

PLANO DE ENSINO

1. IDENTIFICAÇÃO				
UNIDADE ACADÊMICA ESPECIAL		CURSO OFERTANTE		
Biotecnologia		Ciências da Computação		
COMPONENTE CURRICULAR: Programação Funcional e Lógica				
CÓDIGO: IBT 0277	MODALIDADE: (X) Pr	esencial () EaD		
CURSO(S) ATENDIDO(S)	Ciências da Computaçã	0		
ANO/SEMESTRE: 2019/2	` '	Horário(s) de aula do componente curricular: Quartas e Sextas, de 8:50-10:50		
DOCENTE(S): Ricardo Cout	o Antunes da Rocha			
HORÁRIO DE ATENDIMEN	TO: Sextas, 14:00-16:00			

2. EMENTA

Introdução ao paradigma lógico. Unificação. Derivações e Resolução SLD. Técnicas de programação em lógica. Programação lógica com restrições. Introdução ao paradigma funcional. Cálculo lambda e combinadores. Mônadas. Técnicas de programação funcional.

3. DISTRIBUIÇÃO DE CARGA HORÁRIA

CH TOTAL	CH TEÓRICA	CH PRÁTICA
64h	64h	0h

4. **OBJETIVOS**

4.1 OBJETIVO GERAL

O objetivo geral da disciplina é permitir ao aluno compreender como problemas computacionais podem ser resolvidos utilizando paradigma de programação funcional e o paradigma lógico, por meio de experimentação prática em problemas de média complexidade.

4.2 OBJETIVO ESPECÍFICO

Ao final do curso, o aluno deverá:

- Diferenciar como o paradigma imperativo, funcional e programação em lógica promovem a solução de problemas computacionais.
- Experimentar o uso de uma linguagem de programação funcional e de programação lógica para resolução de problemas.
- Compreender os principais conceitos do paradigma de programação funcional e noções básicas de cálculo lambda.
- Compreender e saber aplicar os principais padrões de resolução de problemas em programação funcional, particularmente o conceito de mônadas.
- Entender com construir tipos abstratos de dados em uma linguagem de programação funcional.
- Compreender os principais conceitos do paradigma de programação em lógica.
- Compreender e saber aplicar os principais padrões de resolução de problemas em programação lógica.

 Compreender o conceito de gramática de cláusulas definidas, cortes e negação em programação lógica.

CONTEÚDO

- 1. Programação funcional
 - 1. Introdução ao Paradigma Funcional
 - 2. Conceitos Fundamentais
 - 3. Tipos de Dados Básicos
 - 4. Listas
 - 5. Tipos Abstratos de Dados
 - 6. Monadas
- 2. Programação lógica
 - 1. Introdução ao Paradigma de Programação em Lógica
 - 2. Restrições Lógicas
 - 3. Operadores
 - 4. Recursividade
 - 5. Listas e aritmética
 - 6. Gramática de cláusulas definidas
 - 7. Cortes e negação

6. METODOLOGIA

O professor utilizará aulas expositivas intermeadas com aulas práticas de resolução de problemas.

A cada período de 7 (sete) a 15 (quinze) dias será aplicada uma tarefa de resolução de problemas, individual, que será utilizada para avaliar o aluno (ver seção "Avaliação"). No total, serão aplicados 12 (doze) tarefas aos alunos. A resolução dos exercícios nas aulas práticas também será avaliada e computada como 2 (duas) tarefas adicionais, compreendendo os exercícios de cada um dos dois módulos da disciplina (Programação funcional e em lógica).

A disciplina adotará as linguagens de programação Haskell e Prolog como linguagens de referência para discutir os conceitos dos paradigmas de programação, assim como para desenvolver todos os exercícios e tarefas da disciplina.

7. PROCESSOS E CRITÉRIOS DE AVALIAÇÃO

A avaliação da disciplina será composta de 14 (quatorze) tarefas individuais que deverão ser entregues ao longo do curso. Será considerado aprovado, o aluno que COMPLETAR um mínimo de 11 (onze) tarefas, ou 75% das tarefas.

Para avaliação das duas tarefas referentes às aulas práticas feitas em sala de aula, será considerada completa a tarefa do aluno que resolver um mínimo de 70% das tarefas práticas.

A cada tarefa entregue, o professor elaborará um feedback indicando problemas na solução que devem ser resolvidos. O aluno deverá resolver os problemas indicados no feedback do professor e resubmeter a tarefa.

Uma tarefa será considerada completada quando não houver mais feedbacks indicados pelo professor. Haverá uma tabela online mantida na página web da disciplina, contendo o registro das tarefas submetidas, número de

feedbacks e tarefas completadas.

Cada tarefa terá um prazo de submissão que **deverá ser rigorosamente cumprido**. Após o prazo, o aluno poderá realizar até duas resubmissões ou o limite de uma semana após o prazo de submissão, valendo aquele que for menor. Para que não haja dúvida de que um problema foi corrigido, é recomendável que o aluno interaja com o professor, seja por e-mail, seja pessoalmente.

As tarefas referentes a aulas práticas serão compostas de diversas subtarefas, cada uma associada a uma aula ministrada. Neste caso, o prazo para entrega é definido por subtarefa e termina antes da aula seguinte ou três dias, sendo considerado aquele que for menor.

