

Chapter 08 리눅스의 부팅과 종료

목차

- 00 개요
- 01 리눅스 시스템의 부팅
- 02 system 서비스
- 03 리눅스 시스템의 종료
- 04 데몬 프로세스
- 05 부트 로더

학습목표

- 리눅스 시스템의 부팅 과정을 이해하고 부트 로더의 역할을 설명할 수 있다.
- systemd의 기능을 이해하고 사용법을 설명할 수 있다.
- 런레벨을 이해하고 변경할 수 있다.
- 리눅스 시스템 종료 방법을 설명할 수 있다.
- 데몬을 이해하고 슈퍼데몬의 역할을 설명할 수 있다.
- root 계정의 암호를 복구할 수 있다.

00 개요

00. 개요

■ 리눅스 학습 맵에서 8장의 위치

- 8장은 제3단계 중 두번째 항목으로 리눅
 스 시스템의 부팅과 종료를 다룬다.
- 리눅스의 부팅 과정과 시스템 종료 방법을 이해하고 다양산 서비스를 동작시키거나 종료시키는 방법을 익힌다.

00. 개요

■ 8장의 내용 구성

- 리눅스 시스템의 부팅 과정 이해하기
- systemd 서비스를 이해하고 systemctl 명 령을 사용하는 방법 익히기
- 리눅스 시스템을 종료시키는 방법 익히기
- 데몬의 동작 방식을 이해하기
- 부트 로더의 역할을 이해하기
- root 암호를 복구하는 방법을 익히기

■ 리눅스의 부팅 과정

그림 8-1 리눅스의 부팅 과정

■ 바이오스 단계

- 바이오스는 PC에 장착된 기본적인 하드웨어(키보드, 디스크 등)의 상태를 확인한 후 부팅 장치를 선택하여 부팅 디스크의 첫 섹터에서 512B를 로딩
- 512B를 마스터 부트 레코드(MBR)라고 하며 디스크의 어느 파티션에 2차 부팅 프로그램(부트로더)이 있는지에 대한 정보가 저장되어 있음
- ■메모리에 로딩된 MBR은 부트 로더를 찾아 메모리에 로딩하는 작업까지 수행

그림 8-2 바이오스 단계의 세부 동작

■ 부트 로더 단계

- 부트 로더는 일반적으로 여러 운영체제 중에서 부팅할 운영체제를 선택할 수 있도록 메뉴를 제공
- 우분투에서는 부트 로더로 GRUB를 사용
- ▶ 부팅할 때 GRUB 메뉴를 출력하려면 /etc/default/grub 파일을 수정해야 함
 - GRUB_TIMEOUT_STYLE=hidden 앞에 #을 추가, GRUB_TIMEOUT=0을 10으로 수정
 - /etc/default/grub 파일을 수정했다면 sudo update-grub를 실행하여 변경된 내용을 적용

```
user1@myubuntu:~$ sudo vi /etc/default/grub

GRUB_DEFAULT=0

#GRUB_TIMEOUT_STYLE=hidden

GRUB_TIMEOUT=10

→ 0을 10으로 수정한다.
```

- 우분투를 다시 시작하면 GRUB 메뉴 를 출력
- 부트 로더는 리눅스 커널을 메모리 에 로딩하는 역할을 수행
 - 리눅스 커널은 /boot 디렉터리 아래에 'vmlinuz-버전명'의 형태로 제공

user1@myubuntu:~\$ ls /boot/vm*

/boot/vmlinuz

■ 커널 초기화 단계

- 부트 로더에 의해 메모리에 로딩된 커널은 가장 먼저 시스템에 연결된 메모리, 디스크, 키보드, 마우스 등의 장치를 검사
- 장치 검사 등 기본적인 초기화 과정이 끝나면 커널은 프로세스와 스레드를 생성

