Théorie des représentations

Yves Aubry, M-147A, yves.aubry@univ-tln.fr, Joachim Asc
H2023-2024

_____TABLE DES MATIÈRES

Ι	Représentations linéaires des groupes finis					
1	Gér	néralités sur les groupes	7			
	1.1	Rappels	7			
	1.2	Exemples de groupes				
		$1.2.1$ $(\mathbb{Z},+)$ \ldots				
		$1.2.2 \mathbb{Z}/n\mathbb{Z}$				
	1.3	Groupe diédral				
		1.3.1 Description du groupe D_3				
	1.4	Les théorèmes de Sylow				
		1.4.1 Groupes agissant sur un ensemble ou action de groupes				
2	Rep	présentations linéaires des groupes finis	17			
	2.1	Premières définitions	17			
		2.1.1 Sous-représentations	20			
	2.2	Théorème de Maschke				
	2.3	Caractère d'une représentation				
	2.4	Orthogonalité des caractères irréductibles				

Première partie

Représentations linéaires des groupes finis

CHAPITRE 1 _______ GÉNÉRALITÉS SUR LES GROUPES

1.1 Rappels

Soit G un groupe. Soit H un sous-groupe de G (i. e. $H \neq 0$ et $\forall x, y \in H, xy^{-1} \in H$).

Considérons la relation binaire suivante sur ${\cal G}$:

Pour $x, y \in G$, $x \equiv_d y \mod H$ ssi $xy^{-1} \in H$. C'est une relation d'équivalence. Elle est dite de congruence à gauche modulo H.

Démonstration. En effet, si $x \in G$, alors $xx^{-1} = e \in H$, donc $x \mod g = x \mod H$. La relation est donc réflexive.

De plus, si $x, y \in G$ tels que $x \equiv_g y \mod H$, alors $xy^{-1} \in H$. H étant un sous-groupe de G, il est donc stable par passage au symétrique. D'où $(xy^{-1})^{-1} \in H$, i. e. $yx^{-1} \in H$, c'est-à-dire $y \equiv_g x \mod H$

Enfin, si $x,y,z\in G$ tels que $x\equiv_g y\mod H$ et $y\equiv_g z\mod H$, alors $xy^{-1}\in H$ et $yz^{-1}\in H$. Or, H étant un sous-groupe de G, donc H est stable pour la loi de composition interne. D'où $(xy^{-1})(yz^{-1})\in H$. Par associativité, $x(yy^{-1})z^{-1}\in H$, ie $xz^{-1}\in H$.

Donc $x \equiv_g z \mod H$ et la relation est transitive.

Soit $x \in G$. La classe d'équivalence de x pour cette relation d'équivalence est

$$cl_d(x) = \{ y \in G \mid xy^{-1} \in H \}$$

= $\{ y \in G \mid \exists h \in H, xy^{-1} = h \}$
= $\{ y \in G \mid \exists h \in H, y = hx \}$
= $\{ hx, h \in H \} =: Hx$

De même, on considère, sur G, la relation de congruence à gauche modulo H:

$$x \equiv_q y \mod H$$
 ssi $x^{-1}y \in H$.

On montre de même que c'est une relation d'équivalence. Si $x \in G$, alors $cl_g(x) := xH = \{xh, h \in H\}$. Remarque. Si G est abélien, alors les classes à gauche et à droite modulo H coincident.

Définition 1.1.1. Un sous-groupe H d'un groupe G est dit distingué dans G (ou normal) si :

$$\forall x \in G, xH = Hx,$$
 i. e.
$$\forall x \in G, xHx^{-1} \subset H$$
 i. e.
$$\forall x \in G, xHx^{-1} = H.$$

On note alors $H \triangleleft G$.

Remarque. Tout sous-groupe d'un groupe abélien est distingué.

Proposition 1.1.1. Soit G un groupe et H un sous-groupe distingué de G.

On note G/H l'ensemble des classes à droite ou à gauche modulo H.

