

Discrepancy in the Elasticity of Taxable Income

A litterature survey

Thor Donsby Noe September 30, 2020

Public Economics II: Theory of Taxation w. Javier Vázquez-Grenno

Outline

Motivation
Difference in differences
IV Panel Regresssions
Inter-temporal shifting
Results
Conclusion
References

1

Motivation

Relevance

The elasticity of **labour supply** with respect to the Marginal Tax Rate (MTR)

- Important for growth in the long run and to avoid bottlenecks in the short run
- Prone to misreporting and frictions

The Elasticity of Taxable Income (EIT) wrt. the MTR

- Better availability and preciseness in administrative data
- Captures several behavioral responses
 - · Real responses of labour supply
 - Tax avoidance, tax evasion
 - Collective agreements and career choices
- ightarrow Good measure of overall efficiency

For efficiency analysis total revenue should be taken into account

- Tax avoidance can lead to fiscal externalities
 - ightarrow Increase other tax bases due to income shifting towards capital or corporate income

The seminal paper

- Natural experiment: The U.S. Tax Reform Act '86
 - Reduced the marginal tax rate from 50 pct. to 28 pct. for high-earners
- Feldstein (1995) estimate the elasticity of taxable income to be greater than one
 - → U.S. was on the wrong side of the Laffer curve prior to 1986
 - → Reducing the tax rate should have raised the collected tax revenue
- However, Gruber and Saez (2002) estimate ETI to 0.6 for high-earners in the 80s

3

Discrepancy in estimates

Surveying 5 studies of the EIT, $\hat{\varepsilon}$

- A huge discrepancy is found in the estimates!
- Is a lower estimate due to better data availability and estimation methods?
- Or actual differences between tax reforms, institutional settings, and culture in the U.S. and Denmark respectively?

	Ê	Country
Feldstein (1995)	1.04	U.S.
Gruber & Saez (2002)	0.40-0.57	U.S.
Kleven & Schultz (2014)	0.05-0.3	DK
Chetty et al (2011)	0.00	DK
Kreiner et al (2016)	0.00-0.08	DK

Difference in differences

Feldstein (1995)

The ETI is estimated as the treatment effect around the implementation of the TRA86

$$\hat{\varepsilon} = \frac{\Delta \ln(z^H) - \Delta \ln(z^M)}{\Delta \ln(1 - \tau^H) - \Delta \ln(1 - \tau^M)} \tag{1}$$

Evaluating the the relative differences from 1985 to 1988 of

 z^H : Income for high-earners

 z^M : Income for medium-earners.

 τ^H The MTR for high-earners.

 au^M The MTR for medium-earners.

Panel of 3.538 medium-earners and 197 high-earners \rightarrow robust?

5

Issues with panel data

Panel are prone to bias from potential non-tax-related changes to income

- 1. Mean reversion
 - Individuals might only be in the high-income group initially as a results of an income shock - thus, would revert towards the mean
 - → Downward bias in the ETI estimate
- 2. Divergence in the income distribution
 - Non-tax-related increases in inequality
 - E.g. impacts of skill-biased technological change and globalization as observed in the U.S. in the 80s (Gruber and Saez, 2002)
 - → Upward bias in the ETI estimate

IV Panel Regresssions

Gruber and Saez (2002)

Panel with $\sim\!$ 60,000 individuals \rightarrow changes in the MTR throughout 1980s

