2023-2 Computer Graphics PI 4차시

Clipping & Rasterization

AM11:00에 시작됩니다.

입장 후 채팅창에 학번/이름 작성 부탁드립니다.

2023-2 Computer Graphics PI 4차시

- Clipping
 - Sutherland-Hodgman Algorithm
- Line Rasterization
 - (1) DDA
 - (2) Brensenham's algorithm
- Polygon Inside/Outside Test
 - (1) Odd/Even rule
 - (2) Winding number
- Polygon Rasterization
 - (1) Scanline algorithm
 - (2) Triangle rasterization

Graphics Pipeline

Clipping

Clipping

• Clipping: viewing volume 밖으로 벗어난 geometric primitive(점,선,면)을 제거

왜 clipping을 하는가?

- pixel의 color를 계산하기 위한 과정인 lighting, texturing은 매우 많은 계산이 필요
- clipping을 한 이후 color 값이 필요한 곳들만 계산해 낭비될 수 있는 계산을 절약
- = optimization

• 3가지 경우

- 1. trivial acceptance: viewing volume 안에 완벽하게 들어오는 경우
 - clipping이 필요 없음
- 2. trivial rejection: viewing volume 밖으로 완전히 벗어난 경우
 - 더 이상 신경 쓸 필요가 없어짐 -> 남은 projection, color 계산 x
- 3. crossing clip plane: 일부는 vv 안에 일부는 vv 밖에 있는 경우
 - vv 안에 들어온 부분은 keep, vv 밖 부분은 날려야 함
 - 가장 어렵고 우리가 중점적으로 신경 쓸 부분

Clipping

• primitives의 관점

- 1. 점(points)
 - 3번째 경우 불가능
 - trivial accept/reject 경우만 존재
- 2. 선(lines)
 - clip plane과 만나는 부분에서 잘라내 vv 안쪽 부분만 keep
- 3. 면(polygon): vertex로 정의
 - clipping을 하더라도 input의 vertex 순서를 유지해야함
 - = connectivity 유지

courtesy of L. McMillan

- 2차원의 경우
- input polygon: clip할 polygon
- clip region: clip되는 영역
 - 3차원에서는 clip volume: normalized view volume

- input polygon이 clip region 밖에 있는 부분을 잘라내고 싶음
- 그 과정에서 vertex ordering은 유지 되어야 함

과정

STEP1.

- 1. clip region의 하나의 edge(윤곽선) 선택
- 2. edge를 포함하는 line을 생각하자
 - clip region을 포함하는 쪽이 inside, 포함하지 않는 쪽이 outside가 됨
 - inside 쪽은 keep, outside 쪽은 잘라버림

STEP2~4.

다음 clip edge 선택 후 step1 반복 (돌려서 다 자를 때까지)

구현

- STEP 1~4는 모두 유사한 step 1개의 반복
- STEP1에서 vertex 1~4를 순회하면서 어디가 inside/outside인지에 따라 자를 것인지 여부 결정
- 순회할 때 4가지 케이스에 따라 적절한 행동을 취함
- 1) 시작점: inside -> 도착점: inside
 - 도착점 p만 출력
- 2) inside -> outside
 - clip line과 polygon edge이 만나는점(intersection) i를 구해서 출력
- 3) outside -> outside
 - 잘려나가므로 아무것도 출력하지 않음
- 4) outside -> inside
 - case 2의 반대 버전
 - intersection i를 먼저 출력하고, 도착점 p도 출력

Output i

Output p

v2

No output

v4

Output i and p

예시

- input: vertex가 7개인 polygon
- clip region: 직사각형

a) $a \xrightarrow{S} b$ $c \xrightarrow{e} e$ $a \xrightarrow{g} c$

STEP1.

- 1. clip region의 edge 선택
- 2. input polygon을 돌며 4가지 case 중 무엇이냐에 따라서 적절하게 출력
- polygon의 점 g에서 시계방향으로 순회
- a->g: inside->outside intersection i 출력 => 1
- a->b: outside->outside => skip
- b->c: outside->inside => intersection 2+도착 vertex c
- c->d->e->f->g: inside->inside: 각 구간의 도착 vertex 출력 => d,e,f,g
- 여기까지가 첫번째 iteration => 1 2 c d e f g : vertex 순서

STEP 2~4

• 다른 clip region edge를 선택하고 STEP1과 비슷한 방식으로 진행

- 최종결과물: 3,1,4,7,12,e,9,10,6
 남각형 2개 + 사각형 1개
- (3,6), (9,10) 선은 실제 OpenGL 등에서는 날려버리나 수업시간에는 포함한 것을 결과물로 생각

