lloc: Institut d'Ensenyaments a Distància de les Illes Balears

Curs: Matemàtiques I (BAT_MAT1)
Glossari: Formulari del curs BAT_MAT1

LLIURAMENT1

Complex conjugat d'un nombre complex

$$z^* = x - iy$$

Definició de logaritme

$$\log_b y = x \quad \Leftrightarrow \quad b^x = y$$

Definició de radical

$$\sqrt[n]{a} = x \qquad \Leftrightarrow \qquad x^n = a$$

Entorn obert de centre c i radi r

$$E(c; r) = (c - r, c + r)$$

Forma binòmica d'un nombre complex

$$z=x+iy$$
, on $x=Re(z)\,$ s'anomena part real i $y=Im(z)\,$ la part imaginària

Mòdul d'un nombre complex

$$|z| = \sqrt{x^2 + y^2}$$

Relació entre potència i radical

$$a^{\frac{k}{n}} = \sqrt[n]{a^k}$$

LLIURAMENT2

Comprovació d'una divisió

$$P(x) = d(x) \cdot Q(x) + R(x)$$

definició de logaritme

$$\log_b a = x \quad \Leftrightarrow \quad b^x = a$$

Equació factoritzada: Igualam cada factor a zero.

$$x \cdot (x-3) \cdot (x+4) \cdot (2x+1) = 0$$

Fracció algebraica

 $\frac{P(x)}{d(x)}$

Solucions equació de segon grau

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

LLIURAMENT3

Fórmules per a triangles rectangles

$$\hat{B} = 90 - C, \qquad a^2 = b^2 + c^2$$

$$b = a \cos \hat{C}, \quad c = a \sin \hat{C}, \quad tg\hat{C} = \frac{c}{b}$$

Quadrants

- I quadrant: entre 0 i 90 graus
- Il quadrant: entre 90 i 180 graus
- III quadrant: entre 180 i 270 graus
- IV quadrant: entre 270 i 360 graus

Raons trigonomètriques

sinus:
$$\sin \alpha = \frac{C. O.}{H}$$
, cosinus: $\cos \alpha = \frac{C. C.}{H}$ i tangent: $tg \alpha = \frac{C. O.}{C. C.}$

Raons trigonomètriques recíproques

cosecant:
$$cosec \ \alpha = \frac{1}{\sin \alpha}$$
, secant: $sec \ \alpha = \frac{1}{\cos \alpha}$ i cotangent : $cotg \ \alpha = \frac{1}{tg \ \alpha}$.

Relació entre graus i radiants

$$2\pi \text{ rad} = 360^{\circ}.$$

Relació fonamental de la trigonometria

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

Relacions de l'angle 180+x

- $\sin(180 + \alpha) = -\sin \alpha$
- $cos(180 + \alpha) = -cos \alpha$
- $tg(180 + \alpha) = tg \alpha$

Relacions de l'angle oposat: 360-x

- $\sin(-\alpha) = -\sin \alpha$
- $\cos(-\alpha) = \cos \alpha$
- $tg(-\alpha) = -tg \alpha$

Segona relació de la trigonometria

$$tg \alpha = \frac{\sin \alpha}{\cos \alpha}$$

Teorema del cosinus

$$a^{2} = b^{2} + c^{2} - 2b \cdot c \cdot \cos \hat{A}$$

$$b^{2} = a^{2} + c^{2} - 2a \cdot c \cdot \cos \hat{B}$$

$$c^{2} = a^{2} + b^{2} - 2a \cdot b \cdot \cos \hat{C}$$

Teorema del sinus

$$\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}}$$

LLIURAMENT4

Coeficient de correlació lineal

$$r = \frac{\sigma_{xy}}{\sigma_x \cdot \sigma_y}$$

Covariància entre dues variables

$$\sigma_{xy} = \frac{\sum_{i} x_{i} \cdot y_{i}}{N} - \bar{x} \cdot \bar{y}$$

Mesures de dispersió d'una variable estadística

Rang: La diferència entre els valors major i menor de x. Variància: $Var=\frac{\sum_i f_i x_i^2}{N} - \bar{x}^2$ Desviació típica: $\sigma=\sqrt{Var}$ Coeficient de variació: $CV=\frac{\sigma_x}{\bar{x}}$

