왜 파이선인가

파이선 소개

파이선은 1980년대 말 Guido van Rossum이 만든 오픈 소스 범용 프로그래밍 언어이다. 자바나 C 언어에 비해 배우기 쉽고, 기능도 충분하여 여러 분야에서 사용되고 있으며 최근 대학에서는 기본 언어로 파이선을 주로 채택하고 있다.

데이터 사이언스 분야나 고속 데이터 처리 분야에서 특히 파이선이 장점을 갖고 있는데, 예전에는 이러한 기능을 주로 C나 자바로 구현했었다. 파이선의 가장 큰 장점은 C나 자바에 비해 쉽다는 것이다. 그리고 이미 개발되어 있는 라이브러리를 불러서 사용함으로써 파이선의 느린 처리속도를 충분히 개선할 수 있다. 파이선 자체는 속도가 느리지만 이미 라이브러리화 되어 있는 모듈을 호출하면 속도 문제를 해결할 수 있다.

여기서 파이선이 속도가 느리다고 하는 이유는 파이선의 동작이 기본적으로 대화형 속성(interpreted nature) 모드로 동작하기 때문인데, 대화형 모드란 소스 코드를 컴파일하는 과정이 없이 코드의 동작을 바로 라인 단위로 실행하는 것을 말한다. 이러한 대화형 속성은 프로그램 개발은 쉽고, 직관적이며 빠르게 할 수 있다는 장점이 있다.

즉, 파이선은 문법도 쉽고, 편리한 개발 방법을 제공며, 동시에 다른 사람들이 만든 라이브러리가 풍부하여 실행시에는 빠른 처리속도를 얻는 장점을 가지고 있다.

파이선의 대표적인 라이브러리는 NumPy인데 이 라이브러리는 어레이를 편리하게 다룰 수 있는 기능을 제공한다. 어레이는 테이블 형태의 데이터 구조로 가장 일반적을 사용되는 데이터 포맷이다. ScitPy 라이브러리를 과학적인 계산을 지원하는 라이브러리이고, matplotlib는 그래프를 편리하게 그리는데 사용하는 라이브러리이다. panda는 데이터분석과 통계처리 라이브러리이다. scikitlearn은 기계학습 라이브러리이다.

파이선 개발을 위한 유용한 인터페이스로 Jupyter/IPython이 있는데, 이는 프로그램 코딩, 라인별 동작확인, 문서관리 등을 편리하게 제공하며 전세계 파이선 개발자가 애용하는 개발 환경도구이다. 이 책에서도 Jupyter를 사용하여 설명하겠다.

파이선 자체와 위에 소개한 라이브러리들을 모두 통칭하여 SciPy 스택 또는 PyData 플랫폼이라고 도 부른다.

데이터 사이언스에 사용되는 다른 도구

과학이나 공학 분야에서 수치적 분석에 널리 사용되는 MATLAB이 있고, 통계분석으로 유명한 SPSS가 있다. 이들은 모두 유료 소프트웨어이다. 통계처리 언어로 파이선과 함께 널리 사용되는 R이 있는데 이는 무료 소프트웨어이다.

IPython

IPython("interactice" Python)은 Fernando Perez가 2001년에 개발한 도구로, 개발자가 프로그램을 문장 단위로 실행해볼 수 있는 도구이다. 2011년에 IPyton에 노트북(Notebook)이라는 기능이 추가되었는데, 노트북은 프로그램 소스 코드 뿐 아니라, 프로그램에 대한 설명 도큐먼트, 결과 그래프, 수식 등을 모두 하나의 파일에 저장하고 관리하는 편리한 기능을 제공한다. 예전에도 프로그램에 주석문을 컴파달 수 있지만 텍스트형태로 제한된 도큐먼트만 가능했었다. 노트북을 사용하면 다양

한 서식과, 그리프, 그리고 스크롤바 같은 사용자 인터페이스도 한번에 다룰 수 있다. 쥬피터 노트북 사용자가 점점 많아지고 지원하는 언어도 파이선 뿐 아니라 R, Ruby, Julia 등으로 늘어나면서 노트북을 Jupyter라는 이름으로 사용하게 되었다 (2014년). IPython은 Jupyter 노트북의 핵심 기능, 즉, 컴파일, 변수관리 등을 담당하며 이를 kernel이라고 부른다. 쥬피터를 온라인을 실습한 수 있는 사이트가 있다. 쥬피터 노트북의 장점은 프로그램 개발과 실행 모든 동작을 웹기반으로 수행할 수 있다는 것이다.

웹기반으로 연습할 수도 있는데 아래 사이트를 참조:

try.jupyter.org

wakari.io

쥬피터 실행

터미널 창을 열고 작업할 디렉토리로 이동해서 아래 명령을 입력하면 쥬피터를 실행할 수 있다. 아래에서 현재 디렉토리가 홈디렉토리(~) 아래에 있는 code/data_sci 인 것을 나타내며 '\$" 기호는 프롬프트이다. 즉, 입력할 명령문은 jupyter notebook인 것을 나타낸다.

~/code/data_sci \$ jupyter notebook

쥬피터는 웹기반으로 동작하며 실습에서 사용하는 컴퓨터 자체가 로컬 서버역할을 하고 웹 브라우 저처럼 유피터 대시보드가 나타난다. 아래에 쥬피터 대시보드를 나타냈다.

현재 디렉토리에 아무 파일도 없다는 것을 나타낸다. 대시보드에 3개의 탭이 있는데 각각의 기능은 다음과 같다. Files는 현재 디렉토리에 있는 모든 파일을 보여준다. Running 탭은 현재 실행중인 프로그램이 무엇인지를 알려주고 Clusters 탭은 여러개의 프로그램을 병렬로 실행시킬 때 사용한다.

쥬피터에서는 프로그램 파일을 모두 노트북(notebook)이라고 부르며 확장자는 .ipynb이다. 노트북에는 프로그램 코드 뿐 아니라, 설명문서, 그래프 등도 포함할 수 있다. 쥬피터는 일종의 파일관리자, 프로그램 실행관리자라고 볼 수 있으며, 실제로 파이선 코드를 실행하는 것은 커널(kernel) 프로세스가 담당한다. 쥬퍼터는 커널의 도움을 받아 프로그램을 실행하고 그 결과를 사용자에게 대화형으로 제공하는 인터페이스라고 할 수 있다.

새로운 노트북을 만들려면 맨 우측 New 버튼을 클릭하고 Python3 노트북을 선택하면 된다. 아래와 같은 새로운 노트북 창이 나타난다.

새로 만들어진 노트북의 이름은 "Untitled"부분을 클릭하여 바꿀 수 있다. 위에서 In [] 부분을 셀이라고 한는데 현재 이 셀의 타입이 Code로 되어 있다(툴발 중간에 Code라는 단어가 보임). 즉, 현재 In [] 부분은 코드셀(code cell)이라고 부르며 파이선 코드를 입력할 수 있는 상태를 말한다.

셀 타입이 코드셀이며 파이선 코드를 입력할 수 있고, 셀 타입을 문서 작성용으로 바꿀 수 있다. 아래와 같이 Code 우측의 드롭다운 메뉴를 누르면 Markdown을 선택할 수 있는 메뉴가 나타난다.

여기서 Markdown을 선택하면 아래와 같이 In [] 없는 입력창이 나타난다. 이를 마크다운 셀이라고 하는데 이 셀은 문서를 편집하여 도큐먼트를 만드는데 사용된다. 즉 쥬피터 노트북은 코드 영역과 문서 영역을 쉽게 구분하여 작성할 수 있게 해준다.

위의 마크다운 셀을 클릭하면 문서 내용을 입력할 수 있는데, 예를 들어 아래와같은 내용을 입력하였다고 하자.

위의 내용처럼, '#'은 제목의 수준을 타나내는데 '#'의 갯수에 따라 제목이 수준이 정해지며 '#'의 갯수가 적을수록 상위 레벨의 제목이 된다. 문서 내용을 입력한 후에 Shift + 엔터키를 입력하면 마크 다운이 적용된 포맷으로 보인다(아래 그림 참조). 마크다운 셀을 다시 편집하려면 해당 마크다운 셀내부를 두 번 클릭하면 된다.

즉, 마크다운 셀을 편집하려면 셀을 두번 클릭하면 되고, 마크다운이 적용된 (rendered) 표현을 보려면 Shift + 엔터 키를 입력하면 된다. 위의 마크다운 셀 실행 결과를 보면 맨 아래에 In []이 있는 셀즉, 코드셀이 자동으로 나타나며 이곳에 파이선 코드를 입력할 수 있다.

아래에 코드셀에 간단한 파이선 코드를 입력하고 이를 실행 (Shift + 엔터)한 결과를 보였다. 코드셀을 편집하려면 해당 셀 내부를 한번만 클릭하면 되고 다시 해당셀을 실행하려면 Shift + 엔터로 실행할 수 있다. 셀을 실행시키지 않고 편집 모드에서 빠져나오기만 하려면 Esc 키를 누르거나 화면의셀 외부 다른 곳을 클릭하면 된다 (이 모드를 명령 모드라고 부른다). 명령 모드에서 a나 b를 입력하면 빈 셀을 현재 셀의 위나 아래에 하나 추가한다. 편집 모드의 셀은 초록색이고 명령 모드는 파란색으로 보인다.

마크다운 셀이나 코드셀을 실행할 때 Shift + 엔터 가 아니라 Ctrl + 엔터 키를 사용하면 셀을 실행한 후 커서의 위치가 다음 셀로 이동하지 않고 현재 셀에 남아있게 된다. 셀 편집 모드에서 셀을 두개로 분할하려면 분할하고 싶은 위치에서 Shift + Ctrl + '-' 키를 입력하면 된다.

파이선 맛보기

코드셀(code cell)에 파이선 코드를 입력하고 Shift + 엔터키를 입력하면 코드가 실행된다 파이선 문법은 다음 사이트에 자세히 소개되어 있다 https://docs.python.org/3.4/contents.html

기초 문법

lists, strings, tuples, dictionaries, for-loop, while-loop, if-else

숫자, 문장 출력

숫자, 문자열 등을 출력하려면 pritn() 함수를 아래와 같이 사용하면 된다.

In [4]: print("처음 실행하는 파이선...")

처음 실행하는 파이선...

실습예제1

본인의 이름을 출력해 보아라.

In []:

노트북에서 코드셀에는 일렬 번호가 자동으로 배정된다 (위에서는 [2] 임). 이 번호 숫자는 크게 신 경쓰지 않아도 된다. 번호는 나중에 모두 없애거나 새로운 번호로 새로 배정할 수도 있다.

셀을 삭제하거나 복사하려면 명령 모드에서 x, c, v 를 사용하면 된다. x는 셀 삭제, c는 복사, v는 붙여넣기를 한다. 두개의 셀을 합치려면 Shict + m을 입력하고, 하나의 셀을 둘로 나누려면 Shift + Ctrl + '-'를 입력한다. 새로운 셀 삽입은 a(위에 삽입), b(아래 삽입)을 한다 작업 중인 셀의 위치를 이동하려면 명령 모드에서 j, k 키를 사용하면 선택하는 셀의 위치를 위 아래로 이동한다 (또는 상하 표시화살표를 이용해도 된다)

코드셀을 실행한 결과 화면을 잠시 가리려면 명령 모드에서 '0' 를 입력하면 된다

변수 사용

변수는 아래와 같이 숫자, 문자열 등을 임의로 배정할 수 있다.

```
In [5]: age1 = 29
age2 = 33
name = '홍길동'
name2 = "홍길동2"

print(name, '나이는', age1)
print(name2, '나이는', age2)
홍길동 나이는 29
```

 In [6]:
 address = """홍길동의 집주소는 여러줄로 되어있습니다""" print(address)

홍길동의 집주소는 여러줄로 되어있습니다

홍길동2 나이는 33

 In [7]:
 print(name[0])

 #문자열에서 특정 위치의 글자를 출력할 수 있다

홍

실습예제2

myName 변수를 만들어 본인의 이름을 배정하고, myAge 변수를 만들어 본인의 나이를 배정한 뒤 출력해 보아라.

In []:

실습예제3

myName변수에서 본인의 성만 출력해 보아라.

In []:

특수문자 출력

", ', \, 등의 특수 문자를 화면에 출력하려면 앞에 \' 문자를 입력하면 된다. 새로운 라인을 출력하려면 \n 을 입력하면 된다.

print 문 안에서 문자열 전체를 그대로 출력하려면 'r'을 문자열 앞에 붙이면 된다(raw의 의미임).

```
In [8]: print("Hello \"world\"")
    print("A list:\n* item 1\n* item 2")
    print("C:\\path\\on\\windows")
    print(r"C:\path\on\windows")
```

Hello "world" A list:

* item 1

* item 2 C:\path\on\windows C:\path\on\windows

실습예제4

출력의 결과가 다음과 같이 나오도록 실습해 보아라.(코드는 한 줄로 작성, 새로운 라인포함 된것임.)

파이썬 "짱" 좋아요 너무좋아요!

In []:

리스트

여러 항목의 집합을 말하며 항목의 타입은 서로 달라도 되나, 대부분 같은 타입을 사용한다. 리스트를 만들려면 아래와 같이 []를 사용하고 각 항목을 ','로 구분하면 된다. 리스트의 내용은 변경될 수 있다(mutable)

In [9]: items = [1, 2, 3, 4, 'kim'] items

Out[9]: [1, 2, 3, 4, 'kim']

In [10]: #리스트의 길이는 내장함수인 `len()`을 사용하여 알 수 있다. len(items)

Out[10]: 5

In [11]: items[4]=5 #5번째 항목을 문자열에서 숫자로 바꾸었다 items

Out[11]: [1, 2, 3, 4, 5]

내장 함수란 미리 만들어 둔 함수인데 아래 사이트에서 함수들을 확인할 수 있다. https://docs.python.org/3.4/library/functions.html.

아래는 리스트의 합계를 구하는 내장함수 sum()의 사용예이다

리스트 내의 측정 항목은 아래와 같이 인덱스로 찾을 수 있다. 인덴스는 0부터 시작한다. 뒤에서부터 항목을 찾을 수도 있는데 이때는 -3과 같이 마이너스 기호를 붙이면 된다.

In [12]: items[0]

Out[12]: 1

In [13]: items[-1]

Out[13]: 5

In [14]: #리스트의 일부 구간만 얻으려면(slice) ':'를 사용한다 items[1:4]

Out[14]: [2, 3, 4]

실습예제5

1,2,3,4,5 순서대로 myList 변수에 리스트를 만들고 마지막에 6을 추가하는 내장함수를 사용해 보고 뒤에서 세번째까지만 출력해 보아라.

HINT. 리스트 a의 마지막에 x를 추가하는 함수는 다음과 같다. a.append(x)

In []:

튜플

리스트와 달리 튜플(Tuples)을 사용하면 고정된 값들로 구성된 리스트를 만들 수 있다. 즉, 값을 나중에 바꿀 수 없다. 이렇게 나중에 값을 바꿀 수 없는 것을 immutable하다고 부른다.

In [15]: #튜플은 ()를 사용하여 만들거나, 로 구분만 해도 된다

```
my_tuple = (1, 2, 3)
your_tuple = 4,5,6,7
print(my_tuple)
print(your_tuple)
```

(1, 2, 3)(4, 5, 6, 7)

In [16]: #특정 항목을 찾을 때는 리스트와 같이 []를 사용한다

print(my_tuple[0])

1

In [17]: my_tuple[2] = 7

#튜플 값을 변경하는 것은 불가능하다

TypeError Traceback (most recent call last)
<ipython-input-17-b38a5dfc18b0> in <module>()
----> 1 my_tuple[2] = 7

2#튜플 값을 변경하는 것은 안된다

TypeError: 'tuple' object does not support item assignment

실습예제6

괄호를 이용하여 myTuple변수에 1,3,5,7,9를 선언하고, 튜플의 값을 임의로 변경해 보아라.

In []:

딕셔너리(Dictionaries)

딕셔너리를 사용하면 키-값의 조합을 항목으로 갖는 리스트를 만들 수 있다. 딕셔너리에서는 항목을 찾을 때 키를 사용하며, 딕셔너너리에서 순서는 중요시하지 않는다. 딕셔너리는 {}로 만든다.

In [18]: my_dict = {'a': 1, 'b': 2, 'c': 3} print('a:', my_dict['a']) print(my_dict.keys())

```
a: 1 dict_keys(['a', 'b', 'c'])
```

실습예제7

딕셔너리에도 내장함수가 존재한다. 딕셔너리 a의 Key들을 모아놓은 리스트를 돌려주는 함수는 a.keys()이다. 딕셔너리 myDic변수에 'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5를 선언하고 딕셔너리 myDic의 key들을 모아놓은 리스트를 출력해 보아라.

In []:

for 루프

여러 항목에 대해 동작을 반복할 때 for 루프를 실행할 수 있는데, 주의할 것은 for 문장의 끝에는 ':'가 있어야 하며 for 문이 적용되는 블록(block) 영역은 반드시 들여쓰기 (indentation)을 해야 한다. 들여쓰기는 한 프로그램 내에서 모두 같은 크기로 지정해야 하는데 일반적으로 스페이스 4개 또는 탭을 사용한다.

```
In [19]: for item in items: print(item)

1 2 3 4 5
```

In [20]: for i in (1,2,3,4,5):
print (i*2)
2

4

6

8

10

In [21]: **for** i **in** range(1,6): print (i*3)

range 구간에서 마지막 값은 포함되지 않는다

3

6

9

12 15

In [22]: #아래와 같이 for 문장을 간결하게 쓰는 방법도 있다. 이를 list comprehension이라고 부른다.

 $\begin{array}{l} squares = [i * i \ \textbf{for} \ i \ \textbf{in} \ items] \\ squares \end{array}$

Out[22]: [1, 4, 9, 16, 25]

In [23]: #시리즈를 사용하여 컬럼 값을 입력할 수 있다 (없는 인덱스는 NaN이 된다) val = Series([-1.2, -1.5, -1.7], index=['two', 'four', 'five'])

```
frame2
         NameError
                              Traceback (most recent call last)
         <ipython-input-23-8a101e12b11a> in <module>()
              1#시리즈를 사용하여 컬럼 값을 입력할 수 있다 (없는 인덱스는 NaN이 된다)
         ----> 2 val = Series([-1.2, -1.5, -1.7], index=['two', 'four', 'five'])
               3 frame2['debt'] = val
               4 frame2
         NameError: name 'Series' is not defined
         실습예제8
         for문과 range를 사용하여 구구단 2단을 출력해 보아라.
In [ ]:
         실습예제9
         se_dic변수에 1:1, 2:4, 3:9로 딕셔너리를 선언해주고, key값과 value값을 출력해 보아라.
In [ ]:
         if 문
In [24]: for item in items:
          if item \% 2 == 0:
            print(item)
         #위에서 조건문을 확인할 때에는 '=='를 사용하며, '=' 는 변수에 값을 지정할 때 사용한다. if문도 뒤
         에 ':'가 와야 하며,
         #이 조건이 만족될 때 실행되는 코드 블록은 들여쓰기를 해야 한다
         2
         4
         실습예제10
         myGrade변수에 100을 선언하고
         if문을 사용하여 myGrade값이 100인 경우이면 "만점입니다!"를 출력해 보시오.
In [ ]:
         실습예제11
         myMoney변수에 3000을 선언하고 if문을 사용하여 3000원이상이면 "택시를 타라"를 출력해보아라.
         (비교연산자 사용)
In [ ]:
```

frame2['debt'] = val

라이브러리

In [25]: #라이브러리를 불러 쓰려면 import를 호출해야 한다 #아래는 수학 라이브러리인 math를 부르는 명령이며 이 라이브러리 이름을= 편리하게 'm'으로 부른 다는 뜻이다

import math as m

m.factorial(4)

Out[25]: 24

파이선이 제공하는 대표적인 라이브러리는 다음과 같다.

NumPy (Numerical Python) 다차원 어레이를 쓸 수 있게 한다. 선형대수 처리, 푸리에 변형(스펙트 럼 분석) 등을 제공한다

SciPy (Scientific Python). SciPy는 NumPy 가 설치되어야 실행된다. 공학적, 과학적 계산 기능을 제 공한다.

Matplotlib 히스토그램, 히트맵 등 다양한 그림을 그리는데 사용된다.

Pandas 데이터를 구조화해서 사용할 때 편리하다. 데이터의 구조를 파악하고 결측치 처리등을 할 때 편리하다.

Scikit Learn 기계하가습용 라이브러리로 NumPy, SciPy, matplotlib을 사용한다. 기계학습의 대표 적인 기능은 분류, 리그레션, 클러스터링, 차원축소 등의 기능을 제공한다.

Statsmodels 통계모델링에 사용한다. 데이터를 탐색하고, 통계적모델을 만들고 테스트하는데 사 용된다.

Seaborn matplotlib 위에서 실행되면 좀 더 세련된 그래픽, 시각화 기능을 제공한다.

함수

자주 사용되는 기능을 함수로 정의해 두고 나중에 불러쓰는 것이 프로그래밍의 기초이다. 아래는 입력받은 숫자(아래에서 number)가 짝수인지를 찾아내는 함수 정의이다. 함수는 def 문으로 정의하 며 정의문은':'으로 끝나야 한다. 아래에서 """로 시작하고 끝나는 부분은 코멘트 영역이다.

함수가 실행되고 나면 'return' 부분이 출력으로 얻게 되는 부분이다. 위의 함수에서는 리턴문이 '=='를 포함하고 있으므로 이는 Boolean 값을 리턴한다. 즉 True나 False 중에 한 값을 리턴한다.

위에서 정의된 함수를 상용하는 예는 아래와 같다.

```
In [26]: def is_even(number):
```

"""Return whether an integer is even or not.""" **return** number % 2 == 0

is even(3)

is even(4)

Out[26]: True

실습예제11

더하기를 수행하는 함수를 만들어 보아라. 함수의 이름은 add이다. 인자는 a와 b를 주어라.

In []:

함수 호출 방법

함수를 호출 할 때 인자 값으로 디폴트로 정해진 값을 사용하는 것이 가능하다. 아래의 예에서 두번째 인자 값을 지정하지 않으면 디폴트로 2가 사용된다. 또는 인자의 이름을 명시해서 호출하는 것도 가능하다.

In [27]: **def** remainder(number, divisor=2):

return number % divisor

remainder(5)

remainder(5, 3)

remainder(5, divisor=3)

Out[27]: 2

함수는 여러개의 변수를 인자로 받을 수 있는데, 위치로 값을 받는 인자를 위치(positional) 인자라고 하고 키값을 지정하는 인자를 키타입(keyword) 인자라고 한다.

In [28]: **def** f(*args, **kwargs):

print("Positional arguments:", args)
print("Keyword arguments:", kwargs)

f(1, 2, c=3, d=4)

#위에서 'args'는 위치 인자들을 포함하는 튜플을 가리키고, 'kwargs'는 키타입 인자를 포함하는 딕셔너리를 가리킨다.

'hello'.upper()

#여기서 `upper()`함수는 `str` 객체가 지원하는 메소드이고 'hello'가 str 타입의 객체이므로 upper() 함수를 호출할 수 있는 것이다.

#파이선 객체 뒤에 '.'을 입력하고 탭을 누르면 어떤 함수들이 지원되는지를 보여준다

Positional arguments: (1, 2) Keyword arguments: {'c': 3, 'd': 4}

Out[28]: 'HELLO'

실습예제12

본인의 이름을 출력하는 함수를 만들어 보아라. 함수의 이름은 say_myName으로 하고, 인자는 2개로, 두번째오는 인자 값으로 디폴트로 정해준다. def say_myName(name, y = 'genius') 형식으로! 본인의 이름과 y를 출력하는 함수를 완성해 보아라

In []:

```
In [1]: #숫자 다루기
       #튜플, 리스트, 배열
In [2]: import numpy as np
       #튜플 만들기
       x = (1, 2, 3, 4, 5)
       print(x)
       type(x)
       (1, 2, 3, 4, 5)
Out[2]: tuple
In [3]: x[4]
Out[3]: 5
In [4]: x[2] =100 #튜플은 값의 변경이 불가능하다.
       TypeError
                                               Traceback (most recent call la
       st)
       <ipython-input-4-80553d451659> in <module>()
       ----> 1 x[2] =100 #튜플은 값의 변경이 불가능하다.
       TypeError: 'tuple' object does not support item assignment
In [5]: #리스트 만들기
       y = [1, 2, 3, 4, 5]
       print(y)
       type(y)
       [1, 2, 3, 4, 5]
Out[5]: list
In [6]: y[2]
Out[6]: 3
In [7]: y[2] = 100 #리스트는 값으 변경이 가능하다.
       y[2]
Out[7]: 100
In [8]: #리스트에는 임의의 타입 데이터를 담을 수 있다
       z = [1, 'A', 3.14]
       type(z)
Out[8]: list
In [9]: #리스트로부터 어레이(배열)를 만드는 예
       #np의 array 함수를 사용한다
```

```
data = [1,2,3,4,5,6] #1차원 배열임
         arr = np.array(data) #python list를 numpy ndarray로 바꾸는 함수를 사용
         print(arr)
         type(arr)
         [1 2 3 4 5 6]
 Out[9]: numpy.ndarray
In [10]: #2차원 리스트로부터 2차원 배열을 만드는 예
         data = [[1,2,3],[4,5,6],[7,8,9]]
        print(data)
         type(data)
         [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
Out[10]: list
In [11]: arr = np.array(data) #list를 ndarray로
        print(arr)
         type(arr)
         [[1 2 3]
         [4 5 6]
         [7 8 9]]
Out[11]: numpy.ndarray
In [12]: #배열의 각 항목의 타입을 알아보려면 dtype 속성값을 보면 된다
         arr.dtype
Out[12]: dtype('int32')
In [13]: #배열의 구조를 보려면 shape 속성을 보면 된다
         arr.shape
Out[13]: (3, 3)
In [14]: #초기값이 0인 배열을 만드는 법
        np.zeros((2,3))
Out[14]: array([[ 0., 0., 0.],
               [0., 0., 0.]
In [15]: #레인지(범위)를 만드는 법
        x = range(5)
        print(x)
         x[2] #레인지는 배열처럼 값을 불러올 수 있다.
        range(0, 5)
Out[15]: 2
In [16]: #레인지 형태로 배열을 만드는 법
        y = np.arange(5)
        У
Out[16]: array([0, 1, 2, 3, 4])
In [17]: y[2]
Out[17]: 2
```

```
In [18]: #데이터의 타입을 변경하려면 astype을 사용한다
        #정수로 구성된 배열을 부동소수 타입을 변환하는 예
        z = y.astype(np.float64)
Out[18]: array([ 0., 1., 2., 3., 4.])
In [19]: #벡터화: 배열에 상수를 곱하거나 더할 수 있다
        arr*2
Out[19]: array([[ 2, 4, 6],
               [ 8, 10, 12],
               [14, 16, 18]])
In [20]: arr + 1000
Out[20]: array([[1001, 1002, 1003],
               [1004, 1005, 1006],
               [1007, 1008, 1009]])
In [21]: #배열을 곱하면 각 항목별로 곱셈을 한다
        arr*arr
Out[21]: array([[ 1, 4, 9],
               [16, 25, 36],
               [49, 64, 81]])
        실습예제 1
        arr 배열에 3을 곱한 뒤 음수로 바꾸어보시오.
 In [ ]:
In [22]: #리스트
        x = [1, 2, 3, 4, 5]
        X
Out[22]: [1, 2, 3, 4, 5]
In [23]: #배열
        y = np.array(x)
Out[23]: array([1, 2, 3, 4, 5])
In [24]: x[2] = 100
        y[2] = 100
Out[24]: [1, 2, 100, 4, 5]
In [25]: y
Out[25]: array([ 1, 2, 100, 4, 5])
In [26]: x_slice = x[3:5]
        x slice
```

```
In [27]: y_slice = y[3:5]
        y_slice
Out[27]: array([4, 5])
In [28]: x_slice[1] = 200
        y_slice[1] = 200
In [29]: x_slice
Out[29]: [4, 200]
In [30]: y_slice
Out[30]: array([ 4, 200])
In [31]: #리스트의 일부인 슬라이스 리스트에서 값을 바꾸어도 원본 리스트의 값은 달라지지 않는다.
Out[31]: [1, 2, 100, 4, 5]
In [32]: #그러나 배열에서는 슬라이스 배열의 값을 바꾸면 원본 배열의 값도 달라진다
        #list는 새로운 주소값을 생성하여 참조하지만, 배열은 동일 주소값을 참조하기 때문이다.
        #리스트와 배열의 다른 점 중 하나
        У
Out[32]: array([ 1, 2, 100, 4, 200])
        실습예제 2
        1부터 10까지의 정수를 원소로 가진 배열을 만들고, 4번째부터 6번째 까지의 값을 slice하여 출력해
        보시오.
In [ ]:
In [33]: arr
Out[33]: array([[1, 2, 3],
              [4, 5, 6],
              [7, 8, 9]])
In [34]: arr[1,2]
Out[34]: 6
In [35]: arr[1][2]
Out[35]: 6
In [36]: #2차원 배열 중에 한 차원의 배열만 얻으려면 인자를 한 차원 낮게 주면 된다
        #아래는 2차원 배열 중 첫번째 행만 얻는다
        arr[0]
Out[36]: array([1, 2, 3])
In [37]: #행은 1~2의 범위를, 열은 1~3의 범위를 얻는 예이다
```

