T	ah	#21
	mu	11 4

Name: Pe	r :
----------	------------

Title: USING THE 7483 IC ADDER

Materials:

[1] 7483

Procedure:

- 1. Wire the 4-bit binary adder as shown in Figure 21-a. Use eight switches for $(A_3A_2A_1A_0 \text{ and } B_3B_2B_1B_0)$.
- 2. Try adding 1111 and 1111. The answer should be 11110 (decimal 15 + 15 = 30). Write down 5 more addition problems and make sure they work. Record your results below **BEFORE** you get the signature. **Get Instructor's Signature.**
- 3. Wire the 4-bit parallel binary subtractor as shown in Figure 21-b. Use eight switches for $(A_3A_2A_1A_0 \text{ and } B_3B_2B_1B_0)$.
- 4. Try subtracting 0110 from 1111. The answer should be 1001 (decimal 15 6 = 9). Write down 5 more addition problems and make sure they work. Record your results below **BEFORE** you get the signature. **Get Instructor's Signature.**

Questions (answer on a separate piece of paper – "Draw" means you must use a template):

- 1. Describe two things you must do to a 4-bit adder to convert it to a binary subtractor.
- 2. What two inputs of the 7483 IC are the 1s digits?
- 3. What is the purpose of the C_0 input on the 7483 IC?
- 4. What is the purpose of the C_4 output on the 7483 IC?
- 5. Inside the 7483 IC we would find circuitry equal to _____ (one half adder and three full adders, four full adders).

5 Addition Problems (show work) 1.	5 Subtraction Problems (show work) 1.
2.	2.
3.	3.
4.	4.
5.	5.

