MetidaNCA validation report

Vladimir Arnautov

2025-07-01

Contents

1	Intr	roduction and package description	2
	1.1	Validation purpose	
	1.2	Requirements	
	1.3	Developer software life cycle	
		1.3.1 Versions	
	1.4	11	
		1.4.1 Tier 1	3
2	Inst	stallation	4
	2.1	System information	4
	2.2	Installation method	4
	2.3	Version check	4
3	Ope	peration qualification	4
	3.1	Coverage	4
	3.2	Data	4
	3.3	Testing results	4
4	Per	rformance qualification	5
	4.1	Parameter's names description	
	4.2	1	
	4.3		
		4.3.1 Linear-trapezoidal rule; Extravascular; Dosetime 0.0; No Tau; D	
		4.3.2 Linear-Up Log-Down; Extravascular; Dosetime 0.25; Tau 9; Dos	
		4.3.3 Linear-trapezoidal rule; Intravascular; Dosetime 0.0; Tau 12; Do	
		4.3.4 Linear/Log Trapezoidal rule; Extravascular; Dosetime 0.0; Ta	,
		4.3.5 Urine data; Linear-trapezoidal rule; Extravascular; Dosetime	
		Dose 100	,
		4.3.6 Pharmacodynamics data; Linear-trapezoidal rule	
5	Glo	ossary	30
6	Ref	ference	30
7		pendix 1	31
•	ΔV	ponun i	01

	8.0.1	Reference output	37
8	Appendix	2	37
	7.0.3	Testing PD dataset	36
	7.0.2	Testing urine PK dataset	35
	7.0.1	Testing PK dataset	31

1 Introduction and package description

This is Non-compartment analysis software. The package is designed for batch processing of pharmacokinetic data.

See documentation:

- Dev: https://pharmcat.github.io/MetidaNCA.jl/dev/
- Stable: https://pharmcat.github.io/MetidaNCA.jl/stable/

1.1 Validation purpose

The main validation purpose is confirmation by examination and provision of objective evidence that software specifications conform to user needs and intended uses, and that the particular requirements implemented through software can be consistently fulfilled.

1.2 Requirements

• Julia 1.8 (or higher) installed for Operating System/OS Version/Architecture in Tier 1 list

Tier 1: Julia is guaranteed to build from source and pass all tests on these platforms when built with the default options. Official binaries are always available and CI is run on every commit to ensure support is actively maintained.

1.3 Developer software life cycle

- Development stage
- Testing procedures development
- Performing testing procedures on local machine
- Push to development branch
- Make pull request to main branch
- Performing testing procedures with GitHub Actions
- Make pull request to the official registry of general Julia packages (if nessesary)
- Make release (if previous completed)

1.3.1 Versions

- X.Y.Z patch release (no breaking changes)
- X.Y.0 minor release (may include breaking changes if X = 0)
- X.0.0 major release (breaking changes, changes in public API)
- 0.#.# no stable public API
- 1.#.# or higher stable public API

1.4 Build support

1.4.1 Tier 1

• julia-version: 1.8, 1

• julia-arch: x64

 $\bullet\,$ os: ubuntu-latest, mac
OS-latest, windows-latest

2 Installation

2.1 System information

• Julia version: v"1.11.5"

• Current machine: "x86 64-linux-gnu"

2.2 Installation method

MetidaNCA.jl can be installed by executing the following command in REPL:

import Pkg; Pkg.add("MetidaNCA")

2.3 Version check

The installation process is checking within each testing job via GitHub Actions. Also GitHub Action chek performed before merging into JuliaRegistries/General repository (see Automatic merging of pull requests).

Current package version: "0.7.0"

3 Operation qualification

This part of validation based on testing procedures entails running software products under known conditions with defined inputs and documented outcomes that can be compared to their predefined expectations. All documented public API included in testing procedures and part of critical internal methods. Testing procedures can be found in test directory.

3.1 Coverage

Code coverage report available on Codecov.io. Test procedures include all public API methods check.

• Coverage goal: >= 90.0%

3.2 Data

Validation data available in the repository and included in the package. See Appendix 1.

3.3 Testing results

Pkg.test("MetidaNCA")

4 Performance qualification

Purpose of this testing procedures to demonstrate performance for some critical tasks. Results from MetidaNCA compared with Phoenix WinNonlin 8.0 results, see Appendix 2.

4.1 Parameter's names description

Table 1: Parameter description

Name	Description
Cmax	Maximum concentration
Tmax	Time at Cmax
Cdose	Concentration at dose time
Clast	Last non-zero concentration
AUClast	AUC to Clast
AUMClast	AUMC to Clast
AUCall	AUC with all values
Rsq	r square
ARsq	Adjusted r square
Kel	Terminal elimination constant
$_{ m HL}$	Half live or T1/2
LZint	Intercept
$Clast_pred$	Predicted Clast
AUCinf	AUC extrapolated to infinity
AUCpct	Percentage AUClast from AUCinf
MRTlast	Mean Residence Time (last)
MRTinf	Mean residence time (MRT) extrapolated to infinity
$MRTinf_pred$	Mean residence time (inf) predicted
Clinf	Clearence
Vzinf	Volume of distribution
AUCtau	AUC in Tau range
AUMCtau	AUMC in Tau range
MRTtauinf	MRT based on Tau
Cltau	Clearence in Tau range
Vztau	Volume of distribution in Tau range

4.2 Output example

Import data:

```
pkdata2 = CSV.File(
joinpath(dirname(pathof(MetidaNCA)), "..", "test", "csv", "pkdata2.csv")
) |> DataFrame
ds = pkimport(pkdata2, :Time, :Concentration, [:Subject, :Formulation];
dosetime = DoseTime(dose = 100, time = 0))
sort!(ds, :Subject)
```

Execute NCA:

```
MetidaNCA.nca!(ds[1], adm = :ev, calcm = :lint, verbose = 1)
```

Non-compartmental Pharmacokinetic Analysis
 Subject: Subject => 1; Formulation => T;

Settings:

Method: lint; Dose: 100; Dose time: 0

Time	Conc.	AUC	AUC (cum.)	AUMC	AUMC (cum.)	Info
0	0	0	0	0	0	D
0.5	178.9	44.74	44.74	22.37	22.37	
1	190.9	92.45	137.2	70.09	92.45	
1.5	164.9	88.95	226.1	109.6	202	
2	140	76.22	302.4	131.8	333.8	
2.5	129.6	67.39	369.8	151	484.8	
3	131.4	65.24	435	179.5	664.3	
4	150.9	141.1	576.1	498.8	1163	
5	121.2	136	712.1	604.8	1768	
6	139.2	130.2	842.4	720.8	2489	
8	128.5	267.7	1110	1864	4352	
10	143.2	271.8	1382	2461	6813	E
12	145	288.2	1670	3172	9985	E
24	133.2	1669	3339	2.961e+04	3.96e+04	E
48	137.3	3245	6584	1.174e+05	1.57e+05	E
72 	112.8	3001	9585	1.766e+05	3.336e+05	E

Cdose: 0.0, Dose time: 0 Kel start: 10.0; end: 72.0

PK/PD subject NCA result

Parameter	Value
Rsqn Vzlast	3.0 3.08222
Tmax	1.0

AUMCinf_pred	1.30681e7
MRTinf_pred	295.374
ARsq	0.714769
AUClast	9585.42
${\tt MRTinf}$	293.162
AUCinf_pred	44242.6
LZ	-0.00338474
LZint	5.00849
Obsnum	16.0
Clast	112.846
Dose	100.0
Tlag	0.0
Cdose	0.0

17 rows omitted

4.3 Results

4.3.1 Linear-trapezoidal rule; Extravascular; Dosetime 0.0; No Tau; Dose 100 Code:

nca!(ds, adm = :ev, calcm = :lint)