Out[26]: [4, 5]

```
arr[:2,:3]
Out[37]: array([[1, 2, 3],
               [4, 5, 6]])
In [38]: #전체는 ':'로 표시할 수 있다
        arr[:2,:]
Out[38]: array([[1, 2, 3],
               [4, 5, 6]])
In [39]: #배열의 불리언 색인
        name = np.array(['kim', 'lee', 'park', 'kim'])
        #0~11 값을 얻고 이를 4x3 배열로 재구성한다
        data = np.arange(12).reshape(4,3)
        data
Out[39]: array([[ 0, 1, 2],
               [ 3, 4, 5],
               [6,7,8],
               [ 9, 10, 11]])
In [40]: name == 'kim'
        # 첫번째, 네번째 항목만 True를 얻는다
Out[40]: array([ True, False, False, True], dtype=bool)
In [41]: #배열 data에서 첫번째, 네번째 행만 얻는 방법
        data[name == 'kim']
Out[41]: array([[ 0, 1, 2],
               [ 9, 10, 11]])
In [42]: #배열 data에서 'kim' 또는 'lee'의 위치의 행만 얻는 방법
        data[(name == 'kim') | (name == 'lee')]
Out[42]: array([[ 0, 1, 2],
               [ 3, 4, 5],
               [ 9, 10, 11]])
In [43]: #5 보다 큰 값을 모두 5로 교체하는 방법
        data[data > 5] = 5
        data
Out[43]: array([[0, 1, 2],
               [3, 4, 5],
               [5, 5, 5],
               [5, 5, 5]])
        실습예제 3
        0부터 15까지의 정수를 가진 4*4 배열을 만들고, 7 이하의 정수를 모두 음수로 바꾸어보시오.
```

In [44]: #이름이 'kim'에 해당하는 내용을 모두 100으로 바꾸는 예

data[name == 'kim'] = 100

In []:

data

```
Out[44]: array([[100, 100, 100],
              [3, 4, 5],
              [ 5,
                         5],
                    5,
              [100, 100, 100]])
In [45]: data = np.arange(12).reshape(4,3)
        data
Out[45]: array([[ 0, 1, 2],
              [3, 4, 5],
              [6,7,8],
              [ 9, 10, 11]])
In [46]: #팬시 색인 - 어레이에서 특정 행을 바로 액세스할 수 있다
        #아래는 두번째와 세번째 행을 얻는 경우이다
        data[[1,2]]
Out[46]: array([[3, 4, 5],
              [6, 7, 8]])
In [47]: data[[0]]
Out[47]: array([[0, 1, 2]])
In [48]: #행의 순서를 임의의 순으로 바꿀 수 있다
        #팬시 색인으로 배열을 바꾸면 본사본이 생기며 원래의 내용을 바지 않는다
        data[[3,2,0,1]]
Out[48]: array([[ 9, 10, 11],
              [6,7,8],
              [ 0, 1, 2],
              [ 3, 4, 5]])
In [49]: data
        # data 내용은 그대로 남아 있다
Out[49]: array([[ 0, 1, 2],
              [ 3, 4, 5],
              [6,7,8],
              [ 9, 10, 11]])
In [50]: #행과 열을 모두 바꾸려면 아래와 같이 한다
        data[[3,2,1,0]][:,[2,1,0]]
Out[50]: array([[11, 10, 9],
              [8, 7, 6],
              [5, 4, 3],
              [ 2, 1, 0]])
In [51]: #트랜스포즌 행과 열의 위치를 바꾸는 것이다
        data.T
Out[51]: array([[ 0, 3, 6, 9],
              [ 1, 4, 7, 10],
              [ 2, 5, 8, 11]])
In [52]: #배열의 곱셈은 np.dot()을 사용한다
        np.dot(data,data.T)
Out[52]: array([[ 5, 14, 23, 32],
```

```
[ 23, 86, 149, 212],
               [ 32, 122, 212, 302]])
In [53]: #조건에 따라 값을 다르게 선택하는 예
        #np.where 를 사용한다
        #아래는 5보다 크면 6으로 바꾸고 5보다 작으면 모두 3으로 바꾼다
        np.where(data>5, 6, 3)
Out[53]: array([[3, 3, 3],
              [3, 3, 3],
              [6, 6, 6],
               [6, 6, 6]])
In [54]: #5보다 크면 그대로 두고 작으면 5로 바꾸는 예
        np.where(data>5, data, 5)
Out[54]: array([[ 5, 5, 5],
              [5, 5, 5],
               [6,7,8],
               [ 9, 10, 11]])
In [55]: #전체의 평균을 구한다
        data.mean()
Out[55]: 5.5
In [56]: np.mean(data)
Out[56]: 5.5
In [57]: data.sum()
Out[57]: 66
In [58]: #각 행에 대해서 평균을 구한다 axis=1이면 행을 지칭한다
        data.mean(axis=1)
Out[58]: array([ 1., 4., 7., 10.])
In [59]: #axis를 생략해도된다
        data.mean(1)
Out[59]: array([ 1., 4., 7., 10.])
In [60]: #각 열에 대해서 평균을 구한다 axis=0이면 열을 지칭한다
        data.mean(0)
Out[60]: array([ 4.5, 5.5, 6.5])
In [61]: #불리언 연산, True는 1로 False는 0으로 숫자로 치환하여 계산가능하다
        1 + True
Out[61]: 2
In [62]: #배열에서 값이 특정 수보다 큰 원소의 갯수를 반환한다.
        x = np.array([1,2,3,4,5,6])
        (x>4).sum()
```

[14, 50, 86, 122],

Out[62]: 2

```
In [63]: (data>1).sum()
Out[63]: 10
In [64]: (x>4)
Out[64]: array([False, False, False, False, True, True], dtype=bool)
In [65]: #True가 하나 이상 있는가?
         (x==True).any()
Out[65]: True
In [66]: #모두 True인가?
         (x==True).all()
Out[66]: False
        실습예제 4
        -5 부터 4 까지의 정수를 원소로 가진 배열을 만들고, True인 원소의 갯수를 출력해보시오.
 In [ ]:
In [67]: #소팅
        #리스트
        y = [2,4,1,5,8,6,7,3,9]
Out[67]: [2, 4, 1, 5, 8, 6, 7, 3, 9]
In [68]: sorted(y)
Out[68]: [1, 2, 3, 4, 5, 6, 7, 8, 9]
In [69]: #v의 내용은 바뀌지 않았다
Out[69]: [2, 4, 1, 5, 8, 6, 7, 3, 9]
In [70]: y.sort()
        # v의 내용이 바뀌었다
Out[70]: [1, 2, 3, 4, 5, 6, 7, 8, 9]
In [71]: #배열
         z = np.array([2,4,1,5,8,6,7,3,9])
         type(z)
Out[71]: numpy.ndarray
In [72]: z
Out[72]: array([2, 4, 1, 5, 8, 6, 7, 3, 9])
In [73]: sorted(z)
```

```
Out[73]: [1, 2, 3, 4, 5, 6, 7, 8, 9]
In [74]: z
Out[74]: array([2, 4, 1, 5, 8, 6, 7, 3, 9])
In [75]: z.sort()
In [76]: t = np.array([[8,4,11,5],[2,10,7,3],[9,12,1,6]])
Out[76]: array([[ 8, 4, 11, 5],
               [ 2, 10, 7, 3],
               [ 9, 12, 1, 6]])
In [77]: #열을 기준으로 소팅
         t.sort(0)
In [78]: t
Out[78]: array([[ 2, 4, 1,
                            3],
               [ 8, 10, 7, 5],
               [ 9, 12, 11, 6]])
In [79]: #행에서 소팅
        t.sort(1)
In [80]: t
Out[80]: array([[ 1, 2, 3, 4],
               [5, 7, 8, 10],
               [ 6, 9, 11, 12]])
In [81]: #집합 set
         #리스트나 배열에서 중복된 항목을 제외하고 유일하게 있는 항목만 얻는다
         #리스트
        name = ['kim', 'lee', 'park', 'kim', 'lee']
In [82]: set(name)
Out[82]: {'kim', 'lee', 'park'}
In [83]: name
         #name은 바뀌지 않았다
Out[83]: ['kim', 'lee', 'park', 'kim', 'lee']
In [84]: | type(name)
Out[84]: list
In [85]: name_2 = np.unique(name)
        #배열을 리턴한다
In [86]: name
Out[86]: ['kim', 'lee', 'park', 'kim', 'lee']
```

```
In [87]: name_2
Out[87]: array(['kim', 'lee', 'park'],
               dtype='<U4')
In [88]: long_name = ['kim', 'kang', 'lee', 'park', 'kim', 'lee', 'min']
In [89]: np.in1d(long_name, ['kim'])
         # 'kim'이 들어 있는 위치를 찾는다
Out[89]: array([ True, False, False, False, True, False, False], dtype=bool)
In [90]: np.inld(long_name, name)
         #'kim', 'lee', 'park' 중 하나가 들어 있는 위치를 찾는다
Out[90]: array([ True, False, True, True, True, True, False], dtype=bool)
In [91]: b = np.inld(long_name, name)
Out[91]: array([ True, False, True, True, True, True, False], dtype=bool)
In [92]: b.sum()
Out[92]: 5
In [93]: np.inld(long_name, name).sum()
Out[93]: 5
In [94]: p=np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
In [95]: #순서를 임의로 바꾸는 방법
         q = np.random.permutation(p)
Out[95]: array([4, 2, 9, 5, 7, 3, 1, 8, 6])
In [96]: q.sort()
In [97]: q
Out[97]: array([1, 2, 3, 4, 5, 6, 7, 8, 9])
```

```
In [1]: #데이터구조 pandas
        #데이터 분석에서 가장 많이 사용하는 데이터 구조들을 소개한다
        #데이터프레임을 배운다
In [2]: #시리즈와 데이터프레임 두가지가 기본이다
        #시리즈는 1차원 배열과 같은 형태를 갖는데 다른점은 강 항목마다 인덱스를 지정할 수 있다
        #자동으로 인덱스가 만들어진다
         import numpy as np
         from pandas import Series, DataFrame
         import pandas as pd
        s = Series([34,54,78])
Out[2]: 0 34
          54
        2 78
        dtype: int64
In [3]: #시리즈 데이터셋을 구성한다.
        s = Series(['kim', 'lee', 'park'])
Out[3]: 0
           kim
           lee
        2 park
        dtype: object
In [4]: s.values
Out[4]: array(['kim', 'lee', 'park'], dtype=object)
In [5]:
        s.index
Out [5]: RangeIndex(start=0, stop=3, step=1)
In [6]: #인덱스를 임의로 지정할 수 있다
        s = Series(['kim', 'lee', 'park'], index=['a', 'b', 'r'])
Out[6]: a
           kim
           lee
        r park
        dtype: object
        실습예제 1
        'BMW', 'Nissan', 'Honda', 'Audi'를 값으로 갖고 'one', 'two', 'three', 'four'를 인덱스로 갖는 시리즈 데
        이터 셋을 선언하시오
In [ ]:
In [7]: #인덱스로 해당 값을 얻을 수 있다
```

s['r']

```
Out[7]: 'park'
 In [8]: #특정값이 데이터에 속해있는지 확인할수있다
Out[8]: True
In [9]: 'park' in s
Out[9]: False
In [10]: #파이썬 기본 타입인 사전으로부터 시리즈를 만들 수 있다
         dic = {'서울':800, '부산':150, '대구': 100}
         dic
Out[10]: {'대구': 100, '부산': 150, '서울': 800}
In [11]: s = Series(dic)
         S
Out[11]: 대구 100
         부산
              150
         서울 800
         dtype: int64
In [12]: city = ['서울', '부산', '대구', '대전']
In [13]: s2 = Series(s, index=city)
         #인덱스 '대전'에 해당하는 값이 없으므로 NaN으로 표시된다
Out[13]: 서울 800.0
         부산
              150.0
         대구
              100.0
         대전
               NaN
         dtype: float64
In [14]: #NaN잢이면 True를 반환하고 값이 있을 경우 False를 반환한다
         pd.isnull(s2)
Out[14]: 서울 False
         부산 False
         대구 False
         대전
              True
         dtype: bool
In [15]: #NaN잢이면 False를 반환하고 값이 있을 경우 True를 반환한다
         pd.notnull(s2)
Out[15]: 서울
              True
         부산
               True
         대구
              True
         대전 False
         dtype: bool
In [16]: #아래도 같은 동작을 한다 (인스턴스 메서드라고 부른다)
         s2.isnull()
Out[16]: 서울 False
         부산 False
```

```
dtype: bool
In [17]:
         s2
Out[17]: 서울 800.0
         부산
              150.0
         대구
              100.0
         대전
              NaN
         dtype: float64
In [18]: #변수 선언 없이 바로 사전으로 시리즈 데이터 셋으로 변환할수 있다
         s3 = Series({'서울':800, '광주':300, '대구': 100, '부산':50})
In [19]: s3
Out[19]: 광주 300
         대구
              100
         부산
              50
         서울 800
         dtype: int64
In [20]: #두 시리즈에 연산을 하면 공통의 인덱스가 있는 부부만 처리된다
         s2 + s3
Out[20]: 광주
               NaN
         대구
              200.0
         대전
               NaN
         부산
              200.0
         서울 1600.0
         dtype: float64
In [21]: s2-s3
Out[21]: 광주
               NaN
         대구
               0.0
         대전
               NaN
         부산
              100.0
         서울
               0.0
         dtype: float64
         실습예제 2
         'BMW':15000, 'Nissan':8000, 'Honda':8000, 'Audi':10000를 사전(dictionary)으로 선언하고 해당 사
         전을 이용하여 시리즈 데이터셋을 선언하시오
In [ ]:
In [22]: #인데스나 시리즈 자체에 이름(name)을 줄 수 있다
         s2.name = '물가지수'
         s2.index.name = '도시명'
         s2
```

대구 False

True

대전

Out[22]: 도시명

서울 800.0 부산 150.0 대구 100.0 대전 NaN

Name: 물가지수, dtype: float64

In [23]: #데이터프레임은 테이블 구조의 데이터를 다루며 각 컬럼마다 임의의 데이터 형식을 담을 수 있다 #2차원 구조의 사전형식이라고 볼 수 있다 #시리즈의 성격을 가지고 있다

#사전으로부터 데이터프레임을 만드는 법

data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'],

'year': [2000, 2001, 2002, 2001, 2002],

'pop': [1.5, 1.7, 3.6, 2.4, 2.9]}

frame = DataFrame(data)

frame

Out[23]:

	рор	state	year
0	1.5	Ohio	2000
1	1.7	Ohio	2001
2	3.6	Ohio	2002
3	2.4	Nevada	2001
4	2.9	Nevada	2002

In [24]: #컬럼의 순서를 변경할 수 있다

DataFrame(data, columns=['year', 'state', 'pop'])

Out[24]:

	year	state	рор
0	2000	Ohio	1.5
1	2001	Ohio	1.7
2	2002	Ohio	3.6
3	2001	Nevada	2.4
4	2002	Nevada	2.9

In [25]: #없는 컬럼 값을 주면 NaN으로 처리된다 (아래에서 debt) #아래에서 인덱스 값을 새롭게 정의할 수 있다

frame2 = DataFrame(data, columns=['year', 'state', 'pop', 'debt'], index=['one', 'two', 'three', 'four', 'five'])

frame2

Out[25]:

	year	state	рор	debt
one	2000	Ohio	1.5	NaN
two	2001	Ohio	1.7	NaN
three	2002	Ohio	3.6	NaN
four	2001	Nevada	2.4	NaN
five	2002	Nevada	2.9	NaN

'name': ['Aaron Brooks', 'Brendan Haywood', 'Cory Joseph', 'Darius Miller'], 'height': [180, 210, 187.5, 200], 'weight': [72.45, 120.6, 86.85, 105.75]

인 사전을 이용하여 tFrame이란 이름을 가진 데이터프레임을 만드시오

In [26]: sdata = {'name': ['Aaron Brooks', 'Brendan Haywood', 'Cory Joseph', 'Darius Miller'], 'height': [180, 210, 187.5, 200],

'weight': [72.45, 120.6, 86.85, 105.75]}

tFrame = DataFrame(sdata)

tFrame

Out[26]:

	height	name	weight
0	180.0	Aaron Brooks	72.45
1	210.0	Brendan Haywood	120.60
2	187.5	Cory Joseph	86.85
3	200.0	Darius Miller	105.75

실습예제 4

인덱스를 'one', 'two', 'three', 'four'로 재정의 하시오

In []:

실습예제 5

컬럼의 순서를 name, height, weight순으로 변경하시오

In []:

In [27]: frame2.columns

Out [27]: Index(['year', 'state', 'pop', 'debt'], dtype='object')

In [28]: #컬럼(열)을 얻는 방법

frame2['state']

Out[28]: one Ohio

two Ohio three Ohio four Nevada

five Nevada

Name: state, dtype: object

In [29]: #같은 결과를 얻는다 (속성 값으로 액세스)

frame2.state

Out[29]: one Ohio

two Ohio three Ohio four Nevada five Nevada

Name: state, dtype: object

In [30]: #로(행)을 얻는 법

frame2.ix['three']

Out[30]: year 2002

> Ohio state pop 3.6 NaN debt

Name: three, dtype: object

실습예제 6

tFrame의 name값을 출력하시오

In []:

실습예제 7

tFrame의 컬럼(열)을 출력하시오

In []:

In [31]: #컬럼 값을 채워널 수 있다

#벡터화 방법

frame2['debt'] = 16.5

frame2

Out[31]:

	year	state	pop	debt
one	2000	Ohio	1.5	16.5
two	2001	Ohio	1.7	16.5
three	2002	Ohio	3.6	16.5
four	2001	Nevada	2.4	16.5
five	2002	Nevada	2.9	16.5

In [32]: #갯수가 일치해야 한다

#numpy.arange(start, stop, step)는 start부터 stop까지 step간격으로 된 배열을 반환한다 # start는 default값으로 0을 가지고 step는 default값으로 1을 가진다

frame2['debt'] = np.arange(5)

frame2

Out[32]:

	year	state	рор	debt
one	2000	Ohio	1.5	0
two	2001	Ohio	1.7	1
three	2002	Ohio	3.6	2
four	2001	Nevada	2.4	3
five	2002	Nevada	2.9	4

In [33]: #시리즈를 사용하여 컬럼 값을 입력할 수 있다(없는 인덱스는 NaN이 된다)

val = Series([-1.2, -1.5, -1.7], index=['two', 'four', 'five'])

frame2['debt'] = val frame2

Out[33]:

	year	state	рор	debt
one	2000	Ohio	1.5	NaN
two	2001	Ohio	1.7	-1.2
three	2002	Ohio	3.6	NaN
four	2001	Nevada	2.4	-1.5
five	2002	Nevada	2.9	-1.7

In [34]: #frame2에 eastern 칼럼을 만들고 frame2.state가 Ohio면 True값을 넣고 아닐경우 False를 넣는다 frame2['eastern'] = frame2.state == 'Ohio' frame2

Out[34]:

	year	state	рор	debt	eastern
one	2000	Ohio	1.5	NaN	True
two	2001	Ohio	1.7	-1.2	True
three	2002	Ohio	3.6	NaN	True
four	2001	Nevada	2.4	-1.5	False
five	2002	Nevada	2.9	-1.7	False

실습예제 8

tFrame에 key 칼럼을 만들고 height가 200이상이면 True값을 넣고 200미만일 경우 False값을 넣으시오

In []:

 In [35]:
 # 컬럼을 간단히 삭제하는 명령으로 del이 있다

 #참고로 복사본을 만들지 않고 원본을 바로 수정하므로 주의해야 한다

 del frame2['eastern']

 frame2.columns

Out[35]: Index(['year', 'state', 'pop', 'debt'], dtype='object')

실습예제 9

del명령어를 사용하여 tFrame에서 key 칼럼을 삭제하고 칼럼을 출력하시오

In []:

In [36]: #중첩된 사전으로부터 바로 데이터프레임을 만들 수 있다 #바깥의 인덱스 명이 열이 된다 pop = {'Nevada': {2001: 2.4, 2002: 2.9}, 'Ohio': {2000: 1.5, 2001: 1.7, 2002: 3.6}} frame3 = DataFrame(pop) frame3

Out[36]:

	Nevada	Ohio
2000	NaN	1.5
2001	2.4	1.7
2002	2.9	3.6

In [37]: frame3.T

#행과 열을 간단히 바꿀 수 있다 (transpose)

Out[37]:

	2000	2001	2002
Nevada	NaN	2.4	2.9
Ohio	1.5	1.7	3.6

In [38]: #인덱스를 명시적으로 지정할 수 있다

값이 없으면 NaN이 된다

DataFrame(pop, index=[2001, 2002, 2003])

Out[38]:

	Nevada	Ohio
2001	2.4	1.7
2002	2.9	3.6
2003	NaN	NaN

In [39]: #인덕스와 열의 이를을 지정할 수 있다

 $frame 3. index. name = \mbox{'year'}; \ frame 3. columns. name = \mbox{'state'}$

frame3

Out[39]:

state	Nevada	Ohio
year		
2000	NaN	1.5
2001	2.4	1.7
2002	2.9	3.6

In [40]: frame3.values

Out[40]: array([[nan, 1.5], [2.4, 1.7], [2.9, 3.6]])

In [41]: frame2.values

Out[41]: array([[2000, 'Ohio', 1.5, nan], [2001, 'Ohio', 1.7, -1.2], [2002, 'Ohio', 3.6, nan], [2001, 'Nevada', 2.4, -1.5],

[2002, 'Nevada', 2.9, -1.7]], dtype=object)

In [42]: #색인(index) 객체

obj = Series(range(3), index=['a', 'b', 'c'])

index = obj.index

index

```
Out [42]: Index(['a', 'b', 'c'], dtype='object')
In [43]: index[1:]
Out [43]: Index(['b', 'c'], dtype='object')
In [44]: index[1] = 'd'
           #색인은 변경할 수 없다
           TypeError
                                      Traceback (most recent call last)
           <ipython-input-44-8b0a29b62131> in <module>()
           ---> 1 index[1] = 'd'
                   2#색인은 변경할수 없다
           C:\ProgramData\Anaconda3\lib\site-packages\pandas\indexes\base.py in __setitem__(self, key, value)
               1402
               1403
                       def __setitem__(self, key, value):
           -> 1404
                       raise TypeError("Index does not support mutable operations")
               1405
               1406
                       def __getitem__(self, key):
           TypeError: Index does not support mutable operations
In [45]: #시리즈와 데이터프레이의 주요 기능
           # reindex: 새로 정하는 색인의 순서대로 시리즈를 재배열한다
           obj = Series([10,20,30,40], index=['d', 'b', 'a', 'c'])
           obj
Out[45]: d 10
           b 20
           a 30
           c 40
           dtype: int64
In [46]:
           obj2 = obj.reindex(['a', 'b', 'c', 'd', 'e'])
           obj2
Out[46]: a 30.0
           b 20.0
           c 40.0
           d 10.0
              NaN
           dtype: float64
In [47]: #fill_value 값을 주면 NaN값을 해당 값으로 대체한다
           obj.reindex(['a', 'b', 'c', 'd', 'e'], fill_value=0)
Out[47]: a 30
              20
           c 40
           d 10
              0
           dtype: int64
In [48]: obj3 = Series(['blue', 'purple', 'yellow'], index=[0, 2, 4])
           obj3.reindex(range(6), method='ffill')
           # 앞의 값으로 채운다 forward fill (pad)
Out[48]: 0
               blue
```

- 1 blue
- 2 purple
- 3 purple
- 4 yellow
- 5 yellow dtype: object
- In [49]: #뒤의 값으로 채우려면 bfill(backward fill)을 사용한다 obj3.reindex(range(6), method='bfill')
- Out[49]: 0 blue
 - 1 purple
 - 2 purple
 - 3 yellow
 - 4 yellow
 - NaN
 - dtype: object

In [50]: #reshape함수를 이용하여 배열의 형태를 재설정 할 수있다 # reshape(A, B)는 배열을 AxB로 바꿔준다 frame = DataFrame(np.arange(9).reshape((3, 3)), index=['a', 'c', 'd'], columns=['Ohio', 'Texas', 'California']) frame

Out[50]:

	Ohio	Texas	California
а	0	1	2
С	3	4	5
d	6	7	8

In [51]: #기본적으로는 행을 중심으로 재배열을 수행한다

frame2 = frame.reindex(['a', 'b', 'c', 'd'])

frame2

Out[51]:

	Ohio	Texas	California
а	0.0	1.0	2.0
b	NaN	NaN	NaN
С	3.0	4.0	5.0
d	6.0	7.0	8.0

In [52]: #열의 이름을 명시적으로 지정하여 재배열할 수도 있다

states = ['Texas', 'Utah', 'California']

frame.reindex(columns=states)

Out[52]:

	Texas	Utah	California
а	1	NaN	2
С	4	NaN	5
d	7	NaN	8

- In [53]: frame.ix[['a', 'b', 'c', 'd'], states]
- Out[53]: Texas | Utah | California

```
      a
      1.0
      NaN
      2.0

      b
      NaN
      NaN
      NaN

      c
      4.0
      NaN
      5.0

      d
      7.0
      NaN
      8.0
```

```
In [54]: #drop으로 행삭제하기
```

obj = Series(np.arange(5.), index=['a', 'b', 'c', 'd', 'e'])

 $new_obj = obj.drop(\textbf{'c'})$

new_obj

Out[54]: a 0.0

b 1.0

d 3.0

e 4.0

dtype: float64

In [55]: obj.drop(['d', 'c'])

Out[55]: a 0.0

b 1.0

e 4.0

dtype: float64

In [56]:

```
data = DataFrame(np.arange(16).reshape((4, 4)),
index=['Ohio', 'Colorado', 'Utah', 'New York'],
columns=['one', 'two', 'three', 'four'])
```

In [57]:

data.drop(['Colorado', 'Ohio'])

Out[57]:

	one	two	three	four
Utah	8	9	10	11
New York	12	13	14	15

In [58]:

data.drop('two', axis=1)

Out[58]:

	one	three	four
Ohio	0	2	3
Colorado	4	6	7
Utah	8	10	11
New York	12	14	15

In [59]:

data.drop(['two', 'four'], axis=1)

Out[59]:

	one	three
Ohio	0	2
Colorado	4	6
Utah	8	10
New York	12	14

실습예제 10

drop 함수를 이용하여 tFrame의 첫번째 행을 삭제하시오

In []:

실습예제 11

drop함수를 이용하여 name 칼럼을 삭제하고 원본데이터에 적용하시오

In []:

실습예제 12

del함수와 drop함수의 차이점을 서술하시오.

