# Peer effect analysis with latent processes

Vincent Starck\* LMU München January 30, 2025

#### Abstract

I study peer effects that arise from irreversible decisions in the absence of a standard social equilibrium. I model a latent sequence of decisions in continuous time and obtain a closed-form solution for the likelihood. The method avoids regression on conditional expectations or linear-in-means regression – and thus reflection-type problems (Manski, 1993) or simultaneity issues – by modeling the (unobserved) realized direction of causality, whose probability is identified. For implementation, I propose a parsimonious parametric specification that introduces a peer effect parameter meant to capture the causal influence of first-movers on their peers. Parameters are shown to be consistently estimated by maximum likelihood methods and lend themselves to standard inference.

**Keywords**: Peer effects, Continuous time, Heterogeneity, Causal Inference, Networks.

# 1 Introduction

Analyzing peer effects is notoriously difficult. In a seminal paper, Manski (1993) discusses the reflection problem that arises when one runs a regression on the conditional expectation, which induces restrictions on the regression coefficients that lead to tautological models or identification issues.

 $<sup>^*</sup>$ I gratefully acknowledge financial support from the European Research Council (Starting Grant No. 852332)

In applications that feature small group or friendship, the channel of influence plausibly operates through actual outcomes, which leads to Spatial Autoregressive (SAR) or linear-in-means (LIM) models. They alleviate reflection problems insofar as they allow for identification of peer effects (Bramoullé, Djebbari and Fortin, 2009; De Giorgi, Pellizzari and Redaelli, 2010; Blume et al., 2015), e.g., through the use of non-overlaping peer groups that instruments away the simultaneity bias.

However, inference about the effect of peers using SAR models can be challenging. Manski (1993) points out several difficulties in identifying and estimating peer effects that transcend reflection regression issues. Identification can be tenuous in SAR models as it relies on restrictions induced by the functional form that are particularly sensitive to , e.g., measurement error or mechanical relationships between individual outcomes and group means (Gibbons and Overman, 2012; Angrist, 2014). Although identification is more the rule when the network is known Blume et al. (2015), estimation issues may still preclude reliable inference about peer effects Hayes and Levin (2024). In the case of irreversible decisions, the standard notion of social equilibrium is inadequate. People are induced to opt in over time according to their characteristics and shocks, then cannot subsequently adjust their outcomes.

I propose a new framework by modeling the latent sequence of decisions in continuous time. Considering the sequence of decisions has a few advantages. It offers a more natural framework to discuss causality, as it breaks the simultaneity by separating first-movers that potentially generate a causal reaction from the subjects of influence. Although the order in which decisions were taken is not identified absent additional information, it is possible to identify the probability of an order of adoption given individuals' characteristics.

The approach can provide some identifying power when peer groups overlap or if there are endogenous and exogenous peer effects. It also enables discussion of the diffusion process and counterfactual analysis about, say, the expected time before some fraction of the population adopts some technology or the impact of policy interventions.

I formalize the counterfactual framework using potential outcomes, and I define a causal peer effect parameter that can be consistently estimated by maximum likelihood methods. Decisions are explicitly made asynchronously, although their timing may not be observed. The order of arrival may generally be of interest, not only for its own sake or because it contributes to our understanding of peer effects and has potential policy-relevance, e.g., for targeting or diffusion.

Frameworks for analyzing peer effects beyond linear models are scarce but desirable. As summarized in Sacerdote (2014), "researchers have shown that linear-in-means model of peer effects is often not a good description of the world, although we do not yet have an agreed-upon model to replace it." Boucher et al. (2024) is a recent breakthrough that extends responses to a class that contains means, maximum, and minimum outcome.

The framework considers spatial and network applications, and as such has also connections to diffusion problems in the network literature (e.g., He and Song (2018)). It may also be useful to analyze staggered treatment adoption (Shaikh and Toulis, 2021; Athey and Imbens, 2022) by relaxing the standard assumption that treatment adoptions arise independently.

# 2 Causality and peer effects

I focus on irreversible decisions: there is an initial default state 0 and the decision to opt-in leads to an absorbing state 1. For instance, the outcome y might represent vaccination status, technology adoption, retirement, migration decision, etc. The goal is to model and estimate peer effects, *i.e.* how decisions of peers alter an individual's probability of opting in.

The adoption time of an individual i, denoted by  $T_i$ , is a random variable that depends on individuals' characteristics and their expectations. Observing a peer opting in modifies the likelihood that an individual does so as well. This can be due to conformity, information transmission, or other types of social influence. This implies that there is a shift in the distribution of the adoption time of individual i,  $T_i$ , upon observing the adoption of a peer.

Modeling the sequence of latent decisions offers a few advantages. Besides some identifying power and the possibility to discuss dynamics over time, it will allow for a parametric specification where covariates are trivially incorporated and a single causal peer effect parameter can be identified.

<sup>&</sup>lt;sup>1</sup>This can be because the action cannot be undone (e.g., vaccination), is too costly to reverse, or because the focus is on first-time events.

Adapting the potential outcome notation (Neyman, 1923; Rubin, 1974) to the current setup<sup>2</sup>, the adoption time is represented by  $T_i(\tau)$  for  $\tau \in \mathbb{R}^{n-1}$ : the adoption time of individual i depends on the adoption times of other individuals. This dependence carries over to the outcomes  $y_i \stackrel{\text{def}}{=} \mathbb{1}_{T_i < t}$ , which are observed for t = S > 0.

A parameter of interest is the analog of average treatment effect: the mean change in the outcome upon a change in  $\tau$ :

$$\delta(\tilde{\tau}, \tau) \stackrel{\text{def}}{=} \mathbb{E}[Y_i(\tilde{\tau}) - Y_i(\tau)] = \mathbb{P}[Y_i(\tilde{\tau}) = 1] - \mathbb{P}[Y_i(\tau) = 1] \tag{1}$$

For instance, one could be interested in  $\tilde{\tau} = \vec{0} \in \mathbb{R}^{n-1}$  and  $\tau = \infty e_i^3$  or  $\tau = \vec{\infty}$  so that the parameter describes the change in adoption probability induced by the initial adoption of one or all peers compared to them never adopting.

We could also be interested in counterfactual effects such as the expected adoption time,  $\mathbb{E}[T_i]$  and possible conditional versions, or the expected time before a fraction of the population opts in.

The tools of causal inference suggest a few strategies to identify parameters of interest. Intuitively, identification appears possible if there is some randomization of the intermediate times,  $T_{-i}^k$ . Because of continuous time, however, one will also need some time regularities unless one has the ability to conduct an experiment in which times are perfectly manipulated.

This assumption is often strong due to the endogeneity of the network to individual characteristics, for instance in the form of homophily bias (Shalizi and Thomas, 2011). Observational data thus requires controlling for possible confounders. Modeling network formation can offer avenues for improvement, see ??; large networks may offer further opportunities to identify latent variables (??). The assumption also

<sup>&</sup>lt;sup>2</sup>Potential outcomes have been used to discuss causal peer effects in different contexts. The literature on interference ("exogeneous peer effects" or sometimes spillovers), where one's outcome depends on neighbors' treatment, addresses (versions of) the issue and identifies direct and indirect effects under various relaxations of SUTVA (Toulis and Kao, 2013; Sofrygin and van der Laan, 2016; Aronow and Samii, 2017; Arpino, Benedictis and Mattei, 2017; Liu et al., 2019; Forastiere, Airoldi and Mealli, 2020; Jackson, Lin and Yu, 2020; Sánchez-Becerra, 2021; Huber and Steinmayr, 2021). Potential outcome that depends on peer's outcome (e.g., in Egami and Tchetgen Tchetgen (2024)) have been the object of less discussion. To my knowledge, the discussion of peer effects through the time dimension is new.

