A Second-Order Method for Strongly Convex L1-regularisation Problems

Kimon Fountoulakis Jacek Gondzio

School of Mathematics University of Edinburgh

4th IMA Conference on Numerical Linear Algebra and Optimisation

September 4, 2014

Problems of interest

Aim

- Robust solver with low per iteration computational cost

Outline

The method

 (pdNCG) Primal-dual Newton Conjugate Gradients (modified) by Chan, Golub, Mulet.

In "A nonlinear primal-dual method for total variation-based image restoration." SIAM. J. Sci. Comput. 20 (6) 1999 pp. 1964-1977.

Contribution

- Global and local convergence theory of pdNCG
- Worst case iteration complexity
- Robust solver

Problem & Assumptions

minimize
$$f_{\tau}(x) := \tau ||x||_1 + \varphi(x)$$

- $x \in \mathbb{R}^n$, $\tau > 0$
- $\varphi(x): \mathbb{R}^n \to \mathbb{R}$
- Optimal solution x_{τ} is sparse

- A.1 $\varphi(x)$ is twice differentiable, and
- A.2 $\varphi(x)$ is strongly convex; at any x, $\lambda_n I_n \leq \nabla^2 \varphi(x) \leq \lambda_1 I_n$
- A.3 $\|\nabla^2 \varphi(y) \nabla^2 \varphi(x)\| \le L_{\varphi} \|y x\|$

Addressing non-smoothness

Replace ℓ_1 -norm with pseudo-Huber function

$$\psi_{\mu}(x) = \sum_{i=1}^{n} (\sqrt{\mu^2 + x_i^2} - \mu)$$

Shortcomings of smoothing in Newton

First-order optimality conditions

$$abla f_{ au}^{\mu}(x) = au \underbrace{\mathcal{D}_{x}}_{
abla \psi_{\mu}(x)} +
abla \phi(x) = 0,$$

where $D := diag(D_1, D_2, \cdots, D_n)$ with

$$D_i := (\mu^2 + x_i^2)^{-\frac{1}{2}} \quad \forall i = 1, 2, \dots, n.$$

- $\nabla \psi(x)$ is highly nonlinear!
- Linearisation of $\nabla \psi(x)$ is inaccurate.
- the region of convergence of Newton method shrinks.

A better linearisation

Set y := Dx in

$$\nabla f_{\tau}^{\mu}(x) = \tau Dx + \nabla \phi(x) = 0,$$

and linearise

These are perturbed optimality conditions of the saddle-point problem

$$\min_{x \in \mathbb{R}^n} \max_{y \in \mathbb{R}^n} \tau y^{\mathsf{T}} x + \phi(x)$$
 subject to: $\|y\|_{\infty} \le 1$.

It has been observed by Chan, Golub, Mulet in SIAM. J. Sci. Comput. 20 (6) 1999 pp. 1964-1977, a dramatic improvement in the robustness of Newton method, even for small μ .

Primal-dual directions

Linearisation of the new optimality conditions reduces to

$$H(x,y)\Delta x = -\nabla f_{\tau}^{\mu}(x) \tag{1}$$

where

$$H := \tau \tilde{H}(x, y) + \nabla^2 \phi(x)$$

$$\tilde{H}(x, y) = \tau D(I - D diag(x) diag(y)) \approx \nabla^2 \psi(x)$$

Two issues

- \tilde{H} is positive definite if $||y||_{\infty} \leq 1$.
- Solution of (1) is expensive.

Solution

- Maintain $||y||_{\infty} \leq 1$.
- Solve the linear system (1) inexactly using PCG

Primal-dual Newton Conjugate Gradient (pdNCG)

- 1: **Input:** x^0 , y^0 , where $||y^0||_{\infty} \le 1$.
- 2: **Loop:** For k = 1, 2, ..., until termination criteria are met
- 3: Calculate primal-dual directions Δx^k , Δy^k inexactly with PCG.
- 4: Set $\tilde{y}^{k+1} := y^k + \Delta y^k$ and calculate

$$y^{k+1} := P_{\|\cdot\|_{\infty} \le 1}(\tilde{y}^{k+1}),$$

where $P_{\|\cdot\|_{\infty} \leq 1}(\cdot)$ is the orthogonal projection into ℓ_{∞} ball.

- 5: Perform backtracking line search on the primal direction.
- 6: Set $x^{k+1} := x^k + \alpha \Delta x^k$

Termination criterion

Definition of inexact Newton decrement: $\|\Delta x\|_{x}$

- Let Δx_i be the direction obtained by PCG at the i^{th} iteration,

$$\|\Delta x_i\|_x^2 := (\Delta x_i)^{\mathsf{T}} H(x, y) \Delta x_i = -(\Delta x_i)^{\mathsf{T}} \nabla f_{\tau}^{\mu}(x).$$

Intepretation

- Let $Q(x + \Delta x) := f_{\tau}^{\mu}(x) + \nabla f_{\tau}^{\mu}(x)^{\intercal} \Delta x + (\Delta x)^{\intercal} H(x, y) \Delta x$
- Then

$$1/2\|\Delta x_i\|_x^2 = f_{ au}^{\mu}(x) - \min_{\Delta x \in \mathcal{K}_i} Q(x + \Delta x) \approx f_{ au}^{\mu}(x) - f^* \text{ (as } k \to \infty)$$

where

$$\mathcal{K}_i := \operatorname{span}(\nabla f_{\tau}^{\mu}(x), H(x, y) \nabla f_{\tau}^{\mu}(x), \dots, H(x, y)^{i-1} \nabla f_{\tau}^{\mu}(x))$$

Convergence analysis of pdNCG

Theorem (Primal convergence). Let $\{x^k\}_{k=0}^{\infty}$ be a sequence generated by pdNCG. Then the sequence $\{x^k\}_{k=0}^{\infty}$ converges to the primal perturbed solution $x_{\tau,\mu}$.

