Algorithmique et structures de données

Algorithmes de tri

Julien Hauret Lundi 30 janvier 2023

Plan de la séance

Rappels

Complexité minimale

Algorithmes quadratiques

QuickSort : le tri rapide

Tri par ta

Recherche dans un tableau

Les types de complexité

Deux complexités différentes

- La **complexité en temps** : le nombre d'opérations élémentaires effectuées par l'algorithme.
- La complexité en espace : le nombre de cases mémoires élémentaires occupées lors du déroulement de l'algorithme.

Complexités classiques (en temps)

- 0(1): accès aux éléments d'un tableau;
 0(log n): recherche d'un élément dans une liste triée;
 0(n): parsours d'un tableau;
- 0(n): parcours d'un tableau;
- $0(n \log n)$: tris rapides;
- $O(n^2)$: tris basiques;
- $O(2^n)$: problèmes difficiles.

Dans le cours d'introduction au C++, on a vu deux méthodes pour trouver les termes de la suite de Fibonnacci :

$$\begin{cases} f_0 = f_1 = 1 \\ f_n = f_{n-1} + f_{n-2} \end{cases}$$

La formulation du problème incite à l'utilisation de la récursivité :

```
int fibonacci(int n){
   if (n < 2){
      return 1;
   } else {
      return fibonacci(n-1) + fibonacci(n-2);
   }
}</pre>
```


Opération élémentaire = addition (+).

La complexité se mesure ici en nombre d'additions (i.e. en nombre d'appels à la fonction).

- fibonacci(0):0
- · fibonacci(1):0
- fibonacci(2):1
- fibonacci(3):2
- fibonacci(4):4
- fibonacci(5):7
- fibonacci(6):12
- fibonacci(12):20

Si A_n représente le nombre d'additions à faire au rang n:

Ceci donne une complexité Cfibonacci telle que :

$$O(2^{\frac{n}{2}}) \le C_{\text{fibonacci}} \le O(2^n)$$

En pratique...

Impossible à calculer pour des *n* grands.

Une seconde méthode, non récursive :

```
int fibonacci(int n){
    // Initialisation des deux premiers termes
    int fn_m2 = 1, fn_m1 = 1;
    for(int i=2; i <= n; i++) {
        int fn = fn_m2 + fn_m1
        // Décalage du rang n-1 au rang n
        fn_m2 = fn_m1;
        fn_m1 = fn;
    }
    return fnm1;
}</pre>
```

L'algorithme ainsi réécrit ne comporte qu'une seule boucle constituée uniquement d'opérations en temps constant.

La complexité $C_{\text{fibonacci}}$ est en O(n).

Verdict

Le choix de l'implémentation d'un même calcul peut beaucoup influer sur la performance.

Remarque

La récursivité n'est pas une mauvaise chose, elle est utile quand elle **ne recalcule pas** plusieurs fois la même chose.

Plan de la séance

Rappels

Complexité minimale

Algorithmes quadratiques

QuickSort : le tri rapide

Tri par tas

Recherche dans un tableau

Complexité minimale

Théorème

Soit $L = \{a_1, a_2, ..., a_n\}$ un ensemble de n valeurs dans E un **ensemble continu** ou de grand cardinal.

La **complexité minimale** d'un algorithme de tri prenant en entrée L et renvoyant en sortie les valeurs a_i ordonnées par ordre croissant est $\Theta(n \log n)$ (linéarithmique).

Complexité minimale : preuve

Propriétés d'un algorithme de tri

- 1. Tout algorithme de tri peut se ramener à une succession de comparaisons et de transpositions d'éléments,
 - · l'opération élémentaire pour la complexité en temps sera la comparaison entre deux éléments du tableau.
- 2. Tout algorithme de tri doit être capable de trier n'importe quelle liste arbitraire, c'est-à-dire de trier les n! permutations possibles de n'importe quelle liste.

Complexité minimale : preuve - Arbre de tri

Lemme

On peut représenter un algorithme de tri sous la forme d'un arbre :

- · chaque nœud correspond à une comparaison,
- chaque nœud a deux arêtes, une pour chaque résultat de la comparaison,
- · chaque feuille est une permutation possible de la liste d'entrée.

