# Studying Celestial Mechanics with Python Programming Language

February 22nd, 2018 Matthew Hyeun and Dr. B. Mitrovic

#### Goals and Overview

#### Goals

- Study Kepler's Laws of Planetary Motion
- Application
- Integrate Python 3 Programming

#### **Overview**

- Definitions
- Kepler's Laws/Newton's Laws
- Application of Laws
- Closing Remarks

#### Definitions

#### **Important Definitions:**

- Apoapsis/Aphelion
- Periapsis/Perihelion
- Eccentricity
  - o e = 0
  - o 0 < e < 1
  - $\circ$  e=1
  - o e > 1
- Period
- Astronomical Unit
  - o 1.496e+11 meters

#### Geometry of an Ellipse:



## Kepler's Laws of Planetary Motion

1. Law of Orbits: All planets move in elliptical orbits, with the sun at one focus.



2. Law of Areas: A line that connects a planet to the sun sweeps out equal areas in equal times.



3. Law of Periods: The square of the period of any planet is proportional to the cube of the semimajor axis of its orbit.

$$P^2 = a^3$$

#### Newtonian Versions of Kepler's Laws

However, there were issues with Kepler's Laws of Planetary Motion.

Newton's Revised Version of the Law of Orbits (generalized to binary):
 Two celestial masses orbiting in a bound binary orbit under the influence of gravity will follow elliptical orbits about the center of mass of the binary system.



#### Newtonian Versions of Kepler's Laws cont.

#### 2. Newton's Revised Version of the Law of Areas:

The time rate of change of the area swept out by a line connecting a planet to the focus of an ellipse is a constant, one-half of the orbital angular momentum per unit mass.

$$\frac{dA}{dt} = \frac{1}{2} \frac{L}{\mu}$$

$$L = \mu r v$$

#### Newtonian Versions of Kepler's Laws cont.

3. Newton's Revised Version of the Law of Periods:



# Application with Computer Science

Python 3 Programming Language



#### Applications with Computer Science

The user will be asked for orbital period, and orbital eccentricity.

Earth: P = 1yr, e = 0.0167. Halley's Comet: P = 75.32 yrs, e = 0.9673

1. What is the semimajor axis of any given orbit?

```
a = (Period ** 2) ** (1 / 3)
a = round(a, 4)

print("The semimajor axis of your orbit is", a, "AU (Astronimical Unit).\n")
```

Output for Earth: The semimajor axis of your orbit is 1.0 AU (Astronimical Unit).

Output for Halley's Comet: The semimajor axis of your orbit is 17.8682 AU (Astronimical Unit).

#### Applications with Computer Science cont.

2. Estimate the mass of the sun.

```
print("The semimajor axis must be converted into metres.")
ameters = a * 149597870700 #conversion factor for AU to m
print("Your semimajor axis is", "%.3e" % ameters, "meters. \n")

print("The period must be converted into seconds.")
periodseconds = Period * 31556926 #conversion factor from yrs to s
print("Your period is", "%.3e" % periodseconds, "seconds. \n")

print("The program will now estimate the mass of the sun, assuming that m2 is negligable. \n")

mSun = ( 4 * math.pi**2 * ameters**3 ) / ( G * periodseconds**2)

print("The estimated mass of the sun is", "%.3e" % mSun, "kilograms. \n")
```

Output for Earth: The estimated mass of the sun is 1.990e+30 kilograms.

Output for Halley's Comet: The estimated mass of the sun is 1.990e+30 kilograms.

#### Applications with Computer Science cont.

3. Calculate the distance from the Sun at perihelion and aphelion.

```
rp = a * ( 1 - Eccentricity ) #formula for perihelion
rp = round(rp, 4)

print("The distance from the Sun at perihelion is", rp, "AU. \n")

ra = a * ( 1 + Eccentricity ) #formula for aphelion
ra = round(ra, 4)

print("The distance from the Sun at aphelion is", ra, "AU. \n")
```

```
The distance from the Sun at perihelion is 0.9833 AU.

The distance from the Sun at aphelion is 1.0167 AU.

The distance from the Sun at aphelion is 35.1521 AU.
```

#### Applications with Computer Science cont.

4. Calculate the orbital speed at perihelion, aphelion, and semi-minor axis.

```
vp = math.sqrt(((G * mSun) / ameters ) * ((1 + Eccentricity) / (1 - Eccentricity))) #velocity at perihelion
print("The orbital speed at perihelion is", "%.4e" % vp, "meters per second. \n")

va = math.sqrt(((G * mSun) / ameters ) * ((1 - Eccentricity) / (1 + Eccentricity))) #velocity at aphelion
print("The orbital speed at aphelion is", "%.4e" % va, "meters per second. \n")

#semiminor axis

b = math.sqrt(( ameters ** 2) * ( 1 - (Eccentricity ** 2)))
print("The semiminor axis of the orbit is", "%.4e" % b, "meters.")

c = math.sqrt(( b ** 2 ) + (( ameters - rp ) ** 2 ))
print("The distance from the semiminor axis to the sun is", "%.4e" % c, "meters.")

rpmeters = rp * 149597870700 #conversion factor from AU to m

vb = math.sqrt( 2 * ((( 1 / 2 ) * ( vp ** 2 )) - ( G * ( mSun / rpmeters )) + (G * ( mSun / c ))))
print("The orbital velocity at semiminor axis is", "%.4e" % vb, "meters per second. \n")
```



The orbital speed at perihelion is 3.0288e+04 meters per second.

