

AD-A042 062 HARRY DIAMOND LABS ADELPHI MD  
ENERGY SHIFT OF ALKALI EARTHS IN THE VICINITY OF METAL SURFACES--ETC(U)  
JUN 77 R P LEAVITT, C A MORRISON

UNCLASSIFIED

HDL-TR-1802

F/G 7/4

NL

| OF |  
ADA042062

FILE



END

DATE  
FILMED  
8-77

ADA042062

## UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | READ INSTRUCTIONS BEFORE COMPLETING FORM                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------|
| 1. REPORT NUMBER<br>HDL-TR-1802                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2. GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER                                                         |
| 4. TITLE (and Subtitle)<br>Energy Shift of Alkali Earths in the Vicinity of Metal Surfaces.                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | 5. TYPE OF REPORT & PERIOD COVERED<br>Technical Report                                |
| 7. AUTHOR(s)<br>Richard P. Leavitt<br>Clyde A. Morrison                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | 6. PERFORMING ORG. REPORT NUMBER                                                      |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS<br>Harry Diamond Laboratories<br>2800 Powder Mill Road<br>Adelphi, MD 20783                                                                                                                                                                                                                                                                                                                                                                                       |                       | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS<br>Program Ele: 6.11.02.A |
| 11. CONTROLLING OFFICE NAME AND ADDRESS<br>U.S. Army Materiel Development and Readiness Command<br>Alexandria, VA 22333                                                                                                                                                                                                                                                                                                                                                                                       |                       | 12. REPORT DATE<br>Jun 1977                                                           |
| 14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | 13. NUMBER OF PAGES<br>57                                                             |
| 16. DISTRIBUTION STATEMENT (of this Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | 15. SECURITY CLASS. (of this report)<br>UNCLASSIFIED                                  |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE                                            |
| 18. SUPPLEMENTARY NOTES<br>HDL Project: A44632<br>DRCMS Code: 611102.11.H4400                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                                                                                       |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br>Surface potentials<br>Energy shift<br>Alkali earths<br>Chemisorption                                                                                                                                                                                                                                                                                                                                                    |                       |                                                                                       |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br>The theory of alkali earth atom-metal interactions is examined. The contribution to the surface potential arising from the ions can be decomposed into two terms, one a point-charge lattice term and the other dependent on the surface states of the ions comprising the lattice. These contributions to the potential are combined with Gadzuk's image formalism to obtain energy shifts of the alkali atoms K on Pt, |                       |                                                                                       |

**UNCLASSIFIED**

**SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)**

Cs on W, and K and Cs on PrSb. Gadzuk's theory is reviewed and criticized for self-consistency.

|                                 |                                                  |  |
|---------------------------------|--------------------------------------------------|--|
| ACCESSION for                   |                                                  |  |
| NTIS                            | A-1e Section <input checked="" type="checkbox"/> |  |
| B-OC                            | B-1f Section <input type="checkbox"/>            |  |
| UNARMED                         | <input type="checkbox"/>                         |  |
| JUS                             | <input type="checkbox"/>                         |  |
| BY                              |                                                  |  |
| DISTRIBUTION/AVAILABILITY CODES |                                                  |  |
| Dist.                           | SPECIAL                                          |  |
| A                               |                                                  |  |

## CONTENTS

|                                                           | <u>Page</u> |
|-----------------------------------------------------------|-------------|
| 1. INTRODUCTION . . . . .                                 | 5           |
| 2. GADZUK'S THEORY OF SURFACE INTERACTIONS . . . . .      | 6           |
| 2.1 Interactions of Atom and Solid . . . . .              | 6           |
| 2.2 Energy Shift . . . . .                                | 9           |
| 3. ENERGY SHIFT DUE TO IONIC CHARGES AT SURFACE . . . . . | 13          |
| 3.1 Potential . . . . .                                   | 13          |
| 3.2 Energy Shift . . . . .                                | 14          |
| 4. ENERGY SHIFT DUE TO SURFACE STATES . . . . .           | 17          |
| 5. CRITICISM . . . . .                                    | 22          |
| 5.1 Image Potential . . . . .                             | 22          |
| 5.2 Renormalization Terms . . . . .                       | 24          |
| 6. DISCUSSION AND CONCLUSION . . . . .                    | 26          |
| LITERATURE CITED . . . . .                                | 27          |
| SYMBOLS . . . . .                                         | 29          |
| DISTRIBUTION . . . . .                                    | 55          |

## APPENDICES

|                                                                   |    |
|-------------------------------------------------------------------|----|
| A.--ENERGY SHIFT IN GADZUK'S THEORY . . . . .                     | 31 |
| B.--POTENTIAL DUE TO IONS IN SOLID . . . . .                      | 37 |
| C.--ENERGY SHIFT DUE TO POINT-CHARGE AND SURFACE-STATE POTENTIALS | 47 |

## FIGURES

|                                                                                      |    |
|--------------------------------------------------------------------------------------|----|
| 1 Physical configuration and coordinate system for alkali earth adsorption . . . . . | 7  |
| 2 Cutoff parameter for platinum . . . . .                                            | 9  |
| 3 Cutoff parameter for tungsten . . . . .                                            | 10 |
| 4 Energy shift in Gadzuk's theory . . . . .                                          | 12 |
| 5 Energy shift including point charge potential . . . . .                            | 15 |

FIGURES (CONT'D)

|                                                                              | <u>Page</u> |
|------------------------------------------------------------------------------|-------------|
| 6 Change in energy shift due to change in cutoff . . . . .                   | 16          |
| 7 Energy shift due to point charge potential . . . . .                       | 17          |
| 8 Energy shift in [100] plane due to surface states for K on PrSb . . . . .  | 19          |
| 9 Energy shift in [100] plane due to surface states for Cs on PrSb . . . . . | 20          |
| 10 Cutoff parameter for PrSb . . . . .                                       | 20          |
| 11 Total energy shift in [100] plane for K on PrSb . . . . .                 | 21          |
| 12 Total energy shift in [100] plane for Cs on PrSb . . . . .                | 21          |
| 13 Energy shift due to wave-function renormalization . . . . .               | 25          |

TABLE

|                                                                                                                                              |    |
|----------------------------------------------------------------------------------------------------------------------------------------------|----|
| I Matrix Elements $\langle \Gamma_i   r^n C_{nm}   \Gamma_i \rangle$ for the $^3H_4$ Multiplet of $Pr^{3+}$ in the Surface of PrSb . . . . . | 18 |
|----------------------------------------------------------------------------------------------------------------------------------------------|----|

## 1. INTRODUCTION

In the theory of heterogeneous catalysis, it is generally assumed that the d electrons of transition metal catalysts are dominant in the desired chemical reaction taking place near the surface.<sup>1</sup> However, a microscopic mechanism describing how the d electrons in the surface states enter into the chemical reaction has not previously been proposed. Also, the f electrons are assumed responsible for the successful catalytic activity of compounds composed of rare-earth ions; a successful theory is lacking.

We have proposed<sup>2</sup> a concept describing how a rare-earth ion in the surface of a metal might enter into a reaction of an atom near the surface and increase the rate of ionization of the atom under certain favorable conditions. The concept is based upon an extension of a previous theory of the crystal field parameters,  $B_{nm}$ ,<sup>3</sup> which explained the splitting of energy levels of rare-earth ions in bulk rare-earth monochalcogenides and monopnictides. That theory was based upon the use of the Thomas-Fermi model of electrons in a metal and a sum over the various constituent ions to obtain the lattice sum parameters,  $A_{nm}$ , and consequently the  $B_{nm}$ . Then the lattice sum was formed for an ion in the surface of the metal, and the  $B_{nm}$  for an ion in the surface were obtained. With these parameters, the energy levels and corresponding wave functions were obtained. These wave functions were used in a semiclassical approximation to calculate the charge density of the rare-earth ion and, consequently, the electric potential near the surface of the metal. This potential was shown to depend on the energy

---

<sup>1</sup>J. C. Slater and K. H. Johnson, *Quantum Chemistry and Catalysis, Physics Today* (October 1974), 34.

<sup>2</sup>C. A. Morrison, N. Karayianis, and D. E. Wortman, *A Possible Use of the Surface States of Transition and Rare-Earth Metal Ions in the Theory of Catalysis, Harry Diamond Laboratories TR-1752* (April 1976).

<sup>3</sup>C. A. Morrison, *Phys. Lett.*, 51A (1975), 49.

level of the rare-earth ion in the surface and also to depend on the crystallographic plane of the surface. This potential along with a calculation using standard metal-ion interactions was proposed to illustrate the utility of the theory. For those calculations, we chose two papers by Gadzuk,<sup>4,5</sup> in which the ionization of alkali earths by W or Pt was calculated by using perturbation theory and metal-ion interactions obtained by using classical electrical image theory.

In this report, we investigate Gadzuk's theory for his examples and correct some apparently typographical errors in his papers. Then we extend his results to include the interactions created by the ionic nature of the atom in the surface of the metal. Finally, this calculation is done for the metal PrSb and the added interaction created because the rare-earth ion in the surface is in one of the low-lying surface energy levels.

## 2. GADZUK'S THEORY OF SURFACE INTERACTIONS

Gadzuk<sup>4,5</sup> gave a theory of ad-atom-metal interactions, in which the ad-atom is assumed to interact with the metal according to classical image theory. Details of the calculation of the energy shift are given in appendix A. Here we state the underlying physical considerations and give the results for Cs adsorbed on W and K adsorbed on Pt, which Gadzuk considered.

