ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Механико-математический факультет

«Утверждаю» Декан ММФ А.В. Старченко «30» июня 2016 г.

МЕРА ЛЕБЕГА-2. Теория и задачи

Учебно-методическое пособие

Томск Издательский Дом Томского государственного университета 2016

ОДОБРЕНО кафедрой математического анализа Зав. кафедрой доцент Л.С. Копанева

РАССМОТРЕНО И УТВЕРЖДЕНО методической комиссией ММФ Протокол № 6 от 17 июня 2016 г.

Председатель методической комиссии О.П. Федорова.

Для студентов 1-го и 2-го курсов ММФ ТГУ. Пособие является продолжением пособия «МЕРА ЛЕБЕГА-1. Теория и задачи», нумерация параграфов теории и задач продолжает нумерацию предыдущего пособия. В данном пособии подробное изложены свойства меры Лебега (§5) и приводится большое число примеров измеримых по Лебегу множеств (§6). Также приведено более ста задач к §5, 6 и указания к решению задач §5.

Ссылки на факты, изложенные в текущем параграфе – краткие: по теореме 1, согласно определению 1, Ссылка на факт в другом параграфе начинается с номера параграфа: по теореме 2.8 – по теореме 8 из §2. Параграфы 1, 2, 3, 4 изложены в пособии «МЕРА ЛЕБЕГА-1. Теория и задачи». Символ ◊ означает конец доказательства.

СОСТАВИТЕЛИ:

доцент Г.В. Сибиряков, доцент Е.Г. Лазарева, ст. пр. Ю.А. Мартынов

§5. Мера Лебега

Мы уже определили меру бруса P и меру открытого множества G (определения 1.1 и 2.2). По свойству 3(b) справедливо равенство $\lambda^*G=\lambda G$. По свойству 3(e) для бруса P также $\lambda^*P=\lambda P$. Таким образом, $\lambda A=\lambda^*A$ всякий раз, когда мера λA определена.

1. Определение. Мерой Лебега λA измеримого множества $A{\subset}\mathbb{R}^n$ называется его внешняя мера, т.е. по определению

$$\lambda A = \lambda^* A = \inf \{ \lambda G; G \supset A \}.$$

Таким образом, каждому множеству $A \in L(\mathbb{R}^n)$ сопоставлена его мера Лебега $\lambda A \in [0, +\infty]$. Значит, определено отображение

$$\lambda: L(\mathbb{R}^n) \rightarrow [0, +\infty].$$

Это отображение тоже называется мерой Лебега.

Из свойств внешней меры сразу вытекают следующие утверждения:

- (a) Если множества $A,B \subset \mathbb{R}^n$ измеримы и $A \subset B$, то $\lambda A \leqslant \lambda B$.
- (b) Если измеримые множества $B_1,B_2,\dots,B_m\subset\mathbb{R}^n$ покрывают измеримое множество A, т.е $A\subset B_1\cup B_2\cup\dots\cup B_m,$ то

$$\lambda A \leqslant \lambda B_1 + \lambda B_2 + \ldots + \lambda B_m.$$

(c) Если последовательность измеримых множеств $B_k \subset \mathbb{R}^n$, $k \in \mathbb{N}$, покрывает измеримое множество A, т.е $A \subset \bigcup_{k=1}^\infty B_k$, то $\lambda A \leqslant \sum_{k=1}^\infty \lambda B_k$.

(d) Если множество $A \subset \mathbb{R}^n$ измеримо и ограничено, то $\lambda A < +\infty$.

Замечание. Ниже мы увидим, что неограниченное измеримое множество $A \subset \mathbb{R}^n$ может иметь меру $\lambda A < +\infty$.

Установим основные свойства меры Лебега.

2. Теорема. (Об аддитивности меры Лебега). Если множества A и $B \subset \mathbb{R}^n$ измеримы и не пересекаются, то справедливо равенство

$$\lambda(A \sqcup B) = \lambda A + \lambda B. \tag{1}$$

Доказательство. По теореме 3.2

$$\lambda(A \sqcup B) = \lambda^*(A \sqcup B) \leqslant \lambda^*A + \lambda^*B = \lambda A + \lambda B. \tag{2}$$

Докажем обратное неравенство

$$\lambda A + \lambda B \leqslant \lambda (A \sqcup B). \tag{3}$$

Если $\lambda(A \sqcup B) = +\infty$ или одно из множеств A и B пусто, то неравенство верно. Пусть $A \neq \emptyset$, $B \neq \emptyset$, $\lambda(A \sqcup B) < +\infty$. Фиксируем $\varepsilon > 0$. Выберем открытое множество G так, что

$$A \sqcup B \subset G, \ \lambda G < \lambda (A \sqcup B) + \varepsilon$$
 (4)

(см. рис. 1). Это возможно, так как

$$\lambda(A \sqcup B) = \lambda^*(A \sqcup B) = \inf \{ \lambda G; G \supset A \sqcup B \} < +\infty.$$

По теореме 4.8 найдутся замкнутые множества $F,V\!\subset\!\mathbb{R}^n$ такие, что

$$F \subset A$$
, $V \subset B$, $\lambda^*(A \backslash F) < \varepsilon$, $\lambda^*(B \backslash V) < \varepsilon$.

Можно считать, что $F \neq \emptyset$ и $V \neq \emptyset$.

По теореме 3.2 о полуаддитивности внешней меры

$$\lambda A = \lambda^* A = \lambda^* [F \cup (A \setminus F)] \leqslant \lambda^* F + \lambda^* (A \setminus F) < \lambda^* F + \varepsilon, \lambda B = \lambda^* B = \lambda^* [V \cup (B \setminus V)] \leqslant \lambda^* V + \lambda^* (B \setminus V) < \lambda^* V + \varepsilon.$$
 (5)

Из соотношений $A\cap B=\varnothing$, $F\subset A$, $V\subset B$ следует, что множества F и V не пересекаются. Рассмотрим множества

$$D_1 = \{x \in G; \rho(x, F) < \rho(x, V)\},\$$

$$D_2 = \{x \in G; \rho(x, F) > \rho(x, V)\},\$$

где

$$\rho(x,C) = \inf \{ \rho(x,y); y \in C \}$$

— расстояние от точки x до множества C. Эти множества открыты, $F\subset D_1,\ V\subset D_2,\ D_1\cap D_2=\varnothing$ и $D_1\cup D_2\subset G$. Поэтому

$$\lambda F = \lambda^* F < \lambda D_1, \ \lambda V = \lambda^* V < \lambda D_2. \tag{6}$$

Кроме того, по свойствам 2(f) и 2(d)

$$\lambda D_1 + \lambda D_2 = \lambda \left(D_1 \sqcup D_2 \right) \leqslant \lambda G. \tag{7}$$

Из соотношений (5), (6), (7) и (4) имеем

$$\lambda A + \lambda B < \lambda^* F + \lambda^* V + 2\varepsilon = \lambda F + \lambda V + 2\varepsilon < 0$$

$$<\lambda D_1 + \lambda D_2 + 2\varepsilon = \leq \lambda G + 2\varepsilon < \lambda (A \sqcup B) + 3\varepsilon.$$

Переходя в полученном неравенстве

$$\lambda A + \lambda B < \lambda (A \sqcup B) + 3\varepsilon$$

к пределу при $\varepsilon \to +0$, получим неравенство (3).

Из неравенств (2) и (3) вытекает равенство (1). ◊

Следствие. Для любого конечного семейства попарно не пересекающихся измеримых множеств $A_1,A_2,\ldots,A_m \subset \mathbb{R}^n$ справедливо равенство

$$\lambda \left(A_1 \sqcup A_2 \sqcup \ldots \sqcup A_m \right) = \lambda A_1 + \lambda A_2 + \ldots + \lambda A_m.$$

3. Теорема. (О счетной аддитивности меры Лебега). Если измеримые множества $A_k \subset \mathbb{R}^n, \, k \in \mathbb{N}$, попарно не пересекаются, то

$$\lambda \left(\bigsqcup_{k=1}^{\infty} A_k \right) = \sum_{k=1}^{\infty} \lambda A_k. \tag{8}$$

Доказательство. По теореме 4.3 множество $A = \bigsqcup_{k=1}^{\infty} A_k$. измеримо. По теореме 3.2 справедливо неравенство

$$\lambda A = \lambda^* A \leqslant \sum_{k=1}^{\infty} \lambda^* A_k = \sum_{k=1}^{\infty} \lambda A_k. \tag{9}$$

С другой стороны, по теореме 2 и по свойству (а)

$$\bigsqcup_{k=1}^{m} \lambda A_k = \lambda \Big(\bigsqcup_{k=1}^{m} A_k\Big) \leqslant \lambda A$$

для каждого $m \in \mathbb{N}$. Поэтому

$$\sum_{k=1}^{\infty} \lambda A_k \leqslant \lambda A. \tag{10}$$

Из неравенств (9) и (10) следует равенство (8). ◊

4. Теорема. (О полноте меры Лебега). Если $A \subset \mathbb{R}^n$ и $\lambda^*A = 0$, то $A \in \mathfrak{L}(\mathbb{R}^n)$ и $\lambda A = 0$. В частности, если $A \subset B$, где Bизмеримо и $\lambda B = 0$, то A измеримо и $\lambda A = 0$.

Доказательство. Пусть $\lambda^* A = 0$ и $\epsilon > 0$. По определению внешней меры существует открытое множество G такое, что $A \subset G$ и $\lambda G < \lambda^* A + \varepsilon = \varepsilon$. Тогда $\lambda^* (G \setminus A) < \lambda G < \varepsilon$. Это означает, что множество A измеримо. Очевидно $\lambda A = \lambda^* A = 0$.

Пусть теперь множество B измеримо, $\lambda B = 0$ и $A \subset B$. Тогда $\lambda^*A \leqslant \lambda^*B = 0$ и, значит, $\lambda^*A = 0$. Отсюда по доказанному только что следует, что множество A измеримо и $\lambda A = 0$.

5. Теорема. (О регулярности меры Лебега). Множество $A \subset \mathbb{R}^n$ измеримо тогда и только тогда, когда для каждого $\varepsilon > 0$ существуют замкнутое множество F и открытое множество G такие, что $F \subset A \subset G$ и $\lambda(G \setminus F) < \varepsilon$ (см. рис. 2).

Рис. 2.

Доказательство. Пусть множество $A \subset \mathbb{R}^n$ измеримо и $\varepsilon > 0$. По определению измеримого множества найдется открытое множество $G \subset \mathbb{R}^n$ такое, что

$$A \subset G$$
 и $\lambda(G \backslash A) = \lambda^*(G \backslash A) < \epsilon/2$.

По теореме 4.8 существует замкнутое множество $F \subset A$ такое, что

$$F \subset A$$
 и $\lambda(A \backslash F) = \lambda^*(A \backslash F) < \varepsilon/2$.

По теореме 2 об аддитивности меры Лебега

$$\lambda(G \backslash F) = \lambda[(G \backslash A) \sqcup (A \backslash F)] = \lambda(G \backslash A) + \lambda(A \backslash F) < \varepsilon.$$

Необходимость условия доказана.

Пусть теперь $A \subset \mathbb{R}^n$ и для каждого $\varepsilon > 0$ существуют замкнутое множество F и открытое множество G такие, что $F \subset A \subset G$ и $\lambda(G \backslash F) < \varepsilon$. Докажем, что тогда множество A измеримо.

Фиксируем $\varepsilon>0$ и затем множества F и G так, что $F\subset A\subset G$, $\lambda(G\backslash F)<\varepsilon$. Множество $G\backslash F$ открыто, $G\backslash A\subset G\backslash F$ и поэтому

$$\lambda^*(G \backslash A) \leqslant \lambda^*(G \backslash F) = \lambda(G \backslash F) < \varepsilon.$$

По определению **4.1** это означает, что множество A измеримо. \Diamond

- 6. Теорема. (О структуре измеримого множества). Для множества $A \subset \mathbb{R}^n$ равносильны условия:
 - (α) $A \in L(\mathbb{R}^n)$, т.е. множество $A \subset \mathbb{R}^n$ измеримо.
- (eta) Существует возрастающая последовательность замкнутых множеств F_k , $k\!\in\!\mathbb{N}$, и множество N_1 с мерой $\lambda N_1=0$ такие, что

$$A = \Big(\bigcup_{k=1}^\infty F_k\Big) \cup N_1.$$

(ү) Существует убывающая последовательность открытых множеств $G_k, k\!\in\!\mathbb{N}$, и множество N_2 с мерой $\lambda N_2=0$ такие, что

$$A = \left(\bigcap_{k=1}^{\infty} G_k\right) \backslash N_2.$$

Доказательство. (β) \Rightarrow (α) и (γ) \Rightarrow (α). Это вытекает из теорем 4.2, 4.3, 4.5, 4.7. (Открытые и замкнутые множества измеримы. Объединение и пересечение последовательности измеримых множеств измеримы. Разность измеримых множеств измерима).

 $(\alpha) \Rightarrow (\beta)$ и $(\alpha) \Rightarrow (\gamma)$. Пусть множество $A \subset \mathbb{R}^n$ измеримо. По теореме 5 о регулярности меры Лебега существуют замкнутые множества C_k и открытые множества D_k такие, что

$$C_k \subset A \subset D_k \,, \ \lambda \big(D_k \,\backslash\, C_k\big) < 1/k, \, k \,\in\, \mathbb{N} \,.$$

Множества

$$F_k = C_1 \cup C_2 \cup \ldots \cup C_k, k \in \mathbb{N},$$

замкнуты и образуют возрастающую последовательность, т.е.

$$F_1 \subset F_2 \subset \ldots \subset F_k \subset \ldots$$

Множества

$$G_k = D_1 \cap D_2 \cap \ldots \cap D_k, k \in \mathbb{N},$$

открыты и образуют убывающую последовательность, т.е.

$$G_1 \supset G_2 \supset \ldots \supset G_k \supset \ldots$$

Обозначим

$$V = \bigcup_{k=1}^{\infty} F_k, \ W = \bigcap_{k=1}^{\infty} G_k.$$

Из включений $C_k \subset A \subset D_k$, $k \in \mathbb{N}$, следует, что

$$F_k \subset A \subset G_k$$
 для всех $k \in \mathbb{N}$.

Поэтому $V \subset A \subset W$. Кроме того, для каждого $m \in \mathbb{N}$

$$W \, \backslash V = \left(\, \bigcap_{k=1}^{\infty} G_k \right) \, \backslash \left(\, \bigcup_{k=1}^{\infty} F_k \right) \subset G_m \backslash \, F_m.$$

Поэтому

$$\lambda^*(W \setminus V) \leqslant \lambda^*(G_m \setminus F_m) < 1/m$$

для всех $m\!\in\!\mathbb{N}$ и, значит, $\lambda^*(W\!\setminus\! V)\!=\!0$. По теореме **4** о полноте меры Лебега множество $W\!\setminus\! V$ и его подмножества $N_1\!=\!A\!\setminus\! V$, $N_2\!=\!W\!\setminus\! A$ измеримы и имеют меру 0. Ясно также, что

$$A = V \cup N_1 = \Big(\bigcup_{k=1}^\infty F_k\Big) \cup N_1, \quad A = W \setminus N_2 = \Big(\bigcap_{k=1}^\infty G_k\Big) \setminus N_2. \ \diamondsuit$$

7. Теорема. (Об инвариантности меры Лебега относительно изометрии). Пусть $T:\mathbb{R}^n \to \mathbb{R}^n$ – изометрия. Если множество $A \subset \mathbb{R}^n$ измеримо, то множество $T(A) = \{Tx \; ; \; x \in A\}$ также измеримо и справедливо равенство $\lambda[T(A)] = \lambda A$.

Доказательство. Пусть $T: \mathbb{R}^n \to \mathbb{R}^n$ – изометрия, т.е.

$$\rho(Tx, Ty) = \rho(x, y)$$
 для любых $x, y \in \mathbb{R}^n$.

Заметим, что если одно из множеств $V \subset \mathbb{R}^n$ и T(V) – замкнутый шар, то другое – тоже замкнутый шар, причем того же радиуса. Поэтому множество $G \subset \mathbb{R}^n$ открыто тогда и только тогда, когда открыто множество T(G).

Допустим, что при этом всегда $\lambda G = \lambda[T(G)]$. Тогда для любого множества $A \subset \mathbb{R}^n$ мы получим

$$\lambda^* A = \inf_{G \supset A} \lambda G = \inf_{T(G) \supset T(A)} \lambda [T(G)] =$$

$$= \inf_{G_1 \supset T(A)} \lambda G_1 = \lambda^* [T(A)]. \tag{11}$$

Если теперь $A \subset G$ и $\lambda^*(G \backslash A) < \epsilon$, то $T(A) \subset T(G)$ и

$$\lambda^*[T(G)\backslash T(A)] = \lambda^*T(G\backslash A) = \lambda^*(G\backslash A) < \varepsilon.$$

Отсюда ясно, что если A измеримо, то T(A) также измеримо и, в силу (11), справедливо равенство $\lambda A = \lambda [T(A)].$

Осталось показать, что $\lambda G = \lambda[T(G)]$ для любого открытого множества $G \subset \mathbb{R}^n$. Это получается просто в частном случае, когда изометрия T совпадает со сдвигом пространства \mathbb{R}^n на вектор $a = (\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$, т.е. действует по правилу

$$Tx = x + a = (\xi_1 + \alpha_1, \dots, \xi_n + \alpha_n), x = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n.$$

Рис. 3.

Действительно, прямым вычислением легко показать, что сдвиг бруса является брусом той же меры. Следовательно, сдвиг открытого множества является открытым множеством той же меры. Значит, для сдвигов теорема 7 справедлива. Отсюда вытекает, в частности, что замкнутые шары одного радиуса имеют одинаковую меру.

Произвольная изометрия T брусы не сохраняет (возможен поворот), но шары она переводит в шары той же меры. Поэтому для доказательства равенства $\lambda G = \lambda [T(G)]$ достаточно показать, что

$$\lambda G = \sup (\lambda V_1 + \lambda V_2 + \ldots + \lambda V_m),$$

где супремум берется по всем конечным семействам попарно не пересекающихся замкнутых шаров $V_k \subset G$. А это следует из леммы:

8. Лемма. Для любого непустого открытого множества $G \subset \mathbb{R}^n$ существует последовательность попарно не пересекающихся замкнутых шаров $V_k \subset G, \ k \in \mathbb{N}$, такая, что $\lambda G = \sum\limits_{k=1}^\infty \lambda V_k$ (см. рис. 3).

Доказательство. Назовем брус $P \subset \mathbb{R}^n$ кубическим, если все его ребра имеют одну и ту же длину, т.е. если $P = \prod\limits_{i=1}^n \left[a_i, a_i + r\right)$ для некоторых $a_1, a_2, \ldots, a_n \in \mathbb{R}$ и r > 0.

В кубическом брусе $P \subset \mathbb{R}^n$ содержится (см. рис. 4) замкнутый шар V с мерой $\lambda V > \gamma \cdot \lambda P$, где $\gamma = \left(2\sqrt{n}\right)^{-n}$. Действительно, пусть r > 0 — длина ребра бруса P и V — замкнутый шар радиуса r/4 с центром в центре z бруса P. Впишем в шар V кубический брус Q. Длина его диагонали равна диаметру r/2 шара V. Значит, ребра бруса Q имеют длину $s = \frac{r}{2\sqrt{n}}$ и $\lambda Q = s^n = \gamma \cdot r^n$. Теперь ясно, что $\lambda V > \lambda Q = \gamma \cdot r^n = \gamma \cdot \lambda P$.

Пусть $G \subset \mathbb{R}^n$ — непустое открытое множество и $G = \bigsqcup_{k=1}^{\infty} P_k$ — его разбиение на попарно не пересекающиеся кубические брусы (лемма 2.1). Выберем замкнутые шары $W_k \subset P_k$ так, что $\lambda W_k > \gamma \cdot \lambda P_k$ для всех $k \in \mathbb{N}$. Если $\lambda G = +\infty$, то

Рис. 4.

$$\sum_{k=1}^{\infty} \lambda W_k \geqslant \gamma \cdot \sum_{k=1}^{\infty} \lambda P_k = \gamma \cdot \lambda G = +\infty$$

и, следовательно, $\sum\limits_{k=1}^{\infty}\lambda W_k=+\infty=\lambda G$, т.е. последовательность шаров W_k , $k\!\in\!\mathbb{N}$, – искомая.

Пусть $\lambda G < +\infty$. По условию $G \neq \emptyset$. Поэтому $\lambda G > 0$ и

$$\sum_{k=1}^{\infty} \lambda P_k = \lambda G > \frac{\lambda G}{2}.$$

Значит, найдется $N_1 \in \mathbb{N}$ такое, что уже

$$\lambda P_1 + \lambda P_2 + \ldots + \lambda P_{N_1} > \frac{\lambda G}{2}.$$

Обозначим $V_j = W_j$ при $j = 1, 2, \dots, N_1$. Имеем

$$\lambda V_1 + \lambda V_2 + \ldots + \lambda V_{N_1} \geqslant \gamma \cdot \left(\lambda P_1 + \lambda P_2 + \ldots + \lambda P_{N_1}\right) > \frac{\gamma}{2} \cdot \lambda G.$$

Множество

$$G_1 = G \setminus (V_1 \sqcup V_2 \sqcup \ldots \sqcup V_{N_1})$$

открыто, так как G открыто и шары $V_j, 1 \leqslant j \leqslant N_1$, замкнуты. Ясно также, что $G_1 \neq \varnothing$, так как $P_k \subset G_1$ при $k > N_1$, и $G_1 \subset G$. Поэтому

$$0 < \lambda G_1 \leqslant \lambda G < +\infty$$
.

