

量产烧写

使用指南

文档版本 04

发布日期 2018-12-26

MARTHER THE RESTRICTION OF THE PARTY OF THE

版权所有 © 深圳市海思半导体有限公司 2018。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任 何形式传播。

商标声明

(上) 、HISILICON、海思和其他海思商标均为深圳市海思半导体有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

A Markin Miller Market Market Miller Market 您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产 品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不 做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用 指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

深圳市海思半导体有限公司

地址: 深圳市龙岗区坂田华为总部办公楼 邮编: 518129

网址: http://www.hisilicon.com/cn/

客户服务电话: 4008302118

silicon, rooman ronself support@hisilicon.com

前言

i

概述

本文主要介绍 Hi35xx 的量产烧录方案,包括如何制作量产烧录镜像、烧录方法及烧写注意事项等。

□ 说明

未有特殊说明,Hi35xx 代表: Hi3559AV100、Hi3559CV100、Hi3516CV500、Hi3516DV300、Hi3516CV300、Hi3519AV100、Hi3556AV100、Hi3559V200、Hi3556V200、Hi3516EV100、Hi3516EV200、Hi3516EV300、Hi3518EV300。

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本
Hi3516C	V300
Hi3516E	V100
Hi3559A	V100
Hi3559C	V100
Hi3516C	V500
Hi3516D	V300
HI3519A	V100
Hi3556A	V100
Hi3559	V200
Hi3556	V200
Hi3516E	V200
Hi3516E	V300
Hi3518E	V300

读者对象

本文档(本指南)主要适用于以下工程师:

- 技术支持工程师
- 软件开发工程师

修订记录

修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

修订日期	版本	修订说明
2018-12-26	04	添加 Hi3516EV200/Hi3516EV300/Hi3518EV300 的相关内容
2018-11-13	03	2.2.3 小节涉及修改
2018-05-24	02	2.2.3 小节增加 BurnConfig.ini 中参数设置的说明。
2017-11-25	01	添加 Hi3516EV100 的相关内容
2016-10-25	00B02	修改 2.2.3 小节。
2016-08-04	00B01	第一次临时版本发布。
559A V100R001	307.STCO	第一次临时版本发布。

目 录

前	音	
1 19		
	1.1 概述	1
	1.2 量产烧录前的准备工作	
2 H:	iPro 工具使用方法	
	2.1 HiPro 丁具介绍	00^{k}
	2.2 HiPro-usb 使用方法	
	2.2.1 制作 ZIP 镜像包	
	2.2.2 组网环境搭建及物料选择	
	2.2.3 HiPro-usb 烧录单板	
	2.3 HiPro 常见问题	1
	2.3.1 烧录失败是什么原因?	9 ^P
	2.3.2 usb 的编号如何对应?	

插图目录

图 2-1	制作 SPI Nor Flash 单板的 HiPro 镜像		3
图 2-5	设备管理器	-	. 6
图 2-6	勾选 List All Devices		. 6
图 2-7	安装 libusbK	20,3R000	.7
图 2-8	安装		7
图 2-9	安装成功	1/01/20	. 8
图 2-10	0 驱动正确安装后的设备管理器		.9
图 2-11	1 选择镜像		10
图 2-12	2 等待用户输入 MAC ID	11 35 9 h	11
夂 7 1:	2 栈记语榜		10
图 2-14	4 烧写完成	<u> </u>	13
图 2-15	5 烧录失败		14

1 概述

1.1 概述

本文介绍如何使用 HiPro-usb 烧录整个单板镜像,该方案通过 USB 通信来完成烧录,成本低,烧录速度快,适用于以 eMMC、SPI Nor Flash、SPI Nand Flash、并口 NAND、UFS 作为启动介质的单板。

□ 说明

- 仅 Hi3559AV100/Hi3559CV100/Hi3519AV100/Hi3556AV100 支持并口 NAND
- 仅 Hi3559AV100/Hi3559CV100 支持 UFS。

