

La mediazione

• In presenza di una relazione tre una IV (X) e una VD (Y), possiamo domandarci se uno dei motivi per cui osserviamo un effetto è l'intervento di una terza variabile M, che è responsabile (in parte o del tutto) dell'effetto originale Modello 1

Esempio

- Consideriamo l'esempio visto ieri della campagna pubblicitaria.
- Una campagna pubblicitaria contro il fumo è stata testata chiedendo ai partecipanti di ricordare il maggior numero di spot della campagna (misura di esposizione) (*memory*), i rischi percepiti del fumo (*riskperception*), e l'avversione al fumo (*aversion*).

Quesito sul perchè

Supponiamo di aver trovato una relazione tra memory e aversion.

- Possiamo domandarci perché memory abbia un effetto su aversion
 - Possiamo ipotizzare che coloro che sono stati più esposti alla campagna (alti punteggi di *memory*), abbiano una maggiore consapevolezza dei rischi (alta *riskperception*)

memory riskperception

Quesito sul perchè

- Possiamo domandarci perché memory abbia un effetto su aversion
 - Possiamo ipotizzare che coloro che sono stati più esposti alla campagna (alti punteggi di *memory*), abbiano una maggiore consapevolezza dei rischi (alta *riskperception*)

• E che avere maggiore consapevolezza dei rischi porti a maggiore avversione

Esempio

■ E dunque, uno dei motivi per cui *memory* ha un effetto su *aversion*, è che *memory* influenza *risk perception*, e riskperception aumentano l'avversione (*aversion*)

Modello di mediazione

Il modello di mediazione (semplice) prevede che il processo per cui una variabile X ha un effetto su Y è descrivibile come segue: X ha un effetto su M, M ha un effetto su Y, e perciò
 X ha un effetto su Y per via dell'intervento di M. Modello 1

Caratteristiche del mediatore

• Il modello (logico) di mediazione regge se la variabile mediatore possiede alcune caratteristiche:

• M deve poter essere causata (o almeno dipendere logicamente) da X

Caratteristiche del mediatore

- Il modello (logico) di mediazione regge se la variabile mediatore possiede alcune caratteristiche:
 - M deve poter causare (o almeno modificare logicamente) Y
 - M deve poter causare Y indipendentemente da X

Mediazione Statistica

• Se queste caratteristiche sono logicamente, possiamo stimare gli effetti mediante una serie di modelli lineari generali (regressioni) e quantificare il modello

• La mediazione statistica stima e quantifica un modello di mediazione, ovviamente non è in grado di giustificarne la logica

Condizioni statistiche

■ Il modello (statistico) di mediazione regge se si verificano le seguenti condizioni:

- X esercita un effetto non nullo sulla variabile mediatore M
 - L'effetto si ottiene con un regressione semplice con X come IV e Y come DV
 - Il coefficiente che si ottiene deve essere non nullo

Condizioni statistiche

- Il modello (statistico) di mediazione regge se si verificano le seguenti condizioni:
 - M esercita un effetto non nullo su Y, indipendentemente da X
 - L'effetto si ottiene con un regressione multipla con Y come DV e X e M come IV
 - Il coefficiente che si ottiene deve essere non nullo

L'effetto mediato

L'effetto mediato da M rispetto all'effetto di X su Y sarà dato dal prodotto dei coefficienti relative alla parte mediazionale del modello

$$EM = a \cdot b$$

L'effetto totale (semplice) di X su Y viene decomposto in effetto mediato ed effetto

Esempio (dati inventati)

Riduzione dell'effetto

Ciò implica che l'effetto diretto di X su Y sarà ridotto rispetto all'effetto totale, e sarà
 ridotto esattamente dell'effetto mediato

Effetto di mediazione

Diremo che c'è un effetto mediato se il prodotto a*b è diverso da zero

$$a \cdot b \neq 0$$

• Vedremo che non è così semplice stabilirlo!

