Monte Carlo simulation of a QML estimation of an ARCH(1) model

Paulina Kurowska Bingling Wang

Ladislaus von Bortkiewicz Chair of Statistics
Humboldt–Universität zu Berlin
https://github.com/paulinakurowska/SFM_project.git

Outline

- 1. ARCH(1) model
- 2. Maximum Likelihood estimation
- 3. Quasi Maximum Likelihood estimation
- 4. Monte Carlo Set up
- 5. Monte Carlo Simulation
- 6. Simulation Results
- 7. Further information

Simulated ARCH(1) process

Simulated ARCH(1) process with 1000 observations, $\alpha < 1$

Estimation of ARCH(1) Models

ARCH(1) process ε_t has an AR(1) representation:

$$\varepsilon_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \eta_t, \eta_t = \sigma_t^2 (Z_t^2 - 1)$$

Series sim1002

Maximum Likelihood Estimation (MLE)

 $oxed{oxed}$ Assume pdf of $\varepsilon_t | \mathcal{F}_{t-1}$ normal

$$p(\varepsilon_t|\mathcal{F}_{t-1}) = \frac{1}{\sqrt{2\pi}\sigma_t} exp\left\{-\frac{1}{2}\frac{\varepsilon_t^2}{\sigma_t^2}\right\}$$

□ Log-likelihood function $I(\omega, \alpha)$:

$$I(\omega, \alpha) = \sum_{t=2}^{n} I_t(\omega, \alpha) + logp_{\varepsilon}(\varepsilon_1)$$

where $I(\omega, \alpha) = \log p(\varepsilon_t | \mathcal{F}_{t-1})$

moralpark

Maximum Likelihood Estimation (MLE)

First order conditions

$$\sum_{t=2}^{n} \frac{\partial I_{t}^{b}}{\partial \omega} = 0 \text{ and } \sum_{t=q+1}^{n} \frac{\partial I_{t}^{b}}{\partial \alpha} = 0$$

- Under the conditions
 - 1. $E[Z_t|\mathcal{F}_{t-1}] = 0$ and $E[Z_t^2|\mathcal{F}_{t-1}] = 1$
 - 2. $E[log(\alpha Z_t^2)|\mathcal{F}_{t-1}] < 0$ (strong stationarity)

ML estimators are consistent

Quasi Maximum likelihood Estimation (QMLE)

- ☑ If Z_t is not normally distributed, $\hat{\theta}$ is consistent, and asymptotically normally distributed, but not efficient. In this case the method is interpreted as quasi ML (QML).

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{\mathcal{L}} N(0, J^{-1}IJ^{-1}) \tag{1}$$

QQ Plot of standardized residuals

Requirements

- Control over the random variables and parameters (selection of pdf for random numbers)
- Reproducibility
- Efficiency
- Documented steps

Monte Carlo Set up

- □ R-Package: fGarch
- Testing for different RNG: Marsenne Twister, Knuth-TAOCP-2002, Wichmann-Hill with seed=123.
- Custom function called 'simulation' which takes as input size of the dataset and returns the string of:
 - 1. averaged value of estimated $\hat{\alpha}$
 - 2. standard deviation of estimated $\hat{\alpha}$ from true parameter $\alpha = 0.9$
 - 3. number of $\hat{\alpha}$ which are larger or equal to 1 (evidence of the stationarity violation)

over k = 1000 replications for datasets of size n = 100, 250, 500, 1000.

Monte Carlo Set up continued

Functions used:

- fitGarch() with specified conditional distribution to be calculated with the Quasi Maximum Likelihood Estimation;

Results of Monte Carlo Simulation

n	$k^- 1 \sum_{j=1}^k \hat{\alpha_j}$	$\sqrt{k^-1\sum_{j=1}^k(\hat{\alpha_j}-\alpha)^2}$	$\#(\alpha_j \geq 1)$
100	0.824	0.209	34.5%
250	0.868	0.13	23.2%
500	0.880	0.095	17.3%
1000	0.890	0.073	7.4%

Table 1: RNG: Marsenne Twister

SFEqmle

Results with other RNG

n	$k^- 1 \sum_{j=1}^k \hat{\alpha_j}$	$\sqrt{k^-1\sum_{j=1}^k(\hat{\alpha_j}-\alpha)^2}$	$\#(\alpha_j \geq 1)$
100	0.82	0.207	30.1%
250	0.869	0.128	24.1%
500	0.883	0.097	17.2%
1000	0.89	0.072	9.3%

Table 2: RNG: Knuth-TAOCP-2002

SFEqmle

Results with other RNG

n	$k^- 1 \sum_{j=1}^k \hat{\alpha_j}$	$\sqrt{k^-1\sum_{j=1}^k(\hat{\alpha_j}-\alpha)^2}$	$\#(\alpha_j \geq 1)$
100	0.822	0.207	31.1%
250	0.868	0.132	24.5%
500	0.884	0.096	17.9%
1000	0.896	0.07	9.7%

Table 3: RNG: Wichmann-Hill

For Further Reading

Gentle, James E.

Elements of Computational Statistics

R-Package fGarch, Nov 2017

Wolfgang Karl Haerdle
Statistics of Financial Markets: An Introduction

