Preprocessing/Presolve

Preprocessing refers to elementary operations that can be used to strengthen/simplify a formulation.

- It is a phase between formulation and solution.
- It can greatly enhance the speed of algorithms.

Tightening bounds and variable fixing

For an example of bound tightening, consider the following IP formulation.

$$\max 2x_1 + x_2 - x_3$$

$$5x_1 - 2x_2 + 8x_3 \le 15$$

$$8x_1 + 3x_2 - x_3 \ge 9$$

$$x_1 + x_2 + x_3 \le 6$$

$$0 \le x_1 \le 3$$

$$0 \le x_2 \le 1$$

$$1 \le x_3$$

$$x_1, x_2, x_3 \text{ integer.}$$

Isolate x_1 in the first constraint to improve its upper bound.

Isolate x_3 in the first constraint to improve its upper bound.

Isolate x_2 in the first constraint to improve its lower bound.

Isolate x_1 in the second constraint to improve its lower bound.

Observe that we must have $x_1 = 1$, so we can simplify the formulation:

$$\max 2 + x_2 - x_3$$

$$-2x_2 + 8x_3 \le 10$$

$$3x_2 - x_3 \ge 1$$

$$x_2 + x_3 \le 5$$

$$0 \le x_2 \le 1$$

$$1 \le x_3$$

$$x_2, x_3 \text{ integer.}$$

Redundant constraints

Argue that the last constraint is redundant.

Rewrite the further simplified formulation.

Isolate x_3 in the first constraint and improve its bound.

Isolate x_2 in the second constraint and improve its bound.

What is the solution?

Simple observations used for bound tightening

Consider the set $S:=\{x\in\mathbb{Z}^n\mid a^Tx\leq b,\ l\leq x\leq u\}$, where we assume $l,u\in\mathbb{Z}^n$ and $0\leq l\leq u$.

Assuming $a_1 > 0$, what is the best conceivable objective for $\max\{x_1 \mid x \in S\}$?

Assuming $a_1 < 0$, what is the best conceivable objective for $\min\{x_1 \mid x \in S\}$.

Proposition 1. Consider the set $S = \{x \in \mathbb{Z}_+^n \mid a^Tx \leq b, \ l \leq x \leq u\}$, where $0 \leq l \leq u$.

1. Bound Tightening. If $a_1 > 0$, then x_1 is bounded above by:

And, if $a_1 < 0$, then x_1 is bounded below by:

2. Redundancy. The constraint $a^T x \leq b$ is redundant if:

3. Infeasibility. The set S is empty if:

Generating logical inequalities by "probing"

For 0-1 programs, it is often easy to generate (practically useful) "logical" or "boolean" constraints. For example, consider the following 0-1 set.

$$7x_1 + 3x_2 - 4x_3 - 2x_4 \le 1$$

$$-2x_1 + 7x_2 + 3x_3 + x_4 \le 6$$

$$-2x_2 - 3x_3 - 6x_4 \le -5$$

$$3x_1 - 2x_3 \ge -1$$

$$x_1, x_2, x_3, x_4 \text{ binary.}$$

Looking at the first constraint, does setting $x_1 = 1$ imply anything?

Similarly, from the second constraint, can we conclude anything if $x_2 = 1$?

What about setting $x_4 = 0$ in the third constraint?

Anything from the fourth constraint?

Combining logica	al inequalities	3

Combining logical inequalities								
Can we say anything about the relationship between x_1 and x_3 ?								
What about between x_1 and x_2 ?								
Now what can we say about x_4 ?								
What does the constraint set look like after these simplifications?								

Conflict	graphs:	used	to	store/	generate	logical	inequalities
COLLEGE	8.45.	about		2022	Scrience	1051041	moquation

Introduced by Atamtürk, Nemhauser, and Savelsbergh in a 1998 EJOR paper.

A conflict graph G = (V, E) for an IP with n binary variables has:

- 2n vertices: one for $x_i = 0$ and one for $x_i = 1$;
- an edge between two vertices if fixing the variables to associated values yields in a "conflict."

Draw the conflict graph for the previous problem.

Any feasible solution to 0-1 program is______in conflict graph.

Corollary:

The following two classes of valid inequalities were studied by Padberg (1973).

Proposition 2 (Clique inequalities). If $C \subseteq V$ is a clique in a graph G = (V, E), then the inequality $\sum_{i \in C} x_i \leq 1$ is valid for independent sets in G.

Identify two cliques from the conflict graph that you drew and write the corresponding inequalities.

Proposition 3 (Odd-hole inequalities). If $C \subseteq V$ induces an odd cycle in graph G = (V, E), then the inequality $\sum_{i \in C} x_i \le (|C| - 1)/2$ is valid for independent sets in G.

Identify an odd hole (with $|C| \ge 5$) from the conflict graph and give the associated inequality.