Exercices Nombres Complexes

B1020 - Pont vers le supérieur : mathématiques

Ruben Hillewaere

Exercices issus du syllabus de L. Zandarin et autres ouvrages ECAM, Haute Ecole ICHEC-ECAM-ISFSC

Octobre 2020

Chapitre 1

Nombres complexes : énoncés

Voir réponses

[IX-2] 1. Ecrire les nombres complexes suivants sous forme exponentielle :

(a)
$$z = -1 + i\sqrt{3}$$

(b)
$$z = 4$$

(c)
$$z = -3i$$

[IX-4] 2. Soient les nombres complexes $z_1 = -2 + 3i$ et $z_2 = 2 + 5i$. Calculer :

(a)
$$3z_1 - 2z_2$$

(e)
$$z_1 z_2$$

(b)
$$z_1\overline{z_1}$$

(c)
$$|z_1|$$

(f)
$$\frac{Z_1}{Z_2}$$

(d)
$$\frac{1}{(\overline{z_2})}$$

(g)
$$z_2^2$$

[IX-6] 3. Calculer et mettre la réponse sous forme algébrique :

(a)
$$\frac{1-i}{\left(\overline{-3-3i}\right)}$$

(b)
$$\left(\frac{\sqrt{3}+i}{2}\right)^9$$

[IX-8] 4. Tourner les vecteurs suivants :

(a)
$$z = 2e^{i\frac{\pi}{4}} de^{-\frac{\pi}{3}}$$

(b)
$$z = -3 + i\sqrt{3} \text{ de } \frac{\pi}{4}$$

[IX-10] 5. Calculer
$$y = \frac{x^{12} + 2x + \sqrt{3}}{2x + \sqrt{3}}$$
 si $x = \frac{-\sqrt{3} + i}{2}$

[IX-12] 6. Résoudre les équations suivantes et représenter les racines dans le plan complexe :

(a)
$$z^5 = -1 + i$$

(b)
$$z^2 = -i$$

[IX-14] 7. Résoudre les équations suivantes :

(a)
$$z^2 + 2iz + 3 = 0$$

- (b) $z^3 + 8 = 0$
- (c) $z^4 + 3z^2 + 4 = 0$
- (d) $z^6 = -1$
- (e) $(1-i)z^2 (3-i)z + 2 = 0$

Interro 02/2011

- 8. Soit $z = 2\sqrt{3} 2i$ un nombre complexe.
 - (a) Trouver l'inverse multiplicative de z, c.-à-d. trouver z_1 pour que $z \cdot z_1 = 1$.
 - (b) Calculer $|e^z|$. Indice: posez-vous d'abord la question suivante: que vaut $|\rho e^{i\varphi}|$?
 - (c) Calculer $z^3 + (\overline{z})^3$.
 - (d) Dans le plan complexe, faire tourner le vecteur z de $\pi/2$.

Ecrire les réponses de (a) et (d) sous forme algébrique et exponentielle.

Interro 02/2011 9. Donner les formules d'Euler. En utilisant ces formules, montrer que

$$2\cos\varphi=z+\frac{1}{z}$$

en sachant que |z|=1.

Examen 06/2011 10. Dans le plan complexe, déterminer tous les points z = x + iy tels que $\frac{z - i}{z - 1}$ soit un imaginaire pur non nul.

Interro 03/2012

11. Dans cette question, vous allez trouver la valeur de $\cos \frac{2\pi}{5}$, étape par étape. Même si vous ne trouvez pas une des étapes, vous pouvez l'utiliser pour la suite de l'exercice.

Soit
$$z_0 = \cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5}$$

- (a) Montrer que z_0 est une racine cinquième de l'unité.
- (b) Représenter 1, z_0 , z_0^2 , z_0^3 et z_0^4 dans le plan complexe, et en déduire que

$$1 + z_0 + z_0^2 + z_0^3 + z_0^4 = 0.$$

Justifier votre réponse.

(c) On pose $\alpha = z_0 + z_0^4$ et $\beta = z_0^2 + z_0^3$. Montrer que α et β sont solutions de l'équation

$$X^2 + X - 1 = 0.$$

- (d) Déterminer α en fonction de $\cos \frac{2\pi}{5}$.
- (e) Résoudre l'équation $X^2+X-1=0$ et en déduire la valeur de $\cos\frac{2\pi}{5}$.

Examen 06/2012 12. Soient z_1 et z_2 deux nombres complexes distincts et soit $z=(1-t)z_1+tz_2$ avec t un nombre réel avec 0 < t < 1. Les identités suivantes sont-elles correctes ou fausses? Motiver chaque réponse!

