

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

[*Seal of the
Russian Federation*]

(19) RU (11) **2,043,415** (13) C1
(51) 6 C 12 N 15/70, 15/09

Russian Federation Committee
for Patents and Trademarks

(12) **SPECIFICATION OF INVENTION** for a Russian Federation Patent

(21) 5028000/13
(22) February 18, 1992
(46) September 10, 1995, Bulletin No. 25
(71) The Bioservis Biotechnology Company
(72) V. Ye. Alatortsev and G. I. Alatortseva
(73) The Bioservis Biotechnology Company
(56) *The EMBO Journal*, Vol. 3, pp. 1429–1434, 1984.
(54) THE pEL5b VECTOR FOR EXPRESSION OF FOREIGN DNA
(57) The invention relates to the field of biotechnology, particularly genetic engineering, and can be used in creating plasmids and corresponding strains that produce recombinant proteins, and also to purify protein products. The advantage of the pEL5b vector filed for is that as a result of the use of an operon consisting of a gene that codes for a recombinant protein and the lysozyme gene, the synthesis of lysozyme, which ruptures the polysaccharide membrane of *E. coli*, significantly simplifying the purification of the water-insoluble agglomerate of recombinant protein, proceeds concurrently with the synthesis of the recombinant protein.

The invention relates to the fields of biotechnology and genetic engineering, and can be used to produce plasmids that synthesize recombinant proteins.

Large quantities of recombinant proteins can be synthesized in *Escherichia coli* cells, which carry systems for the expression of recombinant proteins [sic] on the basis of a lambda-phage promoter. In such systems transcription is regulated by the binding of the temperature-sensitive lambda-phage repressor, which is coded by the mutant gene clts857, to an operator segment. When the cells grow at a temperature of 30–32°C, the repressor binds to the operator and blocks expression. As the temperature

increases to 42°C the repressor is inactivated, allowing the RNA polymerase to bind with the promoter and to commence transcription of the gene. As a result of intensive transcription and subsequent translation, significant quantities of protein can be synthesized.

The recombinant plasmid DNAs pEX1, pEX2, and pEX3 are known which make it possible to express recombinant proteins in all three reading frames. The DNA sequences for expression can be inserted in the polylinker located at the 3'-terminus of the lacZ gene. In the indicated plasmid the lambda-bacteriophage promoter P_R effects expression of the DNA sequence, and the product constitutes a significant part of the total bacterial protein. The expressed protein accumulates in the cell in the form of water-insoluble agglomerates. However, these vectors have a drawback: the bacterial cell wall must be ruptured in order to release the water-insoluble agglomerates of the recombinant protein.

The pEX2 vector was selected as the prototype for producing the pEL5b vector. The advantage of the pEL5b vector filed for is that as a result of the use of an operon consisting of a gene that codes for the recombinant protein and the lysozyme gene, the synthesis of lysozyme, which ruptures the polysaccharide membrane of *E. coli*, significantly simplifying the purification of the water-insoluble agglomerates of recombinant protein, proceeds concurrently with the synthesis of the recombinant protein.

The essence of the invention is that the pEL5b vector 6.4 kilobase pairs (kbp) long consisting of the following elements has been constructed:

- the XbaI–XbaI fragment 5.8 kbp long of the plasmid DNA of the bacterial vector pEX2, which contains the cro-lacZ fusion gene, which codes for the fusion protein under the control of the lambda-bacteriophage promoter P_R , and a polylinker at the 3'-terminus of the lacZ gene; and
- the BamHI–BamHI fragment 0.6 kbp long of pLysS plasmid DNA, which contains the bacteriophage T4 lysozyme gene.

To construct the pEL5b plasmid, the pEX2 plasmid DNA is hydrolyzed with XbaI restriction enzyme and three nucleotides are added at each sticky end by means of PolIK DNA polymerase. BamHI restriction enzyme 0.6 kbp long from the pLysS plasmid, which contains the bacteriophage T4 lysozyme gene and which has three nucleotides added on at each sticky end by means of PolIK, is produced in parallel. The pEX2 fragment is ligated to the DNA fragment containing the bacteriophage T4 lysozyme gene. The ligase mixture transforms *E. coli* cells that contain in a chromosome the temperature-sensitive lambda-bacteriophage gene clts857, such as a cell of

strain PLT90. The transformants are plated out onto a medium with ampicillin at 30°C. Clones containing recombinant plasmids with the lysozyme gene in the proper orientation are selected by analyzing for the ability to lyse after induction of protein synthesis. Expression of the recombinant proteins is induced by increasing the temperature to 42°C. In the lysozyme-producing clones, the cells lyse after protein-synthesis induction and the subsequent addition of chloroform. Standard methods are used to isolate the pEL5b plasmid from the selected clones. The vector DNA is stable in storage in 10 mM *tris*, pH 8.0, 1 mM EDTA at -20°C.