 $<sup>{}^{3}</sup>e_{i}$  is a vector whose only nonzero entry is a 1 in place i. I adopt the convention  $0 \cdot \infty = 0$ .

holds trivially with randomization of assigned times, independently of covariates.

This assumption typically has to be supplemented by some structure on time dynamics, either because one needs to extrapolate results and discuss future diffusion or because randomization imposes practical limitations, e.g., limited range of feasible values such as  $\tau = \vec{0}$ .

Timings contain strong identifying power, but are rarely observed. As a result, I formalize a latent process that enables maximum likelihood estimation even when there is no information about time or order of adoption.

The resulting change in the distribution of outcomes can be interpreted as a causal peer effect.

## 2.1 Stochastic process and likelihood

Individual adoption is modeled with the following continuous-time stochastic process:

**Definition 2.1** (Stochastic process). Let  $T_i^1$  be a set of random variables over  $\mathbb{R}^+$ . When a first individual, say k, opts in (i.e.,  $k = \arg\min_i(T_i^1)$ ), she withdraws and the remaining random variables are updated to  $T_i^{+k}$ . The process then goes on with the updated distributions conditional on the time elapsed, and so on. The time to adoption is therefore  $T_i = \sum_{k=1}^{n} T_{(k)}^{+(1),\cdots,+(k-1)}$ , where the sum ranges from 1 to the round where i comes first and (k) is the index of the 'winner' of stage k. The outcomes are observed at time  $S: y_i = \mathbb{1}_{T_i \leq S}$ .

This process is quite general in terms of the dynamics it allows. It basically only assumes the arrow of time, ruling out feedback from the future: the information set corresponds to the filtration generated by the outcomes.

Peer effects occur when the updated distributions do not coincide with the previous distribution. In the absence of peer effects, the potential outcomes do not vary with  $\tau$ . Indeed, they are related to the latent partial times  $T_i^{+_A}$ , where A denotes an ordered subset of  $\{1, \ldots, n\}$ , via

$$T_i(\tau) = \sum_{k} \left( \mathbb{1}(T_i^k \le \tau_{(k)} - \tau_{(k-1)}) T_i^k + \mathbb{1}(T_i^k \ge \tau_{(k)} - \tau_{(k-1)}) (\tau_{(k)} - \tau_{(k-1)}) \right)$$
(2)

where  $\tau_{(0)} \stackrel{\text{\tiny def}}{=} 0$  and the sum ranges from 1 to  $\arg\min_k \{T_i^k \geq \tau_{(k)} - \tau_{(k-1)}\}$ .

The latent partial times are usually correlated because characteristics influence both the choice of peers and the distribution of times. Controlling for these characteristics leads to the following assumption, which is related to a notion of unconfoundedness.

**Assumption 2.2** (Independence of latent partial times). The latent partial times are conditionally independent:  $T_i^k \perp \!\!\! \perp T_i^k | X, W$ 

When observables are limited to the outcomes, the distributions of times are not identified. To make the model tractable and operational, I specify the distribution to be exponential and assume that only the unordered decision of peers affects the distribution of latent partial times:

Assumption 2.3. 
$$T_i^{+_A}|X_i, W \sim Exp(\lambda_i^{+_{A\cap W}})$$

where 
$$A \subseteq \{1, \ldots, n\} \setminus i$$
.

I focus on Exponential distributions for two reasons. First, exponential waiting times arise automatically under the assumption of a constant probability per unit of time, a natural point of departure. Second, exponential distributions are particularly attractive from an analytical standpoint and ensure tractability. Due to the memorylessness property, conditioning on elapsed time is irrelevant. When k adopts, the clock should be restarted for all of their friends, but not for anyone else. However, due to the memorylessness property, the clock may be re-started for everyone, with the rate of non-friend left unchanged.

Importantly, exponential rates can be left unrestricted as function of covariates. Given a distribution of the outcomes, they are nonparametrically identified under some conditions, allowing considerable heterogeneity. Exponentials provide a convenient framework in which peer effects are easy to interpret and allow for considerable heterogeneity. When time analysis is of special interest (e.g., diffusion analysis, generation of counterfactuals, or identification based on times of adoption), the time dynamics induced by exponential distributions have further implications as they have a influence on some estimates.

To recover causal effects, there must be some form of unconfoundedness. If adoption is described by the stochastic process, the time to adoption of individual i under exogenous assignment of other partial times to  $\tau$  is  $T_i(\tau)$ . Then, unconfoundedness can be stated as follows.

**Assumption 2.4** (Unconfoundedness of timings).  $\forall i, \{T_{-i}^k, k\} \perp \!\!\!\perp \{T_i(\tau), \tau\} | X, W$  where  $T_{-i}$  is the set of times of all individuals but i.

**Proposition 2.5.** Unconfoundedness of timings is equivalent to independence of latent partial times.

This implies that the partial times  $T_i^{+*}$  are all independent conditional on X, W (although the actual times to adoption are not:  $T_i \not\perp \!\!\!\perp T_j$ , even conditionally, in the presence of peer effects).

Peer effects are defined at the individual level through changes in  $\lambda_i$  induced by neighboring adoptions. The model posits the existence (ex post) of a direction of causality, though the realized direction may not be observed by the researcher. This puts peer effects on a stronger theoretical ground as it defines a structural peer effect parameter and avoids ill-defined peer groups, which tend to be subject to the reflection problem (Manski, 1993).

The challenge is then to account for the selection aspects and time dynamics, especially under data limitations. One's outcome induces another's treatment and this arrow of causality is often unobserved because of limited information about the order of adoptions.

$$\mathbb{E}[Y_i(\vec{1}) - Y_i(\vec{\infty}) \ X] = e^{-\lambda_i S} (1 - e^{-(\lambda_i^{+W_i} - \lambda_i)S)}) \tag{3}$$

To the first-order,

$$e^{-\lambda_i S} (\lambda_i^{+W_i} - \lambda_i) S \tag{4}$$

The first term,  $e^{-\lambda_i S}$ , is the baseline probability of not opting in before time S, while  $(\lambda_i^{+w_i} - \lambda_i)$  reflects the change in exponential rates induced by the prior adoption of friends.

#### 2.2 Likelihood

Assume without loss that the individuals who opted correspond to the first G observations. Since the sequence of arrivals is unknown, the probability of the sample

corresponds to

$$\mathbb{P}[y_1 = \dots = y_G = 1; y_{G+1} = \dots = y_N = 0]$$

$$= \sum_{p \in \mathcal{P}} \mathbb{P}[y_1 = \dots = y_G = 1; y_{G+1} = \dots = y_N = 0; y_{G+1}, \dots, y_N > S; T_{p_1} < \dots < T_{p_G}]$$

where the sum is over all permutations (with generic element  $p = (p_1, \ldots, p_G)$ ) of the G first arrivals.