### 2.1 Interactions of Atom and Solid

Consider the physical configuration and coordinate system shown in figure 1. The nucleus of the ad-atom is at the point (0,0,0);

---

<sup>4</sup>J. W. Gadzuk, *Surface Science*, 6 (1967), 133.

<sup>5</sup>J. W. Gadzuk, *Surface Science*, 6 (1967), 159.



Figure 1. Physical configuration and coordinate system for alkali earth adsorption.

the electron is at  $r = (x, y, z)$ . The half space  $z \leq -s$  is assumed to be occupied by metal. The interaction of the atom with the metal is represented by classical image theory which, for the electron on the alkali earth, is given by (app A)

$$v_i = -\frac{q^2}{4d_1} + \frac{q^2}{R} - \frac{q^2}{r}, \quad (1)$$

where

$v_i$  is the interaction energy,

$q^2/4d_1$  is the interaction of the electron with its own image,

$q^2/R$  is the interaction between the electron and the ion image,

$q^2/r$  is the interaction of the electron with the ion core.

This last term is present even in the absence of the metal. Gadzuk thus chooses the single electron Hamiltonian,  $H$ , to be

$$H = -\frac{\hbar^2}{2m} \nabla^2 - V_0, \quad z < s_c - s, \quad (2)$$

$$H = -\frac{\hbar^2}{2m} \nabla^2 - \frac{q^2}{4d_1} + \frac{q^2}{R} - \frac{q^2}{r}, \quad z > s_c - s,$$

where  $s_c$  is chosen so that

$$-V_0 = -\frac{q^2}{4d_1} + \frac{q^2}{R}, \quad z = s_c - s, \quad (3)$$

where

- $\hbar$  is Planck's constant,
- $m$  is the electron mass,
- $\nabla^2$  is the Laplacian operator,
- $V_0$  is the sum of the Fermi energy,  $E_F$ , and the work function,  $\Phi$ ,
- $z$  is the coordinate normal to the metal surface,
- $s_c$  is the cutoff distance,
- $s$  is the distance of the nucleus from the surface.

If we assume that the coordinates  $x$  and  $y$  of the electron are small compared to  $s$  (the assumption made by Gadzuk) the value of  $s_c$  given by equation (3) is

$$s_c = \frac{1}{2} \left\{ [ (s + \lambda)(s + 9\lambda) ]^{1/2} - s - 6\lambda \right\}, \quad (4)$$

where  $\lambda = q^2/4V_0$ . If  $V_0$  is given in electron volts, then  $\lambda = 3.6/V_0$  in angstrom units. The variation of  $s_c$  with  $s$  is shown in figure 2 for Pt and figure 3 for W. (The curves labeled by ionic charge  $Q_1 = 0$  are pertinent here.)



Figure 2. Cutoff parameter for platinum.

## 2.2 Energy Shift

In his theory of ionization of alkali earths, Gadjuk chose as wave functions of the electron the 2s hydrogenic type wave functions

$$\psi = N(1 - \alpha r) e^{-\alpha r} \quad (5)$$

with  $\alpha = 0.99 \text{ \AA}^{-1}$  for Cs and  $\alpha = 1.16 \text{ \AA}^{-1}$  for K. These values of  $\alpha$  were chosen so that the hydrogenic wave functions closely approximated the exact self-consistent calculations of Herman and Skillman.<sup>6</sup> The energy shift of the electron on the alkali atom is obtained by using first-order perturbation theory. That is,

---

<sup>6</sup>F. Herman and S. Skillman, *Atomic Structure Calculations*, Prentice Hall, Inc., Englewood Cliffs, NJ (1963).



Figure 3. Cutoff parameter for tungsten.

$$\Delta E_i = \frac{\int \psi^* v_i \psi d\tau}{\int \psi^* \psi d\tau}, \quad (6)$$

where

$\Delta E_i$  is the energy shift,

\* stands for complex conjugation,

$\tau$  covers the region  $-\infty < x, y < \infty, s_c - s < z < \infty$ ,

and where

$$v_i = -\frac{q^2}{4(s+z)} + \frac{q^2}{2s+z}. \quad (7)$$

The assumption  $R \approx 2s + z$  has been made in equation (7). By using the wave function given by equation (5), the integrals of equation (6) may be evaluated. The result is

$$\begin{aligned}
 \Delta E_i = & \frac{a^2 \alpha}{4} \left\{ 4g(2\alpha s) \left( Ei(4\alpha s) - Ei[2\alpha(s + s_c)] \right) \right. \\
 & - 4g(-2\alpha s) Ei(-4\alpha s) - g(\alpha s) [Ei(2\alpha s) - Ei(2\alpha s_c)] \\
 & \left. + g(-\alpha s) Ei(-2\alpha s) + \left[ \frac{9}{4} + \frac{3}{2} \alpha(s - s_c) + 25(\alpha s)^2 \right. \right. \\
 & \left. \left. - 13\alpha^2 s s_c + 3(\alpha s_c)^2 \right] \exp[-2\alpha(s - s_c)] \right\} / F(s, s_c)
 \end{aligned} \tag{8}$$

where

$$\begin{aligned}
 g(x) = & \left( \frac{1}{2} + x - x^2 + 2x^3 \right) e^{-2x} \\
 F(s, s_c) = & 2 - \left[ 1 + \frac{3}{2} \alpha(s - s_c) + \alpha^2(s - s_c)^2 + \alpha^3(s - s_c)^3 \right] \\
 & \cdot \exp[-2\alpha(s - s_c)], 
 \end{aligned} \tag{9}$$

$$Ei(z) = \int_{-\infty}^z \frac{e^\tau}{\tau} d\tau. \tag{11}$$

as derived from Abramowitz and Stegun.<sup>7</sup> The details of the derivation are given in appendix A. This result, equation (8), is to be compared with equation (11) in Gadzuk's paper, which is incorrect. Gadzuk's result should also be multiplied by two if the energy shift is to be given in electron volts, and his figure 4 should have the ordinate doubled.<sup>4</sup>

---

<sup>4</sup>J. W. Gadzuk, *Surface Science*, 6 (1967), 133.

<sup>7</sup>M. Abramowitz and I. A. Stegun, Ed., *Handbook of Mathematical Functions*, National Bureau of Standards, Gaithersburg, MD (1964).



Figure 4. Energy shift in Gadzuk's theory.

The results given in equation (8) are shown in figure 4, which should be compared to Gadzuk's figure 4. These results are quite similar when the factor of two is taken into consideration. Slight changes in the Fermi energy or work function can account for the difference in the results. (Gadzuk did not state the values of the Fermi energy or work function used in his calculations.)

The energy shift given above is that predicted on the basis of classical image theory. We shall now consider the effects of several refinements of the theory.

### 3. ENERGY SHIFT DUE TO IONIC CHARGES AT SURFACE

#### 3.1 Potential

If we assume that the ion cores of the surface atoms carry a residual charge  $Q_1$  which is neutralized by a continuous background of electrons, then the results in section 2 are significantly altered. In the work reported here, we assume that only these ions on the surface contribute to the potential outside the metal. The charge distribution in the surface (the plane  $z = -s$ ) is assumed to be

$$\sigma(x, y) = \sum_{nm} Q_1 \delta(x - na) \delta(y - ma) - \frac{Q_1}{a^2}, \quad (12)$$

where

$\sigma$  is the surface charge density,

$x, y$  are coordinates in the surface plane,

$a$  is the lattice constant,

$\delta$  is the Dirac delta function, defined by

$$\int \delta(x - x_0) f(x) dx = f(x_0)$$

for body-centered cubic W and

$$\begin{aligned} \sigma(x, y) &= \sum_{nm} Q_1 \left\{ \delta(x - na) \delta(y - ma) \right. \\ &\quad \left. + \delta\left[x - \left(n + \frac{1}{2}\right)a\right] \delta\left[y - \left(m + \frac{1}{2}\right)a\right] \right\} - \frac{2Q_1}{a^2} \end{aligned} \quad (13)$$

for face-centered cubic Pt. The first terms involving  $\delta$ -functions represent the ionic point charges, and the last term represents the

continuous electron distribution. The neutrality of the system can be demonstrated by integrating either distribution (eq (12) or (13)) over the area occupied by a single cell. The potential,  $v_p(z)$ , at the electron on the alkali atom is derived in appendix B. The cutoff condition given by equation (3) is now modified to

$$-v_o = \frac{q^2}{4d_1} + \frac{q^2}{R} + v_p(z), z = s_c - s, \quad (14)$$

which determines  $s_c$ . Equation (14) has been used to determine  $s_c$  as a function of  $s$  for several values of  $Q_1$  (fig. 2, 3). The addition of the potential created by the surface ions tends to lower the barrier near the surface of the metal and thereby decreases the total potential to  $-v_o$  at greater distances from the surface.

### 3.2 Energy Shift

The energy shift given by equation (8) is considerably modified by the inclusion of the ions in the surface of the metal. The surface ions have a large effect on the cutoff near the surface (fig. 2, 3).

A difficulty exists in determining the value of the ionic charge, and, for the purposes here, we have chosen both Pt and W to have a charge of  $+e$ . Much larger values would be necessary for W if the charge were chosen proportional to the valence of the metal ion.

The calculation of the energy shift due to the point-charge lattice on the surface is straightforward (app C). The result, equation (C-13), must be added to the image contribution, equation (8), to obtain the total energy shift (fig. 5) for K on Pt or Cs on W.



Figure 5. Energy shift including point charge potential.

