WEEK 11 KEY

 For the following reaction, draw a galvanic cell and label ALL parts (make sure to include where oxidation and reduction are happening, and how all species flow through the system, including electrons).

 $2AgNO_3$ (aq) + Cu (s) \rightarrow Cu(NO₃)₂ (aq) + 2Ag (s)

 $Cu \rightarrow Cu^{2+} + 2e^{-} \omega$ ANODE $Ag^{+} + e^{-} \rightarrow Ag \omega$ CATHODE exidation: reduction: electrons -SALT BRIDGE NO3 electrode ANODE

2. Calculate the standard emf for a galvanic cell based on the following rxn: 2Na (s) + 2H₂O (l) → 2NaOH (aq) + H₂ (g)

Na -> Na++e- Eox= 2.714 evidation: reduction: 27/20 + 20 -> 7/2 + 20H Ered = -0.83 V Erell = Eox + End E - 1.88 V

3. Calculate the eq. constant, K, for the following reaction (T=298K, acidic conditions):

1=3 { oxidation: $(N-3)^{-1}$ (aq) + NO(g) $(N-3)^{-1}$ (aq) + NO(g) $(N-3)^{-1}$ (aq) + NO(g) $(N-3)^{-1}$ + 3e $(N-3)^{-1}$ \text{ Eox: 0.73 V aduction: } NO3^{-1} + 3e $(N-3)^{-1}$ \text{ NO } \text{ End: 0.96 V

10 =- nFE : ... = -3(96485]/V·moi)(0.737 + 0.96 V) 16=-489179J=-RTINK K = 1 (489179/8.314.298.15K) : K = 5.01 × 1085

4. Calculate E°ox for the reaction below:

$$Au(s) + NO_3^- (aq) + 4H^+ (aq) \rightarrow Au^{3+} (aq) + NO (g) + 2H_2O (l)$$

5. Rank the following in order of increasing strength as oxidizing/reducing agents:

b. F₂, Cr³⁺, I₂, MnO₄ - oxidizing agents (Lonk End)

- 6. Calculate the standard E° for the electrochemical cell below:
 - a. Al (s) | Al3+ (aq) | Mg2+ (aq) | Mg (s)

7. Calculate ΔG° and K for the following reaction. Is this reaction spontaneous? $MnO_4^-(s) + H^+(aq) + H_2O_2(aq) \rightarrow MnO_2(s) + H_2O(l) + O_2(g)$

$$Eox = -0.68$$
 $End = 1.68$
 $E'ull = 1.00 \text{V}$
 $\Delta G' = -nFE'ull = -6(96485 \text{J/V·mol})(1 \text{V})$
 $\Delta G' = -578910 \text{J/mol}$
 $\Delta G' = -RT \text{Jn}(K)$
 $K = 2.67 \times 10^{101}$ $g''obably$
 $G''ull = 1.68$

8. A number of chemical species can behave as both an oxidizing reagent and a reducing reagent. In the following situations, what reaction would predominate? what has highest

a. Chamber containing Mn²⁺ (aq), PbO₂ (s), and Ag (s)

Ecul/lowest DG

mn2+ + 4H20 - mn04- +8H+ - 52- Eox > -1.51V Pb02 - 4H+ - 2e --> Pb2+ - 4H20 End = 1.69 -

Ag -- 20x= -0.80 -

Pb02 - Ag + 4H - > Pb2+ - H20 - Ag dominates b. Chamber containing l₂ (s), Zn²⁺ (ag) and Cl₂ (g)

HIGHEST Ecell

(12+1/212+ H2U-7 103 + H++ (1- DOMINATES

c. Chamber containing Cr3+ (aq), ClO2 (aq), and Au (s)

NO SPONTANEOUS REACTIONS