EAIiIB	Autor 1 Autor 2		Rok II	Grupa 5	Zespół 6	
	Temat:			Numer ćwiczenia:		
Współczynnik załamania ciał stałych			51			
Data wykonania	Data oddania Zwrot do poprawki		Data oddania	Data zaliczenia	Ocena	

1 Cel ćwiczenia

Wyznaczenie współczynnika załamania światła dla ciał stałych metodą mikroskopu. Zbadanie zależności współczynnika załamania od długości fali.

2 Wstęp teoretyczny

Gdy wiązka światła przechodzi przez dwa ośrodki o różnych własnościach optycznych, to na powierzchni granicznej częściowo zostaje odbita, częściowo zaś przechodzi do drugiego środowiska, ulegając załamaniu. Prawo załamania:

$$\frac{sin\alpha}{sin\beta}=n$$

Wielkość n jest stała zwaną współczynnikiem załamania ośrodka 2 względem ośrodka 1. Współczynnik załamania zależy od długości fali światła padającego.

Rysunek 1: Powstanie pozornego obrazu O_1 punktu O leżącego na dolnej powierzchni płytki płaskorównoległej

3 Układ pomiarowy

W skład układu pomiarowego wchodzą:

- 1. Mikroskop wyposażony w czujnik mikrometryczny i nasadkę krzyżową
- 2. Śruba mikrometryczna.
- 3. Zestaw płytek szklanych i z pleksiglasu, różnej grubości

4 Wyniki pomiarów

Materiał: szkło						
Grubość rzeczywista: $d = 5.34$ [mm]						
nie	pewność $u(d)$ =	=0.01 [mm]				
	Waltozor	nie czujnika	Grubość	Współczynnik		
Lp.	WSKazai	ne czujinka	pozorna	załamania		
Lp.	a_d	a_g	$h = a_d - a_g$	$n = \frac{d}{h}$		
	[mm]	[mm]	[mm]	$n = \frac{1}{h}$		
1.	7,40	4,26	3,14	1,701		
2.	7,42	4,30	3,12	1,712		
3.	7,47	4,36	3,11	1,717		
4.	7,44	4,37	3,07	1,739		
5.	7,42	4,39	3,03	1,762		
6.	7,50	4,31	3,19	1,674		
7.	7,42	4,36	3,06	1,745		
8.	7,45	4,37	3,08	1,734		
		Wartość	9.10	1 799		
		średnia	3,10	1,723		
		Niepewność	0,018	0,01804		

Materiał: szkło Grubość rzeczywista: $d=2,97~[\mathrm{mm}]$ niepewność $u(d)=0,01~[\mathrm{mm}]$

Wskazar		nie czujnika	Grubość	Współczynnik
Lp.	VV SIKUZUI	ne ezajinka	pozorna	załamania
Бр.	a_d	a_g	$h = a_d - a_g$	$n = \frac{d}{h}$
	[mm]	[mm]	[mm]	$n = \frac{1}{h}$
1.	8,10	6,18	1,92	1,547
2.	8,08	6,21	1,87	1,588
3.	8,04	6,19	1,85	1,605
4.	8,09	6,19	1,90	1,563
5.	8,13	6,18	1,94	1,523
6.	8,08	6,19	1,89	1,571
7.	8,09	6,16	1,93	1,539
8.	8,09	6,19	1,90	1,563
		Wartość	1,90	1,562
		średnia	1,90	1,502
		Niepewność	0,011	0,01804

Materiał: pleksiglas

Grubość rzeczywista: d =3,88 $\left[\mathrm{mm}\right]$

niepewność u(d)=0,01 [mm]

Wskazai		nie czujnika	Grubość	Współczynnik	
Lp.	VV SKazai	пс сидика	pozorna	załamania	
ър.	a_d	a_g	$h = a_d - a_g$	$n = \frac{d}{h}$	
	[mm]	[mm]	[mm]	$n - \frac{1}{h}$	
1.	7,81	5,34	2,47	1,571	
2.	7,86	5,30	2,56	1,516	
3.	7,845	5,35	2,495	1,555	
4.	7,85	5,33	2,52	1,540	
5.	7,85	5,35	2,50	1,552	
6.	7,845	5,34	2,51	1,549	
7.	7,83	5,33	2,50	1,552	
8.	7,835	5,33	2,51	1,549	
		Wartość	2,51	1 5/12	
		średnia	2,91	1,548	
		Niepewność	0,009	0,01804	

