```
    <trimLPO()>

    if(LPO_TRIM_VALUE!= 0xFFFFU) //ffffr가 아니면 구동이 된다. LPO는 저전력 발진기.

    {

    systemREG1->LPOMONCTL = (uint32)((uint32)1U << 24U) //24번비트를 사용하겠다.</td>

    HF는 중심 주파수라고 해서 우리가 원하는 주파수로 깍아 버린다는 것이다.

    | LPO_TRIM_VALUE;

    }

    else

    {

    systemREG1->LPOMONCTL = (uint32)((uint32)1U << 24U)</td>

    | (uint32)((uint32)16U << 8U)</td>

    | 16U;
```

Bit	Field	Value	Description
12-8	HFTRIM		High-frequency oscillator trim value. This four-bit value is used to center the HF oscillator's frequency.
			Caution: This value should only be changed when the HF oscillator is not the source for a clock domain, otherwise a system failure could result.
			The following values are the ratio: f / fo in the F021 process.

}

2.5.1.30 LPO/Clock Monitor Control Register (LPOMONCTL)

The LPOMONCTL register, shown in Figure 2-37 and described in Table 2-49, controls the Low Frequency (Clock Source 4) and High Frequency (Clock Source 5) Low Power Oscillator's trim values.

Figure 2-37. LPO/Clock Monitor Control Register (LPOMONCTL) (offset = 088h)

31			25	24	23			17	16	
Reserved				BIAS ENABLE		Reserve	d		OSCFRQCONFIGCNT	
R-0				R/WP-1 R-0				R/WP-0		
15	13	12		8	7	5	4			0
Reserved		HFTRIM		R	Reserved			LFTRIM		
R-0			R/WP-10	h		R-0			R/WP-10h	

LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset

Table 2-49. LPO/Clock Monitor Control Register (LPOMONCTL) Field Descriptions

Bit	Field	Value	Description
31-25	Reserved	0	Reads return 0. Writes have no effect.
24	BIAS ENABLE		Bias enable.
		0	The bias circuit inside the low-power oscillator (LPO) is disabled.
		1	The bias circuit inside the low-power oscillator (LPO) is enabled.
23-17	Reserved	0	Reads return 0. Writes have no effect.
16	OSCFRQCONFIGCNT		Configures the counter based on OSC frequency.
		0	Read: OSC freq is ≤ 20MHz.
			Write: A write of 0 has no effect.
		1	Read: OSC freq is > 20MHz and ≤ 80MHz.
			Write: A write of 1 has no effect.
15-13	Reserved	0	Reads return 0. Writes have no effect.

#define LPO_TRIM_VALUE (((*(volatile uint32 *)0xF00801B4U) & 0xFFFF0000U)>>16U)
:최상위 16비트만 사용하겠다.

/* USER CODE BEGIN (11) */

/* USER CODE END */

/** @b Initialize @b Clock @b Tree: */

/** - Setup system clock divider for HCLK */

systemREG2->HCLKCNTL = 1U;//2분주를 시켜서 사용 ,상당히 통신하는데 빠르다.(300MHZ)

/** - Disable / Enable clock domain */

systemREG1->CDDIS = (uint32)((uint32)0U << 4U) /* AVCLK1 , 1 - OFF, 0 - ON */ //4번 비트를 사용

| (uint32)((uint32)1U << 5U) /* AVCLK2 , 1 - OFF, 0 - ON */

```
| (uint32)((uint32)0U << 8U ) /* VCLK3 , 1 - OFF, 0 - ON */
| (uint32)((uint32)0U << 9U ) /* VCLK4 , 1 - OFF, 0 - ON */
| (uint32)((uint32)0U << 10U) /* AVCLK3 , 1 - OFF, 0 - ON */
| (uint32)((uint32)0U << 11U); /* AVCLK4 , 1 - OFF, 0 - ON */
```

Figure 2-20. Clock Domain Disable Register (CDDIS) (offset = 3Ch)

