# Finding Similar Items 2

**EE412: Foundation of Big Data Analytics** 



#### Announcements

• Homeworks

• HW0 (due: 09/21)

• HW1 (due: 10/05)

### Recap: Shingling and Minhashing

Jo comant

- k-shingles (document  $\rightarrow$  set)
- Jaccard similarity
  - $sim(S,T) = |S \cap T|/|S \cup T|$
- Minhash
  - Pick a random permutation of rows
  - The minhash value is the first row that has 1
  - E.g.,  $h(S_1) = 0$ ,  $h(S_2) = 2$ , and  $h(S_3) = 1$
  - Pr(minhash is same) = Jaccard similarity
- Computing minhash signatures

| Row | Element     | $S_{_{I}}$ | $S_2$ | $S_3$ |
|-----|-------------|------------|-------|-------|
| 0   | "The plane" | 1          | 0     | 0     |
| 1   | "The cow j" | 0          | 0     | 1     |
| 2   | "Alice and" | 0          | 1     | 0     |
| 3   | "Roses are" | 1          | 0     | 1     |

| Row | $S_{l}$ | $S_2$ | $S_3$ |
|-----|---------|-------|-------|
| 1   | 0       | 0     | 1     |
| 0   | 1       | 0     | 0     |
| 3   | 1       | 0     | 1     |
| 2   | θ       | 1     | 0     |

multiple parmetation

=> accorde similally

#### Recap: The Big Picture





#### Outline

- 1. Locality-Sensitive Hashing (LSH)
- 2. LSH Families
- 3. LSH with Other Distance Measures

### Locality-Sensitive Hashing

- The number of document pairs can be large after minhashing
  - What if we have 1M documents with 1µs for each comparison?
  - 6 days to compute all similarities
- Locality-sensitive hashing (LSH) can reduce # of candidate pairs
  - Allows us to focus on pairs that are likely to be similar

#### From Signatures to Buckets

- General approach: Hash items several times
  - Similar items are more likely to hash to same bucket than dissimilar items
    - Why? Consider the property of minhashing

x hold for ever hash Punk

Any pair that is hashed to same bucket is a candidate

by some hash tunc

- False positive: Dissimilar pairs in the same bucket, possible
- False negative: Similar pairs not in any same bucket = prodem ু ব্ৰ কাৰ্ছ স্থাৰ কৰে



Today's weather forecast ...

[50, 47, 111, 25]

**KAIST** 

#### Partition into Bands

- **Trick:** Divide the signature matrix M into b bands of r rows
  - For each band, hash each column to a hash table with k buckets
    - Make k as large as possible (no collision)
    - Use a different hash table for each band
  - Candidate column pairs if hashed to the same bucket for  $\geq 1$  band
  - Tune b and r to catch most similar pairs, but few non-similar pairs



#### Partition into Bands

• Trick: Divide the signature matrix M into b bands of r rows





#### Hash Functions to One Bucket





Source: Stanford CS246 (2022)

#### Example: Bands

- Suppose a signature matrix of size  $100 \times 100,000$ 
  - 100,000 columns (documents)
  - Signatures consist of 100 integers
- Goal: Find all 80%-similar pairs ∪
  - 5,000,000,000 pairs of signatures can take a while to compare
  - Choose b = 20 bands of r = 5 integers

#### Example: False Negatives

- Suppose  $C_1$  and  $C_2$  are 80% similar (i.e., positive pair)
- Probability identical in any one particular band:  $(0.8)^5 = 0.328$
- Probability not similar in all 20 bands:  $(1 0.328)^{20} = .00035$ 
  - False negatives: About 1/3000th of all 80%-similar pairs

#### Example: False Positives

- Suppose  $C_1$  and  $C_2$  are 40% similar (i.e., negative pair)
- Probability identical in any one particular band:  $(0.4)^5 = 0.01$
- Probability identical in  $\geq 1$  of 20 bands:  $1-(1-0.01)^{20} < 0.2$ 
  - False positives: Less than 1/5th of all 40%-similar pairs
  - This means that we remove more than 80% of all 40%-similar pairs!

2,7,

### Analysis of LSH: What We Want

Let s be a similarity, and t be a similarity threshold for the query

What we want from LSH is:



Source: Stanford CS246 (2022)



## Analysis of LSH: b=1 and r=1



Say "yes" if you are below the line.