The energy shift may be decomposed into three parts:

- The image shift as calculated by Gadzuk
- The change in  $\Delta E_i$  due to the change in  $s_c$ , as given by equation (14)
- The contribution of the point-charge potential

We have plotted these components separately for K adsorbed on Pt. The image shift is given in figure 4. Figure 2 shows the change in  $s_c$  for several values of  $Q_1$ . The effect of this change on the energy

shift is shown in figure 6. Finally, the contribution of the point charges directly is shown in figure 7. For Cs adsorbed on W, we have given the effect of the point-charge potential in changing the cutoff in figure 3.

When considering the detailed potential near the surface of a metal, we must allow for the structure of the surface states; in particular, there arise contributions to the potential due to the asphericity of the surface states. These contributions are considered in section 4 for a rare-earth metal. It is this contribution that may distinguish catalytic metals from ordinary metals.



Figure 6. Change in energy shift due to change in cutoff.



Figure 7. Energy shift due to point charge potential.

#### 4. ENERGY SHIFT DUE TO SURFACE STATES

We now consider those contributions to the potential near the surface of a metal which depend on the detailed surface states of the ions at the surface. For a metal composed of rare-earth ions, this contribution may be done simply, since the f-electrons may be regarded as localized about particular ionic sites. This localization corresponds to the tight-binding approximation in band theory.<sup>8</sup> We shall take the approach of crystal field theory.<sup>9</sup> That is, the electric potential near a rare-earth site is given; the energy levels and wave

<sup>8</sup>W. A. Harrison, *Pseudopotentials in the Theory of Metals*, Benjamin, New York (1966).

<sup>9</sup>B. G. Wybourne, *Spectroscopic Properties of Rare Earths*, Interscience Publishers, New York (1965).

functions of the rare-earth ion in the crystal field are then computed, and from them the multipolar moments of the rare earth can be determined. These multipolar moments,  $q_{lm}$ , depend on the state of the rare-earth ion. The potential near the surface may then be represented in terms of a lattice sum involving the ionic multipolar moments over the surface of the metal. Detailed calculations of this contribution to the potential are given in appendix B.

We have calculated the potential and energy shift for Cs and K adsorbed on PrSb, which earlier was illustrated for this type of potential near the surface.<sup>2</sup> Multipolar moments of the  $\text{Pr}^{3+}$  ion in various states of the  $^3\text{H}_4$  ground multiplet have been computed (table I).

TABLE I. MATRIX ELEMENTS  $\langle \Gamma_i | r^n c_{nm} | \Gamma_i \rangle$  FOR THE  $^3\text{H}_4$  MULTIPLET OF  $\text{Pr}^{3+}$  IN THE SURFACE OF PrSb  
( $\text{\AA}$  UNITS)<sup>1</sup>

| Energy | $\Gamma$ | n,m      |          |          |          |          |
|--------|----------|----------|----------|----------|----------|----------|
|        |          | 2,0      | 4,0      | 4,4      | 6,0      | 6,4      |
| 0      | 1        | 0.06770  | -0.02043 | -0.00544 | -0.03075 | 0.00730  |
| 49.5   | 3        | 0.05850  | -0.01065 | -0.00894 | 0.00037  | -0.00229 |
| 150.0  | 2        | 0.03277  | 0.00961  | -0.03633 | 0.03056  | -0.03627 |
| 252.0  | 2        | 0.03050  | 0.01031  | 0.03451  | 0.03046  | 0.03621  |
| 415.0  | 3        | -0.01659 | 0.02445  | 0.00661  | -0.01895 | 0.00413  |
| 592.0  | 1        | -0.08486 | -0.01663 | -0.00096 | 0.00390  | 0.00064  |
| 595.0  | 1        | -0.08417 | -0.01673 | 0.00220  | 0.00380  | -0.00876 |

<sup>1</sup>For  $\text{Pr}^{3+}$ , the following values of  $\langle r^n \rangle$  have been used:

$$\langle r^2 \rangle = 0.304194 (\text{\AA})^2$$

$$\langle r^4 \rangle = 0.221312 (\text{\AA})^4$$

$$\langle r^6 \rangle = 0.345420 (\text{\AA})^6$$

$$\langle \Gamma_i | r^n c_{nm} | \Gamma_i \rangle = \int d\Gamma' \Psi_{\Gamma_i}^*(\Gamma') r^n c_{nm}(\Gamma') \Psi_{\Gamma_i}(\Gamma').$$

See A. J. Freeman and R. E. Watson, Phys. Rev., 127 (1962), 2058.

<sup>2</sup>C. A. Morrison, N. Karayianis, and D. E. Wortman, A Possible Use of the Surface States of Transition and Rare-Earth Metal Ions in the Theory of Catalysis, Harry Diamond Laboratories TR-1752 (April 1976).

These have been used with the results of appendix C (eq (C-14)) to obtain energy shifts due to the surface states. These additional shifts are shown in figure 8 for K and figure 9 for Cs.

Figure 10 shows the effect of the surface states in changing the  $s_c$  for the ground state of Pr. The condition used to obtain  $s_c$  is similar to equation (14), except that the surface-state potential,  $V_s$ , is added to the right-hand side. This addition results in a slight change in  $s_c$  (fig. 10). Figure 11 shows the total energy shift for K adsorbed on the [100] surface of PrSb. This energy shift includes all the effects considered in sections 2 and 3, as well as the surface-state contributions considered here, with the  $\text{Pr}^{3+}$  ions in their ground state. Figure 12 gives a similar plot for Cs adsorbed on PrSb.



Figure 8. Energy shift in [100] plane due to surface states for K on PrSb.



Figure 9. Energy shift in [100] plane due to surface states for Cs on PrSb.



Figure 10. Cutoff parameter for PrSb.



Figure 11. Total energy shift in [100] plane for K on PrSb.



Figure 12. Total energy shift in [100] plane for Cs on PrSb.

This section completes the description of the surface potential of a metal according to Gadzuk's theory (with the additions of the point-charge and surface-state potentials). In section 5, we point out some deficiencies in Gadzuk's theory, their effects on our calculations, and remedies for them.

## 5. CRITICISM

The formalism introduced by Gadzuk for calculating the energy shifts of alkali earth atoms near metals is unsatisfactory in many respects. First, the  $s_c$  is not a good representation of the imperfect screening of applied electric fields by the metal. Second, Gadzuk neglected some important contributions to the energy shift which would be present in a consistent treatment. Third, although Gadzuk claims that his procedure is first-order perturbation theory, the assumption that the wave function vanishes for  $z < s_c - s$  is not standard.

### 5.1 Image Potential

The image potential given by Gadzuk is valid actually only at large distances from the metal. Other attempts have been made to cast the image potential in a form which is approximately correct everywhere. One of these is<sup>10</sup>

$$V(r) = \begin{cases} -\frac{q^2}{4(s + s_c + z)} + \frac{q^2}{R} - \frac{q^2}{r}, & z > 0, \\ -V_0 & z < 0, \end{cases} \quad (15)$$

---

<sup>10</sup>F. M. Propst, Phys. Rev., 129 (1962), 7.

in which the  $s_c$  is explicit in the potential and is given by

$$s_c = q^2/4V_0 . \quad (16)$$

Energy shifts may be calculated by using equation (15) in a manner similar to that used in section 2. However, the conceptual difficulties still remain; the wave function is still truncated (now at  $z = -s$  instead of  $z = -s + s_c$ ), and the procedure used to evaluate the shifts is not a standard perturbation technique.

Rather than use these cutoff methods, we may employ a consistent (though still approximate) method of treating the image problem in metals. The simplest such technique is to use the Thomas-Fermi model<sup>11</sup> for the dielectric response of the metal. In this theory, the image potential is determined by the partial differential equations

$$\begin{aligned} \nabla^2\phi(z') &= 4\pi q\delta(z') - 4\pi q\delta(z' - z), \quad z' > -s , \\ \nabla^2\phi(z') &= K_{FT}^2\phi(z') \quad , \quad z' < -s , \end{aligned} \quad (17)$$

where

$$K_{FT}^2 = \frac{6\pi Ne^2}{E_F} = \left[ \frac{12\pi}{(3\pi^2)^{2/3}} \frac{1}{\alpha_0} \right] N^{1/3} .$$

with  $N$  the number of free electrons per unit volume and  $\alpha_0$  the Bohr radius. The total electrostatic energy is then obtained from equation (17) by calculating the total work necessary to bring the charges to their respective positions from infinity.

---

<sup>11</sup>D. Pines, *Elementary Excitations in Solids*, Benjamin, New York (1963), 96.