Table 2: Plasma data results, Linear-trapezoidal rule, Extravascular

Parameter	Subject	Value	Reference	Difference
\overline{Cmax}	1	190.869	190.869	0.0
Cmax	2	261.177	261.177	0.0
Cmax	3	105.345	105.345	0.0
Cmax	4	208.542	208.542	0.0
Cmax	5	169.334	169.334	0.0
Cmax	6	154.648	154.648	0.0
Cmax	7	153.254	153.254	0.0
Cmax	8	138.327	138.327	0.0
Cmax	9	167.347	167.347	0.0
Cmax	10	125.482	125.482	0.0
Tmax	1	1.0	1.0	0.0
Tmax	2	1.0	1.0	0.0
Tmax	3	1.5	1.5	0.0
Tmax	4	1.0	1.0	0.0
Tmax	5	4.0	4.0	0.0
Tmax	6	2.5	2.5	0.0
Tmax	7	2.5	2.5	0.0
Tmax	8	4.0	4.0	0.0
Tmax	9	3.0	3.0	0.0
Tmax	10	2.0	2.0	0.0
Cdose	1	0.0	0.0	0.0
Cdose	2	0.0	0.0	0.0
Cdose	3	0.0	0.0	0.0
Cdose	4	0.0	0.0	0.0
Cdose	5	0.0	0.0	0.0
Cdose	6	0.0	0.0	0.0
Cdose	7	0.0	0.0	0.0
Cdose	8	0.0	0.0	0.0
Cdose	9	0.0	0.0	0.0
Cdose	10	0.0	0.0	0.0
Clast	1	112.846	112.846	0.0
Clast	2	85.241	85.241	0.0
Clast	3	67.901	67.901	0.0
Clast	4	97.625	97.625	0.0
Clast	5	110.778	110.778	0.0
Clast	6	69.501	69.501	0.0
Clast	7	58.051	58.051	0.0
Clast	8	74.437	74.437	0.0

Parameter	Subject	Value	Reference	Difference
Clast	9	93.44	93.44	0.0
Clast	10	42.191	42.191	0.0
AUClast	1	9585.42	9585.42	0.0
AUClast	2	10112.2	10112.2	0.0
AUClast	3	5396.55	5396.55	0.0
AUClast	4	9317.84	9317.84	0.0
AUClast	5	9561.26	9561.26	0.0
AUClast	6	6966.6	6966.6	0.0
AUClast	7	7029.57	7029.57	0.0
AUClast	8	7110.67	7110.67	0.0
AUClast	9	8315.08	8315.08	0.0
AUClast	10	5620.89	5620.89	0.0
AUMClast	1	333582.0	333582.0	0.0
AUMClast	$\frac{1}{2}$	298701.0	298701.0	0.0
AUMClast	3	186032.0	186032.0	0.0
AUMClast	4	313956.0	313956.0	0.0
AUMClast	5	315182.0	315182.0	0.0
AUMClast	6	226977.0	226977.0	0.0
AUMClast	7	219798.0	219798.0	0.0
AUMClast	8	240526.0	240526.0	0.0
AUMClast	9	277614.0	277614.0	0.0
AUMClast	10	154893.0	154893.0	0.0
AUCall	10	9585.42	9585.42	0.0
AUCall	2	10112.2	10112.2	0.0
AUCall	3	5396.55	5396.55	0.0
AUCall	4	9317.84	9317.84	0.0
AUCall	5	9561.26	9561.26	0.0
AUCall	6	6966.6	6966.6	0.0
AUCall	7	7029.57	7029.57	0.0
AUCall	8	7110.67	7110.67	0.0
AUCall	9	8315.08	8315.08	0.0
AUCall	10	5620.89	5620.89	0.0
Rsq	10	0.786077	0.786077	0.0
Rsq	$\frac{1}{2}$	0.780077 0.992764	0.780077 0.992764	0.0
Rsq	$\frac{2}{3}$	0.992704 0.813589	0.992704 0.813589	0.0
-	3	0.813389 0.918859	0.813389 0.918859	0.0
Rsq	5	0.918639 0.85336	0.918639 0.85336	0.0
Rsq	6	0.85330 0.950119	0.8950119	0.0
Rsq				
Rsq	7	0.970312	0.970312	0.0
Rsq	8	0.947969	0.947969	0.0
Rsq	9	0.947538	0.947538	0.0
Rsq	10	0.880923	0.880923	0.0
ARsq	1	0.714769	0.714769	0.0
ARsq	2	0.990351	0.990351	0.0
ARsq	3	0.776307	0.776307	0.0
ARsq	4	0.837717	0.837717	0.0
ARsq	5	0.82892	0.82892	0.0
ARsq	6	0.925179	0.925179	0.0

Parameter	Subject	Value	Reference	Difference
\overline{ARsq}	7	0.960416	0.960416	0.0
ARsq	8	0.921954	0.921954	0.0
ARsq	9	0.921307	0.921307	0.0
ARsq	10	0.863912	0.863912	0.0
Kel	1	0.00338474	0.00338474	0.0
Kel	2	0.0141063	0.0141063	0.0
Kel	3	0.00329143	0.00329143	0.0
Kel	4	0.00769534	0.00769534	0.0
Kel	5	0.00681333	0.00681333	0.0
Kel	6	0.00769228	0.00769228	0.0
Kel	7	0.012459	0.012459	0.0
Kel	8	0.00893008	0.00893008	0.0
Kel	9	0.00564586	0.00564586	0.0
Kel	10	0.0171897	0.0171897	0.0
HL	1	204.786	204.786	0.0
HL	2	49.1374	49.1374	0.0
HL	3	210.591	210.591	0.0
HL	4	90.0736	90.0736	0.0
HL	5	101.734	101.734	0.0
HL	6	90.1095	90.1095	0.0
HL	7	55.6345	55.6345	0.0
HL	8	77.6194	77.6194	0.0
HL	9	122.771	122.771	0.0
HL	10	40.3233	40.3233	0.0
$Clast_{pred}$	1	117.306	117.306	0.0
$Clast_{nred}$	2	82.5367	82.5367	0.0
$Clast_{nred}$	3	66.9311	66.9311	0.0
$Clast_{pred}^{pred}$	4	100.768	100.768	0.0
$Clast_{pred}^{r}$	5	105.298	105.298	0.0
$Clast_{nred}$	6	71.9399	71.9399	0.0
$Clast_{pred}^{red}$	7	61.1727	61.1727	0.0
$Clast_{pred}^{red}$	8	75.6043	75.6043	0.0
$Clast_{pred}^{red}$	9	93.7618	93.7618	0.0
$Clast_{pred}^{red}$	10	38.8109	38.8109	0.0
AUCinf	1	42925.0	42925.0	0.0
AUCinf	2	16154.9	16154.9	0.0
AUCinf	3	26026.2	26026.2	0.0
AUCinf	4	22004.1	22004.1	0.0
AUCinf	5	25820.3	25820.3	0.0
AUCinf	6	16001.8	16001.8	0.0
AUCinf	7	11689.0	11689.0	0.0
AUCinf	8	15446.2	15446.2	0.0
AUCinf	9	24865.2	24865.2	0.0
AUCinf	10	8075.32	8075.32	0.0
AUCpct	1	77.6694	77.6694	0.0
AUCpct	2	37.405	37.405	0.0
AUCpct	3	79.2649	79.2649	0.0