	31													
		Reserved												
				R	-0									
	15			12	11	10	9	8						
		Rese	erved		VCLKA40FF	Reserved	Reserved	VCLK3OFF						
		R	-0		R/WP-0	R/WP-0	R/WP-0	R/WP-0						
	7	6	5	4	3	2	1	0						
	Reserved	RTICLK10FF	VCLKA20FF	VCLKA10FF	VCLK2OFF	VCLKPOFF	HCLKOFF	GCLK10FF						
_	DAMP 0	DAMP 0	DAME O	DAMP 0	DAME O	DAMP 0	DIMP 0	DAME O						

LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset

Table 2-32. Clock Domain Disable Register (CDDIS) Field Descriptions

Bit	Field	Value	Description
31-12	Reserved	0-1	Reads return 0 or 1 and privilege mode writes allowed.
11	VCLKA4OFF		VCLKA4 domain off.
		0	The VCLKA4 domain is enabled.
		1	The VCLKA4 domain is disabled.
10-9	Reserved	0-1	Reads return 0 or 1 and privilege mode writes allowed.
8	VCLK3OFF		VCLK3 domain off.
		0	The VCLK3 domain is enabled.
		1	The VCLK3 domain is disabled.
7	Reserved	0-1	Reads return 0 or 1 and privilege mode writes allowed.
6	RTICLK10FF		RTICLK1 domain off.
		0	The RTICLK1 domain is enabled.
		1	The RTICLK1 domain is disabled.
5-4	VCLKA[2-1]OFF		VCLKA[2-1] domain off.
		0	The VCLKA[2-1] domain is enabled.
		1	The VCLKA[2-1] domain is disabled.
3	VCLK2OFF		VCLK2 domain off.
		0	The VCLK2 domain is enabled.
		1	The VCLK2 domain is disabled.
2	VCLKPOFF		VCLK_periph domain off.
		0	The VCLK_periph domain is enabled.
		1	The VCLK_periph domain is disabled.

5.5 Switching Characteristics over Recommended Operating Conditions for Clock Domains

Table 5-2. Clock Domain Timing Specifications

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
fosc	OSC - oscillator clock frequency using an external crystal		5	20	MHz
f _{GCLK1}	GCLK - R5F CPU clock frequency			300	MHz
f _{GCLK2}	GCLK - R5F CPU clock frequency			300	MHz
f _{HCLK}	HCLK - System clock frequency			150	MHz
f _{VCLK}	VCLK - Primary peripheral clock frequency			110	MHz
f _{VCLK2}	VCLK2 - Secondary peripheral clock frequency			110	MHz
f _{VCLK3}	VCLK3 - Secondary peripheral clock frequency			150	MHz
f _{VCLKA1}	VCLKA1 - Primary asynchronous peripheral clock frequency			110	MHz
f _{VCLKA2}	VCLKA2 - Secondary asynchronous peripheral clock frequency			110	MHz
f _{VCUKA4}	VCLKA4 - Secondary asynchronous peripheral clock frequency			110	MHz
f _{RTICLK1}	RTICLK1 - clock frequency			f _{VCLK}	MHz
f _{PROG/ERASE}	System clock frequency - flash programming/erase			f _{HCLK}	MHz
f _{ECLK1}	External Clock 1			110	MHz
f _{ECLK2}	External Clock 2			110	MHz
f _{ETMCLKOUT}	ETM trace clock output			55	MHz
f _{ETMCLKIN}	ETM trace clock input			110	MHz
f _{EXTCLKIN1}	External input clock 1			110	MHz
f _{EXTCLKIN2}	External input clock 2			110	MHz

각 VCLKA마다 사용하는 주파수가 다르다.

2.5.1.10 Clock Source Disable Register (CSDIS)

The CSDIS register, shown in Figure 2-17 and described in Table 2-28, controls and displays the state of the device clock sources.

