

● 1. 考虑每个上下文无关文法:

$$S' \rightarrow S \text{ EOF}$$
[1] $S \rightarrow a S b$
[2] $S \rightarrow a b$

(1) 构造 LR(0) 项集并画出识别分析栈模式的确定性有限自动机

2024 年春季学期 《编译原理》 北京大学计算机学院

● 1. 考虑每个上下文无关文法:

$$S' \rightarrow S \text{ EOF}$$
[1] $S \rightarrow a S b$
[2] $S \rightarrow a b$

(2) 计算 FOLLOW(S) 集合

$$FOLLOW(S) = \{EOF,b\}$$

● 1. 考虑每个上下文无关文法:

$$S' \rightarrow S \text{ EOF}$$
[1] $S \rightarrow a S b$
[2] $S \rightarrow a b$

(3)判断文法是 LR(0) 的还是 SLR(1) 的,并给出移进-归约分析表

LR(0) 上面的文法既是 LR(0)的, 也是 SLR(1)的。

SLR(1)

分析栈\向前看	а	b	EOF
ϵ	移进	错误	错误
S	错误	错误 错误	
eta a	移进 移进		错误
eta a S	错误	移进	错误
eta a S b	归约[1]	归约[1]	归约[1]
eta a b	归约[2]	归约[2]	归约[2]

分析栈\向前看	а	b	EOF
ϵ	移进	错误	错误
S	错误	错误	接受
$oldsymbol{eta}$ a	移进	移进	错误
eta a S	错误	移进	错误
eta a S b	错误	归约[1]	归约[1]
eta a b	错误	归约[2]	归约 [2]

2024年春季学期 《编译原理》 北京大学计算机学院

● 1. 考虑每个上下文无关文法:

(1) 构造 LR(O) 项集并画出识别分析栈模式的确定性有限自动机

2024 年春季学期 《编译原理》 北京大学计算机学院

● 1. 考虑每个上下文无关文法:

(2) 计算 FOLLOW(S) 集合

$$FOLLOW(S) = \{EOF, +, *, a\}$$

● 1. 考虑每个上下文无关文法:

(3)判断文法是LR(0)的还是SLR(1)的,并给出移进-归约分析表上面的文法既是LR(0)的,也是SLR(1)的。

分析栈\ 向前看	+	*	а	EOF
ϵ	错误	错误	移进	错误
S	错误	错误	移进	接受
βSS	移进	移进	移进	错误
βSS +	归约[1]	归约[1]	归约[1]	归约[1]
$\beta SS*$	归约[2]	归约[2]	归约[2]	归约 [2]
$oldsymbol{eta}$ a	归约[3]	归约[3]	归约[3]	归约[3]

● 2. 考虑上下文无关文法,终结符号集合为 {id, num, assign, EOF}:

(1) 构造 LR(1) 项集并画出识别分析栈模式的确定性有限自动机

	S' o S EOF
[1]	$S o ext{id}$
[2]	S o Vassign E
[3]	$V o ext{id}$
[4]	$E \rightarrow V$
[5]	$E o ext{num}$

2024年春季学期《编译原理》 北京大学计算机学院

● 2. 考虑上下文无关文法,终结符号集合为 {id, num, assign, EOF}:

(2)判断文法是否是 LR(1) 的并给出移进-归约分析表

文法是 LR(1) 的。

分析栈\向前看	id	num	assign	EOF
ϵ	移进	错误	错误	错误
S	错误	错误	错误	接受
id	错误	错误	归约[3]	归约[1]
V	错误	错误	移进	错误
Vassign	移进	移进	错误	错误
Vassign E	错误	错误	错误	归约 [2]
Vassign V	错误	错误	错误	归约 [4]
Vassign num	错误	错误	错误	归约 [5]
V assign id	错误	错误	错误	归约[3]

	S' o S EOF
[1]	$S o ext{id}$
[2]	S o Vassign E
[3]	$V o ext{id}$
[4]	$E \rightarrow V$
[5]	E ightarrow num