STA 522, Spring 2021 Introduction to Theoretical Statistics II

Lecture 8

Department of Biostatistics University at Buffalo

22 March, 2021

AGENDA

- Wrap up discussion on Cramér-Rao Lower Bound
- ► Rao-Blackwell Theorem
- ► Lehmann–Scheffé THeorem
- ► Cramér-Rao Lower Bound

Review: UMVUE & Cramér-Rao lower bound

- An estimator W^* is a **uniform minimum variance unbiased estimator** (UMVUE) of $\tau(\theta)$ if (a) W^* is unbiased, and (b) among all unbiased estimators, the variance (or MSE) of W^* is a minimum.
- ▶ **CRLB:** Let $\underline{X} = (X_1, X_2, ..., X_n)$ have pdf $f(\underline{x} \mid \theta)$, and let $W(\underline{X})$ be any estimator satisfying

(a)
$$\frac{d}{d\theta} \operatorname{E}_{\theta} [W(\underline{X})] = \int_{\mathcal{X}} \frac{\partial}{\partial \theta} [W(\underline{x}) f(\underline{x} \mid \theta)] d\underline{x}$$
; and

(b) $\operatorname{Var}_{\theta}[W(\underline{X})] < \infty$.

Then
$$\operatorname{Var}_{\theta}(W(\underline{X})) \geq \frac{\left[\frac{d}{d\theta} \operatorname{E}_{\theta} [W(\underline{X})]\right]^{2}}{\operatorname{E}_{\theta} \left[\left[\frac{\partial}{\partial \theta} \log f(\underline{X} \mid \theta)\right]^{2}\right]}$$
.

- ▶ If an estimator satisfies the above two assumptions, and its variance attains the CRLB, then the estimator is UMVUE.
- ► There is no guarantee that the bound given in the Cramér-Rao Inequality is sharp. That is, our best unbiased estimator may not achieve the CRLB

Example: Let $X_1, X_2, \ldots, X_n \sim \text{iid Poisson}(\lambda)$. (a) Compute the CRLB for an unbiased estimator for $\tau(\lambda) = e^{-\lambda} = P(X_1 = 0)$. (b) Consider $W = \frac{1}{n} \sum_{i=1}^n I(X_i = 0)$. Show that W is an unbiased estimator for $\tau(\lambda)$ whose variance is larger than the CRLB.

At the outset, note that Poisson distribution is a member of the (regular) expoential family, and therefore the two conditions in the CRLB hold.

First find Fisher Information (iid form). Here common log pmf is

$$\log f(x \mid \lambda) = -\lambda + x \log \lambda - \log(x!) \implies \frac{\partial \log f(x \mid \lambda)}{d\lambda} = -1 + \frac{x}{\lambda} = \frac{(x - \lambda)}{\lambda}$$

Therefore, Fisher information

$$\mathsf{E}_{\lambda} \left[\left[\frac{\partial}{\partial \lambda} \log f(\underline{X} \mid \lambda) \right]^{2} \right] = n \, \mathsf{E}_{\lambda} \left[\frac{(X_{1} - \lambda)^{2}}{\lambda^{2}} \right] = n \frac{\mathsf{Var}_{\lambda}(X_{1})}{\lambda^{2}} = \frac{n}{\lambda}$$

Therefore, the CRLB for an unbiased estimator of $\tau(\lambda) = e^{-\lambda}$ is:

$$CRLB = \frac{\left[\frac{d}{d\theta} \ \tau(\theta)\right]^2}{\mathsf{E}_{\lambda} \left[\left[\frac{\partial}{\partial \lambda} \log f(\underline{X} \mid \lambda)\right]^2\right]} = \frac{\left(-e^{-\lambda}\right)^2}{\frac{n}{\lambda}} = \frac{\lambda \ e^{-2\lambda}}{n}$$

Now consider $W = \frac{1}{n} \sum_{i=1}^{n} I(X_i = 0)$. To find its variance first define

$$U_i = I(X_i = 0)$$
. Then
$$U_i \sim \text{iid Bernoulli} \ (p = P(X_1 = 0) = e^{-\lambda})$$

which implies
$$Z = \sum_{i=1}^{n} U_i = \sum_{i=1}^{n} I(X_i = 0) \sim \text{Binomial } (n, e^{-\lambda}) \text{ and}$$

