כותרת

nativ.maor@campus.technion.ac.il : דוא"ל: 319002911 אים: נתיב מאור ו ת"ז: 319002911 דוא"ל: dor-hay.sha@campus.technion.ac.il שם: דור חי שחם ו ת"ז: 318258555 ו דוא"ל:

May 12, 2023

תוצאות הניסוי

__לבדוק כתיבת שגיאות__

חיברנו את המערכת כפי שמצוין בסרטוט (י).

 $\underline{I_p}$ הזרם של כפונקציה של הזרם וחלק כפונקציה של הזרם וחלק י

הסרנט את החלק המודד את השדה המגנטי וחיברנו את המולטימטר במקביל למתח U_p ביצענו דגימות של מתח זה עבור . $\pm 30mA$ בין בתחום

התקבלו התוצאות הבאות:

 I_p מתח הדגימה (U_p) כפונקציה של הזרם (ב

והקו והקו שנלקחו את מייצגות מייצגות מייצגות את המתח ער המתח והמתח ער המתח את וציר האורם את הזרם את בוצעה לנתונים. U_p את המתח שנלקחו והקו

ניתן לשים לב שמבחינה איכותית הגרף לינארי בקירוב טוב כפי שהיינו מצפים מחוק אוהם. לגרף בוצעה רגרסיה לינארית והתקבלה הפונקציה הבאה

$$y = (53.3 \pm 0.9) x + (-0.087 \pm 0.016)$$

 $R^2 = 0.9992$ עם התאמה של

על פי חוק אוהם חילצנו את ההתנגדות

$$R_0 = 53.3 \pm 0.8\Omega$$

$\underline{I_p}$ הזרם של כפונקציה כפונק המתח הול מדידה בו חלק: חלק

כעת חיברנו את המולטימטר למדוד את מתח הול U_H . כילנו את הטסלמטר להציג שדה מגנטי אפסי כאשר המדיד רחוק מהמערכת ולאחר מכן הצבנו אותו במערכת כפי שמוצג בסרטוט.

הפעלנו מתח וזרם על הסלילים המגנטים כך שיווצר שדה מגנטי בעוצמה $251\pm1m$. בשלב זה כילנו את המערכת קח הפעלנו מתח וזרם על הסלילים המגנטים כך שיווצר אין זרם I_p היה יתאפס כאשר אין זרם ווער הנמדד במולטימטר יהיה יתאפס כאשר אין זרם אין הרבוד במולטימטר יהיה יתאפס באשר אין זרם ווער היה יתאפס באשר אין ווער היה יתאפס באשר אין ווער היה יתאפס בא יתאפ

 $\pm 30m$ התקבלו התוצאות הבאות: לאחר הכיול מדדנו את מתח הול כפונקציה של הזרם עבור המים

 I_p כפונקציה של הזרם (U_H) מתח הול ברף :2 גרף

והקו והקו את הזגימות את מייצגות הכחולות הייצג את את המתח את המתח והתח ב U_H את המתח שנלקחו והקו ביר הx ביר הx מייצג את הזרסיה שבוצעה לנתונים.

ניתן לראות כי באופן איכותי כי בקירוב טוב הגרף לינארי כפי שמוצפה על פי נוסחה (יִּ). לגרף בוצעה רגרסיה לניארית

והתקבלה הפונקציה

$$y = (-1.910 \pm 0.025) x + (0.0024 + / -0.0005)$$

עם התאמה של $R^2=0.995$. על פי נוסחה (יי) ונתוני המערכת הולץ קבוע הול והתקבל

$$R_H^{(1)} = -0.00761 \pm 0.00011 \frac{m^3}{C}$$

(האם צריך להסיר את המטען)

