COM-440, Introduction to Quantum Cryptography, Fall 2025

Exercise Solution # 6

1. Deterministic Extractors on Bit-Fixing Sources

- (a) We can think of generating X_0 by n-t independent fair coin flips, so each of its strings occurs with equal probability 2^{t-n} and $H_{\min}(X_0) = -\log 2^{t-n} = n-t$.
 - The number of strings with an even number of 0s is equal to the number of strings with an odd number of 0s, so each of these is equal to 2^{n-1} . Thus the min-entropy of X_1 is $-\log \frac{1}{2^{n-1}} = (n-1)$.
 - As before, think of generating X_2 through a series of independent fair coin flips: it is fully determined by $\frac{n}{2}$ of them and so $H_{\min}(X_2) = \frac{n}{2}$.
- (b) Let us look at all the proposed answers consecutively. We're interested in finding which ones are distributed as a uniformly random bit.
 - $f_0(X_0)$ false. Since the first t bits of X_0 is fixed $(100 \cdots 00)$, $f_0(X_0)$, the parity of the first t bits of X_0 , is always 1.
 - $f_0(X_1)$ true. The string X_1 can be seen as n-1 random bits followed by a bit that is fully determined by the previous n-1 bits. Therefore, the first n-1 bits of X_1 is distributed uniformly, and thus $f_0(X_1)$, the parity of the first $t \leq n-1$ bits of X_1 , is distributed uniformly.
 - $f_0(X_2)$ true. The first $\frac{n}{2}$ bits of X_2 is distributed uniformly, and thus $f_0(X_2)$, the parity of the first $t < \frac{n}{2}$ bits of X_2 , is distributed uniformly.
 - $f_1(X_0)$ true. Let $X_0 = x_1 \cdots x_n$. Then $f_1(X_0) = \left(\sum_{i=1}^{n/2} x_i x_{i+n/2}\right) \mod 2 = \left(x_{1+n/2} + \sum_{i=t+1}^n x_i x_{i+n/2}\right) \mod 2$. Since $x_{1+n/2}$ is a random bit, $f_1(X_0)$ is distributed as a uniformly random bit.
 - $f_1(X_1)$ it depends on n. If n is divisible by 4, $f_1(X_1)$ is not a uniformly random bit; otherwise, if n is even but not divisible by 4, $f_1(X_1)$ is a uniformly random bit. The reason is as follows.

The string X_1 can be seen as n-1 random bits followed by a bit that is fully determined by the previous n-1 bits. We can write it as $x_1 \cdots x_n$ where $x_n = (\sum_{i=1}^{n-1} x_i) \mod 2$. Therefore,

$$f_1(X_1) = \left(\sum_{i=1}^{n/2} x_i x_{i+n/2}\right) \mod 2$$

$$= \left(x_{n/2} \cdot \sum_{i=1}^{n-1} x_i + \sum_{i=1}^{n/2-1} x_i x_{i+n/2}\right) \mod 2$$

$$= \left(\sum_{i=1}^{n/2-1} (x_i + x_{n/2})(x_{i+n/2} + x_{n/2}) - (n/2 - 2)x_{n/2}\right) \mod 2.$$

If n is divisible by 4, the above equation can be simplified to

$$\left(\sum_{i=1}^{n/2-1} \left((x_i + x_{n/2})(x_{i+n/2} + x_{n/2}) \bmod 2 \right) \right) \bmod 2.$$

Each term in the summation is independent and identically distributed, and is 1 with probability 1/4, and is 0 with probability 3/4. Therefore, the parity of the terms in the summation is not a uniformly random bit (but becomes closer to uniformly random bit when n becomes bigger).

If n is not divisible by 4, the above equation can be simplified to

$$\left(\sum_{i=1}^{n/2-1} (x_i + x_{n/2})(x_{i+n/2} + x_{n/2}) - x_{n/2}\right) \bmod 2.$$

Note that the following n-1 random variables, $x_i + x_{n/2}$ $(i = 1, 2, \dots, n/2 - 1, n/2 + 1, \dots, n-1)$, $x_{n/2}$ are uniform random bits that are independent. Therefore, $f_1(X_1)$ is a uniform random bit.

- $f_1(X_2)$ true. Since the first $\frac{n}{2}$ bits of X_2 are the same as the second half, we have $x_L \cdot x_R = XOR(x_L) = XOR(x_R)$ which is a uniformly random bit since the strings $x_L = x_R$ are random.
- $f_2(X_0)$ true. Since the last n-k bits of X_0 are fully random, the XOR of the entire string will result in a uniformly random bit.
- $f_2(X_1)$ false. Since the number of 0's in the string is known the parity of the string (computed by the XOR) is 0 for n even.
- $f_2(X_2)$ false. Since the first $\frac{n}{2}$ bits of X_2 are the same as the second half, the parity of the bit string is zero.
- (c) We divide X into $\lfloor \frac{n}{t+1} \rfloor$ blocks of length as least t+1, i.e. $X = Y_1 \parallel Y_2 \parallel \cdots \parallel Y_{\lfloor \frac{n}{t+1} \rfloor}$ where each Y_i has length at least t+1. We define g(Y) = the XOR of all the bits of Y and set $f(X) = g(Y_1) \parallel g(Y_2) \parallel \cdots \parallel g(Y_{\lfloor \frac{n}{t+1} \rfloor})$.

From the construction, f(X) is a deterministic function. Moreover, each $g(Y_i)$ is totally uncorrelated from Eve's bits as Eve learns at most t bits of X (so as least one bit of Y_i is hidden from Eve's view). Notice that each $g(Y_i)$ is independent as Y_i is independent. Therefore, f(X) is uniformly random over strings of length $\left\lfloor \frac{n}{t+1} \right\rfloor$ and is totally uncorrelated from Eve's bits.