Mabria Invove

Definition 3.4

A & Mn, n is invertible if it has an enverse

"A" has an envery if there crists B & Mnin such that AB = BA = In

If an inverse crists its is unique and we write A for the inverse of A

Propositión 3.7 (properties of inverses

(ii)
$$A^{\tau}$$
 is invertible $(A^{\tau})^{-1} = (A^{-1})^{\tau}$

$$(iii) (AB)^{-1} = B^{-1}A^{-1}$$

Proof 3.7

- (i) Since A is invertible $A^-A = AA^- = I_n$ A^- is invertible since there exists a matrix (B=A) such that $AB=BA=I_n$ $(A^-)^- = A$ since inverses are unique.
- (ii) $AA^{-1} = I_n = A^{-1}A$ [recall: for any new matrix α, y , $(\alpha y)^T = \alpha^T y^T$] $(A^{-1})^TA^T = (A^TA)^T = (I_n)^T = I_n \text{ similarly } A^T(A^{-1})^T = (AA^T)^T = (I_n)^T = I_n$ so $(A^T)^{-1} = (A^{-1})^T$ by uniqueness of inverses

$$A(BB^{-1})A^{-1} = A(I_{m})A^{-1}$$

$$= AA^{-1}$$

$$= I_{m}$$
similarly $(B^{-1}A^{-1})(AB)$

Corollary

The product of two invertible matrices is envertible.

Exercise

1 Prove that A is invertible \Rightarrow A k is invertible for any k = N

$$A^{-1} \Rightarrow (A^{k})^{-1}$$
 $A^{-1} \Rightarrow (A^{-1})^{k}$
 $(A^{-1})^{k}A = A^{-1}$
 $= A^{-1}A$
 $= A$

@ Priore that A is emertible then 2A is invertible for any 0 = 2 & 1R

$$(\lambda A)(\lambda^{\prime}A^{\prime}) = \lambda \lambda^{\prime} AA^{\prime} = In \times 1$$

$$= In$$
similarly $(\lambda^{\prime}A^{\prime})(\lambda A)$