SGS 技术在核设施退役中的简化应用

苏容波1,2,李涛文2,夏文友2,胡碧涛1

(1. 兰州大学核科学与技术学院, 兰州 730000;2. 中国工程物理研究院核物理与化学研究所, 绵阳 621900)

摘要:为解决核设施退役中高密度桶装废物的测量问题,对 SGS 技术进行了适当地简化。采用探测效率与介质对外源吸收——对应的方法刻度系统,利用 MC 程序评估串扰影响,针对主要影响因素利用介质对外源的吸收来校正串扰影响。实验结果显示:在放射源随机分布、介质密度低于 1.8 g/cm³的情况下,对¹³7 Cs 计算结果误差在 ± 20% 内。实验表明:根据实际需求,对 SGS 技术进行适当地简化应用是可行的。

关键词:SGS 技术;串批影响;随机分布

中图分类号: TL 822.6 文献标志码: A 文章编号: 0258-0934(2015)12-1197-04

随着核技术的广泛应用,放射性废物量与日俱增^[1],国家逐步加强了废物管理,制定了相应的标准,强化对核废物的监管。业主最终需将放射性废物送至废物处置场贮存或处理,为了运输和处置这些中低放废物的需要,对产生的中低放废物必须用标准的圆柱型容器(钢箱、水泥箱)进行包装,经整备后形成标准的废物包装体,并给出包装容器内的放射性核素及活度^[2]。非破坏分析方法(NDA)是解决这一问题的有效方法^[3],而分段γ扫描技术(SGS)是 NDA 方法中目的应用比较广泛的^[4-5]。该技术利用废物的γ放射性特性,通过测定废物包装体发射γ射线的能量特征来判别核素种类和活度,具有非破坏性、快速测量、操作相对较简单等优点。

本工作以 SGS 技术的基本原理为理论依据,分析了标准设备在实际应用存在局限性的原因,在对系统探测效率刻度方法和串扰影响

收稿日期:2015-10-26

作者简介:苏容波(1977-),男,湖北天门市人,助理研究员,主要从事辐射防护研究。通讯作者:胡碧涛,教授,E-mail:hubt@lzu.edu.cn。

校正方法进行实验研究的基础上,对 SGS 测量 技术进行适当简化,以满足非破坏性分析核设 施退役工程中中高密度桶装废物的需求。

1 SGS 技术基本原理

SGS 技术沿废物桶中轴线将废物分层,并假定各层的介质密度与放射性均匀分布。而实际情况不可能均匀分布,则通过匀速旋转废物桶来减小介质密度与放射性分布不均的影响,并用外源来校正介质密度。采用 γ 谱仪逐层测量,获得每层某核素某个特征 γ 射线的计数率,结合探测器的响应函数建立一个矩阵关系式,解矩阵算出每层的核素量,求和获得废物桶内的核素总量^[6]。

一般情况下,准直器不能完全排除上下邻近层发出的射线人射到探测器,如图 1 所示,探测器不仅能接收到准直器张口对应的当前层发出的 γ 射线,也能接收到其它层的 γ 射线。将其它层对当前层探测器计数的影响称为串扰。假设垂直划分成 n 层,每层的活度用向量 A 表示:

$$A = (A_1, A_2, \cdots, A_n)^T \tag{1}$$

探测器在每层的计数率用向量 C 表示:

$$C = (C_1, C_2, C_3, \dots, C_n)$$
 (2)

考虑到层间串扰影响,探测器在第i层的计数率C可以表示为:

$$C_i = \sum E_{ii} A_i \tag{3}$$

式中: A_j 为第j 层放射性核素的活度; E_{ij} 为探测器位于第i 层高度时第j 层的放射性核素对探测器的探测效率。因此,A 与C 的关系可用传递矩阵 E 表示:

$$C = E \cdot A \tag{4}$$

E 为由 E_{ij} 组成的 $n \times n$ 大小的矩阵。通过解方程组得出 A_i , $\sum A_i$ 即为该桶内的总活度。

图 1 SGS 原理图

2 SGS 技术应用局限

目前已有依据 SGS 技术开发出的标准设备用于核废物的测量,例如,堪培拉 WM2900 废物分析系统,对密度最高可达 1 g/cm³的 200 L桶,其不确定度为 ± 20%; ORTEC 的 AURAS - 3001 桶装放射性核废物检测计数器,对于均匀分布的放射源或者矩阵分布的放射源,其测量不确定度在 10% 以下。其指标只针对密度低于 1 g/cm³的轻质介质,对密度大的介质则不适用。而在核设施退役工程中,绝大多数核废物的介质密度高于 1 g/cm³,甚至达到 7.8

g/cm³,这些标准设备在核设施退役工程中并不适用,只能解决极少数核废物的测量问题。本实验室根据需求,搭建了一台样机(见图 2),用于核设施退役产生的桶装废物的测量。

