Recitation # 7: Exponential models and approaches to integration - Instructor Notes

Group work:

Problem 1 Vitameatavegamin is a strange substance that comes in two forms. V-I decays at a linear rate, while V-II decays at an exponential rate. Both have the property that 10 ounces will decrease to 7 ounces in 6 hours. For each of V-I and V-II, answer the following:

- (a) If we started with 80 ounces, how much will there be 6 hours later?
- (b) How long will it take to decrease from 15 ounces to 7.5 ounces?

Instructor Notes: The issue is to compare and contrast linear and exponential decay. To solve, it is implicit to find the slope (I) and k (II) first before proceeding (this may need a prompt).

Problem 2 Evaluate

$$\int \frac{5x^3 - 6x + 2}{x - 5} \, dx.$$

Instructor Notes: Each of problems #1 through #4 presents a different aspect that is covered in Section 7.1. This problem (# 1) requires long division.

Problem 3 Evaluate

$$\int \frac{5}{3^{2x} + 3^{-2x}} \, dx.$$

Recitation # 7: Exponential models and approaches to integration - Instructor Notes

Instructor Notes: Students are likely to have forgotten $\frac{d}{dx}(C^x)$ for $C \neq e$.

Problem 4 Evaluate the following integrals

(a)
$$\int \frac{\cos x}{1 + \sin x} \, dx$$

(b)
$$\int \frac{1}{\sin x - 1} \, dx$$

Instructor Notes: The two integrals in this problem look similar, but they require very different strategies in order to rewrite them as "basic" integrals.

Problem 5 Evaluate the following integrals

(a)
$$\int \frac{13}{\sqrt{12x - x^2 - 20}} dx$$

(b)
$$\int \frac{13x^3}{\sqrt{12x^6 - x^8 - 20x^4}} \, dx$$

(c)
$$\int \frac{13e^{4x}}{\sqrt{12e^{6x} - e^{8x} - 20e^{4x}}} dx$$

Instructor Notes: Part (a) of this problem involves completing the square. Parts (b) and (c) both require you to factor out a common factor, as well as substitute, to get the same integral as in part (a). You may want to do part (a) as a whole class, and then split parts (b) and (c) between the groups. Then let them present the substitution which returns part (a).