AMENDMENTS TO THE SPECIFICATION

Please amend the specification as follows:

Page 5, lines 20 – 26 (paragraph [0021]):

According to another aspect of the invention, for the case where $n=2^m$, we envisage advantageously that the device comprises n-1 modules of three-pole type, distributed as [[m-1]] \underline{m} groups of rank 0 to m-1, such that to the group of rank i there corresponds 2^i modules, each associated with $n/2^i$ elements arranged as two assemblies so as to form a pair, the modules of the said group of rank $I \neq 0$ being dimensioned so as to have a gain in current 2^i times as large as the gain in current of the module of the group of rank 0.

Page 5, lines 27-34 (paragraph [0022]):

According to another aspect of the invention, for the case where $n=2^{m-x}$, characterized in that it comprises a number I of modules of three-pole type, with $n-1-x<|\le n-1$ modules, distributed as [[m-1]] \underline{m} groups of rank 0 to m-1, such that to the group of rank i there corresponds at most 2^i modules, each associated with $n/2^i$ elements arranged as two assemblies so as to form a pair, the modules of the said group of rank I \neq 0 being dimensioned so as to have a gain in current 2^i times as large as the gain in current of the module of the group of rank 0.

Page 13, lines 1 - 8 (paragraph [0082]):

In the case where x>1, the equilibrating system can be simplified by eliminating from the system any module which would have all its terminals A, B, G linked to virtual elements. We have then I modules with n-1-x< $l \le n-1$. In this case, the I modules are distributed as [[m-1]] m groups of rank 0 to m-1, such that to the group of rank i there corresponds at most 2^i modules (M1₀, M1₁), each associated with $n/2^i$ elements arranged as two assemblies so as to form a pair, the modules of the said group of rank $i \ne 0$ being dimensioned so as to pass 2^i times more current than the module M0.