Si $x, y \in G$ et si l'on note \overline{a} la classe de a modulo H, on peut munir le quotient G/H d'une structure de groupe en posant

$$\overline{x} \cdot \overline{y} = \overline{xy}.$$

 $D\acute{e}monstration.$ Cette loi est bien définie, i. e. elle ne dépend pas du choix des représentants des classes d'équivalence.

Remarque. Cette loi de la surjection canonique $\pi: \begin{array}{ccc} G & \longrightarrow & G/H \\ x & \longmapsto \overline{x} \end{array}$ un morphisme de groupes.

Théorème 1.1.1 (Lagrange). Soit G un groupe fini et H un sous-groupe de G. Alors l'ordre de H divise l'ordre de G.

Remarque. L'ordre d'un groupe est simplement son cardinal.

Remarque. Si g est un élément de G, alors l'ordre de G est défini comme l'ordre du sous-groupe $\langle g \rangle$ engendré par g. S'il est fini, alors l'ordre de g est le plus petit entier n tel que $g^n = e$.

D'après le théorème de Lagrange, l'ordre d'un élément divise l'ordre du groupe.

Remarque. Si G est un groupe fini et H un sous-groupe de G, alors les classes (à gauche) modulo H ont toutes le même cardinal, à savoir celui de H. En effet, l'application, pour $x \in G$: $f_x : H \longrightarrow xH$ est bijective.

1.2 Exemples de groupes

1.2.1 $(\mathbb{Z}, +)$

Groupe abélien.

 $n\mathbb{Z} = \{nk, k \in \mathbb{Z}\}$ est un sous-groupe de \mathbb{Z} .

Remarque. Tout sous-groupe de \mathbb{Z} est de la forme $n\mathbb{Z}$ pour un certain $n\mathbb{Z}$.

1.2.2 $\mathbb{Z}/n\mathbb{Z}$

C'est l'ensemble des classes d'équivalence pour la relation d'équivalence suivante :

$$x, y \in \mathbb{Z}, x \equiv y \mod n\mathbb{Z} \text{ ssi } x - y \in n\mathbb{Z}.$$

Remarque. $\overline{x} = \overline{y} \operatorname{ssi} xRy$.

On munit l'ensemble quotient $\mathbb{Z}/n\mathbb{Z}$ d'une structure de groupe (et même d'anneau) en posant, pour $x, y \in \mathbb{Z} : \overline{x} + \overline{y} = \overline{x+y}$ (et $\overline{x} \times \overline{y} = \overline{x \times y}$).

Remarque. $\mathbb{Z}/6\mathbb{Z}$ anneau non intègre, car $\overline{2} \times \overline{3} = \overline{0}$.

Remarque. $\mathbb{Z}/n\mathbb{Z}$ est un corps ssi n est premier.

Proposition 1.2.1. Tous les groupes $\mathbb{Z}/n\mathbb{Z}$ sont cycliques. Les générateurs sont les \overline{a} tels que a et n sont premiers entre eux, i. e. (a, n) = 1. De plus, tout groupe cyclique est isomorphe à $\mathbb{Z}/n\mathbb{Z}$ avec n = |G|.

Enfin, si G est cyclique d'ordre n alors pour tout diviseur d de n, G admet un sous-groupe d'ordre d, et celui-ci est unique, et celui-ci est cyclique.

Remarque. $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} = \{(\overline{a}, \tilde{a}), \overline{a} \in \mathbb{Z}/2\mathbb{Z}, \tilde{a} \in \mathbb{Z}/3\mathbb{Z}\}.$

Théorème 1.2.1 (Théorème des restes chinois). Soient n_1, \ldots, n_r des entiers premiers entre eux deux à deux. Alors l'application

$$\mathbb{Z}/\prod_{i=1}^{r} n_{i}\mathbb{Z} \longrightarrow \prod_{i=1}^{r} \mathbb{Z}/n_{i}\mathbb{Z}$$
$$a + (\prod_{i=1}^{r} n_{i})\mathbb{Z} \longmapsto (a + n_{1}\mathbb{Z}, \dots, a + n_{r}\mathbb{Z})$$

est un isomorphisme d'anneaux et la réciproque est vraie.

