Элементы теории чисел

Лектор: Королев Максим Александрович 7 ноября 2024 г.

Конспект: Кирилл Яковлев, 108 группа tg: @fourkenz

Содержание

1	Делимость целых чисел	3
2	Наименьшее общее кратное и наибольший общий делитель (НО и НОД)	K 4
3	Алгоритм Евклида	6
4	Решение в целых числах линейного уравнения с двумя неизвестными	6
5	Простые числа	7
6	Мультипликативные функции	11
7	Непрерывные дроби	18
8	Теория сравнений	27
9	Сравнения с одним неизвестным 9.1 Сравнения первой степени	34 34

Введение. Следующие понятия считаются интуитивно ясными:

- 1. Понятие натурального ряда $\mathbb{N} = \{1, 2, 3, 4, 5, \dots\}$.
- 2. У каждого натурального числа n существует единственное натуральное число m=n+1 следующее за ним.
- 3. Понятие отрицательных чисел и нуля.
- 4. Понятие суммы, разности и произведения двух целых чисел.

Аксиома. Если $M \subset \mathbb{N}$ обладает следующими свойствами: $(1 \in M)$ и $(\forall n \in M)$ выполнено $n+1 \in M$, то $M=\mathbb{N}$.

Следствие 1. Всякое непустое подмножество натурального ряда содержит минимальный элемент.

Следствие 2. Всякое непустое конечное подмножество натурального ряда содержит максимальный элемент.

Следствие 3. (Принцип математической индукции)

Если известно, что некоторое утверждение о натуральных числах выполнено для натурального числа a, а также из предположения о том, что утверждение верно при некотором n следует справедливость этого утверждения и для числа n+1, то это утверждение верно для всех натуральных чисел, больше или равных a.

1 Делимость целых чисел

Определение 1.1. Пусть $a,b \in \mathbb{N}, b \neq 0$. Говорят что a делится на b, если существует $c \in \mathbb{Z}$, такое, что a = bc.

Замечание. a называется делимым, а b называется делителем числа a. Запись $b \mid a$ означает, что b делит a. Если b не делит a, то пишут $b \nmid a$.

Лемма 1.1. Пусть $a, b, c \in \mathbb{Z}$, тогда:

- 1. $1 \mid a$.
- 2. $a \neq 0 \Rightarrow a \mid a$.
- 3. $a \mid b \Rightarrow a \mid bc$.
- 4. $a \mid b$ и $b \mid c \Rightarrow a \mid c$.

- 5. $a \mid b$ и $a \mid c \Rightarrow a \mid (b+c)$.
- 6. $a \mid b$ и $b \neq 0 \Rightarrow |a| \leq |b|$.

Теорема 1.1. Если $a \in \mathbb{Z}, b \in \mathbb{N}$, то существует единственная пара целых чисел q и r, такие, что a = bq + r, где $0 \le r \le b - 1$.

Доказательство. Докажем существование: Если a делится на b, то a = bc. В таком случае возьмем q = c, r = 0. Теперь пусть a не делится на b. Рассмотрим непустое множество M натуральных чисел, представимых в виде $a-kb, k \in \mathbb{Z}$, возьмем k = -(|a|+1), тогда $a-kb = b(|a|+1)+a \ge b(|a|+1)-|a| \ge$ $1\cdot(|a|+1)-|a|=1\Rightarrow a-kb$ - натуральное. Значит, у M есть минимальный элемент a-kb. Возьмем q=k, r=a-kb=a-bq>1. Осталось показать, что $0 \leq r \leq b-1$. Предположим, что $r \geq b$. Если r=b, то a=bq+b=b(q+1)получаем противоречие, так как a не делится на b. Значит, $r = b + m, m \ge 1$. Получаем $1 \leq m = r - b < r$, при этом $a = bq + r = bq + b + m = b(q+1) + m \Rightarrow$ $m = a - b(q+1) \Rightarrow m \in M$ и m < r, получаем противоречие, так как aне делится на b. Доказано, что $r < b \Rightarrow$ представление a = bq + r - искомое. Докажем единственность: предположим, что для некоторого a и b имеются пары чисел с указанным свойством: q, r и q_1, r_1 , причем $0 \le r \le r_1 \le b-1$. Тогда $a = bq + r = bq_1 + r_1 \Rightarrow 0 \leq b(q - q_1) = r_1 - r$. Значит, b делит разность $r_1 - r$. Допустим, что $q \neq q_1$, тогда по пункту 6 леммы 1.1 получаем $b \leq r_1 - r$ и в то же время $r_1 - r \le b - 1 < b$. Получаем противоречие, поэтому $q = q_1$, следовательно, и $r = r_1$.

2 Наименьшее общее кратное и наибольший общий делитель (НОК и НОД)

Определение 2.0. $n \geq 2, a_1, \ldots, a_n \in \mathbb{N}$ пусть натуральное число k делится на каждое из этих чисел. Тогда k - общее кратное чисел a_1, \ldots, a_n .

Пусть a_1, \ldots, a_n - целые числа не все равные нулю. Натуральное число d называется общим делителем a_1, \ldots, a_n , если d делит каждое из этих чисел.

Замечание. Множество таких k непусто, в нем лежит, например, произведение всех этих чисел.

Множество таких d конечно: если $a_i \neq 0$, то d находится среди делителей числа a_i , (по пункту 6 леммы 1.1) $d \leq |a_i|$, значит числа d образуют конечное множество, оно непусто, так как содержит единицу.

Определение 2.1. Наименьшее натуральное число, делящееся на каждое из чисел a_1, \ldots, a_n , называют их наименьшим общим кратным, его обозначают $[a_1, \ldots, a_n]$.

Теорема 2.1. Каждое общее кратное натуральных чисел a_1, \ldots, a_n делится на их НОК.

Доказательство. Пусть M - общее кратное $a_1, \ldots, a_n, K = [a_1, \ldots, a_n]$. Поделим M на K с остатком: $M = kq + r, 0 \le r \le k - 1 \le k$. Допустим, что $K \ne 0$. По определению, всякое число a_i делит оба числа M и $K \Rightarrow a_i$ делит разность k = M - qK, значит k является общим кратным для a_1, \ldots, a_n , но k < K, получаем противоречие, так как какое-то кратное оказалось меньше минимального. Значит, k = 0 и M = qK.

Определение 2.2. Наибольшее из натуральных чисел d, делящих каждое из чисел a_1, \ldots, a_n , называют наибольшим общим делителем a_1, \ldots, a_n , его обозначают (a_1, \ldots, a_n) .

Определение 2.3. Числа a и b называется взаимно простыми, если (a,b)=1. Числа a_1,\ldots,a_n называются взаимно простыми в совокупности, если $(a_1,\ldots,a_n)=1$. Числа a_1,\ldots,a_n попарно взаимно просты, если $(a_i,a_j)=1$ $\forall i,j:1\leq i< j\leq n$.

Теорема 2.2. $[a,b] \cdot (a,b) = ab, \forall a,b \in \mathbb{N}.$

Доказательство. ab - общее кратное a и b. По теореме 2.1 ab делится на [a,b], то есть ab = c[a,b], где $c \geq 1$ - натуральное число. Покажем, что a и b делятся на c. Действительно, $a = \frac{ab}{[a,b]} \cdot \frac{[a,b]}{b} = c \cdot \frac{[a,b]}{b}$, $b = \frac{ab}{[a,b]} \cdot \frac{[a,b]}{a} = c \cdot \frac{[a,b]}{a}$, но оба числа $\frac{[a,b]}{a}$ и $\frac{[a,b]}{b}$ - натуральные, значит c - общий делитель a и b. Пусть теперь d - произвольный общий делитель a и b, тогда $\frac{ab}{d} = a \cdot \frac{b}{d}$, то есть число $\frac{ab}{d}$ делится нацело на каждое из чисел a и b. По теореме a 1, оно делится на a 1, то есть a 2, a 3, a 4, a 6, a 6, a 6, a 7, a 6, a 7, a 6, a 7, a 6, a 7, a 6, a 8, a 7, a 8, a 8, a 9, a 9,

Теорема 2.3. Пусть $a, b, c \in \mathbb{N}$, причем $a \mid bc$ и (a, b) = 1, тогда $a \mid c$.

Доказательство. $(a,b)=1\Rightarrow$ (по теореме 2.2) bc делится нацело на [a,b]=ab, то есть bc=abm, где $m\geq 1$ - натуральное число. Сократим обе части на b, получим c=am.

Теорема 2.4. Пусть $\Delta = (a, b) \ge 1 \Rightarrow (\frac{a}{\Delta}, \frac{b}{\Delta}) = 1.$

Доказательство. Пусть $m \in \mathbb{N}$ и $m \mid \frac{a}{\Delta}, m \mid \frac{b}{\Delta}$ предположим, что $m > 1 \Rightarrow cm = \frac{a}{\Delta}, dm = \frac{b}{\Delta} \Rightarrow \Delta cm = a, \Delta dm = b \Rightarrow \Delta m \mid a$ и $\Delta m \mid b \Rightarrow \Delta m$ - общий делитель a и b. Но т.к. m > 1, то $\Delta m > \Delta \Rightarrow \Delta = (a,b) \leq \Delta m$ - противоречие, поскольку Δ - НОД $\Rightarrow m = 1 \Rightarrow (\frac{a}{\Delta}, \frac{b}{\Delta}) = 1$.

3 Алгоритм Евклида

Лемма 3.1. Пусть $a \in \mathbb{Z}, b \in \mathbb{N}$ и $b \mid a$. Тогда (a, b) = b.

Доказательство. Пусть $(a,b)=c\Rightarrow c\mid b\Rightarrow$ (по лемме 1.1) $c\leq b$, но $b\mid a$, $b\mid b\Rightarrow b$ - общий делитель a и $b\Rightarrow b\leq c\Rightarrow b=c=(a,b)$.

Лемма 3.2. Пусть $a \in \mathbb{Z}, b \in \mathbb{N}, a = bq + r : r, q \in \mathbb{Z}, r \geq 0$. Тогда (a, b) = (b, r).

Доказательство. Пусть $\Delta=(a,b), \delta=(b,r)$. Имеем $\delta\mid b\Rightarrow \delta\mid bq, \delta\mid r\Rightarrow$ (лемма 1.1) $\delta\mid bq+r=a\Rightarrow \delta\mid a, \delta\mid b\Rightarrow \delta$ - общий делитель a и $b\Rightarrow \delta\leq \Delta$. $\Delta\mid b, \Delta\mid bq, \Delta\mid a\Rightarrow$ (лемма 1.1) $\Delta\mid a-bq=r\Rightarrow \Delta$ - общий делитель b и $r\Rightarrow \Delta\leq \delta\Rightarrow \Delta=\delta$.

