

BÀI GIẢNG CƠ SỞ DỮ LIỆU

8. Phụ thuộc hàm: các khái niệm, qui tắc suy diễn và thuật toán

Nguyễn Hải Châu

Khoa Công nghệ Thông tin Trường Đại học Công nghệ, ĐHQGHN

Định nghĩa phụ thuộc hàm

- ullet Giả sử X và Y là hai tập thuộc tính của lược đồ quan hệ R
- Một **phụ thuộc hàm từ** X **vào** Y là một ràng buộc trên các bộ của mọi trạng thái hợp lệ r(R) sao cho với hai bộ bất kỳ $t_1, t_2 \in r(R)$, nếu $t_1[X] = t_2[X]$ thì $t_1[Y] = t_2[Y]$
- Phụ thuộc hàm từ X vào Y được ký hiệu là $X \to Y$ với X là vế trái và Y là vế phải của phụ thuộc hàm
- Các cách diễn đạt khác: Y phụ thuộc hàm vào X hoặc X xác định hàm Y
- Một phụ thuộc hàm là một tính chất của lược đồ quan hệ R và không phải là tính chất của trạng thái quan hệ r(R)
- Một phụ thuộc hàm không thể được phát hiện một cách tự động từ các trạng thái r(R) mà phải xác định từ ngữ nghĩa của lược đồ quan hệ R

Ví dụ phụ thuộc hàm 1

Lược đồ quan hệ MUONSACH(Sothe, MaSach, Nguoimuon, Tensach, Ngaymuon) có các phụ thuộc hàm:

So the o NguoimuonMasach o TensachSo the, Masach o Ngaymuon

Ví dụ phụ thuộc hàm 2

Lược đồ quan hệ *CONGDAN*(*SoCMND*, *Hoten*, *Ngaysinh*, *Gioitinh*) có các phụ thuộc hàm:

 $\dot{SoCMND} \rightarrow Hoten$

 $SoCMND \rightarrow Ngaysinh$

 $SoCMND \rightarrow Gioitinh$

Phụ thuộc hàm suy diễn được

- ullet Giả sử ${\mathcal F}$ là một tập phụ thuộc hàm trên lược đồ quan hệ R
- Một phụ thuộc hàm $X \to Y$ được gọi là **suy diễn được** từ $\mathcal F$ nếu $X \to Y$ đúng trong mỗi trạng thái hợp lệ r(R). Điều này có nghĩa là khi r(R) thỏa mãn các phụ thuộc hàm trong $\mathcal F$, r(R) cũng thỏa mãn $X \to Y$
- X o Y suy diễn được từ ${\mathcal F}$ được ký hiệu là ${\mathcal F} \models X o Y$
- Bao đóng của tập phụ thuộc hàm \mathcal{F} , ký hiệu là \mathcal{F}^+ , được định nghĩa như sau:

$$\mathcal{F}^{+} = \mathcal{F} \cup \{X \to Y, \mathcal{F} \models X \to Y\} \tag{1}$$

Các qui tắc suy diễn đối với các phụ thuộc hàm

Armstrong 1 đưa ra 6 qui tắc suy diễn đối với phụ thuộc hàm (1974):

QT1. (phản xạ): Nếu
$$X \supseteq Y$$
 thì $X \to Y$

QT2. (tăng):
$$\{X \to Y\} \models XZ \to YZ$$
 ²

QT3. (bắc cầu):
$$\{X \to Y, Y \to Z\} \models X \to Z$$

QT4. (chiếu):
$$\{X \rightarrow YZ\} \models X \rightarrow Y \text{ và } X \rightarrow Z$$

QT5. (hợp):
$$\{X \rightarrow Y, X \rightarrow Z\} \models X \rightarrow YZ$$

QT6. (tựa bắc cầu):
$$\{X \to Y, WY \to Z\} \models WX \to Z$$

 2 Để cho tiện, $\{X,Y\}$ được viết tắt là XY

¹William Ward Armstrong là nhà toán học và khoa học máy tính người Canada. Ông nhận bằng tiến sĩ năm 1966 tại trường Đại học British Columbia (University of British Columbia).