Example 1. Production of the pEL5b vector plasmid with an operon system for expression and lysis.

Cells of *E. coli* PLT90 bacteria containing the pEX2 plasmid are grown in 50 ml of 2YT broth (16 g of tryptone, 10 g of yeast extract, and 5 g of NaCl per liter of water) containing 100 µg/ml of ampicillin to a titer of 10⁹ cells/ml.

The cells are precipitated by centrifugation, resuspended in 2 ml of solution (50 mM of glucose, 25 mM of *tris*-HCl, pH 8.0, 10 mM EDTA, 5 mg/ml of lysozyme), and incubated for 5 min at room temperature. Then 4 ml of a solution of 0.2 M NaOH and 1% sodium dodecylsulfate is added, [and the resulting fluid] is stirred and incubated for 10 min in ice; 3 ml of a cooled 5 M potassium acetate solution with pH 4.8 is added, stirred, and left for 10 min in ice; the precipitate formed is separated by centrifugation. A quantity of 0.6 volume of isopropyl alcohol is added to the supernatant, and [the resulting fluid] is held for 15 min at room temperature. The precipitate is collected by centrifugation, resuspended in 0.5 ml of TE8 buffer (10 mM *tris*-HCl, pH 8.0, 1 mM EDTA), and an equal volume of a saturated sodium acetate solution is added. After incubation for 30 min at -20°C, the precipitate is removed by centrifugation, and 0.6 volume of isopropanol is added to the supernatant and [the resulting fluid is] left for 1 hr at room temperature. The precipitate is collected by centrifugation, washed with 70% ethanol, and resuspended in 100 µl of TE8 buffer.

The plasmid DNA (1 µg of pEX2) is treated with XbaI restriction endonuclease (10 units) in buffer A (50 mM of *tris*-HCl, pH 7.6, 10 mM MgCl₂, 1 mM dithiothreitol, 100 mM NaCl, 4 mM spermidine) for 2 hr.

The completeness of hydrolysis is analyzed by electrophoresis. By using the Klenow fragment of *E. coli* DNA polymerase, three of the four nucleotides are added at the sticky XbaI ends. The proteins are removed by phenol extraction. The DNA is precipitated with ethanol and resuspended in 5 µl of TE8.

To obtain the DNA fragment with the lysozyme gene, restriction is performed on 10 µg of the pLysS plasmid DNA with BamHI restrictase. The Klenow fragment of *E. coli* DNA polymerase is used to add three of the four nucleotides at the sticky BamHI ends. The –BamHI–BamHI– fragment 0.6 kbp long with partially added sticky ends is separated by means of electrophoresis using sorption on DYe81 paper. The paper is washed, incubated for 30 min at 80°C in a buffer of 2 M sodium acetate, 50 mM *tris*-HCl, pH 7.5, and 10 mM EDTA. The DNA that has passed into the solution is removed from the paper by centrifugation, and 2 volumes of ethanol is added to the solution. After incubation at –20°C for 1 hr, the precipitate is collected by centrifugation and dissolved in 5 µl of TE8 buffer.

A quantity of 0.5 µg of a fragment of the pEX2 vector DNA is mixed with 0.2 µg of DNA containing the bacteriophage T4 lysozyme gene. The fragments are linked by using 10 units of phage T4 DNA ligase in a buffer of 30 mM *tris*-HCl, pH 7.2, 10 mM magnesium chloride, 2 mg/ml of gelatin, 1 mM spermidine, 0.1% mercaptoethanol, and 0.2 mM ATP at 20°C for 2 hr.

