DE2333775

BEST AVAILABLE COPY

Patent number:

DE2333775

Publication date:

1975-01-16

Inventor:

DALAL RANES PRASAD (US); WALTERS JEREMY

JOHN (US); EWING BRUCE ALLAN (US)

Applicant:

AVCO CORP

Classification:

- international:

C22C19/05; C22C19/05; (IPC1-7): C22C19/00

- european:

C22C19/05P5

Application number: DE19732333775 19730627 Priority number(s): DE19732333775 19730627

Report a data error here

Abstract not available for DE2333775

Data supplied from the esp@cenet database - Worldwide

® BUNDESREPUBLIK DEUTSCHLAND

Offenlegungsschrift 23 33 775-

② Aktenzeichen:

P 23 33 775.9-24

Anmeldetag:

27. 6.73

Offenlegungstag:

16. 1.75

30 Unionspriorität:

49 49 39

Bezeichnung: Hafnium enthaltende Nickel-Legierung

(7) Anmelder: Avco Corp., Cincinnati, Ohio (V.St.A.)

Wertreter: Miehe, M., Dipl.-Chem., Pat.-Anw., 1000 Berlin

Dalal, Ranes Prasad, Stratford; Walters, Jeremy John, Trumbull;

Ewing, Bruce Allan, Shelton; Conn. (V.St.A.)

Prüfungsantrag gem. § 28b PatG ist gestellt

PATENTANWALT MANFRED MIEHE Diplom-Chemiker

D-1 BERLIN 33 26.6.1973
FALKENRIED 4
Telefon: (0311) 76.0950 < 831.9950 >
Telegramme: PATOCHEM BERLIN
DELIT To the constant of the constant of

US/16/2094

A V C O C O R P O R A T I O N
1014 Vine Street, Suite 1800, Cincinnati, Ohio USA

Hafnium enthaltende Nickel-Legierung

Die Kobalt enthaltenden, erfindungsgemäßen Legierungen auf der Grundlage von Nickel enthalten relativ kleine, nichtsdestotrotz, wichtige Mengen an Wolfram und Molybdän für eine Verbesserung der mechanischen Festigkeit in der Feststofflösung, Chrom zum Verbessern der Oxidations- und Sulfidierungsfestigkeit, Tantal für die Feststofflösung und Karbidfestigkeit, Aluminium und Titan zwecks Verbessern der Festigkeit durch Ausfällen einer feindispersen Phase, sogenannte Gammaprime Ni₃(Al,Ti) und Hafnium für Zwischenfestigkeit, Duktilität und verbesserte Oxidationsfestigkeit.

Der Erfindungsgegenstand stellt eine Fortbildung der Erfindung gemäß der US-Patentschrift (U.S. Serial No. 189 733) dar.

Die Erfindung betrifft Nickellegierungen, die hohe mechanische Festigkeit, Stabilität, Duktilität und Widerstandsfähigkeit gegenüber Korrosion, Sulfidierung und Oxidation bei erhöhten Temperaturen besitzen und geeignet sind für Flügel, Schaufeln und einstückig gegossene Turbinenräder.

Die erfindungsgemäßen Nickellegierungen enthalten relativ geringe, nichtsdestotrotz, wichtige Mengen an Wolfram und Molybdän für eine Verbesserung der mechanischen Festigkeit in der Feststofflösung, Chrom zum Verbessern der Oxidations- und Sulfidierungsfestigkeit, Tantal für die Feststofflösung und Karbidfestigkeit, Aluminium und Titan zwecks Verbessern der

Festigkeit durch Ausfällen einer feindispersen Phase, sogenannte Gammaprime Ni₃(Al,Ti) und Hafnium für Zwischenfestigkeit, Duktilität und verbesserte Oxidationsfestigkeit.

Erfindungsgemäß werden Massen der folgenden Analysenwerte in Betracht gezogen, wobei die Angaben sich in Gewichtsprozent verstehen, der Rest Nickel ist mit Ausnahme von unbeabsichtigten Verunreinigungen:

```
С
            0,30 % max.
                                     Ηf
                                                 0,1 - 3%
\operatorname{\mathtt{Cr}}
            11-15%
                                                 3,5 - 4,5%
                                     Ti
Co
            8-12%
                                     Al
                                                      - 4 %
Mo
             1-2,5%
                                     Ti+Al =
                                                 7
                                                      -8%
W
             3-10%
                                                 0,005-0,025%
Ta
             3,5-10%
                                     Zr
                                                 0,05-0,4%
                                     Rest
```

