Metodi Numerici dell'Informatica

Introduzione

Emanuele Rodolà rodola@di.uniroma1.it

- Docenti: Prof. Emanuele Rodolà
- Assistenti: Dr. Riccardo Marin e Dr. Emilian Postolache Codice, esercitazioni, supporto tecnico

- Docenti: Prof. Emanuele Rodolà
- Assistenti: Dr. Riccardo Marin e Dr. Emilian Postolache Codice, esercitazioni, supporto tecnico
- Quando: Mercoledi 10:00-12:30 e Giovedi 14:00-15:30

- Docenti: Prof. Emanuele Rodolà
- Assistenti: Dr. Riccardo Marin e Dr. Emilian Postolache Codice, esercitazioni, supporto tecnico
- Quando: Mercoledi 10:00-12:30 e Giovedi 14:00-15:30
- Dove:

In presenza: Aula G50 - Edificio RM115 (complesso Regina Elena, Edificio G)

Aula virtuale: Zoom, Meeting ID: 475 234 9941, Passcode: 3K7xrM

- Docenti: Prof. Emanuele Rodolà
- Assistenti: Dr. Riccardo Marin e Dr. Emilian Postolache Codice, esercitazioni, supporto tecnico
- Quando: Mercoledi 10:00-12:30 e Giovedi 14:00-15:30
- Dove:

In presenza: Aula G50 - Edificio RM115 (complesso Regina Elena, Edificio G)

Aula virtuale: Zoom, Meeting ID: 475 234 9941, Passcode: 3K7xrM

- Ricevimento: Inviare una mail al docente o agli assistenti
- Sito del corso: https://erodola.github.io/NumMeth-s2-2022/ Controllare giornalmente per informazioni e materiale

Repository

The course is hosted on Github at the url:

https://github.com/erodola/NumMeth-s2-2022

Repository

The course is hosted on Github at the url:

https://github.com/erodola/NumMeth-s2-2022

You can use github to ask questions, in particular:

- Start a discussion to create a new topic / question (this replaces the issue system used last year)
- Reply to discussions started by others
- Please use discussions instead of direct emails to the Professor, unless you have private reasons.

Disclaimer

This is a new course.

• All the material is new

Disclaimer

This is a new course.

- All the material is new
- We will alternate between theoretical and lab classes

Disclaimer

This is a new course.

- All the material is new
- We will alternate between theoretical and lab classes
- We may change the balance depending on your feedback

Recipe for success

Try to enjoy the course!

Take this as an opportunity to learn in depth.

Ask questions when in doubt.

Who am I?

- Had research positions at U Tokyo, TU Munich, U Lugano and visiting positions at Harvard, Stanford, Ecole polytechnique, Technion among others
- Research: digital geometry processing, geometric deep learning
- Team: ~25 members from physics, engineering, computer science
 GLADIA group of Geometry, Learning and AI
- If you have ideas, approach us for projects / theses

nature methods

Protein interaction fingerprinting using deep learnin
Improved 3D multicolor nanoscopy
Cryo-ET-based structure determination
Modeling intercellular communication

The Bioconductor project for single-cell analysis

Pre-requisites and reading material

"Numerical Algorithms" by Justin Solomon, CRC Press 2015.

Specific references will be given throughout the course in the form of book chapters and scientific articles.

Pre-requisites and reading material

"Numerical Algorithms" by Justin Solomon, CRC Press 2015.

Specific references will be given throughout the course in the form of book chapters and scientific articles.

Pre-requisites:

- Programming fundamentals. We will use Python
- Welcome (not mandatory): linear algebra, calculus

• Midterm self-evaluation (not graded) When: first half of April

Midterm self-evaluation (not graded) When: first half of April

Written exam When: June 15th and July 6th

Midterm self-evaluation (not graded) When: first half of April

Written exam When: June 15th and July 6th

 $oldsymbol{0}$ Optional: oral exam, contributing ± 3 points to the final grade

Midterm self-evaluation (not graded)
 When: first half of April

Written exam When: June 15th and July 6th

 $oldsymbol{0}$ Optional: oral exam, contributing ± 3 points to the final grade

In class, be prepared:

Download/print the slides beforehand

Take notes: not everything will be on the slides

Bring your laptop: we'll do live coding sessions

Overall objective

What will you get out of this course? (if you study)

 You will acquire solid fundamental skills for understanding, analyzing, and applying numerical methods and algorithms in diverse application scenarios

Overall objective

What will you get out of this course? (if you study)

- You will acquire solid fundamental skills for understanding, analyzing, and applying numerical methods and algorithms in diverse application scenarios
- You will be able to grasp and elaborate on more advanced topics in several other applied disciplines and scientific areas

Overall objective

What will you get out of this course? (if you study)

- You will acquire solid fundamental skills for understanding, analyzing, and applying numerical methods and algorithms in diverse application scenarios
- You will be able to grasp and elaborate on more advanced topics in several other applied disciplines and scientific areas
- You will get practical development expertise on applied problems

Aerodynamic simulation

3d model

Volumetric mesh