Consider the representative term in the sum with individual i being the i-th to adopt:

$$\int_{0}^{S} \int_{t_{1}^{1}}^{\infty} \cdots \int_{t_{1}^{1}}^{\infty} \prod_{i=1}^{N} \lambda_{i} e^{-\lambda_{i} t_{i}^{1}} \int_{0}^{S-t_{1}^{1}} \cdots \int_{t_{2}^{2}}^{\infty} \prod_{i=2}^{N} \lambda_{1}^{+1} e^{-\lambda_{i}^{+1} t_{i}^{2}} \cdots \int_{t_{G}^{G}}^{S-\sum_{g=1}^{G-1} t_{g}^{g}} \cdots \int_{t_{G}^{G}}^{\infty} \prod_{i=G}^{N} \lambda_{i}^{+1\cdots+G-1} e^{-\lambda_{i}^{+1\cdots+G-1} t_{i}^{G}} \int_{S-\sum_{g=1}^{G} t_{g}^{g}}^{\infty} \cdots \int_{S-\sum_{g=1}^{G} t_{g}^{g}}^{\infty} \prod_{i=G+1}^{N} \lambda_{i}^{+1\cdots+G} e^{-\lambda_{i}^{+1\cdots+G} t_{i}^{G+1}} dt_{1}^{1} \cdots dt_{N}^{1} dt_{2}^{2} \cdots dt_{N}^{2} \cdots dt_{G}^{G} \cdots dt_{N}^{G} \cdots dt_{1}^{G+1} \cdots dt_{N}^{G+1}$$

which, after some algebra, reduces to

$$e^{-\sum_{i=G+1}^{N} \lambda_i^{+1,\dots,+G} S} \left( \prod_{i=1}^{G} \lambda_i^{+1,\dots,+i-1} \right) I_{\{c_i,i=1,\dots,G\}}$$
 (5)

with 
$$I_{\{h_i,i=1,\cdots,H\}} \stackrel{\text{def}}{=} \frac{1}{\prod_{g=1}^G c_g} + (-1)^G \sum_{g=1}^G \frac{1}{\prod_{h\neq g} (c_g-c_h)} \frac{e^{-c_g S}}{c_g}$$
 and  $c_g \stackrel{\text{def}}{=} \sum_{i=g}^N \lambda_i^{+1,\cdots,+g-1} - \sum_{i=G+1}^N \lambda_i^{+1,\cdots,+g}$ .

Introducing  $c_{G+1} = 0$  and then  $\dot{c}_g \stackrel{\text{def}}{=} c_g + \sum_{i=G+1}^N \lambda_i^{+_1, \dots, +_G} = \sum_{i=g}^N \lambda_i^{+_1, \dots, +_{g-1}} \ge 0$  (with equality only if g = G + 1 and N = G), the likelihood simplifies to<sup>4</sup>

$$\prod_{i=1}^{G} \lambda_i^{+_1,\dots,+_{i-1}} \sum_{g=1}^{G+1} \frac{e^{-\dot{c}_g S}}{\prod_{h \neq g} \dot{c}_h - \dot{c}_g}$$
 (6)

**Theorem 2.6.** Given the stochastic process and the exponential specification, the following holds: If the latent partial times are independent, then the log-likelihood

<sup>&</sup>lt;sup>4</sup>It can be checked from the integral computation that the limit for a term in a denominator converging to 0 gives the correct probability at the points where the function is undefined.

takes the form

$$l \stackrel{\text{def}}{=} \ln \left( \sum_{p \in \mathcal{P}} \left( \prod_{i=1}^{G} \lambda_{p_i}^{+_{p_1}, \dots, +_{p_{i-1}}} \right) \sum_{g=1}^{G+1} \frac{e^{-\dot{c}_{p_g} S}}{\prod_{h \neq g} \dot{c}_{p_h} - \dot{c}_{p_g}} \right)$$
(7)

The following examples consider simple homogeneous cases to illustrate the framework and build intuition for identification conditions.

**Example 2.7.** Suppose that there is no heterogeneity nor peer effects:  $\lambda_i^{\{+\}} = \lambda$  for all i and collection of +. Then  $\dot{c}_g = \lambda(N - (g - 1))$  and the likelihood of permutation p becomes

$$\begin{split} \prod_{i=1}^{G} \lambda_{i}^{+_{1},\cdots,+_{i-1}} \sum_{g=1}^{G+1} \frac{e^{-\dot{c}_{g}S}}{\prod_{h \neq g} \dot{c}_{h} - \dot{c}_{g}} &= \lambda^{G} \sum_{g=1}^{G+1} \frac{e^{-\lambda(N - (g-1))S}}{\prod_{h \neq g} \lambda(N - (h-1)) - \lambda(N - (g-1))} \\ &= \sum_{g=1}^{G+1} \frac{e^{\lambda(g-1)S}}{\prod_{h \neq g} h - g} \\ &= \sum_{g=1}^{G+1} \frac{e^{\lambda(g-1)S}}{(g-1)! (G+1-g)!} (-1)^{G+1-g} \\ &= \frac{e^{-\lambda NS} (e^{\lambda S} - 1)^{G}}{G!} \\ &= \frac{e^{-\lambda(N - G)S} (1 - e^{-\lambda S})^{G}}{G!} \end{split}$$

Summing over all permutations yields  $e^{-\lambda(N-G)S}(1-e^{-\lambda S})^G$ , which is the likelihood of G i.i.d. exponentially-distributed variables falling below the cutoff, S.

Therefore, in the absence of peer effects, probabilities reduce to a standard exponential race with independent draws. Changes in exponential rates are a measure of dependence and social interaction; they reflect peer effects.

**Example 2.8.** Consider two (connected) individuals (i = 1, 2). The probabilities for

the four possible outcomes are given by

$$\begin{split} p_{00} &\stackrel{\text{def}}{=} \mathbb{P}[y_1 = y_2 = 0 | W_{12} = 1] = e^{-2\lambda S} \\ p_{10} &\stackrel{\text{def}}{=} \mathbb{P}[y_1 = 1, y_2 = 0 | W_{12} = 1] = \lambda e^{-\lambda^+ S} g(2\lambda - \lambda^+) \\ p_{01} &\stackrel{\text{def}}{=} \mathbb{P}[y_1 = 0, y_2 = 1 | W_{12} = 1] = \lambda e^{-\lambda^+ S} g(2\lambda - \lambda^+) \\ p_{11} &\stackrel{\text{def}}{=} \mathbb{P}[y_1 = y_2 = 1 | W_{12} = 1] = 1 - p_{00} - p_{10} - p_{01} \end{split}$$

where 
$$g(\lambda) = \frac{1 - e^{-\lambda S}}{\lambda}$$
 if  $\lambda \neq 0$  and  $g(0) = S$ .

The probabilities are identified is one observes a sequence of independent draws of such pairs. In this case, the rates are identified since they can be recovered from the probabilities:  $\lambda = -\frac{\ln(p_{00})}{2S}$  while  $\lambda^+$  solves  $\frac{\lambda S(p_{00} - e^{-\lambda^+ S})}{\ln(p_{00}) + \lambda^+ S} = p_{10}$ , where the left-hand side is strictly decreasing.

Although it is not possible to identify the identity of the first mover – the individual who may have exerted a peer effect on the other individual – when  $y_1 = y_2 = 1$ , it is possible to (i) estimate the peer effect strength and (ii) determine the probability of an individual moving first, which provides a probability for each direction of causality.

**Example 2.9.** Consider a complete network of size n,  $W = \iota\iota' - I$ . People have baseline rates  $\lambda = e^{\beta}$  for  $\beta \in \mathbb{R}$  that are updated to  $e^{\beta + \frac{k}{n-1}\delta}$  when k people have opted in.

The outcomes  $y_i \in \{0,1\}$  only inform the fraction of people who opted in, which is insufficient to identify  $(\beta, \delta)$  even as n grows. In this regime, positive peer effects cannot be distinguished from stronger baseline rates.

