

Computer Vision

- Convolutions, Filters, Feature extraction
- Feature matching, SIFT
- Deep Learning (Convolutional Neural Networks)

Image Representation

 An (m x n)-pixel image is represented as an (m x n x 3) RGB matrix on a computer

• R: Intensities of Red

G: Intensities of Green

B: Intensities of Blue

 A grayscale image is represented as a single matrix where each value corresponds to the Pixel Intensity

Convolution Operation

$$\sum_{i} \sum_{j} h[x-i, y-j] f[i, j]$$

$$2*1 + 4*2 + 9*3 + 2*(-4) + 1*7 + 4*4 + 1*2 + 1*(-5) + 2*1 = 51$$

Convolution Operation

$$\sum_{i} \sum_{j} h[x-i, y-j] f[i, j]$$

$$4*1 + 9*2 + 1*3 + 1*(-4) + 4*7 + 4*4 + 1*2 + 2*(-5) + 9*1 = 66$$

Convolution Operation

$$\sum_{i} \sum_{j} h[x-i, y-j] f[i, j]$$

$$2*1 + 9*2 + 2*3 + 5*(-4) + 1*7 + 3*4 + 4*2 + 8*(-5) + 5*1 = -2$$

Blurring Operation - Average Filter

Idea - Adding a component of the intensity of the surrounding pixels, to every pixel

Kernel - (Example - size:3)

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Sharp edge

Gradient

Gaussian Blur

Idea - Pixel values 'nearby' are more important than the ones far away

Hence, **more weight** needs to be given to surrounding pixel values in a kernel

Can be modeled by a **2D Gaussian** distribution

$$G(x,y)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{x^2+y^2}{2\sigma^2}}$$

Gaussian Approximation

1 2 1 1/16 2 4 2 1 2 1

1/1003

1/273

1	4	7	4	1
4	16	26	16	4
7	26	41	26	7
4	16	26	16	4
1	4	7	4	1

(5 x 5) Gaussian kernel

(7 x 7) Gaussian kernel

Image

Average Blur

Gaussian Blur

Effect of Kernel Size

Kernel Size ↔ 'Spread' of Blur Larger spread⇒ More weight to surrounding pixels & less weight to central pixel i.e. Larger Standard deviation

Edge Detection

Usual Method - How do humans do it?

What are the edges in this image? How do you know?

Answer: Areas of sudden change of colour

Formally:

Let f(i, j) = value at pixel in row i and column j.

Edge of a particular direction d

- \Rightarrow Sudden change in the value of f while moving along its perpendicular
- \Rightarrow ($\delta f / \delta d$) is large

Estimating derivatives for discrete functions

Using the Taylor Series,

1.
$$f(x+h) = f(x) + hf'(x) + \frac{1}{2}h^2f''(x) + \frac{1}{3!}h^3f'''(x) + O(h^4)$$

2.
$$f(x-h) = f(x) - hf'(x) + \frac{1}{2}h^2f''(x) - \frac{1}{3!}h^3f'''(x) + O(h^4)$$

Ignoring higher order terms (>=2),

- 1. $O(h^2)$ is very small
- h should be as small as possible, i.e. 1 pixel length

Edge Detection using Partial Derivatives

edge detector

-1

-1

 G_{v}

-1

Example - Vertical Edge Detection Filter

10	10	10	0	0	0								3	
10	10	10	0	0	0		بئا	Ľ			0	30	30	0
10	10	10	0	0	0	*	1	0	-1	=	0	30	30	0
10	10	10	0	0	0		1	0	-1		0	30	30	0
10	10	10	0	0	0		1	0	-1	i .	0	30	30	0
10	10	10	0	0	0									

(Single derivatives are noise-sensitive)
The filter can be made robust to noise by combining with a Gaussian Blur

Prewitt and Sobel Operators

Prewitt Filters:

Vertical

1		0	-1
1		0	-1
1	ı	0	-1

Horizontal

1	1	1
0	0	0
-1	-1	-1

Sobel Filters: Prewitt + Gaussian Blur

Vertical

1	0	-1
2	0	-2
1	0	-1

Horizontal

1	2	1
0	0	0
-1	-2	-1

Directional Edge Detection: Robinson Masks

-1	0	1
-2	0	2
-1	0	1

1	0	-1
2	0	-2
1	0	-1

1	2
0	1
-1	0
	0

North

South

North-West

South-East

-1	-2	-1
0	0	0
1	2	1

1	2	1
0	0	0
-1	-2	-1

-2	-1	0
-1	0	1
0	1	2

2	1	0
1	0	-1
0	-1	-2

East

West

North-East

South-West

Sharp Edges - Double Derivatives

Single Derivative:

