МІНІСТЕРСТВО ОСВІТИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСЕТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Кафедра штучного інтелекту

Лабораторна робота №5
3 дисципліни
«Дискретна математика»

Виконав:

Студент групи КН-115

Курило Валентин

Викладач:

Мельникова Н.І.

Тема: Знаходження найкоротшого маршруту за алгоритмом Дейкстри. Плоскі планарні графи .

Мета роботи: набуття практичних вмінь та навичок з використання алгоритму Дейкстри.

Варіант — 12.

ІНДИВІДУАЛЬНІ ЗАВДАННЯ Завдання № 1

Розв'язати на графах наступні 2 задачі:

1. За допомогою алгоритму Дейкстра знайти найкоротший шлях у графі поміж парою вершин V0 і V * .

Найкоротший шлях від v_0 до v^* становить 22.

2. За допомогою γ -алгоритма зробити укладку графа у площині, або довести що вона неможлива.

Розв'язання:

Для розв'язання беру цикл v_1, v_2, v_3, v_4

Результатом γ -алгоритма буде:

Завдання №2.

Написати програму, яка реалізує алгоритм Дейкстри знаходження найкоротшого шляху між парою вершин у графі. Протестувати розроблену програму на графі згідно свого варіанту.

Програма:

```
#include <iostream>
  #include <limits.h>
  #include <stdio.h>
  #define V 30
  using namespace std;
  int minDistance(int dist[], bool sptSet[])
□ {
      int min = INT_MAX, min index;
      for (int v = 0; v < V; v++)
          if (sptSet[v] == false && dist[v] <= min)</pre>
              min = dist[v], min_index = v;
      return min_index;
 L
  int printSolution(int dist[])
- {
      printf("Vertex \t\t Distance from Source\n");
      for (int i = 0; i < V; i++)
          printf("%d \t\t %d\n", i, dist[i]);
 L
  void dijkstra(int graph[V][V], int src)
□ {
      int dist[V];
      bool sptSet[V];
      for (int i = 0; i < V; i++)
          dist[i] = INT_MAX, sptSet[i] = false;
      dist[src] = 0;
      for (int count = 0; count < V - 1; count++) {
          int u = minDistance(dist, sptSet);
          sptSet[u] = true;
          for (int v = 0; v < V; v++)
              if (!sptSet[v] && graph[u][v] && dist[u] != INT MAX
                  && dist[u] + graph[u][v] < dist[v])
```

```
printSolution(dist);
int main()
 { 0, 0, 0, 0, 0, 4, 0, 0, 0, 7, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
 { 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 7, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 7, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
 { 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0},
 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 2, 0, 3, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0},
 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 7, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0},
 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0},
 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 8, 0, 0, 0, 0},
 dijkstra(graph, 0);
 return 0:
```

Результат:

Vantau	Distance from Course
Vertex	Distance from Source
1	0
1	6 7
2	
0 1 2 3 4 5 6 7 8 9	8
4 _	11
5	14
b 7	4
/	8
8	9
	10
10	12
11	18
12	9
13	9
14	10
15	12
16	13
17	20
18	14
19	10
20	13
21	16
22	15
23	20
24	16
25	12
26	14
27	17
28	18
29	24