 $W = \frac{1}{n} \sum_{i=1}^{n} I(X_i = 0) = \frac{Z}{n} \implies \operatorname{Var}_{\lambda}(W) = \frac{\operatorname{Var}_{\lambda}(Z)}{n^2} = \frac{e^{-\lambda} \left(1 - e^{-\lambda}\right)}{n}$

Therefore
$$\mathrm{Var}_{\lambda}(W) - \mathrm{CRLB} = \frac{e^{-\lambda} \left(1 - e^{-\lambda}\right)}{n} - \frac{\lambda}{n} = \frac{e^{-\lambda} (1 - (\lambda + 1)e^{-\lambda})}{n}$$

Now consider the function $g(\lambda) = 1 - (\lambda + 1)e^{-\lambda}$. Then

Now consider the function
$$g(\lambda)=1-(\lambda+1)e^{-\lambda}$$
 . Then
$$g'(\lambda)=-\left(e^{-\lambda}-(\lambda+1)e^{-\lambda}\right)=\lambda e^{-\lambda}>0 \ \ \text{for all} \ \lambda>0$$

which means that $g(\lambda)$ is increasing in λ for $\lambda > 0$, so that $g(\lambda) > g(0) = 0$ for all $\lambda > 0$, i.e., $g(\lambda) > 0$ for all $\lambda > 0$.

Hence,
$$\operatorname{Var}_{\lambda}(W) - \operatorname{CRLB} = \frac{e^{-\lambda}(1-(\lambda+1)e^{-\lambda})}{2} > 0$$
 for all $\lambda > 0$.

HW: Show that \overline{X} is a UMVUE for λ .

Attainment of Cramér-Rao Inequality

Result (Corollary 7.3.15)

Let $X_1, X_2, ..., X_n$ be iid $f(x | \theta)$, where $f(x | \theta)$ satisfies the conditions of the Cramér-Rao Theorem.

Let $L(\theta \mid \underline{x}) = \prod_{i=1}^{n} f(x_i \mid \theta)$ denote the likelihood function.

If $W(\underline{X}) = W(X_1, X_2, \dots, X_n)$ is any unbiased estimator of $\tau(\theta)$, then $W(\underline{X})$ attains the Cram'er-Rao Lower Bound if and only if

$$a(\theta)[W(\underline{x}) - \tau(\theta)] = \frac{\partial}{\partial \theta} \log L(\theta \mid \underline{x})$$

for some function $a(\theta)$.

Proof: (steps)

► Write the Cramér-Rao Inequality as

$$\left[\mathsf{Cov}_{\theta}\left[W(\underline{X}), \frac{\partial}{\partial \theta} \log \prod_{i=1}^{n} f(x_{i} \mid \theta)\right]\right]^{2} \leq \mathsf{Var}_{\theta}\left[W(\underline{X})\right] \mathsf{Var}_{\theta}\left[\frac{\partial}{\partial \theta} \log \prod_{i=1}^{n} f(x_{i} \mid \theta)\right].$$

- Now use property of correlation coefficient: for any random variables X and Y, $|\rho_{XY}|=1$ if and only if there exist numbers $a\neq 0$ and b such that P(Y=aX+b)=1.
- ▶ $E_{\theta}[W(X)] = \tau(\theta)$ for all θ due to unbiasedness.
- ▶ $\mathsf{E}_{\theta}\left[\frac{\partial}{\partial \theta}\log\prod_{i=1}^{n}f(x_{i}\mid\theta)\right]=0$ (proved in lecture 7).
- ► Thus, we can have equality if and only if $W(\underline{X}) \tau(\theta)$ is proportional to $\frac{\partial}{\partial \theta} \log L(\theta \mid \underline{x})$

Rao-Blackwell Theorem

Recall: Tower Property. Let X and Y be any two random variables. Then, provided the expectations exist, we have

- (a) E(X) = E[E(X | Y)]
- (b) $Var(X) = Var[E(X \mid Y)] + E[Var(X \mid Y)]$

Theorem (7.3.17)

Let W be any unbiased estimator of $\tau(\theta)$, and let T be a sufficient statistic for θ . Define $\phi(T) = \mathsf{E}(W \mid T)$. Then

- (a) $E_{\theta} [\phi(T)] = \tau(\theta)$ for all θ ; and
- (b) $\operatorname{Var}_{\theta} [\phi(T)] \leq \operatorname{Var}_{\theta}(W)$ for all θ .

