- 1

ELEC5470 - Convex Optimization, Fall 2018-19

Homework Set #2

Name: Tingyuan LIANG Major: MPhil in ECE E-mail: tliang@ust.hk

I. CONVEX OPTIMIZATION WITH MATLAB

1) Solution to Linear Regression:

a)

$$minimize_{a,b} \sum \phi(r_i)$$
 (1)

subject to:

$$r_i = y_i - (ax_i + b) \tag{2}$$

where the function $\phi(\dot)$ could be:

$$\phi_1(r) = r^2 \tag{3}$$

$$\phi_2(r) = |r| \tag{4}$$

$$\phi_3(r) = \log(1 + r^2) \tag{5}$$

 $r_i = y_i - (ax_i + b)$ is a linear expression

 $\phi_1(r)$ and $\phi_2(r)$ are convex functions (They are actually NORM) but $\phi_3(r)$ is not, since $\phi_3''(r) = \frac{2(1-r^2)}{(1+r^2)^2}$, which is not constantly greater than 0.

Therefore, the problem is convex when the penalty function is $\phi_1(r)$ or $\phi_2(r)$. In contrast, the problem is not convex when the penalty function is $\phi_3(r)$.

b) The procedure for sub-problem (b)(c) is described by the MATLAB source code, which is shown below. According to the experimental result, to conclude, $\phi_1(r)$ is suitable for the samples without outliers and large variance. In contrast, $\phi_2(r)$ has better performance when there are outliers and large variance. Related results are shown in the Figures 1, 2 and 3 below:

Figure 1. noise = randn(50,1)

Figure 2. noise = randn(50,1) + 20*[zeros(19,1);1;zeros(19,1);1;zeros(10,1)];

.

Figure 3. noise = randn(50,1) + 20*[zeros(19,1);1;zeros(19,1);1;zeros(10,1)];

```
clear all;
     | clf;
| randn('seed', 2);
| rand('seed', 2);
| x = -10 + 20*rand(50,1);
| a_true = 2; b_true = 5;
| y = a_true * x + b_true;
| %noise = randn(50,1) + 20*[zeros(19,1);1;zeros(19,1);1;zeros(10,1)];
| %noise = randn(50,1);
      noise = trnd(1,[50,1]);
\begin{vmatrix} 11 & y = y + noise \\ 13 & plot(x, y, b. \end{vmatrix}
      cvx_begin
15
                    variable a_est1(1)
variable b_est1(1)
minimize( norm( y-a_est1 * x - b_est1, 2 ) )
16
 17
 18
      cvx_end
19
      | cvx_end
| x_est1 = (-10:10);
| y_est1 = a_est1 * x_est1 + b_est1;
| hold on;
| plot(x_est1, y_est1, 'r-');
| txt2 = '\phi_1(r) \Rightarrow';
| text(x_est1(14)-3,y_est1(14),txt2)
21
23
24
        grid on
26
27
28
      cvx_begin
                    variable a_est2(1)
variable b_est2(1)
minimize( norm( y-a_est2 * x - b_est2, 1 ) )
30
31
 32
     mnnn...

| cvx_end

| x_est2 = (-10:10);

| y_est2 = a_est2 * x_est2 + b_est2;

| hold on;

| plot(x_est2, y_est2, 'g-');

| txt1 = '\Leftarrow \phi_2(r)';

| cot2(7)+1, y_est2(7), txt1)
33
34
35
36
38
39
      grid on
      | est_error1 = (a_est1-a_true)^2+(b_est1-b_true)^2;
| est_error2 = (a_est2-a_true)^2+(b_est2-b_true)^2;
42
44 | txt = sprintf('%s=%f', 'a_{est1}', a_{est1});

46 | text(-8,21,txt)

47 | txt = sprintf('%s=%f', 'b_{est1}', b_{est1});

48 | text(-8,18,txt)

49 | txt = sprintf('%s=%f', 'error_{est1}', est_error1);
```

```
50 | text(-8,15,txt)

51 | txt = sprintf('%s=%f', 'a_{est2}', a_{est2});

52 | text(0,-9,txt)

53 | txt = sprintf('%s=%f', 'b_{est2}', b_{est2});

54 | text(0,-12,txt)

55 | txt = sprintf('%s=%f', 'error_{est2}', est_{error2});

56 | text(0,-15,txt)

57 | title('Noise(2) (Significant Noise)')
```

2) Solution to Multiuser Transmit Beamforming:

a) The problem (P1) is not convex due the complex vectors in SINR constraints.