מהדרך שבו נבנתה המערכת, מדידת מתח שלילי (וכתוצאה מכך R_H שלילי) מעיד על הצטברות מטענים חיובים (חורים) בחלקו התחתון של המל"מ (או מטענים שלילים בחלקו העליון) אך על פי כיוון השדה המגנטי וכיוון הזרם נסיק שהאפשרות בחלקו התחתון של המל"מ (או מטענים שלילים בחלתית המל"מ, כלומר המל"מ הוא $P\ Type$ בדיקה של הלוח אכן אשרה שזהו המצב. מתוך הקשר (י) חולצה צפיפות רוב המטענים (החיובים) והתקבלה התוצאה:

$$n^{(1)} = (8.21 \pm 0.11) \, 10^{20} m^{-3}$$

בעזרת שחישבנו בחלק 0 חילצנו לפי נוסחה (י) את המוביליוט של החורים

$$\mu^{(1)} = 0.229 \pm 0.005 \frac{m^2}{\Omega C}$$

חלק 2: מדידה של המתח הול U_H כפונקציה של השדה המגנטי

בחלק זה קבענו את הזרם לאפס. פאלטימטר בסלילים העובר בסלילים ואת הזרם $30\pm 1mA$ ואת המערכת כך שמולטימטר בחלק זה קבענו את הזרם U_H יציג 0 עבור מדידה של

 $\pm 300m$ כעת מדדנו את מתח הול עבור ערכים שונים של השדה המגנטי בתחום

התקבלו התוצאות הבאות:

(B) גרף 3: מתח הול (U_H) כפונקציה של השדה המגנטי

ציר הx מייצג את השדה המגנטי B ב וציר הy את המתח וביר העודות הכחולות מייצגות את הדגימות שנלקחו והקו הכתום את הרגרסיה שבוצעה לנתונים.

קווי השגיאה קטנים מכדי לראותם בגרף.

בדומה לחלק הקודם, ניתן לראות כי באופן איכותי כי בקירוב טוב הגרף לינארי כפי שמוצפה על פי נוסחה (!). לגרף בוצעה רגרסיה לניארית והתקבלה הפונקציה

$$y = (-0.2170 + / -0.0022) x + (0.0015 + / -0.0004)$$

עם התאמה של $R^2=0.9992$ על פי נוסחה (יי) ונתוני המערכת הולץ קבוע הול והתקבל

$$R_H^{(2)} = -0.00723 + / -0.0003 \frac{m^3}{C}$$

(האם צריך להסיר את המטען?)

כפי שניתן לראות יש חפיפה אם הערך שהתקבל במדידה מהמדידה הקודמת.

מתוך הקשר (!) חולצה צפיפות רוב המטענים (החיובים) והתקבלה התוצאה:

$$n^{(2)} = (8.6 \pm 0.3) \, 10^{20} m^{-3}$$

כפי שניתן לראות ש חפיפה בין התחומים התקבלו במדידה הזו ובמדידה הקודמת. בעזרת לראות ש חילצנו לפי נוסחה (יי) את המוביליוט של החורים בעזרת R_0

$$\mu^{(2)} = 0.217 \pm 0.008 \frac{m^2}{\Omega C}$$

כפי שניתן לראות יש חפיפה בין התחומים שהתקבלו במדידה הזו ובמדידה הקודמת.

חלק $\mathfrak s$: מדידה של ההתנגדות R כפונקציה של השדה המגנטי

חיברנו את המולטימטר במקביל ל U_p , קבענו את הזרם U_p ואת המולטימטר במקביל לק U_p , קבענו את הזרם המגנטיים לאפס. כעת מדדנו את המתח עבור ערכים שונים של השדה המגנטי בתחום U_p

בעזרת הזרם והמתח חישבנו דרך חוק אוהם את ההתנגדות כפונקציה של השדה המגנטי הנמדד וכפונקציה של השדה המגנטי בריבוע.

התקבלו התוצאות הבאות:

 (B^2) גרף 4-5 (משמאל לימין): התנגדות המל"מ כפונקציה של השדה המגנטי (B) וריבוע השדה המגנטי

 Ω ציר הx מייצג את השדה המגנטי B בT בגרף 1 ובגרף 2 את השדה בריבוע B^2 ב T^2 . ציר הy את המתח ההתנגדות בx הנקודות הכחולות מייצגות את הדגימות שנלקחו והקו הכתום את הרגרסיה שבוצעה לנתונים.