Chứng minh QT1, QT2

- QT1: Nếu $X \supseteq Y$ thì $X \to Y$ Giả sử $X \supseteq Y$ và t_1, t_2 là hai bộ bất kỳ trong r(R) thỏa mãn $t_1[X] = t_2[X]$. Khi đó, do $X \supseteq Y$ nên $t_1[Y] = t_2[Y]$. Vậy $X \to Y$.
- QT2: {X → Y} |= XZ → YZ
 Giả sử X → Y nhưng XZ → YZ. Khi đó theo định nghĩa phụ thuộc hàm, tồn tai hai bô t₁, t₂ ∈ r(R) sao cho:

$$t_1[X] = t_2[X],$$
 (2)

$$t_1[Y] = t_2[Y],$$
 (3)

$$t_1[XZ] = t_2[XZ] \tag{4}$$

nhưng

$$t_1[YZ] \neq t_2[YZ] \tag{5}$$

Từ (2) và (4) ta có:

$$t_1[Z] = t_2[Z] \tag{6}$$

Từ (3) và (6) suy ra $t_1[YZ] = t_2[YZ] \implies$ mâu thuẫn với (5).

QT3: $\{X \rightarrow Y, Y \rightarrow Z\} \models X \rightarrow Z$

• Giả sử ta có

$$X \to Y$$
 (7)

và

$$Y \to Z$$
 (8)

Khi đó, với hai bộ $t_1, t_2 \in r(R)$ bất kỳ sao cho $t_1[X] = t_2[X]$, từ (7) chúng ta suy ra:

$$t_1[Y] = t_2[Y] \tag{9}$$

Từ (8) và (9) ta có:

$$t_1[Z] = t_2[Z] \tag{10}$$

Từ $t_1[X] = t_2[X]$ và (10) chúng ta có $X \to Z$

QT4:
$$\{X \rightarrow YZ\} \models X \rightarrow Y \text{ và } X \rightarrow Z$$

• Ta có

$$X \to YZ$$
 (11)

Do $YZ \supseteq Y$ nên theo QT1:

$$YZ \rightarrow Y$$
 (12)

Áp dụng QT3 cho (11) và (12): $X \rightarrow Y$. Tương tự, ta có: $X \rightarrow Z$.

QT5: $\{X \rightarrow Y, X \rightarrow Z\} \models X \rightarrow YZ$

• Giả sử ta có

$$X \to Y$$
 (13)

và

$$X \to Z$$
 (14)

Áp dụng QT2 cho (13):

$$XX \rightarrow YX$$
 (15)

Áp dụng QT2 cho (14):

$$YX \rightarrow YZ$$
 (16)

Áp dụng QT3 cho (15), (16) và do $XX = X: X \rightarrow YZ$.

QT6:
$$\{X \rightarrow Y, WY \rightarrow Z\} \models WX \rightarrow Z$$

• Giả sử ta có:

$$X \to Y$$
 (17)

và

$$WY \to Z$$
 (18)

Áp dụng QT2 cho (17):

$$WX \to WY$$
 (19)

Áp dụng QT3 cho (19): $WX \rightarrow Z$.

Các qui tắc suy diễn đối với phụ thuộc hàm

Amstrong đã chứng minh rằng các quy tắc suy diễn QT1, QT2 và QT3 là đúng và đầy đủ:

- Đúng: cho trước một tập phụ thuộc hàm $\mathcal F$ trên một lược đồ quan hệ R, bất kỳ một phụ thuộc hàm nào suy diễn được bằng cách áp dụng các quy tắc từ từ QT1 đến QT3 cũng đúng trong mỗi trạng thái quan hệ r(R) thoả mãn các phụ thuộc hàm trong $\mathcal F$
- Đầy đủ: việc sử dụng các quy tắc từ QT1 đến QT3 lặp lại nhiều lần để suy diễn các phụ thuộc hàm cho đến khi không còn suy diễn được nữa sẽ cho kết quả là một tập hợp đầy đủ các phụ thuộc hàm có thể được suy diễn từ ${\cal F}$
- Các qui tắc QT1, QT2 và QT3 được gọi là các qui tắc suy diễn Armstrong

