

Exercise 2: Neural Networks

MAD

bacdavid@student.ethz.ch

Outline

- 1. Information
- 2. Theory
- 3. Example
- 4. Exercises
- 5. Coding Example
- 6. Questions

Information

Submissions & Questions

- Check LAB slides!
- Use google & think first!

Theory

Neurons

- 1. Each input x_i is weighted by w_i
- Then summed
- 3. Then an activation function f is applied
- 4. $f(\sum w_i x_i)$ constitutes the input for the next layer

Note

- $\sum w_i x_i = \mathbf{w}^T \mathbf{x}$ "dot product"
- Usually the is a bias "offset" term b_i : $\sum w_i x_i + b_i$
- Notation is different in the exercises

Neural Networks

- Universal function approximator
- Can approximate any function
- Layers of interconnected neurons
- Using lin. alg. notation:
 - 1. $f(\mathbf{w}_1^T \mathbf{x}) = o_1 \& f(\mathbf{w}_2^T \mathbf{x}) = o_2$ etc.
 - 2. Stack: $\hat{f}(\mathbf{W}\mathbf{x}) = \mathbf{o}$

Operations on Neural Network

- Forward pass: read out $y = F^{NN}(x)$
- Backward pass: gradient descent

Forward Pass

Backward Pass

Gradient Descent

- Gradient Descent is used to adjust the weights w_i as such that they produce the output we want
- What do we want? Minimize $error = (y_{target} y(w))^2$
- Update:

$$w \leftarrow w - \eta \cdot \frac{d \; error(w)}{dw}$$

- Will we find a global minimum?
- What does the derivative intuitively mean?
- What's the derivative in higher dimensions?

Back Propagation

- Very efficient way to calculate the gradient for G.D.
- How does it work?
- 1. Do a forward pass: Check what output is being produced.
- 2. Compare the output with the target (check the error)
- 3. Check how every weight is responsible for the produced error: Gradient.
- 4. Use the chain rule to propagate the error back through the network and adjust the weights accordingly (learning rate η)

$$\frac{\partial error}{\partial w_i} = \underbrace{\frac{\partial error}{\partial o_i}}_{} \cdot \underbrace{\frac{\partial o_i}{\partial w_i}}_{}$$
$$\underbrace{\frac{\partial o_{i+1}}{\partial o_i}}_{} \cdot \underbrace{\frac{\partial error}{\partial o_{i+1}}}_{}$$

Example

Exercises

Exercise 1

Different notation used:

 x_i : Input

 w_{ij} : Weight connecting neuron i and j

 z_i^k : Output of neuron j in layer k

 $o_i^k = \sigma(z_i^k)$: Activated output of neuron j in layer k

 $\sigma(.)$: Activation function

 h_{k-1} : Number of neurons in the layer k-1

 b_i^k : Bias of neuron j in layer k (can be neglected for simplicity)

Derive some of the aspects of back propagation: plug in & check what drops out

ie.
$$\frac{\partial z_j^k}{\partial w_{ij}} = \frac{\partial}{\partial w_{ij}^k} (\sum_{i'} w_{i'j}^k o_{i'}^{k-1}) = o_i^{k-1}$$
 (ex. 1a)

Exercise 2

- Simple introduction to tensorflow
- Tensorflow is different than what you are used to terms programming:
 - 1. Set up a graph with all the functions that you will use afterwards
 - 2. Feed values into the graph; Values «travel» through graph and are returned
- Programming example follows

Coding Example

Questions?