3차원의 경우

- viewing pipeline에서는 viewing volume이 사각형이 아니라 정육면체 형태
 - line 대신 clip plane을 품는 평면을 가지고 자름
 - clip volume 포함하는 쪽의 평면이 inside, 반대쪽이 outside

알고리즘

- 바깥쪽 loop은 clip region의 edge를 선택해서 도는 것
- 안쪽 loop은 polygon 주변을 도는 것
- loop을 돌며 4가지 case (inside, outside) 에 따라 출력

For each edge/plane (c_i, c_j) in clip region/volume For each successive edge (s, p) in input polygon

- **1.** If both inside (c_i, c_i) : Output new p
- 2. If both outside: Output nothing
- **3.** If s inside, p outside: Output intersection of (s, p) with (c_i, c_i)
- **4.** If s outside, p inside: Output intersection of (s, p) with (c_i, c_i) , then p
- 알고리즘 실제로 구현하려면 2가지 해결 필요

해결해야 하는 2가지

- 1) 시작, 도착 vertex가 어떤 case에 해당하는지 어떻게 알 것인가?
- 2) inside->outside, outside->inside 경우 i를 어떻게 구할 것인가?

1) Inside-outside testing

- 시작, 도착 vertex 어떤 case에 해당하는지 알 수 있는 방법
- -> vertex가 clip plane의 안쪽(inside)에 있는지 바깥쪽(outside)에 있는지 알고 싶음
- 가정) outward pointing normal = plane의 수직 방향 벡터 n은 clip region의 바깥쪽을 가르킴

방법

- 1. plane 상의 임의의 점 x를 잡음
- 2. inside/outside 여부를 확인하고 싶은 점 s로 s-x 벡터를 구함

- 3. n (s x) 계산
 - n (s x) > 0 : s가 outside에 있음
 - s가 outside에 있다면, s와 n이 같은 방향에 놓여있고, n벡터와 (s-x)의 끼인각<90이기 때문
 - n (s − x) < 0 : s가 inside에 있음
 - s가 inside에 있다면, s와 n이 반대 방향에 놓여있고, n벡터와 (s-x)의 끼인각>90이기 때문
 - n (s − x) = 0 : s가 clip plane 위에 있음
 - s가 clip plane 위에 있다면 n벡터와 (s-x)의 끼인각=90이기 때문

$$n \cdot (s - x) > 0 -> s$$
: outside

$$n \cdot (i - x) = 0 -> i$$
: clip plane 위

$$n \cdot (f - x) < 0 -> f$$
: inside

2) Find Intersection points

- inside->outside, outside->inside 경우 intersection point i를 구하는 방법
- 선분(edge)와 평면이 만나는 좌표를 찿아야함

방법

- 1. 매개변수 t를 사용해 x1와 x2를 연결하는 선분을 수식으로 표현
- $\mathbf{x}(t) = \mathbf{x}_1 + (\mathbf{x}_2 \mathbf{x}_1)t$, $0 \le t \le 1$
- 2. 평면의 방정식 정의
- 일반적인 평면의 방정식의 형태: ax+by+cz+d=0
- view volume은 정육면체 형태이므로 clip plane은 x,y,z축에 수직
- $x_s = \pm 1, y_s = \pm 1, z_s = \pm 1$

- 3. 직선과 평면의 intersection을 구해야 함
- 평면의 방정식: x=a, 점 x_1 을 (x_1, y_1, z_1) , 점 x_2 을 (x_2, y_2, z_2) 라고 해보자

$$x_1$$
 $x_2 - x_1$ $x(t)$
 $y_1 + y_2 - y_1$ $t = y(t)$
 z_1 $z_2 - z_1$ $z(t)$
 $x_1 + (x_2 - x_1)t = a$ $t = \frac{a - x_1}{x_2 - x_1}$

t를 식에 다시 대입하면 intersection 점 x_i 를 구할 수 있음

$$\mathbf{x}_i = (a, y_1 + \frac{(y_2 - y_1)}{(x_2 - x_1)}(a - x_1), z_1 + \frac{(z_2 - z_1)}{(x_2 - x_1)}(a - x_1))$$

Sutherland-Hodgman: Triangle

- input polygon이 삼각형인 경우
 - 앞에서는 일반적인 polygon에 대한 알고리즘을 배움
 - input polygon이 삼각형이면 앞의 알고리즘 압축시켜 짧게 구현 가능

방법

- 1. inside-outside testing으로 inside 점 개수 count
- 삼각형은 vertex가 3개이므로 outside/inside인 점의 개수가 몇 개인지 세보면 4가지 경우 존재

Sutherland-Hodgman: Triangle

2.

