

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

<p>(51) International Patent Classification 6 : C12N 15/12, C07K 14/435, C12N 5/10, A01K 67/027, 67/033, A61K 38/17, A01H 5/00, C07K 16/18, C12N 5/26, C12Q 1/02</p>		A2	<p>(11) International Publication Number: WO 96/38555 (43) International Publication Date: 5 December 1996 (05.12.96)</p>
<p>(21) International Application Number: PCT/EP96/02311 (22) International Filing Date: 31 May 1996 (31.05.96) (30) Priority Data: 9510944.3 31 May 1995 (31.05.95) GB</p>		<p>(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).</p>	
<p>(71)(72) Applicants and Inventors: BOGAERT, Thierry [BE/BE]; Voorstraat 36 bus 11, B-8500 Kortrijk (BE). STRINGHAM, Eve [CA/CA]; 9326-133 A Street, Surrey, British Columbia V3V 5R5 (CA). VANDEKERCKHOVE, Joel [BE/BE]; Rode Beukendreef 27, B-Loppem (BE). (74) Agent: BALDOCK, Sharon, Claire; Boult Wade Tennant, 27 Furnival Street, London EC4A 1PQ (GB).</p>		<p>Published <i>Without international search report and to be republished upon receipt of that report.</i></p>	
<p>(54) Title: PROCESSES FOR THE IDENTIFICATION OF COMPOUNDS WHICH CONTROL CELL BEHAVIOUR, THE COMPOUNDS IDENTIFIED AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM AND THEIR USE IN THE CONTROL OF CELL BEHAVIOUR</p>			
<p>(57) Abstract</p> <p>UNC-53 protein of <i>C. elegans</i> or its functional equivalent is identified as a signal transducer/integrator involved in controlling the rate and directionality of cell migration and/or cell shape. Nucleic acid sequences encoding UNC-53 protein or its functional equivalent, such as genomic or cDNA are used to transfet <i>C. elegans</i> or mammalian cell lines useful for identifying inhibitors or enhancers of the UNC-53 protein. Any of the inhibitors or enhancers identified or the UNC-53 protein itself or sequences encoding UNC-53 protein can be used in the preparation of medicament for treatment of neurological conditions such as Alzheimer's or Huntington's disease, peripheral neuropathies for inhibition of metastasis.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LI	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

PROCESSES FOR THE IDENTIFICATION OF COMPOUNDS
WHICH CONTROL CELL BEHAVIOUR, THE COMPOUNDS IDENTIFIED
AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM AND
THEIR USE IN THE CONTROL OF CELL BEHAVIOUR

5

The present invention relates to processes for the identification of compounds which inhibit or enhance the rate and direction of cell migration or the control of cell shape, the compounds identified and pharmaceutical formulations containing such compounds together with their use in the regulation of cell behaviour. The invention also relates to an UNC-53 protein encoded by nucleic acid in the cells of the nematode worm C. elegans and cDNA sequences encoding an UNC-53 protein or functional equivalents thereof.

The control of cell motility, cell shape and the outgrowth of axones or other cell outgrowths is an essential feature in the morphogenesis and function of both unicellular and multicellular organisms. The control of this process is disturbed in a variety of disease states in which for example the Receptor Tyrosine Kinase (RTK) signal transduction pathways or the like or their downstream intra-cellular pathways (which are shared with other extra-cellular receptors, including cell adhesion molecules like N-CAMS and integrins) are overstimulated.

Some cell surface proteins and extracellular molecules controlling the directionality and potential of cell migration have been identified. However the processes in which these proteins or molecules are involved to effect cell migration, shape or rate of cell differentiation are not understood.

It is generally considered that a long-range migration of a cell process (which may also be known as a growth cone spike) is a stepwise event, whereby prior to and after each extension there is the

- 2 -

formation of a structure at the leading edge of the cell which senses signals in the environment instructing the cell to either stabilize a cell process extending in a preferred direction, or to 5 cause a cell process lamellipodium to extend a process in a given direction. Localized stabilization of the actin cytoskeleton, is a general cell biological process underlying this choice of directional extension.

10 A gene from the free-living nematode Caenorhabditis elegans, designated "unc-53" has been previously identified and cloned (Abstract, International C. elegans meeting; June 1-5 1991, Madison, Wisconsin, 58, Bogaert and Goh). However, to 15 date no known biological function has been attributed to the unc-53 gene or its corresponding UNC-53 protein.

The present inventors have surprisingly identified, through biochemical, genetic, phenotypic 20 and transgenic evidence which is presented herewith, UNC-53 as a signal transducer or signal integrator controlling the rate and directionality of cell migration, and/or cell shape. Key experiments leading to this conclusion were the molecular identification 25 of its domain structure, its biochemical interaction with GRB-2, actin cytoskeleton sequence information and the presence of a potential signal integrating domain in the UNC-53 protein.

An additional key observation is that increased 30 UNC-53 protein activity is proportional to increased cell process extension in the correct direction of cell migration. Reduction of UNC-53 function has previously been shown to lead to a reduction of cell process extension, identifying it as a general 35 component required for cell migration. However, it had not been identified as a component whose level of

- 3 -

activity has a determining role in the specification of the quantum and directionality of migration.

The work of the present inventors suggests that UNC-53 plays a central role in quantitatively transducing extracellular signals to the machinery controlling directional cell migration.

The importance of UNC-53 in a variety of cell types in C. elegans has been demonstrated. The gene encodes a signal transduction molecule that transduces a signal from a Receptor Tyrosine Kinase such as for example via the adaptor protein SEM-5/GRB-2, to the machinery controlling directional growth cone extension or stabilization. The UNC-53 protein does this in a highly dosage-dependent fashion whereby reduction of protein activity such as reduction in expression of protein or in the reduction in its activity leads to proportional reduction of cell process extension (cell migration). This is believed to be either by regulated cross-linking of the actin cytoskeleton or by transferring the received signal downstream within the transduction pathway. Higher than wild type UNC-53 expression leads to higher than wild type growth cone extension in the anterior-posterior axis. Both the observed SEM-5/GRB-2 binding to UNC-53 and the predicted ATP/GTP-ase activity of UNC-53 demonstrate a signal transduction role for UNC-53 involved in cell process or growth cone guidance.

UNC-53 is a protein working at the intracellular level. It is so far believed to be the only intracellular protein identified which is involved in the control of directionality and rate of cell migration in response to a specific signal and which integrates different directional signals in defining direction of migration.

Based on the present inventors accumulated

knowledge of the unc-53 gene function in C. elegans it is understood that inhibitors or enhancers of the unc-53 gene or the UNC-53 protein will affect the cell motility including (metastasis) via an RTK pathway or the like, or may lead to changes in the shape of the cells (which has been demonstrated in C. elegans body muscle). Applications for such inhibitors and/or enhancers are envisaged in a wide variety of pathologies in which the RTK pathways play a central role, including oncogenesis, psoriasis, cell migration (metastasis), neuronal regeneration/degeneration and immunological disorders among others.

The identification of the biochemical function of the unc-53 gene (and UNC-53 pathway) in the RTK signal transduction pathway is novel and unexpected. No biological function has previously been linked to the unc-53 gene or UNC-53 protein, nor has any homology with any other nucleic acid sequence or gene been recognised.

An analysis of the predicted protein sequence of UNC-53 from the gene sequence thereof has revealed the following:

- (a) an N-terminal domain with homology to cortical actin binding proteins of the α -actinin and β -spectrin families (designated ABPII in Figure 11). Alignment of UNC-53 with the α -actinin and β -spectrin family of proteins is shown in Fig. 15.).
- (b) two putative actin binding sites of the LKK class (ABS1 and ABS2).
- (c) two polyproline rich sequences similar to the SH3 binding domains of the SOS family of signal transduction molecules (SH3 binding site) (Fig. 16).
- (d) a putative ATP/GTP nucleotide binding site having some of the additional features of the GTP

binding domain of RAS-like proteins (Dynamin, NBD).

5 (e) besides the N-terminal region of the protein, which is similar to actin binding proteins, the predicted protein sequence of UNC-53 identified two putative actin binding sites. The first borders on the 3' end of the region of α -actinin/ β -spectrin homology and the second lies in the 3' end of the cDNA sequence.

10 This suggests that UNC-53 could potentially bind two actin molecules and via actin cross linking, could stabilize a particular cell process to promote directional extension.

15 In addition, genetic evidence shows that alleles of unc-53 enhance the sex myoblast migration defect of sem-5 mutants. Sem-5 represents the C. elegans homologue of GRB2, the function of these proteins being assigned/attributed to their SH2 and SH3 domains (Clark et al., (1992) Nature 356, 340-344; Stern et 20 al., (1993), Molec. Biol. Cell, 4, 1175-1188). The current model regarding sem-5 function in the migration of sex myoblasts is that sem-5 transduces a signal received at the cell surface by egl-15, a receptor kinase of the fibroblast growth factor 25 family. Together, the genetic and molecular data suggest a role for UNC-53 in both signal transduction and actin binding. We have been able to demonstrate how UNC-53 might act to direct both growth cone rate and directionality. By binding directly to the actin 30 cytoskeleton, UNC-53 may stabilize and cross-link actin molecules (assuming a two actin binding site model) to promote directional growth cone extension. Alternatively, by binding actin, UNC-53 may convey a 35 signal to the cytoskeleton and then via an ATP/GTPase activity transduce the signal to downstream targets. To test these models, biochemical experiments were

conducted to determine if any of the sequence
similarities observed represented functional domains
(see examples 2 to 5). Transgenic analysis as
described in examples 6 to 8 support this proposed
model.

As described above, the unc-53 gene from
C. elegans has been previously identified. However,
cDNA sequences substantially corresponding to unc-53
genomic exon sequences of C. elegans or fragments or
derivatives thereof have never been previously
disclosed. The present inventors have advantageously
identified two unc-53 cDNA clones which have been
designated as the 7A and 8A clones. The two clones
differ in the number of Adenosine(A) residues (7 or 8)
in a poly A stretch of the 3' coding region.
Therefore, the two clones have different reading
frames in the carboxyterminal coding region.

Therefore according to one aspect of the present
invention there is provided a cDNA encoding an UNC-53
protein of C. elegans or a functional equivalent
derivative or bioprecursor of said protein which cDNA
comprises at least from nucleotide position 431 to
nucleotide position 4647 or alternatively to the 3'
poly-A region of the sequence shown in Figure 1. More
preferably the cDNA comprises at least from nucleotide
position 64 to nucleotide position 4647 or to the 3'
poly-A region of the sequence as shown in Figure 1.
This cDNA is comprised in the 8A clone having 8A
residues in a poly A stretch of the 3' coding region
as shown in Figure 1.

In an alternative embodiment of this aspect of
the invention the cDNA comprises at least from
nucleotide position 431 to nucleotide position 4812 or
alternatively to the 3' poly-A region of the sequence
shown in Figure 2 and more preferably at least from
position 64 to nucleotide position 4812 or the 3'

poly-A region of the sequence shown in Figure 2. This cDNA according to the invention comprises the 7A clone, having only 7 Adenine residues in the poly A stretch of the 3' coding region as shown in the 5 nucleotide sequence of Figure 2 page 8. Each of the cDNA clones according to the invention, may be included in an expression vector which vector may itself be used to transform or transfect a host cell which may be bacterial, animal or plant in origin.

10 Thus, advantageously, once the cDNA corresponding to the unc-53 genome is synthesised using for example reverse transcriptase or the like, a range of cells, tissues or organisms may be transfected following incorporation of the selected cDNA clone into an 15 appropriate expression vector.

The present invention therefore, also further comprises a transgenic cell, tissue or organism comprising a transgene capable of expressing UNC-53 protein of C. elegans or a functional equivalent, 20 fragment, derivative or bioprecursor thereof. The term "transgene capable of expressing UNC-53 protein" as used herein means a suitable nucleic acid sequence which leads to the expression of an UNC-53 protein having the same function and/or activity. The 25 transgene may include for example genomic nucleic acid isolated from C. elegans or synthetic nucleic acid or alternatively any of the cDNA clones as described above.

The term "transgenic organism, tissue or cell" as 30 used herein means any suitable organism and/or part of an organism, tissue or cell that contains exogenous nucleic acid either stably integrated in the genome or in an extra chromosomal state.

Preferably, the transgenic cell comprises either 35 a C. elegans cell, an N4 neuroblastoma cell or an MCF-7 breast carcinoma cell. The transgenic organism may

be C. elegans itself, or alternatively may be an insect, a non-human animal or a plant. Preferably the unc-53 transgene comprises the unc-53 gene or a functional fragment thereof. The term "functional fragment" as used herein should be taken to mean a fragment of an UNC-53 gene which encodes an UNC-53 protein or a functional equivalent or bioprecursor of the protein. For example the gene may comprise deletions or mutations but may still encode a functional UNC-53 protein.

Reference to "tissue or tissue culture" for the purpose of the present invention should be taken to mean such a mutant cell which has been grown in such a culture. Further provided by the present invention is a mutant C. elegans organism which comprises an induced mutation, such as a point mutation in the wild-type unc-53 gene and which mutation affects the regulation of cell motility or shape or the direction of cell migration. Such mutations may be introduced using changes in the cDNA corresponding to qualitative, quantitative direct and indirect changes in the genomic make up.

The term "mutant organism" used herein means any suitable organism that contains genetic information which has been induced to mutate and is thus altered from the wild-type. Therefore naturally occurring mutations in the wild-type organism are not within the scope of this term.

The present invention further comprises an UNC-53 protein or a functional equivalent or fragment thereof, which protein may be encoded by a cDNA according to the invention, and which protein has the amino acid sequence shown in Figure 4 from amino acid position 135 to amino acid position 1528; this corresponds to the 8A clone. More preferably the UNC-53 protein, when encoded by a cDNA according to the

invention, comprises the amino acid sequence shown in Figure 4. In another aspect of the invention the protein comprises an UNC-53 protein or a functional equivalent, fragment or bioprecursor of the protein
5 which comprises the sequence of from amino acid position 135 to amino acid position 1583 of the amino-acid sequence shown in Figure 6. Preferably, the UNC-53 protein when encoded by a cDNA in accordance with the invention has the amino acid sequence shown in
10 Figure 6.

The UNC-53 protein of C. elegans or a functional equivalent, fragment or bioprecursor of the UNC-53 protein, may advantageously be used as a medicament to promote neuronal regeneration, revascularisation or wound healing or the treatment of chronic neuro-degenerative disorders or acute traumatic injuries. Similarly, the UNC-53 protein produced by the transgenic cells, tissue or organisms according to the invention may also be used in the preparation of a
15 medicament for treatment of the conditions as described above.

Furthermore, in an alternative embodiment of the invention the nucleic acid sequence itself encoding an UNC-53 protein of C. elegans or a functional equivalent, fragment or bioprecursor of the protein may also be used as a medicament or, alternatively in the preparation of a medicament, to promote neuronal regeneration, vascularisation or wound healing or for treatment of chronic neuro-degenerative diseases or acute traumatic injuries. Typically neurological conditions which may be treated by either an UNC-53 protein or a functional equivalent thereof, or a nucleic acid according to the invention, comprise peripheral nerve regeneration after trauma; recovery of function of the spinal cord after spinal cord trauma or peripheral neuropathies. Similarly neuro-

d generation diseases which may be treated include Alzheimers disease or Huntingdons disease. Acute traumatic injuries such as stroke, head trauma or haemorrhages may also advantageously be treated.

5 The nucleic acid sequence according to the invention may comprise a cDNA sequence according to the invention as described above or alternatively may be genomic DNA derived from C. elegans.

10 The UNC-53 protein of C. elegans, or a functional equivalent, fragment or bioprecursor of said protein may be incorporated into a pharmaceutically acceptable composition together with a suitable carrier, diluent or an excipient therefor. The pharmaceutical composition may advantageously comprise, additionally or alternatively to the UNC-53 protein according to 15 the invention, the nucleic acid sequence according to the invention as defined above.

20 The present invention also provides for a method of determining whether a compound is an inhibitor or an enhancer of the regulation of cell shape or motility or the direction of cell migration in a transgenic cell, tissue or organism according to the invention as described herein. The method preferably comprises contacting the compound with a transgenic 25 cell, tissue or organism according to the invention as described above, and screening for a phenotypic change in the cell, tissue or organism. Preferably the compound comprises an inhibitor or enhancer of a protein of the signal transduction pathway of the 30 cell, tissue or organism of which UNC-53 is a component or is an inhibitor or enhancer of a parallel or redundant signal transduction pathway. Such enhancers or inhibitors are defined by particular phenotypic changes in the transgenic cell, tissue or 35 organism, for example changes in cell shape or mobility or the direction of cell migration.

Preferably the compound is an inhibitor or an enhancer of the activity of UNC-53 protein of C. elegans or a functional equivalent, derivative or bioprecursor thereof, which protein is expressed in the transgenic 5 cell, tissue or organism as defined herein.

Preferably the phenotypic change to be screened comprises a change in cell shape or a change in cell motility. Where a transgenic cell is used in accordance with one embodiment of the method of the 10 invention, an N4 neuroblastoma cell may be used and in such an embodiment the phenotypic change to be screened may be the length of neurite growth or changes in filopodia outgrowth or alternatively changes in ruffling behaviour or cell adhesion. In an 15 alternative embodiment of the method of the invention, the transgenic cell may comprise an MCF-7 breast carcinoma cell. Typically in such an embodiment the phenotypic change to be screened comprises the extent of phagokinesis. The method according to the 20 invention, may also utilise a mutant cell or mutant organism according to the invention as described above, where the mutant cell is capable of growing in tissue culture and either of which cell or organism has a mutation in the wild-type unc-53 gene.

In accordance with the present invention, a "phenotypic change", may be any phenotype resulting from changes at any suitable point in the life cycle of the cell, tissue or organism defined above, which change can be attributed to the expression of the 25 transgene such as for example, growth, viability, morphology, behaviour, movement, cell migration or cell process or growth cone extension of cells and includes changes in body shape, locomotion, chemotaxis, mating behaviour or the like. The 30 phenotypic change may preferably be monitored directly by visual inspection or alternatively by for example 35

measuring indicators of viability including endogenous or transgenically introduced histochemical markers or other reporter genes, such as for example β -galactosidase.

5 A compound which is identifiable by the method according to the invention as described above, as an enhancer of the regulation of cell shape or motility or the direction of cell migration in C. elegans may be used as a medicament, or alternatively in the
10 preparation of a medicament, for promoting neuronal regeneration, revascularisation or wound healing, or for treatment of chronic neuro-degenerative diseases or acute traumatic injuries. Examples of promoting neuronal regeneration include for example peripheral
15 nerve regeneration after trauma and spinal cord trauma.

Where a compound is identified in accordance with the method described above as being an inhibitor of the regulation of cell shape, the compound may be used
20 as a medicament, or in the preparation of a medicament, for substantially alleviating spread of disease inducing cells, such as in spread of cancers, or the like in metastasis. Advantageously, any of the compounds which may have been identified as an
25 inhibitor or an enhancer in accordance with the method as described above, may also be included in a pharmaceutically acceptable formulation comprising the respective compound and an acceptable carrier, diluent or excipient therefor.

30 The particular mechanism of action of a compound identified as either an inhibitor or an enhancer of the cell motility or direction of cell migration is not limiting preferably the compound acts as an inhibitor or enhancer of a signal transduction pathway downstream. The compound may also act on parallel
35 pathway or on the UNC-53 protein of C. elegans. For

example, the method of action of the compound may include direct interaction with UNC-53 protein, interaction with processes for regulating phosphorylation of UNC-53 or for processes regulating 5 activity of an unc-53 gene or for processes for post-transcriptional or post-translational modification or the like.

Preferably the compound is identified by the 10 method according to the invention as an inhibitor or an enhancer, by utilising differences of phenotype of the cell, tissue or organism, which are visible to the eye. Alternatively indicators of viability including endogenous or transgenically introduced histochemical markers or a reporter gene may be used.

According to a further aspect of the invention 15 there is also provided a transgenic cell or tissue culture which has been constructed to comprise a promoter sequence of an unc-53 gene of C. elegans or a functional fragment thereof, fused to a nucleic acid sequence encoding a reporter molecule. Preferably, 20 the reporter sequence encoding the reporter molecule encodes for a detectable protein, for example one which may be monitored by eye inspection such as antibiotic resistance, β -galactosidase or a molecule 25 detectable by spectrophotometric, spectrofluorometric, luminescent or radioactive assays. Preferably the reporter molecule is green fluorescent protein (GFP), which advantageously allows inhibition or enhancement 30 of the UNC-53 protein according to the invention to be monitored visually.

The present invention also provides a method of determining whether a compound is an inhibitor or an enhancer of transcription of a an unc-53 gene in C. elegans, or a functional fragment thereof, which 35 method comprises the steps of:

(a) contacting said compound with a transgenic

cell according to the further aspect of the invention as described above,

5 (b) monitoring the reporter molecule and comparing results obtained from this monitoring step with a control comprising a transgenic cell having the promoter sequence of an unc-53 gene, or a functional fragment thereof and the reporter molecule, in the absence of the compound.

10 In one embodiment of the method according to the invention the reporter molecule may comprise messenger RNA. Alternatively the reporter molecule may be green fluorescent protein (GFP).

15 A compound identified as an inhibitor or enhancer of transcription of the unc-53 gene or a fragment thereof may also be used as a medicament, or in the preparation of a medicament, for promoting neuronal regeneration, revascularisation or wound healing, or for treatment of chronic neuro-degenerative diseases or acute traumatic injuries. Furthermore, such 20 compounds may be included in a pharmaceutical formulation including a carrier, diluent or excipient therefor.

25 The present invention also provides a kit for determining whether a compound is an enhancer or an inhibitor of the regulation of cell motility or shape or the direction of cell migration, which kit comprises at least a plurality of transgenic or mutant cells according to the invention as described above and a plurality of wild-type cells of the same cell 30 type or cell line or tissue culture.

Also provided by the present invention is a kit for determining whether a compound is an inhibitor or an enhancer of transcription of an unc-53 gene of C. elegans or a functional fragment thereof, which 35 comprises at least a plurality of transgenic cells as described above and means for monitoring the reporter

molecule.

For the purposes of the present invention, the term "unc-53 gene or a functional fragment thereof" includes the nucleic acid sequence shown in Figure 1 or a fragment thereof, including the differentially spliced isoforms and transcriptional start of the unc-53 gene sequence and which sequence encodes an UNC-53 protein or a functional equivalent, derivative, fragment or bioprecursor of the protein.

The present invention also provides an oligonucleotide probe which comprises the carboxy-terminal 1.5 kb of the coding nucleic acid sequence shown in Figure 1 or a fragment thereof comprising not less than 15 base pairs. In addition, the present invention provides a further oligonucleotide probe comprising a nucleic acid sequence encoding the amino acid sequence as numbered 1 to 10 and 14 to 133, 487 to 495, 537 to 545, 1032 to 1037, 1097 to 1116 or 1300 to 1307, as shown in Figure 3 or a fragment thereof comprising between 18 and 24 base pairs. The oligonucleotide probes described above may also be advantageously be labelled for detection.

The present invention also provides methods of identifying C. elegans genes or fragments thereof, which encode proteins which are active in the signal transduction pathway of which UNC-53 is a component and which are homologues of UNC-53. A preferred method comprises hybridizing to a C. elegans cDNA library an oligonucleotide probe according to the invention as described above, under appropriate conditions or stringency in order to identify genes having statistically significant homology with the cDNA clones of any one of the cDNA sequences according to the invention described above.

Furthermore, there is also provided by the present invention a method of identifying a protein

which is active in the signal transduction pathway of a cell. According to this aspect of the invention, the method comprises;

- 5 (a) contacting an extract of said cell with an antibody to the UNC-53 protein or a functional equivalent, fragment or bioprecursor thereof,
- (b) identifying the antibody/UNC-53 complex, and
- (c) analysing the complex to identify any protein bound to the UNC-53 protein other than

10 the antibody.

The UNC-53 protein, therefore may bind regions of other proteins involved in the signal transduction pathway. It is also possible to sequentially identify a whole range of proteins involved in the signal 15 transduction pathway. This aspect of the invention, further comprises a method of identifying a further protein or proteins which are active in the signal transduction pathway of a cell which method comprises:

- 20 (a) forming an antibody to the identified protein bound to the UNC-53 protein in the method as described above,
- (b) contacting a cell extract of C. elegans with the antibody,
- (c) identifying the antibody/protein complex,
- 25 (d) analysing the complex to identify any further protein bound to the first protein other than the antibody, and
- (e) optionally repeating steps (a) to (d) to identify further proteins in the pathway.

30 According to this aspect of the present invention, the antibody, which is preferably a monoclonal antibody, such as for example monoclonal antibody designated as 16-48-2, starts the process by binding to the UNC-53 protein or a functional 35 equivalent thereof in the signal transduction pathway. Any other proteins found complexed to the bound

antibody or UNC-53 protein can then be used to identify further interacting proteins involved in the pathway.

It may also be possible to identify proteins 5 involved in the signal transduction of a cell by using UNC-53 protein of C. elegans. According to this aspect of the invention the method comprises:

- (a) contacting an extract of the cell with the UNC-53 protein of C. elegans or a functional equivalent, fragment or bioprecursor of said UNC-53 protein 10
- (b) identifying the UNC-53 protein/protein complex and
- (c) analysing the complex to identify any protein bound to the UNC-53 protein other than another UNC-53 protein 15

This method can also advantageously be used to 20 identify further proteins in a signal transduction pathway of a cell by contacting an extract of the cell used as described above, with any protein identified from step (c) above not being an UNC-53 protein and 25 repeating steps (b) and (c).

Other methods which may be used for identifying 30 proteins in a signal transduction pathway of a cell may comprise for example a western blot overlay method which method is well known to those skilled in the art. Cell extracts are run on SDS-gels to separate out protein and subsequently blotted onto a nylon membrane. These membranes may then be incubated, for example in a medium containing UNC-53 with a biotin 35 label thereon and any protein conjugates visualised

with a streptavidin-alkaline phosphatase conjugated antibody.

The present invention also advantageously provides a process for the preparation of binding antibodies which recognise proteins or fragments thereof involved in the rate and direction of cell migration or the control of cell shape, for the above methods. Preferably the antibody is monoclonal antibody and more preferably monoclonal antibody 16-48-2.

The monoclonal antibody for binding to UNC-53 (or its functional equivalent) may be prepared by known techniques as described by Kohler R. and Milstein C., 1975) Nature 256, 495 to 497.

Another method which may be used to identify proteins involved in the signal transduction pathway involves investigating protein-protein interactions using the two-hybrid vector method. This method, which is well known to those skilled in the art, utilises the properties of the GAL4 protein in yeast. GAL4 is a transcriptional activator of galactose metabolism in yeast and has a separate domain for binding to activators upstream of the galactose metabolising genes as well as a protein binding domain. Nucleotide vectors may be constructed, one of which comprises the nucleotide residues encoding the DNA binding domain of GAL4. These binding domain residues may be fused to a known protein encoding sequence, such as for example unc-53. The other vector comprises the residues encoding the protein binding domain of GAL4. These residues are fused to residues encoding a test protein, preferably from the signal transduction pathway of C. elegans. Any interaction between the UNC-53 protein and the protein to be tested leads to transcriptional activation of a

reporter molecule in a GAL-4 transcription deficient yeast cell into which the vectors have been transformed. Preferably, a reporter molecule such as β -galactosidase is activated upon restoration of transcription of the yeast galactose metabolism genes. This method enables any interactions between proteins involved in the signal transduction pathway to be investigated.

Any proteins identified in the signal transduction pathway of the cell, which may be for example a mammalian cell, may also be included in a pharmaceutical composition together with a carrier, diluent or excipient therefor.

The present invention also provides a process for producing an UNC-53 protein of C. elegans or a functional equivalent, fragment, or derivative of the protein, which process comprises culturing the cells transformed or transfected with a cDNA expression vector having any of the cDNA sequences according to the invention as described above, and recovering the expressed UNC-53 protein. The cell may advantageously be a bacterial, animal, insect or plant cell.

A particularly preferred process for producing UNC-53 protein comprises using insect cells.

Accordingly, the invention provides a process for producing an UNC-53 protein of C. elegans or a functional equivalent, fragment, derivative or bioprecursor of the UNC-53 protein, which process comprises culturing an insect cell transfected with a recombinant Baculovirus vector, said vector comprising a nucleotide vector encoding the UNC-53 protein or a functional equivalent, fragment or bioprecursor thereof downstream of the Baculovirus polyhedrin promoter and recovering the expressed UNC-53 protein. Advantageously, this method produces large amounts of protein for recovery. The insect cell may be from for

example Spodoptera frugiperda or Drosophila Melanogester.

In accordance with the present invention, a defined nucleic acid sequence includes not only the identical nucleic acid but also any minor base variations from the natural nucleic acid sequence including in particular, substitutions in bases which result in a synonymous codon (a different codon specifying the same amino acid), due to the degenerate code in conservative amino acid substitution. The term "nucleic acid sequence" also includes the complimentary sequence to any single stranded sequence given which includes the definition above regarding base variations.

Furthermore, a defined protein, polypeptide or amino acid sequence according to the invention, includes not only the identical amino acid sequence but also minor amino acid variations from the natural amino acid sequence including conservative amino acid replacements (a replacement by an amino acid that is related in its side chains). Also included are amino acid sequences which vary from the natural amino acid but result in a polypeptide which is immunologically identical or similar to the polypeptide encoded by the naturally occurring sequence. Such polypeptides may be encoded by a corresponding nucleic acid sequence.

The invention may be more clearly understood from the following description with reference to the accompanying drawings and photographs, in which

Fig. 1 shows one strand of the C. elegans unc-53 mRNA translated into DNA (U to T) (5073 bases) which corresponds to the 8A clone variant encoding the corresponding 8A protein shown in Figure 3.

Designations "TB" are positions onto which SL1 transsplices have been identified at the 5' end of the sequence. Different mRNAs which differ in their 5'

end therefore exist. Potential start methionines are double underlined (M). Restriction endonuclease sites are indicated. A region of 8 sequential A bases at positions 4594 to 4601 is underlined. This region 5 differs from the corresponding region of the known sequence in the database (F45E10.1) by having 8 rather than 7 A'denine (A) bases resulting in a frame shift (see Fig 15) and corresponds to the 7A form of the protein. The nucleic acid sequence from the database 10 is also included in the nucleic acid sequences of the present application for reference only.

Fig. 2 shows a comparison of the sequences of the 7A and 8A clones of Figure 1.

Fig. 3 shows the predicted C. elegans amino acid 15 UNC-53 sequence corresponding to the nucleic acid sequence of the 8A clone shown numbered from 1 to 1528. Again, potential start methionines are double underlined (M). Designations "tb" are regions for PCR 20 clones to identify PCR products. Other regions of interest are identified. The region indicated as S4 is part of a lambda clone - 16.8 kb of the UNC-53 nucleic acid. This sequence, when translated is part 25 only of the UNC-53 protein. Yet, injection of this part gives transformation rescue in organisms, i.e. providing additional evidence for the existence of shorter forms of the protein.

Fig. 4 shows the predicted C. elegans amino acid sequences of Figure 3 in the three letter code for indicating amino acids.

Fig. 5 shows the predicted C. elegans amino acid 30 sequence UNC-53 sequence corresponding to the nucleic acid sequence of the 7A clone of Figure 2 shown numbered from 1 to 1583.

Fig. 6 shows the amino acid sequence of Figure 5 35 in the corresponding three letter code format for indicating amino acids.

Fig. 7 shows sequences of low complexity of the amino acid sequence of the corresponding nucleic acid sequence of the 8A clone of Fig. 3 identified with the filter and SEG algorithms of the BLAST sequence homology package. Regions of low complexity are indicated by "X" for the first copy of the sequence and by underlined amino acids for the second copy.

Fig. 8 shows, schematically, the known branches of the highly conserved Receptor Tyrosine Kinase/GRB2 signal transduction pathway including UNC-53.

Fig. 9 shows, schematically, the differences in cells with increased and decreased UNC-53 expression from the wild type.

Fig. 10 is a graph of the effect of anterior-posterior signal strength on growth cone extension rate of *C. elegans* organisms, with increased and decreased UNC-53 expression from the wild type. This graph translates the observation that UNC-53 acts in a dosage-dependent way to direct the rate of extension in the anterior/posterior axis into a model. The signal received e.g. (egl-15) is an RTK mediated signal which is postulated to be received by UNC-53 and which results in extension in the anterior/posterior axis. The graph shows an allelic series of organisms with a graded reduction in extension from increased UNC-53 expression down through wild type to a reduced UNC-53 expression. The prediction is thus: for the same level of RTK mediated signal the increased/decreased growth in the anterior/posterior axis depends on the level of expression of UNC-53 in any organism. The graph also reflects the prediction that for organisms with a particular level of UNC-53 overexpression there is no requirement for a signal before growth cone extension occurs. This extension is likely to be in a random direction or influenced by alternative factors.

Fig. 11 shows constructs of unc-53 nucleic acid including identified functional domains .

Fig. 12 shows 5' amino terminus of the cDNA encoding from the first methionine amino acid through the actin binding protein homology domain (amino acids 1-133 from Fig. 1) and oligonucleotides designated oligo BG01, BG02 and BG03 (amplification strategies of amino terminus of the unc-53 cDNA). Combinations of oligo BG02 with either oligo BG02 or BG03 were used to amplify the 5' terminus of the cDNA from the first methionine through the actin binding protein homology domain (amino acids 1-133). All of the oligonucleotides are underlined and sequences identical to the cDNA are shown in upper-case. In addition to unc-53 sequence, oligo BG02 contains a stop codon and the recognition sequence for BamHI endonuclease. Oligo BG01 has engineered EcoRI and NdeI recognition sites for inclusion in bacterial expression vectors. Both constructs remove the 5' untranslated region of unc-53 and oligo BG03 contains a NotI cleavage site. Oligo BG03 has an improved ribosome binding site similar to mammalian ribosome binding sites. Use of BG03 in PCR thus results in constructs optimised for mammalian expression.

Figure 13 shows, schematically, constructs of the plasmids pTB109, pTB110, pTB111 and pTB112.

Fig. 14(a) shows a summary of transcript starts at the 5' end of the unc-53 gene. Different identified transcript starts and corresponding in-frame ATG-codons are marked. Tab2 is the oligo from within cDNA M5 which was used in RT PCR experiment to identify/isolate the 5' ends of different UNC-53 mRNAs.

Figure 14(b) shows the location of the different transcript starts on the genomic DNA and the position of the S4 Lambda clone with respect to genomic DNA.

Figure 14(c) shows the sequence near the 5' and 3' ends of the lambda S4 clone, identifying its composition corresponding to the 5' and at position 2260 of comid COGHIO and the 3' end of F45R10 at 5 position 3287.

Fig. 15 shows the alignment of UNC-53 protein with the carboxytermini of the α -actinin and β -spectrin family (QY is UNC-53).

Fig. 16 shows the predicted actin binding sites of 10 UNC-53. The comparison shows internal LKK repeats.

Fig. 17 shows the alignment of the candidate SH3 binding sites in UNC-53 with known SH3 sites of other named proteins. Proteins at positions 4 and 7 are critical for binding into SH3 pockets.

Fig. 18 shows the alignment of the predicted amino acid sequences from F45E10.1 (available in public database) with UNC-53. The different identified amino acid is shown at position 1186. The frameshift which results in the different amino acid 20 sequence from position 1513 is a result of the different number of adenine bases in the nucleic acid sequence (see Fig. 1).

Fig. 19 is a series of photographs of C. elegans embryos (strain TB4Ex25 (Table 1) [UNC-53-UNC-54 construct]). The photographs show increased outgrowth 25 in the anterior-posterior axis of body wall cells in the C. elegans embryos which overexpress UNC-53 (immunofluorescence with UNC-53 mab 16-48-2) Individual photographs are as follows:

- 30 A: early embryo comma stage
- B: 1.5 fold stage embryo
- C: 3 fold stage embryo, first plane of focus
- D: 3 fold stage embryo, second plane of focus
- E: 3 fold stage, mosaic animal, 3-cells in a quadrant giving expression.

35 This demonstrates that immunofluorescence

provides a measure of the expression in the transgenic lines of UNC-53.

Fig. 20A is a photograph of *C. elegans* embryo containing DNA construct pTB110 (strain TBAIn76(table 1)). Shown is expression of UNC-53 following heat shock.

Fig. 20B and C are photographs of *C. elegans* embryos containing DNA construct pTB111 (strain TB1Ex6 (table 1)). Shown is transgenic expression of UNC-53 in mechano-sensory neurons.

Fig. 21 shows photographs of the following:

- A: A wild-type UNC-53 L1 larva of genotype 4-25 (strain TB4Ex25) as in photographs 19B, C and D.
- B: L1 larva of 4-25 with morphological defects associated with muscle abnormalities.
- C: Lethal phenotype of 4-25.
- D: L1 larva of 4-25 showing misshapen animal and muscle cells with increased extensions. Also shows constipation problems associated with abnormal muscle pattern.
- E: L1 larva of the heat-shock line TBAIn76 (table 1) exhibiting morphological abnormalities following heat shock and recovery.
- F: L1 larva of line TBAIn76 (table 1) showing morphological defects in the pharynx.

All Figs. 19, 20 and 21 are Normarski optics of live embryos.

Fig. 22 is a map of plasmid pTB110 (tables 1 and 2) a heat shock promoter fusion, indicating restriction endonuclease sites.

Fig. 23 is a map of plasmid pTB112 (tables 1 and 2) a muscle specific UNC-54 fusion, indicating restriction endonuclease sites.

Fig. 24 is a map of plasmid pTB54 (the 8A clone variant) (tables 1 and 2). In the construction of this plasmid the complete unc-53 cDNA (tb3M5) of the

8A variant, including 5' and 3' UTRs was cloned as a NotI-ApaI fragment into the mammalian expression vector pcDNA3 (Invitrogen).

Figure 25 is a map of plasmid pTB72 (the construct encoding the 7A clone variant of UNC-53 cDNA of Figure 2).

Figure 26 is nucleotide sequence of the plasmid map of Figure 25.

Figure 27 is a map of plasmid pTB73.

Figure 28 is a nucleotide sequence of plasmid pTB73 of Figure 27.

Figure 29 is a map of plasmid pCB50.

Figure 30 is a nucleotide sequence of plasmid pCB50 of Figure 29.

Figure 31 is a map of plasmid pCB51.

Figure 32 is a nucleotide sequence of the plasmid pCB51 of Figure 31.

Figure 33 is a map of plasmid ppCB55.

Figure 34 is a nucleotide sequence of plasmid pCB55 of Figure 33.

Figure 35A illustrates a flowchart of the actin co-sedimentation assay. Soluble UNC53 protein was incubated with monomeric G-actin in a buffer containing ATP. Polymerization of G-actin to F-actin was induced by increasing the salt concentration to 100 mM. F-actin protein complexes were collected by centrifugation and analyzed by SDS-PAGE and fluorography.

Figure 35(B) illustrates the concentration series of the actin co-sedimentation assay. The full length UNC-53 encoding cDNA (pTB72) was transcribed and translated *in vitro* and co-sedimented with F-actin at a starting G-actin concentrations ranging from 0 to 250 mg/ml. See methods for details. S=supernatant after airfuging. P=pellet after airfuging.

Figure 35(C) illustrates both the full length

(pTB72) and amino terminal deleted UNC53 (pTB73) protein co-sediment with F-actin. Starting G-actin concentration was 500 mg/ml. S=supernatant, P=pellet, R= starting *in vitro* reaction.

5 Figure 36(A) is a flowchart of a SEM-5 binding experiment. The truncated UNC53 cDNA (pTB50) was transcribed and translated *in vitro* and incubated with SEM5-GST sepharose or GST sepharose. After four washes, the remaining proteins bound to the matrix 10 were analyzed by SDS-PAGE and fluorography.

15 Figure 36(B) illustrates an immunoprecipitation experiment of radioactively labelled UNC53 proteins from the TnT pTB50 reaction shows that monoclonal antibody 16-48-2 recognizes both the native (-SDS lanes) and denatured (+SDS) protein products *in vitro*.

15 c=control reaction without anti-UNC53 monoclonal antibody 16-48-2. ab=reaction with monoclonal antibody 16-48-2. See methods for details.

20 Figure 36(C) illustrates the results of SEM-5-GST binding experiments outlined in (a). *In vitro* translated UNC53 protein were analyzed by SDS-PAGE and fluorography. See methods for details.
sup=supernatant

25 Figure 36(D) illustrates a western blot overlay experiment of UNC-53 (construct pTB61) expressed in bacterial cells. Cell lysates were denatured in Laemmli buffer and the proteins separated by 5-25% gradient SDS-PAGE. The arrowhead indicates the presence of full length UNC-53 in the induced 30 bacterial lysate. Additional gels were blotted to nylon membrane, incubated with biotinylated GST or biotinylated GST-GRB2 protein and bound protein complexes subsequently detected with a streptavidin-alkaline phosphatase conjugated antibody. See methods 35 for details. U=uninduced bacterial cell lysate, I=induced bacterial cell lysate.

Figure 37 is a series of photographs of C. elegans which illustrates overexpression of UNC-53 in body muscle cells results in over-extension along the longitudinal axis. Transgenic C. elegans embryos carrying the construct pTB113 were analyzed for UNC-53 activity by immunohistochemistry with the 16-48-2 antibody. Starting from the photograph (a) of the top left panel of Figure 37.

(A) and (B) illustrate ectopic growth cone spikes (indicated by the arrowheads) are observed early in myogenesis in the comma stage embryo. (C) and (D) illustrate over-extension of muscle cells in the head region of a three fold embryo during outgrowth. (E) illustrates over-extension is clearly observed along the anterior-posterior axis (indicated by the arrowheads) of a late 3 fold embryo.

Figure 38 is a map of plasmid ptb113.

Figure 39 is a nucleotide sequence of the plasmid ptb113 of Figure 38.

Figure 40 illustrates neurite tree length and fraction positive cells enhancement in a transfected cell C9 compared to wild-type cells C0. Black bars indicate fraction positive cells whereas hatched bars indicate neurite tree length cells, as described in example 8.

Figure 41 illustrates the results obtained following application of compound (1-(1H-pyrrol-2-ylmethyl)-2-piperidinone) to N4 transfected cells. The dark coloured bars indicate fraction positive C0 clones whereas the hatched bars of the chart indicate fraction positive C9 clones.

The following sequence listings are referred to in the specification.

35

Sequence 1D No 1: is a nucleic acid sequence

corresponding to the 7A nucleic acid sequence variant of Figure 2.

5 Sequence 1D No 2: is a nucleic acid sequence corresponding to the 8A nucleic acid sequence variant of figure 1.

10 Sequence 1D No 3: is an amino acid sequence corresponding to the amino acid sequence of the 8A variant of figure 3.

Sequence 1D No 4: is an amino acid sequence corresponding to the amino acid sequence of the 7A variant of figure 2.

15 Sequence 1D No 5: is an amino acid corresponding to the amino acid sequence shown in figure 7.

20 Sequence 1D No 6: is a nucleic acid sequence of the oligo BG03 sequence of figure 12.

Sequence 1D No 7: nucleic acid sequence of the oligo BG01 sequence of figure 12.

25 Sequence 1D No 8: is a nucleic acid sequence of the oligo BG02 sequence of figure 12.

30 Sequence 1D No 9: is an amino acid sequence corresponding to the amino acid UNC-53(a) sequence shown in figure 17.

Sequence ID No 10: is an amino acid sequence corresponding to amino acid sequence of sequence (b) of UNC-53 shown in figure 17.

35 Sequence ID No 11: is an amino acid sequence

corresponding to the sequence (c) of an SOS shown in figure 17.

5 Sequence ID No 12: is an amino acid sequence corresponding to the sequence (d) of an SOS shown in figure 17.

10 Sequence ID No 13: is an amino acid sequence corresponding to the sequence (d) of an SOS shown in figure 17.

15 Sequence ID No 14: is an amino acid sequence corresponding to the sequence (f) of SOS 1359 shown in figure 17.

Sequence ID No 15: is an amino acid sequence corresponding to the sequence (g) of SOS 1377 shown in figure 17.

20 Sequence ID No 16: is an amino acid sequence corresponding to the sequence (h) of Dynamin shown in figure 17.

25 Sequence ID No 17: is an amino acid sequence corresponding to the sequence (i) of dynamin shown in figure 17.

30 Sequence ID No 18: is an amino acid sequence corresponding to the sequence (j) of PI3K p85 shown in figure 17.

35 Sequence ID No 19: is an amino acid sequence corresponding to the sequence (k) of P13k p85 shown in figure 17.

Sequence ID NO 20: is an amino acid sequence

corresponding to the sequence (l) of AFAP-110 shown in figure 17.

5 Sequence No 21: is an amino acid sequence corresponding to the sequence (m) of AFAP-110 shown in figure 17.

10 Sequence No 22: is an amino acid sequence corresponding to the sequence (n) of 3BP-1 shown in figure 17.

Sequence ID No 23: is an amino acid sequence corresponding to the sequence (o) of 3BP-1 shown in figure 17.

15 Sequence ID No 24: is an amino acid sequence which corresponds to the amino acid sequence from positions 106 to 133 of UNC-53 shown in figure 16.

20 Sequence ID No 25: is an amino acid sequence which corresponds to the amino acid sequence from positions 1093 to 1120 of UNC-53 shown in figure 16.

25 Sequence ID No 26: is a nucleotide sequence corresponding to the nucleotide sequence of ptB72 shown in figure 26.

30 Sequence ID No 27: is a nucleotide sequence corresponding to the nucleotide sequence of ptB73 shown in figure 28.

35 Sequence ID No 28: is a nucleotide sequence corresponding to the nucleotide sequence of pCB50 shown in figure 30.

Sequence ID No 29: is a nucleotide sequence

corresponding to the nucleotide sequence of pCB51 shown in figure 32.

5 Sequence ID No 30: is a nucleotide sequence corresponding to the sequence of pCB55 shown in figure 34.

10 Sequence ID No 31: is a nucleotide sequence corresponding to the nucleotide sequence of ptb113 shown in figure 39.

15 Sequence ID No 32: is an amino acid sequence corresponding to the amino acid sequence as numbered from amino acid 1 to 110 of the sequence figure 3.

Sequence ID No 33: is an amino acid sequence corresponding to the sequence as numbered from amino acid sequence 114 to 133 of the sequence of figure 3.

20 Sequence ID No 34: is an amino acid sequence corresponding to the sequence as numbered from amino acid sequence 487 to 495 of the sequence of figure 3.

25 Sequence ID No 35: is an amino acid sequence corresponding to the sequence as numbered from amino acid sequence 537 to 545 of the sequence of figure 3.

30 Sequence ID No 36: is an amino acid sequence corresponding to the sequence as numbered from amino acid sequence 1032 to 1037 of the sequence of figure 3.

35 Sequence ID No 37: is an amino acid sequence corresponding to the sequence as numbered from amino acid sequence 1097 to 1116 of the sequence of figure 3.

Sequence ID No 38: is an amino acid sequence corresponding to the sequence as number d from amino acid sequence 1300 to 1307 of the sequence shown in figure 3.

5

Sequence ID No 39: is an amino acid sequence corresponding to the amino acid sequence (a) of α -actinin (aact) shown in figure 15.

10 Sequence ID No 40: is an amino acid sequence corresponding to the amino acid sequence (b) of unc-53 shown in figure 15.

15 Sequence ID No 41: is an amino acid sequence corresponding to the amino acid sequence (c) of β -spectrin (spectrin) shown in figure 15.

20 Sequence ID No 42: is an amino acid sequence corresponding to the amino acid sequence (d) of α -actinin (aact) shown in figure 15.

Sequence ID No 43: is an amino acid sequence corresponding to the amino acid sequence (e) of UNC-53 shown in figure 15.

25

Sequence ID No 44: is a amino acid sequence corresponding to the amino acid sequence (f) of β -spectrin (spectrin) shown in figure 15.

30 Sequence ID No 45: is an amino acid sequence corresponding to the amino acid sequence (g) of α -actinin shown in figure 15.

35 Sequence ID No 46: is an amino acid sequence corresponding to the amino acid sequence (h) of UNC-53 shown in figure 15.

Sequence ID No 47: is an amino acid sequence corresponding to the amino acid sequence (I) of β -spectrin shown in figure 15.

5 Sequence ID No 48: is a nucleotide sequence corresponding to the nucleotide sequence of S4 lambda clone shown in figure 14(c).

10 The inventors have established a set of processes particularly in C. elegans to select for inhibitors or enhancers of UNC-53. This screen is based on transgenic or mutant organisms or cells in which we have introduced a nucleic acid sequence encoding UNC-
15 53 under the control of a specific promoter. In these organisms UNC-53 is over-stimulated as judged by increased extension of growth cones of muscle cells which over-express UNC-53 in C. elegans. This leads to a range of phenotypes in both embryonic and
20 postembryonic development (from death to defective morphology and motility). These phenotypes can be scored with simple means at high throughput. Similar results can be obtained with heat shock specific lines. The basis of our test for inhibitors of the
25 UNC-53 signal transduction pathway is reversal of this phenotype to an improved state of health.

We have constructed transgenic strains of C. elegans which over-express UNC-53 in body muscle. This results in increased extension of muscle cells and embryonic lethality (17 to 80% of transgenic organisms depending on the line used). These strains are used to directly screen for drugs which interfere with unc-53 genes, UNC-53 protein activity or any regulatory factor thereof to thereby suppress the background lethality.

35 Another process which may be used for selecting

inhibitors or enhancers of UNC-53 uses a constitutively active unc-53. This is achieved by mutating the nucleotide binding domain such that GTP or ATP is always bound or by covalently attaching SEM-
5 5. In this strategy, transgenics (tissue cultured cell lines, or organisms such as nematodes) are generated which maintain unc-53 in a higher endogenous level of activity. Over-extension and subsequent lethality results in a greater proportion than that
10 observed in the UNC-54/UNC-53 wild type lines. By screening for survivors after drug treatment, this assay specifically identifies inhibitors of downstream components in the signal transduction pathway.

Another process utilises an UNC-53 promoter. In this approach, an UNC-53 promoter is fused to a nucleic acid sequence encoding a reporter molecule, for example green fluorescent protein (GFP). Cells will glow when trans-acting factors bind to the promoter to activate transcription. By screening for cells which do not fluoresce, molecules which inhibit transcription of UNC-53 are identified.
20

The processes for selecting inhibitors and/or enhancers according to the invention are preferably carried out on whole animals. This can be done using
25 a C. elegans system. The advantages of these tests include:

- (1) The screening in a whole animal assay.
30 C. elegans is a complex multicellular organism with a full nervous system, digestive system, etc. Its anatomy and development has been described in extreme detail. It is one of the best-characterised higher organisms at the genetic, molecular, developmental and cell biological level. Any observed changes to phenotype can be checked against this database.
- 35 (2) To study effects on rate and directionality of cell migration and the change of cell shape it is

important to leave the cells under study in a setting where they are surrounded by the in vivo interacting tissues, cells and substrates for cell migration etc. This can be done using whole C. elegans subjects. A 5 situation has been created where the given pathway is over-stimulated leading to an easily scorable phenotype which can be reverted in any assay or process.

(3) The endpoint of the screen is the substantially 10 increased health of the organism. This permits the exclusion of non-specific and toxic compounds.

(4) A complete and specific inhibition of UNC-53 in 15 the transgenics will lead at the worst to the phenotype of an UNC-53 reduction or loss of function mutant which we have described, can recognise and have shown not to be essential for viability.

(5) The test can be adapted to make full use of the 20 advantages of the C. elegans model system such as the possibility to conduct the test chronically over several generations and the possibility to conduct the test in different genetic backgrounds, e.g. RTK constitutive or defective.

(6) C. elegans exhibits a complex set of wild type, 25 drug- and mutation-induced phenotypes such as changes in body shape, subtle changes in locomotion, mating behaviour, chemotaxis, pharyngeal pumping, egg laying behaviour, which can be used as part of a phenotype analysis or screen.

The results of C. elegans research described 30 herein has provided important breakthroughs in biomedical research fields such as programmed cell death, neuronal guidance, the Receptor Tyrosine Kinase/RAS signal transduction pathway, integrin/cell adhesion receptor signalling, etc..

35 The biochemical association of UNC-53 in the RTK signal transduction pathway enables identification of

genes or of biochemical pathways which are targets for pharmacologically or pharmaceutically active compounds and the development of high throughput and mode of action specific drug screens using wild type, mutant 5 and transgenic animal strains including, in particular, C. elegans.

Thus pharmacological manipulation of the UNC-53 pathway is now possible on the following rationale:

We have scientific arguments to expect C. elegans 10 UNC-53 to interact in vivo with the other components of RTK signal transduction pathways based on:
(1) The observation that C. elegans SEM-5 and GRB-2 are mutually exchangeable in vivo, combined with our observed in vitro binding of both GRB-2 and SEM-5 to 15 UNC-53. Thus, C. elegans UNC-53 will be able to interact with the activated GRB-2/RTK receptor in mammalian cells.

(2) UNC-53 interacts with the rabbit actin-cytoskeleton

20 Expression of C. elegans UNC-53 in mammalian cell lines represents a shortcut to develop pharmacological assays and screens to target this pathway. We have shown that over-expression of the C. elegans UNC-53 in C. elegans myoblasts leads to over-extension of these 25 cells in the anterior/posterior axis of the embryo and ultimate disorganisation of the muscle cell and myofilament pattern. (Over)-expression of C. elegans UNC-53 in a human cell line leads to a detectable change in phenotype, in particular increased motility 30 of cells, increased outgrowth of neurons and morphological changes in the elongation and cytoskeletal morphology of differentiating myotubes.

The C. elegans unc-53 Open Reading Frame (ORF) (with and without optimised Kozak consensus sequence) 35 of both 7A and 8A clone variants has been cloned between the CMV major intermediate early

promoter/enhancer and bovine growth hormone polyA signal sequence of expression vector pcDNA3 (Invitrogen). This vector is designed for high level stable and transient expression in most mammalian 5 cells.

The following additional considerations require mention:

(1) Genetic analysis of reduction in UNC-53 function and ectopic expression experiments suggest that UNC-53 acts in a highly dosage-dependent manner. As is the case for RAS, increased expression may lead to lowering the threshold of RTK-signal required for a given response or may remove the requirement for an activating signal to obtain a phenotype response (Fig 10). In addition UNC-53 is an unusually low abundance protein in wild type C. elegans. It is therefore likely to be necessary or useful to control the temporal and quantitative expression of UNC-53 in the proposed assay conditions in all organisms or cells to be assayed. The already available or a further optimised expression cassette is then cloned in expression vectors with IPTG-inducible or tetracycline-repressible promoters. It is realised that both the Lac and Tet expression systems are leaky. Additional other repressible/inducible expression systems (e.g. Mx promoter) or weak mammalian promoters might be preferred.

(2) Over-expression of the endocytosis controlling protein dynamin leads to phenotypes which are not associated with dynamin function in the cell but which are thought to be due to sequestration of the GRB-2 pool in the cell (GRB-2 is an adaptor for a variety of signal transduction pathways). Such sequestration is unlikely to lead to "positive effects" on the activity of the cell such as is observed in the presently described assay system (increased cell process

xtension or motility), see Fig 19. Based on the homology between UNC-53 and GTP-binding, we can also predict specific mutations in the nucleotide-binding pocket or the predicted effector region which should lead to loss of function. Sequence analysis of unc-53 alleles is instructive in determining which amino acids of UNC-53 are essential for function, e.g. as exemplified by the indication that an allele (n152) which has a differential effect on anterior versus posterior guidance has a deletion in a region of differential splicing. The differential splices of the *C. elegans* unc-53 gene encode different variants of the protein which independently affect posterior or anterior migration and/or cell specificity. One predicted exon in *C. elegans* unc-53 is indicated in Fig 1. It is conceivable that of two variants of the same protein one is inhibited or enhanced by a particular compound whereas the other is not (or to a lesser degree). Such a compound could then be used to control direction of migration or cell specificity by selective inhibition or enhancement.

(3) To develop pharmacological screens for inhibitors of a biochemical pathway a "gain of function" phenotype has been invented which can be expected to revert to wild type in the presence of specific inhibitors. Overexpression of UNC-53 in *C. elegans* myoblasts already leads to lethal subviable muscle phenotypes which can be easily scored with high throughput or a scorable heat shock inducible phenotype (Fig 21). They may form the basis for a pharmacological screen for inhibitors. A similar screen is obtained for over-expressing UNC-53 in mammalian cells. An alternative strategy is based on the homology to GTP binding proteins, RAS and dynamin and NTPases. We can introduce amino-acid changes in the nucleotide binding pocket which are

predicted/expected to lead to a constitutively activated or inactivated UNC-53. Similar changes are based on homologies with SOS, dynamin or ATP/GTP binding proteins from homology tables.

5 (4) Correct expression of UNC-53 in each cell line may be assessed by immunofluorescence and western blot analysis with the monoclonal antibody (mab) designated as 16-48-2.

10 The inventors have thus expressed and stably integrate the expression constructs in the neuronal, myoblast and 3T3 cell lines.

These cell lines are primarily used to:

- Assess the effect of UNC-53 expression on the morphology, motility, metastatic potential and growth cone extension of the cell lines.
- Produce protein and mRNA
- Screen for pharmacological compounds inhibiting observed UNC-53 mediated phenotypes
- Analyse signal transduction pathways associated with UNC-53 activation (for example, phosphorylation.)
- Immunofluorescence studies with mab 16-48-2 to assess changes in subcellular localisation following growth factor treatment.

25 Thus, the present invention provides for the identification of compounds which inhibit or enhance the UNC-53 signal transduction pathway. Such compounds can be used in the control of cell directional migration, motility and differentiation. These compounds are useful in the treatment of 30 oncogenesis, psoriasis, neuronal degeneration and cell migration (metastasis).

The present invention also provides the ability to identify nucleic acid sequences and proteins which are involved in the UNC-53 pathway in C. elegans.
35 Such nucleic acid sequences and proteins may be UNC-53 equivalents, members of an UNC-53 pathway or may be

nucleic acid sequences or proteins which interact in the UNC-53 pathway, for example as demonstrated by the GRB-2/SEM-5 proteins. This knowledge of the UNC-53 pathway in C. elegans can be established as can factors which influence the functioning of the pathway, for example, factors/proteins which feed into the pathway or are of a parallel pathway which at least, in vitro, compensates for steps in an UNC-53 pathway.

The identification of other components in the UNC-53 signal transduction pathway:

- (1) help to determine the interaction of UNC-53 with known signal transduction pathways (RAC-, RHO-, cdc42-RAS-pathway exchange factors, downstream or regulating kinases)
- (2) identify the new interacting proteins which may constitute additional potential pharmacological targets.
- (3) may assign functions to the more than 1000 amino acids of UNC-53 which have no homology to known proteins.

Accordingly, proteins which cross-react with anti-C. elegans UNC-53 protein antibodies can be isolated. The basic experiment protocol for purifying antigen-antibody complexes is described in Example 11. This system can also be used to identify factors which interact with proteins which bind to anti-UNC-53 C. elegans antibodies.

The following tissue sources may be used for immuno-precipitation:

- (1) Mammalian cells which exhibit a phenotype after transfection with unc-53 indicating that it interacts with vertebrate components of its signal transduction pathway.
- (2) UNC-53 protein may be too low abundance to make affinity purification from wild type C. elegans

5 feasible. The inventors have affinity-purified UNC-53 from already constructed transgenic C. elegans lines which express UNC-53 under control of the hsp-16 promoter and/or the myosin promoter. These experiments in C. elegans are justified because with the vast amount of sequence information (genomic and cDNA) available, one has a good chance of identifying the corresponding genes in the databases with a minimum of peptide sequence.

10 Several types of proteins may be expected to co-purify with UNC-53, including GRB-2 and other proteins with SH3 domains of the Grb2 class or phosphorylation sites, RTK-receptors, subunits of an UNC-53 homo-heterodimer complex, downstream regulating kinases or 15 proteins from the microfilament cytoskeleton.

20 This co-immuno-precipitation approach can also be used to dissect the order of events in this signal transduction pathway. For example: UNC-53 immuno-purified after stimulation of mammalian cell-lines with growth factors and pharmacological agents can 25 also be assayed with respect to its state of phosphorylation, or complex formation with interacting proteins.

30 Proteins interacting with specific UNC-53 domains are identified using a yeast two-hybrid system, whereby two sets of hybrid proteins are used to assay for functional restoration of the GAL4 transcriptional activator: the first consisting of a GAL4 activation domain/UNC-53 structural domain of unknown function, the second derived from a cDNA library cloned into an expression vector to generate a library of hybrid proteins containing a GAL4 DNA binding domain. The yeast two-hybrid system is well known in the art.

35 A set of unc-53-fusion constructs can be constructed, including a fusion to
(1) the full length protein,

- (2) the carboxyterminal domain (from second actin binding domain to th ATP/GTP binding domain),
(3) The aminoterminus (predicted cortical localisation domain up to the SH3 binding sites),
5 (4) a variety of overlapping constructs within the central domain of 1000 amino acids to which no function can as yet be assigned.

These are tested in yeast to exclude those which lead to activation of the reporter gene in the absence 10 of the cDNA-activator fusion. cDNA libraries were transformed into these reporter strains and positive clones identified. (In this strategy, screening of multiple libraries requires very little effort (transformation followed by plating on selective and 15 indicator medium)).

A preferred cDNA library is from cell lines in which a phenotypic change is observed following UNC-53 expression such as mouse N4 neuroblastoma cells or MCF-7 breast carcinoma cells. The yeast two hybrid 20 system can identify interacting proteins or "sections" of nucleic acid which may not be translated in vivo but which may inhibit UNC-53.

Candidate positives are tested for the fusion-protein dependence of the reporter gene activation. 25 The cDNA insert in remaining positive clones is sequenced. The obtained sequence is screened through the databases, which provides, especially in the case of C. elegans clones, significant extra sequence.

Another system also exists for the identification 30 of proteins which bind or modify UNC-53. An UNC-53 protein is bound by conventional techniques to a column. A sample to be tested is then passed over the column. This sample may be fractions from cells from C.elegans, mammals or any other organism. These 35 sample fractions may have been incubated with 32 ATP. In this course the "reaction" of the labelled fraction

with UNC-53 can be determined. If the UNC-53 on the column becomes ^{32}P phosphorylated then this indicates that the sample fraction contains an UNC-53 modifying protein. Alternatively a constituent of the sample may bind to the UNC-53 and remain bound therewith on the column. The retention of any fraction of the sample on the column and the identification of the fraction can easily be determined by techniques known in the art.

Example 9 describes the identification of sensitive, dependant or resistant mutations as direct tools for the development of screens for compounds with similar or antagonistic activities. Both resistant and sensitising mutations may have a phenotype in the absence of the compound and no or a different phenotype in the presence of the compound. This permits the introduction of action-specificity in the screens.

High throughput screens are a basic feature of C. elegans genetic methodology. Non-complementation screens for new alleles in a locus require setting up of up to 8000 separate worm populations starting from one hand-picked individual each. This is done in 24 well plates or small Petri-plates. These are subsequently (after 1 or 2 generations) visually screened for a complex behavioural phenotype. For pharmacological screens where populations can be started from multiple individuals pipetted from a pool of synchronised eggs, high throughput screens can also be developed. If the endpoint of the assay can be scored in liquid, populations can be set up in microtitreplates. If the end-point is linked to a reporter gene (e.g. β -galactosidase activity) ELISA type colour-metric assays can be used to score the end-point. C. elegans can also be introduced into soils, exposed to compounds and subsequently recovered

and assayed. Such endpoints are used in the heat-shock assay developed by Stressgen (Stringham & Candido (1994), Environ. Toxicology and Chemistry, 13(8), 1211-1220).

5 Gain of function mutants of C. elegans or transgenic C. elegans in which a pathway of interest has been over- or constitutively activated, causing a dominant phenotype which can be used to develop specific screens for inhibitors.

10 Transgenic lines expressing UNC-53 ectopically under the C. elegans heat-shock (hsp-16) promoter, and body wall muscle (unc-54) promoter have been constructed. These lines lead to dominant phenotypes in development and are used directly to screen a 15 spectrum of compounds. Where necessary or deemed useful endogenous C. elegans genes can be replaced by or complemented with human signal transduction pathways.

20

DEPOSITED CELL LINES AND PLASMIDS

	<u>STRAIN NAME</u>	<u>DATE OF DEPOSIT</u>	<u>LMBP ACCESSION NUMBER</u>
25	pTB54 Plasmid	22 MAY 1995	3296
	pTB112 Plasmid	22 MAY 1995	3295
30	pTB72	22 MAY 1996	3486
	TB4EX25 Cell Line	22 MAY 1995	1384 CB
35	TBAIn76 Cell Line	22 MAY 1995	1385 CB
40	HYBRIDOMA Cell Line	22 MAY 1995	1383 CB
	MCF-7 TRANSFECTED BREAST CARCINOMA		

	CELL LINE	24 MAY 1996	1550 CB
5	TRANSFECTED N4 NEUROBLASTOMA CELL LINE	24 MAY 1996	1549 CB
10	WILD TYPE MCF-7 BREAST CARCINOMA CELL LINE	24 MAY 1996	1551 CB

10 The above plasmids and cell-lines were deposited
at the Belgian Coordinated Collections of Micro
organisms (BCCM) at Laboratorium voor Moleculaire
15 Biologie - Plasmidencollective (LMBP) B-9000, Ghent,
Belgium, in accordance with the provisions of the
Budapest Treaty of 28 April 1977.

20 The present invention will now be described with
reference to the following Examples.

Examples

25 Example 1 - Molecular Characterisation of unc-53
gene in C. elegans
Screen for muscle pattern mutants :

30 C. elegans has two sets of muscles which are
suitable to study this problem, the body wall muscles
and the sex muscles. The sex muscles are a set of 16
35 muscle cells (4 muscle types) in the hermaphrodite and
41 cells in the male (10 muscle types) with distinct
attachments points on the hypodermis and gonads. The
sex muscles develop postembryonically and are not
required for viability. The body wall muscles are
arranged longitudinally (roughly 2 cells abreast) into
four quadrants. At birth there are 81 cells. In
postembryonic development, extra muscles interdigitate
with these bringing the total number of body wall

muscles in the hermaphrodite to 95. Head, neck and body muscles can be distinguished within these rows on the basis of their innervation and patterning within the rows.

5 We have screened 4800 haploid genomes using Nomarski and polarized microscopy for mutants with specific attachment or pattern defects in a subset of the male sex muscles but with wild type body wall muscle pattern and myofilament organization, wild
10 type movement and wild type male bursa anatomy (a sensitive indicator of wild type morphogenesis). Amongst the 21 identified mutants we selected for further study those with specific phenotypes in both the male and hermaphrodite sex muscles. As these
15 muscles lie in different regions of the animals this was thought to reduce the chance that the male tail phenotype is a pleiotropic consequence of changes in regional identity of the tail or defects in male tail hypodermal lineage or morphogenesis.
20

Muscle phenotype of e2432.

Mutant e2432 was isolated on the basis of its phenotype in the male spicule retractor muscles, a pair of bilaterally symmetrical muscles which attach
25 anteriorly to the body wall and posteriorly to the base of the spicules. The spicule retractors of mutant e2432 are shorter than wild type. Their attachment to the spicules is wild type, but their attachment point to the body wall is shifted posteriorly. The spicule
30 protractors sometimes extend processes onto the attachment point of the spicule retractors on the hypodermis, suggesting the defect is not in these attachment points, but rather in the extension of the muscles towards that point. The diagonal muscles are
35 in most specimens wild type but they are occasionally not parallel to one another or are have a dorsal

attachment point that is more ventrally positioned than in wild type. e2432 males have a nicely shaped fan with the normal pattern of rays, suggesting that the sex muscle defect is not pleiotropic due to defects in the hypodermis.

e2432 hermaphrodites have a reduced ability to lay eggs which is variable from animal to animal. This is due to a muscle pattern defect in the vulval sex muscles. The uterine muscles, 8 muscle cells which circle the hermaphrodite uterus, are wild type in e2432. The vulval muscles are a set of 4 pairs of cells arranged symmetrically in a cross-pattern around the vulval slit. Each pair consists of one vm1 and one vm2 muscle cell. The vm2 muscles attach to the junction between uterus and vulva and extend anteriorly to attach to the hypodermis in between two muscle cells of the ventral body wall muscle quadrant. In e2432 these muscles are shorter than in wild type small. In e2432 they can only be visualized by laser confocal microscopy (after FITC-phalloidin staining of the myofilaments). This showed that they attached to the uterus as in wild type, but that their attachment to the body wall is ectopic (in a random position lateral of the vulva, usually on the ventral edge of the muscle row). In e2432 vm2 myofilaments are oriented more dorsoventrally than in wild type (where their orientation is essentially in the longitudinal axis of the animal). This phenotype is not due to a defect in the attachment point on the epidermis to which these cells should attach in wild type, since we frequently observe that the vm1 sex muscles make an apparently wild type attachment to this unoccupied attachment point.

In wild type hermaphrodites, the vm1 muscle cells attach close to the junction between epidermis and vulva and in the adult extend dorsally and anteriorly

(under an angle of 45-50 degrees with respect of the vulval slit) to attach to the hypodermis at the dorsal edge of the ventral body wall muscle quadrants. In e2432 the attachment of the vml muscles to the vulva 5 is wild type. With their other end they attach, like wild type vml cells, along the dorsal of the edge of the ventral body wall muscles. However the angle between the vulval slit and the myofilaments of the vml sex muscles is reduced (less than 45 degrees) so 10 that their dorsal attachment point is closer to the vulva than in wild type. The forces acting on the vulva can be separated in an antero-posterior and a dorsal vector. In e2432, the antero-posterior vector 15 of both the vml and vm2 muscle is significantly reduced, leading to a reduced ability to open the vulva upon contraction. Studies in which vulval muscles were ablated individually or in groups suggested that 2 vulval muscle cells of wild type orientation are sufficient for wild type function.

20 Adult *C. elegans* hermaphrodites have 95 body wall muscle cells arranged longitudinally (roughly 2 cells abreast) into four quadrants. In wild type cells these cells are spindle shaped.

25 e2432 adults have body wall muscles with a wild type muscle cell and myofilament pattern, except that cells with interdigitating tips occur more frequently than in wild type. Like the unc-53 phenotype in the male and hermaphrodite sex muscles, this body wall muscle defect, which can also be observed in other 30 guidance and attachment mutants like unc-6 and mups, can also be attributed to a reduced ability to extend "growth cones" otherwise referred to as cell processes in the anterior-posterior axis of the animal.

35 Position on the genetic map :
e2432 was mapped to the left arm of chromosome II

and was found not to complement unc-53(e404). The unc-53 locus was originally identified by Brenner (1974), Genetics, 77, 71-94 as one of the uncoordinated mutants but has received only sporadic attention in general phenotypic surveys of the UNC-collection (Hedgecock *et al* (1987), Development, 100, 365-382 and Siddiqui (1990), Neurosci. Res. (Suppl) 13, 171-190, in a genome wide screen for egg laying defective mutants (Trent and Horvitz (1983), Genetics, 104, 619-647) and using e2432 as a tool to study the effect of body shape on the pattern of neuronal processes (Hekimi and Kershaw (1993), J. Neuroscience, 13(10) 4254-4271). We initiated a detailed genetic and phenotypic analysis of this locus using the existing available alleles which various colleagues isolated in different screens : The canonical unc-53 allele e404, a strong UNC was isolated by Sydney Brenner. Alleles n152, n166 and n1199 have been obtained in screens for egg laying defective mutants. Alleles NJ234 and NJ222 were isolated by Ed Hedgecock in a screen defective in excretory canal outgrowth. As these screens were aimed at isolating viable fertile alleles, we isolated additional alleles by pre-complementation screens designed to yield loss of function alleles irrespective of their phenotype. e2432/mnDf90 hermaphrodites are egl, weak unc's with a slightly stronger phenotype than e2432. Matings were set up on 3 cm petri dishes between 2 to 3 unc-53(e2432) sqt-1(sc13) /+ males and 2 e2431ts or dpy-6(e14) hermaphrodites mutagenized with EMS in the L4 stage (Brenner, 1974) , Genetics, 77 71-94. The F1 egl, unc-53 like hermaphrodites, which may be unc-53(e2432) sqt-1(sc13)/unc-53(new) were cloned on petri dishes and their offspring examined for the segregation of new unc-53 alleles. In two screens, two unc-53 alleles, 5 and 8 were isolated in an estimated 13000

F1 offspring, giving an approx. mutation rate 1/3250 mutagenized chromosomes. Sqt-1(sc13), an allele of sqt-1 that confers a roller phenotype was included because it is closely linked to unc-53 (0.2 m.u.) and 5 marks the original allele e2432. e2431ts, an X-linked ts larval lethal with a mup phenotype was included to eliminate F1 hermaphrodites arising from selfing and F1 males which can mate. In the second screen dpy-6(e14) was included to prevent F1 males from mating 10 with F1 hermaphrodites.

All unc-53 alleles used in this study fail to complement to e2432. Complementation was tested by mating unc-53(e2432) sqt-1(sc13)/+ males to hermaphrodites of the respective alleles. The male sex 15 muscle phenotype described above for e2432 was found to be the only 100% penetrant phenotype in the unc-53 locus (see below) and was the primary phenotype used in complementation tests. Each of these alleles was also complemented to mnDf90 by mating unc-4 20 mnDf90/mnC1 males to unc-53 homozygotes and temporary unc-53/unc-4 mnDf90 lines were established to evaluate the phenotype. The male and hermaphrodite phenotypes of all alleles over deficiency is identical or 25 slightly, but not substantially stronger than that of the homozygous lines (which is not unusual for a large deficiency).

S. Brenner mapped unc-53 to 2.9 +/- 0.7 map units from dpy-10 (chromosome II). We refined this map position by mapping unc-53 with respect to different 30 deficiencies in the region and doing three factor crosses between unc-4 and sqt-1, a 1.5 map unit interval. Unc-53(e2432)/+ males were mated in unc-4 sqt-1 hermaphrodites. Non-rolling F1 offspring were cloned on petriplates and their broods screened for 35 the segregation of unc-53(e2432). Unc-4 non sqt-1 and sqt-1 non unc-4 hermaphrodites were picked from those

plates and cloned on petriplates. 6 out of 42 sqt-1 non unc-4 recombinants segregated unc-53 and 3 out of 18 unc-4 non sqt-1 recombinants did not segregate unc-53. This yields a relative position of unc-4 / 51 / unc-53 / 9 / sqt-1. Or a calculated map position for unc-53 on chromosome II, 0.23 map units left of sqt-1.

Unc-53(e2432) was mapped relative to three deficiencies in the region mnDf90 mnDf87 and mnDf77 by mating e2432/+ males to unc-4 Dfx/mnC1 hermaphrodites and scoring for males and hermaphrodites with the unc-53 phenotype in the F1. The experiment was also performed by mating unc-4 mnDfx/mnC1 males to homozygous unc-53. mnDf87 and mnDf90 do not complement unc-53 while mnDf77 complements unc-53. ooc-3, the only other gene on the genetic map in the region, was found to complement unc-53 in identical crosses between e2432 and unc-4 ooc-3/mnC1. Further mapping of unc-53 relative to RFLPs between wt strains in the region and the molecular cloning confirmed the map position of unc-53 (see below).

Molecular characterization :

We started cloning the unc-53 locus because the study and interpretation of the unc-53 phenotype and the different mutants in the locus would be greatly facilitated by having information on and probes for the unc-53 mRNA and gene product.

At the time we initiated cloning of unc-53, a contig extending between unc-4 and sqt-1 (approx. 1500 kb) had been identified by A. Coulson and J. Sulston (*C. elegans* genome project LMB Cambridge), with no clone markers in between. To correlate the genetic map with the physical map in this region we positioned cosmids of this contig relative to the deficiencies mnDf77, mnDf87 and mnDf90 by comparing band intensities of Southern blots of mnDfx/mnC1 strains probed with

- 53 -

cosmids throughout the region. Cosmid KO2F7 is deleted in mnDf90 but not deleted in mnDf87 and mnDf77 thus identifying a leftmost location for unc-53. Cosmids W10G4, T08D11 and F33G3 are in the unc-53 region (not deleted in mnDf77 but deleted in mnDf87 and mnDf90). Cosmid KO4H9 is deleted in mnDf77 and identifies a rightmost location for the gene. The distance between KO2F7 and KO4H9 is approx. 10 cosmids.

To narrow down the position of unc-53 further we looked for restriction fragment length polymorphisms between wild type strains in this interval and identified N2/RC301 RFLPs in cosmids W10G4, F40F8 and F22G3. We mapped these using three factor crosses with the strains unc-53 sqt-1/RC301 and unc-4 unc-53/RC301. We mapped F22G3 and F40F8 between unc-53 and sqt-1 at the following relative distances : unc-4 / 9 / W10G4 / 2 / unc-53 / 1 / F40F8 / 1 / F22G3 / sqt-1.

These data localize unc-53 in an interval of approx. 80kb in which more than 15 differently overlapping cosmids are available. Pools of cosmids were injected in unc-53(n152) gonads together with the rol-6 selectable marker. Transient roller lines were established and scored for rescue of the unc-53 phenotype. Cosmid T28D2 was found to rescue the backward movement egg laying phenotypes of allele n152 .

A genomic library of N2 in lambda 2001 was screened with T28D2 and flanking overlapping cosmids. These were assayed in pools and individually for transformation rescue. Lambda clone, S4 carrying a sixteen kb insert was shown to give some rescue activity. Using restriction fragments of S4 as a probe, cDNA clones M5 (3.8 kb) and M18 (1-2 kb) were

isolated from a Lamda MGU1 cDNA library. Both M18 and M5 contain an identical 3'-end as judged by restriction fragment analysis. Partial sequence analysis showed that M18 is shorter version of M5.

5 Insert M5 was sequenced on both strands and was found not to be a poly-A tail at its 3'-end but appears not to full length at its 5'-end.

To find the 5' end of the unc-53 transcript we did nested PCR on L2 stage random primed cDNA, between 10 antisense oligos tab2 and tab (43 bp away from the 5' end of cDNA M5) and an oligo to the SL1 trans-spliced leader sequence. This sequence is transspliced to the 5'-end of most *C. elegans* mRNAs. This yielded at least 15 6 classes of PCR-fragments which have been subcloned and sequenced. All contain the 43 bp between oligo tab2 and the 5' end of cDNA M5 (bp1281 to 1338). The longest PCR fragment (TB3) extends the sequence of cDNA M5 with 1280 bp. When added to the length of the cDNA M5, this unc-53 transcript which we constructed 20 in vitro and named tb3-M5 would then be 5073 bp long (including some poly-A tail) and have a 1528 AA open reading frame. Recently a 5 kb cDNA, was identified in an embryonic cDNA library which has the TB3-5'-end 25 (including part of the SL1), and the same 3'-end as M5, suggesting that TB3-M5 occurs in vivo. Similar PCR reactions in which the SL1 oligo was replaced by an SL2 splice oligo gave no reaction products. Preliminary Northern blot analysis identifies a major 30 5.0 kb transcript and at least 2 smaller transcripts that are expressed in L2, L4 and adult worms. It needs to be examined whether the unc-53 5' ends reported here are made in vivo and encode different proteins or whether they represent PCR noise. The 35 smaller PCR-fragments TB1b, TB16, TB1, TB6b and TB22 are "nested deletions" of clone TB3 with SL1's at their 5' end. The sequence of each is identical in the

- 55 -

regions of overlap. The shorter SL1 transspliced transcripts contain ATGs downstream of the SL1 addition sites at positions 466, 988 and 1324. Comparison to the sequence of genomic clones confirmed 5 that the SL1s are spliced onto intron-exon boundaries. However not all intron-exon boundaries receive SL1, suggesting that there is some specificity to this differential trans-splicing.

