#### **EL2450 Hybrid and Embedded Control**

#### Lecture 9: Hybrid automata

- Hybrid automata as models of hybrid systems
- Dynamical properties of hybrid automata

# **Today's Goal**

You should be able to

- specify a hybrid automaton
- define system evolution semantics
- analyze existence, uniqueness and Zenoness of solutions



# **Hybrid Dynamics**

- Dynamics are essential in reach set computations and verification process: finiteness is lost
- Need to consider all causes of system evolution!
- Mixing time- and event-triggered dynamics lead to hybrid dynamics
- What are the dynamics within the discrete states? What might cause discrete transitions?
- Hybrid systems are a particular class of transition systems

# **Espresso Machine Example**

**Task:** Design the control system for an automatic espresso machine



# **Input and Outputs**



• What are the relations between inputs and output?

# **Discrete Event System**



- High-level abstraction
- What is in each discrete state?

#### **Initialization**

- Start initialization state when machine is switched on
- End the initialization state either
  - When machine is switched off, or
  - When the water temperature T is over a suitable temperature  $T^{st}$

# Ready

- Control T around T\*
- Wait for further a coffee order or that the machine is switched off

#### **Coffee Making**

Coffee making can be split into two states:



- In Grind state, coffee beans are prepared for brewing
- In Brew state, the steam is passed through the coffee
  - Pressure P and temperature T are continuously controlled
  - State terminated when coffee volume V is over a desired volume V\*

# **Automatic Gearbox Control Example**

Task: Design the control system for an automatic gearbox

 $x_1$  is the longitudinal position of the car and  $x_2$  its velocity The dynamics (for a normalized car) can be written as

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = \alpha_{\text{gear}}(x_2)u$$

where u corresponds to the throttle position and  $\alpha_{\text{gear}}(\cdot)$  to the efficiency of a specific gear

- $u \in [0, u_{\text{max}}]$  is a real-valued control
- gear  $\in \{1, 2, 3, 4\}$  is an integer-valued control

#### **Discrete Event Model**



# **Hybrid System Model**



#### **Typical solutions:**



How choose controls u and gear in a suitable way?

#### **Hybrid Automaton**

- Hybrid automaton is a formal model of a hybrid system
- It defines the evolution of the hybrid system state

#### **Hybrid Automaton** H = (Q, X, Init, f, D, E, G, R)

$$\begin{pmatrix}
q \\
\dot{x} = f(q, x) \\
x \in D(q)
\end{pmatrix}$$

$$x \in G(q, q') \quad x :\in R(q, q', x)$$

$$x \in D(q')$$

- Q discrete state space and X continuous state space
- Init  $\subseteq Q \times X$  initial states
- $f: Q \times X \rightarrow X$  vector fields
- $D: Q \rightarrow 2^X$  domains
- $E \subset Q \times Q$  edges
- $G: E \rightarrow 2^X$  guards
- $R: E \times X \rightarrow 2^X$  resets

# **Solution of Hybrid Automaton**

A solution  $\chi = (\tau, q, x)$  of H consists of

- Time trajectory  $\tau$ : time line on which the solution is defined
- State trajectory (q, x): state evolution (defined on  $\tau$ ) of the hybrid automaton



#### Time Trajectory $\tau$

A sequence of (time) intervals

$$\tau = \{I_i\}_{i=0}^N$$

such that

- $I_i = [\tau_i, \tau_i']$  for all i < N;
- if  $N < \infty$ , then either  $I_N = [\tau_N, \tau_N']$ , or  $I_N = [\tau_N, \tau_N']$ ; and
- $\tau_i < \tau'_i = \tau_{i+1}$  for all i.