- 1) inside vertex 0개: trivially reject이므로 다 날림
- 2) inside vertex 3개: trivially accepted 상태이므로 다 keep
- 3) inside vertex 1개 바깥쪽 점들과 연결해서 만나는 점 v0',v1'을 구하고 $\Delta v'_0 v'_1 v_2$ 을 새로운 output으로 출력

- 4) inside vertex 2개 바깥쪽 점들과 연결해서 만나는 점 v1',v1"을 구하면 사각형 v0v1'v1"v2 가 나옴
- -> output도 삼각형으로 만들어주기 위해 사각형을 쪼개줌
- $-> \Delta v_0 v'_1 v_2, \Delta v'_1 v''_1 v_2$ 가 만들어짐

Clipping Accerleration

clipping Accerleration

- bounding area/volume에 먼저 clipping을 적용해 test 하는 것
- bounding area: 복잡한 input polygon을 감싸는 간단한 shape(box, sphere)
- 사용하는 이유
 - trivial reject case인 경우 -> 복잡한 polygon에 대해 test 하려면 시간을 많이 낭비하게 됨
 - bounding area에 먼저 clipping을 적용해 trivial reject한 경우면 날림
 - 간단한 shape이므로 test가 훨씬 간단하고 시간 절약 가능

Quiz- clipping

Consider a specialized version of Sutherland-Hodgman clipping for a triangle T with three vertices v_1 , v_2 , v_3 against a clipping plane P_1 .

- P₁: z=0 (+z is outside of the clip region)
- T: v₁(0, 0, 1), v₂(0, 0, -1), v₃(-1, 0, -1)

문제 **1** 정답

총 1.00 점에서 1.00 점 할당

♥ 문제 표시

Find the normal vector of the plane P_1 that points at the positive z-axis.

하나를 선택하세요.

- a. (1, 0, 0)
- Ob. (0, 1, 0)
- oc. (0, 0, -1)
- d. (0, 0, 1)

 ✓

0x+0y+1z=0. The normal vector consists of the coefficients.

정답: (0, 0, 1)

Quiz- clipping

문제 2 정답

총 1.00 점에서 1.00 점 할당

♥ 문제 표시

Find respectively whether each vertex v_1 , v_2 , v_3 is inside or outside of P_1 .

하나를 선택하세요.

- a. inside, outside, inside
- b. outside, outside, outside
- Od. outside, outside, inside

Pick any point on z=0, say x=(0, 0, 0)

$$(v_1-x)\cdot(0,0,1)=1>0 o ext{outside}$$

$$(v_2-x)\cdot (0,0,1) = -1 < 0 o ext{inside}$$

$$(v_3-x)\cdot (0,0,1) = -1 < 0 o ext{inside}$$

정답: outside, inside, inside

Quiz- clipping

문제 **4** 정답

총 1.00 점에서 1.00 점 할당

♥ 문제 표시

Find the clipped triangle(s) of T as a result of the Sutherland Hodgman algorithm with respect to the clip plane P₁.

하나를 선택하세요.

- \bigcirc a. $\triangle(v_1,v_2,v_3)$
- $igo b. \triangle(v_3', v_3, v_2), \triangle(v_1', v_3', v_2)$

~

- \bigcirc c. $\triangle(v_3',v_3,v_2), \triangle(v_1,v_3',v_2)$
- od. Empty

정답 : $\triangle(v_3', v_3, v_2), \triangle(v_1', v_3', v_2)$

Line Rasterization

Rasterization

- rasterization : 2D 를 pixel 로 바꿔주는 것
- line segment rasterization, polygon rasterization 을 살펴보자

Line Rasterization

- (가정1) 시작점 끝점 좌표가 integer라고 가정 integer가 아니면 반올림or내림 등의 방법으로 정수로 만들면 된다.
- (가정2) line과 가장 근접한 좌표를 찾는 과정까지만 배우고, 해당 좌표를 어떻게 display 할 지는 배우지 않는다. (x,y)가 주어지면 해당 pixel 을 켜는 setPixel(x,y) 라는 함수가 있다고만 배운다. 그 함수의 내부는 배우지 않는다. 그 구현 방법은 매우 다양하기 때문.

$$m = \Delta y/\Delta x = (y_2-y_1)/(x_2-x_1)$$

Line Rasterization - (1) DDA 이해

즉, y 는 기울기만큼 증가한다

• x를 시작점부터 하나씩 증가시키면서, y를 증가시켜야 할지 아닌지를 결정

```
m = (y_2 - y_1) / (x_2 - x_1) ; 기울기 구하고
          시작점 x 가 x2가 될 때까지 1씩 증가
 for (x=x_1, y=y_1; x \le x_2; x++)
   setPixel(x, round(y));
   y+=m;
              setPixel() 에 들어가는 x, y 는 픽셀 값이므로 정수여야 한다.
              y 는 기울기를 더한 값이라 정수가 아닐 수 있다.
              따라서 round() 해줘야 한다.
∆x 가 1 이므로
m = \Delta y / \Delta x = \Delta y
```

Problems for steep lines

: 기울기가 1보다 작으면 잘 그려지는데 기울기가 1보다 크면 문제 발생

: line 처럼 보이지 않는다.