Esempio

Partiamo dalla prima regressione, per stimare l'effetto totale


```
## Call:
## lm(formula = aversion ~ memory, data = smoke)
##
## Residuals:
##
      Min 1Q Median 3Q
                                       Max
## -99.973 -16.213 -1.817 13.050 97.395
##
                                           Effetto totale 9.93
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                            <del>11.697</del> -2.218 0.02887 *
## (Intercept)
                 25.943
                  9.933
                             3.639 2.730 0.00751 **
## memory
```

Esempio

Seconda regressione, per stimare l'effetto di X su M


```
## Call:
## lm(formula = riskperception ~ memory, data = smoke)
##
## Residuals:
      Min 1Q Median 3Q
                                   Max
##
## -40.313 -12.153 -0.719 10.278 51.016
##
                                                A=5522
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
                          7.006 4.727 7.64e-06 ***
## (Intercept) 33.115
## memory
         5.522 -
                        2.179 2.534 0.0129 *
## ---
```

Esempio (dati veri)

■ Terza regressione, per stimare l'effetto di c' e b


```
## Call:
## lm(formula = aversion ~ riskperception + memory, data = smoke)
##
## Residuals:
##
      Min
               1Q Median
                              30
                                     Max
## -64.489 -6.869 1.276 8.542 38.694
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
  (Intercept)
                  72.00753
                              6.57749 -11.200 <2e-16 ***
## riskperception
                   1.44118
                              0.08558 16.839 <2e-16 ***
                               .90592 1.036 0.303
## memory
                   1.97548
##
```

Effetto mediato

Sulla base dei risultati

$$EM = 9.93 - 1.97 = 7.96$$

$$EM = 5.52 \cdot 1.44 = 7.96$$

Effect size dell'effetto mediato

 Per riportare un effect size si può standardizzare le variabili e ottenere un effetto mediato standardizzato

Oppure esprimere l'effetto mediato come propozione (approssimata) dell'effetto totale

$$pEM = \frac{a \cdot b}{c}$$

$$pEM = \frac{7.96}{9.93} = .801$$

Circa l'80% dell'effetto di *memory* su *aversion* è mediato da *risk*

Mediazione parziale o totale

- Alcuni autori parlano di mediazione parziale quanto c' è comunque significativo
- E di mediazione totale quando c' non è significativo.
- Sono concetti desueti da evitare. Meglio parlare di proporzione di effetto mediato

Significatività!

- Per decidere se il nostro effetto mediato dobbiamo operare un test inferenziale su a*b
- Vi sono molti test, tra cui il Sobel Test, Aroian test, Goodman test, che si differenziano nel come stimano l'errore standard
- Sappiamo però che questi test possono essere distorti, in quanto si basano sull'assunzione che il prodotto a*b sia distribuito normale o t di Student, che in realtà non lo è
- Un'alternativa valida è usare il metodo bootstraap

Logica Bootstrap

Stabilire la significatività

Calcola l'intervallo di confidenza

Significatività!

- Per decidere se il nostro effetto mediato otterremo un intervallo di confidenza del prodotto a*b
- Se l'intervallo contiene zero diremo che l'effetto non è significativo
- Se l'intervallo non contiene zero, diremo che è significativo

Significatività!

- Esistono molti modi per calcolare gli intervalli di confidenza:
 - "asymp" → calcola l'intervallo assumento una distribuzione normale. Sobel o Goodman test (z-test)
 - "bca" → metodo bootstrap, con bias correction
 - "perc" → metodo bootstrap dei percentili (consigliato)

jamovi

 Jamovi offre un modulo che consente di stimare qualunque modello di mediazione, dal più semplice al più complesso

jamovi

GLM mediation model

jAMM

Semplicemente definiamo il ruolo delle variabili

jAMM

■ Il software determina il modello da stimare e lo indica in una tabella informativa

Models Info		
Mediators Models		
	m1	riskperception ~ memory
Full Model	m2	aversion ~ riskperception + memory
Indirect Effects		
	IE 1	memory ⇒ riskperception ⇒ aversion

jAMM

E produce il path diagram corrispondente al modello richiesto
 Conceptual Diagram

