Credit No-hit Prediction

By Team 2

Yulong Gong, Muyan Xie, Yangyang Zhou, Yichi Zhang

About Us

Business Problem

Credit status is one of the most important predictors in business setting, developing a successful credit-status predicting model could help our clients:

Predict consumer credit hit or no-hit for marketing promotional purpose.

- O Hit: There is credit record, represented as 0 in our dataset.
- O No_hit: Don't have credit record, represented as 1 in our dataset.

Reduce company's potential loss.

O Strategically target the consumer with credit records.

Overview of the Process

Data Overview

Data Integrity Checking

176,704 unique policy_id

Hit or No-hit Transformation

The total number of Policy_ids for which transformation records exist is **14170** (8% of unique ids)

Previous years recorded	Last recorded year	Hit/No hit	Number	Final Result
Hit or No-hit or No record	2020	0	5400	0
	2020	1	144	1
	2019	0	6641	0
	2019	1	554	1
	2018	0	721	0
		1	79	1
	2017	0	502	0
		1	50	1
	2040	0	166	0
	2016	1	35	1
	2045	0	123	0
	2015	1	20	1
	2044	0	58	0
	2014	1	14	1
	2042	0	7	0
	2013	1	2	1

9.09 No-hit = 1
15893
In total IDs

91.0%

Hit = 0

160811 In total IDs

No-hit Rate By Year

No-hit Distribution By State

- Not all states have records since 2011
- 2020 has abnormal no-hit rate

- NY has least records but highest no-hit rate
- MA and NJ have low no-hit rate

Policy ID + Year Level

400,719 observations

No-hit Rate By Year

Policy ID Distribution

- 2020 no-hit ratio increases may due to the decreasing policy amounts
- PA and NY remain a relatively high no-hit rate over years. All states have significant increments from 2019 to 2020.
- The number of Policy ID drops rapidly in 2020

Model Design

Model Design

Stratification

Policy ID Level design results:

■ Total rows: 176,704 rows

■ In sample : 131,913 rows

train_(80%): 105,530 rows

validation(20%): 26,383 rows

• Out of sample: 44,791 rows

	D	ISTRIBUTION	ı	NO HIT RATIO			
STATE	IN-Train and IN-Valid	OUT 11-15,20	OUT YEAR LEVEL	IN-Train and IN-Valid	OUT 11-15,20	OUT YEAR LEVEL	
MA	42%	27%	14%	4%	15%	14%	
NJ	31%	15%	7%	6%	23%	23%	
PA	13%	9%	4%	12%	35%	35%	
СТ	8%	21%	34%	8%	14%	8%	
NH	5%	16%	36%	11%	9%	8%	
NY	1%	13%	6%	14%	30%	20%	

Policy ID Level design results:

Total rows: 176,704 rows

In sample: 131,913 rows

train_(80%): 105,530 rows

validation(20%): 26,383 rows

• Out of sample: 44,791 rows

Policy ID + Year Level

Policy_id + year level design results:

• Total rows: 400,719 rows

• In sample : 302,471 rows

• train_(80%): 241,802 rows

• validation_(20%): 60,669 rows

• Out of sample: 98,248 rows

Policy ID ID #1 starts in 2012 ID #2 starts in 2015

Policy ID + Year Level

Policy_id + year level design results:

• Total rows: 400,719 rows

In sample : 302,471 rows

train(80%): 241,802 rows

• test_(20%): 60,669 rows

Out of sample: 98,248 rows

	D	ISTRIBUTIO	N	NO HIT RATIO			
STATE	IN-Train and IN-Valid	OUT 11-15,20	OUT-ID LEVEL	IN-Train and IN-Valid	OUT 11-15,20	OUT-ID LEVEL	
MA	53%	14%	27%	7%	14%	15%	
NJ	25%	7%	15%	7%	2%	23%	
PA	9%	4%	9%	19%	35%	35%	
СТ	8%	34%	21%	9%	8%	14%	
NH	5%	36%	16%	15%	8%	9%	
NY	1%	6%	13%	17%	20%	30%	

Feature Selection Results

Policy ID level (1285 features)

Column 1: Random Forest

Column 2: XGBoost

Column 3: Decision Trees

Policy ID + Year level (1285 features)

Aggregate Feature Selection Results

Policy ID level

- 176,704 Rows
- 657 Features

Policy ID + Year level

- 400,719 Rows
- 657 Features

How to select?

Average importance score of three tree-based models.

How much portion?

Elbow principle to maintain around 70% variance.

How many?

Finally picked highest 650 features plus 7 identity objects.

Plans for second part of capstone

Model Build

- logistic regression
- tree-based models

Checking Additional Predictive Power

Check the variable predictive power again to enhance model performance.

Model Evaluation

- Gini Used in Finance industry to predict credits.
- AUC
 Evaluation metrics for checking model performance.
- K-S test
 Evaluate the model
 performance based on
 data distribution.

Q&A

