INNOLUX DISPLAY CORPORATION LCD MODULE SPECIFICATION

Model Name:	NJ101IA-01S
Date:	2015/09/01
Version:	01

For Customer's Acceptance

Comment

Approved by	Reviewed by	Prepared by
Cs. Chang Henry.Chien 20150909	Cc01.Chen Wenguo.Deng Weibo.Jia Sunny.Sun 20150908	Andy01.Cheng 20150901

Record of Revision

Pre-Spec.02 201 Pre-Spec.02 201 Pre-Spec.02 201 Pre-Spec.02 201 Pre-Spec.03 201 Pre-Spec.03 201 Final Spec01 201 Final Spec01 201	014/08/15 014/12/29 014/12/29 014/12/29 015/04/27 015/04/27 015/09/09 015/09/11 015/09/11	All 13 15 18 18 17 19 17 2 6	Initial Release Add "Definition of response time" Revise "Operate at High Temperature and Humidity" Revise "Package Quantity" Revise "Packaging Material Table" Revise "Mechanical Drawing" Revise "Package Drawing" Revise "Mechanical Drawing" Revise "Mechanical Drawing" Revise "Fin Assignment" Revise "Typical Operation Conditions"
Pre-Spec.02 201 Pre-Spec.02 201 Pre-Spec.02 201 Pre-Spec.03 201 Pre-Spec.03 201 Final Spec01 201 Final Spec01 201	014/12/29 014/12/29 014/12/29 015/04/27 015/04/27 015/09/09 015/09/11	15 18 18 17 19 17 2	Revise "Operate at High Temperature and Humidity" Revise "Package Quantity" Revise "Packaging Material Table" Revise "Mechanical Drawing" Revise "Package Drawing" Revise "Mechanical Drawing" Revise "Mechanical Drawing" Revise "Pin Assignment"
Pre-Spec.02 201 Pre-Spec.02 201 Pre-Spec.03 201 Pre-Spec.03 201 Final Spec01 201 Final Spec01 201	014/12/29 014/12/29 015/04/27 015/04/27 015/09/09 015/09/11	18 18 17 19 17 2	Revise "Package Quantity" Revise "Packaging Material Table" Revise "Mechanical Drawing" Revise "Package Drawing" Revise "Mechanical Drawing" Revise "Pin Assignment"
Pre-Spec.02 201 Pre-Spec.03 201 Pre-Spec.03 201 Final Spec01 201 Final Spec01 201	014/12/29 015/04/27 015/04/27 015/09/09 015/09/11	18 17 19 17 2	Revise "Packaging Material Table" Revise "Mechanical Drawing" Revise "Package Drawing" Revise "Mechanical Drawing" Revise "Pin Assignment"
Pre-Spec.03 201 Pre-Spec.03 201 Final Spec01 201 Final Spec01 201	015/04/27 015/04/27 015/09/09 015/09/11	17 19 17 2	Revise "Mechanical Drawing" Revise "Package Drawing" Revise "Mechanical Drawing" Revise "Pin Assignment"
Pre-Spec.03 201 Final Spec01 201 Final Spec01 201	015/04/27 015/09/09 015/09/11	19 17 2	Revise "Package Drawing" Revise "Mechanical Drawing" Revise "Pin Assignment"
Final Spec01 201 Final Spec01 201	015/09/09 015/09/11	17 2	Revise "Mechanical Drawing" Revise "Pin Assignment"
Final Spec01 201	015/09/11	2	Revise "Pin Assignment"
			_
Final Spec01 201	015/09/11	6	Revise "Typical Operation Conditions"

CHIMEI INNOLUX

Contents

1.	General Specifications	1
2.	Pin Assignment	2
3.	Operation Specifications	4
	3.1. Absolute Maximum Ratings	4
	3.1.1. Current Consumption	5
	3.1.2. Backlight Driving Conditions	5
	3.2. Typical Operation Conditions	6
	3.3. Power Sequence	7
	3.4. LVDS Signal Timing Characteristics	8
	3.4.1. AC Electrical Characteristics	8
	3.4.2. Timing Table	9
	3.4.3. LVDS Data Input Format	.10
4.	Optical Specifications	. 11
5.	Reliability Test Items	.15
6.	General Precautions	.16
	6.1. Safety	.16
	6.2. Handling	.16
	6.3. Static Electricity	.16
	6.4. Storage	.16
	6.5. Cleaning	.16
7.	Mechanical Drawing	.17
8.	Package Drawing	.18
	8.1. Packaging Material Table	.18
	8.2. Packaging Quantity	.18
	8.3. Packaging Drawing	.19

