

Use Blackboard's forum if a question may be relevant to other students, too. If you email, email both joeran.beel@scss.tcd.ie and doug.leith@scss.tcd.ie. Give a meaningful subject, starting with "[ML1920]". No file attachments.

Week 01 (2): Introduction to Machine Learning

CSU44061/CS7CS4 Machine Learning

Version 1

Dr Joeran Beel

Assistant Professor in Intelligent Systems
Department of Computer Science and Statistics
Trinity College Dublin, Ireland

Dr Douglas Leith

Professor in Computer Systems
Department of Computer Science and Statistics
Trinity College Dublin, Ireland

Any questions?

Outline

- 1. Machine Learning Examples
- 2. Types of Machine Learning
- 3. Definition
- 4. Traditional Approaches to Problem Solving
- 5. Overview of the Machine Learning Pipeline
- 6. The Machine Learning Landscape
- 7. Strength and Weaknesses of Machine Learning

Machine Learning Examples

Example 1: Regression

Predict Marks for Students

- A student tells you that she spent 90 hours for the course work in the Machine Learning module. How many marks do you think she will receive?
- Without any other information difficult to answer
- Have a look at her fellow students
- x = Time spent
- y = Achieved marks
- Now, again: How many marks will she receive?
 10, 20, 30 ... 90, 100?

How many marks will a student receive who spends 90 hours?

Mentimeter

0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
10	20	30	40	50	60	70	80	90	100

Last years' results

Example

- Instance based: What marks did other students receive who invested 90 hours?
- Find similar student(s)
- Calculate value for new student
- "K-Nearest Neighbour" algorithm
 - Neighbourhood size k is a hyperparameter
- Model based: What function can approximate the existing data best?
- Find a function y=f(x)=a+bX
- E.g. f(x) = 10 + 0.7x
- Calculate y, given x
- E.g. f(90) = 10 + 0.7*90 = 73
- Linear regression
 - *a* and *b* are hyperparameters

Loss Function / Optimization

Example 2: Classification

Example

Will Johnny like or dislike the pie?

Will Johnny like or dislike the pie?

Mentimete

Last Years' Results

Go to www.menti.com and use the code 17 19 34

Will Johnny like or dislike the pie?

Features/Attributes

What are the features that distinguish the pies?

Representation

		crust		filling		
example shape		size	shade	size	shade	class
ex1	circle	thick	gray	thick	dark	pos
ex2	circle	thick	white	thick	dark	pos
ex3	triangle	thick	dark	thick	gray	pos
ex4	circle	thin	white	thin	dark	pos
ex5	square	thick	dark	thin	white	pos
ex6	circle	thick	white	thin	dark	pos
ex7	circle	thick	gray	thick	white	neg
ex8	square	thick	white	thick	gray	neg
ex9	triangle	thin	gray	thin	dark	neg
ex10	circle	thick	dark	thick	white	neg
ex11	square	thick	white	thick	dark	neg
ex12	triangle	thick	white	thick	gray	neg

Rule Solution

- If [(shape=circle) AND (fillingshade=dark)] THEN "Like"
 ELSE "Not Like"
- Classifies all "Not Like" correctly
- Classifies 4 out of 6 "Like" correctly
- → Accuracy: 10 of 12 (83%)
- What would you do for thousands of users (and new pies)?

Machine Learning Solution (Hill Climbing)

- Iterative algorithm
- Start with arbitrary solution
- Incremental improvements

- Repeat until no improvement is achieved
- Disadvantage: Finds only local optima & computing intensive

Miroslav Kubat, An Introduction to Machine Learning (Springer, 2015).

Machine Learning Classifications

Supervised and Unsupervised Learning...

