Lecture 11

 The SVD: extending diagonalisation to non-square matrices

Notes:

- Diagonalization (ie the eigenvalue problem) plays important role in applications BUT not all matrices can be factored in the form A = PDP⁻¹ with D diagonal.
- However a factorization (the singular value decomposition)
 A = QDP⁻¹ (with D diagonal) is possible for any m × n matrix A.
- The $|\lambda|$ of a symmetric matrix **A** measures the amounts that **A** stretches or shrinks eigenvectors: if $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$ and $\|\mathbf{x}\| = 1$, then

$$\|\mathbf{A}\mathbf{x}\| = \|\lambda\mathbf{x}\| = |\lambda|\|\mathbf{x}\| = |\lambda|.$$

If the eigenvalue λ_1 is the eigenvalue with the greatest magnitude then a corresponding unit eigenvector \mathbf{v}_1 identifies the direction of the greatest stretching.

- The length of $A\mathbf{x}$ is maximized when $\mathbf{x} = \mathbf{v}_1$
- This description has an analog for rectangular matrices.
- This will lead to the singular value decomposition.

Example: If

$$\mathbf{A} = \left(\begin{array}{ccc} 4 & 11 & 14 \\ 8 & 7 & -2 \end{array}\right)$$

then the transformation $\mathbf{x}\to\mathbf{A}\mathbf{x}$ maps the unit sphere $\{\mathbf{x}:\|\mathbf{x}\|=1\}$ in \mathbb{R}^3 onto an ellipse in \mathbb{R}^2 .

Find a unit vector \mathbf{x} at which the length $||A\mathbf{x}||$ is maximized and compute its length.

Solution: The quantity $||A\mathbf{x}||^2$ is maximized at the same \mathbf{x} that maximizes $||\mathbf{A}\mathbf{x}||$. Also,

$$\|\mathbf{A}\mathbf{x}\|^2 = (\mathbf{A}\mathbf{x})^T(\mathbf{A}\mathbf{x}) = \mathbf{x}^T\mathbf{A}^T\mathbf{A}\mathbf{x}$$

= $\mathbf{x}^T(\mathbf{A}^T\mathbf{A})\mathbf{x}$

Note that the matrix $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ is symmetric, since

$$(\boldsymbol{\mathsf{A}}^\mathsf{T}\boldsymbol{\mathsf{A}})^\mathsf{T} = \boldsymbol{\mathsf{A}}^\mathsf{T}\boldsymbol{\mathsf{A}}^\mathsf{TT} = \boldsymbol{\mathsf{A}}^\mathsf{T}\boldsymbol{\mathsf{A}}.$$

So the problem is now familiar: maximize the quadratic form $\mathbf{x}^T(\mathbf{A}^T\mathbf{A})\mathbf{x}$ subject to the constraint $\|\mathbf{x}\|=1$.

By Theorem the maximum value is the greatest eigenvalue λ_1 of $\mathbf{A}^T\mathbf{A}$ and the maximum value is attained at the unit eigenvector of $\mathbf{A}^T\mathbf{A}$ corresponding to λ_1 .

We have:

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \begin{pmatrix} 4 & 8 \\ 11 & 7 \\ 14 & -2 \end{pmatrix} \begin{pmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{pmatrix} = \begin{pmatrix} 80 & 100 & 40 \\ 100 & 170 & 140 \\ 40 & 140 & 200 \end{pmatrix}.$$

The eigenvalues of this matrix are $\lambda_1=360$, $\lambda_2=90$, $\lambda_3=0$. The corresponding unit eigenvectors are:

$$\mathbf{v}_1 = \begin{pmatrix} 1/3 \\ 2/3 \\ 2/3 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} -2/3 \\ -1/3 \\ 2/3 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 2/3 \\ -2/3 \\ 1/3 \end{pmatrix}.$$

Maximum value (for \mathbf{x} with $\|\mathbf{x}\| = 1$) of $\|A\mathbf{x}\|^2$ is 360, attained at $\mathbf{x} = \mathbf{v}_1$. Vector $A\mathbf{v}_1$ is a point on the ellipse furthest from $\mathbf{0}$:

$$A\mathbf{v}_1 = \begin{pmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{pmatrix} \begin{pmatrix} 1/3 \\ 2/3 \\ 2/3 \end{pmatrix} = \begin{pmatrix} 18 \\ 6 \end{pmatrix}.$$

The maximum value of $||A\mathbf{x}|| = \sqrt{360} = 6\sqrt{10}$.

