FLOMBEREGNING 05-0930 VIGGA BRU/KULVERT

RAPPORT

ADRESSE COWI AS

Karvesvingen 2

Postboks 6412 Etterstad

0605 Oslo

TLF +47 02694

WWW cowi.no

10.12.2024
INNLANDET FYLKESKOMMUNE

FLOMBEREGNING VIGGA BRU/KULVERT

RAPPORT

OPPDRAGSNR. DOKUMENTNR.

A253527 RAP-HYD_05-0930-001

VERSJON UTGIVELSESDATO BESKRIVELSE UTARBEIDET KONTROLLERT GODKJENT
01 10.12.2024 GUBE VIHV STRV

COWI FLOMBEREGNING VIGGA

INNHOLD

1	Innledning	7
2 2.1	Feltbeskrivelse Feltparametere	8
3 3.1	Krav til flomberegninger Krav til dimensjonerende flom	10 10
4 4.1 4.2 4.3 4.4	Flomberegning Lokal flomfrekvensanalyse-FFA RFFA-NIFS Nedbør-avløpsmodell PQRUT Valg av dimensjonerende flomstørrelse	14 14 16 17 19
5 5.1	Hydraulisk modellering Minste anbefalte dimensjon 4 m (B)*2 m (h)	20 22
6	Konklusjon	25
7	Kilder	26

Innledning 1

Vigga bru/kulvert består av et halvrør (stål) med diameter på 2,45m. Det er utført flomberegninger og hydrauliske beregninger for vurdering av nødvendig dimensjon i forbindelse med utbedring av kulverten. Beregningene vil avdekke behov for eventuelle nye dimensjoner eller om eksisterende dimensjon er tilstrekkelig. Vigga ligger i Gausdal kommune og veien har en ÅDT i dag på 923 med omkjøringsmulighet.

2 Feltbeskrivelse

Nedbørfeltet til Vigga bru/kulvert er vist i Figur 1. Nedbørfeltets avgrensing er utarbeidet ved hjelp av NVE-verktøyet NEVINA. Nedbørfeltets størrelse er ca. 5,5 km². Nedbørfeltet har en høydeforskjell på (348-836 moh) og har en stor andel skog (72,4%). Myrprosenten er lav (6,5%). I nedre del av feltet er det store arealer dyrket mark. Effektiv innsjøprosent er på 0%. Feltparametere tilsier en rask avrenning i nedbørfeltet. Normalavrenning 91-2020 er på 19,2 l/s*km².

Figur 1. Nedbørfeltet til Vigga bru/kulvert.

2.1 Feltparametere

Feltparametere for nedbørfeltet er vist i Figur 2.

Feltparametere er hentet fra NEVINA.

Nedbørfeltparametere

Vassdragsnr.:	002.DDD0
Kommune.:	Gausdal
Fylke.:	Innlandet
Vassdrag.:	Gausa

Feltparametere		
Areal (A)	5.5	km²
Effektiv sjø (A _{SE})	0	%
Elvleengde (E _L)	3.8	km
Elvegradient (E _G)	111.1	m/km
Elvegradent 1085 (E G,1085)	116.7	m/km
Helning	9.6	•
Dreneringstetthet (D_T)	2	km ⁻¹
Feltlengde (F _L)	3.8	km
Arealklasse		

Arealklasse		
Bre (A _{BRE})	0	%
Dyrket mark (A JORD)	12.4	%
Myr (A _{MYR})	6.5	%
Leire (A _{LEIRE})	0	%
Skog (A _{SKOG})	72.4	%
Sjø (A _{SJO})	0	%
Snaufjell (A _{SF})	0	%
Urban (A _U)	0	%
Uklassifisert areal (A _{REST})	8.6	%

Hypsografisk kurve		
Høyde _{MIN}	348	m
Høyde ₁₀	556	m
Høyde 20	661	m
Høyde 30	698	m
Høyde 40	721	m
Høyde 50	747	m
Høyde 60	759	m
Høyde ₇₀	778	m
Høyde 80	796	m
Høyde ₉₀	807	m
Høyde _{MAX}	836	m

Klima- /hydrologiske par (1991-2020)	ametere	
Årlig middelavrenning (Q_N)	19.2	l/s*km²
Arlig middelavrenning	605	mm
Usikkerhet middelavrenning	18.9	%
Nedbør juni - august	311	mm
Nedbør desember - februar	212	mm
Årstemperatur	0.5	°C
Sommertemperatur	10.9	°C
Vintertemperatur	-7.0	°C

Figur 2. Feltparametere fra Nevina.