19-09-2023

1.3 Groupe diédral

Soit $n \geq 3$ un entier. Le groupe diédral de degré n est le groupe des isométries du plan laissant fixe le polygone régulier à n côtés. On le note D_n (ou D_{2n}).

 D_n est un groupe d'ordre 2n constitué de n rotations et de n symétries.

Considérons le polygone régulier dont les sommets sont, dans le plan complexe, les n racines n-ièmes de l'unité :

$$e^{\frac{2ik\pi}{n}}, k = 0, 1, \dots, n-1.$$

Soit $r = rot(0, \frac{2\pi}{n})$ la rotation de centre O et d'angle $\frac{2\pi}{n}$ et soit s la symétrie axiale d'axe la droite réelle (x, x).

On a

$$r: \begin{array}{ccc} \mathbb{C} & \longrightarrow & \mathbb{C} \\ z & \longmapsto e^{\frac{2i\pi}{n}}z \end{array}$$

et

$$s: \begin{array}{ccc} \mathbb{C} & \longrightarrow & \mathbb{C} \\ z & \longmapsto \overline{z} \end{array}$$
.

On vérifie que l'on a $r^n = 1 = id$, $s^2 = 1 = id$ et $rs = r^{-1}$.

FIGURE 1.1 – Racines 3-ièmes de l'unité.

Démonstration. En effet, si $z \in \mathbb{C}$, alors

$$r^{-1}(z)=e^{-\frac{2i\pi}{n}}z \text{ et } srs(z)=sr(\overline{z})=s\left(e^{\frac{2i\pi}{n}}\overline{z}\right)=e^{-\frac{2i\pi}{n}}z=r^{-1}(z),$$
 donc $srs=r^{-1}$.

On peut donc définir le groupe diédral D_n par "générateurs et relations" de la façon suivante :

$$D_n = \langle r, s \rangle$$
 avec $r^n = s^2 = 1$ et $srs = r^{-1}$.

Le sous-groupe de D_n engendré par r est un sous-groupe d'ordre n :

$$\langle r \rangle = \{r, r^2, \dots, r^{n-1}, id\} \simeq \mathbb{Z}/n\mathbb{Z}.$$

Il est d'indice 2 dans D_n , il est donc distingué dans D_n .

1.3.1 Description du groupe D_3

FIGURE 1.2 – Description explicite des éléments de D_3 .

On a donc

$$D_3 = \{e, r, r^2, s, rs, r^2s\}$$

Remarque. Il n'existe que deux groupes d'ordre 6 à isomorphisme près, à savoir le groupe cyclique (abélien) $\mathbb{Z}/6\mathbb{Z}$ et le groupe symétrique (non abélien) \mathfrak{S}_3 .

Or D_3 n'est pas abélien, donc D_3 est isomorphe à \mathfrak{S}_3 .

Exercice 1. Déterminer l'ordre des éléments de D_3 ainsi que ses sous-groupes.

Exemple (Groupe quaternionien). Soit \mathbb{H} le corps des quaternions d'Hamilton.

$$\mathbb{H} = \{a + ib + jc + kd \mid i^2 = j^2 = k^2 = 1, ij = -ij = k, jk = -kj = i, ki = -ik = j \text{ et } a, b, c, d \in \mathbb{R}\}.$$

 \mathbb{H} est un corps non commutatif. On $\mathbb{R} \subset \mathbb{C} \subset \mathbb{H}$.

Considérons le sous-ensemble suivant de \mathbb{H} :

$$\mathbb{H}_8 = \{1, -1, i, -i, j, -j, k, -k\}.$$

Exercice 2. Montrer que \mathbb{H}_8 muni de la multiplication est un groupe.

C'est un groupe non abélien d'ordre 8.

