Rocco DE NICOLA

IMT Lucca

Number Theory & Modular Arithmetic

License & Disclaimer

License Information

This presentation is licensed under the Creative Commons BY-NC License

To view a copy of the license, visit:

http://creativecommons.org/licenses/by-nc/3.0/legalcode

Disclaimer

- We disclaim any warranties or representations as to the accuracy or completeness of this material.
- Materials are provided "as is" without warranty of any kind, either express or implied, including without limitation, warranties of merchantability, fitness for a particular purpose, and non-infringement.
- Under no circumstances shall we be liable for any loss, damage, liability or expense incurred or suffered which is claimed to have resulted from use of this material.

Outline

- > Introduction
- Prime Numbers
- Modular Arithmetic
- Logarithms

Outline

- Introduction
- Prime Numbers
- Modular Arithmetic
- Logarithms

Why Number Theory

- Double Key Cryptography heavily relies on some properties of prime numbers that enable one to
 - Exchange secret keys on line without running the risk of it being intercepted by an adversary
 - Encrypt with one key and decrypt with the twin one
 - Limit the possibility of brute force attacks while guaranteeing efficient encryption and decryption

Requirements for asymmetric encryption

- Computationally inexpensive to create pairs of keys
- Computationally inexpensive to encrypt messages for a sender who knows the public key and to decrypt messages for a recipient who knows the private key (or viceversa)
- Computationally difficult for an opponent to discover the private key knowing the public key and to decipher a message without knowing the private key
- It must be possible to use one of the two related keys for encryption, and the other for decryption, interchangeably.

Requirements for asymmetric encryption

Public key schemes depend on appropriate so/called trap-door one-way functions

- one-way function
 - \rightarrow Y = f(X) Easy
 - \rightarrow X = f⁻¹(Y) hard not feasible
- a trap-door one-way function
 - \rightarrow Y = f_k(X) is easy if k and X are known
 - \rightarrow X = $f_k^{-1}(Y)$ is easy if k and y are known
 - $X = f_k^{-1}(Y)$ is not feasible, if Y is known but k is not.

An easy problem can be solved in polynomial time relatively to the length of the input

An example of a one-way function

- Given the number 6895601 determine whether it is the product of two prime numbers, and what these numbers are.
- A natural solution would be to try dividing 6895601 by several prime numbers smaller than the number under consideration until you find the answer. Difficult!
- ➤ If one knows that 1931 is one of the numbers, the answer can be found by computing 6895601 ÷ 1931

Issues of asymmetric encryption

- Brute force attacks are theoretically possible.
- Very large keys are needed: a 64-bit private key scheme has a security more or less similar to that of a 512-bit RSA (the most used Public Key Cryptography).
- The problem is well known, but is made difficult enough to make it unworkable by resorting to very large numbers.
- Encryption and decryption are much slower than for single key schemes.

Number Theory

- Number theory is fundamental for facing the challenges of asymmetric encryption.
- The key ingredients for the development of a theory of double keys encryption are:
 - Prime numbers
 - Modular Arithmetic
 - Exponentiation and Logarithms

Outline

- > Introduction
- Prime Numbers
- Modular Arithmetic
- Logarithms

Prime Numbers

- Natural numbers N: All positive integers starting from 1.
- Integers Z: All integers positive and negative, including 0
- a in Z is a divisor of b if b = k * a (for some k)
- a has always two trivial divisors 1 and a
- > a >= 2 is prime if it has only trivial divisors

Two theorems

- Division Theorem: For each a in Z and n in N, there exist unique q and r such that a = q * n + r, where 0 <= r < n</p>
 - > q is the quotient
 - r (= a mod n) is the remainder
- Decomposition Theorem: Each natural numbers either is a prime number or can be obtained as the product of powers of primes:
 - > 91 = 7 * 13
 - > 3600 = $2^4 * 3^3 * 5^2$
 - > 11011 = 7 * 11² * 13

Numbers and prime numbers

Theorem: If P is the set of prime numbers, any generic positive integer a can be written as the product of exponential prime numbers

$$a = \prod_{p \in P} p^{a_p}$$
 where each $a_p \ge 0$

N.B.: For any specific number, for most prime numbers p in the formula, the corresponding exponent will be 0.

Numbers and prime numbers

Corollarium: To perform a multiplication between two numbers it is sufficient to express both of them as product of primes and then add the corresponding exponents.

