

Machine Learning

Lecture 7.
Supervised learning
Evaluation

Alireza Rezvanian

Fall 2023

Amirkabir University of Technology (Tehran Polytechnic)

Outline

- Hold-out method
- K-fold cross validation
- Accuracy
- Error
- Precision
- Recall
- F-measure

Evaluation

- To compare different models.
- To tune the hyper-parameters such as
 - K in KNN, number of layers in neural networks, the best pruning of a decision tree, etc.
- The main goal of ML is generalization. We want to measure the generalization ability of our model.
- Hold-out method: You train on the Training data and evaluate your model on the Testing data. Once your model is ready, you test it one final time on the test data.
- Shuffle data before splitting

K-fold cross validation

- When you have few data points, the validation set would end up being very small. This would prevent you from reliably evaluating your model. So, we use k-fold cross validation.
- Typical values for k: 5, 10, N (leave-one-out method)

Evaluation metrics

Confusion Matrix

	Real Positive (1)	Real Negative (0)
Predicted Positive (1)	True Positive (TP)	False Positive (FP)
Predicted Negative (0)	False Negative (FN)	True Negative (TN)
	TP + FN = P	FP + TN = N

P: the number of real positive cases in the data **N:** the number of real negative cases in the data

TP: True Positive

TN: True Negative

FP: False Positive (Type I error)

FN: False Negative (Type II error)

Accuracy

Percentage of instances that are correctly classified

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

$$Error = 1 - Accuracy = \frac{FP + FN}{TP + FP + TN + FN}$$

$$TP \text{ rate} = TPR = \frac{TP}{P} = \frac{TP}{TP + FN} = Sensitivity$$

$$TN \text{ rate} = TNR = \frac{TN}{N} = \frac{TN}{TN + FP} = Specificity$$

- Is Accuracy (Error) always a good measure?
 - Consider a cancer detection system always predicts "no cancer"
 - Not a good measure for imbalanced data!

Precision

 Percentage of instances that the classifier labeled as positive are actually positive

$$Precision = \frac{TP}{TP + FP}$$

	Actually Spam = (Yes)	Actually Spam = (No)	Total
Predicted	60	140	200
Spam = (yes)	(TP)	(FP)	
Predicted	120	680	800
Spam = (No)	(FN)	(TN)	
Total	180	820	1000

$$Precision = \frac{TP}{TP + FP} = \frac{60}{60 + 140} = 0.3$$

Recall

Percentage of positive instances that the classifier labeled as positive are actually positive

$$Recall = \frac{TP}{TP + FN} = TPR = Sensitivity$$

	Actually Spam = (Yes)	Actually Spam = (No)	Total
Predicted	60	140	200
Spam = (yes)	(TP)	(FP)	
Predicted	120	680	800
Spam = (No)	(FN)	(TN)	
Total	180	820	1000

$$Recall = \frac{TP}{TP + FN} = \frac{60}{60 + 120} = 0.33$$

F-measure

- Is it enough to have good precision or good recall?
- We should combine precision and recall into one measure.
- The most popular way is by harmonic mean: F-measure

$$F-measure = \frac{2 \times Precision \times Recall}{Precision + Recall} = F-Score = F_1$$

$$F$$
-measure = $\frac{2 \times 0.3 \times 0.33}{0.3 + 0.33} = 0.31$

Evaluation in multi class

Compute all TP, FN and FP as one vs. rest

Micro

 Compute cumulative for TP, FN, FP and Fmeasure

Macro

Take average on each measure

Weighted

 Weighted average of each measure for different classes, where the weight of each class is proportional to the number of instances in that class

Evaluation example for multi class

Predicted class = $\{0, 2, 1, 0, 0, 2, 0\}$

Actual class = $\{0, 1, 2, 0, 1, 2, 0\}$

	Actually C = 0	Actually C =1	Actually C =2
Predicted C = 0	3	1	0
Predicted C = 1	0	0	1
Predicted C = 2	0	1	1

$$C_0 = \{TP=3, FP=1, FN=0\}$$
 $P_0 = \frac{3}{4}$ $R_0 = \frac{3}{3}$ $F_1 0 = 0.86$

$$C_1 = \{TP=0, FP=1, FN=2\}$$
 $P_1 = \frac{0}{1} = 0 \quad R_1 = \frac{0}{2} = 0 \quad F_1 = 0$

$$C_2 = \{TP=1, FP=1, FN=1\}$$
 $P_2 = \frac{1}{2}$ $R_2 = \frac{1}{2}$ $F_1 = 0.5$

Micro:
$$P = \frac{3+0+1}{7} = \frac{4}{7}$$
, $R = \frac{3+0+1}{7} = \frac{4}{7}$, $F_1 = \frac{4}{7} = 0.57$
Macro: $P = \frac{\frac{3}{4}+0+\frac{1}{2}}{3} = \frac{5}{12}$, $R = \frac{\frac{3}{3}+0+\frac{1}{2}}{3} = \frac{1}{2}$, $F_1 = \frac{0.86+0+0.5}{3} = 0.45$

Weighted:
$$P = \frac{3}{7} \times \frac{3}{4} + \frac{2}{7} \times 0 + \frac{2}{7} \times \frac{1}{2} = \frac{13}{28}$$
, $R = \frac{3}{7} \times \frac{3}{3} + \frac{2}{7} \times 0 + \frac{2}{7} \times \frac{1}{2} = \frac{4}{7}$, $F_1 = \frac{3}{7} \times 0.86 + \frac{2}{7} \times 0 + \frac{2}{7} \times 0.5 = 0.51$

IRIS dataset

- Attribute Information:
 - 1. sepal length in cm
 - 2. sepal width in cm
 - 3. petal length in cm
 - 4. petal width in cm

Setosa:

Virginica:

Versicolour:

Iris dataset

```
5.1, 3.8, 1.6, 0.2,
                      Iris-setosa
4.6, 3.2, 1.4, 0.2,
                      Iris-setosa
5.3, 3.7, 1.5, 0.2,
                      Iris-setosa
5.0, 3.3, 1.4, 0.2,
                      Iris-setosa
7.0, 3.2, 4.7, 1.4,
                      Iris-versicolor
6.4, 3.2, 4.5, 1.5,
                      Iris-versicolor
6.9, 3.1, 4.9, 1.5,
                      Iris-versicolor
                      Iris-versicolor
5.5, 2.3, 4.0, 1.3,
6.5, 2.8, 4.6, 1.5,
                      Iris-versicolor
                      Iris-versicolor
5.7, 2.8, 4.5, 1.3,
7.2, 3.0, 5.8, 1.6,
                      Iris-virginica
7.4, 2.8, 6.1, 1.9,
                      Iris-virginica
7.9, 3.8, 6.4, 2.0,
                      Iris-virginica
6.3, 3.4, 5.6, 2.4,
                      Iris-virginica
6.4, 3.1, 5.5, 1.8,
                      Iris-virginica
6.0, 3.0, 4.8, 1.8,
                      Iris-virginica
6.9, 3.1, 5.4, 2.1, Iris-virginica
```

Reading

- E. Alpaydin, Introduction to Machine Learning, 4th ed., The MIT Press, 2020. (ch. 20)
- I. H. Witten, E. Frank. M. A. Hall, C. J. Pal, Data Mining: Practical Machine Learning Tools and Techniques. 4th ed., Morgan Kaufmann, 2017 (ch. 5)

