delete

Daniel Topa daniel.topa@hii.com

Huntington Ingalls Industries Mission Technologies

December 27, 2024

Contents

	Introduction				
	1.1	Overview of the Problem	1		
	1.2	Objectives	1		
	1.3	Methodology	1		
2	Backup				
	2.1	A	2		
	2.2	B	2		
	2.3	C	2		
\mathbf{R}_{0}	efere	nces	3		

1 Introduction

1.1 Overview of the Problem

This subsection provides a detailed description of the problem or challenge being addressed in this document.

1.2 Objectives

This subsection outlines the main objectives of the document, including key research goals or development targets.

1.3 Methodology

This subsection describes the methodology or approach taken to address the problem and achieve the objectives.

2 Backup

2.1 A

First subsection.

2.2 B

Second subsection.

2.3 C

Third subsection.

References

- [1] Salvatore Alfano. "Review of conjunction probability methods for short-term encounters (AAS 07-148)". In: Advances in the Astronautical Sciences 127.1 (2007), p. 719.
- [2] Salvatore Alfano. "Satellite conjunction Monte Carlo analysis". In: Advances in Astronautical Sciences 134 (2009), pp. 2007–2024.
- [3] Kyle T Alfriend et al. "Probability of collision error analysis". In: *Space Debris* 1 (1999), pp. 21–35.
- [4] Inc. (AGI) Analytical Graphics. *Iridium 33 Cosmos 2251 Collision*. https://web.archive.org/web/20100514075852/http://www.agi.com/media-center/multimedia/current-events/iridium-33-cosmos-2251-collision/default.aspx. Archived link accessed: 2024-12-25. Includes videos, 3D models, and interactive tools for understanding the event. 2009.
- [5] Anonymous. Analysis of Orbital Debris Impact Risks. Tech. rep. Accessed: 2024-12-25. United States Department of Energy (DOE), Oct. 2009.
- [6] Anonymous. Satellite Collision Modeling with Physics-Based Hydrocodes: Debris Analysis. Tech. rep. Accessed: 2024-12-25. United States Department of Energy (DOE), Aug. 2010.
- [7] Ulpia Elena Botezatu. "Developing a Comprehensive Combat Mindset for Outer Space Security". In: Redefining Community in Intercultural Context 11.1 (2023), pp. 43–52.
- [8] Ken Chan. "Collision probability analyses for earth-orbiting satellites". In: 2001 Flight Mechanics Symposium. Vol. 1. 2001.
- [9] Keir Clarke. Satellite Crash. Vimeo video. A Google Earth Browser plug-in simulation of the Iridium 33 and Cosmos 2251 satellite collision. Accessed: 2024-12-25. 2009.
- [10] Wikipedia contributors. Space Warfare. https://en.wikipedia.org/wiki/Space_warfare. Accessed: 2024-12-25. 2024.
- [11] James Lee Foster and Herbert S Estes. A parametric analysis of orbital debris collision probability and maneuver rate for space vehicles. NASA, National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, 1992.
- [12] Adam P Jodice and Mark R Guerber. "Space Combat Capability... Do We Have It?" In: Air & Space Power Journal 28.6 (2014), pp. 82–99.
- [13] Donald J Kessler and Burton G Cour-Palais. "Collision frequency of artificial satellites: The creation of a debris belt". In: *Journal of Geophysical Research: Space Physics* 83.A6 (1978), pp. 2637–2646.
- [14] Jean-Luc Lefebvre. "Combat within Space?" In: *Space Strategy*. First published: March 17, 2017. Explores strategic analysis of combat in orbit and key orbital locations. Springer, 2017. Chap. 1, pp. 1–20. DOI: 10.1007/978-3-319-47313-5_1.
- [15] Jer-Chyi Liou and Debi Shoots. Orbital Debris Quarterly News, Volume 13, Issue 4. Tech. rep. 2009.

- [16] Michael Listner. Iridium 33 and Cosmos 2251 Three Years Later: Where Are We Now? https://www.thespacereview.com/article/2023/1. Accessed: 2024-12-25. Analysis of the long-term effects and current status of debris from the 2009 satellite collision. 2012.
- [17] Martha Mejía-Kaiser. "Collision Course: The 2009 Iridium-Cosmos Crash". In: Proceedings of the 52nd IISL Colloquium on the Law of Outer Space. Posted: March 21, 2019. Accessed: 2024-12-25. Examines legal, political, and liability implications of the 2009 satellite collision. International Institute of Space Law. Daejeon, Korea, Oct. 2009, pp. 87–118.
- [18] Leos Mervart. Methods of Celestial Mechanics. Springer, 2005.
- [19] Joseph Peter Morris. Analysis of Smoothed Particle Hydrodynamics with Applications. Monash University Australia, 1996.
- [20] Scot Olivier et al. *High-performance computer modeling of the Cosmos-Iridium collision*. Tech. rep. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States), 2009.
- [21] Alex T Pang, Craig M Wittenbrink, and Suresh K Lodha. "Approaches to uncertainty visualization". In: *The Visual Computer* 13.8 (1997), pp. 370–390.
- [22] Valerio Pascucci and Randall J Frank. "Global static indexing for real-time exploration of very large regular grids". In: *Proceedings of the 2001 ACM/IEEE Conference on Supercomputing*. 2001, pp. 2–2.
- [23] P. K. Seidelmann. "1980 IAU theory of nutation: The final report of the IAU working group on nutation". In: *Celestial Mechanics* 27.1 (1982), pp. 79–106.
- [24] Patrick Seitzer et al. "Optical studies of space debris at GEO-survey and follow-up with two telescopes". In: 8th Air Force Maui Optical and Supercomputing (AMOS) Technical Conf. Wailea, Maui, Hawaii, USA. 2007, pp. 10–14.
- [25] Mark F Storz, Bruce R Bowman, and Major James I Branson. "Space Battlelab's High Accuracy Satellite Drag Model". In: Air Force Space Command, Space Analysis Center (ASAC), Peterson AFB. Presented at the AIAAA Astrodynamics Specialist Conference and Exhibit, August. Vol. 5. Citeseer. 2001.
- [26] CelesTrak Team. Iridium 33/Cosmos 2251 Collision. urlhttp://celestrak.com/events/collision.asp. Coverage started March 5, 2009. Updated March 11, 2009. Accessed: 2024-12-25. 2009.
- [27] Edward B Tomme. The Paradigm Shift to Effects-Based Space: Near-Space as a Combat Space Effects Enabler. Airpower Research Institute, College of Aerospace Doctrine, Research and Education, 2005.
- [28] Brian Weeden. 2009 Iridium-Cosmos Collision Fact Sheet. Accessed: 2024-12-25. Nov. 2010.
- [29] David Wright. Colliding Satellites: Consequences and Implications. Union of Concerned Scientists Report. Accessed: 2024-12-25. Feb. 2009.