知识小料

「电计2203班」周常规知识整理共享

10 **10**

日期: 2023-11-20 学科: 模拟电子线路

已知输入电压信号有 1V、 V_1 和 V_2 。请从下表中选择一部分元件设计电路,使之输出 $V_0=1V+V_1V_2-2V_1^2V_2$ 。要求画出电路并推导计算出电路中各电阻的值。(12分)

器件	运放	模拟乘法器	电阻	可调电阻 R _P
参数	理想运放	理想乘法器 K = 1	$10\Omega, 10k\Omega, 1M\Omega$	$0 \sim 100 k\Omega$
数量	2只	4只	若干	1只

结合我们学过的线性放大电路(下表 k_1, k_2 均大于 0):

反相放大器	反相加法器	差动减法器	乘法器
$v_{\rm o} = -kv_{\rm i}$	$v_{0} = -k_{1}v_{1} - k_{2}v_{2}$	$v_{\rm o} = k(v_2 - v_1)$	$v_0 = v_1 v_2$ (本题 $K = 1$)

分析输出表达式,可以构思出以下的方案:

- $V_0 = -2V_1^2V_2 (-1 V_1V_2)$ ——先用反相加法器得到 $-1 V_1V_2$ 的信号,再用一次反相加法器把 $V_1^2V_2$ 和 $-1 V_1V_2$ 的信号反相加起来。
- $V_0 = (-1 V_1 V_2) V_1^2 V_2 V_1^2 V_2$ ——同样先用反相加法器得到 $-1 V_1 V_2$ 的信号,再用反相加法器把三个信号反相相加。

这两种方法都能完成要求,但第一种更简洁,故本题采用第一种方法。 首先把反相加法器的两层框架搭起来:

内层 (得到 -1 - V₁ V₂ 的信号)

外层 (得到最终信号)

有了框架,就可以通过输出表达式推导这些电阻的值。

在 内层电路 中,相当于 $v_0=-v_{i1}-v_{i2}$ (默认取上方的输入端为 v_{i1} ,下同),两个系数都是 -1,即 $\frac{R_f}{R_1}=\frac{R_f}{R_2}=1$,即 $R_f=R_1=R_2$,按照题目阻值要求取 10kΩ 好一些。至于平衡电阻,则有 $R'=R_1$ || R_2 || $R_f=\frac{10}{3}$ kΩ,直接用三个 10kΩ 的电阻并联即可。

在 外层电路 中,相当于 $v_0 = -v_{i1} - 2v_{i2}$,即 $\frac{R_f}{R_1} = 1$, $\frac{R_f}{R_2} = 2$,可以取 $R_f = 10k\Omega$, $R_1 = 10k\Omega$, $R_2 = 5k\Omega$ (两个 $10k\Omega$ 并联),平衡电阻取 $R' = R_1 \parallel R_2 \parallel R_f = 2.5k\Omega$ (用可调 R_P 实现即可)。

至于如何得到 V_1V_2 ,以及 $V_1^2V_2$,则可用乘法器来实现。以下直接贴出完整电路图,供参考。

(注: $V_{o1} = -1V - V_1 V_2$, $V_{o2} = V_1^2 V_2$)

另外,题中给出的电阻只有 10Ω , $10k\Omega$, $1M\Omega$,所以对图上 $5k\Omega$, $\frac{10}{3}k\Omega$, $2.5k\Omega$ 的电阻需要<u>额外说明获取方法</u>,即通过若干个 $10k\Omega$ 的电阻并联得到,或者使用一个可调电阻代替。

经检查,这个电路没有超出题目器件的限制,而且模拟乘法器只用到了 3 只,是一种有效的设计方案。

【结论】即上述完整电路图。

【点评】本题是一道典型的设计题,考察多种运算模块的综合应用。根据输出表达式构思方案,分内、外层搭接电路,求出电阻阻值,再把电路拼合,是一种可行的解决方案。

【制作花絮】完整电路图大约绘制了 40min,实属不易……