yields $C_n = \sqrt{2/a}$ and hence $\psi_n(x) = \sqrt{2/a} \sin{(n\pi x/a)}$. The probability in the region 0 < x < a/2 is given by

$$\frac{2}{a} \int_0^{a/2} \sin^2\left(\frac{n\pi x}{a}\right) dx = \frac{1}{a} \int_0^{a/2} \left[1 - \cos\left(\frac{2n\pi x}{a}\right)\right] dx = \frac{1}{2}.$$
 (2.497)

This is expected since the total probability is 1: $\int_0^a |\psi_n(x)|^2 dx = 1$.

2.10 Exercises

Exercise 2.1

Consider the two states $| \psi \rangle = i | \phi_1 \rangle + 3i | \phi_2 \rangle - | \phi_3 \rangle$ and $| \chi \rangle = | \phi_1 \rangle - i | \phi_2 \rangle + 5i | \phi_3 \rangle$, where $| \phi_1 \rangle$, $| \phi_2 \rangle$ and $| \phi_3 \rangle$ are orthonormal.

- (a) Calculate $\langle \psi \mid \psi \rangle$, $\langle \chi \mid \chi \rangle$, $\langle \psi \mid \chi \rangle$, $\langle \chi \mid \psi \rangle$, and infer $\langle \psi + \chi \mid \psi + \chi \rangle$. Are the scalar products $\langle \psi \mid \chi \rangle$ and $\langle \chi \mid \psi \rangle$ equal?
- (b) Calculate $|\psi\rangle\langle\chi|$ and $|\chi\rangle\langle\psi|$. Are they equal? Calculate their traces and compare them.
 - (c) Find the Hermitian conjugates of $|\psi\rangle$, $|\chi\rangle$, $|\psi\rangle\langle\chi|$, and $|\chi\rangle\langle\psi|$.

Exercise 2.2

Consider two states $|\psi_1\rangle = |\phi_1\rangle + 4i|\phi_2\rangle + 5|\phi_3\rangle$ and $|\psi_2\rangle = b|\phi_1\rangle + 4|\phi_2\rangle - 3i|\phi_3\rangle$, where $|\phi_1\rangle$, $|\phi_2\rangle$, and $|\phi_3\rangle$ are orthonormal kets, and where b is a constant. Find the value of b so that $|\psi_1\rangle$ and $|\psi_2\rangle$ are orthogonal.

Exercise 2.3

If $|\phi_1\rangle$, $|\phi_2\rangle$, and $|\phi_3\rangle$ are orthonormal, show that the states $|\psi\rangle = i |\phi_1\rangle + 3i |\phi_2\rangle - |\phi_3\rangle$ and $|\chi\rangle = |\phi_1\rangle - i |\phi_2\rangle + 5i |\phi_3\rangle$ satisfy

- (a) the triangle inequality and
- (b) the Schwarz inequality.

Exercise 2.4

Find the constant α so that the states $|\psi\rangle = \alpha |\phi_1\rangle + 5 |\phi_2\rangle$ and $|\chi\rangle = 3\alpha |\phi_1\rangle - 4 |\phi_2\rangle$ are orthogonal; consider $|\phi_1\rangle$ and $|\phi_2\rangle$ to be orthonormal.

Exercise 2.5

If $|\psi\rangle = |\phi_1\rangle + |\phi_2\rangle$ and $|\chi\rangle = |\phi_1\rangle - |\phi_2\rangle$, prove the following relations (note that $|\phi_1\rangle$ and $|\phi_2\rangle$ are not orthonormal):

- (a) $\langle \psi \mid \psi \rangle + \langle \chi \mid \chi \rangle = 2 \langle \phi_1 \mid \phi_1 \rangle + 2 \langle \phi_2 \mid \phi_2 \rangle$,
- (b) $\langle \psi \mid \psi \rangle \langle \chi \mid \chi \rangle = 2 \langle \phi_1 \mid \phi_2 \rangle + 2 \langle \phi_2 \mid \phi_1 \rangle$.

