We Claim:

1. A polybenzoxazole precursor polymer with Structure I

wherein Ar1 is selected from the group consisting of a tetravalent 10 aromatic group, a tetravalent heterocyclic group and mixtures thereof; Ar² is selected from the group consisting of a divalent aromatic, a divalent heterocyclic, a divalent alicyclic and a divalent aliphatic group that may contain silicon; Ar3 is selected from the group consisting of a divalent aromatic group, a divalent aliphatic group, a divalent heterocyclic group 15 and mixtures thereof; Ar4 is selected from the group consisting of Ar1 (OH)₂ and Ar², x is from about 10 to about 1000; y is from 0 to about 900; D is selected from the group consisting of one of the following moieties IIa-IIe:

30 (IIa) (IIb)
$$R \longrightarrow R^2$$
 (IIc) $R \longrightarrow R^2$ (IIc

(IId) (IIe)

wherein, R is selected from the group consisting of H, a $C_1 - C_4$ alkyl group, a $C_1 - C_4$ alkoxy group and a cyclohexyl group, k 1 can be any positive value of up to about 0.5, k^2 can be any value from about 1.5 to about 2 with the proviso that $(k^1+k^2)=2$, x is from about 10 to about 1000; y is from about 0 to about 900; G is an organic group having a carbonyl, carbonyloxy or sulfonyl group attached directly to the terminal NH of the polymer.

10

5

2. A polybenzoxazole precursor polymer according to claim 1, wherein Ar¹ is a moiety selected from the group consisting of

15

20

25

wherein X^1 is selected from the group consisting of -O-, -S-, -C(CF₃)₂-, -CH₂-, -SO₂-, -NHCO- and -SiR⁹₂- and each R⁹ is independently selected from the group consisting of a C₁ - C₇ linear or branched alkyl and a C₅ - C₈ cycloalkyl group.

- 3. A polybenzoxazole precursor polymer according to claim 1, wherein Ar¹ is a moiety derived from a reactant selected from the group consisting of 2,2-bis(3-amino-4-hydroxyphenyl)-hexafluoropropane, 3,3'-dihydroxy-4,4'-diaminodiphenylether, 3,3'-dihydroxybenzidine, 4,6-diaminoresorcinol, and 2,2-bis(3-amino-4-hydroxyphenyl)propane and mixtures thereof.
- 4. A polybenzoxazole precursor polymer according to claim 1, wherein Ar³ is a moiety selected from the group consisting of

wherein X^2 is selected from the group consisting of -O-, -S-, -C(CF₃)₂-, -CH₂-, -SO₂-, and -NHCO-.

25

30

5. A polybenzoxazole precursor polymer according to claim 1, wherein Ar³ is a moiety derived from a reactant selected from the group consisting of 4,4'-diphenyletherdicarboxylic acid, terephthalic acid, isophthaloyl dichloride, phthaloyl dichloride, terephthaloyl dichloride, 4,4'-diphenyletherdicarboxylic acid dichloride, dimethylisophthalate,

- dimethylphthalate, dimethylterphthalate, diethylisophthalate, diethylphthalate, diethylterphthalate and mixtures thereof.
- 6. A polybenzoxazole precursor polymer according to claim 1, wherein D
 is selected from the group consisting of the moiety IIb and the moiety IId.
 - 7. A polybenzoxazole precursor polymer according to claim 1, wherein k¹ is from about 0.01 to about 0.1.
- 10 8. A polybenzoxazole precursor polymer according to claim 1, wherein G is an organic group having a carbonyl group attached directly to the terminal NH of the polybenzoxazole precursor polymer.
- 9. A polybenzoxazole precursor polymer according to claim 1, wherein G15 is alkylcarbonyl.
- 10. A polybenzoxazole precursor polymer according to claim 1, wherein Ar¹ is a moiety derived from a reactant selected from the group consisting of 2,2-bis(3-amino-4-hydroxyphenyl)-hexafluoropropane, 3,3'-dihydroxy20 4,4'-diaminodiphenylether, 3,3'-dihydroxybenzidine, 4,6-diaminoresorcinol, and 2,2-bis(3-amino-4-hydroxyphenyl)propane or mixtures thereof, and D is selected from the group consisting of the moiety IIb and the moiety IId.
- 11. A polybenzoxazole precursor polymer according to claim 1, wherein Ar¹ is a moiety derived from a reactant selected from the group consisting of 2,2-bis(3-amino-4-hydroxyphenyl)-hexafluoropropane, 3,3'-dihydroxy-4,4'-diaminodiphenylether, 3,3'-dihydroxybenzidine, 4,6-diaminoresorcinol, and G is alkylcarbonyl.

