Equações Algébricas - Propriedades das Raízes

Equações Algébricas

 3° ano E.M.

Professores Cleber Assis e Tiago Miranda

Equações Algébricas - Propriedades das Raízes Equações Algébricas

1 Exercícios Introdutórios

Exercício 1. Determine a quantidade de raízes de cada uma das equações algébricas abaixo.

a)
$$x^2 + 4x + 3 = 0$$
.

b)
$$x^3 - 2x + 1 = 0$$
.

c)
$$4x^5 + 2x^3 - 1 = 0$$
.

d)
$$x^{10} = 0$$
.

Exercício 2. Verifique se x = 2 é raiz das equações abaixo.

a)
$$x^2 + 8x - 32 = 0$$
.

b)
$$x^3 - 2x^2 = 0$$
.

c)
$$4x^5 - 2x^3 - 12 = 0$$
.

d)
$$x^{10} - 2x^9 = 0$$
.

Exercício 3. Uma das raízes da equação $x^3 - 2x^2 + 3x - 2 = 0$ é:

- a) 1.
- b) 2.
- c) 3.
- d) 4.
- e) 5.

Exercício 4. Resolva a equação $x^3 - 4x^2 + 3x = 0$.

Exercício 5. Escreva uma equação algébrica de grau 3, sendo suas raízes:

- a) 1, 2 e 3.
- b) 1 + i, 1 i e 2.

Exercício 6. Determine o valor de a para que a equação $(a^2-1)x^3+(a-1)x^2+3x-4=0$ tenha exatamente duas raízes.

Exercício 7. Se x = -2 é raiz da equação $x^3 + kx^2 - kx + 8 = 0$, então o valor de k é:

- a) 0.
- b) 2.
- c) 4.
- d) 6.
- e) 8.

2 Exercícios de Fixação

Exercício 8. Se duas das raízes da equação $x^4 - 2x^3 + x^2 - 8x - 12 = 0$ são 2i e -2i, determine as demais raízes.

Exercício 9. Cortando-se quadrados de lado 4 cm em cada canto de uma folha quadrada de 18 cm de lado e dobrando conforme a figura, formamos uma caixa sem tampa cujo volume é igual a $400 \ cm^3$. Existe algum outro valor do lado do quadrado a ser recortado em cada canto para que o volume da caixa resultante também seja igual a $400 \ cm^3$?

Exercício 10. Se x = 2 é raiz da equação $3x^3 - 6x^2 - x + 2 = 0$, determine as demais raízes.

Exercício 11. Na equação $x^4 - 7x^3 + 10x^2 + 26x - 60 = 0$, 3 + i e 3 - i são raízes. As demais raízes são números reais?

Exercício 12. Escreva uma equação polinomial de quarto grau cujas raízes são -2, 2+i, 2-i e 4.

Exercício 13. Se x = 4 é raiz da equação $4x^3 - 8x^2 - 29x + d = 0$, determine as demais raízes.

Exercício 14. A equação $x^4 + 3x^3 + cx^2 + d = 0$ possui -4 e 3 como raízes. Determine c + d.

Exercício 15. Determine o valor de m, de modo que f(4) = 6, sendo $f(x) = 3x^4 - 2mx^3 + 13x^2 - 3mx + 10$.

3 Exercícios de Aprofundamento e de Exames

Exercício 16. Seja $x_1 = x_2 = 2$ raízes da equação $ax^3 + bx + 16 = 0$. Determine $a \in b$.

Exercício 17. A equação $x^3 + mx^2 + 2x + n = 0$, em que m e n são números reais, admite 1 + i e 1 - i como raízes. Então, m e n valem respectivamente:

- a) 2 e -2.
- b) 2 e 0.
- c) 0 e 2.
- d) -2 e 0.
- e) 2 e 2.

Exercício 18. As equações $x^3 + bx^2 + cx + d = 0$ e $x^2 + x - 2 = 0$ têm o mesmo conjunto solução. Quais os possíveis valores de b, c e d?

