Комп'ютерний практикум № 8

Налаштування статичних та динамічних трансляцій мережних адрес (NAT). Налаштування статичного NAT

NAT (*Network Address Translation*) — *трансляція* мережевих адрес, технологія, що дозволяє перетворювати (змінювати) *IP*-адреси і порти у мережевих пакетах. NAT використовується найчастіше для здійснення доступу пристроїв з локальної мережі підприємства в Інтернет, або навпаки для доступу з Інтернет на який-небудь ресурс усередині мережі. Локальна мережа підприємства будується на приватних *IP*-адресах:

```
10.0.0.0 — 10.255.255.255 (10.0.0.0/255.0.0.0 (/8))
172.16.0.0 — 172.31.255.255 (172.16.0.0/255.240.0.0 (/12))
192.168.0.0 — 192.168.255.255 (192.168.0.0/255.255.0.0 (/16))
```

Ці адреси не маршрутизуються в Інтернеті, і провайдери повинні відкидати пакети з такими ІР-адресами відправників або одержувачів. Для перетворення приватних адрес у глобальні (маршрутизовані в Інтернеті) застосовують NAT.

NAT — технологія трансляції мережевих адрес, тобто підміни адрес (чи портів) у заголовку ІР-пакету. Іншими словами, пакет, проходячи через маршрутизатор, може змінити свою адресу джерела та/чи призначення. Подібний механізм служить для забезпечення доступу з LAN, де використовуються приватні ІР-адреси, у Internet, де використовуються глобальні ІР-адреси.

Існує три види трансляції:

- 1. Static NAT (**статичний NAT**) здійснює перетворення IP-адреси один до одного, тобто зіставляється одна адреса з внутрішньої мережі з однією адресою з зовнішньої мережі. Іншими словами, при проходженні через маршрутизатор, адреса змінюються на строго задану адресу, один-до-одного (Наприклад, 10.1.1.5 завжди замінюється на 11.1.1.5 і назад). Запис про таку трансляцію зберігається необмежено довго, поки є відповідний рядок в конфігурації роутера.
- 2. Dynamic NAT (динамічний NAT) виконує перетворення внутрішньої адреси в одну з групи зовнішніх адрес. Тобто, перед використанням динамічної трансляції, потрібно задати nat-пул зовнішніх адрес. У цьому випадку при проходженні через

маршрутизатор, нова адреса вибирається динамічно з деякого діапазону адрес, званого пулом (pool). Запис про трансляцію зберігається деякий час, щоб відповідні пакети могли бути доставлені адресату. Якщо протягом деякого часу трафік по цій трансляції відсутній, трансляція видаляється і адреса повертається в пул. Якщо потрібно створити трансляцію, а вільних адрес в пулі немає, то пакет відкидається. Іншими словами, добре б, щоб число внутрішніх адрес було ненабагато більше числа адрес в пулі, інакше висока ймовірність проблем з виходом в WAN.

3. Overloading(чи **PAT**) дозволяє перетворювати кілька внутрішніх адрес в одну зовнішню. Для здійснення такої трансляції використовуються порти, тому такий NAT називають PAT (Port Address Translation). За допомогою PAT можна перетворювати внутрішню адресу в зовнішню адресу, задану через пул або через адресу на зовнішньому інтерфейсі.

Хід роботи

Завдання №1

Статична трансляція адрес NAT

На рис. $8.1 \in 3$ овнішня *адрес* 20.20.20.20 (зовнішній *інтерфейс* fa0/1) і внутрішня *мережа* 10.10.10.0 (внутрішній *інтерфейс* fa0/0). Потрібно налаштувати *NAT*. Передбачається, що адреси вже прописані, і мережа піднята (робоча).

Рис. 8.1. Схема мережі

На R0 додаємо access-list, дозволяємо всі (any). Дозволяємо весь трафік, тобто, будь-яку IP-адресу (рис. 8.2).

Рис. 8.2 Складаємо лист допуску

Створюємо правило трансляції

Налаштуємо трансляцію на інтерфейсах (на внутрішньому inside, на зовнішньому – outside), тобто, для R0 вказуємо внутрішній і зовнішній порти (рис. 8.3)

Рис. 8.3. Для R0 призначаємо внутрішній і зовнішній порти

Виходимо з режиму глобального конфігурування і записуємо налаштування роутера у мікросхему пам'яті (рис. 8.4).

