Teoría de Lenguajes

Clase Teórica 4 Minimización Autómatas Finitos

Primer cuatrimestre 2016

Material compilado por Julio Jacobo a lo largo de distintas ediciones de la materia Teoría de Lenguajes en el Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, revisado recientemente por Verónica Becher.

Bibliografía: Capítulo 4, *Introduction to Automata Theory, Languages and Computation*, J. Hopcroft, R. Motwani, J. Ullman, Second Edition, Addison Wesley, 2001.

Ejemplos de minimización de AFD

 $M=< Q, \Sigma, \delta, q_0, F>.$ El estado q_2 es inaccesible, entonces puede ser quitado. $\mathcal{L}(M)=(1^*01^*)(01^*01^*)^*.$

Ejemplos de minimización de AFD

 $M=< Q, \Sigma, \delta, q_0, F>$. El estado q_2 es inaccesible, entonces puede ser quitado. $\mathcal{L}(M)=(1^*01^*)(01^*01^*)^*$.

 $M'=< Q, \Sigma, \delta', q_0, F>$. No hay estados inaccesibles. $\mathcal{L}(M')=(1^*01^*)(01^*01^*)^*.$

Definición

Sea $M=< Q, \Sigma, \delta, q_0, F>$ un AFD. Definimos \equiv la relación de indistinguibilidad sobre Q: dos estados $q,r\in Q$ son indistinguibles, que denotamos $q\equiv r$, cuando

$$\forall \alpha \in \Sigma^*, (\widehat{\delta}(q, \alpha) \in F \text{ si y solo si } \widehat{\delta}(r, \alpha) \in F).$$

Todo par de estados indistinguibles, al consumir cualquier cadena $\alpha \in \Sigma^*$, llegan a otro par de estados indistinguibles:

$$\textit{Si } q \equiv r \;\; \textit{entonces} \; \forall \alpha \in \Sigma^*, \left(\widehat{\delta}(q,\alpha) \equiv \widehat{\delta}(r,\alpha)\right)$$

Todo par de estados indistinguibles, al consumir cualquier cadena $\alpha \in \Sigma^*$, llegan a otro par de estados indistinguibles:

Si
$$q \equiv r$$
 entonces $\forall \alpha \in \Sigma^*, \left(\widehat{\delta}(q, \alpha) \equiv \widehat{\delta}(r, \alpha)\right)$

Demostración. Supongamos $q \equiv r$ pero $\exists \alpha \in \Sigma^*, (\widehat{\delta}(q, \alpha) \not\equiv \widehat{\delta}(r, \alpha)).$

Todo par de estados indistinguibles, al consumir cualquier cadena $\alpha \in \Sigma^*$, llegan a otro par de estados indistinguibles:

Si
$$q \equiv r$$
 entonces $\forall \alpha \in \Sigma^*, \left(\widehat{\delta}(q, \alpha) \equiv \widehat{\delta}(r, \alpha)\right)$

Demostración. Supongamos $q \equiv r$ pero $\exists \alpha \in \Sigma^*, (\widehat{\delta}(q, \alpha) \not\equiv \widehat{\delta}(r, \alpha))$. Entonces existe una cadena β que distingue $\widehat{\delta}(q, \alpha)$ de $\widehat{\delta}(r, \alpha)$:

$$\exists \beta \in \Sigma^*, (\widehat{\delta}(\widehat{\delta}(q, \alpha), \beta) \in F \land \widehat{\delta}(\widehat{\delta}(r, \alpha), \beta) \notin F)$$

o viceversa.

Todo par de estados indistinguibles, al consumir cualquier cadena $\alpha \in \Sigma^*$, llegan a otro par de estados indistinguibles:

Si
$$q \equiv r$$
 entonces $\forall \alpha \in \Sigma^*, \left(\widehat{\delta}(q, \alpha) \equiv \widehat{\delta}(r, \alpha)\right)$

Demostración. Supongamos $q \equiv r$ pero $\exists \alpha \in \Sigma^*, (\widehat{\delta}(q, \alpha) \not\equiv \widehat{\delta}(r, \alpha))$. Entonces existe una cadena β que distingue $\widehat{\delta}(q, \alpha)$ de $\widehat{\delta}(r, \alpha)$:

$$\exists \beta \in \Sigma^*, (\widehat{\delta}(\widehat{\delta}(q, \alpha), \beta) \in F \land \widehat{\delta}(\widehat{\delta}(r, \alpha), \beta) \notin F)$$

o viceversa. Esto equivale a decir que

$$\widehat{\delta}(q, \alpha\beta) \in F \wedge \widehat{\delta}(r, \alpha\beta) \notin F$$

o viceversa.

Todo par de estados indistinguibles, al consumir cualquier cadena $\alpha \in \Sigma^*$, llegan a otro par de estados indistinguibles:

Si
$$q \equiv r$$
 entonces $\forall \alpha \in \Sigma^*, \left(\widehat{\delta}(q, \alpha) \equiv \widehat{\delta}(r, \alpha)\right)$

Demostración. Supongamos $q \equiv r$ pero $\exists \alpha \in \Sigma^*, (\widehat{\delta}(q, \alpha) \not\equiv \widehat{\delta}(r, \alpha))$. Entonces existe una cadena β que distingue $\widehat{\delta}(q, \alpha)$ de $\widehat{\delta}(r, \alpha)$:

$$\exists \beta \in \Sigma^*, (\widehat{\delta}(\widehat{\delta}(q, \alpha), \beta) \in F \land \widehat{\delta}(\widehat{\delta}(r, \alpha), \beta) \notin F)$$

o viceversa. Esto equivale a decir que

$$\widehat{\delta}(q, \alpha\beta) \in F \wedge \widehat{\delta}(r, \alpha\beta) \notin F$$

o viceversa. Pero entonces $q \not\equiv r$, y arribamos a una contradicción.

La indistinguibilidad \equiv es una relación de equivalencia.

La indistinguibilidad \equiv es una relación de equivalencia.

Demostración.

▶ reflexividad: Debemos ver que para todo $q \in Q$, $q \equiv q$.

$$q \equiv q \text{ si y solo si } \forall \alpha \in \Sigma^*, (\widehat{\delta}(q,\alpha) \in F \Leftrightarrow \widehat{\delta}(q,\alpha) \in F)$$

y esta doble implicación es siempre verdadera.

La indistinguibilidad \equiv es una relación de equivalencia.

Demostración.

reflexividad: Debemos ver que para todo $q \in Q$, $q \equiv q$.

$$q \equiv q \text{ si y solo si } \forall \alpha \in \Sigma^*, (\widehat{\delta}(q,\alpha) \in F \Leftrightarrow \widehat{\delta}(q,\alpha) \in F)$$

y esta doble implicación es siempre verdadera.

ightharpoonup simetría: Supongamos $q \equiv r$. Entonces

$$\forall \alpha \in \Sigma^*, (\widehat{\delta}(q,\alpha) \in F \Leftrightarrow \widehat{\delta}(r,\alpha) \in F). \text{ Luego,}$$

$$\forall \alpha \in \Sigma^*, (\widehat{\delta}(r,\alpha) \in F \Leftrightarrow \widehat{\delta}(q,\alpha) \in F). \text{ Por lo tanto, } r \equiv q.$$

La indistinguibilidad \equiv es una relación de equivalencia.

Demostración.

reflexividad: Debemos ver que para todo $q \in Q$, $q \equiv q$.

$$q \equiv q \text{ si y solo si } \forall \alpha \in \Sigma^*, (\widehat{\delta}(q,\alpha) \in F \Leftrightarrow \widehat{\delta}(q,\alpha) \in F)$$

y esta doble implicación es siempre verdadera.

ightharpoonup simetría: Supongamos $q\equiv r$. Entonces

$$\begin{split} \forall \alpha \in \Sigma^*, (\widehat{\delta}(q, \alpha) \in F &\Leftrightarrow \widehat{\delta}(r, \alpha) \in F). \text{ Luego,} \\ \forall \alpha \in \Sigma^*, (\widehat{\delta}(r, \alpha) \in F &\Leftrightarrow \widehat{\delta}(q, \alpha) \in F). \text{ Por lo tanto, } r \equiv q. \end{split}$$

▶ transitividad: Supongamos $q \equiv r$ and $r \equiv s$. Entonces,

$$\forall \alpha \in \Sigma^*, (\widehat{\delta}(q, \alpha) \in F \Leftrightarrow \widehat{\delta}(r, \alpha) \in F), y$$
$$\forall \alpha \in \Sigma^*, (\widehat{\delta}(r, \alpha) \in F \Leftrightarrow \widehat{\delta}(s, \alpha) \in F)$$

Por lo tanto, $\forall \alpha \in \Sigma^*, (\widehat{\delta}(q, \alpha) \in F \Leftrightarrow \widehat{\delta}(s, \alpha) \in F)$. Es decir, $q \equiv s$.