图 2 平台设计图和实物图

3 主要参数的获取方法与实验验证

3.1 探测效率获取方法

根据桶内的平均密度计算探测器的探测效率,利用介质对¹⁵²Eu 的吸收采用线性插入法进行校正。在几十 eV 或几百 keV 的低能段,若桶内存在结块或空隙则对¹⁵²Eu 的吸收影响较大,采用线性插入法进行校正获得的探测效率值的误差也变大。这可能是原标准设备只适用介质密度低于1 g/cm³废物的原因之一,故该系统外源选定为⁶⁰Co,利用其1.33 MeV 特征射线进行密度校正。

定义参数介质吸收因子 K,其与介质密度相关。通过介质对外源的吸收实验获得介质密度与吸收因子 K 的关系,由无源效率刻度软件可得到介质密度与探测效率 η 的关系,利用中间量介质密度可以拟合出探测效率 η 与吸收因子 K 的关系。图 3 是某高纯锗 γ 谱仪通过实验值与无源效率刻度软件计算值拟合的探测效率 η 与吸收因子 K 的关系。

图 3 针对 59.54 keV 和 661.65 keV 射线探测效率与吸收因子拟合图

3.2 计数校正

SGS 技术通过解矩阵扣除串扰影响,而实 际测量过程中情况复杂,可能矩阵是奇异的,导 致结果存在数倍或更大的误差。若要结果准确,则条件需更加明确,致使适用范围变小。而在工程应用中,一个模型需要解决许多废物的

测量问题,故串扰影响的扣除需简化。利用 MCNP 程序计算了均匀分布情况下每层打人探

测器所在空间的光子数来考查串扰影响,图例 见图 4,计算条件见表 1,结果见表 2。

表1 条件说明

探测距离	铅平板准直器	环状准直器	探测器尺寸	介质密度	射线能量
左侧端面距废物桶	$50 \text{ cm} \times 20 \text{ cm} \times 5 \text{ cm}$,	内 r = 5 cm;外	锗,侧底直径为	10 / 1	((1 V
右侧端面 58 cm	板距 10 cm	r=10 cm;厚5 cm	ф10 cm ×5 cm	1.0 g/cm ³	661 keV

表 2 MCNP模拟计数

源位置	第1层	第2层	第3层	第4层
体通量(归一化)	4.176×10^{-8}	1.617 × 10 ⁻⁷	1.239 4 × 10 ⁻⁶	3.458 1 × 10 ⁻⁶
源位置	第5层	第6层	第7层	第8层
体通量(归一化)	1.1819×10^{-6}	$1.457 \ 3 \times 10^{-7}$	4.1249×10^{-8}	$1.424.5 \times 10^{-8}$

以第 4 层为当前被测层,第 3 层串扰为 19.7%,第 5 层串扰为 18.8%,其它层串扰和 6.4%,由此可知串扰主要来自被测层的上、下层。测量结果主要用于废物分级,如含有半衰期大于 30 年的废物,比活度小于或等于 4×10⁶ Bq/kg 的是低放废物;比活度大于 4×10⁶ Bq/kg,且释热率小于或等于 2 kW/m³的是中放废物;比活度大于 4×10¹⁰ Bq/kg,且释热率大于 2 kW/m³的是高放废物^[7],由此可估计,结果可接受的误差范围较大,故除被测层上、下层外,其它层的串扰无需作为主要因素考虑,可忽略。在 SGS 基础上,作两假设来简化串扰校正:(1)被测层的计数影响主要来自于上、下层;(2)局部一致,即当某层定为被测层,其上、下层与该层分布完全相同。

图 4 MCNP 模拟计算示意图

放射源按固定分布(如沿直径分布)与某均匀介质模拟一高度为 10 cm 的废物,放置于旋转台上测量,被测核素感兴趣区净计数率为 n_1 ;测量完毕后,探测器升高 10 cm 再测量,被测核素感兴趣区净计数率为 n_2 ,定义 $f(f=n_2/n_1)$ 为影响因子。实验数据见表 3,拟合的影响因子与吸收因子曲线见图 5。