That is, $\phi(T)$ is a uniformly better unbiased estimator (UMVUE) of $\tau(\theta)$.

Proof:

For (a) We have

$$\mathsf{E}_{\theta}\left[\phi(T)\right] = \mathsf{E}_{\theta}\left[\mathsf{E}(W\mid T)\right] = \mathsf{E}_{\theta}(W) = \tau(\theta) \ \text{ for all } \theta.$$

For (b) note that

$$\begin{aligned} \mathsf{Var}_{\theta}(W) &= \mathsf{Var}_{\theta} \left[\mathsf{E}(W \mid T) \right] + \mathsf{E}_{\theta} \left[\mathsf{Var}(W \mid T) \right] \\ &= \mathsf{Var}_{\theta} \left[\phi(T) \right] + \underbrace{\mathsf{E}_{\theta} \left[\mathsf{Var}(W \mid T) \right]}_{\geq 0} \geq \mathsf{Var}_{\theta} \left[\phi(T) \right] \end{aligned}$$

for all θ .

It remains to show that $\phi(T) = \mathsf{E}(W \mid T)$ is indeed an estimator, i.e., is a function only of the sample, and is free of θ .

This follows from sufficiency – W being a function of sample the conditional distribution of $W \mid T$ is free of θ .

Finding UMVUEs

- (a) So conditioning any unbiased estimator on a sufficient statistic will result in a uniform improvement.
- (b) Thus, to find UMVUEs, we need only consider statistics that are functions of a sufficient statistic.
- (c) But if T is sufficient, how do we know that $\phi(T)$ is a best unbiased estimator (UMVUE)?
- (d) If it attains the CRLB, then it is best unbiased (UMVUE).
- (e) What if it does not? We need a few more results to answer this question.

Uniqueness of UMVUEs

Theorem 7.3.19

If W is a best unbiased estimator (UMVUE) of $\tau(\theta)$, then W is unique.

Proof: Suppose W' is another UMVUE and consider $W^* = \frac{1}{2}(W + W')$. Note that $E_{\theta}(W^*) = \tau(\theta)$ and

$$\begin{split} \mathsf{Var}_{\theta}(W^*) &= \mathsf{Var}_{\theta}\left(\frac{1}{2}(W+W')\right) \\ &= \frac{1}{4}\,\mathsf{Var}_{\theta}(W) + \frac{1}{4}\,\mathsf{Var}_{\theta}(W') + \frac{1}{2}\,\mathsf{Cov}_{\theta}(W,W') \\ &\stackrel{\mathsf{Cauchy-Schwarz}}{\leq} \frac{1}{4}\,\mathsf{Var}_{\theta}(W) + \frac{1}{4}\,\mathsf{Var}_{\theta}(W') + \frac{1}{2}\,\sqrt{\mathsf{Var}_{\theta}(W)\,\mathsf{Var}_{\theta}(W')} \\ &= \mathsf{Var}_{\theta}(W) \qquad (\mathsf{Var}_{\theta}(W) = \mathsf{Var}_{\theta}(W')) \end{split}$$

Since both W and W^* are UMVUEs the above inequality cannot be strict for any θ , i.e., must have equality in the Cauchy-Schwarz inequality.

Equality in Cauchy-Schwarz inequality holds only if $W' = a(\theta)W + b(\theta)$ for some $a(\theta)$ and $b(\theta)$.

Necessary and Sufficient Conditions for UMVUE

Theorem (7.3.20)

If $E_{\theta}(W) = \tau(\theta)$, then W is the best unbiased estimator of $\tau(\theta)$ if and only if W is uncorrelated with all unbiased estimators of 0.

NOTE: this theorem can sometimes be used to show that an unbiased estimator is not UMVUE, by showing that the estimator is correlated with an unbiased estimator of 0.

