Limiti - Sommario

Tutto sui limiti.

A. Definizione di Limite di funzione

Definizione di Limite di funzione

Idea fondamentale del limite di una funzione; definizione di limite in tutti i casi; dimostrazione dell'esistenza di un limite. Definizione di limite destro e sinistro.

O. Argomenti propedeutici

Per affrontare uno degli argomenti più importanti dell'
, ovvero i *limiti*, è necessario conoscere e ricordare alcuni argomenti:

- Intorni di $x_0 \in \mathbf{ ilde{\mathbb{R}}}$
- Punti di aderenza e di accumulazione per un insieme $E\subseteq \mathbb{R}$

1. Idea fondamentale

IDEA. Prendiamo la una funzione di variabile reale (DEF 1.1.) del tipo

$$f:E\longrightarrow \mathbb{R}, E\subseteq \mathbb{R}$$

e consideriamo un punto $x_0 \in \mathbb{R}$ che è un *punto di accumulazione* per E (Punti di aderenza e di accumulazione, **DEF 2.1.**).

Ora voglio capire come posso *rigorosamente* formulare la seguente frase:

"Se $x\in E$ si avvicina a $x_0\in \tilde{\mathbb{R}}$, allora f(x) si avvicina a un valore $L\in \tilde{\mathbb{R}}$." Ovvero col seguente grafico abbiamo [GRAFICO DA FARE]

Oppure un caso più particolare, con

$$f: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$$

$$x \mapsto x \cdot \sin(\frac{1}{x})$$

dove 0 è un punto di accumulazione per E (il dominio), ma non ne fa parte.

[GRAFICO DA FARE]

2. Definizione rigorosa

Ora diamo una *formalizzazione rigorosa* del concetto appena formulato sopra.

DEF 2.1. Definizione del LIMITE

Sia f una funzione di variabile reale di forma

$$f:E\longrightarrow \mathbb{R}, E\subseteq \mathbb{R}$$

Siano $x_0, L \in \tilde{\mathbb{R}}$, x_0 un punto di accumulazione per E.

Allora definiamo il limite di una funzione

$$\lim_{x o x_0}f(x)=L$$

se è vera la seguente:

 $\forall V \text{ intorno di } L, \exists E \text{ intorno di } x_0 \text{ tale che:}$

$$orall x \in E, x \in U \diagdown \{x_0\} \implies f(x) \in V$$

PROP 2.1. Questa *definizione* del limite può essere può essere interpretata in più casi.

CASO 1. Siano $x_0, L \in \mathbb{R}$. Quindi dei valori *fissi* sulla *retta reale*.

Abbiamo dunque il seguente disegno:

[DISEGNO DA FARE]

Ora interpretiamo la definizione del *limite* di f(x), $\lim_{x \to x_0} f(x) = L$ in questo caso:

 $\forall V \text{ intorno di } L, \exists E \text{ intorno di } x_0 \text{ tale che:}$

$$orall x \in E, x \in U \diagdown \{x_0\} \implies f(x) \in V$$

significa

$$egin{aligned} orall arepsilon > 0, (L-arepsilon, L+arepsilon) \subseteq V, \exists \delta > 0: (x_0-\delta, x_0+\delta) \subseteq U \ & ext{tale che } orall x \in E \ & 0 < |x-x_0| < \delta \implies |f(x)-L| < arepsilon \end{aligned}$$

che graficamente corrisponde a [DISEGNO DA FARE]

OSS 2.1. Grazie a questa interpretazione è possibile creare un'analogia per il limite; infatti se immaginiamo che l'intorno di L con raggio ε è il bersaglio e se esiste il limite, allora deve essere sempre possibile trovare un intorno attorno x_0 con raggio δ tale per cui facendo l'immagine di tutti i punti in questo intorno, "colpisco" il "bersaglio" (ovvero l'intorno di L).

