Санкт-Петербургский политехнический университет Петра Великого Институт физики, нанотехнологий и телекоммуникаций Кафедра космических исследований

ОТЧЕТ

по научно-исследовательской работе

направление 03.03.02 — «Физика»

Выполнил студент гр. 3430302/60501

А.Г. Демин

Руководитель к. ф.-м.н., н.с. ФТИ им. А.Ф. Иоффе

Д.С. Свинкин

«10» февраль 2020 г.

Задача:

Получение зависимости угла падения на триггерный детектор от соотношения скоростей счётов в двух детекторах. Выполнение этой задачи даст более точную, чем есть сейчас локализацию для почти 3000 гамма всплесков.

Методика решения:

- 1) Вычислить число отсчетов в номинальных границах каналов. Реальные границы энергетических диапазонов изменяются со временем в сторону увеличения нижнего порога энергии регистрируемых гамма-квантов, поэтому необходимо использовать номинальные границы каналов.
- 2) Определить отношения числа отсчетов в нетриггерном и триггерном детекторах;
- 3) Определить жесткости по триггерному детектору (отношение числа отсчетов в G2 к G1, отношение числа отсчетов в G3 к G2.)
- 4) Из-за влияния неоднородностей распределения массы в Конус-Винд необходимо исключить из рассмотрения все всплески (всего 151 всплеск), короче периода вращения Конус-Винд, то есть короче 3 с.
- 5) Разбить всплески на три интервала по жесткости и на три интервала по яркости.
- 6) Построить для полученных интервалов зависимости $R(\cos\Theta)$, где Θ косинус угла падения на триггерный детектор, R отношение числа отсчетов в нетриггерном детекторе к триггерному за T_{100} в каналах G1; G2; G3 и сумме каналов G1 и G2; G2 и G3; G1, G2 и G3 как для исходных, так и для номинальных энергетических диапазонов для каждого интервала по жесткости и по яркости. Аппроксимировать зависимости полиномом третьей степени минимизацией χ^2 , построить предсказательные интервалы.

Убрать из рассмотрения всплески, сильно выпадающие из аппроксимации.

Описание набора всплесков

Для решения поставленных задач была использована информация из базы Конус-Винд. Из нее были выбраны всплески с имеющейся локализацией типа "BOX" или "SPOT", локализованные инструментами:

Swift -263 всплеска;

SwiftXRT - 90 всплесков;

HETЕ − 9 всплесков;

ВерроЅАХ - 15 всплесков;

SuperAGILE – 4 всплеска;

Integral – 12 всплесков;

FermiLAT – 43 всплеска;

MAXI - 9 всплесков;

IPN – 178 всплеска.

Всего 623 всплеска.

Для всплесков, имеющих две и более локализации, была выбрана локализация, дающая наиболее точный результат.

Из этих всплесков были выявлены и убраны из рассмотрения всплески со сбоями в базе, всего 17 всплесков:

Swift -9 всплесков;

SwiftXRT – 1 всплеск;

HETE - 1 всплеск;

FermiLAT – 1 всплеск;

IPN - 5 всплесков.

Убраны короткие всплески (всего 132 всплеска),

Из рассмотрения были убраны 8 всплесков S1 и 15 всплесков S2 с углом больше 90 градусов, так как 8 из них выпадали из аппроксимации.

Осталось 451 всплеск: 218 всплесков S1 и 233 всплеска S2:

Swift - 192

SwiftXRT-74

HETE - 3

BeppoSAX – 15

SuperAGILE - 4

Integral - 11

FermiLAT - 54

MAXI - 7

IPN - 91

Результаты:

В результате решения задач была получены таблица со списком всплесков и данными, необходимыми для дальнейшего анализа зависимости отношения скоростей счёта детекторов Конус-Винд от эклиптической широты источника гамма-всплеска.

Были убраны из рассмотрения в канале G1 5 всплесков S1 с ID 1205; 1428; 4122; 3757, сильно выпадающие из аппроксимации, и всплеск 4504, имеющий очень низкое значение погрешности, а также 3 всплеска S2 с ID 4740; 2935; 3357. Из других каналов они убраны не были, так как там они не выпадают из аппроксимации. В итоге имеем 213 всплесков S1 в канале G1 и 218 всплесков в остальных каналах; 230 всплесков S2 в канале G1 и 233 всплеска в остальных каналах.

Рис.1

Рис.2

Было решено для исходных границ каналов не рассматривать канал G3, так как для него очень велики значения ошибок.

