Solution Manual & Scheme of Evaluation Autumn Mid Semester Examination-2022 Subject-Differential Equations & Linear Algebra Subject Code: MA 11001

Scheme-I

Question	Answers Scheme-1	Step
No.		Marks
Q.1(a)	Find the general solution of the differential equation	
	xy' = x + y.	
	Solution: Given ODE:	
	$y' = 1 + \frac{y}{x} \tag{1}$	
	Let $\frac{y}{x} = u$, $\Rightarrow y' = u + x \frac{du}{dx}$	
		0.5
	Equation (1) becomes:	
	$u + x \frac{du}{dx} = 1 + u \tag{2}$	
	Solving Equation (2), we obtain:	0.5
	$y(x) = x(\ln cx)$	0.5
(b)	Find the orthogonal trajectory for $x = ce^{\frac{y}{4}}$.	
	Solution: The given equation can be written as:	
	$f(x,y) = xe^{-\frac{y}{4}} = c$	
	$\Rightarrow f_x = e^{\frac{-y}{4}}$ and $f_y = -\frac{x}{4}e^{\frac{-y}{4}}$	0.5
	T .	
	The ODE for O. T. is: $y' = \frac{f_y}{f_x} = -\frac{x}{4}$	
	The orthogonal trajectory is: $y(x) = -\frac{x^2}{8} + c^*$	0.5
(c)	What will be the exact differential equation whose solution is	
	$\sin x - \cos x - x^2 + y = c$, where c is an arbitrary constant?	
	Solution: Let $u(x, y) = \sin x - \cos x - x^2 + y$	
	Now, $\frac{\partial u}{\partial x} = \cos x + \sin x - 2x$ and $\frac{\partial u}{\partial y} = 1$	0.5
	The exact ODE:	
	$(\cos x + \sin x - 2x)dx + dy = 0$	0.5
(d)	Apply the operator $(D^2 - 2D + I)$ on $\sinh (x + 2)$.	
	Solution: $(D^2 - 2D + I)(\sinh(x + 2))$	
	$= D^{2}(\sinh(x+2)) - 2D(\sinh(x+2)) + \sinh(x+2)$	
	$= D(\cosh(x+2)) - 2\cosh(x+2) + \sinh(x+2)$	0.5
	$= \sinh(x+2) - 2\cosh(x+2) + \sinh(x+2)$	0.5
(a)	$= 2[\sinh(x+2) - \cosh(x+2)].$	0.3
(e)	Find an integrating factor for the ODE $\frac{dx}{dy} = 2(x-1) \tanh 2y$.	
	Solution: Given ODE can be written as	
	$\frac{dx}{dy} - (2\tanh 2y)x = -2\tanh 2y.$	
	Here, $P(y) = -2 \tanh 2y$	0.5
	Integrating factor is: $e^{\int P(y) dy} = e^{-2\int \tanh 2y dy} = e^{-\ln(\cosh 2y)} = \operatorname{sech} 2y$	0.5

Q.2(a)	Find the particular solution of	
	$xy' = y + 4x^5 \cos^2(y/x), \ y(2) = 0$	
	Solution: Given ODE can be written as	
	$y' = \frac{y}{x} + 4x^4 \cos^2\left(\frac{y}{x}\right)$	
	(1)	
	Let $\frac{y}{x} = u$, $\Rightarrow y' = u + x \frac{du}{dx}$	
	Equation (1), becomes:	
	$u + x \frac{du}{dx} = u + 4x^4 \cos^2 u$	
	$\frac{dx}{(2)}$	
	From Equation (2):	1
	$\frac{du}{dx} = 4x^3 \cos^2 u \tag{3}$	
	Separating variable and integrating both sides:	
	$\int \sec^2 u \ du = \int 4x^3 dx$	
	$\Rightarrow \tan u = x^4 + c$	
	$\tan\left(\frac{y}{x}\right) = x^4 + c \tag{4}$	1
	Using the initial condition $y(2) = 0$ in Equation (4),	
	c = -16	
	The particular solution is: $\tan\left(\frac{y}{x}\right) = x^4 - 16$.	
(b)	Reduce to first order and then solve	1
(-)	$y'' + (y')^3 \sin y = 0$	
	Solution: Let	
	$y' = u, \Rightarrow y'' = u\left(\frac{du}{dv}\right)$	
	Now, Given ODE becomes:	
	$u\frac{du}{dy} + (u)^3 \sin y = 0$	
	$u \frac{dy}{dy} + (u) \sin y = 0$	
	If $u = 0$, then solution is: $y = c$.	
	If $u \neq 0$, then	1
	$\frac{du}{dy} + u^2 \sin y = 0$	
	Separating the variables and on integration we get:	
	$-\frac{1}{u} = \cos y + A$	
	,	1
	$\Rightarrow \frac{dx}{dy} = -\cos y - A$	1
0.2(2)	Required Solution: $x = -\sin y - Ay + B$	
Q.3(a)	Find the integrating factor of the following differential equation which will make it exact. Hence solve the equation.	
	$(3xy - 2y^2)dx + (x^2 - 2xy)dy = 0.$	
	Solution: Here, $M(x, y) = 3xy - 2y^2$ and $N(x, y) = x^2 - 2xy$	
	Exactness:	1

