TH zürich

Lecture «Robot Dynamics»: Intro to Dynamics

151-0851-00 V

lecture: CAB G11 Tuesday 10:15 – 12:00, every week

exercise: HG E1.2 Wednesday 8:15 – 10:00, according to schedule (about every 2nd week)

Marco Hutter, Roland Siegwart, and Thomas Stastny

ETH zürich

19.09.2017	Intro and Outline	Course Introduction; Recapitulation Position, Linear Velocity			
26.09.2017	Kinematics 1	Rotation and Angular Velocity; Rigid Body Formulation, Transformation	26.09.2017	Exercise 1a	Kinematics Modeling the ABB arm
03.10.2017	Kinematics 2	Kinematics of Systems of Bodies; Jacobians	03.10.2017	Exercise 1b	Differential Kinematics of the ABB arm
10.10.2017	Kinematics 3	Kinematic Control Methods: Inverse Differential Kinematics, Inverse Kinematics; Rotation Error; Multi-task Control	10.10.2017	Exercise 1c	Kinematic Control of the ABB Arm
17.10.2017	Dynamics L1	Multi-body Dynamics	17.10.2017	Exercise 2a	Dynamic Modeling of the ABB Arm
24.10.2017	Dynamics L2	Floating Base Dynamics	24.10.2017		
31.10.2017	Dynamics L3	Dynamic Model Based Control Methods	31.10.2017	Exercise 2b	Dynamic Control Methods Applied to the ABB arm
07.11.2017	Legged Robot	Dynamic Modeling of Legged Robots & Control	07.11.2017	Exercise 3	Legged robot
14.11.2017	Case Studies 1	Legged Robotics Case Study	14.11.2017		
21.11.2017	Rotorcraft	Dynamic Modeling of Rotorcraft & Control	21.11.2017	Exercise 4	Modeling and Control of Multicopter
28.11.2017	Case Studies 2	Rotor Craft Case Study	28.11.2017		
05.12.2017	Fixed-wing	Dynamic Modeling of Fixed-wing & Control	05.12.2017	Exercise 5	Fixed-wing Control and Simulation
12.12.2017	Case Studies 3	Fixed-wing Case Study (Solar-powered UAVs - AtlantikSolar, Vertical Take-off and Landing UAVs – Wingtra)			
19.12.2017	Summery and Outlook	Summery; Wrap-up; Exam			
					D : 4 47.40.0047 1 0

Robot Dynamics - Dynamics 1 | 17.10.2017 | 2

Recapitulation of Kinematics

- Kinematics = **description** of motions
 - Translations and rotations
 - Various representations (Euler, quaternions, etc.)
 - Instantaneous/Differential kinematics
 - Jacobians and geometric Jacobians
 - Inverse kinematics and control
 - Floating base systems (unactuated base and contacts)

$$\boldsymbol{\chi}_{e}=\boldsymbol{\chi}_{e}\left(\mathbf{q}
ight)$$

$$\mathbf{w}_{e} = egin{pmatrix} \mathbf{v}_{e} \ oldsymbol{\omega}_{e} \end{pmatrix} = \mathbf{J}_{e0} \left(\mathbf{q}
ight) \dot{\mathbf{q}}_{e}$$

Dynamics in Robotics

Dynamics in Robotics

Dynamics Outline

- Description of "cause of motion"
 - Input τ Force/Torque acting on system
 - Output q Motion of the system
- Principle of virtual work
 - Newton's law for particles
 - Conservation of impulse and angular momentum
- 3 methods to get the EoM
 - Newton-Euler: Free cut and conservation of impulse & angular momentum for each body
 - Projected Newton-Euler (generalized coordinates)
 - Lagrange II (energy)
- Introduction to dynamics of floating base systems
 - External forces

$\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{b}(\mathbf{q},\dot{\mathbf{q}}) + \mathbf{g}(\mathbf{q}) = \mathbf{\tau} + \mathbf{J}_{c}^{T}\mathbf{F}_{c}$					
ÿ	Generalized coordinates				
$\mathbf{M}(\mathbf{q})$	Mass matrix				
$b\!\left(q,\dot{q}\right)$	Centrifugal and Coriolis forces				
$\mathbf{g}(\mathbf{q})$	Gravity forces				
τ	Generalized forces				
\mathbf{F}_{c}	External forces				
\mathbf{J}_c	Contact Jacobian				

Principle of Virtual Work

- Principle of virtual work (D'Alembert's Principle)
 - Dynamic equilibrium imposes zero virtual work

$$\delta W = \int_{\mathcal{B}} \mathbf{\hat{r}}^T \cdot (\mathbf{\ddot{r}} dm - d\mathbf{F}_{ext}) = 0$$
variational parameter