Mesures de posició d'una variable estadística

Nombre de dades: $N = \sum_i f_i$ Mitjana aritmètica: $\bar{x} = \frac{\sum_i f_i x_i}{N}$ Moda: El valor de x més freqüent. Mediana: Valor de x pel qual la freqüència acumulada assoleix el 50%.

Recta de regressió lineal

$$y - \bar{y} = m(x - \bar{x})$$

El pendent de la recta és $m=rac{\sigma_{xy}}{\sigma_x^2}.$

LLIURAMENT5

Asímptota horitzontal

Per a que una funció racional $f(x)=\frac{P(x)}{Q(x)}$ tingui una asímptota horitzontal, el grau $P\leq \operatorname{grau} Q$. L'asímptota és la recta horitzontal y=L, essent $L=\lim_{x\to\infty}f(x)$.

Asímptota obliqua

Per a que una funció racional $f(x)=\frac{P(x)}{Q(x)}$ tingui una asímptota obliqua, el graus han de complir grau P(x)= grau Q(x)+1. L'equació de l'asímptota obliqua s'obté del quocient de la divisió de P(x):Q(x).

Asímptota vertical

Per a que una funció racional $f(x)=\frac{P(x)}{Q(x)}$ tingui una asímptota vertical, el denominador ha d'ésser igual a zero i el numerador diferent de zero. El procediment consisteix resoldre l'equació Q(x)=0.

Branques parabòliques

Si es compleix que grau P(x) > grau Q(x) + 1, aleshores la funció creix més ràpidament que una recta, es diu que té branques parabòliques.

Condicions de continuïtat

Els límits $\lim_{x \to a^{\pm}} f(x)$ han d'ésser finits (Evitam asímptotes verticals) $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = \lim_{x \to a} f(x) \qquad \text{(Evitam salts) Existeix } f(a) \qquad \text{(Evitam li falta un punt)}$ $\lim_{x \to a} f(x) = f(a) \qquad \text{(Evitam punt desplaçat)}$

Definició de funció

Una **funció** és una **relació** entre dues magnituds de manera que a un valor de x (**variable independent**) li feim correspondre <u>un únic</u> valor de y (**variable dependent**). Per a indicar que la variable y depèn o és funció d'una altra, x, empram la notació y=f(x), que es llegeix " y és la imatge de x mitjançant la funció f".

Existència del límit

El límit al punt a existeix si

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = \lim_{x \to a} f(x)$$

Funció absolut

$$|f(x)| = \begin{cases} -f(x) & \text{si } f(x) \le 0\\ f(x) & \text{si } f(x) > 0 \end{cases}$$

Funció arrel quadrada

Les funcions arrel $y = k\sqrt{x-a}$ es representen com mitges paràboles amb eix paral·lel a l'eix X.

Funció de proporcionalitat inversa

L'expressió analítica és $y=\frac{k}{x-a}+b$. La representació gràfica són hipèrboles amb les asímptotes paral·leles als eixos de coordenades. Tenen una asímptota vertical a x=a i una horitzontal a y=b. Les asímptotes separen la funció en dues parts, cada part s'anomena branca.

Funció exponencial

Les funcions **exponencials** són del tipus $y = b^x$. Si b > 1 són creixents i si 0 < blt1 són decreixents. Totes elles passen pel punt (0, 1).

Funció inversa

Es defineix la inversa d'una funció f(x) i la indicam com $f^{-1}(x)$ a aquella funció que compleix

$$f(f^{-1}(x)) = f^{-1}(f(x)) = x$$

Funció lineal

L'expressió d'una funció lineal és y = mx + n, essent m el pendent i n l'ordenada a l'origen. Si m = 0 es diu que la funció és constant i la gràfica és una recta horitzontal.

