

ZBIW Zertifikatskurs Data Librarian

Suchmaschinentechnologie, Information Retrieval

Was ist eigentlich Retrieval?

Teil I: Crashkurs Information Retrieval

Was ist eigentlich Retrieval?

In diesem Kurs geht es um Information **Retrieval** und wir benutzen folgende, **vorläufige Arbeitsdefinition**:

"Gegeben eine **Anfrage** und einen **Dokumentenkorpus**, finde **relevante** Dokumente."

- Anfrage: Eine Anfrage ist die Beschreibung eines Informationsbedürfnisses, die an das IR-System geschickt wird.
 Kann natürlichsprachig oder formal (Anfragesprache) sein.
- Korpus: Eine Sammlung von durchsuchbaren Dokumenten / Ressourcen. In unserem Falle meistens Textdokumente.
- Relevanz: Befriedigung des Informationsbedürfnisses eines Benutzers.

Was gehört noch zum Thema Retrieval?

Zwei zentrale Größen

- Effizienz: Wir wollen das Ergebnis noch vor Feierabend (oder noch besser: in 0,18 Sekunden)
- Effektivität: Liefere nur Ergebnisse, die Informationsbedürfnisse der Nutzer befriedigen
- Später: Klarer Fokus auf das Thema Effektivität.
- Allerdings: Wir werden uns auch darüber unterhalten, wie Suchmaschinen Ergebnisse möglichst schnell liefern können.

Effizienz von Suche: grep

- Lorem ipsum dolor sit amet,
- consetetur sadipscing elitr,
- sed diam nonumy eirmod tempor,
- invidunt ut labore et dolore magna
- aliquyam erat, sed diam voluptua.
- At vero eos et accusam et justo
- duo dolores et ea rebum.

Finde alle Zeilen mit "et".

- Wie viele Schritte braucht grep?
- Ist das ein guter Weg zu suchen? Geht das nicht besser?

Effektivität: Was ist eigentlich Relevanz?

Schwierig...

"The man saw the pyramid on the hill with the telescope."

Viele Interpretationen dieses Satzes sind denkbar...

Strukturierte Daten

Strukturierte Daten sind z.B. Tabellendaten

Angestellter	Boss	Gehalt
Berthold Heisterkamp	Bernd Stromberg	50000
Ulf Steinke	Bernd Stromberg	60000
Sinan Turçulu	Timo Becker	50000

- Numerische Anfragen und Exact Match sind möglich, bspw.: Gehalt < 60000 AND Boss = Timo Becker</p>
- Toll, aber meistens nicht das was wir im Information Retrieval wollen -> Wir suchen in unstrukturierte Daten!

Unstrukturierte Daten...

Das Dokument ist teilstrukturiert...

Klassisches Information Retrieval-Modell

Das klassische Ad-Hoc-Retrieval basiert auf Abgleich von

- Dokumenttermen (Document Representation) und
- Anfragetermen (Query).

Im klassischen Information Retrieval-Modell sind das Informationsbedürfnis als auch die Anfrage starr und verändern sich nicht.

Binär

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calphurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	_ 1 \	1	1	0

Jedes Dokument ist durch einen binären Vektor (besteht nur aus 0/1) repräsentiert, der vorberechnet wurde!

1 wenn Stück das Wort enthält, ansonsten 0

Retrieval als Suchaufgabe

- Ausgabe: Ein Ranking von Dokumenten, in absteigender Reihenfolge Ihrer geschätzten Relevanz (macht es einfacher!).
- Annahme: Der Benutzer schaut sich die ersten paar Dokument an und ist zufrieden, wenn er etwas passendes gefunden hat.

Binar -> Häufigkeiten

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	1
Brutus	4	157	0	2	0	0
Caesar	232	227	0	2	1	0
Calphurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	8	5	8
worser	2	0	1	1	1	5

Jedes Dokument ist durch einen Vektor der **Termhäufigkeiten** repräsentiert.

Termfrequenz tf

- Die Termfrequenz (term frequency, Termhäufigkeit) tf_{t,d} eines Terms t in Dokument d ist die Häufigkeit von t in d.
- Wir möchten die Dokumente anhand Ihres Scores, der die Übereinstimmung von Anfrage und Dokument beschreibt ranken. Hierzu wollen wir die Termfrequenz verwenden.
- Aber wie...?

Die reinen Termfrequenzen sind ungeeignet, weil:

- Ein Dokument mit tf = 10 ist sicherlich relevanter als ein Dokument mit tf = 1...
- Aber nicht unbedingt 10-mal relevanter...

Die Relevanz steigt nicht proportional mit der Termfrequenz.