Definición

Si A es un conjunto $y \sim$ una relación de equivalencia sobre A, entonces las clases de equivalencia forman una partición del conjunto A.

Las clases de equivalencia de la relación \sim determinan un nuevo conjunto, denominado conjunto cociente y denotado A/\sim .

Estados inaccesibles

Definición

El estado p de AFD $M=(Q,\Sigma,\delta,q_0,F)$ es inaccesible si para toda $w\in \Sigma^*,\ p\neq \widehat{\delta}(q_0,w).$

Algoritmo que computa el conjunto de estados accesibles.

```
let reachable_states:= {q0};
let new_states:= {q0};
do {
    temp := the empty set;
    for each q in new_states do
        for all c in ∑ do
        temp := temp U {p such that p=δ(q,c)};
    end;
    end;
    end;
    new_states := temp \ reachable_states;
    reachable_states := reachable_states U new_states;
} while(new_states ≠ the empty set);
unreachable_states := Q \ reachable_states;
```

Definición (Autómata Finito Determinístico Mínimo)

Sea $M=< Q, \Sigma, \delta, q_0, F>$ un AFD sin estados inaccesibles, el AFD mínimo equivalente $M_{min}=< Q_{min}, \Sigma, \delta_{min}, q_{min_0}, F_{min}>$ es

$$Q_{min}=(Q/\equiv)$$
 (las clases de equivalencia de \equiv) $\delta_{min}\left([q]\,,a
ight)=[\delta\left(q,a
ight)]$ $q_{min_0}=[q_0]$ $F_{min}=\{[q]\in Q_{min}:q\in F\}$

Veamos que
$$\mathcal{L}(M) = \mathcal{L}(M_{min})$$
:

$$\alpha \in \mathcal{L}(M) \Leftrightarrow \widehat{\delta}(q_0, \alpha) \in F \Leftrightarrow \widehat{\delta_{min}}([q_0], \alpha) \in F_{min}.$$

$$\operatorname{Si}\widehat{\delta}(q,\alpha) = r \, \operatorname{entonces} \, \widehat{\delta_{min}}([q]\,,\alpha) =$$

Si
$$\widehat{\delta}(q,\alpha)=r$$
 entonces $\widehat{\delta_{min}}(\left[q\right],\alpha)=\left[r\right].$

$$\operatorname{Si}\widehat{\delta}(q,\alpha)=r \text{ entonces }\widehat{\delta_{min}}(\left[q\right],\alpha)=\left[r\right].$$

Demostración. Por inducción en $|\alpha|$.

$$\mathit{Si} \ \widehat{\delta}(q,\alpha) = r \ \mathit{entonces} \ \widehat{\delta_{min}}([q] \,, \alpha) = [r].$$

Demostración. Por inducción en $|\alpha|$.

Caso base $|\alpha| = 0$.

$$Si \ \widehat{\delta}(q,\alpha) = r \ \text{entonces} \ \widehat{\delta_{min}}([q],\alpha) = [r].$$

Demostración. Por inducción en $|\alpha|$.

Caso base $|\alpha| = 0$.

$$\begin{array}{ll} \widehat{\delta(q,\lambda)} = q & \text{(por definición } \widehat{\delta}\text{)} \\ \widehat{\delta_{min}}\left([q],\lambda\right) = [q] & \text{(por definición } \widehat{\delta_{min}}\text{)} \end{array}$$

$$Si \ \widehat{\delta}(q,\alpha) = r \ \text{entonces} \ \widehat{\delta_{min}}([q],\alpha) = [r].$$

Demostración. Por inducción en $|\alpha|$.

Caso base $|\alpha| = 0$.

$$\widehat{\delta}(q,\lambda) = q \qquad \qquad \text{(por definición } \widehat{\delta}\text{)}$$

$$\widehat{\delta_{min}}\left(\left[q\right],\lambda\right)=\left[q\right] \qquad \text{(por definición } \widehat{\delta_{min}}\text{)}$$

Conlcluimos que, Si $\widehat{\delta}(q,\lambda)=q$ entonces $\widehat{\delta_{min}}([q]\,,\lambda)=[q].$

$$Si \ \widehat{\delta}(q,\alpha) = r \ \text{entonces} \ \widehat{\delta_{min}}([q],\alpha) = [r].$$

Demostración. Por inducción en $|\alpha|$.

Caso base $|\alpha| = 0$.

$$\begin{array}{ll} \widehat{\delta(q,\lambda)} = q & \text{(por definición } \widehat{\delta}\text{)} \\ \widehat{\delta_{min}}\left([q]\,,\lambda\right) = [q] & \text{(por definición } \widehat{\delta_{min}}\text{)} \\ \text{Conlcluimos que, Si } \widehat{\delta(q,\lambda)} = q \text{ entonces } \widehat{\delta_{min}}([q]\,,\lambda) = [q]. \end{array}$$

Caso inductivo

$$Si \ \widehat{\delta}(q,\alpha) = r \ \text{entonces} \ \widehat{\delta_{min}}([q],\alpha) = [r].$$

Demostración. Por inducción en $|\alpha|$.

Caso base $|\alpha| = 0$.

$$\begin{array}{ll} \widehat{\delta}(q,\lambda) = q & \text{(por definición } \widehat{\delta}\text{)} \\ \widehat{\delta_{min}}\left([q],\lambda\right) = [q] & \text{(por definición } \widehat{\delta_{min}}\text{)} \end{array}$$

Conlcluimos que, Si $\widehat{\delta}(q,\lambda)=q$ entonces $\widehat{\delta_{min}}([q],\lambda)=[q].$

Caso inductivo $|\alpha|=n+1$, con $n\geq 0$.

$$Si \ \widehat{\delta}(q,\alpha) = r \ \text{entonces} \ \widehat{\delta_{min}}([q],\alpha) = [r].$$

Demostración. Por inducción en $|\alpha|$.

Caso base $|\alpha| = 0$.

$$\begin{array}{ll} \widehat{\delta}(q,\lambda) = q & \text{(por definición } \widehat{\delta}\text{)} \\ \widehat{\delta_{min}}\left([q],\lambda\right) = [q] & \text{(por definición } \widehat{\delta_{min}}\text{)} \end{array}$$

Conlcluimos que, Si
$$\widehat{\delta}(q,\lambda)=q$$
 entonces $\widehat{\delta_{min}}([q],\lambda)=[q].$

Caso inductivo $|\alpha| = n + 1$, con $n \ge 0$.

Asumamos que la propiedad vale para longitud n.

Sea
$$\alpha = a\beta$$
.

$$\widehat{\delta}(q, a\beta) = \widehat{\delta}(\delta(q, a), \beta) =$$

Si
$$\widehat{\delta}(q,\alpha)=r$$
 entonces $\widehat{\delta_{min}}([q],\alpha)=[r].$

Demostración. Por inducción en $|\alpha|$.

Caso base $|\alpha| = 0$.

$$\widehat{\delta}(q,\lambda) = q \qquad \text{(por definición } \widehat{\delta}\text{)}$$

$$\widehat{\delta_{min}}\left([q],\lambda\right) = [q] \qquad \text{(por definición } \widehat{\delta_{min}}\text{)}$$

Conlcluimos que, Si $\widehat{\delta}(q,\lambda)=q$ entonces $\widehat{\delta_{min}}([q],\lambda)=[q].$

Caso inductivo $|\alpha| = n + 1$, con $n \ge 0$.

Asumamos que la propiedad vale para longitud n.

Sea
$$\alpha = a\beta$$
.

$$\begin{array}{ll} \widehat{\delta}(q,a\beta) & = \widehat{\delta}(\delta\left(q,a\right),\beta) = & r \\ \widehat{\delta_{min}}([q],a\beta) & = \widehat{\delta_{min}}(\left[\delta\left(q,a\right)\right],\beta) = & [r] \quad \text{por Hipótesis Inductiva} \end{array}$$

Si
$$\widehat{\delta}(q,\alpha) = r$$
 entonces $\widehat{\delta_{min}}([q],\alpha) = [r]$.

Demostración. Por inducción en $|\alpha|$.

Caso base $|\alpha| = 0$.

$$\begin{array}{ll} \widehat{\delta(q,\lambda)} = q & \text{(por definición } \widehat{\delta)} \\ \widehat{\delta_{min}}\left([q],\lambda\right) = [q] & \text{(por definición } \widehat{\delta_{min}}\right) \\ \text{Conlcluimos que, Si } \widehat{\delta(q,\lambda)} = q \text{ entonces } \widehat{\delta_{min}}([q],\lambda) = [q]. \end{array}$$

Caso inductivo $|\alpha| = n + 1$, con n > 0.

Asumamos que la propiedad vale para longitud n.