Exercício 19. Uma das raízes da equação $x^3 + (m+1)x^2 + (m+9)x + 9 = 0$ é -1. Determine m para que as outras raízes sejam reais.

Exercício 20. A equação $3x^5 - x^4 + 3x^3 - x^2 + 3x - 1 = 0$ possui

- a) três raízes imaginárias e duas raízes reais positivas.
- b) pelo menos uma raiz real positiva.
- c) todas as raízes inteiras.
- d) uma única raiz imaginária.
- e) Nenhuma das respostas anteriores.

Elaborado por Cleber Assis e Tiago Miranda Produzido por Arquimedes Curso de Ensino contato@cursoarquimedes.com

Respostas e Soluções.

1.

- a) 2.
- b) 3.
- c) 5.
- d) 10.

2.

x = 2 não é raiz da equação.

x = 2 é raiz da equação.

x = 2 não é raiz da equação.

- d) $2^{10} 2 \cdot 2^9 = 2^{10} 2^{10} = 0$. x = 2 é raiz da equação.
- **3.** Como a soma dos coeficientes da equação é zero, então 1 é raiz. Resposta A.
- 4. Como x é fator comum a todos os termos do primeiro membro da equação, temos $x(x^2 4x + 3) = 0$, donde x = 0 ou $x^2 4x + 3 = 0$. Portanto $x_1 = 0$, $x_2 = 1$ e $x_3 = 3$.

5.

- a) Como as raízes são 1, 2 e 3, então a equação deve ser do tipo a(x-1)(x-2)(x-3)=0, sendo a um número qualquer, podendo inclusive ser imaginário. Tomando a=1, por exemplo, teremos a equação $x^3-6x^2+11x-6=0$.
- b) Utilizando o mesmo raciocínio da letra "a", temos a[x-(1+i)][x-(1-i)](x-2)=0, que para a=1, por exemplo, temos $(x^2-2x+2)(x-2)=x^3-4x^2-2x-4=0$, ou seja, a equação $x^3-4x^2-2x-4=0$ tem como raízes $x_1=1+i$, $x_2=1-i$ e $x_3=2$.
- **6.** Para que uma equação tenha duas raízes, o maior expoente de x deve ser 2. Dessa forma, temos:

$$\begin{cases} a^2 - 1 = 0 \\ a - 1 \neq 0. \end{cases}$$

Resolvendo o sistema temos $a=\pm 1$ e $a\neq 1$, ou seja, para que a equação tenha grau 2, devemos ter a=-1.

7.

$$x^{3} + kx^{2} - kx + 8 = 0$$

$$(-2)^{3} + k(-2)^{2} - k(-2) + 8 = 0$$

$$-8 + 4k + 2k + 8 = 0$$

$$6k = 0$$

$$k = 0$$

Resposta A.

8. Como $x_1 = 2i$ e $x_2 = -2i$, temos:

Após a divisão, utilizando as raízes conhecidas, ficamos com $x^2 - 2x - 3 = 0$, donde $x_3 = -1$ e $x_4 = 3$.

9. (Extraído da Vídeo Aula) O volume V da caixa, recortando-se quadrados de lados x, é V=x(18-2x)(18-2x), ou seja, $V=4x^3-72x^2+324x$. Como queremos verificar se existe outro valor de x que torna o volume igual a $400 \ cm^3$, precisamos resolver a equação $4x^3-72x^2+324x=400$, que, simplificando, ficamos com $x^3-18x^2+81x-100=0$. Mas como x=4 é uma solução, temos:

Resolvendo a equação $x^2-14x+25=0$, temos $x=\frac{14\pm\sqrt{96}}{2}=7\pm2\sqrt{6}$. Analisando a situação problema, vemos que 0< x<9, então, além de 4 cm, outro valor para os lados dos quadrados é $(7-2\sqrt{6})$ cm.