Funció logarítmica

Les funcions **logarítmiques** són del tipus $y = \log_b x$. Si b > 1 són creixents i si 0 < b < 1 són decreixents. Totes elles passen pel punt (1,0).

Funció quadràtica

L'expressió d'una funció quadràtica és $y=ax^2+bx+c$. Quan a>0 la funció és còncava \cup i si a<0 és convexa \cap . El valor de b controla la posició del vèrtex. L'abscissa del vèrtex s'obté de la fórmula $x_v=\frac{-b}{2a}$. L'ordenada del vèrtex es troba substituint x_v dins la funció.

Indeterminacions

$$0/0$$
, ∞/∞ , $\infty - \infty$, $0 \cdot \infty$, 1^{∞} ,...

Tipus de logaritmes

- Logaritme Neperià: $y = \ln x$ si la base és el número e
- Logaritme decimal: $y = \log x$ si la base és 10

LLIURAMENT6

Definició de derivada en un punt

El **pendent de la recta tangent** l'anomenam **derivada** de la funció en el punt i ho indicam com m = f'(a)

Definició de funció derivada

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Deriva d'un producte

És la derivada de la primera funció per la segona sense derivar més la primera per la derivada de la segona funció.

$$y = f(x) \cdot g(x) \rightarrow y' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Deriva d'una constant per una funció

$$y = k f(x) \rightarrow y' = k f'(x)$$

Derivada d'un quocient

$$y = \frac{f(x)}{g(x)} \quad \rightarrow \quad y' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$$

Derivada d'una constant

Una funció constant és de la forma y = k on k és un nombre. Donat que la recta és horitzontal, té pendent zero i, llavors, la derivada és sempre zero.

Derivada d'una funció lineal

Donat que la recta té un únic pendent, la derivada sempre és igual al pendent de la recta m.

Derivada d'una suma o una diferència

$$y = f(x) \pm g(x)$$
 \rightarrow $y' = f'(x) \pm g'(x)$

Equació de la recta tangent

$$y = f(a) + f'(a) \cdot (x - a)$$

Funció derivada

La funció derivada f'(x), **és una funció** que proporciona el valor de la derivada per un punt x qualsevol.

Punts crítics

Les solucions de l'equació f'(x) = 0 s'anomenen **punts crítics** i són possibles màxims o mínims.

Simetries d'una funció

Si
$$f(-x) = f(x)$$
 té simetria parell
Si $f(-x) = -f(x)$ té simetria senar

Taxa de variació mitjana de la funció en l'interval [a, b] (TVM)

$$m_{\text{secant}} = \frac{f(b) - f(a)}{b - a}$$

LLIURAMENT7

Angle entre dos vectors

$$\alpha = \arccos \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|} = \arccos \frac{u_1 v_1 + u_2 v_2}{\sqrt{u_1^2 + u_2^2} \sqrt{v_1^2 + v_2^2}}$$

Base canònica o ortonormal

 $\vec{i}=(1,0)$, $\vec{j}=(0,1)$ els quals tenen mòdul 1 i formen un angle de 90°

Combinació lineal de vectors

Fer una combinació lineal de dos vectors significa sumar els vectors prèviament multiplicats per algun escalar. Per exemple: $5\vec{u} - 2\vec{v} = 5(-2, 5) - 2(3, 1) = (-10, 25) - (6, 2) = (-16, 23)$.

Components d'un vector fix

$$\overrightarrow{AB} = B - A = (B_1 - A_1, B_2 - A_2)$$

Condició de vectors paral·lels

$$\frac{u_1}{v_1} = \frac{u_2}{v_2}$$

Condició vectors perpendiculars

Dos vectors són **perpendiculars** si i només si el seu producte escalar és igual a zero $\vec{u} \cdot \vec{v} = 0$.

