«Московский физико-технический институт» Физтех-школа радитехники и компьютерных технологий

Отчёт о лабораторной работе №3.3.4 Эффект Холла в полупроводниках

Выполнил:

Хмельницкий А. А., Б01-306

1 Аннотация

Цель работы: измерение подвижности и концентрации носителей заряда в полупроводниках. **В работе используются**: электромагнит с источником питания, амперметр, милливеберметр, реостат, источник питания, цифровой вольтметр, образцы легированного германия.

Описание работы

Схема для измерения ЭДС Холла представлена на рисунке. В зазоре электромагнита создаётся постоянное магнитное поле, величину которого можно менять регуляторами источника питания электромагнита. Градуировка магнита проводится при помощи милливеберметра.

Образец из легированного германия, смонтированный в специальном держателе, подключается к источнику питания. При замыкании K_2 вдоль длинной стороны образца течёт ток, величина которого регулируется реостатом R и измеряется миллиамперметром. В образце, помещённом в зазор, возникает разность потенциалов U_{34} , которая измеряется с помощью цифрового вольтметра. Влияние омического падения напряжения исключается измерением напряжения U_0 между 3 и 4 в отсутствие магнитного поля. По знаку $\mathcal{E} = U_{34} \pm U_0$ можно определить характер проводимости – электронный или дырочный, зная напрявление тока в образце и напрвление магнитного поля. Померив ток I_{35} в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля можно рассчитать проводимость материала по формуле

$$\sigma = \frac{IL_{35}}{U_{35}al},$$

где L_{35} – расстояние между контактами 3 и 5, а a и l – толщина и ширина образца.

2 Ход работы

- 1. Подготовим установку к работе.
- 2. Проградуируем электромагнит. Определим связь между индукцией B магнитного поля в зазоре электромагнита и током I_M через обмотку сняв зависимость потока $\Phi = BSN$, пронизывающего пробную катушку, находящуюся в зазоре, от тока I_M . Значение $SN = 75~{\rm cm}^2 \cdot {\rm вит}$.

І, мА	ΔФ, мВб	В, Тл
0	0,2	0,026
0,27	2	0,26
0,4	3,1	0,413
0,5	3,7	0,493
0,63	4,6	0,613
0,7	5,2	0,693
0,8	5,7	0,76
0,9	6,4	0,853

3. Проведём измерение ЭДС Холла. Для этого вставим образец в зазор выключенного электромагнита и определим U_0 между контактами 3 и 4 при минимальном токе через образец. Включим электромагнит и снимем зависимость $U_{34} = f\left(I_M\right)$ от тока I_M при постоянном токе через образец в интервале 0.3-1.0 мА.

$I_0 = 0.3 \text{ mA}$	$U_0 = 0.122 \text{ mV}$	$I_0=0.4~\mathrm{mA}$	$U_0 = 0.163 \text{ mV}$	$I_0 = 0.5 \text{ mA}$	$U_0 = 0.205 \text{ mV}$
I, A	U_34 , mV	I, A	U_34 , mV	I, A	U_34 , mV
0	0,204	0	0,274	0	0,348
0,1	0,567	0,1	0,742	0,1	0,960
0,19	0,940	0,21	1,359	0,2	1,584
0,3	1,36	0,3	1,836	0,3	2,886
0,4	1,76	0,4	2,345	0,4	2,904
0,5	2,163	0,5	2,85	0,5	3,562
0,6	2,533	0,6	3,389	0,6	4,184
0,7	2,896	0,7	3,847	0,7	4,784
0,8	3,215	0,8	4,283	0,8	5,382
0,9	3,555	0,9	4,722	0,9	5,890

$I_0 = 0.6 \text{ mA}$	$U_0 = 0.275 \text{ mV}$	$I_0=0.7~\mathrm{mA}$	$U_0 = 0.280 \text{ mV}$	$I_0=0.8~\mathrm{mA}$	$U_0 = 0.332 \text{ mV}$
I, A	U_34 , mV	I, A	U_34 , mV	I, A	U_34 , mV
0	0,412	0	0,482	0	0,551
0,1	1,176	0,1	1,3	0,1	1,514
0,2	1,92	0,2	2,295	0,2	2,6
0,3	2,756	0,3	3,172	0,3	3,623
0,4	3,54	0,4	4,152	0,4	4,77
0,5	4,38	0,5	5,075	0,5	5,745
0,6	5,08	0,6	5,889	0,6	6,7
0,7	5,858	0,7	6,813	0,7	7,648
0,8	6,487	0,8	7,509	0,8	8,616
0,9	7,165	0,9	8,339	0,9	9,40

При максимальном токе также проведём измерения при другом направлении магнитного поля.