Recently the *C. elegans* sequencing consortium has 10 sequenced cosmids F45E10. We mapped cDNA tb3-M5 onto these cosmids and found that unc-53 is an unusually large locus. It has 23 exons spread over more than 31 kb of genomic DNA.

The lambda clone S4 that rescues does not contain 15 the first 430 bp of the unc-53 transcript. This suggests that the ORF between positions 63 and 430 is not essential for transformation rescue. This rescue may derive from expression of transcripts TB6b or TB22 or from "non-specific" initiation of transcription on 20 the extrachromosomal arrays.

Additional confirmation that M5 was derived from the unc-53 transcription unit is provided by the observation that allele n152 has a 300 bp deletion, disrupting the sequence of cDNA M5 and leading to a 25 large (possibly complete) reduction of UNC-53 protein in n152 embryos stained in immunofluorescence with an anti-unc-53 antibody (16-48-2). In addition, allele e2432 was found to carry a 3-4 kb insertion in this transcription unit.

30

Sequence homology :

Antibody staining :

The NdeI-EcoRI fragment of cDNA M5, the 47 kd 35 fragment of UNC-53 encoded by the NdeI-EcoRI (position 3187 to 4458 (tb-M5 fig 3) protein sequence

fig 2) was subcloned in the T7 expression vector prk172 (yielding vector TB66 and expressed in E. coli. Inclusion bodies containing recombinant protein were purified, by processes known in the art solubilized in 5 8 M Urea and the recombinant protein purified over a DEAE column equilibrated in 8M urea. Purified protein was mixed with complete Freund's adjuvant and injected in a rabbit and 4 Lou rats. This was followed six weeks later by bi-weekly boosts with antigen mixed 10 with incomplete adjuvant. All sera are active in western blotting at titers of 1:30,000 on Western blots of the 47 kd unc-53 fragment expressed in E.coli. With this western blotting assay, a rat-mouse hybridoma cell line was prepared producing a 15 monoclonal antibody to UNC-53. Mab 16-48-2 has the following properties :
- protein G-binding
- binding activity on western blots of
(1) the 47 kd UNC-53 fragment expressed in E. coli,
20 (pTB66)
(2) the 57 kd carboxyterminal fragment of UNC-53 expressed in E. coli (construct pTB65.)
(3) the full length TB3-M5 UNC-53 expressed in E. coli (construct pTB61) and mammalian cells (COS-cells; 25 constructs pTB54 and 56).
- immunoprecipitation of native and SDS denatured full length TB3-M5 UNC-53 construct pTB50 expressed in vitro-transcription translation reactions in reticulocyte lysates.
30 - immuno-histochemistry in wild-type C. elegans fixed with methanol, acetone or paraformaldehyde and transgenic C. elegans expressing UNC-53 tb3-m5 pTB110, 111 or 112 in epidermis, neurones, gut and muscle.
Mab 16-48-2 fail to detect antigen of the correct 35 size on Western blots of total worm proteins or worm proteins fractioned by progressive extraction with

deterg nts, urea and SDS.

Excretory canal phenotype :

5 The excretory canal of C. elegans is a large H-shaped cell. It's cell body is positioned ventrally at the level of the pharyngeal bulb and send out two processes dorsally. At the level of the lateral epidermis (seam) each of these bifurcates and extends anteriorly and posteriorly over the seam cells, until
10 they extend over most of the whole body length. It has been reported that in unc-53 the posterior process of the excretory cell does not extend up to the V6/T seam-cell boundary (E. Hedgecock et al., (1987),
Development, 100 365-382).

15 We have done an extensive characterization of this phenotype in all alleles listed, either by direct in vivo Nomarski microscopy or UL6 rol6d marked unc-53 strains which express LacZ in the epidermis and excretory cell (Hope(1991) Development 113(2) 399-
20 408). In wild type the excretory cell processes are straight. In unc-53 the canal is often meandering from left to right over the seam before it arrests prematurely, as if it has lost directional cues in its migration. It never leaves the lateral epidermis
25 seam. Both the anterior and posteriorward processes are affected.

30 In weak unc-53 alleles the posterior excretory canal processes arrest anywhere between the vulval region and the V6/T boundary. We noticed that in even the strongest alleles or in unc-53/Df heterozygotes the canal arrests unusually frequently at or close to the vulva and never substantially before the vulva . We therefore set out to test whether the gonad dependent attractive signal which attracts the sex
35 myoblasts to the gonad also might attract the excretory canal in an unc-53 independent manner to the

vulval region. If this is the case we would expect that in a strong unc-53 mutant n152 in which the 2 somatic gonad cells (the source of the signal) have been ablated, the excretory canal migration would be
5 fully arrested. As a control we ablated one germ cell and one somatic gonad cell (Z1 and Z2 or Z2 and Z4). Embryos were ablated in the comma to 2 fold stage and the position of the excretory canal scored double blind in hatched embryos. At the time of ablation, the
10 canal may already have started growing out. At hatching, the endpoint of our experiment, the growth cone of the posterior canal process has reached just beyond the gonad. Although these are technically difficult laser ablations, the results show a sub-
15 stantial difference in excretory canal outgrowth between embryo with an ablated somatic gonad and control ablated embryos. In the experimental series the canal usually arrested a significant distance from the gonad or any other potentially damaged cells,
20 suggesting the loss of a long range signal as described for the SM myoblast migration (Thomas *et al* (1990) and Stern (1991)). In the control series the excretory canal usually extended as far as unablated n152 and into region of the partially ablated gonad.
25 This indicates that the premature arrest observed in the experimental series was not due to encountering a damaged region.

A gonad dependent and independent pathway were found to act redundantly in the posteriorard migration of the sex myoblasts. The data suggest that in wild type the migration of excretory cell growth cones is also guided by a gonad dependent and a gonad independent cue. In both cases the gonad dependent cue acts towards the gonad, but from opposite directions. However the gonad independent signal act anteriorward on the SM myoblasts and posteriorward on
30
35

the posterior excretory cell growth cones. Since single mutants in both the gonad dependent pathway (*sem-5*) and independent pathway (*unc-53*) have no excretory cell phenotype these pathways may be
5 redundant in the trajectory up to the gonad. An analogous redundancy has been observed for the sex myoblast migration. In the trajectory between gonad and tail the gonad independent pathway acts in different directions on the SM cells versus the
10 excretory cell. In the excretory cell it acts in both anteriorward and posteriorward migration. A simple explanation which is elaborated in detail below is that *unc-53* (like *sem-5*) may act downstream of a variety of receptors interpreting different cues.

15 The previously described interaction between the gonad and the sex myoblasts was rationalizable as an interaction between cells due to become part of the same organ. The interaction between the excretory cell and the gonad we report here suggests that the gonad
20 may have a more general role as organizer cell migrations in the embryo. We wish to point out that the described dependent and independent pathways are formal genetic concepts. It is for example possible that in *unc-53* embryos or *unc-53* embryos in which the
25 gonad dependent pathway has been genetically or laser ablated, as yet to be identified, pathway defining growth cones are misplaced leading indirectly to defective sex myoblast, neuronal (PLM, see below) or excretory canal migration. The observed highly
30 restricted expression of *unc-53* is an additional indication of this possibility.

Sex muscle phenotype :

35 All *unc-53* alleles exhibit the sex muscle phenotype described for e2432. We quantified phenotype

in eight alleles :

Young adults grown at 20°C were mounted for polarized light or Nomarski microscopy on 2% agarose pads containing 0.2% phenoxypropanol as described in Sulston and Horvitz (1977) Dev. Biol. 56, 110-156 . The vml sex muscles were examined under polarized light with a 40x objective and a Brace Kohler compensator and photographed. In addition, adults were fixed, incubated with fitc-coupled phalloidin and mounted for fluorescence microscopy as described in Goh and Bogaert (1991) Dev. Biol. 56, 110-156. The angle between the longitudinal axis of the animal and the central bundle of myofilaments of the anterior and posterior vml was measured from the negatives with a protractor. As the vulva is a transverse slit at a right angle to the cylindrical body axis, the angle between the vml and the vulval slit can be measured independently of which side of the animal faces the observer.

20

Neuronal phenotype :

Unc-53 animals move poorly backwards when prodded but has good forward movement (Brenner (1974) Genetics 77 71-94). Various aspects of the neuronal phenotype of unc-53 has been reported in general phenotypic surveys of the UNC-collection (Brenner (1974) Genetics 77 71-94). : The posterior branch of the PDE neuron can be abnormal (Hedgecock et al. (1987) Development 100 365-382) and the mechanosensory PLMR & PLML neurons can have commissures into the ventral cord at a position much posterior than in the wild-type. There are also frequently multiple ventralward PLM commissures evenly spaced along the posterior half of the body (Siddiqui (1990) Neurosci. Res. (Suppl) 13 171-190), Hedgecock et al., (1987) Development 100 365-382) .

Examples 2 to 5 - Biochemical Analysis of UNC-53Example 2 - Immunoprecipitations of 35 S labelled unc-53 gene products.

5 The rat anti-UNC-53 monoclonal antibody, 16-48-2 (obtained from the hybridoma LMBP Accession no. 1383CB) elicited against a 47 kD fragment of the 3' end of UNC-53 from *C. elegans* was used to

10 immunoprecipitate UNC-53 proteins. In this experiment, the full length unc-53 construct pTB50 (Fig. 11) was transcribed and translated *in vitro* in rabbit reticulocyte lysates. The resulting radioactively labelled 35 S unc-53 gene products were

15 incubated with the monoclonal antibody under both denaturing (using SDS) and non-denaturing conditions, then incubated with protein G sepharose. The bound products were analysed by SDS-PAGE and fluorography. Monoclonal antibody 16-48-2 recognised both native and

20 SDS denatured radioactive UNC-53 products verifying that the protein translated *in vitro* was bona fide UNC-53. This result shows that immuno-precipitation is a useful tool in schemes to purify native protein and to identify UNC-53 protein complexes in biochemical

25 experiments.

Example 3 - Actin sedimentation assays (8A variant).

30 Besides the N-terminal region of the protein which is similar to actin binding proteins, the predicted protein sequence of UNC-53 identified two putative actin binding sites. The first borders on the 3' end of the region of α -actinin/ β -spectrin homology and the second lies in the 3' end of the cDNA sequence. This suggests that UNC-53 could potentially

bind two actin molecules and via actin cross-linking, stabilise a particular growth cone spike to promote directional extension. Alternatively, the two actin binding sites may serve to anchor UNC-53 (and its shorter gene products) to the microfilament cytoskeleton to then transduce a signal via the NTPase domain to the downstream pathway.

To test the two site model, full length and truncated versions of UNC-53 (pTB50 and pTB52) were transcribed and translated in rabbit reticulocyte lysates for 90 minutes following standard protocols (Promega). To remove insoluble components, the reactions were airfuged for 1 hour at 100,000 x g and the supernatant containing ³⁵S labelled UNC-53 products introduced in actin co-sedimentation assays according to the method of Vancompernolle *et al.* (1992), EMBO J. 11, 4739-4746. In this procedure, radioactively labelled UNC-53 was incubated with monomeric G-actin in G buffer (2 mM Tris pH 7.5, 0.2 mM CaCl₂, 0.5 mM β-mercaptoethanol, 0.2 mM ATP) for one hour at room temperature. The salt concentration was then increased with F buffer (1 M KCl, 10 mM MgCl₂) to a final concentration of 100 mM to promote polymerisation of G-actin to F-actin. After an additional one hour incubation, polymerised F-actin/protein complexes were pelleted at 100,000 x g in an airfuge, washed with G buffer, resuspended in Laemmli buffer and separated by denaturing SDS-PAGE. The presence of actin in the pellets was confirmed by Coomasie staining while radioactively labelled UNC-53 products were detected by fluorography. Both the full length UNC-53 protein, pTB50, and the truncated construct, pTB52 translated *in vitro* in rabbit reticulocyte lysates cosedimented with F-actin at starting G-actin concentrations of 50-100 µg/ml. This suggests that UNC-53 binds to microfilament

cytoskeleton. Moreover, deletion of the first putative actin binding site (pTB52) did not eliminate actin binding.

5 Example 4 - UNC53 interacts with F-actin cytoskeleton (7A and 8A variant)

Analysis of the predicted protein sequence of UNC-53 identified two putative actin binding sites of 10 the LKK class. The first borders the 3' end of the region of α -actinin/ β -spectrin homology in the amino terminus of the protein while the second lies in the 15 3' end of the protein sequence upstream of the putative nucleotide binding domain. A single UNC-53 monomer could thus potentially bind and crosslink two actin molecules.

To test whether UNC-53 associates with the actin cytoskeleton, a 7A (pTB72) and 8A version (pTB73) of unc-53 (Figures 25 and 27 respectively) were 20 transcribed and translated in rabbit reticulocyte lysates and the 35 S labelled products introduced into F-actin co-sedimentation assays (Figure 35a). The full length UNC-53 protein (pTB72) translated *in vitro* cosedimented with F-actin at starting G-actin 25 concentrations of 100 mg/ml (Figure 35b) suggesting that UNC-53 interacts with F-actin. By 250 mg/ml, all of the UNC53 protein co-sedimented with the F-actin pellet. In contrast, no UNC53 was present in the 30 pellet of the control reaction without actin. Thus, sedimentation was purely actin dependent. This result also indicated that the *in vitro* UNC-53 protein remained soluble even after the salt concentration was raised.

Deletion of the first putative actin binding site

in pTB73 did not eliminate actin binding since the larger pTB73 products, including the largest fragment co-sedimented with F-actin under the identical set of conditions (Figure 35b). However, since the rabbit 5 reticulocyte lysates contain numerous proteins, it is possible that the interaction of UNC-53 with actin may not be direct but rather mediated through another associated protein.

Several smaller radiolabelled protein fragments 10 in the TNT reactions were observed in addition to the predicted protein products. Immunoprecipitation experiments confirmed that these products were UNC53 derived. Most likely they result from additional translational starts at internal methionines, since 15 the identical set of smaller products was observed from reaction to reaction; or from premature termination and proteolytic degradation. Many of these smaller fragments also co-sedimented with F-actin. Since the second predicted actin binding site 20 is within the 3' end of the molecule, truncated proteins that are the result of internal starts would be expected to have this site and to bind actin.

EXPERIMENTAL PROCEDURES:

25 Construction of UNC53 plasmids.

The complete unc53 cDNA was cloned as a 5.1 kb NotI-Apal cassette in the mammalian expression vector pCDNA3 (Invitrogen) to generate plasmid pTB72, the 7A clone variant. To optimize translational initiation 30 at the first methionine, a mammalian Kozak consensus sequence was engineered upstream of the start methionine by PCR amplification of DNA coding for the first 139 amino acids of the amino terminus with the

oligonucleotides BG03 (5'-ataagaatgcggccgcccatacgacgtcaaatgtagaattgata-3') and BG02 (5'-cgcggatcctcaaaccgcgggtggcataatggatg-3'). BG03 contains the mammalian KOZAK consensus sequence in addition to a NotI restriction site. pTB73 is a deletion of the first 408 base pairs of the unc53 cDNA contained in the vector Bluescript II-KS. This construction removes the first two methionines of the unc53 cDNA sequence such that the first possible start 10 methionine in pTB73 is at amino acid position 165 in the cDNA sequence. In all these constructs, (pTB72, pTB73 and pTB50) the unc53 cDNA is inserted into the multiple cloning site such that the T7 promoter is immediately upstream of the 5' end of the cDNA sequence.

15 The first 139 amino acids of the UNC53 cDNA were amplified by PCR with oligonucleotides BG01 (5'ggaattccaaccatatacgacgtcaaatgtagaattgata-3') and BG02 (5'-cgcggatcctcaaaccgcgggtggcataatggatg-3') to generate a convenient NdeI cloning site immediately upstream of the start methionine. This amplification was cloned as an NdeI-BamHI fragment into the prokaryotic expression vector pRK172 (Godedert M. and Jakes R. (1990), EMBO J. Vol. 9, pp 4225-4230 and 20 McLeod M et al, 1987 EMBO. J. Vol 6, pp 729-736) to generate construct pTB57. pTB61 contains the PCR derived amino terminus of pTB57 in addition to the 3' end of pTB50. Thus pTB61 contains the identical unc53 25 8A variant cDNA as in pTB50, but as an NdeI-NcoI fragment in the vector pRK172 for prokaryotic expression.

In vitro transcription/ translation reactions

The UNC53 cDNA constructs pTB72, pTB73 or pTB50 were transcribed and translated for 90' at 30°C in a cell free T7 polymerase expression system in rabbit reticulocyte lysates following the company's protocols (ProMega). Prior to further manipulations, the reactions were centrifuged for 1 hour at 100,000 x g to remove insoluble components. In all subsequent experiments, the supernatant containing the soluble fraction of ³⁵S labelled UNC-53 products was utilized.

10 Actin co-sedimentation assays

Soluble radioactively labelled ³⁵S-Met-UNC53 products were introduced in actin co-sedimentation assays according to the method of Vancompernolle et al. (1992). In this procedure, radioactively labelled UNC-53 was incubated with monomeric G-actin in G buffer (2 mM Tris-pH 7.5, 0.2 mM CaCl₂, 0.5 mM b-mercaptoethanol, 0.2 mM ATP) for one hour at room temperature and then the salt concentration increased with F buffer (1 M KCl, 10 mM MgCl₂) to a final concentration of 100 mM to promote polymerization of G-actin to F-actin. After an additional one hour incubation, polymerized F-actin/protein complexes were pelleted at 100,000 x g in an airfuge (Beckman), washed with G buffer, resuspended in Laemmli buffer and separated by denaturing SDS-PAGE. The presence of actin in the pellets was confirmed by Coomassie staining while radioactively labelled UNC-53 products were detected by fluorography. Briefly, after destaining, gels were soaked in 45 % methanol, 7.5 % acetic acid (vol/vol) for 30 minutes, followed by 30 min. in dimethyl sulfoxide (DMSO), and 1 hour in 10 % PPO dissolved in DMSO (wt/vol). The scintillant was precipitated by rehydrating the gels with four five

minute water washes. After drying, gels were exposed to Xray film (Hyperfilm-Amersham).

Immunoprecipitations

5 To confirm that the radioactively labelled proteins translated *in vitro* were of UNC53 origin, an anti-rat monoclonal antibody, 16-48-2, elicited against a 47 kD fragment of the 3' end of UNC-53 was used to immunoprecipitate UNC-53 proteins. In this
10 experiment, the unc-53 construct pTB50 was transcribed and translated *in vitro* in rabbit reticulocyte lysates. The resulting radioactively labelled ³⁵S UNC-53 gene products were incubated with the monoclonal antibody under both denaturing (0.4% SDS, 2.0% Triton X-100) and non-denaturing conditions for 1 hour at
15 room temperature, then incubated with protein G sepharose for 2 hours at room temperature, the beads washed 3 times with PBS and the bound products analyzed by SDS-PAGE and fluorography. Monoclonal
20 antibody 16-48-2 recognized both native and denatured radioactive UNC-53 products. As a control, a reaction without monoclonal antibody 16-48-2 was treated identically.

25 Example 5 - Interaction of UNC-53 with SEM-5/GRB-2

The observation that certain alleles of UNC-53 enhance the sex myoblast migration defect of sem-5 mutants is difficult to interpret. While the genetics
30 suggests that UNC-53 and SEM-5 cooperate to regulate sex myoblast migration, it is unclear whether this is the result of a direct molecular interaction. To answer this question, two types of biochemical experiments were used to determine if UNC-53

physically interacts with SEM-5. In the first experiment, radioactively labelled ^{35}S UNC-53, synthesised in reticulocyte lysates, was incubated with SEM-5/GST (glutathione-S-transferase) fusion protein bound to glutathione resin or with GST protein bound to glutathione resin. After incubation, the beads were washed and the bound proteins analysed by SDS-PAGE and fluorography. This demonstrated that UNC-53 made *in vitro* specifically bound to the SEM-5/GST fusion protein resin. The GST fusion proteins have been previously described. Purification of GST-fusion proteins was facilitated by using a commercially available kit (Pharmacia). All purification methods followed the manufacturer's protocols.

To further characterise the nature of the interaction with SEM-5, a second experiment utilised Western blot overlays. UNC-53 fusion proteins were expressed in *E.coli* and the denatured protein lysates separated by SDS-PAGE and blotted to Immobilon-P nylon membrane (Millipore). Blots were incubated with biotin labelled SEM-5/GST, GRB-2/GST or GST protein, washed and bound multi-protein biotinylated complexes detected by probing with an avidin-alkaline phosphatase conjugate. The results from this experiment demonstrated that SEM-5 and its mammalian homologue GRB2 can interact with UNC-53 *in vitro*. Binding was observed in induced cell lysates only and probing with the UNC-53 monoclonal antibody 16-48-2 detected the identical sets of products. In addition, only the full length UNC-53 fusion, pTB61 (Fig. 7), which contained the SH3 binding sites gave a positive result (pTB52 was not tested) No signal was detectable for either of the SH3 binding site minus fusion proteins, pTB57 (Fig. 11) or pTB65 (Fig. 11). This provides supportive evidence that the polyproline

repeats of the UNC-53 directly bind to the SH3 domains of SEM-5. Moreover, these results show that a SEM-5 or GRB-2/GST glutathione resin may be used in schemes to affinity purify native UNC-53 from tissue culture 5 cells or nematodes or other organism extracts.

Detailed Methodology

Radioactively labelled ³⁵S UNC-53 synthesized in reticulocyte lysates was incubated with SEM-5/GST 10 (glutathione-S-transferase) fusion protein bound to glutathione resin or with GST protein alone bound to glutathione resin for one hour at 20°C. After incubation, the beads were washed four times with Phosphate Buffered Saline (PBS)/Triton X-100 (0.2%) 15 and the bound proteins analyzed by SDS-PAGE and fluorography. The SEM5 and GRB2 GST fusions have been previously described (Lowenstein et al., 1992; Stern et al., 1993). Purification of GST-fusion proteins was facilitated using a commercially available kit 20 (Pharmacia). All purification methods followed the company protocols.

Western blot overlays

Approximately 500-1000 mg each of purified GRB2-GST protein or GST protein were biotin labelled by the 25 following procedure. After overnight dialysis in PBS at 4°C, 1 M Hepes, pH7.4, was added to a final concentration of 100 mM and 50-100 mg of biotinylation reagent, dissolved in dimethyl sulfoxide, and the mixture incubated at 20°C for 90 minutes. The 30 biotinylation reaction was stopped by the addition of 1 M Tris, pH7.4 to a final concentration of 100 mM and the labelled proteins stored on ice.

The UNC-53 construct pTB61 was expressed in *E. coli* strain BL21 (DE3), and the denatured protein

lysate separated by SDS-PAGE and electroblotted to Immobilon-P nylon membrane (Millipore). Membranes were blocked with 1 % skim milk powder in TBS-T (20 mM Tris, pH7.6; 0.14 M NaCl; 0.1% Tween-20) for 1 hour at 37°C. Subsequently, membranes were incubated in equimolar amounts of either biotin labelled GRB-2/GST or biotin labelled GST protein for 1 hour at 20°C, washed 4 x with TBS-T and bound multi-protein biotinylated complexes detected by probing for 1 hour at 20°C with an avidin-alkaline phosphatase conjugate (dilution 1:5000). Biotinylated protein conjugate complexes were visualized with a chromogenic solution containing bromochloroindolyl phosphate (BCIP)/nitro blue tetrazolium (NBT) in 100 mM Tris(pH 9.5), 100 mM NaCl, 5 mM MgCl₂. Development was terminated with 10 mM Tris (pH8.0), 1 mM EDTA.

Example 6 - Transgenic Analysis

To further our understanding of the function of unc-53 we developed an in vivo assay to test gene fusions generated in vitro. Nematode expression vectors containing the full length unc-53 cDNA, TB3M5, downstream of various tissue specific and inducible promoters were constructed.

The mec-7 promoter of pTB112 (Fig. 7) confers tissue specific expression to the mechanosensory neurons, the unc-54 promoter of pTB111 (Fig. 7) confers tissue specific expression to body wall muscle and the hsp16-41 promoter of pTB109 (Fig. 7) confers and pTB110 (Fig. 7) confers heat inducible expression to somatic cells. pTB109 is a transcriptional fusion containing only the hsp16-41 gene promoter and has been shown to confer high levels of inducible expression in embryos. pTB110 contains a larger

portion of the hsp16-41/2 intergenic region in addition to a synthetic intron. This plasmid is expected to be highly inducible in embryos and post-embryonic stages in most somatic cell types.

5 Oocytes of both wild type (N2) and unc-53(n152) hermaphrodites were microinjected according to the method of Fire (1986), EMBO J., 5, 2673-2680. Coinjection of the unc-53 fusion with a selection plasmid, pRF4, a dominant marker of rol-6, allowed 10 identification of transgenic animals by their right rolling phenotype (Mello *et al.*, (1991), EMBO J., 10, 3959-3970. In *C. elegans*, the injected DNA does not integrate into the genome but rather forms 15 extrachromosomal arrays which are heritable at a frequency ranging from 20-95% (Stinchcomb *et al.*, (1985), Mol. Cell. Biol., 5, 3483-3496; Fire *et al.*, (1990), Gene, 93, 189-198; Mello *et al.*, (1991), EMBO J., 10, 3959-3970. Transgenic extrachromosomal lines 20 were considered stable after the rolling phenotype had passed through four generations. Some transgenic HS-unc-53 strains were mutagenised with 3550 rads of γ rays emanating from a ^{60}Co source which produces breaks 25 in the chromosomes allowing for insertion of the extrachromosomal array. Stable integrants were identified by screening for homozygous rolling F3 broods. The names and genotypes of all transgenic strains are listed in Table 1 with details of the unc-53 fusions (constructs/vectors) listed in Table 2:

30

Table 1 - Extend in other constructs

STRAIN NAME	PARENTAL STRAIN	unc53 FUSION	SELECTION	lacZ MARKER
TB3In54	n152	pTB109	pRF4	UL6
35 TBAIn8	N2	pTB110	pRF4	pPCZ1

	TBAIn61	N2	pTB110	pRF4	pPCZ1
	TBAIn69	N2	pTB110	pRF4	pPCZ1
5	TBAIn76 Accession No 1385CB (See Fig 17A)	N2	pTB110	pRF4	pPCZ1
	TBAIn90	N2	pTB110	pRF4	pPCZ1
10	TBAIn210	N2	pTB110	pRF4	pPCZ1
	TBAIn222	N2	pTB110	pRF4	pPCZ1
	TBAIn306	N2	pTB110	pRF4	pPCZ1
	TBAIn327	N2	pTB110	pRF4	pPCZ1
15	TBBIn3	N2	pTB110	pRF4	pPCZ1
	TBBIn267	N2	pTB110	pRF4	pPCZ1
	TB1Ex10	n152	pTB112	pRF4	none
	TB1Ex23	n152	pTB112	pRF4	none
	TB1Ex8	N2	pTB112	pRF4	none
20	TB1Ex16	N2	pTB112	pRF4	none
	TB2Ex1	N2	pTB112	pRF4	none
	TB2Ex37	N2	pTB112	pRF4	none
	TB3Ex10	N2	pTB112	pRF4	none
	TB3Ex12	N2	pTB112	pRF4	none
	TB3Ex20	N2	pTB112	pRF4	none
25	TB3Ex37	N2	pTB112	pRF4	none
	TB4Ex14	N2	pTB112	pRF4	none
	TB4Ex18	N2	pTB112	pRF4	none
	TB4Ex22	N2	pTB112	pRF4	none
	TB4Ex25 Accession No LMBP 1384CB (See Fig 16)	N2	pTB112	pRF4	none
30	TB1Ex3	n152	pTB111	pRF4	none

TB1Ex6 (See Fig 17B, C)	n152	pTB111	pRF4	non
TB1Ex11	n152	pTB111	pRF4	none

5

Notes for Table 1:**Ex-extrachromosomal****In-integrated**

pTB109, pTB110-Heat shock unc-53 fusions

10 pTB111-mec-7 fusion

pTB112-unc-54 fusion

pRF4-rol-6 (su1006) (Mello *et al.*, (1991), EMBO J., 5,
3959-3970)

UL6-excretory canal promoter lacZ fusion

15 pPCZ1-Hsp16-48/1 lacZ fusion (Stringham *et al.*, (1992)
Molec.Biol.Cell 3, 221-233)Table 220 Full length cDNA tb3M5 (still has SL1 and 5' UTR)pTB50 (NotI-ApaI fragment in Bluescript II-KS, for
in vitro transcription)pTB51 (NotI-ApaI fragment in Bluescript II-SK, for
in vitro transcription)25 pTB54 (NotI-ApaI fragment in pCDNA3, for mammalian
expression)

(Deposited as accession no. LMBP3296)

pTB109 (NotI-ApaI fragment in hsp16-pucBM21, for in
vivo expression)

30 pTB67 (NotI-Apa fragment in pGEMS +)

PCR1 of amino terminus of cDNA

(*PCR using oligos BG01 and BG02)

35 pTB57 (NdeI-BamHI fragment in pRK172, for E. coli
expression)

pTB58 (NdeI-NcoI fragment in pGEMS)

- 74 -

pTB63 (SacI-NcoI fragment in pRSETA, for E. coli expression)
pTB64 (BamHI fragment in pBluescriptII-KS)

5 Full length cDNA utilizing PCR1 amino terminus

pTB61 (NdeI-NcoI fragment in pRK172, for E. coli expression)
pTB110 (XbaI-KpnI fragment in pPD49.83, for in vivo expression)
10 pTB111 (XbaI-KpnI fragment in pPD52.102, for in vivo expression)
pTB112 (XbaI-KpnI fragment in pPD30.38, for in vivo expression)
(Deposited as accession no. LMBP3295)

15

PCR2 of amino terminus of cDNA

(*PCR using oligos BG03 and BG01)
pTB59 (NotI-BamHI fragment in pBluescript II-KS)
pTB60 (NotI-XhoI fragment in pCDNA3, for mammalian expression)

20

Full length cDNA utilizing PCR2 amino terminus

25 pTB55 (NotI-EaeI fragment in pBluescriptII-KS)
pTB56 (NotI-ApaI fragment in pCDNA3, for mammalian expression)

Other constructs

30 pTB52 (SacII deletion of amino terminus of pTB50)
pTB53 (SacII deletion of amino terminus of pTB51)
pTB62 (SmaI fragment of pTB52 in pGEX2T, for prokaryotic expression)
pTB65 (NdeI-NcoI fragment of 3' terminus in pRK172, for prokaryotic expression)
35 pTB66 (NdeI-EcoRI fragment of 3' terminus in pRK172, for prokaryotic expression, MAB 16-48-2)

Initially, the phenotype of each transgenic line was characterised by inspection with a dissecting microscope and/or Nomarski optics. Transgenic strains were directly analysed for expression of unc-53 by immunohistochemistry. Briefly, embryos were adhered to polylysine coated slides and permeabilised by a combination of freeze fracturing and immersion in cold methanol and acetone (3-4 minutes each). Embryos were rehydrated through an acetone/distilled water series and then incubated for 30 minutes at room temperature in TBS-Tween (0.1%). The anti-UNC-53 monoclonal 16-48-2 anti-sera was applied undiluted and the slides incubated at 4°C overnight. The embryos were washed three times with TBS-T and then incubated in a secondary rhodamine like (Cy3-M)conjugated antibody for 1 hour at 37°C. After 3-4 washed in TBS-T the slides were mounted for fluorescence microscopy in 2% propylgallate, 80% glycerol-pH 8.0.

20 Characterisation of transgenic strains carrying pTB112

UNC-53 was over-expressed in the muscle of wild type animals (pTB112 in N2). Each extrachromosomal pTB112/N2 line consisted of wild type and rolling animals as expected, but in addition, several mutant phenotypes were observed at low frequency. These animals varied considerably in phenotype and included embryos which arrested at the two fold stage, larvae which hatched but died soon afterward, animals with extra protrusions on the epidermis and animals with a truncated posterior end. This phenotype is consistent with that of the mup or mua classes of muscle mutants in which the positioning and/or integrity of muscle attachments to the hypodermis has been disrupted. Most of these animals were either inviable or sterile. The progeny of the viable mutants contained the same

frequency of rollers, wild type and mutants as did the progeny of rolling individuals. Since the extrachromosomal array may be lost at each cell division, every animal is a mosaic. The healthy 5 rollers may have lost the transgene from most muscle cells and may represent weak phenotypes whereas the 2 fold arrests represent the situation where the array has been lost from few muscle cells. Nomarski and polarised light microscopy of the severe larval 10 lethals showed that the muscle cells were disorganised and over-extended.

Detailed analysis of the underlying defect in embryonic development that leads to this terminal phenotype were performed with immunofluorescence 15 microscopy (Fig 21).

Since the unc-54 gene encodes the myosin heavy chain, we expected that this promoter would be active in body muscle descendants from the comma stage onwards. In the unc-54 - unc-53 strains, signal was 20 indeed localised to the body muscle cells in comma and later stages as predicted. The immunofluorescence was localised to the cytoplasm of the cell bodies and was particularly intense at the tips of the extending processes. Increased process length was observed very 25 early in muscle development (comma to 1.5 fold stage) and increased up to the three fold stage. No other abnormalities in shape or muscle myofilament pattern were observed in the anterior-posterior axis of the animal. Two and three fold embryos which were stained 30 with the monoclonal antibody NE8(4c6.3) (Goh and Bogaert, (1991), Dev. Biol. 56, 110-156) appeared to have a relatively wild type myofilament structure. As these animals are mosaic, it may be possible that 35 severe cases die in late morphogenesis and those which survive through embryogenesis to adulthood can tolerate a few distorted muscle cells.

pTB111 transgenic lines

5 Immunostains indicates that the transgene is expressed efficiently in the mechanosensory neurons of a transgenic extrachromosomal line carrying the pTB111 transgene in an unc-53 (n152) genetic background (Fig 20).

pTB109 and pTB110 lines

10 12 integrated lines derived from three separate mutageneses of extrachromosomal lines have been isolated. TB3In54 carries the pTB109 fusion in addition to pRF4. Nine TBA strains were isolated 15 after mutagenesis of an extrachromosomal strain, HSA. There are two strains (TBB) derived from mutagenesis of the extrachromosomal strain HS B. Both TBA and TBB strains contain the transgenes pTB110, pPCZ1 and pRF4. Inclusion of the HS-lacZ plasmid, pPCZ1 (Stringham *et* 20 *al*, (1992), Molec.Bio.Cell 3, 221-233) allows one to monitor the strength of the heat shock induction by assaying for β -galactosidase activity.

25 Immunostains of embryos freeze fractured after a two hour heat shock showed that the signal was most prominent in the pharynx, gut and neurons.

Surprisingly, the signal had a speckled appearance. This may be a feature of heat shock. Heat shock proteins may sequester UNC-53 to "chaperone" it during stress. Alternatively, UNC-53 may be targeted for 30 degradation. In one experiment, embryos were heat shocked for two hours, allowed to recover overnight and then freeze fractured the next morning. While levels were reduced, there was a little residual UNC-53 signal in the gut cells. Thus, about 16 hours later most the protein has gone.

35 Level of heat shock and recovery times are

therefore important factors in the mutant rescue experiments and the preferred assay system described in example 10. In addition, experiments suggest that heat shock induction in liquid culture versus agar 5 plates or dry incubators versus water baths need careful calibration.

After a strong three hour heat shock, a high percentage of animals were not able to recover from the stress. Embryos which were not subjected to a 10 double shock (two-hour heat shocks at 33°C separated by a two-hour recovery) hatch out as malformed worms reminiscent of the muscle overexpression lines (Fig 21). The heat shock promoter used is especially active in the pharynx. Consistent with this, a strong 15 pharyngeal morphogenetic phenotype was observed (Fig 21). Pharyngeal phenotypes are easy to score and quantify (feeding rate, dye uptake, LacZ lines staining the pharynx) by anyone skilled in the *C. elegans* field and may form a preferred embodiment of 20 the assay.

Example 7

Over-expression of UNC-53 results in directional over-extension : Assay with 7A variant.

25 In wild type *C. elegans*, body muscle cells are normally spindle shaped while in UNC53 mutants, a number of these cells have a reduced process which results in a fork shaped tip. This phenotype is 30 consistent with the general reduction of extension observed in many growth cone types along the longitudinal axis of the animal in unc-53 mutants. Recalling the extremely limited pattern of UNC53 expression in embryogenesis detected by immunostaining 35 with monoclonal antibody 16-48-2; no UNC53 activity was

discernable in wild type body muscle cells during outgrowth suggesting that the levels of UNC53 activity required for this extension may be extremely low.

We overexpressed unc-53 in the muscle of wild type animals by expressing the full length cDNA under the control of the unc-54 myosin heavy chain promoter in the fusion pTB113. Plasmid pTB113 is a translational fusion containing the 7A variant unc-53 cDNA sequence as an XbaI-KpnI fragment starting from the first methionine and including the unc-53 cDNA poly adenylation tail under control of the myosin heavy chain unc-54 promoter of the nematode expression vector pPD30.38 available on Internet web site ftp archive: ciwl, ciwemb.edu. Plasmid pTB114 contains the identical cDNA fragment under control of the hsp16-41 -2 promoter (Jones et al., 1995, Dev. Biol. VOL. 171, PAGES 60-72) which confers heat inducible expression to somatic cells, in the expression vector pPD 49.83 (Fire, pers. comm.) The amino terminus of the UNC53 cDNA is identical to the PCR amplification with BG01 and BG02 of pTB57. Thus, both pTB113 and pTB114 are in frame translational fusions devoid of the SL1 leader sequence and upstream untranslated region of the cDNA.

Each transgenic mosaic line (3 were examined) consisted of wild type and rolling animals as expected, but in addition, several mutant phenotypes were observed at a low frequency. These animals varied considerably in phenotype and included, embryos which arrested at the two fold stage, larvae which hatched but died soon afterwards, animals with extra protrusions on the epidermis and animals with a truncated posterior end. Most of these latter animals

were either inviable or sterile. The progeny of the viable mutants contained the same frequency of rollers, wild type and mutants as did the progeny of rolling individuals. Since the extrachromosomal array may be lost at each cell division, every animal is a mosaic. The healthy rollers may have lost the transgene from most muscle cells and may represent weak phenotypes whereas the 2 fold arrests represent the situation where the array has been retained in most muscle cells. The truncated posterior end may be the result of lethality in the D lineage due to mosaicism. Nomarski and polarized light microscopy of the severe larval lethals showed that the muscle cells were disorganized and over-extended in the longitudinal axis. In some cases the muscle cells appeared detached from the hypodermis. As these animals are mosaic, it may be possible that severe cases die early in morphogenesis whereas those which survive through embryogenesis to adulthood can tolerate a few distorted muscle cells.

In transgenic pTB113 strains, UNC53 expression, as detected by immunostaining with monoclonal antibody 16-48-2, was localized to the body muscle cells in comma and later stages as predicted for the UNC-53 promoter (myosin heavy chain). The pattern of immunofluorescence with the anti UNC-53 antibody was localized to the cytoplasm of the cell bodies and was particularly intense at the tips of the extending processes and in the cytoskeleton, when compared to phalloidin staining which specifically stains the actin cytoskeleton. The identical pattern of sub-cellular localization, in the cytoplasm and cytoskeleton, was also observed in the intestinal

- 81 -

cells of pTB114 transgenic embryos expressing UNC-53 ectopically after heat shock.

In addition, the growth cone processes appeared to be overextended specifically in the anterior-posterior axis of the animal. To verify this, the length of body muscle cells over-expressing the UNC53 cDNA in the pTB113 strains were measured and compared to the length of wild-type muscle growth cones expressing an unc-54 promoter-GFP (green fluorescent protein) fusion, pPD49.83 (available on Internet Web Ste Ftp archive: ciwl. ciwemb.edu. The GFP reporter allowed visualization of the entire cell body and boundaries of the muscle cells in wild-type animals. We estimated that the processes of the pTB113 expressing cells were roughly 1½ times the length of pPD49.83 expressing wild type cells.

The lethality in the transgenic progeny of the three pTB113 strains examined ranged from 32% to 78%. Thus a significant proportion of the transformed mosaic progeny did not survive morphogenesis. In contrast, no lethality was observed in the pPD93.48 (unc-54-GFP) control strains. The lethality observed in the pTB113 lines is likely the consequence of overextension of muscle cells during embryogenesis because (a) both pTB113 and pPD93.48 utilize the identical promoter and should be expressed in the same cells at the same point in development, and (b) rol-6 selection was used to identify transformants for both constructs.

30

Example 8

Transient and stable transfection of UNC-53 in N4 neuroblastoma cells.

pTB72 and a plasmid expressing LacZ under the CMV promoter were transfected transiently with the Ca-phosphate method in N4 neuroblastoma cells.

N4 cells and their stably transfected counterparts were grown in Minimum Essential Medium (MEM)-REGA 3 (GIBCO BRL) supplemented with 10% Foetal Calf Serum, 1% L-Glutamine, 2% Sodium Bicarbonate, 200 units/ml penicilline and 200 µg/ml Streptomycine, in a humidified atmosphere of 90% air and 10% CO₂ at 37°C. Transfections were performed by the Lipofectamine method (GIBCO BRL). 18 to 24 hrs before transfection cells were seeded in complete growth medium at a density of 7x10⁵ per well in a six well tissue culture plate, and incubated at 37°C in a CO₂ incubator. For each transfection the following solutions were prepared.:.

SolA = 4 µg of DNA diluted in 200 ul of Optimem (GIBCO BRL)
SolB = 12 ul of Lipofectamine reagent diluted in 200 ul of Optimem (GIBCO BRL)
Solutions A and B were combined, gently mixed and incubated at room temperature for 30 minutes. For each transfection 0.6 ml of Optimem was added to the lipid-DNA complex to reach the final volume of 1 ml. This mixture was then added onto the cells (which had been previously rinsed once with 2 ml of Optimem). The cells were incubated in the transfection mixture for 5 hrs at 37C in a CO₂ incubator. At the beginning of the sixth hour from transfection, 1 ml of complete growth medium supplemented with 20% of Foetal calf serum was added to the transfected cells. The cells were incubated for 18 hrs at 37C in a CO₂ incubator. 24 hrs following the beginning of transfection the supernatants was replaced with fresh growth medium. 72hrs post transfection cell cultures from each well were harvested, diluted 1:24 and distributed over 24

well plates with the growth medium containing 500, 750 ug/ml or 1mg/ml of geneticin (G418, GIBCO BRL). After -12 days from the start of selection, single clones were picked and allowed to grow in the absence of 5 selection. Of 27 initial clones, 7 were lost while expanding the clones because of their slow growth rate and the apparent general toxicity of caused by the transfected construct. Clone 9 was selected for further analysis.

10

Functional assay for neurite extension in N4 neuroblastoma

15 Step (1): Quantitative determination of neuronal morphology, i.e. length of neurites and fraction of positive cells is performed fully automatically. As an example we studied the degree of morphological differentiation in the wild-type N4 cells to a stably transfected C9 clone.

20

Step (2): Quantitative neuronal morphology
Morphological changes of neurones were quantitated as described in GEERTS et al (1992 Restorative Neurology and Neuroscience 4: 21-32 and 25 Katsuhito et al Neurodegeneration, 2: 173-181). Briefly, at appropriate times, glutaraldehyde was applied to cell cultures. No washing steps were performed. This ensured that the morphology of the cells at that time point was frozen. The cells were 30 observed in transmitted light mode on an Axiovert microscope, equipped with a Marzhauser scanning stage driven by an Indy workstation (Silicon graphics). Images were captured using a MC5 video camera (HCS). About 3000 cells were detected in 64 neatly aligned 35 images, forming a 8x8 square matrix of images. The exact alignment of the images ensured that neurites

could be followed from one image field to the next. The analysis software automatically detected cell bodies and neurites and saved cell body size and length of each individual neurite on a file.

5 Different parameters were subsequently calculated. The neurite length per cell was calculated on freely lying cells (not within a cluster). The fraction positive cells is the fraction of cells having at least one neurite with a length exceeding twice the
10 cell body diameter. Figure 40 clearly shows that clone C9 increases both neurite length (free length) and fraction of positive cells, compared to wild-type N4 cells clone.

15 Example 9
Transient and stable transfection of UNC-53 in MCF-7 breast carcinoma cells.

20 pTB72 and a plasmid expressing Lac Z under the CMV promoter where transfected transiently with the Ca-phosphate method in MCF-7 breast carcinoma cells.

25 MCF7 cells and their stably transfected counterparts were grown in Dulbecco's Modified Eagle's Medium (DMEM, GIBCO BRL) supplemented with 10% foetal Calf Serum, 1% L-Glutamine, 1% of a 5mg/ml stock of Gentamicine and 1% of a 100mM stock of Sodium Pyruvate in an humidified atmosphere of 90% air and 10% CO₂ at 37 C. Construct pTB72 was transfected by the Calcium-phosphate method (ref): 18-24hrs before transfection. cells were seeded at a density of 3x10⁵ in a six well
30 tissue culture plate with complete growth medium. Two hours before transfection the culture medium was removed and replaced with 1.8 ml of fresh medium. The cells were put back in the incubator until the moment of transfection. DNA-Ca₃(PO₄)₂ precipitates were
35 prepared one hour before transfection : For each transfection (1 well): 4 ug of DNA (=3-4 ul) was

combined with 76 ul of TE (Tris HCl-EDTA pH 8) 0.1M to a final volume of 80 ul. To these DNA's diluted in TE, 20 ul of CaCl₂ Hepes solution was added to a final volume of 100 ul of DNA/CaCl₂ mixture. The 100 ul of 5 DNA/CaCl₂ mixture was added very slowly, drop-by-drop to 100ul of 2x BS/Hepes while shaking, to a final volume of 200 ul. The resulting 200 ul DNA/Calcium Phosphate mixture was added to the cells and the mixture incubated for 8 hrs at 37 C in a CO₂ 10 incubator. At the beginning of the ninth hour from the start of transfection, the supernatants with the DNA/Calcium phosphate mixture was replaced with 3 ml of complete culture medium. 72hrs post transfection, cells from each well were harvested, split1:24 in 15 complete growth medium supplemented with 1mg/ml of Geneticin (G418, GIBCO-BRL) and plated out in 24 well plates. 15 days from the start of selection, single clones where picked and allowed to grow without selection. Three clones MCF7-pTB72-clone9, MCF7-pTB72- 20 14 and MCF7-pTB72-15 were retained all of which have a similar phenotype.

1) Phenotyping UNC-53 transfected MCF-7 breast carcinoma cells:

25 The general morphology and motile behaviour of the three transfected MCF-7 clones are different from non-transfected cells.

The assay consists of a tyramide amplification of 30 a classical immunofluorescent reaction. The cells were grown in defined medium with 10% charcoal treated serum and supplemented by 10 µg/ml insulin (final concentration) and 5 ng/ml basic fibroblast growth factor (final concentration). The substrate consisted of 50 µg/ml poly-L-lysine in chamber slides; cultures 35 were maintained in a humidified atmosphere of 95/5% air/CO₂.

Induction of expression of vimentin and f
increased levels of fosfotyrosine was found in the
transfected subclones. Vimentin formed dense clusters
around the cell nucleus with some filamentous
5 structures in the pseudo-podes. Fosfotyrosine, on the
other hand, was predominantly found at the border of
the cell ruffles, at the same subcellular area where
UNC53 expression was found. This provides evidence of
a controlling molecule functioning in a signal
10 transduction pathway and that vimentin is an indicator
of metastasis in cancerous cell lines.

2) Functional assay to establish the signal
transduction role of UNC-53.
15 Cells locomote in tissues and on substrates. The
type and amount of cell locomotion depends on
different factors: (1) the physiological conditions
perceived through receptors, which can be - for
example - stimulation with or deprivation of serum,
20 growth factor(s), cytokine(s), chemokine(s) or (pro-)
inflammatory mediators; (2) the type and functionality
of cell adhesion molecules expressed by cells and
extracellular matrix molecules present in tissue or in
culture model, (3) the actin, tubulin and/or
25 intermediate filament cytoskeleton and (4) proper
functioning of integrator proteins such as UNC-53,
homologues or other molecules that translate
physiological stimuli (or lack of stimuli) into
increased or decreased cell motility, directional or
30 random motility or different types of motility. Cell
locomotion can be measured in different types of
assays, such as disperse cells or in monolayer
cultures, as cellular outgrowth from tissues in
culture or in organotype cultures. Motility of live
35 cells can be quantified microscopically as in example
8 or by time-lapse video or cinematography or by

- 87 -

phagokinetic assays (Albrecht-Buehler, 1977, Cell, 11:395) amongst other methods.

Cell motility assays are interesting tools to study the functioning and pharmacology of UNC-53 and the unc-53 pathway.

All previous observations were performed on MCF-7 cells grown in defined medium supplemented by 10 µg/ml insulin (final concentration) and 5ng/ml basic fibroblast growth factor (final concentration). This approach offers the possibility of investigating the role of FGF in the UNC53 role of signal transmission. Indeed, by comparing wild-type versus UNC53 transfected cells cultured in medium with or without FGF/insulin and/or by microinjection of UNC53 protein, it can be investigated if UNC53 is responsible directly for regulating a signal transduction pathway linking extracellular growth factors to the assembly of, amongst others, focal adhesions.

Example 10: Enhanced phagokinesis in Ce-unc-53 transfected MCF-7 cells.

In this example evidence is presented that transfection of a plasmid containing the Ce-unc-53 sequence under a suitable promoter enhances cell motility in the phagokinetics assay.

When culture plastics are coated with colloidal gold particles, a variety of cell types were shown to migrate over the plate and displace or phagocytose the gold lawn on their way while locomoting. The track left bare is a qualitative and quantitative measure of cell motility and/or locomotion. The basic methods have been described in detail elsewhere (Albrecht-Buehler, 1977, Cell, 11:395; Zetter, 1980, Nature, 285:41; O'Keefe et al., 1983, J. Invest. Dermatol., 85:130).

Methods

12 well plates were coated for 15 minutes with 5 µg/ml gelatin in water and gold coated as described by Albrecht-Buell (1977). Ce-unc-53 transfected 5 MCF-7 cells and the parent MCF-7 were cultured in parallel, trypsinised dispersed in culture medium and seeded in 12-well plates at a density of 2550 cells per well. The cells were allowed to adhere to the plate and to locomote for 16 hours. After incubation 10 the cells were chemically fixed to the plate using paraformaldehyde, washed with distilled water and finally air-dried.

Subsequently, images of the gold lawns were captured using automated videomicroscopy, composite 15 images of the wells were generated and single-cell phagokinetic tracks were measured using a home-made routine in SCIL™ software.

Results

20 The parent MCF-7 line displayed two cell populations with different motile behaviour in phagokinesis assays. In table 3 the fraction of parent and Ce-unc-53 transfected MCF-7 cells that produced linear tracks in the phagokinesis assay are 25 shown. In the parent MCF-7 cells, 88% of the cells produce a round track (long and short axis less than 2-fold different) and 12% cells produce 'linear' tracks (long and short axis more than 2-fold different). Ce-unc-53 transfection of MCF-7 cells produced an 30 increase of the fraction of cells displaying 'linear' tracks to 28% at the cost of the cells producing round tracks.

These observations suggest that Ce-unc-53 transfection into MCF-7 is capable of increasing *in situ* locomotion of MCF-7 e.g. by increased spreading, ruffling or other forms of non-directional motility in 35

the 'round' population as well as by driving a fraction of transfected MCF-7 cells from non-directional motility (round tracks) into directional migration (linear tracks).

5 In tissue culture, cells are provided with non-directional signals. It is likely that providing directionality to these signals will enhance observed effects. Significant enhancement was observed for the fraction of linear tracks.

10 In addition, a significant increase of 35% in the area of tracks was observed in the Ce-unc-53 transfected MCF-7 cells versus the parent MCF-7 cells (Table 3). This increase occurred in the round track population; the area of linear tracks was found not to 15 be changed by transfection.

15 These observations in phagokinesis suggest that Ce-unc-53 transfection into MCF-7 cells is capable of increasing insitu locomotion in Ce-unc-53 MCF-7, e.g. by increasing spreading, ruffling, or other forms of 20 non-directional motility in the "round" population. In addition the Ce-unc-53 transgene in MCF-7 cells drives a fraction of the MCF-7 cells from non-directional motility (round tracks) into directional migration (linear tracks).

25

Table 3. Analysis of phagokinesis assays with parent and Ce-unc-53 transfected MCF-7 cells.

	<i>parent MCF-7</i>		<i>Ce-unc-53 MCF-7</i>		<i>Increase</i>
30	<i>Fraction linear tracks (*)</i>	% +- SD(n) 12+-3 (8)	%+-SD(n) 28+-6 (8)		2.33
	<i>Track area (**) all tracks</i>	<i>pixels+-SD(n)</i> 1261+-128(8)	<i>pixels+-SD (n)</i> 1698+-179(8)		1.35
	<i>round tracks</i>	1229+-162(8)	1464+-204(8)		1.19
	<i>linear tracks</i>	2367+-424(8)	2300+-319(8)		0.97

35 (*) the fraction of linear tracks in 8 wells was pooled.

MCF-7 cells expressing low levels of UNC-53
5 exhibit increased motility.

Individual transfected cells are much more flattened in appearance than wild type and have a broad lamellipodium extending from the edge of the cell. Ruffling edges are more frequent than in wild 10 type. Transfected cells in clusters have a broad lamellipodium edge around the cluster while cluster of the non-transfected. Within the cluster the nuclei are more widely spaced from one-another than in wild type cells (also due to a lamellipodium edge).

15

Example 11

Method for Protein micro-sequencing of co-affinity purifying proteins

UNC-53 protein was immuno-affinity purified from 20 extracts of cells expressing *C. elegans* UNC-53 using monoclonal antibody 16-48-2. One to five mg of Mab 16-48-2 was prepared, purified on protein-G sepharose and subsequently covalently linked to sepharose beads. A column of such beads was loaded with both crude 25 cytosolic and Triton-X100 extracts (containing solubilised RTKs) and eluted with 4M MgCl₂ or other chaotropic agents. A co-immuno-purifying band was identified on SDS-denaturing PAGE gels, eluted from these gels and micro-sequenced. This protein sequence 30 or mass information of peptides generated by proteolysis was used to identify the co-immunoprecipitation directly from the sequence databases.

Alternatively the sequence was reverse translated

and oligonucleotides based on the sequence prepared. This is used to clone the corresponding gene as well as other techniques well known in the art.

5 Example 12 C. elegans as a model assay system.

We have constructed transgenic strains which overexpress UNC-53 in body muscle. This results in increased extension of muscle cells and embryonic lethality at low frequency. These strains were used
10 to screen for drugs which interfere with UNC-53 activity and thereby suppress the background lethality.

Another related assay was used to screen specifically to identify inhibitors of downstream components in the signal transduction pathway. This assay utilised constitutively active mutant cDNA (or corresponding nucleic acid sequence). Such a mutant may be formed by mutating the nucleotide binding domain such that GTP or ATP is always bound or by
20 covalently attaching SEM-5. In this strategy, transgenics/mutants (nematodes or tissue cultured cell lines) were generated which maintain the pathway in a permanently switched on state. Over-extension and subsequent lethality results in a greater frequency than that observed in the unc-54 - unc-53 wild-type
25 lines. By screening for survivors after drug treatment, this assay specifically identifies inhibitors of downstream components in the signal transduction pathway.

30 A range of other embodiments of the assay are obvious to a person skilled in the art of C. elegans genetics, including the use of alternative selectable markers, genetic backgrounds, histochemical detection and visual detection systems to identify phenotypic

changes following contacting a single worm or a population of worms with a compound.

Another assay previously described herein utilizes the unc-53 promoter. The unc-53 promoter is fused to a nucleic acid sequence encoding a reporter molecule. By screening for cells which do not express the wild type pattern, molecules which increase or reduce transcription of unc-53 may be identified.

10 Example 13 - Heterologous expression of
C. elegans UNC-53 in insect cells.

C. elegans UNC53 cDNAs have been expressed in a Baculovirus system to obtain sufficient amounts of protein for biochemical and structural studies.

15 Two UNC53 cDNA clones (UNC53(7A) and UNC53(8A) have been documented differing in the number of adenosine (A) residues (7 or 8) in a polyA stretch of the of the 3' coding region; the two clones therefore have different reading frames in the carboxyterminal
20 coding region.

The 5' (N-terminal) part of the UNC53 coding region was excised from pTB564 with *SacII* after linearizing the plasmid with *NdeI*. The *NdeI* site was blunted with Klenow. The remaining C-terminal part of
25 the coding region was excised from pTB68(7A) and pTB50(8A) with *SacII* plus *KpnI*. The *NdeI/SacII* fragment from pTB64 and the *SacII/KpnI* fragment from either pTB68 or pTB50 were ligated simultaneously into pBacPAK9 (Clontech) which had been linearized with
30 *Ecl136II* (blunt end) and *KpnI*. In this way, a minimum amount of 5' untranslated region is left in the final construct.

The desired recombinant viruses were obtained by

co-transfection of *Sf9* cells (*Spodoptera frugiperda*) with one of the aforementioned pBacPAK9 constructs and BacPAK6 *Bsu*361-digested DNA (Clontech). Several candidate recombinant viruses plaques were picked and 5 screened by PCR for the presence of the target gene and the absence of wild-type virus.

Sf9 cells were infected at a high multiplicity with UNC53(7A) or UNC53(8A) recombinant Baculoviruses for protein expression. Proteins from whole cell 10 lysates were separated by denaturing (SDS) polyacrylamide gel electrophoresis and transferred to nitrocellulose membranes. The expression of UNC53 in those cell lysates was confirmed by immunoreaction with a monoclonal antibody (16-49-2) to UNC53 and 15 subsequent chemiluminescent detection (ECL™ Amersham). A Coomassie-stained band of the expected size was observed in lysates of *Sf9* cells infected with UNC-53(7A) or UNC53(8A) recombinant baculoviruses, but not with control constructs. 20 Within the accuracy of the methods, this Coomassie-stained band coincided with the largest immunoreactive band. Their estimated mass was approximately 180 kDa, which is compatible with the theoretically calculated mass (167 kDa). We therefore conclude that this band 25 most likely corresponds to intact UNC53.

For both UNC53(7A) and UNC53(8A) baculoviral expression constructs, mostly intact recombinant UNC53-protein was detected by immunoblotting in lysates from infected cells harvested 24 hours post 30 infection. Larger amounts of recombinant protein could be detected in lysates from cells prepared during later stages of infection (48 and 72 hours post infection) but in those preparations a considerable amount of smaller fragments (presumptive degradation 35 products) is observed.

Example 14

The UNC-53 protein expressed in Sf9 cells using a Baculovirus expression system is a valid tool to study its biochemical functions and a valid tool to identify interacting proteins.

3x10+6 SF9 cells infected with recombinant virus UNC53 7A(L2.3)/pBacPAK9 were resuspended in 100 microliter Phosphate Buffered Saline supplemented with 0.14 micromolar of pepstatin, 10 mM of benzamidine and 0.015 micromolar aprotinin. The cells were briefly sonicated and the obtained material was centrifuged at 30,000 g for 30 minutes at 4 degrees centrigade. The clear supernatant (soluble fraction) was frozen in 50% glycerol. An aliquot of this fraction was incubated in the cold room for 48 hrs. The protein samples were analyzed by SDS-PAGE, blotted to nitrocellulose and probed with mab 16-48-2. This showed that UNC-53 protein made in SF9 cells is soluble and stable under the conditions tested.

20 microlitres of the UNC-53 SF9 lysate were incubated with 5 microlitre GST-Sepharose beads loaded with equal amounts (approx. 10 microgram) of GST-GRB-2 or GST alone. The beads were rinsed 3 times in 500 microlitres of solution PBS-0.2% Tween 20 and eluted with 50 microliter SDS sample buffer. The eluted material was analyzed by SDS-PAGE and Western blot analysis with mab 16-48-2. UNC-53 was retained on the GST-GRB2 column and not on the GST demonstrating that UNC-53 interacts in vitro with GRB-2.

-95-

Example 15

Identification of proteins interacting with UNC-

53 :

5 Vectors pCB50 and pCB51 were constructed as bait
vectors for the yeast two hybrid system expressing
resp. the full length and the carboxyterminal part of
UNC-53.

10 pCB50 was constructed by cloning the full length
UNC-53 cDNA (7A variant; NdeI-NcoI fragment from
pTB74) into pAS1-CYH2 vector from Clontech. (Figure
30).

15 pCB51 (Figure 32) was constructed by cloning the
1880 bp NdeI-NcoI fragment from pTB74 into vector
pAS1-CYH2 from Clontech. This protein encodes among
others, the GTP/ATP binding domains, a leucine zipper
domain, and an additional coiled-coil domain.

20 pCB50 and pCB51 were transformed in yeast strain
Hf7C (YRG2). Expression was confirmed by western
blotting using antibodies to the GAL4 protein fused to
UNC-53 in these constructs. Bands of expected size
(190 kd for pCB50 and 90 kd for pCB51) were observed
both in yeast strains with pCB50 and pCB51 indicating
that both fusion proteins are expressed in the yeast.
25 The expression of the pCB50 and pCB51 fusion proteins
in yeast strain Hf7C does not lead to expression of
the LacZ or HIS reporter genes. These experiments
demonstrate that the constructed fusions are useful
baits in yeast two hybrid screens.

30 Vector pCB55 was made by cloning the 984 bp
*Bam*HI-*Bgl*III of pTB74 construct into the yeast two

-96-

hybrid activation vector (pGAD-424 vector from Clontech) (Figure 34). In order to check the possible interactions of UNC-53 either with itself (homodimerization) or other proteins.

5 This vector expresses a Gal-4 activation domain fused to amongst others the predicted coiled coil or leucine zipper domain of UNC-53.

The following combinations of plasmids were co-transformed in yeast strain HF7C : (1) pCB51 and pCB55
10 (2) pCB55 with control plasmid- pTD1 and (3) positive control plasmids pTD1 and PVA3 (two proteins known to interact (Bartel, P.L et al., Biotechniques Vol. 14 nr. 6 (1993))). Yeast cotransformed with combination (1) and (3) grew well on -LEU;-TRYP plates and -LEU;--
15 TRYP;-HIS plates indicating that an interacting protein is present in both co-transformations. Only yeast co-transformed with (3) was positive in a lacZ assay indicating that the observed interaction in (1) (between pCB50 and pCB 55) is weak. For co-
20 transformation (2), colonies grew on -LEU;-TRYP plates and as expected not on -LEU;-TRYP;-HIS plates. The positive control were thus positive whereas the negative controls were negative. We conclude that there is a weak but significant interaction between
25 pCB51 and pCB55, which is strong enough to activate the HIS but not the lacZ reporter gene in this Hf7c strain.

Example 16

30 Protocol to screen for components which inhibit or enhance UNC-53 using C. elegans cell line pTBIn76

-97-

Embryos from large liquid C. elegans cultures of line pTBIn76 (table 1) are collected by sucrose flotation of a bleached population (Goh and Bogaert (1991), Dev. Biol. 56, 110-156). Embryos are dispensed in 96 well microtiter plates with M9 medium and various concentrations of the compound to be tested. The embryos are allowed to hatch and are synchronised in the L1 stage by starvation. After a suitable exposure to the compound (by standard calibration) a standard quantity of E. coli (food) is dispersed in the 96 well plates, which starts C. elegans post-embryonic development. The microtiter plates are then placed in an incubator to induce heat shock and subsequently placed at 25°C to permit continued development. After 0 to 1 generations of C. elegans development wells are inspected to assess the degree of population growth inhibition. This inspection can consist of an optical density measurement to assess the amount of food consumed by the developing nematodes. Very little food is consumed when no test compound is present: most food is consumed if an UNC-53 inhibitor has blocked the lethal or subviable phenotype induced by the transgene. The inspection can also be a visual inspection of the number of healthy or subviable worms or a histochemical measurement of C. elegans viability or of the remainder of E. coli (food).

Example 17 - Protocol to screen for compounds which inhibit or enhance cell regulation or motility.

Transfected cells used in this example were the same as those obtained from example 8. Compounds to be tested were added to each of the cells and their effects on the cells monitored. Functional assays to determine neurite extension were also the same as used

in example 8 as described by Geests et al. One compound (of the Formula I below) was used for further testing.

5

Example 18 - Compounds targetted at the unc-53 pathway.

Synthesis of (1-(1H-pyrrol-2-ylmethyl)-2-piperidone.

10

15

Step 1

To a stirred solution of 150g of 1H-pyrrol-2-carboxaldehyde in 1500g parts of trichloromethane were added 690, of 5Å molecular Sieves. A kit solution of 264, of methyl 5-aminopentanoate hydrochloride in 1500g of tricholoromethane was added. After stirring for 5 minutes, 465g of thiethylamine were added over 10 minutes. Upon complete addition, the reaction mixture was stirred for 20 hours at ambient temperature. The mixture was filtered over diatomaceous earth and the filtrate was concentrated by evaporation of the solvent. The concentrate was triturated in 1,1'-oxybisethane. The precipitate was filtered off and the filtrate was concentrated, yielding 300g (91.1%) of 5-[(1H-pyrrol-2-

Step 2

A mixture of 150g of 5-[(1H-pyrrol-2-yl)methylen]amino]pentanoate hydrogenated at 3.10⁵Pa and at ambient temperature with 3.3 parts of platinum oxide. After the calculated amount of hydrogen was consumed, the catalyst was filtered off and the filtrate was evaporated. The residue was dissolved in dichloromethane and the organic phase was washed three times with a sodium hydroxide 3 N solution. The product was distilled at 13.30 Pa (bp 100-130°C). The residue was crystallized from cyclohexane and hexane. The product was filtered off and dried, yielding 193 parts (100%) of 1-(1H-pyrrol-2-ylmethyl)-2-piperidone. ; mp. 105.8°C.

The compound (1-(1H-pyrrol-2-ylmethyl)-2-piperidinone) when applied for 24 hours to cultures of both wild-type and transfected N4 (mouse neuroblastoma) cells displays a differential behaviour. There is no effect (or at most a small stimulatory) effect on the wild-type N4 cells, up to concentrations of 1 μM, the compound clearly becomes toxic for both types of cells. The results indicate that this compound counteracts the effects of overexpression of UNC-53 and may have beneficial effects therefore in for example metastasis.

100

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT:

(A) NAME: BOGAERT; THIERRY
(B) STREET: Voorstraat 36 bus 11
(C) CITY: Kortrijk
(E) COUNTRY: Belgium
(F) POSTAL CODE (ZIP): B-8500

(A) NAME: STRINGHAM; EVE
(B) STREET: 9326-133 A Street
(C) CITY: Surrey
(D) STATE: British Columbia
(E) COUNTRY: Canada
(F) POSTAL CODE (ZIP): V3V 5R5

(A) NAME: VANDEKERCKHOVE; JOEL
(B) STREET: Rode Benkendreef 27
(C) CITY: Loppem
(D) STATE: -
(E) COUNTRY: Belgium
(F) POSTAL CODE (ZIP): none

(ii) TITLE OF INVENTION: Processes for the identification of compounds which control cell behaviour, the compounds identified and pharmaceutical compositions containing them and their use in the control of cell behaviour

(iii) NUMBER OF SEQUENCES: 48

(iv) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)

(v) CURRENT APPLICATION DATA:

APPLICATION NUMBER: EP PCT/EP96/02311

(vi) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: GB 9510944.3
(B) FILING DATE: 31-MAY-1995

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 5073 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Caenorhabditis elegans*

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

SUBSTITUTE SHEET (RULE 26)

101

GGTTTAATTA CCCAAGTTG AGACATCAAT TCCATCGAAC GAAATGTTGG TGCTCCGAAT	60
AAAATGACGA CGTCAAATGT AGAATTGATA CCAATCTACA CGGATTGGGC CAATCGGCAC	120
CTTTCGAAGG GCAGCTTATC AAAGTCGATT AGGGATATTT CCAATGATT TCGCGACTAT	180
CGACTGGTTT CTCAGCTTAT TAATGTGATC GTTCCGATCA ACGAATTCTC GCCTGCATTC	240
ACGAAACGTT TGGCAAAAAT CACATCGAAC CTGGATGGCC TCGAAACGTG TCTCGACTAC	300
CTGAAAAATC TGGGTCTCGA CTGCTCGAAA CTCACCAAAA CCGATATCGA CAGCGGAAAC	360
TTGGGTGCAG TTCTCCAGCT GCTCTTCCCTG CTCTCCACCT ACAAGCAGAA GCTTCGGCAA	420
CTGAAAAAAG ATCAGAAGAA ATTGGAGCAA CTACCCACAT CCATTATGCC ACCCGCGGTT	480
TCTAAATTAC CCTCGCCACG TGTCGCCACG TCAGCAACCG CTTCAGCAAC TAACCCAAAT	540
TCCAACCTTC CACAAATGTC AACATCCAGG CTTCAGACTC CACAGTCAAG AATATCGAAA	600
ATTGATTCAT CAAAGATTGG TATCAAGCCA AAGACGTCTG GACTTAAACC ACCCTCATCA	660
TCAACCACTT CATCAAATAA TACAAATTCA TTCCGTCCGT CGAGCCGTTG GAGTGGCAAT	720
AATAATGTTG GCTCGACGAT ATCCACATCT GCGAAGAGCT TAGAATCATC ATCAACGTAC	780
AGCTCTATTT CGAATCTAAA CCGACCTACC TCCCAACTCC AAAAACCTTC TAGACCACAA	840
ACCCAGCTAG TTCTGTGTTGC TACAACCTACA AAAATCGGAA GCTCAAAGCT AGCCGCTCCG	900
AAAGCCGTGA GCACCCCAAACCTTGTTCT GTGAAGACTA TTGGAGCAAA ACAAGAGCCC	960
GATAACAGCG GTGGTGGTGG TGGTGGAAATG CTGAAATTAA AGTTATTCAAG TAGCAAAACAC	1020
CCATCTTCCCT CATCGAATAG CCCACAAACCT ACCGAGAAAAGG CGGCGGCGGT GCCTCAACAA	1080
CAAACTTTGT CGAAAATCGC TGCCCCAGTG AAAAGTGGCC TGAAGCCGCC GACCAGTAAG	1140
CTGGGAAGTG CCACGTCTAT GTCGAAGCTT TGTACGCCAA AAGTTCCCTA CCGTAAAACG	1200
GACGCCCAA TCATATCTCA ACAAGACTCG AAACGATGCT CAAAGAGCAG TGAAGAAGAG	1260
TCCGGATACG CTGGATTCAA CAGCACGTG CCAACGTCTAT CATCGACGGA AGGTTCCCTA	1320
AGCATGCATT CCACATCTTC CAAGAGTTCA ACGTCAGACG AAAAGTCTCC GTCACTCAGAC	1380
GATCTTACTC TTAACGCCTC CATCGTGACA GCTATCAGAC AGCCGATAGC CGCAACACCG	1440
GTTTCTCCAA ATATTATCAA CAAGCCTGTT GAGGAAAAAC CAACACTGGC AGTGAAGAGGA	1500
GTGAAAAGCA CAGCGAAAAAA AGATCCACCT CCAGCTGTT CGCCACGTGA CACCCAGCCA	1560
ACAATCGGAG TTGTTAGTCC AATTATGGCA CATAAGAAGT TGACAAATGA CCCCGTGATA	1620
TCTGAAAAAC CAGAACCTGA AAAGCTCCAA TCAATGAGCA TCGACACGAC GGACGTTCCA	1680
CCGCTTCCAC CTCTAAAATC AGTTGTTCCA CTTAAATGA CTTCAATCCG ACAACCACCA	1740
ACGTACGATG TTCTTCTAAA ACAAGGAAAAA ATCACATCGC CTGTCAAGTC GTTGGATAT	1800
GAGCAGTCGT CCGCGTCTGA AGACTCCATT GTGGCTCATG CGTCGGCTCA GGTGACTCCG	1860
CCGACAAAAA CTTCTGGTAA TCATTCGCTG GAGAGAAGGA TGGGAAAGAA TAAGACATCA	1920

GAATCCAGCG GCTACACCTC TGACGCCGGT GTTGCATGT GCGCCAAAAT GAGGGAGAAG	1980
CTGAAAGAAT ACGATGACAT GACTCGTCGA GCACAGAACG GCTATCCTGA CAACTTCGAA	2040
GACAGTTCCCT CCTTGTGTCGTC TCCAATATCC GATAACAAACG AGCTCGACGA CATATCCACG	2100
GACGATTGTG CCGGAGTAGA CATGGCAACA GTCGCCTCCA AACATAGCGA CTATCCCAC	2160
TTTGTTCGCC ATCCCACGTC TTCTTCCTCA AAGCCCCGAG TCCCCAGTCG GTCCCTCCACA	2220
TCAGTCGATT CTCGATCTCG AGCAGAACAG GAGAATGTGT ACAAACTTCT GTCCCAAGTGC	2280
CGAACCGAGCC AACGTGGCGC CGCTGCCACC TCAACCTTCG GACAACATTC GCTAAGATCC	2340
CCGGGATACT CATCCTATTTC TCCACACTTA TCAGTGTCAAG CTGATAAGGA CACAATGTCT	2400
ATGCACTCAC AGACTAGTCG ACGACCTTCT TCACAAAAAAC CAAGCTATTTC AGGCCAATTT	2460
CATTCACTTG ATCGTAAATG CCACCTCAA GAGTTCACAT CCACCGAGCA CAGAATGGCG	2520
GCTCTCTTGA GCCCGAGACG GGTGCCGAAC TCGATGTCAAG AATATGATTC TTCAGGATCC	2580
TACTCGGCAGC GTTCCCGAGG TCCAAGCTCT ACTGGTATCT ATGGAGAGAC GTTCCAAGT	2640
CACAGACTAT CCGATGAAAA ATCCCCCGCA CATTCTGCCA AAAGTGAGAT GGGATCCCAA	2700
CTATCACTGG CTAGCACGAC AGCATATGGA TCTCTCAATG AGAAGTACGA ACATGCTATT	2760
CGGGACATGG CACGTGACTT GGAGTGTAC AAGAACACTG TCGACTCACT AACCAAGAAAA	2820
CAGGAGAACT ATGGAGCATT GTTTGATCTT TTTGAGCAAA AGCTTAGAAA ACTCACTCAA	2880
CACATTGATC GATCCAACCT GAAGCCTGAA GAGGCAATAC GATTCAAGGCA GGACATTGCT	2940
CATTTGAGGG ATATTAGCAA TCATCTTGCA TCCAACCTCAG CTCATGCTAA CGAAGGGCGCT	3000
GGTGAGCTTC TTGTCACACC ATCTCTGGAA TCAGTTGCAT CCCATCGATC ATCGATGTCA	3060
TCGTCGTCGA AAAGCAGCAA GCAGGAGAAG ATCAGCTTGA GCTCGTTGG CAAGAACAAAG	3120
AAGAGCTGGA TCCGCTCCTC ACTCTCCAAG TTCAACCAAGA AGAAGAACAA GAACTACGAC	3180
GAAGCACATA TGCCATCAAT TTCCGGATCT CAAGGAACTC TTGACAACAT TGATGTGATT	3240
GAGTTGAAGC AAGAGCTCAA AGAACCGCGAT AGTGCACCTT ACGAAGTCCG CCTTGACAAT	3300
CTGGATCGTG CCCGCGAAGT TGATGTTCTG AGGGAGACAG TGAACAAAGTT GAAAACCGAG	3360
AACAAGCAAT TAAAGAAAAGA AGTGGACAAA CTCACCAACG GTCCAGCCAC TCGTGCTTCT	3420
TCCCGCGCCT CAATTCCAGT TATCTACGAC GATGAGCATG TCTATGATGC AGCGTGTAGC	3480
AGTACATCAG CTAGTCAAATC TTGAAACGA TCCTCTGGCT GCAACTCAAT CAAGGTTACT	3540
GTAAACGTGG ACATCGCTGG AGAAATCAGT TCGATCGTTA ACCCGGACAA AGAGATAATC	3600
GTAGGATATC TTGCCATGTC AACCAAGTCAG TCATGCTGGAA AAGACATTGA TGTTTCTATT	3660
CTAGGACTAT TTGAAAGTCTA CCTATCCAGA ATTGATGTGG AGCATCAACT TGGAATCGAT	3720
GCTCGTGATT CTATCCTTGGA CTATCAAATT GGTGAACCTTC GACGCGTCAT TGGAGACTCC	3780
ACAACCATGA TAACCAGCCA TCCAAC TGAC ATTCTTACTT CCTCAACTAC AATCCGAATG	3840

103

TTCATGCACG	GTCGCCACA	GAGTCGCGTA	GACAGTCTGG	TCCTTGATAT	GCTTCTTCCA	3900	
AAGCAAATGA	TTCTCCA	ACT CGTCAAGTCA	ATTGGACAG	AGAGACGTCT	GGTAGCT	3960	
GGAGCAACTG	GAATTGGAAA	GAGCAA	ACTG	GCGAAGACCC	TGGCTGCTTA	TGTATCTATT	4020
CGAACAAATC	AATCCGAAGA	TAGTATTGTT	AATATCAGCA	TTCC	TGAAAAA	CAATAAAGAA	4080
GAATTGCTTC	AAGTGGAACG	ACGCCTGGAA	AAGATCTTGA	GAAGCAA	AGA	ATCATGCATC	4140
GTAATTCTAG	ATAATATCCC	AAAGAATCGA	ATTGCATTG	TTGTATCCGT	TTTGCAAAT	4200	
GTCCCCACTTC	AAAACAACGA	AGGTCCATT	GTAGTATGCA	CAGTC	AAACCG	ATATCAAATC	4260
CCTGAGCTTC	AAATTCA	CCA	ATGTCAGTAA	TGTCGAATCG	TCTCGAAGGA	4320	
TTCATCCTAC	GT	TACCTCCG	ACGACGGGCG	GTAGAGGATG	AGTATCGTCT	AACTGTACAG	4380
ATGCCATCAG	AGCTCTTCAA	AATCAT	TGAC	TTCTTCCAA	TAGCTCTCA	GGCGTCAAT	4440
AATTTTATTG	AGAAAACGAA	TTCTGTTGAT	GTGACAGTTG	GTCCAAGAGC	ATGCTTGAAC	4500	
TGTCCTCTAA	CTGTCGATGG	ATCCC	GTGAA	TGGTTCATTC	GATTGTGGAA	TGAGAACTTC	4560
ATTCCATATT	TGGAACGTGT	TGCTAGAGAT	GGCA	ACCTCGGTC	GCTGCACTTC	4620	
CTTCGAGGAT	CCCACCGACA	TCGTCTCTAA	AAAATGGCCG	TGGTTCGATG	GTGAAAACCC	4680	
GGAGAATGTG	CTCAAACGTC	TTCAACTCCA	AGACCTCGTC	CCGTCACCTG	CCAACTCATC	4740	
CCGACAACAC	TTC	AAATCCCC	TCGAGTCGTT	GATCCAATTG	CATGCTACCA	AGCATCAGAC	4800
CATCGACAAC	ATT	TGAACAG	AAGACTCTAA	TCTCTCTCG	CCTCTCCCCC	GCTTCCCTTA	4860
TCTTCGTACC	GGTACCTGAT	GATTCCC	CAT	TTTCCCCCTT	TTCCCCCCAA	TTTCCCAGAA	4920
CCTCCTGTT	CCTTGT	CC	AGTC	CTCCCC	GGGTGCCGAC	GCCGAAGCGA	4980
TTTTCTTTC	CGAAACATT	CCCATTGCTC	ATTAATAGTC	AAATTGAATA	AACAGTGTAT	5040	
GTACTAAAAA	AAAAAAAAAA	AAAAA	AAA				5073

