Problem 1.31. For any string $w = w_1 w_2 \cdots w_n$, the reverse of w, written w^R , is the string w in reverse order, $w_n \cdots w_1 w_2$. For any language A, let $A^R = \{w^R \mid w \in A\}$. Show that if A is regular, so is A^R .

Proof Idea. If A is regular, then there exists a DFA, say N that recognizes it. Take N and construct a new NFA N' to recognize A^R . N' has all the states of N, but the transitions are reversed. Start state of N is the accept state of N' has a new start state, say q_s with ϵ transitions to every accept state in N.

When N computes on some $w \in A$, it starts at the accept state, transitions through some intermediate states and finally stops at some accept state, whereas N' starts simultaneously from all the accept states of N and transitions backwards to reach the start state of N, which is the only accept state in N'.

Proof. The proof is by construction. Let $N=(Q,\Sigma,\delta,q_0,F)$ be the DFA that recognizes A. Construct $N'=(Q',\Sigma,\delta',q_0',F')$ to recognize A^R :

- 1. $Q' = Q \cup \{q_s\}$
- 2. q_s is the start state
- 3. $F' = \{q_0\}$
- 4. Define $\delta'(\mathbf{q}, \mathbf{a})$ so that for any $q \in Q'$ and any $a \in \Sigma_{\epsilon}$:

$$\delta'(q, a) = \begin{cases} F & q = q_s \text{ and } a = \epsilon \\ \phi & q = q_s \text{ and } a \neq \epsilon \\ \{q' \mid q' \in Q \text{ and } \delta(q', a) = q\} & q \in Q \end{cases}$$