# RELATÓRIO FINAL DE ATIVIDADES DE INICIAÇÃO CIENTÍFICA

# Localização Espacial de Fontes Sonoras vinculado ao projeto

Técnicas de redução de ruído, dereverberação e preservação do cenário acústico para aparelhos auditivos biauriculares

Yuri Gabriel dos Reis Souza

Voluntário

Engenharia de Computação

Data de ingresso no programa: 11/2024

Prof. Dr. Johnny Werner

Área do Conhecimento: Processamento de Sinais Biológico

# YURI GABRIEL DOS REIS SOUZA PROF. DR. JOHNNY WERNER

# LOCALIZAÇÃO ESPACIAL DE FONTES SONORAS

Relatório de Pesquisa do Programa de Iniciação Científica ou Programa de Iniciação Tecnológica da Universidade Tecnológica Federal do Paraná.

# SUMÁRIO

| RESUMO                  | 1 |
|-------------------------|---|
| INTRODUÇÃO              | 2 |
| METODOLOGIA             | 3 |
| RESULTADOS E DISCUSSÕES | 4 |
| CONCLUSÕES              | 5 |
| REFERÊNCIAS             | 6 |
| ANEXOS                  | 7 |

#### 1. RESUMO

Este trabalho apresenta o desenvolvimento de um sistema embarcado de baixo custo para localização espacial de fontes sonoras, voltado a aplicações em robótica, automação e tecnologias assistivas. A proposta busca responder à crescente demanda por sistemas autônomos mais inteligentes e acessíveis, capazes de identificar a direção de sons no ambiente. O projeto foi estruturado em três etapas: concepção e definição da técnica, implementação em hardware e validação experimental. Para a estimativa da direção, adotou-se a técnica de Diferença de Tempo de Chegada (TDOA), com cálculo do atraso por meio do algoritmo de Correlação Cruzada Generalizada com Transformada de Fase (GCC-PHAT), reconhecido por sua robustez frente a ruído e reverberação. A implementação foi realizada em um microcontrolador ESP32, associado inicialmente a dois microfones digitais INMP441, permitindo captura e processamento em tempo real. Os testes em ambiente fechado e de baixa reverberação demonstraram que o protótipo foi capaz de identificar corretamente a direção da fonte sonora, apresentando resultados consistentes com trabalhos da literatura em sistemas leves. Os resultados comprovam a viabilidade da solução, abrindo caminho para sua expansão a cenários mais complexos, como arrays com mais microfones e aplicações práticas.

**Palavras-chave:** localização-sonora, sistemas-embarcados, processamento-de-sinais, TDOA.

# 2. INTRODUÇÃO

A localização de fontes sonoras é um tema de grande relevância em áreas como robótica, automação e tecnologias assistivas. A capacidade de estimar a direção de chegada de um som é fundamental para tornar sistemas autônomos mais inteligentes e inclusivos, com aplicações que abrangem desde a navegação de robôs até dispositivos de apoio auditivo.

Apesar de sua importância, a implementação de sistemas de localização enfrenta dois grandes obstáculos: custo e complexidade. As soluções de alta precisão costuma usar muitos microfones e algoritmos pesados, necessitando de processadores potentes e de custo elevado, o que as torna inviáveis para projetos simples ou com orçamento limitado. Existe, portanto, uma necessidade clara de desenvolver sistemas de localização sonora<sup>[3]</sup> que sejam ao mesmo tempo eficazes e acessíveis, podendo ser implementados em hardware simples e de baixo custo.

Dessa maneira, este trabalho insere-se neste contexto com o objetivo principal de desenvolver e validar um protótipo de baixo custo para localização espacial de fontes sonoras em tempo real. A hipótese investigada foi a de que, mesmo com recursos limitados, como os oferecidos pelo microcontrolador ESP32, seria possível implementar algoritmos robustos de processamento de sinais para estimar a direção de chegada do som.

O foco do projeto foi a implementação da técnica de Diferença de Tempo de Chegada (TDOA)<sup>[1]</sup>, através do algoritmo de Correlação-Cruzada Generalizada com Transformada de Fase (GCC-PHAT)<sup>[2]</sup>, uma metodologia reconhecida pela sua eficiência e robustez. Desta forma, a pesquisa visa demonstrar a viabilidade prática da localização sonora em sistemas embarcados, contribuindo com uma solução que torna esta tecnologia mais acessível para inovação e desenvolvimento, favorecendo a disseminação dessa tecnologia em contextos acadêmicos e práticos.

#### 3. METODOLOGIA

O desenvolvimento do projeto seguiu as etapas de definição da metodologia de localização, seleção de hardware e implementação do algoritmo.