In [60]: obj = Series(np.arange(4.), index=['a', 'b', 'c', 'd'])

obj['b']

Out[60]: 1.0

In [61]: obj[2:4]

Out[61]: c 2.0

d 3.0

dtype: float64

In [62]: obj[[1,3]]

Out[62]: b 1.0

d 3.0

dtype: float64

In [63]: obj[['b','a','c']]

Out[63]: b 1.0

a 0.0

c 2.0

dtype: float64

In [64]: obj[obj<2]

Out[64]: a 0.0

b 1.0

dtype: float64

In [65]: obj['b':'c']

#양 끝점을 포함시킨다

Out[65]: b 1.0

c 2.0

dtype: float64

In [66]: data = DataFrame(np.arange(16).reshape((4, 4)),

index=['Ohio', 'Colorado', 'Utah', 'New York'],
columns=['one', 'two', 'three', 'four'])
data

Out[66]:

	one	two	three	four
Ohio	0	1	2	3
Colorado	4	5	6	7
Utah	8	9	10	11
New York	12	13	14	15

실습예제 13

인덱스가 'Brendan Haywood', 'Cory Joseph', 'Darius Miller'이고 컬럼(열)이 'one', 'two', 'three', 'four', 'five'인 3x5 데이터프레임을 만드시오(이름은 sample으로 하고, 값은 0부터 차례대로 채우시오)

In []:

In [67]: data['two']

#'two'라는 컬럼을 가진 값들을 가져온다

Out[67]: Ohio 1

Colorado 5 Utah 9 New York 13

Name: two, dtype: int32

In [68]: data[['three', 'one']]

'three'와 'one'이라는 컬럼을 가진 값들을 가져온다

Out[68]:

	three	one
Ohio	2	0
Colorado	6	4
Utah	10	8
New York	14	12

In [69]: data[:2]

#2까지 로(행)을 가져온다

Out[69]:

	one	two	three	four
Ohio	0	1	2	3
Colorado	4	5	6	7

In [70]: data[data['three'] > 5]

#칼럼 'three'의 값이 5 초과인 값들을 가져온다

Out[70]:

	one	two	three	four
Colorado	4	5	6	7

Utah	8	9	10	11
New York	12	13	14	15

실습예제 14

sample 데이터에서 컬럼 four의 값이 5 이상인 값들을 가져오시오

In []:

실습예제 15

sample 데이터에서 2번째부터 3번째까지 로(행)을 가져오시오

In []:

실습예제 16

sample 데이터에서 칼럼 'one'과 'five'를 가져오시오

In []:

In [71]: data.ix['Colorado', ['two', 'three']]

Colorado 로(행)의 'two'와 'three'값을 Series 구조로 가져온다

Out[71]: two 5

three 6

Name: Colorado, dtype: int32

In [72]: data.ix[['Colorado', 'Utah'], [3, 0, 1]]

Colorado와 'Utah'행의 3, 0, 1번째 컬럼(열) 순서로 가져온다

Out[72]:

	four	one	two
Colorado	7	4	5
Utah	11	8	9

In [73]: data.ix[2]

#2번째 로(행)의 값을 가져온다

Out[73]: one 8

two 9 three 10 four 11

Name: Utah, dtype: int32

In [74]: data.ix[:'Utah', 'two']

#0부터 Utah까지 행의 컬럼 'two' 값을 가져온다

Out[74]: Ohio

Ohio 1

Colorado 5 Utah 9

Name: two, dtype: int32

In [75]: data.ix[data.three > 5, :3] #컬럼 three의 값이 5 초과인 값의 컬럼 3번째 까지 값을 가져온다

Out[75]:

	one	two	three
Colorado	4	5	6
Utah	8	9	10
New York	12	13	14

실습예제 17

sample 데이터의 five 칼럼이 9인 값의 컬럼 3번째 까지 값을 가져오시오

In []:

In [76]: df1 = DataFrame(np.arange(9.).reshape((3, 3)), columns=list('bcd'), index=['Ohio', 'Texas', 'Colorado'])

df2 = DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'), index=['Utah', 'Ohio', 'Texas', 'Oregon'])

df1

Out[76]:

	b	С	d
Ohio	0.0	1.0	2.0
Texas	3.0	4.0	5.0
Colorado	6.0	7.0	8.0

In [77]: df2

Out[77]:

	b	d	е
Utah	0.0	1.0	2.0
Ohio	3.0	4.0	5.0
Texas	6.0	7.0	8.0
Oregon	9.0	10.0	11.0

In [78]: df1 + df2

Out[78]:

	b	С	d	е
Colorado	NaN	NaN	NaN	NaN
Ohio	3.0	NaN	6.0	NaN
Oregon	NaN	NaN	NaN	NaN
Texas	9.0	NaN	12.0	NaN
Utah	NaN	NaN	NaN	NaN

```
In [79]: df1 = DataFrame(np.arange(12.).reshape((3, 4)), columns=list('abcd')) df2 = DataFrame(np.arange(20.).reshape((4, 5)), columns=list('abcde')) df1
```

Out[79]: a b c d
0 0.0 1.0 2.0 3.0
1 4.0 5.0 6.0 7.0

8.0 9.0

In [80]: df2

Out[80]:

	а	b	C	d	е
0	0.0	1.0	2.0	3.0	4.0
1	5.0	6.0	7.0	8.0	9.0
2	10.0	11.0	12.0	13.0	14.0
3	15.0	16.0	17.0	18.0	19.0

10.0

11.0

In [81]: df1 + df2

Out[81]:

	а	b	С	d	е
0	0.0	2.0	4.0	6.0	NaN
1	9.0	11.0	13.0	15.0	NaN
2	18.0	20.0	22.0	24.0	NaN
3	NaN	NaN	NaN	NaN	NaN

In [82]: df1.add(df2, fill_value=0)

Out[82]:

	а	b	С	d	е
0	0.0	2.0	4.0	6.0	4.0
1	9.0	11.0	13.0	15.0	9.0
2	18.0	20.0	22.0	24.0	14.0
3	15.0	16.0	17.0	18.0	19.0

In [83]: #함수 적용

frame = DataFrame(np.random.randn(4, 3), columns=list('bde'), index=['Utah', 'Ohio', 'Texas', 'Oregon'])

frame

Out[83]:

	b	d	е
Utah	-0.447613	-0.433355	0.612768
Ohio	-1.252928	-2.373916	0.165255
Texas	-0.377568	-0.275341	1.730919
Oregon	1.284537	-1.490655	-0.933486

In [84]: np.abs(frame)

Out[84]:

:	b	d	е

Utah	0.447613	0.433355	0.612768
Ohio	1.252928	2.373916	0.165255
Texas	0.377568	0.275341	1.730919
Oregon	1.284537	1.490655	0.933486

In [85]: f =**lambda** x: x.max() - x.min()

In [86]: frame.apply(f)

Out[86]: b 2.537464

d 2.098575e 2.664405dtype: float64

In [87]: | frame.apply(f,axis=1)

Out[87]: Utah 1.060381

Ohio 2.539172 Texas 2.108487 Oregon 2.775192 dtype: float64

In [88]: #리턴 값이 스칼라가 아니라 시리즈로 될 수도 있다

 $\texttt{def}\ \mathbf{f}(x)$:

return Series([x.min(), x.max()], index=['min', 'max'])

frame.apply(f)

Out[88]:

	b	d	е
min	-1.252928	-2.373916	-0.933486
max	1.284537	-0.275341	1.730919

In [89]: #포맷을 바꾸는 예

format = lambda x: '%.4f' % x #소수 4번쨰 자리까지 표시한다

frame.applymap(format)

#DataFrame구조에 applymap 함수를 이용하여 값에 함수를 적용한다

Out[89]:

	b	d	е
Utah	-0.4476	-0.4334	0.6128
Ohio	-1.2529	-2.3739	0.1653
Texas	-0.3776	-0.2753	1.7309
Oregon	1.2845	-1.4907	-0.9335

In [90]: frame['e'].map(format)

#Series구조에 applymap 함수를 이용하여 값에 함수를 적용한다

Out[90]: Utah 0.6128

Ohio 0.1653 Texas 1.7309 Oregon -0.9335 Name: e, dtype: object

실습예제 18

lambda를 이용하여 sample데이터의 평균을 구하시오

In []:

DataFrame 고급기술

```
In [1]: import numpy as np
        import pandas as pd
        from pandas import Series, DataFrame # Pandas에는 Series 와 DataFrame이라는 두 종류
        의 모듈이 있습니다
In [2]: #정렬
        #인덱스를 정렬하는 방법
        obj = Series(range(4), index=['d', 'a', 'b', 'c'])
        #Series의 기본 구조는 index와 그 index에 맵핑에 되는 values 값이 있습니다.
        # Series(values 값, index = index 값) // Series(values 값) 은 index가 기본적으로 0부터 시작됩니다.
        #ex) 차례로 values 값이 2,4,6,8 이며 인덱스 값은 1,3,5,7이다.
        # exam = Series([2,4,6,8], index=[1,3,5,7])
        obj
Out[2]: d
             0
             1
        а
        b
             2.
             3
        С
        dtype: int32
In [3]: obj.sort_index() ## obj의 index를 osrt한 결과
Out[3]: a
             1
             2
        b
             3
        С
             0
        d
        dtype: int32
In [4]: obj ## 위에서 sort를 해줬으나 obj의 결과는 변하지 않는다.
             0
Out[4]: d
             1
             2
        b
             3
        dtype: int32
        실습 예제 1
        series1, series2라는 Series 기본구조를 만든다. series1은 index는 ㄱ,ㄷ,ㄹ,ㄴ 순으로 하며, value
        값은 index에 자음이 들어가는 단어로 자유롭게 정하시오. series2 에는 series1을 index 순으로 정
        렬된 Series를 넣으시고 series1, series2를 각각 출력하시오.
In [ ]:
In [5]: frame = DataFrame(np.arange(8).reshape((2, 4)), index=['three', 'one'],
                           columns=['d', 'a', 'b', 'c'])
        ## frame 변수에 DataFrame이라는 구조를 넣고 있습니다.
        ## DataFrame(value 값, index값(행), columns값(열))
        frame
```

Out[5]:

	d	а	b	С
three	0	1	2	3
one	4	5	6	7

In [6]: frame.sort_index()

Out[6]:

	d	а	b	C
one	4	5	6	7
three	0	1	2	3

In [7]: frame.sort_index(axis=1)

#열을 기준으로 정렬

Out[7]:

	а	b	C	d
three	1	2	3	0
one	5	6	7	4

In [8]: frame.sort_index(axis=1, ascending=**False**) #내림차순으로 정렬

Out[8]:

	đ	U	b	а
three	0	3	2	1
one	4	7	6	5

실습예제2

위 frame.sort_index(axis=?, ascending = ?) 에서 axis = (0 or 1), ascending = (False, True)를 자유롭게 넣어 보고 결과를 살펴본 뒤 frame2 = DataFrame(np.arange(9).reshape((3, 3)), index=['2', '3', '1'], columns=['3','1','2'])를 행과 열을 1,2,3 순으로 바꾼 뒤 출력해보시오.

In []:

```
In [9]: frame = DataFrame({'b': [4, 7, 3, 2], 'a': [4,9,2,5], 'c': [5,3,7,9]})
frame
```

	а	b	С
0	4	4	5
1	9	7	3
2	2	3	7
3	5	2	9

In [10]: frame.sort_values(by='b')

Out[10]:

	а	b	C
3	5	2	9

2	2	3	7
0	4	4	5
1	9	7	3

```
In [11]: frame.sort_values(by='a')
```

Out[11]:

Out[14]: 0

1

3

6.5 2.0

6.5

4.0 1.0

	а	b	C
2	2	3	7
0	4	4	5
3	5	2	9
1	9	7	3

실습예제3

행 'c'를 기준으로 정렬한 Dataframe을 변수 frame2에 넣어 출력하시오.

```
In [ ]:
In [12]: #순위 매기기 rank
         obj = Series([100, 23, 55, 44, 22, 99, 33])
         obj.rank()
        #작은 값에 높은 순위를 준다
Out[12]: 0
             7.0
        1
             2.0
         2
             5.0
             4.0
        3
             1.0
             6.0
         5
         6
             3.0
        dtype: float64
In [13]: #내림차순으로 순위를 매긴다
         obj.rank(ascending=False)
Out[13]: 0
             1.0
        1
             6.0
        2
             3.0
        3
             4.0
             7.0
         4
        5
             2.0
             5.0
        dtype: float64
In [14]: obj = Series([100, 23, 100, 44, 22, 99, 33])
        obj.rank()
         #동점이 있으면 평균값을 준다
```

```
dtype: float64
In [15]: obj.rank(method='first')
         #동일한 값이 존재 할 경우 먼저 나타나는 것에게 높은 순위를 줄 수 있다
Out[15]: 0
              6.0
         1
              2.0
         2
              7.0
         3
              4.0
              1.0
              5.0
              3.0
         dtype: float64
In [16]: frame = DataFrame(\{'b': [4,7,3,2], 'a': [4,9,2,5], 'c': [5,3,7,9]\})
         frame
Out[16]:
           a b c
         0 4
             4 5
           9
             7
               3
         2 2 3 7
             2 9
           5
         실습예제 4
         frame에 rank를 적용해보시오.
In [ ]:
In [17]: frame.rank(axis=1) #행 기준으로 rank를 수행
Out[17]:
               b
           а
                  С
         0 1.5 1.5 3.0
           3.0 2.0 1.0
         2
           1.0 2.0 3.0
           2.0
               1.0
                  3.0
In [18]: #합을 구하면 기본적으로 열을 기준으로 구한다
         frame.sum()
              20
Out[18]: a
              16
              24
         dtype: int64
In [19]: #행을 기준으로 구한다
         frame.sum(axis=1)
Out[19]: 0
              13
         1
              19
```

5

5.0 3.0 2 12
3 16
dtype: int64

In [20]: #NaN이었으면 frame = DataFrame({'b': [4, 7, 3, 2], 'a': [4,9,2,5], 'c': [5,3,7,np.nan]}) frame

Out[20]:

	а	b	C
0	4	4	5.0
1	9	7	3.0
2	2	3	7.0
3	5	2	NaN

```
In [21]: frame.sum()
```

Out[21]: a 20.0 b 16.0 c 15.0 dtype: float64

In [22]: frame.sum(skipna=**False**)
NaN이 있으면 이를 반영한다(스킵하지 않는다)
skipna 은 skip NaN을 뜻함.

Out[22]: a 20.0 b 16.0 c NaN dtype: float64

실습예제 5

frame 합을 행을 기준으로 NaN이 있으면 이를 반영하지 않는 합을 구해보시오.

In []:

In [23]: frame = DataFrame({'b': [4, 7, 3, 2], 'a': [4,9,2,5], 'c': [5,3,7,np.nan
]})
 frame

Out[23]:

	а	b	C
0	4	4	5.0
1	9	7	3.0
2	2	3	7.0
3	5	2	NaN

```
In [24]: #최대치가 있는 위치를 반환한다 frame.idxmax()
```

Out[24]: a 1 b 1

```
2
         C
         dtype: int64
In [25]: #최소치가 있는 위치를 반환한다
         frame.idxmin()
Out[25]: a
             2
              3
         dtype: int64
In [26]: #기본 통계값을 보여준다
         frame.describe()
         # count = 갯수, mean = 평균, std = 표준편차, min = 최솟값, max = 최댓값
Out[26]:
                а
                       b
                                С
          count | 4.00000 | 4.000000 | 3.0
               5.00000 | 4.000000 | 5.0
          mean
                2.94392 2.160247 2.0
          std
          min
                2.00000 | 2.000000 | 3.0
          25%
                3.50000 2.750000 4.0
          50%
                4.50000 | 3.500000 | 5.0
          75%
                6.00000 | 4.750000 | 6.0
                               7.0
          max
                9.00000 7.000000
In [27]: #항목 갯수 세기
         #유니크한 값 찾기 (set)
         obj = Series(['c', 'a', 'd', 'a', 'a', 'b', 'b', 'c', 'c'])
         obj
Out[27]: 0
              С
              а
         2
              d
         3
              а
         4
             b
         5
         6
              b
         7
              C
              С
         dtype: object
In [28]: uniques = obj.unique() ## value 값의 종류를 확인 할 수 있다.
         uniques
Out[28]: array(['c', 'a', 'd', 'b'], dtype=object)
In [29]: #빈도수를 간단히 알 수 있다
         # 빈도수가 높은 순으로 정렬된다.
         obj.value_counts()
Out[29]: a
              3
              3
```

b

2

```
dtype: int64
In [30]: #빈도수와 관련없이 나타나는 순서대로 보려면
         pd.value_counts(obj.values, sort=False)
Out[30]: c
             3
         d
             1
         b
             2
              3
         а
         dtype: int64
In [31]: #아래는 같은 결과를 얻는다
         obj.value_counts(sort=False)
Out[31]: c
             1
         d
         b
              2
              3
         dtype: int64
In [32]: #특정한 내용이 들어있는지 알려면 isin()을 사용한다
         mask = obj.isin(['b', 'c'])
         mask
Out[32]: 0
             True
         1
             False
         2
            False
         3
             False
         4
             False
         5
              True
               True
         7
               True
               True
         dtype: bool
In [33]: obj## obj 값 확인
Out[33]: 0
             С
         1
              а
         2
             d
         3
         4
             а
         5
             b
         б
             b
         7
             С
         8
             С
         dtype: object
In [34]: obj[mask] ## obj에서 mask 값이 true인 값만을 출력
Out[34]: 0
             C
         5
             b
         6
             b
         7
              С
             С
         dtype: object
In [35]: #아래는 같은 결과를 얻는다
         obj[obj.isin(['b', 'c'])] ## isin는 is in을 뜻한다.
```

d

1

dtype: object

실습예제6

obj 에서 isin 문을 자유롭게 활용해보시오.

```
In [ ]:
In [36]: #데이터프레임에 대해서도 같은 작업을 할 수 있다
```

In [37]: frame

Out[37]:

```
      X
      Y
      Z

      0
      c
      f
      a

      1
      a
      g
      e

      2
      d
      d
      d

      3
      a
      g
      g

      4
      a
      h
      d

      5
      b
      e
      e

      6
      b
      d
      q

      7
      c
      h
      b

      8
      c
      f
      c
```

```
In [38]: #객수를 센다. 없는 값은 NaN으로 표시된다
result = frame.apply(pd.value_counts)
result
```

Out[38]:

	Х	Υ	Z
а	3.0	NaN	1.0
b	2.0	NaN	1.0
С	3.0	NaN	1.0
d	1.0	2.0	2.0
е	NaN	1.0	2.0
f	NaN	2.0	NaN
g	NaN	2.0	1.0
h	NaN	2.0	NaN

| q | NaN | NaN | 1.0

In [39]: #없는 값에 0을 대입한다 result = frame.apply(pd.value_counts).fillna(0) ##fillna은 fii NaN을 뜻한다. result

Out[39]:

	X	Υ	Z
а	3.0	0.0	1.0
b	2.0	0.0	1.0
С	3.0	0.0	1.0
d	1.0	2.0	2.0
е	0.0	1.0	2.0
f	0.0	2.0	0.0
g	0.0	2.0	1.0
h	0.0	2.0	0.0
q	0.0	0.0	1.0

In [40]: #결측치 처리, 결측치 란? python NaN으로 값이 없다는 뜻이다.
from numpy import nan as NA ## numpy 안에서 nan을 Na으로 대체한다는 뜻입니다.
data = Series([1, NA, 3.5, NA, 7])
data.dropna() # drop na은 drop NaN을 뜻하여 data에서 Na값들이 떨어져 나간 것을 볼 수 있습니다.

Out[40]: 0 1.0 2 3.5 4 7.0 dtype: float64

In [41]: #같은 결과 data[data.notnull()]

Out[41]: 0 1.0 2 3.5 4 7.0 dtype: float64

Out[42]:

	0	1	2
0	NaN	6.5	3.0
1	NaN	NaN	NaN
2	NaN	NaN	NaN
3	NaN	6.5	3.0

```
In [43]: #한 항목이라고 NA가 있으면 해당 행을 삭제한다 cleaned = data.dropna() cleaned
```

```
Out[43]:
          0 1 2
In [44]: #행의 모든 항목이 NA일때 해당 행을 삭제한다
         data.dropna(how='all')
Out[44]:
           0
                1
                   2
         0 NaN 6.5 3.0
                6.5 3.0
           NaN
In [45]: data
Out[45]:
            0
                1
                     2
         0 NaN 6.5
                     3.0
         1 NaN NaN
                     NaN
           NaN NaN
                     NaN
           NaN
                6.5
                     3.0
In [46]: #컬럼에 대한 삭제시는 axis=1을 사용한다
         clean2 = data.dropna(axis=1)
         clean2
Out[46]:
         2
In [47]: clean2 = data.dropna(axis=1, how='all')
         clean2
Out[47]:
           1
                2
         0 6.5
                3.0
         1 NaN NaN
         2 NaN NaN
           6.5
                3.0
         3
In [48]: df = DataFrame(np.random.randn(7, 3))
         df.ix[:4, 1] = NA #(0,1), (1,1), (2,1), (3,1), (4,1) 잢들이 Na로 대체된 걸 확인 할 수 있다.
         df.ix[:2, 2] = NA
         df.ix[0,0] = NA
         df
Out[48]:
           0
                    1
                             2
         0 NaN
                    NaN
                             NaN
```

NaN

-0.551445 NaN

2	-0.827230	NaN	NaN
3	2.939233	NaN	-1.445335
4	-1.336096	NaN	-2.308019
5	-0.696401	-1.338543	0.335230
6	-2.344175	-1.570471	1.619617

실습예제7

위에서 np.random.randn(7,3)을 단독적으로 실행해보고 결과 값을 확인 해보시오. 활용 하여 np.random.randn 6 * 4 행렬을 만들고 DataFrame 형식으로 나타내보시오.

In []:

실습예제8

위 예제에서 만들었던 DataFrame에 (0,0) (1,1) (2,2) (3,3) 위치에 있는 값들을 Na 값으로 대체해보 시오.

In []:

In [49]: df #df확인

Out[49]:

	0	1	2
0	NaN	NaN	NaN
1	-0.551445	NaN	NaN
2	-0.827230	NaN	NaN
3	2.939233	NaN	-1.445335
4	-1.336096	NaN	-2.308019
5	-0.696401	-1.338543	0.335230
6	-2.344175	-1.570471	1.619617

In [50]: df.dropna(thresh=2) ## NaN 값이 2 이상인 열을 제거한다.

Out[50]:

	0	1	2
3	2.939233	NaN	-1.445335
4	-1.336096	NaN	-2.308019
5	-0.696401	-1.338543	0.335230
6	-2.344175	-1.570471	1.619617

In [51]: df.fillna(0) ## fillna 은 fill nan을 뜻합니다. nan이 0으로 대체된 것을 볼 수 있습니다.

Out[51]:

	0	1	2
0	0.000000	0.000000	0.000000

1	-0.551445	0.000000	0.000000
2	-0.827230	0.000000	0.000000
3	2.939233	0.000000	-1.445335
4	-1.336096	0.000000	-2.308019
5	-0.696401	-1.338543	0.335230
6	-2.344175	-1.570471	1.619617

In [52]: df ## 위와 같이 작업했으나 실제 df에는 영향을 주지 않습니다.

Out[52]:

	0	1	2
0	NaN	NaN	NaN
1	-0.551445	NaN	NaN
2	-0.827230	NaN	NaN
3	2.939233	NaN	-1.445335
4	-1.336096	NaN	-2.308019
5	-0.696401	-1.338543	0.335230
6	-2.344175	-1.570471	1.619617

In [53]: #컬럼별로 다른 값을 채울 수 있다. 사전을 사용한다 #사전이란? 아래의 {1: 0.5, 2: -1} 형태의 자료구조입니다. df.fillna({1: 0.5, 2: -1})

Out[53]:

	0	1	2
0	NaN	0.500000	-1.000000
1	-0.551445	0.500000	-1.000000
2	-0.827230	0.500000	-1.000000
3	2.939233	0.500000	-1.445335
4	-1.336096	0.500000	-2.308019
5	-0.696401	-1.338543	0.335230
6	-2.344175	-1.570471	1.619617

In [54]: df #fillna()로 내용은 바뀌지 않는다. 위도 마찬가지로 df에는 영향을 주지 않는 것을 볼 수 있습니다.

Out[54]:

Ī		0	1	2
Ī	0	NaN	NaN	NaN
Ī	1	-0.551445	NaN	NaN
	2	-0.827230	NaN	NaN
	3	2.939233	NaN	-1.445335
	4	-1.336096	NaN	-2.308019
ľ				

5	-0.696401	-1.338543	0.335230
6	-2.344175	-1.570471	1.619617

In [55]: #새로운 변수를 정의하면 바뀐 값을 얻는다 df2 = df.fillna({1: 0.5, 3: -1}) df2

Out[55]:

	0	1	2
0	NaN	0.500000	NaN
1	-0.551445	0.500000	NaN
2	-0.827230	0.500000	NaN
3	2.939233	0.500000	-1.445335
4	-1.336096	0.500000	-2.308019
5	-0.696401	-1.338543	0.335230
6	-2.344175	-1.570471	1.619617

In [56]: #fillna함수의 inplace 파라미터를 true로 정의하면 내부 변경이 가능하다. df.fillna({1: 0.5, 3: -1}, inplace=**True**)

Out[56]:

	0	1	2	
0	NaN	0.500000	NaN	
1	-0.551445	0.500000	NaN	
2	-0.827230	0.500000	NaN	
3	2.939233	0.500000	-1.445335	
4	-1.336096	0.500000	-2.308019	
5	-0.696401	-1.338543	0.335230	
6	-2.344175	-1.570471	1.619617	

In [57]: #바뀌어 있다 df

Out[57]:

	0	1	2
0	NaN	0.500000	NaN
1	-0.551445 0.500000 Nal		NaN
2	-0.827230	0.500000	NaN
3	2.939233	0.500000	-1.445335
4	-1.336096	0.500000	-2.308019
5	-0.696401	-1.338543	0.335230
6	-2.344175	-1.570471	1.619617

np.random.randn을 활용해 3*3 Dataframe 구조를 만든 뒤 값들을 확인하여 음수에 해당하는 값들을 0으로 대체해보시오.

In []:

데이터프레임_더 나아가기

DataFrame의 data를 다루는 방법에 대하여 학습한다.

In [1]: from pandas import Series, DataFrame
 import pandas as pd
 from numpy.random import randn
 import numpy as np
 import os

누락된 데이터 채우기

In [2]: df=DataFrame(np.random.randn(7,3)) ##(7,3)로 된 데이터 프레임을 생성하며 안의 값은 랜덤으로 생성한다.

df.ix[:4,1] = None #데이터 프레임의 (5,1)까지 NAN 값으로 채우며 입력된 열에서 해당 행까지 진행된다.

df.ix[:2,2] = None

df #해당 변수의 값 출력(df에는 데이터프레임이 들어가있기때문에 데이터

프레임을 출력한다.)

#이를 반대로 행한다면 결측치를 특정 값으로 바꾸는것이 가능하다.

Out[2]:

	0	1	2
0	-0.905071	NaN	NaN
1	3.477435	NaN	NaN
2	-0.893022	NaN	NaN
3	0.856653	NaN	-0.600397
4	0.738119	NaN	-0.415846
5	0.030193	0.540700	0.984515
6	-0.215206	1.351922	0.098967

실습 예제 1번

(5,4)으로 구성되었고 안의 값은 랜덤인 데이터 프레임을 만드시오. 만든 후 4행까지의 1열과 2행까지의 3열을 모두 NaN으로 바꾸어 출력하시오

(데이터프레임의 이름은 prat이며 이후 예제에도 prat를 사용)

In []:

In [3]: df.dropna() ## dropna는 행이나 열에서 NaN 값이 하나라도 있을 경우 생략하고 출력한다.

Out[3]:

	0	1	2
5	0.030193	0.540700	0.984515
6	-0.215206	1.351922	0.098967

실습 예제 2번

NaN값을 제외해서 출력하시오

In []:

In [4]: df.fillna(0) #fillna는 NaN 값을 괄호 안에 있는 값으로 채워준다. #단 새로운 변수를 만들어 변경된 dataframe을 저장하거나, inplace 파라미터를 사용하지 않는다면 변경 값은 저장되지 않는다.