OSS 2.2. Alternativamente è possibile pensare all'esistenza del *limite* come una "macchina" che dato un valore ε ti trova un valore δ . Ora passiamo al secondo caso.

CASO 2. Ora interpretiamo

$$\lim_{x o x_0}f(x)=+\infty$$

ovvero dove $L\in \widetilde{\mathbb{R}}.$ Allora interpretando il significato del limite abbiamo:

$$orall M>0, (M,+\infty), \exists \delta>0: (x_0-\delta,x_0+\delta)\subseteq U: \ ext{tale che } orall x\in E, \ 0<|x-x_0|<\delta\implies x>M$$

ovvero abbiamo graficamente che per una qualsiasi retta orizzontale x=M, troveremo sempre un intervallo tale per cui l'immagine dei suoi punti superano sempre questa retta orizzontale.

[DISEGNO DA FARE]

Ora al terzo caso.

CASO 3. Ora abbiamo

$$\lim_{x \to +\infty} f(x) = L$$

ovvero dove $x_0 \in \tilde{\mathbb{R}}$. Interpretando la definizione si ha:

$$egin{aligned} orall arepsilon > 0, (L-arepsilon, L+arepsilon), \exists N > 0 : (N,+\infty): \ & ext{tale che } orall x \in E, \ &x > N \implies |f(x)-L| < arepsilon \end{aligned}$$

ovvero graficamente ho un grafico di una funzione f(x), dove disegnando un qualsiasi intorno di L riuscirò sempre a trovare un valore N tale per cui tutti i punti dell'insieme immagine dell'intervallo $(N,+\infty)$ stanno sempre all'interno dell'intorno di L, indipendentemente da quanto stretto è questo intervallo. [GRAFICO]

Infine all'ultimo caso.

CASO 4. Finalmente abbiamo

$$\lim_{x o +\infty}f(x)=+\infty$$

quindi per definizione ho

$$egin{aligned} orall M; (M, +\infty), \exists N; (N, +\infty): \ & ext{tale che } orall x \in E, \ x > N \implies f(x) > M \end{aligned}$$

ovvero ciò vuol dire che fissando un qualunque valore M riuscirò sempre a trovare un valore N tale per cui prendendo un qualsiasi punto x>N, il valore immagine di questo punto supererà sempre M. **OSS 2.3.** Nota che questo *NON* deve necessariamente significare che la funzione è monotona crescente. Però vale il contrario: infatti

$$orall x_0, x_1 \in E, x_1 > x_0 \implies f(x_1) > f(x_0)$$

possiamo fissare $f(x_0)=M$, $x_0=N$, abbiamo allora

$$orall M, N, \exists x_1 \in E: x_1 > N \implies f(x_1) > M$$

questa condizione è sempre vera. In questo caso basta solamente prendere un qualsiasi $x_1>x_0$.

2.1. Infinitesimo

APPROFONDIMENTO PERSONALE a. Usando la *nostra* definizione del limite e ponendo $L=0, x=+\infty$, otteniamo un risultato che è consistente con la definizione di *infinitesimo*⁽¹⁾ secondo dei noti matematici russi, tra cui uno è Kolmogorov.

DEF 2.a. Si definisce un infinitesimo come una grandezza variabile $lpha_n$

, denotata come

$$\lim_{x o +\infty} lpha_n = 0 ext{ oppure } lpha_n o 0$$

che possiede la seguente proprietà:

$$orall arepsilon > 0, \exists N > 0: orall x \in E, x > N \implies |lpha_x| < arepsilon$$

OSS 2.a. Notiamo che la definizione dell'*infinitesimo* diventerà importante per il calcolo degli *integrali*, in particolare la *somma di Riemann*.

 $^{(1)}$ "[...] La quantità α_n che dipende da n, benché apparentemente complicata gode di una notevole proprietà: se n cresce indefinitamente, α_n tende a zero. Tale proprietà si può anche esprimere dicendo che dato un numero positivo ε , piccolo a piacere, è possibile scegliere un interno N talmente grande che per ogni n maggiore di N il numero α_n è minore, in valore assoluto, del lato numero ε ."

