Data Mining, Data Warehouse Decision Tree Learning

Lesson #4

Attribute Selection Measure in ID3 Information Gain

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} \cdot Entropy(S_v)$$

Select the attribute A that best classifies the examples

...An Example

Weekend				
(Example)	Weather	Parents	Money	Decision (Class)
W1	Sunny	Yes	Rich	Cinema
W2	Sunny	No	Rich	Tennis
W3	Windy	Yes	Rich	Cinema
W4	Rainy	Yes	Poor	Cinema
W5	Rainy	No	Rich	Stay in
W6	Rainy	Yes	Poor	Cinema
W7	Windy	No	Poor	Cinema
W8	Windy	No	Rich	Shopping
W9	Windy	Yes	Rich	Cinema
W10	Sunny	No	Rich	Tennis

Using the ID3 algorithm to build a decision tree

 Figure out which attribute will be put into the node at the top of our tree:

Weather, parents or money.

To do this, we first need to calculate:

```
Entropy(S) = -p_{cinema} \log_2(p_{cinema}) - p_{tennis} \log_2(p_{tennis}) - p_{shopping} \log_2(p_{shopping}) - p_{stay\_in} \log_2(p_{stay\_in})
= -(6/10) * \log_2(6/10) - (2/10) * \log_2(2/10) - (1/10) * \log_2(1/10) - (1/10) * \log_2(1/10)
= 1.571
```


Now lets calculate the gain for the *weather* attribute:

$$\begin{split} & \text{Gain}(S, \text{weather}) = 1.571 - (|S_{\text{sunny}}|/10)^* \text{Entropy}(S_{\text{sunny}}) - \\ & (|S_{\text{windy}}|/10)^* \text{Entropy}(S_{\text{windy}}) - (|S_{\text{rainy}}|/10)^* \text{Entropy}(S_{\text{rainy}}) \\ & \textbf{Where,} \\ & \text{Entropy}(S_{\text{sunny}}) = -p_{\text{cinema|sunny}} log_2(p_{\text{cinema|sunny}}) - p_{\text{tennis|sunny}} log_2(p_{\text{tennis|sunny}}) \\ & = -(1/3)^* log_2 (1/3) - (2/3)^* log_2 (2/3) = 0.918 \\ & \text{Entropy}(S_{\text{windy}}) = -p_{\text{cinema|windy}} log_2(p_{\text{cinema|windy}}) \\ & -p_{\text{shopping|windy}} log_2(p_{\text{shopping|windy}}) \\ & = -(1/4)^* log_2 (1/4) - (3/4)^* log_2 (3/4) = 0.811 \\ & \text{Entropy}(S_{\text{rainy}}) = -p_{\text{cinema|rainy}} log_2(p_{\text{cinema|wind}}) - p_{\text{stay_in|rainy}} log_2(p_{\text{stay_in|rainy}}) \\ & = -(2/3)^* log_2 (2/3) - (1/3)^* log_2 (1/3) = 0.918 \\ & \text{Gain}(S, \text{weather}) = 1.571 - (3/10)^* \text{Entropy}(S_{\text{sunny}}) - (4/10)^* \text{Entropy}(S_{\text{windy}}) - \\ & \text{Table} & 10)^* \text{Entropy}(S_{\text{rainy}}) = \textbf{0.69} \\ \end{split}$$

Using the ID3 algorithm to build a decision tree (cont.)

Now lets calculate the gain for the *parents* attribute:

```
\begin{aligned} & \text{Gain}(S, \, \text{parents}) = 1.571 - (|S_{\text{yes}}|/10)^* \text{Entropy}(S_{\text{yes}}) - (|S_{\text{no}}|/10)^* \text{Entropy}(S_{\text{no}}) \\ & \textit{Where,} \\ & \text{Entropy}(S_{\text{yes}}) = -p_{\text{cinemalyes}} log_2(p_{\text{cinemalyes}}) \\ & = -(5/5)^* log_2(5/5) = 0 \\ & \text{Entropy}(S_{\text{no}}) = -p_{\text{tennis}|\text{no}} log_2(p_{\text{tennis}|\text{no}}) - p_{\text{stay\_in}|\text{no}} log_2(p_{\text{stay\_in}|\text{no}}) \\ & -p_{\text{cinemalno}} log_2(p_{\text{cinenemalno}}) p_{\text{shopping}|\text{no}} log_2(p_{\text{shopping}|\text{no}}) \\ & = -(2/5)^* log_2(2/5) - (1/5)^* log_2(1/5) - (1/5)^* log_2(1/5) - (1/5)^* log_2(1/5) = 1.922 \\ & \text{Gain}(S, \, \text{parents}) = 1.571 - (5/10)^* \text{Entropy}(S_{\text{yes}}) - (5/10)^* \text{Entropy}(S_{\text{no}}) = \textbf{0.61} \end{aligned}
```