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5072 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

GGTTTAATTA	CCCAAGTTG	AGACATCAAT	TCCATCGAAC	GAAATGTTGG	TGCTCCGAAT	60
AAAATGACGA	CGTCAAATGT	AGAATTGATA	CCAATCTACA	CGGATTGGGC	CAATCGGCAC	120
CTTTCGAAGG	GCAGCTTATC	AAAGTCGATT	AGGGATATTT	CCAATGATTT	TCGCGACTAT	180

SUBSTITUTE SHEET (RULE 26)

104

CGACTGGTTT CTCAGCTTAT TAATGTGATC GTTCCGATCA ACGAATTCTC GCCTGCATTC	240
ACGAAACGTT TGGCAAAAAT CACATCGAAC CTGGATGGCC TCGAACGTG TCTCGACTAC	300
CTGAAAAATC TGGGTCTCGA CTGCTCGAAA CTCACCAAAA CCGATATCGA CAGCGGAAAC	360
TTGGGTGCAG TTCTCCAGCT GCTCTTCCTG CTCTCCACCT ACAAGCAGAA GCTTCGGCAA	420
CTGAAAAAAG ATCAGAAGAA ATTGGAGCAA CTACCCACAT CCATTATGCC ACCCGCGGTT	480
TCTAAATTAC CCTCGCCACG TGTCGCCACG TCAGCAACCG CTTCAGCAAC TAACCCAAAT	540
TCCAACCTTC CACAAATGTC AACATCCAGG CTTCAGACTC CACAGTCAAG AATATCGAAA	600
ATTGATTCAT CAAAGATTGG TATCAAGCCA AAGACGTCTG GACTTAAACC ACCCTCATCA	660
TCAACCAC TT CATCAAATAA TACAAATTCA TTCCGTCCGT CGAGCCGTTG GAGTGGCAAT	720
AATAATGTTG GCTCGACGAT ATCCACATCT GCGAAGAGCT TAGAATCATC ATCAACGTAC	780
AGCTCTATTT CGAATCTAAA CCGACCTACC TCCCAACTCC AAAAACCTTC TAGACCACAA	840
ACCCAGCTAG TT CGTGTGTTGC TACAAC TACA AAAATCGGAA GCTCAAAGCT AGCCGCTCCG	900
AAAGCCGTGA GCACCCCCAAA ACTTGCTTCT GTGAAGACTA TTGGAGCAAA ACAAGAGCCC	960
GATAACAGCG GTGGTGGTGG TGGTGGATG CTGAAATTAA AGTTATTCAAG TAGCAAAAC	1020
CCATCTTCCCT CATCGAATAG CCCACAACCT ACGAGAAAAGG CGGCGGGCGGT GCCTCAACAA	1080
CAAACTTTGT CGAAAATCGC TGCCCCAGTG AAAAGTGGCC TGAAGCCGCC GACCAGTAAG	1140
CTGGGAAGTG CCACGTCTAT GTCGAAGCTT TG TACGCCAA AAGTTTCTTA CCGTAAAACG	1200
GACGCCCAA TCATATCTCA ACAAGACTCG AAACGATGCT CAAAGAGCAG TGAAGAAGAG	1260
TCCGGATACG CTGGATTCAA CAGCACGTCG CCAACGTCA CATCGACGGA AGGTTCCCTA	1320
AGCATGCATT CCACATCTTC CAAGAGTTCA ACGTCAGACG AAAAGTCTCC GTCATCAGAC	1380
GATCTTACTC TTAACGCCTC CATCGTGACA GCTATCAGAC AGCCGATAGC CGCAACACCG	1440
GTTCCTCCAA ATATTATCAA CAAGCCTGTT GAGGAAAAAC CAAACACTGGC AGTGAAGAGGA	1500
GTGAAAAGCA CAGCGAAAAA AGATCCACCT CCAGCTGTT CGCCACGTGA CACCCAGCCA	1560
ACAATCGGAG TTGTTAGTCC AATTATGGCA CATAAGAAGT TGACAAATGA CCCCCTGATA	1620
TCTGAAAAAC CAGAACCTGA AAAGCTCCAA TCAATGAGCA TCGACACGAC GGACGTTCCA	1680
CCGCTTCCAC CTCTAAAATC AGTTGTTCCA CTTAAAATGA CTTCAATCCG ACAACCACCA	1740
ACGTACGATG TTCTTCTAA ACAAGGAAAA ATCACATCGC CTGTCAAGTC GTTGGATAT	1800
GAGCAGTCGT CCGCGTCTGA AGACTCCATT GTGGCTCATG CGTCGGCTCA GGTGACTCCG	1860
CCGACAAAAA CTTCTGGTAA TCATTGCGTG GAGAGAAGGA TGGGAAAGAA TAAGACATCA	1920
GAATCCAGCG GCTACACCTC TGACGCCGGT GTTGCATGT GCGCCAAAAT GAGGGAGAAG	1980
CTGAAAAGAAT ACGATGACAT GACTCGTCGA GCACAGAACG GCTATCCTGA CAACTTCGAA	2040
GACAGTTCCCT CCTTGTGTC TGGAATATCC GATAACAACG AGCTCGACGA CATATCCACG	2100

105

GACGATTTGT CCGGGAGTAGA CATGGCAACA GTCGCCCTCCA AACATAGCGA CTATTCCCAC	2160
TTTGTTCGCC ATCCCACGTC TTCTTCCTCA AAGCCCCGAG TCCCCAGTCG GTCCCTCCACA	2220
TCAGTCGATT CTCGATCTCG AGCAGAACAG GAGAATGTGT ACAAAACTTCT GTCCCAGTGC	2280
CGAACGAGCC AACGTGGCGC CGCTGCCACC TCAACCTTCG GACAACATTC GCTAAGATCC	2340
CCGGGATACT CATCCTATTTC TCCACACTTA TCAGTGTCAAG CTGATAAGGA CACAATGTCT	2400
ATGCACTCAC AGACTAGTCG ACGACCTTCT TCACAAAAAC CAAGCTATTTC AGGCCAATTT	2460
CATTCACTTG ATCGTAAATG CCACCTTCAA GAGTTCACAT CCACCGAGCA CAGAATGGCG	2520
GCTCTTTGA GCCCGAGACG GGTGCCGAAC TCGATGTCA AATATGATTC TTCAGGATCC	2580
TACTCGGCAC GTTCCCGAGG TGGAGCTCT ACTGGTATCT ATGGAGAGAC GTTCCAAC TG	2640
CACAGACTAT CCGATGAAAA ATCCCCCGCA CATTCTGCCA AAAGTGAGAT GGGATCCCAA	2700
CTATCACTGG CTAGCACGAC AGCATATGGA TCTCTCAATG AGAAGTACGA ACATGCTATT	2760
CGGGACATGG CACGTGACTT GGAGTGTAC AAGAACACTG TCGACTCACT AACCAAGAAA	2820
CAGGAGAACT ATGGAGCATT GTTGTGATCTT TTGAGCAAA AGCTTAGAAA ACTCACTCAA	2880
CACATTGATC GATCCAACCTT GAAGCCTGAA GAGGCAATAC GATTCAAGCA GGACATTGCT	2940
CATTGAGGG ATATTAGCAA TCATCTTGCA TCCAACCTCAG CTCATGCTAA CGAAGGCGCT	3000
GGTGAGCTTC TTGCGTCAACC ATCTCTGGAA TCAGTTGCAT CCCATCGATC ATCGATGTCA	3060
TCGTCGTCGA AAAGCAGCAA GCAGGAGAAG ATCAGCTTGA GCTCGTTGG CAAGAACAAAG	3120
AAGAGCTGGA TCCGCTCCTC ACTCTCCAAG TTCACCAAGA AGAAGAACAA GAACTACGAC	3180
GAAGCACATA TGCCATCAAT TTCCGGATCT CAAGGAACTC TTGACAACAT TGATGTGATT	3240
GAGITGAAGC AAGAGCTCAA AGAACCGAT AGTGCACCTT ACAGAAGTCCG CCTTGACAAT	3300
CTGGATCGTG CCCCGAAGT TGATGTTCTG AGGGAGACAG TGAACAAGTT GAAAACCGAG	3360
AACAAGCAAT TAAAGAAAGA AGTGGACAAA CTCACCAACG GTCCAGCCAC TCGTGTCT	3420
TCCCGCGCCT CAATTCCAGT TATCTACGAC GATGAGCATG TCTATGATGC AGCGTGTAGC	3480
AGTACATCAG CTAGTCAATC TTGAAACGCA TCCTCTGGCT GCAACTCAAT CAAGGTTACT	3540
GTAAACGTGG ACATCGCTGG AGAAATCAGT TCGATCGTTA ACCCGGACAA AGAGATAATC	3600
GTAGGATATC TTGCCATGTC AACCAGTCAG TCATGCTGGA AAGACATTGA TGTTCTATT	3660
CTAGGACTAT TTGAAAGTCTA CCTATCCAGA ATTGATGTGG AGCATCAACT TGGAATCGAT	3720
GCTCGTGATT CTATCCTTGG CTATCAAATT GGTGAACTTC GACCGTGTAC TGGAGACTCC	3780
ACAACCATGA TAACCAGCCA TCCAACGTGAC ATTCTTACTT CCTCAACTAC AATCCGAATG	3840
TTCATGCGACG GTGCCGCACA GAGTCGCGTA GACAGTCTGG TCCTTGATAT GCTTCTTCCA	3900
AAGCAAATGA TTCTCCAACCT CGTCAAGTCA ATTTTGACAG AGAGACGTCT GGTGTTAGCT	3960
GGAGCAAAC TG GAATTGGAAA GAGCAAAC TG GCGAAGACCC TGGCTGCTTA TGTATCTATT	4020

106

CGAACAAATC AATCCGAAGA TAGTATTGTT AATATCAGCA TTCTGAAAA CAATAAGAA	4080
GAATTGCTTC AAGTGGAACG ACGCCTGGAA AAGATCTTGA GAAGCAAAGA ATCATGCATC	4140
GTAATTCTAG ATAATATCCC AAAGAACGAA ATTGCATTTG TTGTATCCGT TTTGCAAAT	4200
GTCCCACCTTC AAAACAAACGA AGGTCCATTG GTAGTATGCA CAGTCAACCG ATATCAAATC	4260
CCTGAGCTTC AAATTCACCA CAATTCAAA ATGTCAGTAA TGTCGAATCG TCTCGAAGGA	4320
TTCATCCTAC GTTACCTCCG ACGACGGGCG GTAGAGGATG AGTATCGTCT AACTGTACAG	4380
ATGCCATCAG AGCTCTCAA AATCATTGAC TTCTTCCCAA TAGCTTTCA GGCGTCAAT	4440
AATTTTATTG AGAAAACGAA TTCTGTTGAT GTGACAGTTG GTCCAAGAGC ATGCTTGAAAC	4500
TGTCCTCTAA CTGTCGATGG ATCCCGTAA TGTTCATTC GATTGTGGAA TGAGAACTTC	4560
ATTCATATT TGGAACGTGT TGCTAGAGAT GGCAAAAAAA CCTTCGGTCG CTGCACTTCC	4620
TTCGAGGATC CCACCGACAT CGTCTCTAAA AAATGGCCGT GGTTCGATGG TGAAAACCCG	4680
GAGAATGTGC TCAAACGTCT TCAAACCTCAA GACCTCGTCC CGTCACCTGC CAACTCATCC	4740
CGACAAACACT TCAATCCCC CGAGTCGTTG ATCCAATTGC ATGCTACCAA GCATCAGACC	4800
ATCGACAACA TTTGAACAGA AGACTCTAAT CTTCTCTCGC CTCTCCCCG CTTTCCTTAT	4860
CTTCGTACCG GTACCTGATG ATTCCCCATT TTCCCCCTTT TCCCCCAAT TTCCAGAAC	4920
CTCCTGTTCC CTTTGTTCCCT AGTCCTCCCG GGTGCCGACG CCGAAGCGAT TTAAAAACCT	4980
TTTTCTTCC GAAACATTTC CCATTGCTCA TTAATAGTCA AATTGAATAA ACAGTGTATG	5040
TACTAAAAA AAAAAAAAAA AAAAAAAAAA AA	5072

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1528 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

Met	Thr	Thr	Ser	Asn	Val	Glu	Leu	Ile	Pro	Ile	Tyr	Thr	Asp	Trp	Ala
1														15	

Asn	Arg	His	Leu	Ser	Lys	Gly	Ser	Leu	Ser	Lys	Ser	Ile	Arg	Asp	Ile
														30	
20								25							

Ser	Asn	Asp	Phe	Arg	Asp	Tyr	Arg	Leu	Val	Ser	Gln	Leu	Ile	Asn	Val
														45	
35								40							

Ile	Val	Pro	Ile	Asn	Glu	Phe	Ser	Pro	Ala	Phe	Thr	Lys	Arg	Leu	Ala
50								55				60			

107

Lys Ile Thr Ser Asn Leu Asp Gly Leu Glu Thr Cys Leu Asp Tyr Leu
 65 70 75 80

Lys Asn Leu Gly Leu Asp Cys Ser Lys Leu Thr Lys Thr Asp Ile Asp
 85 90 95

Ser Gly Asn Leu Gly Ala Val Leu Gln Leu Leu Phe Leu Leu Ser Thr
 100 105 110

Tyr Lys Gln Lys Leu Arg Gln Leu Lys Lys Asp Gln Lys Lys Leu Glu
 115 120 125

Gln Leu Pro Thr Ser Ile Met Pro Pro Ala Val Ser Lys Leu Pro Ser
 130 135 140

Pro Arg Val Ala Thr Ser Ala Thr Ala Ser Ala Thr Asn Pro Asn Ser
 145 150 155 160

Asn Phe Pro Gln Met Ser Thr Ser Arg Leu Gln Thr Pro Gln Ser Arg
 165 170 175

Ile Ser Lys Ile Asp Ser Ser Lys Ile Gly Ile Lys Pro Lys Thr Ser
 180 185 190

Gly Leu Lys Pro Pro Ser Ser Ser Thr Thr Ser Ser Asn Asn Thr Asn
 195 200 205

Ser Phe Arg Pro Ser Ser Arg Ser Ser Gly Asn Asn Asn Val Gly Ser
 210 215 220

Thr Ile Ser Thr Ser Ala Lys Ser Leu Glu Ser Ser Ser Thr Tyr Ser
 225 230 235 240

Ser Ile Ser Asn Leu Asn Arg Pro Thr Ser Gln Leu Gln Lys Pro Ser
 245 250 255

Arg Pro Gln Thr Gln Leu Val Arg Val Ala Thr Thr Thr Lys Ile Gly
 260 265 270

Ser Ser Lys Leu Ala Ala Pro Lys Ala Val Ser Thr Pro Lys Leu Ala
 275 280 285

Ser Val Lys Thr Ile Gly Ala Lys Gln Glu Pro Asp Asn Ser Gly Gly
 290 295 300

Gly Gly Gly Met Leu Lys Leu Lys Leu Phe Ser Ser Lys Asn Pro
 305 310 315 320

Ser Ser Ser Ser Asn Ser Pro Gln Pro Thr Arg Lys Ala Ala Ala Val
 325 330 335

Pro Gln Gln Gln Thr Leu Ser Lys Ile Ala Ala Pro Val Lys Ser Gly
 340 345 350

Leu Lys Pro Pro Thr Ser Lys Leu Gly Ser Ala Thr Ser Met Ser Lys
 355 360 365

Leu Cys Thr Pro Lys Val Ser Tyr Arg Lys Thr Asp Ala Pro Ile Ile
 370 375 380

Ser Gln Gln Asp Ser Lys Arg Cys Ser Lys Ser Ser Glu Glu Glu Ser
 385 390 395 400

108

Gly Tyr Ala Gly Phe Asn Ser Thr Ser Pro Thr Ser Ser Ser Thr Glu
405 410 415

Gly Ser Leu Ser Met His Ser Thr Ser Ser Lys Ser Ser Thr Ser Asp
420 425 430

Glu Lys Ser Pro Ser Ser Asp Asp Leu Thr Leu Asn Ala Ser Ile Val
435 440 445

Thr Ala Ile Arg Gln Pro Ile Ala Ala Thr Pro Val Ser Pro Asn Ile
450 455 460

Ile Asn Lys Pro Val Glu Glu Lys Pro Thr Leu Ala Val Lys Gly Val
465 470 475 480

Lys Ser Thr Ala Lys Lys Asp Pro Pro Pro Ala Val Pro Pro Arg Asp
485 490 495

Thr Gln Pro Thr Ile Gly Val Val Ser Pro Ile Met Ala His Lys Lys
500 505 510

Leu Thr Asn Asp Pro Val Ile Ser Glu Lys Pro Glu Pro Glu Lys Leu
515 520 525

Gln Ser Met Ser Ile Asp Thr Thr Asp Val Pro Pro Leu Pro Pro Leu
530 535 540

Lys Ser Val Val Pro Leu Lys Met Thr Ser Ile Arg Gln Pro Pro Thr
545 550 555 560

Tyr Asp Val Leu Leu Lys Gln Gly Lys Ile Thr Ser Pro Val Lys Ser
565 570 575

Phe Gly Tyr Glu Gln Ser Ser Ala Ser Glu Asp Ser Ile Val Ala His
580 585 590

Ala Ser Ala Gln Val Thr Pro Pro Thr Lys Thr Ser Gly Asn His Ser
595 600 605

Leu Glu Arg Arg Met Gly Lys Asn Lys Thr Ser Glu Ser Ser Gly Tyr
610 615 620

Thr Ser Asp Ala Gly Val Ala Met Cys Ala Lys Met Arg Glu Lys Leu
625 630 635 640

Lys Glu Tyr Asp Asp Met Thr Arg Arg Ala Gln Asn Gly Tyr Pro Asp
645 650 655

Asn Phe Glu Asp Ser Ser Ser Leu Ser Ser Gly Ile Ser Asp Asn Asn
660 665 670

Glu Leu Asp Asp Ile Ser Thr Asp Asp Leu Ser Gly Val Asp Met Ala
675 680 685

Thr Val Ala Ser Lys His Ser Asp Tyr Ser His Phe Val Arg His Pro
690 695 700

Thr Ser Ser Ser Ser Lys Pro Arg Val Pro Ser Arg Ser Ser Thr Ser
705 710 715 720

Val Asp Ser Arg Ser Arg Ala Glu Gln Glu Asn Val Tyr Lys Leu Leu
725 730 735

109

Ser Gln Cys Arg Thr Ser Gln Arg Gly Ala Ala Ala Ala Thr Ser Thr Phe
 740 745 750
 Gly Gln His Ser Leu Arg Ser Pro Gly Tyr Ser Ser Tyr Ser Pro His
 755 760 765
 Leu Ser Val Ser Ala Asp Lys Asp Thr Met Ser Met His Ser Gln Thr
 770 775 780
 Ser Arg Arg Pro Ser Ser Gln Lys Pro Ser Tyr Ser Gly Gln Phe His
 785 790 795 800
 Ser Leu Asp Arg Lys Cys His Leu Gln Glu Phe Thr Ser Thr Glu His
 805 810 815
 Arg Met Ala Ala Leu Leu Ser Pro Arg Arg Val Pro Asn Ser Met Ser
 820 825 830
 Lys Tyr Asp Ser Ser Gly Ser Tyr Ser Ala Arg Ser Arg Gly Gly Ser
 835 840 845
 Ser Thr Gly Ile Tyr Gly Glu Thr Phe Gln Leu His Arg Leu Ser Asp
 850 855 860
 Glu Lys Ser Pro Ala His Ser Ala Lys Ser Glu Met Gly Ser Gln Leu
 865 870 875 880
 Ser Leu Ala Ser Thr Thr Ala Tyr Gly Ser Leu Asn Glu Lys Tyr Glu
 885 890 895
 His Ala Ile Arg Asp Met Ala Arg Asp Leu Glu Cys Tyr Lys Asn Thr
 900 905 910
 Val Asp Ser Leu Thr Lys Lys Gln Glu Asn Tyr Gly Ala Leu Phe Asp
 915 920 925
 Leu Phe Glu Gln Lys Leu Arg Lys Leu Thr Gln His Ile Asp Arg Ser
 930 935 940
 Asn Leu Lys Pro Glu Glu Ala Ile Arg Phe Arg Gln Asp Ile Ala His
 945 950 955 960
 Leu Arg Asp Ile Ser Asn His Leu Ala Ser Asn Ser Ala His Ala Asn
 965 970 975
 Glu Gly Ala Gly Glu Leu Leu Arg Gln Pro Ser Leu Glu Ser Val Ala
 980 985 990
 Ser His Arg Ser Ser Met Ser Ser Ser Lys Ser Ser Lys Gln Glu
 995 1000 1005
 Lys Ile Ser Leu Ser Ser Phe Gly Lys Asn Lys Lys Ser Trp Ile Arg
 1010 1015 1020
 Ser Ser Leu Ser Lys Phe Thr Lys Lys Asn Lys Asn Tyr Asp Glu
 1025 1030 1035 1040
 Ala His Met Pro Ser Ile Ser Gly Ser Gln Gly Thr Leu Asp Asn Ile
 1045 1050 1055
 Asp Val Ile Glu Leu Lys Gln Glu Leu Lys Glu Arg Asp Ser Ala Leu
 1060 1065 1070

110

Tyr Glu Val Arg Leu Asp Asn Leu Asp Arg Ala Arg Glu Val Asp Val
 1075 1080 1085

Leu Arg Glu Thr Val Asn Lys Leu Lys Thr Glu Asn Lys Gln Leu Lys
 1090 1095 1100

Lys Glu Val Asp Lys Leu Thr Asn Gly Pro Ala Thr Arg Ala Ser Ser
 1105 1110 1115 1120

Arg Ala Ser Ile Pro Val Ile Tyr Asp Asp Glu His Val Tyr Asp Ala
 1125 1130 1135

Ala Cys Ser Ser Thr Ser Ala Ser Gln Ser Ser Lys Arg Ser Ser Gly
 1140 1145 1150

Cys Asn Ser Ile Lys Val Thr Val Asn Val Asp Ile Ala Gly Glu Ile
 1155 1160 1165

Ser Ser Ile Val Asn Pro Asp Lys Glu Ile Ile Val Gly Tyr Leu Ala
 1170 1175 1180

Met Ser Thr Ser Gln Ser Cys Trp Lys Asp Ile Asp Val Ser Ile Leu
 1185 1190 1195 1200

Gly Leu Phe Glu Val Tyr Leu Ser Arg Ile Asp Val Glu His Gln Leu
 1205 1210 1215

Gly Ile Asp Ala Arg Asp Ser Ile Leu Gly Tyr Gln Ile Gly Glu Leu
 1220 1225 1230

Arg Arg Val Ile Gly Asp Ser Thr Thr Met Ile Thr Ser His Pro Thr
 1235 1240 1245

Asp Ile Leu Thr Ser Ser Thr Thr Ile Arg Met Phe Met His Gly Ala
 1250 1255 1260

Ala Gln Ser Arg Val Asp Ser Leu Val Leu Asp Met Leu Leu Pro Lys
 1265 1270 1275 1280

Gln Met Ile Leu Gln Leu Val Lys Ser Ile Leu Thr Glu Arg Arg Leu
 1285 1290 1295

Val Leu Ala Gly Ala Thr Gly Ile Gly Lys Ser Lys Leu Ala Lys Thr
 1300 1305 1310

Leu Ala Ala Tyr Val Ser Ile Arg Thr Asn Gln Ser Glu Asp Ser Ile
 1315 1320 1325

Val Asn Ile Ser Ile Pro Glu Asn Asn Lys Glu Glu Leu Leu Gln Val
 1330 1335 1340

Glu Arg Arg Leu Glu Lys Ile Leu Arg Ser Lys Glu Ser Cys Ile Val
 1345 1350 1355 1360

Ile Leu Asp Asn Ile Pro Lys Asn Arg Ile Ala Phe Val Val Ser Val
 1365 1370 1375

Phe Ala Asn Val Pro Leu Gln Asn Asn Glu Gly Pro Phe Val Val Cys
 1380 1385 1390

Thr Val Asn Arg Tyr Gln Ile Pro Glu Leu Gln Ile His His Asn Phe
 1395 1400 1405

111

Lys Met Ser Val Met Ser Asn Arg Leu Glu Gly Phe Ile Leu Arg Tyr
 1410 1415 1420

Leu Arg Arg Arg Ala Val Glu Asp Glu Tyr Arg Leu Thr Val Gln Met
 1425 1430 1435 1440

Pro Ser Glu Leu Phe Lys Ile Ile Asp Phe Phe Pro Ile Ala Leu Gln
 1445 1450 1455

Ala Val Asn Asn Phe Ile Glu Lys Thr Asn Ser Val Asp Val Thr Val
 1460 1465 1470

Gly Pro Arg Ala Cys Leu Asn Cys Pro Leu Thr Val Asp Gly Ser Arg
 1475 1480 1485

Glu Trp Phe Ile Arg Leu Trp Asn Glu Asn Phe Ile Pro Tyr Leu Glu
 1490 1495 1500

Arg Val Ala Arg Asp Gly Lys Lys Asn Leu Arg Ser Leu His Phe Leu
 1505 1510 1515 1520

Arg Gly Ser His Arg His Arg Leu
 1525

(2) INFORMATION FOR SEQ ID NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1583 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Thr Thr Ser Asn Val Glu Leu Ile Pro Ile Tyr Thr Asp Trp Ala
 1 5 10 15

Asn Arg His Leu Ser Lys Gly Ser Leu Ser Lys Ser Ile Arg Asp Ile
 20 25 30

Ser Asn Asp Phe Arg Asp Tyr Arg Leu Val Ser Gln Leu Ile Asn Val
 35 40 45

Ile Val Pro Ile Asn Glu Phe Ser Pro Ala Phe Thr Lys Arg Leu Ala
 50 55 60

Lys Ile Thr Ser Asn Leu Asp Gly Leu Glu Thr Cys Leu Asp Tyr Leu
 65 70 75 80

Lys Asn Leu Gly Leu Asp Cys Ser Lys Leu Thr Lys Thr Asp Ile Asp
 85 90 95

Ser Gly Asn Leu Gly Ala Val Leu Gln Leu Leu Phe Leu Leu Ser Thr
 100 105 110

Tyr Lys Gln Lys Leu Arg Gln Leu Lys Lys Asp Gln Lys Lys Leu Glu
 115 120 125

112

Gln Leu Pro Thr Ser Ile Met Pro Pro Ala Val Ser Lys Leu Pro Ser
 130 135 140
 Pro Arg Val Ala Thr Ser Ala Thr Ala Ser Asn Pro Asn Ser
 145 150 155 160
 Asn Phe Pro Gln Met Ser Thr Ser Arg Leu Gln Thr Pro Gln Ser Arg
 165 170 175
 Ile Ser Lys Ile Asp Ser Ser Lys Ile Gly Ile Lys Pro Lys Thr Ser
 180 185 190
 Gly Leu Lys Pro Pro Ser Ser Ser Thr Thr Ser Ser Asn Asn Thr Asn
 195 200 205
 Ser Phe Arg Pro Ser Ser Arg Ser Ser Gly Asn Asn Asn Val Gly Ser
 210 215 220
 Thr Ile Ser Thr Ser Ala Lys Ser Leu Glu Ser Ser Ser Thr Tyr Ser
 225 230 235 240
 Ser Ile Ser Asn Leu Asn Arg Pro Thr Ser Gln Leu Gln Lys Pro Ser
 245 250 255
 Arg Pro Gln Thr Gln Leu Val Arg Val Ala Thr Thr Lys Ile Gly
 260 265 270
 Ser Ser Lys Leu Ala Ala Pro Lys Ala Val Ser Thr Pro Lys Leu Ala
 275 280 285
 Ser Val Lys Thr Ile Gly Ala Lys Gln Glu Pro Asp Asn Ser Gly Gly
 290 295 300
 Gly Gly Gly Met Leu Lys Leu Lys Leu Phe Ser Ser Lys Asn Pro
 305 310 315 320
 Ser Ser Ser Ser Asn Ser Pro Gln Pro Thr Arg Lys Ala Ala Val
 325 330 335
 Pro Gln Gln Gln Thr Leu Ser Lys Ile Ala Ala Pro Val Lys Ser Gly
 340 345 350
 Leu Lys Pro Pro Thr Ser Lys Leu Gly Ser Ala Thr Ser Met Ser Lys
 355 360 365
 Leu Cys Thr Pro Lys Val Ser Tyr Arg Lys Thr Asp Ala Pro Ile Ile
 370 375 380
 Ser Gln Gln Asp Ser Lys Arg Cys Ser Lys Ser Ser Glu Glu Ser
 385 390 395 400
 Gly Tyr Ala Gly Phe Asn Ser Thr Ser Pro Thr Ser Ser Ser Thr Glu
 405 410 415
 Gly Ser Leu Ser Met His Ser Thr Ser Ser Lys Ser Ser Thr Ser Asp
 420 425 430
 Glu Lys Ser Pro Ser Ser Asp Asp Leu Thr Leu Asn Ala Ser Ile Val
 435 440 445
 Thr Ala Ile Arg Gln Pro Ile Ala Ala Thr Pro Val Ser Pro Asn Ile
 450 455 460

Ile Asn Lys Pro Val Glu Glu Lys Pro Thr Leu Ala Val Lys Gly Val
 465 470 475 480

Lys Ser Thr Ala Lys Lys Asp Pro Pro Pro Ala Val Pro Pro Arg Asp
 485 490 495

Thr Gln Pro Thr Ile Gly Val Val Ser Pro Ile Met Ala His Lys Lys
 500 505 510

Leu Thr Asn Asp Pro Val Ile Ser Glu Lys Pro Glu Pro Glu Lys Leu
 515 520 525

Gln Ser Met Ser Ile Asp Thr Thr Asp Val Pro Pro Leu Pro Pro Leu
 530 535 540

Lys Ser Val Val Pro Leu Lys Met Thr Ser Ile Arg Gln Pro Pro Thr
 545 550 555 560

Tyr Asp Val Leu Leu Lys Gln Gly Lys Ile Thr Ser Pro Val Lys Ser
 565 570 575

Phe Gly Tyr Glu Gln Ser Ser Ala Ser Glu Asp Ser Ile Val Ala His
 580 585 590

Ala Ser Ala Gln Val Thr Pro Pro Thr Lys Thr Ser Gly Asn His Ser
 595 600 605

Leu Glu Arg Arg Met Gly Lys Asn Lys Thr Ser Glu Ser Ser Gly Tyr
 610 615 620

Thr Ser Asp Ala Gly Val Ala Met Cys Ala Lys Met Arg Glu Lys Leu
 625 630 635 640

Lys Glu Tyr Asp Asp Met Thr Arg Arg Ala Gln Asn Gly Tyr Pro Asp
 645 650 655

Asn Phe Glu Asp Ser Ser Ser Leu Ser Ser Gly Ile Ser Asp Asn Asn
 660 665 670

Glu Leu Asp Asp Ile Ser Thr Asp Asp Leu Ser Gly Val Asp Met Ala
 675 680 685

Thr Val Ala Ser Lys His Ser Asp Tyr Ser His Phe Val Arg His Pro
 690 695 700

Thr Ser Ser Ser Ser Lys Pro Arg Val Pro Ser Arg Ser Ser Thr Ser
 705 710 715 720

Val Asp Ser Arg Ser Arg Ala Glu Gln Glu Asn Val Tyr Lys Leu Leu
 725 730 735

Ser Gln Cys Arg Thr Ser Gln Arg Gly Ala Ala Ala Thr Ser Thr Phe
 740 745 750

Gly Gln His Ser Leu Arg Ser Pro Gly Tyr Ser Ser Tyr Ser Pro His
 755 760 765

Leu Ser Val Ser Ala Asp Lys Asp Thr Met Ser Met His Ser Gln Thr
 770 775 780

Ser Arg Arg Pro Ser Ser Gln Lys Pro Ser Tyr Ser Gly Gln Phe His
 785 790 795 800

Ser Leu Asp Arg Lys Cys His Leu Gln Glu Phe Thr Ser Thr Glu His
 805 810 815
 Arg Met Ala Ala Leu Leu Ser Pro Arg Arg Val Pro Asn Ser Met Ser
 820 825 830
 Lys Tyr Asp Ser Ser Gly Ser Tyr Ser Ala Arg Ser Arg Gly Gly Ser
 835 840 845
 Ser Thr Gly Ile Tyr Gly Glu Thr Phe Gln Leu His Arg Leu Ser Asp
 850 855 860
 Glu Lys Ser Pro Ala His Ser Ala Lys Ser Glu Met Gly Ser Gln Leu
 865 870 875 880
 Ser Leu Ala Ser Thr Thr Ala Tyr Gly Ser Leu Asn Glu Lys Tyr Glu
 885 890 895
 His Ala Ile Arg Asp Met Ala Arg Asp Ieu Glu Cys Tyr Lys Asn Thr
 900 905 910
 Val Asp Ser Leu Thr Lys Lys Gln Glu Asn Tyr Gly Ala Leu Phe Asp
 915 920 925
 Leu Phe Glu Gln Lys Leu Arg Lys Leu Thr Gln His Ile Asp Arg Ser
 930 935 940
 Asn Leu Lys Pro Glu Glu Ala Ile Arg Phe Arg Gln Asp Ile Ala His
 945 950 955 960
 Leu Arg Asp Ile Ser Asn His Leu Ala Ser Asn Ser Ala His Ala Asn
 965 970 975
 Glu Gly Ala Gly Glu Leu Leu Arg Gln Pro Ser Leu Glu Ser Val Ala
 980 985 990
 Ser His Arg Ser Ser Met Ser Ser Ser Lys Ser Ser Lys Gln Glu
 995 1000 1005
 Lys Ile Ser Leu Ser Ser Phe Gly Lys Asn Lys Lys Ser Trp Ile Arg
 1010 1015 1020
 Ser Ser Leu Ser Lys Phe Thr Lys Lys Asn Lys Asn Tyr Asp Glu
 1025 1030 1035 1040
 Ala His Met Pro Ser Ile Ser Gly Ser Gln Gly Thr Leu Asp Asn Ile
 1045 1050 1055
 Asp Val Ile Glu Leu Lys Gln Glu Leu Lys Glu Arg Asp Ser Ala Leu
 1060 1065 1070
 Tyr Glu Val Arg Leu Asp Asn Leu Asp Arg Ala Arg Glu Val Asp Val
 1075 1080 1085
 Leu Arg Glu Thr Val Asn Lys Leu Lys Thr Glu Asn Lys Gln Leu Lys
 1090 1095 1100
 Lys Glu Val Asp Lys Leu Thr Asn Gly Pro Ala Thr Arg Ala Ser Ser
 1105 1110 1115 1120
 Arg Ala Ser Ile Pro Val Ile Tyr Asp Asp Glu His Val Tyr Asp Ala
 1125 1130 1135

115

Ala Cys Ser Ser Thr Ser Ala Ser Gln Ser Ser Lys Arg Ser Ser Gly
 1140 1145 1150
 Cys Asn Ser Ile Lys Val Thr Val Asn Val Asp Ile Ala Gly Glu Ile
 1155 1160 1165
 Ser Ser Ile Val Asn Pro Asp Lys Glu Ile Ile Val Gly Tyr Leu Ala
 1170 1175 1180
 Met Ser Thr Ser Gln Ser Cys Trp Lys Asp Ile Asp Val Ser Ile Leu
 1185 1190 1195 1200
 Gly Leu Phe Glu Val Tyr Leu Ser Arg Ile Asp Val Glu His Gln Leu
 1205 1210 1215
 Gly Ile Asp Ala Arg Asp Ser Ile Leu Gly Tyr Gln Ile Gly Glu Leu
 1220 1225 1230
 Arg Arg Val Ile Gly Asp Ser Thr Thr Met Ile Thr Ser His Pro Thr
 1235 1240 1245
 Asp Ile Leu Thr Ser Ser Thr Thr Ile Arg Met Phe Met His Gly Ala
 1250 1255 1260
 Ala Gln Ser Arg Val Asp Ser Leu Val Leu Asp Met Leu Leu Pro Lys
 1265 1270 1275 1280
 Gln Met Ile Leu Gln Leu Val Lys Ser Ile Leu Thr Glu Arg Arg Leu
 1285 1290 1295
 Val Leu Ala Gly Ala Thr Gly Ile Gly Lys Ser Lys Leu Ala Lys Thr
 1300 1305 1310
 Leu Ala Ala Tyr Val Ser Ile Arg Thr Asn Gln Ser Glu Asp Ser Ile
 1315 1320 1325
 Val Asn Ile Ser Ile Pro Glu Asn Asn Lys Glu Glu Leu Leu Gln Val
 1330 1335 1340
 Glu Arg Arg Leu Glu Lys Ile Leu Arg Ser Lys Glu Ser Cys Ile Val
 1345 1350 1355 1360
 Ile Leu Asp Asn Ile Pro Lys Asn Arg Ile Ala Phe Val Val Ser Val
 1365 1370 1375
 Phe Ala Asn Val Pro Leu Gln Asn Asn Glu Gly Pro Phe Val Val Cys
 1380 1385 1390
 Thr Val Asn Arg Tyr Gln Ile Pro Glu Leu Gln Ile His His Asn Phe
 1395 1400 1405
 Lys Met Ser Val Met Ser Asn Arg Leu Glu Gly Phe Ile Leu Arg Tyr
 1410 1415 1420
 Leu Arg Arg Arg Ala Val Glu Asp Glu Tyr Arg Leu Thr Val Gln Met
 1425 1430 1435 1440
 Pro Ser Glu Leu Phe Lys Ile Ile Asp Phe Phe Pro Ile Ala Leu Gln
 1445 1450 1455
 Ala Val Asn Asn Phe Ile Glu Lys Thr Asn Ser Val Asp Val Thr Val
 1460 1465 1470

116

Gly Pro Arg Ala Cys Leu Asn Cys Pro Leu Thr Val Asp Gly Ser Arg
 1475 1480 1485

Glu Trp Phe Ile Arg Leu Trp Asn Glu Asn Phe Ile Pro Tyr Leu Glu
 1490 1495 1500

Arg Val Ala Arg Asp Gly Lys Lys Thr Phe Gly Arg Cys Thr Ser Phe
 1505 1510 1515 1520

Glu Asp Pro Thr Asp Ile Val Ser Lys Lys Trp Pro Trp Phe Asp Gly
 1525 1530 1535

Glu Asn Pro Glu Asn Val Leu Lys Arg Leu Gln Leu Gln Asp Leu Val
 1540 1545 1550

Pro Ser Pro Ala Asn Ser Ser Arg Gln His Phe Asn Pro Leu Glu Ser
 1555 1560 1565

Leu Ile Gln Leu His Ala Thr Lys His Gln Thr Ile Asp Asn Ile
 1570 1575 1580

(2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 47 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

ATAAGAATGC GGCGCCGCC ATGACGACGT CAAATGTAGA ATTGATA

47

(2) INFORMATION FOR SEQ ID NO: 6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 41 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

GGAATTCCAA CCATATGACG ACGTCAAATG TAGAATTGAT A

41

(2) INFORMATION FOR SEQ ID NO: 7:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 35 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

CGCGGGATCCT CAAACCGCGG GTGGCATAAT GGATG

35

(2) INFORMATION FOR SEQ ID NO: 8:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 13 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Lys Lys Asp Pro Pro Pro Ala Val Pro Pro Arg Asp Thr
1 5 10

(2) INFORMATION FOR SEQ ID NO: 9:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 12 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

Thr Thr Asp Val Pro Pro Leu Pro Pro Leu Lys Ser
1 5 10

(2) INFORMATION FOR SEQ ID NO: 10:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 12 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

Glu Val Pro Val Pro Pro Pro Val Pro Pro Arg Arg
1 5 10

(2) INFORMATION FOR SEQ ID NO: 11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 11 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

His Leu Asp Ser Pro Pro Ala Ile Pro Pro Arg
1 5 10

(2) INFORMATION FOR SEQ ID NO: 12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 11 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

His Ser Ile Ala Gly Pro Pro Val Pro Pro Arg
1 5 10

(2) INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 13 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

Tyr Arg Ala Val Pro Pro Leu Pro Pro Arg Arg Lys
1 5 10

(2) INFORMATION FOR SEQ ID NO: 14:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 13 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

Gly Glu Leu Ser Pro Pro Pro Ile Pro Pro Arg Leu Asn
1 5 10

(2) INFORMATION FOR SEQ ID NO: 15:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 11 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

Ala Pro Ala Val Pro Pro Ala Arg Pro Gly Ser
1 5 10

(2) INFORMATION FOR SEQ ID NO: 16:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 8 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

Pro Ala Val Pro Pro Ala Arg Pro
1 5

(2) INFORMATION FOR SEQ ID NO: 17:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 11 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

120

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

Pro	Pro	Arg	Pro	Leu	Pro	Val	Ala	Pro	Gly	Ser
1				5						10

(2) INFORMATION FOR SEQ ID NO: 18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

Pro	Ala	Pro	Ala	Pro	Pro	Lys	Pro	Pro	Lys
1				5					10

(2) INFORMATION FOR SEQ ID NO: 19:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 13 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

Pro	Pro	Asp	Asn	Gly	Pro	Pro	Pro	Leu	Pro	Thr	Ser	Ser
1				5						10		

(2) INFORMATION FOR SEQ ID NO: 20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 13 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

Pro	Pro	Gln	Met	Pro	Leu	Pro	Glu	Ile	Pro	Gln	Gln	Trp
1				5						10		

(2) INFORMATION FOR SEQ ID NO: 21:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 13 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

SUBSTITUTE SHEET (RULE 26)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

Ala Pro Thr Met Pro Pro Pro Leu Pro Pro Val Pro Pro
1 5 10

(2) INFORMATION FOR SEQ ID NO: 22:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 12 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

Phe Pro Ala Tyr Pro Pro Pro Pro Val Pro Val Pro
1 5 10

(2) INFORMATION FOR SEQ ID NO: 23:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 28 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

Leu Leu Phe Leu Leu Ser Thr Tyr Lys Gln Lys Leu Arg Gln Leu Lys
1 5 10 15
Lys Asp Gln Lys Lys Leu Glu Gln Leu Pro Thr Ser
20 25

(2) INFORMATION FOR SEQ ID NO: 24:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 28 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

Glu Thr Val Asn Val Asn Lys Leu Lys Thr Glu Asn Lys Gln Leu Lys
1 5 10 15
Lys Glu Val Asp Lys Leu Thr Asn Gly Pro Ala Thr
20 25

(2) INFORMATION FOR SEQ ID NO: 25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10443 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: circular

(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "plasmid"

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

GGCGGCCGCC	ATGACGACGT	CAAATGAGA	ATTGATACCA	ATCTACACGG	ATTGGGCCAA	60
TCGGCACCTT	TCGAAGGGCA	GCTTATCAA	GTCGATTAGG	GATATTTCCA	ATGATTTCG	120
CGACTATCGA	CTGGTTTCTC	AGCTTATTAA	TGTGATCGTT	CCGATCAACG	AATTCTGCC	180
TGCATTACAG	AAACGTTGG	AAAAAATCAC	ATCGAACCTG	GATGGCCTCG	AAACGTGTCT	240
CGACTACCTG	AAAAAATCTGG	GTCTCGACTG	CTCGAAACTC	ACCAAAACCG	ATATCGACAG	300
CGGAAACTTG	GGTGCAGTTC	TCCAGCTGCT	CTTCCTGCTC	TCCACCTACA	AGCAGAAGCT	360
TCGGCAACTG	AAAAAAAGATC	AGAAGAAATT	GGAGCAACTA	CCCACATCCA	TTATGCCACC	420
CGCGGTTTCT	AAATTACCCCT	CGCCACGTGT	CGCCACGTCA	GCAACCGCTT	CAGCAACTAA	480
CCCAAATTCC	AACTTTCCAC	AAATGTCAAC	ATCCAGGCTT	CAGACTCCAC	AGTCAGAAAT	540
ATCGAAAATT	GATTCATCAA	AGATTGGTAT	CAAGCCAAAG	ACGTCTGGAC	TTAAACCACC	600
CTCATCATCA	ACCACTTCAT	CAAATAATAC	AAATTCAATT	CGTCCGTGCA	GCCGTTCGAG	660
TGGCAATAAT	AATGTTGGCT	CGACGATATC	CACATCTGCG	AAGAGCTTAG	AATCATCATC	720
AACGTACAGC	TCTATTTCGA	ATCTAAACCG	ACCTACCTCC	CAACTCCAAA	AACCTTCTAG	780
ACCACAAACC	CAGCTAGTTC	GTGTTGCTAC	AACTACAAAA	ATCGGAAGCT	CAAAGCTAGC	840
CGCTCCGAAA	GCCGTGAGCA	CCCCAAAACT	TGCTTCTGTG	AAGACTATTG	GAGCAAAACA	900
AGAGCCCGAT	AACAGCGGTG	GTGGTGGTGG	TGGAATGCTG	AAATTAAGT	TATTCAGTAG	960
CAAAAACCCA	TCTTCCTCAT	CGAATAGCCC	ACAACCTACG	AGAAAGGCCG	CGGGCGGTGCC	1020
TCAACAAACAA	ACTTTGTGCA	AAATCGCTGC	CCCAGTGAAA	AGTGGCCTGA	AGCCGCCGAC	1080
CAGTAAGCTG	GGAAAGTGCCA	CGTCTATGTC	GAAGCTTGT	ACGCCAAAAG	TTTCCTACCG	1140
TAAAACGGAC	GCCCCAATCA	TATCTCAACA	AGACTCGAAA	CGATGCTCAA	AGAGCAGTGA	1200
AGAAGAGTCC	GGATACGCTG	GATTCAACAG	CACGTGCCA	ACGTCATCAT	CGACGGAAAGG	1260
TTCCCTAAAGC	ATGCATTCCA	CATCTTCCAA	GAGTTCAACG	TCAGACGAAA	AGTCTCCGTC	1320
ATCAGACGAT	CTTACTCTTA	ACGCCTCCAT	CGTGACAGCT	ATCAGACAGC	CGATAGCCGC	1380
AACACCGGTT	TCTCCAAATA	TTATCAACAA	GCCTGTTGAG	AAAAAACCAA	CACTGGCAGT	1440

123

GAAAGGGAGTG AAAAGCACAG CGAAAAAAGA TCCACCTCCA GCTGTTCCGC CACGTGACAC	1500
CCAGCCAACA ATCGGAGTTG TTAGTCCAAT TATGGCACAT AAGAAGTTGA CAAATGACCC	1560
CGTGATATCT GAAAAACCAG AACCTGAAAA GCTCCAATCA ATGAGCATCG ACACCGACGGA	1620
CGTTCCACCG CTTCCACCTC TAAAATCAGT TGTTCCACTT AAAATGACTT CAATCCGACA	1680
ACCACCAACG TACGATGTTC TTCTAAAACA AGGAAAAATC ACATCGCCTG TCAAGTCGTT	1740
TGGATATGAG CAGTCGTCGG CGTCTGAAGA CTCCATTGTG GCTCATGCGT CGGCTCAGGT	1800
GACTCCGCCG ACAAAAACCTT CTGGTAATCA TTCGCTGGAG AGAAGGATGG GAAAGAATAA	1860
GACATCAGAA TCCAGCGGCT ACACCTCTGA CGCCGGTGT GCGATGTGCG CCAAAATGAG	1920
GGAGAAGCTG AAAGAATACG ATGACATGAC TCGTCGAGCA CAGAACGGCT ATCCTGACAA	1980
CTTCGAAGAC AGTTCCCTCCT TGTCGTCCTGG AATATCCGAT AACAAACGAGC TCGACGACAT	2040
ATCCACGGAC GATTTGTCCG GAGTAGACAT GGCAACAGTC GCCTCCAAAC ATAGCGACTA	2100
TTCCCCACTTT GTTCGCCATC CCACGTCTTC TTCCCTCAAAG CCCCGAGTCC CCAGTCGGTC	2160
CTCCACATCA GTCGATTCTC GATCTCGAGC AGAACAGGAG AATGTGTACA AACTTCTGTC	2220
CCAGTGCCGA ACGAGCCAAC GTGGCGCCGC TGCCACCTCA ACCTTCGGAC AACATTCGCT	2280
AAGATCCCCG GGATACTCAT CCTATTCTCC ACACCTTATCA GTGTCAGCTG ATAAGGACAC	2340
AATGTCTATG CACTCACAGA CTAGTCGACG ACCTTCTTCA CAAAAACCAA GCTATTCAAGG	2400
CCAATTTCAT TCACTTGATC GTAAATGCCA CCTTCAAGAG TTCACATCCA CCGAGCACAG	2460
AATGGCGGCT CTCTTGAGCC CGAGACGGGT GCCGAACCTCG ATGTCGAAAT ATGATTCTTC	2520
AGGATCCTAC TCGGCGCGTT CCCGAGGTGG AAGCTCTACT GGTATCTATG GAGAGACGTT	2580
CCAACTGCAC AGACTATCCG ATGAAAAATC CCCCCCACAT TCTGCCAAA GTGAGATGGG	2640
ATCCCAACTA TCACTGGCTA GCACGACAGC ATATGGATCT CTCAATGAGA AGTACGAACA	2700
TGCTATTCTGG GACATGGCAC GTGACTTGGG GTGTTACAAG AACACTGTG ACTCACTAAC	2760
CAAGAAACAG GAGAACTATG GAGCATTGTT TGATCTTTT GAGCAAAAGC TTAGAAAAC	2820
CACTCAACAC ATTGATCGAT CCAACTTGAA GCCTGAAGAG GCAATACGAT TCAGGCAGGA	2880
CATTGCTCAT TTGAGGGATA TTAGCAATCA TCTTGCATCC AACTCAGCTC ATGCTAACGA	2940
AGGCCTGGT GAGCTTCTTC GTCAACCATC TCTGGAATCA GTTGCATCCC ATCGATCATC	3000
GATGTCATCG TCGTCGAAA GCAGCAAGCA GGAGAAGATC AGCTTGAGCT CGTTGGCAA	3060
GAACAAGAAG AGCTGGATCC GCTCCTCACT CTCCAAGTTC ACCAAGAAGA AGAACAAAGAA	3120
CTACGACGAA GCACATATGC CATCAATTTC CGGATCTCAA GGAACTCTTG ACAACATTGA	3180
TGTGATTGAG TTGAAGCAAG AGCTCAAAGA ACGCGATAGT GCACTTTACG AAGTCCGCCT	3240
TGACAATCTG GATCGTGCCG GCGAAGTTGA TGTTCTGAGG GAGACAGTGA ACAAGTTGAA	3300
AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACAAACTC ACCAACGGTC CAGCCACTCG	3360

TGCTTCTTCC CGCGCCTCAA TTCCAGTTAT CTACGACGAT GAGCATGTCT ATGATGCAGC	3420
GTGTAGCAGT ACATCAGCTA GTCAATCTTC GAAACGATCC TCTGGCTGCA ACTCAATCAA	3480
GGTTACTGTA AACGTGGACA TCGCTGGAGA AATCAGTTCG ATCGTTAACCGGGACAAAGA	3540
GATAATCGTA GGATATCTTG CCATGTCAAC CAGTCAGTCA TGCTGGAAAG ACATTGATGT	3600
TTCTATTCTA GGACTATTGG AAGTCTACCT ATCCAGAATT GATGTGGAGC ATCAACTTGG	3660
AATCGATGCT CGTGATTCTA TCCTTGGCTA TCAAATTGGT GAACTTCGAC GCGTCATTGG	3720
AGACTCCACA ACCATGATAA CCAGCCATCC AACTGACATT CTTACTTCCT CAACTACAAT	3780
CCGAATGTTCAATGCACGGTG CGGCACAGAG TCGCGTAGAC AGTCTGGTCC TTGATATGCT	3840
TCTTCCAAAG CAAATGATTCTCAACTCGT CAAGTCATT TTGACAGAGA GACGTCCTGGT	3900
GTTAGCTGGA GCAACTGGAA TTGGAAAGAG CAAACTGGCG AAGACCCCTGG CTGCTTATGT	3960
ATCTATTCTGA ACAAAATCAATT CCGAAGATAG TATTGTTAAT ATCAGCATTC CTGAAAACAA	4020
TAAAGAAGAA TTGCTTCAAG TGGAACGACG CCTGGAAAAG ATCTTGAGAA GCAAAGAAC	4080
ATGCATCGTA ATTCTAGATA ATATCCAAA GAATCGAATT GCATTTGTTG TATCCGTTTT	4140
TGAAATGTC CCACCTCAAA ACAACGAAGG TCCATTGTA GTATGCACAG TCAACCGATA	4200
TCAAATCCCT GAGCTTCAAA TTCACCACAA TTTCAAAATG TCAGTAATGT CGAACCGTCT	4260
CGAAGGATTC ATCCTACGTT ACCTCCGACG ACGGGCGGTA GAGGATGAGT ATCGTCTAAC	4320
TGTACAGATG CCATCAGAGC TCTTCAAAAT CATTGACTTC TTCCCAATAG CTCTTCAGGC	4380
CGTCAATAAT TTTATTGAGA AAACGAATTCTGTTGATGTG ACAGTTGGTC CAAGAGCATG	4440
CTTGAACGTGCTTCAACTG TCGATGGATC CCGTGAATGG TTCATTGAT TGTGGAATGA	4500
GAACCTTCATT CCATATTGGA AACGTGTTGC TAGAGATGGC AAAAAAAACCT TCGGTGCTG	4560
CACTTCCTTC GAGGATCCCA CCGACATCGT CTCTAAAAAA TGGCCGTGGT TCGATGGTGA	4620
AAACCCGGAG AATGTGCTCA AACGTCTTCA ACTCCAGAC CTCGTCCGT CACCTGCCAA	4680
CTCATCCCGA CAACACTTCA ATCCCCTCGA GTCGTTGATC CAATTGCAATG CTACCAAGCA	4740
TCAGACCATC GACAACATTG GAACAGAAGA CTCTAATCTT CTCTCGCCTC TCCCCCGCTT	4800
TCCTTATCTT CGTACCGGTA CCTGATGATT CCCCATTTTC CCCCTTTCC CCCCAATTTC	4860
CCAGAACCTC CTGTTCCCTT TGTTCCCTAGT CCTCCCGGGT GCCGACGCCG AAGCGATTTA	4920
AAAACCTTTT TCTTTCCGAA ACATTTCCA TTGCTCATTA ATAGTCAAAT TGAATAAACAA	4980
GTGTATGTAC TTAAAAAAAAA AAAAAAAAAA ACTCGAGGGGG GGGCCCTATT CTATAGTGTC	5040
ACCTAAATGC TAGAGCTCGC TGATCAGCCT CGACTGTGCC TTCTAGTTGC CAGCCATCTG	5100
TTGTTTGCCTCCTCCCCGTG CCTTCCTTGA CCCTGGAGG TGCCACTCCC ACTGTCTTT	5160
CCTAATAAAA TGAGGAAATT GCATCGCATT GTCTGAGTAG GTGTCATTCT ATTCTGGGGG	5220
GTGGGGTGGG GCAGGACAGC AAGGGGGAGG ATTGGGAAGA CAATAGCAGG CATGCTGGGG	5280

125

ATGCGGTGGG CTCTATGGCT TCTGAGGCAG AAAGAACAG CTGGGGCTCT AGGGGGTATC	5340
CCCACCGGCC CTGTAGCGGC GCATTAAGCG CGCGGGGTGT GGTGGTTACG CGCAGCGTGA	5400
CCGCTACACT TGCCAGCGCC CTAGCGCCCG CTCCCTTCGC TTTCTTCCT TCCTTTCTCG	5460
CCACGTTCGC CGGCTTCCC CGTCAAGCTC TAAATCGGGG CATCCCTTA GGGTTCCGAT	5520
TTAGTGCTTT ACGGCACCTC GACCCAAAAA AACTTGATTA GGGTGATGGT TCACGTAGTG	5580
GGCCATCGCC CTGATAGACG GTTTTCGCC CTTTGACGTT GGAGTCCACG TTCTTTAATA	5640
GTGGACTCTT GTTCCAAACT GGAACAACAC TCAACCCTAT CTCGGTCTAT TCTTTGATT	5700
TATAAGGGAT TTTGGGGATT TCGGCCTATT GGTAAAAAAA TGAGCTGATT TAACAAAAAT	5760
TTAACCGCAA TTAATTCTGT GGAATGTGTG TCAGTTAGGG TGTGGAAAGT CCCCAGGCTC	5820
CCCAGGCAGG CAGAAGTATG CAAAGCATGC ATCTCAATTG GTCAAGAACCG AGGTGTGGAA	5880
AGTCCCCAGG CTCCCCAGCA GGCAGAAGTA TGCAAAGCAT GCATCTCAAT TAGTCAGCAA	5940
CCATAGTCCC GCCCTTAAC CCGCCCATCC CGCCCTAAC TCCGCCAGT TCCGCCATT	6000
CTCCGGCCA TGGCTGACTA ATTTTTTTA TTTATGCAGA GGCGGAGGCC GCCTCTGCCT	6060
CTGAGCTATT CCAGAAGTAG TGAGGAGGCT TTTTGGAGG CCTAGGCTTT TGCAAAAGC	6120
TCCCAGGAGC TTGTATATCC ATTTTCGGAT CTGATCAAGA GACAGGATGA GGATCGTTTC	6180
GCATGATTGA ACAAGATGGA TTGCACCGAG GTTCTCCGGC CGCTTGGGTG GAGAGGCTAT	6240
TCGGCTATGA CTGGGCACAA CAGACAATCG GCTGCTCTGA TGCCGCCGTG TTCCGGCTGT	6300
CAGCGCAGGG GCGCCCGGTT CTTTTGTCA AGACCGACCT GTCCGGTGCC CTGAATGAAC	6360
TGCAGGACGA GGCAGCGCGG CTATCGTGGC TGGCCACGAC GGGCGTTCCCT TGCGCAGCTG	6420
TGCTCGACGT TGTCACTGAA GCGGGAAAGGG ACTGGCTGCT ATTGGGCGAA GTGCCGGGGC	6480
AGGATCTCCT GTCATCTCAC CTTGCTCCTG CCGAGAAAGT ATCCATCATG GCTGATGCAA	6540
TGCGGGGGCT GCATACGCTT GATCCGGCTA CCTGCCATT CGACCAACCAA GCGAACATC	6600
GCATCGAGCG AGCACGTACT CGGATGGAAG CGGGTCTTGT CGATCAGGAT GATCTGGACG	6660
AAGAGCATCA GGGGCTCGCG CCAGCCGAAC TGTCGCCAG GCTCAAGGCG CGCATGCCG	6720
ACGGCGAGGA TCTCGTCGTG ACCCATGGCG ATGCCCTGCTT GCCGAATATC ATGGTGGAAA	6780
ATGGCCGCTT TTCTGGATTC ATCGACTGTG GCCGGCTGGG TGTGGCGGAC CGCTATCAGG	6840
ACATAGCGTT GGCTACCCGT GATATTGCTG AAGAGCTTGG CGGCGAATGG GCTGACCGCT	6900
TCCTCGTGCT TTACGGTATC GCCGCTCCCG ATTTCGACGCG CATCGCCTTC TATGCCCTTC	6960
TTGACGAGTT CTTCTGAGCG GGACTCTGGG GTTCGAAATG ACCGACCAAG CGACGCCAA	7020
CCTGCCATCA CGAGATTTCG ATTCCACCGC CGCCTTCTAT GAAAGGTTGG GCTTCGGAAT	7080
CGTTTCCGG GACGCCGGCT GGATGATCCT CCAGCGCGGG GATCTCATGC TGGAGTTCTT	7140
CGCCCAACCCC AACTTGTTA TTGCAGCTTA TAATGGTTAC AAATAAAGCA ATAGCATCAC	7200

AAATTCACA AATAAAGCAT TTTTTCACT GCATTCTAGT TGTGGTTGT CCAAACATCAT	7260
CAATGTATCT TATCATGTCT GTATACCGTC GACCTCTAGC TAGAGCTTGG CGTAATCATG	7320
GTCATAGCTG TTTCCTGTGT GAAATTGTTA TCCGCTCACA ATTCCACACA ACATACGAGC	7380
CGGAAGCATA AAGTGTAAAG CCTGGGGTGC CTAATGAGTG AGCTAACTCA CATTAAATTGC	7440
GTTGCCGCTCA CTGCCCGCTT TCCAGTCGGG AAACCTGTGC TGCCAGCTGC ATTAATGAAT	7500
CGGCCAACGC GCGGGGGAGAG GCGGTTTGC GCGGTTTGC TATTGGGC GCTTCCGCTT CCTCGCTCAC	7560
TGACTCGCTG CGCTCGGTGC TTCGGCTGCG GCGAGCGGT A TCAGCTCACT CAAAGGCGGT	7620
AATACGGTTA TCCACAGAAAT CAGGGATAA CGCAGGAAAG AACATGTGAG CAAAAGGCCA	7680
GCAAAAGGCC AGGAACCGTA AAAAGGCCGC GTTGCTGGCG TTTTCCATA GGCTCCGCC	7740
CCCTGACGAG CATCACAAAA ATCGACGCTC AAGTCAGAGG TGGCGAAACC CGACAGGACT	7800
ATAAAAGATAC CAGGCCTTTC CCCCTGGAAG CTCCCTCGTG CGCTCTCCGT TTCCGACCCCT	7860
GCCGCTTACC GGATACCTGT CCGCCTTCT CCCTTCGGGA AGCGTGGCGC TTTCTCAATG	7920
CTCACGCTGT AGGTATCTCA GTTCGGTGTA GGTCGTTCGC TCCAAGCTGG GCTGTGTGCA	7980
CGAACCCCCC GTTCAGCCCG ACCGCTGC GCTTATCCGGT AACTATCGTC TTGAGTCCAA	8040
CCCGGTAAGA CACGACTTAT CGCCACTGGC AGCAGCCACT GGTAACAGGA TTAGCAGAGC	8100
GAGGTATGTA GGCGGTGCTA CAGAGTTCTT GAAGTGGTGG CCTAACTACG GCTACACTAG	8160
AAGGACAGTA TTTGGTATCT GCGCTCTGCT GAAGCCAGTT ACCTTCGGAA AAAGAGTTGG	8220
TAGCTCTTGA TCCGGCAAAAC AAACCACCGC TGGTAGCGGT GGTTTTTTG TTTGCAAGCA	8280
GCAGATTACG CGCAGAAAAAA AAGGATCTCA AGAAGATCCT TTGATCTTT CTACGGGGTC	8340
TGACGCTCAG TGGAACGAAA ACTCACGTTA AGGGATTTG GTCATGAGAT TATCAAAAG	8400
GATCTTCACC TAGATCCTTT TAAATTTAAA ATGAAGTTTT AAATCAATCT AAAGTATATA	8460
TGAGTAAACT TGGCTTGACA GTTACCAATG CTTAACAGT GAGGCACCTA TCTCAGCGAT	8520
CTGTCTTATT CGTTCATCCA TAGTTGCCG ACTCCCCGTC GTGTAGATAA CTACGGGATACG	8580
GGAGGGCTTA CCATCTGGCC CCAGTGC GCTGC AATGATACCG CGAGACCCAC GCTCACCGGC	8640
TCCAGATTAA TCAGCAATAA ACCAGCCAGC CGGAAGGGCC GAGCGCAGAA GTGGCCTGC	8700
AACTTATCC GCCTCCATCC AGTCTATTAA TTGTTGCCGG GAAGCTAGAG TAAGTAGTTTC	8760
GCCAGTTAAT AGTTTGC GCA ACGTTGTTGC CATTGCTACA GGCATCGTGG TGTCAAGCTC	8820
GTCGTTGGT ATGGCTTCAT TCAGCTCCGG TTCCCAACGA TCAAGGCGAG TTACATGATC	8880
CCCCATGTTG TGCAAAAAAG CGGTTAGCTC CTTGGTCCCT CCGATCGTTG TCAGAAGTAA	8940
GTTGGCCGCA GTGTTATCAC TCATGGTTAT GGCAGCACTG CATAATTCTC TTACTGTCAT	9000
GCCATCCGTA AGATGCTTTT CTGTGACTGG TGAGTACTCA ACCAAGTCAT TCTGAGAATA	9060
GTGTATGCGG CGACCGAGTT GCTCTTGCCC GGCAGTCATAA CGGGATAATA CCGCGCCACA	9120

TAGCAGAACT TAAAGTGC TCATCATTGG AAAACGTTCT CGGGGGCGAA AACTCTCAAG	9180
GATCTTACCG CTGTTGAGAT CCAGTTCGAT GTAACCCACT CGTGCACCCA ACTGATCTTC	9240
AGCATCTTT ACTTTCACCA GCGTTCTGG GTGAGCAAAA ACAGGAAGGC AAAATGCCGC	9300
AAAAAAGGGA ATAAGGGCGA CACGGAAATG TTGAATACTC ATACTCTTCC TTTTCAATA	9360
TTATTGAAGC ATTTATCAGG GTTATTGTCT CATGAGCGGA TACATATTG AATGTATTAA	9420
GAAAATAAA CAAATAGGGG TTCCGCGCAC ATTTCCCCGA AAAGTGCCAC CTGACGTCGA	9480
CGGATCGGGGA GATCTCCCGA TCCCCTATGG TCGACTCTCA GTACAATCTG CTCTGATGCC	9540
GCATAGTTAA GCCAGTATCT GCTCCCTGCT TGTGTGTTGG AGGTCGCTGA GTAGTGCAGC	9600
AGCAAAATTT AAGCTACAAC AAGGCAAGGC TTGACCGACA ATTGCATGAA GAATCTGCTT	9660
AGGGTTAGGC GTTTGCGCT GCTTCGCGAT GTACGGGCCA GATATACGGG TTGACATGAA	9720
TTATTGACTA GTTATTAATA GTAATCAATT ACGGGGTCAT TAGTTCATAG CCCATATATG	9780
GAGTCCGCG TTACATAACT TACGGTAAAT GGCCCGCCTG GCTGACGCC CAACGACCCC	9840
CGCCCATTGA CGTCAATAAT GACGTATGTT CCCATAGTAA CGCCAATAGG GACTTTCCAT	9900
TGACGTCAAT GGGTGGACTA TTTACGGTAA ACTGCCCACT TGGCAGTACA TCAAGTGTAT	9960
CATATGCCAA GTACGCCCC TATTGACGTC AATGACGGTA AATGGCCCGC CTGGCATTAT	10020
GCCCAGTACA TGACCTTATG GGACTTTCCCT ACTTGGCAGT ACATCTACGT ATTAGTCATC	10080
GCTATTACCA TGGTGTGCG GTTTTGGCAG TACATCAATG GGCGTGGATA GCGGTTTGAC	10140
TCACGGGGAT TTCCAAGTCT CCACCCATT GACGTCAATG GGAGTTGTT TTGGCACCAA	10200
AATCAACGGG ACTTTCCAAA ATGTCGTAAC AACTCCGCC CATTGACGCA AATGGGCGGT	10260
AGGCCTGTAC GGTGGGAGGT CTATATAAGC AGAGCTCTCT GGCTAACTAG AGAACCCACT	10320
GCTTACTGGC TTATCGAAAT TAATACGACT CACTATAGGG AGACCCAAGC TTGGTACCGA	10380
GCTCGGATCC ACTAGTAACG GCCGCCAGTG TGCTGGAATT CTGCAGATAT CCATCACACT	10440
GGC	10443

(2) INFORMATION FOR SEQ ID NO: 26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7474 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular

- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "plasmid"

- (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

CTAAATTGTA AGCGTTAATA TTTTGTAAA ATTTCGCGTTA AATTTTGTT AAATCAGCTC	60
AATTTTTAAC CAATAGGCCG AAATCGGCAA AATCCCTTAT AAATCAAAAG AATAGACCGA	120
GATAGGGTTG AGTGTGTTTC CAGTTGGAA CAAGAGTCCA CTATTAAGA ACGTGGACTC	180
CAACGTCAAA GGGCGAAAAA CCGTCTATCA GGGCGATGGC CCACTACGTG ACCATCACC	240
CTAATCAAGT TTTTGGGGT CGAGGTGCCG TAAAGCACTA AATCGGAACC CTAARGGAG	300
CCCCCGATTT AGAGCTTGAC GGGGAAAGCC GGCAGACGTG GCGAGAAAGG AAGGAAAGAA	360
AGCGAAAGGA GCGGGCGCTA GGGCGTGGC AAGTGTAGCG GTCACGCTGC GCGTAACCAC	420
CACACCGCC GCGCTTAATG CGCCGCTACA GGGCGCGTCC CATTGCCAT TCAGGCTGCG	480
CAACTGTTGG GAAGGGCGAT CGGTGCGGGC CTCTTCGCTA TTACGCCAGC TGGCGAAAGG	540
GGGATGTGCT GCAAGGCGAT TAAGTTGGGT AACGCCAGGG TTTTCCCAGT CACGACGTTG	600
TAAAACGACG GCCAGTGAGC GCGCGTAATA CGACTCACTA TAGGGCGAAT TGGAGCTCCA	660
CCGCGGTTTC TAAATTACCC TCGCCACGTG TCGCCACGTC AGCAACCGCT TCAGCAACTA	720
ACCCAAATTC CAACTTCCA CAAATGTCAA CATCCAGGCT TCAGACTCCA CAGTCAAGAA	780
TATCGAAAAT TGATTCATCA AAGATTGGTA TCAAGCCAAA GACGTCTGGA CTTAAACCAC	840
CCTCATCATC AACCACCTCA TCAAATAATA CAAATTCAATT CCAGTCCGTG AGCCGTTCGA	900
GTGGCAATAA TAATGTTGGC TCGACGATAT CCACATCTGC GAAGAGCTTA GAATCATCAT	960
CAACGTACAG CTCTATTCG AATCTAAACC GACCTACCTC CCAACTCCAA AAACCTTCTA	1020
GACCACAAAC CCAGCTAGTT CGTGTGCTA CAACTACAAA AATCGGAAGC TCAAAGCTAG	1080
CCGCTCCGAA AGCCGTGAGC ACCCCAAAC TTGCTTCTGT GAAGACTATT GGAGCAAAAC	1140
AAGAGCCCGA TAACAGCGGT GGTGGTGGTG GTGGAATGCT GAAATTAAAG TTATTCAGTA	1200
GCAAAAAACCC ATCTTCTCA TCGAATAGCC CACAACCTAC GAGAAAGGCG GCGCGGTGC	1260
CTCAACAACA AACTTTGTG AAAATCGCTG CCCCAGTGAA AAGTGGCCTG AAGCCGCCGA	1320
CCAGTAAGCT GGGAAAGTGCC ACGTCTATGT CGAAGCTTTG TACGCCAAAA GTTCCCTACC	1380
GTAAAACGGA CGCCCCAATC ATATCTAAC AAGACTCGAA ACGATGCTCA AAGAGCAGTG	1440
AAGAAGAGTC CGGATACGCT GGATTCAACA GCACGTCGCC AACGTCTAC TCGACGGAAG	1500
GTTCCCTAAG CATGCATTCC ACATCTTCCA AGAGTTAAC GTCAGACGAA AAGTCTCCGT	1560
CATCAGACGA TCTTACTCTT AACGCCCTCA TCGTGCAGC TATCAGACAG CCGATAGCCG	1620
CAACACCGGT TTCTCCAAAT ATTATCAACA AGCCTGTTGA GGAAAAACCA ACACGGCAG	1680
TGAAAGGAGT GAAAAGCACA GCGAAAAAAAG ATCCACCTCC AGCTGTTCCG CCACGTGACA	1740
CCCAGCCAAC AATCGGAGTT GTTAGTCCAA TTATGGCACA TAAGAAGTTG ACAAAATGACC	1800
CCGTGATATC TGAAAAACCA GAACCTGAAA AGCTCCAATC AATGAGGCATC GACACGACGG	1860

ACGTTCCACC GCTTCCACCT CTAATCAG TTGTTCCACT TAAAATGACT TCAATCCGAC	1920
AACCACCAAC GTACGATGTT CTTCTAAAC AAGGAAAAAT CACATCGCCT GTCAAGTCGT	1980
TTGGATATGA GCAGTCGTCC GCGTCTGAAG ACTCCATTGT GGCTCATGCG TCGGCTCAGG	2040
TGACTCCGCC GACAAAAAAT TCTGGTAATC ATTGCTGGA GAGAAGGATG GGAAAGAATA	2100
AGACATCAGA ATCCAGCGGC TACACCTCTG ACGCCGGTGT TGCGATGTGC GCCAAATGAA	2160
GGGAGAAGCT GAAAGAACAT GATGACATGA CTCGTCGAGC ACAGAACGGC TATCCTGACA	2220
ACTTCGAAGA CAGTTCCCTCC TTGTCGTCTG GAATATCCGA TAACAACGAG CTCGACGACA	2280
TATCCACCGGA CGATTTGTCC GGAGTAGACA TGGCAACAGT CGCCTCCAAA CATAGCGACT	2340
ATTCCCACCTT TGTCGCCAT CCCACGTCTT CTTCCTCAAA GCCCCGAGTC CCCAGTCGGT	2400
CCTCCACATC AGTCGATTCT CGATCTCGAG CAGAACAGGA GAATGTGTAC AAACCTCTGT	2460
CCCAGTGCCG AACGAGCCPA CGTGGCGCCG CTGCCACCTC AACCTTCGGA CAACATTCGC	2520
TAAGATCCCC GGGATACTCA TCCTATTCTC CACACTTATC AGTGTCACT GATAAGGACA	2580
CAATGTCTAT GCACTCACAG ACTAGTCGAC GACCTTCTTC ACAAAACCA AGCTATTCA	2640
GCCAATTCA TTCACTTGAT CGTAAATGCC ACCTTCAGA GTTCACATCC ACCGAGCACA	2700
GAATGGCGGC TCTCTTGAGC CCGAGACGGG TGCCGAACTC GATGTGAAA TATGATTCTT	2760
CAGGATCCTA CTCGGCGCGT TCCCAGGTG GAAGCTCTAC TGGTATCTAT GGAGAGACGT	2820
TCCAATGCA CAGACTATCC GATGAAAAAT CCCCCGCACA TTCTGCCAAA AGTGAGATGG	2880
GATCCCAACT ATCACTGGCT AGCAGCACAG CATATGGATC TCTCAATGAG AAGTACGAAC	2940
ATGCTATTGCG GACATGGCA CGTGACTTGG AGTGTACAA GAACACTGTC GACTCACTAA	3000
CCAAGAAACA GGAGAACTAT GGAGCATTGT TTGATCTTT TGAGCAAAAG CTTAGAAAAC	3060
TCACTCAACA CATTGATCGA TCCAACCTGA AGCCTGAAGA GGCAATACGA TTCAGGCAGG	3120
ACATTGCTCA TTTGAGGGAT ATTAGCAATC ATCTTGATC CAACTCAGCT CATGCTAACG	3180
AAGGCCTGG TGAGCTTCTT CGTCAACCAT CTCTGGAATC AGTTGCATCC CATCGATCAT	3240
CGATGTCATC GTCGTCGAAA AGCAGCAAGC AGGAGAAGAT CAGCTTGAGC TCGTTGGCA	3300
AGAACAAAGAA GAGCTGGATC CGCTCCTCAC TCTCCAAGTT CACCAAGAAG AAGAACAAAGA	3360
ACTACGACGA AGCACATATG CCATCAATT CCGGATCTCA AGGAACACTT GACAACATTG	3420
ATGTGATTGA GTTGAAGCAA GAGCTCAAAG AACCGCGATAG TGCACTTTAC GAAGTCCGCC	3480
TTGACAATCT GGATCGTGCC CGCGAAGTTG ATGTTCTGAG GGAGACAGTG AACAAAGTTGA	3540
AAACCGAGAA CAAGCAATTA AAGAAAGAAG TGGACAAACT CACCAACGGT CCAGCCACTC	3600
GTGCTTCTTC CCGCGCCTCA ATTCCAGTTA TCTACGACGA TGAGCATGTC TATGATGCAG	3660
CGTGTAGCAG TACATCAGCT AGTCAATCTT CGAAACGATC CTCTGGCTGC AACTCAATCA	3720
AGGTTACTGT AAACGTGGAC ATCGCTGGAG AAATCAGTTTC GATCGTTAAC CCGGACAAAG	3780

