第二节 数列极限的定义

- 一、数列的概念
- 二、数列的极限
- 三、数列极限的性质

四、小结

基本要求:

- 1. 理解数列极限的定义,以及它的推论.
- 2. 会利用定义来证明一些简单的数列极限.
- 3. 理解数列极限的性质.

一 数列的概念

割圆术:用圆的内接多边形来逼近圆的方法

"割之弥细,所失弥少,割之又割,以至于不可割,则与

圆周合体而无所失矣"。

正六边形的面积 A_1 ,

正十二边形的面积 A_2 ,

•••••

正 $6 \times 2^{n-1}$ 边形的面积 A_n ,

 $A_1, A_2, A_3, \dots, A_n, \dots$ 圆面积A.

——《九章算术注》

我国春秋战国时期的哲学家庄子在《庄子.天下篇》中记载的"截仗问题"中也隐含着深刻的极限思想。

截杖问题

庄子: "一尺之棰,日截其半,万世不竭."

$$\frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \dots, \frac{1}{2^n}, \dots$$

数列定义 按照某一法则,对每个自然数 n,都有确定的实数 x_n 与之对应,这列有序的数:

 x_1 , x_2 , ..., x_n , ...

称为数列 (sequence),

第n项 x_n 叫做数列的一般项或通项.

数列 $x_1, x_2, ..., x_n, ...$ 简记为 $(x_n)_{n=1}^{\infty}$

也可记为 $\{x_n\}_{n=1}^{\infty}$

例如:

1)
$$1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots,$$
 $x_n = \frac{1}{n};$ $(\frac{1}{n})_{n=1}^{\infty}$

$$x_n = \frac{1}{n}; \qquad \left(\frac{1}{n}\right)_{n=1}^{\infty}$$

2)
$$2,4,8,\cdots,2^{n},\cdots,$$

2) 2,4,8,...,2ⁿ,...,
$$x_n = 2^n$$
; $(2^n)_{n=1}^{\infty}$

3)
$$1,-1,1,\cdots,(-1)^{n+1},\cdots, x_n=(-1)^{n+1}; ((-1)^{n+1})_{n=1}^{\infty}$$

4)
$$2, \frac{1}{2}, \frac{4}{3}, \frac{3}{4}, \frac{6}{5}, \frac{5}{6}, \cdots, x_n = \frac{n + (-1)^{n-1}}{n}; (\frac{n + (-1)^{n-1}}{n})_{n=1}^{\infty}$$

5)
$$\sqrt{3}$$
, $\sqrt{3}$ + $\sqrt{3}$, $\sqrt{3}$ + $\sqrt{3}$ +

$$x_1 = \sqrt{3}, \ x_{n+1} = \sqrt{3 + x_n}.$$

说明:

1. 在几何上,数列对应着数轴上一个点列.可看作一动点在数轴上依次取 $x_1, x_2, \dots, x_n, \dots$

$$x_3$$
 x_1 x_2 x_4 x_n

2. 数列是整标函数 $x_n = f(n)$. 数列实质上是定义在正整数集上的函数: $x_n = f(n), n \in \mathbb{Z}^+$

问题: 当n 无限增大时, x_n 的变化趋势如何?

把n无限增大这个重要的变化过程记为 $n \rightarrow \infty$.

当
$$n \to \infty$$
 时, $x_n = 1 + \frac{(-1)^{n-1}}{n}$ 无限接近于 1.

当n→∞时, $x_n = 2^n$ 无限增大.

当 $n \to \infty$ 时, $x_n = (-1)^{n+1}$ 没有确定的变化趋势.

当 $n \to \infty$ 时, x_n 的变化趋势分为三类:

- 1) x_n 无限接近于某个确定的常数 a.
- 2) x_n 无限增大,即趋向无穷大.
- 3) x_n 没有确定的变化趋势.