Повторяя предыдущее рассуждение (с заменой множества G на G_1), построим попарно не пересекающиеся замкнутые шары

$$V_i \subset G_1, j = N_1 + 1, N_1 + 2, \dots, N_2,$$

такие, что

$$\lambda V_{N_1+1} + \lambda V_{N_1+2} + \ldots + \lambda V_{N_2} > \frac{\gamma}{2} \cdot \lambda \, G_1.$$

Множество

$$G_2 = G \setminus \left(\left. V_1 \sqcup \ldots \sqcup V_{N_2} \right) = G_1 \setminus \left(\left. V_{N_1 + 1} \sqcup \ldots \sqcup V_{N_2} \right) \right.$$

непусто, открыто и $0<\lambda G_2<+\infty$. Значит, существуют попарно не пересекающиеся замкнутые шары $V_j\subset G_2,\ j=N_2+1,\dots,N_3,$ сумма мер которых больше числа $\frac{\gamma}{2}\cdot\lambda\,G_2.$

Продолжая это рассуждение далее, мы получим попарно не пересекающиеся замкнутые шары $V_j \subset G, \ j \in \mathbb{N},$ натуральные числа

$$N_1 < N_2 < \ldots < N_m < \ldots$$

и непустые открытые множества

$$\begin{split} G_m &= G \setminus \left(\, V_1 \sqcup V_2 \sqcup \ldots \sqcup V_{N_m} \, \right) = \\ &= G_{m-1} \setminus \left(\, V_{N_{m-1}+1} \sqcup V_{N_{m-1}+2} \sqcup \ldots \sqcup V_{N_m} \right), \, \, m \! \in \! \mathbb{N} \, , \end{split}$$

 $\left(N_0\!=\!0,\,G_0\!=\!G\right)$ такие, что для каждого $\,m\!\in\!\mathbb{N}$

$$s_m \stackrel{\mathrm{def}}{=} \lambda V_{N_{m-1}+1} + \lambda V_{N_{m-1}+2} + \ldots + \lambda V_{N_m} > \frac{\gamma}{2} \cdot \lambda \, G_{m-1}.$$

По теореме 5.2 об аддитивности меры Лебега для каждого $m \in \mathbb{N}$

$$\lambda G = \lambda G_m + \lambda V_1 + \lambda V_2 + \dots + \lambda V_{N_m}, \tag{12}$$

$$\lambda G_{m-1} = \lambda G_m + s_m > \lambda G_m + \frac{\gamma}{2} \cdot \lambda G_{m-1}. \tag{13}$$

Из (13) следует, что $\lambda G_m < (1-\gamma/2) \cdot \lambda G_{m-1}$ для любого $m \in \mathbb{N}$. Отсюда и из неравенства $0 < \gamma < 1$ имеем

$$\lambda\,G_m < \left(1 - \frac{\gamma}{2}\right) \cdot \lambda\,G_{m-1} < \left(1 - \frac{\gamma}{2}\right)^2 \cdot \lambda\,G_{m-2} < \ldots < \left(1 - \frac{\gamma}{2}\right)^m \cdot \lambda\,G_0.$$

для всех $m\!\in\!\mathbb{N}$. Поскольку $0\!<\!1\!-\!\gamma/2\!<\!1$ и $\lambda\,G_0\!=\!\lambda\,G\!<\!+\infty$, то

$$\lim_{m\to\infty} \lambda\,G_m = 0$$
. Поэтому из (12) следует равенство $\,\lambda\,G = \sum\limits_{k=1}^\infty \lambda\,V_k\,.\,\, \Diamond$

Задачи к §5. Мера Лебега

- 99. Пусть множество $A \subset \mathbb{R}^n$ состоит из изолированных точек. Доказать, что множество A измеримо и $\lambda A = 0$.
- 100. Пусть множество $A \subset \mathbb{R}^n$ измеримо и B множество всех его изолированных точек. Доказать, что множества B и $A \backslash B$ измеримы и $\lambda B = 0$, $\lambda (A \backslash B) = \lambda A$.
- 101. Построить измеримое множество $A\subset \mathbb{R}$ такое, что $\lambda_1 A=1$, однако $\lambda_1(A\cap [-k,k])<1$ для каждого $k\in \mathbb{N}$.
 - 102. Доказать измеримость и найти меру для множеств

$$\begin{split} A_0 &= \big\{ x \! \in \! \mathbb{R} \setminus \! \{0\} \, ; \, \pi x \! \leqslant \! 1, \sin \left(1/x \right) \! > \! 0 \big\}, \\ A_1 &= \big\{ x \! \in \! \mathbb{R} \, ; \, 0 \! < \! \pi x \! \leqslant \! 1, \sin \left(1/x \right) \! > \! 0 \big\}, \\ A_2 &= \big\{ x \! \in \! \mathbb{R} \, ; \, 0 \! < \! \pi x \! \leqslant \! 1, \sin \left(1/x \right) \! > \! 0 \big\}, \\ A_3 &= \big\{ x \! \in \! \mathbb{R} \, ; \, \pi x \! < \! 0, \sin \left(1/x \right) \! > \! 0 \big\}, \\ A_4 &= \big\{ x \! \in \! \mathbb{R} \, ; \, -1 \! \leqslant \! \pi x \! < \! 0, \sin \left(1/x \right) \! > \! 0 \big\}. \end{split}$$

103. Доказать, что на прямой $\,\mathbb{R}\,$ множества

(1)
$$A = \bigcup_{k=1}^{\infty} (k^2, k^2 + 1],$$
 (2) $B = \bigcup_{k=1}^{\infty} (2^k, 2^k + \frac{1}{k}],$

(3)
$$C = \bigcup_{k=1}^{\infty} (\sqrt{2k}, \sqrt{2k+1}],$$
 (4) $D = \bigcup_{k=2}^{\infty} (k^k, k^k + \frac{1}{k \ln k}]$

измеримы и мера каждого из них равна $+\infty$.

104. Доказать, что множества $A \subset \mathbb{R}$ задачи 17 на прямой \mathbb{R} измеримы и имеют меру 0.

105. Пусть множество $F \subset [a,b]$ замкнуто и $F \neq [a,b]$. Доказать, что тогда $\lambda_1 F < b-a$.

106. Пусть
$$\mathbb{Q}\cap[0,2]=\{r_1,r_2,\ldots,r_k,\ldots\}$$
 и
$$G=\bigcup_{k=1}^{\infty}\Big(r_k-2^{-k},r_k+2^{-k}\Big)$$

Доказать, что множество G открыто и $1 < \lambda_1 G < 2 < \lambda_1 \overline{G}$.

- 107. Пусть множество $A \subset \mathbb{R}$ измеримо и $\lambda_1 A > 0$. Доказать, что тогда существуют $u,v \in A$ такие, что $u \neq v$ и $u-v \in \mathbb{Q}$.
- 108. Вывести из теорем 5.7 и 5.2, примера 6.3 и задачи 54, что для любого треугольника $\Delta \subset \mathbb{R}^2$ его мера $\lambda_2 \Delta$ равна его площади.
- 109. Доказать, что для любого параллелограмма $D \subset \mathbb{R}^2$ его мера $\lambda_2 D$ равна его площади.
- 110. Доказать, что график $\Gamma \subset \mathbb{R}^2$ непрерывной функции, заданной на сегменте или интервале, измеримое множество и $\lambda_2\Gamma = 0$.
 - 111. Доказать, что $A \subset \mathbb{R}^2$ измеримо и найти его меру, если:

(1)
$$A = \{(x,y) \in \mathbb{R}^2; |x| + |y| \le 1\};$$

(2)
$$A = \{(x,y) \in \mathbb{R}^2 ; x \le y \le -x, |x| + |y| < 2\};$$

(3)
$$A = \{(x,y) \in \mathbb{R}^2 ; |x| \le 1, x-1 \le y < x+1\};$$

(4)
$$A = \{(x,y) \in \mathbb{R}^2 ; xy \ge 0, 1 \le x + y \le 2\};$$

(5)
$$A = \{(x,y) \in \mathbb{R}^2 ; 2|x|-1 \leqslant y < |x|+1\}.$$

(6)
$$A = \{(x,y) \in \mathbb{R}^2; |x| \leq 1, |\operatorname{sign} x| \leq y < 2\};$$

(7)
$$A = \{(x, y) \in \mathbb{R}^2 ; 0 \le x \le \pi, |y| \le \sin x \};$$

(8)
$$A = \{(x,y) \in \mathbb{R}^2 ; 0 \leqslant x \leqslant 1, |y| \leqslant e^x \};$$

(9)
$$A = \{(x,y) \in \mathbb{R}^2 ; 0 \le y \le \operatorname{ch} x \le \sqrt{5} \}.$$

- 112. Найти меру каждого из множеств задачи 94.
- 113. Доказать, что график $\Gamma \subset \mathbb{R}^2$ монотонной функции, заданной на сегменте или интервале, измеримое множество и $\lambda_1\Gamma = 0$.
 - 114. Доказать, что множества

$$A = \{(x,y) \in \mathbb{R}^2 ; x^2 y^2 \leqslant 1\},$$

$$B = \{(x,y) \in \mathbb{R}^2 ; x > 0, 1 \leqslant xy < 2\},$$

$$C = \{(x,y) \in \mathbb{R}^2 ; 0 < x < \pi/2, 0 \leqslant y \leqslant \operatorname{ctg} x\}$$

на плоскости \mathbb{R}^2 измеримы и $\lambda_2 A = \lambda_2 B = \lambda_2 C = +\infty$.

115. Найти меру открытого круга U(O,r) радиуса r>0 с центром O=(0,0). Доказать формулу $\lambda_2 V(O,r)=\pi r^2$ для меры замкнутого круга V(O,r).

116. Доказать, что $A \subset \mathbb{R}^2$ измеримо и найти его меру, если:

(1)
$$A = \{(x,y) \in \mathbb{R}^2; x^2 \leq y < 1\};$$

(2)
$$A = \{(x, y) \in \mathbb{R}^2 ; x < 0, 3x^2 \le y < 3\};$$

(3)
$$A = \{(x,y) \in \mathbb{R}^2 ; 0 < x < \pi, 0 \le y \le \sin x \};$$

(4)
$$A = \{(x,y) \in \mathbb{R}^2 ; 0 \le x < \pi, \cos x \le y \le \sin x \};$$

(5)
$$A = \{(x,y) \in \mathbb{R}^2; x \in (0,2) \setminus \mathbb{Q}, y \in (0,2), \sin y < 1/2\};$$

(6)
$$A = \{(x,y) \in \mathbb{R}^2; -y \leqslant x \leqslant y, x^2 + y^2 < 4\};$$

(7)
$$A = \{(x,y) \in \mathbb{R}^2; 0 \le x < y, 1 < x^2 + y^2 \le 9\};$$

(8)
$$A = \{(x, y) \in \mathbb{R}^2 ; 0 < x \le \pi, \sin x < y < \cos x \};$$

(9)
$$A = \{(x,y) \in \mathbb{R}^2; x \leq 0, y < 0, x^2 + y^2 \leq 1\};$$

(10)
$$A = \{(x, y) \in \mathbb{R}^2; |x| \leqslant \pi/3, |y| < \operatorname{tg} x\};$$

(11)
$$A = \{(x,y) \in \mathbb{R}^2 ; 0 < x \le 1, y < 0, \ln x \le y \le 1\};$$

(12)
$$A = \{(x,y) \in \mathbb{R}^2; |y| \leqslant \frac{1}{1+x^2} \}.$$

- 117. Найти открытое множество G на плоскости \mathbb{R}^2 такое, что $\lambda_2 G < \lambda_2 \overline{G} = 1.$
- 118. Доказать, что $A \subset \mathbb{R}^2$ измеримо и найти его меру, если:

(1)
$$A = \{(x, y) \in \mathbb{R}^2 ; x \ge 0, [x] \le y < [x+1] \}$$

(2)
$$A = \{(x, y) \in \mathbb{R}^2; x \ge 0, [x^2] \le y < [x^2 + 1]\};$$

(3)
$$A = \{(x,y) \in \mathbb{R}^2; 0 \le x < a, [x^2] \le y < [x^2 + 1]\}, a > 0;$$

(4)
$$A = \{(x,y) \in \mathbb{R}^2; x \geqslant 0, [x] \leqslant y < [x] + 2^{-[x]} \};$$

(5)
$$A = \left\{ (x,y) \in \mathbb{R}^2; x \geqslant 1, [x] \leqslant y < [x] + \frac{1}{[x] \cdot [x+1]} \right\};$$

(6)
$$A = \{(x,y) \in \mathbb{R}^2; |x| < \pi/2, [\operatorname{tg} x - 1] \le y < [\operatorname{tg} x + 1]\};$$

$$(7) A = \{(x,y) \in \mathbb{R}^2 ; x^2 \leqslant y < [x+3] \}.$$

- 119. Пусть множества A и B на плоскости \mathbb{R}^2 симметричны друг другу относительно какой-нибудь прямой $L \subset \mathbb{R}^2$. Доказать, что если A измеримо, то B измеримо и $\lambda_2 A = \lambda_2 B$.
- 120. Пусть множества $A_k \subset \mathbb{R}^n$, $k \in \mathbb{N}$, измеримы и последовательность (A_k) возрастает, т.е. $A_1 \subset A_2 \subset \dots$ Доказать равенство

$$\lambda \left(\bigcup_{k=1}^{\infty} A_k \right) = \lim_{k \to \infty} \lambda A_k.$$

121. Пусть множества $A_k\subset\mathbb{R}^n$, $k\in\mathbb{N}$, измеримы, последовательность (A_k) убывает, т.е. $A_1\supset A_2\supset\dots$, и $\lambda A_1<+\infty$. Доказать равенство

$$\lambda\Big(\bigcap_{k=1}^{\infty}A_k\Big)=\lim_{k\to\infty}\lambda A_k.$$

- 122. Найти убывающую последовательность измеримых множеств $B_k \subset \mathbb{R}$ такую, что $\bigcap_{k=1}^\infty B_k = \varnothing$ и $\lambda_1 B_k = +\infty$ для всех $k \in \mathbb{N}$.
- 123. Пусть множество $A \subset \mathbb{R}$ измеримо. Найти убывающую последовательность измеримых множеств $B_k \subset \mathbb{R}$, $k \in \mathbb{N}$, такую, что $\lambda_1 B_k = +\infty$ для всех $k \in \mathbb{N}$ и $\bigcap_{k=1}^\infty B_k = A$.
 - 124. (1). Найти меру $\lambda_2 G$ множества G задачи 59 при $\alpha {>} 1$.
 - (2). Найти меру $\lambda_2 D$ множества D задачи 60 при $\alpha < 1$.
- 125. Пусть последовательность множеств $A_k \subset \mathbb{R}^n$, $k \in \mathbb{N}$, возрастает. Доказать равенство

$$\lambda^* \left(\bigcup_{k=1}^{\infty} A_k \right) = \lim_{k \to \infty} \lambda^* A_k.$$

- 126. Пусть множество $A \subset \mathbb{R}$ измеримо и $\lambda_1[A \cap (-\infty,0)] < +\infty$. Доказать, что функция $\varphi(t) = \lambda_1[A \cap (-\infty,t)]$ определена всюду на \mathbb{R} , равномерно непрерывна и возрастает от 0 до λ_1A .
 - 127. Пусть множество $A \subset \mathbb{R}$ измеримо, $z \in \mathbb{R}$ и

$$\phi: \mathbb{R} \to \mathbb{R}, \ \phi(t) = \left\{ \begin{aligned} -\lambda_1(A \cap [t,z]), & \text{ если } t < z, \\ 0, & \text{ если } t = z, \\ \lambda_1(A \cap [z,t]), & \text{ если } t > z. \end{aligned} \right.$$

Доказать, что функция ф равномерно непрерывна на \mathbb{R} и возрастает от $-\lambda_1[A\cap(-\infty,z)]$ до $\lambda_1[A\cap(z,+\infty)]$.

128. Пусть $A \subset \mathbb{R}^2$ измеримо и $\lambda_2 A < +\infty$. Доказать, что функции

$$\phi(x) = \lambda_2 \{ (u, v) \in A \; ; \; u < x \}, \; \; \psi(y) = \lambda_2 \{ (u, v) \in A \; ; \; v < y \}$$

равномерно непрерывны на $\mathbb R$ и возрастают от 0 до $\lambda_2 A$.

129. Пусть $A \subset \mathbb{R}^2$ измеримо и $\lambda_2 A < +\infty$. Доказать, что функция

$$h(x,y) = \lambda_2 \{ (u,v) \in A \; ; \; u < x, \; v < y \} \tag{1}$$

определена всюду на \mathbb{R}^2 , равномерно непрерывна и возрастает по каждому аргументу, причем

$$\lim_{x \to -\infty} h(x,y) = 0, \quad \lim_{x \to +\infty} h(x,y) = \psi(y) \text{ для всех } y \in \mathbb{R}, \quad (2)$$

$$\lim_{y \to -\infty} h(x,y) = 0, \quad \lim_{y \to +\infty} h(x,y) = \varphi(x) \text{ для всех } x \in \mathbb{R}, \quad (3)$$

где функции ф и ψ определены в задаче 128.

130. Пусть $A \subset \mathbb{R}^2$ – одно из множеств

(1)
$$A = [0, +\infty) \times (0, 1);$$
 (2) $A = \{(x, y) \in \mathbb{R}^2; 0 < y < x\};$
(3) $A = \{(x, y) \in \mathbb{R}^2; x \geqslant 0, 0 < y < \ln x\}.$

Доказать, что функция

$$\varphi: [0, +\infty) \rightarrow \mathbb{R}, \ \varphi(x) = \lambda_2 \{ (u, v) \in A \ ; \ u < x \}$$

непрерывна, возрастает от 0 до $+\infty$, равномерно непрерывна в случае (1) и не является таковой в случаях (2) и (3).

131. Пусть $\,D:\mathbb{R} \to \mathbb{R}\,$ – функция Дирихле (см. задачу 18(3)). Доказать, что множества

$$\{(x,y) \in \mathbb{R}^2 ; 0 \leqslant x \leqslant 1, y = D(x) \},$$
$$\{(x,y) \in \mathbb{R}^2 ; 0 \leqslant x \leqslant 1, 0 \leqslant y \leqslant D(x) \},$$
$$\{(x,y) \in \mathbb{R}^2 ; 0 \leqslant x \leqslant 1, D(x) < y < 1 \}$$

на плоскости \mathbb{R}^2 измеримы, и найти их меру.

132. Пусть функция $\phi:[a,b] \to (0,+\infty)$ интегрируема по Риману,

$$\Omega = \{(x, y) \in \mathbb{R}^2 ; a < x < b, 0 < y < \varphi(x) \},$$

$$\Phi = \{(x, y) \in \mathbb{R}^2 ; a \le x \le b, 0 \le y \le \varphi(x) \}$$

и $\Omega\subset A\subset \Phi$. Доказать, что множество A измеримо и его мера λ_2A равна интегралу Римана $I=\int_a^b \phi(x)dx$.

- 133. Пусть множество $K \subset \mathbb{R}^2$ компактно и $S \subset \mathbb{R}^3$ график непрерывной функции $\psi: K \to \mathbb{R}$. Доказать, что множество S измеримо и $\lambda_3 S = 0$.
- 134. Пусть множество H на плоскости \mathbb{R}^2 открыто или замкнуто и $S \subset \mathbb{R}^3$ график непрерывной функции $\psi: H \to \mathbb{R}$. Доказать, что множество S измеримо и $\lambda_3 S = 0$.
- 135. Пусть множества $A,B\subset\mathbb{R}^3$ симметричны друг другу относительно оси Ox, т.е. $(x,y,z)\in A$ равносильно $(x,-y,-z)\in B$. Доказать, что если A измеримо, то B измеримо и $\lambda_3A=\lambda_3B$.

- 136. Пусть r>0, замкнутое множество $F\subset\mathbb{R}^n$ содержится в замкнутом шаре V(z,r) и $F\neq V(z,r)$. Доказать, что $\lambda F<\lambda V(z,r)$.
- 137. Пусть множество $A \subset \mathbb{R}^n$ измеримо, $B \subset \mathbb{R}^n$ и $\lambda B = 0$. Доказать равенства

$$\lambda A = \lambda (A \cup B) = \lambda (A \setminus B).$$

138. Доказать, что множество $A \subset \mathbb{R}^n$ измеримо и имеет меру 0 тогда и только тогда, когда для каждого $\varepsilon > 0$ существует последовательность брусов (P_k) такая, что

$$A \subset \bigcup_{k=1}^{\infty} P_k$$
 и $\sum_{k=1}^{\infty} \lambda P_k < \varepsilon$.

139. Доказать, что множество $A \subset \mathbb{R}^n$ измеримо и имеет меру 0 тогда и только тогда, когда существует последовательность брусов (P_k) такая, что выполнены три условия:

$$(*) A \subset P_1 \cup P_2 \cup \dots \qquad (**) \lambda P_1 + \lambda P_2 + \dots < +\infty.$$

- (***) Каждая точка $x \in A$ принадлежит бесконечному количеству этих брусов.
- 140. Пусть множество $A \subset \mathbb{R}^n$ измеримо. Доказать, что существует возрастающая последовательность компактов $C_k \subset A$ такая, что

$$\lim_{k \to \infty} \lambda C_k = \lambda A.$$

141. Доказать, что для измеримых множеств A , $B \subset \mathbb{R}^n$ справедливо равенство

$$\lambda A + \lambda B = \lambda (A \cup B) + \lambda (A \cap B).$$

142. Доказать, что для измеримых множеств $A,B,C \subset \mathbb{R}^n$ справедливо равенство

$$\lambda A + \lambda B + \lambda C + \lambda (A \cap B \cap C) =$$

$$= \lambda (A \cup B \cup C) + \lambda (A \cap B) + \lambda (A \cap C) + \lambda (B \cap C).$$

143. Пусть множества $A,B \subset \mathbb{R}^n$ измеримы и $\lambda(A \triangle B) = 0$, где $A \triangle B$ — симметрическая разность множеств A и B. Доказать, что

$$\lambda A = \lambda B = \lambda (A \cap B) = \lambda (A \cup B).$$

- 144. Пусть множество $B \subset \mathbb{R}^n$ измеримо. Построить убывающую последовательность измеримых множеств $A_k \subset \mathbb{R}^n$, $k \in \mathbb{N}$, таких, что $\lambda A_k = +\infty$ для всех $k \in \mathbb{N}$ и $B = A_1 \cap A_2 \cap \ldots$
- 145. Пусть множество $A \subset \mathbb{R}^n$ измеримо. Доказать, что множество $-A = \{-x; x \in A\}$ измеримо и $\lambda(-A) = \lambda A$.
- 146. Пусть $\alpha \in \mathbb{R} \setminus \{0\}$ и множество $A \subset \mathbb{R}^n$ измеримо. Доказать, что множество $\alpha A = \{\alpha x \, ; \, x \in A\}$ измеримо и справедливо равенство $\lambda(\alpha A) = |\alpha|^n \lambda A$.
- 147. Пусть $P \subset \mathbb{R}^n$ брус и int $P \subset A \subset \overline{P}$. Доказать, что множество A измеримо и $\lambda A = \lambda P$.
 - 148. Пусть $A \subset \mathbb{R}^n$ и брусы $P_k, k \in \mathbb{N}$, таковы, что

$$\bigsqcup_{k=1}^{\infty} \operatorname{int} P_k \subset A \subset \bigcup_{k=1}^{\infty} \overline{P_k}.$$

Доказать, что тогда множество A измеримо и $\lambda A = \sum_{k=1}^{\infty} \lambda P_k$.

149. Пусть $\,\alpha_1,\alpha_2,\dots,\alpha_n\in\mathbb{R}\backslash\{0\}\,$ и отображение $\,T\!:\!\mathbb{R}^n\!\to\!\mathbb{R}^n$ действует по формуле

$$T\big(x_1,x_2,\ldots,x_n\big)=\big(\alpha_1x_1,\alpha_2x_2,\ldots,\alpha_nx_n\big).$$

Доказать, что для любого измеримого $A \subset \mathbb{R}^n$ множество T(A) измеримо и справедливо равенство

$$\lambda[T(A)] = |\alpha_1 \alpha_2 \dots \alpha_n| \cdot \lambda A.$$

- 150. Пусть $z \in \mathbb{R}^n$ и r > 0. Доказать, что для открытых шаров U(z,r) и U(z,1) справедливо равенство $\lambda U(z,r) = r^n \lambda U(z,1)$.
- 151. Пусть $z\!\in\!\mathbb{R}^n$ и $r\!>\!0$. Доказать, что для замкнутых шаров V(z,r) и V(z,1) справедливо равенство $\lambda V(z,r)=r^n\lambda V(z,1).$
- 152. Пусть $z\!\in\!\mathbb{R}^n$ и $r\!>\!0$. Доказать, что $\lambda U(z,r)=\lambda V(z,r)$ и, следовательно, $\lambda S(z,r)=0$, где

$$S(z,r) = \{x \in \mathbb{R}^n ; \rho(x,z) = r\}.$$

153. Пусть $z \in \mathbb{R}^n, \ r > 0$ и $U(z,r) \subset A \subset V(z,r)$. Доказать, что множество A измеримо и справедливо равенство

$$\lambda U(z,r) = \lambda A = \lambda V(z,r).$$

154. Пусть $u\!\in\!\mathbb{R}^n$ и $A=\bigcup_{r\in\mathbb{Q}}S_r$, где

$$S_r = \left\{ x \in \mathbb{R}^n ; \rho(x, u) = r \right\}$$

для $r \in \mathbb{Q}$. Доказать, что множество $A \subset \mathbb{R}^n$ измеримо и $\lambda A = 0$.

