Prof. Dr. Vincent Heuveline M.Sc. Simon Gawlok M.Sc. Saskia Haupt

Exercise Sheet 2

November 2nd, 2017 – November 9th, 2017

Uncertainty Quantification 1 (Winter Term 2017)

Practical Exercise 1. Numerical Differentiation (2+3 = 5 Points)

Consider the function

$$f(x) = e^{\sin(x)}$$
.

We intend to compute the first derivative f'(x) at the point x = 0 with the aid of the first order approximation (finite difference)

$$f'(0) \approx g(h) := \frac{f(h) - f(0)}{h}.$$

The absolute error $\varepsilon(h)$ is defined as

$$\varepsilon(h) := |f'(0) - g(h)|.$$

- **a.** Write a program which computes $\varepsilon(h)$ for $h \in \{10^0, 10^{-1}, \dots, 10^{-14}\}$.
- **b.** Visualize the error as a function of h via a double-logarithmic plot. Explain the plot! What is happening here?

Practical Exercise 2. Stability of numerical evaluation (3+3=6 Points)

Consider the expressions

a.
$$\frac{1}{1+2x} - \frac{1-x}{1+x}$$
 für $||x|| \ll 1$

b.
$$\sqrt{x+\frac{1}{x}} - \sqrt{x-\frac{1}{x}}$$
 für $x \gg 1$.

Transform each of these expression such that their numerical evaluation becomes more stable. Reason why the new expressions are more stable! Write a program which computes and compares the original and the stable expression.

Exercise 3. Probability Space (3+2+2=7 Points)

A (fair) dice is thrown three times.

a. Determine the sample space Ω . What is the appropriate σ -algebra \mathcal{F} of events in this case?

- **b.** Which probability distribution in meaningful in this case due to the fairness of the dice? Name the distribution and state the probability measure P in form of a density $\rho(\omega)$, $\omega \in \Omega$.
- **c.** Determine for the event "A: At least one time 'six'" the set $A \subset \Omega$ as well as the probability P(A).

Hint: If we deal with an event containing at least, then it might be helpful to consider the complementary event.

Reminder: A probability space is a triple (Ω, \mathcal{F}, P) consisting of:

- The sample space Ω an arbitrary non-empty set,
- the σ -algebra $\mathcal{F} \subseteq \mathcal{P}(\Omega) = 2^{\Omega}$ (also called σ -field) a set of subsets of Ω , called events, such that:
 - \mathcal{F} contains the sample space: $\Omega \in \mathcal{F}$,
 - $-\mathcal{F}$ is closed under complements: if $A \in \mathcal{F}$, then also $(\Omega \setminus A) \in \mathcal{F}$,
 - $-\mathcal{F}$ is closed under countable unions: if $A_i \in \mathcal{F}$ for $i = 1, 2, \ldots$, then also $(\bigcup_{i=1}^{\infty} A_i) \in \mathcal{F}$
- The probability measure $P: \mathcal{F} \to [0,1]$ a function on \mathcal{F} such that:
 - P is countably additive (also called σ-additive): if $\{A_i\}_{i=1}^{\infty} \subseteq \mathcal{F}$ is a countable collection of pairwise disjoint sets, then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$,
 - The measure of entire sample space is equal to one: $P(\Omega) = 1$.

Submission: until November 9th, 2017, 11 a.m. (EMCL, INF 205, 1st floor, room 1/214 or room 1/232)

¹https://en.wikipedia.org/wiki/Probability_space