Electroweak Symmetry Breaking in Gauge-Higgs Unification Models

Jongmin Yoon
SLAC / Stanford University

Work with M. Peskin

 At the TeV scale, one of the most pressing questions in particle physics is to understand the spontaneous breaking of the electroweak symmetry.

- The Standard Model cannot give answers to:
 - Why is electroweak symmetry broken?
 - Can we calculate the Higgs mass or the Higgs potential?

- Ideally, it would be nice to have a predictive model where we can calculate the Higgs potential in terms of a more fundamental set of parameters, and therefore we can study the conditions of SSB.
- However, it is very hard to achieve with the Higgs as an elementary scalar.
- Consider the Higgs mass term $\mu^2 |H|^2$.
 - Divergent radiative corrections.
 - Invariant under all standard symmetries.
- Therefore, we need an unusual (approximate) symmetry to forbid the Higgs mass term.

- SUSY is a possible solution, but highly constrained by LHC.
- What have we seen so far?
 - Light Higgs with mass 125 GeV.
 - a Little Hierarchy, i.e. no new dynamics near the Higgs vev.
- These two observations suggest us to consider the Higgs boson as a composite pseudo-Goldstone boson of a new strong dynamics.
- Is there a calculable, predictive approach to composite Higgs?

- In this talk, I will discuss an approach to these problems based on following ideas.
 - 1) Randall-Sundrum geometry.
 - 2) Higgs as a partner of a vector field.
 - 3) 2nd order phase transition in fermion condensation.
- These ideas, particularly 1) and 2), were actively pursued in the early 2000's by Hall, Nomura, Agashe, Contino, Pomarol, Hosotani and others.
- With the observed Higgs mass, we would like to advance this theory and make it more predictive.

Randall-Sundrum Geometry

 Realize 4D strong theory with a 5D weakly-coupled theory in AdS5 with two boundaries, as motivated by the AdS/CFT correspondence.

Physical Picture in 4D

Realization in 5D

- We consider all fields propagating in the bulk.
- No elementary scalar fields.

Higgs as a Partner of a Vector Field

- Goldstone Higgs in a 4D strong theory
 - From spontaneous breaking of a global symmetry G.
 - (Small) breaking of G will generate the Higgs potential.
- Gauge-Higgs Unification in the 5D theory Hall, Nomura, Tucker-Smith / Hosotani
 - Break the gauge symmetry G by boundary conditions.
 - Then, ${\cal A}_5^{\cal A}$, which transforms as a scalar under 4D Lorentz symmetry, have zero modes.
 - A radiative potential from the top quark can generate vacuum expectation value.

Gauge fields in AdS5

- Under G, we have (A_{μ}^{A}, A_{5}^{A}) .
- We define boundary conditions at z_0, z_R .

Dirichlet: (-) $A_{\mu}^{A}=0$

Neumann: (+) $\partial_5 A_\mu^A = 0$

- 5d gauge symmetry enforces that A_5^A have the opposite b.c. to A_μ^A
- (++) b.c.: A_{μ}^{A} zero mode \rightarrow gauge symmetry in 4D theory.
- (--) b.c.: A_5^A zero mode \rightarrow can get a vev.

Fermions in AdS5 $\Psi = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}$

- In 5d, fermions have mass term, c = m/k
- The coupled EOM enforces the opposite b.c. between ψ_L, ψ_R
- We define boundary conditions at z_0, z_R

Dirichlet: (-) $\psi_L = 0$

Neumann: (+) $\psi_R = 0$

- (++) b.c.: ψ_L zero mode
- (--) b.c.: ψ_R zero mode
- (A_{μ}^A,A_5^A) is equivalent to (ψ_L,ψ_R) with c=1/2 in terms of the 5D wave-function.

