Работа 2.2.6 Определение энергии активации по температурной зависимости вязкости жидкости

Дмитриева Ирина, 597 группа

1 Цель работы:

1) измерение скорости падения шариков при разной температуре жидкости; 2) вычисление вязкости жидкости по закону Стокса и расчет энергии активации.

2 В работе используются:

стеклянный цилиндр с исследуемой жидкостью (глицерин); термостат; секундомер; горизонтальный компаратор; микроскоп; мелкие шарики (диаметром около 1 мм).

3 Теоретическая часть

По своим свойствам жидкости сходны как с газами, так и с твердыми телами. Подобно газам, жидкости принимают форму сосуда, в котором они находятся. Подобно твердым телам, они обладают сравнительно большой плотностью, с трудом поддаются сжатию.

Двойственный характер свойств жидкостей связан с особенностями движения их молекул. В газах молекулы движутся хаотично, в их расположении отсутствует порядок. В кристаллических твердых телах частицы колеблются около определенных положений равновесия — узлов кристаллической решетки. В жидкостях, как и в кристаллах, каждая молекула находится в потенциальной яме электрического поля, создаваемого окружающими молекулами. Молекулы колеблются со средней частотой, близкой к частоте колебаний атомов в кристаллических телах ($\sim 10^{12} \, \Gamma \text{ц}$), и с амплитудой, определяемой размерами объема, предоставленного ей соседними молекулами. Глубина потенциальной ямы в жидкостях больше средней кинетической энергии колеблющейся молекулы, поэтому молекулы колеблются вокруг более или менее стабильных положений равновесия. Однако у жидкостей различие между этими двумя энергиями невелико, так что молекулы нередко выскакивают из «своей» потенциальной ямы и занимают место в другой.

В отличие от твердых тел, жидкости обладают «рыхлой» структурой. В них имеются свободные места — «дырки», благодаря чему молекулы могут перемещаться, покидая свое место и занимая одну из соседних дырок. Таким образом, молекулы медленно перемещаются внутри жидкости, пребывая часть времени около определенных мест равновесия и образуя картину меняющейся со временем пространственной решетки. На современном языке принято говорить, что в жидкости присутствует ближний, но не дальний порядок, расположение молекул упорядочено в небольших объемах, но порядок перестает замечаться при увеличении расстояния.

Как уже отмечалось, для того чтобы перейти в новое состояние, молекула должна преодолеть участки с большой потенциальной энергией, превышающей среднюю тепловую энергию молекул. Для этого тепловая энергия молекул должна — вследствие флуктуации — увеличиться на некоторую величину W, называемую энергией активации. Вследствие этого переходы молекул из одного положения равновесия в другое происходят сравнительно редко и тем реже, чем больше энергия активации.

Отмеченный характер движения молекул объясняет как медленность диффузии в жидкостях, так и большую (по сравнению с газами) их вязкость. В газах вязкость объясняется происходящим при тепловом движении молекул переносом количества направленного движения. В жидкостях такие переходы существенно замедлены. Количество молекул, имеющих энергии больше W, в соответствии с формулой Больцмана экспоненциально зависит от W. Температурная зависимость вязкости жидкости выражается формулой (2.17):

$$\eta \sim Ae^{\frac{W}{kT}}.$$
(1)

Из формулы (1) следует, что вязкость жидкости при повышении температуры должна резко уменьшаться. Если отложить на графике логарифм вязкости $ln\eta$ в зависимости от $\frac{1}{T}$, то согласно (1) должна получиться прямая линия, по угловому коэффициенту которой можно определить энергию активации молекулы W исследуемой жидкости. Экспериментальные исследования показывают, что в небольших температурных интервалах эта формула неплохо описывает изменение вязкости с температурой. При увеличении температурного интервала согласие получается плохим, что представляется вполне естественным, поскольку формула (1) выведена при очень грубых предположениях.

Для исследования температурной зависимости вязкости жидкости в данной работе используется метод Стокса, основанный на измерении скорости свободного падения шарика в жидкости. Суть его заключается в следующем.

На всякое тело, двигающееся в вязкой жидкости, действует сила сопротивления. В общем случае величина этой силы зависит от многих факторов: от вязкости жидкости, от формы тела, от характера обтекания и т. д. Стоксом было получено строгое решение задачи о ламинарном обтекании шарика безграничной жидкостью. В этом случае сила сопротивления F определяется формулой:

$$F = 6\pi \eta r v \tag{2}$$

где η — вязкость жидкости, v — скорость шарика, r — его радиус.

