- * Решить задачу при векторе правой части $\mathbf{f} = (4, -4, 2)^T$.
- ** а) Для заданной системы линейных уравнений

$$\begin{pmatrix} 18 & 6 & 0 \\ 6 & 6 & -7 \\ 0 & -7 & 18 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{f}$$

оценить относительную погрешность решения при заданной относительной погрешности правой части $\|\Delta f\|/\|f\|=0.01$, которая выполнена для любого вектора правой части f и вектора его возмущений Δf при использовании трех основных норм векторов..

- б) Найти множество векторов правых частей и соответствующих им векторов возмущений правых частей, при которых в оценке п. а) достигается точное равенство.
- в) Найти более точную оценку погрешности решения СЛАУ при известном векторе правой части $\|\Delta \mathbf{x}\| / \|\mathbf{x}\| \le \nu(\mathbf{f}) \|\Delta \mathbf{f}\| / \|\mathbf{f}\|$, которая выполнена при любом векторе погрешности $\Delta \mathbf{f}$. Найти, в каких пределах изменяется $\nu(\mathbf{f})$ и вектор правых частей, при которых $\nu(\mathbf{f})$ достигает минимального значения при выборе евклидовой нормы векторов
- г) Для данной СЛАУ выписать формулы для итерационных процессов Якоби и Зейделя и исследовать их на сходимость. д) Определить порядок вычисления координат искомого вектора в методе последовательной верхней релаксации (ПВР), для которого возможно найти оптимальный параметр. Найти его. Привести вычислительные формулы метода.
- е) Сделать по три итерации методами Якоби, Зейделя, Зейделя с последовательностью расчета компонент как в методе ПВР и ПВР при значении параметра, близком к оптимальному, от начального приближения $\mathbf{x}^{(0)} = (0,0,1)^T$.