Exercice 3. Déterminer l'ordre des éléments de \mathbb{H}_8 ainsi que ses sous-groupes.

Théorème 1.3.1 (De classification des groupes abéliens finis). Tout groupe abélien fini est isomorphe à un produit de groupes cycliques de la forme

$$\mathbb{Z}/d_1\mathbb{Z} \times \mathbb{Z}/d_2\mathbb{Z} \times \cdots \times \mathbb{Z}/d_r\mathbb{Z}$$
, avec $d_1 \mid d_2 \mid \cdots \mid d_r$.

Cette écriture est unique (à l'ordre près des facteurs).

Rappel On en déduit qu'il existe trois groupes abéliens d'ordre 8 à isomorphisme près :

$$\mathbb{Z}/8\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \text{ et } (\mathbb{Z}/2\mathbb{Z})^3.$$

Question : a-t-on $\mathbb{H}_8 \simeq D_4$?

1.4 Les théorèmes de Sylow

Si H est un sous-groupe d'un groupe G, ses **conjugués** dans G sont gHg^{-1} , avec $g \in G$. En particulier, H est distingué dans G si et seulement si il est égal à tous ses conjugués.

Définition 1.4.1. Si G est un groupe fini d'ordre $p^{\alpha}q$, avec p premier, $\alpha \geq 1$ et q premier avec p, alors tout sous-groupe de G d'ordre $p3\alpha$ est appelé un p sous-groupe de Sylow de G (ou encore un p-Sylow de G).

Théorème 1.4.1 (Premier théorème de Sylow). Soit G un groupe d'ordre $p^{\alpha}q$, p premier, $\alpha \geq 1$, (p,q)=1. Pour tout $1\leq \beta \leq \alpha$, il existe un sous-groupe de G d'ordre p^{β} .

Théorème 1.4.2 (Deuxième théorème de Sylow). Le nombre n_p de p-Sylow de G vérifie :

$$\begin{cases} n_p \equiv 1 \mod p \\ n_p \mid q. \end{cases}$$

Théorème 1.4.3 (Troisième théorème de Sylow).

- 1. Le conjugué d'un p-Sylow est un p-Sylow.
- 2. Tous les p-Sylow sont conjugués entre eux.

Exercice 4. Montrer qu'il n'existe pas de groupes simples d'ordre 15.

Démonstration. Soit G un groupe d'ordre $3 \times 5 = 15$. D'après le premier théorème de Sylow, G admet au moins un 3-Sylow.

Soit n_3 le nombre de 3-Sylow de G. Par le deuxième théorème de Sylow, on a

$$n_3 \equiv 1 \mod 3 \text{ et } n_3 \mid 5.$$

G admet donc un unique 3-Sylow H.

D'après le (1) du troisième théorème de Sylow, les conjugués de H sont des 3-Sylow de G, donc sont égaux à H puisque c'est le seul 3-Sylow de G. Donc H est égal à tous ses conjugués et donc Hest distingué dans G. Puisque $|H|=3, H\neq \{e\}$ et $H\neq G$. Donc G admet un sous-groupe distingué propre. Donc G n'est pas simple.

1.4.1Groupes agissant sur un ensemble ou action de groupes

Définition 1.4.2 (Action de groupe). Une action (à gauche) d'un groupe G sur un ensemble X est une application

$$\begin{array}{ccc} G\times X & \longrightarrow & X \\ (g,x) & \longmapsto & g\cdot x \end{array}$$

telle que

- 1. $\forall x \in X, e \cdot x = x$ (où e est l'élément neutre de G);
- $2. \ \forall g,g' \in G, \forall x \in X, g \cdot (g' \cdot x) = \underbrace{(gg')}_{\text{LCI de } G} \cdot x.$

On peut voir une action comme un morphisme de groupes de G dans le groupe symétrique \mathfrak{S}_X de permutations dans X:

Proposition 1.4.1. Si un groupe G agit sur un ensemble X par

$$\begin{array}{ccc} G \times X & \longrightarrow & X \\ (g, x) & \longmapsto g \cdot x, \end{array}$$

alors pour tout $g \in G$, l'application

$$\pi_g: \begin{array}{ccc} X & \longrightarrow & X \\ x & \longmapsto g \cdot x \end{array}$$

est une permutation de X et l'application

$$\pi: \begin{array}{ccc} G & \longrightarrow & \mathfrak{S}_X \\ g & \longmapsto \pi_g \end{array}$$

est un morphisme de groupes.