Bao đóng của tập thuộc tính

- Giả sử $\mathcal F$ là một tập phụ thuộc hàm trên lược đồ quan hệ R và X là một tập thuộc tính của R
- Bao đóng của tập thuộc tính X dưới F, ký hiệu là X⁺ được định nghĩa như sau:

$$X^{+} = \{A, A \text{ là thuộc tính của } R, \mathcal{F} \models X \to A\}$$
 (20)

• Khi cần chỉ rõ tập phụ thuộc hàm, chúng ta ký hiệu bao đóng của X dưới ${\mathcal F}$ là $X^+_{{\mathcal F}}$

Tìm bao đóng của tập thuộc tính

```
Thuật toán 1: Tìm bao đóng X^+ của X dưới \mathcal F
  \overline{\mathbf{Vao}}: Lược đồ quan hê R, tập phụ thuộc hàm \mathcal F và tập thuộc tính X
  Ra: Tập thuộc tính X^+ là bao đóng của X
1 X^+ = X:
2 repeat
      OldX^+ = X^+:
      for mỗi phu thuộc hàm Y \rightarrow Z trong \mathcal{F} do
4
           if X^+ \supset Y then
          X^+ = X^+ \cup Z;
7
           end
      end
8
9 until OldX^+ = X^+;
```

Ví dụ bao đóng của tập thuộc tính

Lược đồ quan hệ R(MaNV, Hoten, MaDA, TenDA, Diadiem, Sogio) có tập phụ thuộc hàm: $\mathcal{F} = \{MaNV \rightarrow Hoten, MaDA \rightarrow \{TenDA, Diadiem\}, \{MaNV, MaDA\} \rightarrow Sogio\}$

$$\label{eq:manv} \begin{split} \textit{MaNV}^+ &= \{\textit{MaNV}, \textit{Hoten}\}, \; \textit{MaDA}^+ = \{\textit{MaDA}, \textit{TenDA}, \textit{Diadiem}\} \\ \{\textit{MaNV}, \textit{MaDA}\}^+ &= \{\textit{MaNV}, \textit{Hoten}, \textit{MaDA}, \textit{TenDA}, \textit{Diadiem}, \textit{Sogio}\} \end{split}$$

15 / 25

Bao đóng của tập thuộc tính và khóa

- Giả sử ta có lược đồ quan hệ $R(A_1, A_2, ..., A_n)$
- Nếu $X^+ = \{A_1, A_2, ..., A_n\}$ thì X xác định hàm các thuộc tính còn lại, điều này tương đương với X là siêu khóa
- Có thể kiểm tra một tập thuộc tính X có là khóa hay không bằng cách:
 - 1 Kiểm tra X là siêu khóa hay không: $X^+ = \{A_1, A_2, ..., A_n\}$?
 - 2 Nếu có, kiểm tra X có là siêu khóa tối thiểu hay không: Có tồn tại tập thuộc tính $S \subsetneq X$ sao cho $S^+ = \{A_1, A_2, ..., A_n\}$?