Figure 2-17. Clock Source Disable Register (CSDIS) (offset = 30h)

31							8						
	Reserved												
	R-0												
7	7 6 5 4 3 2 1												
CLKSR70F	FF CLKSR60FF	CLKSR50FF	CLKSR4OFF	CLKSR3OFF	Reserved	CLKSR10FF	CLKSR0OFF						
R/WP-1	R/WP-1	R/WP-0	R/WP-0	R/WP-1	R-1	R/WP-1	R/WP-0						

LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset

Table 2-28. Clock Source Disable Register (CSDIS) Field Descriptions

Bit	Field	Value	Description
31-8	Reserved	0	Reads return 0. Writes have no effect.
7-3	CLKSR[7-3]OFF		Clock source[7-3] off.
		0	Clock source[7-3] is enabled.
		1	Clock source[7-3] is disabled.
			Note: On wakeup, only clock sources 0, 4, and 5 are enabled.
2	Reserved	1	Reads return 1. Writes have no effect.
1-0	CLKSR[1-0]OFF		Clock source[1-0] off.
		0	Clock source[1-0] is enabled.
		1	Clock source[1-0] is disabled.
			Note: On wakeup, only clock sources 0, 4, and 5 are enabled.

Table 2-29. Clock Sources Table

Clock Source #	Clock Source Name
Clock Source 0	Oscillator
Clock Source1	PLL1
Clock Source 2	Not Implemented
Clock Source 3	EXTCLKIN
Clock Source 4	Low Frequency LPO (Low Power Oscillator) clock
Clock Source 5	High frequency LPO (Low Power Oscillator) clock
Clock Source 6	PLL2
Clock Source 7	EXTCLKIN2

2.5.1.13 Clock Domain Disable Register (CDDIS)

The CDDIS register, shown in Figure 2-20 and described in Table 2-32, controls the state of the clock domains.

NOTE: All the clock domains are enabled on wakeup.

The application should assure that when HCLK and VCLK_sys are turned off through the HCLKOFF bit, the GCLK1 domain is also turned off.

The register bits in CDDIS are designated as high-integrity bits and have been implemented with error-correcting logic such that each bit, although read and written as a single bit, is actually a multi-bit key with error correction capability. As such, single-bit flips within the "key" can be corrected allowing protection of the system as a whole. An error detected is signaled to the ESM module.

```
<SYSTEM 안정화>
/** - Wait for until clocks are locked */
   SYS_CSVSTAT = systemREG1->CSVSTAT;
   SYS_CSDIS = systemREG1->CSDIS;
여기서 LOCK이란 무엇인가?
처음에 OVERFLOW가 생기면 오버플로우가 안정이 될때까지 딜레이 시간이 필요하기에 그전
까지 LOCK을 걸어놓는다.
systemREG1->GHVSRC = (uint32)((uint32)SYS_PLL1 << 24U)
                  | (uint32)((uint32)SYS_PLL1 << 16U)
                  | (uint32)((uint32)SYS_PLL1 << 0U);
                    <real-time컴파일러 최적화를 위한 코딩 = 쓸때없는 코드>
 systemREG1->RCLKSRC = (uint32)((uint32)1U << 24U)
                                                /* RTI2 divider (Not
applicable for lock-step device) */
                   | (uint32)((uint32)SYS_VCLK << 16U) /* RTI2 clock source (Not
applicable for lock-step device) */
                   | (uint32)((uint32)SYS_VCLK << 0U);
```

systemREG1->VCLKASRC = (uint32)((uint32)SYS_VCLK << 8U)

:동기화

| (uint32)((uint32)SYS_VCLK << 0U);

VCLK2R의 2분주가 되겠다.

systemREG2->CLK2CNTRL = (systemREG2->CLK2CNTRL & 0xFFFFFF0U)

| (uint32)((uint32)1U << 0U);

:vclk3를 2분주로 사용하겠다는 의미

systemREG2->VCLKACON1 = (uint32)((uint32)(1U - 1U) << 24U)

| (uint32)((uint32)0U << 20U)

| (uint32)((uint32)SYS_VCLK << 16U) // VCLKA4와VCLK의 속도가

같다.

| (uint32)((uint32)(1U - 1U) << 8U)

| (uint32)((uint32)0U << 4U)

| (uint32)((uint32)SYS_VCLK << 0U);

2.5.2.4 Clock 2 Control Register (CLK2CNTRL)

This register is shown in Figure 2-62 and described in Table 2-75.

