Drug Abuse by State

Jillian Warburton

2023-04-12

Reading in and Handling Shapefiles

1. Read in the drug abuse shapefile.

```
#load dataset
#myShp <- readOGR(dsn="~/R programming/STAT_469/Unit4",layer='DrugAbuse')</pre>
#library(broom) #contains tidy() function which converts polygons to data.frame
#myShp@data$id <- rownames(myShp@data) #Assign ID to each polygon</pre>
#myShp.df <- tidy(myShp, region = "id") #Convert polygon info to data.frame()</pre>
\#myShp.df \leftarrow merge(myShp.df, myShp@data, by = "id") \#Merge data w/polygon data.frame
myShp <- st_read("~/R programming/STAT_469/Unit4/DrugAbuse.shp")</pre>
## Reading layer 'DrugAbuse' from data source
     'C:\Users\jilli\OneDrive\Documents\R programming\STAT_469\Unit4\DrugAbuse.shp'
     using driver 'ESRI Shapefile'
## Simple feature collection with 49 features and 6 fields
## Geometry type: MULTIPOLYGON
## Dimension:
                  XY
## Bounding box:
                  xmin: -124.7328 ymin: 24.95638 xmax: -66.96927 ymax: 49.37173
## Geodetic CRS:
                  NAD83
```

2. Reformat the shapefile data into a dataframe suitable for use with ggplot().

```
data <- data.frame(myShp) %>% select(-geometry)
#data <- data.frame(myShp.df)
#data <- data %>% dplyr::select(-c(id, long, lat, order, hole, piece, group))
data_red <- data %>% dplyr::select(-c(State))
data_red <- data_red %>% mutate(Count = log(Count))
```

Exploratory Data Analysis

1. Create a pairs plot to assess the relationship between log(Count) and the explanatory variables (note we are using log(Count) here as the response because Poisson regression is log-linear).

```
ggpairs(data_red)
```


2. Create a choropleth map of log(Count).

3. Fit a lm() of log(Count) using Population, PctWhite, MedInc and Pct18to34 as explanatory variables. Perform a Moran's I test on the residuals to see if there is spatial correlation in the residuals.

data_lm <- lm(log(Count)~ PctWhite + MedInc + Pct18to34 + Population, data)
avPlots(data_lm, ask=FALSE)</pre>

Added-Variable Plots


```
moran.test(x= resid(data_lm), listw=nb2listw(poly2nb(myShp)))
```

```
##
##
   Moran I test under randomisation
##
## data: resid(data_lm)
##
  weights: nb2listw(poly2nb(myShp))
##
## Moran I statistic standard deviate = 2.5921, p-value = 0.004769
  alternative hypothesis: greater
  sample estimates:
##
  Moran I statistic
                           Expectation
                                                 Variance
##
         0.230238791
                          -0.020833333
                                              0.009381812
```

4. Perform a Geary's C test on your residuals from #3 above to double check if there is spatial correlation in the residuals.

```
geary.test(x= resid(data_lm), listw=nb2listw(poly2nb(myShp)))
```

```
##
## Geary C test under randomisation
##
## data: resid(data_lm)
## weights: nb2listw(poly2nb(myShp))
```

5. Map the residuals from the lm() fit to see if there is spatial correlation.

Defining Spatial Basis Functions

1. Create the adjacency matrix.

```
A <- nb2mat(poly2nb(myShp), style="B")
```

2. Create the Moran spatial basis and plot the first basis in a chloropleth map.

Drug Abuse by Moran Spatial Basis

3. Merge the Moran spatial bases into your myShpDF data frame for use in fitting models later.

```
data <- bind_cols(data, M) #cbind() but efficient</pre>
```

Spatial GLM Model Fitting

1. Fit a spatial GLM model with Count as the response and using PctWhite, MedInc, Population, Pct18to34 AND your spatial bases as explanatory variables. Print a summary() of the model to see your coefficient table.

```
data_glm <- glm(formula=Count~.-State-Count, data=data, family=poisson)
summary(data_glm)</pre>
```

```
##
## Call:
## glm(formula = Count ~ . - State - Count, family = poisson, data = data)
##
## Deviance Residuals:
                     Median
##
      Min
                 1Q
                                   3Q
                                           Max
                      -1.849
## -71.238 -23.869
                               11.556
                                        90.700
##
## Coefficients:
##
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.856e+00
                          2.699e-02
                                     365.161
                                              < 2e-16 ***
## PctWhite
                          1.798e-02
                                      35.327
                                              < 2e-16 ***
               6.351e-01
## MedInc
               -3.299e-02
                          2.491e-04 -132.425
                                              < 2e-16 ***
## Pct18to34
              -1.863e-01
                          9.051e-02
                                      -2.059
                                              0.03954 *
                          1.877e-10 427.517
                                              < 2e-16 ***
## Population
              8.025e-08
## B1
               -1.202e+00
                          1.098e-02 -109.469
                                              < 2e-16 ***
## B2
              -1.085e-02
                          1.188e-02
                                      -0.914 0.36089
## B3
              -9.081e-01
                          1.017e-02
                                     -89.267
                                              < 2e-16 ***
                          1.374e-02
                                      71.047
## B4
               9.765e-01
                                              < 2e-16 ***
## B5
               1.921e-01
                          1.062e-02
                                      18.084
                                              < 2e-16 ***
## B6
               1.199e-02 1.143e-02
                                       1.049 0.29437
## B7
               3.149e+00 1.123e-02 280.304
                                              < 2e-16 ***
              -3.388e-02 1.232e-02
                                      -2.750 0.00595 **
## B8
## B9
               3.500e-01
                          1.195e-02
                                      29.282
                                              < 2e-16 ***
## B10
               1.164e+00
                          1.010e-02 115.231
                                              < 2e-16 ***
## B11
              -1.620e-01
                          1.207e-02
                                     -13.423
                                              < 2e-16 ***
## B12
               1.128e-01
                          1.173e-02
                                       9.619
                                              < 2e-16 ***
              -1.264e+00 1.258e-02 -100.454 < 2e-16 ***
## B13
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
##
       Null deviance: 496777
                             on 48 degrees of freedom
## Residual deviance: 53329 on 31 degrees of freedom
## AIC: 53887
##
## Number of Fisher Scoring iterations: 5
```

