Udine, 23 luglio 2020

- 1. Sia $\mathcal{F} = \mathcal{F}(2, t, e_{\text{max}}, e_{\text{min}})$ l'insieme di numeri di macchina con l'arrotondamento.
 - Determina gli interi t, e_{\max}, e_{\min} in modo che $e_{\max} = e_{\min}$, la precisione di macchina u sia 1/8 e $realmax/realmin = e_{\min}$
 - Siano dati $x = (1.\overline{011})_2$ e $y = (10.\overline{011})_2$. Determina $\tilde{x} = fl(x) \in \mathcal{F}, \, \tilde{y} = fl(y) \in \mathcal{F}$ e $\tilde{z} = \tilde{x}fl(+)\tilde{y} \in \mathcal{F}$.
 - * Scrivi $x, y \in \tilde{x}, \tilde{y}$ come frazioni di numeri interi in base 10.
 - Determina l'esponente intero e tale che $\tilde{z} \cdot 2^e = realmin$. Qual è il risultato di $realmax \tilde{z}$? Giustifica la risposta.
- 2. Si vuole calcolare la funzione y = f(x) con $f(x) = \ln(g(x))$, g funzione reale, nel campo di esistenza di f.
 - Scrivi il numero di condizionamento di f in funzione di quello di g. Sia $g(x) = \sqrt{1-x^2}$. Studia il condizionamento della funzione f(x) con x che varia nel campo di esistenza di f.
 - Supponi che le funzioni $\ln(x)$, \sqrt{x} forniscano delle approssimazioni i cui errori relativi sono maggiorati dalla precisione di macchina u. Studia la stabilitá dell'algoritmo che calcola la funzione f con x numero di macchina.
- 3. Sia $f(x) = x^3 x^2 8x + 12$.
 - Disegna il grafico di f. Determina le radici α, β , con $\alpha < \beta$.
 - Studia la convergenza del metodo di Newton ad α e β .
 - Considera le successioni ottenute con il metodo di Newton con i seguenti valori iniziali
 - (a) $x_0 = -2$
 - (b) $x_0 = -0.5$
 - (c) $x_0 = -4/3$
 - (d) $x_0 = 1/3$
 - (e) $x_0 = 3$
 - (f) $x_0 = 0$

Sono convergenti? Se convergenti, convergono ad α o a β ? Qual è l'ordine di convergenza? Giustifica tutte le

- Sia $g(x) = x \frac{f(x)}{m}$. Verifica che α, β sono punti fissi di g e considera il metodo iterativo $x_{k+1} = g(x_k), k = 1$
- Determina m in modo che il metodo sia localmente convergente in maniera monotona ad α con fattore asintotico di convergenza pari a $\frac{1}{4}$. La successione ottenuta con $x_0 = -2$ è convergente? Giustifica la risposta.
- \star Determina m in modo che il metodo sia localmente convergente ad lpha con ordine di convergenza quadratico. La successione ottenuta con $x_0 = -2$ è convergente? Giustifica la risposta.
- Sia m=-8. Studia la convergenza locale a β del metodo. La successione ottenuta con $x_0=1$ è convergente? Se convergente, qual è l'ordine di convergenza? Giustifica la risposta.
- 4. Sia data la matrice

$$A = \left(\begin{array}{ccc} \alpha & 2 & -\alpha + 3 \\ 2 & 1 & -2 \\ -\alpha + 3 & -2 & 4 \end{array} \right).$$

- Calcola la fattorizzazione LU di A. Per quale scelta del parametri α esiste tale fattorizzazione?
- Studia al variare di α il comportamento del metodo di Gauss con il pivot parziale al primo passo.
- Sia $\alpha = 5$. Calcola la fattorizzazione PA = LU con la tecnica del pivot parziale.
- ullet Proponi un algoritmo per risolvere il sistema Lz=d. Scrivi la sua pseudocodifica e analizzane la complessità computazionale.
- 5. Sia $f(x) = \log_3(1+2x^2)$. Dati i punti $P_0 = (-1, f(-1)), P_1 = (0, f(0)), P_2 = (1, f(1))$.
 - Determina il polinomio p che interpola i tre punti nella forma di Newton.
 - Determina il polinomio \tilde{p} che interpola i tre punti e $P_3 = (2, f(2))$ nella forma di Newton.
 - Determina il polinomio q di primo grado di miglior approssimazione dei quattro punti P_0 , P_1 , P_2 e P_3 nel senso dei minimi quadrati.
- \star Si vogliono stimare i parametri r, I_0 della funzione $I(t) = e^{rt}I_0, t \geq 0$ che descrive la crescita del numero degli infetti nello sviluppo di un'epidemia nella fase iniziale. Siano I_k , il numero degli infetti rilevati al tempo $t_k > 0, k =$ $1, 2, \dots, N$. Ponendo $I_0 = e^{\ell}$, scrivi il sistema sovradeterminato da risolvere per determinare r, ℓ . (Suggerimento: scrivi $I(t) = e^{f(t)}$.)