Гидродинамический вывод формулы Стокса довольно сложен. Мы ограничимся поэтому анализом задачи с помощью теории размерностей. Прежде чем применять теорию размерностей, нужно на основании физических соображений и опыта установить, от каких параметров может зависеть сила сопротивления жидкости. В нашем случае, очевидно, такими параметрами являются η, v, r и плотность жидкости ρ . Искомый закон следует искать в виде степенного соотношения

$$F = A\eta^x r^y \rho_{\mathsf{x}}^z v^\alpha$$

где A — безразмерный множитель, а α , x, y и z — подлежащие определению показатели степени. Они определяются требованием совпадения размерностей левой и правой частей. Поскольку размерность выражения определяется степенями при длине, времени и массе, мы получаем три уравнения для нахождения четырех неизвестных α , x, y и z. Легко видеть, что поставленная таким образом задача однозначного решения не имеет. Опыт показывает, что при больших скоростях движения (точнее говоря, при больших числах Рейнольдса) сила сопротивления пропорциональна второй, а при малых скоростях (малых числах Рейнольдса) — первой степени скорости. При достаточно медленном движении, таким образом, $\alpha=1$. Приравнивая показатели степени при массе, длине и времени в левой и в правой частях уравнения, получим: 1=x+z, 1=-x+1+y-3z, -2=-x-1, откуда x=1, y=1, z=0. Таким образом,

$$F = A\eta rv$$

Безразмерный множитель A не может быть определен из соображений размерности; строгое решение задачи дает для этого множителя значение 6π .

При выводе формулы Стокса с помощью теории размерностей нам приходилось предполагать, что скорость движения «достаточно мала». Никакой числений оценки «малости» при этом не было и не могло быть получено. Вопрос о том, лежат ли наблюдаемые на опыте скорости в области применимости формулы Стокса, должен поэтому быть решен с помощью эксперимента. Если будет установлена применимость формулы, она может быть использована для определения вязкости жидкости.

Рассмотрим свободное падение шарика в вязки жидкости. На шарик действуют три силы: сила тяжести, архимедова сила и сила вязкости, зависящая от скорости.

Найдем уравнение движения шарика в жидкости. По второму закону Ньютона:

$$Vg(\rho - \rho_{\mathsf{x}}) - 6\pi\eta rv = V\rho \frac{dv}{dt}$$
(3)

где V — объем шарика, ρ — его плотность, ρ_{zh} — плотность жидкости, g — ускорение свободного падения. Решая это уравнение, найдем

$$v(t) = v_{\text{VCT}} - [v_{\text{VCT}} - v(0)]e^{-t/T}$$
(4)

. В формуле (4) приняты обозначения: v(0) — скорость шарика в момент начала его движения в жидкости,

$$v_{\text{yct}} = \frac{Vg(\rho - \rho_{\text{m}})}{6\pi\eta r} = \frac{2}{9}gr^2\frac{(\rho - \rho_{\text{m}})}{\eta}, \tau = \frac{V\rho}{5\pi\eta r} = \frac{2}{9}\frac{r^2\rho}{\eta}$$
 (5)

Как видно из (4), скорость шарика экспоненциально приближается к установившейся скорости $v_{\text{уст}}$. Установление скорости определяется величиной τ , имеющей размерность времени и называющейся временем релаксации. Если время падения в несколько раз больше времени релаксации, процесс установления скорости можно считать закончившимся.

Измеряя на опыте установившуюся скорость падения шариков $v_{\text{уст}}$ и величины $r, \rho, \rho_{\mathbf{x}},$ можно определить вязкость жидкости по формуле, следующей из (5):

$$\eta = \frac{2}{9}gr^2 \frac{\rho - \rho_{\text{\tiny JK}}}{v_{\text{\tiny ycr}}} \tag{6}$$

Экспериментальная установка

- блок терморегулирования
- индикаторное табло;
- кнопка переключения режимов установки/контроля темпе

- входной и выходной патрубки насоса; входной и выходной патрубки теплообменника (вода из водопровода)

5 Ход работы

1. Отобрали 18 шариков различного размера и с помощью микроскопа измерили их диаметры.

Nº	d, мм
1	0,72
2	0,92
3	0,66
4	0,78
5	0,80
6	0,84
7	0,68
8	0,80
9	0,86

$N_{\overline{0}}$	d, мм
10	2,10
11	2,10
12	2,00
13	2,08
14	2,06
15	2,06
16	2,06
17	2,02
18	2,06

Таблица 1: Сталь, $\rho_{\text{сталь}} = 7.8 \text{ г/см}^3$

Таблица 2: Стекло, $\rho_{\text{стекло}} = 2.6 \text{ г/см}^3$

- 2. Измерили установившиеся скорости падения шариков и вычислили вязкость η по формуле (6). Измерения выполнили для 4 значений температуры в интервале от комнатной до 55 С. Для каждого значения температуры определили плотность жидкости $\rho_{\mathbf{x}}$ по графику $\rho_{\mathbf{x}}(T)$, приложенному к работе:
- 3. Для каждого из опытов вычислили значение числа Рейнольдса Re, оценили время релаксации τ (по формуле (5)) и путь релаксации S, который может быть найден посредством

