

Instructor: Warut Suksompong

2025

Example: Allocating Goods

\$220	\$140	\$240	\$400
\$280	\$200	\$120	\$400
\$260	\$260	\$260	\$220

Find an allocation that is: socially optimal? Envy free?

Example: Facility Location

Need to place a shared facility that serves a bunch of people; placement rule (mechanism) needs to satisfy

- High social welfare
- Agents report their locations truthfully

Tentative Schedule

Week	Date	Торіс
1	14 Aug	Intro and Nash equilibrium
2	21 Aug	No class (but still an assignment!)
3	28 Aug	Auctions
4	4 Sep	Facility location + Routing games
5	11 Sep	Cooperative games
6	18 Sep	Midterm 1 + Cooperative games (cont.)
7	2 Oct	Stable matching + Nash bargaining solution
8	9 Oct	Fair allocation of indivisible goods
9	16 Oct	Cake cutting
10	23 Oct	Midterm 2 + Rent division
11	30 Oct	Committee voting
12	6 Nov	Tournaments + Optional material
13	13 Nov	Midterm 3

Logistics

- Lecture: 18:30 20:30 Thursdays @LT19
 - I will stick around to answer questions after lecture
 - Lecture slides posted on Canvas
 - Lectures will be recorded and uploaded to Canvas afterwards.
 (However, in case of technical issues, I will not redo the lecture.)
- Canvas discussions: Ask questions here!
 - I have enabled the option to create an anonymous discussion.
 - Please don't email me questions about course material (or matters of interest to everyone in the course)

Assessment

- Weekly assignments (30%)
 - 11 assignments (Week 1-11), 3% each. Also 3% free marks
 - Can earn up to 36% but capped at 30%
 - One question per assignment graded for correctness, the rest for effort
 - Released on lecture day (Thu), due 11:59pm Sunday of the following week
 - Assignment 1 already posted, due on Sunday, Aug 24
 - No late assignment accepted. This covers the vast majority of "reasons":
 - Lost internet connection 5 mins before the deadline
 - Already wrote up the assignment but forgot to submit
 - Submitted the wrong file
 - Have a cold/flu, etc.

Assessment

- Three midterm exams (70% = 20% + 20% + 30%)
 - Week 6 (18 Sep): 6:30-7:15pm
 - Week 10 (23 Oct): 6:30-7:15pm
 - Week 13 (13 Nov): 6:30-7:50pm
- Held in lecture venue (LT19)

Other notes

- Prerequisites:
 - Mathematical maturity (experience with reading and writing mathematical proofs; knowledge in calculus and linear algebra)
 - Knowledge in theoretical computer science (algorithms and NP-hardness)
- TAs:
 - Yuhong Deng (<u>yuhongdeng@u.nus.edu</u>): Assignments 1, 4, 7, 10
 - Karen Frilya Celine (<u>karenfc@nus.edu.sg</u>): Assignments 2, 5, 8, 11
 - Haoyun Tang (e1154532@u.nus.edu): Assignments 3, 6, 9
- This is a theory course

Nash Equilibria and Game Theory basics

What is a Game?

- Players $N = \{1, ..., n\}$
- Actions (players can do something to affect the world)
- Preferences over outcomes
- A general, abstract, framework for strategic interaction

Not Just Child's Play

- Any distributed system, where individual actors may have preferences over outcomes.
- Some system behaviors simply cannot be explained without game-theoretic language
 - Auctions
 - Course allocation
 - Traffic flow

Prisoner's Dilemma – a classic puzzle

Two criminals are arrested. Interrogators do not have enough evidence to convict them, but can convict them for a minor offense.

Each suspect is offered the same deal: Implicate your friend, and we'll let you go!