- 155. Пусть множество $A \subset \mathbb{R}^n$ измеримо и $\lambda A > 0$. Доказать, что есть точки $u, v \in A$ такие, что $\rho(u, v) \notin \mathbb{Q}$.
 - 156. Доказать, что для любого $\, \epsilon \! \in \! (0,1) \,$ справедливо равенство

$$\lim_{n\to\infty}\frac{\lambda_n\big[V(0,1)\backslash V(0,1-\varepsilon)\big]}{\lambda_nV(0,1)}=1.$$

- определена всюду на $(0,+\infty)$, непрерывна и возрастает от 0 до λA .
- 158. Доказать, что при n>1 функция ϕ в задаче 157 не обязана быть равномерно непрерывной.
- 159. Доказать, что функция ϕ задачи 157 строго возрастает и равномерно непрерывна, если n>1 и $A=(0,+\infty)\times(0,1)^{n-1}$.
- 160. Пусть множество $A\subset \mathbb{R}^n$ измеримо и $0<\alpha<\lambda A$. Доказать, что существует компакт $K\subset A$ такой, что $\lambda K=\alpha$.
- 161. Пусть множество $A \subset \mathbb{R}^n$ измеримо, $0 < \alpha_k < +\infty$ для всех $k \in \mathbb{N}$ и $\lambda A = \alpha_1 + \alpha_2 + \alpha_3 + \dots$ Доказать, что существуют измеримые попарно не пересекающиеся множества $A_k \subset A$ такие, что $\lambda A_k = \alpha_k$ для каждого $k \in \mathbb{N}$ и $A = A_1 \sqcup A_2 \sqcup A_3 \sqcup \dots$
- 162. Пусть (A_k) убывающая последовательность измеримых множеств $A_k \subset \mathbb{R}^n$ и $\varepsilon > 0$. Доказать, что существует убывающая последовательность (F_k) замкнутых множеств $F_k \subset \mathbb{R}^n$ такая, что $F_k \subset A_k$ и $\lambda(A_k \backslash F_k) < \varepsilon$ для всех $k \in \mathbb{N}$.
- 163. Пусть множество $A \subset \mathbb{R}^n$ измеримо и $\lambda A > 0$. Доказать, что найдутся непересекающиеся компакты $K_0 \subset A$ и $K_1 \subset A$ такие, что $\lambda K_0 > 0$ и $\lambda K_1 > 0$. Вывести отсюда, что $\operatorname{Card} A = \aleph$.
- 164. Доказать, что для любых множеств A и $B \subset \mathbb{R}^n$ справедливо неравенство

$$\lambda^*(A \cup B) + \lambda^*(A \cap B) \leq \lambda^*A + \lambda^*B.$$

165. Пусть K — замкнутый параллелепипед в \mathbb{R}^n , $A \subset K$ и

$$\lambda K = \lambda^* A + \lambda^* (K \backslash A).$$

Доказать, что множество A измеримо.

166. Внутренняя мера множества $A \subset \mathbb{R}^n$ определяется равенством

$$\lambda_{\star} A = \sup \{ \lambda K ; K \subset A \},$$

где sup берется по всем компактам $K \subset A$.

(а) Доказать равенство

$$\lambda_{\star}A = \sup\{\lambda F; F \subset A\},\$$

где sup берется по всем замкнутым подмножествам $F \subset A$.

- (б) Пусть $A \subset B \subset \mathbb{R}^n$. Доказать, что тогда $\lambda_* A \leqslant \lambda_* B$.
- (в) Доказать, что $\lambda_* A \leqslant \lambda^* A$ для любого множества $A \subset \mathbb{R}^n$.
- (г) Доказать, что для любого измеримого множества $A \subset \mathbb{R}^n$ справедливо равенство $\lambda_* A = \lambda^* A$.
- (д) Пусть множество $A \subset \mathbb{R}^n$ ограничено и $\lambda_* A = \lambda^* A$. Доказать, что тогда множество A измеримо.
- (e) Пусть $A \subset \mathbb{R}^n$ и $\lambda_* A = \lambda^* A < +\infty$. Доказать, что множество A измеримо (хотя и не обязано быть ограниченным).
- (ж) Доказать, что для любой последовательности попарно не пересекающихся множеств $A_k \subset \mathbb{R}^n$, $k \in \mathbb{N}$, справедливо неравенство

$$\lambda_*(A_1 \sqcup A_2 \sqcup \ldots) \geqslant \lambda_*A_1 + \lambda_*A_2 + \ldots$$

167. Пусть $A \subset \mathbb{R}^n$ измеримо и $B \subset A$. Доказать равенство

$$\lambda A = \lambda^* B + \lambda_* (A \backslash B).$$

168. (Теорема Каратеодори). Доказать, что множество $A \subset \mathbb{R}^n$ измеримо тогда и только тогда, когда для любого множества $B \subset \mathbb{R}^n$ справедливо равенство

$$\lambda^* B = \lambda^* (A \cap B) + \lambda^* (B \setminus A).$$

169. Пусть $A,B \subset \mathbb{R}^n$ — непересекающиеся измеримые множества. Доказать, что для любого $C \subset \mathbb{R}^n$ справедливо равенство

$$\lambda^*[(A \sqcup B) \cap C] = \lambda^*(A \cap C) + \lambda^*(B \cap C).$$

170. Пусть множество $A \subset \mathbb{R}^n$ измеримо, $\lambda_n A = 0$ и $B \subset \mathbb{R}^m$. Доказать, что множество $A \times B \subset \mathbb{R}^{n+m}$ измеримо и справедливо равенство $\lambda_{n+m}(A \times B) = 0$.. Пусть множества $A \subset \mathbb{R}^n$ и $B \subset \mathbb{R}^m$ измеримы, причем $\lambda_n A < +\infty$ и $\lambda_m B < +\infty$. Доказать, что множество $A \times B \subset \mathbb{R}^{n+m}$ измеримо и справедливо равенство $\lambda_{n+m}(A \times B) = \lambda_n A \cdot \lambda_m B$.

171. Пусть множества $A\subset\mathbb{R}^n$ и $B\subset\mathbb{R}^m$ измеримы, причем $\lambda_nA>0$ и $\lambda_mB=+\infty$. Доказать, что множество $A\times B\subset\mathbb{R}^{n+m}$ измеримо и $\lambda_{n+m}(A\times B)=+\infty$.

§6. Примеры измеримых множеств

1. Пример. Одноточечное множество $\{x\}\subset\mathbb{R}^n$ измеримо и имеет меру 0.

В самом деле, множество $\{x\}$ компактно и, следовательно, измеримо по теореме 4.4. Если $x=(\xi_1,\xi_2,\ldots,\xi_n)$, то множество $\{x\}$ есть пересечение последовательности брусов

$$P_k = \prod_{i=1}^{n} [\xi_i, \xi_i + 1/k), k \in \mathbb{N}.$$

Отсюда ясно, что $0\leqslant \lambda\{x\}\leqslant \lambda P_k=(1/k)^n$ для всех $k\!\in\!\mathbb{N}$. Следовательно, $\lambda\{x\}=0$.

2. Пример. Конечное или счетное множество $A \subset \mathbb{R}^n$ измеримо и имеет меру 0.

Это вытекает из примера 1 и из теорем 4.3, 5.2 и 5.3.

3. Пример. Отрезок H на плоскости \mathbb{R}^2 измерим и $\lambda_2 H = 0$.

Действительно, пусть a < b. Отрезок H_{ab} на плоскости, соединяющий точки (a,0) и (b,0) оси абсцисс, есть пересечение брусов

$$Q_k = [a, b + 1/k) \times [0, 1/k), k \in \mathbb{N}.$$

По части (a) теоремы 4.7 множество $H_{ab} \subset \mathbb{R}^2$ измеримо. По свойству 5(a) $\lambda_2 H_{ab} \leqslant \lambda_2 Q_k$ для всех $k \in \mathbb{N}$. Отсюда и из равенства

$$\lim_{k\to\infty} \lambda_2 Q_k = \lim_{k\to\infty} \left(b + \frac{1}{k} - a\right) \cdot \frac{1}{k} = 0$$

следует, что $\lambda_2 H_{ab} = 0$.

Для произвольного отрезка $H \subset \mathbb{R}^2$ легко найти отрезок H_{ab} оси абсцисс и изометрию $T\colon \mathbb{R}^2 \to \mathbb{R}^2$ такие, что $H = T(H_{ab})$. По теореме 5.7 множество $H \subset \mathbb{R}^2$ измеримо и $\lambda_2 H = \lambda_2 H_{ab} = 0$.

4. Пример. Прямая L на плоскости \mathbb{R}^2 измерима и $\lambda_2 L = 0$.

Действительно, прямая L- замкнутое множество в \mathbb{R}^2 и по теореме **4.5** измерима. Пусть $z{\in}L$. Для каждого $m{\in}\mathbb{N}$ прямая L пересекается с кругом V(z,m) по отрезку H_m и $L=H_1{\cup}H_2{\cup}\dots$ Применяя пример **3** и свойство **5(c)**, заключаем, что $\lambda_2L=0$.

5. Пример. Грань $\Gamma = \prod\limits_{i=1}^{n-1} \left[a_i,b_i\right) imes \left\{a_n\right\}$ бруса $P = \prod\limits_{i=1}^{n} \left[a_i,b_i\right)$ в \mathbb{R}^n измерима и $\lambda \Gamma = 0$.

Действительно, по свойству 2(g) и по теореме 5.2

$$\lambda(\operatorname{int} P) = \lambda P = \lambda(\operatorname{int} P) + \lambda(P \setminus \operatorname{int} P).$$

Кроме того, $\lambda(\text{int}P) < +\infty$ по свойству **5(d)**. Следовательно, $\lambda(P \setminus \text{int}P) = 0$. Применяя теорему **5.4**, заключаем, что множество $\Gamma \subset P \setminus \text{int}P$ измеримо и $\lambda\Gamma = 0$.

6. Пример. Если \overline{P} – замыкание бруса $P \subset \mathbb{R}^n$, то $\lambda \overline{P} = \lambda P$.

Действительно, множество \overline{P} замкнуто и потому измеримо. Пусть $P=\prod\limits_{i=1}^n [a_i,b_i]$. Рассмотрим еще брусы $P_{\epsilon}=\prod\limits_{i=1}^n [a_i,b_i+\epsilon)$, где $\epsilon>0$. Для каждого $\epsilon>0$ имеем

$$P \subset \overline{P} = \prod_{i=1}^{n} [a_i, b_i] \subset P_{\varepsilon}$$
.

Поэтому

$$\prod_{i=1}^n \left(b_i - a_i\right) = \lambda P \leqslant \lambda \overline{P} \leqslant \lambda P_{\varepsilon} = \prod_{i=1}^n \left(b_i + \varepsilon - a_i\right).$$

Переходя здесь к пределу при $\epsilon \rightarrow +0$, получим

$$\lambda P\leqslant \lambda \overline{P}\leqslant \prod_{i=1}^n \bigl(b_i-a_i\bigr)=\lambda P, \text{ r.e. } \lambda \overline{P}=\lambda P.$$

7. Пример. Векторное подпространство $L \subset \mathbb{R}^n$ размерности $\dim L < n$ измеримо и $\lambda L = 0$.

Действительно, если

$$H = \{x = (\xi_1, \xi_2, \dots, \xi_n) \in \mathbb{R}^n; \xi_n = 0\},\$$

то

$$H=igcup_{m=1}^{\infty}\Gamma_m$$
, где $\Gamma_m=\prod\limits_{i=1}^{n-1}[-m,m) imes\{0\}.$

По примеру 5 $\lambda\Gamma_m=0$ для каждого $m\in\mathbb{N}$. Применяя теорему 4.3 и свойство 5(c), получим $\lambda H=0$.

Пусть $L \subset \mathbb{R}^n$ — произвольное векторное подпространство размерности n-1. Используя ортогональный базис подпространства L, нетрудно построить изометрию $T: \mathbb{R}^n \to \mathbb{R}^n$ такую, что T(L) = H. По теореме 5.7 подпространство L измеримо и $\lambda L = \lambda H = 0$.

Если $\dim L < n-1$, то подпространство L содержится в некотором подпространстве размерности n-1 и поэтому имеет меру $\lambda L = 0$.

8. Пример. Мера λQ замкнутого прямоугольного (невырожденного) параллелепипеда $Q \subset \mathbb{R}^n$ равна его n- мерному объему, т.е. произведению длин его ребер, исходящих из одной вершины.

Действительно, если ребра параллелепипеда Q параллельны осям координат, то $Q=\overline{P}$ для некоторого бруса $P=\prod\limits_{i=1}^n \left[a_i,b_i\right)$ и согласно примеру 6

$$\lambda\,Q=\lambda \overline{P}=\lambda P=\prod_{i=1}^n \big(b_i-a_i\big).$$

Пусть Q — произвольный замкнутый прямоугольный параллелепипед в \mathbb{R}^n . Преобразование сдвига сохраняет меру. Поэтому можно считать, что точка $O=(0,\dots,0)\!\in\!\mathbb{R}^n$ является одной из вершин параллелепипеда Q. Пусть ребрами бруса Q, исходящими из вершины O, служат векторы u_1,\dots,u_n . Рассмотрим отображение

$$T: \mathbb{R}^n \to \mathbb{R}^n$$
, $Tx = T\left(\sum_{k=1}^n \xi_k \mathbf{e}_k\right) = \sum_{k=1}^n \xi_k T \mathbf{e}_k = \sum_{k=1}^n \xi_k \frac{u_k}{\|u_k\|}$

для всех $x=(\xi_1,\dots,\xi_n)\!\in\!\mathbb{R}^n$, где $\mathbf{e}_1,\dots,\mathbf{e}_n$ – единичные векторы координатных осей. Отображение T линейно и для каждого $x\!\in\!\mathbb{R}^n$

$$||Tx||^2 = \left\| \sum_{k=1}^n \xi_k \frac{u_k}{||u_k||} \right\|^2 = \sum_{k=1}^n |\xi_k|^2 = ||x||^2,$$

так как векторы u_1,\dots,u_n попарно ортогональны. Следовательно, отображение T является изометрией. Если R — брус с ребрами

$$y_k = ||u_k|| \cdot e_k, k = 1, ..., n,$$

TO

$$\bar{R} = \prod_{k=1}^{n} \left[0, \| u_k \| \right].$$

Кроме того, $Ty_k=u_k$ для всех k и, значит, $T(\overline{R})=Q$. Ребра параллелепипеда \overline{R} лежат на координатных осях. Поэтому $\lambda(\overline{R})$ совпадает с объемом параллелепипеда \overline{R} . По теореме 5.7

$$\lambda \, Q = \lambda \, T \big(\overline{R} \big) = \lambda \, \overline{R} = \| \, u_1 \| \cdot \| \, u_2 \, \| \cdot \ldots \cdot \| \, u_n \, \|.$$

9. Пример. Мера подграфика показательной функции.

Пусть 0 < a < 1 и F — замкнутое множество на плоскости, ограниченное сверху графиком функции $x \mapsto a^x, x \geqslant 0$, а слева и снизу осями координат (см. рис. 1). По теореме **4.5** множество F измеримо. Найдем меру $\lambda_2 F$. Фиксируем $\delta > 0$ и рассмотрим множества

$$A_{\delta} = \bigsqcup_{k=1}^{\infty} D_k, \ B_{\delta} = \bigsqcup_{k=1}^{\infty} P_k,$$

где

$$D_k = (k\delta - \delta, k\delta) \times (0, a^{k\delta}), P_k = [k\delta - \delta, k\delta) \times [0, a^{k\delta - \delta})$$

для каждого $k \in \mathbb{N}$. По теореме 5.3 и по свойству 2(g)

$$\lambda_2 A_{\delta} = \sum_{k=1}^{\infty} \lambda_2 D_k = \sum_{k=1}^{\infty} \delta a^{k\delta} = \frac{\delta a^{\delta}}{1 - a^{\delta}},$$

$$\lambda_2 B_{\delta} = \sum_{k=1}^{\infty} \lambda_2 P_k = \sum_{k=1}^{\infty} \delta a^{k\delta - \delta} = \frac{\delta}{1 - a^{\delta}}.$$

Легко проверить (см. рис. 1), что $A_{\delta} \subset F \subset B_{\delta}$. Поэтому

$$\frac{\delta a^{\delta}}{1-a^{\delta}} \leqslant \lambda_2 F \leqslant \frac{\delta}{1-a^{\delta}}.$$

Переходя к пределу при $\delta \to +0$, получим, что $\lambda_2 F = -\frac{1}{\ln a}$.

Рис. 1. Подграфик показательной функции

Пример. Совершенное множество Кантора.

wu wu		11 11 11 11	C	AN AN AN AN	NA NA NA NA
нн	нн	нн нн	K_4	нн нн	нн нн
Н	Н	□	K_3	н н	ш ш
			K_2		
1	+		K_1		
0	1/9	2/9 1/3	K_0	2/3 7/9	8/9 1

Рис. 2. Множество Кантора $C\!=\!K_1\!\cap\!K_2\!\cap\!\dots$

Построение множества Кантора. Разделим сегмент $K_0 = [0,1]$ на три равные части (см. рис. 2) и удалим средний интервал (1/3,2/3). Оставшиеся сегменты [0,1/3] и [2/3,1] назовем сегментами 1-го ранга. Их объединение K_1 компактно и $\lambda_1 K_1 = 2/3$.

Каждый из двух сегментов 1-го ранга разделим на три равные части и удалим средние интервалы (1/9,2/9) и (7/9,8/9). Оставшиеся сегменты [0,1/9],[2/9,1/3],[2/3,7/9],[8/9,1] назовем сегментами 2-го ранга. Их объединение K_2 компактно, содержится в компакте K_1 и имеет меру $\lambda_1 K_2 = (2/3)^2$.

Каждый из 4-х сегментов 2-го ранга разделим на три равные части и удалим средние интервалы. Получим 8 сегментов 3-го ранга. Их объединение K_3 компактно, содержится в компакте K_2 и имеет меру $\lambda_1 K_3 = (2/3)^3$.

Продолжая описанный процесс далее, мы получим убывающую последовательность компактов K_m , $m\in\mathbb{N}$. Для каждого $m\in\mathbb{N}$ компакт K_m есть объединение 2^m сегментов m-го ранга. Эти сегменты получены из сегментов предыдущего ранга делением каждого из них на три равные части и удалением средних интервалов. Ясно, что сегменты m-го ранга попарно не пересекаются и мера каждого из них равна $1/3^m$. Поэтому $\lambda_1 K_m = (2/3)^m$.

Пересечение
$$C = \bigcap_{m=1}^{\infty} K_m$$
 называется множеством Кантора.

Установим основные свойства множества Кантора.

Множество Кантора $\,C\,$ компактно как пересечение последовательности компактов.

Множество Кантора C имеет меру $\lambda_1 C = 0$. Действительно, поскольку $C \subset K_m$, то

$$\lambda_1 C \leqslant \lambda_1 K_m = (2/3)^m$$
 для каждого $m \in \mathbb{N}$.

Отсюда ясно, что $\lambda_1 C = \lim_{m \to 0} (2/3)^m = 0.$

Множество Кантора совершенно, т.е. замкнуто и не имеет изолированных точек. Замкнутость множества C вытекает из его компактности. Допустим, что $x \in C$ — изолированная точка множества C. Тогда $C \cap (x-\delta,x+\delta) = \{x\}$ для некоторого $\delta > 0$. Подберем $N \in \mathbb{N}$ так, что $1/3^N < \delta$. Из $x \in C$ следует, что $x \in K_N$ и, значит, $x \in I$, где I — некоторый сегмент N-го ранга. Из соотношений $x \in I$, $\lambda_1 I = 1/3^N < \delta$ следует, что $I \subset (x-\delta,x+\delta)$. Концы сегмента I принадлежат множеству C и хотя бы один из них отличен от x. Значит, $C \cap (x-\delta,x+\delta) \neq \{x\}$ вопреки выбору $\delta > 0$.

Множество Кантора имеет мощность континуума. В самом деле, $Card C \leqslant \aleph$, так как $C \subset [0,1]$. Для доказательства неравенства $\aleph \leqslant Card C$ достаточно построить инъекцию $\phi:[0,1) \to C$. Пусть $t \in [0,1)$. Запишем число t в 2-ичной системе счисления:

$$t=0, \mathsf{\tau}_1\,\mathsf{\tau}_2\,\mathsf{\tau}_3\ldots\mathsf{\tau}_m\ldots, \tag{*}$$

где все $\tau_m \in \{0,1\}$. Допустим для определенности, что в разложении (*) нет 1 в периоде: легко проверить, что в 2-ичной системе счисления

$$0, \tau_1 \tau_2 \dots \tau_k \, 0 \, 1 \, 1 \, 1 \, 1 \dots = 0, \tau_1 \tau_2 \dots \tau_k \, 1 \, 0 \, 0 \, 0 \, 0 \dots$$

По разложению (*) определим последовательность сегментов I_m , $m\!\in\!\mathbb{N}$, следующим образом. Если $\tau_1\!=\!0$, то $I_1\!:=\![0,1/3]$, иначе $I_1\!:=\![2/3,1]$. Ясно, что I_1 — сегмент 1-го ранга. Допустим, что

 $m\!\in\!\mathbb{N}$ и сегмент I_m ранга m уже определен. По построению множества Кантора в сегменте I_m содержится два непересекающихся сегмента $(m\!+\!1)$ -го ранга. Обозначим через $I_{m\!+\!1}$ левый из этих двух сегментов, если $\tau_{m\!+\!1}\!=\!0$, и правый, если $\tau_{m\!+\!1}\!=\!1$. Согласно принципу индукции последовательность (I_m) построена. Отметим, что $\lambda_1 I_m = 1/3^m \to 0$ при $m\!\to\!\infty$. По теореме Кантора о вложенных сегментах множество $\bigcap_{m=1}^\infty I_m$ состоит из единственной точки ξ . Поскольку $I_m \subset K_m$ для каждого m, то

$$\bigcap_{m=1}^{\infty} I_m \subset \bigcap_{m=1}^{\infty} K_m = C.$$

Значит, $\xi \in C$. Положим $\varphi(t) = \xi$. Отображение $\varphi: [0,1) \to C$ получено. Инъективность его очевидна: если изменить число $t \in [0,1)$, то изменится разбиение (*) и если τ_m — первая из изменившихся цифр, то изменится сегмент I_{m+1} и пересечение $\bigcap_{m=1}^{\infty} I_m$ будет уже другим. Равенство $\operatorname{Card} C = \aleph$ доказано.

10. Пример. Неизмеримое множество. Докажем, что среди множеств $S \subset [0,1]$ есть неизмеримые множества, т.е. $2^{[0,1]} \not\subset L(\mathbb{R})$.

Числа $x,y\!\in\![0,1]$ объявим эквивалентными и будем писать $x\!\sim\!y$, если $x\!-\!y\!\in\!\mathbb{Q}$. Ясно, что $x\!\sim\!x$ для каждого $x\!\in\![0,1]$, из $x\!\sim\!y$ следует $y\!\sim\!x$ и из $x\!\sim\!y$, $y\!\sim\!z$ следует $x\!\sim\!z$.

Для каждого $x \in [0,1]$ обозначим

$$A(x) = \{x' \in [0,1]; x' \sim x\}.$$

Множества A(x) и A(y), где $x,y\!\in\![0,1]$, либо не пересекаются, либо совпадают. В самом деле, пусть $z\!\in\!A(x)\cap A(y)$. Тогда $z\!\sim\!x$ и $z\!\sim\!y$. Поэтому $x\!\sim\!y$. Если $t\!\in\!A(x)$, то $t\!\sim\!x$. Отсюда и из $x\!\sim\!y$ следует, что $t\!\sim\!y$, т.е. $t\!\in\!A(y)$. Значит, $A(x)\!\subset\!A(y)$. Включение $A(y)\!\subset\!A(x)$ доказывается аналогично. Таким образом, если $A(x)\cap A(y)\neq\varnothing$, то A(x)=A(y).

Из каждого множества A(x) выберем по одному числу t_x . Если A(x)=A(y), то $t_x=t_y$. Если $A(x)\neq A(y)$, то $A(x)\cap A(y)=\varnothing$ и, значит, $t_x\neq t_y$. Из выбранных чисел t_x составим множество H. Ясно, что все числа $t\in H$ попарно не эквивалентны.