Ein stärker bevorzugter Bereich der Zusammensetzungen ist im folgenden angegeben:

```
C
           0,25% max.
                               Ηf
                                          0.4 - 3 %
Cr
          11-13,5%
                               Ti
                                          3,5 - 4,5%
Co
           8-11 %
                               Al
                                          3 - 4 %
           1-2,5 %
Mo
                               Ti+Al =
                                          7
                                              - 8 %
W
           3-5 %
                               В
                                          0,005-0,025%
Тa
           3,5-8 %
                               Zr
                                         0,05-0,4%
                               Rest =
                                         Ni
```

Ein wesentlich stärker bevorzugter Bereich der Zusammensetzungen ist im folgenden angegeben:

C =
$$0,10-0,22$$
% Hf = $0,75-1,25$ % Cr = $12,7-13,5$ % Ti = $3,9-4,2$ % Co = $8,5-9,5$ % Al = $3,2-3,6$ % Mo = $1,85-2,05$ % Ti+Al = $7,25-7,70$ % W = $3,65-8$ % B = $0,01-0,02$ % Ta = $3,65-8$ % Zr = $0,08-0,25$ % Rest = Ni

Im folgenden werden tabellarisch beispielsweise erfindungsgemäße Legierungszusammensetzungen angegeben:

_ 4 _

ŊŢ	Rest	1 60	Ø	Ø	Ø	Ø	Ø	Ø	O	8	Ø	Ø	100	60	Ø	8	Ø	(I)	80	ហ	8	Ø	ຜ	80	- 00	100	60	20
2r	0,17	ַל	7	7	ú	7	7	4	ú	٦,	4	7	7	7	٦,	٦,	٦,	4	ľ	7	ď	7	٦	٦,	,		ヿ	7
ф	0,015	0,	10,	ío,	10,	10,	10,	ío,	o,	ío,	ĺ,	0,	10	ó	Į,	ó	0,	10,	10,	ó	ó	,02	ó	70	Ö	0,	O,	,01
T1+A1	7,53	9	9,	9	9	٥	4	4	4,	4,	7	٦	ר	ű	ű	ű	ű	ű	ű	ű	ű	ď	ũ	ũ	Ų	ິດ	ď	7
Al	3,57	.7	4	4	7	ú	ű	ú	ű	ű	4	ú	7	7	7	ત્	7	4	7	7	ď	2	4	7	7	຺຺	'n	7
Ħ	3,96	ຼ	ű	w.	e,	ű	Ó	Q	્	Q	્	0	σ	٦,	٦	٦,	٦	٦	٦	Ţ	٦	Q	Q	ó	Q	. •	٦	Q
H£	1,10	4	Q	ω,	ω,	4	Ó.	7	7	Ţ	4,	7	7	4	ď	7	7	ó	Q	Q	Q	ď	ď	οĺ	ď	7	4	7
Та	3,86	-	7	7	7	1	o	o.	Q	Q	ω	•	•	•	•	•	•	Q	•	•	્	•	્	્	Ó	0	Q	وَ
æ	3,99	Ó	Ó.	Ó.	o	Q I	1	-	1	1	1	o ,	o (ထ	ω (ထ	ω	Q	Ó.	ď	ó	•	•	•	•	4	•	4
Mo	1,94	0,	ט ו	ט ֿ (ט ו	ω (<u>ئ</u> و	ע ֿ	<u>ي</u> ر	שׁ ַ	و	Q.	Ó.	ס ֿ	σ,	ď.	οĺ	o.	Ó,	Ó	Q	Q	7	٦	٦,	•	æ	ω
Co	9,35	δ.	9	٥١	9'	ð.	7	٦,	Ţ	۲,	4	ω,	ω (α α	ω (ω ω .	ω, ω,	4.	4.	4.	4	4,	4	4	4	7	٦	Q
Cr.	12,50 12,50	12,80	12,38	12,38	12,38	J. (12,31	J.		ا	9	ນົ	ນ໌ເ	۵,	u (ω, ω,	ω (2,0	12,87	χ, α,	2,00	12,60	Ď				12,30	12,40
υ	0,15	ď	10	, c	7 (7 (Á. (, .	1	7.	ַ,	٦,	ַ (7	7	7	7	٦.	٦,	01,0	0,15	•	•	•	•	60,0	٦,	•
Wärme Nr.	нн	iii I	} :	> !	→ !	T T > 1.	777	4 3	; ۲	Z ;	TTX	IIIX	XIX	X !	TAX	XVII	XVIII	XTX	XX.	YYI	XXII	TIIXX	XXIV	XXX	XXVI	XXVII	XXVIII	XXIX

Nach dem Vakuumschmelzen werden die oben aufgezählten Legierungen in Prüfstäbe vakuumgegossen und dem Bruchfestigkeitstest gemäß ASTM Standard E139 unterworfen. Die Prüfstäbe werden vor dem Test wärmebehandelt, wie folgt: Erhitzen auf eine Temperatur von 1120°C, bei dieser Temperatur 2 Stunden lang gehalten, sodann luftgekühlt, sodann erneut auf 845°C erhitzt und 4 Stunden bei 845°C gehalten, sodann luftgekühlt, erneut auf 760°C erhitzt und bei dieser Temperatur 16 Stunden gehalten und sodann luftgekühlt.