В канале G1 имеет смысл рассматривать всплески с углами только от 60 до 90 градусов, так как от 0 до 60 градусов значение энергии в нетриггерном детекторе близко к нулю и, следовательно, отношение числа отсчетов в нетриггерном к триггерному близко к нулю (рис.1, рис.2). Графики зависимостей в папке "углы 60-90".

Исключим канал G1 из рассмотрения.

В таблице представлены комбинации каналов, дающие наименьшее и второе по малости значения χ^2/dof и сами значения χ^2/dof во всех интервалах жестокости и яркости для всплесков S1 (таблица 1), для всплесков S2 (таблица 2)

Талица 1.

S1;	канал, дающий	dof	χ^2 / dof	Параметры, начинаю с параметра при старшей	канал, дающий	dof	χ^2 / dof	Параметры, начинаю с параметра при старшей
	лучшее			степени	второе			степени
	значение				ПО			
					малости			
					значение			
HR1	G2	73	8,414	-0.46, 1.23, -1.71, 0.96	G2G3	73	10,548	-0.72, 1.69, -1.98, 1.04
HR2	G1G2	71	6,621	-1.41, 3.3, -2.91, 1.02	G2	73	8,493	-1.54, 3.41, -3.11, 1.25
HR3	G1G2	71	16,496	-1.4, 3.0, -2.52, 0.91	G2	72	25,127	-0.96, 2.05, -2.04, 0.97
LU1	G2	73	3,197	-0.7, 1.66, -2.0, 1.05	G2G3	73	3,52	-0.8, 1.64, -1.88, 1.06
LU2	G1G2	71	7,056	-1.15, 2.84, -2.66, 0.98	G2	73	8,181	-0.76, 1.89, -2.15, 1.05
LU3	G2	72	33,759	-0.9, 1.87, -1.91, 0.95	G1G2	71	37,898	-1.6, 3.44, -2.77, 0.92

Талица 2.

S2;	канал, дающий	dof	χ^2 / dof	Параметры, начинаю с параметра при старшей	канал, дающий	dof	χ^2 / dof	Параметры, начинаю с параметра при старшей
	лучшее			степени	второе			степени
	значение				по			
					малости			
					значение			
HR1	G2	78	4,335	-1.29, 3.36, -2.94, 0.92	G2G3	78	4,62	-1.24, 3.27, -2.87, 0.9
HR2	G1G2	77	11,984	-1.1, 2.76, -2.39, 0.77	G2	78	14,664	-0.63, 1.79, -1.83, 0.73
HR3	G1G2	76	27,754	-1.83, 4.03, -3.14, 0.94	G2	77	29,416	-1.09, 2.71, -2.43, 0.87
LU1	G2G3	78	2,67	-0.02, 1.12, -1.82, 0.83	G2	78	2,78	-0.34, 1.7, -2.15, 0.87
LU2	G2	78	6,779	-1.12, 2.9, -2.65, 0.92	G1G2	77	7,574	-2.1, 4.87, -3.82, 1.06
LU3	G2	77	45,783	-0.55, 1.67, -1.81, 0.75	G1G2	76	51,548	-0.7, 2.03, -2.03, 0.74

В номинальных границах было решено не рассматривать каналы G1 и G3, так как для них очень велики значения ошибок. При распределении по яркости первые 2 интервала имеют большие значения ошибок. Поэтому при распределении по жесткости из рассмотрения были

исключены всплески из первых двух интервалов яркости.

В таблицах представлены комбинации каналов, дающие наименьшее и второе по малости значения χ^2/dof и сами значения χ^2/dof во всех интервалах жестокости и яркости для всплесков S1(таблица 3), для всплесков S2 (таблица 4) в номинальных границах каналов.

Талица 3.

S1;	канал, дающий лучшее	dof	χ^2 / dof	Параметры, начинаю с параметра при старшей степени	канал, дающий второе	dof	χ^2 / dof	Параметры, начинаю с параметра при старшей степени
	значение				ПО			
					малости значение			
HR1	G2	35	0,154	-1.97, 4.33, -3.44, 1.06	G1G2	35	0,208	-1.56, 3.54, -2.83, 0.85
HR2	G1G2	35	0,077	-0.4, 1.11, -1.23, 0.52	G2	35	0,129	-0.14, 0.66, -1.11, 0.6
HR3	G1G2	34	1,016	-1.6, 3.35, -2.51, 0.73	G2	36	2,819	-2.09, 4.05, -2.85, 0.83
LU1	G1G2	35	0,211	-0.74, 1.68, -1.44, 0.5	G2	35	0,266	-0.09, 0.25, -0.53, 0.37
LU2	G1G2	35	0,138	-2.07, 4.44, -3.37, 0.96	G2	35	0,154	-2.06, 4.44, -3.5, 1.09
LU3	G1G2	34	0,521	-0.9, 2.19, -1.93, 0.65	G1G2G3	36	1,32	-1.95, 3.86, -2.81, 0.89

Талипа 4.

