## **Basic Properties**

**Definition:** A topological space M is called a *manifold* if it satisfies the following:

- M is Hausdorff (points can be separated by open sets);
- M is second countable (the basis for the topology of M is countable);
- M is locally Euclidean (every point in M has a neighborhood homeomorphic to  $\mathbb{R}^n$  for some n).

In particular, the third condition says that for every  $p \in M$ , there is  $U \in \mathcal{O}_p$  and a homeomorphism  $\varphi \colon U \to \mathbb{R}^n$ . The value of n is called the *dimension* of the manifold M.

**Definition:** Let M be an n-manifold. A *chart* on M is a pair  $(U, \phi)$  such that  $U \subseteq M$  is open,  $\phi \colon U \to \mathbb{R}^n$  is a homeomorphism.

A family of charts  $A = \{(U_i, \varphi_i)\}_{i \in I}$  is known as an *atlas* if

$$M = \bigcup_{i \in I} U_i$$
.

To understand the smooth structure of a manifold, we consider a point  $p \in M$  and two charts  $(U, \phi_U)$  and  $(V, \phi_V)$  such that  $p \in U$  and  $p \in V$ . The functions  $\phi_U \colon U \to \mathbb{R}^n$  and  $\phi_V \colon V \to \mathbb{R}^n$  are homeomorphism, meaning that  $\phi_V \circ \phi_U^{-1} \colon \phi_U(U \cap V)^n \to \mathbb{R}^n$  defined on the (nonempty)  $U \cap V$  is also a homeomorphism.

In particular, we develop the smooth structure by making sure all such pairs  $\phi_V \circ \phi_U^{-1}$  are *diffeomorphisms*. To do this, we need to first develop the derivative in  $\mathbb{R}^n$ .

**Definition:** Let  $f: \mathbb{R}^n \to \mathbb{R}^m$  be a function. We say f is *differentiable* at  $p \in \mathbb{R}^n$  if there is a linear map  $L \in \text{Hom}(\mathbb{R}^n, \mathbb{R}^m)$  such that

$$\frac{\|f(p+h) - f(p) - Lh\|}{\|h\|} \to 0$$

as  $h \rightarrow 0$ .

The *derivative* of f is the association  $f \mapsto L$  for each  $p \in \mathbb{R}^n$ . We write  $D_p f$  to denote this map. Note that we consider elements of  $Mat_n(\mathbb{R})$  as points in  $\mathbb{R}^{n^2}$  with the standard topology on  $\mathbb{R}^{n^2}$ .

A function f is called a *diffeomorphism* if it is continuously differentiable and has a continuously differentiable inverse.

**Definition:** If  $(U, \varphi_U)$  and  $(V, \varphi_V)$  are charts such that  $U \cap V \neq \emptyset$ , the function  $\varphi_V \circ \varphi_U^{-1} \colon \mathbb{R}^n \to \mathbb{R}^n$  is known as the *transition map* between  $\varphi_U$  and  $\varphi_V$ .

A *smooth structure* for M is an atlas  $\{(U_i, \phi_i)\}_{i \in I}$  such that for all  $i, j \in I$ , the transition maps  $\phi_j \circ \phi_i^{-1} \colon \mathbb{R}^n \to \mathbb{R}^m$  are diffeomorphisms where defined (if not defined, then it is vacuously so). If M admits a smooth structure, then we call M a smooth manifold.

**Note:** From now on, we use "manifold" to refer to smooth manifolds, and will say *topological* manifolds if the manifold does not necessarily admit a smooth structure.

**Definition:** A map  $f: M \to N$  between manifolds is called *smooth* if for any chart  $(U, \phi_U)$  in M and corresponding chart  $(V, \phi_V)$  in N, the map  $\phi_V \circ f \circ \phi_U^{-1} \colon \mathbb{R}^n \to \mathbb{R}^k$  is continuously differentiable.

The function f is a *diffeomorphism* if f is a smooth bijection with smooth inverse, and we say the manifolds M and N are diffeomorphic if they admit a diffeomorphism.

In order to replace manifolds with linear maps, we need to understand smooth maps on  $\mathbb{R}^n$ . The most important theorems in this regard are the inverse function theorem and the implicit function theorem.

**Theorem** (Inverse Function Theorem): Let  $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^n$  be a continuously differentiable function. If  $D_p f$  is invertible as a linear map, then f has a local, continuously differentiable inverse  $f^{-1}: V \to W$ , where  $p \in W \subseteq U$  and  $f(p) \in V \subseteq \mathbb{R}^n$ .

The proof uses the contraction mapping theorem. Recall that if X is a complete metric space, and  $f: X \to X$  is a strict uniform contraction — that is, there exists  $0 \le \lambda < 1$  such that  $d(f(x), f(y)) \le \lambda d(x, y)$  for all  $x, y \in X$  — then f has a unique fixed point.

