Lab 14-2 GANs

Yu-Rong Zhang & DataLab

Department of Computer Science, National Tsing Hua University, Taiwan

Reviewing GAN Structure

Loss Functions

WGAN

Reviewing GAN Structure

Loss Functions

WGAN

Review - GAN

Review - GAN

Review - GAN

Reviewing GAN Structure

Loss Functions

WGAN

Minimax Loss:

- For D: maximize $E_x[\log(D(x))] + E_z[\log(1 D(G(z)))]$
- For G: minimize $E_x[\log(D(x))] + E_z[\log(1 D(G(z)))]$

Wasserstein Loss:

- ullet For D: maximize $E_{x\sim P_x}[f_w(x)]-E_{z\sim P_z}[f_w(G(z))]$
- For G: minimize $E_{x \sim P_x}[f_w(x)] E_{z \sim P_z}[f_w(G(z))]$

- Minimax Loss:
 - For D: maximize $E_x[\log(D(x))] + E_z[\log(1 D(G(z)))]$
 - For G: minimize $E_x[\log(D(x))] + E_z[\log(1 D(G(z)))]$
- Wasserstein Loss:
 - For D: maximize $E_{x\sim P_x}[f_w(x)] E_{z\sim P_z}[f_w(G(z))]$
 - For G: minimize $E_{x \sim P_x}[f_w(x)] E_{z \sim P_z}[f_w(G(z))]$

• Lipschitz continuity: a function $f: X \to Y$ is called **Lipschitz continuous** if there exists a real constant $K \ge 0$ such that, for all x_1 and x_2 in X

$$d_Y(f(x_1),f(x_2)) \leq K d_X(x_1,x_2)$$

• Lipschitz continuity: a function $f: X \to Y$ is called **Lipschitz continuous** if there exists a real constant $K \ge 0$ such that, for all x_1 and x_2 in X

$$d_Y(f(x_1),f(x_2))\leq Kd_X(x_1,x_2)$$

• How to make the discriminator Lipschitz continuous?

• Lipschitz continuity: a function $f: X \to Y$ is called **Lipschitz continuous** if there exists a real constant $K \ge 0$ such that, for all x_1 and x_2 in X

$$d_Y(f(x_1),f(x_2))\leq Kd_X(x_1,x_2)$$

- How to make the discriminator Lipschitz continuous?
 - Weight clipping clip all weights in f_w into a certain range.

Reviewing GAN Structure

Loss Functions

WGAN

WGAN

Discriminator Training

```
3: Sample \{x^{(i)}\}_{i=1}^{m} \sim \mathbb{P}_{r} a batch from the real data.

4: Sample \{z^{(i)}\}_{i=1}^{m} \sim p(z) a batch of prior samples.

5: g_{w} \leftarrow \nabla_{w} \left[\frac{1}{m} \sum_{i=1}^{m} f_{w}(x^{(i)}) - \frac{1}{m} \sum_{i=1}^{m} f_{w}(g_{\theta}(z^{(i)}))\right]

6: w \leftarrow w + \alpha \cdot \text{RMSProp}(w, g_{w})

7: w \leftarrow \text{clip}(w, -c, c)
```

Make sure critic is 1-Lipchitz

Reviewing GAN Structure

Loss Functions

WGAN

• Instead of weight clipping, adding gradient penalty can also achieve Lipchitz continuity.

$$E_{x \sim P_x}[f_w(x)] - E_{z \sim P_z}[f_w(G(z))] - \lambda E_{\tilde{x} \sim P_{\tilde{x}}}[(||\nabla_{\tilde{x}} f_w(\tilde{x})||_2 - 1)]$$

Gradient Penalty

In comparison with WGAN

In comparison with WGAN

• Example

Assignment

- Assignment 1 requirements
 - Implementation of Improved WGAN (WGAN-GP) and train on CelebA.
 - Build dataset to read and resize image to 64×64 for training
 - Training loop(s) / routine(s) for GAN. Pre-trained models are not allowed.
 - Show at least 8×8 animated image of training and some best generated samples.
 - Draw the curve of discriminator loss and generator loss during training process in a single image.
 - Brief report about what you have done.

Assignment

- Assignment 1 submission
 - Upload notebook and attachments to google drive and submit the link to iLMS.
 - Your notebook should be named after "Lab14-2_{student id}.ipynb".
 - Deadline: 2020/12/15 23:59

Assignment

- Assignment 2
 - Read the Lab notebook of the autoencoder.