Ví dụ bao đóng và khóa

Lược đồ quan hệ R(MaNV, Hoten, MaDA, TenDA, Diadiem, Sogio)

 $\{ \textit{MaNV}, \textit{MaDA} \}^+ = \{ \textit{MaNV}, \textit{Hoten}, \textit{MaDA}, \textit{TenDA}, \textit{Diadiem}, \textit{Sogio} \}, \\ \textit{MaNV}^+ = \{ \textit{MaNV}, \textit{Hoten} \}, \; \textit{MaDA}^+ = \{ \textit{MaDA}, \textit{TenDA}, \textit{Diadiem} \}$

 $\{\mathit{MaNV}, \mathit{MaDA}\}$ là siêu khóa tối thiểu $\Longrightarrow \{\mathit{MaNV}, \mathit{MaDA}\}$ là khóa

Tìm khóa của lược đồ quan hệ

Thuật toán 2: Tìm một khóa của lược đồ quan hệ

Vào: Lược đồ quan hệ $R(A_1,A_2,...,A_n)$ và tập phụ thuộc hàm ${\mathcal F}$

Ra: Một khóa của lược đồ quan hệ R

- 1 $K = \{A_1, A_2, ..., A_n\};$
- 2 for mỗi thuộc tính A của K do

3
$$X$$
ác định $(K-A)^+_{\mathcal{F}}$; // Thực hiện thuật toán 1
4 **if** $(K-A)^+_{\mathcal{F}} = \{A_1,A_2,...,A_n\}$ **then**
5 $K=K-\{A\}$
6 **end**

7 end

Thời gian thực hiện bước 3 phụ thuộc số lượng phụ thuộc hàm trong \mathcal{F} (xem vòng **for** bước 4–8, thuật toán 1) \Longrightarrow có thể loại bỏ các phụ thuộc hàm "dư thừa" trong \mathcal{F} ?

Sự tương đương của các tập phụ thuộc hàm

- Một tập phụ thuộc hàm $\mathcal E$ được phủ bởi một tập phụ thuộc hàm $\mathcal F$ hay $\mathcal F$ phủ $\mathcal E$ nếu $\mathcal E \subset \mathcal F^+$. Điều này có nghĩa là: $\forall X \to Y \in \mathcal E, \mathcal F \models X \to Y$
- Hai tập phụ thuộc hàm $\mathcal E$ và $\mathcal F$ được gọi là tương đương nếu $\mathcal E^+=\mathcal F^+$
- Để kiểm tra $\mathcal F$ phủ $\mathcal E$ $(\mathcal E\subset\mathcal F^+)$, với mỗi X o Y là phụ thuộc hàm trong $\mathcal E$:
 - ullet Tính X^+ dưới $\mathcal{F}\ orall X o Y\in\mathcal{E}$
 - Nếu $X^+\supset Y$ đúng với tất cả các phụ thuộc hàm $X\to Y$ trong ${\cal E}$ thì ${\cal F}$ phủ ${\cal E}$

Ví dụ hai tập phụ thuộc hàm tương đương

Lược đồ quan hệ R(A,C,D,E,H); ký hiệu $\{A,E\}_{\mathcal{E}}^+$ là bao đóng của tập thuộc tính $\{A,E\}$ dưới tập phụ thuộc hàm \mathcal{E} :

$$\mathcal{E} = \{A \to CD, E \to AH\}$$

- $\{A\}_{\mathcal{F}}^+ = \{A, C, D\} \supset \{C, D\}$
- $\{E\}_{\mathcal{F}}^+ = \{E, A, H, C, D\} \supset \{A, H\}$

 $\Longrightarrow \mathcal{E}$ tương đương với \mathcal{F}

$$\mathcal{F} = \{A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H\}$$

- $\{A\}_{\mathcal{E}}^+ = \{A, C, D\} \supset \{C\}$
- $\{A, C\}_{\mathcal{E}}^+ = \{A, C, D\} \supset \{D\}$
- $\{E\}_{\mathcal{E}}^+ = \{E, A, H, C, D\}$: $\{E\}_{\mathcal{E}}^+ \supset \{A, D\} \text{ và } \{E\}_{\mathcal{E}}^+ \supset \{H\}$