Алгоритм. Получаем, что при поиске НОД a и b, (a,b) можно заменять любой парой $(b,r)=(b,a-bq), q\in\mathbb{Z}$. Положим $r_0=a,r_1=b$. Выполняем деление с остатком:

$$r_0 = r_1 q_1 + r_2, 0 < r_2 < r_1 \Rightarrow (r_0, r_1) = (r_1, r_2)$$

$$r_1 = r_2 q_2 + r_3, 0 < r_3 < r_2 \Rightarrow (r_1, r_2) = (r_2, r_3)$$

$$r_2 = r_3 q_3 + r_4, 0 < r_4 < r_3 \Rightarrow (r_2, r_3) = (r_3, r_4)$$

$$\vdots$$

$$r_{n-2} = r_{n-1}q_{n-1} + r_n, 0 < r_n < r_{n-1} \Rightarrow (r_{n-2}, r_{n-1}) = (r_{n-1}, r_n)$$
 $r_{n-1} = r_nq_n$ $\Rightarrow (\text{лемма } 3.1)(r_{n-1}, r_n) = r_n \Rightarrow (a, b) = r_n$

4 Решение в целых числах линейного уравнения с двумя неизвестными

Рассмотрим уравнение (*) ax + by = c, такое, что $a, b, c \in \mathbb{Z}$, a и b не равняются нулю одновременно. $x, y \in \mathbb{Z}$ - неизвестные.

Теорема 4.1. (1) Уравнение (*) разрешимо $\Leftrightarrow \Delta = (a, b) \mid c$.

(2) В случае разрешимости, множество решений этого уравнения бесконечно, все решения имеют вид $x=x_0+\frac{b}{\Delta}t,y=y_0-\frac{a}{\Delta}t$, где x_0,y_0 - произвольное решение, а $t\in\mathbb{Z}$.

Доказательство. Докажем первый пункт:

- (\Rightarrow) Если x,y решение, то $\Delta\mid ax,\Delta\mid by\Rightarrow$ (лемма 1.1) $\Delta\mid ax+by\Rightarrow\Delta\mid c$.
- (\Leftarrow) Не теряя общности, можем считать, что $a \ge b \ge 0$. Доказываем индукцией по сумме a+b.

База: $a+b=1 \Rightarrow b=0$ и $a=1 \Rightarrow$ уравнение имеет вид $ax=c \Rightarrow x=c$. Можем предъявить решение x=c,y=0. В этом случае $\Delta=(1,0)\mid 1$.

Шаг: $n \ge 1$, считаем, что утверждение доказано для всех уравнений с условием $a \ge b \ge 0$, $1 \le a+b \le n$. Пусть ax+by=c, где $a \ge b \ge 0$,

a+b=n+1 и $\Delta=(a,b)\mid c\Rightarrow$ докажем, что есть хотя бы одно решение.

Пусть $b = 0, ax = c, \Delta = (a, 0) = a, a \mid c \Rightarrow c = am \Rightarrow x = m, y = 0$ - решение. Пусть $b \ge 1$. Рассмотрим уравнение (a - b)X + bY = c,

 $a-b \ge 0, b \ge 1 > 0.$ $(a-b)+b = (a+b)-b = n+1-b \le n.$ $(a-b,b) = (a,b) \mid c$

 \Rightarrow по предположению индукции есть целочисленное решение X_0, X_0 .

 $(a-b)X_0 + bY_0 = c \Rightarrow aX_0 - b(Y_0 - X_0) = c \Rightarrow x = X_0, y = Y_0 - X_0$ решение.

Докажем второй пункт (проверим, что x_0, y_0 - решение):

 $a(x_0 + \frac{b}{\Delta}t) + b(y_0 - \frac{a}{\Delta}t) = ax_0 + \frac{ab}{\Delta}t + ay_0 - \frac{ab}{\Delta}t = ax_0 + by_0$. Обратно: пусть

 x_0,y_0 и x,y - различные решения. $ax_0+by_0=c,ax+by=c$

 $\Rightarrow a(x - x_0) + b(y - y_0) = 0 \Rightarrow a(x - x_0) = b(y_0 - y). \ \Delta = (a, b)$

 $\Rightarrow a = \alpha \Delta, b = \beta \Delta \Rightarrow$ (теорема 2.4) $(\alpha, \beta) = 1$

 $\Rightarrow \alpha \Delta(x - x_0) = \beta \Delta(y_0 - y) \Rightarrow \alpha(x - x_0) = \beta(y_0 - y)$

 $\Rightarrow \alpha \mid \beta(y_0 - y) \Rightarrow \alpha \mid (y_0 - y) \Rightarrow y_0 - y = \alpha t \Rightarrow \alpha(x - x_0) = \beta \alpha t$

 $\Rightarrow x - x_0 = \beta t.$

5 Простые числа

Определение 5.1. Натуральное число n > 1 называется простым, если оно имеет ровно два делителя: 1 и n. В противном случае это число называется составным.

Замечание. Единица не причисляется ни к простым, ни к составным.

7

Лемма 5.1. Наименьший делитель натурального числа n > 1, отличный от единицы - простое число.

Доказательство. Пусть $d \mid n, 1 < d \le n$, и d - наименьший с этими свойствами. Пусть d - составное. Тогда $\exists k : k \mid d$ и 1 < k < d. По лемме $1.1 \mid k \mid n$, но 1 < k < d - противоречие с тем, что d - минимальный.

Теорема 5.1. Множество простых чисел бесконечно.

Доказательство. Пусть множество простых конечно: $p_1 < p_2 < \dots < p_n$ - все простые числа. Рассмотрим число $N = p_1 p_2 \dots p_n + 1$. По лемме 5.1 наименьший делитель p > 1 числа N - простое число. Но p отлично от $p_1 \dots p_k, p$ делит N нацело, а N при делении на каждое из $p_1 \dots p_n$ дает остаток 1 - противоречие.

Пусть x>0, через $\pi(x)$ обозначим количество простых чисел на отрезке [0,x] $(\pi(x)$ - количество простых чисел не превосходящих x).

$$\pi(x) = \sum_{p \le x} 1$$

(Теорема 5.1) $\Leftrightarrow \pi(x)$ - не ограничена сверху $\Leftrightarrow \pi(x) \to +\infty$ при $x \to +\infty$. Гипотеза Лежандра: $\pi(x) = \frac{x}{\ln x - C}$, где C = 1,08366. Позднее Гаусс выдвинет более сложное и более точное предположение. Из доказательства теоремы Чебышева: $\forall \varepsilon > 0 \exists x_0 = x_0(\varepsilon)$, т.ч. $\forall x \geq x_0$ выполнено неравенство:

$$(A - \varepsilon) \frac{x}{\ln x} < \pi(x) < (B + \varepsilon) \frac{x}{\ln x}$$
$$A = \ln(\frac{2^{\frac{1}{2}} 3^{\frac{1}{3}} 5^{\frac{1}{5}}}{30^{\frac{1}{30}}}), B = \frac{6}{5}A$$

Асимптотический закон распределения простых чисел:

$$\lim_{x \to +\infty} \left(\frac{\pi(x)}{\frac{x}{\ln x}}\right) = 1 \Leftrightarrow A = B = 1 \Leftrightarrow \pi(x) = (1 + \bar{o}(1)) \frac{x}{\ln x}$$

Лемма 5.2. Пусть N - составное число, p - наименьший простой делитель. Тогда $p \leq \sqrt{N}$.

Доказательство. N - составное $\Rightarrow \exists a,b: 1 < a < N, 1 < b < N$ и ab = N. Значит $a \mid N,b \mid N,p$ - наименьший $\Rightarrow p \leq a,p \leq b \Rightarrow p^2 \leq ab = N$ $\Rightarrow p \leq \sqrt{N}$.

Решето Эратосфена. Выписываем все числа от 2 до N, первое число в таблице - простое, это 2. Вычеркиваем все числа кратные 2, кроме нее самой. Первое невычеркнутое число после 2 - это 3 - значит оно простое. Вычеркиваем все числа, кратные 3, кроме самой 3. Первое невычеркнутое число после 3 - простое и т.д. После того как найдено наибольшее простое p не превосходящее \sqrt{N} и вычеркнуты все числа кратные p, в таблице останутся лишь простые числа, не превосходящие N и только они.

Теорема 5.2. (Основная теорема арифметики)

Каждое целое число, большее 1, раскладывается в произведение простых чисел, притом единственным способом (с точностью до порядка сомножителей).

Доказательство. Существование:

Индукция по n>1. Числа n=2, n=3 - простые, для них это утверждение справедливо. Пусть n>3, и допустим, что справедливость утверждения проверена для всех m< n. Если n - простое, то утверждение очевидно. Пусть n - составное. По лемме 5.1 его наименьший делитель - простое число $\Rightarrow n=p_1k$, но $k=\frac{n}{p_1}\leq \frac{n}{2}< n$. По предположению индукции $k=p_2\dots p_r$, где p_2,\dots,p_r - простые. $\Rightarrow n=p_1k=p_1p_2\dots p_r$ - искомое разложение.

Единственность:

Пусть $n=p_1\dots p_r=q_1\dots q_s$, где p_i,q_i - простые числа и $r\leq s$. Тогда $p_1\dots p_r=q_1a_1$, где $a_1=q_2\dots q_s\Rightarrow p_1\mid q_1a_1$. Возможно два случая:

- 1) $(p,q) > 1 \Rightarrow p_1 = q_1$.
- 2) $(p,q) = 1 \Rightarrow \text{(теорема 2.3)} \ p_1 \mid a_1 = q_2 \dots q_s, a_1 = q_2 a_2, a_2 = q_3 \dots q_s,$

 $p_1 \mid q_2 a_2 \Rightarrow$ либо $p_1 = q_2$, либо $p_1 \mid a_2$ и т.д. Но $a_1 > a_2 > \dots \geq 1 \Rightarrow$ на одном из шагов обязательно будет иметь место равенство $p_1 = q_k, k \leq s$ (иначе оказалось бы, что $p_1 \mid 1$, а это невозможно). Итак, p_1 совпадает с одним из чисел q_1, \dots, q_s . Будем считать, что $p_1 = q_1 \Rightarrow p_2 \dots p_r = q_2 \dots q_s$ продолжаем рассуждение и получаем, что p_2 совпадает с одним из $q_2, \dots q_s$, пусть $p_2 = q_2$ и т.д. Если r < s после r шагов получили бы противоречивое равенство: $1 = q_{r+1} \dots q_s$

$$\Rightarrow r = s$$
 и множества $\{p_1, \dots, p_r\}$ и $\{q_1, \dots, q_s\}$ совпадают.

Замечание. $n>1, n=q_1\dots q_s\Rightarrow n$ можно записать в виде $n=p_1^{\alpha_1}\dots p_k^{\alpha_k},$ $p_1< p_2<\dots < p_k$ - каноническое разложение n на простые сомножители.

Определение 5.2. Пусть $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}, p$ - простое. Тогда

$$u_p(n) = \begin{cases} 0, \text{ если } p \nmid n, \\ \alpha, \text{ если} p = p_i. \end{cases}$$

Лемма 5.3. (Свойства $\nu_p(n)$)

- 1. Для любых целых чисел a, b > 1 и любого простого p справедливо равенство: $\nu_p(ab) = \nu_p(a) + \nu_p(b)$.
- 2. Пусть m,n>1 целые числа, тогда $m\mid n\Leftrightarrow \nu_p(m)\leq \nu_p(n)$ для любого простого p.

Доказательство.

