# propensity\_score\_matching

#### October 15, 2020

```
[65]: import pandas as pd
from causalinference import CausalModel
import seaborn as sns
import matplotlib.pyplot as plt
```

```
[66]: data_path = './data/Fichier Wake-Up v01..xlsx'
```

#### 0.1 Covariates

#### 0.2 Outcome variables:

any\_bleeding 3M\_Death MRS01

```
[68]: outcome_var = 'MRS01'
```

#### 0.3 Intervention: IVT with rTPA

```
[69]: intervention_var = 'IVT_with_rtPA'

[70]: data = pd.read_excel(data_path)

data.columns = data.columns.str.replace(' ','_')

# Encode mRS (0 or 1) vs (> 1)

data['MRS01'] = data['3M_mRS'].isin([0, 1])

# Encode wake-up

data['wake_up'] = data['Time_of_symptom_onset_known'] == "wake up"
```

```
# Retain only relevant variables
data = data[covar_fields + [outcome_var, intervention_var]]
```

```
[71]: # Drop NaN (has to be done before one-hot-encoding)
data = data.dropna()
```

```
[72]: # One-hot encoding for categorical vars
data['Sex'] = data['Sex'] == 'Male'
data['MedHist_Hypertension'] = data['MedHist_Hypertension'] == 'yes'
data['MedHist_Diabetes'] = data['MedHist_Diabetes'] == 'yes'
data['MedHist_Hyperlipidemia'] = data['MedHist_Hyperlipidemia'] == 'yes'
data['MedHist_Atrial_Fibr.'] = data['MedHist_Atrial_Fibr.'] == 'yes'

data['IVT_with_rtPA'] = data['IVT_with_rtPA'] == 'yes'

if outcome_var != 'MRSO1':
    data[outcome_var] = data[outcome_var] == 'yes'
```

Defining model with regards to IVT as intervention

```
[73]: intervention = data.IVT_with_rtPA.to_numpy()
outcome = data[outcome_var].to_numpy()

covars = data[covar_fields].to_numpy()
```

```
[74]: causal = CausalModel(outcome, intervention, covars)
print(causal.summary_stats)
```

Summary Statistics

|          | Controls | Controls (N_c=17) |                             | (N_t=15) |          |
|----------|----------|-------------------|-----------------------------|----------|----------|
| Variable | Mean     | S.d.              | Mean                        | S.d.     | Raw-diff |
| Y        | 0.235    | 0.437             | 0.333                       | 0.488    | 0.098    |
|          | Controls | s (N_c=17)        | <pre>Treated (N_t=15)</pre> |          |          |
| Variable | Mean     | S.d.              | Mean                        | S.d.     | Nor-diff |
| ХО       | 66.965   | 20.275            | 70.809                      | 14.201   | 0.220    |
| X1       | 0.529    | 0.514             | 0.533                       | 0.516    | 0.008    |
| X2       | 0.235    | 0.562             | 0.867                       | 1.246    | 0.653    |
| ХЗ       | 197.588  | 51.044            | 249.467                     | 108.283  | 0.613    |
| X4       | 17.235   | 6.350             | 14.400                      | 6.345    | -0.447   |

| X5  | 0.647   | 0.493  | 0.733   | 0.458  | 0.181  |
|-----|---------|--------|---------|--------|--------|
| Х6  | 0.118   | 0.332  | 0.200   | 0.414  | 0.219  |
| Х7  | 0.294   | 0.470  | 0.267   | 0.458  | -0.059 |
| Х8  | 0.235   | 0.437  | 0.400   | 0.507  | 0.348  |
| Х9  | 0.471   | 0.514  | 0.800   | 0.414  | 0.705  |
| X10 | 104.612 | 55.062 | 141.500 | 83.161 | 0.523  |
| X11 | 16.576  | 19.092 | 14.507  | 17.701 | -0.112 |

# Estimate propensity scores

```
[75]: causal.est_propensity()
    print(causal.propensity)
    print(causal.propensity.keys())
```

## Estimated Parameters of Propensity Score

|           | Coef.       | S.e.   | Z      | P> z  | [95% Co: | nf. int.] |
|-----------|-------------|--------|--------|-------|----------|-----------|
| Intercept | <br>-18.095 | 11.237 | -1.610 | 0.107 |          | 3.930     |
| XO        | -0.006      | 0.085  | -0.068 | 0.946 | -0.172   | 0.161     |
| X1        | 2.389       | 2.484  | 0.962  | 0.336 | -2.479   | 7.257     |
| X2        | 4.442       | 2.954  | 1.504  | 0.133 | -1.349   | 10.232    |
| ХЗ        | 0.056       | 0.036  | 1.574  | 0.115 | -0.014   | 0.126     |
| X4        | -0.091      | 0.242  | -0.376 | 0.707 | -0.566   | 0.384     |
| X5        | -0.889      | 2.424  | -0.367 | 0.714 | -5.639   | 3.862     |
| Х6        | -9.195      | 7.628  | -1.205 | 0.228 | -24.145  | 5.755     |
| Х7        | -1.406      | 3.040  | -0.462 | 0.644 | -7.364   | 4.553     |
| Х8        | -0.184      | 2.874  | -0.064 | 0.949 | -5.817   | 5.449     |
| Х9        | 5.402       | 2.786  | 1.939  | 0.052 | -0.058   | 10.862    |
| X10       | 0.038       | 0.028  | 1.356  | 0.175 | -0.017   | 0.093     |
| X11       | -0.087      | 0.107  | -0.812 | 0.417 | -0.296   | 0.123     |

dict\_keys(['lin', 'qua', 'coef', 'loglike', 'fitted', 'se'])

Match by propensity scores (nearest-neighbour)

```
[76]: causal.est_via_matching(bias_adj=True)
    print(f'Outcome variable: {outcome_var}')
    print(causal.estimates)
```

Outcome variable: MRS01

Treatment Effect Estimates: Matching

|         | Est.   | S.e.  | z      | P> z  | [95% Conf. | int.] |
|---------|--------|-------|--------|-------|------------|-------|
| <br>ATE | -0.047 | 0.323 | -0.146 | 0.884 | -0.681     | 0.586 |

```
ATC -0.010 0.346 -0.030 0.976 -0.689 0.668
ATT -0.089 0.370 -0.240 0.810 -0.813 0.636
```

/Users/jk1/opt/anaconda3/envs/uw\_bridging/lib/python3.8/site-packages/causalinference/estimators/matching.py:100: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` where M and N are the input matrix dimensions.

To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, explicitly pass `rcond=-1`. return np.linalg.lstsq(X, Y)[0][1:] # don't need intercept coef

```
[77]: data['propensity_score'] = causal.propensity['fitted']
```

# 0.4 Distribution of covariates with respect to treatment and outcome

### [78]: []



```
[79]: # sns.stripplot(x=outcome\_var, y="propensity\_score", hue='IVT\_with\_rtPA', \_ \rightarrow data=data) #
```

```
[80]: # sns.stripplot(x="index", y="propensity_score", hue='IVT_with_rtPA', data=data.

→reset_index())
```

[]: