Testing for certain idempotent Maltsev conditions

Maria Campanella Sean Conley Matt Valeriote

McMaster University

4 October 2013

Near Unanimity

Definition

A function $f(x_0, ..., x_{n-1})$ on a set A is called a near unanimity operation on A if the following equations hold:

$$f(y,x,x,\ldots,x) \approx f(x,y,x,\ldots,x,x) \approx \cdots \approx f(x,x,x,\ldots,x,y) \approx x.$$

A term t of an algebra **A** is a near unanimity term for **A** if the operation $t^{\mathbf{A}}$ is a near unanimity operation on A.

Remark

Note that a near unanimity term t is idempotent, i.e., it satisfies the equation $t(x, x, ..., x) \approx x$. An algebra is idempotent if all of its term operations are idempotent.

Robustness

Question

- One can ask if having a near unanimity term is preserved under varietal joins, i.e., if \mathcal{V}_0 and \mathcal{V}_1 have near unanimity terms, will $\mathcal{V}_0 \vee \mathcal{V}_1$?
- If V_i is generated by the algebra \mathbf{A}_i , then this amounts to checking if the product $\mathbf{A}_0 \times \mathbf{A}_1$ has a near unanimity term.

Definition

- The **Maltsev product** of varieties \mathcal{V}_0 and \mathcal{V}_1 , denoted $\mathcal{V}_0 \circ \mathcal{V}_1$, is the class of all algebras **A** such that for some congruence θ of **A**, the quotient \mathbf{A}/θ is in \mathcal{V}_1 and for each $a \in A$, $a/\theta \in \mathcal{V}_0$.
- (Freese, McKenzie) A property of varieties is robust if it is preserved under Maltsev products of idempotent varieties.

Robustness of near unanimity

Theorem (Marković, Maróti, McKenzie)

If \mathcal{V}_0 and \mathcal{V}_1 are idempotent varieties that have near unanimity terms of arities n and m respectively, then $\mathcal{V}_0 \vee \mathcal{V}_1$ and $\mathcal{V}_0 \circ \mathcal{V}_1$ have a near unanimity term of arity nm.

Proof.

If t_i is the near unanimity term for V_i , then the following term is a near unanimity term for $\mathcal{V}_0 \vee \mathcal{V}_1$ and $\mathcal{V}_0 \circ \mathcal{V}_1$:

$$t_0(t_1(x_0,\ldots,x_{m-1}),t_1(x_m,\ldots,x_{2m-1}),\ldots,t_1(x_{(n-1)m},\ldots,x_{nm-1})).$$

Question

- Can we do better than nm in the previous theorem?
- Initial Answer: Probably not, but maybe in special cases.

A computational approach

First Try

- Build small idempotent algebras A_0 and A_1 , manually, each with 3-ary basic operations p_0 and p_1 such that p_i is a majority term for A_i .
- Use UACalc to test if ${\bf A}_0 \times {\bf A}_1$ has a small arity near unanimity term, first checking for a majority term.
- Keep going until an example is found that doesn't have a majority term, and then start looking for examples that don't have a k-ary near unanimity term for k < 9.

Problems

- The manual approach didn't yield any examples that didn't have a low arity near unanimity term.
- For ease of calculation we considered 2-element algebras.
- The version of UACalc in use at the time used an EXP-time algorithm to check for the presence of a *k*-ary near unanimity term.

A Polynomial-time algorithm

Theorem (Freese-Valeriote)

A finite idempotent algebra **A** has a majority term if and only if for all a, b, $c \in A^3$,

$$(a,c) \in (Cg^{\mathbf{B}}(a,b) \wedge Cg^{\mathbf{B}}(a,c)) \circ (Cg^{\mathbf{B}}(b,c) \wedge Cg^{\mathbf{B}}(a,c)),$$

where
$$\mathbf{B} = \operatorname{Sg}^{\mathbf{A}}(\{a, b, c\})$$

Remarks

- This result can be converted into a polynomial time algorithm to test idempotent algebras for a majority term.
- It can be extended to handle checking for k-ary near unanimity terms.
- The algorithm isn't difficult to implement in Java, using the UACalc library, but it runs slowly.
- This can't be used to quickly build a majority term, if one exists.

A better algorithm

Definition

An operation $f(x_0,...,x_{n-1})$ on A is a local near unanimity operation on A for a subset $S \subseteq A^2 \times \{0,1,...,n-1\}$ if whenever $(a,b,i) \in S$, then f(a,a,...,a,b,a,...,a) = a, where b is substituted for x_i in f.