Notation:  $\langle \tau \rangle = \{0, 1, \dots, N\}$ 



# **Solution** $\chi = (\tau, q, x)$

Solutions accepted by H:

$$\tau = \{I_i\}_{i=0}^N, q: \langle \tau \rangle \to Q, x = \{x^i : i \in \langle \tau \rangle\}, x^i : I_i \to X \text{ such that }$$

- Initialization:  $(q(0), x^0(0)) \in Init$ ,
- Time-driven: for all  $t \in [\tau_i, \tau_i')$ ,  $\dot{x}^i(t) = f(q(i), x^i(t))$  and  $x^i(t) \in D(q(i))$
- Event-driven: for all  $i \in \langle \tau \rangle \setminus \{N\}$ ,  $e = (q(i), q(i+1)) \in E$ ,  $x^i(\tau_i') \in G(e)$ , and  $x^{i+1}(\tau_{i+1}) \in R(e, x^i(\tau_i'))$



# **Example: Bouncing Ball**

A ball that loses a fraction of its energy at each bounce



# Examples: Differential Equation and Automaton

- A continuous-time system  $\dot{x} = f(x)$  can be represented as a hybrid automaton with a single discrete state
- A discrete-event system can be represented as a hybrid automaton with no continuous dynamics

#### **Example: Water Tank System**

Control objective is to keep water volumes above  $r_1$  and  $r_2$  by switching the inflow



$$H = (Q, X, Init, f, D, E, G, R)$$

- $Q = \{q_1, q_2\};$
- $X = \mathbb{R}^2$ ;
- Init =  $Q \times \{x \in \mathbb{R}^2 : x_1 \ge r_1 \land x_2 \ge r_2\};$
- $f(q_1, x) = (w v_1, -v_2)$  and  $f(q_2, x) = (-v_1, w v_2)$ ;
- $D(q_1) = \{x \in \mathbb{R}^2 : x_2 \ge r_2\}$  and  $D(q_2) = \{x \in \mathbb{R}^2 : x_1 \ge r_1\};$
- $E = \{(q_1, q_2), (q_2, q_1)\};$
- $G(q_1, q_2) = \{x \in \mathbb{R}^2 : x_2 \le r_2\}$  and  $G(q_2, q_1) = \{x \in \mathbb{R}^2 : x_1 \le r_1\};$
- $R(q_1, q_2, x) = R(q_2, q_1, x) = \{x\}.$



# **Hybrid Automaton as a Transition System**

A hybrid automaton is a transition system  $T_H = (S, \Sigma, \rightarrow)$  with interacting event-driven and time-driven evolution:

- $S = Q \times X$  and  $(q, x) \in S$  denotes the state
- $\Sigma = \{g\} \cup \text{Time } (\text{Time} = \{t : t \ge 0\}) \text{ where the generators } \{g\} \text{ cause the discrete jumps and Time the continuous evolution}$
- ullet (q,x) 
  ightarrow (q',x') defines the event-driven and time-driven transitions

**Example:**  $S=Q\times X$ , with  $Q=\{q_1,q_2\}$  and  $X=\mathbb{R}$   $\Sigma=\{g_1,g_2\}\cup \mathsf{Time},\ g_1 \ \mathsf{corresponds}\ \mathsf{to}\ \mathsf{the}\ \mathsf{event}\ x>1\ \mathsf{and}\ g_2\ \mathsf{to}\ x<-1$ 



# **Transition Relation for Hybrid Automaton**

- To each discrete state  $q \in Q$ , we associate a differential equation  $\dot{x} = f_q(x) = f(q, x)$ . Let  $\phi_q(t)$  denote its solution.
- To each generator g (linked to an edge  $e \in Q \times Q$ ), we associate a guard  $G: Q \times Q \to 2^X$

The transition relation  $\rightarrow$  of  $T_H = (S, \Sigma, \rightarrow)$  then consists of two parts:

**Time-driven:**  $(q,x) \stackrel{t}{\rightarrow} (q,y)$  provided that  $x = \phi_q(0)$  and  $y = \phi_q(t)$ 

**Event-driven:**  $(q,x) \xrightarrow{g} (q',x')$  provided that  $x \in G(q,q')$  and  $x' \in R(q,q',x)$ 

**Example:** Time-driven dynamics is given by  $f_{q_1}=1$  and  $f_{q_2}=-1$  Event-driven dynamics is given by  $G(q_1,q_2)=\{x>1\}$  and  $G(q_2,q_2)=\{x<-1\}$ 