(a)
$$|z-z_1|+|z-z_2|=|z_1-z_2|$$

(b)
$$arg(z - z_1) = arg(z - z_2)$$

(c)
$$arg(z - z_1) = arg(z_2 - z_1)$$

(d)
$$\begin{vmatrix} z - z_1 & \overline{z} - \overline{z}_1 \\ z_2 - z_1 & \overline{z}_2 - \overline{z}_1 \end{vmatrix} = 0$$

[Examen 13. Déterminer $z \in \mathbb{C}$ tel que $\text{Re}(z(1+i)) + z\overline{z} = 0$. 06/2013]

Chapitre 2

Nombres complexes : réponses

Voir énoncés

- 1. (a) $z = 2e^{i\left(\frac{2\pi}{3} + 2k\pi\right)}$
 - (b) $z = 4e^{i.2k\pi}$
 - (c) $z = 3e^{i(\frac{3\pi}{2} + 2k\pi)}$
- 2. (a) -10 i
 - (b) 13
 - (c) $\sqrt{13}$
 - (d) $\frac{2}{29} + \frac{5}{29}i$
 - (e) -19 4i
 - (f) $\frac{11}{29} + \frac{16}{29}i$
 - (g) -21 + 20i
- 3. (a) $-\frac{1}{3}$
 - (b) -i
- 4. (a) $z = 2e^{-i\frac{\pi}{12}}$
 - (b) $z = 2\sqrt{3}e^{i\frac{13\pi}{12}}$
- 5. 1 i
- 6. (a) $z_k = \sqrt[10]{2}e^{i\left(\frac{3\pi}{20} + \frac{2k\pi}{5}\right)}$ (k = 0, 1, 2, 3, 4; racines forment un pentagone régulier)
 - (b) $z_k = e^{i\left(\frac{3\pi}{4} + k\pi\right)}$, donc $z_0 = e^{i\frac{3\pi}{4}}$ et $z_1 = e^{-i\frac{\pi}{4}}$ (k = 0, 1; racines forment un digone)
- 7. (a) z = i ou z = -3i
 - (b) $z_k = 2e^{i\left(\frac{\pi}{3} + \frac{2k\pi}{3}\right)}$ (k = 0, 1, 2; triangle), soit $z_0 = 1 + i\sqrt{3}$, $z_1 = -2$ et $z_3 = 1 i\sqrt{3}$
 - (c) $z_1 = \frac{1+i\sqrt{7}}{2}$, $z_2 = \frac{1-i\sqrt{7}}{2}$, $z_3 = \frac{-1+i\sqrt{7}}{2}$, $z_4 = \frac{-1-i\sqrt{7}}{2}$
 - (d) $z_k = e^{i\left(\frac{\pi}{6} + \frac{k\pi}{3}\right)}$ (k = 0, 1, 2, 3, 4, 5; hexagone)
 - (e) z = 1 + i ou z = 1
- 8. Tout d'abord, $z = 2\sqrt{3} 2i = 4e^{i(-\pi/6 + 2k\pi)}$.

(a)
$$z \cdot z_1 = 1 = e^{i.2k\pi} \text{ si } z_1 = \frac{1}{4}e^{i(\pi/6 + 2k\pi)} = \frac{1}{4}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) = \frac{\sqrt{3}}{8} + \frac{i}{8}$$

(b)
$$|e^z| = \left| e^{2\sqrt{3}} e^{-2j} \right| = e^{2\sqrt{3}} \cdot \left| e^{-2i} \right| = e^{2\sqrt{3}}$$

(c)
$$z^3 + (\overline{z})^3 = 4^3 e^{i(-\pi/2 + 2k\pi)} + 4^3 e^{i(\pi/2 + 2k\pi)} = -4^3 i + 4^3 i = 0$$

(d)
$$z_r = 4e^{i\left(-\frac{\pi}{6} + \frac{\pi}{2} + 2k\pi\right)} = 4e^{i\left(\frac{\pi}{3} + 2k\pi\right)} = 4\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 2 + 2\sqrt{3}i$$

9. Les formules d'Euler:

$$\cos \varphi = \frac{e^{i\varphi} + e^{-i\varphi}}{2}$$
 et $\sin \varphi = \frac{e^{i\varphi} - e^{-i\varphi}}{2i}$.

Vu que le module de z vaut 1 (|z|=1), on peut écrire $z=e^{i\varphi}$, donc :

$$z + \frac{1}{z} = e^{i\varphi} + e^{-i\varphi} = 2\cos\varphi.$$

10. $\frac{z-i}{z-1}$ est un imaginaire pur non nul si sa partie réelle est zéro, $z \neq i$ et $z \neq 1$.

$$\frac{z-i}{z-1} = \frac{x+(y-1)i}{(x-1)+yi} = \frac{(x+(y-1)i)((x-1)-yi)}{(x-1)^2+y^2} = \frac{x(x-1)+y(y-1)+(\ldots)i}{(x-1)^2+y^2}$$

donc la partie réelle est zéro si

$$x(x-1) + y(y-1) = 0 \iff x^2 - x + y^2 - y = 0 \iff \left(x - \frac{1}{2}\right)^2 + \left(y - \frac{1}{2}\right)^2 = \frac{1}{2}$$

ce qui représente un cercle avec rayon $\frac{1}{\sqrt{2}}$ et centre $(\frac{1}{2}, \frac{1}{2})$ (sans les points z = 1 et z = i!).