$$\ln\left(\frac{z_{it+k}}{z_{it}}\right) = \alpha_0 + \underbrace{\varepsilon \cdot \ln\left(\frac{1-\widehat{\tau}_{it+k}}{1-\tau_{it}}\right)}_{\text{ETI}} + \underbrace{\sum_{t} \alpha_1 x_{it}}_{\text{married}} + \underbrace{\sum_{t} \alpha_2 \text{YEAR}_t}_{\text{year dummies}} + \underbrace{\alpha_3 \ln(z_{it}) + \sum_{d=1}^{10} \alpha_{4d} \text{SPLINE}_d(z_{it})}_{\text{controls for base year income}} + \underbrace{\lambda_1 \times \lambda_2 \times \lambda_2 \times \lambda_2}_{\text{pear dummies}} + \underbrace{\lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2}_{\text{year dummies}} + \underbrace{\lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2}_{\text{year dummies}} + \underbrace{\lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2}_{\text{year dummies}} + \underbrace{\lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2}_{\text{year dummies}} + \underbrace{\lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2}_{\text{year dummies}} + \underbrace{\lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2}_{\text{year dummies}} + \underbrace{\lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2}_{\text{year dummies}} + \underbrace{\lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2}_{\text{year dummies}} + \underbrace{\lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2}_{\text{year dummies}} + \underbrace{\lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2}_{\text{year dummies}} + \underbrace{\lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2}_{\text{year dummies}} + \underbrace{\lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2}_{\text{year dummies}} + \underbrace{\lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2}_{\text{year dummies}} + \underbrace{\lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2}_{\text{year dummies}} + \underbrace{\lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2}_{\text{year dummies}} + \underbrace{\lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2}_{\text{year dummies}} + \underbrace{\lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2}_{\text{year dummies}} + \underbrace{\lambda_2 \times \lambda_2 \times \lambda_2 \times \lambda_2}_{\text{year dumm$$

Bias from non-tax-related changes in inequality and mean reversion is reduced by controlling for income in base year t

 α_3 log-income level

 α_4 10 piece spline for decile of the income distribution

Endogeneity problem: An income shock $u_{it}>0$ \to a mechanical rise in the MTR \to corr $(\tau_{it},u_{it})>0$ \to downward bias of ε

IV: Use τ_{t+k}^h as an instrument for τ_{it+k}

 au^h_{t+k} : MTR that individual i would have paid in period t+k due to changes in the tax system only o simulated using the NBER TAXSIM model.

7

Kleven and Schultz (2014)

- Panels of all Danish taxpayers in all three year periods from 1984-2005.
- Merge individual level administrative data containing rich information about tax types, labour market, education, and sociodemographics.
- Danish setting: income inequality more stable over the 22-year period than even in other Nordic countries
 - \rightarrow Bias from non-tax related changes to inequality and mean reversion is likely to be much less than in prior studies

Kleven and Schultz (2014)

Baseline specification: differences at time t are the differences between t and t + 3.

$$\underbrace{\Delta \ln z_{it}}_{\text{%-change in income}} = \underbrace{\varepsilon \cdot \Delta \ln (1 - \hat{\tau}_{it})}_{\text{ETI}} + \eta \cdot \Delta \ln y_{it} + \Delta \gamma_t^c \mathbf{x}_i^c + \gamma^v \cdot \Delta \mathbf{x}_{it}^v + \Delta u_{it}$$
(3)

Similar to specification (2) in (Gruber and Saez, 2002) with a few additions:

- $\Delta \ln y_{it}$: Difference in log virtual income (the sum of non-labour incomes)
 - ightarrow controls for income shifting towards capital or corporate income
 - \mathbf{x}_i^c : Time-invariant individual characteristics for which the effect γ_t^c is allowed to change over time
- $\Delta x_i t^{\nu}$: Difference in time-variant individual characteristics for which the effect γ^{ν} is constant over time

g

Chetty et al. (2011)

Look at all Danish wage earners during the smaller reforms of 1994-2001.

Specification similar to equation (3) (Kleven and Schultz, 2014) with a few exceptions

- ullet Merging employer and employee data o Adds occupation FE and region FE
- Fewer controls overall though

Main contribution:

• Clear frictions due to the Danish labour market being highly unionized

Kreiner et al. (2016)

The Danish 2010 Tax Reform

- The marginal tax rate was reduced by 7.5 pct. points
- Agreed upon as early as 1st of March 2009 and passed in parliament by late May
- ightarrow Self-employed were able to plan and employers to negotiate with their employees