Out[4]:

	0	1	2
0	-0.905071	0.000000	0.000000
1	3.477435	0.000000	0.000000
2	-0.893022	0.000000	0.000000
3	0.856653	0.000000	-0.600397
4	0.738119	0.000000	-0.415846
5	0.030193	0.540700	0.984515
6	-0.215206	1.351922	0.098967

실습 예제 3번

NaN값을 3으로 대체하시오

In []:

 In [5]: #해당사항이 2개 이상인 경우만 처리 만약 1로 고칠경우 1~3까지의 행도 같이 나온다.

 df.dropna(thresh=2)

Out[5]:

	0	1	2
3	0.856653	NaN	-0.600397
4	0.738119	NaN	-0.415846
5	0.030193	0.540700	0.984515
6	-0.215206	1.351922	0.098967

실습 예제 4번

행에서 NaN값을 제외한 수가 1개 이상이 나오도록 출력하시오

In []:

In [6]: df.fillna({1: 0.5, 3: -1}) #콜론 앞에 쓰여진 열의 값을 콜론 뒤에 값으로 채워주는 역할이다 만약 해당 열이 없을 경우 아무 일도 일어나지않는다

Out[6]: 0 1 2

0	-0.905071	0.500000	NaN
Ė			
1	3.477435	0.500000	NaN
2	-0.893022	0.500000	NaN
3	0.856653	0.500000	-0.600397
4	0.738119	0.500000	-0.415846
5	0.030193	0.540700	0.984515
6	-0.215206	1.351922	0.098967

실습 예제 5번

2열은 2로 4열은 5로 값을 대체해보시오

In []:

In [7]: #기존의 객체를 변경하도록 하려면 inplace를 사용한다 df.fillna(2, inplace=True)

Out[7]:

	0	1	2
0	-0.905071	2.000000	2.000000
1	3.477435	2.000000	2.000000
2	-0.893022	2.000000	2.000000
3	0.856653	2.000000	-0.600397
4	0.738119	2.000000	-0.415846
5	0.030193	0.540700	0.984515
6	-0.215206	1.351922	0.098967

실습 예제 6번

NaN값을 모두 10으로 변경하시오

In []:

In [8]: data = Series([1., None, 2, None, 7]) #시리즈를 만든 것이며 괄호안의 수로 순서대 로 값을 채웠다

data.fillna(data.mean()) #결측치를 평균값으로 채운다

Out[8]: 0

- 1.000000
- 3.333333 1
- 2.000000 2
- 3.333333 7.000000
- dtype: float64

실습 예제 7번

prat2 라는 이름을 가지고 1, NaN, 10, 4, Nan값을 가진 시리지를 만든 후 Nan값을 평균값으로 채워 보아라

(이후 예제는 prat2를 활용한다)

In [9]: ## 10개의 값을 가진 시리즈를 만든 후

In []:

```
data = Series(np.random.randn(10),
                       index=[['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'd', 'd'],
                             [1, 2, 3, 1, 2, 3, 1, 2, 2, 3]])
         data
               -1.040215
Out[9]: a 1
               -1.018088
            2
            3
               -0.348830
         b
           1
               -1.482556
            2
               -0.192941
            3
               -0.885719
                0.369514
           1
         C
            2
               -1.068391
                0.664071
         d
           2
                -2.009124
         dtype: float64
         실습 예제 8번
         랜덤으로 10개의 값을 채운 시리즈에 상위 색인은 a(2),c(3),d(2) b(3)로 구성하며 하위 색인은
         1~10까지의 수로 한다
In [ ]:
In [10]: data.index #levels은 Series의 중복없이 색인 값을 모아놓은 것이며 labels은 그것을 숫자로 표현
         한 것이다.
Out[10]: MultiIndex(levels=[['a', 'b', 'c', 'd'], [1, 2, 3]],
                   labels=[[0, 0, 0, 1, 1, 1, 2, 2, 3, 3], [0, 1, 2, 0, 1, 2, 0,
         1, 1, 2]])
In [11]: data['b'] #색인이 b인 값들을 출력
Out[11]: 1 -1.482556
            -0.192941
            -0.885719
         dtype: float64
In [12]: data['b':'c'] ## 색인이 b부터 c까지에 값들을 출력
Out[12]: b 1
               -1.482556
            2
               -0.192941
            3
               -0.885719
           1
                0.369514
         С
               -1.068391
         dtype: float64
In [13]: data.ix[['b', 'd']] ## 색인이 b와 d인 것만 출력
                                       56
```

Out[13]: b 1 -1.482556

2 -0.192941

3 -0.885719

d 2 0.664071

3 -2.009124

dtype: float64

실습 예제 9번

색인이 a와 d인 값들만 출력하시오

In []:

In [14]: #하위계층의 객체를 선택

data[:, 2]

Out[14]: a -1.018088

b -0.192941

c -1.068391

d 0.664071
dtype: float64

In [15]: #데이터의 배열을 새롭게 구성할 수 있다

data.unstack() #상위 계층은 행으로 하위 계층은 열로 바뀌었다

Out[15]:

		1	2	3
ć	а	-1.040215	-1.018088	-0.348830
I	þ	-1.482556	-0.192941	-0.885719
(С	0.369514	-1.068391	NaN
•	d	NaN	0.664071	-2.009124

실습 예제 10번

prat2라는 시리즈를 데이터프레임 형태로 만들어보시오

In []:

In [16]: data.unstack().stack() ## 데이터의 배열을 새롭게 구성한 후에 stack을 통해 다시 원래대로 만들었다.

Out[16]: a 1 -1.040215

2 -1.018088

3 -0.348830

b 1 -1.482556

2 -0.192941

3 -0.885719

1 0.369514

2 -1.068391

d 2 0.664071

3 -2.009124

dtype: float64

In [17]: #컬럼도 계층적으로 만들 수 있다

```
frame = DataFrame(np.arange(12).reshape((4, 3)), #(4,3)로 구성된 데이터 프레임
생성
                index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2],], #상위색인
은 a와 b로 구성
                columns=[['Ohio', 'Ohio', 'Colorado'], #index와 columns을
만들때 해당 몇행 몇열인지를 보고 만들어야한다
                         ['Green', 'Red', 'Green'], ])
frame
```

Out[17]:

		Ohio		Colorado
		Green	Red	Green
а	1	0	1	2
a	2	3	4	5
b	1	6	7	8
	2	9	10	11

실습 예제 11번

prat3이름을 가지고 (5,4)로 구성된 데이터 프레임을 생성하시오 상위 색인은 a(2), b(2), c(1)로 구성 되며 하위 색인은 1,2, 1, 2, 1로 구성한다.

columns은 'busan', 'naju', 'naju', 'seoul'와 'korea', 'korea', 'usa', 'usa'로 구성된다. (이후 예제는 prat3를 사용)

In []:

```
In [18]: #색인에 이름을 지정할 수 있다
        frame.index.names = ['key1', 'key2']
         frame.columns.names = ['state', 'color']
        frame
```

Out[18]:

	state	Ohio		Colorado
	color	Green Red		Green
key1	key2			
	1	0	1	2
а	2	3	4	5
b	1	6	7	8
	2	9	10	11

실습 예제 12번

columns에 이름을 붙이되 나라에는 country, 지역에는 region의 이름을 붙여 보아라.

```
In [ ]:
In [19]: frame['Ohio'] #Ohio columns만 보이기
```

Out[19]:

	color	Green	Red
key1	key2		
а	1	0	1
а	2	3	4
b	1	6	7
	2	9	10

데이터프레임 순서 변경 및 정렬

In [20]: frame.swaplevel('key1', 'key2') #색인 자리 바꾸기

Out[20]:

	state	Ohio		Colorado
	color	Green Red		Green
key2	key1			
1	а	0	1	2
2	а	3	4	5
1	b	6	7	8
2	b	9	10	11

 In [21]:
 frame.swaplevel(0, 1).sortlevel(0)

 #괄호안의 첫 숫자의 색인과 두 번째 숫자의 색인을 바꾸고 정렬하였다 첫번째 색인인 key2에 따라 정렬했다

Out[21]:

	state	Ohio		Colorado
	color	Green Red		Green
key2	key1			
1	а	0	1	2
•	b	6	7	8
2	а	3	4	5
	b	9	10	11

(기준)별 요약 통계

In [22]: frame.sum(level='key2') #색인이 key2에 있는 열들의 값을 합친다

Out[22]:

state	Ohio		Colorado
color	Green Red		Green
key2			
1	6	8	10
2	12	14	16

In [23]: frame.sum(level='color', axis=1) #color라는 색인목록만 불러오는데 Green은 두 개이 기때문에 값을 더한다

Out[23]:

	color	Green	Red
key1	key2		
а	1	2	1
a	2	8	4
b	1	14	7
D	2	20	10

실습 예제 13번

columns이 region인 행들의 값을 출력하시오

```
In [ ]:
```

데이터프레임 열 조작

```
In [24]: frame = DataFrame({'a': range(7), 'b': range(7, 0, -1), 'c': ['one', 'one', 'two', 'two', 'two', 'two'], 'd': [0, 1, 2, 0, 1, 2, 3]})
# a는 0부터 7전 까지의 숫자로 값을 채우고
# b는 7부터 I까지의 숫자를 채우는데 내림차순으로 채운다.
# c와 d는 각각 안에 있는 괄호안에 있는 숫자로 채우며
# a b c d 중 하나라도 7개의 값을 가지지 못하면 에러가 뜬다
frame
```

Out[24]:

	а	b	U	d
0	0	7	one	0
1	1	6	one	1
2	2	5	one	2
3	3	4	two	0
4	4	3	two	1
5	5	2	two	2
6	6	1	two	3

실습 예제 14번

prat4 라는 데이터프레임을 만들되 columns이 a인 것은 0부터 7까지 나오게하고, b는 5부터 -2까지 나오게 한다. c는 naver(3), goolge(5)로 하며 d는 0~2, 0~4까지로 만든다. (이후 예제는 prat4를 사용)

```
In [ ]:
```

 In [25]:
 # 컬럼을 새로운 색인의 중심으로 재설정할 수 있다

 # 아래는 컬럼 'c' 'd'를 가지고 재설정하는 예이다

 frame2 = frame.set_index(['c', 'd'])

 frame2

Out[25]:

		а	b
С	d		
one	0	0	7
	1	1	6
	2	2	5
	0	3	4
two	1	4	3
two	2	5	2
	3	6	1

 In [26]:
 # 인덱스에 사용된 값을 그대로 남겨둘 수도 있다

 frame.set_index(['c', 'd'], drop=False)
 # drop은 중심으로 설정한 컬럼을 제거할지

 의 여부를 정하는 명령어이다

Out[26]:

		а	b	С	d
С	d				
	0	0	7	one	0
one	1	1	6	one	1
	2	2	5	one	2
	0	3	4	two	0
two	1	4	3	two	1
two	2	5	2	two	2
	3	6	1	two	3

실습 예제 15번

columns b와 c를 새로운 색인의 중심으로 설정해 보아라. 인덱스에 사용된 값은 그대로 남겨두어라

In []:

Data loading, storage, and file formats

```
In [1]: from __future__ import division
    from numpy.random import randn
    import numpy as np
    import os
    import sys
    np.random.seed(12345)
    from pandas import Series, DataFrame
    import pandas as pd
    np.set_printoptions(precision=4)
```

텍스트 형식 데이터 읽기 및 쓰기

```
In [2]: df = pd.read_csv('data/ex1.csv') #csv파일 불러오기 df
```

Out[2]: a b d message C 0 1 2 3 4 hello 5 6 8 world 9 10 11 12 foo

```
In [3]: pd.read_table('data/ex1.csv', sep=',')
#read_table에서 디폴트 구분자는 탭을 사용한다
```

Out[3]:

a b c d message

0 1 2 3 4 hello

1 5 6 7 8 world

2 9 10 11 12 foo

```
In [4]: #자동으로 헤더를 만든다 pd.read_csv('data/ex2.csv', header=None)
```

```
Out[4]:
            0 1
                 2
                        4
                    3
            1
              2
                 3
                     4
                        hello
            5
                     8
              6
                        world
              10
                     12
                        foo
```

```
In [5]: #헤더이름을 지정한다
pd.read_csv('data/ex2.csv', names=['a', 'b', 'c', 'd', 'message'])
```

Out[5]:		а	b	С	d	message
	0	1	2	3	4	hello

1	5	6	7	8	world
2	9	10	11	12	foo

실습 예제 1번

ex2.csv파일을 읽어와 헤더 이름을 x, y, z,b, naju로 하여라

In []:

```
In [6]: #특정 컬럼을 인덱스로 사용할 수도 있다
names = ['a', 'b', 'c', 'd', 'message']
pd.read_csv('data/ex2.csv', names=names, index_col='message')
```

Out[6]:

	а	b	С	d
message				
hello	1	2	3	4
world	5	6	7	8
foo	9	10	11	12

실습 예제 2번

ex2.csv파일을 읽어와 헤더 이름으로할 list를 만들고 안에 값은 (one, two, three, four, d)로 하고 columns 중 d를 인덱스로 한다

```
In [ ]:
```

```
In [7]: #색인 컬럼을 계층으로 줄 수도 있다
parsed = pd.read_csv('data/csv_mindex.csv', index_col=['key1', 'key2'])
parsed
```

Out[7]:

		value1	value2
key1	key2		
	а	1	2
one	b	3	4
One	С	5	6
	d	7	8
	а	9	10
two	b	11	12
LWO	С	13	14
	d	15	16

실습 예제 3번

csv_mindex.csv파일을 읽어와 컬럼중에 value1와 value2를 색인으로 한다. 이름은 prat2로 한다

```
In [ ]:
```

In [8]: #한개 또는 여러개의 스페이스를 구분자로 지정할 수 있다 result = pd.read_table('data/ex3.txt', sep='\s+') result #첫번째 컬럼를 색인으로 자동으로 지정했다(첫번째 행의 수가 하나 적으므로)

Out[8]:

	A	В	С
aaa	-0.264438	-1.026059	-0.619500
bbb	0.927272	0.302904	-0.032399
ССС	-0.264273	-0.386314	-0.217601
ddd	-0.871858	-0.348382	1.100491

In [9]: #0, 2, 3 번째 행을 삭제하라 pd.read_csv('data/ex4.csv', skiprows=[0, 2, 3])

Out[9]:

	а	b	С	d	message
0	1	2	3	4	hello
1	5	6	7	8	world
2	9	10	11	12	foo

실습 예제 4번

ex4.csv 파일을 불러와 0,2, 3, 4행을 삭제해보아라

```
In [ ]:
```

In [10]: result = pd.read_csv('data/ex5.csv')
 result

Out[10]:

	something	а	b	С	d	message
0	one	1	2	3.0	4	NaN
1	two	5	6	NaN	8	world
2	three	9	10	11.0	12	foo

In [11]: pd.isnull(result) ## 괄호 안의 데이터프레임에서 NaN값은 True를 출력하고 아니면 False를 출력한다

Out[11]:

	something	а	b	С	d	message
C	False	False	False	False	False	True
1	False	False	False	True	False	False
2	False	False	False	False	False	False

```
In [12]: #컬럼별로 결측치(NA 문자들)을 따로 지정할 수 있다
sentinels = {'message': ['foo', 'NA'], 'something': ['two']} ## message 컬럼
```

에 있는 foo를 NaN로 바꾸며 someghing에 two도 NaN으로 바꾼다 pd.read_csv('data/ex5.csv', na_values=sentinels)

Out[12]:

	something	а	b	С	d	message
0	one	1	2	3.0	4	NaN
1	NaN	5	6	NaN	8	world
2	three	9	10	11.0	12	NaN

실습 예제 5번

message 컬럼에 있는 world와 a열에 있는 5를 NaN으로 만들어 보아라

In []:

텍스트파일의 일부분 읽기

In [13]: result = pd.read_csv('data/ex6.csv')
 result.head(10)

Out[13]:

	one	two	three	four	key
0	0.467976	-0.038649	-0.295344	-1.824726	L
1	-0.358893	1.404453	0.704965	-0.200638	В
2	-0.501840	0.659254	-0.421691	-0.057688	G
3	0.204886	1.074134	1.388361	-0.982404	R
4	0.354628	-0.133116	0.283763	-0.837063	Q
5	1.817480	0.742273	0.419395	-2.251035	Q
6	-0.776764	0.935518	-0.332872	-1.875641	U
7	-0.913135	1.530624	-0.572657	0.477252	K
8	0.358480	-0.497572	-0.367016	0.507702	S
9	-1.740877	-1.160417	-1.637830	2.172201	G

In [14]: pd.read_csv('data/ex6.csv', nrows=5) #5개의 색인만 가져오기

Out[14]:

	one	two	three	four	key
0	0.467976	-0.038649	-0.295344	-1.824726	L
1	-0.358893	1.404453	0.704965	-0.200638	В
2	-0.501840	0.659254	-0.421691	-0.057688	G
3	0.204886	1.074134	1.388361	-0.982404	R
4	0.354628	-0.133116	0.283763	-0.837063	Q

In [15]: #파일을 여러 조각으로 나눈 후에 각 조각으로부터 데이터를 읽을 수 있다 chunker = pd.read_csv('data/ex6.csv', chunksize=1000) chunker

```
In [16]: chunker = pd.read_csv('data/ex6.csv', chunksize=1000)
         tot = Series([])
         for piece in chunker:
             tot = tot.add(piece['key'].value_counts(), fill_value=0)
         #tot = tot.sort_values(ascending=False)
In [17]: tot[:10]
Out[17]: 0
              151.0
         1
              146.0
         2
              152.0
         3
              162.0
              171.0
         4
         5
              157.0
         6
              166.0
         7
              164.0
              162.0
         8
              150.0
         dtype: float64
         텍스트 형식으로 데이터 쓰기
In [18]: data = pd.read csv('data/ex5.csv')
         data
Out[18]:
           something a b
                               d
                                  message
                          С
         0 one
                     1
                       2
                          3.0
                               4
                                  NaN
           two
                     5
                       6
                          NaN
                               8
                                  world
                     9
                       10
           three
                          11.0
                               12
                                 foo
In [19]: data.to_csv('data/out.csv') #데이터 파일을 out.csv파일로 출력해 보아라
         실습 예제 6번
         data 파일을 prat3.csv파일로 출력해 보아라
In [ ]:
In [20]: data.to_csv(sys.stdout, sep='|') #내보내지않고 여기에 출력하기하기 위해 sys_stdout
         을 사용했고 구분 기호로/를 사용했다
         |something|a|b|c|d|message
         0|one|1|2|3.0|4|
         1|two|5|6||8|world
         2|three|9|10|11.0|12|foo
In [21]: data.to_csv(sys.stdout, na_rep='NULL') # 빈값에 NULL값을 넣었다
         ,something,a,b,c,d,message
```

Out[15]: <pandas.io.parsers.TextFileReader at 0x1361b27aa20>

```
0, one,1,2,3.0,4,NULL
1,two,5,6,NULL,8,world
2,three,9,10,11.0,12,foo
```

In [22]: data.to_csv(sys.stdout, index=False, header=False) # 컬럼과 색인을 모두 표기하지 않고 출력하기

one,1,2,3.0,4, two,5,6,,8,world three,9,10,11.0,12,foo

In [23]: data.to_csv(sys.stdout, index=**False**, columns=['a', 'b', 'c']) #색인은 출력 하지않고 컬럼에 a b c를 넣고 출력한다

> a,b,c 1,2,3.0 5,6, 9,10,11.0

In [24]: dates = pd.date_range('1/1/2000', periods=7) #2000/1/1부터 6일 뒤에 날짜까지 리 스트를 만든다

ts = Series(np.arange(7)*100, index=dates) #이것을 시리즈로 만들고 색인은 dates 에 있는 날짜이며 값은 0~6까지의 값에 곱하기 100을 한것이다

ts.to_csv('data/tseries.csv')
ts

Out[24]: 2000-01-01 0
2000-01-02 100
2000-01-03 200
2000-01-04 300
2000-01-05 400
2000-01-06 500
2000-01-07 600
Freq: D, dtype: int32

In [25]: Series.from_csv('data/tseries.csv') #다시 csv파일을 시리즈로 불러오기

Out[25]: 2000-01-01 0 2000-01-02 100 2000-01-03 200 2000-01-04 300 2000-01-05 400 2000-01-06 500 2000-01-07 600 dtype: int64

실습 예제 7번

data2라는 변수의 이름을 가졌고 2017/08/11 부터 6일뒤까지의 날짜를 가진 리스트를 만들어보시 오 또한 prat3의 이름을 가졌고 리스트의 값을 색인으로 하는 시리즈를 만들 되 시리즈안의 값들은 0부터 순서대로 나타나게 하시오

In []:

특정 형식의 수동작업

```
In [26]: import csv
        f = open('data/ex7.csv') #라는 변수에 ex7.csv 파일이 불러온다
        print(f) #이것을 출력하면 read와 다르게 작업할 수 있는 형식(r, w)이나 언어지원형식이 나온
        다
        reader = csv.reader(f)
        reader
        <_io.TextIOWrapper name='data/ex7.csv' mode='r' encoding='cp949'>
Out[26]: <_csv.reader at 0x1361b6e3660>
In [27]: for line in reader: #reader안에 있는 값을 line에 넣어 그것을 출력한다
            print(line)
        ['a', 'b', 'c']
        ['1', '2', '3']
        ['1', '2', '3', '4']
In [28]: lines = list(csv.reader(open('data/ex7.csv'))) #csv파일을 읽어와 list로 만든다
        print(lines)
        header, values = lines[0], lines[1:] #header에는 lines의 첫번째 리스트만, values에는
        두번쨰부터 끝까지 리스트를 넣는다.
        data dict = {h: v for h, v in zip(header, zip(*values))}
        data dict
        [['a', 'b', 'c'], ['1', '2', '3'], ['1', '2', '3', '4']]
Out[28]: {'a': ('1', '1'), 'b': ('2', '2'), 'c': ('3', '3')}
        실습 예제 8번
        csv파일을 읽어와 list로 만들어 prat4라는 이름으로 저장하고 prheader, prvalues에 각각 두번째리
        스트까지, 마지막 리스트까지 값을 넣으시오 그 후 두 리스트 모두 출력해보시오
In [ ]:
In [29]: #JSON 형식
        #키: 밸류 형식을 가지며 키는 반드시 문자열이어야 한다
        #JSON 데이터를 파이선에서 읽으려면 json.loads를 사용하면 된다
        obj = """
         { "name": "Wes",
         "places_lived": ["United States", "Spain", "Germany"],
         "pet": null,
```

```
In [30]: import json
    result = json.loads(obj)
    result
    type(result)
```

{"name": "Katie", "age": 33, "pet": "Cisco"}]

"siblings": [{"name": "Scott", "age": 25, "pet": "Zuko"},

Out[30]: dict

In [31]: #파이선 객체를 JSON 형식으로 바꾸려면 json.dumps를 사용하면 된다 asjson = json.dumps(result)

Database와의 상호작용

```
In [35]: cursor = con.execute('select * from test')
rows = cursor.fetchall() #조회된 결과에서 모든 데이터를 리스트 형태로 반환한다
rows
```

In [37]: DataFrame(rows, columns=list(zip(*cursor.description))[0]) #db에있는 값을

('d', None, None, None, None, None, None))

데이터프레임 형식으로 출력

Out[37]:

	а	b	С	d
0	Atlanta	Georgia	1.25	6
1	Tallahassee	Florida	2.60	3
2	Sacramento	California	1.70	5

In [38]: import pandas.io.sql as sql #pandas 모듈에서 sql명령어를 사용하여 보다 쉽게 데이 터베이스 테이블 출력 sql.read_sql('select * from test', con)

Out[38]:

	а	b	С	d
0	Atlanta	Georgia	1.25	6
1	Tallahassee	Florida	2.60	3
2	Sacramento	California	1.70	5

실습 예제 9번

위에서 만든 con에 ('korea', 'naju', 2017, 8) 라는 데이터를 execute를 활용하여 넣고 리스트형식으 로 출력해보시오.

In []:

Data Wrangling: Clean, Transform, Merge, Reshape

```
In [1]: from __future__ import division
    from numpy.random import randn
    import numpy as np
    import os
    import matplotlib.pyplot as plt
    np.random.seed(12345)
    plt.rc('figure', figsize=(10, 6))
    from pandas import Series, DataFrame
    import pandas
    import pandas as pd
    np.set_printoptions(precision=4, threshold=500)
    pd.options.display.max_rows = 100
```

```
In [2]: %matplotlib inline
```

데이터셋 결합 및 병합

DB-스타일 데이터프레임 병합

Out[3]:

	data1	key
0	0	b
1	1	b
2	2	а
3	3	С
4	4	а
5	5	а
6	6	b

```
In [4]: df2
```

Out[4]:

	data2	key
0	0	а
1	1	b
2	2	d

```
In [5]: pd.merge(df1, df2)
```

Out[5]:

	data1	key	data2
0	0	b	1
1	1	b	1
2	6	b	1
3	2	а	0
4	4	а	0
5	5	а	0

In [6]: pd.merge(df1, df2, on='key') #명시적으로 지정하는 것이 안전하다

Out[6]:

	data1	key	data2
0	0	b	1
1	1	b	1
2	6	b	1
3	2	а	0
4	4	а	0
5	5	а	0

```
In [7]: df3 = DataFrame({'lkey': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],
                         'data1': range(7)})
        df4 = DataFrame({'rkey': ['a', 'b', 'd'],
                         'data2': range(3)})
        pd.merge(df3, df4, left_on='lkey', right_on='rkey') #merge함수는 중복된 값을
        기준으로 해서 병합한다
```

Out[7]:

	data1	Ikey	data2	rkey
0	0	b	1	b
1	1	b	1	b
2	6	b	1	b
3	2	а	0	а
4	4	а	0	а
5	5	а	0	а

실습 예제 1

컬럼명이 나이, 이름 두 가지로 구성된 데이터프레임 df_ex1, df_ex2를 생성하고, 나이를 기준으로 merge하여 출력하여라.(단, 한 프레임 당 행의 수는 6개 이상)

```
In [ ]:
```

```
data
Out[8]: 0
                 1.0
              -999.0
         1
         2
                 2.0
         3
              -999.0
             -1000.0
         5
                 3.0
         dtype: float64
In [9]: #치환하는 함수 replace
         data.replace(-999, np.nan)
Out[9]: 0
                 1.0
         1
                 NaN
         2
                 2.0
         3
                 NaN
         4
             -1000.0
         5
                 3.0
         dtype: float64
In [10]: data.replace([-999, -1000], np.nan)
Out[10]: 0
              1.0
              NaN
         2
              2.0
         3
              NaN
         4
              NaN
         5
              3.0
         dtype: float64
In [11]: data.replace([-999, -1000], [np.nan, 0])
Out[11]: 0
              1.0
         1
              NaN
         2
              2.0
         3
              NaN
              0.0
              3.0
         dtype: float64
In [12]: data.replace({-999: np.nan, -1000: 0})
Out[12]: 0
              1.0
         1
              NaN
         2
              2.0
         3
              NaN
              0.0
         4
         5
              3.0
         dtype: float64
         실습예제 2
         0부터 10까지의 Series 자료구조를 만든 후 5 이상의 수를 Nan으로 replace하여라.
In [ ]:
```

이상치 필터링 및 검출

In [13]: np.random.seed(12)
 data = DataFrame(np.random.randn(1000, 4))
 data.describe()

Out[13]:

	0	1	2	3	
count	1000.000000	1000.000000	1000.000000	1000.000000	
mean	0.019826	-0.020608	-0.036681	-0.032079	
std	0.994230	0.998738	0.984190	0.994405	
min	-3.147417	-4.011049	-3.015915	-3.710679	
25%	-0.664809	-0.719489	-0.684463	-0.710911	
50%	0.003597	-0.028044	-0.044665	-0.035832	
75%	0.736373	0.682833	0.620109	0.612202	
max	3.166557	2.978985	3.529275	3.344649	

```
In [14]: col = data[3] col[np.abs(col) > 3] #절대값을 구하는 함수 abs()
```

Out[14]: 137 -3.710679 149 -3.155014 213 3.041318 445 3.344649

Name: 3, dtype: float64

In [15]: data[(np.abs(data) > 3).any(1)] #데이터프레임의 행의 1개 이상의 원소가 절대값을 씌웠을 때 3보다 큰 값이 포함된 행이 있으면 그 행을 출력.