3 Krav til flomberegninger

Flomberegninger og hydrauliske beregninger er utført for å finne dimensjonerende flomvannstander samt vurdere kapasiteten til eksisterende bru/kulvert, eventuelt ny konstruksjon.

3.1 Krav til dimensjonerende flom

Valg av dimensjonerende flom, sikkerhetsfaktor og klimafaktor er gitt i vegnormal N200 [1] og vegnormal N400 [2]. Returperiode for flomhendelser for konstruksjoner med diameter over 2,5 m defineres som bru med krav om sikkerhet mot 200-års flom.

3.1.1 Sikkerhetsklasse for veg

Etter krav i vegnormal N200 [1] skal returperiode for flomhendelser bestemmes ut fra vegens trafikkmengde (ÅDT) og omkjøringsmuligheter. Trafikkmengde (ÅDT) er oppgitt til 923 og veien er vurdert til å ha omkjøringsmulighet, noe som medfører en sikkerhetsklasse V2 som vist i Tabell 1.

Tabell 1 Sikkerhetsklasser for veg påvirket av flom (vegnormal N200).

Voglestagovi	Sikkerhetsklasse for veg		
Vegkategori	Med omkjøringsmulighet	Uten omkjøringsmulighet	
ÅDT: 0-500	V1	V2	
ÅDT: 501-4000	V2	V3	
ÅDT: >4000	V3	V3	
Atkomstveger til kritisk infrastruktur i sikkerhetsklasse F3 i TEK 17 (uavhengig av ÅDT)	V3	V3	
Gang-/sykkelveger <u>a</u>	Settes til samme klasse som for veg i samme trasé	Settes til samme klasse som for veg i samme trasé	

3.1.2 Valg av dimensjonerende flom

Dimensjonerende flomstørrelse for konstruksjoner under 2,5 m for veg med sikkerhetsklasse V2 er 100-års flom fra Tabell 2. 200-års flom er dimensjonerende ved diameter over 2,5 m.

Tabell 2 Sikkerhetsklasser for veg og valg av dimensjonerende flomstørrelse (vegnormal N200).

Sikkerhetsklasse	Konsekvens	Dimensjonerende returperiode for flom (år)
V1	Liten	50
V2	Middels	100
V3	Stor	200

3.1.3 Klimafaktor

Etter krav i vegnormal N200 [1] skal den dimensjonerende vannføringen ta høyde både for klimaendringer og usikkerhet i beregningen. Klimafaktoren Fk ble bestemt ut fra Tabell 3. Tabellen er basert på klimaprofilene for norske fylker, utarbeidet av Norsk Klimaservicesenter, (2015 - 2017), og tilpasset kravene i vegnormal N200 [1]. For Oppland er klimafaktoren 1,2 (20 % påslag) for små nedbørfelt (>10km²) og 1,2 (20 %) for store nedbørfelt(>60km²). En klimafaktor på 1,2 er derfor benyttet.

Tabell 3 Klimafaktor F_k (vegnormal N200).

Fylke	F_k		
ryike	Små nedbørsfelt	Store nedbørsfelt	
Oslo og Akershus	1,3	1,3	
Buskerud	1,4	1,3	
Vest-Agder	1,3	1,2	
Aust-Agder	1,3	1,2	
Finnmark	1,3	1,2	
Hordaland	1,4	1,4	
Møre og Romsdal	1,4	1,4	
Nord-Trøndelag	1,3	1,3	
Nordland	1,4	1,4	
Oppland	1,2	1,2	
Hedmark	1,4	1,2	
Rogaland	1,3	1,3	
Sogn og Fjordane	1,4	1,4	
Sør-Trøndelag	1,2	1,2	
Telemark	1,2	1,2	
Troms	1,3	1,3	
Østfold	1,4	1,2	
Vestfold	1,2	1,2	

3.1.4 Sikkerhetsfaktor

I vegnormal N200 [1] kreves en sikkerhetsfaktor (Fs) for usikkerheter ved de hydrologiske beregningene som vist i Tabell 4. Sikkerhetsfaktoren avhenger av sikkerhetsklasse på vegen og kvaliteten på det det hydrologiske grunnlaget. Flomberegningen er vurdert til å være i klasse 3. Benyttet sikkerhetsfaktor blir dermed på 1,2.