E stima tutti i coefficienti necessari

Mediation

Indirect and Total Effects

		95% C.I. (a)						
Туре	Effect	Estimate	SE	Lower	Upper	β	Z	р
Indirect	memory \Rightarrow riskperception \Rightarrow aversion	7.96	3.14	1.80	14.12	0.2130	2.53	0.011
Direct	memory ⇒ aversion	1.98	1.88	-1.70	5.65	0.0529	1.05	0.293
Total	memory ⇒ aversion	9.93	3.60	2.87	16.99	0.2658	2.76	0.006

Note. (a) Confidence intervals computed with method: Standard (Delta method)

"Indirect" significa "mediato"

P-values e C.I. sono calcolati con il metodo standard, simile al Sobel test

• jAMM usa "R lavaan" per stimare i componenti

E stima tutti i coefficienti necessari

Mediation

Indirect and Total Effects

			95% C.I. (a)					
Туре	Effect	Estimate	SE	Lower	Upper	β	Z	р
Indirect	memory \Rightarrow riskperception \Rightarrow aversion	7.96	3.14	1.80	14.12	0.2130	2.53	0.011
Direct	memory ⇒ aversion	1.98	1.88	-1.70	5.65	0.0529	1.05	0.293
Total	memory ⇒ aversion	9.93	3.60	2.87	16.99	0.2658	2.76	0.006

Note. (a) Confidence intervals computed with method: Standard (Delta method)

Coefficienti standardizzati

• E' possibile chiedere anche il p-value e gli intervalli di confidenza con il metodo bootstrap

• E' possibile chiedere anche il p-value e gli intervalli di confidenza con il metodo

bootstrap

Mediation

Indirect and Total Effects

		95% C.I. (a)						
Туре	Effect	Estimate	SE	Lower	Upper	β	Z	р
Indirect	memory \Rightarrow riskperception \Rightarrow aversion	7.96	3.42	2.07	15.64	0.2130	2.33	0.020
Direct	memory ⇒ aversion	1.98	1.75	-1.32	5.80	0.0529	1.13	0.259
Total	memory ⇒ aversion	9.93	3.60	2.87	16.99	0.2658	2.76	0.006

Note. (a) Confidence intervals computed with method: Bootstrap percentiles

Bootstrap "Percent" è il metodo prescelto nelle opzioni

jamovi jAMM

• Possiamo anche chiedere di produrre le **componenti** del modello, cioè i singoli coefficienti

Indirect and Total Effects

				95% C	C.I. (a)			
Туре	Effect	Estimate	SE	Lower	Upper	β	Z	р
Indirect	memory ⇒ riskperception ⇒ aversion	7.96	3.368	1.73	14.95	0.2130	2.36	0.018
Component	memory ⇒ riskperception	5.52	2.274	1.22	10.37	0.2479	2.43	0.015
	$risk perception \Rightarrow aversion$	1.44	0.114	1.22	1.65	0.8590	12.64	< .001
Direct	memory ⇒ aversion	1.98	1.748	-1.60	5.47	0.0529	1.13	0.258
Total	memory ⇒ aversion	9.93	3.602	2.87	16.99	0.2658	2.76	0.006

Note. (a) Confidence intervals computed with method: Bootstrap percentiles

Coefficienti a e b

Esempio con SPSS

• Anche in SPSS è possibile installare un modulo aggiuntivo, chiamato PROCESS, che facilita la stima dei parametri del modello di mediazione

Non è molto intuitivo

Bisogna comunque capire cosa si sta facendo

Bootstrap Process

Bootstrap

 Si ottiene l'output di tutte le regressioni e gli effetti indiretti con gli intervalli di confidenza bootstrap

```
******* DIRECT AND INDIRECT EFFECTS
Direct effect of X on Y
                SE
    Effect
                                         LLCI
                                                  ULCI
                                  р
    1.9755 1.9059 1.0365 .3025 -1.8072 5.7582
Indirect effect of X on Y
       Effect
               Boot SE
                       BootLLCI
                                BootULCI
risk
       7.9576 3.4260
                         1.7802 15.5038
```

