Game Theory and Applications (博弈论及其应用)

Chapter 10: Extensive Game with Imperfect Information-II

南京大学

高尉

Recap on Previous Course

- Extensive game with imperfect information $G = \{N, H, P, I, \{u_i\}\}\$
- Information set $I = \{I_1, I_2, \dots I_N\}$
- Pure strategies $A(I_{i1}) \times A(I_{i2}) \times A(I_{im})$
- How to solve NE
- Perfect recall and imperfect recall
- Mixed Strategies and behavioral strategies, equivalence

Definition of Mixed and Behavioral Strategies

Mixed Strategies: A mixed strategy of player *i* in an extensive game is a probability over the set of player *i*'s pure strategy

Behavioral strategies:

A behavior strategy of player i is a collection $\beta_{ik}(I_{ik})_{I_{ik} \in I_i}$ of independent probability measure, where $\beta_{ik}(I_{ik})$ is a probability measure over $A(I_{ik})$

Extensive Imperfect Subgame

Definition A subgame of an extensive imperfect game G is some node in the tree G and all the nodes that follow it, with the properties that any information set of G is either completely in or outside the subgame

Subgame Perfect Nash Equilibrium

Definition A subgame perfect Nash equilibrium of an extensive form game G with perfect recall is a outcome of behavior strategies $(\beta_1, \beta_2, ..., \beta_N)$ such that it is a Nash Equilibrium for every subgame

Theorem Every finite extensive game with perfect recall has at least one subgame perfect Nash Equilibrium

How to find SPNE

Backwards Induction

Example

Example

	F		В	
F	1	2	0	0
В	0	0	2	1

For NE (F,F) If $x \ge 1$, player 1 select b

For NE (B,B) If $x \ge 2$, player 1 select b

If x < 1, SPNE: (aF,F), (aB,B)

If $1 \le x < 2$,

SPNE: (bF,F), (aB,B)

If $x \geq 2$,

SPNE: (bF,F), (bB,B)

An Example

- A belief μ is a function that assigns to every information set a probability measure on the set of histories in the information set
- The probability is 1 for the information set of size 1

• A behavior strategy β a collection of independent probability measure over the actions after information set

Beliefs and Optimal Behavior Strategies

- Beliefs affect optimal strategies: For 2, a is the best strategies iff 2 assigns a belief $\mu(M) \le 1/2$
- Strategies affect reasonable beliefs: If 1 assigns to action (L,M,R) prob. (0.1,0.3,0.6), then Bayes rule requires the belief (1/3,2/3) of 2
- What are reasonable beliefs if 1 select L with prob. 1

Two Requirements to Beliefs

Bayes consistency: beliefs are determined by Bayes' law in information sets of positive probability; otherwise, beliefs are allowed to be arbitrary for 0 probability.

Consistency: beliefs are determined as a limit of case

- 1: (L,M,R) with probability $(1 \epsilon, 3\epsilon/4, \epsilon/4)$.
- 2: belief is well-defined for $\epsilon > 0$, as well as $\epsilon = 0$

Assessment (评估)

- An assessment is a pair (β, μ)
 - β is an outcome of behavioral strategies
 - μ is a belief system
- Assessment (β, μ) is:
 - Bayesian consistent if beliefs in information sets reached with positive probability are determined by Bayes' law:

$$\mu_{h,a}(h,a) = \beta_{h,a}(h,a) / \sum_{a} \beta_{h,a}(h,a)$$

for every information set.

- Consistent if there is a sequence of Bayesian consistent and $(\beta^n, \mu^n) \to (\beta, \mu)$ as $n \to \infty$
- (β, μ) is consistent $\rightarrow (\beta, \mu)$ Bayesian consistent

Example

- The payoffs are omitted since they are irrelevant
- Find all Bayesian consistent assessments
- Find all consistent assessments

Bayesian consistency

An assessment (β, μ) by a 4-tuple $(\beta_1, \beta_2, \mu_1, \mu_2) \in [0,1]^4$

- β_1 is the probability that 1 chooses In
- β_2 is the probability that 2 chooses In
- μ_1 is the belief assigns to the left node in 1's info set
- μ_2 is the belief assigns to the left node in 2's info set

Bayesian consistency

An assessment (β, μ) by a 4-tuple $(\beta_1, \beta_2, \mu_1, \mu_2) \in [0,1]^4$

- β_1 is the probability that 1 chooses In
- β_2 is the probability that 2 chooses In
- μ_1 is the belief assigns to the left node in 1's info set
- μ_2 is the belief assigns to the left node in 2's info set