1.2 量产烧录前的准备工作

量产烧录前的准备工作如下:

- 准备待烧录的原始文件,包括:
 - boot 镜像
 - kernel 镜像
 - 文件系统镜像等。
- 准备 HiTool 工具。
- 准备 HiPro-usb 工具。
- 准备双 USB 接口数据线和 USB HUB。

2 HiPro 工具使用方法

2.1 HiPro 工具介绍

HiPro 工具是 Hi35xx SDK 提供的量产烧录工具,其中 HiPro-usb 通过 USB 来烧录单板,支持裸片烧写,支持烧写 MAC 地址和 ID,可以同时烧录 8 个单板。

注意

通过 USB 来烧录单板需要满足以下条件:

- PC 机 USB 接口与单板的 USB2.0 口对接;
- 单板必须满足一次系统复位,可以是上电复位或者系统软复位。

以上条件必须同时满足时,单板才能进入 USB 烧录流程。

2.2 HiPro-usb 使用方法

2.2.1 制作 ZIP 镜像包

使用 HiTool 中的 HiBurn 工具制作 HiPro-usb 镜像,过程如下:

步骤 1. 启动 HiTool, 进入 HiBurn 视图。

- 如果是 SPI Nor、SPI Nand 或并口器件,选择按分区烧写栏,如图 2-1 所示;
- 如果是 eMMC、UFS 器件,选择烧写 eMMC or UFS,如图 2-2 所示。

配置需要烧录的分区,也可以导入 xml 格式的分区表。

步骤 2. 点击制作 HiPro 镜像。

图2-1 制作 SPI Nor Flash 单板的 HiPro 镜像

图2-2 制作 eMMC 单板的 HiPro 镜像

步骤 3. 在弹出窗口中,保存 HiPro-usb 镜像,如图 2-3 所示。

图2-3 选择制作 hipro 方式

4

2.2.2 组网环境搭建及物料选择

PC 通过 usb hub 接多条 USB 线,然后接待量产的盒子的 USB 口,达到一台电脑接多台设备的目的。通过 USB 将镜像下载到单板上,再将镜像烧写到单板 flash 上;组网环境搭建如图 2-4 所示。

图2-4 组网环境搭建示意图

PC通过usb hub连接多条usb线,再跟单板相连,可以支持多块单板同时烧写

注意

环境的搭建强烈推荐使用如下测试过比较稳定的物料:

- USB HUB: 使用带电源的 HUB;
- 型号: SSK, 飚王 SSK

2.2.3 HiPro-usb 烧录单板

烧录单板的步骤如下:

步骤 1. 在 Windows 平台的 PC 机上,安装好指定的驱动,安装方法如下:

- a. 从 http://zadig.akeo.ie 上下载 zadig.exe 文件,请根据自己的操作系统下载相应的 exe 执行文件,当前最新版本如下(请以实际为准):
 - zadig_2.3.exe

以 win7 系统下驱动安装为例 (win10 暂不支持)。

b. 将一个已经烧写了 uboot 的单板的 USB 接口与 PC 端相连(可以用 HiBurn 工具 串口功能烧写 uboot),通过串口终端工具在单板的 uboot 下输入命令"usb device",进入升级模式,PC 端设备管理器出现 HiUSBBurn 设备如图 2-5 所示。

图2-5 设备管理器

此时 windows 会自动搜索驱动程序,等待 windows 搜索驱动程序搜索不到之后。

c. 打开 zadig_2.3.exe 文件,选择 Options->List All Devices,将 List All Devices 勾上,如图 2-6 所示。

