PART 3

Answer all questions in Part 3 . The calculations are to be set out in detail in this Question / Answer booklet. Marks will be allocated for correct equations and clear setting out, even if you cannot complete the problem. When the questions are divided into sections, clearly distinguish each section using (a) , (b) ,etc. etc. Express your final numerical answers to three (3) significant figures where appropriate, and provide units where applicable. Information that may be necessary to solve problems is located on the separate Chemistry Data Sheet. Show clear reasoning: if you don't marks will be lost. This part carries 50 marks (25% of the total).

A farmer accidentally empties a $5.000 kg$ bag of 75.0% pure zinc nitrate h $Zn(NO_3)_2.6H_2O$, into a water tank containing 6000.0 L of rainwater. In ord this he decides to precipitate the zinc ions by using washing soda, sodium decahydrate, $Na_2CO_3.10H_2O$	der to remove
(a) Write an equation to describe the removal of the zinc ions by precipitation wi sodium carbonate solution.(b) Calculate the mass of sodium carbonate decahydrate that should be added to remove all the zinc ions.	(1)
However, the farmer believes that because $5.000 kg$ of the zinc nitrate hex added then an equal mass of $Na_2CO_3.10H_20$ should be added to the tank of pure $Na_2CO_3.10H_20$ is added.	
(c) Calculate whether the zinc nitrate or sodium carbonate is in excess.	(2)
(d) Calculate the mass of zinc carbonate that is precipitated when the 5.000 of the sodium carbonate decahydrate was added.) kg (2)
(e) Calculate the final concentration of Na ⁺ ions in the tank.	(2)
	•••••
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •

The results page of an experiment to determine the percentage purity of a sample of impure potassium carbonate, by titration against 0.1036 molL⁻¹ nitric acid is reproduced below:

Object	Mass (g)
Beaker + impure potassium carbonate	87.852
Beaker	85.641

The impure potassium carbonate was dissolved in distilled water and made up to a volume of 500.0mL in a volumetric flask

Volume of potassium carbonate solution pipetted = 20.00mL

			1		
Titration	1	2	3	4	5
Initial volume (mL)					
	10.02	13.62	23.12	15.67	21.10
Final volume (mL)					
	39.65	36.04	45.66	38.15	42.10

(a) Determine the appropriate titration volume of nitric acid solution	(2)
(b) Calculate the number of moles of potassium carbonate in the 20.00mL sample	(4)
(c) Calculate the % purity of the potassium carbonate sample	(4)
	• • • • • • • • •
	• • • • • • • • •

			pared as a by		ict of the roa	sting o	f iron III sul	fide as	
	$2Fe_2S_3$	+	$9O_2$	\rightarrow	$2Fe_2O_3$	+	6 SO ₂		
	$2SO_2$	+	O_2	\rightarrow	$2SO_3$				
	SO_3	+	H_2O	\rightarrow	H_2SO_4				
(a) Ho	ow many mo	oles of	Fe ₂ S ₃ is nee	eded to	produce 1 m	ole of 1	H₂SO₄ ?	(2)	
					ce 200.0 kg o y 82.2 % eff			O ₄ if the (7)	
•••••		• • • • • •		•••••		•••••		•••••	••
	• • • • • • • • • • • • • • • • • • • •	• • • • • • •		•••••		•••••		•••••	••
	•••••			•••••		•••••			••
	• • • • • • • • • • • • • • • • • • • •			•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			••
	• • • • • • • • • • • • • • • • • • • •	• • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			•••
				•••••		•••••		•••••	••
•••••	•••••	• • • • • •		•••••		•••••			••
	• • • • • • • • • • • • • • • • • • • •			•••••					••
	• • • • • • • • • • • • • • • • • • • •			•••••		•••••			
				•••••		•••••			
		• • • • • • •		•••••		• • • • • • • • • • • • • • • • • • • •			••
									••
				•••••					•••
				•••••		• • • • • • • • • • • • • • • • • • • •			

5	fron ore consists of Fe ₂ O ₃ and granite rock	
	A 1.500kg sample of crushed iron ore is dissolved in excess hydrochloric acid. The total amount of hydrochloric acid added was 2.50 litres, and the concentration of this acid was 4.250 molL ⁻¹	
	20.00mL of this resulting acid solution (formed by dissolving the Fe_2O_3) required 12.7 of 0.1242 molL-1 NaOH solution to reach the end point.	4 ml
	Calculate the number of moles of H^+ in the 20.00ml lots of the resulting acid solution formed from the iron ore	on (2)
	(b) Calculate the total moles of H^+ in the resulting acid solution	(1)
	(c) Write a balanced equation for the reaction between Fe ₂ O ₃ and hydrochloric acid	(1)
	d) Calculate the number of moles of H^+ originally added to the crushed iron ore sample	e (1)
	e) Calculate the % Fe_2O_3 in the sample.	(4)
		• • • • • •
		• • • • • •
		• • • • • •
		• • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • •
		• • • • • • •
		• • • • • • •
		• • • • • • •
		• • • • • • •
		• • • • • • •

A swimming pool contains 40,000 litres of water. Unfortunately a bag of caustic soda (NaOH) is added to this pool and as a result the pH of the pool rises to 10.9.								
(a) Calculate the concentration of OH ⁻ ions in the pool after the caustic soda was	s added. (2)							
(b) Calculate the mass of sodium hydroxide that was added to the pool	(3)							
 (c) The pool owner purchases a 100 L container of 9.50 mol L⁻¹ hydrochloric ac and adds the entire contents to the pool. Calculate: (i) the final concentration of H⁺ ions (ii) the final pH 	(4) (1)							
	•••••							
	•••••							
	•••••							
	•••••							
	•••••							
	•••••							
	•••••							
	•••••							
	 (NaOH) is added to this pool and as a result the pH of the pool rises to 10.9. (a) Calculate the concentration of OH⁻ ions in the pool after the caustic soda was (b) Calculate the mass of sodium hydroxide that was added to the pool (c) The pool owner purchases a 100 L container of 9.50 mol L⁻¹ hydrochloric ac and adds the entire contents to the pool. Calculate: (i) the final concentration of H⁺ ions (ii) the final pH 							

2	In the cylinder o to form NO ₂ . T			_			and oxygen combine	
	$N_{2 (g)}$	+	2O ₂ (g)	←→	2NC	$O_2(g)$	H = +126 kJmol-1	
	The source of to octane to be ig				_		is added to the vaporised	
	The energy to (octane) / air m				-	e combustio	on of a vaporised petrol	
	2 C ₈ H _{18(g)}	. 25	O _{2(g)} ←→	16CO _{2(g)}	+ 18]	$H_2O(g)$	H = -1540kJmol-1	
	minimise the y cylinders, tempthe amount of a conditions wou	ield of perature air adde ild affe	NO ₂ emission that which the ed to the octa ct the rate o	ons- consider the engine op- the engine for the s freaction.	er the fa erates (econd r	ctors such it may vary eaction. Al	gine features that would as the size (volume) of the 7 from 110°C to 195°C) and so discuss how these	
	combustion re		in terms of	the same eq	uilibriu	m and rate		
				•••••	••••			
	••••••			•••••	•••••			
		•••••		•••••	•••••			
		• • • • • • • • •		•••••	•••••			
		• • • • • • • • •			•••••			
	••••••	• • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••			
	••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••			
	••••••	• • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••			
	•••••	• • • • • • • •		•••••	•••••			
	•••••	•••••		•••••	•••••			
				• • • • • • • • • • • • • • • • • • • •				