The complete network case thus requires more information, but can still be identified. For instance, if the times of adoption of early adopters are known, then  $\lambda$  is identified from the behavior of the density around the origin. Given the knowledge of  $\lambda$ ,  $\delta$  is identified from the share of adopters.

Because the source of non-identification is the absence of observed separate streams of information about baseline and peer effects, sparser networks offer other avenues for identification. If the identity of first-movers (people whose friends had not opted-in before they did) is known, then  $\lambda$  can be identified from a growing set of first-movers.

Although summing over all permutations can lead to an impractical computational burden, the cost is significantly lower in practice. First, the likelihood factorizes based on the components of W, whose size can be much smaller (classrooms, villages, connected components of friends, etc.). Second, permutations depend on the number of adopters, not the size of the network. Hence, especially if the share of adopters is low or there is some extra information – such as partial knowledge of the order – the complexity of permutations can be substantially reduced.

Finally, approximations can further reduce the number of permutations. In particular, maximizing the log-likelihood amounts to maximizing

$$\ln\left(\frac{1}{G!}\sum_{p\in\mathcal{P}}\left(\prod_{i=1}^{G}\lambda_{p_i}^{+_{p_1},\dots,+_{p_{i-1}}}\right)\sum_{g=1}^{G+1}\frac{e^{-\dot{c}_{p_g}S}}{\prod_{h\neq g}\dot{c}_{p_h}-\dot{c}_{p_g}}\right)$$
(8)

where the average over all permutations can be estimated by a random sample<sup>5</sup> of permutations by the law of large numbers.

# 3 Asymptotic Theory

#### 3.1 Identification

Consider a sample of (binary) variable  $y_i$ , covariates  $x_i$ , and an adjacency matrix W ( $W_{ij} = 1$  if and only if i and j are "neighbors") that determines the peer group of each individual.

A natural way to obtain a parsimonious model is to specify  $\lambda_i = g(W, x_i, \theta)$  for a vector of covariates  $x_i$  and finite-dimensional vector of parameters  $\theta$ . The modified rate can then be obtained upon adjusting with some scaling factor. For instance, a simple specification is

$$\lambda_{i}^{+k_{1}\cdots+k_{m}} = e^{x_{i}'\beta+d_{i}^{-1}\sum_{j=1}^{m}W(i,k_{j})\delta}$$
(9)

<sup>&</sup>lt;sup>5</sup>Instead of sampling uniformly over the set of permutations, one can also generate sequences of arrival according to the stochastic process. This generate draws according to the probability of the corresponding order of decisions, increasing speed of convergence. For a sample  $\mathcal{P}_s$  of such draws, one can recover the likelihood from  $\frac{1}{|\mathcal{P}_s|} \sum_{p \in \mathcal{P}_s} 1/\mathbb{P}[p] \to^p \frac{G!}{\sum_{p \in \mathcal{P}} \mathbb{P}[p]}$  using that  $\frac{\mathbb{P}[p]}{\sum_{p \in \mathcal{P}} \mathbb{P}[p]}$  is the probability of sampling permutation p under this sampling scheme. The score can be obtained similarly.

where  $d_i = \sum_j W(i,j)$  is the degree of i. This reduces the dimensionality of the problem to  $(\dim(x_i) + 1)$  and lets peer effects be described by a single parameter  $\delta$ , which reflects how rates are scaled when the peer group opts in.

To the first-order in  $\delta$ , we also have

$$\mathbb{E}[Y_i(\vec{0}) - Y_i(\vec{\infty})|X_i] \approx \delta S e^{x_i'\beta} e^{-e^{x_i'\beta}S}$$
(10)

so that  $\delta$  is a scaling factor in the change in the probability of adoption induced by the peer group adopting at the onset.

The next concern is to recover enough observation to ensure the parameters are identified. The easiest way to secure identification is to rely on networks with a block structure and a large number of blocks.

In the first case, identification of the parameters can be deduced from the probabilities for a block. For instance,  $\beta$  is identified from  $\mathbb{P}[Y_b = 0|W_b, x_i]$  (as a function of the observed  $x_i$ ) and then  $\delta$  is identified from  $\mathbb{P}[Y_b = e_1|W_b]^6$ , where b is a block.

Alternatively, one can rely on a sparse network and information about the adoption times of first and second-movers. A sufficiently sparse network ensures that the number of unconnected first-movers grows, which identifies  $\beta$  directly under knowledge of their adoption times as in a standard exponential sampling without dependence. Then, the second-movers deliver the necessary information about  $\delta$ .

The average degree of an individual is often viewed as constant or increasing only slowly as  $n \to \infty$ . Thus, sparsity is often a plausible restriction as one then models the probability of forming a link to be of order about  $n^{-1}$ .

**Remark:** Identification of the parameters ensures that the family of rates is identified. A consequence is that the probability of any sequence of adoption is also identified. Hence, while it is not possible to recover the identity of the first-movers, it is possible to assign a probability to that event.

<sup>&</sup>lt;sup>6</sup>For simplicity, I'll assume that there are no isolated individuals. In general,  $\delta$  can be identified as long as some peer effects actually take place.

### 3.2 Asymptotic properties

I consider a sequence of networks with blocks or components of size  $N_b$ ,  $b = 1, \dots, B$ . With independent blocks, the likelihood factorizes as  $l \stackrel{\text{def}}{=} \ln(\mathbb{P}[Y = y]) = \sum_{b=1}^{B} l_b$ , where  $l_b$  is the log-likelihood of block b. The log-likelihood of each block is given by the formula established in the previous section. The score and Hessian are easily computed and are available in closed form. The details are provided in the Appendix.

The estimator inherits the usual properties of maximum likelihood estimators: it is consistent and asymptotically normal under regularity conditions. Formally,

**Theorem 3.1** (Consistency). Suppose the data-generating process is given by the stochastic process described in Section 2.1 and that the family of rates is identified and belongs to the interior of a compact set. Then, if blocks are drawn independently with  $W_b \sim \mathcal{D}_W$  such that  $N_b < \overline{N}$ , the maximum likelihood estimator is consistent with  $\hat{\lambda}_i^* \to^p \lambda_i^*$ , where \* represents any collection of +, as  $B \to \infty$ .

Moreover,

**Theorem 3.2** (Asymptotic Normality). Under the assumptions of Theorem 3.1, the maximum likelihood estimator is asymptotically normal as  $B \to \infty$  with

$$\sqrt{B}(\hat{\lambda} - \lambda) \to^d \mathcal{N}(0, \mathbb{E}[\partial l(\partial l)'])$$
 (11)

These theorems allow for standard inference about the rates.

Remark: Spatial dependence For a given network structure, the strength of spatial dependence is controlled by the value of  $\delta$ . In particular, observations are independent in the absence of peer effects ( $\delta = 0$ ).

**Remark:** Discrete outcomes One can generalize the process to deal with discrete outcomes. For instance, one could have  $\lambda_i = \sum_k \lambda_{ik}$  and if  $T_i = t$  then choice k occurs with probability  $\lambda_{ik}/\lambda_i$ . 0 is then a baseline opt-out choice, the default.

**Remark:** Counterfactual analysis It is often of interest to assess the impact of policies, for instance targeting influential individuals in a network. The modeling of time dynamics allows for a direct evaluation of the effect of imposing  $y_i = 1$  at a given point. It is also easy to simulate the evolution of a network with and without

imposing  $y_i = 1$  for a group of selected individuals at time 0 and to assess the change in probabilities that  $y_k = 1$  for  $k \neq i$ .

