60016 OPERATIONS RESEARCH

Game Theory Background Zero Sum Games & Pure Strategies

13 November 2020

Optimization (e.g. LP) \rightarrow problems with a single decision-maker:

- ▶ LP: diet optimisation, newsvendor problem, ...
- ▶ ILP: supply chain design, airline crew scheduling, ...

Optimization (e.g. LP) \rightarrow problems with a single decision-maker:

- LP: diet optimisation, newsvendor problem, ...
- ► ILP: supply chain design, airline crew scheduling, ...

Optimization (e.g. LP) \rightarrow problems with a single decision-maker:

- ▶ LP: diet optimisation, newsvendor problem, ...
- ► ILP: supply chain design, airline crew scheduling, ...

Optimization (e.g. LP) \rightarrow problems with a single decision-maker:

- ▶ LP: diet optimisation, newsvendor problem, ...
- ► ILP: supply chain design, airline crew scheduling, ...

Games

Key ingredients:

- Every player takes own decision
- Payoff each player receives depends on choice of all players

In "math language":

- ▶ Each player i = 1, ..., n has a set of actions $x_i \in \mathcal{X}_i$
- ▶ Player *i* receives a payoff $J_i(x_1,...,x_i,...,x_n)$

Very special class: two-Person Zero-Sum Games w finite actions

- ► Two players: row player (RP) and column player (CP)
- ▶ RP chooses one out of *m* strategies (row strategies)
- CP chooses one out of n strategies (column strategies)
- Zero-Sum: RP wins whatever CP loses and viceversa

Payoff Matrix

- ▶ Payoff matrix: descriptor of a two-player zero-sum game
- ▶ If RP plays strategy i and CP plays strategy j, then CP pays a_{ij} to RP

	СР				
	Strategy 1	Strategy 2		Strategy <i>n</i>	
Strategy 1	a ₁₁	a ₁₂		a_{1n}	
Strategy 2	a ₂₁	a ₂₂		a _{2n}	
:	:	:	٠	:	
Strategy <i>m</i>	a_{m1}	a_{m2}		a _{mn}	

Example: Odds-and-Evens

- ▶ Both players simultaneously show "1" or "2" fingers
- ▶ If the sum of both numbers is even: CP gives £1 to RP
- ▶ If the sum of both numbers is odd: RP gives £1 to CP

		CP		
0		1 Finger	2 Fingers	
RF	1 Finger	1	-1	
	2 Fingers	-1	1	

Example: Rock-Paper-Scissors

- Both players simultaneously play "rock", "paper" or "scissors"
- Rock defeats scissor, scissor defeats paper, paper defeats rock. All other combinations are draws.
- ▶ If a player is defeated, s/he gives £1 to the other player

		CP		
		Rock	Paper	Scissors
ď	Rock	0	-1	1
Ψ S	Paper	1	0	-1
	Scissors	-1	1	0

Two-Person Zero-Sum Games

Assumptions of Two-Person Zero-Sum Games:

- 1. Each player knows the game setting (available strategies to RP and CP, values of payoff matrix)
- 2. Both players simultaneously choose their strategy, that is, without knowing what their opponent chooses
- Each player chooses a strategy that enables him/her to do best, reasoning as if the opponent could anticipate his/her strategy
- 4. Both players are rational:
 - ► They try to maximise their utility
 - They show no compassion for their opponent

Elections game:

- 1. Two players: RP (row) and CP (column)
- 2. Both players have three strategies:
 - L: campaign the last two days in London
 - B: campaign the last two days in Birmingham
 - S: split the last two days, campaign one day in London and one day in Birmingham
- 3. Payoffs: how many voters does RP acquire from CP?

Consider the following setting of the Elections Game:

We want to find the strategies that will be played by RP and CP.

Observation:

Strategy L ("London only") is always better for RP than Strategy S ("London and Birmingham").

Conclusion:

RP will never play strategy S. Both players will realise this and we can ignore it.

Observation:

Both strategy L ("London only") and strategy B ("Birmingham only") are always better (less to pay) for CP than strategy S ("Split between London and Birmingham").

Conclusion:

CP will never play strategy S. Both players will realise this and we can ignore it.

Observation:

Strategy L ("London only") is no worse for RP than strategy B ("Birmingham only") and can be better (if CP plays B).

Conclusion:

RP will never play strategy B. Both players will realise this and we can ignore it.

Observation:

Strategy L ("London only") is always better for CP than strategy B ("Birmingham only").

Conclusion:

CP will never play strategy B. Both players will realise this and we can ignore it.

Dominant Strategy Equilibrium:

Both RP and CP will campaign in London.

Dominance

Dominated row strategy: Row strategy i is dominated by row strategy i' if $a_{i'j} \ge a_{ij}$ for all column strategies $j = 1, \ldots, n$ and $a_{i'j} > a_{ij}$ for some j.

Dominated column strategy: Column strategy j is dominated by column strategy j' if $a_{ij'} \leq a_{ij}$ for all row strategies $i=1,\ldots,m$ and $a_{ij'} < a_{ij}$ for some i.

- A rational player will never play a dominated strategy
- A rational opponent knows this

Dominant Strategy Equilibria

Dominant Strategy Equilibrium: If a repeated removal of dominated strategies leads to a game where each player has just one strategy left, then this strategy pair is a dominant strategy equilibrium.

Properties:

- ▶ If a dominant strategy equilibrium exists, then it is unique.
- ▶ If a dominant strategy equilibrium exists, then any rational players will play the associated equilibrium strategies.

Consider a different payoff matrix for the Elections Game:

- ► This game has no dominated strategies
- Hence, there is no dominant strategy equilibrium

Security strategy over rows

Assumption: "Each player chooses a strategy that enables him/her to do best in face of worst-case opponent"

 $ightharpoonup \alpha_i$: payoff of row strategy i, when facing worst-case opponent

$$\alpha_i = \min_{j=1,\dots,n} a_{ij}$$

► Thus, the RP will pick the strategy *i* that maximizes the worst-case payoff

$$\max_{i=1,\ldots,n} \min_{j=1,\ldots,n} a_{ij}$$

Example: security strategy (rows)

Strategy B is the best for the RP

Security strategy over columns

- ▶ We repeat the reasoning for the CP.
- \triangleright β_j : cost of column strategy j, when facing worst-case opponent

$$\beta_j = \max_{i=1,\dots,n} a_{ij}$$

► Thus, the CP will pick the strategy *j* that minimizes the worst-case cost

$$\min_{j=1,\dots,n} \max_{i=1,\dots,n} a_{ij}$$

Example: Security strategy (columns)

► Strategy B is also best for the CP

Informal: Nash Equilibrium

- Rational outcome for both players is to play (B,B)
- ► Strategy pair (B,B) is a pure strategy Nash equilibrium.
- ► The (B,B) payoff (0) is called value of the game
- ▶ Players have no incentive to change their strategies

Nash Equilibrium in Pure Strategies

Definition: a Nash Equilibrium is a strategy pair (i^*, j^*) such that no player has an incentive to unilaterally deviate from his/her chosen strategy if told the strategy of the other player.

Note: a Nash equilibrium may not always exist in pure strategies.

Properties:

- ▶ If (i^*, j^*) is a Nash equilibrium, then $\alpha_{i^*} = \beta_{j^*}$
- ► The payoff of the Nash equilibrium's strategy pair $\alpha_{i^*} = \beta_{j^*}$ is called the value of the game.

Example

Example

- (L,S) is not a Nash equilibrium in pure strategies
- ▶ If told RP's strategy, CP would change its strategy to B. This violates the definition of Nash equilibrium.