```
In [2]: # 1
    import pandas as pd
    zomato_df = pd.read_excel('zomato.xlsx')
    zomato_df
```

Out[2]:

	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Locality Verbose
0	6317637	Le Petit Souffle	162	Makati City	Third Floor, Century City Mall, Kalayaan Avenu	Century City Mall, Poblacion, Makati City	Century City Mall, Poblacion, Makati City, Mak
1	6304287	Izakaya Kikufuji	162	Makati City	Little Tokyo, 2277 Chino Roces Avenue, Legaspi	Little Tokyo, Legaspi Village, Makati City	Little Tokyo, Legaspi Village, Makati City, Ma
2	6300002	Heat - Edsa Shangri-La	162	Mandaluyong City	Edsa Shangri-La, 1 Garden Way, Ortigas, Mandal	Edsa Shangri-La, Ortigas, Mandaluyong City	Edsa Shangri- La, Ortigas, Mandaluyong City, Ma
3	6318506	Ooma	162	Mandaluyong City	Third Floor, Mega Fashion Hall, SM Megamall, O	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal
4	6314302	Sambo Kojin	162	Mandaluyong City	Third Floor, Mega Atrium, SM Megamall, Ortigas	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal
					•••		
9546	5915730	NamlÛ± Gurme	208	ÛÁstanbul	Kemanke⊡ô Karamustafa Pa⊡ôa Mahallesi, RÛ±htÛ±	Karakí_y	Karakí_y, ÛÁstanbul
9547	5908749	Ceviz AÛôacÛ±	208	ÛÁstanbul	Ko□ôuyolu Mahallesi, Muhittin íìstí_ndaÛô Cadd	Ko⊡ôuyolu	Ko⊡ôuyolu, ÛÁstanbul
9548	5915807	Huqqa	208	ÛÁstanbul	Kuruí_e□ôme Mahallesi, Muallim Naci Caddesi, N	Kuruí_e□ôme	Kuruí_e⊡ôme, ÛÁstanbul
9549	5916112	A□ô□ôk Kahve	208	ÛÁstanbul	Kuruí_e□ôme Mahallesi, Muallim Naci Caddesi, N	Kuruí_e□ôme	Kuruí_e⊡ôme, ÛÁstanbul
9550	5927402	Walter's Coffee Roastery	208	ÛÁstanbul	CafeaÛôa Mahallesi, BademaltÛ± Sokak, No 21/B,	Moda	Moda, ÛÁstanbul

9551 rows × 21 columns

In [3]: # Display basic information about the dataset zomato_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9551 entries, 0 to 9550
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype				
0	Restaurant ID	9551 non-null	int64				
1	Restaurant Name	9551 non-null	object				
2	Country Code	9551 non-null	int64				
3	City	9551 non-null	object				
4	Address	9551 non-null	object				
5	Locality	9551 non-null	object				
6	Locality Verbose	9551 non-null	object				
7	Longitude	9551 non-null	float64				
8	Latitude	9551 non-null	float64				
9	Cuisines	9542 non-null	object				
10	Average Cost for two	9551 non-null	int64				
11	Currency	9551 non-null	object				
12	Has Table booking	9551 non-null	object				
13	Has Online delivery	9551 non-null	object				
14	Is delivering now	9551 non-null	object				
15	Switch to order menu	9551 non-null	object				
16	Price range	9551 non-null	int64				
17	Aggregate rating	9551 non-null	float64				
18	Rating color	9551 non-null	object				
19	Rating text	9551 non-null	object				
20	Votes	9551 non-null	int64				
dtypes: $float64(3)$ int64(5) object(13)							

dtypes: float64(3), int64(5), object(13)

memory usage: 1.5+ MB

```
import pandas as pd

# Create a DataFrame of Boolean values indicating missing values
missing_values = zomato_df.isnull()

# Count the number of missing values for each column
missing_counts = missing_values.sum()

# Display the count of missing values for each column
print("Number of missing values for each column:")
print(missing_counts)
```

