Unix

Brian W. Kernighan

Rob Pike

15 luglio 2022

Indice

1	$\mathbf{L}'\mathbf{U}$	NIX p	er i principianti	7
	1.1	Come	cominciare	8
		1.1.1	Alcuni prerequisiti a proposito di terminali e di dattilo scrittura	8
		1.1.2	Un esempio di collegamento in UNIX $\ \ldots \ \ldots \ \ldots \ \ldots$	9
		1.1.3	Operazioni di collegamento	10
		1.1.4	Comandi di battitura	11
		1.1.5	Comportamento strano del terminale	12
		1.1.6	Errori di battitura	12
		1.1.7	$Immissione/emissione \ contemporanea \ di \ testi \ \ . \ . \ . \ . \ . \ . \ . \ . \ . $	14
		1.1.8	Come arrestare un programma	14
		1.1.9	Come scollegarsi	14
		1.1.10	Corrispondenza	15

4 INDICE

Listings

6 LISTINGS

Capitolo 1

L'UNIX per i principianti

Cos'è l'UNIX? Letteralmente, si tratta del nucleo centrale di un sistema operativo che utilizza la tecnica del time-sharing per gestire le risorse di un calcolatore e distri- buirle tra i vari utenti. Il sistema consente ai singoli utenti di far girare i propri pro. grammi, controlla le unità periferiche (dischi, terminali, stampanti e simili) collegate alla macchina e mette a disposizione un sistema di archiviazione che dà la possibilità di tenere a lungo in memoria informazioni quali programmi, dati e documenti.

In senso più ampio, spesso si intende per UNIX non solo il nucleo centrale, ma an che i programmi essenziali quali i compilatori, i programmi per le attività di editing¹ In senso ancora più ampio, l'UNIX può comprendere anche i programmi sviluppa- ti dagli utenti, come ad esempio quelli per la preparazione dei documenti, routine per l'analisi statistica e i pacchetti grafici.

L'accezione in cui il termine UNIX sarà usato dipenderà da quale livello del sistema sarà preso in considerazione. In questo libro, il contesto chiarirà il significato di volta in volta.

Il sistema UNIX sembra a volte più difficile di quanto non lo sia in realtà, perché in effetti, per i neofiti, è difficile saper usare in modo ottimale tutte le possibilità che offre. Fortunatamente, però, non è difficile muovere i primi passi e basta conoscere alcuni programmi per cominciare a lavorare. Con questo primo capitolo si vuole, nel più breve tempo possibile, mettervi in grado di usare il sistema. Esso dà una visione panoramica e non è un manuale; la materia verrà poi in gran parte trattata con maggior dettaglio nei capitoli successivi. Gli argomenti principali di questo capitolo sono i seguenti:

- attività di base: registrazioni in entrata e in uscita, comandi semplici, correzione degli errori di battitura, spedizione della corrispondenza, comunicazioni tra ter- minali.
- operazioni quotidiane: i file² e il sistema di gestione relativo, stampa dei file e aree di lavoro, comandi più comunemente usati.

Anche se decidete di leggere questo capitolo, vi servirà comunque avere a disposizione una copia del Manuale di programmazione UNIX; questo perché spesso è più facile per gli autori rimandarvi al manuale piuttosto che ripeterne i contenuti qui. Questo libro, infatti, non vuole sostituirsi al manuale, ma intende spiegare come usare al meglio i comandi in esso descritti. Inoltre, potrebbero esservi delle differenze tra

¹Per "editing" si intende tutta quella serie di attività legate alla messa a punto redazionale di un testo prima della sua composizione definitiva per la stampa, i comandi di sistema, i programmi di utilità (per la co. piatura e la stampa dei file) e così via. [N.d.T.]

²Un file è letteralmente un archivio di informazioni/dati. In questo testo useremo il termine inglese, comunemente impiegato in informatica). [N.d.T.]

quanto viene detto in questo testo e la realtà del sistema da voi usato. Il manuale riporta nelle prime pagine un indice analitico, indispensabile per poter ritrovare i programmi più adatti per la soluzione dei vari problemi; vi consigliamo di imparare ad utilizzarlo.