#### **Properties of Hybrid Automata**

- Liveness For all  $(q_0, x_0) \in Init$ , there exists at least one (infinite) solution from  $(q_0, x_0)$
- Determinism For all  $(q_0, x_0) \in \text{Init}$ , there exists at most one solution starting from  $(q_0, x_0)$ 
  - Zenoness  $\tau$  infinite sequence and finite execution time:  $\tau_{\infty} = \sum_{i=1}^{\infty} (\tau_i' \tau_i) < \infty$
  - Stability Stability of equilibria and other invariant sets
- Reachability Reachable states Reach  $\subset Q \times X$

#### Liveness

#### Definition

For all  $(q_0, x_0) \in \text{Init}$ , there exists at least one (infinite) solution from  $(q_0, x_0)$ 

#### **Fact**

A hybrid automaton is live if for all reachable states for which continuous evolution is impossible, a discrete transition is possible

- It is reasonable to expect that models for physical systems should be live
- If a hybrid automaton is not live, it can be due to over-simplifications in the model

#### **Example**

Let Init =  $(q_1, 0)$ . Then the following hybrid automaton is not live (blocking):



#### **Determinism**

#### Definition

For all  $(q_0, x_0) \in \text{Init}$ , there exists **at most one** solution starting from  $(q_0, x_0)$ 

#### Fact

A hybrid automaton is deterministic if there is

- no choice between continuous evolution and a discrete transition, and
- a discrete transition can never lead to multiple destinations

# **Example**

Let Init =  $(q_1, 0)$ . Then the following hybrid automaton is non-deterministic:



# **Determinism (formally)**

Let

$$\operatorname{Out}_H = \{(q,x) \in Q \times X : \forall \epsilon > 0, \exists t \in [0,\epsilon), \phi_q(0) = x, \phi_q(t) \notin D(q)\}$$
 denote the set of states where continuous evolution is impossible.

**Fact** H is deterministic if and only if for all reachable (q, x)

- if  $x \in G(q, q')$  for some  $(q, q') \in E$ , then  $(q, x) \in \mathsf{Out}_H$
- if  $(q, q'), (q, q'') \in E$  with  $q' \neq q''$ , then  $G(q, q') \cap G(q, q'') = \emptyset$
- if  $(q, q') \in E$  and  $x \in G(q, q')$ , then  $|R(q, q', x)| \le 1$

# Zeno Solution of Hybrid Automaton

A solution  $\chi=(\tau,q,x)$  is Zeno if  $\tau_{\infty}=\sum_{i=1}^{\infty}(\tau_i'-\tau_i)<\infty$  **Example—Water tank system:** If  $\max\{v_1,v_2\}< w< v_1+v_2$  then  $\tau_{\infty}=(x_1(0)+x_2(0)-2r)/(v_1+v_2-w)<\infty$ 





Execution is not defined for  $t > \tau_{\infty}$ 

# Zeno of Elea (490-430 B.C.)

- Born in southern Italy
- Met Socrates in Athens 449
   B.C.
- Went back to Elea and into politics
- Tortured to death



- Paradoxes "proved" that motion and time are illusions
- Led to mathematical problems not solved until 19th century

#### Zeno

- A solution is Zeno if it exhibits infinitely many discrete jumps in finite time
- Zeno is a truly hybrid phenomenon: it cannot be formulated for a purely discrete system without the notion of continuous time
- Zeno is due to that the model does not reflect reality with sufficient detail
- Fact: a hybrid automaton has Zeno solutions only if (Q, E) is a cyclic graph (a graph with a loop)

# **Example: Bouncing Ball**

A ball that loses a fraction of its energy at each bounce



For which values of  $\boldsymbol{c}$  are the solutions of the bouncing ball hybrid automaton Zeno?

#### **Zeno State**

The convergence point of a Zeno solution is denoted **Zeno state** Zeno states lie on the intersection of guards

#### Example—Water tank system:



#### **Next Lecture**

#### Stability of hybrid systems

- Stability of hybrid systems
- Stability criteria for hybrid systems