S2;	канал, дающий лучшее	dof	χ^2 / dof	Параметры, начинаю с параметра при старшей степени	канал, дающий второе	dof	χ^2 / dof	Параметры, начинаю с параметра при старшей степени
	значение			Степени	по малости			Степени
					значение			
HR1	G1G2	37	0,087	-2.92, 6.39, -4.61, 1.14	G2	37	0,126	-1.52, 3.76, -3.18, 0.96
HR2	G1G2	37	0,433	-1.71, 3.82, -2.91, 0.8	G2	37	0,602	-1.28, 3.08, -2.6, 0.82
HR3	G1G2	38	1,065	-1.05, 2.67, -2.3, 0.7	G2	38	1,713	-0.72, 2.18, -2.15, 0.73
LU1	G2	37	0,191	-2.0, 4.77, -3.76, 1.01	G1G2	37	0,252	-2.38, 5.32, -3.94, 0.99
LU2	G1G2	37	0,117	-1.53, 3.6, -2.86, 0.81	G2	37	0,152	-0.88, 2.4, -2.24, 0.75
LU3	G1G2	38	1,146	-1.63, 3.47, -2.6, 0.73	G2	38	1,741	-1.26, 2.88, -2.38, 0.76

В результате после разбиения всплесков на интервалы по жесткости и яркости удалось выявить канал или комбинацию каналов, дающих наилучшую аппроксимацию для каждого интервала всплесков по жесткости и яркости.

При переводе в номинальные границы существенно возросли значения ошибок. Особенно для канала G1 и первых двух интервалов яркости. Это связано с тем, что канал G1 и неяркие всплески имеют небольшое относительное превышение над фоном. По таблицам 13 и 14 видно, что значения χ^2 / dof для G1 и для первых двух интервалов яркости значительно ниже, чем для остальных.

Значения χ^2 / dof для всех интервалов во всех каналах приведены в приложении.

Так же в приложении приведены для каждого интервала график зависимости $R(\cos\Theta)$ для той комбинаций каналов, аппроксимация которых дала наименьшие значения χ^2 / dof для каждого интервала.

В приложении представлены зависимости R(Θ) для каналов G2, G1G2, G2G3.

Приложение:

Таблица 6. Значения χ^2 / dof для всех комбинаций каналов во всех интервалах жёсткости для всплесков S1 и S2 в исходных границах каналов.

	G1	G1	G2	G2	G3	G3	G1G2	G1G2	G2G3	G2G3	G1G2G3	G1G2G3
	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2
HR1	3,271	7,615	8,414	4,335	1,965	1,157	12,694	6,822	10,548	4,62	19,316	7,137
HR2	3,931	3,713	8,493	14,664	6,358	2,473	6,621	11,984	14,099	17,746	14,249	16,667
HR3	4,715	10,664	25,127	29,416	20,332	5,685	16,496	27,754	37,703	33,045	31,907	32,214

Таблица 7. Значения χ^2 / dof для всех комбинаций каналов во всех интервалах яркости для всплесков S1 и S2 в исходных границах каналов.

	G1	G1	G2	G2	G3	G3	G1G2	G1G2	G2G3	G2G3	G1G2G3	G1G2G3
	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2
LU1	2,877	2,6	3,197	2,78	1,598	0,966	3,719	2,874	3,52	2,67	7,732	3,096
LU2	2,247	3,557	8,181	6,779	7,333	2,19	7,056	7,574	12,958	7,693	12,946	9,747
LU3	6,496	12,349	33,759	45,783	18,801	6,404	37,898	51,548	46,526	57,3	78,386	72,768

Таблица 8. Значения χ^2 / dof для всех комбинаций каналов во всех интервалах жёсткости для всплесков S1 и S2 в номинальных границах каналов.

