```
number of
             number
             of rows
                        columns
     myArray[1][0]= 4;
   0
       [0][0]
                       [0][1]
               [0][1]
                5
                        6
        4
                       [1][2]
       [1][0]
               [1][1]
int myArray[2][3] = \{\{1, 2, 3\}, \{4, 5, 5\}\};
 int myArray[2][3] = \{\{\{1, 2, 3\}, \{4, 5, 6\}\}\};
                                encloses individual rows
                                encloses the entire array
  int myArray[2][3] = \{1, 2, 3, 4, 5, 6\};
```

int myArray[6];

int myArray[2][3];

size of the array

while initializing

encloses the entire array

	Main memory	
myArray[0][0]	1	← myArray
myArray[0][1]	2	←—myArray + 1
myArray[0][2]	3	→ myArray + 2 gets us to second row
myArray[1][0]	4	\leftarrow myArray + $\frac{1}{3}$ + 0
myArray[1][1]	5	← myArray + 1 $*$ 3 + 1 ← gets us to second column
myArray[1][2]	6	\leftarrow myArray + 1 * 3 + 2
		row index column index
		number of columns
myArray[i][j]	<pre>★ *(myArray</pre>	+ i * <num columns="" of=""> + j)</num>
&myArray[i][j]	<pre>→ myArray +</pre>	i * <num columns="" of=""> + j</num>

