

Plan

- Objectif du projet
- Matériel utilisé
 - ► C'est quoi Raspberry Pi?
 - ► Installation de Raspbian
- Notions de base
 - C'est quoi un réseau Adhoc
 - Serveur DHCP
 - ▶ Estimation de la distance entre 2 nœuds
 - ▶ Enregistrer des alertes liés à l'estimation de la distance par un serveur
 - Architecture client serveur :Développer un client web app permettant d'afficher les alertes du serveur

Objectif du projet

- Développer une application
 - connecter un réseau Wi-Fi ad hoc (adressage via DHCP)
 - Se connecter à un point d'accès Wi-Fi
 - Approximer une distance grâce à la puissance du signal reçu
 - Communiquer via deux interfaces différentes sur un même nœud (WiFi+bluetooth, ou Wi-Fi + Ethernet)
 - Communiquer via client/serveur
 - Récupérer une adresse GPS depuis une webapp sur téléphone
- Exemples d'applications:
 - véhicules autonomes, contacts entre individus sur Tousanticovid, surveillance de patients dans un établissement médicalisé, jeu collaboratif, ...

C'est quoi Raspberry Pi?

- Raspberry Pi
 - ▶ Un nano ordinateur avec un ensemble de composants et d'interfaces (ex. la carte SD)

Installation de Raspbian

- La carte SD permet de stocker les données et l'installation d'un système d'exploitation
 - préparer la carte micro SD en y installant un système d'exploitation.
 - On peut installer différentes distributions, la plus connue étant Raspbian (Debian pour RPi) que l'on peut télécharger directement depuis le <u>site Internet de Raspberry pi</u> (https://www.raspberrypi.com/software/).
 - ▶ Une fois l'image téléchargée, vous pourrez l'installer sur votre carte micro SD en utilisant le logiciel <u>Win32DiskImager</u>

Ou utiliser Raspberry Pi Imager

C'est quoi un réseau WiFi Ad hoc

- Connecter directement les ordinateurs équipés d'une carte Wi-Fi, sans utiliser un matériel tiers tel qu'un point d'accès (en anglais : Access Point, ou AP).
- Idéal pour interconnecter rapidement des machines entre elles sans matériel supplémentaire (exemple : échange de fichiers entre portables dans un train, dans la rue, au café...).
- La mise en place d'un tel réseau consiste à configurer les machines en mode « Ad hoc » (au lieu du mode « Infrastructure »),
 - la sélection d'un canal (fréquence), d'un nom de réseau (SSID) communs à tous et si nécessaire d'une clé de chiffrement.
- Exemple à intégrer dans le projet:
 - Les machines A, B et C forment un réseau ad hoc wifi

Serveur DHCP

- DHCP (Dynamic Host Configuration Protocol, en français : Protocole de Configuration Dynamique d'Hôte)
 - Serveur (ou service) qui délivre des adresses IP aux ordinateurs qui se connectent sur le réseau.
- Exemple à intégrer dans le projet
 - La machine A pourra prendre le rôle du serveur DHCP pour délivrer les adresses dynamiquement aux autres noeuds

Estimation de la distance entre 2 nœuds en fonction du signal

- Estimation de la distance entre 2 nœuds par la puissance de signal RSSI
- le Received Signal Strength Indication ou RSSI
 - Mesure du niveau de puissance en réception d'un signal issu d'une antenne (classiquement un signal radio).
 - Son utilité est de fournir une indication sur l'intensité du signal reçu
 - Plus la valeur RSSI est élevée, plus le signal est fort
 - Plus les nœuds sont éloignés, plus la valeur de RSSI est faible
- Exemple à intégrer dans le projet
 - La mesure de RSSI de A à C est forte, donc au-delà de x mètres éloignant A de C le signal devient faible c'est le cas de nœud B (B est éloignée de de y mètres avec y>x)

Enregistrer des alertes liés à l'estimation de la distance par un serveur

- Enregistrer des alertes liés à la variation de la distance entre deux nœuds par un point d'accès comme étant serveur
- Exemple à intégrer dans le projet
 - La machine A étant connectée au serveur en liaison ethernet, elle envoie les alertes dès qu'une station s'approche ou s'éloigne d'elle selon l'estimation de distance. Les alertes sont enregistrés dans le serveur.

Architecture client serveur

- Développer un client web app permettant d'afficher les alertes du serveur
- => Architecture client / serveur

- Exemple à intégrer dans le projet
 - Développer un client avec une web app (WiFi- UDP) permettant d'être alerté en temps-réel de l'intrusion ou du départ d'un des nœuds B et C).
 - Le client sollicite les informations du serveur et affichent les alertes reçus via une page web.

Déroulement du projet

- 4 séances de 1h30
 - ▶ 1 ère séance : présentation du projet et distribution des Raspberry
 - ▶ Un mois pour programmer les notions de base et choisir une application
 - ▶ 2 ème séance: Vérifier le bon déroulement des différents programmes et présentation de l'application par chaque groupe
 - Développer l'application
 - 3 ème séance: finalisation du développement de l'application et rédaction du rapport
 - ▶ 4 ème séance: évaluation 20minutes (présentation et démonstration)