כמו כן עבור גרף 5 סרטטנו בקו ירוק את התחזית של השינוי בהתנגדות מהאפקט הגאומטרי לפי נוסחה (?) והנתונים שחולצו במהלך הניסוי.

עבור גרף 1, ניתן לראות איכותית כי ההתאמה הלינארית לא טובה מאוד. מתוך הרגרסיה התקבלה הפונקציה

$$y = (4.7 \pm 0.5) x + (51.82 \pm 0.09)$$

.עם התאמה של $R^2=0.95526$ אשר מעיד באופן כמותי על כך שההתאמה אינה טובה

עבור גרף 2, ניתן לראות איכותית כי ההתאמה הלינארית טובה יותר. מתוך הרגרסיה התקבלה הפונקציה

$$y = (15.6 \pm 0.5) x + (52.037 \pm 0.019)$$

. עם התאמה של $R^2=0.9965$ אשר מעיד באופן כמותי כי אכן ההתאמה יותר מוצלחת

__לוודא את המסקנה הבאה__

כפי שציינו ניתן לראות שההתנגדות מתנהגת בקירוב טוב באופן לינארי לריבוע השדה בהתאם לנוסחה (!) ואילו האפקט הנובע מהגאומטריה של הבעיה זניח אינו מתאים וזניח לעומתו.

__האם צריך לעשות עוד משהו?__

U_p מדידה של המתח U_p כפונקציה של הטמפי

כיוונו את הזרם ל U_p וכיוונו את הצוגה המגנטי לאפס, חיברנו את המולטימטר במקביל ל U_p וכיוונו את הצוגה להציג את הטמפ' של המערכת.

חיממנו את המערכת עד $\pm 1^\circ \pm 1^\circ$ צלזיוס וצילמנו את המערכת בזמן שהיא התקררה לטמפ' החדר. מתוך הצילומים חילצנו את מדידות הטמפ' והמתח.

 ${}_{\cdot}T^{-1}$ נציג את התוצאות כגרף של U_{v}^{-1} של כפונקציה של

 $\overline{T^{-1}}$ גרף 6: U_p^{-1} כפונקציה של

את הכחולות הערכת ב V^{-1} המערכת המתח חלקי את אחד את וציר את וציר ב K^{-1} וציר המערכת מייצגות את הדגימות שנלקחו.

להסביר את החלק הימני של הגרף

להעביר את הפיתוחים הבאים למבוא

בחלקו השמאלי של הגרף המתייחס לטמפ' גבוהות ניתן לראות כי הגרף בקירוב טוב לינארי ניתן להבין זאת באופן הבא: הטמפ' גבוהות ולכן המל"מ נמצא במשטר האינטרינזי, במשטר זה מתקיים

$$n = p = n_i \sim e^{-\frac{E_g}{2k_BT}}$$

כמו כן

$$U_p = \frac{\rho_{xx}L}{Wd}I_x, \rho_{xx} = \frac{1}{e(n\mu_e + \mu_h p)} = \frac{1}{n_i e(\mu_e + \mu_h)}$$
$$\Rightarrow U_p^{-1} \sim n_i \sim e^{-\frac{E_g}{2k_B T}}$$

בנוסף, בטמפ' אלו מתקיים $T^{-1} << 1$ ולכן ניתן לקרב את בנוסף, בטמפ' אלו מתקיים ול

$$U_p^{-1} \sim 1 - \frac{E_g}{2k_B} \cdot T^{-1}$$

 T^{-1} לבין U_p^{-1} לבין מקורב מקורב יחס לינארי אמור להתקיים אכן לבין לבין לבין לבין לבין לכתוב כדי לחלץ את האנרגיה ביג את לוג המתח כפונקציה של במקרה זה ניתן לכתוב

$$U_p = Ke^{\frac{E_g}{2k_BT}} \Rightarrow \ln U_p = \frac{E_g}{2k_B}T^{-1} + \ln K$$

. כאשר K קבוע כלשהו

:בהצגה של התוצאות כ $\ln U_p$ כפונקציה של התקבל הגרף הבא

 T^{-1} גרף ז: $\ln U_p$ כפונקציה של

ציר הx מייצג את אחד חלקי טמפ' המערכת ב K^{-1} וציר הy את לן המתח הנדגם. הנקודות הכחולות מייצגות את הדגימות שנלקחו והקו הכתום את הרגרסיה שבוצעה לנתונים בתחום הלינארי.

