Apollo Control Box

- Goal = Self-contained control box
 - Focus
 - Safety: detect all failure scenarios
 - Ease of use: User experience and maintainability. Large (3.5") touch screen for diagnostic messages, medical-grade buzzer
 - Can drive with PSA-based O2 concentrator (Oxikit, PIOC, Apollo reference O2 concentrator)
 - Open source, modular PCB design. Works with a variety of sensors
 - Self-tuning Al
 - learning mode for adjusting valve timing, auto-adjusts to changes in compressed air input pressure
 - Continuous and pulse mode of operation
 - · Adjust PSA operational cycle in sync with patient breathing
 - Pulse mode = key to greatly reduces compressor size and power consumption
- Patient sensor/data integration
 - O2 flow regulation: adjust O2 flow in response to oximeter readings
 - SpO2 oximeter Bluetooth sensors
 - · Breathing rate detection through pressure sensors and flow rate measurement
 - GTS/Teladoc integration
 - push medical data to the cloud for doctors to remotely monitor patients)
- Integration
 - Oxikit: proportional valve flow control, GTS/Teladoc integration, Bluetooth oximeter
 - PIOC, Oxikit: control box
 - LifeMech ventilator integration (TBD)
- Status
 - v1..v3 designs published and tested, with Apollo O2 concentrator reference design
 - Apollo control box: Working on v4 (ETA November/December 2020 for first prototypes)
 - Pursuing GTS/Teladoc prototyping with Oxikit

PSA/Ventilator integration points

- Goal
 - Unified solution?
- Requirements
 - Breathing rate detection
 - Ventilator can provide that info
 - Enables efficient pulse mode operation at PSA concentrator level
 - Flow regulation
 - Adjusts O2 concentration dynamically by adjusting PSA timings
 - Oximeter pulse reading (Bluetooth)
 - GTS/Teladoc integration
 - Patient data (SpO2 data)

Prototypes