Theorem (Dual convergence). The sequences of dual variables generated by pdNCG satisfy $\{y^k\}_{k=0}^{\infty} \to \nabla \psi_{\mu}(x_{\tau,\mu})$.

Lemma (Convergence of approximate Hessian). Let the sequences $\{x^k\}_{k=0}^{\infty}$ and $\{y^k\}_{k=0}^{\infty}$ be generated by pdNCG. Then $H(x^k, y^k) \to \nabla^2 f_{\tau}^{\mu}(x_{\tau,\mu})$.

Notation (before theory...)

-
$$f(x) := f_{\tau}^{\mu}(x)$$

- L: Lipschitz constant of $\nabla^2 f(x)$
- H(x, y) is uniformly bounded

$$\lambda_n I_n \leq H(x, y) \leq \lambda_1 I_n$$

where $0 < \lambda_n \le \lambda_{n-1} \le \cdots \le \lambda_1$.

pdNCG: global and local convergence behaviour

Minimum step-size and minimum decrease

$$\alpha \geq \mathcal{O}\left(\frac{\lambda_n}{\lambda_1}\right), \qquad f(x) - f(x(\alpha)) \geq \mathcal{O}\left(\frac{\lambda_n}{\lambda_1}\right) \|\Delta x\|_x^2$$

If $\|\Delta x\|_x \leq \varpi$, $0 < \varpi \leq c$, where

$$c = \mathcal{O}(\frac{\lambda_n^{\frac{3}{2}}}{I})$$

then $\alpha=1$ and

$$\frac{1}{2} \frac{\mathcal{O}(\lambda_1^2, \lambda_n^{\frac{1}{2}}, L)}{\lambda_n^{\frac{3}{2}}} \|\Delta x^{k+1}\|_{x^{k+1}} \le \left(\frac{1}{2} \frac{\mathcal{O}(\lambda_1^2, \lambda_n^{\frac{1}{2}}, L)}{\lambda_n^{\frac{3}{2}}} \|\Delta x^k\|_{x^k}\right)^2$$

Worst-case iteration complexity of pdNCG

$$\frac{f(x^0) - f(x_{\tau,\mu})}{\mathcal{O}(\frac{\lambda_n^2}{\lambda_i^2})} + \log_2\log_2\left(\frac{const.}{\epsilon}\right)$$

iterations to converge to a solution \boldsymbol{x}^k of accuracy

$$f(x^k) - f(x_{\tau,\mu}) \le \epsilon.$$

Standard Newton, see S. Boyd and L. Vandenberghe, *Convex Optimization*

$$\frac{f(x^0) - f(x_{\tau,\mu})}{\mathcal{O}(\frac{\lambda_0^5}{12\lambda^2})} + \log_2 \log_2 \frac{const.}{\epsilon}.$$

Sparse Least-Squares

$$\varphi(x) = \frac{1}{2} \|Ax - b\|^2$$

where $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$ with $m \ge n$.

- PCDM: Parallel Coordinate Descent Method
 - very efficient on problems that are well-scaled or poorly-scaled along co-ordinate axis
 - exploits multi-core systems
- A 40-core system was used.

Difficult small scale problem

Info

$$- \tau = 1$$

$$- n = 4,096$$

$$-m = 1.01n$$

-
$$cond(A^TA) = 9.0e + 8$$

-
$$nnz(A)/(mn) = 9.0e-3$$

PCDM was terminated after 30 million iterations.

Large scale problem

Info

-
$$au=1$$

-	n	=	2^{27}	\approx	130	m.

$$- m = 1.1n$$

-	nnz((A)/	(mn)	=	1.0 <i>e</i> -8
---	------	------	------	---	-----------------

	pdNCG	PCDM
CPU sec.	2,550	22, 300
rel. err	3.79 <i>e</i> -03	2.47e + 06
$f_{\tau}(x)$	5.20 <i>e</i> +05	$1.14e{+13}$

Difficult Machine Learning problems

$$\varphi(x) = \sum_{i=1}^{m} \log(1 + e^{-y_i x^{\mathsf{T}} w_i}),$$

where $x, w_i \in \mathbb{R}^n$ are the feature vectors and $b_i \in \{-1, +1\}$ are the corresponding labels.

Problem
$$m$$
 n $nnz(W)/(mn)$ τ cod-rna 59,535 8 1.00 e -00 1.11 e +01 covtype 581,012 54 2.20 e -01 4.58 e -02

- PCDM
- newGLMNET: Newton-type; obtains a direction at step *k* by solving approximately subproblem

$$d_k := \underset{d}{\arg\min} \, \tau \|x_k + d\|_1 + \nabla \phi(x_k)^T d + \frac{1}{2} d^T \nabla^2 \phi(x_k) d$$

using a co-ordinate descent method.

Difficult Machine Learning problems

Problem	PCI	DM	newGL	MNET
	$f_{\tau}(x)$	CPU sec.	$f_{\tau}(x)$	CPU sec.
cod-rna	2.16e + 05	103	2.16 <i>e</i> +05	0.7
covtype	7.35e+05	1530	7.31e+05	51

Problem	pdNCG		
	$f_{\tau}(x)$	CPU sec.	
cod-rna	2.27e + 05	0.3	
covtype	7.20e+05	5.4	

Conclusion

- Complete analysis of pdNCG.
- Numerical results which show that pdNCG is robust and efficient on difficult examples.

Thank You!

Kimon Fountoulakis and Jacek Gondzio.

A second-order method for strongly convex ℓ_1 -regularization problems.

Technical Report ERGO-14-005, 2014.

Software: http://www.maths.ed.ac.uk/ERGO/pdNCG/