Parameter	Subject	Value	Reference	Difference
AUCpct	4	57.6541	57.6541	0.0
AUCpct	5	62.97	62.97	0.0
AUCpct	6	56.4636	56.4636	0.0
AUCpct	7	39.8614	39.8614	0.0
AUCpct	8	53.9649	53.9649	0.0
AUCpct	9	66.5594	66.5594	0.0
AUCpct	10	30.3942	30.3942	0.0
MRT last	1	34.801	34.801	0.0
MRT last	2	29.5388	29.5388	0.0
MRT last	3	34.4724	34.4724	0.0
MRT last	4	33.6941	33.6941	0.0
MRT last	5	32.9644	32.9644	0.0
MRT last	6	32.5808	32.5808	0.0
MRT last	7	31.2676	31.2676	0.0
MRT last	8	33.8261	33.8261	0.0
MRT last	9	33.3868	33.3868	0.0
MRT last	10	27.5567	27.5567	0.0
MRTinf	1	293.162	293.162	0.0
MRTinf	2	71.9379	71.9379	0.0
MRTinf	3	305.041	305.041	0.0
MRTinf	4	130.7	130.7	0.0
MRTinf	5	149.967	149.967	0.0
MRTinf	6	128.241	128.241	0.0
MRTinf	7	79.4983	79.4983	0.0
MRTinf	8	114.857	114.857	0.0
MRTinf	9	176.978	176.978	0.0
MRTinf	10	58.7464	58.7464	0.0
$MRTinf_{pred}$	1	295.374	295.374	0.0
$MRTinf_{pred}$	2	71.0858	71.0858	0.0
$MRTinf_{pred}$	3	304.23	304.23	0.0
$MRTinf_{nred}$	4	131.998	131.998	0.0
$MRTinf_{pred}$	5	147.755	147.755	0.0
$MRTinf_{pred}$	6	129.674	129.674	0.0
$MRTinf_{pred}$	7	81.0253	81.0253	0.0
$MRTinf_{nred}$	8	115.437	115.437	0.0
$MRTinf_{nred}$	9	177.143	177.143	0.0
$MRTinf_{pred}$	10	56.9637	56.9637	0.0
Clinf	1	0.00232964	0.00232964	0.0
Clinf	2	0.00619006	0.00619006	0.0
Clinf	3	0.00384228	0.00384228	0.0
Clinf	4	0.00454461	0.00454461	0.0
Clinf	5	0.00387293	0.00387293	0.0
Clinf	6	0.00624931	0.00624931	0.0
Clinf	7	0.00855509	0.00855509	0.0
Clinf	8	0.00647408	0.00647408	0.0
Clinf	9	0.00402168	0.00402168	0.0
Clinf	10	0.0123834	0.0123834	0.0
- · · · · J				

Parameter	Subject	Value	Reference	Difference
Vzinf	1	0.688278	0.688278	0.0
Vzinf	2	0.438815	0.438815	0.0
Vzinf	3	1.16736	1.16736	0.0
Vzinf	4	0.590566	0.590566	0.0
Vzinf	5	0.568434	0.568434	0.0
Vzinf	6	0.812414	0.812414	0.0
Vzinf	7	0.686662	0.686662	0.0
Vzinf	8	0.724974	0.724974	0.0
Vzinf	9	0.712323	0.712323	0.0
Vzinf	10	0.720395	0.720395	0.0

4.3.2 Linear-Up Log-Down; Extravascular; Dosetime 0.25; Tau 9; Dose 100 Code:

```
setdosetime!(ds, DoseTime(dose = 100, time = 0.25, tau = 9))
nca!(ds, adm = :ev, calcm = :luld)
```

Table 3: Plasma data results, Linear-Up Log-Down, Extravascular

Difference	Reference	Value	Subject	Parameter
0.0	190.869	190.869	1	Cmax
0.0	261.177	261.177	2	Cmax
0.0	105.345	105.345	3	Cmax
0.0	208.542	208.542	4	Cmax
0.0	169.334	169.334	5	Cmax
0.0	154.648	154.648	6	Cmax
0.0	153.254	153.254	7	Cmax
0.0	138.327	138.327	8	Cmax
0.0	167.347	167.347	9	Cmax
0.0	125.482	125.482	10	Cmax
0.0	1.0	1.0	1	Tmax
0.0	1.0	1.0	2	Tmax
0.0	1.5	1.5	3	Tmax
0.0	1.0	1.0	4	Tmax
0.0	4.0	4.0	5	Tmax
0.0	2.5	2.5	6	Tmax
0.0	2.5	2.5	7	Tmax
0.0	4.0	4.0	8	Tmax
0.0	3.0	3.0	9	Tmax
0.0	2.0	2.0	10	Tmax
0.0	121.239	121.239	1	Cdose
0.0	62.222	62.222	2	Cdose
0.0	49.849	49.849	3	Cdose
0.0	52.421	52.421	4	Cdose
0.0	0.0	0.0	5	Cdose
0.0	57.882	57.882	6	Cdose
0.0	19.95	19.95	7	Cdose
0.0	22.724	22.724	8	Cdose
0.0	105.438	105.438	9	Cdose
0.0	13.634	13.634	10	Cdose
0.0	112.846	112.846	1	Clast
0.0	85.241	85.241	2	Clast
0.0	67.901	67.901	3	Clast
0.0	97.625	97.625	4	Clast
0.0	110.778	110.778	5	Clast
0.0	69.501	69.501	6	Clast
0.0	58.051	58.051	7	Clast
0.0	74.437	74.437	8	Clast
0.0	93.44	93.44	9	Clast

Difference	Reference	Value	Subject	Parameter
0.0	42.191	42.191	10	Clast
0.0	9566.6	9566.6	1	AUClast
0.0	10054.3	10054.3	2	AUClast
0.0	5392.46	5392.46	3	AUClast
0.0	9297.1	9297.1	4	AUClast
0.0	9519.18	9519.18	5	AUClast
0.0	6948.99	6948.99	6	AUClast
0.0	6988.77	6988.77	7	AUClast
0.0	7058.82	7058.82	8	AUClast
0.0	8302.37	8302.37	9	AUClast
0.0	5486.84	5486.84	10	AUClast
0.0	1268.28	1268.28	1	AUCtau
0.0	1831.82	1831.82	2	AUCtau
0.0	754.649	754.649	3	AUCtau
0.0	1336.48	1336.48	4	AUCtau
0.0	1310.9	1310.9	5	AUCtau
0.0	1114.24	1114.24	6	AUCtau
0.0	1079.37	1079.37	7	AUCtau
0.0	766.62	766.62	8	AUCtau
0.0	1219.63	1219.63	9	AUCtau
0.0	970.306	970.306	10	AUCtau
0.0	5477.2	5477.2	1	AUMCtau
0.0	8367.57	8367.57	2	AUMCtau
0.0	3455.35	3455.35	3	AUMCtau
0.0	6014.65	6014.65	4	AUMCtau
0.0	6609.79	6609.79	5	AUMCtau
0.0	5064.72	5064.72	6	AUMCtau
0.0	4976.96	4976.96	7	AUMCtau
0.0	2863.01	2863.01	8	AUMCtau
0.0	5386.88	5386.88	9	AUMCtau
0.0	4713.48	4713.48	10	AUMCtau
0.0	9566.6	9566.6	1	AUCall
0.0	10054.3	10054.3	2	AUCall
0.0	5392.46	5392.46	3	AUCall
0.0	9297.1	9297.1	4	AUCall
0.0	9519.18	9519.18	5	AUCall
0.0	6948.99	6948.99	6	AUCall
0.0	6988.77	6988.77	7	AUCall
0.0	7058.82	7058.82	8	AUCall
0.0	8302.37	8302.37	9	AUCall
0.0	5486.84	5486.84	10	AUCall
0.0	0.786077	0.786077	1	Rsq
0.0	0.992764	0.992764	2	Rsq
0.0	0.813589	0.813589	3	Rsq
0.0	0.918859	0.918859	4	Rsq
0.0	0.85336	0.85336	5	Rsq
0.0	0.950119	0.950119	6	Rsq
0.0	0.970312	0.970312	7	Rsq