Conséquences

- · L'arbre est un arbre binaire de hauteur h à 2^h feuilles.
- · L'arbre a au minimum n! feuilles.
- La hauteur de l'arbre est le nombre de comparaisons nécessaires pour obtenir une liste triée.

Complexité minimale : preuve - Arbre de tri - Exemple

Exemple pour n = 3 et pour le tri à bulles : **abc**.

Complexité minimale des tris (1/2)

Chaque feuille de l'arbre est :

- · soit vide car correspond à un ordonnancement impossible,
- · soit une des permutations possibles de la liste.

Par conséquent, le nombre de feuilles de l'arbre est **supérieur** au nombre de permutations de la liste d'entrée

$$n! \leq 2^h$$

ce qui implique $log_2(n!) \le h$.

En utilisant la formule de Stirling, $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$, il vient

$$h \ge n \cdot \log_2(n) - \frac{n}{\ln 2} = \Theta(n \cdot \log_2 n)$$

Complexité minimale des tris (1/2)

Chaque feuille de l'arbre est :

- · soit vide car correspond à un ordonnancement impossible,
- · soit une des permutations possibles de la liste.

Par conséquent, le nombre de feuilles de l'arbre est **supérieur** au nombre de permutations de la liste d'entrée

$$n! \leq 2^h$$

ce qui implique $\log_2(n!) \le h$.

En utilisant la formule de Stirling, $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$, il vient

$$h \ge n \cdot \log_2(n) - \frac{n}{\ln 2} = \Theta(n \cdot \log_2 n)$$

Complexité minimale des tris (2/2)

D'une part, nous venons de montrer que

$$h \ge \Theta(n \cdot \log_2 n) .$$

D'autre part, il existe des algorithmes de tri de complexité $\Theta(n \log n)$ donc $h \ge \Theta(n \cdot \log n)$.

Finalement, il vient:

$$h = \Theta(n \log n).$$

h étant la hauteur de l'arbre mais aussi le nombre de comparaisons entre éléments de la liste.

Complexité minimale : exemple

Exemple du calcul de l'histogramme d'une image.

```
int histo[256];
for(int i=0; i < 256; i++){
    histo[i] = 0;
}
for(int x=0; x < image.width(); x++){
    for(int y=0; y < image.height(); y++){
        histo[image(x,y)]++;
    }
}</pre>
```

Chaque pixel doit être observé au moins une fois : *O(n)*. La complexité minimale n'est pas liée à l'implémentation mais à la tâche à effectuer.

Complexité minimale : exemple

Exemple du calcul de l'histogramme d'une image.

```
int histo[256];
for(int i=0; i < 256; i++){
    histo[i] = 0;
}
for(int x=0; x < image.width(); x++){
    for(int y=0; y < image.height(); y++){
        histo[image(x,y)]++;
    }
}</pre>
```

Chaque pixel doit être observé au moins une fois : O(n).

La complexité minimale n'est pas liée à l'implémentation mais à la tâche à effectuer.

Remarque à méditer

Le théorème de la complexité minimale des algorithmes de tri n'est valable que pour des tableaux à valeurs dans de grands ensembles (de cardinal infini ou presque).

Exercice

• Proposer un algorithme de tri en O(n) pour un tableau de n éléments à valeurs entières dans [0,k].

Plan de la séance

Rappels

Complexité minimale

Algorithmes quadratiques

QuickSort : le tri rapide

Tri par tas

Recherche dans un tableau

Le tri à bulles

```
for(int i=n; i > 0; i--){
    for(int j=0; j < i-1; j++){
        if(t[j] > t[j+1]){
            swap(t[j], t[j+1]);
        }
    }
}
```

Complexité

Le tri à bulles réalise $(n-1)+(n-2)+...+1=\frac{(n-1)(n-2)}{2}$ comparaisons.

La complexité du tri à bulles est en $O(n^2)$ en moyenne et dans le pire des cas.

Autres algorithmes classiques en $O(n^2)$

Le tri par insertion et le tri par sélection (cf. TP).

