×= 5%

$$\frac{\alpha}{2} = 0,025$$

$$\left[\frac{1}{9,995}, \frac{(5,69)}{(8,9)}, \frac{(9,995)}{(8,9)}, \frac{(5,69)}{(8,9)} \right]$$

(2,128, 3,19)

lo mismo pero con un contraste de hipótesis en lugar de intervaio

$$70 = \sigma_{x}^{2} = \sigma_{y}^{2} \qquad F - \frac{5k^{2}}{5y^{2}} = \frac{5.69}{8.90} = 9.69$$

$$H_{1} = \sigma_{x}^{2} \neq \sigma_{y}^{2}$$

$$T = \frac{(x-9)-M}{Sp(\sqrt{\frac{1}{n_x} + \frac{1}{n_y}})} + = \frac{(92,769 - 97,733)}{217.\sqrt{\frac{3}{8} + \frac{1}{8}}} = -0,35$$

$$W_0 = M_x - M_y = M_0 = 0$$

$$M_X = M_y$$

Texp = -0,39

- no rehazo

(1) b)
$$F(x_1, y_1) = x^3 + 3xy^2 - 16x - 12y$$

 $F_x' = 3x^2 + 3y^2 - 15$ $F_{xx}'' = 6x$
 $F_y' = 6xy - 12$ $P_{yx}'' = 6y$ Siempre tionen que ser ignales

Puntos criticos 3x2+397-15 =0 6 89-12=0 A this Hessiana $\begin{bmatrix}
Clisting & de & b & mismo \\
Forma & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ $\begin{bmatrix}
Clisting & de & b & mismo
\end{bmatrix}$ matris Hessiana $= \begin{pmatrix} 6 \times 6 \times 9 \\ 6 \times 6 \times \end{pmatrix}$ $S_1 \mid H \mid 90$ $\bigg| S_1 \frac{3^2}{x^2} \mid 90 \right|$ minimo boxi SI DE CO MERMO locky SI 14/60 puno de cilla SI 1+11=0 -0 no prace ser determinado 3 carables H= Fxx Fxy Fxz

Fzx Fzy Fzz difficul CG 19a

los pentos certicos de la rencon gramos MICCOI 3x2 1392-15=04 P3 (2)2+392-15=0 6xy-12=0 12 +392-15=0 69V=12 12 +3 9 2 - 75 9 2 20 xy=2 3 y 4- 15 y 2 +12=0 x = 3/4 54-543+4=0 t2-57+4 5 ± V25-10; 5±3 /7 T=4-09/2 T=1 -09 / 1 H = (20) 20-0 14/20-0 P 5/4a A= (12) B = (-1,-2) -0 +1 = (-12-6)-0 | U| 60 -0 P silk (=(211) = H=(126) -01 H170 y 32 x0 minimo D=(-21-1) H= (-12-6)= | H/> y 32 (0

maximo 10061 Ejercicio de examen de 2017

$$\frac{2749 - 3 = 0}{-24 - 69^2 + 9 = 0}$$

$$\frac{69249 + 1 = 0}{69249 + 1}$$

$$x = \frac{3 - (-\frac{7}{3})}{2}; \frac{9+9}{3}; \frac{70}{6} = \frac{5}{3}$$

pentos curas
$$\begin{pmatrix} 6 & 2 \\ 4 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 5 & -\frac{1}{3} \\ 1 & \frac{1}{3} \end{pmatrix}$$

la restricción (3) nos limita la zona al primer y recer cuadante

$$A = (0,4) = \frac{m(ram 6)}{(a graface)}$$
 $B = (2,12) = \frac{1}{(3,0)}$

$$\begin{cases} x^{1} + x^{2} = 4 \\ 2x^{1} + x^{2} = 6 \end{cases}$$

$$-x_{1} - x^{2} = 4$$

$$2x^{1} + x^{2} = 6$$

$$x^{1} = 2$$

$$x^{2} = 2$$

e(310)=3

una almada produce aceite virgen y aceite de orajo

el triple de --

Aceite
$$-0 \times 9$$
 $0 = 0 = 0 \times 9$
 $0 = 0 = 0 \times 9$
 $0 = 0 = 0 \times 9$
 $0 = 0 \times 9$

$$\frac{79+3(39-10)}{79}=\frac{774}{71}-70=\frac{147-170}{77}=\frac{34}{77}$$

$$P(M) = 314 \qquad P(M) = 316$$

$$P(M) = 3125$$

$$P(M \cap J) = P(M) - P(M \cap J) = 314 - 3172 = 3128$$

$$P(M \cap J) = P(M) - P(M \cap J) = 314 - 3172 = 3128$$

$$P(J \cap M) = P(J \cap M) = P(J \cap M) = 31 - P(J \cap M) = P(M) = P($$

1 población 1	media 1	5	-	1-2=	0,9
111	56	1211		X = 0,1	
A 11 B 13	4	11,5		× 12 = 0	105
3					
				1-0/2	27.95
$\int \frac{1}{F}$					
[2,763	12/12	, 2, 9 13	77,5		
	[2,40	213,7225)	7		
		1 3,229)	e,	nel interve	
			a	summas que	e la
			C	rariabiledad	es la misma
Ho-oma	- Mg	7	exp = (A	-B)	76-49
Hiroly	natma		SP	V 1 +1 no	17,78/2 12 12
Sp = Vina	-1)· Sp2	+(nb-1).5b2	· Te	483	= 7.45
= \(\sqrt{15.}	7	7.0.		k = 7,22	
	53				
			150/12 -0 D	195 9 22	

9.22 11-1+13-1 19 hipotess nula

aceptamos