Estratto tratto da *Le matematiche: analisi, algebra e geometria* analitica di A.D. Aleksandrov, A. N. Kolmogorov e M. A. Lavrent'ev (1974, ed. Bollati Boringhieri, trad. G. Venturini).

3. Limite destro e sinistro

PREMESSA. Sia una funzione f di variabile reale del tipo

$$f:E\longrightarrow \mathbb{R}, E\subseteq \mathbb{R}$$

 $x_0 \in \mathbb{R}$ un punto di accumulazione per E, $L \in ilde{\mathbb{R}}.$ Allora definisco le seguenti:

DEF 3.1. Il limite della funzione f che tende a x_0 da destra come

$$\lim_{x o x_0^+}f(x)=L$$

come

$$orall V ext{ intorno di } L, \exists U ext{ intorno di } x_0 : orall x \in E, \ x \in U \cap (x_0, +\infty) \implies f(x) \in V$$

ovvero come il *limite di f*, considerando però *solo* i punti che stanno a *destra* di x_0 .

[GRAFICO DA FARE]

DEF 3.2. Analogamente il limite della funzione f che tende a x_0 da sinistra è

$$\lim_{x o x_0^-}f(x)=L$$

ovvero

$$orall V ext{ intorno di } L, \exists U ext{ intorno di } x_0: orall x \in E, \ x \in U \cap (-\infty, x_0) \implies f(x) \in V$$

OSS 3.1. Si può immediatamente verificare che

$$\lim_{x o x_0}f(x)=L\iff \lim_{x o x_0^+}f(x)=\lim_{x o x_0^-}f(x)=L$$

Infatti l'insieme dei x del limite destro e/o sinistro su cui verifichiamo che $f(x) \in V$ è un sottoinsieme dell'insieme di cui si verifica col limite generale. Pertanto facendo l'unione tra questi due sottoinsiemi abbiamo

$$[U\cap (-\infty,x_0)]\cup [U\cap (x_0,+\infty)]=U\diagdown \{x_0\}$$

DEF 3.1. (DALLA DISPENSA) Avevamo appena osservato che coi limiti *destri* e/o *sinistri* abbiamo semplicemente fatto una *restrizione* all'insieme $U \setminus \{x_0\}$ di cui si cerca di verificare che $f(U \setminus \{x_0\}) \subseteq V$. Dunque definiamo il **limite della funzione ristretta a** B, un qualunque sottoinsieme di E per cui x_0 è di accumulazione:

$$\lim_{x o x_0} f_{|B}(x) = L$$

ovvero

$$orall V ext{ intorno di } L, \exists U ext{ intorno di } x_0: orall x \in B, \ x \in U \diagdown \{x_0\} \implies f(x) \in V$$

4. Strategia per verificare l'esistenza di limiti

La nostra definizione presuppone che dobbiamo *eseguire* una serie *infinita* di verifiche per dimostrare che un limite esiste; infatti si dovrebbe scegliere tutti gli $\varepsilon > 0$ e trovare un δ associato.

Vogliamo invece sviluppare una serie di *strategie* per verificare l'esistenza dei limiti, come i *teoremi* e le *proprietà* sui limiti come vedremo in Teoremi sui Limiti, oppure *interpretando* la definizione del limite per poter trovare una "formula" che associa ad ogni epsilon un delta.

ESEMPIO 4.1.