Shape of the Zero Modes

Massless solutions of the EOM are

$$(++): \Psi \sim \begin{pmatrix} u_{-}(p)z^{2-c} \\ 0 \end{pmatrix} \qquad (--): \Psi \sim \begin{pmatrix} 0 \\ u_{+}(p)z^{2+c} \end{pmatrix}$$

Then,

$$\int dz \sqrt{g} \overline{\Psi} \gamma^0 \Psi \sim \int dz \frac{1}{(kz)^4} z^{4\mp 2c} \sim \int \frac{dz}{z} z^{1\mp 2c}$$

- Therefore
 - Left-handed zero mode : UV for $c > \frac{1}{2}$, IR for $c < \frac{1}{2}$
 - Right-handed zero mode: UV for c < -1/2, IR for c > -1/2
- Gauge field: c=1/2 fermion
 - A_{μ}^{A} flat, A_{5}^{A} linear in z

• For strong coupling to the Higgs, a composite zero mode is required.

Higgs potential

 Models of Goldstone bosons and dynamical symmetry breaking have potentials in terms of non-linear sigma field U

$$U = \exp\left(\frac{2i\Pi \cdot T}{f}\right) \qquad h \in \Pi$$

Then, it is natural that $V(\Pi)$ is minimized at v=0 or $v\sim f$, but we need $0< v\ll f$ for the Little Hierarchy.

- → Therefore, we must be near a 2nd-order phase transition in the phase diagram of the model.
- We need competing contributions to the Higgs potential.

Coleman-Weinberg Potential for A5

Consider a non-zero background 5D gauge field

$$A_M(x^{\mu}, z) = (0, 0, 0, 0, A_5(z))$$

- By a gauge transformation, we can remove the background field in the bulk. But it modifies boundary conditions at either $z=z_0$ or $z=z_R$ by a transformation $U_W=\exp\left[ig_5\int_{z_0}^{z_R}dz A_5^a(z)T^a\right]$
- By integrating out fermions under the twisted b.c., we can compute the Coleman-Weinberg potential of Higgs. It will depend on U_W

SU(2) Example

Contino, Nomura, Pomarol

• Consider a bulk SU(2) gauge theory broken down to U(1) by the b.c. A_{μ}^{1} /--

$$A^{A}_{\mu} = \begin{pmatrix} A^{1}_{\mu} \\ A^{2}_{\mu} \\ A^{3}_{\mu} \end{pmatrix} \sim \begin{pmatrix} -- \\ -- \\ ++ \end{pmatrix}$$

• Now turn on $\langle A_5^2 \rangle \neq 0$. This will further break the remaining U(1).

$$U_W = \exp\left[ig_5 \int_{z_0}^{z_R} dz A_5^2(z) \frac{\sigma^2}{2}\right] = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \quad \theta \sim \frac{v}{f}$$

- Note that U_W is a non-local quantity.
 - → Finite CW potential expected.

SU(2) Example

- ullet Consider Coleman-Weinberg potential from $egin{pmatrix} \Psi_1 \ \Psi_2 \end{pmatrix} = egin{pmatrix} ++ \ -- \end{pmatrix}$
- It includes two massless fermions, and therefore it is energetically favored to pair them up and make massive.
- Indeed, the explicit calculation of CW potential shows

$$V(\theta) = -2 \int \frac{d^4p}{(2\pi)^4} \log \left[1 + \frac{\sin^2 \theta}{F(p^2, c)} \right]$$

- $F(p^2,c)$ is a combination of Bessel functions and calculable! It is exponentially increasing for large p \rightarrow convergent integral.
- $F(p^2, c = 0) = \sinh^2(p(z_R z_0))$ and the depth of the potential decreases with larger |c|
- For the full consideration, we also need to include the potential from gauge fields.

The Complete CW potential of SU(2)

- 1) Potential minimum always at
- 2) Only first-order phase transition

Competing forces from different fermion multiplets

Consider two different doublets and their CW potential

$$\Psi_A = \begin{pmatrix} ++\\ -- \end{pmatrix} \rightarrow V_A(\theta) = -2 \int \frac{d^4 p}{(2\pi)^4} \log \left[1 + \frac{\sin^2 \theta}{F_A(p^2, c)} \right]$$

$$\Psi_R = \begin{pmatrix} +-\\ -+ \end{pmatrix} \rightarrow V_R(\theta) = -2 \int \frac{d^4 p}{(2\pi)^4} \log \left[1 - \frac{\sin^2 \theta}{F_R(p^2, c)} \right]$$

• The new doublet Ψ_R opposes the fermion condensation. It does not have zero modes, but its lowest KK state is typically lighter than the the new physics scale, k_R . In a realistic model, this particle (i.e. vector-like top partner) can be within the reach of collider experiments.