The Singular Value of Matrix A

- Let **A** be an $m \times n$ matrix. Then $\mathbf{A}^T \mathbf{A}$ is symmetric and can be orthogonally diagonalized.
- Let $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be an orthonormal basis for \mathbb{R}^n consisting of unit eigenvectors of $\mathbf{A}^\mathsf{T} \mathbf{A}$, and $\lambda_1, \dots, \lambda_n$ be the associated eigenvalues of $\mathbf{A}^\mathsf{T} \mathbf{A}$. Then

$$\|\mathbf{A}\mathbf{v}_{\mathbf{i}}\|^{2} = (\mathbf{A}\mathbf{v}_{\mathbf{i}})^{T}A\mathbf{v}_{i} = \mathbf{v}_{i}\mathbf{A}^{T}\mathbf{A}\mathbf{v}_{\mathbf{i}} = \mathbf{v}_{\mathbf{i}}^{T}(\lambda_{\mathbf{i}})\mathbf{v}_{\mathbf{i}}$$
$$= \lambda_{i},$$

so the eigenvalues of **A**^T**A** are all nonnegative.

We can always arrange them in descending order so that

$$\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n \ge 0.$$

The Singular Value of Matrix A

Definition: The **singular values** of **A** are the square roots of the eigenvalues $\lambda_1, \ldots, \lambda_n$ of $\mathbf{A}^T \mathbf{A}$, denoted by $\sigma_1, \ldots, \sigma_n$ arranged in the descending order. So

$$\sigma_i = \sqrt{\lambda_i}, \text{ for } 1 \leq i \leq n.$$

Note: With the notation above, the singular values of A are the lengths of the vectors $\mathbf{Av_1}, \dots, \mathbf{Av_n}$.

The Singular Values of Matrix A

Example: Let **A** be as in the last example: $\mathbf{A} = \begin{pmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{pmatrix}$.

The eigenvalues of $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ are $\lambda_1=360,\ \lambda_2=90,\ \lambda_3=0$ therefore the singular values of A are

$$\sigma_1 = \sqrt{360} = 6\sqrt{10}, \ \ \sigma_2 = \sqrt{90} = 3\sqrt{10}, \ \ \sigma_3 = 0.$$

The first singular value of ${\bf A}$ is the maximum of $\|{\bf A}{\bf x}\|$ subject to $\|{\bf x}\|=1$, attained at ${\bf x}={\bf v}_1.$

The second singular value of \mathbf{A} is the maximum of $\|\mathbf{A}\mathbf{x}\|$ over all unit vectors orthogonal to \mathbf{v}_1 and this is attained at $\mathbf{x} = \mathbf{v}_2$.

The Singular Values of Matrix A

$$\mathbf{Av_2} = \begin{pmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{pmatrix} \begin{pmatrix} 1/3 \\ 2/3 \\ 2/3 \end{pmatrix} = \begin{pmatrix} 3 \\ -9 \end{pmatrix}.$$

This point is on the minor axis of the ellipse.

The Singular Value of Matrix A

Theorem: Suppose $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ is an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of $\mathbf{A}^T\mathbf{A}$, arranged so that the corresponding eigenvalues of $\mathbf{A}^T\mathbf{A}$ satisfy $\lambda_1 \geq \ldots \geq \lambda_n$, and suppose \mathbf{A} has r nonzero singular values. Then $\{\mathbf{A}\mathbf{v}_1,\ldots,\mathbf{A}\mathbf{v}_r\}$ is an orthogonal basis for $Col\ \mathbf{A}$ and $\mathrm{rank}\ A = r$.