- Both confess: get a sentence of 2 years
- If one confesses and the other does not, the confessing party goes free while the other party serves 3 years.
- Both stay quiet: both go to prison for 1 year (for the minor offense)

Prisoner's Dilemma – a classic puzzle

Stay Quiet	Confess

Stay Quiet -1,-1 -3,0

Confess 0,-3 -2,-2

"Normal-form games": Matrix representation

Normal-Form Games

- A set of players $N = \{1, ..., n\}$
- Each player $i \in N$ has a set of possible actions A_i
- An action profile: a vector $\vec{a} \in A_1 \times A_2 \times \cdots \times A_n = A$
- Utility of player i from $\vec{a} \in A$ is the value $u_i(\vec{a})$.

$$u_i:A\to\mathbb{R}$$

Normal Form Games – Pure Nash Equilibria

Given everyone else's actions \vec{a}_{-i} , the best response set of i is

$$BR_i(\vec{a}_{-i}) = \{ b \in A_i \mid b \in \text{argmax } u_i(\vec{a}_{-i}, b) \}$$

An action profile is a (pure) Nash equilibrium if:

$$\forall i \in N, a_i \in BR_i(\vec{a}_{-i})$$

"I'm doing the best I can, given everyone else's actions!"

Prisoner's Dilemma

Stay Quiet

Confess

Stay Quiet

-1,-1

-3,0

Confess

0,-3

-2,-2

Pure NE: (Confess, Confess)

Work Hard or Have Fun?

	Chill	Work hard
Chill	7,7	4,9
Work hard	9,4	6,6

Pure NE: (Work hard, Work hard)

The Game of Chicken

	Drive Straight	Swerve
Drive Straight	-10,-10	1,-1
Swerve	-1,1	0,0

Pure NE: (Swerve, Drive straight), (Drive straight, Swerve)

Coordination Game

	Chinese	Indian
Chinese	5,4	1,1
Indian	0,0	4,5

Pure NE: (Chinese, Chinese), (Indian, Indian)

Mixed Nash Equilibrium

- Playing a single strategy may be foolish an opponent who knows you well can always beat you with a best response!
- It is often better to be unpredictable

Randomized Actions

- Instead of choosing a single action, one can play a random mix of them: $\vec{p}_i \in \Delta(A_i)$ is a probability distribution over player i's actions.
- A (not necessarily pure) strategy profile:

$$\vec{p} = (\vec{p}_1, \dots, \vec{p}_n) \in \Delta(A_1) \times \dots \times \Delta(A_n)$$

Mixed Nash Equilibrium

Players are risk neutral!

- Player Utility: $u_i(\vec{p}) = \sum_{\vec{a} \in A} u_i(\vec{a}) \Pr[\vec{a}] = \mathbb{E}_{\vec{a} \sim \vec{p}}[u_i(\vec{a})]$
- Nash equilibrium: for all $i \in N$, and all $\vec{q}_i \in \Delta(A_i)$, $u_i(\vec{p}) \ge u_i(\vec{p}_{-i}, \vec{q}_i)$
- Unlike pure NE, a (not necessarily pure) NE *always exists* (Nash's Theorem)

Computing Nash Equilibria in 2x2 Games

 Case 1: Compute all NE in which at least one player plays a pure strategy

- Case 2: Compute all NE in which both players strictly mix between both actions
 - In this case, each player must be indifferent between the two actions!

Coordination Game

	Chinese	Indian
Chinese	5,4	1,1
Indian	0,0	4,5

Case 1: At least one player plays a pure strategy

- Row = Chinese --> Col = Chinese --> Row = Chinese is a best response --> (Chinese, Chinese)
- Row = Indian --> Col = Indian --> Row = Indian is a best response --> (Indian, Indian)
- Col = Chinese --> Row = Chinese --> Col = Chinese is a best response --> (Chinese, Chinese)
- Col = Indian --> Row = Indian --> Col = Indian is a best response --> (Indian, Indian)

Coordination Game

	q	1- q
	Chinese	Indian
p Chinese	5,4	1,1
1-p Indian	0,0	4,5

Case 2: Both players mix between both actions

- Assume Row plays (Chinese, Indian) with probability (p, 1-p), and Col with probability (q, 1-q), where o < p, q < 1
- Row player indifferent --> 5*q + 1*(1-q) = 0*q + 4*(1-q) --> q = 3/8
- Col player indifferent --> 4*p + o*(1-p) = 1*p + 5*(1-p) --> p = 5/8
- (5/8 Chinese + 3/8 Indian, 3/8 Chinese + 5/8 Indian)

