Concours National Commun - Session 2008

Corrigé de l'épreuve de Mathématiques II

Sur les classes de similitude de matrices carrées d'ordre 2

Corrigé par M.TARQI

I. Résultats préliminaires

- 1. (a) Un matrice $B \in \mathcal{M}_2(\mathbb{K})$ est semblable à A si et seulement si il existe une matrice $P \in GL_2(\mathbb{K})$ tel que $B = PAP^{-1}$, donc $\mathcal{S}_{\mathbb{K}}(A) = \{PAP^{-1}; \ P \in GL_2(\mathbb{K})\}.$
 - (b) Il est clair que $\mathcal{S}_{\mathbb{K}}(xI_2) = \{P(xI_2)P^{-1}; P \in GL_2(\mathbb{K})\} = \{xI_2\}$ est singleton.
- 2. (a) On a det $E_{\lambda} = F_{\lambda} = 1 \neq 0$, donc les deux matrices sont inversibles, $E_{\lambda}^{-1} = \begin{pmatrix} 1 & -\lambda \\ 0 & 1 \end{pmatrix} = E_{-\lambda}$ et $F_{\lambda}^{-1} = \begin{pmatrix} 1 & 0 \\ -\lambda & 1 \end{pmatrix} = F_{-\lambda}$.
 - (b) On a, pour tout $\lambda \in \mathbb{K}$,

$$E_{\lambda}AE_{\lambda}^{-1} = \begin{pmatrix} \lambda c + a & -c\lambda^2 + (d-a)\lambda + b \\ c & -c\lambda + d \end{pmatrix}$$

et

$$F_{\lambda}AF_{\lambda}^{-1} = \begin{pmatrix} b\lambda + a & b \\ -b\lambda^2 + (a-d)\lambda + c & b\lambda + a \end{pmatrix}.$$

(c) Dans ce cas on aura $\forall P \in GL_2(\mathbb{K}), PAP^{-1} = A$, en particulier on aura $\forall \lambda \in \mathbb{K}$,

$$E_{\lambda}AE_{\lambda}^{-1} = \begin{pmatrix} \lambda c + a & -c\lambda^2 + (d-a)\lambda + b \\ c & -c\lambda + d \end{pmatrix} = A$$

et

$$F_{\lambda}AF_{\lambda}^{-1} = \begin{pmatrix} b\lambda + a & b \\ -b\lambda^2 + (a-d)\lambda + c & b\lambda + a \end{pmatrix} = A.$$

On obtient donc $\forall \lambda \in \mathbb{K}$, $\begin{cases} a + \lambda c = a \\ -c\lambda^2 + (d-a)\lambda + b = b \\ d - c\lambda = d \end{cases} \text{ et } \begin{cases} a - \lambda b = a \\ -b\lambda^2 + (a-d)\lambda + c = c \end{cases} \text{ . D'où }$ $a = d \text{ et } b = c = 0 \text{ et par conséquent } A = aI_2.$

- 3. (a) Soit φ l'isomorphisme de $\mathcal{M}_2(\mathbb{K})$ dans \mathbb{K}^4 défini par :
 - $\varphi(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = (a, b, c, d).$

Ainsi $\|A\|_S = \|\varphi(A)\|_2$ ($\|.\|_2$ la norme euclidienne de \mathbb{K}^4), donc $\|.\|_S$ est une norme.

(b) Si $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, alors

$$AA^* = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \overline{a} & \overline{c} \\ \overline{b} & \overline{d} \end{pmatrix} = \begin{pmatrix} |a|^2 + |b|^2 & a\overline{c} + b\overline{d} \\ c\overline{a} + d\overline{b} & |c|^2 + |d|^2 \end{pmatrix},$$

donc $\operatorname{tr}(AA^*) = |a|^2 + |b|^2| + |c|^2 + |d|^2 = ||A||_S^2$.

Comme tr(AB) = tr(BA), alors

$$||U^*AU||_S^2 = \operatorname{tr}(U^*AU(U^*AU)^*) = \operatorname{tr}(UU^*AA^*) = \operatorname{tr}(AA^*) = ||A||_S^2,$$

de même $||UAU^*||_S = ||A||_S$.