Adeguatezza strutturale

 Bisogna notare che la stima del modello non garantisce che la struttura sia corretta dal punto di vista logico e causale

 Ci sono infatti dei modelli alternativi alla mediazione che potrebbero spiegare i dati altrettanto bene

Confounder model

• Collider model

Confouder model

Una terza variabile interveniente è un confounder se causa sia X che Y

• Se noi stimiamo un modell X->M->Y, stiamo rappresentando non correttamente la stuttura relazionale delle variabili, a parità di coefficenti

 Manipolando sperimentalmente X or lavorando su dati longitudinali può risolvere il problema

Collider effect

 Una terza variabile interveniente è un collider se è causata sia da X che da Y

• Se noi stimiamo un modell X->M->Y, stiamo rappresentando non correttamente la stuttura relazionale delle variabili, a parità di coefficenti

 Manipolando sperimentalmente X or lavorando su dati longitudinali può risolvere il problema

Mediazione multipla

■ E' possibile estendere il modello di mediazione a più di un mediatore! Scala di associazione

$$EM_{risk} = a \cdot b$$
 $EM_{imag} = d \cdot e$
 $EM_{tot} = a \cdot b + d \cdot e$

Esempio con jamovi jAMM

 In jamovi jAMM aggiungiamo una ulteriore variabile nel ruolo di mediatore

jamovi jAMM

Il path diagram si aggiorna di conseguenza

jamovi jAMM

E si aggiornano le stime dei parametri

Mediation

Indirect and Total Effects

				95% C	c.l. (a)			
Type	Effect	Estimate	SE	Lower	Upper	β	Z	р
Indirect	memory \Rightarrow riskperception \Rightarrow aversion	7.962	3.1433	1.8012	14.123	0.2130	2.533	0.01
	memory \Rightarrow imaging \Rightarrow aversion	1.525	0.7422	0.0707	2.980	0.0408	2.055	0.04
Component	memory ⇒ riskperception	5.522	2.1574	1.2932	9.750	0.2479	2.559	0.01
	riskperception \Rightarrow aversion	1.442	0.0815	1.2822	1.602	0.8591	17.686	< .00
	memory ⇒ imaging	-0.547	0.1655	-0.8710	-0.222	-0.3137	-3.304	< .00
	$imaging \Rightarrow aversion$	-2.790	1.0630	-4.8737	-0.707	-0.1301	-2.625	0.00
Direct	memory ⇒ aversion	0.446	1.9063	-3.2906	4.182	0.0119	0.234	0.81
Total	memory ⇒ aversion	9.933	3.6019	2.8734	16.993	0.2658	2.758	0.00

Note. (a) Confidence intervals computed with method: Standard (Delta method)

Mediazione multipla

E' possibile estendere il modello di mediazione a più di un mediatore!

$$EM_{risk} = 7.96$$
 $EM_{imag} = 1.52$

$$EM_{tot} = 9.48$$

Path analysis

Che può essere esteso facilmente

- Una regressione per ogni variabile che riceve una freccia
- DV riceve la freccia, IV mandano la freccia
- L'effetto mediato è sempre il prodotto tra path $IV \rightarrow Med \ e Med \rightarrow DV$

 Possiamo immaginare modelli di mediazione in cui i mediatori sono legati in una catena causale

In questo esampio abbiamo abbiamo che l'associazione tra sè e una marca di un prodotto è mediato dall'atteggiamento implicito, che a sua volta è mediato da quello espicito*

 Teoricamente, il modello sequenziale aggiunge un sottomodello simplice per oggi possibile mediatore

In pratica, stimiamo ogni componente con una opportuna regressione

- Faremo una regressione per ogni variabile che riceve una freccia
- In ogni regressione, la variabile che riceve almeno una freccia funge da dipendente e le variabili che mandano le frecce da indipendenti

Effetto mediato

- Gli effetti mediati si ottengono moltiplicando le componenti lungo il percorso che lega X a Y
 - X su Y attraverso M1 e M2: a*b*c
 - X su Y attraverso M1 tenendo costante M2: a*e
 - X su Y attraverso M2 tenendo costante M1: d*c

