Versuch 49

Gepulste NMR

Jonah Nitschke Sebastian Pape lejonah@web.de sepa@gmx.de

> Durchführung: 12.11.2018 Abgabe: 15. November 2018

1 Auswertung

In der folgenden Auswertung werden zuerst die beiden Relaxationszeiten T_1 sowie T_2 bestimmt. Mithilfe von kann dann die Diffusionskonstante D sowie der Molekülradius bestimmt werden. Der Molekülradius wird am Ende zudem mit den Radien verglichen, die sich aus dem Molekulargewicht und dem Van-der-Waals-Kovolumen ergeben.

1.1 Bestimmung der longitudinalen Relaxationszeit T_1

Die aufgenommenen Daten für die Bestimmung von T_1 sind Tabelle 1 eingetragen sowie in Abbildung 1 grafisch dargestellt.

Tabelle 1: Messdaten für die Spannungamplituden des ersten Echos bei verschiedenen Pulsabständen.

τ/ms	U/mV	$ au/\mathrm{ms} $	U/mV
1	-785	100	-633
2	-780	200	-565
3	-765	500	-395
5	-745	1000	-195
8	-745	1500	35
9	-735	2000	118
13	-730	4000	612
20	-715	7000	643
50	-665	9000	700
75	-648		

Um T1 zu bestimmen werden die experimentellen Daten an eine Exponentialfunktion der folgenden Form gefittet:

$$M(t) = M_0(1 - 2\exp{(-\frac{t}{T_1})}) + M_1. \tag{1}$$

Für die verschiedenen Parameter ergeben sich damit folgende Werte:

$$M_0 = (0.73 \pm 0.02) \,\mathrm{V} \tag{2}$$

$$M_1 = (0.04 \pm 0.03) \,\mathrm{V} \tag{3}$$

$$T_1 = (1.54 \pm 0.12) \,\mathrm{s} \tag{4}$$

Abbildung 1: Gemessene Signalhöhe des Echos gegen den zeitlichen Abstand der beiden Pulse.

1.2 Bestimmung der transversalen Relaxationszeit T_2

Um die transversale Relaxationszeit T_2 zu bestimmen wird das Meiboom-Gill Verfahren verwendet. Zudem ist in Abbildung \ref{Meibo} einmal die Burstsequenz mit dem Carr-Purcell-Verfahren dargestellt.

Abbildung 2: Signale der transversalen Magnetisierung mit der Carr-Purcell-Methode bei einem Pulsabstan von $\tau=2\,\mathrm{ms}.$