A Powerful Active Attack on Supersingular Isogeny Diffie-Hellman (SIDH) Key Exchange

Ankit Kumar Misra Aman Singh

CS 741: Advanced Network Security and Cryptography, Autumn 2022, IIT Bombay

December 7, 2022

Introduction

- Supersingular Isogeny Key Exchange or SIKE is a proposed post-quantum cryptographic algorithm
- Smallest key sizes among its contenders
- Perfect forward secrecy

Supersingular curves

■ SIKE works in finite fields of the form $\mathbb{F}_{p^2} = \mathbb{F}_p(i)$ with elements represented as u + vi where $u, v \in \mathbb{F}_p$

Definition

The curve $E_{\lambda}: y^2 = x(x-1)(x-\lambda)$ is supersingular if and only if λ is a root of $H_p(x) = \sum_{i=0}^{(p-1)/2} {\binom{(p-1)/2}{i}}^2 x^i$ such that $\lambda \neq 0, 1$

■ We are interested performing operations over j-invariants of supersingular elliptic curves in \mathbb{F}_{p^2}

j-invariant

Definition

For a curve in Montgomery form E_a : $y^2 = x^3 + ax^2 + x$,

$$j(E_a) = 256 \frac{(a^2 - 3)^3}{(a^2 - 4)}$$

- Isomorphic elliptic curves have equal j-invariant and curve with equal j-invariants are isomorphic
- Number of supersingular j-invariants in \mathbb{F}_{n^2} is approximately |p/12|

Isogenies

Isogenies are group homomorphisms on elliptic curves i.e they preserve the group structure. For an isogeny $\phi: E \to E'$

$$\phi(A+B) = \phi(A) + \phi(B)$$

- Unlike isomorphisms, isogenies do not conserve the j-invariant
- The kernel $ker(\phi)$ of an isogeny contains the group elements that are mapped to the identity element \mathcal{O} under ϕ
- The order of an isogeny is the number of elements in its kernel

Definition

The d-torsion isogeny is the multiplication-by-d map represented as $[d]: E \to E'$ such that [d]P = dP. E[d] is the kernel of [d] in E.

Isogeny graph

$\mathsf{Theorem}$

$$E[d] \cong \mathbb{Z}_d \times \mathbb{Z}_d$$

Theorem

If $\phi: E \to E'$ is a separable isogeny of degree d, $ker(\phi) \subseteq E[d]$

- To proceed further, we would like to compute 2-isogeny and 3-isogeny graphs starting from a fixed curve *E*
- A d-isogeny graph has vertices representing an equivalence class of elliptic curves with same j-invariant and an edge if there is an isogeny that connects them.
- Due to the above theorems, $\langle P, Q \rangle = E[2]$ and there exist three 2-isogenies from each E with kernels $\langle P \rangle$, $\langle Q \rangle$, $\langle P + Q \rangle$

Composing isogenies

- To implement SIDH we would need to compute isogenies of degree 2^d where $d \approx 200$
- This is done by composing *d* 2-isogenies
- We wish to compute $\phi: E \to E/\langle S \rangle$ where S is of order 2^d
- As the first step, we calculate $S' = [2^{d-1}]S$ which has order 2. Associated with S' is the isogeny $\phi' : E \to E/\langle S' \rangle$ of degree 2 (i.e. a step in the 2-isogeny graph)
- Now, $0 = \phi'(S') = \phi'(2^{d-1}S) = 2^{d-1}\phi'(S)$. So, $\phi'(S)$ is a point of order d-1 in $E/\langle S' \rangle$
- By continuing this process, we can get an isogeny of degree 2^d in d steps.

SIDH protocol

- Prime p is chosen to be of the form $2^{e_A}3^{e_B}-1$ with $2^{e_A}\approx 3^{e_B}$
- **Protocol parameters**: E, P_A, Q_A, P_B, Q_B where $\langle P_A, Q_A \rangle = E[2^{e_A}]$ and $\langle P_B, Q_B \rangle = E[3^{e_B}]$
- Alice and Bob choose secret integers $k_A \in [0, 2^{e_A} - 1], k_B \in [0, 3^{e_B} - 1]$ and compute the isogeny ϕ_A and ϕ_B such that $ker(\phi_A) = \langle P_A + [k_A]Q_A \rangle, ker(\phi_B) = \langle P_B + [k_B]Q_B \rangle$
- Public keys: $PK_A = (\phi_A(E) = E_A, \phi_A(P_B), \phi_A(Q_B))$ and $PK_B = (\phi_B(E) = E_B, \phi_B(P_A), \phi_B(Q_A))$
- Shared secret: Alice computes $S_{RA} = \phi_R(P_A + [k_A]Q_A) = \phi_R(P_A) + [k_A]\phi_R(Q_A)$ and hence also $E_{BA} = \phi_B(E)/\langle S_{BA} \rangle$. Similarly, Bob calculates E_{AB}

How can we attack SIDH?

- Galbraith et al., 2016.
- If a party (say, Alice) does not change her private key k_A , her full private key can be recovered in $\mathcal{O}(\log p)$ interactions.
- For the attack, interactions with Alice are modeled in terms of accessing an oracle O:
 - Input: E_B , $\phi_B(P_A)$, $\phi_B(Q_A)$, E_{AB} .
 - Output: 1 if the *j*-invariant of E_{AB} equals that of $E_B/\langle \phi_B(P_A) + [k_A]\phi_B(Q_A)\rangle$, and 0 otherwise.
- Validation checks in SIDH can prevent basic attacks.
 - Check that public key points $\phi_B(P_A)$, $\phi_B(Q_A)$ have full order of 2^n , to prevent small subgroup attacks.
 - Weil pairing check for independence: $e_{2^n}(\phi_B(P_A), \phi_B(Q_A)) = e_{2^n}(P_A, Q_A)^{3^m}$.

