Topological Data Analysis

3 December 2019

8 Stability of persistence diagrams

8.1 Hausdorff distance

Suppose that X and Y are nonempty subsets of a metric space M with distance d. The diameter of X is defined as

$$diam(X) = \sup\{d(x, x') \mid x, x' \in X\},\$$

and X is bounded if its diameter is finite.

For a point $x \in X$, define

$$d(x,Y) = \inf\{d(x,y) \mid y \in Y\},\$$

and then

$$d(X,Y) = \sup\{d(x,Y) \mid x \in X\}.$$

If X is bounded, then d(X, Y) is finite; in fact, $0 \le d(X, Y) \le \text{diam}(X) + d(x_0, y_0)$ for arbitrary points $x_0 \in X$ and $y_0 \in Y$. However, $d(X, Y) \ne d(Y, X)$ in general.

Now suppose that X and Y are compact (hence bounded and closed in the metric space M). The $Hausdorff\ distance$ between X and Y is defined as

$$d_H(X, Y) = \max\{d(X, Y), d(Y, X)\}.$$

Note that if d(X,Y) = 0 then $X \subseteq Y$, since Y is closed in M. Consequently, $d_H(X,Y) = 0$ if and only if X = Y. Moreover, d_H satisfies the triangle inequality and therefore d_H is indeed a distance on the set of nonempty compact subsets of M. However, if $M = \mathbb{R}$, $X = \mathbb{Q}$ and $Y = \mathbb{R} \setminus \mathbb{Q}$ (not compact) then $d_H(X,Y) = 0$.

8.2 Gromov–Hausdorff distance

For X and Y nonempty compact metric spaces, the *Gromov-Hausdorff distance* between X and Y is defined as

$$d_{GH}(X,Y) = \inf\{d_H(f(X),g(Y)) \mid f \colon X \hookrightarrow M, g \colon Y \hookrightarrow M\},\$$

where the infimum is taken over all isometric embeddings $f: X \hookrightarrow M$, $g: Y \hookrightarrow M$ into some common metric space M. Hence $d_{GH}(X,Y) = 0$ if and only if X and Y are isometric.

An alternative description of the Gromov–Hausdorff distance is as follows. For nonempty compact metric spaces X and Y, a correspondence between X and Y is a surjective multivalued function from X to Y, that is, a subset $C \subseteq X \times Y$ where for all $x_0 \in X$ there is some $(x_0, y) \in C$ and for all $y_0 \in Y$ there is some $(x, y_0) \in C$.

If C is a correspondence between X and Y, then the inverse correspondence C^{-1} is the set of points $(y, x) \in Y \times X$ for which $(x, y) \in C$.

The distortion of a correspondence $C \subseteq X \times Y$ is defined as

$$dis(C) = \max\{|d_X(x, x') - d_Y(y, y')| : (x, y), (x', y') \in C\}.$$

For example, If $C = \{(x, f(x)) \mid x \in X\}$ for some surjective function $f \colon X \to Y$, then $\operatorname{dis}(C) = 0$ if and only if f is an isometry.

Then the following holds:

$$d_{GH}(X,Y) = \frac{1}{2}\inf\{\operatorname{dis}(C) \mid C \subseteq X \times Y\},\$$

where the infimum is taken over all correspondences between X and Y.

8.3 Bottleneck distance

Suppose given persistence modules (V, π) and (V', π') with persistence diagrams D and D', viewed as sets of points with multiplicities in a birth-death coordinate plane. As customary, points in the diagonal b = d are included with infinite multiplicity. In what follows, we will assume that the barcodes of (V, π) and (V', π') have the same number of infinite rays, and include each infinite ray $[a, \infty)$ in the corresponding persistence diagram as a point (a, y_{∞}) for an arbitrary but fixed value y_{∞} far above the spectral values of V and V'.

A bijective function $\varphi \colon D \to D'$ is called a *matching* between D and D' if each diagonal point $(b,b) \in D$ is either matched with itself or with an off-diagonal point $(x,y) \in D'$, that is, with $x \neq y$. For each such matching, write

$$\|\varphi\| = \sup\{d_{\infty}((x,y), \varphi(x,y)) \mid (x,y) \in D\},\$$

where d_{∞} is the ℓ_{∞} -distance on \mathbb{R}^2 , namely

$$d_{\infty}((x,y),(x',y')) = \max\{|x-x'|, |y-y'|\}.$$

The bottleneck distance between D and D' is defined as

$$W_{\infty}(D, D') = \inf\{\|\varphi\| \mid \varphi \colon D \to D'\},\$$

where the infimum is taken over all matchings $\varphi \colon D \to D'$.

Hence the bottleneck distance between D and D' is the smallest $\varepsilon \geq 0$ for which there exists a matching between the points of D and D' (including all their diagonal points) such that any couple of matched points are at distance at most ε , where the distance between points in \mathbb{R}^2 is the ℓ_{∞} -distance.