## 5.2 Renormalization Terms

In the analysis presented by Gadzuk, first-order perturbation theory was applied only to the interaction potential with the wave functions normalized in the region  $z > s_c - s$ . An additional shift arises if one considers the unperturbed Hamiltonian

$$H_0 = T - \frac{q^2}{r} , \quad (18)$$

where

$$T = \frac{p^2}{2m}$$

and  $p$  is the momentum operator, and if one evaluates the matrix of  $H_0$  using the perturbed wave functions. If then the matrix elements of  $H_0$  for large  $s$  are subtracted out, an additional shift is obtained, or

$$\Delta E_n = \frac{\langle s | H_0 | s \rangle}{\langle s | s \rangle} - \langle \infty | H_0 | \infty \rangle , \quad (19)$$

where

$$\langle s | H_0 | s \rangle = \int_{s_c - s}^{\infty} dz \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \psi^* H_0 \psi dx dy \quad (20)$$

and

$$\langle s | s \rangle = \int_{s_c - s}^{\infty} dz \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \psi^* \psi dx dy . \quad (21)$$

By using the wave function given in equation (6), the result is

$$\Delta E_n = (3.81\alpha^2 + 3.60\alpha) f[\alpha(s - s_c)] , \quad (22)$$

where

$$f(x) = \frac{e^{-2x} \left( \frac{3}{2} x - x^2 + x^3 \right)}{1 - e^{-2x} \left( \frac{1}{2} + \frac{3}{4} x + \frac{x^2}{2} + \frac{x^3}{2} \right)}. \quad (23)$$

Equation (23) was used to calculate  $\Delta E_n$  for the two cases considered by Gadzuk (fig. 13). A comparison of these results with those of figure 4 shows that at  $s = 3 \text{ \AA}$  the  $\Delta E_n$  is approximately 63 percent of the result given in figure 4. The corresponding quantity at  $s = 4 \text{ \AA}$  is still approximately 20 percent. (Gadzuk chose the region  $s = 3, 4 \text{ \AA}$ , for comparison of his results to reported data.) In this region, the contribution of  $\Delta E_n$  is certainly not negligible.



Figure 13. Energy shift due to wave-function renormalization.

## 6. DISCUSSION AND CONCLUSION

The energy shift of alkali earth atoms near metals has been calculated based on a modified version of Gadzuk's theory. This energy shift includes image effects and effects due to the ionic pseudopotential and the state of the ions at the surface. We have found several errors in Gadzuk's paper which, when corrected, alter some of the consequences of that work. We have found shifts in energy of about 0.6 eV at distances of several angstroms from the metal surfaces, which is a factor of two higher than shifts found by Gadzuk. Finally, we have shown that Gadzuk's theory is incomplete in that it neglects wave-function renormalization effects, and we have proposed an alternative model, the Thomas-Fermi model, for image forces in the metal.

What is of primary interest, but has not been addressed yet, is the transition rate of the electron from the alkali atom to the metal. To calculate this quantity to a sufficient rate or precision, the potential seen by the electron must be known quite accurately. We conclude that Gadzuk's theory does not permit accurate knowledge of the potential and that a more self-consistent treatment such as the Thomas-Fermi method must be used.

LITERATURE CITED

- (1) J. C. Slater and K. H. Johnson, Quantum Chemistry and Catalysis, Physics Today (October 1974), 34.
- (2) C. A. Morrison, N. Karayianis, and D. E. Wortman, A Possible Use of the Surface States of Transition and Rare-Earth Metal Ions in the Theory of Catalysis, Harry Diamond Laboratories TR-1752 (April 1976).
- (3) C. A. Morrison, Phys. Lett., 51A (1975), 49.
- (4) J. W. Gadzuk, Surface Science, 6 (1967), 133.
- (5) J. W. Gadzuk, Surface Science, 6 (1967), 159.
- (6) F. Herman and S. Skillman, Atomic Structure Calculations, Prentice Hall, Inc., Englewood Cliffs, NJ (1963).
- (7) M. Abramowitz and I. A. Stegun, ed., Handbook of Mathematical Functions, National Bureau of Standards, Gaithersburg, MD (1964).
- (8) W. A. Harrison, Pseudopotentials in the Theory of Metals, Benjamin, New York (1966).
- (9) B. G. Wybourne, Spectroscopic Properties of Rare Earths, Intersciences Publishers, New York (1965).
- (10) F. M. Propst, Phys. Rev., 129 (1962), 7.
- (11) D. Pines, Elementary Excitations in Solids, Benjamin, New York (1963), 96.

## SYMBOLS

|                    |                                          |
|--------------------|------------------------------------------|
| a                  | lattice constant                         |
| $\alpha_o$         | Bohr radius                              |
| B <sub>nm</sub>    | crystal field parameter                  |
| E <sub>F</sub>     | Fermi energy                             |
| $\hbar$            | Planck's constant                        |
| H                  | single electron Hamiltonian              |
| m                  | electron mass                            |
| N                  | number of free electrons per unit volume |
| p                  | momentum operator                        |
| q                  | electron charge                          |
| Q <sub>1</sub>     | residual charge                          |
| r                  | ion core                                 |
| R                  | ion image                                |
| s                  | distance of nucleus from surface         |
| s <sub>c</sub>     | cutoff distance                          |
| v <sub>i</sub>     | interaction energy                       |
| v <sub>o</sub>     | sum of Fermi energy and work function    |
| v <sub>p</sub> (z) | electrostatic potential energy           |
| v <sub>s</sub>     | surface-state potential                  |
| x,y,z              | coordinates normal to metal surface      |
| $\delta$           | Dirac delta function                     |
| $\Delta E_i$       | energy shift                             |

SYMBOLS (CONT'D)

|              |                                     |
|--------------|-------------------------------------|
| $\Delta E_n$ | energy shift due to renormalization |
| $\sigma$     | surface-charge density              |
| $\phi$       | work function                       |
| *            | complex conjugation                 |
| $\nabla^2$   | Laplacian operator                  |

APPENDIX A.--ENERGY SHIFT IN GADZUK'S THEORY

In this appendix, we derive the energy shift due to the image charges as originally presented by Gadzuk.<sup>1</sup> We set up a coordinate system centered about the ion core of the ad-atom, with the z-axis normal to the surface of the metal. In this coordinate system, the nucleus is at (0,0,0) (fig. 1 in main body of report), and the electron is at point  $\underline{r} = (x, y, z)$ . The image potential ( $\phi_{\text{image}}$ ) at point  $\underline{r}$  due to charge  $q$  at  $\underline{r}'$  with an ideal metal to the left of plane  $z = -s$  is given by

$$\phi_{\text{image}} = \frac{q}{|\underline{r} - \underline{r}'|} - \frac{q}{|\underline{r} + 2\underline{s} - \underline{r}''|}, \quad (\text{A-1})$$

where

$$\underline{s} = \hat{\mathbf{e}}_z s,$$

$$\underline{r}'' = (x', y', -z') .$$

If we have an assembly of charges, the total potential energy of the system is equal to the total work done in bringing the charges to their positions from infinity. From equation (A-1), we calculate, for the system of figure A-1,

$$U_i = -\frac{q^2}{r} - \frac{q^2}{4(s+z)} + \frac{q^2}{|2\underline{s} + \underline{r}|} - \frac{q^2}{4s}, \quad (\text{A-2})$$

---

<sup>1</sup>J. W. Gadzuk, *Surface Science*, 6 (1967), 159.

APPENDIX A

where

$U_i$  is the total potential energy,  
 $q$  is the electronic charge,  
 $r$  is the ion core,  
 $s$  is the distance of the nucleus from the surface.

In equation (A-2), the first term represents the direct electron-ion interaction; the second is the interaction of the electron with its own image; the third is the interaction of the electron with the ion image; and the last is the ion-ion image interaction. The first term is included in the unperturbed Hamiltonian, while the last term does not depend on the electron coordinates.

Finally, we make the approximation  $|2s + z| \approx (2s + z)$  in the third term in equation (A-2). Therefore, the second and third terms in equation (A-2) are

$$V_i = -\frac{q^2}{4(s+z)} + \frac{q^2}{2s+z} , \quad (A-3)$$

(where  $V_i$  is the interaction energy) which is the form used by Gadzuk.

In calculating the energy shift due to the potential of equation (A-3), Gadzuk made the additional assumption that the electron wave function vanishes for  $z < s_c - s$ , where  $s_c$ , the cutoff parameter, is given by

$$V_i(z) \Big|_{z=s_c-s} = -V_o , \quad (A-4)$$

where  $V_o$  is the sum of the Fermi energy,  $E_F$ , and the work function,  $\phi$ . Equation (A-4) yields the following result for  $s_c$ :

$$s_c = \frac{1}{2} \left\{ [(s + \lambda)(s + 9\lambda)]^{\frac{1}{2}} - s - 3\lambda \right\} , \quad (A-5)$$

APPENDIX A

where

$$\lambda = q^2/4V_0 = 3.6/V_0 ,$$

$V_0$  is in electron volts,

$\lambda$  is in angstrom units.

