2009-2010学年第一学期文科高等数学期中试题A

1

(A) 0个 (B) 唯一

姓名:	:	学号:	院系:	成绩:
	题(每题5分 题目条件选择〕	•	写在答题纸上。 每题的	为答案唯一。
I. 達 II. 切 III. 耳	如果函数y = f(x 可导函数极值点	正确。 界的数列必有极限。 $)在点x_0处连续,则f(必为其驻点,函数在(x_0)处可微的充要条件$	极值点必可导。	
(A) 1 (B) 2 (C) 3 (D) 4	!个 个			
I. Ē II. Ē III. Ē	函数 $f(x) = [x]$ 在函数 $f(x)$ 在 x_0 点		存在。 $0 f(x)$ 在 x_0 可导。	x = 0点极限也不存在。
(A) 0 (B) 1 (C) 2 (D) 3	个 2个 3个	/ 1 1) 中左 党 坦		
(3) 力程X	$+e^{-}=0$	(-1,1)内有实根。		

- (C) 至少1个
- (D) 2个
- (4) 设函数 $y = \sqrt{2x x^2}$, 则 $y''y^3 = ____$ 。
 - (A) -1
 - (*B*) 1
 - (C) $\frac{x^2(2-x)^2}{x-1}$ (D) $x^2 2x$

2 解答题(每题8分, 共80分)

请根据题意解答或证明, 答题过程和结果请全部写在答题纸上。

- 1. 请利用Rolle中值定理证明Lagrange中值定理和Cauchy中值定理。
- 2. 设

$$y = \frac{\sqrt{x-1}(x^3+2)^3}{(2x+3)^2}$$

求y′

3. 求以下曲线在点(4,9)处的切线方程。

$$\frac{(2x-1)^2}{4} + \frac{y^2}{9} = 1$$

4. 求极限

$$\lim_{x \to 4} \frac{\sqrt{1+2x}-3}{\sqrt{x}-2}$$

5. 求极限

$$\lim_{x \to a} \frac{\sqrt{x} - \sqrt{a} + \sqrt{x - a}}{\sqrt{x^2 - a^2}}$$

6. 已知

$$y = \frac{x^2}{1 - x}$$

求 $y^{(8)}$ 。

7. 证明: $\exists x \neq 0$ 时,以下不等式成立

$$e^x > 1 + x$$

8. 求以下函数的凹或凸的区域及拐点:

$$y = x \sin(\ln x)$$

其中x > 0。

- 9. 设a > 0且 $a \neq 1$, 若 $\log_a^x = x$ 有解, 求a的范围。
- 10. 求极限

$$\lim_{x\to 1} \left(\frac{m}{1-x^m} - \frac{n}{1-x^n}\right)$$

其中m,n均为自然数。