图2-6 勾选 List All Devices

d. 在红色方框位置选择 hiUSBBurn 设备,然后方框内选择驱动 libusbK,点击 "Install Driver",如图 2-7 所示。

注意

单板上电时,需要进入 USB 模式,进入 USB 模式的方法请参考 SDK 包里面的文档 《Hi35xxVxxx SDK 安装使用说明》。

图2-7 安装 libusbK

e. 出现如下对话框,在点击安装如图 2-8 所示,libusbK 安装成功如图 2-9 所示。

图2-8 安装

图2-9 安装成功

f. LibusbK 安装完成之后,打开设备管理器,查看驱动是否安装正确,如图 2-10 为正确安装后的状态。

海思专有和保密信息 版权所有 © 深圳市海思半导体有限公司

图2-10 驱动正确安装后的设备管理器

- 步骤 2. 进行参数配置,在工具所在目录下存在一个名为 BurnConfig.ini 的配置文件,用户在打开工具之前,必须按照自己的需求修改配置文件的各个配置选项,如想关闭某项配置只需在对应配置前使用";"将其注释即可。
 - BoardType: 单板类型

当前支持的单板类型如下:

- Hi3516CV300/Hi3516EV100 配置 BoardType=6;
- Hi3559AV100/Hi3559CV100 配置 BoardType=7;
- Hi3519AV100/Hi3556AV100 配置 BoardType=8;
- Hi3516CV500/Hi3516DV300/Hi3559V200/Hi3556V200 配置 BoardType=9;
- Hi3516EV200/Hi3516EV300/Hi3518EV300 配置 BoardType=10。
- Mac: 是否需要烧写 Mac 地址
 - 0表示不需要烧写,1表示需要烧写
- ID: 是否需要烧写 ID
 - 0表示不需要烧写,1表示需要烧写

- MacLength: Mac 地址长度限制
- IDLength: ID 长度限制
- MacBurnFlashType: Flash 器件类型 NAND 需配置 MacBurnFlashType=1; SPI 需配置 MacBurnFlashType=2; eMMC 需配置 MacBurnFlashType=3;
- MacBurnAddress: Mac 烧写地址

注意

除去 BoardType 参数,其余参数只在需要烧写 Mac 和 ID 配置。默认不需要烧写 Mac 和 ID 参数。

步骤 3. 在 PC 机上运行 HiPro-usb 工具,选择需要烧录的 ZIP 镜像。

图2-11 选择镜像

注意

初次烧录镜像时,确认镜像所在目录没有和镜像同名的文件夹,程序为避免多次解压镜像,会判断镜像所在路径是否存在与镜像同名的文件夹,如果是则跳过解压步骤。

步骤 4. 等待解压完成,点击 Start, HiPro-usb 工具会自动检测到上电的单板,如果用户在配置 文件内配置输入 MAC 和 ID,则会等待用户输入 MAC 和 ID,如图 2-12 所示,如没 有配置则跳过等待输入过程,直接进入烧写流程,逐次烧写镜像内的文件如图 2-13 所示。

图2-12 等待用户输入 MAC ID

图2-13 烧写镜像

图2-14 烧写完成

----结束

2.3 HiPro 常见问题

2.3.1 烧录失败是什么原因?

HiPro-usb 工具烧录失败通常有以下几种原因:

图2-15 烧录失败

- 如果出现"Failed to send start frame"的错误打印,而且烧写进度为 0%,可能是单板未上电、USB 接触不好。
- 如果出现"Failed to send head frame"等烧写错误打印,或烧写进度不是 0%,可能是镜像不匹配。

注意

使用 HiPro-usb 工具进行烧写,当单板烧写失败时,需要重启单板才能继续烧写。

2.3.2 usb 的编号如何对应?

工具启动后,后台自动识别所有存在的 usb 设备路径,无须用户指定。与单板建立连接的 usb 号,从左至右,从上至下,依次排列在界面上,最多建立 8 个连接。

显示的 usb 编号由 3 部分组成,总线编号: hub 编号: hub 上 usb 编号。操作员将被烧写的单板与 PC 相连,工具自动识别并显示该连接使用的 usb 号后,建议在 usb 线上进行标识(因为 hub 实物上标的 usb 口编号可能和后台识别的编号不一致,以后台识别

的编号为准),这样量产时我们可以通过工具显示上的 usb 号与之前在 usb 线上的标识——对应,从而知道每块单板的状态。