

Ценеров диод

Полупроводникови елементи

Въведение

Ценеровият диод е специфичен силициев диод, оптимизиран да работи в областта на **електрически пробив**.

При настъпване на пробив, напрежението U_Z върху ценеровия диод остава почти постоянно независимо от промяната на тока през диода. Това свойство поволява ценеровият диод да се използва за **стаблизатор на напрежение**.

Основно приложение

Всяко електронно устройство се нуждае от постояннотоково захранване – схема, която преобразува променливото напрежение от електрическата мрежа в постоянно. Обикновено в изхода на изправителите полученото напрежение е с малки флуктуации.

За да се премахнат те и за да се получи постоянно напрежение в товара, независимо от тока през него, се използва стабилизатор на напрежение, чиято основна част е ценеровият диод.

Символ на ценеров диод

Ценеровият диод има два електрода – анод и катод. *p*-областта се нарича анод, а *n*-областта - катод.

За да работи в областта на пробив, катодът на ценеровия диод трябва да е положително поляризиран спрямо анода му, т.е. диодът трябва да е в обратно свързване.

Принцип на действие

Когато се достигне пробивното напрежение, в обеднения слой на прехода, се получават голям брой неосновни токоносители и диодът започва да провежда значителен ток.

Появата на множеството неосновни токоносители се дължи на два механизма, известни като лавинен и ценеров пробив.

Лавинен пробив

Лавинен пробив настъпва в широки *pn* преходи и се характеризира с **пробивно напрежение** над **7V**.

Ценерови диоди, използващи този механизъм на пробив са известни като високоволтови.

Ценеров пробив

Ценеров пробив настъпва в тесни *pn* преходи и се характеризира с пробивно напрежение по-малко от **5V**.

Ценерови диоди, използващи този механизъм на пробив са известни като нисковолтови.

VA характеристика

Ценеровият диод може да работи в три области:

- право включване;
- 💖 обратно включване и
- 🐤 пробив.

При право включване той се отпушва при 0.7 V, точно като Si диод.

При обратно включване обратният ток преди пробива е много малък.

В областта на пробив се наблюдава рязко нарастване на тока при оставащо почти постоянно напрежение.

Област на пробив

Ценеровият диод поддържа постоянно напрежение при значителна промяна на входното напрежение и тока през дода.

В областта на пробив ценеровият диод действа като **батерия** и диодът може да се замени с източник на постоянно напрежение с големина U_Z .

Figure 4. Typical Breakdown Diode Characteristics. Note Effects of Temperature for Each Mechanism

Товарна права и работна точка

Товарната права може да се построи с отрезите си от хоризонталната и вертикална ос на характеристиката в областта на пробив.

Точката на пресичане на товарната права с волтамперната характеристика определя работната точка Q_1 .

Преместване на товарната права

Промяната на захранващото напрежение довежда до промяна на тока в схемата.

При фиксирано съпротивление R наклонът на товарната права остава същия, но тя се премества успоредно към по-големите стойности на захранването. Новата работна точка е Q_2 .

Идея за стабилизация

Промяната на захранващото напрежение довежда до промяна на работната точка, но напрежението в точките \mathbf{Q}_1 и \mathbf{Q}_2 остава почти постоянно и равно на напрежението на пробив $U_{\mathbf{Z}}$.

Това е основната идея на **стабилизатора на напрежение** – изходното напрежение остава почти постоянно при значително изменение на входното напрежение и на тока през диода.

Прагов модел

- Диодът е в обратно включване
- U1 > U_Z => Диодът е в режим на пробив с напрежение UD1 = Uz = 8V

$$UR1 = U1 - UD1 = 10 - 8 = 2V$$
 според закона на Кирхоф

$$IR1 = UR1 / R1 = 2V / 1kOhm = 2mA$$

$$ID1 = IR1 = 2mA$$

- Диодът е в обратно включване
- $U1 < U_Z => I = 0$

UR1 = I.R1 = 0V, според закона на Ом

UD1 = U1 - UR1 = 5 - 0 = 5V, според закона на Кирхоф

Какво ще покава волтметъра, ако U1=10V, R1=100Ohm, а D1 е ценеров диод с Uz=8V.