12. A positive photosensitive resin composition comprising:

(a) at least one polybenzoxazole precursor polymer selected from the group consisting of polymers having Structure I and III;

5
$$G-NH-Ar^4-NH$$
 $Ar^3-NH-Ar^1-NH$ $Ar^3-NH-Ar^2-NH$ $G-NH-Ar^4-NH$ Ar^3-NH-

wherein Ar¹ is selected from the group consisting of a tetravalent aromatic group, a tetravalent heterocyclic group and mixtures thereof; Ar² is selected from the group consisting of a divalent aromatic, a divalent heterocyclic, a divalent alicyclic and a divalent aliphatic group that may contain silicon and mixtures thereof; Ar³ is selected from the group consisting of a divalent aromatic group, a divalent aliphatic group, a divalent heterocyclic group and mixtures thereof; Ar⁴ is selected from the group consisting of Ar¹ (OH)₂ and Ar²; D is selected from the group consisting of one of the following moieties IIa-IIe:

15

- wherein, R is selected from the group consisting of H, a C₁ C₄ alkyl group, a C₁ C₄ alkoxy group and a cyclohexyl group; k¹ can be any positive value of up to about 0.5, k² can be any value from about 1.5 to 2 with the proviso that (k¹+k²)=2, x is from about 10 to about 1000; y is from about 0 to about 900; and G is an organic group having a carbonyl, carbonyloxy or sulfonyl group attached directly to the terminal NH of the polymer,
 - (b) at least one non-polymeric photosensitive compound comprising a compound having within its structure one or more of moieties selected from the group consisting of IIa-IIe, with the proviso that if a polymer of Structure III is the sole polybenzoxazole precursor polymer, the non-polymeric photosensitive compound is selected from the group consisting of compounds described by structures IV VI,

25
$$(QO)_b$$
 R^1 $(QO)_a$ $(QO)_a$ R^4 R^5 R^7 $(S-a)$ (IV) (V)

$$(QO)_{b}$$
 $(QO)_{a}$
 $(QO)_{a}$

wherein R1, R2, R4, R5, R6 and R7 each independently are selected from 10 the group consisting of a linear or branched C1 - C4 alkyl group, a phenyl or halide substituted C1 - C4 linear or branched alkyl group, a perfluorinated C₁ - C₄ linear or branched alkyl group, a C₅ - C₇ cycloalkyl group, a C₁ - C₄ alkyl or halide substituted C₅ - C₇ cycloalkyl group, or alternatively R¹ and R² or any two of R⁴, R⁵, and R⁶ may together form a 15 5-7 membered ring; each R³ is independently selected from the group consisting of H, a linear or branched C1 - C4 alkyl group, a phenyl or halide substituted C₁ - C₄ linear or branched alkyl group, a perfluorinated linear or branched C₁ - C₄ alkyl group, a C₅ - C₇ cycloalkyl group, a C₁ -C₄ alkyl or halide substituted C₅ - C₇ cycloalkyl group, an unsubstituted 20 phenyl group, and a phenyl or alkyl or halide substituted phenyl group; Q is selected from the group consisting of H or D with the proviso that at least one Q = D; D is selected from the group consisting of one of the moieties Ila-Ile; a is an integer from 1 to 5; b and c are integers from 0 to 5 with the provisos: (1) that for Structure IV, if a = b = 1 and both OQ are 25 substituted para to the R¹R²C substituent, then both R¹ and R² are not simultaneously methyl, and (2) 1 <= a+b < 6; and the proviso that for Structure VI, if a = b = c = 1 and all OQ are para to the triphenyl methane carbon substituent, then at least one R3 is not H: and

(c) at least one solvent.

30

13. A positive photosensitive resin composition according to claim 12, wherein Ar¹ is a moiety selected from the group consisting of

5

20

wherein X^1 is selected from the group consisting of -O-, -S-, -C(CF₃)₂-, -10 CH₂-, -SO₂-, -NHCO- and -SiR⁹₂- and each R⁹ is independently selected from the group consisting of a C₁ - C₇ linear or branched alkyl and a C₅ - C₈ cycloalkyl group.

