浙江大学 20 11 - 20 12 学年 春夏 学期

《电磁场与电磁波》课程期中考试试卷

一、单项选择题

- 1. 介电常数为 ε 的介质区域中,静电荷的密度为 ρ ,已知这些电荷产生的电场为 **E** , 设 **D** = ε **E** , 下面表达式中成立的是(C)

- A. $\nabla \cdot \mathbf{D} = 0$ B. $\nabla \cdot \mathbf{E} = \rho/\epsilon$ C. $\nabla \cdot \mathbf{D} = \rho$ D. $\nabla \times \mathbf{D} = 0$
- 2. 以下关于平面波在导电介质中传播的描述**不正确**的是(C)
 - A. 电场和磁场的振幅沿着传播方向呈指数衰减 B. 等相位面为无限大平面
 - C. 电场与磁场同相, 本征阻抗为实数
 - D. 电场强度、磁场强度与波的传播方向相互垂直

- 4. 相速是电磁波相位点的运动速度。群速是信号包络运动的速度,也是电磁能流运动的速度。同轴 线中传播的 TEM 模,其相速度和群速度的关系为 (C)
 - A. 相速大于群速 B. 相速小于群速 C. 相速等于群速 D. 不一定
- 5. 在相对介电常数分别为 ε_{r1} 与 ε_{r2} 的无耗介质中间放置一块厚度为 d、相对介电常数为 ε_{r2} 的介质

板, $d = \frac{\lambda_0}{4\sqrt{\varepsilon_0}}$,假设这三种介质的磁导率均为 μ_0 ,现有一若均匀平面波从介质 1 垂直投射到介

质板上,下列哪种情况时,没有反射。(B)

- A. $\varepsilon_{r1} = \varepsilon_{r3}$ B. $\varepsilon_{r2} = \sqrt{\varepsilon_{r1}\varepsilon_{r3}}$ C. $\varepsilon_{r2} = (\varepsilon_{r1} + \varepsilon_{r3})/2$ D. $\varepsilon_{r2} = \sqrt{\varepsilon_{r1}^2 + \varepsilon_{r3}^2}$
- 6. 在各向异性介质中,描述正确的是(C)
 - A. $\mathbf{E} \cdot \mathbf{H}$ 和 \mathbf{k} 的方向相互垂直 B. \mathbf{S} 的方向与 \mathbf{k} 的一致
 - C. $\mathbf{D} \setminus \mathbf{B} \neq \mathbf{k}$ 的方向相互垂直 D. \mathbf{D} 的方向与 \mathbf{E} 的方向一致
- 7. 以下关于均匀平面波的描述**错误**的是(**D**)
 - A. 在与波传播方向垂直的无限大平面内, 电场和磁场的方向、振幅和相位都相同
 - B. 电场和磁场在空间相互垂直且与电磁波传播方向成右手螺旋关系
 - C. 均匀平面波是 TEM 波 D. 在均匀介质中传播的平面波都是均匀平面波
- 8. 已知一平面波, 电场方向为 $\mathbf{x}+2\mathbf{v}+\mathbf{z}$, 磁场方向为 $2\mathbf{x}-\mathbf{v}$, 问以哪个方向为纵向时, 可看成 TE 波 (D)

A. x+2y 方向 B. y+2z 方向 C. z 方向 D. y-2z 方向

- 9. 如图所示,一真空波长为26的线极化平面波以光轴垂直的方向入射单轴电 各向异性介质, 电磁波的极化方向与光轴成 45 度。已知各向异性介质的
 - o 光折射率为 n_0 ,e 光折射率为 n_e , $n_0 > n_e$,介质厚度

 $d = \lambda_0 / 2(n_0 - n_a)$,则出射的电磁波为(D)

- C. 线极化波,极化方向不变 D. 线极化波,极化方向旋转了90度
- 10. 下列是右旋圆极化波的是(B)

A.
$$E_x = 10\cos(\omega t - kz + \phi)$$
, $E_y = -10\sin(\omega t - kz + \phi)$

B.
$$E_x = 10\cos(\omega t + kz + \phi)$$
, $E_y = -10\sin(\omega t + kz + \phi)$

C.
$$E_x = 10\cos(\omega t - kz + \phi)$$
, $E_y = -5\sin(\omega t - kz + \phi)$

D.
$$E_x = 5\cos(\omega t + kz + \phi)$$
, $E_y = -10\sin(\omega t + kz + \phi)$

- 11. 终端开路的 50Ω传输线, 驻小最小点位置在 (B)
 - A. 终端处 B. 离终端 $\lambda/4$ 处 C. 离终端 $\lambda/2$ 处 D. 离终端 λ 处
- 12. 一传输线其终端反射系数为 0.5,则驻波系数为 (C)
 - A. 1 B. 2 C. 3 D. 4
- 13. 传输线特征阻抗为 50Ω,电压为 $U(z) = 10e^{-jkz} + 5e^{jkz}$,则电流 I(z)为(A
 - A. $0.2e^{-jkz} 0.1e^{jkz}$ B. $0.2e^{-jkz} + 0.1e^{jkz}$

 - C. $0.1e^{-jkz} 0.2e^{jkz}$ D. $0.1e^{-jkz} + 0.2e^{jkz}$
- 14. 圆图中以中心点为圆心的圆是(B)
 - A. 等电阻圆 B. 等反射系数圆 C. 等阻抗圆 D. 等电抗圆
- 15. 一恒定磁场 \mathbf{H}_0 加在铁氧体上,一线极化平面波以波矢 \mathbf{k} 为 \mathbf{H}_0 方向入射铁氧 体,测得透射波的极化方向旋转了30°。如果在铁氧体后面放置理想导体,将 透射波全反射,再次透过铁氧体后,反射波的极化方向相对于入射波为(C
 - A. 没变化; B. 旋转了 30°; C. 旋转了 60°度; D. 旋转了 90°