Newton's law for every particle in direction it can move

 $d\mathbf{F}_{ext}$ external forces acting on element i

acceleration of element i

mass of element i

 $\delta \mathbf{r}$ virtual displacement of element i

Virtual Displacements of Single Rigid Bodies

Rigid body Kinematics

$$\begin{split} &\mathbf{r} = \mathbf{r}_{OS} + \boldsymbol{\rho} \\ &\dot{\mathbf{r}} = \mathbf{v}_{S} + \boldsymbol{\Omega} \times \boldsymbol{\rho} = \begin{bmatrix} \mathbb{I}_{3\times3} & -\left[\boldsymbol{\rho}\right]_{\times} \end{bmatrix} \begin{pmatrix} \mathbf{v}_{s} \\ \boldsymbol{\Omega} \end{pmatrix} \\ &\ddot{\mathbf{r}} = \mathbf{a}_{S} + \boldsymbol{\Psi} \times \boldsymbol{\rho} + \boldsymbol{\Omega} \times (\boldsymbol{\Omega} \times \boldsymbol{\rho}) = \begin{bmatrix} \mathbb{I}_{3\times3} & -\left[\boldsymbol{\rho}\right]_{\times} \end{bmatrix} \begin{pmatrix} \mathbf{a}_{s} \\ \boldsymbol{\Psi} \end{pmatrix} + \left[\boldsymbol{\Omega}\right]_{\times} \left[\boldsymbol{\Omega}\right]_{\times} \boldsymbol{\rho} \\ &\delta \mathbf{r} = \delta \mathbf{r}_{S} + \delta \boldsymbol{\Phi} \times \boldsymbol{\rho} = \begin{bmatrix} \mathbb{I}_{3\times3} & -\left[\boldsymbol{\rho}\right]_{\times} \end{bmatrix} \begin{pmatrix} \delta \mathbf{r}_{s} \\ \delta \boldsymbol{\Phi} \end{pmatrix} \end{split}$$

Applied to principle of virtual work

$$0 = \delta W = \int_{\mathcal{B}} \begin{pmatrix} \delta \mathbf{r}_{s} \\ \delta \mathbf{\Phi} \end{pmatrix}^{T} \begin{bmatrix} \mathbb{I}_{3 \times 3} \\ [\boldsymbol{\rho}]_{\times} \end{bmatrix} \begin{pmatrix} [\mathbb{I}_{3 \times 3} - [\boldsymbol{\rho}]_{\times}] \begin{pmatrix} \mathbf{a}_{s} \\ \mathbf{\Psi} \end{pmatrix} dm + [\boldsymbol{\Omega}]_{\times}^{2} \boldsymbol{\rho} dm - d\mathbf{F}_{ext} \end{pmatrix}$$
$$= \begin{pmatrix} \delta \mathbf{r}_{s} \\ \delta \mathbf{\Phi} \end{pmatrix}^{T} \int_{\mathcal{B}} \begin{pmatrix} [\mathbb{I}_{3 \times 3} dm & [\boldsymbol{\rho}]_{\times}^{T} dm \\ [\boldsymbol{\rho}]_{\times} dm & -[\boldsymbol{\rho}]_{\times}^{2} dm \end{bmatrix} \begin{pmatrix} \mathbf{a}_{s} \\ \mathbf{\Psi} \end{pmatrix} + \begin{pmatrix} [\boldsymbol{\Omega}]_{\times}^{2} \boldsymbol{\rho} dm \\ [\boldsymbol{\rho}]_{\times} [\boldsymbol{\Omega}]_{\times}^{2} \boldsymbol{\rho} dm \end{pmatrix} - \begin{pmatrix} d\mathbf{F}_{ext} \\ [\boldsymbol{\rho}]_{\times} d\mathbf{F}_{ext} \end{pmatrix} \end{pmatrix}$$

$$0 = \delta W = \begin{pmatrix} \delta \mathbf{r}_s \\ \delta \mathbf{\Phi} \end{pmatrix}^T \begin{pmatrix} \begin{bmatrix} \mathbb{I}_{3 \times 3} m & \mathbf{0} \\ \mathbf{0} & \mathbf{\Theta}_S \end{bmatrix} \begin{pmatrix} \mathbf{a}_s \\ \mathbf{\Psi} \end{pmatrix} + \begin{pmatrix} \mathbf{0} \\ [\mathbf{\Omega}]_{\times} \mathbf{\Theta}_S \mathbf{\Omega} \end{pmatrix} - \begin{pmatrix} \mathbf{F}_{ext} \\ \mathbf{T}_{ext} \end{pmatrix} \end{pmatrix} \quad \forall \begin{pmatrix} \delta \mathbf{r}_s \\ \delta \mathbf{\Phi} \end{pmatrix}$$

$$\delta W = \int_{\mathcal{B}} \delta \mathbf{r}^T \cdot (\ddot{\mathbf{r}} dm - d\mathbf{F}_{ext}) = 0$$

