ΣΧΕΔΙΑΣΗ ΟΛΟΚΛΗΡΩΜΕΝΟΥ ΠΗΝΙΟΥ ΣΤΟ HFSS ΑΝΑΦΟΡΑ ΕΡΓΑΣΙΑΣ

Τσαρναδέλης Αθανάσιος Γρηγόριος 10388

Περιεχόμενα

Σχεδίαση πηνίου	3
Substrate	
Μονωτικό – Oxide	4
Passivation	5
Air Body	6
Ground	7
Σχετικό σύστημα συντεταγμένων - Offset CS	8
Γεωμετρία πηνίου	9
Ground block	11
Sources	12
Τελική εικόνα	12
Προσομοίωση και ανάλυση S παραμέτρων	13
Analysis setup	13
Frequency Sweep	13
Διάγραμμα S παραμέτρων	14
Διαγράμματα αυτεπαγωγής, αντίστασης και συντελεστή ποιότητας	15

Σχεδίαση πηνίου

Για την σχεδίαση του πηνίου βασίζομαι στο δοσμένο υπόδειγμα PDF και τροποποιώ κατάλληλα για να σχεδιάσω σύμφωνα με τις δοσμένες προδιαγραφές. Αυτές είναι:

- Spiral 1T, πλάτος W=14um, διάμετρος D=185um, πάχος 3.3um, υλικό Copper
- Substrate πάχους 700um από υλικό Silicon Oxide (το υλικό δίνεται στο υπόδειγμα)
- Μονωτικό πάχους 14um από υλικό SiO₂
- Passivation πάχους 0.7um, εr=7.9 (το υλικό δίνεται στο υπόδειγμα)

Για το συγκεκριμένο πηνίο 1Τ δεν χρειάζομαι underpass και via μεταξύ των μετάλλων. Τέλος η απόσταση του μετάλλου 9, το μέταλλο του πηνίου, από το substrate είναι 5.1um.

Substrate

Σχεδιάζω με βάση το υπόδειγμα με το καινούριο πάχος και ορίζω το υλικό όπως στο υπόδειγμα.

Figure 1: Σχεδίο, συντεταγμένες, διαστάσεις και υλικό του substrate

Mονωτικό - Oxide

Ομοίως με πριν σχεδιάζω το Oxide. Δεν χρειάζεται να ορίσω υλικό, καθώς το silicon dioxide υπάρχει έτοιμο.

Name	Value	Unit	Evaluated Value
Command	CreateBox		
Coordinate Sys	Global		
Position	-270 ,-270 ,700	um	-270um , -270um , 700um
XSize	540	um	540um
YSize	540	um	540um
ZSize	14	um	14um

Figure 2:Σχεδίο, συντεταγμένες, διαστάσεις και υλικό του μονωτικού

Passivation

Όμοια με το substrate, σχεδιάζω με βάση το υπόδειγμα, με το ίδιο πάχος και ορίζοντας το ίδιο υλικό.

Figure 3: Scedio, syntetarmenes, diastaseis kai yaiko toy passivation

Air Body

Το air body στο υπόδειγμα είναι μικρότερο από το substrate μου, άρα αυξάνω το πάχος του air body στα 1100um. Σαν υλικό επιλέγω το ήδη έτοιμο vacuum. Μετέπειτα κάνω Assign Radiation Boundary.

mand				
imano	'			
	Name	Value	Unit	Evaluated Value
	Command	CreateBox		
	Coordinate Sys	Global		
	Position	-270 ,-270 ,0	um	-270um , -270um , 0um
	XSize	540	um	540um
	YSize	540	um	540um
	ZSize	1100	um	1100um

Name	Value	Unit	Evaluated Value
Name	Air		
Material	"vacuum" 🔻		"vacuum"
Solve Inside	<u>~</u>		
Orientation	Global		
Model	~		
Group	Model		
Display Wi			
Material A			
Color			
Transparent	0		

Figure 4:Σχεδίο, συντεταγμένες, διαστάσεις και υλικό του air body

Ground

Δημιουργώ το Ground και έπειτα κάνω Assign Perfect E στο ground.

Prope	rties: TelecomElecti	ronics - HFSSDesign1 - Modeler		
Comn	nand			
	Name	Value	Unit	Evaluated Value
	Command	CreateRectangle		
	Coordinate Sys.	Global		
	Position	-270 ,-270 ,0	um	-270um , -270um , 0um
	Axis	Z		
	XSize	540	um	540um
	YSize	540	um	540um

Figure 5: Σ XeDio, syntetarmenes kai Diastaseis toy ground

Σχετικό σύστημα συντεταγμένων - Offset CS

Δημιουργώ το σχετικό σύστημα συντεταγμένων εντός του μονωτικού, και σε απόσταση 5.1um από το substrate, καθώς αυτή πρέπει να είναι η απόσταση του πηνίου από το substrate.

perti	ies: TelecomElect	onics - HFSSDesign1 - Modeler		
ord S	System			
_				
	Name	Value	Unit	Evaluated Valu
	Туре	Relative		
Г	Name	RelativeCS1		
Г	Reference CS	Global		
Г	Mode	Axis/Position		
Г	Origin	0 ,0 ,705.1	um	0um , 0um , 70.
Г	X Axis	1,0,0	um	1um , 0um , 0un
Г	Y Point	0.1.0	um	Oum . 1um . Oum

