Binomial regression

Bert van der Veen

Department of Mathematical Sciences, NTNU

Outline Recap Binomial GLMs Example 1 Technicalities Example 2 Practicalities

Outline

- Binomial regression
- Model comparison
- P-values
- $ightharpoonup R^2$
- Q & A

Questions about yesterday?

Recap

Generalised linear models are a unifying class

- They have many things in common
- Two key components: the distribution and the link function
- They link the sytematic and the random components

$$g\{\mathsf{E}(y_i|x_i)\} = \alpha + x_i\beta \tag{1}$$

Link function

- $ightharpoonup g(\cdot)$ the link function, can be e.g.,:
 - identity (linear regression)
 - log
 - logit
 - probit
 - inverse
 - many more

Makes sure that the mean is on the right scale (e.g., positive only, or between 0 and 1)

The binomial GLM

Response data: r the number of successes in N trials

 $\mbox{\bf Predictor variables:} \ x_i \ \mbox{albeit continuous and/or categorical}$

 $\textbf{Parameters} \colon \text{probability of success } p_i \text{ in trial } i$

 $\textbf{Goal} \colon \mathsf{estimate} \ p_i \ \mathsf{for} \ \mathsf{each} \ \mathsf{observation}$

Binomial GLM use

- When a linear regression is not appropriate :)
- For binary data or (bounded) counts of successes/failures

Common examples

- Occurrence of species: orchids 🙃
- Number of germinated plant seeds
- Prevalence of disease in a population: cancer rates
- Drug trials (effect or no effect)
- Probability of observing a behavior

Dataset from the MASS R-package

- OME: Otitis Media with Effusion
- Children were stimulated with sound signals
- Signals included either coherent or incoherent noise
- The number of correct signal identifications

ID	Age	OME	Loud	Noise	Correct	Trials
1	30 30	low low	35 35	coherent	1 4	4 5
1	30	low	40	coherent	Ö	3
1 1	30 30	low low	40 45	incoherent coherent	1 2	1
1	30	low	45	incoherent	2	2

Which is the response and which are the covariates?

OME: visually inspect the data

OME: fit the model

- b cbind: combines two vectors as columns
- Incorrect identifications = Total Correct identifications

OME: visually inspect the data

OME: predicting with age

Binomial GLM data example

ID	Age	OME	Loud	Noise	Correct	Trials
1	30	low	35	coherent	1	4
1	30	low	35	incoherent	4	5
1	30	low	40	coherent	0	3
1	30	low	40	incoherent	1	1
1	30	low	45	coherent	2	4
_1	30	low	45	incoherent	2	2

What would this data look like if there was only one child in each row?

Is binomial regression in the EF?

$$\mathcal{L}(y_i; \Theta) = \exp \left\{ \log \binom{N}{r} + \frac{\frac{r}{N} \log(\frac{p_i}{1 - p_i}) + \log(1 - p_i)}{1/N} \right\} \quad (2)$$

Is binomial regression in the EF?

$$\mathcal{L}(y_i; \Theta) = \exp \left\{ \log \binom{N}{r} + \frac{\frac{r}{N} \log(\frac{p_i}{1 - p_i}) + \log(1 - p_i)}{1/N} \right\} \quad (2)$$

All GLMs can be formulated as:

$$\mathcal{L}(y_i; \Theta) = \exp\left\{\frac{y_i \eta_i - b(\eta_i)}{a(\phi)} + c(y_i, \phi)\right\} \tag{3}$$

$$\mathcal{L}(y_i;\Theta) = \exp\biggl\{\log\binom{N}{r} + \frac{\frac{r}{N}\log(\frac{p_i}{1-p_i}) + \log(1-p_i)}{1/N}\biggr\} \quad \text{(2)}$$

All GLMs can be formulated as:

$$\mathcal{L}(y_i; \Theta) = \exp\left\{\frac{y_i \eta_i - b(\eta_i)}{a(\phi)} + c(y_i, \phi)\right\} \tag{3}$$

- for some known functions $a(\cdot)$, $b(\cdot)$ and $c(\cdot)$
- ightharpoonup for binomial distribution: $\eta_i = \log(\frac{p_i}{1-n_i})$, $a(\phi) = 1/N$, $b(\eta_i) = -\log(1-p_i), c(y_i, \phi) = \log{\binom{N}{i}}$
- canonical link