Supervised Learning

Typical Tasks

- Prediction/Regression (predict a number: the price of a house, income of a person, ...)
- Classification (predict a class: Spam or Not Spam?)
- Typical Algorithms
- K-Nearest Neighbours
- Regression
- Support Vector Machines
- Decision Trees and Random Forests

Training Input:

- Labelled data / training data
- Instances/data points with known values for (independent) variables/features/attributes <u>and</u> known dependent variable/response/target/label

Production

- Input: new instance with known independent variables
- Output: Predicted target/label

A. Géron, Hands on Machine Learning with scikit-learn and Tensorflow. O'Reilly Media, 2017.

Unsupervised Learning

Unlabelled data

- Work on the current data instead of predicting for future unknown instances
- Typical task(s)
- Clustering (group instances into previously unknown groups)
- Dimensionality Reduction
- Algorithms
- Clustering
 - K-means
 - Hierarchical Cluster Analysis (HCA)
 - Expected Maximization
- Dimensionality Reduction
 - Principal Component Analysis
 - Kernel PCA

A. Géron, Hands on Machine Learning with scikit-learn and Tensorflow. O'Reilly Media, 2017.

https://hub.packtpub.com/introduction-clustering-and-unsupervised-learning/

... and Semi Supervised and Reinforcement Learning...

Semi-Supervised Learning

- Some labelled but mostly unlabelled data
- For instance, Google Photos:
- Identification of the same persons (unsupervised)
- Manually adding labels to clusters/persons (supervised)
- Often based on Deep Belief Networks (DBN) / Restricted Boltzmann Machines (RBM)

Reinforcement Learning

- An agent observes an environment, chooses between actions and gets rewards (or penalties) in return. The agent learns the best strategy ("policy") for what to do in a given situation.
- Often used for making robots to learn how to walk; also for DeepMind's AlphaGo

Example (Reinforcement learning)

https://www.youtube.com/watch?v=V1eYniJ0Rnk

... and other views

Instance Based vs. Model Based

- Instance
- No training
- Algorithms
 - k-nearest neighbour
 - kernel machines
 - RBF networks
- Model
- Model is learned through training data

Parametric vs. Nonparametric Models

Parametric

- Based on the features (and certain weights), Y can be calculated
- E.g. (linear) regression

$$f(\mathbf{X}) = \beta_0 + X_1 \times \beta_1 + X_2 \times \beta_2 + \dots$$

Nonparametric

Figure 3.2 A decision tree is an example of a nonparametric ML algorithm, because its functional form isn't fixed. The tree model can grow in complexity with larger amounts of data to capture more-complicated patterns. In each terminal node of the tree, the ratio represents the number of training instances in that node that died versus lived.

Henrik Brink, Joseph Richards, and Mark Fetherolf, Real-world machine learning (Manning Publications Co., 2016).

The five tribes of machine learning

- The five tribes of machine learning, Webinar by Pedro Domingos
 https://learning.acm.org/webinar_pdfs/PedroDomingos_FTFML_WebinarSlides.pdf
- Pedro Domingos, *The master algorithm: How the quest for the ultimate learning machine will remake our world* (Basic Books, 2015), http://www.idi.ntnu.no/emner/tdt4173/papers/Domingos-SVM-NN-CBR.pdf.
- See also John Paul Mueller and Luca Massaron, Machine Learning for Dummies (John Wiley & Sons, 2016).

Tribe	Origins	Problem	Solution / Master Algorithm	
Symbolists	Logic, Philosophy	Knowledge composition	Inverse deduction	
Connectionists	Neuroscience	Credit Assignment	Backpropagation	
Evolutionaries	Evolutionary Biology	Structure Discovery	Genetic programming	
Bayesians	Statistics	Uncertainty	Probablistic Inference	
Analogizers	Psychology	Similarity	Kernel Machines	

Definition

Machine Learning Definitions

 Machine Learning is the science (and art) of programming computers so they can learn from data."

A. Géron, Hands en Machine Learning with scikit-learn and Tensorflow. O'Reil Media, 2017.

Ignores the eventual goal, i.e. solving a task.