Infine, un piccolo suggerimento: non abbiate paura degli esperimenti. Sappiate che, anche se siete dei principianti, sono pochi i possibili casi di errori che potrebbero incidentalmente nuocere a voi o ad altri utenti. Perciò, cercate di imparare mettendo in pratica da subito quello che leggete.

Questo è un capitolo lungo. Il miglior modo per affrontarlo è di leggerne solo qual che pagina alla volta esperimentando subito quello che via via imparate.

1.1 Come cominciare

1.1.1 Alcuni prerequisiti a proposito di terminali e di dattilo scrittura

Onde evitare di spiegare proprio tutto sull'uso dei calcolatori, diamo per scontato che il lettore abbia famigliarità con i terminali e sappia come usarli. Qualora qualcosa di quanto viene più avanti esposto vi risulti incomprensibile in base alla vostra esperienza, vi consigliamo di consultare un esperto del sistema da voi usato.

Il sistema UNIX è del tipo definito full duplex, vale a dire che i caratteri battuti sulla tastiera vengono inviati al sistema che a sua volta li rimanda al terminale perché vengano scritti a video. Normalmente, questo processo, che ha le caratteristiche dell'eco, fa sì che i caratteri siano copiati direttamente sul video, rendendo così possibile visualizzare immediatamente ciò che si batte sulla tastiera.

A volte, però, come nel caso in cui si debba battere una password (codice di accesso al sistema) segreta, il processo eco viene temporaneamente sospeso e i caratteri battuti non appaiono a video. La maggior parte dei tasti riporta normali caratteri alfanumerici; però, ve ne sono alcuni che servono per dire al calcolatore come interpretare quanto viene battuto. Di gran lunga il più importante fra questi tasti è quello di RETURN. Esso è praticamente un codice che segnala la fine di una riga di immissione; quando incontra questo codice, il sistema risponde posizionando immediatamente il cursore sul video alla riga successiva. È necessario premere il tasto RETURN perché il sistema interpreti i caratteri battuti.

Tale tasto è perciò un esempio di carattere di comando, vale a dire un carattere in- visibile che serve a gestire alcuni aspetti di input o di output (immissione/emissione) sul terminale. Su ogni terminale che si rispetti, per il RETURN esisterà un apposito tasto; ma per la maggior parte degli altri caratteri di comando non sarà così. Infatti. perché la macchina li senta, sarà necessario premere contemporaneamente il tasto CONTROL (spesso abbreviato in CTL o CNTL o anche CTRL) e, a seconda dei casi un altro tasto, generalmente una lettera dell'alfabeto. Ad esempio, il comando di r torno si può dare premendo il tasto RETURN o, indifferentemente, premendo con- temporaneamente CONTROL e la lettera "m".Il comando RETURN può perciò anche chiamarsi "CONTROL - m" (dal nome dei due tasti) e lo si può scrivere ctl-m Citiamo qui altri caratteri di comando, per esempio "ctl-d", che serve per dire al pro. gramma che l'input è terminato; ctrl-g, che fa suonare il campanello del terminale; ctl-h. chiamato anche ritorno carattere, che può essere usato per correggere gli errori di battitura; e infine ctrl-i, spesso chiamato tabulatore, per far avanzare il cursore direttamente alla tabulazione successiva, proprio come sulle normali macchine per scrivere. Le tabulazioni, sui sistemi UNIX, sono distanziate di 8 caratteri. Sia per il ritorno carattere sia

per la tabulazione, esiste un tasto apposito sulla maggior parte dei termi nali.

Vi sono poi altri due tasti che hanno uno speciale significato: il tasto DELETE (cancella), talvolta chiamato anche RUBOUT o variamente abbreviato, e BREAK (interruzione) chiamato a volte INTERRUPT. Nella maggior parte dei sistemi UNIX, premendo il tasto DELETE si provoca l'immediato arresto di un programma prima che sia finito. In alcuni altri sistemi, tale arresto si ottiene premendo ct/-c. E in alcuni altri ancora, a seconda di come sono collegati i terminali, BREAK è sinonimo di DELETE o ct/-c.