Link functions

In a binomial GLM we can change the link function

- ▶ Logit: $\log(\frac{p_i}{1-p_i})$ and inverse $\frac{\exp(\eta_i)}{1+\exp(n_i)}$ the canonical link
- Probit: $\Phi^{-1}(p_i)$ and inverse $\Phi(\eta_i)$
- \triangleright Complementary log-log: $\log(-\log(1-p_i))$ and inverse $1 - \exp(-\exp(\eta_i))$
- Log-log
- Logit is canonical and easier to interpret
- Probit is sometimes easier mathematically than Logit
- Complementary log-log for counts

Binomial link functions

Each is a little different, but all translate from (0,1) to $(-\infty,\infty)$

Binomial link functions (2)

Binomial link functions (2)

Link functions: logit

$$\operatorname{pr}(y_i=1) = p_i = \frac{\exp(\eta_i)}{1 + \exp(\eta_i)}$$

Link functions: logit

$$\begin{aligned} & \operatorname{pr}(y_i = 1) = p_i = \frac{\exp(\eta_i)}{1 + \exp(\eta_i)} \\ & \log(\frac{p_i}{1 - p_i}) = \eta_i = \mathbf{x}_i^\top \boldsymbol{\beta} \end{aligned} \tag{4}$$

Link functions: logit

$$\begin{aligned} & \operatorname{pr}(y_i = 1) = p_i = \frac{\exp(\eta_i)}{1 + \exp(\eta_i)} \\ & \log(\frac{p_i}{1 - p_i}) = \eta_i = \mathbf{x}_i^\top \boldsymbol{\beta} \end{aligned} \tag{4}$$

- $ightharpoonup \eta$ is the log odds
- Odds ratio: $\frac{p_i}{1-p_i} = \exp(\eta_i)$
 - E.g., horse races: 10:1 (for every 1 dollar spent, you get 10 if won)
 - l.e., you think that horse 1 is 10 times more likely to win than horse 2
- $ightharpoonup pr(y_i = 0) = 1 p_i$

In probit regression, we use a latent variable η_i^\star for thresholding.

In probit regression, we use a latent variable η_i^\star for thresholding.

$$y_i = \begin{cases} 1, & \text{if } \eta_i^\star > 0 \\ 0, & \text{otherwise} \end{cases}$$

In probit regression, we use a latent variable η_i^\star for thresholding.

$$y_i = \begin{cases} 1, & \text{if } \eta_i^\star > 0 \\ 0, & \text{otherwise} \end{cases}$$

and we model this latent variable:

$$\eta_i^\star = \mathbf{x}_i^\top \boldsymbol{\beta} + \boldsymbol{\epsilon}_i \sim \mathcal{N}(0,1)$$

In probit regression, we use a latent variable η_i^\star for thresholding.

$$y_i = \begin{cases} 1, & \text{if } \eta_i^\star > 0 \\ 0, & \text{otherwise} \end{cases}$$

and we model this latent variable:

$$\eta_i^\star = \mathbf{x}_i^\top \boldsymbol{\beta} + \boldsymbol{\epsilon}_i \sim \mathcal{N}(0,1)$$

Which is the same as:

$$\begin{aligned} \boldsymbol{p}_i &= \boldsymbol{\Phi}(\boldsymbol{\eta}_i) \\ \boldsymbol{\eta}_i &= \mathbf{x}_i^{\top} \boldsymbol{\beta} \end{aligned}$$

In probit regression, we use a latent variable η_i^\star for thresholding.

$$y_i = \begin{cases} 1, & \text{if } \eta_i^\star > 0 \\ 0, & \text{otherwise} \end{cases}$$

and we model this latent variable:

$$\eta_i^\star = \mathbf{x}_i^\top \boldsymbol{\beta} + \boldsymbol{\epsilon}_i \sim \mathcal{N}(0,1)$$

Which is the same as:

$$\begin{aligned} p_i &= \Phi(\eta_i) \\ \eta_i &= \mathbf{x}_i^\top \boldsymbol{\beta} \end{aligned}$$

if η_i^{\star} is positive, we have 1 and 0 if it is negative

Logit latent variable model

In logistic regression, we can also use a latent variable η_i^\star for thresholding.

Logit latent variable model

In logistic regression, we can also use a latent variable η_i^\star for thresholding.

Probit regression: $\epsilon \sim \mathcal{N}(0,1)$

 $\mbox{Logistic regression: } \epsilon \sim \mathcal{L}ogistic(0,1)$

In logistic regression, we can also use a latent variable η_i^\star for thresholding.

