Reprezentace dat

INP 2019 FIT VUT v Brně

Pojem kód a typy kódů

- Kód je vzájemně jednoznačné přiřazení mezi symboly dvou množin.
- Data reprezentujeme pomocí kódů, které můžeme mj. zhruba rozdělit do dvou skupin:
 - kódy pro vnější přenos dat (znaky) (ASCII, UNICODE atd.)
 - kódy pro vnitřní reprezentaci dat (doplňkový kód, BCD atd.),
- přičemž pro čísla zadaná ve formátu s pohyblivou řádovou čárkou (FP) se používají jiné kódy než pro čísla s pevnou řádovou čárkou (FX).

Obsah přednášky

- Kód
- Čísla v pevné řádové čárce (FX)
- Kód zbytkových tříd
- · Desítková čísla dvojkově kódovaná
- Huffmanův kód
- Čísla v pohyblivé řádové čárce (FP)
- Standard IEEE 754

2

Kódy pro znaky dle Wikipedie

Early telecommunications	ASCII · ISO/IEC 646 · ISO/IEC 6937 · T.61 · BCD (6-bit) · Baudot code · Morse code · Chinese telegraph code
ISO/IEC 8859	-1 2.3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16
Bibliographic use	ANSEL - ISO 5426 / 5426-2 / 5427 / 5428 / 6438 / 6861 / 6862 / 10585 / 10586 / 10754 / 11822 - MARC-8
National standards	ArmSCII+CNS 11643 • GOST 10859 • GB 2312 • HKSCS • ISCII+JIS X 0201 • JIS X 0208 • JIS X 0212 • JIS X 0213 • KPS 9566 • KS X 1001 • PASCII • TIS-620 • TSCII • VISCII • VUSCII
EUC	CN-JP-KR-TW
ISO/IEC 2022	CN-JP-KR-CCCII
MacOS codepages ("scripts")	Arabic · CentralEurRoman · ChineseSimp / EUC-CN · ChineseTrad / Big5 · Croatian · Cyrillic · Devanagari · Dingbats · Farsi · Greek · Gujarati · Gurmukhi · Hebrew · Icelandic · Japanese / Shift.JIS · Korean / EUC-KR · Roman · Romanian · Symbol · Thai / TIS-620 · Turkish · Ukrainian
DOS codepages	437 - 667 - 668 - 720 - 737 - 770 - 773 - 775 - 790 - 819 - 850 - 851 - 852 - 853 - 854 - 855 - 857 - 858 - 860 - 861 - 862 - 863 - 864 - 865 - 866 - 867 - 868 - 869 - 872 - 895 - 912 - 915 - 932 - 991 - Kamenický - Mazovia - MIK - Iran System
Windows codepages	874/TiS-620+932/ShiftulS+936/GBK+949/EUC-KR+950/Big5 1250 1251+1252+1253+1254+1255+1256+1257+1258+28604+54936/GB18030
EBCDIC codepages	37/1140 · 273/1141 · 277/1142 · 278/1143 · 280/1144 · 284/1145 · 285/1146 · 297/1147 · 420/16804 · 424/12712 · 500/1148 · 838/1160 · 871/1149 · 875/9067 · 930/1390 · 933/1364 · 937/1371 · 935/1388 · 939/1399 · 1025/1154 · 1026/1155 · 1047/924 · 1112/1156 · 1122/1157 · 1123/1158 · 1130/1164 · JEF · KEIS
Platform specific	ATASCII · CDC display code · DEC-MCS · DEC Radix-50 · ELWRO-Junior · Fieldata · GSM 03.38 · HP roman8 · PETSCII · TI calculator character sets · WISCII · ZX Spectrum character set
Unicode ISO/IEC 10646	UTF-8 · UTF-16/UCS-2 · UTF-32/UCS-4 · UTF-7 · UTF-1 · UTF-EBCDIC · GB 18030 · SCSU · BOCU-1
Miscellaneous codepages	APL · Cork · HZ · IBM code page 1133 · KOI8 · TRON
Related topics	control character (C0 C1) - CCSID - Character encodings in HTML - charset detection - Han unification - ISO 6429/IEC 6429/ANSI X3.64 - mojibake

