# Universidade Estadual Paulista "Júlio de Mesquita Filho" Programa de Pós-Graduação em Engenharia Elétrica

#### Trabalho 3:

# IMPLEMENTAÇÃO DE ALGORITMO DE DESPACHO ECONÔMICO CLÁSSICO POR ORDEM DE MÉRITO

Disciplina: Despacho e Pré-Despacho de Geração

**Discente: Rafael Pavan** 

**Docente: Prof. Dr. Leonardo Nepomuceno** 

# **SUMÁRIO**

| 1. | SUSTENTAÇÃO TEÓRICA        | 3        |
|----|----------------------------|----------|
| 2. | PROBLEMÁTICA               | 7        |
| 3. | ALGORITMO DESENVOLVIDO     | <u>e</u> |
| 4. | CASOS DE TESTE             | 14       |
| 5. | RESULTADOS E DISCUSSÕES    | 22       |
| 7. | REFERÊNCIAS BIBLIOGRÁFICAS | 23       |

### 1. SUSTENTAÇÃO TEÓRICA

O Despacho Econômico Clássico é uma metodologia que consiste em determinar as potências geradas por cada gerador conectado a uma rede, de forma que suas respectivas potências estejam dentro de seus respectivos limites operacionais de capacidade de geração, afim de se atender a uma determinada demanda. O Despacho por Ordem de Mérito é uma metodologia de priorização de fontes de energia baseada na organização por ordem crescente de preço, de forma que os geradores com menores custos marginais são os primeiros a serem ligados para que se atenda à demanda de energia elétrica, enquanto que os com maiores custos, são os últimos. A ideia principal é transferir a geração de um gerador com custo incremental maior para um gerador com custo incremental menor. A redução no gerador com custo incremental maior, resulta em uma redução de custos maior do que o aumento no gerador com custo incremental menor.

A curva de custo (f) em função da geração (Pg) é dada por:



Figura 1 – Curva de Custo em Função da Geração

Fonte: L. Nepomuceno [1]

O problema de otimização pode ser formulado da seguinte maneira:

$$\begin{aligned} & Min \quad \sum_{i=1}^{K} f_i = \frac{a_i}{2} P g_i^2 + b_i P g_i + c_i \\ & s.a: \\ & \quad \sum_{i=1}^{K} P g_i - P_D = 0 \\ & \quad P g_i - P g_i^{\max} \leq 0 \qquad \qquad i = 1 \cdots K \\ & \quad - P g_i + P g_i^{\min} \leq 0 \qquad \qquad i = 1 \cdots K \end{aligned}$$

Onde K representa o número total de geradores. Aplicando-se as condições de KKT de primeira ordem ao problema:

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m u_i \nabla g_i(\mathbf{x}^*) + \sum_{i=1}^l v_i \nabla h_i(\mathbf{x}^*) = \mathbf{0}$$

$$u_i g_i(\mathbf{x}^*) = 0 \quad \text{para } i = 1, \dots, m$$

$$u_i \ge 0 \quad \text{para } i = 1, \dots, m$$

Os vetores de gradiente são dados por:

$$\nabla f = \begin{bmatrix} a_1 P g_1 + b_1 \\ a_2 P g_2 + b_2 \\ \vdots \\ a_K P g_K + b_K \end{bmatrix}; \quad \nabla g_i^{\max} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}; \quad \nabla g_i^{\min} = \begin{bmatrix} -1 \\ -1 \\ \vdots \\ -1 \end{bmatrix}; \quad \nabla h = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix};$$

Substituindo na equação:

$$\begin{bmatrix} a_1 P g_1 + b_1 \\ a_2 P g_2 + b_2 \\ \vdots \\ a_K P g_K + b_K \end{bmatrix} + \begin{bmatrix} u_1^{\text{max}} \\ u_2^{\text{max}} \\ \vdots \\ u_K^{\text{max}} \end{bmatrix} - \begin{bmatrix} u_1^{\text{min}} \\ u_2^{\text{min}} \\ \vdots \\ u_K^{\text{min}} \end{bmatrix} + v \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Quando os valores de potência gerada estão fora dos seus respectivos limites máximos e mínimos:

$$u_i^{\text{max}} = u_i^{\text{min}} = 0$$
$$v = -(a_i P g_i + b_i)$$

Os custos marginais de operação são todos iguais, uma vez que esta igualdade vale para todos os geradores onde a potência gerada está dentro dos limites operacionais.

