Tidyquant Trasladando el análisis financiero al Tidyverse

Gabriel Cabrera Universidad de Chile

"The most valuable commodity I know of is information."

Gordon Gekko, Wall Street (1987).

Breve historia

Paquete Tidyquant

- 1. Un megapaquete creado por Matt Dancho (@mdancho84).
- 2. Es la base del libro "Reproducible Finance with R: Code Flows and Shiny Apps for Portfolio Analysis" de Jonathan K. Regenstein Jr. (@jkregenstein).
- 3. **tidyquant** integra los mejores recursos/paquetes para colectar y analizar datos financieros: zoo, xts, quantmod, TTR y PerformanceAnalytic, con la infraestructura **tidy data**¹ del tidyverse, permitiendo la interacción entre ambos.
- **?** Actividad. Instale y descargue tidyquant.

```
install.packages("tidyquant")
library("tidyquant")
```

[1] Para mayor detalle ver el paper "Tidy Data (2014)" de Hadley Wickham.

Resumen de los paquetes

- 1. **xts** o **eXtensible time series**: Es una estructura de datos y a la vez un paquete para manipular series de tiempo. Detras se encuentra la estructura zoo.
- **2. quantmod** o **Quantitative Financial Modelling & Trading Framework**: Es un paquete diseñado para recuperar, manipular y modelar datos cuantitativos financieros.
- 3. TTR o Technical Trading Rules: Paquete que incluye varias funciones para computar análisis técnico.
- 4. **PerformanceAnalytics**: Incluye una colección de funciones econométricas para desempeño y análisis de riesgo. Se necesita los retornos y no los precios.

Lo

Tres Universos

En el mundo xts debemos considerar:

- 1. xts es un paquete y un tipo de objeto.
- 2. Contiene series de tiempo, ubicando la fecha en el index de cada observación.
- 3. Los paquetes cruciales para trabajar en el mundo del xts son: quantmod y PerformanceAnalytics. quantmod permite acceder a internet y extraer los precios en un objeto xts. PerformanceAnalytics, contiene funciones útiles para analizar el performance de portafolios: StdDev(), SharpeRatio(), SortinoRatio() y CAPM.beta().
- Actividad. Descargue el Standard & Poor's 500 (^GSPC) utilizando quantmod desde 2018-01-01 hasta 2018-12-01.

En la Consola: tg_get_oftims()

tidyverse

En el mundo tidyverse debemos considerar:

- 1. No es específico para análisis financiero ni su propósito esta pensado en trabajar con series de tiempo.
- 2. Usar tidyverse implicaría un uso intensivo de dplyr para transformar y organizar nuestros datos.
- 3. En este mundo, nuestros datos estarán almacenados en **data frames** o **tibble**.

tidyquant

En el mundo tidyquant debemos considerar:

- Tendremos lo mejor de ambos mundos, integrando las opciones financieras de PerformanceAnalytics con la transformación/manipulación del tidyverse.
- 2. Se suman dos paquetes: timetk y tibbletime.
- Actividad. Descargue el Standard & Poor's 500 (^GSPC) desde 2018-01-01 hasta 2018-02-01 utilizando tidyquant.

Workflow con tidyquant

Importación

La extracción de datos depende del **tipo** y de la **fuente**. Las funciones relevantes son:

 Obtener Stock Index, tq_index() y Stock Exchange, tq_exchange(): como resultado tendremos los tickers o stock symbols con sus atributos. Existen 18 índices y 3 exchanges.

```
o tq_index_options()
o tq_exchange_options()
```

 Obtener datos cuantitativos, tq_get(): Obtenemos datos desde distintas fuentes online.

```
o tq_get_options()
```

El más usado es stock.prices, que descarga directamente desde yahoo finance y economic.data desde FRED Federal Reserve of Saint Louis.

Actividad. Seleccione las acciones diarias de Facebook (FB), Apple (AAPL), Netflix (NFLX) y Google (GOOG), desde Enero del 2013 hasta Diciembre del 2018

```
symbols <- c("FB", "AAPL", "NFLX", "GOOG")

stocks_daily tbl <- tq_get(symbols,
    get = "stock.prices",
    from = "2013-01-01",
    to = "2019-01-01",
    periodicity = "daily")</pre>
```

Actividad. Descargue la tasa libre de riesgo mensual del bono de Estados Unidos a 10 años (DGS10), desde Enero del 2010 hasta Diciembre del 2018

```
tbill_daily_tbl <- tq_get("DGS10",
  get = "economic.data",
  from = "2013-01-01",
  to = "2019-01-01",
  periodicity = "daily")</pre>
```

Get ASYMBOIS - XtS. +x-6et - o tibble

mutate vs transmite

Transformación

- Para efecto del curso la transformación será pasar datos diarios a mensual/anual.
- 2. Luego calcular el retorno y retorno acumulado.
- Ejemplo. Deberiamos obtener el mismo resultado, si pasamos nuestros datos diarios a mensual/anual o si los descargamos directamente mensual/anual, como veremos a continuación.

