CONTENTS

- 1. What is Association Rule Mining?
- 2. Why MASP algorithm?
- 3. What is MASP algorithm?
- 4. Drawbacks of MASP algorithm
- 5. OIMASP algorithm
- 6. OOIMASP algorithm
- 7. OOIMASP vs MASP
- 8. Conclusions

Association Rule Mining

		Transaction database
	1.	milk, bread, cereal
	2.	milk, bread, sugar, eggs
F(3.	milk, bread, butter
	n.	sugar, eggs

 $(\mathsf{milk},\,\mathsf{bread}) \to (\mathsf{eggs})$

 $(bread) \rightarrow (butter)$

Association Rule Mining

Association Rule Mining is generally done in two steps

- 1. Find all frequent itemsets
- 2. Generate association rules from frequent itemsets

Apriori and FP-Growth are traditional algorithms for finding frequent itemsets.

Why MASP algorithm?

- No need to search entire lattice of item combinations
- No pruning step required
- Less computational resources
- K-items patterns can be obtained easily

MASP algorithm generates rules in two steps

- 1. Generate MASP tree
- 2. Generate rules from MASP tree

	C1	C2	СЗ	C4	C5
1	1	2	3	4	5
2	1	5	3	4	2
3	8	1	9	2	3
4	9	2	3	1	7
5	1	9	3	8	7
6	1	8	3	2	7

Threshold Support = 5%
Threshold Confidence = 10%

	C1	C2	СЗ	C4	C5
1	1	2	3	4	5
2	1	5	3	4	2
3	8	1	9	2	3
4	9	2	3	1	7
5	1	9	3	8	7
6	1	8	3	2	7

Item	Freq	Item	Freq	Item	Freq
C1=8	1	C2=8	1	C4=1	1
C1=9	1	C2=9	1	C4=8	1
C1=1	4	C3=3	5	C5=2	1
C2=2	2	C3=9	1	C5=3	1
C2=5	1	C4=4	2	C5=5	1
C2=1	1	C4=2	2	C5=7	3

	C1	C2	СЗ	C4	C5
1	1	2	3	4	5
2	1	5	3	4	2
3	8	1	9	2	3
4	9	2	3	1	7
5	1	9	3	8	7
6	1	8	3	2	7

Item	Freq	Item	Freq	Item	Freq
C1=8	1	C2=8	1	C4=1	1
C1=9	1	C2=9	1	C4=8	1
C1=1	4	C3=3	5	C5=2	1
C2=2	2	C3=9	1	C5=3	1
C2=5	1	C4=4	2	C5=5	1
C2=1	1	C4=2	2	C5=7	3

	C3	C1	C2	C4	C5
1	3	1	2	4	5
2	3	1	5	4	2
4	3	9	2	1	7
5	3	1	9	8	7
6	3	1	8	2	7
3	9	8	1	2	3

Support(C3=3) = 5/6 >= Threshold Support Confidence(C3=3) = 5/6 >= Threshold Confidence

Support(\sim C3=3) = 1/6 >= Threshold Support Confidence(\sim C3=3) = 1/6 >= Threshold Confidence

Rules generation

PATH

RULES

$$(C3=3) \rightarrow (C1=1)$$

 $(C3=3,C1=1) \rightarrow (C4=4)$
 $(C3=3,C1=1,C4=4) \rightarrow (C2=2)$
 $(C3=3,C1=1,C4=4,C2=2) \rightarrow (C5=5)$

Drawbacks of MASP algorithm

• It depends on the order of items in transactions

1	2	3	4
2	4	3	1
3	2	4	1
4	2	3	1

$$Ts = Tc = 50\%$$

Drawbacks of MASP algorithm

It depends on the order of items in transactions

1	2	3	4
1	2	3	4
1	2	3	4
1	2	3	4

Drawbacks of MASP algorithm

- It can generate contradictory rules
- Examples
 - $\circ \quad (A, B, \sim C, D, E) \rightarrow (\sim E)$
 - $\circ \quad (A, B, \sim C, D, E) \rightarrow (C)$

- Order independent
- Non-contradictory rules

Shuffle: TOIB: TOICB

Threshold Support = 20%
Threshold Confidence = 30%

		000	NW 2		
T1	1	Transa 12	ction 3	able 4	5
T2	1	5	6	4	12
T3	8	6	9	12	5
T4	9	2	3	6	7
T5	6	9	10	8	7
Т6	1	8	3	2	7

Frequency Table

Item	Count
1	3
10	1
12	3
2	2
3	3
4	2
5	3
6	4
7	3
8	3
9	3

Threshold Support = 20%
Threshold Confidence = 30%

OIMASP tree

OOIMASP = Origin + OIMASP

Take into consideration the origins of items in the transaction dataset

Fig. 9. Partition of dataset based on the origin of item 10.

OOIMASP = Origin + OIMASP

$$(7, 8, \sim 1)$$
 => (10)
 $(7, 8, \sim 1, 10)$ => (6)

$$(7, 8, \sim 1, 10) => (6)$$

$$(7, 8, \sim 1, 10, 6) \Rightarrow (9)$$

OOIMASP vs MASP

0.60

0.30

0.30

0.30

0.30

0.30

0.30

0.30

0.30

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.30

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

Chess

в

D

E

Connect Mushroom

Chess

A

в

C

D

E

Connect

Mushroom

Chess

			100,001			.,, (3)
Dataset	Min-Support	Min-Confidence	total rules	max-rule-size	total rules	max-rule-size
A	0.30	0.60	1	2	4	4
В	0.30	0.60	0	0	23	10
С	0.30	0.60	0	О	31	17
D	0.30	0.60	0	0	81	51
E	0.30	0.60	0	0	262	132

MASP

20

7

0

0

0

0

38

33

7

27

12

0

0

19

OOIMASP

20

21

41

101

846

45

24

33

7

22

37

86

461

45

20

20

24

85

133

201

1690

192

282

91

28

493

207

151

920

129

83

С	0.30	0.60	0	0	31	17
D	0.30	0.60	0	0	81	51
E	0.30	0.60	0	0	262	132
Connect	0.30	0.60	29	30	55	32
Mushroom	0.30	0.60	6	7	11	14

14

0

0

0

0

50

144

50

24

394

45

0

0

56

85

53

Conclusions

- OOIMASP generates same association rules irrespective of the order of items
- OOIMASP will not generate contradictory rules
- OOIMASP outperforms MASP in terms of both the metrics i.e. total rules and length of longest rule
- OOIMASP requires more computational resources as compared to MASP algorithm