- "[Machine Learning is the] field of study that gives computers the ability to learn without being explicitly programmed"
 Arthur Samuel, 1959 in A. Géron
- "A computer program is said to learn from experience E with respect to some task T and some performance measure P if its performance on T, as measured by P, improves with experience E." Tom Mitchell, 1997 in A. Géron

Experience = data

Typical Tasks (from an application point of view)

1. Prediction

- 1. House Prices
- 2. Diseases
- 3. Products a customer will like
- 4. ...

2. Recognition

- 1. Faces
- Voices
- 3. Gestures
- 4. ..

3. Creation / Modification

- 1. Art (Paintings, Music, ...)
- 2. Videos (DeepFakes, ...)
- 3. Augmented Reality
- 4. ...

4. Anything else?

Typical Tasks (2)

Input A → Output B

What Machine Learning Can Do

A simple way to think about supervised learning.

INPUT A	RESPONSE B	APPLICATION	
Picture	Are there human faces? (0 or 1)	Photo tagging	
Loan application	Will they repay the loan? (0 or 1)	Loan approvals	
Ad plus user information	Will user click on ad? (0 or 1)	Targeted online ads	
Audio clip	Transcript of audio clip	Speech recognition	
English sentence	French sentence	Language translation	
Sensors from hard disk, plane engine, etc.	Is it about to fail?	Preventive maintenance	
Car camera and other sensors	Position of other cars	Self-driving cars	

SOURCE ANDREW NG © HBR.ORG

https://hbr.org/2016/11/what-artificial-intelligence-can-and-cant-do-right-now

Typical Experiences

Data with features from which the task can be inferred

- Instance/Data Point
- Attribute/Feature/(Independent)Variable
- Target/Label/(Dependent) Variable

F								1		
_			Feature 1	Feature 2	Feature 3	Feature 4	Feature 5			Target / Label
		Data Point d1	72263	27245	17275	43964	15567	56433		83212
		Data Point d2	84139	18072	87332	50153	9561	40396		15706
	a	Data Point d3	78266	71688	53857	93655	67871	75253		26774
	Data	Data Point d4	36848	48316	47676	11324	76572	4863		87264
] 6	Data Point d5	25388	32838	67949	33058	15464	66957	Build Machine Learning Madel(a)	53946
	Training	Data Point d6	16600	86143	67239	15401	70959	50995	Build Machine-Learning Model(s)	80351
1	ia i	Data Point d7	1660	60325	11626	44432	1323	92803		17490
Data		Data Point d8	18567	31649	5142	34048	85153	19318		50444
	ន័	Data Point d9	56760	72157	6882	22721	85580	30351		62197
		Data Point d10	31857	77264	43623	35524	36979	94473		8850
		Data Point d11	63372	13691	19661	33752	78327	54604		54750
	ata	Data Point d12	93095	25329	72530	79730	14969	86179	Test the Model(s)	86887
	100	Data Point d13	41598	91224	73105	5623	85319	31115		10267
	Test	Data Point d14	5429	34300	41889	45034	70645	79225		13049
		Data Point d15	60513	84518	54860	99854	82111	38099	V	8633
		Data Point p1	38366	16911	40533	56296	73633	43034		?
Production Data	<u> </u>	Data Point p2	30984	28986	23832	70127	21389	29660		?
,	Data	Data Point p3	98767	71808	2057	13791	41601	80384	Apply the (best) Model	?
•	g ä	Data Point p4	79887	56619	99693	42540	25042	99478		?
Pro	ī	Data Point p5	67501	66324	78065	94571	93229	6776		?
			59989	7313	68544	64573	66802	33831	V	?