Opakování FX: Základní kódy Př. Obrazy +7 a -7 na 8 bitech včetně znaménka

	+7	-7
Přímý kód se znaménkem	0000 0111	1000 0111
Inverzní kód (1- doplněk)	0000 0111	1111 1000
Dvojkový doplňkový kód	0000 0111	1111 1001
Kód se sudým posunutím (128)	1000 0111	0111 1001
Kód s lichým posunutím (127)	1000 0110	0111 1000

7	6	5	4	3	2	1	0	
MSB							LSB	
								•

znaménko řádová čárka

5

Chyby zobrazení čísla FX

- Zobrazené číslo FX je zatíženo třemi typy chyb:
 - chyba měření: vzniká při pořizování čísla vlivem chyby metody měření
 - chyba stupnice (scaling): číselná soustava nemůže na konečném počtu míst vyjádřit přesně všechny hodnoty
 - chyba zanedbáním (truncation = odseknutí) a zaokrouhlením (rounding)

Význam kódových kombinací (8 bitů)

Význam v kódu

v yznani v kodu							
76543210	Přímý se zn.	Inverzní	Doplňkový	Se sud. pos.	S lich. pos.		
				128	127		
00000000	0	0	0	-128	-127		
00000001	1	1	1	-127	-126		
00000010	2	2	2	-126	-125		
		•••					
01111110				-2	-1		
01111111	127	127	127	-1	0		
10000000	-0	-127	-128	0	+1		
10000001	-1	-126	-127	+1	+2		
11111110	-126	-1	-2	126	127		
11111111	-127	-0	-1	127	128		

6

Chyba stupnice

- Na obrázku je průběh funkce chyby stupnice pro celá čísla s pevnou řádovou čárkou.
- Vidíme, že jsou přesně vyjádřena pouze celá čísla 0, 1, 2, 3 ..., kdy chyba = 0. Např. obraz čísla 1,5 má maximální velikost chyby, a to 0,5.
- Průběh funkce zobrazující velikost chyby je lineární mezi body celých čísel a čísly 0,5, 1,5, atd. Od obrazu největšího (a nejmenšího) zobrazitelného čísla začíná chyba lineárně růst nad všechny meze.

Chyba zanedbáním

 Vidíme, že chyba roste v intervalu <0,1) od nuly do 1, a obdobně v dalším intervalu <1,2), atd.

Pozn: Způsob zaokrouhlování je věcí konvence

Nepolyadické soustavy

Příkladem nepolyadické soustavy je soustava římských číslic

I V X L C D M 1 5 10 50 100 500 1000

Tato soustava je pro počítání nevhodná.

Použitelná nepolyadická soustava je **soustava zbytkových tříd** (RNS - Residue Number System), označovaná jako kód zbytkových tříd KZT.

Soustava je definovaná pomocí uspořádané k-tice vzájemně různých prvočíselných základů z_0 z_{k-1} . Obrazem čísla A je uspořádaná k-tice celých čísel a_0 a_1 a_2 ... a_{k-1} , pro která platí $a_i = A \mod Z_k$

	z_0	\mathbf{z}_1	
			5
A	a_0	a_1	a_2
0	0	0	0
1	1	1	1
2	0	2	2
3	1	0	3
4	0	1	4
5	1	2	0
6	0	0	1
7	1	1	2
8	0	2	3
9	1	0	4
10	0	1	0
11	1	2	1
12	0	0	2
13	1	1	3

11

Statistické zaokrouhlení

Čísla "přesně uprostřed" zaokrouhluje jednou nahoru a jednou dolů. To se obvykle v praxi dělá zaokrouhlením na sudé (např. v normě IEEE), nebo na liché číslo.