• Small s_W expansion up to s_W^4

$$V_A(s_W, c_1) = -A_A(c_1)s_W^2 + \frac{1}{2}B_A(c_1)s_W^4 + \frac{1}{2}C_A(c_1)s_W^4 \log(1/s_W^2)$$

$$V_R(s_W, c_2) = +A_R(c_2)s_W^2 + \frac{1}{2}B_R(c_2)s_W^4$$

- The line of second-order phase transitions : $A_A(c_1) = A_R(c_2)$
- So, a clever choice of fermion b.c. and c parameters can put the vacuum in the vicinity of the 2nd-order phase transition, and therefore $v\ll f$
- Fine-tuning in 5D might not be a fine-tuning in 4D.

SU(2) Phase Diagram

Blue line : Line of 2nd-order phase transition $A_A(c_1)=A_R(c_2)$

$$\Psi_A = t, \qquad \Psi_R = T$$

$$\mu^2 \sim -\Lambda_{UV}^2$$

$$\mu^2 \sim -f^2 \sim -(\text{TeV})^2$$

$$\Psi_A = t, \qquad \Psi_R = T$$

$$\mu^2 \sim -\Lambda_{UV}^2$$

$$+$$

$$\sum_{KK} \dots \left(t_{KK} \right) \dots \left(t_{KK} \right)$$

$$\mu^2 \sim -f^2 \sim -(\text{TeV})^2$$

$$+$$

$$\sum_{KK} \dots \left(T, T_{KK}\right) \dots$$

$$\mu^2 \sim -(100 \text{ GeV})^2$$

SO(5) x U(1) Model Agashe, Contino, Pomarol

SO(5)/SO(4): Higgs as Goldstone bosons (A $_5$ zero mode)

$$Y = T_R^3 + X \quad \text{and} \quad Q = T_L^3 + T_R^3 + X$$

Fermions in SO(5)xU(1)

ullet Embedded in ${f 5_{2/3}}=({f 2,2})_{{f 2/3}}\oplus ({f 0,0})_{{f 2/3}}$

$$\Psi_t = \begin{bmatrix} \begin{pmatrix} \chi_t(-+) & t_L(++) \\ \chi_b(-+) & b_L(++) \end{pmatrix} \\ t_R(--) \end{bmatrix} \quad \Psi_T = \begin{bmatrix} \begin{pmatrix} \chi_T(-+) & T(+-) \\ \chi_B(-+) & B(+-) \end{pmatrix} \\ T'(-+) \end{bmatrix}$$

- ullet Custodial symmetry for Z o bb Agashe, Contino, Da Rold, Pomarol
- Vector-like partners (T,B) of (t_L,b_L) and Q=5/3 particles χ_t,χ_T
- Their contributions to the Higgs potential

$$V_t(h) = -3 \times 2 \int \frac{d^4 p}{(2\pi)^4} \log \left[1 + \frac{\frac{1}{2} \sin^2 2\theta}{F_A(p^2, c_t)} \right]$$
$$V_T(h) = -3 \times 2 \int \frac{d^4 p}{(2\pi)^4} \log \left[1 - \frac{1 - \cos^4 \theta}{F_R(p^2, c_T)} \right]$$

Boundary Kinetic Term

- In the setup so far, a single parameter g_5 sets the strength of the new forces as well as $SU(2)_L \times U(1)_Y$ gauge couplings and top Yukawa coupling.
- Then, $m_t \sim m_W \sim m_h$ is expected in this system.
- We can think that some UV dynamics (e.g. GUT) beyond z_0 separate those couplings from that of the strong interaction.
- In order to incorporate this, we introduce boundary kinetic terms on the UV boundary for the $SU(2)_L \times U(1)_Y$ gauge fields and fermions.
- Such UV physics can also introduce mixing on the UV boundary.