In jAMM module, setteremo i ruoli delle variabili come nella mediazione multipla, ma aggiungiamo un mediatore come predittore

dell'altro

 In jAMM module, setteremo i ruoli delle variabili come nella mediazione multipla, ma aggiungiamo un mediatore come predittore dell'altro

Il path diagram si aggiorna autimaticamente

Regressioni stimate dal software

Models Info		
Mediators Mode	els	
	m1	IA ~ SA
	m2	EA~SA,+IA
Full Model		
	m3	WtB ~ IA + EA + SA
Indirect Effects		
	IE 1	$SA \Rightarrow IA \Rightarrow WtB$
	IE 2	$SA \Rightarrow EA \Rightarrow WtB$
	IE 3	$SA \Rightarrow IA \Rightarrow EA \Rightarrow WtB$

risultati

Indirect and Total Effects

				95% C	C.I. (a)			
Туре	Effect	Estimate	SE	Lower	Upper	β	Z	р
Indirect	$SA \Rightarrow IA \Rightarrow WtB$	0.00260	0.0242	-0.0448	0.0500	0.00260	0.107	0.914
	$SA \Rightarrow EA \Rightarrow WtB$	0.04298	0.0612	-0.0769	0.1628	0.04298	0.703	0.482
	$SA \Rightarrow IA \Rightarrow EA \Rightarrow WtB$	0.07793	0.0298	0.0195	0.1363	0.07792	2.615	0.009
Component	SA ⇒ IA	0.32488	0.0863	0.1556	0.4941	0.32485	3.763	< .001
	$IA \Rightarrow WtB$	0.00799	0.0744	-0.1379	0.1539	0.00799	0.107	0.914
	$SA \Rightarrow EA$	0.06301	0.0894	-0.1122	0.2382	0.06300	0.705	0.481
	$EA \Rightarrow WtB$	0.68213	0.0715	0.5420	0.8223	0.68210	9.538	< .001
	$IA \Rightarrow EA$	0.35165	0.0894	0.1764	0.5269	0.35165	3.933	< .001
Direct	$SA \Rightarrow WtB$	0.01561	0.0702	-0.1220	0.1532	0.01561	0.222	0.824
Total	$SA \Rightarrow WtB$	0.13912	0.0908	-0.0388	0.3171	0.13911	1.532	0.125

Note. (a) Confidence intervals computed with method: Standard (Delta method)

Indirect and Total Effects

			95% C.I. (a)					
Туре	Effect	Estimate	SE	Lower	Upper	β	Z	р
Indirect	$SA \Rightarrow IA \Rightarrow WtB$	0.00260	0.0242	-0.0448	0.0500	0.00260	0.107	0.914
	$SA \Rightarrow EA \Rightarrow WtB$	0.04298	0.0612	-0.0769	0.1628	0.04298	0.703	0.482
	$SA \Rightarrow IA \Rightarrow EA \Rightarrow WtB$	0.07793	0.0298	0.0195	0.1363	0.07792	2.615	0.009
Component	$0.0 \sim 10$	ሀ 33/188	ሀ ሀሄደሪ	0 1556	0.4041	U 33/182	2 762	∠ ∩∩1

$$SA \rightarrow IA \rightarrow WtB = a*e = 0.002$$
 $SA \rightarrow EA \rightarrow WtB = d*c = 0.042$

$$SA \rightarrow IA \rightarrow EA \rightarrow WtB = d*c = 0.077$$

Mediazione con variabili indipendenti categoriche

Mediazione con VI categoriche

- Abbiamo visto che le variabile categoriche si inseriscono nel GLM come dummy
 (0_vs_1)
- Ogni dummy ha un suo coefficiente di regressione, che mostra la differenza media tra il reference group e il gruppo con dummy=1
- Dunque possiamo stimare la mediazione come se le dummies fossero semplicemente delle variabile categoriche multiple.