- A. ε、μ、σ 与 E、B 的强度无关 B. ε、μ、σ 与 E、B 的强度有关
- C. **E** 和 **B** 呈线性关系 D. ε、 μ 、 σ 与 **E**、**B** 呈线性关系
- 17. 下面对于趋肤效应的说法**错误**的是(**B**)
 - A. 趋肤深度是指波进入到导体内,幅度衰减为导体表面幅度的 1/e 处的深度;
 - B. 媒质导电性越好,波在媒质中的衰减越慢; C. 频率越高,趋肤深度越小
 - D. 媒质导电性越好, 趋肤深度越小
- 18. 下列传输线, 传输功率最大的是 (A)

- A. 特征阻抗 $Z_{c1} = 50\Omega$, $U_{max} = 100$ V, $U_{min} = 80$ V
- B. 特征阻抗 $Z_{c1} = 75\Omega$, $U_{max} = 100$ V, $U_{min} = 80$ V
- C. 特征阻抗 $Z_{c1} = 50\Omega$, $U_{max} = 100$ V, $U_{min} = 60$ V
- D. 特征阻抗 $Z_{c1} = 70\Omega$, $U_{max} = 100$ V, $U_{min} = 60$ V

二. 填空题

_____, H=____ 其解 $\mathbf{E} = \mathbf{E}_0 \mathbf{e}^{-j\mathbf{k}\cdot\mathbf{r}}$

2. 在 $\varepsilon_r \varepsilon_0$ 、 μ_0 的介质中电场 $\mathbf{E} = \mathbf{x}_0 E_0 e^{j2k_0 z}$, $k_0 = \omega \sqrt{\mu_0 \varepsilon_0}$, $\omega = 2\pi \times 10^6$ 弧度/秒,则该介质的相对 介电常数 $\varepsilon_r = 4$,波长 $\lambda = 150 \, \text{m}$,等相位点移动速度 $v_p = 1.5 \times 10^8 \, \text{m/s}$;

波阻抗 $\eta = \frac{1}{2} \sqrt{\frac{\mu_0}{\varepsilon_0}} = \eta_0 / 2 = 377 / 2 = 188.5\Omega$ 。在 <u>x-y</u> 平面内场的相位相等。 做场 $\mathbf{H} = \frac{-\mathbf{y_0}}{\eta_0} \frac{2E_0 e^{j2k_0 z}}{\eta_0}$,瞬间坡印廷矢量 $\mathbf{S}(z,t) = \frac{-\mathbf{z_0}}{\eta_0} \frac{2E_0^2}{\eta_0} \cos^2(\omega t + 2k_0 z)$,

时间平均坡印廷矢量 $\langle \mathbf{S}(z,t) \rangle = \frac{-\mathbf{z}_0}{\eta_0} \frac{E_0^2}{\eta_0}$,该平面波的极化特性为 线极化 。

三、 如下图为微波放大器的输入匹配电路。用双电纳匹配器进行匹配,两并联开路支线 S_1 、 S_2 的间距为 7.5mm,第一个并联支线 S_1 离开晶体管输入端为 6.04mm。已知微带线的工作波长为 3cm, 特征阻抗为 50Ω。测得晶体管输入端❶处的电压反射系数为 0.75 ∠-150°。

- (1) 晶体管的归一化输入阻抗可直接从圆图的N_点读出,其实际阻值为7.5-j13 Ω 。
- (2) **●**处的驻波比可直接在圆图的点 <u>E</u> 读出,其值为 <u>7</u> 。
- (3) 找出**实现匹配时**(并联开路支线 S_1 、 S_2 的长度为最短)电路上各点对应导纳圆图上的点,将相 应的导纳圆图上点的标号填入下面表格

电路上点	1	2	3	4	5	6
对应导纳 圆图上点	P	Y, H	D	D	A	A

(4) 求匹配时,并联开路支线 S_1 、 S_2 最短的长度 l_1 与 l_2 。

解:由于开路线加长半波长的整数倍后,得到的导纳相同,因此,"最短长度"为小于半波长的值。下列二种情况,求出一种情况即可。

求 S₁ 最短的长度 l₁

- I点的归一化电纳值为-j0.62, Y点的归一化电纳值为j0.40
- S_1 引入的归一化电纳值为 j0.40-(-j0.62)=j1.02,

由圆图中读出长度 l_1 =0.126 λ_g =0.126×30=3.78mm

求 S₂ 最短的长度 I₂

- J点的归一化电纳值为-j2
- S₂引入的归一化电纳值为j2

由圆图中读出长度 l_2 =0.176 λ_g =0.176×30=5.28mm

或

求 S₁ 最短的长度 l₁

- I点的归一化电纳值为-j0.62, H点的归一化电纳值为-j0.40
- S₁引入的归一化电纳值为-j0.40-(-j0.62)=j0.22

由圆图中读出长度 l_1 =0.0345 λ_g =0.0345×30=1.035mm

求 S2 最短的长度 L2

- S点的归一化电纳值为j2
- S₂引入的归一化电纳值为-j2

由圆图中读出长度 l_2 =(0.5-0.176) λ_g =0.324×30=9.72mm