Impulse and angular momentum

Use the following definitions

$$\mathbf{p}_S = m\mathbf{v}_S$$
 linear momentum $\mathbf{N}_S = \mathbf{\Theta}_S \mathbf{\Omega}_S$ angular momentum $\dot{\mathbf{p}}_S = m\mathbf{a}_S$ change in linear momentum $\dot{\mathbf{N}}_S = \mathbf{\Theta}_S \mathbf{\Psi} + \mathbf{\Omega} \times \mathbf{\Theta}_S \mathbf{\Omega}$ change in angular momentum

Conservation of impulse and angular momentum

1st Method for EoM

Newton-Euler for single bodies

- Cut all bodies free
- Introduction of constraining force
- Apply conservation p and N to individual bodies
- System of equations
 - 6n equation
 - Eliminate all constrained forces (5n)
- Pros and Cons
 - + Intuitively clear
 - + Direct access to constraining forces
 - Becomes a huge combinatorial problem for large MBS

Free Cut

Cart pendulum example

Find the equation of motion

Free Cut Cart pendulum

Impulse / angular momentum cart

$$m_c \ddot{x}_c = F_x \tag{1}$$

$$m_c \ddot{y}_c = F_y + F_l + F_r - m_c g \tag{2}$$

$$\theta_c \ddot{\varphi}_c = F_r b - F_l b \tag{3}$$

Impulse / angular momentum pendulum

$$m_p \ddot{x}_p = -F_x \tag{4}$$

$$m_{\scriptscriptstyle p} \ddot{y}_{\scriptscriptstyle p} = -F_{\scriptscriptstyle v} - m_{\scriptscriptstyle p} g \tag{5}$$

$$\theta_p \ddot{\varphi}_p = F_x l \cos(\varphi_p) + F_y l \sin(\varphi_p) \quad (6)$$

Kinematics

$$x_c = x \tag{7}$$

$$y_c = 0$$
 (constraint) (8)

$$\varphi_c = 0 \text{ (constraint)}$$
 (9)

$$x_p = x + l\sin(\varphi) \qquad (10a) \quad \ddot{x}_p = \ddot{x} + \ddot{\varphi}l\cos(\varphi) - \dot{\varphi}^2l\sin(\varphi) \qquad (10)$$

$$y_p = -l\cos(\varphi) \qquad (11a) \quad \ddot{y}_p = \ddot{\varphi}l\sin(\varphi) + \dot{\varphi}^2l\cos(\varphi) \qquad (11)$$

$$\varphi_p = \varphi \tag{12a} \quad \ddot{\varphi}_p = \ddot{\varphi}$$

6 equations, 6 unknowns resp. 12 equations, 12 unknowns

How many dimensions does the EoM have?

ETH zürich

Free Cut Cart pendulum

(7),(10-12) in (1) and (4-6)

$$m_c \ddot{x} = F_x \tag{13}$$

$$m_{p}\left(\ddot{x} + \ddot{\varphi}l\cos(\varphi) - \dot{\varphi}^{2}l\sin(\varphi)\right) = -F_{x}$$
 (14)

$$m_p \left(\ddot{\varphi} l \sin \left(\varphi \right) + \dot{\varphi}^2 l \cos \left(\varphi \right) \right) = -F_y - m_p g$$
 (15)

$$\theta_{p}\ddot{\varphi} = F_{x}l\cos(\varphi) + F_{y}l\sin(\varphi) \tag{16}$$

- From (13) and (14) remove F_X $(m_p + m_c)\ddot{x} + m_p l \cos(\varphi) \ddot{\varphi} \dot{\varphi}^2 l m_p \sin(\varphi) = 0$
- Insert (13) and (15) in (16) to remove F_x and F_y $(\theta_p + m_p l^2) \ddot{\varphi} + m_p l \cos(\varphi) \ddot{x} + g l m_p \sin(\varphi) = 0$

ETH zürich

Free Cut Cart pendulum

(7),(10-12) in (1) and (4-6)

$$m_c \ddot{x} = F_x \tag{13}$$

$$m_{p}\left(\ddot{x} + \ddot{\varphi}l\cos(\varphi) - \dot{\varphi}^{2}l\sin(\varphi)\right) = -F_{x}$$
 (14)

$$m_{p}(\ddot{\varphi}l\sin(\varphi) + \dot{\varphi}^{2}l\cos(\varphi)) = -F_{y} - m_{p}g \qquad (15)$$

$$\theta_{p}\ddot{\varphi} = F_{x}l\cos(\varphi) + F_{y}l\sin(\varphi) \tag{16}$$

From (13) and (14) remove F_X $(m_p + m_c)\ddot{x} + m_p l \cos(\varphi) \ddot{\varphi} - \dot{\varphi}^2 l m_p \sin(\varphi) = 0$