- 1. При перемножении степеней с одинаковыми основаниями, их показатели складываются.
- $2.(\Rightarrow)$ Пусть $n = km \Rightarrow \nu_p(n) = \nu_p(k) + \nu_p(m) \ge \nu_p(m)$.
 - (\Leftarrow) Все разности $\nu_p(n)-\nu_p(m)$ целые неотрицательные. Рассмотрим число:

$$k = \prod_{n} p^{\nu_p(n) - \nu_p(m)}$$

Если k=1, то $\nu_p(n)=\nu_p(m)$ для всех p и m=n. В силу основной теоремы арифметики, в этом случае $m \mid n$. Пусть k > 1, тогда в силу пункта 1:

$$km = \prod_{p} p^{\nu_p(n) - \nu_p(m)} \cdot \prod_{p} p^{\nu_p(m)} = \prod_{p} p^{\nu_p(n)} = n$$

то есть $m \mid n$.

Лемма 5.4. Для любых $a, b \in \mathbb{N}$ справедливы равенства:

$$[a,b] = \prod_{p} p^{\max(\nu_p(a),\nu_p(b))}$$
$$(a,b) = \prod_{p} p^{\min(\nu_p(a),\nu_p(b))}$$

$$(a,b) = \prod_{p} p^{\min(\nu_p(a),\nu_p(b))}$$

 \mathcal{A} оказательство. Обозначим $K=[a,b],\, N=\prod_{r}p^{\max(\nu_p(a),\nu_p(b))}$ поскольку

 $u_p(a) \leq \nu_p(N), \, \nu_p(b) \leq \nu_p(N), \, \text{то } a \text{ и } b \text{ делят } N \text{ в силу леммы } 5.3. \, \text{Значит } N \text{ - об-}$ щее кратное чисел a и b. С другой стороны, поскольку a и b делят K, то по лемме 5.3 имеем $\nu_p(a) \le \nu_p(K), \nu_p(b) \le \nu_p(K),$ так что $\nu_p(K) \ge \max(\nu_p(a), \nu_p(b)) =$ $\nu_p(N)$ для любого простого p. Значит, $N\mid K$, но $N\leq K\Rightarrow N=K$. Вторая часть утверждения следует из первой, если воспользоваться равенством

$$(a,b) = \frac{ab}{[a,b]}$$

и тем, что $x + y = \max(x, y) + \min(x, y) \ \forall x, y \in \mathbb{R}$.

6 Мультипликативные функции

Обозначения и пояснения:

- 1. Обозначение $\sum\limits_{d|n} f(d)$ сумма значений функции f по всем делиителям d числа n.
- 2. Двойная сумма вычисляется следующим образом:

$$\sum_{m=1}^{M} \sum_{n=1}^{N} g(mn) = \sum_{n=1}^{N} g(1,n) + \sum_{n=1}^{N} g(2,n) + \dots + \sum_{n=1}^{N} g(M,n)$$

Определение 6.1. Функция f, определенная на множестве \mathbb{N} называется мультипликативной, если для любых взаимно простых $a,b\in\mathbb{N}$ выполнено равенство:

$$f(ab) = f(a)f(b)$$

Теорема 6.1. (Простейшие свойтсва мультипликативных функций) Пусть f,g - мультипликативные функции. Тогда:

- 1. Если $f \not\equiv 0$, то f(1) = 1.
- 2. Если $n = p_1^{\alpha_1} \dots p_r^{\alpha_r}$ каноническое разложение n, то $f(n) = f(p_1^{\alpha_1}) \dots f(p_r^{\alpha_r})$.
- 3. Функция h, определенная для любого $n \in \mathbb{N}$ равенством h(n) = f(n)g(n) мультипликативна.

Доказательство. 1. Так как $f \not\equiv 0$, то $\exists a \in \mathbb{N} : f(a) \not= 0$. Тогда $f(a) = f(a \cdot 1) = f(a)f(1) \Rightarrow f(1) = 1$.

2. 3. Напрямую следует из определения.

Для исседование дальнейших свойств мультипликативных функций потребуется несколько вспомогательных лемм

Лемма 6.1. Пусть p - простое число, $r \geq 2$ и пусть целые числа a_1, \ldots, a_r попарно взаимно просты, причем $p \mid a_1 \ldots a_r$. Тогда найдется номер $1 \leq s \leq r$ такой, что $p \mid a_s$.

Доказательство. Индукция по r. Если r=2, то это есть очевидно следствие теоремы 2.3. Пусть $m\geq 3$ и утверждение доказано для всех $r\leq m-1$. Пусть $a_1,\ldots a_m$ попарно взаимно просты и $p\mid a_1\cdot\ldots\cdot a_m$. Полагая $a=a_1\cdot\ldots\cdot a_{m-1}$

будем иметь: $p \mid aa_m$. Если (p,a) = 1, то $p \mid a_m$ по теореме 2.3. Пусть (p,a) > 1. Так как p - простое, то (p,a) = p и p делит некоторый сомножитель a_s : $1 \le s \le m-1$.

Лемма 6.2. Пусть $b \mid a$ и $c \mid a$, причем (b, c) = 1. Тогда $bc \mid a$.

Доказательство. Из условия следует, что a - общее кратное b и c. По теореме 2.1 a делится на [b,c], по теореме 2.2 [b,c]=bc.

Следствие. Пусть $r \ge 2$, и пусть целые числа $b_1 \dots b_r$ попарно взаимно просты, причем $b_1 \mid a, \dots, b_r \mid a$. Тогда $b_1 \dots b_r \mid a$.

Доказательство. Индукция по r. Если r=2, получаем утверждение леммы. Пусть $m\geq 3$ и утверждение доказано для всех $r\leq m-1$. Пусть $b_1,\ldots b_m$ попарно взаимно просты и каждое из них делит a. В силу предложения индукции, a делится на произведение $b=b_1\ldots b_{m-1}$. Заметим, что $(b,b_m)=1$. Действительно, в противном случае найдется простое число p, делящееся как на b_m так и на b. По лемме 6.1 p будет делить и некоторые $b_\xi: 1\geq \xi\geq m-1$. Следовательно $(b_m,b_\xi)\geq p>1$, что противоречит условию. Так как a делится на b и b_m , и $(b,b_m)=1$, то в силу леммы 6.2 a делится на $bb_m=b_1\ldots b_m$.

Лемма 6.3. Пусть числа a и b взаимно просты, и пусть d_1 и d_2 пробегают соответственно множества всех делителей a и b. Тогда величина $d=d_1d_2$ пробегает без повторений всё множество делителей числа ab.

Доказательство.

- 1. Если $d_1 \mid a, d_2 \mid b$, то $a = kd_1, b = md_2$ при некоторых $k, m \in \mathbb{Z}$, так что $ab = kmd_1d_2$, то есть d_1d_2 делитель ab.
- 2. Допустим, что $d_1d_2 = \delta_1\delta_2$ для некоторых чисел d_1, δ_1 делящих a и некоторых чисел d_2, δ_2 , делящих b. Очевидно, что $(d_1, \delta_2) = 1$, так как в противном случае нашлось бы простое p, делящееся одновременно и a и b, что невозможно. Но $d_1 \mid \delta_1\delta_2$ по теореме 2.3 $d_1 \mid \delta_1$ и, следовательно $d_1 \leq \delta_1$. Аналогично доказывается, что $\delta_1 \mid d_1$ и $\delta_1 \leq d_1$. Значит $d_1 = \delta_1, d_2 = \delta_2$, то есть все произведения d_1 и d_2 различны.
- 3. Докажем, наконец, что всякий делитель d числа ab встретится среди произведений d_1d_2 . Если d=1, то это очевидно. Пусть $d\geq 2$ и $p_1^{\alpha_1}\dots p_r^{\alpha_r}$ - каноническое разложение d. Число $q_1=p_1^{\alpha_1}\mid ab$. Из теоремы 2.3 следует, что q_1 делит либо a, либо b (но не оба сразу). То же верно и для чисел $q_\xi=p_\xi^{\alpha_\xi}, \xi=2,3,\ldots,r$. Пусть, для определенности, q_1,\ldots,q_t - все

сомножители, делящие a, и q_{t+1},\ldots,q_r - все сомножители, делящие b. По следствию леммы 6.2 произведение $d_1=q_1\ldots q_t$ делит a, произведение $d_2=q_{t+1},\ldots,q_r$ делит b, но $d_1d_2=d$.

Теорема 6.2. Пусть функция f мультипликативна. Тогда функция F, определенная при любом $n \in \mathbb{N}$ равенством:

$$F(n) = \sum_{d|n} f(d)$$

мультипликативна.

Доказательство. Пусть (a,b)=1. По лемме 6.3, все делители ab получим без повторений, рассмотрев все произведения $d=d_1d_2$, где $d_1\mid a,\,d_2\mid b$. Значит

$$F(ab) = \sum_{d|ab} f(d) = \sum_{d_1|a} \sum_{d_2|b} f(d_1d_2) = \sum_{d_1|a} \sum_{d_2|b} f(d_1)f(d_2) =$$

$$= (\sum_{d_1|a} f(d_1))(\sum_{d_2|b} f(d_2)) = F(a)F(b).$$

Взаимная простота d_1 и d_2 очевидна.

Следствие. Если $p_1^{\alpha_1}\dots p_r^{\alpha_r}$ - каноническое разложение n, а F - функция из условия теоремы, то

$$F(n) = \prod_{i=1}^{r} (1 + f(p_i) + f(p_i^2) + \dots + f(p_i^{\alpha_i}))$$

(при условии что $f \not\equiv 0$).

Определение 6.2. Функция Мебиуса $\mu(n)$ определяется равенствами:

$$\mu(n) = \begin{cases} 1, & \text{если } n = 1, \\ 0, & \text{если } n \text{ делится на квадрат простого числа,} \\ (-1)^k, & \text{если } n = p_1 \dots p_k - \text{различные простые числа.} \end{cases}$$

Примеры: $\mu(2) = (-1)^1 = -1, \mu(3) = -1, \mu(4) = 0, \mu(5) = -1, \mu(6) = (-1)^2 = 1, \mu(7) = -1, \mu(8) = \mu(9) = 0, \mu(10) = (-1)^2 = 1 \ n = p_1 \dots p_k,$ $m = q_1 \dots q_r, \ (m, n) = 1 \Rightarrow mn = p_1 \dots p_k q_1 \dots q_r \Rightarrow \mu(mn) = (-1)^{k+r} = (-1)^k (-1)^r = \mu(m)\mu(n). \ p$ - простое $\Rightarrow \mu(p) = -1, \mu(p^2) = 0, \mu(p^3) = 0, \dots$

Теорема 6.3. (Основное свойство функции Мебиуса)

$$\sum_{d|n} \mu(d) = \begin{cases} 1, \text{ если } n = 1, \\ 0, \text{ во всех остальных случаях.} \end{cases}$$

Доказательство. Пусть $F(n) = \sum_{d|n} \mu(d) \Rightarrow$ (По теореме 6.2) F - мультипликативна. Пусть p - простое, $n = p^{\alpha}, \alpha \geq 1 \Rightarrow F(p^{\alpha}) = \sum_{d|p^{\alpha}} \mu(d) = \mu(1) + \mu(p) + \mu(p^2) + \dots + \mu(p^{\alpha}) = 1 - 1 = 0.$