UID	PID	PPID	C	STIME T	ТТҮ	TIME CMD
root	1	0	0	09:46 ?	>	00:00:01 /sbin/init splash
root	2	0	0	09:46 ?	>	00:00:00 [kthreadd]
root	3	2	0	09:46 ?	>	00:00:00 [rcu_gp]
root	4	2	0	09:46 ?	>	00:00:00 [rcu_par_gp]
root	6	2	0	09:46 ?	>	00:00:00 [kworker/0:0H-events_highpri]
root	9	2	0	09:46 ?	>	00:00:00 [mm_percpu_wq]
root	10	2	0	09:46 ?	>	00:00:00 [rcu_tasks_rude_]
root	11	2	0	09:46 ?	>	00:00:00 [rcu_tasks_trace]
root	12	2	0	09:46 ?	>	00:00:00 [ksoftirqd/0]

■ systemd 서비스 단계: 리눅스가 본격적으로 동작

그림 8-6 세부 부팅 메시지 출력 화면

부팅 완료

그림 8-7 로그인 화면

■ 부팅 메시지 확인: dmesg 명령, more /var/log/boot.log

```
user1@myubuntu:~$ sudo dmesg | more
    0.000000] Linux version 5.13.0-22-generic (buildd@lgw01-amd64-012) (gcc (Ub
untu 11.2.0-7ubuntu2) 11.2.0, GNU ld (GNU Binutils for Ubuntu) 2.37) #22-Ubuntu
SMP Fri Nov 5 13:21:36 UTC 2021 (Ubuntu 5.13.0-22.22-generic 5.13.19)
    0.000000] Command line: BOOT_IMAGE=/boot/vmlinuz-5.13.0-22-generic root=UUI
D=265c8913-ee1e-4034-885f-207969b0a23b ro splash
    0.000000] KERNEL supported cpus:
               Intel GenuineIntel
    0.0000001
    0.0000001
               AMD AuthenticAMD
    0.0000001
                Hygon HygonGenuine
    0.0000001
                Centaur CentaurHauls
                zhaoxin Shanghai
    0.0000001
    0.000000] Disabled fast string operations
(생략)
```

■ 1번 프로세스

■ 전통적으로 1번 프로세스는 init

user1@myub	ountu:~\$ p	s -ef ¦	more	
UID	PID	PPID	C STIME TTY	TIME CMD
root	1	0	0 12:26 ?	00:00:01 /sbin/init splash
root	2	0	0 12:26 ?	00:00:00 [kthreadd]
root	3	2	0 12:26 ?	00:00:00 [rcu_gp]
root	4	2	0 12:26 ?	00:00:00 [rcu_par_gp]
(생략)				

■ 1번 프로세스가 여전히 init인 것처럼 보이지만 사실은 systemd 파일의 심볼릭 링크

```
user1@myubuntu:~$ ls -l /sbin/init
lrwxrwxrwx 1 root root 20 11월 21 11:10 /sbin/init -> /lib/systemd/systemd
```

02 systemd 서비스

system 서비스의 역할

- 리눅스의 시스템과 서비스 관리자
- 유닉스의 init 프로세스가 하던 작업을 대신 수행
- 다양한 서비스 데몬을 시작하고, 프로세스들의 상태를 유지하며, 시스템의 상태를 관리

■ init 프로세스와 런레벨

- 현재 init 서비스는 systemd 서비스로 대체
- man init로 확인해보면 systemd에 대한 설명이 출력

■ init 프로세스와 런레벨

■ 런레벨: 시스템의 상태를 구분하는 숫자/문자

표 8-1 리눅스의 init 런레벨

런레벨	의미
0	시스템 종료
1, S, s	응급 복구 모드(단일 사용자 모드)
2	
3	다중 사용자 모드
4	
5	그래피컬 다중 사용자 모드
6	재시작

systemd의 장점

- 소켓 기반으로 동작하여 inetd와 호환성을 유지한다.
- 셸과 독립적으로 부팅이 가능하다.
- 마운트 제어가 가능하다.
- fsck 제어가 가능하다.
- 시스템 상태에 대한 스냅숏을 유지한다.
- 서비스에 시그널을 전달할 수 있다.
- 셧다운 전에 사용자 세션의 안전한 종료가 가능하다.