Validating Spatial MLR Model Assumptions and Predictions

1. Check the assumption of linearity using added-variable plots.

```
avPlots(data_glm, ask=FALSE)
```


2. Check the assumption of independence by decorrelating residuals and performing Moran's I or Geary's C tests to make sure there is no more spatial correlation.

```
sres <- stdres.gls(data_glm)</pre>
moran.test(x= sres, listw=nb2listw(poly2nb(myShp)))
##
##
    Moran I test under randomisation
##
  data: sres
##
##
   weights: nb2listw(poly2nb(myShp))
##
## Moran I statistic standard deviate = -1.2132, p-value = 0.8875
   alternative hypothesis: greater
   sample estimates:
## Moran I statistic
                            Expectation
                                                  Variance
##
        -0.136699956
                           -0.020833333
                                              0.009120747
geary.test(x= sres, listw=nb2listw(poly2nb(myShp)))
##
    Geary C test under randomisation
##
##
```

data: sres

3. Draw a choropleth map of the standardized and decorrelated residuals to visually verify that the residuals are no longer spatially correlated.

Drug Abuse by decorrelated residuals

4. Check the assumption of equal variance by plotting the standardized and decorrelated residuals vs. the log(fitted values).

```
ggplot(mapping = aes(x=log(fitted(data_glm)), y=sres)) +
geom_point() +
xlab('Fitted Values') +
```

```
ylab('Decorrelated Residuals') +
ggtitle('Equal Variance Assumption Check:') +
geom_hline(yintercept = 0, col = "red") +
theme(aspect.ratio = 1)
```

Equal Variance Assumption Check:

Statistical Inference

1. Print out the summary of the GLM model fit and identify the estimates and 95% confidence intervals of your explanatory variables.

summary(data_glm)

```
##
## Call:
## glm(formula = Count ~ . - State - Count, family = poisson, data = data)
##
## Deviance Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
##
  -71.238
           -23.869
                      -1.849
                               11.556
                                        90.700
##
## Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) 9.856e+00 2.699e-02 365.161 < 2e-16 ***
```

```
## PctWhite
               6.351e-01 1.798e-02
                                      35.327 < 2e-16 ***
## MedInc
              -3.299e-02 2.491e-04 -132.425
                                             < 2e-16 ***
## Pct18to34
                                             0.03954 *
              -1.863e-01
                          9.051e-02
                                      -2.059
## Population
              8.025e-08
                          1.877e-10
                                    427.517
                                             < 2e-16 ***
## B1
              -1.202e+00
                          1.098e-02 -109.469
                                             < 2e-16 ***
## B2
              -1.085e-02 1.188e-02
                                      -0.914 0.36089
## B3
              -9.081e-01 1.017e-02
                                     -89.267 < 2e-16 ***
                                      71.047 < 2e-16 ***
## B4
               9.765e-01
                         1.374e-02
## B5
               1.921e-01
                          1.062e-02
                                      18.084
                                             < 2e-16 ***
## B6
               1.199e-02
                          1.143e-02
                                       1.049 0.29437
## B7
               3.149e+00
                          1.123e-02
                                     280.304 < 2e-16 ***
                          1.232e-02
                                      -2.750 0.00595 **
## B8
              -3.388e-02
## B9
               3.500e-01
                          1.195e-02
                                      29.282 < 2e-16 ***
## B10
               1.164e+00 1.010e-02 115.231 < 2e-16 ***
## B11
              -1.620e-01 1.207e-02
                                     -13.423 < 2e-16 ***
## B12
               1.128e-01
                          1.173e-02
                                       9.619 < 2e-16 ***
              -1.264e+00 1.258e-02 -100.454 < 2e-16 ***
## B13
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
##
      Null deviance: 496777 on 48 degrees of freedom
## Residual deviance: 53329 on 31 degrees of freedom
## AIC: 53887
## Number of Fisher Scoring iterations: 5
```

2. Create a chloropleth map of the spatially correlated residuals (just the $\mathbf{b}'_i\hat{\theta}$ part) to identify states that, after accounting for the explanatory variables, have an elevated level of risk.