Out[15]:

	0	1	2	3
12	-3.147417	0.535136	0.232490	0.867612
27	3.041686	-0.626081	1.505901	-0.587336
60	0.224547	-1.163467	-3.015915	0.593969
124	3.166557	1.383956	-0.077316	-0.911826
137	-1.812846	0.916503	-0.888640	-3.710679
149	1.214205	-0.862325	-0.553625	-3.155014
213	-0.347810	1.281499	-0.217167	3.041318
263	-1.524350	-0.539390	3.087539	-0.370562
445	-0.284077	0.282750	0.096077	3.344649
591	1.303257	-1.362288	-3.015906	-0.747110
761	-0.173639	0.700492	3.529275	-0.229179
774	2.011489	-4.011049	-1.925463	-0.693331

```
In [16]: data[np.abs(data) > 3] = np.sign(data) * 3 #절대값을 취한 것이 3보다 큰 값을 가진 데이터프레임 data에 sign함수를 취함 data.describe()
```

Out[16]:

	0	1	2	3
count	1000.000000	1000.000000	1000.000000	1000.000000
mean	0.019765	-0.019597	-0.037266	-0.031599
std	0.993130	0.995200	0.982040	0.990305
min	-3.000000	-3.000000	-3.000000	-3.000000
25%	-0.664809	-0.719489	-0.684463	-0.710911
50%	0.003597	-0.028044	-0.044665	-0.035832
75%	0.736373	0.682833	0.620109	0.612202
max	3.000000	2.978985	3.000000	3.000000

실습예제 3

위의 방법을 응용해 100행 5열의 난수로 구성된 데이터프레임을 생성하고 2번 열의 데이터가 음수인 것만 출력하여라.

In []:

순열 및 랜덤 샘플링

In [17]: df = DataFrame(np.arange(5 * 4).reshape(5, 4))
 df

Out[17]:

	0 1		2	3
0	0	1	2	3
1	4	5	6	7
2	8 9		10	11
3	12	13	14	15
4	16	17	18	19

In [18]: len(df)

Out[18]: 5

In [19]: #행의 위치를 랜덤하게 바꾸려고 한다 sampler = np.random.permutation(5) sampler

Out[19]: array([1, 2, 4, 0, 3])

In [20]: #행을 선택할 때 take를 사용한다 df.take(sampler)

Out[20]:

 0
 1
 2
 3

 1
 4
 5
 6
 7

 2
 8
 9
 10
 11

```
      4
      16
      17
      18
      19

      0
      0
      1
      2
      3

      3
      12
      13
      14
      15
```

```
In [21]: #임의의 3개의 행만 추출하는 방법 df.take(np.random.permutation(len(df))[:3])
```

Out[21]:

	0	1	2	3
0	0	1	2	3
4	16	17	18	19
1	4	5	6	7

```
In [22]: #15개의 정수 난수를 만들고 이 위치에 해당하는 데이터를 샘플링하는 방법 #bag에서 임의의 갯수를 추출하는 방법 bag = np.array([5, 7, -1, 6, 4]) sampler = np.random.randint(0, len(bag), size=15)
```

```
In [23]: sampler
```

Out[23]: array([0, 0, 2, 3, 1, 2, 3, 4, 0, 0, 1, 4, 3, 1, 4])

```
In [24]: draws = bag.take(sampler)
    draws
```

```
Out[24]: array([ 5, 5, -1, 6, 7, -1, 6, 4, 5, 5, 7, 4, 6, 7, 4])
```

지표(key) 계산 및 쓰레기(더미)값

Out[25]:

	data1	key
0	0	b
1	1	b
2	2	а
3	3	С
4	4	а
5	5	b

```
In [26]: pd.get_dummies(df['key']) #더미값을 얻어오는 함수 get_dummies
```

Out[26]:

	а	b	С
0	0	1	0
1	0	1	0

```
In [27]: #두개의 데이터프레임을 합치려면 join을 사용한다
        dummies = pd.get_dummies(df['key'], prefix='key')
        df_with_dummy = dummies.join(df['data1'])
        df_with_dummy
```

Out[27]:

	key_a	key_b	key_c	data1
0	0	1	0	0
1	0	1	0	1
2	1	0	0	2
3	0	0	1	3
4	1	0	0	4
5	0	1	0	5

실습예제 4

생성된 위의 df with dummy 데이터프레임의 행의 위치를 랜덤하게 바꿔 출력하여라.

In []:

```
In [28]: #개봉년도, 영화제목, 장르의 정보를 가진 20세기 영화 데이터
        #세개의 컬럼만 읽는다
        mnames = ['movie_id', 'title', 'genres']
        movies = pd.read_table('data/movies.dat', sep='::', header=None, names=m
        names)
        movies[:10]
```

C:\ProgramData\Anaconda3\lib\site-packages\ipykernel__main__.py:4: Pars erWarning: Falling back to the 'python' engine because the 'c' engine do es not support regex separators (separators > 1 char and different from '\s+' are interpreted as regex); you can avoid this warning by specifyin g engine='python'.

Out[28]:

	movie_id	title	genres
0	1	Toy Story (1995)	Animation Children's Comedy
1	2	Jumanji (1995)	Adventure Children's Fantasy
2	3	Grumpier Old Men (1995)	Comedy Romance
3	4	Waiting to Exhale (1995)	Comedy Drama
4	5	Father of the Bride Part II (1995)	Comedy
5	6	Heat (1995)	Action Crime Thriller
6	7	Sabrina (1995)	Comedy Romance
			_

7	8	Tom and Huck (1995)	Adventure Children's
8	9	Sudden Death (1995)	Action
9	10	GoldenEye (1995)	Action Adventure Thriller

```
In [29]: genre_iter = (set(x.split('|')) for x in movies.genres)
print(genre_iter)
#장르에서 유일한 값만 찾는다 set.union 사용
genres = sorted(set.union(*genre_iter))
print(genres)
```

<generator object <genexpr> at 0x0000021B76B85DB0>
['Action', 'Adventure', 'Animation', "Children's", 'Comedy', 'Crime', 'D
ocumentary', 'Drama', 'Fantasy', 'Film-Noir', 'Horror', 'Musical', 'Myst
ery', 'Romance', 'Sci-Fi', 'Thriller', 'War', 'Western']

In [30]: dummies = DataFrame(np.zeros((len(movies), len(genres))), columns=genres) # 0으로 초기화 한 데이터프레임

In [31]: #해당 쟝르가 있는 부분만 1로 표시한다 for i, gen in enumerate(movies.genres): dummies.ix[i, gen.split('|')] = 1 dummies[:10]

Out[31]:

	Action	Adventure	Animation	Children's	Comedy	Crime	Documentary	Drama	Fantas
0	0.0	0.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0
1	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0
2	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0
4	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
5	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0
6	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
7	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
8	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

```
In [32]: movies_windic = movies.join(dummies.add_prefix('Genre_'))
#더미값으로 해당하는 장르에 0과 1로 표현
movies_windic.ix[0:10]
```

Out[32]:

	movie_id	title	genres	Genre_Action	Genre_Adventure	Ge
0	1	Toy Story (1995)	Animation Children's Comedy	0.0	0.0	1.0
1	2	Jumanji (1995)	Adventure Children's Fantasy	0.0	1.0	0.0

2	3	Grumpier Old Men (1995)	Comedy Romance	0.0	0.0	0.0
3	4	Waiting to Exhale (1995)	Comedy Drama	0.0	0.0	0.0
4	5	Father of the Bride Part II (1995)	Comedy	0.0	0.0	0.0
5	6	Heat (1995)	Action Crime Thriller	1.0	0.0	0.0
6	7	Sabrina (1995)	Comedy Romance	0.0	0.0	0.0
7	8	Tom and Huck (1995)	Adventure Children's	0.0	1.0	0.0
8	9	Sudden Death (1995)	Action	1.0	0.0	0.0
9	10	GoldenEye (1995)	Action Adventure Thriller	1.0	1.0	0.0
10	11	American President, The (1995)	Comedy Drama Romance	0.0	0.0	0.0

11 rows x 21 columns

In [35]: #데이터가 어느 범주에 속하는지 간단히 찾을 수 있다 bins = [0, 0.2, 0.4, 0.6, 0.8, 1] pd.get_dummies(pd.cut(values, bins))

Out[35]:

	(0, 0.2]	(0.2, 0.4]	(0.4, 0.6]	(0.6, 0.8]	(0.8, 1]
0	0	0	0	0	1
1	0	1	0	0	0
2	1	0	0	0	0
3	0	1	0	0	0
4	0	0	1	0	0

5	0	0	1	0	0
6	0	0	0	0	1
7	0	0	0	1	0
8	0	0	0	1	0
9	0	0	0	1	0

실습예제 5

0~100 사이의 난수 10개를 생성하고 데이터가 10 단위의 범주 중 어느 범주에 속하는지를 구하여라

```
In [ ]:
```

문자열 조작

문자열 메소드

Out[41]: 1

```
In [36]: #파이선은 문자 열을 다루는데 매우 편리하다
        #문자열 구분하기
        val = 'a,b, guido'
        val.split(',')
Out[36]: ['a', 'b', ' guido']
In [37]: #공백 부분을 없애려면 strip을 사용한다
        pieces = [x.strip() for x in val.split(',')]
        pieces
Out[37]: ['a', 'b', 'guido']
In [38]: first, second, third = pieces
        print(first)
        first + '::' + second + '::' + third
        а
Out[38]: 'a::b::guido'
In [39]: #더 효과적인 방법
        '::'.join(pieces)
Out[39]: 'a::b::guido'
In [40]: #단어가 포함되어 있는지를 알려준다
        'guido' in val
Out[40]: True
In [41]: #앞에서부터의 위치를 찾아준다
        val.index(',')
```

```
In [42]: val.index('b')
Out[42]: 2
In [43]: val.index('guido')
Out[43]: 6
In [44]: val.index('NO')
        # 없는 단어는 에러가 난다
        ValueError
                                                Traceback (most recent call la
        st)
        <ipython-input-44-87e649c803ba> in <module>()
        ----> 1 val.index('NO')
              2 # 없는 단어는 에러가 난다
        ValueError: substring not found
In [45]: val.find('NO')
        #단어가 없으면 오류가 아니라 '-1' 를 리턴한다
Out[45]: -1
In [46]: #발생 횟수를 알려준다
        val.count(',')
Out[46]: 2
In [47]: val.replace(',', '::')
Out[47]: 'a::b:: guido'
In [48]: val.replace(',', '')
Out[48]: 'ab guido'
        실습예제 6
        위의 val문자열의, 개수와 문자열의 길이를 합한 값을 출력하시오.
 In [ ]:
        실습예제 7
        위의 val문자열의 ' '(공백)을 찾고 몇 번째 index에 위치해 있는지 나타내시오.
 In [ ]:
        정규식
```

81

In [49]: #정규표현식, 텍스트에서 문자열을 찾는 도구

```
# regex
        #패턴 매칭, 치환, 분리 기능 등을 제공한다
        #문자열을 분리하는 예로 하나 이상의 스페이스를 의미하는 \s+'를 사용한다
        import re
        text = "foo
                     bar\t baz \tqux"
        re.split('\s+', text)
Out[49]: ['foo', 'bar', 'baz', 'qux']
In [50]: #정규표현식을 컴파일하고 이 객체를 이용하는 방법도 있다
        #반복적으로 사용될 때 편리하고 속도도 빠르다
        regex = re.compile('\s+')
        regex.split(text)
Out[50]: ['foo', 'bar', 'baz', 'qux']
In [51]: regex.findall(text)
Out[51]: [' ', '\t', ' \t']
In [52]: text = """Dave dave@google.com
        Steve steve@gmail.com
        Rob rob@gmail.com
        Ryan ryan@yahoo.com
        0.00
        pattern = r'[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}' #해당 부분에 맞게 정규식
        변수 pattern을 지정
        #re.IGNORECASE는 대소문자 구분을 없애준다.
        regex = re.compile(pattern, flags=re.IGNORECASE)
In [53]: #문자열에서 이 표현식과 일치하는 모든 부분을 찾는다
        regex.findall(text)
Out[53]: ['dave@google.com', 'steve@gmail.com', 'rob@gmail.com', 'ryan@yahoo.com'
        실습예제 8
        위의 text에서 이메일이 아닌 단어 단위를 찾아 출력하여라.
In [ ]:
In [54]: #sesrch는 만족하는 첫번째 항목만 찾아준다
        m = regex.search(text)
        print(m)
        <_sre.SRE_Match object; span=(5, 20), match='dave@google.com'>
In [55]: text[m.start():m.end()] #첫번째 항목의 시작지점부터 끝까지를 보여준다
Out[55]: 'dave@google.com'
In [56]: print(regex.match(text))
        None
```

In [57]: #해당하는 패턴을 주어진 문자열로 치환한다

```
Ryan REDACTED
         실습예제 9
         예제 8에서 찿은 단어들을 'python'으로 치환하여라.
In [ ]:
In [58]: #패턴을 나누려면, 나눌 각 패턴을 ()로 묶는다
         pattern = r'([A-Z0-9._%+-]+)@([A-Z0-9.-]+) \setminus .([A-Z]{2,4})'
         regex = re.compile(pattern, flags=re.IGNORECASE)
In [59]: m = regex.match('wesm@bright.net')
         print(m)
         m.groups() #m을 정규식 패턴에 맞게 나누어 그룹화하는 함수
         <_sre.SRE_Match object; span=(0, 15), match='wesm@bright.net'>
Out[59]: ('wesm', 'bright', 'net')
In [60]: regex.findall(text)
Out[60]: [('dave', 'google', 'com'),
          ('steve', 'gmail', 'com'),
          ('rob', 'gmail', 'com'),
          ('ryan', 'yahoo', 'com')]
In [61]: print(regex.sub(r'Username: \1, Domain: \2, Suffix: \3', text)) #sub함수를
         이용해 정규식의 각 부분에 제목(subject)을 명명할 수 있다.
         Dave Username: dave, Domain: google, Suffix: com
         Steve Username: steve, Domain: gmail, Suffix: com
         Rob Username: rob, Domain: gmail, Suffix: com
         Ryan Username: ryan, Domain: yahoo, Suffix: com
In [62]: #매치 그룹에 이름을 줄 수 있다
         regex = re.compile(r"""
             (?P < username > [A - Z0 - 9. % + -] +)
             (?P < domain > [A - Z0 - 9. -] +)
             (?P<suffix>[A-Z]{2,4})""", flags=re.IGNORECASE|re.VERBOSE)
In [63]: | m = regex.match('wesm@bright.net')
         m.groupdict() #사전형태로 그룹화한다.
Out[63]: {'domain': 'bright', 'suffix': 'net', 'username': 'wesm'}
         pandas의 벡터화된 문자열 함수
                                       83
```

print(regex.sub('REDACTED', text))

Dave REDACTED Steve REDACTED Rob REDACTED

```
In [64]: data = {'Dave': 'dave@google.com', 'Steve': 'steve@gmail.com',
                 'Rob': 'rob@gmail.com', 'Wes': np.nan}
         data = Series(data)
In [65]: data.isnull() #값이 비어있는지 확인하는 isnull()함수
                  False
Out[65]: Dave
         Rob
                  False
         Steve
                  False
         Wes
                   True
         dtype: bool
         실습예제10
         data의 isnull()함수를 호출한 값에 True가 없도록 하는 data2를 만들고 다시 isnull()함수를 호출하여
         라.
In [ ]:
         data.str.contains('qmail') #문자열에 'gmail'을 포함하고있는지 판별한다.
In [66]:
Out[66]: Dave
                  False
         Rob
                   True
         Steve
                   True
         Wes
                    NaN
         dtype: object
In [67]: pattern
Out[67]: '([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\\.([A-Z]{2,4})'
In [68]: data.str.findall(pattern, flags=re.IGNORECASE)
Out[68]: Dave
                  [(dave, google, com)]
                    [(rob, gmail, com)]
         Rob
         Steve
                  [(steve, gmail, com)]
                                    NaN
         Wes
         dtype: object
In [69]: matches = data.str.match(pattern, flags=re.IGNORECASE)
         matches
         C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\__main__.py:1: Futu
         reWarning: In future versions of pandas, match will change to always ret
         urn a bool indexer.
           if __name__ == '__main__':
Out[69]: Dave
                  (dave, google, com)
         Rob
                    (rob, gmail, com)
         Steve
                  (steve, gmail, com)
         Wes
                                  NaN
         dtype: object
In [70]: matches.str.get(1) #get(index)로 해당 위치의 내용을 불러옴
Out[70]: Dave
                  google
         Rob
                   gmail
                   qmail
         Steve
         Wes
                     NaN
```

dtype: object

```
In [71]: matches.str[0] #str[index]로도 내용을 불러올 수 있음
Out[71]: Dave
                   dave
         Roh
                     rob
         Steve
                   steve
         Wes
                    NaN
         dtype: object
In [72]: data.str[:5]
Out[72]: Dave
                  dave@
         Rob
                  rob@g
         Steve
                  steve
         Wes
                    NaN
         dtype: object
```

Example: 미국 농무부 음식 데이터

#데이터 정보 { "id": 21441, "description": "KENTUCKY FRIED CHICKEN, Fried Chicken, EXTRA CRISPY, Wing, meat and skin with breading", "tags": ["KFC"], "manufacturer": "Kentucky Fried Chicken", "group": "Fast Foods", "portions": [{ "amount": 1, "unit": "wing, with skin", "grams": 68.0 }, ...], "nutrients": [{ "value": 20.8, "units": "g", "description": "Protein", "group": "Composition" }, ...] }

```
In [73]: import json
    db = json.load(open('data/foods-2011-10-03.json'))
    len(db)

Out[73]: 6636

In [74]: #각항목에는 각음식에 대한 정보를 담는다
    db[0].keys()

Out[74]: dict_keys(['id', 'description', 'tags', 'manufacturer', 'group', 'portions', 'nutrients'])

In [75]: db[0]['nutrients'][0]

Out[75]: {'description': 'Protein', 'group': 'Composition', 'units': 'g', 'value': 25.18}
```

실습예제11

위의 첫 번째 항목의 영양소를 표시한 것 처럼, 식품의 양(portions)을 출력하여라.

	description	group	units	value
0	Protein	Composition	g	25.18
1	Total lipid (fat)	Composition	g	29.20

2	Carbohydrate, by difference	Composition	g	3.06
3	Ash	Other	g	3.28
4	Energy	Energy	kcal	376.00
5	Water	Composition	g	39.28
6	Energy	Energy	kJ	1573.00

In [77]: info_keys = ['description', 'group', 'id', 'manufacturer']
info = DataFrame(db, columns=info_keys)

In [78]: info[:5]

Out[78]:

	description	group	id	manufacturer
0	Cheese, caraway	Dairy and Egg Products	1008	
1	Cheese, cheddar	Dairy and Egg Products	1009	
2	Cheese, edam	Dairy and Egg Products	1018	
3	Cheese, feta	Dairy and Egg Products	1019	
4	Cheese, mozzarella, part skim milk	Dairy and Egg Products	1028	

In [79]: info.head(10)

Out[79]:

	description	group	id	manufacturer
0	Cheese, caraway	Dairy and Egg Products	1008	
1	Cheese, cheddar	Dairy and Egg Products	1009	
2	Cheese, edam Dairy and Egg Products		1018	
3	Cheese, feta	eta Dairy and Egg Products 1019		
4	Cheese, mozzarella, part skim milk	Cheese, mozzarella, part skim milk Dairy and Egg Products 1028		
5	Cheese, mozzarella, part skim milk, low moisture	Dairy and Egg Products	1029	
6	Cheese, romano	Dairy and Egg Products	1038	
7	Cheese, roquefort	Dairy and Egg Products	1039	
8	Cheese spread, pasteurized process, american, Dairy and Egg Products		1048	
9	Cream, fluid, half and half	Dairy and Egg Products	1049	

In [80]: #음식 그룹의 분포를 찾는다 pd.value_counts(info.group)[:10] Out[80]: Vegetables and Vegetable Products 812

Beef Products 618 Baked Products 496 Breakfast Cereals 403 Legumes and Legume Products 365 Fast Foods 365 Lamb, Veal, and Game Products 345 341 Sweets Fruits and Fruit Juices 328 Pork Products 328

Name: group, dtype: int64

실습예제 12

영양소 자료구조의 그룹의 분포 출력하여라.

In []:

```
In [81]: "' 영양소 정보를 분석 "' nutrients = []
```

for rec in db: #data cleaning을 위해 영양소 리스트의 id를 같은 음식별로 묶는 함수 rec fnuts = DataFrame(rec['nutrients']) fnuts['id'] = rec['id'] nutrients.append(fnuts)

nutrients = pd.concat(nutrients, ignore_index=**True**) #concat함수를 이용해 기존 의 nutrients에 id column을 새로 생성하여 붙임.

In [82]: nutrients.head(10)

Out[82]:

	description	group	units	value	id
0	Protein	Composition	g	25.18	1008
1	Total lipid (fat)	Composition	g	29.20	1008
2	Carbohydrate, by difference	Composition	g	3.06	1008
3	Ash	Other	g	3.28	1008
4	Energy	Energy	kcal	376.00	1008
5	Water	Composition	g	39.28	1008
6	Energy	Energy	kJ	1573.00	1008
7	Fiber, total dietary	Composition	g	0.00	1008
8	Calcium, Ca	Elements	mg	673.00	1008
9	Iron, Fe	Elements	mg	0.64	1008

In [83]: nutrients.duplicated().sum() #중복된 값 더함

Out[83]: 14179

Out[85]:

	food	fgroup	id	manufacturer
0	Cheese, caraway	Dairy and Egg Products	1008	
1	Cheese, cheddar	Dairy and Egg Products	1009	
2	Cheese, edam	Dairy and Egg Products	1018	
3	Cheese, feta	Dairy and Egg Products	1019	
4	Cheese, mozzarella, part skim milk Dairy and Egg Products		1028	
5	Cheese, mozzarella, part skim milk, low moisture	Dairy and Egg Products	1029	
6	Cheese, romano	Dairy and Egg Products	1038	
7	Cheese, roquefort	Dairy and Egg Products	1039	
8	Cheese spread, pasteurized process, american,	Dairy and Egg Products	1048	
9	Cream, fluid, half and half	Dairy and Egg Products	1049	

실습예제13

위의 col_mapping의 'id'컬럼을 'food_id'로 변경하여라.

Out[86]:

	nutrient	nutgroup	units	value	id
0	Protein	Composition	g	25.18	1008
1	Total lipid (fat)	Composition	g	29.20	1008
2	Carbohydrate, by difference	Composition	g	3.06	1008

3	Ash	Other	g	3.28	1008
4	Energy	Energy	kcal	376.00	1008
5	Water	Composition	g	39.28	1008
6	Energy	Energy	kJ	1573.00	1008
7	Fiber, total dietary	Composition	g	0.00	1008
8	Calcium, Ca	Elements	mg	673.00	1008
9	Iron, Fe	Elements	mg	0.64	1008

In [87]: ndata = pd.merge(nutrients, info, on='id', how='outer') #id를 키로 해서 외부 조인

In [88]: ndata.head(10)

Out[88]:

	nutrient	nutgroup	units	value	id	food	fgroup	manufacturer
0	Protein	Composition	g	25.18	1008	Cheese, caraway	Dairy and Egg Products	
1	Total lipid (fat)	Composition	g	29.20	1008	Cheese, caraway	Dairy and Egg Products	
2	Carbohydrate, by difference	Composition	g	3.06	1008	Cheese, caraway	Dairy and Egg Products	
3	Ash	Other	g	3.28	1008	Cheese, caraway	Dairy and Egg Products	
4	Energy	Energy	kcal	376.00	1008	Cheese, caraway	Dairy and Egg Products	
5	Water	Composition	g	39.28	1008	Cheese, caraway	Dairy and Egg Products	
6	Energy	Energy	kJ	1573.00	1008	Cheese, caraway	Dairy and Egg Products	
7	Fiber, total dietary	Composition	g	0.00	1008	Cheese, caraway	Dairy and Egg Products	
8	Calcium, Ca	Elements	mg	673.00	1008	Cheese, caraway	Dairy and Egg Products	
9	Iron, Fe	Elements	mg	0.64	1008	Cheese, caraway	Dairy and Egg Products	

실습예제 14

nutrients와 info를 innerjoin한 ndata2를 생성하여라.

```
In [ ]:
In [89]: ndata.ix[30000] #x번째 행을 나타내는 ix[x]
                                                        Glycine
Out[89]: nutrient
                                                    Amino Acids
         nutgroup
         units
         value
                                                           0.04
         id
                                                           6158
         food
                         Soup, tomato bisque, canned, condensed
         fgroup
                                     Soups, Sauces, and Gravies
         manufacturer
         Name: 30000, dtype: object
In [90]: by_nutrient = ndata.groupby(['nutgroup', 'nutrient']) #groupby()함수를 사용하
         여 nutgroup에 따른 nutrient로 group화한다.
         get maximum = lambda x: x.xs(x.value.idxmax()) #람다함수는 함수를 지정(직접 만
         드는 방식),
                                                        #이 함수는 value가 가장 높은 수의
         인덱스를 찾아줌 -> idxmax()함수
         get_minimum = lambda x: x.xs(x.value.idxmin()) #-> 반대로 가장 낮은 수의 인덱스
         를 찾아줌 -> idxmin() 함수
         max_foods = by_nutrient.apply(get_maximum)[['value', 'food']] #apply(lambda
         함수) 문법을 이용해 만든 람다 함수를 실행
         max_foods.food = max_foods.food.str[:50]
In [91]: max foods.ix['Amino Acids']['food']
Out[91]: nutrient
         Alanine
                                           Gelatins, dry powder, unsweetened
                                                Seeds, sesame flour, low-fat
         Arginine
         Aspartic acid
                                                         Soy protein isolate
                                Seeds, cottonseed flour, low fat (glandless)
         Cystine
         Glutamic acid
                                                         Soy protein isolate
         Glycine
                                           Gelatins, dry powder, unsweetened
         Histidine
                                  Whale, beluga, meat, dried (Alaska Native)
                           KENTUCKY FRIED CHICKEN, Fried Chicken, ORIGINA...
         Hydroxyproline
         Isoleucine
                           Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
         Leucine
                           Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
                           Seal, bearded (Oogruk), meat, dried (Alaska Na...
         Lysine
         Methionine
                                       Fish, cod, Atlantic, dried and salted
         Phenylalanine
                           Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
         Proline
                                           Gelatins, dry powder, unsweetened
         Serine
                           Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
                           Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
         Threonine
                            Sea lion, Steller, meat with fat (Alaska Native)
         Tryptophan
         Tyrosine
                           Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
                           Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
         Valine
```

Name: food, dtype: object

In []:

Plotting and Visualization

정입니다.

것입니다.

니다.

코드 import numpy as np ## numpy 모듈을 불러오며, numpy를 np로 대체 **import** matplotlib.pyplot as plt ## matplotlib.pyplot ## matplotlib.pylot 모듈을 불러오며 p *It*로 대체 from pandas import * In [2]: ##numpy.random 서브패키지는 numpy의 랜덤넘버 생성 관련 함수를 모아 놓은 것으로 다음과 같은 함수를 제공합니다. ## seed : pseudo random 상태 설정 ## shuffle : 조합 ## choice : 순열 ## random_integers : uniform integer ## rand: uniform ## randn : Gaussina nomal ##컴퓨터 프로그램에서 무작위와 관련된 알고리즘은 사실 무작위가 아니라 시작 숫자를 정해주면 그 다음에는 정해진 알고리즘에 의해 마치 난수 처럼 ## 보이는 수열을 생성 하는 것입니다. 이와 같이 시작 숫자를 seed라 지칭합니다. ## seed는 0보다 크거나 같은 정수의 값을 가질 수 있습니다.간단히 seed의 역할을 밑에서 보여드리겠 습니다. In [3]: np.random.seed(0) ##시드를 0으로 설정해준다. a = np.random.rand(5) ## rand명령은 0과 1 사이의 난수를 발생시키는 명령어로 인수로 받은 숫자 횟수 만큼 난수를 발생시킵니다. b = np.random.rand(10) ## 각각 난수를 a,b 변수에 저장합니다. print(a)## a,b 출력과정 print(b) [0.5488135 0.71518937 0.60276338 0.54488318 0.4236548] [0.64589411 0.43758721 0.891773 0.96366276 0.38344152 0.79172504 0.52889492 0.56804456 0.92559664 0.07103606] In [4]: np.random.seed(0) ## 시디를 0으로 재설정해줍니다. a = np.random.rand(5) b = np.random.rand(10)print(a) print (b) ## 다시 난수를 발생시키는데 위와 동일한 값이 나오는 것을 확인 할 수 있습니다. seed 영향이죠. 0.5488135 0.71518937 0.60276338 0.54488318 0.4236548 1 [0.64589411 0.43758721 0.891773 0.96366276 0.38344152 0.79172504 0.52889492 0.56804456 0.92559664 0.071036061

In [1]: ## 모듈이란 함수나 변수 또는 클래스들을 모아 놓은 파일입니다. 밑 코드들은 모듈들을 불러오는 과

from ex1 import sum => ex1.py 모듈파일에서 sum이라는 함수만 사용하는 방식입니다.