- 4. (a) Les deux parties en question sont des parties d'une partie bornée, donc elles sont bornées.
 - (b) Soit M>0 tel que $\forall B\in\mathcal{S}_{\mathbb{K}}(A)$, $\|B\|_{S}\leq M$. En particulier, on aura pour tout $\lambda\in\mathbb{K}:$ $\|E_{\lambda}AE_{\lambda}^{-1}\|_{S}\leq M$ et $\|F_{\lambda}AF_{\lambda}^{-1}\|_{S}\leq M$, donc d'après les calculs faites dans la question 2.(b), on obtient $\forall\lambda\in\mathbb{K}:$

$$\begin{cases} |a + \lambda c|^2 \le M \\ |a + \lambda b|^2 \le M \\ |b + (d - a)\lambda - c\lambda^2|^2 \le M \end{cases},$$

donc nécessairement a=d et b=c=0 et par conséquent $A=aI_2$.

- 5. Toute partie compacte est bornée, donc si $S_{\mathbb{K}}(B)$ est compacte, alors B est une matrice scalaire.
- 6. tr est une forme linéaire, donc continue, et $A \longmapsto \det$ est le composé de deux applications continues $A = [C_1, C_2] \longmapsto (C_1, C_2)$ (linéaire en dimension finie) et $(C_1, C_2) \longmapsto \det(C_1, C_2)$ (bilinéaire en dimension finie), donc l'application $A \longmapsto \det A$ est continue.
- 7. Soit A et B deux matrices de $\mathcal{M}_2(\mathbb{K})$ semblables, alors il existe $P \in GL_2(\mathbb{K})$ telle que $B = PAP^{-1}$, donc les propriétés de tr et det, on a :
 - $\operatorname{tr}(B) = \operatorname{tr}(PAP^{-1}) = \operatorname{tr}(P^{-1}PA) = \operatorname{tr}(A)$.
 - $\det(B) = \det(PAP^{-1}) = \det P \det A \det P^{-1} = \det A$.
 - $\chi_B(\lambda) = \det(B \lambda I_2) = \det(P(A \lambda I_2)P^{-1}) = \det(P \lambda I_2) = \chi_A(\lambda).$

II. Condition pour qu'une matrice de similitude de $\mathcal{M}_2(\mathbb{K})$ soit fermée

- 1. (a) A admet deux valeurs propres distinctes, donc diagonalisable et donc semblable à $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$.
 - (b) Si A est diagonalisable, alors il existe P matrice inversible telle que

$$A = P \left(\begin{array}{cc} \lambda & 0 \\ 0 & \lambda \end{array} \right) P^{-1} = \lambda I_2.$$

La réciproque est evident.

- (c) Dans ce cas $\dim E_{\lambda}=1$ ($E_{\lambda}=\mathrm{Vect}\{u\}$ le sous-espace caractéristique associé à λ). Soit v un vecteur (non nul) vérifiant $(A-\lambda I_2)v=u$ et forme avec u une base, alors dans cette base la matrice canoniquement associé A s'écrit $B=\begin{pmatrix}\lambda&1\\0&\lambda\end{pmatrix}$.
- 2. (a) Si $A=xI_2$, alors $\mathcal{S}_{\mathbb{K}}(A)=\{A\}$ est un singleton, donc est un fermé.
 - (b) On a $A_k = \begin{pmatrix} 2^{-k} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} 2^k & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \lambda & 2^{-k} \\ 0 & \lambda \end{pmatrix}$, donc $\lim_{k \to \infty} A_k = \lambda I_2$. La suite $(A_k)_{k \in \mathbb{N}^*}$ est une suite d'éléments de $S_{\mathbb{K}}(A)$, car $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \in S_{\mathbb{K}}(A)$ et qui converge vers $\lambda I_2 \notin S_{\mathbb{K}}(A)$, donc si A est non diagonalisable, alors $S_{\mathbb{K}}(A)$ n'est pas fermé.
 - (c) i. On a pour tout $k \in \mathbb{N}$, $P_k(A \alpha I_2)P_k^{-1} = P_kAP_k^{-1} \alpha I_2$, donc

$$\lim_{k \to \infty} P_k(A - \alpha I_2) P_k^{-1} = (B - \alpha I_2),$$

et par continuité de l'application det,

$$\det(B - \alpha I_2) = \lim_{k \to \infty} \det(P_k(A - \alpha I_2)P_k^{-1}) = 0.$$

- ii. D'après la dernière question, $\operatorname{Sp}_{\mathbb K}(B)=\{\lambda,\mu\}$, donc B est diagonalisable et semblable à $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$, donc $B\in \mathcal S_{\mathbb K}(A)$. Ainsi on a montré que toute suite d'éléments de $\mathcal S_{\mathbb K}(A)$ converge dans $\mathcal S_{\mathbb K}(A)$, donc $\mathcal S_{\mathbb K}(A)$ est fermée.
- 3. Tout polynôme dans $\mathbb{C}[X]$ admet des racines, donc $\mathrm{Sp}_{\mathbb{C}}(A)$ est toujours non vide.
 - Si $\operatorname{Sp}_{\mathbb{C}}(A) = \{\lambda, \mu\}$, alors A est diagonalisable et donc $\mathcal{S}_{\mathbb{K}}(A)$ est fermée.
 - Si $\operatorname{Sp}_{\mathbb{K}}(A) = \{\lambda\}$, alors si A est diagonalisable, alors $A = \lambda I_2$ et dans ce cas $\mathcal{S}_{\mathbb{K}}(A)$ est fermée. Réciproquement, et dans les cas, supposons $\mathcal{S}_{\mathbb{K}}(A)$ est fermée, donc si A est non diagonalisable, alors d'après la question 2.(b) de cette partie, $\mathcal{S}_{\mathbb{K}}(A)$ n'est pas fermée ce qui est faux.
- 4. (a) Si $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, alors $\chi(\lambda) = \lambda^2 \operatorname{tr}(A)\lambda + \det A$, donc si $\operatorname{Sp}_{\mathbb{R}}(A) = \emptyset$, alors χ n'a pas de racines et donc $\Delta = (\operatorname{tr} A)^2 4 \det A < 0$.
 - (b) On sait d'après le théorème de Cayely-Hamilton que $A^2 (\operatorname{tr} A)A + (\det A)I_2 = 0$, donc on obtient :

$$A'^{2} = \frac{4}{\delta^{2}} \left(A - \frac{\operatorname{tr} A}{2} I_{2} \right) \left(A - \frac{\operatorname{tr} A}{2} I_{2} \right)$$

$$= \frac{4}{\delta^{2}} \left(A^{2} - (\operatorname{tr} A) A + \frac{(\operatorname{tr} A)^{2}}{4} I_{2} \right)$$

$$= \frac{4}{\delta^{2}} \left(-(\det A) I_{2} + \frac{(\operatorname{tr} A)^{2}}{4} I_{2} \right) = -I_{2}$$

- (c) On a d'abord $f(e) \neq 0$, car sinon $e = -f^2(e) = 0$. Soient α et β des réels tels que $\alpha e + \beta f(e) = 0$, donc $\alpha f(e) + \beta f^2(e) = \alpha f(e)e \beta e = 0$. Si $\alpha \neq 0$, alors $e = \frac{-\beta}{\alpha} f(e)$ et donc $(\alpha^2 + \beta^2) f(e) = 0$, et ceci est absurde, ainsi $\alpha = 0$ puis $\beta = 0$. Donc $\{e, f(e)\}$ est une base de \mathbb{R}^2 et la matrice de f dans cette base s'écrit $A_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.
- (d) Soit P = [e, f(e)] la matrice de passage canonique à la base $\{e, f(e)\}$, alors on a $A' = P^{-1}A'P$, donc

$$\frac{2}{\delta} \left(A - \frac{\operatorname{tr} A}{2} I_2 \right) = P^{-1} A_1 P$$

ce qui entraîne

$$A = \frac{\operatorname{tr} A}{2} I_2 + \frac{\delta}{2} P^{-1} A_1 P$$

$$= P^{-1} \left(\frac{\operatorname{tr} A}{2} I_2 + \frac{\delta}{2} A_1 \right) P$$

$$= \frac{1}{2} P^{-1} \left(\frac{\operatorname{tr} A}{\delta} - \frac{\delta}{\operatorname{tr} A} \right) P$$

$$= P^{-1} A'' P.$$

Donc les deux matrices A et A'' sont semblables dans $\mathcal{M}_2(\mathbb{R})$.

