Les angles d'un outil se définissent à partir des plans de l'outil.

On distingue : les angles de l'arête ; les angles des faces.

ANGLES DE L'ARETE

ANGLE DE DIRECTION D'ARETE K (Kappa)

Angle mesuré dans le plan de référence Pr. entre le plan d'arête Ps et le plan de travail Pf.

ANGLE DE DIRECTION COMPLEMENTAIRE \$\psi\$ (Psi)

Angle mesuré dans le plan de référence Pr. entre le plan d'arête Ps et le plan vers l'arrière Pp.

Il est égal à :
$$\psi = 90^{\circ} - K$$

ANGLE D'INCLINAISON D'ARETE \(\lambda\) (Lambda)

Angle mesuré dans le plan d'arête Ps entre l'arête et le plan de référence Pr.

ANGLES DES FACES

Les angles des faces sont définis dans l'un des différents plans :

Dans un plan de section donné, on trouvera :

ANGLE DE DEPOUILLE & (alpha)

Angle mesuré entre la face de dépouille et le plan d'arête (Ps).

ANGLE DE TAILLANT β (Béta)

Angle mesuré entre la face de coupe et la face de dépouille.

ANGLE DE COUPE γ (Gamma)

Angle mesuré entre la face de coupe et le plan de référence Pr.

OUTIL A COUPE NÉGATIVE

OUTIL A COUPE POSITIVE

 $\propto + \beta (\gamma) > 90^{\circ}$ $\propto + \beta - \gamma = 90^{\circ}$

Origine:

Mod 2 à 18

X

Echelle:

U.M.A.

NIO

AFFÛTAGE - Définitions des Angles

€: ANGLE DE DEPOUILLE

	1	OUTIL D'INITIATION			Provient de l'exercice précédent
Rep.	Nbre	Désignation	Matière	Débit	Observations
		AFFÛTAGE			U.M.A. Origine:
		ALLOTAGE			N° 5 Mod. 3

	1	Outil droit à charioter à droite	A - 60 Laminé	1 6 x 16x 160	E66 - 361	
Rep.	Nbre	Désignation	Matière	Débit	Observations	
			A STATE OF THE PARTY OF THE PAR		Echelle: 1	Origine:

Echelle: 1 Origine:

2: ANGLE DE DEPOUILLE : 6:

B: ANGLE DE TAILLANT: 90º-(24º+6º) = 60º

S: ANGLE DE COUPE : 24º

	1	OUTIL D'INITIATION			Provient de l'exercice précédent
Rep.	Nbre	Désignation	Matière	Débit	Observations
		AFFÛTAGE			U.M.A.

Rep.	Nbre	Outil à dresser d'angle, à droite Désignation	Laminé Matière	Débit	E66 - 364 Observations
		^			Echelle: 1 Origine:

U.M.A.

No

No. 15 Mod. 7 T

	1	Outil à fileter extérieurement (par pénétration droite)		16×16×150	E66 - 369)
Rep.	Nbre	Désignation	Matière	Débit	Observatio	ns
	Accessed the second				Echelle:	Origine: N

U.M.A.

DIFFERENTES FORMES

Angulaire si p < 0,8mm

Angulaireà45°

Parallèle

A gorge si p variable et Vc lente

	Outil à charioter, à droite	A 60	16 x 16x 160		
Rep. Nbre	Désignation	Matière	Débit	Observatio	ns
				Echelle:	Origine:

AFFÛTAGE AVEC BRISE COPEAU

U.M.A.

N ° 18

Rep.	Nbre	Désignation	Matière	Débit	Observations
	1	Outil à aléser et à dresser			E66 - 371

U.M.A.

CUILLERE

E₂ Angle de pointe moyenne 22° suivant matériaux

C = Dépouille frontale 6 à 8°

COUPE CUILLERE

Utilisée principalement pour les aciers demi-durs, cuivre, donne un roulage du copeau, permet un chanfrein sur la pièce suivante B.