Определение 6.3. Функция Эйлера $\varphi(n)$ определяется для натурального n как количество чисел m с условиями $1 \le m \le n$, таких, что (m,n)=1

Примеры.
$$\varphi(1)=1,\ \varphi(2)=1,\ \varphi(3)=1+1+0=2,\ \varphi(4)=1+0+1+0=2,$$
 $\varphi(5)=1+1+1+1+0=4,\ \varphi(6)=1+0+0+1+0=2$

Теорема 6.4. Функция Эйлера φ мультипликативна. Кроме того, если p_1, \ldots, p_k - все различные делители n, тогда:

$$\varphi(n) = n \prod_{p|n} (1 - \frac{1}{p}) = n(1 - \frac{1}{p_1}) \dots (1 - \frac{1}{p_k})$$

Доказательство. Надо подсчитать число тех m, для которых (m,n)=1. По теореме 6.3

$$\sum_{d|(m,n)} \mu(d) = \begin{cases} 1, & \text{если } (m,n) = 1, \\ 0, & \text{иначе.} \end{cases}$$

$$\Rightarrow \varphi(n) = \sum_{1 \leq m \leq n} \sum_{d|(m,n)} \mu(d) = \sum_{d|n} \mu(d) \sum_{d \leq m \leq n, d|m} 1$$

$$1 \leq m = kd \leq n \Rightarrow 1 \leq k \leq \frac{n}{d}$$

$$\Rightarrow \sum_{d|n} \mu(d) \sum_{d < m < n, d|m} 1 = \sum_{d|n} \mu(d) \frac{n}{d} = n \sum_{d|n} \frac{\mu(d)}{d}$$

Функции $\mu(d)$ и $\frac{1}{d}$ - мультипликативные $\Rightarrow \frac{\mu(d)}{d}$ - мультипликативна \Rightarrow по теореме $6.2 \Rightarrow \sum_{d|n} \frac{\mu(d)}{d}$ - мультипликативна $\Rightarrow \varphi(n)$ - мультипликативна.

$$n=p^{\alpha},\ p$$
 - простое, $\alpha\geq 1$

$$\Rightarrow \varphi(p^{\alpha}) = p^{\alpha} \sum_{d|p^{\alpha}} \frac{\mu(d)}{d} = p^{\alpha} \left(\frac{\mu(1)}{1} + \frac{\mu(p)}{p} + \frac{\mu(p^{2})}{p^{2}} + \dots + \frac{\mu(p^{\alpha})}{p^{\alpha}} \right) =$$

$$= p^{\alpha} \left(1 + \frac{\mu(p)}{p} \right) = p^{\alpha} \left(1 + \frac{1}{p} \right)$$

 $n = p_1^{\alpha_1} \dots p_k^{\alpha_k} \Rightarrow \varphi(n) = \varphi(p_1^{\alpha_1}) \dots \varphi(p_k^{\alpha_k}) = p_1^{\alpha_1} (1 - \frac{1}{p_1}) \dots p_k^{\alpha_k} (1 - \frac{1}{p_k}) =$ $= p_1^{\alpha_1} \dots p_k^{\alpha_k} (1 - \frac{1}{p_1}) \dots (1 - \frac{1}{p_k}) = n \prod_{p|n} (1 - \frac{1}{p}).$

Теорема 6.5. (Формула обращения Мебиуса) Пусть $\forall n \geq 1$ функции f и g связаны соотношением

$$f(n) = \sum_{d|n} g(d) \tag{1}$$

Тогда $\forall n \geq 1$ выполнено равенство

$$g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d}) \tag{2}$$

Обратно, если $\forall n \geq 1$ f и g связаны соотношением (2), то $\forall n \geq 1$ верно (1).

Доказательство. (⇒) Пусть выполнено (1), преобразуем величину

$$\sum_{d|n} \mu(d) f(\frac{n}{d}) = \sum_{d|n} \mu(d) \sum_{\delta \mid \frac{n}{d}} g(\delta) = \sum_{d\delta \mid n} \mu(d) g(\delta) = \sum_{\delta \mid n} g(\delta) \sum_{d \mid \frac{n}{\delta}} \mu(d) =$$

$$= (\text{по теореме 6.3}) g(n).$$

Пояснение:

$$\sum_{d|\frac{n}{\delta}}\mu(d) = \begin{cases} 1, \text{ если } \frac{n}{\delta} = 1, \\ 0, \text{ если } \frac{n}{\delta} > 1. \end{cases} \Leftrightarrow \begin{cases} 1, \text{ если } n = \delta, \\ 0, \text{ если } n > \delta. \end{cases}$$

 (\Leftarrow) Пусть есть (2), преобразуем

$$\sum_{d|n} \mu(d) f(\frac{n}{d}) = \sum_{d|n} \sum_{\delta \mid d} \mu(\delta) f(\frac{d}{\delta}) =$$

$$(\delta \mid d \Rightarrow d = \Delta \delta \Rightarrow \frac{d}{\delta} = \Delta)$$

$$= \sum_{\Delta \delta \mid d} \mu(\delta) f(\Delta) = \sum_{\Delta \mid n} f(\Delta) \sum_{\delta \mid \frac{n}{\Delta}} \mu(\delta) = \text{(по теореме 6.3) } f(n)$$

Следствие.

$$\sum_{d|n} \varphi(n) = n$$

Доказательство. Выше доказали, что

$$\varphi(n) = \sum_{d|n} \mu(d) \frac{n}{d}$$

это равенство (2), где $g(n) = \varphi(n), f(k) = k$. По формуле обращения Мебиуса, для этих функций выполнено (1): $f(n) = n = \sum_{d|n} g(n) = \sum_{d|n} \varphi(n)$

Определение 6.4. Функция делителей $\tau(n)$ определяется, как число делителей натурального $n \geq 1$.

$$\tau(n) = \sum_{d|n} 1.$$

Замечание. $f(1) \equiv 1$ - мультипликативна \Rightarrow (по теореме 6.2) $\tau(n)$ - мультипликативна.

Утверждение 6.1. $n = p^{\alpha}$, p - простое.

$$\tau(p^{\alpha}) = \sum_{d|p^{\alpha}} 1 = \alpha + 1$$

$$n = p_1^{\alpha_1} \dots p_k^{\alpha_k} \Rightarrow \tau(n) = (\alpha_1 + 1)(\alpha_2 + 1) \dots (\alpha_k + 1).$$

Определение 6.5. $\sigma(n)$ - сумма делителей числа $n \geq 1$

$$\sigma(n) = \sum_{d|n} d$$

Примеры. $\sigma(6) = 1 + 2 + 3 + 6 = 12$, p - простое $\Rightarrow \sigma(p) = p + 1$.

Из теоремы 6.2 следует мультипликативность $\sigma(n)$.

$$n = p^{\alpha} \Rightarrow \sigma = 1 + p + p^2 + \dots p^{\alpha} = \frac{p^{\alpha+1}-1}{p-1}.$$

Если
$$n = p_1^{\alpha_1} \dots p_k^{\alpha_k} \Rightarrow \sigma(n) = \sigma(p_1^{\alpha_1}) \dots \sigma(p_k^{\alpha_k}) = \prod_{s=1}^r \frac{p_1^{\alpha_s+1}-1}{p_s-1} = \prod_{p^{\alpha}||n|} \frac{p^{\alpha+1}-1}{p-1}$$

Замечание. Функции $\tau(n)$ и $\sigma(n)$ - частный случай функции $\sigma_{\beta}(n)$, β - любое вещественное число. $\sigma_{\beta}(n) \sum_{d|n} 1 = \tau(n), \ \sigma_{1}(n) = \sigma(n).$

Упражнение: Доказать, что $\sigma(n) + \varphi(n) = n\tau(n)$ имеет место $\Leftrightarrow n$ - простое.

Определение 6.6. Делитель d числа n называется собстввенным, если d < n.

Определение 6.7. Число n называется совершенным, если оно равно сумме своих собственных делителей: $n = \sigma(n) - n \Leftrightarrow \sigma(n) = 2n$

Примеры. $\sigma(6) = 12 = 6 \cdot 2$, $\sigma(28) = 56 = 2 \cdot 28$.

Теорема 6.6. (Эйлер)

Четное число является совершенным \Leftrightarrow когда оно имеет вид $2^{p-1}(2^p-1)$, где p и 2^p-1 - простые числа. (без доказательства)

Простые числа вида $M_p=2^p-1$, где p - простое, называются простыми Мерсена. Сейчас известно 51 простое число Мерсена. Самое большое из них отвечает простому p=82589933. В записи M_p - 24862048 цифр. (результат получен 21.12.2018) Неизвестно, конечно или нет множество простых Мерсена. Гипотеза: если $\pi_M(x)$ - число простых Мерсена не превосходящих x, то $\pi_M(x) \approx \ln \ln x$. Неизвестно, существуют или нет нечетные совершенные числа. Если N - нечетное совершенное число, то

- (1) $N > 10^{1500} (2012 \text{ r.})$
- (2) Наибольший простой делитель N превосходит 10^8 (2008г.)
- (3) Второй по величине простой делитель N превосходит 10^4 (1999г.)
- (4) Пусть $k \ge 1$. Тогда имеется не более чем 2^{4^k} несчетных совершенных чисел, имеющих ровно k различных простых делителей. (2003г.)

Определение 6.8. Числа a и b (1 < a < b) называются дружественными, если (a) a есть сумма собственных делителей b, (b) число b - сумма собственных делителей a: $\begin{cases} \sigma(b) - b = a, \\ \sigma(a) - a = b. \end{cases} \Leftrightarrow \sigma(a) = \sigma(b) = a + b.$

Примеры. (ЕЩЕ НЕ ГОТОВО)

Неизвестно, конечно или нет множество дружественных пар чисел. Сейчас извество 1229319267 таких пар. Пусть A(x) - число дружественных пар с $a \le x$. $\frac{A(X)}{x} \to 0$ при $x \to \infty$ (П. Эрдеш 1955г.)

7 Непрерывные дроби

Пример. Заметим, что $43 = 19 \cdot 2 + 5$, $19 = 5 \cdot 3 + 4$. Рассмотрим дробь:

$$\frac{a}{b} = \frac{19}{43} = \frac{1}{\frac{43}{19}} = \frac{1}{\frac{2 \cdot 19 + 5}{19}} = \frac{1}{2 + \frac{5}{19}} = \frac{1}{2 + \frac{1}{\frac{19}{5}}} = \frac{1}{2 + \frac{1}{\frac{19}{5}}} = \frac{1}{2 + \frac{1}{\frac{1}{5 \cdot 3 + 4}}} = \frac{1}{\frac{5 \cdot 3 + 4}{5}} = \frac{1}{2 + \frac{1}{\frac{1}{3 + \frac{1}{5}}}} = \frac{1}{2 + \frac{1}{\frac{1}{1 + \frac{1}{4}}}}$$

Определение 7.1. Непрерывной (цепной) дробью будем называть выражение вида:

$$[q_0; q_1, q_2, \dots q_n] = q_0 = \frac{1}{q_1 + \frac{1}{q_2 + \frac{1}{q_n}}} \quad (*)$$

Теорема 7.1. Пусть a - целое, b - натуральное и пусть (a,b)=1. Пусть кроме того, q_0,q_1,\ldots,q_n - все неполные частные, возникающие при отыскании (a,b) с помощью алгоритма Евклида. Тогда число $\alpha=\frac{a}{b}$ разлагается в непрерывную дробь вида (*).