파이썬으로 프로그래밍을 할 때 굉장히 많은 모듈을 사용하기 때문에 밑 코드들은 많이 보시게 될

import ex1 => ex1.py 모듈 파일을 불러오는 과정으로 ex1 안에 존재하는 함수를 사용할 수 있게 됩

from numpy.random import randn ## numpy.random이라는 모듈 안의 randn 함수를 불러오는

In [5]: ##np.random.seed(12345) ## seed를 12345로 설정

- In [6]: import pandas as pd ## pands 모듈을 불러오며 pd로 대체 np.set_printoptions(precision=4)
- In [7]: %matplotlib inline

간단한 matplotlib API

- In [8]: plt.plot(np.arange(10)) ## matplotlib.plot(a) 형태입니다. 하나 값만 정해질 경우 a인수는 y 값에 해당되며 x값은 자동적으로 y 갯수 만큼의 정수로 ## 정해집니다.
- Out[8]: [<matplotlib.lines.Line2D at 0x24f8132b470>]

- In [9]: plt.plot(np.arange(10),[0,1,0,1,0,1,0,1,0,1]) ## plot(a,b) a와 b값 모두 정해준 형태입니다. a는 x값이 되며 b는 y값이 된다.
- Out[9]: [<matplotlib.lines.Line2D at 0x24f80e3f6a0>]

실습예제 1

y=x인 그래프를 그리시오(범위 0~100)

In []:

수치 및 다중그림

 In [10]:
 # 그래프는 Figure 객체내에 존재한다. 아래는 새로운 Figure 객체를 만든다

 #fig = plt.figure()

In [11]: #서브플롯을 만들어 그림을 추가한다 #ax1 = fig.add_subplot(2, 2, 1)

In [12]: #ax2 = fig.add_subplot(2, 2, 2) #ax3 = fig.add_subplot(2, 2, 3)

In [13]: plt.plot([1.5,3.5,-2,1.6]) ## plt.plot(a) 형식

Out[13]: [<matplotlib.lines.Line2D at 0x24f81155cc0>]

In [14]: plt.plot([1.5,3.5,-2,-3]) ## plt.plot(a) 형식

Out[14]: [<matplotlib.lines.Line2D at 0x24f813af5f8>]

실습예제2

총 7번 꺾이는 꺾은선 그래프를 그리시오.

In []:

In [15]: plt.plot(randn(50).cumsum(), color = 'r') ##randn().cumsum()은 cumsum()함수는 누 적합을 구하는 함수이다. ##plt.plot(a,color='?') 은 y값을 a로 받고, c olor를 배정하는 형식이다. 'r' = red, 'b' = blue 등이있다.

Out[15]: [<matplotlib.lines.Line2D at 0x24f81448518>]

실습예제3

위의 그래프 그리는 방법을 응용하여 x축의 범위를 100으로 하는 그래프를 그리시오. 또 선의 색을 blue로 설정하시오.

In []:

In [16]: fig = plt.figure() #그래프는 Figure 객체내에 존재한다. 아래는 새로운 Figure 객체를 만든 다

#아래 출력 된 것이 Figure라 보면 됩니다.

ax1 = fig.add_subplot(2, 2, 1) ##fig.add_subplot(a,b,c) 는 Figure 객체내 서브plot를 넣는 것으로 a*b 행렬 에서 c는 위치를 나태낸다.

ax2 = fig.add_subplot(2, 2, 2) ## 2*2 행렬에서 2번째에 위치하는 plot

 $ax3 = fig.add_subplot(2, 2, 3)$

In [17]: axl.hist(randn(100), bins=20, color='k') ## matplotlib.pyplot에는 여러가지 형태의 pl ot(그래프) 형식이 제공됩니다.

hist : 히스토그램 . bar :

막대그래프 scatter: 산점도 pie: 원그래프 등등.

이며 bins 는 폭 설정, color는 색깔 설정입니다.

ax2.scatter(np.arange(30), np.arange(30) + 3 * randn(30)) ## scatter 산점도

Out[17]: <matplotlib.collections.PathCollection at 0x24f81640668>

In [18]: fig

Out[18]:

In [19]: axes = plt.subplots(2, 3) ##2*3을 설정해주고 아래의 결과를 볼 수 있다. axes

subplot 주변의 공간 고정

In [20]: plt.subplots_adjust(left=None, bottom=None, right=None, top=None,

<matplotlib.figure.Figure at 0x24f81ae4a20>

In [21]: fig, axes = plt.subplots(2, 2, sharex=**True**, sharey=**True**) #각 subplot이 sharex= true x축 공유 sharey=y축을 공유한다.

for i in range(2):

for j **in** range(2): #for 구문은 for i in range() 범위 만큼 i를 반복 한다는 구문이다. axes[i, j].hist(randn(50), bins=10, color='k', alpha=0.5) ##이중f or 구문으로 [0,0],[0,1],[1,0],[1,1] 순으로 반복.

plt.subplots_adjust(wspace=0, hspace=0) #인수 값들을 변경해서 어떤 인수들이 어떤 작용을 하는지 볼 수 있다!

실습예제 4

위의 코드를 참고하여 9개의 랜덤한 히스토그램을 그리시오.

In []:

Out[24]: [<matplotlib.lines.Line2D at 0x24f833b3278>]

실습예제5

꺾이는 부분에 사각형으로 점을 찍고 점선이며 파란 색인 그래프를 그리시오.

```
In [25]: data = randn(30).cumsum()
plt.plot(data, 'k--', label='Default')
plt.plot(data, 'k-', drawstyle='steps-post', label='steps-post') # drawstyl
e='steps-post'계단식 표현 뜻한다
```

Out[25]: [<matplotlib.lines.Line2D at 0x24f833de080>]

그래프 세부내용(범례, 축이름 등)

```
In [26]: fig = plt.figure(); ax = fig.add_subplot(1, 1, 1) ax.plot(randn(1000).cumsum())

ticks = ax.set_xticks([0, 250, 500, 750, 1000]) labels = ax.set_xticklabels(['one', 'two', 'three', 'four', 'five'], fontsize='small') ax.set_title('My first matplotlib plot') ## title 설정 ax.set_xlabel('Stages') ## x축 label 설정
```

Out[26]: <matplotlib.text.Text at 0x24f8334acf8>

실습예제6

위의 예제 그래프를 그대로 그리되 그래프의 제목, x축 이름을 한글로 바꾸고 y축의 이름을 추가하시오.

```
In [ ]:
```

범주 추가

```
In [27]: fig = plt.figure(); ax = fig.add_subplot(1, 1, 1)
```

```
ax.plot(randn(1000).cumsum(), 'k', label='one')
ax.plot(randn(1000).cumsum(), 'k--', label='two')
ax.plot(randn(1000).cumsum(), 'k.', label='three')
ax.legend(loc='best') #최적의 장소에 범례를 위치 (loc = location)
```

Out[27]: <matplotlib.legend.Legend at 0x24f833bb748>

실습예제7

위의 그래프의 범례를 오른쪽 아래 위치로 이동시키십시오.(힌트 : location 위치에 아무 글씨나 집 어넣으면 힌트가 나옵니다.)

```
In [ ]:
```

subplot 주석달기 및 그리는 방법

```
In [28]: from datetime import datetime
         fig = plt.figure()
         ax = fig.add_subplot(1, 1, 1)
         data = pd.read_csv('data/spx.csv', index_col=0, parse_dates=True)
         spx = data['SPX']
         spx.plot(ax=ax, style='k-')
         crisis_data = [
             (datetime(2007, 10, 11), 'Peak of bull market'),
             (datetime(2008, 3, 12), 'Bear Stearns Fails'),
             (datetime(2008, 9, 15), 'Lehman Bankruptcy')
         for date, label in crisis_data:
             ax.annotate(label, xy=(date, spx.asof(date) + 50), #asof함수를 사용, x,y 좌
         표를 해당 날짜의 가장 근접한 위치로 함, +는 위치설정
                         xytext=(date, spx.asof(date) + 200),
                         arrowprops=dict(facecolor='black'), #화살표
                         horizontalalignment='left', verticalalignment='top')#주석
         달기
         ax.set_xlim(['1/1/2007', '1/1/2011'])
```

```
ax.set_ylim([600, 1800])
ax.set_title('Important dates in 2008-2009 financial crisis')
```

Out[28]: <matplotlib.text.Text at 0x24f82cddf98>


```
Tn [29]: fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)

rect = plt.Rectangle((0.2, 0.75), 0.5, 0.2, color='k', alpha=0.3) ##(0.2,0.75) 사각형의 시작점 0.5 가로길이 0.2 세로길이를 뜻한다.

## alpha 색깔의
명도를 나타내준다 인수를 바꿔서 결과 변화를 확인해보자!
circ = plt.Circle((0.7, 0.2), 0.15, color='b', alpha=0.3) ##(0,7,0,2) 원의 중심을 뜻한다/0.15 원의 반지름을 뜻한다.
pgon = plt.Polygon([[0.15, 0.15], [0.35, 0.4], [0.2, 0.6]], #꼭지점의 좌표 color='g', alpha=0.5)

ax.add_patch(rect) ## ax subplot에 도형을 추가한다.
ax.add_patch(circ) ax.add_patch(pgon)
```

Out[29]: <matplotlib.patches.Polygon at 0x24f834dccc0>

실습예제8

위의 그래프를 응용해 오각형 도형을 그리시오.

```
In [ ]:
```

그림(그래프)를 파일로 저장하기

```
In [30]: fig
Out[30]:
          1.0
           0.8
           0.6
           0.4
           0.2
           0.0
             0.0
                     0.2
                              0.4
                                       0.6
                                                0.8
                                                         1.0
In [31]: fig.savefig('figpath.svg')
In [32]: fig.savefig('figpath.png', dpi=400, bbox_inches='tight') #save figure (.savefig()
In [33]: from io import BytesIO
          buffer = BytesIO()
          plt.savefig(buffer)
          plot_data = buffer.getvalue()
          <matplotlib.figure.Figure at 0x24f8347f6d8>
```

pandas에서의 제도 방법

선 그래프

Out[34]: <matplotlib.axes._subplots.AxesSubplot at 0x24f83499be0>

Out[35]: <matplotlib.axes._subplots.AxesSubplot at 0x24f83546c50>

실습예제9

위 그래프의 라인을 7개로 늘리십시오.

In []:

막대 그래프

```
In [36]: fig, axes = plt.subplots(2, 1)
data = Series(np.random.rand(16), index=list('abcdefghijklmnop')) #x축의
이름을 list로 문자열형태로 지정
data.plot(kind='bar', ax=axes[0], color='k', alpha=0.9)
data.plot(kind='barh', ax=axes[1], color='k', alpha=0.7)
```

Out[36]: <matplotlib.axes._subplots.AxesSubplot at 0x24f8368d780>

실습예제10

상단의 1번 그래프의 x축과 2번그래프의 y축을 0부터 9까지의 10개의 숫자로 바꾸고 그래프의 색을 노란색으로 바꿔 그리십시오.

Out[37]: <matplotlib.axes._subplots.AxesSubplot at 0x24f837b0240>


```
In [40]: tips = pd.read_csv('data/tips.csv')
         party_counts = pd.crosstab(tips['day'], tips['size'])
         print(party_counts)
         #2~5명의 파티 데이터만 추출
         ptt=party_counts.ix[:, 2:5]
         print(ptt)
                   2
                       3
                               5
         size 1
                                 б
                            4
         day
                                  0
         Fri
               1
                  16
                       1
                           1
                               0
               2
                  53
                      18
                          13
                               1
                                  0
         Sat
                  39
         Sun
               0
                      15
                          18
                               3
                                  1
                        4
                           5
                               1
                                  3
         Thur
               1
                  48
                           5
         size
                2
                   3
                        4
         day
                    1
                        1
                           0
         Fri
               16
               53
                       13
                           1
         Sat
                   18
         Sun
               39
                   15
                       18
                        5
         Thur 48
                    4
                           1
```

In [41]: tips.head(10)

Out[41]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
5	25.29	4.71	Male	No	Sun	Dinner	4
6	8.77	2.00	Male	No	Sun	Dinner	2
7	26.88	3.12	Male	No	Sun	Dinner	4
8	15.04	1.96	Male	No	Sun	Dinner	2
9	14.78	3.23	Male	No	Sun	Dinner	2

```
In [42]: party_pcts = ptt.div(ptt.sum(1).astype(float), axis=0)
    print(party_pcts)
```

party_pcts.plot(kind='barh', stacked=True) 2 3 4 5 size day Fri 0.888889 0.055556 0.055556 0.000000 0.152941 0.011765 Sat 0.623529 0.211765 0.520000 0.200000 0.240000 0.040000 Sun Thur 0.827586 0.068966 0.086207 0.017241

Out[42]: <matplotlib.axes._subplots.AxesSubplot at 0x24f830ae400>

실습예제11

위 그래프를 가로축 중심의 그래프로 그리시오.

In []:

히스토그램 및 밀도 그래프

```
In [43]: plt.figure()
Out[43]: <matplotlib.figure.Figure at 0x24f83494128>
```

<matplotlib.figure.Figure at 0x24f83494128>

```
In [44]: tips['tip_pct'] = tips['tip'] / tips['total_bill'] tips['tip_pct'].hist(bins=50) #bins는 막대의 범위(굵기)이다.
```

Out[44]: <matplotlib.axes._subplots.AxesSubplot at 0x24f832036a0>


```
In [45]: plt.figure()
```

```
In [46]: #커널밀도추정 그래프 Kernel Sensity Estimate tips['tip_pct'].plot(kind='kde')
```

Out[46]: <matplotlib.axes._subplots.AxesSubplot at 0x24f83139b38>


```
In [47]: plt.figure()
```

```
In [48]: comp1 = np.random.normal(0, 1, size=200) #N(0,1) comp2 = np.random.normal(10, 2, size=200) #N(10,4) values = Series(np.concatenate([comp1, comp2])) #concat(1,2)-1번째 문자열에 두번째 문자열을 합치는 함수와 동일 values.hist(bins=100, alpha=0.3, color='k', normed=True) values.plot(kind='kde', style='k--')
```

Out[48]: <matplotlib.axes._subplots.AxesSubplot at 0x24f84051e80>

실습예제12

위의 그래프의 막대 부분의 색을 진하게 하고 점선으로 된 커널 밀도 추정 그래프를 실선으로 표시하시오.

In []:

산점도 그래프

In [49]: macro = pd.read_csv('data/macrodata.csv')
data = macro[['cpi', 'ml', 'tbilrate', 'unemp']]
trans_data = np.log(data).diff().dropna() #dropna는 nan 즉 0의 값을 뻰다는 의미. di
ff()는 미분하는 함수, log()는 log함수를 취하는 함수.
trans_data[-5:]

Out[49]:

		срі	m1	tbilrate	unemp
	198	-0.007904	0.045361	-0.396881	0.105361
	199	-0.021979	0.066753	-2.277267	0.139762
	200	0.002340	0.010286	0.606136	0.160343
	201	0.008419	0.037461	-0.200671	0.127339
	202	0.008894	0.012202	-0.405465	0.042560

```
In [50]: plt.figure()
```

```
In [51]: plt.scatter(trans_data['m1'], trans_data['unemp'])
   plt.title('Changes in log %s vs. log %s' % ('m1', 'unemp'))
```

Out[51]: <matplotlib.text.Text at 0x24f84150c18>

실습예제13

In []:

위의 Scatter plot의 x축을 trans_data의 cpi, y축을 tbilrate로 한 scatter plot을 그리고 제목을 그에 맞게 바꾸시오.

```
pd.scatter_matrix(trans_data, diagonal='kde', alpha=0.3) #모든 x축과 y축을 사
          용해 행렬의 형태로 나타내는 scatter matrix
Out[52]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x0000024F84217
         518>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x0000024F842C8</pre>
         7F0>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x0000024F84370</pre>
         C18>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x0000024F8444A</pre>
         358>],
                 [<matplotlib.axes. subplots.AxesSubplot object at 0x0000024F844B4
         780>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x0000024F844B4</pre>
         7B8>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x0000024F84578</pre>
         0F0>,
                  <matplotlib.axes. subplots.AxesSubplot object at 0x0000024F8610A</pre>
         E10>],
                 [<matplotlib.axes._subplots.AxesSubplot object at 0x0000024F86179
         358>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x0000024F861C8</pre>
         C50>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x0000024F8623F</pre>
         198>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x0000024F8625D</pre>
         080 > 1,
                 [<matplotlib.axes._subplots.AxesSubplot object at 0x0000024F862FA
         F98>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x0000024F8636B</pre>
         2E8>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x0000024F863BD</pre>
         BE0>,
```

EF0>]], dtype=object)

<matplotlib.axes._subplots.AxesSubplot object at 0x0000024F86425</pre>

실습예제14

위의 산점도 매트릭스의 산점도의 점 색을 붉은 색으로 하고 모양을 네모로 바꾸시오(marker 이용)

In []:

클러스터링(K-Means)

```
In [1]: #모듈 선언
import pandas as pd
import numpy as np
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.spatial import distance
from sklearn.cluster import KMeans
from matplotlib import pyplot as plt
import seaborn as sns
```

```
In [2]: from sklearn.metrics import jaccard_similarity_score
#자카드 유사도 - (두 집합의 교집합 수)/(두 집합의 합집합 수)
y_pred = [0, 1, 2, 7]
y_true = [0, 1, 2, 7]
print(jaccard_similarity_score(y_true, y_pred, normalize=False))
# print(jaccard_similarity_score(y_true, y_pred, normalize=False))
```

1.0

Example 1 - 계층적 클러스터링와 KMeans 클러스터링

계층적 클러스터링

In [3]: #scipy 덴드로그램 data1 = pd.read_csv('data/sample2d.csv') #주어진 데이터를 read data1 #출력

Out[3]:

	x	у	name
0	4.0	3.5	Α
1	3.5	4.0	В
2	4.0	4.0	С
3	5.0	5.0	D
4	5.0	5.5	Е
5	5.5	5.0	F
6	4.0	6.0	G
7	6.5	4.5	Н

In [4]: #data1의 원소들중 무작위 n개 추출 => data1.sample(n)
ksample = data1.sample(8) #8중 8개를 추출하여, 원소의 순서만 바꾼 결과가 됨
print(ksample)

```
x y name
2 4.0 4.0 C
3 5.0 5.0 D
0 4.0 3.5 A
```

```
б
           4.0 6.0
                        G
         4
           5.0 5.5
                        Ε
           6.5 4.5
                        Η
         1 3.5 4.0
                        В
In [9]: ksample = datal.drop('name', axis=1) #'name' 순으로 정렬
         print(ksample)
              Х
                   У
           4.0
                3.5
            3.5
                4.0
            4.0
                4.0
         3
           5.0 5.0
         4 5.0 5.5
         5 5.5 5.0
         6
           4.0 6.0
           6.5 4.5
In [13]: #scipy Linkage
         Z = linkage(ksample, metric='euclidean', method='ward') # 유클리드 거리를 이
         용해 Linkage Matrix를 생성
         Z
Out[13]: array([[
                   0.
                                 2.
                                                0.5
                                                              2.
                                                                         ],
                [
                   3.
                                 4.
                                                0.5
                                                              2.
                                                                         ],
                [
                                                0.64549722,
                                                              3.
                  1.
                                 8.
                                                                         ],
                  5.
                                 9.
                                                0.64549722,
                                                              3.
                [
                                                                         ],
                                                1.75594229,
                  6.
                                11.
                                                              4.
                [
                                                                         ],
                [
                   7.
                                12.
                                                2.33452351,
                                                              5.
                                                                         ],
                [ 10.
                                                3.74277081,
                                                                         ]])
                                13.
                                                              8.
In [29]: #상단에서 구한 Linkage Matrix를 출력
         plt.clf()
         plt.figure(figsize=(10, 5))
         plt.title('Hierarchycal Clurstering Dendrogram')
         plt.xlabel('Name')
         plt.ylabel('Height')
         dendrogram(Z, leaf_font_size=15, labels=list(data1['name']))
         plt.show()
```

<matplotlib.figure.Figure at 0x2d235ec1550>

5.5 5.0

F

5

Name

KMeans 클러스터링

plt.show()

```
In [30]: ksample.values #k sample에 속한 원소의 값을 출력
         #즉 pandas dataframe엔 array가 있다.
Out[30]: array([[ 4. ,
                         3.5],
                [ 3.5,
                         4.],
                [4.,
                        4.],
                [5.,
                        5.],
                [5.,
                        5.5],
                [ 5.5,
                        5.],
                [4.,
                        6.],
                [ 6.5,
                        4.5]])
In [31]: X = ksample.values #k sample에 속한 원소의 값의 type을 출력
         type(X) # array ○ type ○ numpy ○ n dimension array
Out[31]: numpy.ndarray
```

```
In [51]: #sklearn모듈의 KMeans함수를 사용해 clustering을
k = KMeans(n_clusters= 4).fit(ksample)

plt.clf()
plt.figure(figsize=(15, 10))
plt.scatter(ksample['x'], ksample['y'], c=k.labels_[:],s=500)
#결과를 출력 => ksample의 좌표를 찍고, color를 클러스터값으로 칠한다
```

<matplotlib.figure.Figure at 0x2d238c81240>

실습예제 1

sklearn 모듈의 KMeans 알고리즘을 사용하여, KSample을 3그룹으로 clustering 한 뒤 출력해 보시오.

In []:

Example 2 - 운동선수 클러스터링

운동 선수들의 키와 몸무게의 정보를 이용하여, 같은 운동을 하는 선수들의 그룹을 예상하여 만들어 보는 예제이다.

In [67]: heightweight = pd.read_csv('data/heightweight.csv') #높이와 무게의 data를 read

In [68]: heightweight.info() #읽어온 data의 information을 출력

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 36 entries, 0 to 35

Data columns (total 2 columns): Height 36 non-null int64 Weight 36 non-null int64

dtypes: int64(2)

memory usage: 656.0 bytes

In [69]: heightweight.describe() #heightweight의 수, 편차, 평균, 최소값, 최대값, 등을 출력하는 함수

Out[69]:

	Height	Weight
count	36.000000	36.000000
mean	171.361111	67.361111

std	15.133978	14.799909
min	143.000000	40.000000
25%	160.000000	58.500000
50%	170.000000	67.500000
75%	178.000000	78.000000
max	203.000000	92.000000

In [70]: #z정규화

zscore = lambda x: (x - x.mean())/x.std() #정규화 식을 lamda를 이용해 함수 zsc ore 생성

heightweight_z = heightweight.apply(zscore) #정규화 함수를 이용해 새로운 datafra me 생성

heightweight_z

Out[70]:

	Height	Weight
0	-0.089937	0.245872
1	-1.411467	-1.443327
2	0.636904	-0.227104
3	-1.874002	-1.646031
4	-0.089937	0.583712
5	-1.015008	-0.497375
6	1.363745	0.853984
7	-0.750702	-1.510895
8	-1.741849	-1.848735
9	-0.948932	-1.240623
10	-0.222090	-0.024400
11	1.165516	0.921552
12	1.429822	0.583712
13	1.826280	0.381008
14	2.090586	0.718848
15	0.108292	-0.902783
16	-1.081085	-1.375759
17	-0.750702	-1.037919
18	-0.222090	-0.091968
19	-0.552473	-0.227104
20	-0.222090	-0.227104
21	0.108292	-0.159536
22	0.372598	0.043168
23	0.240445	0.178304

24	0.306521	-0.024400
25	-0.089937	-0.362239
26	-1.081085	-1.713599
27	0.769057	0.516144
28	1.495898	0.718848
29	1.760204	0.989120
30	-0.552473	0.718848
31	-0.288167	1.056688
32	-0.089937	1.462096
33	0.108292	1.664800
34	-0.750702	1.259392
35	0.042216	1.664800

```
In [71]: cluster1 = KMeans(n_clusters= 3).fit(heightweight_z) #3그룹으로 클러스터링 cluster1
```

In [72]: #데이터에 clurster colum 추가 heightweight['cluster'] = cluster1.labels_[:] # example1과 다르게 dataframe 내부 에 정보 삽입 heightweight

Out[72]:

	Height	Weight	cluster
0	170	71	0
1	150	46	1
2	181	64	0
3	143	43	1
4	170	76	0
5	156	60	1
6	192	80	2
7	160	45	1
8	145	40	1
9	157	49	1
10	168	67	0
11	189	81	2
12	193	76	2
13	199	73	2
14	203	78	2

15	173	54	0
16	155	47	1
17	160	52	1
18	168	66	0
19	163	64	0
20	168	64	0
21	173	65	0
22	177	68	0
23	175	70	0
24	176	67	0
25	170	62	0
26	155	42	1
27	183	75	2
28	194	78	2
29	198	82	2
30	163	78	0
31	167	83	0
32	170	89	0
33	173	92	0
34	160	86	0
35	172	92	0

```
In [73]: plt.clf()
plt.figure(figsize=(15, 10))
plt.ylabel('Height (unit : cm)')
plt.xlabel('Weight (unit : kg)')
plt.scatter(heightweight['Weight'], heightweight['Height'], c=heightweig
ht['cluster'])
# dataframe 내부에 clurster정보가 존재하기 때문에 color에 cluster1.labels_[:]를 사용하지 않음
plt.show()
```

<matplotlib.figure.Figure at 0x2d235ea1ba8>

실습예제 2

sklearn 모듈의 kmeans 함수를 이용해 heightweight를 5그룹으로 clustering 한 뒤 출력 해 보시오. (단, cluster정보는 dataframe 내부에 존재해야 한다.)