简明定义:

设数列 $\{x_n\}$,当n无限增大时,通项 x_n 无限趋近于一个确定的数a,则称a为数列 $\{x_n\}$ 当n $\to \infty$ 时的极限或 $\{x_n\}$ 收敛于a,记 $\lim_{n \to \infty} x_n = a$,此时,称 $\{x_n\}$ 为收敛数列,

若数列的极限不存在,则称数列 $\{x_n\}$ 发散,或 $\lim_{n\to\infty}x_n$ 不存在.

$$\lim_{n\to\infty} \left(1 + \frac{(-1)^{n-1}}{n}\right) = 1, \quad \lim_{n\to\infty} \frac{1}{n} = 0,$$

而数列 $x_n = 2^n, x_n = (-1)^{n+1}$ 没有极限.

问题: "无限接近"意味着什么? 如何用精确的数学语言刻划它?

当
$$n \to \infty$$
 时, $x_n = \frac{1}{n}$ 无限接近于 0.
∴ $|x_n - 0| = \frac{1}{n}$

$$|x_n-0|=\frac{1}{n}$$

给定
$$\frac{1}{100}$$
,要使 $|x_n-0|<\frac{1}{100}$,由 $\frac{1}{n}<\frac{1}{100}$,只要 $n>100$;

给定
$$\frac{1}{1000}$$
,要使 $|x_n-0| < \frac{1}{1000}$,只要 $n > 1000$;

给定
$$\frac{1}{10000}$$
, 要使 $|x_n - 0| < \frac{1}{10000}$, 只要 $n > 10000$;

任意给定 $\varepsilon > 0$,要使 $|x_n - 0| < \varepsilon$ 成立,只要 $n > N = \begin{bmatrix} 1 \\ - \end{bmatrix}$.

问题: "无限接近"意味着什么?如何用数学语言刻划它?

当
$$n \to \infty$$
 时, $x_n = 1 + \frac{(-1)^{n-1}}{2}$ 无限接近于 1.

$$|x_n-1|=\left|(-1)^{n-1}\frac{1}{n}\right|=\frac{1}{n}$$

给定
$$\frac{1}{100}$$
, 要使 $|x_n-1| < \frac{1}{100}$ 由 $\frac{1}{n} < \frac{1}{100}$, 只要 $n > 100$;

给定
$$\frac{1}{1000}$$
,要使 $|x_n-1| < \frac{1}{1000}$, 只要 $n > 1000$;

给定
$$\frac{1}{10000}$$
, 要使 $|x_n-1| < \frac{1}{10000}$, 只要 $n > 10000$;

任意给定
$$\varepsilon > 0$$
, 要使 $|x_n - 1| < \varepsilon$ 成立, 只要 $n > N = \left[\frac{1}{\varepsilon}\right]$.

定义 若存在常数 a,使对任意的 $\varepsilon > 0$,总存在正整数N > 0,当 n > N 时,恒有 $|x_n - a| < \varepsilon$,则称常数 a 是数列 $(x_n)_{n=1}^{\infty}$ 当 $n \to \infty$ 时的极限 (limit)或者称数列 $(x_n)_{n=1}^{\infty}$ 收敛于 a.

记为 $\lim_{n\to\infty} x_n = a$, 或 $x_n \to a \ (n\to\infty)$

如果数列没有极限,就说数列是发散的,习惯上说 $\lim_{n\to\infty} x_n$ 不存在.

$\varepsilon - N$ 定义:

如果对 $\forall \varepsilon > 0, \exists N \in \mathbb{Z}^+,$ 使当n > N时,恒有 $|x_n - a| < \varepsilon$.

$$\iiint \lim_{n\to\infty} x_n = a$$

说明:

1. ε 是用来刻画 x_n 与常数a的接近程度, ε 具有任意性和稳定性的双重意义: ε 的任意性刻画了 x_n 与无限接近;同时 ε 又具有相对稳定性,一经取定,它就确定了,这样用有限形式 $|x_n-a|<\varepsilon$ 来表示 x_n 无限接近于a的过程.

2.*N*用来刻画*n*的增大程度,要使得 $|x_n-a| < \varepsilon$, *n*要变化到什么程度,定义中表明了比*N*大的各项都应该满足 $|x_n-a| < \varepsilon$, *x*_n是否以*a*为极限,关键是对 $\forall \varepsilon > 0$ 这样的*N*是否存在.