Доказательство. Доказательство следует из цепочки равненств:

$$a = bq_0 + r_1,$$

$$b = r_1q_1 + r_2,$$

$$r_1 = r_2q_2 + r_3,$$

$$\vdots$$

$$r_{n-2} = r_{n-1}q_{n-1} + r_n$$

Получаем:

$$\frac{a}{b} = q_0 + \frac{r_1}{b} = q_0 + \frac{1}{\frac{b}{r_1}} = q_0 + \frac{1}{\frac{r_2}{r_1}} = q_0 + \frac{1}{\frac{1}{q_1 + \frac{1}{r_2}}} = q_0 + \frac{1}{\frac{1}{q_1 + \frac{1}{r_2}}} = q_0 + \frac{1}{\frac{1}{q_1 + \frac{1}{r_2}}} = \dots$$

Собирая полученые равенства вместе приходим к (*).

Пример.

$$a=37,\ b=8,$$
 $37=8\cdot 4+5,$ $8=5\cdot 1+3,$ $5=3\cdot 1+2,$ $\Rightarrow \alpha=\frac{37}{8}=[4;1,1,1,2].$ $3=2\cdot 1+1,$ $2=1\cdot 2.$

Определение 7.2. Величины q_0, q_1, \ldots, q_n в разложении числа $\alpha = \frac{a}{b}$ из теоремы 7.1 называется неполным частным b в разложении α в непрерывную дробь.

Дроби

$$\delta_0 = q_0$$

$$\delta_1 = q_0 + \frac{1}{q_1}$$

$$\delta_2 = q_0 + \frac{1}{q_1 + \frac{1}{q_2}}$$
:

называются подходящими дробями.

Пример.

$$q_0 = 4, \ q_1 = 1, \ q_2 = 1, \ q_3 = 1, q_4 = 2.$$

Тогда

$$\delta_0 = 4$$

$$\delta_1 = 4 + \frac{1}{1} = 5$$

$$\delta_2 = 4 + \frac{1}{1 + \frac{1}{1}} = 4 + \frac{1}{2} = \frac{9}{2}$$

$$\delta_3 = 4 + \frac{1}{1 + \frac{1}{1}} = 4 + \frac{2}{3} = \frac{14}{3}$$

$$1 + \frac{1}{1}$$

Пусть α - число, не являющееся рациональным (такие числа будем называть иррациональными). Тогда для α тоже можно построить разложение в непрерывную дробь. Это разложение будет бесконечным (в отличии от рационального $\alpha = \frac{a}{b}$), поэтому такое построение требует определенной аккуратности и проводится в несколько шагов. На первом шаге строятся подходящие дроби, отвечающие числу α , затем исследуются их свойства. В итоге доказывается сходимость последовательности подходящих дробей к числу α , что и завершает построение.

Этап первый:

Определим целое q_0 так, чтобы выполнялись неравенства:

$$q_0 < \alpha < q_0 + 1$$

и положим $\alpha_0 = \alpha$, так что

$$q_0 < \alpha_0 < q_0 + 1$$

но тогда $\alpha_0 = q_0 + \beta_0$, где $0 < \beta_0 < 1$ и, следовательно,

$$\alpha_1 = \frac{1}{\beta_0} > 1$$

И

$$\alpha_0 = q_0 + \frac{1}{\alpha_1}$$

Число α_1 , очевидно, иррационально, определим по нему целое число q_1 так, чтобы выполнялись неравенства:

$$q_1 < \alpha_1 < q_1 + 1$$

но $\alpha_1>1$, так что $q_1\geq 1$, т.е. q_1 - натуральное. Далее

$$\alpha_1 = q_1 + \beta_1$$

где $0 < \beta_1 < 1$ и следовательно

$$\alpha_2 = \frac{1}{\beta_1} > 1, \ \alpha_1 = q_1 + \frac{1}{\alpha_2}, \ \alpha_0 = q_0 + \frac{1}{q_1 + \frac{1}{\alpha_2}}$$

Число α_2 также иррационально. Повторяя это процесс далее, получим бесконечные последовательности иррациональных чисел $\alpha_1,\alpha_2,\ldots,\alpha_\xi,\ldots$ (причем $\alpha_\xi>1$ для всех ξ) и натуральных чисел q_1,\ldots,q_ξ таких, что

$$q_{\xi} = [\alpha_{\xi}]$$
 и $\alpha_{\xi} = q_{\xi} + \frac{1}{\alpha_{\xi} + 1}$

Величины q_0, q_1, q_2, \ldots станем называть неполными частными разложения α в непрерывную дробь. Несложно видеть, что при любом ξ справедливо равенство

$$\alpha = q_0 + \frac{1}{q_1 + \frac{1}{q_2 + \frac{1}{q_{\xi-1} + \frac{1}{\alpha_{\xi}}}}}$$

Определим по этим числам последовательность подходящих дробей $\delta_{\xi},$ $\xi=0,1,\dots$ равенствами

$$\delta_0 = q_0, \quad \delta_1 = q_0 + \frac{1}{q_1}, \quad \delta_2 = q_0 + \frac{1}{q_1 + \frac{1}{q_2}}, \quad \dots$$

$$\delta_{\xi} = q_0 + \frac{1}{q_1 + \frac{1}{q_2 + \frac{1}{q_2}}}$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots$$

$$q_2 + \frac{1}{q_{\xi-1} + \frac{1}{\alpha_{\xi}}}$$

Выпишем первые три такие дроби:

$$\delta_0 = q_0, \quad \delta_1 = \frac{q_0 q_1 + 1}{q_1}, \quad \delta_2 = \frac{q_0 q_1 q_2 + q_0 + q_2}{q_1 q_2 + 1}$$

обозначим их еще так:

$$\delta_0=rac{P_0}{Q_0},$$
 где $P_0=q_0,\ Q_0=1$ $\delta_1=rac{P_1}{Q_1},$ где $P_1=q_0q_1+1,\ Q_1=q_1$

$$\delta_2 = \frac{P_2}{Q_2}$$
, где $P_2 = q_0 q_1 q_2 + 1$, $Q_2 = q_1 q_2 + 1$

посмотрим как эти величины связаны между собой:

$$P_1 = q_1 P_0 + 1, \quad Q_1 = q_1 Q_0 + 0$$

$$P_2 = q_2(q_0q_1+1) + q_0 = q_2P_1 + P_0, \quad Q_2 = q_2Q_1 + Q_0$$

Введем (формально) величины $P_{(-1)}=1, Q_{(-1)}=0$ (к подходящим дробям они не имеют отношения: выражение $\frac{P_{(-1)}}{Q_{(-1)}}=\frac{1}{0}$ не определено)

Тогда равенства для P_1, Q_1, P_2, Q_2 запишутся единообразно:

$$P_{\xi} = q_{\xi} P_{\xi-1} + P_{\xi-2}, \quad Q_{\xi} = q_{\xi} Q_{\xi-1} + Q_{\xi-2} \quad (\xi = 1, 2)$$

Оказывается, эти соотношения верны и для всех $\xi \geq 3$. Чтобы аккуратно доказать их поступим следующим образом. Этап второй:

Пусть даны переменные $x_0, x_1, x_2, \dots x_{\xi}, \dots$ произвольной природы (не обязательно целые числа). Рассмотрим величины P_{ξ} и Q_{ξ} , определенные рекуррентными соотношениями

$$\begin{cases}
P_{\xi} = x_{\xi} P_{\xi-1} + P_{\xi-2} \\
Q_{\xi} = x_{\xi} Q_{\xi-1} + Q_{\xi-2}
\end{cases}$$
(3)

ясно, что P_{ξ} и Q_{ξ} - некоторые многочлены от переменных $x_1,\dots x_{\xi},\dots$, например: $P_3-x_3P_2+P_1=x_3(x_0x_1x_2+x_0+x_2)+x_0x_1+1=x_0x_1x_2x_3+x_0x_1+x_0x_3+x_2x_3+1$, положим также $h_{\xi}=P_{\xi}Q_{\xi-1}-P_{\xi-1}Q_{\xi}$.

Лемма 7.1. При любом $\xi \geq 0$ справедливо равенство: $h_{\xi} = (-1)^{\xi-1}$

Доказательство. Индукция по ξ . В случае $\xi = 0$ имеем:

$$h_0 = P_0 Q_{(-1)} - P_{(-1)} Q_0 = -P_{(-1)} Q_0 = -1 = (-1)^{0-1}$$

Пусть соотношение доказано для всех $\xi \leq m$. Тогда

$$h_{m+1} = P_{m+1}Q_m - P_mQ_{m+1} = (x_{m+1}P_m + P_{m-1})Q_m - P_m(x_{m+1}Q_m + Q_{m-1}) =$$

$$= x_{m+1}(P_mQ_m - P_mQ_m) + P_{m-1}Q_m - P_mQ_{m-1} = -h_m = -(-1)^{m-1} = (-1)^m$$

Лемма 7.2. Если $x_0 = q_0, \ x_1 = q_1, \ x_{\xi} = q_{\xi}$ - целые числа, а величины P_{ξ} и Q_{ξ} определены в (3) то справедливы равентсва

$$(P_{\xi}, Q_{\xi}) = (P_{\xi}, P_{\xi-1}) = (Q_{\xi}, Q_{\xi-1}) = 1$$

Доказательство. Сразу следует из леммы 7.1.

