VE215 Mid RC C1-3

Xinyue Mao

November 10, 2024

Overview

- Chapter1 Basic concepts
- Chapter Basic laws

Basic Conventions

•
$$i = \frac{dq}{dt}$$

•
$$Q = \int_{t0}^{t} idt$$

•
$$v = \frac{dw}{dq}$$

•
$$p = \frac{dw}{dt} = vi$$

Just remember them!

Passive sign convention

- Passive sign convention:
 - When the current enters through the positive terminal of an element, p = +vi.
 - If the current enters through the negative terminal, p = -vi.

Symbols

Ohm's law

Resistance
$$R = \rho \frac{l}{A}$$

The resistance of any material depends on a uniform cross-sectional area A and its length l, where ρ is known as the *resistivity* of the material in ohm-meters.

Ohm's law

$$V = IR$$
, or $R = \frac{v}{i}$, thus $1 \Omega = 1 \text{ V/A}$

- Surprisingly, not all resistors obey Ohm's law.
- A resistor that obeys Ohm's law is known as a linear resistor, i.e. a constant resistance.

$$G = \frac{1}{R} = \frac{i}{v}$$
, 1 S = 1 $\sigma = 1 A/V$

Nodes, Branches and Loops

(iii) A *loop* is any closed path in a circuit.

- Independent loop: the loop contains at least one branch which is not a part of any other independent loop.
- A mesh is a loop that does not enclose any other loops. (i.e., smallest loop)

Figure 2.10 Nodes, branches, and loops.

b(branches)=I(independent loop)+n(nodes)-1

Node 1:

$$i_1 + i_3 = i_2$$

Node 2:
 $i_2 = i_4 + i_5 + i_6$
Node 3:

 $i_8 + i_6 = i_3 + i_7$

Node 1 + 2 + 3

$$\mathbf{i}_1 + \mathbf{i}_2 + \mathbf{i}_3 + \mathbf{i}_8 + \mathbf{i}_6 = \mathbf{i}_2 + \mathbf{i}_4 + \mathbf{i}_5 + \mathbf{i}_6 + \mathbf{i}_3 + \mathbf{i}_7$$

 $\rightarrow \mathbf{i}_1 + \mathbf{i}_8 = \mathbf{i}_4 + \mathbf{i}_4 + \mathbf{i}_7$

Current entering the closed boundary = current leaving the boundary

Figure 2.19

A single-loop circuit illustrating KVL.

Series and parallel connection

Series connection:

$$R_{eq} = R_1 + R_2 + ... + R_N = \sum_{n=1}^{N} R_n$$

Parallel connection:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \dots + \frac{1}{R_N} = \sum_{n=1}^N \frac{1}{R_n}$$

$$G_{eq} = G_1 + G_2 + \dots + G_N = \sum_{n=1}^N G_n$$

Wye-Delta Transformation

Figure 2.47 Two forms of the same network: (a) Y, (b) T.

Figure 2.48 Two forms of the same network: (a) $\boldsymbol{\Delta}$, (b) $\boldsymbol{\Pi}$.

Wye-Delta Transformation

$$\begin{cases} R_{1} = \frac{R_{b}R_{c}}{R_{a} + R_{b} + R_{c}} \\ R_{2} = \frac{R_{c}R_{a}}{R_{a} + R_{b} + R_{c}} \\ R_{3} = \frac{R_{a}R_{b}}{R_{a} + R_{b} + R_{c}} \end{cases}$$

Figure 2.49 Superposition of wye and delta networks as an aid in transforming one to the other.

Wye-Delta Transformation

$$\begin{split} R_{a} &= \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{1}} \\ R_{b} &= \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{2}} \\ R_{c} &= \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{3}} \end{split}$$

Figure 2.49 Superposition of wye and delta networks as an aid in transforming one to the other.

Exercise

Determine V in the circuit

3 Chapter3 Methods of Analysis

Chapter 3 Methods of Analysis

Nodal Analysis:

- Select a reference node (ground)
- Apply KCL
- Solve the equations

Mesh Analysis:

- Mark the current of all the meshes
- Apply KVL
- Solve the equations

Supernode & Supermesh

• Supernode & Supermesh – simplify the equation

$$i_1 - i_2 - i_3 + i_4 = 0$$

$$20 - 6i_1 - 14i_2 = 0$$

Analysis by Inspection

$$\begin{bmatrix} G_{11} & G_{12} & \dots & G_{1N} \\ G_{21} & G_{22} & \dots & G_{2N} \\ \vdots & \vdots & \vdots & \vdots \\ G_{N1} & G_{N2} & \dots & G_{NN} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_N \end{bmatrix} = \begin{bmatrix} i_1 \\ i_2 \\ \vdots \\ i_N \end{bmatrix}$$

 G_{kk} = Sum of the conductances connected to node k

 $G_{kj} = G_{jk} =$ Negative of the sum of the conductances directly connecting nodes k and $j, k \neq j$

 v_k = Unknown voltage at node k

i_k = Sum of all independent current sources directly connected to node k, with currents entering the node treated as positive

For Nodal Analysis

(only current source in circuit)

$$\begin{bmatrix} R_{11} & R_{12} & \dots & R_{1N} \\ R_{21} & R_{22} & \dots & R_{2N} \\ \vdots & \vdots & \vdots & \vdots \\ R_{N1} & R_{N2} & \dots & R_{NN} \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ \vdots \\ i_N \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_N \end{bmatrix}$$

 R_{kk} = Sum of the resistances in mesh k

 $R_{kj} = R_{jk} =$ Negative of the sum of the resistances in common with meshes k and $j, k \neq j$

 i_k = Unknown mesh current for mesh k in the clockwise direction

 v_k = Sum taken clockwise of all independent voltage sources in mesh k, with voltage rise treated as positive

For Mesh Analysis

(only voltage source in circuit)

Exercise

- 1-2. Please determine resistance $\mathbf{X}[\Omega]$ and $\mathbf{Y}[\Omega]$. What is $\mathbf{X} + \mathbf{Y}$?
- [5 points]

- (1) 40
- (2)45
- (3) 50
- (4) 55
- (5) Cannot tell from the information given.

References

- 2024FA VE215 slides
- 2023FA Mid RC, Hengyi Cai

Thank you!