Réciproquement, si $G \longrightarrow g \longrightarrow p_g$ est un morphisme de groupes, alors $(g,x) \mapsto g \cdot x := p_g(x)$ est une action de G sur X.

Démonstration.

Supposons que G agisse sur un ensemble X par $\begin{picture}(G\times X)&\longrightarrow g\cdot X\\(g,x)&\longmapsto g\cdot x\end{picture}$. Soit $g\in G$. Considérons l'application $\pi_g: \begin{picture}(X)&X&\longrightarrow g\cdot X\\x&\longmapsto g\cdot x\end{picture}$.

Montrons que π_g est injective. Soient $x,y\in X$ tq $\pi_g(x)=\pi_g(y)$. D'où $g\cdot x=g\cdot y$. D'où $g^{-1} \cdot g \cdot x = g^{-1} \cdot g \cdot y$. D'où $(g^{-1}g) \cdot x = (g^{-1}g) \cdot y$. D'où $e \cdot x = e \cdot y$. Donc π_g est injective. Montrons que π_g est surjective. Soit $y \in X$. On a $y = \pi_g(g^{-1}y) = g \cdot g^{-1} \cdot y$. Donc π_g est surjective. Donc π_g est bijective.

Montrons que π est un morphisme de groupes. Montrons que $\forall g, g' \in G, \pi_{gg'} = \pi_g \circ \pi_{g'}$. Soient $g, g' \in G$. Soit $x \in X$.

$$\pi_{gg'}(x) = (gg') \cdot x = g \cdot g' \cdot x = g \cdot (\pi_{g'}(x)) = \pi_g(\pi_{g'}(x)).$$

Donc $\pi_{qq'} = \pi_q \circ \pi_{q'}$.

Réciproquement, si on se donne un morphisme de groupes d'un groupe G dans un groupe de permutations \mathfrak{S}_X :

$$p: \begin{array}{ccc} G & \longrightarrow & \mathfrak{S}_X \\ q & \longmapsto p_a, \end{array}$$

alors l'application

$$\begin{array}{ccc} G\times X & \longrightarrow & X \\ (g,x) & \longmapsto g\cdot := p_g(x) \end{array}$$

est une action de groupes.

En effet,

- 1. Soit $x \in X$, on a $e \cdot x = p_e(x) = id_X(x) = x$, car p est un morphisme de groupes et l'image de l'élément neutre par un morphisme de groupes est l'élément neutre.
- 2. Soient $g, g' \in G$ et soit $x \in X$; on a

$$g \cdot (g' \cdot x) = g \cdot (p_{g'}(x)) = p_g(p_{g'}(x)) = (p_g \circ p_{g'})(x) = p_{gg'}(x) = (gg') \cdot x,$$

car p est un morphisme de groupes.

Cela établit deux bijections réciproques entre l'ensemble des actions de G sur X et celui des morphismes de G dans \mathfrak{S}_X .

Définition 1.4.3. Si un groupe G agit sur un ensemble X, alors la relation sur X définie par : pour $x, y \in X, x \sim y$ ssi $\exists q \in G, y = q \cdot x$ est une relation d'équivalence. La classe d'équivalence de X pour cette relation s'appelle l'orbite de X:

$$Orb(x) := \{g \cdot x, g \in G\}.$$

Ainsi, l'ensemble des orbites forme une **partition** de X.

On dit que g agit **transitivement** s'il n'y a qu'une seule orbite.