- 14. A positive photosensitive resin composition according to claim 12, wherein Ar¹ is a moiety derived from a reactant selected from the group consisting of 2,2-bis(3-amino-4-hydroxyphenyl)-hexafluoropropane, 3,3'-dihydroxy-4,4'-diaminodiphenylether, 3,3'-dihydroxybenzidine, 4,6-diaminoresorcinol, and 2,2-bis(3-amino-4-hydroxyphenyl)propane or mixtures thereof.
 - 15. A positive photosensitive resin composition according to claim 12, wherein Ar³ is a moiety selected from the group consisting of

wherein X^2 is selected from the group consisting of -O-, -S-, -C(CF₃)₂-, -CH₂-, -SO₂- and -NHCO-.

15

- 16. A positive photosensitive resin composition according to claim 12, wherein Ar³ is a moiety derived from a reactant selected from the group consisting of 4,4'-diphenyletherdicarboxylic acid, terephthalic acid, isophthalic acid, isophthaloyl dichloride, phthaloyl dichloride, terephthaloyl dichloride, 4,4'-diphenyletherdicarboxylic acid dichloride, dimethylisophthalate, dimethylphthalate, dimethylphthalate, diethylterphthalate, diethylphthalate, diethylterphthalate and mixtures thereof.
- 17. A positive photosensitive resin composition according to claim 12, wherein D is selected from the group consisting of the moiety IIb and the moiety IId.
- 18. A positive photosensitive resin composition according to claim 12,
 30 wherein k¹ is from about 0.01 to about 0.1.

- 19. A positive photosensitive resin composition according to claim 12, wherein G is an organic group having a carbonyl group attached directly to the terminal NH of the polybenzoxazole precursor polymer.
- 20. A positive photosensitive resin composition according to claim 12, wherein G is alkyl carbonyl.
 - 21. A positive photosensitive resin composition according to claim 12, wherein the at least one polybenzoxazole precursor polymer comprises Structure I.
 - 22. A positive photosensitive resin composition according to claim 12, wherein the at least one polybenzoxazole precursor polymer comprises Structure III.

- 23. A positive photosensitive resin composition according to claim 12, wherein the at least one polybenzoxazole precursor polymer comprises a mixture of Structure I and Structure III.
- 24. A positive photosensitive resin composition according to claim 21, wherein the at least one non-polymeric photosensitive compound comprises a compound having within its structure a moiety selected from the group consisting of the moiety IIb and the moiety IId.
- 25 25. A positive photosensitive resin composition according to claim 22, wherein the at least one non-polymeric photosensitive compound comprises a compound having within its structure a moiety selected from the group consisting of the moiety IIb and the moiety IId.
- 30 26. A positive photosensitive resin composition according to claim 23, wherein the at least one non-polymeric photosensitive compound

comprises a compound having within its structure a moiety selected from the group consisting of the moiety IIb and the moiety IId.

27. A positive photosensitive resin composition according to claim 21, wherein the at least one non-polymeric photosensitive compound comprises a compound having within its structure a moiety selected from the group consisting of the moiety IIb and or the moiety IId and is selected from the group consisting of compounds described by structures IV - VI,

5

10
$$(QQ)_{b}$$
 R^{1}
 R^{2}
 R^{3}
 R^{3}

wherein R¹, R², R⁴, R⁵, R⁶ and R⁷ each independently are selected from the group consisting of a linear or branched C₁ - C₄ alkyl group, a phenyl or halide substituted C₁ - C₄ linear or branched alkyl group, a perfluorinated C₁ - C₄ linear or branched alkyl group, a C₅ - C₇ cycloalkyl group, a C₁ - C₄ alkyl or halide substituted C₅ - C₇ cycloalkyl group or alternatively R¹ and R² or any two of R⁴, R⁵, and R⁶ may together form a 5-7 membered ring; each R³ is independently selected from the group

consisting of H, a linear or branched C_1 - C_4 alkyl group, a phenyl or halide substituted C_1 - C_4 linear or branched alkyl group, a perfluorinated linear or branched C_1 - C_4 alkyl group, a C_5 - C_7 cycloalkyl group, a C_1 - C_4 alkyl or halide substituted C_5 - C_7 cycloalkyl group, an unsubstituted phenyl group, and a phenyl or alkyl or halide substituted phenyl group; Q is selected from the group consisting of H or D with the proviso that at least one Q = D; D is selected from the group consisting of one of the following moieties IIa-IIe:

