Mid_b11209014

學號: <u>b11209014</u> 系級: <u>大氣一</u> 姓名: <u>蔡知諺</u>

<u>Q1.</u>

1.

2.3.

4.

Q2.

Q3.

1.
2.

3.

Q4.

1.

2.

4.

Q5.

1.

3.

Q1.

1.

 $T_w=291.6395K$, Iteration = 32

Note that, the root is 291K, which is not between the initial guess(300K, 500K), so changed the initial guess to 200K, 500K and get the result.

2.

 $T_w=291.6395K$, Iteration = 13

3.

 $T_w=291.6395K$, Iteration = 8

4.

The performance is shown in the table below, observing iteration number, the Secant method is the most effective.

method	root	iteration
Bisection (initial guess = 200K, 500K)	291.6395	32
Newton	291.6395	13
Secant	291.6395	8

Q2.

Solving non-linear equations	numerical	Iterative	x0, and y0
Bisection	numerical	Iterative	2 value
Newton	numerical	Iterative	1 value
Solving linear equations	analytical	no	no
Gauss elim.	analytical	no	no
Gauss-Jordan	analytical	no	no
Jacobi iteration	numerical	Iterative	a set of valuse
Gauss-Seidel	numerical	Iterative	no

Q3.

1.

Third-order: $2.6720 - 1.5962x + 1.4680x^2 + 0.0103x^3$

Sixth-order: $0.0755 + 5.7759x + 5.4521x^2 - 9.6601x^3 + 4.3831x^4 - 0.7643x^5 + 0.0464x^6$

Ninth-order:
$$-1.5840 + 1.3734x - 2.5837x^2 + 3.7359x^3 - 3.1955x^4 + 1.5415x^5 - 4.2736x^6 + 0.6832x^7 - 0.0590x^8 + 0.0021x^9$$

2.

There is no Runge's phenomenon observed in the plot.

3.

To solve Runge's phenomenon, we can just use lower-order poly. interpolation such as the spline method.

Q4.

1.

Constant:

$$a_1 = 0.4095 \qquad a_2 = 1.9989$$
 RMS: 0.139186

1.0 0.8 0.6 0.4 0.2 0.05 0.10 0.15 0.20 0.25 0.30 0.35

2.

Constant:

$$a_1 = 0.3601$$
 $a_2 = 3.5610$

RMS: 0.344534

3.

Smallest RMS = 0.6003, happened in 8 times(10 + 5)

4.

	Pros	Cons
1.		
2.		
3.		

Q5.

1.

Jacobi Iteration: [5. -2. 2.5 -1.], Iteration = 61

Gauss-Seidel: [5. -2. 2.5 -1.], Iteration = 29

Switch 1st and 2nd row:

Iteration failed, encountering infinite value.

Switch 3rd and 4th row:

Iteration failed, encountering infinite value.

3.

Original Array

According to the figure above, the original matrix is diagonally dominant.

And if switching the first and the second rows, the method failed because encounters infinite value; so does switching the 3rd and 4th rows, proving that the convergence condition needs to be diagonally dominant.