10. Como $x_1 = 2$ é raiz, então vamos reduzir o grau da equação:

Temos agora a equação $3x^2 - 1 = 0$, donde $x_2 = \frac{\sqrt{3}}{3}$ e $x_3 = \frac{\sqrt{3}}{3}$.

11. Vamos usar $x_1 = 3 + i$ e $x_2 = 3 - i$ para reduzir o grau da equação.

Temos agora a equação $x^2 - x - 6 = 0$, donde $x_3 = -2$ e $x_4 = 3$. Portanto, as demais raízes são reais.

- **12.** Se -2, 2+i, 2-i e 4 são raízes, então podemos escrever a equação a(x+2)(x-4)[x-(2+i)][x-(2-i)]=0, sendo a um número qualquer, inclusive imaginário. Para a=1, por exemplo, teremos a equação $x^4-6x^3+5x^2+22x-40=0$.
- **13.** Como $x_1 = 4$ é raiz da equação, temos:

12 + d = 0, segue que d = -12. Além disso, reduzimos o grau da equação: $4x^2 + 8x + 3 = 0$, donde $x = \frac{-8 \pm \sqrt{64 - 48}}{8} = -1 \pm \frac{1}{2}$, ou seja, $x_2 = -\frac{1}{2}$ e $x_3 = -\frac{3}{2}$.

14. Fazendo x = -4 e x = 3, temos o sistema:

$$\begin{cases} 256 - 192 + 16c + d = 0 \\ 81 + 81 + 9c + d = 0. \end{cases}$$

Melhorando o sistema, chegamos a:

$$\begin{cases} 16c + d &= -64 \\ 9c + d &= -162. \end{cases}$$

Subtraindo as equações, ficamos com 7c = 98, segue que c = 14 e, consequentemente, d = -288. Portanto c + d = -274.

15.

Temos então 986 - 140m = 6, segue que m = 7.

16. (Extraído da Fuvest) Se 2 é raiz de multiplicidade 2, temos:

Igualando os dois restos a zero, temos:

$$\begin{cases} 8a + 2b + 16 &= 0 \\ 12a + b &= 0. \end{cases}$$

Subtraindo as equações, chegamos a a = 1 e b = -12.

17. (Extraído do UFRN) Usando uma relação de *Girard*, temos $x_3(1+i) + x_3(1-i) + (1+i)(1-i) = 2$, donde $2x_3 + 2 = 2$, segue que $x_3 = 0$. Assim, n = 0 e, pela relação de soma das raízes (*Girard*), (1+i) + (1-i) + 0 = -m, segue que m = -2. Resposta D.

18. (Extraído da Fuvest) As raízes de $x^2 + x - 2 = 0$ são $x_1 = -2$ e $x_2 = 1$. Então, a terceira raiz da equação $x^3 + bx^2 + cx + d = 0$, pode ser $x_3 = -2$ ou $x_3 = 1$. Para $x_3 = -2$, temos $x^3 + 3x^2 + 4 = 0$, ou seja, b = -3, c = 0 e d = 4; enquanto que, para $x_3 = 1$, temos $x^3 - 3x - 2 = 0$, segue que b = 0, c = -3 e d = -2.

19. (Extraído da Fuvest) Se -1 é raiz, então:

Chegamos a $x^2 + mx + 9 = 0$, sendo que estas duas últimas raízes devem ser reais, ou seja, $m^2 - 36 \ge 0$, segue que $m \le -6$ ou $m \ge 6$.

20. (Extraído do ITA)

$$3x^{5} - x^{4} + 3x^{3} - x^{2} + 3x - 1 = 0$$

$$x^{4}(3x - 1) + x^{2}(3x - 1) + (3x - 1) = 0$$

$$(3x - 1)(x^{4} + x^{2} + 1) = 0.$$

Do produto, concluímos que $x_1 = \frac{1}{3}$ e as demais raízes não são reais. Resposta B.

Elaborado por Cleber Assis e Tiago Miranda Produzido por Arquimedes Curso de Ensino contato@cursoarquimedes.com