Лемма 7.3. Пусть $x_1, \ldots x_{\xi}, \ldots$ - произвольные переменные, и пусть выражения $\Delta_0, \ldots \Delta_{\xi} \ldots$ зависящие от $x_1, \ldots x_{\xi}, \ldots$ определяются следующим образом: $\Delta_0 = x_0$, а при $\xi \geq 1$ выражение для Δ_{ξ} получим заменив в выражении для $\Delta_{\xi-1} \ x_{\xi-1}$ на $x_{\xi-1} + \frac{1}{x_{\xi}}$, так что, например,

$$\Delta_1 = x_0 + \frac{1}{x_1}, \quad \Delta_2 = x_0 + \frac{1}{x_1 + \frac{1}{x_2}}, \quad \Delta_3 = x_0 + \frac{1}{x_1 + \frac{1}{x_2 + \frac{1}{x_3}}}$$

тогда при любом $\xi \geq 0$ справедливо равенство $\Delta_{\xi} = \frac{P_{\xi}}{Q_{\xi}}$, где P и Q определены соотношениями (3)

Доказательство. Индукция по ξ . В случае $\xi = 0, 1$ эти соотношения фактическибыли проверены ранее. Пусть они верны для всех $\xi \leq m$. Тогда

$$\Delta_{\xi} = \frac{P_m}{Q_m} = \frac{x_m P_{m-1+P_{m-2}}}{x_m Q_{m-1} + Qm - 2}$$

по определению, Δ_{m+1} получим из Δ_m заменой x_m на $x_m+\frac{1}{x_{m+1}}$ переменная x_m , очевидно не входит в выражения для $P_{m-1}, p_{m-2}, Q_{m-1}, Q_{m-2}$. Следовательно

$$\Delta_{m+1} = \frac{(x_m + \frac{1}{x_{m+1}})P_{m-1} + P_{m-2}}{(x_m + \frac{1}{x_{m+1}})Q_{m-1} + Q_{m-2}} = \frac{(x_{m+1}x_m + 1)P_{m-1} + x_{m-1}P_{m-2}}{(x_{m+1}x_m + 1)Q_{m-1} + x_{m-1}Q_{m-2}} = \frac{x_{m+1}(x_mP_{m-1} + P_{m-2}) + P_{m-1}}{x_{m+1}(x_mQ_{m-1} + Q_{m-2}) + Q_{m-1}} = \frac{x_{m+1}P_m + P_{m-1}}{x_{m+1}Q_m + Q_{m-1}}$$

но числитель и знаменатель последней дроби совпадают в силу (3) с P_{m+1} и Q_{m+1}

Теорема 7.2. Пусть α - произвольное вещественное число, и пусть q_0, q_1, \ldots - конечная или бесконечная последовательность неполных частных разложения α в непрерывную дробь. Тогда подходящие дроби $\delta_{\xi}, \ \xi = 0, 1, \ldots$, отвечающие такому разложению, вычисляются по формулам

$$\delta_{\xi} = \frac{P_{\xi}}{Q_{\varepsilon}} \tag{4}$$

где величины P_{ξ} и Q_{ξ} определяются следующими реккурентными соотношениями: $P_{\xi}=q_{\xi}P_{\xi-1}+P_{\xi-2},\ Q_{\xi}=q_{\xi}Q_{\xi-1}+Q_{\xi-2}$ с начальными условиями $P_{(-1)}=1,\ Q_{(-1)}=0,\ P_0=q_0,\ Q_0=1.$ Все дроби (4) при этом несократи-

Доказательство. Равенство (4) есть прямое следствие леммы 7.1

Если $\alpha \notin \mathbb{Q} \Rightarrow q_0, q_1, q_2, \ldots, \delta_{\xi} = \frac{P_{\xi}}{Q_{\varepsilon}}$. Осталось непонятным какое отношение имеют дроби δ_{ξ} к числу α .

Этап третий:

Лемма 7.4. При любом $\xi \ge 1$ верны неравенства: $\delta_{2\xi} > \delta_{2\xi-2} \ (\delta_{2\xi+1} < \delta_{2\xi-1})$ то есть подходящие дроби с четными (нечетными) номерами образуют монотонно возрастающую (убывающую последовательность).

Доказательство.

$$\delta_k - \delta_{k-1} = \frac{P_k}{Q_k} - \frac{p_{k-1}}{Q_{k-1}} = \frac{P_k Q_{k-1} - P_{k-1} Q_k}{Q_k Q_{k-1}} = \text{(по лемме 7.1)}$$

$$= \frac{h_k}{Q_k Q_{k-1}} = \frac{(-1)^{k-1}}{Q_k Q_{k-1}}$$

тогда

$$\delta_{2\xi} - \delta_{2\xi-2} = (\delta_{2\xi} - \delta_{2\xi-1}) + (\delta_{2\xi-1} - \delta_{2\xi-2}) = \frac{(-1)^{2\xi-1}}{Q_{2\xi}Q_{2\xi-1}} + \frac{(-1)^{2\xi-2}}{Q_{2\xi-1}Q_{2\xi-2}} =$$

$$= \frac{1}{Q_{2\xi-1}} \left(\frac{1}{Q_{2\xi-2}} - \frac{1}{Q_{2\xi}}\right) = \frac{Q_{2\xi} - Q_{2\xi-2}}{Q_{2\xi}Q_{2\xi-1}Q_{2\xi-2}} = (Q_{2\xi} = q_{2\xi}Q_{2\xi-1} + Q_{2\xi-2})$$

$$= \frac{q_{2\xi}Q_{2\xi-1}}{Q_{2\xi}Q_{2\xi-1}Q_{2\xi-2}} = \frac{q_{2\xi}}{Q_{2\xi}Q_{2\xi-2}} > 0$$

Неравенство $\delta_{2\xi+1}-\delta 2\xi-1$ доказывается аналогично.

Лемма 7.5. В условиях леммы 7.4 справедливы неравенства: $\delta_{\xi} < \alpha, \; \xi$ - четное и $\delta_{\xi} > \alpha$, ξ - нечетное.

Доказательство. Рассмотрим выражения

ре.
ассмотрим выражения
$$\alpha = q_0 + \cfrac{1}{q_1 + \cfrac{1}{q_2 + \cfrac{1}{q_\xi + \cfrac{1}{\alpha_{\xi+1}}}}}$$

$$\delta_{\xi+1} = q_0 + \cfrac{1}{q_1 + \cfrac{1}{q_2 + \cfrac{1}{q_2 + \cfrac{1}{q_{\xi+1}}}}}, \quad \delta_{\xi} = q_0 + \cfrac{1}{q_1 + \cfrac{1}{q_2 + \cfrac{1}{q_2 + \cfrac{1}{q_{\xi}}}}}$$

выражения для α и $\delta_{\xi+1}$ получаются из выражения для δ_{ξ} формальной заменой q_{ξ} на $q_{\xi}+\frac{1}{\alpha_{\xi+1}}$ и на $q_{\xi}+\frac{1}{q_{\xi+1}}$ соответственно.

$$\delta_{\xi} = \frac{P_{\xi}}{Q_{\xi}} = \frac{q_{\xi}P_{\xi-1} + P_{\xi-2}}{q_{\xi}Q_{\xi-1} + Q_{\xi-2}} \Rightarrow \alpha = \frac{(q_{\xi} + \frac{1}{\alpha_{\xi+1}})P_{\xi-1} + P_{\xi-2}}{(q_{\xi} + \frac{1}{\alpha_{\xi+1}})Q_{\xi-1} + Q_{\xi-2}} = \frac{A_{\xi}}{B_{\xi}}$$

$$\delta_{\xi+1} = \frac{(q_{\xi} + \frac{1}{q_{\xi+1}})P_{\xi-1} + P_{\xi-2}}{(q_{\xi} + \frac{1}{q_{\xi+1}})Q_{\xi-1} + Q_{\xi-2}} = \frac{P_{\xi+1}}{Q_{\xi+1}}$$

вычислим:

$$\alpha - \delta_{\xi+1} = \frac{A_{\xi}}{B_{\xi}} - \frac{P_{\xi+1}}{Q_{\xi+1}} = \frac{A_{\xi}Q_{\xi+1} - B_{\xi}P_{\xi+1}}{B_{\xi}Q_{\xi+1}}$$

числитель:

$$* = (q_{\xi} + \frac{1}{q_{\xi+1}})(q_{\xi} + \frac{1}{\alpha_{\xi+1}})(P_{\xi-1}Q_{\xi-1} - P_{\xi-1}Q_{\xi-1}) + (P_{\xi-2}Q_{\xi-2} - P_{\xi-2}Q_{\xi-2}) +$$

$$+ (q_{\xi} + \frac{1}{q_{\xi+1}}) + (P_{\xi-2}Q_{\xi-1} - P_{\xi-1}Q_{\xi-2}) + (q_{\xi} + \frac{1}{\alpha_{\xi+1}}) + (P_{\xi-1}Q_{\xi-2} - P_{\xi-2}Q_{\xi-1})$$

итак, числитель разности $\alpha - \delta_{\xi+1}$ равен

$$(P_{\xi-1}Q_{\xi-2} - P_{\xi-2}Q_{\xi-1})(q_{\xi} + \frac{1}{\alpha_{\xi+1}} - q_{\xi} - \frac{1}{q_{\xi+1}}) = h_{\xi-1}(\frac{1}{\alpha_{\xi+1}} - \frac{1}{q_{\xi+1}}) =$$

$$= (-1)^{\xi-2}\frac{q_{\xi+1} - \alpha_{\xi+1}}{\alpha_{\xi+1}q_{\xi+1}} = \frac{(-1)^{\xi+1}\alpha_{\xi+1}}{\alpha_{\xi+1}q_{\xi+1}}$$

 \Rightarrow знак разности $\alpha - \delta_r$ совпадает с $(-1)^r$

Теорема 7.3. Последовательность подходящих дробей, отвечающих разложению иррационального числа α в непрерывную дробь, сходится к числу α .

Доказательство. По лемме 7.4 последовательность $\delta_{2\xi}$, $\xi=0,1,2,\ldots$ монотонно возрастает. По лемме 7.5 она ограничена сверху числом α . Аналогично, последовательность $\delta_{2\xi+1}$ монотонно убывает и ограничена снизу числом α . По известной теореме из математического анализа, эти последовательности имеют пределы. По лемме 7.5 : $\delta_{2\xi} < \alpha < \delta_{2\xi+1}$ при любом $\xi \geq 0$. Значит,

$$0 < \alpha - \delta_{2\xi} < \delta_{2\xi+1} - \delta_{w\xi} = \frac{1}{Q_{2\xi}Q_{2\xi+1}}, \quad 0 < \delta_{2\xi+1} - \alpha < \delta_{2\xi+1} - \delta_{w\xi} = \frac{1}{Q_{2\xi}Q_{2\xi+1}}$$

Пусть $\tau=\frac{1+\sqrt{5}}{2}>1,6$. Докажем, что $Q_{\xi}\geq \tau^{\xi-1}$ Индукция по ξ . База: $Q_1=1=\tau^{1-1}$. Пусть доказано для всех $\xi:q\leq \xi\leq m$. $\tau^2=\tau+1\Rightarrow \tau^{k+2}=\tau^{k+1}+\tau^k$ для всех $k\geq 0$. Тогда

$$Q_{m+1} = q_{m+1}Q_m + Q_{m-1} \ge Q_m + Q_{m-1} \ge \tau^{m-1} + \tau^{m-2} = \tau^m$$

$$Q_{2\xi}Q_{2\xi-1} \ge \tau^{2\xi-1}\tau^{2\xi-2} = \tau^{4\xi-3} = \frac{\tau^{4\xi}}{\tau^3}, \ 0 < \alpha - \delta_{2\xi}, \ \delta_{2\xi+1} - \alpha < \frac{\tau^3}{\tau^{4\xi}} = \frac{2 + \sqrt{5}}{(\frac{7+3\sqrt{5}}{2})^{\xi}} < \frac{5}{6^{\xi}} \to 0 \quad (\xi \to +\infty)$$

Замечание. Последовательность неполных частных q_0, q_1, q_2, \dots (бесконечная) периодична (начиная с некоторого номера) $\Leftrightarrow \alpha$ - квадратичная иррациональность, то есть $\alpha = \frac{A+B\sqrt{D}}{C}, \ A, B, C, D \in \mathbb{Z}, \ D \geq 1$ - бесквадратное. Например:

$$\sqrt{2} = [1; 2, 2, \dots] = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots}}}$$

Замечание. Лишь для немногих $\alpha \notin \mathbb{Q}$, не являющихся квадратичной иррациональностью, известны разложения в цепную дробь.