Exercise 2.6

Consider a state which is given in terms of three orthonormal vectors $|\phi_1\rangle$, $|\phi_2\rangle$, and $|\phi_3\rangle$ as follows:

$$|\psi\rangle = \frac{1}{\sqrt{15}}|\phi_1\rangle + \frac{1}{\sqrt{3}}|\phi_2\rangle + \frac{1}{\sqrt{5}}|\phi_3\rangle,$$

where $|\phi_n\rangle$ are eigenstates to an operator \hat{B} such that: $\hat{B}|\phi_n\rangle = (3n^2 - 1)|\phi_n\rangle$ with n = 1, 2, 3.

- (a) Find the norm of the state $|\psi\rangle$.
- (b) Find the expectation value of B for the state $|\psi\rangle$.
- (c) Find the expectation value of \hat{B}^2 for the state $|\psi\rangle$.

Exercise 2.7

Are the following sets of functions linearly independent or dependent?

- (a) $4e^x$, e^x , $5e^x$
- (b) $\cos x$, e^{ix} , $3\sin x$
- (c) $7, x^2, 9x^4, e^{-x}$

Exercise 2.8

Are the following sets of functions linearly independent or dependent on the positive x-axis?

- (a) x, x + 2, x + 5
- (b) $\cos x$, $\cos 2x$, $\cos 3x$
- (c) $\sin^2 x$, $\cos^2 x$, $\sin 2x$
- (d) x, $(x-1)^2$, $(x+1)^2$
- (e) $\sinh^2 x$, $\cosh^2 x$, 1

Exercise 2.9

Are the following sets of vectors linearly independent or dependent over the complex field?

- (a) (2, -3, 0), (0, 0, 1), (2i, i, -i)
- (b) (0, 4, 0), (i, -3i, i), (2, 0, 1)
- (c) (i, 1, 2), (3, i, -1), (-i, 3i, 5i)

Exercise 2.10

Are the following sets of vectors (in the three-dimensional Euclidean space) linearly independent or dependent?

- (a) (4, 5, 6), (1, 2, 3), (7, 8, 9)
- (b) $(1, 0, 0), (0, -5, 0), (0, 0, \sqrt{7})$
- (c) (5, 4, 1), (2, 0, -2), (0, 6, -1)

Exercise 2.11

Show that if \hat{A} is a projection operator, the operator $1 - \hat{A}$ is also a projection operator.

Exercise 2.12

Show that $|\psi\rangle\langle\psi|/\langle\psi|\psi\rangle$ is a projection operator, regardless of whether $|\psi\rangle$ is normalized or not.

Exercise 2.13

In the following expressions, where \hat{A} is an operator, specify the nature of each expression (i.e., specify whether it is an operator, a bra, or a ket); then find its Hermitian conjugate.

- (a) $\langle \phi \mid \hat{A} \mid \psi \rangle \langle \psi \mid$
- (b) $\hat{A} \mid \psi \rangle \langle \phi \mid$
- (c) $\langle \phi \mid \hat{A} \mid \psi \rangle \mid \psi \rangle \langle \phi \mid \hat{A}$
- (d) $\langle \psi \mid \hat{A} \mid \phi \rangle \mid \phi \rangle + i \hat{A} \mid \psi \rangle$
- (e) $(|\phi\rangle\langle\phi|\hat{A}) i(\hat{A}|\psi\rangle\langle\psi|)$

Exercise 2.14

Consider a two-dimensional space where a Hermitian operator \hat{A} is defined by $\hat{A} \mid \phi_1 \rangle = \mid \phi_1 \rangle$ and $\hat{A} \mid \phi_2 \rangle = - \mid \phi_2 \rangle$; $\mid \phi_1 \rangle$ and $\mid \phi_2 \rangle$ are orthonormal.

