1-4. The Weibull distribution has many applications in reliability engineering, survival analysis, and general insurance. Let $\beta > 0$, $\delta > 0$. Consider the probability density function

$$f(x; \beta, \delta) = \beta \delta x^{\delta - 1} e^{-\beta x^{\delta}}, \quad x > 0,$$
 zero otherwise.

Recall (Examples for 08/28/2020 (3)):

$$W = X^{\delta}$$
 has an Exponential ($\theta = \frac{1}{\beta}$) = Gamma($\alpha = 1, \theta = \frac{1}{\beta}$) distribution.

Let X_1, X_2, \dots, X_n be a random sample from the above probability distribution.

$$\Rightarrow$$
 $Y = \sum_{i=1}^{n} X_{i}^{\delta} = \sum_{i=1}^{n} W_{i}$ has a Gamma ($\alpha = n, \theta = \frac{1}{\beta}$) distribution.

1. Suppose δ is known.

Let X_1, X_2, \dots, X_n be a random sample from the distribution with the probability density function

$$f(x;\beta) = \beta \delta x^{\delta-1} e^{-\beta x^{\delta}}, \qquad x > 0,$$
 zero otherwise.

a) Find a closed-form expression for $E(X^k)$, $k > -\delta$.

"Hint" 1:
$$u = \beta x^{\delta}$$
 "Hint" 2: $\Gamma(a) = \int_{0}^{\infty} u^{a-1} e^{-u} du$, $a > 0$.

- b) Obtain a method of moments estimator for β , $\tilde{\beta}$.
- c) Suppose $\delta = 3$, n = 5, and $x_1 = 0.2$, $x_2 = 1.2$, $x_3 = 0.2$, $x_4 = 0.9$, $x_5 = 0.3$. Obtain a method of moments estimate for β , $\tilde{\beta}$.

"Hint":
$$\Gamma(a)$$
 R: > gamma(a) Excel: = GAMMA(a)

2. Suppose δ is known.

Let X_1, X_2, \dots, X_n be a random sample from the distribution with the probability density function

$$f(x; \beta, \delta) = \beta \delta x^{\delta-1} e^{-\beta x^{\delta}}, \quad x > 0,$$
 zero otherwise.

- d) Obtain the maximum likelihood estimator for β , $\hat{\beta}$.
- e) Suppose $\delta = 3$, n = 5, and $x_1 = 0.2$, $x_2 = 1.2$, $x_3 = 0.2$, $x_4 = 0.9$, $x_5 = 0.3$. Obtain the maximum likelihood estimate for β , $\hat{\beta}$.
- f) Is the maximum likelihood estimator $\hat{\beta}$ an unbiased estimator of β ?

 If $\hat{\beta}$ is not an unbiased estimator of β , construct an unbiased estimator of β based on $\hat{\beta}$.

"Hint" 1:
$$E(a \odot) = a E(\odot)$$
. "Hint" 2: $\frac{1}{\bullet} = \blacktriangledown^{-1}$.

"Hint" 3: If T_{α} has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, then

$$E(T_{\alpha}^{k}) = \frac{\theta^{k} \Gamma(\alpha+k)}{\Gamma(\alpha)} = \frac{\Gamma(\alpha+k)}{\lambda^{k} \Gamma(\alpha)}, \qquad k > -\alpha.$$

g) Find MSE($\hat{\beta}$), where $\hat{\beta}$ the maximum likelihood estimator of β .

"Hint" 1: bias $(\hat{\beta}) = E(\hat{\beta}) - \beta$. You have $E(\hat{\beta})$ from part (f).

"Hint" 2: $\operatorname{Var}(a \odot) = a^2 \operatorname{Var}(\odot)$. $\operatorname{Var}(\odot) = \operatorname{E}(\odot^2) - [\operatorname{E}(\odot)]^2$.

