Problem

Use the results of Exercise 2.16 to give another proof that every regular language is context free, by showing how to convert a regular expression directly to an equivalent context-free grammar.

Step-by-step solution

Step 1 of 3

Consider the following data:

From Exercise 2.16, it is clear that Context free language is closed under union operation, concatenation operation and star operation.

Comment

Step 2 of 3

The definition of the regular expressions it can be inferred and known that regular expression consist of series of operations such as union, concatenation and star.

Statement: Every regular language is context free language

Proof by using induction:

Assume that E is a regular expression and there exists a CFG G such that L(E) = L(G). The proof will be carried out by different number of operators in an expression E.

Step-1:

If Operation(E) = 0 then E is either $\phi, \in or a$ in Σ .

Step-2:

- If $E = \phi$: $G = (\{S\}, \{\}, P, S)$. Here $P = \{\}$.
- If $E = \in : G = (\{S\}, \{\}, P, S)$. Here $P = \{S \to \in\}$.
- If E = a: $G = (\{S\}, \{a\}, P, S)$. Here $P = \{S \to a\}$.

For every regular expression consisting of ϕ , \in or a the CFG can be written. So, every regular expression is context free.

Thus, every regular language is context free language.

Comment

Step 3 of 3

The context free languages are superset of regular languages. The rules for converting the regular languages consisting of union, concatenation and Kleene closure are as follows:

- If the regular expression E consists of E_1 and E_2 such that the concatenation $E = E_1 E_2$, then the production can be easily expressed as $S \to E_1 E_2$.
- If the regular expression E consists of E_1 and E_2 such that the union $E = E_1 \mid E_2$, then the production can be easily expressed as $S \to E_1 \mid E_2$.
- If the regular expression E consists of E_1 such that the Kleene closure $E = E_1^*$, then the production can be easily expressed as $E_1^* \to E E_1^* | \in$

Comment