Financial math problems solutions

Nick Averyanov, Sasha Plakhin February 22, 2022

Contents

1	Binomial model	3
2	Ito Integral	3
3	Stochastic differential equations	3
4	Black-Scholes	3

1 Binomial model

2 Ito Integral

 $h(\cdot)$ – is a harmonic function if:

$$\sum_{i=1}^{n} \frac{\partial^2 h}{\partial x_i^2} = 0.$$

 $h(\cdot)$ – is a subharmonic function if:

$$\sum_{i=1}^{n} \frac{\partial^2 h}{\partial x_i^2} \ge 0.$$

Prove that for independent Wiener processes W_1, \ldots, W_n and a processes X is defined by the formula: $X(t) = h(W_1(t), \ldots, W_n(t))$. Show that if h is harmonic (subharmonic) $\Rightarrow X$ is a martingale (submartingale).

3 Stochastic differential equations

4 Black-Scholes