Remark: Exogenous peer effects One may add a "WX term" to the argument of the exponential to account for so-called exogenous peer effects, which affect one's outcome through the characteristics of peers.

## 4 Simulations

I now assess the performance of the estimator in simulations. I first consider correctly specified models in which all relevant covariates are available. In the second subsection, I investigate the robustness of the estimator to omitted variables, measurement errors, and group heterogeneities.

# 4.1 Simulations with block and homophilic network formation

I simulate the stochastic process described in Section 2.2 with an underlying network structure of either 'classrooms' or homophilic matching type, both of which are common in empirical studies.

First, I construct a network with 1000 individuals and a 'block' structure (( $W = I \otimes \iota\iota'$ )) with groups of size 5, 10, and 20. In the previous section's notation, this means N = 1000,  $n_b = 5 \,\forall b$ , and  $B = 1000/n_b$  and individuals are connected to all individuals within the same block. I set the family of rates to obey  $\lambda_i^{+_{k_1}\cdots+_{k_m}} = e^{x_i'\beta+\frac{\sum_{j=1}^m W(i,k_j)}{d_i}\delta}$  with two covariates (uniformly on [-1;1] and (standard) normally distributed, respectively), various levels of peer effect strength  $\delta$  (-0.5, 0, and 0.5), and  $\beta = \begin{pmatrix} 1 \\ 0.5 \end{pmatrix}$ .

There is no information about the order of adoptions so all permutations *a priori* matter. I make use of the random sampling over permutations mentioned in Section 2 to alleviate the computational burden whenever the number of adopted people in a group exceeds 8.

Estimates are compared to SAR estimates from a simple (endogenous) regression

on  $x_i$  and  $W_i y$  and to the SAR maximum likelihood estimator<sup>7</sup> These are frequent estimates of peer effects which can be hoped to capture whether there is a peer influence, but cannot be expected to be consistent given incorrect specification; they would not capture the true nature of the peer effects, but could detect their sign and presence. Coefficients on covariates, which are also reported, have similarly no direct counterparts in a linear model and are not expected to be consistently estimated by regression or SAR MLE.

The results are reported in Table 1. The maximum of likelihood estimator described in the previous section performs well in all instances and exhibits very low bias. A standard regression is usually able to pick up the correct sign of peer effects in this specific setup, but cannot recover the structural coefficient. The SAR MLE broadly follows the same lines.

<sup>&</sup>lt;sup>7</sup>The weighting matrix is row-normalized since the process suggests peer effects depend on the average number of adopted friends. Notice, however, that the model using sums has an equivalent representation using averages when groups have the same size: it amounts to scaling  $\delta$  by group size.

Table 1: Simulations with 'classrooms' network structure

|       |      |                 | Bias  |       |       | Standard deviation |      |      | RMSE |      |      |
|-------|------|-----------------|-------|-------|-------|--------------------|------|------|------|------|------|
| $n_b$ | δ    |                 | Reg   | SAR   | Exp   | Reg                | SAR  | Exp  | Reg  | SAR  | Exp  |
| 5     | -0.5 | $\hat{\delta}$  | 0.39  | 0.43  | 0.03  | 0.04               | 0.03 | 0.12 | 0.39 | 0.43 | 0.13 |
|       |      | $\hat{\beta}_1$ | -0.70 | -0.37 | 0.00  | 0.02               | 0.03 | 0.09 | 0.70 | 0.38 | 0.09 |
|       |      | $\hat{eta}_2$   | -0.36 | -0.19 | 0.00  | 0.01               | 0.02 | 0.05 | 0.36 | 0.20 | 0.05 |
|       | 0    | $\hat{\delta}$  | -0.02 | -0.01 | 0.00  | 0.08               | 0.04 | 0.10 | 0.08 | 0.04 | 0.10 |
|       |      | $\hat{eta}_1$   | -0.70 | -0.37 | 0.00  | 0.02               | 0.03 | 0.09 | 0.70 | 0.37 | 0.09 |
|       |      | $\hat{eta}_2$   | -0.36 | -0.20 | 0.00  | 0.01               | 0.02 | 0.05 | 0.36 | 0.20 | 0.05 |
|       | 0.5  | $\hat{\delta}$  | -0.35 | -0.41 | -0.01 | 0.07               | 0.04 | 0.09 | 0.36 | 0.42 | 0.09 |
|       |      | $\hat{eta}_1$   | -0.71 | -0.37 | 0.00  | 0.02               | 0.03 | 0.09 | 0.71 | 0.37 | 0.09 |
|       |      | $\hat{eta}_2$   | -0.36 | -0.21 | 0.00  | 0.01               | 0.02 | 0.05 | 0.36 | 0.21 | 0.05 |
|       | -0.5 | $\hat{\delta}$  | 0.32  | 0.41  | 0.00  | 0.14               | 0.07 | 0.13 | 0.35 | 0.41 | 0.13 |
|       |      | $\hat{eta}_1$   | -0.69 | -0.37 | 0.00  | 0.02               | 0.04 | 0.09 | 0.69 | 0.38 | 0.09 |
|       |      | $\hat{eta}_2$   | -0.35 | -0.19 | 0.00  | 0.01               | 0.02 | 0.05 | 0.35 | 0.20 | 0.05 |
| 10    | 0    | $\hat{\delta}$  | -0.01 | -0.01 | 0.00  | 0.12               | 0.07 | 0.11 | 0.12 | 0.07 | 0.11 |
| 10    |      | $\hat{eta}_1$   | -0.70 | -0.37 | 0.00  | 0.02               | 0.04 | 0.09 | 0.70 | 0.37 | 0.09 |
|       |      | $\hat{eta}_2$   | -0.36 | -0.20 | 0.00  | 0.01               | 0.02 | 0.05 | 0.36 | 0.20 | 0.05 |
|       | 0.5  | $\hat{\delta}$  | -0.37 | -0.42 | 0.00  | 0.10               | 0.06 | 0.10 | 0.38 | 0.43 | 0.10 |
|       |      | $\hat{\beta}_1$ | -0.71 | -0.37 | 0.01  | 0.02               | 0.04 | 0.08 | 0.71 | 0.37 | 0.08 |
|       |      | $\hat{eta}_2$   | -0.36 | -0.21 | 0.01  | 0.01               | 0.02 | 0.06 | 0.36 | 0.21 | 0.06 |
| 20    | -0.5 | $\hat{\delta}$  | 0.30  | 0.40  | 0.00  | 0.21               | 0.10 | 0.13 | 0.36 | 0.41 | 0.13 |
|       |      | $\hat{\beta}_1$ | -0.70 | -0.37 | 0.01  | 0.02               | 0.06 | 0.08 | 0.70 | 0.37 | 0.09 |
|       |      | $\hat{eta}_2$   | -0.36 | -0.20 | 0.01  | 0.01               | 0.02 | 0.05 | 0.36 | 0.20 | 0.05 |
|       | 0    | $\hat{\delta}$  | -0.06 | -0.03 | -0.01 | 0.18               | 0.10 | 0.11 | 0.19 | 0.10 | 0.11 |
|       |      | $\hat{\beta}_1$ | -0.70 | -0.36 | 0.00  | 0.02               | 0.06 | 0.08 | 0.70 | 0.36 | 0.08 |
|       |      | $\hat{eta}_2$   | -0.36 | -0.20 | 0.00  | 0.01               | 0.02 | 0.05 | 0.36 | 0.20 | 0.05 |
|       | 0.5  | $\hat{\delta}$  | -0.38 | -0.42 | -0.02 | 0.15               | 0.09 | 0.10 | 0.40 | 0.43 | 0.11 |
|       |      | $\hat{\beta}_1$ | -0.71 | -0.36 | 0.07  | 0.02               | 0.06 | 0.18 | 0.71 | 0.37 | 0.19 |
|       |      | $\hat{eta}_2$   | -0.36 | -0.21 | 0.03  | 0.01               | 0.02 | 0.08 | 0.36 | 0.21 | 0.09 |

I now consider another network structure, in which individuals within groups decide whether to make a connection based on their characteristics. Specifically, I consider a homophilic link formation process in which individual match according to their similarities:  $W_{ij} = 1$  iff  $\frac{\|X_{1i} - X_{1j}\| + \|X_{2i} - X_{2j}\|}{2} < \eta_{ij}$ , where the collection of

 $\eta_{ij} = \eta_{ji}$  forms an array of independent uniform random variables. Group sizes are 5, 20, or a larger group of 100 and the sample size is gain N = 1000.