1.1.2 Un esempio di collegamento in UNIX

Vediamo di fare un esempio di dialogo tra voi e il vostro sistema UNIX. In questo testo, ogniqualvolta faremo degli esempi pratici, useremo tre caratteri diversi che esemplifichiamo: messaggi di sistema, comandi e i testi dell'utente, commenti esplicativi

Effettuate il collegamento, sia componendo un numero telefonico oppure girando un interruttore, a seconda dei casi. Dopo di che sul video dovrebbe apparire quanto segue:

login: nome in codice ³ Battete il vostro nome e quindi premete il tasto RETURN

Password: La vostra password (codice di accesso segreto al sistema) non apparirà a video mentre la battete

You have mail: Avete della corrispondenza in arrivo. Potrete leggerla dopo aver effettuato le operazioni di login

- \$ Quando sullo schermo appare il segno del dollaro significa che il sistema è pronto a ricevere i vostri comandi
- **\$** Premete due volte il tasto RETURN
- **\$ date** Che data e che ore sono?

```
Sunday Sept 25, 23; 02: 57 EDT 1983
```

\$ vho Chi sta usando la macchina?

```
jib
       tty0
             Sep 25 13:59
alba
       tty2 Sep 25 23:01
             Sep 25 19:03
mary
       tty4
doug
       tty5
             Sep 25 19:22
             Sep 25 17:17
egb
       tty7
bob
             Sep 25 20:48
       tty8
```

\$ mail Leggete i messaggi

```
Da doug Dom 25 Sett 20:53 EDT 1983 chiamami quando vuoi lunedì
```

? Il comando RETURN fa apparire il messaggio successivo

Da mary - Dom. 25 Sett 19:07 EDT 1983 Si pranza a mezzogiorno domani? Messaggio successivo

 $^{^3}$ In questo testo, per convenzione, il vostro nome in codice sarà "alba" e d'ora in poi lo useremo ogniqualvolta necessario. [N.d.T.].

? d Cancellare questo messaggio

\$ mail mary Invia messaggio a mary va bene per il pranzo alle 12

ctl-d Fine messaggi

\$ Chiudete il telefono o spegnete il terminale e l'operazione è finita.

A volte ci si può collegare soltanto per leggere dei messaggi, come nel caso sopra indicato, altre volte ci si può collegare anche per lavorare. Nella parte rimanente di questo paragrafo prenderemo in esame il collegamento sopra descritto, oltre ad alcuni altri programmi che consentono di svolgere attività utili.

1.1.3 Operazioni di collegamento

Dovete in primo luogo farvi assegnare un codice di accesso e una password (codice accesso segreto: d'ora in poi useremo il termine inglese, comune in ambiente informatico) dal coordinatore del sistema. L'UNIX è in grado di gestire molti tipi di terminali, ma è fortemente orientato verso macchine con caratteri minuscoli. La differenza tra le lettere maiuscole e minuscole è quindi importante con l'UNIX, perciò se il vostro terminale scrive solo in maiuscolo potreste trovarvi in serie difficoltà e sarebbe opportuno che vi procuraste un altro tipo di terminale.

Assicuratevi che gli interruttori siano nella corretta posizione di lavoro: maiuscolo o minuscolo, full duplex ed eventuali altre impostazioni iniziali consigliate dal coordinatore: ad esempio la velocità di linea (cioè il numero di baud). Attivate il collegamento compiendo il gesto fatato previsto dal vostro terminale: sia esso la composizione di un numero telefonico o la semplice accensione di un interruttore. Al compimento di tale gesto, a video dovrebbe apparire la scritta login:

Se il sistema dovesse inviare altri messaggi sconnessi, potrebbe significare che avete impostato una velocità sbagliata; controllate quindi la velocità e anche gli altri inter- ruttori. Se dal controllo risulta che tutto era stato eseguito correttamente, premete al- cune volte, lentamente, il tasto BREAK oppure INTERRUPT. Se, nonostante tutti questi accorgimenti, non riuscite ad ottenere la scritta login a video, allora avete bisogno dell'aiuto di un tecnico. Una volta ottenuto login sullo schermo, battete il vostro codice di accesso in lettere minuscole, e immediatamente dopo premete RETURN. Se è necessaria la password, il sistema ve la chiederà, però, come abbiamo già detto, non la farà apparire a video mentre la battete.