Докажем, что множество H на прямой $\mathbb R$ неизмеримо. Допустим, что H измеримо. По теореме 5.7 тогда измеримы все его сдвиги $H_r=r+H$, где $r\in\mathbb Q$, причем $\lambda_1H_r=\lambda_1H$ для каждого $r\in\mathbb Q$.

Если $r,r'\in\mathbb{Q}$ и $r\neq r'$, то $H_r\cap H_{r'}=\varnothing$. В самом деле, пусть $z\in H_r\cap H_{r'}$. Тогда $z\in H_r$ и $z\in H_{r'}$, т.е. z=r+t=r'+t' для некоторых $t,t'\in H$. Из $r\neq r'$, следует, что $t\neq t'$. А тогда $t\not\sim t'$, так как все элементы множества H попарно не эквивалентны. Однако, $t-t'=r'-r\in\mathbb{Q}$ и, значит, $t\sim t'$. Противоречие. Таким образом, множества H_r , $r\in\mathbb{Q}$, попарно не пересекаются.

Пусть S — объединение всех H_r , где $r\!\in\!\mathbb{Q}\cap[-1,1]$. Множество $\mathbb{Q}\cap[-1,1]$ счетно. По теореме 5.3

$$\lambda_1 S = \sum_{r \in \mathbb{Q} \cap [-1, 1]} \lambda_1 H_r = \lambda_1 H + \lambda_1 H + \dots$$
 (*)

Отсюда $\lambda_1 S = 0$, если $\lambda_1 H = 0$, и $\lambda_1 S = +\infty$, если $\lambda_1 H > 0$.

Однако $H \subset [0,1]$, так как $H \subset \bigcup_{x \in [0,1]} A(x)$ и все $A(x) \subset [0,1]$.

Поэтому $H_r = r + H \subset [-1,2]$ при $r \in \mathbb{Q} \cap [-1,1]$ и, значит, $S \subset [-1,2]$. Следовательно, $\lambda_1 S \leqslant 3 < +\infty$.

С другой стороны, [0,1] \subset S. Действительно, пусть x \in [0,1]. Тогда x \in A(x) и x \sim t_x \in H. Для r = x - t_x получим r \in \mathbb{Q} \cap [-1,1] и

$$x=r+t_x\in r+H=H_r\subset S.$$

Включение $[0,1] \subset S$ доказано. Из него следует, что $\lambda_1 S \geqslant 1$.

Неравенства $1 \leqslant \lambda_1 S \leqslant 3$ противоречат равенству (*). Следовательно, множество H неизмеримо.

Замечание. Можно доказать (см. задачу 212), что каждое измеримое множество положительной меры содержит в себе неизмеримые подмножества.

Задачи к §6. Примеры измеримых множеств

173. Доказать, что множество Кантора $C \subset [0,1]$ на прямой $\mathbb R$ нигде не плотно, т.е. его замыкание не имеет внутренних точек

174. Пусть $\varepsilon > 0$. Найти конечное семейство одномерных брусов P_1, P_2, \dots, P_N , покрывающих множество Кантора C и таких, что

$$\lambda_1 P_1 + \lambda_1 P_2 + \ldots + \lambda_1 P_N < \varepsilon.$$

175. Доказать, что число $x \in [0,1]$ принадлежит множеству Кантора $C \subset [0,1]$ тогда и только тогда, когда это число можно записать в троичной системе счисления без цифры 1.

176. Найти меру множества S всех чисел $t \in [0,1]$, в любом 10-м разложении которых нет цифры 5.

177. Найти меру множества S всех чисел $t \in [0,1]$, допускающих 10-е разложение без цифры 5.

- 178. Найти меру множества S всех чисел $t \in [0,1]$, в любом 10-м разложении которых есть цифра 5.
- 179. Найти меру множества S всех чисел $t \in [0,1]$, допускающих 10-е разложение с цифрой 5.
- 180. Доказать, что множество S всех чисел $t \in [0,1]$, допускающих разложение в двоичную дробь с нулями на всех четных местах, нигде не плотно на \mathbb{R} , имеет меру 0 и мощность континуума.
- 181. Найти меру множества S всех чисел $t \in [0,1]$, в 10-м разложении которых всегда есть две цифры 5, расположенные рядом.
- 182. Пусть $0<\alpha<1$. Построить нигде не плотный компакт $K\subset [0,1]$ без изолированных точек такой, что $\lambda_1 K=\alpha$.
- 183. Пусть $0<\alpha<1$. Построить нигде не плотное множество $A\subset [0,1]$ меры 0, для которого $\lambda_1\overline{A}=\alpha$.
- 184. Построить несчетное всюду плотное множество $A \subset \mathbb{R}$ с мерой $\lambda_1 A = 0$.
- 185. Пусть измеримое множество $A \subset [0,1]$ нигде не плотно. Доказать, что тогда $\lambda_1 A < 1$.
- 186. Пусть $0 < \beta \leqslant +\infty$. Построить нигде не плотное множество $B \subset \mathbb{R}$ такое, что $\lambda_1 B = 0$ и $\lambda_1 \overline{B} = \beta$.
- 187. Пусть $p \in \{0,1,\dots,9\}$ и A_p множество всех чисел $t \in [0,1)$ таких, что для любого 10-го разложения

$$t = 0, t_1 t_2 \dots t_m \dots$$

множество $\{k\in\mathbb{N}\;;\;t_k=p\}$ конечно (т.е. существует $N\in\mathbb{N}$ такое, что $t_k\neq p$ при $k\geqslant N$). Доказать, что A_p измеримо и $\lambda_1A_p=0$.

- 188. Построить множество $A \subset \mathbb{R}$ меры 0 такое, что $A \cap (a,b)$ имеет мощность континуума для любого интервала $(a,b) \subset \mathbb{R}$.
- 189. Построить непересекающиеся множества $A,B \subset \mathbb{R}$ меры 0 такие, что множества $A \cap (a,b)$ и $B \cap (a,b)$ имеют мощность континуума для любого интервала $(a,b) \subset \mathbb{R}$.
- 190. Построить континуум попарно не пересекающихся множеств $C_{\alpha} \subset \mathbb{R}$, $\alpha \in J$, меры 0 таких, что для любого интервала $(a,b) \subset \mathbb{R}$ все множества $C_{\alpha} \cap (a,b)$ имеют мощность континуума.
- 191. Пусть $k\!\in\!\mathbb{N}$. Найти измеримые множества A_1,A_2,\ldots,A_k \subset \subset [0,1] такие, что

$$\lambda_1 A_1 + \lambda_1 A_2 + \ldots + \lambda_1 A_k = k-1$$
, но $A_1 \cap A_2 \cap \ldots \cap A_k = \emptyset$.

- 192. Пусть $0<\alpha<1$ и множество $A\subset [0,1]$ счетно. Построить нигде не плотный компакт $K\subset [0,1]\setminus A$ без изолированных точек такой, что $\lambda_1K=\alpha$.
 - 193. Пусть C множество Кантора. Доказать, что множества

$$A_{\varepsilon} = \{x \in \mathbb{R}; \, \rho(x, C) < \varepsilon\}, \ B_{\varepsilon} = \{x \in \mathbb{R}; \, \rho(x, C) \leqslant \varepsilon\},$$

$$D_{\varepsilon} = \{x \in \mathbb{R}; \, \rho(x,C) = \varepsilon\}, \ E_{\varepsilon} = \{x \in \mathbb{R}; \, \varepsilon < \rho(x,C) \leqslant 3\varepsilon\},$$

где $\varepsilon > 0$, измеримы и найти меру каждого из них.

194. Пусть a > 1. Найти меру множества

$$E = \{(x, y) \in \mathbb{R}^2; x \le 0, 0 \le y < a^x\}.$$

195. Разрежем квадрат $K = [0,1] \times [0,1]$ на 9 конгруэнтных квадратов и удалим центральный (открытый) квадрат. Каждый из оставшихся 8-ми квадратов разрежем на 9 конгруэнтных квадратов и удалим центральные (открытые) квадраты. Каждый из оставшихся 64-х квадратов разделим на 9 конгруэнтных квадратов и удалим центральные квадра-

ты. И т. д. После последовательности таких шагов от квадрата K останется множество S, именуемое «ковер Серпинского». Доказать, что множество S на плоскости \mathbb{R}^2 компактно, линейно связно, нигде не плотно, не имеет изолированных точек, $\lambda_2 S = 0$ и $\operatorname{Card} S = \aleph$.

196. Рассмотрим замкнутый треугольник

$$T = \{(x,y) \in \mathbb{R}^2 : \max \{\alpha x, \beta x\} \leqslant y \leqslant \gamma \},\$$

где $\alpha>0$, $\beta<0$ и $\gamma>0$. Разделим его средними линиями на 4 конгруэнтных треугольника (подобных треугольнику T) и удалим центральный (открытый) треугольник. Каждый из оставшихся 3-х треугольников разделим на 4 конгруэнтных треугольника и удалим центральные (открытые) треугольники. Каждый из оставшихся 9-ти треугольников разделим на 4 конгруэнтных треугольника и удалим центральные треугольники. И т. д. После последовательности таких шагов от треугольника T останется множество S, которое можно назвать «треугольным ковром Серпинского». Доказать, что множество S на плоскости \mathbb{R}^2 компактно, линейно связно, нигде не плотно, не имеет изолированных точек, $\lambda_2 S=0$ и Card $S=\aleph$.

- 197. Построить непрерывную сюрьекцию множества Кантора C на сегмент [0,1]. Вывести отсюда, что непрерывный образ измеримого множества не обязан быть измеримым множеством.
- 198. Пусть C множество Кантора. Доказать, что множество $C \times [0,1] \subset \mathbb{R}^2$ (канторова гребенка) компактно, нигде не плотно, не имеет изолированных точек, не связно и $\lambda_2(C \times [0,1]) = 0$.
- 199. Пусть $\varepsilon>0$. Построить конечное семейство двумерных брусов P_k , $k=1,2,\ldots,N$, покрывающих канторову гребенку $C\times[0,1]$ и таких, что $\lambda_2P_1+\lambda_2P_2+\ldots+\lambda_2P_N<\varepsilon$.
 - **200**. Пусть C множество Кантора. Доказать, что множество

$$C^2 = C \times C \subset \mathbb{R}^2$$

(кладбище Серпинского) компактно, нигде не плотно, не имеет изолированных точек, не связно, $\lambda_2 C^2 = 0$ и $\operatorname{Card} C^2 = \aleph$.

- 201. Для каждого $r\!\in\! C$, где C множество Кантора, обозначим через Γ_r окружность радиуса $r\!+\!1$ с центром в начале координат $(0,0)\!\in\!\mathbb{R}^2$. Доказать, что объединение $W\!\subset\!\mathbb{R}^2$ всех Γ_r , $r\!\in\! C$, компактно, не связно, нигде не плотно, не имеет изолированных точек и $\lambda_2 W\!=\!0$.
- 202. Пусть $0 < \alpha < 1$. Построить линейно связный нигде не плотный компакт $S \subset [0,1]^2$ с мерой $\lambda_2 S = \alpha$.
- 203. Пусть $0 < \alpha < 1$. Построить линейно связный нигде не плотный компакт $S \subset [0,1]^3$ с мерой $\lambda_3 S = \alpha$.
- 204. Пусть функции $\varphi, \psi: \mathbb{R}^n \to \mathbb{R}$ непрерывны и $\varphi \neq \psi$. Доказать, что множество

$$G = \left\{ x \in \mathbb{R}^n ; \varphi(x) \neq \psi(x) \right\}$$

измеримо и $\lambda G > 0$.

- 205. Пусть L векторное подпространство в \mathbb{R}^n и $\dim L < n$. Доказать, что каждое множество $A \subset L$ измеримо в \mathbb{R}^n и $\lambda A = 0$.
- 206. Доказать, что в задаче 149 условие «все $\alpha_k \neq 0$ » можно опустить.
- 207. Допустим, что множество $A \subset \mathbb{R}^n$ измеримо, $\lambda A > 0$ и $0 < \alpha < \lambda A$. Доказать, что существует нигде не плотный компакт K без изолированных точек такой, что $K \subset A$ и $\lambda K = \alpha$.
- 208. Пусть $H \subset \mathbb{R}^n$ гиперплоскость и множества $A, B \subset \mathbb{R}^n$ симметричны друг другу относительно H. Доказать, что если множество A измеримо, то множество B также измеримо и $\lambda B = \lambda A$.

209. Доказать, что Card L (\mathbb{R}) = 2^{\aleph} .

210. Пусть B – сектор круга

$$V = \{(x,y) \in \mathbb{R}^2; x^2 + y^2 \leqslant \sigma^2\}$$

с центральным углом α , $0 \leqslant \alpha < 2\pi$. Доказать, что $\lambda_2 B = \alpha \sigma^2 / 2$.

- 211. Доказать, что существует неизмеримое множество $A \subset \mathbb{R}$ такое, что $\lambda_* A = \lambda^* A$. Доказать также, что для такого множества справедливо равенство $\lambda_* A = \lambda^* A = +\infty$.
- **212**. Пусть множество $B \subset \mathbb{R}^n$ измеримо и $\lambda B > 0$. Доказать, что во множестве B есть неизмеримое подмножество.
- 213. Доказать, что на плоскости \mathbb{R}^2 существует измеримое множество A, для которого его проекции

$$\pi_1 A = \{ x \in \mathbb{R} ; \exists y \in \mathbb{R} : (x, y) \in A \},$$

$$\pi_2 A = \{ y \in \mathbb{R} ; \exists x \in \mathbb{R} : (x, y) \in A \}$$

на оси координат неизмеримы.

214. Доказать, что на плоскости \mathbb{R}^2 существует неизмеримое множество A, для которого его проекции

$$\pi_1 A = \{ x \in \mathbb{R} ; \exists y \in \mathbb{R} : (x, y) \in A \},\$$

$$\boldsymbol{\pi}_{2}\boldsymbol{A} = \big\{\boldsymbol{y} \!\in\! \mathbb{R} \; ; \; \exists \boldsymbol{x} \!\in\! \mathbb{R} \! : \! (\boldsymbol{x}, \boldsymbol{y}) \!\in\! \boldsymbol{A} \big\}$$

на оси координат измеримы.

- 215. Доказать, что множество $H \subset [0,1]$ измеримо на прямой $\mathbb R$ тогда и только тогда, когда $H \times [0,1]$ измеримо на плоскости $\mathbb R^2$.
- 216. Пусть множество $A \subset \mathbb{R}^n$ измеримо и его подмножество B неизмеримо. Доказать, что множество $A \backslash B$ неизмеримо.

- 217. Найти неизмеримое множество $H \subset \mathbb{R}$, для которого объединение W всех окружностей Γ_r радиусов |r|, $r \in H$, с центром в начале координат окажется измеримым множеством.
- **218**. Доказать, что на плоскости \mathbb{R}^2 есть неизмеримое линейно связное множество.
- 219. Верно ли, что в пространстве \mathbb{R}^n измеримо каждое относительно компактное множество (т.е. имеющее компактное замыкание)?
- 220. Пусть множество $A \subset \mathbb{R}^n$ неизмеримо, $B \subset \mathbb{R}^n$ и $\lambda^*B=0$. Доказать, что множества $A \cup B$ и $A \setminus B$ неизмеримы.
- 221. Пусть множество $A\subset \mathbb{R}^n$ измеримо. Плотность $\alpha_A(x)$ множества A в точке $x\in \mathbb{R}^n$ определяется равенством

$$\alpha_{A}(x) = \lim_{\delta \to +0} \frac{\lambda [A \cap V(x, \delta)]}{\lambda V(x, \delta)}.$$
 (*)

Областью задания функции α_A считается множество всех $x \in \mathbb{R}^n$, для которых предел (*) существует. Тогда $0 \leqslant \alpha_A(x) \leqslant 1$.

- (a) Найти функцию плотности для множеств на прямой \mathbb{R} :
 - (1) $A = (-1,0) \cup (0,1) \cup \mathbb{N}$; (2) множество Кантора C;

(3)
$$A = (0,1) \setminus \mathbb{Q}$$
; (4) $A = (0,1) \cup \mathbb{Q}$;

(5)
$$A = \{x \in \mathbb{R}; 0 \leq \sin x < 1\}.$$

(б) Пусть функция $\phi: \mathbb{R} \to \mathbb{R}$ в точке $u \in \mathbb{R}$ имеет производную и

$$A = \{(x, y) \in \mathbb{R}^2; y \leqslant \varphi(x)\}.$$

Доказать равенство $\alpha_{A}(u, \varphi(u)) = 1/2$.

(в) Найти функцию плотности для множеств на плоскости \mathbb{R}^2 :

(1)
$$P = [0,1] \times \mathbb{Q}$$
; (2) $P = [0,1) \times (0,1]$;
(3) $P = \{(x,y) \in \mathbb{R}^2 : 0 \le y < |x|\}$;
(4) $P = \{(x,y) \in \mathbb{R}^2 : 0 < y \le x^2\}$;
(5) $P = \{(x,y) \in \mathbb{R}^2 : x \geqslant 0, 0 < y \le \sqrt{x}\}$;
(6) $P = \{(x,y) \in \mathbb{R}^2 : 0 \le y < \sin x\}$;
(7) $P = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 < 2\}$;
(8) $P = \{(x,y) \in \mathbb{R}^2 : 0 \le y < \sqrt{3} |\sin x|\}$;
(9) $P = \{(x,y) \in \mathbb{R}^2 : 0 < xy \le 1\}$;
(10) $P = \{(x,y) \in \mathbb{R}^2 : 0 < |xy| \le 1\}$;
(11) $P = \{(x,y) \in \mathbb{R}^2 : x \in \mathbb{R} \setminus \pi\mathbb{Z}, y \geqslant \operatorname{ctg} x\}$;

(г) Пусть $0<\sigma<1$. Построить измеримое множество $A\subset\mathbb{R}^2$, для которого $\alpha_A(O)=\sigma$, где O=(0,0).

(12) $P = \{(x, y) \in \mathbb{R}^2 ; |x| \le \pi, y \ge \operatorname{sign} \sin x \}.$

(д) Доказать, что плотность множества

$$B = \{(x,y) \in \mathbb{R}^2; x > 0, y \le \cos(1/x)\}$$

в точке w = (0,1) равна 0.

- (e) Найти измеримое множество $A \subset \mathbb{R}$, для которого $\operatorname{dom} \alpha_{\scriptscriptstyle A} = \mathbb{R} \backslash \{0\}.$
- (ж) Найти измеримое множество $A \subset \mathbb{R}^2$, для которого

$$\operatorname{dom} \alpha_A = (\mathbb{R} \setminus \{0\}) \times \mathbb{R}.$$

(3) Найти функции плотности для брусов

$$[0,1) \subset \mathbb{R}, \ [0,1)^2 \subset \mathbb{R}^2, \ [0,1)^3 \subset \mathbb{R}^3, \ [0,1)^4 \subset \mathbb{R}^4.$$

(и) Найти функции плотности для множеств

$$[0,3)^2 \setminus [1,2)^2 \subset \mathbb{R}^2$$
, $[0,3)^3 \setminus [1,2)^3 \subset \mathbb{R}^3$, $[0,3)^4 \setminus [1,2)^4 \subset \mathbb{R}^4$.

(к) Найти функцию плотности для множества

$$D = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n ; x_1 > 0, x_2 > 0\}.$$

- (л) Пусть $A\subset \mathbb{R}^n$ и в точке $x\in \mathbb{R}^n$ функция плотности α_A не определена или $0<\alpha_A(x)<1$. Доказать, что тогда $x\in \overline{A}\setminus \operatorname{int} A$.
- (м) Найти функции плотности для сферы $S(0,r) \subset \mathbb{R}^n$ и для шаров $V(0,r),\ U(0,r) \subset \mathbb{R}^n.$
- (н) Пусть $0 < \delta < r$. Найти функцию плотности для множества $V(0,r) \setminus V(0,\delta) \subset \mathbb{R}^n$.
 - (0) Пусть $0 < \beta < 1$ и B объединение множеств

$$B_m = V(0, \beta^{2m-1}) \setminus V(0, \beta^{2m}), \quad m \in \mathbb{N}.$$

Доказать, что функция плотности множества B не определена в точке $0=(0,0,\ldots,0)\in\mathbb{R}^n$.

- (п) Найти функцию плотности измеримого множества $A \subset \mathbb{R}^n$, если известна функция плотности множества $\mathbb{R}^n \setminus A$.
- (р) Доказать, что для любых измеримых множеств $A,B \subset \mathbb{R}^n$ справедливо равенство $\alpha_A + \alpha_B = \alpha_{A \cup B} + \alpha_{A \cap B}$.

Указания к решению задач §5. Мера Лебега

99. УКАЗАНИЕ. Доказать, что A не более чем счетно.

101. ОТВЕТ. Таково, например, множество
$$A = \bigcup_{k=1}^{\infty} \left[k, k + 2^{-k} \right]$$
.

102. ОТВЕТЫ.
$$\lambda_1 A_0 = \lambda_1 A_1 + \lambda_1 A_3 = \frac{1}{\pi}$$
,

$$\lambda_1 A_1 = \lambda_1 A_2 = \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{1}{2k \left(2k+1\right)}, \ \ \lambda_1 A_3 = \lambda_1 A_4 = \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{1}{2k \left(2k-1\right)}.$$

РЕШЕНИЕ. Очевидно $\,A_0 = A_1 \sqcup A_3.\,$ Ясно также, что

$$A_{1} = \left\{ x \in \mathbb{R} ; \pi \leqslant \frac{1}{x}, \sin \frac{1}{x} > 0 \right\} =$$

$$= \left\{ x \in \mathbb{R} ; \pi \leqslant \frac{1}{x}, \frac{1}{x} \in \bigsqcup_{k=1}^{\infty} (2k\pi, 2k\pi + \pi) \right\} =$$

$$= \left(\frac{1}{3\pi}, \frac{1}{2\pi} \right) \sqcup \left(\frac{1}{5\pi}, \frac{1}{4\pi} \right) \sqcup \left(\frac{1}{2\pi}, \frac{1}{6\pi} \right) \sqcup \left(\frac{1}{9\pi}, \frac{1}{8\pi} \right) \sqcup \dots$$

Отсюда следует, что множество A_1 измеримо (ибо открыто) и

$$\lambda_1 A_1 = \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{1}{2k(2k+1)} = \frac{1}{\pi} \left(\frac{1}{2 \cdot 3} + \frac{1}{4 \cdot 5} + \frac{1}{6 \cdot 7} + \frac{1}{8 \cdot 9} + \ldots \right).$$

Аналогично

$$A_{3} = \left\{ x \in \mathbb{R} \; ; \; x < 0, \; \sin \frac{1}{x} > 0 \right\} =$$

$$= \left\{ x \in \mathbb{R} \; ; \; \frac{1}{x} \in \bigsqcup_{k=1}^{\infty} (-2k\pi, -2k\pi + \pi) \right\} =$$

$$= \left(-\frac{1}{\pi}, -\frac{1}{2\pi} \right) \sqcup \left(-\frac{1}{3\pi}, -\frac{1}{4\pi} \right) \sqcup \left(-\frac{1}{5\pi}, -\frac{1}{6\pi} \right) \sqcup \left(-\frac{1}{7\pi}, -\frac{1}{8\pi} \right) \sqcup \dots$$

Следовательно, множество A_3 измеримо и

$$\lambda_1 A_3 = \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{1}{2k(2k-1)} = \frac{1}{\pi} \left(\frac{1}{1 \cdot 2} + \frac{1}{3 \cdot 4} + \frac{1}{5 \cdot 6} + \frac{1}{7 \cdot 8} + \ldots \right).$$

Из равенства $A_0 = A_1 \sqcup A_3$ теперь имеем

$$\begin{split} \lambda_1 A_0 &= \lambda_1 A_1 + \lambda_1 A_3 = \frac{1}{\pi} \Big(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \frac{1}{4 \cdot 5} + \frac{1}{5 \cdot 6} + \frac{1}{6 \cdot 7} + \ldots \Big) = \\ &= \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \frac{1}{\pi} \sum_{k=1}^{\infty} \Big(\frac{1}{k} - \frac{1}{k+1} \Big) = \frac{1}{\pi}. \end{split}$$

Далее, $A_1 \subset A_2$ и множество $A_2 \backslash A_1$ счетно. Поэтому множество A_2 также измеримо и $\lambda_1 A_1 = \lambda_1 A_2$.