Proof: We have:

$$(\mathbf{A}\mathbf{v_i})^T(\mathbf{A}\mathbf{v_j}) = \mathbf{v_i}^T \mathbf{A}^T \mathbf{A}\mathbf{v_j} = \mathbf{v_i}^T (\lambda_j \mathbf{v_j}) = \lambda_j (\mathbf{v_i}^T \mathbf{v_j})$$
$$= \begin{cases} 0, & i \neq j, \\ \lambda_j, & i = j. \end{cases}$$

Therefore $\{Av_1, \dots, Av_r\}$ is an orthogonal set.

The lengths of the vectors $\{\mathbf{Av_1}, \dots, \mathbf{Av_n}\}$ are the singular values of \mathbf{A} , of which the first r are strictly positive, and hence $\{\mathbf{Av_1}, \dots, \mathbf{Av_r}\}$ are non-zero vectors.

Thus $\{Av_1, \ldots, Av_r\}$ is a linearly independent set of orthogonal vectors in the column space $Col\ A$. We must show it spans $Col\ A$.

The Singular Value of Matrix A

Proof (cont'd):

For any y in Col A we have y = Ax, where

$$\mathbf{x} = c_1 \mathbf{v}_1 + \ldots + c_n \mathbf{v}_n$$

and so

$$\mathbf{y} = \mathbf{A}\mathbf{x}$$

$$= c_1 \mathbf{A} \mathbf{v}_1 + \ldots + c_r \mathbf{A} \mathbf{v}_r + c_{r+1} \mathbf{A} \mathbf{v}_{r+1} + \ldots + c_n \mathbf{A} \mathbf{v}_n$$

$$= c_1 \mathbf{A} \mathbf{v}_1 + \ldots + c_r \mathbf{A} \mathbf{v}_r + c_{r+1} \mathbf{0} + \ldots + c_n \mathbf{0}.$$

Therefore \mathbf{y} is in $Span\{\mathbf{Av_1},\ldots,\mathbf{Av_r}\}$ which means that the set $\{\mathbf{Av_1},\ldots,\mathbf{Av_r}\}$ is an orthogonal basis for $Col(\mathbf{A})$. Hence $rank(\mathbf{A}) = dim(\mathbf{Col}(\mathbf{A})) = r$.

The decomposition of **A** involves an $m \times n$ "diagonal" matrix Σ of the form

$$\mathbf{\Sigma} = \left(\begin{array}{cc} D & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array} \right),$$

where **D** is an $r \times r$ diagonal matrix for some r not exceeding the smaller of m and n. The second line in Σ contains m-r rows. The second column in Σ contains n-r columns.

Theorem: Singular Value Decomposition

Let **A** be an $m \times n$ matrix with rank r. Then there exists an $m \times n$ matrix Σ for which the diagonal entries in **D** are the first r singular values of **A** $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$, and there exist an $m \times m$ orthogonal matrix **U** and an $n \times n$ orthogonal matrix **V** such that

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}.$$

This factorisation is called the singular value factorisation of A.

Notes:

- The matrices \mathbf{U} and \mathbf{V} in $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$ are not uniquely determined by \mathbf{A} but the diagonal entries in $\mathbf{\Sigma}$ are uniquely determined by the singular values of \mathbf{A} .
- The columns of U are called left singular vectors of A and the columns of V are called the right singular vectors of A.

Proof: Let λ_i be the eigenvalues and \mathbf{v}_i be corresponding eigenvectors of $\mathbf{A}^T\mathbf{A}$. Then $\{\mathbf{A}\mathbf{v}_1,\ldots,\mathbf{A}\mathbf{v}_r\}$ is an orthogonal basis for $Col\ \mathbf{A}$.