The resulting mixture is used to transform *E. coli* PLT90 cells containing clts857 repressor. To do this, an overnight cell culture is cultivated on LB medium with 10 mM MgSO₄ in a ratio of 1:100 and grown with aeration to a density A550 = 0.3 relative units. After 15 min of cooling at 0°C, the cells are collected by centrifugation, suspended in one-third the original volume with a buffer of 30 mM potassium acetate, pH 5.8, 100 mM RbCl, 50 mM MnCl₂, 10 mM CaCl₂, and 15% glycerol, and left 30–60 min on ice. The cells are collected by centrifugation, resuspended in 1/12.5th the original volume in a buffer of 10 mM MOPS, pH 6.8, containing 10 mM RbCl, 75 mM CaCl₂, and 15% glycerol, and incubated for 15 min on ice. Ligated DNA fragments are added to the cell suspension, [the suspension] is incubated for 40 min at 0°C and then for 2 min at 34°C and for 2–3 min at 0°C, diluted 5 times with 2YT medium, grown for 30 min at 30°C, and plated out onto agar medium 2YT with ampicillin (50 mg/ml).

Clones containing recombinant plasmids with the lysozyme gene in the proper orientation are selected by analysis for the ability to lyse after induction of protein synthesis. Expression of the recombinant proteins is induced by increasing the temperature to 42°C. The cells lyse in the lysozyme-producing clones after induction of protein synthesis and subsequent addition of chloroform. The pEL5b plasmid is separated from the selected clones by standard methods. The vector DNA is stable in storage in 10 mM *tris*, pH 8.0, 1 mM EDTA at –20°C.

Example 2. Use of the pEL5b vector to produce recombinant proteins in the form of water-insoluble agglomerates.

PLT90 cells containing the pEL5b plasmid are inoculated into 1 ml of LB medium with 100 µg/ml of ampicillin, and grown at 30°C overnight. The overnight culture is cultivated in 2 ml of the same medium in a ratio of 1:100 and grown with aeration to 0.2 relative units at 550 nm; then the temperature is increased to 42°C to induce synthesis of the fusion protein, and [the culture] is grown for 2 hr more. Then chloroform is added to 1%, and incubation is performed at 37°C for another hour. Then the lysate is centrifuged, the precipitate is resuspended in 75 µl of TE8 buffer, and an equal volume of buffer is added for electrophoresis (160 mM tris-HCl, pH 6.8, 20% glycerol, 4% sodium dodecylsulfate, 4 mM EDTA, 6% mercaptoethanol, and 0.05% bromophenol blue). The cellular proteins are analyzed by electrophoresis in a polyacrylamide gel after Lammli. After the completion of electrophoresis, the proteins in the gene are fixed and stained with Coomassie brilliant blue R-250.

Analysis of the results shows that as a result of the action of lysozyme, the bacterial wall ruptures and the water-soluble cellular proteins are released into the medium, as evidenced in the extinction of minor protein bands. There is no such effect in the control in the case where the pEX2 plasmid is used.

Thus, the invention makes it possible to produce water-insoluble agglomerates of recombinant proteins without the use of additional techniques of cell-wall rupture.

CLAIMS

THE pEL5b VECTOR, WHICH IS INTENDED TO EXPRESS FOREIGN DNA, 6.4 kbp long, containing the XbaI-XbaI fragment 5.8 kbp long of the plasmid DNA of the pEX2 bacterial vector, with the cro-lacZ fusion gene, which codes for a protein under the control of the lambda-bacteriophage promoter P_R ; a polylinker at the 3'-terminus of the lacZ gene; the BamHI-BamHI fragment 0.6 kbp long of pLysS plasmid DNA with the bacteriophage T4 lysozyme gene; unique restriction sites for cloning of DNA on the 3'-terminus of the lacZ gene: EcoR1, SmaI, BamHI, SalI, and PstI; the lambda bacteriophage operator O_R and promoter P_R ; the phage fd transcription terminators; a genetic marker — for resistance to ampicillin; and a range of hosts — *Escherichia coli* bacteria, with the lambda bacteriophage clts 857 gene.

[Translator's note: Miscellaneous publication data at the end of the patent are not translated here.]

(19) RU (11) 2043415 (13) Г1
(51) 6 С 12 Н 15/70, 15/09

Комитет Российской Федерации
по патентам и товарным знакам

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ к патенту Российской Федерации

1

(21) 5028000/13
(22) 180292
(46) 100995 Бюл № 25
(71) Биотехнологическая компания "Биосервис"
(72) Алаторцев ВЕ, Алаторцева ГИ.
(73) Биотехнологическая компания "Биосервис"
(56) The EMBO Journal, v.3, p.1429-1434, 1984.
**(54) ВЕКТОР PEL 5b, ПРЕДНАЗНАЧЕННЫЙ
ДЛЯ ЭКСПРЕССИИ ЧУЖЕРОДНОЙ ДНК**
(57) Изобретение относится к биотехнологии в
частности к генетической инженерии, и может быть

2

использовано при создании плазмид и соответствующих штаммов-продуцентов рекомбинантных белков, а также для очистки белковых продуктов. Преимущество заявленного вектора pEL5b заключается в том, что в результате использованияия оперона, состоящего из гена, кодирующего рекомбинантный белок и гена лизоцима, одновременно с синтезом рекомбинантного белка идет синтез лизоцима, разрушающего полисахаридную оболочку Е coli, что существенно упрощает очистку водонерастворимых аггрегатов рекомбинантного белка.

