10/11/19

MATH 341

Homework 5

1. Take $x \in F$ If $FE = \emptyset$, $x \in E^c$ which $x \in FE^c$ If $FE \neq \emptyset$, $x \in E$ or $\in E^c$ such that $x \in FE$ or $x \in FE^c$ So, $F \subseteq FE \cup FE^c$

Take $x \in FE \cup FE^c$ $x \in FE \text{ or } x \in FE^c, \text{ so } x \in F \text{ and } x \in E \text{ or } x \in F \text{ and } x \in E^c$ $x \in F$ $So, FE \cup FE^c \subseteq F$ $F = FE \cup FE^c$

2. A) (total - In Language)/total = $\frac{100-50}{100}$ = .5 = 50%

B)
$$\frac{14+10+8}{100} = \frac{32}{100} = .32 = 32\%$$

C)
$$\binom{50}{2} + \binom{50}{1} \binom{50}{1} \binom{50}{1} \binom{100}{2} = 0.7525 = 75.225\%$$

- 3. $P[(A \cup B) \cap C)] = P(A \cap C) + P(B \cap C) P(A \cap B \cap C)$ $P[(A \cup B) \cap C)] \rightarrow P[(A \cap C) \cup (B \cap C)]$ Through the distributive property $= P[E \cup F]$ where $E = A \cap C \& F = B \cap C$ = P(E) + P(F) - P[EF] Through Proposition 4.3 $= P(A \cap C) + P(B \cap C) - P[(A \cap C) \cap (B \cap C)]$ redistributing variables $= P(A \cap C) + P(B \cap C) - P(A \cap B \cap C)$
- 4. $P(E_1) = \binom{100}{15} / \binom{110}{15} = 0.22$ Freshman 10 $P(E_2) = \binom{85}{15} / \binom{110}{15} = 0.015$ Sophomore 25 $P(E_3) = \binom{80}{15} / \binom{110}{15} = 0.0056$ Junior 30 $P(E_4) = \binom{65}{15} / \binom{110}{15} = 0.00018$ Senior 45 $P(E_1E_2) = \binom{75}{15} / \binom{110}{15} = 0.0001939$ $P(E_1E_3) = \binom{70}{15} / \binom{110}{15} = 0.000614$ $P(E_1E_4) = \binom{55}{15} / \binom{110}{15} = 0.00001012$ $P(E_2E_3) = \binom{55}{15} / \binom{110}{15} = 0.00001012$ $P(E_2E_4) = \binom{40}{15} / \binom{110}{15} = 0.000000003$

$$P(E_{3}E_{4}) = \binom{35}{15}/\binom{110}{15} = 2.762 * 10^{-9}$$

$$P(E_{1}E_{2}E_{3}) = \binom{45}{15}/\binom{110}{15} = 0.00000029$$

$$P(E_{1}E_{2}E_{4}) = \binom{30}{15}/\binom{110}{15} = 1.3193 * 10^{-10}$$

$$P(E_{1}E_{3}E_{4}) = \binom{25}{15}/\binom{110}{15} = 2.78 * 10^{-12}$$

$$P(E_{2}E_{3}E_{4}) = \binom{10}{15}/\binom{110}{15} = 0$$

$$P(E_{1}E_{2}E_{3}E_{4}) = \binom{10}{15}/\binom{110}{15} = 0$$

$$P(E_{1}) + P(E_{2}) + P(E_{3}) + P(E_{4}) - P(E_{1}E_{2}) - P(E_{1}E_{3}) - P(E_{1}E_{4}) - P(E_{2}E_{3}) - P(E_{2}E_{4}) - P(E_{3}E_{4}) + P(E_{1}E_{2}E_{3}) + P(E_{1}E_{2}E_{4}) + P(E_{1}E_{3}E_{4}) + P(E_{2}E_{3}E_{4})$$

$$= 0.2382 = 23.82\%$$

- 5. If $P(\bigcup_{i=1}^{\infty} E_i) \leq \sum_{i=1}^{\infty} P(E_i)$, one case must be that all events are mutually exclusive (noted with a '*'). Meaning $\bigcup_{i=1}^{\infty} E_i^* = \sum_{i=1}^{\infty} P(E_i^*)$ as $\bigcap_{i=1}^{\infty} E_i^* = \emptyset$. If one or more of the cases are not mutually exclusive, then $\bigcap_{i=1}^{\infty} E_i \neq \emptyset$ so $\bigcup_{i=1}^{\infty} E_i < \sum_{i=1}^{\infty} E_i$ as to not over-count the intersection between two or more events. So, $P(\bigcup_{i=1}^{\infty} E_i) \leq \sum_{i=1}^{\infty} P(E_i)$ as it accounts for all cases of possible intersection between the events.
- 6. (Histogram for part A below)
 - A) The likelihood of Baltimore winning 10 games in a row in one season is relatively low, sitting at approximately 0.025 or 2.5% (from the data). While the likelihood of them winning 15 games in a row is even lower (low enough that I cannot visually estimate its value). So while winning ten games in a row is unlikely, it is far more unlikely that they will win 1 games in a row.
 - B) When I simulated 10000 seasons, there were 31 seasons where Cleveland Indians got a 22 or higher game win streak. 31/10000 = 0.0031 = 0.31%, which is a very unlikely possibility that they will win 22 or more games in a row.
 - C) When I simulated 10000 seasons, there were 12 seasons where the Los Angeles Dodgers lost 11 or more games in a row. 12/10000 = 0.0012 = 0.12%, which is a very unlikely possibility that they will lose 11 or more games in a row.

Histogram of maxLen

7. A)
$$P(A|B) = 1 - \frac{P(A \cap B)}{P(A)} = 1 - \frac{.27}{.79} = 1 - 0.34 = 0.66 = 66\%$$

B) $P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{.27}{.38} = 0.7105 = 71.05\%$

B)
$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{.27}{38} = 0.7105 = 71.05\%$$