Число $e=2,718281828459045\dots$

$$e=[2;1,2,1,1,4,1,1,6,1,1,8,\dots] \qquad (\Pi.\ \mbox{Эйлер},\ 1737г.)$$

$$\alpha=\sqrt[3]{6}=[1;3,1,5,1,1,4,1,1,8,\dots]$$

$$\alpha=\sqrt[3]{6}=[1;1,4,2,7,3,508,1,5,5,\dots]$$

$$\pi=[3;7,5,1,292,1,1,1,2,1,\dots]$$

Замечание. Рассмотрим $N \ge 3$ и дроби $\frac{a}{N}, \ 1 \le a \le N-1, \ (a,N)=1$ (таких дробей $\varphi(N)$ штук). Разложим каждую в непрерывную дробь:

$$\frac{a}{N} = \frac{1}{q_1 + \frac{1}{q_2 + \frac{1}{\cdots + \frac{1}{q_n}}}}$$

где n=n(a) - длина разложения. Вопрос: Каково среднее значение n(a) при изменении a?

$$\frac{1}{\varphi(N)} \sum_{a=1}^N n(a) \approx \frac{12}{\pi^2} (\ln 2) + A$$
, А - некоторая константа (Х. Хейльбрин, 1969г.)

8 Теория сравнений

Пусть $m \ge 2$ - целое.

Определение 8.1. Целые числа a и b называются сравнимыми по модулю m, если a-b делится на m. Или, что то же, когда a и b при делении на m дают одинаковые остатки. Число m при этом называется модулем сравнения. Пишут $a \equiv b \pmod{m}$.

Примеры. $8 \equiv 2 \pmod{3}$, $15 \equiv 1 \pmod{7}$, $24 \equiv 0 \pmod{6}$

Теорема 8.1. (Простейшие свойства сравнений)

- 1. $a \equiv a \pmod{m}$, $\forall a$
- 2. если $a \equiv b \pmod{m}$, то и $b \equiv a \pmod{m}$
- 3. если $a \equiv b \pmod{m}, b \equiv c \pmod{m}$, то $a \equiv c \pmod{m}$
- 4. если $a \equiv b \pmod m$, $c \equiv d \pmod m$, то $a+c \equiv b+d \pmod m$ и $ac \equiv bd \pmod m$

Доказательство. 1-3 очевидно. Докажем 4:

$$a = b + km$$
, $c = d + lm \Rightarrow a + c = (b + d) + (k + l)m \equiv b + d \pmod{m}$
 $ac = (b + km)(d + lm) = bd + blm + dkm + klm^2 = bd + m(bl + dk + lkm) \equiv bd \pmod{m}$ \Box

Следствие. $a \equiv b \pmod m$, c, n - целые числа, $n \ge 1$, то $ca^n \equiv cb^n \pmod m$

Следствие. $a \equiv b \pmod{m}$, P(x) - многочлен с целыми коэффициэнтами $\Rightarrow P(a) \equiv P(b) \pmod{m}$.

Теорема 8.2. Пусть $m \ge 2$. Тогда

- 1. Если $ab \equiv ac \pmod{m}$ и (a, m) = 1, то $b \equiv c \pmod{m}$.
- 2. Если $a \equiv b \pmod{m}$, $d \geq 1$ целое, то $ad \equiv bd \pmod{md}$.
- 3. Если $a \equiv b \pmod{m}$, то (a, m) = (b, m).
- 4. Если $a \equiv b \pmod{m}$ и $d \mid m, d \geq 2$, то $a \equiv b \pmod{d}$.

Доказательство.

- 1. $ab \equiv ac + km \Rightarrow a(b-c) = km$, если b = c, то утверждение очевидно. Пусть $b \neq c \Rightarrow b c = 0$ и из равенства a(b-c) = km следует, что $a \mid km$. Но $(a,m) = 1 \Rightarrow$ по теореме 2.3 $a \mid k$, то есть $k = an \Rightarrow a(b-c) = anm$ $\Rightarrow b c = nm \Rightarrow b \equiv c \pmod{m}$.
- 2. $a = b + km \Rightarrow ad = bd + kmd \Rightarrow ad \equiv bd \pmod{md}$.
- 3. По лемме 3.2 если $\alpha = bq + r$, то $(\alpha, \beta) = (\beta, r)$. Тогда $a \equiv b \pmod{m} \Rightarrow a = b + km \Rightarrow (\alpha = a, \beta = m, r = b) \Rightarrow (\alpha, \beta) = (a, m) = (\beta, r) = (m, b)$.
- 4. a = b + km, m = nd, $d \ge 2 \Rightarrow a = b + knd \Rightarrow a \equiv b \pmod{d}$.

Примеры.

- 1. $27 \equiv 3 \pmod{4} \Rightarrow 3 \equiv 1 \pmod{4}$.
- 2. $26 \equiv 4 \pmod{22} \Rightarrow 13 \equiv 2 \pmod{11}$.
- 3. $48 \equiv 28 \pmod{10}$, но $12 \not\equiv 7 \pmod{10}$.

Пример. Найти остаток от деления 11^6 на 9.

$$11 \equiv 2 \pmod{9} \Rightarrow 11^6 \equiv 2^6 \pmod{9} \Rightarrow 11^6 \equiv (2^3)^2 \pmod{9}$$

\Rightarrow 11 \equiv (-1)^2 \text{(mod 9)} \Rightarrow 11 \equiv 1 \text{(mod 9)}.

Пример. Натуральное число n = 8k + 7 не представимо суммой трех квадратов целых чисел.

$$x$$
 - четное $\Rightarrow x = 4y$ либо $x = 4y + 2$, $x^2 = (4y)^2 = 16y^2 \equiv 0 \pmod 8$. $x^2 = (4y + 2)^2 = 16y^2 + 16y + 4 \equiv 4 \pmod 8$.

x - нечетное $\Rightarrow x=4y\pm 1 \Rightarrow 16y^2\pm 8y+1\equiv 1 \pmod 8$). Следовательно, $x^2\equiv 0,1,4\pmod 8$, но число 7 нельзя представить суммой трех величин, принимающих значения 0,1 и 4.

Теорема. (Теорема Лагранжа)

Если $n \neq 4^a(8k+7)$, то n представимо суммой трех квадратов целых чисел.

Сколько может быть чисел $n: 1 \le n \le x, \ x \to +\infty, \ n = a^2 + b^2$?

Таких чисел примерно $\frac{Bx}{\sqrt{\ln x}}$, где $B=0,7\dots$ - постоянная Рамануджана-Ландау.

Теорема 8.3. (8.4???) Если числа a и b сравнимы по модулям m_1, \ldots, m_k , то они сравнимы по модулю $m = \text{HOK}(m_1, \ldots, m_k)$.

Доказательство. Если a=b, то утверждение очевидно. Пусть $a\neq b$, не теряя общности будем считать, что a>b. Так как $a\equiv b\pmod{m_i},\ i\in\overline{1,k}\Rightarrow$ натуральное число $a-b\equiv 0\pmod{m}$, то есть число a-b делится на каждое из чисел $m_1,\ldots,m_k\Rightarrow a-b$ - их общее кратное. По теореме 2.1 получаем, что $[m_1,\ldots,m_k]\mid (a-b)$

Пусть задан модуль $m \geq 2$. Все множество \mathbb{Z} разобьем на непересекающиеся подмножества, относя к одному и тому же подмножеству те числа, что при делении на m дают дают одинаковые остатки. Именно, $a = q_1 m + r_1$, $b = q_2 m + r_2$, $0 \leq r_1$, $r_2 \leq m - 1$ относятся к одному и тому же подмножеству $\Leftrightarrow r_1 = r_2$. Так получим ровно m подмножеств, которые отвечают остаткам $r = 0, 1, \ldots, m - 1$ (все они непусты).

Определение 8.2. Построенные таким образом подмножества \mathbb{N} называются классами вычетов по модулю m. Элементы каждого из этих подмножеств называются вычетами этого класса. Класс вычетов по модулю m, содержащий число a, иногда обозначают через \bar{a} или [a] или $[a]_m$.

Очевидно, что равенство классов \bar{a} и \bar{b} имеет место $\Leftrightarrow a \equiv b \pmod{m}$. Множество всех классов вычетов по модулю m будем обозначать символом \mathbb{Z}_m

Пример. Пусть $m=4\Rightarrow$ остатки: $0,1,2,3\Rightarrow\mathbb{Z}_4$ состоит из классов: 1) $a=4n,\quad 2)$ $a=4n+1,\quad 3)$ $a=4n+2,\quad 4)$ a=4n+3.

Определение 8.3. Пусть $m \geq 2$ и пусть a_1, \ldots, a_m - произвольные представители различных классов вычетов по модулю m. Тогда совокупность a_1, \ldots, a_m называется полной системой вычетов по модулю m.

Примеры.

- 1. m=4, числа $a_1=13$, $a_2=7$, $a_3=6$, $a_4=8$. $a_4\equiv 0\pmod 4$, $a_1\equiv 1\pmod 4$, $a_2\equiv 2\pmod 4$, $a_3\equiv 3\pmod 4$. $\Rightarrow 13,7,6,8$ полная система вычетов по модулю 4.
- 2. $m=5,\ a_1=2,\ a_2=6\ a_3=16,\ a_4=8,\ a_5=9.$ $a_1\equiv 2\pmod 5,\ a_2\equiv 1\pmod 5,\ a_3\equiv 1\pmod 5,\ a_4\equiv 3\pmod 5,$ $a_5\equiv 4\pmod 5\Rightarrow$ числа 2,6,16,8,9 не образуют полную систему вычетов по модулю 5.

Обычно в качестве полной системы вычетов по модулю m берут совокупность $0, 1, \ldots, m-1$, состоящую из наименьших неотрицательных представителей всех классов вычетов.

Иногда удобно работать с системой вычетов, составленой из наименьших по абсолютной величине представителей классов вычетов.

Пример. Пусть m = 7:

...,
$$-21$$
, -14 , -7 , 0 , 7 , 14 , 21 , ... $\equiv 0 \pmod{7}$ - берем 0 ..., -20 , -13 , -6 , 1 , 8 , 15 , 22 , ... $\equiv 1 \pmod{7}$ - берем 1 ..., -19 , -12 , -5 , 2 , 9 , 16 , 23 , ... $\equiv 2 \pmod{7}$ - берем 2 ..., -18 , -11 , -4 , 3 , 10 , 17 , 24 , ... $\equiv 3 \pmod{7}$ - берем 3 ..., -17 , -10 , -3 , 4 , 11 , 18 , 25 , ... $\equiv 4 \pmod{7}$ - берем -3 ..., -16 , -9 , -2 , 5 , 12 , 19 , 26 , ... $\equiv 5 \pmod{7}$ - берем -2 ..., -15 , -8 , -1 , 6 , 13 , 20 , 27 , ... $\equiv 6 \pmod{7}$ - берем -1

Итак, полная наименьшая по абсолютной величине система вычетов по модулю $7:\{-3,-2,-1,1,2,3,0\}$

Пример. Общий случай:

Для нечетного n получаем $-\frac{m-1}{2}, -\frac{m-3}{2}, \dots, -1, 0, 1, \dots, \frac{m-3}{2}, \frac{m-1}{2}$. Для четного n получаем $-\frac{m}{2}+1, \dots, -1, 0, 1, \dots, \frac{m}{2}-1, \frac{m}{2}$.

