Конденсаторы К10-17

К10-17в, ОСК10-17в К10-17-4в (рис. 3)

Конденсаторы К10-17 предназначены для работы в цепях постоянного, переменного токов и в импульсных режимах. Конденсаторы изготавливают в соответствии с ОЖО.460.172 ТУ; ОЖО.460.107 ТУ; ОЖО.460.107 ТУ ОЖО.460.183 ТУ; ОЖО.460.107 ТУ ПО.070.052. Конденсаторы выпускаются в водородоустойчивом и неводородоустойчивом исполнениях.

К10-17а (рис. 1): правильной формы, изолированные керамические конденсаторы, исполнение — всеклиматическое.

К10-176 (рис. 2): изолированные окукленные керамические конденсаторы, исполнение — всеклиматическое.

К10-17в (рис. 3): незащищенные керамические конденсаторы. Типы контактных электродов: серебро-палладий (нелуженые); серебро-никель барьер/олово-свинец (луженые).

К10-17-4в (рис. 3): незащищенные керамические конденсаторы. Конденсаторы изготовляют в соответствии с ОЖО.460.172 ТУ. Предназначены для поверхностного монтажа. Поставка производится россыпью или в блистер-ленте. Типы контактных электродов: серебропалладий, серебро-никель барьер/олово-свинец.

Характеристика	M47	M1500	H20	H50	H90
Допускаемое отклонение	С _х ≤2,2 пФ: ±0,25 пФ				
емкости от номинальной	С _х >2,2 пФ:	± 5 %, ±10 %, ±20 %	± 10 %, ±20 %	+5020 %	+8020 %
	± 5 % ¹ , ±10 %, ±20 %				
Номинальное напряжение, В	50	50	50	50	40
Климатическая категория	-60/125/21 ²	-60/125/21 ²	-60/125/21 ²	-60/125/21 ²	-60/085/21 ²
Тангенс угла потерь	С _х ≤10 пФ не норм.;	33 пФ <С _х ≤50 пФ	не более 0,035	не более 0,035	не более 0,035
	10 пФ <С _х ≤50 пФ	1,5(150/ C _x)×10 ⁻⁴ ;			
	1,5(150/ C _x)×10 ⁻⁴ ;	С _x >50 пФ не более			
	С _x >50 пФ не более	0,0015;			
	0,0015;				
Сопротивление изоляции	С _х ≤0,025 мкФ	С _х ≤0,025 мкФ	С _х ≤0,025 мкФ	С _х ≤0,025 мкФ	С _х ≤0,025 мкФ
	не менее 10 ГОм;	не менее 10 ГОм;	не менее 4 ГОм;	не менее 4 ГОм;	не менее 4 ГОм;
	C _x >0,025 мкФ	С _х >0,025 мкФ	С _х >0,025 мкФ	С _х >0,025 мкФ	С _х >0,025 мкФ
	R _{из.} •С _х не менее 250 с	R _{из.} · C _х не менее 250 с	R _{из.} ∙С _х не менее 100 с	$R_{\text{из.}} \cdot C_{\text{x}}$ не менее 100 с	R _{из.} -С _х не менее 100

Примечание -¹ 2,2 πΦ<C≤6,8 πΦ − ±20 %; 7,5 πΦ<C≤15πΦ - ±10 %; ±20 %; ² Для конденсаторов варианта "а" - 56 суток

Обозна-									Pas	мері	ol, MM							
чение	Вариа	Вариант "б" (рис. 2)				Вариант "в" (рис. 3)							Вариант "4в" (рис. 3)					
видо-	L	I	Α	Г	В	Н	Α	нелу	/женый В Н		лужены		еный В Н		_	В	н	m
размера	max	max	,,	max	max	max	,,	L	max		L	max		min	í	D		min
1	6,8	4,6	2,5±0,5	5,6	4,0	3,0	2,5±0,8 5,0±0,8	1,5 ^{+0,4} _{-0,2}	1,3	1,2	1,5 ^{+0,5} _{-0,2}	1,4	1,2 1,4		1,6±0,2	0,8±0,2	0,8±0,2	
2	8,4	6.7	5,0±0,5	7,5	5,0	4,5	2,5±0,8	2,0 ^{+0,4} _{-0,2}	2,0 ^{+0,4}	1,0	$2,0^{+0,5}_{-0,2}$	1,9	1,2	0,2	2,0±0,2 1,25±	1,25±0,2	0,8±0,2	0,2
2	0,4	0,7	3,0±0,3	7,5	3,0	4,5	5,0±0,8		-0,2	1,4	2,0 ^{+0,7} _{-0,2}	1,9	1,6			1,25±0,2	0,0±0,2	0,2
3	12,0	8,6	7,5±0,5	9,0	7,1	5,0	5,0±0,8	4,0 ^{+0,5} _{-0,3}	2,9	1,0	4,0 ^{+0,7} _{-0,3}	3,2	1,2 2,0		3,2±0,2	1,6±0,2	1,0 ^{+0,2} _{-0,3}	
4					9.0	5.0	5,0±0,8	5,5 ^{+0,5} _{-0,4}	4,4	1,0 1,3*	5,5 ^{+0,7}	4,6	1,2 1,5*	0.5				
7				11,5	3,0	5,0	7,5±1,5			2,2*	-,.		2,0 2,4*	,				
5								$8,0^{+0,7}_{-0,5}$	6,6	1,8	8,0 ^{+0,9} _{-0,5}	6,8	2,0					