Example

- \rightarrow Since: 91 = 7 * 13 and 11011 = 7 * 11² * 13
- \rightarrow We have: 91 * 11011 = 7² * 11² * 13²
- > Check! ...

Minumum Common Multiple

- The Minimum Common Multiple of two integers a and b, MCM(a, b), is the smallest positive integer that is divisible for both a and b:
 - \rightarrow MCM(4,6) = 12 because
 - Multiple of 4: 4, 8, 12, 16, ...
 - > Multiple of 6: 6, 12, 18, ...

Greatest Common Divisor

- The Greatest Common Divisor of two integers a and b, GCD(a, b), is the largest positive integer that divides both a and b:
 - ightharpoonup GCD(54,24) = 6 because
 - 54 * 1 = 27 * 2 = 18 * 3 = 9 * 6
 - the divisors of 54 are: 1, 2, 3, 6, 9, 18, 27, 54
 - > 24 * 1 = 12 * 2 = ... 3 * 8 ...
 - the divisors of 24 are: 1, 2, 3, 4, 6, 8, 12, 24

Computing GCD

Euclid's algorithm

- Given two natural numbers a and b,
 - > if b is zero a is the MCD.
 - If b is different from 0, divide a by b and assign the remainder to r (a mod b). If r = 0 then b is the MCD, otherwise let a = b and b = r and repeat the division again.

Extended Euclid's algorithm

Keeping note of the quotients obtained during the algorithm, you can determine two integers p and q such that MCD(a, b) = ap + bq

Outline

- > Introduction
- Prime Numbers
- Modular Arithmetic
- Logarithms

Modular Arithmetic

- It is a system of arithmetic for integers, where the numbers "wrap" when they reach a certain value the module!
- It is based on a congruence relation over integers that is compatible with addition, subtraction and multiplication operations.
- > Two numbers a and b are congruent relatively to $n (a \equiv b \pmod{n})$, if their difference a b is an integer multiple of n.
- > $a \equiv b \pmod{n}$ establishes that a and b have the same remainder if divided by n, i.e., a = p * n + r, b = q * n + r

Modular Arithmetic

Example:

- > 38 ≡ 14 (mod 12) because
 - > 38 14 = 24, which is a multiple of 12
 - > Both 38 and 14 have the same remainder (2) if divided by 12.

Properties:

- Reflexivity: a ≡ a (mod n)
- > Symmetry: $a \equiv b \pmod{n}$ if and only if $b \equiv a \pmod{n}$
- ightharpoonup Transitivity: If a \equiv b (mod n) and b \equiv c (mod n), then a \equiv c (mod n)

Congruence for Modular Arithmetic

Any two terms that are congruent modulo n can be used interchangeably in any arithmetic operation modulo n

- ▶ If $a_1 \equiv b_1 \pmod{n}$ and $a_2 \equiv b_2 \pmod{n}$ then:
 - $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$
 - $> a_1 a_2 \equiv b_1 b_2 \pmod{n}$
 - $> a_1 * a_2 \equiv b_1 * b_2 \pmod{n}$
- ▶ If $a \equiv b \pmod{n}$, then:
 - $a^k \equiv b^k \pmod{n}$ for any non-negative integer k

Congruence for Modular Arithmetic

- A familiar use of modular arithmetic is in a 12-hour clock (the day is divided into two 12-hour periods); if the time is 7:00 now, then 8 hours later it will be 3:00.
- \rightarrow a (mod n) = d if and only if a = d + (k * n) for some k
- a is congruent to b (modulo n) if a (mod n) = b (mod n)
- \mathbf{Z}_n is the set of equivalence classes induced by the congruence modulo n: $[0]_n$ $[1]_n$ $[n-1]_n$, with $[i]_n$ standing for the representative of the set of all the integers that are congruent to i modulo n.

Congruence for Modular Arithmetic

- ightharpoonup is an abelian group over the sum:
 - $[a]_n + [b]_n = [a+b]_n$
 - > [0]_n is the identity element
 - \triangleright [n-a]_n is the inverse of a.
- $ightharpoonup Z_n$ is finite and $|Z_n| = n$
- $[i]_n = [i + k*n]_n$

Relatively prime numbers

- Two integers a and b are said to be relatively prime, mutually prime, or coprime if the only positive integer that divides both of them is 1.
- Any prime number that divides one out of two coprime numbers does not divide the other.
- ➤ The greatest common divisor (GCD) of two coprime numbers is 1.