Le noyau de l'action est le noyau du morphisme associé :

$$\pi: \begin{array}{ccc} G & \longrightarrow & \longrightarrow & & \mathfrak{S}_X \\ \pi: & g & \longmapsto \left(\pi_g: \begin{array}{ccc} X & \longrightarrow & X \\ & x & \longmapsto g \cdot x \end{array}\right) \end{array}$$

$$Ker(\pi) = \{ g \in G \mid \forall x \in X, g \cdot x = x \}.$$

On dit que l'action est fidèle si son noyau est réduit à $\{e\}$ (i. e. si le morphisme π est injectif). Le **stabilisateur** (ou groupe d'isotropie) d'un élément $x \in X$ est l'ensemble :

$$Stab(x) = \{ g \in G \mid g \cdot x = x \}.$$

C'est un sous-groupe de G (en exercice).

Proposition 1.4.2. Pour x fixé dans X, l'application

$$\begin{array}{ccc} G & \longrightarrow & X \\ g & \longmapsto g \cdot x \end{array}$$

définit une bijection de l'ensemble G/Stab(x) des classes à gauche modulo Stab(x) sur l'orbite de x. Ainsi, le cardinal de l'orbite Orb(x) est égal à l'indice du stabilisateur de x:

$$\sharp(Orb(x))=[G:Stab(x)].$$

Théorème 1.4.4 (Formule des classes). Soit G un groupe fini agissant sur un ensemble fini X. Alors

$$\sharp(X) = \sum_{\substack{x \text{ d\'ecrivant un syst\`eme} \\ \text{des repr\'esentants des orbites}}} [G:Stab(x)].$$

Démonstration.

$$\sharp(X) = \sum_{i=1}^{m} \sharp(Orb(x_i)),$$

où $\{x_1,\ldots,x_n\}$ est un système des représentants des orbites pour l'action de G sur X.

Exemple d'action de groupe On fait agit un groupe G sur lui-même par conjugaison

$$\begin{array}{ccc} G\times G & \longrightarrow & G \\ (g,x) & \longmapsto g\cdot x := gxg^{-1}. \end{array}$$

C'est bien une action de groupes, car

- 1. Soit $x \in G$, on a $e \cdot x = exe^{-1} = x$.
- 2. Soient $g, g' \in G$ et $x \in G$. On a :

$$g\cdot (g'\cdot x)=g\cdot (gxg^{-1})=g(g'x(g')^{-1})g^{-1}=(gg')x((g')^{-1}g^{-1})=(gg')x(gg')^{-1}=(gg')\cdot x.$$

Cette action est-elle transitive, fidèle ? Quelle est l'orbite d'un élément ? Soit $x \in G$. L'orbite de x est :

$$Orb(x) = \{g \cdot x, g \in G\} = \{gxg^{-1}, g \in G\} = \text{classe de conjugaison de } x \text{ dans } G.$$

On a $Orb(e) = \{e\}$. Si G n'est pas réduit à $\{e\}$, il y a plusieurs orbites : l'action n'est donc pas transitive (il y a autant d'orbites que de classes de conjugaison).

L'action est-elle fidèle ? Etudions le noyau du morphisme π associé à cette action

$$\pi: \begin{array}{ccc} G & \longrightarrow & {\mathfrak{S}}_G \\ \pi: & g & \longmapsto \left(\pi_g: \begin{array}{ccc} G & \longrightarrow & G \\ x & \longmapsto gxg^{-1} \end{array}\right). \end{array}$$

On a

$$\operatorname{Ker}(\pi) = \{ g \in G \mid \pi_g = id_G \} = \{ g \in G \mid \forall x \in G, \pi_g(x) = x \}$$
$$= \{ g \in G \mid \forall x \in G, gxg^{-1} = x \} = \{ g \in G \mid \forall x \in G, gx = xg \} = Z(G).$$

L'action est fidèle si et seulement si le centre de G est réduit à l'élément neutre. Soit $x \in G$. Quel est le stabilisateur de x ?

$$Stab(x) = \{g \in G \mid g \cdot x = x\} = \{g \in G \mid gxg^{-1} = x\} = \{g \in G \mid gx = xg\} = \text{centralisateur de } x.$$

Etudions un exemple avec $G = \mathfrak{S}_3$. Les orbites de \mathfrak{S}_3 pour cette action sont les classes de conjugaison de \mathfrak{S}_3 . Elles constituent une partition de \mathfrak{S}_3 .