1. General Specifications

No.	Item	Specification	Remark
1	LCD size	10.1 inch(Diagonal)	
2	Driver element	a-Si TFT active matrix	
3	Resolution	1280 × 3(RGB) × 800	
4	Display mode	Normally Black, Transmissive	
5	Dot pitch	0.0565(W) × 0.1695(H) mm	
6	Active area	216.96(W) × 135.60(H) mm	
7	Module size	229.46(W) ×149.1(H) ×4.8(D) mm	Note 1
8	Surface treatment	НС	
9	Color arrangement	RGB-stripe	
10	Interface	LVDS	
11	Backlight power consumption	4.68(Typ.)	
12	Panel power consumption	0.7W(Typ.)	Note 2
13	Weight	292.74(Typ.)	
14	inversion	1+2line	
15	IC	HX8288*4&HX8695*1	

Note 1: Refer to Mechanical Drawing. Note 2: Including T-con Board power consumption

2. Pin Assignment

A 40pin connector is used for the module electronics interface. The recommended model is FH52-40S-0.5SH manufactured by Vigorconn.

Pin No.	Symbol	I/O	Function	Remark
1	VCOM	Р	Common Voltage	
2	VDD	Р	Power Supply	
3	VDD	Р	Power Supply	
4	NC		No connection	
5	NC		No connection	
6	NC		No connection	
7	GND	Р	Ground	
8	Rxin0-	I	-LVDS Differential Data Input	DO D5 C0
9	Rxin0+	I	+LVDS Differential Data Input	R0-R5, G0
10	GND	Р	Ground	
11	Rxin1-	I	-LVDS Differential Data Input	C1 C5 D0 D1
12	Rxin1+	I	+LVDS Differential Data Input	G1~G5, B0,B1
13	GND	Р	Ground	
14	Rxin2-	I	-LVDS Differential Data Input	B2-B5,HS,VS,
15	Rxin2+	ı	+LVDS Differential Data Input	DE
16	GND	Р	Ground	
17	RxCLK-	I	-LVDS Differential Clock Input	TADE CLK
18	18 RxCLK+ I		+LVDS Differential Clock Input	LVDS CLK
19	GND	Р	Ground	
20	Rxin3-	I	-LVDS Differential Data Input	R6, R7, G6, G7,
21	Rxin3+	I	+LVDS Differential Data Input	B6, B7
22	GND	Р	Ground	
23	NC		No connection	
24	NC		No connection	
25	GND	Р	Ground	
26	NC		No connection	

ITOLOM	<u> </u>		Date. 2	1015/09/09 Fage.5/1
27	LED_PWM	0	CABC controller signal output for backlight	Note2
28	NC		No connection	
29	AVDD	Р	Power for Analog Circuit	
30	GND	Р	Ground	
31	LED-	Р	LED Cathode	
32	LED-	Р	LED Cathode	
33	NC	I	No connection	
34	NC	-	No connection	
35	VGL	Р	Gate OFF Voltage	
36	NC	I	No connection	
37	CABC_EN	-	CABC Enable Input	Note1
38	VGH	Р	Gate ON Voltage	
39	LED+	Р	LED Anode	
40	LED+	Р	LED Anode	

I: input, O: output, P: Power

Note1: The setting of CABC function are as follows.

Pin	Enable	Disable
CABC_EN	High Voltage	Low Voltage or open

Note2: LED_PWM is used to adjust backlight brightness.

3. Operation Specifications

3.1. Absolute Maximum Ratings

(Note 1)

ltem	Symbol	Val	ues	Unit	Remark
item	Symbol	Min.	Min. Max.		Nemark
	VDD	-0.3	3.9	V	
	AVDD	-0.3	14	V	
Power voltage	V _{GH}	-0.3	42.0	V	
	V_{GL}	-19	0.3	V	
	V _{GH} -V _{GL}	12	40.0	V	
Operation Temperature	T _{OP}	-20	70	°C	
Storage Temperature	T _{ST}	-30	80	°C	
LED Reverse Voltage	VR		5	V	Each LED
LED Forward Current	lf		70	mA	Each LED

Note 1: The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.