Př. Zaokrouhlení k sudému číslu:

 $1,35 \to 1,4$

 $1,45 \to 1,4$

Soustava zbytkových tříd

Př. Máme zadány základy 2, 3, 5. Zbytkové třídy pak jsou:

{0, 1} pro 2

{0, 1, 2} pro 3

{0, 1, 2, 3, 4} pro 5

Např. číslo 5 pak vyjádříme trojicí zbytků po dělení zadanými základy, tedy (1 2 0). Jednoznačně lze vyjádřit pouze číslo *A*, pro které platí

$$A < \prod_{i} z_{i}$$

pro všechna \emph{i} , tedy pouze číslo, které je menší než tzv. perioda, v našem příkladě je to 2*3*5=30.

Soustava zbytkových tříd umožňuje rychlé operace sčítání, odčítání a násobení, protože se neuplatňují přenosy mezi jednotlivými stupni.

Dělení není jednoznačně definovaná operace, rovněž porovnávání velikosti čísel je prakticky obtížné.

Doba převodu do a zpět ze soustavy KZT může často pohltit časovou úsporu získanou na rychlých aritmetických operacích.

Rychlých operací v KZT se používá ve speciálních případech, např. v kryptografii (RSA provádí operace na 2048 bitech).

10

Realizace sčítačky v KZT(2|3|5)

 $(z1|z2|z3)_{KZT(2|3|5)} = (x1|x2|x3)_{KZT(2|3|5)} + (y1|y2|y3)_{KZT(2|3|5)}$

Výpočet z2 (operandy i výsledek na 2b)

x 2	y2	z 2	
ab	cd	uv	
00	00	00	
00	01	01	
00	10	10	
01	00	01	
01	01	10	
01	10	00	
10	00	10	u = f1(a,b,c,d)
10	01	00	v = f2(a,b,c,d)
10	10	01	v = 12(a,b,c,a)
		1	

Výpočet z1 (operandy i výsledek 1b)

	y 1		z1 = x1 XOR y1 vypocet	
0	0	0	Obdol	UITE
0	0 1 0 1	1	Výpočty z1, z2 a z3 jsou	
1	0	1	vzájemně nezávislé =>	
1	1	0	rychlé!	

Výpočet z3 (operandy i výsledek na 3b) obdobně jako z2

r = f1(e,f,g,h,i,j) s = f2(e,f,g,h,i,j)t = f3(e,f,g,h,i,j,)

13

Sčítání v kódu BCD

- Pro návrh desítkové aritmetiky (příslušných obvodů) je třeba zjistit aritmetické vlastnosti uvedených kódů.
- Analýzou sčítání dvou číslic v BCD zjistíme, že je-li binární součet větší než 9, je pro návrat do kódu BCD nutná korekce, a to přičtení konstanty 6 (binárně 0110).
- Nevýhoda BCD: Neúspornost, složitější HW

Desítková čísla dvojkově kódovaná

- Člověk pracuje s desítkovými čísly, kdežto nejpřirozenější vnitřní reprezentace v počítači je dvojková. Z toho vyplývá nutnost převodu čísel v obou směrech. Doba převodu však není zanedbatelná a proto se v počítačích často používá rovněž aritmetika desítková, která pracuje s desítkovými číslicemi kódovanými binárně.
- Označení BCD je vyhrazené pro jediný kód, přestože toto označení je obecně použitelné pro celou skupinu desítkových dvojkově vyjádřených kódů:

Číslice	BCD	ASCII	n + 3	2 z 5
0	0000	0011 0000	0011	11000
1	0001	0011 0001	0100	00011
2	0010	0011 0010	0101	00101
3	0011	0011 0011	0110	00110
4	0100	0011 0100	0111	01001
5	0101	0011 0101	1000	01010
6	0110	0011 0110	1001	01100
7	0111	0011 0111	1010	10001
8	1000	0011 1000	1011	10010
9	1001	0011 1001	1100	10100

