

The Jackknife

...is a more specific resampling plan based on a leave-one-out idea:

- ▶ Let $\hat{\theta}_n : \mathcal{X}_0^n \to \mathbb{R}$ be an estimator.
- ► For $x = (x_1, ..., x_n)' \in \mathcal{X}_0^n$ and $i \in \{1, ..., n\}$, let

$$\hat{\theta}_{(i)}(x) := \hat{\theta}_{n-1}(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$$

be the estimator computed without the i-th observation.

- $Write \hat{\theta}_{(\cdot)}(x) := \frac{1}{n} \sum_{i=1}^{n} \hat{\theta}_{(i)}(x).$
- The Jackknife estimate of the squared standard error (=variance) of $\hat{\theta}_n$ is given by:

$$\hat{se}^{2}(x) := \frac{n-1}{n} \sum_{i=1}^{n} \left(\hat{\theta}_{(i)}(x) - \hat{\theta}_{(\cdot)}(x) \right)^{2}.$$

$$\hat{se}^2 := \frac{n-1}{n} \sum_{i=1}^n (\hat{\theta}_{(i)} - \hat{\theta}_{(\cdot)})^2.$$

This does not look quite right! Why is it not a sample variance?

Consider the case
$$\hat{\theta}_n(x) = \frac{1}{n} \sum_{i=1}^n x_i$$
. Then
$$\hat{\theta}_{(i)} = \frac{1}{n-1} \sum_{i=1}^n x_i = \frac{1}{n-1} \left(n \overline{X}_n - X_i \right)$$

$$\hat{\theta}_{(i)} = \frac{1}{n} \sum_{i=1}^n \hat{\theta}_{(i)} = \frac{1}{n-1} \cdot \frac{1}{n} \sum_{i=1}^n \left(n \overline{X}_n - X_i \right)$$

$$= \frac{1}{n-1} \left(n \overline{X}_n - \overline{X}_n \right) = \overline{X}_n$$

$$\hat{s}e^{2} := \frac{n-1}{n} \sum_{i=1}^{n} \left(\hat{\theta}_{(i)} - \hat{\theta}_{(\cdot)} \right)^{2}.$$

$$\hat{s}e^{2} = \frac{n-1}{n} \sum_{i=n}^{n} \left(\frac{1}{n-n} \left(n X_{i} - X_{i} \right) - \overline{X}_{i} \right)^{2}.$$

$$\bigotimes = \frac{n}{n-1} \overline{X}_{i} - \overline{X}_{i} - \overline{X}_{i} - \frac{1}{n-n} (\overline{X}_{i} - X_{i})$$

$$\hat{Q}e^{2} = \frac{n-1}{n} \underbrace{1}_{n-1} \underbrace{1}_{n-1}$$

Recall HW 2.1a: In the iid model $se_{\theta}^2 := \operatorname{Var}_{\theta}[\hat{\theta}_n] = \frac{\sigma^2}{n}$ and $\mathbb{E}_{\theta}[\hat{\sigma}_n^2] = \sigma^2$.

Unfortunately, however, the Jackknife does not always produce good estimates for the standard error!

e.g., sample quantiles

For these kinds of parametric problems, the Jackknife idea is kind of outdated.

However, ...