■ systemd 유닛

- systemd는 전체 시스템을 시작하고 관리하는데 유닛이라 부르는 구성 요소를 사용
- systemd는 관리 대상의 이름을 '서비스명.유닛 종류'의 형태로 관리

표 8-2 systemd 유닛의 종류

유닛	기능	예
service	시스템 서비스 유닛으로 데몬을 시작 · 종료 · 재시작 · 로드한다.	atd.service
target	유닛을 그루핑한다. (ⓓ multi-user.target → 런레벨 5에 해당하는 유닛)	basic.target
automount	디렉터리 계층 구조에서 자동 마운트 포인트를 관리한다.	proc-sys-fs-binfmt_misc.automount
device	리눅스 장치 트리에 있는 장치를 관리한다.	sys-module-fuse.device
mount	디렉터리 계층 구조의 마운트 포인트를 관리한다.	boot,mount
path	파일 시스템의 파일이나 디렉터리 등 경로를 관리한다.	cups.path
scope	외부에서 생성된 프로세스를 관리한다.	init.scope
slice	시스템의 프로세스를 계층적으로 관리한다.	system-getty.slice
socket	소켓을 관리하는 유닛으로 AF_INET, AF_INET6, AF_UNIX 소켓 스트림과 데이터그램, FIFO를 지원한다.	dbus.socket
swap	스왑 장치를 관리한다.	dev-mapper-fedora₩x2dswap. swap
timer	타이머와 관련된 기능을 관리한다.	dnf-makecache.timer

■ systemd 관련 명령

systemctl

systemct1

- 기능 systemd 서비스를 제어한다.
- 형식 systemctl [옵션] [명령] [유닛명]
- <mark>옵션</mark> -a: 상태와 관계없이 유닛 전체를 출력한다.
 - -t 유닛 종류: 지정한 종류의 유닛만 출력한다.
- 명령 start: 유닛을 시작한다.

stop: 유닛을 정지한다.

reload 유닛의 설정 파일을 다시 읽어온다.

restart: 유닛을 재시작한다.

status: 유닛 상태를 출력한다.

enable: 부팅 시 유닛이 시작되도록 설정한다.

disable: 부팅 시 유닛이 시작하지 않도록 설정한다.

is-active: 유닛이 동작하고 있는지 확인한다.

is-enabled: 유닛이 시작되었는지 확인한다.

isolate: 지정한 유닛 및 이와 관련된 유닛만 시작하고 나머지는 정지한다.

kill: 유닛에 시그널을 전송한다.

• 사용 예 systemctl

systemctl -a

systemctl start atd.service

■ 동작 중인 유닛 출력하기: systemctl

user1@myubuntu:~\$ syster	nctl			
UNIT	LOAD	ACTIVE	SUB	DESCRIPTION
(생략)				
basic.target	loaded	active	active	Basic System
bluetooth.target	loaded	active	active	Bluetooth
cryptsetup.target	loaded	active	active	Local Encrypted Volumes
getty.target	loaded	active	active	Login Prompts
graphical.target	loaded	active	active	Graphical Interface
local-fs-pre.target	loaded	active	active	Local File Systems (Pre)
local-fs.target	loaded	active	active	Local File Systems
multi-user.target	loaded	active	active	Multi-User System
network-online.target	loaded	active	active	Network is Online
network.target	loaded	active	active	Network
(생략)				
LOAD = Reflects wheth	ner the	unit de	finition w	was properly loaded.
ACTIVE = The high-level	unit a	ctivati	on state,	i.e. generalization of SUB.
SUB = The low-level	unit ac	tivatio	n state, v	alues depend on unit type.
229 loaded units listed	. Pass -	all to	see loade	ed but inactive units, too.
To show all installed u	nit file	es use	'systemctl	list-unit-files'.

■전체 유닛 출력하기: systemctl -a

user1@myubuntu:~\$ system	nctl -a			
UNIT	LOAD	ACTIVE	SUB	DESCRIPTION
(생략)				
dev-hugepages.mount	loaded	active	mounted	Huge Pages File System
dev-mqueue.mount	loaded	active	mounted	POSIX Message Queue File
System				
home.mount	not-found	inactive	dead	home.mount
proc-sys-fs-binfmt_mis	sc.mount	loaded	inactive	dead Arbitrary Executable
File Formats File Syste	m			
run-vmblock\x2dfuse.mo	ount	loaded	active	mounted VMware vmblock fuse
mount				
snap-bare-5.mount	loaded	active	mounted	Mount unit for bare, revision 5
snap-core-11743.mount	loaded	active	mounted	Mount unit for core, revision
11743				
(생략)				