14

Počítání v kódu 2 z 5

- Kód 2 z 5 je neváhový kód, který kóduje informaci nadbytečným množstvím bitů, je tedy redundantní.
- Redundance se projevuje příznivě schopností kódu detekovat jednobitové chyby (viz dále).
- Jeho aritmetické vlastnosti jsou však natolik nepříznivé, že použití binární sčítačky je prakticky nemožné. Je proto třeba navrhnout speciální sčítačku, pracující v tomto kódu.
- Často se realizuje tabulkou v paměti.
- Adresu tvoří všechny kombinace hodnot vstupních operandů a obsah je hodnota výsledku včetně případného přenosu.
- Jaké je využití paměťové kapacity: adresových bitů je 5 + 5=10, paměťových míst je tedy 2¹⁰ = 1024. Využitých paměťových míst je 10 x 10 = 100. Využití paměti je 100:1024 = 9,76%.

Adresa ROM	Data ROM
00101 00110	01010
A=2 B=3	C=5

Huffmanův kód

- Jakým způsobem zakódovat znaky abecedy tak, aby častěji se vyskytující znaky byly zakódovány pomocí kratší binární sekvence?
 Př. Morseovka, JPEG, ZIP, ...
- Huffmanovo kódování umožňuje optimálně vyřešit tento problém.
 Vychází ze známých frekvencí jednotlivých kódových značek. Pokud je četnost výskytu značek neznámá, musí se odhadnout.
- Huffmanovo kódování patří mezi kódy s proměnnou délkou (VLC Variable Length Coding)
- <u>Příklad:</u> Máme zadán hypotetický instrukční soubor a frekvence výskytu jednotlivých instrukcí. Jak zakódovat častěji se vyskytující instrukce kratším kódem a zřídka se vyskytující instrukce delším kódem, abychom ušetřili místo v paměti (na disku) při ukládání programů?

	frekvence výskytu f_i
- LOAD	1/4
STORE	1/4
- ADD	1/8
- AND	1/8
- NOT	1/16
SHIFTR	1/16
JUMP	1/16
HALT	1/16

17

19

Huffmanův kód – postup

Konstrukce stromu: Najdeme dvojici operačních znaků, jejichž součet pravděpodobností je nejmenší. Tyto dva znaky se nahradí společným uzlem v grafu s pravděpodobností výskytu danou součtem pravděpodobností. Dostali jsme tak skupinu znaků s počtem znaků o jedničku menším než dřív. Na této nové skupině opět hledáme dvojici s nejmenším součtem pravděpodobností. Naznačený postup opakujeme tak dlouho, až spojíme poslední dvojici do jednoho kořenového uzlu s pravděpodobností výskytu rovnou jedné.

<u>Kódování:</u> Vycházíme z kořenového uzlu. Systematicky ohodnotíme hrany stromu (např. hrany vedoucí do uzlu s menším ohodnocením budou 0, jinak 1). Postup opakujeme tak dlouho, až označíme všechny hrany. Kód jednotlivých znaků zjistíme tak, že procházíme pro každý znak celou cestu od kořenového uzlu do příslušného listového uzlu a zaznamenáváme si popis hran, kterými procházíme.

Př. Huffmanův kód

18

Př. Huffmanův kód

LOAD STO ADD AND NOT RSH JUMP HALT $1/4 \quad 1/4 \quad 1/8 \quad 1/8 \quad 1/16 \quad 1/16 \quad 1/16 \quad 1/16 = zadan\acute{e}f_i$ $1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0$ $1/2 \quad 1/4 \quad 1/8 \quad 1/8$ $1 \quad 0$ $1/2 \quad 1/4 \quad 1/8 \quad 1/8$

Př. Huffmanův kód – zakódování

		kód	délka $l_{\scriptscriptstyle i}$	
•	LOAD	11	2	
•	STORE	10	2	Huffmanův kód je
•	ADD	011	3	prefixový.
•	AND	010	3	prenzovy.
•	NOT	0011	4	
•	SHIFTR	0010	4	
•	JUMP	0001	4	
•	HAI T	0000	4	

Příklad 1: Dekódujte posloupnost 00110010111110011111010. Příklad 2: Kolik bitů by bylo potřeba pro zakódování posloupnosti instrukcí z příkladu 1 pomocí standardního binárního kódování?

