Thus far ...

- 1. Propositions, truth tables, laws of propositional logic, rules of inference
- 2. Checking validity of logical arguments
- 3. Quantified predicates

Today

Given a truth table, construct a corresponding proposition.

There are (infinitely) many equivalent answers.

Example

x	y	$oldsymbol{z}$	P
Т	Т	T	T
Т	Т	F	Т
Т	F	Т	F
Т	F	F	F
F	Т	Т	Т
F	Т	F	Т
F	F	Т	F
F	F	F	Т

Example

	x	y	Z	P
Row 1	Т	Т	Т	Т
Row 2	Т	Т	F	Т
	Т	F	Т	F
	Т	F	F	F
Row 3	F	Т	Т	Т
Row 4	F	Т	F	Т
	F	F	Т	F
Row 5	F	F	F	Т

Row 1: $x \wedge y \wedge z$

Row 2: $x \land y \land \neg z$

Row 3: $\neg x \land y \land z$

Row 4: $\neg x \land y \land \neg z$

Row 5: $\neg x \land \neg y \land \neg z$

 $P \equiv (x \land y \land z) \lor (x \land y \land \neg z) \lor (\neg x \land y \land z) \lor (\neg x \land y \land \neg z) \lor (\neg x \land \neg y \land \neg z)$

Disjunctive Normal Form

For every truth table with variables $x \downarrow 1$, $x \downarrow 2$, ..., $x \downarrow n$ there is a corresponding equivalent proposition of the form:

$$V1 \uparrow m / 1 \uparrow n / l \downarrow i$$

Where $l \downarrow i = x \downarrow j$ or $\neg x \downarrow j$.

Every proposition can be expressed using only the connectives \neg , \land , \lor

 \neg , \land , \lor is a functionally complete set of connectives

Functional Completeness

$$x \lor y \equiv \neg \neg (x \lor y) \equiv \neg (\neg x \land \neg y)$$

We can replace every occurrence of V with \neg , Λ .

So every proposition can be expressed using only \neg , \wedge .

Similarly, since
$$x \land y \equiv \neg \neg (x \land y) \equiv \neg (\neg x \lor \neg y)$$

we can replace every occurrence of Λ with \neg , V.

So every proposition can be expressed using only \neg , \lor .

Is there one connective that is functionally complete?

Common binary connectives

x	y	<i>x</i> ∨ <i>y</i>	$x \wedge y$	$x \Rightarrow y$	XOR(x,y)	NOR(x,y)	NAND(x,y
Т	Т	Т	Т	Т	F	F	F
Т	F	Т	F	F	Т	F	Т
F	Т	Т	F	Т	Т	F	Т
F	F	F	F	Т	F	Т	Т

There are 16 binary connectives. This table includes 6 of them.

$$XOR(x,y) = x \oplus y \equiv (\neg x \land y) \lor (x \land \neg y)$$

$$NOR(x,y) = x \downarrow y \equiv \neg (x \lor y)$$

$$NAND(x,y) = x \uparrow y \equiv \neg (x \land y)$$

NAND is functionally complete!

$$NAND(x,y)=x\uparrow y \equiv \neg(x\land y)$$

If we can emulate $\neg x$ and $x \lor y$ using only \uparrow then \uparrow is functionally complete.

$$\neg x \equiv x \uparrow x$$

$$x \lor y \equiv \neg \neg (x \lor y)$$

$$\equiv \neg (x \uparrow y)$$

$$\equiv (x \uparrow y) \uparrow (x \uparrow y)$$

NOR is functionally complete!

$$NOR(x,y)=x\downarrow y \equiv \neg(x\lor y)$$

If we can emulate $\neg x$ and $x \land y$ using only \downarrow then \downarrow is functionally complete.

$$\begin{array}{l}
\neg x \equiv x \downarrow x \\
x \land y \equiv \neg \neg (x \land y) \\
\equiv \neg (\neg x \lor \neg y) \\
\equiv \neg ((x \downarrow x) \lor (y \downarrow y)) \\
\equiv (x \downarrow x) \downarrow (y \downarrow y)
\end{array}$$

1-bit adder using NOR gates

S\$10

2-bit adder using NOR gates