Tabell 4 Sikkerhetsfaktor for håndtering av usikkerhet ved hydrologiske beregninger (vegnormal N200).

Sikkerhetsklasse av veg påvirket av flom	Kvalitet på det hydrologiske datagrunnlaget			
	Klasse 1	Klasse 2 eller 3	Klasse 4 eller 5	
V1	1,0	1,1	1,2	
V2	1,1	1,2	1,3	
V3	1,2	1,3	1,4	

Tabell 5 Klasse og klassifiseringskriterier for hydrologisk grunnlag (vegnormal N200).

Klasse	Klassifiseringskriterier
1	Godt hydrologiske datagrunnlag, med observasjoner i vassdraget
2	Brukbart hydrologiske datagrunnlag, med observasjoner i eller nært vassdraget
3	Brukbart hydrologisk datagrunnlag, men store gradienter i spesifikke flomstørrelser
4	Begrenset hydrologisk datagrunnlag
5	Begrenset hydrologisk datagrunnlag og store gradienter i spesifikke flomstørrelser i områder

Flomberegningen er gjennomført i samsvar med kravene gitt i retningslinjene fra vegnormal N200 [1] og håndbok V240 [4]. Det tillegges en klimafaktor på 1,2 og en sikkerhetsfaktor på 1,2.

$$Q_{dim} = Q_T * F_k * F_s$$

Qdim- dimensjonerende flom

Fk- klimafaktor for store og små nedbørsfelt

Fs- sikkerhetsfaktor, bestemt etter sikkerhetsklasse og hydrologisk grunnlag

4 Flomberegning

Det eksister ingen målinger av vannføring i vassdraget. Det er vurdert ulike metoder for flomberegningen. De benyttede metodene består av lokal flomfrekvensanalyse (FFA), PQRUT og RFFA-NIFS.

4.1 Lokal flomfrekvensanalyse-FFA

Flomfrekvensanalyse er basert på analyser av vannføringsmålinger i felt som vurderes som representative for vassdraget. Det er få aktuelle stasjoner i området. Stasjoner som det er utført analyser på er vist i Figur 3. Resultater fra analysen er vist i Tabell 6.

Det er forsøkt å finne stasjoner som er mest mulig representative m.h.t til areal, effektiv sjøprosent, normalavrenning og beliggenhet. Av feltparameterene til de fire stasjonene samsvarer stasjon 2.323 best med Vigga. Høydefordeling, effektiv sjøprosent og feltstørrelse samsvarer rimelig godt med stasjon 2.323 Fura. Vigga har imidlertid et betydelig mindre nedbørfelt samt større andel dyrket mark. Flomstørrelser i Vigga kan derfor forventes å være høyere enn for stasjon 2.323 Fura. Det er likevel stor variasjon i de beregnede flomstørrelser og usikkerheten vurderes til å være høy. Estimerte flomverdier for stasjon 2.323 Fura er betydelig høyere enn de andre stasjonene.

Flomfrekvensanalysen er utført på momentanverdier og med Gumbel-fordeling.

Figur 3. Lokaliteter for benyttede vannføringsstasjoner.

Tabell 6. Flomfrekvensanalyser, kulminasjonsverdier.

Kulminasjon						
Stasjon	Eff.sjøpro sent %	Areal	qn 1991- 2020 (I/s*km2)	Spesifikk avrenning Qm l/s*km2	•	Spesifikk avrenning Q200 l/s*km²
2.36 Øvre Heimdalsvatn	3.1	24.9	26.1	334	962	1077
12.13 Rysna	0.9	50.3	33.7	472	1058	1162
73.27 Sula	3.8	30.3	35.2	428	911	1000
2.323 Fura	0.06	36	21	596	1445	1646

4.2 RFFA-NIFS

Ved å benytte en metode som baserer seg på RFFA-NIFS med normalavrenning, sjøprosent og feltstørrelse som inngangsparametere, gir dette et resultat som vist under i Figur 4, Figur 5 og Tabell 7. Formelverket har et gyldighetsintervall for nedbørfelter med størrelse 0,2-53 km². Metoden egner seg derfor for Vigga.