- (a) Do the states $|\phi_1\rangle$ and $|\phi_2\rangle$ form a basis?
- (b) Consider the operator $\hat{B} = |\phi_1\rangle\langle\phi_2|$. Is \hat{B} Hermitian? Show that $\hat{B}^2 = 0$.

- (c) Show that the products $\hat{B}\hat{B}^{\dagger}$ and $\hat{B}^{\dagger}\hat{B}$ are projection operators.
- (d) Show that the operator $\hat{B}\hat{B}^{\dagger} \hat{B}^{\dagger}\hat{B}$ is unitary.
- (e) Consider $\hat{C} = \hat{B}\hat{B}^{\dagger} + \hat{B}^{\dagger}\hat{B}$. Show that $\hat{C} \mid \phi_1 \rangle = \mid \phi_1 \rangle$ and $\hat{C} \mid \phi_2 \rangle = \mid \phi_2 \rangle$.

Exercise 2.15

Prove the following two relations:

(a)
$$e^{\hat{A}}e^{\hat{B}} = e^{\hat{A}+\hat{B}}e^{[\hat{A},\hat{B}]/2}$$
.

(b)
$$e^{\hat{A}}\hat{B}e^{-\hat{A}} = \hat{B} + [\hat{A}, \hat{B}] + \frac{1}{2!}[\hat{A}, [\hat{A}, \hat{B}]] + \frac{1}{2!}[\hat{A}, [\hat{A}, [\hat{A}, \hat{B}]]] + \cdots$$

Hint: To prove the first relation, you may consider defining an operator function $\hat{F}(t) = e^{\hat{A}t}e^{\hat{B}t}$, where t is a parameter, \hat{A} and \hat{B} are t-independent operators, and then make use of $[\hat{A}, G(\hat{B})] = [\hat{A}, \hat{B}]dG(\hat{B})/d\hat{B}$, where $G(\hat{B})$ is a function depending on the operator \hat{B} .

Exercise 2.16

(a) Verify that the matrix

$$\left(\begin{array}{cc}
\cos\theta & \sin\theta \\
-\sin\theta & \cos\theta
\end{array}\right)$$

is unitary.

(b) Find its eigenvalues and the corresponding normalized eigenvectors.

Exercise 2.17

Consider the following three matrices:

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

- (a) Calculate the commutators [A, B], [B, C], and [C, A].
- (b) Show that $A^2 + B^2 + 2C^2 = 4I$, where I is the unity matrix.
- (c) Verify that Tr(ABC) = Tr(BCA) = Tr(CAB).

Exercise 2.18

Consider the following two matrices:

$$A = \begin{pmatrix} 3 & i & 1 \\ -1 & -i & 2 \\ 4 & 3i & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 2i & 5 & -3 \\ -i & 3 & 0 \\ 7i & 1 & i \end{pmatrix}.$$

Verify the following relations:

- (a) det(AB) = det(A)det(B),
- (b) $det(A^T) = det(A)$,
- (c) $\det(A^{\dagger}) = (\det(A))^*$, and
- $(d) \det(A^*) = (\det(A))^*.$

Exercise 2.19

Consider the matrix

$$A = \left(\begin{array}{cc} 0 & i \\ -i & 0 \end{array} \right).$$

(a) Find the eigenvalues and the normalized eigenvectors for the matrix A.

- (b) Do these eigenvectors form a basis (i.e., is this basis complete and orthonormal)?
- (c) Consider the matrix U which is formed from the normalized eigenvectors of A. Verify that U is unitary and that it satisfies

$$U^{\dagger}AU = \left(\begin{array}{cc} \lambda_1 & 0\\ 0 & \lambda_2 \end{array}\right),$$

where λ_1 and λ_2 are the eigenvalues of A.

(d) Show that $e^{xA} = \cosh x + A \sinh x$.

Exercise 2.20

Using the bra-ket algebra, show that $\text{Tr}(\hat{A}\hat{B}\hat{C}) = \text{Tr}(\hat{C}\hat{A}\hat{B}) = \text{Tr}(\hat{B}\hat{C}\hat{A})$ where $\hat{A}, \hat{B}, \hat{C}$ are operators.

