ST451 Bayesian Machine Learning Week 6

Exercises

- 1. Consider a Naive Bayes classifier with binary y and a binary feature x. In other words assume that y, x|y=0, x|y=1 are Bernoulli random variables with parameters $\theta=(\theta_y,\theta_0,\theta_1)$ respectively. Assume that the data consist of n points $D=(y_i,x_i)_{i=1}^n$.
 - (a) Find the maximum likelihood estimates of $\theta_y, \theta_0, \theta_1$ based on D.
 - (b) Fix θ_y to its $\hat{\theta}_y$ and assign independent Beta(α, α) priors to θ_0 and θ_1 . Derive the posterior of θ_0 and θ_1 and use the posterior mean as Bayes estimator of θ_0, θ_1 . Compare with the MLE of θ_0, θ_1 .
- 2. Repeat the image processing example with an image of your choice. Find a back and white bmp image distort with noise and see if you can restore it using variational inference.
- 3. **Optional:** In the text classification exercise of the computer workshop, explore whether the predictive performance of the naive Bayes classifier can be improved further by using the NLTK library (https://www.nltk.org/) to perform tasks such as lemmatising words.