Figure 2-62. Clock 2 Control Register (CLK2CNTRL) (offset = 3Ch)

LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset

Table 2-75. Clock 2 Control Register (CLK2CNTRL) Field Descriptions

Bit	Field	Value	Description
31-12	Reserved	0	Reads return 0. Writes have no effect.
11-8	Reserved		Reads return value and writes allowed in privilege mode.
7-4	Reserved	0	Reads return 0. Writes have no effect.
3-0	VCLK3R		VBUS clock3 ratio.
		0	The ratio is HCLK divide by 1.
		:	:
		Fh	The ratio is HCLK divided by 16.

2.5.1.16 GCLK1, HCLK, VCLK, and VCLK2 Source Register (GHVSRC)

The GHVSRC register, shown in Figure 2-23 and described in Table 2-35, controls the clock source configuration for the GCLK1, HCLK, VCLK and VCLK2 clock domains.

Figure 2-23. GCLK1, HCLK, VCLK, and VCLK2 Source Register (GHVSRC) (offset = 48h)

31	:	28	27		24	23		20	19		16
	Reserved			GHVWAKE			Reserved			HVLPM	
	R-0			R/WP-0			R-0			R/WP-0	
15								4	3		0
				Reserved						GHVSRC	
				R-0						R/WP-0	

LEGEND: R = Read only; R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset

Table 2-35. GCLK1, HCLK, VCLK, and VCLK2 Source Register (GHVSRC) Field Descriptions

Bit	Field	Value	Description
31-28	Reserved	0	Reads return 0. Writes have no effect.
27-24	GHVWAKE		GCLK1, HCLK, VCLK source on wakeup.
		0	Clock source0 is the source for GCLK1, HCLK, VCLK on wakeup.
		1h	Clock source1 is the source for GCLK1, HCLK, VCLK on wakeup.
		2h	Clock source2 is the source for GCLK1, HCLK, VCLK on wakeup.
		3h	Clock source3 is the source for GCLK1, HCLK, VCLK on wakeup.
		4h	Clock source4 is the source for GCLK1, HCLK, VCLK on wakeup.
		5h	Clock source5 is the source for GCLK1, HCLK, VCLK on wakeup.
		6h	Clock source6 is the source for GCLK1, HCLK, VCLK on wakeup.
		7h	Clock source7 is the source for GCLK1, HCLK, VCLK on wakeup.
		8h-Fh	Reserved
23-20	Reserved	0	Reads return 0. Writes have no effect.
19-16	HVLPM		HCLK, VCLK, VCLK2 source on wakeup when GCLK1 is turned off.
		0	Clock source0 is the source for HCLK, VCLK, VCLK2 on wakeup.
		1h	Clock source1 is the source for HCLK, VCLK, VCLK2 on wakeup.
		2h	Clock source2 is the source for HCLK, VCLK, VCLK2 on wakeup.
		3h	Clock source3 is the source for HCLK, VCLK, VCLK2 on wakeup.
		4h	Clock source4 is the source for HCLK, VCLK, VCLK2 on wakeup.
		5h	Clock source5 is the source for HCLK, VCLK, VCLK2 on wakeup.
		6h	Clock source6 is the source for HCLK, VCLK, VCLK2 on wakeup.
		7h	Clock source7 is the source for HCLK, VCLK, VCLK2 on wakeup.
		8h-Fh	Reserved

/* Now the PLLs are locked and the PLL outputs can be sped up */

/* The R-divider was programmed to be 0xF. Now this divider is changed to programmed value */

systemREG1->PLLCTL1 = (systemREG1->PLLCTL1 & 0xE0FFFFFFU) | (uint32)((uint32)(1U - 1U) << 24U); //24번비트를 분주없이 설정해놓았다는것을 의미

/*SAFETYMCUSW 134 S MR:12.2 <APPROVED> " Clear and write to the volatile register " */

systemREG2->PLLCTL3 = (systemREG2->PLLCTL3 & 0xE0FFFFFFU) | (uint32)((uint32)(1U -

1U) << 24U); //이하동문

```
systemREG1->SYSPC1 = 0U; // ECLK가 GIO모드로 동작을 한다.

/** - set ECLK pins default output value */

systemREG1->SYSPC4 = 0U;

/** - set ECLK pins output direction */

systemREG1->SYSPC2 = 1U; //출력모드

/** - set ECLK pins open drain enable */

systemREG1->SYSPC7 = 0U;

/** - set ECLK pins pullup/pulldown enable */

systemREG1->SYSPC8 = 0U;

/** - set ECLK pins pullup/pulldown select */

systemREG1->SYSPC9 = 1U;
```

2.5.1.1 SYS Pin Control Register 1 (SYSPC1)

The SYSPC1 register, shown in Figure 2-8 and described in Table 2-19, controls the function of the ECLK pin.