"Hint" 3: If T_{α} has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, then

$$E(T_{\alpha}^{k}) = \frac{\theta^{k} \Gamma(\alpha+k)}{\Gamma(\alpha)} = \frac{\Gamma(\alpha+k)}{\lambda^{k} \Gamma(\alpha)}, \qquad k > -\alpha.$$

"Hint" 4: $MSE(\hat{\beta}) = (bias(\hat{\beta}))^2 + Var(\hat{\beta}).$

3. Suppose β is known.

Let X_1, X_2, \dots, X_n be a random sample from the distribution with the probability density function

$$f(x; \beta, \delta) = \beta \delta x^{\delta-1} e^{-\beta x^{\delta}}, \quad x > 0,$$
 zero otherwise.

h) Obtain an equation for the maximum likelihood estimator for δ , $\hat{\delta}$.

"Hint": $\frac{d}{d\delta} \ln L(\delta) = 0.$

4. Suppose $\delta = 3$, $\beta = 4$, n = 5.

Let X_1, X_2, X_3, X_4, X_5 be a random sample of size n = 5 from the distribution with the probability density function

$$f(x; \beta, \delta) = \beta \delta x^{\delta-1} e^{-\beta x^{\delta}}, \quad x > 0,$$
 zero otherwise.

i) Find the probability $P\left(\sum_{i=1}^{5} X_{i}^{3} > 2.5\right) = P\left(\sum_{i=1}^{n} X_{i}^{\delta} > 2.5\right)$.

"Hint": If T_{α} has a $Gamma(\alpha, \theta = 1/\lambda)$ distribution, where α is an integer, then $P(T_{\alpha} \leq t) = P(X_t \geq \alpha) \quad \text{and} \quad P(T_{\alpha} > t) = P(X_t \leq \alpha - 1),$ where X_t has a $Poisson(\lambda t)$ distribution.

j) Find a such that $P(\sum_{i=1}^{5} X_{i}^{3} > a) = P(\sum_{i=1}^{n} X_{i}^{\delta} > a) = 0.10.$

"Hint": If T_{α} has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, where α is an integer, then ${}^{2}T_{\alpha}/_{\theta} = 2\lambda T_{\alpha}$ has a $\chi^{2}(2\alpha)$ distribution (a chi-square distribution with 2α degrees of freedom).

1-4. The Weibull distribution has many applications in reliability engineering, survival analysis, and general insurance. Let $\beta > 0$, $\delta > 0$. Consider the probability density function

$$f(x; \beta, \delta) = \beta \delta x^{\delta - 1} e^{-\beta x^{\delta}}, \quad x > 0,$$
 zero otherwise.

Recall (Examples for 08/28/2020 (3)):

$$W = X^{\delta}$$
 has an Exponential ($\theta = \frac{1}{\beta}$) = Gamma ($\alpha = 1, \theta = \frac{1}{\beta}$) distribution.

Let X_1, X_2, \dots, X_n be a random sample from the above probability distribution.

$$\Rightarrow Y = \sum_{i=1}^{n} X_{i}^{\delta} = \sum_{i=1}^{n} W_{i} \text{ has a Gamma} (\alpha = n, \theta = \frac{1}{\beta}) \text{ distribution.}$$

1. Suppose δ is known.

Let X_1, X_2, \dots, X_n be a random sample from the distribution with the probability density function

$$f(x;\beta) = \beta \delta x^{\delta-1} e^{-\beta x^{\delta}}, \quad x > 0,$$
 zero otherwise.

a) Find a closed-form expression for $E(X^k)$, $k > -\delta$.

"Hint" 1:
$$u = \beta x^{\delta}$$
 "Hint" 2: $\Gamma(a) = \int_{0}^{\infty} u^{a-1} e^{-u} du$, $a > 0$.

