VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKUKLTA INFORMAČNÍCH TECHNOLOGIÍ

Návrh číslicových systémů UART RX 8bit

Autor: Roman Machala

xlogin: xmacha86

Obsah

1	Architektura navrženého obvodu	2
	1.1 RTL schéma obvodu	2
	1.2 Popis funkce obvodu	2
2	Návrh automatu	3
	2.1 FSM Schéma automatu	3
	2.1 FSM Schéma automatu	3
3	Snímek obrazovky ze simulací	4
4	Legenda	5

1 Architektura navrženého obvodu

1.1 RTL schéma obvodu

Pozn.:

- Modře je vyznačen CNT_SIG, červeně CNT_HOUR_SIG, žlutě výstup CNT a zeleně výstup CNT_HOUR pro lepší orientaci ve schématu.
- Označení typu X[n:0] znamená vektor s indexací od 0 do n (vektor velikosti n bitů)
- Označení typu [n] znamená n-tý index vektoru.

1.2 Popis funkce obvodu

Na základě výstupních signálů z FSM je odvozeno chování výše uvedeného zapojení. CNT_SIG a CNT_HOUR_SIG jsou povolovací signály pro CNT a CNT_HOUR (čítač počtu přijatých bitů a čítač hodinového signálu). Výstupem CNT je vektor o velikosti 4 bitů. Výstupem CNT_HOUR je vektor o velikosti 5 bitů. Čítač CNT počítá počet přijatých bitů, pokud je čítač povolen signálem CNT_SIG a na vstup označen INPUT mu přijde log. 1, dojde ke zvýšení čítače. Aby mu došla log. 1 na INPUT, musí být hodnota výstupu čítače CNT HOUR čtvrtého bitu 1. Reset čítače CNT je podnícen buďto příchodem signálu RST s hodnotou log. 1 nebo pokud povolovací signál tohoto čítače (CNT_SIG) přejde do hodnoty log. 0. Činnost čítače CNT_HOUR je podnícena jeho povolovacím signálem CNT_HOUR_SIG a hodinovým signálem CLK. Reset tohoto čítače je proveden buďto pokud dojde signál RST s hodnotou log. 1 nebo pokud jeho povolovací signál (CNT HOUR SIG) přešel do log. 0 nebo pokud jeho aktualní hodnota bude 16 (tedy bit na indexu 4 bude mít hodnotu log. 1) a zároveň bude aktivní povolovací signál pro čítač CNT (tímto je zajištěno, že při přijímání bitů se bude počítat pouze do 16-do středu následujícího bitu a dojde k resetu čítače). V posledním případě, kdy se čítač CNT_HOUR může vyresetovat je, pokud bity na indexech 4 a 3 jsou v log. 1 a zároveň není povolovací signál CNT SIG v log. 1 (tím nedojde k resetu, jak bylo popsáno v případu předchozím, ale dojde k resetu tehdy, kdy čítač bude mít hodnotu 24 – tedy přijímáme start bit a dochází k synchronizaci hod. signálu na střed bitu). Tato poslední možnost je provedena pouze na začátku pro synchronizaci. O samotný vůstup se pak stará Demultiplexor DEMUX s povolovacím signálem EN. Vstupem DEMUX je DIN, odkud jsou data posílána na jednotlivé výstupy, podle hodnot udávající vstupy (označeny jako [1], [2], [3])¹, které jsou výstupem čítače CNT. Výstupem DEMUX je vektor o velikosti 8 bitů.

¹Používáme pouze první 3 bity, protože na 3 bitech jsme schopni vyjádřit čísla od 0 do 7(což je 8 možných výstupů).

2 Návrh automatu

2.1 FSM Schéma automatu

- Jednotlivé stavy automatu: IDLE, WAIT_FOR_FIRST_BIT, RECEIVE_ALL_BITS, WAIT_FOR_STOP_BIT, DATA_RECEIVED
- Vstupní signály automatu: DIN, CNT, CNT_HOUR
- Mooreovy výstupy automatu: A=DOUT_VLD, B=CNT_SIG, C=CNT_HOUR_SIG

A=B=C=0

Pozn.:Všechny Mooreovy výstupy automatu jsou defaultně nastaveny na 0. Pokud není jinak řečeno, jsou v každém stavu rovny 0.

2.2 Popis funkce FSM

Automat se může nacházet v několika stavech. Jeho výchozím stavem je stav IDLE, ve kterém automat setrvává, dokud se mu na vstup nedostane hodnota log. 0. V případě, že dostane na vstupu hodnotu log. 0, přechází do stavu WAIT_FOR_FIRST_BIT, kde přijímame první datový bit a zároveň dochází k synchronizaci hodinového signálu¹, aby byl bit načten ze sředu jeho hodnoty. Po načtení prvního bitu a synchronizaci hod. signálu automat přechází do stavu REVEICE_ALL_BITS, kde jsou přijímány všechny bity². Následuje stav WAIT_FOR_STOP_BIT, kde je načten ukončovací bit s hodnotou logické 1 a automat přechází do stavu DATA_RECEIVED, který indikuje, že došlo k úspešnému přijetí všech datových bitů, včetně START BITU a STOP BITU. Z tohoto stavu se přechazí do výchozího stavu automatu IDLE.

Pozn.: Všechny přechody automatu z předchozího stavu do následujícího jsou provedeny při první náběžné hraně hod. signálu.

¹Po přijetí START BITU se čeká 24 náběžných hran hod. signálu (8 cyklů od náběžné hrany do středu START BITU a dalších 16 do středu prvního datového bitu).

²Bity jsou opět čteny ze středu jejich hodnoty, oproti první synchronizaci se ovšem čeká pouze 16 cyklů hod. signálu (tedy od středu předchozího do středu následujícího bitu).

3 Snímek obrazovky ze simulací

4 Legenda

NázevVýznamDINDatový vstup

CNT Čítač načtených bitů

RST Signál reset

CNT_HOUR Čítač hodinového signálu

DEMUX Demultiplexor

INPUT Vstup pro CNT čítač (značení v RTL schámatu)

EN Povolovací signál demultiplexoru

DOUT_VLD Výstupní validační signál

CNT_SIG Signál čítače načtených bitů

CNT_HOUR_SIG Signál čitače hodinového signálu

START BIT Bit signalizující začátek přenosu

STOP BIT Bit signalizující konec přenosu