Sea
$$\alpha = a\beta$$
.

$$\begin{array}{lll} \widehat{\delta}(q,a\beta) & = \widehat{\delta}(\delta\left(q,a\right),\beta) = & r \\ \widehat{\delta_{min}}([q],a\beta) & = \widehat{\delta_{min}}(\left[\delta\left(q,a\right)\right],\beta) = & [r] & \text{por Hipótesis Inductiva} \\ & = \widehat{\delta_{min}}(\delta_{min}\left(\left[q\right],a\right),\beta) & \text{por definición de } \delta_{min} \end{array}$$

Si
$$\widehat{\delta}(q,\alpha) = r$$
 entonces $\widehat{\delta_{min}}([q],\alpha) = [r]$.

Demostración. Por inducción en $|\alpha|$.

Caso base $|\alpha| = 0$.

$$\begin{array}{ll} \widehat{\delta(q,\lambda)} = q & \text{(por definición } \widehat{\delta}\text{)} \\ \widehat{\delta_{min}}\left([q],\lambda\right) = [q] & \text{(por definición } \widehat{\delta_{min}}\text{)} \\ \text{Conlcluimos que, Si } \widehat{\delta(q,\lambda)} = q \text{ entonces } \widehat{\delta_{min}}([q],\lambda) = [q]. \end{array}$$

Caso inductivo $|\alpha| = n + 1$, con n > 0.

Asumamos que la propiedad vale para longitud n.

Sea
$$\alpha = a\beta$$
.

$$\begin{array}{lll} \widehat{\delta(q,a\beta)} & = \widehat{\delta(\delta(q,a),\beta)} = & r \\ \widehat{\delta_{min}}([q],a\beta) & = \widehat{\delta_{min}}([\delta(q,a)],\beta) = & [r] & \text{por Hipótesis Inductiva} \\ & = \widehat{\delta_{min}}(\delta_{min}\left([q],a\right),\beta) & \text{por definición de } \widehat{\delta_{min}} \\ & = \widehat{\delta_{min}}([q],a\beta) & \text{por definición de } \widehat{\delta_{min}} \end{array}$$

por definición de δ_{min}

Si
$$\widehat{\delta}(q,\alpha) = r$$
 entonces $\widehat{\delta_{min}}([q],\alpha) = [r]$.

Demostración. Por inducción en $|\alpha|$.

Caso base $|\alpha| = 0$.

$$\begin{array}{ll} \widehat{\delta(q,\lambda)} = q & \text{(por definición } \widehat{\delta}\text{)} \\ \widehat{\delta_{min}}\left([q],\lambda\right) = [q] & \text{(por definición } \widehat{\delta_{min}}\text{)} \\ \text{ConIcluimos que, Si } \widehat{\delta(q,\lambda)} = q \text{ entonces } \widehat{\delta_{min}}([q],\lambda) = [q]. \end{array}$$

Caso inductivo $|\alpha| = n + 1$, con n > 0.

Asumamos que la propiedad vale para longitud n.

Sea $\alpha = a\beta$.

$$\begin{array}{lll} \widehat{\delta(q,a\beta)} & = \widehat{\delta(\delta(q,a),\beta)} = & r \\ \widehat{\delta_{min}}([q],a\beta) & = \widehat{\delta_{min}}([\delta(q,a)],\beta) = & [r] & \text{por Hipótesis Inductiva} \\ & = \widehat{\delta_{min}}(\delta_{min}\left([q],a\right),\beta) & \text{por definición de } \widehat{\delta_{min}} \\ & = \widehat{\delta_{min}}([q],a\beta) & \text{por definición de } \widehat{\delta_{min}} \end{array}$$

Concluimos que

$$\operatorname{Si}\,\widehat{\delta}(q,a\beta)=r \qquad \text{ entonces } \qquad \widehat{\delta_{min}}([q]\,,a\beta)=[r]\,.$$

Definición (Indistinguibilidad de orden k: $\stackrel{k}{\equiv}$)

Sea $M=< Q, \Sigma, \delta, q_0, F>$ un AFD sin estados inaccesibles, y sea k un entero no negativos. Sean $p,q\in Q$. Decimos $p\stackrel{k}{\equiv} q$ si $\forall \alpha\in \Sigma^*, (|\alpha|\leq k)$ implica $\left(\widehat{\delta}\left(p,\alpha\right)\in F\Leftrightarrow \widehat{\delta}\left(q,\alpha\right)\in F\right)$.

Teorema (Propiedades de la indistinguibilidad de orden k)

- 1. $\stackrel{k}{\equiv}$ es una relación de equivalencia
- $2. \stackrel{k+1}{\equiv} \subseteq \stackrel{k}{\equiv}$
- 3. Si $Q F \neq \emptyset$ y $F \neq \emptyset$ entonces $\left(Q / \stackrel{0}{\equiv}\right) = \{Q F, F\}.$
- **4.** $p \stackrel{k+1}{\equiv} r \Leftrightarrow \forall a \in \Sigma, \delta(p, a) \stackrel{k}{\equiv} \delta(r, a)$
- 5. $Si\begin{pmatrix}k+1\\ \equiv k\end{pmatrix}$ entonces $\forall n\geq 0, \begin{pmatrix}k+n\\ \equiv k\end{pmatrix}$

 $1. \stackrel{k}{\equiv}$ es una relación de equivalencia: ejercicio.

- $1.\stackrel{k}{\equiv}$ es una relación de equivalencia: ejercicio.
- $2. \stackrel{k+1}{\equiv} \subseteq \stackrel{k}{\equiv}.$

- $1. \stackrel{k}{\equiv}$ es una relación de equivalencia: ejercicio.
- 2. $\stackrel{k+1}{\equiv} \subseteq \stackrel{k}{\equiv}$. Supongamos $p \stackrel{k+1}{\equiv} q$.

- 1. $\stackrel{k}{\equiv}$ es una relación de equivalencia: ejercicio.
- 2. $\stackrel{k+1}{\equiv} \subseteq \stackrel{k}{\equiv}$. Supongamos $p \stackrel{k+1}{\equiv} q$.

 $\begin{array}{ll} \text{Si } \forall \alpha \in \Sigma^*(|\alpha| \leq k+1) & \text{entonces } \left(\widehat{\delta}\left(p,\alpha\right) \in F \Leftrightarrow \widehat{\delta}\left(q,\alpha\right) \in F \right). \end{array}$

Por lo tanto,

 $1. \stackrel{k}{\equiv}$ es una relación de equivalencia: ejercicio.

2.
$$\stackrel{k+1}{\equiv} \subseteq \stackrel{k}{\equiv}$$
. Supongamos $p \stackrel{k+1}{\equiv} q$.

Por lo tanto,

$$\text{Si }\forall\alpha\in\Sigma^{*},\quad\left(\left|\alpha\right|\leq k\right)\qquad\text{entonces }\left(\widehat{\delta}\left(p,\alpha\right)\in F\Leftrightarrow\widehat{\delta}\left(q,\alpha\right)\in F\right).$$

Por definición de $\stackrel{k}{\equiv}$, $p \stackrel{k}{\equiv} q$.

3. Supongamos $Q - F \neq \emptyset$ y $F \neq \emptyset$.

Debemos ver que $\left(Q/\stackrel{0}{\equiv}\right)=\{Q-F,F\}.$

3. Supongamos $Q - F \neq \emptyset$ y $F \neq \emptyset$.

Debemos ver que $\left(Q/\stackrel{0}{\equiv}\right)=\{Q-F,F\}.$

$$\begin{split} \left(Q/\stackrel{0}{\equiv}\right) &= \left\{\{q \in Q: \widehat{\delta}(q,\lambda) \not\in F\}, \{q \in Q: \widehat{\delta}(q,\lambda) \in F\}\right\} \\ &= \left\{\{q \in Q: q \not\in F\}, \{q \in Q: q \in F\}\right\} \\ &= \left\{Q - F, F\right\}. \end{split}$$

4. Debemos probar $p\stackrel{k+1}{\equiv}r\Leftrightarrow \forall a\in\Sigma,\delta\left(p,a\right)\stackrel{k}{\equiv}\delta\left(r,a\right).$

- 4. Debemos probar $p\stackrel{k+1}{\equiv}r\Leftrightarrow \forall a\in\Sigma,\delta\left(p,a\right)\stackrel{k}{\equiv}\delta\left(r,a\right).$
- $\Rightarrow) \text{ Supongamos } p \overset{k+1}{\equiv} r \text{ pero no es cierto que } \forall a \in \Sigma, \delta\left(p,a\right) \overset{k}{\equiv} \delta\left(r,a\right).$

- 4. Debemos probar $p \stackrel{k+1}{\equiv} r \Leftrightarrow \forall a \in \Sigma, \delta(p, a) \stackrel{k}{\equiv} \delta(r, a)$.
- $\Rightarrow) \text{ Supongamos } p \stackrel{k+1}{\equiv} r \text{ pero no es cierto que } \forall a \in \Sigma, \delta\left(p,a\right) \stackrel{k}{\equiv} \delta\left(r,a\right).$ Entonces $\exists a \in \Sigma, \exists \alpha \in \Sigma^*, \left(|\alpha| \leq k\right) \land$
 - $\left(\widehat{\delta}\left(\delta\left(p,a\right),\alpha\right)\in F\right)\,\wedge\,\left(\widehat{\delta}\left(\delta\left(r,a\right),\alpha\right)\notin F\right).\text{ O viceversa.}$

4. Debemos probar $p \stackrel{k+1}{\equiv} r \Leftrightarrow \forall a \in \Sigma, \delta(p, a) \stackrel{k}{\equiv} \delta(r, a)$.

