NLP 202: Training Deep Neural Networks

Jeffrey Flanigan

Winter 2023

University of California Santa Cruz jmflanig@ucsc.edu

Plan

Tricks for training neural networks

- Issues with training NNs
- Initialization
- Normalization
- Other tricks: residual connections, gradient clipping, curriculum learning

Issues with training neural networks

When training NNs, the objective function (loss function):

- Is non-convex
- Has poor conditioning
- Contains flat spots due to saturated activation functions
- May have vanishing or exploding gradients

Saturated Activation Functions

$$f(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

The leaky rectified linear unit (leaky ReLU) avoids this problem

$$f(x) = \max(\alpha x, x)$$

 α is a hyperparameter or can be learned (parametric leaky ReLU, PReLU)

Vanishing/exploding gradients

Consider many composed functions

$$f(x) = g_1(g_2(\dots g_n(x)))$$

The partial derivative is:

$$\frac{\partial f(x)}{\partial x} = \frac{\partial g_1}{\partial x} \dots \frac{\partial g_n}{\partial x}$$

Many partial derivatives multiplied together ⇒ could become very small (vanish) or very large (explode)

Activation and gradient values

Glorot (Xavier) Initialization

Right after initialization, we want

- For each layer, variance of the outputs to be equal to the variance of the inputs
- Not possible unless $fan_{in} = fan_{out}$
- ullet Compromise: use $fan_{avg}=rac{fan_{in}+fan_{out}}{2}$
- Glorot and Bengio analysed the Tahn function, and worked out the conditions

Glorot initialization:

Normal distribution with mean 0 and variance $\sigma^2=\frac{1}{fan_{\rm avg}}$ Or a uniform distribution between -r and +r, with $r=\sqrt{\frac{3}{fan_{\rm avg}}}$

Glorot (Xavier) Initialization

Glorot (Xavier) Initialization

ТҮРЕ	Shapeset	MNIST	CIFAR-10	ImageNet
Softsign	16.27	1.64	55.78	69.14
Softsign N	16.06	1.72	53.8	68.13
Tanh	27.15	1.76	55.9	70.58
Tanh N	15.60	1.64	52.92	68.57
Sigmoid	82.61	2.21	57.28	70.66

He (Kaiming) Initialization

- Extended Glorot's analysis for ReLU activation function
- Found normal distribution with mean 0 and variance $\sigma^2 = \frac{2}{fan_{in}}$
- For uniform [-r,r] $r=\sqrt{\frac{6}{fan_{in}}}$

Initialization Strategies

Initialization	Activation functions	σ^2 (Normal)
Glorot	None, Tanh, logistic, softmax	$1/fan_{avg}$
Не	ReLU and variants	$2/fan_{in}$
LeCun	SELU	$1/fan_{in}$

For uniform distribution [-r,-r] use $r=\sqrt{3\sigma^2}$

Batch Normalization

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \hspace{1cm} \text{// mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \hspace{1cm} \text{// mini-batch variance}$$

Batch Normalization

$$\begin{array}{ll} \textbf{Input:} \ \, \textbf{Values of} \, x \, \text{ over a mini-batch: } \mathcal{B} = \{x_{1...m}\}; \\ \, \text{Parameters to be learned: } \gamma, \, \beta \\ \textbf{Output:} \ \, \{y_i = \text{BN}_{\gamma,\beta}(x_i)\} \\ \\ \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \qquad \text{// mini-batch mean} \\ \\ \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \qquad \text{// mini-batch variance} \\ \\ \widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \qquad \text{// normalize} \\ \\ y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i) \qquad \qquad \text{// scale and shift} \\ \end{array}$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Layer Normalization

Rather than normalize activations in a minibatch, normalize activations in the layer.

For NLP, much more effective than batch normalization

Weight Normalization

Reparameterizes weights as

$$\mathbf{w} = \frac{g}{||\mathbf{v}||} \mathbf{v}$$

where g is a number.

Also combined with mean-only batch normalization (batch normalization for g).

Weight Normalization

Model	Test Error
Maxout [6]	11.68%
Network in Network [17]	10.41%
Deeply Supervised [16]	9.6%
ConvPool-CNN-C [26]	9.31%
ALL-CNN-C [26]	9.08%
our CNN, mean-only B.N.	8.52%
our CNN, weight norm.	8.46%
our CNN, normal param.	8.43%
our CNN, batch norm.	8.05%
ours, W.N. + mean-only B.N.	7.31%

Figure 2: Classification results on CIFAR-10 without data augmentation.

Architectural changes for avoiding vanishing gradients

- Non-saturating activation functions (Leaky ReLU, etc)
- RNNs: LSTM, GRU cell
- Residual connections (for either feedforward or RNNs)
- Also highway networks ("LSTM" for feedforward networks)

Residual Connections

Can avoid vanishing gradients by using **residual connections**. Represent each layer in a FFNN or RNN cell as a function like this:

$$\mathbf{y} = \mathcal{F}(\mathbf{W}, \mathbf{x})$$

 ${\bf x}$ is the input to the layer, ${\bf y}$ is the output of the layer Example:

$$\mathbf{y} = \sigma(\mathbf{W}\mathbf{x})$$

Residual connections: add \mathbf{x} (only works if \mathbf{y} and \mathbf{x} same dimension)

$$\mathbf{y} = \mathcal{F}(\mathbf{W}, \mathbf{x}) + \mathbf{x}$$

If different dimensions, can perform linear projection before adding

$$\mathbf{y} = \mathcal{F}(\mathbf{W}, \mathbf{x}) + \mathbf{W}_r \mathbf{x}$$

Gradient of residual connections

Consider many composed functions, this time with residual connections

$$f(x) = g_1(x) + g_2(g_1(x)) + \ldots + g_n(\ldots g_1(x))$$

The partial derivative is:

$$\frac{\partial f(x)}{\partial x} = \frac{\partial g_1}{\partial x} + \frac{\partial g_2}{\partial x} \frac{\partial g_1}{\partial x} + \ldots + \frac{\partial g_n}{\partial x} \ldots \frac{\partial g_1}{\partial x}$$

The gradient directly includes $\frac{\partial g_1}{\partial x}$ without being multiplied by other partial derivatives \Rightarrow less likely to vanish

Compare to: Vanishing/exploding gradients

Consider many composed functions

$$f(x) = g_1(g_2(\dots g_n(x)))$$

The partial derivative is:

$$\frac{\partial f(x)}{\partial x} = \frac{\partial g_1}{\partial x} \dots \frac{\partial g_n}{\partial x}$$

Many partial derivatives multiplied together

 \Rightarrow could become very small (vanish) or very large (explode)

Gradient Clipping

To avoid exploding gradients clip the gradient Regular clipping:

$$\hat{g}_i = \min(\alpha, \max(\alpha, g_i)) \in [-\alpha, \alpha]$$

Max-norm clipping:

$$\hat{\mathbf{g}} = \min(\alpha, ||\mathbf{g}||) \frac{\mathbf{g}}{||\mathbf{g}||} \Rightarrow ||\hat{\mathbf{g}}|| \leq \alpha$$

Curriculum Learning

Because we are learning with a non-convex objective, our path through the parameter space will effect the local min we reach. **Curriculum learning**: guide the learning by training on easier examples first.

Other training tricks

- Regularization: dropout, weight decay (L2 regularization), early-stopping
- Label smoothing
- Subword units: byte-pair encoding (BPE), word piece, etc