

Lecture 02 – Fundamentals of digital imaging I

Prof. João Fernando Mari

<u>joaofmari.github.io</u>

joaof.mari@ufv.br

Agenda

- The human eye
- Photographic camera
- The digital image
- Colored images— RGB
- The RGB color space
- Image acquisition
- CCD sensor and Bayer pattern
- Sampling
- Effects of spatial resolution
- Intensity resolution
- Effects of intensity resolution

Photographic camera - diaphragm

Photographic camera - diaphragm

Photographic camera - diaphragm

Intensity image (gray levels):

Colored image (RGB):

Intensity image (gray levels):

Colored image (RGB):

Intensity image (gray levels):

Colored image (RGB):

Intensity image (gray levels):

Colored image (RGB):

Intensity image (gray levels):

60	89	117	140
127	147	160	168
192	198	193	186
209	210	204	197

Colored image (RGB):

78	92	75	51
56	70	52	30
36	49	28	3
118 108 91	149 133 124		
211 202 200	176 161 158		
231	174	83	85
218	155	57	58
214	150	21	11

M rows N columns M × N pixels

Colored images - RGB

Colored images - RGB

R (red)

Colored images - RGB

G (green)

Colored images - RGB

G (green)

B (blue)

Colored images - RGB

The RGB color space

$$0 < i(x,y) < \infty$$

R : reflectance

f(X,	y) =	i(X,	<i>y) x</i>	r(x,	V)
-().	//	-()		- ()	"

i(x, y)	(in lux ou lumen/m²)
900	Sunny day
100	Cloud day
10	Office
0.001	Clear night

r(x, y)	
0.93	Snow
0.80	White wall
0.65	Stainless steel
0.01	Black velvet

$$I_D = \frac{1}{\Delta^2} \int_{l\Delta}^{(l+1)\Delta} \int_{c\Delta}^{(c+1)\Delta} I_c(\rho, \chi) \delta \rho \delta \chi$$

Based on: Alan Peters, 2019.

Continuous RGB image

Continuous RGB image

R channel sampling

G channel sampling

Continuous RGB image Continuous R image Continuous G image Continuous B image R channel sampling G channel sampling B channel sampling 64 96 128 160 192 224 256 288 320 352 384 416 448 480 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480

64 96 128 160 192 224 256 288 320 352 384 416 448 480

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480

Continuous gray level image

Continuous gray level image

Gray level image sampling

Continuous gray level image

Gray level image sampling

Discrete gray level image (sampled)

Effects of spatial resolution

1,7 pol

300 ppi – 512 x 512

1,7 pol. a 150 ppi – 256 x 256

1,7 pol. a ~38 ppi – 64 x 64

1,7 pol. a 75 ppi – 128 x 128

1,7 pol. a 19 ppi – 32 x 32

Effects of spatial resolution

1,7 pol. 512 x 512 pixels 300 ppi

0,85 pol. 256 x 256 pixels 300 ppi

0,43 pol. 128 x 128 pixels 300 ppi

0,21 pol. 64 x 64 pixels 300 ppi

0,11 pol. 32 x 32 pixels 300 ppi

Intensity resolution

Intensity resolution

Effects of intensity resolution

4 bits. $2^4 = 16$ gray levels

7 bits. $2^7 = 128$ gray levels

3 bits. $2^3 = 8$ gray levels

6 bits. 2^6 = 64 gray levels

2 bits. $2^2 = 4$ gray levels

5 bits. $2^5 = 32$ gray levels

1 bit. $2^1 = 2$ gray levels

Bibliography

- GONZALEZ, R.C.; WOODS, R.E. Digital Image Processing. 3rd ed. Pearson, 2007.
 - Sections 2.1, 2.2, 2.3 e 2.4
- MARQUES FILHO, O.; VIEIRA NETO, H. Processamento digital de imagens. Brasport, 1999.
 - (in Brazilian Portuguese)
 - Available on the author's website (for personal use only)
 - http://dainf.ct.utfpr.edu.br/~hvieir/pub.html
 - Section 2.1
- J. E. R. Queiroz, H. M. Gomes. Introdução ao Processamento Digital de Imagens. RITA. v. 13, 2006.
 - (in Brazilian Portuguese)
 - http://www.dsc.ufcg.edu.br/~hmg/disciplinas/graduacao/vc-2016.2/Rita-Tutorial-PDI.pdf
 - Section 2
- PETERS, A. Lectures on Image Processing. Vanderbilt University, 2019.
 - https://archive.org/details/Lectures on Image Processing

Complementary bibliography

- Felipe Arruda. Vídeo explica como funciona o sensor CCD das câmeras digitais. Tecmundo, 2012.
 - (in Brazilian Portuguese)
 - https://www.tecmundo.com.br/fotografia-e-design/23626-video-explica-comofunciona-o-sensor-ccd-das-cameras-digitais.htm
- Bill Hammack. CCD: The heart of a digital camera (how a charge-coupled device works).
 YouTube. Canal: engineerguy.
 - https://www.youtube.com/watch?v=wsdmt0De8Hw&feature=youtu.be
- Raymond Siri. CMOS Animation Sequence. Vimeo
 - https://vimeo.com/103279734
- Raymond Siri. CCD Animation Sequence. Vimeo
 - https://vimeo.com/103279733

Complementary bibliography

- Rafael Helerbrock. Quais são os limites da visão humana? Mundo Educação
 - (in Brazilian Portuguese)
 - https://mundoeducacao.uol.com.br/fisica/quais-sao-os-limites-visao-humana.htm
- Francie Diep. Humans Can Only Distinguish Between About 30 Shades Of Gray. Popular Science, 2015.
 - (in Brazilian Portuguese)
 - https://www.popsci.com/humans-can-only-distinguish-between-about-30-shades-gray/
- Luciana Galastri. Humanos conseguem distinguir apenas 30 tons de cinza. Galileu, 2015.
 - (in Brazilian Portuguese)
 - https://revistagalileu.globo.com/Ciencia/noticia/2015/02/humanos-conseguemdistinguir-apenas-30-tons-de-cinza.html


```
@misc{mari_im_proc_2023,
 author = {João Fernando Mari},
 title = {Fundamentals of digital imaging I},
 year = {2023},
 publisher = {GitHub},
 journal = {Introduction to digital image processing - UFV},
 howpublished = {\url{https://github.com/joaofmari/SIN392_Introduction-to-digital-image-processing_2023}}
```

THE END