Math 817 Review Sheet #1

A (not necessarily complete) list of important things to know for Exam I

- **Examples of Groups:** Cyclic groups (i.e., \mathbb{Z} and \mathbb{Z}_n), matrix groups (e.g., $GL_n(\mathbb{R})$), the dihedral groups, the quaternions, permuation groups (i.e., S_n and A_n), free groups.
- **Orders of elements:** If |x| = n then $x^s = 1$ if and only if n divides s. The order of an element equals the order of the cyclic subgroup it generates.
- **Subgroups of Cyclic Groups:** Let $G = \langle x \rangle$ be a cyclic group of finite order n. Then every subgroup of G is cyclic. Moreover, for every positive divisor d of n there is a unique subgroup of G order d, namely $\langle x^{\frac{n}{d}} \rangle$.
- **Cosets:** Let G be a group, H a subgroup, and $x \in G$. The left coset xH is defined to be $\{xh \in H\}$. The set of left cosets of H partitions the group G. Also, |xH| = |H| for every $x \in H$. (This gives us Lagrange's Theorem below.) We let [G:H] (the index of H in G) be the number of left cosets. Another useful fact: xH = yH if and only if $y^{-1}x \in H$.
- Cayley's Theorem: Let G be a group and H a subgroup such that [G:H]=n. Then, by letting G act on the set of left cosets of H we obtain a homomorphism $\phi:G\to S_n$. The ker ϕ is the largest normal subgroup contained in H. Also, ker $\phi=\bigcap_{x\in G}xHx^{-1}$.
- **Lagrange's Theorem:** If G is a finite group and H is a subgroup then |G| = |H|[G:H]. In particular, |H| divides |G|.

Products of Subgroups: Let H and K be subgroups of G. Then $HK := \{hk \mid h \in H, k \in K\}$.

- 1. $|HK| = \frac{|H||K|}{|H \cap K|}$.
- 2. HK is a subgroup if and only if HK = KH.
- 3. If either H or K is normal then HK is a subgroup.

Quotient Groups: Let K be a normal subgroup of G.

- 1. The set of left cosets of K form a group under coset multiplication. We denote this group by G/K.
- 2. |G/K| = |G|/|K|.
- 3. If H is a subgroup of G containing K then H/K is a subgroup of G/K. Moreover, any subgroup of G/K can be written uniquely in the form H/K where H is subgroup of G containing K.
- 4. If H is a subgroup of G containing K then $H/K \triangleleft G/K$ if and only if $H \triangleleft G$.
- **Isomorphism Theorems:** 1. Let G be a group and $K \subseteq H$ normal subgroups of G. Then $H/K \triangleleft G/K$ if and only if $H \triangleleft G$.
 - 2. Let $\phi: G \to G'$ be a group homomorphism. Then $G/\ker \phi \cong \operatorname{im} \phi$.
 - 3. Let H and K be subgroups of G with $K \triangleleft G$. Then $H \cap K \triangleleft H$ and $HK/K \cong H/H \cap K$.

Generators and presentations: What it means for a subset to generate a group, the group generated by a subset, the group with a given presentation.

Group Actions: Suppose G acts on a set X.

- 1. For $a \in X$, the orbit of a is $\mathcal{O}(a) := \{ga \mid g \in G\}$.
- 2. For $a \in X$, the stabilizer of a is $G_a := \{g \in G \mid ga = a\}$.
- 3. (Orbit-Stabilizer Theorem) For any $a \in X$, $|\mathcal{O}(a)| = [G : G_a]$. In particular, the size of any orbit divides the order of G.
- 4. The action is called *faithful* if $\bigcap_{a \in X} G_a = \{1\}$; equivalently, for any $g \in G$ there exists an $a \in X$ such that $ga \neq a$.
- 5. The action is called *transitive* if there is only one orbit; equivalently, for any $a, b \in X$ there exists a $g \in G$ such that ga = b.