Definició de producte escalar

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \alpha$$

Equació contínua de la recta

$$\frac{x - P_1}{d_1} = \frac{y - P_2}{d_2}$$

Equació explícita de la recta

$$y = mx + n$$

Equació general de la recta

L'equació general té la forma Ax+By+C=0 on els coeficients A,B són les components del vector normal $\vec{n}=(A,B)$, és a dir, d'un vector perpendicular a la recta. Si volguéssim un vector director hauríem de prendre $\vec{d}=(-B,A)$

Equació punt-pendent de la recta

$$y - P_1 = m \cdot (x - P_2)$$

Equació vectorial de la recta

$$(x, y) = (P_1, P_2) + \lambda(d_1, d_2)$$

Equacions paramètriques de la recta

$$\begin{cases} x = P_1 + \lambda d_1 \\ y = P_2 + \lambda d_2 \end{cases}$$

Mòdul d'un vector

$$|\vec{v}| = \sqrt{v_1^2 + v_2^2}$$

Producte escalar en components

$$\vec{u} \cdot \vec{v} = u_1 \ v_1 + u_2 \ v_2$$

Recta horitzontal

Les rectes horitzontals o constants tenen com a vector director $\vec{d}(1,0)$ (o múltiples) i la seva equació és de la forma y=k.

Recta vertical

En canvi, les rectes verticals representen parets que tenen com a vector director $\vec{d}(0,1)$ (o múltiples) i la seva equació és de la forma x=k.

relació entre vector i pendent

$$m = \frac{d_2}{d_1}$$

Vector unitari. Normalitzar un vector

Un vector és **unitari** si té mòdul 1. Per aconseguir que un vector sigui unitari basta dividir el vector entre el seu mòdul.

LLIURAMENT8

Angle entre dues rectes donats els seus vectors directors.

$$\alpha = \arccos \frac{|\vec{d}_r \cdot \vec{d}_s|}{|\vec{d}_r| |\vec{d}_s|}$$

Definició d'el·lipse

Es defineix el·lipse el conjunt de tots els punts del pla tals que la **suma** de les distàncies als focus F i F' es manté constant.

Definició de la hipèrbola

Es defineix hipèrbola el conjunt de tots els punts del pla tals que la **diferència** de les distàncies als focus F i F' es manté constant.

Definició de paràbola

Es defineix una paràbola el conjunt de tots els punts del pla tals que la distància al focus **igual** a la distància a la directriu.

Distància entre dos punts

$$d(A, B) = |\overrightarrow{AB}| = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2}$$

Distància entre un punt i una recta.

$$d(P, r) = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

Equació de l'el·lipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Relació de distàncies

A més, en una el·lipse es compleix $a^2 = b^2 + c^2$

Equació de la circumferència

$$(x - x_0)^2 + (y - y_0)^2 = R^2$$

Equació de la hipèrbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Relació de distàncies

A més, en una hipèrbola es compleix $c^2=a^2+b^2$

Equació de la paràbola

$$y = \frac{1}{2p}x^2$$

on hem suposat que el vèrtex és al punt V=(0,0). Si el vèrtex és al punt $V=(V_1,V_2)$, l'equació es transforma en

$$y - V_2 = \frac{1}{2p}(x - V_1)^2$$

Excentricitat de les còniques

Circumferència: e = 0 El·lipse: 0 < e < 1 Hipèrbola: e > 1 Paràbola: e = 1

Hipèrbola equilàtera

Les **hipèrboles equilàteres** són aquelles en què els semieixos són iguals a=b. Compleixen que les asímptotes són les rectes $y=\pm x$ les quals formen un angle de 90 graus.

Les còniques

circumferència el·lipse hipèrbola paràbola.

Mediatriu

La **mediatriu** d'un segment d'extrems A, B és la recta que és perpendicular al segment i passa pel punt mitjà.

Punt mitjà d'un segment

$$M = \frac{A+B}{2}$$