$$E(X^{k}) = \int_{0}^{\infty} x^{k} \beta \delta x^{\delta - 1} e^{-\beta x^{\delta}} dx \qquad u = \beta x^{\delta} \qquad du = \beta \delta x^{\delta - 1} dx$$
$$= \int_{0}^{\infty} \left(\frac{u}{\beta}\right)^{k/\delta} e^{-u} du = \frac{1}{\beta^{k/\delta}} \Gamma\left(\frac{k}{\delta} + 1\right), \qquad k > -\delta.$$

$$E(X^{k}) = \int_{0}^{\infty} x^{k} \beta \delta x^{\delta-1} e^{-\beta x^{\delta}} dx \qquad u = x^{\delta} \qquad du = \delta x^{\delta-1} dx$$

$$= \int_{0}^{\infty} u^{k/\delta} \beta e^{-\beta u} du = \frac{\Gamma\left(\frac{k}{\delta}+1\right)}{\beta^{k/\delta}} \int_{0}^{\infty} \frac{\beta^{k/\delta+1}}{\Gamma\left(\frac{k}{\delta}+1\right)} u^{k/\delta+1-1} \beta e^{-\beta u} du$$

$$= \frac{1}{\beta^{k/\delta}} \Gamma\left(\frac{k}{\delta}+1\right),$$
since
$$\frac{\beta^{k/\delta+1}}{\Gamma\left(\frac{k}{\delta}+1\right)} u^{k/\delta+1-1} \beta e^{-\beta u} \text{ is the p.d.f. of}$$

$$Gamma\left(\alpha = \frac{k}{\delta}+1, \theta = \frac{1}{\beta}\right) \text{ distribution.}$$

OR

$$W = X^{\delta}$$
 has an Exponential $(\theta = \frac{1}{\beta}) = Gamma(\alpha = 1, \theta = \frac{1}{\beta})$ distribution.

If T_{α} has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, then

$$E(T_{\alpha}^{k}) = \frac{\theta^{k} \Gamma(\alpha+k)}{\Gamma(\alpha)} = \frac{\Gamma(\alpha+k)}{\lambda^{k} \Gamma(\alpha)}, \qquad k > -\alpha.$$

$$E(X^{k}) = E(W^{k/\delta}) = \frac{\Gamma\left(1 + \frac{k}{\delta}\right)}{\beta^{k/\delta} \Gamma(1)} = \frac{1}{\beta^{k/\delta}} \Gamma\left(\frac{k}{\delta} + 1\right), \qquad \frac{k}{\delta} > -1$$

b) Obtain a method of moments estimator for β , $\tilde{\beta}$.

$$\begin{split} E\left(\,X\,\right) \,=\, \frac{1}{\beta^{\,1/\delta}} \, \Gamma\!\!\left(\!\frac{1}{\delta} + 1\right) \!. & \qquad \overline{X} \,\,=\, \frac{1}{\widetilde{\beta}^{\,1/\delta}} \, \Gamma\!\!\left(\!\frac{1}{\delta} + 1\right) \!. \\ \\ \widetilde{\beta} \,\,=\, \left(\!\frac{\Gamma\!\!\left(\!\frac{1}{\delta} + 1\right)}{\overline{X}}\!\right)^{\delta} \,. \end{split}$$

Suppose $\delta = 3$, n = 5, and $x_1 = 0.2$, $x_2 = 1.2$, $x_3 = 0.2$, $x_4 = 0.9$, $x_5 = 0.3$.

Obtain a method of moments estimate for β , $\tilde{\beta}$.

"Hint":
$$\Gamma(a)$$
 R: > gamma(a) Excel: = GAMMA(a)

$$\overline{x} = \frac{2.8}{5} = 0.56.$$
 $\Gamma\left(\frac{4}{3}\right) \approx 0.89298.$ $\widetilde{\beta} = \left(\frac{0.89298}{0.56}\right)^3 \approx 4.0547.$

b)
$$E(X^2) = \frac{1}{\beta^{2/\delta}} \Gamma\left(\frac{2}{\delta} + 1\right). \qquad \overline{X^2} = \frac{1}{\widetilde{\beta}^{2/\delta}} \Gamma\left(\frac{2}{\delta} + 1\right).$$

$$\widetilde{\beta} = \left(\frac{\Gamma\left(\frac{2}{\delta} + 1\right)}{\overline{X^2}}\right)^{\delta/2}.$$

c)
$$\overline{x^2} = \frac{2.42}{5} = 0.484.$$
 $\Gamma\left(\frac{5}{3}\right) \approx 0.902745.$ $\widetilde{\beta}_2 = \left(\frac{0.902745}{0.484}\right)^{1.5} \approx \textbf{2.5473}.$

