- 1. Usando o teorema de Gauss, calcule o fluxo dos campos abaixo através das respectivas abaixo. A normal é a exterior quando a superfície for fechada ou aponta para cima (componente de $ec{k}$ positiva) quando a superfície for um gráfico de uma função de x, y.
 - a) $\vec{F}(x, y, z) = (x^2, y^2, z^2)$ e S é superfície do cubo $[0, a] \times [0, a] \times [0, a]$.
 - b) $\vec{F}(x,y,z) = (x,y,z)$ e S é superfície da pirâmide limitada pelos planos x + y + z = a, x = 0, y = 0 e
 - c) $\vec{F}(x,y,z) = (x^3, y^3, z^3)$ e S é a esfera $x^2 + y^2 + z^2 = a^2$.
 - d) $\vec{F}(x,y,z) = (x^2, y^2, z^2)$ e S é o cone $\frac{x^2}{a^2} + \frac{y^2}{a^2} \frac{z^2}{b^2} = 0$, $0 \le z \le b$.
 - e) $\vec{F}(x,y,z) = y \text{ sen } x\vec{i} + y^2z\vec{j} + (x+3z)\vec{k}$ e S é a superfície da região limitada pelos planos $x = \pm 1$, y = 0
- 2. Use o Teorema de Gauss para calcular o fluxo do campo F(x,y,z)=(2x,5y,z) que atravessa a superfície S, sabendo-se que S tem a forma de um balão inflado com volume de 250 cm^3 e que sua abertura é a circunferência $\{(x, y, 0); x^2 + y^2 = 8\}$.
- 3. Calcule o fluxo do campo $\vec{F}(x,y,z) = (z\cos y^7, z^3e^{x^2}, z)$ sobre o parabolóide (sem tampa) $z = x^2 + y^2$, $0 \le z \le 1$.

Respostas

- 1. a) $3\alpha^4$ b) $\alpha^3/2$ c) $\frac{12}{5}\pi\alpha^5$ d) $\frac{\pi\alpha^2b^2}{2}$ e) 24

- 2. 2000
- 3. $-\frac{\pi}{2}$