Exercise 2.21

For any two kets $|\psi\rangle$ and $|\phi\rangle$ that have finite norm, show that Tr $(|\psi\rangle\langle\phi|) = \langle\phi|\psi\rangle$.

Exercise 2.22

Consider the matrix $A = \begin{pmatrix} 0 & 0 & -1+i \\ 0 & 3 & 0 \\ -1-i & 0 & 0 \end{pmatrix}$.

- (a) Find the eigenvalues and normalized eigenvectors of A. Denote the eigenvectors of A by $|a_1\rangle$, $|a_2\rangle$, $|a_3\rangle$. Any degenerate eigenvalues?
- (b) Show that the eigenvectors $|a_1\rangle$, $|a_2\rangle$, $|a_3\rangle$ form an orthonormal and complete basis, i.e., show that $\sum_{j=1}^{3} |a_j\rangle\langle a_j| = I$, where I is the 3×3 unit matrix, and that $\langle a_j|a_k\rangle = \delta_{jk}$.
- (c) Find the matrix corresponding to the operator obtained from the ket-bra product of the first eigenvector $P = |a_1\rangle\langle a_1|$. Is P a projection operator?

Exercise 2.23

In a three-dimensional vector space, consider the operator whose matrix, in an orthonormal basis $\{|1\rangle, |2\rangle, |3\rangle\}$, is

$$A = \left(\begin{array}{ccc} 0 & 0 & 1\\ 0 & -1 & 0\\ 1 & 0 & 0 \end{array}\right).$$

- (a) Is A Hermitian? Calculate its eigenvalues and the corresponding normalized eigenvectors. Verify that the eigenvectors corresponding to the two nondegenerate eigenvalues are orthonormal.
- (b) Calculate the matrices representing the projection operators for the two nondegenerate eigenvectors found in part (a).

Exercise 2.24

Consider two operators \hat{A} and \hat{B} whose matrices are

$$A = \begin{pmatrix} 1 & 3 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{pmatrix}.$$

- (a) Are \hat{A} and \hat{B} Hermitian?
- (b) Do \hat{A} and \hat{B} commute?

- (c) Find the eigenvalues and eigenvectors of \hat{A} and \hat{B} .
- (d) Are the eigenvectors of each operator orthonormal?
- (e) Verify that $\hat{U}^{\dagger}\hat{B}\hat{U}$ is diagonal, \hat{U} being the matrix of the normalized eigenvectors of \hat{B} .
- (f) Verify that $\hat{U}^{-1} = \hat{U}^{\dagger}$.

Exercise 2.25

Consider an operator \hat{A} so that $[\hat{A}, \hat{A}^{\dagger}] = 1$.

- (a) Evaluate the commutators $[\hat{A}^{\dagger}\hat{A}, \hat{A}]$ and $[\hat{A}^{\dagger}\hat{A}, \hat{A}^{\dagger}]$.
- (b) If the actions of \hat{A} and \hat{A}^{\dagger} on the states $\{ \mid a \rangle \}$ are given by $\hat{A} \mid a \rangle = \sqrt{a} \mid a 1 \rangle$ and $\hat{A}^{\dagger} \mid a \rangle = \sqrt{a+1} \mid a+1 \rangle$ and if $\langle a' \mid a \rangle = \delta_{a'a}$, calculate $\langle a \mid \hat{A} \mid a+1 \rangle$, $\langle a+1 \mid \hat{A}^{\dagger} \mid a \rangle$ and $\langle a \mid \hat{A}^{\dagger} \mid a \rangle$ and $\langle a \mid \hat{A}^{\dagger} \mid a \rangle$.
 - (c) Calculate $\langle a \mid (\hat{A} + \hat{A}^{\dagger})^2 \mid a \rangle$ and $\langle a \mid (\hat{A} \hat{A}^{\dagger})^2 \mid a \rangle$.