$$v = -\lambda_i$$

O custo marginal ( $\gamma$ ) é dado pela derivada do custo em relação a potência gerada, e representa o custo adicional em dólares por hora para se aumentar a geração em 1 MW. Cada unidade geradora possui seus respectivos valores de coeficientes (a) e (b), no entanto, e o custo marginal é calculado da seguinte maneira:

$$\gamma = a_t P g_t + b_t$$

Onde:

$$a_t = \left(\sum_{i=1}^n \frac{1}{a_i}\right)^{-1}$$

$$b_t = \left(\sum_{i=1}^n \frac{b_i}{a_i}\right)$$

Com o custo marginal calculado, calcula-se a potência gerada por cada gerador para se atender à demanda solicitada. Caso algum gerador tenha uma potência atribuída fora dos limites permitidos, atribui-se então a potência limite neste, e recalcula-se o custo marginal com os valores de (a) e (b) dos outros geradores. Com o novo custo marginal, recalcula-se a potência necessária dos outros geradores para atender a demanda, levando-se em conta o outro gerador cuja potência já havia sido pré-estabelecida. Caso algum limite tenha sido violado, repete-se o processo descrito anteriormente. Nota-se pelas equações que as perdas não são levadas em consideração, além de que a potência reativa também é desprezada neste método de despacho.

#### 2. PROBLEMÁTICA

Os custos marginais de \$/MW de uma usina com duas unidades térmicas são dados:

$$\lambda_1 = \frac{df_1}{dPg_1} = 0.0080Pg_1 + 8.0$$
  $\lambda_2 = \frac{df_2}{dPg_2} = 0.0096Pg_2 + 6.4$ 

Assuma que ambas as unidades estão operando em todos os intervalos de tempo do despacho, que a carga varia de 250 a 1250 MW (leve a pesada) durante o dia e que as cargas mínima e máxima em cada unidade são 100 e 625 MW, respectivamente. Encontre o custo marginal da usina e os despachos ótimos de geração de cada unidade nas situações de carga leve e pesada.

Para os dados deste exemplo, calcular o despacho de geração e o preço da energia do sistema utilizando o algoritmo de DEC sem perdas para cada nível de carregamento, de modo a reproduzir a Tabela a seguir:

Tabela 1 – Curva de Custo Incremental em Função da Demanda

| Us           | ina                | Unidade 1  | Unidade 2    |  |
|--------------|--------------------|------------|--------------|--|
| $Pg_{T}[MW]$ | $\lambda [\$/MWh]$ | $Pg_1[MW]$ | $Pg_{2}[MW]$ |  |
| 250          | 7.84               | 100 *      | 150          |  |
| 350          | 8.80               | 100 *      | 250          |  |
| 500          | 9.45               | 182        | 318          |  |
| 700          | 10.33              | 291        | 409          |  |
| 900          | 11.20              | 400        | 500          |  |
| 1100         | 12.07              | 509        | 591          |  |
| 1175         | 12.40              | 550        | 625 *        |  |
| 1250 13.00   |                    | 625 *      | 625 *        |  |

Fonte: L. Nepomuceno [1]

Supondo que cada unidade do sistema pode ser representada por duas unidades com a metade de sua capacidade, resolver um problema e DEC, agora com 4 unidades, reproduzindo o despacho e preços de equilíbrio para os mesmos valores de demanda dados na Tabela acima.