Line Rasterization - (1) DDA 결론

• (1 ≥ |m| ≥ 0 인 경우) 앞의 알고리즘 그대로 이용

```
m = (y<sub>2</sub>-y<sub>1</sub>)/(x<sub>2</sub>-x<sub>1</sub>);
for(x=x<sub>1</sub>, y=y<sub>1</sub>; x<=x<sub>2</sub>; x++) {
   setPixel(x, round(y));
   y+=m;
}
```

• (|m| > 1 인 경우) x와 y의 역할을 swap

(코딩 방법1) y 가 1 증가하면, x 가 1/m 증가

(코딩방법2) 코드로 x, y swap

```
swap x with y;
m = (y<sub>2</sub>-y<sub>1</sub>)/(x<sub>2</sub>-x<sub>1</sub>);
for(x=x<sub>1</sub>, y=y<sub>1</sub>; x<=x<sub>2</sub>; x++) {
   setPixel(x, round(y));
   y+=m;
}
swap x with y;
```


Line Rasterization - (2) Bresenham's Algorithm 이해

- DDA 코드를 최적화한 방법
- DDA 는 input 도 output 도 integer 를 원하는데, 중간과정에서 floating point 연산 존재 floating point 연산을 없애서 최적화하자
- (1 ≥ |m| ≥ 0 인 경우) 만 살펴보고 (|m| > 1 인 경우) 는 앞과 동일하게 symmetry 이용해서 처리하면 됨
- 기울기가 1보다 작기 때문에 현재 픽셀을 찾았으면 그 다음 픽셀의 후보는 오직 2개이다.

Line Rasterization - (2) Bresenham's Algorithm 이해

2개의 후보 중에 어떤 것을 선택할 지 알려주는 것이 Decision Variable p_k

 $d_{lower,} d_{upper}$ 는 정수가 아니다. (1보다 작음) Δx 를 곱해주면 p_k 가 정수가 된다.

$$p_k = \Delta x (d_{lower}^{l} - d_{upper}^{l})$$

p_k is an integer

 $p_k < 0$ use lower pixel

 $p_k > 0$ use upper pixel

POINT1. p_k 가 정수 POINT2. p_{k+1} 은 p_k 로부터 쉽게 구할 수 있다

Line Rasterization - (2) Bresenham's Algorithm 결론

- p₀의 유도과정과 증명은 생략 (교수님 수업 및 강의자료 참고)
- STEP1. 기울기 확인
 - (1 ≥ |m| ≥ 0 인 경우) 그대로
 - (|m| > 1 인 경우) 앞뒤에서 x, y swap 필요
- STEP2. 초기값 계산
 - setPixel (x_0, y_0)
 - P_0 계산. $P_0 = 2\Delta y \Delta x$
- STEP3. Decision Variable p_k 계산하며 그 다음 픽셀 결정. STEP3 iteration.
 - $P_k < 0$ 이면,
 - (x_k+1, y_k) 선택 (즉 y 그대로 유지)
 - $P_{k+1} = P_k + 2\Delta y$
 - $P_k \ge 0$ 이면,
 - (x_k+1, y_k+1) 선택 (즉 y 1 증가)
 - $P_{k+1} = P_k + 2\Delta y 2\Delta x$

Line Rasterization – (2) Bresenham's Algorithm 예제

$$p_0 = 2\Delta y - \Delta x$$
 $\Delta x = 10$, $\Delta y = 8$
= 6

k	p_k	(x_{k+1},y_{k+1})
0	6	(21, 11)
1	2	(22, 12)
2	-2	(23, 12)
3	14	(24, 13)
4	10	(25, 14)

k	ρ_k	(x_{k+1}, y_{k+1})
5 6 7 8	6 2 -2 14	(26, 15) (27, 16) (28, 16) (29, 17)
9	10	(30, 18)

QUIZ – Line Rasterization

정보 ▼ 문제 표시

Given a line segment $\overline{P_1P_2}$ connecting two points $P_1(5,5)$ and $P_2(10,8)$, rasterize it using Brensenham's algorithm. The first rasterized point (x_0, y_0) is the same as P_1 .