Изобретение относится к биотехнологии, генетической инженерии и может быть использовано для получения плазмид, синтезирующих рекомбинантные белки.

Большие количества рекомбинантных белков можно синтезировать в клетках *Escherichia coli*, несущих системы экспрессии рекомбинантных белков на основе промотора фага лямбда. Транскрипция в таких системах регулируется связыванием температурочувствительного репрессора фага лямбда, кодируемого мутантным геном *cI*₈₅₇, с операторным участком. Когда клетки растут при температуре 30–32°C, репрессор связывается с оператором и блокирует экспрессию. При повышении температуры роста до 42°C репрессор инактивируется, что позволяет РНК-полимеразе связываться с промотором и начать транскрипцию гена. В результате интенсивной транскрипции и последующей трансляции могут синтезироваться значительные количества белка.

Известны рекомбинантные плазмидные ДНК pEX1, pEX2 и pEX3, позволяющие экспрессировать рекомбинантные белки во всех трех рамках считывания. Последовательности ДНК для экспрессии можно вставить в полилинкер, расположенный в 3'-конце гена *lacZ*. В указанных плазмидах *P_R* промотор бактериофага лямбда обеспечивает экспрессию последовательностей ДНК, и продукт составляет значительную часть суммарного бактериального белка. Экспрессируемый белок в клетке накапливается в виде водонерастворимых аггрегатов. Однако у этих векторов есть недостаток: для выделения водонерастворимых аггрегатов рекомбинантного белка необходимо разрушать клеточную стенку бактерии.

Вектор pEX2 выбран в качестве прототипа для получения вектора pEL5b. Преимущество заявленного вектора pEL5b заключается в том, что в результате использования оперона, состоящего из гена, кодирующего рекомбинантный белок, и гена лизоцима одновременно с синтезом рекомбинантного белка идет синтез лизоцима, разрушающего полисахаридную оболочку *E.coli*, что существенно упрощает очистку водонерастворимых аггрегатов рекомбинантного белка.

Сущность изобретения состоит в том, что сконструирован вектор pEL5b размером 6.4 тысячи пар оснований (т.п.о.), состоящий из следующих элементов:

Xba1-Xba1- фрагмента плазмидной ДНК бактериального вектора pEX2 размером 5.8 т.п.о., который содержит слитный

сго-*lacZ* ген, кодирующий слитный белок под контролем промотора *P_R* бактериофага лямбда, полилинкер в 3'-конце *lacZ*-гена:

5 ВамH1-VамH1- фрагмента ДНК плазмиды pLysS, содержащего ген лизоцима бактериофага T4 и имеющего размер 0.6 т.п.о.

Для конструирования плазмиды pEL5b ДНК плазмиды pEX2 гидролизуют рестриктазой *Xba*1 и достраивают по три нуклеотида в липких концах с помощью ДНК-полимеразы *PoIIK*. Параллельно получают ВамH1 рестрикт размером 0.6 т.п.о. из плазмиды pLysS, содержащий ген лизоцима бактериофага T4 и имеющий три достроенных с помощью *PoIIK* нуклеотида в липких концах. Фрагмент pEX2 лигируют с фрагментом ДНК, содержащим ген лизоцима бактериофага T4. Лигазной смесью трансформируют

10 клетки *E.coli*, содержащие в хромосоме температурочувствительный ген бактериофага лямбда *cI*₈₅₇, например клетки штамма PLT90. Трансформанты высевают на среду с ампициллином при 30°C. Клоны, содержащие рекомбинантные плазмиды с геном лизоцима в нужной ориентации, отбирают с помощью анализа на способность к лизису

15 после индукции синтеза белка. Экспрессию рекомбинантных белков индуцируют повышением температуры до 42°C. В клонах, продуцирующих лизоцим, после индукции белкового синтеза и последующего добавления хлороформа, происходит лизис клеток. Из отобранных клонов стандартными 20 способами выделяют плазмиду pEL5b. Векторная ДНК стабильна при хранении в 10 mM трикс, pH 8.0, 1 mM ЭДТА при -20°C.