The electron wave function is taken as

$$\psi(r) = N(1 - \alpha r)e^{-\alpha r} , \quad (A-6)$$

where

$\psi$  is the wave function,

$N$  is the normalization constant,

and  $\psi$  is assumed to vanish for  $z < s_c - s$ . Therefore,  $N$  is given by

$$\frac{1}{N^2} = 2\pi \int_{s_c - s}^{\infty} dz \int_0^{\infty} \rho d\rho (1 - \alpha r)^2 e^{-2\alpha r} , \quad (A-7)$$

where  $r = (\rho^2 + z^2)^{\frac{1}{2}}$ . The energy shift is obtained by first-order perturbation theory:

$$\Delta E_i = 2\pi N^2 \int_{s_c - s}^{\infty} dz V_i(z) \int_0^{\infty} \rho d\rho (1 - \alpha r)^2 e^{-2\alpha r} , \quad (A-8)$$

where  $\Delta E_i$  is the energy shift. The integral over  $\rho$  may be easily performed by making the substitution  $\rho = r - z$ . The result is

$$\Delta E_i = e^2 \frac{\int_{s_c - s}^{\infty} dz F(|z|) \left[ \frac{1}{2s + z} - \frac{1}{4(s + z)} \right]}{\int_{s_c - s}^{\infty} dz F(|z|)} , \quad (A-9)$$

APPENDIX A

where

$$F(z) = \frac{1}{4\alpha^2} e^{-2\alpha z} \left( \frac{1}{2} + \alpha z - \alpha^2 z^2 + 2\alpha^3 z^3 \right), \quad (A-10)$$

and the z-integrals may be performed to give

$$\begin{aligned} \Delta E_i &= \frac{e^{2\alpha}}{4} \left\{ 4g(2\alpha s) [Ei(4\alpha s) - Ei[2\alpha(s + s_c)]] \right. \\ &\quad - 4g(-2\alpha s) Ei(-4\alpha s) - g(\alpha s) [Ei(2\alpha s) - Ei(2\alpha s_c)] \\ &\quad + g(-\alpha s) Ei(-2\alpha s) + \left[ \frac{9}{4} + \frac{3\alpha}{2} (s - s_c) + 25(\alpha s)^2 \right. \\ &\quad \left. - 13\alpha^2 s s_c + 3(\alpha s_c)^2 \right] \exp[-2\alpha(s - s_c)] \left. \right\} / \\ &\quad \left\{ 2 - \exp[-2\alpha(s - s_c)] \left[ 1 + \frac{3\alpha}{2} (s - s_c) + \alpha^2 (s - s_c)^2 + \alpha^3 (s - s_c)^3 \right] \right\}, \end{aligned} \quad (A-11)$$

where  $g(x) = (\frac{1}{2} + x - x^2 + 2x^3)e^{-2x}$ . This is the form used in the main body of this report. In equation (A-11), the exponential integral is

$$Ei(x) = \int_{-\infty}^x \frac{dt e^t}{t}.$$

Several convenient forms for computation are given by Abramowitz and Stegun.<sup>2</sup>

---

<sup>2</sup>M. Abramowitz and I. A. Stegun, ed., *Handbook of Mathematical Functions*, National Bureau of Standards, Gaithersburg, MD (1964).

## APPENDIX A

## SYMBOLS

|                       |                                       |
|-----------------------|---------------------------------------|
| $\hat{e}_z$           | unit vector in z direction            |
| $E_F$                 | Fermi energy                          |
| $q$                   | electronic charge                     |
| $r$                   | ion core                              |
| $r$                   | distance to point                     |
| $s, \tilde{s}$        | distance of nucleus from surface      |
| $s_c$                 | cutoff parameters                     |
| $U_i$                 | total potential energy                |
| $V_i$                 | interaction energy                    |
| $V_o$                 | sum of Fermi energy and work function |
| $\Delta E_i$          | energy shift                          |
| $\phi_{\text{image}}$ | image potential                       |
| $\phi$                | work function                         |
| $\psi$                | wave function                         |

## APPENDIX B.--POTENTIAL DUE TO IONS IN SOLID

### B-1. INTRODUCTION

In this appendix, we discuss two contributions to the electrostatic potential outside a metal surface. One contribution is due to the lattice of point charges and the uniform background of the electron gas. The second contribution is due to the asphericity of the ions constituting the solid; this asphericity depends on the electronic state of the ions.

### B-2. POINT-CHARGE LATTICE SUM

In discussing the first contribution to the potential, we consider a rectangular lattice with lattice constants  $a$  and  $b$ . It is assumed that a point charge,  $Qq$ , is situated at the center of each unit cell. At the same time, we consider a uniform background of magnitude  $\sigma = -Qq/ab$ . It is necessary to consider both these contributions together in order to obtain finite results.

We consider only the first layer of point charges in the metal. We may do so since screening by the electron gas is expected to reduce the contributions of other layers considerably, and even without this screening the contributions due to the other layers are small, as shown by detailed calculations. We assume that the first layer is not screened at all.

To properly handle the divergence problems inherent in the calculation of the potential, we consider a finite system consisting of  $(2R_1 + 1)$  unit cells in the  $x$ -direction and  $(2R_2 + 1)$  unit cells in the  $y$ -direction. The origin of coordinates is taken at the center of the

APPENDIX B

lattice; we assume one ion at the center of each unit cell. The total electrostatic potential energy ( $V_p$ ) of a charge  $-q$  at the point  $(x, y, z)$  is then given by

$$V_p(x, y, z) = \sum_{p=-R_1}^{+R_1} \sum_{q'=-R_2}^{+R_1} \frac{-Qq^2}{[(x - pa)^2 + (y - q'b)^2 + z^2]^{\frac{1}{2}}} \\ + \int_{-a(R_1+\frac{1}{2})}^{a(R_1+\frac{1}{2})} dx' \int_{-b(R_2+\frac{1}{2})}^{b(R_2+\frac{1}{2})} dy' \\ \cdot \frac{Qq^2}{ab[(x - x')^2 + (y - y')^2 + z^2]^{\frac{1}{2}}} . \quad (B-1)$$

The first term in equation (B-1) is due to the point-charge lattice, and the second is due to the uniform background. We are interested in evaluating equation (B-1) in the limit  $R_1, R_2 \rightarrow \infty$ .

Equation (B-1) may be transformed to a more convenient form by making the substitution

$$\frac{1}{[(x - pa)^2 + (y - q'b)^2 + z^2]^{\frac{1}{2}}} = \\ \frac{1}{\sqrt{\pi}} \int_0^\infty t^{-\frac{1}{2}} dt \exp\left\{-t[(x - pa)^2 + (y - q'b)^2 + z^2]\right\} . \quad (B-2)$$

Now we must consider sums of the form

$$S(t) = \sum_{p=-R_1}^{+R_1} \exp[-t(x - pa)^2] \quad (B-3)$$

## APPENDIX B

and use the method of converting such sums given by Whittaker and Watson.<sup>1</sup> Consider the function  $f(z) = \exp[-t(x - za)^2]$  in the complex plane. By considering the contour shown in figure B-1, we may show that

$$S(t) = \oint_C \frac{dz f(z)}{e^{2\pi iz} - 1} =$$

$$\lim_{\epsilon \rightarrow 0} \int_{-R_1 - \frac{1}{2}}^{R_1 + \frac{1}{2}} \frac{dx' f(x')}{e^{2\pi i(x' - i\epsilon)} - 1} - \int_{-R_1 - \frac{1}{2}}^{R_1 + \frac{1}{2}} \frac{dx' f(x')}{e^{2\pi i(x' + i\epsilon)} - 1}. \quad (B-4)$$

Now we may expand the denominators in equation (B-4) and take the limit. We obtain

$$S(t) = \sum_{p=-\infty}^{\infty} \int_{-R_1 - \frac{1}{2}}^{R_1 + \frac{1}{2}} dx' f(x') e^{-2\pi ipx'}. \quad (B-5)$$

Now we consider the sum in equation (B-1). We substitute equation (B-2) into equation (B-1) and use equation (B-5) to obtain

$$V_p(x, y, z) = - \sum_{p, q'=-\infty}^{\infty} Qq^2 \int_0^{\infty} \frac{t^{-\frac{1}{2}} dt}{\sqrt{\pi}} \exp(-tz^2)$$

$$\cdot \int_{-R_1 - \frac{1}{2}}^{R_1 + \frac{1}{2}} dx' e^{-2\pi ipx'} \int_{-R_2 - \frac{1}{2}}^{R_2 + \frac{1}{2}} dy' e^{-2\pi iq'y'}$$

$$\cdot \exp\left\{-t[(x - x'a)^2 + (y - y'b)^2]\right\}$$

$$+ Qq^2 \int_{-a(R_1 + \frac{1}{2})}^{a(R_1 + \frac{1}{2})} dx' \int_{-b(R_2 + \frac{1}{2})}^{b(R_2 + \frac{1}{2})} dy' \frac{1}{ab [(x - x')^2 + (y - y')^2 + z^2]^{\frac{1}{2}}}. \quad (B-6)$$

---

<sup>1</sup>E. T. Whittaker and G. N. Watson, *A Course of Modern Analyses*, University Press, Cambridge, U.K. (1950), 124.

APPENDIX B



Figure B-1. Contour used for integral.

Now we consider this expression in the limit as  $R_1$  and  $R_2$  become infinite. The integrals over  $t$  converge in the limit except for the integral with  $p = q' = 0$ . We consider this term separately. We have

$$-Qq^2 \int_0^\infty \frac{t^{-\frac{1}{2}} dt}{\sqrt{\pi}} \exp(-tz^2) \int_{-R_1-\frac{1}{2}}^{R_1+\frac{1}{2}} dx' \int_{-R_2-\frac{1}{2}}^{R_2+\frac{1}{2}} dy' \cdot \exp\left\{-t[(x - x'a)^2 + (y - y'b)^2]\right\} = \quad (B-7)$$

$$-Qq^2 \int_{-R_1-\frac{1}{2}}^{R_1+\frac{1}{2}} dx' \int_{-R_2-\frac{1}{2}}^{R_2+\frac{1}{2}} dy' \frac{1}{[(x - x'a)^2 + (y - y'b)^2]^{\frac{1}{2}}} ,$$

and this contribution cancels the last integral in equation (B-6). In the remainder of equation (B-6), we may immediately take the limit  $R_1, R_2 \rightarrow \infty$ . We have

$$\int_{-\infty}^{\infty} dx' e^{-2\pi i px'} \exp[-t(x - x'a)^2] = \frac{1}{a} \sqrt{\frac{\pi}{t}} \exp\left[-\frac{\pi^2 p^2}{ta^2} - \frac{2\pi i px}{a}\right], \quad (B-8)$$

with a similar result for the  $y'$  integration. Therefore, we obtain

$$v_p(x, y, z) = -\frac{Qq^2}{ab} \sum_{p, q'=-\infty}^{\infty} \exp\left[-2\pi i \left(\frac{px}{a} + \frac{q'y}{b}\right)\right] \cdot \sqrt{\pi} \int_0^\infty t^{-3/2} dt \exp\left[-tz^2 - \frac{\pi^2}{t} \left(\frac{p^2}{a^2} + \frac{q'^2}{b^2}\right)\right] \quad (B-9)$$

## APPENDIX B

where the prime sign on the summation in equation (B-9) indicates that the term  $p=q'=0$  is to be omitted. The integral in equation (B-9) may be performed to obtain

$$v_p(x, y, z) = -\frac{q^2}{ab} \sum_{p, q'=-\infty}^{\infty} \left( \frac{p^2}{a^2} + \frac{q'^2}{b^2} \right)^{-\frac{1}{2}} \cdot \exp \left[ -2\pi i \left( \frac{px}{a} + \frac{q'y}{b} \right) - 2\pi |z| \left( \frac{p^2}{a^2} + \frac{q'^2}{b^2} \right)^{\frac{1}{2}} \right]. \quad (B-10)$$

This is the final result.

