Name:

• READ THE FOLLOWING DIRECTIONS!

- Do NOT open the exam until instructed to do so.
- You have until 10:50am to complete this exam. When you are told to stop writing, do it or you will lose all points on the page you write on.
- You may not communicate with other students during this test.
- No written materials of any kind are allowed. No scratch paper is allowed except as given by the proctors.
- No phones, calculators, or any other electronic devices are allowed for any reason, including checking the time (a simple wristwatch is fine).
- Any case of cheating will be taken extremely seriously.
- Show all your work and explain your answers.
- Before turning in your exam, check to make certain you've answered all the questions.

Some possibly useful formulas:

$$\cos^2 t = \frac{1}{2}(1 + \cos(2t))$$

$$\sin^2 t = \frac{1}{2}(1 - \cos(2t))$$

1. Sketch the trajectories that pass through the indicated points below.

2. All but one of the following vector fields are gradient fields. Which one can't be a gradient field? Why?

- 3. Let $\mathbf{F}(x,y) = \langle ye^x + \frac{1}{x^2}, e^x + y^4 \rangle$.
 - (a) Find a potential function for \mathbf{F} .

(b) Compute the flow of **F** along the part of the curve $y = \sin(\pi x)$ going from (0,0) to (3,-1).

4. Find all sources and sinks of the vector field $\mathbf{F}(x,y) = \langle y^4, xy^3 e^x \rangle$.

5. Find all sources and sinks of the vector field $\mathbf{G}(x,y) = \left\langle \frac{x+y}{x^2+y^2}, \frac{y-x}{x^2+y^2} \right\rangle$.

6. Let $\mathbf{F}(x,y) = \langle xy^2, x^2y \rangle$. The curve C consists of two parts, C_1 and C_2 , as shown below.

(a) Find the flow of \mathbf{F} along C.

(b) Find the flow of \mathbf{F} along C_1 .

(c) Find the flow of \mathbf{F} along C_2 .

- 7. Let $\mathbf{F}(x,y) = \langle 2, \frac{1}{2}y^2 \rangle$. Let C be the curve going from (1,0) to (0,2) along the parabola $4-4x=y^2$, then from (0,2) to (-1,0) along the parabola $4+4x=y^2$, then from (-1,0) to (1,0) along the x-axis. Let R be the region bounded by C.
 - (a) Explain why you can measure the flow of F across C by the double integral

$$\iint_R y \, dx \, dy.$$

(b) Use the transformation $x = u^2 - v^2$ and y = 2uv to compute the above integral.

8. Let R be the region in the first quadrant bounded by the curves $x^2 - y^2 = 1$, $x^2 - y^2 = 4$, x - y = 1, and x - y = 3. Compute the area of R.

9. Compute $\iint_D \frac{1}{\sqrt{x^2 + y^2}} dx dy$ where D is the unit disk. (Remark: note that this is an improper double integral, but your choice of transformation turns it into a proper (and easily computed) iterated integral.)