

Aprendices:

Saray Agua Acosta

Danny Alexander Minota Soto

Cristian Mosquera Rodríguez

Rafael Dario Escalante Sandoval

Evidencia de conocimiento: GA3-220501093-AA1-EV01 bases conceptuales de lógica proposicional ANALISIS Y DESARROLLO DE SOFTWARE. (2977466)

	onte							
<i>'</i>	\sim	n	+	\sim	0			
	U		U	┖~		IU	w	

Contenido	
ntroducción	3

Introducción

Es importante reconocer los componentes que forman parte de un problema desde un punto de vista lógico y procedimental, debido a que estos son las bases del análisis y diseño de algoritmos. El presente componente orienta el pensamiento y despierta la conciencia sobre este tipo de análisis, aportando un enfoque metodológico para la solución de problemas.

Ejercicios de lógica preposicional

	pasos	solución
1	INICIO	(2 * 5) < 8 OR ((4 * 6) > (2 * 5))
2	Despejamos paréntesis internos	2*5<8 OR (4*6> 2*5)
3	Vamos despejando paréntesis y resolviendo el problema	10< 8 OR (24>10) 10< 8 OR 24>10
4	Luego de despejar todos los paréntesis identificamos el resultado	10<8 OR 24>10 F OR V
5	Utilizamos la tabla OR (DISYUNCION)	P Q P Q F V V
6	FIN.	verdadero

	pasos	solución
1	INICIO	(4+5) < 3 AND ((5 * 5) + (4 + 25 < 3))
2	Despejamos paréntesis internos	4+5< 3 AND (5*5) +(4+25<3)
3	Despejamos paréntesis y vamos resolviendo el problema	9<3 AND (25+29<3) 9<3 AND 54<3
4	Identificamos el resultado	9<3 AND 54<3 F AND F
5	Utilizamos la tabla AND (conjunción)	P Q P^Q F F F
6	FIN.	falso

Tabla de Verdad para $P \wedge Q$ (Conjunción)

La conjunción ($P \wedge Q$) es verdadera solo cuando ambas proposiciones P y Q son verdaderas.

P	Q	$P \wedge Q$
V	V	V
V	F	F
F	V	F
F	F	F

Tabla de Verdad para $P \lor Q$ (Disyunción)

La disyunción ($P \lor Q$) es verdadera si al menos una de las proposiciones P o Q es verdadera.

P	Q	$P \lor Q$
V	V	V
V	F	V
F	V	V
F	F	F

Conclusión

Las tablas de verdad y los conceptos de lógica proposicional son fundamentales en programación, ya que muchas decisiones y estructuras de control en los programas se basan en operaciones lógicas. Aquí te explico cómo pueden ser útiles en diferentes aspectos de la programación. Los conceptos de lógica proposicional y las tablas de verdad son esenciales en la programación porque permiten estructurar la toma de decisiones, validar condiciones, y construir algoritmos de manera clara y eficiente. Estos conceptos subyacen en la mayoría de las decisiones que un programa necesita tomar, haciendo que la programación sea tanto más lógica como más predecible.