Exercise 2.26

Consider a 4×4 matrix

$$A = \left(\begin{array}{cccc} 0 & \sqrt{1} & 0 & 0 \\ 0 & 0 & \sqrt{2} & 0 \\ 0 & 0 & 0 & \sqrt{3} \\ 0 & 0 & 0 & 0 \end{array}\right).$$

- (a) Find the matrices of A^{\dagger} , $N=A^{\dagger}A$, $H=N+\frac{1}{2}I$ (where I is the unit matrix), $B=A+A^{\dagger}$, and $C=i(A-A^{\dagger})$.
- (b) Find the matrices corresponding to the commutators $[A^{\dagger}, A]$, [B, C], [N, B], and [N, C].
- (c) Find the matrices corresponding to B^2 , C^2 , $[N, B^2 + C^2]$, $[H, A^{\dagger}]$, [H, A], and [H, N].
 - (d) Verify that $\det(ABC) = \det(A)\det(B)\det(C)$ and $\det(C^{\dagger}) = (\det(C))^*$.

Exercise 2.27

If \hat{A} and \hat{B} commute, and if $|\psi_1\rangle$ and $|\psi_2\rangle$ are two eigenvectors of \hat{A} with different eigenvalues $(\hat{A} \text{ is Hermitian})$, show that

- (a) $\langle \psi_1 \mid \hat{B} \mid \psi_2 \rangle$ is zero and
- (b) $\hat{B} \mid \psi_1 \rangle$ is also an eigenvector to \hat{A} with the same eigenvalue as $\mid \psi_1 \rangle$; i.e., if $\hat{A} \mid \psi_1 \rangle = a_1 \mid \psi_1 \rangle$, show that $\hat{A}(\hat{B} \mid \psi_1 \rangle) = a_1 \hat{B} \mid \psi_1 \rangle$.

Exercise 2.28

Let A and B be two $n \times n$ matrices. Assuming that B^{-1} exists, show that $[A, B^{-1}] = -B^{-1}[A, B]B^{-1}$.

Exercise 2.29

Consider a physical system whose Hamiltonian H and an operator A are given, in a three-dimensional space, by the matrices

$$H=\hbar\omega\left(egin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array}
ight), \qquad A=a\left(egin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}
ight).$$

- (a) Are *H* and *A* Hermitian?
- (b) Show that H and A commute. Give a basis of eigenvectors common to H and A.

Exercise 2.30

- (a) Using $[\hat{X}, \ \hat{P}] = i\hbar$, show that $[\hat{X}^2, \ \hat{P}] = 2i\hbar\hat{X}$ and $[\hat{X}, \ \hat{P}^2] = 2i\hbar\hat{P}$. (b) Show that $[\hat{X}^2, \ \hat{P}^2] = 2i\hbar(\hbar + 2\hat{P}\hat{X})$.
- (c) Calculate the commutator $[\hat{X}^2, \hat{P}^3]$.

Exercise 2.31

Discuss the hermiticity of the commutators $[\hat{X}, \hat{P}], [\hat{X}^2, \hat{P}]$ and $[\hat{X}, \hat{P}^2]$.

Exercise 2.32

- (a) Evaluate the commutator $[\hat{X}^2, d/dx]$ by operating it on a wave function.
- (b) Using $[\hat{X}, \hat{P}] = i\hbar$, evaluate the commutator $[\hat{X}\hat{P}^2, \hat{P}\hat{X}^2]$ in terms of a linear combination of $\hat{X}^2\hat{P}^2$ and $\hat{X}\hat{P}$.

Exercise 2.33

Show that $[\hat{X}, \hat{P}^n] = i\hbar \hat{X}\hat{P}^{n-1}$.

