Last Time

- Electric forces are stronger than gravitational forces
- Electric field of:

- Superposition Principle
 - E_{tot} is the sum from all charges

Today

Conservation of Charge Fun with Scotch Tape Polarization of Atoms Neutral Atom and Point Charge

Conservation of Charge

The net charge of a system and its surroundings cannot change

✓ You can move charge from the system to surroundings

Example: Rub a balloon (or comb) on your hair

- Can you create or destroy charge? Yes!
- ✓ Charges can be created or destroyed in (+,-) pairs

Example: electron-positron annihilation.

Fun With Tape

- There are two kinds of charge (+,-)
- Like Charges Repel; Opposites Attract

Fun With Tape

The Electric Force:

- Acts along a line between the charges
- Decreases with distance
- Proportional to amount of charge

Determining Sign of the Charge

- Why get charged?
 - Breaking large molecules, transfer ions
 - Transfer electrons
- Why positive or negative?
 - We don't know Current Topic of Research!

Why did this happen?

The Structure of an Atom

Hydrogen

Charge of electron cloud equals that of nucleus \rightarrow neutral atom.

If the electron cloud is centered on the nucleus → electric field produced by electrons exactly cancels the field produced by nucleus.

Polarization of Atoms

Atom becomes polarized by Electric Field

"Induced Dipole"

Interaction of Charged Tapes and Neutral Matter

Clicker Question

Polarization

Amount of polarization = dipole moment of the atoms/molecules

$$\vec{p}=\alpha \vec{E}$$
 polarization

α - "polarizability" of a material

In an induced dipole, is the distance between the charges fixed?

The distance is proportional to the strength of the applied field.

Example

A typical atomic polarizability is $\alpha=10^{-40}$ C•m/(N/C). If q=e (proton charge), what is the charge separation by applying a field $E=3\cdot10^6$ N/C?

$$p = \alpha E = 10^{-40} \times 3 \times 10^{6} (\text{C} \cdot \text{m}) = 3 \times 10^{-34} \text{C} \cdot \text{m}$$

$$p = qs$$

$$p = 3 \times 10^{-34}$$

$$S = \frac{p}{q} = \frac{3 \times 10^{-34}}{1.6 \times 10^{-19}} \text{m} \approx 2 \times 10^{-15} \text{m}$$

Shift is five orders of magnitude smaller than the atom itself!

1. Charge q_1 creates field E_1 at the location of the atom

$$\vec{E}_1 = \frac{1}{4\pi\varepsilon_0} \frac{q_1}{r^2} \hat{r}$$

$$1) \vec{E}_1 = \frac{1}{4\pi\varepsilon_0} \frac{q_1}{r^2} \hat{r}$$

2. Field E_I polarizes the atom creating a dipole

$$\vec{p} = \alpha \vec{E}_1 = \frac{1}{4\pi\varepsilon_0} \frac{\alpha q_1}{r^2} \hat{r}$$

3. Dipole creates field E_2 at the location of q_1

$$\vec{E}_2 = \frac{1}{4\pi\varepsilon_0} \frac{2\vec{p}}{r^3} = \frac{1}{4\pi\varepsilon_0} \frac{2\alpha}{r^3} \vec{E}_1 = \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \frac{2\alpha q_1}{r^5} \hat{r}$$

$$1) \vec{E}_1 = \frac{1}{4\pi\varepsilon_0} \frac{q_1}{r^2} \hat{r}$$

2)
$$\vec{p} = \alpha \vec{E}_1 = \frac{1}{4\pi\varepsilon_0} \frac{\alpha q_1}{r^2} \hat{r}$$

3)
$$\vec{E}_2 = \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \frac{2\alpha q_1}{r^5} \hat{r}$$

4. Induced dipole exerts force F_1 on the charge:

$$\vec{F}_1 = q_1 \vec{E}_2 = \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \frac{2\alpha q_1^2}{r^5} \hat{r}$$

$$1) \vec{E}_1 = \frac{1}{4\pi\varepsilon_0} \frac{q_1}{r^2} \hat{r}$$

2)
$$\vec{p} = \alpha \vec{E}_1 = \frac{1}{4\pi\varepsilon_0} \frac{\alpha q_1}{r^2} \hat{r}$$

3)
$$\vec{E}_2 = \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \frac{2\alpha q_1}{r^5} \hat{r}$$

4)
$$\vec{F}_1 = \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \frac{2\alpha q_1^2}{r^5} \hat{r}$$

5. The charge q_1 exerts force F_2 on the dipole (reciprocity):

$$\vec{F}_2 = -\vec{F}_1 = -\left(\frac{1}{4\pi\varepsilon_0}\right)^2 \frac{2\alpha q_1^2}{r^5} \hat{r}$$

1)
$$\vec{E}_1 = \frac{1}{4\pi\varepsilon_0} \frac{q_1}{r^2} \hat{r}$$

2)
$$\vec{p} = \alpha \vec{E}_1 = \frac{1}{4\pi\varepsilon_0} \frac{\alpha q_1}{r^2} \hat{r}$$

3)
$$\vec{E}_2 = \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \frac{2\alpha q_1}{r^5} \hat{r}$$

4)
$$\vec{F}_1 = \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \frac{2\alpha q_1^2}{r^5} \hat{r}$$

$$\vec{F}_2 = -\left(\frac{1}{4\pi\varepsilon_0}\right)^2 \frac{2\alpha q_1^2}{r^5} \hat{r}$$

Neutral atoms are attracted by charges! Interaction strength $\sim 1/r^5$

Determining the Charge of an Object

Suppose tape is negatively charged, and you rub a wooden pencil on a wool sweater and bring it near the tape.

If tape swings toward the pencil, does it show that the pencil had been charged positively?

NOT NECESSARILY!

Attraction: can happen for like-charged objects!

Repulsion: can happen **only** for like-charged objects!

Electric Field Through Intervening Matter

The field appears to be weaker in presence of intervening (polarizable) object.

Superposition principle: the presence of matter does not affect the electric field produced by a charged object.

Intervening matter *does not* "block" the E field

The resulting field is a *superposition* of two fields: Field of the other charge plus the field of induced dipoles.

Today

Conservation of Charge Fun with Scotch Tape Polarization of Atoms Neutral Atom and Point Charge