HW	3	-	Solutions

Problem 1 Weighted Interval Scheduling (Weighted Task Selection)

Given a Set of jobs $J = \{1, ..., n\}$

the start & finish times of ith job = (si, fi)

Value of ith job = vi.

Goal: Find the subset of mutually compatible jobs that have max. total value.

ho two jobs overlap in time.

1) Multi-stape decision problem:

Say, we pick the kth job in the first decision stape.

kth job

sk

fk

Lk

Rk.

Let LR = Soubset of jobs in J that are mutually compatible to kth job, and finish before Sp.

P.T.D.

Ill^{sly}, let $R_k = 8$ ubset of jobs in J that 8tart = after f_k = these jobs are also mutually compatible with k^{th} job.

If V(S) = optimal value of for the subproblem with a subset of jobs S,

then, $V(J) = \max_{k \in \{1,...,n\}} v_k + V(L_k U R_k)$

However, if the jobs in J are sorted in the increasing order of the finish times, i.e., $f_1 \leq f_2 \leq \cdots \leq f_n$,

then, $V(J) = \max_{k \in \{1,...,n\}} v_k + V(L_k) + V(R_k)$.

 $= \max_{k \in \{1, \dots, n\}} V_k + V(\{1, \dots, k\})$ $+ V(\{k\}, \dots, n\})$

where k is the mutually compatible job to k with the largest finish time & \le s_k and k is the mutually compatible job to k with smallest start time \rightarrow f_k.

However these Bellman equations are not very useful for our implementation.

	For the	Sake	of !	8impl	e no	tation	9			
			1	,			27.00	Se	t of all	time - marken
	let X	$x = \begin{cases} x_1, & x \\ x_2 & x \end{cases}$,	Xm	3		_	1	elevant to	time-markers this problem setting.
		S -		0)	50		0	2 6	
		= { S1,	, ,	, >n	3 0	2 5	1.	· , f	1 9 0 }	-0,03.
	-) n	4 / 2101	2	2:		/- / V		14		
		n ≤ 2n+	- 2	2000		$i \leq x$	7	V	2 -	
	Let M	[i,j]=	ma	X · V	alue	of	hute	rset o	of sinhs	Relected
	/	[i,j] =	witt	min -	the	Inte	val	- (x,	(x_i, x_j)	i < j.
State varial Decision varia	le: (i, j)		924	1	lk				0 , ,	
Dacco	11 . 6	V-	Si	1111	4//	£			-0	
sension varia	ble · K ·	^2	- //			1k			×y	
						xb				
				m	ax s	1 V, +	-)	ИГi.	a7 + N	156,272
	then, $M[i,j] = \begin{cases} \max \{ V_k + M[i,a] + M[b,j] \}, \\ k \end{cases}$ if $\exists job k s.t. x_i < s_k < f_k \end{cases}$								S.t. X: < S. < f.	
									< X;	
	/									0
	Bellman	equation								
) X ₂	Х3		Xm.	-1 Xm=	7	
	f	X₁ = -∞ X₂	0			900				
			0	0		000				
Note: Ma	trix M	= X ₃	0	0	0	0 0 0				
	11		b		,		0	0		
		. [0	9	6	6	0	0		
		X _{M-1}	0	0	0	000	0			
		$X_{\rm m} = \infty$	0	0	0	0 0 0	0	0		

3 Pseudo code:

DP-Task Selection (J)

Initialize time marker set by sorting jobs $x = \xi - \infty$, ∞ ξ

for i = 1 to n

X = X U { i.s, i.f } \ sorted time-markers.

M = 0 \ Initialize (m+1) x (m+1) all-jew matrix.

for i = 1 to x. length

for j = 1 to x length

C = Compatible Jobs (J, i, j)

if $G \neq \phi$

MARIANE CARDO

for each job ke C

if $M[i,j] \leq k \cdot v + M[i, k \cdot s]$

+ M[k.f,j]

 $M[i,j] = k \cdot v + M[i,k \cdot s] +$

M[k.f,j]

return M[1, X. length]

Compatible Jobs (J, x, y)

V Find all compatéble jobs between time markers x 2 y.

G = \$

for i = 1 to nif $x \le i.s$ and $i.f \ne y$

G = G U {i}

return G.

(3) Greedy algorithm (One possible solution)

Similar to Fractional Knapsack, let us define a

normalized value $w_i = \frac{V_i}{f_i - s_i} + i = 1, \dots, n$

(value per unit time)

Greedy approach => select the job with max. Wi such that it is compatible to previously selected jobs-

P. T.O.

for
$$i = 1$$
 to n

$$W_{\bar{i}} = V_{\bar{i}} / (f_{\bar{i}} - S_{\bar{i}}).$$

Sort all jobs in J in decreasip order of w.

m = 0.

$$u = extract - max(J)$$

 $m = m + u \cdot v$

return m

where greedy-compatible (J, u)

Compatible jobs to u:

for each job i in Jis i-f

is f-f f-f

Eliminating a dimension in DP — "Fast DP"
In the earlier DP solution, we picked an arbitrary job Jk and employed divide-and-conquer approach to solve Lk and Rk Subproblems
Question: Can we reduce this problem to a one-dimensional algorithm?
Answer: Yes.
Introduce an order on the subproblems.
Let $M[i] = \max$. Weight solution to the subproblem $\{[s, f] \in J \mid f < \varkappa_i \}$ ith time marker.
$M[i] = \begin{cases} 0 & \text{if } i = 1 \\ \text{max} \begin{cases} M[i-1], \\ \text{max} \end{cases} \begin{cases} M[j] + w([x_i, r]) \end{cases}$

Fast DP - Task Selectron (J)

I Sort J according to finish times and create time markers.