Difference	Reference	Value	Subject	Parameter
0.0	0.947969	0.947969	8	Rsq
0.0	0.947538	0.947538	9	Rsq
0.0	0.880923	0.880923	10	Rsq
0.0	0.714769	0.714769	1	ARsq
0.0	0.990351	0.990351	2	ARsq
0.0	0.776307	0.776307	3	ARsq
0.0	0.837717	0.837717	4	ARsq
0.0	0.82892	0.82892	5	ARsq
0.0	0.925179	0.925179	6	ARsq
0.0	0.960416	0.960416	7	ARsq
0.0	0.921954	0.921954	8	ARsq
0.0	0.921307	0.921307	9	ARsq
0.0	0.863912	0.863912	10	ARsq
0.0	0.00338474	0.00338474	1	Kel
0.0	0.0141063	0.0141063	2	Kel
0.0	0.00329143	0.00329143	3	Kel
0.0	0.00769534	0.00769534	4	Kel
0.0	0.00681333	0.00681333	5	Kel
0.0	0.00769228	0.00769228	6	Kel
0.0	0.012459	0.012459	7	Kel
0.0	0.00893008	0.00893008	8	Kel
0.0	0.00564586	0.00564586	9	Kel
0.0	0.0171897	0.0171897	10	Kel
0.0	204.786	204.786	1	HL
0.0	49.1374	49.1374	2	HL
0.0	210.591	210.591	3	HL
0.0	90.0736	90.0736	4	HL
0.0	101.734	101.734	5	HL
0.0	90.1095	90.1095	6	HL
0.0	55.6345	55.6345	7	HL
0.0	77.6194	77.6194	8	HL
0.0	122.771	122.771	9	HL
0.0	40.3233	40.3233	10	HL
0.0	117.306	117.306	1	$Clast_{pred}$
0.0	82.5367	82.5367	2	$Clast_{pred}$
0.0	66.9311	66.9311	3	$Clast_{pred}$
0.0	100.768	100.768	4	$Clast_{pred}$
0.0	105.298	105.298	5	$Clast_{pred}$
0.0	71.9399	71.9399	6	$\hat{Clast_{pred}}$
0.0	61.1727	61.1727	7	$Clast_{pred}$
0.0	75.6043	75.6043	8	$Clast_{pred}^{r}$
0.0	93.7618	93.7618	9	$Clast_{pred}$
0.0	38.8109	38.8109	10	$Clast_{pred}^{r}$
0.0	42906.2	42906.2	1	AUCinf
0.0	16097.0	16097.0	2	AUCinf
0.0	26022.1	26022.1	3	AUCinf
0.0	21983.3	21983.3	4	AUCinf

25778.2 15984.1 11648.2 15394.4 24852.5 7941.27 77.7035 37.5395 79.2774 57.7084 63.0727 56.5258 40.001 54.1467 66.5935	25778.2 15984.1 11648.2 15394.4 24852.5 7941.27 77.7035 37.5395 79.2774 57.7084 63.0727 56.5258 40.001	5 6 7 8 9 10 1 2 3 4 5	$AUCinf \\ AUCinf \\ AUCinf \\ AUCinf \\ AUCinf \\ AUCinf \\ AUCinf \\ AUCpct \\ AUCpct \\ AUCpct \\ AUCpct \\ AUCpct \\ AUCpct \\ AUCpct$
11648.2 15394.4 24852.5 7941.27 77.7035 37.5395 79.2774 57.7084 63.0727 56.5258 40.001 54.1467	11648.2 15394.4 24852.5 7941.27 77.7035 37.5395 79.2774 57.7084 63.0727 56.5258	7 8 9 10 1 2 3 4	AUCinf $AUCinf$ $AUCinf$ $AUCinf$ $AUCpct$ $AUCpct$ $AUCpct$ $AUCpct$ $AUCpct$
15394.4 24852.5 7941.27 77.7035 37.5395 79.2774 57.7084 63.0727 56.5258 40.001 54.1467	15394.4 24852.5 7941.27 77.7035 37.5395 79.2774 57.7084 63.0727 56.5258	8 9 10 1 2 3 4	AUCinf $AUCinf$ $AUCinf$ $AUCpct$ $AUCpct$ $AUCpct$ $AUCpct$ $AUCpct$
24852.5 7941.27 77.7035 37.5395 79.2774 57.7084 63.0727 56.5258 40.001 54.1467	24852.5 7941.27 77.7035 37.5395 79.2774 57.7084 63.0727 56.5258	9 10 1 2 3 4	AUCinf $AUCinf$ $AUCpct$ $AUCpct$ $AUCpct$ $AUCpct$
7941.27 77.7035 37.5395 79.2774 57.7084 63.0727 56.5258 40.001 54.1467	7941.27 77.7035 37.5395 79.2774 57.7084 63.0727 56.5258	10 1 2 3 4	AUCinf $AUCpct$ $AUCpct$ $AUCpct$ $AUCpct$
77.7035 37.5395 79.2774 57.7084 63.0727 56.5258 40.001 54.1467	77.7035 37.5395 79.2774 57.7084 63.0727 56.5258	1 2 3 4	$AUCpct \ AUCpct \ AUCpct \ AUCpct$
37.5395 79.2774 57.7084 63.0727 56.5258 40.001 54.1467	37.5395 79.2774 57.7084 63.0727 56.5258	$\begin{array}{c}2\\3\\4\end{array}$	$AUCpct \ AUCpct \ AUCpct$
79.2774 57.7084 63.0727 56.5258 40.001 54.1467	79.2774 57.7084 63.0727 56.5258	$\frac{3}{4}$	$AUCpct \ AUCpct$
57.7084 63.0727 56.5258 40.001 54.1467	57.7084 63.0727 56.5258	4	AUCpct
63.0727 56.5258 40.001 54.1467	$63.0727 \\ 56.5258$		
$56.5258 \\ 40.001 \\ 54.1467$	56.5258	5	
$40.001 \\ 54.1467$			AUCpct
54.1467	40.001	6	AUCpct
		7	AUCpct
66 5935	54.1467	8	AUCpct
	66.5935	9	AUCpct
30.9073	30.9073	10	AUCpct
309.142	295.492	1	$MRTinf_{pred}$
73.7131	71.5536	2	$MRTinf_{pred}$
302.406	304.271	3	$MRTinf_{pred}$
146.289	132.154	4	$MRTinf_{pred}$
167.5	148.053	5	$MRTinf_{pred}$
			$MRTin\hat{f_{pred}}$
			$MRTinf_{pred}$
			MRT tau inf
			MRT tauinf
			MRTtauinf
			MRT tauinf
			MRTtauinf
			$MRT tauinf \\ MRT tauinf$
			Cltau
0.0702832 0.0897472			Cltau
0.0926469			Cltau
			Cltau
			Cltau
0.10306	0.10306	10	Cltau
0926469 .130443 .081992	0.0 0.0 0.0 0.0 0.0 0.0 0.0	81.4376 115.891 177.244 58.0797 299.792 74.655 305.92 143.538 173.022 124.653 92.7359 175.462 178.811 69.5163 0.0788472 0.0545905 0.132512 0.0748234 0.0762832 0.0897472 0.0926469 0.130443 0.081992 0	7 81.4376 8 115.891 9 177.244 10 58.0797 1 299.792 2 74.655 3 305.92 4 143.538 5 173.022 6 124.653 7 92.7359 8 175.462 9 178.811 10 69.5163 1 0.0788472 0.0 2 0.0545905 0.0 3 0.132512 0 4 0.0748234 0.0 5 0.0762832 0.0 6 0.0897472 0.0 7 0.0926469 0.0 8 0.130443 0 9 0.081992 0

Parameter	Subject	Value	Reference	Difference
\overline{Vztau}	2	3.86993	3.86993	0.0
Vztau	3	40.2597	40.2597	0.0
Vztau	4	9.7232	9.7232	0.0
Vztau	5	11.1962	11.1962	0.0
Vztau	6	11.6672	11.6672	0.0
Vztau	7	7.43617	7.43617	0.0
Vztau	8	14.6071	14.6071	0.0
Vztau	9	14.5225	14.5225	0.0
Vztau	10	5.99545	5.99545	0.0

4.3.3 Linear-trapezoidal rule; Intravascular; Dosetime 0.0; Tau 12; Dose 120 Code:

```
setdosetime!(ds, DoseTime(dose = 120, time = 0.0, tau = 12))
nca!(ds, adm = :iv, calcm = :lint)
```