In []:

Example 3 - 자동차 클러스터링

자동차들의 정보들을 이용하여 클러스터링하는 예제

- MPG(1갤런으로 갈 수 있는 마일)
- GPM(100마일을 가는데 필요한 갤런)
- WT(차의 무게 1000파운드 단위)
- DIS(배기량)
- NC(실린더 수)
- HP(마력 수)
- ACC(가속도)
- ET(엔진 유형)

In [74]: fuel = pd.read_csv('data/FuelEfficiency.csv') # data read
fuel.head(20)

Out[74]:

	MPG	GPM	WT	DIS	NC	HP	ACC	ET
0	16.9	5.917	4.360	350	8	155	14.9	1
1	15.5	6.452	4.054	351	8	142	14.3	1
2	19.2	5.208	3.605	267	8	125	15.0	1
3	18.5	5.405	3.940	360	8	150	13.0	1

30.0	3.333	2.155	98	4	68	16.5	0
27.5	3.636	2.560	134	4	95	14.2	0
27.2	3.676	2.300	119	4	97	14.7	0
30.9	3.236	2.230	105	4	75	14.5	0
20.3	4.926	2.830	131	5	103	15.9	0
17.0	5.882	3.140	163	6	125	13.6	0
21.6	4.630	2.795	121	4	115	15.7	0
16.2	6.173	3.410	163	6	133	15.8	0
20.6	4.854	3.380	231	6	105	15.8	0
20.8	4.808	3.070	200	6	85	16.7	0
18.6	5.376	3.620	225	6	110	18.7	0
18.1	5.525	3.410	258	6	120	15.1	0
17.0	5.882	3.840	305	8	130	15.4	1
17.6	5.682	3.725	302	8	129	13.4	1
16.5	6.061	3.955	351	8	138	13.2	1
18.2	5.495	3.830	318	8	135	15.2	1
	27.5 27.2 30.9 20.3 17.0 21.6 16.2 20.6 20.8 18.6 18.1 17.0 17.6	27.5 3.636 27.2 3.676 30.9 3.236 20.3 4.926 17.0 5.882 21.6 4.630 16.2 6.173 20.6 4.854 20.8 4.808 18.6 5.376 18.1 5.525 17.0 5.882 16.5 6.061	27.5 3.636 2.560 27.2 3.676 2.300 30.9 3.236 2.230 20.3 4.926 2.830 17.0 5.882 3.140 21.6 4.630 2.795 16.2 6.173 3.410 20.6 4.854 3.380 20.8 4.808 3.070 18.6 5.376 3.620 18.1 5.525 3.410 17.0 5.882 3.840 17.6 5.682 3.725 16.5 6.061 3.955	27.5 3.636 2.560 134 27.2 3.676 2.300 119 30.9 3.236 2.230 105 20.3 4.926 2.830 131 17.0 5.882 3.140 163 21.6 4.630 2.795 121 16.2 6.173 3.410 163 20.6 4.854 3.380 231 20.8 4.808 3.070 200 18.6 5.376 3.620 225 18.1 5.525 3.410 258 17.0 5.882 3.840 305 17.6 5.682 3.725 302 16.5 6.061 3.955 351	27.5 3.636 2.560 134 4 27.2 3.676 2.300 119 4 30.9 3.236 2.230 105 4 20.3 4.926 2.830 131 5 17.0 5.882 3.140 163 6 21.6 4.630 2.795 121 4 16.2 6.173 3.410 163 6 20.6 4.854 3.380 231 6 20.8 4.808 3.070 200 6 18.6 5.376 3.620 225 6 18.1 5.525 3.410 258 6 17.0 5.882 3.840 305 8 17.6 5.682 3.725 302 8 16.5 6.061 3.955 351 8	27.5 3.636 2.560 134 4 95 27.2 3.676 2.300 119 4 97 30.9 3.236 2.230 105 4 75 20.3 4.926 2.830 131 5 103 17.0 5.882 3.140 163 6 125 21.6 4.630 2.795 121 4 115 16.2 6.173 3.410 163 6 133 20.6 4.854 3.380 231 6 105 20.8 4.808 3.070 200 6 85 18.6 5.376 3.620 225 6 110 18.1 5.525 3.410 258 6 120 17.0 5.882 3.840 305 8 130 17.6 5.682 3.725 302 8 129 16.5 6.061 3.955 351 8 138	27.5 3.636 2.560 134 4 95 14.2 27.2 3.676 2.300 119 4 97 14.7 30.9 3.236 2.230 105 4 75 14.5 20.3 4.926 2.830 131 5 103 15.9 17.0 5.882 3.140 163 6 125 13.6 21.6 4.630 2.795 121 4 115 15.7 16.2 6.173 3.410 163 6 133 15.8 20.6 4.854 3.380 231 6 105 15.8 20.8 4.808 3.070 200 6 85 16.7 18.6 5.376 3.620 225 6 110 18.7 18.1 5.525 3.410 258 6 120 15.1 17.0 5.882 3.840 305 8 130 15.4

In [75]: fuel.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 38 entries, 0 to 37 Data columns (total 8 columns): MPG 38 non-null float64 38 non-null float64 GPM 38 non-null float64 WTDIS 38 non-null int64 NC 38 non-null int64 38 non-null int64 ΗP 38 non-null float64 ACC 38 non-null int64 ETdtypes: float64(4), int64(4) memory usage: 2.5 KB

In [76]: fuel.describe()

Out[76]:

	MPG	GPM	WT	DIS	NC	НР	ACC	ET
count	38.000000	38.000000	38.000000	38.000000	38.000000	38.000000	38.000000	38.
mean	24.760526	4.330605	2.862895	177.289474	5.394737	101.736842	14.857895	0.2
std	6.547314	1.156002	0.706870	88.876747	1.603029	26.444929	1.561294	0.4
min	15.500000	2.681000	1.915000	85.000000	4.000000	65.000000	11.300000	0.0
25%	18.525000	3.292500	2.207500	105.000000	4.000000	78.500000	14.025000	0.0
50%	24.250000	4.159500	2.685000	148.500000	4.500000	100.000000	14.800000	0.0
75%	30.375000	5.397750	3.410000	229.500000	6.000000	123.750000	15.775000	1.0

```
In [77]: # Number of Cylinders
         fuel['NC'].value_counts()
Out[77]: 4
              19
              10
         б
         8
               8
         5
               1
         Name: NC, dtype: int64
In [78]: fuel_z = fuel.apply(zscore)
In [79]: fuel_clusters = KMeans(n_clusters=5).fit(fuel_z)
         fuel_clusters.get_params()
Out[79]: {'algorithm': 'auto',
          'copy_x': True,
           'init': 'k-means++',
          'max_iter': 300,
          'n_clusters': 5,
           'n_init': 10,
           'n_jobs': 1,
          'precompute_distances': 'auto',
          'random_state': None,
           'tol': 0.0001,
           'verbose': 0}
In [80]: #데이터에 clurster colum 추가
         fuel_z['clurster'] = fuel_clusters.labels_[:]
         fuel z
```

Out[80]:

	MPG	GPM	WT	DIS	NC	НР	ACC	ET	(
0	-1.200573	1.372312	2.117935	1.943259	1.625213	2.014116	0.026968	1.545947	ŀ
1	-1.414401	1.835114	1.685040	1.954510	1.625213	1.522528	-0.357328	1.545947	Γ,
2	-0.849284	0.758991	1.049846	1.009381	1.625213	0.879683	0.091018	1.545947	Γ,
3	-0.956198	0.929406	1.523766	2.055774	1.625213	1.825044	-1.189971	1.545947	Γ,
4	0.800248	-0.862979	-1.001449	-0.892128	-0.870064	-1.275740	1.051759	-0.629830	(
5	0.418412	-0.600869	-0.428501	-0.487073	-0.870064	-0.254750	-0.421378	-0.629830	2
6	0.372592	-0.566267	-0.796320	-0.655846	-0.870064	-0.179121	-0.101131	-0.629830	2
7	0.937709	-0.946889	-0.895348	-0.813368	-0.870064	-1.011039	-0.229230	-0.629830	(
8	-0.681276	0.515047	-0.046536	-0.520828	-0.246244	0.047766	0.667463	-0.629830	**
9	-1.185299	1.342035	0.392017	-0.160779	0.377575	0.879683	-0.805675	-0.629830	**
10	-0.482721	0.258992	-0.096050	-0.633343	-0.870064	0.501539	0.539364	-0.629830	3.5
11	-1.307487	1.593765	0.773982	-0.160779	0.377575	1.182199	0.603413	-0.629830	3.5
12	-0.635455	0.452763	0.731542	0.604326	0.377575	0.123394	0.603413	-0.629830	~~
13	-0.604909	0.412971	0.292989	0.255528	0.377575	-0.632894	1.179858	-0.629830	~
14	-0.940924	0.904320	1.071067	0.536817	0.377575	0.312467	2.460847	-0.629830	3

	_	-	_	-	_	_	_	
-1.017291	1.033212	0.773982	0.908117	0.377575	0.690611	0.155067	-0.629830	87
-1.185299	1.342035	1.382298	1.436940	1.625213	1.068755	0.347215	1.545947	ŀ
-1.093659	1.169025	1.219609	1.403185	1.625213	1.030941	-0.933773	1.545947	ŀ
-1.261666	1.496879	1.544987	1.954510	1.625213	1.371271	-1.061872	1.545947	[
-1.002018	1.007261	1.368151	1.583210	1.625213	1.257827	0.219117	1.545947	ſ
0.265677	-0.481492	-0.393134	-0.419564	-0.870064	-0.519451	-0.293279	-0.629830	2
-0.436901	0.203628	0.066639	-0.070766	0.377575	0.274652	1.115809	1.545947	(
1.426459	-1.209000	-1.256093	-1.027147	-0.870064	-1.389183	0.219117	-0.629830	(
1.579193	-1.281664	-1.340974	-0.892128	-0.870064	-0.821966	-0.293279	-0.629830	(
0.403138	-0.588758	-0.272886	-0.633343	-0.870064	-0.821966	0.091018	-0.629830	2
1.029349	-0.999657	-1.234872	-0.993392	-0.870064	-1.162296	0.026968	-0.629830	(
0.723881	-0.813671	-1.029743	-0.892128	-0.870064	-1.275740	1.115809	-0.629830	(
0.555873	-0.700350	-0.272886	-0.295797	-0.870064	-0.443822	0.731512	-0.629830	2
0.616967	-0.742737	-0.378987	-0.048263	0.377575	0.501539	-2.278812	1.545947	4
0.311498	-0.518689	-0.230445	-0.048263	0.377575	0.501539	-1.254021	1.545947	4
1.334818	-1.164017	-0.434160	-0.295797	-0.870064	-0.443822	-1.061872	-0.629830	2
1.441732	-1.216785	-0.937788	-0.813368	-0.870064	-1.200111	-1.061872	-0.629830	(
1.075170	-1.025609	-1.192432	-1.038398	-0.870064	-1.389183	2.781094	-0.629830	(
1.915209	-1.426992	-1.036816	-0.970889	-0.870064	-1.237925	-0.101131	-0.629830	(
0.876615	-0.909692	-0.951935	-0.903380	-0.870064	-0.897595	-0.485427	-0.629830	(
-0.421627	0.185462	-0.067756	-0.352055	0.377575	-0.179121	-0.229230	-0.629830	(
-0.497995	0.277158	-0.371914	-0.633343	-0.870064	0.312467	-1.318070	-0.629830	2
1.090443	-1.034259	-1.326827	-0.993392	-0.870064	-1.162296	-0.549477	-0.629830	(
	-1.185299 -1.093659 -1.261666 -1.002018 0.265677 -0.436901 1.426459 1.579193 0.403138 1.029349 0.723881 0.555873 0.616967 0.311498 1.334818 1.441732 1.075170 1.915209 0.876615 -0.421627 -0.497995	-1.185299 1.342035 -1.093659 1.169025 -1.261666 1.496879 -1.002018 1.007261 0.265677 -0.481492 -0.436901 0.203628 1.426459 -1.209000 1.579193 -1.281664 0.403138 -0.588758 1.029349 -0.999657 0.723881 -0.813671 0.555873 -0.700350 0.616967 -0.742737 0.311498 -0.518689 1.334818 -1.164017 1.441732 -1.216785 1.075170 -1.025609 1.915209 -1.426992 -0.421627 0.185462 -0.497995 0.277158	-1.1852991.3420351.382298-1.0936591.1690251.219609-1.2616661.4968791.544987-1.0020181.0072611.3681510.265677-0.481492-0.393134-0.4369010.2036280.0666391.426459-1.209000-1.2560931.579193-1.281664-1.3409740.403138-0.588758-0.2728861.029349-0.999657-1.2348720.723881-0.813671-1.0297430.555873-0.700350-0.2728860.616967-0.742737-0.3789870.311498-0.518689-0.2304451.334818-1.164017-0.4341601.441732-1.216785-0.9377881.075170-1.025609-1.1924321.915209-1.426992-1.0368160.876615-0.909692-0.951935-0.4216270.185462-0.067756-0.4979950.277158-0.371914	-1.1852991.3420351.3822981.436940-1.0936591.1690251.2196091.403185-1.2616661.4968791.5449871.954510-1.0020181.0072611.3681511.5832100.265677-0.481492-0.393134-0.419564-0.4369010.2036280.066639-0.0707661.426459-1.209000-1.256093-1.0271471.579193-1.281664-1.340974-0.8921280.403138-0.588758-0.272886-0.6333431.029349-0.999657-1.234872-0.9933920.723881-0.813671-1.029743-0.8921280.555873-0.700350-0.272886-0.2957970.616967-0.742737-0.378987-0.0482631.334818-1.164017-0.434160-0.2957971.441732-1.216785-0.937788-0.8133681.075170-1.025609-1.192432-1.0383981.915209-1.426992-1.036816-0.9708890.876615-0.909692-0.951935-0.903380-0.4216270.185462-0.067756-0.352055-0.4979950.277158-0.371914-0.633343	-1.185299 1.342035 1.382298 1.436940 1.625213 -1.093659 1.169025 1.219609 1.403185 1.625213 -1.261666 1.496879 1.544987 1.954510 1.625213 -1.002018 1.007261 1.368151 1.583210 1.625213 0.265677 -0.481492 -0.393134 -0.419564 -0.870064 -0.436901 0.203628 0.066639 -0.070766 0.377575 1.426459 -1.209000 -1.256093 -1.027147 -0.870064 1.579193 -1.281664 -1.340974 -0.892128 -0.870064 0.403138 -0.588758 -0.272886 -0.633343 -0.870064 1.029349 -0.999657 -1.234872 -0.993392 -0.870064 0.555873 -0.700350 -0.272886 -0.295797 -0.870064 0.311498 -0.518689 -0.230445 -0.048263 0.377575 1.334818 -1.164017 -0.434160 -0.295797 -0.870064 1.975170 -1.025609	-1.185299 1.342035 1.382298 1.436940 1.625213 1.068755 -1.093659 1.169025 1.219609 1.403185 1.625213 1.030941 -1.261666 1.496879 1.544987 1.954510 1.625213 1.371271 -1.002018 1.007261 1.368151 1.583210 1.625213 1.257827 0.265677 -0.481492 -0.393134 -0.419564 -0.870064 -0.519451 -0.436901 0.203628 0.066639 -0.070766 0.377575 0.274652 1.426459 -1.209000 -1.256093 -1.027147 -0.870064 -1.389183 1.579193 -1.281664 -1.340974 -0.892128 -0.870064 -0.821966 0.403138 -0.588758 -0.272886 -0.633343 -0.870064 -0.821966 1.029349 -0.999657 -1.234872 -0.993392 -0.870064 -1.162296 0.723881 -0.813671 -1.029743 -0.892128 -0.870064 -1.43822 0.616967 -0.742737 -0.378987<	-1.185299 1.342035 1.382298 1.436940 1.625213 1.068755 0.347215 -1.093659 1.169025 1.219609 1.403185 1.625213 1.030941 -0.933773 -1.261666 1.496879 1.544987 1.954510 1.625213 1.371271 -1.061872 -1.002018 1.007261 1.368151 1.583210 1.625213 1.257827 0.219117 0.265677 -0.481492 -0.393134 -0.419564 -0.870064 -0.519451 -0.293279 -0.436901 0.203628 0.066639 -0.070766 0.377575 0.274652 1.115809 1.426459 -1.209000 -1.256093 -1.027147 -0.870064 -1.389183 0.219117 1.579193 -1.281664 -1.340974 -0.892128 -0.870064 -0.821966 -0.293279 0.403138 -0.588758 -0.272886 -0.633343 -0.870064 -1.162296 0.026968 0.723881 -0.813671 -1.029743 -0.892128 -0.870064 -1.275740 1.115809	-1.185299 1.342035 1.382298 1.436940 1.625213 1.068755 0.347215 1.545947 -1.093659 1.169025 1.219609 1.403185 1.625213 1.030941 -0.933773 1.545947 -1.261666 1.496879 1.544987 1.954510 1.625213 1.257827 0.219117 1.545947 -1.002018 1.007261 1.368151 1.583210 1.625213 1.257827 0.219117 1.545947 0.265677 -0.481492 -0.393134 -0.419564 -0.870064 -0.519451 -0.293279 -0.629830 -0.436901 0.203628 0.066639 -0.070766 0.377575 0.274652 1.115809 1.545947 1.426459 -1.209000 -1.256093 -1.027147 -0.870064 -1.389183 0.219117 -0.629830 1.579193 -1.281664 -1.340974 -0.892128 -0.870064 -0.821966 0.0293279 -0.629830 0.723881 -0.813671 -1.029743 -0.892128 -0.870064 -1.162296 0.026968

```
In [81]: plt.clf()
plt.figure(figsize=(15, 10))
plt.xlabel('WT')
plt.ylabel('DIS')
plt.scatter(fuel['WT'], fuel['DIS'], c=fuel_z['clurster']) #클러스터링된
자료를 무게와 배기량의 관계로 표현
plt.show()
```

<matplotlib.figure.Figure at 0x2d2384799b0>

실습예제 3

상단의 클러스터링 예제를 실린더 수, 마력 수 의 관계로 그래프를 출력하시오

In []:

K-Nearest Neighbor(k-최근접이웃)

사용데이터 - 대형 매장에 방문하는 중국인과 일본인의 정보 (건물 입구부터 매장 상담원이 있는 곳까지 걸어 오는데 소요된 시간, 진열된 상품을 둘러본 횟수, 성별, 지불금액, 출신 국가)

위의 정보를 학습하여(성별 제외), 출신 국가가 블라인드된 정보만 보고 출신 국가를 예측하려 한다.

```
In [1]: #모듈 선언
         import pandas as pd
         from matplotlib import pyplot as plt
In [2]: # data read
         mydata = pd.read csv('data/mydata.csv')
         del mydata['sex'] #load된 dataframe에서 성별을 제거
In [3]: mydata.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 500 entries, 0 to 499
         Data columns (total 5 columns):
                   500 non-null int64
                   500 non-null int64
         walk
                    500 non-null int64
         view
                   500 non-null int64
         payment
                  500 non-null object
         country
         dtypes: int64(4), object(1)
         memory usage: 19.6+ KB
 In [4]: mydata['country'].value_counts() #국가별 매장 방문 인원
Out[4]: C
              300
              200
         Name: country, dtype: int64
 In [5]: #주어진 수치값의 최대치와 최소치의 차이값으로 정규화
         nomalize = lambda x : (x - min(x)) / (max(x) - min(x))
 In [6]: #더미 코딩
         mydata['country'] = (mydata['country']=='C') # china일 경우 true, japan일 경우 false
In [13]: mydata.ix[:, 1:4].head(10) # dataframe의 walk, view, payment만 추출하여 탐색
Out[13]:
            walk | view | payment
         0 17
                5
                     176
           12
                5
                     194
           32
                     384
                12
         3
           25
                9
                     329
```

23

24

8

8

290

246

6	22	6	235
7	32	11	353
8	30	10	324
9	13	2	93

In [12]: mydata_n = mydata.ix[:, 1:4].apply(nomalize) # dataframe의 walk, view, payment를 이 용하여 정규화 mydata_n.head(10)

Out[12]:

	walk	view	payment
0	0.240741	0.157895	0.268025
1	0.148148	0.157895	0.296238
2	0.518519	0.526316	0.594044
3	0.388889	0.368421	0.507837
4	0.351852	0.315789	0.446708
5	0.370370	0.315789	0.377743
6	0.333333	0.210526	0.360502
7	0.518519	0.473684	0.545455
8	0.481481	0.421053	0.500000
9	0.166667	0.000000	0.137931

In [57]: feature_names = ['walk', 'view', 'payment'] # feature_name에 학습에 사용할 column name을 저장
X = mydata_n[feature_names] # feature_name에 해당하는 column만 정규화된 mydata_n에서 추출하여 X(Large x)에 저장

In [58]: y = mydata['country'] #y(small y)에 mydata의 country를 저장

In [59]: #훈련 데이터와 테스트 데이터 분리

from sklearn.model_selection import train_test_split

#X와 y의 training data와 test data의 비율을 3:1로 지정(0.75, 0.25)

mydata_train, mydata_test, mydata_train_labels, mydata_test_labels = tra
in_test_split(X, y,

test_size=0.25, random_state=33)

In [60]: #KNN Algorism 실행

from sklearn.neighbors import KNeighborsClassifier as knn #knn모듈을 import X = mydata_train #train (훈련 데이터중 column) => X y = mydata_train_labels #train labels (훈련 데이터중 출신 국가) => y mydata_test_pred = knn(n_neighbors=17) #neighbor의 수를 17로 정함 mydata_test_pred = mydata_test_pred.fit(X, y) #data를 학습

In [61]: #분류 검증

from sklearn import metrics

y_pred = mydata_test_pred.predict(mydata_test) # test용으로 정해놓았던 data를 학

습된 데이터를 이용해 출신 국가를 예측

print(metrics.classification_report(mydata_test_labels, y_pred)) # test용으로 빼 놓았던 data(출신국가 정답)과 예측값을 비교

	precision	recall	f1-score	support
False True	0.93 0.97	0.96 0.94	0.95 0.96	56 69
avg / total	0.95	0.95	0.95	125

실습예제

sklearn 모듈의 knn 함수를 이용하여 반지름을 30으로 설정하고, train data와 test data를 9:1로 정하여 예측해보시오.

In []:

의사결정트리

knn 예제와 동일한 예측을 의사결정트리 알고리즘으로 풀이 한다.

In [12]: import pandas as pd from sklearn import tree from matplotlib import pyplot as plt

In [13]: data = pd.read_csv('data/mydata.csv') data.head(100)

Į.			•				
Out[13]:		id	walk	view	sex	payment	country
	0	1	17	5	M	176	С
	1	2	12	5	М	194	С
	2	3	32	12	F	384	С
	3	4	25	9	F	329	С
	4	5	23	8	F	290	С
	5	6	24	8	М	246	С
	6	7	22	6	F	235	С
	7	8	32	11	F	353	С
	8	9	30	10	F	324	С
	9	10	13	2	М	93	С
	10	11	27	9	М	306	С
	11	12	30	10	F	330	С
	12	13	30	9	F	314	С
	13	14	8	3	М	42	С
	14	15	23	7	F	267	С
	15	16	39	13	F	440	С
	16	17	31	11	F	369	С
	17	18	21	6	F	247	С
	18	19	13	3	М	71	С
	19	20	28	9	F	287	С
	20	21	24	6	F	222	С
	21	22	32	10	F	359	С
	22	23	27	8	F	269	С
	23	24	26	8	F	266	С
	24	25	26	7	М	224	С
							126

25	26	26	7	F	255	С
26	27	16	4	М	80	С
27	28	35	11	F	414	С
28	29	15	4	М	120	С
29	30	25	7	М	243	С
70	71	31	11	F	368	С
71	72	27	8	F	281	С
72	73	21	6	F	196	С
73	74	22	7	F	225	С
74	75	21	7	M	230	С
75	76	26	8	F	256	С
76	77	26	8	F	287	С
77	78	31	9	F	300	С
78	79	27	8	F	299	С
79	80	22	6	F	233	С
80	81	18	6	М	235	С
81	82	29	8	F	294	С
82	83	25	7	M	254	С
83	84	26	7	F	252	С
84	85	33	11	F	339	С
85	86	28	12	F	364	С
86	87	18	5	M	141	С
87	88	30	12	F	362	С
88	89	19	10	M	334	С
89	90	27	7	F	249	С
90	91	27	7	F	262	С
91	92	23	6	М	212	С
92	93	35	11	F	387	С
93	94	20	5	М	159	С
94	95	30	9	F	296	С
95	96	25	7	М	259	С
96	97	18	5	М	164	С
97	98	34	11	F	371	С
98	99	10	2	М	97	С
99	100	21	8	F	270	С

```
In [14]: #더미코딩
data['country'] = (data['country']=='C')
data.head(5)
#이곳까지 KNN과 동일
```

Out[14]:

		id	walk	view	sex	payment	country
	0	1	17	5	М	176	True
	1	2	12	5	М	194	True
4	2	3	32	12	F	384	True
7	3	4	25	9	F	329	True
4	4	5	23	8	F	290	True

```
In [19]: feature_names = ['walk', 'view'] # walk와 view 두개의 column name을 feature_name에 저장

X = data[feature_names] # data 정체 후 X에 저장

X.head(5) #임의 출력
```

Out[19]:

	walk	view
0	17	5
1	12	5
2	32	12
3	25	9
4	23	8

```
In [20]: y = data['country'] #country 관련 data만 y에 저장
```

```
In [21]: #학습용 데이터와 데스트용 데이터 작성

from sklearn.model_selection import train_test_split

#training data와 test data의 비율을 3:1로 지정

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=33)
```

```
In [28]: clf = tree.DecisionTreeClassifier(criterion='entropy', max_depth=2, min_samples_leaf=3) #의사결정트리 생성(트리depth2) clf = clf.fit(X_train, y_train) #의사결정트리에 training data 학습 clf
```

In [26]: #작성된 파일을 그림파일로 만들기 #트리 출력은 마크다운 모드에서 ![Alt text](./mytree.png) 입력 후 실행 #!dot -Tpng mytree.dot -o mytree.png #상단의 명령어는 리눅스에서 동작하기 때문에 의사결정 트리의 png파일은 미리 제작하여 첨부 'dot'은(는) 내부 또는 외부 명령, 실행할 수 있는 프로그램, 또는 배치 파일이 아닙니다.

In [25]: from sklearn import metrics y_pred = clf.predict(X_test) #학습된 의사결정트리를 이용해 출신국가 예측 print(metrics.classification_report(y_test, y_pred)) #예측 결과 출력

support	f1-score	recall	precision	
56 69	0.91 0.92	0.96 0.87	0.86 0.97	False True
125	0.91	0.91	0.92	avg / total

첨부한 의사결정트리


```
In [69]: #의사결정트리 /단계 정보를 이용한 시각화 예시
plt.clf()
plt.figure(figsize=(15, 10))
plt.xlabel='walk'
plt.ylabel='view'
plt.scatter(x=data['walk'], y=data['view'], c=data['country'])
plt.axvline(x = 33.5, color='k', linewidth=1)
plt.show()
```

<matplotlib.figure.Figure at 0x7fd82387ba90>


```
In [90]: #의사결정트리를 이용한 시각화 예시
         plt.clf()
         plt.figure(figsize=(15, 10))
         plt.xlabel='walk'
         plt.ylabel='view'
         plt.scatter(data['walk'], data['view'], c=data['country'])
         plt.axvline(x = 33.5, color='k', linewidth=1)
         plt.axvline(x = 39.5, color='k', linewidth=1)
         plt.axvline(x = 25.5, color='k', linewidth=1)
         plt.axhline(y = 7.5, color='k', linewidth=1)
         plt.axhline(y = 12.5, color='k', linewidth=1)
         plt.text(x=15, y=5, s='C')
         plt.text(x=15, y=10, s='C')
         plt.text(x=30, y=10, s='C')
         plt.text(x=30, y=5, s='C')
         plt.text(x=30, y=15, s='J')
         plt.text(x=37, y=10, s='J')
         plt.text(x=37, y=15, s='C')
         plt.text(x=50, y=10, s='J')
         plt.text(x=50, y=15, s='J')
         plt.show()
```

<matplotlib.figure.Figure at 0x7fd871ef9748>

실습예제

상단의 고객데이터를 이용해 의사결정트리의 깊이를 3으로 정하고, train과 test의 데이터를 9:1로 설정하여 예측하여 report 표를 출력하시오.

```
In [ ]:
```

나이브 베이어스

해당 메일이 스팸메일인지 아닌지 예측하는 문제이다.

data에는 스팸의 여부와 메일 내용이 저장되어있다.

```
In [28]: import pandas as pd
         from matplotlib import pyplot as plt
         import numpy as np
In [29]: import codecs
         #utf-8 디코딩 문제로 인해 해당 코드로 파일을 읽어왔다.
         with codecs.open('data/sms_spam.csv', "r",encoding='utf-8', errors='igno
         re') as fdata:
             sms_raw = pd.read_csv(fdata)
In [30]: sms_raw.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 5559 entries, 0 to 5558
         Data columns (total 2 columns):
         type 5559 non-null object
         text
                5559 non-null object
         dtypes: object(2)
         memory usage: 86.9+ KB
In [31]: sms_raw['type'].value_counts()
                4812
Out[31]: ham
                 747
         spam
         Name: type, dtype: int64
In [32]: sms_raw.head(10) #임의 출력
```

Out[32]:

	type	text
0	ham	Hope you are having a good week. Just checking in
1	ham	Kgive back my thanks.
2	ham	Am also doing in cbe only. But have to pay.
3	spam	complimentary 4 STAR Ibiza Holiday or £10,000
4	spam	okmail: Dear Dave this is your final notice to
5	ham	Aiya we discuss later lar Pick u up at 4 is
6	ham	Are you this much buzy
7	ham	Please ask mummy to call father
8	spam	Marvel Mobile Play the official Ultimate Spide
9	ham	fyi I'm at usf now, swing by the room whenever

```
In [33]: sms_corpus = sms_raw['text'] #dataframe의 'text'의 정보를 따로 저장
In [34]: #text의 전처리
         from sklearn.feature_extraction.text import CountVectorizer
         vectorizer = CountVectorizer(min_df=5) #5개 이하로 나온 단어 무시
         X = vectorizer.fit_transform(sms_corpus) #문서-단어 행렬 작성 후 X에 저장
         #이는 해당 단어의 총 출연 횟수를 text에 등장한 단어 순서에 맞게 저장한 CounterVector 이다.
         X.shape
Out[34]: (5559, 1800)
In [35]: print(X[:3]) # countervector 임의 출력
         type(X)
           (0, 773)
                        1
           (0, 326)
           (0, 819)
                         1
           (0, 1693)
                        1
           (0, 656)
                        1
           (0, 698)
                        1
           (0, 162)
                        1
           (0, 1791)
                        1
           (0, 731)
                        1
           (1, 1514)
                        1
           (1, 1032)
                        1
           (1, 198)
                        1
           (1, 643)
                        1
           (2, 1139)
                        1
           (2, 1557)
                        1
           (2, 695)
                        1
           (2, 272)
                        1
           (2, 1101)
                        1
           (2, 309)
                        1
           (2, 468)
                        1
           (2, 135)
                        1
           (2, 137)
                        1
           (2, 773)
                        1
Out[35]: scipy.sparse.csr.csr_matrix
In [36]: X = X.toarray() #학습을 위해서는 X가 array나 ndarray의 형태로 존재해야 함
         y = sms_raw['type'] #스팸 여부를 저장
In [37]: from sklearn.model_selection import train_test_split
         #훈련데이터 75%, 테스트 데이터 25%를 지정
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25
         , random_state=33)
In [38]: from sklearn.naive bayes import GaussianNB as nb
         cl = nb() #가우시안 나이브 베이어스 모델 생성
         cl.fit(X_train, y_train) #학습
         from sklearn import metrics
         y_pred = cl.predict(X_test) #학습된 모델을 이용하여 예측
         print(metrics.classification_report(y_test, y_pred)) #예측 결과 출력
                     precision
                                  recall f1-score support
                           0.98
                                     0.85
                                              0.91
                                                        1187
                 ham
```

132

spam	0.51	0.90	0.65	203
avg / total	0.91	0.86	0.87	1390

In [39]: #라플라스 추정

#라플라스 추정을 위해 MultinomialNB를 사용

from sklearn.naive_bayes import MultinomialNB as nb

cl = nb() #멀티노미얼 나이브 베이어스 모델 생성

cl.fit(X_train, y_train) #학습

Out[39]: MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)

In [40]: **from sklearn import** metrics

y_pred = cl.predict(X_test) #학습된 모델을 이용하여 예측

print(metrics.classification_report(y_test, y_pred)) #예측 결과 출력

	precision	recall	f1-score	support
ham spam	0.99 0.96	0.99	0.99	1187 203
avg / total	0.99	0.99	0.99	1390

실습 예제

상단의 예제에서 주어진 email data를 train과 test데이터의 비율은 8:2로 설정한 뒤, 가우시안 나이 브 베이어스 학습 모델을 이용하여 예측 결과를 출력하시오.