Exercise 2.34

Evaluate the commutators $[e^{i\hat{X}}, \hat{P}], [e^{i\hat{X}^2}, \hat{P}], \text{ and } [e^{i\hat{X}}, \hat{P}^2].$

Exercise 2.35

Consider the matrix

$$A = \left(\begin{array}{ccc} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{array}\right).$$

- (a) Find the eigenvalues and the normalized eigenvectors of A.
- (b) Do these eigenvectors form a basis (i.e., is this basis complete and orthonormal)?
- (c) Consider the matrix U which is formed from the normalized eigenvectors of A. Verify that U is unitary and that it satisfies the relation

$$U^{\dagger}AU = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix},$$

where λ_1 , λ_2 , and λ_3 are the eigenvalues of A.

(d) Show that $e^{xA} = \cosh x + A \sinh x$. Hint: $\cosh x = \sum_{n=0}^{\infty} x^{2n}/(2n)!$ and $\sinh x = \sum_{n=0}^{\infty} x^{2n+1}/(2n+1)!$.

Exercise 2.36

- (a) If $[\hat{A}, \hat{B}] = c$, where c is a number, prove the following two relations: $e^{\hat{A}}\hat{B}e^{-\hat{A}} = \hat{B} + c$ and $e^{\hat{A}+\hat{B}} = e^{\hat{A}}e^{\hat{B}}e^{-c/2}$.
 - (b) Now if $[\hat{A}, \hat{B}] = c\hat{B}$, where c is again a number, show that $e^{\hat{A}}\hat{B}e^{-\hat{A}} = e^{c}\hat{B}$.

Exercise 2.37

Consider the matrix

$$A = \frac{1}{2} \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3 \end{array} \right).$$

- (a) Find the eigenvalues of A and their corresponding eigenvectors.
- (b) Consider the basis which is constructed from the three eigenvectors of A. Using matrix algebra, verify that this basis is both orthonormal and complete.

Exercise 2.38

- (a) Specify the condition that must be satisfied by a matrix A so that it is both unitary and Hermitian.
 - (b) Consider the three matrices

$$M_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad M_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad M_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Calculate the inverse of each matrix. Do they satisfy the condition derived in (a)?

Exercise 2.39

Consider the two matrices

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}, \qquad B = \frac{1}{2} \begin{pmatrix} 1+i & 1-i \\ 1-i & 1+i \end{pmatrix}.$$

- (a) Are these matrices Hermitian?
- (b) Calculate the inverses of these matrices.
- (c) Are these matrices unitary?
- (d) Verify that the determinants of A and B are of the form $e^{i\theta}$. Find the corresponding values of θ .

Exercise 2.40

Show that the transformation matrix representing a 90° counterclockwise rotation about the z-axis of the basis vectors $(\vec{i}, \vec{j}, \vec{k})$ is given by

$$U = \left(\begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

Exercise 2.41

Show that the transformation matrix representing a 90° clockwise rotation about the y-axis of the basis vectors $(\vec{i}, \vec{j}, \vec{k})$ is given by

$$U = \left(\begin{array}{ccc} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right).$$

Exercise 2.42

Show that the operator $(\hat{X}\hat{P} + \hat{P}\hat{X})^2$ is equal to $(\hat{X}^2\hat{P}^2 + \hat{P}^2\hat{X}^2)$ plus a term of the order of \hbar^2 .

Exercise 2.43

Consider the two matrices $A = \begin{pmatrix} 4 & i & 7 \\ 1 & 0 & 1 \\ 0 & 1 & -i \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & i & 0 \\ -i & 0 & i \end{pmatrix}$. Calculate the

products B^{-1} A and A B^{-1} . Are they equal? What is the significance of this result?

Exercise 2.44

Use the relations listed in Appendix A to evaluate the following integrals involving Dirac's delta function:

(a)
$$\int_0^{\pi} \sin(3x) \cos^2(4x) \delta(x - \pi/2) dx$$
.
(b) $\int_{-2}^2 e^{7x+2} \delta(5x) dx$.
(c) $\int_{-2\pi}^{2\pi} \sin(\theta/2) \delta''(\theta + \pi) d\theta$.
(d) $\int_0^{2\pi} \cos^2 \theta \delta[(\theta - \pi)/4] d\theta$.