Table 4: Plasma data results, Linear-trapezoidal rule, Intravascular

Parameter	Subject	Value	Reference	Difference
\overline{Cmax}	1	190.869	190.869	0.0
Cmax	2	261.177	261.177	0.0
Cmax	3	105.345	105.345	0.0
Cmax	4	208.542	208.542	0.0
Cmax	5	169.334	169.334	0.0
Cmax	6	154.648	154.648	0.0
Cmax	7	153.254	153.254	0.0
Cmax	8	138.327	138.327	0.0
Cmax	9	167.347	167.347	0.0
Cmax	10	125.482	125.482	0.0
Tmax	1	1.0	1.0	0.0
Tmax	2	1.0	1.0	0.0
Tmax	3	1.5	1.5	0.0
Tmax	4	1.0	1.0	0.0
Tmax	5	4.0	4.0	0.0
Tmax	6	2.5	2.5	0.0
Tmax	7	2.5	2.5	0.0
Tmax	8	4.0	4.0	0.0
Tmax	9	3.0	3.0	0.0
Tmax	10	2.0	2.0	0.0
Cdose	1	0.0	0.0	0.0
Cdose	2	0.0	0.0	0.0
Cdose	3	0.0	0.0	0.0
Cdose	4	0.0	0.0	0.0
Cdose	5	0.0	0.0	0.0
Cdose	6	0.0	0.0	0.0
Cdose	7	0.0	0.0	0.0
Cdose	8	0.0	0.0	0.0
Cdose	9	0.0	0.0	0.0
Cdose	10	0.0	0.0	0.0
Clast	1	112.846	112.846	0.0
Clast	2	85.241	85.241	0.0
Clast	3	67.901	67.901	0.0
Clast	4	97.625	97.625	0.0
Clast	5	110.778	110.778	0.0
Clast	6	69.501	69.501	0.0
Clast	7	58.051	58.051	0.0
Clast	8	74.437	74.437	0.0
Clast	9	93.44	93.44	0.0

Difference	Reference	Value	Subject	Parameter
0.0	42.191	42.191	10	Clast
0.0	9585.42	9585.42	1	AUClast
0.0	10112.2	10112.2	2	AUClast
0.0	5396.55	5396.55	3	AUClast
0.0	9317.84	9317.84	4	AUClast
0.0	9561.26	9561.26	5	AUClast
0.0	6966.6	6966.6	6	AUClast
0.0	7029.57	7029.57	7	AUClast
0.0	7110.67	7110.67	8	AUClast
0.0	8315.08	8315.08	9	AUClast
0.0	5620.89	5620.89	10	AUClast
0.0	1670.1	1670.1	1	AUCtau
0.0	2380.27	2380.27	2	AUCtau
0.0	980.346	980.346	3	AUCtau
0.0	1711.04	1711.04	4	AUCtau
0.0	1738.46	1738.46	5	AUCtau
0.0	1410.0	1410.0	6	AUCtau
0.0	1436.56	1436.56	7	AUCtau
0.0	1105.07	1105.07	8	AUCtau
0.0	1638.19	1638.19	9	AUCtau
0.0	1293.71	1293.71	10	AUCtau
0.0	9984.82	9984.82	1	AUMCtau
0.0	14630.1	14630.1	2	AUMCtau
0.0	6024.5	6024.5	3	AUMCtau
0.0	10299.7	10299.7	4	AUMCtau
0.0	11466.1	11466.1	5	AUMCtau
0.0	8467.36	8467.36	6	AUMCtau
0.0	9003.02	9003.02	7	AUMCtau
0.0	6457.01	6457.01	8	AUMCtau
0.0	10095.8	10095.8	9	AUMCtau
0.0	8367.3	8367.3	10	AUMCtau
0.0	9585.42	9585.42	1	AUCall
0.0	10112.2	10112.2	2	AUCall
0.0	5396.55	5396.55	3	AUCall
0.0	9317.84	9317.84	4	AUCall
0.0	9561.26	9561.26	5	AUCall
0.0	6966.6	6966.6	6	AUCall
0.0	7029.57	7029.57	7	AUCall
0.0	7110.67	7110.67	8	AUCall
0.0	8315.08	8315.08	9	AUCall
0.0	5620.89	5620.89	10	AUCall
0.0	0.786077	0.786077	1	Rsq
0.0	0.992764	0.992764	2	Rsq
0.0	0.813589	0.813589	3	Rsq
0.0	0.918859	0.918859	4	Rsq
0.0	0.863677	0.863677	5	Rsq
0.0	0.950119	0.950119	6	Rsq
0.0	0.970312	0.970312	7	Rsq

Difference	Reference	Value	Subject	Parameter
0.0	0.947969	0.947969	8	Rsq
0.0	0.947538	0.947538	9	Rsq
0.0	0.879699	0.879699	10	Rsq
0.0	0.714769	0.714769	1	ARsq
0.0	0.990351	0.990351	2	ARsq
0.0	0.776307	0.776307	3	ARsq
0.0	0.837717	0.837717	4	ARsq
0.0	0.844202	0.844202	5	ARsq
0.0	0.925179	0.925179	6	ARsq
0.0	0.960416	0.960416	7	ARsq
0.0	0.921954	0.921954	8	ARsq
0.0	0.921307	0.921307	9	ARsq
0.0	0.867669	0.867669	10	ARsq
0.0	0.00338474	0.00338474	1	Kel
0.0	0.0141063	0.0141063	2	Kel
0.0	0.00329143	0.00329143	3	Kel
0.0	0.00769534	0.00769534	4	Kel
0.0	0.00685799	0.00685799	5	Kel
0.0	0.00769228	0.00769228	6	Kel
0.0	0.012459	0.012459	7	Kel
0.0	0.00893008	0.00893008	8	Kel
0.0	0.00564586	0.00564586	9	Kel
0.0	0.0165438	0.0165438	10	Kel
0.0	204.786	204.786	1	HL
0.0	49.1374	49.1374	2	HL
0.0	210.591	210.591	3	HL
0.0	90.0736	90.0736	4	HL
0.0	101.072	101.072	5	HL
0.0	90.1095	90.1095	6	HL
0.0	55.6345	55.6345	7	HL
0.0	77.6194	77.6194	8	HL
0.0	122.771	122.771	9	HL
0.0	41.8978	41.8978	10	HL
0.0	117.306	117.306	1	$Clast_{pred}$
0.0	82.5367	82.5367	2	$Clast_{pred}$
0.0	66.9311	66.9311	3	$Clast_{pred}$
0.0	100.768	100.768	4	$Clast_{pred}$
0.0	105.196	105.196	5	$Clast_{pred}$
0.0	71.9399	71.9399	6	$Clast_{pred}$
0.0	61.1727	61.1727	7	$Clast_{pred}$
0.0	75.6043	75.6043	8	$Clast_{pred}$
0.0	93.7618	93.7618	9	$Clast_{pred}$
0.0	39.4088	39.4088	10	$Clast_{pred}^{'}$
0.0	42925.0	42925.0	1	AUCinf
0.0	16154.9	16154.9	2	AUCinf
0.0	26026.2	26026.2	3	AUCinf
0.0	22004.1	22004.1	4	AUCinf