## B-3. CONTRIBUTION OF SURFACE STATES

We now consider those contributions to the surface potential which depend on the states of the ions at the surface of the metal. Consider an ion whose center is on the lattice at the point

$$\underline{R}_i = \hat{e}_x p a + \hat{e}_y q' b, \quad (B-11)$$

where  $\underline{R}_i$  is the vector from the origin to the ion,  $\hat{e}_x$  and  $\hat{e}_y$  are unit vectors in the  $x$  and  $y$  directions, respectively, and an electron associated with the ion at distance  $\underline{r}'$  relative to  $\underline{R}_i$ . Then the potential  $\phi_i$ , at point  $\underline{r}$  due to this electron is given by

$$\begin{aligned} \phi_i &= -\frac{q}{|\underline{R}_i + \underline{r}' - \underline{r}|} \\ &= -\sum_{\ell, m} \frac{q(r')^\ell (-1)^\ell}{|\underline{R}_i - \underline{r}|^{\ell+1}} C_{\ell m}^*(\hat{r}') C_{\ell m}(\hat{\underline{R}}_i - \hat{\underline{r}}), \end{aligned} \quad (B-12)$$

where  $\hat{r}'$  and  $\hat{\underline{R}}_i - \hat{\underline{r}}$  are unit vectors in the direction of  $\underline{r}'$  and  $\underline{R}_i - \underline{r}$ , respectively, and the  $C_{\ell m}$  are related to the spherical harmonics by

APPENDIX B

$C_{\ell m} = [4\pi/(2\ell + 1)]^{1/2} Y_{\ell m}$  as defined elsewhere.<sup>2</sup> Now we assume that the ion is in a certain state and that the potential due to the ion may be obtained by summing equation (B-12) over all the electrons in the ion and taking the expectation value of the result over the ion state. We therefore obtain, for the potential at  $r$ ,

$$\phi_i(r) = q \sum_{\ell, m} \frac{(-1)^{\ell} q_{\ell m}^+ C_{\ell m}(\overset{\wedge}{R_i} - \overset{\wedge}{r})}{|R_i - r|^{\ell+1}}, \quad (B-13)$$

where

$$q_{\ell m} = - \sum_e \langle \psi | r' \overset{\ell}{C}_{\ell m}(\overset{\wedge}{r}') | \psi \rangle .$$

Quantity  $q_{\ell m}$  is thus a function of the state of the surface ion. The  $\ell = 0$  part of equation (B-13) is the point-charge lattice sum considered in section B-2.

For the other terms in equation (B-13), we assume that all the surface ions are in the same state. We therefore obtain, for the potential energy,  $V_s$ , of an electron at  $r$ ,

$$V_s(r) = -q^2 \sum_{\ell, m, i} \frac{(-1)^{\ell} q_{\ell m}^+ C_{\ell m}(\overset{\wedge}{R_i} - \overset{\wedge}{r})}{|R_i - r|^{\ell+1}} . \quad (B-14)$$

The sum over  $i$  in equation (B-14) is a lattice sum similar to that considered earlier. It may be converted to a more convenient form by the same techniques illustrated in section B-2 for the point-charge sum. The result is

---

<sup>2</sup>C. A. Morrison, N. Karayianis, and D. E. Wortman, *A Possible Use of the Surface States of Transition and Rare-Earth Metal Ions in the Theory of Catalysis*, Harry Diamond Laboratories TR-1752 (April 1976).

## APPENDIX B

$$\begin{aligned}
 v_s(r) = & -\frac{q^2}{ab} \sum_{\ell, m, p, q'} (2\pi)^{\ell} q_{\ell m} \left( \frac{p^2}{a^2} + \frac{q'^2}{b^2} \right)^{\frac{\ell - |m| - 1}{2}} \\
 & \cdot \exp \left[ -2\pi i \left( \frac{px}{a} + \frac{q'y}{b} \right) - 2\pi |z| \left( \frac{p^2}{a^2} + \frac{q'^2}{b^2} \right)^{\frac{1}{2}} \right] \\
 & \cdot [(\ell - m)! (\ell + m)!]^{\frac{1}{2}} \begin{cases} (-1)^m \left( \frac{q'}{b} - i \frac{p}{a} \right)^m, & m \geq 0 \\ \left( \frac{q'}{b} + i \frac{p}{a} \right)^{|m|}, & m < 0 \end{cases} \quad (B-15)
 \end{aligned}$$

## APPENDIX B

## SYMBOLS

|                               |                                                     |
|-------------------------------|-----------------------------------------------------|
| a,b                           | lattice constants                                   |
| $\hat{e}_x, \hat{e}_y$        | unit vectors in x and y directions                  |
| p                             | momentum operator                                   |
| Qq                            | point charge                                        |
| $\xi$                         | point                                               |
| $\hat{r}'$                    | unit vector in direction of $\xi'$                  |
| $\hat{\underline{R}_i - \xi}$ | unit vector in direction of $\underline{R}_i - \xi$ |
| $\underline{R}_i$             | vector from origin to ion                           |
| $V_p$                         | electrostatic potential energy                      |
| $V_s$                         | potential energy                                    |
| $x, y, z$                     | coordinates normal to metal surface                 |
| $x', y', z'$                  |                                                     |
| $\sigma$                      | magnitude                                           |
| $\phi_i$                      | potential                                           |
| $\Phi$                        | work function                                       |
| $\psi$                        | wave function                                       |

APPENDIX C. ENERGY SHIFT DUE TO POINT-CHARGE AND SURFACE-STATE POTENTIALS

In calculating the energy shift due to the ions in the metal, for each type of ion on the surface, we must consider sums of the type shown in equations (B-10) and (B-15) in appendix B of this report. The coordinates of the ion in the unit cell relative to some arbitrary origin are contained in the  $x$  and  $y$  in these equations. There are three contributions to the  $x$  and  $y$ :

a. Coordinates of the nucleus of the ad-atom relative to the origin of the lattice,  $x_o$ ,  $y_o$

b. Coordinates of the lattice ions in the unit cell relative to the origin,  $x_i$ ,  $y_i$

c. Coordinates of the ad-atom electron relative to the nucleus,  $x$ ,  $y$

Thus, the term  $[(px/a) + (q'y/b)]$  in equations (B-10) and (B-15) is to be replaced by

$$\left[ \frac{p}{a} (x + x_o - x_i) + \frac{q'}{b} (y + y_o - y_i) \right].$$

For the PrSb lattice in the [100] plane, the ad-atom is directly above a Pr ion. In this example, the lattice is square ( $a = b$ ); for the [100] plane, Pr ions are at

$$x_1 = 0, y_1 = 0, \quad (C-1)$$

$$x_2 = a/2, y_2 = a/2.$$

APPENDIX C

The Sb ions are at

$$\begin{aligned}x_3 &= 0, \quad y_3 = a/2, \\x_4 &= a/2, \quad y_4 = 0.\end{aligned}\tag{C-2}$$

Since the ad-atom is directly over a Pr ion,  $x_0 = y_0 = 0$ . There is a sum over  $i$  (1, 2, 3, 4) in equations (B-10) and (B-15); the  $q_{lm}$  are functions of  $i$ . For PrSb, we take  $q_{lm}(1) = q_{lm}(2)$  and  $q_{lm}(3) = q_{lm}(4) = 0$ . For Pt and W, we ignore the surface-state contribution and consider simply the point-charge potential. We have Pt ions at the [100] plane:

$$\begin{aligned}x_1 &= 0, \quad y_1 = 0, \\x_2 &= a/2, \quad y_2 = a/2,\end{aligned}\tag{C-3}$$

and for W we have one ion per unit cell for the [100] plane, at  $x_1 = y_1 = 0$ .

For these simple lattices, the sum over  $i$  can be simplified. For Pt, we take only terms with  $(p + q')$  even and  $(p + q')$  odd in equations (B-10) and (B-15) and multiply the result by 2. For PrSb, we take the sum of the  $(p + q')$  even and  $(p + q')$  odd terms for the Pr ions and the difference of the  $(p + q')$  even and  $(p + q')$  odd terms for the Sb ions and multiply both Pr and Sb by 2. Doing so removes the  $i$  sum and eliminates the dependence of equations (B-10) and (B-15) on the unit-cell coordinates.

