COMP3251 Lecture 9: Dijkstra Algorithm (Chapter 4.3, 4.4, and 4.5)

Edges with Lengths

We now consider weighted graph, i.e., every edge (u,v) is associated with a length L(u,v).

Single-Source Shortest Paths Problem (for Weighted Graphs)

Given a weighted directed graph and a source vertex $s \in V$, find, for every vertex $v \in V$, the length of the shortest path from the source s to v.

Definition: length of a path *P* is equal to the sum of the length of the edges on *P*.

An Example

An Example

Note that this is a tree, and for any vertex v, the tree path from s to v is the shortest path s to v. Such a tree is called the Shortest Path Tree (SPT).

The BFS tree is a Shortest Path Tree

- If all edges have length 1, then BFS solves the shortest path problem and the BFS tree coincides with the SPT tree.
- An alternative view of BFS:
 - Starting from the smallest subtree of BFS tree that contains only the starting vertex s.
 - Add vertices and the corresponding tree edges one by one in ascending order of their distance from s.

General Idea

- Starting from the smallest subtree of SPT that contains only s.
- Iteratively attached a "correct" edge to the subtree such that the larger tree is still a subtree of SPT.
- When we include all vertices in the subtree, it is the SPT.

A larger T which is still a subtree of SPT

What is the correct vertex/edge?

Let T be a subtree of the SPT. Here are a few **definitions**:

- A *T*-path from *s* to *v* is a path from *s* to *v* that goes through only vertices in *T*.
- The T-dist(v) is the length of shortest T-path from s to v.
- Note that for any vertex v, T-dist(v) \geq dist(v), the length of the shortest path from s to v.
- For every $v \in T$, T-dist(u) = dist(u).

Example:

What is the correct vertex/edge?

Observation: A shortest T-path from s to v, must be consists of a shortest T-path from s to some vertex $u \in T$ and edge (u, v).

- To determine T-dist(v), we check all vertices $u \in T$ such that $(u, v) \in E$, and the corresponding shortest T-path from s to u.
- Then, determine their total lengths and return the minimum.

Example:

The Algorithm (Informal)

Starting with $T = \{s\}$ and repeatedly do the following to enlarge T until T includes all vertices:

- Find the vertex $v \notin T$ with the smallest T-dist(v), add it to T;
- Update the *T*-dist(x) for all vertices $x \notin T$.

What next?

- Why is the above algorithm correct?
- What is its running time?

Correctness

Suppose:

- T is a subtree of SPT.
- v has the smallest T-dist among vertices that are not in T,
 the the path leaves T through a vertex u ∈ T.

Want to show:

This path from s to v is indeed the shortest path.

By our choice of v, for all $x \notin T$, T-dist $(v) \le T$ -dist(x)

Since going through u is the shortest T-path from s to t, any alternative path from s to v must go through some vertex $b \notin T$, and T-dist(b) $\geq T$ -dist(v).

By our choice of v, for all $x \notin T$, T-dist $(v) \le T$ -dist(x)

Since going through u is the shortest T-path from s to t, any alternative path from s to v must go through some vertex $b \notin T$, and T-dist(b) $\geq T$ -dist(v).

The length of this part from *b* to *v* is positive. (all edges have positive length.)

By our choice of v, for all $x \notin T$, T-dist $(v) \le T$ -dist(x)

Conclusion: The length of any path P from s to v is no smaller than T-dist(v) because length(P) $\geq T$ -dist(b) $\geq T$ -dist(v). Hence, the T-path from s to v through u is the shortest path.

$$T = \{s\}$$

$$T = \{s\}$$

$$T = \{s, a\}$$

$$T = \{s, a\}$$

$$T = \{s, a, d\}$$

$$T = \{s, a, d\}$$

$$T = \{ s, a, d, e \}$$

$$T = \{ s, a, d, e \}$$

$$T = \{ s, a, d, e, b \}$$

 $T = \{s, a, d, e, b, c\}$

- Recall T-dist(x) = min { T-dist(a) + L(a, x) , T-dist(b) + L(b, x) }
- Suppose the algorithm adds a new vertex v to T.
 - Let T' denote the new tree.
 - Let T'-dist denote the updated tree-distance.

