Category Theory from Scratch: Completely Optional Isomorphisms Worksheet

Mathcamp 2025 - Della Hendrickson & Riley Shahar

We have now defined an isomorphism:

Definition 1. A morphism $f: x \to y$ in a category C is an *isomorphism* if there exists a morphism $g: y \to x$ in C such that

$$f \circ g = 1_y$$
 and $g \circ f = 1_x$.

We say that x and y are isomorphic, and write $x \cong y$. We call q an inverse of f.

Our goal in this worksheet is to work out some properties of this definition.

Problem 1. Describe what an isomorphism is in as many categories as you can.

Problem 2. Prove that, if $f: x \to y$ is an isomorphism with inverses $g, h: y \to x$, then g = h. We therefore may call g the inverse of f, and write $g = f^{-1}$.

Problem 3. Prove that being isomorphic is an equivalence relation on the objects of a category, in that it is:

- *reflexive*: for any object x, we have $x \cong x$;
- *symmetric*: if $x \cong y$, then $y \cong x$; and
- transitive: if $x \cong y$ and $y \cong z$, then $x \cong z$.

Problem 4. Prove that, if $f: x \to y$ is an isomorphism, then for any object z, we have bijections

$$C(x, z) \cong C(y, z)$$
 and $C(z, x) \cong C(z, y)$,

Problem 5. Prove that, if $f: x \to y$ and $g: y \to z$ are morphisms, and two of the three of f, g, and $g \circ f$ are isomorphisms, then so is the third. This is called the *two-out-of-three property*.