5

30

10

O

$$N_2$$
 N_2
 N_2

wherein, R is selected from the group consisting of H, a $C_1 - C_4$ alkyl group, a $C_1 - C_4$ alkoxy group and a cyclohexyl group; a is an integer from 1 to 5; b and c are integers from 0 to 5 with the provisos: (1) that for Structure IV, if a = b = 1 and both OQ are substituted para to the R^1R^2C

substituent, then both R^1 and R^2 are not simultaneously methyl and (2) 1 <= a+b < 6; and the proviso that for Structure VI, if a = b = c = 1 and all OQ are para to the triphenyl methane carbon substituent, then at least one R^3 is not H.

28. A positive photosensitive resin composition according to claim 21, wherein the non-polymeric photosensitive compound is selected from the group consisting of

$$\bigcirc \mathsf{CH}_3 \bigcirc \mathsf{OD} \qquad \mathsf{QO} \bigcirc \mathsf{CH}_3 \bigcirc \mathsf{OQ}$$

29. A positive photosensitive resin composition according to claim 23, wherein the at least one non-polymeric photosensitive compound comprises a compound having within its structure a moiety selected from the group consisting of the moiety IIb and the moiety IId and is selected from the group consisting of compounds described by structures IV – VI,

wherein R^1 , R^2 , R^4 , R^5 , R^6 and R^7 each independently are selected from the group consisting of a linear or branched C_1 - C_4 alkyl group, a phenyl or halide substituted C_1 - C_4 linear or branched alkyl group, a C_5 - C_7 cycloalkyl group, a C_5 - C_7 cycloalkyl group, a C_1 - C_4 alkyl or halide substituted C_5 - C_7 cycloalkyl group, or alternatively R^1 and R^2 or any two of R^4 , R^5 , and R^6 may together form a 5-7 membered ring; each R^3 is independently selected from the group consisting of H, a linear or branched C_1 - C_4 alkyl group, a phenyl or halide substituted C_1 - C_4 linear or branched alkyl group, a perfluorinated linear or branched C_1 - C_4 alkyl group, a C_5 - C_7 cycloalkyl group, a C_1 - C_4 alkyl or halide substituted C_5 - C_7 cycloalkyl group, an unsubstituted phenyl group and a phenyl or alkyl or halide substituted phenyl group; Q is selected from the group consisting of Q or Q is selected from the group consisting of Q or Q is selected from the group consisting of Q or Q is selected from the group consisting of one of the following moieties IIa-IIe:

(VI)

5
$$O_{2}$$
 O_{2} $O_$

wherein, R is selected from the group consisting of H, a $C_1 - C_4$ alkyl group, a $C_1 - C_4$ alkoxy group and a cyclohexyl group; a is an integer from 1 to 5; b and c are integers from 0 to 5 with the provisos: (1) that for Structure IV, if a = b = 1 and both OQ are substituted para to the R^1R^2C substituent, then both R^1 and R^2 are not simultaneously methyl and (2) 1 <= a+b < 6; and the proviso that for Structure VI, if a = b = c = 1 and all OQ are para to the triphenyl methane carbon substituent, then at least one R^3 is not H.

30. A positive photosensitive resin composition according to claim 23, wherein the non-polymeric photosensitive compound is selected from the group consisting of

- 31. A positive photosensitive resin composition according to claim 12, further comprising an adhesion promoter.
- 32. A positive photosensitive resin composition according to claim 31wherein the adhesion promoter has the Structure XIII

25

30

wherein each R^{10} is independently selected from the group consisting of a $C_1 - C_4$ alkyl group and a $C_5 - C_7$ cycloalkyl group and each R^{11} is independently selected from the group consisting of a $C_1 - C_4$ alkyl

(XIII)

group, a $C_1 - C_4$ alkoxy group, a $C_5 - C_7$ cycloalkyl group and a $C_5 - C_7$ cycloalkoxy group; d is an integer from 0 to 3 and n is an integer from 1 to about 6 and R^{12} is a moiety selected from the group consisting of one of the following moieties:

wherein each R^{13} and R^{14} are independently selected from the group consisting of a C_1-C_4 alkyl group and a C_5-C_7 cycloalkyl group, and R^{15} is selected from the group consisting of a C_1-C_4 alkyl group and a C_5-C_7 cycloalkyl group.