Now lets calculate the gain for the *money* attribute:

```
\begin{split} & \text{Gain}(S, \, \text{money}) = 1.571 - (|S_{\text{rich}}|/10)^* \text{Entropy}(S_{\text{rich}}) - (|S_{\text{poor}}|/10)^* \text{Entropy}(S_{\text{poor}}) \\ & \textbf{\textit{Where,}} \\ & \text{Entropy}(S_{\text{rich}}) = -p_{\text{cinema|rich}} log_2(p_{\text{cinema|rich}}) - p_{\text{tennis|rich}} log_2(p_{\text{tennis|rich}}) \\ & -p_{\text{stay\_in|rich}} log_2(p_{\text{stay\_in|rich}}) - p_{\text{shopping}} log_2(p_{\text{shopping}}) \\ & = -(3/7)^* log_2(3/7) - (2/7)^* log_2(2/7) - (1/7)^* log_2(1/7) - (1/7)^* log_2(1/7) = 1.842 \\ & \text{Entropy}(S_{\text{poor}}) = -p_{\text{cinema|no}} log_2(p_{\text{cinema|no}}) \end{split}
```

Gain(S, money) = $1.571 - (7/10)*Entropy(S_{rich}) - (3/10)*Entropy(S_{poor}) =$ **0.28**

 $= -(3/3)*\log_2(3/3) = 0$

- The first node in the decision tree will be the weather attribute.
- Now we look at the first branch. S_{sunny} = {W1, W2, W10}. This is not empty, so we do not put a default categorization leaf node here.

- Now we have to fill in the choice of attribute
 A, which we know cannot be weather,
 because we've already removed that from the list of attributes to use.
- So, we need to calculate the values for Gain(S_{sunny}, parents) and Gain(S_{sunny}, money).

Weekend				Decision	
(Example)	Weather	Parents	Money	(Category)	
W1	Sunny	Yes	Rich	Cinema	
W2	Sunny	No	Rich	Tennis	
W10	Sunny	No	Rich	Tennis	

Hence we can calculate:

- Gain(S_{sunny} , parents) = 0.918 ($|S_{yes}|/|S|$)*Entropy(S_{yes}) ($|S_{no}|/|S|$)*Entropy(S_{no}) = 0.918 (1/3)*0 (2/3)*0 = **0.918** ($|S_{sunny}|/|S|$)*Entropy(S_{sunny}) = 0.918 ($|S_{rich}|/|S|$)*Entropy(S_{rich}) ($|S_{poor}|/|S|$)*Entropy(S_{poor}) = 0.918 (3/3)*0.918 0 = 0.918 0.918 = 0 (2/3*log(2/
- Note: Entropy(S_{yes}) and Entropy(S_{no}) were both zero, because S_{yes} contains examples which are all in the same category (cinema), and S_{no} contains examples which are all in the same category (tennis).
- This should make it more obvious why we use information gain to choose attributes to put in nodes.

• Given our calculations, attribute A should be taken as *parents*.

 Now we need to calculate the values for Gain(S_{windy}, parents) and Gain(S_{windy}, money).

Weekend			Decision	
(Example)	Weather	Parents	Money	(Category)
W3	Windy	Yes	Rich	Cinema
W7	Windy	No	Poor	Cinema
W8	Windy	No	Rich	Shopping
W9	Windy	Yes	Rich	Cinema

The calculation:

- Gain(S_{windy} , parents) = 0.811 ($|S_{yes}|/|S|$)*Entropy(S_{yes}) ($|S_{no}|/|S|$)*Entropy(S_{no}) = 0.811 (2/4)*0 (2/4)*1 = **0.311**
- Gain(S_{windy} , money) = 0.811 ($|S_{rich}|/|S|$)*Entropy(S_{rich}) ($|S_{poor}|/|S|$)*Entropy(S_{poor}) = 0.811 (3/4)*0.918 (1/4)*0 = 0.122

Meaning that this node will be split by *parents* too.

After calculating the Gain for rainy too, the final tree is...

Accuracy Estimation

Training Accuracy Rate

 The percentage of training set samples that are correctly classified by the model.

Testing Accuracy Rate

- The percentage of test set samples that are correctly classified by the model.
- Test set is independent of training set, otherwise over-fitting will occur.

Majority Rule Accuracy

- To select a class for a terminal node, select the class A having the most examples (in training set).
- Majority rule accuracy = $|S_A|/|S|$
- The classification model should be more accurate than the majority rule.

Accuracy Estimation

- In our example, training accuracy is 10/10
 = 100 %
- Take the following testing set for example:

Weekend				Decision
(Example)	Weather	Parents	Money	(Class)
W11	Sunny	Yes	Poor	Cinema
W12	Sunny	No	Rich	Tennis
W13	Windy	No	Rich	Cinema
W14	Rainy	Yes	Poor	Cinema

Testing accuracy is: 3/4 = 75%Majority rule accuracy = 6/10 = 60%

Accuracy Estimation

- How can we tell if the training accuracy is significantly different than the testing accuracy?
- Normal Approximation to Binomial Distribution
 H0: The two accuracies are equal. We reject H0

$$\hat{p} > p + Z \cdot \sqrt{\frac{p(1-p)}{n}}$$

number of rows in the testing set

Testing accuracy

$$1 > p + 1.96 \cdot \sqrt{\frac{p(1-p)}{4}}$$

If training accuracy > testing accuracy

Over-fitting

We can check in the same manner, majority rule vs. testing accuracy

p=0.51
Testing accuracy should be 51% at the most, for the two accuracies to be significantly different (to reject H0).