MÓDULO - 3

PROTEÇÃO DE DADOS - RAID

PROFESSIONAL Módulo 3: Proteção de dados — RAID

Ao terminar este módulo você estará apto a:

- Descrever os métodos de implementação RAID
- Descrever as três técnicas de RAID
- Descrever os níveis de RAID mais utilizados
- Descrever o impacto de RAID no desempenho
- Comparar os níveis de RAID com base nos custos, desempenho e proteção

Módulo 3: Proteção de dados – RAID

Aula 1: Visão geral de RAID

Durante esta aula os seguintes tópicos serão apresentados:

- métodos de implementação RAID
- componentes de array RAID
- técnicas de RAID

Por quê RAID?

RAID

É uma técnica que combina múltiplos drives de disco em uma unidade lógica (conjunto RAID) e fornece proteção e desempenho.

- Oferece desempenho limitado devido aos componentes mecânicos em um drive de disco
- Um único drive possui uma expectativa de vida determinada e é medida em MTBF:
 - por exemplo: caso o MTBF de um drive seja de 750.000 horas e têm 1.000 drives no array, então o MTBF da array é de 750 horas (750.000/1.000)
- O RAID foi apresentado para diminuir estes problemas

Métodos de implementação de RAID

- Implementações do software do RAID
 - Utiliza software com base no host para fornecer a funcionalidade de RAID
 - Limitações
 - Utiliza os ciclos da CPU do host para executar cálculos do RAID, consequentemente há um impacto no desempenho geral do sistema
 - Suporta níveis limitados do RAID
 - O software RAID e o SO serão atualizados somente se forem compatíveis
- Implementação do hardware do RAID
 - Utiliza uma controladora de hardware especializada instalada no host ou no array

Componentes do array RAID

Técnicas do RAID

- As três técnicas importantes utilizadas por RAID são:
 - Striping
 - Espelhamento
 - Paridade

Técnica de RAID – Striping

Técnica do RAID – Paridade

Cálculo da paridade real é uma operação XOR de bit-a-bit

Recuperação de dados na técnica de paridade

Módule 3: Proteção de dados – RAID

Aula 2: Níveis do RAID

Durante esta aula apresentaremos os seguintes tópicos:

- Os níveis do RAID mais utilizados
- Os impactos do RAID no desempenho
- Comparação do RAID
- Hot spare

Níveis do RAID

- Os níveis do RAID mais utilizados são:
 - RAID 0 Conjunto fracionado sem tolerância à falhas
 - RAID 1 Espelhamento do disco
 - RAID 1 + 0 RAID agrupado
 - RAID 3 Conjunto fracionado com acesso paralelo e disco de paridade dedicado
 - RAID 5 Conjunto fracionado com acesso ao disco independente e paridade distribuída
 - RAID 6 Conjunto fracionado com acesso ao disco independente e paridade dupla distribuída

Paridade dual distribuída

Impacto do RAID no desempenho

RAID Controller

- No RAID 5, toda gravação (atualização) no disco aparece como 4 operações de I/O (2 leituras do disco e 2 gravações no disco)
- No RAID 6, toda gravação (atualização) no disco aparece como 6 operações de I/O (3 leituras do disco e 3 gravações no disco)
- No RAID 1, toda gravação aparece como 2 operações de I/O (2 gravações no disco)

Exemplo de cálculo de degradação do RAID

- O total de IOPS no pico de carga de trabalho é 1.200
- Relação entre leitura/gravação 2:1
- Calcule a carga do disco no pico da atividade para:
 - **RAID 1/0**
 - RAID 5

Solução: degradação do RAID

Para RAID 1/0, a carga do disco (leitura + gravação)

$$= (1.200 \times 2/3) + (1.200 \times (1/3) \times 2)$$

- = 800 + 800
- = 1.600 IOPS
- Para RAID 5, a carga do disco (leitura + gravação)

$$= (1.200 \times 2/3) + (1.200 \times (1/3) \times 4)$$

- = 800 + 1.600
- = 2.400 IOPS

Comparação do RAID

Nível do RAID	Qtde. min. discos	Capacidade disponível de armazenamento(%)	Desempenho de leitura	Desempenho de gravação	Degradação de gravação	Proteção
1	2	50	Melhor do que um único disco	Mais lento do que um único disco pois cada gravação deve ser enviada à todos os discos	Moderada	Espelhamento
1+0	4	50	Bom	Bom	Moderada	Espelhamento
3	3	[(n-1)/n]*100	Razoável para leituras aleatórias e bom para leituras sequenciais	Para gravações curtas e aleatórias: ruim à razoável Razoável para extensas gravações sequenciais	Alta	Paridade (Suporta falha de um único disco)
5	3	[(n-1)/n]*100	Bom para leituras sequenciais aleatórias	Razoável para gravações sequenciais aleatórias	Alta	Paridade (Suporta falha de um único disco)
6	4	[(n-2)/n]*100	Bom para leituras sequenciais aleatórias	Para gravações sequenciais aleatórias: ruim à razoável	Muito alta	Paridade (Suporta falha de dois discos)

n = número de discos

Níveis do RAID adequados para diferentes aplicativos

- RAID 1+0
 - Adequado para aplicativos com o perfil de I/O de gravações curtas, intensivas e aleatórias (gravações normalmente maiores do que 30%)
 - Exemplo: OLTP, RDBMS espaço temporário
- RAID 3
 - Leituras e gravações extensas e sequenciais
 - Exemplo: backup de dados e fluxo contínuo de multimídia
- RAID 5 e 6
 - Carga de trabalho pequena (gravações normalmente menores que 30%)
 - Exemplo: e-mail, RDBMS entrada de dados

Hot Spare

Módulo 3: resumo

Principais pontos apresentados neste módulo:

- Métodos e técnicas de implementação do RAID
- Níveis comuns do RAID
- Degradação de gravação do RAID
- Comparação dos níveis do RAID com base nos custos e desempenho