11.
$$z_0 = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5} = e^{i\frac{2\pi}{5}}$$
.

(a)
$$z_0^5 = \left(e^{i\frac{2\pi}{5}}\right)^5 = e^{i2\pi} = 1$$

(b) Les arguments de 1, z_0 , z_0^2 , z_0^3 et z_0^4 sont respectivement les angles 0, $\frac{2\pi}{5}$, $\frac{4\pi}{5}$, $\frac{6\pi}{5}$ et $\frac{8\pi}{5}$. Ils forment donc un pentagone régulier et leur somme vectorielle est le vecteur nul, comme illustré sur Figure 2.1.

Figure 2.1

(c)
$$\alpha = z_0 + z_0^4$$
, donc

$$\alpha^{2} + \alpha - 1 = (z_{0}^{2} + 2z_{0}z_{0}^{4} + z_{0}^{8}) + (z_{0} + z_{0}^{4}) - 1 = z_{0}^{2} + 2 + z_{0}^{3} + z_{0} + z_{0}^{4} - 1 = 0$$

en utilisant point (b). Idem pour $\beta=z_0^2+z_0^3$, on a :

$$\beta^2 + \beta - 1 = (z_0^4 + 2z_0^2 z_0^3 + z_0^6) + (z_0^2 + z_0^3) - 1 = z_0^4 + 2 + z_0 + z_0^2 + z_0^3 - 1 = 0$$

- (d) $\alpha = z_0 + z_0^4 = z_0 + z_0^* = 2\cos\frac{2\pi}{5}$ (voir dessin).
- (e) Le discriminant de $X^2+X-1=0$ est $\Delta=\sqrt{5}$, donc $X=\frac{-1+\sqrt{5}}{2}$ ou $X=\frac{-1-\sqrt{5}}{2}$, donc $\alpha=2\cos\frac{2\pi}{5}=\frac{-1+\sqrt{5}}{2}>0$ ou pour finir

$$\cos\frac{2\pi}{5} = \frac{-1+\sqrt{5}}{4}$$

12. (a) Calculons d'abord

$$z - z_1 = (1 - t - 1)z_1 + tz_2 = t(z_2 - z_1)$$

 $z - z_2 = (1 - t)z_1 + (t - 1)z_2 = (1 - t)(z_1 - z_2)$

donc

$$|z - z_1| + |z - z_2| = |t(z_2 - z_1)| + |(1 - t)(z_1 - z_2)|$$

$$= |t| \cdot |z_2 - z_1| + |1 - t| \cdot |z_1 - z_2|$$

$$= t|z_1 - z_2| + (1 - t) \cdot |z_1 - z_2| \quad \text{car } |z_2 - z_1| = |z_1 - z_2|$$

$$= |z_1 - z_2|$$

donc la première identité est vraie.

(b) $arg(z - z_1) = arg(z - z_2)$ est vrai si et seulement si

$$\arg(t(z_2-z_1)) = \arg((1-t)(z_1-z_2)) = \arg((t-1)(z_2-z_1))$$

Puisque t>0 et t-1<0 les vecteurs correspondants aux nombres complexes $t(z_2-z_1)$ et $(t-1)(z_2-z_1)$ ont la même direction mais pas le même sens, donc les deux arguments diffèrent de π et l'affirmation est fausse.

- (c) Ceci est vrai puisque le facteur t ne change que le module du vecteur $z_2 z_1$, il n'affecte pas la direction ni le sens.
- (d) $\begin{vmatrix} z z_1 & \overline{z} \overline{z}_1 \\ z_2 z_1 & \overline{z}_2 \overline{z}_1 \end{vmatrix} = \begin{vmatrix} t(z_2 z_1) & t(\overline{z}_2 \overline{z}_1) \\ z_2 z_1 & \overline{z}_2 \overline{z}_1 \end{vmatrix} = (z_2 z_1)(\overline{z}_2 \overline{z}_1) \begin{vmatrix} t & t \\ 1 & 1 \end{vmatrix} = 0$ L'identité est donc vraie.
- 13. On pose $z = x + iy \in \mathbb{C}$:

$$Re(z(1+i)) + z\overline{z} = Re((x+iy)(1+i)) + (x+iy)(x-iy)$$

$$= Re(x-y+(x+y)i) + x^2 + y^2$$

$$= x-y+x^2+y^2$$

$$= \left(x^2+x+\frac{1}{4}\right) + \left(y^2-y+\frac{1}{4}\right) - \frac{1}{2}$$

$$= \left(x+\frac{1}{2}\right)^2 + \left(y-\frac{1}{2}\right)^2 - \frac{1}{2}$$

donc les nombres complexes qui valident $\text{Re}(z(1+i))+z\overline{z}=0$ se trouvent sur un cercle avec équation

$$\left(x + \frac{1}{2}\right)^2 + \left(y - \frac{1}{2}\right)^2 = \frac{1}{2}$$