Nach der oben beschriebenen Wärmebehandlung werden Bruchfestigkeitstests an gegossenen Prüfstäben durchgeführt, die kennzeichnend für jede Erhitzungsstufe in dem wärmebehandelten Zustand bei 760°/90 Ksi, 760°C/100 Ksi, 930°C/39 Ksi und 985°C/ 29Ksi. sind. Die Ergebnisse sind in der Tabelle II wiedergegeben, wobei zu bemerken ist, daß die Dickwand-Zahlenangaben sich auf Ergebnisse von festen Prüfstäben mit einem Durchmesser von 6,35 mm beziehen. Die Dünnwand-Zahlenangaben beziehen sich auf die Ergebnisse röhrenförmiger Prüfstäbe mit einer Wandstärke von 1,02 mm. Die Dickwand oder festen Prüfstab-Zahlenwerte geben die mechanischen Eigenschaften schwerer Abschnitte wieder, wie sie sich bei Blattwurzeln für Turbinen ergeben. Die Dünnwand- oder röhrenförmigen Teststabeigenschaften geben die mechanischen Eigenschaften dünnwandiger Abschnitte wieder, wie sie sich bei Kernloch- oder hohlen Turbinenflügelblättern ergeben. Die Dünnwand-Zahlenwerte sind für Tests bei 930°C/ 35Ksi.

Tabelle II

	C	O3 Bru	chfestigke	itts-	C 103 Bruchfestigkeits-Prüfergebnisse	386					
					Dickwand				٠	Dünnwand	
Erhitzungs- Nr.	760°C/90 Lebens- J	K81 E1 (8)	760 ⁰ C/95 Lebens- dauer	Ks1 E1 (%)	760 ^o C/100 Ks1 Lebens- El dauer (%)		930°C/39Ks1 Lebens- El dauer (%)		985°C/29Ks1 Lebens- El		ਜ ~
	(h)						(h)				
н	462	4	163	ю		72	2	2			
	483	2				66	6	សុ			_
II			382	7		79	6	σ			6
III			225	ហ		66	თ	10			-
			87	9		106	9	10			
IV			211	ស		106	9	9			
			180	S							
>			73	m							
			119	ي د		48	æ	ω			
VI			2084	4		77	7	თ			
VII	237	4				65	2	7			
	419	ស	-			121	1	m			
VIII	286	5,5				. 20	0	∞	•		
	408	9				37	7	9	-		2
											3

XVI

9

ω

63

X

×

XH

XII

XIII

XIV

⋧

		ET.	Tabelle 1	II (Fort	(Fortsetzung	(bu					
Erhitzungs- Nr.	760 ⁰ C/90 Ksi Labens- El	760 ⁰ C/95	Ks1 76	Dickwand 760°C/100	Ksi	930°C/39Ks1	39Ks1	985°C/2	9Ks1	Dünnwand 930 ^O C/35Ks1	vand 5Ks1
	dauer (%) (h(dauer (h)		auer (h)	(%) (%)	Lebens- dauer (h)	(8)	Lebens- El dauer (%) (h)	E1 (%)	Lebens- dauer (h)	E1 (8)
XVII			13	30	8	93	7	38	10	,	
,								45	6		
XVIII								35	Q		
						•		37	æ		
XIX			. 130	Q	6	72	o ,			53	9
			103	<u>8</u>	œ					58	9
XX			149	Ø.	4			20	့်ဖ	64,4	0,9
		·	174	4	4			28	თ	30,6	5,0
+										178,0	2,0
Tyv			142	7	4			43	9	129	Ŋ
			224	4	r)			79	ស	189	Ŋ
								81	7	254	ß
TTYY			224	4	2			45	വ	101	N/A
1								51	ω	137	9
IIIXX	113 4					39	4				
	116 3					29	4				
XXIV			14	4	6	109	10				
			167	7	9	88	10		•		23
			i,			66	9				33
											77

		ij	Tabelle II (1	Fort	(Fortsetzung)		1		
Erhitzungs- Nr.	760°C/90Ks1 Lebens- El dauer (%) (h(760 ^O C/95Ks1 Lebens- El dauer (%) (h)	128) Ks1 E1 (%)	930 ^O C/39Ksi Lebens- El dauer (%)	9Ks1 El (2)	985 ^O C/29Ks1 Lebens- El dauer (%) (h)	Dünnwand 930°C/35Ks1 Lebens- El dauer (%)	ind 5Ks1 El (%)
xxv			181	15	65	N/A			1
					71	ω			
XXVI			172	9	79	10		٠	
			168	œ	83	ω			
					80	σ			
XXVII			163	ស			59 8	09	ო
			157	7			58 5	89	4
XXVIII			130	4	119	∞	60 10	111	ហ
	٠		212	9	75	ത	61 9	125	Ŋ
								125	σ
XXXX			110	4			81 5	122	4
			133	Ŋ			61 8	184	4
								212	S
INCO 713	16 6	7. 44			50	12			
MarM 421	50 3	20 3			15	15			
IN 792	255 7,	'n	75	7	75	O			
									۷,
El = Dehnung									3 /
							٠		1

Entsprechende Werte für drei zur Zeit bekannte handelsgängige Legierungen sind für Vergleichszwecke der Tabelle II angefügt.