ביצענו רגרסיה לינארית על התחום הלינארי (טמפ' גבוהות) והתקבלה הפונקציה הבא:

$$y = (4.48 \pm 0.09) \, 10^3 x + (-11.71 \pm 0.21)$$

עם התאמה טובה של $R^2=0.9982$ מתוך השיפוע נחלץ את האנרגיה

$$m = \frac{E_g}{2k_B} \Rightarrow E_g = 2mk_B$$

ונקבל

$$E_q = 0.77 \pm 0.02 eV$$

'ממפ' מדידה של מתח הול U_H כפונקציה של מתח הול :5

חיברנו את המולטימטר במקביל למתח הול U_H וכילנו אותו להיות אפס כאשר הזרם במערכת מתאפס. קבענו את הזרם חיברנו את המולטימטר במקביל למתח הול U_H וכילנו אותו להיות אפס כאשר הזרם במערכת במקביל ההתקררות של $I_p=30\pm 1mA$ ואת השדה המגנטי ל $I_p=30\pm 1mA$ ולבסוף חיממנו את המערכת לטמפ' החדר צילמנו את המערכת ומכשירי המדידה ולאחר מכן חילצנו מהם את מדידות הטמפ' ומתח הול. כפי שנחזה מהתדריך לפי נוסחה I_H מחליף סימן ומכאן ש I_H מחליף סימן, לכן חישבנו את I_H (?) התקבלו התוצאות הבאות:

13

ביר התח הנדגם (בערך מוחלט). הנקודות הכחולות את את לן המתח הנדגם (בערך מוחלט). הנקודות הכחולות מייצגות את הדגימות .

בטמפ' גבוהות כאשר המל"מ בתחום האינטרינזי מתקיים

$$U_H \sim \frac{1}{n_i} \sim e^{\frac{E_g}{2k_B T}}$$

ולכן

$$\ln U_H = K + \frac{E_g}{2k_B} T^{-1}$$

 $(120^{\circ}-140^{\circ})$ נזהה את התחום הלינארי עבור הטמפ' הגבוהות ונבצע עליו רגרסיה לינארית, התקבל הגרף הבא

 T^{-1} גרף : $\ln |U_H|$ גרף ווישל

ביר הx מייצג את אחד חלקי טמפ' המערכת ב K^{-1} וציר הy את לן המתח הנדגם (בערך מוחלט). הנקודות הכחולות מייצגות את הדגימות והקו הכתום את הרגרסיה.

ביצענו רגרסיה לינארית על התחום הלינארי (טמפ' גבוהות) והתקבלה הפונקציה הבא:

$$y = (1.48 \pm 0.08) \cdot 10^3 x + (-8.92 \pm 0.19)$$

עם התאמה של $R^2 = 0.9939$ עם התאמה של פ

$$m = \frac{E_g}{2k_B} \Rightarrow E_g = 2mk_B$$

ונקבל

$$E_g = 0.256 \pm 0.013 eV$$

דיון בתוצאות

מסקנות

מקורות מידע

.__ (1

נספח

• הנוסחא בה השתמשנו לחישוב השגיאות הנגררות בניסוי:

$$\delta F = \sqrt{\left(\frac{\partial F}{\partial x}\delta x\right)^2 + \left(\frac{\partial F}{\partial y}\delta y\right)^2 + \dots}$$

כאשר של פונקציה של המשתנים היא השגיאה הנגררת הא δF ו בי, y,\ldots של המשתנים המשתנים האיא השגיאות הא δF היא השגיאות האיא השגיאות הא δF היא האיא השגיאות האיא המשתנים המשתנים האיא המשתנים האיא המשתנים האיא המשתנים המשתנים

• הנוסחה בה השתמשנו לחישוב השגיאה היחסית בין הערכים המדודים לתיאורטיים בניסוי:

$$\xi_{rel\ err} = \frac{\delta v}{v} \cdot 100\%$$