EXERCICES — CHAPITRE 6

Exercice 1 $(\star \star)$ – Soit $(u_n)_{n \in \mathbb{N}}$ la suite définie par $u_0 = 2$ et pour tout entier naturel $n \in \mathbb{N}$,

$$u_{n+1} = 5u_n + 4$$
.

Montrer que pour tout $n \in \mathbb{N}$, $u_n > 0$.

Exercice 2 $(\star\star)$ – Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=-3$ et pour tout entier naturel $n\in\mathbb{N}$,

$$u_{n+1} = 5 - 4u_n$$
.

Montrer que pour tout $n \in \mathbb{N}$, $u_n = (-4)^{n+1} + 1$.

Exercice 3 $(\star\star)$ – Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=\frac{1}{2}$ et pour tout entier naturel $n\in\mathbb{N}$,

$$u_{n+1} = \frac{u_n+1}{u_n+2}.$$

Montrer que pour tout $n \in \mathbb{N}$, $0 < u_n < 1$.

Exercice 4 $(\star\star)$ – Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1$ et pour tout entier naturel $n\in\mathbb{N}$,

$$u_{n+1} = \frac{1}{4}u_n + 3.$$

Montrer que pour tout $n \in \mathbb{N}$, $u_n \leq 4$.

Exercice 5 $(\star\star)$ – Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=3$ et pour tout entier naturel $n\in\mathbb{N}$,

$$u_{n+1} = \sqrt{u_n + 1}.$$

Montrer que pour tout $n \in \mathbb{N}$, $0 < u_n \le 3$.

Exercice 6 $(\star\star)$ – Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=2$ et pour tout entier naturel $n\in\mathbb{N}$,

$$u_{n+1} = 2u_n - n.$$

Montrer que pour tout $n \in \mathbb{N}$, $u_n = 2^n + n + 1$.

Exercice 7 (**) – Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0 = \frac{1}{2}$ et pour tout entier naturel $n \in \mathbb{N}$,

$$u_{n+1} = \sqrt{\frac{1+u_n}{2}}.$$

Montrer que pour tout $n \in \mathbb{N}$, $0 \le u_n \le 1$.

Exercice 8 $(\star\star)$ – Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1, u_1=1$ et pour tout entier $n\in\mathbb{N}$,

$$u_{n+2} = 2u_{n+1} - u_n - 2.$$

- 1. Calculer u_2 et u_3 .
- 2. Montrer que pour tout $n \in \mathbb{N}$, $u_{n+1} \leq u_n$.

Exercice 9 $(\star \star \star)$ – Soit $(u_n)_{n \in \mathbb{N}}$ la suite définie par $u_0 = 1$ et pour tout entier naturel $n \in \mathbb{N}$,

$$u_{n+1} = \frac{1}{3}u_n + n - 2.$$

- 1. Calculer u_1 , u_2 et u_3 .
- 2. Montrer que pour tout $n \ge 4$, $u_n \ge 0$.
- 3. En déduire que pour tout $n \ge 5$, $u_n \ge n-3$.

Exercice 10 $(\star \star \star)$ – Montrer par récurrence que pour tout $n \in \mathbb{N}$,

$$2^{n} > n$$
.

Exercice 11 $(\star\star)$ – Montrer par récurrence que pour tout $n\in\mathbb{N}^*$,

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}.$$

Exercice 12 $(\star \star \star)$ – Montrer par récurrence que pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)} = \frac{n(n+3)}{4(n+1)(n+2)}.$$

Exercice 13 $(\star \star)$ – Montrer par récurrence que pour tout $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} k(k+1) = \frac{n(n+1)(n+2)}{3}.$$

Exercice 14 (* * *) -

1. Montrer que pour tout $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} k^3 = \frac{n^2(n+1)^2}{4}.$$

2. En déduire que pour tout $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} k^{3} = \left(\sum_{k=0}^{n} k\right)^{2}.$$