Наконец, $A_3=A_4$. Действительно, ясно, что $A_4\subset A_3$. Допустим, что $A_3\neq A_4$ и $x\in A_3\setminus A_4$. Тогда $\pi x<-1$. Значит, x<0, 1/x<0, $-\pi x>1$, $-\pi<1/x$ и, таким образом, $-\pi<1/x<0$. Однако в этом случае $\sin(1/x)<0$ вопреки тому, что $x\in A_3$. Равенство $A_3=A_4$ доказано. \Diamond

103. РЕШЕНИЕ. Применяя теорему 5.3, имеем:

$$\begin{split} \lambda_1 A &= \sum_{k=1}^{\infty} \lambda_1 \Big(k^2, \, k^2 + 1 \Big] = 1 + 1 + \dots = + \infty; \\ \lambda_1 B &= \sum_{k=1}^{\infty} \lambda_1 \Big(2^k, \, 2^k + \frac{1}{k} \Big] = \sum_{k=1}^{\infty} \frac{1}{k} = + \infty; \\ \lambda_1 C &= \sum_{k=1}^{\infty} \lambda_1 \Big(\sqrt{2k} \, , \sqrt{2k+1} \Big] = \sum_{k=1}^{\infty} \Big(\sqrt{2k+1} - \sqrt{2k} \Big) = \\ &= \sum_{k=1}^{\infty} \frac{1}{\sqrt{2k+1} + \sqrt{2k}} \geqslant \sum_{k=1}^{\infty} \frac{1}{2\sqrt{2k+1}} \geqslant \sum_{k=1}^{\infty} \frac{1}{2\sqrt{4k}} = \frac{1}{4} \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}} = + \infty; \\ \lambda_1 D &= \sum_{k=1}^{\infty} \lambda_1 \Big(k^k, \, k^k + \frac{1}{k \ln k} \Big) = \sum_{k=1}^{\infty} \frac{1}{k \ln k} = \end{split}$$

$$= \frac{1}{2 \ln 2} + \frac{1}{3 \ln 3} + \frac{1}{4 \ln 4} + \frac{1}{5 \ln 5} + \frac{1}{6 \ln 6} + \frac{1}{7 \ln 7} + \frac{1}{8 \ln 8} + \dots \geqslant$$

$$\geqslant \frac{1}{2 \ln 2} + \left(\frac{1}{3} + \frac{1}{4}\right) \frac{1}{\ln 4} + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) \frac{1}{\ln 8} + \dots \geqslant$$

$$\geqslant \frac{1}{2} \frac{1}{\ln 2} + \frac{1}{2} \frac{1}{\ln 4} + \frac{1}{2} \frac{1}{\ln 8} + \frac{1}{2} \frac{1}{\ln 16} + \dots = \frac{1}{2} \frac{1}{\ln 2} \sum_{k=1}^{\infty} \frac{1}{k} = +\infty.$$

104. РЕШЕНИЕ. Это следует из задачи 72 и теоремы 5.4. ◊

106. РЕШЕНИЕ. Множество \overline{G} содержит сегмент [0,2] и некоторые интервалы $\left(0-2^{-k_1},0+2^{-k_1}\right)$ и $\left(1-2^{-k_2},1+2^{-k_2}\right)$. Поэтому $\lambda_1\overline{G}>2$. Сумма мер интервалов, составляющих множество G, равна 2, и некоторые из них пересекаются. Значит, $\lambda_1G<2$. Среди этих интервалов присутствует $\left(r_1-2^{-1},\,r_1+2^{-1}\right)$. Значит, $\lambda_1G>1$. \diamond

107. РЕШЕНИЕ. Можем считать, что множество $A \subset \mathbb{R}$ ограничено. Допустим, что $u-v \notin \mathbb{Q}$ для всех $u,v \in A, u \neq v$. Множество $\mathbb{Q} \cap [-1,1]$ счетно. Пусть

$$\mathbb{Q} \cap [-1,1] = \{r_1, r_2, \dots, r_k, \dots\}.$$

По теореме 5.7 множества $A_k=r_k+A$ измеримы и $\lambda_1A_k=\lambda_1A$ для каждого $k\in\mathbb{N}.$

Если $i\neq j$, то $A_i\cap A_j=\varnothing$. В самом деле, пусть $w\in A_i\cap A_j$. Точки $x=w-r_i$, $y=w-r_j\in A$ различны, так как $r_i\neq r_j$. Но $x-y=-r_i+r_j\in\mathbb{Q}$ вопреки предположению, что $u-v\notin\mathbb{Q}$ для всех $u,v\in A$. Значит, действительно, $A_i\cap A_j=\varnothing$ при $i\neq j$.

Множество $B=A_1\sqcup A_2\sqcup A_3\sqcup\dots$ ограничено, так как A ограничено и все $|r_k|\leqslant 1$. Следовательно,

$$+\infty > \lambda_1 B = \lambda_1 A_1 + \lambda_1 A_2 + \dots = \lambda_1 A + \lambda_1 A + \dots$$

Однако, это невозможно при $\lambda_1 A > 0$. \Diamond

108. УКАЗАНИЕ. Доказать, что утверждение верно для прямоугольных треугольников. Произвольный треугольник представить в виде разности двух прямоугольных треугольников.

109. УКАЗАНИЕ. Применить задачу 108 и теорему 5.2.

110. РЕШЕНИЕ. Это следует из теоремы 5.4 и из задач 18, 74 и 76.

111. OTBETЫ. (1, 2, 6)
$$\lambda_2 A = 2$$
; (3, 5, 7,9) $\lambda_2 A = 4$; (4) $\lambda_2 A = 3/2$;

(8) 2e-2. УКАЗАНИЕ. Применить задачи 108 – 110 или 62.

112. OTBETЫ. (1)
$$\lambda_2 A = (b-a)(c-d)$$
; (2,3 4, 5) $\lambda_2 A = +\infty$;

(6)
$$\lambda_2 A = 3\pi$$
; (7) $\lambda_2 A = 8/3$; (8) $\lambda_2 A = 1/6$; (9) $\lambda_2 A = 4/15$.

УКАЗАНИЕ. В вариантах (6-9) применить задачи 62 и 110.

113. РЕШЕНИЕ. Пусть $\varphi:[a,b]\to\mathbb{R}$ возрастает, $\varepsilon>0$ и

$$a = x_0 < x_1 < x_2 < \ldots < x_p = b,$$

причём $x_k - x_{k-1} < \varepsilon$ для всех k. Множество

$$H_{\varepsilon} = \bigcup_{k=1}^{p} [x_{k-1}, x_k] \times [\varphi(x_{k-1}), \varphi(x_k)]$$

содержит в себе график Γ функции ϕ (так как ϕ возрастает) и

$$\begin{split} \lambda_2^*\Gamma &\leqslant \lambda_2 H_{\varepsilon} \leqslant \sum_{k=1}^p (x_k - x_{k-1}) \cdot \left[\phi(x_k) - \phi(x_{k-1}) \right] \leqslant \\ &\leqslant \varepsilon \cdot \sum_{k=1}^p \left[\phi(x_k) - \phi(x_{k-1}) \right] = \varepsilon \cdot \left[\phi(b) - \phi(a) \right]. \end{split}$$

Отсюда ясно, что $\lambda_2^*\Gamma=0$. Поэтому Γ измеримо и $\lambda_2\Gamma=0$. Для возрастающей функции $\phi:[a,b]\to\mathbb{R}$ утверждение доказано.

График Γ возрастающей функции $\phi:(a,b)\to \mathbb{R}$ есть объединение графиков сужений функции ϕ на $[a_m,b_m]$, где

$$a_m \mathop{\rightarrow} a, \, b_m \mathop{\rightarrow} b, \ \, a < a_m < b_m < b.$$

Поэтому снова $\lambda_2 \Gamma = 0$.

Для убывающих функций доказательство аналогичное. ◊

114. РЕШЕНИЕ. Функция $f(x,y)=x^2y^2$ на плоскости \mathbb{R}^2 непрерывна и $A=f^{-1}(-\infty,1]$. Значит, множество A замкнуто и поэтому измеримо. Согласно задаче 57 множество

$$G = \{(x,y) \in \mathbb{R}^2; x > 1, 0 < y < 1/x\}$$

имеет меру $\lambda_2 G = +\infty$. Очевидно $G \subset A$ и, значит, $\lambda_2 A = +\infty$.

Для каждого $m \in \mathbb{N}$, $m \geqslant 2$, положим

$$P_m = [m, m+1) \times [1/m, 2/m).$$

Брусы P_m , $m \geqslant 2$, попарно не пересекаются и содержатся во множестве B. Поэтому

$$\lambda_2 B \geqslant \sum_{m=2}^{\infty} \lambda_2 P_m = \sum_{m=2}^{\infty} \left(\frac{2}{m} - \frac{1}{m}\right) = \sum_{m=2}^{\infty} \frac{m-1}{m(m+1)} = +\infty.$$

Функция $\Psi(x) = \ln \sin x$ – первообразная для функции $\cot x$ на интервале $(0,\pi)$. Поэтому для любого $\varepsilon > 0$ множество

$$G_{\varepsilon} = \{(x, y) \in \mathbb{R}^2 ; \ \varepsilon < x < \pi/2, \ 0 < y < \operatorname{ctg} x \}$$

согласно задаче 62 имеет меру

$$\lambda_2 G_{\varepsilon} = \Psi(\pi/2) - \Psi(\varepsilon) = \ln 1 - \ln \sin \varepsilon = -\ln \sin \varepsilon.$$

Отсюда

$$\lambda_2 C \geqslant \lambda_2 G \geqslant \lim_{\epsilon \to +0} G_\epsilon = \lim_{\epsilon \to +0} \left(-\ln \sin \epsilon \right) = +\infty. \ \, \Diamond$$

115. РЕШЕНИЕ. Для открытого верхнего полукруга

$$U_{+} = \{(x,y) \in \mathbb{R}^{2}; x^{2} + y^{2} < r^{2}, y > 0\}$$

по задаче 64 справедливо равенство $\,\lambda_2 U_+ = \pi r^2 / 2\,.\,$ Нижний полукруг

$$U_{-} = \{(x,y) \in \mathbb{R}^2; x^2 + y^2 < r^2, y < 0\}$$

имеет туже меру по задаче 42 (или по теореме 5.7). Диаметральный отрезок $H=(-r,r)\times\{0\}$, разделяющий полукруги U_+ и U_- , имеет (пример 6.3) меру $\lambda_2H=0$. Значит, $\lambda_2U=2\cdot\lambda_2U_+=\pi r^2$.

По задаче 110 полуокружности Γ_+ и Γ_- , ограничивающие круг V = V(O,r) сверху и снизу, имеют меру $\lambda_2 \Gamma_+ = \lambda_2 \Gamma_- = 0$. Поэтому

$$\lambda_2 V = \lambda_2 \left(U \sqcup (\Gamma_+ \cup \Gamma_-) \right) = \lambda_2 U + 0 = \pi r^2. \ \Diamond$$

116. OTBETЫ. (1) $\lambda_2 A = 4/3$; (2, 3, 11) $\lambda_2 A = 2$; (4) $\lambda_2 A = \sqrt{2} + 1$; (5) $\lambda_2 A = \pi/3$; (6-7) $\lambda_2 A = \pi$; (8) $\lambda_2 A = \sqrt{2} - 1$; (9) $\lambda_2 A = \pi/4$; (10) $\lambda_2 A = \ln 4$; (12) $\lambda_2 A = 2\pi$.

УКАЗАНИЕ. Применить задачи 62 и 110.

117. ОТВЕТ. Таково, например, объединение открытых кругов $U(z_k, \varepsilon_k)$, $k \in \mathbb{N}$, где центры z_k образуют множество, плотное в открытом квадрате $D = (0,1) \times (0,1)$, а радиусы ε_k удовлетворяют условиям $\sum\limits_{k=1}^\infty \varepsilon_k^2 < \frac{1}{4}$ и $0 < \varepsilon_k < \rho(z_k, \mathbb{R}^2 \setminus D)$ для каждого $k \in \mathbb{N}$.

118. OTBETЫ. (1-2)
$$\lambda_2 A = +\infty$$
; (3) $\lambda_2 A = a$; (4) $\lambda_2 A = 2$;

(5)
$$\lambda_2 A = 1$$
; (6) $\lambda_2 A = 2\pi$; (7) $\lambda_2 A = \frac{1}{3} \left(10\sqrt{5} - 4 \right)$.

РЕШЕНИЕ. (1) В этом случае

$$A = \{(x,y) \in \mathbb{R}^2 ; x \ge 0, [x] \le y < [x+1] \} =$$

$$= \bigsqcup_{m=0}^{\infty} ([m, m+1) \times [m, m+1))$$

и, следовательно,

$$\lambda_2 A = \sum_{m=0}^{\infty} \lambda_2([m, m+1) \times [m, m+1)) = 1 + 1 + \dots = +\infty.$$

(2) В этом случае

$$A = \left\{ (x,y) \in \mathbb{R}^2; \ x \geqslant 0, \ [x^2] \leqslant y < [x^2+1] \right\} =$$
$$= \bigsqcup_{m=0}^{\infty} \left(\left[\sqrt{m}, \sqrt{m+1} \right) \times [m, m+1) \right)$$

и, следовательно,

$$\lambda_2 A = \sum_{m=0}^{\infty} \left(\sqrt{m+1} - \sqrt{m} \right) = \lim_{m \to \infty} \sqrt{m+1} = +\infty.$$

(3) В этом случае

$$A = \{(x,y) \in \mathbb{R}^2; 0 \leqslant x < a, [x^2] \leqslant y < [x^2 + 1]\}, a > 0.$$

Пусть $0 < a \le 1$. Тогда условие $(x,y) \in A$ означает, что $x \in [0,a)$ и $0 < y \le 1$. Следовательно, $A = [0,a) \times [0,1)$ и $\lambda_2 A = a$.

Пусть a>1. Тогда $\sqrt{p}< a\leqslant \sqrt{p+1}$ для некоторого $p\in\mathbb{N}$ и

$$A = A_1 \sqcup A_2 \sqcup \ldots \sqcup A_p \sqcup A_{p+1},$$

где

$$A_m=\left\{(x,y)\!\in\!A\;;\,\sqrt{m\!-\!1}\leqslant x<\sqrt{m}\right\}\;\text{при}\;m=1,2,\ldots,\,p,$$

$$A_{p+1}=\left\{(x,y)\!\in\!A\;;\,\sqrt{p}\leqslant x< a\right\}.$$

Если $1\leqslant m\leqslant p$ и $\sqrt{m-1}\leqslant x<\sqrt{m}$, то условие $[x^2]\leqslant y<[x^2+1]$ приобретает вид $m-1\leqslant y< m$, и, следовательно,

$$A_m = [\sqrt{m-1}, \sqrt{m}) \times [m-1, m).$$

Если же $\sqrt{p} \leqslant x < a$, то условие $[x^2] \leqslant y < [x^2+1]$ упрощается до условия $p \leqslant y < p+1$, и, следовательно,

$$A_p = [\sqrt{p}, a) \times [p, p+1).$$

Теперь ясно, что

$$\lambda_2 A = \sum_{m=1}^p \lambda_2 A_m + \lambda_2 A_{p+1} = \sum_{m=1}^p (\sqrt{m} - \sqrt{m-1}) + (a - \sqrt{p}) = a.$$

(4) В этом случае

$$A = \{(x,y) \in \mathbb{R}^2; \ x \geqslant 0, \ [x] \leqslant y < [x] + 2^{-[x]} \} = \bigcup_{m=0}^{\infty} ([m,m+1) \times [m,m+2^{-m}))$$

и, следовательно,

$$\lambda_2 A = \sum_{m=0}^{\infty} 2^{-m} = 2.$$

(5) В этом случае

$$A = \left\{ (x,y) \in \mathbb{R}^2; \ x \geqslant 1, \ [x] \leqslant y < [x] + \frac{1}{[x] \cdot [x+1]} \right\}$$
$$= \bigsqcup_{m=1}^{\infty} \left([m, m+1) \times \left[m, \frac{1}{m(m+1)} \right) \right)$$

и, следовательно,

$$\lambda_2 A = \sum_{m=1}^{\infty} \frac{1}{m(m+1)} = 1.$$

(6) В этом случае

$$A = \{(x,y) \in \mathbb{R}^2; |x| < \pi/2, [\operatorname{tg} x - 1] \le y < [\operatorname{tg} x + 1]\}.$$

Для каждого $m\!\in\!\mathbb{Z}$ пусть $\alpha_m\!\in\!(-\pi/2,\pi/2)$ таково, что $\lg\alpha_m=m$. Поскольку $\lg:(-\pi/2,\pi/2)\to\mathbb{R}$ — возрастающая биекция, то $\alpha_m\!<\!\alpha_n$ при $m\!<\!n$ и

$$\left(-\frac{\pi}{2},\frac{\pi}{2}\right) = \bigsqcup_{m \in \mathbb{Z}} [\alpha_m,\alpha_{m+1}).$$

Отсюда следует, что $A = B \sqcup C$, где

$$B = \bigsqcup_{m=0}^{\infty} ([\alpha_m, \alpha_{m+1}) \times [m-1, m+1)),$$

$$C = \bigsqcup_{k=1}^{\infty} ([\alpha_{-k}, \alpha_{-k+1}) \times [-k-1, -k+1)).$$

Поэтому

$$\begin{split} \lambda_2 A &= \lambda_2 B + \lambda_2 C = 2 \cdot \left(\sum_{m=0}^{\infty} \left(\alpha_{m+1} - \alpha_m \right) + \sum_{k=1}^{\infty} \left(\alpha_{-k+1} - \alpha_{-k} \right) \right) = \\ &= 2 \cdot \lim_{m \to \infty} \left(\alpha_{m+1} - \alpha_0 \right) + 2 \cdot \lim_{k \to \infty} \left(\alpha_0 - \alpha_{-k} \right) = \\ &= 2 \cdot \lim_{m \to \infty} \alpha_{m+1} + 2 \cdot \lim_{k \to \infty} \left(-\alpha_{-k} \right) = 2 \cdot \frac{\pi}{2} + 2 \cdot \left(-\left(-\frac{\pi}{2} \right) \right) = 2\pi. \end{split}$$

(7) В этом случае

$$A = \{(x,y) \in \mathbb{R}^2 ; x^2 \leqslant y < [x+3] \}.$$

При x<-1, при $\sqrt{5}\leqslant x<3$ и при $2+k\leqslant x<3+k,\,k\in\mathbb{N}$, условие на y противоречиво:

$$1 < x^2 \le y < [x+3] \le 1$$
, $5 \le x^2 \le y < [x+3] \le 5$

и соотв.

$$4+4k+k^2 \le x^2 \le y < [x+3] \le 5+k$$
.

Поэтому множество $\,A\,$ лежит в полосе $\,-1\!\!\leqslant\! x\!<\!\!\sqrt{5}\,$ и

$$A = (P_1 \sqcup P_2 \sqcup P_3 \sqcup P_4) \setminus (G \sqcup H),$$

где

$$\begin{split} P_1 &= [-1,0) \times (0,2), \ P_2 = [0,1) \times (0,3), \ P_3 = [1,2) \times (0,4), \\ P_4 &= \left[2,\sqrt{5}\right) \times (0,5), \ H = \{-1\} \times (0,1), \\ G &= \left\{(x,y) \in \mathbb{R}^2; \ -1 < x < \sqrt{5}, \ 0 < y < x^2\right\}. \end{split}$$

Функция $F(x) = x^3/3$ является первообразной для функции $x \mapsto x^2$ и по задаче 62

$$\lambda_2 G = F(\sqrt{5}) - F(-1) = (5\sqrt{5} + 1)/3.$$

Ясно также, что

$$\lambda_2 P_1 = 2$$
, $\lambda_2 P_2 = 3$, $\lambda_2 P_3 = 4$, $\lambda_2 P_4 = 5(\sqrt{5} - 2)$

и $\lambda_2 H = 0$. Поэтому

$$\lambda_2 A = 2 + 3 + 4 + 5(\sqrt{5} - 2) - \frac{5\sqrt{5} + 1}{3} = \frac{1}{3}(10\sqrt{5} - 4).$$

120. РЕШЕНИЕ. Обозначим $A = \bigcup\limits_{k=1}^{\infty} A_k$ и

$$B_{1} = A_{1}, \ B_{2} = A_{2} \backslash A_{1}, \ B_{3} = A_{3} \backslash A_{2}, \ \dots, \ B_{m} = A_{m} \backslash A_{m-1}, \ \dots$$

Множества B_m , $m \in \mathbb{N}$, попарно не пересекаются,

$$A_m = B_1 \sqcup B_2 \sqcup \ldots \sqcup B_m$$

для каждого $m \in \mathbb{N}$ и

$$A = \bigcup_{k=1}^{\infty} A_k = \bigsqcup_{m=1}^{\infty} B_m.$$

Поэтому

$$\lambda A = \sum_{m=1}^{\infty} \lambda B_m = \lim_{m \to \infty} \sum_{k=1}^{m} \lambda B_k = \lim_{m \to \infty} \lambda A_m. \diamond$$

121. РЕШЕНИЕ. Последовательность чисел (λA_k) также убывает. Поэтому существует $\lim_{k\to\infty}\lambda A_k$, причем

$$0\leqslant \lim_{k\to\infty}\lambda A_k\leqslant \lambda A_1<+\infty.$$

Последовательность множеств $(A_1 \backslash A_k)$ возрастает и по задаче 120

$$\lambda \left[\bigcup_{k=1}^{\infty} (A_1 \backslash A_k) \right] = \lim_{k \to \infty} \lambda \left(A_1 \backslash A_k \right).$$

Отсюда и из равенства

$$A_1 \setminus \bigcap_{k=1}^{\infty} A_k = \bigcup_{k=1}^{\infty} (A_1 \setminus A_k)$$

следует равенство

$$\lambda \left(A_1 \setminus \bigcap_{k=1}^{\infty} A_k \right) = \lim_{k \to \infty} \lambda (A_1 \setminus A_k). \tag{*}$$

Если $B \subset A_1$ измеримо, то

$$\lambda B \leqslant \lambda A_1 < +\infty, \ \lambda A_1 = \lambda B + \lambda (A_1 \backslash B)$$

и, следовательно, $\lambda(A_1 \backslash B) = \lambda A_1 - \lambda B$. В частности,

$$\lambda(A_1 \backslash A_k) = \lambda A_1 - \lambda A_k, \tag{**}$$

$$\lambda \Big(A_1 \backslash \bigcap_{k=1}^{\infty} A_k \Big) = \lambda A_1 - \lambda \Big(\bigcap_{k=1}^{\infty} A_k \Big). \tag{***}$$

Из (***) и из (*) имеем

$$\lambda \Big(A_1 \setminus \bigcap_{k=1}^{\infty} A_k \Big) = \lambda A_1 - \lim_{k \to \infty} \lambda A_k.$$

Отсюда и из (***) вытекает требуемое равенство

$$\lambda \left(\bigcap_{k=1}^{\infty} A_k \right) = \lim_{k \to \infty} \lambda A_k. \diamond$$

122. ОТВЕТ. Таковы, например, полуоси $B_k = (k, +\infty), k \in \mathbb{N}.$

123. ОТВЕТ. Таковы уже множества $B_k = A \cup (k, +\infty), \ k \in \mathbb{N}$.