Рис. 3. Зависимость плотности глицерина от температуры

T, K		296	5,35		308,35				318,25				328,15					
№ шарика	1	5	11	12	2	4	6	10	15	3	8	13	16	18	7	9	14	17
d, мм	0,72	0,80	2,10	2,06	0,92	0,78	0,84	2,10	2,06	0,66	0,80	2,00	2,06	2,06	0,68	0,86	2,08	2,02
ρ , Γ/cm^3	7,8	7,8	2,6	2,6	7,8	7,8	7,8	2,6	2,6	7,8	7,8	2,6	2,6	2,6	7,8	7,8	2,6	2,6
$\rho_{\rm sc}$, $\Gamma/{\rm cm}^3$		1,5	260		1,255			1,250				1,246						
$r, 10^{-3}$	0,36	0,40	1,05	1,03	0,46	0,39	0,42	1,05	1,03	0,33	0,40	1,00	1,03	1,03	0,34	0,43	1,04	1,01
$r^2, 10^{-6} \text{ m}^2$	0,130	0,160	1,103	1,061	0,212	0,152	0,176	1,103	1,061	0,109	0,160	1,00	1,061	1,061	0,116	0,185	1,082	1,020
t, c	18,44	14,59	13,02	13,09	9,8	11,01	9,19	7,69	7,44	8,41	5,27	4,84	4,5	4,71	4,03	3,22	2,72	2,61
$v_{\rm ycr}, 10^{-2} {\rm m/c}$	0,542	0,685	0,768	0, 764	1,020	0,908	1,088	1,300	1,344	1,189	1,898	2,066	2,222	2,123	2,481	3,105	3,676	3,831
$\eta, 10^{-3} \Pi a^*c$	315	308	388	375	273	221	214	230	214	121	111	131	130	136	61	78	80	72
$<\eta>, 10^{-3} \; \Pi a^*c$		346	,757			230,681				126,097				73,365				
Re	0,008	0,011	0,026	0,026	0,022	0,020	0,027	0,074	0,081	0,040	0,085	0,196	0,220	0,201	0,170	0,211	0,593	0,663
τ , c	0,006	0,008	0,015	0,014	0,012	0,011	0,013	0,025	0,026	0,014	0,022	0,039	0,043	0,041	0,030	0,037	0,071	0,074
$S, 10^{-5} \text{ M}$	1,289	2,060	4,208	4,163	4,562	3,614	5,188	12,02	12,84	6,190	15,76	30,02	34,96	31,92	26,94	42,20	95,42	103,6

Таблица 3: Измерения и результаты вычислений

интегрирования (4). Полагая для простоты v(0) = 0 (что обычно выполняется с достаточной точностью), получим

$$S = v_{\text{ycr}} \tau \left(\frac{t}{\tau} - 1 + e^{-t/\tau}\right). \tag{7}$$

При выводе формулы Стокса предполагалось, что обтекание шарика жидкостью имеет ламинарный характер. Как известно, характер обтекания определяется значением числа Рейнольдса $Re = vr \rho_{\mathbf{ж}}/\eta$. Обтекание является ламинарным лишь при не очень больших значениях Re(<10). Следовательно, как видно по расчетам, в каждом эксперименте формула Стокса применима.

4. Построили график зависимости $ln\overline{\eta}$ от 1/T .

$ln\overline{\eta}$, Πa^*c	-1,059	-1,467	-2,071	-2,612
$1/T, \frac{1}{K} * 10^{-3}$	3,374	3,243	3,142	3,047

Из (1) получаем выражения для энергии активации молекулы исследуемой жидкости:

$$W = k \frac{d(\ln \eta)}{d(1/T)}.$$

С помощью метода МНК вычислили:
$$\frac{d(ln\eta)}{d(1/T)}=(4,809\pm0,364)*10^3$$
. Найдем энергию активацию глицерина и погрешности для нее: $W=k\frac{d(ln\eta)}{d(1/T)}=1,38*10^{-23}*10^3*(4,809\pm0,364)=(6,636\pm0,502)*10^{-20}$ Дж

Вывод: измерили скорости падения шариков при разной температуре глицерина, для каждого эксперимента вычислили значение вязкости глицерина; получили зависимость $ln\overline{\eta}$ от 1/T, с помощью которой вычислили значение энергии активации глицерина; в пределах погрешности полученное значение не сходится со справочным $(8,341*10^{-20}\ \text{Дж})$, однако же достаточно близко к нему (как минимум, имеет тот же порядок); возможно, полученное значение не сошлось со справочным, потому что при проведении эксперимента мы не достаточно выжидали, чтобы успело установиться термическое равновесие системы.