AGATAATCGT AGGATATCTT GCCATGTCAA CCAGTCAGTC ATGCTGGAAA GACATTGATG	3840
TTTCTATTCT AGGACTATTT GAAGTCTACC TATCCAGAAT TGATGTGGAG CATCAACTTG	3900
GAATCGATGC TCGTGATTCT ATCCTGGCT ATCAAATTGG TGAACCTCGA CGCGTCATTG	3960
GAGACTCCAC AACCATGATA ACCAGCCATC CAACTGACAT TCTTACTTCC TCAACTACAA	4020
TCCGAATGTT CATGCACGGT GCCGCACAGA GTCGCGTAGA CAGTCTGGTC CTTGATATGC	4080
TTCTTCCAAA GCAAATGATT CTCCAACTCG TCAAGTCAAT TTTGACAGAG AGACGTCTGG	4140
TGTTAGCTGG AGCAACTGGA ATTGGAAAGA GCAAACCTGGC GAAGACCCCTG GCTGCTTATG	4200
TATCTATTCTG AACAAATCAA TCCGAAGATA GTATTGTTAA TATCAGCATT CCTGAAAACA	4260
ATAAAGAAGA ATTGCTTCAA GTGGAACGAC GCCTGGAAAA GATCTTGAGA AGCAAAAGAAT	4320
CATGCATCGT AATTCTAGAT AATATCCCAA AGAACATGAAT TGCATTTGTT GTATCCGTTT	4380
TTGCAAATGT CCCACTTCAA AACAACGAAG GTCCATTTGT AGTATGCACA GTCAACCGAT	4440
ATCAAATCCC TGAGCTTCAA ATTCAACCACA ATTTCAAAAT GTCAAGTAATG TCGAATCGTC	4500
TCGAAGGATT CATCCTACGT TACCTCCGAC GACGGGCGGT AGAGGATGAG TATCGTCTAA	4560
CTGTACAGAT GCCATCAGAG CTCTTCAAAA TCATTGACTT CTTCCCAATA GCTCTTCAGG	4620
CCGTCAATAA TTTTATTGAG AAAACGAATT CTGTTGATGT GACAGTTGGT CCAAGAGCAT	4680
GCTTGAACTG TCCTCTAACT GTCGATGGAT CCCGTGAATG GTTCATTGGA TTGTGGAATG	4740
AGAACATTCA TCCATATTTG GAACGTGTTG CTAGAGATGG CAAAAAAACC TTCGGTCGCT	4800
GCACCTCCCT CGAGGATCCC ACCGACATCG TCTCTAAAAA ATGGCCGTGG TTCACTGGTG	4860
AAAACCCGGA GAATGTGCTC AAACGTCTTC AACTCCAAGA CCTCGTCCCG TCACCTGCCA	4920
ACTCATCCCG ACAACACTTC AATCCCTCG AGTCGTTGAT CCAATTGCAT GCTACCAAAGC	4980
ATCAGACCCT CGACAACATT TGAACAGAAG ACTCTAAATCT TCTCTCGCCT CTCCCCCGCT	5040
TTCCTTATCT TCGTACCGGT ACCTGATGAT TCCCCATTTC CCCCCTTTTC CCCCCAATTTC	5100
CCCAGAACCT CCTGTTCCCT TTGTTCTTAG TCCCTCCGGG TGCCGACGCC GAAGCGATTT	5160
AAAAACCTTT TTCTTCCGA AACATTCCC ATTGCTCATT AATAGTCAAA TTGAATAAAC	5220
AGTGTATGTA CTTAAAAAAA AAAAAAAAAA AACTCGAGGG GGGGCCCCGGT ACCCAGCTTT	5280
TGTTCCCTT AGTGAGGGTT AATTGCGCGC TTGGCGTAAT CATGGTCATA GCTGTTTCCT	5340
GTGTGAAATT GTTATCCGCT CACAATTCCA CACAACATAC GAGCCGGAAG CATAAAAGTGT	5400
AAAGCCTGGG GTGCCTAATG AGTGAGCTAA CTCACATTAA TTGCGTTGCG CTCACTGCC	5460
GCTTCCAGT CGGGAAACCT GTCGTGCAG CTGCATTAAT GAATCGGCCA ACGCGCGGGG	5520
AGAGGCGGTT TCGGTATTGG GCGCTCTTCC GCTTCCTCGC TCACTGACTC GCTGCGCTCG	5580
GTCGTTCGGC TGCGCGAGC GGTATCAGCT CACTCAAAGG CGGTAATACG GTTATCCACA	5640
GAATCAGGGG ATAACGCAGG AAAGAACATG TGAGCAAAGG GCCAGCAAA GGCCAGGAAC	5700

CGTAAAAAGG CCGCGTTGCT GGC GTTTTC CATAGGCTCC GCCCCCTGA CGAGCATCAC	5760
AAAAATCGAC GCTCAAGTCA GAGGTGGCGA AACCCGACAG GACTATAAAG ATACCAGGCG	5820
TTTCCCCCTG GAAGCTCCCT CGTGCGCTCT CCTGTTCCGA CCCTGCCGCT TACCGGATAC	5880
CTGTCCGCCT TTCTCCCTTC GGGAAAGCGTG GCGCTTCCTC ATAGCTCACG CTGTAGGTAT	5940
CTCAGTTCGG TGTAGGTCGT TCGCTCCAAG CTGGGCTGTG TGCA CGAACCCGTTCA	6000
CCCGACCGCT GCGCCTTATC CGGTAACAT CGTCTTGAGT CCAACCCGGT AAGACACGAC	6060
TTATCGCCAC TGGCAGCAGC CACTGGTAAC AGGATTAGCA GAGCGAGGTA TGTAGGCGGT	6120
GCTACAGAGT TCTTGAAGTG GTGGCCTAAC TACGGCTACA CTAGAAGGAC AGTATTTGGT	6180
ATCTGCGCTC TGCTGAAGCC AGTTACCTTC GGAAAAAGAG TTGGTAGCTC TTGATCCGGC	6240
AAACAAACCA CCGCTGGTAG CGGTGGTTTT TTTGTTTGCA AGCAGCAGAT TACGCGCAGA	6300
AAAAAAAGGAT CTCAAGAAGA TCCTTTGATC TTTTCTACGG GGTCTGACGC TCAGTGGAAC	6360
AAAAAAACTCAC GTTAAGGGAT TTTGGTCATG AGATTATCAA AAAGGATCTT CACCTAGATC	6420
CTTTAAATT AAAAATGAAG TTTTAAATCA ATCTAAAGTA TATATGAGTA AACTTGGTCT	6480
GACAGTTACC AATGCTTAAT CAGTGAGGCA CCTATCTCAG CGATCTGTCT ATTCGTTCA	6540
TCCATAGTTG CCTGACTCCC CGTCGTGTAG ATAAC TACGA TACGGGAGGG CTTACCATCT	6600
GGCCCCAGTG CTGCAATGAT ACCGCGAGAC CCACGCTCAC CGGCTCCAGA TTTATCAGCA	6660
ATAAACCAAGC CAGCCGGAAG GGCGAGCGC AGAAGTGGTC CTGCAACTTT ATCCGCCTCC	6720
ATCCAGTCTA TTAATTGTG CCGGGAGCT AGAGTAAGTA GTTCGCCAGT TAATAGTTG	6780
CGCAACGTTG TTGCCATTGC TACAGGCATC GTGGTGTAC GCTCGTCGT TGGTATGGCT	6840
TCATTCAAGCT CCGGTTCCCA ACGATCAAGG CGAGTTACAT GATCCCCAT GTTGTGCAA	6900
AAAGCGGTTA GCTCCTTCGG TCCTCCGATC GTTGTAGAA GTAAGTTGGC CGCAGTGTAA	6960
TCACTCATGG TTATGGCAGC ACTGCATAAT TCTCTTACTG TCATGCCATC CGTAAGATGC	7020
TTTTCTGTGA CTGGTGAGTA CTCAACCAAG TCATTCTGAG AATAGTGTAT GCGGCGACCG	7080
AGTTGCTCTT GCCCGGCGTC AATACGGGAT AATACCGCGC CACATAGCAG AACTTTAAA	7140
GTGCTCATCA TTGGAAAACG TTCTTCGGGG CGAAAACCTCT CAAGGATCTT ACCGCTGTTG	7200
AGATCCAGTT CGATGTAACC CACTCGTGCA CCCAACTGAT CTTCAGCATE TTTTACTTTC	7260
ACCAGCGTTT CTGGGTGAGC AAAAACAGGA AGGCAAAATG CGCAAAAAAA GGGATAAGG	7320
GCGACACGGA AATGTTGAAT ACTCATACTC TTCCCTTTTC AATATTATTG AAGCATTAT	7380
CAGGGTTATT GTCTCATGAG CGGATACATA TTGAATGTA TTTAGAAAAA TAAACAAATA	7440
GGGGTTCCGC GCACATTTCC CCGAAAAGTG CCAC	7474

(2) INFORMATION FOR SEQ ID NO: 27:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 13414 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: circular

(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "plasmid"

(iii) HYPOTHETICAL: NO

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION: 11582
- (D) OTHER INFORMATION:/note= "N is A,G,C or T"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

TATGACGACG TCAAATGTAG AATTGATACC ATTCTACACG GATTGGGCCA ATCGGCACCT	60
TTCGAAGGGC AGCTTATCAA AGTCGATTAG GGATATTTCC AATGATTTTC GCGACTATCG	120
ACTGGTTCT CAGCTTATTA ATGTGATCGT TCCGATCAAC GAATTCTCGC CTGCATTAC	180
GAAACGTTTG GCAAAAATCA CATCGAACCT GGATGGCCTC GAAACGTGTC TCGACTACCT	240
GAAAAATCTG GGTCTCGACT GCTCGAAACT CACCAAAACC GATATCGACA GCGGAAACTT	300
GGGTGCAGTT CTCCAGCTGC TCTTCCGTCT CTCCACCTAC AAGCAGAACG TTGGCAACT	360
GAAAAAAAGAT CAGAAGAAAT TGGAGCAACT ACCCACATCC ATTATGCCAC CCGCGGTTTC	420
TAAATTACCC TCGCCACGTG TCGCCACGTC AGCAACCGCT TCAGCAACTA ACCCAAATTC	480
CAACTTTCCA CAAATGTCAA CATCCAGGCT TCAGACTCCA CAGTCAAGAA TATCGAAAAT	540
TGATTCATCA AAGATTGGTA TCAAGCCAAA GACGTCTGGA CTTAAACCCAC CCTCATCATC	600
AACCACITCA TCAAATAATA CAAATTCAATT CCGTCCGTG AGCCGTTCGA GTGGCAATAA	660
TAATGTTGGC TCGACGATAT CCACATCTGC GAAGAGCTTA GAATCATCAT CAACGTACAG	720
CTCTATTTCG AATCTAAACC GACCTACCTC CCAACTCCAA AAACCTTCTA GACCACAAAC	780
CCAGCTAGTT CGTGGTGCTA CAACTACAAA AATCGGAAGC TCAAAGCTAG CCGCTCCGAA	840
AGCCGTGAGC ACCCCAAAAC TTGCTTCTGT GAAGACTATT GGAGCAAAAC AAGAGCCCGA	900
TAACAGCGGT GGTGGTGGTG GTGGAATGCT GAAATTAAAG TTATTCAGTA GCAAAAACCC	960
ATCTTCCCTCA TCGAATAGCC CACAACCTAC GAGAAAGGCG GCGGCGGTGC CTCAACAACA	1020
AACTTTGTCTG AAAATCGCTG CCCCAGTGAA AAGTGGCCTG AAGCCGCCGA CCAGTAAGCT	1080
GGGAAGTGCC ACGTCTATGT CGAAGCTTTG TACGCCAAA GTTTCCCTACC GTAAAACGGA	1140
CGCCCCAATC ATATCTCAAC AAGACTCGAA ACGATGCTCA AAGAGCAGTG AAGAAGAGTC	1200
CGGATACGCT GGATTCAACA GCACGTCGCC AACGTCATCA TCGACGGAAG GTTCCCTAAG	1260

CATGCATTCC	ACATCTTCCA	AGAGTTCAAC	GTCAGACGAA	AAGTCTCCGT	CATCAGACGA	1320
TCTTACTCTT	AACGCCTCCA	TCGTGACAGC	TATCAGACAG	CCGATAGCCG	CAACACCGGT	1380
TTCTCCAAAT	ATTATCAACA	AGCCTGTTGA	GGAAAAAACCA	ACACTGGCAG	TGAAAGGAGT	1440
GAAPAGCACA	GCGAAAAAAG	ATCCACCTCC	AGCTGTTCCG	CCACGTGACA	CCCAGCCAAC	1500
AATCGGAGTT	GTTAGTCCA	TTATGGCACA	TAAGAAGTTG	ACAAATGACC	CCGTGATATC	1560
TGAAAAAACCA	GAACCTGAAA	AGCTCCAATC	AATGAGCATC	GACACGACGG	ACGTTCCACC	1620
GCTTCCACCT	CTAAAATCAG	TTGTTCCACT	TAAAATGACT	TCAATCCGAC	AACCACCAAC	1680
GTACGATGTT	CTTCTAAAAC	AAGGAAAAAT	CACATCGCCT	GTCAAGTCGT	TTGGATATGA	1740
GCAGTCGTCC	GCGTCTGAAG	ACTCCATTGT	GGCTCATGCG	TCGGCTCAGG	TGACTCCGCC	1800
GACAAAAACT	TCTGGTAATC	ATTCGCTGGA	GAGAAGGATG	GGAAAGAATA	AGACATCAGA	1860
ATCCAGCGGC	TACACCTCTG	ACGCCGGTGT	TGCGATGTGC	GCCAAAATGA	GGGAGAAGCT	1920
GAAAGAATAC	GATGACATGA	CTCGTCGAGC	ACAGAACGGC	TATCCTGACA	ACTTCGAAGA	1980
CAGTTCCCTCC	TTGTCGTCTG	GAATATCCGA	TAACAACGAG	CTCGACGACA	TATCCACGGG	2040
CGATTTGTCC	GGAGTAGACA	TGGCAACAGT	CGCCTCCAAA	CATAGCGACT	ATTCCCACTT	2100
TGTTCGCCAT	CCCACGTCTT	CTTCCTCAAA	GCCCCGAGTC	CCCAGTCGGT	CCTCCACATC	2160
AGTCGATTCT	CGATCTCGAG	CAGAACAGGA	GAATGTGTAC	AAACTTCTGT	CCCAGTGCCG	2220
AACGGAGCAA	CGTGGCGCCG	CTGCCACCTC	AACCTTCGGA	CAACATTCGC	TAAGATCCCC	2280
GGGATACTCA	TCCTATTCTC	CACACTTATC	AGTGTCAAGT	GATAAGGACA	CAATGTCTAT	2340
GCACTCACAG	ACTAGTCGAC	GACCTTCTTC	ACAAAAAACCA	AGCTATTCA	GCCAATTCA	2400
TTCACTTGAT	CGTAAATGCC	ACCTTCAAGA	GTTCACATCC	ACCGAGCACA	GAATGGCGGC	2460
TCTCTTGAGC	CCGAGACGGG	TGCCGAACTC	GATGTCAGAA	TATGATTCTT	CAGGATCCTA	2520
CTCGCGCGT	TCCCCGAGGTG	GAAGCTCTAC	TGGTATCTAT	GGAGAGACGT	TCCAAGTGCA	2580
CAGACTATCC	GATGAAAAAT	CCCCCGCACA	TTCTGCCAAA	AGTGAGATGG	GATCCCAACT	2640
ATCACTGGCT	AGCACGACAG	CATATGGATC	TCTCAATGAG	AAAGTACGAAC	ATGCTATTG	2700
GGACATGGCA	CGTGAATTGG	AGTGTACAA	GAACACTGTC	GAETCACTAA	CCAAGAAACA	2760
GGAGAACTAT	GGAGCATTGT	TTGATCTTT	TGAGCAAAAG	CTTAGAAAAC	TCACTCAACA	2820
CATTGATCGA	TCCAACATTGA	AGCCTGAAGA	GGCAATACGA	TTCAAGGAGG	ACATTGCTCA	2880
TTTGAGGGAT	ATTAGCAATC	ATCTTGCATC	CAACTCAGCT	CATGCTAACG	AAGGCCTGG	2940
TGAGCTTCTT	CGTCAACCAT	CTCTGGATC	AGTTGCATCC	CATCGATCAT	CGATGTCATC	3000
GTCGTCGAAA	AGCAGCAAGC	AGGAGAAGAT	CAGCTTGAGC	TCGTTGGCA	AGAACAAAGAA	3060
GAGCTGGATC	CGCTCCTCAC	TCTCCAAGTT	CACCAAGAAG	AAGAACAAAGA	ACTACGACGA	3120
AGCACATATG	CCATCAATT	CCGGATCTCA	AGGAACCTTT	GACAACATTG	ATGTGATTGA	3180

GTTGAAGCAA GAGCTCAAAG AACCGGATAG TGCACCTTAC	GAAGTCCGCC TTGACAAATCT	3240
GGATCGTGCC CGCGAAGTTG ATGTTCTGAG GGAGACAGTG	AACAAGTTGA AAACCGAGAA	3300
CAAGCAATTAA AAGAAAAGAAG TGGACAAAAT CACCAACGGT	CCAGCCACTC GTGCTTCTTC	3360
CCGCGCCTCA ATTCCAGTTA TCTACGACGA TGAGCATGTC	TATGATGCAG CGTAGCAG	3420
TACATCAGCT AGTCAATCTT CGAACCGATC CTCTGGCTGC	AACTCAATCA AGGTAACTGT	3480
AAACGTGGAC ATCGCTGGAG AAATCAGTC GATCGTTAAC	CCGGACAAAG AGATAATCGT	3540
AGGATATCTT GCCATGTCAA CCAGTCAGTC ATGCTGGAAA	GACATTGATG TTTCTATTCT	3600
AGGACTATTT GAAGTCTACC TATCCAGAAT TGATGTGGAG	CATCAACTTG GAATCGATGC	3660
TCGTGATTCT ATCCTTGGCT ATCAAATTGG TGAACCTCGA	CGCGTCATTG GAGACTCCAC	3720
AACCATGATA ACCAGCCATC CAACTGACAT TCTTAATTCC	TCAACTACAA TCCGAATGTT	3780
CATGCACGGT GCCGCACAGA GTCGCGTAGA CAGTCTGGTC	CTTGATATGC TTCTTCCAAA	3840
GCAAAATGATT CTCCAACCTCG TCAAGTCAAT TTTGACAGAG	AGACGTCTGG TGTTAGCTGG	3900
AGCAACTGGA ATTGGAAAGA GCAAAACTGGC GAAGACCCCTG	GCTGCTTATG TATCTATTG	3960
AACAAATCAA TCCGAAGATA GTATTGTTAA TATCAGCATT	CCTGAAAACA ATAAAGAAGA	4020
ATTGCTTCAA GTGGAACGAC GCCTGGAAAA GATCTTGAGA	AGCAAAGAAAT CATGCATCGT	4080
AATTCTAGAT AATATCCCAA AGAACATCGAAT TGCATTTGTT	GTATCCGTTT TTGCAAATGT	4140
CCCACCTTCAA AACAAACGAAG GTCCATTGT AGTATGCACA	GTCAACCGAT ATCAAATCCC	4200
TGAGCTTCAA ATTCAACCACA ATTTCAAAAT GTCACTAATG	TCGAATCGTC TCGAAGGATT	4260
CATCCTACGT TACCTCCGAC GACGGCGGT AGAGGATGAG	TATCGTCTAA CTGTACAGAT	4320
GCCATCAGAG CTCTTCAAAAA TCATTGACTT CTTCCAAATA	GCTCTTCAGG CCGTCAATAA	4380
TTTTATTGAG AAAACGAATT CTGTTGATGT GACAGTTGGT	CCAAGAGCAT GCTTGAACGT	4440
TCCTCTAACT GTCGATGGAT CCCGTGAATG GTTCATTGCA	TTGTGGAATG AGAAACTTCAT	4500
TCCATATTTG GAACGTGTTG CTAGAGATGG CAAAAAAACC	TTCGGTGCGCT GCACCTCCTT	4560
CGAGGATCCC ACCGACATCG TCTCTAAAAA ATGGCCGTGG	TTCGATGGTG AAAACCCGGA	4620
GAATGTGCTC AAACGTCTTC AACTCCAAGA CCTCGTCCCG	TCACCTGCCA ACTCATCCG	4680
ACAACACTTC AATCCCCCTCG AGTCGTTGAT CCAATTGCAT	GCTACCAAGC ATCAGACCAT	4740
CGACAAACATT TGAACAGAAG ACTCTAATCT TCTCTCGCT	CTCCCCCGCT TTCCCTTATCT	4800
TCGTACCGGT ACCTGATGAT TCCCCATTTC CCCCCAATTT	CCCAGAACCT	4860
CCTGTTCCCT TTGTTCCCTAG TCCTCCCGGG TGCCGACGCC	GAAGCGATTT AAAAACCTTT	4920
TTCTTTCCGA AACATTTCCC ATTGCTCATT AATAGTCAAA	TTGAATAAAC AGTGTATGTA	4980
CTTAAAAAAA AAAAAAAAAA AAAAAAAAAA GGCTATGCG	GCCGGGCCAT GGAGGCCGAA	5040
TTCCCCGGGG A TCCGTGACC TGCAGCCAAG CTAATTCCGG	GCGAATTCT TATGATTTAT	5100

GATTTTTATT ATTAAATAAG TTATAAAAAA AATAAGTGTA TACAAATTT AAAGTGACTC	5160
TTAGGTTTA AAACGAAAAT TCTTGTCTT GAGTAACTCT TTCCCTGAGG TCAGGGTGCT	5220
TTCTCAGGTA TAGCATGAGG TCGCTCTTAT TGACCACACC TCTACCGGCA TGCAAGCTTG	5280
GCGTAATCAT GGTCACTAGCT GTTTCCTGTG TGAAATTGTT ATCCGCTCAC AATTCCACAC	5340
AACATACGAG CCGGAAGCAT AAAGTGTAAA GCCTGGGGTG CCTAATGAGT GAGGTAACTC	5400
ACATTAATTG CGTTGCGCTC ACTGCCGCT TTCCAGTCGG GAAACCTGTC GTGCCAGCTG	5460
GATTAATGAA TCGGCCAACG CGCGGGGAGA GGCGGTTTGC GTATTGGCG CTCTTCCGCT	5520
TCCTCGCTCA CTGACTCGCT GCGCTCGGTC GTTCGGCTGC GGCGAGCGGT ATCAGCTCAC	5580
TCAAAGCGG TAATACGGTT ATCCACAGAA TCAGGGGATA ACGCAGGAAA GAACATGTGA	5640
GCAAAAGGCC AGCAAAAGGC CAGGAACCGT AAAAAGGCCG CGTTGCTGGC GTTTTCCAT	5700
AGGCTCCGCC CCCCTGACGA GCATCACAAA AATCGACGCT CAAGTCAGAG GTGGCGAAC	5760
CCGACAGGAC TATAAAGATA CCAGGGTCTT CCCCCCTGGAA GCTCCCTCGT GCGCTCTCCT	5820
GTTCCGACCC TGCCGCTTAC CGGATACCTG TCCGCCTTTC TCCCTTCGGG AAGCGTGGCG	5880
CTTTCTCATA GCTCACGCTG TAGGTATCTC AGTCGGTGT AGGTCGTTCG CTCCAAGCTG	5940
GGCTGTGTGC ACGAACCCCC CGTTCAAGCCC GACCGCTGCG CCTTATCCGG TAACTATCGT	6000
CTTGAGTCCA ACCCGGTAAG ACACGACTTA TCGCCACTGG CAGCAGCCAC TGGTAACAGG	6060
ATTAGCAGAG CGAGGTATGT AGGCGGTGCT ACAGAGTTCT TGAAGTGGTG GCCTAACTAC	6120
GGCTACACTA GAAGGACAGT ATTTGGTATC TGCGCTCTGC TGAAGCCAGT TACCTTCGGA	6180
AAAAGAGTTG GTAGCTCTTG ATCCGGAAA CAAACCACCG CTGGTAGCGG TGGTTTTTT	6240
GTTTGCAGC AGCAGATTAC GCGCAGAAAA AAAGGATCTC AAGAAGATCC TTTGATCTT	6300
TCTACGGGGT CTGACGCTCA GTGGAACGAA AACTCACGTT AAGGGATTTT GGTCACTGAGA	6360
TTATCAAAA GGATCTTCAC CTAGATCCTT TAAATTAAA AATGAAGTTT TAAATCAATC	6420
TAAAGTATAT ATGAGTAAAC TTGGTCTGAC AGTTACCAAT GCTTAATCAG TGAGGCACCT	6480
ATCTCAGCGA TCTGTCTATT TCGTTCATCC ATAGTTGCCT GACTCCCCGT CGTGTAGATA	6540
ACTACGATAC GGGAGGGCTT ACCATCTGGC CCCAGTGCTG CAATGATACC GCGAGACCCA	6600
CGCTCACCGG CTCCAGATTG ATCAGCAATA AACCAAGCCAG CCGGAAGGGC CGAGCGCAGA	6660
AGTGGTCTCG CAACTTTATC CGCCTCCATC CAGTCTATTG ATTGTTGCGG GGAAGCTAGA	6720
GTAAGTAGTT CGCCAGTTAA TAGTTGCGC AACGTTGTTG CCATTGCTAC AGGCATCGTG	6780
GTGTCACTGCT CGTCGTTGG TATGGCTTCA TTCAGCTCCG GTTCCCAACG ATCAAGGCAG	6840
GTTACATGAT CCCCCATGTT GTGCAAAAAA GCGGTTAGCT CCTTCGGTCC TCCGATCGTT	6900
GTCAGAAGTA AGTTGGCCGC AGTGTATCA CTCATGGTTA TGGCAGCACT GCATAATTCT	6960
CTTACTGTCA TGCCATCCGT AAGATGCTTT TCTGTGACTG GTGAGTACTC AACCAAGTCA	7020

TTCTGAGAAT AGTGTATGCC GCGACCGAGT TGCTCTTGCC CGGCCTCAAT ACGGGATAAT	7080
ACCGCGCCAC ATAGCAGAAC TTTAAAAGTG CTCATCATTG GAAAACGTTG TTCGGGGCGA	7140
AAACTCTCAA GGATCTTACC GCTGTTGAGA TCCAGTTCGA TGTAACCCAC TCGTGCACCC	7200
AACTGATCTT CAGCATCTTT TACITTCACC AGCGTTCTG GGTGAGCAAA AACAGGAAGG	7260
CAAAATGCCG CAAAAAAGGG AATAAGGGCG ACACGGAAAT GTTGAATACT CATACTCTTC	7320
CTTTTCAAT ATTATTGAAG CATTATCAG GGTTATTGTC TCATGAGCGG ATACATATTT	7380
GAATGTATTT AGAAAAATAA ACAAAATAGGG GTTCCGCGCA CATTTCGGCG AAAAGTGCCA	7440
CCTGAACGAA GCATCTGTGC TTCATTGTGT AGAACAAAAA TGCAACGCGA GAGCGCTAAT	7500
TTTTCAAACA AAGAATCTGA GCTGCATTT TACAGAACAG AAATGCAACG CGAAAGCGCT	7560
ATTTTACCAA CGAAGAATCT GTGCTTCATT TTTGTAAAAC AAAATGCAA CGCGAGAGCG	7620
CTAATTTTTC AAACAAAGAA TCTGAGCTGC ATTTTTACAG AACAGAAATG CAACGCGAGA	7680
GCGCTATTTT ACCAACAAAG AATCTATACT TCTTTTTGT TCTACAAAAA TGCATCCCGA	7740
GAGCGCTATT TTTCTAACAA AGCATCTTAG ATTACTTTT TTCTCCTTTG TGCGCTCTAT	7800
AATGCAGTCT CTTGATAACT TTTGCACTG TAGGTCCGTT AAGGTTAGAA GAAGGCTACT	7860
TTGGTGTCTA TTTTCTCTTC CATAAAAAAA GCCTGACTCC ACTTCCCGCG TTTACTGATT	7920
ACTAGCGAAG CTGCGGGTGC ATTTTTCAA GATAAAGGCA TCCCCGATTA TATTCTATAC	7980
CGATGTGGAT TGCGCATACT TTGTGAAACAG AAAGTGTAG CGTTGATGAT TCTTCATTGG	8040
TCAGAAAATT ATGAACGGTT TCTTCTATTT TGTCTCTATA TACTACGTAT AGGAAATGTT	8100
TACATTTTCG TATTGTTTTC GATTCACTCT ATGAATAGTT CTTACTACAA TTTTTTGTC	8160
TAAAGAGTAA TACTAGAGAT AAACATAAAA AATGTAGAGG TCGAGTTTAG ATGCAAGTTC	8220
AAGGAGCGAA AGGTGGATGG GTAGGTTATA TAGGGATATA GCACAGAGAT ATATAGCAA	8280
GAGATACTTT TGAGCAATGT TTGTGAAAGC GGTATTGCA ATATTTAGT AGCTCGTTAC	8340
AGTCCGGTGC GTTTTTGGTT TTTGAAAAGT GCGCTTCAG AGCGCTTTG GTTTCAAAA	8400
GCGCTCTGAA GTTCCTATAC TTTCTAGAGA ATAGGAACCT CGGAATAGGA ACTTCAAAGC	8460
GTTCGGAAA ACGAGCGCTT CCGAAAATGC AACGCGAGCT GCGCACATAC AGCTCACTGT	8520
TCACGTCGCA CCTATATCTG CGTGTGCT GTATATATAT ATACATGAGA AGAACGGCAT	8580
AGTGCCTGTT TATGCTTAAA TGCCTACTTA TATGCGTCTA TTTATGTAGG ATGAAAGGTA	8640
GTCTAGTACC TCCTGTGATA TTATCCCATT CCATGCGGGG TATCGTATGC TTCCCTCAGC	8700
ACTACCCCTTT AGCTGTTCTA TATGCTGCCA CTCCCTCAATT GGATTAGTCT CATCCTCAA	8760
TGCTATCATT TCCTTGATA TTGGATCATA TTAAGAAACC ATTATTATCA TGACATTAAC	8820
CTATAAAAAT AGGCGTATCA CGAGGCCCTT TCGTCTCGCG CGTTTCGGTG ATGACGGTGA	8880
AAACCTCTGA CACATGCAGC TCCCGGAGAC GGTACAGCT TGTCTGTAAG CGGATGCCGG	8940

137

GAGCAGACAA	GCCCGTCAGG	GCGCGTCAGC	GGGTGTTGGC	GGGTGTCGGG	GCTGGCTTAA	9000
CTATGCGGCA	TCAGAGCAGA	TTGTACTGAG	AGTGCACCAT	AGATCAACGA	CATTACTATA	9060
TATATAATAT	AGGAAGCATT	TAATAGACAG	CATCGTAATA	TATGTGTACT	TTGCAGTTAT	9120
GACGCCAGAT	GGCAGTAGTG	GAAGATATTG	TTTATTGAAA	AATAGCTTGT	CACCTTACGT	9180
ACRAATCTTGA	TCCGGAGCTT	TTCTTTTTT	GCCGATTAAG	AATTAATTG	GTCGAAAAAA	9240
GAAAAGGAGA	GGGCCAAGAG	GGAGGGCATT	GGTGACTATT	GAGCACGTGA	GTATACGTGA	9300
TTAACGACAC	AAAGGCAGCT	TGGAGTATGT	CTGTTATTAA	TTTCACAGGT	AGTTCTGGTC	9360
CATTGGTCAA	AGTTTGCAGG	TTGCAGAGCA	CAGAGGCCGC	AGAATGTGCT	CTAGATTCCG	9420
ATGCTGACTT	GCTGGGTATT	ATATGTGTGC	CCAATAGAAA	GAGAACAAATT	GACCCGGTTA	9480
TTGCAAGGAA	AATTTCAAGT	CTTGTAAAAG	CATAAAAAAA	TAGTTCAAGGC	ACTCCGAAAT	9540
ACTTGGTTGG	CGTGTTCGT	AATCAACCTA	AGGAGGATGT	TTTGGCTCTG	GTCAATGATT	9600
ACGGCATTGA	TATCGTCCAA	CTGCATGGAG	ATGAGTCGTG	GCAAGAACATAC	CAAGAGTTCC	9660
TCGGTTGCC	AGTTATTAAA	AGACTCGTAT	TTCCAAAAGA	CTGCAACATA	CTACTCAGTG	9720
CAGCTTCACA	GAAACCTCAT	TCGTTTATTG	CCTTGTGTTGA	TTCAAGAGCA	GGTGGGACAG	9780
GTGAACCTTT	GGATTGGAAC	TCGATTTCTG	ACTGGGTTGG	AAGGCAAGAG	AGCCCCGAAA	9840
GCTTACATTT	TATGTTAGCT	GGTGGACTGA	CGCCAGAAAA	TGTTGGTGAT	GCGCTTAGAT	9900
TAAATGGCGT	TATTGGTGTGTT	GATGTAAGCG	GAGGTGTGGA	GACAAATGGT	GTAAAAGACT	9960
CTAACAAAAT	AGCAAATTTG	GTCAAAAATG	CTAAGAAATA	GGTTATTACT	GAGTAGTATT	10020
TATTTAAGTA	TTGTTTGTGC	ACTTGCCGAT	CTATGCGGTG	TGAAATACCG	CACAGATGCG	10080
TAAGGAGAAA	ATACCGCATC	AGGAAATTGT	AAACGTTAAT	ATTTTGTAA	AATTGCGTT	10140
AAATTTTGT	AAATCAGCT	CATTTTTAA	CCAATAGGCC	GAAATCGGCA	AAATCCCTTA	10200
TAAATCAAAA	GAATAGACCG	AGATAGGGTT	GAGTGTGTT	CCAGTTGGA	ACAAAGAGTCC	10260
ACTATTAAAG	AACGTGGACT	CCAACGTCAA	AGGGCGAAAA	ACCGTCTATC	AGGGCGATGG	10320
CCCACCTACGT	GAACCATCAC	CCTAACCAAG	TTTTTGGGG	TCGAGGTGCC	GTAAAGCACT	10380
AAATCGGAAC	CCTAAAGGGA	GCCCCCGATT	TAGAGCTTGA	CGGGGAAAGC	CGCGAACGT	10440
GGCGAGAAAAG	GAAGGGAAGA	AAGCGAAAGG	AGCGGGCGCT	AGGGCGCTGG	CAAGTGTAGC	10500
GGTCACGCTG	CGCGTAACCA	CCACACCGC	CGCGCTTAAT	CGCCCGCTAC	AGGGCGCGTC	10560
GCGCCATTG	CCATTCAAGGC	TGCGCAACTG	TTGGGAAGGG	CGATCGGTGC	GGGCCTTTC	10620
GCTATTACGC	CAGCTGGCGA	AAGGGGGATG	TGCTGCAAGG	CGATTAAGTT	GGGTAACGCC	10680
AGGGTTTCC	CAGTCACGAC	GTTGTAAAAC	GACGGCCAGT	CGTCCAAGCT	TTCGCGAGCT	10740
CGAGATCCCG	AGCTTTGCAA	ATTAAAGCCT	TCGAGCGTCC	CAAAACCTTC	TCAAGCAAGG	10800
TTTCAGTAT	AATGTTACAT	GCGTACACGC	GTCTGTACAG	AAAAAAAAGA	AAAATTTGAA	10860

ATATAAATAA CGTTCTTAAT ACTAACATAA CTATAAAAAA ATAAATAGGG ACCTAGACTT	10920
CAGGTTGTCT AACTCCTTCC TTTTCGGTTA GAGCGGATGT GGGGGGAGGG CGTGAATGTA	10980
AGCGTGACAT AACTAATTAC ATGATATCGA CAAAGGAAAA GGGGCCTGTT TACTCACAGG	11040
CTTTTTCAA GTAGGTAATT AAGTCGTTTC TGTCTTTTC CTTCTTCAAC CCACCAAAGG	11100
CCATCTTGGT ACTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT	11160
TTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTCATA GAAATAATAC	11220
AGAAGTAGAT GTTGAATTAG ATTAAACTGA AGATATATAA TTATTGGAA AATACATAGA	11280
GCTTTTGTT GATGCGCTTA AGCGATCAAT TCAACAAACAC CACCAGCAGC TCTGATTTT	11340
TCTTCAGCCA ACTTGGAGAC GAATCTAGCT TTGACGATAA CTGGAACATT TGGGATTCTA	11400
CCCTTACCCA AGATCTTACC GTAAACCGCT GCCAAAGTGT CAATAACTGG AGCAGTTCC	11460
TTAGAAGCAG ATTTCAAGTA TTGGTCTCTC TTGTCTTCTG GGATCAATGT CCACAATTTG	11520
TCCAAGTTCA AGACTGGCTT CCAGAAATGA GCTTGTGCT TGTGGAAGTA TCTCATACCA	11580
ANCCTTACCG AAATAACCTG GATGGTATTT ATCCATGTTA ATTCTGTGGT GATGTTGACC	11640
ACCGGCCATA CCTCTACCAC CGGGGTGCTT TCTGTGCTTA CCGATACGAC CTTTACCGGC	11700
TGAGACGTGA CCTCTGTGCT TTCTAGCTT AGTGAATCTG GAAGGCATTC TTGATTAGTT	11760
GGATGATTGT TCTGGGATT AATGCAAAA AATCACTAAG AAGGAAAAAA ATCAACGGAG	11820
AAAGCAAACG CCATCTAAA TATACGGGAT ACAGATGAAA GGTTGAACC TATCTGGAA	11880
AATACGCATT AAACAAGCGA AAAACTGCGA GGAAAATTGT TTGCGTCTCT GCGGGCTATT	11940
CACGCGCCAG AGGAAAATAG GAAAAATAAC AGGGCATTAG AAAAATAATT TTGATTTGG	12000
TAATGTGTGG GTCCCTGGTG TACAGATGTT ACATTGGTTA CAGTACTCTT GTTTTGCTG	12060
TGTTTTCGA TGAATCTCCA AAATGGTGT TAGCACATGG AAGAGTCACC GATGCTAAGT	12120
TATCTCTATG TAAGCTACGT GGCCTGACTT TTGATGAAGC CGCACAAGAG ATACAGGATT	12180
GGCAACTGCA AATAGAATCT GGGGATCTAG ATATCCTTTT GTTGTTCGG GGTGTACAT	12240
ATGGACTTCC TCTTTCTGG CAACCAAACC CATAACATCGG GATTCCCTATA ATACCTTCGT	12300
TGGTCTCCCT AACATGTAGG TGGCGGAGGG GAGATATACA ATAGAACAGA TACCAAGACAA	12360
GACATAATGG GCTAAACAAG ACTACACCAA TTACACTGCC TCATTGATGG TGGTACATAA	12420
CGAACTAATA CTGTAGCCCT AGACTTGATA GCCATCATCA TATCGAAGTT TCACTACCC	12480
TTTTCCATTT GCCATCTATT GAAGTAATAA TAGGCGCATG CAACTTCTTT TCTTTTTTT	12540
TCTTTCTCT CTCCCCGTT GTTGTCTCAC CATATCCGCA ATGACAAAAA AAATGATGGA	12600
AGACACTAAA GGAAAAAATT AACGACAAAG ACAGCACCAA CAGATGTCGT TGTTCCAGAG	12660
CTGATGAGGG GTATCTCGA ACACACGAAA CTTTTTCCTT CCTTCATTCA CGCACACTAC	12720
TCTCTAATGA GCAACGGTAT ACGGCCTTCC TTCCAGTTAC TTGAATTGAA AATAAAAAAA	12780

GTTCGCCGCT TTGCTATCAA GTATAAATAG ACCTGCAATT ATTAATCTT TGTTCCCTCG	12840
TCATTGTTCT CGTTCCCTTT CTTCCCTGTT TCTTTTCTG CACAATATTT CAAGCTATAC	12900
CAAGCATAACA ATCAACTCCA AGCTTGAAAGC AAGCCTCCTG AAAGATGAAG CTACTGTCTT	12960
CTATCGAACCA AGCATGCGAT ATTTGCCGAC TTAAAAAGCT CAAGTGCTCC AAAGAAAAAC	13020
CGAAGTGCAGC CAAGTGTCTG AAGAACAACT GGGAGTGTGCG CTACTCTCCC AAAACCAAAA	13080
GGTCTCCGCT GACTAGGGCA CATCTGACAG AAGTGGAATC AAGGCTAGAA AGACTGGAAC	13140
AGCTATTTCT ACTGATTTTT CCTCGAGAAG ACCTTGACAT GATTTGAAA ATGGATTCTT	13200
TACAGGATAT AAAAGCATTG TTAACAGGAT TATTGTACA AGATAATGTG AATAAAGATG	13260
CCGTCACAGA TAGATTGGCT TCAGTGGAGA CTGATATGCC TCTAACATTG AGACAGCATA	13320
GAATAAGTGC GACATCATCA TCGGAAGAGA GTAGTAACAA AGGTCAAAGA CAGTTGACTG	13380
TATGCCCGGA ATTGCAATAC CCAGCTTGA CTCA	13414

(2) INFORMATION FOR SEQ ID NO: 28:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10288 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: circular

(ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "plasmid"

(iii) HYPOTHETICAL: NO

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION: 8456
- (D) OTHER INFORMATION:/note= "N is A,C,G, or T"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

TATGCCATCA ATTTCCGGAT CTCAGGAAC TCTTGACAAC ATTGATGTGA TTGAGTTGAA	60
GCAAGAGCTC AAAGAACGCG ATAGTGCCT TTACGAAGTC CGCCTTGACA ATCTGGATCG	120
TGCCCGCGAA GTTGATGTTG TGAGGGAGAC AGTGAACAAG TTGAAAACCG AGAACAAAGCA	180
ATTAAGAAA GAAGTGGACA AACTCACCAA CGGTCCAGCC ACTCGTGCTT CTTCCCGCGC	240
CTCAATTCCA GTTATCTACG ACGATGAGCA TGTCTATGAT GCAGCGTGTGTA GCAGTACATC	300
AGCTAGTCAA TCTTCGAAAC GATCCTCTGG CTGCAACTCA ATCAAGGTTA CTGTAAACGT	360
GGACATCGCT GGAGAAATCA GTTCGATCGT TAACCCGGAC AAAGAGATAA TCGTAGGATA	420
TCTTGCCATG TCPACCAGTC AGTCATGCTG GAAAGACATT GATGTTCTA TTCTAGGACT	480
ATTTGAAGTC TACCTATCCA GAATTGATGT GGAGCATCAA CTTGGAATCG ATGCTCGTGA	540

140

TTCTATCCTT GGCTATCAA TTGGTGAACT TCGACGCGTC ATTGGAGACT CCACAACCAT	600
GATAACCAGC CATCCAAC TG ACATTCTTAC TTCCTCAACT ACAATCCGAA TGTCATGCA	660
CGGTGCCGCA CAGAGTCGCG TAGACAGTCT GGTCTTGAT ATGCTTCTTC CAAAGCAAAT	720
GATTCTCAA CTCGTCAAGT CAATTTGAC AGAGAGACGT CTGGTGTAG CTGGAGCAAC	780
TGGAATTGGA AAGAGCAAAAC TGGCGAAGAC CCTGGCTGCT TATGTATCTA TTGCAACAAA	840
TCAATCCGAA GATAGTATTG TTAATATCAG CATTCTGAA AACAAATAAAAG AAGAATTGCT	900
TCAAGTGGAA CGACGCCTGG AAAAGATCTT GAGAAGCAAA GAATCATGCA TCGTAATTCT	960
AGATAATATC CCAAAGAATC GAATTGCATT TGTGTATCC GTTTTGCAA ATGTCCCCT	1020
TCAAAACAAAC GAAGGTCCAT TTGTAGTATG CACAGTCAAC CGATATCAA TCCCTGAGCT	1080
TCAAATTACAC CACAATTCA AAAATGTCAGT AATGTCGAAT CGTCTCGAAG GATTCTAC	1140
ACGTTACCTC CGACGACGGG CGGTAGAGGA TGAGTATCGT CTAACGTAC AGATGCCATC	1200
AGAGCTCTTC AAAATCATTG ACTTCTTCCC AATAGCTCTT CAGGCCGTCA ATAATTCTT	1260
TGAGAAAACG AATTCTGTTG ATGTGACAGT TGGTCCAAGA GCATGCTTGA ACTGTCTCT	1320
AACTGTCGAT GGATCCCGTG AATGGTTCAT TCGATTGTGG AATGAGAACT TCATTCCATA	1380
TTTGGAACGT GTTGCTAGAG ATGGCAAAAA AACCTTCGGT CGCTGCACCTT CCTTCGAGGA	1440
TCCCACCGAC ATCGTCTCTA AAAATGGCC GTGGTTCGAT GGTGAAAACC CGGAGAATGT	1500
GCTCAAACGT CTTCAACTCC AAGACCTCGT CCCGTCACCT GCCAACTCAT CCCGACACAA	1560
CTTCAATCCC CTCGAGTCGT TGATCCAATT GCATGCTACC AAGCATCAGA CCATCGACAA	1620
CATTTGAACA GAAGACTCTA ATCTTCTCTC GCCTCTCCCC CGCTTCCCTT ATCTTCGTAC	1680
CGGTACCTGA TGATTCCCCA TTTTCCCCCT TTTCCCCCA ATTTCCCAGA ACCTCCTGTT	1740
CCCTTTGTTCTAGGCTCC CGGGTGCCGA CGCCGAAGCG ATTTAAAAAC CTTTTCTTT	1800
CCGAAACATT TCCCATTGCT CATTAAATAGT CAAATTGAAT AAACAGTGTAA TGTACTTAA	1860
AAAAAAAAAAA AAAAAAAA AAAAGGCCTA TGCGGCCGGG CCATGGAGGC CGAATTCCCG	1920
GGGATCCGTC GACCTGCGAC CAAGCTAATT CGGGCGAAT TTCTTATGAT TTATGATTTT	1980
TATTATTAAGTTATAA AAAAAATAAG TGTATACAAA TTTTAAAGTG ACTCTTAGGT	2040
TTTAAAACGA AAATTCTTGT TCTTGAGTAA CTCTTCTTG TAGGTCAAGT TGCTTCTCA	2100
GGTATAGCAT GAGGTGCGTC TTATTGACCA CACCTCTACC GGCAATGCAAG CTTGGCGTAA	2160
TCATGGTCAT AGCTGTTCC TGTGTGAAAT TGTATCCGC TCACAAATTCC ACACAAACATA	2220
CGAGCCGGAA GCATAAAAGTG TAAAGCCTGG GGTGCCTAAT GAGTGAGGTA ACTCACATTA	2280
ATTGCGTTGC GCTCACTGCC CGCTTCCAG TCGGGAAACC TGTCGTGCCA GCTGGATTAA	2340
TGAATCGGCC AACGCGCGGG GAGAGGCGGT TTGCGTATTG GGCGCTCTTC CGCTTCCCTCG	2400
CTCACTGACT CGCTGCGCTC GGTCGTTCGG CTGGCGCGAG CGGTATCAGC TCACTCAAAG	2460

GGCGTAATAC GGTTATCCAC AGAACAGGG GATAACGCAG GAAAGAACAT GTGAGCAAAA	2520
GGCCAGCAA AGGCCAGGAA CCGTAAAAAG GCCGCCTTGC TGGCGTTTT CCATAGGCTC	2580
CGCCCCCTG ACGAGCATCA CAAAAATCGA CGCTCAAGTC AGAGGTGGCG AAACCCGACA	2640
GGACTATAAA GATACCAGGC GTTTCCCCCT GGAAGCTCCC TCCTGCGCTC TCCTGTTCCG	2700
ACCCCTGCCGC TTACCGGATA CCTGTCCGCC TTTCTCCCTT CGGGAAAGCGT GGCGCTTTCT	2760
CATAGCTCAC GCTGTAGGTA TCTCAGTCG GTGTAGGTCG TTCGCTCCAA GCTGGGCTGT	2820
GTGCACGAAC CCCCCGTTCA GCCCGACCGC TGCGCCTTAT CGGGTAACTA TCGTCTTGAG	2880
TCCAACCCGG TAAGACACGA CTTATGCCA CTGGCAGCAG CCACTGGTAA CAGGATTAGC	2940
AGAGCGAGGT ATGTAGGCGG TGCTACAGAG TTCTTGAAGT GGTGGCCTAA CTACGGCTAC	3000
ACTAGAAGGA CAGTATTTGG TATCTGCGCT CTGCTGAAGC CAGTTACCTT CGGAAAAAGA	3060
GTTGGTAGCT CTTGATCCGG CAAACAAACC ACCGCTGGTA GCGGTGGTTT TTTTGTTC	3120
AAGCAGCAGA TTACGCGCAG AAAAAAAGGA TCTCAAGAAG ATCCTTTGAT CTTTTCTACG	3180
GGGTCTGACG CTCAGTGGAA CGAAAACTCA CGTTAAGGGA TTTTGGTCAT GAGATTATCA	3240
AAAAGGATCT TCACCTAGAT CCTTTTAAAT TAAAAATGAA GTTTTAAATC AATCTAAAGT	3300
ATATATGAGT AAACTTGGTC TGACAGTTAC CAATGTTAA TCAGTGAGGC ACCTATCTCA	3360
GCGATCTGTC TATTCGTTTC ATCCATAGTT GCCTGACTCC CCGTCGTGTA GATAACTACG	3420
ATACGGGAGG GCTTACCATC TGGCCCCAGT GCTGCAATGA TACCGCGAGA CCCACGCTCA	3480
CCGGCTCCAG ATTTATCAGC AATAAACCAAG CCAGCCGGAA GGGCCGAGCG CAGAAGTGGT	3540
CCTGCAACTT TATCCGCCTC CATCCAGTCT ATTAATTGTT GCCGGGAAGC TAGAGTAAGT	3600
AGTTCGCCAG TTAATAGTTT GCGCAACGTT GTTGCCATTG CTACAGGCAT CGTGGTGTCA	3660
CGCTCGTCGT TTGGTATGGC TTCATTCAAGC TCCGGTTCCC AACGATCAAG GCGAGTTACA	3720
TGATCCCCA TGTTGTGCAA AAAAGGGTT AGCTCCTTCG GTCTCCGAT CGTTGTCAGA	3780
AGTAAGTTGG CCGCAGTGTG ATCACTCATG GTTATGGCAG CACTGCATAA TTCTCTTACT	3840
GTCATGCCAT CCGTAAGATG CTTTCTGTG ACTGGTGAGT ACTCAACCAA GTCATTCTGA	3900
GAATAGTGTGTA TGGGGCGACC GAGTTGCTCT TGCCCGCGT CAATACGGGA TAATACCGCG	3960
CCACATAGCA GAACTTTAAA AGTGCTCATC ATTGGAAAAC GTTCTTCGGG GCGAAAACTC	4020
TCAAGGATCT TACCGCTGTT GAGATCCAGT TCGATGTAAAC CCACTCGTGC ACCCAACTGA	4080
TCTTCAGCAT CTTTTACTTT CACCAGCGTT TCTGGGTGAG CAAAAACAGG AAGGCAAAAT	4140
GCCGAAAAAA AGGAAATAAG GGCACACGG AAATGTTGAA TACTCATACT CTTCCTTTT	4200
CAATATTATT GAAGCATTAA TCAGGGTTAT TGTCTCATGA GCGGATACAT ATTTGAATGT	4260
ATTTAGAAAA ATAAACAAAT AGGGGTTCCG CGCACATTTC CCCGAAAAGT GCCACCTGAA	4320
CGAACATCT GTGCTTCATT TTGTAGAAC AAAATGCAAC GCGAGAGCGC TAATTTTCA	4380

AACAAAGAAT	CTGAGCTGCA	TTTTTACAGA	ACAGAAATGC	AACCGCAAAG	CGCTATTTA	4440
CCAACGAAGA	ATCTGTGCTT	CATTTTGTA	AAACAAAAAT	GCAACGCGAG	AGCGCTAATT	4500
TTTCAAACAA	AGAATCTGAG	CTGCATTTT	ACAGAACAGA	AATGCAACGC	GAGAGCGCTA	4560
TTTACCAAC	AAAGAACATA	TACTTCTTT	TTGTTCTACA	AAAATGCATC	CCGAGAGCGC	4620
TATTTTCTA	ACAAAGCATC	TTAGATTACT	TTTTTCTCC	TTTGTGCCT	CTATATGCA	4680
GTCTCTTGAT	AACTTTTGCA	ACTGTAGGTC	CGTTAAGGTT	AGAAGAAGGC	TACTTTGGTG	4740
TCTATTTCT	CTTCCATATAA	AAAAGCTGA	CTCCACTTCC	CGCGTTACT	GATTACTAGC	4800
GAAGCTGCGG	GTGCATTTT	TCAAGATAAA	GGCATCCCCG	ATTATATTCT	ATACCGATGT	4860
GGATTGCGCA	TACTTGTGA	ACAGAAAGTG	ATAGCGTTGA	TGATTCTCA	TTGGTCAGAA	4920
AATTATGAAC	GGTTTCTCT	ATTTGTCTC	TATATACTAC	GTATAGGAA	TGTTTACATT	4980
TTCGTATTGT	TTTCGATTCA	CTCTATGAAT	AGTTCTTACT	ACAATTTTT	TGTCTAAAGA	5040
GTAATACTAG	AGATAAACAT	AAAAAAATGTA	GAGGTCGAGT	TTAGATGCAA	GTTCAAGGAG	5100
CGAAAGGTGG	ATGGGTAGGT	TATATAGGGA	TATAGCACAG	AGATATATAG	CAAAGAGATA	5160
CTTTTGAGCA	ATGTTTGTGG	AAGCGGTATT	CGCAATATTT	TAGTAGCTCG	TTACAGTCGG	5220
GTGCGTTTT	GGTTTTTGA	AAAGTGCCTCT	TCAGAGCGCT	TTTGGTTTTC	AAAAGCGCTC	5280
TGAAGTTCCCT	ATACTTTCTA	GAGAATAGGA	ACTTCGGAAT	AGGAACCTCA	AAGCGTTCC	5340
GAAAACGAGC	GCTTCCGAAA	ATGCAACGCG	AGCTGCCAC	ATACAGCTCA	CTGTTCACGT	5400
CGCACCTATA	TCTGCGTGT	GCCTGTATAT	ATATATACAT	GAGAAGAACG	GCATAGTGC	5460
TGTTTATGCT	TAAATGCGTA	CTTATATGCG	TCTATTTATG	TAGGATGAAA	GGTAGTCTAG	5520
TACCTCCTGT	GATATTATCC	CATTCCATGC	GGGTATCGT	ATGCTTCCTT	CAGCACTACC	5580
CTTTAGCTGT	TCTATATGCT	GCCACTCCTC	AATTGGATTA	GTCTCATCCT	TCAATGCTAT	5640
CATTTCCCTT	GATATTGGAT	CATATTAAGA	AACCATTATT	ATCATGACAT	TAACCTATAA	5700
AAATAGGCCT	ATCACGAGGC	CCTTTCGTCT	CGCGCGTTTC	GGTGATGACG	GTGAAAACCT	5760
CTGACACATG	CAGCTCCCGG	AGACGGTCAC	AGCTTGTCTG	TAAGCGGATG	CCGGGAGCAG	5820
ACAAGCCCGT	CAGGGCGCGT	CAGCGGGTGT	TGGCGGGTGT	CGGGGCTGGC	TTAACTATGC	5880
GGCATCAGAG	CAGATTGTAC	TGAGAGTGCA	CCATAGATCA	ACGACATTAC	TATATATATA	5940
ATATAGGAAG	CATTTAATAG	ACAGCATCGT	AATATATGTC	TACTTTGCAG	TTATGACGCC	6000
AGATGGCAGT	AGTGGAAAGAT	ATTCTTTATT	AAAAAAATGC	TTGTCACCTT	ACGTACAATC	6060
TTGATCCGGA	GCTTTTCTTT	TTTGCGCGAT	TAAGAATTAA	TTCGGTGCAA	AAAAGAAAAG	6120
GAGAGGGCCA	AGAGGGAGGG	CATTGGTGAC	TATTGAGCAC	GTGAGTATAC	GTGATTAAGC	6180
ACACAAAGGC	AGCTTGGAGT	ATGTCTGTTA	TTAATTCAC	AGGTAGTTCT	GGTCCATTGG	6240
TGAAAGTTTG	CGGCTTGCAG	AGCACAGAGG	CCGCAGAATG	TGCTCTAGAT	TCCGATGCTG	6300

ACTTGCTGGG TATTATATGT GTGCCAATA GAAAGAGAAC AATTGACCCG GTTATTGCAA	6360
GGAAAATTC AAGTCTTGT AAGCATATA AAAATAGTTC AGGCACCTCG AAATACTTGG	6420
TTGGCGTGT TCGTAATCAA CCTAAGGAGG ATGTTTGGC TCTGGTCAAT GATTACGGCA	6480
TTGATATCGT CCAACTGCAT GGAGATGAGT CGTGGCAAGA ATACCAAGAG TTCCTCGGTT	6540
TGCCAGTTAT TAAAAGACTC GTATTTCAA AAGACTGCAA CATACTACTC AGTGCAGCTT	6600
CACAGAAACC TCATTCGTT ATTCCCTGT TTGATTCAAGA AGCAGGTGGG ACAGGTGAAC	6660
TTTTGGATTG GAACTCGATT TCTGACTGGG TTGGAAGGCA AGAGAGCCCC GAAAGCTTAC	6720
ATTTTATGTT AGCTGGTGGG CTGACGCCAG AAAATGTTGG TGATGCGCTT AGATTAATG	6780
GCGTTATTGG TGGTGTGTA AGCGGAGGTG TGGAGACAAA TGGTGTAAAA GACTCTAACAA	6840
AAATAGCAAA TTTCGTCAAA AATGCTAAGA AATAGGTTAT TACTGAGTAG TATTTATTAA	6900
AGTATTGTTT GTGCACTTGC CGATCTATGC GGTGTGAAAT ACCGCACAGA TGCCTAACAGA	6960
GAAAATACCG CATCAGGAAA TTGTAACGT TAATATTTG TTAAAATTG CGTTAAATTT	7020
TTGTTAAATC AGCTCATTAA TTAACCAATA GGCGAAATC GGCAAAATCC CTTATAAAATC	7080
AAAAGAATAG ACCGAGATAG GGTTGAGTGT TGTCCAGTT TGGAACAGA GTCCACTATT	7140
AAAGAACGTG GACTCCAACG TCAAAGGGCG AAAAACCGTC TATCAGGGCG ATGGCCCACT	7200
ACGTGAACCA TCACCCCTAAT CAAGTTTTT GGGGTCGAGG TGCCGTAAAG CACTAAATCG	7260
GAACCTAAA GGGAGCCCCC GATTTAGAGC TTGACGGGG AAGCCGGCG ACGTGGCGAG	7320
AAAGGAAGGG AAGAAAGCGA AAGGAGCGGG CGCTAGGGCG CTGGCAAGTG TAGCGGTAC	7380
GCTGCGCGTA ACCACCCACAC CCGCCGCGCT TAATGCGCCG CTACAGGGCG CGTCGCGCCA	7440
TTCGCCATTG AGGCTGCGCA ACTGTTGGG AGGGCGATCG GTGCGGGCCT CTTCGCTATT	7500
ACGCCAGCTG GCGAAAGGGG GATGTGCTGC AAGGCGATTA AGTTGGGTA CGCCAGGGTT	7560
TTCCCAGTCA CGACGTTGTA AACCGACGGC CAGTCGTCCA AGCTTTCGCG AGCTCGAGAT	7620
CCCGAGCTTT GCAAATTAAA GCCTTCGAGC GTCCAAAAC CTTCTCAAGC AAGGTTTTCA	7680
GTATAATGTT ACATGCGTAC ACGCGTCTGT ACAGAAAAAA AAGAAAAATT TGAAATATAA	7740
ATAACGTTCT TAATACTAAC ATAACATATAA AAAATAAAAT AGGGACCTAG ACTTCAGGTT	7800
GTCTAACTCC TTCTTTTCG GTTAGAGCGG ATGTGGGGGG AGGGCGTGAA TGTAAGCGTG	7860
ACATAACTAA TTACATGATA TCGACAAAGG AAAAGGGGCC TGTTTACTCA CAGGCTTTTT	7920
TCAAGTAGGT AATTAAGTCG TTTCTGCTT TTTCTTCTT CAACCCACCA AAGGCCATCT	7980
TGGTACTTTT TTTTTTTTT TTTTTTTTT TTTTTTTTT TTTTTTTTT TTTTTTTTTT	8040
TTTTTTTTT TTTTTTTTT TTTTTTTTT TTTTTTTTTT CATAGAAATA ATACAGAAAGT	8100
AGATGTTGAA TTAGATTAAA CTGAAGATAT ATAATTATT GGAAATACA TAGAGCTTT	8160
TGTTGATGCG CTTAACGCGAT CAATTCAACA ACACCACAG CAGCTCTGAT TTTTCTTCA	8220

GCCAACTTGG AGACGAATCT AGCTTGACG ATAACCTGAA CATTGGGAT TCTACCCCTA	8280
CCCCAAGATCT TACCGTAACC GGCTGCCAAA GTGTCAATAA CTGGAGCAGT TTCCCTTAGAA	8340
GCAGAGTTCA AGTATTGGTC TCTCTGTCT TCTGGGATCA ATGTCCACAA TTTGTCCAAG	8400
TTCAAGACTG GCTTCCAGAA ATGAGCTTGT TGCTTGTGGA AGTATCTCAT ACCAACNCTT	8460
ACCGAAATAA CCTGGATGGT ATTTATCCAT GTTAATTCTG TGGTGATGTT GACCACCGGC	8520
CATACCTCTA CCACCGGGGT GCTTCTGTG CTTACCGATA CGACCTTAC CGGCTGAGAC	8580
GTGACCTCTG TGCTTCTAG TCTTAGTGAA TCTGGAAGGC ATTCTTGATT AGTTGGATGA	8640
TTGTTCTGGG ATTTAATGCA AAAAAATCAC TAAGAAGGAA AAAAAATCAAC GGAGAAAGCA	8700
AACGCCATCT TAAATATACG GGATACAGAT GAAAGGTTG AACCTATCTG GGAAAATACG	8760
CATTAACAA GCGAAAAACT GCGAGGAAAA TTGTTTGCCT CTCTGCCGGC TATTACCGCG	8820
CCAGAGGAAA ATAGGAAAAA TAACAGGGCA TTAGAAAAAT AATTTTGATT TTGGTAATGT	8880
GTGGGTCCCT GGTGTACAGA TGTTACATTG GTTACAGTAC TCTTGTTTT GCTGTGTTT	8940
TCGATGAATC TCCAAAATGG TTGTTAGCAC ATGGAAGAGT CACCGATGCT AAGTTATCTC	9000
TATGTAAGCT ACGTGGCGTG ACTTTGATG AAGCCGCACA AGAGATACAG GATTGGCAAC	9060
TGCAAATAGA ATCTGGGAT CTAGATATCC TTTGTTGTT TCCGGGTGTA CAATATGGAC	9120
TTCCTCTTTT CTGGCAACCA AACCCATACA TCAGGATTCC TATAATACCT TCGTTGGTCT	9180
CCCTAACATG TAGGTGGCGG AGGGGAGATA TACAATAGAA CAGATACCG ACAAGACATA	9240
ATGGGCTAAA CAAGACTACA CCAATTACAC TGCCTCATTG ATGGTGGTAC ATAACGAAC	9300
AATACTGTAG CCCTAGACTT GATAGCCATC ATCATATCGA AGTTCACTA CCCTTTTCC	9360
ATTTGCCATC TATTGAAGTA ATAATAGGCG CATGCAACTT CTTTCTTTT TTTTCTTTT	9420
CTCTCTCCCC CGTTGTTGTC TCACCATATC CGCAATGACA AAAAAATGA TGGAAGACAC	9480
TAAAGGAAA ATTAACGAC AAAGACAGCA CCAACAGATG TCGTTGTCC AGAGCTGATG	9540
AGGGGTATCT TCGAACACAC GAAACTTTT CCTTCCTTCA TTCACGCACA CTACTCTCTA	9600
ATGAGCAACG GTATACGGCC TTCCTTCCAG TTACTTGAAAT TTGAAATAAA AAAAGTTGC	9660
CGCTTGCTA TCAAGTATAA ATAGACCTGC AATTATTAAT CTTTGTTC CTCGTCAATTG	9720
TTCTCGTTCC CTTTCTTCCT TGTTCTTTT TCTGCACAAT ATTCAGCT ATACCAAGCA	9780
TACAATCAAC TCCAAGCTTG AAGCAAGCCT CCTGAAAGAT GAAGCTACTG TCTTCTATCG	9840
AAACAAGCATG CGATATTTGC CGACTAAAAA AGCTCAAGTG CTCCAAAGAA AAACCGAAGT	9900
GCGCCAAGTG TCTGAAGAAC AACTGGGAGT GTCGCTACTC TCCCACACC AAAAGGTCTC	9960
CGCTGACTAG GGCACATCTG ACAGAAGTGG AATCAAGGCT AGAAAGACTG GAACAGCTAT	10020
TTCTACTGAT TTTTCTCGA GAAGACCTTG ACATGATTTT GAAAATGGAT TCTTACAGG	10080
ATATAAAAGC ATTGTTAACCA GGATTATTTG TACAAGATAA TGTGAATAAA GATGCCGTCA	10140

145

CAGATAGATT GGCTTCAGTG GAGACTGATA TGCCTCTAAC ATTGAGACAG CATAGAATAA	10200
GTGCGACATC ATCATCGGAA GAGAGTAGTA ACAAAGGTCA AAGACAGTTG ACTGTATCGC	10260
CGGAATTGCA ATACCCAGCT TTGACTCA	10288

(2) INFORMATION FOR SEQ ID NO: 29:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 7625 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular

- (ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "plasmid"

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

GCTTGCATGC AACTTCTTTT CTTTTTTTTT CTTTTCTCTC TCCCCCGTTG TTGTCTCACC	60
ATATCCGCAA TGACAAAAAA AATGATGGAA GACACTAAAG GAAAAAAATTA ACGACAAAGA	120
CAGCACCAAC AGATGTCGTT GTTCCAGAGC TGATGAGGGG TATCTCGAA CACACGAAAC	180
TTTTTCCTTC CTTCATTACAC GCACACTACT CTCTAATGAG CAACGGTATA CGGCCTTCCT	240
TCCAGTTACT TGAATTTGAA ATAAAAAAAAG TTTGCCGTT TGCTATCAAG TATAAATAGA	300
CCTGCAATTA TTAATCTTTT GTTTCCTCGT CATTGTTCTC GTTCCCTTTC TTCCTTGT	360
CTTTTCTGC ACAATATTC AAGCTATACC AAGCATAACAA TCAACTCCAA GCTTGCAAA	420
GATGGATAAA GCGGAATTAA TTCCCAGGCC TCCAAAAAAG AAGAGAAAGG TCGAATTGGG	480
TACCGCCGCC AATTTTAATC AAAGTGGGAA TATTGCTGAT AGCTCATTGT CCTTCAC	540
CACTAACAGT AGCAACGGTC CGAACCTCAT AACRACTCAA ACJAAATTCTC AAGCGCTTC	600
ACAACCAATT GCCTCCTCTA ACGTCATGA TAACCTCATG AATAATGAAA TCACGGCTAG	660
TAAAATTGAT GATGGTAATA ATTCAAAACC ACTGTCACCT GGTTGGACGG ACCAAACTGC	720
GTATAACGCG TTTGGAATCA CTACAGGGAT GTTTAATACC ACTACAATGG ATGATGTATA	780
TAACATCTA TTGATGATG AAGATACCCC ACCAAACCCA AAAAAAGAGA TCGAATTCCC	840
GGGGATCCGC TCCCACTCT CCAAGTTCAC CAAGAAGAAG ACAAGAACT ACGACGAAGC	900
ACATATGCCA TCAATTCCG GATCTCAAGG AACTCTTGAC AACATTGATG TGATTGAGTT	960
GAAGCAAGAG CTCAAAGAAC GCGATAGTGC ACTTACGAA GTCCGCCCTG ACAATCTGGA	1020
TCGTGCCCGC GAAGTTGATG TTCTGAGGGA GACAGTGAAC AAGTTGAAAA CCGAGAACAA	1080
GCAATTAAAG AAAGAAGTGG ACAAAACTCAC CAACGGTCCA GCCACTCGTG CTTCTCCCG	1140
CGCCTCAATT CCAGTTATCT ACGACGATGA GCATGTCTAT GATGCAGCGT GTAGCAGTAC	1200

ATCAGCTAGT CAATCTTCGA AACGATCCTC TGGCTGCAAC TCAATCAAGG TTACTGTAAA	1260
CGTGGACATC GCTGGAGAAA TCAGTTCGAT CGTTAACCCG GACAAAGAGA TAATCGTAGG	1320
ATATCTTGCC ATGTCAACCA GTCAGTCATG CTGGAAAGAC ATTGATGTTT CTATTCTAGG	1380
ACTATTTGAA GTCTACCTAT CCAGAATTGA TGTGGAGCAT CAACTTGGAA TCGATGCTCG	1440
TGATTCTATC CTTGGCTATC AAATTGGTGA ACTTCGACGC GTCATTGGAG ACTCCACAAAC	1500
CATGATAACC AGCCATCCAA CTGACATTCT TACTTCCTCA ACTACAATCC GAATGTTCAT	1560
GCACGGTGCC GCACAGAGTC GCGTAGACAG TCTGGTCCTT GATATGCTTC TTCCAAAGCA	1620
AATGATTCTC CAACTCGTCA AGTCAATTTC GACAGAGAGA CGTCTGGTGT TAGCTGGAGC	1680
AACTGGAATT GGAAAGAGCA AACTGGCGAA GACCCCTGGCT GCTTATGTAT CTATTCGAAC	1740
AAATCAATCC GAAGATAGTA TTGTTAATAT CAGCATTCCCT GAAAACAATA AAGAAGAATT	1800
GCTTCAAGTG GAACGACGCC TGAAAAGAT CTATGAATCG TAGATACTGA AAAACCCCAC	1860
AAGTTCACTT CAACTGTGCA TCGTGCACCA TCTCAATTTC TTTCATTAT ACATCGTTT	1920
GCCTTCTTTT ATGTAACATAT ACTCCTCTAA GTTCAATCT TGGCCATGTA ACCTCTGATC	1980
TATAGAATT TTTAAATGAC TAGAATTAAAT GCCCATCTTT TTTTTGGACC TAAATTCTTC	2040
ATGAAAATAT ATTACGAGGG CTTATTCAGA AGCTTTGGAC TTCTTCGCCA GAGGTTTGGT	2100
CAAGTCTCCA ATCAAGGTTG TCGGCTTGTC TACCTTGCCA GAAATTACG AAAAGATGGA	2160
AAAGGGTCAA ATCGTTGGTA GATACTGGT TGACACTTCT AAATAAGCGA ATTTCTTATG	2220
ATTTATGATT TTTTATTATTA AATAAGTTAT AAAAAAAATA AGTGTATACA AATTTAAAG	2280
TGACTCTTAG GTTTAAAAC GAAAATTCTT GTTCTTGAGT AACTCTTCC TGTAGGTCAG	2340
GTTGCTTTCT CAGGTATAGC ATGAGGTCGC TCTTATTGAC CACACCTCTA CCGGCATGCC	2400
CGAAATTCCC CTACCCCTATG AACATATTCC ATTTTGTAAAT TTCGTGTCGT TTCTATTATG	2460
AATTCATTT ATAAAGTTA TGTACAAATA TCATAAAAAA AGAGAATCTT TTTAAGCAAG	2520
GATTTCTTA ACTTCTTCGG CGACAGCATC ACCGACTTCG GTGGTACTGT TGGAACCAACC	2580
TAAATCACCA GTTCTGATAC CTGCATCCAA AACCTTTTA ACTGCATCTT CAATGGCCTT	2640
ACCTTCTTCA GGCAAGTTCA ATGACAATT CAACATCATT GCAGCAGACA AGATAGTGGC	2700
GATAGGGTCA ACCTTATTCT TTGGCAAATC TGGAGCAGAA CCGTGGCATG GTTGGTACAA	2760
ACCAAATGCG GTGTTCTTGT CTGGCAAAGA GGCCAAAGGAC GCAGATGGCA ACAAACCCAA	2820
GGAACCTGGG ATAACGGAGG CTTCATCGGA GATGATATCA CCAAACATGT TGCTGGTGT	2880
TATAATACCA TTAGGTGGG TTGGGTTCTT AACTAGGATC ATGGCGGAG AATCAATCAA	2940
TTGATGTTGA ACCTTCATG TAGGAAATTC GTTCTTGATG GTTCTCTCCA CAGTTTTCT	3000
CCATAATCTT GAAGAGGCCA AAACATTAGC TTTATCCAAG GACCAAATAG GCAATGGTGG	3060
CTCATGTTGT AGGGCCATGA AAGCGGCCAT TCTTGTGATT CTTGCACCTT CTGGAACGGT	3120

GTATTGTTCA CTATCCAAG CGACACCAC ACCATCGTCT TCCTTTCTCT TACCAAAGTA	3180
AATAACCTCCC ACTAATTCTC TGACAACAAAC GAAGTCAGTA CCTTTAGCAA ATTGTGGCTT	3240
GATTGGAGAT AAGTCTAAAAGAGAGTCGGA TGCAAAGTTA CATGGCTTTA AGTTGGCGTA	3300
CAATTGAAGT TCTTTACGGA TTTTAGTAA ACCTTGTTCA GGTCTAACAC TACCTGTACC	3360
CCATTAGGA CCACCCACAG CACCTAACAA AACGGCATCA ACCTTCTTGG AGGCTTCCAG	3420
CGCCTCATCT GGAAGTGGGA CACCTGTAGC ATCGATAGCA GCACCACCAA TTAAATGATT	3480
TTCGAAATCG AACTTGACAT TGGAACGAAC ATCAGAAATA GCTTTAAGAA CCTTAATGGC	3540
TTCGGCTGTG ATTTCTTGAC CAACGTGGTC ACCTGGCAAACGACGATCT TCTTAGGGGC	3600
AGACATTAGA ATGGTATATC CTTGAAATAT ATATATATAT TGCTGAAATG TAAAAGGTAA	3660
GAAAAGTTAG AAAGTAAGAC GATTGCTAAC CACCTATTGG AAAAAACAAT AGGTCTTAA	3720
ATAATATTGT CAACTTCAAG TATTGTGATG CAAGCATTAA GTCTGAACG CTTCTCTATT	3780
CTATATGAAA AGCCGGTTCC GCCCTCTCAC CTTTCCTTT TCTCCCAATT TTTCAGTTGA	3840
AAAAGGTATA TGCAGTCAGGC GACCTCTGAA ATTAACAAAA AATTTCAGT CATCGAATT	3900
GATTCTGTGC GATAGCGCCC CTGTGTGTT TCAGTTATGTT GAGGAAAAAA ATAATGGTTG	3960
CTAAGAGATT CGAACTCTTG CATCTTACGA TACCTGAGTA TTCCCACAGT TGGGGATCTC	4020
GACTCTAGCT AGAGGATCAA TTCGTAATCA TGGTCATAGC TGTTTCTGT GTGAAATTGT	4080
TATCCGCTCA CAATTCCACA CAACATACGA GCCGGAAGCA TAAAGTGTAA AGCCTGGGGT	4140
GCCTAATGAG TGAGGTAAC TACATTAATT GCGTTGCGCT CACTGCCCGC TTTCCAGTCG	4200
GGAAACCTGT CGTGCCAGCT GGATTAATGA ATCGGCCAAC GCGCGGGGAG AGGCGGTTTG	4260
CGTATTGGGC GCTCTTCCGC TTCCCTCGCTC ACTGACTCGC TGCGCTCGGT CGTTGGCTG	4320
CGCGAGCGG TATCAGCTCA CTCAAAGGCG GTAATACGGT TATCCACAGA ATCAGGGGAT	4380
AACGCAGGAA AGAACATGTG AGCAAAAGGC CAGCAAAAGG CCAGGAACCG TAAAAGGCC	4440
GCGTTGCTGG CGTTTTCCA TAGGCTCCGC CCCCTGACG AGCATCACAA AAATCGACGC	4500
TCAAGTCAGA GGTGGCGAAA CCCGACAGGA CTATAAAGAT ACCAGGCAGTT TCCCCCTGGA	4560
AGCTCCCTCG TGCGCTCTCC TGTTCCGACC CTGCCGCTTA CCGGATACCT GTCCGCCCTT	4620
CTCCCTTCGG GAAGCGTGGC GCTTTCTCAT AGCTCACGCT GTAGGTATCT CAGTCGGTG	4680
TAGGTCGTTC GCTCCAAGCT GGGCTGTGTG CACGAACCCC CCGTTCAAGCC CGACCGCTGC	4740
GCCTTATCCG GTAATATCG TCTTGAGTCC AACCCGGTAA GACACGACTT ATCGCCACTG	4800
GCAGCAGCCA CTGGTAACAG GATTAGCAGA GCGAGGTATG TAGGCGGTGC TACAGAGTTC	4860
TTGAAGTGGT GGCTAACTA CGGCTACACT AGAAGGACAG TATTTGGTAT CTGCGCTCTG	4920
CTGAAGCCAG TTACCTTCGG AAAAGAGTT GGTAGCTCTT GATCCGGCAA ACAAAACCACC	4980
GCTGGTAGCG GTGGTTTTTG TGTTGCAAG CAGCAGATTA CGCGCAGAAA AAAAGGATCT	5040

CAAGAAGATC CTTTGATCTT TTCTACGGGG TCTGACGCTC AGTGGAACGA AAACTCACGT	5100
TAAGGGATTG TGGTCATGAG ATTATCAAAA AGGATCTTCA CCTAGATCCT TTTAAATTAA	5160
AAATGAAGTT TAAATCAAT CTAAAGTATA TATGAGTAAA CTTGGTCTGA CAGTTACCAA	5220
TGCTTAATCA GTGAGGCACC TATCTCAGCG ATCTGTCTAT TTCGTTCATC CATAGTTGCC	5280
TGACTCCCCG TCCTGTAGAT AACTACGATA CGGGAGGGCT TACCATCTGG CCCCAGTGCT	5340
GCAATGATAC CGCGAGACCC ACGCTCACCG GCTCCAGATT TATCAGCRAT AAACCAGCCA	5400
GCCGGAAGGG CCGAGCGCAG AAGTGGCCT GCAACTTTAT CCGCCTCCAT CCAGTCTATT	5460
AATTGTTGCC GGGAGCTAG AGTAAGTAGT TCGCCAGTTA ATAGTTGCG CAACGTTGTT	5520
GCCATTGCTA CAGGCATCGT GGTGTACCGC TCGTCGTTG GTATGGCTTC ATTCAAGCTCC	5580
GGTTCCCAAC GATCAAGGCG AGTTACATGA TCCCCCATGT TGTCGAAAAA AGCGGTTAGC	5640
TCCTTCGGTC CTCCGATCGT TGTCAGAAGT AAGTTGGCCG CAGTGTATC ACTCATGGTT	5700
ATGGCAGCAC TGCATAATTC TCTTACTGTC ATGCCATCCG TAAGATGCTT TTCTGTGACT	5760
GGTGAGTACT CAACCAAGTC ATTCTGAGAA TAGTGTATGC GGCGACCGAG TTGCTCTTGC	5820
CCGGCGTCAA TACGGGATAA TACCGGCCA CATAGCAGAA CTTTAAAAGT GCTCATCATT	5880
GGAAAACGTT CTTCGGGGCG AAAACTCTCA AGGATCTTAC CGCTGTTGAG ATCCAGTTCG	5940
ATGTAACCCA CTCGTGCACC CAACTGATCT TCAGCATCTT TTACTTTCAC CAGCGTTCT	6000
GGGTGAGCAA AAACAGGAAG GCAAAATGCC GCAAAAAAGG GAATAAGGGC GACACGGAAA	6060
TGTTGAATAC TCATACTCTT CCTTTTCAA TATTATTGAA GCATTTATCA GGGTTATTGT	6120
CTCATGAGCG GATACATATT TGAATGTATT TAGAAAAATA AACAAATAGG GGTTCCGCGC	6180
ACATTTCCCC GAAAAGTGC ACCTGACGTC TAAGAAAACCA TTATTATCAT GACATTAACC	6240
TATAAAAATA GGCGTATCAC GAGGCCCTT CGTCTCGCGC GTTTCGGTGA TGACGGTGAA	6300
AACCTCTGAC ACATGCAGCT CCCGGAGACG GTCACAGCTT GTCTGTAAGC GGATGCCGGG	6360
AGCAGACAAG CCCGTCAGGG CGCGTCAGCG GGTGTTGGCG GGTGTCGGGG CTGGCTTAAC	6420
TATGCGGCAT CAGAGCAGAT TGTACTGAGA GTGCACCATA ACGCATTAA GCATAAACAC	6480
GCACTATGCC GTTCTTCTCA TGTATATATA TATACAGGCA ACACGCAGAT ATAGGTGCGA	6540
CGTGAACAGT GAGCTGTATG TGCGCAGCTC GCGTTGCATT TTCGGAAGCG CTCGTTTCG	6600
GAAACGCTT GAAGTTCCCTA TTCCGAAGTT CCTATTCTCT AGCTAGAAAAG TATAGGAAC	6660
TCAGAGCGCT TTTGAAAACC AAAAGCGCTC TGAAGACGCA CTTTCAAAAA ACCAAAAACG	6720
CACCGGACTG TAACGAGCTA CTAAAATATT GCGAATACCG CTTCCACAAA CATTGCTCAA	6780
AAGTATCTCT TTGCTATATA TCTCTGTGCT ATATCCCTAT ATAACCTACC CATCCACCTT	6840
TCGCTCCTTG AACTTGCATC TAAACTCGAC CTCTACATTT TTTATGTTA TCTCTAGTAT	6900
TACTCTTAG ACAAAAAAAAT TGTAGTAAGA ACTATTCTATA GAGTGAATCG AAAACAATAC	6960