FX vs. FP v ASIC

Multiplier	Operand width	Output width	Area μm²	Power mW	Delay ns	PDP 10 ⁻¹² Ws
8 bit unsigned	8	16	688	0.41	1.35	0.554
16 bit unsigned	16	32	3020	2.68	3.14	8.415
32 bit unsigned	32	64	10503	10.07	5.84	58.809
8 bit signed	8	16	714	0.48	1.48	0.710
16 bit signed	16	32	2614	2.39	3.02	7.218
32 bit signed	32	64	10357	10.05	5.55	55.778
32 bit IEEE FP	32	32	6787	5.96	6.12	36.475

45 nm FreePDK technology; synthesized with Synopsys Design Compiler PDP is a Power Delay Product.

Parametry kódů s proměnnou délkou

- $l_{ar} = \frac{1}{N} \sum_{i=1}^{N} l_i$ • Střední aritmetická délka (celkem je N značek) [bit]:
- $l_{dyn} = \sum_{i=1}^{N} l_i f_i$ • Střední dynamická délka [bit]:
- $l_{opt} = -\sum_{i=1}^{N} f_i \log_2 f_i$ • Teoreticky optimální délka [bit]:
- $R = \frac{l_{dyn} l_{opt}}{l}$ · Redundance kódu:
- Pro náš příklad: $l_{ar} = 3,25; l_{dyn} = l_{opt} = 2,75; R = 0$ V tomto případě je sestrojený kód optimální!

22

FX vs. FP: Hlavní rozdíly

- Pevná řádová čárka FX
 - bez "řádové čárky" (8 bitů)
 - Přímý kód: 0 až 255
 - · Doplňkový kód: -128 až 127
 - ai.
 - s "řádovou čárkou" (8 bitů)
 - Př. Přímý kód: 0 až 63,75
 - Čísla jsou na číselné ose rozložena rovnoměrně.
- Pohyblivá řádová čárka FP
 - $X = (-1)^{S}M.B^{E}$
 - · M je mantisa,
 - · S je znaménko,
 - · B je základ,
 - E je exponent

 Čísla nejsou na číselné ose rozložena rovnoměrně, což umožňuje zvýšit přesnost (více bitů M) nebo rozsah (více bitů E) oproti FX.

Příklad FP na 14 bitech

- E: 5 bitů, M: 8 bitů, S: 1 bit, B = 2
- Interpretace: $y = (-1)^S 0, M \times 2^E$
- Př. $17_{10} = 10001 \times 2^0 = 1000, 1 \times 2^1 = 100, 01 \times 2^2$ = $10,001 \times 2^3 = 1,0001 \times 2^4 = 0,10001 \times 2^5$

 Př. 65536 = 2¹⁶ = 0,1 x 2¹⁷ – se na 14 bitů FX v přímém kódu nevejde, ale v FP to lze

25

Příklad FP na 14 bitech

Problém 2: zobrazení čísel není unikátní

- Př. $17_{10} = 0.10001 \times 2^5 = 0.010001 \times 2^6$
- Unikátnost podpoříme zavedením normalizované mantisy
 - nejlevější bit mantisy musí být 1
- Explicitní jednička v nejlevějším bitu vždy musí být 1

- Implicitní jednička
 - protože víme, že v nejlevějším bitu mantisy musí být vždy jednička, není nutné ji v mantise reprezentovat, ale stále ji uvažujeme
 - výhoda: získáme jeden bit rozlišení navíc
- Problém: Pokud se zavede normalizace, musí být nula ošetřena zvláštním způsobem

Příklad FP na 14 bitech

Problém 1: malá čísla nelze přesně zobrazit

- Potřebujeme záporný exponent
 - Řešení 1: Přidat znaménkový bit k exponentu nepoužívá se
 - Řešení 2: Posunout exponent používá se, je potom jednodušší obvodová realizace porovnání čísel v FP
- Skutečný_exponent = hodnota_pole_exponentu BIAS
 - tj. exponent uložen v kódu s lichým nebo sudým posunutím
- Použijeme BIAS = 16 (polovina 2⁵)
- Př. $17_{10} = 0,10001 \times 2^5$ (protože 16 + 5 = 21)