We begin with a technical lemma.

**Lemma:** If  $U(0, r) \subseteq V$  for some r > 0 where V is a normed vector space,  $g: V \to V$  is a uniform contraction, and f = id + q, then the following hold:

- $(1 \lambda)||x y|| \le ||f(x) f(y)||$  (in particular, f is injective);
- if g(0) = 0, then

$$U(0,(1-\lambda)r) \subseteq f(U(0,r)) \subseteq U(0,(1+\lambda)r).$$

*Proof of Lemma.* To see the first item, we notice that by the triangle inequality,

$$||x - y|| - ||f(x) - f(y)|| \le ||x - y|| - ||x - y|| + ||g(x) - g(y)||$$
  
 $\le \lambda ||x - y||,$ 

so  $(1 - \lambda) \|x - y\| \le \|f(x) - f(y)\|$ , and f is injective. Furthermore, we see that if g(0) = 0, then

$$f(U(0,r)) = U(0,r) + g(U(0,r))$$
  

$$\subseteq U(0,r) + \lambda U(0,r)$$
  

$$= U(0,(1+\lambda)r).$$

Finally, if  $y \in U(0, (1 - \lambda)r)$ , then we want to find x such that y = f(x) = x + g(x); equivalently, we see that we want x such that x = y - g(x). Since the function F(x) = y - g(x) is a translation of a uniform contraction, F(x) is a contraction, so there is a fixed point, meaning  $y \in f(U(0, r))$ .

**Note:** We will use  $|\cdot|$  to denote the norm on  $\mathbb{R}^n$ .

*Proof of the Inverse Function Theorem.* By using a series of affine maps — first by translating p to 0, then translating f(p) to 0, then inverting  $D_0f$  as per our assumption, we may safely assume that p = f(p) = 0 and  $D_0f = Id$ .

Set g = f - Id. We will show that g is a contraction in a sufficiently small ball. Fixing  $x, y \in \mathbb{R}^n$ , consider the map  $\mathbb{R} \to \mathbb{R}^n$  given by  $t \mapsto g(x + t(y - x))$ . Notice that by the Fundamental Theorem of Calculus,

$$|g(y) - g(x)| \le |y - x| \sup_{0 \le t \le 1} |g'(x + t(y - x))|.$$

Furthermore, since g'(0) = 0 by the fact that  $D_0 f = Id$  and (Id)' = Id, and since f is continuously differentiable, there is r > 0 such that

$$|g(y) - g(x)| \le \frac{1}{2}|y - x|$$

for all  $x, y \in U(0, r)$ . Thus, g is a strict contraction on U(0, r). By the previous lemma, we see that

$$U(0,r/2) \subseteq f(U(0,r));$$

by setting  $U = U(0,r) \cap f^{-1}(U(0,r))$ , we see that the map  $f|_U : U \to V := U(0,r/2)$  is a bijection. The inverse function  $f^{-1} : V \to U$  thus exists.

Now, we let  $h = f^{-1}$ ,  $x \in U$ ,  $y \in V$  such that h(x) = y, and  $A = D_x f$ . We will show that  $A^{-1} = D_y h$ , which is enough to show that h is continuously differentiable, as we assume the map  $x \mapsto D_x f$  is

continuous, and inversion is continuous in  $GL_n(\mathbb{R})$ .

For sufficiently small vectors s and k, since f and h are bijections, we have

$$h(y + k) = x + s,$$

so

$$f(x+s) = y + k.$$

Furthermore, by unraveling the definitions of f = g + Id, s, and k, and the fact that g is a uniform contraction on U, we get

$$\begin{aligned} |s - k| &= |(f(x + s) - f(x)) - s| \\ &= |(x + s + g(x + s)) - (x + g(x)) - s| \\ &= |g(x + s) - g(x)| \\ &\leqslant \frac{|s|}{2}. \end{aligned}$$

In particular, since

$$|s| \le |s - k| + |k|$$

$$\le |k| + \frac{|s|}{2},$$

we see that  $|s|/2 \le |k|$ . We calculate

$$\begin{split} \left| h(y+k) - h(y) - A^{-1}k \right| &= \left| x + s - x - A^{-1}(f(x+s) - f(x)) \right| \\ &= \left| s - A^{-1}(f(x+s) - f(x)) \right| \\ &\leq \left\| A^{-1} \right\|_{op} |As - f(x+s) - f(x)|. \end{split}$$

Thus, since  $|s|/2 \le |k|$ ,

$$\frac{\left|h(y+k) - h(y) - A^{-1}k\right|}{|k|} \le \frac{2\|A^{-1}\|_{op}|As - f(x+s) - f(x)|}{|s|}$$

$$\to 0,$$

so  $D_y h = A^{-1}$