Probit regression: $\epsilon \sim \mathcal{N}(0,1)$

Logistic regression: $\epsilon \sim \mathcal{L}ogistic(0,1)$

$$\begin{split} p_i &= \frac{\exp(\eta_i)}{1 + \exp(\eta_i)} \\ \eta_i &= \mathbf{x}_i^\top \boldsymbol{\beta} \\ \eta_i^\star &= \mathbf{x}_i^\top \boldsymbol{\beta} + \epsilon_i \sim \mathcal{L}ogistic(0,1) \end{split}$$

Binomial link functions: complementary log-log

$$\begin{split} \log(\lambda_i) &= \log(-\log(1-p_i)) \\ \lambda_i &= -\log(1-p_i) = \exp(\eta_i) \end{split} \tag{6}$$

- Has a link to count data
 - Just look at the Poisson likelihood! **Thursday**
- When binary data are really counts
- Probability to get a count larger than 0
- Can also be interpreted as LVM (reverse extreme value distribution)

Cumulative link

Suppose you have ordered data:

Braun-Blanquet scale	Range of cover		
r	< 5 %; very few individuals		
+	< 5 %; few individuals		
1	< 5%; numerous individuals		
2	5 – 25 %		
3	25 – 50 %		
4	50 – 75 %		
5	75 – 100 %		

Cumulative link functions facilitate this kind of response by introducing **order**. **More on Thursday**.

Example: Lizard habitat preference

- Data originally by Schoener (1970)
- Counts of two species of lizard in Jamaica

Figure 2: wikipedia.org: grahami

Figure 3: wikipedia.org: opalinus

Lizards: the data

Dataset also covered in McCullagh and Nelder (1989)

	Site	Diameter	Height	Time	grahami	opalinus
1	Sun	D <= 2	H < 5	Early	20	2
2	Sun	D <= 2	H < 5	Mid-day	8	1
3	Sun	D <= 2	H < 5	Late	4	4
4	Sun	D <= 2	H >= 5	Early	13	0
5	Sun	D <= 2	H >= 5	Mid-day	8	0
6	Sun	D <= 2	H >= 5	Late	12	0
7	Sun	D > 2	H < 5	Early	8	3
8	Sun	D > 2	H < 5	Mid-day	4	3 1 3
9	Sun	D > 2	H < 5	Late	5	3
10	Sun	D > 2	H >= 5	Early	6	0
12	Sun	D > 2	H >= 5	Late	1	1
13	Shade	D <= 2	H < 5	Early	34	11
14	Shade	D <= 2	H < 5	Mid-day	69	20
15	Shade	D <= 2	H < 5	Late	18	10
16	Shade	D <= 2	H >= 5	Early	31	5
17	Shade	D <= 2	H >= 5	Mid-day	55	4
18	Shade	D <= 2	H >= 5	Late	13	3
19	Shade	D > 2	H < 5	Early	17	15
20	Shade	D > 2	H < 5	Mid-day	60	32
21	Shade	D > 2	H < 5	Late	8	8

Lizards: visually inspect the data

What can we tell about grahami lizards in Sunny or Shady sites?

Lizards: visually inspect the data

Lizards: visually inspect the data

What can we tell about opalinus lizards in Sunny or Shady sites?

Lizards: fit the model

- b cbind: combines two vectors as columns
- $ightharpoonup N_i$ is the row sum (total lizards per site)
- Canonical link is used by default

Lizards: interpreting parameters

```
Estimate Std. Error z value Pr(>|z|)
##
                            0.34
                                   5.70 1.2e-08
  (Intercept)
                  1.90
                            0.25 0.91 3.6e-01
                  0.23
## TimeMid-day
## TimeLate
               -0.74
                            0.30 - 2.50 1.4e - 02
  DiameterD > 2 -0.76
                           0.21 -3.60 3.1e-04
## HeightH >= 5 1.10
                           0.26 4.40 1.1e-05
## SiteShade
                            0.32 -2.60 8.6e-03
                 -0.85
```

- ► (Intercept) = Early, small diameter low perches
- Change in odds for observing grahami lizards mid-day: exp(0.23) = 1.26
- Down for late-day: exp(-0.74) = 0.48
- ▶ What else?

