Losowo wygenerowane przykładowe dane z podziałem na klasy dla których przeprowadzono eksperyment, polegający na podziale próbek na testujące i uczące, a następnie testowaniu działania algorytmów 100 razy i poddawaniu wyników różnym miarom jakości klasyfikacji



W ostatniej iteracji eksperymentu przeprowadzono szereg wizualizacji:

Wykres 1: Od lewej: Wyniki oczekiwane, Wyniki zwrócone w wyniku działania algorytmu, błędy klasyfikacji

Wykres 2: Krzywa ROC wraz z wartością współczynnika AUC

Wykres 3: Krzywa dyskryminacyjna

## naivebayes. Gaussian NB



## DecisionTreeClassifier



Podsumowanie wyników(wykres oraz tabela ze średnimi wartościami stu iteracji przeprowadzonego eksperymentu, czas podany w sekundach\*500, w celu lepszego ukazania skali)



| testTi   | trainT   | roc_auc  | f1_sco   | precis   | recall   | accura    |
|----------|----------|----------|----------|----------|----------|-----------|
| $\nabla$ |          |          |          |          |          | $\forall$ |
| 0.042616 | 0.317353 | 0.881718 | 0.881894 | 0.890589 | 0.880660 | 0.882121  |
| 0.143809 | 0.190852 | 0.891456 | 0.891985 | 0.897298 | 0.893292 | 0.891515  |
| 0.880340 | 0.186307 | 0.940860 | 0.942810 | 0.921432 | 0.968563 | 0.941212  |
| 0.159626 | 0.662490 | 0.937228 | 0.940593 | 0.911295 | 0.974519 | 0.938181  |
| 0.083955 | 0.267782 | 0.863123 | 0.862191 | 0.875137 | 0.860003 | 0.862727  |

## Wnioski:

- Wszystkie algorytmy działają z podobną dokładnością, precyzją i czułością, osiągają podobny współczynnik f1 i krzywą pod wykresem roc.
- Nieznacznie ponad przeciętną dokładności, precyzji, czułości, współczynnika f1 wyszty algorytmy SVC i KNeighborsClassifier
- Algorytm KNeighborsClassifier cechuje się zdecydowanie największym czasem testowania, reszta algorytmów nie odbiega znacząco od siebie czasami testowania.
- Algorytm SVC cechuje się zdecydowanie największym czasem uczenia, reszta algorytmów nie odbiega znacząco od siebie czasami uczenia.
- Krzywa ROC pozwala ocenić poprawność klasyfikatora poprzez jego miary czułości i specyficzności. Po zobrazowaniu jej w sposób podobny do widocznego wyżej, można ocenić poprawność poprzez to, jak bardzo jest ona oddalona od przerywanej kreski obrazującej model losowy(czym wyżej na wykresie tym lepiej).
- Pole pod krzywą AUC pozwala określić poprawność klasyfikatora(czym bliżej wartości 1 tym lepiej)