UNCERTAINTY QUANTIFICATION IN STATISTICAL LEARNING

- We observe iid pairs $Z_i = (X_i, Y_i), i = 1, ..., n$ from (marginal) sample space $\mathcal{X}_0 = \mathbb{R}^p \times \mathbb{R}$.
- Let (X_0, Y_0) be another independent pair with identical distribution (prediction period).
- ▶ We observe X_0 but not Y_0 . Want to predict the value of Y_0 .
- ▶ Use a predictor/learning algorithm \hat{m}_n : $\mathbb{R}^p \to \mathbb{R}$ to predict the value of Y_0 by $\hat{m}_n(X_0)$.
- Actually \hat{m}_n depends also on the training data! So $\hat{m}_n : \mathcal{X}_0^n \times \mathbb{R}^p \to \mathbb{R}$, $\hat{m}_n(X_0) = \hat{m}_n(Z_1, \dots, Z_n; X_0)$.
- For example:
 - $\hat{m}_n(x) = x'\hat{\beta}_n \text{ with } \hat{\beta}_n = (X'X + \lambda I_p)^{-1}X'Y, X = [X_1, \dots, X_n]', Y = (Y_1, \dots, Y_n)'$
 - \hat{m}_n is a CNN with weights obtained from SGD.

UNCERTAINTY QUANTIFICATION IN STATISTICAL LEARNING

- We would like to quantify the uncertainty associated with predicting the new label/response Y_0 .
- ▶ Prediction interval: $PI_{\alpha} \subseteq \mathbb{R}$

$$P(Y_0 \in PI_\alpha) \ge 1 - \alpha.$$

Would like to know the distribution of the prediction error

$$P\left(\mathbf{1}_{\frac{1}{2}} < \underline{Y_0 - \hat{m}_n(X_0)} \leq \mathbf{1}_{1-\frac{1}{2}} \right) = 1 - \alpha$$

► Could use theoretical quantiles $q_{\alpha/2}$ and $q_{1-\alpha/2}$ to construct

$$PI_{\alpha} = [\hat{m}_n(X_0) + q_{\alpha/2}, \hat{m}_n(X_0) + q_{1-\alpha/2}].$$

PREDICTIVE INFERENCE BY SAMPLE SPLITTING

 How to estimate/approximate the distribution of the prediction error

$$Y_0 - \hat{m}_n(Z_1, \dots, Z_n; X_0)$$

▶ Traditional approach: Split the sample into $S_{train} \cup S_{val} = \{1, \dots, n\}$, $S_{train} \cap S_{val} = \emptyset$, $n_1 = |S_{train}|$, $n_2 = |S_{val}|$, $n_1 + n_2 = n$.

▶ Train your algorithm on S_{train} and validate it on S_{val} , i.e., compute

$$R_{j}^{ss} := Y_{j} - \hat{m}_{n_{1}}(\{Z_{i} : i \in S_{train}\}; X_{j}), \quad j \in S_{val}.$$

▶ Use empirical quantiles $\hat{q}_{\alpha/2}$ and $\hat{q}_{1-\alpha/2}$ of R_j^{ss} , $j \in S_{val}$ and compute

$$PI_{\alpha} = [\hat{m}_{n_1}(X_0) + \hat{q}_{\alpha/2}, \hat{m}_{n_1}(X_0) + \hat{q}_{1-\alpha/2}].$$

PREDICTIVE INFERENCE BY SAMPLE SPLITTING

ightharpoonup Conditional on the data in S_{train} , the residuals

$$R_j^{ss} := Y_j - \hat{m}_{n_1}(\{Z_i : i \in S_{train}\}; X_j); \quad j \in S_{val}.$$

are an iid sample with distribution equal to that of

$$R^{ss} := Y_0 - \hat{m}_{n_1}(\{Z_i : i \in S_{train}\}, X_0).$$

ightharpoonup Thus, $\hat{q}_{\alpha} \xrightarrow{p.} q_{\alpha}^{(R^{ss})}$ as $n_2 \to \infty$.

$$Y_0 \in PI_{\alpha} = [\hat{m}_{n_1}(X_0) + \hat{q}_{\alpha/2}, \hat{m}_{n_1}(X_0) + \hat{q}_{1-\alpha/2}]$$

$$\iff \hat{q}_{\alpha/2} \le Y_0 - \hat{m}_{n_1}(X_0) \le \hat{q}_{1-\alpha/2}$$

$$P(Y_0 \in PI_{\alpha}|S_{train}) = P(\hat{q}_{\alpha/2} \le R^{ss} \le \hat{q}_{1-\alpha/2}|S_{train}) \approx 1-\alpha$$

PREDICTIVE INFERENCE BY SAMPLE SPLITTING

- Sample splitting works very well when n is large relative to p.
- ▶ Otherwise, \hat{m}_{n_1} : $\mathbb{R}^p \to \mathbb{R}$ may be much less accurate than \hat{m}_n .
- ► Recall: We need n_2 large, so $n_1 = n n_2 \ll n$.

$$Y_0 - \hat{m}_n(X_0)$$
 vs. $Y_0 - \hat{m}_{n_1}(X_0)$

PREDICTIVE INFERENCE WITH THE JACKKNIFE

 How to estimate/approximate the distribution of the prediction error

$$R := Y_0 - \widehat{m}_n(X_0)$$

▶ Let $R_i^{l1o} := Y_i - \hat{m}_{(i)}(X_i), i = 1, ..., n$ where

$$\hat{m}_{(i)}(X_i) = \hat{m}_{n-1}(Z_1, \dots, Z_{i-1}, Z_{i+1}, \dots, Z_n; X_i)$$

is the prediction at X_i of the learning algorithm trained on the data set with the i-th observation pair removed.

- ▶ If $\hat{m}_n \approx \hat{m}_{(i)}$, then, approximately $R_i^{l1o} \approx R$.
- ► The R_1^{l1o} ,..., R_n^{l1o} are (usually) identically distributed but not independent.
- We still use empirical quantiles $\hat{q}_{\alpha/2}^{l1o}$ and $\hat{q}_{1-\alpha/2}^{l1o}$ to compute...

PREDICTIVE INFERENCE WITH THE JACKKNIFE

- $ightharpoonup R_i^{l1o} := Y_i \hat{m}_{(i)}(X_i), i = 1, \dots, n$
- $\hat{q}_{\alpha/2}^{l1o}$ and $\hat{q}_{1-\alpha/2}^{l1o}$ empirical quantiles.

$$PI_{\alpha}^{l1o} = [\hat{m}_n(X_0) + \hat{q}_{\alpha/2}^{l1o}, \hat{m}_n(X_0) + \hat{q}_{1-\alpha/2}^{l1o}]$$

Under some regularity assumptions, one can show

$$\mathbb{E}\left[\left|P(Y_0 \in PI_{\alpha}^{l1o}|Z_1, \dots, Z_n) - (1-\alpha)\right|\right] \xrightarrow[n,p\to\infty]{} 0.$$

$$P\left(Y_{\bullet} \in PI_{\bullet}^{l1o}\right) \approx 1-\lambda$$

$$|P(Y_{0} \in P_{1}^{1/0}) - (1-d)|$$

$$= |E[P(Y_{0} \in P_{1}^{1/0}|2_{1}...2_{n})] - (1-d)|$$

$$= |E[P(Y_{0} \in P_{1}^{1/0}|2_{1}...2_{n}) - (1-d)]|$$

$$\leq E[|P(Y_{0} \in P_{1}^{1/0}|2_{1}...2_{n}) - (1-d)|]$$

$$= |P(Y_{0} \in P_{1}^{1/0}|2_{1}...2_{n}) - (1-d)|]$$

PREDICTIVE INFERENCE: SAMPLE SPLITTING VS. JACKKNIFE

n = 50 p = 30

PREDICTIVE INFERENCE: SAMPLE SPLITTING VS. JACKKNIFE

PREDICTIVE INFERENCE: SAMPLE SPLITTING VS. JACKKNIFE

n = 200 p = 120

PREDICTIVE INFERENCE WITH THE JACKKNIFE

Why use leave-one-out residuals

$$Y_i - \hat{m}_{(i)}(X_i)$$

$$Y_i - \hat{m}_n(X_i)?$$
 χ

and not simply

Does it make a big difference?

Would be computationally much cheaper!!!