 \Rightarrow) Supongamos $p \stackrel{k+1}{\equiv} r$ pero no es cierto que $\forall a \in \Sigma, \delta(p, a) \stackrel{k}{\equiv} \delta(r, a)$. Entonces $\exists a \in \Sigma, \exists \alpha \in \Sigma^*, (|\alpha| < k) \land$

$$\left(\widehat{\delta}\left(\delta\left(p,a\right),\alpha\right)\in F\right)\,\wedge\,\left(\widehat{\delta}\left(\delta\left(r,a\right),\alpha\right)\notin F\right).\;\mathsf{O}\;\mathsf{viceversa}.$$

Por lo tanto $\left(\widehat{\delta}\left(p,a\alpha\right)\in F\right)$ \wedge $\left(\widehat{\delta}\left(r,a\alpha\right)\not\in F\right)$. O viceversa.

Entonces, $p \not\stackrel{k+1}{\not\equiv} r$, ya que $|a\alpha| \le k+1$, contradiciendo $p \stackrel{k+1}{\equiv} r$.

- 4. Debemos probar $p \stackrel{k+1}{\equiv} r \Leftrightarrow \forall a \in \Sigma, \delta(p, a) \stackrel{k}{\equiv} \delta(r, a)$.
- $\Rightarrow) \text{ Supongamos } p \stackrel{k+1}{\equiv} r \text{ pero no es cierto que } \forall a \in \Sigma, \delta\left(p,a\right) \stackrel{k}{\equiv} \delta\left(r,a\right).$ Entonces $\exists a \in \Sigma, \exists \alpha \in \Sigma^*, \left(|\alpha| \leq k\right) \land$

$$\left(\widehat{\delta}\left(\delta\left(p,a\right),\alpha\right)\in F\right)\,\wedge\,\left(\widehat{\delta}\left(\delta\left(r,a\right),\alpha\right)\notin F\right).\text{ O viceversa.}$$

Por lo tanto $\left(\widehat{\delta}\left(p,a\alpha\right)\in F\right)$ \wedge $\left(\widehat{\delta}\left(r,a\alpha\right)\not\in F\right)$. O viceversa.

Entonces, $p \not\stackrel{k+1}{\not\equiv} r$, ya que $|a\alpha| \le k+1$, contradiciendo $p \stackrel{k+1}{\equiv} r$.

 \Leftarrow) Demostramos el contrapositivo. Supongamos que $p \not\equiv q$. Entonces $\exists \alpha = a\alpha'$, con $|\alpha| \leq k+1$ que distingue p de q, o sea que

$$\left(\widehat{\delta}\left(\delta\left(p,a\right),\alpha'\right)\in F\right)\wedge\left(\widehat{\delta}\left(\delta\left(q,a\right),\alpha'\right)\notin F\right).\text{ O viceversa}$$

Por lo tanto $\delta\left(p,a\right)\overset{k}{\not\equiv}\delta\left(q,a\right).$

5. Debemos probar que si $\binom{k+1}{\equiv} = \frac{k}{\equiv}$ entonces $\forall n \geq 0, \binom{k+n}{\equiv} = \frac{k}{\equiv}$:

5. Debemos probar que si $\begin{pmatrix} k+1 \\ \equiv = \equiv \end{pmatrix}$ entonces $\forall n \geq 0, \begin{pmatrix} k+n \\ \equiv = \equiv \end{pmatrix}$: Inducción en n.

14 / 23

- 5. Debemos probar que si $\stackrel{k+1}{\equiv} = \stackrel{k}{\equiv}$ entonces $\forall n \geq 0, \stackrel{k+n}{\equiv} = \stackrel{k}{\equiv}$:
- Inducción en n. Caso base: n=0. Trivial ya que $\stackrel{k+0}{\equiv}=\stackrel{k}{\equiv}.$

5. Debemos probar que si
$$\stackrel{k+1}{\equiv} = \stackrel{k}{\equiv}$$
 entonces $\forall n \geq 0, \stackrel{k+n}{\equiv} = \stackrel{k}{\equiv}$:

Caso base:
$$n = 0$$
. Trivial ya que $\stackrel{k+0}{\equiv} = \stackrel{k}{\equiv}$.

Caso inductivo. Suponemos cierto para n con $n \ge 0$:

Si
$$\begin{pmatrix} k+1 \\ \equiv \end{pmatrix}$$
 entonces $\begin{pmatrix} k+n \\ \equiv \end{pmatrix}$.

5. Debemos probar que si
$$\stackrel{k+1}{\equiv} = \stackrel{k}{\equiv}$$
 entonces $\forall n \geq 0, \stackrel{k+n}{\equiv} = \stackrel{k}{\equiv}$:

Caso base:
$$n = 0$$
. Trivial ya que $\stackrel{k+0}{\equiv} = \stackrel{k}{\equiv}$.

Caso inductivo. Suponemos cierto para
$$n$$
 con $n \ge 0$:

Si
$$\begin{pmatrix} k+1 \\ \equiv \end{pmatrix}$$
 entonces $\begin{pmatrix} k+n \\ \equiv \end{pmatrix}$.

Debemos probar que Si
$$\begin{pmatrix} k+1 \\ \equiv = \stackrel{k}{\equiv} \end{pmatrix}$$
 entonces $\begin{pmatrix} k+n+1 \\ \equiv = \stackrel{k}{\equiv} \end{pmatrix}$.

5. Debemos probar que si
$$\stackrel{k+1}{\equiv} = \stackrel{k}{\equiv}$$
 entonces $\forall n \geq 0, \stackrel{k+n}{\equiv} = \stackrel{k}{\equiv}$:

Caso base:
$$n = 0$$
. Trivial ya que $\stackrel{k+0}{\equiv} = \stackrel{k}{\equiv}$.

Caso inductivo. Suponemos cierto para
$$n$$
 con $n \ge 0$:

Si
$$\begin{pmatrix} k+1 \\ \equiv \end{pmatrix}$$
 entonces $\begin{pmatrix} k+n \\ \equiv \end{pmatrix}$.

Debemos probar que Si
$$\stackrel{k+1}{\equiv} = \stackrel{k}{\equiv}$$
 entonces $\stackrel{k+n+1}{\equiv} = \stackrel{k}{\equiv}$.

Supongamos
$$\begin{pmatrix} k+1 \\ \equiv \end{pmatrix} = \stackrel{k}{\equiv} \end{pmatrix}$$
. Veamos $\forall q, p \in Q, \ \left(q \stackrel{k+n+1}{\equiv} r \Leftrightarrow q \stackrel{k}{\equiv} r \right)$.

5. Debemos probar que si
$$\stackrel{k+1}{\equiv} = \stackrel{k}{\equiv}$$
 entonces $\forall n \geq 0, \stackrel{k+n}{\equiv} = \stackrel{k}{\equiv}$:

Caso base:
$$n = 0$$
. Trivial ya que $\stackrel{k+0}{\equiv} = \stackrel{k}{\equiv}$.

Caso inductivo. Suponemos cierto para n con $n \ge 0$:

Si
$$\begin{pmatrix} k+1 \\ \equiv \end{pmatrix}$$
 entonces $\begin{pmatrix} k+n \\ \equiv \end{pmatrix}$.

Debemos probar que Si
$$\stackrel{k+1}{\equiv} = \stackrel{k}{\equiv}$$
 entonces $\stackrel{k+n+1}{\equiv} = \stackrel{k}{\equiv}$.

Supongamos
$$\begin{pmatrix} k+1 \\ \equiv \end{pmatrix}$$
. Veamos $\forall q,p \in Q, \ \left(q \stackrel{k+n+1}{\equiv} r \Leftrightarrow q \stackrel{k}{\equiv} r \right)$.

$$a \stackrel{k+n+1}{=} r$$

5. Debemos probar que si
$$\stackrel{k+1}{\equiv} = \stackrel{k}{\equiv}$$
 entonces $\forall n \geq 0, \stackrel{k+n}{\equiv} = \stackrel{k}{\equiv}$:

Caso base:
$$n = 0$$
. Trivial ya que $\stackrel{k+0}{\equiv} = \stackrel{k}{\equiv}$.

