

UNITED INTERNATIONAL UNIVERSITY

Department of Electrical and Electronics Engineering

EEE 4331: Biomedical Engineering

SUMMER 2023

Assignment-03

[Lab on CT scan]

Submitted by

Student Name	Ayman Zafar				
Student ID	021 191 058	Dept.	EEE	Sec.	A
Date of Submission	Sept 10, 2023				

Submitted To

Dr. Khawza Iftekhar Uddin Ahmed
Professor
Department of Electrical & Electronics Engineering

Computed Tomography (CT)

Also known as CAT (Computer Assisted/Aided Tomography).

The idea is to resolve a single slice of an object using many X-ray projections.

[as the gantry rotates, the scanner collects 1-D x-ray at each angle]

Create Head Phantom

1.

Figure-1

2. The phantom image represents many qualities that are found in real-world tomographic imaging of human heads. The bright elliptical shell along the exterior is analogous to a skull and the many ellipses inside are analogous to brain features or tumors.

3.

Figure-2: Radon Transformation

4. 'xp' represents the parallel sensor position in pixels.

5. absorption variation at 'theta = 0'

Figure-3

6. absorption variation at 'theta = 90'

Figure-4

 $7.\,$ R1 represent the projection data. The first column of R1 corresponds to a projection at 0 degrees, which is integrating in the vertical direction. The centermost column corresponds to a projection at 90 degrees, which is integrating in the horizontal directions.

Parallel Beam - Reconstruct Head Phantom from Projection Data

8.

Figure-5

9.

Original image

Reconstructed image

10. The function iradon reconstructs an image from parallel-beam projections. In parallel-beam geometry, each projection is formed by combining a set of line integrals through an image at a specific angle. The function ifanbeam reconstructs an image from fan-beam projections, which have one emitter and multiple sensors.

12.

Figure-7 (dtheta = 5)

(theta1 = 0:5:170;)

figure-8 (dtheta = 2)

(theta1 = 0:2:170;)

MATLAB experiments:

(Que-5: absorption variation 'theta = 0 degree')

(Que-6: absorption variation 'theta = 90 degree')

(The changes can be observed more accurately at theta = 45degee and theta = -45degree)

