

UNIVERSIDADE FEDERAL DE MINAS GERAIS

Programa de Graduação em Engenharia de Sistemas

Teoria da Decisão Trabalho Computacional

Professor: Lucas de Souza Batista

TEMAS: MODELAGEM, OTIMIZAÇÃO MONO E MULTIOBJETIVO, DECISÃO

Este trabalho tem por intuito abordar, de forma conjunta, grande parte dos conceitos vistos na disciplina "ELE088 - Teoria da Decisão". Para tal, propõe-se a seguir um problema de escalonamento de tarefas envolvendo máquinas paralelas não relacionadas. De forma geral, o aluno deverá compreender e formular variantes mono e multiobjetivo do problema, além de discutir e apresentar algoritmos para a solução dos mesmos. No caso específico das abordagens multiobjetivo, o aluno deverá escolher a ação (solução) a ser implementada usando uma abordagem de auxílio a tomada de decisão multicritério.

Especificação do problema

Uma empresa possui um conjunto de M máquinas que devem ser utilizadas para processar N tarefas indivisíveis. Cada máquina i leva um tempo $t_{i,j}$ para processar uma tarefa j e pode processar uma única tarefa por vez. Todas as tarefas possuem uma mesma data ideal de entrega d, sendo que cada tarefa j sofre uma penalidade w_j proporcional a cada dia que ela é entregue atrasada em relação a d.

Com base nessa especificação, pede-se:

ENTREGA #1: MODELAGEM MATEMÁTICA DO PROBLEMA DE OTIMIZAÇÃO

i. Formulação

- (a) Construa uma função objetivo $f_1(\cdot)$ para minimização do tempo total de entrega de todas as tarefas (makespan).
- (b) Construa uma função objetivo $f_2(\cdot)$ para minimização da soma ponderada dos atrasos.
- (c) Modele as restrições do problema.

ENTREGA #2: OTIMIZAÇÃO MONO-OBJETIVO

ii. Algoritmo de solução

(a) Proponha uma variação da meta-heurística vista no curso que seja adequada para resolver as versões mono-objetivo do problema. Considere pelo menos quatro (04) estruturas de vizinhança.

iii. Otimização mono-objetivo

(a) Utilize o algoritmo proposto acima para resolver as versões mono-objetivo do problema (i.e., para minimizar tanto $f_1(\cdot)$ quanto $f_2(\cdot)$ de forma independente, considerando as devidas restrições). Como o método é estocástico, o mesmo deve ser executado 05 vezes e os cinco resultados obtidos para cada função devem ser apresentados. Para cada função, mostre os valores min, std e max considerando-se as 05 execuções do método; mostre também as 05 curvas de convergência do algoritmo sobrepostas em uma mesma figura, i.e., evolução do valor de $f(\cdot)$ em função do número de avaliações de soluções candidatas.

ENTREGA #3: OTIMIZAÇÃO MULTIOBJETIVO

iv. Otimização multiobjetivo

(a) Utilize o algoritmo proposto acima para resolver o problema biobjetivo definido. Empregue as abordagens escalares Soma Ponderada (P_w) e ϵ -restrito (P_ϵ) . Como o método é estocástico, o mesmo deve ser executado cinco vezes para cada uma das abordagens e as cinco fronteiras obtidas (para cada uma das abordagens) devem ser apresentadas em uma mesma figura. Cada fronteira estimada deve conter no máximo 20 soluções não-dominadas.

ENTREGA #4: TOMADA DE DECISÃO MULTICRITÉRIO

v. Tomada de decisão

- (a) Empregue 02 métodos de auxílio à tomada de decisão para escolher a ação final a ser implementada (as opções são Abordagem Clássica, AHP, ELECTRE, PROMETHEE e TOPSIS). Compare os métodos escolhidos. Como executou o otimizador mais de uma vez, considere a fronteira não-dominada obtida a partir da união de todas as fronteiras estimadas (máximo 20 soluções não-dominadas). Assuma como critérios de decisão pelo menos quatro funções de interesse prático, i.e., as duas funções objetivo definidas no problema e pelo menos mais duas funções adicionais que considerar relevantes (e.g., soma ponderada dos adiantamentos, soma ponderada dos atrasos e adiantamentos, risco de falha do planejamento etc.).
- (b) Os métodos de decisão utilizados devem ser apropriadamente definidos e apresentados.
- (c) No caso de incomparabilidade entre alternativas no final do processo, estabeleça um critério adicional e tome sua decisão. É importante notar que neste trabalho você representa a unidade de decisão e, portanto, é responsável pela definição dos pesos dos critérios e demais parâmetros que forem necessários.

Apresentação da Instância do Problema:

Neste trabalho é considerada uma instância de 5 máquinas e 25 tarefas, conforme Figura 1. Alternativamente esses dados podem ser obtidos por meio do arquivo <u>i5x25.mat</u> em anexo, disponibilizado no formato Matlab R2010b. Neste arquivo:

DD: escalar que contém o $Due\ Date$ (data de entrega) comum a todas as tarefas.

PT: matriz onde a posição PT(i,j) contém o tempo requerido pela máquina i para processar a tarefa j.

WE: vetor onde a posição WE(j) contém a penalidade por unidade de tempo (peso) para atraso da tarefa j.

Tarefa	Máquina					
	1	2	3	4	5	Peso
1	2	1	4	7	8	8
2	8	3	2	1	5	5
3	8	8	8	4	1	7
4	4	9	10	4	5	10
5	9	10	7	5	3	2
6	3	3	4	3	8	
7	9	1	1	8	3	2
8	10	6	4	9	6	8
9	9	8	1	1	9	10
10	6	1	4	10	6	6
11	10	10	6	5	9	
12	4	7	6	2	6	5
13	9	5	3	6	2	1
14	4	7	3	8	1	7
15	2	9	10	8	6	2
16	5	8	2	6	9	10
17	7	8	7	1	8	
18	6	9	1	8	9	
19	1	5	8	8	10	(
20	3	2	7	9	4	
21	1	6	7	9	10	
22	10	8	4	4	9	9
23	6	2	9	3	8	
24	2	1	1	6	5	10
25	1	9	3	10	8	
DueDate	6					

Figura 1: Instância de 5 máquinas e 25 tarefas a ser considerada nos experimentos.

NOTA

O atendimento a todos os itens estabelecidos, bem como a apresentação e organização formal deste TC, são fundamentais para uma boa avaliação do mesmo. Para o texto final, o aluno deve empregar um dos "templates" disponibilizados na página da disciplina. O texto final e código usado no desenvolvimento deverão ser enviados somente via plataforma Moodle.

Serão aceitos no máximo 10 grupos.