Tập phụ thuộc hàm tối thiểu và phủ tối thiểu

- Một tập phụ thuộc hàm $\mathcal F$ là tối thiểu nếu thoả mãn các điều kiện sau:
 - $\underline{\text{(v\'e phải t\'oi thiểu)}}$ Về phải của các phụ thuộc hàm trong $\mathcal F$ chỉ có một thuộc tính.
 - (vế trái tối thiểu) Chúng ta không thể thay thế bất kỳ một phụ thuộc hàm $X \to A$ trong $\mathcal F$ bằng phụ thuộc hàm $Y \to A$, trong đó Y là tập con đúng của X mà vẫn còn là một tập phụ thuộc hàm tương đương với $\mathcal F$.
 - (số lượng phụ thuộc hàm tối thiểu) Chúng ta không thể bỏ đi bất kỳ phụ thuộc hàm nào ra khỏi ${\cal F}$ mà vẫn có một tập phụ thuộc hàm tương đương với ${\cal F}$
- Một **phủ tối thiểu** của một tập phụ thuộc hàm $\mathcal F$ là một tập phụ thuộc hàm tối thiểu $\mathcal G$ tương đương với $\mathcal F$ (tức là $\mathcal G^+=\mathcal F^+$)
- Một tập phụ thuộc hàm bất kỳ có thể có nhiều phủ tối thiểu

Tìm phủ tối thiểu

```
Thuật toán 3: Tìm một phủ tối thiểu cho tập phụ thuộc hàm
  Vào: Lược đồ quan hệ R, tập phụ thuộc hàm \mathcal{F}
  Ra: Môt tập phụ thuộc hàm \mathcal{G} là phủ tối thiểu của \mathcal{F}
1 \mathcal{G} = \mathcal{F}:
2 Thay thế mỗi phụ thuộc hàm X \to \{A_1, A_2, ..., A_n\} trong \mathcal G bằng n phụ thuộc
    hàm X \to A_1, X \to A_2, \ldots, X \to A_n;
  for mỗi phụ thuộc hàm X \to A trong \mathcal{G} do
       for mỗi thuộc tính B là một phần tử của X do
           if (G - (X \to A)) \cup ((X - \{B\}) \to A) là tương đương với G then
              thay thế X \to A bằng (X - \{B\}) \to A ở trong G:
           end
       end
  end
  for mỗi phu thuộc hàm X \to A còn lai trong \mathcal{G} do
       if (G - \{X \rightarrow A\}) là tương đương với \mathcal{G} then
           loai bỏ X \to A ra khỏi G:
       end
```

8

11

12

13 14 end

Ví dụ tìm phủ tối thiểu

Lược đồ quan hệ R(A,B,C,D,E) có tập phụ thuộc hàm $\mathcal{F}=\{A\to BCDE,CD\to E\}$:

- $\mathcal{G} = \mathcal{F}$
- Tách vế phải của các phụ thuộc hàm: $\mathcal{G} = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, A \rightarrow E, CD \rightarrow E\}$
- Vế trái của $CD \rightarrow E$ là tối thiểu
- $A \rightarrow C, A \rightarrow D \models A \rightarrow CD$ $A \rightarrow CD, CD \rightarrow E \models A \rightarrow E \implies A \rightarrow E$ dư thừa và có thể loại bỏ khỏi $\mathcal{G} \implies \mathcal{G} = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, CD \rightarrow E\}$
- ullet Chúng ta không bỏ được bất kỳ phụ thuộc hàm nào khỏi ${\cal G}$ để có một tập phụ thuộc hàm tương đương, do đó ${\cal G}$ là tối thiểu

Ví dụ tìm phủ tối thiểu

$$\mathcal{F} = \{A \rightarrow BCDE, CD \rightarrow E\}$$

 $\mathcal{G} = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, CD \rightarrow E\}$ là phủ tối thiểu của \mathcal{F}

Tóm tắt

- Phụ thuộc hàm, bao đóng của tập phụ thuộc hàm
- Các qui tắc suy diễn của Armstrong
- Bao đóng của tập thuộc tính
- Tìm khóa của lược đồ quan hệ dựa vào bao đóng
- Tập phụ thuộc hàm tương đương, tập phụ thuộc hàm tối thiểu và phủ tối thiểu