Più di due categorie

- Quando si hanno più di due categorie, si rappresentano le variabili mediante una serie di dummy variables
- Una dummy è una variabile dicotomica
- Consideriamo un esempio come il precendente, ma con tre gruppi: Ancora bassa, Ancora alta, e no Ancora

Medie per gruppo

0 1 2

24.14 21.12 39.80

Più di due categorie

- L'informazione contenuta in una variabile nominale (K>2) può essere rappresentata da un numero K-1 variabili dicotomiche
- K-1 variabili dicotomiche è il numero minore di dicotomiche in grado di rappresentare i gruppi

Queste variabili sono dette dummies

Possiamo distinguere i gruppi? Gruppi: Control, Low, High

Variabile	Categoria	var1	var2	
	Control	0	0	
Groups	Low	1	0	
	High	0	1	

3 gruppi, 2 dummies K gruppi, K-1 dummies

Coefficienti per le dummies

Se usiamo queste variabili in una regressione...

$$Y = a + B_1 \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + B_2 \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 Control Low High

Cosa è il termine costante a?

Il valore medio atteso di DV per tutte le dummies uguali a zero

$$Y = a + B_1 \cdot 0 + B_2 \cdot 0 = a = \overline{Y}_{control}$$

Coefficienti per le dummies

• Cosa è il B associato a var1?

$$Y = a + B_1 \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + B_2 \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 Control Low High

Cosa è il coefficiente B1?

$$Y = \overline{Y}_{control} + B_1 \cdot Low + B_2 \cdot 0$$

$$B_1 = \overline{Y}_{Low} - \overline{Y}_{Control}$$

Differenza tra Low e Control

Coefficienti per le dummies

Cosa è il B associato a var2?

$$Var1 \qquad Var2$$

$$Y = a + B_1 \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + B_2 \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad Control$$

$$Low$$

$$High$$

Cosa è il coefficiente B2?

$$Y = \overline{Y}_{control} + B_1 \cdot 0 + B_2 \cdot High$$

$$B_2 = \overline{Y}_{High} - \overline{Y}_{Control}$$

Differenza tra High e Control

Esempio

- In un esperimento sulla cooperazione (*again*) abbiamo misurato il livello di cooperazione in un *public good*, in tre condizioni sperimentali diverse
 - *consistent punishment*: chi cooperava sotto una certa soglia poteva essere punito con una multa
 - *inconsistent punishment*: ogni partecipante poteva essere punito dagli altri senza particolari motivi
 - non punishment,: nessuna punizione possibile
- L'ipotesi è che gli effetti del **punishment type** sulla cooperazione (*coop*) siano mediati dal senso di appartenenza (*belongingness*)

Esempio

Analizzando i dati con un GLM (VD=coop)

ANOVA Omnibus tests

6674.884	_			
	2	7.484	< .001	0.122
6674.884	2	7.484	< .001	0.122
48159.026	108			
54833.910	110			
	18159.026	18159.026 108	18159.026 108	18159.026 108

Plots

Esempio

Analizzando i dati con un GLM (VD=belongingness)

ANOVA Omnibus tests

	SS	df	F	р	η²p
Model	18.382	2	4.048	0.020	0.070
punish	18.382	2	4.048	0.020	0.070
Residuals	245.204	108			
Total	263.586	110			

Modello logico

Il modello logico della mediazione

Modello Statistico

• Una variabile a tre gruppi viene rappresentata da due dummies

Variabi	ile Gruppi	Punish1	Punish2	
	No punish	0	0	
Punish	Inconsistent	1	0	
	consistent	0	1	

E così sarà rappresentata nel modello di mediazione

Interpretazione

Variabi	ile Gruppi	Punish	1 Punish2	
	No punish	0	0	
Punish	Inconsistent	1	0	
	consistent	0	1	

Stima: jAMM

In jAMM dobbiamo mettere la variabile dipendente categorica nel ruolo di

"factors"

Stima

Tabella informativa

Models Info		
Mediators Models		
Wediatoro Wodero	m1	belong ~ punish
Full Model	m2	coop ~ belong + punish
Indirect Effects	IE 1	punish ⇒ belong ⇒ coop

Stima

Il path diagram mostra solo la variabile indipendente, ma...

