Agrupamentos

♦ Agrupa elementos semelhantes, de acordo com o grau de semelhança e o algoritmo utilizado

Reinforcement Learning

- Como deve agir um agente de IA, em um ambiente, a fim de solucionar um problema?
- ♦ Proposta:
 - ♦ Método de tentativas com acertos e erros
 - ♦ Recompensas por acertos

Jogo "Quente ou Frio"

 S_1 - Estado Atual S_2 - Novo Estado A – Ação: Mudança de Estado R - Recompensa

Busca e Otimização

Existem problemas computacionais que (ainda) não resolvidos com uma equação ou fórmula. É preciso buscar uma possível solução entre todas as soluções possíveis (espaço de busca)

Para muitos destes problemas, se acredita que tal equação não existe

Exemplos de Problemas

Porque não sempre uma busca completa?

- Na maioria dos problemas e impossível do ponto de vista de tempo e custo computacional
- Jogo Go (tabuleiro 19x19)
 2.08168199382×10¹⁷⁰

"Mais que o número de átomos conhecidos no Universo"

Local Optima

- Alguns algoritmos buscam uma solução nas proximidades (vizinhanças)
- Nestas vizinhanças eles podem encontrar uma solução, que localmente é a melhor
- Quanto menos a vizinhança estabelecida, mais rápido ele vai encontrar a melhor solução local
- Não há garantia de que esta seja a melhor solução global