■특정 유닛 출력하기: systemctl -t

user1@myubuntu:~\$ systemct	:1 -t se	rvice		
UNIT	LOAD	ACTIVE	SUB	DESCRIPTION
accounts-daemon.service	loaded	active	running	Accounts Service
acpid.service	loaded	active	running	ACPI event daemon
alsa-restore.service	loaded	active	exited	Save/Restore Sound Card State
apparmor.service	loaded	active	exited	Load AppArmor profiles
apport.service	loaded	active	exited	LSB: automatic crash report
generation				
atd.service	loaded	active	running	Deferred execution scheduler
avahi-daemon.service	loaded	active	running	Avahi mDNS/DNS-SD Stack
(생략)				

■ 유닛 서비스 시작하기: start

```
user1@myubuntu:~$ sudo systemctl start cron
user1@myubuntu:~$ systemctl is-active cron
active
```

cron 서비스 시작

- 유닛의 상태 확인하기: status

```
user1@myubuntu:~\ systemctl status cron.service

    cron.service - Regular background program processing daemon

     Loaded: loaded (/lib/systemd/system/cron.service; enabled; vendor preset: enabled)
     Active: active (running) since Sat 2022-01-01 10:01:26 KST; 3h 21min ago
       Docs: man:cron(8)
                                                                                cron 서비스
   Main PID: 833 (cron)
                                                                                상태 확인하기
      Tasks: 1 (limit: 4608)
     Memory: 452.0K
        CPU: 73ms
     CGroup: /system.slice/cron.service
             833 /usr/sbin/cron -f -P
 1월 01 11:30:01 myubuntu CRON[2622]: pam_unix(cron:session): session opened for user roo>
 1월 01 11:30:01 myubuntu CRON[2622]: pam_unix(cron:session): session closed for user root
 1월 01 12:17:01 myubuntu CRON[2699]: pam_unix(cron:session): session opened for user roo>
 1월 01 12:17:01 myubuntu CRON[2700]: (root) CMD ( cd / & run-parts --report /etc/cron>
 1월 01 12:17:01 myubuntu CRON[2699]: pam unix(cron:session): session closed for user root
```

■ 유닛 서비스 정지하기: stop

```
cron 서비스 정지
user1@myubuntu:~$ sudo systemctl stop cron
user1@myubuntu:~$ systemctl status cron

    cron.service - Regular background program processing daemon

     Loaded: loaded (/lib/systemd/system/cron.service; enabled; vendor preset: enabled)
     Active: inactive (dead) since Sat 2022-01-01 13:28:29 KST; 6s ago
       Docs: man:cron(8)
    Process: 833 ExecStart=/usr/sbin/cron -f -P $EXTRA_OPTS (code=killed, signal=TERM)
   Main PID: 833 (code=killed, signal=TERM)
        CPU: 73ms
 1월 01 12:17:01 myubuntu CRON[2700]: (root) CMD ( cd / && run-parts --report /etc/cron>
 1월 01 12:17:01 myubuntu CRON[2699]: pam_unix(cron:session): session closed for user root
```

systemd와 런레벨

표 8-3 런레벨과 target 유닛의 관계

런레벨	target 파일(심벌릭 링크)	target 원본 파일		
0	runlevel0.target	poweroff.target		
1	runlevel1.target	rescue.target		
2	runlevel2.target			
3	runlevel3.target	multi-user.target		
4	runlevel4.target			
5	runlevel5.target	graphical.target		
6	runlevel6.target	reboot,target		

■ 현재 target과 런레벨 확인하기

```
user1@myubuntu:~$ systemctl get-default
graphical.target user1@myubuntu:~$ runlevel
N 5 런레벨 5로 부팅
```

■ 기본 target 지정하기

```
systemctl set-default (name of target).target

user1@myubuntu:~$ sudo systemctl set-default multi-user.target

Created symlink /etc/systemd/system/default.target → /lib/systemd/system/multi-user.

target.

user1@myubuntu:~$ ls -l /etc/systemd/system/default.target

lrwxrwxrwx 1 root root 37 1월 1 13:31 /etc/systemd/system/default.target -> /lib/
systemd/system/multi-user.target
```