124(1). РЕШЕНИЕ. Пусть $\alpha > 1$. Найдем меру $\lambda_2 G$ множества

$$G = \{(x,y) \in \mathbb{R}^2; x > 1, 0 < y < 1/x^{\alpha} \}.$$

Функция $F(x)=\frac{1}{1-\alpha}x^{1-\alpha}$ является первообразной функции $\phi(x)=1/x^{\alpha}$ на $(0,+\infty)$. Значит, по задаче 62 множества

$$G_t = \{(x,y) \in \mathbb{R}^2; 1 < x < t, 0 < y < 1/x^{\alpha}\}, t > 1,$$

имеют меру

$$\lambda_2 G_t = F(t) - F(1) = \frac{1}{\alpha - 1} (1 - t^{1 - \alpha}).$$

По свойству 2(d) $\lambda_2 G \geqslant \lambda_2 G_t$ для всех $t \! > \! 1$. Поэтому

$$\lambda_2 G \geqslant \sup_{t>1} \lambda_2 G_m = \lim_{t\to\infty} \lambda_2 G_t = \frac{1}{\alpha-1} - \lim_{t\to\infty} t^{1-\alpha} = \frac{1}{\alpha-1},$$

так как функция $t\!\to\! \lambda_2 G_t$ возрастает на $(1,+\infty)$ и $\alpha\!>\!1.$

Для доказательства обратного неравенства $\lambda_2 G \leqslant \frac{1}{\alpha-1}$ фиксируем $\epsilon > 0$ и рассмотрим открытые множества

$$\begin{split} U_m = & \left(m - \frac{\varepsilon}{2^m}, \, m + \frac{\varepsilon}{2^m}\right) \times (0,1), \\ \Omega_m = & \left\{(x,y) \in G; \, m < x < m + 1\right\}, \, m \in \mathbb{N}. \end{split}$$

Эти множества покрывают множество G и по свойству 2(e)

$$\lambda_2 G \leqslant \sum_{m=1}^{\infty} (\lambda_2 U_m + \lambda_2 \Omega_m). \tag{1}$$

По свойству 2(g) и по задаче 62

$$\lambda_2 U_m = \frac{\varepsilon}{2^{m-1}}, \quad \lambda_2 \Omega_m = F(m+1) - F(m) \tag{2}$$

для всех $m \in \mathbb{N}$. Из (1) и (2) имеем

$$\lambda_2 G \leqslant \sum_{m=1}^{\infty} \left(\frac{\varepsilon}{2^{m-1}} + F(m+1) - F(m) \right) =$$

$$= 2\varepsilon + \lim_{m \to \infty} (F(m+1) - F(1)) = 2\varepsilon - F(1) + \lim_{m \to \infty} \frac{1}{1 - \alpha} (m+1)^{1 - \alpha} =$$

$$= 2\varepsilon - F(1) = 2\varepsilon + \frac{1}{\alpha - 1}.$$

Отсюда ясно, что
$$\lambda_2 G \geqslant \frac{1}{\alpha - 1}$$
 и, значит, $\lambda_2 G = \frac{1}{\alpha - 1}$. \Diamond

124(2). РЕШЕНИЕ аналогично предыдущему. ОТВЕТ. $\lambda_2 D = \frac{1}{1-\alpha}$.

125. РЕШЕНИЕ. По свойству 3(с)

$$\lambda^* A_1 \leqslant \lambda^* A_2 \leqslant \ldots \leqslant \lambda^* A_k \leqslant \ldots$$

Поэтому существует

$$\alpha = \lim_{k \to \infty} \lambda^* A_k \leqslant +\infty.$$

Из включений $A_k \subset A$ следует, что $\lambda^* A_k \leqslant \lambda^* A$ для всех $k \in \mathbb{N}$. Следовательно, $\alpha \leqslant \lambda^* A$.

Докажем неравенство $\lambda^*A \leqslant \alpha$. Если $\lambda^*A_k = +\infty$ для некоторого $k \in \mathbb{N}$, то $\alpha = +\infty$ и доказывать нечего.

Пусть $\lambda^*A_k<+\infty$ для всех $k\in\mathbb{N}$. Фиксируем $\epsilon>0$ и затем открытые множества G_k , $k\in\mathbb{N}$, так, что

$$A_k \subset G_k$$
 и $\lambda G_k < \lambda^* A_k + \varepsilon$.

Множества

$$B_k = G_k \cap G_{k+1} \cap G_{k+2} \cap \dots$$

измеримы, образуют возрастающую последовательность и

$$\lambda \left(\bigcup_{k=1}^{\infty} B_k \right) = \lim_{k \to \infty} \lambda B_k. \tag{*}$$

по задаче 120. Очевидно $B_k \subset G_k$ и, следовательно,

$$\lambda B_k \leqslant \lambda \, G_k < \lambda^* \! A_k + \varepsilon$$
 для всех $k \! \in \! \mathbb{N}.$ (**)

Если $x\!\in\!A$, то $x\!\in\!A_k$ для некоторого $k\!\in\!\mathbb{N}$. Тогда $x\!\in\!A_j\!\subset\!G_j$ при $j\!\geqslant\!k$ и поэтому $x\!\in\!B_k$. Таким образом, $A\!\subset\!\bigcup_{k=1}^\infty\!B_k$. Отсюда и из (*) и (**) имеем

$$\lambda^* A \leqslant \lambda^* \left(\bigcup_{k=1}^{\infty} B_k \right) = \lim_{k \to \infty} \lambda B_k \leqslant \lim_{k \to \infty} (\lambda^* A_k + \varepsilon) = \alpha + \varepsilon.$$

При $\varepsilon \to +0$ получим $\lambda^* A \leqslant \alpha$. Равенство $\lambda^* A = \alpha$ доказано. \Diamond

126. УКАЗАНИЕ. Для доказательства равенств

$$\lim_{t\to -\infty} \varphi(t) = 0 \text{ } \text{ } \text{ } \lim_{t\to +\infty} \varphi(t) = \lambda_1 A$$

можно применить задачи 120 и 121.

127. УКАЗАНИЕ. Для доказательства равенств

можно применить задачу 120.

128. РЕШЕНИЕ. Для любого $x \in \mathbb{R}$ множество

$$\{(u, v) \in A ; u < x\} = A \cap ((-\infty, x) \times \mathbb{R})$$

на плоскости \mathbb{R}^2 измеримо (как пересечение измеримых множеств). Поэтому функция ϕ определена всюду на \mathbb{R} . Если $x_1 < x_2$, то

$$\{(u,v) \in A ; u < x_1\} \subset \{(u,v) \in A ; u < x_2\}.$$

Поэтому $\phi(x_1)\leqslant\phi(x_2)$, т.е. функция $\phi:\mathbb{R}\to\mathbb{R}$ возрастает.

Фиксируем $x_0 \in \mathbb{R}$. Если последовательность $(x_k) \subset \mathbb{R}$ строго возрастает и $x_k \to x_0$ при $k \to \infty$, то последовательность множеств

$$\{(u,v) \in A ; u < x_k\}, k \in \mathbb{N}, \tag{*}$$

также возрастает и

$$\bigcup_{k=1}^{\infty} \{(u,v) \in A \; ; \; u < x_k\} = \{(u,v) \in A \; ; \; u < x_0\}.$$

Отсюда по задаче 120

$$\begin{split} &\lim_{k \to \infty} \mathbf{\phi}\big(x_k\big) = \lim_{k \to \infty} \lambda_2 \left\{ (u,v) \in A \, ; \, u < x_k \right\} = \\ &= \lambda_2 \left\{ (u,v) \in A \, ; \, u < x_0 \right\} = \mathbf{\phi}\big(x_0\big). \end{split}$$

Тем самым доказано, что $\varphi(x_0-0)=\varphi(x_0)$. Аналогично из задачи 121 (и из примера 6.4) следует, что $\varphi(x_0+0)=\varphi(x_0)$. Эти равенства означают, что функция φ в точке x_0 непрерывна.

Если последовательность $(x_k) \subset \mathbb{R}$ возрастает и $x_k \to +\infty$ при $k \to \infty$, то объединение множеств (*) совпадает с множеством A. По задаче 120 тогда $\phi(x_k) \to \lambda_2 A$ при $k \to \infty$. Следовательно,

$$\underset{x \to +\infty}{\lim} \varphi(x_k) = \lambda_2 A.$$

Если последовательность $(x_k) \subset \mathbb{R}$ убывает и $x_k \to -\infty$ при $k \to \infty$, то пересечение множеств (*) пусто. По задаче 121 тогда $\phi(x_k) \to 0$ при $k \to \infty$. Следовательно

$$\lim_{x \to -\infty} \varphi(x_k) = \lambda_2 \emptyset = 0.$$

Итак, функция $\phi: \mathbb{R} \to \mathbb{R}$ непрерывна и имеет конечные пределы при $x_k \to \pm \infty$. Отсюда (и из теоремы Кантора о равномерной непрерывности непрерывной функции на сегменте) следует, что функция $\phi: \mathbb{R} \to \mathbb{R}$ равномерно непрерывна на всей прямой \mathbb{R} .

Требуемые свойства функции у устанавливаются аналогично. ◊

129. РЕШЕНИЕ. Для любой точки $(x,y) \in \mathbb{R}^2$ множество

$$\{(u,v) \in A ; u < x, v < y\} = A \cap ((-\infty,x) \times (-\infty,y))$$

на плоскости \mathbb{R}^2 измеримо как пересечение измеримых множеств. Поэтому функция h определена всюду на \mathbb{R}^2 . Если последовательность $(x_k) \subset \mathbb{R}$ убывает и $x_k \to -\infty$ при $k \to \infty$, то множества

$$B_k(y) = \{(u,v) {\in} A \, ; \, u {<} x_k, \, v {<} y\}, \, k {\in} \, \mathbb{N},$$

образуют убывающую последовательность с пустым пересечением и

$$\lim_{x \to -\infty} h(x,y) = \lim_{k \to \infty} h(x_k,y) = \lim_{k \to \infty} \lambda_2 B_k(y) = \lambda_2 \emptyset = 0.$$

по задаче 121. Если последовательность $(x_k) \subset \mathbb{R}$ возрастает и $x_k \to +\infty$ при $k \to \infty$, то множества $B_k(y)$ образуют возрастающую последовательность с объединением

$$B(y) = \{(u, v) \in A; v < y\}$$

и по задаче 120

$$\lim_{x \to +\infty} h(x,y) = \lim_{k \to \infty} h\big(x_k,y\big) = \lim_{k \to \infty} \lambda_2 B_k(y) = \lambda_2 B(y) = \psi(y).$$

Равенства (2) доказаны. Равенства (3) доказываются аналогично.

Докажем, что функция $h:\mathbb{R}^2 \to \mathbb{R}$ равномерно непрерывна. Пусть $\varepsilon > 0$. Функции φ и ψ задачи 128 равномерно непрерывны. Значит, найдется $\delta > 0$ такое, что

$$|\varphi(x)-\varphi(s)|<\epsilon$$
 при $|x-s|<\delta$, $|\psi(y)-\psi(t)|<\epsilon$ при $|y-t|<\delta$.

Пусть $(x,y),(s,t) \in \mathbb{R}^2$, причем $|x-s| < \delta$ и $|y-t| < \delta$. Можем считать, что $y \le t$. Обозначим

$$D = (-\infty, x) \times (-\infty, y), E = (-\infty, s) \times (-\infty, t).$$

По определению функции h

$$h(x,y) = \lambda_2(A \cap D), \ h(s,t) = \lambda_2(A \cap E).$$
 (*)

Случай 1. Пусть не только $y \le t$, но и $x \le s$. Тогда $D \subset E$ и

$$E \setminus D \subset (([x,s) \times \mathbb{R}) \cup (\mathbb{R} \times [y,t))). \tag{**}$$

Докажем (**). Пусть $(u,v) \in E \setminus D$. Тогда $(u,v) \in E$ и, значит, u < s и v < t. Кроме того, $(u,v) \notin D$, т.е. $u \geqslant x$ <u>или</u> $v \geqslant y$. В первом случае $u \in [x,s)$ и, значит, $(u,v) \in [x,s) \times \mathbb{R}$, а во втором $-v \in [y,t)$ и поэтому $(u,v) \in \mathbb{R} \times [y,t)$. Включение (**) доказано.

Из (*) и (**) имеем

$$|h(s,t) - h(x,y)| = |\lambda_2(A \cap E) - \lambda_2(A \cap D)| =$$
 (***)

$$= \lambda_2 \big(A \cap (E \setminus D)\big) \leqslant \lambda_2 \big\{A \cap \big(\big[x,s\big) \times \mathbb{R}\big)\big\} + \lambda_2 \big\{A \cap \big(\mathbb{R} \times \big[y,t\big)\big)\big\}.$$

Поскольку $[x,s) = (-\infty,s) \setminus (-\infty,x)$ и, значит,

$$A \cap ([x,s) \times \mathbb{R}) = A \cap ((-\infty,s) \times \mathbb{R}) \setminus A \cap ((-\infty,x) \times \mathbb{R}),$$

TO

$$\begin{split} \lambda_2 \big\{ A \cap ([x,s) \times \mathbb{R}) \big\} &= \\ &= \lambda_2 \big\{ A \cap ((-\infty,s) \times \mathbb{R}) \setminus A \cap ((-\infty,x) \times \mathbb{R}) \big\} = \\ &= \lambda_2 \big\{ A \cap ((-\infty,s) \times \mathbb{R}) \big\} - \lambda_2 \big\{ A \cap ((-\infty,x) \times \mathbb{R}) \big\} = \\ &= \varphi(s) - \varphi(x) < \varepsilon. \end{split}$$

Аналогично

$$\lambda_2\{A\cap(\mathbb{R}\times[y,t))\}=\psi(t)-\psi(y)<\varepsilon.$$

Теперь из (***) имеем

$$|h(s,t)-h(x,y)|<2\varepsilon.$$

Случай 2. Пусть $y\leqslant t$ и $x\geqslant s$. Тогда $D\cap E=H$, где

$$H = (-\infty, s) \times (-\infty, y),$$

и аналогично 1-му случаю

$$\begin{split} \left|h(s,t)-h(x,y)\right| &= \left|\lambda_2(A\cap E)-\lambda_2(A\cap D)\right| = \\ &= \left|\lambda_2(A\cap H)+\lambda_2(A\cap (E\backslash H))-\lambda_2(A\cap H)-\lambda_2(A\cap (D\backslash H))\right| = \\ &= \left|\lambda_2(A\cap (E\backslash H))-\lambda_2(A\cap (D\backslash H))\right| \leqslant \\ &\leqslant \lambda_2(A\cap (E\backslash H))+\lambda_2(A\cap (D\backslash H)) \leqslant \\ &\leqslant \lambda_2(A\cap (\mathbb{R}\times [y,t)))+\lambda_2(A\cap ([s,x)\times \mathbb{R})) = \\ &= \psi(t)-\psi(y)+\phi(x)-\phi(s) < 2\varepsilon. \end{split}$$

Равномерная непрерывность функции $h: \mathbb{R}^2 \to \mathbb{R}$ доказана. \Diamond

130. РЕШЕНИЕ. Аналогично решению задачи 128 нетрудно доказать, что во всех трех случаях функция φ непрерывна и возрастает от 0 до $\lambda_2 A = +\infty$. В случае (1) для всех $x \in [0, +\infty)$ имеем

$$\varphi(x) = \lambda_2 \{ (u, v) \in A ; u < x \} = \lambda_2[0, x) \times (0, 1) = x$$

и равномерная непрерывность ф очевидна.

В случае (2) для всех $x \in [0, +\infty)$ согласно задаче 108 имеем

$$\varphi(x) = \lambda_2 \{ (u, v) \in \mathbb{R}^2 ; u < x, 0 < v < u \} = \frac{1}{2} x^2$$

и ясно, что функция ф не является равномерно непрерывной.

В случае (3)
$$\varphi(x) = \lambda_2 \emptyset = 0$$
 при $x \in (0,1]$ и

$$\varphi(x) = \lambda_2 \{(u, v) \in \mathbb{R}^2 ; 1 < u < x, 0 < v < \ln u \}$$

при x>1. Функция $t\mapsto \ln t$ на интервале (1,x), где x>1, имеет первообразную $F(t)=t(\ln t-1)$. Поэтому согласно задаче 62

$$\varphi(x) = F(x) - F(1) = F(x) = x \ln x - x + 1.$$

Если x>1 и $\delta>0$, то

$$\varphi(x+\delta) - \varphi(x) = (x+\delta)\ln(x+\delta) - \delta - x\ln x =$$

$$= x \ln \frac{x+\delta}{x} + \delta \ln (x+\delta) - \delta > \delta \ln (x+\delta) - \delta.$$

Отсюда ясно, что $\varphi(x+\delta) - \varphi(x) \to +\infty$ при $x \to +\infty$ и, следовательно, функция φ не является равномерно непрерывной. \Diamond

132. РЕШЕНИЕ. Пусть функция $\varphi:[a,b] \to (0,+\infty)$ интегрируема по Риману и $\Omega \subset A \subset \Phi$, где

$$\Omega = \{(x, y) \in \mathbb{R}^2; a < x < b, 0 < y < \varphi(x)\},\$$

$$\Phi = \{(x,y) \in \mathbb{R}^2 ; a \leqslant x \leqslant b, 0 \leqslant y \leqslant \varphi(x) \}.$$

Нужно доказать, что A измеримо и $\lambda_2 A = \int_a^b \phi(x) dx$.

Рассмотрим разбиения

$$\tau = \left\{ a = x_0 < x_1 < \dots < x_p = b \right\} \tag{1}$$

сегмента [a,b] и соответствующие суммы Дарбу

$$s_{\mathbf{t}} = \sum_{k=1}^{p} m_k \cdot (x_k - x_{k-1}), \quad S_{\mathbf{t}} = \sum_{k=1}^{p} M_k \cdot (x_k - x_{k-1}),$$

где m_k , M_k — инфимум и соотв. супремум функции ϕ на сегменте $[x_{k-1},x_k]$ для $k=1,2,\ldots,p$.

Пусть $\varepsilon > 0$. Поскольку интеграл $I = \int_a^b \varphi(x) dx$ существует, то найдется разбиение (1) такое, что $S_{\tau} - s_{\tau} < \varepsilon$. Из определения интеграла Римана следует, что тогда $s_{\tau} \leqslant I \leqslant S_{\tau}$.

Рассмотрим прямоугольники

$$\boldsymbol{V}_k = \left(\boldsymbol{x}_{k-1}, \boldsymbol{x}_k\right) \times \left(\boldsymbol{0}, \boldsymbol{m}_k\right), \quad \boldsymbol{W}_k = \left[\boldsymbol{x}_{k-1}, \boldsymbol{x}_k\right] \times \left[\boldsymbol{0}, \boldsymbol{M}_k\right],$$

k = 1, 2, ..., p. Обозначим

$$V = V_1 \sqcup V_2 \sqcup \ldots \sqcup V_n, \quad W = W_1 \cup W_2 \cup \ldots \cup W_n.$$

Очевидно $V \subset \Omega \subset A \subset \Phi \subset W$. Ясно также, что

$$\lambda_2 V = \sum_{k=1}^{p} \lambda_2 V_k = \sum_{k=1}^{p} m_k (x_k - x_{k-1}) = s_{\tau},$$

$$\textstyle \lambda_2 W \leqslant \sum\limits_{k=1}^p \lambda_2 W_k = \sum\limits_{k=1}^p M_k \cdot \left(x_k - x_{k-1}\right) = S_{\tau}$$

и, следовательно,

$$\lambda_2(W \setminus V) = \lambda_2 W - \lambda_2 V \leqslant S_{\tau} - s_{\tau} < \varepsilon.$$

По теореме 5.5 найдутся замкнутое множество $F \subset V$ и открытое множество $G \supset W$ такие, что $\lambda_2(V \backslash F) < \varepsilon$ и $\lambda_2(G \backslash W) < \varepsilon$. Тогда $F \subset A \subset G$ и

$$\lambda_2(G \backslash F) = \lambda_2(G \backslash W) + \lambda_2(W \backslash V) + \lambda_2(V \backslash F) < 3\varepsilon.$$

Применяя еще раз теорему 5.5, заключаем, что множество $\,A\,$ измеримо. Поскольку

$$s_{\mathrm{\tau}} = \lambda_{2} V \leqslant \lambda_{2} A \leqslant \lambda_{2} W \leqslant S_{\mathrm{\tau}} \ \text{ if } s_{\mathrm{\tau}} \leqslant I \leqslant S_{\mathrm{\tau}},$$

то $|\lambda_2 A - I| \leqslant S_\tau - s_\tau < \varepsilon$. Отсюда следует, что $\lambda_2 A = I$. \diamond

133. РЕШЕНИЕ. Множество S замкнуто и потому измеримо. Пусть $\varepsilon > 0$. По теореме Кантора функция $\psi : K \to \mathbb{R}$ равномерно непрерывна. Значит, существует $\delta > 0$ такое, что

$$|\psi(x) - \psi(y)| < \varepsilon$$
 при $|x - y| < \delta$.

Компактное множество $K \subset \mathbb{R}^2$ измеримо. Поэтому найдется открытое множество $G \subset \mathbb{R}^2$ такое, что $K \subset \mathbb{R}^2$ и $\lambda_2(G \setminus K) < \varepsilon$.

Пусть $G = \bigsqcup_{k=1}^{\infty} P_k$ – разбиение множества G на квадратные брусы

$$P_k = [a_k, a_k + \gamma_k) \times [b_k, b_k + \gamma_k).$$

Можно считать, что длины диагоналей квадратов P_k меньше δ .

Если $P_k \cap K = \emptyset$, то положим $Q_k = P_k \times [0, 2\varepsilon)$. Иначе пусть

$$Q_k = P_k \times [m_k, M_k + \varepsilon),$$

где m_k и M_k — минимум и соотв. максимум функции ψ на компакте $\bar{P}_k \cap K$. Ясно, что M_k — $m_k < \epsilon$. Следовательно,

$$\lambda_3 Q_k \leqslant 2 \varepsilon \cdot \lambda_2 P_k$$
 для любого $k \in \mathbb{N}$.

Если $x\!\in\! K$, то $x\!\in\! P_k$ для некоторого P_k и в этом случае $m_k\!\leqslant\! \psi(x)\!\leqslant\! M_k$, так что $(x,\!\psi(x))\!\in\! Q_k$. Значит, объединение A всех брусов Q_k , $k\!\in\!\mathbb{N}$, содержит в себе график S. Поэтому

$$\lambda_3^* S \leqslant \lambda_3^* A = \lambda_3 A \leqslant \sum_{k=1}^{\infty} \lambda_3 Q_k \leqslant 2\varepsilon \cdot \sum_{k=1}^{\infty} \lambda_2 P_k = 2\varepsilon \cdot \lambda_2 G =$$

$$= 2\varepsilon \cdot (\lambda_2 K + \lambda_2 (G \setminus K)) < 2\varepsilon \cdot (\lambda_2 K + \varepsilon). \tag{*}$$

Здесь $\lambda_2 K < +\infty$, так как K компактно. Поэтому из неравенства $\lambda_3^* S < 2\epsilon \cdot (\lambda_2 K + \epsilon)$ следует, что $\lambda_3^* S = 0$. По теореме 5.4 множество S измеримо и $\lambda_3 S = 0$. \diamondsuit

134. УКАЗАНИЕ. Применить задачу 141.

135. УКАЗАНИЕ. Применить теорему 5.7.

