ELEN 4720: Machine learning for Signals, Information & Data

Home work - 2

Date - 31st October 2021

Name- Rakshith Kamath

UNI- 9k3165

Problem-1

 (y_1,x_1) , (y_n,x_n) . $y \in \{0,i\}$, $x \in \mathbb{R}^d$

yo = ang max p(yo=y/π). TT p(xo,a/λy,a)

y; i'd Beln(π), χ; a/y; ~ Pois(λy; d), d=1,...D, Bues: λy, d' Gomma (2,1)

 $\widehat{\pi}, \widehat{\lambda}_{0,1:D}, \widehat{\lambda}_{1,1:D} = \underset{\widehat{\pi}}{\text{arg max}} \underbrace{\sum_{i=1}^{n} \ln p(y_i|\pi) + \sum_{d=1}^{D} \left(\ln p(\lambda_0 d) + \ln p(\lambda_1, d) + \sum_{i=1}^{n} \ln p(x_{id}|\lambda_{y_i,d}) \right)}_{i=1}$

to get the max value of \widehat{T} , we take the delivative of L wisht \widehat{T} delivative of L wisht \widehat{T} delivative of L \widehat{T} delivative of L wisht \widehat{T} delivative of L wish L delivative of L wisht \widehat{T} delivative of L wisht L delivative of L wish L delivative of L wisht L delivative of L wish L delivative of L wish L delivative of L delivat

C> terms which are constant w. r.t to fi, i.e they don't have a fi term in it.

\[\frac{\partial L}{\partial R} = \frac{\partial L}{\partial R} \left[\frac{\

 $= \frac{2}{\sqrt{1-y^2}} = 0$ $= \frac{1}{\sqrt{1-y^2}} = 0$ $= \frac{1}{\sqrt{1-y^2}} = 0$

 $\frac{\sum_{i=1}^{N} y_i^{i}}{\pi} + \frac{\sum_{i=1}^{N} y_i^{i}}{(1-\pi)} = 0$ $\frac{\sum_{i=1}^{N} y_i^{i}}{\pi} + \frac{\sum_{i=1}^{N} y_i^{i}}{(1-\pi)} = 0$ $\frac{\sum_{i=1}^{N} y_i^{i}}{\pi} + \frac{\sum_{i=1}^{N} y_i^{i}}{(1-\pi)} = 0$

$$P(\lambda_{y,d}) = \frac{1^2}{\Gamma[2]} \cdot (\lambda_{y,d}) \cdot e^{-\lambda_{y,d}}$$

Also,
$$P(x_i, d, y_i) = Pois(x_i, d)$$

$$\operatorname{lois}(x|y) = \frac{x}{x} e^{-x}$$

Let's rewrite L as follows-

$$L = C_2 + \sum_{d=1}^{\infty} \left(\ln p(\lambda_0, d) + \ln p(\lambda_1, d) \right) + \sum_{i=1}^{\infty} y_i \cdot \ln p(x_i a | \lambda_{y_i a}) + C_2 + \sum_{d=1}^{\infty} \left(\ln p(\lambda_0, d) + \ln p(\lambda_1, d) \right) + C_2 + \sum_{d=1}^{\infty} \left(\ln p(\lambda_0, d) + \ln p(\lambda_1, d) \right) + C_3 + C_4 +$$

C2 is the term which is constant w. I. I $\lambda_{0,1:D}$ & $\lambda_{1,1:D}$.

The last term is modified such that $y_i=1$ can be used to indicate $\lambda y_i,d$ by $y_i=0$ to indicate $\lambda y_i,d$.

Now, différentiating Lw.2.t 20,d, we get

$$\frac{dL}{d\lambda_{0}d} = \frac{d}{d\lambda_{0}d} \begin{bmatrix} c' + \sum_{d=1}^{2} \log(\lambda_{0}d) - \lambda_{0}d + \log(\lambda_{1}d) - \lambda_{0}d + \log(\lambda_{1}d) \end{bmatrix} + \frac{d}{d\lambda_{0}d} \begin{bmatrix} c' + \sum_{d=1}^{2} \log(\lambda_{0}d) - \lambda_{0}d + \log(\lambda_{1}d) - \lambda_{0}d \end{bmatrix}$$

$$\sum_{i=1}^{n} y_{i} \left(x_{i,d} \log \left(\lambda_{i,d} \right) - \lambda_{i,d} - \log \left(x_{i,d} \right) \right) +$$

$$\left(1 - y_{i} \right) \left(x_{i,d} \log \left(\lambda_{i,d} \right) - \lambda_{i,d} - \log \left(x_{i,d} \right) \right)$$