To transform it into SOCP, we need to reformulate as below:

$$minimize_{\mathbf{w}_1,\dots,\mathbf{w}_K} \sum_{k=1}^K \|\mathbf{w}_k\|_2^2$$
 (6)

subject to:

$$\mathbf{h}_k^H \mathbf{w}_k \ge \sqrt{\gamma_k \sum_{i \ne k} \|\mathbf{h}_k^H \mathbf{w}_i\|_2^2 + \gamma_k \sigma^2}$$
 (7)

$$Im(\mathbf{h}_k^H \mathbf{w}_k) = 0 \tag{8}$$

The reason why we can suppose $\mathbf{h}_k^H \mathbf{w}_k$ is real number is because for $\mathbf{h}_k^H \mathbf{w}_k$ having imaginary part, we can always change its phase to make it only consist of real part without changing its magnitude. q.e.d

b) To form a convex feasibility problem, we can check whether a given set of SINR constraints can be met under the given transmit sum-power constraint *P*.

$$find \quad \mathbf{w}_1, ..., \mathbf{w}_K$$
 (9)

subject to:

$$\mathbf{h}_k^H \mathbf{w}_k \ge \sqrt{\gamma_k \sum_{i \ne k} \|\mathbf{h}_k^H \mathbf{w}_i\|_2^2 + \gamma_k \sigma^2}$$
 (10)

$$Im(\mathbf{h}_k^H \mathbf{w}_k) = 0 \tag{11}$$

$$\sum_{k=1}^{K} \|\mathbf{w}_k\|_2^2 \le P \tag{12}$$

q.e.d

c) Solution to Phase Transition of Feasibility:

The source code to solve these problem is referred to a project on GitHub:

https://github.com/emilbjornson/optimal-beamforming/blob/master/functionFeasibilityProblem_cvx.m Based on the reference, I modified it to adapt to the problems here. The modified source code is attached to this document.

Before showing the figures and results, to conclude first, relaxed target SINR γ , less users and more antennas will make the problem more feasible, because the constraints are easier to be met.

The figures and results will be shown below, case by case.

i) Fixed User and Antenna:

ii) Fixed Antenna and SINR:

iii) Fixed User and SINR:

All the evaluation is based on the following MATLAB function and different cases are actually to change the input of this function:

```
function [feasible , Wsolution] = HW_TEST2(H, gammavar)

    % This is the source code for HW2 of ELEC 5470. It is referred to the
    % following source code on GitHub.
    % https://github.com/emilbjornson/optimal-beamforming/blob/master/functionFeasibilityProblem_cvx.m
    % The related paper can be found on arXiv: https://arxiv.org/pdf/1404.0408.pdf

     \begin{array}{lll} Kr = size\left(H,1\right); \; \% Number \; of \; users \\ N = size\left(H,2\right); \; \% Number \; of \; transmit \; antennas \; (in \; total) \\ D = repmat\left(eye\left(N\right), \begin{bmatrix}1 \; 1 \; Kr\right]\right); \end{array}
     %Solve the power minimization under QoS requirements problem using CVX
14
      cvx_begin
      cvx_quiet(true); % This suppresses screen output from the solver
15
16
     variable W(N,Kr) complex; %Variable for N x Kr beamforming matrix variable POWER %Scaling parameter for power constraints
18
19
      minimize POWER %Minimize the power indirectly by scaling power constraints
20
21
     subject to
22
23
     %SINR constraints (Kr constraints) for k = 1:Kr
24
25
26
              %Channels of the signal intended for user i when it reaches user k
27
              hkD = zeros(Kr,N);
for i = 1:Kr
hkD(i,:) = H(k,:)*D(:,:,i);
28
29
30
31
32
33
34
              imag(hkD(k,:)*W(:,k)) == 0; %Useful link is assumed to be real-valued
               \begin{tabular}{ll} %SOCP formulation for the SINR constraint of user $k$ real(hkD($k,:)*W(:,k)) >= sqrt(gammavar)*norm([1 hkD($k,:)*W(:,[1:k-1 k+1:Kr]) ]); \\ \end{tabular} 
35
     end
37
38
     %Power constraints (L constraints) scaled by the variable betavar norm(W, 'fro') <= POWER;
POWER >= 0; %Power constraints must be positive
40
41
42
43
44
45
      cvx_end
   | %Analyze result and prepare the output variables.
| if isempty(strfind(cvx_status, 'Solved')) %Both power minimization problem and
| feasibility problem are infeasible.
| feasible = false;
| Wsolution = [];
| else %Both power minimization problem and feasibility problem are feasible.
| feasible = true;
46
48
49
```

```
52 | Wsolution = W;
53 | POWER
54 | end
```

For each case, the procedure of input data generation is listed as below:

i) Fixed User and Antenna:

```
clear all;
     K = 50; %user number
N = 3; %antenna number
     \begin{array}{lll} gamma\_dB\_Seq &=& -13:0.5:-11\\ feasibility\_ratio &=& -13:0.5:-11\\ gamma\_index &=& 0 \end{array}
    for gamma_dB=-13:0.5:-11 gamma_dB
10
11
             gamma_index = gamma_index + 1;
12
             ok_num = 0;
for test=1:20
13
14
15
                    H = []; %initialize H matrix
16
17
                      \begin{array}{ll} \text{for } i = 1 : K \\ & h = 1 / s \, q \, rt \, (2 * K) * m v n r n d \, (zeros \, (N, 1) \, , eye \, (N) \, , 1) \, ' + 1 \, i / s \, q \, rt \, (2 * K) * m v n r n d \, (zeros \, (N, 1) \, , eye \, (N) \, , 1) \, ' ; \\ & H = [H \, h \, ]; \end{array} 
19
20
                     end
21
22
23
24
                    H = H';
                     gamma = db2mag(2*gamma_dB);
                     [feasible , Wsolution] = HW_TEST2(H,gamma); ok_num = ok_num + feasible;
27
28
             end feasibility_ratio(gamma_index) = ok_num / 20.0
30
31 end
   plot (gamma_dB_Seq, feasibility_ratio)
     grid on
```

ii) Fixed Antenna and SINR:

```
clear all;
                                        N = 3; %antenna number
                                      K_seq = 95:1:100
feasibility_ratio = 95:1:100
K_index = 0
gamma_dB = -15; %SINR / dB
                                          for K=95:1:100 %user number
10
11
12
                                                                                                     K
K_index = K_index + 1;
ok_num = 0;
for test=1:20
  13
14
15
16
                                                                                                                                                         H = []; %initialize H matrix
17
18
                                                                                                                                                                for i=1:K
19
                                                                                                                                                                                                                      h = \frac{1}{\sqrt{\sqrt{2*K}}} \cdot \frac{1}{\sqrt{2*K}} \cdot 
20
                                                                                                                                                                                                                    (1) \cdot (2 + K) + M \times (1)

(1) \cdot (2 + K) + M \times (1)

(1) \cdot (2 + K) + M \times (1)

(1) \cdot (2 + K) + M \times (1)

(1) \cdot (2 + K) + M \times (1)

(1) \cdot (2 + K) + M \times (1)

(1) \cdot (2 + K) + M \times (1)

(1) \cdot (2 + K) + M \times (1)

(1) \cdot (2 + K) + M \times (1)

(2 + K) + M \times (1)

(3 + K) + M \times (1
21
                                                                                                                                                              end
22
23
                                                                                                                                                         H = H';
24
25
                                                                                                                                                              gamma = db2mag(2*gamma_dB);
26
27
                                                                                                                                                                [feasible, Wsolution] = HW_TEST2(H, gamma);
28
                                                                                                                                                              ok_num = ok_num + feasible;
30
                                                                                                       feasibility_ratio(K_index) = ok_num / 20.0
31
33 | plot (K_seq, feasibility_ratio)
                                        grid on
```

iii) Fixed User and SINR:

```
clear all;
\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} K = 100; %antenna number
| N_seq = 7:1:12
| N_seq = 7:1:12
| feasibility_ratio = 7:1:12
| N_index = 0
| gamma_dB = -10; %SINR / dB
for N=7:1:12 %user number
           N
N_index = N_index + 1;
ok_num = 0;
for test=1:20
12
13
14
15
16
                 H = []; %initialize H matrix
17
18
                  for i = 1:K
    h = 1/sqrt(2*K)*mvnrnd(zeros(N,1),eye(N),1)'+1i/sqrt(2*K)*mvnrnd(zeros(N,1),eye(N),1)';
    H = [H h];
19
20
                  end
22 |
                 H = H';
24
25
                  gamma = db2mag(2*gamma_dB);
26
27
                  [feasible ,Wsolution] = HW_TEST2(H,gamma); ok_num = ok_num + feasible;
28
29
           end
feasibility_ratio(N_index) = ok_num / 20.0
31 j
32 | end
33 | plot (N_seq, feasibility_ratio)
34 | grid on
```