■ 기본 target을 다시 graphical.target으로 변경

```
user1@myubuntu:~$ sudo systemctl set-default graphical.target
Removed /etc/systemd/system/default.target.
Created symlink /etc/systemd/system/default.target → /lib/systemd/system/graphical.target.
```

target 변경하기

systemctl isolate multi-user

systemctl isolate graphical

systemctl isolate runlevel3

systemctl isolate runlevel5

multi-user.target(런레벨 3)으로 변경 graphical.target(런레벨 5)으로 변경

■ 런레벨 변경하기: telinit, init

```
user1@myubuntu:~$ init --help
init [OPTIONS...] COMMAND
Send control commands to the init daemon.
Commands:
                                            user1@myubuntu:~$ ls -l /sbin/telinit
                Power-off the machine
                                            lrwxrwxrwx 1 root root 14 11월 21 11:10 /sbin/telinit -> /bin/systemctl
                Reboot the machine
                Start runlevelX.target unit
 2, 3, 4, 5
            Enter rescue mode
 1, s, S
                Reload init daemon configuration
 q, Q
                Reexecute init daemon
 u, U
Options:
    --help
           Show this help
               Don't send wall message before halt/power-off/reboot
    --no-wall
See the telinit(8) man page for details.
```

- 단일 사용자 모드로 전환하기: rescue.target(런레벨 1)
 - 시스템에 문제가 있을 경우 시스템을 rescue.target 유닛(런레벨 1, 런레벨 S)으로 변경하여 점검

systemctl isolate rescue

systemctl isolate runlevel1

init 1

telinit S

단일 사용자 모드에서 다중 사용자 모드로 전환하려면 reboot 명령이나 systemctl default 명령 사용

03 리눅스 시스템의 종료

03. 리눅스 시스템의 종료

■ 리눅스를 종료하는 방법

- shutdown 명령을 사용한다.
- halt 명령을 사용한다.
- poweroff 명령을 사용한다.
- 런레벨을 0이나 6으로 전환한다.
- reboot 명령을 사용한다.
- 전원을 끈다.

■ shutdown 명령

- 리눅스 시스템을 가장 정상적으로 종료하는 방법

shutdown

- 기능 리눅스를 종료한다.
- 형식 shutdown [옵션] [시간] [메시지]
- 옵션 -k: 실제로 시스템을 종료하는 것이 아니라 사용자들에게 메시지만 전달한다.
 - -r: 종료한 후 재시작한다.
 - -h: 종료하고 halt 상태로 이동한다.
 - -f: 빠른 재시작으로 이 과정에서 fsck를 생략할 수도 있다.
 - -c: 이전에 내렸던 shutdown 명령을 취소한다.
- 시간 종료할 시간(hh:mm, +m, now)
- 메시지 모든 사용자에게 보낼 메시지
- · 사용 예 shutdown -h now shutdown -r +3 "System is going down" shutdown -c

시스템 즉시 종료하기

sudo shutdown -h now

• 셧다운한다는 메시지 보내고 종료하기

user1@myubuntu:~\$ sudo shutdown -h +2 "System is going down in 2 min"

시스템 재시작하기

user1@myubuntu:~\$ sudo shutdown -r +3

명령 취소하기

user1@myubuntu:~\$ sudo shutdown -c

■메시지만 보내기

user1@myubuntu:~\$ sudo shutdown -k 2

■ 런레벨 변경하기

■ 런레벨을 0으로 바꾸면 시스템 종료

user1@myubuntu:~\$ sudo init 0

- 시스템 재시작은 런레벨 6

user1@myubuntu:~\$ sudo init 6

systemd로 종료하기

user1@myubuntu:~\$ sudo systemctl isolate poweroff.target

user1@myubuntu:~\$ sudo systemctl isolate runlevel0.target

systemd로 재시작

user1@myubuntu:~\$ sudo systemctl isolate reboot.target

user1@myubuntu:~\$ sudo systemctl isolate runlevel6.target

■ 기타 시스템 종료 명령: halt, poweroff, reboot

■ 모두 systemctl 명령의 심볼릭 링크

```
user1@myubuntu:~$ ls -l /sbin/halt
lrwxrwxrwx 1 root root 14 11월 21 11:10 /sbin/halt -> /bin/systemctl
user1@myubuntu:~$ ls -l /sbin/poweroff
lrwxrwxrwx 1 root root 14 11월 21 11:10 /sbin/poweroff -> /bin/systemctl
user1@myubuntu:~$ ls -l /sbin/reboot
lrwxrwxrwx 1 root root 14 11월 21 11:10 /sbin/reboot -> /bin/systemctl
```