Two cases:

- i) If $\beta_1 \in (0,1]$, 2's information set is reached with positive probability. Bayes' Law dictates that $\mu_1 = \mu_2 = 1/2$. $(\beta_1, \beta_2, \mu_1, \mu_2) = (0,1] \times [0,1] \times \{1/2\} \times \{1/2\}$ are Bayesian consistent
- ii) If $\beta_1 = 0$, then 2's information set is reached with zero probability and $\mu_2 \in [0,1]$ $(\beta_1, \beta_2, \mu_1, \mu_2) = \{0\} \times [0,1] \times \{1/2\} \times [0,1]$ are Bayesian consistent

Consistency

- Every complete outcome of behavioral strategies leads to $\mu_1 = \mu_2 = 1/2$.
- 2's information set, both nodes are reached with equal probability.
- Conclusion:

$$(\beta_1, \beta_2, \mu_1, \mu_2) = [0,1] \times [0,1] \times \{1/2\} \times \{1/2\}$$

are consistent

Expected Payoffs in Information Sets

Fix assessment (β, μ) and information set I_{ij} of player i. We consider the expected payoff of player i on I_{ij} as

- Given I_{ij} , the belief μ assigns probability over I_{ij} with $\mu(h)$ for $h \in I_{ij}$
- For $h \in I_{ij}$, let $P(e|h,\beta)$ the probability from h to e under the behavioral strategy β , and the payoff is $u_i(e)$

The expected payoff for player i in the information I_{ij} w.r.t. (β, μ) , is

$$u_i(\beta_i, \beta_{-i}|I_{ij}, \mu) = \sum_{h \in I_{ij}} \underline{u(h)} (\sum_e P(e|h, \beta) u_i(e))$$

Assessment (β, μ) is **sequentially rational** if for each information set I_{ij} , player i makes a best response w.r.t. belief μ , that is,

$$u_i(\beta_i, \beta_{-i}|I_{ij}, \mu) \ge u_i(\beta_i', \beta_{-i}|I_{ij}, \mu)$$

for all other behavior strategies β'_i of player i

- Consistency: beliefs have to make sense w.r.t strategies, without requirements on strategies
- Sequential rationality: strategies have to make sense w.r.t. beliefs, without requirements on beliefs

Sequential Equilibrium

An assessment (β, μ) is a **sequential equilibrium** if it is both consistent and sequentially rational.

Theorem

- a) Each finite extensive form game with perfect recall has a sequential equilibrium.
- b) If assessment (β, μ) is a sequential equilibrium, then β is a subgame perfect equilibrium.

How to calculate the sequential equilibrium?

Example (Consistency)

Behavioral strategies $\beta = (\beta_1, \beta_2) = (p, r; q)$, where

- p: probability that 1 chooses A;
- q: probability that 2 chooses C;
- r: probability that 1 chooses E;

Belief μ can be summarized by one probability α

- α : probability assigns to history AC in inform. set {AC,AD}

Example (Consistency)

If $p, q, r \in (0,1)$, then Bayes' law gives

$$\alpha = \frac{pq}{pq + p(1 - q)} = q$$

For each consistent (β, μ) we have $\alpha = q$

Example (Rationality)

- If q = 0, then $\alpha = 0$ and r = 0 is player 1's unique best reply in the final info set. But if r = 0, then q = 0 is not a best reply in 2's info set. Contradiction.
- If q = 1, then $\alpha = 1$ and r = 1 is player 1's unique best reply in the final info set. But if r = 1, then q = 1 is not a best reply in 2's info set. Contradiction.
- If $q \in (0,1)$
 - rationality of 2 dictates that both C and D must be optimal and equal, i.e., 16(1-r) = 16r, this gives r = 1/2
 - In info set (AC,AD), the expected payoff of player 1 is $\alpha 16r + (1-\alpha)16(1-r) = 16 16\alpha + 16r(2\alpha 1)$
 - r = 1 if $\alpha > 1/2$; r = 0 if $\alpha < 1/2$; and $r \in (0,1)$ if $\alpha = 1/2$
- r=1/2 if and only if $\alpha=1/2$. Finally p=1

Signaling games (信号传递博弈)