Dominant Strategies

- We say that a strategy $\vec{p} \in \Delta(A_i)$ dominates $\vec{q} \in \Delta(A_i)$ if $\forall \vec{p}_{-i} \in \Delta(A_{-i}) : u_i(\vec{p}_{-i}, \vec{p}) \ge u_i(\vec{p}_{-i}, \vec{q})$
- Strict domination: $u_i(\vec{p}_{-i}, \vec{p}) > u_i(\vec{p}_{-i}, \vec{q})$
- No matter what the other players do, playing \vec{p} is better than playing \vec{q} for player i.

Dominant Strategies

Theorem: if an action $a \in A_i$ is **strictly dominated** by some strategy $\vec{p} \in \Delta(A_i)$, then action a is **never played** with any positive probability in any Nash equilibrium.

Iterated Removal of Dominated Strategies

/ г	T					٦
			L	M	R	
-						1 1
4	T		11	117	2 20	$u_1(T, \vec{q}) < \frac{1}{2}u_1(C, \vec{q}) + \frac{1}{2}u_1(B, \vec{q})$
	•	Ο,	11		2,20	$u_1(1,q) < \frac{1}{2}u_1(0,q) + \frac{1}{2}u_1(D,q)$
		10	-1	\cap \cap	2 1	$u_1(B, \vec{q}) > u_1(C, \vec{q})$
				0,0	5,1	$u_1(B,q) > u_1(C,q)$
	В	0	1	10,2	4 0	
		J	_	10,2		
_	ι	$\iota_2(\vec{p},M)$	$> u_2(\vec{p}, l)$	\overline{z}	$u_2(\vec{p}, M) > u_2(\vec{p}, F)$	

Useful for reducing the search space when computing Nash equilibria!

Prisoner's Dilemma

Stay Quiet

Confess

Stay Quiet

-1,-1

-3,0

Confess

0,-3

-2,-2

"Stay Quiet" is strictly dominated by "Confess" All NE: (Confess, Confess)

Work Hard or Have Fun?

	Chill	Work hard
Chill	7,7	4,9
Work hard	9,4	6,6

"Chill" is strictly dominated by "Work hard" All NE: (Work hard, Work hard)

Each player is given a set of two balls, one marked "Split" and the other marked "Steal". There is a jackpot of, say, \$1000.

- If both players choose "Split", each of them gets half of the jackpot.
- If one player chooses "Split" and the other player chooses "Steal", the player who chooses "Steal" gets the entire jackpot, while the player who chooses "Split" gets nothing.
- If both players choose "Steal", both of them get nothing.

www.youtube.com/watch?v=SoqjK3TWZE8

	Split	Steal
Split	500,500	0,1000
Steal	1000,0	0,0

"Split" is not strictly dominated by "Steal"

Cannot remove "Split"!

	Split	Steal
Split	500,500	0,1000
Steal	1000,0	0,0

Case 1: At least one player plays a pure strategy

- Row = Split --> Col = Steal --> Row = Split is a best response --> (Split, Steal)
- Row = Steal --> Col = q*Split + (1-q)*Steal for any o <= q <= 1 -->
 Row playing Steal is a best response for every q --> (Steal, q*Split + (1-q)*Steal)
- Similar reasoning starting with Col --> (Steal, Split), (p*Split + (1-p)*Steal, Steal)

```
Summary: (Steal, q*Split + (1-q)*Steal) for any o <= q <= 1
(p*Split + (1-p)*Steal, Steal) for any o <= p <= 1
```

	q	1- q
	Split	Steal
p Split	500,500	0,1000
1-p Steal	1000,0	0,0

Case 2: Both players mix between both actions

- Assume Row plays (Split, Steal) with probability (p, 1-p), and Col with probability (q, 1-q) for 0 < p, q < 1
- Row player indifferent --> 500*q + 0*(1-q) = 1000*q + 0*(1-q) --> q = 0
- Contradiction with the assumption of this case!