- If there is no edge (v, x), then we have T'-dist(x) = min { T'-dist(a) + L(a, x) , T'-dist(b) + L(b, x) }
- Adding v to T does not change the tree-distance of a and b:
 T'-dist(a) = T-dist(a), T'-dist(b) = T-dist(b). Hence, no change.

- If there is edge (u, x), then T'-dist(x) is equal to
 min { T'-dist(a) + L(a, x) , T'-dist(b) + L(b, x) , T'-dist(v) + L(v, x) }
- Note that T-dist and T'-dist are the same for v, a, b. Thus,
 T'-dist(x) = min { T-dist(x) , T-dist(v) + L(v, x) }

Conclusion: After adding *v* to enlarge *T*, we only need to

- scan the adjacent list of v in order to update T-dist;
- for each vertex x in the adjacent list, update its tree-distance as the minimal of the old tree-distance and T-dist(v) + L(v, x).

The Algorithm (DPV 4.1.1)

- 1) **initialize** dist(s) = 0, and dist(x) = ∞ for other vertices x;
- 2) *V*' = { };
- 3) while $V' \neq V$ do
- 4) pick the node $v \notin V'$ with the smallest dist(.)
- 5) add *v* to *V*'
- 6) for all edges $(v, x) \in E$:
- 7) if dist(x) > dist(v) + L(v, x): update dist(x) = dist(v) + L(v, x).

Running time:

- Steps 1, 2, 5 take O(|V|) time. Steps 6, 7 takes O(|E|) time.
- If we implement dist(.) as a simple array, step 4 takes O(|V|) time to find the smallest dist(.), and since we execute step 4 O(|V|) times, total time is $O(|V|^2)$.

- It is usually more efficient to store dist(.) in a priority queue,
 e.g., implemented through binary min heap.
- Recap of basic properties of binary min heap:
 - Building an empty heap (**build-heap**): *O(1)*;
 - Finding the minimal number (**find-min**): *O*(1);
 - Deleting a the minimal number (delete-min): O(log n).
 - Inserting a new number (insert): O(log n);

Running time for this implementation

- Initially, we set dist(s) = 0, and dist(u) = ∞ for all other vertices u. Then, we insert all *n* vertices to a heap: $O(|V| \log |V|)$ time.
- We need to delete the minimum value from the heap n times to add n vertices to the SPT: $O(|V| \log |V|)$ time.
- After adding each vertex to the SPT, we need to scan its adjacency list and for each vertex x in the list, we may need to update dist(x) and shift up to restore heap order.
 - The hight of the tree is log |V|, so we need to shift up at most log |V| times per vertex in the adjacency list.
 - Total size of the adjacency lists of all vertices is O(|E|).
 - In total, this takes $O(|E| \log |V|)$ time.
- In sum, the running time is $O((|E| + |V|) \log |V|)$.

Advance topic: d-heap implementation

	Heap	3-Heap	<i>d</i> -Heap
build-heap	O(1)	O(1)	O(1)
insert	O(log n)	O(log₃ n)	O(log _d n)
find-min	O(1)	O(1)	O(1)
delete-min	O(log n)	O(3 log ₃ n)	O(d log _d n)

Advance topic: d-heap implementation

- Initially, we set dist(s) = 0, and dist(u) = ∞ for all other vertices u. Then, we insert all *n* vertices to a heap: $O(|V| \log_d |V|)$ time.
- We need to delete the minimum value from the heap n times to add n vertices to the SPT: $O(|V| d \log_d |V|)$ time.
- After adding each vertex to the SPT, we need to scan its
 adjacency list and for each vertex x in the list, we may need to
 update dist(x) and shift up to restore heap order.
 - The hight of the tree is $log_d |V|$, so we need to shift up at most log |V| times per vertex in the adjacency list.
 - Total size of the adjacency lists of all vertices is O(|E|).
 - In total, this takes $O(|E| \log_d |V|)$ time.
- Total $O((|E| + d|V|) log_d |V|)$ time.
- Choosing d = |E|/|V|, the running time is $O(|E| \log_{|E|/|V|} |V|)$.