3.一般地,N与 ε 有关, ε 取得越小,相应地N就越大. 如果N存在,这样的N就不唯一.

推论 数列 $(x_n)_{n=1}^{\infty}$ 收敛于 $a \Leftrightarrow$

对 a 的任一 ε 邻域 $U(a,\varepsilon)$, 只有有限多项 $x_n \notin U(a,\varepsilon)$.

例1 证明
$$\lim_{n\to\infty} \frac{n+(-1)^{n-1}}{n} = 1.$$

if
$$|x_n - a| = \left| \frac{n + (-1)^{n-1}}{n} - 1 \right| = \frac{1}{n}$$

任给
$$\varepsilon > 0$$
,要使 $|x_n - 1| < \varepsilon$, 只要 $\frac{1}{n} < \varepsilon$, 即 $n > \frac{1}{\varepsilon}$,

所以,
$$\forall \varepsilon > 0$$
, 取 $N = \left[\frac{1}{\varepsilon}\right]$, 则当 $n > N$ 时,

总有
$$\left| \frac{n + (-1)^{n-1}}{n} - 1 \right| = \frac{1}{n} < \varepsilon, \ \therefore \lim_{n \to \infty} \frac{n + (-1)^{n-1}}{n} = 1.$$

用定义证明 $\lim_{n\to\infty} x_n = a$,就是证明对 $\forall \varepsilon > 0$,N存在.

证明的步骤:

- (1) 对于任意给定的正数 ε , 令 $|x_n-a|<\varepsilon$;
- (2) 由上式开始分析倒推, 推出 $n > \varphi(\varepsilon)$;
- (3)取 $N=[\varphi(\varepsilon)]$,再用 $\varepsilon-N$ 语言顺述结论.

例2 设 $x_n \equiv C(C$ 为常数),证明 $\lim_{n\to\infty} x_n = C$.

证 任给 $\varepsilon > 0$, 对于一切自然数 n,

 $|x_n-C|=|C-C|=0<\varepsilon$ 恒成立,

所以, $\lim_{n\to\infty} x_n = C$.

说明:常数列的极限等于同一常数.

注意 数列极限的定义未给出求极限的方法.

例3 证明
$$\lim_{n\to\infty}\frac{3n+2}{2n+3}=\frac{3}{2}$$
.

注意: (1)由于N 不唯一,不要求最小的N,故可把 $|x_n-a|$ 适当放大,得到一个新的不等式,再寻找 N.

(2)从 $|x_n-a|<\varepsilon$ 找 N 与解不等式 $|x_n-a|<\varepsilon$ 意义不同.

例4 证明
$$\lim_{n\to\infty}q^n=0$$
, 其中 $|q|<1$.

证 任给
$$\varepsilon > 0$$
, $\mathcal{C}_{\varepsilon} < 1$ 若 $q = 0$, 则 $\lim_{n \to \infty} q^n = \lim_{n \to \infty} 0 = 0$;

若
$$0<|q|<1$$
, $|x_n-a|=|q^n-0|=|q|^n<\varepsilon$,

$$n \ln |q| < \ln \varepsilon, \quad \ln |q| < 0 : n > \frac{\ln \varepsilon}{\ln |q|},$$

所以,
$$\forall \varepsilon > 0$$
, 取 $N = \left[\frac{\ln \varepsilon}{\ln |q|}\right]$, 则当 $n > N$ 时,

就有
$$|q^n-0|<\varepsilon$$
, $\lim_{n\to\infty}q^n=0$.

例5 求证
$$\lim_{n\to\infty} \sqrt[n]{a} = 1 \ (a > 0).$$
 $\Rightarrow \lim_{n\to\infty} \sqrt[n]{n} = 1$

证
$$a > 1$$
任给 $\varepsilon > 0$,

$$|x_n-1|=|\sqrt[n]{a}-1|<\varepsilon, \quad \sqrt[n]{a}<1+\varepsilon, \quad \frac{1}{n}\ln|a|<\ln(1+\varepsilon),$$

$$\therefore n > \frac{\ln|a|}{\ln(1+\varepsilon)}, \quad \mathbb{N}N = \left[\frac{\ln|a|}{\ln(1+\varepsilon)}\right], \quad \mathcal{M} \leq n > N \text{ by},$$

就有
$$|\sqrt[n]{a}-1|<\varepsilon$$
, $\lim_{n\to\infty}\sqrt[n]{a}=1$.