Jaemin Yoo

### Analysis of LSH: S-Curve

- ullet Suppose b bands of r rows each, and a pair of docs has similarity s
  - Pr(signatures agree in all rows on one band) =  $s^r$
  - Pr(signatures do not agree in at least one row of one band) =  $1 s^r$
  - Pr(signatures do not agree in at least one row of each band) =  $(1 s^r)^b$
  - Pr(signatures agree in all rows of at least one band) =  $1 (1 s^r)^b$



| S  | $1 - (1 - s^r)^b$ |
|----|-------------------|
| .2 | .006              |
| .4 | .186              |
| .6 | .802              |
| .8 | .9996             |

b = 20, r = 5

### Analysis of LSH: S-Curve

- ullet Regardless of b and r, the function has the form of an S-curve
- If  $s \approx (1/b)^{1/r}$ , the probability of becoming a candidate is 1/2
  - This is where the rise is steepest





### Combining the Techniques

- Pick k and construct from each document a set of k-shingles
- Pick length n for minhash signatures and compute signatures
- Pick similarity threshold t and then # of bands b and # of rows r
  - If  $(1/b)^{1/r} > t$ , there will be fewer false positives
  - If  $(1/b)^{1/r} < t$ , there will be fewer false negatives
- Construct candidate pairs and compare their signatures using t
- (Optionally) Check if the documents are actually similar

### Example: S-Curves



• Compare the S-curve  $1 - (1 - s^r)^b$  when r and b are:

- $r \neq 3$  and b = 10
- r = 3 and b = 20
- r = 6 and b = 10



Outline

- 1. Locality-Sensitive Hashing (LSH)
- 2. LSH Families
- 3. LSH with Other Distance Measures

#### LSH Families

- Q: What kind of hash functions can we use for LSH?
- There are three conditions for a family of hash functions
  - 1. Closer pairs should more likely be candidates
  - 2. Functions must be statistically independent
  - Functions must be efficient.
    - Identify candidates faster than looking at all pairs
    - Must be combinable to build better functions





#### LSH Families

- Let  $d_1 < d_2$  be two distances according to a distance function d
  - E.g., d can be Jaccard distance
- A family F of functions is said to be  $(d_1, d_2, p_1, p_2)$ -sensitive if
  - For every  $f \in F$  and points x and y:

    If  $d(x,y) \le d_1$ , then the probability that f(x) = f(y) is at least  $p_1$ If  $d(x,y) \ge d_2$ , then the probability that f(x) = f(y) is at most  $p_2$

### Meanings of Sensitivity Values

• If F is  $(d_1, d_2, p_1, p_2)$ -sensitive,

F is better with higher  $d_1$ , lower  $d_2$ , higher  $p_1$ , and lower  $p_2$ 



### LSH Families for Jaccard Similarity

- Minhashing gives a  $(d_1, d_2, 1 d_1, 1 d_2)$ -sensitive family
  - For any  $d_1$  and  $d_2$  such that  $0 \le d_1 < d_2 \le 1$

#### Proof

- Let d be the Jaccard distance  $(=1-\sin(x,y))$  Then,  $d(x,y) \le d_1 \Rightarrow 1-\sin(x,y) \le d_1 \Rightarrow 1-d_1 \le \sin(x,y)$
- Similar argument applies to  $d_2$



### Amplifying an LSH Family

- The banding technique carries over to this more general setting
  - Goal: Make the S-curve effect seen there
  - AND construction like "rows in a band."
  - OR construction like "many bands."
- Given a  $(d_1, d_2, p_1, p_2)$ -sensitive family F, create a new family F'
  - Each member of F' consists of n members of F

#### **AND Construction**

- If
  - f in F' is constructed from  $\{f_1, f_2, ..., f_r\}$  of F, and
  - f(x) = f(y) if and only if  $f_i(x) = f_i(y)$  for all i = 1, 2, ..., r
- Then, F' is  $(d_1, d_2, p_1^r, p_2^r)$ -sensitive