○ 8V

○ 2V

OV

Какво ще покава волтметъра, ако U1=8V, R1=100Ohm, а D1 е ценеров диод с Uz=10V.

- 10V
- 8V
- 2V
- OV

Параметри – напрежение на пробив

Ценеровите диоди се характеризират с напрежение на пробив U_Z , което се задава за конкретен ток I_Z .

Пробивното напрежение U_Z е от порядъка на няколко волта до няколко стотици волта. За всеки ценеров диод се задават и толерансите за ценеровото напрежение в проценти.

Например силициевият ценеров диод BZY 92C9V1 има ценерово напрежение U_Z = 9.1 V с толеранс ± 5%.

Статично съпротивление R_Z

Статичното (по постоянен ток) **съпротивление** R_Z се изразява с отношението на напрежението върху диода към тока, протичащ през него за определена работна точка.

За по-точни изчисления, ценеровият диод може да се замести с идеален източник на напрежение, последователно свързан с малкото R_{z} .

Динамично съпротивление r_z

$$r = \frac{dU_Z}{dI_Z} \approx \frac{\Delta U_Z}{\Delta I_Z}$$

Динамичното (променливотоково) \mathbf{c} -противление r_Z се дефинира като отношение на нарастъка на напрежението и нарастъка на тока около дадена работна точка.

Колкото по-малко е динамичното съпротивление, толкова характеристиката е по-стръмна и диодът е по-добър като стабилизатор на напрежение.

Сравнение на диодите

- Φ Ценеров пробив $U_7 < 5V$
- Ф Лавинен пробив U_Z > 6V

Ценеровият пробив настъпва при обратно напрежение по-малко от 5V.

Лавиният пробив изисква обратно напрежение над 6V.

Динамичното съпротивление за диоди с лавинен пробив е по-малко от това при ценеров пробив.

Температурен коефициент

$$TKU_{z}[V/^{\circ}C] = \frac{U_{Z2} - U_{Z1}}{T_{2} - T_{1}}$$

$$TKU_{z}[\%/^{\circ}C] = \frac{U_{Z2} - U_{Z1}}{(T_{2} - T_{1})U_{z}}$$

$$I_Z$$
= const

Температурният коефициент на напрежението на пробив TKU_Z отчита влиянието на температурата върху стойността на пробивното напрежение в mV/°C или %/ °C.

Той може се дефинира и с процентното изменение на напрежението U_Z спрямо промяната на температурата.

Figure 4. Typical Breakdown Diode Characteristics. Note Effects of Temperature for Each Mechanism

Минимален обратен ток

 I_{Zmin} е **минималният обратен ток**, при който пробивът става стабилен. Определя се от съображениео, че при много малки токове процесът на ударна йонизация е неустойчив и възникват значителни шумове.

За да работи диодът в областта на пробив, токът през него трябва да надвишава $I_{Z\min}$.

Максимална мощност

Мощността, отделена в ценеровия диод е $P_Z = U_z I_z$. Максимално допустимата мощност P_{Zmax} е найголямата мощност, разсейвана от PN прехода, при която не възниква топлинен пробив.

Докато отделената мощност P_Z не надвиши максимално допустимата мощност $P_{Z\max}$ ценеровият диод работи в областта на електрически пробив без да се разруши.

EDZV10B

• Absolute Maximum Rating $(T_a = 25^{\circ}C)$

Parameter	Symbol	Limits	Unit
Power dissipation	P_{D}	150	mW
Junction temperature	Tj	150	°C
Storage temperature	T _{stg}	-55 ∼ 150	°C

Максимално допусим ток

Максимално допустимият ток на ценеровия диод $I_{Z\max}$ е свързан с максимално допустимата мощност $P_{Z\max}$ съгласно: $I_{Z\max} = P_{Z\max}/U_Z$, където U_Z е пробивното напрежение.

Параметърът $I_{Z\max}$ дефинира максималния ток, който диодът може да поддържа без да надхвърли максимално допустимата мощност.

Токоограничаващ резистор

$$I = \frac{E - U_Z}{R} < I_{Z \text{max}}$$

Предназначението на токоограничаващия резистор R е да поддържа тока през ценеровия диод помалък от максимално допустимия ток I_{Zmax} .