Outline Recap Binomial GLMs Example 1 Technicalities Example 2 Practicalities

Lizards: inspecting the groups

```
Time Site prob SE df asymp.LCL asymp.UCL
##
  Early Sun 0.894 0.0314 Inf 0.815 0.941
##
##
   Mid-day Sun 0.913 0.0280 Inf 0.840 0.955
          Sun 0.801 0.0545 Inf 0.673 0.887
##
  Late
## Early Shade 0.783 0.0366 Inf 0.702 0.846
   Mid-day Shade 0.819 0.0253 Inf 0.764 0.863
##
##
   Late
          Shade 0.633 0.0574 Inf 0.515 0.737
##
## Results are averaged over the levels of: Diameter, Height
## Confidence level used: 0.95
## Intervals are back-transformed from the logit scale
```

emmeans::emmeans(model, ~Time+Site, type = "response")

Lizards: inspecting the groups visually

plot(emmeans::emmeans(model, -Time+Site, type = "response"))+ggplot2::theme_classic()+ggplot2::xlab("Probability)

Lizards: parameter estimates with different link functions

```
## logit probit cloglog
## (Intercept) 1.90 1.20 0.78
## TimeMid-day 0.23 0.13 0.12
## TimeLate -0.74 -0.44 -0.42
## DiameterD > 2 -0.76 -0.45 -0.41
## HeightH >= 5 1.10 0.65 0.58
## SiteShade -0.85 -0.51 -0.49
```

Lizards: group estimates with different link functions

```
##
              logit probit cloglog
## Early Sun
             0.89 0.90
                           0.91
## Mid-day Sun
              0.91 0.92 0.93
                           0.79
## Late Sun
              0.80 0.80
## Early Shade 0.78 0.78
                           0.77
## Mid-day Shade
               0.82 0.82
                           0.81
               0.63
                           0.62
## Late Shade
                     0.63
```

Overdispersion

In a binomial glm we (amongst others) assume:

- Independent Bernoulli trials
- $\blacktriangleright \ \mathrm{var}(y_i) = N_i p_i (1-p_i)$

If these are violated, we can have overdispersion. And due to omitted covariates.

Methods for diagnosing:

- ▶ Residual diagnostics
- Overdispersion factor
- Overdispersion test

Ignoring overdispersion is likely to cause inflated type I error.

This will come back for Poisson responses. It is not possible to detect overdispersion in binary responses.

Lizards: checking overdispersion

```
deviance(model)/df.residual(model)
```

```
## [1] 0.7103637
```

```
sum(residuals(model, "pearson")^2)/df.residual(model)
```

- ## [1] 0.6431694
 - ightharpoonup Deviance is (approx.) χ^2 -distributed
 - Can do a test for overdispersion

Lizards: checking overdispersion

```
performance::check_overdispersion(model)
```

```
## # Overdispersion test
##
## dispersion ratio = 0.994
## p-value = 0.92
```

No overdispersion detected.

Accouting for overdispersion

- Beta-binomial GLM
- Quasibinomial GLM
- Mixed-effects model See GLMM workshop

Perfect separation

Warning message: glm.fit: fitted probabilities numerically 0 or 1 occurred

Complete separation occurs whenever a linear function of \boldsymbol{x}_i can generate perfect predictions of \boldsymbol{y}_i

In essence: MLE is on the boundary of valid parameter space. We perfectly classify the response.

Solution:

- Sometimes it happens
- Change model (simplify)
- Collapse categories in covariates
- Penalised regression
- Other

Perfect separation: example

model <- glm(y ~ x, family=binomial)

 $x \leftarrow seq(-3, 3, by=0.1)$

v < - x > 0

```
## Warning: glm.fit: algorithm did not converge
```

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Perfect separation (2)

summary(model)

```
##
## Call:
## glm(formula = y ~ x, family = binomial)
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -17.89 4642.58 -0.004 0.997
              357.72 65657.28 0.005 0.996
## x
##
  (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 8.4548e+01 on 60 degrees of freedom
##
## Residual deviance: 6.8270e-08
                                 on 59 degrees of freedom
## AIC: 4
##
```

Perfect separation: example (3)

14 0 2.2e-16

```
cbind(y, signif(predict(model, type = "response"),2))
##
    0 2.2e-16
## 1
## 2
    0 2.2e-16
## 3 0 2.2e-16
    0 2.2e-16
## 4
## 5
    0 2.2e-16
## 6
    0 2.2e-16
## 7 0 2.2e-16
## 8 0 2.2e-16
## 9 0 2.2e-16
## 10 0 2.2e-16
## 11 0 2.2e-16
## 12 0 2.2e-16
## 13 0 2.2e-16
```

Outline Recap Binomial GLMs Example 1 Technicalities Example 2 Practicalities oo oo oooooooo ooooooooo ooooooooo

Summary

- Binomial GLMs for binary of count (successes/failures) responses
- Four potential link functions: logit, probit, cloglog, loglog
- Fixed dispersion: can exhibit overdispersion issues
- Perfect separation