E- 王老板和仓鼠

何柱

2015年6月10日

在操作 3 中,可以证明,最后一定会把 b 变成 $b \mod a$,整个操作与求 gcd 十分相似。假设操作者遇到状态 (a,b),不妨设 $a \le b$,如果 $(a,b \mod a)$ 是必输状态,那么他可以毫不犹豫地把 b 换成 $b \mod a$,即 (a,b) 为必赢状态;但是如果 $(a,b \mod a)$ 是必赢状态,是否存在一个必输状态 $(a,b-a^k)$ 呢?在这个过程中,状态只与两个值 $b-b \mod a$ 和 a 有关。如果我们能求出状态和这两个值的关系,设为 f(x,y),就可以知道 (a,b) 的状态。通过打表可以归纳出

$$f(x,y) = \lfloor \frac{x-1}{y+1} \rfloor \mod (y+1) \mod 2$$

所以当 $(a,b \bmod a)$ 是必输状态或者 $f(b-b \bmod a,a)=0$ 且 $(a,b \bmod a)$ 是必赢状态时,(a,b) 为必赢状态;否则 (a,b) 为必输状态。终止状态 (0,x) 为必输状态。

x y	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
2	0	0	1	1	1	1	0	0	1	1	1	1	0	0	1	1	1	1	0	0
3	0	0	0	1	1	1	0	0	0	1	1	1	0	0	0	1	1	1	0	0
4	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	1	1	1	1
5	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	1	1	1	1	1
6	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	1	1

图 1: f(x,y)