ML vs. Al vs. DL (vs. Data Science)

ARTIFICIAL INTELLIGENCE

Programs with the ability to learn and reason like humans

MACHINE LEARNING

Algorithms with the ability to learn without being explicitly programmed

DEEP LEARNING

Subset of machine learning in which artificial neural networks adapt and learn from vast amounts of data

https://www.argility.com/wp-content/uploads/2018/04/image10.png

Traditional approaches to problem solving

amazonmechanical turk

Qualifications 258,645 HITs available now

Your Account

Bruteforce

https://i.ytimg.com/vi/SobAPTAAX1s/maxresdefault.jpg

http://1.bp.blogspot.com/-YJDalyxz6XY/UFCYnd2_nBI/AAAAAAAAAAAB4/uewJpXgs9Mc/s1600/Brute+Force.jpg

Rules / Heuristics / Algorithms

Example for Rules: Spam Detection

Goal: Decide if an email is spam or not? (classification problem)

Potential Rule: If an email contains the terms "porn, sex, viagra, …" then it is spam. Maybe with wildcards, e.g. p?rn, or sex*

Problem: When new words appear (e.g. "p0rn" instead of "porn"), the rule needs to be adjusted (lots of work)

Study the problem

Write rules

Evaluate

Analyze
errors

A. Géron, Hands on Machine Learning with scikit-learn and Tensorflow. O'Reilly Media, 2017.

The Machine Learning Approach to Problem Solving

Machine-Learning Approach to Spam Detection

- "A computer program is said to learn from experience E with respect to some task T and some performance measure P if its performance on T, as measured by P, improves with experience F."
- T = Detect Spam Emails (flag new emails as spam/not-spam)
- P = Number of correctly classified (not-) spam emails
- E = Dataset with emails being classified as spam/not-spam ← the more data, the better P becomes

A. Géron, Hands on Machine Learning with scikit-learn and Tensorflow. O'Reilly Media, 2017.

Updating Machine-Learning

- You update the data, not the algorithm
- For instance, once there is an updated email dataset (with emails that contain e.g. the term "p0rn" and are flagged as spam), the algorithm learns that emails containing the term "p0rn" are also spam.

A. Géron, Hands on Machine Learning with scikit-learn and Tensorflow. O'Reilly Media, 2017.

Spam Detection in Gmail

Machine Learning as General Problem Solver

- One algorithm can solve different problems. For instance, Support Vector Machines can solve:
- Spam Detection
- Hand Written Character Recognition
- Image Classification
- ...
- However, there is not "the one" machine-learning algorithm that can do everything

The Machine Learning Landscape(s)

Scikit-learn

https://cdn-images-1.medium.com/max/1920/1*kJiLzEawYtmD7t-VQ3AXmw.png

Microsoft Azure

SAS

http://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/

DLib

http://dlib.net/ml_guide.svg

Facebook

the world of machine learning algorithms - a summary

regression

Stepwise Regression Jackknife Regression

regularization

Ridge Regression Least Absolute Shrinkage and Selection Operator (LASSO) Elastic Net Least-Angle Regression (LARS))

instance based

also called cake-based, memory-based

k-Nearest Neighbour (kNN) Learning Vector Quantization (LVQ) Self-Organizing Map (SOM) Locally Weighted Learning (LWL)

dimesionality reduction

Sammon Mapping Multidimensional Scaling (MDS) Discriminant Analysis (LDA, MDA, QDA, FDA)

think big data

bayesian

Gaussian Naive Bayes
Multinomial Naive Bayes
Averaged One-Dependence Estimators (AODE)
Bayesian Bellef Network (BRN)
Bayesian Network (BRN)
Hidden Markov Models

decision tree

C4.5 and C5.0 (different versions of a powerful approach)
Chi-squared Automatic Interaction Detection (CHAID)

clustering

Single-linkage clustering k-Medians Expectation Maximisation (EM) Hierarchical Clustering Fuzzy clustering DBSCAN OPTICS algorithm Non Negative Matrix Factorization Latent Dirichlet allocation (LDA)

deep learning

Deep Boltzmann Machine (DBM) Deep Belief Networks (DBN) Convolutional Neural Network (CNN) Stacked Auto-Encoders

associated rule

FP-Growth

ensemble

Bootstrapped Aggregation (Bagging) AdaBoost Stacked Generalization (blending) Gradient Boosting Machines (GBM)

thinkbigdata.in

info@thinkbigdata.in

@think_bigdata

facebook.com/thinkbigdatain

neural networks

Self Organizing Map

Back-Propagation

Hopfield Network

Hopfield networks

Boltzmann machines

Spiking Neural Networks Learning Vector quantization (LVQ)

