Message Authentication Codes and Collision-Resistant Hash Functions

Yu Zhang

HIT/CST/NIS

Cryptography, Spring, 2012

Outline

- 1 Message Integrity and Message Authentication
- 2 Message Authentication Codes (MAC) Definitions
- **3** Constructing Secure Message Authentication Codes
- 4 CBC-MAC
- 5 Collision-Resistant Hash Functions
- 6 NMAC and HMAC
- **7** Constructing CCA-Secure Encryption Schemes
- 8 Obtaining Privacy and Message Authentication

Content

- 1 Message Integrity and Message Authentication
- 2 Message Authentication Codes (MAC) Definitions
- 3 Constructing Secure Message Authentication Codes
- 4 CBC-MAC
- 5 Collision-Resistant Hash Functions
- 6 NMAC and HMAC
- 7 Constructing CCA-Secure Encryption Schemes
- 8 Obtaining Privacy and Message Authentication

Integrity and Authentication

Content

- 1 Message Integrity and Message Authentication
- 2 Message Authentication Codes (MAC) Definitions
- 3 Constructing Secure Message Authentication Codes
- 4 CBC-MAC
- **5** Collision-Resistant Hash Functions
- 6 NMAC and HMAC
- 7 Constructing CCA-Secure Encryption Schemes
- 8 Obtaining Privacy and Message Authentication

The Syntax of MAC

- key k, tag t, a bit b means valid if b = 1; invalid if b = 0.
- Key-generation algorithm $k \leftarrow \text{Gen}(1^n), |k| \ge n$.
- Tag-generation algorithm $t \leftarrow \mathsf{Mac}_k(m)$.
- **Verification** algorithm $b := Vrfy_k(m, t)$.
- Message authentication code: $\Pi = (Gen, Mac, Vrfy)$.
- Basic correctness requirement: $Vrfy_k(m, Mac_k(m)) = 1$.

Security of MAC

- Intuition: No adversary should be able to generate a valid tag on any "new" message that was not previously sent (and authenticated) by one of the communicating parties.
- **Replay attack**: Copy a message and tag previously sent by the legitimate parties.
 - Sequence numbers: receiver must store the previous ones.
 - Time-Stamps: sender/receiver maintain synchronized clocks.
- Existential unforgeability: Not be able to forge a valid tag on *any* message.
 - **Existential forgery**: any one.
 - **Selective forgery**: message chosen *prior* to the attack.
 - Universal forgery: any given message.
- Adaptive chosen-message attack (CMA): able to obtain tags on any message chosen adaptively during its attack.

Definition of MAC Security

The message authentication experiment Macforge_{A,Π}(n):

- 1 $k \leftarrow \operatorname{Gen}(1^n)$.
- **2** \mathcal{A} is given input 1^n and oracle access to $\mathsf{Mac}_k(\cdot)$, and outputs (m,t). \mathcal{Q} is the set of queries to its oracle.
- $\mbox{3} \mbox{ Macforge}_{\mathcal{A}.\Pi}(n) = 1 \iff \mbox{Vrfy}_k(m,t) = 1 \, \wedge \, m \notin \mathcal{Q}.$

Definition 1

A MAC Π is existentially unforgeable under an adaptive CMA if \forall \mathtt{PPT} $\mathcal{A},\ \exists$ negl such that:

$$\Pr[\mathsf{Macforge}_{\mathcal{A},\Pi}(n) = 1] \leq \mathsf{negl}(n).$$

Content

- 1 Message Integrity and Message Authentication
- 2 Message Authentication Codes (MAC) Definitions
- **3** Constructing Secure Message Authentication Codes
- 4 CBC-MAC
- 5 Collision-Resistant Hash Functions
- 6 NMAC and HMAC
- 7 Constructing CCA-Secure Encryption Schemes
- **8** Obtaining Privacy and Message Authentication

Constructing Secure MACs

Construction 2

- \blacksquare F is PRF. |m|=n.
- $Gen(1^n)$: $k \leftarrow \{0,1\}^n$ u.a.r.
- $Vrfy_k(m,t)$: $1 \iff t \stackrel{?}{=} F_k(m)$.

Theorem 3

If F is a PRF, Construction is a secure fixed-length MAC.

Proof of Secure MAC from PRF

Idea: Show Π is secure unless F_k is not PRF by reduction.

