Centro Universitário São Miguel

Bioestatística

Parâmetros da Distribuição de Frequências PARTE_02

Média Aritmética (Me)

A Média Aritmética, ou simplesmente média, é a medida de tendência central mais utilizada em cálculos que envolvam análises descritivas para comparações e inferências estatísticas entre amostras e populações. De cálculo simples e fácil, a média corresponde a um valor único que representa o ponto de equilíbrio entre todos os valores de uma série de dados numéricos coletados a partir de uma variável continua, além de apresentar propriedades matemáticas que permitem o desenvolvimento de cálculos estatísticos avançados.

Em estatística, a média aritmética de um conjunto de dados é representada pela letra que identifica a variável, geralmente a letra \bar{x} . Para uma população, a Me é representada pela letra grega, minúscula µ.

Média simples para dados não agrupados

Para dados brutos, não agrupados em uma distribuição de frequência, a média calculada pela razão entre a soma (Σ) de todos os valores observados (x) e o número total de observações (n). As fórmulas são as seguintes:

Para dados amostrais:
$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \div \bar{x} = x_1 + x_2 + x_3 + \cdots x_n$$
Para dados populacionais: $\mu = \frac{\sum_{i=1}^{N} x_i}{N} \div \mu = x_1 + x_2 + x_3 + \cdots x_n$

Onde: \bar{x} = média da amostra

μ = média da população

N = número de observações da população

n = número de observações da amostra

 x_i = representa um valor em particular

 $\sum x = \text{somat\'orio dos valores de } x$

Média simples para dados não agrupados

$$x_i = \{21, 18, 40, 28, 32, 38, 25, 48\}$$

Média simples para dados não agrupados

$$x_i = \{21, 18, 40, 28, 32, 38, 25, 48\}$$

$$\bar{x} = \frac{21 + 18 + 40 + 28 + 32 + 38 + 25 + 48}{8} = \frac{21 + 18 + 40 + 28 + 32 + 38 + 25 + 48}{8}$$

Média simples para dados não agrupados

$$x_i = \{21, 18, 40, 28, 32, 38, 25, 48\}$$

$$\bar{x} = \frac{21 + 18 + 40 + 28 + 32 + 38 + 25 + 48}{8} = \frac{250}{8} = \frac{2}{8}$$

Média simples para dados não agrupados

$$x_i = \{21, 18, 40, 28, 32, 38, 25, 48\}$$

$$\bar{x} = \frac{21 + 18 + 40 + 28 + 32 + 38 + 25 + 48}{8} = \frac{250}{8} = 31,25$$

Média ponderada para dados não agrupados

A média ponderada é um caso especial de média aritmética. Ela é caracterizada quando, no conjunto de dados, existem várias observações com o mesmo valor. Neste caso, cada valor deve ser multiplicado pelo número de vezes em que ele aparece (f) no conjunto de dados, para, então, obter-se a soma final de todos os produtos. A média ponderada é calculada pela fórmula abaixo, na qual \bar{x}_p .

$$\bar{x}_p = \frac{\sum (px)}{\sum p} : \bar{x}_p = p_1 x_1 + p_2 x_2 + p_3 x_3 + \dots + p_n x_n$$

Média ponderada para dados não agrupados

Exemplo: A tabela mostra cada uma das notas parciais obtidas por um candidato classificado em um concurso público, com suas respectivas ponderações. Qual a média final do candidato?

Avaliação	Nota	Peso
Escrita	8,5	5
Didática	9,1	4
Prática	8,8	3
Curricular	7,4	2
Entrevista	6,0	1
Total	39,8	$\Sigma p = 15$

$$\bar{x}_p = \frac{\sum (px)}{\sum p} : \bar{x}_p = p_1 x_1 + p_2 x_2 + p_3 x_3 + \dots + p_n x_n$$

Média ponderada para dados não agrupados

Exemplo: A Tabela mostra cada uma das notas parciais obtidas por um candidato classificado em um concurso público, com suas respectivas ponderações. Qual a média final do candidato?

Avaliação	Nota	Peso
Escrita	8,5	5
Didática	9,1	4
Prática	8,8	3
Curricular	7,4	2
Entrevista	6,0	1
Total	39,8	$\Sigma p = 15$

$$\bar{x}_p = \frac{\sum (px)}{\sum p} : \bar{x}_p = \frac{5(8,5) + 4(9,1) + 3(8,8) + 2(7,4) + 6,0}{5 + 4 + 3 + 2 + 1}$$

$$\bar{x}_p = \frac{126,10}{15} = 8,41$$

Resposta: média final do candidato igual a 8,41.

Média para dados em grupamentos simples

Em tabelas de grupamentos simples, a média aritmética é calculada de modo semelhante à média ponderada para dados não agrupados. Neste caso, a ponderação é a própria frequência com que o dado aparece na distribuição.

 $\bar{x} = \frac{\sum fx}{\sum f}$, onde: f = frequência do valor observado.

Média para dados em grupamentos simples

Exemplo: A tabela mostra a distribuição de frequências das notas de 40 alunos da turma de Bioestatística (dados hipotéticos). Qual a média obtida pela turma?