В противен случай ценеровият диод ще се разруши подобно на всеки елемент, който надвиши максимално допустимата си мощност.

Приложения – стабилизатор

За нормално функциониране ценеровият диод трябва да свързан обратно и да работи в областта на пробив. Тогава изходното напрежение остава постоянно и при изменения на U_{S} .

За да се достигне областта на пробив захранващото напрежение U_S трябва да е по-голямо от ценеровото напрежение U_Z . Резисторът R ограничава тока да не надвиши максимано допустимия за диода.

Схема на стабилизатор

$$I = \frac{U_S - U_Z}{R}$$

$$I_L = \frac{U_Z}{R}$$

$$I_Z = I - I_L$$

Товарът R_L се свързва паралелно на ценеровия диод. Ценеровият диод поддържа **постоянно напрежение** върху товара $U_L = U_Z$ независимо от големите промени в захранващия токоизточник или в товарното съпротивление.

Съпротивлението R е токоограничаващо съпротивление.

Условия за нормална работа

Критични стойности на токоограничаващия резистор

Граници на областта на пробив

За да се поддържа постоянно изходно напрежение ценеровият диод **трябва да остава в областта на пробив при всички условия на работа** – т.е. токът да е поголям от I_{zmin} и по-малък от I_{Zmax} .

Токоограничаващият резистор трябва да е между R_{\min} и R_{\max} .

Изчисляване на R_{min} и R_{max}

Критични стойности на токоограничаващия резистор

Граници на областта на пробив

Най-лош случай настъпва при минимално напрежение на източника и максимален товарен ток – тогава токът през ценеровия диод става помалък от $I_{Z\min}$. Последователното съпротивление R_{\max} се изчислява да поддържа стойността на I_Z по-висока от $I_{Z\min}$.

Аналогично R_{\min} трябва да поддържа I_Z по-малко от $I_{Z\max}$.

Ограничител на напрежение

Ограничителят на напрежение отрязва напреженията на сигнала над и под специфицирано ниво. Той е полезен не само за ограничаване нивото на сигнала, но и за защита от пренапрежение на схемата, получаваща сигнала.

По време на положителния полупериод, когато входното напрежение надвиши напрежението на пробив U_Z на ценеровия диод, диодът D1 работи в режим на пробив и ограничава изходния сигнал на нивото на ценерово напрежение U_Z .

За напрежения по-малки от U_Z диодът е в обратно включване, действа като отворен ключ и изходното напрежение следва входното.

По време на отрицателния полупериод, ценеровият диод е в право включване, действа като нормален диод и ограничава изходното напрежение до обичайната стойност -0,7 V.

Едностранен ограничител

При положителен входен сигнал (от 0V до 10V), където V1< U_Z , ценеровият диод е в обратно включване, действа като отворен ключ и изходното напрежение следва входното напрежение.

Когато входното напрежение достигне напрежението на пробив U_Z и е повисоко от него, ценеровият диод работи в режим на пробив и изходното напрежение се ограничава до U_Z = 10V.

Когато входното напрежение стане по-малко от Uz, изходното напрежение отново следва входа, защото диодът е в обратно включване.

Двустранен ограничител

През положителния полупериод, диодът Z_1 работи в областта на пробив, а диодът Z_2 е включен в права посока. Нивото, на което се ограничава изходният сигнал, се формира от сумата на пробивното напрежение на ценеровия диод U_{Z_1} и 0.7V на право свързания диод Z_2 или + (U_{Z_1} + 0.7).

През отрицателния полупериод диодът Z_2 работи в областта на пробив, диодът Z_1 е в право свързване и нивото се ограничава на $-(U_{Z2}+0.7)$.

Пример

През положителния полупериод D1 е в пробив, а диодът D2 е в право включване. Изходното напрежение се ограничава до $U_{Z1} + U_o = 10 + 0.7 = +10.7$ V.

По време на отрицателния полупериод D2 е в пробив, D1 – в право включване и изходното напрежението се ограничава до -10.7V

Когато входното напрежение е по-малко от напрежението на пробив, съответният ценеров диод е в обратно включване, действа като отворен ключ и и изходното напрежение следва входното.

