$(3) \{\{\emptyset\}, \{\{\emptyset\}\}\}.$	
 1.18 (1) {Ø,1,2,3}; (2) Ø; (3) Ø; (4) Ø∘ 	
1.19 (1) $A \cup B$; (2) A ; (3) B .	
1.20 先证两个引理。 引理 1.4 对任意集合 A,B,C,D ,有 $A\subseteq B\land C\subseteq D\Rightarrow A\cup C\subseteq B\cup D$ 证明: $\forall x$,	
$x \in A \cup C \iff x \in A \lor x \in C$	(集合并定义)
$\iff (x \in A \lor x \in C) \land$	
$(x \in A \to x \in B \land x \in C \to x \in D)$	(前提、子集关系定义)
$\implies x \in B \lor x \in D$	(构造性二难)
$\iff x \in B \cup D$	(集合并定义)
引理 1.5 对任意集合 $A,B,C,D,$ 有 $A\subseteq B\land C\subseteq D\Rightarrow A\cap C\subseteq B\cap D$ 证明: $\forall x$,	
$x \in A \cap C \iff x \in A \land x \in C$	(集合交定义)
$\implies x \in B \land x \in C$	(前提、子集关系定义)
$\implies x \in B \land x \in D$	(前提、子集关系定义)
$\iff x \in B \cap D$	(集合交定义)
再证原题。 证明:	
$A = A \cap E$	(同一律)
$=A\cap (C\cup {\sim} C)$	(排中律)
$= (A \cap C) \cup (A \cap \sim C)$	(分配律)
$\subseteq (B \cap C) \cup (B \cap \sim C)$	(题设、引理 1.4)

1.21

(1) 答: $A \cap B = A$ 当且仅当 $A \subseteq B$ 。

 $=B\cap (C\cup {\sim} C)$

 $=B\cap E$

= B

(分配律) (排中律)

(同一律)