	G1	G1	G2	G2	G3	G3	G1G2	G1G2	G2G3	G2G3	G1G2G3	G1G2G3
	S1	S2	S1	S2								
HR1	0,032	0,221	0,266	0,191	0,667	0,109	0,211	0,252	0,79	0,254	0,69	0,31
HR2	0,011	0,061	0,154	0,152	0,347	0,378	0,138	0,117	0,664	0,434	0,202	0,334
HR3	0,042	0,275	2,421	1,741	3,398	1,035	0,521	1,146	3,764	2,657	1,32	2,163

Таблица 9. Значения χ^2 / dof для всех комбинаций каналов во всех интервалах яркости для всплесков S1 и S2 в номинальных границах каналов.

	G1	G1	G2	G2	G3	G3	G1G2	G1G2	G2G3	G2G3	G1G2G3	G1G2G3
	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2
LU1	0,015	0,039	0,154	0,126	0,604	0,193	0,208	0,087	0,741	0,185	0,277	0,199
LU2	0,017	0,102	0,129	0,602	0,584	0,324	0,077	0,433	0,546	0,786	0,639	0,746
LU3	0,066	0,402	2,819	1,713	4,053	1,064	1,016	1,065	5,587	2,662	5,156	3,01

Таблица 10. Значения χ^2 / dof для всех комбинаций каналов без разбиения по жесткости и яркости для всплесков S1 и S2 в исходных границах каналов.

G1	G1	G2	G2	G3	G3	G1G2	G1G2	G2G3	G2G3	G1G2G3	G1G2G3
S1	S2	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2
5,267	8,621	16,46	19,783	10,394	3,369	17,889	23,838	23,56	23,948	29,662	32,096

Таблица 11. Значения χ^2/dof для всех комбинаций каналов без разбиения по жесткости и яркости для всплесков S1 и S2 в номинальных границах каналов.

G1	G1	G2	G2	G3	G3	G1G2	G1G2	G2G3	G2G3	G1G2G3	G1G2G3
S1	S2	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2
0,034	0,124	0,317	0,484	0,95	0,342	0,307	0,348	1,367	0,817	0,9	0,761

RG2_S1_HR_2(cos_Tetta) χ 2= 8.493 d= 73 Δ = 0.1 -1.54 3.41 -3.11 1.25

RG2_S1_HR_3(cos_Tetta) χ 2= 25.127 d= 72 Δ = 0.14 -0.96 2.05 -2.04 0.9

RG2_S2_HR_3(cos_Tetta) χ 2= 29.416 d= 77 Δ = 0.14 -1.09 2.71 -2.43 0.8

RG1G2_S1_HR_2(cos_Tetta) χ 2= 6.621 d= 71 Δ = 0.07 -1.41 3.3 -2.91 1.0

RG1G2_S1_HR_3(cos_Tetta) χ 2= 16.496 d= 71 Δ = 0.12 -1.4 3.0 -2.52 0.9

RG1G2_S2_HR_3(cos_Tetta) χ 2= 27.754 d= 76 Δ = 0.14 -1.83 4.03 -3.14 (

RG2G3_S1_HR_2(cos_Tetta) χ 2= 14.099 d= 73 Δ = 0.12 -1.45 3.18 -2.96

RG2G3_S2_HR_2(cos_Tetta) χ 2= 17.746 d= 78 Δ = 0.12 -0.56 1.62 -1.69 (

RG2G3_S1_HR_3(cos_Tetta) χ 2= 37.703 d= 72 Δ = 0.15 -1.08 2.16 -2.06

cos_Tetta

RG2G3_S2_HR_3(cos_Tetta) χ 2= 33.045 d= 77 Δ = 0.13 -0.95 2.41 -2.22 (

RG2_S1_LU_2(cos_Tetta) χ 2= 8.181 d= 73 Δ = 0.11 -0.76 1.89 -2.15 1.05

RG2_S2_LU_2(cos_Tetta) χ 2= 6.779 d= 78 Δ = 0.11 -1.12 2.9 -2.65 0.92

RG2_S1_LU_3(cos_Tetta) χ 2= 33.759 d= 72 Δ = 0.13 -0.9 1.87 -1.91 0.95

RG2_S2_LU_3(cos_Tetta) χ 2= 45.783 d= 77 Δ = 0.12 -0.55 1.67 -1.81 0.73

RG1G2_S1_LU_2(cos_Tetta) χ 2= 7.056 d= 71 Δ = 0.07 -1.15 2.84 -2.66 0.

RG1G2_S1_LU_3(cos_Tetta) χ 2= 37.898 d= 71 Δ = 0.09 -1.6 3.44 -2.77 0.