F is a (0.2, 0.6, 0.8, 0.4)-sensitive family

If 
$$r = 4$$
,  $0.8^4 = 0.4^4 =$   
F' is  $(0.2, 0.6, 0.4096, 0.0256)$ -sensitive



#### **OR** Construction

- If
  - f in F' is constructed from  $\{f_1, f_2, ..., f_b\}$  of F, and
  - f(x) = f(y) if and only if  $f_i(x) = f_i(y)$  for at least one i = 1, 2, ..., b
- Then, F' is  $(d_1, d_2, 1 (1 p_1)^b, 1 (1 p_2)^b)$ -sensitive

F is a (0.2, 0.6, 0.8, 0.4)-sensitive family If b = 4, F' is (0.2, 0.6, 0.9984, 0.8704)-sensitive  $1-(1-0.8)^4 = 1-(1-0.4)^4 =$ 



#### Combining AND and OR Constructions

- Make the lower probability goes to 0 while the higher goes to 1
  - By choosing b and r correctly
- AND constructions to decrease the low probability
- OR constructions to increase the high probability



#### AND-OR Composition

- Do an AND construction and then an OR construction
- Each of the two probabilities p is transformed into  $1 (1 p^r)^b$ 
  - The S-curve studied before

If 
$$r = b = 4$$
,  
F' is  $(0.2, 0.6, 0.8785, 0.0985)$ -sensitive



#### **OR-AND** Composition

- Do an OR construction and then an AND construction
- Each of the two probabilities p is transformed into  $\left(1-(1-p)^b\right)^r$ 
  - The same S-curve, mirrored horizontally and vertically
- Let's consider the previous example:
  - If we apply a 4-way OR followed by a 4-way AND, the constructed family is (0.2, 0.6, 0.9936, 0.5740)-sensitive
  - Not ideal because the low probability has increased a lot

#### Outline

- 1. Locality-Sensitive Hashing (LSH)
- 2. LSH Families
- 3. LSH with Other Distance Measures

#### LSH for Other Distance Measures

- Generalized LSH is based on "distance" between points
  - Jaccard similarity is not a distance; 1 Jaccard similarity is
- We cover only cosine distance today
- See textbook for other distance measures
  - Euclidean distance, Hamming distance, Edit distance, etc.

#### Distance Measures

- A function d is a **distance measure** if
  - It takes two points in the space and returns a real number satisfying:
    - $d(x,y) \ge 0$  (non-negative)
    - d(x,y) = 0 iff x = y (distances are positive except for x = y)
    - d(x, y) = d(y, x) (symmetric)
    - $d(x,y) \le d(x,z) + d(z,y)$  (triangle inequality)

#### Cosine Distance

- Think of a point as a vector from the origin to its location
- Two points' vectors make an angle
- Cosine of the angle is the normalized dot-product of the vectors





- Random hyperplanes: Technique analogous to minhashing
- Two vectors x and y that have angle  $\theta$  define a plane
- Two types of hyperplanes through the origin:
  - Red hyperplane where x and y are on the same side
  - Blue hyperplane where x and y are on different sides



- ullet Consider a vector v that is normal to a blue-type hyperplane
- Then,  $v \cdot x$  and  $v \cdot y$  will have different signs
  - Since x and y are on different sides
- Even if v extends in opposite direction, signs are still different





- ullet Suppose that v is normal to a red-type hyperplane
- Then,  $v \cdot x$  and  $v \cdot y$  have the same sign



ullet Suppose that v is randomly chosen

• Then, probability that hyperplane will be a red type  $(1 - \theta/180)$ 







- If
  - Hash function  $f \in F$  is built from a randomly-chosen vector  $v_f$
  - Given two vectors x and y such that
- $f(x)=f(y) \text{ iff } v_f\cdot x \text{ and } v_f\cdot y \text{ have the same sign (i.e., a red type)}$  Then, F is  $(d_1,d_2,1-d_1/180,1-d_2/180)$ -sensitive We can amplify F as we wish, just like the minhash-based family

#### Summary

- 1. Locality-Sensitive Hashing (LSH)
  - Banding technique
  - S-curve
- 2. LSH Families
  - $(d_1, d_2, p_1, p_2)$ -sensitivity
  - AND and OR constructions
- 3. LSH with Other Distance Measures
  - Cosine similarity
  - Random hyperplanes