表 3 影响因子与吸收因子对应数据表

介质密度	吸收因子	影响因子
0.124	0.465	0.737
0.215	0.733	0.674
0.396	1.264	0.635
0.542	1.606	0.609
0.591	1.935	0.551
0.632	2.090	0.535
0.819	2.658	0.387
0.885	2.807	0.361
1.274	3.774	0.336
1.348	3.924	0.290
1.538	4.557	0.287
1.761	4.646	0.254

图 5 影响因子与吸收因子拟合图 拟合的关系为:

$$f = -0.12K + 0.76 \tag{5}$$

废物桶最上层和最下层其计数校正系数为 1/(1+f),中间其它层的计数校正系数为 1/(1+2f)。

3.3 实验验证

利用¹³⁷Cs 标液(总活度为 83 250 Bq)、均 匀介质、铝棒(模拟存在结块情况)、废物桶随 机制作模拟废物,模拟样测量结果见表 4。结 果表明:介质密度低于 1.761 g/cm³的情况下,

表 4 模拟样测量结果

模拟废物密度/g/cm³	测量结果/Bq	相对误差
均匀介质,密度 0.124	86 667.16	4.10%
均匀介质,密度 0.124	95 355.50	14.54%
均匀介质,密度 0.124	91 823.95	10.30%
均匀介质,密度 0.124,插人 4 根铝棒	92 921.11	11.62%
均匀介质,密度 0.819	89 560.94	7.58%
均匀介质,密度 0.819	84 870.28	1.95%
均匀介质,密度 0.819	77 833.24	-6.51%
均匀介质,密度 0.819	67 685.32	-18.70%
均匀介质,密度1.348,插人4根铝棒	86 324.16	3.69%
均匀介质,密度 1.348	93 258.9	12.02%
均匀介质,密度1.538,插入4根铝棒	81 675.79	-1.89%
均匀介质,密度 1.538	75 297.12	-9.55%
均匀介质,密度 1.538	99 801.48	19.88%
均匀介质,密度1.538,插入4根铝棒	91 912.67	11.61%
均匀介质,密度 1.761	91 586.16	10.01%

4 结论

实验结果表明:该技术适用于介质密度在1.8 g/cm³内的桶装废物非破坏测量,保障了部分放射性废物外运送贮的顺利实施。根据实际需求,对 SGS 技术进行适当地简化是可行的。今后将根据核设施退役工程的实际需要开展验证实验,确定该技术适用的介质密度极限范围,更大程度地满足核退役工程需求。

参考文献:

- [1]潘自强. 我国放射性废物管理中一些值得重视问题的讨论[C]. 北京:第四次会议暨低中放废物管理和放射性物质运输学术研讨会论文集,2005.
- [2]刘诚. 中低放射性废物改进型 γ 扫描技术及活度

重建算法研究[D]. 上海:上海交通大学,2013.

- [3]杨明太. 核材料的非破坏性分析[J]. 核电子学与 探测技术,2001,21(6):501-504.
- [4] Prettyman T H, Sprinkle J K, et al. A weighted least - squares lump correction algorithm for transmission - corrected gamma - ray nondestructive assay [R]. Los Alamos National Laboratory Document, LA - UR - 93 - 2632, 1993.
- [5] Hsue S T, Stewart J E. Guide to nondestructive assay standard preparation, criteria, availability and practical considerations [R]. Los Alamos National Laboratory Document, La - 13340 - Ms, 2000.
- [6]张全虎. 层析 γ扫描(TGS)重建技术的研究[D]. 北京:中国原子能科学研究院,2003.
- [7]核工业第二设计研究院. GB9133—1995 放射性废物的分类[S]. 北京:中国标准出版社,1995.

Pre - digestion and Application of SGS Technology in Decommissioning of Nuclear Facility

SU Rong - bo^{1,2}, LI Tao - wen², XIA Wen - you², HU Bi - tao¹

(1. School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China;

2. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China)

Abstract: An appropriately simplified SGS technology is developed to solve the measurement problem of the drummed waste from decommissioned nuclear facilities. The method of system calibration is based on a corresponding relationship between detection efficiency and the media absorption of out – source. Monte Carlo procedure is used to assess the impact of crosstalk, and for the main factors, the crosstalk is redressed by the media absorption of out – source. The experiment showed that the deviation of activity of ¹³⁷Cs is smaller than 20%, on the condition that the radioactive sources are random distribution and the medium density is smaller than 1.8 g/cm⁻³, which indicates that the simplifying of SGS technology according to the actual requirements is feasible. **Key words:** SGS technology; the influence of crosstalk; random distribution