#### 3. ALGORITMO DESENVOLVIDO

O algoritmo desenvolvido no MATLAB realiza o cálculo do despacho por ordem de mérito, calcula os custos marginais e o custo total. Foi desenvolvido genericamente para funcionar com uma quantidade qualquer de geradores. Para funcionar, o usuário precisa informar os parâmetros de entrada: demandas, potências limites mínimas de cada gerador, potências limites máximas e as constantes (a), (b) e (c). No final, o algoritmo plota os gráficos de Curva de Preço por Demanda, Custo Marginal por Demanda e Potência Gerada dos Geradores por Demanda.

#### **Etapas do Algoritmo:**

- 1. Recebe Parâmetros de Entrada (demanda, coeficientes "a", "b" e "c");
- 2. Realiza Cálculo dos Coeficientes "at" e "bt" e "alfa";
- Verifica quais geradores tiveram os limites mínimos ultrapassados, e salva-se suas respectivas posições;
- 4. Verifica quais geradores tiveram os limites máximos ultrapassados, e salva-se suas respectivas posições;
- 5. Verifica quais geradores não tiveram nenhum dos limites ultrapassados, e salva-se suas respectivas posições;
- Com os vetores de posições anteriormente encontrados, calcula-se a potência total a ser subtraída da demanda, com base nos geradores cujos limites foram violados.
- 7. Realiza Cálculo dos Coeficientes "at" e "bt" e "alfa" para os geradores com nenhum limite ultrapassado;
- 8. Recalcula-se as novas potências com o novo alfa;
- 9. Substitui as potências dos geradores cujos limites haviam sido violados;
- 10. Plota curvas de Potência Gerada e Custo Marginal;
- 11. Calcula-se o Custo e plota sua curva.

```
% parâmetros de entrada
% caso de teste 1
a = [0.0080 \ 0.0096];
b = [8 6.4];
c = [0 \ 0];
demanda = [250 350 500 700 900 1100 1175 1250];
pmin = [100 \ 100];
pmax = [625 625];
% caso de teste 2
% a = [0.0080 \ 0.0080 \ 0.0096 \ 0.0096];
% b = [8 8 6.4 6.4];
% c = [0 \ 0 \ 0 \ 0];
% demanda = [250 350 500 700 900 1100 1175 1250];
% pmin = [50 50 50 50];
% pmax = [625/2 625/2 625/2 625/2];
% calcular at, bt e alfa
pg = zeros(size(a));
PotenciasGeradas = [];
alfat = [];
for i=1:length(demanda)
  at=0;
  for j=1:length(a)
      at = at + (1/a(j));
  end
  at=1/(at);
  bt=0;
```

```
for j=1:length(a)
      bt=bt+(b(j)/a(j));
  end
  bt=bt*at;
  alfa = at*demanda(i)+bt;
  for k=1:length(pg)
     pg(k) = (alfa-b(k))/a(k);
  end
limitemin =[];
limitemax =[];
normal = [];
% verifica quais geradores tiveram limites ultrapassados
for k=1:length(pg)
    if pg(k) < pmin(k)
        limitemin = [limitemin, k];
    end
    if pg(k) > pmax(k)
        limitemax = [limitemax, k];
    end
    if (pg(k) > pmin(k)) \&\& (pg(k) < pmax(k))
         normal = [normal, k];
    end
end
pacomulada = 0;
for u=1:length(limitemin)
    pacomulada= pacomulada + pmin(limitemin(u));
end
for u=1:length(limitemax)
    pacomulada= pacomulada + pmax(limitemax(u));
end
pgt = demanda(i)-pacomulada;
```

```
% recalcula at, bt e alfa para as normais
for j=1:length(normal)
      at=at+(1/a(normal(j)));
end
at=1/(at);
bt=0;
for j=1:length(normal)
    bt=bt+(b(normal(j)))/a(normal(j));
end
bt=bt*at;
alfa = at*pgt+bt;
alfat = [alfat, alfa];
% recalcula as potências com o novo alfa
for k=1:length(normal)
     pg(normal(k)) = (alfa-b(normal(k)))/a(normal(k));
end
% substitui potências pelos limites dos que ultrapassaram
for k=1:length(limitemin)
     pg(limitemin(k)) = pmin(limitemin(k));
end
for k=1:length(limitemax)
     pg(limitemax(k)) = pmax(limitemax(k));
end
PotenciasGeradas = [PotenciasGeradas;pg];
end
disp('Potências Geradas:')
PotenciasGeradas
% plota curva da potência dos geradores
figure
for g=1:length(pg)
plot(demanda, PotenciasGeradas(:, g), '-x')
hold on
end
```

```
hold off
grid on
grid minor
title ('Gráfico de Potência Gerada x Demanda')
ylabel ('Potência Gerada por Cada Gerador [MW]')
xlabel('Demanda [MW]')
% plota curva do custo marginal incremental
figure
plot(demanda,alfat,'-x')
grid on
grid minor
title ('Curva de Custo Marginal Incremental Por Demanda')
ylabel('Custo Marginal Incremental[$/MWh]')
xlabel('Demanda [MW]')
% plota curva do custo
% calcula custo
custo=[];
for dem=1:length(demanda)
    custo(dem) =
sum((a/2).*PotenciasGeradas(dem,:).*PotenciasGeradas(dem,:)+b.*P
otenciasGeradas(dem,:)+c);
end
disp('Custo Marginal:')
alfat
disp('Custo:')
custo
figure
plot(demanda, custo, '-x')
grid on
grid minor
title ('Curva de Custo Por Demanda')
ylabel('Custo [$/h]')
xlabel('Demanda [MW]')
```