 $x = \{3\}$

for i = 1 to n $x = x \cup \{i.s, i.f\}$

for i = 1 to x. length

M[i] = 0

for i = 1 to nSearch t such that $r_i \in [y_t, y_{t+1}]$ Search s such that $l_i = y_s$.

max = M[t] = max max = M[t-1], $max = M[s] + w[l_i, r_i]$

Problem 2	String edit problem
	Given two strings A = a, az an and
	B = b, bm, if our goal is to convert A
	into B while observe ST 1 D1 1 C 1 2
	into B using operations { Insert, Delete, Substitute}
	we have the following possibilities —
(*)	In order to match the character "b,", we can evaluate all the possibilities
	$\begin{pmatrix} a_1 \\ b_1 \end{pmatrix}$, $\begin{pmatrix} a_1 & a_2 \\ b_1 \end{pmatrix}$, $\begin{pmatrix} a_1 & \cdots & a_n \\ b_1 \end{pmatrix}$
*	In order to match the thank Substrip "b, b2", we can evaluate the foll. possibilities:
	$\begin{bmatrix} a_1 \\ b_1 \end{bmatrix}$, $\begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}$, $\begin{bmatrix} a_1 & \cdots & a_n \\ b_1 & b_2 \end{bmatrix}$
T	in other words we need to evaluate all prossible cases: (a, ai) and identify a necursion.

\sim	bulti-stape decissas problem:
	State variable = (i,j)
	into (b, bi)
	State variable = (i i)
	$a_1 \dots a_r$
	Delete ai Insert bj a,a _{i-1} Substitute ai with a _i with a _i a _i bj
	Defete de substitute de with
	Insert bj
	$a_1 \dots a_{i-1} b$.
	$a_1 \dots a_{i-1}$ $a_1 \dots a_i b_i$
In	general, if we were to build this tope,
	Jones to build this tree,
	$\alpha_1 - \alpha_2$
	$D(a_i)$ $I(b_j)$ $S(a_i, b_j)$
α,.	a_{i-1} a_{i-1} a_{i} a_{j} a_{j-1} a_{j}
	di di by
D(az-1)	$I(b_j)$ $S(a_{ii}, b_j)$
A .	$a_1 \dots a_{i-1} b_i$ $a_1 \dots a_{i-2} b_j$
$a_1 \cdots a_{i-2}$	$a_1 \dots a_{i-1} b_j$ $a_1 \dots a_{i-2} b_j$
	<i>j</i> .
	P
	T. 1 1 10
	Eventually, the goal is to reach the State where
	Eventually, the goal is to reach the state where the entire sequence becomes bi, oo by

S	ay, c[i,j] is the cost of converting
	$(a_1 \dots a_i)$ into $(b_1 \dots b_j)$.
So in	Page (2.2) is as follows:
	$\begin{pmatrix} a_1 & \cdots & a_i \\ b_1 & \cdots & b_i \end{pmatrix}$
	Delete ai Insert bj
(a, b, Subp	a _{i-1} a _{i-1} a _{i-1} a _{i-1} b _j b _j b _j b _j Subproblem MATCH Subproblem MATCH
	Falte evolution reduces to the following:
	Delete ai Tusert bj
(i-1, i	$(i,j-1) \qquad (i-1,j-1)$
Bellman es	$C[i,j] = \min_{x} C[i,j-1] + D(a_i); x = D$ $C[i,j-1] + I(b_j); x = I$ $C[i-1,j-1] + S(a_i,b_j); x = S$

	where X is the decision variable.	
More	formally, if $X = \begin{cases} -1 \\ 0 \end{cases}$ Insert , we have , substitute,	
	$ \frac{X(X-1)}{2} \left\{ C[i-1,j] + D(ai) \right\} $ $ = \min_{X \in \{-1,0,1\}} \frac{(X-1)(X+1)}{2} \left\{ C[i,j-1] + I(b_j) \right\} $ $ + \frac{X(X+1)}{2} \left\{ C[i-1,j-1] + S(a_i,b_j) \right\} $	
	where $C[0,j] = \sum_{k=1}^{3} I(b_k)$ for all $j=1,,m$ $c[i,o] = \sum_{k=1}^{i} D(a_k)$ for all $i=1,,n$ $k=1$	
	and $C[0,0] = 0$. $ \begin{cases} b_1 & \dots & b_m \end{cases} $	
	Sendo Gode: \$\delta O \c[0,1] \circ	
Mat	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_
		-
	$\{a_1, \dots, a_n\}$ $c[n, 0]$ $c[n, 1]$ \circ \circ $c[n, m]$	-

Pseudocode

Size (A) = n Size (B) = m.

DP-StringEdit (A,B, I, D,S)

C=0 | Initialize all-zers matrix of size (n+1) x(m+1).

for i = 1 to n $C[i,0] = C[i-1,0] + D(a_i)$

for j = 1 to m G[0,j] = G[0,j-1] + I(bj)

for i = 1 to nfor j = 1 to m

 $C[i,j] = min \begin{cases} C[i-1,j] + D(a_i), \\ C[i,j-1] + D(b_i), \end{cases}$

c[i-1, j-1] + \$(a_i, b_i)
}

return G[n,m]

\$ (aj, bj

$$C = C + min cost$$

if $D(a_j) \neq min cost$
 $j = j + 1$

return C.