3.1.1. Current Consumption

ltem	Symbol		Values		Unit	Remark	
		Min.	Тур.	Max.		Kemark	
Current for Driver	I _{GH}	-	705	1000	uA	V _{GH} =22V	
	I _{GL}	-	705	1000	uA	V _{GL} = -7V	
	IV _{DD}	-	95	120	mA	V _{DD} =2.5V	
	IAV _{DD}	-	45	70	mA	AV _{DD} =8.2V	

3.1.2. Backlight Driving Conditions

ltem	Symbol	Values			Unit	Remark
item	Symbol	Min.	Тур.	Max.	Oill	INGIIIAIK
Voltage for LED backlight	V_L	16.8	(19.5)	21	V	Note 1
Current for LED backlight	IL	200	240	280	mA	
LED life time	-	20000		1	Hr	Note 2

Note 2: The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25 $^{\circ}$ C and I_L =200mA. The LED lifetime could be decreased if operating I_L is lager than 200mA.

3.2. Typical Operation Conditions

(Note 1)

ltem	Symbol		Values	Unit	Remark	
item	Symbol	Min.	Тур.	Max.	Offic	Nemark
Power voltage	VDD	2.3	2.5	2.7	V	Note 2
	AVDD	8.0	8.2	8.4	V	
	V_{GH}	21.7	22	22.3	V	
	V_{GL}	-7.3	-7	-6.7	V	
Input signal voltage	VCOM	2.7	3.0	3.3	V	Note 4
Input logic high voltage	V _{IH}	0.8 VDD	-	VDD	V	Note 3
Input logic low voltage	V _{IL}	0	-	0.2 VDD	V	Note 3

Note 1: Be sure to apply VDD and V_{GL} to the LCD first, and then apply V_{GH}.

Note 2: VDD setting should match the signals output voltage (refer to Note 3) of customer's system board.

Note 4: Typical VCOM is only a reference value, it must be optimized according to each LCM. Be sure to use VR.

3.3. Power Sequence

a. Power on:

b. Power off:

3.4. LVDS Signal Timing Characteristics

3.4.1. AC Electrical Characteristics

Parameter	Symbol		Values		Unit	Remark
	-	Min.	Typ.	Max.		
LVDS Differential input high Threshold voltage	R _{xVTH}	-	-	+100	mV	R _{XVCM} =1.2
LVDS Differential input low Threshold voltage	R _{xVTL}	-100	-	-	mV	V
LVDS Differential input common mode voltage	R _{xVCM}	0.7	-	1.6	V	
LVDS Differential voltage	V _{ID}	200	-	600	mV	

3.4.2. Timing Table

ltem	Symbol		Values		Unit	Remark
item	Symbol	Min.	Тур.	Max.	Offic	Kemark
Clock Frequency	1/Tc	68.9	71.1	73.4	MHz	Frame rate =60Hz
Horizontal display area	tHD		1280		Тс	
HS period time	tн	1410	1440	1470	Тс	
HS Width +Back Porch +Front Porch	thw+ thbp +thfp	130	160	190	Тс	
Vertical display area	tvo	800		tн		
VS period time	tv	815	823	833	tн	
VS Width +Back Porch +Front Porch	tvw+ tvBP +tvFP	15	23	33	tн	

Date: 2015/09/09 Page:10/19

3.4.3. LVDS Data Input Format

4. Optical Specifications

ltem	Symbol	Condition		Values			Remark	
item	Symbol	Condition	Min.	Тур.	Max.	Unit	rtomant	
	θ_{L}	Φ=180(9 o'clock)	75	85	-	- degree	Note 1	
Viewing angle	θ_{R}	Φ=0°(3 o'clock)	75	85	-			
(CR≥ 10)	θ_{T}	Φ=90°(12 o'clock)	75	85	-			
	θ _B Φ=270%6 o'clock)		75	85	-			
Posponso timo	T _{ON}		-	10	20	M sec	Note 3	
Response time	T _{OFF}		-	15	30	M sec	Note 3	
Contrast ratio	CR		600	800	-	-	Note 4	
	Wx	Normal θ=Φ=0°	0.26	0.31	0.36	-	Note 2	
Color chromaticity	W _Y		0.27	0.32	0.37	-	Note 5 Note 6	
Luminance	L		400	500	-	cd/m²	Note 6	
Luminance uniformity	Yu		75	80	-	%	Note 7	

Test Conditions:

- 1. VDD=2.5V, the ambient temperature is 25° C.
- 2. The test systems refer to Note 2.