Proof.

$$\begin{split} &\Pr[D^{f(\cdot)}(1^n)=1] = \Pr[\mathsf{Macforge}_{\mathcal{A},\tilde{\Pi}}(n)=1] \leq 2^{-n}. \\ &\Pr[D^{F_k(\cdot)}(1^n)=1] = \Pr[\mathsf{Macforge}_{\mathcal{A},\Pi}(n)=1] = \varepsilon(n). \end{split}$$

Extension to Variable-Length Messages

- Suggestion 1: XOR all the blocks together and authenticate the result. $t := \mathsf{Mac}_k'(\oplus_i m_i)$.
- Suggestion 2: Authenticate each block separately. $t_i := Mac'_k(m_i)$.
- Suggestion 3: Authenticate each block along with a sequence number. $t_i := \mathsf{Mac}_k'(i||m_i)$.
- Weakness: forgeable, changing the order, dropping blocks.
- Idea: Including a random "message identifier", a sequence number, and the length of the message.

Constructing Secure Variable-Length MACs

Construction 4

- $\blacksquare \Pi' = (\mathsf{Gen}', \mathsf{Mac}', \mathsf{Vrfy}')$ be a fixed-length MAC.
- Gen: is identical to Gen'.
- Mac: m of length $\ell < 2^{n/4}$ and of d blocks m_1, \ldots, m_d of length n/4 (padded with 0s); $r \leftarrow \{0,1\}^{n/4}$. For $i=1,\ldots,d$, $t_i \leftarrow \operatorname{Mac}_k'(r\|\ell\|i\|m_i)$, i and ℓ are uniquely encoded as strings of length n/4. Output $t:=\langle r,t_1,\ldots,t_d\rangle$.
- Vrfy: Input m of d' blocks and check d' = d. Output $1 \iff \text{Vrfy}_k'(r||\ell||i||m_i, t_i) = 1$ for $1 \le i \le d$.

Theorem 5

If Π' is a secure fixed-length MAC, Construction is a secure MAC.

Proof of Secure Variable-Length MACs

Intuition: The extra information prevents all possible attacks.

Proof.

```
Repeat : the same identifier r is used twice by oracle \mathcal{O}.
```

Forge : at least one new block $r\|\ell\|i\|m_i$ is forged.

$$\mathsf{Break}\,:\,\mathsf{Macforge}_{\mathcal{A},\Pi}(n)=1,\Pr[\mathsf{Break}]=\varepsilon(n).$$

$$\begin{split} \Pr[\mathsf{Break}] = & \Pr[\mathsf{Break} \land \mathsf{Repeat}] + \Pr[\mathsf{Break} \land \overline{\mathsf{Repeat}} \land \overline{\mathsf{Forge}}] \\ & + \Pr[\mathsf{Break} \land \overline{\mathsf{Repeat}} \land \mathsf{Forge}]. \end{split}$$

- 1 $\Pr[\mathsf{Break} \land \mathsf{Repeat}] \leq \Pr[\mathsf{Repeat}] \leq \mathsf{negl}(n)$.
- $\begin{array}{l} \textbf{3} \ \ \mathsf{For} \ \Pi', \ \Pr[\mathsf{Break}'] = \Pr[\mathsf{Break} \land \mathsf{Forge}] \geq \\ \Pr[\mathsf{Break} \land \overline{\mathsf{Repeat}} \land \mathsf{Forge}] \geq \varepsilon(n) \mathsf{negl}(n). \end{array}$

11 / 41

Proof of Secure Variable-Length MACs (Cont.)

Proof.

- 1 $r \leftarrow \{0,1\}^{\frac{n}{4}}$. By "brithday bound", $\Pr[\mathsf{Repeat}] \leq q(n)^2/2^{\frac{n}{4}}$.
- If Repeat does not occur, Break implies Forge. \mathcal{A} finally outputs $(m, t), t := \langle r, t_1, \dots, t_d \rangle$.
 - ightharpoonup r is new, then $r||\ell||i||m_i$ is new.
 - lacksquare r is used exactly once, then the queried message $m' \neq m$.
 - $\ell' \neq \ell$, then $r||\ell||i||m_i$ is new.
 - \blacksquare $\ell' = \ell$, then $\exists m'_i \neq m_i$, so $r \|\ell\| i \|m'_i$ is new.

So the block is new, Forge occurs.

3 \mathcal{A}' attacks Π' with \mathcal{A} as a sub-routine and answer the queries of \mathcal{A} with \mathcal{A}' 's own oracle.

