Research Presentation

Active Learning with V-Learning

Thorben Werner March 31, 2022

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science
University of Hildesheim

Pool-Based Active Learning

 $\mathcal{L} \in \mathbb{R}^{\lambda imes m}$ Labeled Set $\mathcal{U} \in \mathbb{R}^{\mu imes m}$ Unlabeled Set $\phi_{ heta} := \mathbb{R}^m o \mathbb{R}^c$ Classifier $\mathcal{K} \in \mathbb{R}^{k imes m}$ Unlabeled Sample $\psi := \mathbb{R}^{k imes m} o \mathbb{R}^k$ Active Learning Heuristic $\pi_{\psi} := argmax \ \psi(\mathcal{S})$ Active Learning Policy

Active Learning with Q-Learning

Problems:

- Fixed Sample size
- Expensive Transitions
- Same actions in different places

$$\mathcal{S} \in \mathbb{R}^{b \times k \times \sigma}$$
 State Space $\mathcal{A} \in [0,\dots,k]^b$ Action Space $\mathcal{R} := \mathcal{S} \times \mathcal{A} \to \mathbb{R}^b$ Reward Function $\tau := \{\mathcal{S}, \mathcal{A}, \mathcal{S}, \mathcal{R}, \mathbb{R}^b\}$ Transition

Active Learning with Q-Learning

Sample size k = 2

The same datapoint can appear in multiple places in the input

Both output nodes essentially learn the same function

Active Learning with V-Learning

Adaptations

- We use the batch dimension for representing the sample size k
- · No action space needed

 $\mathcal{S} \in \mathbb{R}^{b imes \sigma}$ State Space $\mathcal{R} := \mathcal{S} o \mathbb{R}$ Reward Function

Storing Transitions in Memory

Q-Learning:

$$O(au) = \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times \mathcal{R} \times \mathbb{R}$$
 $O(au) = k^2 \times \sigma^2 + 3$

V-Learning:

$$O(au) = \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times \mathcal{R} \times \mathbb{R}$$
 $O(au) = \mathbf{2} \times \sigma^2 + \mathbf{3}$

Pool-Based Active Learning

some