Voglio verificare che

$$\lim_{x o 1}x^2+1=2$$

ovvero, interpretando la definizione otteniamo il seguente da verificare:

$$orall arepsilon > 0, \exists \delta > 0: orall x \in E, 0 < |x-1| < \delta \implies |x^2+1-2| < arepsilon$$

Allora "faccio finta" di conoscere un ε fissato, sviluppiamo dunque l'equazione a destra:

$$|x^2+1-2|$$

Osservo che se poniamo $x\in [0,2)$ e quindi $\delta < 1$, allora abbiamo |x+1| < 3. Allora da ciò discende che

$$|x+1||x-1| < 3|x-1| < 3\delta$$

abbiamo quindi

$$0<|x-1|<\delta \implies |x+1||x-1|<3\delta, orall x\in [0,2)$$

Infatti abbiamo implicitamente scelto $\varepsilon=3\delta$, verificando così il limite

per $\forall x \in [0,2)$.

Invece se $x \geq 2$, basta scegliere $\delta = 1$ [Non ho ancora capito perchè]

B. Teoremi sui limiti

Teoremi sui Limiti

Teoremi sui limiti: unicità del limite, permanenza del segno, teorema del confronto, teorema dei due carabinieri, operazioni con i limiti, limiti infinitesimi e limiti infiniti, forme indeterminate.

O. Preambolo

In questo capitolo si vuole creare una serie di *strategie* per poter verificare l'esistenza dei limiti senza dover ricorrere a fare dei *calcoli* infiniti in quanto richiesta dalla Definizione di Limite di funzione.

Una di queste strategie consiste proprio enunciare e dimostrare una serie di *teoremi*.

1. Unicità del limite

TEOREMA 1.1. (L'unicità del limite)

Sia

$$f:E\longrightarrow \mathbb{R}$$

poi $x_0\in ilde{\mathbb{R}}$ un punto di accumulazione per E. *Tesi.* Poi siano i valori limiti $L_1,L_2\in ilde{\mathbb{R}}$ tali che

$$\lim_{x o x_0}f(x)=L_1;\lim_{x o x_0}f(x)=L_2$$

allora

$$L_1 = L_2$$

DIMOSTRAZIONE 1.1. Si procede tramite una dimostrazione per assurdo.

Supponiamo dunque

$$L_1
eq L_2$$

Allora ci chiediamo se è possibile trovare degli *intorni* (Intorni) di L_1, L_2 che chiameremo V_1, V_2 che sono *disgiunti*; ovvero se sono tali che

$$V_1 \cap V_2 = \emptyset$$

Dato che L_1 e L_2 sono diversi, da qui discende che la distanza tra L_1 e L_2 dev'essere maggiore di 0; quindi possiamo impostare il raggio di questi intorni come

$$r=rac{|L_1-L_2|}{3}$$

Allora concludiamo che possono esistere V_1 e V_2 tali da essere disgiunti tra di loro.

Ora li scegliamo: applicando le definizioni di limite, ovvero

$$egin{aligned} \lim_{x o x_0}f(x) &= L_1 \iff \operatorname{per} V_1, \exists U_1 ext{ di } x_0: orall x\in E \ &x\in U_1\diagdown\{x_0\} \iff f(x)\in V_1 \ \lim_{x o x_0}f(x) &= L_2 \iff \operatorname{per} V_2, \exists U_2 ext{ di } x_0: orall x\in E, \ &x\in U_2\diagdown\{x_0\} \implies f(x)\in V_2 \end{aligned}$$

Dato che U_1, U_2 sono *intorni* di x_0 che è di accumulazione per E (Punti di aderenza e di accumulazione) si ha che

$$(U_1 \cap U_2) \cap E \neq \emptyset$$
 escludendo x_0

Posso scegliere allora un x che sta all'interno nell'intersezione di U_1 e U_2 ; ovvero

$$x \in ((U_1 \cap U_2) \diagdown \{x_0\})$$

e per ipotesi (ovvero che esistono tali limiti) deve valere che esiste un elemento f(x) tale che

$$f(x) \in (V_1 \cap V_2)$$

il che è assurdo, in quanto $V_1 \cap V_2$ dovrebbe essere un *insieme vuoto*.