OR

b)
$$E(X^3) = \frac{1}{\beta^{3/\delta}} \Gamma\left(\frac{3}{\delta} + 1\right). \qquad \overline{X^3} = \frac{1}{\widetilde{\beta}^{3/\delta}} \Gamma\left(\frac{3}{\delta} + 1\right).$$

$$\widetilde{\beta} = \left(\frac{\Gamma\left(\frac{3}{\delta} + 1\right)}{\overline{X^3}}\right)^{\delta/3}.$$

c)
$$\overline{x^3} = \frac{2.5}{5} = 0.50.$$
 $\Gamma(2) = 1.$ $\widetilde{\beta}_3 = \left(\frac{1}{0.50}\right)^1 = 2.$

OR

• • •

2. Suppose δ is known.

Let X_1, X_2, \dots, X_n be a random sample from the distribution with the probability density function

$$f(x; \beta, \delta) = \beta \delta x^{\delta-1} e^{-\beta x^{\delta}}, \quad x > 0,$$
 zero otherwise.

d) Obtain the maximum likelihood estimator for β , $\hat{\beta}$.

$$L(\beta) = \prod_{i=1}^{n} \left(\beta \delta x_i^{\delta-1} e^{-\beta x_i^{\delta}} \right).$$

$$\ln L(\beta) = n \cdot \ln \beta + n \cdot \ln \delta + (\delta - 1) \cdot \sum_{i=1}^{n} \ln x_i - \beta \cdot \sum_{i=1}^{n} x_i^{\delta}.$$

$$\frac{d}{d\beta}\ln L(\beta) = \frac{n}{\beta} - \sum_{i=1}^{n} x_i^{\delta} = 0. \qquad \Rightarrow \qquad \hat{\beta} = \frac{n}{\sum_{i=1}^{n} X_i^{\delta}}.$$

e) Suppose $\delta = 3$, n = 5, and $x_1 = 0.2$, $x_2 = 1.2$, $x_3 = 0.2$, $x_4 = 0.9$, $x_5 = 0.3$. Obtain the maximum likelihood estimate for β , $\hat{\beta}$.

$$\sum_{i=1}^{n} x_i^3 = 2.5. \qquad \hat{\beta} = \frac{5}{2.5} = 2.$$

f) Is the maximum likelihood estimator $\hat{\beta}$ an unbiased estimator of β ?

If $\hat{\beta}$ is not an unbiased estimator of β , construct an unbiased estimator of β based on $\hat{\beta}$.

"Hint" 1:
$$E(a \odot) = a E(\odot)$$
. "Hint" 2: $\frac{1}{\blacktriangledown} = \blacktriangledown^{-1}$.

"Hint" 3: If T_{α} has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, then

$$\mathrm{E}(\mathrm{T}_{\alpha}^{k}) = \frac{\theta^{k} \; \Gamma\left(\alpha + k\right)}{\Gamma\left(\alpha\right)} = \frac{\Gamma\left(\alpha + k\right)}{\lambda^{k} \; \Gamma\left(\alpha\right)}, \qquad k > -\alpha.$$

$$Y = \sum_{i=1}^{n} X_{i}^{\delta} = \sum_{i=1}^{n} W_{i}$$
 has a Gamma ($\alpha = n, \theta = \frac{1}{\beta}$) distribution.

$$\hat{\beta} = \frac{n}{\sum_{i=1}^{n} X_{i}^{\delta}} = \frac{n}{Y}.$$

$$a = n, \quad \mathfrak{Q} = \frac{1}{Y}, \quad \Psi = Y.$$

$$E\left(\frac{1}{Y}\right) = E\left(Y^{-1}\right) = \frac{\Gamma\left(n-1\right)}{\beta^{-1}\Gamma\left(n\right)} = \frac{\beta}{n-1}.$$

$$E(\hat{\beta}) = E(\frac{n}{Y}) = n E(\frac{1}{Y}) = n \cdot \frac{\beta}{n-1} = \frac{n}{n-1} \cdot \beta = \beta + \frac{\beta}{n-1} \neq \beta.$$

 $\hat{\beta} \,$ is NOT an unbiased estimator of $\,\beta.$

bias
$$(\hat{\beta}) = E(\hat{\beta}) - \beta = \frac{\beta}{n-1}$$
.