При мер 1. Получение векторной плазмиды pEL5b с оперонной системой экспрессии и лизиса.

Клетки бактерий *E.coli* PLT90, содержащие плазмиду pEX2, выращивают в 50 мл бульона 2YT (16 г триптона, 10 г дрожжевого экстракта, 5 г NaCl на 1 л воды), содержащего 100 мкг/мл ампициллина до титра 10⁹ кл/мл.

55 Клетки осаждают центрифугированием, ресусPENDируют в 2 мл раствора (50 mM глюкозы, 25 mM трикс-НСl, pH 8.0, 10 mM ЭДТА, 5 мг/мл лизоцима) и инкубируют 5 мин при комнатной температуре. Далее добавляют 4 мл раствора 0.2 M NaOH, 1%-ного додецилсульфата натрия, перемешивают, инкубируют 10 мин во льду, добавляют 3 мл охлажденного 5 M раствора ацетата калия, pH 4.8, перемешивают, оставляют на 10 мин во льду, образовавшийся осадок отделяют центрифугированием. К надосадочной жидкости добавляют 0.6 объема изопропилового спирта и выдерживают 15 мин при

комнатной температуре. Осадок собирают центрифугированием, ресусцидируют в 0.5 мл TE8-буфера (10 мМ трил-НСl, pH 8.0, 1 мМ ЭДТА) и добавляют равный объем насыщенного раствора ацетата натрия. После инкубации в течение 30 мин при минус 20°C осадок удаляют центрифугированием, а к надосадочная жидкости добавляют 0.6 объема изопропанола и оставляют на 1 ч при комнатной температуре. Осадок собирают центрифугированием, промывают 70%-ным этанолом и ресусцидируют в 100 мкл TE8-буфера.

Плазмидную ДНК (1 мкг pEX2) обрабатывают эндонуклеазой рестрикции Xba1 (10 ед.) в буфере A (50 мМ трил-НСl, pH 7.6, 10 мМ MgCl₂, 1 мМ дитиотрейтол, 100 мМ NaCl, 4 мМ спермидина) в течение 2 ч.

Анализ полноты гидролиза проводят с помощью электрофореза. Используя фрагмент Кленова ДНК-полимеразы E.coli достраивают три из четырех нуклеотидов в липких Xba1-концах. Белки удаляют фенольной экстракцией, ДНК осаждают этанолом и ресусцидируют в 5 мкл TE8.

Для получения фрагмента ДНК с геном лизоцима проводят рестрикцию 10 мкг ДНК плазмиды pLysS рестриктазой BamH1. С помощью фрагмента Кленова ДНК-полимеразы E.coli достраивают три из четырех нуклеотидов в липких BamH1-концах. Фрагмент-BamH1-BamH1-с частично достроенными липкими концами размером 0.6 т.п.о. выделяют с помощью электрофореза сорбцией на бумагу DE81. Бумагу промывают, инкубируют 30 мин при 80°C в буфере 2 М ацетата натрия, 50 мМ трил-НСl, pH 7.5, 10 мМ ЭДТА. ДНК, перешедшую в раствор, удаляют с бумаги центрифугированием, к раствору добавляют 2 объема этанола. После инкубации при -20°C в течение 1 ч осадок собирают центрифугированием и растворяют в 5 мкл буфера TE8.

0.5 мкг фрагмента ДНК вектора pEX2 смешивают с 0.2 мкг ДНК, содержащей ген лизоцима бактериофага T4. Соединение фрагментов проводят с помощью 10 ед. ДНК-лигазы фага T4 в буфере: 30 мМ трил-НСl, pH 7.2, 10 мМ хлористого магния, 2 мг/мл желатины, 1 мМ спермидина, 0.1% меркаптоэтанола, 0.2 мМ АТФ при 20°C в течение 2 ч.