RG1G2_S2_LU_3(cos_Tetta) χ 2= 51.548 d= 76 Δ = 0.12 -0.7 2.03 -2.03 0.

RG2G3_S1_LU_2(cos_Tetta) χ 2= 12.958 d= 73 Δ = 0.11 -0.71 1.81 -2.13 1

RG2G3_S2_LU_2(cos_Tetta) χ 2= 7.693 d= 78 Δ = 0.11 -1.06 2.74 -2.51 0.

RG2G3_S1_LU_3(cos_Tetta) χ 2= 46.526 d= 72 Δ = 0.15 -1.17 2.24 -2.04 (

RG2G3_S2_LU_3(cos_Tetta) χ 2= 57.3 d= 77 Δ = 0.13 -0.43 1.43 -1.64 0.7

RG2_S1_LU_nom_2(cos_Tetta) χ 2= 0.129 d= 35 Δ = 0.05 -0.14 0.66 -1.11

RG2_S2_LU_nom_2(cos_Tetta) χ 2= 0.602 d= 37 Δ = 0.12 -1.28 3.08 -2.6 (

RG2_S1_LU_nom_3(cos_Tetta) χ 2= 2.819 d= 36 Δ = 0.15 -2.09 4.05 -2.85

RG2_S2_LU_nom_3(cos_Tetta) χ 2= 1.713 d= 38 Δ = 0.1 -0.72 2.18 -2.15 (

RG1G2_S1_LU_nom_2(cos_Tetta) χ 2= 0.077 d= 35 Δ = 0.04 -0.4 1.11 -1.2

RG1G2_S2_LU_nom_2(cos_Tetta) χ 2= 0.433 d= 37 Δ = 0.1 -1.71 3.82 -2.9

RG1G2_S1_LU_nom_3(cos_Tetta) χ 2= 1.016 d= 34 Δ = 0.08 -1.6 3.35 -2.5

RG1G2_S2_LU_nom_3(cos_Tetta) χ 2= 1.065 d= 38 Δ = 0.09 -1.05 2.67 -2

RG2G3_S1_LU_nom_2(cos_Tetta) χ 2= 0.546 d= 35 Δ = 0.11 0.63 -0.69 -0

RG2G3_S1_LU_nom_3(cos_Tetta) χ 2= 5.587 d= 36 Δ = 0.27 -1.93 3.84 -3

RG2G3_S2_LU_nom_3(cos_Tetta) χ 2= 2.662 d= 38 Δ = 0.15 0.58 -0.05 -1

RG2_S1_HR_nom_2(cos_Tetta) χ 2= 0.154 d= 35 Δ = 0.06 -2.06 4.44 -3.5

RG2_S2_HR_nom_2(cos_Tetta) χ 2= 0.152 d= 37 Δ = 0.05 -0.88 2.4 -2.24

RG2_S1_HR_nom_3(cos_Tetta) χ 2= 2.421 d= 36 Δ = 0.17 -1.6 3.18 -2.39

cos_Tetta

0.6

0.8

-0.2

0.2

RG2_S2_HR_nom_3(cos_Tetta) χ 2= 1.741 d= 38 Δ = 0.16 -1.26 2.88 -2.38

RG1G2_S1_HR_nom_2(cos_Tetta) χ 2= 0.138 d= 35 Δ = 0.06 -2.07 4.44 -3

RG1G2_S2_HR_nom_2(cos_Tetta) χ 2= 0.117 d= 37 Δ = 0.04 -1.53 3.6 -2.8

RG1G2_S1_HR_nom_3(cos_Tetta) χ 2= 0.521 d= 34 Δ = 0.07 -0.9 2.19 -1.9

RG1G2_S2_HR_nom_3(cos_Tetta) χ 2= 1.146 d= 38 Δ = 0.13 -1.63 3.47 -2

RG2G3_S1_HR_nom_2(cos_Tetta) χ 2= 0.664 d= 35 Δ = 0.15 -2.21 5.05 -4

RG2G3_S2_HR_nom_2(cos_Tetta) χ 2= 0.434 d= 37 Δ = 0.08 -0.69 2.3 -2.4

RG2G3_S1_HR_nom_3(cos_Tetta) χ 2= 3.764 d= 36 Δ = 0.2 -1.05 2.86 -2.3

RG2G3_S2_HR_nom_3(cos_Tetta) χ 2= 2.657 d= 38 Δ = 0.21 0.24 0.46 -1.