Insert (13) and (15) in (16) to remove F_x and F_y $(\theta_p + m_p l^2) \ddot{\varphi} + m_p l \cos(\varphi) \ddot{x} + g l m_p \sin(\varphi) = 0$

$$m_c \ddot{x}_c = F_x \tag{1}$$

$$m_c \ddot{y}_c = F_y + F_l + F_r - m_c g \tag{2}$$

$$\theta_c \ddot{\varphi}_c = F_r b - F_l b \tag{3}$$

$$m_{p}\ddot{x}_{p} = -F_{x} \tag{4}$$

$$m_p \ddot{y}_p = -F_y - m_p g \tag{5}$$

$$\theta_p \ddot{\varphi}_p = F_x l \cos(\varphi_p) + F_y l \sin(\varphi_p) \quad (6)$$

$$x_c = x \tag{7}$$

$$y_c = 0$$
 (constraint) (8)

$$\varphi_c = 0$$
 (constraint) (9)

$$\ddot{x}_{n} = \ddot{x} + \ddot{\varphi}l\cos(\varphi) - \dot{\varphi}^{2}l\sin(\varphi) \qquad (10)$$

$$\ddot{y}_{n} = \ddot{\varphi}l\sin(\varphi) + \dot{\varphi}^{2}l\cos(\varphi) \tag{11}$$

$$\ddot{\varphi}_{p} = \ddot{\varphi} \tag{12}$$

Newton-Euler in Generalized Motion Directions

- $\qquad \text{For multi-body systems} \qquad 0 = \delta W = \sum_{i=1}^{n_b} \begin{pmatrix} \delta \mathbf{r}_{S_i} \\ \delta \mathbf{\Phi}_{S_i} \end{pmatrix}^T \left(\begin{pmatrix} \dot{\mathbf{p}}_{S_i} \\ \dot{\mathbf{N}}_{S_i} \end{pmatrix} \begin{pmatrix} \mathbf{F}_{ext,i} \\ \mathbf{T}_{ext,i} \end{pmatrix} \right) \qquad \forall \begin{pmatrix} \delta \mathbf{r}_s \\ \delta \mathbf{\Phi}_{S_i} \end{pmatrix}_{\text{consistent}}$
- Express the impulse/angular momentum in generalized coordinates

$$\begin{pmatrix} \mathbf{v}_s \\ \mathbf{\Omega} \end{pmatrix} = \begin{bmatrix} \mathbf{J}_P \\ \mathbf{J}_R \end{bmatrix} \dot{\mathbf{q}}$$

$$\begin{pmatrix} \dot{\mathbf{p}}_{S_i} \\ \dot{\mathbf{N}}_{S_i} \end{pmatrix} = \begin{pmatrix} m \mathbf{a}_{S_i} \\ \boldsymbol{\Theta}_{S_i} \boldsymbol{\Psi}_{S_i} + \boldsymbol{\Omega}_{S_i} \times \boldsymbol{\Theta}_{S_i} \boldsymbol{\Omega}_{S_i} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{a}_s \\ \boldsymbol{\Psi} \end{pmatrix} = \begin{bmatrix} \mathbf{J}_P \\ \mathbf{J}_R \end{bmatrix} \ddot{\mathbf{q}} + \begin{bmatrix} \dot{\mathbf{J}}_P \\ \dot{\mathbf{J}}_R \end{bmatrix} \dot{\mathbf{q}}$$

$$= \begin{pmatrix} m \mathbf{J}_{S_i} \\ \boldsymbol{\Theta}_{S_i} \mathbf{J}_{R_i} \end{pmatrix} \ddot{\mathbf{q}} + \begin{pmatrix} m \dot{\mathbf{J}}_{S_i} \dot{\mathbf{q}} \\ \boldsymbol{\Theta}_{S_i} \dot{\mathbf{J}}_{R_i} \dot{\mathbf{q}} + \mathbf{J}_{R_i} \dot{\mathbf{q}} \times \boldsymbol{\Theta}_{S_i} \mathbf{J}_{R_i} \dot{\mathbf{q}} \end{pmatrix}$$

Virtual displacement in generalized coordinates

$$\begin{pmatrix} \delta \mathbf{r}_s \\ \boldsymbol{\delta \Phi} \end{pmatrix} = \begin{bmatrix} \mathbf{J}_P \\ \mathbf{J}_R \end{bmatrix} \delta \mathbf{q}$$