Materiał: pleksiglas			Grubość rzeczywista $d=3,88[mm]$			
Długość fali		Wskazanie czujnika		Grubość	Współczynnik	Wartość
L	rugosc ian	wskazame czujinka		pozorna	załamania	średnia
	λ a_d		a_g	$h = a_d - a_g$	$n = \frac{d}{h}$	m
	$[\mu m]$	[mm]	[mm]	[mm]	$n = \frac{1}{h}$	n_{sr}
		7,78	5,24	2,54	1,508	
	I Niebieski 0,48	7,80	5,245 2,555 1,498			
I		7,84	5,25	2,59	1,515	1,522
		7,78	5,24	2,54	1,500	
		7,80	5,25	2,55	1,493	
		7,79	5,265	2,525	1,503	
	II Czerwony 0,63	7,80	5,30	2,50	1,508	
II		7,80	5,305	2,495	1,508	1,541
		7,85	5,305	2,545	1,508	
		7,825	5,295	2,53	1,508	

5 Obliczenia

5.1 Współczynnik załamania światła

Współczynnik załamania światła obliczamy ze wzoru:

$$n = \frac{d}{h}$$

d-grubość rzeczywista h-grubość pozorna

5.2 Niepewność pomiaru grubości rzeczywistej płytki

Pomiaru grubości płytki dokonywaliśmy za pomocą śruby mikrometrycznej, więc

$$u(d) = 0,01[mm]$$

5.3 Niepewność typu A dla grubości pozornej

Rodzaj	Rodzaj	Grubość	Niepewność $u(h)$ [mm]
światła	światła	pozorna $h[mm]$	Niepewnosc $u(n)$ [mm]
Szkło	Białe	3,16	0,0165
Szkło	Białe	3,16	0,0673
Pleksiglas	Białe	3,18	0,0379
Pleksiglas	Niebieskie	3,19	0,0172
Pleksiglas	Czerwone	3,15	0,0040

1. Niepewność grubości pozornej u(h) dla poszczególnych rodzajów światła.

Rodzaj	Grubość	Niepewność $u(h)$ [mm]
światła	pozorna $h[mm]$	
Niebieskie	3,16	0,0165
Zielone	3,16	0,0673
Białe	3,18	0,0379
Żółte	3,19	0,0172
Czerwone	3,15	0,0040

2. Wyznaczamy niepewność obliczonego współczynnika załamania światła. Niepewność współczynnika załamania światła:

$$u(n) = \sqrt{\left(\frac{\partial n}{\partial d}u(d)\right)^2 + \left(\frac{\partial n}{\partial h}u(h)\right)^2} = \sqrt{\left(\frac{1}{h}u(d)\right)^2 + \left(\frac{-d}{h^2}u(h)\right)^2}$$

3. Zestawienie wyników

Rodzaj światła	Współczynnik załamania n	Niepewność $u(n)$	Zgodność z wartością tablicową w granicach niepewności rozszerzonej
Niebieskie	1,503	0,00847	TAK
Zielone	1,503	0,03215	TAK
Białe	1,492	0,01804	TAK
Żółte	1,488	0,00860	TAK
Czerwone	1,507	0,00370	NIE

6 Wnioski

Otrzymana wartość współczynnika załamania po oświetleniu płytki z pleksiglasu światłem białym jest zgodna z wartością tablicową (1,5) w granicach niepewności. Po oświetleniu płytki z pleksiglasu światłem o różnej długości możemy stwierdzić, że współczynnik załamania zależy od długość fali (zjawisko dyspersji). Wyznaczony współczynnik załamania po oświetleniu światłem barwy czerwonej nie odpowiada oczekiwanemu wynikowi. Prawdopodobnie przyczyną takiego wyniku jest mała dokładność metody pomiaru, ponieważ stwierdzenie czy obraz na wyświetlaczu mikroskopu jest już wystarczająco ostry jest bardzo subiektywne.