INNOLUX

Date: 2015/09/09 Page:12/19

3. Mark

Note 1: Definition of viewing angle range

Fig. 4-1 Definition of viewing angle

Φ=270°

Note 2: Definition of optical measurement system.

6 o'clock

The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Viewing angle is measured by ELDIM-EZ contrast/Height :1.2mm, Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/ Field of view: 1° /Height: 500mm.)

Fig. 4-2 Optical measurement system setup

Date: 2015/09/09 Page:13/19

Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

Fig. 4-3 Definition of response time

Note 4: Definition of contrast ratio

Contrast ratio (CR) = $\frac{\text{Luminance measured when LCD on the "White" state}}{\text{Luminance measured when LCD on the "Black" state}}$

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

Note 6: All input terminals LCD panel must be ground while measuring the center area of the panel. The LED driving condition is I_L =200mA.

Date: 2015/09/09 Page:14/19

Note 7: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer to Fig. 4-4). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (Yu) =
$$\frac{B_{min}}{B_{max}}$$

L-----Active area length W----- Active area width

Fig. 4-4 Definition of measuring points

 \mathbf{B}_{max} : The measured maximum luminance of all measurement position. \mathbf{B}_{min} : The measured minimum luminance of all measurement position.

Date: 2015/09/09 Page:15/19

5. Reliability Test Items

(Note3)

Item	Test	Conditions	Rem	nark
High Temperature Storage	Ta = 80°C	240hrs	Note 1,	Note 4
Low Temperature Storage	Ta = -30°C	240hrs	Note 1,	Note 4
High Temperature Operation	Ts = 70°C	240hrs	Note 2,	Note 4
Low Temperature Operation	Ta = -20°C	240hrs	Note 1,	Note 4
Operate at High Temperature and Humidity	+60℃, 90%RH	240hrs	Note 4	
Thermal Shock	-30°C/30 min ~ +80 cycles, Start with cowith high temperatu	Note 4		
Vibration Test	Frequency range:16 Stroke:1.5mm Sweep:10Hz~55Hz 2 hours for each did (6 hours for total)			
Mechanical Shock	100G 6ms,±X, ±Y, : direction	±Z 3 times for each		
Package Vibration Test	Random Vibration : ISTA-3A 1Hz~200H Half hours for direc	lz,Grms=0.53		
Package Drop Test	Height:60 cm 1 corner, 3 edges, 6	3 surfaces		
Electro Static Discharge	± 2KV, Human Bod	y Mode, 100pF/1500Ω		

- Note 1: Ta is the ambient temperature of samples.
- Note 2: Ts is the temperature of panel's surface.
- Note 3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.
- Note 4: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

Date: 2015/09/09 Page:16/19

6. General Precautions

6.1. Safety

Liquid crystal is poisonous. Do not put it in your mouth. If liquid crystal touches your skin or clothes, wash it off immediately by using soap and water.

6.2. Handling

- 1. The LCD panel is plate glass. Do not subject the panel to mechanical shock or to excessive force on its surface.
- 2. The polarizer attached to the display is easily damaged. Please handle it carefully to avoid scratch or other damages.
- 3. To avoid contamination on the display surface, do not touch the module surface with bare hands.
 - 4. Keep a space so that the LCD panels do not touch other components.
- 5. Put cover board such as acrylic board on the surface of LCD panel to protect panel from damages.
- 6. Transparent electrodes may be disconnected if you use the LCD panel under environmental conditions where the condensation of dew occurs.
 - 7. Do not leave module in direct sunlight to avoid malfunction of the ICs.

6.3. Static Electricity

- 1. Be sure to ground module before turning on power or operating module.
- 2. Do not apply voltage which exceeds the absolute maximum rating value.

6.4. Storage

- 1. Store the module in a dark room where must keep at 25±10° and 65%RH or less.
- 2. Do not store the module in surroundings containing organic solvent or corrosive gas.
 - 3. Store the module in an anti-electrostatic container or bag.

6.5. Cleaning

- 1. Do not wipe the polarizer with dry cloth. It might cause scratch.
- 2. Only use a soft sloth with IPA to wipe the polarizer, other chemicals might permanent damage to the polarizer.