- (e) i. On a $\lim_{k\to\infty}(P_kAP_k^{-1})=\widetilde{A}$, donc par continuité des applications tr et \det , on obtient $\operatorname{tr}\widetilde{A}=\operatorname{tr}A$ et $\det\widetilde{A}=\det A$.
 - ii. A et \widetilde{A} ont même trace et même déterminant donc d'après la question 4. de cette partie, les deux sont semblables à A'', donc elles sont semblables.
- 5. Soit $A \in \mathcal{M}_2(\mathbb{R})$. Si A est diagonalisable alors $\mathcal{S}_{\mathbb{R}}(A)$ est fermée, d'après la question 3. de cette partie.

 $\operatorname{Sp}_{\mathbb{R}}(A) = \emptyset$, alors toute suite convergente d'éléments de $\mathcal{S}_{\mathbb{R}}(A)$, d'après la dernière question, sa limite reste dans $\mathcal{S}_{\mathbb{R}}(A)$, c'est-à-dire $\mathcal{S}_{\mathbb{R}}(A)$ est fermée.

Réciproquement, supposons $\mathcal{S}_{\mathbb{R}}(A)$ est fermée. Trois cas sont possibles, soit $\operatorname{Sp}(A) = \{\lambda, \mu\}$ est donc A est diagonalisable, ou bien $\operatorname{Sp}_{\mathbb{R}}(A) = \{\lambda\}$ et dans ce cas $A = \lambda I_2$, car sinon $\mathcal{S}_{\mathbb{R}}(A)$ sera non fermée, ou bien $\operatorname{Sp}(A) = \emptyset$.

Ainsi on a montré que $S_{\mathbb{R}}(A)$ est fermée si et seulement si A est diagonalisable ou bien $\operatorname{Sp}_{\mathbb{R}}(A) = \emptyset$.

III. Une caractérisation des matrices diagonalisables de $\mathcal{M}_2(\mathbb{R})$

1. Un résultat de réduction

- (a) Tout polynôme de degré 2 qui a une racine dans \mathbb{K} est scindé, donc si $\operatorname{Sp}_{\mathbb{K}}(G) \neq \emptyset$, alors χ_G est scindé dans \mathbb{K} .
- (b) D'après le cours, on a :

$$u_1 = \frac{u_1'}{\|u_1'\|}$$
 et $u_2 = \frac{u_2' - (u_2'|u_1)u_1}{\|u_2' - (u_2'|u_1)u_1\|}$

- (c) Si $u_1=ae_1+be_2$ et $u_2=ce_1+de_2$, alors $U=\begin{pmatrix}a&c\\b&d\end{pmatrix}$ et comme $\{u_1,u_2\}$ est une base orthonormée, alors $\begin{cases} |a|^2+|b|^2=1\\|c|^2+|d|^2=1\\a\overline{c}+b\overline{d}=0 \end{cases}$. Autrement dit, $UU^*=I_2$.
- (d) u_1 et u_1' étant colinéaires, donc $g(u_1)=\lambda u_1$. Soient α et β des scalaires tels que $g(u_2)=\alpha u_1+\beta u_2$, donc $T=\begin{pmatrix} \lambda & \alpha \\ 0 & \beta \end{pmatrix}$, donc nécessairement $\beta=\mu$, et puisque U est la matrice de passage de la base $\{e_1,e_2\}$ à la base $\{u_1,u_2\}$, alors $G=UTU^{-1}=UTU^*$. On a évidement $\|G\|_S=\|T\|_S=\sqrt{|\lambda|^2+|\mu|^2+|\alpha|^2}$.

2. Calcul d'une borne inférieure

(a) L'ensemble $\{\|PAP^{-1}\|_S; P \in GL_2(\mathbb{K})\}$ est une partie non vide, car elle contient $\|A\|$, et minorée (par 0), donc admet une borne inférieure.

(b) Soit $\mathcal{B} \in \mathcal{S}_{\mathbb{K}}(A)$, alors $\operatorname{Sp}_{\mathbb{K}}(A) \neq \emptyset$ si $\mathbb{K} = \mathbb{R}$ et donc il existe $U \in \operatorname{GL}_2(\mathbb{K})$ telle que

$$B = U \begin{pmatrix} \lambda & \alpha \\ 0 & \mu \end{pmatrix} U^*$$

(λ et μ les valeurs propres de B).