Model diagram notes

Categorical independent variables (factors) are shown with only one rectangle, but their effect is estimated using contrast variables

For variable punish the contrasts are: punish1 = Consistent - Control, punish2 = Inconsistent - Control

Stima

Nei risultati troviamo le dummies

Punish1: Differenza media tra Consist e Control in cooperazione

Mediation

Indirect and Total Effects

		_		95% C	C.I. (a)	_		
Type	Effect	Estimate	SE	Lower	Upper	β	Z	p
Indirect	punish1 ⇒ belong ⇒ coop	0.528	1.737	-2.877	3.932	0.0112	0.304	0.761
	punish2 ⇒ belong ⇒ coop	-4.102	2.015	-8.052	-0.153	-0.0864	-2.036	0.042
Component	punish1 ⇒ belong	0.105	0.343	-0.568	0.777	0.0320	0.305	0.761
	belong ⇒ coop	5.047	1.241	2.614	7.479	0.3499	4.067	< .001
	punish2 ⇒ belong	-0.813	0.346	-1.490	-0.135	-0.2469	-2.351	0.019
Direct	punish1 ⇒ coop	2.287	4.490	-6.513	11.088	0.0485	0.509	0.610
	punish2 ⇒ coop	-10.889	4.631	-19.965	-1.813	-0.2293	-2.351	0.019
Total	punish1 ⇒ coop	2.815	4.833	-6.657	12.287	0.0597	0.583	0.560
	punish2 ⇒ coop	-14.991	4.866	-24.529	-5.453	-0.3157	-3.081	0.002

Note. (a) Confidence intervals computed with method: Standard (Delta method)

Punish2: Differenza media tra Inconsist e Control in cooperazione

Interpretazione

 Consis-Control
 punish1 ⇒ belong ⇒ coop
 0.528

 Incon-Control
 punish2 ⇒ belong ⇒ coop
 -4.102

Mediazione Multivariata

più di una variabile dipendente

Path Analysis

- Concettualmente, tutti i modelli di mediazione sono dei modelli di path analysis
- I software dedicati (jAMM, medmod, PROCESS), consentono di stimare modelli di mediazione con solo **una variabile dipendente**
- Se abbiamo più di una variabile dipendente, dobbiamo utilizzare un software
 per la path analysis

Mediazione Multivariata

E' possibile estendere il modello di mediazione a più di una dipendente!

• Tanto più le variabili dipendenti sono correlate, tanto i risultati del modello multivariato differiranno dai risultati di due modelli separati

jamovi PATHj

In jamovi possiamo usare il modulo specifico per la path analysis

Pros & Cons

• Il modulo è più flessibile di jAMM

Consente di stimare modelli più complessi, compresi modelli multivariati

Il modulo è generico

Ricostruire i risultati è meno intuitivo

Costruire un modello di path analysis

• In un modello di path analysis, tutte le variabili che ricevono una freccia sono dette **endogene**

Quelle che non la ricevono, sono dette esogene

Costruire un modello di path analysis

In un modello di path analysis, tutte le variabili che ricevono una freccia sono

Quelle che non la ricevono, sono dette esogene

• Il modulo di path analysis lo troviamo sotto il menu **SEM**

• Notiamo che sia le dipendenti che il mediatore(i) vanno inseriti come

Endogenous variables

Dobbiamo poi strutturare le relazioni per definire il modello corretto

Costruire un modello di path analysis

Possiamo anche chiedere di calcolare gli effetti indiretti (cioè mediati)

• I risultati presentano varie tabelle (il modulo è generico)

■ I coefficienti e gli effetti indiretti

Parameter Estimates

Label	Dep	Pred	Estimate	SE	Lower	Upper	β	Z	p
p1	y1	m1	0.670	0.045	0.581	0.758	0.707	14.871	< .001
p2	y1	x1	0.673	0.107	0.463	0.883	0.299	6.287	< .001
р3	y2	m1	0.120	0.068	-0.014	0.253	0.244	1.761	0.078
p4	y2	x1	-0.156	0.162	-0.473	0.161	-0.133	-0.962	0.336
p5	m1	x1	1.675	0.169	1.344	2.005	0.705	9.934	< .001