Теорема 8.4. Пусть $m \geq 2$, $a,b \in \mathbb{Z}$, причем (a,m) = 1. Если величина x пробегает полную систему вычетов по модулю m, то и величина ax+b пробегает полную систему вычетов по модулю m.

Доказательство. Достаточно доказать, что если $x_1 \not\equiv x_2 \pmod{m}$, то сравнение $ax_1 \equiv ax_2 \pmod{m}$ невозможно. По теореме 8.2 п.1 на a можно сократить: получим $x_1 \equiv x_2 \pmod{m}$ - противоречие.

Следствие. Пусть $m \geq 2, \ a \in \mathbb{Z}, \ (a, m) = 1$. Тогда существует единственный класс вычетов $c \pmod m$ такой, что $ac \equiv 1 \pmod m$.

Доказательство. Для ax-1 при некотором x=c будет выполнено: $ac-1\equiv 0\pmod m$, $ac\equiv 1\pmod m$. Пусть $ac_1\equiv 1\pmod m$ и $ac_2\equiv 1\pmod m$ $\Rightarrow a(c_1-c_2)\equiv 0\pmod m \Rightarrow m\mid a(c_1-c_2)\Rightarrow m\mid (c_1-c_2)$, то есть это возможно лишь при $c_1\equiv c_2\pmod m$.

Замечание. Такой вычет c (класс вычетов \bar{c}) называют обратным к a (соответственно обратным к классу \bar{a}). Обозначим его как a^* (соответственно \bar{a}^*).

Пример. m = 5, a = 3, b = 4

$$x \quad 3x + 4 \quad 3x + 4 \pmod{5}$$

- 0 4 4
- 1 7 2
- 2 10 0
- 3 13 3
- 4 16 1

Замечание. Условие (a, m) = 1 опустить нельзя.

Пример. (Почему условие выше опустить нельзя) $m=6,\ a=2,\ b=1$

$$x \quad 2x+1 \quad 2x+1 \pmod{b}$$

- $0 \quad 1 \quad 1$
- 1 3 3
- 2 5 5
- 3 7 1
- 4 9 3
- 5 11 5

Пример. m=7

- $1 \cdot 1 \equiv 1 \pmod{7} \Rightarrow 1^* \equiv 1 \pmod{7}$
- $2 \cdot 4 \equiv 1 \pmod{7} \Rightarrow 2^* \equiv 4 \pmod{7}$
- $3 \cdot 5 \equiv 1 \pmod{7} \Rightarrow 3^* \equiv 5 \pmod{7}$
- $4 \cdot 2 \equiv 1 \pmod{7} \Rightarrow 4^* \equiv 2 \pmod{7}$
- $5 \cdot 3 \equiv 1 \pmod{7} \Rightarrow 5^* \equiv 3 \pmod{7}$
- $6 \cdot 6 \equiv 1 \pmod{7} \Rightarrow 6^* \equiv 7 \pmod{7}$

Согласно теореме 8.2 (пункт 3), числа, принадлежащие одному классу вычетов по модулю m, имеют с модулем один и тот же НОД. ($a \equiv b \pmod m$) $\Rightarrow (a, m) = (a, b)$

Поэтому особый интерес придставляют классы, для которых этот НОД равен 1. Взяв от каждого такого класса по одному вычету, получим приведенную систему вычетов по модулю m. Возьмем в качестве такой полной системы вычетов числа $0, 1, \ldots, m-1$. Так как среди этих чисел количество взаимно простых с модулем m равно $\varphi(m)$, то и любая приведенная система вычетов содержит $\varphi(m)$ элементов. Обозначение: \mathbb{Z}_m^* .

Пример. $m=6;\ 0,1,2,3,4,5\Rightarrow 1,5$ - приведенная система вычетов. $m=7;\ 0,1,2,3,4,5,6\Rightarrow 1,2,3,4,5,6$ - приведенная система вычетов. $m=10;\ 0,1,2,3,4,5,6,7,8,9\Rightarrow 1,3,7,9$ - приведенная система вычетов. m - простое $\Rightarrow \mathbb{Z}_m^*=\{1,2,\ldots,p-1\}$.

Теорема 8.5. (8.6??) Пусть $m \geq 2$, a - целое число, (a,m) = 1, и пусть x пробегает приведенную систему вычетов по модулю m. Тогда и величина ax будет пробегать приведенную систему вычетов по модулю m.

Доказательство. Что нужно проверить.

- 1. $ax_1 \equiv ax_2$ невозможно, если $x_1 \not\equiv x_2 \pmod{m}$.
- 2. (ax, m) = 1 для всех $x \in \mathbb{Z}_m^*$.
- 1. был проверен при доказательстве теоремы 8.4.
- 2. пусть $(ax,m) = \delta > 1 \Rightarrow$ для некоторого $x:(x,m) = 1 \Rightarrow \delta \mid ax$, причем $a \neq 0$ и $x \neq 0$ (следует из взаимной простоты с m) \Rightarrow (по теореме 2.3) $\delta \mid a$. Но $\delta \mid m$. Значит $\delta \mid (a,m) \Rightarrow (a,m) \geq \delta > 1$ противоречие.

Теорема 8.6. (Теорема Эйлера)

Пусть $m \ge 2$, a - целое, $(a, m) = 1 \Rightarrow a^{\varphi(m)} \equiv 1 \pmod{m}$.

Доказательство. Пусть $1 = r_1 < r_2 < \dots < r_c < \dots < r_{m-1}, \ c = \varphi(m)$ - приведенная система вычетов. Пусть $ar_k \equiv \rho_k \pmod{m}$, где $0 < \rho < m$. Из теоремы ?? следует, что $\rho_1, \dots \rho_k$ образуют перестановку чисел $r_1, \dots r_k$. Перемножим сравнения почленно: $a^c r_1, \dots, r_c \equiv \rho_1 \dots \rho_c \pmod{m}$. Но $r_1, \dots r_c = \rho_1 \dots \rho_c = R$ и число R взаимно просто с m (следует из теоремы 2.3). По теореме 8.2 (пункт 1), обе части сравнения $a^c R \equiv R \pmod{m} \Rightarrow a^{\varphi(m)} \equiv 1 \pmod{m}$.

Следствие. (Малая теорема Ферма)

Пусть p - простое число. Тогда при любом целом a выполняется сравнение: $a^p \equiv a \pmod{p}$.

Доказательство. Если $p\mid a$, то очевидно. Если (a,p)=1, то $a^{\varphi(p)}\equiv 1\pmod p$ $\Rightarrow a^{p-1}\equiv 1\pmod p \Rightarrow a^p\equiv a\pmod p.$

9 Сравнения с одним неизвестным

Пусть $f(x) = a_n x^n + \cdots + a_1 x + a_0$ - многочлен с целыми коэффициэнтами. Будем изучать сравнения вида (1) $f(x) \equiv 0 \pmod{m}$. Если $a_n \not\equiv 0 \pmod{m}$, то число m называется степенью сравнения. Решить сравнение (1) - значит найти все целые числа x, ему удовлетворяющие. По следствию 2 из 8.1, $a \equiv b \pmod{m} \Rightarrow f(a) \equiv f(b) \pmod{m}$. Значит, если (1) удовлетворяет некоторое число x, и $x \equiv a \pmod{m}$, то (1) удовлетворяют все числа сравнимые с a по модулю a. По этой причине весь класс вычетов $a \pmod{m}$ удобно считать за одно решение.

9.1 Сравнения первой степени

Всякое сравнение первой степени можно переписать в виде: $ax \equiv b \pmod{m}$. Рассмотрим сперва случай, когда (a,m)=1. По теореме 8.4 получаем, что такое сравнение имеет единственное решение.

- 1. Способ 1. По теореме Эйлера получим $x_0 \equiv ba^{\varphi(m)-1} \pmod{m}$. Тогда $ax_0 \equiv aba^{\varphi(m)-1} \equiv ba^{\varphi(m)} \pmod{m} \equiv b \cdot 1 \pmod{m} \equiv b \pmod{m}$.
- 2. Способ 2. (Разложение в непрерывную дробь) $\alpha = \frac{m}{a}$ подходящие дроби: $\delta_0, \delta_1, \dots, \delta_{s-1} = \frac{P_{s-1}}{Q_{s-1}}, \delta_s = \frac{P_s}{Q_s} = \frac{m}{a}$. Известно по лемме 7.1 $P_sQ_{s-1} P_{s-1}Q_s = (-1)^{s-1} \Rightarrow mQ_{s-1} aP_{s-1} = (-1)^{s-1}$. $aP_{s-1} = (-1)^s + mQ_{s-1} \Rightarrow a(-1)^sP_{s-1} = 1 + mQ_{s-1}(-1)^s \Rightarrow a(-1)^sP_{s-1}b = b + mbQ_{s-1}(-1)^s$. Переходя к сравнению по модулю m, получим: $a(-1)^sP_{s-1}b = b \pmod{m} \Rightarrow (-1)^sP_{s-1}b \pmod{m}$ решение.

Пример.

$$\frac{13}{7} = 1 + \frac{6}{7} = 1 + \frac{1}{\frac{7}{6}} = 1 + \frac{1}{1 + \frac{1}{6}}$$

Значит $x \equiv (-1)^2 \cdot 2 \cdot 3 \pmod{13} \equiv 6 \pmod{13}$.

Пусть (a, m) = d > 1, $ax \equiv b \pmod{m}$. Необходимое условие разрешимости - делимость b на d. (т.к. если сравнение разрешимо, то ax = b + km для некоторого целого k). Покажем что это условие достаточное. Пусть $a = a_1d$, $b = b_1d$, $m = m_1d$, $(a_1, m_1) = 1$. Значит $a_1dx \equiv b_1d \pmod{m_1d}$. По теореме 8.2, можно все сократить на $d: a_1x \equiv b_1 \pmod{m_1}$. По доказаному выше, это сравнение имеет единственное решение по модулю $m_1: x \equiv x_1 \pmod{m_1}$. Все числа вида (2) $x_1, x_1 \pm m_1, x_1 \pm 2m_1, \ldots, x_1 \pm tm_1, \ldots$ - решения исходного сравненияю. Так как

 x_1 - решение, то $a_1x_1=b_1+km_1, k$ - некоторое целое число $\Rightarrow a(x_1\pm tm_1)=ax_1\pm tam_1=\alpha a_1x_1\pm ta_1\alpha m_1\equiv \alpha a_1m_1\pmod m\equiv \alpha(b_1+km_1)\pmod m\equiv b+km$ (mod m) $\equiv b\pmod m$ \Rightarrow из ряда (2) нужно отобрать числа, различные по модулю m. $x_1,x_1+m_1,x_1+2m_1,\ldots,x_1+(\alpha-1)m_1$ все они различны по модулю m.

Теорема 9.1. Пусть $m \geq 2, a, b$ - целые числа, причем (a, m) = d. Сравнение $ax \equiv b \pmod{m}$ разрешимо $\Leftrightarrow d \mid b$. В случае разрешимости сравнение имеет d решений.

Пример. ПРИМЕР 9.2