With this, the principle of virtual work transforms to

$$0 = \delta \mathbf{W} = \delta \mathbf{q}^{T} \sum_{i=1}^{n_{b}} \left(\mathbf{J}_{S_{i}} \right)^{T} \begin{pmatrix} \mathbf{m} \mathbf{J}_{S_{i}} \\ \mathbf{\Theta}_{S_{i}} \mathbf{J}_{R_{i}} \end{pmatrix} \ddot{\mathbf{q}} + \begin{pmatrix} \mathbf{J}_{S_{i}} \\ \mathbf{J}_{R_{i}} \end{pmatrix}^{T} \begin{pmatrix} \mathbf{m} \dot{\mathbf{J}}_{S_{i}} \dot{\mathbf{q}} \\ \mathbf{\Theta}_{S_{i}} \dot{\mathbf{J}}_{R} \dot{\mathbf{q}} + \mathbf{J}_{R_{i}} \dot{\mathbf{q}} \times \mathbf{\Theta}_{S_{i}} \mathbf{J}_{R_{i}} \dot{\mathbf{q}} \end{pmatrix} - \begin{pmatrix} \mathbf{J}_{P_{i}} \\ \mathbf{J}_{R_{i}} \end{pmatrix}^{T} \begin{pmatrix} \mathbf{F}_{ext,i} \\ \mathbf{T}_{ext,i} \end{pmatrix} \quad \forall \delta \mathbf{q}$$

$$\mathbf{M}(\mathbf{q}) \qquad \qquad \mathbf{b}(\mathbf{q}, \dot{\mathbf{q}}) \qquad \qquad \mathbf{b}(\mathbf{q}, \dot{\mathbf{q}) \qquad \qquad \mathbf{b}(\mathbf{q}, \dot{\mathbf{q}}) \qquad \qquad \mathbf{b}($$

Projected Newton-Euler

- $\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{b}(\mathbf{q}, \dot{\mathbf{q}}) + \mathbf{g}(\mathbf{q}) = \mathbf{0}$ Equation of motion
- Directly get the dynamic properties of a multi-body system with n bodies

$$\mathbf{M} = \sum_{i=1}^{n_b} \left(_{\mathcal{A}} \mathbf{J}_{S_i}^T \cdot m \cdot _{\mathcal{A}} \mathbf{J}_{S_i} + _{\mathcal{B}} \mathbf{J}_{R_i}^T \cdot _{\mathcal{B}} \mathbf{\Theta}_{S_i} \cdot _{\mathcal{B}} \mathbf{J}_{R_i} \right)$$

$$\mathbf{b} = \sum_{i=1}^{n_b} \left(_{\mathcal{A}} \mathbf{J}_{S_i}^T \cdot m \cdot _{\mathcal{A}} \dot{\mathbf{J}}_{S_i} \cdot \dot{\mathbf{q}} + _{\mathcal{B}} \mathbf{J}_{R_i}^T \cdot \left(_{\mathcal{B}} \mathbf{\Theta}_{S_i} \cdot _{\mathcal{B}} \dot{\mathbf{J}}_{R_i} \cdot \dot{\mathbf{q}} + _{\mathcal{B}} \mathbf{\Omega}_{S_i} \times _{\mathcal{B}} \mathbf{\Theta}_{S_i} \cdot _{\mathcal{B}} \mathbf{\Omega}_{S_i} \right) \right)$$

$$\mathbf{g} = \sum_{i=1}^{n_b} \left(-_{\mathcal{A}} \mathbf{J}_{S_i}^T \mathbf{A} \mathbf{F}_{g,i} \right)$$

- For actuated systems, include actuation force as external force for each body
 - If actuators act in the direction of generalized coordinates, au corresponds to stacked actuator commands

Projected Newton-Euler Cart pendulum example

Find the equation of motion

Projected Newton-Euler Cart pendulum example

Kinematics cart and pendulum

$$\mathbf{q} = \begin{pmatrix} x \\ \varphi \end{pmatrix} \qquad \mathbf{r}_{OS_{c}} = \begin{pmatrix} x \\ 0 \end{pmatrix} \qquad \mathbf{r}_{OS_{p}} = \begin{pmatrix} x + l\sin(\varphi) \\ -l\cos(\varphi) \end{pmatrix} \qquad \omega_{p} = \dot{\varphi}$$

$$\mathbf{J}_{Pc} = \frac{d\mathbf{r}_{OS_{c}}}{d\mathbf{q}} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad \mathbf{J}_{Pp} = \frac{d\mathbf{r}_{OS_{p}}}{d\mathbf{q}} = \begin{bmatrix} 1 & l\cos(\varphi) \\ 0 & l\sin(\varphi) \end{bmatrix} \qquad \mathbf{J}_{Rp} = \frac{\partial \omega_{p}}{\partial \dot{\mathbf{q}}} = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

$$\dot{\mathbf{J}}_{Pc} = \frac{d\mathbf{J}_{Pc}}{dt} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad \dot{\mathbf{J}}_{Pp} = \frac{d\mathbf{J}_{Pp}}{dt} = \begin{bmatrix} 0 & -l\sin(\varphi)\dot{\varphi} \\ 0 & l\cos(\varphi)\dot{\varphi} \end{bmatrix}$$