Caso inductivo. Suponemos cierto para n con $n \ge 0$:

Si
$$\begin{pmatrix} k+1 \\ \equiv \end{pmatrix}$$
 entonces $\begin{pmatrix} k+n \\ \equiv \end{pmatrix}$.

Debemos probar que Si
$$\left(\stackrel{k+1}{\equiv} = \stackrel{k}{\equiv}\right)$$
 entonces $\left(\stackrel{k+n+1}{\equiv} = \stackrel{k}{\equiv}\right)$.

Supongamos
$$\begin{pmatrix} k+1 \\ \equiv \end{pmatrix} = \stackrel{k}{\equiv} \end{pmatrix}$$
. Veamos $\forall q, p \in Q, \ \left(q \stackrel{k+n+1}{\equiv} r \Leftrightarrow q \stackrel{k}{\equiv} r \right)$.

Supongamos
$$(\equiv \equiv \equiv)$$
. Veamos $\forall q, p \in Q, (q \equiv r \Leftrightarrow q \equiv r)$

$$q\overset{k+n+1}{\equiv}r\Leftrightarrow\left(\forall a\in\Sigma,\,\delta\left(q,a\right)\overset{k+n}{\equiv}\delta\left(r,a\right)\right)\qquad\qquad\text{por definición}\overset{k+n}{\equiv}$$

5. Debemos probar que si
$$\stackrel{k+1}{\equiv} = \stackrel{k}{\equiv}$$
 entonces $\forall n \geq 0, \stackrel{k+n}{\equiv} = \stackrel{k}{\equiv}$:

Caso base:
$$n = 0$$
. Trivial ya que $\stackrel{k+0}{\equiv} = \stackrel{k}{\equiv}$.

Caso inductivo. Suponemos cierto para
$$n$$
 con $n \geq 0$:

Si
$$\begin{pmatrix} k+1 \\ \equiv \end{pmatrix}$$
 entonces $\begin{pmatrix} k+n \\ \equiv \end{pmatrix}$.

Debemos probar que Si
$$\left(\stackrel{k+1}{\equiv}=\stackrel{k}{\equiv}\right)$$
 entonces $\left(\stackrel{k+n+1}{\equiv}=\stackrel{k}{\equiv}\right)$.

Supongamos
$$\begin{pmatrix} k+1 \\ \equiv \end{pmatrix}$$
. Veamos $\forall q,p \in Q, \ \left(q \stackrel{k+n+1}{\equiv} r \Leftrightarrow q \stackrel{k}{\equiv} r \right)$.

Supporting
$$(q, p \in Q, (q = r \Leftrightarrow q = r))$$

$$q \stackrel{k+n+1}{\equiv} r \Leftrightarrow \left(\forall a \in \Sigma, \, \delta\left(q,a\right) \stackrel{k+n}{\equiv} \delta\left(r,a\right) \right) \qquad \text{por definición } \stackrel{k+n}{\equiv} \delta\left(r,a\right)$$

$$\Leftrightarrow \left(\forall a \in \Sigma, \, \delta\left(q, a\right) \stackrel{k}{\equiv} \delta\left(r, a\right)\right)$$

por HI

5. Debemos probar que si
$$\stackrel{k+1}{\equiv} = \stackrel{k}{\equiv}$$
 entonces $\forall n \geq 0, \stackrel{k+n}{\equiv} = \stackrel{k}{\equiv}$:

Caso base: n = 0. Trivial ya que $\stackrel{k+0}{\equiv} = \stackrel{k}{\equiv}$

Caso inductivo. Suponemos cierto para n con $n \ge 0$:

Si
$$\begin{pmatrix} k+1 \\ \equiv \end{pmatrix}$$
 entonces $\begin{pmatrix} k+n \\ \equiv \end{pmatrix}$.

Debemos probar que Si $\left(\stackrel{k+1}{\equiv}=\stackrel{k}{\equiv}\right)$ entonces $\left(\stackrel{k+n+1}{\equiv}=\stackrel{k}{\equiv}\right)$.

 $\mathsf{Supongamos}\,\left(\stackrel{k+1}{\equiv}=\stackrel{k}{\equiv}\right)\!.\,\,\mathsf{Veamos}\,\,\forall q,p\in Q,\,\left(q\stackrel{k+n+1}{\equiv}r\Leftrightarrow q\stackrel{k}{\equiv}r\right).$

Supongamos
$$\begin{pmatrix} k+1 \\ \equiv \end{pmatrix}$$
. Veamos $\forall q, p \in Q, \ \left(q \stackrel{k+n+1}{\equiv} r \Leftrightarrow q \stackrel{k}{\equiv} r\right)$

$$q\overset{k+n+1}{\equiv}r\Leftrightarrow\left(\forall a\in\Sigma,\,\delta\left(q,a\right)\overset{k+n}{\equiv}\delta\left(r,a\right)\right)$$

por definición $\stackrel{k+n}{\equiv}$

$$\Leftrightarrow \left(\forall a \in \Sigma, \, \delta\left(q, a\right) \stackrel{k}{\equiv} \delta\left(r, a\right)\right)$$

por HI

$$\Leftrightarrow q \stackrel{k+1}{\equiv} r$$

por definición $\stackrel{k+1}{\equiv}$.

5. Debemos probar que si $\binom{k+1}{\equiv} = \frac{k}{\equiv}$ entonces $\forall n \geq 0, \binom{k+n}{\equiv} = \frac{k}{\equiv}$:

Inducción en n. Caso base: n = 0. Trivial ya que $\stackrel{k+0}{\equiv} = \stackrel{k}{\equiv}$

Caso inductivo. Suponemos cierto para n con $n \ge 0$:

Si
$$\begin{pmatrix} k+1 \\ \equiv \end{pmatrix}$$
 entonces $\begin{pmatrix} k+n \\ \equiv \end{pmatrix}$.

Debemos probar que Si $\left(\stackrel{k+1}{\equiv}=\stackrel{k}{\equiv}\right)$ entonces $\left(\stackrel{k+n+1}{\equiv}=\stackrel{k}{\equiv}\right)$.

 $\mathsf{Supongamos}\,\left(\stackrel{k+1}{\equiv}=\stackrel{k}{\equiv}\right)\!.\,\,\mathsf{Veamos}\,\,\forall q,p\in Q,\,\left(q\stackrel{k+n+1}{\equiv}r\Leftrightarrow q\stackrel{k}{\equiv}r\right).$

Supongamos
$$\begin{pmatrix} \stackrel{\kappa+1}{\equiv} = \stackrel{\kappa}{\equiv} \end{pmatrix}$$
. Veamos $\forall q, p \in Q, \left(q \stackrel{\kappa+n+1}{\equiv} r \Leftrightarrow q \stackrel{\kappa}{\equiv} r \right)$

$$q \overset{k+n+1}{\equiv} r \Leftrightarrow \left(\forall a \in \Sigma, \, \delta \left(q, a \right) \overset{k+n}{\equiv} \delta \left(r, a \right) \right) \qquad \qquad \text{por definición } \overset{k+n}{\equiv} \\ \Leftrightarrow \left(\forall a \in \Sigma, \, \delta \left(q, a \right) \overset{k}{\equiv} \delta \left(r, a \right) \right) \qquad \qquad \text{por HI}$$

$$\Leftrightarrow q \stackrel{k+1}{\equiv} r \qquad \qquad \text{por definición } \stackrel{k+1}{\equiv} .$$

$$\Leftrightarrow q \stackrel{k}{\equiv} r \qquad \qquad \text{por suposición} \left(\stackrel{k+1}{\equiv} = \stackrel{k}{\equiv} \right).$$

Recordemos

Sea $M=< Q, \Sigma, \delta, q_0, F>$ un AFD sin estados inaccesibles. El AFD mínimo equivalente $M_{min}=< Q_{min}, \Sigma, \delta_{min}, q_{mino}, F_{min}>$ es

$$\begin{aligned} Q_{min} &= (Q \, / \, \equiv) \text{ (las clases de equivalencia de } \equiv \text{)} \\ \delta_{min} \left([q] \, , a \right) &= [\delta \left(q, a \right)] \\ q_{min_0} &= [q_0] \\ F_{min} &= \{ [q] \in Q_{min} : q \in F \} \end{aligned}$$

Algoritmo de minimización de un AFD

Input AFD
$$M=(Q,\Sigma,\delta,q_0,F)$$
 Output $Q/\equiv P=\{Q\}$ $i=0$ while $\left(P\neq\bigcup_{X\in P}X/\stackrel{i}{\equiv}\right)$ do
$$P=\bigcup_{X\in P}X/\stackrel{i}{\equiv}$$
 $i=i+1$ end while return P

Algoritmos de Minimización de AFD

AFD
$$\langle Q, \Sigma, \delta, q, F \rangle$$
, con $|Q| = n$ y $|\Sigma| = s$.
 Hopcroft (1971) $O(ns \log n)$ refinamiento (equivalencia Myhill Nerode)
 Moore (1956) $O(n^2s)$ radix sort
 Brzozowski (1963) $O(2^n)$ revierte a NDA determiniza

Algoritmo de Hopcroft en página 161, *Introduction to Automata Theory, Languages and Computation*, J. Hopcroft, R. Motwani, J. Ullman, Second Edition, Addison Wesley, 2001.

