For clustering vertices, the statistical decision theoretical problem statement is as follows:

- 1. A graph of a fixed size: $G_n = (V, E, Y)$:
 - (a) V is the number of vertices.
 - (b) E is the number of edges.
 - (c) Y is vector labels $\{0,1\}^n$. These are two distinct groups and we don't know them.
- 2. $SBM_n^k(\rho, \beta, ...)$ for k = 2:
 - (a) $\rho \in \delta_2$ (2 simplex)
 - (b) $\beta \in (0,1)^{2x^2}$
- 3. A = $\{y \in \{0,1\}^n\}$. This is the set of cluster assignments.
- 4. $l: G_n \ x \ A \to R_+; \ l = \sum_{i=1}^n \Theta \{\hat{y}_i = y\}$
- 5. R = A x A x P (functional on true data, action class, model distribution)