[4]

Defined Parameters

				nce Intervals					
Label	Description	Parameter	Estimate	SE	Lower	Upper	β	Z	p
IE1	$x1 \Rightarrow m1 \Rightarrow y1$	p5*p1	1.122	0.136	0.856	1.388	0.498	8.260	< .001
IE2	$x1 \Rightarrow m1 \Rightarrow y2$	p5*p3	0.201	0.116	-0.026	0.428	0.172	1.734	0.083

Ricostruiamo i coefficienti del modello

					95% Confider	nce Intervals			
Label	Dep	Pred	Estimate	SE	Lower	Upper	β	Z	p
p1	y1	m1	0.670	0.045	0.581	0.758	0.707	14.871	< .001
p2	y1	x1	0.673	0.107	0.463	0.883	0.299	6.287	< .001
р3	y2	m1	0.120	0.068	-0.014	0.253	0.244	1.761	0.078
p4	v2	x1	-0.156	0.162	-0.473	0.161	-0.133	-0.962	0.336
p5	m1	x1	1.675	0.169	1.344	2.005	0.705	9.934	< .001

Ricostruiamo i coefficienti del modello

					95% Confider				
Label	Dep	Pred	Estimate	SE	Lower	Upper	β	Z	p
p1	y1	m1	0.670	0.045	0.581	0.758	0.707	14.871	< .001
p2	y1	x1	0.673	0.107	0.463	0.883	0.299	6.287	< .001
р3	y2	m1	0.120	0.068	-0.014	0.253	0.244	1.761	0.078
p4	y2	x1	-0.156	0.162	-0.473	0.161	-0.133	-0.962	0.336
p5	m1	x1	1.675	0.169	1.344	2.005	0.705	9.934	< .001

Ricostruiamo i coefficienti del modello

			95% Confidence Intervals							
Label	Dep	Pred	Estimate	SE	Lower	Upper	β	Z	p	
p1	y1	m1	0.670	0.045	0.581	0.758	0.707	14.871	< .001	
p2	y1	x1	0.673	0.107	0.463	0.883	0.299	6.287	< .001	
р3	y2	m1	0.120	0.068	-0.014	0.253	0.244	1.761	0.078	
p4	y2	x1	-0.156	0.162	-0.473	0.161	-0.133	-0.962	0.336	
p5	m1	x1	1.675	0.169	1.344	2.005	0.705	9.934	< .001	

Ricostruiamo i coefficienti del modello

					95% Confider	nce Intervals			
Label	Dep	Pred	Estimate	SE	Lower	Upper	β	Z	p
p1	y1	m1	0.670	0.045	0.581	0.758	0.707	14.871	< .001
p2	y1	x1	0.673	0.107	0.463	0.883	0.299	6.287	< .001
р3	y2	m1	0.120	0.068	-0.014	0.253	0.244	1.761	0.078
p4	y2	x1	-0.156	0.162	-0.473	0.161	-0.133	-0.962	0.336
p5	m1	x1	1.675	0.169	1.344	2.005	0.705	9.934	< .001

PATHj: Effetti mediati

Ricostruiamo i coefficienti del modello

Defined Parameters

					95% Confider	nce Intervals			
Label	Description	Parameter	Estimate	SE	Lower	Upper	β	Z	p
IE1 IE2	$x1 \Rightarrow m1 \Rightarrow y1$ $x1 \Rightarrow m1 \Rightarrow y2$		1.122 0.201	0.136 0.116	0.856 -0.026	1.388 0.428	0.498 0.172	8.260 1.734	< .001 0.083

Morale

- La mediazione consente di strutturare le relazioni lineari tra variabili in una sequenza di variabili a proprio piacere
- Dal punto di vista pratico, il software per la mediazione può essere usato per qualsiasi modello univariato (una dipendente)
- Per i modelli multivariati (più di una dipendente) useremo un software di path analysis