 \mathcal{A} output (m, t); \mathcal{A}' parses it and output a new block $(r||\ell||i||m_i, t_i)$ if possible.

Content

- 1 Message Integrity and Message Authentication
- 2 Message Authentication Codes (MAC) Definitions
- 3 Constructing Secure Message Authentication Codes
- 4 CBC-MAC
- **5** Collision-Resistant Hash Functions
- 6 NMAC and HMAC
- 7 Constructing CCA-Secure Encryption Schemes
- 8 Obtaining Privacy and Message Authentication

Constructing CBC-MAC

Construction 6

- a PRF F and a length function ℓ . $|m| = \ell(n) \cdot n$. $\ell = \ell(n)$. $m = m_1, \ldots, m_\ell$.
- $Gen(1^n)$: $k \leftarrow \{0,1\}^n$ u.a.r.
- $\mathsf{Mac}_k(m)$: $t_i := F_k(t_{i-1} \oplus m_i), t_0 = 0^n$. Output $t = t_\ell$.
- Vrfy_k(m, t): 1 \iff $t \stackrel{?}{=} \mathsf{Mac}_k(m)$.

Secure Fixed/Variable-Length MAC

Theorem 7

If F is a PRF, Construction is a secure fixed-length MAC.

Secure CBC-MAC for variable-length messages:

- **Option 1**: $k_{\ell} := F_k(\ell)$, use k_{ℓ} for CBC-MAC.
- **Option 2**: Prepend m with |m|, then use CBC-MAC.
- **Option 3**: Use two keys k_1, k_2 . Get t with k_1 by CBC-MAC, then output $\hat{t} := F_{k_2}(t)$.

Content

- 1 Message Integrity and Message Authentication
- 2 Message Authentication Codes (MAC) Definitions
- 3 Constructing Secure Message Authentication Codes
- 4 CBC-MAC
- 5 Collision-Resistant Hash Functions
- 6 NMAC and HMAC
- 7 Constructing CCA-Secure Encryption Schemes
- **8** Obtaining Privacy and Message Authentication

Defining Hash Function

Definition 8

A hash function (compression function) is a pair of PPT algorithms (Gen, H) satisfying:

- a key $s \leftarrow \mathsf{Gen}(1^n)$, s is not kept secret.
- $lacksquare H^s(x) \in \{0,1\}^{\ell(n)}$, where $x \in \{0,1\}^*$ and ℓ is polynomial.

If H^s is defined only for $x \in \{0,1\}^{\ell'(n)}$ and $\ell'(n) > \ell(n)$, then (Gen, H) is a **fixed-length** hash function.

Defining Collision Resistance

- **Collision** in H is a pair of distinct input x and x' such that H(x) = H(x').
- Collision Resistance: it is infeasible for any PPT algorithm to find a collision.

The collision-finding experiment $\mathsf{Hashcoll}_{\mathcal{A},\Pi}(n)$:

- **2** \mathcal{A} is given s and outputs x, x'.

Definition 9

 Π (H, H^s) is **collision resistant** if \forall PPT \mathcal{A} , \exists negl such that

$$\Pr[\mathsf{Hashcoll}_{\mathcal{A},\Pi}(n) = 1] \le \mathsf{negl}(n).$$

Weaker Notions of Security for Hash Functions

- **Collision resistance**: It is hard to find $(x, x'), x' \neq x$ such that H(x) = H(x').
- Second pre-image resistance: Given s and x, it is hard to find $x' \neq x$ such that $H^s(x') = H^s(x)$.
- Pre-image resistance: Given s and $y = H^s(x)$, it is hard to find x' such that $H^s(x') = y$.

Applications of Hash Functions

- digital signatures: CRHF
- information authentication/integrity check
- protection of passwords: pre-image resistant.
- confirmation of knowledge/commitment: CRHF
- pseudo-random string generation/key derivation
- micropayments (e.g. micromint)
- construction of MACs, stream/block ciphers

The "Birthday" Problem

The "Birthday" Problem

Q: "What size group of people do we need to take such that with probability 1/2 some pair of people in the group share a birthday?" **A**: 23.