- 1. $Orb(e) = \{e\}.$
- 2. $Orb(\tau_3) = {\sigma \tau_3 \sigma^{-1}, \sigma \in \mathfrak{S}_3} = {\text{transpositions de } \mathfrak{S}_3} = {\tau_1, \tau_2, \tau_3}.$
- 3. $Orb(\sigma_1) = {\sigma \sigma_1 \sigma^{-1}, \sigma \in \mathfrak{S}_3} = {3 \text{cycles de } \mathfrak{S}_3} = {\sigma_1, \sigma_2}.$

La formule des classes s'écrit alors :

$$|\mathfrak{S}_3| = \sum [\mathfrak{S}_3 : Stab(x_i)],$$

où $\{x_1, x_2, x_3\}$ est un système des représentants de l'orbite, avec $x_1 = e, x_2 = \tau_1, x_3 = \sigma_1$. On a

$$|\mathfrak{S}_3| = \sum_{i=1}^3 \sharp Orb(x_i) = \sharp Orb(x_1) + \sharp Orb(x_2) + \sharp Orb(x_3) = 1 + 3 + 2 = 6.$$

L'action est fidèle, car $Z(\mathfrak{S}_3) = \{e\}$. L'action n'est pas transitive, car il y a trois orbites, à savoir les trois classes de conjugaison.

$$Stab(e) = \{ \sigma \in \mathfrak{S}_3 \mid \sigma e = e\sigma \} = \mathfrak{S}_3.$$

On a bien

$$[\mathfrak{S}_3 : Stab(e)] = \frac{|\mathfrak{S}_3|}{|Stab(e)|} = \frac{3!}{3!} = 1 = \sharp Orb(e).$$

On a $[\mathfrak{S}_3: Stab(\tau_3)] = \sharp Orb(\tau_3) = 3$, donc $|Stab(\tau_3)| = 2$. D'où

$$Stab(\tau_3) = \{\text{permutations de } \mathfrak{S}_3 \text{ qui commutent avec } \tau_3\} = \{e, \tau_3\}.$$

On a $[\mathfrak{S}_3 : Stab(\sigma_1)] = \sharp Orb(\sigma_1) = 2$, donc $|Stab(\sigma_1)| = 3$. Puisque l'indice du stabilisateur est 2, on en déduit que $Stab(\sigma_1) \triangleleft \mathfrak{S}_3$. Or les seuls sous-groupes distingués de \mathfrak{S}_n sont $\{e\}, \mathfrak{S}_n$ et \mathfrak{A}_n . Donc

$$Stab(\sigma_1) = \mathfrak{A}_3 = \{e, \sigma_1, \sigma_2\}.$$

CHAPITRE 2

REPRÉSENTATIONS LINÉAIRES DES GROUPES FINIS

Théorie introduite par Frobenius à la fin du XIX siècle.

2.1 Premières définitions

Définition 2.1.1. Une représentation linéaire d'un groupe G est la donnée d'un \mathbb{C} -espace vectoriel Vmuni d'une action de groupes (à gauche) de G agissant de manière linéaire :

$$\begin{array}{ccc} G \times V & \longrightarrow & V \\ (g,x) & \longmapsto & g \cdot x \end{array}$$

telle que

- 1. $\forall x \in V, e \cdot x = e$;
- 2. $\forall q, q' \in G, \forall x \in V, q \cdot (q' \cdot x) = (qq') \cdot x$:
- 3. $\forall g \in G, \forall x, x' \in V, \forall \lambda, \lambda' \in \mathbb{C}, g \cdot (\lambda x + \lambda' x') = \lambda g \cdot x + \lambda' g \cdot x.$

