EJERCICIO 4.4

APARTADO A

Escribir un programa en Python que calcule la trayectoria de una pelota de béisbol en dos dimensiones considerando la dependencia del coeficiente de rozamiento con la velocidad de la forma:

$$\frac{B_2}{m} = 0.00039 + \frac{0.0058}{1 + \exp\left[\frac{v^* - v_d}{\Delta}\right]}$$

Con $v_d=35~m/s$ y $\Delta=5~m/s$ siendo v^* la velocidad de la pelota respecto al aire. Y condiciones iniciales: $x_0=0,\ y_0=1,\ v_0=49~m/s$. El sistema que nos queda por resolver en este apartado es el siguiente:

$$\begin{cases} \frac{dx}{dt} = v_x & \frac{dy}{dt} = v_y \\ \frac{dv_x}{dt} = -\frac{B_2}{m}vv_x & \frac{dv_y}{dt} = -g - \frac{B_2}{m}vv_y \end{cases}$$

Los resultados obtenidos tras aplicar el método de Runge-Kutta de 4º orden con un dt = 0.1 son los siguientes:

Ángulo (en grados)	Alcance (en metros)
30	118.4494
31	119.0494
32	119.5276
33	119.8854
34	120.129
35	120.2633
36	120.2915
37	120.2162
38	120.0403
39	119.7662
40	119.3926
41	118.9247
42	118.3646
43	117.7141
44	116.9752
45	116.1492
46	115.2378
47	114.2423
48	113.1564
49	111.9886
50	110.7401

Vemos como las distancias obtenidas son lógicas para un lanzamiento de una pelota de béisbol y el ángulo para el que se obtiene el alcance máximo es de 36 grados algo que también es bastante realista.

En la siguiente figura se muestran las gráficas con todas las trayectorias obtenidas de los distintos lanzamientos:

APARTADO B

En este apartado se pide incluir el efecto del viento tanto a favor como en contra suponiendo una velocidad del viento de 9km/h. Y hacer esto para un ángulo inicial de 35º.

La siguiente gráfica muestra las tres trayectorias en la que podemos apreciar las diferencias:

Y los resultados obtenidos exactamente son los siguientes:

```
------ Para un ángulo de 35º ------ Para un ángulo de 35º ------ Sin efecto del viento --> Alcance = 120.2633 m
Con el viento a favor --> Alcance = 129.0731 m
Con el viento en contra --> Alcance = 111.4167 m
```

Valores lógicos y realistas puesto que con el viento a favor se obtiene un alcance mayor y con el viento en contra un alcance menor.