Centrifugal Compressor Failure Analysis

Mr. Cliff Knight, PE

President and Chief Engineer

Dr. Carlos R Corleto

Director of Materials Lab & Field Services

KnightHawk Engineering, Inc. 17625 El Camino Real, Suite 412, Houston, TX 77058, USA

Outline

- Introduction & Background
- Site Visits
- Root Cause Failure Analysis
 - Failure Site Assessment
 - Mechanical, Metallurgical, Compressor Performance
 - Failure Scenario Assessment
- Conclusions
- Recommendations

Introduction & Background

- Compressor failure at refining facility in Gulf Coast of USA
 - 6000 HP two stage process gas compressor in catalytic cracking process
 - Catastrophic failure occurred prior to shutdown for turnaround

Site Visits

- KHE conducted 4 site visits
 - Observed failed compressor documentation
 - Gathered relevant data process/mechanical
 - Interview plant personnel chain of events
 - Inspect failed components metallography
 - Directed removal of compressor preservation of evidence
 - Discuss analyses results conducted Failure scenarios

Failure Site Assessment

- Impellers still on rotor
- Sudden case rupture evidence

Evidence of rubbing

Recreation of Failed Compressor

Root Cause Failure Analysis Metallurgical Assessment

- Damaged casing separated by brittle fracture under sudden overload
 - Most of the case broke into large pieces
 - No sign of fatigue, corrosion or impact damage
 - Fracture origin difficult to detect due to brittle nature of cast iron
- Inlet vanes showed signs of thinning and pitting due to corrosion but had no effect on the failure
- Corrosion on pipe and cast fittings
 - Not related to failure

Root Cause Failure Analysis Mechanical Assessment - Vibrations, Bearings, Power

- No significant changes in measured radial and axial vibration levels before failure (maybe due to slow sampling time)
 - However, Stage 2 thrust bearing shows significant activity even though failure occurred in Stage 1
 - Maybe due to coupling of stages or clearances favor loading in Stage 2
- Lower bearing temps suggest bearings loads decreased
- Power trend shows unloading of compressor (decreasing process load) at 3:30 am
 - After 6:50 am power signals visibly unstable
- Motor and compressor power imbalance possible due to:
 - Increased flow through balance line
 - Measured pressure ratios lower than actual
 - Measurement error in flow rate at low flow
 - Recirculation through Stage 1.

Root Cause Failure Analysis

Mechanical Assessment - Thermal, nozzle design, piping

- Case thermal stresses below case strength
- Suction and discharge pipe stresses within acceptable design stress levels

Discharge nozzle stresses

acceptable

Root Cause Failure Analysis Mechanical Assessment - Projectile Analysis

 50 lbs projectile piece due to explosion not discharge pressure

Root Cause Failure Analysis Compressor Performance Review - Stage I

- Surging evidence
 - Data from 3:00 AM until failure around 7 PM

Root Cause Failure Analysis Compressor Performance Review - Stage II

- Evidence of surging evidence
 - Data from 3:00 AM until failure around 7 PM

Root Cause Failure Analysis Surge Control Evaluation

- Surge control with spillback valve for both stages
 - Inadequate, response time too slow
 - Separate surge control systems with short response time needed for each stage

Root Cause Failure Analysis Failure Scenario Assessment

- At 3:30 am periodic surges started; before 4:00 am a more significant surge took place
 - Compressor more unstable
 - Flow readings, amps readings of motor drive and thrust bearing temps (no protection)
- After initial surging, erratic DSC trend data
- Another major surge at ~ 6:50 am after reactor shutoff
 - Possible damage to balance piston or labyrinth seals of 1 Stage
 - Compressor became highly inefficient
 - 1 stage discharge temp increase while suction temp decreased
 - Probably due to recirculation via internal leak from component damage, incipient surge, full surge or gas through balance line

Root Cause Failure Analysis Failure Scenario Assessment

- At 7:14 pm another possible significant surge might have cause the following failure scenario:
 - Thrust rotor towards discharge end (no protection)
 - Impeller contact with stationary components
 - Rub damage on backside of third impeller possibly caused upper and lower sections compressor failure, allowing air to enter compressor
 - Ignition source as well
- Analysis of all data provided strongly suggested the root cause of the failure is the surging of the compressor without adequate surge protection.
- Without surging , failure would not have occurred.

Conclusions

 Analysis of all data suggest that surging of the compressor without adequate surge and thrust bearing (axial displacement and temperature) protection were main causal factors.

Recommendations

- Modification of compressor surge control
 - Provide appropriate surge protection for both stages
 - Surge control with only Stage 2 spillback should be reviewed
- Verify material imbalance around shutdown
 - Review up and downstream process flows
- Use performance curves during operation
- Install polytrophic/measured discharge temp alarm
- Install surge alarm
- Install thrust movement and vibration protection systems

Recommendations

- Install on-line gas analyzer
 - Account molecular weight variations for suction flow measurements
 - Improved compressor control
- Install leak detection monitors

Recommendations were implemented and the replacement compressor ran well for several years until the plant was shut down and dismantled