Transmission over a Binary Erasure Channel

$BEC(\epsilon)$ channel

 $BSC(\epsilon)$ channel

P-ary $SC(\epsilon)$ channel

Tanner graph for the (6,3,3)

$$H = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$x_1 \oplus x_3 \oplus x_4 = y_1$$

$$x_1 \oplus x_2 \oplus x_5 = y_2$$

$$x_2 \oplus x_3 \oplus x_6 = y_3$$

- Variable nodes
- Parity check matrix and Tanner graph convey the same info
- A code can be specified by giving its Tanner graph

Decoding by peeling

$$H = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$x_1 \oplus x_3 \oplus x_4 = 0$$

$$x_1 \oplus x_2 \oplus x_5 = 0$$

$$x_2 \oplus x_3 \oplus x_6 = 0$$

If exactly 1 bit is unknown in every check, it can be recovered

Decoding by peeling

$$H = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$x_1 \oplus x_3 \oplus x_4 = 0$$

$$x_1 \oplus x_2 \oplus x_5 = 0$$

$$x_2 \oplus x_3 \oplus x_6 = 0$$

If exactly 1 bit is unknown in every check, it can be recovered

Peeling decoder is suboptimal

$$x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6$$
 $H = \left[egin{array}{cccccc} 1 & 1 & 1 & 1 & 0 & 0 \ 1 & 1 & 0 & 0 & 1 & 0 \ 0 & 1 & 1 & 0 & 0 & 1 \end{array}
ight]$

LDPC Code from a (3,6) regular ensemble

How good are LDPC codes? Density Evolution

- \blacksquare Assume $n \to \infty$
- So no short cycles, we can assume graph cycle free
- What is the highest fraction e for which we can correct all errors?
- Compute the probability that the message along a randomly chosen edge is an erasure and see how this changes as the iterations proceed

Analysis – computation tree, density evolution

Threshold for the (3,6) regular LDPC code

- □ For (3,6) regular codes threshold is 0.429
- Although it is not o.5, it is still quite good
- How can we close the gap? Irregular LDPC Codes

(3,6) LDPC Code

 \Box First iteration: x = e

- $y = 1 (1 x)^5$
- $lue{}$ During the q^{th} iteration

$$x^q = e(y^q)^2$$

$$y^{q+1} = 1 - (1 - x^q)^5$$

$$x^{q+1} = e(1 - (1 - x^q)^5)^2$$

Threshold is the maximum value of e for which

$$x^q \to 0 \text{ as } q \to \infty$$

(3,6) LDPC Code

□ First iteration: $p_1 = e$

$$p_r = 1 - (1 - p_l)^5$$

During the qth iteration

$$p_1^q = e(p_r^q)^2$$

$$p_r^q = 1 - (1 - p_l^{q-1})^5$$

$$p_l^q = e (1-(1-p_l^{q-1})^5)^2$$

Threshold is the maximum value of e for which

$$p_r^q \to 0 \text{ as } q \to \infty$$

2 erasures can be corrected

 $x_6 = u_1 \oplus u_3$

- Solve the set of simultaneous equations
- Mathematical tools are needed to design good matrices

Erasures to Non-binary Errors – Tensoring construction

If exactly 1 error in every check, it can be recovered

Syndrome source coding is the same as decoding