Date: 2015/09/09 Page:17/19

7. Mechanical Drawing

Date: 2015/09/09 Page:18/19

8. Package Drawing

8.1. Packaging Material Table

No.	Item	Model (Material)	Dimensions(mm)	Unit Weight (kg)	Quantity	Remark
1	LCM Module	NJ101IA-01S	229.46*149.10*4.8	0.293	20 pcs	NA
2	Partition	BC Corrugated paper	512 X 349X 230	0.891	1 set	NA
3	cushion	EPE	512*248*35	0.097	2 pcs	NA
4	Dust-Proof Bag	PE	700 X 530 X 0.05	0.0379	1 pcs	NA
5	Air Bag	LDPE	250 X 210	0.0051	20 pcs	NA
6	Carton	Corrugated paper	525 X 362 X 250	0.844	1pcs	NA
7	Total weight	7.93 Kg±5%				

8.2. Packaging Quantity

Total LCM quantity in Carton: No. of Partition (1 Rows X Quantity per Row 20) = 20pcs

Date: 2015/09/09 Page:19/19

8.3. Packaging Drawing

INNOLUX DISPLAY CORPORATION LCD MODULE SPECIFICATION

Model Name:	NJ101IA-01S
Date:	2015/09/01
Version:	01

For Customer's Acceptance

Comment

Approved by	Reviewed by	Prepared by
Cs. Chang Henry.Chien 20150909	Cc01.Chen Wenguo.Deng Weibo.Jia Sunny.Sun 20150908	Andy01.Cheng 20150901

Record of Revision

Pre-Spec.01	2014/08/15		
		All	Initial Release
Pre-Spec.02	2014/12/29	13	Add "Definition of response time"
Pre-Spec.02	2014/12/29	15	Revise "Operate at High Temperature and Humidity"
Pre-Spec.02	2014/12/29	18	Revise "Package Quantity"
Pre-Spec.02	2014/12/29	18	Revise "Packaging Material Table"
	2015/04/27	17	Revise "Mechanical Drawing"
Pre-Spec.03	2015/04/27	19	Revise "Package Drawing"
Final Spec01	2015/09/01	17	Revise "Mechanical Drawing"
Final Spec01	2015/09/09	2	Revise "Pin Assignment"
Final Spec01	2015/09/09	6	Revise "Typical Operation Conditions"

CHIMEI INNOLUX

Contents

1.	General Specifications	1
2.	Pin Assignment	2
3.	Operation Specifications	4
	3.1. Absolute Maximum Ratings	4
	3.1.1. Current Consumption	5
	3.1.2. Backlight Driving Conditions	5
	3.2. Typical Operation Conditions	6
	3.3. Power Sequence	7
	3.4. LVDS Signal Timing Characteristics	8
	3.4.1. AC Electrical Characteristics	8
	3.4.2. Timing Table	9
	3.4.3. LVDS Data Input Format	.10
4.	Optical Specifications	. 11
5.	Reliability Test Items	.15
6.	General Precautions	.16
	6.1. Safety	.16
	6.2. Handling	.16
	6.3. Static Electricity	.16
	6.4. Storage	.16
	6.5. Cleaning	.16
7.	Mechanical Drawing	.17
8.	Package Drawing	.18
	8.1. Packaging Material Table	.18
	8.2. Packaging Quantity	.18
	8.3. Packaging Drawing	.19

1. General Specifications

No.	Item	Specification	Remark
1	LCD size	10.1 inch(Diagonal)	
2	Driver element	a-Si TFT active matrix	
3	Resolution	1280 × 3(RGB) × 800	
4	Display mode	Normally Black, Transmissive	
5	Dot pitch	0.0565(W) × 0.1695(H) mm	
6	Active area	216.96(W) × 135.60(H) mm	
7	Module size	229.46(W) ×149.1(H) ×4.8(D) mm	Note 1
8	Surface treatment	НС	
9	Color arrangement	RGB-stripe	
10	Interface	LVDS	
11	Backlight power consumption	4.68(Typ.)	
12	Panel power consumption	0.7W(Typ.)	Note 2
13	Weight	292.74(Typ.)	
14	inversion	1+2line	
15	IC	HX8288*4&HX8695*1	

Note 1: Refer to Mechanical Drawing. Note 2: Including T-con Board power consumption

2. Pin Assignment

A 40pin connector is used for the module electronics interface. The recommended model is FH52-40S-0.5SH manufactured by Vigorconn.