Ainsi
$$||B||_S = ||UTU^*||_S = ||T||_S = \sqrt{|\lambda|^2 + |\mu|^2 + |\alpha|^2} \ge \sqrt{|\lambda|^2 + |\mu|^2}$$

- (c) Si $\operatorname{Sp}_{\mathbb K}(A)=\{\lambda,\mu\}$, on prend $\alpha=0$. Si $\operatorname{Sp}_{\mathbb K}(A)=\{\lambda\}$, alors puisque A est trigonalisable, pour tout $t\in\mathbb R^*$ on peut toujours trouver une base de $\mathbb K^2$ dans laquelle la matrice de l'endomorphisme canoniquement associé à A s'écrit sous la forme $\begin{pmatrix} \lambda & t\alpha \\ 0 & \mu \end{pmatrix}$, donc $\forall t\in\mathbb R^*$ $\begin{pmatrix} \lambda & t\alpha \\ 0 & \mu \end{pmatrix}\in\mathcal S_{\mathbb K}(A)$
- (d) D'une part on a $\forall B \in \mathcal{S}_{\mathbb{K}}(A)$, $\|B\|_{S} \geq \sqrt{|\lambda|^{2} + |\mu|^{2}}$. D'autre part $\forall t \in \mathbb{K}^{*}$, $\begin{pmatrix} \lambda & t\alpha \\ 0 & \mu \end{pmatrix} \in \mathcal{S}_{\mathbb{K}}(A)$, $\lim_{t \to 0} \begin{pmatrix} \lambda & t\alpha \\ 0 & \mu \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} \text{ et } \left\| \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} \right\|_{S} = \sqrt{|\lambda|^{2} + |\mu|^{2}}$, donc $\inf_{B \in \mathcal{S}_{\mathbb{K}}(A)} \|B\|_{S} = \sqrt{|\lambda|^{2} + |\mu|^{2}}.$
- (e) Si A est diagonalisable, alors $\left(\begin{array}{cc} \lambda & 0 \\ 0 & \mu \end{array} \right) \in \mathcal{S}_{\mathbb{K}}(A)$ et donc

$$\inf_{B \in \mathcal{S}_{\mathbb{K}}(A)} \|B\|_{S} = \sqrt{|\lambda|^{2} + |\mu|^{2}} = \left\| \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} \right\|_{S},$$

donc la borne inférieure de $\{\|PAP^{-1}\|_S/P\in GL_2(\mathbb{K})\}$ est atteint. Inversement, soit $G\in\mathcal{S}_{\mathbb{K}}(A)$ telle que $\inf_{B\in\mathcal{S}_{\mathbb{K}}(A)}\|B\|_S=\|G\|_S=\sqrt{|\lambda|^2+|\mu|^2}$, Mais d'après la question 1., il existe matrice $U\in GL_2(\mathbb{K})$ telle que $UU^*=I_2$ et $G=UTU^*$, donc $T\in\mathcal{S}_{\mathbb{K}}(A)$ et par conséquent

$$\inf_{B \in S_{\nu}(A)} \|B\|_{S} = \sqrt{|\lambda|^{2} + |\mu|^{2}} = \|G\|_{S} = \sqrt{|\lambda|^{2} + |\mu|^{2} + |\alpha|^{2}},$$

donc nécessairement $\alpha = 0$ et donc G et par conséquent A est diagonalisable.

3. Application

- (a) On a $\inf_{B\in\mathcal{S}_{\mathbb{K}}(A)}\|B\|_S=\sqrt{|\lambda|^2+|\mu|^2}$, donc d'après la caractérisation de la borne inférieure, pour tout $k\in\mathbb{N}$, il existe une matrice $P_k\in\mathrm{GL}_2(\mathbb{K})$ telle que $\|P_kAPk^{-1}\|_S\leq\sqrt{|\lambda|^2+|\mu|^2}+\frac{1}{k+1}$.
- (b) la suite $(\|P_kAPk^{-1}\|_S)_{k\in\mathbb{N}}$ étant bornée, donc on peut extraire une sous-suite $\left(P_{\varphi(k)}AP_{\varphi(k)}^{-1}\right)_{k\in\mathbb{N}}$ qui converge vers \widetilde{A} , et comme $\mathcal{S}_{\mathbb{K}}(A)$ est fermée, alors $\widetilde{A}\in\mathcal{S}_{\mathbb{K}}(A)$, donc il existe P inversible telle que $\widetilde{A}=PAP^{-1}$. Mais on a $\forall k\in\mathbb{N}$:

