Доказательство от противного

Можно выделить несколько основных приёмов доказательства утверждений. Некоторые утверждения получается вывести напрямую из имеющихся истинных утверждений в качестве следствия либо при помощи равносильных переходов. Если это не удаётся, часто прибегают к приёму "доказательство от противного": предполагают, что требуемое утверждение неверно, и приходят к противоречию. Для того, чтобы что-то выводить, нужно отталкиваться от истинных утверждений, т. е. отрицание данного утверждение $\mathcal Y$ необходимо сформулировать в виде самостоятельного утверждения. Утверждение $\overline{\mathcal Y}$ называется отрицанием $\mathcal Y$, если в любом предположении одно из $\mathcal Y$ и $\overline{\mathcal Y}$ верно, а другое — ложно.

1. Выведите правило, как по утверждению, записанному при помощи знаков \forall и \exists , записывать его отрицание.

Принцип крайнего

При решении задач часто полезно начать исследование с какого-нибудь «крайнего» объекта, т. е. объекта, с каким-нибудь особенным свойством: наименьшего (наибольшего) числа, самого дальнего (ближнего) объекта и т. д.

2. В каждой клетке шахматной доски записано число. Оказалось, что любое число равно среднему арифметическому (сумме, делённой на количество) чисел, записанных в соседних клетках. Докажите, что все числа равны.

Принцип Дирихле

Следующие несколько схожих утверждений принято называть принципом Дирихле: 1) "Среди n+1 объекта n видов обязательно найдутся два одного вида"; 2) "Среди $n \cdot k + 1$ предметов n видов обязательно найдутся k+1 одного вида"; 3) "Если сумма n чисел равна S, то среди них есть как число, не большее S/n, так и число, не меньшее S/n".

3. В классе учится 22 ученика. Докажите, что хотя бы у четырёх из них день рождения приходится на один и тот же день недели.

Метод Математической Индукции

Этот метод используется для доказательства справедливости утверждения, которое зависит от натурального параметра: 1) доказываем утверждение для нескольких начальных значений (база индукции); 2) предполагаем, что утверждение уже доказано для всех номеров не превосходящих k (предположение индукции); 3) доказываем, что верно и утверждение с номером k+1 (шаг индукции (вместе с п. 2)). Если третий пункт удался, то утверждение доказано по ММИ¹.

- 4. Докажите тождество $1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (n+1)! 1$.
- 5. Докажите тождество $1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$.

¹Этот метод по сути — то же, что предположить обратное, выбрать наименьшее значение, при котором утверждение неверно и получить противоречие с тем, что оно верно при всех меньших значениях параметра (если меньших нет, то мы доказываем базу индукции).

Упражнения

- 6. Докажите, что из 11 различных бесконечных десятичных дробей можно выбрать две такие, которые совпадают в бесконечном числе разрядов.
- 7. В бригаде 7 человек и их суммарный возраст 332 года. Докажите, что среди них есть трое, сумма возрастов которых не меньше 144 лет.
- 8. На плоскости дано 2021 точек, причем среди любых трёх из них найдутся две на расстоянии меньше 1. Докажите, что существует круг радиуса 1, содержащий не меньше 1011 из этих точек.
- 9. На каждой из 2021 планет, попарные расстояния между которыми различны, находится по астроному, который наблюдает за ближайшей к нему планетой. Докажите, что за некоторой планетой не наблюдает никто.
- 10. Докажите, что неравенство $^2 (1+x)^n \geqslant 1 + nx$ верно при всех натуральных n и вещественных $x \geqslant -1$.
- 11. Рассмотрим всевозможные дроби с числителем 1 и натуральным знаменателем: 1/2, $1/3, 1/4, 1/5, \dots$ (такие дроби называются anuквотными). Докажите, что для любого $n \geqslant 3$ единицу можно представить в виде суммы n различных аликвотных дробей.
- 12. Докажите, что существуют арифметические прогрессии любой наперёд заданной конечной длины, состоящие из степеней (больше первой) натуральных чисел.
- 13. Известно, что $x_1 = 1$ и $x_{n+1} = 2x_n + 1$. Найдите явную формулу для вычисления элементов последовательности (x_n) .

Задачи

- 14. Дано 2021 натуральное число, не превосходящее 4040. Докажите, что среди них найдутся два, одно из которых делится на другое.
- 15. Докажите неравенство $1+\frac{1}{4}+\frac{1}{9}+\ldots+\frac{1}{n^2}<\frac{17}{10}$. 16. Докажите, что для любых неотрицательных вещественных чисел x_1,x_2,\ldots,x_n верно неравенство³

$$\sqrt[n]{x_1 x_2 \dots x_n} \leqslant \frac{x_1 + x_2 + \dots + x_n}{n}.$$

17. Числовая последовательность A_1,A_2,\ldots определена равенствами $A_1=1,\,A_2=-1,$ а для всех $n\geqslant 3$: $A_n=-A_{n-1}-2A_{n-2}$. Докажите, что при всех $n\geqslant 1$ число $2^{n+2}-7A_n^2$ является полным квадратом.

²Это утверждение называется **неравенством Бернулли**.

³Неравенство между средним арифметическим и средним геометрическим.