Примечание - * только для конденсаторов группы Н90

Примеры	условного	обознач	нения

Конденсатор		90	1,5 мкФ	ОЖО.46	80.107 ⁻	ГУ нелуженый
(а)		e)	(ж))	л)	(м)
Конденсатор	OCK10-17Ca	M47	270 пФ	±10 %	В	ОЖО.460.107 ТУ ОЖО.460.183 ТУ
(а)	(б) (г)(д)	(e)	(ж)	(3)	(к)	(л)
Конденсатор	ОСМК10-17б	M47	430 пФ	±10 %	В	ОЖО.460.107 ТУ ПО.070.052
(а)	(б) (д)	(e)	(ж)	(3)	(к)	(л)
Конденсатор	К10-17-4в	M47	150 пФ	±10 %	2	ОЖО.460.172 ТУ
(а)	(б) (в)(д)	(e)	(ж)		(и)	(п)

- а) слово «Конденсатор»:
- б) сокращенное условное обозначение;
- в) вид;
- г) буква «С» для конденсаторов водородоустойчивого исполнения;
- д) вариант;
- е) группа по ТКЕ;
- ж) номинальная емкость:
- з) допускаемое отклонение емкости от номинальной (кроме групп Н50, Н90);
- и) обозначение видоразмера;
- к) буква «В» для конденсаторов всеклиматического исполнения;
- л) обозначение документа на поставку;
- м) слово «нелуженый» для конденсаторов с нелужеными контактными электродами.

										Кон	ден	ıcar	nop	ы	тиг	ıa F	(10-	17												
	K'	10-1	7a (p	оис.	1)			17б (рис. 2	2)) K10-17в (рис. 3) I				К10-17-4в-1 (рис. 3) К10-17-4в-2							4в-2	в-2 (рис. 3) К10-17-4				-4в-3	4в-3 (рис. 3)		
Ряд Е	E2	24	E12	E	6	E2	24	E12	E	6	E	24	E12	E	6	E	24	E12	E	6	E:	24	E12	E	6	E2	24	E12		<u> </u>
C _x 0,47	IVI47	M1500	H20	HOU	H90	IVI47	M1500	H20	HOU	H90	IVI47	M1500	H20	HOU	H90	IVI47	M1500	HZU	H5U	H90	IVI47	M1500	H20	HOU	H90	IVI47	M1500	HZU	HOU	H90
2,2																	_													
22																														
33																1														
39																														
75											1											ļ				ŀ				
100 150							ł										4				2	ł				-				
160																	1									-				
180						1						1										i				3				
270							ĺ				2											ĺ								
430																														
470																						2								
560	1						_																		<u> </u>		_			
620 680							1														_						3			
820																			ŀ			ł	ł		_	-				
910							İ					2							Ì			Ì								
1000		1									3																			
1100													1	1				1	1				ļ							
1600 1800						2																	ļ			_				
2200							ł						ł						ŀ				ł							
2700																			i				2	2				3	3	
3000								1	1						İ				Ì	1										
3300												3																		
4700						3					4				ļ l															
5600 6800			1	1			2																		3					
8200				'			_																ł		3			•		
9100							ĺ						2	2	1					-			ĺ							
10n	2					3					4]							3
11n	3					4					5																			
15n		2					3					4	ļ																	
18n 22n																			<u> </u>		_					<u> </u>				
27n										1																				
30n					1												L		L											
33n		2					3					4	3	3																
39n		3					4					5							<u> </u>											
47n 68n								2	2						2				<u> </u>		_					-				
100n																														
120n																														
150n			2	2				3	3				4	4																
220n															3															
270n			0	0				2	0	0			4	4																
330n 470n			2	2				3	3	2			4 5	4 5					<u> </u>		_					-				
560n			3	3				-	7				3	J																
680n										3																				
1μ5					2										4															
2μ2										3,4																				

Конденсаторы К10-17в группы ТКЕ Н20 также изготавливают габаритных размеров и Сх согласно таблице:

	Конденсаторы К10-17в Н20																				
			E	МКОСТЬ	по ря	ду Е12	Габаритные размеры														
		пФ					М	Ф			Н	елужень	ый		Луженый	Í	m min				
100	220	1000	2200	8200	0,01	0,018	0,068	0,15	0,33	0,56	L	B max	H max	L	B max	H max					
		1									1,6±0,2	1,0	0,9	1,6 ^{+0,4} _{-0,2}	1,2	1,1					
		2									2,0±0,2	1,45	1,3	2,0 ^{+0,4} _{-0,2}	1,6	1,5	0,2				
				3							3,2±0,2	1,8	1,3	$3,2^{+0,5}_{-0,2}$	2,0	1,5	0,2				
			4									2,8	1,3	3,2+0,7	3,0	1,5					
			5								4,5±0,5	3,6	1,3	4,5 ^{+0,7} _{-0,5}	3,8	1,5	0,3				
							6				5,7±0,5	5,5	1,3	5,7 ^{+0,7} _{-0,5}	5,7	1,5	0,3				

Примеры условного обозначения

Конденсатор К10-17в-H20-0,15 мкФ ± 10 % -5 (5 – обозначение видоразмера);

Конденсатор K10-17в-M1500-0,03 мкФ \pm 10 % -5,5 (для размера Lmax × Bmax = 5,5×4,0 мм);

Конденсатор К10-17а-М47-0,01 мк $\Phi \pm 10$ % -8,4-В (для размера Lmax × Bmax = 8,4×6,7 мм).