	SECTION-A (OBJECTIVE) [30 M] i) Answer all questions, each question carries one mark [30x1=30M]. ii) Do not write the description and Answers must be in the order. iii) Marks are not awarded if the answers are OVER WRITTEN.						
J .	Choose the correct opti (A) Angular velocity is (B) Angular velocity is (C) Angular velocity ve (D) Both 'B' and 'C'	a scalar quantity	ntion				
2.	A force acts on a parti origin is (A) i+10j+10k	cle whose position vector is (B) 2i+12j+10k	i-j+k. The torque of the force (C) i-12j-10k	e 7 i +3 j -5 k about the (D) -2 i -12 j +10 k			
3,	When 100 J of work is The moment of inertia (A) 0.63 kg m ²	of the wheel is	ar velocity is increased from 6 (C) 6.3 kg m ²	Orpm to 180rpm. (D) 6.3g cm ²			
4.	of the following statem (A) She increases her m	ents is not true	(B) She deceases her angula (D) Her moment of inertia re	rspeed			
5.	A function $f(t) = A \cos(A) A + B$	ωt +B Sin ωt is periodic, if i (B) A	ts amplitude is (C) $\sqrt{(A+B)}$	(D) $\sqrt{(A^2+B^2)}$			

6/ A metal ring of mass 5 kg is attached to a spring of spring constant 500 N/m. It slides without friction over a horizontal rod. The ring is displaced from its equilibrium position by 10.0 cm and released. The

The phase difference between displacement and acceleration of a simple harmonic oscillator is

(C) 0.063 Sec

(C) $\pi/2$

(D) 63Sec

(D) π

period of oscillation is

(B) 6.3 Sec

(B) $\pi/6$

(A) 0.63 Sec

(A) $\pi/4$

	110 T	t - time period of oscillation,	when lift is stationary				
(A) Zero	(B) infinite	(C) 1/ x	(D) none				
9. Two bodies of mass 16 be placed from 100 kg (A) 16cm	00 kg and 1000 kg are lying o body such that the net gravita (B) 24cm	ne meter apart. Where an objection force acting on it will be (C) 32cm	ect of mass 'm' has to zero? (D) 48cm				
10. A Satellite orbits on the (A) 5.592km/s	e earth at height equal to the re(B) 4.592km/s	adius of earth. Its orbital spee (C) 6.592km/s	d is (D) None				
1. The Geo stationary satellite (GSS) will orbit the earth at a distance of 35,800 km from its surface. 2. The GSS will orbit the earth at a distance of 42200 km from its centre. 3. The period of revolution of a GSS is 24hrs. 4. The time period of revolution of a polar satellite is 100 min. (A) Only 1, 2, 3 are correct (B) Only 2, 3, 4 are correct (C) Only 3 is correct (D) All are correct.							
12. The relation between (A) $\sqrt{2}$ $v_e = v$	escape velocity(v_e) from the su (B) $v_e = \sqrt{2} v_o$	urface of the earth and the orbit (C) $v_e = 2 v_o$	tal velocity(v_0) is (D) 4 v_e = 3 v_0				
13. Which of the followin (A) Rubber	g is most elastic (B) Glass	(C) Steel	(D) Copper				
14. The Young's modulus of wire of length 'L' and radius 'r' is 'Y'. The length is reduced to L/2 and radius r/2, then its Young's modulus will be							
(A) $Y/2$	(B) 2Y	(C) Y	(D) 4Y				
15. If an iron wire is stretched by 1%, what is the strain on the wire							
(A) 0.1	(B) 1	(C) 0.01	(D) none				
16. Determine the pressure required to reduce the given volume of water by 2%. Bulk modulus of water is 2.2*10°N/m²							
	(B) $4.4*10^7$ N/m ²	(C) $44*10^5$ N/m ²	(D) $44*10^7 \text{ N/m}^2$				
17. Pressure is a(A)Vector	(B) Scalar	(C) Dimensionless	(D) None				
18. If density of atmospheric gases is 1.3kg/m ³ and is constant throughout, up to what height the atmosphere is extended? [Take g=10 m/s ²]							
(A) 12 km	(B) 14 km	(C) 8 km	(D) 6 km				