Utilizando el objeto stocks_tbl que contiene en un tibble los precios de FANG, seleccionamos solo la observación final dentro de cada mes (lastof).

Obteniendo el siguiente resultado.

Search:

Show	5		entries
211044	l J	_ v .	Cilciics

	Fecha 🌲	FB ≑	AAPL 🏺	NFLX *	GOOG *
1	2013-01-01	65.07	30.98	376.43	23.61
2	2013-02-01	63.06	27.25	399.10	26.87
3	2013-03-01	63.24	25.58	395.61	27.04
4	2013-04-01	63.25	27.77	410.75	30.87
5	2013-05-01	64.25	24.35	433.98	32.32

Showing 1 to 5 of 72 entries

Previous 1 2 3 4 5 ... 15

Next

mutare_each (funs(.), A:Z)

Summorise_eacH (
ilo mismol.

Utilizando la opción monthly y realizando alguna manipulación obtenemos el mismo resultado.

```
stocks_monthly_tbl <- tq_get(symbols,
  get = "stock.prices",
  from = "2013-01-01",
  to = "2019-01-01",
  periodicity = "monthly") %>%
  select(date, symbol, close) %>%
  spread(symbol, close)
```

Search:

Show 4 v entries

311044	4 V CHICES		•	ocarcii.	
	Fecha 🌲	FB 🏺	AAPL 🏺	NFLX #	GOOG #
1	2013-01-01	65.07	30.98	376.43	23.61
2	2013-02-01	63.06	27.25	399.10	26.87
3	2013-03-01	63.24	25.58	395.61	27.04
4	2013-04-01	63.25	27.77	410.75	30.87

Showing 1 to 4 of 72 entries

Previous 1 2 3 4 5 ... 18

Next

Transformación: Retornos

Para calcular el retorno logaritmico se debe aplicar la formula:

$$r_t = log(1 + R_t) = log(\frac{P_t}{P_{t-1}}) = p_t - p_{t-1}$$

? Actividad. Calcule el retorno logarítmico mensual para FANG

Transformación: Retornos acumulados

En el caso de querer el retorno acumulado, usamos la función cumsum().

? Actividad. Calcule el retorno logarítmico acumulado de FANG

```
stock_returns_acum_monthly_tbl <- stock_returns_monthly_tbl %
gather(symbol, returns, -date) %>%
group_by(symbol) %>%
mutate(returns_acum = cumsum(returns)) %>%
select(-returns) %>%
spread(symbol, returns_acum)
```

Show 1 entries

Search	٦.
Scarci	I٠

	Fecha 🏺	FB ÷	AAPL 🏺	NFLX 🏺	GOOG ÷
1	2013-02-01	-0.0314	-0.1283	0.0585	0.1295

Showing 1 to 1 of 71 entries

Previous 1 2 3 4 5 ... 71

Next

Visualización

- 1. Para graficar datos financieros:
 - highcharter Cuando los datos sean xts y queramos que sean interactivo. Desde tibble a xts se usa tk_xts() del paquete timetk.
 - o ggplot2: Cuando los datos sean almacenado en **tibble** o data frame.
- Una manera de graficar los retornos es usar geom_density(), que es la versión suavisada de un histograma y se suele usar para datos que son continuos.
- Para graficar los retornos acumulados, se recomienda usar geom_line().

Visualización: Retornos

? Actividad. Grafique los retornos logarítmicos de FANG

```
stock_returns_monthly_tbl %>%
   gather(symbol, returns, -date) %>%
   ggplot(mapping = aes(x = returns, fill = symbol)) +
   geom_density(alpha = 0.5) +
   labs(title = "Retornos Activos", subtitle = "Facebook (FB),
        x = "Retornos diarios", y = "Densidad") +
   theme_tq() +
   scale_fill_tq() +
   facet_wrap(~ symbol, ncol = 2) +
   guides(fill=guide_legend(title="Activos:"))
```


Visualización: Retornos acumulados

Actividad. Grafique los retornos logarítmicos acumulados de FANG

Retornos Acumulado Facebook (FB), Amazon (AMZN), Netflix (NFLX) y Google (GOOG) 200% 100% 200% GOOG NFLX 2014 2016 2018 Periodo

Activos: — AAPL — FB — GOOG — NFLX

Análisis Técnico

¿Qué es el Análisis Técnico?

