STAT-2201: Engineering Statistics

Course Outline

1. a	What is a sampling distribution, and why is it important in statistics?
1. b	Differentiate between a sampling distribution and a parent distribution.
1. c	Define the chi-square distribution and explain how it is derived from standard normal
	variables.
1. d	What are the properties of the chi-square distribution? List at least five.
1. e	How does the chi-square distribution behave as the degrees of freedom increase?
1. f	How is the chi-square distribution used to test the goodness of fit?
1. g	Derive the moment generating function (MGF) of the chi-square distribution.
1. h	Using the MGF, find the mean and variance of the chi-square distribution.
1. i	Maths based on Chi square distribution
2. a	Define the Student's t-distribution and explain how it is derived.
2. b	What are the key properties of the t-distribution? List at least four.
2. c	How is the t-distribution used to test the significance of a sample mean?
2. d	Derive the first four moments of the t-distribution.
2. e	Define the F-distribution and explain how it is derived from two independent chi-
	square variables.
2. f	How is the F-distribution used to test the equality of population variances?
2. g	Explain how the t-distribution converges to a normal distribution as the degrees of
	freedom increase.
2. h	Maths based on T-distribution
2. i	Maths based on F-distribution
3. a	Define: random sample, population, sample, parameter, statistic
3. b	Explain the criteria of good estimator.
3. c	State and prove the Cramer-Rao Lower Bound theorem.
3. d	Find the minimum variance bound unbiased estimator.
3. e	For Bernoulli distribution, find MVBUE of θ .
3. f	if $X \sim N(\mu, \sigma^2)$, then find the MVBUE of μ .
3. g	if $X \sim N(\mu, \sigma^2)$, then find the MVBUE of σ^2 .
3. h	Establish the method of finding MVB for an unbiased estimator intended to estimate
2 .	function of a parameter.
3. i	Define with terms: Estimation, Estimator and Estimate. Show that sample mean is
	unbiased estimate of the population mean.
1 2	Define maximum likelihood estimator with an example.
4. a	Write down the properties of MLE.
4. D	Is MLE always unbiased? Distinguish between joint density function and likelihood
4.0	function.
4. d	State and prove the invariance property.
4. u	Show that at the same point of value of L(θ) and log L(θ) are equal.
4. f	State and prove the limiting distribution property of MLE.
4. g	Show that by an example, the property of unbiasedness not in general property of MLE.
4. g	
1. 11	Let x_1, x_2, \dots, x_n be a random sample from the exponential distribution with pdf
	$f(x) = \theta e^{-\theta x}; x \ge 0, \ \theta \ge 0$
	(i) Find the MLE of θ

	(ii) Show that MLE of θ is unbiased, sufficient and consistent estimator.
4 . i	Let $x_{1,}x_{2}$ x_{n} be a random sample from the exponential distribution with pdf
	$f(\mathbf{x};\theta) = \frac{e^{-\theta}\theta^x}{x!}; x \ge 0, \ \theta \ge 0$
	(iii) Find the MLE of θ
	Show that MLE of θ is unbiased, sufficient and consistent estimator.

5. a	Explain the concept of hypothesis testing and its importance in statistical analysis.
5. b	What are Type I and Type II errors in hypothesis testing? How are they related to the
	level of significance (α) and the power of the test?
5. c	List the applications of test statistics.
5. d	Explain the steps in hypothesis testing.
5. e	What is the difference between a one-tailed and a two-tailed test? When would you
	use each?
5. f	What is the p-value and critical value, and how are these interpreted in hypothesis
	testing?
5. g	Explain the concept of the critical region and acceptance region in hypothesis testing.
	How is it determined?
5. h	Example: 16.6.1, 16.6.2, 16.6.3
5. i	Example: 16.6.4, 16.6.5, 16.6.6
6. a	Explain the hypothesis testing for single pollution mean.
6. b	Describe steps of mean test when variance unknown and sample size it small (n < 30).
6. c	What do you mean by Z-test? Mention the applications of it.
6. d	What is test of hypothesis concerning attributes? Discuss test procedure of a
	hypothesis about proportion test of a population.
6. e	What is the χ2 test, and what are its applications in hypothesis testing?
6. f	What is the role of the test statistic in hypothesis testing? How is it used to make
(-	decisions about the null hypothesis?
6. g	Explain the test of hypothesis about difference between two population proportions.
6. h	Example: 16.6.9, 16.6.10, 16.6.11
0.1	Example: 16.6.12, 16.6.13, 16.6.14
7. a	What are non-parametric tests, and how do they differ from parametric tests?
7. b	List the advantages and disadvantages of using non-parametric tests.
7. c	What types of data are suitable for non-parametric tests?
7. d	What is the Runs Test for Randomness, and how is it used to determine whether a
7.7 62	sample is random?
7. e	Explain the Sign Test and its application as a non-parametric alternative to the one-
	sample t-test.
7. f	Describe the Wilcoxon Signed Ranks Test and explain how it improves upon the Sign
	Test.
7. g	Example 1, 2, 3
7. h	Example 4, 5, 6
7. i	Example 7, 8
8. a	What is the Paired Sample Sign Test, and when should it be used?
8. b	What is the Mann-Whitney U-test, and when is it used as an alternative to the two-
0	sample t-test?
8. c	How does the Siegel-Tukey Test determine whether two populations have equal
0 1	variability?
8. d	What is the Kruskal-Wallis H-Test, and how does it serve as a non-parametric alternative to ANOVA?
8. e	
8. e	Explain the Friedman Test and describe its use in analyzing data from related samples. What is the Median Test, and how is it used to compare multiple samples?
8. g	Exercise 1, 2, 3
8. h	Exercise 1, 2, 3 Exercise 4, 5, 6
8. i	Exercise 4, 5, 6 Exercise 7, 9
0.1	marience 1, 7