OSS 1.1. (*Tratto dalla dispensa di D.D.S.*) Questo teorema è anche utile per dimostrare la *non-esistenza* di un limite: prendendo la *contronominale* di questo teorema. Ovvero se due *restrizioni della stessa funzione f* (Definizione di Limite di funzione, **DEF 3.1.**) hanno limiti diversi $L_1 \neq L_2$, allora il limite *non* esiste.

2. Permanenza del segno

TEOREMA 2.1. (Permanenza del segno) Sia

$$f:E\longrightarrow \mathbb{R}, E\subseteq \mathbb{R}$$

Siano $x_0, L \in \tilde{\mathbb{R}}$, x_0 punto di accumulazione per E. Sia definito il *limite*

$$\lim_{x o x_0}f(x)=L$$

Tesi. Allora supponendo che $L\in(0,+\infty)$ oppure $L=+\infty$, allora è vera che

$$\exists ar{U} ext{ intorno di } x_0: orall x \in (ar{U} \cap E) \diagdown \{x_0\}, f(x) > 0$$

Ovvero a parole stiamo dicendo che se il limite è *positivo*, allora anche la *funzione* è positiva per un intorno opportuno di x_0 ; il segno si "*trasferisce*" dal limite alla funzione.

DIMOSTRAZIONE 2.1.

Parto dalle definizione del limite, ovvero

$$egin{aligned} \lim_{x o x_0}f(x) = L \iff orall V ext{ di } L, \exists U ext{ di } x_0: orall x\in E, \ x\in Uackslash\{x_0\} \implies f(x)\in V \end{aligned}$$

Per interpretarla nel nostro contesto (ovvero che L è positiva), abbiamo che l'intorno di L può essere $V=(0,+\infty)$, in quanto se è positiva allora sarà sicuramente contenuta in quell'intervallo.

Dunque viene verificato che esiste un intorno ${\it U}$ tale che

$$\forall x \in E, x \in U \setminus \{x_0\} \implies f(x) > 0$$

OSS 2.1. Posso usare questo teorema "alla rovescia", prendendo la contronominale dell'enunciato; ovvero se f(x) è sempre negativo o uguale a zero ed il limite esiste, allora sicuramente L è sempre

negativo o uguale a zero.

$$f(x) \leq 0 \wedge \exists \lim_{x o x_0} f(x) \implies L \leq 0$$

3. Teorema del confronto

TEOREMA 3.1. (Teorema del confronto)

Siano f, g funzioni di variabile reale del tipo

$$f,g:E\longrightarrow \mathbb{R}, E\subseteq \mathbb{R}$$

e x_0 un punto di accumulazione per E, e $x_0 \in ilde{\mathbb{R}}.$

Tesi. Supponendo che siano vere le seguenti condizioni:

i. Che esista il limite

$$\lim_{x o x_0}f(x)=+\infty$$

ii. Che la funzione g dev'essere sempre (nel dominio) maggiore o uguale di f.

$$\forall x \in E \setminus \{x_0\}, g(x) \geq f(x)$$

Allora vale che

$$\lim_{x o x_0}g(x)=+\infty$$

DIMOSTRAZIONE 3.1. Sia ad esempio $x_0 \in \mathbb{R}$, allora abbiamo la seguente definizione di limite:

$$orall M>0, \exists \delta>0: orall x\in E, \ 0<|x-x_0|<\delta \implies f(x)>M$$

e considerando che $g(x) \geq f(x)$, abbiamo a maggior ragione che

$$\forall x \in E, 0 < |x - x_0| < \delta \implies g(x) \ge f(x) > M$$

e considerando la *transitività* della relazione d'ordine > (Relazioni, **DEF 4.**), abbiamo

$$orall M>0, \exists \delta>0: orall x\in E, \ 0<|x-x_0|<\delta \implies g(x)>M$$

che è esattamente la definizione di

$$\lim_{x o x_0}g(x)=+\infty$$
 $lacksquare$

4. Teorema dei due carabinieri

TEOREMA 4.1. (Dei due carabinieri)