Notas	Frequência	
6	2	
7	8	
8	16	
9	10	
10	4	
Total	$\Sigma f = 40$	

$$\bar{x} = \frac{\sum fx}{\sum f}$$

$$\bar{x} = \frac{2(6) + 8(7) + 16(8) + 10(9) + 4(10)}{2 + 8 + 16 + 10 + 4}$$

$$\bar{x} = \frac{2(6) + 7(8) + 16(8) + 10(9) + 4(10)}{2 + 8 + 16 + 10 + 4} = \frac{326}{40} = 8,15$$

Média para dados agrupados em tabelas de frequência

Quando os dados estão organizados em intervalos de classe, é necessário que se encontre o ponto médio que represente cada intervalo. Então, a média é calculada da mesma maneira empregada no cálculo para grupamentos simples, apenas substituindo-se o valor x pelo valor do ponto médio (x_i) .

Média para dados em grupamentos simples

Exemplo: A tabela mostra a distribuição de frequências do peso ao nascer de 250 crianças nascidas vivas na maternidade A, em 2008. Qual a média de peso das crianças nascidas na maternidade, no período considerado?

Peso (kg)	xi	f
1,5 2,0	1,75	8
2,0 2,5	2,25	32
2,5 3,0	2,75	62
3,0	3,25	70
3,5 4,0	3,75	44
4,0 4,5	4,25	24
4,5	4,75	10
Total	_	$\Sigma f = 250$

$$\bar{x} = \frac{\sum f x_i}{\sum f} = \frac{798,50}{250} = 3,20 \ kg$$

Resposta: média do peso ao nascer igual a 3,20 kg.

Propriedades da média aritmética

A média aritmética é uma medida de tendência central amplamente utilizada em cálculos estatísticos. Conhecer suas propriedades, é de fundamental importância para o entendimento das inferências obtidas a partir da comparação de duas ou mais populações.

Propriedades da média aritmética

1° Propriedade - A soma algébrica dos desvios, em relação à média, de cada um dos valores de um conjunto de dados é sempre nula, isto é, igual a zero. Esta propriedade, que é simbolicamente representada por $\sum (x - \bar{x}) = 0$, tem uma importância muito grande para a determinação das medidas de dispersão, que serão discutidas posteriormente.

Propriedades da média aritmética

Exemplo: 1ª Propriedade

Conjunto de dados

$$x_i = \{6, 8, 4, 2\}$$

Cálculo da média

$$\bar{x} = \frac{6+8+4+2}{4} = 5$$

Somatório dos desvios em relação à média é igual a zero.

$$\sum_{i=1}^{n} (x_i - \bar{x}) = (6-5) + (8-5) + (4-2) + (2-5)$$

= 1 + 3 - 1 - 3 = 0

Propriedades da média aritmética

2° Propriedade - Somando-se ou subtraindo-se um valor constante a cada um dos elementos de um conjunto de dados, a média aritmética, desse conjunto de dados, fica somada ou subtraída por essa constante.

Propriedades da média aritmética

Exemplo: 2° Propriedade

Conjunto de dados

$$x_i = \{6, 8, 4, 2\}$$

Cálculo da média

$$\bar{x} = \frac{6+8+4+2}{4} = 5$$

Somatório com a

constante
$$k=2$$

$$\bar{x} \pm k = \frac{\sum_{i=1}^{n} (x_i \pm k)}{\sum fi} = \frac{(6+2) + (8+2) + (4+2) + (2+2)}{4} = 7$$

Propriedades da média aritmética

3° Propriedade - Multiplicando-se ou dividindo-se, por valor constante, cada um dos elementos de um conjunto de dados, a média aritmética, desse conjunto de dados, fica multiplicada ou dividida por essa constante.

Propriedades da média aritmética

Exemplo: 3° Propriedade

Conjunto de dados

$$x_i = \{6, 8, 4, 2\}$$

Cálculo da média

$$\bar{x} = \frac{6+8+4+2}{4} = 5$$

Multiplicação pela

constante
$$k = 2$$

$$K\bar{x} = \frac{\sum_{i=1}^{n} (Kx_i)}{\sum fi} = \frac{2(6)+2(8)+2(4)+2(2)}{4} = 10$$

Propriedades da média aritmética

4° Propriedade - A soma dos quadrados dos desvios, tomados em relação à média aritmética, é o menor valor possível de se encontrar, ou seja, é menor que a soma dos quadrados dos desvios em relação a qualquer outro número. Por este motivo, a soma dos quadrados dos desvios em relação à média, também chamado de soma total dos quadrados (STQ), é tomada como base para o cálculo da variância de um conjunto de dados.

Posições relativas da média, mediana e moda

Média = Mediana = Moda

Posições relativas da média, mediana e moda

Distribuição assimétrica

REFERÊNCIAS

- Fontelles, Mauro José. Bioestatística: aplicada à pesquisa experimental. São Paulo: Livraria da Física, vol 1, 2012.
- Vieira, Sonia. Introdução à Bioestatística. 6º Ed. Rio de Janeiro: GEN, 2021.

ONTEÚDO DA AULA ONTEÚD

CONTATOS

Prof.: SILVA, Y. J. de A.