Name:			• • • • • • • • • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •	••	
Roll No. :		•••••			• • • • • • •	••••		•••	
Invigilato	r's Si	gnature :			•••••	•••••	•••••	···	
				CS/BC	A/SI	EM-3	B/BM-3	01/2012	-13
			2	2012					
	MA	THEM	ATICS	s for	R CC	MI	PUTIN	G	
Time Allo	tted :	3 Hours					Fu	ll Marks :	70
	The	e figures	in the m	nargin i	ndica	ıte fu	ıll mark	s.	
Candido	ates a	ıre requii	red to gi	ve their	ansı	vers	in their	own wor	ds
			as fa	r as pro	actica	ıble.			
			GR	OUP -	A				
		(Multip	ole Choi	ісе Тур	e Qu	ıesti	ons)		
1. Choose the correct alternatives for any <i>ten</i> of the following:									
								10 × 1 =	= 10
i)	The	proposit	ion $p \wedge$	(<i>q</i> ∧~ <i>p</i>) is a	ı			
	a)	contrad	iction		b)	tau	itology		
	c)	both (a)	and (b)		d)	nor	ne of th	ese.	
ii)	The	type o	of the	gramn	nar	G	which	consists	of
	prod	luctions	$P = \{S$	$\rightarrow bAB$	B, A =	<i>→ aB</i>	, abAbb	$\rightarrow abbb$	} is
	a)	Type-0			b)	Тур	pe-1		

3022 [Turn over

d) Type-3.

Type-2

c)

iii) ρ is a relation on the set $R \times R$ of ordered pairs of real numbers as follows :

F or all (a, b), $(c, d) \in R \times R$ $(a, b) (c, d) \Leftrightarrow a = c$

Then ρ is

- a) symmetric only
- b) symmetric but not reflective
- c) equivalence relation
- d) none of these.
- iv) Let $A = R \{3\}$ and $B = R \{1\}$.

If $f: A \rightarrow B: f(x) = \frac{x-2}{x-3}$ then

- a) f is into
- b) f is surjective
- c) f is bijective
- d) none of these.
- v) A pseudo graph
 - a) must has loops
 - b) does not have loop
 - c) must have parallel edges
 - d) none of these.
- vi) Minimum height of a n vertex binary tree is
 - a) $\frac{n-1}{2}$

- b) $\frac{n+1}{2}$
- c) $\lfloor \log_2^{(n+1)} 1 \rfloor$
- d) $\left|\log_2^{(n+1)}-1\right|$.

- vii) If the general term of the sequence $\{a^k\}$ be a^k which will be the generating function?
 - a) $\frac{1}{1-x}$

b) $\frac{a}{1-x}$

c) $\frac{k}{1-x}$

- d) $\frac{1}{1-ax}$.
- viii) A simple graph with n vertices has maximum
 - a) $\frac{n(n-1)}{2}$ edges b) (n-1) edges
 - c) $\frac{n(n+1)}{2}$ edges d) n^2 edges.
- If a language L is accepted by a automata M then ix)
 - every string in L is accepted by Ma)
 - at least one string in L is accepted by Mb)
 - c) no string of L is accepted by M
 - only one string is accepted by M. d)
- Number of elements contained in an incidence matrix of x) a digraph is
 - 1 a)

2 b)

3 c)

- d) none of these.
- The degree of the origin of the longest path in a tree is xi)
 - a) 1

b) 2

3 c)

d) none of these.

	xii)	Choose the correct statement:							
		a)	Path is an open walk						
		b)	Every walk is trail						
		c)	Every trail is a path						
		d)	A vertex	A vertex cannot appear twice in a walk.					
	xiii)	How	many	permutations	of	the	letters	ABCDEFG	
		cont	ain in th	e string BCF?					
		a)	24		b)	6!			
		c)	120		d)	252.			
	xiv)	A sp	panning tree has						
		a)	one circuit		b)	no circuit			
		c)	two circ	d)	none of these.				
	xv)	You have five friends. In how many ways can you invite							
		then	them?						
		a)	51		b)	36			
		c)	25		d)	non	e of thes	se.	
		GROUP – B							
	(Short Answer Type Questions)								
		Answer any <i>three</i> of the following $3 \times 5 = 15$							
2.	Prov	we that $((P \land \neg Q) \to R) \to (P \to (Q \lor R))$ is a tautology.							
3.	5 sı	In an examination a minimum is to be secured in each of the 5 subjects for a pass. In how many ways can a candidate fail?							
4.		Find the sequence corresponding to the generating function $\frac{3+7x}{(1-x)(1+4x)}.$							

- 5. Suppose *G* is a non-directed graph with 12 edges. If *G* has 6 vertices each of degree 3 and rest have degree less than 3, find the minimum number of vertices in *G*.
- 6. What is Deterministic finite Automata (DFA)? Explain with suitable example.
- 7. Write a short note on Moore Machine.

GROUP - C (Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

8. a) Find by Prim's algorithm a spanning tree with minimum weight from the graph given below. Also calculate total weight of spanning tree.

- b) Prove that a connected graph n with n-1 vertices and edges is a tree.
- c) Determine the value of n if $4 \times {}^{n}P_{3} = {}^{n+1}P_{3}$. 6 + 6 + 3
- 9. a) Find the grammar on the set of terminals $\{a, b\}$ that generates the language $L = \{a, ab, ab^2, ab^3, ...\}$.

b) Draw the transition diagram for the FSA with $I=\{a,b\}$, $Q=\{q_0,q_1,q_2\}\,,\ F=\{q_0,q_1\}\ \ {\rm and}\ \ \delta\ \ {\rm is\ given\ \ by}$

Δ	а	b
Q_0	Q_0	Q_{1}
Q_1	Q_{0}	Q_2
Q_2	Q_2	Q_2

7 + 8

10. a) Write DNF of the following statement:

$$\neg \{\neg (p \leftrightarrow q) \land r\}$$

- b) Verify whether the argument given below is valid or not:

 All mammals are animals. Some mammals are two-legged. Therefore, some animals are two-legged.
- c) Prove the following equivalence:

$$\neg p \land q \Leftrightarrow \neg (p \lor (\neg p \land q))$$
 5 + 5 + 5

- 11. a) What is Grammar?
 - b) Construct the sate diagram for finite state machine with state table as under:

State	Inj	out	Output		
State	0 1		0	1	
			1	0	
\rightarrow S0	S1	S1	1	0	
S1	S3	S0	1	U	
S2 S3	S1	S0	1	0	
S3	S2	S1	0	0	

5 + 10

12. a) Examine if the following two graphs are isomorphic:

b) Solve the following recurrence relation using generating function :

$$a_n - 2a_{n-1} + a_{n-2} = 2^{n-2}$$
 for $n \ge 2$ and $a_0 = 1, a_1 = 5$.

- c) Write short notes on any two of the following:
 - i) Spanning Graph
 - ii) Hamiltonian Graph

iii) Digraph.

5 + 5 + 5

=========