Z_n^* : the multiplicative group for Z_n

- \rightarrow The set \mathbf{Z}_{n}^{*} is the set of elements coprime w.r.t. n
 - \rightarrow Es $\mathbf{Z}^*_{15} = \{1,2,4,7,8,11,13,14\}$
 - > Product: $[a]_n * [b]_n = [a * b]_n$
- ightharpoonup **Z** $_{n}^{*}$ is an abelian group:
 - The group is closed
 - GCD(a * b, n) = 1 since GCD(a, n) = 1 and GCD(b,n) = 1
 - \rightarrow The identity element is $[1]_n$,
 - Multipication is associative and commutative.
 - \rightarrow The cardinality of \mathbf{Z}_{n}^{*} is $\phi(n)$ (Euler's totient)
 - There exists an inverse (b) of any element (a):
 - 1. GCD(a, n) = a * b + n * c due to extended Euclid algorithm
 - Since GCD(a, n) = 1 by hypotesis we have a * b + n * c = 1.
 - 3. Since n X c \equiv 0 (mod n) it follows a X b \equiv 1 (mod n)

Euler's Theorem – Totient Function ϕ

- Siven an integer n, the totient function of a number $n \phi(n)$ corresponds to the number of integers smaller than n that are coprime to n.
 - \Rightarrow $\phi(15) = \#\{1,2,4,78,11,13,14\} = 8$
 - \Rightarrow $\phi(17) = 16$ because all integers from 1 to 16 are prime relatively to 17.
- \rightarrow ϕ (n) can be computed on the basis of the decomposition theorem
- \Rightarrow $\phi(p) = p-1$ if p is prime
 - \Rightarrow $\phi(17) = 16$ because all integers from 1 to 16 are prime relatively to 17.
- $\phi(n) = (p-1)*(q-1)$ if n is the product of two primes (n=p*q)
 - \Rightarrow $\phi(15) = \#\{1,2,4,7,8,11,13,14\} = 8 (4*2 because 15 = 5*3)$

Fermat's little theorem

- Fermat's little theorem: Given an integer a and a prime p with a not divisible by p, we have: a^{p-1} = 1 (mod p)
- > An Example: $7^{18} \equiv 1 \pmod{19}$

```
a = 7, p = 19

7^2 = 49 \equiv 11 \pmod{19}

7^4 \equiv 121 \equiv 7 \pmod{19}

7^8 \equiv 49 \equiv 11 \pmod{19}

7^{16} \equiv 121 \equiv 7 \pmod{19}

a^{p-1} = 7^{18} = 7^{16} \times 7^2 \equiv 7 \times 11 \equiv 1 \pmod{19}
```

Picture from: W. Stalling: Cryptography and Network Security, International Edition, Pearson

A variant of Fermat's little theorem

A variant of Fermats's little theorem

Given an integer a and a prime p:

 \rightarrow a^p = a (mod p)

$$p = 5, a = 3$$
 $a^p = 3^5 = 243 \equiv 3 \pmod{5} = a \pmod{p}$
 $p = 5, a = 10$ $a^p = 10^5 = 100000 \equiv 10 \pmod{5} \equiv 0 \pmod{5} = a \pmod{p}$

N.B.: In this case there is no requirement that a be not divisible by p

Picture from: W. Stalling: Cryptography and Network Security, International Edition, Pearson

Euler's Theorem revisited

- > Euler's Theorem:
 - Figure 3. Given two integers a and n that are coprime: $a^{\phi(n)} = 1 \pmod{n}$

- An obvious variant of Euler's Theorem:
 - Figure 3. Given two integers a and n that are coprime: $a^{\phi(n)+1} = a \pmod{n}$

Examples for Euler's theorem

- Given two integers a and n that are coprime :
 - $> a^{\phi(n)} = 1 \pmod{n}$

Two examples

- Given a = 3 and n = 10
 - \Rightarrow $\phi(10) = \#\{1,3,7,9\} = 4$
 - $> a^{\phi(10)} = 3^4 = 81 = 1 \pmod{10}$
- Given a = 2 and n = 11,
 - \rightarrow $\phi(11) = 10$
 - $> a^{\phi(10)} = 2^{10} = 1024 = 1 \pmod{11}$

Outline

- > Introduction
- Prime Numbers
- Modular Arithmetic
- Logarithms

Why logarithms

- All the systems at the basis of public key cryptography relay on properties of the multiplicative group modulo p, denoted by \mathbb{Z}_p^* , for a prime p.
- Their security ultimately depends on the intractability of solving the *Discrete Logarithm Problem:* if you are given $g \in \mathbb{Z}_p^*$ and $g^n \mod p$ then you have to find n.
- For Diffie-Hellman key exchange an eavesdropper only sees p, g, g^a and g^b. Given these values, to find the exchanged key, he/she has to find g^{a*b} mod p.