Př. 0,25₁₀ = 0,1 x 2⁻¹ (15-16 = -1)
 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0

26

Příklad FP na 14 bitech

Problém 3: chyby zobrazení

- Rozsah zobrazení je -0,11111111 x 2¹⁵ až + 0,11111111 x 2¹⁵.
- Nejmenší kladné číslo (pokud neuvažujeme normalizaci): 0.00000001 x 2⁻¹⁶
- tj. například 2⁻³⁹ nebo 2¹²⁸ nelze zobrazit
- Není ale možné ani dostatečně přesně zobrazit např. 128,5.
- 128,5₁₀ = 10000000,1 je na 9 bitů, nejnižší bit se musí zanedbat nebo zaokrouhlit, vzniká chyba: (128,5-128)/128,5 ~ 0,39%.
- Chyba se při použití výsledku v dalších operacích zvyšuje a zvyšuje.

Standard pro FP: IEEE 754

- Standard IEEE 754 z roku 1985, poprvé implementován v koprocesorech I 8087.
- IEEE 754-2008 rozšiřuje IEEE 754-1985; převzaly ho také ISO/IEC/IEEE 60559:2011
- Kromě definice B, M, E definuje standard další výjimečné situace.
 - Nečíselný výsledek, označený zkratkou NaN Not a Number. Tento výsledek se ohlásí např. při výpočtu odmocniny z -1.
 - Definice nekonečna, které vznikne podílem 1/0. S tím souvisí definice aritmetiky na nekonečných hodnotách + - ∞, 1/ ∞, arctan(∞) = π /2, arccos (-1) = π.
- decimal přesně emuluje desítkové zaokrouhlování (účetnictví...)

IEEE 754-2008	IEEE 754-1985	bitů	základ	znaménko	exponent	mantisa	pozn.
binary16	-	16b	2	1b	5b	10+1b ^(*)	poloviční přesnost, "Half"
binary32	single	32b	2	1b	8b	23+1b	základní přesnost
binary64	double	64b	2	1b	11b	52+1b	dvojitá přesnost
-	extended	80b	2	1b	?	?	dvojitá rozšířená přesnost
binary128	-	128b	2	1b	15b	112+1b	čtyřnásobná přesnost
decimal32 ^(x)	-	32b	10	1b	-95 až +96	7 číslic	základní přesnost
decimal64 ^(x)	-	64b	10	1b	-383 až +384	16 číslic	dvojitá přesnost
decimal128 ^(x)	-	128b	10	1b	-6143 až +6144	34 číslic	čtyřnásobná přesnost

29

IEEE 754: Příklad

Příklad.

Jaké číslo je zaznamenáno na 32 bitech v jednoduché přesnosti?

1 1000 0001 0100 0000 0000 0000 0000 000

v poli exponentu je číslo 129 exponent je tedy 129 - 127 = 2

zlomková část $f = .01_2 = .25$

mantisa je tedy 1,25

Jde tedy o číslo -1,25 . $2^2 = -5$

IEEE 754: Vybrané formáty čísel

	rozsah	přesnost mantisy	zlomková část f	
krátké reálné	10 ^{±38}	24 bitů	S E7E0 F1F23	F0 je implicitní
dlouhé reálné	10 ^{±308}	53 bitů	S E10E0 F1F52	F0 je implicitní

Číslo N se získá z hodnoty E uvedené v poli exponentu a z hodnoty z pole mantisy (zlomková část) podle vzorce

 $N = (-1)^S (2^{E-BIAS})$ (F0,F1 ...F23, nebo F52), kde BIAS = 127 nebo 1023.