136. РЕШЕНИЕ. Из условия $F\subset V(z,r)$ вытекает неравенство $\lambda F\leqslant \lambda V(z,r)$. По условию еще существует $x\in V(z,r)\backslash F$. Для этого x имеем $\rho(x,z)\leqslant r$ и $x\notin F$. Но F замкнуго. Значит, найдется $\delta>0$ такое, что $U(x,\delta)\cap F=\varnothing$. Множество

$$G = U(z,r) \cap U(x,\delta)$$

непусто, открыто, содержится в шаре V(z,r) и не пересекается с множеством F. Следовательно,

$$\lambda F < \lambda F + \lambda G = \lambda (F \sqcup G) \leqslant \lambda V(z, r). \diamond$$

138. УКАЗАНИЕ. Это следует из задачи 69 и из теоремы 5.4.

139. РЕШЕНИЕ. Пусть $\varepsilon > 0$. Так как

$$\lambda P_1 + \lambda P_2 + \ldots + \lambda P_k + \ldots < +\infty,$$

то найдётся $i \in \mathbb{N}$ такое, что $\lambda P_i + \lambda P_{i+1} + \ldots < \epsilon$. Из условия (***) следует, что $A \subset P_i \cup P_{i+1} \cup \ldots$ По задаче 138 множество A измеримо и $\lambda A = 0$.

С другой стороны, если $\lambda A = 0$, то существуют открытые множества $G_j \subset \mathbb{R}^n$, $j \in \mathbb{N}$, такие, что $A \subset G_j$ и $\lambda G_j < \frac{1}{2^j}$. Разлагая каждое множество G_j на брусы, получим счётное множество брусов, которое удовлетворяет условиям (*) – (***). \Diamond

140. РЕШЕНИЕ. Пусть множество $A \subset \mathbb{R}^n$ измеримо. Множества

$$A_k = A \cap V(0,k), k \in \mathbb{N},$$

измеримы, ограничены, образуют возрастающую последовательность и $\lambda A = \lim_{k \to \infty} \lambda A_k$ по задаче 120. Для каждого $k \in \mathbb{N}$ по теореме 5.5 о регулдрующи меры. Пебега существует замкнутое множе.

ме 5.5 о регулярности меры Лебега существует замкнутое множество $F_k \subset A_k$ такое, что $\lambda(A_k \backslash F_k) < 1/k$. Полагая

$$C_k = F_1 \cup F_2 \cup \ldots \cup F_k, k \in \mathbb{N},$$

получим возрастающую последовательность (C_k) ограниченных замкнутых и, следовательно, компактных множеств таких, что $C_k \subset A_k \subset A$. Из $\lambda(A_k \backslash F_k) < 1/k$ следует $\lambda(A_k \backslash C_k) < 1/k$.

Докажем, что $\lambda C_k \to \lambda A$ при $k \to \infty$. Возьмем произвольное $\alpha < \lambda A$. Поскольку $\lambda A_k \to \lambda A$ при $k \to \infty$, то $\lambda A_N - \alpha > 0$ для некоторого $N \in \mathbb{N}$. Пусть $m \in \mathbb{N}$ таково, что $1/m < \lambda A_N - \alpha$. Если теперь $k \geqslant \max{\{m, N\}}$, то

$$\lambda C_k = \lambda A_k - \lambda (A_k \backslash C_k) > \lambda A_k - 1/k \geqslant$$

$$\geqslant \lambda A_k - 1/m > \lambda A_k - \lambda A_N + \alpha \geqslant \alpha$$
.

Равенство $\lim_{k \to \infty} \lambda C_k = \lambda A$ доказано. \Diamond

144. ОТВЕТ. Таковы, например, множества

$$A_k = B \cup (\mathbb{R}^n \setminus U(0,k)), \ k \in \mathbb{N}.$$

146. РЕШЕНИЕ. Пусть $\alpha \neq 0$. По задаче 82 $\lambda^*(\alpha B) = |\alpha|^n \lambda^* B$ для любого $B \subset \mathbb{R}^n$. Пусть $\varepsilon > 0$. По условию множество $A \subset \mathbb{R}^n$ измеримо. Значит, найдется открытое множество G такое, что $A \subset G$ и $\lambda^*(G \setminus A) < |\alpha|^{-n} \varepsilon$. Тогда $\alpha A \subset \alpha G$ и

$$\lambda^*(\alpha G \setminus \alpha A) = \lambda^*[\alpha(G \setminus A)] = |\alpha|^n \lambda^*(G \setminus A) < \varepsilon.$$

Отсюда и из открытости αG следует, что множество αA измеримо. По задаче 82

$$\lambda(\alpha A) = \lambda^*(\alpha A) = |\alpha|^n \lambda^* A = |\alpha|^n \lambda A.$$

147. РЕШЕНИЕ. Согласно свойству 2(g) и примеру 6.6 имеем $\lambda(\bar{P}\setminus P)=0$. По теореме 5.4 отсюда и из включения

$$A \setminus \operatorname{int} P \subset \overline{P} \setminus \operatorname{int} P$$

следует, множество $A \setminus \operatorname{int} P$ измеримо и имеет меру 0. Значит, множество $A = \operatorname{int} P \sqcup (A \setminus \operatorname{int} P)$ также измеримо и

$$\lambda A = \lambda(\operatorname{int} P) + \lambda(A \setminus \operatorname{int} P) = \lambda(\operatorname{int} P) = \lambda P. \diamond$$

148. РЕШЕНИЕ. Докажем сначала аналогичное утверждение для конечного семейства брусов. Пусть

$$\mathrm{int} P_1 \sqcup \mathrm{int} P_2 \sqcup \ldots \sqcup \mathrm{int} P_k \subset A \subset \overline{P_1} \cup \overline{P_2} \cup \ldots \cup \overline{P_k}. \tag{*}$$

Множества в (*) ограничены. Поэтому для разности

$$S = \left(\overline{P_1} \cup \overline{P_2} \cup \ldots \cup \overline{P_k}\right) \setminus \left(\operatorname{int} P_1 \sqcup \operatorname{int} P_2 \sqcup \ldots \sqcup \operatorname{int} P_k\right) \quad (**)$$

имеем

$$\begin{split} \lambda S &= \lambda \left(\overline{P_1} \cup \overline{P_2} \cup \ldots \cup \overline{P_k} \right) - \lambda \left(\operatorname{int} P_1 \sqcup \operatorname{int} P_2 \sqcup \ldots \sqcup \operatorname{int} P_k \right) \leqslant \\ &\leqslant \lambda \overline{P_1} + \lambda \overline{P_2} + \ldots + \lambda \overline{P_k} - \lambda \left(\operatorname{int} P_1 \sqcup \operatorname{int} P_2 \sqcup \ldots \sqcup \operatorname{int} P_k \right) = \end{split}$$

$$=\lambda\overline{P_1}+\lambda\overline{P_2}+\ldots+\lambda\overline{P_k}-\lambda\big(\mathrm{int}\,P_1\big)-\lambda\big(\mathrm{int}\,P_2\big)-\ldots-\lambda\big(\mathrm{int}\,P_k\big)=0,$$

так как $\lambda P_i = \lambda (\text{int } P_i) = \lambda \overline{P_i}$ (см. свойство 2(g) и пример 6.6).

Из (*) следует, что множество A есть объединение открытого множества $G=\operatorname{int} P_1\sqcup\ldots\sqcup\operatorname{int} P_k$ и множества $A\backslash G$, лежащего во множестве (**) меры 0. Отсюда ясно, что A измеримо и

$$\lambda A = \lambda G = \lambda P_1 + \lambda P_2 + \ldots + \lambda P_k$$

Для конечного семейства брусов утверждение доказано.

Пусть теперь последовательность брусов $P_k,\,k\!\in\!\mathbb{N}$, и множество $A\!\subset\!\mathbb{R}^n$ связаны условием

$$\bigsqcup_{k=1}^{\infty} \operatorname{int} P_k \subset A \subset \bigcup_{k=1}^{\infty} \overline{P_k}.$$

Для каждого $k \in \mathbb{N}$ обозначим $A_k = A \cap F_k$,

$$G_k = \mathrm{int} P_1 \sqcup \mathrm{int} P_2 \sqcup \ldots \sqcup \mathrm{int} P_k, \ \ F_k = \overline{P_1} \cup \overline{P_2} \cup \ldots \cup \overline{P_k}.$$

Имеем $G_k \subset A_k \subset F_k$. По первой части доказательства множества A_k измеримы и $\lambda A_k = \lambda P_1 + \lambda P_2 + \ldots + \lambda P_k$. Легко понять, что последовательность (A_k) возрастает и

$$A = A_1 \cup A_2 \cup \ldots \cup A_k \cup \ldots$$

Следовательно, множество A измеримо и по задаче 120

$$\lambda A = \lim_{k \to \infty} \lambda A_k = \lim_{k \to \infty} (\lambda P_1 + \ldots + \lambda P_k) = \sum_{k=1}^{\infty} \lambda P_k. \diamond$$

149. УКАЗАНИЕ. Сначала доказать аналогичные утверждения для брусов, для открытых множеств и для внешней меры.

150-151. УКАЗАНИЕ. Это следует из теоремы 5.7 и задачи 146.

152. РЕШЕНИЕ. Из включений

$$U(z,r) \subset V(z,r) \subset U(z,r+\varepsilon),$$

где $\varepsilon > 0$, следует, что

$$\lambda U(z,r) \leqslant \lambda V(z,r) \leqslant \lambda U(z,r+\varepsilon).$$

Кроме того,

$$\lambda U(z,r+\varepsilon) = (r+\varepsilon)^n \lambda U(z,1) = \left(\frac{r+\varepsilon}{r}\right)^n \lambda U(z,r).$$

по задаче 150. Таким образом

$$\lambda U(z,r) \leqslant \lambda V(z,r) \leqslant \Big(\frac{r+\mathrm{e}}{r}\Big)^n \lambda U(z,r).$$

Переходя к пределу при $\varepsilon \to 0$, получим $\lambda U(z,r) = \lambda V(z,r)$. Отсюда и из конечности меры $\lambda V(z,r)$ следует, что

$$\lambda S(z,r) = \lambda [V(z,r) \setminus U(z,r)] = \lambda V(z,r) - \lambda U(z,r) = 0. \diamond$$

153-154. УКАЗАНИЕ. Это следует из задачи 152.

155. УКАЗАНИЕ. В противном случае A-u, где $u \in A$, лежит во множестве задачи 154 и имеет меру 0.

156. РЕШЕНИЕ. Пусть $0 < \varepsilon < 1$. Используя задачу 151, имеем:

$$\lim_{n \to \infty} \frac{\lambda \big[V(0,1) \setminus V(0,1-\varepsilon) \big]}{\lambda V(0,1)} = 1 - \lim_{n \to \infty} \frac{\lambda V(0,1-\varepsilon)}{\lambda V(0,1)} = 1 - \lim_{n \to \infty} (1-\varepsilon)^n = 1. \diamond$$

157. УКАЗАНИЕ. Это следует из задач 120, 121, 152 и 153.

158. УКАЗАНИЕ. При n>1 функция ϕ не является равномерно непрерывной, например, в случае $A=\mathbb{R}^n$. Это следует из задачи 150.

159. РЕШЕНИЕ. Пусть $A = (0, +\infty) \times (0, 1)^{n-1}$ и 0 < s < t. Открытое множество $D = A \cap [U(0, t) \setminus V(0, s)]$ непусто и содержится во множестве $A \cap [V(0, t) \setminus V(0, s)]$. Поэтому

$$\varphi(t) - \varphi(s) = \lambda [A \cap V(0,t)] - \lambda [A \cap V(0,s)] =$$
 (1)

$$=\lambda[A\cap V(0,t)\setminus A\cap V(0,s)]=\lambda\{A\cap [V(0,t)\setminus V(0,s)]\}\geqslant \lambda D>0,$$

так что для $A = (0, +\infty) \times (0, 1)^{n-1}$ функция ϕ строго возрастает.

Полагая $\phi(0) = \phi(+0)$, т.е. $\phi(0) = 0$, можем считать, что функция ϕ определена на $[0,+\infty)$. Докажем, что она равномерно непрерывна. Пусть $0 < \varepsilon < 1$. Фиксируем $m > 1 + \sqrt{n}$ так, что $\frac{n-1}{m} < \frac{\varepsilon}{2}$.

На сегменте [0,m] функция ϕ равномерно непрерывна. Значит, существует $\delta > 0$ такое, что

$$0 < \varphi(t) - \varphi(s) < \varepsilon$$
 при $0 \leqslant s < t \leqslant m$, $t - s < \delta$. (2)

Можем считать, что $0 < \delta < \varepsilon/4$. Оценим разность (1) в случае

$$0 \leqslant s < t, \ t > m, \ t - s < \delta. \tag{3}$$

Если $x=(x_1,x_2,\ldots,x_n)\in A\cap V(0,t)$, то $x_1>0$ и $0< x_i<1$ для всех $i=2,3,\ldots,n$, так как $x\in A$, и $x_1\leqslant \rho(x,0)\leqslant t$, так как $x\in V(0,t)$. Поэтому

$$A \cap V(0,t) \subset (0,t] \times (0,1)^{n-1}$$
. (4)

Если $x=(x_1,x_2,\ldots,x_n)\in A\setminus V(0,s)$, то $x_1>0$, $0< x_i<1$ для всех $i=2,3,\ldots,n$ и

$$x_1^2 + x_2^2 + ... + x_n^2 = \rho^2(x,0) > s^2$$

откуда $x_1^2 > s^2 - n + 1$. Поэтому

$$A \setminus V(0,s) \subset (\sigma_n, +\infty) \times (0,1)^{n-1}, \tag{5}$$

где $\,\sigma_n = \sqrt{s^2 - n + 1}.\,$ Отметим, что $\,\sigma_n < s < t.\,$ Из (4) и (5) имеем

$$\begin{split} A \cap V(0,t) \setminus A \cap V(0,s) &= A \cap \big[V(0,t) \setminus V(0,s) \big] \subset \\ & \subset \big\{ (0,t] \cap \big(\sigma_n, +\infty\big) \big\} \times (0,1)^{n-1} = \big(\sigma_n, t\big] \times (0,1)^{n-1}. \end{split}$$

Поэтому в случае (3) имеем

$$\begin{split} & \varphi(t) - \varphi(s) = \lambda \left\{ A \cap V(0,t) \setminus A \cap V(0,s) \right\} \leqslant \\ & \leqslant \lambda \left\{ \left(\sigma_n, t \right] \times (0,1)^{n-1} \right\} = t - \sigma_n = t - \sqrt{s^2 - n + 1} = \\ & = \frac{t^2 - s^2 + n - 1}{t + \sqrt{s^2 - n + 1}} < \frac{t^2 - s^2 + n - 1}{t} = \\ & = (t - s) \frac{t + s}{t} + \frac{n - 1}{t} < (t - s) \frac{t + t}{t} + \frac{n - 1}{m} < 2\delta + \frac{\varepsilon}{2} < \varepsilon. \end{split} \tag{6}$$

Итак, для произвольного $\varepsilon \in (0,1)$ существует $\delta > 0$ такое, что

$$0 < \varphi(t) - \varphi(s) < \varepsilon$$
 при $0 < s < t, t - s < \delta$,

причем согласно (2) и (6) это верно как в случае $t \leq m$, так и в случае t > m. Значит, функция ϕ равномерно непрерывна на $[0, +\infty)$. \diamond

160. РЕШЕНИЕ. Пусть $0 < \varepsilon < \lambda A - \alpha$. По теореме 5.5 найдется замкнутое множество $F \subset A$ такое, что $\lambda(A \setminus F) < \varepsilon$. Имеем $\lambda F > \alpha$, так как иначе возникает противоречие:

$$\lambda A = \lambda F + \lambda (A \backslash F) \leqslant \alpha + \lambda (A \backslash F) < \alpha + \varepsilon < \lambda A.$$

По задаче 157 функция $\varphi(t)=\lambda[F\cap V(0,t)]$ на полуоси $(0,+\infty)$ непрерывна и возрастает от 0 до λF . По теореме Коши о промежуточных значениях непрерывной функции найдется $\xi\!\in\!(0,+\infty)$ такое,

что $\varphi(\xi) = \alpha$. Множество $K = F \cap V(0,\xi)$ компактно, содержится в A и имеет меру $\lambda K = \varphi(\xi) = \alpha$. \diamond

161. РЕШЕНИЕ. Обозначим $\ eta_k=lpha_1+lpha_2+\ldots+lpha_k$, $k\!\in\!\mathbb{N}$. Тогда $0<eta_1<eta_2<eta_3<\ldots$ и $\lim_{k\to\infty}eta_k=\lambda A$. По задаче 157 функция

$$\varphi(t) = \lambda[A \cap V(0,t)]$$

на полуоси $(0,+\infty)$ непрерывна и возрастает от 0 до λA . По теореме Коши о промежуточных значениях непрерывной функции найдутся $t_k \in (0,+\infty)$ такие, что

$$\varphi(t_k) = \beta_k$$
 для каждого $k \in \mathbb{N}$.

Очевидно $0 < t_1 < t_2 < \dots$ Последовательность множеств

$$B_k = A \cap V(0, t_k), k \in \mathbb{N},$$

возрастает и $\lambda B_k = \beta_k < +\infty$. Множества

$$A_1 = B_1$$
, $A_2 = B_2 \setminus B_1$, $A_3 = B_3 \setminus B_2$, ..., $A_k = B_k \setminus B_{k-1}$, ...

измеримы, попарно не пересекаются и $\lambda A_k = \alpha_k$ для всех $k \in \mathbb{N}$. Объединение

$$B = \bigcup_{k=1}^{\infty} B_k = \bigsqcup_{k=1}^{\infty} A_k$$

содержится во множестве A и согласно задаче 120 имеет меру

$$\lambda B = \lim_{k \to \infty} \lambda B_k = \sum_{k=1}^{\infty} \lambda \alpha_k = \lambda A.$$

Но включение $A \subset B$ пока не обеспечено.

Если $\lambda A < +\infty$, то $\lambda(A \backslash B) = \lambda A - \lambda B_k = 0$ и множество $A \backslash B$ можно добавить к любому из множеств A_k . Равенства $\lambda A_k = \alpha_k$ от этого не нарушатся, и мы получим $A \subset B$ и, значит, A = B.

Пусть $\lambda A = +\infty$. Тогда $\beta_k \to +\infty$ и $t_k \to +\infty$. Если $x \in A$, то $\|x\| < t_k$ и, следовательно, $x \in B_k \subset B$ для всех достаточно больших k. Поэтому в данном случае сразу A = B. \Diamond

162. РЕШЕНИЕ. По теореме 4.8 существуют замкнутые множества $V_k \subset A_k$ такие, что $\lambda(A_k \setminus V_k) < \epsilon/2^k$, $k \in \mathbb{N}$. Множества

$$F_k = V_1 \cap V_2 \cap \ldots \cap V_k, k \in \mathbb{N},$$

замкнуты, образуют убывающую последовательность и $F_k \subset A_k$ для каждого $k \in \mathbb{N}$. Докажем, что справедливы неравенства

$$\lambda(A_k \backslash F_k) < \varepsilon - \varepsilon / 2^k, k \in \mathbb{N}. \tag{1}$$

Для k = 1 это очевидно:

$$\lambda(A_1 \backslash F_1) = \lambda(A_1 \backslash V_1) < \varepsilon/2.$$

Пусть теперь $k \in \mathbb{N}$ и $\lambda(A_k \backslash F_k) < \varepsilon - \varepsilon/2^k$. Выведем отсюда, что

$$\lambda (A_{k+1} \setminus F_{k+1}) < \varepsilon - \varepsilon / 2^{k+1}. \tag{2}$$

Сначала докажем, что

$$A_{k+1} \setminus F_{k+1} \subset (A_{k+1} \setminus V_{k+1}) \cup (A_k \setminus F_k). \tag{3}$$

Из определения множеств F_k следует, что

$$F_{k+1} = V_1 \cap V_2 \cap \dots \cap V_k \cap V_{k+1} = F_k \cap V_{k+1}. \tag{4}$$

Пусть $x\!\in\!A_{k+1}\!\setminus\!F_{k+1}$. Тогда $x\!\in\!A_{k+1}$ и $x\!\notin\!F_{k+1}$, т.е. по (4), $x\!\notin\!F_k$ или $x\!\notin\!V_{k+1}$. В случае $x\!\notin\!F_k$ имеем $x\!\in\!A_{k+1}\!\setminus\!F_k\!\subset\!A_k\!\setminus\!F_k$, так как по условию $A_{k+1}\!\subset\!A_k$. В случае $x\!\notin\!V_{k+1}$ получим $x\!\in\!A_{k+1}\!\setminus\!V_{k+1}$. Включение (3) доказано. Из (3) следует, что

$$\lambda (A_{k+1} \backslash F_{k+1}) \leqslant \lambda (A_{k+1} \backslash V_{k+1}) + \lambda (A_k \backslash F_k). \tag{5}$$

По выбору множества $V_{k+1} \subset A_{k+1}$ имеем $\lambda(A_{k+1} \setminus V_{k+1}) < \varepsilon/2^{k+1}$. По предположению индукции $\lambda(A_k \setminus F_k) < \varepsilon - \varepsilon/2^k$. Отсюда и из (5) вытекает неравенство (2). Тем самым неравенства (1) доказаны. \Diamond

163. РЕШЕНИЕ. По задаче 160 найдется компакт $K_0 \subset A$ такой, что $0 < \lambda K_0 < \lambda A$. Множество $A \backslash K_0$ измеримо и $\lambda(A \backslash K_0) > 0$. Применяя еще раз задачу 160, получим компакт $K_1 \subset A \backslash K_0$ такой, что $0 < \lambda K_1 < \lambda(A \backslash K_0)$. Назовем K_0 и K_1 компактами 1-го ранга. Они не пересекаются, содержатся в A и мера каждого из них >0. Можем считать, что диаметр каждого из них <1/2.

Используя задачу 160 снова, получим попарно не пересекающиеся компакты 2-го ранга $K_{00}, K_{01}, K_{10}, K_{11}$ диаметра <1/4 такие, что $K_{00} \sqcup K_{01} \subset K_0$, $K_{10} \sqcup K_{11} \subset K_1$ и мера каждого из компактов 2-го ранга >0. В каждом из компактов $K_{\alpha_1\alpha_2}$ 2-го ранга найдутся непересекающиеся компакты $K_{\alpha_1\alpha_20}, K_{\alpha_1\alpha_21}$ 3-го ранга, имеющие диаметр <1/8 и меру >0.

Продолжая это рассуждение далее, для каждого $m \in \mathbb{N}$ получим 2^m попарно не пересекающихся компактов $K_{\alpha_1\alpha_2...\alpha_m}$ ранга m, каждый из которых имеет диаметр $<1/2^m$ и меру >0. При этом

$$K_{\alpha_1\alpha_2...\alpha_m0} \sqcup K_{\alpha_1\alpha_2...\alpha_m1} \subset K_{\alpha_1\alpha_2...\alpha_m}. \tag{*}$$

Построим теперь инъекцию $h:[0,1) \to A$. Пусть $x \in [0,1)$ и

$$x = 0, \alpha_1 \alpha_2 \alpha_3 \dots \alpha_m \alpha_{m+1} \dots \tag{**}$$

- разложение числа x в двоичную дробь без цифры 1 в периоде. Рассмотрим убывающую последовательность компактов

$$K_{\alpha_1}, K_{\alpha_1\alpha_2}, K_{\alpha_1\alpha_2\alpha_3}, \dots, K_{\alpha_1\alpha_2\dots\alpha_m}, \dots$$
 (***)

Пересечение этих компактов состоит из одной точки, которую и обозначим h(x). Получим отображение $h:[0,1) \to A$.

Если изменить число $x \in [0,1)$, то в разложении (**) изменится хотя бы одна цифра. Значит, хотя бы один из компактов (***) заменится другим, с которым он не пересекается. А тогда пересечение компактов (***) изменится и поэтому изменится h(x). Это означает, что $h:[0,1) \to A$ инъекция и, следовательно, $\operatorname{Card} A = \aleph$. \Diamond

164. РЕШЕНИЕ. Если $\lambda^*A = +\infty$ или $\lambda^*B = +\infty$, то доказывать нечего. Пусть $\lambda^*A < +\infty$, $\lambda^*B < +\infty$ и $\epsilon > 0$. По определению внешней меры найдутся открытые множества G и D такие, что

$$A \subset G$$
, $\lambda G < \lambda^*A + \varepsilon$ и $B \subset D$, $\lambda D < \lambda^*B + \varepsilon$.