33. A positive photosensitive resin composition according to claim 31 wherein the adhesion promoter is selected from the group consisting of

15

- 25 34. A positive photosensitive resin composition according to claim 24 wherein D on the polybenzoxazole precursor polymer is a moiety selected from the group consisting of moiety IIb and moiety IId.
 - 35. A positive photosensitive resin composition according to claim 24 wherein D on the polybenzoxazole precursor polymer is a moiety selected from the group consisting of moiety IIb and moiety IId, G is an

organic group having a carbonyl group attached directly to the terminal NH of the polybenzoxazole precursor polymer, and the composition further comprises an adhesion promoter having the structure

wherein each R^{10} is independently selected from the group consisting of a C_1-C_4 alkyl group and a C_5-C_7 cycloalkyl group and each R^{11} is independently selected from the group consisting of a C_1-C_4 alkyl group, a C_1-C_4 alkoxy group, a C_5-C_7 cycloalkyl group and a C_5-C_7 cycloalkoxy group; d is an integer from 0 to 3 and n is an integer from 1 to about 6 and R^{12} is selected from the group consisting of one of the following moieties:

wherein each R^{13} and R^{14} are independently selected from the group consisting of a C_1-C_4 alkyl group or a C_5-C_7 cycloalkyl group, and R^{15} is a C_1-C_4 alkyl group and a C_5-C_7 cycloalkyl group.

30

36. A positive photosensitive resin composition according to claim 25 wherein G is an organic group having a carbonyl group attached directly to the terminal NH of the polybenzoxazole precursor polymer, and the composition further comprises an adhesion promoter having the structure

10 (XIII)

5

15

30

wherein each R^{10} is independently selected from the group consisting of a $C_1 - C_4$ alkyl group and a $C_5 - C_7$ cycloalkyl group and each R^{11} is independently selected from the group consisting of a $C_1 - C_4$ alkyl group, a $C_1 - C_4$ alkoxy group, a $C_5 - C_7$ cycloalkyl group and a $C_5 - C_7$ cycloalkoxy group; d is an integer from 0 to 3 and n is an integer from 1 to about 6 and R^{12} is a moiety selected from the group consisting of one of the following moieties:

20
$$R^{13} \longrightarrow NH \longrightarrow NH$$

$$R^{14} \longrightarrow NH \longrightarrow NH$$

$$R^{15} \longrightarrow NH \longrightarrow NH$$

$$R^{16} \longrightarrow NH$$

$$R^{18} \longrightarrow NH$$

$$R^{18} \longrightarrow NH$$

$$R^{19} \longrightarrow NH$$

$$R^{19} \longrightarrow NH$$

wherein each R^{13} and R^{14} are independently selected from the group consisting of a C_1-C_4 alkyl group and a C_5-C_7 cycloalkyl group, and R^{15} is selected from the group consisting of a C_1-C_4 alkyl group and a C_5-C_7 cycloalkyl group.

37. A positive photosensitive resin composition according to claim 26 wherein D on the polybenzoxazole precursor polymer is a moiety selected from the group consisting of moiety IIb and moiety IId, G is an organic group having a carbonyl group attached directly to the terminal NH of the polybenzoxazole precursor polymer, and the composition further comprises an adhesion promoter having the structure

10
$$R^{12}$$
 $(OR^{10})_d$ $R^{11}_{(3-d)}$ (XIII)

wherein each R¹⁰ is independently selected from the group consisting of a C_1 - C_4 alkyl group and a C_5 - C_7 cycloalkyl group and each R^{11} is independently selected from the group consisting of a C_1 - C_4 alkyl group, a $C_1 - C_4$ alkoxy group, a $C_5 - C_7$ cycloalkyl group and a $C_5 - C_7$ cycloalkoxy group; d is an integer from 0 to 3 and n is an integer from 1 to about 6 and R¹² is a moiety selected from the group consisting of one of the following moieties:

25
$$\mathbb{R}^{13}$$
 \mathbb{N}^{13} \mathbb{N}^{14} \mathbb{N}^{14} \mathbb{N}^{14} \mathbb{N}^{14} \mathbb{N}^{15} \mathbb{N}^{15}

20

wherein each R^{13} and R^{14} are independently selected from the group consisting of a $C_1 - C_4$ alkyl group and a $C_5 - C_7$ cycloalkyl group, and R^{15} is selected from the group consisting of a $C_1 - C_4$ alkyl group and a $C_5 - C_7$ cycloalkyl group.

