Markov Decision Process

- · Create a policy when acting under uncertainty
- 1-Markov assumption: next state only depends on current state

· Components:

- Set of actions A Set of states: S
- · Transition model: T(s, a, s') -> [0, 1] (f is sad porters a, when pot of getting to s' P(s'/s, a)
- · Reward function: R(s) -> real # How much value do now get for being in a that

Action UP	,			
7 36 360	(1,1)	(2,1)(2	,2) (3,3).	(1,2)-
(1,1)	0.1	6.1	(0.0)	8.0
(2,1) (22)	0.1	0.8	U. 1	0,0
(33)				

MDP

- Solution is a policy π : s —> a
- $\pi(s)$ is the action to take from state s
- * $\pi^*(s)$ is the optimal action to take from state s
- Maximizes reward over time, giving the highest expected utility

$$-0.43 < R(s) < -0.06$$

$$\Rightarrow \Rightarrow + 1$$

$$\uparrow \Rightarrow \uparrow -1$$

$$Risk \text{ (ake)}$$

Calculating utility

- What is it worth to the agent to be in a state?
- Utility of a state s is the amount of reward accumulated since starting in state s_0 before arriving in s
- · Depends on how you got there
- Utility of a plan acts like a heuristic, indicating which route is better

R(5,a)

Calculating utility

- · Discounted reward:
- $\begin{array}{l} \bullet \ \ U_h([s_0,\,s_1,\,\ldots,\,s_n]) = \underbrace{R(s_0)}_{} + \underbrace{\gamma R(s_1)}_{} + \underbrace{\gamma^2 R(s_2)}_{} + + \underbrace{\gamma^3 R(s_3)}_{} \end{array}$
- γ is discount factor, [0, 1]

 If you knew the utility of every state, the policy is just the action that moves the agent to the successor with the highest utility.

- Need to compute U(s)
- Utility of state s is the immediate reward R(s) plus expected discounted utility of future states

Value Iteration

- Start with arbitrary utility values and iteratively update the values until they converge on true utility
 - Recall: utility of a state is a function on immediate reward and the expected utilities of all neighbors
 - U_i(s) is the utility of state s at the ith iteration
- · Bellman update:

$$U_{i+1}(s) = R(s) + \gamma \times \max_{a \in A} \left(\sum_{s' \in S} \left(T(s,a,s') \times U_i(s') \right) \right)$$

$$\lim_{a \in A} \int_{s' \in S} \left(T(s,a,s') \times U_i(s') \right) \int_{a+1}^{a} \int_{a+1}^{a$$

MDP
States S
Actions A
initial State So

$$T(s', a, s)$$

 $R(s)$ ($R(s, a)$)

Value Iteration Algorithm

- Set U₀(s) to arbitrary starting value for all s
- Do until utilities converge (difference less than ε):
 - i = i + 1
 - · For each state s do:
 - Compute U_i using the Bellman update (using U_{i-1})