GRADUATION THESIS

Inventory rotation using RFID automated inventory in logistics warehouses

NGUYEN THI THANH HOAI

hoai.ntt176760@sis.hust.edu.vn

Major: Information Technology Specialization: Global ICT

Supervisor: PhD. Vu Thi Huong Giang _____

Signature

Department: Computer Engineering

School: Information and Communications Technology

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my advisor Ph.D Vu Thi Huong Giang for the continuous support of my graduation thesis, for her patience, devotion, motivation, enthusiasm, and immense knowledge. She helped me in all the time of research and writing of this thesis. Thanks to her guidance, I can finally finish this thesis with all my might.

I also give many thanks to all professors from School of Information and Communication Technology - Hanoi University of Science and Technology, for all knowledge they taught me since the day I became a student of the university five years ago. They are always willing to support students, help us to surpass every obstacles. We had to overcome a difficult time because of COVID-19, had to learn everything online in two years but it also a memorable time that I will never forget.

I cannot have that wonderful time without my friends - they also help me a lot in many courses. We have same target, hobbies, we understand and learn each others. We are a perfect team that I never want to leave. I am humble and grateful for the knowledge I learn from all of you, and the unforgettable time in five years of student.

I would like to thank my parents, who always support me for my passion. Thank to my father, who have always given me advice and guided me to find the most suitable way in my ability. Thank to my mother, who always taken care of me, given a lot of motivation during my student life, given me strength and confidence to follow my passion.

Finally, I would like to thank myself – for the determination and try the best to complete my thesis and learning process in this amazing university.

ABSTRACT

Logistics warehouses have become important players in the supply chain. The features that are shared include item management and time-limited storage. Managing the flow of goods into the warehouse from the processes of exporting, importing, storing, or rotating items is the most crucial activity in warehouse, especially in automated and private warehouses. To improve the accuracy of inventory results and synchronize the management system at the logistics warehouses, automatic inventory methods must completely replace manual methods. Also, inventory rotation is necessary because commodities engage in continual import-export activities throughout the day, resulting in disorganized arrangements that interfere with other operations and goods management. Moreover, it has become common for Amazon, Uniqlo and Zara to manage inventories and warehouses utilizing RFID.

Many apps, such as Sapo, Misa, SAP provide inventory management with inventory functions, but the most of them do not meet the needs of logistics warehouses. Because the inventory process is carried out manually, the results do not adequately reflect the number, quality, and current condition of the items, which is time and labor intensive. Also, the goods sorting function does not take into account the real storage condition to provide sorting recommendations, efficiently utilize storage space, track, or control goods. Besides, the DxClan system connects departments in private logistics warehouses and offers efficient warehouse management capabilities, but it lacks the capability of automatic inventory, inventory rotation.

This thesis has suggested a solution to employ RFID to automatic inventory in logistics warehouses and from the inventory results, suggests inventory rotation to bring practical benefits for businesses. I chose the topic "Inventory rotation using RFID automated inventory in logistics warehouses" for my graduation project. The thesis focuses on developing a built-in automatic inventory module that integrates into the DxClan digital workspace management system with newly developed features such as (1) automatic inventory of goods in the warehouse using RFID tags and reader, (2) suggest inventory rotation based on inventory results in the warehouse. Also, two components of the DxClan system's initial functionality have been updated and modified, including (3) generating and assigning RFID codes to goods during import processing, (4) search for and track product changes before and after import-export process and rotating the warehouse. The program has been installed on the DxClan system and tested successfully using a data set, a set of hardware (a reader at 13.56 MHz and 20 RFID tags).

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION	1
1.1 Motivation	1
1.2 Objectives and scope of the graduation thesis	2
1.3 Tentative solution	3
1.4 Thesis organization	4
CHAPTER 2. REQUIREMENT SURVEY AND ANALYSIS	6
2.1 Status survey	6
2.2 Functional Overview	9
2.2.1 General use case diagram	9
2.2.2 Usecase diagram for "Perform automated inventory with RFID"	10
2.2.3 Usecase diagram for "Internal rotation of goods from inventory results"	11
2.2.4 Use case diagram for "Generate and assign RFID codes to goods".	12
2.2.5 Usecase diagram for "Manage consignment"	12
2.2.6 Business process	13
2.3 Functional description	15
2.3.1 Description of use case "Execute bill" with inventory bill	15
2.3.2 Description of use case "Execute bill" with goods receipt bill	16
2.3.3 Description of use case "Execute bill" with inventory rotation	17
2.3.4 Description of use case "Manage consignment"	18
2.4 Non-functional requirement	18
2.4.1 Logical and input processing requirements	18
2.4.2 General requirements	18