Metoden viser et stort spenn i verdier for de ulike intervallene. Beregnet 200-års flom varierer mellom 698-2793 l/s*km² med median estimat på 7.68 m³/s (1397 l/s*km²). Median estimat for middelflom er på 2.72 m³/s (494 l/s*km²). Metoden er ytterligere beskrevet i NIFS-rapport [3].

Figur 4. Resultater fra RFFA-NIFS (m³/s).

Figur 5. Resultater fra RFFA-NIFS (l/s*km²).

Tabell 7. Resultater RFFA-NIFS (I/s*km²).

Spesifikk avrenning (I/s*km2)				
	2.50%	Median	97.50%	
QM	279	494	875	
Q5	344	622	1126	
Q10	399	739	1367	
Q20	457	864	1632	
Q50	539	1050	2048	
Q100	606	1212	2425	
Q200	698	1397	2793	
Q500	840	1681	3361	
Q1000	966	1931	3862	

Nedbør-avløpsmodell PQRUT 4.3

Nedbør-avløpsmodellen regner nedbørdata om til avløp vha. feltparametere for det aktuelle feltet. Det er benyttet NVE's webløsning av modellen.

Benyttet nedbørforløp er basert på frekvensanalyse fra stasjon 12680 Lillehammer-Sætherengen.

Parameterne til modellen er teoretisk bestemt basert på feltparametere fra NEVINA siden det ikke finnes data for kalibrering av modellen. Benyttede modellparametere er vist i Figur 6 og det er benyttet parametere basert på formelverk fra 2016. Resultat av beregningen er vist i Figur 7. Beregningen ga en kulminerende flom på 12,5 m³/s (2272 l/s*km²).

Figur 6. Modellparametere PQRUT.

Figur 7. Resultater PQRUT Q200.

4.4 Valg av dimensjonerende flomstørrelse

Det er valgt å benytte resultater fra nedbør-avløpsmodellen PQRUT. Resultatene samsvarer relativt godt med frekvensanalysen for stasjon 2.323 Fura men det kan forventes høyere flomverdier for Vigga. RFFA-NIFS vurderes til å gi for lave flomverdier som følge av lav normalavrenning i Vigga.

Dimensjonerende flom (Q100) for Vigga blir dermed på; 12,5 m³/s *1,2 (klimafaktor)*1,2 (sikkerhetsfaktor) som blir 18 m³/s (3272 l/s*km²).

5 Hydraulisk modellering

Det er benyttet det hydrauliske dataprogrammet Hecras 6.6 og Hy-8 for beregning av vannstander, vannhastigheter og nødvendig dimensjon på brua. Det er benyttet en 1-dimensjonal-metodikk for beregningen.

Terrengmodellen er etablert ved bruk av laserdata (LIDAR). Terrengmodellens oppløsning er på 0,25 m*0,25 m med høydereferanse NN2000. Benyttet ruhet i modellen (Manning's n) er på 0,04.

Nedstrøms grensebetingelse er satt så langt nedstrøms at den ikke har betydning for beregningen. Eksisterende kulvert er vist i Figur 8. Det kan forventes en betydelig massetransport i bekken som følge av høye vannhastigheter og det er fare for gjentetting i kulverten som vist i Figur 9.

Det er ikke opplyst om at det har vært problemer med bruas kapasitet.

Kulvertens dimensjon er oppgitt med en diameter på 2,45m (halvrør).

Høyder på kulvertens innløp og utløp er ukjent, og det er benyttet omtrentlige høyder basert på terrenghøyder oppstrøms og nedstrøms. Benyttede høyder for bunn på kulvert ved innløpet er på kote 347.6. Bunn av kulvert ved utløpet er satt til kote 347.05. Høydene er basert på grunnlag i terrengmodell og er derfor noe usikre.

Figur 8. Eksisterende innløp.

Figur 9. Gjentetting i dagens kulvert.

5.1 Minste anbefalte dimensjon 4 m (B) * 2 m (h)

Eksisterende dimensjon på dagens kulvert er underdimensjonert og det vil være nødvendig med dimensjoner over 2,5m, noe som medfører en brukonstruksjon med dimensjonerende flomstørrelse Q200. Beregningene har en betydelig usikkerhet pga. høye vannhastigheter ved innløpet. Beregninger med HY-8 (kulvert) gir energihøyden oppstrøms innløpet som vurderes til å være konservativt å dimensjonere for. Beregnet vannstand i Hecras gir tilsvarende vannstand som vannstanden rett ved innløpet i HY-8. Med en bredde på 4 m så vurderes energitapet til å være lavt og beregnet vannstand ved innløpet anbefales benyttet som grunnlag for dimensjonering.