04 데몬 프로세스

04. 데몬 프로세스

■ 데몬

- 리눅스의 백그라운드에서 동작하며 특정한 서비스를 제공하는 프로세스

■ 데몬의 동작방식

- 독자형 데몬
- 슈퍼데몬을 통한 동작

■ 슈퍼 데몬

- 데몬들을 관리하는 데몬
- 사용자가 네트워크 서비스를 요청하면 슈퍼데몬이 이를 받아서 해당하는 서비스 데몬을 동 작시킴
- 유닉스의 슈퍼데몬은 inetd였으나 우분투에서는 보안 기능이 포함된 xinetd를 사용

04. 데몬 프로세스

■ 데몬의 조상

- systemd 데몬
 - 대부분의 조상 프로세스
 - 시스템의 상태를 종합적으로 관리하는 역할을 수행
- ■커널 스레드 데몬
 - 커널 기능의 일부분을 프로세스처럼 관리하는 데몬
 - ps 명령으로 확인했을 때 대괄호([])에 들어 있 는 프로세스들임
 - 커널 데몬은 대부분 입출력이나 메모리 관리,
 디스크 동기화 등을 수행

```
user1@myubuntu:~$ pstree
systemd — ModemManager — 2*[{ModemManager}]
         —NetworkManager——2*[{NetworkManager}]
          —VGAuthService
            -accounts-daemon-----2*[{accounts-daemon}]
         ---acpid
         —at-spi-bus-laun——dbus-daemon
                           ☐3*[{at-spi-bus-laun}]
         —at-spi2-registr——2*[{at-spi2-registr}]
            -atd
           —avahi-daemon——avahi-daemon
            -bluetoothd
          —colord———2*[{colord}]
            -cron
         —cups-browsed——2*[{cups-browsed}]
          —cupsd
          —dbus-daemon
(생략)
```

04. 데몬 프로세스

■ 주요 데몬

표 8-4 리눅스의 주요 데몬

데몬	기능	데몬	기능
atd	특정 시간에 실행하도록 예약한 명령을 실 행한다(at 명령으로 예약).	popd	기본 편지함 서비스를 제공한다.
cron	주기적으로 실행하도록 예약한 명령을 실 행한다.	routed	자동 IP 라우터 테이블 서비스를 제공한다.
dhcpd	동적으로 IP 주소를 부여하는 서비스를 제 공한다.	smb	삼바 서비스를 제공한다.
httpd	웹 서비스를 제공한다.	syslogd	로그 기록 서비스를 제공한다.
lpd	프린트 서비스를 제공한다.	sshd	원격 보안 접속 서비스를 제공한다.
nfs	네트워크 파일 시스템 서비스를 제공한다.	in.telnetd	원격 접속 서비스를 제공한다.
named	DNS 서비스를 제공한다.	ftpd	파일 송수신 서비스를 제공한다.
sendmail	이메일 서비스를 제공한다.	ntpd	시간 동기화 서비스를 제공한다.
smtpd	메일 전송 데몬이다.		

05 부트 로더

■ 부트 로더

- 커널을 메모리에 로딩하는 역할을 수행
- 우분투에서는 GRUB를 기본으로 지원

■ GRUB의 개요

- 이전 부트 로더인 LILO는 리눅스에서만 사용할 수 있지만 GRUB는 윈도에서도 사용 가능
- LILO에 비해 설정과 사용이 편리
- 부팅할 때 명령을 사용하여 수정 가능
- 멀티 부팅 기능을 지원
- GRUB의 최신 버전은 GRUB2
 - GRUB에 비해 GRUB2는 이식성과 모듈화가 더 좋아져서 동적으로 모듈을 로딩
 - 우분투는 GRUB2를 기본 부트 로더로 사용