The most interesting class of games that are solved used the sequential Equilibrium concept are signaling games

Michael Spence, 2001 Nobel Memorial Prize in economics: job-market signaling model

- A prospective employer can hire an applicant.
- The applicant has high or low ability, but the employer doesn't know which
- Applicant can give a signal about ability, e.g., education

Signaling Games: Used-Car Market

- You want to buy a used-car which may be either good or bad
- A good car is worth H and a bad one L dollars
- You cannot be told a good car or a bad one but believe a proportion q of cars are good
- The car you are interested in has a price p
- The dealer knows quality but you don't
- The bad car needs additional costs c to make it look like good
- The dealer decides whether to put a given car on sale or keep
- You decide whether to buy or not
- Assume H > p > L

Signaling Games: Used-Car Market

Signaling Games: Used-Car Market

We require to consider two cases:

- 1) GC and BC dealer paly the same strategy
- 2) GC and BC dealer paly different strategy

Both strategies: Sell

Belief:

$$\mu = \frac{q}{1 \times q + 1 \times (1 - q)} = q$$

Pooling Strategy: Both Sell

• If Y buys a car with your prior beliefs q your expected payoff is

$$V = q \times (H - p) + (1 - q) \times (L - p) \ge 0$$

- What does sequential rationality of seller imply?
- You must be buying and it must be the case that $p \ge c$

Equilibrium I

If $p \ge c$ and $V \ge 0$ the following is a PNE

Behavioral Strategy Profile: (GC: Sell, BC: Sell), (Y: Yes)

Belief System: $\mu = q$

Pooling Strategy: Both keep

Pooling Equilibria: Both Keep

You must be saying No

Otherwise Good car dealer would offer

Under what conditions would Ysay No?

$$\mu \times (H - p) + (1 - \mu) \times (L - p) \le 0$$

So we can set $\mu = 0$

The following is a PNE

Behavioral Strategy Profile: (Good: Keep, Bad: Keep),(You: No)

Belief System: $\mu = 0$

Market failure: a few bad car can ruin a market

Pooling Strategy: Good: Sell and Bad: Keep

Dealer strategy: Sell if good; Keep if bad What is your consistent belief if you observe the dealer sell a car?

$$\mu = \frac{P(GC \text{ and Sell})}{P(Sell)} = \frac{q \times 1}{q \times 1 + 0 \times (1 - q)} = 1$$

Separating Equilibria - Good: Sell and Bad: Keep

What about your beliefs?

$$\mu = 1$$

- What does you sequential rationality imply?
 - You say Yes
- Is Good car dealer's sequential rationality satisfied?
 - Yes
- Is Bad car dealer's sequential rationality satisfied?
 - Yes if $p \le c$
- If p ≤ c the following is a SNE
 Behavioral Strategy Profile: (Good: Offer, Bad: Hold),
 (You: Yes)

Belief System: μ = 1

Pooling Strategy - Good: Keep and Bad: Sell

Separating Equilibria - Good: Keep and Bad: Sell

- What does Bayes Law imply about your beliefs? $\mu = 0$
- What does you sequential rationality imply?
 - You say No
- Is Good car dealer's sequential rationality satisfied?
 - Yes
- Is Bad car dealer's sequential rationality satisfied?
 - No
- There is no SNE in which Good dealer Holds and Bad dealer Offers

Example=homework

How to find all sequential equivalence?

Behavior Strategy

Behavior strategy: Yes Prob. x = 0

Dealer strategy: GC: keep or sell BC: keep $\rightarrow x = 0$ is not best resp.

Behavior strategy: Yes Prob. x = 1

No NE

Behavior Strategy

Behavior strategy: Yes Prob. $x \in (0,1)$

Behavior strategy: BC – sell Prob. y

Belief: GC – sell Prob. μ

You must be indifferent between Yes and No

$$1000\mu - (1 - \mu)2000 = 0$$
 implies $\mu = 2/3$

Behavior Strategy

You must be indifferent between Yes and No

$$1000\mu - (1 - \mu)2000 = 0 \text{ implies } \mu = 2/3$$

$$\frac{0.5}{0.5 + 0.5\gamma} = \frac{2}{3} \text{ implies } \gamma = 0.5$$

Bad car dealers must be indifferent between Keep and Sell 0 = 1000x - 1000(1 - x) implies x = 0.5

What are Nash Equilibria

• How many SPNE for this game?

Find a sequential equilibrium?