8.4 Data Envelopment Analysis - Example with one output and two inputs Wednesday, 09 November 2022 16:06

Summary	DEA Example - One output and two inputs
Formulate DEA – LP optimization problem for each DMU	DEA – Linear programming
	Let us revisit the sales example where we had one output and two inputs.
	Each sales office has the same sales target: INR 10,00,000 (output). They have their budgets approved and the respective team sizes (inputs).
	Sales office Budget (INR) Team size
	1 3,00,000 13 2 2,56,000 9
	3 5,00,000 7
	4 3,90,000 10
	5 1,85,000 14
	Let us formulate linear programs to calculate the efficiency of each sales office.
	DEA – Linear programming
	Notice that we will have to formulate an optimization for each of the sales offices independently.
	Let us start with office # 1. For this office,
	• The only Output $O_{jk} = O_{11} = 10,00,000$.
	• The two inputs: (I_{ik}) Budget, $I_{11} = 3,00,000$; Team size, $I_{21} = 13$.
	• We need one output weight (y_{11}) , and two input weights (x_{11}, x_{21}) .
	We expect the optimization problem to tell us the optimal values of the weights.
	DEA – LP: Sales office 1
	$Max \ y_{11} * 1000000$
	subject to $x_{11} * 300000 + x_{21} * 13 = 1$
	$y_{11} * 1000000 \le x_{11} * 300000 + x_{21} * 13$
	$y_{11} * 10000000 \le x_{11} * 256000 + x_{21} * 9$
	$y_{11} * 10000000 \le x_{11} * 5000000 + x_{21} * 7$
	$y_{11} * 10000000 \le x_{11} * 3900000 + x_{21} * 10$
	$y_{11} * 10000000 \le x_{11} * 185000 + x_{21} * 14$
	Decision variables: $x_{11}, x_{21}, y_{11} \ge 0$
	DEA – LP: Sales office 2
	$Max \ y_{12} * 1000000$
	subject to $x_{12} * 256000 + x_{22} * 9 = 1$
	$y_{12} * 1000000 \le x_{12} * 300000 + x_{22} * 13$
	$y_{12} * 1000000 \le x_{12} * 300000 + x_{22} * 13$ $y_{12} * 10000000 \le x_{12} * 256000 + x_{22} * 9$
	$y_{12} * 1000000 \le x_{12} * 250000 + x_{22} * 7$ $y_{12} * 1000000 \le x_{12} * 500000 + x_{22} * 7$
	$y_{12} \cdot 1000000 \le x_{12} \cdot 300000 + x_{22} \cdot 7$ $y_{12} \cdot 1000000 \le x_{12} \cdot 390000 + x_{22} \cdot 10$
	$y_{12} * 1000000 \le x_{12} * 185000 + x_{22} * 14$ $y_{12} * 1000000 \le x_{12} * 185000 + x_{22} * 14$