Полученной смесью трансформируют клетки E.coli PLT90 содержащие cts857 ре-прессор. Для этого ночную культуру клеток разводят средой LB с 10 мМ MgSO₄ в соотношении 1:100 и растят с аэрацией до плотности A550 = 0.3 ОЕ. После 15 мин охлаждения при 0°C клетки собирают центрифугированием, сусцидируют в 1/3 пер-

воначального объема буфером 30 мМ ацетата калия, pH 5.8, 100 мМ RbCl, 50 мМ MnCl₂, 10 мМ CaCl₂, 15% глицерина, и оставляют на 30–60 мин на льду. Клетки собирают центри-

- 5 фугированием, ресусцидируют в 1/12.5 первоначального объема в буфере 10 мМ MOPS, pH 6.8, содержащем 10 мМ RbCl, 75 мМ CaCl₂, 15% глицерина и инкубируют 15 мин на льду. К супензии клеток добавляют 10 лигированные фрагменты ДНК, инкубируют 40 мин при 0°C, затем 2 мин при 34°C, 2-3 мин при 0°C, разбавляют в 5 раз средой 2YT, растят 30 мин, при 30°C и высевают на агаризованную среду 2YT с ампциллином (50 мг/мл).

Клоны, содержащие рекомбинантные плазмиды с геном лизоцима в нужной ориентации, отбирают с помощью анализа на способность к лизису после индукции синтеза белка. Экспрессию рекомбинантных белков индуцируют повышением температуры до 42°C. В клонах, продуцирующих лизоцим, после индукции белкового синтеза и последующего добавления хлороформа 25 происходит лизис клеток. Из отобранных клонов стандартными способами выделяют плазмиду pEL5b. Векторная ДНК стабильна при хранении в 10 мМ трил, pH 8.0, 1 мМ ЭДТА при -20°C.

П р и м е р 2. Использование вектора pEL5b для получения рекомбинантных белков в виде водонерастворимых аггломератов.

Клетки PLT90, содержащие плазмиду pEL5b, инокулируют в 1 мл среды LB с 100 мкг/мл ампциллина и растят ночь при 30°C. Ночную культуру разводят в 2 мл этой же среды в соотношении 1:100 и растят с аэрацией до 0.2 ОЕ при 550 нм, затем повышают температуру до 42°C для индукции синтеза слитного белка и растят еще 2 ч. Затем добавляют хлороформ до 1% и инкубируют при 37°C еще час. Далее лизат центрифигируют, ресусцидируют осадок в 75 мкл буфера TE8 и добавляют равный объем буфера для электрофореза (150 мМ трил-НСl, pH 6.8, 20% глицерина, 4% додецилсульфата натрия, 4 мМ ЭДТА, 6% меркаптоэтанола, 0.05% бромфенолового синего). Клеточные 40 белки анализируются с помощью электрофореза в полиакриламидном геле по Лэммили. После окончания электрофореза белки в геле фиксируют и окрашивают кумасси ярко-голубым R-250.

Анализ полученных результатов показывает, что в результате действия лизоцима происходит разрушение оболочки бактерии и высвобождение водонерастворимых клеточных бактерий в среду, что проявляется в ослаблении мигрирования белков на полосе R-250.

контроле, в случае использования плазмиды pEX2, такого эффекта нет.

Таким образом, предлагаемое изобретение позволяет получать водонераствори-

мые аггломераты рекомбинантных белков без использования дополнительных методов разрушения клеточных стенок.

5

Фрагмент ДНК плазмиды PLysS, с геном лизоцима бактериофага T4 размером 0.6 т.п.о.: - уникальные сайты рестрик-

10 ции для клонирования ДНК на 3'-конце гена lacZ: EcoR1, Sma1, BamH1, Sal1, Pst1; - оператор Or и промотор Pr бактериофага лямбда: - терминаторы транскрипции фага fd; - генетический маркер - устойчивость к ампициллину; - спектр хозяев - бактерии Escherichia coli, с геном cts 857 бактериофага лямбда.

15

Ф о р м у л а изобретения
ВЕКТОР PEL 5b, ПРЕДНАЗНАЧЕННЫЙ ДЛЯ ЭКСПРЕССИИ ЧУЖЕРОДНОЙ ДНК, размером 6.4 т.п.о., содержащий - Xba1 - Xba1-фрагмент плазмидной ДНК бактериального вектора pEX2 размером 5.8 т.п.о., со слитным cts - lacZ-геном, кодирующим белок под контролем промотора Pr бактериофага лямбда, полилинкер в 3' - конце lacZ-гена; - BamH1 - BamH1-

Редактор Г. Мельникова

Составитель В. Алаторцев
Техред М. Моргентал

Корректор В. Петраш

Заказ 816

Тираж

Подписьное

ИПО "Поиск" Роспатента

113035, Москва, Ж-35, Раушская наб., 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул. Гагарина, 101