Boundary Kinetic Term

•
$$S_A^{UV} = \int d^4x dz \ az_0 \delta(z - z_0) \sqrt{-g} \left[-\frac{1}{4} g^{mp} g^{nq} F_{mn} F_{pq} \right]$$

 $S_{\Psi}^{UV} = \int d^4x dz \ az_0 \delta(z - z_0) \sqrt{-g} \left[\bar{\Psi} i e_A^m \gamma^A \mathcal{D}_m \Psi \right]$

- This gives knobs to control the weak coupling and y_t . For example, $g^2 = \frac{g_5^2 k}{\log(z_B/z_0) + a}$
- That is, the boundary term decreases the coupling of the zero modes to the strong sector. It also decreases the CW potential, particularly the gauge contribution.
- We have boundary terms a_L, a_Y for $SU(2)_L \times U(1)_Y$ and a_t for (t_L, b_L)

Allowed Parameter Space

• There are 9 parameters in this model.

$$z_R, z_0, c_t, c_T, g_5, g_X, a_L, a_Y, a_t$$

They are constrained by 5 observables.

$$e, m_W, m_Z, m_t, m_h$$

- It seems to be 4-dimensional parameter space. However,
 - Higgs potential is almost independent of a_Y
 - Observables at TeV scale are only weakly dependent on z_0 . The exact position of z_0 will be constrained by flavor physics. We suggest to use $z_0/z_R=1/100$.
- Therefore, we have a quasi-2-dimensional parameter space.
- We fix k_R , and fit other parameters.

• It turns out that other parameters do not vary much across different k_R .

- That is, the BSM effects scale with k_R .
- Note that the typical Z' mass is $\,m_{Z'}\sim 2.4k_R\,$

Possible measure of tuning, $c_T - c_{T,critical}$

Precision Electroweak Analysis

S parameter receives a tree-level correction

$$S = \pi v^2 z_R^2 \left(\frac{3}{2} - \frac{1}{k\pi R + a_Y} \right)$$

- Fermion loop correction to T parameter
 - It has been argued that the loop correction is convergent so the first KK correction is a good estimate. Carena, Ponton, Santiago, Wagner
 - However, a full 5D calculation shows that it is divergent.
 - The divergent term is subleading in m_t^2 . Using a cutoff Λ , we can estimate the correction

$$T = \frac{3m_t^2}{16\pi s_w^2 c_w^2 m_Z^2} \left[1 + \beta(c_t) m_t^2 z_R^2 \left(\log \left(\frac{\Lambda^2}{m_t^2} \right) - 1 \right) \right]$$

eta(c) is calculable. We will use $\Lambda \sim k_R$

Precision Electroweak Analysis

Top-Partner Mass

Universal Deviation of Higgs Couplings

- The bulk gauge group G and fermion embeddings determine the Higgs coupling deviations of massive particles.
- For G=SO(5) and fermions embedded in 5 of SO(5), the masses of gauge bosons and fermions are all of the form

$$\frac{m^2}{f^2} \propto \frac{1}{2} \sin^2 \left(\frac{\sqrt{2}\langle h \rangle}{f} \right)$$

• Therefore, the Higgs coupling deviation in $\bar{t}th, ZZh, WWh$

$$\frac{g}{g_{SM}} = \cos\left(\frac{\sqrt{2}\langle h\rangle}{f}\right) = \sqrt{1 - 2\frac{v^2}{f^2}}$$

Universal Deviation of Higgs Couplings

• The bottom quark has been massless so far.

$$\Psi_t = \begin{bmatrix} \begin{pmatrix} \chi_t(-+) & t_L(++) \\ \chi_b(-+) & b_L(++) \end{pmatrix} \\ t_R(--) \end{bmatrix}_{2/3}$$

- The bottom quark has been massless so far.
- Consider an additional multiplet Ψ_b with X = -1/3.