Difficult to localize exact edge

Double Derivative:

Double derivative = zero at edge

- ⇒ Edge conditions
 - 1. High single derivative
 - 2. Zero double derivative

Image Sharpening: Laplacian Operator

Laplacian Operator:
$$\nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

Effect: Edges become sharper

- Can be coupled with Gaussian smoothing for noise-removal
- Resultant Filter: 'Laplacian of Gaussian' (LoG)

-1	-1	-1
-1	8	-1
-1	-1	-1

Edge detection: Laplacian of Gaussian (LoG Filter)

2D edge detection: Gaussian for noise-removal → Laplacian for edge detection

 ∇^2 is the **Laplacian** operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Canny Edge Detection

Steps:

 Noise Removal & Preliminary edge detection

2) Localizing edges

3) Making edges continuous

- 1. The image is converted to **grayscale**
- 2. Noise is removed through a **Gaussian Blur**
- 3. Horizontal and Vertical **Sobel operators** for magnitude of vertical and horizontal edge components $(G_x \text{ and } G_y)$
- 4. Create 2 matrices:
 - 1. Edge gradient **intensity** at every pixel
 - 2. Edge gradient **angle** at every pixel

$$Edge_Gradient \ (G) = \sqrt{G_x^2 + G_y^2}$$
 $Angle \ (heta) = an^{-1} \left(rac{G_y}{G_x}
ight)$

Making all edges one pixel thick

Idea - While travelling in the direction of the gradient, retain only the highest intensity pixel

Double Thresholding

- 1. Set two threshold values: **High** threshold and **Low** threshold
- 2. **Suppress** pixels **below** the **Low** threshold value
- 3. Mark the pixels **above** the **high** value as 'Strong'
- 4. Mark the pixels **between** both values as 'Weak'

Edge Tracking by Hysteresis (Ensuring continuity of edges)

- 1. Make all strong pixels 255 (max value)
- 2. Retain (make 255) the weak pixels connected to a strong pixel
- 3. Eliminate all remaining weak pixels

Example

Covariance (recap)

Covariance: A measure of how one variable varies with another

$$Cov(X,Y) = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \overline{X})(Y_i - \overline{Y})$$
where
$$\bar{X} = \frac{1}{N} \sum_{i=1}^{n} X_i \text{ and } \bar{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i$$
are the means of X, Y

Covariance Matrix:

$$\begin{pmatrix}
Cov(X,X) & Cov(X,Y) \\
Cov(Y,X) & Cov(Y,Y)
\end{pmatrix}$$

Analysing Features using Covariance

- Take a small window of the image to analyze
- 2. Calculate X and Y gradients

Idea -

- Direction of maximum variance is the normal to the edge
- Direction of minimum variance is the direction of the edge
- Requirement: Change of Basis
 Current Basis: X, Y

New Basis: Directions of minimum and

maximum variance

Information Gained from this:

New basis of the window: The directions of maximum and next-maximum variance:

- 2. One variance is high \Rightarrow Edge
- 3. Both variances are high \Rightarrow Corner

Additionally,

The directions of these new basis vectors tell us the orientation of the feature

Flat region

Edge

Corner

Harris Corner Detector

Idea-

- Choose a small window
- Find the two directions in which pixel intensity changes fastest
- 3. Analyze this rate of change to determine whether the window contains a corner

Image Downsampling

Gaussian blurring using a series of increasing kernel size, followed by reduction of resolution

Result after downsampling:

- An (n x n) window used for feature detection now covers a larger portion of the image
- Larger Blobs will be detected as features

Image Transformations

How can an feature change, when seen from a different position?

Rotation & Displacement

Affine/Projection

Aim:

To find a representation for features that is independent of these transformations

i.e **Feature descriptors** must be **Transformation-invariant**

Scale Invariant Feature Transform (SIFT)

An algorithm that detects features and provides **descriptors** to them such that the descriptors are invariant to transformations like scaling, rotating, sheer, luminance, etc.

SIFT: Method

- Size Invariance is achieved by downsampling
- **Luminance** invariance is achieved by **normalising** values in the window (i.e. divide the values to fall in a standard range)
- Orientation invariance is achieved using the histogram based descriptor (Will be explained shortly)
- Displacement invariance is achieved by the feature matching algorithm

SIFT: Assigning Scale

Detecting Features of different Scales

- 1. Downsample the image using LoG filters of different kernel sizes (sigma)
- 2. Apply Canny Edge Detection to all outputs
- 3. Compare points of interest with the same position in all LoG outputs.