Equation of motion

$$\mathbf{M} = \sum \mathbf{J}_{P_{i}}^{T} m_{i} \mathbf{J}_{P_{i}} + \mathbf{J}_{R_{i}}^{T} \mathbf{\Theta}_{i} \mathbf{J}_{R_{i}} = \mathbf{J}_{Pc}^{T} m_{c} \mathbf{J}_{Pc} + \mathbf{J}_{Pp}^{T} m_{p} \mathbf{J}_{Pp} + \mathbf{J}_{Rp}^{T} \mathbf{\Theta}_{p} \mathbf{J}_{Rp} = \begin{bmatrix} m_{c} + m_{p} & l m_{p} \cos(\varphi) \\ l m_{p} \cos(\varphi) & m_{p} l^{2} + \theta_{p} \end{bmatrix}$$

$$\mathbf{b} = \sum \mathbf{J}_{P_{i}}^{T} m_{i} \dot{\mathbf{J}}_{P_{i}} \dot{\mathbf{q}} + \mathbf{J}_{R_{i}}^{T} \mathbf{\Theta}_{i} \dot{\mathbf{J}}_{R_{i}} \dot{\mathbf{q}} + \underbrace{\left(\mathbf{J}_{R_{i}} \dot{\mathbf{q}}\right) \times \mathbf{\Theta}_{i} \mathbf{J}_{R_{i}} \dot{\mathbf{q}}}_{i}^{=0 \text{ (planar system)}} = \mathbf{J}_{Pp}^{T} m_{p} \dot{\mathbf{J}}_{Pp} \dot{\mathbf{q}} = \begin{bmatrix} -\dot{\varphi}^{2} l m_{p} \sin(\varphi) \\ 0 \end{bmatrix}$$

$$\mathbf{g} = \sum_{i=1}^{n} -\mathbf{J}_{s_i}^T \mathbf{F}_i^g = -\mathbf{J}_{P_c}^T \begin{pmatrix} 0 \\ -m_c g \end{pmatrix} - \mathbf{J}_{P_p}^T \begin{pmatrix} 0 \\ -m_p g \end{pmatrix} = \begin{pmatrix} 0 \\ m_p g l \sin(\varphi) \end{pmatrix}$$

ETH zürich

3rd Method for EoM Lagrange II

- $\mathcal{L} = \mathcal{T} \mathcal{U}$ potential energy Lagrangian
- Lagrangian equation $\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}} \right) \left(\frac{\partial \mathcal{L}}{\partial \mathbf{q}} \right) = \boldsymbol{\tau}$

Since
$$\begin{aligned} \mathcal{U} &= \mathcal{U}(\mathbf{q}) \\ \mathcal{T} &= \mathcal{T}(\mathbf{q}, \dot{\mathbf{q}}) \end{aligned} \qquad \underbrace{ \begin{aligned} & \text{inertial forces} \\ & \frac{d}{dt} \bigg(\frac{\partial \mathcal{T}}{\partial \dot{\mathbf{q}}} \bigg) - \frac{\partial \mathcal{T}}{\partial \mathbf{q}} \bigg| \frac{\partial \mathcal{U}}{\partial \dot{\mathbf{q}}} \bigg| = \tau \end{aligned}}_{\text{gravity vector}}$$

$$\mathcal{T} = \frac{1}{2}\dot{\mathbf{q}}^T \mathbf{M}\dot{\mathbf{q}}$$

with
$$\frac{\partial \mathcal{T}}{\partial \dot{\mathbf{q}}} = \mathbf{M}\dot{\mathbf{q}}$$

with
$$\frac{\partial \mathcal{T}}{\partial \dot{\mathbf{q}}} = \mathbf{M}\dot{\mathbf{q}}$$

$$\mathbf{M}\ddot{\mathbf{q}} + \dot{\mathbf{M}}\dot{\mathbf{q}} - \frac{1}{2} \begin{pmatrix} \dot{\mathbf{q}}^T \frac{\partial \mathbf{M}}{\partial q_1} \dot{\mathbf{q}} \\ \vdots \\ \dot{\mathbf{q}}^T \frac{\partial \mathbf{M}}{\partial q_n} \dot{\mathbf{q}} \end{pmatrix} + \vec{g} = \mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \vec{b}(\mathbf{q}, \dot{\mathbf{q}}) + \vec{g}(\mathbf{q}) = \mathbf{\tau}$$