Рис. 8.4. Зберігаємо налаштування в ОЗУ

Перевіряємо роботу мережі (перегляд стану таблиці NAT)

3 PC0 пінгуємо провайдера і переконаємося, що PC1 і сервер можуть спілкуватися (рис. 8.5).

Рис. 8.5. З внутрішньої мережі пінгуємо зовнішню мережу

Для перегляду стану таблиці NAT, одночасно з пінгом використовуйте команду **Router # sh ip nat translations** (у прикладі запущено пінг з машини 10.10.10.1, тобто, з PC1 на адресу 20.20.20.21, тобто, на S0) – рис. 8.6.

Рис. 8.6. Під час пінгу переглядаємо стан таблиці NAT

Переконаємося в успішній маршрутизації в режимі симуляції (рис. 8.7).

Рис. 8.7. Зв'язок РС0 і S0 працює

Самостійно: якщо в схему додати PC1(рис. 8.8), то чи працюватиме статичний NAT між ним і S0?

Рис. 8.8. Завдання для самостійної роботи

Вирішення задачі наведено у райлу task-9-3.pkt.

Завдання №2

Налаштування статичного NAT

Статичний NAT - зіставляє один NAT inside (внутрішній = приватна локальна ір-адреса) з одним NAT outside (глобальним = публічною зовнішньою ір-адресою) - рис. 8.9. Тут ISP (Internet Service Provider) - постачальник Інтернет-послуг (Інтернет-провайдер).

Рис. 8.9. Схема мережі

Алгоритм налаштування R1

Нижче приведена послідовність команд конфігурування маршрутизатора R1 покроково.

Крок 1. Налаштування дефолту на R1

R1(config)# ip route 0.0.0.0 0.0.0.0 200.20.20.2

Крок 2. Налаштування внутрішнього інтерфейсу у відношення NAT

R1(config)# interface fastethernet 0/0

R1(config-if)# ip nat inside

Крок 3. Налаштування зовнішнього інтерфейсу у відношення NAT

R1(config)# interface fastethernet 0/1

R1(config-if)# ip nat outside

Крок 4. Налаштування зіставлення ІР-адрес.

R1(config)# ip nat inside source static 10.10.10.2 200.10.21.5

У результаті цієї команди IP-адресі 200.10.21.5 завжди буде відповідати внутрішня IP-адреса 10.10.10.2, тобто якщо звертатимемося за адресою 200.10.21.5 то відповідати буде PC1.

Повний лістинг команд наведений на рис. 8.10.

Рис. 8.10. Повний лістинг команд по налаштуванню R1

Команди для перевірки роботи NAT

Перевіримо зв'язок РС1 і R2(рис. 8.11).

```
PP PC1
                                    Software/Services
Physical
             Confia
                       Desktop
  Command Prompt
   Packet Tracer PC Command Line 1.0
   PC>ping 200.20.20.2
   Pinging 200.20.20.2 with 32 bytes of data:
   Reply from 200.20.20.2: bytes=32 time=0ms TTL=254
   Ping statistics for 200.20.20.2:
       Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
   Approximate round trip times in milli-seconds:
       Minimum = Oms, Maximum = Oms, Average = Oms
```

Рис. 8.11. PC1 бачить R2

Перевіримо, що R1 бачить сусідні мережі (рис. 8.12).

Рис. 8.12. R1 бачить PC1 i R2

Перевіримо механізм роботи статичного NAT: команда **show ip nat translations** виводить активні перетворення, а команда **show ip nat statistics** виводить статистику по NAT перетворенням (рис. 8.13).

Рис. 8.13. Перевірка механізму роботи статичного NAT

З ілюстрації бачимо, що глобальній ІР-адресі 200.10.21.5 відповідає локальна IP-адреса 10.10.10.2, а також, який інтерфейс є зовнішнім, а який - внутрішній.

Робоча схема мережі даного прикладу представлена у файлі task-9-4.pkt.

Динамічна трансляція адрес.

