Math 11, Fall 2007 Lecture 7

Scott Pauls 1

¹Department of Mathematics Dartmouth College

10/10/07

Outline

- Review and overview
 - Last class
- Today's material
 - Review of reading topics
- Group Work
- Summary
- Next class

Outline

- Review and overview
 - Last class
- 2 Today's material
 - Review of reading topics
- Group Work
- 4 Summary
- Next class

Functions of more than one variable

- Functions of more than one variable: e.g. x = f(x, y)
- Contour plots
- Sketching graphs
- Limits
- Continuity

Example from last class

Find the limit, if it exists, or show that there is no limit:

$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{\sqrt{x^2+y^2}}$$

Outline

- Review and overview
 - Last class
- 2 Today's material
 - Review of reading topics
- Group Work
- Summary
- Next class

Concepts from reading Differentiation

Derivatives of functions of one variable: rate of change

$$f(x) = x^2$$

Derivatives of spacecurves: rate of change plus direction

$$< x, x^2, 0 >$$

Rates of change on a surface

Concepts from reading Differentiation

Derivatives of functions of one variable: rate of change

$$f(x) = x^2$$

Derivatives of spacecurves: rate of change plus direction

$$< x, x^2, 0 >$$

Rates of change on a surface

Concepts from reading Differentiation

Derivatives of functions of one variable: rate of change

$$f(x) = x^2$$

Derivatives of spacecurves: rate of change plus direction

$$< x, x^2, 0 >$$

Rates of change on a surface

Concepts from reading Derivatives of f(x, y)

Concepts from reading Derivatives of f(x, y)

Concepts from reading

Derivatives of f(x, y)

Since there seem to be multiple derivatives (one for each direction), calculate them separately.

Method:

- **1** Pick a direction in \mathbb{R}^2 , \vec{v} and a base point $P = (x_0, y_0)$
- 2 Construct a line in the plane throught P in the direction of \vec{v} :

$$P + t\vec{v} = \langle x_0 + tv_1, y_0 + tv_2 \rangle$$

3 Lift the line to a curve on the surface using f(x, y):

$$< x_0 + tv_1, y_0 + tv_2, f(x_0 + tv_1, y_0 + tv_2) >$$

The derivative of this curve is

$$\left\langle v_1, v_2, \frac{d}{dt} f(x_0 + tv_1, y_0 + tv_2) \right\rangle$$

Concepts from reading Directional derivative

Directional derivative

Definition: the directional derivative of f(x, y) at $P = (x_0, y_0)$ in the direction \vec{v} is

$$D_{v}f(x_{0},y_{0})=\frac{d}{dt}\Big|_{t=0}f(x_{0}+tv_{1},y_{0}+tv_{2})$$

Concepts from reading Partial derivatives

Special directions:

$$\frac{\partial f}{\partial x} := f_x := D_1 f := D_{<1,0>} f$$

$$\frac{\partial f}{\partial y}:=f_y:=D_2f:=D_{<0,1>}f$$

Some computation

Find f_x , f_y , f_{xx} , f_{xy} , f_{yy} for

•
$$f(x, y) = x^2 + y^2$$

•
$$f(x, y) = x^2 - y^2$$

$$f(x,y) = \sin(xy)$$

Group work

Questions:

- Compute $D_V f$ in terms of f_X , f_V ? Is there a general rule?
- What is the geometric meaning of f_{xx} ? f_{yy} ? f_{xy} ?

Summary

- Directional derivatives
- Partial derivatives

Work for next class

Reading: 15.4

• f07hw8