Modelo de Markowitz

Aplicación de métodos numéricos

-Danahi, Yalidt e Itzel

-César, Bruno y León

Mayo 2020

¿Qué es el Modelo de Markowitz (MM)?

-Modelo financiero cuyo objetivo es encontrar el portafolio de mínima varianza (riesgo) dado un conjunto de acciones.

¿Qué proporción de dinero se debe invertir a cada acción del portafolio?

Supuestos:

- Es para inversionistas aversos al riesgo
- El inversionista se agota su presupuesto
- El rendimiento esperado debe ser positivo

Objetivos

- Implementar solver para Modelo de Markowitz
- Usar datos financieros reales
- Diseño de solver para uso de GPU's
- Uso de Docker

Elementos de proyecto

Teoría financiera

- 50 principales empresas que cotizan en bolsa

Teoría de optimización

 Optimización numérica con restricciones

Flujo de trabajo

MM como problema de optimización (CECO)

$$\min_{w} Var(wX) = \min_{w} w^{T} \Sigma w$$

$$w^T \cdot \mu = r$$
 Rendimiento esperado

$$w^T \cdot \mathbf{1} = 1$$
 Suma de pesos = 100%

Restricciones lineales

Ruta 1 de solución (explícita)

Lagrangiano

Optimización con restricciones lineales (CECO)

Multiplicadores

Determinan puntos factibles

Lagrange

Condiciones de primer orden

Estimar mínimo

De ser posible...

Algoritmo Lagrange (sol. explícita)

$$w^* = w_0 \cdot (\Sigma^{-1} \cdot \mu) + w_1 \cdot (\Sigma^{-1} \cdot 1)$$

$$\Delta = A \cdot B - C^2$$

$$w_0 = \frac{1}{\Delta}(\hat{r} \cdot B - C) \qquad A = \mu^t \cdot \Sigma^{-1} \cdot \mu$$

$$w_1 = \frac{1}{\Delta}(A - C \cdot \hat{r}) \qquad B = 1^t \cdot \Sigma^{-1} \cdot 1$$

 $C = 1^t \cdot \Sigma^{-1} \cdot \mu$

Infraestructura

Programación

Desarrollo del código

Google Colab

Gratuito User friendly

Ejecución final

AWS

Estable Flexible

Máquina: Deep Learning AMI (Ubuntu 18.04) Version 28.1, con tarjeta gráfica NVIDIA

Instancia: Familia GPU, tipo p2.xlarge, 4 vCPUs

Lagrange

ETAPA III

$$\hat{\Sigma}^{-1}1$$
 $\hat{\Sigma}^{-1}\hat{\mu}$

3b. Formacion de valores A, B, C

$$A = \hat{\mu}^T \hat{\Sigma}^{-1} \hat{\mu}$$

$$B = \mathbf{1}^T \hat{\Sigma}^{-1} \mathbf{1}$$

$$C = \mathbf{1}^T \hat{\Sigma}^{-1} \hat{\mu}$$

3c. Formacion de matriz Delta

$$\Delta = AB - C^2$$

3d. Vectores auxiliares

$$w_0 = \frac{1}{\Delta}(\hat{r} \cdot B - C)$$
$$w_1 = \frac{1}{\Delta}(A - C \cdot \hat{r})$$

$$w_1 = \frac{1}{\Delta} (A - C \cdot \hat{r})$$

3.e Solucion de Markowitz

$$w^*=w_0\cdot(\Sigma^{-1}\mu)+w_1\cdot(\Sigma^{-1}1)$$

Ruta 2 de solución (aproximada)

Resolver problema

Optimización con Restricciones lineales Solución aprox.

Problema dual

Newton

Karush Khun Tucker

Problema dual

Método de Newton para dual

Sol. aproximada problema original

Algoritmo ruta Newton

$$f: \mathbb{R}^n \to \mathbb{R} \text{ convexa y } \mathscr{C}^2(\text{dom } f_o). \qquad x \in \mathbb{R}^n \text{ y } A \in \mathbb{R}^{p \times n}, \, b \in \mathbb{R}^p$$

$$rank(A) = p < n$$

$$\min f_o(x)$$

sujeto a:Ax = b

$$Ax^* = b$$

$$\nabla f_o(x^*) + A^T \nu^* = 0$$

Problema Primal

Ecs. factibilidad primal y dual (KKT)

Teorema

$$x^* \in dom(f_0) \Leftrightarrow \exists \nu \in \mathbb{R}^p (Ax^* = b, A^T \nu + \nabla f_o(x^*) = 0)$$

Algoritmo ruta Newton

Teorema de Taylor para segundo orden

$$A(x + \Delta x_{\rm nt}) = b$$

$$\nabla f_o(x + \Delta x_{\rm nt}) + A^T w \approx \nabla f_o(x) + \nabla^2 f_o(x) \Delta x_{\rm nt} + A^T w = 0$$

$$\begin{bmatrix} \nabla^2 f_o(x) & A^T \\ A & 0 \end{bmatrix} \cdot \begin{bmatrix} \Delta x_{\text{nt}} \\ w \end{bmatrix} = \begin{bmatrix} -\nabla f_o(x) \\ 0 \end{bmatrix}$$

Algoritmo de Newton con punto inicial para CECO

Dados un **punto inicial** x en $dom f_o$ con Ax = b y una tolerancia $\epsilon > 0$.

