# Problem Set 3

# Daniel Shapiro

# 9/13/2022

#### Question 1 Background:

Suppose that X and Y are identical and independently distributed (i.i.d.) random variables distributed  $\mathcal{N}(\mu_X, \sigma_X^2)$  and  $\mathcal{N}(\mu_Y, \sigma_Y^2)$ , respectively. Note that  $\sigma_X$  represents the standard deviation of X, and  $\sigma_X^2$  the variance. Find the following, expressed in terms of  $\mu$  and  $\sigma$ :

**1a)** 
$$E(7X - 6Y + 12)$$

Additivity and homogeneity are two properties of expectations. Thus, we can write this expression as 7E[X] - 6E[Y] + 12, or  $7\mu_X - 6\mu_Y + 12$ .

**1b)** 
$$Var(X + 5Y)$$

We know that  $Var(aX + bY + c) = a^2Var(X) + b^2Var(Y) + 2abCov(X, Y)$ . Inserting a 1 and 5 as a and b, we get  $\sigma_X^2 + 25\sigma_Y^2 + 10Cov(X, Y)$ .  $Cov(X, Y) = E[XY] - E[X]E[Y] = E[(X - \mu_X)(Y - \mu_Y)]$ . So then we get:  $Var(X + 5Y) = \sigma_X^2 + 25\sigma_Y^2 + 10E[(X - \mu_X)(Y - \mu_Y)]$ .

Because we know that the two variables are so-called "i.i.d." variables, we know that the co-variance is 0. Thus, we can remove the last term entirely and end up with  $Var(X+5Y)=\sigma_X^2+25\sigma_Y^2$ .

1c) 
$$E(5X^2 - 12XY + 16Y^2)$$

First, we can split these up according to properties shown in 1a. So we get  $5E[X^2] - 12E[XY] + 16E[Y^2]$ .

Now, we can already deal with the first and last bits of this expression. We know that  $\sigma_X^2 = E[X^2] - \mu_X^2$  and  $\sigma_Y^2 = E[Y^2] - \mu_Y^2$ . Thus,  $E[X^2] = \sigma_X^2 + \mu_X^2$  and  $E[Y^2] = \sigma_Y^2 + \mu_Y^2$ . So we can set this as  $5\sigma_X^2 + 5\mu_X^2 + 12E[XY] + 16\sigma_Y^2 + 16\mu_Y^2$ .

Finally, the question tells us that X and Y are independent random variables. So we know therefore that E[XY] = E[X]E[Y]. We can write this as  $\mu_X \mu_Y$ .

Our final expression:  $5\sigma_X^2 + 5\mu_X^2 + 12\mu_X\mu_Y + 16\sigma_Y^2 + 16\mu_Y^2$ .

### Question 2 Background:

Papers like this one have found that married couples tend to sort along ideological lines ("assortative mating"). Say we know the true distribution of ideology among heterosexual married couples along a scale of 1 (very conservative) to 4 (very liberal). The joint distribution for X (the woman's ideology) and Y (the man's ideology) is:

|   |   | X   |     |     |     |
|---|---|-----|-----|-----|-----|
|   | Y | 1   | 2   | 3   | 4   |
| • | 1 | .12 | .05 | .01 | .01 |
|   | 2 | .08 | .17 | .05 | .02 |
|   | 3 | .02 | .01 | .23 | .05 |
|   | 4 | .02 | .02 | .04 | .10 |

# 2a) What is the expected value of X and the expected value of Y?

To find the expected value of X, we can run the formula:  $E[X] = \Sigma(x)P(x)$ . So we multiply the value x by each corresponding probability and add them up. So E[X] = ((1\*.12) + (1\*.08) + ... + (4\*.10)). The final answer is **2.57**.

To find the expected value of Y, we can run the same formula, but for Y instead of X. So we multiply the value y by each corresponding probability and add them up. So E[Y] = ((1\*.12) + (1\*.05) + ... + (4\*.10)). The final answer is **2.48**.

# **2**b) What are the variances of X and of Y?