desenhar a cadeia embutida para classificar os estados.

Processo de Poisson

Seja um processo $\{N((0,t]); t >$ 0}, temos que P(N(t) = k) = $\frac{e^{-\lambda t} \cdot (\lambda t)^k}{k!}.$

A distribuição Poisson é calculada como o limite da Binomial quando $n \to \infty$.

A notação utilizada é N(t)N((0,t]) e N((s,t]) = N((0,t]) – N((0,s]) = N(t) - N(s) = N(t - s)

Incrementos independentes: P(N(s +(t) - N(s) = k) = P(N(t) = k)*Incrementos estacionários:* P(N(t) -N(s) = n - k) = P(N(t - s) =(n-k)

Instantes de ocorrência: Chamado de S_i e denota o tempo da *i*-ésima ocorrência. $S_i \sim \Gamma(i, \lambda)$

Tempos entre chegadas: $T_k = S_k S_{k-1}$. $T_k \sim \text{Exponencial}(\lambda)$. Os T_i são independentes entre si.

Partição do processo de Poisson

Seja N(t) um processo Poisson(λ) em que seja possível classificar cada evento entre uma classe A ou B com prob. $p \in 1 - p$. Define-se dois processos de Poisson A(t) e B(t) com parâmetros λp e $\lambda(1-p)$, independentes.

Superposição dos processos: Sejam dois processos $N_1(t)$, com parâmetro λ_1 e $N_2(t)$, com parâmetro λ_2 . É possível fazer $N = N_1 + N_2$ com

Em todos os exercícios, defi- parâmetro $\lambda = \lambda_1 + \lambda_2$. Lembrar nir o conjunto de estados S do caso do mercado com duas por-

Propriedade Markoviana

P(X(t+s) = j|X(s) = i, X(u) = $x_u, 0 \le u < s) = P(X(t+s) =$ $j|X(s) = i) = p_{ij}(s, t + s) =$ $p_{ij}(0,t) = p_{ij}(t)$

Tempo de permanência no estado: Deve satisfazer $P(T_i > s + t | T_i >$ $S(s) = P(T_i > t)$, que é a propriedade da falta de memória.

A propriedade Markoviana induz a tempos de permanência exponenciais.

Processo de nascimento e morte

Estando no estado k, o processo só pode ir para k-1 e k+1. Fazendo N_k : o tempo de ocorrência de um nascimento se há k pessoas e M_k : o tempo de ocorrência de uma morte se há k pessoas, $N_k \sim \text{Exponencial}(\lambda_k) \text{ e } M_k \sim$ Exponencial(μ_k).

A transição ocorrerá após um tempo T_k . Esse tempo é o tempo de ocorrer o primeiro evento, ou seja, o mínimo entre N_k e M_k , logo: $T_k = \min\{N_k, M_k\} \rightarrow T_k \sim$ Exponencial($\lambda_k + \mu_k$).

A prob. de ir para k-1 é $P(N_k <$ $(M_k) = \frac{\lambda_k}{\lambda_k + \mu_k}$ e de ir para k+1 é $P(N_k \ge M_k) = \frac{\mu_k}{\lambda_k + \mu_k}$

O processo de Poisson(λ) é um processo Markoviano. Ele tem probabilidade = 1 de ir do estado k para o k+1. A taxa de morte é $\mu_n=0$ e a de nascimento é $\lambda_n = \lambda$, $\forall n \geq 0$. Equações de Chapman-Kolmogorov: P(s+t) = P(s)P(t) (representação matricial)

Gerador infinitesimal: $P'_t = GP_t$. Lembrar que $P_t = e^{tG}$. Esse gerador nada mais é do que uma matriz com as taxas de transição instantâneas de um estado i para um estado j. As linhas têm que somar 0.

Cadeia embutida: É o diagrama de transição da cadeia, como se ela fosse em tempo discreto, com $q_{ii} =$ 0 e soma das linhas igual a 1.

Não há periodiciade em tempo contínuo. O processo é irredutível sse a cadeia embutida é irredutível. Um estado é recorrente sse ele é recorrente para a cadeia embutida. Se o tempo médio de retorno ao estado i é finito, então o estado i é recorrente positivo.

Distribuição estacionária

$$\begin{split} \pi &= \pi P(t) \text{, } \forall t \geq 0 \text{ e } \sum_{i \in S} \pi_i = 1. \\ \pi &= \pi P(t) \text{ sse } \pi G = 0 \end{split}$$

Se, em uma cadeia irredutível existe uma distribuição estacionária π ela é única e $\lim_{t\to\infty} p_{ij}(t) =$ $\pi_i, \forall i, j \in S.$

Se ela não existe, então o $p_{ij} \rightarrow 0$ quando $t \to \infty$, $\forall i, j \in S$.

Reversibilidade

Seja $X(t), t \ge 0$ uma cadeia de Markov em tempo contínuo, com gerador infinitesimal G com distribuição estacionária π .

Se existe um vetor α que satisfaz as equações de balanço detalhado: $\alpha_i g_{ij} = \alpha_j g_{ji}$, e $\sum_{k \in S} \alpha_k = 1$, o processo é reversível e $\alpha = \pi$ é a distribuição estacionária.

Nome:

Número USP: