

Design using MATLAB Code

```
% DESIGN OF THREE PHASE INDUCTION MOTOR MATLAB
clc
clear all
% input data
fprintf('\n #########################\n');
fprintf('\n INPUT THE SPECIFICATIONS OF THE INDUCTION MOTOR\n');
ph=input('\n no of phases=\n');
p=input('power in KW=\n');
v=input ('voltage in volts=\n');
f=input('frequency on hz=\n');
eff=input('eff of m/c=\n');
pf=0.825;
choice=menu('DESIGN INDUCTION MOTOR with','4 Poles','6 Poles','Customised
Specifications');
switch choice
   case 1
       fprintf('The parameters for the 4 pole machine are :\n');
       fprintf('No. of poles %f\n',po);
       % to find speed
       Ns=(f*120)/po;
       ns=(2*f)/po;
       fprintf('Synchronous speed %f\n',Ns);
       Bav=0.45;
       fprintf('Specific magnetic loading %f\n',Bav);
       ac=23000;
       fprintf('Specific electrical loading %f\n',ac);
       Kw=0.925;
       fprintf('Winding factor %f\n', Kw);
       %to find output co-efficient
       Co=1.11*(pi^2)*Kw*Bav*ac*10^-3;
       % to find input KVA
       q=p/(eff*pf);
       fprintf('Output %f\n',q);
       % to find D and L
       D=abs((q/(Co*ns))/1.18)^(1/3);
       L=1.18*D;
       % to find pole pitch
       pp=(pi*D)/po;
       fprintf('Pole pitch %f',pp);
       %Peripheral speed
       pspeed=(pi*D*ns);
       fprintf('\n ####################### \n');
       fprintf('\n DIAMETER AND NET LENGTH OF THE INDUCTION MOTOR \n');
       fprintf('\n ######################## \n');
       fprintf('\n THE DIAMETER OF THE INDUCTION MOTOR=%.6f METERS \n',D);
       fprintf('\n THE NET LENGTH OF THE INDUCTION MOTOR=%.6f METERS\n',L);
       Q=Co*D*D*L*ns;
       fprintf('KVA output of the machine f^n,Q;
```

```
fprintf('The parameters for the 6 pole machine are :\n');
       po=6;
       fprintf('No. of poles %f\n',po);
       % to find speed
       Ns=(f*120)/po;
       ns=(2*f)/po;
       fprintf('Synchronous speed %f\n',Ns);
       Bav=0.693;
       fprintf('Specific magnetic loading %f\n',Bav);
       ac = 28200;
       fprintf('Specific electrical loading %f\n',ac);
       Kw=0.925;
       fprintf('Winding factor %f\n', Kw);
       %to find output co-efficient
       Co=1.11*(pi^2)*Kw*Bav*ac*10^-3;
       % to find input KVA
       q=p/(eff*pf);
       fprintf('Output %f\n',q);
       % to find D and L
       D=abs((g/(Co*ns))/1.18)^(1/3);
       L=1.18*D;
       fprintf('Diameter %f\n',D);
       fprintf('Length %f',L);
       % to find pole pitch
       pp=(pi*D)/po;
       fprintf('Pole pitch %f\n',pp);
       %Peripheral speed
       pspeed=(pi*D*ns);
       fprintf('\n ######################## \n');
       fprintf('\n DIAMETER AND NET LENGTH OF THE INDUCTION MOTOR \n');
       fprintf('\n ######################## \n');
       fprintf('\n THE DIAMETER OF THE INDUCTION MOTOR=%.6f METERS \n',D);
       fprintf('\n THE NET LENGTH OF THE INDUCTION MOTOR=%.6f METERS\n',L);
       Q=Co*D*D*L*ns;
       fprintf('KVA Output of the machine f^n,Q;
   case 3
       clc
       clear all
       % input data
       \n');
       fprintf('\n INPUT THE SPECIATIONS OF THE INDUCTION MOTOR\n');
       \n');
       ph=input('\n no of phases=\n');
       p=input('power in KW=\n');
       v=input ('voltage in volts=\n');
       f=input('frequency on hz=\n');
       po=input('no of poles=\n');
       Bav=input('Bav in Wb/m2=\n');
       q=input('ac in a/m=\n');
       Kw=input('winding factor=\n');
       pf=input('power facot=\n');
       eff=input('eff of m/c=\n');
       % to find speed
```

```
Ns=(f*120)/po;
ns=(2*f)/po
% to find output co-efficient
Co=11*Kw*Bav*q*10^-3;
% to find input KVA
Q=p/(eff*pf);
% to find D and L
D=abs((Q/(Co*ns))/1.18)^(1/3);
L=1.18*D;
% to find pole pitch
pp=(pi*D)/po;
iron=input('iron factor=');
% Li- net length
Li=(L)*iron;
pspeed=(pi*D*ns);
fprintf('\n ######################### \n');
fprintf('\n DIAMETER AND NET LENGTH OF THE INDUCTION MOTOR \n');
fprintf('\n ######################### \n');
fprintf('\n THE DIAMETER OF THE INDUCTION MOTOR=%.6f METERS \n',D);
fprintf('\n THE NET LENGTH OF THE INDUCTION MOTOR=%.6f METERS\n',Li);
```

end

Output Results:

Choices:

1. If user selects 4 pole with basic specifications as:

INPUT THE SPECIFICATIONS OF THE INDUCTION MOTOR

no of phases= 3 power in KW= 15 voltage in volts= 400 frequency on hz= 50 eff of m/c= 8.0 The parameters for the 4 pole machine are : No. of poles 4.000000 Synchronous speed 1500.000000 Specific magnetic loading 0.450000 Specific electrical loading 23000.000000 Winding factor 0.925000 Output 22.727273 Pole pitch 0.152673

DIAMETER AND NET LENGTH OF THE INDUCTION MOTOR

THE DIAMETER OF THE INDUCTION MOTOR=0.194390 METERS

THE NET LENGTH OF THE INDUCTION MOTOR=0.229380 METERS KVA output of the machine 22.727273

2. If user selects 6 pole with basic specifications as : INPUT THE SPECIFICATIONS OF THE INDUCTION MOTOR no of phases= 3 power in KW= 15 voltage in volts= 400

frequency on hz=

50

eff of m/c=

8.0

The parameters for the 6 pole machine are :

No. of poles 6.000000

DIAMETER AND NET LENGTH OF THE INDUCTION MOTOR

THE DIAMETER OF THE INDUCTION MOTOR=0.251061 METERS

THE NET LENGTH OF THE INDUCTION MOTOR=0.222189 METERS