Lemma 10

Choose q elements y_1, \ldots, y_q u.a.r from a set of size N, the probability that $\exists i \neq j$ with $y_i = y_j$ is $\operatorname{coll}(q, N)$, then

$$\label{eq:coll} \begin{split} \operatorname{coll}(q,N) & \leq \frac{q^2}{2N}. \\ \operatorname{coll}(q,N) & \geq \frac{q(q-1)}{4N} \quad \text{if } q \leq \sqrt{2N}. \\ \operatorname{coll}(q,N) & = \Theta(q^2/N) \quad \text{if } q < \sqrt{N}. \end{split}$$

A Generic "Birthday" Attack

- Birthday Attack: $H: \{0,1\}^* \to \{0,1\}^\ell$. Choose q distinct inputs $x_1, \ldots, x_q \in \{0,1\}^{2\ell}$, check whether any of two $y_i := H(x_i)$ are equal.
- Birthday problem: Choose $y_1, \ldots, y_q \leftarrow \{0,1\}^{\ell}$ u.a.r, $\operatorname{coll}(q, 2^{\ell}) = ?$
- \blacksquare Collision occurs with a high probability when $\mathcal{O}(q)=\mathcal{O}(2^{\ell/2}).$
- To let time $T > 2^{\ell/2}$, then $\ell = 2 \log T$ at least.
- Work only for collision resistance, no generic attacks for 2nd pre-image or pre-image resistance better than 2^{ℓ} .
- Require too much space $\mathcal{O}(2^{\ell/2})$.

Improved Birthday Attack

Algorithm 1: Improved birthday attack

```
input: A hash function H: \{0,1\}^* \to \{0,1\}^{\ell}
  output: Distinct x, x' with H(x) = H(x')
1 x_0 \leftarrow \{0,1\}^{\ell+1}, x' := x := x_0
2 for i = 1 to 2^{\ell/2} + 1 do
3 | x := H(x), x' := H(H(x')) // x = H^{i}(x_{0}), x' = H^{2i}(x_{0})
4 if x = x' then break
5 if x \neq x' then return fail
6 x' := x \cdot x := x_0
7 for i = 1 to i do
       if H(x) = H(x') then return x, x' and halt
    else x := H(x), x' := H(x') // x = H^{j}(x_0), x' = H^{j+i}(x_0)
```

Proof of Improved Birthday Attack

Lemma 11

Let x_1, \ldots, x_q be a sequence of values with $x_m = H(x_{m-1})$. If $x_I = x_J$ with I < J, then $\exists i < J$ such that $x_i = x_{2i}$.

$$x_0 = \begin{array}{c|c} I & J \\ \hline i & 2i \end{array}$$

Proof.

If $x_I = x_J$, then x_I, x_{I+1}, \ldots repeats with period J - I. Let i to be the smallest multiple of J - I with $i \geq I$,

$$i \stackrel{\mathsf{def}}{=} (J - I) \cdot \lceil I/(J - I) \rceil.$$

i < J since $I, \ldots, J-1$ contains a multiple of J-I.

Since
$$2i - i = i$$
 is a multiple of the period and $i \ge I$, $x_i = x_{2i}$.

Constructing "Meaningful" Collisions

An example with 288 different meaningful sentences

It is hard/difficult/challenging/impossible to imagine/believe that we will find/locate/hire another employee/person having similar abilities/skills/character as Alice. She has done a great/super job.

The Merkle-Damgård Transform

Construction 12

(Gen, h) is a fixed-length CRHF (input length $2\ell(n)$ and output length $\ell(n)$). Construct a **variable-length** CRHF (Gen, H):

- Gen: remains unchanged.
- lacksquare H: key s and string $x \in \{0,1\}^*$, $L = |x| < 2^{\ell(n)}$, $(\ell = \ell(n))$:
 - **1** $B := \lceil \frac{L}{\ell} \rceil$ (# blocks). Pad x with 0s. ℓ -bit blocks x_1, \ldots, x_B . $x_{B+1} := L$, L is encoded using ℓ bits.
 - $z_0 := IV$.
 - 3 For i = 1, ..., B + 1, compute $z_i := h^s(z_{i-1} || x_i)$.
 - **4** Output z_{B+1} .

Security of the Merkle-Damgård Transform

Theorem 13

If (Gen, h) is a fixed-length CRHF, then (Gen, H) is a CRHF.

Proof.

Idea: a collision in H^s yields a collision in h^s .

Two messages $x \neq x'$ of respective lengths L and L' such that $H^s(x) = H^s(x')$. # blocks are B and B'.

- 1 $L \neq L'$: $z_B || L \neq z_{B'} || L'$.