Polygon Inside/Outside Test

Polygon 정의

- (Polygon 정의) 3개 이상의 꼭짓점이 edge로 연결된 모양
- (Polygon 분류1) <u>convex (볼록) VS non-convex (오목)</u> : 다각형 안의 임의의 점 2개를 찾아서 선분으로 연결했을 때 선분 전체가 영역 안에 들어가면 convex polygon

• (Polygon 분류2) <u>simple (edge crossing X)</u> VS <u>non-simple (edge crossing O)</u>

⇒ Non-convex, non-simple 일 때도 inside 를 찾아서 칠해야 한다. 따라서 polygon rasterization 이 어렵다.

Simple Non-simple

우리 수업에서는 degenerate 한 경우가 없다고 가정한다.

• Cf) Degenerate Polygon ──→ 실세계에서는 이런 경우를 다 고려해야 하므로 복잡하다.

Case1) Collinear : edge가 동일 선상에 있어서 vertex 가 필요 없는 경우

Case2) Duplicated Vertices : vertex 가 중복돼서 edge 길이가 0 인 경우

Polygon Inside/Outside Test – (1) odd/even rule

(1) odd/even rule

임의의 한 점에서 아무 방향으로나 ray 를 쏜다.

Ray란? 시작은 있는데 끝은 없는 line. cf) line segment : 양끝점이 있는 line.
그게 edge와 몇 번 만나는 지 판단.

홀수 내부, 짝수 외부

Polygon Inside/Outside Test – (2) winding number

• (2) winding number

winding number 의 초기값은 0.

임의의 한 점에서 아무 방향으로나 ray 를 쏜다. counter-clockwise (반시계 방향) 으로 cross 되면 winding number +1 clockwise (시계 방향) 으로 cross 되면 winding number -1

winding number 0 이면 외부, 0 아니면 내부.

exterior D
interior E

두 방법의 결과가 다르다. 경우에 따라 다른 방법을 선택해야 한다.

Nonzero Winding-Number Rule

Polygon Inside/Outside Test – (2) winding number

winding rule : counter-clockwise cross VS clockwise cross

• **(판단방법1)** (사실 이게 정의)

ray 기준에서 left half-space, right half-space 존재

right -> left : CCW

left -> right : CW

CCW

⇒ 애초에 수학적으로 edge 를 찾은 것. 따라서 이미 알고 있음.

Ray 의 방향벡터 u

Edge의 방향벡터 e

• **(판단방법2)** (사실 이게 (수학적) 판단방법)

그림이 주어지지 않고 edge vector, ray vector 주어졌을 때 CCW, CW 찾는 방법 cross product (외적) 이용

Edge direction: $e = (e_x, e_y, 0)$

Ray direction: $u = (u_x, u_y, 0)$

(z component of $u \times e$) = $u_x e_y - u_y e_x > 0$: CCW

otherwise: CW

Polygon Inside/Outside Test - (1) (2) 방법 비교

Polygon Rasterization

Polygon Rasterization – (1) Scanline Algorithm (일반적인 경우)

- 가상의 scan line 이 위에서 아래로 내려오며 채워 나간다 (y축 방향을 말한다)
- STEP1. 모든 edge를 y 기준으로 sorting
- STEP2. 각 scan line 마다
 - 1) [edge]
 scan line 과 만나는 edge 찾기

- 2) [intersection]
 scan line 과 그 edge 가 만나는 교점 찾기. 해당 교점들이 왼쪽에서 오른쪽으로 sorting 된 순서 찾기.
- 3) [inside/outside 판단]

각 intersection point 의 interval 에 대해 어디가 밖이고 안인지 (1) odd/even rule, (2) winding number 이용해서 찾기. 교점으로 만들어진 선분 위의 임의의 점에서 ray 를 쏘면 된다.

Polygon Rasterization – (2) Triangle Rasterization (삼각형에 특화)

- 1. edge v1v2 에 대해 y 축 방향으로 pixel 이 하나 증가할 때 까지만 Bresenham's Algorithm 적용.
- 2. 다른 edge인 v1v3에 대해 마찬가지로 Bresenham's Algorithm 적용.
- 3. 그 사이를 채운다.
- v2나 v3에 도달할 때까지 1,2,3을 반복한다.

Polygon Rasterization – (2) Triangle Rasterization (삼각형에 특화)

Flat bottom triangle 이 아닌 경우 : flat bottom triangle 두개로 나누면 된다.

QUIZ – Polygon Rasterization