GAAAATGTAA ACATTTCTTA TACGTAGTAT ATAGAGACAA AATAGAAGAA ACCGTTCAT	7020
ATTTTCTGAC CAATGAAGAA TCATCAACGC TATCACTTTC TGTTCACAAA GTATGCGCAA	7080
TCCACATCGG TATAGAATAT AATCGGGGAT GCCTTATCT TGAAAAAATG CACCCGCAGC	7140
TTCGCTAGTA ATCAAGTAAAC GCGGGAAAGTG GAGTCAGGCT TTTTTATGG AAGAGAAAAT	7200
AGACACCAAA GTAGCCTTCT TCTAACCTTA ACGGACCTAC AGTGCAAAAA GTTATCAAGA	7260
GAUTGCATTA TAGAGCGCAC AAAGGAGAAA AAAAGTAATC TAAGATGCTT TGTTAGAAAA	7320
ATAGCGCTCT CGGGATGCAT TTTTGTAGAA CAAAAAAGAA GTATAGATTG TTTGTTGGTA	7380
AAATAGCGCT CTCGCGTTGC ATTTCTGTTC TGTAAGAAATG CAGCTCAGAT TCTTTGTTTG	7440
AAAAATTAGC GCTCTCGCGT TGCATTTTG TTTTACAAAAA ATGAAGCACA GATTCTCGT	7500
TGGTAAAATA GCGCTTCGC GTTGCATTTTC TGTTCTGTAA AAATGCAGCT CAGATTCTTT	7560
TTTTGAAAAAA TTAGCGCTCT CGCGTTGCAT TTTGTTCTA CAAAATGAAG CACAGATGCT	7620
TCGTT	7625

(2) INFORMATION FOR SEQ ID NO: 30:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9642 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "plasmid"
- (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

ATGACCATGA TTACGCCAAG CTTGTCTTCT TCTAAATTCC CATAAAATCC CGAAACTCCT	60
TCCCTCTATC TTCTTTTCT TCTCGTTTTC AAATGTTCT CTCTATCCCA TTCTCTCATC	120
AATTGAGTGG GATGAGGCTA TCTCTGCCTC TCTTCTGAAT CTCTGAACCA TCTTACATTA	180
CACTGTGGAT GACGAGCCCC ACAGGCTCCC TTGCATCAGA TACTGCCATT GGGGATGGCA	240
AAGAAGAGAG AAGGTATTGT GAGGATATAT TTTTCTAAGA AAAAACGTTT GAAGAAAAGA	300
AGATGAAGAA GATCTGCTTG ATTCAATTGCA CAAGTTAGAA GTAACAGGGG TCTATATTTC	360
GAAGAACTTA AAGGGAATGC AACTGAACAT AAAATTAAAC AAAGGGATTG AATCCTGCAG	420
TGAGTATTCTT CGGTTCTCT GTAAAAAGAG TAATGCAAAG GGCAAGTTAA	480
CTTAGGTCGT AAATGTATTG AATTGCTTA AAATCTGAAG ATCTAGTGGT GAACCGTGG	540
AGATTATCAA GAGGAGGCTG AAGATCTGTT TAAGAACCAT TAATCAAACG GGTATTCTAT	600
TTTCACTGGT TGTATGTAAA CATTCTATCT TATTCTTTT ATCACTGTTG TGCACCTTCC	660

150

TATAAAAAAA	GTTGACCGAC	CGTACTCTCT	GAATTCA	TTCCCGATCT	TACCAA	ACTCC	720
CGATCTATCT	CTATCCCTGG	TTTTTCTTC	GTGCTCCA	AT GGAATTCTTG	AGACTTCCAC		780
TATCTCTCT	GGCACCCCTCC	ACTACCGTA	GGCGTCTCTC	GCTTCGTGTA	TTCCC	GGGAA	840
GCCGGTTCCC	GTCTCTCCCG	CCGCTGCCGC	TGCCGCACAC	AGCTTTACAC	CTCGTAGAAT		900
CCCCAAAGAG	GGCGGTGGCT	TGCGGGTGCC	AACATCCTCC	TGCCGAGGAA	GAAGCAGGCA		960
CTCATCACTC	GCATCATCAA	CCTCGGGATT	GGCCAAAGGA	CCCAAAGGTA	TGTTTCGAAT		1020
GATACTAACAA	TAACATAGAA	CATTTCAAGG	AGGACCCCTG	GCTAGAACTA	GTGGATCCGA		1080
GCTCTCCCAT	ATGACGACGT	CAAATGTAGA	ATTGATACCA	ATCTACACGG	ATTGGGCCAA		1140
TCGGCACCTT	TCGAAGGGCA	GCTTATCAA	GTCGATTAGG	GATATTTCCA	ATGATTTTCG		1200
CGACTATCGA	CTGGTTCTC	AGCTTATTAA	TGTGATCGTT	CCGATCAACG	AATTCTCGCC		1260
TGCATTCA	CGAACGTTGG	AAAAATCAC	ATCGAACCTG	GATGGCCTCG	AAACGTGTCT		1320
CGACTACCTG	AAAAATCTGG	GTCTCGACTG	CTCGAAA	CTC ACCAAAAACCG	ATATCGACAG		1380
CGGAAACTTG	GGTGCAGTTTC	TCCAGCTGCT	CTTCTGCTC	TCCACCTACA	AGCAGAAGCT		1440
TCGGCAACTG	AAAAAAGATC	AGAAGAAATT	GGAGCAACTA	CCCACATCCA	TTATGCCACC		1500
CGCGGTTCT	AAATTACCC	CGCCACGTGT	CGCCACGTCA	GCAACC	GCTT CAGCAACTAA		1560
CCCAAATTCC	AACTTTCCAC	AAATGTCAAC	ATCCAGGCTT	CAGACTCCAC	AGTCAAGAAT		1620
ATCGAAAATT	GATTCA	AGATTGGTAT	CAAGC	AAAG AC	ACGTCTGGAC	TTAAACCACC	1680
CTCATCATCA	ACCAC	TTCA	CAAATAATAC	AAATTCA	TCGCG	GCCGTTGAG	1740
TGGCAATAAT	AATGTTGGCT	CGACGATATC	CACATCTGCG	AAGAGCTTAG	AATCATCATC		1800
AACGTACAGC	TCTATTCGA	ATCTAAACCG	ACCTACCTCC	CAACTCCAAA	AA CCTTCTAG		1860
ACCACAAACC	CAGCTAGTT	GTGTTGCTAC	AACTACAAA	ATCGGAAGCT	CAAAGCTAGC		1920
CGCTCCGAAA	GCCGTGAGCA	CCCCAAA	ACT TGCTG	AAGACTATTG	GAGCAAAACA		1980
AGAGCCCGAT	AACAGCGGTG	GTGGTGGTGG	TGGAATGCTG	AAATTAAAGT	TATTCA	GAGTAG	2040
CAAAACCCA	TCTTC	TCAT	CGAATAGCCC	ACAAC	CTACG	AGAAAGGCGG	2100
TCAACAAACAA	ACTTTGTCGA	AAATCGCTGC	CCCAGTGAAA	AGTGGC	CTGA	AGCCGCCGAC	2160
CAGTAAGCTG	GGAA	GTGCCA	CGTCTATGTC	GAAGCTTGT	ACGCC	AAAAG	2220
TA	AAACGGAC	GCCCCAATCA	TATCTCAACA	AGACTCGAAA	CGATGCTCA	AGAGCAGTGA	2280
AGAAGAGTCC	GGATA	CGCTG	GATTCAACAG	CACGTGCGCA	ACGTCA	TGCGAGG	2340
TTCCCTAAGC	ATGCA	TTCCA	GAGTTCAACG	TCAGACGAAA	AGTCTCCGTC		2400
ATCAGACGAT	CTTACTCTTA	ACGC	CTCCAT	CGTGACAGCT	ATCAGACAGC	CGATAGCCGC	2460
AACACCGGTT	TCT	CCAATA	TTATCAACAA	GCCTGTTGAG	GA	AAAAACCAA	2520
GAAAGGAGTG	AAA	AGCACAG	CGAAAAAAGA	TCCACCTCCA	GCTGTTCCGC	CACGTGACAC	2580

151

CCAGCCAACA ATCGGAGTTG TTAGTCCAAT TATGGCACAT AAGAAGTTGA CAAATGACCC	2640
CGTGATATCT GAAAAACCAG AACCTGAAAA GCTCCAATCA ATGAGCATCG ACACGACGGA	2700
CGTTCACCG CTTCCACCTC TAAAATCAGT TGTTCCACTT AAAATGACTT CAATCCGACA	2760
ACCACCAACG TACGATGTTC TTCTAAAACA AGGAAAAATC ACATCGCCTG TCAAGTCGTT	2820
TGGATATGAG CAGTCGTCCG CGTCTGAAGA CTCCATTGTG GCTCATGCGT CGGCTCAGGT	2880
GACTCCGCCG ACAAAAACCTT CTGGTAATCA TTCGCTGGAG AGAAGGATGG GAAAGAATAA	2940
GACATCAGAA TCCAGCGGCT ACACCTCTGA CGCCGGTGTG GCGATGTGCG CCAAAATGAG	3000
GGAGAAGCTG AAAGAATACG ATGACATGAC TCGTCGAGCA CAGAACGGCT ATCCTGACAA	3060
CTTCGAAGAC AGTTCTCCT TGTCGTCCTG AATATCCGAT AACAAACGAGC TCGACGACAT	3120
ATCCACGGAC GATTTGTCCG GAGTAGACAT GGCAACAGTC GCCTCCAAAC ATAGCGACTA	3180
TTCCCACTTT GTTCGCCATC CCACGTCTTC TTCCCTCAAAG CCCCAGTCC CGAGTCGGTC	3240
CTCCACATCA GTCGATTCTC GATCTCGAGC AGAACACGGAG AATGTGTACA AACTTCTGTC	3300
CCAGTGCCGA ACGAGCCAAC GTGGCGCCGC TGCCACCTCA ACCTTCGGAC AACATTGCT	3360
AAGATCCCCG GGATACTCAT CCTATTCTCC ACACATTATCA GTGTCAGCTG ATAAGGACAC	3420
AATGTCTATG CACTCACAGA CTAGTCGACG ACCTCTTCA CAAAAACCAA GCTATTCAAG	3480
CCAATTTCAT TCACTTGATC GTAAATGCCA CCTTCAAGAG TTCACATCCA CCGAGCACAG	3540
AATGGGGCT CTCTTGAGCC CGAGACGGGT GCCGAACCTCG ATGTCGAAAT ATGATTCTTC	3600
AGGATCCTAC TCGGCGCGTT CCCGAGGTGG AAGCTCTACT GGTATCTATG GAGAGACGTT	3660
CCAACTGCAC AGACTATCCG ATGAAAAATC CCCCCCACAT TCTGCCAAA GTGAGATGGG	3720
ATCCCAACTA TCACTGGCTA GCACGACAGC ATATGGATCT CTCAATGAGA AGTACGAACA	3780
TGCTATTCGG GACATGGCAC GTGACTTGGA GTGTTACAAG AACACTGTG ACTCACTAAC	3840
CAAGAACAG GAGAACTATG GAGCATTGTT TGATCTTTTT GAGCAAAAGC TTAGAAAATC	3900
CACTCAACAC ATTGATCGAT CCAACTTGAA GCCTGAAGAG GCAATACGAT TCAGGCAGGA	3960
CATTGCTCAT TTGAGGGATA TTAGCAATCA TCTTGCATCC AACTCAGCTC ATGCTAACGA	4020
AGGCCTGCGT GAGCTTCTTC GTCAACCATC TCTGGAATCA GTTGCATCCC ATCGATCATC	4080
GATGTCATCG TCGTCGAAAA GCAGCAAGCA GGAGAAGATC AGCTTGAGCT CGTTGGCAA	4140
GAACAAGAAG AGCTGGATCC GCTCCTCACT CTCCAAGTTC ACCAAGAAGA AGAACAAAGAA	4200
CTACGACGAA GCACATATGC CATCAATTTC CGGATCTCAA GGAACCTTTG ACAACATTGA	4260
TGTGATTGAG TTGAAAGCAAG AGCTCAAAGA ACGCGATAGT GCACCTTACG AAGTCCGCT	4320
TGACAATCTG GATCGTGCCTC GCGAAGTTGA TGTTCTGAGG GAGACAGTGA ACAAGTTGAA	4380
AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACAAACCTC ACCAACGGTC CAGCCACTCG	4440
TGCTTCTTCC CGCGCCTCAA TTCCAGTTAT CTACGACGAT GAGCATGTCT ATGATGCAGC	4500

GTGTAGCAGT ACATCAGCTA GTCAATCTTC GAAACGATCC TCTGGCTGCA ACTCAATCAA	4560
GGTTACTGTA AACGTGGACA TCGCTGGAGA AATCAGTTCG ATCGTTAACCGGACAAAGA	4620
GATAATCGTA GGATATCTTG CCATGTCAAC CAGTCAGTCA TGCTGGAAAG ACATTGATGT	4680
TTCTATTCTA GGACTATTG AAGTCTACCT ATCCAGAATT GATGTGGAGC ATCAACTTGG	4740
AATCGATGCT CGTGATTCTA TCCTTGGCTA TCAAATTGGT GAACTTCGAC GCGTCATTGG	4800
AGACTCCACA ACCATGATAA CCAGCCATCC AACTGACATT CTTACTTCCT CAACTACAAT	4860
CCGAATGTTCAATGCACGGTG CCGCACAGAG TCGCGTAGAC AGTCTGGTCC TTGATATGCT	4920
TCTTCCAAAG CAAATGATTCTCCACTCGT CAAGTCATT TTGACAGAGA GACGTCTGGT	4980
GTTAGCTGGA GCAACTGGAA TTGGAAAGAG CAAACTGGCG AAGACCCCTGG CTGCTTATGCT	5040
ATCTATTGCA ACAAAATCAAT CCGAAGATAG TATTGTTAAT ATCAGCATTC CTGAAAACAA	5100
TAAAGAAGAA TTGCTTCAG TGGAACGACG CCTGGAAAAG ATCTTGAGAA GCAAAGAACATC	5160
ATGCATCGTA ATTCTAGATA ATATCCAAA GAATCGAATT GCATTTGTTG TATCCGTTTT	5220
TGCAAATGTC CCACCTCAAA ACAACGAAGG TCCATTTGTA GTATGCACAG TCAACCGATA	5280
TCAAATCCCT GAGCTTCAGGTTTCACCACAA TTTCAAAATG TCAGTAATGT CGAATCGTCT	5340
CGAAGGATTCACTTACGTT ACCTCCGACG ACGGGCGGTAGGGATGAGT ATCGTCTAAC	5400
TGTACAGATGCCATCAGAGCTCTCAAAAT CATTGACTTC TTCCCAATAG CTCTTCAGGC	5460
CGTCAATAAT TTTATTGAGA AAACGAATTCTGGATGTCGACAGTTGGTC CAAGAGCATG	5520
CTTGAACCTGT CCTCTAACTG TCGATGGATCCCGTGAATGG TTCATTGAT TGTGGAATGA	5580
GAACCTCATT CCATATTGAGAACGTGTTGC TAGAGATGGC AAAAAAAACCT TCGGTCGCTG	5640
CACTTCCTTC GAGGATCCCA CCGACATCGT CTCTAAAAA TGGCCGTGGT TCGATGGTGA	5700
AAACCCGGAG AATGTGCTCA AACGTCTTCACCTCAAGACCTCGTCA CACCTGCCAA	5760
CTCATCCCCGA CAACACTTCATCCCCTCGA GTCGTTGATC CAATTGCGATG CTACCAAGCA	5820
TCAGACCACATC GACAACATTGAAACAGAAGA CTCTAATCTT CTCTCGCCTC TCCCCCGCTT	5880
TCCTTATCTT CGTACCGGTTACATGGTATT GATATCTGAG CTCCGCATCG GCCGCTGTCA	5940
TCAGATCGCC ATCTCGCGCC CGTGCCTCTG ACTTCTAAAGT CCAATTACTC TTCAACATCC	6000
CTACATGCTC TTTCTCCCTG TGCTCCCACC CCCTATTTTT GTTATTATCA AAAAAACTTC	6060
TTCTTAATTT CTTTGTGTTTT TAGCTCTTT TAAGTCACCT CTAACAAATGA AATTGTGTAG	6120
ATTCAAAAT AGAATTAATT CGTAATAAAA AGTCGAAAAA AATTGTGCTC CCTCCCCCCA	6180
TTAATAATAA TTCTATCCCA AAATCTACAC AATGTTCTGT GTACACTTCT TATGTTTTT	6240
TTACTTCTGA TAAATTTTT TTGAAACATC ATAGAAAAAA CGGCACACAA AATACCTTAT	6300
CATATGTTAC GTTTCAGTTT ATGACCGCAA TTTTATTC TTGCGACGTC TGGGCCTCTC	6360
ATGACGTCAA ATCATGCTCA TCGTAAAAA GTTTGGAGT ATTTTGAA TTTTCAATC	6420

153

AAGTGAAAGT TTATGAAATT AATTTCCCTG CTTTGCTTT TTGGGGGTTT CCCCTATTGT	6480
TTGTCAAGAG TTTCGAGGAC GGC GTTTTC TTGCTAAAAT CACAAGTATT GATGAGCACG	6540
ATGCAAGAAA GATCGGAAGA AGGTTGGGT TTGAGGCTCA GTGGAAGGTG AGTAGAAGTT	6600
GATAATTG AAGTGGAGTA GTGTCTATGG GGTTTTGCC TTAAATGACA GAATACATTC	6660
CCAATATACC AAACATAACT GTTTAAAATT AACATTTTT CTAAATTTA TATGATTCT	6720
TTTAAATTG CAAAAATTAC TTAAATTG ATTCGGCGC AAATGAGTGA CTTCATTTTC	6780
TGCATTATTG TGTTTCCGG CTATATTAAT AGGTATTGT TTGTGTTTT CTTTATTTA	6840
TGATTCGAAC TCCAATTGT AAATTTCGA ACATATTCC CTAAAGAAAA AATATGATTA	6900
ATCTGGAAA ATTGGAAAAT TATTTTCAA ATAAAAAACAA AAGAAAAAAA TGAAGAAAAA	6960
CCTATTAGTT TGGCCATAAA ACGCAAAAT GTCGAAAATG ACGTCACTCA TCTGCCGGG	7020
AAATCAAGAA TAATTGGCC TTTTTTATT TTTGGAAA TCGTAAAACA TTTAGAAAAA	7080
TTTTTAATA GTTATAGTGG GACTGTATTC TGTCATTTAG GGCAAAAGCC AGAGACGCTA	7140
CTCCACCGTT GGGGGATCCA CTAGTCGGCC GTACGGGCC TTTCGTCTCG CGCGTTCCG	7200
TGATGACGGT GAAAACCTCT GACACATGCA GCTCCGGAG ACGGTACAG CTTGTCTGTA	7260
AGCGGATGCC GGGAGCAGAC AAGCCGTCA GGGCGCGTCA GCGGGTGTG GCGGGTGTG	7320
GGGCTGGCTT AACTATGCGG CATCAGAGCA GATTGTACTG AGAGTGCACC ATATGCGGTG	7380
TGAAATACCG CACAGATGCG TAAGGAGAAA ATACCGCATC AGGCGGCCCT AAGGGCCTCG	7440
TGATACGCCT ATTTTATAG GTTAATGTCA TGATAATAAT GGTTTCTTAG ACGTCAGGTG	7500
GCACTTTCG GGGAAATGTG CGCGGAACCC CTATTTGTTT ATTTTCTAA ATACATTCAA	7560
ATATGTATCC GCTCATGAGA CAATAACCC GATAAAATGCT TCAATAATAT TGAAAAGGA	7620
AGAGTATGAG TATTCAACAT TTCCGTGTCG CCCTTATTCC CTTTTTGCG GCATTTGCC	7680
TTCCGTGTTT TGCTCACCCA GAAACGCTGG TGAAAGTAAA AGATGCTGAA GATCAGTTGG	7740
GTGCACGAGT GGGTTACATC GAACTGGATC TCAACAGCGG TAAGATCCTT GAGAGTTTC	7800
GCCCCGAAGA ACGTTTCCA ATGATGAGCA CTTTAAAGT TCTGCTATGT GGCGCGGTAT	7860
TATCCCGTAT TGACGCCGGG CAAGAGCAAC TCGGTGCGC CATAACTAT TCTCAGAATG	7920
ACTTGGTTGA GTACTCACCA GTCACAGAAA AGCATCTTAC GGATGGCATG ACAGTAAGAG	7980
AATTATGCAG TGCTGCCATA ACCATGAGTG ATAACACTGC GGCAACTTA CTTCTGACAA	8040
CGATCGGAGG ACCGAAGGAG CTAACCGCTT TTTGCACAA CATGGGGGAT CATGTAACTC	8100
GCCTTGATCG TTGGGAACCG GAGCTGAATG AAGCCATACC AAACGACGAG CGTGACACCA	8160
CGATGCCTGT AGCAATGGCA ACAACGTTGC GCAAACATT AACTGGCGAA CTACTTACTC	8220
TAGCTCCCG GCAACAAATTA ATAGACTGGA TGGAGGCGGA TAAAGTTGCA GGACCACTTC	8280
TGCGCTCGGC CCTTCCGGCT GGCTGGTTA TTGCTGATAA ATCTGGAGCC GGTGAGCGTG	8340

GGTCTCGCGG TATCATTGCA GCACTGGGC CAGATGGTAA GCCCTCCCGT ATCGTAGTTA	8400
TCTACACGAC GGGGAGTCAG GCAACTATGG ATGAACGAAA TAGACAGATC GCTGAGATAG	8460
GTGCCCTCACT GATTAAGCAT TGGTAACGTG CAGACCAAGT TTACTCATAT ATACTTTAGA	8520
TTGATTTAAA ACTTCATTT TAATTTAAA GGATCTAGGT GAAGATCCTT TTTGATAATC	8580
TCATGACCAA AATCCCTAA CGTGAGTTT CGTCCCACTG AGCGTCAGAC CCCGTAGAAA	8640
AGATCAAAGG ATCTTCTTGA GATCCTTTT TTCTGCGCGT AATCTGCTGC TTGCAAACAA	8700
AAAAAACACC GCTACCAGCG GTGGTTGTT TGCCGGATCA AGAGCTACCA ACTCTTTTC	8760
CGAAGGTAAC TGGCTTCAGC AGAGCGCAGA TACCAAATAC TGTCCCTCTA GTGTAGCCGT	8820
AGTTAGGCCA CCACTTCAAG AACTCTGTAG CACCGCCTAC ATACCTCGCT CTGCTAATCC	8880
TGTTACCACT GGCTGCTGCC AGTGGCGATA AGTCGTGTCT TACCGGGTTG GACTCAAGAC	8940
GATAGTTACC GGATAAGGCG CAGCGGTCGG GCTGAACGGG GGGTCGTGC ACACAGCCC	9000
GCTTGGAGCG AACGACCTAC ACCGAACCTGA GATAACCTACA GCGTGAGCAT TGAGAAAGCG	9060
CCACGCTTCC CGAAGGGAGA AAGGCGGACA GGTATCCGGT AAGCGGCAGG GTGCGAACAG	9120
GAGAGCGCAC GAGGGAGCTT CCAGGGGGAA ACGCCTGGTA TCTTTATAGT CCTGTCGGGT	9180
TTCGCCACCT CTGACTTGAG CGTCGATTT TGTGATGCTC GTCAGGGGG CGGAGCCTAT	9240
GGAAAAACGC CAGCAACCGCG GCCTTTTAC GGTTCCCTGGC CTTTGCTGG CCTTTGCTC	9300
ACATGTTCTT TCCTGCGTTA TCCCCTGATT CTGTGGATAA CCGTATTACC GCCTTGAGT	9360
GAGCTGATAC CGCTCGCCGC AGCCGAACGA CCGAGCGCAG CGAGTCAGTG AGCGAGGAAG	9420
CGGAAGAGCG CCCAATACGC AAACCGCCTC TCCCCGCGCG TTGGCCGATT CATTAAATGCA	9480
GCTGGCACGA CAGGTTTCCC GACTGGAAAG CGGGCAGTGA GCGCAACGCA ATTAATGTGA	9540
GTTAGCTCAC TCATTAGGCA CCCCAGGCTT TACACTTTAT GCTTCCGGCT CGTATGTTGT	9600
GTGGAATTGT GAGCGGATAA CAATTCACA CAGGAAACAG CT	9642

(2) INFORMATION FOR SEQ ID NO: 31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 110 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

Met Thr Thr Ser Asn Val Glu Leu Ile Pro Ile Tyr Thr Asp Trp Ala			
1	5	10	15
Asn Arg His Leu Ser Lys Gly Ser Leu Ser Lys Ser Ile Arg Asp Ile			
20	25	30	

155

Ser Asn Asp Phe Arg Asp Tyr Arg Leu Val Ser Gln Leu Ile Asn Val
35 40 45

Ile Val Pro Ile Asn Glu Phe Ser Pro Ala Phe Thr Lys Arg Leu Ala
50 55 60

Lys Ile Thr Ser Asn Leu Asp Gly Leu Glu Thr Cys Leu Asp Tyr Leu
65 70 75 80

Lys Asn Leu Gly Leu Asp Cys Ser Lys Leu Thr Lys Thr Asp Ile Asp
85 90 95

Ser Gly Asn Leu Gly Ala Val Leu Gln Leu Leu Phe Leu Leu
100 105 110

(2) INFORMATION FOR SEQ ID NO: 32:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

Lys Gln Lys Leu Arg Gln Leu Lys Lys Asp Gln Lys Lys Leu Glu Gln
1 5 10 15

Leu Pro Thr Ser
20

(2) INFORMATION FOR SEQ ID NO: 33:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 9 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

Asp Pro Pro Pro Ala Val Pro Pro Arg
1 5

(2) INFORMATION FOR SEQ ID NO: 34:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 9 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

Asp Val Pro Pro Leu Pro Pro Leu Lys
1 5

(2) INFORMATION FOR SEQ ID NO: 35:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 5 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:

Lys Lys Lys Asn Lys
1 5

(2) INFORMATION FOR SEQ ID NO: 36:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

Lys Thr Glu Asn Lys Gln Leu Lys Lys Glu Val Asp Lys Leu Thr Asn
1 5 10 15

Gly Pro Ala Thr
20

(2) INFORMATION FOR SEQ ID NO: 37:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 8 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

Gly Ala Thr Gly Ile Gly Lys Ser
1 5

(2) INFORMATION FOR SEQ ID NO: 38:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 58 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

Met Ser Glu Glu Pro Thr Pro Val Ser Gly Asn Asp Lys Gln Leu Leu
1 5 10 15

Asn Lys Ala Trp Glu Ile Thr Gln Lys Lys Thr Phe Thr Ala Trp Cys
20 25 30

Asn Ser His Leu Arg Lys Leu Gly Ser Ser Ile Glu Gln Ile Asp Thr
35 40 45

Asp Phe Thr Asp Gly Ile Lys Leu Ala Gln
50 55

(2) INFORMATION FOR SEQ ID NO: 39:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 44 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:

Met Thr Thr Ser Asn Val Glu Leu Ile Pro Ile Tyr Thr Asp Trp Ala
1 5 10 15

Asn Arg His Leu Ser Lys Gly Ser Leu Ser Lys Ser Ile Arg Asp Ile
20 25 30

Ser Asn Asp Phe Arg Asp Tyr Arg Leu Val Ser Gln
35 40

(2) INFORMATION FOR SEQ ID NO: 40:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 51 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

158

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:

Phe Glu Arg Ser Arg Ile Lys Ala Leu Ala Asp Glu Arg Glu Val Val
1 5 10 15

Gln Lys Lys Thr Phe Thr Lys Trp Val Asn Ser His Leu Ala Arg Val
20 25 30

Ser Cys Arg Ile Thr Asp Leu Tyr Lys Asp Leu Arg Asp Gly Arg Met
35 40 45

Leu Ile Lys
50

(2) INFORMATION FOR SEQ ID NO: 41:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 59 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:

Leu Leu Glu Val Ile Ser Asn Asp Pro Val Phe Lys Val Asn Lys Thr
1 5 10 15

Pro Lys Leu Arg Arg Ile His Asn Ile Gln Asn Val Gly Leu Cys Leu
20 25 30

Lys His Ile Glu Ser His Gly Val Lys Leu Val Gly Ile Gly Ala Glu
35 40 45

Glu Leu Val Asp Lys Asn Leu Lys Met Thr Leu
50 55

(2) INFORMATION FOR SEQ ID NO: 42:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 60 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:

Leu Ile Asn Val Ile Val Pro Ile Asn Glu Phe Ser Pro Ala Phe Thr
1 5 10 15

Lys Arg Leu Ala Lys Ile Thr Ser Asn Leu Asp Gly Leu Glu Thr Cys
20 25 30

Leu Asp Tyr Leu Lys Asn Leu Gly Leu Asp Cys Ser Lys Leu Thr Lys
35 40 45

Thr Asp Ile Asp Ser Gly Asn Leu Gly Ala Val Leu
50 55 60

SUBSTITUTE SHEET (RULE 26)

(2) INFORMATION FOR SEQ ID NO: 43:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 57 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

Leu	Leu	Glu	Val	Leu	Ser	Gly	Glu	Met	Leu	Pro	Lys	Pro	Thr	Lys	Gly
1				5					10					15	
Lys	Met	Arg	Ile	His	Cys	Leu	Glu	Asn	Val	Asp	Lys	Ala	Leu	Gln	Phe
	20						25						30		
Leu	Lys	Glu	Gln	Arg	Val	His	Leu	Glu	Asn	Met	Gly	Ser	His	Asp	Ile
	35					40						45			
Val	Asp	Gly	Asn	His	Arg	Leu	Val	Leu							
	50					55									

(2) INFORMATION FOR SEQ ID NO: 44:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 42 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

Gly	Met	Ile	Trp	Thr	Ile	Ile	Leu	Arg	Phe	Ala	Ile	Gln	Asp	Ile	Ser
1				5					10					15	
Ile	Glu	Glu	Leu	Ser	Ala	Lys	Glu	Ala	Leu	Leu	Leu	Trp	Cys	Gln	Arg
	20					25						30			
Lys	Thr	Glu	Gly	Tyr	Asp	Arg	Val	Lys	Val						
	35					40									

(2) INFORMATION FOR SEQ ID NO: 45:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 46 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: unknown

160

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:

Gln	Leu	Leu	Phe	Leu	Leu	Ser	Thr	Tyr	Lys	Gln	Lys	Leu	Arg	Gln	Leu
1				5					10				15		
Lys	Lys	Asp	Gln	Lys	Lys	Leu	Glu	Gln	Leu	Pro	Thr	Ser	Ile	Met	Pro
		20					25					30			
Pro	Ala	Val	Ser	Lys	Leu	Pro	Ser	Pro	Arg	Val	Ala	Thr	Ser		
			35				40					45			

(2) INFORMATION FOR SEQ ID NO: 46:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 48 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:

Gly	Leu	Ile	Trp	Thr	Ile	Ile	Leu	Arg	Phe	Gln	Ile	Gln	Asp	Ile	Val
1				5					10				15		
Val	Gln	Thr	Gln	Glu	Gly	Arg	Glu	Thr	Arg	Ser	Ala	Lys	Asp	Ala	Leu
		20					25					30			
Leu	Gln	Phe	Leu	Lys	Glu	Gln	Arg	Val	His	Leu	Glu	Asn	Met	Gly	Ser
			35				40					45			

(2) INFORMATION FOR SEQ ID NO: 47:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 100 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cosmid DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

GATCAGAAGA	AATTGGAGCA	ACTACCCACA	TCCATTATGC	CACCCGCGGT	TTCTAAAGTGA	60
GT	TTAATT	TT	GAGTTACGA	CTACAAAAAT	GTGTTCTTTA	100

161

(2) INFORMATION FOR SEQ ID NO: 48:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 91 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cosmid DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

CCGCCTTCTG ACTTCGTGAC GACAGTCTCG ACACGTGGGG TTGCAGGTAG GAGTGGATGA	60
GTCGAAACTG ATAAGATAGT CATTGAGAT C	91

CLAIMS:

1. A cDNA encoding an UNC-53 protein of C. elegans or a functional equivalent derivative fragment or
5 bioprecursor of said protein, which cDNA comprises at least from nucleotide position 431 to nucleotide position 4647 of the sequence shown in Figure 1.

2. A cDNA as claimed in claim 1 comprising at least
10 from nucleotide position 431 to the 3' end of the sequence shown in Figure 1.

3. A cDNA as claimed in Claim 1 comprising at least
from nucleotide position 64 to nucleotide position
15 4647 of the sequence as shown in Figure 1.

4. A cDNA as claimed in claim 3 comprising at least from nucleotide position 64 to the 3' end of the sequence shown in Figure 1.

20

5. A cDNA as claimed in Claims 1 to 4 comprising the nucleotide sequence shown in Figure 1.

25

6. A cDNA encoding an UNC-53 protein of C. elegans or a functional equivalent, derivative, fragment or bioprecursor of said protein, which cDNA comprises at least from nucleotide position 431 to nucleotide position 4812 of the 7A variant of the sequence shown in Figure 2.

30

7. A cDNA as claimed in claim 6 comprising at least

from nucleotide position 431 to the 3' end of the 7A variant of the sequences shown in figure 2.

8. A cDNA as claimed in Claim 6 comprising at least
5 from nucleotide position 64 to nucleotide position
4812 of the sequence shown in Figure 2.

9. A cDNA as claimed in claim 8 comprising at least
from nucleotide position 64 to the 3' end of the 7A
10 variant of the sequence shown in figure 2.

10. A cDNA as claimed in any of claims 6 to 9
comprising the nucleotide sequence of the 7A variant
of the sequence shown in Figure 2.

15

11. A DNA expression vector which comprises a cDNA
as claimed in any one of Claims 1 to 10.

20

12. A host cell transformed or transfected with the
vector of Claim 11.

13. A host cell as claimed in Claim 12 which is a
bacterial, an animal, a plant or an insect cell.

25

14.. A transgenic cell comprising a transgene capable
of expressing UNC-53 protein of C. elegans or a
functional equivalent, derivative, fragment or
bioprecursor of said protein.

30

15. A transgenic cell as claimed in Claim 14 which

cell is a C. elegans cell, an N4 neuroblastoma cell or an MCF-7 breast carcinoma cell.

16. A transgenic organism comprising a transgene
5 capable of expressing UNC-53 protein of C. elegans or a functional equivalent, derivative, fragment or bioprecursor of said protein.

17. A transgenic organism as claimed in Claim 16
10 wherein said organism is C. elegans.

18. A transgenic organism as claimed in Claim 16
wherein said organism is an insect, a non-human mammal or a plant.

15

19. A mutant of C. elegans which comprises an induced mutation in the wild-type unc-53 gene, which mutation affects the regulation of cell motility or the shape or direction of cell migration.

20

20. An UNC-53 protein encoded by the cDNA of Claim 1 and which protein has the amino acid sequence shown in Figure 4 from amino acid position 135 to amino acid position 1528.

25

21. An UNC-53 protein encoded by the cDNA sequence of any of Claims 2 to 5 and which protein has the amino acid sequence shown in Figure 4.

30

22. An UNC-53 protein encoded by the cDNA sequence of Claim 6 and which protein has the amino acid

sequence shown in Figure 6 from amino acid position 135 to amino acid position 1583.

23. An UNC-53 protein encoded by the cDNA sequence
5 according to any of Claims 7 to 10 and which protein
has the amino acid sequence shown in Figure 6.

24. An UNC-53 protein of C. elegans, or a functional
equivalent, derivative, fragment or bioprecursor of
10 said protein, for use as a medicament to promote
neuronal regeneration, revascularisation or wound
healing, or for treatment of chronic neuro-
degenerative diseases or acute traumatic injuries.

15 25. An UNC-53 protein as claimed in any one of
Claims 20 to 23 for use as a medicament to promote
neuronal regeneration, revascularisation or wound
healing, or for treatment of chronic neuro-
degenerative diseases or acute traumatic injuries.

20
26. Use of an UNC-53 protein of C. elegans, or a
functional equivalent, derivative, fragment or
bioprecursor of said protein in the manufacture of a
medicament for promoting neuronal regeneration,
25 revascularisation or wound healing, or for treatment
of chronic neuro-degenerative diseases or acute
traumatic injuries.

30 27. Use of an UNC-53 protein as claimed in any one
of Claims 20 to 23 in the manufacture of a medicament
for promoting neuronal regeneration, revascularisation
or wound healing, or for treatment of chronic neuro-
degenerative or acute traumatic injuries.

28. A pharmaceutical composition comprising an UNC-53 protein of C. elegans, a functional equivalent, derivative, bioprecursor or fragment of said protein and an acceptable carrier, diluent or excipient
5 therefor.

29. A pharmaceutical composition as claimed in Claim 28 which comprises an UNC-53 protein as claimed in any one of Claims 20 to 23.
10

30. A nucleic acid sequence encoding an UNC-53 protein of C. elegans or a functional fragment, equivalent, derivative or bioprecursor of said protein, for use as a medicament to promote neuronal regeneration, vascularisation or wound healing, or for treatment of chronic neuro-degenerative diseases or acute traumatic injuries.
15

31. A nucleic acid sequence for use as claimed in Claim 27 wherein said sequence is a cDNA sequence as claimed in any one of Claims 1 to 10 or a functional fragment of said nucleic acid sequence.
20

32. Use of a nucleic acid sequence encoding and UNC-53 protein of C. elegans or a functional equivalent fragment, derivative or bioprecursor of said protein, in the manufacture of a medicament to promote neuronal regeneration, vascularization or wound healing, or for treatment of chronic neuro-degenerative diseases or acute traumatic injuries.
25
30

33. Use of a nucleic acid sequence as claimed in Claim 32 wherein said sequence is a cDNA sequence as

claimed in any one of Claims 1 to 10 or a functional fragment of said nucleic acid sequence.

34. A pharmaceutical composition comprising a
5 nucleic acid sequence encoding an UNC-53 protein of C. elegans or a functional equivalent, derivative fragment or bioprecursor of said protein and an acceptable carrier, diluent, or excipient therefor.

10 35. A pharmaceutical composition as claimed in Claim 34 wherein said nucleic acid sequence is a cDNA sequence as claimed in any one of Claims 1 to 10.

15 36. A method of determining whether a compound is an inhibitor or an enhancer of the regulation of cell shape or motility or the direction of cell migration, which method comprises contacting said compound with a transgenic cell as claimed in Claims 14 or 15 and screening for a phenotypic change in said cell.

20 37. A method as claimed in Claim 36 wherein said compound is an inhibitor or an enhancer of a protein of the signal transduction pathway of said transgenic cell of which pathway UNC-53 protein or a functional equivalent, fragment or bioprecursor thereof is a component or said compound is an inhibitor or an enhancer of a parallel or redundant signal transduction pathway in said cell.

30 38. A method as claimed in Claim 36 or 37 wherein said protein is UNC-53 protein or a functional equivalent, fragment, derivative or bioprecursor thereof.

39. A method as claimed in any of Claims 36 to 38 wherein said phenotypic change to be screened is a change in cell shape or a change in cell motility.
- 5 40. A method as claimed in any of claims 36 to 38 wherein said phenotypic change to be screened is a change in filopodia outgrowth, ruffling behaviour, cell adhesion or the length of neurite growth.
- 10 41. A method as claimed in any of Claims 36 to 40 wherein said transgenic cell is an N4 neuroblastoma cell and the phenotypic change to be screened is the length of neurite growth.
- 15 42. A method as claimed in any of Claims 36 to 40 wherein said transgenic cell is an MCF-7 breast carcinoma cell and the phenotypic change to be screened is the extent of phagokinesis.
- 20 43. A method of determining whether a compound is an inhibitor or an enhancer of the regulation of cell shape or motility or of the direction of cell migration which method comprises administering said compound to a transgenic organism as claimed in any one of Claims 16 to 20, or a mutant organism as claimed in Claim 19, and screening for a phenotypic change in said organism.
- 25 44. A method as claimed in Claim 43 wherein said compound is an inhibitor or enhancer of a protein of the signal transduction pathway of said transgenic or mutant organisms, of which pathway UNC-53 protein or a functional equivalent, derivative or bioprecursor

thereof is a component or said compound is an inhibitor or an enhancer of a parallel or redundant signal transduction pathway in said cell.

5 45. A method as claimed in Claim 44 wherein said protein of the signal transduction pathway is UNC-53 protein itself or a functional equivalent, fragment, derivative or bioprecursor of said protein.

10 46. A compound which is identifiable by the method according to any one of Claims 36 to 45 as an enhancer of the regulation of cell shape or motility or the direction of cell migration for use as a medicament for promoting neuronal regeneration, revascularisation or wound healing, or for treatment of chronic neuro-degenerative diseases or acute traumatic injuries.

20 47. Use of a compound identifiable by the method of any one of Claims 36 to 45 as an enhancer of the regulation of cell shape or motility or the direction of cell migration in C. elegans in the manufacture of a medicament for promoting neuronal regeneration, revascularisation or wound healing, or for treatment of chronic neuro-degenerative diseases or acute traumatic injuries.

25 48. A pharmaceutical composition comprising the compound as claimed in Claim 46 and an acceptable carrier, diluent or excipient therefor.

30 49. A compound which is identifiable by the method according to any one of Claims 36 to 45 as an inhibitor of the regulation of cell motility or shape

or the direction of cell migration of C. elegans for use as a medicament for alleviating the spread of disease inducing cells or metastasis.

- 5 50. Use of a compound identifiable by the method according to any one of Claims 36 to 45 in the manufacture of a medicament for alleviating the spread of disease inducing cells or metastasis.
- 10 51. A pharmaceutical composition comprising the compound as claimed in Claim 49 and an acceptable carrier diluent or excipient therefor.
- 15 52. A transgenic cell which has been constructed to comprise a promoter sequence of an unc-53 gene of C. elegans fused to a nucleic acid sequence encoding a reporter molecule.
- 20 53. A transgenic cell as claimed in Claim 52 wherein said reporter molecule is green fluorescent protein (GFP).
- 25 54. A method of determining whether a compound is an inhibitor or an enhancer of transcription of an unc-53 gene in C. elegans or a functional fragment of said gene, which method comprises the steps of (a) contacting said compound with a transgenic cell according to Claim 52 and (b) monitoring of said reporter molecule and comparing the results obtained from said monitoring step with a control comprising a transgenic cell as claimed in Claim 48, which cell has not been contacted with said compound.

- 171 -

55. A method as claimed in Claim 54 wherein said reporter molecule detected is mRNA.

56. A method as claimed in Claim 54 wherein said reporter molecule detected is green fluorescent protein (GFP).

57. A compound which is identifiable by the method according to any one of Claims 54 to 56, as an enhancer of transcription of an unc-53 gene of C. elegans or a functional fragment of said gene for use in promoting neuronal regeneration, revascularisation or wound healing, or for treatment of chronic neuro-degenerative diseases or acute traumatic injuries.

58. Use of a compound which is identifiable by the method of any one of Claims 54 to 56 as an enhancer of transcription of an unc-53 gene of C. elegans or a functional fragment of said gene in the manufacture of a medicament for promoting neuronal regeneration, revascularisation or wound healing, or for treatment of chronic neuro-degenerative diseases or acute traumatic injuries.

25

59. A pharmaceutical composition which comprises the compound of Claim 57 and an acceptable carrier, diluent or excipient therefor.

30 60. A compound which is identifiable by the method of any one of Claims 54 to 56 as an inhibitor of transcription of an unc-53 gene of C. elegans or a functional fragment of said gene for use in

- 172 -

alleviating the spread of disease inducing cells or metastasis.

61. Use of a compound which is identifiable by the
5 method of any one of Claims 54 to 56 as an inhibitor
of transcription of an unc-53 gene of C. elegans or a
functional fragment of said gene in the manufacture of
a medicament for alleviating spread of disease
inducing cells or metastasis.

10

62. A pharmaceutical composition which comprises the
compound of Claim 60 and an acceptable carrier,
diluent or excipient therefor.

15 63. A kit for determining whether a compound is an
enhancer or an inhibitor of the regulation of cell
motility or shape or the direction of cell migration
which kit comprises at least a plurality of transgenic
cells as claimed in any one of Claims 14 or 15 and a
20 plurality of wild-type cells of the same cell or cell-
line.

25 64. A kit for determining whether a compound is an
inhibitor or an enhancer of transcription of an unc-53
gene of C. elegans or a functional fragment of said
gene which kit comprises at least a plurality of
transgenic cells as claimed in Claims 52 or 53 and
means for monitoring the reporter molecule.

30 65. A kit for determining whether a compound is an
enhancer or an inhibitor of the activity of UNC-53
protein or a functional equivalent, derivative,
fragment or bioprecursor of said protein, which kit

comprises at least, one mutant organism of C. elegans as claimed in claim 10 or a transgenic organism as claimed in any of claims 16 to 18 and a wild type organism of C. elegans.

5

66. An oligonucleotide probe which comprises the carboxy-terminal 1.5 kb of the coding nucleic acid sequence shown in Figure 1 or a fragment thereof comprising between 18 and 24 base pairs.

10

67. An oligonucleotide probe comprising a nucleic acid sequence encoding the amino acid sequence as numbered 1 to 110, 114 to 133, 487 to 495, 537 to 545, 1032 to 1037, 1097 to 1116 or 1300 to 1307 shown in Figure 3 or a fragment thereof.

15 68. A probe as claimed in Claim 66 or 67 which is labelled for detection.

20 69. A method of identifying homologues of a C. elegans unc-53 gene or a functional fragment thereof which method comprises hybridizing to a C. elegans DNA library an oligonucleotide probe as claimed in any one of Claims 66 to 68 under appropriate conditions of stringency to identify genes having statistically significant homology with the cDNA of any one of Claims 1 to 10.

25 70. A method of identifying a protein which is active in the signal transduction pathway of a cell of which an UNC-53 protein or a functional equivalent, fragment or bioprecursor of said UNC-53 protein is a component, which method comprises:

- 174 -

component, which method comprises:

- (a) contacting an extract of said cell with an antibody to the UNC-53 protein of C.elegans or a functional equivalent, fragment, derivative or bioprecursor of said protein,
5. (b) identifying the antibody/UNC-53 complex, and
- 10 (c) analysing the complex to identify any protein bound to the UNC-53 protein other than the antibody.

71. A method of identifying a further protein which is active in the signal transduction pathway of a cell of which an UNC-53 protein or a functional equivalent, fragment or bioprecursor of said UNC-53 protein is a component which method comprises:

- (a) forming an antibody to the identified protein bound to the UNC-53 protein in Claim 65,
- 20 (b) contacting a cell extract with said antibody and identifying the antibody/protein complex,
- (c) analysing the complex to identify any further protein bound to the first protein other than the antibody, and
- 25 (d) optionally repeating steps (a) to (c) to identify further proteins in said pathway.

72. A method of identifying a protein which is active in the signal transduction pathway of a cell of which an UNC-53 protein or a functional equivalent, fragment or bioprecursor of said UNC-53 protein is a component, which method comprises

- 175 -

- (a) contacting an extract of said cell with UNC-53 protein of C. elegans or a functional equivalent, derivative or bioprecursor of said UNC-53 protein
- 5 (b) identifying UNC-53 protein/protein complex formed and
- (c) analysing the complex to identify any protein bound to the UNC-53 protein other than another UNC-53 protein.

10

73. A method according to claim 72 which further comprises contacting a cell extract with any protein identified from step (c) not being UNC-53 protein and repeating steps (b) and (c) so as to identify any further protein involved in the signal transduction pathway of said cell.

20 74. A method of identifying a protein involved in the signal transduction pathway of C. elegans which method comprises:

25 (a) constructing at least two nucleotide vectors, the first of which comprises a nucleotide segment encoding for a DNA binding domain of GAL4 protein fused to a sequence encoding UNC-53 protein of C. elegans or a functional equivalent, derivative, fragment or bioprecursor thereof, the second vector comprising a nucleotide sequence encoding a protein binding domain of GAL4 protein fused to a nucleotide sequence encoding a protein to be tested,

30 (b) co-transforming each of said vectors into a yeast cell being deficient for transcription of genes encoding galactose metabolites, wherein

- 176 -

interaction between said test protein and said UNC-53 protein leads to transcription of said galactose metabolite genes.

5 75. A protein identified by the method, of any one of claims 70 to 74 for use as a medicament to promote neuronal regeneration, revascularisation or wound healing, or for treatment of chronic neurodegenerative diseases or acute traumatic injuries.

10

76. Use of a protein identified by the methods of any one of claims 70 to 74 in the manufacture of a medicament for promoting neuronal regeneration, revascularisation or wound healing, or for treatment 15 of chronic neurodegenerative diseases or acute traumatic injuries.

20 77. A pharmaceutical composition comprising a protein identified by the methods of any one of Claims 70 to 74 and an acceptable carrier diluent, or excipient therefor.

25 78. A process for producing an UNC-53 protein of C. elegans or a functional equivalent fragment, derivative or bioprecursor of said UNC-53 protein which process comprises culturing the transfected or transformed cells of Claim 12 or Claim 13 and recovering the expressed UNC-53 protein.

30 79. A process for producing an UNC-53 protein of C. elegans or a functional equivalent fragment, derivative or bioprecursor of said protein which process comprises culturing an insect cell transfected

with a recombinant Baculovirus vector, said vector comprising a DNA insert encoding said UNC-53 protein or a functional equivalent, fragment or bioprecursor thereof, downstream of the Baculovirus polyhedrin promoter, and recovering the expressed UNC-53 protein.

5 80. A hybridoma cell line deposited under the LMBP Accession No. 1383CB.

10 81. Monoclonal antibody 16-48-2 obtainable from the hybridoma deposited under the LMBP Accession No. 1383CB.

15 82. Plasmid pTB54 deposited under the LMBP Accession No. 3296.

83. Plasmid pBT112 deposited under the Accession No. 3295.

20 84. Plasmid pTB72 deposited under the LMBP Accession No. 3486.

25 85. Transgenic cell-line of C.elegans designated TB4EX25 and deposited under the LMBP Accession No. 1384CB.

86. Transgenic cell-line of C. elegans designated TBAIn76 and deposited under the Accession No. 1385CB.

30 87. A transgenic cell-line of MCF-7 breast carcinoma

- 178 -

cells deposited under the LMBP Accession No. 1550CB.

88. A transgenic cell-line of N4 neuroblastoma
cells deposited under LMBP Accession No. 1549CB.

1/99

FIG. 1.

TB6 & TB3

BSP1286

HGIAI

GGTTTAATTACCCAAGTTGAGACATCAATTCCATCGAACGAAATGTTGGTGCCTCGA AT

10	20	30	40	50	60
----	----	----	----	----	----

OUT OF FRAME ATG

TTHIIII

.AHAI

.. AATII

BANI

AAAATGACGACGTCAAATGAGAATTGATAACCAACTACACGGATTGGGCCATCGGC AC

70	80	90	100	110	120
----	----	----	-----	-----	-----

M	T	T	S	N	V	E	L	I	P	I	Y	T	D	W	A	N	R	H
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

ATG1

ASUII

BBVI

NRUI

CTTCGAAGGGCAGCTTATCAAAGTCGATTAGGGATATTCCATGATTTCGCGACT AT

130	140	150	160	170	180
-----	-----	-----	-----	-----	-----

L	S	K	G	S	L	S	K	S	I	R	D	I	S	N	D	F	R	D	Y
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

TB1B

I

ECORI

BSMI

CGACTGGTTCTCAGCTTATTAATGTGATCGTCCGATCAACGAAATTCTCGCCTGCAT TC

190	200	210	220	230	240
-----	-----	-----	-----	-----	-----

R	L	V	S	Q	L	I	N	V	I	V	P	I	N	E	F	S	P	A	F
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

TB16

IBSTNI

AFLIII

.

FOKI

ACGAAACGTTGGCAAAAATCACATCGAACCTGGATGGCCTCGAAACGTGTCGACT AC

250	260	270	280	290	300
-----	-----	-----	-----	-----	-----

T	K	R	L	A	K	I	T	S	N	L	D	G	L	E	T	C	L	D	Y
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

TB1

HPHI

IECORV

NSPBII

CTGAAAAATCTGGTCTCGACTGCTCGAAACTCACCAAAACCGATATCGACAGCGGAA AC

310	320	330	340	350	360
-----	-----	-----	-----	-----	-----

L	K	N	L	G	L	D	C	S	K	L	T	K	T	D	I	D	S	G	N
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

BBVI

MBOII

.

NSPBII

HINDIII

TTGGGTGCAGTTCTCCAGCTGCTCTTCTGCTCTCACCTACAAGCAGAAGCTTCGGC AA

370	380	390	400	410	420
-----	-----	-----	-----	-----	-----

L	G	A	V	L	Q	L	F	L	L	S	T	Y	K	Q	K	L	R	Q
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

FOKI

MBOII

NSPBII

.

SACII

CTGAAAAAGATCAGAAGAAATTGGAGCAACTACCCACATCCATTATGCCACCGCGG TT

430	440	450	460	470	480
-----	-----	-----	-----	-----	-----

L	K	K	D	Q	K	K	L	E	Q	L	P	T	S	I	M	P	P	A	V
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

ATG 2

AFLIII

TCTAAATTACCCCGCCACGTGTCGCCACGTCAGCAACCGCTTCAGCAACTAACCAA AT

490	500	510	520	530	540
-----	-----	-----	-----	-----	-----

S	K	L	P	S	P	R	V	A	T	S	A	T	A	S	A	T	N	P	N
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

FOKI

HINCII BSTNI

TCCAACTTCCACAAATGTCAACATCCAGGCTTCAGACTCCACAGTCAGAACATATCGA AA

550	560	570	580	590	600
-----	-----	-----	-----	-----	-----

S	N	F	P	Q	M	S	T	S	R	L	Q	T	P	Q	S	R	I	S	K
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

ATG3

SUBSTITUTE SHEET (RULE 26)

FIG. 1 CONTINUED.

2/99

TB6B AHAI
ATTGATTCAAGATTGGTATCAAGCCAAAGACGCTGGACTTAAACCACCCCAT CA
610 620 630 640 650 660
I D S S K I G I K P K T S G L K P P S S

TCACCACTTCATCAAATAATACAAATTCAATTCCGTCCGTCGAGCCGTTCGAGTGGCA AT
670 680 690 700 710 720
S T T S S N N T N S F R P S S R S S G N

ECORV MBOII
AATAATGTTGGCTCGACGATATCCACATCTGCGAAGAGCTTAGAACATCATCACGT AC
730 740 750 760 770 780
N N V G S T I S T S A K S L E S S S T Y

ASUII XBAI
AGCTCTATTCGAATCTAAACCGACCTACCTCCCACCTCCAAAAACCTCTAGACCAAC AA
790 800 810 820 830 840
S S I S N L N R P T S Q L Q K P S R P Q

NHEI
ACCCAGCTAGTTCGTGTGCTACAACACTACAAAATCGGAAGCTCAAAGCTAGCCGCTC CG
850 860 870 880 890 900
T Q L V R V A T T T K I G S S S K L A A P

BSP1286
HGIAI MBOII BAN
AAAGCCGTGAGCACCCAAAAACTTGCTTCTGTGAAGACTATTGGAGCAAAACAAGAGC CC
910 920 930 940 950 960
K A V S T P K L A S V K T I G A K Q E P

NSPBI BSMI MBOII
GATAACAGCGGTGGTGGTGGTGGGAATGCTGAAATTAAAGTTATTCACTAGTAGCAAAA AC
970 980 990 1000 1010 1020
D N S G G G G G M L K L K L F S S K N
ATG4

BANI
CCATCTTCCTCATCGAATAGCCCACAAACCTACGAGAAAGGCGGCGGCGGTGCCTCAAC AA
1030 1040 1050 1060 1070 1080
P S S S S N S P Q P T R K A A A V P Q Q

BBVI
CAAACTTTCGAAAATCGCTGCCCAAGTGAAGAAAGTGGCCTGAAGCCGCGACCAGTA AG
1090 1100 1110 1120 1130 1140
Q T L S K I A A P V K S G L K P P T S K

TB22
BXTXI HINDIII |
CTGGGAAGTGCCACGTCTATGTCGAAGCTTGACGCCAAAGTTCCCTACCGTAAAA CG
1150 1160 1170 1180 1190 1200
L G S A T S M S K L C T P K V S Y R K T

AHAI HGAI SFANI
GACGCCCAATCATATCTCAACAAAGACTCGAACAGATGCTCAAAGAGCAGTGAAGAAG AG
1210 1220 1230 1240 1250 1260
D A P I I S Q Q D S K R C S K S S E E E

*FIG. 1 continued.**3/99*

MBOII
·BSPMII
· MBOII
TCCGGATAACGCTGGATTCAACAGCACGTGCCAACGTCATCATCGACGGAAGGTTCCC TA
1270 1280 1290 1300 1310 1320
S G Y A G F N S T S P T S S S T E G S L

BSMI
SPHI
· MBOII
· NSII
AGCATGCATTCCACATCTTCCAAGAGTCAACGTCAGACGAAAAGTCTCCGTACAG AC
1330 1340 1350 1360 1370 1380
S M H S T S S K S S T S D E K S P S S D
ATG5

GATCTTAACGCCTCCATCGTGACAGCTATCAGACAGCCGATAGCCGAAACAC CG
1390 1400 1410 1420 1430 1440
D L T L N A S I V T A I R Q P I A A T P

SSPI
GTTTCTCCAAATATTCAACAAGCCTGTTGAGGAAAAACCAACACTGGCAGTGAAAG GA
1450 1460 1470 1480 1490 1500
V S P N I I N K P V E E K P T L A V K G

BINI XHOII NSPBII
PVUII
GTGAAAAGCACAGCGAAAAAAAGATCCACCTCCAGCTGTTCCGCCACGTGACACCCAGC CA
1510 1520 1530 1540 1550 1560
V K S T A K K D P P P A V P P R D T Q P

HINCII ECORV
ACAATCGGAGTTGTTAGTCCAATTATGGCACATAAGAAGTTGACAAATGACCCGTGA TA
1570 1580 1590 1600 1610 1620
T I G V V S P I M A H K K L T N D P V I

SFANI
TCTGAAAAACCAGAACCTGAAAAGCTCCAATCAATGAGCATCGACACGACGGACGTTCA
1630 1640 1650 1660 1670 1680
S E K P E P E K L Q S M S I D T T D V P

CCGCTTCCACCTCTAAAATCAGTTGTTCCACTTAAATGACTTCAATCCGACAAACAC CA
1690 1700 1710 1720 1730 1740
P L P P L K S V V P L K M T S I R Q P P

MBOII
ACGTACGATGTTCTTCTAAAACAAGGAAAAATCACATCGCTGTCAGTCGTTGGAT AT
1750 1760 1770 1780 1790 1800
T Y D V L L K Q G K I T S P V K S F G Y

HGAI HGAI
· MBOII
GAGCAGTCGTCCCGCTCTGAAGACTCCATTGTTGCTCATGCGTCGGCTCAGGTGACTC CG
1810 1820 1830 1840 1850 1860
E Q S S A S E D S I V A H A S A Q V T P

HPHI FOKI
CCGACAAAAAACTTCTGGTAATCATTGCTGGAGAGAAGGGATGGGAAAGAATAAGACAT CA
1870 1880 1890 1900 1910 1920
P T K T S G N H S L E R R M G K N K T S

NSPBII AHAI HGAI
GAATCCAGCGGCTACACCTCTGACGCCGGTGTGCGATGTGCGCCAAAATGAGGGAGA AG

FIG. 1 continued. 4/99

NSPBII AHAI HGAI
 GAATCCAGCGGCTACACCTCTGACGCCGTGTCGATGTGCGCCAAAATGAGGGAGAAG
 1930 1940 1950 1960 1970 1980
 E S S G Y T S D A G V A M C A K M R E K

BSP1286
 HGIAI ASUII
 CTGAAAGAACGATGACATGACTCGTGGCACAGAACGGCTATCCTGACAACCTCGAA
 1990 2000 2010 2020 2030 2040
 L K E Y D D M T R R A Q N G Y P D N F E

MBOII BANII
 . BSP1286
 . HGIAI
 . SACI
 GACAGTTCCCTGTCGTCGAAATATCCGATAACAAACGAGCTCGACGACATATCCACG
 2050 2060 2070 2080 2090 2100
 D S S S L S S G I S D N N E L D D I S T

BSPMII FOKI
 ACCI
 GACGATTGTCGGAGTAGACATGGCAACAGTCGCCCTCAAACATAGCGACTATTCCCAC
 2110 2120 2130 2140 2150 2160
 D D L S G V D M A T V A S K H S D Y S H

MBOII MBOII AVAI AVAI

 TTTGTTGCCATCCCACGTCTTCTTCTCAAAGCCCCAGTCCCCAGTCGGTCCCTCCACA
 2170 2180 2190 2200 2210 2220
 F V R B P T S S S S K P R V P S R S S T

AVAI
 XHOI
 TCAGTCGATTCTCGATCTCGAGCAGAACAGGAGAACATGTGTACAAACTCTGTCCCAGTGC
 2230 2240 2250 2260 2270 2280
 S V D S R S R A E Q E N V Y K L L S Q C

BBVI BGLI
 . . BANI
 . . AHAI
 . . NARI
 HAEII
 NSPBII BINI XHOII

 CGAACGAGCCAACGTGGCGCCGCTGCCACCTCAACCTTCGGACAAACATTGCTAAGATCC
 2290 2300 2310 2320 2330 2340
 R T S Q R G A A A T S T F G Q B S L R S

AVAI
 .NCII
 ..NCII
 ..SMAI
 ...
 CCGGGATACTCATCCTATTCTCCACACTTATCAGTGTCAAGCTGATAAGGACACAATGTCT
 2350 2360 2370 2380 2390 2400
 P G Y S S Y S P B L S V S A D K D T M S

*5/99**FIG. 1 CONTINUED.*

SPEI

- . SALI
- . ACCI
- . HINCII
- . MBOII

ATGCACTCACAGACTAGTCGACGCCCTTCTTCACAAAAACCAAGCTATTCAAGGCCAAT TT
 2410 2420 2430 2440 2450 2460
 M H S Q T S R R P S S Q K P S Y S G Q F

FOKI

BSP1286

HGIAI

CATTCACTTGATCGTAAATGCCACCTTCAGAGTTCACATCCACCGAGCACAGAAATGG CG
 2470 2480 2490 2500 2510 2520
 H S L D R K C H L Q E F T S T E H R M A

AVAI

- . BANII
- . BSP1286 BANI

- MBOII BINI BAMHI
- XHOII

GCTCTCTTGAGCCCGAGACGGGTGCCGAACTCGATGTCGAAATATGATTCTCAGGAT CC
 2530 2540 2550 2560 2570 2580
 A L L S P R R V P N S M S K Y D S S G S

BINI AVAI

TACTCGCGCGTCCCAGGGTGGAGCTACTGGTATCTATGGAGAGACGTTCCAAC TG
 2590 2600 2610 2620 2630 2640
 Y S A R S R G G S S T G I Y G E T F Q L

BINI BAMHI

XHOII

CACAGACTATCCGATGAAAAATCCCCCGCACATTCTGCCAAAAGTGAGATGGGATCCC AA
 2650 2660 2670 2680 2690 2700
 H R L S D E K S P A H S A K S E M G S Q

BINI NHEI

NDEI

XHOII BINI

CTATCACTGGCTAGCACGACAGCATATGGATCTCTCAATGAGAAGTACGAACATGCTA TT
 2710 2720 2730 2740 2750 2760
 L S L A S T T A Y G S L N E K Y E H A I

SALI

.ACCI

..HINCII

CGGGACATGGCACGTGACTGGAGTGTACAAGAACACTGTCGACTCACTAACCAAGA AA
 2770 2780 2790 2800 2810 2820
 R D M A R D L E C Y K N T V D S L T K K

HINDIII

CAGGAGAACTATGGAGCATTGTTGATCTTTTGAGCAAAGCTAGAAAACACTCACTC AA
 2830 2840 2850 2860 2870 2880
 Q E N Y G A L F D L F E Q K L R K L T Q

BINI

. CLAI

MBOII

CACATTGATCGATCCAACCTGAGGCCCTGAAGAGGCAATACGATTCAAGGCAGGACATTG CT
 2890 2900 2910 2920 2930 2940
 H I D R S N L K P E E A I R F R Q D I A

6/99

FIG. 1 CONTINUED.

FOKI
 SFANI HAEII
 CATTGAGGGATATTAGCAATCATCTTCATCCAACCTCAGCTCATGCTAACGAAGGCG CT
 2950 2960 2970 2980 2990 3000
 H L R D I S N H L A S N S A H A N E G A

MBOII HPHI
 HINCII FOKI
 SFANI CLAI CLAI
 GGTGAGCTTCTCGTCAACCCTCTCTGGAAATCAGTTGCATCCCATCGATCATCGATGT CA
 3010 3020 3030 3040 3050 3060
 G E L L R Q P S L E S V A S H R S S M S

ECOB	BBVI	MBOII
.	.	BANII
.	.	BSP1286
.	.	HGIAI
.	.	SACI

TCGTCGTCGAAAAGCAGCAAGCAGGAGAAGATCAGCTTGAGCTCGTTGGCAAGAACAG
 3070 3080 3090 3100 3110 3120
 S S S K S S K Q E K I S L S S F G K N K

BINI BAMHI
 XHOII
 MBOII
 BINI HPHI MBOII
 AAGAGCTGGATCCGCTCCTCACTCTCCAAGTTACCAAGAAGAACAAAGAAACTACG AC
 3130 3140 3150 3160 3170 3180
 K S W I R S S L S K F T K K K N K N Y D

NDEI XHOII
 BSPMII BINI
 GAAGCACATATGCCATCAATTTCGGATCTCAAGGAACCTTACGACAACATTGATGTGA TT
 3190 3200 3210 3220 3230 3240
 E A H M P S I S G S Q G T L D N I D V I

BANII
 BSP1286
 HGIAI
 SACI ECOK APALI
 BSP1286
 HGIAI
 GAGTTGAGCAAGAGCTAAAGAACCGCATAGTGCACCTTACGAAAGTCCGCCTTGACA AT
 3250 3260 3270 3280 3290 3300
 E L K Q E L K E R D S A L Y E V R L D N

BINI
 BSP1286
 CTGGATCGTCCCCGGAAGTGTGATGTTCTGAGGGAGACAGTGAACAAAGTTGAAAACCG AG
 3310 3320 3330 3340 3350 3360
 L D R A R E V D V L R E T V N K L K T E

HPHI AVAI MBOII
 AACAAAGCAATTAAAGAAAGAAGTGGACAAACTCACCAACGGTCCAGCCACTCGTGCCTT CT
 3370 3380 3390 3400 3410 3420
 N K Q L K K E V D K L T N G P A T R A S

7/99

FIG. 1 CONTINUED.

SFANI

TCCCGGCCCTCAATTCCAGTTATCTACGACGATGAGCATGTCTATGATGCAGCGTGTA GC
 3430 3440 3450 3460 3470 3480
 S R A S I P V I Y D D E H V Y D A A C S

BBVI MBOII ASUII
 . . BINI
 . . BBVI
 AGTACATCAGCTAGTCATCTCGAAACGATCCTCTGGCTGCAAACTCATCAAGGTTA CT
 3490 3500 3510 3520 3530 3540
 S T S A S Q S S K R S S G C N S I K V T

FVUI
 . HINCII
 . HPAI
 . NCII
 GTAAACGTGGACATCGCTGGAGAAATCAGTTGATCGTTAACCGGACAAAGAGATAA TC
 3550 3560 3570 3580 3590 3600
 V N V D I A G E I S S I V N P D K E I I

ECORV HINCII
 GTAGGATATCTGCCATGTCAACCAGTCAGTCATGCTGGAAAAGACATTGATGTTCTA TT
 3610 3620 3630 3640 3650 3660
 V G Y L A M S T S Q S C W K D I D V S I

ACCI SFANI CLAI
 CTAGGACTATTTGAAGTCTACCTATCCAGAATTGATGTTGAGCATCAAATTGGAATCG AT
 3670 3680 3690 3700 3710 3720
 L G L F E V Y L S R I D V E H Q L G I D

SFANI STYI HGAI AFLIII
 . . MLUI
 . . HPHI HGAI
 GCTCGTGAATTCTATCCTGGCTATCAAATTGGTGAACCTTCGACCGTCATTGGAGACT CC
 3730 3740 3750 3760 3770 3780
 A R D S I L G Y Q I G E L R R V I G D S

FOKI
 ACAACCATGATAACCAGCCATCCAACGTGACATTCTTACTTCCCAACTACATCCGAA TG
 3790 3800 3810 3820 3830 3840
 T T M I T S H P T D I L T S S T T I R M

BANI ACCI AVAI MBOII
 TTCATGCACGGTGCCGCACAGAGTCGCGTAGACAGTCTGGCTTGTATGCTTCTTC CA
 3850 3860 3870 3880 3890 3900
 F M H G A A Q S R V D S L V L D M L L P

AHAI
 . AATII
 AAGCAAATGATTCTCCAACCTCGTCAAGTCATTTGACAGAGAGACGTCTGGTAG CT
 3910 3920 3930 3940 3950 3960
 K Q M I L Q L V K S I L T E R R L V L A

BBVI BSTNI MBOII
 GGAGCAACTGGAATTGGAAAGAGCAAACCTGGCGAAGACCTGGCTGCTTATGTATCTA TT
 3970 3980 3990 4000 4010 4020
 G A T G I G K S K L A K T L A A Y V S I

FIG. 1 CONTINUED.

8/99

ASUII	MBOII	BSMI			
CGAACAAATCAATCCGAAGATAGTATTGTTAATATCAGCATTCCTGAAAACAATAAG AA					
4030	4040	4050	4060	4070	4080
R T N Q S E D S I V N I S I P E N N K E					
XMNI MBOII	AHAI				
.	BSTNI				
.	.	HGAI			
.	.	BGLII			
.	.	XHOII	SFANI	NSII	
GAATTGCTTCAAGTGGAAACGACGCCCTGGAAAAGATCTTGAGAAGCAAAGAATCATGCA TC					
4090	4100	4110	4120	4130	4140
E L L Q V E R R L E K I L R S K E S C I					
XBAI					
GTAATTCTAGATAATATCCAAAGAACATCGAATTGCATTGTTGTATCCGTTTGCAA AT					
4150	4160	4170	4180	4190	4200
V I L D N I P K N R I A F V V S V F A N					
AVAI	HINCII	ECORV			
GTCCTTCAAAACAACGAAGGTCAATTGTAGTATGCACAGTCACCGATATCAA TC					
4210	4220	4230	4240	4250	4260
V P L Q N N E G P F V V C T V N R Y Q I					
HPHI	FOKI				
CCTGAGCTTCAAAATTCAACCACAATTCAAATGTCACTGAGTAATGTCGAATCGTCTCGAAG GA					
4270	4280	4290	4300	4310	4320
P E L Q I H H N F K M S V M S N R L E G					
FOKI					
TTCATCCTACGTTACCTCCGACGACGGCGGTAGAGGATGAGTATCGTCTAACTGTAC AG					
4330	4340	4350	4360	4370	4380
F I L R Y L R R R A V E D E Y R L T V Q					
MBOII					
.	SFANI				
.	BANII				
.	BSP1286				
.	HGIAI				
.	SACI	MBOII	MBOII		
ATGCCATCAGAGCTCTCAAAATCATTGACTTCTCCAATAGCTCTCAGGCCGTCA AT					
4390	4400	4410	4420	4430	4440
M P S E L F K I I D F F P I A L Q A V N					
ECORI	AVAI	SPHI			
AATTTTATTGAGAAAAACGAAATTCTGTTGATGTGACAGTTGGTCCAAGAGCATGCTTGA AC					
4450	4460	4470	4480	4490	4500
N F I E K T N S V D V T V G P R A C L N					
BINI BAMHI					
.	XHOII	BINI			
TGTCCTCTAACTGTCGATGGATCCCCTGAATGGTCATTGATTGTGGAATGAGAACT TC					
4510	4520	4530	4540	4550	4560
C P L T V D G S R E W F I R L W N E N F					
AFLIII	BBVI				
ATCCATATGGAACGTGTTGCTAGAGATGGCAAAACCTTCGGTGGCTGCACT TC					
4570	4580	4590	4600	4610	4620
I P Y L E R V A R D G K K N L R S L H F					

FIG. 1 CONTINUED.

9/99

BINI	BAMHI					
XHOII	BINI	TTHIIII	EAEI			NCII
CTTCGAGGATCCCACCGACATCGTCTA	AAAAAATGGCCGTGGTCGATGGT	AAAAC	CC			
4630	4640	4650	4660	4670	4680	
L	R	G	S	H	R	L
HPHI	MBOII					
	.BSP1286					
	.HGIAI		TTHIIII			
GGAGAATGTGCTAAACGTCCTCAACTCCAAGACCTCGTCCGTCACCTGCCA	ACTCA	TC	HPHI	FOKI	BSPMI	
4690	4700	4710	4720	4730	4740	
AVAI						
XHOI	BINI					
CCGACAAACACTTC	AAATCCCCTCGAGTCGTTGATCCATTGCA	TGCTACCAAGCATCAG	AC	SFANI		
4750	4760	4770	4780	4790	4800	SPHI
MBOII	MBOII					MBOII
CATCGACAAACATTGAAACAGAACGACTCTA	ATCTCTCGCCTCTCCCCG	CTTTCCCT	TA			
4810	4820	4830	4840	4850	4860	
BANI						
KPNI						
TCTTCGTACCGGTACCTGATGATT	CCCCATTTC	CCCCCTTT	CCCCCA	TTTCCCAG	AA	
4870	4880	4890	4900	4910	4920	
AVAI						
.NCII						
..NCII						
..SMAI						
... BANI	AHAI	HGAI	DRAI			
CCTCCCTGTTCCCTTGTTCTAGTC	CTCCGGGTG	CCGACGCCGA	AGCGATT	AAAAA	CC	
4930	4940	4950	4960	4970	4980	
XMNI						
TTTTCTTCCGAAACATTCCCATTGCT	CATTAATAGTCAAATTG	AAATAAACAGTGT	AT			
4990	5000	5010	5020	5030	5040	
GTACTT	AAAAAAAAAAAAAAAAAAAAA					
5050	5060	5070				

COMPARISON OF 7A VS 8A CLONE

10/99 FIG. 2.

TB6 & TB3

BSP1286
HGIAI

GGTTTAATTACCAAGTTGAGACATCAATTCCATCGAACGAAATGTTGGTGCCTCGAAT

10	20	30	40	50	60
----	----	----	----	----	----

TTHIIII
.AHAI
.ATII
AAAATGACGACGTCAAATGTAGAATTGATACCAATCTACACGGATTGGGCCATCGGCAC

70	80	90	100	110	120
----	----	----	-----	-----	-----

M	T	T	S	N	V	E	L	I	P	I	Y	T	D	W	A	N	R	H
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

ASUII BBVI NRUI
CTTCGAAGGGCAGCTTATCAAAGTCGATTAGGGATATTCGAATGATTTCGCGACTAT

130	140	150	160	170	180
-----	-----	-----	-----	-----	-----

L	S	K	G	S	L	S	K	S	I	R	D	I	S	N	D	F	R	D	Y
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

TB1B

ECORI BSMI

CGACTGGTTCTCAGCTTATTAATGTGATCGTCCGATCAACGARATTCTCGCCTGCATTC

190	200	210	220	230	240
-----	-----	-----	-----	-----	-----

R	L	V	S	Q	L	I	N	V	I	V	P	I	N	E	F	S	P	A	F
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

TB16

BSTNI AFLIII
FOKI

ACGAAACGTTGGCAAAATCACATCGAACCTGGATGGCCTCGAACACGTGTCTCGACTAC

250	260	270	280	290	300
-----	-----	-----	-----	-----	-----

T	K	R	L	A	K	I	T	S	N	L	D	G	L	E	T	C	L	D	Y
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

TB1

BPHI ECORV NSPBII

CTGAAAAATCTGGTCTCGACTGCTCGAAACTCACCAAAACCGATATCGACAGCGGAAAC

310	320	330	340	350	360
-----	-----	-----	-----	-----	-----

L	K	N	L	G	L	D	C	S	K	L	T	K	T	D	I	D	S	G	N
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

BBVI MBOII

NSPBII
PVUII HINDIII

TTGGGTGCAGTCTCCAGCTGCTCTCCTGCTCTCCACCTACAAGCAGAAGCTTCGGCAA

370	380	390	400	410	420
-----	-----	-----	-----	-----	-----

L	G	A	V	L	Q	L	L	F	L	L	S	T	Y	K	Q	K	L	R	Q
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

FOKI

MBOII NSPBII
.SACII

CTGAAAAAGATCAGAAGAATTGGAGCAACTACCCACATCCATTATGCCACCCGGTT

430	440	450	460	470	480
-----	-----	-----	-----	-----	-----

L	K	K	D	Q	K	K	L	E	Q	L	P	T	S	I	M	P	P	A	V
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

AFLIII

TCTAAATTACCCCTGCCACGTGTCGCCACGTCAAGAACCGCTTCAGCAACTAACCAAAT

490	500	510	520	530	540
-----	-----	-----	-----	-----	-----

S	K	L	P	S	P	R	V	A	T	S	A	T	A	S	A	T	N	P	N
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

FOKI HINCII BSTNI

TCCAACCTTCCACAAATGTCAACATCCAGGCTTCAGACTCCACAGTCAAGAATATCGAAA

550	560	570	580	590	600
-----	-----	-----	-----	-----	-----

S	N	F	P	Q	M	S	T	S	R	L	Q	T	P	Q	S	R	I	S	K
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

FIG. 2 CONTINUED.