...and others

Support Vector Machines (SVM)

Information Fuzzy Network (IFN)

Conditional Random Fields (CRF)

State-Action-Reward-State-Action (SARSA))

Inductive Logic Programming (ILP)
Reinforcement Learning (Q-Learning, Temporal Difference,

Evolutionary Algorithms

Perceptron

Gradient Boosted Regression Trees (GBRT) Random Forest

http://thinkbigdata.in/wpcontent/uploads/2016/04/Best_Machine_Learning_Algorithms.jpg

Page Rank

Strengths and Weaknesses of Machine Learning

Machine Learning is good for

- 1. Problems that would require (too) many rules to solve
- 2. Problems that are too complex to be solved by rules (e.g. handwriting or speech recognition)
- 3. Problems that have changing environments/data (e.g. spammers who try to cheat the system)
- 4. Problems where (lots of) data is already available

Machine Learning is not good for

- Random number generation
- En/Decryption
- Simple operations such as copying data
- Executing programs (following algorithms)

Blackbox

- It is often not immediately clear why a machine learning system creates the outputs it creates
- Understanding the reasoning behind the output, requires additional analyses; sometimes it's very difficult or impossible to fully understand the reasoning
- Legal implications

https://s3-us-west-2.amazonaws.com/courses-images-archive-read-only/wp-content/uploads/sites/903/2016/01/23225801/black-box-310220 1280.png

Legal Implications

European Commission - Press release

Antitrust: Commission fines Google €2.42 billion for abusing dominance as search engine by giving illegal advantage to own comparison shopping service

Brussels, 27 June 2017

The European Commission has fined Google €2.42 billion for breaching EU antitrust rules. Google has abused its market dominance as a search engine by giving an illegal advantage to another Google product, its comparison shopping service.

The company must now end the conduct within 90 days or face penalty payments of up to 5% of the average daily worldwide turnover of Alphabet, Google's parent company.

Commissioner Margrethe **Vestager**, in charge of competition policy, said: "Google has come up with many innovative products and services that have made a difference to our lives. That's a good thing. But Google's strategy for its comparison shopping service wasn't just about attracting customers by making its product better than those of its rivals. Instead, Google abused its market dominance as a search engine by promoting its own comparison shopping service in its search results, and demoting those of competitors.

AARIAN MARSHALL TRANSPORTATION 08.13.17 07:00 AM

TESLA BEARS SOME BLAME FOR SELF-DRIVING CRASH DEATH, FEDS SAY

TESLA

IT'S BEEN NEARLY a year and a half since Joshua Brown became the first person to die in a car driving itself. In May 2016, Brown was on a Florida highway in his Tesla Model S using Autopilot, the semi-autonomous driver assist feature that handles steering and speed during highway driving.

Tesla has always warned drivers that Autopilot isn't perfect. According to car's driving manual and the disclaimer drivers accept before they can engage it, the system should only

https://www.wired.com/story/tesla-ntsb-autopilot-crash-death/

No/Difficult Testing

- With traditional approaches, unit testing is easy
- For instance, title detection detected title for a specific document will not change when e.g. new documents are added to the corpus.

https://ekiy5aot90-flywheel.netdna-ssl.com/wp-content/uploads/2014/10/segue-blog-benefits-unittesting.png

Lecture Evaluation

Mentimeter

	0	0	0	0	0	0	0	0
of th	The EVANCE ne topics as HIGH	The RELEVANCE of the topics was NOT SO HIGH	The DEPTH of the topics was JUST RIGHT	The DEPTH of the topics was TOO COMPLEX	The DEPTH of the topics was TOO SHALLOW	The SPEED of the lecture was JUST RIGHT	The SPEED of the lecture was TOO SLOW	The SPEED of the lecture was TOO FAST

Thank you

