MW 23.01.17

Metoda chemiczna otrzymywania grafenu

Grafit	
↓ utlenianie	
Tlenek grafitu	
↓ eksfoliacja	7
Tlenek grafenu	eksfoliacja + redukcja
↓ redukcja	∠
Zredukowany tlenek grafenu	
↓ redukcja	
Grafen	

Metody utleniania grafitu

- 1859 Metoda Brodiego (HNO3, KClO3)
- 1900 Metoda Staudenmaiera $(HNO_3, KClO_3, H_2SO_4)$
- 1960 Metoda Hummersa $(H_2SO_4, NaNO_3, KMnO_4, H_2O_2)$

Dane XPS:

```
|Metoda | C, % atomów| 0, % at.|
|-|-|-|
|Hummersa | 59.9| 40.1|
|Staudenmaiera| 62.6| 37.4|
```

Metoda eksfoliacji tlenku grafitu:

- działanie ultradźwiękami w wodzie i rozpuszczalnikach organicznych
- ullet metoda termiczna pod ciśnieniem atmosferycznym w wysokiej temperaturze 900-1100 ^{o}C
- ullet ogrzewanie pod wysoką próżnią do 200-300 oC

(Wspomniała coś o tym w jakiej postaci jest tlen w graficie - grupy epoksydowe i hydroksylowe w środku, na zewnątrz dodatkowo grupy karbonylowe, nie ma grup karboksylowych)

Redukcja tlenku grafenu

- Redukcja hydrazyną
- Obróbka hydrotermalna jednorodnie zdyspergowany w wodzie tlenek grafenu ogrzewany w autoklawie w 180-220°C pod ciśnieniem (9 atm) pary wodnej.
- Metoda termiczna obróbka termiczna w kontrolowanych warunkach eksfoliacja połączona z redukcją (słaba eksfoliacja - więcej niż jedna warstwa, za to redukcja bardzo dobra)

Metoda CVD

Otrzymuje się mono- lub kilkuwarstwowy grafen na folii metali przejściowych (Ni, Cu)

Na niklu osadza się węgiel z rozkładu metanu a na miedzi również z etylenu.

Ogrzewanie miedzi do $1000^{o}C$ w obecności H_{2}

Ogrzewanie miedzi do $1000^{o}C$	w obecności H_2
Wygrzewamy przez jakiś czas	H_2
W 1000 ^{o}C dodajemy węglowodór który się rozk 1 ada	H_2,CH_4
gwałtownie chłodzimy, atomy węgla dyfundują ku powierzchni, tworzą warstwę grafenową	H_2

Powierzchniowy rozkład węglika krzemu (grafen epitaksjalny)

wysokotemperaturowa (1400-1700°C) sublimacja krzemu w próżni (50-300 mbar)

Zastosowanie grafenu

Elektronika

- tranzystory (single electron transistor SET)
- sensory
- przeźroczyste dla światła widzialnego przewodzące filmy (transparent conductive films TFC)

Magazynowanie i konwersja energii - baterie litowo-jonowe, kondensatory elektrochemiczne, ogniwa słoneczne

Nanokompozyty grafen-polimer (PS,PMMA, PVA, PP, poliester, poliuretany, poliwęglany, PVDF)

p. 38 s.4-6

Metody otrzymywania grafenu

- Eksfoliacja (fizyczno-mechaniczna lub chemiczna)
- Osadzanie z fazy gazowej (CVD)
- Rozszczepianie nanorurek, metody elektrochemiczne, chemiczne lub fizyczne
- Redukcja cukrów (glukoza, sacharoza)

Handlowy grafen "PureSheets" - NanoIntegris (USA)

Eksfoliacja grafitu przy użyciu surfaktantu jonowego (sól sodowa kwasu żółciowego) – kompleksy grafen-surfaktant o różnej grubości, co umożliwia rozdział na podstawie gradientu gęstości przy zastosowaniu ultrawirówek.

Wodny roztwór - grafen + 2% surfaktantu.

NanIntegris

1, 2 Layer Graphene

PureSheets MONO PureSheets QUATTRO 3, 4+ Layer Graphene

5 mg of (A) MONO (B) and QUATTRO graphene in 100 mL of solution

Measure	PureSheets MONO	PureSheets QUATTRO	
Single Layer Content Double Layer Content Triple Layer Content 4+ Layer Content Average Flake Area	27% 48% 20% 5% ~10,000 nm2	6% 23% 27% 44% ~10,000 nm2	
Solution Type	Aqueous w/surfactant		
Graphene Concentration	0.05 mg/mL		
Surfactant Concentration	2% w/v lonic (proprietary)		
Surfactant Type			
Shelf Life	6 months		

Grade	Price (5 mg)	Price (50 mg)	Price (100 mg)
QUATTRO	\$199	\$799	\$999
MONO	\$499	\$1,999	\$2,499

Sadza węglowa

Sadza węglowa powstaje w fazie gazowej w procesie termicznego rozkładu węglowodorów.

Zastosowanie sadzy:

wyroby gumowe (90%), w tym opony (60%)

- pigmenty farby drukarskie, tworzywa sztuczne, farby i lakiery, papier (7.9%)
- inne zastosowania elektrody, reduktory, nośniki katalizatorów na metalach szlachetnych (palladowych) (2.1%)

Produkcja sadzy - ~13 mln t (USA, Rosja)

Budowa sadzy

Cząstki sadzy - małe sferoidalne, parakrystaliczne jednostki, tworzące agregaty o średnicy zastępczej 70-400nm. Może być wydzielona z agregatu tylko przez rozbicie.

Agregat (sferoidalny, elipsoidalny, liniowy, rozgałęziony) - oddzielona, rozróżnialna sztywna jednostka koloidalna, która jest najmniejszą jednostką dająca się zdyspergować, jest zbudowana z silnie zlanych cząstek

p.27 s.6

Rodzaj procesu chemicznego	Rodzaj sadzy	Surowiec
Rozkład termiczno- utleniający		
 w systemie zamkniętym (przeplyw turbulentny) 	piecowa	oleje ze smoły węglowej i ropy naftowej; gaz ziemny
	lampowa	oleje ze smoły węglowej i ropy naftowej
w systemie otwartym (palniki dyfuzyjne)	Degussa kanalowa	destylaty smołowe gaz ziemny
Rozkład termiczny okresowy ciągły	termiczna acetylenowa	gaz ziemny acetylen

Technologie produkcji sadzy

Surowce - oleje ze smoły węglowej i ropy naftowej, gaz ziemny, acetylen

Surowiec	Proces/metoda wywarzania sadzy	Sadza	Średnia wielkośćcząstek, nm	Powierzchnia $oldsymbol{w}$ łaściwa $S_{BET} m^2/g$
oleje ze smoły węglowej i ropy naftowej	proces piecowy	sadza piecowa	20-80	25-200
gaz ziemny	proces termiczny	sadza gazowa	180-500	10
gaz ziemny	metoda kanałowa	sadza kanałowa	10-35	100-500
acetylen	metoda acetylenowa	sadza acetylenowa	40	70

Surowiec	Proces/metoda wywarzania sadzy	Sadza	Średnia wielkośćcząstek, nm	Powierzchnia właściwa $S_{BET}m^2/g$	
gaz ziemny	metoda lampowa	sadza lampowa	70-100	40	

Najwięcej sadzy produkuje się w procesie piecowym