Os seguintes requisitos se aplicam a todas as tarefas para que elas sejam consideradas completadas:

- 1. Todos os requisitos indicados no problema devem ser atendidos.
- 2. A solução deve incorporar código de testes de verificação da sua corretude.
- 3. A solução deve ser submetida em arquivo de texto (código fonte).
- 4. A solução deve ser submetida no sistema online indicado pelo professor (não serão aceitas soluções submetidas por email, por exemplo).
- 5. A solução não pode ser copiada de nenhum aluno (de qualquer ano), livro ou Internet, e deve ser desenvolvida individualmente pelo próprio aluno.

Caso o requisito (5) não seja atendido, a tarefa poderá ser ou considerada rejeitada, sem direito a resubmissão, ou substituída por uma nova tarefa.

Para efeito de cumprimento do RGCG, que exige que o resultado do aluno seja expresso em uma nota de 0 a 10, será adotada a seguinte tabela de mapeamento entre tarefas completadas e nota final (tarefas—nota):

 $14 \to 10.0$

 $13 \to 8,6$

 $12 \to 7,3$

11 → 6,0

10 → 5,5

 $9 \to 4,9$

 $8 \rightarrow 4.4$

 $7 \rightarrow 3.8$

 $6 \rightarrow 3,3$

 $5 \rightarrow 2,7$

 $4 \rightarrow 2,2$

 $3 \rightarrow 1,6$

 $2 \rightarrow 1,1$

 $1 \rightarrow 0,5$

 $0 \to 0,0$

Caso o número de tarefas da disciplina seja menor do que 14 (quatorze), será aplicado um critério de mapeamento proporcional, mantendo a exigência de 75% de tarefas completadas para aprovação.

8. LOCAL DE DIVULGAÇÃO DOS RESULTADOS DAS AVALIAÇÕES

No sitio web da disciplina (http://www.inf.ufg.br/~ricardo/pfl), no SIGAA e em sala de aula.

BIBLIOGRAFIA

9.1 BIBLIOGRAFIA BÁSICA

- 1. APT, K. R. From logic programming to Prolog. New York: Prentice Hall, 1997. http://learnyouahaskell.com/
- 2. BIRD, R. Introduction to Functional Programming using Haskell. 2 nd Edition. Editora Prentice Hall, 1998.
- 3. DOETS, K. From Logic to Logic Programming. Editora MIT Press, 1994.

9.2 BIBLIOGRAFIA COMPLEMENTAR

- 1. LIPOVACA, MIRAN. Learn you a haskell for great good!: a beginner's guide. no starch press, 2011.
- 2. APT, K. e WALLACE, M. Constraint Logic Programming using Eclipse. Editora Cambridge University Press, 2007.
- 3. HINDLEY, J. R. e SELDIN, J. P. Lambda--Calculus and Combinators: an introduction. 2 nd edition. Editora Cambridge University Press, 2008.
- 4. DOETS, K. e van EIJCK, J. The Haskell Road to Logic, Maths and Programming. Editora College Publications, 2004.
- 5. BRAMER, M. Logic Programming with Prolog. Editora Springer, 2005.
- 6. BRATKO, I. PROLOG Programming for Artificial Intelligence. 4th edition. Editora Addison-Wesley, 2011.

10. CRONOGRAMA

Data	Aula
14-08-2019 Qua	0.1 Apresentação do curso
16-08-2019 Sex	1.1 Introdução ao Paradigma Funcional
21-08-2019 Qua	1.2 Introdução à Programação em Haskell e Conceitos Fundamentais
23-08-2019 Sex	1.2 Introdução à Programação em Haskell e Conceitos Fundamentais
28-08-2019 Qua	1.3 Tipos de Dados Básicos
30-08-2019 Sex	1.3 Tipos de Dados Básicos
04-09-2019 Qua	Não haverá aula
06-09-2019 Sex	1.3 Tipos de Dados Básicos
11-09-2019 Qua	1.4 Listas
13-09-2019 Sex	1.4 Listas
18-09-2019 Qua	1.5 Tipos Abstratos de Dados
20-09-2019 Sex	1.5 Tipos Abstratos de Dados
25-09-2019 Qua	1.6 Entrada e Saída
27-09-2019 Sex	1.7 Funções de Alta Ordem
02-10-2019 Qua	1.7 Funções de Alta Ordem
04-10-2019 Sex	1.8 Mônadas
09-10-2019 Qua	1.8 Mônadas
11-10-2019 Sex	1.8 Mônadas
16-10-2019 Qua	1.8 Mônadas
18-10-2019 Sex	2.1 Introdução ao Paradigma de Programação em Lógica

22 10 2010 0	2.4 Introdução do Deradiamo do Desaramação em Lácias			
	2.1 Introdução ao Paradigma de Programação em Lógica			
	2.2 Restrições Lógicas			
30-10-2019 Qua				
	2.2 Restrições Lógicas			
	2.3 Operadores			
	2.3 Operadores			
	Não haverá aula			
	FERIADO: Proclamação da República			
	2.4 Recursividade			
	2.4 Recursividade			
	2.5 Cortes e negação			
	11-2019 Sex 2.5 Cortes e negação			
04-12-2019 Qua	19 Qua 2.6 Listas e aritmética			
06-12-2019 Sex	2.6 Listas e aritmética			
11-12-2019 Qua	2.7 Gramática de cláusulas definidas			
13-12-2019 Sex	2.7 Gramática de cláusulas definidas			
11. APROVAÇÃO				
APROVADO EM REUNIÃO DO COLEGIADO DA UNIDADE ACADÊMICA ESPECIAL				
DE BIOTECNOLOGIA				
EM/				
Assinatura e Carimbo do Docente				
Assinatura e Carimbo do Chefe da Unidade Acadêmica Especial IBIOTEC				