Figure 6:Σχεδίο, συντεταγμένες και διαστάσεις του σχετικού συστημάτος συντεταγμένων

Γεωμετρία πηνίου

Χρησιμοποιώ το υπόδειγμα για να βρω τα σημεία του πηνίου με τις δικές μου διαστάσεις. Επίσης προσθέτω το κατάλληλο πάχος. Το πρώτο και τελευταίο σημείο αφορούν τις δύο θύρες του πηνίου. Δεν χρειάζομαι underpass, άρα το πηνίο είναι στο μέταλλο 9 και είναι επίπεδο. Επίσης δεν χρειάζομαι via μεταξύ των μετάλλων. Σαν υλικό επιλέγω το ήδη έτοιμο copper.

FIGURE 7: ΣΧΕΔΙΟ ΓΕΩΜΕΤΡΙΑΣ ΠΗΝΙΟΥ

FIGURE 8: PYΘΜΙΣΕΙΣ ΣΧΗΜΑΤΟΣ ΚΑΙ ΠΑΧΟΥΣ ΠΗΝΙΟΥ

FIGURE 9: ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΗΜΕΙΩΝ ΠΗΝΙΟΥ

Έπειτα κάνω Seed Mesh Conductors. Έχω τελειώσει με την γεωμετρία του πηνίου και προχωράω στα sources και στο ground block.

Ground block

Στο υπόδειγμα δημιουργείται ένα ground ring γύρω από το πηνίο. Για το συγκεκριμένο πηνίο όμως, αρκεί ένα ground block για να χρησιμοποιήσω ως αναφορά για τις πηγές που θα προσθέσω μετέπειτα. Σαν υλικό επιλέγω το pec, όπως στο υπόδειγμα.

FIGURE 10:ΣΧΕΔΙΟ ΤΟΥ GROUND BLOCK A) ΔΙΑΓΩΝΙΑ Β)ΠΡΟΒΟΛΗ ΑΠΟ ΠΑΝΩ

Figure 11: Eyntetaumenes, διαστάσεις και υλικό του ground block

Sources

Τοποθετώ τις πηγές μου με τροποποιημένο μέγεθος. Έπειτα κάνω Assign Excitation (Lumped Port) για τις δύο πηγές. Χρησιμοποιώ το ground block ως αναφορά.

FIGURE 12:ΣΧΕΔΙΟ, ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΚΑΙ ΔΙΑΣΤΑΣΕΙΣ ΤΩΝ SOURCES

FIGURE 13: ΤΕΛΙΚΟ ΣΧΕΔΙΟ ΠΗΝΙΟΥ

Προσομοίωση και ανάλυση S παραμέτρων

Analysis setup

Δημιουργώ ένα analysis setup σύμφωνα με το υπόδειγμα.

FIGURE 14: PYOMIZEIZ TOY ANALYSIS SETUP

Frequency Sweep

Όμοια δημιουργώ ένα frequency sweep για τις συχνότητες της εκφώνησης.

FIGURE 15: PYOMIZEIZ FREQUENCY SWEEP

Διάγραμμα S παραμέτρων Terminal S Parameter Plot 1 Ansystem of the state of the

FIGURE 16: Δ IAГРАММА S ПАРАМЕТР Ω N

Διαγράμματα αυτεπαγωγής, αντίστασης και συντελεστή ποιότητας

FIGURE 17: ΔΙΑΓΡΑΜΜΑ ΑΥΤΕΠΑΓΩΓΗΣ L

Παρατηρώ ότι έχω τιμές μεγάλου L της τάξης 1.5-2 nH για τις συχνότητες 50-60 GHz. Για χαμηλότερες συχνότητες έχω μικρότερη και σχετικά σταθερή τιμή αυτεπαγωγής, ενώ για υψηλότερες έχω απότομη πτώση στα αρνητικά, λόγω των παρασιτικών χωρητικοτήτων του πηνίου με το substrate.

FIGURE 18: Δ ІАГРАММА АΝΤΙΣΤΑΣΗΣ R

Παρατηρώ ότι για τις συχνότητες που έχω υψηλές τιμές αυτεπαγωγής (50-60 GHz) έχω μικρή αλλά όχι μηδενική τιμή αντίστασης, της τάξης των 500Ω . Παρατηρώ μια κορυφή στα 65 GHz.

Figure 19: Δ iaγpamma συντέλεστη ποιότητας Q

Για τις συχνότητες 50-60 GHz παρατηρώ ότι ο συντελεστής Q είναι 1 έως 4, με καλύτερο συντελεστή ποιότητας για χαμηλότερες συχνότητες. Και από τα 3 διαγράμματα παραπάνω συμπεραίνω πως έχω καλύτερη συμπεριφορά κοντά στα 50 GHz, καθώς έχω ικανοποιητικά μεγάλα L,Q και μικρότερη R, σε σχέση με τα 60 GHz.