Algoritmo de minimización de autómatas finitos de Hopcroft

Sea AFD $(Q, \Sigma, \delta, q_0, F)$, donde Q no tiene inaccesibles.

```
P := \{F, O \setminus F\};
W := \{F\};
while (W is not empty) do
      choose and remove a set A from W
      for each c in \ do
            let X be the set of states for which a transition on c leads to a state in A
            for each set Y in P for which X \(\Omega\) Y is nonempty and Y \(\X\) is nonempty do
                  replace Y in P by the two sets X n Y and Y \ X
                  if Y is in W
                        replace Y in W by the same two sets
                  else
                        if |\mathbf{X} \cap \mathbf{Y}| \ll |\mathbf{Y} \setminus \mathbf{X}|
                              add X n Y to W
                        else
                              add Y \ X to W
            end:
      end:
end:
```

Algoritmo de minimización de autómatas finitos de Hopcroft

Sea AFD $(Q, \Sigma, \delta, q_0, F)$, donde Q no tiene inaccesibles.

```
P := \{F, O \setminus F\};
W := \{F\};
while (W is not empty) do
     choose and remove a set A from W
     for each c in \( \Sigma \) do
           let X be the set of states for which a transition on c leads to a state in A
           for each set Y in P for which X \(\Omega\) Y is nonempty and Y \(\X\) is nonempty do
                 replace Y in P by the two sets X n Y and Y \ X
                 if Y is in W
                      replace Y in W by the same two sets
                 else
                      if |X \cap Y| \ll |Y \setminus X|
                            add X n Y to W
                       else
                            add Y \ X to W
           end:
     end:
end:
```

La complejidad peor caso es $O(n|\Sigma|\log n)$, donde n=|Q|. Esta cota proviene de que cada una de las $n|\Sigma|$ transiciones participa en, a lo sumo, $O(\log n)$ pasos del algoritmo que realizan refinamiento. Esta cantidad se debe a que en cada paso los conjuntos considerados de Q decrecen a la mitad de su tamaño.

Teorema

Sea AFD $M=< Q, \Sigma, \delta, q_0, F>$ y sea M_{min} el autómata mínimo equivalente. Entonces, cualquier AFD M' que reconozca el mismo lenguaje tiene al menos tantos estados como M_{min} . Es decir,

$$\forall M', \Big(\mathit{Si} \; \mathcal{L} \left(M' \right) = \mathcal{L} \left(M_{min} \right) \; \mathit{entonces} \; |Q'| \geq |Q_{min}| \, \Big)$$

Teorema

Sea AFD $M=< Q, \Sigma, \delta, q_0, F>y$ sea M_{min} el autómata mínimo equivalente. Entonces, cualquier AFD M' que reconozca el mismo lenguaje tiene al menos tantos estados como M_{min} . Es decir,

$$\forall M', \left(\mathit{Si}\;\mathcal{L}\left(M'\right) = \mathcal{L}\left(M_{min}\right) \; \mathit{entonces} \; |Q'| \geq |Q_{min}| \right)$$

Para demostrarlo usaremos el siguiente lema.

Lema

Sean AFDs $M=< Q, \Sigma, \delta, q_0, F>$ y $M'=< Q', \Sigma, \delta', q'_0, F'>$ y M no posee estados inaccesibles.

 $\operatorname{Si}|Q'|<|Q|$ entonces existen dos cadenas $\alpha,\beta\in\Sigma^*$ tales que

Teorema

Sea AFD $M=< Q, \Sigma, \delta, q_0, F>y$ sea M_{min} el autómata mínimo equivalente. Entonces, cualquier AFD M' que reconozca el mismo lenguaje tiene al menos tantos estados como M_{min} . Es decir,

$$\forall M', \left(\mathsf{Si} \; \mathcal{L} \left(M' \right) = \mathcal{L} \left(M_{min} \right) \; \mathsf{entonces} \; |Q'| \geq |Q_{min}| \, \right)$$

Para demostrarlo usaremos el siguiente lema.

Lema

Sean AFDs $M=< Q, \Sigma, \delta, q_0, F>$ y $M'=< Q', \Sigma, \delta', q'_0, F'>$ y M no posee estados inaccesibles.

Si |Q'| < |Q| entonces existen dos cadenas $\alpha, \beta \in \Sigma^*$ tales que

$$\left(\widehat{\delta}\left(q_{0},\alpha\right)\neq\widehat{\delta}\left(q_{0},\beta\right)\right)\wedge\left(\widehat{\delta'}\left(q'_{0},\alpha\right)=\widehat{\delta'}\left(q'_{0},\beta\right)\right).$$

Por el absurdo. Supongamos que $\exists M'$ tal que $|Q'| < |Q_{min}|$.

Por el absurdo. Supongamos que $\exists M'$ tal que $|Q'|<|Q_{min}|$. Según el lema anterior existen dos cadenas $\alpha,\beta\in\Sigma^*$ tales que

Por el absurdo. Supongamos que $\exists M'$ tal que $|Q'| < |Q_{min}|$. Según el lema anterior existen dos cadenas $\alpha, \beta \in \Sigma^*$ tales que

$$\left(\widehat{\delta_{min}}\left(q_{0},\alpha\right)\neq\widehat{\delta_{min}}\left(q_{0},\beta\right)\right)\wedge\left(\widehat{\delta'}\left(q'_{0},\alpha\right)=\widehat{\delta'}\left(q'_{0},\beta\right)\right),$$

Por el absurdo. Supongamos que $\exists M'$ tal que $|Q'| < |Q_{min}|$. Según el lema anterior existen dos cadenas $\alpha, \beta \in \Sigma^*$ tales que

$$\left(\widehat{\delta_{min}}\left(q_{0},\alpha\right)\neq\widehat{\delta_{min}}\left(q_{0},\beta\right)\right)\wedge\left(\widehat{\delta'}\left(q'_{0},\alpha\right)=\widehat{\delta'}\left(q'_{0},\beta\right)\right),$$

Dado que $\widehat{\delta_{min}}\left(q_0,\alpha\right)$ y $\widehat{\delta_{min}}\left(q_0,\beta\right)$ son distinguibles por pertenecer al autómata M_{min} ,

Por el absurdo. Supongamos que $\exists M'$ tal que $|Q'| < |Q_{min}|$. Según el lema anterior existen dos cadenas $\alpha, \beta \in \Sigma^*$ tales que

$$\left(\widehat{\delta_{min}}\left(q_{0},\alpha\right)\neq\widehat{\delta_{min}}\left(q_{0},\beta\right)\right)\wedge\left(\widehat{\delta'}\left(q'_{0},\alpha\right)=\widehat{\delta'}\left(q'_{0},\beta\right)\right),$$

Dado que $\widehat{\delta_{min}}\left(q_0,\alpha\right)$ y $\widehat{\delta_{min}}\left(q_0,\beta\right)$ son distinguibles por pertenecer al autómata $M_{min},\,\exists\gamma\in\Sigma^*$

$$\widehat{\delta_{min}}\left(q_{0},\alpha\gamma\right)\in F\wedge\widehat{\delta_{min}}\left(q_{0},\beta\gamma\right)\notin F.$$

Por el absurdo. Supongamos que $\exists M'$ tal que $|Q'| < |Q_{min}|$. Según el lema anterior existen dos cadenas $\alpha, \beta \in \Sigma^*$ tales que

$$\left(\widehat{\delta_{min}}\left(q_{0},\alpha\right)\neq\widehat{\delta_{min}}\left(q_{0},\beta\right)\right)\wedge\left(\widehat{\delta'}\left(q'_{0},\alpha\right)=\widehat{\delta'}\left(q'_{0},\beta\right)\right),$$

Dado que $\widehat{\delta_{min}}\left(q_0,\alpha\right)$ y $\widehat{\delta_{min}}\left(q_0,\beta\right)$ son distinguibles por pertenecer al autómata M_{min} , $\exists\gamma\in\Sigma^*$

$$\widehat{\delta_{min}}(q_0, \alpha \gamma) \in F \wedge \widehat{\delta_{min}}(q_0, \beta \gamma) \notin F.$$

Entonces,
$$\alpha \gamma \in \mathcal{L}\left(M_{min}\right) \Leftrightarrow \beta \gamma \notin \mathcal{L}\left(M_{min}\right)$$
.