Log-Termfrequenz-Gewichtung

Um die Wirkung der Termfrequenz zu dämpfen wird häufig mit der **logarithmierten Termfrequenz oder einer anderen Gewichtung** (Englisch: weight) gearbeitet:

$$w_{t,d} = \begin{cases} 1 + \log_{10}(\mathsf{tf}_{t,d})\,, & \text{wenn } \mathsf{tf}_{t,d} > 0 \\ 0, & \text{sonst} \end{cases}$$
 "Das Gewicht des Terms t für das Dokument d"

Der Score für ein Anfrage-Dokument-Paar ist die Summe über alle **Gewichtungen** aller Terme **t**, die sowohl in **q** als auch in **d** enthalten sind:

$$Score_{q,d} = \sum_{t \in q \cap d} w_{t,d} = \sum_{t \in q \cap d} \left(1 + \log_{10}(\mathsf{tf}_{t,d})\right)$$

Dokumentfrequenz

Häufige Terme sind weniger informativ als seltene Terme.

- Stellen Sie sich einen Anfrageterm vor, der oft vorkommt,
 z.B. hoch, sicher, teuer...
- Ein Dokument, dass einen solchen Term beinhaltet ist wahrscheinlich relevanter, als eines das diesen Term nicht enthält. (das Grundprinzip von tf)
- Aber: Es ist kein sicherer Indikator für Relevanz.

Wir wollen **positive Gewichte** für Wörter wie *hoch*, *sicher*, *teuer*, **aber diese sollen niedriger sein als solche für seltene Terme**.

Hierzu verwenden wir die Dokumentfrequenz (df).

idf-Gewichtung

df_t ist die **Dokumentfrequenz** für t: Die Anzahl der Dokumente, die t enthält.

- df, ist ein Maß für den inversen Informationsgehalt von t.
- $df_t \le N$ (N ist die Anzahl aller Dokumente)

Wir definieren idf (inverse Dokumentfrequenz) von tals:

$$idf_t = \log_{10}(\frac{N}{\mathrm{df}_t})$$

Wir verwenden $log_{10}(N/df_t)$ anstelle von N/df_t um den Effekt von idf zu dämpfen.

tf-idf-Gewichtung

Die tf-idf-Gewichtung von Termen ist das Produkt der tf- und idf-Werte:

$$tf-idf_{t,d} = tf_{t,d} * log_{10} \left(\frac{N}{df_t}\right)$$

tf-idf ist **DAS bekannteste Gewichtungsschema** im IR.

- Beachten Sie: Das "-" ist ein Bindestrich, kein Minus.
- Andere Schreibweisen: tf.idf, tf x idf, tf*idf, TF*IDF, etc...
- Andere Kombinationen möglich... (z.B. mit diversen Logarithmen)

Der tf-idf-Wert steigt an für

- die Anzahl der Termhäufigkeiten in Dokumenten und
- die Seltenheit eines Terms in der Kollektion.

Binar -> Häufigkeiten -> Gewichte

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	4,73	2,20	0	0	0	0,03
Brutus	0,12	4,73	0	0,06	0	0
Caesar	4,09	4,00	0	0,04	0,02	0
Calphurnia	0	0,78	0	0	0	0
Cleopatra	4,44	0	0	0	0	0
mercy	0,02	0	0,02	0,06	0,04	0,06
worser	0,02	0	0,01	0,01	0,01	0,04

Jedes Dokument wird nun repräsentiert durch eine Vektor mit tf-idf-Gewichten $\in \mathbb{R}^{|V|}$

Berechnung Score pro Dokument

$$Score(q,d) = \sum_{t \in q \cap d} tf - idf_{t,d}$$

Es gibt viele, sehr viele Varianten, wie

- tf berechnet wird (mit oder ohne Logarithmus)
- die Terme in der Anfrage gewichtet werden, und, und, und...

An dieser Stelle könnten wir bereits Dokumente ranken... Wie?

Ranking – Welches ist besser?

Relevante Treffer sind rot markiert.

Maßzahlen für die Evaluation

Precision (Treffergenauigkeit)

$$\mathcal{P} = \frac{|\text{RET} \cap \text{REL}|}{|\text{RET}|}$$

Recall (Treffervollständigkeit)

$$\mathcal{R} = \frac{|\text{RET} \cap \text{REL}|}{|\text{REL}|}$$

Dokumente in Ergebnisliste

Relevante Dokumente

Precision und Recall: Ein Beispiel

	Relevant	Nicht relevant
Gefunden	30	12
Nicht gefunden	14	44

• Precision
$$P = 30 / (30 + 12) \approx 0.714$$

• Recall
$$R = 30 / (30 + 14) \approx 0,681$$

Warum ist IR eine schwierige Aufgabe?

Information Retrieval ist ein Prozess mit Unsicherheiten...

- Benutzer wissen nicht was sie eigentlich wollen
- Benutzer wissen nicht, wie sie das was sie suchen ausdrücken sollen
- Computer können Nutzer keine Kontextinformationen entlocken, wie es z.B. ein menschlicher Bibliothekar könnte
- Computer verstehen keine natürliche Sprache
- Suchmaschinen müssen erraten, was relevant ist
- Suchmaschinen müssen erraten, wann ein Benutzer zufrieden ist

...