The bottleneck distance is the case $p = \infty$, $q = \infty$ of the Wasserstein distances, defined for $p, q \ge 1$ as

$$W_p[q](D,D') = \inf_{\varphi \colon D \to D'} \left[\sum_{(x,y) \in D} d_q((x,y), \, \varphi(x,y))^p \right]^{1/p},$$

where d_q is the ℓ_q -distance on \mathbb{R}^2 :

$$d_q((x,y),(x',y')) = \left(|x-x'|^q + |y-y'|^q\right)^{1/q}.$$

8.4 Interleaving distance

For a persistence module (V, π) and $\delta \in \mathbb{R}$, define another persistence module by $V[\delta]_t = V_{t+\delta}$ and $\pi[\delta]_{s,t} = \pi_{s+\delta,t+\delta}$. This is called a δ -shift of (V, π) . If $\delta \geq 0$, then there is a morphism of persistence modules $\sigma_{\delta} \colon V \to V[\delta]$ given by $(\sigma_{\delta})_t = \pi_{t,t+\delta}$ for all $t \in \mathbb{R}$. Moreover, each morphism $f \colon V \to V'$ of persistence modules yields a morphism $f[\delta] \colon V[\delta] \to V'[\delta]$ for all $\delta \in \mathbb{R}$, namely $f[\delta]_t = f_{t+\delta}$ for all $t \in \mathbb{R}$.

For $\delta > 0$, two persistence modules (V, π) and (V', π') are δ -interleaved if there exist morphisms $f: V \to V'[\delta]$ and $g: V' \to V[\delta]$ such that

$$g[\delta] \circ f = \sigma_{2\delta}$$
 and $f[\delta] \circ g = \sigma'_{2\delta}$.

If (V, π) and (V', π') are δ -interleaved for some $\delta > 0$, then $\dim_{\mathbb{F}} V_{\infty} = \dim_{\mathbb{F}} V_{\infty}'$ and hence $V_{\infty} \cong V_{\infty}'$.

The interleaving distance between two persistence modules (V, π) and (V', π') with $V_{\infty} \cong V'_{\infty}$ is defined as

$$d_{\text{int}}(V, V') = \inf\{\delta > 0 \mid (V, \pi) \text{ and } (V', \pi') \text{ are } \delta\text{-interleaved}\}.$$

It follows that, if a < b and c < d, then

$$d_{\text{int}}(\mathbb{F}[a,b), \mathbb{F}[c,d)) = \min \left\{ \max \left\{ \frac{1}{2}(b-a), \frac{1}{2}(d-c) \right\}, \max \left\{ |a-c|, |b-d| \right\} \right\}$$

while

$$d_{\mathrm{int}}(\mathbb{F}[a,\infty),\mathbb{F}[c,\infty)) = |a-c|.$$

8.5 Isometry Theorem

The interleaving distance between two persistence modules (V, π) and (V', π') with $V_{\infty} \cong V'_{\infty}$ is equal to the bottleneck distance between their persistence diagrams:

$$d_{\rm int}(V, V') = W_{\infty}(D(V), D(V')).$$

8.6 Stability Theorem

In this section we state the Stability Theorem for point clouds. Other versions will be discussed later. Thus, let X and Y be point clouds in \mathbb{R}^N for some N. Let $V_t(X) = H_*(R_t(X))$ be the Vietoris–Rips persistence module of X, and similarly for Y. Then the interleaving distance between V(X) and V(Y) is related with the Gromov–Hausdorff distance between X and Y as follows:

$$\frac{1}{2}d_{\text{int}}(V(X), V(Y)) \le d_{GH}(X, Y).$$

As a consequence of this fact and the Isometry Theorem, since $d_{GH}(X,Y) \leq d_H(X,Y)$, we have that

$$W_{\infty}(D(X), D(Y)) \le 2 d_H(X, Y),$$

where D(X) and D(Y) denote the Vietoris–Rips persistence diagrams of X and Y.

Short exercise

(1) Consider the following point clouds in \mathbb{R}^2 :

$$X = \{(0.81, 2.87), (2.15, 1.18), (3.19, 3.62), (4.17, 2.01), (5.32, 4.88), (6.21, 3.13)\},\$$

$$Y = \{(0.75, 2.80), (2.33, 1.25), (3.28, 3.66), (4.15, 2.15), (5.24, 4.78), (6.34, 3.12)\}.$$

- (a) Compute the Hausdorff distance $d_H(X,Y)$.
- (b) Prove that $W_{\infty}(D(X), D(Y)) < 2 d_H(X, Y)$, where $W_{\infty}(D(X), D(Y))$ is the bottleneck distance between the Vietoris–Rips persistence diagrams of X and Y.

Longer exercise

(1) Prove the formula

$$d_{GH}(X,Y) = \frac{1}{2}\inf\{\operatorname{dis}(C) \mid C \subseteq X \times Y\},\$$

where the infimum is taken over all correspondences between X and Y. For this, see [F. Mémoli, G. Sapiro, A theoretical and computational framework for isometry invariant recognition of point cloud data, *Found. Comput. Math.* 5 (2005), 313–347].