INCO 713C soll eine Legierung mit einer nominellen Zugammensetzung wie folgt sein:

MAR-M 421 soll eine Legierung mit einer nominellen Zusammensetzung wie folgt sein:

INCO IN 792 soll eine Legierung sein, wie sie in der US-Patentschrift 3 619 182 beschrieben ist.

Die Tabelle III gibt die Streckeigenschaften der erfindungsgemäßen Legierung bei Raumtemperatur wieder, die nach dem Gießen in Prüfstäbe der zuvor erwähnten Wärmebehandlung unterworfen worden ist.

Tabelle III
C103 Streckprüfergebnisse bei Raumtemperatur

Erhitzungs- Nr.		0,2% Streck- grenze (Ksi)	El (%) (Dehnung)	R.A. (%)
VIII	181,4	169,2	3,5	3,2
	172,5	163,9	3,5	3,2
INCO 713C	123	106	7,9	11,6
Mar-M 421	150	130	3,5	5

Vergleichbare Werte für die gleichen handelsgängigen Legierungen sind der Tabelle für Vergleichszwecke angefügt.

In den Tabellen IV bzw. V sind die Zahlenwerte der cyclischen Oxidationsprüfergebnisse wiedergegeben, die bei 940°C durchgeführt worden ist, sowie des Heißkorrosionstests, der bei 900°C durchgeführt worden ist.

Tabelle IV

Vergleichbare ClO3 Prüfergebnisse bei der cyclischen Oxidation

Material	Gewichtsveränderung (mg/cm ²) nach 240 Stunden bei 940°C
Erhitzungsstufe VIII	1,15
Erhitkungsstufe IX	0,95
INCO 713C	-4,40
Mar-M 421	-2,20

Tabelle V

Vergleichbare C103 Prüfergebnisse bei der Heißkorrosion

Material	Angriffstiefe (m) nach 150 Stun- den bei 900 ⁰ C mit 6 ppm Salz
Erhitzungsstufe VIII INCO 713C	0,107 · 10 ⁻³ 0,660 · 10 ⁻³
Mar-M-421	0,380 . 10 ⁻³

Es versteht sich, daß erfindungsgemäß Abwandlungen und Modifizierungen getroffen werden können.

Patentansprüche

1. Nickellegierung, die hohe mechanische Festigkeit, Duktilität, Sulfidierungs- und Oxidationswiderstandsfähigkeit und Stabilität bei erhöhten Temperaturen zeigt und im wesentlichen aus den folgenden Bestandteilen auf der Grundlage von Gewichtsprozent, besteht:

0,30% max. C Cr3 11-15% 8-12% Co 1-2,5% Mo 3-10% 3,5-10% Тa 0,01-3% Ηf 3,5-4,5% Ti Al 3-4% Ti+Al =7-8% 0,005-0,025% В 0,05-0,40% Zr Rest. Ni =

2. Nickellegierung nach Anspruch 1, die im wesentlichen aus den folgenden Bestandteilen auf der Grundlage von Gewichtsprozent besteht:

0,25% max. C \mathtt{Cr} 11-13,5% Co 8-10% Mo 1-2,5% W 3-5% 3,5-5% Ta = 0,4-3,0% Нf 3,5-4,5% Ti = Al = 3-4% 7-8% Ti+Al =

3. Nickellegierung nach Anspruch 1, die im wesentlichen aus den folgenden Bestandteilen auf der Grundlage von Gewichtsprozent besteht:

4. Nickellegierung nach Anspruch 1, die im wesentlichen aus den folgenden Bestandteilen auf der Grundlage von Gewichtsprozent besteht:

- 5. Nickellegierung nach Anspruch 1, dadurch gekennzeichnet, daß dieselbe unter Ausbilden einer zweckmäßigen Morphologie an Karbiden und sogenanntem Gammaprime einer Wärmebehandlung unterworfen wird.
- 6. Gegenstand, der aus der Legierung gemäß Anspruch 1 ausgebildet wird.
- 7. Vakuumgegossener Gegenstand, der aus der Legierung nach Anspruch 1 besteht.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

8
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☑ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Помиль

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.