Theorem (Horowitz, McKenzie)

A finite idempotent algebra **A** has an n-ary near unanimity term if and only if for all subsets S of $A^2 \times \{0,1,\ldots n-1\}$ of size n or less, **A** has an n-ary term operation that is local for S.

Corollary

A finite idempotent algebra **A** has an n-ary near unanimity term if and only if for all a_i , $b_i \in A$, $0 \le i < n$, the tuple $(a_0, a_1, \ldots, a_{n-1})$ is in the subalgebra of **A**ⁿ generated by

$$\{(a_0, a_1, \ldots, a_{i-1}, b_i, a_{i+1}, \ldots, a_{n-1}) : 0 \le i < n\}.$$

Initial Results

- An implementation of the algorithm based on the Horowitz/McKenzie Theorem was used to check for majority terms in all algebras $\mathbf{A}_0 \times \mathbf{A}_1$, where \mathbf{A}_0 and \mathbf{A}_1 have universe $\{0,1\}$ and each has two 3-ary basic operations p_0 and p_1 such that p_i is a majority term for \mathbf{A}_i .
- It took less than 5 minutes to find that of the 4096 such pairs, only 28 fail to have a majority term.
- Up to isomorphism, there are only a few (3 or 4) distinct pairs that don't have a majority term.
- These pairs were investigated using the Horowitz/McKenzie algorithm and were found to all have a 5-ary near unanimity term. Each run took less than 5 minutes.
- Fortunately, the 2-generated free algebras in the varieties generated by these pairs were small and so UACalc was able to construct the 5-ary near unanimity terms.

A 5-ary near unanimity term

$$t(x_0, x_1, x_2, x_3, x_4) = p_0(t_0, t_1, t_2)$$
, where

First theorem

Theorem

Let \mathbf{A}_0 and \mathbf{A}_1 be idempotent algebras that have majority terms p_0 and p_1 respectively. Then the 5-ary term t on the previous slide is a near unanimity term for the algebra $\mathbf{A}_0 \times \mathbf{A}_1$.

Remarks

- We can't do better than 5-ary in all cases.
- The 5-ary term from the theorem doesn't work for Maltsev products of idempotent varieties that have majority terms.
- When we move from majority terms to higher arity terms, exhaustive searches aren't feasible.
- We found an example of the form $\mathbf{A}_0 \times \mathbf{A}_1$, where each factor has size 2 and has a 4-ary near unanimity term such that, even using the fast near unanimity checker, it would take thousands of hours to check for a 7-ary near unanimity term.

Extensions

Definition

Let n, m > 2. Let P(n, m) be

the smallest k such $\mathcal{V}_0 \vee \mathcal{V}_1$ will have a k-ary near unanimity term whenever \mathcal{V}_0 and \mathcal{V}_1 are idempotent varieties that have n-ary and m-ary near unanimity terms, respectively.

Define M(n, m) similarly, for Maltsev products of varieties.

Remarks

- We know that $n, m \leq P(n, m) \leq M(n, m) \leq nm$.
- The previous theorem can be stated as: P(3,3) = 5.

Theorem

$$n+m-1 \leq P(n,m) \leq \frac{nm}{2}.$$

$n+m-1 \leq P(n,m)$

- The computation showing that $P(3,3) \neq 4$ provides a pair of 2-element algebras \mathbf{A}_0 and \mathbf{A}_1 , each having majority terms as basic operations, whose product doesn't have a 4-ary near unanimity term.
- The other 3-ary basic operation of A₀ takes on the value 1 only on input (1,1,1), while A₁'s only takes on the value 0 on input (0,0,0).
- Fortunately, this pair can be naturally generalized to show that P(n, m) > n + m 2.
- Let \mathbf{A}_0 be the algebra with universe $\{0,1\}$ and basic operations $p_0^{\mathbf{A}_0}$ and $p_1^{\mathbf{A}_0}$ defined by:

$$\rho_0^{\mathbf{A}_0}(x_0, x_1, \dots, x_{n-1}) = \bigwedge_{0 \le i < j < n} (x_i \lor x_j)
\rho_1^{\mathbf{A}_0}(x_0, x_1, \dots, x_{m-1}) = \bigwedge_{0 \le i < m} x_i$$

• If \mathbf{A}_1 is defined dually then $\mathbf{A}_0 \times \mathbf{A}_1$ fails to have an n+m-2-ary near unanimity term.