Mantisa je vyjádřena přímým kódem se znaménkem, exponent kódem s lichým posunutím. Pozor, v poli exponentu je uvedeno číslo zvětšené o hodnotu *BIAS*. Rozlišujeme tedy pojmy *pole exponentu*, což je posunutý exponent, a *exponent*, resp. neposunutý exponent. Zlomková část f udává číslo menší než 1. Mantisu však získáme součtem 1 + f, což můžeme zapsat 1, f.

30

IEEE 754: Výjimečné hodnoty v "single precision"

Povolené hodnoty exponentu čísel leží v intervalu <-126, +127>, po posunu +127 získáme povolené hodnoty v poli exponentu <1, 254>. Je-li tedy v poli exponentu 0, nebo 255, jde o hodnoty vyhrazené pro speciální účely:

pole exponentu	Zlomková část	Význam
255	0	± ∞
255	≠ 0	NaN – je jich mnoho
0	0	0
0	≠ 0	subnormalizované číslo - nenaplnění

Subnormalizované (denormalizované) číslo: nepočítá se se skrytou 1 a exponent je chápán jako -126.

IEEE 754: Příklady

X	Reprezentace X v IEEE 754 – single precision
1,0	0 01111111 000000000000000000000000
2,0	0 10000000 000000000000000000000000
19,5	0 10000011 001110000000000000000000
-3,75	1 10000000 111000000000000000000000
0 (spec.)	0 00000000 000000000000000000000000
+/- nekonečno	0/1 11111111 00000000000000000000000000
NaN	0/1 11111111 cokoliv nenulového
Denormalizované číslo	0/1 00000000 cokoliv nenulového

IEEE 754: Rozsah "single precision"

- Čtyři intervaly nelze reprezentovat
 - Záporná čísla menší než -MAX (negative overflow)
 - Záporná čísla větší než -MIN (negative underflow)
 - Kladná čísla menší +MIN (positive underflow)
 - Kladná čísla větší než +MAX (positive overflow)

34

IEEE 754: Zaokrouhlování

- K zaokrouhlování dochází v případě, že dané číslo nelze přesně vyjádřit.
 - Např. při násobení v desítkové soustavě máme výsledek operace 2,1 x 0,5 = 1,05 zaokrouhlit na 1 desetinné místo. Je věcí konvence, zda za výsledek prohlásíme 1,1, nebo 1,0. Oba výsledky jsou zatíženy stejně velkou chybou.
- Norma IEEE zaokrouhluje na číslo, jehož nejnižší číslice je sudá (ve dvojkové soustavě). Zaokrouhlovací procedura je definovaná pro 4 případy:
 - Zaokrouhlení k nejbližšímu číslu
 - Zaokrouhlení k nule
 - Zaokrouhlení k +∞
 - Zaokrouhlení k -∞
- Implementace: mimo náplň INP

Absolutní chyba zobrazení

 Maximální (absolutní) chyba zobrazení Err čísel FP (resp. vzdálenost zobrazitelných bodů) závisí na počtu číslic v mantise a na intervalu definovaném v exponentu:

```
<u>délka intervalu stupnice pro jistou hodnotu exponentu</u>
počet možných číselných kombinací v mantise
    Err =
                                                                                                 .000 = 0.00
                                                                                                  .001 = 0.25
                  základ exponent – základ exponent - 1
základ počet číslic v mantise
                                                                                                 .010 = 0,50
                                                                                                 .011 = 0,75
                                                                                               * .100 = 1,00
                                                                                                  .101 = 1,25

    Př. E: 2 bity (v přímém kódu), M: 3 bity (0,M - nenorm.)

                                                                                                  .110 = 1,50
                                                                                                 .111 = 1,75
• Pro E = 01 a M = 010 platí 0.010 \times 2^{1} = 0.5
                                                                                                 1.00 = 2,00

ightharpoonup Err = (2^1 - 2^0) / 2^3 = (2 - 1) / 8 = 0,125
                                                                                                  00,0 = 000.
• Pro E = 10 a M = 001 platí 0.001 \times 2^2 = 0.5.
                                                                                                 .001 = 0,50
                                                                                                 .010 = 1.00
      \rightarrow Err = (2^2 - 2^1) / 2^3 = (4 - 2) / 8 = 0.25
                                                                                                 .011 = 1,50

    Zvýšení exponentu o 1 vede na dvojnásobnou chybu Err. 2<sup>2</sup> * 100 = 2,00

                                                                                                 .101 = 2,50

    Machine epsilon je 2-b. kde b je počet bitů mantisv (vč.

                                                                                                 .110 = 3,00
    implicitní 1). Pro b = 3 je to 2^{-3} = 0,125
                                                                                                 .111 = 3,50
                                                                                                 1.00 = 4.00
```

