Chemistry Lecture #95: Ion Product Constant for Water & pH

Water molecules can ionize to form H⁺ and OH⁻ in an equilibrium reaction. From the equilibrium reaction, we write an equilibrium constant expression.

$$H_2O \rightleftharpoons H^+ + OH^-$$

$$Keq = \frac{[H^+][OH^-]}{[H_2O]}$$

Very few water molecules ionize to form H^+ and OH^- . Thus, the concentration of water, $[H_2O]$, changes very little and can be considered a constant number. Multiplying both sides by $[H_2O]$,

$$Keq[H_2O] = [H^+][OH^-] \times [H_2O]$$

$$[H_2O] \qquad I$$

$$KW = [H^{+}][OH^{-}] = 1.0 \times 10^{-14}$$

Kw is the ion product constant for water. It is equal to 1.0×10^{-14} when the temperature is 25 degrees Celsius.

Kw can be used to find the concentration of H+ or OH-.

The concentration of hydronium ion in an aqueous solution is $2.0 \times 10^{-3} \, M$. What is the concentration of hydroxide?

$$Kw = [H^{+}][OH^{-}]$$

 $I.O \times IO^{-14} = [2.0 \times IO^{-3}][OH^{-}]$

$$\frac{1.0 \times 10^{-14}}{2.0 \times 10^{-3}} = \frac{[2.0 \times 10^{-3}][OH^{-}]}{[2.0 \times 10^{-3}]}$$

$$[OH^{-}] = 5.0 \times 10^{-12} M$$

All aqueous (water based) solutions contain H^+ and OH^- . If the amount of H^+ is greater than the amount of OH^- , the solution is acidic If the amount of OH^- is greater than the amount of H^+ , the solution is basic. If the amounts of H^+ and OH^- are equal, the solution is neutral.

One way to describe the relative amount of H^+ in solution is to use pH. Mathematically,

$$pH = -log[H^+]$$

Quick review:
$$log(100) = 2$$
, $log(1000) = 3$, $log(0.0001) = -4$.
 $10^2 = 100$, $10^3 = 1000$, $10^{-4} = 0.0001$

The pH of an aqueous solution with a hydronium ion concentration of 7.4×10^{-3} would be

```
pH = -log[H^+]
pH = -log[7.4 \times 10^{-3}]
pH = -(-2.13)
pH = 2.13
```

Notice that the pH is written with two numbers past the decimal: .13. For pH, the number of places past the decimal that you write equals the number of significant figures in the H^+ concentration. 7.4 x 10^{-3} has two significant figures, so we write the pH with two numbers to the right of the decimal point.

If the pH of a solution is less than 7, the solution is acidic. Thus, a pH = 2.13 tells us that we have an acidic solution.

If the pH of a solution is greater than 7, the solution is basic.

If the pH of a solution is equal to 7, the solution is neutral.

Knowing the pH of a solution, we can calculate $[H^+]$.

Find [H+] if the pH is 8.20

```
pH = -log[H<sup>+</sup>]

8.20 = -log[H<sup>+</sup>]

-8.20 = log [H<sup>+</sup>]

[H<sup>+</sup>] = 10<sup>-8.20</sup>

[H<sup>+</sup>] = 6.3 x 10<sup>-9</sup> M
```

If the pH of an acid solution is known, we can calculate Ka.

Find the Ka for a 0.0400~M solution of $HClO_2$ (chlorous acid) if its pH is 1.80.

Answer

First, find [H+].

$$pH = -log[H^+]$$

$$1.80 = -log[H^+]$$

$$[H^{+}] = 10^{-1.8}$$

$$[H^{+}] = 0.016 \text{ M}$$

This value also represents the number of $HClO_2$ molecules that ionized from the original 0.0400 M that we started with.

$$0.0400 - 0.016$$
 0.016 0.016 0.016 0.016

$$Ka = \frac{[H^+][ClO_2^-]}{[HClO_2]}$$

$$Ka = \frac{[0.016][0.016]}{[0.0400 - 0.016]}$$

$$Ka = 1.1 \times 10^{-2}$$