Налаштування динамічного NAT

Динамічний NAT - використовує nyn доступних глобальних (публічних) IP-адрес і назначає їх внутрішнім локальним (приватним) адресам. Схема роботи приведена на рис. 8.14.

Рис. 8.14. Схема мережі

Завдання №3

Налаштування динамічного NAT на маршрутизаторі R1 покроково

Крок 1. Налаштування на R1 списку доступу, що відповідає адресам LAN

R1 (config) # access-list 1 permit 10.10.10.0 0.0.0.255

Тут 0.0.0.225 - зворотна (інверсна) маска для адреси 10.10.10.0.

Крок 2. Налаштування пулу адрес

R1 (config) # ip nat pool white-address 200.20.20.1 200.20.20.30 netmask 255.255.255.0

Крок 3. Налаштування трансляції

R1 (config) # ip nat inside source list 1 pool white-address

Крок 4. Налаштування внутрішнього інтерфейсу у відношення NAT

R1 (config) # interface fastethernet 0/0

R1 (config-if) # ip nat inside

Крок 5. Налаштування зовнішнього інтерфейсу в відношення NATR1 (config)# interface fastethernet 0/1

R1 (config-if)# ip nat outside

Нижче продемонстровано повний лістинг команд по налаштуванню R1 (рис.8.15).

Рис. 8.15. Повний лістинг команд по конфігуруванню R1

Команди для перевірки роботи динамічного NAT

Перевіримо зв'язок РС1 і R2 (рис. 8.16).

Рис. 8.16. PC1 бачить R2

Перевіримо, що R1 бачить сусідні мережі(рис. 8.17).

Рис. 8.17. R1 бачить підмережі 10.10.10.0 і 200.20.20.0

Перевіримо механізм роботи динамічного NAT: для цього виконаємо одночасно(паралельно) команди **ping** i **show ip nat translations** (рис. 8.18).

Рис. 8.18. Адреси: глобальна, внутрішня, зовнішня

Командою **show ip nat statistics** виведемо статистику по NAT перетворенням (рис. 8.19).

Рис. 8.19. Статистика роботи динамічного NAT

З ілюстрації бачимо, що локальним адресам відповідає пул зовнішніх адрес від 200.20.20.1 до 20.20.20.30.

Робоча мережа даного прикладу додається до курсу у вигляді файлу 5.pkt

Завлання №4

Динамічний NAT Overload: налаштування PAT (маскарадинг)

PAT (Port Address Translation) - відображає декілька локальних (приватних) IP-адрес у глобальну IP-адресу, скориставшись різними портами (рис. 8.20).

Рис. 8.20. Схема мережі на налаштування трансляції адрес РАТ Розглянемо *алгоритм* роботи покроково.

Крок 1. Налаштування списку доступу, що відповідає внутрішнім приватним адресам

R1(config)# access-list 1 permit 10.10.10.0 0.0.0.255

Крок 2. Налаштування трансляції

R1(config)# ip nat inside source list 1 interface fastethernet 0/1 overload

Крок 3. Налаштування внутрішнього інтерфейсу у відношенні NAT

R1(config)# interface fastethernet 0/0

R1(config-if)# ip nat inside

Крок 4. Налаштування NAT на інтерфейсі

R1(config)# interface fastethernet 0/1

R1(config-if)# ip nat outside

Нижче дано повний лістинг команд по конфігуруванню R1(рис. 8.21).

Рис. 8.21. Лістинг команд по конфігуруванню R1 Команди для перевірки роботи маскарадингу (РАТ)

Перевіримо зв'язок PC1 і R2 (рис. 8.22).

Рис. 8.22. PC1 бачить R2

Перевіримо, що R1 бачить сусідні мережі(рис. 8.23).

Рис.8.23. R1 бачить підмережі 10.10.10.0 і 200.20.20.0

Перевіримо механізм роботи динамічного NAT: для цього виконаємо одночасно(паралельно) команди **ping** і **show ip nat translations** (рис. 8.24).

Рис. 8.24. Адреси: глобальна, внутрішня, зовнішня Перевіримо роботу мережі в режимі симуляції(рис. 8.25).

Рис. 8.25. РАТ працює, PC1 і R2 надсилають та отримують пакет Successful

Робоча мережа даного прикладу додається до курсу у вигляді файлу