Resultater fra Hy-8 er vist i Figur 10 og Tabell 8. Resultatene viser at innløpet får en frihøyde på 7 cm (i forhold til energilinje/Headwater).

Resultater fra Hecras med samme dimensjon og modellert som bru er vist i Figur 11. Beregningene vister vannstandsprang oppstrøms og nedstrøms brua. Beregnet vannstand ved innløpet er på 348,8m noe som gir 0,8m fri høyde under brua. Energilinja går like under brua på kote 349,51 (i hecras), noe som betyr at vannstanden potensielt kan nå denne høyden ved for eksempel oppstuving og turbulens. For å ta hensyn til usikkerheter rundt vannstandsprang og turbulens ved innløpet vurderes det derfor til at en bru med dimensjon 4 m bredde og 2 m høyde er minste dimensjon for ny bru. Dimensjonen ivaretar krav om 0,5 m fri høyde samtidig som innløpet ligger

noe over energilinja. Hvis brua skal ha 0,5 m fri høyde over energilinja må høyden heves til 2.4 m på ny bru.

Figur 10. Kapasitet for Vigga med 4m*2m og dimensjonerende flom Q200+20%+20%.

Tabell 8. Resultater for kulvert med 4m*2m.

4m*2m				
Energihøyde	Dybde	Utløpshastighet		
(moh)	(m)	(m/s)	fri høyde (m)	
349.53	1.93	4.4	0.07	

Figur 11. Kapasitet for Vigga med 4m*2m bru og dimensjonerende flom Q200+20%+20%.

Figur 12. Kapasitet for Vigga med 4m*2m bru og dimensjonerende flom Q200+20%+20%.

6 Konklusjon

Flomberegning i umålte felt har generelt en stor usikkerhet og spesielt ved høye gjentaksintervall. Det eksisterer ingen målinger i vassdraget og det er få sammenlignbare stasjoner i området. Flomberegning med den valgte metoden PQRUT viser sammenfallende verdier med verdiene fra flomfrekvensanalysen.

Dimensjonerende flom er vurdert til å være Q200+1,2 klimafaktor +1,2 sikkerhetsfaktor (18 m^3/s).

Hydrauliske beregninger for eksisterende dimensjon viser at kapasiteten ikke er tilstrekkelig og vann vil renne over veien. Det er sett på ulike løsninger for å ivareta en kapasitet for den dimensjonerende flommen. Minste anbefalte dimensjon for ny bru har dimensjon på 4 m bredde og 2 m høyde. Dette gir en frihøyde på 0,8 m og ivaretar derfor kravet om 0,5 m frihøyde. Beregnet vannstand ved innløpet er imidlertid usikkert på grunn av de høye vannhastighetene som kan medføre kraftig turbulens og vannstandsprang. Foreslåtte brudimensjon er derfor å anse som minste akseptable dimensjon. Energilinja på anbefalt dimensjon går like under brudekket. Hvis det ønskes ytterligere sikkerhet legges energilinja til grunn med 0,5 m fri høyde. Ny bru må da ha en dimensjon på 4 m* 2,4m.

Risiko for erosjon er vurdert til å være størst ved utløpet basert på vannhastigheter. Behov for ny erosjonssikring ved utløpet avhenger av eksisterende masser og om det er erosjonsskader der i dag. En befaring eller en god bildedokumentasjon over området er nødvendig for å kunne vurdere dette ytterligere.

7 Kilder

- [1] Statens Vegvesen Vegnormal N200 Vegbygging (Digitale vegnormaler). Vegdirektoratet 2024.
- [2] Statens Vegvesen Håndbok N400, Bruprosjektering, (Digitale vegnormaler). Vegdirektoratet 2024.
- [3] NVE, Jernbaneverket, Statens vegvesen-Nasjonalt formelverk for flomberegning i små nedbørfelt, NIFS rapport 13,2015.
- [4] Håndbok N-V240 Vannhåndtering. (Digitale vegnormaler). Vegdirektoratet 2023.