$$||P_{\varphi(k)}AP_{\varphi(k)}^{-1}||_{S} \le \sqrt{|\lambda|^{2} + |\mu|^{2}} + \frac{1}{\varphi(k) + 1}$$

et par passage à la limite on obtient :

$$\|\widetilde{A}\|_{S} \le \sqrt{|\lambda|^{2} + |\mu|^{2}} = \inf_{B \in \mathcal{S}_{\mathbb{K}}(A)} \|B\|_{S}.$$

Donc la borne inférieure de $\{\|PAP^{-1}\|_S; P \in GL_2(\mathbb{K})\}$ est atteint en \widetilde{A} et par conséquent A est diagonalisable.

1. On a

$$M' = \frac{2}{\delta} \left[\begin{pmatrix} a & b \\ c & d \end{pmatrix} - \begin{pmatrix} \frac{a+d}{2} & 0 \\ 0 & \frac{a+d}{2} \end{pmatrix} \right]$$
$$= \frac{2}{\delta} \begin{pmatrix} \frac{a-d}{2} & b \\ c & \frac{d-a}{2} \end{pmatrix}$$
$$= \frac{2}{\sqrt{2ad - 4bc - a^2 - d^2}} \begin{pmatrix} \frac{a-d}{2} & b \\ c & \frac{d-a}{2} \end{pmatrix}.$$

Donc
$$\begin{cases} \alpha = \frac{a-d}{\sqrt{2ad-4bc-a^2-d^2}} \\ \beta = \frac{2b}{\sqrt{2ad-4bc-a^2-d^2}} \\ \gamma = \frac{2c}{\sqrt{2ad-4bc-a^2-d^2}} \end{cases}$$
, et on vérifie facilement que $\alpha^2 + \beta\gamma = -1$.

- 2. Si v=(x,y), alors $f(v)=(\alpha x+\beta y,\gamma x-\alpha y)$ et par conséquent $(v|f(v)=\alpha x^2+(\beta+\gamma)yx-\alpha y^2)$. Soit y fixé dans \mathbb{R}^* , l'équation $\alpha x^2+(\beta+\gamma)yx-\alpha y^2=0$ est une équation de second degré $(\alpha\neq 0)$, dont le discriminant vaut $[(\beta+\gamma)y]^2+\alpha^2y^2\geq 0$, donc pour chaque $y\in\mathbb{R}^*$ on peut trouver x tel que $\alpha x^2+(\beta+\gamma)yx-\alpha y^2=0$, c'est-à-dire (v|f(v)=0). Si f(e)=0, alors $e=-f^2(e)=0$, ce qui est absurde.
- 3. Les deux vecteurs u_1 et u_2 sont unitaires et orthogonaux, donc la famille $\{u_1, u_2\}$ est une base orthonormée de l'espace euclidien $(\mathbb{R}^2, (.|.))$.

On a
$$f(u_1) = \frac{1}{\|e\|} f(e) = \frac{\|f(e)\|}{\|e\|} u_2$$
 et $f(u_2) = -\frac{1}{\|f(e)\|} e = -\frac{\|e\|}{\|f(e)\|} u_1$, donc
$$M_1 = \begin{pmatrix} 0 & -\frac{\|e\|}{\|f(e)\|} \\ \frac{\|f(e)\|}{\|e\|} & 0 \end{pmatrix}.$$

