Д. Условие коммутативности потоков. Пусть ${\pmb A}, {\pmb B}$ — векторные поля на многообразии M.

T е о р е м а. Два потока A^t , B^s коммутируют тогда и только тогда, когда скобка Пуассона соответствующих векторных полей [A, B] равна нулю.

Доказательство. Если $A^tB^s\equiv B^sA^t$, то по лемме 1 $[\pmb{A}, \pmb{B}]=0$. Если $[\pmb{A}, \pmb{B}]=0$, то по лемме 1 для любой функции φ в любой точке x

$$\varphi(\boldsymbol{A}^t\boldsymbol{B}^s\boldsymbol{x}) - \varphi(\boldsymbol{B}^s\boldsymbol{A}^t\boldsymbol{x}) = o(s^2 + t^2), \quad s \longrightarrow 0, t \longrightarrow 0.$$

Мы покажем, что отсюда вытекает $\varphi(A^tB^sx) = \varphi(B^sA^tx)$ при достаточно малых s и t.

Применяя это соотношение к локальным координатам ($\varphi=x_1,\ldots,\,\varphi=x_n$), получим $A^tB^s\equiv B^sA^t.$

Рассомтрим прямоугольник $0\leqslant t\leqslant t_0,\, 0\leqslant s\leqslant s_0$ (рис. 170) на плоскости $(t,\,s)$. Каждому пути, ведущему из $(0,\,0)$ в (t_0,s_0) и состоящему из конечного числа отрезков координатных направлений, сопоставим произведение преобразований потоков A^t и B^s . Каждому отрезку $t_1\leqslant l\leqslant t_2$ сопоставим $A^{t_2-t_1}$,

отрезку $s_1\leqslant s\leqslant s_2-B^{s_2-s_1}$; применять преобразования будем в порядке, в каком идут отрезки от $(0,\ 0).$

Рис. 170. К доказательству коммутативности потоков.

Рис. 171. Криволинейный четырехугольник $\beta\gamma\delta\varepsilon\alpha$.

Так, например, сторонам $(0\leqslant t\leqslant t_0,s=0)$ и $(t=t_0,0\leqslant s\leqslant s_0)$ отвечает произведение $B^{s_0}A^{t_0}$, а сторонам $(t=0,0\leqslant s\leqslant s_0)$ и $(s=s_0,0\leqslant t\leqslant t_0)$ — произведение $A^{t_0}B^{s_0}$.

Кроме того, мы сопоставим каждому такому пути на плоскости (t,s) путь на монгообразии M, выходящий из точти x, составленный из траекторий потоков A^t и B^s (рис. 171). Если пути на плоскости (t,s) соответствует преобразование $A^{t_1}B^{s_1}\dots A^{t_n}B^{s_n}$, то на монгообразии M соответствующий путь заканчивается в точке $A^{t_1}B^{s_1}\dots A^{t_n}B^{s_n}x$.

Наша цель — доказать, что все эти пути в действительности заканчиваются в одной точке $A^{t_0}B^{s_0}=A^{t_0}B^{s_0}x$.

Разобъем отрезки $(0\leqslant t\leqslant t_0)$ и $(0\leqslant s\leqslant s_0)$ на N равных частей так, что весь прямоугольник разделится на N^2 маленьких прямоугольников. Переход от сторон $(0,0)-(0,t_0)-(s_0,t_0)$ к сторонам $(0,0)-(s_0,0)-(s_0,t_0)$ можно совершить в N^2 шагов, в каждом из которых пара соведних сторон маленького прямоугольника заменяется другой парой (рис. 172).