Siano f, g, h funzioni del tipo

$$f,g,h:E\longrightarrow \mathbb{R},E\subseteq \mathbb{R}$$

e x_0 un punto di accumulazione per E, $x_0, L \in ilde{\mathbb{R}}.$ Tesi. Supponendo che

$$\lim_{x o x_0}f(x)=\lim_{x o x_0}h(x)=L$$

e che

$$\forall x \in E \setminus \{x_0\}, f(x) \leq g(x) \leq h(x)$$

poi volendo possiamo chiamare f,g le "funzioni carabinieri"; abbiamo che

$$\lim_{x o x_0}g(x)=L$$

DIMOSTRAZIONE 4.2. Consideriamo $x_0 \in \mathbb{R}$.

Per la definizione del limite, abbiamo

$$egin{aligned} orall arepsilon > 0, \exists \delta_f > 0: orall x \in E, \ 0 < |x - x_0| < \delta_f \Longrightarrow |f(x) - L| < arepsilon \ \Longrightarrow -arepsilon < f(x) - L < arepsilon \ \Longrightarrow L - arepsilon < f(x) < L + arepsilon \end{aligned}$$

e analogamente

$$egin{aligned} orall arepsilon > 0, \exists \delta_h > 0: orall x \in E, \ 0 < |x - x_0| < \delta_h \implies L - arepsilon < h(x) < L + arepsilon \end{aligned}$$

Se vogliamo che *entrambe* le espressioni valgano contemporaneamente, dobbiamo scegliere il *minimo* tra i due delta. Per capire l'idea di questo ragionamento prendiamo dei numeri:

$$(x < 3 \implies x < 4) \land (x < 6 \implies x < 7)$$

se voglio essere sicuro che valgano entrambe, devo prendere x<3 in quanto così abbiamo la garanzia che anche x<6 sia vera. Dunque sia

$$\delta = \min\{\delta_f, \delta_h\}$$

e mettendole assieme, abbiamo

$$0 < |x - x_0| < \delta \implies L - arepsilon < f(x) \le g(x) \le h(x) < L + arepsilon$$

possiamo sfruttare la transitorietà di > per ottenere

$$0 < |x - x_0| < \delta \implies |g(x) - L| < \varepsilon$$

Riassumendo, abbiamo il seguente:

$$egin{aligned} orall arepsilon > 0, \exists \delta = \min \{\delta_f, \delta_h\} : orall x \in E, \ 0 < |x - x_0| < \delta \implies |g(x) - L| < arepsilon \end{aligned}$$

che è esattamente la definizione di

$$\lim_{x o x_0}g(x)=L$$

come volevasi dimostrare.

5. Operazioni con i limiti

Ora presentiamo una serie di proposizioni, raccolte in un unico teorema, e queste ci permettono di fare delle operazioni *tra limiti*.

TEOREMA 5.1.

Siano f,g funzioni di variabile reale del tipo

$$f,g:E\longrightarrow \mathbb{R}, E\subseteq \mathbb{R}, x_0\in ilde{\mathbb{R}}$$

e x_0 un punto di accumulazione per E.

Tesi. Supponendo che

$$\lim_{x o x_0}f(x)=l\in\mathbb{R} \ \lim_{x o x_0}g(x)=m\in\mathbb{R}$$

allora abbiamo le seguenti:

$$\lim_{x o x_0}(f(x)\pm g(x))=l+m \ \lim_{x o x_0}(f(x)g(x))=lm$$

inoltre se $m \neq 0$, allora

$$\lim_{x o x_0}(rac{f(x)}{g(x)})=rac{l}{m}$$

DIMOSTRAZIONE. Dimostriamo solo le prime due.

- 1.
- 2.

6. Limiti infiniti e infinitesimi

7. Forme indeterminate

C. Esempi di limiti

Esempi di Limiti di Funzioni

Esempi di limiti: funzione costante, funzione identità, polinomi, funzioni razionali, funzioni trigonometriche, ...