A mesterséges intelligencia alapjai

megfigyelésen alapuló tanulás

áttekintés

- tanuló ágensek
- induktív tanulás
- tanulás döntési fával
- tanuló algoritmus teljesítményének becslése

tanuló ágensek

tanuló ágensek

- ismeretlen környezetben elengedhetetlen a tanulás képessége
 - nem a lakás alaprajza alapján vásárolunk robotporszívót
 - o a tervező nem tudja előre a kihívásokat
- A tanulás egy hasznos rendszerkészítési eszköz
 - megmutatjuk az ágesnek a valóságot, mintsem megpróbáljuk leírni (formalizálni)
- A tanulás során az ágens döntési mechanizmusa megváltozik, hogy a teljesítményét növelje

tanuló ágens felépítése

tanuló komponens

A tanuló komponens tervezését a következők befolyásolják:

- A cselekvő elem mely komponenseit akarjuk tanítani?
- Milyen visszacsatolás áll rendelkezésre ezen komponensek tanítására?
- Hogyan reprezentáljuk a komponenseket?

Visszacsatolás formája

- ellenőrzött (supervised) bemeneti és kimeneti minták
- nem ellenőrzött (unsupervised) bemeneti minták
- megerősítéses (reinforcement) hogyan működik a világ megtanulása

cselekvő elem komponensei

- 1. aktuális állapot feltételeinek közvetlen leképezése cselekvésre
 - Fék! (feltétel-cselekvés fékezési szabály)
- 2. megfigyelési szekvenciából a világ releváns tulajdonságaira következtet
 - buszt tartalmazó képek felismerése
- 3. a világ alakulása és ágens lehetséges cselekedetei következményének leírása
 - nedves úton erős fékezés
- 4. a világ lehetséges állapotainak számunkra kívánatossága hasznosság
 - o borravaló az utazó kényelme szerint
- 5. cselekvés-hasznosság információ egyes cselekvések kívánatossága
- 6. célok

pár példa

végrehajtó elem	komponens	reprezentáció	visszacsatolás	
alfa-béta keresés	kiértékelő függvény	súlyozott lineáris fv.	győzött/vesztett	
tudásalapú ágens	átmenet modell	rákövetkező állapot axiómák	kimenetel	
hasznosságorientált ágens	átmenet modell	dinamikus Bayes-hálózat	kimenetel	
egyszerű reflex ágens	érzékelés-művelet fv.	neurális háló	helyes cselekvés	

induktív tanulás

matematikai háttér

- legegyszerűbb formája: tanuljunk meg egy függvényt minták alapján
 - tabula rasa
- egy minta: (x,f(x))
 - o x bemeneti érték
 - o f(x) kimeneti érték
- *f* megközelítendő függvény
- határozzuk meg azt a h függvényt (hipotézis), amely közelíti f-et
 - indukció feladata
- h konzisztens, ha megegyezik f-fel minden minta esetén

konkrét közelítések

döntési fa megalkotása tanulással

éttermi probléma

Példa	Attribútumok								Cél		
	Alter- nativa	Bár	Péntek/ Szombat	Éhes	Vendégek	Drága	Eső	Foglalás	Konyha	Becsült Várakozás	Vár-
X_1	Igen	Nem	Nem	Igen	Néhány	SSS	Nem	Igen	Francia	0-10	Igen
X_2	Igen	Nem	Nem	Igen	Tele	S	Nem	Nem	Thai	30-60	Nem
X_3	Nem	Igen	Nem	Nem	Néhány	S	Nem	Nem	Burger	0-10	Igen
X_4	Igen	Nem	Igen	Igen	Tele	S	Igen	Nem	Thai	10-30	Igen
X_5	Igen	Nem	Igen	Nem	Tele	SSS	Nem	Igen	Francia	>60	Nem
X_6	Nem	Igen	Nem	Igen	Néhány	SS	Igen	Igen	Olasz	0-10	Igen
X_7	Nem	Igen	Nem	Nem	Senki	S	Igen	Nem	Burger	0-10	Nem
X_8	Nem	Nem	Nem	Igen	Néhány	SS	Igen	Igen	Thai	0-10	Igen
X_9	Nem	Igen	Igen	Nem	Tele	S	Igen	Nem	Burger	>60	Nem
X_{10}	Igen	Igen	Igen	Igen	Tele	SSS	Nem	Igen	Olasz	10-30	Nem
X_{11}^{10}	Nem	Nem	Nem	Nem	Senki	S	Nem	Nem	Thai	0-10	Nem
X12	Igen	Igen	Igen	Igen	Tele	S	Nem	Nem	Burger	30-60	Igen

döntési fa

- A hipotézis egy lehetséges reprezentációja
- bemenete: attribútumokkal leírt objektum
 - az attribútumok lehetnek diszkrétek vagy folytonosak
- kimenete: egy döntés
 - diszkrét: osztályozás (classification)
 - folytonos: regresszió (regression)
- tesztsorozat végrehajtása