In []:

선형회귀분석

Linear regression example 1

```
In [1]: import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
```

```
In [2]: student = pd.read_csv('data/student.csv') #데이터 읽기
```

In [3]: student.head(100)

Out[3]:

	language	english	math	science
0	55	91	33	51
1	60	85	52	43
2	45	89	21	18
3	75	30	95	98
4	60	88	40	31
5	60	83	51	47
6	63	63	62	65
7	54	49	58	60
8	53	93	31	42
9	28	37	89	97
10	62	88	40	37
11	73	28	89	98
12	56	48	58	60
13	64	61	62	61
14	62	95	34	47
15	54	97	28	34
16	60	88	43	34
17	44	51	75	78
18	76	28	100	100
19	75	87	36	24

```
In [4]: student.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20 entries, 0 to 19
Data columns (total 4 columns):

language 20 non-null int64 english 20 non-null int64 math 20 non-null int64 science 20 non-null int64

dtypes: int64(4)

memory usage: 720.0 bytes

In [5]: student.describe() #데이터 기초통계량 확인

Out[5]:

	language	english	math	science
count	20.000000	20.00000	20.000000	20.000000
mean	58.950000	68.95000	54.850000	56.250000
std	11.591626	25.07982	23.862049	25.894269
min	28.000000	28.00000	21.000000	18.000000
25%	54.000000	48.75000	35.500000	36.250000
50%	60.000000	84.00000	51.500000	49.000000
75%	63.250000	88.25000	65.250000	68.250000
max	76.000000	97.00000	100.000000	100.000000

```
In [6]: #피어슨 상관계수 pd.concat([student, student], axis=1).corr(method='pearson')
```

Out[6]:

	language	english	math	science	language	english	math	scie
language	1.000000	-0.125833	0.183212	0.090698	1.000000	-0.125833	0.183212	0.090
english	-0.125833	1.000000	-0.945780	-0.919824	-0.125833	1.000000	-0.945780	-0.91
math	0.183212	-0.945780	1.000000	0.951689	0.183212	-0.945780	1.000000	0.95
science	0.090698	-0.919824	0.951689	1.000000	0.090698	-0.919824	0.951689	1.000
language	1.000000	-0.125833	0.183212	0.090698	1.000000	-0.125833	0.183212	0.090
english	-0.125833	1.000000	-0.945780	-0.919824	-0.125833	1.000000	-0.945780	-0.91
math	0.183212	-0.945780	1.000000	0.951689	0.183212	-0.945780	1.000000	0.95 ⁻
science	0.090698	-0.919824	0.951689	1.000000	0.090698	-0.919824	0.951689	1.000

```
In [7]: plt.clf()
plt.figure(figsize=(15, 10))
plt.xlabel('math')
plt.ylabel('science')
plt.scatter(student['math'], student['science'])
plt.show()
#수학과 과학과의 상관계수
np.corrcoef(student['math'], student['science'])[0, 1]
```

<matplotlib.figure.Figure at 0x22397c6de48>

Out[7]: 0.95168911053673177

```
In [8]: plt.clf()
plt.figure(figsize=(15, 10))
plt.xlabel('math')
plt.ylabel('english')
plt.scatter(student['math'], student['english'])
plt.show()
#수학과 영어과의 상관계수
np.corrcoef(student['math'], student['english'])[0, 1]
```

<matplotlib.figure.Figure at 0x22397c6d9b0>

Out[8]: -0.94578048089858313

```
In [9]: plt.clf()
plt.figure(figsize=(15, 10))
plt.xlabel('math')
plt.ylabel('language')
plt.scatter(student['math'], student['language'])
plt.show()
#수학과 언어와의 상관계수
np.corrcoef(student['math'], student['language'])[0, 1]
```

<matplotlib.figure.Figure at 0x22397dbaa20>

Out[9]: 0.18321159342393156

```
In [10]: #스피어만 상관계수 pd.concat([student, student], axis=1).corr(method='spearman')
```

Out[10]:

	language	english	math	science	language	english	math	scie
language	1.000000	-0.316428	0.362091	0.242150	1.000000	-0.316428	0.362091	0.242
english	-0.316428	1.000000	-0.941154	-0.802339	-0.316428	1.000000	-0.941154	-0.80
math	0.362091	-0.941154	1.000000	0.878205	0.362091	-0.941154	1.000000	0.878
science	0.242150	-0.802339	0.878205	1.000000	0.242150	-0.802339	0.878205	1.000
language	1.000000	-0.316428	0.362091	0.242150	1.000000	-0.316428	0.362091	0.242
english	-0.316428	1.000000	-0.941154	-0.802339	-0.316428	1.000000	-0.941154	-0.80
math	0.362091	-0.941154	1.000000	0.878205	0.362091	-0.941154	1.000000	0.878
science	0.242150	-0.802339	0.878205	1.000000	0.242150	-0.802339	0.878205	1.000

Linear regression example 1

• 선형회귀분석을 통해 과학(science) 성적을 이용하여 수학(math)성적 예측

```
In [11]: #회귀분석
         from sklearn import linear_model
In [12]: X = student['science']
         y = student['math']
         #모듈에 맞게 data reshape
         X = X.values.reshape(len(X), 1)
         y = y.values.reshape(len(X), 1)
In [13]: #훈련데이어, 테스트 데이터 분할
         from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25
         , random_state=33)
In [14]: y_test
Out[14]: array([[ 75],
                [ 31],
                [ 28],
                [100],
                [ 51]], dtype=int64)
In [15]: #선형 회귀분석 모델 생성
         regr = linear_model.LinearRegression()
         regr.fit(X_train, y_train)
Out[15]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=Fa
         lse)
In [16]: # The coefficients
         print('Coefficients: \n', regr.coef_)
         # The mean squared error
         print("Mean squared error: %.2f"
               % np.mean((regr.predict(X_test) - y_test) ** 2))
         # Explained variance score: 1 is perfect prediction
         print('Variance score: %.2f' % regr.score (X_test, y_test))
         Coefficients:
          [[ 0.81443861]]
         Mean squared error: 68.13
         Variance score: 0.91
In [17]: #학생이 받은 과학성적 값(예: 50점) 입력
         preds = regr.predict(X=50)
         print(preds)
         [[ 50.1154362]]
In [18]: plt.clf()
         plt.figure(figsize=(15, 10))
         plt.xlabel('science')
         plt.ylabel('math')
```

```
plt.scatter(X, y, color='black')
plt.plot(X_test, regr.predict(X_test), color='blue', linewidth=3)
plt.show()
```

<matplotlib.figure.Figure at 0x22399024be0>

실습예제1

테스트 데이터 비율을 0.2로 수정하고 학생이 받은 과학성적이 80일때 수학성적을 예측하시오.

```
In [19]: #회귀분석
from sklearn import linear_model

In [20]: X = student['science']
y = student['math']

#모듈에 맞게 data reshape
X = X.values.reshape(len(X), 1)
y = y.values.reshape(len(X), 1)
```

```
In [21]: #훈련데이어, 테스트 데이터 분할

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=33)
```

```
In [22]: #선형 회귀분석 모델 생성
regr = linear_model.LinearRegression()
regr.fit(X_train, y_train)
```

Out[22]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=Fa
lse)

In [23]: #학생이 받은 과학성적 값(예: 50점) 입력

```
preds = regr.predict(X=50)
print(preds)
```

[[50.33486731]]

Linear regression example 2

• 다중 선형회귀분석을 통해 과학(science), 언어(language), 영어(english)가 성적을 이용하여 수학(math)성적 예측

```
In [24]: #다중 회귀 분석
         X = student[['science', 'language' ,'english']]
         y = student['math']
In [25]: #훈련데이터, 테스트 데이터
         from sklearn.model_selection import train_test_split
         X.values.tolist()
         y = y.values.reshape(len(X), 1) #배열 형태 변경
         #훈련데이터, 테스트 데이터 분리(테스트 데이터 비율(0.25))
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25
         , random_state=33)
In [26]: #선형 회귀 분석 모델 생성
         regr = linear_model.LinearRegression()
        regr.fit(X_train, y_train)
Out[26]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=Fa
        lse)
In [27]: #학생이 받은 성적 값(예: 과학: 89점, 언어: 50점, 영어: 40점) 입력
         table = np.array([100, 100, 50])
         #수학 성적 예측
         preds = regr.predict(table.reshape(1,-1))
         print(preds)
```

Linear regression example 3

[[89.05862169]]

• 선형회귀분석을 통해 매장을 둘러보는 횟수(view)을 이용해 매출액(payment)를 예측

```
In [28]: #매장 매출 예측 예

mydata2 = pd.read_csv('data/mydata2.csv')

mydata2.head(5)
```

Out[28]:

	id	walk	view	sex	payment	country
0	1	15	5	M	176	С
1	2	15	5	M	194	С
2	3	27	12	F	384	С
3	4	24	9	F	329	С
4	5	21	8	F	290	С

```
In [29]: X = mydata2['view'] #설명변수
         y = mydata2['payment'] #목적변수
In [30]: from sklearn.model_selection import train_test_split
         X = X.values.reshape(len(X), 1)
         y = y.values.reshape(len(y), 1)
         #훈련데이터, 테스트 데이터 분리(테스트 데이터 비율(0.25))
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25
         , random_state=33)
In [31]: #선형 회귀분석 모델 생성
         regr = linear_model.LinearRegression()
         regr.fit(X_train, y_train)
Out[31]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=Fa
         lse)
In [32]: #view가 30일때 payment 예측
         preds = regr.predict(30)
         print(preds)
         [[ 654.37586279]]
In [33]: plt.clf()
         plt.figure(figsize=(15, 10))
         plt.xlabel('view')
         plt.ylabel('payment')
         plt.scatter(mydata2['view'], mydata2['payment'])
         plt.show()
         <matplotlib.figure.Figure at 0x22399199390>
```


Linear regression example 4

• 선형 회귀분석을 통해 걷는 시간(walk)을 이용한 매출액(payment) 예측

```
In [34]: #walk를 이용한 payment 예측

X = mydata2['walk']

y = mydata2['payment']
```

```
In [35]:

from sklearn.model_selection import train_test_split

X = X.values.reshape(len(X), 1)

y = y.values.reshape(len(y), 1)

#훈련데이터, 테스트 데이터 분리(테스트 데이터 비율(0.25))

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=33)
```

```
In [36]: #선형회귀분석모델생성
regr = linear_model.LinearRegression()
regr.fit(X_train, y_train)
```

Out[36]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=Fa
lse)

```
In [37]: #walk가 40일때 payment 예측
preds = regr.predict(40)
print(preds)
[[ 380.87943924]]
```

In []:

실습예제2

매장매출데이터(mydata2.csv)를 살펴보고 다중 선형회귀분석을 통해 걷는시간(walk), 매장을 둘러보는 횟수(view)를 이용하여 걷는시간이 30, 매장을 둘러보는 횟수가 15일때 매출액(payment)을 예측하시오

```
In [38]: #매장 매출 예측 예 df = pd.read_csv('data/mydata2.csv') df.head(5)
```

Out[38]:

	id	w	alk	view	sex	payment	country
C	1	1	5	5	М	176	С
1	2	1	5	5	М	194	С
2	3	2	7	12	F	384	С
3	4	24	4	9	F	329	С
4	5	2	1	8	F	290	С

다중 회귀 분석

```
In [39]: #다중 회귀 분석
X = df[['walk', 'view']]
y = df['payment']
```

```
In [40]: #훈련데이터, 테스트 데이터
         from sklearn.model_selection import train_test_split
        X.values.tolist()
        y = y.values.reshape(len(X), 1) #배열 형태 변경
        #훈련데이터, 테스트 데이터 분리(테스트 데이터 비율(0.25))
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25
         , random_state=33)
In [41]: #선형 회귀 분석 모델 생성
        regr = linear_model.LinearRegression()
        regr.fit(X_train, y_train)
Out[41]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=Fa
In [42]: #걷는시간 30, 매장을 둘러보는 횟수 15
         table = np.array([30, 15])
        #매출액 예측
         preds = regr.predict(table.reshape(1,-1))
        print(preds)
```

[[411.98292433]]

Logistic regression example 1

- 타이타닉 데이터로 로지스틱 회귀분석 연습.
- 데이터를 통해 성별, 나이, 객실 등급이 승객의 생존에 어떤 영향을 끼쳤는지 분석.
- 참고.<u>http://jy93630.blog.me/220442325857</u>

```
In [1]: import pandas as pd import statsmodels.api as sm import pylab as pl import numpy as np
```

```
In [2]: df = pd.read_csv("data/train2.csv") #데이터 읽기 df.head()
```

Out[2]:

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.283
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.100
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500

```
In [3]: cols_to_keep = ['Survived', 'Age', 'Fare'] #분류할수 없는 컬럼들

In [4]: #분류할수 있는 컬럼들은 더미 컬럼를 만든다.
dummy_Pclass = pd.get_dummies(df['Pclass'], prefix='Pclass')
dummy_Sex = pd.get_dummies(df['Sex'], prefix='Sex')
print(dummy_Pclass.head(5))
```

```
Pclass_1 Pclass_2 Pclass_3
0 0 0 1
```

print(dummy_Sex.head(5))

```
1
            1
                         0
                                      0
2
            0
                         0
                                      1
3
            1
                         0
                                      0
            0
                         0
                                      1
   Sex_female Sex_male
0
               0
                            1
1
               1
                            0
2
               1
                            0
3
               1
                            0
               0
                            1
```

In [5]: #더미를 데이터에 이어 붙인다.
data = df[cols_to_keep].join(dummy_Pclass.ix[:,'Pclass_2':]) #Pclass_2 부터 이어 붙임. 이래야 분석에 편리함
data = data.join(dummy_Sex.ix[:,'Sex_male':]) #Sex_male만 이어 붙임
print(dummy_Sex.head(5))

Sex_female Sex_male

In [6]: data['intercept'] = 1.0

In [7]: #지금까지의 데이터 확인 data.head()

Out[7]:

	Survived	Age	Fare	Pclass_2	Pclass_3	Sex_male	intercept
0	0	22.0	7.2500	0	1	1	1.0
1	1	38.0	71.2833	0	0	0	1.0
2	1	26.0	7.9250	0	1	0	1.0
3	1	35.0	53.1000	0	0	0	1.0
4	0	35.0	8.0500	0	1	1	1.0

```
In [8]: #logistic regression
train_cols = data.columns[1:] #train_cols는 설명 변수
logit = sm.Logit(data['Survived'], data[train_cols]) #Survived는 목적 변수
```

In [9]: #fit the model
 result = logit.fit()

Optimization terminated successfully.

Current function value: 0.451818

Iterations 6

In [10]: result.summary()

Out[10]:
Logit Regression

Logit Regression Results

Dep. Variable:	Survived	No. Observations:	891
Model:	Logit	Df Residuals:	885

Method:	MLE	Df Model:	5
Date:	Fri, 28 Jul 2017	Pseudo R-squ.:	0.3215
Time:	17:23:45	Log-Likelihood:	-402.57
converged:	True	LL-Null:	-593.33
		LLR p-value:	2.853e-80

	coef	std err	z	P> z	[95.0% Conf. Int.]
Age	-0.0330	0.007	-4.457	0.000	-0.048 -0.019
Fare	0.0007	0.002	0.340	0.734	-0.003 0.005
Pclass_2	-1.0809	0.286	-3.778	0.000	-1.642 -0.520
Pclass_3	-2.2794	0.280	-8.142	0.000	-2.828 -1.731
Sex_male	-2.6049	0.188	-13.881	0.000	-2.973 -2.237
intercept	3.4772	0.418	8.318	0.000	2.658 4.297

```
In [11]: # odds ratios only
```

np.exp(result.params) #오즈비(Odds Ratio) 출력

Out[11]: Age

0.967515 1.000714 Fare Pclass_2 0.339281 Pclass_3 0.102351 Sex_male 0.073911 intercept 32.367967

dtype: float64

In [12]: #최종결과, predict가 생존확률임.

data["predict"] = result.predict(data[train_cols]) data.head()

Out[12]:

	Survived	Age	Fare	Pclass_2	Pclass_3	Sex_male	intercept	predict
0	0	22.0	7.2500	0	1	1	1.0	0.106363
1	1	38.0	71.2833	0	0	0	1.0	0.906625
2	1	26.0	7.9250	0	1	0	1.0	0.585365
3	1	35.0	53.1000	0	0	0	1.0	0.913663
4	0	35.0	8.0500	0	1	1	1.0	0.071945

Logistic regression example 2

• gpa, gre, 모교 우선순위(prestige)가 대학원 입학 여부에 어떻게 영향을 끼치는가?

```
In [13]: import pandas as pd
         import statsmodels.api as sm
         import pylab as pl
         import numpy as np
```

```
In [14]: df = pd.read_csv("https://stats.idre.ucla.edu/stat/data/binary.csv") # 되
         이터 읽기
         print(df.head())
             admit gre gpa rank
         0
                 0 380 3.61
                                   3
                 1 660 3.67
         1
                                   3
         2
                 1 800 4.00
                                   1
         3
                 1 640 3.19
                                   4
         4
                 0 520 2.93
                                   4
In [15]: df.columns = ["admit", "gre", "gpa", "prestige"] # df의 column 이름 바꾸기
         print(df.columns)
         Index(['admit', 'gre', 'gpa', 'prestige'], dtype='object')
In [16]: df.describe() # 빈도수, 평균, 분산, 최솟값, 최댓값, 1/4분위수, 중위값, 1/4분위수를 나타냄
Out[16]:
                admit
                           gre
                                     gpa
                                               prestige
          count | 400.000000 | 400.000000 | 400.000000
                                               400.00000
                0.317500
                           587,700000
                                     3.389900
                                               2.48500
          mean
          std
                0.466087
                           115.516536
                                     0.380567
                                               0.94446
                0.000000
                           220.000000 | 2.260000
          min
                                               1.00000
          25%
                0.000000
                           520.000000 3.130000
                                               2.00000
                           580.000000 | 3.395000
          50%
                0.000000
                                               2.00000
          75%
                1.000000
                           660.000000 | 3.670000
                                               3.00000
                           800.000000 | 4.000000
                1.000000
                                               4.00000
          max
In [17]: df.std() #분산 출력
Out[17]: admit
                      0.466087
                      115.516536
         gre
                        0.380567
         gpa
                        0.944460
         prestige
         dtype: float64
In [18]: #크로스탭 출력
         pd.crosstab(df['admit'], df['prestige'], rownames=['admit'])
Out[18]:
         prestige 1
                     2
                        3
                           4
          admit
          0
                  28 | 97 | 93 | 55
                  33 | 54
                        28
                           12
```

```
      In [19]:
      df.hist()

      pl.show()
      # pl.show()를 해야 화면에 띄워준다! 결과는 아래와 같다.

      # 모든 컬럼에 대해 히스토그램을 그림
```



```
In [20]: #더미코딩
dummy_ranks = pd.get_dummies(df['prestige'], prefix='prestige')
dummy_ranks.head()
```

Out[20]:

	prestige_1	prestige_2	prestige_3	prestige_4
0	0	0	1	0
1	0	0	1	0
2	1	0	0	0
3	0	0	0	1
4	0	0	0	1

```
In [21]: #create a clean data frame for the regression
    cols_to_keep = ['admit', 'gre', 'gpa']
    data = df[cols_to_keep].join(dummy_ranks.ix[:, 'prestige_2':])
    data.head()
```

Out[21]:

	admit	gre	gpa	prestige_2	prestige_3	prestige_4
0	0	380	3.61	0	1	0
1	1	660	3.67	0	1	0
2	1	800	4.00	0	0	0
3	1	640	3.19	0	0	1
4	0	520	2.93	0	0	1

```
In [22]: data['intercept'] = 1.0

In [23]: train_cols = data.columns[1:]
    logit = sm.Logit(data['admit'], data[train_cols])
    result = logit.fit()
```

Optimization terminated successfully.

Current function value: 0.573147

Iterations 6

Out[23]: Logit Regression Results

result.summary()

Dep. Variable:	admit	No. Observations:	400
Model:	Logit	Df Residuals:	394
Method:	MLE	Df Model:	5
Date:	Fri, 28 Jul 2017	Pseudo R-squ.:	0.08292
Time:	17:23:48	Log-Likelihood:	-229.26
converged:	True	LL-Null:	-249.99
		LLR p-value:	7.578e-08

	coef	std err	z	P> z	[95.0% Conf. Int.]
gre	0.0023	0.001	2.070	0.038	0.000 0.004
gpa	0.8040	0.332	2.423	0.015	0.154 1.454
prestige_2	-0.6754	0.316	-2.134	0.033	-1.296 -0.055
prestige_3	-1.3402	0.345	-3.881	0.000	-2.017 -0.663
prestige_4	-1.5515	0.418	-3.713	0.000	-2.370 -0.733
intercept	-3.9900	1.140	-3.500	0.000	-6.224 -1.756

결과

coef에 주목한다. gre:0.0023 gpa :0.840, prestige_2 : -0.6754 등등... coef(편회귀계수)의 값이 양수이면 그 컬럼의 값이 커질수록 목적변수가 TRUE일 확률 즉, admit=1일 확률이 높아진다. 반대로 coef의 값이 음수이면 그 컬럼의 값이 커질수록 목적변수가 FALSE일 확률 즉, admin=0일 확률이 높아진다.

GRE나 GPA가 커질수록 대학원에 입학할 확률은 커지고 prestige_2, prestige_3이 커질수록 대학원에 입학할 확률은 작아진다. 이러한 경향은 pretige가 낮아질수록 심해진다.

실습예제

로지스틱 회귀분석을 통해 오즈(odds)값을 확인하고 흑인과 백인이라는 인종정보가 사형선고를 받는데 영향을 주었는지 확인하시오

<데이터 설명>

* Agg : 범죄의 심각도 지수(1~6의 값이며 클수록 심각한 범죄)

* Vrace: 피의자의 인종(백인이면 1, 흑인이면 0)

* DEATH: 사형선고 여부

```
In [24]: import pandas as pd
import statsmodels.api as sm
import pylab as pl
import numpy as np
import statsmodels.formula.api as smf
```

```
In [25]: df = pd.read_csv('data/DeathPenalty.csv') #데이터 읽기 df.head(5)
```

Out[25]:	Agg VRace	Death						
	0 1 1	1						
	1 1 1	1						
	2 1 1	0						
	3 1 1	0						
	4 1 1	0						
In [26]:	df.columns[0	:1]						
	<pre>Index(['Agg'], dtype='object')</pre>							
040[20]	Index([Agg], dcype- object)							
In [27]:	# logistic regression		// · 1 -	서머 버스				
		<pre>df.columns[1:2] pgit(df['Death'],</pre>			Death 목적 변수	2		
In [28]:	# fit the model result = log:	it fit()						
		terminated succe	aafull					
	Curi	ent function val	_	69				
	Ite	cations 4						
In [29]:	print(result	.summary())						
		Lo	git Regres	sion Resu	ılts			
	========			.======				
	=====							
	Dep. Variable 362	2:	Death	No. Obse	ervations:			
	Model:		Logit	Df Resid	duals:			
	361 Method:		MLE	Df Model	L:			
	0		- 3 0015					
	Date: 0.5202	Fr1, 28	Jul 2017	Pseudo F	R-squ.:	-		
	Time:		17:23:48	Log-Like	elihood:	-		
	244.66 converged:		True	LL-Null:	:	_		
	160.94			LLR p-value:				
	nan			ттк Б-ле	ilue.			
	=======================================		=======	======	=======	========		
		coef std	err	Z	P> z	[95.0% Conf.		
	Int.]							
					0.655			
	VRace -0.275	-0.6360 0.	184 -3	.450	0.001	-0.997		
In [30]: # odds ratios only								
	np.exp(result	.params) #오즈비	(Odds Ratio)	즐럭				

```
Out[30]: VRace
              0.529412
       dtype: float64
In [31]: result.params
Out[31]: VRace -0.635989
       dtype: float64
In [32]: from patsy import dmatrices
        import pandas as pd
        from sklearn.linear_model import LogisticRegression
        import statsmodels.discrete.discrete_model as sm
       # sklearn output
       model = LogisticRegression(fit_intercept = False, C = 1e9)
       y, X = dmatrices('Death ~ Agg+VRace', df, return_type = 'dataframe')
       mdl = model.fit(X, y)
       print(np.exp(model.coef_))
       print(model.coef_)
       # sm
       logit = sm.Logit(df['Death'], df[train_cols])
       a = logit.fit(disp=0)
       print(a.summary())
       print(np.exp(a.params))
        [[ 1.26096112e-03 4.66292675e+00 6.11412935e+00]]
        [[-6.67588106 1.53964331 1.81060238]]
                              Logit Regression Results
       ______
       =====
       Dep. Variable:
                                   Death No. Observations:
          362
                                   Logit Df Residuals:
       Model:
          361
                                         Df Model:
       Method:
                                     \mathsf{MLE}
       Date:
                        Fri, 28 Jul 2017 Pseudo R-squ.:
       0.5202
       Time:
                                17:23:48 Log-Likelihood:
       244.66
                                         LL-Null:
       converged:
                                    True
       160.94
                                          LLR p-value:
       ______
                                                P> | z |
                      coef std err
                                           Z
                                                          [95.0% Conf.
        Int.]
       VRace
                   -0.6360
                             0.184
                                      -3.450
                                                0.001
                                                            -0.997
       -0.275
       ______
        =====
       VRace
              0.529412
       dtype: float64
       C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py:5
       26: DataConversionWarning: A column-vector y was passed when a 1d array
```

```
was expected. Please change the shape of y to (n_samples, ), for example using ravel(). y = \text{column\_or\_ld}(y, \text{ warn=True})
```