Pin No.	Symbol	I/O	Function	Remark
1	VCOM	Р	Common Voltage	
2	VDD	Р	Power Supply	
3	VDD	Р	Power Supply	
4	NC		No connection	
5	NC		No connection	
6	NC		No connection	
7	GND	Р	Ground	
8	Rxin0-	I	-LVDS Differential Data Input	DO D5 C0
9	Rxin0+	I	+LVDS Differential Data Input	R0-R5, G0
10	GND	Р	Ground	
11	Rxin1-	I	-LVDS Differential Data Input	C1 C5 D0 D1
12	Rxin1+	I	+LVDS Differential Data Input	G1~G5, B0,B1
13	GND	Р	Ground	
14	Rxin2-	I	-LVDS Differential Data Input	B2-B5,HS,VS,
15	Rxin2+	ı	+LVDS Differential Data Input	DE
16	GND	Р	Ground	
17	RxCLK-	I	-LVDS Differential Clock Input	TADE CLK
18	RxCLK+	I	+LVDS Differential Clock Input	LVDS CLK
19	GND	Р	Ground	
20	Rxin3-	I	-LVDS Differential Data Input	R6, R7, G6, G7,
21	Rxin3+	I	+LVDS Differential Data Input	B6, B7
22	GND	Р	Ground	
23	NC		No connection	
24	NC		No connection	
25	GND	Р	Ground	
26	NC		No connection	

ITOLOM	<u> </u>		Date. 2	1015/09/09 Fage.5/1
27	LED_PWM	0	CABC controller signal output for backlight	Note2
28	NC		No connection	
29	AVDD	Р	Power for Analog Circuit	
30	GND	Р	Ground	
31	LED-	Р	LED Cathode	
32	LED-	Р	LED Cathode	
33	NC	I	No connection	
34	NC	-	No connection	
35	VGL	Р	Gate OFF Voltage	
36	NC	I	No connection	
37	CABC_EN	-	CABC Enable Input	Note1
38	VGH	Р	Gate ON Voltage	
39	LED+	Р	LED Anode	
40	LED+	Р	LED Anode	

I: input, O: output, P: Power

Note1: The setting of CABC function are as follows.

Pin	Enable	Disable
CABC_EN	High Voltage	Low Voltage or open

Note2: LED_PWM is used to adjust backlight brightness.

3. Operation Specifications

3.1. Absolute Maximum Ratings

(Note 1)

ltem	Symbol	Val	ues	Unit	Remark
item	Symbol	Min.	Max.	Onit	Remark
	VDD	-0.3	3.9	V	
	AVDD	-0.3	14	V	
Power voltage	V _{GH}	-0.3	42.0	V	
	V_{GL}	-19	0.3	V	
	V _{GH} -V _{GL}	12	40.0	V	
Operation Temperature	T _{OP}	-20	70	°C	
Storage Temperature	T _{ST}	-30	80	°C	
LED Reverse Voltage	VR		5	V	Each LED
LED Forward Current	lf		70	mA	Each LED

Note 1: The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.

3.1.1. Current Consumption

	Symbol	Values			Unit	Remark	
Item	Symbol	Min.	Тур.	Max.	Offic	Kemark	
	I _{GH}	-	705	1000	uA	V _{GH} =22V	
Current for Driver	I _{GL}	-	705	1000	uA	V _{GL} = -7V	
Current for Driver	IV _{DD}	-	95	120	mA	V _{DD} =2.5V	
	IAV _{DD}	-	45	70	mA	AV _{DD} =8.2V	

3.1.2. Backlight Driving Conditions

ltem	Symbol		Values	Unit	Remark	
item	Symbol	Min.	Тур.	Max.	Offic	Kelliaik
Voltage for LED backlight	V_L	16.8	(19.5)	21	V	Note 1
Current for LED backlight	IL	200	240	280	mA	
LED life time	-	20000		1	Hr	Note 2

Note 2: The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25 $^{\circ}$ C and I_L =200mA. The LED lifetime could be decreased if operating I_L is lager than 200mA.

