

FORM PTO-1449	U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE	ATTY DOCKET NO. 21978.00	SERIAL NO. 10/743,293
INFORMATION DISCLOSURE CITATION IN AN APPLICATION		APPLICANT Richard J. PISCIOCCI	
(Use several sheets if necessary)		FILING DATE	GROUP 2875

U.S. PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS

GOVERNMENT DOCUMENT							
		DOCUMENT NUMBER	DATE	COUNTRY	CLASS	SUBCLASS	Translation YES NO

OTHER DOCUMENTS (Including Author, Title, Date, Pertinent Pages, etc.)

A graph showing a function $y = f(x)$ plotted against x . The curve starts at the origin $(0,0)$ and increases monotonically, passing through points such as $(1, 1)$, $(2, 1.5)$, $(3, 1.8)$, and $(4, 2.0)$. The curve is concave down and approaches a horizontal asymptote at $y = 2$ as $x \rightarrow \infty$.

EXAMINER

DATE CONSIDERED

April 7, 2005

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include a copy of this form with next communication to applicant.