We normalize each $\mathbf{Av_i}$ to obtain an orthonormal basis $\{\mathbf{u}_1,\ldots,\mathbf{u}_r\}$ for $\mathit{Col}\ \mathbf{A}$:

$$\mathbf{u}_i = \frac{1}{\|\mathbf{A}\mathbf{v_i}\|}\mathbf{A}\mathbf{v_i} = \frac{1}{\sigma_i}A\mathbf{v}_i,$$

from which we obtain

$$A\mathbf{v}_i = \sigma_i \mathbf{u}_i, \ 1 \leq i \leq r.$$

The set $\{\mathbf{u}_1,\ldots,\mathbf{u}_r\}$ can be extended, if necessary, to an orthonormal basis $\{\mathbf{u}_1,\ldots,\mathbf{u}_m\}$ for \mathbb{R}^m by adding suitable vectors from the orthogonal complement of $\{\mathbf{u}_1,\ldots,\mathbf{u}_r\}$.

Now let

$$\mathbf{U} = (\mathbf{u}_1 \dots \mathbf{u}_m), \text{ and } \mathbf{V} = (\mathbf{v}_1 \dots \mathbf{v}_n).$$

By construction, ${f U}$ and ${f V}$ are orthogonal matrices. Now

$$\mathbf{AV} = (A\mathbf{v}_1 \, \dots \, A\mathbf{v}_r \, \mathbf{0} \dots \mathbf{0}) = (\sigma_1 \mathbf{u}_1 \dots \sigma_r \mathbf{u}_r \, \mathbf{0} \dots \, \mathbf{0})$$

and

$$\mathbf{U}\mathbf{\Sigma} = (\sigma_1\mathbf{u}_1 \ldots \sigma_r\mathbf{u}_r \ \mathbf{0} \ldots \mathbf{0}) = \mathbf{AV},$$

that is,

$$AV = U\Sigma$$
.

But V is an orthogonal matrix, so $V^TV = I$ and

$$AVV^{T} = U\Sigma V^{T}$$

and so

$$A = U\Sigma V^{T}$$
.

Example: Construct a singular value decomposition of **A**:

$$\mathbf{A} = \left(\begin{array}{ccc} 4 & 11 & 14 \\ 8 & 7 & -2 \end{array} \right).$$

Solution: Step 1: Construct an orthogonal diagonalization of $\mathbf{A}^T \mathbf{A}$ We need the eigenvalues and corresponding eigenvectors of $\mathbf{A}^T \mathbf{A}$. We have already calculated them in previous examples. They are (in descending order): 360, 90, 0.

The corresponding eigenvectors are

$$\mathbf{v}_1 = \begin{pmatrix} 1/3 \\ 2/3 \\ 2/3 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} -2/3 \\ -1/3 \\ 2/3 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 2/3 \\ -2/3 \\ 1/3 \end{pmatrix}.$$

Thus

$$\mathbf{V} = (\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3) = \left(\begin{array}{ccc} 1/3 & -2/3 & 2/3 \\ 2/3 & -1/3 & -2/3 \\ 2/3 & 2/3 & 1/3 \end{array} \right).$$

Step 2: The singular values of **A** are:

$$\sigma_1 = \sqrt{360} = 6\sqrt{10}, \quad \sigma_2 = \sqrt{90} = 3\sqrt{10}, \quad \sigma_3 = 0.$$

The nonzero values are diagonal values of **D**:

$$\mathbf{D} = \begin{pmatrix} 6\sqrt{10} & 0 \\ 0 & 3\sqrt{10} \end{pmatrix},$$

$$\mathbf{\Sigma} = (\mathbf{D} \ \mathbf{0}) = \begin{pmatrix} 6\sqrt{10} & 0 & 0 \\ 0 & 3\sqrt{10} & 0 \end{pmatrix}.$$

Step 3: Construct **U**. When **A** has rank r the first r columns of **U** are normalized vectors obtained from $\mathbf{Av_1}, \ldots, \mathbf{Av_r}$. **A** has two nonzero singular values so $rank \mathbf{A} = 2$ and

$$\|\mathbf{A}\mathbf{v_1}\| = \sigma_1, \ \|\mathbf{A}\mathbf{v_2}\| = \sigma_2.$$