To obtain the energy shift due to these terms, we consider the expectation value of the function

$$g(r) = \exp \left[ -2\pi i \left( \frac{px}{a} + \frac{q'y}{b} \right) - 2\pi z \left( \frac{p^2}{a^2} + \frac{q'^2}{b^2} \right)^{\frac{1}{2}} \right], \tag{C-4}$$

APPENDIX C

when  $z$  is now measured relative to the nucleus of the ad-atom. We need the integral

$$\int_0^{2\pi} d\phi \int_{s_c - s}^{\infty} dz \int_0^{\infty} \rho d\rho (1 - \alpha r)^2 e^{-2\alpha r} g(\xi) \equiv \frac{\pi}{2\alpha^3} G(s - s_c, \alpha, p, q'). \quad (C-5)$$

The angular integral is

$$\int_0^{2\pi} d\phi \exp \left[ -2\pi \left( \frac{px}{a} + \frac{q'y}{b} \right) \right] = 2\pi J_0 \left[ 2\pi \rho \left( \frac{p^2}{a^2} + \frac{q'^2}{b^2} \right)^{1/2} \right], \quad (C-6)$$

where  $J_0$  is the Bessel function of zero order and the  $\rho$  integrals may be performed by substituting  $\rho = (r^2 - z^2)^{1/2}$  into equation (C-5). We use the relations

$$\int_1^{\infty} x dx e^{-\alpha x} J_0 \left[ \beta (x^2 - 1)^{1/2} \right] = \left[ \frac{\alpha}{\alpha^2 + \beta^2} + \frac{\alpha}{(\alpha^2 + \beta^2)^{3/2}} \right] e^{-(\alpha^2 + \beta^2)^{1/2}}, \quad (C-7)$$

$$\begin{aligned} \int_1^{\infty} x^2 dx e^{-\alpha x} J_0 \left[ \beta (x^2 - 1)^{1/2} \right] &= \left[ \frac{3\alpha^2}{(\alpha^2 + \beta^2)^{5/2}} + \frac{3\alpha^2}{(\alpha^2 + \beta^2)^2} \right. \\ &\quad \left. + \frac{\alpha^2 - 1}{(\alpha^2 + \beta^2)^{3/2}} - \frac{1}{\alpha^2 + \beta^2} \right] e^{-(\alpha^2 + \beta^2)^{1/2}} \end{aligned} \quad (C-8)$$

$$\begin{aligned} \int_1^{\infty} x^3 dx e^{-\alpha x} J_0 \left[ \beta (x^2 - 1)^{1/2} \right] &= \left[ \frac{15\alpha^3}{(\alpha^2 + \beta^2)^{7/2}} + \frac{15\alpha^3}{(\alpha^2 + \beta^2)^3} + \frac{6\alpha^3 - 9\alpha}{(\alpha^2 + \beta^2)^{5/2}} \right. \\ &\quad \left. + \frac{\alpha^3 - 9\alpha}{(\alpha^2 + \beta^2)^2} - \frac{3\alpha}{(\alpha^2 + \beta^2)^{3/2}} \right] e^{-(\alpha^2 + \beta^2)^{1/2}}. \end{aligned} \quad (C-9)$$

APPENDIX C

Thus, substituting equations (C-7) to (C-9) into equation (C-5), we are left with the z-integral, which is an integral of an exponential in z multiplied by a polynomial in z. The result is

$$G(s - s_c, \alpha, p, q') = 4\alpha^3 \left\{ \frac{1}{8(R - \gamma)^4} [4(R - \gamma)^3 A + 2\alpha(R - \gamma)^2 B + 2\alpha^2(R - \gamma)C + 3\alpha^3 D] + \frac{s - s_c}{4(R - \gamma)^3} [2\alpha(R - \gamma)^2 B + 2\alpha^2(R - \gamma)C + 3\alpha^3 D] + \frac{(s - s_c)^2}{4(R - \gamma)^2} [2\alpha^2(R - \gamma)C + 3\alpha^3 D] + \frac{1}{2} \frac{\alpha^3 D}{R - \gamma} (s - s_c)^3 e^{2(R-\gamma)(s_c-s)} \right\} \quad (C-10)$$

where

$$\gamma = \pi \left( \frac{p^2}{a^2} + \frac{q'^2}{b^2} \right)^{\frac{1}{2}}$$

$$R = (\gamma^2 + \alpha^2)^{\frac{1}{2}}$$

$$A = \frac{\alpha}{2R^3} - \frac{21\alpha^3}{16R^5} + \frac{15\alpha^5}{16R^7},$$

$$B = \frac{1}{R^2} - \frac{21\alpha^2}{8R^4} + \frac{15\alpha^4}{8R^6},$$

$$C = \frac{7\alpha}{4R^3} + \frac{3\alpha^3}{2R^5},$$

$$D = \frac{\alpha^2}{2R^4}. \quad (C-11)$$

APPENDIX C

We may use the above to calculate the energy shifts. Defining

$$H(s - s_c, \alpha, p, q') = [2 - G(s - s_c, \alpha, p, q')] / \left\{ 2 - e^{-2\alpha(s-s_c)} \left[ 1 + \frac{3}{2} \alpha(s - s_c) + \alpha^2(s - s_c)^2 + \alpha^3(s - s_c)^3 \right] \right\}, \quad (C-12)$$

we have for the point-charge potential shift,  $\Delta E_p$ ,

$$\begin{aligned} \Delta E_p &= -\frac{q^2}{ab} \sum_{i,p,q'=-\infty}^{\infty} \left( \frac{p^2}{a^2} + \frac{q'^2}{b^2} \right)^{-\frac{1}{2}} H(s - s_c, \alpha, p, q') \\ &\cdot \exp \left\{ -2\pi i \left[ \frac{p(x_o + x_i)}{a} + \frac{q'(y_o + y_i)}{b} \right] - 2\pi |z| \left( \frac{p^2}{a^2} + \frac{q'^2}{b^2} \right)^{\frac{1}{2}} \right\}, \end{aligned} \quad (C-13)$$

and for the surface-state potential shift,  $\Delta E_s$ ,

$$\begin{aligned} \Delta E_s &= -\frac{q^2}{ab} \sum_{i,l,m,p,q'} (2\pi)^l q_{lm} \left( \frac{p^2}{a^2} + \frac{q'^2}{b^2} \right)^{\frac{l-|m|-1}{2}} H(s - s_c, \alpha, p, q') \\ &\cdot \exp \left\{ -2\pi i \left[ \frac{p(x_o + x_i)}{a} + \frac{q'(y_o + y_i)}{b} \right] - 2\pi |z| \left( \frac{p^2}{a^2} + \frac{q'^2}{b^2} \right)^{\frac{1}{2}} \right\} \\ &\cdot [(l-m)(l+m)]^{\frac{1}{2}} \begin{cases} (-1)^m \left( \frac{q'}{b} - \frac{ip}{a} \right)^m, & m \geq 0, \\ \left( \frac{q'}{b} + \frac{ip}{a} \right)^{|m|}, & m < 0. \end{cases} \end{aligned} \quad (C-14)$$

APPENDIX C

SYMBOLS

|              |                                                             |
|--------------|-------------------------------------------------------------|
| a,b          | lattice constants                                           |
| $J_0$        | Bessel function of zero order                               |
| p            | momentum operator                                           |
| q            | electronic charge                                           |
| Q            | charge on lattice ion                                       |
| s            | distance of nucleus from surface                            |
| $s_c$        | cutoff distance                                             |
| x,y,z        | coordinates of ad-atom electron relative to nucleus         |
| $x_i, y_i$   | coordinates of lattice ions in unit cell relative to origin |
| $x_o, y_o$   | coordinates of nucleus of ad-atom relative to origin        |
| $\Delta E_p$ | point-charge potential shift                                |
| $\Delta E_s$ | surface-state potential shift                               |
| $\phi$       | potential                                                   |

DISTRIBUTION

DEFENSE DOCUMENTATION CENTER  
CAMERON STATION, BUILDING 5  
ALEXANDRIA, VA 22314  
ATTN DDC-TCA (12 COPIES)

COMMANDER  
USA RSCH & STD GP (EUR)  
BOX 65  
FPO NEW YORK 09510  
ATTN LTC JAMES M. KENNEDY, JR.  
CHIEF, PHYSICS & MATH BRANCH

COMMANDER  
US ARMY MATERIEL DEVELOPMENT  
& READINESS COMMAND  
5001 EISENHOWER AVENUE  
ALEXANDRIA, VA 22333  
ATTN DRXAM-TL, HQ TECH LIBRARY  
ATTN DRCDE, DIR FOR DEV & ENGR

COMMANDER  
USA ARMAMENT COMMAND  
ROCK ISLAND, IL 61201  
ATTN DRSAR-ASF, FUZE DIV  
ATTN DRSAR-RDF, SYS DEV DIV - FUZES

COMMANDER  
USA MISSILE & MUNITIONS CENTER & SCHOOL  
REDSTONE ARSENAL, AL 35809  
ATTN ATSK-CTD-F

DIRECTOR  
DEFENSE NUCLEAR AGENCY  
WASHINGTON, DC 20305  
ATTN APTL, TECH LIBRARY

DIRECTOR OF DEFENSE RES AND  
ENGINEERING  
WASHINGTON, DC 20301  
ATTN TECHNICAL LIBRARY (3C128)

OFFICE, CHIEF OF RESEARCH,  
DEVELOPMENT, & ACQUISITION  
DEPARTMENT OF THE ARMY  
WASHINGTON, DC 20310  
ATTN DAMA-ARZ-A, CHIEF SCIENTIST  
DR. M. E. LASER  
ATTN DAMA-ARZ-B, DR. I. R. HERSHNER