Parameter	Subject	Value	Reference	Difference
AUCinf	5	25714.4	25714.4	0.0
AUCinf	6	16001.8	16001.8	0.0
AUCinf	7	11689.0	11689.0	0.0
AUCinf	8	15446.2	15446.2	0.0
AUCinf	9	24865.2	24865.2	0.0
AUCinf	10	8171.16	8171.16	0.0
AUCpct	1	77.6694	77.6694	0.0
AUCpct	2	37.405	37.405	0.0
AUCpct	3	79.2649	79.2649	0.0
AUCpct	4	57.6541	57.6541	0.0
AUCpct	5	62.8175	62.8175	0.0
AUCpct	6	56.4636	56.4636	0.0
AUCpct	7	39.8614	39.8614	0.0
AUCpct	8	53.9649	53.9649	0.0
AUCpct	9	66.5594	66.5594	0.0
AUCpct	10	31.2106	31.2106	0.0
$MRTinf_{pred}$	1	295.374	311.87	-16.49599999999998
$MRTinf_{pred}$	2	71.0858	74.6241	-3.5382999999999925
$MRTinf_{pred}$	3	304.23	309.114	-4.883999999999988
$MRTinf_{pred}$	4	131.998	151.205	-19.2070000000000022
$MRTinf_{pred}$	5	146.837	166.475	-19.6380000000000005
$MRTinf_{pred}$	6	129.674	132.889	-3.21500000000000034
$MRTinf_{pred}$	7	81.0253	94.0013	-12.97599999999999999999999999999999999999
$MRTinf_{pred}$	8	115.437	162.993	-47.556
$MRTinf_{pred}$	9	177.143	176.722	0.4209999999999227
$MRTinf_{pred}^{red}$	10	58.777	68.7008	-9.9238
MRT tauinf	1	302.403	302.403	0.0
MRT tauinf	2	75.5906	75.5906	0.0
MRT tauinf	3	312.721	312.721	0.0
MRT tauinf	4	148.341	148.341	0.0
MRT tauinf	5	172.093	172.093	0.0
MRT tauinf	6	130.191	130.191	0.0
MRT tauinf	7	91.9083	91.9083	0.0
MRT tauinf	8	161.574	161.574	0.0
MRT tauinf	9	176.305	176.305	0.0
MRT tauinf	10	70.2607	70.2607	0.0
Cltau	1	0.0718519	0.0718519	0.0
Cltau	2	0.0504145	0.0504145	0.0
Cltau	3	0.122406	0.122406	0.0
Cltau	4	0.070133	0.070133	0.0
Cltau	5	0.0690266	0.0690266	0.0
Cltau	6 7	0.0851065	0.0851065	0.0
Cltau $Cltau$	8	0.0835329	0.0835329	0.0
Cttau $Cltau$	8 9	0.10859 0.0732516	$0.10859 \\ 0.0732516$	$0.0 \\ 0.0$
Cttau $Cltau$	10	0.0752510 0.0927567	0.0732510 0.0927567	$0.0 \\ 0.0$
Vztau	1	21.2282	21.2282	0.0

Parameter	Subject	Value	Reference	Difference
\overline{Vztau}	2	3.57389	3.57389	0.0
Vztau	3	37.1892	37.1892	0.0
Vztau	4	9.11369	9.11369	0.0
Vztau	5	10.0651	10.0651	0.0
Vztau	6	11.0639	11.0639	0.0
Vztau	7	6.70465	6.70465	0.0
Vztau	8	12.1601	12.1601	0.0
Vztau	9	12.9744	12.9744	0.0
Vztau	10	5.60675	5.60675	0.0

4.3.4~ Linear/Log Trapezoidal rule; Extravascular; Dosetime 0.0; Tau 12; Dose 120~

Code:

```
setdosetime!(ds, DoseTime(dose = 120, time = 0.0, tau = 12))
nca!(ds, adm = :ev, calcm = :logt)
```

Table 5: Plasma data results, Linear/Log Trapezoidal rule, Extravascular

Paramete	er Subject	Value	Reference	Difference
Cma	$\frac{1}{x}$	190.869	190.869	0.0
Cma	$\frac{1}{2}$	261.177	261.177	0.0
Cma	$\frac{1}{2}$	105.345	105.345	0.0
Cma	$\frac{1}{2}$	208.542	208.542	0.0
Cma	$\frac{1}{2}$	169.334	169.334	0.0
Cma	ax 6	154.648	154.648	0.0
Cma	ax 7	153.254	153.254	0.0
Cma	ax 8	138.327	138.327	0.0
Cma	ux 9	167.347	167.347	0.0
Cma	10	125.482	125.482	0.0
Tma	ux 1	1.0	1.0	0.0
Tma	$\frac{1}{2}$	1.0	1.0	0.0
Tma	$\frac{1}{2}$	1.5	1.5	0.0
Tma	ax 4	1.0	1.0	0.0
Tma	ax 5	4.0	4.0	0.0
Tma	ax 6	2.5	2.5	0.0
Tma	ax 7	2.5	2.5	0.0
Tma	ax 8	4.0	4.0	0.0
Tma	$\frac{1}{2}$	3.0	3.0	0.0
Tma	10	2.0	2.0	0.0
Cdos	se 1	0.0	0.0	0.0
Cdos	se 2	0.0	0.0	0.0
Cdos	se 3	0.0	0.0	0.0
Cdos	se 4	0.0	0.0	0.0
Cdos	se 5	0.0	0.0	0.0
Cdos	se 6	0.0	0.0	0.0
Cdos	se 7	0.0	0.0	0.0
Cdos	se 8	0.0	0.0	0.0
Cdos		0.0	0.0	0.0
Cdos	se 10	0.0	0.0	0.0
Cla	st 1	112.846	112.846	0.0
Cla		85.241	85.241	0.0
Cla	st 3	67.901	67.901	0.0
Cla		97.625	97.625	0.0
Clas	st 5	110.778	110.778	0.0
Cla	st 6	69.501	69.501	0.0
Clas	st 7	58.051	58.051	0.0
Clas	st 8	74.437	74.437	0.0

0.0				
	93.44	93.44	9	Clast
0.0	42.191	42.191	10	Clast
0.0	9572.86	9572.86	1	AUClast
0.0	10054.0	10054.0	2	AUClast
0.0	5391.53	5391.53	3	AUClast
0.0	9296.22	9296.22	4	AUClast
0.0	9518.65	9518.65	5	AUClast
0.0	6948.58	6948.58	6	AUClast
0.0	6987.06	6987.06	7	AUClast
0.0	7064.78	7064.78	8	AUClast
0.0	8298.96	8298.96	9	AUClast
0.0	5485.65	5485.65	10	AUClast
0.0	1668.36	1668.36	1	AUCtau
0.0	2379.57	2379.57	2	AUCtau
0.0	979.109	979.109	3	AUCtau
0.0	1709.79	1709.79	4	AUCtau
0.0	1738.24	1738.24	5	AUCtau
0.0	1408.16	1408.16	6	AUCtau
0.0	1432.02	1432.02	7	AUCtau
0.0	1080.02	1080.02	8	AUCtau
0.0	1630.98	1630.98	9	AUCtau
0.0	1292.83	1292.83	10	AUCtau
0.0	9973.81	9973.81	1	AUMCtau
0.0	14631.1	14631.1	2	AUMCtau
0.0	6022.93	6022.93	3	AUMCtau
0.0	10308.0	10308.0	4	AUMCtau
0.0	11473.1	11473.1	5	AUMCtau
0.0	8471.1	8471.1	6	AUMCtau
0.0	8982.04	8982.04	7	AUMCtau
0.0	6271.74	6271.74	8	AUMCtau
0.0	10040.8	10040.8	9	AUMCtau
0.0	8361.79	8361.79	10	AUMCtau
0.0	9572.86	9572.86	1	AUCall
0.0	10054.0	10054.0	2	AUCall
0.0	5391.53	5391.53	3	AUCall
0.0	9296.22	9296.22	4	AUCall
0.0	9518.65	9518.65	5	AUCall
0.0	6948.58	6948.58	6	AUCall
0.0	6987.06	6987.06	7	AUCall
0.0	7064.78	7064.78	8	AUCall
0.0	8298.96	8298.96	9	AUCall
0.0	5485.65	5485.65	10	AUCall
0.0	0.786077	0.786077	1	Rsq
0.0	0.992764	0.992764	$\frac{1}{2}$	Rsq
0.0	0.813589	0.813589	$\overline{3}$	Rsq
0.0	0.918859	0.918859	$\stackrel{\circ}{4}$	Rsq
0.0	0.85336	0.85336	5	Rsq
0.0	0.950119	0.950119	6	Rsq