4. Les deux bases sont orthonormées, donc la matrice de passage U de (e_1,e_2) à (u_1,u_2) est orthogonale et on a la relation $M'=UM_1^tU$ ou encore $\frac{\delta}{2}M'=M-\frac{\operatorname{tr} M}{2}I_2$, d'où :

$$M = \frac{\delta}{2}M' + \frac{\operatorname{tr} M}{2}I_2 = \frac{\delta}{2}(UM_1^tU) + \frac{\operatorname{tr} M}{2}I_2$$

$$= U\left[\frac{\delta}{2}M_1\right] + \frac{\operatorname{tr} M}{2}I_2\right]^t U$$

$$= U\left[\begin{pmatrix} 0 & \frac{-\delta}{2t} \\ \frac{t\delta}{2} & 0 \end{pmatrix} + \begin{pmatrix} \frac{\operatorname{tr} M}{2} & 0 \\ 0 & \frac{\operatorname{tr} M}{2} \end{pmatrix}\right]^t U$$

$$= U\frac{1}{2}\begin{pmatrix} \operatorname{tr} M & \frac{-\delta}{t} \\ t\delta & \operatorname{tr} M \end{pmatrix}^t U$$

$$= U\frac{1}{2}\begin{pmatrix} \operatorname{tr} M & -l\delta \\ \frac{\delta}{t} & \operatorname{tr} M \end{pmatrix}^t U = UM_2^t U,$$

avec
$$l = \frac{1}{t} = \frac{\|e\|}{\|f(e)\|} > 0.$$

5. (a) On a $M'' \in \mathcal{S}_{\mathbb{R}}(M)$, donc $\inf_{B \in \mathcal{S}_{\mathbb{R}}(M)} \|B\|_S \le \|M''\|_S = \sqrt{\frac{1}{4} \left[2(\operatorname{tr} M)^2 + 2\delta^2 \right]} = \sqrt{2 \det M}$.

(b) On a
$$||M_2||_S^2 = \frac{1}{4} \left[2(\operatorname{tr} M)^2 + \delta^2 \left(l^2 + \frac{1}{l^2} \right) \right] \ge \frac{1}{4} \left[2(\operatorname{tr} M)^2 + 2\delta^2 \right] = ||M''||_S^2$$
, car $\forall x > 0$, $x + \frac{1}{x} \ge 2$.

On sait que M et M'' sont semblables, donc $M'' \in \mathcal{S}_{\mathbb{R}}(M)$ et comme $\|M''\|_S = \sqrt{2 \det M}$, alors $\inf_{B \in \mathcal{S}_{\mathbb{R}}(M)} \|B\|_S = \|M''\|_S = \sqrt{2 \det M}$.

- 6. D'après ce qui précède, $\inf\{\|PMP^{-1}\|_S;\ P\in \mathrm{GL}_2(\mathbb{R})\}=\inf_{B\in\mathcal{S}_{\mathbb{R}}(M)}\|B\|_S=\|M''\|_S$, cette borne est atteint en toute matrice de la forme UM''^tU où U est orthogonale.
- 7. Conclusion: On sait d'après la question 5. de la partie II que $\mathcal{S}_{\mathbb{R}}(A)$ est fermée si et seulement si A est diagonalisable ou bien $\operatorname{Sp}_{\mathbb{R}}(A)=\emptyset$ et on sait d'après la partie III, que A est diagonalisable si et seulement si $\inf\{\|PAP^{-1}\|_S;\ P\in\operatorname{GL}_2(\mathbb{R})\}$ est atteint, enfin d'après la partie II et la dernière partie si $\operatorname{Sp}_{\mathbb{R}}(A)=\emptyset$ alors $\inf\{\|PAP^{-1}\|_S;\ P\in\operatorname{GL}_2(\mathbb{R})\}$ est atteint. Réciproquement, si $\inf\{\|PAP^{-1}\|_S;\ P\in\operatorname{GL}_2(\mathbb{R})\}$ est atteint, alors $\operatorname{Sp}_{\mathbb{R}}(A)=\emptyset$ ou bien $\operatorname{Sp}_{\mathbb{R}}(A)\neq\emptyset$ et dans ce cas, d'après la partie III.2.(e), A est diagonalisable. Ainsi on a montré que la borne inférieure de $\{\|PAP^{-1}\|_S;\ P\in\operatorname{GL}_2(\mathbb{R})\}$ est atteinte si et seulement si $\mathcal{S}_{\mathbb{R}}(A)$ est fermée dans $\mathcal{M}_2(\mathbb{R})$.

•••••

M.Tarqi-Centre Ibn Abdoune des classes préparatoires-Khouribga. Maroc E-mail : medtarqi@yahoo.fr