$$\Psi_{t} = \begin{bmatrix} \begin{pmatrix} \chi_{t}(-+) & t_{L}(++) \\ \chi_{b}(-+) & b_{L}(++) \end{pmatrix} \\ t_{R}(--) \end{bmatrix}_{2/3} \quad \Psi_{b} = \begin{bmatrix} \begin{pmatrix} t'(-+) & \chi_{b}(-+) \\ b'(-+) & \psi_{b}(-+) \end{pmatrix} \\ b_{R}(--) \end{bmatrix}_{-1/3}$$

- The bottom quark has been massless so far.
- Consider an additional multiplet Ψ_b with X = -1/3.

$$\Psi_{t} = \begin{bmatrix} \begin{pmatrix} \chi_{t}(-+) & t_{L}(++) \\ \chi_{b}(-+) & b_{L}(++) \end{pmatrix} \\ t_{R}(--) \end{bmatrix}_{2/3} \quad \Psi_{b} = \begin{bmatrix} \begin{pmatrix} t'(-+) & \chi_{b}(-+) \\ b'(-+) & \psi_{b}(-+) \end{pmatrix} \\ b_{R}(--) \end{bmatrix}_{-1/3}$$

- Mix it with Ψ_t on the UV boundary, so that the Higgs pairs up b_L and b_R .
- Consider $c_t < c_b$. Then for the left-handed mode, Ψ_t is more composite than Ψ_b . Composite operators will be enhanced in the IR and therefore, the effect of mixing $\sin\beta$ will be suppressed in the IR.

• Indeed, explicit calculation shows that for $c_t < c_b$

$$\frac{m_b^2}{m_t^2} \sim \tan^2 \beta \times \left(\frac{z_0}{z_R}\right)^{2(c_b - c_t)}$$

- β of order-one can generate the large mass hierarchy.
- Note that b_R is a composite right-handed zero mode.
 - → possibly, sizable coupling deviation which can be probed at future colliders like ILC.
- For a moment, let's choose $\sin\beta=0.2$ and calculate the deviations. cf. Funatsu, Hatanaka, Hosotani, Orikasa

$\mathbf{e}_{\mathbf{L}}^{-}\mathbf{e}_{\mathbf{R}}^{+}\rightarrow\mathbf{b}_{\mathbf{L}}\mathbf{\bar{b}}_{\mathbf{R}},\mathbf{b}_{\mathbf{R}}\mathbf{\bar{b}}_{\mathbf{L}}$

$\mathbf{e}_{\mathbf{L}}^{-}\mathbf{e}_{\mathbf{R}}^{+}\rightarrow\mathbf{b}_{\mathbf{L}}\mathbf{\bar{b}}_{\mathbf{R}},\mathbf{b}_{\mathbf{R}}\mathbf{\bar{b}}_{\mathbf{L}}$

$\mathbf{e}_{\mathbf{L}}^{-}\mathbf{e}_{\mathbf{R}}^{+} ightarrow \mathbf{t}_{\mathbf{L}}\overline{\mathbf{t}}_{\mathbf{R}}, \mathbf{t}_{\mathbf{R}}\overline{\mathbf{t}}_{\mathbf{L}}$

Full Flavor Structure?

- Similarly, we can explain the weak coupling of the other light flavors to the Higgs sector.
- Connect the light quarks to the composite (t_L, b_L) doublet in the UV, and utilize the enhancement of the composite operator in the IR.
- In this structure, the right-handed singlets are naturally aligned with the Higgs. We expect that this will suppress FCNC. More work is necessary.

Summary

- Gauge-Higgs unification based on $SO(5) \times U(1)_X$ in AdS5 as a dual formulation of a 4D composite Higgs model.
- Finite and calculable Higgs effective potential.
- Competing forces can generate the Little Hierarchy.
- We can make quantitative predictions in this model and they are mostly determined by the scale of new physics.
- The new physics scale is constrained most significantly by the top-partner mass.
- $m_b \ll m_t$ can be naturally realized.
- Coupling deviations can be measured in future colliders.