#### 4. CASOS DE TESTE

#### • Caso de Teste 1: Dois Geradores

```
Parâmetros de Entrada:
```

```
a = [0.0080 0.0096];
b = [8 6.4];
c = [0 0];
demanda = [250 350 500 700 900 1100 1175 1250];
pmin = [100 100];
pmax = [625 625];
```

#### Resultados:

```
Potências Geradas:
```

PotenciasGeradas =

```
100.0000 149.9658

100.0000 249.9616

181.7957 318.1631

290.8845 409.0704

399.9733 499.9778

509.0622 590.8851

549.9705 624.9754

624.9433 625.0000
```

Custo Marginal:

```
alfat =
```

```
7.8397 8.7996 9.4544 10.3271 11.1998 12.0725
12.3998 12.9995
```

Custo:

custo =

1.0e+04 \*

0.1908 0.2740 0.4109 0.6087 0.8239 1.0567 1.1484 1.2437

Tabela 2 – Custo Marginal, Potências e Custo (Caso de 2 Geradores)

| Demanda (MW) | λ (\$/MWh) | PG1 (MW) | PG2 (MW) | f (\$) |
|--------------|------------|----------|----------|--------|
| 250          | 7,84       | 100      | 150      | 1908   |
| 350          | 7,79       | 100      | 250      | 2740   |
| 500          | 9,45       | 182      | 318      | 4109   |
| 700          | 10,32      | 291      | 409      | 6087   |
| 900          | 11,19      | 400      | 500      | 8239   |
| 1100         | 12,07      | 509      | 591      | 10567  |
| 1175         | 12,39      | 550      | 625      | 11484  |
| 1250         | 12,99      | 625      | 625      | 12437  |

Figura 2 – Curva de Custo em Função da Demanda



Figura 3 – Curva de Custo Incremental em Função da Demanda



Figura 4 – Potência Gerada por Cada Gerador em Função da Demanda



#### • Caso de Teste 2: Quatro Geradores

#### Parâmetros de Entrada:

```
a = [0.0080 \ 0.0080 \ 0.0096 \ 0.0096];
b = [8 \ 8 \ 6.4 \ 6.4];
c = [0 \ 0 \ 0 \ 0];
demanda = [250 \ 350 \ 500 \ 700 \ 900 \ 1100 \ 1175 \ 1250];
pmin = [50 \ 50 \ 50 \ 50];
pmax = [625/2 \ 625/2 \ 625/2 \ 625/2];
```

