Trees and Forests in Machine Translation

Liang Huang
City University of New York

Joint work with Kevin Knight (ISI), Aravind Joshi (Penn), Haitao Mi and Qun Liu (ICT), 2006--2010

NLP is Hard

how many interpretations?

Aravind Joshi

I saw her duck

Liang Huang (CUNY)

NLP is Hard

how many interpretations?

Aravind Joshi

eat sushi with tuna

Ambiguity Explosion

how many interpretations?

NLP: ambiguity explosion

TCS: combinatorial explosion

Liang Huang (CUNY)

Unexpected Structural Ambiguity

Liang Huang (CUNY)

Ambiguity in Translation

zi zhu zhong duan 自 助 终 端

self help terminal device

help oneself terminating machine

translation requires understanding!

(ATM, "self-service terminal")

Ambiguity in Translation

Liang Huang (CUNY)

Ambiguity in Translation

Translate Server Error

clear evidence that MT is used in real life.

How do people translate?

- I. understand the source language sentence
- 2. generate the target language translation

布什 与 沙龙 举行 了 会谈

Bùshí yu Shalóng juxíng le huìtán

Bush and/ Sharon hold [past.] meeting

"Bush held a meeting with Sharon"

How do compilers translate?

- I. parse high-level language program into a syntax tree
- 2. generate intermediate or machine code accordingly

Liang Huang (cuny)

Syntax-Directed Machine Translation

- I. parse the source-language sentence into a tree
- 2. recursively convert it into a target-language sentence


```
Bùshí yǔ Shālóng jǔxíng le huìtán

Bush and/ Sharon hold [past.] meeting
```

Syntax-Directed Machine Translation

Syntax-Directed Machine Translation?

recursively solve unfinished subproblems

Syntax-Directed Machine Translation?

continue pattern-matching

Bush held NPB with NPB | Shālóng | Sharon

Syntax-Directed Machine Translation?

continue pattern-matching

Bush held a meeting with Sharon

Pros: simple, fast, and expressive

- simple architecture: separate parsing and translation
- efficient linear-time dynamic programming
 - "soft decision" at each node on which rule to use
 - (trivial) depth-first traversal with memoization
- expressive multi-level rules for syntactic divergence

Cons: Parsing Errors

- ambiguity is a fundamental problem in natural languages
 - probably will never have perfect parsers (unlike compiling)
- parsing errors affect translation quality!

emergency exit

Liang Huang (curp)r "safe exports"?

mind your head or "meet cautiously"?

Exponential Explosion of Ambiguity

I saw her duck.

- how about...
 - I saw her duck with a telescope.
 - I saw her duck with a telescope in the garden...

NLP == dealing with ambiguities.

Tackling Ambiguities in Translation

- simplest idea: take top-k trees rather than I-best parse
 - but only covers tiny fraction of the exponential space
 - and these k-best trees are very similar
 - e.g., 50-best trees \sim 5-6 binary ambiguities (2⁵ < 50 < 2⁶)
 - very inefficient to translate on these very similar trees
- most ambitious idea: combining parsing and translation
 - start from the input string, rather than I-best tree
 - essentially considering all trees (search space too big)
- our approach: packed forest (poly. encoding of exp. space)
- almost as fast as I-best, almost as good as combined
 Liang Huang (cuny)

Outline

- Overview: Tree-based Translation
- Forest-based Translation
 - Packed Forest
 - Translation on a Forest
 - Experiments
- Forest-based Rule Extraction
 - Large-scale Experiments

From Lattices to Forests

- common theme: polynomial encoding of exponential space
 - forest generalizes "lattice/graph" from finite-state world
 - paths => trees (in DP: knapsack vs. matrix-chain multiplication)
 - graph => hypergraph; regular grammar => CFG

(Earley 1970; Billot and Lang 1989)

Liang Huang (cuny) 22

Packed Forest

- a compact representation of many many parses
 - by sharing common sub-derivations
 - polynomial-space encoding of exponentially large set

0 l saw 2 him 3 with 4 a 5 mirror 6

Forest-based Translation

Liang Huang (cuny)

Forest-based Translation

Forest-based Translation

Translation Forest

Liang Huang (cuny)