Por el absurdo. Supongamos que $\exists M'$ tal que $|Q'| < |Q_{min}|$. Según el lema anterior existen dos cadenas $\alpha, \beta \in \Sigma^*$ tales que

$$\left(\widehat{\delta_{min}}\left(q_{0},\alpha\right)\neq\widehat{\delta_{min}}\left(q_{0},\beta\right)\right)\wedge\left(\widehat{\delta'}\left(q'_{0},\alpha\right)=\widehat{\delta'}\left(q'_{0},\beta\right)\right),$$

Dado que $\widehat{\delta_{min}}\left(q_0,\alpha\right)$ y $\widehat{\delta_{min}}\left(q_0,\beta\right)$ son distinguibles por pertenecer al autómata M_{min} , $\exists\gamma\in\Sigma^*$

$$\widehat{\delta_{min}}(q_0, \alpha \gamma) \in F \wedge \widehat{\delta_{min}}(q_0, \beta \gamma) \notin F.$$

Entonces, $\alpha \gamma \in \mathcal{L}\left(M_{min}\right) \Leftrightarrow \beta \gamma \notin \mathcal{L}\left(M_{min}\right)$.

Por otro lado, como $\widehat{\delta'}\left(q_0',\alpha\right) = \widehat{\delta'}\left(q_0',\beta\right)$,

Por el absurdo. Supongamos que $\exists M'$ tal que $|Q'| < |Q_{min}|$. Según el lema anterior existen dos cadenas $\alpha, \beta \in \Sigma^*$ tales que

$$\left(\widehat{\delta_{min}}\left(q_{0},\alpha\right)\neq\widehat{\delta_{min}}\left(q_{0},\beta\right)\right)\wedge\left(\widehat{\delta'}\left(q'_{0},\alpha\right)=\widehat{\delta'}\left(q'_{0},\beta\right)\right),$$

Dado que $\widehat{\delta_{min}}\left(q_0,\alpha\right)$ y $\widehat{\delta_{min}}\left(q_0,\beta\right)$ son distinguibles por pertenecer al autómata $M_{min},\,\exists\gamma\in\Sigma^*$

$$\widehat{\delta_{min}}(q_0, \alpha \gamma) \in F \wedge \widehat{\delta_{min}}(q_0, \beta \gamma) \notin F.$$

Entonces, $\alpha \gamma \in \mathcal{L}\left(M_{min}\right) \Leftrightarrow \beta \gamma \notin \mathcal{L}\left(M_{min}\right)$.

Por otro lado, como $\widehat{\delta'}(q'_0, \alpha) = \widehat{\delta'}(q'_0, \beta)$,

$$\widehat{\delta'}\left(q'_{0},\alpha\gamma\right)\in F\wedge\widehat{\delta'}\left(q'_{0},\beta\gamma\right)\in F\text{, o ambos }\notin F,$$

Por el absurdo. Supongamos que $\exists M'$ tal que $|Q'| < |Q_{min}|$. Según el lema anterior existen dos cadenas $\alpha, \beta \in \Sigma^*$ tales que

$$\left(\widehat{\delta_{min}}\left(q_{0},\alpha\right)\neq\widehat{\delta_{min}}\left(q_{0},\beta\right)\right)\wedge\left(\widehat{\delta'}\left(q'_{0},\alpha\right)=\widehat{\delta'}\left(q'_{0},\beta\right)\right),$$

Dado que $\widehat{\delta_{min}}\left(q_0,\alpha\right)$ y $\widehat{\delta_{min}}\left(q_0,\beta\right)$ son distinguibles por pertenecer al autómata $M_{min},\,\exists\gamma\in\Sigma^*$

$$\widehat{\delta_{min}}(q_0, \alpha \gamma) \in F \wedge \widehat{\delta_{min}}(q_0, \beta \gamma) \notin F.$$

Entonces, $\alpha \gamma \in \mathcal{L}\left(M_{min}\right) \Leftrightarrow \beta \gamma \notin \mathcal{L}\left(M_{min}\right)$.

Por otro lado, como $\widehat{\delta}'(q_0', \alpha) = \widehat{\delta}'(q_0', \beta)$,

$$\widehat{\delta'}\left(q'_{0},\alpha\gamma\right)\in F\wedge\widehat{\delta'}\left(q'_{0},\beta\gamma\right)\in F\text{, o ambos }\notin F,$$

Entonces, $\alpha \gamma \in \mathcal{L}\left(M'\right) \Leftrightarrow \beta \gamma \in \mathcal{L}\left(M'\right)$.

Por el absurdo. Supongamos que $\exists M'$ tal que $|Q'| < |Q_{min}|$. Según el lema anterior existen dos cadenas $\alpha, \beta \in \Sigma^*$ tales que

$$\left(\widehat{\delta_{min}}\left(q_{0},\alpha\right)\neq\widehat{\delta_{min}}\left(q_{0},\beta\right)\right)\wedge\left(\widehat{\delta'}\left(q'_{0},\alpha\right)=\widehat{\delta'}\left(q'_{0},\beta\right)\right),$$

Dado que $\widehat{\delta_{min}}\left(q_0,\alpha\right)$ y $\widehat{\delta_{min}}\left(q_0,\beta\right)$ son distinguibles por pertenecer al autómata $M_{min},\,\exists\gamma\in\Sigma^*$

$$\widehat{\delta_{min}}(q_0, \alpha \gamma) \in F \wedge \widehat{\delta_{min}}(q_0, \beta \gamma) \notin F.$$

Entonces, $\alpha\gamma\in\mathcal{L}\left(M_{min}\right)\Leftrightarrow\beta\gamma\notin\mathcal{L}\left(M_{min}\right)$.

Por otro lado, como $\widehat{\delta'}(q'_0, \alpha) = \widehat{\delta'}(q'_0, \beta)$,

$$\widehat{\delta'}\left(q'_{0},\alpha\gamma\right)\in F\wedge\widehat{\delta'}\left(q'_{0},\beta\gamma\right)\in F\text{, o ambos }\notin F,$$

Entonces, $\alpha \gamma \in \mathcal{L}\left(M'\right) \Leftrightarrow \beta \gamma \in \mathcal{L}\left(M'\right)$.

Por lo tanto $\mathcal{L}(M_{min}) \neq \mathcal{L}(M')$, lo que contradice la hipótesis $\mathcal{L}(M') = \mathcal{L}(M_{min})$.

El lema pendiente

Lema

Sean AFDs $M=< Q, \Sigma, \delta, q_0, F>$ y $M'=< Q', \Sigma, \delta', q_0', F'>$ y M no posee estados inaccesibles.

Si |Q'| < |Q| entonces existen dos cadenas $\alpha, \beta \in \Sigma^*$ tales que

El lema pendiente

Lema

Sean AFDs $M=< Q, \Sigma, \delta, q_0, F>$ y $M'=< Q', \Sigma, \delta', q_0', F'>$ y M no posee estados inaccesibles.

Si |Q'| < |Q| entonces existen dos cadenas $\alpha, \beta \in \Sigma^*$ tales que

$$\left(\widehat{\delta}\left(q_{0},\alpha\right)\neq\widehat{\delta}\left(q_{0},\beta\right)\right)\wedge\left(\widehat{\delta'}\left(q'_{0},\alpha\right)=\widehat{\delta'}\left(q'_{0},\beta\right)\right).$$

Demostración. Equivalentemente, sean AFDs $M=< Q, \Sigma, \delta, q_0, F>$ y $M'=< Q', \Sigma, \delta', q'_0, F'>$ y M no posee estados inaccesibles. Supongamos que todo par de cadenas que conducen a estados diferentes en M conducen también a estados diferentes en M', es decir,

$$\forall \alpha,\beta \in \Sigma^* \left(\text{ Si } \widehat{\delta} \left(q_0,\alpha \right) \neq \widehat{\delta} \left(q_0,\beta \right) \text{ entonces } \widehat{\delta'} \left(q_0',\alpha \right) \neq \widehat{\delta'} \left(q_0',\beta \right) \right).$$

Entonces, la cantidad de estados de M^\prime es mayor o igual a la cantidad de estados de M, es decir

$$|Q| \le |Q'|.$$

Es suficiente definir una función inyectiva f de Q en Q'.

Es suficiente definir una función inyectiva f de Q en Q'. Consideremos la función $g:Q\to \Sigma^*$ definida por

$$g\left(q\right) = \min_{long-lex} \left\{ \alpha \in \Sigma^* : \widehat{\delta}\left(q_0, \alpha\right) = q \right\}$$

 $(g(q) \text{ es el camino mínimo desde } q_0 \text{ a } q.)$

Es suficiente definir una función inyectiva f de Q en Q'. Consideremos la función $g:Q\to \Sigma^*$ definida por

$$g\left(q\right) = \min_{long-lex} \left\{ \alpha \in \Sigma^* : \widehat{\delta}\left(q_0, \alpha\right) = q \right\}$$

 $(g(q) \text{ es el camino mínimo desde } q_0 \text{ a } q.)$

Sea $f:Q \to Q'$ mediante $f\left(q\right) = \widehat{\delta'}\left(q'_0,g\left(q\right)\right)$. (f(q) es el estado al que llego en M' usando el camino mínimo en M.)