Dopo che avrete correttamente effettuato le operazioni di accesso, i vostri sforzi saranno premiati con un messaggio a video, generalmente costituito da un unico carattere, indicante che il sistema è pronto ad accettare i vostri comandi. Tale messaggio può essere costituito dal segno del dollaro (\$) oppure da quello di percentuale (%) ma, se volete cambiarlo come meglio preferite vi diremo come fare più avanti. Tale lettera è in effetti stampata grazie al già menzionato programma interprete, che è l'interfaccia principale col sistema.

Prima del messaggio suddetto, il sistema potrebbe automaticamente stampare la data, oppure darvi una segnalazione di posta in arrivo. Il sistema vi può anche chiedere quale tipo di terminale state usando, perché, sapendolo, sarà in grado di utilizzare al meglio le caratteristiche tecniche del vostro terminale.

1.1.4 Comandi di battitura

Quando il sistema vi segnala di essere pronto (supponiamo con il segno del dollaro (\$) come sopra citato) potete battere dei comandi, che non sono altro che degli ordini per il sistema stesso. (Vi segnaliamo che in questo testo useremo il termine programma come sinonimo di comando). Perciò, quando sullo schermo compare il segno del dollaro dovete battere "date" (data) e premere il tasto RETURN. Il sistema dovrebbe rispondere scrivendo la data e l'ora, e dandovi subito dopo un altro segno di dollaro; per chiarire, tutto quanto sopra descritto sarà visualizzato così sul vostro terminale:

\$ date

```
Mon Sep 26 12:20:57 EDT 1983
```

\$

Non dimenticate di premere RETURN e non battete voi il segno del dollaro. Se vede. te che il sistema è lento a rispondere, premete il tasto RETURN; vedrete che qualcosa succederà. Attenzione che d'ora in avanti non ripeteremo più di battere il tasto RETURN. Ricordate però che bisogna premerlo ad ogni fine riga. il comando successivo è who (chi) per chiedere chi sono le persone collegate in quel momento:

\$ who

```
rim tty0 Sep 26 11:17
pjw tty4 Sep 26 11:30
gerard tty7 Sep 26 10:27
mark tty9 Sep 26 07:59
alba ttya Sep 25 12:20
```

\$

Nella prima colonna è indicato il nome dell'utente. Nella seconda. il nome che il sistema dà al tipo di collegamento usato ("tty" sta per "teletype", un sinonimo arcaico della parola "terminale"). Le restanti colonne danno la data e l'ora del collegamento. Potreste anche provare il seguente comando:

```
$ who am I (chi sono io?)
alba ttya Sep 26 12:20
```

\$

Se, per un errore di battitura, scrivete un comando inesistente, il sistema vi informerà di non averlo trovato, cosi:

\$ whom Testo del comando scorretto (avete scritto "whom" al posto di "who")

whom: not fount ...e il sistema ha sapere come gestirlo

Ovviamente, se per un errore di battitura scrivete il nome di un comando esistente, che non è quello voluto in quel momento, esso verrà eseguito ugualmente, ma il risultato non sarà quello desiderato.

CAPITOLO 1. L'UNIX PER I PRINCIPIANTI

12

1.1.5Comportamento strano del terminale

Potrà capitare, a volte, che il vostro terminale si comporti in modo alquanto strano: per esempio, potrebbe

stampare ogni lettera due volte oppure, anche premendo il tasto RETURN, il cursore non si posizionerà a

margine della riga successiva. Per ovviare a questo malfunzionamento è sufficiente spegnere e riaccendere

il terminale, oppure scollegarsi e quindi ricollegarsi. In alternativa, potete anche leggere la descrizione del

comando stty ("set terminal options": impostare le opzioni del terminale) al paragrafo 1 del manuale.