■ GRUB2 관련 디렉터리와 파일

- ■/boot/grub/grub.cfg 파일
 - GRUB2의 기본 설정 파일로 사용자가 직접 수정 불가
 - /etc/default/grub 파일과 /etc/grub.d 디렉터리 아래에 있는 스크립트를 읽어서 자동 생성

```
user1@myubuntu:~$ sudo more /boot/grub/grub.cfg
# DO NOT EDIT THIS FILE
# It is automatically generated by grub-mkconfig using templates
# from /etc/grub.d and settings from /etc/default/grub
### BEGIN /etc/grub.d/00 header ###
if [ -s $prefix/grubenv ]; then
  set have grubenv=true
 load env
fi
```

- /etc/grub.d 디렉터리
 - GRUB 스크립트를 가지고 있는 디렉터리
 - 이 스크립트들은 GRUB의 명령이 실행될 때 순서대로 실행되어 grub.cfg 파일을 생성

- /etc/default/grub 파일
 - GRUB 메뉴 설정 내용이 저장되어 있음
 - ▶ GRUB 스크립트가 이 파일을 읽어서 grub.cfg에 기록

```
user1@myubuntu:~$ cat /etc/default/grub
# If you change this file, run 'update-grub' afterwards to update
# /boot/grub/grub.cfg.
# For full documentation of the options in this file, see:
   info -f grub -n 'Simple configuration'
GRUB DEFAULT=0
#GRUB_TIMEOUT_STYLE=hidden
GRUB TIMEOUT=10
GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian`
GRUB_CMDLINE_LINUX_DEFAULT="splash"
#GRUB_CMDLINE_LINUX_DEFAULT="quiet splash"
GRUB_CMDLINE_LINUX=""
(생략)
```

- 암호 복구하기
- ① 시스템 재시작하기

② GRUB 편집 모드로 전환하기

- GRUB Boot Menu가 출력될 때 재빨리 E를 눌러 편집 모드로 전환

그림 8-8 GRUB 메뉴 초기 화면

그림 8-9 GRUB 편집 화면

- ③ 단일 사용자 모드로 수정하기
 - 리눅스 커널 정보가 있는 행에서 'ro splash \$vt_handoff'를 'rw init=/bin/bash'로 수정

insmod ext2 set root='hd0,gpt3' if [x\$feature_platform_search_hint = xy]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,gpt3 -\ -hint-efi=hd0,gpt3 --hint-baremetal=ahci0,gpt3 265c8913-ee1e-4034-885f-\ 207969b0a23b search --no-floppy --fs-uuid --set=root 265c8913-ee1e-4034-885\ -207969b0a23b fi /boot/vmlinuz-5.13.0-22-generic root=UUID=265c8913-\ linux ee1e-4034-885f-207969b0a23b rw init=/bin/bash_ /boot/initrd.img-5.13.0-22-generic initrd Minimum Emacs-like screen editing is supported. TAB lists completions. Press Ctrl-x or F10 to boot, Ctrl-c or F2 for a command-line or ESC to discard edits and return to the GRUB

GNU GRUB version 2.04

(b) 수정한 화면

Ubuntu 64-bit-2110 - VMware Workstation 16 Player (Non-commercial use only)

Player ▼ | | | ▼ 母 □ 汉

insmod part_gpt

④ 재시작하기: root 계정으로 동 작

5 작업 완료 후 재부팅: reboot -f

그림 8-11 root 계정 화면

■ 복구 모드로 부팅하기

- 복구 모드는 가장 기본적인 서비스만 제공하며 명령 모드로 작업 가능
- ① 복구 모드 선택하기
 - ① GRUB 메뉴 초기 화면에서 'Ubuntu용 고급 설정'을 선택
 - ② 메뉴가 출력되면 recovery mode를 선택

(a) Ubuntu용 고급 설정 선택

53

② 복구 메뉴 항목에서 root 항목 선택하기

그림 8-13 복구 메뉴 선택 화면

- ③ root 항목을 선택하면 바로 root 프 롬프트가 출력됨
- ④ 읽기/쓰기 모드로 다시 마운트하기

root@myubuntu:~# mount -o remount,rw /

5 복구 작업 수행 후 재시작하기 : reboot -f

그림 8-14 root 프롬프트 출력 화면

Thank You!