Proof: (If part) Let W be the UMVUE and U be any unbiased estimator of 0. Define $\phi_a=W+aU$ for some arbitrary number a. Then ϕ_a is unbiased for $\tau(\theta)$ and

$$Var_{\theta}(\phi_a) = Var_{\theta}(W + aU) = Var_{\theta}(W) + a^2 Var_{\theta}(U) + 2a Cov_{\theta}(W, U)$$

If for some $\theta = \theta_0$, $\operatorname{Cov}_{\theta_0}(W,U) < 0$ then for $a \in \left(0, -2\frac{\operatorname{Cov}_{\theta_0}(W,U)}{\operatorname{Var}_{\theta_0}(U)}\right)$ we have $a^2\operatorname{Var}_{\theta}(U) + 2a\operatorname{Cov}_{\theta_0}(W,U) < 0$, i.e., $\operatorname{Var}_{\theta}(\phi_a) < \operatorname{Var}_{\theta}(W)$ for $\theta = \theta_0$ which contradicts to W being UMVUE.

Similar contradiction arises if $Cov_{\theta_0}(W, U) < 0$.

Hence $Cov_{\theta}(W, U)$ must be 0 for all θ and for all U.

(Only if part): Reading exercise. See p. 345 of the textbook.

Lehmann-Scheffé Theorem

Theorem

Let T be a complete sufficient statistic for a parameter θ , and let $\phi(T)$ be any estimator based only on T. Then $\phi(T)$ is the unique best unbiased estimator of its expected value.

Proof: Since T is complete, X=0 is the only unbiased estimator of 0. Since $\phi(T)$ is uncorrelated with 0, and hence uncorrelated with all unbiased estimators of 0, we have that $\phi(T)$ is UMVUE of $E_{\theta}[\phi(T)]$.

Remark: The Lehmann–Scheffé theorem and the Rao-Blackwell theorem together provide UMVUE for parametric functions from many standard probability distributions.

Suppose we want the UMVUE for $\tau(\theta)$. We have a complete sufficient statistic T for θ and we have an unbiased estimator W of $\tau(\theta)$. Then the Rao-Blackwell estimator $\phi(T) = \mathrm{E}[W \mid T]$ is UMVUE for $\tau(\theta)$.

Example: Let $X_1, X_2, \ldots, X_n \sim \text{iid Poisson}(\lambda)$. (a) Find the UMVUE of λ , if it exists. (b) Find the UMVUE of $\tau(\lambda) = e^{-\lambda} = P(X = 0)$, if it exists.

At the outset note that for Poisson (a member of the exponential family) $T = \sum_{i=1}^{n} X_i$ is complete sufficient for λ . Also, $T \sim \text{Poisson}(n\lambda)$.

For part (a), start with T. We have $\mathsf{E}_\lambda(T) = n\lambda$ for all λ so that $E_\lambda(T/n) = \lambda$ for all λ . Hence $\phi(T) = T/n = \overline{X}$ is unbiased for λ . Since T is complete sufficient, therefore \overline{X} is UMVUE for λ .

For part (b), consider the simple unbiased estimator $W = I(X_1 = 0)$ of $\tau(\lambda) = e^{-\lambda}$. Now obtain the Rao-Blackwell estimator

$$\phi(t) = E[W \mid T = t]$$

$$= E(X_1 = 0 \mid T = t)$$

$$= P(X_1 = 0, T = t)$$

$$= \frac{P(X_1 = 0, T = t)}{P(T = t)}$$

$$= \frac{P(X_1 = 0, \sum_{i=2}^{n} X_i = t)}{P(T = t)}$$

$$= \frac{P(X_1 = 0) P(\sum_{i=2}^{n} X_i = t)}{P(T = t)}$$

$$= \frac{e^{-\lambda} e^{(n-1)\lambda} ((n-1)\lambda)^t / t!}{e^{n\lambda} (n\lambda)^t / t!} = \left(\frac{n-1}{n}\right)^t$$

Therefore, by Lehmann–Scheffé theorem $\left(\frac{n-1}{n}\right)^T = \left(\frac{n-1}{n}\right)^{\sum_{i=1}^n X_i}$ is UMVUE for $e^{-\lambda}$.

Example: Let $X_1, X_2, \dots, X_n \sim \text{iid binomial}(k, \theta)$.

Reading exercise. Example 7.3.24 in the textbook.