The Whole Pipeline

The Whole Pipeline

Parse Forest Pruning

- prune unpromising hyperedges
- principled way: inside-outside
 - first compute Viterbi inside β , outside α

- then $\alpha\beta(e) = \alpha(v) + c(e) + \beta(u) + \beta(w)$
 - cost of best deriv that traverses e
 - similar to "expected count" in EM
- prune away hyperedges that have $\alpha\beta(e) \alpha\beta(TOP) > p$ for some threshold p

Small-Scale Experiments

- Chinese-to-English translation
 - on a tree-to-string system similar to (Liu et al, 2006)
- 31k sentences pairs (0.8M Chinese & 0.9M English words)
- GIZA++ aligned
- trigram language model trained on the English side
- dev: NIST 2002 (878 sent.); test: NIST 2005 (1082 sent.)
- Chinese-side parsed by the parser of Xiong et al. (2005)
 - modified to output a forest for each sentence (Huang 2008)
- BLEU score: I-best baseline: 0.2430 vs. Pharaoh: 0.2297

k-best trees vs. forest-based

1.7 Bleu improvement over 1-best,0.8 over 30-best, and even faster!

forest as virtual ∞-best list

how often is the ith-best tree picked by the decoder?

Lians S.

wait a sec... where are the rules from?

xiǎoxīn gǒu

xiǎoxīn 小心 狗 <=> be aware of dog 小心 X <=> be careful not to X

Outline

- Overview: Tree-based Translation
- Forest-based Translation
- Forest-based Rule Extraction
 - background: tree-based rule extraction (Galley et al., 2004)
 - extension to forest-based
 - large-scale experiments

Where are the rules from?

- data: source parse tree, target sentence, and alignment
- intuition: fragment the tree; contiguous spanIP

36

Where are the rules from?

- source parse tree, target sentence, and alignment
- compute target spans

Where are the rules from?

- source parse tree, target sentence, and alignment
- well-formed fragment: contiguous and faithful t-span

Where are the rules from?

source parse tree, target sentence, and alignment

well-formed fragment: contiguous and faithful t-span

same cut set computation; different fragmentation

same cut set computation; different fragmentation

same admissible set definition; different fragmentation

forest can extract smaller chunks of rules

The Forest² Pipeline

Forest vs. k-best Extraction

1.0 Bleu improvement over 1-best, twice as fast as 30-best extraction

average extracting time (secs/1000 sentences)

Forest²

- FBIS: 239k sentence pairs (7M/9M Chinese/English words)
- forest in both extraction and decoding
- forest² results is 2.5 points better than I-best²
 - and outperforms Hiero (Chiang 2007) by quite a bit

translating on ...

				
		I-best tree	forest	
•	I-best tree	0.2560	0.2674	
	30-best trees	0.2634	0.2767	
	forest	0.2679	0.2816	
V	Hiero	0.2738		

rules from .

Translation Examples

● src 鲍威尔 说 与 阿拉法特 会谈 很 重要

Bàowēir shūo yǔ Alāfǎtè huìtán hěn zhòngyào Powell say with Arafat talk very important

- I-best² Powell said the very important talks with Arafat
- forest² Powell said his meeting with Arafat is very important
- hiero
 Powell said very important talks with Arafat

Conclusions

- main theme: efficient syntax-directed translation
- forest-based translation
 - forest = "underspecified syntax": polynomial vs. exponential
 - still fast (with pruning), yet does not commit to 1-best tree
 - translating millions of trees is faster than just on top-k trees
- forest-based rule extraction: improving rule set quality
- very simple idea, but works well in practice
 - significant improvement over I-best syntax-directed
 - final result outperforms hiero by quite a bit

Forest is your friend in machine translation.

help save the forest.

Larger Decoding Experiments (ACL)

- 2.2M sentence pairs (57M Chinese and 62M English words)
- larger trigram models (1/3 of Xinhua Gigaword)
- also use bilingual phrases (BP) as flat translation rules
 - phrases that are consistent with syntactic constituents
- forest enables larger improvement with BP

	T2S	T2S+BP
I-best tree	0.2666	0.2939
30-best trees	0.2755	0.3084
forest	0.2839	0.3149
improvement	1.7	2.1