$I_0 = 1 \text{ mA}$	$U_0 = 0.416 \text{ mV}$
I, A	U_34 , mV
0	0,143
0,1	-1,03
0,2	-2,32
0,3	-3,7
0,4	-5,0
0,5	-6,253
0,6	-7,483
0,7	-8,566
0,8	-9,704
0,9	-10,614

- 4. Определим знак носителей в образце. Узнаем направление тока в образце и в электромагните, с помощью последнего определим направление магнитного поля.
- 5. При токе $I=1,00\pm0,02$ мА измеряем падение напряжения между концами 3 и 5: $U_{35}=82,73\pm1$ мВ. Характеристики образца: $L_{35}=15$ мм, l=8 мм, a=2 мм.

Обработка результатов

1. Расчитаем индукцию магнитного поля B для каждого значения тока и построим график $B=f(I_M).$

2. Вычислим разность показаний вольтметра \mathcal{E}_x и занесем их в таблицу

$I_0=0.3~\mathrm{mA}$		$I_0=0.4~\mathrm{mA}$		$I_0=0.5~\mathrm{mA}$		$I_0=0.6~\mathrm{mA}$	
В, мТл	ϵ_x , MB	В, мТл	ϵ_x , MB	В, мТл	ϵ_x , MB	В, мТл	ϵ_x , мВ
20	0,082	20	0,111	20	0,143	20	0,137
116,9	0,445	116,9	0,579	116,9	0,755	116,9	0,901
212	0,818	212	1,196	212	1,379	212	1,645
306,5	1,238	306,5	1,673	306,5	2,681	306,5	2,481
400	1,638	400	2,182	400	2,699	400	3,265
492,5	2,041	492,5	2,687	492,5	3,357	492,5	4,105
584	2,411	584	3,226	584	3,979	584	4,805
674,5	2,774	674,5	3,684	674,5	4,579	674,5	5,583
764	3,093	764	4,12	764	5,177	764	6,212
852,5	3,433	852,5	4,559	852,5	5,685	852,5	6,89

$I_0 = 0.7 \text{ mA}$		$I_0 = 0.8$	mA	$I_0 = 1 \text{ mA}$	
В, мТл	ϵ_x , MB	В, мТл	ϵ_x , MB	В, мТл	ϵ_x , мВ
20	0,202	20	0,219	20	0,273
116,9	1,02	116,9	1,182	116,9	1,446
212	2,015	212	2,268	212	2,736
306,5	2,895	306,5	3,291	306,5	4,116
400	3,872	400	4,438	400	5,416
492,5	4,795	492,5	5,413	492,5	6,669
584	5,609	584	6,368	584	7,899
674,5	6,533	674,5	7,316	674,5	8,982
764	7,229	764	8,284	764	10,12
852,5	8,059	852,5	9,068	852,5	11,03

Рассчитаем ЭДС Холла и построим на одном графике семейство характеристик $\mathcal{E}_x(B)$ при разных токах, определим угловые коэффициенты $k(I) = \Delta \mathcal{E}/\Delta B$.

Построим график k = f(I), рассчитаем угловой коэффициент и по формуле $\mathcal{E}_x = -R_x \cdot \frac{IB}{a}$ рассчитаем постоянную Холла R_X .

k, м B/B б	0.004	0.005	0.007	0.008	0.010	0.011	0.013
I_M , A	0,3	0.4	0.5	0.6	0.7	0.8	0.1

$$R_x = (230 \pm 2) \cdot 10^{-6} \frac{\text{B} \cdot \text{M}}{\text{Tn} \cdot \text{A}}.$$

- 3. По формуле $R_x = \frac{1}{ne}$ рассчитаем концентрацию носителей тока в образце: $n = (272 \pm 9) \cdot 10^{20} \frac{1}{10^{20}}$.
- 4. По формуле $\sigma=\frac{IL_{35}}{U_{35}al}$ рассчитаем удельную проводимость материала образца: $\sigma=11,3\pm1\frac{1}{{\rm OM}\cdot{\rm M}}.$
- 5. По формуле $b=\frac{\sigma}{en}=\sigma R_x$ вычислим подвижность носителей носителей тока в образце: $b=0.026\pm0.001\frac{\text{M}^2}{B\cdot c}.$

3 Выводы

В ходе работы был исследован эффект Холла в полупроводнике. Были определены такие характеристики, как постоянная Холла, концентрация холловских частиц, удельная электрическая проводимость и подвижность электронов-носителей заряда. Результаты совпали с табличными по порядку величины. Возможная причина несовпадения - характер проводимости в исследуемом образце не чисто электронный, а электронно-дырочный (подвижность носителей заряда уменьшится).