Es suficiente definir una función inyectiva f de Q en Q'. Consideremos la función $g:Q\to \Sigma^*$ definida por

$$g\left(q\right) = \min_{long-lex} \left\{ \alpha \in \Sigma^* : \widehat{\delta}\left(q_0, \alpha\right) = q \right\}$$

 $(g(q) \text{ es el camino mínimo desde } q_0 \text{ a } q.)$

Sea $f:Q \to Q'$ mediante $f\left(q\right) = \widehat{\delta'}\left(q_0',g\left(q\right)\right)$. (f(q) es el estado al que llego en M' usando el camino mínimo en M.)

Si $p,q\in Q$ son diferentes, $\widehat{\delta}\left(q_{0},g\left(p\right)\right)\neq\widehat{\delta}\left(q_{0},g\left(q\right)\right)$.

Y, por hipotesis, $\forall \alpha,\beta \in \Sigma^*, \left(\text{ Si } \widehat{\delta} \left(q_0,\alpha \right) \neq \widehat{\delta} \left(q_0,\beta \right) \text{ entonces } \widehat{\delta'} \left(q_0',\alpha \right) \neq \widehat{\delta'} \left(q_0',\beta \right) \right).$

Es suficiente definir una función inyectiva f de Q en Q'. Consideremos la función $g:Q\to \Sigma^*$ definida por

$$g\left(q\right) = \min_{long-lex} \left\{ \alpha \in \Sigma^* : \widehat{\delta}\left(q_0, \alpha\right) = q \right\}$$

 $(g(q) \text{ es el camino mínimo desde } q_0 \text{ a } q.)$

Sea $f:Q\to Q'$ mediante $f\left(q\right)=\widehat{\delta'}\left(q_0',g\left(q\right)\right)$. (f(q) es el estado al que llego en M' usando el camino mínimo en M.)

Si $p,q\in Q$ son diferentes, $\widehat{\delta}\left(q_{0},g\left(p\right)\right)\neq\widehat{\delta}\left(q_{0},g\left(q\right)\right)$.

Y, por hipotesis,

$$\forall \alpha,\beta \in \Sigma^*, \left(\text{ Si } \widehat{\delta} \left(q_0,\alpha \right) \neq \widehat{\delta} \left(q_0,\beta \right) \text{ entonces } \widehat{\delta'} \left(q_0',\alpha \right) \neq \widehat{\delta'} \left(q_0',\beta \right) \right).$$

Entonces, si p y q en Q son differentes, $\widehat{\delta'}(q'_0, g(p)) \neq \widehat{\delta'}(q'_0, g(q))$.

Es suficiente definir una función inyectiva f de Q en Q'. Consideremos la función $g: Q \to \Sigma^*$ definida por

$$g\left(q\right) = \min_{long-lex} \left\{ \alpha \in \Sigma^* : \widehat{\delta}\left(q_0, \alpha\right) = q \right\}$$

(g(q)) es el camino mínimo desde q_0 a q.)

Sea $f: Q \to Q'$ mediante $f(q) = \widehat{\delta}'(q_0', q(q))$. (f(q)) es el estado al que llego en M' usando el camino mínimo en M.)

Si $p, q \in Q$ son differentes, $\widehat{\delta}(q_0, q(p)) \neq \widehat{\delta}(q_0, q(q))$.

Y, por hipotesis,

$$\forall \alpha, \beta \in \Sigma^*, \left(\text{ Si } \widehat{\delta} \left(q_0, \alpha \right) \neq \widehat{\delta} \left(q_0, \beta \right) \text{ entonces } \widehat{\delta'} \left(q_0', \alpha \right) \neq \widehat{\delta'} \left(q_0', \beta \right) \right).$$

Entonces, si p y q en Q son differentes, $\widehat{\delta'}(q'_0, g(p)) \neq \widehat{\delta'}(q'_0, g(q))$.

Usando la definición de f, tenemos $f(p) \neq f(q)$.

Es suficiente definir una función inyectiva f de Q en Q'. Consideremos la función $g:Q\to \Sigma^*$ definida por

$$g\left(q\right) = \min_{long-lex} \left\{ \alpha \in \Sigma^* : \widehat{\delta}\left(q_0, \alpha\right) = q \right\}$$

 $(g(q) \text{ es el camino mínimo desde } q_0 \text{ a } q.)$

Sea $f:Q \to Q'$ mediante $f\left(q\right) = \widehat{\delta'}\left(q_0',g\left(q\right)\right)$. (f(q) es el estado al que llego en M' usando el camino mínimo en M.)

Si $p,q\in Q$ son diferentes, $\widehat{\delta}\left(q_{0},g\left(p\right)\right)
eq\widehat{\delta}\left(q_{0},g\left(q\right)\right)$.

Y, por hipotesis,

$$\forall \alpha, \beta \in \Sigma^*, \left(\text{ Si } \widehat{\delta} \left(q_0, \alpha \right) \neq \widehat{\delta} \left(q_0, \beta \right) \text{ entonces } \widehat{\delta'} \left(q_0', \alpha \right) \neq \widehat{\delta'} \left(q_0', \beta \right) \right).$$

Entonces, si p y q en Q son differentes, $\widehat{\delta'}\left(q'_0,g\left(p\right)\right) \neq \widehat{\delta'}\left(q'_0,g\left(q\right)\right)$.

Usando la definición de f, tenemos $f(p) \neq f(q)$.

Concluímos $f:Q\to Q'$ es inyectiva, y por lo tanto $|Q|\leq |Q'|$.

1. Dar un autómata AFD tal que $Q/\stackrel{2}{\equiv}$ sea distinto de $Q/\stackrel{3}{\equiv}$.

- 1. Dar un autómata AFD tal que $Q/\stackrel{2}{\equiv}$ sea distinto de $Q/\stackrel{3}{\equiv}$.
- 2. Sea un AFD $M=(Q,\Sigma,\delta,q_0,F)$. Mostrar que para todo entero $k\geq 0$,

$$((Q/\stackrel{k}{\equiv}))/\stackrel{k}{\equiv})$$
 es igual a $Q/\stackrel{k}{\equiv}$.

- 1. Dar un autómata AFD tal que $Q/\stackrel{2}{\equiv}$ sea distinto de $Q/\stackrel{3}{\equiv}$.
- 2. Sea un AFD $M=(Q,\Sigma,\delta,q_0,F)$. Mostrar que para todo entero $k\geq 0$,

$$((Q/\stackrel{k}{\equiv}))/\stackrel{k}{\equiv})$$
 es igual a $Q/\stackrel{k}{\equiv}$.

3. Consideremos el algoritmo de minimización de autómatas dado aquí y reemplacemos la instrucción i=i+1 por la instrucción i=i+2. ¿Terminará la ejecución del ciclo? En caso de que sí, ¿Con qué resultado?

- 1. Dar un autómata AFD tal que $Q/\stackrel{2}{\equiv}$ sea distinto de $Q/\stackrel{3}{\equiv}$.
- 2. Sea un AFD $M=(Q,\Sigma,\delta,q_0,F).$ Mostrar que para todo entero $k\geq 0$,

$$((Q/\stackrel{k}{\equiv}))/\stackrel{k}{\equiv})$$
 es igual a $Q/\stackrel{k}{\equiv}$.

- 3. Consideremos el algoritmo de minimización de autómatas dado aquí y reemplacemos la instrucción i=i+1 por la instrucción i=i+2. ¿Terminará la ejecución del ciclo? En caso de que sí, ¿Con qué resultado?
- 4. Un transductor es un autómata con entrada y con salida (también llamado "Mealy machine"). Formalmente un transductor finito determinístico es una 7-upla $M=(Q,\Sigma,\Delta,\delta,\rho,q_0,F)$ donde $Q,\Sigma,\,\delta$ y q_0 son como en un DFA, Δ es el alfabeto de salida y ρ es la función que mapea $Q\times\Sigma$ en Δ . Es decir $\rho(q,a)$ es salida de la transición del estado q con entrada a. La salida de M con entrada $a_1\dots a_n$ es $\rho(q_0,a_1)\rho(q_1,a_2)\dots\rho(q_{n-1},a_n)$ donde $q_0,\,q_1\dots q_{n-1}$ es la secuencia de estados tal que $\delta(q_{i-1},a)=q_i$ para $i=1,\dots,n$.

¿Cómo es el algoritmo de minimización para transductores?