	$M_y = 3x - 4y \text{ and } N_x = 2x - 2y$	
	Given ODE is not exact.	
	Integrating Factor:	
	$\frac{M_y - N_x}{N(x, y)} = \frac{x - 2y}{x(x - 2y)} = \frac{1}{x}$	
	Integrating Factor:	
	$e^{\int \frac{dx}{x}} = x$	1
	Now multiplying the integration factor by given ODE:	1
	$(3x^2y - 2xy^2)dx + (x^3 - 2x^2y)dy = 0$	
	General Solution:	
	Solving the exact ODE, we get:	
	$x^3y - x^2y^2 = c$	
		1
(b)	Find a general solution of $(D^2 + 6D + 13I)y = 0$.	
	Solution: The Auxiliary Equation is:	0.5
	$\lambda^2 + 6\lambda + 13 = 0$	
	$\Rightarrow (\lambda + 3)^2 = -4$	0.5
	$\Rightarrow \lambda = -3 \pm 2i$	
	The general solution is:	
	$y(x) = e^{-3x} (A\cos 2x + B\sin 2x).$	1
Q.4 (a)	Find a differential equation for which the given $y(x)$ is a general solution and then	
	determine the constants so that the given initial conditions are satisfied.	
	$y(x) = e^x(c_1 \cos x + c_2 \sin x), \ y(0) = 1, \ y'(0) = 3.$	
	Solution: Basis of solutions: $\{e^x \cos x, e^x \sin x\}$	0.5
	Hence, the roots of Auxiliary equation is: $\lambda = 1 \pm i$	
	The auxiliary equation is: $\lambda^2 - 2\lambda + 2 = 0$	1
	The ODE is: $y'' - 2y' + 2y = 0$.	
	Particular Solution:	
	The given general solution is:	0.5
	$y(x) = e^{x}(c_1 \cos x + c_2 \sin x)$ Using the initial condition $y(0) = 1$ we find $x = 1$	0.5
	Using the initial condition $y(0) = 1$ we find: $c_1 = 1$.	
	$\Rightarrow y(x) = e^x(\cos x + c_2 \sin x)$ Now, $y' = e^x(\cos x + c_2 \sin x) + e^x(-\sin x + c_2 \cos x)$	0.5
	Using the initial condition $y'(0) = 3$, we get: $c_2 = 2$.	
	The particular solution is:	0.5
	$y(x) = e^x(\cos x + 2\sin x).$	
(b)	Find a general solution of the differential equation	
(~)	$y' + 2y = 4\cos 2x.$	
	Solution: The Integrating factor is: e^{2x}	0.5
	The general solution is:	
	$ye^{2x} = 4 \int e^{2x} \cos 2x \ dx + c$	0.5
	J	
	$\Rightarrow y(x) = \cos 2x + \sin 2x + ce^{-2x}$ is the required solution.	1

Q.5(a)	A thermometer, reading 10°C is brought into a room whose temperature is 23°C.	
	Two minutes later the thermometer reading is 18°C. Find the temperature in the	
	thermometer after 2 hours.	
	Solution: Let $T(t)$ be the temperature in the thermometer at time t .	
	The temperature in the room: $T_s = 23$	
	By Newton's law of cooling	
	$\frac{dT}{dt} = k(T - T_s)$	
	\Rightarrow The ODE:	
	$\frac{dT}{dt} = k(T - 23)$	
	at the state of th	0.5
	(1)	0.5
	The initial conditions:	0.5
	T(0) = 10, T(2) = 18	
	Solving ODE (1): $T(t) = 23 + ce^{kt}$ Using the initial condition, $T(0) = 10$	
	Using the initial condition, $T(0) = 10$ $\Rightarrow c = -13$	
	$\Rightarrow T(t) = 23 - 13e^{kt}$	
	Again using $T(2) = 18$,	
	$\Rightarrow k \cong -0.47775$	1
	The temperature in the thermometer at time t is	1
	$T(t) = 23 - 13e^{-0.47775t}$	0.5
	The temperature after 2 hours: $T(120) = 23 - 13e^{-0.47775 \times 120} = 23^{\circ}$ C.	
(b)	Find a basis of solutions of the ODE by method of reduction of order.	
	$x^2y'' + 3xy' + y = 0$, $y_1 = \frac{1}{x}$	
	Solution: The given ODE can be written as:	0.5
	$y'' + \frac{3}{x}y' + \frac{1}{x^2}y = 0$	0.5
	Here, $P(x) = \frac{3}{x}$	
	Given solution is: $y_1 = \frac{1}{x}$	
	\Rightarrow By method of reduction of order, the second solution is obtained by	
		1
	$y_2 = y_1 \int \frac{1}{(y_1)^2} e^{-\int P dx} dx$	
	$y_2 = \frac{1}{x} \int x^2 e^{-\int \frac{3}{x} dx} dx = x^{-1} \int \frac{1}{x} dx = x^{-1} \ln x$.	
	Basis of solutions is: $\{x^{-1}, x^{-1} \ln x\}$	0.5