#### Resultados:

Potências Geradas:

PotenciasGeradas =

```
50.000050.000074.992274.992250.000050.0000124.9917124.991750.000050.0000199.9909199.990999.994899.9948249.9956249.9956154.5400154.5400295.4500295.4500237.4892237.4892312.5000312.5000312.4885312.4885312.5000312.5000
```

Custo Marginal:

alfat =

7.1199 7.5999 8.3199 8.8000 9.2363 9.8999 10.1999 10.4999

Custo:

custo =

1.0e+04 \*

 $0.1834 \quad 0.2570 \quad 0.3764 \quad 0.5480 \quad 0.7283 \quad 0.9189 \quad 0.9942 \quad 1.0719$ 

Tabela 3 – Custo Marginal, Potências e Custo (Caso de 4 Geradores)

| Demanda<br>(MW) | λ<br>(\$/MWh) | PG1<br>(MW) | PG2<br>(MW) | PG3<br>(MW) | PG4<br>(MW) | f (\$) |
|-----------------|---------------|-------------|-------------|-------------|-------------|--------|
| 250             | 7,12          | 50          | 50          | 75          | 75          | 1834   |
| 350             | 7,59          | 50          | 50          | 125         | 125         | 2570   |
| 500             | 8,32          | 50          | 50          | 200         | 200         | 3764   |
| 700             | 8,8           | 100         | 100         | 250         | 250         | 5480   |
| 900             | 9,24          | 154,55      | 154,55      | 295,45      | 295,45      | 7283   |
| 1100            | 9,9           | 237,5       | 237,5       | 312,5       | 312,5       | 9189   |
| 1175            | 10,2          | 275         | 275         | 312,5       | 312,5       | 9942   |
| 1250            | 10,5          | 312,5       | 312,5       | 312,5       | 312,5       | 10719  |

Figura 5 - Curva de Custo em Função da Demanda



Figura 6 – Curva de Custo Incremental em Função da Demanda



Gráfico de Potência Gerada x Demanda
350

Gráfico de Potência Gerada x Demanda
250

200

200

400

600

800

1000

1200

1400

Figura 7 – Potência Gerada por Cada Gerador em Função da Demanda

Demanda [MW]

Neste último gráfico, os pares de geradores com mesmos coeficientes a, b e c, possuem valores de potência gerada iguais, por isso só é possível visualizar duas curvas, pois as demais estão sobrepostas.

#### 5. RESULTADOS E DISCUSSÕES

O algoritmo genérico elaborado neste trabalho mostrou-se eficiente no cálculo do despacho econômico clássico por ordem de mérito, onde as perdas não estão sendo levadas em consideração. A ideia principal deste método é transferir a geração de um gerador com custo incremental maior para um com custo incremental menor, respeitando-se os limites superiores e inferiores de geração de cada unidade.

Analisando os resultados dos casos de teste, pode-se notar que as potências geradas nos geradores com maiores custos são inferiores às potências geradas nos geradores com menores custos, visando sempre obter o cenário mais econômico dentre as possibilidades, sendo que estas são limitadas pelos requisitos operacionais de cada equipamento.

Nota-se que, com uma quantidade maior de geradores, menores são os custos finais de geração. Tal fato justifica-se a partir de uma análise da função de custo, que possui um termo quadrático, onde pode-se observar que:

$$P = PG1 + PG2$$

$$PG1 = PG2$$

$$P^2 < PG1^2 + PG2^2$$

Desta maneira, ao dividirmos a potência gerada em outras duas, teremos sempre um valor de custo inferior em comparação ao caso onde a potência está toda concentrada em apenas um gerador e os coeficientes dos geradores são iguais.

## 7. REFERÊNCIAS BIBLIOGRÁFICAS

- [1] L. Nepomuceno, Notas de Aula **Despacho de Geração: Despacho Econômico Clássico**.
- [2] A. J. Wood, B. F. Wollenberg, G. B. Sheblé. "Power Generation, Operation, and Control." John Wiley & Sons, 2013.