

COMM 645: Communication Networks Katherine Ognyanova (Katya) Fall semester, 2012

Link types

• Link or no link (1 or 0)

• Positive or negative (+, - or 0)

• Weighted links (each link is assigned a value)

• **Directed vs. undirected** (undirected = symmetric)

• Multiplex (more than one link type)

One and two-mode networks

Matrix Representation: Directed Networks

	Α	В	С	D	E
A	0	0	0	0	0
В	1	0	0	0	1
С	1	0	0	1	1
D	0	0	0	0	0
Ε	0	0	0	0	0

Matrix Representation: Symmetric Networks

	A	В	С	D	E
Α	0	1	1	0	0
В	1	0	0	0	1
С	1	0	0	1	1
D	0	0	1	0	0
E	0	1	1	0	0

Matrix Representation: Valued Networks

	A	В	С	D	E
Α	0	5	1	0	0
В	5	0	0	0	3
С	1	0	0	3	2
D	0	0	3	0	0
E	0	3	2	0	0

Matrix Representation: Affiliation Data

	A	E	D
В	1	1	0
С	1	1	1

A quick detour to simple matrix algebra

Addition and Subtraction

$$\mathbf{B} = \begin{bmatrix} 1 & 7 \\ & & \\ 0 & 3 \end{bmatrix}$$

$$\mathbf{A+B=} \begin{bmatrix} 4 & 3 \\ 5 & 5 \end{bmatrix}$$

$$A + B = B + A$$

 $(A + B) + C = A + (B + C)$

A quick detour to simple matrix algebra (Cont.)

Matrix multiplication

$$\mathbf{A} = \begin{bmatrix} 1 & -4 \\ 0 & 3 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} 1 & 7 \end{bmatrix}$$

$$\mathbf{A^*B} = \begin{bmatrix} 1^*3 - 4^*2 \\ 0^*3 + 3^*2 \end{bmatrix} = \begin{bmatrix} -5 \\ 6 \end{bmatrix} \qquad \mathbf{C^*A} = \begin{bmatrix} 1 & 17 \end{bmatrix}$$

$$A^*C = ! B^*A = ! A^*B \neq B^*A$$

If $dim(A)=m \times n$, $dim(B)=n \times p$ then $dim(A*B)=m \times p$

A quick detour to simple matrix algebra (Cont.)

Scalar multiplication

Element-wise matrix multiplication

A quick detour to simple matrix algebra (Cont.)

Transposing matrices

$$\mathbf{A} = \begin{bmatrix} 1 & -4 \\ 0 & 3 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 1 & 7 \end{bmatrix}$$

$$\mathbf{B} = \left[\begin{array}{cc} 1 & 7 \end{array} \right]$$

$$\mathbf{A}^{\mathsf{T}} = \begin{bmatrix} 1 & 0 \\ -4 & 3 \end{bmatrix} \qquad \mathbf{B}^{\mathsf{T}} = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$$

$$\mathbf{B}^{\mathsf{T}} = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$$

Back to affiliation data

IVI '			
В	С		
1	1		
1	1		
0	1		
	B 1 1		

n aT

$$M^*M^T = \begin{bmatrix} B & C \\ B & 2 & 2 \\ C & 2 & 3 \end{bmatrix}$$

$$M^{T} * M = \begin{bmatrix} A & E & D \\ A & 2 & 2 & 1 \\ E & 2 & 2 & 1 \\ D & 1 & 1 & 1 \end{bmatrix}$$

Issues with matrix data

• Your dataset will likely contain network data in a non-matrix format .

• Large, sparse networks take way too much space if kept in a matrix format.

Edgelist Data Format

Source Destination Weight

B A 1

B E 1

C A 1

C E 1

C D 1

Note: Weights are optional.

Nodelist Data Format

Source Destinations

В А Е

CADE

Some strategies for network data collection

Ego Networks

- Can use standard sampling techniques (e.g. random sample)
- Each respondent describes their own relationships (name generators).

Complete Networks

- Boundary specification?
- Each respondent reports their own relationships within the network.
- Could use a roster that people use to identify contacts.

Cognitive Social Structures

• Ask not only for a person's own relationships, but also for perceived relationships between other people in your population.

Snowball Sampling

- Individuals included in the sample identify contacts (friends, sexual partners, etc.) who are added to the study at the next step.
- Often used in preventive medicine.

Secondary Data

• Digital traces, social media, hyperlink networks and many more.