

Course Administrivia

lecture 01 (2025-03-10)

Master in Computer Science and Engineering

- Concurrency and Parallelism / 2024-25 -

Basic Info

- Lectures and Labs
 - João Lourenço <<u>joao.lourenco@fct.unl.pt</u>>

- Office location @ CS Dept
 - Office: Dep. Informática Building II Room P2/9
 - **Extension:** 10740
- Office location @UNINOVA
 - Office: Building 1 Room 1.1.1
 - Office hours: Thursdays 14:00 16:00

Schedule

		2ª	3 ^a	4 ^a	5ª
8:00					
	9:00				
9:00	10:00			СР	
10:00	11:00			p.2 Ed 2: Lab 121/Ed.II	
11:00		СР		СР	
12.00	12:00	t.1		p.3	
12:00	13:00	Ed 2: 128/Ed.II		Ed 2: Lab 116/Ed.II	
13:00	14:00				
14:00	14.00				
14.00	15:00				Office hours
15:00	16:00				@UNINOVA
16:00	10.00				
	17:00				
17:00					
	18:00				
12:00 13:00 14:00 15:00	12:00 13:00 14:00 15:00 16:00	t.1		CP p.3	

(*) Remote office hours by appoitment!

Main Bibliography

Herlihy M., Shavit N., Luchangco V., Spear M.;
 The Art of Multiprocessor Programming;
 Morgan Kaufmann (2020); ISBN: 978-0-12-415950-1

Matloff N.;
 Programming on Parallel Machines;
 http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf

Guerraoui R., Kuznetsov P.;
 Algorithms for Concurrent Systems;
 EPFL Press English Imprint(2013); ISBN: 978-2-88-915283-4

Additional Bibliography

Suhramaniam V.;

Programming Concurrency on the JVM: Mastering Synchronizatio STM, and Actors;

The Pragmatic Bookshelf (2011); ISBN-13: 978-1-934356-76-0

- Raynal M.;
 Concurrent Programming: Algorithms, Principles, and Foundations; Springer-Verlag Berlin Heidelberg (2013); ISBN: 978-3-642-32026-2
- Michael L. S.;
 Shared-Memory Synchronization;
 Morgan & Claypool (2013); ISBN: 978-1-608-45956-8
- Ben-Ari M.;
 Principles of Concurrent and Distributed Programming, 2/E;
 Pearson (2006); ISBN: 978-0-321-31283-9

Shared-Memory Synchronization

Michael L. Scott

Additional Information

- Class web page @ CLIP
 - All assignments, handouts, [lecture notes]
- Discussion forum @ Piazza
 - https://piazza.com/fct.unl.pt/spring2025/c6d
- Rules
 - Share your experiences and difficulties
 - Use "smart/clear" titles in the subject
 - Share ideas, not solutions
 - All students were invited to their "@campus..." address

Course Goals: Knowledge

- To understand the concepts of concurrency and parallelism, and how they can be explored when designing software;
- To identify the models used for problem solving in multiprocessor systems;
- To know the **paradigms** used to develop algorithms on multiprocessor systems;
- To know the languages, libraries and tools used in the development of concurrent programs;
- To understand the correctness properties of concurrent systems;
- Be able to evaluate the use of synchronization primitives used in concurrent data structures;
- Be familiar with common concurrency problems, and how to mitigate or avoid them.

Course Goals: Application

- Be able to identify and exploit opportunities for concurrency within a software system;
- Be able to partition a problem into multiple tasks to be executed in a concurrent system;
- Be able to reason about the behavior of concurrent programs;
- Be able to build correct and efficient concurrent algorithms;
- Be able to use the Java/C-like programming languages and libraries to develop concurrent software systems;
- Be able to **use programming tools** in the development of concurrent applications, including the design, implementation, debugging and deployment stages;
- Be able to **predict, measure, and evaluate** the performance characteristics of a parallel system.