 31
 Reserved

 R-0

 15
 1
 0

 Reserved
 ECPCLKFUN

R-0

Figure 2-8. SYS Pin Control Register 1 (SYSPC1) (offset = 00h)

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2-19. SYS Pin Control Register 1 (SYSPC1) Field Descriptions

R/W-0

Bit	Field	Value	Description
31-1	Reserved	0	Reads return 0. Writes have no effect.
0	ECPCLKFUN		ECLK function. This bit changes the function of the ECLK pin.
		0	ECLK is in GIO mode.
		1	ECLK is in functional mode as a clock output.
			Note: Proper ECLK duty cycle is not guaranteed until 1 ECLK cycle has elapsed after switching into functional mode.

2.5.1.9 SYS Pin Control Register 9 (SYSPC9)

The SYSPC9 register, shown in Figure 2-16 and described in Table 2-27, controls the pull up/pull down configuration of the ECLK pin when it is configured as an input in GIO mode.

Figure 2-16. SYS Pin Control Register 9 (SYSPC9) (offset = 20h)

31			16
	Reserved		
	R-0		
15		1	0
	Reserved		ECPCLKPS
	R-0		R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2-27. SYS Pin Control Register 9 (SYSPC9) Field Descriptions

Bit	Field	Value	Description
31-1	Reserved	0	Reads return 0. Writes have no effect.
0	ECPCLKPS		ECLK pull up/pull down select. This bit is only active when ECLK is configured as an input in GIO mode and the pull up/pull down logic is enabled.
		0	ECLK pull down is selected, when pull up/pull down logic is enabled.
		1	ECLK pull up is selected, when pull up/pull down logic is enabled.
			Note: The ECLK pin pull up/pull down logic is enabled by clearing the ECPCLKPUE bit to 0 in the SYSPC8 register.
			Note: The ECLK pin is placed into GIO mode by clearing the ECPCLKFUN bit to 0 in the SYSPC1 register. The ECLK pin is placed in input mode by clearing the ECPCLKDIR bit to 0 in the SYSPC2 register.

6.6.2.2 Mapping of Clock Domains to Device Modules

Each clock domain has a dedicated functionality as shown in Figure 6-6.

<CLOCK DOMAIN DDEVICE 회로>

Table 2-62. ECP Control Register (ECPCNTL) Field Descriptions

Bit	Field	Value	Description
31-25	Reserved	0	Reads return 0. Writes have no effect.
24	ECPSSEL		This bit allows the selection between VCLK and OSCIN as the clock source for ECLK.
			Note: Other ECLK clock sources are available for debug purposes by configuring the CLKTEST register.
		0	VCLK is selected as the ECP clock source.
		1	OSCIN is selected as the ECP clock source.
23	ECPCOS		ECP continue on suspend.
			Note: Suspend mode is entered while performing certain JTAG debugging operations.
		0	ECLK output is disabled in suspend mode. ECLK output will be shut off and will not be seen on the I/O pin of the device.
		1	ECLK output is not disabled in suspend mode. ECLK output will not be shut off and will be seen on the I/O pin of the device.
22-18	Reserved	0	Reads return 0. Writes have no effect.
17-16	Reserved	0	Reads return 0 or 1 depends on what is written. The functionality of this bit is unavailable in this device.
15-0	ECPDIV	0-FFFFh	ECP divider value. The value of ECPDIV bits determine the external clock (ECP clock) frequency as a ratio of VBUS clock or OSCIN as shown in the formula:
			$ECLK = \frac{VCLK \text{ or } OSCIN}{(ECPDIV + 1)}$

coreEnableIrqVicOffset

mrc p15, #0, r0, c1, c0, #0 //STCLR 을불러온다.