Thus the columns of ${\bf U}$ are

$$\begin{aligned} \mathbf{u}_1 &= \frac{1}{\sigma_1} \mathbf{A} \mathbf{v_1} = \frac{1}{6\sqrt{10}} \begin{pmatrix} 18 \\ 6 \end{pmatrix} = \begin{pmatrix} 3/\sqrt{10} \\ 1/\sqrt{10} \end{pmatrix} \\ \mathbf{u}_2 &= \frac{1}{\sigma_2} \mathbf{A} \mathbf{v_2} = \frac{1}{3\sqrt{10}} \begin{pmatrix} 3 \\ -9 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{10} \\ -3/\sqrt{10} \end{pmatrix}. \end{aligned}$$

The set $\{\mathbf{u}_1, \mathbf{u}_2\}$ is already a basis for \mathbb{R}^2 . No additional vectors are needed for \mathbf{U} and so $\mathbf{U} = (\mathbf{u}_1 \ \mathbf{u}_2)$.

Thus the singular value decomposition is

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^\mathsf{T}$$

$$= \begin{pmatrix} \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}} \end{pmatrix} \begin{pmatrix} 6\sqrt{10} & 0 & 0 \\ 0 & 3\sqrt{10} & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{-2}{3} & \frac{-1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{-2}{3} & \frac{1}{3} \end{pmatrix}$$

Example: Find a singular value decomposition for **A** given by

$$\mathbf{A} = \left(\begin{array}{cc} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{array} \right).$$

Solution: $A = U\Sigma V^{\mathsf{T}}$. First we calculate $A^{\mathsf{T}}A$

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \left(\begin{array}{cc} 9 & -9 \\ -9 & 9 \end{array}\right)$$

Eigenvalues: $\lambda_1 = 18$ and $\lambda_2 = 0$ with corresponding eigenvectors:

$$\mathbf{v}_1 = \left(egin{array}{c} 1/\sqrt{2} \ -1/\sqrt{2} \end{array}
ight), \quad \mathbf{v}_2 = \left(egin{array}{c} 1/\sqrt{2} \ 1/\sqrt{2} \end{array}
ight).$$

These unit vectors form columns of **V**:

$$\mathbf{V} = (\mathbf{v}_1 \ \mathbf{v}_2) = \left(egin{array}{cc} 1/\sqrt{2} & 1/\sqrt{2} \ -1/\sqrt{2} & 1/\sqrt{2} \end{array}
ight).$$

Singular values of **A**:

$$\sigma_1 = \sqrt{18} = 3\sqrt{2}, \quad \sigma_2 = 0.$$

Since there is only one nonzero singular value the matrix ${\bf D}$ is of order 1×1 :

$$D=(3\sqrt{2}).$$

The matrix Σ is the same size as A:

$$\mathbf{\Sigma} = \left(\begin{array}{cc} D & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right) = \left(\begin{array}{cc} 3\sqrt{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right).$$

To construct **U** we first calculate \mathbf{Av}_1 and $A\mathbf{v}_2$:

$$\mathbf{Av_1} = \left(egin{array}{c} 2/\sqrt{2} \\ -4/\sqrt{2} \\ 4/\sqrt{2} \end{array}
ight), \; \mathbf{Av_2} = \left(egin{array}{c} 0 \\ 0 \\ 0 \end{array}
ight).$$

The only column found for ${f U}$ so far is therefore

$$\mathbf{u}_1 = \frac{A\mathbf{v}_1}{3\sqrt{2}} = \begin{pmatrix} 1/3 \\ -2/3 \\ 2/3 \end{pmatrix}.$$

The other columns must be found by extending $\{u_1\}$ to an orthogonal basis for \mathbb{R}^3 .

We need two orthonormal vectors orthogonal to \mathbf{u}_1 .