Syllabus

- 1. Introduction to concurrency and its challenges.
- 2. Mutual exclusion:
 Time; Critical Sections; Locks; Fairness.
- 3. Concurrent objects:

 Correctness; Progress; Sequential
 Objects; Quiescent and sequential
 Consistency; Linearizability.
- 4. Foundations of shared memory:
 Registers; Register Constructions;
 Atomic Snapshots.
- **5. Primitive synchronization operations:** Monitors and Conditions; Spin-Locks, Readers-Writers Locks; Semaphores.
- 6. Universality of consensus:
 Universality; Lock-Free Universal
 Constructions.

- 7. Spin locks and contention:
 Test-And-Set Locks Spin Locks;
 Exponential Backoff; Queue and hierarchical Locks.
- 8. Lock-free data structures:
 Lists; Queues; the ABA Problem.
- 9. Transaction memory:
 Transactions and Atomicity; Software
 TM; Hardware TM.
- 10. Work management:

 Parallelism; Multiprocessor
 scheduling; Work distribution; Futures;
 Work-stealing dequeues.
- 11. Concurrency without shared data:
 Message passing, Actors, and Active objects.

Lab classes

- In the class
 - Design and implement concurrent and parallel (multiprocessor) programs
- One Homework / Project
 - Addressing concurrency and parallelism
- Rules for grouping
 - Group members may be enrolled in different lab classes
 - Groups of 3 students
 - **All exceptions** require explicit authorization
 - Non-authorized individual projects **will not** be graded
 - Group registration until March 21 at
 https://docs.google.com/spreadsheets/d/IW_iMDxqqqe5ewv8tQuQp14IOLe63sVFtb7tA-_2ZqEQ/edit?usp=sharing

Evaluation

[80%] two tests (individual, online)

 [average ≥ 8.5 points]

 [20%] one HW/project (groups of 3 students)

[grade ≥ 8.5 points]

• [2.5%] participation in class' life cycle (includes lectures, labs, piazza, etc) (please notice that "participation ≠ being there")

The tests and exam will contain questions about the lab exercises and home project

Project development

- We will use GIT extensively
- One private git repository per group.
 - Rep name: cp_2024_25_Gnn (where "nn" is the group number)
- Each group member will commit regularly his/her individual contributions to the group repository
 - Commit logs/messages must clearly state the contributions
- Individual project grade will consider individual contributions to the GIT repository
- Project submission is just a Commit ID
- Learn GIT now!!!!

Pro

Project schedule

- Assignment will be published by mid April
- It will comprise four phases
 - Shared memory multicore programming
 - Performance assessment and evaluation
 w/ multicore computers from the Cluster@DI
 - Writing a (small but relevant) report
 - Peer review of the submitted reports
- Final submission by the mid/end of May
- Discussions (random) in early June

Evaluate

Analyze

Apply

Understand

Remember

Project report

- I don't care who does what in the project, as long as everybody does technically relevant / meaningful work for the project
- Work division (what and percentage) must be reported in the project report
 - Must be supported by the individual commit logs

Any attempt of fraud => all groups' members will fail the course immediately

Project methodology

- Feel free to ask questions in/out classes
 - Teacher, colleagues, Piazza
 - Please make use of Piazza!
- Fell free to answer questions from colleagues
 - Helping finding a solution ≠ giving the solution for free

- Cite any source that inspired your work
 - If you cite what/who you used, then it is not cheating
 - Worst case I will deduce some points if it undermines the assignment

Project evaluat.

- Project report
 - If possible/feasible
 - will be graded using peer review
 - Otherwise
 - will be graded by me

- Project's code
 - Will be graded by me

What about the use of Al-based tools?

- Permitted for code that is not directly related with the subject under evaluation
 - Specifically, cannot be used in the domains of code synchronization and parallelization
- Any use must be explicitly reported in the project's report

Remember...

- Clip is the official source of information for the course.
- Confirm @Clip all the administrivia related topics.
 - In case of contradiction, the information in Clip prevails
- If yours is a special case where the rules are unclear or do not apply, please let me know (so that we can handle it appropriately)!

The END