Cône Doppler

Un cône est défini par un vecteur et un angle de la façon suivante :

Definition 1 (Cône). Soit $u \in \mathbb{R}^3$ et $\theta \in [0, \pi]$. Le cône \mathcal{C} de sommet u et d'angle θ est défini par :

$$C = \left\{ v \in \mathbb{R}^3 \left| \frac{u.v}{\|u\| \|v\|} = \cos(\theta) \right\}.$$

Intuitivement, il s'agit de l'ensemble des vecteurs v formant un angle θ avec le vecteur u.

Definition 2 (Fréquence Doppler). Soit $S \in \mathbb{R}^3$ la position de l'avion et $u \in \mathbb{R}^3$ la vitesse de l'avion. Soit $P \in \mathbb{R}^3$ la position d'un obstacle. La fréquence Doppler est définie par :

$$f = \frac{2}{\lambda} \frac{u.(P - S)}{\|P - S\|}.$$

Appelons s=P-S le vecteur allant de l'avion vers l'obstacle. Appelons s_0 le vecteur allant de l'avion vers l'antenne. On cherche l'ensemble des $s \in \mathbb{R}^3$ ayant la même fréquence Doppler que s_0 , c'est-à-dire :

$$\frac{2}{\lambda} \frac{u.s}{\|s\|} = \frac{2}{\lambda} \frac{u.s_0}{\|s_0\|},$$

qui est équivalent à :

$$\frac{u.s}{\|u\|\|s\|} = \frac{u.s_0}{\|u\|\|s_0\|}.$$

Si on note θ_0 l'angle entre u et s_0 (compris entre 0 et π), l'équation devient :

$$\frac{u.s}{\|u\|\|s\|} = \cos(\theta_0).$$

L'ensemble des $s \in \mathbb{R}^3$ que l'on cherche est donc bien un cône de sommet u et d'angle θ_0 qu'on appelle le **cône Doppler**. Le vecteur s_0 appartient évidemment toujours au cône Doppler.

Figure 1: Le cône Doppler est représenté en pointillé. P_0 est la position de l'antenne. On voit que changer la norme ou le sens de la vitesse u (mais pas sa direction) ne change pas pas le cône Doppler, bien que l'angle θ_0 ainsi que la fréquence Doppler puissent être différents. Le cône n'est donc pas forcément "derrière" l'avion.