Cyclic Group

- A group can be cyclic, i.e., can be generated by the iterated composition of the operator on an element, said "generator"
- > Z_{q}^{X} , for a prime q, is a cyclic group (Gauss), thus there exists a such that a mod q, a^{2} mod q, ..., a^{q-1} mod q, generate (in any order) all the elements of Z_{q}^{X} (1, 2, 3, ..., q-1)

Primitive Roots

- A number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n.
- g is a primitive root modulo n if for every integer a coprime to n, there exists an integer k such that g^k ≡ a (mod n).
- Such a value k is called the index or discrete logarithm of a to the base g modulo n.

Discrete Logarithms

- \rightarrow The logarithm log_b a is a number x such that $b^x = a$
- \rightarrow The discrete logarithm log_h a is an integer k such that $b^k = a$
- ▶ Given $1 \le b \le q-1$, there is a unique i such that $a^i \mod q = b$.
- ▶ i is the discrete logarithm of b with base a and modulo q:
 - \rightarrow i = dlog_{a,q}(b)
- Important algorithms in public-key cryptography base their security on the assumption that the discrete logarithm problem when modular arithmetic is used has no efficient solution.

Computing Primitive Roots

- The k^{th} power of a number modulo p may be computed by computing its k^{th} power as an integer and then finding the remainder after division by p.
- > To compute 3⁴ (mod 17) compute 3⁴ = 81, and then divide 81 by 17, obtaining a remainder of 13, i.e., 3⁴ = 13 (mod 17).
- It is more efficient to reduce modulo p multiple times during the computation.
 - To compute 3^7 (mod 17) compute $3^3 * 3^4$ (mod 17) = 3^3 (mod 17) * 3^4 (mod 17) = 3^3 (mod 17) * 3 (mod 17) 3 (mod 17) = 10 * 3 * 10 = 300 = 11 (mod 17)

Primitive Roots: an example

The number 3 is a primitive root modulo 7 because the relative prime of 7 are 1, 2, 3, 4, 5, 6 and they can be obtained as follows:

$$3^1 = 3 = 3^0 \times 3 \equiv 1 \times 3 = 3 \equiv 3 \pmod{7}$$
 $3^2 = 9 = 3^1 \times 3 \equiv 3 \times 3 = 9 \equiv 2 \pmod{7}$
 $3^3 = 27 = 3^2 \times 3 \equiv 2 \times 3 = 6 \equiv 6 \pmod{7}$
 $3^4 = 81 = 3^3 \times 3 \equiv 6 \times 3 = 18 \equiv 4 \pmod{7}$
 $3^5 = 243 = 3^4 \times 3 \equiv 4 \times 3 = 12 \equiv 5 \pmod{7}$
 $3^6 = 729 = 3^5 \times 3 \equiv 5 \times 3 = 15 \equiv 1 \pmod{7}$
 $3^7 = 2187 = 3^6 \times 3 \equiv 1 \times 3 = 3 \equiv 3 \pmod{7}$

The discrete logarithm problem

- > The discrete logarithm is just the inverse operation of computing primitive roots.
- Given a secret number b that satisfies $b^e \equiv c \pmod{n}$ The problem is to find b given only the integers c, e and n.
- Without the modulus function one could rely on the correspondence
 - $log_b(c) = e$ but the modular arithmetic prevents you using logarithms calculation effectively.

The discrete logarithm problem

- ➤ Consider the equation $3^k \equiv 13 \pmod{17}$ for k.
- As seen above, one solution is k = 4, but it is not the only solution.
- Since $3^{16} \equiv 1 \pmod{17}$ Fermat's little theorem it also follows that for any integer n, we have $3^{4+16n} \equiv 3^4 \times (3^{16})^n \equiv 13 * 1^n \equiv 13 \pmod{17}$.
- Hence the equation has infinitely many solutions of the form 4 + 16n.

Chinese remainder theorem

- Chinese remainder theorem: if the remainders of the division of an integer n by several integers is known, then it is possible to uniquely determine the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise coprime.
- The theorem is widely used for computing with large integers, as it allows replacing a computation by several similar computations on small integers.

Rocco DE NICOLA

IMT Lucca

Number Theory & Modular Arithmetic

