NP-pairs & Co.

A **disjoint NP-pair** is a pair (A, B) of nonempty sets A and B such that A, B \in NP and A \cap B = \emptyset . A **separator** is a set S such that $A \subseteq S$ and $B \subseteq \overline{S}$.

(A, B) is **many-one reducible** in polynomial-time to (C, D) $((A,B) \le_m^{pp} (C,D))$, if there exists a polynomial-time computable function f such that $f(A) \subseteq C$ and $f(B) \subseteq D$.

(A, B) is **Turing reducible** in polynomial-time to (C, D) $((A, B) \leq_T^{pp} (C, D))$, if there exists a polynomial-time oracle Turing machine M such that for every separator S of (C, D), L(M,S) is a separator of (A, B).

$$\mathrm{SAT}^* = \{(x,0^n) \, \big| \, x \in \mathrm{SAT} \}$$
 The **canonical pair** of f is the disjoint NP-pair (SAT^*, REF_f) : $\mathrm{REF}_f = \{(x,0^n) \, \big| \, \neg x \in \mathrm{TAUT} \text{ and } \exists y [|y| \leq n \text{ and } f(y) = \neg x] \}.$

Theorem 1. For every disjoint NP-pair (A, B) there exists a proof system f such that $(SAT^*, REF_f) \equiv_m^{pp} (A, B)$.

One proof system Π_w is **simulated** by another one Π_s if the shortest proof for every tautology in Π_s is at most polynomially longer than its shortest proof in Π_w .

The notion of **p-simulation** is similar, but requires also a polynomial-time computable function for translating the proofs from Π_w to Π_s .

A (p-)optimal propositional proof system is one that (p-)simulates all other propositional proof systems.

An **acceptor** for a language L is an algorithm that answers 1 for $x \in L$ and does not stop otherwise.

An **acceptor O is optimal** if for any other (correct) acceptor A, for every $x \in L$, the acceptor O stops on x in time bounded by a polynomial in |x| and the time taken by A(x).

Theorem 1. Optimal acceptors for TAUT exist <=> p-optimal proof systems for TAUT exist. (TAUT - language of all propositional tautologies)