Name: Matr.Nr:

Klausur Physik (4 3212)

22. Februar 2022

Hinweise:

- Hilfsmittel:
 - Nicht-programmierbarer Taschenrechner
 - Bereitgestellte Formelsammlung und papierbasierte Unterlagen (sichtbar auf dem Tisch)
- Bitte nummerieren Sie Ihre Lösungen entsprechend der Aufgabenstellung. Streichen Sie nicht zu wertende Lösungsteile deutlich durch.
- Bitte schreiben Sie deutlich lesbar mit einem permanenten Stift (z.B. Kugelschreiber), verwenden Sie bitte keine Bleistifte, da diese schlecht eingescannt werden können.

Viel Erfolg!

Aufgaben	Erreichbar	Erreicht
1	16	
2	10	
3	14	
4	10	
Summe	50	
Prozent	100 %	
Bonusaufgaben	15 %	
Summe	115 %	

Name: Matr.Nr:

Aufgabe 1: (16 Punkte)

Ein Wagen fährt mit einer Geschwindigkeit von $20 \frac{\text{km}}{\text{h}}$ auf eine Steigung von 30 %. Dort wird der Wagen durch die Hangabtriebskraft und durch die Reibungskraft abgebremst. Die Erdbeschleunigung g ist als $g = 9.81 \frac{\text{m}}{\text{s}^2}$ anzunehmen. Der Reibungskoeffizient ist mit $\mu = 0.03$ anzunehmen.

- (a) Berechnen Sie die Reibungskraft bei einer Masse des Wagens von 1000 kg. Erstellen Sie dazu eine Skizze, in der Sie die relevanten Kräfte antragen.
- (b) Berechnen Sie die auf den Wagen wirkende Hangabtriebskraft.
- (c) Berechnen Sie die resultierende Bremsbeschleunigung auf den Wagen.
- (d) Nach welcher Zeit ist der Wagen auf 10 $\frac{km}{h}$ abgebremst?

Aufgabe 2: (10 Punkte)

Es soll ein Kugelstoßpendel (Newtonpendel) betrachtet werden. Lenkt man die linke äußerste Kugel m_1 aus und lässt sie gegen die anderen Kugeln prallen, so wird sie gestoppt und stattdessen schwingt die äußerste rechte Kugel m_5 aus. Schwingt diese zurück, so prallt sie gegen die ruhenden Kugeln, und die äußerste linke Kugel schwingt aus.

Alle Kugeln haben eine Masse von 10 g und die Fäden sind jeweils 10 cm lang. Die Kugel m_1 stößt mit der Geschwindigkeit $v_1=0.5\,\frac{\rm m}{\rm s}$ gegen die ihr benachbarte Kugel.

- (a) Begründen Sie, weshalb die Kugel m_5 durch den Stoß ausgelenkt wird. Berechnen Sie die Geschwindigkeit der dieser Kugel nach dem Stoß. Von welcher Annahmen gehen Sie dabei aus?
- (b) Wie hoch schwingt die Kugel m_5 nach oben?
- (c) Berechnen Sie, wie weit sich die Kugel m_5 dabei von der benachbarten Kugel in x-Richtung entfernt.

Name: Matr.Nr:

Aufgabe 3: (14 Punkte)

In einer Reihe von 10 gekoppelten Fadenpendeln breitet sich eine Transversalwelle mit einer Amplitude von 2 cm nach rechts aus. Der Abstand zwischen den Pendeln beträgt 1 cm. Die Welle hat eine Ausbreitungsgeschwindigkeit von 3 $\frac{\rm cm}{\rm s}$ und eine Wellenlänge von 4 cm.

- (a) Erläutern Sie bitte, was unter einer Transversalwelle verstanden wird.
- (b) Wie groß ist die Frequenz der Welle?
- (c) Nach welcher Zeit wird das 10. Pendel erreicht?
- (d) Welche Auslenkung hat in dem Moment, wenn das 10. Pendel erreicht wird, das 5. Pendel?
- (e) Welche Länge haben die Fadenpendel?

Aufgabe 4: (10 Punkte)

In einer evakuierten Kathodenstrahlröhre werden Elektronen beschleunigt, so dass ein Elektronenstrahl entsteht.

- (a) Die Beschleunigungsspannung beträgt 200 V. Auf welche Geschwindigkeit werden die Elektronen beschleunigt?
- (b) Der Elektronenstrahl tritt senkrecht zu den Feldlinien eines homogenen Magnetfeldes eines Hufeisenmagneten ein. Die magnetische Flussdichte beträgt $1,6 \cdot 10^{-3}$ T. Begründen Sie, weshalb sich die Elektronen auf Kreisbahnen weiterbewegen.
- (c) Berechnen Sie den Radius der Kreisbahn, wenn die Geschwindigkeit der Elektronen $2\cdot 10^6\,\frac{\rm m}{\rm s}$ beträgt.