(b)
$$\int_{-2}^{2} e^{7x+2} \delta(5x) dx$$

(c)
$$\int_{-2\pi}^{2\pi} \sin(\theta/2) \delta''(\theta+\pi) d\theta$$

(d)
$$\int_0^{2\pi} \cos^2 \theta \delta[(\theta - \pi)/4] d\theta$$
.

Exercise 2.45

Use the relations listed in Appendix A to evaluate the following expressions:

(a)
$$\int_0^5 (3x^2 + 2)\delta(x - 1) dx$$
.

(b)
$$(2x^5 - 4x^3 + 1)\delta(x + 2)$$

(a)
$$\int_0^5 (3x^2 + 2)\delta(x - 1) dx$$
.
(b) $(2x^5 - 4x^3 + 1)\delta(x + 2)$.
(c) $\int_0^\infty (5x^3 - 7x^2 - 3)\delta(x^2 - 4) dx$.

Exercise 2.46

Use the relations listed in Appendix A to evaluate the following expressions:

(a)
$$\int_{3}^{7} e^{6x-2} \delta(-4x) dx$$

(a)
$$\int_{3}^{7} e^{6x-2} \delta(-4x) dx$$
.
(b) $\cos(2\theta) \sin(\theta) \delta(\theta^{2} - \pi^{2}/4)$.
(c) $\int_{-1}^{1} e^{5x-1} \delta'''(x) dx$.

(c)
$$\int_{-1}^{1} e^{5x-1} \delta'''(x) dx$$

Exercise 2.47

If the position and momentum operators are denoted by $\hat{\vec{R}}$ and $\hat{\vec{P}}$, respectively, show that $\hat{\mathcal{P}}^{\dagger}\hat{\vec{R}}^{n}\hat{\mathcal{P}} = (-1)^{n}\hat{\vec{R}}^{n}$ and $\hat{\mathcal{P}}^{\dagger}\hat{\vec{P}}^{n}\hat{\mathcal{P}} = (-1)^{n}\hat{\vec{P}}^{n}$, where $\hat{\mathcal{P}}$ is the parity operator and n is an integer.

Exercise 2.48

Consider an operator

$$\hat{A} = |\phi_1\rangle\langle\phi_1| + |\phi_2\rangle\langle\phi_2| + |\phi_3\rangle\langle\phi_3| - i|\phi_1\rangle\langle\phi_2| - |\phi_1\rangle\langle\phi_3| + i|\phi_2\rangle\langle\phi_1| - |\phi_3\rangle\langle\phi_1|,$$

where $|\phi_1\rangle$, $|\phi_2\rangle$, and $|\phi_3\rangle$ form a complete and orthonormal basis.

- (a) Is \hat{A} Hermitian? Calculate \hat{A}^2 ; is it a projection operator?
- (b) Find the 3 × 3 matrix representing \hat{A} in the $|\phi_1\rangle$, $|\phi_2\rangle$, $|\phi_3\rangle$ basis.
- (c) Find the eigenvalues and the eigenvectors of the matrix.

Exercise 2.49

The Hamiltonian of a two-state system is given by

$$\hat{H} = E\left(|\phi_1\rangle\langle\phi_1| - |\phi_2\rangle\langle\phi_2| - i|\phi_1\rangle\langle\phi_2| + i|\phi_2\rangle\langle\phi_1|\right),\,$$

where $|\phi_1\rangle$, $|\phi_2\rangle$ form a complete and orthonormal basis; E is a real constant having the dimensions of energy.

- (a) Is \hat{H} Hermitian? Calculate the trace of \hat{H} .
- (b) Find the matrix representing \hat{H} in the $|\phi_1\rangle$, $|\phi_2\rangle$ basis and calculate the eigenvalues and the eigenvectors of the matrix. Calculate the trace of the matrix and compare it with the result you obtained in (a).
 - (c) Calculate $[\hat{H}, |\phi_1\rangle\langle\phi_1|]$, $[\hat{H}, |\phi_2\rangle\langle\phi_2|]$, and $[\hat{H}, |\phi_1\rangle\langle\phi_2|]$.

