matrix $W_3 = F_0(N)$. Clearly, $\Delta_2(W_3) = F_0(S(G))$. Since G(x) is a minimal rix S(G) and $\overline{G}(x)$ is the minimal polynomial of the matrix S(G) it follows or the matrix S(G) there are no nonzero polynomials modulo J^2 of degree ld annihilate it modulo J^2 . Consequently,

$$\Delta_2(W_3) = F_0(S(G)) \not\equiv 0 \pmod{J^2}.$$

from (35), (36) and (38) that $\Delta_2(F(A)) \neq 0 \pmod{J^2}$, i.e., $F(A) \neq 0$. so of Theorem 9.

served in the introduction, Theorem 9 includes as special cases the rel for commutative rings. Moreover, Theorem 9 significantly extends the iants in comparison with those described in the previous papers. For over $\mathbb{Z}/2^n$, the polynomial $x^2 + e$ which could be considered comparable he latter a strong invariant: $x^2 + e = (x + e)^2 - 2(x + e) + 2e$. In over \mathbb{Z}/p^n every polynomial which is congruent modulo p^2 to $x^p + (p - e)$

d and Third Degree over a Principal Ideal Ring

R denotes a commutative artinian principal ideal ring, $J=\pi R\neq 0$. Then 1 number n such that $J^n=0$ and all the proper ideals of R are $J=\pi R$, $\pi^{n-1}R$ (cf. [15, Chap. 4]). In this case the similarity_problem for s to the similarity problem for matrices $A\in R_m$ with $A\neq 0$ since if hen $A\approx B$ if and only if the images of the matrices A_1 and B_1 over the ar.

ume that $A \in \mathbb{R}_2$ and $\overline{A} \neq \overline{0}$. Then exactly one of the following cases

- = (e) and A \approx S($\chi_A(x)$), Ann(A) = ($\chi_A(x)$).
- = (x r), where $r \in R$, and A = rE, Ann(A) = (x r).
-) = $(x r, \pi^k)$, where $r \in R$, 0 < k < n, and $A \approx rE + \pi^kS(G(x))$, where d the polynomial $\pi^kG(x)$ is uniquely determined by the matrix $\chi_A(x) = -\pi^{2k}b$, $Ann(A) = (\chi_A(x), \pi^{n-k}(x-r))$.

canonically determined if and only if all its Fitting invariants are

- $\overline{(xE-A)} = \mathcal{D}_s(xE-A)$, s = $\overline{1, 2}$ it follows that if $\mathcal{D}_1(xE-A) = (F(x)) + \mathcal{D}_1$ e F(x) is a monic polynomial, then deg $F(x) \le 1$. Therefore one of the must apply to the ideal $\mathcal{D}_1(xE-A)$.
- I the statements of the theorem are consequences of the fact that all xE A are principal ideals and that therefore A is a normal marrix
- s clear that the matrix A is of the form A = rE + $\pi^k B$, where the minimal rix \overline{B} coincides with its characteristic polynomial. Indeed, if this is or suitable b \in R and A = $r_1 E + \pi^{k+1} B_1$, i.e., the ideal $\mathcal{D}_1(xE A)$ is , contrary to the assumption. Consequently, if $\chi_B(x) = G(x)$ then B \approx G(G) then $T^{-1}AT = rE + \pi^k S(G)$. Clearly, if also A \approx rE + $\pi^k S(G_1)$, then and $G_1(x) \equiv G(x) \pmod{J^{n-k}}$, i.e., $\pi^k G_1(x) = \pi^k G(x)$.
- $G(x) = x^2 ax b$ and that $b_1 \in R$ is an element with the properties $x^{2k}b$ (the existence of such an element is guaranteed by the conditions at it is easily seen that the matrix $A_1 = rE + \pi^k S(G_1)$, where $G_1(x) = x^2 ax + b$ for A but $\mathcal{D}_s(xE-A) = \mathcal{D}_s(xE-A_1)$ for x = 1, 2. Consequently, if canonically determined matrix. The last statement of Theorem 10 follows.
- [16] representatives of classes of conjugate elements in the group R_2^{\star} are given.
- degree three over R the situation becomes significantly more complex, only possible to describe possible canonical forms for A \in R₃ in the