Collision-Resistant Hash Functions in Practice

- The hash functions used in practice are generally un-keyed.
- The constructions are more heuristic in nature.
- Finding a collision in MD5 (Message Digest 5) with 128-bit output requires time $2^{20.96}$.
- Finding a collision in SHA-1 (Secure Hash Algorithm) with a 160-bit output requires time 2^{51} .

Content

- 1 Message Integrity and Message Authentication
- 2 Message Authentication Codes (MAC) Definitions
- 3 Constructing Secure Message Authentication Codes
- 4 CBC-MAC
- 5 Collision-Resistant Hash Functions
- 6 NMAC and HMAC
- 7 Constructing CCA-Secure Encryption Schemes
- 8 Obtaining Privacy and Message Authentication

Nested MAC (NMAC)

Construction 14

 $(\widetilde{\operatorname{Gen}},h)$ is a fixed-length CRHF. $(\widetilde{\operatorname{Gen}},H)$ is the Merkle-Damgård transform. NMAC:

- Gen(1ⁿ): Output (s, k_1, k_2) . $s \leftarrow \widetilde{\mathsf{Gen}}, k_1, k_2 \leftarrow \{0, 1\}^n$ u.a.r.
- $\blacksquare \ \mathsf{Mac}_{s,k_1,k_2}(m) \colon t_i := h^s_{k_1}(H^s_{k_2}(m)).$
- Vrfy_{s,k_1,k_2}(m,t): 1 \iff $t \stackrel{?}{=} \mathsf{Mac}_{s,k_1,k_2}(m)$.

Security of NMAC

Theorem 15

If (Gen, h) is CRHF, then NMAC is secure. (existentially unforgeable under an adaptive CMA for arbitrary-length messages)

- **Assumption**: $(\widetilde{\mathsf{Gen}}, h)$ is a secure MAC.
- Weak collision resistance: It is hard to find $(x, x'), x' \neq x$ such that $H_{k_2}^s(x) = H_{k_2}^s(x')$.
- k_2 is not needed once $(\widetilde{\mathsf{Gen}},h)$ is CRHF.
- \blacksquare $H_s^{k_2}(x)$ is hidden by $h_s^{k_1}(H_s^{k_2}(x))$.
- **Disadvantage**: *IV* of *H* must be modified.

Hash-based MAC (HMAC)

Construction 16

 $(\widetilde{\operatorname{Gen}},h)$ is a fixed-length CRHF. $(\widetilde{\operatorname{Gen}},H)$ is the Merkle-Damgård transform. IV, opad (0x36), ipad (0x5C) are fixed constants of length n. HMAC:

- Gen(1ⁿ): Output (s, k). $s \leftarrow \widetilde{\mathsf{Gen}}, k \leftarrow \{0, 1\}^n$ u.a.r.
- $\blacksquare \ \operatorname{Mac}_{s,k}(m) \colon \ t := H^s_{IV} \Big((k \oplus \operatorname{opad}) \| H^s_{IV} \big((k \oplus \operatorname{ipad}) \| m \big) \Big).$
- $Vrfy_{s,k}(m,t)$: $1 \iff t \stackrel{?}{=} Mac_{s,k}(m)$.

Security of HMAC

Theorem 17

$$G(k)\stackrel{\mathsf{def}}{=} h^s(IV\|(k\oplus \mathsf{opad}))\|h^s(IV\|(k\oplus \mathsf{ipad})) = k_1\|k_2.$$
 (Gen, h) is CRHF. If G is a PRG, then HMAC is secure.

- HMAC is an industry standard (RFC2104) and is widely used in practice.
- HMAC is faster than CBC-MAC.
- Before HMAC, a common mistake was to use $H^s(k||x)$ as a MAC.

Content

- 1 Message Integrity and Message Authentication
- 2 Message Authentication Codes (MAC) Definitions
- 3 Constructing Secure Message Authentication Codes
- 4 CBC-MAC
- **5** Collision-Resistant Hash Functions
- 6 NMAC and HMAC
- **7** Constructing CCA-Secure Encryption Schemes
- 8 Obtaining Privacy and Message Authentication

Recall Security Against CCA

The CCA indistinguishability experiment $\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi}(n)$:

- $1 k \leftarrow \mathsf{Gen}(1^n).$
- 2 \mathcal{A} is given input 1^n and oracle access $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ and $\mathcal{A}^{\mathsf{Dec}_k(\cdot)}$, outputs m_0, m_1 of the same length.
- **3** a random bit $b \leftarrow \{0,1\}$ is chosen. Then $c \leftarrow \operatorname{Enc}_k(m_b)$ is given to \mathcal{A} .
- 4 \mathcal{A} continues to have oracle access except for c, outputs b'.
- **5** If b'=b, \mathcal{A} succeeded $\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi}=1$, otherwise 0.