Let $\tau(\theta) = P_{\theta}(X=1) = k\theta(1-\theta)^{k-1}$.

Find the UMVUE of $\tau(\theta)$, if it exists.

Hypothesis Testing

Definition: A **hypothesis** is a statement about a population parameter.

The two complementary hypotheses in a hypothesis testing problem are called the **null hypothesis** and the **alternative hypothesis**, denoted H_0 and H_1 (or sometimes H_a), respectively.

For instance,

$$H_0: \theta \in \Theta_0$$

$$H_1: \theta \in \Theta_0^c$$
,

where $\Theta = \Theta_0 \cup \Theta_0^c$ is the parameter space.

Definition: A **hypothesis testing procedure**, or **hypothesis test**, is a rule that specifies

- (1) for which sample values we accept H_0 as true; and
- (2) for which sample values we reject H_0 and accept H_1 ,

i.e., for what $\underline{x} \in \mathcal{X}$ do we accept or reject H_0 .

The subset of \mathcal{X} where we reject H_0 is called the **rejection region** (or **critical region**). The complement is sometimes called the **acceptance region**.

Likelihood Ratio Test

Definition: Recall the **likelihood function**,

$$L(\theta \mid \underline{x}) = f(\underline{x} \mid \theta) = \prod_{i=1}^{n} f(x_i \mid \theta).$$

The likelihood ratio test (LRT) statistic for testing

$$H_0: \theta \in \Theta_0$$

$$H_1: \theta \in \Theta_0^c$$

is

$$\lambda(\underline{x}) = \frac{\sup_{\Theta_0} L(\theta \mid \underline{x})}{\sup_{\Theta} L(\theta \mid x)}.$$

Some texts define the reciprocal as the LRT statistic. We shall follow

the convention in the textbook and define the statistic as above.

Definition: A **likelihood ratio test (LRT)** is any test that has a rejection region of the form

$$\{\underline{x}: \lambda(\underline{x}) \leq c\},\$$

where $c \in [0, 1]$.

Questions:

- (a) How to choose c? Later...
- (b) Note that the likelihood ratio test statistic can be viewed as

$$\lambda(\underline{x}) = \frac{L(\hat{\theta}_0 \,|\, \underline{x})}{L(\hat{\theta} \,|\, \underline{x})} = \frac{\text{restricted maximization}}{\text{unrestricted maximization}},$$

where $\hat{\theta}$ is the MLE obtained by maximizing $L(\theta \mid \underline{x})$ over the entire parameter space Θ , and $\hat{\theta}_0$ is the MLE obtained by maximizing over the restricted parameter space Θ_0 .

Example: Let $X_1, X_2, \dots, X_n \sim \text{iid N}(\theta, 1)$. We want to test

$$H_0: \theta = \theta_0$$
 $H_1: \theta \neq \theta_0$

Find the LRT rejection region.

Under H_0 , there is only one value of θ_0 . So the restricted maximum in the numerator of LRT statistic $\lambda(\underline{x})$ is simply $L(\theta_0 \mid \underline{x})$.

The unrestricted MLE of θ is \overline{X} . So the denominator of $\lambda(\underline{x})$ is $L(\overline{x} \mid \underline{x})$.

So the LRT statistic is

$$\lambda(\underline{x}) = \frac{(2\pi)^{-n/2} \exp\left[-\frac{1}{2} \sum_{i=1}^{n} (x_i - \theta_0)^2\right]}{(2\pi)^{-n/2} \exp\left[-\frac{1}{2} \sum_{i=1}^{n} (x_i - \overline{x})^2\right]}$$

$$= \exp\left[-\frac{1}{2} \left\{ \sum_{i=1}^{n} (x_i - \theta_0)^2 - \sum_{i=1}^{n} (x_i - \overline{x})^2 \right\} \right]$$

$$= \exp\left[-\frac{1}{2} n(\overline{x} - \theta_0)^2\right]$$

The LRT rejection region is $\{\underline{x} : \exp\left[-\frac{1}{2} \ n(\overline{x} - \theta_0)^2\right] < c\}$ for 0 < c < 1.

Homework

- ▶ Method of evaluating estimators: Read p. 342 348.
- ▶ Hypothesis Tests: Read p. 373 376.
- Exercises: TBA.