I - Intro to R

Good Habits and Basic Introduction

1

Outline

- Getting Started
- Good Habits
- Overgrown calculator
- Basic functions
- Getting help
- Doing statistics
- More...

What do you know already?

- Excel? JMP? Numbers?
- A programming language? CS course?
- R? SAS? SPSS?
- Have you used a text editor?

3

Install R

- On your own machine:
 - Go to http://www.r-project.org/
 - From CRAN, pick download site (ISU might be good)
 - Download from base:
 - R-2.11.1-win32.exe
 - Run the installation script
- On a lab machine:
 - Start R by double-clicking the COM 1.28 (5444) i386-apple-darwin8.11.1]

Setting up

- Open the R script in an editor, eg notepad, wordpad, emacs, ...
- Edit lines
- Cut and paste lines of code into the R interpreter window
- Or:
 - Windows: Ctrl-r
 - Mac: Apple-return
 - Linux Using Rkward: Shift-F7; Using Emacs w/ ESS: Ctrl-c n

5

Good Habits

- Avoid the interpreter.
- Keep a record of your work by using scripts.
- Makes coding easier
- Store your data and your scripts in a convenient location.
- Save often
- Working Directory

Navigating the R interpreter window

- Up/down arrow keys to retrieve previous lines
- Left/right arrow keys to move cursor along line
- Mouse click to set cursor position
- Delete to remove and re-type parts of command

7

Learning a language

- Grammar / Syntax
- Vocabulary
- "Thinking in that language"
- There are a lot of commands in R. Don't expect to memorize all of them.

9

Overgrown Calculator

- Basic mathematical operators:
 - +, -, *, /
- Basic Mathematical functions
 - exp, log, sin, cos
- Storing variables for later use using the assignment operator
- a <- 32
- Working with vectors

Variables

- Variable names can't start with a number
- R is case-sensitive
- Some common letters are used internally by R and should be avoided as variable names (c, q, t, C, D, F, T, I)
- Try to keep names short but descriptive.
- There are reserved words that R won't let you us for variable names. A few examples:
 - for, in, while, if, else, repeat, break
- R will let you use the name of a predefined function. So try to not over write those!

11

Basics

- Basic algebra is the same
- •Use $2 \times x$ not 2x, 2^p instead of 2^p
- Applying a function is similar
- •Making a variable, use <- instead of =</p>
- •Everything in R is a vector
- •Index a vector using []

Examples

•
$$x = 2/3$$
 $x < -2/3$

•
$$\sqrt{x}$$
 sqrt(x)

•
$$a = 2(x + 3)^2$$
 $a < -2 * (x + 3)^2$

•
$$y = (1 2 3 5)^T$$
 $y < -c(1, 2, 3, 5)$

•
$$\sum y$$
 sum (y)

• • •

11

Functions

- Typical format:
 - foo(x, y = 1:length(x), ...)
 - Some parameters have defaults set for you
 - . . . is special. Passes along extra parameters to functions used inside the function.

Getting Help

- help.start()
- help(command)
- ?command
- help.search("command")
- apropos()
- Google!

Getting Out

• q()

15

Your Turn

- \bullet x = 3
- \bullet y = 5
- Square root of $(x^2 + y^5)$
- $sin(e^{(2(pi)(x+y)/(y-x))})$
- Find the roots of $3t^2$ 2t 17

R Reference Card

- Download the R Reference Card from <u>http://cran.r-project.org/doc/contrib/Short-refcard.pdf</u>
- Open/Print so that you can glance at it while working

17

Vectors

- As mentioned before almost everything in R is a vector.
- Multiple ways to make a vector
- c(1,2,3)
- a:b creates a vector (a, a+1, ..., b-1, b)
- Common operations and functions work elementwise on vectors and return a new vector.
- rep() and seq() ...

Your Turn

- $x = (4 | 3 | 9)^T$
- $y = (1 \ 2 \ 3 \ 5)^T$ (from examples, on previous slide)
- $d = \sqrt{\sum (x y)^2}$
- $2(y_1 + x_2)$
- $z = (1, ..., 100)^T$
- pattern = $(1, 7, 7, 13, 13, 13, 19, 19, 19, 19, 25, 25, 25, 25, 25, 31, 31, 31, 31, 31, 31)^T$ (don't use c () for this)

19

Basic Statistical Functions

- Using the basic functions we've learned it wouldn't be hard to compute basic statistics.
- x <- 1:100
- n < length(x)
- xbar < sum(x)/n
- $s \leftarrow sqrt(sum((x-xbar)^2)/(n-1))$
- ... But we don't have to

Distributions

- R has a lot of distributions built in.
- We can typically obtain:
 - Density value
 - CDF value
 - Inverse CDF value
 - Random deviate
- Normal, Chi-square, F,T, Cauchy, Poisson, Binomial, Negative Binomial, Gamma, ..., lots more
- library(help = stats)

21

Your Turn

- Find the mean of 10, 1000, and 10000 random normal observations from N(0,1)
- Generate 1,000,000 random observations from N(0,1),
 square them, and find the .95 quantile of the observed data
- What is the .95 quantile from a Chi-square distribution with I df?
- x = 100 random normal observations from N(5,36)
- Calculate a 95% confidence interval for mu using x as your data [xbar \pm (t.95,99)(s)]

22

Booleans

- R has support for logical values
- TRUE, FALSE, T, F
- Can result from a comparison
 - <
 - >
 - <=
 - >=
 - ==
 - !=

23

Logical Operators

- & (AND)
- | (OR)
- Slightly different from:
- & & (different AND)
- || (different OR)
- ?"&"

Indexing

- Accessing just a part of a vector/matrix/dataframe.
- Multiple ways to index
 - x[2]
 - x[c(1,3,7)]
 - x[c(T,F)]
 - x[x>10]
 - x[-1]

25

Your Turn

- Using pat <- seq(2,103,by = 3)
- x = elements at even indices in pat
- y = elements in pat greater than mean(pat)
- z = even elements in pat
- prime = All primes between I and I00 (setdiff might be of interest)

Load Data

- >library(ggplot2)
 >data()
 >help(tips)
- Did the data import work?

27

Examining Objects

- x
- \bullet head(x)
- summary(x)
- str(x)
- \bullet dim(x)

Try these commands out for yourself!

Examine Object

 First few values of an object head(tips)

29

Examine Object

Structure of an object str(tips)

Examine Object

 Dimension of an object dim(tips)

```
> dim(tips)
[1] 244  8
```

the tips data set has 244 rows (tables served) and 8 columns (variables recorded)

3

Examine Object

 Dimension of an object summary(tips)

Extracting parts

- x\$variable
- x[, "variable"]
- x[rows, columns] # rows, columns are # indices
 - \bullet x[1:5, 2:3]
 - x[c(1,5,6), c("sex","tip")]
- x\$variable[rows]

33

Your Turn

- Calculate basic summary stats for the variables.
- Create a variable for Tipping Rate
- Find the mean bill amount for each gender
- Are there any unusual points?
- Explore the data. Can you find any interesting trends?
- How many people in this data tipped tipped greater than 20% of their bill?