M(3,3)

The computational approach: Attempt to show M(3,3)>5

- Search through all examples of 4-element idempotent algebras **A** that have two 3-ary terms p_0 and p_1 and a congruence θ such that p_1 is majority on \mathbf{A}/θ and p_0 is majority on the two 2-element θ -classes.
- Try to find examples that don't have a 5-ary near unanimity term.
- ullet The problem with this approach is that there are 2^{114} such algebras.
- A random search of several million algebras from this collection always produced examples with 5-ary near unanimity terms.

The computational approach: Attempt to show M(3,3)=5

- Look for examples that have a 5-ary term, use UACalc to build the term and hope to find a term that works for all Maltsev products.
- Problem: UACalc uses the 2-generated free algebra to build the term, and they were all too big.

$$M(n,m) = n + m - 1$$

Remarks

- In light of the computational evidence and the results for P(3,3), it seemed reasonable to try to prove that M(3,3) = 5.
- A variation of the term that witnessed P(3,3) = 5 was found that works for all Maltsev products of idempotent varieties that have majority terms.
- Ad hoc techniques were found that were used to show that M(n,m) = n + m 1 for small values of n and m.

Theorem

Let \mathcal{V}_0 and \mathcal{V}_1 be idempotent varieties having n-ary and m-ary near unanimity terms, respectively. Then $\mathcal{V}_0 \circ \mathcal{V}_1$ has a near unanimity term of arity n+m-1.

Sketch of proof

Definition

Let d = n + m - 1 and let S be a subset of the variables $\{x_0, x_1, \dots, x_{d-1}\}$. A term $t(x_0, x_1, \dots, x_{d-1})$ of arity d is a **near unanimity term for** S if

- ullet t is a near unanimity term for the variety \mathcal{V}_1 , and
- $\mathcal{V}_0 \circ \mathcal{V}_1$ satisfies the equation $t(x, x, \dots, x, y, x, \dots, x) \approx x$ whenever y is substituted in t for any one of the variables x_i from S and x is substituted for all of the other variables of t.

Proof by induction on |S|

The following term shows that there is a near unanimity term for the set $S = \{x_0, x_1, \dots, x_{n-1}\}$:

$$p_0(p_1(x_0, x_n, x_{n+1}, ..., x_{n+m-2}), p_1(x_1, x_n, x_{n+1}, ..., x_{n+m-2}), ..., p_1(x_{n-1}, x_n, x_{n+1}, ..., x_{n+m-2})).$$

Sketch of proof

The induction step

- Let $S = \{x_0, x_1, \dots, x_k\}$ and assume that near unanimity terms exist for all smaller sets of variables.
- For $0 \le i < n$, let $S_i = \{x_0, x_1, \dots, x_k\} \setminus \{x_i\}$ and let t_i be a d-ary term that is a near unanimity term for the set S_i .
- The following term is a near unanimity term for *S*:

$$p_0(t_0(x_0,\ldots,x_{d-1}),t_1(x_0,\ldots,x_{d-1}),\ldots,t_{n-1}(x_0,\ldots,x_{d-1})).$$

Remark

The term constructed in this proof has depth m+1 and it length is $n^m + n^{m-1} + \cdots + n + 1$. For small values of n and m we have been able to construct much shorter, and slightly shallower terms.

n-permutability

Remark

Work by Freese and McKenzie on robustness, along with an interest in finding polynomial-time algorithms to test for idempotent Maltsev conditions, provided the motivation for thinking about the robustness of near unanimity operations and also congruence n-permutability.

Theorem (Valeriote-Willard)

A finite idempotent algebra **A** generates a congruence (n+1)-permutable variety if and only if for every pair of (n+1)-tuples (a_0, a_1, \ldots, a_n) , (b_0, b_1, \ldots, b_n) of elements from A, the pair (a_0, b_n) is in the relational product $R_1 \circ R_2 \circ \cdots \circ R_n$, where R_i is the subuniverse of \mathbf{A}^2 generated by the pairs (a_{i-1}, a_i) , (b_{i-1}, a_i) , and (b_{i-1}, b_i) .

Corollary

For $n \ge 1$, there is a poly-time algorithm to decide if a finite idempotent algebra generates a congruence (n + 1)-permutable variety.

Conclusion

- Useful insights into some problems can be obtained from computational experimentation.
- Only special classes of problems are amenable to this sort of experimentation.
- New insights into poly-time algorithms and implementations of them can arise from this sort of investigation.
- The UACalc library is easy to use and modify.

Problem

Characterize those idempotent Maltsev conditions for which there is a polynomial-time algorithm to determine if a given finite idempotent algebra generates a variety that satisfies it.