Sample Question Paper

Name of Programme : B.A. / B. Sc. Mathematics

Semester : 2nd semester

Paper type : GE

Paper Code : GMA 104

Paper title : Vector Analysis and Solid Geometry

Full Marks : 80 Pass Marks : 35

Duration: 3 Hours

The figures in the margin indicate full marks for the questions.

Answer all the questions

1. Choose and rewrite the correct answer for each of the following:

1X 3=3

a) The volume of a parallelopiped whose co-terminous edges represented by

$$\vec{a} = 2\hat{i} - 3\hat{j} + \hat{k}, \ \vec{b} = \hat{i} - \hat{j} + 2\hat{k}, \ \vec{c} = 2\hat{i} + \hat{j} - \hat{k}$$
 is

- (i)
- (ii) 8
- (iii) 12
- (iv) 14
- (b) The centre of the sphere $x^2 + y^2 + z^2 + 2ux + 2wz + d = 0$ is
 - (i) (u, v, w)
 - (ii) (-u, -v, -w)
 - (iii) $(-u^2, -v^2, -w^2)$
 - (iv) (u^2, v^2, w^2)
- (c) The equation of hyperboloid of one sheet is

(i)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

(ii)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

(iii)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1$$

(iv)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$$

2. Write very short answer for each of the following questions:

1X6=6

- a) Find div F where $F = grad(x^2 + y^2 + z^3 3xyz)$
- b) If $\vec{a} = \hat{\imath} 2\hat{\jmath} 3\hat{k}$, $\vec{b} = 2\hat{\imath} + \hat{\jmath} \hat{k}$, $\vec{c} = \hat{\imath} + 3\hat{\jmath} \hat{k}$ find $\vec{a} \times (\vec{b}X\vec{c})$
- c) Define right circular cylinder.
- d) Find the equation of the sphere whose diameter is the line joining the origin to the point (2, -2,4).
- e) What is meant by director sphere?
- f) How many normals can be drawn to a paraboloid from a given point (x', y', z')?

3. Write short answer for each of the following questions:

3X5=15

- a) If the position vectors of the three points A,B,C are respectively $\hat{\imath} + \hat{\jmath} + \hat{k}$, $2\hat{\imath} + 3\hat{\jmath} + \hat{k}$ and $3\hat{\imath} \hat{\jmath} + 4\hat{k}$, find a vector perpendicular to the plane ABC.
- b) Find the equation of the sphere having the circle $x^2 + y^2 + z^2 + 10y 4z 8 = 0$, x + y + z = 3 as great circle.
- c) Find the equation of the cone whose vertex is (α, β, γ) and the base is the parabola z = 0, $y^2 = 4\alpha x$.
- d) Obtain the equation to the tangent planes to $7x^2 3y^2 z^2 + 21 = 0$ which pass through the line 7x 6y + 9 = 0, z = 3
- e) Find the enveloping cone of the sphere $x^2 + y^2 + z^2 2x + 4z = 1$ with its vertex at (1, 1, 1).
- 4. Write short answer for each of the following questions:

4X5=20

- a) If F=3xy $\hat{\imath}-y^2$ $\hat{\jmath}$, evaluate $\int_c^{\Box} \vec{F} \cdot \vec{dr}$, where c is the curve x=t, $y=2t^2$ from t = 0 to t = 1
- b) If $\vec{r} = a \cos t \hat{\imath} + a \sin t \hat{\jmath} + at \tan \alpha \hat{k}$, then find the value of $\left| \frac{d\vec{r}}{dt} X \frac{d^2 \vec{r}}{dt^2} \right|$.
- c) Find the equation of the right circular cylinder having for its base the circle $x^2 + y^2 + z^2 = 9$, x y + z = 3.
- d) A sphere of constant radius k passes through the origin and cuts the axes in A,B and C. Prove that the centroid of the triangle ABC lies on the sphere $9(x^2 + y^2 + z^2) = 4k^2$.
- e) If the axes are rectangular, find the locus of the equal conjugate diameters of the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

5. Answer any two of the following questions:

6X2=12

- a) Verify Stoke's theorem for $(\vec{F} = xy^2 \ \hat{\imath} + y \ \hat{\jmath} + z^2 x \ \hat{k})$ for the surface of a rectangular lamina bounded by x = 0, y = 0, x = 1, y = 2, z = 0.
- b) State and prove Gauss's theorem of divergence.
- c) Use Green's theorem to evaluate $\int_c^{|x|} x^2 dx + xy dy$ where c is the sphere formed by the lines x = 0, y = 0, x = a, y = a (a > 0) described in the anti-clockwise direction.
- 6. Answer any tow of the following questions:

6X2=12

- a) Find the equation of the sphere which passes through the circle $x^2 + y^2 + z^2 2x + 2y + 4z 3 = 0$, 2x + y + z = 0 and touches the plane 3x + 4y 14 = 0.
- b) Obtain the equation of the cylinder whose generators are parallel to $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$ and whose guiding curve is the ellipse $x^2 + 2y^2 = 1$, z = 3.

- c) Prove that the equation $\sqrt{fx} \pm \sqrt{gy} \pm \sqrt{hz} = 0$ represents a cone that touches the coordinates planes; and that the equation to the reciprocal cone is fyz + gzx + hxy = 0.
- 7. Answer any two of the following questions:

6X2=12

- a) Find the condition that the plane lx + my + nz = p should touch the central conicoid $ax^2 + by^2 + cz^2 = 1$ and find the co-ordinates of the point of contact to the conicoid.
- b) Prove that the plane 2x 4y z + 3 = 0 touches the paraboloid $x^2 2y^2 = 3z$ and find coordinates of point of contact.
- c) Prove that two normals to the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, lie in the plane lx + my + nz = 0 and the line joining their feet has direction cosines proportional to $a^2(b^2 c^2)mn$, $b^2(c^2 a^2)nl$, $c^2(a^2 b^2)lm$. Also obtain the co-ordinates of these point.