Aufgabe 1 (Herbst 2004). Seien p, q verschiedene Primzahlen.

- (a) Zeigen Sie, daß die Körper $\mathbb{Q}(\sqrt{p})$ und $\mathbb{Q}(\sqrt{q})$ nicht isomorph sind.
- (b) Zeigen Sie, daß der Körper $\mathbb{Q}(\sqrt{p}, \sqrt{q})$ vom Grad 4 über \mathbb{Q} ist.
- (c) Bestimmen Sie das Minimalpolynom von $\alpha = \sqrt{p} + \sqrt{q}$.

Aufgabe 2 (Frühjahr 2014). Es seien p eine Primzahl, \mathbb{F}_p der Körper mit p Elementen, $\mathbb{F}_p(t)$ der Quotientenkörper des Polynomrings $\mathbb{F}_p[t]$, und $\mathbb{F}_p(t^p)$ der kleinste Teilkörper von $\mathbb{F}_p(t)$, der t^p enthält.

- (a) Zeigen Sie, daß das Polynom $X^p t^p \in \mathbb{F}_p(t^p)[X]$ irreduzibel ist.
- (b) Zeigen Sie, daß die Körpererweiterung $\mathbb{F}_p(t) \supset \mathbb{F}_p(t^p)$ endlich und normal aber nicht separabel ist.

Aufgabe 3 (Frühjahr 2000). (a) Man bestimme ein primitives Element für die Körpererweiterung $\mathbb{Q}(\sqrt[4]{5})/\mathbb{Q}$.

(b) Seien x und y Unbestimmte über dem Körper \mathbb{F}_p von p Elementen. Man zeige: Die Körpererweiterung $\mathbb{F}_p(x,y)/\mathbb{F}_p(x^p,y^p)$ besitzt kein primitives Element.

Aufgabe 4. Sei char(K) = p und $\alpha \in K$. Das Polynom $f = X^p - \alpha$ ist genau dann irreduzibel in K[X], wenn es in K keine Nullstellen hat.