 The output with the maximum value corresponds to the 'scale' of the feature
- Use Harris Corner Detection to eliminate edges from points of interest and only retain corners

SIFT: Assigning Orientations

- 1. Choose an (n x n) window around a feature
- 2. For each pixel, calculate the direction in which the gradient is changing the most
- 3. Divide 360° into 36 **'bins'** of 10° each. Assign each pixel to its corresponding bin.
- 4. For each bin, add the magnitudes corresponding to that bin. Create a **histogram**.
- 5. The bin with the maximum sum is the direction of the feature

SIFT: Descriptors

- 1. **Rotate** the feature so that **direction** is **upwards**
- → Direction invariance

2. **Normalize** the values in the window

- → Luminance invariance
- 3. Split the window into 16 parts (4x4) and create a histogram for each part

These 16 vectors together form the **feature descriptor**.

SIFT (so far)

Step: Features were chosen from the optimum LoG output
 Outcome: Different scale will correspond to a different LoG, but descriptor stays unaffected

Step: Direction histograms were rotated to point upwards
 Outcome: Different rotation will give the same descriptor

Step: Values in the window were normalized
 Outcome: Change in luminance will not affect the descriptor

Final Outcome: The feature descriptor will not be affected by scale, rotation and luminance.

SIFT: Feature Matching

Matching corresponding features in two images

Idea - Multiple features may give a similar descriptor. Hence, their neighbouring features decide if there is a match

SIFT: Feature Matching (2)

- 1. Choose a feature in image 1 (d_1)
- 2. Find the best matching descriptor in image 2 (d_2)
- 3. Select the nearest neighbour of d_1 Select two nearest neighbours of d_2
- 4. Compare neighbours of d_2 with the neighbour of d_1
- 5. If the neighbour-descriptors are also nearly equal, then d_1 matches d_2

Fast Feature Detection: ORB

Efficient Alternative to SIFT

1. Feature detection:

Downsampling \rightarrow FAST algorithm \rightarrow Harris Corners

2. **Orientation assignment:**

Direction joining a pixel to the **centroid** of its window

3. **Descriptors:**

'BRIEF' descriptors

Centroid:

 $\frac{\sum [pixel value] x (position)}{Number of pixels}$

*ORB: Oriented-FAST + Rotated BRIEF

Image Disparity

Disparity: Difference in the location of the same feature, when seen from two different perspectives (stereo vision)

Disparity can be directly used to calculate the distance of a feature

Depth = \frac{(\, \text{dist. between cameras}) \, x \, (\, \text{focal length} \)}{\, \text{disparity}}

$$Z = \frac{b.f}{(x_1 - x_2)}$$

Disparity to Depth

Disparity can be directly used to calculate the distance of a feature

Depth = (dist. between cameras) x (focal length) disparity

Thus,
Given enough features
disparity can be used to obtain a depth map

Depth Map

Advanced Computer Vision: Deep Learning

Machine Learning -

Several tasks are too complicated to program; Hence, we program the computer to *learn these tasks on its own*

Deep Learning -

A subset of machine learning that uses 'Neural Networks'

Neural Network -

A structure of interconnected virtual 'Neurons', similar to the brain.

With the combined power of all neurons, a neural network is able to learn highly complex tasks

Perceptron

Perceptron - A single multivariable nonlinear regression unit

A perceptron learns some transformation (of its choice) on the input, and gives one or more outputs

Multi-Layer Perceptron (MLP)

Multiple interconnected layers of perceptrons form a simple neural network Each perceptron learns a different 'activation function'

Convolutional Neural Networks (CNN)

A special type of neural network that learns values in a convolution filter.

- Each layer consists of multiple learned filters
- Each filter is capable of detecting a different type of feature
- Filters in **further layers** can detect more and more **complex features**
- Final layers can detect and localize entire objects

Object Recognition & Detection

CNNs can detect the presence of different objects in the image (Cars, trees, humans, etc.)

Locating Objects in an image:

- Conventional Approach: Slide a window over the image, run the trained network on every window.
- Issue: Very slow. Cannot be used with videos, even with the best GPUs

Modern Approach:

A special neural network called **YOLO** (**You Only Look Once**) can detect, locate and identify multiple objects in an image, by a single glance on the image YOLO can be used on realtime image data

YOLOv3 results

Next Class...

Implementation of Computer Vision Algorithms in Python & ROS

OpenCV - Open-source Computer Vision library

CV Bridge - Bridge/Interface between ROS images and OpenCV images

Install:

- 1. cv2
- 2. cv_bridge