\bigcirc

(?)

 \bigcirc

Iniciado em domingo, 13 abr 2025, 23:07

Estado Finalizada

Concluída em domingo, 13 abr 2025, 23:13

Tempo 6 minutos 30 segundos

empregado

Notas 3,00/3,00

Avaliar 10,00 de um máximo de 10,00(100%)

Questão **1**Correto
Atingiu 1,00 de

1,00

Sejam as **matrizes** coluna ${f A}=egin{bmatrix}1\\-1\\2\end{bmatrix}$ e ${f B}=egin{bmatrix}3\\0\\2\end{bmatrix}$, calcule

 $\mathbf{C} = \mathbf{A}^{\mathrm{T}} \cdot \mathbf{B}.$

Escolha uma opção:

$$lacksquare$$
 a. ${f C}=7$

$$egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} b. \, {f C} = egin{bmatrix} 21 & 0 & 14 \ -21 & 0 & -14 \ 42 & 0 & 28 \ \end{bmatrix} \end{array}$$

$$\circ$$
 c. $\mathbf{C} = egin{bmatrix} 3 \ 0 \ 4 \end{bmatrix}$

O d.
$$\mathbf{C} = \begin{bmatrix} 3 & 0 & 2 \\ -3 & 0 & -2 \\ 6 & 0 & 4 \end{bmatrix}$$

Sua resposta está correta.

A resposta correta é: ${f C}=7$

 $\vec{\mathcal{U}}$

 $\hat{\omega}$

 \bigcirc

Escolha uma opção:

$$egin{array}{ll} oldsymbol{\circ} & \mathbf{a}.\,ar{\mathbf{A}} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix} \end{array}$$

O b.
$$ar{\mathbf{A}} = egin{bmatrix} 7 & 4 & 3 \ 2 & 0 & 1 \ 5 & 2 & 8 \end{bmatrix}$$

$$egin{array}{c} oldsymbol{\circ} \ {\sf c.} \ ar{{f A}} = egin{bmatrix} 0 & 2 & 3 \\ 1 & -2 & 1 \\ 1 & -5 & 1 \end{bmatrix} \end{array}$$

O d.
$$ar{\mathbf{A}}=egin{bmatrix}1&0&1\-2&2&-5\1&3&1\end{bmatrix}$$

$$\bullet \text{ e. } \mathbf{\bar{A}} = \begin{bmatrix} 17 & 3 & -2 \\ -3 & 0 & 3 \\ -8 & -3 & 2 \end{bmatrix}$$

Sua resposta está correta.

A resposta correta é:
$$ar{\mathbf{A}}=egin{bmatrix}17&3&-2\\-3&0&3\\-8&-3&2\end{bmatrix}$$

Questão **3**Correto
Atingiu 1,00 de 1,00

Calcule a inversa da matriz ${f A}=egin{bmatrix} 2 & 0 \ 4 & 2 \end{bmatrix}$.

Escolha uma opção:

$$igcolumn$$
 a. $\mathbf{A}^{-1}=egin{bmatrix} 0.5 & 0 \ 0.5 & -1 \end{bmatrix}$

$$igcup$$
 b. $\mathbf{A}^{-1}=egin{bmatrix} -1 & 0 \ 0.5 & 0.5 \end{bmatrix}$

$$lackbox{0}$$
 c. $\mathbf{A}^{-1}=egin{bmatrix} 0.5 & 0 \ -1 & 0.5 \end{bmatrix}$

$$igcolum_{}^{}$$
 d. $\mathbf{A}^{-1}=egin{bmatrix} -1 & 0.5 \ 0.5 & 0 \end{bmatrix}$

$$igcup$$
 e. ${f A}^{-1}=\left[egin{array}{cc} 0 & 0.5 \ -1 & 0.5 \end{array}
ight]$

Sua resposta está correta.

A resposta correta é:
$$\mathbf{A}^{-1} = egin{bmatrix} 0.5 & 0 \ -1 & 0.5 \end{bmatrix}$$

©2020 - Universidade Federal do Ceará - Campus Quixadá.

Todos os direitos reservados.

Av. José de Freitas Queiroz, 5003

Cedro - Quixadá - Ceará CEP: 63902-580

Secretaria do Campus: (88) 3411-9422

🗓 Baixar o aplicativo móvel.