Extracting the LSB of k_A

- For simplicity, let $R = \phi_B(P_A)$ and $S = \phi_B(Q_A)$.
- Attacker queries the oracle on $(E_B, R, S + [2^{n-1}]R, E_{AB})$.
- Oracle returns 1 if and only if E_{AB} and $E_B/\langle R + k_A(S + [2^{n-1}]R)\rangle$ are isomorphic, i.e., $\langle R + k_A(S + [2^{n-1}]R)\rangle = \langle R + k_AS\rangle$.

Lemma

Let $R, S \in E[2^n]$ be linearly independent points of order 2^n , and $k_A \in \mathbb{Z}_{2^n}$. Then, $\langle R + k_A(S + [2^{n-1}]R) \rangle = \langle R + k_AS \rangle$ if and only if k_A is even.

Extracting the LSB of k_A

Lemma

Let $R, S \in E[2^n]$ be linearly independent points of order 2^n , and $k_A \in \mathbb{Z}_{2^n}$. Then, $\langle R + \lceil k_A \rceil (S + \lceil 2^{n-1} \rceil R) \rangle = \langle R + \lceil k_A \rceil S \rangle$ if and only if k_{Δ} is even.

Proof.

 (\Longrightarrow) Groups generated by $R + [k_A](S + [2^{n-1}]R)$ and $R + [k_A]S$ are equal, so there exists $\lambda \in \mathbb{Z}_{2^n}^*$ such that

$$\lambda(R + [k_A](S + [2^{n-1}]R)) = R + [k_A]S.$$

By linear independence of R and S, we have $\lambda = 1$, and thus $[k_A][2^{n-1}]R = 0$. Since R has order 2^n , k_A must be even.

$$(\Leftarrow)$$
 If k_A is even, then $[k_A][2^{n-1}]R = 0$. Hence proved.

11 / 17

Extracting the LSB of k_A

- The lemma just described implies that, for query $(E_B, R, S + [2^{n-1}]R, E_{AB})$, the oracle returns
 - 1 if and only if k_A is even.
 - lacksquare 0 if and only if k_A is odd.
- LSB of k_A has been determined by a single oracle access.
 - LSB = 1—oracle's response
- A similar strategy is adopted for the higher-order bits.

Strategy to extract an arbitrary bit of k_A

- Let $k_A = k_0 + 2^1 k_1 + \dots + 2^{n-1} k_{n-1} = \mathcal{K}_i + 2^i k_i + 2^{i+1} k'$, where the *i* LSBs (given by \mathcal{K}_i) are already known.
- The attacker queries $(E_B, [a]R + [b]S, [c]R + [d]S, E_{AB})$ for appropriately chosen a, b, c, d.
- Conditions to be satisfied:
 - The oracle's response should reveal k_i .

A Powerful Active Attack on Supersingular Isogeny Diffie-Hellman (SIDH) Key Exchange

 Attack should pass undetected through order checking and Weil pairing validation checks.

Designing the attacker's query

- More formally, the following have to be satisfied:
 - If $k_i = 0$ then $\langle [a + k_A c]R + [b + k_A d]S \rangle = \langle R + k_A S \rangle$.
 - If $k_i = 1$ then $\langle [a + k_A c]R + [b + k_A d]S \rangle \neq \langle R + k_A S \rangle$.
 - \blacksquare [a]R + [b]S and [c]R + [d]S both have order 2^n .
 - $e_{2n}([a]R + [b]S, [c]R + [d]S) = e_{2n}(R, S) = e_{2n}(P_A, Q_A)^{3m}$
- The first three are satisfied by

A Powerful Active Attack on Supersingular Isogeny Diffie-Hellman (SIDH) Key Exchange

$$a = 1$$
 $b = -2^{n-i-1} \mathcal{K}_i$
 $c = 0$ $d = 1 + 2^{n-i-1}$

■ Thus, $R' = [\theta](R - [2^{n-i-1}K_i]S)$ and $S' = [\theta][1 + 2^{n-i-1}]S$.

Designing the attacker's query

- For the last condition, we need $e_{2^n}(R',S') = e_{2^n}(R,S)^{\theta^2(1+2^{n-i-1})} = e_{2^n}(R,S)$.
- So we use $\theta = \sqrt{(1+2^{n-i-1})^{-1}} \pmod{2^n}$.
- This square root can be shown to exist for $n i 1 \ge 3$, i.e., i < n 4.
- Oracle queries are used for $i=0,1,\ldots,n-4$, followed by brute force search over all 8 possibilities for i=n-3,n-2,n-1, checking whether $E/\langle R+k_AS\rangle$ equals E_A in each case.

Implementation

- We implemented SIDH and the attack in Sage, and verified their working for small values of e_A and e_B .
- Code available at https://github.com/amansingh-13/SIDH.

References

- **1** Galbraith et al., On the Security of Supersingular Isogeny Cryptosystems, Asiacrypt 2016.
- PQCRYPTO's Summer School on Post-Quantum Cryptography in Eindhoven, 2017.
- 3 Craig Costello, Supersingular Isogeny Key Exchange for Beginners, Selected Areas in Cryptography (SAC) 2019.
- 4 William Borgeaud's blog post on Isogeny-Based Crypto Part 1: The SIDH Protocol. 2020.
- 5 Sage documentation.

