Partie I. Fonction In

- La fonction <u>logarithme népérien</u>, notée ln, est la fonction définie sur $]0;+\infty[$ qui a pour fonction dérivée la fonction qui à x associe $\frac{1}{x}$ et qui prend la valeur 0 pour x=1.
- Pour tous nombres réels strictement positifs a et b, pour tout nombre entier relatif n, on a :

 o $\ln(ab) = \ln(a) + \ln(b)$ o $\ln(a^n) = n \ln(a)$
 - $\circ \ln\left(\frac{1}{a}\right) = -\ln(a)$
- $\circ \ln\left(\frac{a}{b}\right) = \ln(a) \ln(b)$
- $\circ \quad \ln(\sqrt{a}) = \frac{1}{2}\ln(a).$

• Variations et courbe représentative :

o Tableau de variations :

<u>avi</u>	eau de variadons	<u>.</u>		
T	x	0	1	+∞
	signe de ln '		+	
	ln		0	<i></i>

- o Courbe représentative :
- On note e le nombre réel défini par ln(e)=1 $(e\approx 2,718)$.

Partie II. Fonction exp

- La fonction <u>exponentielle</u>, notée exp, est la fonction définie sur \mathbb{R} qui a tout nombre réel x associe le nombre strictement positif unique y tel que $x = \ln(y)$.
- Pour tout nombre réel x, pour tout nombre réel strictement positif y, pour tous nombres réels a et b, pour tout nombre entier relatif n, on a :
 - on note e^x le nombre exp(x)
 - \circ $e^x > 0$
 - $y = e^x$ si et seulement si $x = \ln(y)$
 - $\circ \ln(e^x) = x$
 - \circ $e^{\ln(y)} = y$
 - \circ $e^{a+b}=e^a \times e^b$

- $\circ e^{-a} = \frac{1}{e^a}$
- $\circ \quad e^{a-b} = \frac{e^a}{e^b}$
- \circ $(e^a)^n = e^{a \times a}$
- La fonction exponentielle est égale à sa propre dérivée : exp '=exp .

• Variations et courbe représentative :

o Tableau de variations :

x	$-\infty$	0	+∞
signe de exp'		+	
exp		→ 1 [—]	<i></i>

- Courbe représentative :
 Les courbes représentatives des fonctions exponentielle et logarithme népérien se déduisent l'une de l'autre par symétrie orthogonale par rapport à la droite d'équation y=x.
- Soit a un nombre réel **strictement positif**, pour tout nombre réel x, $a^x = e^{x \ln(a)}$.

Fiche 2

Thème: FONCTIONS FONCTIONS LN ET EXP

Mathématiques Approfondies

Exercice 1

Simplifier l'écriture des expressions suivantes :

- 1) ln(3e)
- $2) \ln(e^2)$
- 3) $\ln(\sqrt{e})$

4) $\ln\left(\frac{1}{3}\right) + \ln\left(\frac{3}{5}\right) + \ln\left(\frac{5}{7}\right) + \ln\left(\frac{7}{9}\right)$

5) $\ln((2+\sqrt{3})^{20}) + \ln((2-\sqrt{3})^{20})$.

Exercice 2

Résoudre les équations proposées après avoir fourni l'ensemble d'étude.

- 1) $\ln(3x) = 8$
- 2) $\ln(x) = -2$
- 3) $\ln(x^2)=1$
- 4) $\ln\left(\frac{x}{3}\right) = 2$

- 5) $\ln(x^3) = -3$
- 6) $\ln(3x-2)=0$
- 7) $\ln(x^2-1)=\ln(4)+\ln(2)$
- 8) $\ln(x^2-3x+2)=\ln(9)$
- 9) $\ln(2x+1)+\ln(-x+1)=0$

10) $\ln((x-1)^2) - \ln(x+1) = 0$

11) $e^{3x+4} = 2$ 12) $e^{-x \ln 4} = 2$

13) $e^x + e^{-x} - 6 = 0$.

<u>Exercice 3</u>

Résoudre les inéquations proposées après avoir fourni l'ensemble d'étude.

- 1) $1-2\ln(2x) \ge 0$
- $2) \quad 3 \ln(x) \le 0$
- 3) $2+3\ln(2x) \le 0$

- 4) $\ln(5-x)-\ln(3)+\ln(x-1) \ge 0$
- 5) $\ln(3x^2-x-2) \ge \ln(6x+4)$.

Exercice 4

Dans chacun des cas, déterminer l'ensemble sur lequel la fonction f est dérivable puis calculer sa dérivée et enfin dresser son sens de variation.

- $1) \quad f(x) = x \ln x \ .$
- $2) \quad f(x) = \sqrt{\ln x}$

3) $f(x) = \frac{1}{\ln x}$

- 4) $f(x) = \left(\frac{x}{\ln x}\right)^2$
- 5) $f(x) = (\ln x)^3$.

Exercice 5

On considère la fonction f définie sur \mathbb{R}_+^* par $f(x) = e^x - \ln x$.

- 1) Étudier les variations de la fonction g définie sur \mathbb{R} par $g(x)=xe^x-1$.
- 2) En déduire qu'il existe un unique réel α tel que $\alpha e^{\alpha} = 1$. Donner un encadrement d'amplitude 10^{-3} de α .
- 3) Étudier le signe de g(x).
- 4) Calculer la fonction dérivée f ' de f et étudier son signe sur \mathbb{R}_+^* .
- 5) En déduire les variations de la fonction f.
- 6) Montrer que f admet un minimum m égal à $\alpha + \alpha^{-1}$.

Exercice 6

Soit f la fonction définie sur \mathbb{R} par $f(x)=e^{-2x+3}$.

- 1) Calculer f'(x).
- 2) Étudier les variations de *f*.
- 3) Résoudre l'équation f(x)=1.

Exercice 7

Soit f la fonction définie sur \mathbb{R} par $f(x)=xe^x$.

- 1) Calculer f'(x) puis montrer que f'(x) a le même signe que x+1.
- 2) Étudier les variations de f.

Exercice 8

Soit f la fonction définie sur \mathbb{R} par $f(x)=e^{-x^2}$.

- 1) À l'aide de la calculatrice, conjecturer le signe de f'(x).
- 2) Calculer f'(x).
- 3) Établir les variations de f et construire son tableau de variations.

Exercice 9

Soit f la fonction définie sur $[0;+\infty[$ par $f(x)=45\left(1-e^{-\frac{x}{4}}\right)$.

- 1) Calculer f'(x) et étudier son signe.
- 2) Dresser le tableau de variations de f sur $[0; +\infty[$.
- 3) Résoudre l'inéquation $f(x) \ge 40$.

Exercice 10

Ci-contre est donnée une courbe représentant la fonction f définie sur $[0;+\infty[$ par $f(x)=xe^{-x}$ ainsi que son sommet S.

- 1) À l'aide du graphique, conjecturer les variations de *f*.
- 2) Calculer f'(x) et montrer que f'(x) a le même signe que 1-x.
- 3) Construire le tableau de variations de f et préciser la valeur exacte de l'ordonnée de S.

Exercice 11

Déterminer les ensembles de définition et de dérivabilité puis calculer les dérivées des fonctions cidessous :

- 1) $f(x) = \ln(-3x+1)$
- 2) $f(x) = \ln(x^2 + x + 1)$

- 3) $f(x) = \ln(\ln x)$
- 4) $f(x) = (\ln x)^2$.