Difference	Reference	Value	Subject	Parameter
0.0	0.970312	0.970312	7	Rsq
0.0	0.947969	0.947969	8	Rsq
0.0	0.947538	0.947538	9	Rsq
0.0	0.880923	0.880923	10	Rsq
0.0	0.714769	0.714769	1	ARsq
0.0	0.990351	0.990351	2	ARsq
0.0	0.776307	0.776307	3	ARsq
0.0	0.837717	0.837717	4	ARsq
0.0	0.82892	0.82892	5	ARsq
0.0	0.925179	0.925179	6	ARsq
0.0	0.960416	0.960416	7	ARsq
0.0	0.921954	0.921954	8	ARsq
0.0	0.921307	0.921307	9	ARsq
0.0	0.863912	0.863912	10	ARsq
0.0	0.00338474	0.00338474	1	Kel
0.0	0.0141063	0.0141063	2	Kel
0.0	0.00329143	0.00329143	3	Kel
0.0	0.00769534	0.00769534	4	Kel
0.0	0.00681333	0.00681333	5	Kel
0.0	0.00769228	0.00769228	6	Kel
0.0	0.012459	0.012459	7	Kel
0.0	0.00893008	0.00893008	8	Kel
0.0	0.00564586	0.00564586	9	Kel
0.0	0.0171897	0.0171897	10	Kel
0.0	204.786	204.786	1	HL
0.0	49.1374	49.1374	2	HL
0.0	210.591	210.591	3	HL
0.0	90.0736	90.0736	4	HL
0.0	101.734	101.734	5	HL
0.0	90.1095	90.1095	6	HL
0.0	55.6345	55.6345	7	HL
0.0	77.6194	77.6194	8	HL
0.0	122.771	122.771	9	HL
0.0	40.3233	40.3233	10	HL
0.0	117.306	117.306	1	$Clast_{pred}$
0.0	82.5367	82.5367	$\frac{2}{2}$	$Clast_{pred}$
0.0	66.9311	66.9311	3	$Clast_{pred}$
0.0	100.768	100.768	4	$Clast_{pred}$
0.0	105.298	105.298	5	$Clast_{pred}$
0.0	71.9399	71.9399	6	$Clast_{pred}$
0.0	61.1727	61.1727	7	$Clast_{pred}$
0.0	75.6043	75.6043	8	$Clast_{pred}$
0.0	93.7618	93.7618	9	$Clast_{pred}^{T}$
0.0	38.8109	38.8109	10	$Clast_{pred}$
0.0	42912.5	42912.5	1	AUCinf
0.0	16096.8	16096.8	2	AUCinf
0.0	26021.2	26021.2	3	AUCinf

Difference	Reference	Value	Subject	Parameter
0.0	21982.5	21982.5	4	AUCinf
0.0	25777.7	25777.7	5	AUCinf
0.0	15983.7	15983.7	6	AUCinf
0.0	11646.4	11646.4	7	AUCinf
0.0	15400.3	15400.3	8	AUCinf
0.0	24849.1	24849.1	9	AUCinf
0.0	7940.08	7940.08	10	AUCinf
0.0	77.6921	77.6921	1	AUCpct
0.0	37.5401	37.5401	2	AUCpct
0.0	79.2802	79.2802	3	AUCpct
0.0	57.7107	57.7107	4	AUCpct
0.0	63.074	63.074	5	AUCpct
0.0	56.5272	56.5272	6	AUCpct
0.0	40.0069	40.0069	7	AUCpct
0.0	54.1257	54.1257	8	AUCpct
0.0	66.6026	66.6026	9	AUCpct
0.0	30.9119	30.9119	10	AUCpct
-16.617000000000000	312.112	295.495	1	$MRTinf_{pred}$
-2.6448999999999927	74.3569	71.712	2	$MRTinf_{pred}$
-5.12700000000000095	309.456	304.329	3	$MRTinf_{pred}$
-18.924999999999983	151.177	132.252	4	$MRTinf_{pred}$
-18.86599999999985	167.005	148.139	5	$MRTinf_{pred}$
-2.9579999999999984	132.927	129.969	6	$MRTinf_{nred}$
-12.373600000000000	93.9663	81.5927	7	$MRTinf_{pred}$
-50.41800000000000000000000000000000000000	166.37	115.952	8	$MRTinf_{pred}$
-0.056000000000011596	177.405	177.349	9	$MRTinf_{pred}$
-8.11159999999999999999999999999999999999	66.3424	58.2308	10	$MRTinf_{pred}$
0.0	302.635	302.635	1	MRT tau inf
0.0	75.3237	75.3237	2	MRT tauinf
0.0	313.068	313.068	3	MRT tauinf
0.0	148.311	148.311	4	MRT tauinf
0.0	172.558	172.558	5	MRT tauinf
0.0	130.226	130.226	6	MRT tauinf
0.0	91.8667	91.8667	7	MRT tauinf
0.0	164.918	164.918	8	MRT tauinf
0.0	176.985	176.985	9	MRT tauinf
0.0	68.1676	68.1676	10	MRT tauinf
0.0	0.0719271	0.0719271	1	Cltau
0.0	0.0504294	0.0504294	2	Cltau
0.0	0.12256	0.12256	3	Cltau
0.0	0.0701841	0.0701841	4	Cltau
0.0	0.0690354	0.0690354	5	Cltau
0.0	0.0852177	0.0852177	6	Cltau
0.0	0.0837976	0.0837976	7	Cltau
0.0	0.111109	0.111109	8	Cltau
0.0	0.0735756	0.0735756	9	Cltau
0.0	0.0928198	0.0928198	10	Cltau

Parameter	Subject	Value	Reference	Difference
\overline{Vztau}	1	21.2504	21.2504	0.0
Vztau	2	3.57495	3.57495	0.0
Vztau	3	37.2362	37.2362	0.0
Vztau	4	9.12034	9.12034	0.0
Vztau	5	10.1324	10.1324	0.0
Vztau	6	11.0783	11.0783	0.0
Vztau	7	6.72589	6.72589	0.0
Vztau	8	12.4421	12.4421	0.0
Vztau	9	13.0318	13.0318	0.0
Vztau	10	5.39972	5.39972	0.0

4.3.5 Urine data; Linear-trapezoidal rule; Extravascular; Dosetime 0.0; Dose $100\,$

Code:

```
upkds = upkimport(upkdata, :st, :et, :conc, :vol, :subj;
dosetime = MetidaNCA.DoseTime(dose = 100))
MetidaNCA.nca!(upkds)
```

Table 6: Urine data results

Parameter	Value	Reference	Difference
\overline{AUCall}	17.125	17.125	0.0
Prec	16.0	16.0	0.0
Tmax	1.5	1.5	0.0
Rlast	0.333333	0.333333	0.0
AR	16.0	16.0	0.0
ARsq	0.810983	0.810983	0.0
HL	5.15526	5.15526	0.0
AUClast	17.125	17.125	0.0
AUCinf	19.6042	19.6042	0.0
Vol	11.0	11.0	0.0
AUCpct	12.6461	12.6461	0.0
Kel	0.134454	0.134454	0.0
Maxrate	4.0	4.0	0.0
Rsq	0.905492	0.905492	0.0

${\bf 4.3.6} \quad {\bf Pharmacodynamics\ data;\ Linear-trapezoidal\ rule}$

Code:

```
pd = MetidaNCA.pdimport(pddata, :time, :obs;
bl = 3.0, th = 1.5, id = Dict(:subj => 1))
pdres = MetidaNCA.nca!(pd)
```

Table 7: Pharmacodynamics data results

Parameter	Value	Reference	Difference
\overline{Tmax}	5.0	5.0	0.0
TBBL	5.51905	5.51905	0.0
TIMEBTW	2.28095	2.28095	0.0
AUCBTW	6.92619	6.92619	0.0
AUCBBL	8.73571	8.73571	0.0
TBTH	3.2381	3.2381	0.0
AUCNETT	12.15	12.15	0.0
Rmax	8.0	8.0	0.0
AUCABL	7.38571	7.38571	0.0
AUCATH	13.9595	13.9595	0.0
TATH	5.7619	5.7619	0.0
AUCNETB	-1.35	-1.35	0.0
AUCBTH	1.80952	1.80952	0.0
TABL	3.48095	3.48095	0.0

5 Glossary

- Installation qualification (IQ) Establishing confidence that process equipment and ancillary systems are compliant with appropriate codes and approved design intentions, and that manufacturer's recommendations are suitably considered.
- Operational qualification (OQ) Establishing confidence that process equipment and sub-systems are capable of consistently operating within established limits and tolerances.
- Product performance qualification (PQ) Establishing confidence through appropriate testing that the finished product produced by a specified process meets all release requirements for functionality and safety.
- Repository GitHub repository: https://github.com/PharmCat/MetidaNCA.jl
- Master branch main branch on GitHub (link).
- Current machine pc that used for validation report generating.