5

10

15

- 38. A process for forming a patterned image on a substrate, the process comprises the steps of:
 - (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 12 thereby forming a coated substrate;
 - (b) prebaking the coated substrate;
 - (c) exposing the prebaked coated substrate to actinic radiation;
 - (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
 - (e) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.
- 39. A process for forming a patterned image on a substrate, the process comprises the steps of:
 - (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 17 thereby forming a coated substrate;
 - (b) prebaking the coated substrate;
 - (c) exposing the prebaked coated substrate to actinic radiation;
 - (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
 - (e) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.

30

- 40. A process for forming a patterned image on a substrate, the process comprises the steps of:
 - (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 25 thereby forming a coated substrate;
- 5 (b) prebaking the coated substrate;
 - (c) exposing the prebaked coated substrate to actinic radiation;
 - (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
- 10 (e) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.
 - 41. A process for forming a patterned image on a substrate, the process comprises the steps of:
- (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 27 thereby forming a coated substrate;
 - (b) prebaking the coated substrate;
 - (c) exposing the prebaked coated substrate to actinic radiation;
- (d) developing the exposed coated substrate with an aqueous
 developer, thereby forming an uncured relief image on the coated substrate; and
 - (e) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.
- 25 42. A process for forming a patterned image on a substrate, the process comprises the steps of:
 - (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 28 thereby forming a coated substrate;
 - (b) prebaking the coated substrate;
- 30 (c) exposing the prebaked coated substrate to actinic radiation;

- (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
- (e) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.
- 43. A process for forming a patterned image on a substrate, the process comprises the steps of:
 - (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 29 thereby forming a coated substrate;
 - (b) prebaking the coated substrate;
 - (c) exposing the prebaked coated substrate to actinic radiation;
 - (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
 - (d) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.
- 44. A process for forming a patterned image on a substrate, the process comprises the steps of:
 - (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 31 thereby forming a coated substrate;
 - (b) prebaking the coated substrate;
 - (c) exposing the prebaked coated substrate to actinic radiation;
- 25 (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
 - (e) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.

10

- 45. A process for forming a patterned image on a substrate, the process comprises the steps of:
 - (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 32 thereby forming a coated substrate;
- 5 (b) prebaking the coated substrate;
 - (c) exposing the prebaked coated substrate to actinic radiation;
 - (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
- (e) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.
 - 46. A process for forming a patterned image on a substrate, the process comprises the steps of:
- (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 33 thereby forming a coated substrate;
 - (b) prebaking the coated substrate;
 - (c) exposing the prebaked coated substrate to actinic radiation;
 - (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
 - (e) baking the developed coated substrate at an elevated temperature,

thereby curing the relief image.

25

- 47. A process for forming a patterned image on a substrate, the process comprises the steps of:
 - (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 36 thereby forming a coated substrate;
- 30 (b) prebaking the coated substrate;
 - (c) exposing the prebaked coated substrate to actinic radiation;

- (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
- (e) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.
 - 48. A process for forming a patterned image on a substrate, the process comprises the steps of:
 - (a) coating on a suitable substrate, a positive-working photosensitive composition of claim 38 thereby forming a coated substrate;
 - (b) prebaking the coated substrate;
 - (c) exposing the prebaked coated substrate to actinic radiation;
 - (d) developing the exposed coated substrate with an aqueous developer, thereby forming an uncured relief image on the coated substrate; and
 - (e) baking the developed coated substrate at an elevated temperature, thereby curing the relief image.
- 49. A substrate having a patterned image produced by the process of claim 38.
 - 50. A substrate having a patterned image produced by the process of claim 39.
- 25 51. A substrate having a patterned image produced by the process of claim 40.
 - 52. A substrate having a patterned image produced by the process of claim 41.

5

10

- 53. A substrate having a patterned image produced by the process of claim 42.
- 54. A substrate having a patterned image produced by the process of claim 43.
 - 55. A substrate having a patterned image produced by the process of claim 44.
- 10 56. A substrate having a patterned image produced by the process of claim 45.
 - 57. A substrate having a patterned image produced by the process of claim 46.
 - 58. A substrate having a patterned image produced by the process of claim 47.
- 59. A substrate having a patterned image produced by the process of claim 48