Prova scritta di Calcolo Scientifico

Udine, 13 luglio 2021

- 1. Sia $\mathcal{F} := \mathcal{F}(2, t, e_{\max}, e_{\min})$ l'insieme di numeri di macchina con l'arrotondamento, che contiene anche i numeri denormalizzati. Sia d il più piccolo numero denormalizzato positivo di \mathcal{F} e u la precisione di macchina.
 - Determina gli interi t, e_{max} , e_{min} in modo che $e_{\text{max}} + e_{\text{min}} = 5$, $\frac{u}{d} = 4$ e $\frac{realmax}{realmin} = 60$.
 - Quanti sono i numeri di \mathcal{F} ?
 - Siano dati $x=(1.\overline{011})_2$ e $y=(10.\overline{011})_2$. Determina $\tilde{x}=fl(x)\in\mathcal{F},\,\tilde{y}=fl(y)\in\mathcal{F}$ e $\tilde{z}=\tilde{x}fl(-)\tilde{y}$.
 - Scrivi x,y e \tilde{x},\tilde{y} come frazioni di numeri interi in base 10.
- 2. Si vuole calcolare $y = F(x) \operatorname{con} F(x) = f(g(x)), \operatorname{con} f, g$ funzioni date.
 - Determina la relazione tra il numero di condizionamento di F e quelli di f e g.
 - Studia il condizionamento della funzione F(x) quando $f(x) = e^x$, $g(x) = x^2 1$, e $f(x) = x^2 1$, $g(x) = e^x$.

Sia $F(x) = \sqrt{x^2 - 1}$ con x che varia nel campo di definizione. Confronta la stabilità dei due algoritmi

- $\sqrt{x^2-1}$
- $\sqrt{(x-1)(x+1)}$

al variare di x numero di macchina.

- 3. Sia $f(x) = -\frac{x^3}{4} \frac{x^2}{4} + 2x + 3$.
 - Disegna il grafico di f. Determina le radici α, β con $\alpha < \beta$.
 - Studia la convergenza del metodo di Newton ad α e a β .
 - Considera le successioni ottenute con il metodo di Newton con i seguenti valori iniziali
 - (a) $x_0 = -1$
 - (b) $x_0 = -3$
 - (c) $x_0 = 0$
 - (d) $x_0 = 4/3$
 - (e) $x_0 = 2$
 - (f) $x_0 = 4$

Sono convergenti? Se convergenti, convergeno ad α o a β ? Qual è l'ordine di convergenza? Giustifica tutte le risposte.

- Sia $g(x) = x \frac{f(x)}{m}$. Considera il metodo iterativo $x_{k+1} = g(x_k), k = 0, 1, \ldots$ Studia la convergenza locale ad α del metodo iterativo al punto precedente con m = 2. La successione ottenuta con $x_0 = -1$ è convergente? Se convergente, qual è l'ordine di convergenza? Giustifica la risposta.
- Determina m in modo che la convergenza locale a β sia superlineare. La successione ottenuta con $x_0=2$ è convergente? Se convergente, qual è l'ordine di convergenza? Giustifica la risposta.
- Scrivi la pseudocodifica del metodo di bisezione che fornisce una stima di una radice di una generica funzione f
 con una precisione prefissata TOL.
- 4. Sia data la matrice

$$A = \left(\begin{array}{ccc} -\alpha & -7 & -6 \\ 2 & 3 & \alpha \\ 2\alpha & 13 & 17 \end{array} \right).$$

- ullet Calcola la fattorizzazione LU di A. Per quale scelta del parametri lpha esiste tale fattorizzazione?
- Studia al variare di α il comportamento del metodo di Gauss con il pivot parziale al primo passo.
- Sia $\alpha = 4$. Calcola la fattorizzazione PA = LU con la tecnica del pivot parziale.
- 5. Sia $f(x) = \log_2(1 + 4x^2)$. Dati i punti $P_0 = (-\sqrt{3}/2, f(-\sqrt{3}/2)), P_1 = (0, f(0)), P_2 = (1/2, f(1/2))$.
 - Determina il polinomio p che interpola i tre punti nella forma di Newton (suggerimento: usa la razionalizzazione).
 - Determina il polinomio \tilde{p} che interpola i tre punti e $P_3=(-1/2,f(-1/2))$ nella forma di Newton.
 - Determina il polinomio q di primo grado di miglior approssimazione dei quattro punti P_0, P_1, P_2 e $P_4 = (\sqrt{3}/2, f(\sqrt{3}/2))$ nel senso dei minimi quadrati.
- 6. Sia Ax = b un sistema lineare di dimensione n.
 - Scrivi la pseudocodifica dell'algoritmo di eliminazione di Gauss di base.
 - Modifica lo pseudocodice per applicare la tecnica del pivot parziale.