éttermi döntési fa: Várjunk az ételre?

kifejezőképesség

- A döntési fa az input attribútumok tetszőleges függvényét képes kifejezni
 - logikai függvények esetén az igazságtábla egy sora a döntési fa egy ága (út a gyökértől a levélig) lesz
- Létezik konzisztens döntési fa minden egyes tanuló halmazhoz
 - o minden mintának megfelel egy út a fában
 - további mintákra nem ad választ
- Keressünk kompakt döntési fákat!

hipotézisek száma

- n logikai változó esetén hány különböző döntési fa létezik?
 - o ahány n-változós logikai függvény
 - ahányféleképp kitölthető a 2ⁿ sora az igazságtáblának
 - o 2^(2^n)
 - \circ 6 logikai változó esetén ez $2^{64} = 18.446.744.073.709.551.616$
- Mennyi a konjunktív hipotézisek száma? (pl. p∧¬q)
 - o bármelyik változó szerepelhet pozitív és negatív módon, de hiányozhat is
 - o 3ⁿ
- paritásfüggvény, többségfüggvény ábrázolása nehéz nagy döntési fa

konstrukció

- 1. válasszuk ki a legjobb attribútumot a pozitív és negatív példák szétosztására
- 2. ha minden példa pozitív/negatív a válasz Igen/Nem
- nem maradt példa valamelyik válaszhoz a válasz a szülőcsomópontban többségi válasz
- 4. ha nincs tesztelendő attribútum
 - a pozitív és negatív példák nem választhatóak szét
 - zajos adat vagy nemdeterminisztikus problématér
 - többségi szavazás

tanuló algoritmus

function **Döntési-fa-tanulás**(*példák*, *attribútumok*, *alapérték*) returns döntési fa if *példák* üres then return *alapérték* else if példák minden elemének azonos a besorolása then return besorolás else if *attribútumok* üres halmaz then return **Többségi-érték**(*példák*) else

 $legjobb \leftarrow Attribútum-választás$ (attribútumok, példák) $fa \leftarrow új$ döntési fa, a gyökér a legjobb attribútum tesztje $m \leftarrow Többségi-érték(példák)$ for each legjobb minden v_i értékére do

for each legjobb minden v_i ertekere do

példák_i← a példák azon elemei, melyekre legjobb=v_i

részfa ← Döntési-fa-tanulás(példák_i, attribútumok-legjobb, m)

a fa döntési fához adjunk egy v_i címkéjű ágat és részfa ágat

return fa

attribútum kiválasztása

információnyereség

Információtartalom (entrópia)

- $I(P(v_1),...,P(v_n))=\Sigma-P(v_i)\log_2P(v_i)$
- I(p/(p+n),n/(p+n))

maradék információ szükséglet:

• $\Sigma(p_i+n_i)/(p+n) I(p_i/(p_i+n_i),n_i/(p_i+n_i))$

Információnyereség: információtartalom - maradék információ szükséglet

- INy(Konyha) = 1-(2/12 x I($\frac{1}{2}$, $\frac{1}{2}$) + 2/12 x I($\frac{1}{2}$, $\frac{1}{2}$) + 4/12 x I($\frac{2}{4}$,2/4) + 4/12 x I($\frac{2}{4}$,2/4)) = 0
- $INy(Vendégek) = 1-(2/12 \times I(0,1) + 4/12 \times I(1,0) + 6/12 \times I(2/6,4/6)) = 0,541$

teljesítménybecslés

hipotézis minőségének becslése

- 1. gyűjtsünk egy nagy példahalmazt
- 2. osszuk két diszjunkt halmazra
 - a. tanító halmaz (training set)
 - b. teszthalmaz (test set)
- 3. alkalmazzuk a tanító algoritmust a tanító halmazon, és generáljunk egy *h* hipotézist
- 4. mérjük meg a teszthalmazon, hogy a *h* hipotézis a teszthalmaz hány százalékára ad helyes osztályba sorolást
- 5. ismételjük meg az 1-4 lépéseket különböző tanító halmaz méretekre, különbözően választott tanító halmazokra

tanulási görbe az éttermi példára

tanulási görbe

- realizálható, ha a célfüggény kifejezhető/elérhető
 - o a nem realizálhatóságnak lehet indoka hiányzó attribútum
 - sokértékű attribútum információnyereség kicsi
- irreleváns attribútumok használata
 - szignifikanciateszt az irreleváns attribútumok kihagyására

összefoglalás

- tanulás szükség ismeretlen környezet, lusta fejlesztők esetén
- tanuló ágens = végrehajtó elem + tanuló elem
- a tanulási módszer a teljesítménymérték, a visszacsatolás, a javítandó komponens és annak reprezentációján alapul
- ellenőrzött tanulás esetén egy egyszerű hipotézist keresünk, amely többékevésbé konzisztens a tanuló halmazzal
- a döntési fa tanulásnál az információnyereséget használjuk
- a tanulás hatékonysága = a teszhalmaz eredményének becslése