11/99

TB6B

<code>ATTGATTCAAGAGATTGGTATCAAGCCAAAGACGTCTGGACTAAACCACCCCATCA</code> 610 620 630 640 650 660 I D S S K I G I K P K T S G L K P P S S	AHAI AATII
--	-----------------------------

TCAACCACCTCATCAAATAACAAATTCAATTCCGTCGAGCCGTTCGAGTGGCAAT
 670 680 690 700 710 720
 S T T S S N N T N S F R P S S R S S G N

ECORV

<code>AATAATGTTGGCTCGACGATATCCACATCTGCGAAGAGCTTAGAACATCATCAACGTAC</code> 730 740 750 760 770 780 N N V G S T I S T S A K S L E S S S T Y	MBOII
---	--------------

ASUII

<code>AGCTCTATTCGAATCTAAACCGACCTACCTCCAACTCCAAAAACCTCTAGACCCACAA</code> 790 800 810 820 830 840 S S I S N L N R P T S Q L Q K P S R P Q	XBAI
--	-------------

NHEI

<code>ACCCAGCTAGTTCGTGTGCTACAACTACAAAAATCGGAAGCTCAAAGCTAGCCGCTCCG</code> 850 860 870 880 890 900 T Q L V R V A T T T K I G S S S K L A A P	BANII BSP1286
---	--------------------------------

BSP1286

<code>AAAGCCGTGAGCACCCAAAACCTGCTCTGTGAAGACTATTGGAGCAAAACAAGAGCCC</code> 910 920 930 940 950 960 K A V S T P K L A S V K T I G A K Q E P	MBOII BSP1286
--	--------------------------------

NSPBI

<code>GATAACAGCGGTGGTGGTGGTGGATGCTGAAATTAAAGTTATTCACTAGCAAAAC</code> 970 980 990 1000 1010 1020 D N S G G G G G G M L K L K L F S S K N	BSMI MBOII
--	-----------------------------

BANI

<code>CCATCTTCCTCATCGAATAGCCCACAAACCTACGAGAAAGCGGGCGGTGCCTCAACAA</code> 1030 1040 1050 1060 1070 1080 P S S S S N S P Q P T R K A A A V P Q Q	BANII
--	--------------

BBVI

<code>CAAACCTTGTGCAAAATCGCTGCCCGAGTGAAGAGCTGAAGCCGCCGACAGTAAG</code> 1090 1100 1110 1120 1130 1140 Q T L S K I A A P V K S G L K P P T S K	TB22
---	-------------

BSTXI

<code>CTGGGAAGTGCCACGTCTATGCGAACGCTTGTACGCCAAAGTTCTACCGTAAACG</code> 1150 1160 1170 1180 1190 1200 L G S A T S M S K L C T P K V S Y R K T	HINDIII
---	----------------

AHAI **HGAI**

<code>GACGCCCAATCATATCTCAACAAGACTCGAAACGATGCTCAAAGAGCAGTGAAGAAGAG</code> 1210 1220 1230 1240 1250 1260 D A P I I S Q Q D S K R C S K S S E E E	SFANI
---	--------------

FIG. 2 CONTINUED. 12/99

MBOII
BSPMII
MBOII
TCCGGATACGCTGGATTCAACAGCACGTGCCAACGTACATCATCGACGGAAAGGTTCCCTA
1270 1280 1290 1300 1310 1320
S G Y A G F N S T S P T S S S T E G S L

BSMI
SPHI
MBOII
NSII | START CE7
AGCATGCATTCCACATCTTCCAAGAGTTAACGTCAAGCAGAAAAGTCTCCGTACAGAC
1330 1340 1350 1360 1370 1380
S M H S T S S K S S T S D E K S P S S D

GATCTTACTCTAACGCCTCCATCGTGACAGCTATCAGACAGCCGATAGCCCAACACCG
1390 1400 1410 1420 1430 1440
D L T L N A S I V T A I R Q P I A A T P

SSPI
GTTTCTCAAATATTATCAACAAGCCTGTTGAGGAAAAACCAACACTGGCAGTGAAAGGA
1450 1460 1470 1480 1490 1500
V S P N I I N K P V E E K P T L A V K G

BINI XHOII NSPBII
PVUII
GTGAAAAGCACAGCAGAAAAAGATCCACCTCCAGCTGTTCCGCCACGTGACACCCAGCCA
1510 1520 1530 1540 1550 1560
V K S T A K K D P P P A V P P R D T Q P

HINCII ECORV
ACAATCGGAGTTGTTAGTCCAATTATGGCACATAAGAAGTTGACAAATGACCCCGTGATA
1570 1580 1590 1600 1610 1620
T I G V V S P I M A H K K L T N D P V I

SFANI
TCTGAAAACCAGAACCTGAAAGCTCCAAATCAATGAGCATCGACACGGACGGACGTTCCA
1630 1640 1650 1660 1670 1680
S E K P E P E K L Q S M S I D T T D V P

CCGCTTCCACCTCTAAAATCAGTTGTTCACTTAAATGACTTCATCGACACCCACCA
1690 1700 1710 1720 1730 1740
P L P P L K S V V P L K M T S I R Q P P

MBOII
ACGTACGATGTTCTTCTAAAACAAGGAAAAATCACATCGCTGTCAGTCGTTGGATAT
1750 1760 1770 1780 1790 1800
T Y D V L L K Q G K I T S P V K S F G Y

HGAI
MBOII
GAGCAGTCGTCGGTCTGAAGAGACTCCATTGGCTCATGCGTCGGCTCAGGTGACTCCG
1810 1820 1830 1840 1850 1860
E Q S S A S E D S I V A H A S A Q V T P

HPHI
CCGACAAAACCTCTGGTAATCATTGCTGGAGAGAAGGATGGAAAGARTAAGACATCA
1870 1880 1890 1900 1910 1920
P T K T S G N H S L E R R M G K N K T S

FIG. 2 CONTINUED. *13/99*

NSPBII	AHAI	BGAI				
GAATCCAGCGGCTACACCTCTGACGCCGGTGTGCATGTGCCAAAATGAGGGAGAAG						
1930	1940	1950	1960	1970	1980	
E S S G Y T S D A G V A M C A K M R E K						

BSP1286						
HGIAI						
ASUII						
CTGAAAGAACATGACATGACTCGTCGAGCACAGAACGGCTATCCTGACAACCTCGAA						
1990	2000	2010	2020	2030	2040	
L K E Y D D M T R R A Q N G Y P D N F E						

MBOII	BANII					
.	BSP1286					
.	HGIAI					
.	SACI					
GACAGTTCTCTTGCTCTGGAATATCCGATAACAAACGAGCTCGACGACATATCCACG						
2050	2060	2070	2080	2090	2100	
D S S S L S S G I S D N N E L D D I S T						

BSPMII						
.	ACCI					
FOKI						
GACGATTGTCGGAGTAGACATGGCACAGTCGCTCCARACATAGCGACTATTCCCAC						
2110	2120	2130	2140	2150	2160	
D D L S G V D M A T V A S K H S D Y S H						

MBOII	AVAI	AVAI				
MBOII	AVAI	AVAI				
TTTGTTCGCCATCCCACGTCTTCTCTCAAAGCCCCGAGTCAGTCGGTCTCCACA						
2170	2180	2190	2200	2210	2220	
F V R B P T S S S S K P R V P S R S S T						

AVAI						
XHOI						
TCAGTCGATTCTCGATCTCGAGAACAGGAGAATGTGTACAAACTCTGTCCCAGTGC						
2230	2240	2250	2260	2270	2280	
S V D S R S R A E Q E N V Y K L L S Q C						

BBVI BGLI						
.	BANI					
.	.AHAI					
.	.NARI					
.	. . . HAEII					
.	. . . NSPBII					
.		BINI XHOII				
CGAACGAGCCACGTGGCCGGCTGCCACCTCAACCTTCGGACAACTCGCTAACATCC						
2290	2300	2310	2320	2330	2340	
R T S Q R G A A A T S T F G Q H S L R S						

AVAI						
.NCII						
. . NCII						
. . SMAI						
NSPBII						
PVUII						
CCCAGATACTCATCCTATCTCCACACTTATCAGTGTCAAGCTGATAAGGACACAATGTCT						
2350	2360	2370	2380	2390	2400	
P G Y S S Y S P H L S V S A D K D T M S						

FIG. 2 CONTINUED. *14/99*

SPEI

- . SALI
- . ACCI
- . .HINCII
- . .MBOII

ATGCACTCACAGACTAGTCGACGCCCTTCTTCACAAAAACCAAGCTATTCAAGCCAATTT
 2410 2420 2430 2440 2450 2460
 M H S Q T S R R P S S Q K P S Y S G Q F

FOKI

BSP1286

HGIAI

CATTCACTTGATCGTAAATGCCACCTTCAGAGTTCACATCCACCGAGCACAGAATGGCG
 2470 2480 2490 2500 2510 2520
 H S L D R K C H L Q E F T S T E H R M A

AVAI

- .BANII
- .BSP1286 BANI

MBOII BINI BAMHI

XEOII

GCTCTTGAGCCCCGAGACGGGTGCCGAACTCGATGTCGAAATATGATTCTTCAGGATCC
 2530 2540 2550 2560 2570 2580
 A L L S P R R V P N S M S K Y D S S G S

BINI AVAI

TACTCGGCGCGTCCCCGAGGTGGAAGCTCTACTGGTATCTATGGAGAGACGTTCCAAGTG
 2590 2600 2610 2620 2630 2640
 Y S A R S R G G S S T G I Y G E T F Q L

BINI BAMHI

XEOII

CACAGACTATCCGATGAAAATCCCCCGCACATTCTGCCAAAAGTGAGATGGATCCAA
 2650 2660 2670 2680 2690 2700
 H R L S D E K S P A H S A K S E M G S Q

BINI NHEI

NDEI

XEOII BINI

CTATCACTGGCTAGCACGACAGCATATGGATCTCTCAATGAGAAGTACGAACATGCTATT
 2710 2720 2730 2740 2750 2760
 L S L A S T T A Y G S L N E K Y E H A I

SALI

ACCI

..HINCII

CGGGACATGGCACGTGACTTGGAGTGTACAAGAACACTGTCGACTCACTAACCAAGAAA
 2770 2780 2790 2800 2810 2820
 R D M A R D L E C Y K N T V D S L T K K

HINDIII

CAGGAGAACTATGGAGCATTGTTGATCTTTGACCAAAAGCTTAGAAAACACTCAAA
 2830 2840 2850 2860 2870 2880
 Q E N Y G A L F D L F E Q K L R K L T Q

BINI

CLAI

MBOII

CACATTGATCGATCCAACCTGAAGCCTGAAGAGGCAATACGATTCAAGCAGGACATTGCT
 2890 2900 2910 2920 2930 2940
 H I D R S N L K P E E A I R F R Q D I A

FIG. 2 CONTINUED.

15/99

FOKI HAEII
 SFANI
 CATTGAGGGATATTAGCAATCATCTTGCATCCAACTCAGCTCATGCTAACGAAGGCGCT
 2950 2960 2970 2980 2990 3000
 H L R D I S N H L A S N S A H A N E G A

 MBOII HPHI
 HINCII FOKI
 SFANI CLAI CLAI
 GGTGAGCTCTCGTCAACCACATCTCTGAATCAGTTGATCCCATCGATCATCGATGTCA
 3010 3020 3030 3040 3050 3060
 G E L L R Q P S L E S V A S H R S S M S

 ECOB BBVI MBOII
 . . . BANII
 . . . BSP1286
 . . . HGIAI
 . . . SACI
 TCGTCGAAAGCAGCAAGCAGGAGAAGATCAGCTTGAGCTCGTTGGCAAGAACAG
 3070 3080 3090 3100 3110 3120
 S S S K S S K Q E K I S L S S F G K N K

 BINI BAMHI
 XHOII
 MBOII
 BINI HPHI MBOII
 AAGAGCTGGATCCGCTCCTCACTCTCCAAGGTCACCAAGAAGAACAGAACACTACGAC
 3130 3140 3150 3160 3170 3180
 K S W I R S S L S K F T K K K N K N Y D

 NDEI XHOII
 BSPMII BINI
 GAAGCACATATGCCATCAATTCCGGATCTCAAGGAACCTTGCACAAACATTGATGTGATT
 3190 3200 3210 3220 3230 3240
 E A H M P S I S G S Q G T L D N I D V I

 BANII
 BSP1286
 HGIAI
 SACI ECOK APALI

 GAGTTGAAGCAAGAGCTCAAAGAACCGCGATAGTGCACTTACGAAGTCCGCCTTGACAAT
 3250 3260 3270 3280 3290 3300
 E L K Q E L K E R D S A L Y E V R L D N

 BINI

 CTGGATCGTCCCCGCGAAGTTGATGTTCTGAGGGAGACAGTGAACAAGTTGAAAACCGAG
 3310 3320 3330 3340 3350 3360
 L D R A R E V D V L R E T V N K L K T E

 HPHI AVAI MBOII
 AACAAAGCAATTAAAGAAAAGTGGACAAACTCACCAACGGTCCAGCCACTCGTGCTTCT
 3370 3380 3390 3400 3410 3420
 N K Q L K K E V D K L T N G P A T R A S

FIG. 2 CONTINUED. 16/99

SFANI

TCCCGCGCCTCAATTCCAGTTATCTACGACGATGAGCATGTCTATGATGCAGCGTGTAGC
 3430 3440 3450 3460 3470 3480
 S R A S I P V I Y D D E H V Y D A A C S

BBVI MBOII ASUII

 BBVI
 AGTACATCAGCTAGTCATCTCGAAACGATCCTCTGGCTGCAACTCAATCAAGGTTACT
 3490 3500 3510 3520 3530 3540
 S T S A S Q S S K R S S G C N S I K V T

PVUI

 HINCII
 HPAI
 NCII
 GTAAACGTGGACATCGCTGGAGAAATCAGTCGATCGTTAACCGGACAAAGAGATAATC
 3550 3560 3570 3580 3590 3600
 V N V D I A G E I S S I V N P D K E I I

ECORV BINCII
 GTAGGATATCTGCCATGTCAACCAAGTCAGTCATGCTGGAAAGACATTGATGTTCTATT
 3610 3620 3630 3640 3650 3660
 V G Y L A M S T S Q S C W K D I D V S I

ACCI SFANI CLAI
 CTAGGACTATTTGAAGTCTACCTATCCAGAATTGATGTGGAGCATCAACTTGGAAATCGAT
 3670 3680 3690 3700 3710 3720
 L G L F E V Y L S R I D V E H Q L G I D

SFANI STYI EGAI AFLIII

 MLUI
 BPHI EGAI
 GCTCGTGATTCTATCCTGGCTATCAAATTGGTGAACCTCGACGGCTCATTGGAGACTCC
 3730 3740 3750 3760 3770 3780
 A R D S I L G Y Q I G E L R R V I G D S

FOKI
 ACAACCATGATAACCAGCCATCCAAC TGACATTCTTACTTCCTCAACTACAATCCGAAATG
 3790 3800 3810 3820 3830 3840
 T T M I T S H P T D I L T S S T T I R M

BANI ACCI AVAI MBOII
 TTCATGCACGGTGCACAGAGTCGCGTAGACAGTCTGGCTTGTATGCTTCTTCCA
 3850 3860 3870 3880 3890 3900
 F M H G A A Q S R V D S L V L D M L L P

AHAI

 AATII
 AAGCAAATGATTCTCCAAC TCGTCAAGTCATTTGACAGAGAGACGTCTGGTGTAGCT
 3910 3920 3930 3940 3950 3960
 K Q M I L Q L V K S I L T E R R L V L A

BBVI BSTNI

 MBOII
 GGAGCAACTGGAATTGGAAAGAGCAAAC TGGCGAAGACCCCTGGCTGCTTATGTATCTATT
 3970 3980 3990 4000 4010 4020
 G A T G I G K S K L A K T L A A Y V S I

FIG. 2 CONTINUED.

17/99

ASUII | CE6 MBOII BSMI
 CGAACAAATCAATCCGAAGATAGTATTGTTAATATCAGCATTCTGAAAACAATAAAGAA
 4030 4040 4050 4060 4070 4080
 R T N Q S E D S I V N I S I P E N N K E

XNNI MBOII AHAI
 . . BSTNI
 . . . EGAI
 BGLII
 XHOII SFANI NSII
 GAATTGCTTCAGTGGAACGACGCCTGGAAAAGATCTTGAGAAGCAAAGAACATGCATC
 4090 4100 4110 4120 4130 4140
 E L L Q V E R R L E K I L R S K E S C I

XBAI
 GTAATTCTAGATAATATCCCAAAGAACGAAATTGCAATTGCTTTGTATCCGTTTGCAAAT
 4150 4160 4170 4180 4190 4200
 V I L D N I P K N R I A F V V S V F A N

AVAI HINCII ECORV
 GTCCCACCTCAAAACAACGAAGGTCCATTGTAGTATGCACAGTCACCGATATCAAATC
 4210 4220 4230 4240 4250 4260
 V P L Q N N E G P F V V C T V N R Y Q I

HPHI FOKI
 CCTGAGCTTCAAATTCAACCACAATTCAAAATGTCAGTAATGTCGAATCGTCTCGAAGGA
 4270 4280 4290 4300 4310 4320
 P E L Q I H H N F K M S V M S N R L E G

FOKI
 TTCATCCTACGTTACCTCCGACGACGGCGGTAGAGGATGAGTATCGTCTAACTGTACAG
 4330 4340 4350 4360 4370 4380
 F I L R Y L R R R A V E D E Y R L T V Q

MBOII
 . SFANI
 . . BANII
 . . BSP1286
 . . EGIAI
 . . SACI MBOII MBOII
 ATGCCATCAGAGCTTCAAAATCATTGACTTCTTCCAATAGCTCTTCAGGCCGTCAAT
 4390 4400 4410 4420 4430 4440
 M P S E L F K I I D F F P I A L Q A V N
 ECORI USED FOR EXPRESSION
 ECORI AVAI SPHI
 AATTTTATTGAGAAAACGAAATTCTGTTGATGTGACAGTTGGTCCAAGAGCATGCTTGAAC
 4450 4460 4470 4480 4490 4500
 N F I E K T N S V D V T V G P R A C L N

BINI BAMHI
 XHOII BINI
 TGTCCTCTAACGTGCGATGGATCCCGTGAATGGTCAATTGAGTGGAAATGAGAACTTC
 4510 4520 4530 4540 4550 4560
 C P L T V D G S R E W F I R L W N E N F

AFLIII BBVI
 ATTCCATATTGGAACGTGTTGCTAGAGATGGCAAAAAACCTTCGGTCGCTGCACCTTC
 4570 4580 4590 4600 4610 4620
 I P Y L E R V A R D G K K N L R S L H F
 T F G R C T S

18/99

FIG. 2 CONTINUED.

BINI BANII
 XHOII BINI TTHIIII EAEI NCII
 CTTCGAGGATCCCACCGACATCGTCTCTAAAAAATGCCGTGGTCGATGGTAAAAACCC
 4630 4640 4650 4660 4670 4680
 L R G S H R H R L *
 F E D P T D I V S E K W P W F D G E N P
 HPHI MBOII
 .BSP1286
 .HGIAI TTHIIII
 .HPHI FOKI BSPMI
 ..
 GGAGAAATGTGCTCAAACGTCTCAACTCCAAGACCTCGTCCCGTCACCTGCCAACTCATC
 4690 4700 4710 4720 4730 4740
 E N V L K R L Q L Q D L V P S P A N S S
 AVAI SFANI
 XHOI BINI SPHI
 CCGACAACACTTCATACTCCCTCGAGTCGTTGATCCAATTGCATGCTACCAAGCATCAGAC
 4750 4760 4770 4780 4790 4800
 R Q H F N P L E S L I Q L . H A T K H Q T
 MBOII MBOII MBOII
 CATCGACAACATTGAAACAGAAGACTCTAATCTTCTCGCCTCTCCCCCGCTTCTTA
 4810 4820 4830 4840 4850 4860
 I D N I *
 BANI
 KPNI
 TCTTCGTACCGGTACCTGATGATTCCCCATTTCCCCCTTTCCCCCAATTCCCAGAA
 4870 4880 4890 4900 4910 4920
 AVAI
 .NCII
 ..NCII
 ..SMAI
 ... BANI AHAI HGAI DRAI
 CCTCCCTGTTCCCTTGTTCTAGTCCTCCGGGTGCCGACGCCGAAGCGATTAAAAACC
 4930 4940 4950 4960 4970 4980
 XMNI
 TTTTCTTCCGAAACATTCCCATTGCTCATTAATAGTCAAATTGAATAAACAGTGTAT
 4990 5000 5010 5020 5030 5040
 GTACTTAAAAAAAAAAAAAAAAAAAAAAA
 5050 5060 5070

*FIG. 3.**19/99*

Sequences of low complexity in UNC-53 TB3-M5 identified with the FILTER and SEG algorithms of the BLAST sequence homology package.

MTTSNVELIPIYTDWANRHSKGSLSKSIRDISNDFRDYRLVSQLINVIVPINEFSPAFT
 KRLAKITSNLGLETCLDYLKLNGLDCSKLTKTDIDSGNLGAVLQLLFLSTYXXXXXX
 XXXXXXXXXXXXPTSIMPPAVSKXXXXXXXXXXXXXXXXXXXXFPQMSTSRLQTPQXXXXXX
 XXXXXXXXXXXXGKPVXXXXXXXPQTRKAAAVPQQTLSKIAAPVKSGLKPPTSKL
 GSATSMSKLCTPKVSYRKTDAPIISQQDSKRCSCXXXXXXGYAGFNXXXXXX
 XXXXXXXXXXXXXXXXXDLTLNASIVTAIRQPIAATPVSPNIINKPVEEKPTLAVKGV
 KSTAKKDPPAVPPRDTQPTIGVVSPIMAHKKLTNDPVISEKPEPEKLQSMSIDTTDX
 XXXXXXXXXXXXMTSIRQPPPTYDVLKQGKITSVPKSFQYEQSSASEDIVAHASAQVTP
 TKTSGNHSLEERRMGKNKTSESSGYTSDAVGAMCAKMRKLKEYDDMTRRAQNGYPDNFED
 XXXXXXXXXXXXDNNELDISTDDLSGVDMATVASKHSDYSHFVRHPXXXXXX
 XXXXXAEQEENVYKLLSQCRTSQRGAATSTFGQHSLRSPGYSSYSPHLSVSADKDTMSM
 HSQTSSRRPSSQKPSYSQFHSLDRKCHLQEFTSTEHRMAALLSPRRVPNXXXXXX
 XXXXXXXXXXXXIYGETFQLHRLSDEKSPAHSAKSEMGSQSLLASTTAYGSLNEKYEHAI
 DMARDLEYKNTVDSDLTKQENYGALFDLFQKLRKLTQHIDRSNLKPEEAIRFRQDI
 LRDISNHLASNSAHANEAGELLRQPSLEXXXXXXXXXXXXFGKNKK
 SWIRSSLKFTKKKNKYDEAHMPSSISGSQGTLDNIDVIELQELKERDSALYEVRLDNL
 DRAREVDVLRETVNKLKTEENQLKEVDKLTNGPATRASSRASIPVIYDDEHVDXXXX
 XXXXXXXXXXXXGCNXXXXXXXXXXXXXDKEIIIVGYLAMSTSQCSCWKDIDVSIL
 GLFEVYLSRIDVEHQLGIDARDSILGYQIGELRRVIGDSTMITSHTPDILTSSTIRM
 MHGAAQSRVDSLVDMLLPKQMLQLVKSILTERLVLAGATGIGSKLAKTLaAYVSIR
 TNQSEDIVNISIPENNKEELLQVERRLEKILRSKESCIILDNIPKNRIAFVVSFVANV
 PLQNNEGPFVVCTVNRQIPELQIHHNFKMSVMSRLEGFILRYLRRRAVEDEYRLTVQM
 PSELFKIIDFFPIALQAVNNFIEKTNVDVTVGPRACLNCPPLTVDGSRWFIRLWNENFI
 PYLERVARDGKKNLRSLHFLRGSHRHRL

MTTSNVELIPIYTDWANRHSKGSLSKSIRDISNDFRDYRLVSQLINVIVPINEFSPAFT
KRLAKITSNLGLETCLDYLKLNGLDCSKLTKTDIDSGNLGAVLQLLFLSTYKOKLROL
KKDOKKLEOLPTSIMPPAVSKLPSPRVATSATASATNPNSNFPQMSTSRLQTPOSRISKI
DSSKIGIKPKTSGLKPPSSSTTSNNNTSFRPSSRSSGNNGNSTISTSAKSLESSSTYS
SISNLRPTSQLKPSRPQTQLVRVATTTKIGSSKLAAPKAVSTPKLASVKTIGAKQEPD
NSGGGGGMLKLKLFSSKNPSSSNSPQTRKAAAVPQQTLSKIAAPVKSGLKPPTSKL
 GSATSMSKLCTPKVSYRKTDAPIISQQDSKRCSCSKSSEEESGYAGFNSTSPTSSSTEGSLS
MHSTSSKSSTSDEKSPSSDLTLNASIVTAIRQPIAATPVSPNIINKPVEEKPTLAVKGV
KSTAKKDPPAVPPRDTQPTIGVVSPIMAHKKLTNDPVISEKPEPEKLQSMSIDTTDVPP
LPPLIKSVVPLKMTSIRQPPPTYDVLKQGKITSVPKSFQYEQSSASEDIVAHASAQVTP
 TKTSGNHSLEERRMGKNKTSESSGYTSDAVGAMCAKMRKLKEYDDMTRRAQNGYPDNFED
SSSLSSGISDNNELDISTDDLSGVDMATVASKHSDYSHFVRHPTSSSKPRVPSRSSTS
VDSRSRAEQEENVYKLLSQCRTSQRGAATSTFGQHSLRSPGYSSYSPHLSVSADKDTMSM
HSQTSSRRPSSQKPSYSQFHSLDRKCHLQEFTSTEHRMAALLSPRRVPNSMSKYDSSGY
SARSRGGSSTGIYGETFQLHRLSDEKSPAHSAKSEMGSQSLLASTTAYGSLNEKYEHAI
 DMARDLEYKNTVDSDLTKQENYGALFDLFQKLRKLTQHIDRSNLKPEEAIRFRQDI
 LRDISNHLASNSAHANEAGELLRQPSLESVASHRSMSSSKSSQEKISLSSFGKNKK
 SWIRSSLKFTKKKNKYDEAHMPSSISGSQGTLDNIDVIELQELKERDSALYEVRLDNL
 DRAREVDVLRETVNKLKTEENQLKEVDKLTNGPATRASSRASIPVIYDDEHVDAACSS

20/99

FIG. 3 continued.

TSASOSSKRSSGCNSIKVTVNVDIAGEISSIVNPDK
EIIIVGYLAMSTSQSCWKDIDVSIL
GLFEVYLSRIDVEHQLGIDARDSTLGYQIGELRRVIGDSTTMITSHP
TDILTSSTTIRMFMHGAAQS
RVDSLVLDMLLPKQMILQLVKSILTERLVLAGATGIGKSKLA
KTTLAAYVSIRTNQSED
SIVNISIPENNKEELLQVERRLEKILRSKESCIVILDNIPKN
RIAFVVSVFANVPLQNNEGPFVVCTVNRQIPELQIHHNF
KMSVMSNRLEGFILRYLRRRAVEDEYRLTVQM
PSELFKIIDFFPIALQAVNNFIEKTNSVDVTGPRACLN
CPLTVDGSR
EWFIRLWNENFI
PYLERVARDGKKNLRS
LHF
LRGS
HRHRL

*FIG. 4.**21/99*

Length of tb3-m5.pro from cDNA PTB54 : 1528 aa; +1 at: 1;
 Listed (Ordinary) from: 1 to: 1528; din, 23 apr 1996 11:49

Met Thr Thr Ser Asn Val Glu Leu Ile Pro Ile Tyr Thr Asp Trp	15
Ala Asn Arg His Leu Ser Lys Gly Ser Leu Ser Lys Ser Ile Arg	30
Asp Ile Ser Asn Asp Phe Arg Asp Tyr Arg Leu Val Ser Gln Leu	45
Ile Asn Val Ile Val Pro Ile Asn Glu Phe Ser Pro Ala Phe Thr	60
Lys Arg Leu Ala Lys Ile Thr Ser Asn Leu Asp Gly Leu Glu Thr	75
Cys Leu Asp Tyr Leu Lys Asn Leu Gly Leu Asp Cys Ser Lys Leu	90
Thr Lys Thr Asp Ile Asp Ser Gly Asn Leu Gly Ala Val Leu Gln	105
Leu Leu Phe Leu Leu Ser Thr Tyr Lys Gln Lys Leu Arg Gln Leu	120
Lys Lys Asp Gln Lys Lys Leu Glu Gln Leu Pro Thr Ser Ile Met	135
Pro Pro Ala Val Ser Lys Leu Pro Ser Pro Arg Val Ala Thr Ser	150
Ala Thr Ala Ser Ala Thr Asn Pro Asn Ser Asn Phe Pro Gln Met	165
Ser Thr Ser Arg Leu Gln Thr Pro Gln Ser Arg Ile Ser Lys Ile	180
Asp Ser Ser Lys Ile Gly Ile Lys Pro Lys Thr Ser Gly Leu Lys	195
Pro Pro Ser Ser Ser Thr Ser Ser Asn Asn Thr Asn Ser Phe	210
Arg Pro Ser Ser Arg Ser Ser Gly Asn Asn Asn Val Gly Ser Thr	225
Ile Ser Thr Ser Ala Lys Ser Leu Glu Ser Ser Ser Thr Tyr Ser	240
Ser Ile Ser Asn Leu Asn Arg Pro Thr Ser Gln Leu Gln Lys Pro	255
Ser Arg Pro Gln Thr Gln Leu Val Arg Val Ala Thr Thr Thr Lys	270
Ile Gly Ser Ser Lys Leu Ala Ala Pro Lys Ala Val Ser Thr Pro	285
Lys Leu Ala Ser Val Lys Thr Ile Gly Ala Lys Gln Glu Pro Asp	300
Asn Ser Gly Gly Gly Gly Gly Met Leu Lys Leu Lys Leu Phe	315
Ser Ser Lys Asn Pro Ser Ser Ser Asn Ser Pro Gln Pro Thr	330
Arg Lys Ala Ala Ala Val Pro Gln Gln Gln Thr Leu Ser Lys Ile	345
Ala Ala Pro Val Lys Ser Gly Leu Lys Pro Pro Thr Ser Lys Leu	360
Gly Ser Ala Thr Ser Met Ser Lys Leu Cys Thr Pro Lys Val Ser	375
Tyr Arg Lys Thr Asp Ala Pro Ile Ile Ser Gln Gln Asp Ser Lys	390

SUBSTITUTE SHEET (RULE 26)

*FIG. 4 CONTINUED.**22/99*

Arg Cys Ser Lys Ser Ser Glu Glu Glu Ser Gly Tyr Ala Gly Phe	405
Asn Ser Thr Ser Pro Thr Ser Ser Ser Thr Glu Gly Ser Leu Ser	420
Met His Ser Thr Ser Ser Lys Ser Ser Thr Ser Asp Glu Lys Ser	435
Pro Ser Ser Asp Asp Leu Thr Leu Asn Ala Ser Ile Val Thr Ala	450
Ile Arg Gln Pro Ile Ala Ala Thr Pro Val Ser Pro Asn Ile Ile	465
Asn Lys Pro Val Glu Glu Lys Pro Thr Leu Ala Val Lys Gly Val	480
Lys Ser Thr Ala Lys Lys Asp Pro Pro Pro Ala Val Pro Pro Arg	495
Asp Thr Gln Pro Thr Ile Gly Val Val Ser Pro Ile Met Ala His	510
Lys Lys Leu Thr Asn Asp Pro Val Ile Ser Glu Lys Pro Glu Pro	525
Glu Lys Leu Gln Ser Met Ser Ile Asp Thr Thr Asp Val Pro Pro	540
Leu Pro Pro Leu Lys Ser Val Val Pro Leu Lys Met Thr Ser Ile	555
Arg Gln Pro Pro Thr Tyr Asp Val Leu Leu Lys Gln Gly Lys Ile	570
Thr Ser Pro Val Lys Ser Phe Gly Tyr Glu Gln Ser Ser Ala Ser	585
Glu Asp Ser Ile Val Ala His Ala Ser Ala Gln Val Thr Pro Pro	600
Thr Lys Thr Ser Gly Asn His Ser Leu Glu Arg Arg Met Gly Lys	615
Asn Lys Thr Ser Glu Ser Ser Gly Tyr Thr Ser Asp Ala Gly Val	630
Ala Met Cys Ala Lys Met Arg Glu Lys Leu Lys Glu Tyr Asp Asp	645
Met Thr Arg Arg Ala Gln Asn Gly Tyr Pro Asp Asn Phe Glu Asp	660
Ser Ser Ser Leu Ser Ser Gly Ile Ser Asp Asn Asn Glu Leu Asp	675
Asp Ile Ser Thr Asp Asp Leu Ser Gly Val Asp Met Ala Thr Val	690
Ala Ser Lys His Ser Asp Tyr Ser His Phe Val Arg His Pro Thr	705
Ser Ser Ser Ser Lys Pro Arg Val Pro Ser Arg Ser Ser Thr Ser	720
Val Asp Ser Arg Ser Arg Ala Glu Gln Glu Asn Val Tyr Lys Leu	735
Leu Ser Gln Cys Arg Thr Ser Gln Arg Gly Ala Ala Ala Thr Ser	750
Thr Phe Gly Gln His Ser Leu Arg Ser Pro Gly Tyr Ser Ser Tyr	765

FIG. 4 CONTINUED.

23/99

Ser Pro His Leu Ser Val Ser Ala Asp Lys Asp Thr Met Ser Met	780
His Ser Gln Thr Ser Arg Arg Pro Ser Ser Gln Lys Pro Ser Tyr	795
Ser Gly Gln Phe His Ser Leu Asp Arg Lys Cys His Leu Gln Glu	810
Phe Thr Ser Thr Glu His Arg Met Ala Ala Leu Leu Ser Pro Arg	825
Arg Val Pro Asn Ser Met Ser Lys Tyr Asp Ser Ser Gly Ser Tyr	840
Ser Ala Arg Ser Arg Gly Gly Ser Ser Thr Gly Ile Tyr Gly Glu	855
Thr Phe Gln Leu His Arg Leu Ser Asp Glu Lys Ser Pro Ala His	870
Ser Ala Lys Ser Glu Met Gly Ser Gln Leu Ser Leu Ala Ser Thr	885
Thr Ala Tyr Gly Ser Leu Asn Glu Lys Tyr Glu His Ala Ile Arg	900
Asp Met Ala Arg Asp Leu Glu Cys Tyr Lys Asn Thr Val Asp Ser	915
Leu Thr Lys Lys Gln Glu Asn Tyr Gly Ala Leu Phe Asp Leu Phe	930
Glu Gln Lys Leu Arg Lys Leu Thr Gln His Ile Asp Arg Ser Asn	945
Leu Lys Pro Glu Glu Ala Ile Arg Phe Arg Gln Asp Ile Ala His	960
Leu Arg Asp Ile Ser Asn His Leu Ala Ser Asn Ser Ala His Ala	975
Asn Glu Gly Ala Gly Glu Leu Leu Arg Gln Pro Ser Leu Glu Ser	990
Val Ala Ser His Arg Ser Ser Met Ser Ser Ser Lys Ser Ser	1005
Lys Gln Glu Lys Ile Ser Leu Ser Ser Phe Gly Lys Asn Lys Lys	1020
Ser Trp Ile Arg Ser Ser Leu Ser Lys Phe Thr Lys Lys Lys Asn	1035
Lys Asn Tyr Asp Glu Ala His Met Pro Ser Ile Ser Gly Ser Gln	1050
Gly Thr Leu Asp Asn Ile Asp Val Ile Glu Leu Lys Gln Glu Leu	1065
Lys Glu Arg Asp Ser Ala Leu Tyr Glu Val Arg Leu Asp Asn Leu	1080
Asp Arg Ala Arg Glu Val Asp Val Leu Arg Glu Thr Val Asn Lys	1095
Leu Lys Thr Glu Asn Lys Gln Leu Lys Lys Glu Val Asp Lys Leu	1110
Thr Asn Gly Pro Ala Thr Arg Ala Ser Ser Arg Ala Ser Ile Pro	1125
Val Ile Tyr Asp Asp Glu His Val Tyr Asp Ala Ala Cys Ser Ser	1140

*FIG. 4 CONTINUED.**24/99*

Thr Ser Ala Ser Gln Ser Ser Lys Arg Ser Ser Gly Cys Asn Ser	1155
Ile Lys Val Thr Val Asn Val Asp Ile Ala Gly Glu Ile Ser Ser	1170
Ile Val Asn Pro Asp Lys Glu Ile Ile Val Gly Tyr Leu Ala Met	1185
Ser Thr Ser Gln Ser Cys Trp Lys Asp Ile Asp Val Ser Ile Leu	1200
Gly Leu Phe Glu Val Tyr Leu Ser Arg Ile Asp Val Glu His Gln	1215
Leu Gly Ile Asp Ala Arg Asp Ser Ile Leu Gly Tyr Gln Ile Gly	1230
Glu Leu Arg Arg Val Ile Gly Asp Ser Thr Thr Met Ile Thr Ser	1245
His Pro Thr Asp Ile Leu Thr Ser Ser Thr Thr Ile Arg Met Phe	1260
Met His Gly Ala Ala Gln Ser Arg Val Asp Ser Leu Val Leu Asp	1275
Met Leu Leu Pro Lys Gln Met Ile Leu Gln Leu Val Lys Ser Ile	1290
Leu Thr Glu Arg Arg Leu Val Leu Ala Gly Ala Thr Gly Ile Gly	1305
Lys Ser Lys Leu Ala Lys Thr Leu Ala Ala Tyr Val Ser Ile Arg	1320
Thr Asn Gln Ser Glu Asp Ser Ile Val Asn Ile Ser Ile Pro Glu	1335
Asn Asn Lys Glu Glu Leu Leu Gln Val Glu Arg Arg Leu Glu Lys	1350
Ile Leu Arg Ser Lys Glu Ser Cys Ile Val Ile Leu Asp Asn Ile	1365
Pro Lys Asn Arg Ile Ala Phe Val Val Ser Val Phe Ala Asn Val	1380
Pro Leu Gln Asn Asn Glu Gly Pro Phe Val Val Cys Thr Val Asn	1395
Arg Tyr Gln Ile Pro Glu Leu Gln Ile His His Asn Phe Lys Met	1410
Ser Val Met Ser Asn Arg Leu Glu Gly Phe Ile Leu Arg Tyr Leu	1425
Arg Arg Arg Ala Val Glu Asp Glu Tyr Arg Leu Thr Val Gln Met	1440
Pro Ser Glu Leu Phe Lys Ile Ile Asp Phe Phe Pro Ile Ala Leu	1455
Gln Ala Val Asn Asn Phe Ile Glu Lys Thr Asn Ser Val Asp Val	1470
Thr Val Gly Pro Arg Ala Cys Leu Asn Cys Pro Leu Thr Val Asp	1485
Gly Ser Arg Glu Trp Phe Ile Arg Leu Trp Asn Glu Asn Phe Ile	1500
Pro Tyr Leu Glu Arg Val Ala Arg Asp Gly Lys Lys Asn Leu Arg	1515
Ser Leu His Phe Leu Arg Gly Ser His Arg His Arg Leu	

FIG. 5.

25/99

Annotated sequence of 7A variant of UNC-53

10 20 30 40 50 60
MTTSNVELIP IYTDWANRHL SKGSLSKSIR DISNDFRDYR LVSOLINIVV PINEFSPAF
 start tb6 and tb3 similarity to amino-termini of alfa-actinin,

 70 80 90 100 110 120
KRLAKITSNL DGLETCLDYL KNLGLDCSKL TKTDIDSGNL GAVLOLLFL STYKOKLROL
 beta-spectrin, dystrophin, fimbrin, filamin actin-binding site 1
 (114 - 133)

 130 140 150 160 170 180
KKDOKKKLEOL PTSIMPPAVS KLPSPRVATS ATASATNPNS NFPQMSTSRL QTPQSRISKI
 Start S4 poss. start tb1b & tb6 & tb1 lamda clone

 190 200 210 220 230 240
 DSSKIGIKPK TSGLKPPSSS TTSSNNNTSF RPSSRSGNN NVGSTISTSA KSLESSSTYS

 250 260 270 280 290 300
 SISNLNRPTS QLQKPSRPQT QLVRVATTTK IGSSKLAAPK AVSTPKLASV KTIGAKQE PD

 310 320 330 340 350 360
NSGGGGGML KLKLFFSSKNP SSSSNPQPT RKAAAVPQQQ TLSKIAAPVK SGLKPPTSKL

 370 380 390 400 410 420
 GSATSM~~S~~KL C TPKVSYRKTD APIISQQDSK RCSKSSEEEES GYAGFNSTSP TSSSTEGSLS

 430 440 450 460 470 480
MHSTSSKSST SDEKSPSSDD LTLNASIVTA IRQPIAATPV SPNIINKPVE EKPTLAVKG V
 poss. start tb22
 490 500 510 520 530 540
KSTAKKDPPP AVPPRDTQPT IGVVSPIMAH KKLTNDPVIS EKPEPEKLQS MSIDTTDVPP
 SH3-binding 1

 550 560 570 580 590 600
LPLPLKSVVPL KMITSIRQPPT YDVLLKQGKI TSPVKSFGE QSSASEDSIV AHASAQVT TPP
 binding 2

 610 620 630 640 650 660
 TKTSGNHSLE RRMGIONKTSE SSGYTSDAGV AMCAKMREKL KEYDDMTRRA QNGYPDNFED

 670 680 690 700 710 720
SSSLSSGISD NNELEDDISTD DLSGVDMATV ASKHSDYSHF VRHPTSSSK PRVPSRSSTS

 730 740 750 760 770 780
 VDSRSRAEQE NVYKLLSQCR TSQRGAAATS TFGQHSLRSP GYSSYSPHLS VSADKDTMSM

 790 800 810 820 830 840
HSQTSRRPSS QKPSYSGO FH SLDRKCHLOE FTSTEHRMAA LLSPRRVPNS MSKYDSSGSY
 Kohara Exon deleted in cDNA YK25D6

*26/99**FIG. 5 CONTINUED.*

10	20	30	40	50	60	70
AALNASGMSR SMILLESILSP RPPRHRHOSPA DSCIITASPS APPRRSHSPRG PTARIPLSLA SSPVHVNNNW						
predicted exon (alternative/additional to Kohara exon to be inserted after aminoacid 838)						
850	860	870	880	890	900	
SARSRGGSST GIYGETFQLH RLSDEKSPA _H SAKSEMGSQ _L SLASTTAYGS LNEKYEHAI _R						
910	920	930	940	950	960	
DMARDLECYK NTVDSLTKKQ ENYGALFDLF EQKLRLKTQH IDRNSNLKPEE AIRFRQDIAH						
970	980	990	1000	1010	1020	
LRDISNHLAS NSAHANE _G AG ELLRQPSLES VASHRSSMSS SSKSSKQEKI SLSSFGKNNKK						
1030	1040	1050	1060	1070	1080	
SWIRSSLSKF TKKKKNKYDE AHMPSISGSQ GTLDNIDVIE LKQELKERDS ALYEVRIDLNL candidate nuclear Start GP45 localization signal						
1090	1100	1110	1120	1130	1140	
DRAREVDVLR ETVNKLKTE _N KOLKKEVDKL TNGPATRASS RASIPVIYDD EHVVDAACSS actin binding site 2 (1097-1116)						
*	*	*	*	*	*	
candidate leucine zipper.pattern						
1150	1160	1170	1180	1190	1200	
TSASQSSKRS SG CNSIKVTV NVDIAGEISS IVNPDK _E IIV GYLAMSTSQS CWKDIDVSIL						
1210	1220	1230	1240	1250	1260	
GLFEVYLSRI DVEHQLGIDA RDSILGYQIG ELRRVIGDST TMITSHPTDI LTSSTTIRMF						
1270	1280	1290	1300	1310	1320	
MHGAAQSRVD SLVLDMLLPK QMILQLLV _K SI LTERRLVLAG ATGIGKSKLA KTLAAYVSIR candidate leucine zipper.pattern						
*	*	*	*	*	*	
nucleotide binding pocket						
1330	1340	1350	1360	1370	1380	
TNQSEDSIVN ISIPENNKEE LLQVERRLEK ILRSKESCIV ILDNIPKNRI AFVVSVFANV						
1390	1400	1410	1420	1430	1440	
PLQNNEGPFV VCTVNRYQIP ELQIHHNFKM SVMSNRLEG _F ILYRLRRRAV EDEYRLTVQM						
1450	1460	1470	1480	1490	1500	
PSELFKIIDF FPIALQAVNN FIEKTNS _V DV TVGPRACLNC PLTVDG _S REW FIRLWNENFI end GP45						
1510	1520	1530	1540	1550	1560	
PYLERVAR _D G KKTFRCTS _F EDPTDIVSEK WPWFDGENPE NVLKRLQLQD LVPS _P ANSSR						
1570	1580					
QHFNP _E SLI QLHATKHQ _T I DNI						

*FIG. 6.**27/99*

Length of Untitled : 1583 aa from cDNA pTB72; +1 at: 1;
 Listed (Ordinary) from: 1 to: 1583; din, 23 apr 1996 11:37

Met Thr Thr Ser Asn Val Glu Leu Ile Pro Ile Tyr Thr Asp Trp	15
Ala Asn Arg His Leu Ser Lys Gly Ser Leu Ser Lys Ser Ile Arg	30
Asp Ile Ser Asn Asp Phe Arg Asp Tyr Arg Leu Val Ser Gln Leu	45
Ile Asn Val Ile Val Pro Ile Asn Glu Phe Ser Pro Ala Phe Thr	60
Lys Arg Leu Ala Lys Ile Thr Ser Asn Leu Asp Gly Leu Glu Thr	75
Cys Leu Asp Tyr Leu Lys Asn Leu Gly Leu Asp Cys Ser Lys Leu	90
Thr Lys Thr Asp Ile Asp Ser Gly Asn Leu Gly Ala Val Leu Gln	105
Leu Leu Phe Leu Leu Ser Thr Tyr Lys Gln Lys Leu Arg Gln Leu	120
Lys Lys Asp Gln Lys Lys Leu Glu Gln Leu Pro Thr Ser Ile Met	135
Pro Pro Ala Val Ser Lys Leu Pro Ser Pro Arg Val Ala Thr Ser	150
Ala Thr Ala Ser Ala Thr Asn Pro Asn Ser Asn Phe Pro Gln Met	165
Ser Thr Ser Arg Leu Gln Thr Pro Gln Ser Arg Ile Ser Lys Ile	180
Asp Ser Ser Lys Ile Gly Ile Lys Pro Lys Thr Ser Gly Leu Lys	195
Pro Pro Ser Ser Thr Thr Ser Ser Asn Asn Thr Asn Ser Phe	210
Arg Pro Ser Ser Arg Ser Ser Gly Asn Asn Asn Val Gly Ser Thr	225
Ile Ser Thr Ser Ala Lys Ser Leu Glu Ser Ser Thr Tyr Ser	240
Ser Ile Ser Asn Leu Asn Arg Pro Thr Ser Gln Leu Gln Lys Pro	255
Ser Arg Pro Gln Thr Gln Leu Val Arg Val Ala Thr Thr Lys	270
Ile Gly Ser Ser Lys Leu Ala Ala Pro Lys Ala Val Ser Thr Pro	285
Lys Leu Ala Ser Val Lys Thr Ile Gly Ala Lys Gln Glu Pro Asp	300
Asn Ser Gly Gly Gly Gly Met Leu Lys Leu Lys Leu Phe	315
Ser Ser Lys Asn Pro Ser Ser Ser Asn Ser Pro Gln Pro Thr	330
Arg Lys Ala Ala Ala Val Pro Gln Gln Gln Thr Leu Ser Lys Ile	345
Ala Ala Pro Val Lys Ser Gly Leu Lys Pro Pro Thr Ser Lys Leu	360
Gly Ser Ala Thr Ser Met Ser Lys Leu Cys Thr Pro Lys Val Ser	375

FIG. 6 CONTINUED.

28/99

Tyr Arg Lys Thr Asp Ala Pro Ile Ile Ser Gln Gln Asp Ser Lys	390
Arg Cys Ser Lys Ser Ser Glu Glu Glu Ser Gly Tyr Ala Gly Phe	405
Asn Ser Thr Ser Pro Thr Ser Ser Ser Thr Glu Gly Ser Leu Ser	420
Met His Ser Thr Ser Ser Lys Ser Ser Thr Ser Asp Glu Lys Ser	435
Pro Ser Ser Asp Asp Leu Thr Leu Asn Ala Ser Ile Val Thr Ala	450
Ile Arg Gln Pro Ile Ala Ala Thr Pro Val Ser Pro Asn Ile Ile	465
Asn Lys Pro Val Glu Glu Lys Pro Thr Leu Ala Val Lys Gly Val	480
Lys Ser Thr Ala Lys Lys Asp Pro Pro Pro Ala Val Pro Pro Arg	495
Asp Thr Gln Pro Thr Ile Gly Val Val Ser Pro Ile Met Ala His	510
Lys Lys Leu Thr Asn Asp Pro Val Ile Ser Glu Lys Pro Glu Pro	525
Glu Lys Leu Gln Ser Met Ser Ile Asp Thr Thr Asp Val Pro Pro	540
Leu Pro Pro Leu Lys Ser Val Val Pro Leu Lys Met Thr Ser Ile	555
Arg Gln Pro Pro Thr Tyr Asp Val Leu Leu Lys Gln Gly Lys Ile	570
Thr Ser Pro Val Lys Ser Phe Gly Tyr Glu Gln Ser Ser Ala Ser	585
Glu Asp Ser Ile Val Ala His Ala Ser Ala Gln Val Thr Pro Pro	600
Thr Lys Thr Ser Gly Asn His Ser Leu Glu Arg Arg Met Gly Lys	615
Asn Lys Thr Ser Glu Ser Ser Gly Tyr Thr Ser Asp Ala Gly Val	630
Ala Met Cys Ala Lys Met Arg Glu Lys Leu Lys Glu Tyr Asp Asp	645
Met Thr Arg Arg Ala Gln Asn Gly Tyr Pro Asp Asn Phe Glu Asp	660
Ser Ser Ser Leu Ser Ser Gly Ile Ser Asp Asn Asn Glu Leu Asp	675
Asp Ile Ser Thr Asp Asp Leu Ser Gly Val Asp Met Ala Thr Val	690
Ala Ser Lys His Ser Asp Tyr Ser His Phe Val Arg His Pro Thr	705
Ser Ser Ser Ser Lys Pro Arg Val Pro Ser Arg Ser Ser Thr Ser	720
Val Asp Ser Arg Ser Arg Ala Glu Gln Glu Asn Val Tyr Lys Leu	735
Leu Ser Gln Cys Arg Thr Ser Gln Arg Gly Ala Ala Ala Thr Ser	750
Thr Phe Gly Gln His Ser Leu Arg Ser Pro Gly Tyr Ser Ser Tyr	765
Ser Pro His Leu Ser Val Ser Ala Asp Lys Asp Thr Met Ser Met	780

*FIG. 6 CONTINUED.**29/99*

His Ser Gln Thr Ser Arg Arg Pro Ser Ser Gln Lys Pro Ser Tyr	795
Ser Gly Gln Phe His Ser Leu Asp Arg Lys Cys His Leu Gln Glu	810
Phe Thr Ser Thr Glu His Arg Met Ala Ala Leu Leu Ser Pro Arg	825
Arg Val Pro Asn Ser Met Ser Lys Tyr Asp Ser Ser Gly Ser Tyr	840
Ser Ala Arg Ser Arg Gly Gly Ser Ser Thr Gly Ile Tyr Gly Glu	855
Thr Phe Gln Leu His Arg Leu Ser Asp Glu Lys Ser Pro Ala His	870
Ser Ala Lys Ser Glu Met Gly Ser Gln Leu Ser Leu Ala Ser Thr	885
Thr Ala Tyr Gly Ser Leu Asn Glu Lys Tyr Glu His Ala Ile Arg	900
Asp Met Ala Arg Asp Leu Glu Cys Tyr Lys Asn Thr Val Asp Ser	915
Leu Thr Lys Lys Gln Glu Asn Tyr Gly Ala Leu Phe Asp Leu Phe	930
Glu Gln Lys Leu Arg Lys Leu Thr Gln His Ile Asp Arg Ser Asn	945
Leu Lys Pro Glu Glu Ala Ile Arg Phe Arg Gln Asp Ile Ala His	960
Leu Arg Asp Ile Ser Asn His Leu Ala Ser Asn Ser Ala His Ala	975
Asn Glu Gly Ala Gly Glu Leu Leu Arg Gln Pro Ser Leu Glu Ser	990
Val Ala Ser His Arg Ser Ser Met Ser Ser Ser Lys Ser Ser	1005
Lys Gln Glu Lys Ile Ser Leu Ser Ser Phe Gly Lys Asn Lys Lys	1020
Ser Trp Ile Arg Ser Ser Leu Ser Lys Phe Thr Lys Lys Lys Asn	1035
Lys Asn Tyr Asp Glu Ala His Met Pro Ser Ile Ser Gly Ser Gln	1050
Gly Thr Leu Asp Asn Ile Asp Val Ile Glu Leu Lys Gln Glu Leu	1065
Lys Glu Arg Asp Ser Ala Leu Tyr Glu Val Arg Leu Asp Asn Leu	1080
Asp Arg Ala Arg Glu Val Asp Val Leu Arg Glu Thr Val Asn Lys	1095
Leu Lys Thr Glu Asn Lys Gln Leu Lys Lys Glu Val Asp Lys Leu	1110
Thr Asn Gly Pro Ala Thr Arg Ala Ser Ser Arg Ala Ser Ile Pro	1125
Val Ile Tyr Asp Asp Glu His Val Tyr Asp Ala Ala Cys Ser Ser	1140
Thr Ser Ala Ser Gln Ser Ser Lys Arg Ser Ser Gly Cys Asn Ser	1155
Ile Lys Val Thr Val Asn Val Asp Ile Ala Gly Glu Ile Ser Ser	1170
Ile Val Asn Pro Asp Lys Glu Ile Ile Val Gly Tyr Leu Ala Met	1185

*FIG. 6 CONTINUED.**30/99*

Ser Thr Ser Gln Ser Cys Trp Lys Asp Ile Asp Val Ser Ile Leu	1200
Gly Leu Phe Glu Val Tyr Leu Ser Arg Ile Asp Val Glu His Gln	1215
Leu Gly Ile Asp Ala Arg Asp Ser Ile Leu Gly Tyr Gln Ile Gly	1230
Glu Leu Arg Arg Val Ile Gly Asp Ser Thr Thr Met Ile Thr Ser	1245
His Pro Thr Asp Ile Leu Thr Ser Ser Thr Thr Ile Arg Met Phe	1260
Met His Gly Ala Ala Gln Ser Arg Val Asp Ser Leu Val Leu Asp	1275
Met Leu Leu Pro Lys Gln Met Ile Leu Gln Leu Val Lys Ser Ile	1290
Leu Thr Glu Arg Arg Leu Val Leu Ala Gly Ala Thr Gly Ile Gly	1305
Lys Ser Lys Leu Ala Lys Thr Leu Ala Ala Tyr Val Ser Ile Arg	1320
Thr Asn Gln Ser Glu Asp Ser Ile Val Asn Ile Ser Ile Pro Glu	1335
Asn Asn Lys Glu Glu Leu Leu Gln Val Glu Arg Arg Leu Glu Lys	1350
Ile Leu Arg Ser Lys Glu Ser Cys Ile Val Ile Leu Asp Asn Ile	1365
Pro Lys Asn Arg Ile Ala Phe Val Val Ser Val Phe Ala Asn Val	1380
Pro Leu Gln Asn Asn Glu Gly Pro Phe Val Val Cys Thr Val Asn	1395
Arg Tyr Gln Ile Pro Glu Leu Gln Ile His His Asn Phe Lys Met	1410
Ser Val Met Ser Asn Arg Leu Glu Gly Phe Ile Leu Arg Tyr Leu	1425
Arg Arg Arg Ala Val Glu Asp Glu Tyr Arg Leu Thr Val Gln Met	1440
Pro Ser Glu Leu Phe Lys Ile Ile Asp Phe Phe Pro Ile Ala Leu	1455
Gln Ala Val Asn Asn Phe Ile Glu Lys Thr Asn Ser Val Asp Val	1470
Thr Val Gly Pro Arg Ala Cys Leu Asn Cys Pro Leu Thr Val Asp	1485
Gly Ser Arg Glu Trp Phe Ile Arg Leu Trp Asn Glu Asn Phe Ile	1500
Pro Tyr Leu Glu Arg Val Ala Arg Asp Gly Lys Lys Thr Phe Gly	1515
Arg Cys Thr Ser Phe Glu Asp Pro Thr Asp Ile Val Ser Lys Lys	1530
Trp Pro Trp Phe Asp Gly Glu Asn Pro Glu Asn Val Leu Lys Arg	1545
Leu Gln Leu Gln Asp Leu Val Pro Ser Pro Ala Asn Ser Ser Arg	1560
Gln His Phe Asn Pro Leu Glu Ser Leu Ile Gln Leu His Ala Thr	1575
Lys His Gln Thr Ile Asp Asn Ile	

FIG. 7.

31/99

MTTSNVELIPIYTDWANRHL SKGSLSKSIRDISNDFRDYRLVSQLINVIVPINEFSPAFT
 KRLAKITSNL DGETCL DYLKNL GLDCSKLT KTDIDSGNL GAVLQLL FLL STYXXXXXX
 XXXXXXXX PTSIMPPAVSKL XXXXXXXXXXXXXXXXXFPQMSTSRLQTPQXXXXXX
 XXXXXXXXTSGLK PXXXXXXXXXXXXXX XXXXXXXXXX XXXXXXXX
 XXXNLNRPTSSQLQKPSRPQTQLVRVATTTKIGSSKLAAPKAVSTPKLASVKTIGAKQEPD
 NSXXXXXXMXXXXXXXXXXXXXX XXXXXXXX QPTRKA AAVPQQQ TL SKIAAPVKSGLK PPTSKL
 GSATSMSKLCTPKVSYRKTD API ISQODSKRC SKXXXXXGYAGFNXXXXXX
 XXXXXXXXX XXXXXXXXX XXXXX DTLNA SIVTAIRQPIAATPVSPNI INKPVEEKPTLAVGV
 KSTAKKDPPP AVPPRDTQPTIGVVSPIMAHKKLTNDPVI SEKPEPEKLQSMSIDTTDXXX
 XXXXXXXXX MTSIRQPPTYDVLLKQGKITSPVKSFGYEQSSASEDSIVAHASAQVTPP
 TKTSGNHSLERRMGKNKTSESSGYTS DAGVAMCAKMR EKLKEYDDMTRRAQNGYPDNFED
 XXXXXXXXX DNNE LDDISTDDLSGVDMATVASKHSDYSHFVRHPTXXXXXXXXXXXX
 XXXXXXAEQENVYKLLSQCRTSQRGAAATSTFGQHSLRSPGYSYSPHLSVSADKDTMSM
 HSQT SRRPSSSQKPSYSGQFHSLDRKCHLQEFTSTEHRMAALLSPRRVPNXXXXXX
 XXXXXXXXX YGETFQLHRLSDEKSPAHSAKSEMGSQSLASTTAYGSLNEKYEAIR
 DMARDLEYKNTVDLSLKKQENYGA LFDLFEQKLRKLTQHIDRSNLKPEEAIRFRQDIAH
 LRDI SNHLASNSAHANE GAGELLRQPSLE XXXXXXXXX XXXXXXXXX FGKNNK
 SWIRSSL SKFTKKKNY DEAHMPSISGSQGTLDNIDVIELKQELKERDSALYEVRLDNL
 DRAREVDVL RETVNKLK TENKQLKEVDKLTNGPATRASSRASI PVIYDDEHVYDXXXX
 XXXXXXXXX GCNXXXXXX XXXXXXXX DKEIIVGYLAMSTSQCWKDIDV SIL
 GLFEVYLSRIDVEHQLGIDARDSILGYQIGELRRVIGDSTTMITSHPDILTSSTTIRM
 MHGAAQSRVDSL VLDMLLPKQMIQLQVKSIL TERRLVLAGATGIGSKLAKT LAAYVSIR
 TNQSEDSIVNISI PENNKEELLQVERRLEKILRSKES CIVILDNIPKNRIAFVSVFANV
 PLQNNEGPFVVCTVNRQIPELQIHHNFKMSVMSNRLEGFILRYLRRRAVEDEYRLTVQM
 PSELFKIIDFFPIALQAVNNFIEKTN SDVTGPRACLNCP LTVDGSREW FIRLWNENFI
 PYLERVARDGKKNL RSLHFLRGSHRHRL

MTTSNVELIPIYTDWANRHL SKGSLSKSIRDISNDFRDYRLVSQLINVIVPINEFSPAFT
KRLAKITSNL DGETCL DYLKNL GLDCSKLT KTDIDSGNL GAVLQLL FLL STYKOKLROL
KKDOKKLEOL PTSIMPPAVSKL PPSR VATSATASATNPNSNFQMSTSRLQTPQSRISKI
DSSKIGIKPKTSGLK PSSSTTSSNNTNSFRPSSRSSGNNGNSTISTSAKSLESSSTYS
SISNLNRPTSSQLQKPSRPQTQLVRVATTTKIGSSKLAAPKAVSTPKLASVKTIGAKQEPD
NSGGGGGMLKLLKFSSKNPSSSNSPQPTRKA AAVPQQQ TL SKIAAPVKSGLK PPTSKL
GSATSMSKLCTPKVSYRKTD API ISQODSKRC SKSEEESGYAGFNSTSPTSSTEGSLS
MHSTSSKSSTSDEKSPSS DDLTLNA SIVTAIRQPIAATPVSPNI INKPVEEKPTLAVGV
KSTAKKDPPP AVPPRDTQPTIGVVSPIMAHKKLTNDPVI SEKPEPEKLQSMSIDTTDVPP
LPPLKSVVPLKMTSIRQPPTYDVLLKQGKITSPVKSFGYEQSSASEDSIVAHASAQVTPP
TKTSGNHSLERRMGKNKTSESSGYTS DAGVAMCAKMR EKLKEYDDMTRRAQNGYPDNFED
SSSLSSG ISDNNE LDDISTDDLSGVDMATVASKHSDYSHFVRHPTSSSSKPRVPSRSSTS
VDSRSRAE QENVYKLLSQCRTSQRGAAATSTFGQHSLRSPGYSYSPHLSVSADKDTMSM
HSQT SRRPSSSQKPSYSGQFHSLDRKCHLQEFTSTEHRMAALLSPRRVPNSMSKYDSSGSY
SARSRGGSSTGIYGETFQLHRLSDEKSPAHSAKSEMGSQSLASTTAYGSLNEKYEAIR
DMARDLEYKNTVDLSLKKQENYGA LFDLFEQKLRKLTQHIDRSNLKPEEAIRFRQDIAH
LRDI SNHLASNSAHANE GAGELLRQPSLESVASHRSMSSSKSSKOEKISLSSFGKNNK
SWIRSSL SKFTKKKNY DEAHMPSISGSQGTLDNIDVIELKQELKERDSALYEVRLDNL
DRAREVDVL RETVNKLK TENKQLKEVDKLTNGPATRASSRASI PVIYDDEHVYDAACSS

32/99

FIG. 7 CONTINUED.

TSASOSSKRSSGCNSIKVTVNVDIAGEISSIVNPDKEIIIVGYLAMSTSQSCWKDIDVSIL
GLFEVYLSRIDVEHQLGIDARDSILGYQIGELRRVIGDSTTMITSHPTDILTSSTTIRMF
MHGAAQSRVDSLVLDMLLPKQMILQLVKSIITERRLVLAGATGIGKSKLAKTLAAYVSIR
TNQSEDSIVNISIPENNKEELLQVERRLEKILRSKESCIVILDNIPKNRIAFVVVFANV
PLQNNEGPFVVCTVNRYQIPELQIHHNFKMSVMSNRLEGFILRYLRRRAVEDEYRLTVQM
PSELFKIIDFFPIALQAVNNFIEKTNSVDVTGPRACLNCPLTVDGSRWFIRLWNENFI
PYLERVARDGKKNLRSLHFLRGSHRHRL

Genistein
AG 1296, AG 1478, AG 879

FIG. 8.

- ENDPOINTS:
- A: MITOGENESIS - APOPTOSIS
 - B: CELL MOTILITY
 - C: DEVELOPMENT. DIFFERENTIATION
 - D: ENDOCYTOSIS - VESICLE TRANSPORT?

34/99

FIG. 9.

REDUCED
ACTIVITY

WILD TYPE
ACTIVITY

INCREASED
ACTIVITY

FIG. 10.

FIG. II.

SUBSTITUTE SHEET (RULE 26)

36/99

*FIG. 12.*5' atggaaattccaaacccatATGAGCGTCAAATGTAGATTGATA (oligo BG01)

ATGAGCGTCAAATGTAGATTGATA (oligo BG01)

AAGGGAGCTTATCAGTCGATTAGGGATATTCAATGATTGTTTCGCGACTATCGACTCGTT
TCTCAGCTTATTAATGTGATCGTTCCGATCAGGAAACGGTCTCGCTGCATTCA CGAACGTTTG
GCAAAAATCACATCGAACCTCGATGCGCTCGGAACCGTCTCGACTACCTGAAAAATCTGGT
CTCGACTGCTCGAAACTCAGCAAAACCGATATCGAAGCGGAACACTGGCTCCAGTTCTCCAG
CTGCTCTTCTGGCTCTCCACCTACAGGAGAACGCTCGGAACACTGAAAAAGATCAGAGAAA
TTGGAGCAACTCCACATCCATTATGCCACCCGGGTTCTAATTACCCCTGCCACGTC
(oligo BG02) GTAGGTAAATACGTCGCCCCCAAAActctctaggcqc-S'

FIG. 13.

SUBSTITUTE SHEET (RULE 26)

38/99

FIG. 14a.

FIG. 14b. 39/99

MOLECULAR DATA ON UNC-53

40/99

FIG. 14c.

S4

5'
gatcagaagaaaattggagcaactacccacatccattatgccacccgcggtttctaagtgagt
ttaattttgagttacgactacaaaaatgtgttcttta

.....

ccgccttctgacttcgtgacgacagtctcgacacacgtgggttgcaggttaggagtggatgagt
cgaaactgataagatagtcattgagatc 3'

Co-ordinates in ACEDB.
5' begins at position 2260 in C09H10.
3' finishes at 3287 in F45 E10.

Total 16818 bp.

41/99

FIG. 15.

(a) aact 1 MSEEPTPVSGNDKQLLNKAWEITQKKTFTAWCNSHLRK--LGSSIEQIDTDFTDGKLAQ
 : * * * * * * * * * * * :
 (b) unc-53 1 MTTSNVELIPIYTDWANRHLSKGSLSKSIRDISNDFRDYRLVLSQ
 : * * * * * ; * * * * * ; * : * :
 (c) spectrin 40 FERSRIKALADEREVVQKKTFKWKVNShLAR--VSCRITDLYKDLRDRGMLIK
 + + + + + + + + + + + +
 (d) aact LLEVISNDPVFKVNKTPKLRRIH-NIQNVGLCLKHIESHGVKLVGIGAEELVDKNLKMTL
 * * * * * * * * * * * * * * *
 (e) unc-53 LINVIVPINEFSPAFTKRLAKITSNLDGLECLDYLKNLGLDCSKLTKTDIDSGNLGAVL
 * * * * * * * * * * * * * * *
 (f) spectrin LLEVLS-S-GEMLPKPTKGKMRHIHC-LENVDKALQFLKEQRVHLENMGSHDIVDGNHRLVL
 + + + + + + + + + + + +
 (g) aact GMIWTIILRFIAIQDISIEEL-----SAKEALLLWCQRKTEGYDRVKV
 : * : * : * :
 (h) unc-53 QLLF-LLSTYK-QKLRQLKKDQKKLEQLPTSIMPPAVSKLPSPRVATS
 * : * : * :
 (i) spectrin GLIWTIILRFIQDIVVQTQEGRERTRSAKDALLQFLKEQRVHLENMGS
 <+++++>
 actin binding region in unc-53 ?

42/99

FIG. 16.

LLFLLSTYKQQLRQLKKDQKKLEQLPTS unc-53 106 to 133
 : | : |||: || |:::
 ETVNVNKLKTEENKQLKKEVDKLTNGPAT unc-53 1093 to 1120

FIG. 17.

side on helix 1 4 7

XphPxP

| | | |
|-----|----------|-----------------------|
| (a) | UNC-53 | <u>KKDPPPAVPPRDT</u> |
| (b) | UNC-53 | <u>TTDVPPPLPPLKS</u> |
| (c) | mSOS | <u>EVPVPPPVPPRR</u> |
| (d) | mSOS | <u>HLDSPPAIPPR</u> |
| (e) | mSOS | <u>HSIAGPPVPPR</u> |
| (f) | SOS 1359 | <u>YRAVPPPLPPRK</u> |
| (g) | SOS 1377 | <u>GELSPPPPIPRLN</u> |
| (h) | Dynamin | <u>APAVPPPARPGS</u> |
| (i) | dynamin | <u>PAVPPPARP</u> |
| (j) | PI3K p85 | <u>PPRPLPVAPGS</u> |
| (k) | PI3K p85 | <u>PAPALPPKPPK</u> |
| (l) | AFAP-110 | <u>PPDNGPPPPLPTSS</u> |
| (m) | AFAP-110 | <u>PPQMPLPEIPQQW</u> |
| (n) | 3BP-1 | <u>APTMPPPLPPVPP</u> |
| (o) | 3BP-2 | <u>FPAYPPPVPVP</u> |

FIG. 18.

43/99

| | 1 | 11 | 21 | 31 | 41 | 51 |
|---|---|-----|-----|-----|-----|-----|
| V | MTTSNVELIP IYTDWANRHL SKGSLSKSIR DISNDFRDYR LVSQLINVIV PINEFSPAFT | | | | | |
| <hr/> | | | | | | |
| H | 1 | 11 | 21 | 31 | 41 | 51 |
| V | 61 | 71 | 81 | 91 | 101 | 111 |
| KRLAKITSNL DGLETCLDYL KNLGLDCSKL TKTDIDSGNL GAVLQLLFLL STYKQKLRQL | | | | | | |
| <hr/> | | | | | | |
| H | 61 | 71 | 81 | 91 | 101 | 111 |
| V | 121 | 131 | 141 | 151 | 161 | 171 |
| KKDQKKLEQL PTSIMPPAVS KLPSPRVATS ATASATNPNS NFPQMSTSRL QTPQSRSISKI | | | | | | |
| <hr/> | | | | | | |
| H | 121 | 131 | 141 | 151 | 161 | 171 |
| V | 181 | 191 | 201 | 211 | 221 | 231 |
| DSSKIGIKPK TSGLKPPSSS TTSSNNNTNSF RPSSRSSGNN NVGSTISTSA KSLESSSTYS | | | | | | |
| <hr/> | | | | | | |
| H | 181 | 191 | 201 | 211 | 221 | 231 |
| V | 241 | 251 | 261 | 271 | 281 | 291 |
| SISNLNRPTS QLQKPSRPQT QLVRVATTK IGSSKLAAPK AVSTPKLASV KTIGAKQEpd | | | | | | |
| <hr/> | | | | | | |
| H | 241 | 251 | 261 | 271 | 281 | 291 |
| V | 301 | 311 | 321 | 331 | 341 | 351 |
| NSGGGGGGML KLKLFSKKNP SSSSNSPQPT RKAAAVPQQQ TLSKIAAPVK SGLKPPTSKL | | | | | | |
| <hr/> | | | | | | |
| -----ML KLKLFSKKNP SSSSNSPQPT RKAAAVPQQQ TLSKIAAPVK SGLKPPTSKL | | | | | | |
| H | 301 | 311 | 321 | 331 | 341 | 351 |
| V | 361 | 371 | 381 | 391 | 401 | 411 |
| GSATSMSKLC TPKVSYRKTD APIISQQDSK RCSKSSEES GYAGFNSTSP TSSSTEGLSLS | | | | | | |
| <hr/> | | | | | | |
| GSATSMSKLC TPKVSYRKTD APIISQQDSK RCSKSSEES GYAGFNSTSP TSSSTEGLSLS | | | | | | |
| H | 361 | 371 | 381 | 391 | 401 | 411 |
| V | 421 | 431 | 441 | 451 | 461 | 471 |
| MHSTSSKSST SDEKSPSSDD LT LN ASIVTA IRQPIAATPV SPNIINKPVE EKPTLAVKGv | | | | | | |
| <hr/> | | | | | | |
| MHSTSSKSST SDEKSPSSDD LT LN ASIVTA IRQPIAATPV SPNIINKPVE EKPTLAVKGv | | | | | | |
| H | 421 | 431 | 441 | 451 | 461 | 471 |
| V | 481 | 491 | 501 | 511 | 521 | 531 |
| KSTAKKDPPP AVPPRDTQPT IGVVSPIMAH KKLTNDPVIS EKPEPEKLQS MSIDTTDVPP | | | | | | |
| <hr/> | | | | | | |
| KSTAKKDPPP AVPPRDTQPT IGVVSPIMAH KKLTNDPVIS EKPEPEKLQS MSIDTTDVPP | | | | | | |
| H | 481 | 491 | 501 | 511 | 521 | 531 |
| V | 541 | 551 | 561 | 571 | 581 | 591 |
| LPPLKSVVPL KMTSIRQPPT YDVLLKQGKI TSPVKSFGYE QSSASEDSIV AHASAQVTPP | | | | | | |
| <hr/> | | | | | | |
| LPPLKSVVPL KMTSIRQPPT YDVLLKQGKI TSPVKSFGYE QSSASEDSIV AHASAQVTPP | | | | | | |
| H | 541 | 551 | 561 | 571 | 581 | 591 |
| V | 601 | 611 | 621 | 631 | 641 | 651 |
| TKTSGNHSL RRMGKKTSE SSGYTSDAGV AMCAJMREKL KEYDDMTRRA QNGYPDNFED | | | | | | |
| <hr/> | | | | | | |
| TKTSGNHSL RRMGKKTSE SSGYTSDAGV AMCAJMREKL KEYDDMTRRA QNGYPDNFED | | | | | | |
| H | 601 | 611 | 621 | 631 | 641 | 651 |
| V | 661 | 671 | 681 | 691 | 701 | 711 |
| SSSLSSGJSD NNELDDISTD DLGVDMATV ASKHSDYSHF VRHPTSSSK PRVPSRSSTS | | | | | | |
| <hr/> | | | | | | |
| SSSLSSGJSD NNELDDISTD DLGVDMATV ASKHSDYSHF VRHPTSSSK PRVPSRSSTS | | | | | | |
| H | 661 | 671 | 681 | 691 | 701 | 711 |
| V | 721 | 731 | 741 | 751 | 761 | 771 |
| VDSRSRAEQE NVYKLLSQCR TSQRGAAATS TFGQHSLRSP GYSSYSPHLS VSADKDTMSM | | | | | | |
| <hr/> | | | | | | |

44/99

FIG. 18 CONTINUED.

| | VDSRSRAEQE | NVYKLLSQCR | TSQRGAAATS | TFGQHSLRSP | GYSSYSPLHS | VSADKDTMSM |
|---|------------|-------------|-------------|-------------|-------------|-------------|
| H | 721 | 731 | 741 | 751 | 761 | 771 |
| V | 781. | 791 | 801 | 811 | 821 | 831 |
| | HSQTSRRPSS | QKPSYSQFHF | SLDRKCHLQE | FTSTEHRMAA | LLSPRRVPNS | MSKYDSSGSY |
| | ***** | ***** | ***** | ***** | ***** | ***** |
| | HSQTSRRPSS | QKPSYSQFHF | SLDRKCHLQE | FTSTEHRMAA | LLSPRRVPNS | MSKYDSSGSY |
| H | 781 | 791 | 801 | 811 | 821 | 831 |
| V | 841 | 851 | 861 | 871 | 881 | 891 |
| | SARSRGGSST | GIYGETFQLH | RLSDEKSPAHL | SAKSEMGSQSL | SLASTTAYGS | LNEKYEHAIR |
| | ***** | ***** | ***** | ***** | ***** | ***** |
| | SARSRGGSST | GIYGETFQLH | RLSDEKSPAHL | SAKSEMGSQSL | SLASTTAYGS | LNEKYEHAIR |
| H | 841 | 851 | 861 | 871 | 881 | 891 |
| V | 901 | 911 | 921 | 931 | 941 | 951 |
| | DMARDLEYCK | NTVDSLTKKQ | ENYGALFDLF | EQKLRLKLTQH | IDRSNLKPEE | AIRFRQDIAH |
| | ***** | ***** | ***** | ***** | ***** | ***** |
| | DMARDLEYCK | NTVDSLTKKQ | ENYGALFDLF | EQKLRLKLTQH | IDRSNLKPEE | AIRFRQDIAH |
| H | 901 | 911 | 921 | 931 | 941 | 951 |
| V | 961 | 971 | 981 | 991 | 1001 | 1011 |
| | LRDISNHLAS | NSAHANEAGAG | ELLRQPSLES | VASHRSSMSS | SSKSSKQEKI | SLSSFGKNNKK |
| | ***** | ***** | ***** | ***** | ***** | ***** |
| | LRDISNHLAS | NSAHANEAGAG | ELLRQPSLES | VASHRSSMSS | SSKSSKQEKI | SLSSFGKNNKK |
| H | 961 | 971 | 981 | 991 | 1001 | 1011 |
| V | 1021 | 1031 | 1041 | 1051 | 1061 | 1071 |
| | SWIRSSLSKF | TKKKNKNYDE | AHMPSISGSQ | GTLNDNIDVIE | LKQELKERDS | ALYEVRLDNL |
| | ***** | ***** | ***** | ***** | ***** | ***** |
| | SWIRSSLSKF | TKKKNKNYDE | AHMPSISGSQ | GTLNDNIDVIE | LKQELKERDS | ALYEVRLDNL |
| H | 1021 | 1031 | 1041 | 1051 | 1061 | 1071 |
| V | 1081 | 1091 | 1101 | 1111 | 1121 | 1131 |
| | DRAREVDVLR | ETVNKLKTEN | KQLKEVDKL | TNGPATRASS | RASIPVIYDD | EHVYDAACSS |
| | ***** | ***** | ***** | ***** | ***** | ***** |
| | DRAREVDVLR | ETVNKLKTEN | KQLKEVDKL | TNGPATRASS | RASIPVIYDD | EHVYDAACSS |
| H | 1081 | 1091 | 1101 | 1111 | 1121 | 1131 |
| V | 1141 | 1151 | 1161 | 1171 | 1181 | 1191 |
| | TSASQSSKRS | SGCNSIKVTV | NVDIAGEISS | IVNPDKEIIV | GYLAMSTSQS | CWKDIDVSI |
| | ***** | ***** | ***** | ***** | ***** | ***** |
| | TSASQSSKRS | SGCNSIKVTV | NVDIAGEISS | IVNPDKEIIV | GYLAMPTSQS | CWKDIDVSI |
| H | 1141 | 1151 | 1161 | 1171 | 1181 | 1191 |
| V | 1201 | 1211 | 1221 | 1231 | 1241 | 1251 |
| | GLFEVYLSRI | DVEHQLGIDA | RDSILGYQIG | ELRRVIGDST | TMITSHPPTDI | LTSSTTIRMF |
| | ***** | ***** | ***** | ***** | ***** | ***** |
| | GLFEVYLSRI | DVEHQLGIDA | RDSILGYQIG | ELRRVIGDST | TMITSHPPTDI | LTSSTTIRMF |
| H | 1201 | 1211 | 1221 | 1231 | 1241 | 1251 |
| V | 1261 | 1271 | 1281 | 1291 | 1301 | 1311 |
| | MHGAAQSRVD | SLVLDMLLPK | QMILQLVSKI | LTERRLVLAG | ATGIGKSFLA | KTLAAVYSIR |
| | ***** | ***** | ***** | ***** | ***** | ***** |
| | MHGAAQSRVD | SLVLDMLLPK | QMILQLVSKI | LTERRLVLAG | ATGIGKSFLA | KTLAAVYSIR |
| H | 1261 | 1271 | 1281 | 1291 | 1301 | 1311 |
| V | 1321 | 1331 | 1341 | 1351 | 1361 | 1371 |
| | TNQSEDSIVN | ISIPENNKEE | LLOVERRLEK | ILRSKESCI | ILDNIPIONRI | AFVVSVFANV |
| | ***** | ***** | ***** | ***** | ***** | ***** |
| | TNQSEDSIVN | ISIPENNKEE | LLOVERRLEK | ILRSKESCI | ILDNIPIONRI | AFVVSVFANV |
| H | 1321 | 1331 | 1341 | 1351 | 1361 | 1371 |
| V | 1381 | 1391 | 1401 | 1411 | 1421 | 1431 |
| | PLQNNEGPFV | VCTVNRYQIP | ELQIHHNFKM | SVMSNRLEG | ILRYLRRRAV | EDEYRLTVQM |
| | ***** | ***** | ***** | ***** | ***** | ***** |
| | PLQNNEGPFV | VCTVNRYQIP | ELQIHHNFKM | SVMSNRLEG | ILRYLRRRAV | EDEYRLTVQM |
| H | 1381 | 1391 | 1401 | 1411 | 1421 | 1431 |
| V | 1441 | 1451 | 1461 | 1471 | 1481 | 1491 |
| | PSELFKIIDF | FPIALQAVNN | FIEKTNSDV | TVGPRACLNC | PLTVDGSRREW | FIRLWNENFI |
| | ***** | ***** | ***** | ***** | ***** | ***** |

45/99

FIG 18 CONTINUED

PSELFKIIDF FPIALQAVNN FIEKTNVDV TVGPRAČLNC PLTVDGSRW FIRLWNENFI
H 1441 1451 1461 1471 1481 1491
V 1501 1511 1521 1531 1541 1551
PYLERVARDG KKNLRSLHFL RGSHRHRL-- -----

PYLERVARDG KKTFGRCTSF EDPTDIVSEK WPWFDGENPE NVLKRLQLQD LVPSPANSSR
H 1501 1511 1521 1531 1541 1551
V ----- ---
QHFNPLESLI QLHATKHQTI DNI
H 1561 1571 1581

46/99

FIG. 19.