3.2. Typical Operation Conditions

(Note 1)

ltem	Symbol		Values		Unit	Remark
item	Symbol	Min.	Min. Typ.		Offic	Nemark
	VDD	2.3	2.5	2.7	V	Note 2
Dower voltege	AVDD	8.0	8.2	8.4	V	
Power voltage	V_{GH}	21.7	22	22.3	V	
	V_{GL}	-7.3	-7	-6.7	V	
Input signal voltage	VCOM	2.7	3.0	3.3	V	Note 4
Input logic high voltage	V _{IH}	0.8 VDD	-	VDD	V	Note 3
Input logic low voltage	V _{IL}	0	-	0.2 VDD	V	Note 3

Note 1: Be sure to apply VDD and V_{GL} to the LCD first, and then apply V_{GH}.

Note 2: VDD setting should match the signals output voltage (refer to Note 3) of customer's system board.

Note 4: Typical VCOM is only a reference value, it must be optimized according to each LCM. Be sure to use VR.

3.3. Power Sequence

a. Power on:

b. Power off:

3.4. LVDS Signal Timing Characteristics

3.4.1. AC Electrical Characteristics

Parameter	Symbol		Values		Unit	Remark
	•	Min.	Typ.	Max.		
LVDS Differential input high Threshold voltage	R _{xVTH}	-	-	+100	mV	R _{XVCM} =1.2
LVDS Differential input low Threshold voltage	R _{xVTL}	-100	-	-	mV	V
LVDS Differential input common mode voltage	R _{xVCM}	0.7	-	1.6	V	
LVDS Differential voltage	V _{ID}	200	-	600	mV	

3.4.2. Timing Table

ltem	Symbol Values			Unit	Remark	
item	Symbol	Min.	Тур.	Max.	Offic	Remark
Clock Frequency	1/Tc	68.9	71.1	73.4	MHz	Frame rate =60Hz
Horizontal display area	tHD		1280		Тс	
HS period time	tн	1410	1440	1470	Тс	
HS Width +Back Porch +Front Porch	thw+ thbp +thfp	130	160	190	Тс	
Vertical display area	tvo		800		tн	
VS period time	tv	815	823	833	tн	
VS Width +Back Porch +Front Porch	tvw+ tvBP +tvFP	15	23	33	tн	

Date: 2015/09/09 Page:10/19

3.4.3. LVDS Data Input Format

4. Optical Specifications

ltem	Symbol	Condition	Values			Unit	Remark	
item	Symbol	Condition	Min.	Тур.	Max.	Offic	Kemark	
	θ_{L}	Φ=180(9 o'clock)	75	85	-			
Viewing angle	θ_{R}	Φ=0°(3 o'clock)	75	85	-	dograd	Note 1	
(CR≥ 10)	θ_{T}	Φ=90°(12 o'clock)	75	85	-	degree	Note 1	
	θв	Φ=270(6 o'clock)	75	85	-			
Posponso timo	T _{ON}		-	10	20	M sec	Note 3	
Response time	T _{OFF}		-	15	30	M sec	Note 3	
Contrast ratio	CR		600	800	-	-	Note 4	
	Wx	Normal θ=Φ=0°	0.26	0.31	0.36	-	Note 2	
Color chromaticity	W _Y		0.27	0.32	0.37	-	Note 5 Note 6	
Luminance	L		400	500	-	cd/m²	Note 6	
Luminance uniformity	Yu		75	80	-	%	Note 7	

Test Conditions:

- 1. VDD=2.5V, the ambient temperature is 25° C.
- 2. The test systems refer to Note 2.

INNOLUX

Date: 2015/09/09 Page:12/19

3. Mark

Note 1: Definition of viewing angle range

Fig. 4-1 Definition of viewing angle

Φ=270°

Note 2: Definition of optical measurement system.

6 o'clock

The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Viewing angle is measured by ELDIM-EZ contrast/Height :1.2mm, Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/ Field of view: 1° /Height: 500mm.)

Fig. 4-2 Optical measurement system setup

Date: 2015/09/09 Page:13/19

Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

Fig. 4-3 Definition of response time

Note 4: Definition of contrast ratio

Contrast ratio (CR) = $\frac{\text{Luminance measured when LCD on the "White" state}}{\text{Luminance measured when LCD on the "Black" state}}$

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

Note 6: All input terminals LCD panel must be ground while measuring the center area of the panel. The LED driving condition is I_L =200mA.