Se il vostro terminale non ha il tasto per le tabulazioni potete ottenerle lo stesso battendo il comando:

\$ stty -tabs

e il sistema convertirà i caratteri che gestiscono le tabulazioni nell'esatto numero di spazi da voi voluti.

Invece se con il terminale è possibile far impostare le tabulazioni dal calcolatore, il comando tabs vi

consentirà di ottenere i risultati voluti. Perché fun zioni dovrete magari scrivere:

\$ tabs tipo di terminale usato

(Vedere a questo proposito la descrizione del comando tabs nel manuale di programmazione).

1.1.6Errori di battitura

Se fate un errore di battitura e ve ne accorgete prima di aver premuto il tasto RETURN, avete due

modi per rimediare: potete cancellare i caratteri sbagliati uno alla volta oppure annullare l'intera riga e

ribatterla. Se battete il carattere per l'annullamento della riga, per default⁴ il segno @ a esso farà si che

l'intera riga venga eliminata proprio come se non fosse mai stata battuta, e vi riposizionerà su una nuova

riga:

\$ ddtae@ Riga completamente sbagliata; ricominciare di nuovo

date su un'altra riga

Mon Sep 26 12:23:39 EDT 1983

\$

Il segno # cancella l'ultimo carattere battuto; ogni # cancella perciò un carattere alla volta fino ad

arrivare all'inizio della riga (ma non va oltre). Così, se fate piccoli errori di battitura, potete correggerli

via via:

\$ dd #atte ##e Correggete via via Mon Sep 26 12:24:02 EDT 1983

I segni che provocano la cancellazione dei singoli caratteri o l'annullamento dell'inte. ra riga sono estrema-

mente dipendenti dal sistema. In molti sistemi (incluso quello che usiamo noi) quello per la cancellazione

dei singoli caratteri è stato sostituito dal tasto di ritorno carattere e funziona piuttosto bene con i ter-

minali video. Potete veloce. mente controllare come stanno le cose con il sistema da voi usato nel modo

seguente:

 4 Default è un termine comunemente usato in ambiente informatico per indicare un comportamento standard del sistema in assenza di istruzioni diverse. [N.d.T.].

1.1. COME COMINCIARE

13

 $datee \leftarrow su un'altra riga \leftarrow$

datee +: not found Il tasto di ritorno non funziona

\$ detee # Provate il segno #

Mon Sep 26 12:26:08 EDT 1983 È il segno # quello che va bene

\$

(Come potete vedere, abbiamo usato il segno - per simboleggiare il ritorno carattere perché poteste vederlo). Un altro modo molto comune per ordinare l'annullamento di una riga è quello di battere ct/-u. Nella rimanente parte di questo paragrafo useremo il simbolo # come carattere di cancellazione perché è chiaramente visibile. Cercate però di ricordare sempre qual è il simbolo previsto dal vostro sistema, nel caso fosse diverso. Più avanti, nella parte dedicata alla personalizzazione del sistema, vi diremo come fare per usare come simbolo di cancellazione carattere o riga il segno che volete una volta per tutte.

Cosa fare nel caso in cui il simbolo che serve per il comando di cancellazione carattere, o annullamento riga, dovesse essere scritto come parte integrante di un testo anziché come carattere di comando? Si dovrà semplicemente far precedere i simboli # e @ da una barra rovesciata, così:

Per inserire quindi in un testo i simboli # oppure @ con il loro significato originario, bisognerà battere \setminus # o @. A volte capita che il sistema, dopo che avete battuto il carattere @ preceduto dalla barra rovesciata, faccia comunque avanzare il cursore del terminale alla riga successiva. Questo non è grave, perché il sistema ha comunque registrato il segno @ come da voi desiderato.

La barra rovesciata, talvolta chiamata "escape character" (carattere di cambio codice), nella maggior parte dei casi viene usata per indicare che il carattere che la segue è in qualche modo speciale. Per cancellare tale barra bisogna battere due volte il carattere di cancellazione, così: ##. Vi rendete conto del perché?