19. If 'W' is the work do radius to '2R'?	one to blow an air bu	bble of radius 'R', what is the	ne energy needed to increase its	
(A) 4W	(B) 6W	(C) 3W	(D) None	
20. Which liquid is used		, (C) I		
(A) Compressible	(B) Viscous	(C) Incompressib	le (D) High density	
21. Coefficient of volume	e expansion of an idea	al gas at constant pressure is		
(A) Independent of ter(C) Directly proportion			(B) Directly proportional to temperature(D) Inversely proportional to temperature	
linear expansion is 25	$5x10^{-6} {}_{0}C^{-1}$		by 2% is(Coefficient of	
(A) 800 °C (B) 6	500 °C	(C) 400 °C	(D) 1000 °C	
23. What is the amount of process at 300K?	of heat needed to incr	ease the volume of gas of 5 i	moles by 30% in an isothermal	
(A) -3272 J	(B) 3272 J	(C) -15015 J	(D) 15015 J	
24. A heater boils 3 kg of [Specific heat capacit	water at 30°C to stea y of water is 4186 J/k	m at 100°C in 10 minutes, wh gK and Latent heat of steam is	nat is the power (wattage) of it? s 2.3x10 ⁶ J/kg].	
(A) 5 kilo Watt	(B) 10 kilo Watt	(C) 13 kilo Watt	(D) None	
	ressed isothermally to (B) Decreases	half of its volume at 273 K, th	nen its internal energy? (D) remains constant	
(A) Increases	(B) Decreases	(C) Doubled	(b) remains constant	
26remain	s constant in undampe	ed vibrations.		
27. Angle of contact for v	vater and lotus leaf int	terface is		
28. Continuity equation is	the consequence of _			
29 At 4 °C water has max	imum	and minimum	•	
30 First law of thermody	namics is the another	form of		

<u> SECTION -B (DESCRIPTIVE) [30M]</u>

- i) Answer any 'three' out of the 'six' the questions, each question carries 10 Marks.
- ii) Answer all sub parts a question at the same place.
- 1. a) Define angular acceleration and torque and derive a relation between them.[5M]
- **b)** The angular position of a point on a rotating disc is given by $\theta = 2+4t^2+2t^3$, where ' θ ' is in radians
- and time't' in seconds. At't' = 0 Sec, what is (i) The angular position (ii) Angular velocity
 - (iii) Angular acceleration. And also calculate angular acceleration at 't'= 2Sec. [5M]
- 2. a) Show that motion of simple pendulum is simple harmonic and derive an equation for its time period. [5M]
 - b) A body describes simple harmonic motion with amplitude of 5 cm and a period of 0.2 Sec. Find the acceleration and velocity of the body when the displacement is (i) 5cm (ii) 3cm (iii) 0cm [5M]
- 3. a) Define Hooke's law. Describe the behaviour of a wire under gradually increasing load with the
- √ help of stress-strain graph. [5M]
 - b) Derive an expression for the variation of acceleration due to gravity (i) above (ii) below
- w the surface of the earth. [5M]
- 4. a) Deduce an expression for the speed of a flow in the wider part of the Venturi mater? [5M]
 b) How high does methyl alcohol rise in a glass tube of diameter 0.6 mm. Surface tension of methyl alcohol is 0.023 Nm⁻¹ and density is 0.8 gram per cc. Assume that hemisphere is formed at the meniscus? [5M]
- 5. a) Define coefficient of linear and volume expansions and derive the relation between them? [5M]
 b) A cup of tea cools from 60 °C to 40 °C in 7 minutes, what will be its temperature after next 7
- minutes, if the surrounding's temperature is 10 °C? [5M] 38
- 6. a) Derive an expression for the amount of work done in the adiabatic process? [5M]
 - b) Obtain an expression for the pressure of an ideal gas using hypothesis of kinetic theory of gases?

[5M]