Date: 2015/09/09 Page:14/19

Note 7: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer to Fig. 4-4). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (Yu) =
$$\frac{B_{min}}{B_{max}}$$

L-----Active area length W----- Active area width

Fig. 4-4 Definition of measuring points

 \mathbf{B}_{max} : The measured maximum luminance of all measurement position. \mathbf{B}_{min} : The measured minimum luminance of all measurement position.

Date: 2015/09/09 Page:15/19

5. Reliability Test Items

(Note3)

Item	Test	Conditions	Rem	nark
High Temperature Storage	Ta = 80°C	240hrs	Note 1,	Note 4
Low Temperature Storage	Ta = -30°C	240hrs	Note 1,	Note 4
High Temperature Operation	Ts = 70°C	240hrs	Note 2,	Note 4
Low Temperature Operation	Ta = -20°C	240hrs	Note 1,	Note 4
Operate at High Temperature and Humidity	+60℃, 90%RH	240hrs	Note 4	
Thermal Shock		°C/30 min for a total 100 old temperature and end ure.	Note 4	
Vibration Test	Frequency range:16 Stroke:1.5mm Sweep:10Hz~55Hz 2 hours for each did (6 hours for total)	~10Hz		
Mechanical Shock	100G 6ms,±X, ±Y, : direction	±Z 3 times for each		
Package Vibration Test	Random Vibration : ISTA-3A 1Hz~200H Half hours for direc	lz,Grms=0.53		
Package Drop Test	Height:60 cm 1 corner, 3 edges, 6	3 surfaces		
Electro Static Discharge	± 2KV, Human Bod	y Mode, 100pF/1500Ω		

- Note 1: Ta is the ambient temperature of samples.
- Note 2: Ts is the temperature of panel's surface.
- Note 3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.
- Note 4: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

Date: 2015/09/09 Page:16/19

6. General Precautions

6.1. Safety

Liquid crystal is poisonous. Do not put it in your mouth. If liquid crystal touches your skin or clothes, wash it off immediately by using soap and water.

6.2. Handling

- 1. The LCD panel is plate glass. Do not subject the panel to mechanical shock or to excessive force on its surface.
- 2. The polarizer attached to the display is easily damaged. Please handle it carefully to avoid scratch or other damages.
- 3. To avoid contamination on the display surface, do not touch the module surface with bare hands.
 - 4. Keep a space so that the LCD panels do not touch other components.
- 5. Put cover board such as acrylic board on the surface of LCD panel to protect panel from damages.
- 6. Transparent electrodes may be disconnected if you use the LCD panel under environmental conditions where the condensation of dew occurs.
 - 7. Do not leave module in direct sunlight to avoid malfunction of the ICs.

6.3. Static Electricity

- 1. Be sure to ground module before turning on power or operating module.
- 2. Do not apply voltage which exceeds the absolute maximum rating value.

6.4. Storage

- 1. Store the module in a dark room where must keep at 25±10° and 65%RH or less.
- 2. Do not store the module in surroundings containing organic solvent or corrosive gas.
 - 3. Store the module in an anti-electrostatic container or bag.

6.5. Cleaning

- 1. Do not wipe the polarizer with dry cloth. It might cause scratch.
- 2. Only use a soft sloth with IPA to wipe the polarizer, other chemicals might permanent damage to the polarizer.

Date: 2015/09/09 Page:17/19

7. Mechanical Drawing

Date: 2015/09/09 Page:18/19

8. Package Drawing

8.1. Packaging Material Table

No.	Item	Model (Material)	Dimensions(mm)	Unit Weight (kg)	Quantity	Remark
1	LCM Module	NJ101IA-01S	229.46*149.10*4.8	0.293	20 pcs	NA
2	Partition	BC Corrugated paper	512 X 349X 230	0.891	1 set	NA
3	cushion	EPE	512*248*35	0.097	2 pcs	NA
4	Dust-Proof Bag	PE	700 X 530 X 0.05	0.0379	1 pcs	NA
5	Air Bag	LDPE	250 X 210	0.0051	20 pcs	NA
6	Carton	Corrugated paper	525 X 362 X 250	0.844	1pcs	NA
7	Total weight	7.93 Kg±5%				

8.2. Packaging Quantity

Total LCM quantity in Carton: No. of Partition (1 Rows X Quantity per Row 20) = 20pcs

Date: 2015/09/09 Page:19/19

8.3. Packaging Drawing