Exercise 2.50

Consider a particle which is confined to move along the positive x-axis and whose Hamiltonian is $\hat{H} = \mathcal{E}d^2/dx^2$, where \mathcal{E} is a positive real constant having the dimensions of energy.

- (a) Find the wave function that corresponds to an energy eigenvalue of $9\mathcal{E}$ (make sure that the function you find is finite everywhere along the positive x-axis and is square integrable). Normalize this wave function.
 - (b) Calculate the probability of finding the particle in the region $0 \le x \le 15$.
 - (c) Is the wave function derived in (a) an eigenfunction of the operator $\hat{A} = d/dx 7$?
 - (d) Calculate the commutator $[\hat{H}, \hat{A}]$.

Exercise 2.51

Consider the wave functions:

$$\psi(x, y) = \sin 2x \cos 5x, \qquad \phi(x, y) = e^{-2(x^2 + y^2)}, \qquad \chi(x, y) = e^{-i(x + y)}.$$

- (a) Verify if any of the wave functions is an eigenfunction of $\hat{A} = \partial/\partial x + \partial/\partial y$.
- (b) Find out if any of the wave functions is an eigenfunction of $\hat{B} = \partial^2/\partial x^2 + \partial^2/\partial y^2 + 1$.
- (c) Calculate the actions of $\hat{A}\hat{B}$ and $\hat{B}\hat{A}$ on each one of the wave functions and infer $[\hat{A}, \hat{B}]$.

Exercise 2.52

- (a) Is the state $\psi(\theta, \phi) = e^{-3i\phi} \cos \theta$ an eigenfunction of $\hat{A}_{\phi} = \partial/\partial \phi$ or of $\hat{B}_{\theta} = \partial/\partial \theta$?
- (b) Are \hat{A}_{ϕ} and \hat{B}_{θ} Hermitian?
- (c) Evaluate the expressions $\langle \psi \mid \hat{A}_{\phi} \mid \psi \rangle$ and $\langle \psi \mid \hat{B}_{\theta} \mid \psi \rangle$.
- (d) Find the commutator $[\hat{A}_{\phi}, \hat{B}_{\theta}]$.

Exercise 2.53

Consider an operator $\hat{A} = (\hat{X}d/dx + 2)$.

- (a) Find the eigenfunction of \hat{A} corresponding to a zero eigenvalue. Is this function normalizable?
 - (b) Is the operator \hat{A} Hermitian?
 - (c) Calculate $[\hat{A}, \hat{X}]$, $[\hat{A}, d/dx]$, $[\hat{A}, d^2/dx^2]$, $[\hat{X}, [\hat{A}, \hat{X}]]$, and $[d/dx, [\hat{A}, d/dx]]$.

Exercise 2.54

If \hat{A} and \hat{B} are two Hermitian operators, find their respective eigenvalues such that $\hat{A}^2 = 2\hat{I}$ and $\hat{B}^4 = \hat{I}$, where \hat{I} is the unit operator.

Exercise 2.55

Consider the Hilbert space of two-variable complex functions $\psi(x, y)$. A permutation operator is defined by its action on $\psi(x, y)$ as follows: $\hat{\pi} \psi(x, y) = \psi(y, x)$.

- (a) Verify that the operator $\hat{\pi}$ is linear and Hermitian.
- (b) Show that $\hat{\pi}^2 = \hat{I}$. Find the eigenvalues and show that the eigenfunctions of $\hat{\pi}$ are given by

$$\psi_{+}(x, y) = \frac{1}{2} \left[\psi(x, y) + \psi(y, x) \right] \text{ and } \psi_{-}(x, y) = \frac{1}{2} \left[\psi(x, y) - \psi(y, x) \right].$$