Consider
$$\hat{\beta} = \frac{n-1}{n} \cdot \hat{\beta} = \frac{n-1}{\sum_{i=1}^{n} X_i^{\delta}}$$
. Then $E(\hat{\beta}) = \frac{n-1}{n} \cdot E(\hat{\beta}) = \beta$.

 $\hat{\hat{\beta}}$ is an unbiased estimator of β .

g) Find MSE($\hat{\beta}$), where $\hat{\beta}$ the maximum likelihood estimator of β .

"Hint" 1: bias
$$(\hat{\beta}) = E(\hat{\beta}) - \beta$$
. You have $E(\hat{\beta})$ from part (f).

"Hint" 2:
$$\operatorname{Var}(a \odot) = a^2 \operatorname{Var}(\odot)$$
. $\operatorname{Var}(\odot) = \operatorname{E}(\odot^2) - [\operatorname{E}(\odot)]^2$.

"Hint" 3: If T_{α} has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, then

$$E(T_{\alpha}^{k}) = \frac{\theta^{k} \Gamma(\alpha+k)}{\Gamma(\alpha)} = \frac{\Gamma(\alpha+k)}{\lambda^{k} \Gamma(\alpha)}, \qquad k > -\alpha.$$

"Hint" 4: $MSE(\hat{\beta}) = (bias(\hat{\beta}))^2 + Var(\hat{\beta}).$

bias
$$(\hat{\beta}) = E(\hat{\beta}) - \beta = \frac{\beta}{n-1}$$
.

$$E\left(\frac{1}{Y^2}\right) = E\left(Y^{-2}\right) = \frac{\Gamma\left(n-2\right)}{\beta^{-2}\Gamma\left(n\right)} = \frac{\beta^2}{\left(n-1\right)\left(n-2\right)}.$$

$$\operatorname{Var}(\hat{\beta}) = \operatorname{Var}(\frac{n}{Y}) = n^{2} \operatorname{Var}(\frac{1}{Y}) = n^{2} \left[\frac{\beta^{2}}{(n-1)(n-2)} - \frac{\beta^{2}}{(n-1)^{2}} \right]$$
$$= \frac{n^{2} \beta^{2}}{(n-1)^{2} (n-2)}.$$

MSE(
$$\hat{\beta}$$
) = (bias($\hat{\beta}$))² + Var($\hat{\beta}$) = $\frac{\beta^2}{(n-1)^2}$ + $\frac{n^2 \beta^2}{(n-1)^2 (n-2)}$
= $\frac{(n^2 + n - 2)\beta^2}{(n-1)^2 (n-2)}$ = $\frac{(n+2)\beta^2}{(n-1)(n-2)}$.

3. Suppose β is known.

Let X_1, X_2, \dots, X_n be a random sample from the distribution with the probability density function

$$f(x; \beta, \delta) = \beta \delta x^{\delta-1} e^{-\beta x^{\delta}}, \quad x > 0,$$
 zero otherwise.

h) Obtain an equation for the maximum likelihood estimator for δ , $\hat{\delta}$.

"Hint": $\frac{d}{d\delta} \ln L(\delta) = 0.$

$$L(\delta) = \prod_{i=1}^{n} \left(\beta \delta x_i^{\delta-1} e^{-\beta x_i^{\delta}} \right).$$

$$\ln L(\delta) = n \cdot \ln \beta + n \cdot \ln \delta + (\delta - 1) \cdot \sum_{i=1}^{n} \ln x_i - \beta \cdot \sum_{i=1}^{n} x_i^{\delta}.$$

$$\frac{d}{d\delta}\ln L(\delta) = \frac{n}{\delta} + \sum_{i=1}^{n} \ln x_i - \beta \cdot \sum_{i=1}^{n} x_i^{\delta} \ln x_i = 0.$$

This equation cannot be solved algebraically for $\,\delta\,$ in closed form.

