Advanced Artificial Intelligence

Hidden Markov Models

Instructors: Fatemeh Mansoori --- University of Isfahan

ed by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are availa

Probability Recap

Conditional probability

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

Product rule

$$P(x,y) = P(x|y)P(y)$$

Chain rule

$$P(X_1, X_2, \dots X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2) \dots$$

=
$$\prod_{i=1}^{n} P(X_i|X_1, \dots, X_{i-1})$$

• X, Y independent if and only if: $\forall x, y : P(x,y) = P(x)P(y)$

 $\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$

Reasoning over Time or Space

- Often, we want to reason about a sequence of observations
 - Speech recognition
 - Robot localization
 - User attention
 - Medical monitoring
- Need to introduce time (or space) into our models

Markov Models

■ Value of X at a given time is called the state

 $P(X_1)$ $P(X_t|X_{t-1})$

- Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities)
- Stationarity assumption: transition probabilities the same at all times
- Same as MDP transition model, but no choice of action

Conditional Independence

- Basic conditional independence:
 - Past and future independent given the present

 - Each time step only depends on the previous
 This is called the (first order) Markov property
- Note that the chain is just a (growable) BN
 - We can always use generic BN reasoning on it if we truncate the chain at a fixed length

Example Markov Chain: Weather

States: X = {rain, sun}

Initial distribution: 1.0 sun

■ CPT P(X_t | X_{t-1}):

X _{t-1}	X,	P(X, X, 1)
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Example Markov Chain: Weather Initial distribution: 1.0 sun What is the probability distribution after one step? $P(X_2 = \text{sun}) = P(X_2 = \text{sun}|X_1 = \text{sun})P(X_1 = \text{sun}) + P(X_2 = \text{sun}|X_1 = \text{rain})P(X_1 = \text{rain})$ $0.9 \cdot 1.0 + 0.3 \cdot 0.0 = 0.9$

Filtering / Monitoring Filtering, or monitoring, is the task of tracking the distribution B₁(X) = P₁(X₁ | e₁, ..., e₁) (the belief state) over time We start with B₁(X) in an initial setting, usually uniform As time passes, or we get observations, we update B(X) The Kalman filter was invented in the 60's and first implemented as a method of trajectory estimation for the Apollo program

Passage of Time • Assume we have current belief $P(X \mid \text{ evidence to date})$ $B(X_t) = P(X_t|e_{1:t})$ • Then, after one time step passes: $P(X_{t+1} \mid e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$ $= \sum_{x_t} P(X_{t+1} \mid x_t, e_{1:t}) P(x_t|e_{1:t})$ $= \sum_{x_t} P(X_{t+1} \mid x_t) P(x_t|e_{1:t})$ • Or compactly: $= \sum_{x_t} P(X_{t+1} \mid x_t) P(x_t|e_{1:t})$ • Basic idea: beliefs get "pushed" through the transitions • With the "8" notation, we have to be careful about what time step t the belief is about, and what

Next Time: Particle Filtering and Applications of HMMs