Number of missing values for each column: Restaurant ID Restaurant Name 0 Country Code 0 0 City Address Locality Locality Verbose Longitude 0 Latitude 0 Cuisines 9 Average Cost for two Currency Has Table booking 0 Has Online delivery Is delivering now 0 Switch to order menu 0 Price range Aggregate rating 0 Rating color 0 Rating text 0 Votes 0 dtype: int64

```
In [5]: # 3
        import pandas as pd
        # describe() method to obtain summary statistics for numerical columns
        summary_stats = zomato_df.describe()
        # Display the summary statistics
        print(summary stats)
                Restaurant ID
                               Country Code
                                               Longitude
                                                              Latitude
                9.551000e+03
                                9551.000000 9551.000000 9551.000000
        count
        mean
                9.051128e+06
                                  18.365616
                                               64.126574
                                                             25.854381
                                  56,750546
        std
                8.791521e+06
                                               41,467058
                                                             11.007935
        min
                5.300000e+01
                                   1.000000 -157.948486
                                                            -41.330428
        25%
                3.019625e+05
                                   1.000000
                                               77.081343
                                                             28.478713
        50%
                6.004089e+06
                                   1.000000
                                               77.191964
                                                             28.570469
        75%
                1.835229e+07
                                   1.000000
                                               77.282006
                                                             28.642758
                1.850065e+07
                                 216.000000
                                              174.832089
                                                             55.976980
        max
                                      Price range
               Average Cost for two
                                                   Aggregate rating
                                                                             Votes
                                                        9551.000000
        count
                         9551.000000
                                      9551.000000
                                                                       9551.000000
                                                                        156.909748
                         1199.210763
                                         1.804837
                                                            2.666370
        mean
                                                            1.516378
        std
                        16121.183073
                                         0.905609
                                                                        430.169145
        min
                            0.000000
                                         1.000000
                                                            0.000000
                                                                          0.000000
        25%
                          250.000000
                                         1.000000
                                                            2.500000
                                                                          5.000000
        50%
                          400.000000
                                         2.000000
                                                            3.200000
                                                                         31.000000
        75%
                          700.000000
                                         2.000000
                                                            3.700000
                                                                        131.000000
                       800000.000000
                                         4.000000
                                                            4.900000 10934.000000
        max
In [6]:
        # 4
        import pandas as pd
        # Identify categorical columns using select dtypes()
        categorical_columns = zomato_df.select_dtypes(include=['object', 'category']).
        # Display the list of categorical columns
        print("Categorical columns in the Zomato dataset:")
        print(categorical_columns)
        Categorical columns in the Zomato dataset:
        Index(['Restaurant Name', 'City', 'Address', 'Locality', 'Locality Verbose',
                'Cuisines', 'Currency', 'Has Table booking', 'Has Online delivery',
                'Is delivering now', 'Switch to order menu', 'Rating color',
                'Rating text'],
              dtype='object')
```

```
In [7]: # 5
    import seaborn as sns
    import matplotlib.pyplot as plt

# Create a count plot using Seaborn's countplot() function
    plt.figure(figsize=(10, 6)) # Adjust the figure size if needed
    sns.countplot(y='Cuisines', data=zomato_df, order=zomato_df['Cuisines'].value_

# Add title and labels
    plt.title('Distribution of Cuisine Types in Zomato Dataset')
    plt.xlabel('Frequency')
    plt.ylabel('Cuisine Type')

# Rotate the y-axis labels for better readability
    plt.xticks(rotation=45)

# Show the plot
    plt.show()
```



```
In [9]: # 6

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')

zomato_df = pd.read_excel('zomato.xlsx')
zomato_df

sns.histplot(data = zomato_df, x='Aggregate rating', bins=20, kde=True)
plt.title('Distribution of Restaurant Ratings')
plt.xlabel('Rating')
plt.ylabel('Frequency')
plt.show()
```

Distribution of Restaurant Ratings


```
import seaborn as sns
import matplotlib.pyplot as plt

sns.scatterplot(data=zomato_df, x='City', y='Price range')
plt.title('Relationship between City and Price range')
plt.xlabel('City')
plt.ylabel('Price range')
plt.show()
```



```
In [11]: # 8

import seaborn as sns
import matplotlib.pyplot as plt

# Let's say 'City' is the column for cities and 'Aggregate rating' is the colu
plt.figure(figsize=(12, 6))
sns.barplot(data=zomato_df, x='City', y='Aggregate rating')
plt.title('Aggregate Rating of Restaurants in Different Cities')
plt.xlabel('City')
plt.ylabel('Aggregate Rating')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
plt.show()
```



```
In [12]: # 9

df1=zomato_df.groupby('Cuisines')['Votes'].agg(['mean','count']).reset_index()
df1.columns=['Cuisines','mean Votes','count']
print(df1.head(1))
sns.boxplot(x='count',y='mean Votes',data=df1)
plt.title('mean Votes according to the Cuisines')
plt.xlabel('Count')
plt.ylabel('Mean Cuisines')
plt.show()
Cuisines mean Votes count
0 Afghani 9.75 4
```

mean Votes according to the Cuisines

In []: #10 conclusion:

From the count plot of cuisine types, it's clear which cuisines are most popul Regional preferences can be deduced by cross-referencing cuisine types with ci Rating Patterns:

The histogram of restaurant ratings might reveal that most restaurants fall wi If the ratings are heavily skewed towards the higher end, it might suggest tha Cost vs. Rating Analysis:

The scatter plot between average cost for two and ratings can show if there's A lack of strong correlation might indicate that restaurant pricing and qualit City-Wise Performance:

The bar plot of average ratings by city helps to identify which cities have hi If certain cities have significantly lower ratings, it may point to regional i Data Quality and Integrity:

The analysis of missing values reveals columns that might have incomplete data Handling missing data properly is crucial for maintaining the accuracy of furt