Тогда $A \cup B \subset G \cup D$ и $A \cap B \subset G \cap D$. Поэтому

$$\lambda^*(A \cup B) \leqslant \lambda(G \cup D), \ \lambda^*(A \cap B) \leqslant \lambda(G \cap D).$$

Кроме того, по теореме 5.2

$$\lambda(G \cup D) + \lambda(G \cap D) =$$

$$= \lambda(G \setminus D) + \lambda(D \setminus G) + 2 \cdot \lambda(G \cap D) = \lambda G + \lambda D.$$

Следовательно,

$$\lambda^*(A \cup B) + \lambda^*(A \cap B) \leq \lambda(G \cup D) + \lambda(G \cap D) =$$
$$= \lambda G + \lambda D < \lambda^*A + \lambda^*B + 2\varepsilon.$$

Переходя к пределу при $\,\epsilon \to +0,\,$ получим нужное неравенство. $\,\Diamond\,$

165. РЕШЕНИЕ. Пусть $\varepsilon > 0$. По определению внешней меры существуют открытые множества $G, D \subset \mathbb{R}^n$ такие, что

$$A \subset G$$
, $\lambda G < \lambda^* A + \varepsilon$, $K \setminus A \subset D$, $\lambda D < \lambda^* (K \setminus A) + \varepsilon$. (1)

Множество $F=K\backslash D$ замкнуто. Докажем, что $F\subset A$. Пусть $x\in F$. Тогда $x\in K$ и $x\notin D$. Поскольку $K\backslash A\subset D$, то $x\notin K\backslash A$. Значит, $x\in A$. Включение $F\subset A$ доказано.

Итак, $F \subset A \subset G$, где F замкнуто, а G открыто. Кроме того,

$$\lambda(G \setminus F) = \lambda G - \lambda F = \lambda G - \lambda(K \setminus D) =$$

$$= \lambda G - \lambda [K \setminus (D \cap K)] = \lambda G - [\lambda K - \lambda(D \cap K)].$$

Используя условие $\lambda K = \lambda^* A + \lambda^* (K \setminus A)$ и неравенства (1), а также неравенство $\lambda(D \cap K) \leqslant \lambda D$, получим

$$\lambda(G \backslash F) = \lambda G - \lambda^* A - \lambda^* (K \backslash A) + \lambda(D \cap K) < 2\varepsilon.$$

Отсюда по теореме 5.5 следует, что множество A измеримо. \Diamond

166(а). РЕШЕНИЕ. Обозначим

$$\alpha = \sup \{ \lambda F ; F \subset A \}.$$

Очевидно $\lambda_*A\leqslant \alpha$. С другой стороны, пусть множество $F\subset A$ замкнуто. Тогда множества

$$K_m = F \cap V(0, m), m \in \mathbb{N},$$

компактны, содержатся во множестве A и $\lambda F = \lim_{m \to \infty} \lambda K_m$ по задаче 120. Отсюда

$$\lambda F \leq \sup \{\lambda K; K \subset F\} \leq \sup \{\lambda K; K \subset A\} = \lambda_{\bullet} A.$$

Переходя к супремуму по всем замкнутым множествам $F \subset A$, получим обратное неравенство $\alpha \leqslant \lambda_{\star} A$. Следовательно, $\alpha = \lambda_{\star} A$. \diamond

166(г). РЕШЕНИЕ. Пусть множество A измеримо. По задаче 166(б)

$$\lambda_* A \leqslant \lambda^* A. \tag{*}$$

С другой стороны, пусть $\varepsilon>0$. По теореме 5.5 о регулярности меры существуют замкнутое множество F_{ε} и открытое множество G_{ε} такие, что $F_{\varepsilon} \subset A \subset G_{\varepsilon}$ и $\lambda(G_{\varepsilon} \backslash F_{\varepsilon}) < \varepsilon$. Значит,

$$\begin{split} \lambda^*\!A &\leqslant \lambda G_{\varepsilon} = \lambda F_{\varepsilon} + \lambda \big(G_{\varepsilon} \backslash F_{\varepsilon}\big) < \lambda F_{\varepsilon} + \varepsilon \leqslant \\ &\leqslant \varepsilon + \sup \big\{\lambda F \ ; \ F \subset A \big\} = \varepsilon + \lambda_*\!A \end{split}$$

(последнее равенство – по задаче 166(a)). Переходя в неравенстве $\lambda^*A \leqslant \varepsilon + \lambda_*A$ к пределу при $\varepsilon \to +0$, получим неравенство

$$\lambda^* A \leqslant \lambda_* A. \tag{**}$$

Из (*) и (**) получаем $\lambda_* A = \lambda^* A$. \Diamond

166(д). РЕШЕНИЕ. Допустим, что множество $A \subset \mathbb{R}^n$ ограничено и справедливо равенство $\lambda_*A = \lambda^*A$. Тогда $\lambda_*A = \lambda^*A < +\infty$. Пусть $\varepsilon > 0$. По определению λ^*A найдется открытое множество G_ε такое, что $A \subset G_\varepsilon$ и $\lambda G_\varepsilon < \lambda^*A + \varepsilon$. По задаче 166(а) существует замкнутое множество F_ε такое, что $F_\varepsilon \subset A$ и $\lambda_*A - \varepsilon \leqslant \lambda F_\varepsilon$. Отсюда (и из неравенства $\lambda G_\varepsilon < +\infty$) имеем

$$\lambda \big(G_{\varepsilon} \backslash F_{\varepsilon}\big) = \lambda G_{\varepsilon} - \lambda F_{\varepsilon} < (\lambda^*A + \varepsilon) - (\lambda_*A - \varepsilon) = 2\varepsilon.$$

Применяя теорему 5.5, заключаем, что множество A измеримо. \Diamond

166(ж). РЕШЕНИЕ. Обозначим $A=A_1\sqcup A_2\sqcup \ldots A_k\sqcup \ldots$ Если $\lambda_*A=+\infty$, то доказывать нечего. Пусть $\lambda_*A<+\infty$. Согласно задаче 166(б) тогда $\lambda_*A_k<+\infty$ для каждого $k\in\mathbb{N}$. Фиксируем $\epsilon>0$. По определению λ_*A_k найдутся компакты $Q_k\subset A_k$ такие, что

$$\lambda_* A_k - \frac{\varepsilon}{2^k} < \lambda Q_k \,,\, k \! \in \! \mathbb{N} \,.$$

Компакты $\,Q_k\,$ также попарно не пересекаются. Множества

$$S_m = Q_1 \sqcup Q_2 \sqcup \ldots \sqcup Q_m, m \in \mathbb{N},$$

компактны и лежат во множестве A. Поэтому

$$\lambda_*A\geqslant \lambda_mS=\sum_{k=1}^m\lambda Q_k>\sum_{k=1}^m\Bigl(\lambda_*A_k-\frac{\varepsilon}{2^k}\Bigr)>\sum_{k=1}^m\lambda_*A_k-\varepsilon.$$

Переходя здесь к пределу при $m\to +\infty$ и затем при $\epsilon\to +0$, получим требуемое неравенство $\lambda_*A\geqslant \sum\limits_{k=1}^\infty \lambda_*A_k$. \Diamond

167. РЕШЕНИЕ. Если $\lambda_*(A \backslash B) = +\infty$ или $\lambda^*B = +\infty$, то $\lambda A = +\infty$ и равенство $\lambda A = \lambda^*B + \lambda_*(A \backslash B)$ справедливо.

Пусть $\lambda_*(A\backslash B)\!<\!+\infty, \quad \lambda^*B\!<\!+\infty$ и $\epsilon\!>\!0.$ По определению внутренней меры $\lambda_*(A\backslash B)$ для некоторого компакта $K\!\subset\!A\backslash B$

$$\lambda_*(A \backslash B) - \varepsilon < \lambda K. \tag{1}$$

По определению внешней меры λ^*B найдется открытое множество G такое, что $B \subset G$ и (см. рис.1)

$$\lambda G < \lambda^* B + \varepsilon. \tag{2}$$

Можно считать, что $G\cap K=\varnothing$ (иначе заменим G на $G\setminus K$). По теореме 4.8 существует замкнутое множество $F\subset A$ такое, что $\lambda(A\backslash F)<\epsilon$. Заменяя F на $F\cup K$, можем считать, что $K\subset F$.

Множества

$$K_m = \{K \cup [F \cap V(0,m)]\} \setminus G, \ m \in \mathbb{N},$$

компактны и $K \subset K_m \subset A \backslash G \subset A \backslash B$. Отсюда и из (1) имеем

$$\lambda_{\star}(A \backslash B) - \varepsilon < \lambda K \leqslant \lambda K_m \leqslant \lambda_{\star}(A \backslash B). \tag{3}$$

Последовательность $\left(K_{m}\right)$ возрастает,

$$\bigcup_{m=1}^{\infty} K_m = F \backslash G \text{ и } \lambda(F \backslash G) = \lim_{m \to \infty} \lambda K_m \tag{4}$$

по задаче 120. Очевидно

$$A = (A \cap G) \sqcup (F \setminus G) \sqcup [(A \setminus F) \setminus G].$$

Отсюда и из соотношений (2), (3) и (4) вытекает оценка

$$\begin{split} &\lambda A = \lambda (A \cap G) + \lambda (F \backslash G) + \lambda [(A \backslash F) \backslash G] \leqslant \\ &\leqslant \lambda \, G + \lambda (F \backslash G) + \lambda (A \backslash F) < \lambda \, G + \lambda (F \backslash G) + \varepsilon < \\ &< \lambda^* B + \varepsilon + \lim_{m \to \infty} \lambda K_m + \varepsilon \leqslant \lambda^* B + 2\varepsilon + \lambda_* (A \backslash B). \end{split}$$

С другой стороны, $B \subset A \cap G$ и $K \subset F \setminus G$. Отсюда и из (1) имеем

$$\lambda A \geqslant \lambda (A \cap G) + \lambda (F \setminus G) \geqslant \lambda^*B + \lambda K > \lambda^*B + \lambda_*(A \setminus B) - \varepsilon.$$

Таким образом

$$\lambda^*B + \lambda_*(A \backslash B) - \varepsilon < \lambda A < \lambda^*B + 2\varepsilon + \lambda_*(A \backslash B).$$

Переходя в здесь к пределу при $\varepsilon \to +0$, получим равенство

$$\lambda A = \lambda^* B + \lambda_* (A \backslash B). \diamond$$

168. РЕШЕНИЕ. Пусть множество $A \subset \mathbb{R}^n$ измеримо и $B \subset \mathbb{R}^n$. Докажем равенство

$$\lambda^* B = \lambda^* (A \cap B) + \lambda^* (B \setminus A). \tag{1}$$

По теореме 3.2 справедливо неравенство

$$\lambda^* B \leqslant \lambda^* (A \cap B) + \lambda^* (B \setminus A). \tag{2}$$

В случае $\lambda^* B = +\infty$ отсюда сразу следует равенство (1).

Пусть $\lambda^*B<+\infty$. Фиксируем $\epsilon>0$. По определению внешней меры существует открытое множество $G\subset\mathbb{R}^n$ такое, что $B\subset G$ и $\lambda G<\lambda^*B+\epsilon$. Тогда $B\cap A\subset G\cap A$ и $B\setminus A\subset G\setminus A$. Значит,

$$\lambda^*(B \cap A) \leqslant \lambda^*(G \cap A) = \lambda(G \cap A),$$

$$\lambda^*(B \backslash A) \leqslant \lambda^*(G \backslash A) = \lambda(G \backslash A).$$

Кроме того, $\lambda G = \lambda(G \cap A) + \lambda(G \setminus A)$ по теореме 5.2. Поэтому

$$\lambda^*(B \cap A) + \lambda^*(B \setminus A) \leqslant \lambda(G \cap A) + \lambda(G \setminus A) = \lambda G < \lambda^*B + \varepsilon.$$

Переходя здесь к пределу при $\varepsilon \to +0$, получим

$$\lambda^*(B \cap A) + \lambda^*(B \setminus A) \leqslant \lambda^*B.$$

Отсюда и из (2) следует равенство (1).

Пусть теперь $A \subset \mathbb{R}^n$ и для каждого $B \subset \mathbb{R}^n$ справедливо равенство (1). Докажем, что множество A измеримо.

Для каждого $p\in\mathbb{N}$ обозначим $A_p=A\cap I_p$, где $I_p=[-p,p]^n$. Из (1) при $B=I_p$ получим

$$\lambda I_p = \lambda^* I_p = \lambda^* \big(A \cap I_p\big) + \lambda^* \big(I_p \setminus A\big) = \lambda^* A_p + \lambda^* \big(I_p \setminus A_p\big).$$

Согласно задаче 165 отсюда следует, что множество A_p измеримо. По теореме 4.3 множество $A=A_1\cup A_2\cup \dots$ измеримо. \Diamond

169. РЕШЕНИЕ. По теореме 3.2 о полуаддитивности внешней меры λ^* имеем неравенство

$$\lambda^*[(A \sqcup B) \cap C] = \lambda^*[(A \cap C) \sqcup (B \cap C)] \leqslant \lambda^*(A \cap C) + \lambda^*(B \cap C).$$

Обратное неравенство

$$\lambda^*(A \cap C) + \lambda^*(B \cap C) \leqslant \lambda^*[(A \sqcup B) \cap C] \tag{1}$$

очевидно при $\lambda^*[(A \sqcup B) \cap C] = +\infty$.

Допустим, что $\lambda^*[(A \sqcup B) \cap C] < +\infty$. Тогда

$$\lambda^*(A \cap C) < +\infty$$
 и $\lambda^*(B \cap C) < +\infty$.

Фиксируем $\varepsilon > 0$. В силу измеримости множеств A и B существуют открытые множества G и $D \subset \mathbb{R}^n$ такие, что

$$A \subset G$$
, $\lambda(G \setminus A) < \varepsilon$, $B \subset D$, $\lambda(D \setminus B) < \varepsilon$. (2)

По определению λ^* найдется открытое множество Ω такое, что

$$(A \sqcup B) \cap C \subset \Omega$$
, $\lambda \Omega < \lambda^* [(A \sqcup B) \cap C] + \varepsilon$.

Обозначим $U=(G\cup D)\cap \Omega$. Множество U открыто, $(A\sqcup B)\cap C\subset U\subset \Omega \text{ и }\lambda U\leqslant \lambda\Omega.$

Кроме того,

$$A \cap C = A \cap [A \cap C] \subset A \cap [(A \sqcup B) \cap C] \subset G \cap U,$$

$$B \cap C = B \cap [B \cap C] \subset B \cap [(A \sqcup B) \cap C] \subset D \cap U$$

и поэтому

$$\lambda^*(A \cap C) + \lambda^*(B \cap C) \leqslant \lambda(G \cap U) + \lambda(D \cap U).$$

Применяя теорему 5.2 и включение $U \subset G \cup D$, получим

$$\lambda(G \cap U) + \lambda(D \cap U) =$$

$$= \lambda[(G \cap U) \cup (D \cap U)] + \lambda[(G \cap U) \cap (D \cap U)] =$$

$$= \lambda[(G \cup D) \cap U] + \lambda(G \cap D \cap U) \leqslant \lambda U + \lambda(G \cap D \cap U).$$

Таким образом,

$$\lambda^*(A \cap C) + \lambda^*(B \cap C) \leqslant \lambda U + \lambda(G \cap D \cap U) \leqslant$$

$$\leqslant \lambda \Omega + \lambda(G \cap D) < \lambda^*[(A \sqcup B) \cap C] + \varepsilon + \lambda(G \cap D). \tag{3}$$

Докажем включение

$$G \cap D \subset (G \setminus A) \cup (D \setminus B). \tag{4}$$

Пусть $x\!\in\! G\cap D$. Тогда $x\!\in\! G$ и $x\!\in\! D$. Если $x\!\notin\! A$, то $x\!\in\! G\backslash A$. Если же $x\!\in\! A$, то $x\!\notin\! B$, ибо по условию $A\cap B=\varnothing$, и $x\!\in\! D\backslash B$. В обоих случаях $x\!\in\! (G\backslash A)\cup (D\backslash B)$. Включение (4) доказано.

Из (3), (4) и (2) имеем

$$\lambda^*(A \cap C) + \lambda^*(B \cap C) < \lambda^*[(A \sqcup B) \cap C] + \varepsilon + \lambda(G \cap D) \le$$

$$\le \lambda^*[(A \sqcup B) \cap C] + \varepsilon + \lambda(G \setminus A) + \lambda(D \setminus B) <$$

$$< \lambda^*[(A \sqcup B) \cap C] + 3\varepsilon.$$

Переходя здесь к пределу при $\varepsilon \to +0$, получим неравенство (1). \diamond

170. РЕШЕНИЕ. Допустим сначала, что множество $B \subset \mathbb{R}^m$ ограничено и лежит в брусе $Q \subset \mathbb{R}^m$. Пусть $\epsilon > 0$. По условию $\lambda_n A = 0$. По задаче 138 найдутся брусы $P_k \subset \mathbb{R}^n$, $k \in \mathbb{N}$, такие, что

$$A\subset \bigcup\limits_{k=1}^{\infty}P_k$$
 и $\sum\limits_{k=1}^{\infty}\lambda_nP_k<\varepsilon.$

Брусы $P_k \times Q \subset \mathbb{R}^{n+m}$, $k \in \mathbb{N}$, покрывают множество $A \times B$ и

$$\textstyle\sum\limits_{k=1}^{\infty}\lambda_{n+m}\big(P_k\times Q\big)=\sum\limits_{k=1}^{\infty}\lambda_nP_k\cdot\lambda_mQ<\epsilon\cdot\lambda_mQ.$$

Применяя задачу 138 еще раз, заключаем, что множество $A \times B \subset \mathbb{R}^{n+m}$ измеримо и $\lambda_{n+m}(A \times B) = 0$.

Неограниченное множество $B \subset \mathbb{R}^m$ представимо в виде объединения последовательности ограниченных множеств (B_i) . По доказанному выше множества $A \times B_i$ измеримы и $\lambda_{n+m}(A \times B_i) = 0$. По теореме 4.3 множество $A \times B = \bigcup_{i=1}^{\infty} (A \times B_i)$ измеримо. По свойству 5(c) справедливо равенство $\lambda_{n+m}(A \times B) = 0$. \Diamond

171. РЕШЕНИЕ. Если $A=\varnothing$ или $B=\varnothing$, то $A\times B=\varnothing$ и утверждение очевидно. Пусть $A\ne\varnothing$ и $B\ne\varnothing$. По теореме 5.6 существуют убывающие последовательности открытых множеств $G_k\subset\mathbb{R}^n$ и $D_k\subset\mathbb{R}^m$ такие, что

$$A = \left(\bigcap_{k=1}^{\infty} G_k\right) \backslash N_1, \quad B = \left(\bigcap_{k=1}^{\infty} D_k\right) \backslash N_2, \tag{1}$$

где $\lambda_n N_1 = \lambda_m N_2 = 0$. Можно считать, что $N_1 \subset A$ и $N_2 \subset B$.

Можно также считать, что $\lambda_n G_1 < +\infty$. Действительно, по условию $\lambda_n^* A = \lambda_n A < +\infty$. Значит, найдется открытое множество $U \subset \mathbb{R}^n$ такое, что $A \subset U$ и $\lambda U < \lambda_n^* A + 1$. Заменяя каждое G_k множеством $U \cap G_k$, получим убывающую последовательность открытых множеств $G_k \subset \mathbb{R}^n$ таких, что по-прежнему верно первое из равенств (1), но уже все $\lambda_n G_k < +\infty$.

Аналогично можно считать, что все $\lambda_m D_k < +\infty$.

Обозначим
$$A_1 = \bigcap_{k=1}^{\infty} G_k$$
 и $B_1 = \bigcap_{k=1}^{\infty} D_k$. Очевидно

$$A_1 \times B_1 = \bigcap_{k=1}^{\infty} (G_k \times D_k). \tag{2}$$

Множества $G_k \times D_k \subset \mathbb{R}^{n+m}$ открыты (и не пусты). Применяя теоремы 4.2 и 4.7, заключаем, что множество (2) в пространстве \mathbb{R}^{n+m} измеримо. По задаче 45 для всех $k \in \mathbb{N}$

$$\lambda_{n+m}(G_k \times D_k) = \lambda_n G_k \cdot \lambda_m D_k < +\infty$$

Последовательность $(G_k \times D_k)$ убывает. По задаче 121

$$\lambda_{n+m}(A_1 \times B_1) = \lim_{k \to \infty} \lambda_{n+m}(G_k \times D_k) = \lim_{k \to \infty} (\lambda_n G_k \cdot \lambda_m D_k) =$$

$$=\lim_{k\to\infty} (\lambda_n G_k) \cdot \lim_{k\to\infty} (\lambda_m D_k) = \lambda_n A_1 \cdot \lambda_m B_1.$$

Согласно (1)

$$\begin{split} A_1 \times B_1 &= \big(A \cup N_1\big) \times \big(B \cup N_2\big) = \\ &= \big(A \times B\big) \cup \big(N_1 \times B\big) \cup \big(A \times N_2\big) \cup \big(N_1 \times N_2\big). \end{split}$$

Из задачи 170 и свойства 5(b) следует, что множество

$$(N_{\mathbf{1}} \! \times \! B) \cup (A \! \times \! N_{\mathbf{2}}) \cup (N_{\mathbf{1}} \! \times \! N_{\mathbf{2}}) \subset \mathbb{R}^{n+m}$$

измеримо и имеет меру 0. Применяя задачу 137, заключаем, что

$$\lambda_{n+m}(A\times B)=\lambda_{n+m}(A_1\times B_1)=\lambda_nA_1\cdot\lambda_mB_1=\lambda_nA\cdot\lambda_mB.\ \, \Diamond$$

172. УКАЗАНИЕ. Это следует из задач 171 и 120.

Литература

- 1. Гелбаум Б., Олмстед Дж. Контрпримеры в анализе. М.: Мир, 1967
- 2. *Ильин В.А., Позняк Э.Г.* Основы математического анализа. Ч.2. М.: Наука, 1973.
 - 3. Камке Э. Интеграл Лебега Стилтьеса. М.: Физматгиз, 1959.
- 4. *Клементьев З.И*. Курс лекций по теории функций действительного переменного. Томск: 1970.
- 5. *Лебег А.* Интегрирование и отыскание примитивных функций. М.-Л.: ГТТИ. 1934.
 - 6. Медведев Ф.А. Развитие понятия интеграла. М.: Наука, 1974.
- 7. *Натансон И.П.* Теория функций вещественной переменной. М.: Гостехиздат, 1957; М.: Наука, 1974; СПб. Лань, 1999.
- 8. *Очан Ю.С.* Сборник задач по математическому анализу. М.: Просвещение, 1981.
 - 9. Песин И.Н. Развитие понятия интеграла. М.: Наука, 1966.
- 10. Теляковский С.А. Сборник задач по теории функций действительного переменного. М.: Наука, 1980.
- 11. *Смирнов В.И.* Курс высшей математики. Т. V. М. : Физматгиз, 1959.
- 12. Ульянов П.Л., Бахвалов А.Н., Дьяченко М.И., Казарян К.С., Сифуэнтес П. Действительный анализ в задачах. М.: Физматлит, 2005.

Содержание

§5. Мера Лебега	3
Задачи к §5	15
§6. Примеры измеримых множеств	28
Задачи к §6	38
Указания к решению задач §5	47

Издание подготовлено в авторской редакции

Отпечатано на участке цифровой печати Издательского Дома Томского государственного университета

Заказ № 1949 от «30» июня 2016 г. Тираж 100 экз.