Lagrange II

Kinetic energy

$$\mathcal{T} = \frac{1}{2}\dot{\mathbf{q}}^T \mathbf{M}\dot{\mathbf{q}}$$

$$\mathcal{T} = \sum_{i=1}^{n_b} \left(\frac{1}{2} m_{i \mathbf{A}} \dot{\mathbf{r}}_{S_i \mathbf{A}}^T \dot{\mathbf{r}}_{S_i} + \frac{1}{2} \mathbf{B} \mathbf{\Omega}_{S_i}^T \cdot \mathbf{B} \mathbf{\Theta}_{S_i} \cdot \mathbf{B} \mathbf{\Omega}_{S_i} \right)$$

$$\dot{\mathbf{r}}_{S_i} = \mathbf{J}_{S_i}\dot{\mathbf{q}}$$

$$\mathbf{\Omega}_{S_i} = \mathbf{J}_{R_i} \dot{\mathbf{q}}$$

$$\mathcal{T}(\mathbf{q}, \dot{\mathbf{q}}) = \frac{1}{2} \dot{\mathbf{q}}^T \underbrace{\left(\sum_{i=1}^{n_b} \left(\mathbf{J}_{S_i}^T m \mathbf{J}_{S_i} + \mathbf{J}_{R_i}^T \mathbf{\Theta}_{S_i} \mathbf{J}_{R_i}\right)\right)}_{\mathbf{M}(\mathbf{q})} \dot{\mathbf{q}}$$

Lagrange II Potential energy

- Two sources for potential forces
 - Gravitational forces $\mathbf{F}_{g_i} = m_i \, g_I \mathbf{e}_g$ \longrightarrow $\mathcal{U}_g = -\sum_{i=1}^{n_g} \mathbf{r}_{S_i}^T \mathbf{F}_{g_i}$
 - $\mathbf{F}_{E} = k_{j} \left(\left\| \mathbf{r} \mathbf{r}_{0} \right\| d_{0} \right) \frac{\mathbf{r} \mathbf{r}_{0}}{\left\| \mathbf{r} \mathbf{r}_{0} \right\|} \qquad \longrightarrow \qquad \mathcal{U}_{E_{j}} = \frac{1}{2} k_{j} \left(d(\mathbf{q}) d_{0} \right)^{2}$ Spring forces

Lagrange II Cart pendulum example

Find the equation of motion

Lagrange II Cart pendulum example

Kinematics cart and pendulum
$$\mathbf{r}_{OS_c} = \begin{pmatrix} x \\ 0 \end{pmatrix} \qquad \mathbf{r}_{OS_p} = \begin{pmatrix} x + l\sin(\varphi) \\ -l\cos(\varphi) \end{pmatrix} \qquad \varphi_p = \varphi$$

$$\dot{\mathbf{r}}_{S_c} = \begin{pmatrix} \dot{x} \\ 0 \end{pmatrix} \qquad \dot{\mathbf{r}}_{S_p} = \begin{pmatrix} \dot{x} + l\cos(\varphi)\dot{\varphi} \\ l\sin(\varphi)\dot{\varphi} \end{pmatrix} \qquad \omega_p = \dot{\varphi}$$

Kinetic and potential energy

$$\mathcal{T} = \sum \frac{1}{2} \dot{\mathbf{r}}_{S_i}^T m_i \dot{\mathbf{r}}_{S_i} + \frac{1}{2} \boldsymbol{\omega}_i^T \boldsymbol{\Theta}_i \boldsymbol{\omega}_i = \frac{1}{2} m_c \dot{x}^2 + \frac{1}{2} m_p \dot{x}^2 + \frac{1}{2} m_p l^2 \dot{\varphi}^2 + m_p \dot{x} l \cos(\varphi) \dot{\varphi} + \frac{1}{2} \theta \dot{\varphi}^2$$

$$\mathcal{U} = -m_p g l \cos(\varphi) \longleftarrow \boxed{0\text{-level can be chosen}}$$

Equation of motion

$$\frac{\partial \mathcal{T}}{\partial \dot{\mathbf{q}}} = \begin{pmatrix} m_{c}\dot{x} + m_{p}\dot{x} + m_{p}l\cos(\varphi)\dot{\varphi} \\ m_{p}l^{2}\dot{\varphi} + m_{p}\dot{x}l\cos(\varphi) + \theta\dot{\varphi} \end{pmatrix}$$

$$\frac{d}{dt} \left(\frac{\partial \mathcal{T}}{\partial \dot{\mathbf{q}}}\right) - \frac{\partial \mathcal{T}}{\partial \mathbf{q}} + \frac{\partial \mathcal{U}}{\partial \mathbf{q}} = 0 \qquad \frac{d}{dt} \left(\frac{\partial \mathcal{T}}{\partial \dot{\mathbf{q}}}\right) = \begin{pmatrix} m_{c}\ddot{x} + m_{p}\ddot{x} + m_{p}l\cos(\varphi)\ddot{\varphi} - m_{p}l\sin(\varphi)\dot{\varphi}^{2} \\ m_{p}l^{2}\ddot{\varphi} + m_{p}\ddot{x}l\cos(\varphi) - m_{p}\dot{x}l\sin(\varphi)\dot{\varphi} + \theta\ddot{\varphi} \end{pmatrix}$$