Dovete sapere che i caratteri battuti, prima di arrivare a destinazione, sono esaminati ed interpretati da una sequenza di programmi e la loro esatta interpretazione dipende non solo dal punto d'arrivo, ma anche da come sono giunti a tale meta.

Ogni carattere battuto viene immediatamente rimandato, con effetto eco, al terminale, ad eccezione dei casi in cui l'effetto eco sia stato sospeso, il che è raro. Finché non viene premuto il tasto RETURN, i caratteri sono temporaneamente memorizzati dal nucleo centrale del sistema e perciò gli errori di battitura possono essere corretti con i comandi di cancellazione carattere o annullamento riga. Quando uno dei due caratteri suddetti è preceduto dalla barra rovesciata, il sistema non prende in considerazione la barra e memorizza invece i due simboli senza interpretarli come caratteri di comando.

Quando premete il tasto RETURN, i caratteri memorizzati dal nucleo centrale del sistema vengono inviati al programma che sta effettuando la lettura dal terminale Tale programma può, a sua volta, interpretare in modo particolare i caratteri che riceve; per esempio, l'interprete non assegnerà nessun significato speciale a un carattere che sia preceduto da una barra rovesciata. Ma riprenderemo questo discorso al capitolo 3. Per il momento dovete solo ricordare che il nucleo centrale elabora i simboli di cancellazione carattere o annullamento riga, nonché la barra rovesciata, soltanto se quest'ultima li precede; eventuali caratteri seguenti possono essere interpretati an che da altri programmi.

Esercizio 1. Spiegate cosa succede quando a video compare quanto seque:

\$ date @

Esercizio 2. La maggior parte dei programmi interprete (ma non la settima edizione) considera il simbolo # come introduttivo di un commento, e ignora quindi tutta la parte di testo che va dal simbolo # stesso alla fine della riga. Alla luce di quanto detto, spiegate quanto segue, assumendo che anche il simbolo usato come comando di cancellazione sia #:

```
$ date Mon Sep 26 12:39:56 EDT 1983
```

date Mon Sep 26 12:40:21 EDT 1983

 $\$ \ # date

 $\$ \\ # date # date: not found

\$

1.1.7 Immissione/emissione contemporanea di testi

Il programma base, o nucleo centrale, legge quello che battete nel momento stesso in cui lo fate, anche se sta effettuando altre operazioni; così potete battere alla velocità che volete, ogniqualvolta lo volete, anche quando il sistema sta stampando a video qualcosa per voi. Se durante un lavoro di battitura il sistema stesse svolgendo un lavoro di emissione impegnando il video, i vostri caratteri appariranno sullo schermo intercalati con quelli inviati dal sistema, ma saranno comunque registrati separatamente e interpretati in modo corretto. Potete inoltre battere dei comandi uno dopo l'altro, senza aspettare, prima di battere il comando successivo, che il primo abbia eseguito il suo compito, o anche prima ancora che lo incominci.

1.1.8 Come arrestare un programma

La maggior parte dei comandi può essere interrotta battendo il comando DELETE (distruggi). Lo si può fare anche premendo il tasto BREAK che si trova sulla maggior parte delle tastiere, benché ciò sia dipendente dal sistema usato. In alcuni programmi, come quelli per l'editing dei testi, l'immissione di DELETE provocherà l'interruzione di qualunque operazione in corso, ma senza farvi uscire dal programma. La maggior parte dei programmi si interrompe quando si spegne il terminale o si appende il microtelefono. Se volete arrestare temporaneamente un lavoro di emissione in modo da trattenere sullo schermo una parte importante del testo prima che scompaia dalla vista, dovete battere ctl-s. L'output si interromperà quasi immediata- mente; il programma resterà quindi sospeso finché non lo riprenderete. Per riprenderlo dovete battere ctl-q.