Definition 18

 Π has indistinguishable encryptions under a CCA (CCA-secure) if \forall PPT \mathcal{A} , \exists negl such that

$$\Pr\left[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \frac{1}{2} + \mathsf{negl}(n).$$

Constructing CCA-Secure Encryption Schemes

Construction 19

 $\Pi_E = (\mathsf{Gen}_E, \mathsf{Enc}, \mathsf{Dec}), \ \Pi_M = (\mathsf{Gen}_M, \mathsf{Mac}, \mathsf{Vrfy}). \ \Pi'$:

- $\operatorname{\mathsf{Gen}}'(1^n)$: $k_1 \leftarrow \operatorname{\mathsf{Gen}}_E(1^n)$ and $k_2 \leftarrow \operatorname{\mathsf{Gen}}_M(1^n)$.
- $\operatorname{Enc}'_{k_1,k_2}(m)$: $c \leftarrow \operatorname{Enc}_{k_1}(m)$, $t \leftarrow \operatorname{Mac}_{k_2}(c)$ and output $\langle c, t \rangle$.
- $\operatorname{Dec}'_{k_1,k_2}(\langle c,t\rangle)$: If $\operatorname{Vrfy}_{k_2}(c,t)\stackrel{?}{=}1$, output $\operatorname{Dec}_{k_1}(c)$; otherwise output "failure" \bot .

Proof of CCA-Secure Encryption Schemes

Theorem 20

If Π_E is a CPA-secure private-key encryption scheme and Π_M is a secure MAC with unique tags, then Construction Π' is CCA-secure.

Idea: The decryption oracle is useless. CCA = CPA + MAC.

Proof.

VQ: \mathcal{A} submits a "new" query to oracle Dec' and $\mathsf{Vrfy}=1$.

$$\Pr[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi'}(n) = 1] \leq \Pr[\mathsf{VQ}] + \Pr[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi'}(n) = 1 \wedge \overline{\mathsf{VQ}}]$$

We need to prove the following claims.

- Pr[VQ] is negligible.

33 / 41

Proof of "Pr[VQ] is negligible"

Idea: Reduce A_M (attacking Π_M with an oracle $\mathsf{Mac}_{k_2}(\cdot)$) to A.

Proof.

- lacksquare \mathcal{A}_M chooses $i \leftarrow \{1, \dots, q(n)\}$ u.a.r.
- \blacksquare Run $\mathcal A$ with the encryption/decryption oracles.
- If the ith decryption oracle query from $\mathcal A$ uses a "new" c, output (c,t) and stop.
- Macforge_{A_M,Π_M}(n) = 1 only if VQ occurs.
- A_M correctly guesses i with probability 1/q(n).

$$\Pr[\mathsf{Macforge}_{\mathcal{A}_M,\Pi_M}(n) = 1] \ge \Pr[\mathsf{VQ}]/q(n).$$

Proof of " $\Pr[\operatorname{Priv}\mathsf{K}^{\mathsf{cca}}_{\mathcal{A},\Pi'}(n) = 1 \land \overline{\mathsf{VQ}}] \leq \frac{1}{2} + \mathsf{negl}(n)$ "

Idea: Reduce A_E (attacking Π_E with an oracle $\operatorname{Enc}_{k_1}(\cdot)$) to A.

Proof.

- lacksquare Run ${\cal A}$ with the encryption/decryption oracles.
- lacksquare Run PrivK $^{\mathsf{cpa}}_{\mathcal{A}_E,\Pi_E}$ as PrivK $^{\mathsf{cca}}_{\mathcal{A},\Pi'}.$
- lacksquare \mathcal{A}_E outputs the same b' that is output by \mathcal{A} .
- $\qquad \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A}_E,\Pi_E}(n) = 1 \wedge \overline{\mathsf{VQ}}] = \Pr[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi'}(n) = 1 \wedge \overline{\mathsf{VQ}}]$ unless VQ occurs.

$$\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A}_E,\Pi_E}(n) = 1] \geq \Pr[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi'}(n) = 1 \wedge \overline{\mathsf{VQ}}].$$