SUBSTITUTE SHEET (RULE 26)

47/99

FIG. 20.

SUBSTITUTE SHEET (RULE 26)

48/99

FIG. 21.

SUBSTITUTE SHEET (RULE 26)

49/99

FIG. 22.

50/99

FIG. 23.

51/99

FIG. 24.

52/99

FIG. 25.

*53/99**FIG. 26.*

| | | | | | | |
|------------|-------------|------------|-------------|-------------|-------------|------|
| GGCCGCCGCC | ATGACGACGT | CAAATGAGA | ATTGATACCA | ATCTACACGG | ATTGGGCCAA | 60 |
| TCGGCACCTT | TCGAAGGGCA | GCTTATCAAA | GTCGATTAGG | GATATTCCA | ATGATTTCG | 120 |
| CGACTATCGA | CTGGTTTCTC | AGCTTATTAA | TGTGATCGTT | CCGATCAACG | AATTCTGCC | 180 |
| TGCATTACAG | AAACGTTGG | AAAAAATCAC | ATCGAACCTG | GATGGCCTCG | AAACGTGTCT | 240 |
| CGACTACCTG | AAAAATCTGG | GTCTCGACTG | CTCGAAACTC | ACCAAAACCG | ATATCGACAG | 300 |
| CGGAAACTTG | GGTGCAGTTC | TCCAGCTGCT | CTTCCTGCTC | TCCACCTACA | AGCAGAAAGCT | 360 |
| TCGGCAACTG | AAAAAAAGATC | AGAAGAAATT | GGAGCAACTA | CCCACATCCA | TTATGCCACC | 420 |
| CGCGGTTTCT | AAATTACCCCT | CGCCACGTGT | CGCCACGTCA | GCAACCGCTT | CAGCAACTAA | 480 |
| CCCAAATTCC | AACTTTCCAC | AAATGTCAAC | ATCCAGGCTT | CAGACTCCAC | AGTCAAGAAT | 540 |
| ATCGAAAATT | GATTCATCAA | AGATTGGTAT | CAAGCCAAAG | ACGTCTGGAC | TTAAACCACC | 600 |
| CTCATCATCA | ACCACTTCAT | CAAATAATAC | AAATTCAATT | CGTCCGTCGA | GCCGTTCGAG | 660 |
| TGGCAATAAT | AATGTTGGCT | CGACGATATC | CACATCTGCG | AAGAGCTTAG | AATCATCATC | 720 |
| AACGTACAGC | TCTATTCGA | ATCTAAACCG | ACCTACCTCC | CAACTCCAAA | AACCTTCTAG | 780 |
| ACCACAAACC | CAGCTAGTTC | GTGTTGCTAC | AACTACAAAA | ATCGGAAGCT | CAAAGCTAGC | 840 |
| CGCTCCGAAA | GCCGTGAGCA | CCCCAAAACT | TGCTTCTGTG | AAGACTATTG | GAGCAAAACA | 900 |
| AGAGCCCGAT | AACAGCGGTG | GTGGTGGTGG | TGGAATGCTG | AAATTAAAGT | TATTCACTAG | 960 |
| AAAAAAACCA | TCTTCCTCAT | CGAATAGCCC | ACAACCTACG | AGAAAGGCCGG | CGGCGGTGCC | 1020 |
| TCAACAACAA | ACTTTGTCGA | AAATCGCTGC | CCCAAGTGAAA | AGTGGCCTGA | AGCCGCCGAC | 1080 |
| CAGTAAGCTG | GGAAAGTGCCA | CGTCTATGTC | GAAGCTTTGT | ACGCCAAAAG | TTTCCTACCG | 1140 |
| TAACACGGAC | GCCCCAATCA | TATCTCAACA | AGACTCGAAA | CGATGCTCAA | AGAGCAGTGA | 1200 |
| AGAAGAGTCC | GGATACGCTG | GATTCAACAG | CACGTGCCA | ACGTCTCAT | CGACGGAAAGG | 1260 |
| TTCCCTAAGC | ATGCATTCCA | CATCTTCCAA | GAGTTCAACG | TCAGACGAAA | AGTCTCCGTC | 1320 |
| ATCAGACGAT | CTTACTCTTA | ACGCCTCCAT | CGTGACAGCT | ATCAGACAGC | CGATAGCCGC | 1380 |
| AACACCGGTT | TCTCCAAATA | TTATCAACAA | GCCTGTTGAG | AAAAAAACCAA | CACTGGCAGT | 1440 |

54/99

FIG. 26 CONTINUED.

| | |
|--|------|
| GAAAGGAGTG AAAAGCACAG CGAAAAAAGA TCCACCTCCA GCTGTTCCGC CACGTGACAC | 1500 |
| CCAGCCACA ATCGGAGTTG TTAGTCCAAT TATGGCACAT AAGAAGTTGA CAAATGACCC | 1560 |
| CGTGATATCT GAAAAACCAG AACCTGAAAA GCTCCAATCA ATGAGCATCG ACACGACGGA | 1620 |
| CGTCCACCG CTTCCACCTC TAAAATCAGT TGTTCCACTT AAAATGACTT CAATCCGACA | 1680 |
| ACCACCAACG TACGATGTTC TTCTAAAACA AGGAAAAATC ACATGCCCTG TCAAGTCGTT | 1740 |
| TGGATATGAG CAGTCGTCG CGTCTGAAGA CTCCATTGTG GCTCATGCGT CGGCTCAGGT | 1800 |
| GAATCCGCCG ACAAAAACCTT CTGGTAATCA TTCGCTGGAG AGAAGGATGG GAAAGAATAA | 1860 |
| GACATCAGAA TCCAGCGGCT ACACCTCTGA CGCCGGTGTG GCGATGTGCG CCAAAATGAG | 1920 |
| GGAGAAGCTG AAAGAATAACG ATGACATGAC TCGTCGAGCA CAGAACGGCT ATCCTGACAA | 1980 |
| CTTCGAAGAC AGTTCCCTCT TGTCGTCTGG AATATCCGAT AACAAACGAGC TCGACGACAT | 2040 |
| ATCCACGGAC GATTTGTCGG GAGTAGACAT GGCAACAGTC GCCTCCAAAC ATAGCGACTA | 2100 |
| TTCCCACCTT GTTCGCCATC CCACGTCTTC TTCCCTCAAAG CCCCGAGTCC CCAGTCGGTC | 2160 |
| CTCCACATCA GTCGATTCTC GATCTCGAGC AGAACAGGAG AATGTGTACA AACTTCTGTC | 2220 |
| CCAGTGCCGA ACGAGCCAAC GTGGCGCCGC TGCCACCTCA ACCTTCGGAC AACATTGCT | 2280 |
| AAGATCCCCG GGATACTCAT CCTATTCTCC ACACTTATCA GTGTCAGCTG ATAAGGACAC | 2340 |
| AATGTCTATG CACTCACAGA CTAGTCGACG ACCTTCTTC CAAAAACCAA GCTATTGAGG | 2400 |
| CCAATTTCAT TCACITGATC GTAAATGCCA CCTTCAAGAG TTCACATCCA CCGAGCACAG | 2460 |
| ARTGGCGGCT CTCTTGAGCC CGAGACGGGT GCCGAACCTCG ATGTCGAAAT ATGATTCTTC | 2520 |
| AGGATCCTAC TCGGCGCGTT CCCGAGGTGG AAGCTCTACT GGTATCTATG GAGAGACGTT | 2580 |
| CCAACTGCAC AGACTATCCG ATGAAAAATC CCCCCCACAT TCTGCCAAAA GTGAGATGGG | 2640 |
| ATCCCAACTA TCACTGGCTA GCACGACAGC ATATGGATCT CTCAATGAGA AGTACGAACA | 2700 |
| TGCTATTCGG GACATGGCAC GTGACTTGGG GTGTTACAAG AACACTGTCG ACTCACTAAC | 2760 |
| CAAGAAACAG GAGAACTATG GAGCATTGTT TGATCTTTT GAGCAAAAGC TTAGAAAATC | 2820 |
| CACTCAACAC ATTGATCGAT CCAACTTGAA GCCTGAAGAG GCAATACGAT TCAGGCAGGA | 2880 |
| CRTTGCTCAT TTGAGGGATA TTAGCAATCA TCTTGCATCC AACTCAGCTC ATGCTAACGA | 2940 |
| AGGCCTGCGT GAGCTTCTTC GTCAACCATC TCTGGAATCA GTTGCATCCC ATCGATCATC | 3000 |
| GATGTCATCG TCGTCGAAAA GCAGCAAGCA GGAGAAGATC AGCTTGAGCT CGTTGGCAA | 3060 |
| GAACAAGAAG AGCTGGATCC GCTCTCACT CTCCAAGTTC ACCAAGAAGA AGAACAAAGAA | 3120 |
| CTACGACGAA GCACATATGC CATCAATTTC CGGATCTCAA GGAACCTTTG ACAACATTGA | 3180 |
| TGTGATTGAG TTGAAGCAAG AGCTCAAAGA ACGCGATAGT GCACTTTACG AAGTCCGCCT | 3240 |
| TGACAATCTG GATCGTGCCTC GCGAAGTTGA TGTTCTGAGG GAGACAGTGA ACAAGTTGAA | 3300 |
| AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACAAACTC ACCAACGGTC CAGCCACTCG | 3360 |

*FIG. 26 CONTINUED.**55/99*

| | |
|---|------|
| TGCTTCTTCC CGCGCCTCAA TTCCAGTTAT CTACGACGAT GAGCATGTCT ATGATGCAGC | 3420 |
| GTGTAGCAGT ACATCAGCTA GTCAATCTTC GAAACGATCC TCTGGCTGCA ACTCAATCAA | 3480 |
| GGTTACTGTA AACGTGGACA TCGCTGGAGA AATCAGTTCG ATCGTTAACCC CGGACAAAGA | 3540 |
| GATAATCGTA GGATATCTTG CCATGTCAAC CAGTCAGTCA TGCTGGAAAG ACATTGATGT | 3600 |
| TTCTATTCTA GGACTATTTG AAGTCTACCT ATCCAGAATT GATGTGGAGC ATCAACTTGG | 3660 |
| AATCGATGCT CGTGATTCTA TCCTTGGCTA TCAAATTGGT GAACCTCGAC GCGTCATTGG | 3720 |
| AGACTCCACA ACCATGATAA CCAGCCATCC AACTGACATT CTTACTTCCT CAACTACAAT | 3780 |
| CCGAATGTTC ATGCACGGTG CCGCACAGAG TCGCGTAGAC AGTCTGGTCC TTGATATGCT | 3840 |
| TCTTCCAAAG CAAATGATTC TCCAACTCGT CAAGTCATT TTGACAGAGA GACGTCTGGT | 3900 |
| GT TAGCTGGA GCAAATGGAA TTGGAAAGAG CAAACTGGCG AAGACCCCTGG CTGCTTATGT | 3960 |
| ATCTATTGCA ACAAAATCAAT CCGAAGATAG TATTGTTAAT ATCAGCATTIC CTGAAAACAA | 4020 |
| TAAAGAAGAA TTGCTTCAAG TGGAACGACG CCTGGAAAAG ATCTTGAGAA GCAAAGAAC | 4080 |
| ATGCATCGTA ATTCTAGATA ATATCCAAA GAATCGAATT GCATTTGTTG TATCCGTTT | 4140 |
| TGCAAATGTC CCACCTCAAA ACAACGAAGG TCCATTGTA GTATGCACAG TCAACCGATA | 4200 |
| TCAAATCCCT GAGCTTCAAA TTCACCACAA TTTCAAAATG TCAGTAATGT CGAATCGTCT | 4260 |
| CGAAGGATTC ATCCTACGTT ACCTCCGACG ACGGGCGTA GAGGATGAGT ATCGTCTAAC | 4320 |
| TGTACAGATG CCATCAGAGC TCTTCAAAAT CATTGACTTC TTCCAATAG CTCTTCAGGC | 4380 |
| CGTCAATAAT TTTATTGAGA AAACGAATTG TGTTGATGTG ACAGTTGGTC CAAGAGCATG | 4440 |
| CTTGAACGTG CCTCTAACTG TCGATGGATC CCGTGAATGG TTCATTGAT TGTGGAATGA | 4500 |
| GAACCTCATT CCATATTGG AACGTGTTGC TAGAGATGGC AAAAAAAACCT TCGGTCGCTG | 4560 |
| CACTTCCTTC GAGGATCCC CCGACATCGT CTCTAAAAAA TGGCCGTGGT TCGATGGTGA | 4620 |
| AAACCCGGAG AATGTGCTCA AACGTCTTCA ACTCCAAGAC CTCGTCCCCGT CACCTGCCAA | 4680 |
| CTCATCCCGA CAAACACTTCA ATCCCCTCGA GTCGTTGATC CAATTGCATG CTACCAAGCA | 4740 |
| TCAGACCATC GACAACATTT GAACAGAAGA CTCTAATCTT CTCTCGCCTC TCCCCCGCTT | 4800 |
| TCCTTATCTT CGTACCGGTG CCTGATGATT CCCCATTTTC CCCCTTTTCC CCCCAATTTC | 4860 |
| CCAGAACCTC CTGTTCCCTT TGTTCTAGT CCTCCCGGGT GCCGACGCCG AAGCGATTAA | 4920 |
| AAAACCTTT TCTTCCGAA ACATTTCCCA TTGCTCATTA ATAGTCAAAT TGAATAAACAA | 4980 |
| GTGTATGTAC TTAAAAAAAAA AAAAAGGGGG GGGCCCTATT CTATAGTGT | 5040 |
| ACCTAAATGC TAGAGCTCGC TGATCAGCCT CGACTGTGCC TTCTAGTTGC CAGCCATCTG | 5100 |
| TTGTTGCCCT CTCCTCCGTG CCTTCCTGAA CCCTGGAAAGG TGCCACTCCC ACTGTCTTT | 5160 |
| CCTAATAAAAA TGAGGAATT GCATCGCATT GTCTGAGTAG GTGTCTATTCT ATTCTGGGGG | 5220 |
| GTGGGGTGGG GCAGGACAGC AAGGGGGAGG ATTGGGAAGA CAATAGCAGG CATGCTGGGG | 5280 |

56/99

FIG. 26 CONTINUED.

| | |
|---|------|
| ATGCGGTGGG CTCTATGGCT TCTGAGGCAG AAAGAACCAAG CTGGGGCTCT AGGGGGTATC | 5340 |
| CCCACGCGCC CTGTAGCGGC GCATTAAGCG CGCGGGGTGT GGTGGTTACG CGCACGCGTGA | 5400 |
| CCGCTACACT TGCCAGCGCC CTAGCGCCCG CTCCCTTCGC TTTCTTCCT TCCTTTCTCG | 5460 |
| CCACGTTCGC CGGCTTCCC CGTCAAGCTC TAAATCGGGG CATCCCTTA GGGTCCGAT | 5520 |
| TTAGTGCTTT ACGGCACCTC GACCCCCAAA AACTTGATTA GGGTGATGGT TCACGTAGTG | 5580 |
| GGCCATCGCC CTGATAGACG GTTTTCGCC CTTTGACGTT GGAGTCCACG TTCTTTAATA | 5640 |
| GTGGACTCTT GTTCCAAACT GGAACAAACAC TCAACCCATAT CTCGGTCTAT TCTTTGATT | 5700 |
| TATAAGGGAT TTTGGGGATT TCGGCCATT GGTAAAAAAA TGAGCTGATT TAACAAAAAT | 5760 |
| TTAACCGCAA TTAATTCTGT GGAATGTGTG TCAGTTAGGG TGTGGAAAGT CCCCAGGCTC | 5820 |
| CCCAGGCAGG CAGAAGTATG CAAAGCATGC ATCTCAATT A GTCAAGCAACC AGGTGTGGAA | 5880 |
| AGTCCCCAGG CTCCCCAGCA GGCAGAAGTA TGCAAAAGCAT GCATCTCAAT TAGTCAGCAA | 5940 |
| CCATAGTCCC GCCCTTAACCT CGCCCATCC CGCCCTAAC TCCGCCAGT TCCGCCATT | 6000 |
| CTCCGCCCA TGGCTGACTA ATTTTTTTA TTTATGCAGA GGCGAGGCC GCCTCTGCCT | 6060 |
| CTGAGCTATT CCAGAAGTAG TGAGGAGGCT TTTTGGAGG CCTAGGCTTT TGCAAAAAGC | 6120 |
| TCCCCGGAGC TTGTATATCC ATTTTCGGAT CTGATCAAGA GACAGGATGA GGATCGTTTC | 6180 |
| GCATGATTGA ACAAGATGGA TTGCACGCAG GTTCTCCGGC CGCTTGGGTG GAGAGGCTAT | 6240 |
| TCGGCTATGA CTGGGCACAA CAGACAATCG GCTGCTCTGA TGCCGCCGTG TTCCGGCTGT | 6300 |
| CAGCGCAGGG GCGCCCGGTT CTTTTGTCA AGACCGACCT GTCCGGTGCC CTGAATGAAC | 6360 |
| TGCAGGACGA GGCAGCGCGG CTATCGTGGC TGGCCACGAC GGGCGTTCCCT TGCGCAGCTG | 6420 |
| TGCTCGACGT TGTCACTGAA GCGGGAAAGGG ACTGGCTGCT ATTGGGCGAA GTGCCGGGGC | 6480 |
| AGGATCTCCT GTCATCTCAC CTTGCTCCTG CCGAGAAAGT ATCCATCATG GCTGATGCAA | 6540 |
| TGCGCGGCT GCATACGCTT GATCCGGCTA CCTGCCATT CGACCCACAA GCGAACACATC | 6600 |
| GCATCGAGCG AGCACGTACT CGGATGGAAG CGGGCTTGT CGATCAGGAT GATCTGGACG | 6660 |
| AAGAGCATCA GGGGCTCGCG CCAGCCGAAC TGTCGCCAG GCTCAAGGCG CGCATGCCCG | 6720 |
| ACGGCGAGGA TCTCGTCGT ACCCATGGCG ATGCCCTGCTT GCCGAATATC ATGGTGGAAA | 6780 |
| ATGGCCGCTT TTCTGGATTC ATCGACTGTG GCCGGCTGGG TGTGGCGGAC CGCTATCAGG | 6840 |
| ACATAGCGTT GGCTACCGT GATATTGCTG AAGAGCTTGG CGGCAGATGG GCTGACCGCT | 6900 |
| TCCTCGTGCT TTACGGTATC GCCGCTCCCG ATTGCAAGCG CATGCCCTTC TATGCCCTTC | 6960 |
| TTGACGAGTT CTTCTGAGCG GGACTCTGGG GTTCGAAATG ACCGACCAAG CGACGCCAA | 7020 |
| CCTGCCATCA CGAGATTTCG ATTCCACCGC CGCCTTCTAT GAAAGGTTGG GCTTCGGAAT | 7080 |
| CGTTTCCGG GACGCCGGCT GGATGATCCT CCAGCGCGGG GATCTCATGC TGGAGTTCTT | 7140 |
| CGCCCCACCCC AACTTGTTA TTGCAGCTTA TAATGGTTAC AAATAAAGCA ATAGCATCAC | 7200 |

57/99

FIG. 26 CONTINUED.

| | |
|--|------|
| AAATTCACA AATAAAGCAT TTTTTCACT GCATTCTAGT TGTGGTTGT CCAAACATCAT | 7260 |
| CAATGTATCT TATCATGTCT GTATACCGTC GACCTCTAGC TAGAGCTTGG CGTAATCATG | 7320 |
| GTCATAGCTG TTTCTGTGT GAAATTGTTA TCCGCTACA ATTCCACACA ACATACGAGC | 7380 |
| CGGAAGCATA AAGTGTAAAG CCTGGGGTGC CTAATGAGTG AGCTAACTCA CATTAATTGC | 7440 |
| GTTGCGCTCA CTGCCGCTT TCCAGTCGGG AAACCTGTG TGCCAGCTGC ATTAATGAAT | 7500 |
| CGGCCAACGC GCGGGGAGAG GCGGGTTGCG TATTGGGCCG TCTTCCGCTT CCTCGCTCAC | 7560 |
| TGACTCGCTG CGCTCGGTG TTCGGCTGCG GCGAGCGGT AAGCTCACT CAAAGGCGGT | 7620 |
| AATACGGTTA TCCACAGAAAT CAGGGGATAA CGCAGGAAG AACATGTGAG CAAAAGGCCA | 7680 |
| GCAAAAGGCC AGGAACCGTA AAAAGGCCGC GTTGCTGGCG TTTTCCATA GGCTCCGCC | 7740 |
| CCCTGACGAG CATCACAAAA ATCGACGCTC AAGTCAGAGG TGGCGAAACC CGACAGGACT | 7800 |
| ATAAAAGATAAC CAGGCCTTTC CCCCTGGAAG CTCCCCTCGT CGCTCTCCTG TTCCGACCC | 7860 |
| GCCGCTTACC GGATACCTGT CCGCCTTCT CCCTTCGGGA AGCGTGGCGC TTTCTCAATG | 7920 |
| CTCACGCTGT AGGTATCTCA GTTGGTGTGTA GTTCGTTCGC TCCAAGCTGG GCTGTGTGCA | 7980 |
| CGAACCCCCC GTTCAGCCCG ACCGCTGCGC CTTATCCGGT AACTATCGTC TTGAGTCAA | 8040 |
| CCCGGTAAGA CACGACTTAT CGCCACTGGC AGCAGCCACT GTAACAGGA TTAGCAGAGC | 8100 |
| GAGGTATGTA GGCGGTGCTA CAGAGTTCTT GAAAGTGGTGG CCTAACTACG GCTACACTAG | 8160 |
| AAGGACAGTA TTTGGTATCT GCGCTCTGCT GAAGCCAGTT ACCTTCGGAA AAAGAGTTGG | 8220 |
| TAGCTCTTGA TCCGGCAAAAC AAACCACCGC TGGTAGCGGT GGTTTTTTG TTTGCAAGCA | 8280 |
| GCAGATTACG CGCAGAAAAA AAGGATCTCA AGAAGATCCT TTGATCTTT CTACGGGTC | 8340 |
| TGACGCTCAG TGGAACGAAA ACTCACGTTA AGGGATTTG GTCATGAGAT TATCAAAAG | 8400 |
| GATCTTCACC TAGATCCTTT TAAATTTAAA ATGAAGTTTT AAATCAATCT AAAGTATATA | 8460 |
| TGAGTAAACT TGGTCTGACA GTTACCAATG CTTAATCAGT GAGGCACCTA TCTCAGCGAT | 8520 |
| CTGTCTATTT CGTTCATCCA TAGTTGCCTG ACTCCCCGTC GTGTAGATAA CTACGATAACG | 8580 |
| GGAGGGCTTA CCATCTGGCC CCAGTGCCTGC AATGATACCG CGAGACCCAC GCTCACCGGC | 8640 |
| TCCAGATTTA TCAGCAATAA ACCAGCCAGC CGGAAGGGCC GAGCGCAGAA GTGGTCTGC | 8700 |
| AACTTTATCC GCCTCCATCC AGTCTATTAA TTGTTGCCGG GAAGCTAGAG TAAGTAGTTC | 8760 |
| GCCAGTTAAT AGTTTGCAGA ACGTTGTTGC CATTGCTACA GGCATCGTGG TGTCACGCTC | 8820 |
| GTCGTTGGT ATGGCTTCAT TCAGCTCCGG TTCCCAACGA TCAAGGCAG TTACATGATC | 8880 |
| CCCCATGTTG TGCAAAAAAG CGGTTAGCTC CTTGGTCCT CCGATCGTTG TCAGAAGTAA | 8940 |
| GTTGGCCGCA GTGTTATCAC TCATGGTTAT GGCAGCACTG CATAATTCTC TTACTGTCAT | 9000 |
| GCCATCCGTA AGATGTTTT CTGTGACTGG TGAGTACTCA ACCAAGTCAT TCTGAGAATA | 9060 |
| GTGTATGCGG CGACCGAGTT GCTCTTGCCC GGCCTCAATA CGGGATAATA CGCGGCCACA | 9120 |

SUBSTITUTE SHEET (RULE 26)

58/99

FIG. 26 CONTINUED

| | |
|---|-------|
| TAGCAGAACT TTAAAAGTGC TCATCATATTGG AAAACGTTCT TCGGGGCGAA AACTCTCAAG | 9180 |
| GATCTTACCG CTGTTGAGAT CCAGTTGAT GTAAACCCACT CGTGCACCCA ACTGATCTTC | 9240 |
| AGCATCTTTT ACTTTCACCA GCGTTCTGG GTGAGCAAAA ACAGGAAGGC AAAATGCCGC | 9300 |
| AAAAAAGGGA ATAAGGGCGA CACGGAAATG TTGAATACTC ATACTCTTCC TTTTCAATA | 9360 |
| TTATTGAAGC ATTTATCAGG GTTATTGTCT CATGAGCGGA TACATATTTG AATGTATTTA | 9420 |
| GAAAAATAAA CAAATAGGGG TTCCCGCAC ATTTCCCCGA AAAGTGCAC CTGACGTCGA | 9480 |
| CGGATCGGGGA GATCTCCCGA TCCCCTATGG TCGACTCTCA GTACAACTCG CTCTGATGCC | 9540 |
| GCATAGTTAA GCCAGTATCT GCTCCCTGCT TGTGTGTTGG AGGTGCGTGA GTAGTGCACG | 9600 |
| AGCAAAATTT AAGCTACAAC AAGGCAAGGC TTGACCGACA ATTGCATGAA GAATCTGCTT | 9660 |
| AGGGTTAGGC GTTTGCGCT GCTTCGCGAT GTACGGGCCA GATATACGCG TTGACATTGA | 9720 |
| TTATTGACTA GTTATTAAATA GTAATCAATT ACGGGGTCAT TAGTTCATAG CCCATATATG | 9780 |
| GAGTTCCCGCG TTACATAACT TACGGTAAAT GGCCCCCCTG GCTGACCGGCC CAACGACCCC | 9840 |
| CGCCCATTGA CGTCAATAAT GACGTATGTT CCCATAGTAA CGCCAATAGG GACTTTCCAT | 9900 |
| TGACGTCAAT GGGTGGACTA TTTACGGTAA ACTGCCCACT TGGCAGTACA TCAAGTGTAT | 9960 |
| CATATGCCAA GTACGCCCA TATTGACGTC AATGACGGTA AATGGCCCGC CTGGCATTAT | 10020 |
| GCCCAGTACA TGACCTTATG GGACTTTCT ACTTGGCAGT ACATCTACGT ATTAGTCATC | 10080 |
| GCTATTACCA TGGTGATGCG GTTTTGGCAG TACATCAATG GGCGTGGATA GCGGTTTGAC | 10140 |
| TCACGGGGAT TTCCAAGTCT CCACCCATT GACGTCAATG GGAGTTGTT TTGGCACCAA | 10200 |
| AATCAACGGG ACTTTCCAAA ATGTCGTAAC AACTCCGCC CATTGACGCA AATGGGCGGT | 10260 |
| AGGCGTGTAC GGTGGGAGGT CTATATAAGC AGAGCTCTCT GGCTAACTAG AGAACCCACT | 10320 |
| GCTTACTGGC TTATCGAAAT TAATACGACT CACTATAGGG AGACCCAAGC TTGGTACCGA | 10380 |
| GCTCGGATCC ACTAGTAACG GCCGCCAGTG TGCTGGAATT CTGCAGATAT CCATCACACT | 10440 |
| GGC | 10443 |

59/99

FIG. 27.

60/99

FIG. 28.

| | |
|---|------|
| CTAAATTGTA AGCGTTAATA TTTTGTAAA ATTTCGCGTTA AATTTTGTT AAATCAGCTC | 60 |
| ATTTTTAAC CAATAGGCCG AAATCGGCAA AATCCCTTAT AAATCAAAAG AATAGACCGA | 120 |
| GATAGGGTTG AGTGTGTTTC CAGTTGGAA CAAGAGTCCA CTATTAAGA ACGTGGACTC | 180 |
| CAACGTCAAA GGGCGAAAAA CCGTCTATCA GGGCGATGGC CCACTACGTG AACCATCAC | 240 |
| CTAATCAAGT TTTTTGGGT CGAGGTGCCG TAAAGCACTA AATCGGAACC CTAAAGGGAG | 300 |
| CCCCCGATT AGAGCTTGAC GGGGAAAGCC GGCGAACGTG GCGAGAAAGG AAGGGAAGAA | 360 |
| AGCGAAAGGA GCGGGCGCTA GGGCGCTGGC AAGTGTAGCG GTCACGCTGC GCGTAACCAC | 420 |
| CACACCCGCC GCGCTTAATG CGCCGCTACA GGGCGCGTCC CATTGCCAT TCAGGCTGCG | 480 |
| CAACTGTTGG GAAGGGCGAT CGGTGCGGGC CTCTTCGCTA TTACGCCAGC TGCGAAAGG | 540 |
| GGGATGTGCT GCAAGGGCGAT TAAGTTGGGT AACGCCAGGG TTTTCCCAGT CACGACGTTG | 600 |
| TAAAACGACG GCCAGTGAGC GCGCGTAATA CGACTCACTA TAGGGCGAAT TGGAGCTCCA | 660 |
| CCGGGTTTC TAAATTACCC TCGCCACGTG TCGCCACGTC AGCAACCGCT TCAGCAACTA | 720 |
| ACCCAAATTC CAACTTTCCA CAAATGTCAA CATCCAGGCT TCAGACTCCA CAGTCAGAA | 780 |
| TATCGAAAT TGATTCATCA AAGATTGGTA TCAAGCCAAA GACGTCTGGA CTTAAACAC | 840 |
| CCTCATCATC AACCACTTCA TCAAATAATA CAAATTCAATT CCAGTCCGTCG AGCCGTTCGA | 900 |
| GTGGCAATAA TAATGTTGGC TCGACGATAT CCACATCTGC GAAGAGCTTA GAATCATCAT | 960 |
| CAACGTACAG CTCTATTCG AATCTAAACC GACCTACCTC CCAACTCCAA AACCTTCTA | 1020 |
| GACCACAAAC CCAGCTAGTT CGTGTGCTA CAACTACAAA AATCGGAAGC TCAAAGCTAG | 1080 |
| CCGCTCCGAA AGCCGTGAGC ACCCCAAAAC TTGCTTCTGT GAAGACTATT GGAGCAAAAC | 1140 |
| AAGAGCCCGA TAACAGCGGT GGTGGTGGTG GTGGAATGCT GAAATTAAAG TTATTCAAGTA | 1200 |
| GCAAAACCC ATCTTCCTCA TCGAATAGCC CACAACCTAC GAGAAAGGCG GCGGCGGTGC | 1260 |
| CTCAACAACA AACTTTGTG AATTCGCTG CCCCAGTGAA AAGTGGCCTG AAGCCGCCGA | 1320 |
| CCAGTAAGCT GGGAAAGTGCC ACGTCTATGT CGAAGCTTTG TACGCCAAA GTTCCTACC | 1380 |
| GTAAAACGGA CGCCCAATC ATATCTCAAC AAGACTCGAA ACGATGCTCA ARGAGCAGTG | 1440 |
| AAGAAGAGTC CGGATACGCT GGATTCAACA GCACGTGCC AACGTCACTA TCGACGGAAG | 1500 |
| GTTCCTTAAG CATGCATTCC ACATCTTCCA AGAGTTCAAC GTCAGACGAA AAGTCTCCGT | 1560 |
| CATCAGACGA TCTTACTCTT AACGCCCTCA TCGTGACAGC TATCAGACAG CCGATAGCCG | 1620 |
| CAACACCGGT TTCTCCAAAT ATTATCAACA AGCCTGTTGA GGAAAAACCA ACACGGCAG | 1680 |
| TGAAAGGAGT GAAAAGCACA GCGAAAAAAG ATCCACCTCC AGCTGTTCCG CCACGTGACA | 1740 |
| CCCAGCCAAC AATCGGAGTT GTTAGTCCAA TTATGGCACA TAAGAAGTTG ACAAAATGACC | 1800 |
| CCGTGATATC TGAAAAACCA GAACTGAAA AGCTCCAATC AATGAGCATC GACACGACGG | 1860 |

FIG. 28 CONTINUED.

6/99

| | |
|---|------|
| ACGTTCCACC GCTTCCACCT CTAATCAG TTGTTCCACT TAAATGACT TCAATCCGAC | 1920 |
| AACCACCAAC GTACGATGTT CTTCTAAAAC AAGGAAAAAT CACATCGCCT GTCAAGTCGT | 1980 |
| TTGGATATGA GCAGTCGTCC GCGTCTGAAG ACTCCATTGT GGCTCATGCG TCGGCTCAGG | 2040 |
| TGACTCCGCC GACAAAAACT TCTGGTAATC ATTGCTGGGA GAGAAGGTG GGAAAGAATA | 2100 |
| AGACATCAGA ATCCAGCGGC TACACCTCTG ACGCCGGTGT TGCGATGTGC GCCAAAATGA | 2160 |
| GGGAGAAGCT GAAAGAATAC GATGACATGA CTCGTCGAGC ACAGAACGGC TATCCTGACA | 2220 |
| ACTTCGAAGA CAGTTCCCTCC TTGTCGTCTG GAATATCCGA TAACAAACGAG CTCGACGACA | 2280 |
| TATCCACGGA CGATTTGTCC GGAGTAGACA TGGCAACAGT CGCCTCCAAA CATAGCGACT | 2340 |
| ATTCCCACTT TGTTGCCAT CCCACGTCTT CTTCTCAAA GCCCCGAGTC CCCAGTCGGT | 2400 |
| CCTCCACATC AGTCGATTCT CGATCTCGAG CAGAACAGGA GAATGTGTAC AAACATTCTGT | 2460 |
| CCCAGTGCCG AACGAGCCAA CGTGGCGCCG CTGCCACCTC AACCTTCGGA CAACATTCCG | 2520 |
| TARGATCCCC GGGATACTCA TCCTATTCTC CACACTTATC AGTGTCAAGCT GATAAGGACA | 2580 |
| CAATGTCTAT GCACTCACAG ACTAGTCGAC GACCTTCTTC ACAAAACCA AGCTATTCAAG | 2640 |
| GCCAATTCA TTCACTTGAT CGTAAATGCC ACCTTCAAGA GTTCACATCC ACCGAGCACA | 2700 |
| GAATGGCGGC TCTCTTGAGC CCGAGACGGG TGCCGAACTC GATGTCGAAA TATGATTCTT | 2760 |
| CAGGATCCTA CTCGGCGCGT TCCCGAGGTG GAAGCTCTAC TGGTATCTAT GGAGAGACGT | 2820 |
| TCCAAC TGCA CAGACTATCC GATGAAAAAT CCCCCGCACA TTCTGCCAAA AGTGAGATGG | 2880 |
| GATCCCACCT ATCACTGGCT AGCACGACAG CATATGGATC TCTCAATGAG AAGTACGAAC | 2940 |
| ATGCTATTG GAGCATGGCA CGTGACTTGG AGTGTACAA AACACTGTC GACTCACTAA | 3000 |
| CCAAGAAACA GGAGAACTAT GGAGCATTGT TTGATTTTG TGAGCAAAAG CTTAGAAAAC | 3060 |
| TCACTCAACA CATTGATCGA TCCAACATTGA AGCCTGAAGA GGCAATACGA TTCAGGCAGG | 3120 |
| ACATTGCTCA TTTGAGGGAT ATTGCAATC ATCTTGATC CAACTCAGCT CATGCTAACG | 3180 |
| AAGGGCGCTGG TGAGCTTCTT CGTCAACCAT CTCTGGATC AGTTGCATCC CATCGATCAT | 3240 |
| CGATGTCATC GTCGTCGAAA AGCAGCAAGC AGGAGAAAGT CAGCTTGAGC TCGTTGGCA | 3300 |
| AGAACAAAGAA GAGCTGGATC CGCTCCTCAC TCTCCAAGTT CACCAAGAAG AAGAACAAAGA | 3360 |
| ACTACGACGA AGCACATATG CCATCAATT CCAGGATCTCA AGGAACCTTT GACAACATTG | 3420 |
| ATGTGATTGA GTGGAAGCAA GAGCTCAAAG AACCGCGATAG TGCACTTTAC GAAGTCCGCC | 3480 |
| TTGACAATCT GGATCGTGCC CGCGAAGTTG ATGTTCTGAG GGAGACAGTG AACAAAGTTGA | 3540 |
| AAACCGAGAA CAAGCAATTA AAGAAAGAAG TGGACAAACT CACCAACGGT CCAGCCACTC | 3600 |
| GTGCTTCTTC CCGCGCCTCA ATTCCAGTTA TCTACGACGA TGAGCATGTC TATGATGCAG | 3660 |
| CGTGTAGCAG TACATCAGCT AGTCAATCTT CGAAACGATC CTCTGGCTGC AACTCAATCA | 3720 |
| AGGTTACTGT AAACGTGGAC ATCGCTGGAG AAATCAGTTG GATCGTTAAC CGGGACAAAG | 3780 |

62/99

FIG. 28 CONTINUED.

| | |
|---|------|
| AGATAATCGT AGGATATCTT GCCATGTCAA CCAGTCAGTC ATGCTGGAAA GACATTGATG | 3840 |
| TTTCTATTCT AGGACTATTT GAAGTCTACC TATCCAGAAT TGATGTGGAG CATCAACTTG | 3900 |
| GAATCGATGC TCGTGATTCT ATCCTTGGCT ATCAAATTGG TGAACCTTCGA CGCGTCATTG | 3960 |
| GAGACTCCAC AACCATGATA ACCAGCCATC CAACTGACAT TCTTACTTCC TCAACTACAA | 4020 |
| TCCGAATGTT CATGCACGGT GCCGCCACAGA GTCGCGTAGA CAGTCTGGTC CTTGATATGC | 4080 |
| TTCTTCCAAA GCAAATGATT CTCCAACTCG TCAAGTCATT TTTGACAGAG AGACGTCTGG | 4140 |
| TGTTAGCTGG AGCAACTGGA ATTGGAAAGA GCAAACTGGC GAAGACCCCTG GCTGCTTATG | 4200 |
| TATCTATTCTG AACAAATCAA TCCGAAGATA GTATTGTTAA TATCAGCATT CCTGAAAACA | 4260 |
| ATAAAAGAAGA ATTGCTTCAA GTGGAACGAC GCCTGGAAAA GATCTTGAGA AGCAAAGAAT | 4320 |
| CATGCATCGT AATTCTAGAT AATATCCCAA AGAACATGAAT TGCATTGTT GTATCCGTTT | 4380 |
| TTGCAAATGT CCCACTTCAA AACAAACGAAG GTCCATTGT AGTATGCACA GTCAACCGAT | 4440 |
| ATCAAATCCC TGAGCTTCAA ATTCAACCACA ATTTCAAAAT GTCAAGTAATG TCGAATCGTC | 4500 |
| TCGAAGGATT CATCCTACGT TACCTCCGAC GACGGGCGGT AGAGGATGAG TATCGTCTAA | 4560 |
| CTGTACAGAT GCCATCAGAG CTCTTCAAAA TCATTGACTT CTTCCAATA GCTCTTCAGG | 4620 |
| CCGTCAATAA TTTTATTGAG AAAACGAATT CTGTTGATGT GACAGTTGGT CCPAGAGCAT | 4680 |
| GCTTGAACTG TCCTCTAACT GTCGATGGAT CCCGTGAATG GTTCATTGCA TTGTGGATG | 4740 |
| AGAACCTTCAT TCCATATTTG AACCGTGTG CTAGAGATGG CAAAAAAACC TTCGGTCGCT | 4800 |
| GCACCTCCTT CGAGGATCCC ACCGACATCG TCTCTAAAAA ATGGCCGTGG TTGATGGTG | 4860 |
| AAAACCCGGA GAATGTGCTC AACCGTCTTC AACTCCAAGA CCTCGTCCCG TCACCTGCCA | 4920 |
| ACTCATCCCG ACAACACTTC AATCCCTCG AGTCGTTGAT CCAATTGCAT GCTACCAAGC | 4980 |
| ATCAGACCAT CGACAAACATT TGAACAGAAG ACTCTAATCT TCTCTCGCT CTCCCCCGCT | 5040 |
| TTCCATTATCT TCGTACCGGT ACCTGATGAT TCCCCATTTC CCCCCTTTTC CCCCCAATTTC | 5100 |
| CCCAGAACCT CCTGTTCCCT TTGTTCTAG TCCTCCCCGG TGCCGACGCC GAAGCGATT | 5160 |
| AAAAACCTTT TTCTTCCGA AACATTTCCC ATTGCTCATT AATAGTCAAA TTGAATAAAC | 5220 |
| AGTGTATGTA CTTAAAAAAA AAAAAGGGG AACTCGAGGG GGGGCCGGT ACCCAGCTTT | 5280 |
| TGTTCCCTT AGTGAGGGTT ATTGCGCGC TTGGCGTAAT CATGGTCATA GCTGTTCCCT | 5340 |
| GTGTGAAATT GTTATCCGCT CACAATTCCA CACAACATAC GAGCCGGAAG CATAAAAGTGT | 5400 |
| AAAGCCTGGG GTGCCTAATG AGTGAGCTAA CTCACATTAA TTGCGTTGCG CTCACTGCC | 5460 |
| GCTTTCCAGT CGGGAAACCT GTCGTGCCAG CTGCATTAAT GAATCGGCCA ACGCGCGGGG | 5520 |
| AGAGGCGGGT TCGGTATTGG GCGCTCTTCC GCTTCCTCGC TCACTGACTC GCTGCGCTCG | 5580 |
| GTCGTTCGGC TCGGGCGAGC GGTATCAGCT CACTCAAAGG CGGTAATACG GTTATCCACA | 5640 |
| GAATCAGGGG ATAACGCAGG AAAGAACATG TGAGCAAAAG GCCAGCAAAA GGCCAGGAAC | 5700 |

63/99

FIG. 28 CONTINUED.

| | |
|--|------|
| CGTAAAAAAGG CCGCGTTGCT GGCCTTTTC CATAGGCTCC GCCCCCCTGA CGAGCATCAC | 5760 |
| AAAAATCGAC GCTCAAGTCA GAGGTGGCGA AACCCGACAG GACTATAAAG ATACCAGGCG | 5820 |
| TTTCCCCCTG GAAGCTCCCT CGTGGCTCT CCTGTTCCGA CCCTGCCGCT TACCGGATAC | 5880 |
| CTGTCCGCCCT TTCTCCCTTC GGGAAAGCGTG GCGCTTCTC ATAGCTCACG CTGTAGGTAT | 5940 |
| CTCAGTTCGG TGTAGGTCGT TCGCTCCAAG CTGGGCTGTG TGCAACGAACC CCCCGTTCA | 6000 |
| CCCGACCGCT GCGCCTTATC CGGTAACAT CGTCTTGAGT CCAACCCGGT AAGACACGAC | 6060 |
| TTATGCCAC TGGCAGCAGC CACTGGTAAC AGGATTAGCA GAGCGAGGTA TGTAGGCGGT | 6120 |
| GCTACAGAGT TCTTGAAGTG GTGGCCTAAC TACGGCTACA CTAGAAGGAC AGTATTGGT | 6180 |
| ATCTGCGCTC TGCTGAAGCC AGTTACCTTC GGAAAAAGAG TTGGTAGCTC TTGATCCGGC | 6240 |
| AAACAAACCA CCGCTGGTAG CGGTGGTTT TTTGTTTGCA AGCAGCAGAT TACGCGCAGA | 6300 |
| AAAAAAGGAT CTCAAGAAGA TCCTTTGATC TTTTCTACGG GGTCTGACGC TCAGTGGAAC | 6360 |
| GAAAACTCAC GTTAAGGGAT TTTGGTCATG AGATTATCAA AAAGGATCTT CACCTAGATC | 6420 |
| CTTTTAAATT AAAAATGAAG TTTTAAATCA ATCTAAAGTA TATATGAGTA AACTTGGTCT | 6480 |
| GACAGTTACC AATGCTTAAT CAGTGAGGCA CCTATCTCAG CGATCTGTCT ATTCGTTCA | 6540 |
| TCCATAGTTG CCTGACTCCC CGTCGTGTAG ATAACACGA TACGGGAGGG CTTACCATCT | 6600 |
| GGCCCCAGTG CTGCAATGAT ACCCGCAGAC CCACGCTCAC CGGCTCCAGA TTTATCAGCA | 6660 |
| ATAAACCAGC CAGCCGGAAG GGCGGAGCGC AGAAGTGGTC CTGCAACTTT ATCCGCCTCC | 6720 |
| ATCCAGTCTA TTAATTGTTG CCGGGAAAGCT AGAGTAAGTA GTTCGCCAGT TAATAGTTG | 6780 |
| CGCAACGTTG TTGCCATTGC TACAGGCATC GTGGTGTAC GCTCGTCGTT TGGTATGGCT | 6840 |
| TCATTCAAGCT CCGGTTCCCA ACGATCAAGG CGAGTTACAT GATCCCCAT GTTGTGCAA | 6900 |
| AAAGCGGTTA GCTCCTTCGG TCCTCCGATC GTTGTCAAGA GTAAGTTGGC CGCAGTGTAA | 6960 |
| TCACTCATGG TTATGGCAGC ACTGCATAAT TCTCTTACTG TCATGCCATC CGTAAGATGC | 7020 |
| TTTTCTGTGA CTGGTGAGTA CTCAACCAAG TCATTCTGAG AATAGTGTAT GCGGCGACCG | 7080 |
| AGTTGCTCTT GCCCCGGCAGC AATACGGGAT AATACCGCAGC CACATAGCAG AACTTTAAA | 7140 |
| GTGCTCATCA TTGGAAAAGC TTCTCGGGG CGAAAAACTCT CAAGGATCTT ACCGCTGTTG | 7200 |
| AGATCCAGTT CGATGTAACC CACTCGTGCA CCCAACTGAT CTTCAGCATC TTTTACTTT | 7260 |
| ACCAGCGTTT CTGGGTGAGC AAAAACAGGA AGGAAAATG CGCAAAAAAA GGGATAAAGG | 7320 |
| GCGACACGGA AATGTTGAAT ACTCATACTC TTCTTTTC AATATTATTG AAGCATTAT | 7380 |
| CAGGGTTATT GTCTCATGAG CGGATACATA TTTGAATGTA TTTAGAAAAA TAAACAAATA | 7440 |
| GGGGTTCCGC GCACATTTC CCGAAAAGTG CCAC | 7474 |

64/99

FIG. 29.

65/99

FIG. 30.

| | |
|---|------|
| TATGACGACG TCAAATGTAG AATTGATACC ATTCTACACG GATTGGGCCA ATCGGCACCT | 60 |
| TTCGAAGGGC AGCTTATCAA AGTCGATTAG GGATAATTCC AATGATTTTC GCGACTATCG | 120 |
| ACTGGTTTCT CAGCTTATTA ATGTGATCGT TCCGATCAAC GAATTCTCGC CTGCATTAC | 180 |
| GAAACGTTG GCAAAAATCA CATCGAACCT GGATGGCCTC GAAACGTGTC TCGACTACCT | 240 |
| GAAAAATCTG GGTCTCGACT GCTCGAAAATC CACCAAAACC GATATCGACA GCGGAAACTT | 300 |
| GGGTGCAGTT CTCCAGCTGC TCTTCCTGCT CTCCACCTAC AAGCAGAAGC TTCGGCAACT | 360 |
| GAAAAAAGAT CAGAAGAAAT TGGAGCAACT ACCCACATCC ATTATGCCAC CGCGGGTTTC | 420 |
| TAAATTACCC TCGCCACGTG TCGCCACGTC AGCAACCGCT TCAGCAACTA ACCCAAATTC | 480 |
| CAACTTTCCA CAAATGTCAA CATCCAGGCT TCAGACTCCA CAGTCAAGAA TATCGAAAAT | 540 |
| TGATTCATCA AAGATTGGTA TCAAGCCAAA GACGTCTGGA CTTAAACCAC CCTCATCATC | 600 |
| AACCACTTCA TCAAATAATA CAAATTCTATT CCGTCCGTG AGCCGTTCGA GTGGCAATAA | 660 |
| TAATGTTGGC TCGACGATAT CCACATCTGC GAAGAGCTTA GAATCATCAT CAACGTACAG | 720 |
| CTCTATTCG AATCTAAACC GACCTACCTC CCAACTCCAA AAACCTTCTA GACCACAAAC | 780 |
| CCAGCTAGTT CGTGTGCTA CAACTACAAA AATCGGAAGC TCAAAGCTAG CCGCTCCGAA | 840 |
| AGCCGTGAGC ACCCCAAAAAC TTGCTTCTGT GAAGACTATT GGAGCAAAAC AAGAGCCCGA | 900 |
| TAACAGCGGT GGTGGTGGTG GTGGAATGCT GAAATTAAAG TTATTCAAGTA GCAAAAACCC | 960 |
| ATCTTCCTCA TCGAATAGCC CACAACCTAC GAGAAAGGCG GCGGCGGTGC CTCAACAACA | 1020 |
| AACTTTGTGCG AAAATCGCTG CCCCAGTGAA AAGTGGCCTG AAGCCGCCGA CCAGTAAGCT | 1080 |
| GGGAAGTGCC ACGTCTATGT CGAAGCTTTG TACGCCAAA GTTCTCTACC GTAAAAAGGA | 1140 |
| CGCCCCAATC ATATCTCAAC AAGACTCGAA ACGATGCTCA AAGAGCAGTG AAGAAGAGTC | 1200 |
| CGGATAACGCT GGATTCAACA GCACGTCGCC AACGTCACTCA TCGACGGAAG GTTCCCTAAG | 1260 |

FIG. 30 CONTINUED.

66/99

| | |
|--|------|
| CATGGATTCC ACATCTTCCA AGAGTTAAC GTCAGACGAA AAGTCTCCGT CATCAGACGA | 1320 |
| TCTTACTCTT AACGCCTCCA TCGTGACAGC TATCAGACAG CCGATAGCCG CAACACCGGT | 1380 |
| TTCTCCAAT ATTATCAACA AGCCTGTTGA GGAAAAAACCA AACTGGCAG TGAAAGGAGT | 1440 |
| GAAGAACACA GCGAAAAAAG ATCCACCTCC AGCTGTTCCG CCACGTGACA CCCAGCCAAC | 1500 |
| AATCGGAGTT GTTAGTCAA TTATGGCACA TAAGAAGTTG ACAATGACC CCGTGATATC | 1560 |
| TGAAAAACCA GAACCTGAAA AGCTCCAATC AATGAGCATC GACACGACGG ACGTTCCACC | 1620 |
| GCTTCCACCT CTAAATCAG TTGTTCCACT TAAAATGACT TCAATCCGAC ACCACCAAC | 1680 |
| GTACGATGTT CTTCTAAAC AAGGAAAAAT CACATCGCT GTCAAGTCGT TTGGATATGA | 1740 |
| GCAGTCGTCC GCGTCTGAAG ACTCCATTGT GGCTCATGCG TCGGCTCAGG TGACTCCGCC | 1800 |
| GACAAAAACT TCTGGTAATC ATTCGCTGGA GAGAAGGATG GGAAAGATA AGACATCAGA | 1860 |
| ATCCAGCGGC TACACCTCTG ACGCCGGTGT TGCGATGTGC GCCAAAATGA GGGAGAAGCT | 1920 |
| GAAGAAATAC GATGACATGA CTCGTCGAGC ACAGAACGGC TATCCTGACA ACTTCGAAGA | 1980 |
| CAGTTCCCTCC TTGTCGTCTG GAATATCCGA TAACAACGAG CTCGACGACA TATCCACGG | 2040 |
| CGATTGTCC GGAGTAGACA TGGCAACAGT CGCCTCCAAA CATAGCGACT ATTCCCAC | 2100 |
| TGTTCGCCAT CCCACGTCTT CTTCCCTAAA GCCCCGAGTC CCCAGTCGGT CCTCCACATC | 2160 |
| AGTCGATTCT CGATCTCGAG CAGAACAGGA GAATGTGTAC AAACCTCTGT CCCAGTCGG | 2220 |
| AACGAGCCAA CGTGGCGCCG CTGCCACCTC AACCTTCGGA CAACATTGCG TAAGATCCCC | 2280 |
| GGGATACTCA TCCTATTCTC CACACTTATC AGITGTCAGCT GATAAGGACA CAATGTCTAT | 2340 |
| GCACTCACAG ACTAGTCGAC GACCTTCTTC ACAAAACCA AGCTATTCA AGCAATTCA | 2400 |
| TTCACTTGAT CGTAAATGCC ACCTTCAAGA GTTCACATCC ACCGAGCACA GAATGGCGGC | 2460 |
| TCTCTTGAGC CCGAGACGGG TGCCGAACTC GATGTCAAA TATGATTCTT CAGGATCCTA | 2520 |
| CTCGCGCGT TCCCGAGGTG GAAGCTCTAC TGGTATCTAT GGAGAGACGT TCCAAGTCGA | 2580 |
| CAGACTATCC GATGAAAAAT CCCCCGACA TTCTGCCAAA AGTGAGATGG GATCCCAACT | 2640 |
| ATCACTGGCT AGCACGACAG CATATGGATC TCTCAATGAG AAGTACGAAC ATGCTATTG | 2700 |
| GGACATGGCA CGTGAATTGG AGTGTACAA GAACACTGTC GACTCACTAA CCAAGAAACA | 2760 |
| GGAGAACTAT GGAGCATTGT TTGATCTTT TGAGCRAAG CTTAGAAAAC TCACCAACA | 2820 |
| CATTGATCGA TCCAACCTGA AGCCTGAAGA GGCAATACGA TTCAGGCAGG ACATTGCTCA | 2880 |
| TTTGAGGGAT ATTGCAATC ATCTTGCATC CAACTCAGCT CATGCTAACG AAGGCCTGG | 2940 |
| TGAGCTTCTT CGTCAACCCT CTCTGGAATC AGTTGCATCC CATCGATCAT CGATGTCATC | 3000 |
| GTCGTGAAA AGCAGCAAGC AGGAGAAGAT CAGCTTGAGC TCGTTGCA AGAACAAAGAA | 3060 |
| GAGCTGGATC CGCTCCTCAC TCTCCAAGTT CACCAAGAAG AAGAACAAAGA ACTACGACGA | 3120 |
| AGCACATATG CCATCAATTG CCGGATCTCA AGGAACATTG ATGTGATTGA | 3180 |

SUBSTITUTE SHEET (RULE 26)

FIG. 30 CONTINUED.

67/99

| | |
|---|------|
| GTTGAAGCAA GAGCTCAAAG AACGCGATAG TGCACCTTAC GAAGTCCGCC TTGACAATCT | 3240 |
| GGATCGTGCC CGCGAAGTTG ATGTTCTGAG GGAGACAGTG AACAAGTTGA AAACCGAGAA | 3300 |
| CAAGCAATTAA AAGAAAAGAAG TGGACAAACT CACCAACGGT CCAGCCACTC GTGCTTCITC | 3360 |
| CCGGCCTCA ATTCCAGTTA TCTACGACGA TGAGCATGTC TATGATGCAG CGTGTAGCAG | 3420 |
| TACATCAGCT AGTCAATCTT CGAAACGATC CTCTGGCTGC AACTCAATCA AGGTTACTGT | 3480 |
| AAACGTGGAC ATCGCTGGAG AAATCAGTTG GATCGTTAAC CCGGACAAAG AGATAATCGT | 3540 |
| AGGATATCTT GCCATGTCAA CCAGTCAGTC ATGCTGGAAA GACATTGATG TTTCTATTCT | 3600 |
| AGGACTATTT GAAGTCTACC TATCCAGAAT TGATGTGGAG CATCAACTTG GAATCGATGC | 3660 |
| TCGTGATTCT ATCCTTGGCT ATCAAATTGG TGAACCTCGA CGCGTCATTG GAGACTCCAC | 3720 |
| AACCATGATA ACCAGCCATC CAACTGACAT TCTTACTTCC TCAACTACAA TCCGAATGTT | 3780 |
| CATGCACGGT GCCGCACAGA GTCGCGTAGA CAGTCTGGTC CTTGATATGC TTCTTCCAAA | 3840 |
| GCAATGATT CTCCAACCTCG TCAAGTCAAT TTTGACAGAG AGACGTCCTGG TGTAGCTGG | 3900 |
| AGCAACTGGA ATTGGAAAGA GCAAACCTGGC GAGACCCCTG GCTGCTTATG TATCTATTG | 3960 |
| AACAAATCAA TCCGAAGATA GTATTGTTAA TATCAGCATT CCTGAAAACA ATAAAGAAGA | 4020 |
| ATTGCTCAA GTGGAACGAC GCCTGGAAAA GATCTTGAGA AGCAAAGAAT CATGCATCGT | 4080 |
| ATTCTAGAT AATATCCAA AGAACGAAAT TGCATTGTT GTATCCGTT TTGCAAATGT | 4140 |
| CCCACCTCAA AACAACGAAG GTCCATTGAT AGTATGCACA GTCAACCGAT ATCAAATCCC | 4200 |
| TGAGCTCAA ATTCAACCACA ATTCAAAAT GTCAAGTAATG TCGAACCGTC TCGAAGGATT | 4260 |
| CATCCTACGT TACCTCCGAC GACGGGCGGT AGAGGATGAG TATCGTCTAA CTGTACAGAT | 4320 |
| GCCATCAGAG CTCTTCAAAA TCATTGACTT CTTCCAAATA GCTCTTCAGG CCGTCAATAA | 4380 |
| TTTATTGAG AAAACGAATT CTGTTGATGT GACAGTTGGT CCAAGAGCAT GCTTGAAC | 4440 |
| TCCTCTAACT GTCGATGGAT CCCGTGAATG GTTCATTGAA TTGTGGAATG AGAACCTCAT | 4500 |
| TCCATATTG GAACGTGTTG CTAGAGATGG CAAAAAAACC TTGGTGCCT GCACCTCCTT | 4560 |
| CGAGGATCCC ACCGACATCG TCTCTAAAAA ATGGCCGTGG TTCGATGGTG AAAACCCGGA | 4620 |
| GAATGTGCTC AACACGCTTC AACTCCAAGA CCTCGTCCCG TCACCTGCCA ACTCATCCCC | 4680 |
| ACAAACACTTC AATCCCCCTCG AGTCGTTGAT CCAATTGCAT GCTACCAAGC ATCAGACCAT | 4740 |
| CGACAAACATT TGAACAGAAG ACTCTAATCT TCTCTCGCCT CTCCCCCGCT TTCTTATCT | 4800 |
| TCGTACCGGT ACCTGATGAT TCCCCATTTC CCCCCCTTTTC CCCCCAATTTC CCCAGAACCT | 4860 |
| CCTGTTCCCT TTGTTCTAG TCCTCCGGG TGCGAGGCC GAAGCGATT AAAACCTTT | 4920 |
| TTCTTTCCGA AACATTCCC ATTGCTCATT AATAGTCAAA TTGAATAAAC AGTGTATGTA | 4980 |
| CTTAAAAAAA AAAAAAAAAA AAAAAAAAAA GGCCTATGCG GCCGGGCCAT GGAGGCCGAA | 5040 |
| TTCCCGGGGA TCCGTGACC TGCAGCCAAG CTAATTCCGG GCGAATTCT TATGATTAT | 5100 |

FIG. 30 CONTINUED.

68/99

| | | |
|---|------------|------|
| GATTTTATT ATTAAATAAG TTATAAAAAA AATAAGTGT ACAAATTAA | AAAGTGACTC | 5160 |
| TTAGGTTTA AAACGAAAAT TCTTGTCTT GAGTAACTCT TTCTGTAGG TCAGGTTGCT | | 5220 |
| TTCTCAGGTA TAGCATGAGG TCGCTCTTAT TGACCACACC TCTACCGGA TGCAAGCTTG | | 5280 |
| GCGTAATCAT GGTCATAGCT GTTCTGTG TGAAATTGTT ATCCGCTCAC AATTCCACAC | | 5340 |
| AACATACGAG CCGGAAGCAT AAAGTGTAAA GCCTGGGTG CCTAATGAGT GAGGTAAC | | 5400 |
| ACATTAATTG CGTTGCGCTC ACTGCCGCT TTCCAGTCGG GAAACCTGTC GTGCCAGCTG | | 5460 |
| GATTAATGAA TCGGCCAACG CGCGGGGAGA GGCGGTTTGC GTATTGGCG CTCTTCCGCT | | 5520 |
| TCCTCGCTCA CTGACTCGCT GCGCTCGGTC GTTCGGCTGC GGCGAGCGGT ATCAGCTCAC | | 5580 |
| TCAAAGCGG TAATACGGTT ATCCACAGAA TCAGGGGATA ACGCAGGAAA GAACATGTGA | | 5640 |
| GCAAAAGGCC AGCAAAAGGC CAGGAACCGT AAAAAGGCCG CGTTGCTGGC GTTTTCCAT | | 5700 |
| AGGCTCCGCC CCCCTGACGA GCATCACAAA AATCGACGCT CAAGTCAGAG GTGGCGAAC | | 5760 |
| CCGACAGGAC TATAAAGATA CCAGGCCTTT CCCCTGGAA GCTCCCTCGT GCGCTCTCCT | | 5820 |
| GTTCGACCCC TGCCGCTTAC CGGATAACCTG TCCGCCTTC TCCCTCGGG AAGCGTGGCG | | 5880 |
| CTTTCTCAT A GCTCACGCTG TAGGTATCTC AGTCGGTGT AGGTGTTCG CTCCAAGCTG | | 5940 |
| GGCTGTGTGC ACGAACCCCC CGTCAGCCC GACCGCTGCG CCTTATCCGG TAACTATCGT | | 6000 |
| CTTGAGTCCA ACCCGGTAAG ACACGACTTA TCGCCACTGG CAGCAGCCAC TGGTAACAGG | | 6060 |
| ATTAGCAGAG CGAGGTATGT AGGCGGTGCT ACAGAGTTCT TGAAGTGGTG GCCTAACTAC | | 6120 |
| GGCTACACTA GAAGGACAGT ATTTGGTATC TGCGCTCTGC TGAAGCCAGT TACCTTCGGA | | 6180 |
| AAAAGAGTTG GTAGCTCTTG ATCCGGAAA CAAACCACCG CTGGTAGCGG TGGTTTTTTT | | 6240 |
| GTTGCAAGC ACCAGATTAC GCGCAGAAAA AAAGGATCTC AAGAAGATCC TTTGATCTTT | | 6300 |
| TCTACGGGGT CTGACGCTCA GTGGAACGAA AACTCACGTT AAGGGATTT GGTGATGAGA | | 6360 |
| TTATCAAAA GGATCTTCAC CTAGATCCTT TTAAATTAAA AATGAAGTTT TAAATCAATC | | 6420 |
| TAAAGTATAT ATGAGTAAAC TTGGTCTGAC AGTTACCAAT GCTTAATCAG TGAGGCACCT | | 6480 |
| ATCTCAGCGA TCTGTCTATT TCGTTCATCC ATAGTTGCCT GACTCCCCGT CGTGTAGATA | | 6540 |
| ACTACGATAC GGGAGGGCTT ACCATCTGGC CCCAGTGCTG CAATGATACC GCGAGACCCA | | 6600 |
| CGCTCACCGG CTCCAGATTG ATCAGCAATA AACCAAGCCAG CGGGAAAGGGC CGAGCGCAGA | | 6660 |
| AGTGGTCCTG CAACTTATC CGCCTCCATC CAGTCTATTA ATTGTTGCCG GGAAGCTAGA | | 6720 |
| GTAAGTAGTT CGCCAGTTAA TAGTTGCGC AACGTTGTTG CCATTGCTAC AGGCATCGTG | | 6780 |
| GTGTCACGCT CGTCGTTTGG TATGGCTTCA TTCAGCTCCG GTTCCAACG ATCAAGGCAGA | | 6840 |
| GTTACATGAT CCCCCATGTT GTGCAAAAAA GCGGTTAGCT CCTTCGGTCC TCCGATCGTT | | 6900 |
| GTCAGAAGTA AGTTGGCCGC AGTGTATCA CTCATGGTTA TGGCAGCACT GCATAATTCT | | 6960 |
| CTTACTGTCA TGCCATCCGT AAGATGCTTT TCTGTGACTG GTGAGTACTC AACCAAGTCA | | 7020 |

FIG. 30 CONTINUED.

69/99

| | |
|--|------|
| TTCTGAGAAT AGTGTATGCG GCGACCGAGT TGCTCTGCC CGGGCGTCAAT ACGGGATAAT | 7080 |
| ACCGCGCCAC ATAGCAGAAC TTAAAAGTG CTCATCATCG GAAAACGTTG TTCGGGGCGA | 7140 |
| AAACTCTCAA GGATCTTACC GCTGTTGAGA TCCAGTCGA TGTAACCCAC TCGTGCACCC | 7200 |
| AACTGATCTT CAGCATCTTT TACTTCACC AGCGTTCTG GGTGAGCAA AACAGGAAGG | 7260 |
| CAAAATGCCG CAAAAAAGGG AATAAGGGCG ACACGGAAAT GTGAATACT CATACTCTTC | 7320 |
| CMTTTCAAT ATTATTGAAG CATTATCAG GGTTATTGTC TCATGAGCGG ATACATATT | 7380 |
| GAATGTATTT AGAAAAATAA ACAAAATAGGG GTTCCGCGCA CATTCCCCG AAAAGTGC | 7440 |
| CCTGAACGAA GCATCTGTGC TTCATTTGT AGAACAAAAA TGCAACGCGA GAGCGCTAAT | 7500 |
| TTTCAAACA AAGAATCTGA GCTGCATTTT TACAGAACAG AATGCAACG CGAAAGCGCT | 7560 |
| ATTTTACCAA CGAAGAATCT GTGCTTCATT TTTGTAAAAC AAAATGCAA CGCGAGAGCG | 7620 |
| CTAATTTTC AAACAAAGAA TCTGAGCTGC ATTTTACAG AACAGAAATG CAACGGGAGA | 7680 |
| GCGCTATTTT ACCAACAAAG AATCTATACT TCTTTTTGT TCTACAAAAA TGCACTCCGA | 7740 |
| GAGCGCTATT TTTCTAACAA AGCATCTTAG ATTACTTTT TTCTCCTTG TGCGCTCTAT | 7800 |
| AATGCAGTCT CTTGATAACT TTTGCACTG TAGGTCCGTT AAGGTTAGAA GAAGGCTACT | 7860 |
| TTGGTGTCTA TTTCTCTTC CATAAAAAAA GCCTGACTCC ACTTCCCGCG TTTACTGATT | 7920 |
| ACTAGCGAAG CTGCGGGTGC ATTTTTCAA GATAAAGGCA TCCCCGATTA TATTCTATAC | 7980 |
| CGATGTGGAT TGCGCATACT TTGTGAACAG AAAGTGATAG CGTTGATGAT TCTTCATTGG | 8040 |
| TCAAGAAAATT ATGAACGGTT TCTTCTATTT TGTCTCTATA TACTACGTAT AGGAAATGTT | 8100 |
| TACATTTTCG TATTGTTTTC GATTCACTCT ATGAATAGTT CTTACTACAA TTTTTTTGTC | 8160 |
| TAAAGAGTAA TACTAGAGAT AACATAAAAA AATGTAGAGG TCGAGTTAG ATGCAAGTT | 8220 |
| AAGGAGCGAA AGGTGGATGG GTAGGTTATA TAGGGATATA GCACAGAGAT ATATAGCAA | 8280 |
| GAGATACTTT TGAGCAATGT TTGTGGAAGC GGTATTCGCA ATATTTAGT AGCTCGTTAC | 8340 |
| AGTCCGGTGC GTTTTGTTT TTTGAAAGT GCGTCTTCAG AGCGCTTTG GTTTCAAAA | 8400 |
| GCGCTCTGAA GTTCCCTATAC TTTCTAGAGA ATAGGAACCT CGGAATAGGA ACTTCAAAGC | 8460 |
| GTTCGGAAA ACGAGCGCTT CCGAAAATGC AACGCGAGCT GCGCACATAC AGCTCACTGT | 8520 |
| TCACGTGCGCA CCTATATCTG CGTGTGCGCT GTATATATAT ATACATGAGA AGAACGGCAT | 8580 |
| AGTGCCTGTT TATGCTAAA TGCGTACTTA TATGCGCTA TTTATGTAGG ATGAAAGGTA | 8640 |
| GTCTAGTACC CCCTGTGATA TTATCCCATT CCATGCGGGG TATCGTATGC TTCCCTCAGC | 8700 |
| ACTACCCCTT AGCTGTTCTA TATGCTGCCA CTCCTCAATT GGATTAGTCT CATCCTCAA | 8760 |
| TGCTATCATT CCCTTGATA TTGGATCATA TTAAGAAACC ATTATTATCA TGACATTAAC | 8820 |
| CTATAAAAAT AGGCGTATCA CGAGGCCCTT TCGTCTCGCG CGTTTCGGTG ATGACGGTGA | 8880 |
| AAACCTCTGA CACATGCAGC TCCCGGAGAC GGTACAGCT TGTCTGTAAG CGGATGCCGG | 8940 |

*FIG. 30 CONTINUED**70/99*

| | | | | | | | |
|------------|-----------------|------------|------------|-------------|-----------------|------------|-------|
| GAGCAGACAA | GCCCCTCAGG | GCGCGTCAGC | GGGTGTTGGC | GGGTGTCGGG | GCTGGCTTAA | 9000 | |
| CTATGCGGC | CA TCAGAGCAGA | TTGTACTGAG | AGTGCACCAT | AGATCAACGA | CATTACTATA | 9060 | |
| TATATAATAT | AGGAAGCATT | TAATAGACAG | CATCGTAATA | TATGTGTACT | TTGCAGTTAT | 9120 | |
| GACGCCAGAT | GGCAGTAGTG | GAAGATATT | TTTATTGAAA | AATAGCTTGT | CACCTTACGT | 9180 | |
| ACAATCTTGA | TCCGGAGCTT | TTCTTTTTT | GCCGATTAAG | AATTAATT | CG GTCGAAAAAA | 9240 | |
| GAAAAGGAGA | GGGCCAAGAG | GGAGGGCATT | GGTGA | CTT GACTATT | GAGCACGTGA | 9300 | |
| TTAACGACAC | AAAGGCAGCT | TGGAGTATGT | CTGTTATTAA | TTTCACAGGT | AGTTCTGGTC | 9360 | |
| CATTGGTGAA | AGMTTGC | GGC | TTGCAGAGCA | CAGAGGCCGC | AGAATGTGCT | 9420 | |
| ATGCTGACTT | GCTGGGTATT | ATATGTGTG | CCAATAGAAA | GAGAACAAATT | GACCCGGTTA | 9480 | |
| TTGCAAGGAA | AATTTCAGT | CTTGTAAAAG | CATATAAAA | TAGTTCAAGC | ACTCCGAAAT | 9540 | |
| ACTTGGTTGG | CGTGTTCG | TTCAACCTA | AGGAGGATGT | TTTGGCTCTG | GTCAATGATT | 9600 | |
| ACGGCATTGA | TATCGTCAA | CTGCATGGAG | ATGAGTCGTG | GCAAGAAC | ATAC CAAGAGTTCC | 9660 | |
| TCGGTTTGCC | AGTTATTAA | AGACTCGTAT | TTCCAAAAGA | CTGCAACATA | CTACTCAGTG | 9720 | |
| CAGCTTCACA | GAAACCTCAT | TCGTTTATT | CCTGTTG | TTCAAGAGCA | GGTGGGACAG | 9780 | |
| GTGAAC | TTTT GGATTGGAAC | TCGATTCTG | ACTGGGTGG | AAGGCAAGAG | AGCCCCGAAA | 9840 | |
| GCTTACATT | TATGTTAGCT | GGTGGACTGA | CGCCAGAAA | TGTTGGTGAT | GCGCTTAGAT | 9900 | |
| TAATGGCGT | TATTGGTGT | GATGTAAGCG | GAGGTGTGGA | GACAAATGGT | GTAAAAGACT | 9960 | |
| CTAACAAAAT | AGCAAAATT | TC | AAAGAAATA | GGTTATTACT | GAGTAGTATT | 10020 | |
| TATTTAAGTA | TTGTTGTG | ACTTGCCGAT | CTATGCGGTG | TGAAATACCG | CACAGATGCG | 10080 | |
| TAAGGAGAAA | ATACCGCATC | AGGAAATTGT | AAACGTTAAT | ATTTGTTAA | AATTGCGTT | 10140 | |
| AAATTTTGT | TAAATCAGCT | CATTTTTAA | CCAA | TAAGGCC | GAARTCGGCA | AAATCCCTTA | 10200 |
| TAAATCAAAA | GAATAGACCG | AGATAGGGTT | GAGTGTGTT | CCAGTTGGA | ACAAGAGTCC | 10260 | |
| ACTATTAAAG | AACGTGGACT | CC | AAAGTC | AGGCGAAA | ACCGTCTATC | AGGGCGATGG | 10320 |
| CCCAC | ACGT | GAACCATCAC | CCTAATCAAG | TTTTTGGG | TCGAGGTGCC | GTAAAGCACT | 10380 |
| AAATCGGAAC | CCTAAAGGGA | CCCCCGATT | TAGAGCTGA | CGGGGAAAGC | CGCGAACGT | 10440 | |
| GGCGAGAAAG | GAAGGGAAAGA | AAGCGAAAGG | AGCGGGCGCT | AGGGCGCTGG | CAAGTGTAGC | 10500 | |
| GGTCACGCTG | CGCGTAACCA | CCACACCCGC | CGCGCTTAAT | GCGCCGCTAC | AGGGCGCGTC | 10560 | |
| GCGCCATT | CG | CCATTCAAGC | TGCGCAACTG | TTGGGAAAGG | CGATCGGTGC | GGGCCTCTTC | 10620 |
| GCTATTACGC | CAGCTGGCGA | AAGGGGGATG | TGCTGCAAGG | CGATTAAGTT | GGGTAACGCC | 10680 | |
| AGGGTTTCC | CAGTCACGAC | GTGTAAAAC | GACGGCCAGT | CGTCCAAGCT | TTCGCGAGCT | 10740 | |
| CGAGATCCCC | AGCTTGCAA | ATTAAAGCCT | TCGAGCGTCC | CAAACCTTC | TCAAGCAAGG | 10800 | |
| TTTCAGTAT | AATGTTACAT | GGTACACGC | GTCTGTACAG | AAAAAAAAGA | AAAATTGAA | 10860 | |

*FIG. 30 continued.**71/99*

| | |
|--|-------|
| ATATAAAATAA CGTTCTTAAT ACTAACATAA CTATAAAAAA ATAATAGGG ACCTAGACTT | 10920 |
| CAGGTTGTCT AACTCCTTCC TTTTCGGTTA GAGCGGATGT GGGGGGAGGG CGTGAATGTA | 10980 |
| AGCGTGACAT AACTAATTAC ATGATATCGA CAAAGGAAAA GGGGCCTGTT TACTCACAGG | 11040 |
| CTTTTTTCAA GTAGGTAATT AAGTCGTTTC TGTCTTTTC CTTCTCAAC CCACCAAAGG | 11100 |
| CCATCTTGGT ACTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT | 11160 |
| TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTCATA GAAATAATAC | 11220 |
| AGAAGTAGAT GTTGAATTAG ATAAACTGA AGATATATAA TTTATTGGAA AATACATAGA | 11280 |
| GCTTTTTGTT GATGCGCTTA AGCGATCAAT TCAACAAAC CACCAGCAGC TCTGATTTT | 11340 |
| TCTTCAGCCA ACTTGGAGAC GAATCTAGCT TTGACGATAA CTGGAACATT TGGGATTCTA | 11400 |
| CCCTTACCCA AGATCTTACC GTAACCGGCT GCCAAAGTGT CAATAACTGG AGCAGTTCC | 11460 |
| TTAGAAGCAG ATTTCAAGTA TTGGTCTCTC TTGTCCTG GGATCAATGT CCACAATTG | 11520 |
| TCCAAGTTCA AGACTGGCTT CCAGAAATGA GCTTGTGCT TGTGGAAGTA TCTCATACCA | 11580 |
| ANCCCTACCG AAATAACCTG GATGGTATTT ATCCATGTTA ATTCTGTGGT GATGTTGACC | 11640 |
| ACCGGCCATA CCTCTACAC CGGGGTGCTT TCTGTGCTTA CCGATACGAC CTTTACCGGC | 11700 |
| TGAGACGTGA CCTCTGTGCT TTCTAGTCTT AGTGAATCTG GAAGGCATTC TTGATTAGTT | 11760 |
| GGATGATTGT TCTGGGATTT AATGAAAAA AATCACTAAG AAGGAAAAA ATCAACGGAG | 11820 |
| AAAGCAAACG CCATCTAAA TATACGGGAT ACAGATGAAA GGTTGAACC TATCTGGAA | 11880 |
| AATACGCATT AAACAAGCGA AAAACTGCGA GGAAAATTGT TTGCGTCTCT GCGGGCTATT | 11940 |
| CACCGGCCAG AGGAAAATAG GAAAATAAC AGGGCATTAG AAAATAATT TTGATTTGG | 12000 |
| TAATGTGTGG GTCCCTGGT TACAGATGTT ACATTGGTTA CAGTACTCTT GTTTTGCTG | 12060 |
| TGTTTTTCGA TGAATCTCCA AAATGGTTGT TAGCACATGG AAGAGTCACC GATGCTAAGT | 12120 |
| TATCTCTATG TAAGCTACGT GGCCTGACTT TTGATGAAGC CGCACAAGAG ATACAGGATT | 12180 |
| GGCAACTGCA AATAGAATCT GGGGATCTAG ATATCCTTT GTTGTGTTCCG GGTGTACAAT | 12240 |
| ATGGACTTCC TCTTTCTGG CAACCAAACC CATACTCGG GATTCCATA ATACCTTCGT | 12300 |
| TGGTCTCCCT AACATGTAGG TGGCGGAGGG GAGATATACA ATAGAACAGA TACCAAGACAA | 12360 |
| GACATAATGG GCTAAACAAG ACTACACCAA TTACACTGCC TCATTGATGG TGGTACATAA | 12420 |
| CGAACTAATA CTGTAGCCCT AGACTTGATA GCCATCATCA TATCGAAGTT TCACTACCC | 12480 |
| TTTTCCATTG GCCATCTATT GAAGTAATAA TAGGCGCATG CAACTTCTTT TCTTTTTTT | 12540 |
| TCTTTCTCT CTCCCCCGTT GTTGTCTCAC CATATCCGA ATGACAAAAA AAATGATGGA | 12600 |
| AGACACTAAA GGAAAAAATT AACGACAAAG ACAGCACCAA CAGATGTCGT TGTCCAGAG | 12660 |
| CTGATGAGGG GTATCTCGA ACACACGAAA CTTTTCCCTT CCTTCATTCA CGCACACTAC | 12720 |
| TCTCTAATGA GCAACGGTAT ACGGCCTTCC TTCCAGTTAC TTGAATTGA AATAAAAAAA | 12780 |

72/99

FIG. 30 CONTINUED.

| | |
|---|-------|
| GTTCGCCGCT TTGCTATCAA GTATAAATAG ACCTGCATT ATTAAATCTTT TGTTTCTCG | 12840 |
| TCATTGTTCT CGTTCCCTTT CTTCCCTGTT TCTTTTCTG CACAATATTT CAAGCTATAC | 12900 |
| CAAGCATACA ATCAACTCCA AGCTTGAAAGC AAGCCTCCTG AAAGATGAAG CTACTGTCTT | 12960 |
| CTATCGAACCA AGCATGCGAT ATTTGCCGAC TTAAAAAGCT CAAGTGCTCC AAAGAAAAAC | 13020 |
| CGAAGTGCAGC CAAGTGTCTG AAGAACAACT GGGAGTGTGCG CTACTCTCCC AAAACCAAAA | 13080 |
| GGTCTCCGCT GACTAGGGCA CATCTGACAG AAGTGGAAATC AAGGCTAGAA AGACTGGAAC | 13140 |
| AGCTATTCT ACTGATTTTT CCTCGAGAAG ACCTTGACAT GATTTGAAA ATGGATTCTT | 13200 |
| TACAGGATAT AAAAGCATTG TTAAACAGGAT TATTTGTACA AGATAATGTG AATAAAAGATG | 13260 |
| CCGTACACAGA TAGATTGGCT TCAGTGGAGA CTGATATGCC TCTAACATTG AGACAGCATA | 13320 |
| GAATAAGTGC GACATCATCA TCGGAAGAGA GTAGTAACAA AGGTCAAAGA CAGTTGACTG | 13380 |
| TATCGCCGGA ATTGCAATAAC CCAGCTTTGA CTCA | 13414 |

73/99

FIG. 31.

