Extensive training of orientation filtered textures increases generalization of learning

Ali Hashemi, Allison B. Sekuler, and Patrick J. Bennett

Department of Psychology, Neuroscience & Behaviour, McMaster University

Background

Perceptual learning reflects improved sensitivity to diagnostic stimulus components.¹

Discriminating particular orientation components in a texture identification task is difficult when orthogonal, uninformative orientation components (i.e., context) are present.²

Learning to discriminate particular orientation components of textures with a varying context on every trial (~1000 trials over 2 days) produces context-generalizable, but target-specific, learning.^{3,4}

Will extended training lead to stronger learning and increased generalization?

Learning to identify targets within in a context (hT+vC) generalized to the familiar targets presented alone (hT+alone), but *not* vice versa.

Context generalization:

- (1) requires target+context training³
- (2) requires familiar targets^{3,4}
- (3) can be promoted with a cue³
- (4) is not a by-product of difficulty⁴ (see Poster #33.4049)

In post-session interviews, 10 out of 12 participants eventually described discovering and then seeking horizontal structure.

Time of reporting strategy did not systematically relate to changes in learning rate.

Training produced significantly better accuracy for:

novel targets in a

familiar context

familiar orientation &

familiar orientation &

familiar targets in a familiar orientation & familiar context

familiar orientation &

novel orientation & novel (no)context

> Training improvement correlated only with context generalization.

Extended training on target+context textures allows observers to form effective strategies to identify structure in diagnostic orientation bands.

Variability in the context is essential to avoid context-specific learning,3 and likely promotes the re-weighting of orientation channels.

References

- 1. Gold, Sekuler & Bennett, (2004), Cog Sci.
- 2. Olzak & Thomas, (1991), Vis Res
- 3. Hashemi, Pachai, Sekuler & Bennett, (2016), VSS 4. Serrano, Hashemi, Sekuler & Bennett. *Poster #33.4049*

The authors would like to thank Donna Waxman for her help in collecting the data, and the funding agencies for their generous support.