The results are displayed in the next table.

Table 2: Homophilic

|       |      |                 | Bias  |       |       | Standard deviation |      |      | RMSE |      |      |
|-------|------|-----------------|-------|-------|-------|--------------------|------|------|------|------|------|
| $n_b$ | δ    |                 | Reg   | SAR   | Exp   | Reg                | SAR  | Exp  | Reg  | SAR  | Exp  |
| 5     | -0.5 | $\hat{\delta}$  | 0.39  | 0.42  | 0.03  | 0.04               | 0.03 | 0.13 | 0.39 | 0.43 | 0.13 |
|       |      | $\hat{\beta}_1$ | -0.70 | -0.38 | -0.01 | 0.02               | 0.02 | 0.09 | 0.70 | 0.38 | 0.09 |
|       |      | $\hat{eta}_2$   | -0.36 | -0.20 | 0.00  | 0.01               | 0.02 | 0.05 | 0.36 | 0.20 | 0.05 |
|       | 0    | $\hat{\delta}$  | 0.00  | 0.00  | -0.02 | 0.04               | 0.03 | 0.11 | 0.04 | 0.03 | 0.11 |
|       |      | $\hat{eta}_1$   | -0.69 | -0.38 | 0.02  | 0.02               | 0.02 | 0.09 | 0.69 | 0.38 | 0.09 |
|       |      | $\hat{eta}_2$   | -0.36 | -0.19 | 0.01  | 0.01               | 0.02 | 0.05 | 0.36 | 0.20 | 0.05 |
|       | 0.5  | $\hat{\delta}$  | -0.38 | -0.41 | -0.03 | 0.03               | 0.02 | 0.10 | 0.38 | 0.41 | 0.11 |
|       |      | $\hat{eta}_1$   | -0.71 | -0.38 | 0.02  | 0.02               | 0.02 | 0.08 | 0.71 | 0.38 | 0.08 |
|       |      | $\hat{eta}_2$   | -0.36 | -0.20 | 0.00  | 0.01               | 0.02 | 0.05 | 0.36 | 0.21 | 0.05 |
|       | -0.5 | $\hat{\delta}$  | 0.41  | 0.44  | 0.03  | 0.05               | 0.03 | 0.12 | 0.41 | 0.44 | 0.12 |
| 10    |      | $\hat{eta}_1$   | -0.69 | -0.39 | 0.00  | 0.02               | 0.02 | 0.09 | 0.70 | 0.39 | 0.09 |
|       |      | $\hat{eta}_2$   | -0.35 | -0.20 | 0.00  | 0.01               | 0.02 | 0.05 | 0.35 | 0.20 | 0.05 |
|       | 0    | $\hat{\delta}$  | 0.00  | 0.00  | -0.02 | 0.04               | 0.03 | 0.10 | 0.04 | 0.03 | 0.10 |
|       |      | $\hat{\beta}_1$ | -0.70 | -0.38 | 0.00  | 0.02               | 0.02 | 0.08 | 0.70 | 0.38 | 0.08 |
|       |      | $\hat{eta}_2$   | -0.36 | -0.20 | 0.00  | 0.01               | 0.02 | 0.05 | 0.36 | 0.20 | 0.05 |
|       | 0.5  | $\hat{\delta}$  | -0.39 | -0.42 | -0.05 | 0.05               | 0.03 | 0.10 | 0.39 | 0.43 | 0.11 |
|       |      | $\hat{\beta}_1$ | -0.71 | -0.37 | 0.01  | 0.02               | 0.02 | 0.08 | 0.71 | 0.37 | 0.08 |
|       |      | $\hat{eta}_2$   | -0.36 | -0.21 | 0.00  | 0.01               | 0.02 | 0.05 | 0.36 | 0.21 | 0.05 |

Although the performance of OLS or SAR-MLE in terms of bias and RMSE in the absence of peer effects ( $\delta=0$ ) suggests that these estimators may successfully detect the absence of social influence, notice that estimates are generally attenuated compared to the structural parameter and that decisions will eventually be based on tests or confidence intervals. As a result, the coverage performance of the confidence intervals may be a more relevant benchmark and will be analyzed in the next subsection.

Interestingly, OLS and SAR-MLE feature attenuation bias with respect to the structural parameter. As a result, they may seem to perform better in terms of

RMSE in the absence of peer effect. In practice, however, what matters is the test for the presence of peer effect or, equivalently, the resulting confidence intervals. In the next subsection, I explore the coverage performance of the three estimators to assess their ability to (correctly) not reject a null hypothesis of no peer effects in both correctly specified and misspecified models.

### 4.2 Mispecifications type of results

Peer effect studies are often subject to criticism due to modeling (Manski, 1993; Angrist, 2014) and empirical (Angrist, 2014) concerns. While it is hoped that the framework developed in this paper alleviates modeling concerns - in particular, by avoiding reflection problems -, it is of interest to evaluate the behavior of the estimator under frequent empirical difficulties: missing or omitted covariates, group level heterogeneity, or measurement error.

I focus here on the peer effect parameter  $\delta$ , which will typically the parameter of interest.

Because OLS and SAR cannot identify the structural coefficient but could still detect the presence of peer effects, it is of interest to look at the coverage performance. I look at the frequency at which a 95% confidence interval contains 0, indicating the absence of peer effects, under the generating process in which peer effects are indeed absent ( $\delta = 0$ ).

Table 3 reports the coverage of a 95% confidence interval under the homophilic network structure when the researcher (i) observes both covariates, (ii) observes only the first covariate, (iii) observes a mismeasured (with  $(\mathcal{N}(0; 0.25))$  error) first covariate, and (iv)/(v)/(vi) there is (uniform on [-1; 0]) group heterogeneity (added to the argument of the exponential) in the (i)/(ii)/(iii) scenario.

Table 3: Coverage analysis with potential misspecification

|       |   |      | Coverage |      |      |  |  |  |
|-------|---|------|----------|------|------|--|--|--|
| $n_b$ | δ |      | Reg      | SAR  | Exp  |  |  |  |
|       |   | Size | 0.90     | 0.79 | 0.95 |  |  |  |
|       |   | Size | 0.72     | 0.62 | 0.90 |  |  |  |
| 5     | 0 | Size | 0.69     | 0.55 | 0.90 |  |  |  |
| 9     | 0 | Size | 0.83     | 0.70 | 0.89 |  |  |  |
|       |   | Size | 0.62     | 0.47 | 0.71 |  |  |  |
|       |   | Size | 0.56     | 0.42 | 0.67 |  |  |  |

Table 4: Coverage performance of a 95% confidence interval from OLS with clustered standard errors, SAR-MLE, and maximum of likelihood on latent exponential processes.