CHAPTER 3. METHODOLOGY	20
3.1 RFID Technology and ISO - 1443	20
3.1.1 RFID (Radio Frequency Identification)	20
3.1.2 ISO - 14443	25
3.2 The Technology Used In DxClan System	26
3.2.1 Front-end Technologies	26
3.2.2 Back-end Technologies	28
3.3 Warehouse management module of DxClan	30
3.4 The algorithms	32
CHAPTER 4. EXPERIMENT AND EVALUATION	35
4.1 Architecture design	35
4.1.1 Software architecture of DxClan system	35
4.1.2 Overall design	37
4.1.3 Packet diagram for client	37
4.1.4 Overview package chart for server	38
4.1.5 Detailed package design	39
4.2 Detailed design	43
4.2.1 User interface design	43
4.2.2 Layer design	45
4.2.3 Database design	47
4.3 Application Building	54
4.3.1 Libraries and Tools	54
4.3.2 Achievement	54
4.3.3 Illustration of main functions	55
4.4 Testing	58
4.5 Deployment	59

CHAPTER 5. SOLUTION AND CONTRIBUTION	62
5.1 Automated inventory of goods using RFID in logistics warehouses	62
5.1.1 Problem	62
5.1.2 Solution	63
5.1.3 Result	69
5.2 Inventory rotation based on inventory results in the warehouse	74
5.2.1 Problem	74
5.2.2 Solution	75
5.2.3 Result	80
5.3 Generate and assign RFID codes to goods during goods receipt	81
5.3.1 Problem	81
5.3.2 Solution	82
5.3.3 Results	85
5.4 Search and track changes in goods during storage in warehouse	88
5.4.1 Problem	88
5.4.2 Solution	88
5.4.3 Results	89
CHAPTER 6. CONCLUSION AND FUTURE WORK	91
6.1 Conclusion	91
REFERENCE	93

LIST OF FIGURES

Figure 2.1	General usecase diagram	10
Figure 2.2	Usecase diagram for "Perform automated inventory with	
RFID'	, 	10
Figure 2.3	Usecase diagram for "Internal rotation of goods from in-	
ventor	y results"	11
Figure 2.4	Use case diagram for "Generate and assign RFID codes to	
goods'	, 	12
Figure 2.5	Usecase diagram for "Manage consignment"	12
Figure 2.6	Business process of automated inventory	13
Figure 2.7	Business process of inventory rotation	14
Figure 3.1	Overview model of the RFID system	21
Figure 3.2	Passive and Active Tag Processes	22
Figure 3.3	The working principle of RFID	24
Figure 3.4	Percentage of users who would use a framework again	27
Figure 3.5	MongoDB database model	30
Figure 4.1	Client-side package design	35
Figure 4.2	MVC architecture	36
Figure 4.3	Packet diagram for client	37
Figure 4.4	Overview package chart for server	38
Figure 4.5	Detailed package design for client	39
Figure 4.6	Details of the client-side package of the warehouse infor-	
mation	n management function	40
Figure 4.7	Package details client-side storage location information man-	
ageme	nt function	40
Figure 4.8	Package details client-side inventory management function .	41
Figure 4.9	Package details client-side cargo information management	
function	on	41
Figure 4.10	Package details client-side ticket information management	
function	on	42
Figure 4.11	Package details of the inventory information management	
function	on client-side	42
Figure 4.12	Server-side package details of warehouse management ap-	
plicati	on	43
Figure 4.13	DxClan application's interface to perform inventory	43

Figure 4.14	Interface design for automatic inventory execution	45
Figure 4.15	Detailed interface design of inventory results	45
Figure 4.16	Data link diagram	47
Figure 4.17	Database details	48
Figure 4.18	Inventory execution interface with automatic inventory method	55
Figure 4.19	The interface displays detailed inventory results	55
Figure 4.20	The interface suggests rotating the goods warehouse based	
on the	inventory results	56
Figure 4.21	Interface to perform to recheck the storage location of goods	
after in	nventory rotation	56
Figure 4.22	Interface for creating and assigning RFID codes to goods	
during	import processing	57
Figure 4.23	RFID card information management interface	57
Figure 4.24	Interface for searching and tracking commodity movements .	57
Figure 5.1	Inventory process	64
Figure 5.2	Process of using RFID in inventory	
Figure 5.3	Details of the inventory process	
Figure 5.4		
Figure 5.5		
Figure 5.6		70
Figure 5.7	Figure of performing RFID code scanning with reader de-	
vice a	nd RFID card into the system	71
Figure 5.8	Screen of automatic inventory	71
Figure 5.9	The screen shows the details of the inventory results	72
Figure 5.10	The screen displays a list of goods in the wrong storage	
locatio	on	72
Figure 5.11	The screen to view inventory details	73
Figure 5.12	Report on inventory minutes	73
Figure 5.13	The process of rotating and rearranging goods in the ware-	
house		76
Figure 5.14	Business process of inventory rotation	78
Figure 5.15	The screen of suggestion to inventory rotation	80
Figure 5.16	The screen of performance the inventory rotation	81
Figure 5.17	Import business process	83
Figure 5.18	The screen to add consignment	86
Figure 5.19	The screen for adding new consignments and assigning RFID	
codes		86

Figure 5.20	The screen of loading goods into the warehouse in the ware-	
house	receipt	87
Figure 5.21	RFID management screen	87
Figure 5.22	Consignment management screen	89
Figure 5.23	Consignment management screen	90