$$O = \frac{1}{\lambda_{0,d}} - \frac{1}{\lambda_{0,d}} + \frac{1}{\lambda_{0,d}} - \frac{1}{\lambda_{0,d}}$$

$$1 + \frac{2}{i=1} (1-y_i) = \frac{1}{\lambda_{0,0}} \left[1 + \frac{2}{i=1} (1-y_i) \cdot \chi_{i,0} \right]$$

$$\lambda_{0,d} = \left[1 + \sum_{i=1}^{\infty} (1 - y_i), \chi_{i,d} \right]$$

$$1 + \sum_{i=1}^{\infty} (1 - y_i)$$

IIIly for Dind, we get

$$O = \frac{1}{\lambda_{1,d}} - \frac{1}{\lambda_{2,d}} + \frac{1}{\lambda_{2,d}} = \frac{1}{\lambda_{2,d}} - \frac{1}{\lambda_{2,d}}$$

 $\lambda_{1,d} = \frac{1 + \sum_{i=1}^{n} y_i \cdot x_{i,d}}{1 + \sum_{i=1}^{n} y_i}$

This gives us the combined output λy_{id} combining $\lambda y_{0id} \& \lambda y_{iid}$.

Problem-2

\tilde{a}		Predicted 7=0	predicted	
/	Actual y=1	1703	488	
· ·	Actual y=0	110	2299	
		l	'	

b) The dimension 16 seepresents the word "free" & dimension 52 represents "!".

From the plot below, we can see that both the dimensions the value of λ is higher in span mails than the non-span ones. This tells us that the words "free" & "!" are frequently seen in span mails which usually is the case, when the companies try to market something they try to give in offers they usually tend to exaggirate & use the above words. Hone it's frequency is rightly so, seen in span mails.

a)
$$L'(\omega) = L(\omega_t) + (\omega - \omega_t)^T \nabla L(\omega_t) + \frac{1}{2}(\omega - \omega_t)^T \nabla^2 L(\omega_t) \cdot (\omega - \omega_t)$$

$$\frac{\partial L'(\omega)}{\partial \omega} = 0 + \nabla L(\omega_t) \cdot (1 + \frac{1}{2} \times 2(\omega - \omega_t) \cdot \nabla^2 L(\omega_t).$$

lquating this to zero, we get

Realranging ur get

$$\omega = \omega_{t} - \frac{\nabla L(\omega_{t})}{\nabla^{2}L(\omega_{t})}$$

i.e

$$w_{t+1} = w_t - \left[\sqrt{2} L(w_t) \right] \sqrt{L(w_t)},$$

The graph after hunning it for 10 luns is as follows-

iterations

1	
<i>P</i> \	
\sim)
/	/

	Predicted y=-1	predicted y=1	Accuracy= (1597+2643) × 100
Actual y=-1	1597	144	4600
Actual y=1	216	2643	Accuracy = 92.17-/.

The Confusion matrix of the same is plotted below-

Problem-3

a) After surving the Granssian Process. Following is table of hyperparameters.

RMSE Table	for various	Values of	~ ²	8 p.
	17	•		

SE	~ ^L									
RNSE	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
5	1.966278	1.933137	1.923422	1.922200	1.924771	1.929215	1.934636	1.940585	1.946822	1.953215
7	1.920165	1.904878	1.908082	1.915904	1.924806	1.933704	1.942256	1.950382	1.958095	1.965440
b 9	1.897650	1.902521	1.917650	1.932517	1.945702	1.957237	1.967406	1.976494	1.984743	1.992344
11	1.890509	1.914983	1.938851	1.957938	1.973218	1.985766	1.996377	2.005605	2.013838	2.021347
13	1.895850	1.935588	1.964600	1.985504	2.001316	2.013881	2.024313	2.033309	2.041320	2.048644
15	1.909605	1.959551	1.990806	2.011918	2.027372	2.039467	2.049465	2.058107	2.065847	2.072978

b) The best value to use is at b=11 & $\sigma^2=0.1$ as highlighted in the table as shown above. The RMSE value here is 1.890509.

In homework / , the smallest RMSE use could achieve using Joly normal suggestion is 2.08 using 3rd order polynomial.

The drawbacks of this method are that we need to select range of b & 5 2 then get the best one. Each calculation, the program needs to calculate the inverse of the matrix for both mean & variance calculation. Inverse calculation is a very time consuming process

Julatively.

However in ridge suggession, we calculate only 1 parameter & & it also doesn't have inverse calculation, hence the consumption of time is less.

The graph shown below shows both test data joints & the predicted value of theiring data.

