2 May 2023

10.7 Quiz: The tangent function

CCSS.HSG.SRT.C.8

You must write an equation before solving it. Figures are not necessarily drawn to scale.

1. Given right $\triangle ABC$ with AC = 10, $m \angle A = 40^{\circ}$. Find the value of BC = x.

2. The right $\triangle ABC$ has a height of BC=17 and $\text{m}\angle A=58^{\circ}$. Find the length of its base AC=x.

3. The lengths of the legs of right $\triangle ABC$ are AC=50 and BC=25. Find $\mathbf{m} \angle A=x$.

4. The dimensions of right $\triangle ABC$ are AC=12 and BC=5. Find length of the hypotenuse AB=x.

5. The hypotenuse of right $\triangle ABC$ is 20.0 units long and the triangle's height is 17.3 units. Find the length of its base AC = x, to the nearest tenth.

Find x to the nearest tenth.

6.
$$\tan 80^{\circ} = \frac{x}{12}$$

7.
$$\tan 30^{\circ} = \frac{10}{x}$$

Find θ to the nearest whole degree.

8.
$$\theta = \tan^{-1}(\frac{7}{9})$$

9.
$$\tan \theta = \frac{1}{1.73}$$

2 May 2023

Name:

Modeling situations with right triangles

HSG.MG.A.1

10. A tree casts a shadow 12 feet long. The angle of elevation from the tip of the shadow to the top of the tree is 70°. To the nearest foot, how tall is the tree?

11. From the top of a hill a dog is visible at an angle of depression of 34° . If the hill is 11 meters tall, determine the distance from the dog to the base of the hill, x, to the nearest meter.

12. A drone flying at an altitude of 1,800 meters is observed twice. The first time the angle of elevation is 7.2° and exactly one minute later the angle of elevation is 9.7° .

Find the distance the drone flies over the minute and its speed in kilometers per hour.

(not drawn to scale)

Spicy: Radian measures

HSN.A.Q.1 Use units in formulas

13. Convert 30° to radians, to the nearest thousandth.

14. Convert $\frac{1}{4}\pi$ radians to degrees.