orr r0, r0, #0x01000000 //STCLR의 24번비트를 1로 설정

mcr p15, #0, r0, c1, c0, #0

bx lr

.endasmfunc

FIQ로 쓸건지 IRQ로 쓸건지 결정하는 작업이 FIRQPR코드 이다. 급한 INTRRUPT는 FIQ로 해야 반응 빠르다.

```
/* set IRQ/FIQ priorities */
vimREG->FIRQPR0 = (uint32)((uint32)SYS_FIQ << 0U)</pre>
                 | (uint32)((uint32)SYS_FIQ << 1U)
                   (uint32)((uint32)SYS_IRQ << 2U)
                   (uint32)((uint32)SYS_IRQ << 3U)
                   (uint32)((uint32)SYS_IRQ << 4U)
                  (uint32)((uint32)SYS_IRQ << 5U)
                  (uint32)((uint32)SYS_IRQ << 6U)
                  (uint32)((uint32)SYS_IRQ << 7U)
                  (uint32)((uint32)SYS_IRQ << 8U)
                 (uint32)((uint32)SYS_IRQ << 9U)
                  (uint32)((uint32)SYS_IRQ << 10U)</pre>
                  (uint32)((uint32)SYS_IRQ << 11U)</pre>
                  (uint32)((uint32)SYS IRQ << 12U)</pre>
                  (uint32)((uint32)SYS_IRQ << 13U)</pre>
                  (uint32)((uint32)SYS_IRQ << 14U)</pre>
                  (uint32)((uint32)SYS_IRQ << 15U)
                  (uint32)((uint32)SYS_IRQ << 16U)</pre>
                  (uint32)((uint32)SYS_IRQ << 17U)
                  (uint32)((uint32)SYS_IRQ << 18U)</pre>
                  (uint32)((uint32)SYS IRQ << 19U)
                  (uint32)((uint32)SYS IRQ << 20U)</pre>
                  (uint32)((uint32)SYS_IRQ << 21U)
                  (uint32)((uint32)SYS_IRQ << 22U)
                  (uint32)((uint32)SYS_IRQ << 23U)
                  (uint32)((uint32)SYS_IRQ << 24U)
                  (uint32)((uint32)SYS IRQ << 25U)</pre>
                  (uint32)((uint32)SYS IRQ << 26U)
                 (uint32)((uint32)SYS IRQ << 27U)
                 (uint32)((uint32)SYS IRQ << 28U)
                 (uint32)((uint32)SYS_IRQ << 29U)
                 (uint32)((uint32)SYS_IRQ << 30U)
                 (uint32)((uint32)SYS_IRQ << 31U);
```

mpuInit(); //mcu의 1:1매핑에 대해서 해킹하는것을 방지하는 부분이다. 모든 mcu는 mpu가 있다.

mpuInit

```
; Disable mpu
mrc p15, #0, r0, c1, c0, #0
bic r0, r0, #1 //2의배수로 정렬을 시킨다. 이말은 0번비트를 무조건 날린다.
dsb
mcr p15, #0, r0, c1, c0, #0
isb //앞에 있는 명령어가 끝나기 전까지 아무것도 실행하지 말아라.
```

<DSB>

이 부분은 사진을 보고

결론:메모리를 동기화하기전까지는 아무것도 하지 말라는 부분.

mrc p15, #0, r0, c1, c0, #0
bic r0, r0, #0x20000 //17번비트를 날리겠다는 소리
mcr p15, #0, r0, c1, c0, #0

mov r0, #0x0008

orr r0, r0, #0x1000

mcr p15, #0, r0, c6, c1, #4

movw r0, #((1 << 15) + (1 << 14) + (1 << 13) + (1 << 12) + (1 << 11) + (1 << 10) + (1 << 9) + (1 << 8) + (0x1F << 1) + (1))

mcr p15, #0, r0, c6, c1, #2

: 이 부분에서는 7번비트만 제외하고 모든 비트를 활성화 시키고 있는것이다. 7번비트를 아래그림에서 보면 읽을수도 쓸수도없는 상태이다. 결국 아에 건들지말라는 소리이다