$$-\frac{\partial \mathcal{T}}{\partial \mathbf{q}} = \begin{pmatrix} 0 \\ m_{p}\dot{x}l\sin(\varphi)\dot{\varphi} \end{pmatrix}$$

$$\frac{\partial \mathcal{U}}{\partial \mathbf{q}} = \begin{pmatrix} 0 \\ m_{p}gl\sin(\varphi) \end{pmatrix}$$

$$\frac{\partial \mathcal{U}}{\partial \mathbf{q}} = \begin{pmatrix} 0 \\ m_{p}gl\sin(\varphi) \end{pmatrix}$$

$$\begin{pmatrix} m_c \ddot{x} + m_p \ddot{x} + m_p l \cos(\varphi) \ddot{\varphi} - m_p l \sin(\varphi) \dot{\varphi}^2 \\ m_p l^2 \ddot{\varphi} + m_p \ddot{x} l \cos(\varphi) + \theta \ddot{\varphi} + m_p g l \sin(\varphi) \end{pmatrix} = 0$$

ETH zürich

External Forces

- Given: $n_{f,ext}$ external forces \mathbf{F}_j
- $oldsymbol{ au}_{F,ext} = \sum_{j=1}^{n_{f,ext}} \mathbf{J}_{P,j}^{T} \mathbf{F}_{j}^{}$ Generalized forces are calculated as:
- Given: $n_{m,ext}$ external torques T_k
- Generalized forces are calculated

$$oldsymbol{ au}_{T,ext} = \sum_{k=1}^{n_{m,ext}} \mathbf{J}_{R,k}{}^T \mathbf{T}_{ext,k}$$

 $oldsymbol{ au}_{a,k} = \left(\mathbf{J}_{S_k} - \mathbf{J}_{S_{k-1}}
ight)^T \mathbf{F}_{a,k} + \left(\mathbf{J}_{R_k} - \mathbf{J}_{R_{k-1}}
ight)^T \mathbf{T}_{a,k}$ For actuator torques:

External Forces

Cart pendulum example

Equation of motion without actuation

$$\begin{bmatrix}
m_c + m_p & lm_p \cos(\varphi) \\
lm_p \cos(\varphi) & m_p l^2 + \theta_p
\end{bmatrix} \ddot{\mathbf{q}} + \underbrace{\begin{pmatrix} -\dot{\varphi}^2 lm_p \sin(\varphi) \\
0 \end{pmatrix}}_{\mathbf{b}} + \underbrace{\begin{pmatrix} 0 \\
m_p g l \sin(\varphi) \end{pmatrix}}_{\mathbf{g}} = \mathbf{0}$$

- Add actuator for the pendulum

 - Reaction on cart
- Action on pendulum $T_p = \tau_a$ $T_{p} = [0 \ 1]$ $T_c = -\tau_a$ $T_{p} = [0 \ 1]$ $T_c = [0 \ 0]$ $T_c = [0 \ 0]$
- Add spring to the pendulum
 - (world attachment point P, zero length 0, stiffness k)
 - Action on pendulum

$$\mathbf{F}_{s} = \begin{pmatrix} -F_{x} \\ -F_{y} \end{pmatrix} \qquad \mathbf{r} = \begin{pmatrix} x + 2l\sin(\varphi) \\ -2l\cos(\varphi) \end{pmatrix}$$

$$\mathbf{J}_{s} = \frac{\partial \mathbf{r}_{s}}{\partial \mathbf{q}} = \begin{bmatrix} 1 & 2l\cos(\varphi) \\ 0 & 2l\sin(\varphi) \end{bmatrix}$$

$$\mathbf{\tau} = \mathbf{J}^{T} \mathbf{F}_{s} = \begin{pmatrix} -F_{x} \\ -2l(F_{x}\cos(\varphi) + F_{y}\sin(\varphi)) \end{pmatrix}$$
Robotic Robotic Representation in the probability of th

$$\boldsymbol{\tau} = \mathbf{J}^T \mathbf{F}_s = \begin{pmatrix} -F_x \\ -2l(F_x \cos(\varphi) + F_y \sin(\varphi)) \end{pmatrix}$$

External Forces

Cart pendulum example

What is the external force coming from the motor

External Forces

Cart pendulum example

- What is the external force coming from the motor
 - Action on cart F_{act}

$$F_c = F_{act}$$
 $\mathbf{J}_{Pc} = \begin{bmatrix} 1 & 0 \end{bmatrix}$ $\mathbf{\tau} = \mathbf{J}^T F_c = \begin{pmatrix} F_{act} \\ 0 \end{pmatrix}$