6 Reference

- General Principles of Software Validation; Final Guidance for Industry and FDA Staff
- Guidance for Industry Process Validation: General Principles and Practices
- Glossary of Computer System Software Development Terminology

7 Appendix 1

7.0.1 Testing PK dataset.

Subject	Formulation	Time 	Concentration
. 1	Т	0.0	0.0
1	Т	0.5	178.949
1	T	1.0	190.869
1	T	1.5	164.927
1	T	2.0	139.962
1	T	2.5	129.59
1	T	3.0	131.369
1	T	4.0	150.854
1	T	5.0	121.239
1	T	6.0	139.229
1	T	8.0	128.52
1	T	10.0	143.243
1	T	12.0	144.964
1	T	24.0	133.16
1	T	48.0	137.271
1	T	72.0	112.846
2	R	0.0	0.0
2	R	0.5	62.222
2	R	1.0	261.177
2	R	1.5	234.063
2	R	2.0	234.091
2	R	2.5	222.881
2	R	3.0	213.896
2	R	4.0	196.026
2	R	5.0	199.634
2	R	6.0	196.037
2	R	8.0	213.352
2	R	10.0	200.088
2	R	12.0	196.035
2	R	24.0	160.338
2	R	48.0	110.28
2	R	72.0	85.241
3	R	0.0	0.0
3	R	0.5	49.849
3	R	1.0	77.367
3	R	1.5	105.345
3	R	2.0	100.943
3	R	2.5	72.746
3	R	3.0	69.985
3	R	4.0	93.565
3	R	5.0	91.981
3	R	6.0	82.71
] 3	R	8.0	84.205

l o	ם ו	I 10 0	J 0F 240 J
		10.0	85.342
] 3	l R	12.0	76.027
] 3	l R	24.0	81.259
1 3	l R	48.0	70.107
] 3	l R	72.0	67.901
4	l R	0.0	0.0
4	l R	0.5	52.421
4	l R	1.0	208.542
4	l R	1.5	188.923
4	l R	2.0	165.177
1 4	l R	2.5	146.996
1 4	l R	3.0	152.701
. 4	l R	4.0	154.345
1 4	R R	5.0	128.398
1 4	R R	6.0	149.807
1 4	l R	8.0	151.066
4	R R	1 10.0	136.819
4			130.819
	R		
4	R	24.0	141.247
4	l R	48.0	129.138
4	l R	72.0	97.625
5	I T	0.0	0.0
5	T	0.5	0.0
5	T	1.0	9.545
J 5	T	1.5	153.964
1 5	T	2.0	152.34
5	T	2.5	151.452
J 5	T	3.0	161.312
J 5	l T	4.0	169.334
J 5	T	5.0	162.907
J 5	T	6.0	166.651
J 5	T	8.0	168.668
J 5	Т	10.0	155.103
J 5	Т	12.0	154.066
5	I T	24.0	162.974
5	T	48.0	109.814
j 5	I T	72.0	110.778
6	, - T	0.0	0.0
6	, I	0.5	57.882
1 6	, T	1.0	100.498
1 6	T T	1.5	138.651
1 6	T T	2.0	130.031
	T T	2.5	154.648
6			
6	T	3.0	122.316
6	T	4.0	132.857
6	T	5.0	126.067
6	I T	6.0	140.466
6	T .	8.0	115.542
1 6	T	10.0	102.16

6	Т	12.0	113.751
6	T	24.0	101.049
6	T	48.0	92.55
6	T	72.0	69.501
7	I R	0.0	0.0
7	l R	0.5	19.95
, , 7	R R	1.0	128.405
7	l R	1.5	136.807
, , 7	R R	2.0	113.109
, , 7	_	2.5	153.254
7	R R	3.0	123.606
7	l R	4.0	142.655
7	_	5.0	112.347
, , 7	R R	6.0	139.919
, , 7		8.0	105.513
, , 7	_	10.0	134.408
7	l R	12.0	123.37
, , 7	_	24.0	110.511
, , 7	R R	48.0	90.291
, , 7	_	72.0	58.051
8	R R	0.0	0.0
8	R R	0.5	136.91
8	R R	1.0	126.646
8	R R	1.5	118.5
8	l R	2.0	134.926
8	R R	2.5	113.213
8	R R	3.0	130.896
8	l R	4.0	138.327
8	R R	5.0	22.724
8	R R	6.0	53.774
8	R R	8.0	55.107
			102.871
	R R	12.0	134.133
8	l R	24.0	108.021
8	_	48.0	98.466
8	R R	72.0	74.437
9	T	0.0	0.0
9		0.5	113.362
9	Т	1.0	128.273
9	Т	1.5	125.395
9		2.0	146.933
9	T	2.5	140.559
9	T	3.0	167.347
9	T	4.0	157.504
9	T	5.0	141.35
9	,	6.0	140.282
9	T	8.0	105.438
9	, I	10.0	164.843
9	T	12.0	135.58
		. – - •	. =======

	9	Т		24.0		117.125	
١	9	T		48.0		109.745	
١	9	T	-	72.0		93.44	
١	10	R		0.0		0.0	
١	10	R	-	0.5		13.634	
١	10	R	-	1.0		62.561	
١	10	R	-	1.5		112.655	
١	10	R	-	2.0		125.482	
١	10	R	-	2.5		116.255	
١	10	R	-	3.0		112.674	
١	10	R	-	4.0		116.986	
١	10	R	-	5.0		119.81	
١	10	R	-	6.0		107.557	
١	10	R	-	8.0		120.479	
١	10	R	-	10.0		124.171	
١	10	R	-	12.0		106.476	
١	10	R	-	24.0		116.508	
١	10	R		48.0		45.204	
١	10	R		72.0		42.191	
1		'	١.		١.		

7.0.2 Testing urine PK dataset.

•						٠		٠.٠		٠.
	subj		conc		st		et		vol	
:		+-		+-		+-		+-		:
-	1		1		0		1		1	
-	1		2		1		2		2	
-	1		2		2		6		3	
-	1		1		6		12		3	
-	1		1		12		18		2	
1		. 1 .		١.		. 1 .		. 1 .		. 1

7.0.3 Testing PD dataset.

•				• •	
	subj		time		obs
:		-+-		+-	:
	1		0.0		0
	1		1.0		1
	1	-	2.0		4
	1	-	2.5		7
	1	-	3.0		5
	1	-	3.3		4
	1	-	3.6		3
	1	-	4.0		2
	1	-	5.0		8
	1	-	6.0		1
	1	-	7.0		2
	1		8.0		1
	1	-	9.0		1
١.		٠٠.		٠١.	'

8 Appendix 2

8.0.1 Reference output.

 $A via lible\ at\ https://github.com/PharmCat/MetidaNCA.jl/tree/main/docs/src/pdf.$

See Appendix 2.1.pdf,

Appendix 2.2.pdf,

Appendix 2.3.pdf,

Appendix 2.4.pdf,

Appendix 2.5.pdf.