Problémy s přesností čísel v FP – př. 1

Dekadické číslo 0,1 není možné přesně reprezentovat ve FP s konečným počtem bitů. Na nekonečném počtu bitů se opakuje 1100:

E = -4; M = 1,110011001100110011001100110011...,

Po zaokrouhlení na 24 bitů dostáváme:

E = -4; M = 1,11001100110011001101

Což je desítkově 0,100000001490116119384765625.

37

Problémy s přesností čísel v FP – př. 3

FP aritmetika nepracuje, jak jsme zvyklí, např. sčítání není asociativní!

Asociativita:
$$a + (b + c) = (a + b) + c$$

 $a = 0.123 \ 41 \times 10^5$ $b = -0.123 \ 40 \times 10^5$ $c = 0.143 \ 21 \times 10^1$
 $a +_{fp} (b +_{fp} c)$
 $= 0.123 \ 41 \times 10^5 +_{fp} (-0.123 \ 40 \times 10^5 +_{fp} 0.143 \ 21 \times 10^1)$
 $= 0.123 \ 41 \times 10^5 -_{fp} 0.123 \ 39 \times 10^5$
 $= 0.200 \ 00 \times 10^1$
 $(a +_{fp} b) +_{fp} c$
 $= (0.123 \ 41 \times 10^5 -_{fp} 0.123 \ 40 \times 10^5) +_{fp} 0.143 \ 21 \times 10^1$

 $= 0.100~00 \times 10^{1} +_{fn} 0.143~21 \times 10^{1}$

= $0.243\ 21 \times 10^1$ Porovnávání FP čísel: if (x == y) ...

Např. výsledek testu 0.6/0.2-3 == 0 bude na řadě počítačů FALSE. V IEEE 754 (double precision) je 0.6/0.2-3 přibližně -4.44089209850063e-16.

Problémy s přesností čísel v FP – př. 2

Uvažme sčítání s 5ti významovými číslicemi v HW (pro jednoduchost v desítkové soustavě)

 $4,5674 .10^{\circ}$ +2,5001 .10⁻⁴

po převodu na stejný exponent

4,5674 .10° +0,00025<mark>001</mark> .10°

4,56765001 přesný výsledek

zaokrouhlíme na 4,5677 - to bude výstup ALU

FP ALU používá pro zaokrouhlování kromě LSB výsledku (tzv. Guard bit) dva další bity: Round bit a Sticky bit. Pokud existují nenulové bity za bitem R, podle kterého se zaokrouhluje, nastaví se příznak Sticky bit = 1. Zaokrouhluje se podle trojice GRS. Tento postup vede na snížení počtu bitů sčítačky mantis.

Výsledek sčítání v HW:

BBB..BBGRXXX

Guard bit: LSB výsledku

Round bit: 1. mimo rozsah

Sticky bit:
OR přes
zbývající
bity

Literatura

Drábek, V.: Výstavba počítačů, skripta VUT v Brně, PC-DIR, Brno, 1995

Parhami, B.: Computer Arithmetic: Algorithms and Hardware Designs, Oxford U. Press, 2nd ed., 2010

Null, L., Lobur, J.: The Essentials of Computer Organization and Architecture, 2nd. Ed., Jones and Bartlett Publ., 2006

https://en.wikipedia.org/wiki/Floating-point arithmetic

HW realizace základních operací v FP bude nastíněna později.