Scalable Data Engineering, Exercise 8

HENRY HAUSTEIN

Task 1

- (a) False. Supervised Learning needs labelled data.
- (b) False. The output is f(Xw).
- (c) True.
- (d) False. For non-linearity you need at least one non-linear activation function.
- (e) True.
- (f) False. Three derivatives.
- (g) False. Exploding gradients lead to instability because of huge changes in weights.
- (h) False. Problem are dead neurons.
- (i) True.

 ${f Task}\ {f 2}$ Using an Excel Spreadsheet we get

x	x_1	t	w_{11}^{old}	w_{21}^{old}	z	a	w_{11}^{new}	w_{21}^{new}
1	0	1	-0,2	0,4	-0,2	0	0,1	0,4
0	1	1	0,1	0,4	0,4	0	0,1	0,7
0	0	0	0,1	0,7	0	0	0,1	0,7
1	. 1	1	0,1	0,7	0,8	0	0,4	1
1	. 0	1	0,4	1	0,4	0	0,7	1
0	1	1	0,7	1	1	1	0,7	1
0	0	0	0,7	1	0	0	0,7	1
1	. 1	1	0,7	1	1,7	1	0,7	1
1	0	1	0,7	1	0,7	0	1	1
0	1	1	1	1	1	1	1	1
0	0	0	1	1	0	0	1	1
_1	1	1	1	1	2	1	1	1

1	0	1	1	1	1	1	1	1	
0	1	1	1	1	1	1	1	1	
0	0	0	1	1	0	0	1	1	
1	1	1	1	1	2	1	1	1	

The weights converge to 1.

Task 3

Since we know the true values t_{a_1} , t_{a_2} and t_{a_3} we can train all three perceptrons individually. For the first perceptron we see that it should only fire if and only if x_1 fires. This leads to $w_{11} = 1$ and $w_{21} = -1$. For the second perceptron it is the opposite: It should only fire if and only if x_2 fires. Therefore $w_{21} = -1$ and $w_{22} = 1$.

The third perceptron models the XOR function which is not linear separable. Therefore we won't find weights w_{13} and w_{23} that will produce correct results.