#### 3.1. TDOA E GCC-PHAT

A primeira fase do trabalho consistiu na revisão de literatura para investigar as principais técnicas de localização de fontes sonoras. Foram estudadas abordagens como *beamforming*<sup>[3]</sup> e métodos baseados em intensidade sonora, mas a técnica de Diferença de Tempo de Chegada (TDOA - *Time Difference of* 

 $Arrival)^{[1]}$  foi selecionada como a mais promissora para este projeto. O princípio do TDOA baseia-se na medição do pequeno atraso de tempo ( $\Delta t$ ) que ocorre quando uma onda sonora atinge os diferentes microfones de um array. Este atraso é diretamente relacionado à direção da fonte sonora. Dessa forma, os dois microfones capturam o mesmo sinal sonoro em instantes ligeiramente diferentes, devido à diferença de caminho percorrido pelo som.



Figura 1. Par de microfones em relação à fonte sonora.

Para formalizar o problema, consideramos apenas um *array* com dois microfones,  $M_1$  e  $M_2$ , localizados nas posições conhecidas  $(x_1, y_1)$  e  $(x_2, y_2)$ , e uma fonte sonora P em uma posição desconhecida  $(x_p, y_p)$ . A onda emitida por P percorre as distâncias  $r_1$  e  $r_2$ . A Diferença de Tempo de Chegada,  $\Delta t$ , é a diferença no tempo que a onda leva para percorrer essas duas distâncias. Sendo v a velocidade do som, o TDOA é dado pela relação (1):

$$\Delta t = \frac{r_2 - r_1}{v} = \left| \frac{\|P - M_2\| - \|P - M_1\|}{v} \right| \tag{1}$$

onde v é a velocidade do som. II.II é a norma euclidiana.

Para estimar o Δt de forma robusta, foi escolhido o algoritmo de Correlação-Cruzada Generalizada com Transformada de Fase (GCC-PHAT)<sup>[2]</sup>. A Correlação-Cruzada é uma medida matemática da semelhança entre dois sinais. A sua forma generalizada, quando calculada no domínio da frequência através da Transformada Rápida de Fourier (FFT)<sup>[2]</sup>.

Em vez de utilizar informações de fase, é empregada a diferença de tempo de chegada do sinal entre os elementos. O algoritmo de Correlação-Cruzada<sup>[2]</sup> é usado para calcular essa diferença de tempo. A partir disso, o ângulo é calculado com base na diferença de tempo de chegada. O algoritmo de triangulação é baseado em uma fórmula trigonométrica simples. Conforme mostrado na Figura 1, assume-se que o arranjo de microfones está separado, e o ângulo da fonte sonora em relação aos dois arranjos de microfones é dado por  $\theta_1$  e  $\theta_2$ .

Uma vez que o  $\Delta t$  é estimado pelo algoritmo, o passo seguinte é convertê-lo em uma informação geométrica: o Ângulo de Chegada. Assumindo que a fonte sonora está suficientemente distante, a relação entre o TDOA, a geometria do *array* e o ângulo é descrita pela seguinte equação trigonométrica (2):

$$\cos\theta = \frac{\Delta d}{d} = \frac{\Delta t \cdot v}{d} \tag{2}$$

#### Onde:

- θ é o ângulo de chegada da fonte sonora em relação ao eixo perpendicular do array.
- Δd é a diferença de distância percorrida pela onda sonora até os dois microfones.
- Δt é o TDOA estimado pelo GCC-PHAT (em segundos).
- v é a velocidade do som no meio (aproximadamente 343 m/s no ar).
- d é a distância física entre os dois microfones.

Isolando o ângulo  $\theta$ , obtemos a equação para determinar a direção da fonte, que foi a implementada no código (3):

$$\theta = \cos^{-1}\left(\frac{\Delta t \cdot v}{d}\right) \tag{3}$$

Com um *array* de dois microfones, esta equação permite determinar a direção da fonte em um plano de 180°. É importante notar que métodos mais complexos, utilizam múltiplos *arrays* para obter diferentes ângulos e, a partir deles, realizar uma triangulação ara encontrar as coordenadas (x, y) exatas da fonte.



Figura 2. Exemplo do funcionamento do sistema.

## 3.2. SELEÇÃO DE HARDWARE

O hardware foi selecionado com base nos critérios de baixo custo, acessibilidade e capacidade de processamento. O protótipo foi construído com os seguintes componentes:

- Microcontrolador: ESP32 (WROOM-32D). Sua capacidade de processamento e suporte nativo à comunicação I2S o tornam uma escolha mais que suficiente para a aplicação, além da facilidade de implementação de software.
- Microfones: Para a validação inicial, inicialmente foi montado um array linear com 2 microfones digitais I2S do modelo INMP441, posicionados a uma distância fixa de 15 cm.

 Feedback Visual: Foram utilizados 2 LEDs para fornecer uma indicação visual imediata da direção detectada (esquerda/direita/centro).