cacheEnable

	and
-	SBZ.
XN	Execute Never. Determines if a region of memory is executable:
	0 = all instruction fetches enabled
	1 = no instruction fetches enabled.
-	Reserved.
AP	Access permission. Defines the data access permissions. For more information on AP bit values, see Table 4-38 on page 4-58.
-	SBZ.
TEX	Type extension. Defines the type extension attribute ^a .
S	Share. Determines if the memory region is Shared or Non-shared:
	0 = Non-shared.
	1 = Shared.
	This bit only applies to Normal, not Device or Strongly Ordered memory.
С	C bita:
В	B bita:
	- AP - TEX S

cacheEnable

```
stmfd sp!, {r0-r1}
```

mov r0,#0

MRC p15, #0, r1, c1, c0, #1 ; Read auxiliary control register

BIC r1, r1, #0x1 << 5 ; bit is default set to disable ECC. Clearing bit 5

MCR p15, #0, r1, c1, c0, #1 ; enable ECC, generate abort on ECC errors, enable

; hardware recovery

MRC p15, #0, R1, c1, c0, #0 ; Read System Control Register configuration data

ORR R1, R1, #0x1 <<12 ; instruction cache enable

ORR R1, R1, #0x1 <<2 ; data cache enable

DSB

MCR p15, #0, r0, c15, c5, #0 ; Invalidate entire data cache

DSB ; delay is required, manually added

MCR p15, #0, r0, c7, c5, #0 ; Invalidate entire instruction cache **DSB** ; delay is required, manually added p15, #0, R1, c1, c0, #0 ; enabled cache RAMs **MCR ISB** Idmfd sp!, {r0-r1} bx Ir .endasmfunc. VIM Control Registers 19.9.11 Interrupt Enable Set Registers (REQENASET[0:3]) The interrupt register enable selectively enables individual request channels. Figure 19-27, Figure 19-28, Figure 19-29, Figure 19-30 and Table 19-16 describe these registers. NOTE: Channel 0 and 1 are always enabled, not impacted by this register. Figure 19-27. Interrupt Enable Set Register 0 (REQENASET0) [offset = 30h] 31 16 REQENASET0[31:16] R/WP-0 15 2 0 REQENASET0[15:2] Reserved R/WP-0 R-3h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Figure 19-28. Interrupt Enable Set Register 1 (REQENASET1) [offset = 34h] REQENASET1[63:32] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Figure 19-29. Interrupt Enable Set Register 2 (REQENASET2) [offset = 38h] REQENASET2[95:64] LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Figure 19-30. Interrupt Enable Set Register 3 (REQENASET3) [offset = 3Ch] REQENASET3[127:96] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset

이 부분이 ISR[128]에 들어가는 값들이다.

```
vimREG->REQMASKSET0 = (uint32)((uint32)1U << 0U)</pre>
                   | (uint32)((uint32)1U << 1U)
                      (uint32)((uint32)0U << 2U)
                      (uint32)((uint32)0U << 3U)
                     (uint32)((uint32)0U << 4U)
                     (uint32)((uint32)0U << 5U)
                     (uint32)((uint32)0U << 6U)
                     (uint32)((uint32)0U << 7U)
                     (uint32)((uint32)0U << 8U)
                     (uint32)((uint32)0U << 9U)
                     (uint32)((uint32)0U << 10U)
                     (uint32)((uint32)0U << 11U)
                     (uint32)((uint32)0U << 12U)
                     (uint32)((uint32)0U << 13U)
                     (uint32)((uint32)0U << 14U)
                    (uint32)((uint32)0U << 15U)
                    (uint32)((uint32)0U << 16U)
                    (uint32)((uint32)0U << 17U)
                    (uint32)((uint32)0U << 18U)
                    (uint32)((uint32)0U << 19U)
                    (uint32)((uint32)0U << 20U)
                    (uint32)((uint32)0U << 21U)
                    (uint32)((uint32)0U << 22U)
                    (uint32)((uint32)0U << 23U)
                    (uint32)((uint32)0U << 24U)
                    (uint32)((uint32)0U << 25U)
                    (uint32)((uint32)0U << 26U)
                    (uint32)((uint32)0U << 27U)
                    (uint32)((uint32)0U << 28U)
                    (uint32)((uint32)0U << 29U)
                    (uint32)((uint32)0U << 30U)
                    | (uint32)((uint32)0U << 31U);
```