- 1. El análisis técnico consiste en detectar determinados patrones de comportamiento de los precios en el pasado, con la esperanza de que dicho patrones vuelvan a repetirse y poder así aprovecharnos de ello.
- 2. Las bases provienen de la Teoría de Dow.
- 3. En esta sesiones veremos:
 - a. Candlestick Chart
 - b. *Bandas de Bollinger*

Análisis Técnico: Candle Stick

```
end <- as_date("2018-07-31")

(sp500_tbl %>%
    ggplot(aes(x = date, y = close)) +
    geom_candlestick(aes(open = open, high = high, low = low,
    labs(title = "Standard & Poor 500 Candle Stick",
        subtitle = "CStick, últimos 6 meses",
        y = "Closing Price", x = "") +
    coord_x_date(xlim = c(end - weeks(12), end),
        ylim = c(2500, 3000)) +
    theme_tq()
```

Standard & Poor 500 Candle Stick

Análisis Técnico:

Comparar la volatilidad de la cotización de cualquier activo y el valor relativo de su precio a lo largo de un período de tiempo.

• La línea central (Middle Line, ML) es una media móvil simple.

$$SMA = \frac{P_M + P_{M-1} + \ldots + P_{M-(n-1)}}{n} = ML$$

 La línea superior (*Top Line*, TL) es la misma línea central pero desplazada hacia arriba a un número determinado de desviaciones estándares (D).

$$TL = ML + (D * \sigma)$$

 La línea inferior (Bottom Line, BL) es la línea central desplazada hacia abajo al mismo número de desviaciones estándares.

$$BL = ML - (D * \sigma)$$

Ejemplo. Construcción Bandas de Bollinger

Solo seleccionaremos las últimas 6 semanas del Standard and Poor's a partir de la fecha 2018-07-31.

```
end <- as_date("2018-07-31")
```

El tibble debe contener las variables: open, high, low y close (OHLC).

Standard & Poor 500 BBands con SMA, últimos 6 meses 2900 2800 2500

Fecha

jul.

ago.

jun.

Análisis Tendencia

INDICATOR	TTR NAME	QUANTMOD NAME
Welles Wilders Directional Movement Indicator	ADX	addADX
Double Exponential Moving Average	DEMA	addDEMA
Exponential Moving Average	EMA	addEMA
Simple Moving Average	SMA	addSMA
Parabolic Stop and Reverse	SAR	addSAR
Exponential Volume Weighted Moving Average	EVWMA	addEVWMA
Moving Average Convergence Divergence	MACD	addMACD
Triple Smoothed Exponential Oscillator	TRIX	addTRIX
Weighted Moving Average	WMA	addWMA

Análisis Volatility

INDICATOR	TTR NAME	QUANTMOD NAME
Average True Range	ATR	addATR
Bollinger Bands	BBands	addBBands
Price Envelope	N/A	addEnvelope

Análisis Volume

INDICATOR	TTR NAME	QUANTMOD NAME
Chaiken Money Flow	CMF	addCMF
Volume	N/A	addVo

Análisis Momentum

QUANTMOD **INDICATOR** TTR NAME NAMF CCI Commodity Channel Index addCCI Chande Momentum CMO addCMO Oscillator Detrended Price Oscillator addDPO DPO addMomentum momentum addROC Rate of Change **ROC** Relative Strength Indicator addRSI RSI Stocastic Momentum Index addSMI SMI Williams %R **WPR** addWPR

Construyendo un portafolio

Asignando los pesos

Como sabemos de nuestros cursos de finanzas, para construir un portafolio necesitamos los pesos. Estos pueden provenir de una procesos de optimización o bien asignarlos bajo algún criterio.

```
w <- c(0.25, 0.25, 0.25, 0.25)
```

Luego lo asignamos a cada symbols.

```
tibble(symbols, w)
```

Debemos verificar que sumen 1.

```
tibble(symbols, w) %>%
summarise(total_weight = sum(w))
```

Retornos portafolio

del

Actividad. Calcule el retorno del portafolio rebalanceandolo cada mes

```
portfolio_returns_monthly <- stock_returns_monthly_tbl %>%
  gather(asset, returns, -date) %>%
  tq_portfolio(assets_col = asset,
    returns_col = returns,
    weights = w,
    col_rename = "returns",
    rebalance_on = "months")
```

Visualización de los retornos: ggplot2

Visualización de los retornos: highcharter

Retornos Portafolio

Data Viz. usando highchart

Visualización de los retornos: plotly

Existe el paquete plotly el que nos permite construir gráficos dinamicos. A continuación les presentó lo útil que es para realizar análisis técnico.

• Ejemplo plotly

Material de Apoyo

Recomendaciones

Libro basado en tidyquant de Jonathan K. Regenstein Jr.:

1. Reproducible Finance with R: Code Flows and Shiny Apps for Portfolio Analysis

Muchas Gracias

Slides creadas por el paquete de R xaringan.

El chakra proviene remark.js, knitr, y R Markdown.