Plan de la séance

Rappels

Complexité minimale

Algorithmes quadratiques

QuickSort : le tri rapide

Tri par tas

Recherche dans un tableau

QuickSort: principe

- 1. Choisir un élément du tableau, il devient le pivot.
- 2. Placer le pivot à la position *i* de sorte que tous les éléments d'indice inférieurs à *i* soient plus petits que le pivot et tous les éléments d'indice supérieurs à *i* soient plus grands.
- 3. Réitérer le procédé sur chacune des deux sous-parties du tableau.

Complexité de Quicksort

Théorème

Quicksort est un tri en $O(n \log(n))$ en moyenne.

Démonstration dans le chapitre 3.

QuickSort : complexité - Pire des cas

Le parcours du tableau implique n-1 comparaison. Donc :

$$C_n = (n-1) + C_i + C_{n-i-1}$$

Si on suppose que i = n - 1 (déjà triée) :

$$C_n = (n-1) + C_{n-1}$$

Au rang suivant:

$$C_n = (n-1) + (n-2) + C_{n-2}$$

En fait, cela revient à effectuer un tri à bulles :

$$C_n = O(n^2)$$

QuickSort : éviter le pire des cas

Pour éviter le pire des cas en moyenne on utilise généralement :

- · un tirage du pivot au hasard
- · un pivot au milieu du tableau
- · un mélange de la liste au préalable

QuickSort : en pratique

- · QuickSort est implémenté dans la STL (#include <algorithm>).
- Il existe des algorithmes en $O(n \log n)$ quoi qu'il arrive (tri par tas, tri fusion, ...), mais il sont moins rapides que QuickSort **en moyenne**.

Implémentation non-optimale en Python

```
def quicksort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[len(arr) // 2]
    left = [x for x in arr if x < pivot]
    middle = [x for x in arr if x == pivot]
    right = [x for x in arr if x > pivot]
    return quicksort(left) + middle + quicksort(right)

print(quicksort([3,6,8,10,1,2,1]))
```

Plan de la séance

Rappels

Complexité minimale

Algorithmes quadratiques

QuickSort : le tri rapide

Tri par tas

Recherche dans un tableau

File de priorité

La file de priorité est une structure de données permettant :

- · Accès à l'élément le plus prioritaire en O(1)
- Ajout d'un élément en $O(\log n)$
- · Retrait d'un élément en $O(\log n)$

Étude de la file de priorité au chapitre 4.

Tri par tas

Le tri par tas remplit une file de priorité et puis retire les éléments un par un.

```
void HeapSort(std::vector<double> &v){
    FilePriorite f;
    for(int i=0; i < v.size(); i++){
        f.push(v[i]);
    }
    for(int i=0; i < v.size(); i++){
        v[i] = f.pop();
    }
}</pre>
```

Conclusion

Le tri par tas est un tri en $O(n \log n)$ dans tous les cas. Cependant en comparaison à QuickSort, il utilise plus de mémoire et est plus long en moyenne.

En pratique c'est QuickSort le plus utilisé.

Tri par tas : complexités à retenir

- Tri : $O(n \log n)$
- Recherche dans un tableau trié : $O(\log n)$
- · Recherche dans un tableau non trié : O(n)

Plan de la séance

Rappels

Complexité minimale

Algorithmes quadratiques

QuickSort : le tri rapide

Tri par tas

Recherche dans un tableau

Recherche dans un tableau non trié

Tableau non trié

Pas d'a priori sur la structure du tableau. Il faut regarder chaque élément.

Complexité

O(n)

Recherche dichotomique

Le fait de savoir que le tableau est trié permet de réduire la complexité de la recherche à $O(\log(n))$.

```
int dichotomie(const std::vector<double>& V, double val){
    int debut = 0, fin = v.size() - 1;
    while(debut < fin){</pre>
        int milieu = (debut + fin)/2;
        if(V[milieu] == val)
            return milieu;
        if(V[milieu] < val){</pre>
            debut = milieu + 1:
        } else {
            fin = milieu - 1;
    // On renvoie l'indice actuel si c'est la bonne valeur
    // ou -1 sinon car la valeur n'est pas dans le vecteur
    return (V[milieu] == val) ? a:-1;
```

Codons!

Travaux pratiques

Implémentation de quelques algorithmes de tri en C++.