

Answers

Set theory

1	d	2	b	3	a	4	c	5	c
6	b	7	a	8	d	9	c	10	b
11	c	12	b	13	c	14	b	15	c
16	d	17	a	18	b	19	c	20	b
21	c	22	c	23	a,b	24	d	25	b
26	b	27	d	28	b	29	a	30	b
31	b	32	c	33	b	34	b	35	a
36	a	37	b	38	a	39	a	40	c
41	b	42	b	43	c	44	a	45	d
46	a	47	a	48	c	49	c	50	c
51	c	52	b	53	a	54	d	55	c
56	a	57	a	58	d	59	c	60	b
61	d	62	a	63	a	64	b	65	b
66	a	67	b	68	c	69	a	70	e
71	c	72	c	73	a	74	d	75	d
76	a	77	b	78	c	79	d	80	b
81	d								

Relations

1	a	2	a,b,c	3	c	4	b	5	b
6	a	7	b	8	b	9	b	10	a
11	b	12	a	13	b	14	c	15	d
16	c	17	c	18	a	19	a	20	d
21	d	22	c	23	c	24	a	25	a
26	b	27	a,b	28	b	29	a	30	b
31	c	32	b	33	c	34	c	35	bc
36	c	37	b	38	b	39	a	40	c
41	d	42	d	43	d	44	c	45	b
46	b,c,d	47	c	48	b	49	d	50	a,b,c,d
51	c	52	b	53	c	54	d	55	a
56	a								

Critical Thinking Questions

1	a	2	b	3	b	4	d	5	b
6	a	7	c	8	c	9	c	10	a
11	d	12	d	13	a	14	a	15	d

Answers and Solutions

Set theory

- **1.** (d) Since, intelligency is not defined for students in a class *i.e.*, Not a well defined collection.
- **2.** (b) Since $x^2 + 1 = 0$, gives $x^2 = -1 \implies x = \pm i$ \therefore *x* is not real but *x* is real (given) \therefore No value of *x* is possible.
- 2x=6 x=3There is no value of x which satisfies both the above equations. Thus, $A=\phi$.

 $x = \pm 4$

- **4.** (c) Number of subsets of $A = {}^{n}C_{0} + {}^{n}C_{1} + \dots + {}^{n}C_{n} = 2^{n}$.
- 5. (c) Number of proper subsets of the set $\{1, 2, 3\}$ = $2^3 - 2 = 6$.
- **6.** (b) $B \cap C = \{4\}$, $A \cup (B \cap C) = \{1, 2, 3, 4\}$.
- **7.** (a) $A \cap B \subseteq A$. Hence $A \cup (A \cap B) = A$.
- **8.** (d) $A \cap (A \cap B)^c = A \cap (A^c \cup B^c)$

$$= (A \cap A^c) \cup (A \cap B^c) =$$

 $\phi \cup (A \cap B^c) = A \cap B^c$.

(a) $x^2 = 16$

3.

- **9.** (c) Since $y = \frac{1}{x}$, y = -x meet when $-x = \frac{1}{x}$ $x^2 = -1$, which does not give any real value of x.
 Hence, $A \cap B = \phi$.
- **10.** (b) $A = [x: x \in R, -1 < x < 1]$ $B = [x: x \in R: x - 1 \le -1 \text{ or } x - 1 \ge 1]$ $= [x: x \in R: x \le 0 \text{ or } x \ge 2]$ $\therefore A \cup B = R - D, \text{ where } D = [x: x \in R, 1 \le x < 2].$
- **11.** (c) Since, $y=e^x$ and y=x do not meet for any $x \in R$ $\therefore A \cap B = \phi.$
- **12.** (b) Since, $4^{n} 3n 1 = (3+1)^{n} 3n 1$ $= 3^{n} + {^{n}C_{1}}3^{n-1} + {^{n}C_{2}}3^{n-2} + \dots + {^{n}C_{n-1}}3 + {^{n}C_{n}} - 3n - 1$ $= {^{n}C_{2}}3^{2} + {^{n}C_{3}}.3^{3} + \dots + {^{n}C_{n}}3^{n}, ({^{n}C_{0}} = {^{n}C_{n}}, {^{n}C_{1}} = {^{n}C_{n-1}} \text{ etc.}$ $= 9[{^{n}C_{2}} + {^{n}C_{3}}(3) + \dots + {^{n}C_{n}}3^{n-1}]$

∴ $4^n - 3n - 1$ is a multiple of 9 for $n \ge 2$.

For
$$n=1$$
, $4^n-3n-1=4-3-1=0$,

For
$$n=2$$
, $4^n-3n-1=16-6-1=9$

- ∴ $4^n 3n 1$ is a multiple of 9 for all $n \in N$
- \therefore X contains elements, which are multiples of
- 9, and clearly Y contains all multiples of 9.
- $\therefore X \subseteq Y \text{ i.e., } X \cup Y = Y.$

13. (c) $r(A^c \cap B^c) = r[(A \quad B)^c] = r(U) - r(A \cup B)$ = $r(U) - [r(A) + r(B) - r(A \cap B)]$ = 700 - [200 + 300 - 100] = 300.