1. 极限的唯一性

 $\frac{b-a}{2} \quad \frac{b-a}{2}$ $a \quad a+b \quad b$

定理1 若极限 $\lim_{n\to\infty} x_n$ 存在,则极限是惟一的.

证: 沒 $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} x_n = b$, 且 a < b. 取 $\varepsilon = \frac{b-a}{2}$,

故 $\exists N_1 \in \mathbb{Z}^+$, 当 $n > N_1$ 时, 有 $|x_n - a| < \frac{b-a}{2}$, 即 $x_n < \frac{a+b}{2}$,

 $\exists N_2 \in \mathbb{Z}^+$, 当 $n > N_2$ 时, 有 $|x_n - b| < \frac{b - a}{2}$, 即 $x_n > \frac{a + b}{2}$,

取 $N = \max\{N_1, N_2\}$, 则当 n > N 时,

 x_n 满足的不等式矛盾. 故假设不真!

因此收敛数列的极限必惟一

- 2. 收敛数列的有界性
- 1) 数列的有界性 对数列 $(x_n)_{n=1}^{\infty}$,若 $\exists M>0$,对一切自然数 n,恒有 $|x_n| \le M$ 成立,则称数列 $(x_n)_{n=1}^{\infty}$ 有界,否则,称为无界.
- 2) 定理2 收敛数列必有界.

推论 无界数列必定发散.

注意: 有界性是数列收敛的必要非充分条件.

3. 收敛数列的保号性

定理3 若
$$\lim_{n\to\infty} x_n = A$$
,且 $A > 0$ (或 $A < 0$),则

$$∃N∈Z^+$$
, $≝n>N$ 时, $x_n>0$ (或 $x_n<0$).

定理3说明了,当下标n充分大后,数列中的项 x_n 保持极限A的符号,故称为收敛数列的保号性.

推论:如果数列 $(x_n)_{n=1}^{\infty}$ 从某项起有 $x_n \ge 0$ (或 $x_n \le 0$) 且 $\lim_{n \to \infty} x_n = A$,则 $A \ge 0$ (或 $A \le 0$)

4. 收敛数列的归并性(子数列的收敛性)

在数列 $(x_n)_{n=1}^{\infty}$ 中任意抽取无穷多项并保持这些项在原数列中的先后顺序,这样得到的数列记为 $(x_{n_k})_{k=1}^{\infty}$, $(x_{n_k})_{k=1}^{\infty}$ 称为数列 $(x_n)_{n=1}^{\infty}$ 的子数列.

定理4 若数列收敛,则其任一子数列收敛,且极限相同.

定理
$$\lim_{n\to\infty} x_n = a \Leftrightarrow \lim_{n\to\infty} x_{2n-1} = \lim_{n\to\infty} x_{2n} = a$$
.

思考:如何判别极限不存在?

方法1. 找一个趋于∞的子数列;

方法2. 找两个收敛于不同极限的子数列.

一、夹逼准则

1、关于数列收敛的夹逼准则

若数列 $(x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty}, (z_n)_{n=1}^{\infty}$ 满足下列条件:

(1)
$$y_n \le x_n \le z_n$$
 $(n = 1, 2, 3 \cdots),$

$$(2) \lim_{n \to \infty} y_n = a, \quad \lim_{n \to \infty} z_n = a,$$

则数列 $(x_n)_{n=1}^{\infty}$ 的极限存在,且 $\lim_{n\to\infty}x_n=a$.

注意 用夹逼准则求极限, 关键是构造出 y_n 与 z_n ,并且 y_n 与 z_n 的极限相同且容易求.

例1 求
$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}}\right)$$
.