The solution could be approximated for given x_1, x_2, \dots, x_n by using iterative numerical procedures.

4. Suppose $\delta = 3$, $\beta = 4$, n = 5.

Let X_1, X_2, X_3, X_4, X_5 be a random sample of size n = 5 from the distribution with the probability density function

$$f(x; \beta, \delta) = \beta \delta x^{\delta-1} e^{-\beta x^{\delta}}, \quad x > 0,$$
 zero otherwise.

i) Find the probability $P(\sum_{i=1}^{5} X_{i}^{3} > 2.5) = P(\sum_{i=1}^{n} X_{i}^{\delta} > 2.5)$.

"Hint": If T_{α} has a $Gamma(\alpha, \theta = 1/\lambda)$ distribution, where α is an integer, then $P(T_{\alpha} \leq t) = P(X_t \geq \alpha) \quad \text{and} \quad P(T_{\alpha} > t) = P(X_t \leq \alpha - 1),$ where X_t has a $P(X_t \leq \alpha - 1)$ distribution.

$$Y = \sum_{i=1}^{5} X_i^3 = \sum_{i=1}^{n} X_i^{\delta} \text{ has a Gamma} (\alpha = n = 5, \theta = \frac{1}{\beta} = \frac{1}{4}) \text{ distribution.}$$

$$P(\sum_{i=1}^{5} X_{i}^{3} > 2.5) = P(T_{5} > 2.5) = P(Poisson(\beta \cdot 2.5) \le 5 - 1)$$

$$= P(Poisson(4 \cdot 2.5) \le 4) = P(Poisson(10) \le 4) = 0.029.$$

OR

$$P(T_5 > 2.5) = \int_{2.5}^{\infty} \frac{4^5}{\Gamma(5)} t^{5-1} e^{-4t} dt = \int_{2.5}^{\infty} \frac{4^5}{4!} t^4 e^{-4t} dt = \dots \approx 0.029253.$$

OR
$$P(T_5 > 2.5) = P(2 \beta T_5 > 2 \beta 2.5) = P(\chi^2(10) > 20) \approx 0.029253.$$

j) Find
$$a$$
 such that $P(\sum_{i=1}^{5} X_{i}^{3} > a) = P(\sum_{i=1}^{n} X_{i}^{\delta} > a) = 0.10.$

"Hint": If T_{α} has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, where α is an integer, then ${}^{2}T_{\alpha}/_{\theta} = 2\lambda T_{\alpha}$ has a $\chi^{2}(2\alpha)$ distribution (a chi-square distribution with 2α degrees of freedom).

$$Y = \sum_{i=1}^{5} X_i^3 = \sum_{i=1}^{n} X_i^{\delta} \text{ has a Gamma} (\alpha = n = 5, \theta = \frac{1}{\beta} = \frac{1}{4}) \text{ distribution.}$$

$${}^{2}Y/_{\theta} = 2 \beta \sum_{i=1}^{n} X_{i}^{3}$$
 has a chi-square distribution with $r = 2 \alpha = 2 n = 10$ d.f.

$$\Rightarrow P(2\beta \sum_{i=1}^{5} X_{i}^{3} > \chi_{0.10}^{2}(10)) = 0.10.$$

$$\chi^{2}_{0.10}(10) = 15.99.$$
 \Rightarrow $2 \beta a = 8 a = 15.99.$

$$\Rightarrow$$
 $a = 1.99875.$

OR

$$P\left(\sum_{i=1}^{5} X_{i}^{3} > a\right) = P\left(T_{5} > a\right) = P\left(Poisson(\beta \cdot a) \le 5 - 1\right) = P\left(Poisson(4 \cdot a) \le 4\right).$$

$$P(Poisson(8) \le 4) = 0.10.$$
 \Rightarrow $4a = 8.$

$$\Rightarrow$$
 $a = 2$.

$$a \approx \frac{15.98718}{8} \approx 1.9984.$$