference results
- what if the developer/provider cannot support end-to-end?
- The user expects end-to-end R3E
 - e.g., specified in the expected accuracy
- Providers/operators want to guarantee end-to-end quality
 - need to monitor different parts, each has subsystems/components
 - coordination-aware assurance, e.g., using elasticity

Big data/ML for Observability vs Observability for Big data/ML systems

- Big data of metrics, logs and traces
 - Large number of entities to be observed
 - High number of measurement dimensions
- ML for observability
 - Classification, prediction and detection of traffics/interactions anomaly behaviors, hidden relationships, etc.
 - Root-cause analysis
 - ML serving is in the edge and cloud

Example: ML contract observability

Experiment management

how do we manage important information for ML services?

Problems

We need to run many experiments

- testability/observability purposes: figure out suitable configurations
- how does this help to understand and support R3E?

Experiment management

- known domain and well-known books (e.g., "Design and Analysis of Experiments" by Douglas C. Montgomery)
- principles: capturing various configurations
- how does it work in big data and ML?

What do we need?

tools/frameworks for tracking experiments

Notions

A single run/trial

- inputs, results, required software artefacts
- computing resources, logs/metrics

Experiment

a collection of runs/trials/executions gathered in a specific context

Steps

- parameterization: generate different parameters
- deployment: prepare suitable environments
- execution: run and collect metrics
- analysis and sharing: analyze experiment data

Experiment tracking

But remember it is very large system! Different techniques/tools may be needed

Examples

- Tensorflow Board (https://www.tensorflow.org/tensorboard)
- Experiment in Azure ML SDK
 - https://docs.microsoft.com/en-us/python/api/overview/azure/ml/?view=azure-ml-py#experiment
- MLFlows https://mlflow.org/
- Kubeflows
 - https://www.kubeflow.org/docs/pipelines/overview/concepts/
- DVC: https://dvc.org/
- Verta: <u>https://www.verta.ai/</u>
- Comet: https://www.comet.com/

Examples: MLFlow APIs

Experiment

```
mflow.start_run()/end_run()
mflow.autolog()
```

Logs/metrics collection

```
mflow.set_tag()
mflow.log_*()
```

- Tracking data management
 - Local files, Databases, HTTP server, Databrick logs

(follow our hands-on tutorial)

Experiment management: more than just ML models

- Remember there are many components in a system
- Experiment data about other components is also crucial
 - have a full visibility and understanding of the system
 - support explainability and end-to-end optimization
- ML model experiment must be combined with other types of experimental data
 - experiment management for end-to-end systems

Study log 2

Describe one big data/ML pipeline that you are familiar with and explain your thoughts on how would you support the aspects of "benchmarking", "monitoring", "observability", or "experimenting" for testing/implementing R3E aspects

- Is enough to focus on 1 pipeline and 1 aspect
 - No "familiar pipeline" \rightarrow look at our hands-on tutorials
- Be concrete, e.g., with metrics and possible tools
- Analyze if things can be done easily or where are the challenges that might be interesting for further investigation
- Optionally link to issues raised/addressed in a reading paper

Thanks!

Hong-Linh Truong
Department of Computer Science

rdsea.github.io