解 $\frac{n}{\sqrt{n^2+n}} < \frac{1}{\sqrt{n^2+1}} + \dots + \frac{1}{\sqrt{n^2+n}} < \frac{n}{\sqrt{n^2+1}}$,

$$\lim_{n\to\infty} \frac{n}{\sqrt{n^2+n}} = \lim_{n\to\infty} \frac{1}{\sqrt{1+\frac{1}{n}}} = 1$$
,
$$\lim_{n\to\infty} \frac{n}{\sqrt{n^2+1}} = \lim_{n\to\infty} \frac{1}{\sqrt{1+\frac{1}{n^2}}} = 1$$
,
$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}}\right) = 1$$
.

例2 (1) 求
$$\lim_{n\to\infty} \sqrt[n]{1^n+2^n+3^n}$$
.

(2) 设
$$a_1, a_2, a_3$$
为正实数,求 $\lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + a_3^n}$.
$$\lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + a_3^n} = \max\{a_1, a_2, a_3\}$$

二、单调有界收敛准则

若数列 $\{x_n\}$ 满足:

$$x_1 \le x_2 \le \cdots \le x_n \le \cdots$$
, 就称为递增数列.

 $x_1 \ge x_2 \ge \cdots \ge x_n \ge \cdots$, 就称为递减数列.

单调数列

单调有界收敛准则:单调有界数列必有极限.

- 1) 若 $\{x_n\}$ 单调增加且有上界 M, 则 $\{x_n\}$ 必有极限且有 $\lim_{n\to\infty} x_n \le M$.
- 2) 若 $\{x_n\}$ 单调减少且有下界 m,则 $\{x_n\}$ 必有极限且有 $\lim_{n\to\infty} x_n \ge m$.

若数列 $\{x_n\}$ 满足:

$$x_1 \le x_2 \le \cdots \le x_n \le \cdots$$
, 就称为递增数列.

$$x_1 \ge x_2 \ge \cdots \ge x_n \ge \cdots$$
, 就称为递减数列.

单调有界收敛准则:单调有界数列必有极限.

- 1) 若 $\{x_n\}$ 单调增加且有上界 M, 则 $\{x_n\}$ 必有极限且有 $\lim_{n\to\infty} x_n \le M$.
- 2) 若 $\{x_n\}$ 单调减少且有下界m,则 $\{x_n\}$ 必有极限且有 $\lim_{n\to\infty} x_n \ge m$.

单调有界准则

如果数列x"满足条件

$$x_1 \le x_2 \cdots \le x_n \le x_{n+1} \le \cdots$$
,单调增加
 $x_1 \ge x_2 \cdots \ge x_n \ge x_{n+1} \ge \cdots$,单调减少

准则 || 单调有界数列必有极限.

几何解释:

$$x_1$$
 x_2 x_3 x_n x_{n+1} A M X

例1

设
$$x_1 = \frac{1}{2}, x_{n+1} = \frac{1+x_n^2}{2} (n=1,2,\dots),$$

- (1) 求证: 数列 $\{x_n\}$ 单调递增且有上界.
- (2) 求 $\lim_{n\to\infty} x_n$.

注意 在取极限前应该先证明数列 x_n 有极限.

这时常用的一个方法是先证明数列 x_n 单调有界.

多数

数列极限的性质

思考题:

- (a): 若 $\lim_{n\to\infty} x_n$ 存在, $\lim_{n\to\infty} y_n$ 不存在. 问: $\lim_{n\to\infty} (x_n \pm y_n)$ 是否存在?
- (b): 若 $\lim_{n\to\infty} x_n$ 与 $\lim_{n\to\infty} y_n$ 都不存在. 问: $\lim_{n\to\infty} (x_n \pm y_n)$ 是否存在?
- (c): 若 $\lim_{n\to\infty} x_n$ 存在, $\lim_{n\to\infty} y_n$ 不存在. 问: $\lim_{n\to\infty} (x_n \cdot y_n)$ 是否存在?
- (d): 若 $\lim_{n\to\infty} x_n$ 与 $\lim_{n\to\infty} y_n$ 都不存在. 问: $\lim_{n\to\infty} (x_n \cdot y_n)$ 是否存在?

四小结

数列 研究其变化规律;

数列极限 定义,几何意义,性质.

- 1. 数列极限的 " εN "定义
- 2. 收敛数列的性质:

唯一性;有界性;保号性;

任一子数列收敛于同一极限