Each vector must satisfy $\mathbf{u}_1^T \mathbf{x} = 0$. This is equivalent to

$$x_1 - 2x_2 + 2x_3 = 0.$$

Solution is

$$\mathbf{w}_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \ \mathbf{w}_2 = \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}.$$

We apply the Gram-Schmidt process to $\{w_1, w_2\}$ to get

$$\mathbf{u}_2 = \left(\begin{array}{c} 2/\sqrt{5} \\ 1/\sqrt{5} \\ 0 \end{array} \right), \ \mathbf{u}_3 = \left(\begin{array}{c} -2/\sqrt{45} \\ 0/\sqrt{45} \\ 5/\sqrt{45} \end{array} \right).$$

Thus $\mathbf{U} = [\mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3]$ and the singular value decomposition is

$$\mathbf{A} = \left(\begin{array}{ccc} 1/3 & 2/\sqrt{5} & -2/\sqrt{45} \\ -2/3 & 1/\sqrt{5} & 4/\sqrt{45} \\ 2/3 & 0 & 5/\sqrt{45} \end{array} \right) \left(\begin{array}{ccc} 3\sqrt{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right) \left(\begin{array}{ccc} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{array} \right)$$

Bases for Fundamental Subspaces

Let

```
A be an m \times n matrix;

\mathbf{u}_1, \dots, \mathbf{u}_m be the left singular vectors;

\mathbf{v}_1, \dots, \mathbf{v}_n be the right singular vectors;

\sigma_1, \dots, \sigma_r be the singular values;

r be the rank of \mathbf{A};
```

Then $\{u_1, \ldots, u_r\}$ is an orthonormal basis for *Col* **A**.

Also recall that $(Col \mathbf{A})^{\perp} = Nul (\mathbf{A}^{\mathsf{T}})$, and so $\{\mathbf{u}_{r+1}, \dots, \mathbf{u}_m\}$ is an orthonormal basis for $Nul (\mathbf{A}^{\mathsf{T}})$.

Since $\|\mathbf{A}\mathbf{v_i}\| = \mathbf{0}$ for i > r, the size of $Nul\ \mathbf{A}$ is n - r and so the set $\{\mathbf{v}_{r+1}, \dots, \mathbf{v}_n\}$ is an orthonormal basis for $Nul\ \mathbf{A}$.

Finally, since $(Nul \mathbf{A})^{\perp} = Col (\mathbf{A}^{\mathsf{T}}) = Row \mathbf{A}$ so $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ is an orthonormal basis for $Row \mathbf{A}$.

Bases for Fundamental Subspaces

The fundamental subspaces in Example 4.

ar fundamental subspaces and the concept of singular values pro

$$\begin{split} \textbf{u}_1 &= \left(\begin{array}{c} 1/3 \\ -2/3 \\ 2/3 \end{array} \right), \textbf{u}_2 = \left(\begin{array}{c} 2/\sqrt{5} \\ 1\sqrt{5}/ \\ 0 \end{array} \right), \ \ \textbf{u}_3 = \left(\begin{array}{c} -2/\sqrt{45} \\ 0/\sqrt{45} \\ 5/\sqrt{45} \end{array} \right) \\ \textbf{v}_1 &= \left(\begin{array}{c} 1/\sqrt{2} \\ -1/\sqrt{2} \end{array} \right), \ \ \textbf{v}_2 = \left(\begin{array}{c} 1/\sqrt{2} \\ 1/\sqrt{2} \end{array} \right). \end{split}$$

The SVD of **A** is $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$. We can write this as

$$\mathbf{A} = (\mathbf{u}_1 \dots \mathbf{u}_m) \begin{pmatrix} \sigma_1 & \dots & 0 & 0 \\ 0 & \ddots & 0 & 0 & \dots \\ 0 & 0 & \sigma_r & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{v}_1^T \\ \vdots \\ \mathbf{v}_n^T \end{pmatrix}$$

Notes: $= \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T + \ldots + \sigma_r \mathbf{u}_r \mathbf{v}_r^T.$

- Original matrix required $m \times n$ floating point numbers to be saved—this expansion only $m \times r + n \times r + r = r(m+n+1)$.
- Usually some of the singular values are very small therefore

$$\mathbf{A}_k \approx \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T + \ldots + \sigma_k \mathbf{u}_k \mathbf{v}_k^T,$$

where k < r. (k is the **rank** of the approximation.)

 This is why SVD-based image compression / dimension reduction works!

k is the rank of the approximation.