The orbital speed at aphelion is 2.9293e+04 meters per second.

The semiminor axis of the orbit is 1.4958e+11 meters. The distance from the semiminor axis to the sun is 2.1155e+11 meters. The orbital velocity at semiminor axis is 1.9172e+04 meters per second.

The orbital speed at perihelion is 5.4655e+04 meters per second.

The orbital speed at aphelion is 9.0847e+02 meters per second.

The semiminor axis of the orbit is 6.7798e+11 meters. The distance from the semiminor axis to the sun is 2.7577e+12 meters. The orbital velocity at semiminor axis is 6.8305e+03 meters per second.



# Main Question

Estimate the amount of time required for a celestial object to move from perihelion to a distance of 1 AU away from the principal focus.

### Approach



#### Code in Python Language

```
#Appendix G: A planetary orbit code
#Brock Mentorship
#by Matthew Hyeun
#Version 2.4 (no steps printed out)
import math
import matplotlib.pyplot as plt
#Constants
G = 6.67 * 10**-11 #Gravitational constant
Msun = 1.99 * 10**30 #Mass of sun
AU = 1.496 * 10**11 #AU conversion to meters
spyr = 3.154 * 10**7 #Seconds per year
#User inputs
Mstrsun = float(input("Enter mass of the parent star, in solar masses: "))
print()
aau = float(input("Enter semimajor axis of the orbit, in AU: "))
print()
e = float(input("Enter the eccentricity of the orbit: "))
print()
#Orbital period calcuation
Pyears = math.sqrt(aau ** 3 / Mstrsun)
Pyears = round(Pyears, 2)
print("The orbital period is", Pyears, "years.")
print()
```

#### Code in Python Language cont.

```
#User inputs for time steps and frequency of time steps
print("If too large of a time step is inputted, inaccurate results will be produced.")
print("If a high number of time steps is inputted, accurate results will be produced.")
print()
end = float(input("Enter the desired distance from the parent star for the calculation in AU: "))
print()
n = int(input("Enter the number of time steps for the calculation: "))
print()
kmax = 1
#Conversion to cgs units
period = Pyears * spyr
dt = period / (n - 1) #since first and last step is the same step
a = aau * AU
Mstar = Mstrsun * Msun
#State variables for loop
k = 0 #time step counter
theta = 0.00 #angle
time = 0.00 #self explanatory
```

### Code in Python Language cont.

#### #MAIN LOOP data = [] data2 = [] for i in range(1, n): k = k + 1r = (a \* (1 - e \*\* 2)) / (1 + e \* math.cos(theta))if r >= (end \* AU) or i == n: break #Calculate angluar momentum per unit mass L/m LoM = math.sqrt(G \* Mstar \* a \* (1.00 - e \*\* 2))#Calculate next value of theta dtheta = LoM / r \*\* 2 \* dt theta = theta + dtheta #Update elapsed time time = time + dt if k == kmax: k = 0x = r \* math.cos(theta) / AUx = round(x, 2)y = r \* math.sin(theta) / AUy = round(y, 2)data.append(x)

data2.append(y)

### Code in Python Language cont.

```
#CONCLUSIONS
print("The calculation is complete.")
print()
x = r * math.cos(theta) / AU
x = round(x, 2)
y = r * math.sin(theta) / AU
y = round(y, 2)
print("x is equal to", x, "AU.")
print("y is equal to", y, "AU.")
print()
tyears = time/spyr
tyears = round(tyears, 2)
print(tyears, "years have elapsed to reach a distance of", end, "AU from the Sun.")
#GRAPH
plt.xlabel('X-Value of Orbit (AU)')
plt.ylabel('Y-Value of Orbit (AU)')
plt.title('Orbit of Planet')
plt.plot(data, data2, "ro")
plt.show()
```

#### Visual Representation in Desmos



Perihelion is at x = 1.

$$y_1 \sim ax_1^2 + bx_1 + c$$

STATISTICS

RESIDUALS

 $R^2 = 0.9983$ 

 $e_1$  plot

**PARAMETERS** 

a = 9.84683e + 7 b = 9.07976e + 8

 $c = 8.447 \times 10^{10}$ 

The line of best fit intersects with the line  $y = 1.496 \times 10^{11}$  when x = 21.518. Therefore, according to the line of best fit, Halley's Comet will be 1AU from the Sun after 39.27 days.

# Visual Representation in Python Using matplotlib.pyplot



# Visual Representation in Python Using matplotlib.pyplot



#### Works Cited

Bradly W. Carroll and Dale A. Ostlie, An Introduction to Modern Astrophysics, Addison-Wesley, Reading, Massachusetts (1996); Appendix G.

#### **Closing Remarks**

Thank you for listening to my presentation: 'A Study of Celestial Mechanics with Python Programming'!

Thank you, **Mr. Peter Domarchuk**, for being an outstanding co-op teacher.

Thank you, **Mrs. Heather Bellisario**, for allowing many students to have an amazing opportunity.

Most importantly, thank you, **Dr. Bozidar Mitrovic**, for sacrificing your valuable time and effort to be a mentor for my research.