The coverage performance of the estimator developed in the paper is far better

than that of OLS and SAR-MLE. Although the most serious issues (lack of covariate and measurement error combined with heterogeneity issues) can lead to severe size distortions, spurious peer effects are unlikely under more standard scenarios. The test for the presence of peer effect is adequately sized in the case of correct specification and is moderately distorted under measurement error or group heterogeneity.

Both OLS and SAR-MLE have a tendency to spuriously detect peer effects at a rate higher than the pre-specified level, even with homogeneous groups and adequate covariates. Any empirical difficulty such as measurement error, unobserved covariate, or heterogeneity leads by itself to a high risk of unwarranted rejection of the null of no peer effects, echoing critiques in Angrist (2014).

## References

- **Angrist, Joshua D.** 2014. "The perils of peer effects." *Labour Economics*, 30: 98–108.
- **Aronow, Peter M, and Cyrus Samii.** 2017. "Estimating average causal effects under general interference, with application to a social network experiment." *The Annals of Applied Statistics*, 11(4): 1912–1947.
- Arpino, Bruno, Luca De Benedictis, and Alessandra Mattei. 2017. "Implementing propensity score matching with network data: the effect of the General Agreement on Tariffs and Trade on bilateral trade." Journal of the Royal Statistical Society: Series C (Applied Statistics), 66(3): 537–554.
- Athey, Susan, and Guido W Imbens. 2022. "Design-based analysis in difference-in-differences settings with staggered adoption." *Journal of Econometrics*, 226(1): 62–79.
- Blume, Lawrence E, William A Brock, Steven N Durlauf, and Rajshri Jayaraman. 2015. "Linear social interactions models." *Journal of Political Economy*, 123(2): 444–496.
- Boucher, Vincent, Michelle Rendall, Philip Ushchev, and Yves Zenou. 2024. "Toward a general theory of peer effects." *Econometrica*, 92(2): 543–565.

- Bramoullé, Yann, Habiba Djebbari, and Bernard Fortin. 2009. "Identification of peer effects through social networks." *Journal of econometrics*, 150(1): 41–55.
- De Giorgi, Giacomo, Michele Pellizzari, and Silvia Redaelli. 2010. "Identification of social interactions through partially overlapping peer groups." *American Economic Journal: Applied Economics*, 2(2): 241–75.
- Egami, Naoki, and Eric J Tchetgen Tchetgen. 2024. "Identification and estimation of causal peer effects using double negative controls for unmeasured network confounding." Journal of the Royal Statistical Society Series B: Statistical Methodology, 86(2): 487–511.
- Forastiere, Laura, Edoardo M Airoldi, and Fabrizia Mealli. 2020. "Identification and estimation of treatment and interference effects in observational studies on networks." *Journal of the American Statistical Association*, 1–18.
- Gibbons, Stephen, and Henry G Overman. 2012. "Mostly pointless spatial econometrics?" *Journal of regional Science*, 52(2): 172–191.
- Hayes, Alex, and Keith Levin. 2024. "Peer effects in the linear-in-means model may be inestimable even when identified." arXiv preprint arXiv:2410.10772.
- He, Xiaoqi, and Kyungchul Song. 2018. "Measuring diffusion over a large network." arXiv preprint arXiv:1812.04195.
- Huber, Martin, and Andreas Steinmayr. 2021. "A framework for separating individual-level treatment effects from spillover effects." *Journal of Business & Economic Statistics*, 39(2): 422–436.
- Jackson, Matthew O, Zhongjian Lin, and Ning Neil Yu. 2020. "Adjusting for peer-influence in propensity scoring when estimating treatment effects." *Available at SSRN 3522256*.
- Liu, Lan, Michael G Hudgens, Bradley Saul, John D Clemens, Mohammad Ali, and Michael E Emch. 2019. "Doubly robust estimation in observational studies with partial interference." *Stat*, 8(1): e214.
- Manski, Charles F. 1993. "Identification of endogenous social effects: The reflection problem." The review of economic studies, 60(3): 531–542.

- Newey, Whitney K, and Daniel McFadden. 1994. "Large sample estimation and hypothesis testing." *Handbook of econometrics*, 4: 2111–2245.
- **Neyman, Jerzy.** 1923. "On the application of probability theory to agricultural experiments. Essay on principles." *Ann. Agricultural Sciences*, 1–51.
- Rubin, Donald B. 1974. "Estimating causal effects of treatments in randomized and nonrandomized studies." *Journal of educational Psychology*, 66(5): 688.
- **Sacerdote, Bruce.** 2014. "Experimental and quasi-experimental analysis of peer effects: two steps forward?" *Annu. Rev. Econ.*, 6(1): 253–272.
- **Sánchez-Becerra, Alejandro.** 2021. "Spillovers, Homophily, and Selection into Treatment: The Network Propensity Score." *Job market paper*.
- Shaikh, Azeem M, and Panos Toulis. 2021. "Randomization tests in observational studies with staggered adoption of treatment." *Journal of the American Statistical Association*, 116(536): 1835–1848.
- Shalizi, Cosma Rohilla, and Andrew C Thomas. 2011. "Homophily and contagion are generically confounded in observational social network studies." *Sociological methods & research*, 40(2): 211–239.
- Sofrygin, Oleg, and Mark J van der Laan. 2016. "Semi-parametric estimation and inference for the mean outcome of the single time-point intervention in a causally connected population." *Journal of causal inference*, 5(1).
- Toulis, Panos, and Edward Kao. 2013. "Estimation of causal peer influence effects." 1489–1497, PMLR.

# Appendix A: Proofs and Further results

#### 4.3 Identification

Let  $p_{\vec{0}}(x_1,\ldots,x_n) \stackrel{\text{def}}{=} e^{-\sum_{i=1}^n (\lambda_i(x_i))S}$ . Setting  $x_i = x \forall i, \ \lambda(x) = \frac{-\ln(p_{00}(x,\ldots,x))}{nS}$  and thus the baseline rates are identified. Then,  $p_{10}(x_1,x_2) = \lambda_1 e^{-\lambda_2^+ S} g(\lambda_1 + \lambda_2 - \lambda_2^+)$  allows us to identify  $\lambda_2^+$  nonparametrically as  $\lambda^+(x_2,x_1)$  because  $e^{-xS}g(\lambda_1+\lambda_2-x) = e^{-(\lambda_1+\lambda_2)S}g(-(\lambda_1+\lambda_2-x))$  is an invertible function of x for any  $\lambda_1,\lambda_2$ .

If only person 1 activates,

$$\lambda_1 \left( \frac{e^{-\sum_{i=2}^{N} \lambda_i^+ S}}{\sum_{i=1}^{N} \lambda_i - \sum_{i=2}^{N} \lambda_i^+} - \frac{e^{-\sum_{i=1}^{N} \lambda_i S}}{\sum_{i=1}^{N} \lambda_i - \sum_{i=2}^{N} \lambda_i^+} \right)$$
(12)

### 4.4 Identification under sparsity

Define the first-movers F through  $j \in F^c : \exists k, W_{kj} = 1, T_k < (T_j \land S)$ .

 $T|F, \lambda \sim T|W, T_j, \lambda \sim T_j^1|W, \lambda$  under unconfoundedness.

$$\mathbb{P}[y_j = 1 | j \in F] = \frac{\mathbb{P}[y_j = 1, j \in F]}{\mathbb{P}[j \in F]}$$

$$\tag{13}$$

is identified if  $\mathbb{P}[j \in F] \to c \in ]0,1]$ , i.e., the probability of being a first-mover does not vanish.