## 3.3. IMPLEMENTAÇÃO DO ALGORITMO

O algoritmo GCC-PHAT<sup>[2]</sup> foi implementado em C++ no ambiente Arduino IDE. O software foi estruturado para operar em um ciclo contínuo de processamento em tempo real, que executa os seguintes passos: captura de um bloco de amostras de áudio via I2S, pré-processamento, aplicação da FFT em cada canal, cálculo da correlação GCC-PHAT no domínio da frequência, aplicação da Transformada de Fourier Inversa (IFFT) para retornar ao domínio do tempo e, finalmente, a localização do pico de correlação para determinar o TDOA<sup>[1]</sup>.



Figura 3. Fluxograma seguido pelo código para determinação do ângulo de chegada do som.

## 4. RESULTADOS E DISCUSSÕES

Os testes iniciais em ambiente fechado e de baixa reverberação mostraram que o protótipo conseguiu estimar a direção da fonte com certa precisão, em consonância com estudos recentes em sistemas leves<sup>[4]</sup>.

Durante o desenvolvimento, o protótipo identificou corretamente se a fonte sonora estava posicionada à esquerda, à direita ou ao centro do conjunto de microfones, utilizando os *LEDs* para indicação visual. Além disso o algoritmo foi capaz de calcular e exibir o ângulo de chegada do som na tela, com valores coerentes ao movimento da fonte sonora. Conforme esperado pela geometria do sistema, a faixa de ângulos estimado entre 0º e 180º, sendo 90º o centro do *array*. Essa abordagem, entretanto, torna uma ambiguidade quanto a determinação da origem do som na parte da frente ou atrás do protótipo.



Figura 4. Foto do protótipo montado em uma protoboard.

O ESP32 mostrou-se capaz de realizar o processamento em tempo real, sem atrasos perceptíveis, o que confirma a adequação do hardware à aplicação. A introdução de filtros de software reduziu interferências de ruído, aumentando a robustez do sistema.



Figura 5. Ilustração do funcionamento do sistema com uma fonte sonora à esquerda do protótipo.



Figura 6. Ilustração do funcionamento do sistema com uma fonte sonora à direita do protótipo.

Durante a pesquisa, foram também exploradas possibilidades de expansão para arrays com mais de dois microfones. Testes preliminares com quatro canais indicaram maior precisão no que diz respeito à localização espacial, mas também revelaram limitações relacionadas à memória e à complexidade de sincronização das leituras no ESP32. O uso de algoritmos mais avançados,

como o SRP-PHAT<sup>[4]</sup>, mostrou-se promissor, mas exigirá maior otimização, a qual pode ser aprimorada em pesquisas futuras.

#### 5. CONCLUSÕES

O trabalho atingiu o objetivo de desenvolver e validar um protótipo de baixo custo para localização de fontes sonoras. A implementação do GCC-PHAT<sup>[2]</sup> no ESP32 demonstrou a viabilidade de executar algoritmos de processamento de sinais complexos em plataformas embarcadas acessíveis, obtendo resultados coerentes e funcionais.

Como perspectiva futura, destaca-se a expansão para *arrays* com quatro ou mais microfones, aliada à otimização do código e à aplicação de técnicas mais avançadas como o SRP-PHAT<sup>[4]</sup>. Isso possibilitará não apenas maior precisão, mas também uma cobertura de 360°, eliminando a ambiguidade frente-trás do sistema atual.

A pesquisa realizada, além de validar a abordagem, abre caminho para aplicações em robótica, automação e tecnologias assistivas, consolidando a relevância do tema e incentivando a continuidade de estudos na área.

#### 6. REFERÊNCIAS

- [1] Kaune, R., "Accuracy Studies for TDOA and TOA Localization", 15th International Conference on Information Fusion, (2012).
- [2] Chung, M.-A.; Chou, H.-C; Lin, C.-W., "Sound Localization Based on Acoustic Source Using Multiple Microphone Array in an Indoor Environment", Electronics, v.11, p. 890, (2022).
- [3] So, H. C., "Source Localization: Algorithms and Analysis", em: Zekavat, S. A.; Buehrer, R. M. (eds.), Handbook of Position Location: Theory, Practice, and Advances, Wiley, cap. 2, p. 25–66, (2011).
- [4] Grondin, F.; Michaud, F., "Lightweight and optimized sound source localization and tracking methods for open and closed microphone array configurations", Robotics and Autonomous Systems, v.113, p. 63–80, (2019).

#### 7. ANEXOS

• Anexo A – Código Fonte:

Github do projeto: https://github.com/yurigabrielreiss/TDOA\_ESP32\_I2S.git

• Anexo B – Datasheet dos Componentes:

#### ESP32-WROOM-32D:

https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32d\_esp32-wroom-32u\_datasheet\_en.pdf

Microfone Digital I2S INMP441: <a href="https://invensense.tdk.com/wp-content/uploads/2015/02/INMP441.pdf">https://invensense.tdk.com/wp-content/uploads/2015/02/INMP441.pdf</a>

Orientador Estudante

Prof. Dr. Johnny Werner Yuri Gabriel dos Reis Souza