Using Danish montly administrative data the short-run ETI is estimated using the panel regression:

$$\underbrace{w_{y,m,i}}_{\text{wage income}} = \beta_0 + \underbrace{\varepsilon \cdot \frac{1 - \tau_{y,i}}{1 - \tau_{2009,i}}}_{\text{ETI}} + \underbrace{\beta_1 \cdot d_{y,i}^{2010}}_{2010 \text{ dummy}} + \underbrace{\beta_2 \cdot d_i^T}_{\text{treatment dummy}} + u_{y,m,i} \tag{4}$$

Evaluate the treatment group of 219,179 individuals against a control group of 109,500 individuals with weak or no incentives to shift their income due to the tax reform

- Substantial shifting: Estimate $\hat{\varepsilon}$ is 0.80 for D09-J10
- → Omitting N09-J10 to estimate the short-run EIT without inter-temporal shifting

Results

Overview

	Ê	Income group	Method	N	Period	Country
Feldstein (1995)	1.04	~ \$100,000	DD	3,792	1985-1988	U.S.
Gruber & Saez (2002)	0.40	> \$10,000	IV Panel Reg.	~60,000	1979-1990	U.S.
— 11 —	0.57	> \$100,000	— 11 —	— 11 —	— 11 —	— 11 —
Kleven & Schultz (2014)	0.05	wage earners	IV Panel Reg.	29,668,870	1984-2005	DK
——	0.09	self-employed	———	1,646,270	— 11 —	—==
—॥—	0.11	all taxpayers	———	11,799,628	1984-1990	— 11 —
—n—	0.2-0.3	— 11 —	IV DD	\sim 3,000,000	1986-1989	— 11 —
Chetty et al (2011)	0.00	wage earners	IV Panel Reg.	8,302,905	1994-2001	DK
Kreiner et al (2016)	0.08	highest quartile	Panel Reg.	328,679	2009-2010	DK
— 11 —	0.00	—॥—	———	— 11 —	2009-2010*	—==

Table 1: Estimated elasticity of taxable income in different studies. *excl. N09, D09 & J10.

Most other reliable studies also find the ETI to be in the range 0.12-0.40 for the U.S. (Saez et al., 2012)

Conclusion

Concluding remarks

- Dfferences-in-differences estimation is a simple way to analyze effects in the proximity of a substantial tax reform
 - But it can be difficult to completely exclude effects from non-tax-related changes to inequality and mean reversion
 - Availability of controls as well as 2SLS panel regression over a period with a variety of tax system changes can reduce these biases.
- U.S.: Most newer studies estimate a significant ETI of 0.12-0.40
- ullet Denmark: Find modest effects o 0 when omitting intertemporal income-shifting or self-employed
- · Discrepancy can partly be explained
 - By higher frictions and less options for tax avoidance in Denmark
 - But estimates have also decreased with richer better data availability allowing for more controls.

Implications for the U.S.

- → Future studies might also find estimates closer to zero for the U.S., come richer data availability
- ightarrow There might exist a revenue and efficiency loss from gaps in the U.S. tax law.

References

References

Chetty, Raj et al. (2011). "Adjustment costs, firm responses, and micro vs. macro labor supply elasticities: Evidence from Danish tax records". In: The quarterly journal of economics 126.2, pp. 749–804.

Feldstein, Martin (1995). "The effect of marginal tax rates on taxable income: a panel study of the 1986 Tax Reform Act". In: <u>Journal of Political Economy</u> 103.3, pp. 551–572.

Gruber, Jon and Emmanuel Saez (2002). "The elasticity of taxable income: evidence and implications". In: Journal of public Economics 84.1, pp. 1–32.

Kleven, Henrik Jacobsen and Esben Anton Schultz (2014). "Estimating taxable income responses using Danish tax reforms". In: American Economic Journal: Economic Policy 6.4, pp. 271–301.

Kreiner, Claus Thustrup, Søren Leth-Petersen, and Peer Ebbesen Skov (2016). "Tax reforms and intertemporal shifting of wage income: Evidence from Danish monthly payroll records". In: American Economic Journal: Economic Policy 8.3, pp. 233–57.

Saez, Emmanuel, Joel Slemrod, and Seth H Giertz (2012). "The elasticity of taxable income with respect to marginal tax rates: A critical review". In: Journal of economic literature 50.1, pp. 3–50.