Repetir el siguiente bloque para k = 0, 1, 2, ...

- 1. Calcular la dirección de descenso de Newton $\Delta x_{\rm nt}$ y el decremento de Newton al cuadrado: $\lambda^2(x)$.
- 2. Criterio de paro: finalizar el método si $\frac{\lambda^2(x)}{2} \leq \epsilon$.
- 3. Búsqueda de línea. Elegir un tamaño de paso t>0 (usar el cálculo de $\lambda^2(x)$ del paso anterior).
- 4. Hacer la actualización: $x = x + t\Delta x_{nt}$.

hasta convergencia (satisfacer criterio de paro).

Decremento de Newton

$$\lambda(x) = (\Delta x_{\rm nt}^T \nabla^2 f_o(x) \Delta x_{\rm nt})^{1/2}$$

¿Cómo determinamos un punto inicial para MM?

Restricciones lineales

$$w^T \cdot \mu = r$$
 Rendimiento esperado

$$w^T \cdot \mathbf{1} = 1$$
 Suma de pesos = 100%

Ecuaciones normales

$$Ax = b \Rightarrow A^T Ax = A^T b$$

Newton

ETAPA III

3a. Formacion de punto factible para restricciones lineales

3b. Solver de problema de optimizacion con restricciones lineales basado en Metodo de Newton

Newton

3.c Solucion de Markowitz

Resultados

1) Comparación de métodos variando el rendimiento (0.4 a 1) con *funciones simbólicas* para las derivadas

Dist. $ \cdot _2$	Dist. $ \cdot _1$	retorno L	$_{fs}^{ m retorno}$	varianza L	varianza N_{fs}
1.41113e-11	6.57346e-11	0.4	0.4	9.39764e-05	9.39764e-05
1.62202e-11	7.96734e-11	0.5	0.5	0.000125748	0.000125748
1.57851e-11	6.93323e-11	0.6	0.6	0.000165025	0.000165025
2.45899e-11	1.03308e-10	0.7	0.7	0.000211807	0.000211807
2.32235e-11	9.36646e-11	0.8	0.8	0.000266095	0.000266095
2.23753e-11	9.86439e-11	0.9	0.9	0.000327889	0.000327889
2.74735e-11	1.19941e-10	1	1	0.000397188	0.000397188

Observaciones:

- La diferencia entre los métodos aumenta conforme aumenta el rendimiento esperado
- El riesgo es el mismo al solucionar con ambos métodos con funciones simbólica.
- Al usar diferencias finitas el riesgo usualmente es menor con el método de Lagrange

Resultados

2) Evaluación de varianza con diferentes retornos esperados

Observaciones:

Se encontró la formación de la frontera del modelo teórico de Markowitz

Portafolios a partir del punto naranja son eficientes (r>0)

 Se comprueba la teoría "A mayor riesgo mayor rendimiento" (trade-off)

Resultados

3) Evaluación del portafolio con cambios en el retorno esperado (0,1)

Observaciones:

- Las acciones que tienen mayor asignación son Google y Commercial Bank of China.
- Existen pesos negativos porque se permiten Ventas en Corto

Conclusiones

- Se encontró la frontera eficiente de portafolios óptimos con datos reales -> a partir del PMV
- El método que arrojó mejores resultados fue *Lagrange*
- PMV es para inversionistas conservadores-> poco riesgo o variabilidad en las acciones.
- Este modelo podría ser útil ante momentos económicos adversos.

Referencias

Bodie, Z., Kane, A., & Marcus, A. J. (2011). Investments. New York:McGraw-Hill/Irwin.https://www.niceideas.ch/airxcell_doc/doc/userGuide/portfolio_optimTheory.html

Topics in mathematics with applications in finance, MIT 18.S096, Lecture 14 Portfolio Theory, Fall 2013, Dr. Kempthorne,

https://ocw.mit.edu/courses/mathematics/18-s096-topics-in-mathematics-with-applications-in-finance-fall-2013/lecture-notes/MIT18_S096F13_lecnote14.pdf

Notas del curso de Métodos Numéricos y Optimización, ITAM, Moreno Palacios Erick, 2020 https://drive.google.com/file/d/12L7rOCgW7NEKl_xJbIGZz05X XVrOaPBz/view