1.1.9 Come scollegarsi

Il modo migliore per uscire dal sistema è di battere ct/-d invece di dare un comando; in tal modo si segnala all'interprete che l'input è finito. (Come quanto sopra effettivamente avviene, vi verrà spiegato nel capitolo successivo). Generalmente, potete semplicemente spegnere il terminale o appendere il microtelefono, ma se con queste operazioni vi scollegate veramente dipenderà dal sistema che state usando.

1.1.10 Corrispondenza

Il sistema consente di corrispondere con altri utenti, così a volte, quando vi collegate, potrà capitarvi di vedere il seguente messaggio: you have mail (c'è della corrispondenza) prima che sullo schermo compaia il simbolo indicante che il sistema è pronto a ricevere i vostri comandi. Per leggere i messaggi dovete battere:

\$ mail

i messaggi verranno stampati uno alla volta, e il primo di essi sarà quello pervenuto per ultimo. Dopo ogni messaggio, il sistema aspetterà che gli diciate cosa fare. Le due risposte fondamentali sono d, che cancella il messaggio e RETURN, che non lo can cella (cosicché lo ritroverete la prossima volta che leggerete i messaggi in arrivo). Si possono dare altre risposte, come p, per ristampare un messaggio, s nome del file per tenerlo nel file che avete indicato, e q per uscire dal programma mail (corrispondenza). Se non avete chiaro il concetto di file, pensate a un luogo dove potete conservare delle informazioni, alle quali avete assegnato un titolo a vostra scelta, per poi ritrovarle quando vi servono. I file sono l'argomento del paragrafo 1.2 e, in effetti, di gran parte di questo libro.

Il programma mail è tra quelli che probabilmente troverete diversi nel vostro sistema da come lo descriviamo qui, perché ne esistono molte varianti. Consultate il vostro manuale per i dettagli.

Spedire la corrispondenza a qualcuno è molto semplice. Supponete di dover mandare un messaggio a una persona che abbia come nome di utente nico. Il modo più facile di procedere è il seguente.

\$ mail nico

Ed ora battete il testo della lettera usando quante righe volete. Dopo l'ultima riga dovete battere una "d" di controllo.

\$ ctl-d

\$

Il comando ct/-d indica la fine del messaggio e segnala alla funzione mail che l'input è finito. Se, mentre state scrivendo una lettera, cambiate idea e decidete di non spedir la, premete il tasto DELETE invece di ct/-d. La lettera lasciata a metà verrà memorizzata in un file chiamato dead. letter (lettere) invece di venire spedita. Per fare esercizio, potete spedire dei messaggi a voi stessi, e poi battere mail per leggerli. (Questo tipo di operazione non è così strano come potrebbe sembrare; è invece un facile mezzo per ricordare le operazioni da svolgere).

Vi sono anche altri modi per inviare dei messaggi: per esempio si può spedire una lettera preparata in precedenza, oppure uno stesso testo a più destinatari, e si possono anche mandare messaggi a utenti di altre macchine. Per maggiori dettagli, si rinvia alla descrizione del comando mail al paragrafo 1 del Manuale di programmazione UNIX. D'ora in poi useremo la notazione mail (1) per indicare la pagina che descrive la funzione mail al paragrafo 1 del manuale. Tutti i comandi di cui abbiamo parlato in questo capitolo si trovano al paragrafo 1 del manuale.

Ci potrebbe essere anche la possibilità di fare l'agenda (vedere calendar (1)); vi spiegheremo al capitolo 4 come fare, se non lo sapete già.

1.1.11 Dialoghi tra gli utenti

Se il sistema UNIX da voi usato è collegato con più utenti, vi potrà capitare di vedere un giorno sul vostro terminale un messaggio di questo tipo:

Message from mary $\operatorname{tty7}\dots$ (Messaggio da mary $\operatorname{tty7}\dots$)

accompagnato da un segnale acustico di avvertimento. Questo significa che l'utente Mary vuole dialogare con voi, ma a meno che voi non eseguiate delle esplicite operazioni, non vi sarà possibile mettervi in contatto. Per attivare la comunicazione dovete battere:

Message from mary tty7...