Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_şt-nat* BAREM DE EVALUARE ȘI DE NOTARE

Test 7

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	Rația progresiei geometrice $(b_n)_{n\geq 1}$ este $q=2$	2p
	$S_5 = \frac{b_1(q^5 - 1)}{q - 1} = \frac{1 \cdot (2^5 - 1)}{2 - 1} = 31$	3 p
2.	$f(x) < 0 \Leftrightarrow 3x^2 - 11x + 6 < 0$	2p
	$\Delta = 49$, deci $x \in \left(\frac{2}{3}, 3\right)$	3 p
3.	$\lg \frac{1-x}{7-x} = -1 \Rightarrow \frac{1-x}{7-x} = \frac{1}{10}$	3p
	$x = \frac{1}{3}$, care convine	2 p
4.	$n + \frac{n(n-1)}{2} = 6 \Leftrightarrow n^2 + n - 12 = 0$	3р
	Cum n este număr natural, $n \ge 2$, obținem $n = 3$	2p
5.	$A(2a-1,a^2) \in d \Leftrightarrow a^2 = 2a-1+4$	2p
	$a^2 - 2a - 3 = 0$, deci $a = -1$ sau $a = 3$	3 p
6.	$\cos 2x = 1 - 2\sin^2 x = 1 - 2 \cdot \left(\frac{12}{13}\right)^2 =$	2p
	$=1-2\cdot\frac{144}{169}=-\frac{119}{169}$	3p

SUBIECTUL al II-lea (30 de puncte)

	$A(1) = \begin{bmatrix} 1 & -2 & 1 \\ 1 & 1 & 1 \end{bmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & -2 & 1 \\ 1 & 1 & 1 \end{vmatrix} = $ $= -2 + (-2) + 1 - 4 - 1 - 1 = -9$	2p 3p
b)	$B(a) = A(a) \cdot A(a) = \begin{pmatrix} 2 - 2a & -3 & -3 \\ a - 1 & 6 & -3 \\ 2a + 1 & a - 1 & -2a + 2 \end{pmatrix}, \text{ pentru orice număr real } a$	3p
	Suma elementelor matricei $B(a)$ este egală cu 0 , deci nu depinde de numărul real a	2 p
c)	Pentru $a = -2$, sistemul devine $\begin{cases} x + y - 2z = 1 \\ x - 2y + z = 2 \\ -2x + y + z = 3 \end{cases}$	2p
	Adunând cele trei ecuații ale sistemului $(x+y-2z)+(x-2y+z)+(-2x+y+z)=1+2+3$, obținem $0=6$, fals, deci sistemul de ecuații este incompatibil	3 p

Probă scrisă la matematică M şt-nat

Barem de evaluare și de notare

2.a)	$(-1)*1 = (-1)\cdot 1 + m((-1)+1) =$	3 p
	$=-1+m\cdot 0=-1$, pentru orice număr real m	2p
b)	$x * y = xy + mx + my + m^2 - m^2 =$	2 p
	$=x(y+m)+m(y+m)-m^2=(x+m)(y+m)-m^2$, pentru orice numere reale x , y şi m	3 p
c)	$(5^x - 1)(5^{x+1} - 1) - 1 = -1 \Leftrightarrow 5^x - 1 = 0 \text{ sau } 5^{x+1} - 1 = 0$	2 p
	x = 0 sau $x = -1$	3 p

SUBIECTUL al III-lea

(30 de puncte)

	(So de pu	/
1.a)	$f'(x) = 2\left(x^{-\frac{1}{2}}\right)' + \frac{1}{x^2} = 2\cdot\left(-\frac{1}{2}\right)x^{-\frac{3}{2}} + \frac{1}{x^2} =$	3p
	$= -\frac{1}{x\sqrt{x}} + \frac{1}{x^2} = \frac{1 - \sqrt{x}}{x^2}, x \in (0, +\infty)$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{2}{\sqrt{x}} - \frac{1}{x}\right) = 0$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{2}{\sqrt{x}} - \frac{1}{x} \right) = 0$	3 p
	Dreapta de ecuație $y = 0$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2 p
c)	$\lim_{x \to 1} \frac{f'(x)}{x - 1} = \lim_{x \to 1} \frac{1 - \sqrt{x}}{x^2 (x - 1)} = \lim_{x \to 1} \frac{1 - \sqrt{x}}{x^2 (\sqrt{x} - 1)(\sqrt{x} + 1)} =$	3p
	$= \lim_{x \to 1} \frac{-1}{x^2 \left(\sqrt{x} + 1\right)} = -\frac{1}{2}$	2p
2.a)	$F'(x) = \frac{1}{x} + e^x + 4, \ x \in (0, +\infty)$	3p
	F este primitivă a funcției $f \Leftrightarrow F'(x) = f(x)$, pentru orice $x \in (0, +\infty)$, deci $m = 4$	2 p
b)	$\int_{1}^{e} f(x) dx = F(x) \Big _{1}^{e} = F(e) - F(1) =$	3p
	$=e^e+3e-3$	2p
c)	$\int_{1}^{2} x f(x) dx = \int_{1}^{2} x \left(\frac{1}{x} + e^{x} \right) dx = \int_{1}^{2} \left(1 + xe^{x} \right) dx = \left(x + (x - 1)e^{x} \right) \Big _{1}^{2} =$	3 p
	$=2+e^2-1=e^2+1$	2p