Content

- 1 Message Integrity and Message Authentication
- 2 Message Authentication Codes (MAC) Definitions
- 3 Constructing Secure Message Authentication Codes
- 4 CBC-MAC
- **5** Collision-Resistant Hash Functions
- 6 NMAC and HMAC
- 7 Constructing CCA-Secure Encryption Schemes
- 8 Obtaining Privacy and Message Authentication

Message Transmission Scheme

- **Key-generation** algorithm outputs $k \leftarrow \text{Gen}'(1^n)$. $k = (k_1, k_2)$. $k_1 \leftarrow \text{Gen}_E(1^n)$, $k_2 \leftarrow \text{Gen}_M(1^n)$.
- Message transmission algorithm is derived from $\operatorname{Enc}_{k_1}(\cdot)$ and $\operatorname{Mac}_{k_2}(\cdot)$, outputs $c \leftarrow \operatorname{EncMac'}_{k_1,k_2}(m)$.
- **Decryption** algorithm is derived from $\mathsf{Dec}_{k_1}(\cdot)$ and $\mathsf{Vrfy}_{k_2}(\cdot)$, outputs $m \leftarrow \mathsf{Dec}'_{k_1,k_2}(c)$ or \bot .
- **Correctness requirement**: $\operatorname{Dec}'_{k_1,k_2}(\operatorname{EncMac}'_{k_1,k_2}(m)) = m$.

Defining Secure Message Transmission

The secure message transmission experiment Auth_{A,Π'}(n):

- 1 $k = (k_1, k_2) \leftarrow \text{Gen}'(1^n).$
- **2** \mathcal{A} is given input 1^n and oracle access to $\operatorname{EncMac'}_k$, and outputs $c \leftarrow \operatorname{EncMac'}_k(m)$.
- $3 m := \mathsf{Dec}_k'(c). \; \mathsf{Auth}_{\mathcal{A},\Pi'}(n) = 1 \iff m \neq \bot \land \; m \notin \mathcal{Q}.$

Definition 21

 Π' achieves authenticated communication if \forall PPT \mathcal{A} , \exists negl such that

$$\Pr[\mathsf{Auth}_{\mathcal{A},\Pi'}(n) = 1] \le \mathsf{negl}(n).$$

Definition 22

 Π' is **secure** if it is both CCA-secure and also achieves authenticated communication.

Combining Encryption and Authentication

■ Encrypt-and-authenticate:

$$c \leftarrow \mathsf{Enc}_{k_1}(m), \ t \leftarrow \mathsf{Mac}_{k_2}(m).$$

Authenticate-then-encrypt:

$$t \leftarrow \mathsf{Mac}_{k_2}(m), \ c \leftarrow \mathsf{Enc}_{k_1}(m||t).$$

Encrypt-then-authenticate:

$$c \leftarrow \mathsf{Enc}_{k_1}(m), \ t \leftarrow \mathsf{Mac}_{k_2}(c).$$

Analyzing Security of Combinations

- **All-or-nothing**: Reject any combination for which there exists even a single counterexample is insecure.
- **Encrypt-and-authenticate**: $Mac'_k(m) = (m, Mac_k(m))$.
- Authenticate-then-encrypt:
 - Trans : $0 \rightarrow 00$; $1 \rightarrow 10/01$, Enc' uses CRT mode, c = Enc'(Trans(m||Mac(m))).
 - Flip the first two bits of the second block of *c* and verify whether the ciphertext is valid.
 - If valid, the first bit of message is 1; otherwise 0.
 - For any MAC, this is not CCA-secure.
- **■** Encrypt-then-authenticate:

Decryption: If $Vrfy(\cdot) = 1$, then $Dec(\cdot)$; otherwise output \bot .

Theorem 23

 Π_E is CPA-secure and Π_E is a secure MAC with unique tages, Π' deriving from encrypt-then-authenticate approach is secure.

Remarks on Secure Message Transmission

- Authentication may leak the message.
- Secure message transmission implies CCA-security. The opposite direction is not necessarily true.
- Different security goals should always use different keys.

Summary

- Integrity/authentication by MAC.
- adaptive CMA, replay attack, birthday attack.
- Existential unforgeability, collision resistance, CCA-secure, authenticated communication, secure message transmission.
- PRF, CBC-MAC, CRHF, Merkle-Damgård transform, NMAC, HMAC, encrypt-then-authenticate.