ENTROPY 2019 - QUALIFICATION ROUND

Statistics and Probability

The questions will be multiple choice of 4 choices, 1 CORRECT ANSWER for each question.

If you have any questions, please contact ENTROPY's hotline: (028) 3724 6560 or 0937 367 366

Question 1

There always have two factors of risk and uncertainty in models	
A	Deterministic
В	Probabilistic
С	Both A and B
D	None of the above

- \bigcirc A
- () E

The Bayes risk for a decision problem is zero when		
A	The class distributions $P(X Y)$ do not overlap	
В	The training data is linearly separable	
С	The loss function $L(z, y)$ is symmetrical	
D	The Bayes decision rule perfectly classifies the training data	

	٨
ノ	μ

-		
	7	
	- 1	- н

_	
	U
)

-		
	7	
	-)	···
-	_	_

Question 3

In solving the least-squares linear regression, we often impose a Gaussian prior on the weights, and it is equivalent to

A Solving a logistic regression problem

B Adding a Laplace-distributed penalty term

C L₂ regularization

D L₁ regularization

$\overline{}$		۸
Ĺ	ノ	μ

	-	
)	
/		L

$$\bigcirc$$

Which of the following is the accurate statement of Ridge regression?		
A	It is more sensitive to outliers than ordinary least-squares	
В	It reduces variance at the expense of higher bias	
С	It adds an L ₁ -norm penalty to the cost function	
D	It often sets several of the weights to zero	

()	Α

/	- 1	- Г
١.		- 6
	_	_

_	
	_
	(
\mathbf{v}	

	7	г
	-)	- 1
-	_	_

Question 5

There are two players A and B who play a game of chance. The initial rule is who wins 3 games will be the eventual winner and get a reward of \$60, where for each game the probability of winning for each man is 0.5. However, after 3 games where A won 2 and B won 1, the game is interrupted. What is a reasonable rewards for A and B?

A	40-20 (A receives 40\$, B receives 20\$)
В	45-15 (A receives 45\$, B receives 15\$)
C	36-24 (A receives 36\$, B receives 24\$)
D	50-10 (A receives 50\$, B receives 10\$)

- () E
- \bigcirc

There are two players A and B playing a fair game, that is, the probability of winning for each one is 1/2. The winner of a game will take \$1 from the loser. If A initially had \$10 and B had \$15 and the game continues until one loses all of his money, what is the probability of A winning all \$25?

A	1/2
В	2/3
С	3/4
D	2/5

- (E
- \bigcirc c
- \bigcirc [

A dangerous disease was found randomly in the general population with probability of 0.0013%. If one is infected, a testing method gives the correct result with 70% probability. If one is not infected, this testing methods gives the correct result with 90% probability. If a test result says that a man is infected, what is the probability that he actually has the disease?

A	1
В	0.00091
С	0.091
D	0.000091

- A
- (E
- \bigcirc
- \bigcirc D

According to a survey, there is up to 10% of athletes who use doping. A test gives correct result with probability of 90%, regardless of whether the athlete used doping or not. If Maria gets a positive result from her test, what is the probability that Maria actually dopes?

A	1
В	1/2
С	1/4
D	2/3

- \bigcirc A
- \bigcirc
- \bigcirc D

Question 9

When is an event A independent of itself?	
A	Always
В	If and only if $P(A) = 0$
С	If and only if $P(A) = 1$
D	If and only if $P(A) = 0$ or 1

- A
- O E
- \bigcirc c
- O D

The probability density function of a Markov process is	
\mathbf{A}	$p(x_1, x_2, x_3,, x_n) = p(x_1)p(x_2 x_1)p(x_3 x_2)p(x_n x_{n-1})$
В	$p(x_1, x_2, x_3,, x_n) = p(x_1)p(x_1 x_2)p(x_2 x_3)p(x_{n-1} x_n)$
С	$p(x_1, x_2, x_3,, x_n) = p(x_1)p(x_2)p(x_3)p(x_n)$
D	$p(x_1, x_2, x_3,, x_n) = p(x_1)p(x_2x_1)p(x_3x_2)p(x_nx_{n-1})$

- \bigcirc A
- () E
- \bigcirc

Question 11

Consider a linear regression model in case of number of data point is three with input-output pairs as follows: $y_1 = 22$, $x_1 = 1$, $y_2 = 3$, $x_2 = 1$, $y_3 = 3$, $x_3 = 2$. What is the gradient of mean-square error (MSE) with respect to β_1 when $\beta_0 = 0$ and $\beta_1 = 1$?

A	-1.66 (deviation 0.01)
В	-4.66 (deviation 0.001)
С	1.86 (deviation 0.01)
D	1.12 (deviation 0.001)

- O B
- \bigcirc \bigcirc

Page 2 of 6

BACK

NEXT

mever subitiit passwords tillough doogle roiths.

This form was created inside of John von Neumann Institute VNU-HCM. Report Abuse - Terms of Service

Google Forms