		Outil de tour de reprise				
* o . N	bre	Désignation	Matière	Débit	Observatio	ns
					Echelle:	Origine: A
		AFFÛTAGE a	OUPE CUIL	LERE	U.M.A	•
		AITOTAGE	OUTE COIL	LEKE	No	Mod. 18

7		Outil de tour de reprise (de saignée)	barreau traité	10×10×100	
Rep.	Nbre	Désignation	Matière	Débit	Observations

AFFÛTAGE COUPE GOUTTIERE

Origine:

CARBURES METALLIQUES :

Les carbures métalliques ne sont pas des alliages mais des agglomérés un peu comme les meules, avec comme constituant du cobalt (= liant ou agglomérant) et des carbures de tungstène, de tantale de titane, de bore, etc ...

Leur dureté approche celle du diamant et cette dureté se maintient jusqu'à 1000°, la vitesse de coupe peut donc être considérablement augmentée.

La plupart des carbures métalliques sont fragiles, leur affûtage s'effectue à l'aide, de meules en carborundum (vertes) ou de meules diamantées; l'arête active doit être affilée à la pierre.

En général les carbures métalliques se présentent sous forme de plaquettes brasées sur un corps d'outil en acier I/2 dur.

 β (Béta) angle taillant

Y (Gamma) angle de coupe

		οU	тІ	L S	EN	
MATIERES	Acie	er ro	pide	Carbi	ures-	métal.
TRAVAILLEES	α	β	γ	d	β	γ
Cuivre-Aluminium	6°	44	40°	8°	52°	30°
Acier-doux Fonte douce	6	54°	30°	4°	66°	20°
Acier 1/2 dur	6°	64°	20°	4°	66°	20°
Acier dur	6°	74°	10°	4°	76°	10°
Acier trempé				4°	80°	6°

		Angles caractéristiques				
Rep. N	bre	Désignation	Matière	Débit	Observatio	ns
					Echelle:	Origine: 🛭
		ΔFFÛTAGE -	ES CARBUI		U.M.A	

	Outils carbure				
Rep. Nbre	Désignation	Matière	Débit	Observatio	ns
•				Echelle:	Origine:
	AFFÛTAGE DE	ES CARBUF	RES	Nº	Mod 17

Pour éviter la formation de longs copeaux qui seraient néfastes à l'ou-1 til à la pièce et à la sécurité de l'opérateur (croquis 1;2;3) l'on façonne sur l'angle de coupe (\$\hat{\mathbf{x}}\)) un brise copeau". Celui-ci à une longueur (1) et une hauteur (h) bien 2 déterminées. (voir tableau).

Ces dimensions sont facteurs de l'avance et de la profondeur de passe.

En respectant ces valeurs on ob- 3 tient une formation de copeau en rouleau court (croquis 4) ou en "virgule" (croquis 5;6;7). Le copeau idéal est représenté par les croquis 4 et 5.

Dans le cas d'un outil muni de plaquette à jeter jouer avec l'a-vance pour obtenir la formation de copeau convenable.

W	THE R			9 99999 N			9909 444			
Q	3	G	6	G	C	C	C	C		
9	8	8	7	2	2	a	ą	a	7	

* 1 -		DIN	MEN	SIO	NS		
	prof de	α=	=0,2	a=(0,35	a=0),55
	passe	ι	h	ι	h	ι	h
	1	1,5	0,3	2	0,4	3	0,5
	4	2,5	0,5	3	0,5	4	0,6
	9	3	0,5	4	0,6	4,5	0, 6

	Brise-copeau				
Rep. Nbre	Désignation	Matière	Débit	Observation	ns
				Echelle:	Origine: X
	AFFÛTAGE DE	S CARBUR	FS	U.M.A	

L'ame du foret est la longueur de l'arête de pointe

*	Aciers très durs	:	angle	de	pointe	=	130°
	Aluminium	:		11		=	140°
	Fonte douce	:		11		Ξ	90°
	Ebonite - Bakélite	:		1.1		=	60°

	ΔΕΕÛΤΔGΕ				UMA		
		_	A	-	Echelle:	Origine:	
Rep. Nbre		Désignation	Matière	Débit	Observations		
	1	Foret hélicofdal Ø 14 à 18 et Ø 5 à 8					

Nº 13 Mod 6