## 4.5 Derivatives of the likelihood

The log-likelihood reads

$$l \stackrel{\text{def}}{=} \ln \left( \frac{1}{G!} \sum_{p \in \mathcal{P}} \sum_{g=1}^{G+1} \left( \prod_{i=1}^{G} \lambda_{p_i}^{+_{p_1}, \dots, +_{p_{i-1}}} \right) \frac{e^{-\dot{c}_{p_g} S}}{\prod_{h \neq g} \dot{c}_{p_h} - \ddot{c}_{p_g}} \right)$$
(14)

Let

$$a_{pg} \stackrel{\text{def}}{=} \left( \prod_{i=1}^{G} \lambda_{p_i}^{+_{p_1}, \dots, +_{p_{i-1}}} \right) \frac{e^{-\dot{c}_{p_g} S}}{\prod_{h \neq g} \dot{c}_{p_h} - \dot{c}_{p_g}}$$
(15)

Then, the score is given by

$$\frac{\partial l}{\partial \theta} = \sum_{p \in \mathcal{P}} \sum_{g=1}^{G+1} \frac{a_{pg}}{\sum_{p} \sum_{g} a_{pg}} \left( \sum_{i=1}^{G} \frac{\partial_{\theta} \lambda_{p_{i}}^{+_{p_{1}}, \dots, +_{p_{i-1}}}}{\lambda_{p_{i}}^{+_{p_{1}}, \dots, +_{p_{i-1}}}} - \partial_{\theta} \dot{c}_{p_{g}} S - \sum_{h \neq g} \frac{\partial_{\theta} (\dot{c}_{p_{h}} - \dot{c}_{p_{g}})}{\dot{c}_{p_{h}} - \dot{c}_{p_{g}}} \right)$$
(16)

and the Hessian is given by

$$H \stackrel{\text{def}}{=} \frac{\partial l}{\partial \theta \partial \theta'} = \sum_{p \in \mathcal{P}} \sum_{g=1}^{G+1} \partial_{\theta'} \left( \frac{a_{pg}}{\sum_{p} \sum_{g} a_{pg}} \right) \left( \sum_{i=1}^{G} \frac{\partial_{\theta} \lambda_{p_{i}}^{+p_{1}, \dots, +p_{i-1}}}{\lambda_{p_{i}}^{+p_{1}, \dots, +p_{i-1}}} - \partial_{\theta} \dot{c}_{p_{g}} S - \sum_{h \neq g} \frac{\partial_{\theta} (\dot{c}_{p_{h}} - \dot{c}_{p_{g}})}{\dot{c}_{p_{h}} - \dot{c}_{p_{g}}} \right)$$

$$+ \sum_{p \in \mathcal{P}} \sum_{g=1}^{G+1} \frac{a_{pg}}{\sum_{p} \sum_{g} a_{pg}} \left( \sum_{i=1}^{G} \partial_{\theta'} \left( \frac{\partial_{\theta} \lambda_{p_{i}}^{+p_{1}, \dots, +p_{i-1}}}{\lambda_{p_{i}}^{+p_{1}, \dots, +p_{i-1}}} \right) - \partial_{\theta} \dot{c}_{p_{g}} S - \sum_{h \neq g} \partial_{\theta'} \left( \frac{\partial_{\theta\theta'} (\dot{c}_{p_{h}} - \dot{c}_{p_{g}})}{\dot{c}_{p_{h}} - \dot{c}_{p_{g}}} \right) \right)$$

$$(17)$$

When  $\lambda_i^{+_{k_1}\cdots+_{k_m}} = e^{x_i'\beta+d_i^{-1}\sum_{j=1}^m W(i,k_j)\delta}$  with  $\theta \stackrel{\text{def}}{=} (\beta',\delta)'$ , the derivatives take the form

$$\partial_{\theta} \lambda_i^{+_{k_1} \cdots +_{k_m}} = \lambda_i^{+_{k_1} \cdots +_{k_m}} \begin{pmatrix} x_i \\ d_i^{-1} \sum_{j=1}^m W(i, k_j) \end{pmatrix}$$
 (18)

and

$$\partial_{\theta\theta'} \lambda_i^{+_{k_1} \dots +_{k_m}} = \lambda_i^{+_{k_1} \dots +_{k_m}} \begin{pmatrix} x_i x_i' & x_i d_i^{-1} \sum_{j=1}^m W(i, k_j) \\ x_i d_i^{-1} \sum_{j=1}^m W(i, k_j) & (d_i^{-1} \sum_{j=1}^m W(i, k_j))^2 \end{pmatrix}$$
(19)

#### 4.6 Proof of theorems

The proofs verify Newey and McFadden (1994)'s sufficient conditions for consistency and asymptotic normality of extremum estimators.

The parameter space is compact by assumption. The log-likelihood of block b is  $l_b = \sum_{y \in 0,1^{N_b}} \mathbb{1}[Y_b = y] \ln(\mathbb{P}[Y_b = y])$ , where the elements of the sum are bounded from below using that  $N_b \leq \overline{N}$  and compactness of the rates and from above by 0. Since in addition  $\mathbb{P}[Y_b = y]$  is continuous, uniform laws of large numbers implies (i)  $\sup_{\{\lambda\}} |B^{-1} \sum_b l_b - \mathbb{E}[l_b]| \to 0$  and (ii)  $\mathbb{E}[l_b]$  is continuous.

By continuity of the Hessian matrix and compactness of the parameter space, it follows that

$$\sup_{\{\lambda\}} |H_n - H| \to 0 \tag{20}$$

where H is continuous. Asymptotic normality of the score follows from laws of large numbers for triangular arrays, noting that  $V[l_b] \to \sigma^2$ 

By assumption, the parameters are identified and live in a compact set. The objective function converges uniformly to  $\mathbb{E}[l_b]$ , which is continuous, by uniforms law

of large numbers (e.g., Lemma 2.4 in Newey and McFadden (1994)). Indeed,  $l_b$  is continuous and

$$\min_{y,p,\lambda} \mathbb{P}[p(\lambda)] \le e^{l_b} \le 1, \tag{21}$$

where the minimization is over a finite set for y, p since  $N_b \leq \overline{N}$  and the minimization over  $\lambda$  is over a compact set for a continuous function, so that  $\sup |B^{-1} \sum_{b=1}^B l_b - \mathbb{E}[l_b]| \to 0$ .

$$\frac{1}{\sqrt{B}} \sum_{b=1}^{B} s_b \to^d \mathcal{N}(0; \mathbb{E}[s_b s_b']) \tag{22}$$

noting that the score has mean zero and

$$V[s_{b}] = \mathbb{E}[s_{b}s'_{b}]$$

$$\leq C\mathbb{E}[\partial L_{b}\partial L'_{b}]$$

$$= C \sum_{W_{b}} \mathbb{P}[W_{b}]\mathbb{E}[\partial L_{b}\partial L'_{b}|W_{b}]$$

$$= C \sum_{W_{b}} \mathbb{P}[W_{b}] \sum_{\tilde{y}} \mathbb{P}[Y = \tilde{y}]\partial L_{b}(\tilde{y})\partial L'_{b}(\tilde{y})$$

$$\leq C \max_{\tilde{y}} \partial L_{b}(\tilde{y})\partial L'_{b}(\tilde{y})$$
(23)