COMMANDER  
US ARMY RESEARCH OFFICE (DURHAM)  
PO BOX 12211  
RESEARCH TRIANGLE PARK, NC 27709  
ATTN DR. ROBERT J. LONTZ  
ATTN DR. CHARLES BOGOSIAN

COMMANDER  
ARMY MATERIALS & MECHANICS RESEARCH  
CENTER  
WATERTOWN, MA 02172  
ATTN DRXMR-TL, TECH LIBRARY ER

COMMANDER  
NATICK LABORATORIES  
NATICK, MA 01762  
ATTN DRXRES-RTL, TECH LIBRARY

COMMANDER  
USA FOREIGN SCIENCE & TECHNOLOGY CENTER  
FEDERAL OFFICE BUILDING  
220 7TH STREET NE  
CHARLOTTESVILLE, VA 22901  
ATTN DRXST-BS, BASIC SCIENCE DIV

DIRECTOR  
USA BALLISTICS RESEARCH LABORATORIES  
ABERDEEN PROVING GROUND, MD 21005  
ATTN DRXBR, DIRECTOR, R. EICHELBERGER  
ATTN DRXBR-TB, FRANK J. ALLEN  
ATTN DRXBR, TECH LIBRARY

COMMANDER  
USA ELECTRONICS COMMAND  
FORT MONMOUTH, NJ 07703  
ATTN DRSEL-GG, TECHNICAL LIBRARY  
ATTN DRSEL-CT-L, B. LOUIS  
ATTN DRSEL-CT-L, DR. E. SCHIEL  
ATTN DRSEL-CT-L, DR. HIESLMAIR  
ATTN DRSEL-CT-L, J. STROZYK  
ATTN DRSEL-CT-L, DR. E. J. TEBO  
ATTN DRSEL-CT-L, DR. R. G. BUSER  
ATTN DRSEL-WL-S, J. CHARLTON

COMMANDER  
USA ELECTRONICS COMMAND  
FORT BELVOIR, VA 22060  
ATTN DRSEL-NV, NIGHT VISION LABORATORY  
ATTN DRSEL-NV, LIBRARY

COMMANDER  
USA ELECTRONICS COMMAND  
WHITE SANDS MISSILE RANGE, NM 88002  
ATTN DRSEL-BL, LIBRARY

DIRECTOR  
DEFENSE COMMUNICATIONS ENGINEER CENTER  
1860 WIEHLE AVE  
RESTON, VA 22090  
ATTN PETER A. VENA

COMMANDER  
USA MISSILE COMMAND  
REDSTONE ARSENAL, AL 35809  
ATTN DRSMI-RB, REDSTONE SCIENTIFIC  
INFO CENTER  
ATTN DRSMI-RR, DR. J. P. HALLOWES  
ATTN DRCPM-HEL, W. B. JENNINGS  
ATTN DRSMI-RR, T. HONEYCUTT

COMMANDER  
EDGEWOOD ARSENAL  
EDGEWOOD ARSENAL, MD 21010  
ATTN SAREA-TS-L, TECH LIBRARY

DISTRIBUTION (Cont'd)

COMMANDER  
FRANKFORD ARSENAL  
BRIDGE & TACONY STREETS  
PHILADELPHIA, PA 19137  
ATTN K1000, TECH LIBRARY

COMMANDER  
PICATINNY ARSENAL  
DOVER, NJ 07801  
ATTN SARPA-TS-T-S, TECH LIBRARY

COMMANDER  
USA TEST & EVALUATION COMMAND  
ABERDEEN PROVING GROUND, MD 21005  
ATTN TECH LIBRARY

COMMANDER  
USA ABERDEEN PROVING GROUND  
ABERDEEN PROVING GROUND, MD 21005  
ATTN STEAP-TL, TECH LIBRARY, BLDG 305

COMMANDER  
WHITE SANDS MISSILE RANGE, NM 88002  
ATTN DRSEL-WL-MS, ROBERT NELSON

COMMANDER  
GENERAL THOMAS J. RODMAN LABORATORY  
ROCK ISLAND ARSENAL  
ROCK ISLAND, IL 61201  
ATTN SWERR-PL, TECH LIBRARY

COMMANDER  
USA CHEMICAL CENTER & SCHOOL  
FORT MC CLELLAN, AL 36201

COMMANDER  
NAVAL ELECTRONICS LABORATORY CENTER  
SAN DIEGO, CA 92152  
ATTN TECH LIBRARY

COMMANDER  
NAVAL SURFACE WEAPONS CENTER  
WHITE OAK, MD 20910  
ATTN CODE 730, LIBRARY DIV

DIRECTOR  
NAVAL RESEARCH LABORATORY  
WASHINGTON, DC 20390  
ATTN CODE 2620, TECH LIBRARY BR  
ATTN CODE 5554, DR. LEON ESTEROWITZ

COMMANDER  
NAVAL WEAPONS CENTER  
CHINA LAKE, CA 93555  
ATTN CODE 753, LIBRARY DIV

COMMANDER  
AF CAMBRIDGE RESEARCH LABORATORIES, AFSC  
L. G. HANSCOM FIELD  
BEDFORD, MA 01730  
ATTN TECH LIBRARY

DEPARTMENT OF COMMERCE  
NATIONAL BUREAU OF STANDARDS  
WASHINGTON, DC 20234  
ATTN LIBRARY

DEPARTMENT OF COMMERCE  
NATIONAL BUREAU OF STANDARDS  
BOULDER, CO 80302  
ATTN LIBRARY

DIRECTOR  
LAWRENCE RADIATION LABORATORY  
LIVERMORE, CA 94550  
ATTN DR. MARVIN J. WEBER  
ATTN DR. HELMUT A. KOEHLER

NASA GODDARD SPACE FLIGHT CENTER  
GREENBELT, MD 20771  
ATTN CODE 252, DOC SECT, LIBRARY

NATIONAL OCEANIC & ATMOSPHERIC ADM  
ENVIRONMENTAL RESEARCH LABORATORIES  
BOULDER, CO 80302  
ATTN LIBRARY, R-51, TECH REPORTS

CARNEGIE MELLON UNIVERSITY  
SCHENLEY PARK  
PITTSBURGH, PA 15213  
ATTN PHYSICS & EE  
DR. J. O. ARTMAN

UNIVERSITY OF MICHIGAN  
COLLEGE OF ENGINEERING NORTH CAMPUS  
DEPARTMENT OF NUCLEAR ENGINEERING  
ANN ARBOR, MI 48104  
ATTN DR. CHIHIRO KIKUCHI

DIRECTOR  
ADVISORY GROUP ON ELECTRON DEVICES  
201 VARICK STREET  
NEW YORK, NY 10013  
ATTN SECTRY, WORKING GROUP D

CRYSTAL PHYSICS LABORATORY  
MASSACHUSETTS INSTITUTE OF TECHNOLOGY  
CAMBRIDGE, MA 02139  
ATTN DR. A. LINZ  
ATTN DR. H. P. JENSSON

CENTER FOR LASER STUDIES  
UNIVERSITY OF SOUTHERN CALIFORNIA  
LOS ANGELES, CA 90007  
ATTN DR. L. G. DE SHAZER

OFFICE OF NAVAL RESEARCH  
ARLINGTON, VA 22217  
ATTN DR. V. O. NICOLAI

GEORGE WASHINGTON UNIVERSITY  
WASHINGTON, DC 20052  
ATTN DR. J. V. RICHARD KAUFMAN, RESEARCH  
PROFESSOR OF ENGINEERING ADMINISTRATION

DISTRIBUTION (Cont'd)

HARRY DIAMOND LABORATORIES  
ATTN LOWREY, AUSTIN, III, COL, COMMANDER/  
FLYER, I.N./LANDIS, P.E./  
SOMMER, H./OSWALD, R.B.  
ATTN CARTER, W.W., DR., TECHNICAL  
DIRECTOR/MARCUS, S.M.  
ATTN KIMMEL, S., PAO  
ATTN CHIEF, 0021  
ATTN CHIEF, 0022  
ATTN CHIEF, LAB 100  
ATTN CHIEF, LAB 200  
ATTN CHIEF, LAB 300  
ATTN CHIEF, LAB 400  
ATTN CHIEF, LAB 500  
ATTN CHIEF, LAB 600  
ATTN CHIEF, DIV 700  
ATTN CHIEF, DIV 800  
ATTN CHIEF, LAB 900  
ATTN CHIEF, LAB 1000  
ATTN RECORD COPY, BR 041  
ATTN HDL LIBRARY (3 COPIES)  
ATTN CHAIRMAN, EDITORIAL COMMITTEE  
ATTN CHIEF, 047  
ATTN TECH REPORTS, 013  
ATTN PATENT LAW BRANCH, 071  
ATTN GIDEP OFFICE, 741  
ATTN LANHAM, C., 0021  
ATTN FARRAR, R., 350  
ATTN GLEASON, T., 540  
ATTN KARAYIANIS, N., 320  
ATTN KULPA, S., 320  
ATTN LEAVITT, R., 320 (10 COPIES)  
ATTN MORRISON, C., 320 (10 COPIES)  
ATTN NEMARICH, J., 320  
ATTN SCALES, J., III, 540  
ATTN WORTMAN, D., 320  
ATTN SATTLER, J., 320  
ATTN WEBER, B., 320  
ATTN SIMONIS, G., 320