VLSI System Design HW2

[112061533][潘金生]

(1.1)

```
test_ACTQUANT (_main__.OpTestCase) ... ok

test_C1 (_main__.OpTestCase) ... ok

test_C3 (_main__.OpTestCase) ... ok

test_C5 (_main__.OpTestCase) ... ok

test_F6 (_main__.OpTestCase) ... ok

test_OUTPUT (_main__.OpTestCase) ... ok

test_S2 (_main__.OpTestCase) ... ok

test_S4 (_main__.OpTestCase) ... ok

Test_S4 (_main__.OpTestCase) ... ok

Case S4 (_main__.OpTestCase) ... ok

Case S4 (_main__.OpTestCase) ... ok

Ran 8 tests in 12.792s

OK

    Cunittest.runner.TextTestResult run=8 errors=0 failures=0>
```

(1.2)

```
bit: 32
bit-width range: (-2147483648, 2147483647)
Accuracy: 98.14%
98.14
```

(2.1.1)

(2.1.2)

the smallest bit-width of partial sums that maintains the same accuracy: 18

```
bit-width range: (-2, 1)
Accuracy: 11.35%
bit: 4
bit-width range: (-8, 7)
Accuracy: 11.35%
bit-width range: (-32, 31)
Accuracy: 11.35%
bit-width range: (-128, 127)
Accuracy: 11.35%
bit-width range: (-2048, 2047)
Accuracy: 11.35%
bit-width range: (-8192, 8191)
Accuracy: 36.26%
bit: 16
Accuracy: 97.81%
bit-width range: (-131072, 131071)
bit-width range: (-524288, 524287)
Accuracy: 98.14%
bit-width range: (-2097152, 2097151)
Accuracy: 98.14%
bit-width range: (-8388608, 8388607)
Accuracy: 98.14%
Accuracy: 98.14%
```

(2.2.1)

```
conv1_min_partial_sum = -65719
conv1_max_partial_sum = 61119
```

conv1_standard deviation_partial_sum = 14695.02059495775

conv3_min_partial_sum = -86196 conv3_max_partial_sum = 32701 conv3_standard deviation_partial_sum = 13685.063595803571

conv5_min_partial_sum = -22761 conv5_max_partial_sum = 17345 conv5_standard deviation_partial_sum = 5278.362709781564

fc6_min_partial_sum = -22726 fc6_max_partial_sum = 22931 fc6_standard deviation_partial_sum = 6814.782848677579

output_min_partial_sum = -21818 output_max_partial_sum = 3370 output_standard deviation_partial_sum = 5364.636346566406

(2.2.2)

在尋找最小 bit-width 的過程中,可以根據先前所得到的 partial_sum 得知大概的 bit-width 並且去調整它,在挑選過程中,我得到了兩個結果,其中一個是保持 準確率不變的最小 bit-width,一個是提高準確率的最小 bit-width。

準確率不變:

Conv1_minimum bit-width of partial sums: 17

Conv3 minimum bit-width of partial sums:17

Conv5 minimum bit-width of partial sums:15

Fc6 minimum bit-width of partial sums:15

Output minimum bit-width of partial sums:13

Accuracy: 98.14%

準確率提高:

Conv1_minimum bit-width of partial sums: 17
Conv3_minimum bit-width of partial sums:16
Conv5_minimum bit-width of partial sums:15
Fc6_minimum bit-width of partial sums:14
Output_minimum bit-width of partial sums:13

Accuracy: 98.24000000000001%

(3.1.1)

Conv1:

$$Smul = 64 * \left(\frac{8}{8}\right)^2 = 64$$

$$Sadd = 18$$

$$Nmul = 1 * 6 * 28 * 28 * 5 * 5 * 1 = 117600$$

$$Nadd = 117600$$

$$Ew = 9643200$$

Conv3:

$$Smul = 64 * \left(\frac{8}{8}\right)^2 = 64$$

$$Sadd = 18$$

$$Nmul = 1 * 16 * 10 * 10 * 5 * 5 * 6 = 240000$$

$$Nadd = 240000$$

$$Ew = 19680000$$

Conv5:

$$Smul = 64 * \left(\frac{8}{8}\right)^2 = 64$$

$$Sadd = 18$$

$$Nmul = 1 * 120 * 1 * 1 * 5 * 5 * 16 = 48000$$

$$Nadd = 48000$$

$$Ew = 3936000$$

Fc6:

$$Smul = 64 * \left(\frac{8}{8}\right)^2 = 64$$

$$Sadd = 18$$

$$Nmul = 1 * 84 * 120 = 10080$$

 $Nadd = 10080$
 $Ew = 826560$

Output:

$$Smul = 64 * \left(\frac{8}{8}\right)^2 = 64$$

 $Sadd = 18$
 $Nmul = 1 * 10 * 84 = 840$

$$Nadd = 840 + 10 = 850$$

$$Ew = 69060$$

Total

Ew = 34154820

Layer	Smul	Nmul	Sadd	Nadd	Ew
Conv1	64	117600	18	117600	9643200
Conv3	64	240000	18	240000	19680000
Conv5	64	48000	18	48000	3936000
Fc6	64	10080	18	10080	826560
Output	64	840	18	850	69060
Total					34154820

(3.1.2)

Conv1:

$$Smul = 64 * \left(\frac{8}{8}\right)^2 = 64$$

$$Sadd = 17$$

$$Nmul = 1 * 6 * 28 * 28 * 5 * 5 * 1 = 117600$$

$$Nadd=117600$$

$$Ew = 9525600$$

Conv3:

$$Smul = 64 * \left(\frac{8}{8}\right)^2 = 64$$

$$Sadd = 17$$

$$Nmul = 1 * 16 * 10 * 10 * 5 * 5 * 6 = 240000$$

$$Nadd = 240000$$

$$Ew = 19440000$$

Conv5:

$$Smul = 64 * \left(\frac{8}{8}\right)^2 = 64$$

$$Sadd = 15$$

$$Nmul = 1 * 120 * 1 * 1 * 5 * 5 * 16 = 48000$$

$$Nadd = 48000$$

$$Ew = 3792000$$

Fc6:

$$Smul = 64 * \left(\frac{8}{8}\right)^2 = 64$$

$$Sadd = 15$$

$$Nmul = 1 * 84 * 120 = 10080$$

$$Nadd = 10080$$

$$Ew = 796320$$

Output:

$$Smul = 64 * \left(\frac{8}{8}\right)^2 = 64$$

$$Sadd = 13$$

$$Nmul = 1 * 10 * 84 = 840$$

$$Nadd = 840 + 10 = 850$$

$$Ew = 64810$$

Total

準確率不變:

$$Ew = 33618730$$

Layer	Smul	Nmul	Sadd	Nadd	Ew
Conv1	64	117600	17	117600	9525600
Conv3	64	240000	17	240000	19440000
Conv5	64	48000	15	48000	3792000
Fc6	64	10080	15	10080	796320
Output	64	840	13	850	64810
Total					33618730

準確率提高: (其詳細算法可從準確率不變類推)

Ew = 33368650

Layer	Smul	Nmul	Sadd	Nadd	Ew
Conv1	64	117600	17	117600	9525600
Conv3	64	240000	16	240000	19200000
Conv5	64	48000	15	48000	3792000
Fc6	64	10080	14	10080	786240
Output	64	840	13	850	64810
Total					33368650