74/99

FIG. 32.

| | |
|---|-----|
| TATGCCATCA ATTTCCGGAT CTCAGGAAC TCTTGACAAC ATTGATGTGA TTGAGTTGAA | 60 |
| GCAAGAGCTC AAAGAACCGCG ATAGTGCACT TTACGAAGTC CGCCTTGACA ATCTGGATCG | 120 |
| TGCCCCGCGAA GTTGATGTTG TGAGGGAGAC AGTGAACAAG TTGAAAACCG AGAACAAAGCA | 180 |
| ATTAAAGAAA GAAGTGGACA AACTCACCAA CGGTCCAGCC ACTCGTGCTT CTTCCCGCGC | 240 |
| CTCAATTCCA GTTATCTACG ACGATGAGCA TGTCTATGAT GCAGCGTGTG GCAGTACATC | 300 |
| AGCTAGTCAA TCTTCGAAAC GATCCTCTGG CTGCAACTCA ATCAAGGTTA CTGTAAACGT | 360 |
| GGACATCGCT GGAGAAATCA GTTCGATCGT TAACCCGGAC AAAGAGATAA TCGTAGGATA | 420 |
| TCTTGCCATG TCAACCAGTC AGTCATGCTG GAAAGACATT GATGTTCTA TTCTAGGACT | 480 |
| ATTTGAAGTC TACCTATCCA GAATTGATGT GGAGCATCAA CTTGGAATCG ATGCTCGTGA | 540 |

*FIG. 32 CONTINUED.**75/99*

| | |
|---|------|
| TTCTATCCTT GGCTATCAA TTGGTGAACT TCGACGCGTC ATTGGAGACT CCACAACCAT | 600 |
| GATAACCAGC CATCCAAC TG ACATTCTTAC TTCCCTCAACT ACAATCCGAA TGTTCATGCA | 660 |
| CGGTGCCGCA CAGAGTCGCG TAGACAGTCT GGTCCCTGAT ATGCTCTTC CAAAGCAAAT | 720 |
| GATTCTCCAA CTCGTCAAGT CAATTTGAC AGAGAGACGT CTGGTGTAG CTGGAGCAAC | 780 |
| TGGAATTGGA AAGAGCAAAC TGGCGAAGAC CCTGGCTGCT TATGTATCTA TTCGAACAAA | 840 |
| TCAATCCGAA GATAGTATTG TTAATATCAG CATTCCGAA AACAAATAAG AAGAATTGCT | 900 |
| TCAAGTGGAA CGACGCCTGG AAAAGATCTT GAGAAGCAA GAATCATGCA TCGTAATTCT | 960 |
| AGATAATATC CCAAAGAAC GAATTGCATT TGTTGTATCC GTTTTGCAA ATGTCCCCT | 1020 |
| TCAAAACAAAC GAAGGTCCAT TTGTTAGTATG CACAGTCAAC CGATATCAA TCCCTGAGCT | 1080 |
| TCAAATTACAC CACAATTCA AAATGTCAGT AATGTCGAAT CGTCTCGAAG GATTGATCCT | 1140 |
| ACGTTACCTC CGACGACGGG CGGTAGAGGA TGAGTATCGT CTAACGTAC AGATGCCATC | 1200 |
| AGAGCTCTTC AAAATCATTG ACTTCTTCCC AATAGCTCTT CAGGCCGTCA ATAATTTTAT | 1260 |
| TGAGAAAACG AATTCTGTTG ATGTGACAGT TGGTCCAAGA GCATGCTGA ACTGTCCCT | 1320 |
| AACTGTCGAT GGATCCCCTG AATGGTTCAT TCGATTGTGG AATGAGAACT TCATTCCATA | 1380 |
| TTTGGAACGT GTTGCTAGAG ATGGCAAAAA AACCTTCGGT CGCTGCACCT CCTTCGAGGA | 1440 |
| TCCCACCGAC ATCGTCTCTA AAAATGGCC GTGGTTCGAT GGTGAAAACC CGGAGAATGT | 1500 |
| GCTCAAACGT CTTCAACTCC AAGACCTCGT CCCGTCACCT GCCAACTCAT CCCGACAAACA | 1560 |
| CTTCAATCCC CTCGAGTCGT TGATCCATT GCATGCTACC AAGCATCAGA CCATCGACAA | 1620 |
| CATTGAAACA GAAGACTCTA ATCTTCTCTC GCCTCTCCCC CGCTTTCTT ATCTTCGTAC | 1680 |
| CGGTACCTGA TGATTCCCCA TTTTCCCCCT TTTCCCCCA ATTTCCCAGA ACCTCCTGTT | 1740 |
| CCCTTTGTTG CTAGTCCTCC CGGGTGCCGA CGCCGAAGCG ATTTAAAAAC CTTTTTCTTT | 1800 |
| CCGAAACATT TCCCATGCT CATTAAATAGT CAAATTGAAT AAACAGTGT A TGACTTTAAA | 1860 |
| AAAAAAAAAAA AAAAAAAA AAAAGGCCTA TGCGGGCGGG CCATGGAGGC CGAATTCCCG | 1920 |
| GGGATCCGTC GACCTGCAGC CAAGCTAATT CGGGCGAAT TTCTTATGAT TTATGATTTT | 1980 |
| TATTATTAAG TAAGTTATAA AAAAAATAAG TGTATACAAA TTTTAAAGTG ACTCTTAGGT | 2040 |
| TTTAAAACGA AAATTCTTGT TCTTGAGTAA CTCTTCTG TAGGTCAGGT TGCTTTCTCA | 2100 |
| GGTATAGCAT GAGGTGGCTC TTATTGACCA CACCTCTACC GGCAATGCAAG CTTGGCGTAA | 2160 |
| TCATGGTCAT AGCTGTTCC TGTGTGAAAT TGTTATCCGC TCACAATTCC ACACAACATA | 2220 |
| CGAGCCGGAA GCATAAAAGTG TAAAGCCTGG GGTGCCTAAT GAGTGAGGTA ACTCACATTA | 2280 |
| ATTGCGTTGC GCTCACTGCC CGCTTTCCAG TCGGGAAACC TGTCGTGCCA GCTGGATTAA | 2340 |
| TGAATCGGCC AACGCGCGGG GAGAGGCGGT TTGCGTATTG GGCCTCTTC CGCTTCCTCG | 2400 |
| CTCACTGACT CGCTGCCTC GGTCGTTCGG CTGCGGCGAG CGGTATCAGC TCACTCAAAG | 2460 |

*FIG. 32 CONTINUED.**76/99*

| | |
|--|------|
| GCGGTAATAC GGTTATCCAC AGAACAGGG GATAACGCAG GAAAGAACAT GTGAGCAAAA | 2520 |
| GGCCAGCAAA AGGCCAGGAA CCGTAAAAAG GCCGCGTTGC TGGCGTTTT CCATAGGCTC | 2580 |
| CGCCCCCTG ACGAGCATCA CAAAATCGA CGCTCAAGTC AGAGGTGGCG AAACCCGACA | 2640 |
| GGACTATAAA GATACCAGGC GTTTCCCCCT GGAAGCTCCC TCGTGCGCTC TCCTGTTCCG | 2700 |
| ACCCGTGCCGC TTACCGGATA CCTGTCCGCC TTTCTCCCTT CGGGAAAGCGT GGCCTTTCT | 2760 |
| CATAGCTCAC GCTGTAGGTA TCTCAGTTCG GTGTAGGTGG TTGCTCCAA GCTGGGCTGT | 2820 |
| GTGACGAAAC CCCCCGTTCA GCCCACCGC TGCGCCTTAT CCGGTAACTA TCGCTTGAG | 2880 |
| TCCAACCCGG TAAGACACGA CTTATCGCCA CTGGCAGCAG CCACTGGTAA CAGGATTAGC | 2940 |
| AGAGCGAGGT ATGTAGGCCG TGCTACAGAG TTCTTGAAGT GGTGGCCTAA CTACGGCTAC | 3000 |
| ACTAGAAGGA CAGTATTTGG TATCTGCGCT CTGCTGAAGC CAGTTACCTT CGGAAAAAGA | 3060 |
| GTTGGTAGCT CTTGATCCGG CAAACAAACC ACCGCTGGTA GCGGTGGTT TTTTGTGTTGC | 3120 |
| AAGCAGCAGA TTACGCGCAG AAAAAAAGGA TCTCAAGAAG ATCCTTTGAT CTTTCTACG | 3180 |
| GGGTCTGACG CTCAGTGGAA CGAAAACCTCA CGTTAAGGGA TTTTGGTCAT GAGATTATCA | 3240 |
| AAAAGGATCT TCACCTAGAT CCTTTAAAT TAAAAATGAA GTTTAAATC AATCTAAAGT | 3300 |
| ATATATGAGT AAACCTGGTC TGACAGTTAC CAATGCTTAA TCAGTGAGGC ACCTATCTCA | 3360 |
| GCGATCTGTC TATTCGTTA ATCCATAGTT GCCTGACTCC CCGTCGTGTA GATAACTACG | 3420 |
| ATACGGGAGG GCTTACCATC TGGCCCCAGT GCTGCAATGA TACCGCGAGA CCCACGCTCA | 3480 |
| CCGGCTCCAG ATTTATCAGC AATAAACAG CCAGCCGGAA GGGCCGAGCG CAGAAGTGGT | 3540 |
| CCTGCAACTT TATCCGCCCTC CATCCAGTCT ATTAATTGTT GCCGGGAAGC TAGAGTAAGT | 3600 |
| AGTCGCCAG TTAATAGTTT GCGAACGTT GTGCCATTG CTACAGGCAT CGTGGTGTCA | 3660 |
| CGCTCGTCGT TTGGTATGGC TTCATTCAAGC TCCGGTTCCC AACGATCAAG GCGAGTTACA | 3720 |
| TGATCCCCCA TGGTGTGCAA AAAAGCGGTT AGCTCCTTCG GTCTCCGAT CGTTGTCAGA | 3780 |
| AGTAAGTTGG CCGCAGTGTG ATCACTCATG GTTATGGCAG CACTGCATAA TTCTCTTACT | 3840 |
| GTCATGCCAT CGGTAAGATG CTTTCTGTG ACTGGTGAGT ACTCAACCAA GTCATTCTGA | 3900 |
| GAATAGTGTGTA TGCAGCGACC GAGTTGCTCT TGCCCGCGT CAATACGGGA TAATACCGCG | 3960 |
| CCACATAGCA GAACTTTAAA AGTGCATC ATTGGAAAAC GTTCTTCGGG GCGAAAAACTC | 4020 |
| TCAAGGATCT TACCGCTGTT GAGATCCAGT TCGATGTAAC CCACTCGTGC ACCCAACTGA | 4080 |
| TCTTCAGCAT CTTTTACTTT CACCAAGCGTT TCTGGGTGAG CAAAAACAGG AAGGAAAAAT | 4140 |
| GCCGCAAAAA AGGGATAAG GGCACACGG AAATGTTGAA TACTCATACT CTTCTTTTTT | 4200 |
| CAATATTATT GAAGCATTAA TCAGGGTTAT TGTCTCATGA GCGGATACAT ATTTGAATGT | 4260 |
| ATTTAGAAAA ATAAACAAAT AGGGGTTCCG CGCACATTTC CCCGAAAAAGT GCCACCTGAA | 4320 |
| CGAAGCATTCT GTGCTTCATT TTGTAGAACAA AAAATGCAAC GCGAGAGCGC TAATTTTCA | 4380 |

FIG. 32 CONTINUED.

77/99

| | |
|------------------------|------|
| AACAAAGAAT CTGAGCTGCA | 4440 |
| CCAAACGAAGA ATCTGTGCTT | 4500 |
| TTTCAAACAA AGAATCTGAG | 4560 |
| TTTTACCAAC AAAGAACATCA | 4620 |
| TATTTTCTA ACAAAAGCATT | 4680 |
| GTCTCTTGAT AACTTTTGC | 4740 |
| TCTATTTCT CTTCCATAAA | 4800 |
| GAAGCTGCGG GTGCATTTT | 4860 |
| GGATTGCGCA TACTTTGTGA | 4920 |
| AATTATGAAC GGTTTCTTCT | 4980 |
| TTCGTATTGT TTTCGATTCA | 5040 |
| GTAATACTAG AGATAAACAT | 5100 |
| CGAAAGGTGG ATGGGTAGGT | 5160 |
| CTTTTGAGCA ATGTTTGTGG | 5220 |
| GTGCGTTTT GGTTTTTGA | 5280 |
| TGAAGTTCCCT ATACTTTCTA | 5340 |
| GAAAACGAGC GCTTCCGAAA | 5400 |
| CGCACCTATA TCTGCGTGT | 5460 |
| TGTTTATGCT TAAATGCGTA | 5520 |
| TACCTCCTGT GATATTATCC | 5580 |
| CTTTAGCTGT TCTATATGCT | 5640 |
| CATTTCTTT GATATTGGAT | 5700 |
| AAATAGGCGT ATCACGAGGC | 5760 |
| CTGACACATG CAGCTCCCGG | 5820 |
| ACAAGCCCCGT CAGGGCCGT | 5880 |
| GGCATCAGAG CAGATTGTAC | 5940 |
| ATATAGGAAG CATTAAATAG | 6000 |
| AGATGGCAGT AGTGGAAAGAT | 6060 |
| TTGATCCGGA GCTTTCTTT | 6120 |
| GAGAGGGCCA AGAGGGAGGG | 6180 |
| ACACAAAGGC AGCTTGGAGT | 6240 |
| TGAAAAGTTG CGGCTTGCAG | 6300 |

*FIG. 32 CONTINUED.**78/99*

| | |
|--|------|
| ACTTGCTGGG TATTATATGT GTGCCAATA GAAAGAGAAC AATTGACCCG GTTATTGCAA | 6360 |
| GGAAAATTC AAGTCTTGTA AAAGCATATA AAAATAGTTC AGGCACCTCG AATAACTTGG | 6420 |
| TTGGCGTGT TCGTAATCAA CCTAAGGAGG ATGTTTGCG TCTGGCAAT GATTACGGCA | 6480 |
| TTGATATCGT CCAACTGCAT GGAGATGAGT CGTGGCAAGA ATACCAAGAG TTCCCTCGGT | 6540 |
| TGCCAGTTAT TAAAAGACTC GTATTTCAA AAGACTGCAA CATACTACTC AGTGCAGCTT | 6600 |
| CACAGAAACC TCATTGTTT ATTCCCTTGT TTGATTCAAGA AGCAGGTGGG ACAGGTGAAC | 6660 |
| TTTTGGATTG GAACTCGATT TCTGACTGGG TTGGAAGGCA AGAGAGCCCC GAAAGCTTAC | 6720 |
| ATTTTATGTT AGCTGGTGA CTGACGCCAG AAAATGTTGG TGATGCGCTT AGATTAATG | 6780 |
| GCGTTATTGG TGTTGATGTA AGCGGAGGTG TGGAGACAAA TGGTGTAAAA GACTCTAAC | 6840 |
| AAATAGCAAA TTCGTCAAA AATGCTAAGA AATAGGTTAT TACTGAGTAG TATTTATTTA | 6900 |
| AGTATTGTTT GTGCACTTGC CGATCTATGC GGTGTGAAT ACCGCACAGA TGCGTAAGGA | 6960 |
| GAAAATACCG CATCAGGAAA TTGAAACGT TAATATTTG TTAAAATTG CGTTAAATT | 7020 |
| TTGTTAAATC AGCTCATTTT TTAACCAATA GGCGAAATC GGCAAAATCC CTTATAAATC | 7080 |
| AAAAGAATAG ACCGAGATAG GGTTGAGTGT TGTTCCAGTT TGGAACAAAGA GTCCACTATT | 7140 |
| AAAGAACGTG GACTCCAACG TCAAAGGGCG AAAAACCGTC TATCAGGGCG ATGGCCCAC | 7200 |
| ACGTGAACCA TCACCTTAAT CAAGTTTTT GGGTCGAGG TGCGTAAAG CACTAAATCG | 7260 |
| GAACCCCTAAA GGGAGCCCCC GATTTAGAGC TTGACGGGA AAGCCGGCGA ACGTGGCGAG | 7320 |
| AAAGGAAGGG AAGAAGCGA AAGGAGCGGG CGCTAGGGCG CTGGCAAGTG TAGCGGTAC | 7380 |
| GCTGCGCGTA ACCACCAAC CCGCCGCGCT TAATGCGCCG CTACAGGGCG CGTCGCGCCA | 7440 |
| TTCGCCATTG AGGCTGCGCA ACTGTTGGGA AGGGCGATCG GTGCGGGCCT CTTCGCTATT | 7500 |
| ACGCCAGCTG GCGAAAGGGG GATGTGCTGC AAGGCATTA AGTTGGTAA CGCCAGGGTT | 7560 |
| TTCCCAGTCA CGACGTTGTA AAACGACGGC CAGTCGTCCA AGCTTCGCG AGCTCGAGAT | 7620 |
| CCCGAGCTTT GCAAAATAAA GCCTTCGAGC GTCCCCAAC CTTCTCAAGC AAGGTTTCA | 7680 |
| GTATAATGTT ACATGCGTAC ACCGCGTCTGT ACAGAAAAAA AAGAAAAAAT TGAAATATAA | 7740 |
| ATAACGTTCT TAATACTAAC ATAACATATAA AAAAATAAAT AGGGACCTAG ACTTCAGGTT | 7800 |
| GTCTAACTCC TTCCTTTCG GTTAGAGCGG ATGTGGGGGG AGGGCGTGAA TGTAAGCGTG | 7860 |
| ACATAACTAA TTACATGATA TCGACAAAGG AAAAGGGGCC TGTTTACTCA CAGGCTTTT | 7920 |
| TCAAGTAGGT AATTAAGTCG TTTCTGCTT TTTCTCTT CAACCCACCA AAGGCCATCT | 7980 |
| TGGTACTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT | 8040 |
| TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT CATAGAAATA ATACAGAAGT | 8100 |
| AGATGTTGAA TTAGATTAAA CTGAAGATAT ATAATTTATT GGAAAATACA TAGAGCTTT | 8160 |
| TGTTGATGCG CTTAACGCGAT CAATTCAACA ACACCACCAAG CAGCTCTGAT TTTTCTTCA | 8220 |

*FIG. 32 CONTINUED.**79/99*

| | |
|--|-------|
| GCCAACTTGG AGACGAATCT AGCTTGACG ATAACGGAA CATTGGGAT TCTACCCCTTA | 8280 |
| CCCAAGATCT TACCGTAACC GGCTGCCAAA GTGTCAATAA CTGGAGCAGT TTCCCTTAGAA | 8340 |
| GCAGATTTCA AGTATTGGTC TCTCTTGTCT TCTGGGATCA ATGTCCACAA TTTGTCCAAG | 8400 |
| TTCAAGACTG GCTTCCAGAA ATGAGCTTGT TGCTTGTGGA AGTATCTCAT ACCAACNCCTT | 8460 |
| ACCGAAATAA CCTGGATGGT ATTTATCCAT GTTAATTCTG TGGTGATGTT GACCACCGGC | 8520 |
| CATACCTCTA CCACCGGGGT GCTTCTGTG CTTACCGATA CGACCTTAC CGGCTGAGAC | 8580 |
| GTGACCTCTG TGCTTCTAG TCTAGTGAA TCTGGAAAGGC ATTCTTGATT AGTTGGATGA | 8640 |
| TTGTTCTGGG ATTTAATGCA AAAAAATCAC TAAGAAGGAA AAAAAATCAAC GGAGAAAGCA | 8700 |
| AACGCCATCT TAAATATACG GGATACAGAT GAAAGGTTTG AACCTATCTG GGAAAATACG | 8760 |
| CATTAAACAA GCGAAAAACT GCGAGGAAAA TTGTTGCGT CTCTGCGGGC TATTACGCG | 8820 |
| CCAGAGGAAA ATAGGAAAAA TAACAGGGCA TTAGAAAAAT AATTTGATT TTGGTAATGT | 8880 |
| GTGGGTCCCT GGTGTACAGA TGTTACATTG GTTACAGTAC TCTTGTTTT GCTGTGTTT | 8940 |
| TCGATGAATC TCCAAATGG TTGTTAGCAC ATGGAAGAGT CACCGATGCT AAGTTATCTC | 9000 |
| TATGTAAGCT ACGTGGCGTG ACTTTTGATG AAGCCGCACA AGAGATACAG GATTGGCAAC | 9060 |
| TGCAAATAGA ATCTGGGAT CTAGATATCC TTTTGTGTT TCCGGGTGTA CAATATGGAC | 9120 |
| TCCTCTTTT CTGGCAGCCA AACCCATACA TCGGGATTCC TATAATACCT TCGTTGGTCT | 9180 |
| CCCTAACATG TAGGTGGCGG AGGGGAGATA TACAATAGAA CAGATACCAAG ACAAGACATA | 9240 |
| ATGGGCTAAA CAAGACTACA CCAATTACAC TGCTCATTTG ATGGTGGTAC ATAACGAACT | 9300 |
| AATACTGTAG CCCTAGACTT GATAGCCATC ATCATATCGA AGTTCACTA CCCTTTTCC | 9360 |
| ATTTGCCATC TATTGAAGTA ATAATAGGCG CATGCAACTT CTTTCTTTT TTTTTCTTTT | 9420 |
| CTCTCTCCCC CGTTGTTGTC TCACCATATC CGCAATGACA AAAAAATGA TGGAAGACAC | 9480 |
| TAAAGGAAAA AATTAACGAC AAAGACAGCA CCAACAGATG TCGTTGTTCC AGAGCTGATG | 9540 |
| AGGGGTATCT TCGAACACAC GAAACTTTT CCTTCCTTCA TTCACGCACA CTACTCTCTA | 9600 |
| ATGAGCAACG GTATACGGCC TTCCCTCCAG TTACTTGAA TTGAAATAAA AAAAGTTTGC | 9660 |
| CGCTTTGCTA TCAAGTATAA ATAGACCTGC AATTATTAAT CTTTGTTC CTCGTCAATTG | 9720 |
| TTCTCGTTCC CTTTCTTCCT TGTGTTCTTT TCTGCACAAAT ATTCAGCT ATACCAAGCA | 9780 |
| TACAATCAAC TCCAAGCTTG AAGCAAGCCT CCTGAAAGAT GAAGCTACTG TCTTCTATCG | 9840 |
| AACAAGCATG CGATATTTCG CGACTTAAAA AGCTCAAGTG CTCCAAAGAA AAACCGAAGT | 9900 |
| GCGCCAAGTG TCTGAAGAAC AACTGGGAGT GTCGCTACTC TCCCAAACCC AAAAGGTCTC | 9960 |
| CGCTGACTAG GGCACATCTG ACAGAAGTGG AATCAAGGCT AGAAAGACTG GAACAGCTAT | 10020 |
| TTCTACTGAT TTTCTCTGA GAAGACCTTG ACATGATTAA GAAAATGGAT TCTTACAGG | 10080 |
| ATATAAAAGC ATTGTTAACCA GGATTATTTG TACAAGATAA TGTGAATAAA GATGCCGTCA | 10140 |

80/99

FIG. 32 CONTINUED.

| | |
|---|--------------|
| CAGATAGATT GGCTTCAGTG GAGACTGATA TGCCTCTAAC ATTGAGACAG CATA | GAATAA 10200 |
| GTCGACATC ATCATCGGAA GAGAGTAGTA ACAAAAGGTCA AAGACAGTTG ACTGTATCGC | 10260 |
| CGGAATTGCA ATACCCAGCT TTGACTCA | 10288 |

81/99

FIG. 33.

82/99

FIG. 34.

| | |
|--|------|
| GCTTGCATGC AACTTCTTTT CTTTTTTTTT CTTTCTCTC TCCCCCGTTG TTGTCTCACC | 60 |
| ATATCCGAA TGACAAAAAA AATGATGGAA GACACTAAAG GAAAAAATTA ACGACAAAGA | 120 |
| CAGCACCAAC AGATGTCGTT GTTCCAGAGC TGATGAGGGG TATCTTCGAA CACACGAAAC | 180 |
| TTTTTCTTC CTTCATTCAC GCACACTACT CTCTAATGAG CAACGGTATA CGGCCTTCCT | 240 |
| TCCAGTTACT TGAATTGAA ATAAAAAAAAG TTTGCCGCTT TGCTATCAAG TATAAATAGA | 300 |
| CCTGCAATTAA TTAATCTTTT GTTTCCTCGT CATTGTTCTC GTTCCCTTTC TTCCCTGTTT | 360 |
| CTTTTCTGC ACAATATTTC AAGCTATACC AAGCATACAA TCAACTCCAA GCTTGCAAA | 420 |
| GATGGATAAA GCGGAATTAA TTCCCAGGCC TCCAAAAAAG AAGAGAAAGG TCGAATTGGG | 480 |
| TACCGCCGCC AATTAAATC AAAGTGGAA TATTGCTGAT AGCTCATTGT CCTTCACTTT | 540 |
| CACTAACAGT AGCAACGGTC CGAACCTCAT AACAACTCAA ACAAAATTCTC AAGCGCTTTC | 600 |
| ACAACCAATT GCCTCCTCTA ACGTTCATGA TAACTTCATG AATAATGAAA TCACGGCTAG | 660 |
| TAAAATTGAT GATGGTAATA ATTCAAAACC ACTGTCACCT GGTTGGACGG ACCAAACTGC | 720 |
| GTATAACGCG TTTGGAATCA CTACAGGGAT GTTTAATACC ACTACAATGG ATGATGTATA | 780 |
| TAACTATCTA TTCGATGATG AAGATAACCC ACCAAACCCA AAAAAAGAGA TCGAATTCCC | 840 |
| GGGGATCCGC TCCTCACTCT CCAAGTTCAC CAAGAAGAAG AACAAAGAACT ACGACGAAGC | 900 |
| ACATATGCCA TCAATTTCGG GATCTCAAGG AACTCTTGAC AACATTGATG TGATTGAGTT | 960 |
| GAAGCAAGAG CTCAAAGAAC GCGATAGTGC ACTTTACGAA GTCCGCCTTG ACAATCTGGA | 1020 |
| TCGTGCCCGC GAAGTTGATG TTCTGAGGGG GACAGTGAAC AAGTTGAAAA CCGAGAACAA | 1080 |
| GCAATTAAAG AAAGAAGTGG ACAAAACTCAC CAACGGTCCA GCCACTCGTG CTTCTCCCG | 1140 |
| CGCCTCAATT CCAGTTATCT ACGACGATGA GCATGTCTAT GATGCAGCGT GTAGCAGTAC | 1200 |

*FIG. 34 CONTINUED.**83/99*

| | | | | | | |
|-------------|-------------|-------------|-------------|-------------|-------------|------|
| ATCAGCTAGT | CAATCTCGA | AACGATCCTC | TGGCTGCAAC | TCAATCAAGG | TTACTGTAAA | 1260 |
| CGTGGACATC | GCTGGAGAAA | TCAGTTCGAT | CGTTAACCCG | GACAAAGAGA | TAATCGTAGG | 1320 |
| ATATCTTGCC | ATGTCAACCA | GTCAGTCATG | CTGGAAARGAC | ATTGATGTTT | CTATTCTAGG | 1380 |
| ACTATTTGAA | GTCTACCTAT | CCAGAATTGA | TGTGGAGCAT | CAACTTGGAA | TCGATGCTCG | 1440 |
| TGATTCTATC | CTTGGCTATC | AAATTGGTGA | ACTTCGACGC | GTCATTGGAG | ACTCCACAAAC | 1500 |
| CATGATAACC | AGCCATCCAA | CTGACATTCT | TACTTCCTCA | ACTACAATCC | GAATGTTCAT | 1560 |
| GCACGGTGCC | GCACAGAGTC | GCGTAGACAG | TCTGGTCCTT | GATATGCTTC | TTCCAAAGCA | 1620 |
| AATGATTCTC | CAACTCGTCA | AGTCAATTTC | GACAGAGAGA | CGTCTGGTGT | TAGCTGGAGC | 1680 |
| AACTGGAAATT | GGAAAGAGCA | AACTGGCGAA | GACCCCTGGCT | GCTTATGTAT | CTATTGAAAC | 1740 |
| AAATCAATCC | GAAGATAGTA | TTGTTAATAT | CAGCATTCC | GAAAACAATA | AAGAAGAATT | 1800 |
| GCTTCAAGTG | GAACGACGCC | TGGAAAAGAT | CTATGAATCG | TAGATACTGA | AAAACCCCCGC | 1860 |
| AAGTTCACTT | CAACTGTGCA | TCGTGCACCA | TCTCAATTTC | TTTCATTTAT | ACATCGTTTT | 1920 |
| GCCTTCTTTT | ATGTAACATAT | ACTCCTCTAA | GTTCATCT | TGGCCATGTA | ACCTCTGATC | 1980 |
| TATAGAATTTC | TTTAAATGAC | TAGAATTAAT | GCCCATCTT | TTTTGGACC | AAAATTCTTC | 2040 |
| ATGAAATATAT | ATTACGAGGG | CTTATTTCAGA | AGCTTTGGAC | TTCTCGCCA | GAGGTTTGGT | 2100 |
| CAAGTCTCCA | ATCAAGGTTG | TCGGCTTGTC | TACCTTGCA | GAAATTACG | AAAAGATGGA | 2160 |
| AAAGGGTCAA | ATCGTTGGTA | GATACTTGT | TGACACTTCT | AAATAAGCGA | ATTTCTTATG | 2220 |
| ATTTATGATT | TTTATTATTA | AATAAGTTAT | AAAAAAAATA | AGTGTATACA | ATTTTAAAG | 2280 |
| TGACTCTTAG | GTTCATTTAAC | AAAAATTCTT | GTTCTTGAGT | AACTCTTCC | TGTAGGTCAG | 2340 |
| GTGCTTTCT | CAGGTATAGC | ATGAGGTGCG | TCTTATTGAC | CACACCTCTA | CCGGCATGCC | 2400 |
| CGAAATTCCC | CTACCCATG | AACATATTCC | ATTTGTAAT | TTCGTGTGCGT | TTCTATTATG | 2460 |
| AATTCATTT | ATAAAGTTA | TGTACAAATA | TCATAAAAAA | AGAGAATCTT | TTAAGCAAG | 2520 |
| GATTTCTTA | ACTTCTTCGG | CGACAGCATE | ACCGACTTCG | GTGGTACTGT | TGGAACCACC | 2580 |
| TAAATCACCA | GTTCATGATAC | CTGCATCCAA | ACCTTTTTA | ACTGCATCTT | CAATGGCCTT | 2640 |
| ACCTTCTTCA | GGCAAGTTCA | ATGACAATT | CAACATCATT | GCAGCAGACA | AGATAGTGGC | 2700 |
| GATAGGGTCA | ACCTTATTCT | TTGGCAAATC | TGGAGCAGAA | CCGTGGCATG | TTCGTACAA | 2760 |
| ACCAAATGCC | GTGTTCTTGT | CTGGCAAAGA | GGCCAAGGAC | GCAGATGGCA | ACAAACCCAA | 2820 |
| GGAACCTGGG | ATAACGGAGG | CTTCATCGGA | GATGATATCA | CCAAACATGT | TGCTGGTGT | 2880 |
| TATAATACCA | TTTAGGTGGG | TTGGGTTCTT | AACTAGGATC | ATGGCGGCAG | AATCAATCAA | 2940 |
| TTGATGTTGA | ACCTTCAATG | TAGGAAATTG | GTTCTTGATG | GTTCCTCTCA | CAGTTTTCT | 3000 |
| CCATAATCTT | GAAGAGGCCA | AAACATTAGC | TTTATCCAAG | GACCAAATAG | GCAATGGTGG | 3060 |
| CTCATGTTGT | AGGGCCATGA | AAGCGGCCAT | TCTTGTGATT | CTTTGCACTT | CTGGAACGGT | 3120 |

*FIG. 34 continued.**84/99*

| | |
|---|------|
| GTATTGTTCA CTATCCAAG CGACACCAC ACCATCGTCT TCCCTTCCTCT TACCAAAGTA | 3180 |
| AATAACCTCCC ACTAATTCTC TGACAACAAC GAAGTCAGTA CCTTTAGCAA ATTGTGGCTT | 3240 |
| GATTGGAGAT AAGTCTAAAA GAGAGTCGGA TGCAAGTTA CATGGCTTTA AGTTGGCGTA | 3300 |
| CAATTGAAGT TCTTTACGGA TTTTAGTAA ACCTGTTCA GGTCTAACAC TACCTGTACC | 3360 |
| CCATTTAGGA CCACCCACAG CACCTAACAA AACGGCATCA ACCTCTTGG AGGCTTCCAG | 3420 |
| CGCCTCATCT GGAAGTGGGA CACCTGTAGC ATCGATAGCA GCACCAACAA TTAAATGATT | 3480 |
| TTCGAAATCG AACTTGACAT TGGAAACGAAC ATCAGAAAATA GCTTTAAGAA CCTTAATGGC | 3540 |
| TTCGGCTGTG ATTTCTTGAC CAACGTGGTC ACCTGGCAAAC AGCACGATCT TCTTAGGGGC | 3600 |
| AGACATTAGA ATGGTATATC CTTGAAATAT ATATATATAT TGCTGAAATG TAAAAGGTAA | 3660 |
| GAAAAGTTAG AAAGTAAGAC GATTGCTAAC CACCTATTGG AAAAACAAT AGGTCCCTAA | 3720 |
| ATAATATTGT CAACTTCAAG TATTGTGATG CAAGCATTAA GTCATGAACG CTTCTCTATT | 3780 |
| CTATATGAAA AGCCGGTTCC GGCCCTCAC CTTTCCTTT TCTCCCAATT TTTCAGTTGA | 3840 |
| AAAAGGTATA TGCGTCAGGC GACCTCTGAA ATTAACAAAA AATTCCAGT CATCGAATT | 3900 |
| GATTCTGTGC GATAGCGCCC CTGTGTGTT TC GTTATGTT GAGGAAAAAA ATAATGGTG | 3960 |
| CTAAGAGATT CGAACTCTTG CATCTTACGA TACCTGAGTA TTCCCACAGT TGGGGATCTC | 4020 |
| GAECTCTAGCT AGAGGATCAA TTCGTAATCA TGGTCATAGC TGTTCCTGT GTGAAATTGT | 4080 |
| TATCCGCTCA CAATTCCACA AACATACGA GCCGGAAGCA TAAAGTGTAA AGCCTGGGT | 4140 |
| GCCTAATGAG TGAGGTAAC TACATTAATT GCGTTGCGCT CACTGCCCGC TTTCCAGTCG | 4200 |
| GGAAACCTGT CGTGCCAGCT GGATTAATGA ATCGGCCAAC GCGCGGGGAG AGGCGGTTTG | 4260 |
| CGTATTGGGC GCTCTCCGC TTCCCTCGCTC ACTGACTCGC TGCGCTCGGT CGTCGGCTG | 4320 |
| CGCGAGCGG TATCAGCTCA CTCAAAGGCG GTAATACGGT TATCCACAGA ATCAGGGAT | 4380 |
| AACGCAGGAA AGAACATGTG AGCAAAAGGC CAGAAAAGG CCAGGAACCG TAAAAGGCC | 4440 |
| GCGTTGCTGG CGTTTTCCA TAGGCTCCGC CCCCCCTGACG AGCATCACAA AAATCGACG | 4500 |
| TCAAGTCAGA GGTGGCGAAA CCCGACAGGA CTATAAGAT ACCAGGGCGTT TCCCCCTGGA | 4560 |
| AGCTCCCTCG TGCGCTCTCC TGTTCGACC CTGCCGCTTA CCGGATAACCT GTCCGCCCTT | 4620 |
| CTCCCTTCGG GAAGCGTGGC GCTTTCTCAT AGTCACGCT GTAGGTATCT CAGTTGGTG | 4680 |
| TAGGTCGTTG GCTCCAAGCT GGGCTGTGTG CACGAACCCC CGGTCAGCC CGACCGCTGC | 4740 |
| GCCTTATCCG GTAACATACG TCTTGAGTCC AACCCGGTAA GACACGACTT ATGCCACTG | 4800 |
| GCAGCAGCCA CTGGTAACAG GATTAGCAGA GCGAGGTATG TAGGCGGTGC TACAGAGTTC | 4860 |
| TTGAAGTGGT GGCCTTAACCA CGGCTACACT AGAAGGACAG TATTGGTAT CTGCGCTCTG | 4920 |
| CTGAAGCCAG TTACCTTCGG AAAAAGAGTT GGTAGCTCTT GATCCGGCAA ACAAAACCACC | 4980 |
| GCTGGTAGCG GTGGTTTTTT TGTTTGCAAG CAGCAGATTA CGCGCAGAAA AAAAGGATCT | 5040 |

*FIG. 34 CONTINUED.**85/99*

| | | | | | | |
|------------|------------|-------------|-------------|-------------|-------------|------|
| CAAGAAGATC | CTTGATCTT | TTCTACGGGG | TCTGACGCC | AGTGGAAACGA | AAACTCACGT | 5100 |
| TAAGGGATTT | TGGTCATGAG | ATTATCAAAA | AGGATCTCA | CCTAGATCCT | TTTAAATTAA | 5160 |
| AAATGAAGTT | TTAAATCAAT | CTAAAGTATA | TATGAGTAAA | CTTGGTCTGA | CAGTTACCAA | 5220 |
| TGCTTAATCA | GTGAGGCACC | TATCTCAGCG | ATCTGTCTAT | TTCGTTCATC | CATAGTTGCC | 5280 |
| TGACTCCCCG | TCGTGTAGAT | AACTACGATA | CGGGAGGGCT | TACCATCTGG | CCCCAGTGCT | 5340 |
| GCAATGATAC | CGCGAGACCC | ACGCTCACCG | GCTCCAGATT | TATCAGCAAT | AAACCAAGCCA | 5400 |
| GCCGGAAGGG | CCGAGCGCAG | AAGTGGTCCT | GCAACTTTAT | CCGCCTCCAT | CCAGTCTATT | 5460 |
| AATTGTTGCC | GGGAAGCTAG | AGTAAGTAGT | TCGCCAGTTA | ATAGTTGCG | CAACGTTGTT | 5520 |
| GCCATTGCTA | CAGGCATCGT | GGTGTACGC | TCGTCGTTG | GTATGGCTTC | ATTCAGCTCC | 5580 |
| GGTTCCCAAC | GATCAAGGCG | AGTTACATGA | TCCCCCATGT | TGTGCAAAAAA | ACCGGTTAGC | 5640 |
| TCCTTCGGTC | CTCCGATCGT | TGTCAGAAGT | AAGTTGGCCG | CAGTGTATAC | ACTCATGGTT | 5700 |
| ATGGCAGCAC | TGCATAATTC | TCTTACTGTC | ATGCCATCCG | TAAGATGCTT | TTCTGTGACT | 5760 |
| GGTGAGTACT | CAACCAAGTC | ATTCTGAGAA | TAGTGTATGC | GGCGACCGAG | TTGCTCTTGC | 5820 |
| CCGGCGTCAA | TACGGGATAA | TACCGCGCCA | CATAGCAGAA | CTTTAAAAGT | GCTCATCATT | 5880 |
| GGAAAACGTT | CTTCGGGGCG | AAAACCTCTCA | AGGATCTTAC | CGCTGTTGAG | ATCCAGTTCG | 5940 |
| ATGTAACCCA | CTCGTGCACC | CAACTGATCT | TCAGCATCTT | TTACTTCAC | CAGCGTTCT | 6000 |
| GGGTGAGCAA | AAACAGGAAG | GCAAAATGCC | GCAAAAAAGG | GAATAAGGGC | GACACGGAAA | 6060 |
| TGTTGAATAC | TCATACTCTT | CCTTTTCAA | TATTATTGAA | GCATTTATCA | GGGTTATTGT | 6120 |
| CTCATGAGCG | GATACATATT | TGAATGTATT | TAGAAAAATA | AACAAATAGG | GGTTCCGCGC | 6180 |
| ACATTTCCCC | GAAAAGTGCC | ACCTGACGTC | TAAGAAACCA | TTATTATCAT | GACATTAACC | 6240 |
| TATAAAAATA | GGCGTATCAC | GAGGCCCTTT | CGTCTCGCGC | GTTCGGTGA | TGACGGTGAA | 6300 |
| AACCTCTGAC | ACATGCAGCT | CCCGGAGACG | GTCACAGCTT | GTCTGTAAGC | GGATGCCGGG | 6360 |
| AGCAGACAAG | CCCGTCAGGG | CGCGTCAGCG | GGTGTGGCG | GGTGTGGGG | CTGGCTTAAC | 6420 |
| TATGCGGCAT | CAGAGCAGAT | TGTACTGAGA | GTGCACCATA | ACGCATTTAA | GCATAAACAC | 6480 |
| GCACTATGCC | GTTCTCTCA | TGTATATATA | TATACAGCA | ACACCGAGAT | ATAGGTGCGA | 6540 |
| CGTGAACAGT | GAGCTGTATG | TGGCAGCTC | GCGTTGCATT | TTCGGAAGCG | CTCGTTTCG | 6600 |
| GAAACGCTTT | GAAGTTCTA | TTCCGAAGTT | CCTATTCTCT | AGCTAGAAAG | TATAGGAACT | 6660 |
| TCAGAGCGCT | TTTGAAAACC | AAAAGCGCTC | TGAAGACGA | CTTCAAAAAA | ACCAAAAACG | 6720 |
| CACCGGACTG | TAACGAGCTA | CTAAAATATT | GCGAATACCG | CTTCCACAAA | CATTGCTCAA | 6780 |
| AAGTATCTCT | TTGCTATATA | TCTCTGTGCT | ATATCCCTAT | ATAACCTACC | CATCCACCTT | 6840 |
| TCGCTCCTTG | AACTTGCATC | TAAACTCGAC | CTCTACATTT | TTTATGTTA | TCTCTAGTAT | 6900 |
| TACTCTTTAG | ACAAAAAART | TGTAGTAAGA | ACTATTCTATA | GAGTGAATCG | AAAACAATAC | 6960 |

86/99

FIG. 3A CONTINUED.

| | |
|---|------|
| GAAAATGTAA ACATTTCCCTA TACGTAGTAT ATAGAGACAA AATAGAAGAA ACCGTTCAT | 7020 |
| ATTTTCTGAC CAATGAAGAA TCATCAACGC TATCACTTTC TGTTCACAAA GTATGCGCAA | 7080 |
| TCCACATCGG TATAGAATAT AATCAGGGAT GCCTTTATCT TGAAAAAATG CACCCGCAGC | 7140 |
| TTCGCTAGTA ATCAGTAAAC GCGGGAAAGTG GAGTCAGGCT TTTTTATGG AAGAGAAAAT | 7200 |
| AGACACCAAA GTAGCCTCTCT TCTAACCTTA ACGGACCTAC AGTGCAAAAAA GTTATCAAGA | 7260 |
| GACTGCATTA TAGAGCGCAC AAAGGAGAAA AAAAGTARTC TAAGATGCTT TGTTAGAAAA | 7320 |
| ATAGCGCTCT CGGGATGCAT TTTTGTAGAA CAAAAAAGAA GTATAGATTC TTTGTTGGTA | 7380 |
| AAATAGCGCT CTCGCCTTGC ATTTCTGTTTC TGTAAGAAATG CAGCTCAGAT TCTTTGTTG | 7440 |
| AAAAATTAGC GCTCTCGCGT TGCACTTTTG TTTTACAAAA ATGAAGCACA GATTCTTCGT | 7500 |
| TGGTAAATAA GCGCTTCGC GTTGCATTTTC TGTTCTGTAA AAATGCAGCT CAGATTCTTT | 7560 |
| GTTTGAAAAA TTAGCGCTCT CGCGTTGCAT TTTTGTCTA CAAAATGAAG CACAGATGCT | 7620 |
| TCGTT | 7625 |

FIG. 35.
SUBSTITUTE SHEET (RULE 26)

FIG. 36.

SUBSTITUTE SHEET (RULE 26)

89/99

FIG. 36 (CONT'D.)

D

90/99

FIG. 37.

SUBSTITUTE SHEET (RULE 26)

91/99

FIG. 38.

92/99

FIG. 39.

| | |
|--|-----|
| ATGACCATGA TTACGCCAAG CTTGTCTTCT TCTAAATTCC CATAAAATCC CGAAACTCCT | 60 |
| TCCCTCTATC TTCTTTTCT TCTCGTTTC AAATGTTTCT CTCTATCCC TTCTCTCATC | 120 |
| AATTGAGTGG GATGAGGCTA TCTCTGCCTC TCTTCTGAAT CTCTGAACCA TCTTACATTA | 180 |
| CACTGTGGAT GACGAGCCCC ACAGGCTCCC TTGCATCAGA TACTGCCATT GGGGATGGCA | 240 |
| AAGAAGAGAG AAGGTATTGT GAGGATATAT TTTCTAAGA AAAAACGTTT GAAGAAAAAGA | 300 |
| AGATGAAGAA GATCTGCTTG ATTCATTGCA CAAGTTAGAA GTAACAGGGG TCTATATTC | 360 |
| GAAGAACTTA AAGGGAATGC AACTGACAT AAAATTAAAC AAAGGGATTG AATCCTGCAG | 420 |
| TGAGTATTTT CGGTTTTCA CTGGTTCTCT GTAAAAAGAG TAATGCAAAG GGCAAGTTAA | 480 |
| CTTAGGTCGT AAATGTATTG AATTTGCTTA AAATCTGAAG ATCTAGTGGT GAACCGTGGA | 540 |
| AGATTATCAA GAGGAGGCTG AAGATCTGTT TAAGAACCAT TAATCAAAC GGTATTCTAT | 600 |
| TTTCACTGGT TGTATGTAAA CATTCTATCT TATTCTTTT ATCACTGTT TC TGCACTTTCC | 660 |

*FIG. 39 CONTINUED.**93/99*

| | | | | | | |
|-------------|-------------|-------------|-------------|-------------|-------------|------|
| TATAAAAAAA | GTTGACCGAC | CGTACTCTCT | GAATTCAATT | TTCCCGATCT | TACCAACTCC | 720 |
| CGATCTATCT | CTATCCCTGG | TTTTTCTTC | GTGCTCCAAT | GGAATTCTTG | AGACTTCCAC | 780 |
| TATCTTCTCT | GGCACCCCTCC | ACTACCGCGTA | GGCGTCTCTC | GCTTCGTGTA | TTCCCGGGAA | 840 |
| GCCGGTTCCC | GTCTCTCCCG | CCGCTGCCGC | TGCCGCACAC | AGCTTTACAC | CTCGTAGAAT | 900 |
| CCCCAAAGAG | GGGCGTGGCT | TGCGGGTGCC | AACATCCTCC | TGCCGAGGAA | GAAGCAGGCA | 960 |
| CTCATCACTC | GCATCATCAA | CCTCGGGATT | GGCCAAAGGA | CCCAAAGGTA | TGTTTCAAT | 1020 |
| GATACTAACAA | TAACATAGAA | CATTTTCAGG | AGGACCCCTG | GCTAGAACTA | GTGGATCCGA | 1080 |
| GCTCTCCCAT | ATGACGACGT | CAAATGTAGA | ATTGATAACCA | ATCTACACGG | ATTGGGCCAA | 1140 |
| TCGGCACCTT | TCGAAGGGCA | GCTTATCAA | GTCGATTAGG | GATATTCCA | ATGATTTCG | 1200 |
| CGACTATCGA | CTGGTTCTC | AGCTTATTAA | TGTGATCGTT | CCGATCAACG | AATTCTCGCC | 1260 |
| TGCATTCACTG | AAACGTTGG | AAAAAATCAC | ATCGAACCTG | GATGGCCTCG | AAACGTGTCT | 1320 |
| CGACTACCTG | AAAAAATCTGG | GTCTCGACTG | CTCGAAACTC | ACCAAAACCG | ATATCGACAG | 1380 |
| CGGAAACTTG | GGTGCAGTTC | TCCAGCTGCT | CTTCCTGTC | TCCACCTACA | AGCAGAAGCT | 1440 |
| TCGGCAACTG | AAAAAAGATC | AGAAGAAATT | GGAGCAACTA | CCCACATCCA | TTATGCCACC | 1500 |
| CGGGTTTCT | AAATTACCT | CGCCACGTGT | CGCCACGTCA | GCAACCGCTT | CAGCAACTAA | 1560 |
| CCCAAATTCC | AACTTCCAC | AAATGTCAAC | ATCCAGGCTT | CAGACTCCAC | AGTCAAGAAT | 1620 |
| ATCGAAAATT | GATTCACTAA | AGATTGGTAT | CAAGCCAAAG | ACGTCTGGAC | TTAAACCACC | 1680 |
| CTCATCATCA | ACCACTTCAT | CAAATAATAC | AAATTCAATTC | CGTCCGTGCA | GCCGTTCGAG | 1740 |
| TGGCAATAAT | AATGTTGGCT | CGACGATATC | CACATCTGCG | AAGAGCTTAG | AATCATCATC | 1800 |
| AACGTACAGC | TCTATTTCGA | ATCTAAACCG | ACCTACCTCC | CAACTCCAAA | AACCTTCTAG | 1860 |
| ACCACAAACC | CAGCTAGTTC | GTGTTGCTAC | AACTACAAAA | ATCGGAAGCT | CAAAGCTAGC | 1920 |
| CGCTCCGAAA | GCCGTGAGCA | CCCCAAAAACT | TGCTTCTGTG | AAGACTATTG | GAGCAAAACA | 1980 |
| AGAGCCCGAT | AACAGCGGTG | GTGGTGGTGG | TGGAATGCTG | AAATTAAAGT | TATTCAGTAG | 2040 |
| AAAAAAACCA | TCTTCCTCAT | CGAATAGCCC | ACAACCTACG | AGAAAGCGG | CGGGGGTGCC | 2100 |
| TCAACAAACAA | ACTTTGTGCA | AAATCGCTGC | CCCAGTGAAA | AGTGGCCTGA | AGCCGCCGAC | 2160 |
| CAGTAAGCTG | GGAAAGTGCCA | CGTCTATGTC | GAAGCTTTGT | ACGCCAAAAG | TTTCCTACCG | 2220 |
| TAAAACGGAC | GCCCCAATCA | TATCTCAACAA | AGACTCGAAA | CGATGCTCAA | AGAGCAGTGA | 2280 |
| AGAAAGAGTCC | GGATACGCTG | GATTCAACAG | CACGTGCGCA | ACGTCACTCAT | CGACGGAAAGG | 2340 |
| TTCCCTAAGC | ATGCATTCCA | CATCTTCCAA | GAGTTCAACG | TCAGACGAAA | AGTCTCCGTC | 2400 |
| ATCAGACGAT | CTTACTCTTA | ACGCCCTCAT | CGTGACAGCT | ATCAGACAGC | CGATAGCCGC | 2460 |
| AACACCGGTT | TCTCCAATA | TTATCAACAA | GCCTGTTGAG | GAAAAACCAA | CACTGGCAGT | 2520 |
| GAAGAGAGTG | AAAGCRAAG | CGAAAAAAAGA | TCCACCTCCA | GCTGTTCCGC | CACGTGACAC | 2580 |

*FIG. 39 continued.**94/99*

| | |
|--|------|
| CCAGCCAACA ATCGGAGTTG TTAGTCCAAT TATGGCACAT AAGAAGTTGA CAAATGACCC | 2640 |
| CGTGATATCT GAAAAACCAG AACCTGAAAA GCTCCAATCA ATGAGCATCG ACACGACGGA | 2700 |
| CGTTCCACCG CTTCCACCTC TAAAATCAGT TGTTCCACTT AAAATGACTT CAATCCGACA | 2760 |
| ACCACCAACG TACGATGTTC TTCTAAAACA AGGAAAAATC ACATCGCCTG TCAAGTCGTT | 2820 |
| TGGATATGAG CAGTCGTCG CGTCTGAAGA CTCCATTGTT GCTCATGCGT CGGCTCAGGT | 2880 |
| GACTCCGCCG ACAAACACTT CTGGTAATCA TTCGCTGGAG AGAAGGATGG GAAAAGATAA | 2940 |
| GACATCAGAA TCCAGCGGCT ACACCTCTGA CGCCGGTGTG GCGATGTGCG CCAAAATGAG | 3000 |
| GGAGAAGCTG AAAGAATACG ATGACATGAC TCGTCGAGCA CAGAACGGCT ATCCTGACAA | 3060 |
| CTTCGAAGAC AGTTCCCTCT TGTCGTCGTT AATATCCGAT AACAAACGAGC TCGACGACAT | 3120 |
| ATCCACGGAC GATTTGTCCG GAGTAGACAT GCACACAGTC GCCTCCAAAC ATAGCGACTA | 3180 |
| TTCCCACCTT GTTCGCCATC CCACGTCTTC TTCCCTCAAAG CCCCGAGTCC CCAGTCGGTC | 3240 |
| CTCCACATCA GTCGATTCTC GATCTCGAGC AGAACAGGAG AATGTGTACA AACTTCTGTC | 3300 |
| CCAGTGCCGA ACGAGCCAAC GTGGCGCCGC TGCCACCTCA ACCTTCGGAC AACATTGCT | 3360 |
| AAGATCCCCG GGATACTCAT CCTATTCTCC ACACTTATCA GTGTCAGCTG ATAAGGACAC | 3420 |
| AATGTCTATG CACTCACAGA CTAGTCGACG ACCTTCTTC CAAAAACCAA GCTATTGAGG | 3480 |
| CCAATTTCAT TCACTTGATC GTAAATGCCA CCTTCAGAG TTCACATCCA CCGAGCACAG | 3540 |
| AATGGCGGCT CTCTTGAGCC CGAGACGGGT GCCGAACCTCG ATGTCGAAAT ATGATTCTC | 3600 |
| AGGATCCTAC TCGGCGCGTT CCCGAGGTGG AAGCTCTACT GGTATCTATG GAGAGACGTT | 3660 |
| CCAACTGCAC AGACTATCCG ATGAAAAATC CCCCGCACAT TCTGCCAAA GTGAGATGGG | 3720 |
| ATCCCAACTA TCACTGGCTA GCACGACAGC ATATGGATCT CTCAATGAGA AGTACGAACA | 3780 |
| TGCTATTCGG GACATGGCAC GTGACTTGGA GTGTTACAAG AACACTGTG ACTCACTAAC | 3840 |
| CAAGAAACAG GAGAACTATG GAGCATTGTT TGATCTTTT GAGCAAAAGC TTAGAAAATC | 3900 |
| CACTCAACAC ATTGATCGAT CCAACTTGAA GCCTGAAGAG GCAATACGAT TCAGGCAGGA | 3960 |
| CATTGCTCAT TTGAGGGATA TTAGCAATCA TCTTGATCC AACTCAGCTC ATGCTAACGA | 4020 |
| AGGCCTGGT GAGCTTCTTC GTCAACCATC TCTGGATCA GTTGCATCCC ATCGATCATC | 4080 |
| GATGTCATCG TCGTCGAAAA GCAGCAAGCA GGAGAAGATC AGCTTGAGCT CGTTTGGCAA | 4140 |
| GAACAAGAAG AGCTGGATCC GCTCCTCACT CTCCAAGTTC ACCAAGAAGA AGAACAAAGAA | 4200 |
| CTACGACGAA GCACATATGC CATCAATTTC CGGATCTCAA GGAACCTTG ACAACATTGA | 4260 |
| TGTGATTGAG TTGAAGCAAG AGCTCAAAGA ACGCGATAGT GCACTTTACG AAGTCCGCCT | 4320 |
| TGACAATCTG GATCGTGCCC GCGAAGTTGA TGTTCTGAGG GAGACAGTGA ACAAGTTGAA | 4380 |
| AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACAAACTC ACCAACGGTC CAGCCACTCG | 4440 |
| TGCTTCTTCC CGCGCCTCAA TTCCAGTTAT CTACGACGAT GAGCATGTCT ATGATGCAGC | 4500 |

FIG. 39 CONTINUED. 95/99

| | |
|---|------|
| GTGTTAGCAGT ACATCAGCTA GTCAATCTTC GAAACGATCC TCTGGCTGCA ACTCAATCAA | 4560 |
| GGTTACTGTA AACGTGGACA TCGCTGGAGA AATCAGTTCG ATCGTTAACCGGACAAAGA | 4620 |
| GATAATCGTA GGATATCTTG CCATGTCAAC CAGTCAGTCA TGCTGGAAAG ACATTGATGT | 4680 |
| TTCTATTCTA GGACTATTTG AAGTCTACCT ATCCAGAATT GATGTGGAGC ATCAACTTGG | 4740 |
| AATCGATGCT CGTGATTCTA TCCTTGGCTA TCAAATTGGT GAACTTCGAC GCGTCATTGG | 4800 |
| AGACTCCACA ACCATGATAA CCAGCCATCC AACTGACATT CTTACTTCCT CAACTACAAT | 4860 |
| CCGAATGTTCAATGCACGGTG CCGCACAGAG TCGCGTAGAC AGTCTGGTCC TTGATATGCT | 4920 |
| TCTTCCAAAG CAAATGATTC TCCAACTCGT CAAGTCAATT TTGACAGAGA GACGTCTGGT | 4980 |
| GTTAGCTGGA GCAACTGGAA TTGGAAAGAG CAAACTGGCG AAGACCCCTGG CTGCTTATGT | 5040 |
| ATCTATTCTGA ACAARTCAAT CCGAAGATAG TATTGTTAAT ATCAGCATTC CTGAAAACAA | 5100 |
| TAAAGAAGAA TTGCTTCAAG TGGAACGACG CCTGGAAAAG ATCTTGAGAA GCAAGAGAATC | 5160 |
| ATGCATCGTA ATTCTAGATA ATATCCAAA GAATCGAATT GCATTTGTTG TATCCGTTTT | 5220 |
| TGCAAATGTC CCACCTCAAA ACAACGAAGG TCCATTGTA GTATGCACAG TCAACCGATA | 5280 |
| TCAAATCCCT GAGCTTCAAA TTCACCACAA TTTCAAAATG TCAGTAATGT CGAATCGTCT | 5340 |
| CGAAGGATTC ATCCTACGT ACCCTCCGACG ACGGGGCGGTAGGGATGAGT ATCGTCTAAC | 5400 |
| TGTACAGATG CCATCAGAGC TCTTCAAAAT CATTGACTTC TTCCCAATAG CTCTTCAGGC | 5460 |
| CGTCAATAAT TTTATTGAGA AAACGAATTC TGTTGATGTG ACAGTTGGTC CAAGAGCATG | 5520 |
| CTTGAACGTG CCTCTAACTG TCGATGGATC CCGTGAATGG TTCATTGAT TGTGGAATGA | 5580 |
| GAACCTTCATT CCATATTGGA AACGTGTTGC TAGAGATGGC AAAAAAAACCT TCGGTCGCTG | 5640 |
| CACTTCTTC GAGGATCCCA CCGACATCGT CTCTAAAAA TGGCCGTGGT TCGATGGTGA | 5700 |
| AAACCCGGAG AATGTGCTCA AACGTCTTCA ACTCCAAGAC CTCGTCCCGT CACCTGCCAA | 5760 |
| CTCATCCCGA CAACACTCTCA ATCCCCTCGA GTCGTTGATC CAATTGCATG CTACCAAGCA | 5820 |
| TCAGACCATC GACAACATTT GAACAGAAGA CTCTAATCTT CTCTCGCCTC TCCCCCGCTT | 5880 |
| TCCTTATCTT CGTACCGGTA CCATGGTATT GATATCTGAG CTCCGCATCG GCCGCTGTCA | 5940 |
| TCAGATCGCC ATCTCGGCC CGTGCCTCTG ACTTCTAAGT CCAATTACTC TTCAACATCC | 6000 |
| CTACATGCTC TTTCTCCCTG TGCTCCCACC CCCTATTTT GTTATTATCA AAAAAAACTTC | 6060 |
| TTCTTAATTT CTTTGTTTT TAGCTTCTTT TAAGTCACCT CTAACAATGA AATTGTGTAG | 6120 |
| ATTCAAAAT AGAATTAATT CGTAATAAAA AGTCGAAAAA AATTGTGCTC CCTCCCCCCTA | 6180 |
| TTAATAATAA TTCTATCCCA AAATCTACAC AATGTTCTGT GTACACTTCT TATGTTTTT | 6240 |
| TTACTTCTGA TAAATTTTT TTGAAACATC ATAGAAAAAA CCGCACACAA AATACCTTAT | 6300 |
| CATATGTTAC GTTTCAGTTT ATGACCGCAA TTTTATTTTC TTGCGACGTC TGGGCCTCTC | 6360 |
| ATGACGTCAA ATCATGCTCA TCGTGAAAAA GTTTTGGAGT ATTTTGGAA TTTTCAATC | 6420 |

FIG. 39 CONTINUED.

96/99

| | |
|---|------|
| AAGTGAAGT TTATGAAATT AATTTCCCTG CTTTGCTT TTGGGGTTT CCCCTATTGT | 6480 |
| TTGTCAAGAG TTTCGAGGAC GGC GTTTTC TTGCTAAAAT CACAAGTATT GATGAGCACCG | 6540 |
| ATGCAAGAAA GATCGGAAGA AGGTTTGGGT TTGAGGCTCA GTGGAGGTG AGTAGAAGTT | 6600 |
| GATAATTG AAGTGGAGTA GTGTCTATGG GGTTTTGCC TTAAATGACA GAATACATTC | 6660 |
| CCAATATAACC AAACATAACT GTTTAAAATT AAACATTTT CTAAATTTA TATGATTCT | 6720 |
| TTTAAATTG CAAAAATTAC TTAAATTG AATTCCCGCGC AAATGAGTGA CTTCATTTTC | 6780 |
| TGCATTATTG TGTTTCCGG CTATATTAAT AGGTATTG TTGTGTTTT CTTTATTTA | 6840 |
| TGATTCGAAC TCCAATTGT AAATTTCGA ACATATTCC CTAAAGAAAA AATATGATTA | 6900 |
| ATCTGGAAAA ATTGGAAAAT TATTTTCAA ATAAAAAAC AAGAAAAAAA TGAAGAAAAA | 6960 |
| CCTATTAGTT TGGCCATAAA ACGCAAAAT GTCGAAAATG ACGTCACTCA TCTGCGCGGG | 7020 |
| AAATCAAGAA TAATTCGGCC TTTTTATTT TTTTGGAAA TCGTAAAACA TTTAGAAAAA | 7080 |
| TTTTTAATA GTTATAGTGG GACTGTATTC TGTCAATTAG GGCAAAAGCC AGAGACGCTA | 7140 |
| CTCCACCGTT GGGGGATCCA CTAGTCGGCC GTACGGGCC TTTCTGCTCG CGCGTTTCGG | 7200 |
| TGATGACGGT GAAAACCTCT GACACATGCA GCTCCCAGAG ACGGTACAG CTTGTCTGTA | 7260 |
| AGCGGATGCC GGGAGCAGAC AAGCCCGTCA GGGCGCGTCA GCAGGTGTTG GCGGGTGTCC | 7320 |
| GGGCTGGCTT AACTATGCGG CATCAGAGCA GATTGTACTG AGAGTGCACC ATATGCGGTG | 7380 |
| TGAAATACCG CACAGATGCG TAAGGAGAAA ATACCGCATC AGGCAGCCTT AAGGGCCTCG | 7440 |
| TGATACGCCT ATTTTATAG GTTAATGTCA TGATAATAAT GGTTCTTAG ACGTCAGGTG | 7500 |
| GCACCTTCG GGGAAATGTG CGCGGAACCC CTATTTGTT ATTTTCTAA ATACATTCAA | 7560 |
| ATATGTATCC GCTCATGAGA CAATAACCT GATAAAATGCT TCAATAATAT TGAAAAGGA | 7620 |
| AGAGTATGAG TATTCAACAT TTCCGTGTCG CCCTTATTCC CTTTTTGCG GCATTTGCC | 7680 |
| TTCTGTTTG TGTCACCCA GAAACGCTGG TGAAAGTAA AGATGCTGAA GATCAGTTGG | 7740 |
| GTGCACGAGT GGGTACATC GAACTGGATC TCAACAGCGG TAAGATCCTT GAGAGTTTC | 7800 |
| GCCCCGAAGA ACGTTTCCA ATGATGAGCA CTTTTAAAGT TCTGCTATGT GGCGCGGTAT | 7860 |
| TATCCCGTAT TGACGCCGGG CAAAGAGCAAC TCGGTGCGC CATAACAT TCTCAGAATG | 7920 |
| ACTTGGTTGA GTACTCACCA GTCACAGAAA AGCATCTTAC GGATGGCATG ACAGTAAGAG | 7980 |
| AATTATGCAG TGCTGCCATA ACCATGAGTG ATAACACTGC GGCCAACCTTA CTTCTGACAA | 8040 |
| CGATCGGAGG ACCGAAGGGAG CTAACCGCTT TTTTGCACAA CATGGGGAT CATGTAACTC | 8100 |
| GCCTTGATCG TTGGGARCCG GAGCTGAATG AAGCCATACC AACCGACGAG CGTGACACCA | 8160 |
| CGATGCCTGT AGCAATGGCA ACAACGTTGC GCAAACATT AACTGGCGAA CTACTTACTC | 8220 |
| TAGCTTCCCG GCAACAAATTA ATAGACTGGA TGGAGGCAGGA TAAAGTTGCA GGACCACTTC | 8280 |
| TGCGCTCGGC CCTTCCGGCT GGCTGGTTA TTGCTGATAA ATCTGGAGCC GGTGAGCGTG | 8340 |

97/99

FIG. 39 CONTINUED.

| | |
|--|------|
| GGTCTCGCGG TATCATTGCA GCACTGGGC CAGATGGTAA GCCCTCCGT ATCGTAGTTA | 8400 |
| TCTACACGAC GGGGAGTCAG GCAACTATGG ATGAACGAAA TAGACAGATC GCTGAGATAG | 8460 |
| GTGCCTCACT GATTAAGCAT TGGTAAGTGT CAGACCAAGT TTACTCATAT ATACTTTAGA | 8520 |
| TTGATTAAA ACTTCATTT TAATTTAAA GGATCTAGGT GAAGATCCTT TTTGATAATC | 8580 |
| TCATGACCAA AATCCCTTAA CGTGAGTTTT CGTTCCACTG AGCGTCAGAC CCCGTAGAAA | 8640 |
| AGATCAAAGG ATCTTCTTGA GATCCTTTTT TTCTGCGCGT AATCTGCTGC TTGCAAACAA | 8700 |
| AAAAAACACC GCTACCAGCG GTGGTTTGTG TGCCGGATCA AGAGCTACCA ACTCTTTTC | 8760 |
| CGAAGGTAAC TGGCTTCAGC AGAGCGCAGA TACCAAATAC TGTCCCTCTA GTGTAGCCGT | 8820 |
| AGTTAGGCCA CCACTTCAG AACTCTGTAG CACCGCCTAC ATACCTCGCT CTGCTAATCC | 8880 |
| TGTTACCACT GGCTGCTGCC AGTGGCGATA AGTCGTGTCT TACCGGGTTG GACTCAAGAC | 8940 |
| GATAGTTACC GGATAAGGCG CAGCGGTGG GCTGAACCGGG GGGTTCGTGC ACACAGCCCA | 9000 |
| GCTTGGAGCG AACGACCTAC ACCGAACTGA GATACTACCA GCGTGAGCAT TGAGAAAGCG | 9060 |
| CCACGCTTCC CGAAGGGAGA AAGGCGGACA GGTATCCGGT AAGCGGCAGG GTCGGAACAG | 9120 |
| GAGAGCGCAC GAGGGAGCTT CCAGGGGGAA ACGCCTGGTA TCTTTATAGT CCTGTCGGGT | 9180 |
| TTCGCCACCT CTGACTTGAG CGTCGATTTT TGTGATGCTC GTCAGGGGGG CGGAGCCTAT | 9240 |
| GGAAAAAACGC CAGCAACGCG GCCTTTTAC GGTTCCTGGC CTTTTGCTGG CCTTTTGCTC | 9300 |
| ACATGTTCTT TCCTGCGTTA TCCCCGATT CTGTGGATAA CCGTATTACC GCCTTGAGT | 9360 |
| GAGCTGATAC CGCTCGCCGC AGCCGAACGA CCGAGCGCAG CGAGTCAGTG AGCGAGGAAG | 9420 |
| CGGAAGAGCG CCCAATACGC AAACCGCCTC TCCCCGCGCG TTGGCCGATT CATTAATGCA | 9480 |
| GCTGGCACGA CAGGTTTCCC GACTGGAAAG CGGGCAGTGA GCGCAACGCA ATTAAATGTGA | 9540 |
| GTTAGCTCAC TCATTAGGCA CCCCAGGCTT TACACTTTAT GCTTCCGGCT CGTATGTTGT | 9600 |
| GTGGAAATTGT GAGCGGATAA CAATTTCACA CAGGAAACAG CT | 9642 |

FIG. 40.

98/99

99/99

FIG. 41.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

| | | | |
|---|--|--|--|
| (51) International Patent Classification ⁶ :

C12N 15/12, C07K 14/435, C12N 5/10,
A01K 67/027, 67/033, A61K 38/17, A01H
5/00, C07K 16/18, C12N 5/26 | | A3 | (11) International Publication Number: WO 96/38555

(43) International Publication Date: 5 December 1996 (05.12.96) |
| (21) International Application Number: PCT/EP96/02311

(22) International Filing Date: 31 May 1996 (31.05.96) | | (81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). | |
| (30) Priority Data:
9510944.3 31 May 1995 (31.05.95) GB | | Published
<i>With international search report.</i>
<i>Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i> | |
| (71)(72) Applicants and Inventors: BOGAERT, Thierry [BE/BE]; Voorstraat 36 bus 11, B-8500 Kortrijk (BE). STRINGHAM, Eve [CA/CA]; 9326-133 A Street, Surrey, British Columbia V3V 5R5 (CA). VANDEKERCKHOVE, Joel [BE/BE]; Rode Beukendreef 27, B-Loppem (BE). | | (88) Date of publication of the international search report: 30 January 1997 (30.01.97) | |
| (74) Agent: BALDOCK, Sharon, Claire; Boult Wade Tennant, 27 Furnival Street, London EC4A 1PQ (GB). | | | |
| (54) Title: UNC-53 FROM <i>C. ELEGANS</i> AND ITS USES IN TESTING COMPOUNDS INVOLVED IN THE CONTROL OF CELL BEHAVIOUR AND PHARMACEUTICAL COMPOSITIONS | | | |
| (57) Abstract | | | |
| <p>UNC-53 protein of <i>C. elegans</i> or its functional equivalent is identified as a signal transducer/integrator involved in controlling the rate and directionality of cell migration and/or cell shape. Nucleic acid sequences encoding UNC-53 protein or its functional equivalent, such as genomic or cDNA are used to transfet <i>C. elegans</i> or mammalian cell lines useful for identifying inhibitors or enhancers of the UNC-53 protein. Any of the inhibitors or enhancers identified or the UNC-53 protein itself or sequences encoding UNC-53 protein can be used in the preparation of medicament for treatment of neurological conditions such as Alzheimer's or Huntingdon's disease, peripheral neuropathies for inhibition of metastasis.</p> | | | |

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| | | | | | |
|----|--------------------------|----|--|----|--------------------------|
| AM | Armenia | GB | United Kingdom | MW | Malawi |
| AT | Austria | GE | Georgia | MX | Mexico |
| AU | Australia | GN | Guinea | NE | Niger |
| BB | Barbados | GR | Greece | NL | Netherlands |
| BE | Belgium | HU | Hungary | NO | Norway |
| BF | Burkina Faso | IE | Ireland | NZ | New Zealand |
| BG | Bulgaria | IT | Italy | PL | Poland |
| BJ | Benin | JP | Japan | PT | Portugal |
| BR | Brazil | KE | Kenya | RO | Romania |
| BY | Belarus | KG | Kyrgyzstan | RU | Russian Federation |
| CA | Canada | KP | Democratic People's Republic
of Korea | SD | Sudan |
| CF | Central African Republic | KR | Republic of Korea | SE | Sweden |
| CG | Congo | KZ | Kazakhstan | SG | Singapore |
| CH | Switzerland | LI | Liechtenstein | SI | Slovenia |
| CI | Côte d'Ivoire | LK | Sri Lanka | SK | Slovakia |
| CM | Cameroon | LR | Liberia | SN | Senegal |
| CN | China | LT | Lithuania | SZ | Swaziland |
| CS | Czechoslovakia | LU | Luxembourg | TD | Chad |
| CZ | Czech Republic | LV | Latvia | TG | Togo |
| DE | Germany | MC | Monaco | TJ | Tajikistan |
| DK | Denmark | MD | Republic of Moldova | TT | Trinidad and Tobago |
| EE | Estonia | MG | Madagascar | UA | Ukraine |
| ES | Spain | ML | Mali | UG | Uganda |
| FI | Finland | MN | Mongolia | US | United States of America |
| FR | France | MR | Mauritania | UZ | Uzbekistan |
| GA | Gabon | | | VN | Viet Nam |

INTERNATIONAL SEARCH REPORT

| | |
|-----------------|--------------------|
| Inte | nal Application No |
| PCT/EP 96/02311 | |

| A. CLASSIFICATION OF SUBJECT MATTER | | | | | |
|-------------------------------------|-----------|------------|-----------|------------|------------|
| IPC 6 | C12N15/12 | C07K14/435 | C12N5/10 | A01K67/027 | A01K67/033 |
| | A01H5/00 | A61K38/17 | C07K16/18 | C12N5/26 | |

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C07K C12N A01K A61K A01H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

| Category * | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. |
|------------|---|-----------------------|
| X | EMBL Database Entry CEF45E10
Accession number Z47810; 26 January 1995
XP002019188 | 1-10 |
| A | & NATURE,
vol. 368, no. 6466, 3 April 1994, LONDON
GB,
pages 32-38.
R. WILSON ET AL.: "2.2 Mb of contiguous
nucleotide sequence from chromosome III of
C. elegans"
see the whole document
--- | |

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

4

Date of the actual completion of the international search

Date of mailing of the international search report

4 December 1996

13.12.96

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+ 31-70) 340-3016

Authorized officer

Montero Lopez, B

INTERNATIONAL SEARCH REPORT

Int. Application No
PCT/EP 96/02311

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

| Category * | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. |
|------------|--|--------------------------|
| X | JOURNAL OF NEUROSCIENCE 13 (10). 1993.
4254-4271. ISSN: 0270-6474, XP000612286
HEKIMI S ET AL: "Axonal guidance defects
in a <i>Caenorhabditis elegans</i> mutant reveal
cell-extrinsic determinants of neuronal
morphology." | 19,43 |
| A | see abstract
see page 4255, left-hand column, paragraph
2 - paragraph 3
see page 4267, right-hand column,
paragraph 2 - page 4271, left-hand column,
paragraph 3
----- | 1-18,
20-42,
44-88 |

4