Une représentation linéaire d'un groupe G est donc la donnée d'un \mathbb{C} -espace vectoriel V et d'un morphisme de groupes:

$$\rho: G \longrightarrow GL(V)$$

$$g \longmapsto \begin{pmatrix} V \longrightarrow V \\ x \longmapsto g \cdot x \end{pmatrix}$$

où GL(V) est le groupe des automorphismes du \mathbb{C} -espace vectoriel V.

On a bien $\forall g, g' \in G, \rho_{gg'} = \rho_g \circ \rho_{g'}$ et $\rho_e = id_V$ et $\rho_{g^{-1}} = \rho_g^{-1}$ comme vu précédemment. De plus, $\forall g \in G$, la bijection ρ_g est un endomorphisme de V, i. e. une application linéaire de Vdans V et donc $\rho_q \in GL(V)$. En effet, si $x, x' \in V$ et $\lambda, \lambda' \in \mathbb{C}$, alors

$$\rho_q(\lambda x + \lambda' x') = g \cdot (\lambda x + \lambda' x') \stackrel{(3)}{=} \lambda g \cdot x + \lambda' g \cdot x' = \lambda \rho_q(x) + \lambda' \rho_q(x').$$

Définition 2.1.2. L'espace vectoriel V est appelé l'espace de la représentation.

La dimension de V (en tant que \mathbb{C} -espace vectoriel) est appelé le **degré** ou la dimension de la représentation.

Lorsque ρ est injectif, la représentation est dite fidèle; le groupe G se représente alors de manière concrète comme un sous-groupe de GL(V); lorsque V est de dimension finie (ce que nous allons supposer

dorénavant), le choix d'une base du \mathbb{C} -espace vectoriel V fournit alors une représentation encore plus concrète comme groupe de matrice.

Remarque (Personnelle). Si ρ est une représentation fidèle, alors

$$Ker(\rho) = \{ g \in G \mid \forall x \in V, g \cdot x = x \} = \{ e \}.$$

Remarque. Soient G un groupe fini et $\rho: G \to GL(V)$ une représentation (linéaire) de G. Soit $g \in G$ un élément d'ordre n. On a alors

$$(\rho_g)^n = \rho_{g^n} = \rho_e = id_V.$$

Donc l'endomorphisme ρ_g est racine du polynôme X^n-1 qui n' a que des racines simples. Le polynôme minimal de ρ_g divise donc le polynôme X^n-1 et n'a donc aussi que des racines simples. Le polynôme minimal de ρ_g est donc scindé sur $\mathbb C$ et à racines simples, on en déduit que l'endomorphisme de ρ_g est diagonalisable.

Exemple (De représentations).

1. La représentation triviale (ou représentation unité) :

$$\rho: \quad G \quad \longrightarrow \qquad GL(\mathbb{C}) \simeq \mathbb{C}^*$$

$$g \quad \longmapsto \quad \left(\rho_g: \mathbb{C} \quad \longrightarrow \quad \mathbb{C} \right).$$

2. Les représentations de degré 1 : ce sont les morphismes de groupes

$$\rho: G \longrightarrow \mathbb{C}^*$$

puisque si $\dim(V) = 1$, alors $GL(V) \simeq \mathbb{C}^*$, car les endomorphismes de V sont des homothéties :

$$\begin{array}{cccc} f_{\lambda}: & \mathbb{C} & \longrightarrow & \mathbb{C} \\ & x & \longmapsto & \lambda x \end{array}$$

et

$$\begin{array}{ccc} GL(V) & \longrightarrow & \mathbb{C}^* \\ f_{\lambda} & \longmapsto & \lambda \end{array}$$

qui a une homothétie fait correspondre son rapport induit un isomorphisme. Si G est **fini**, tout élément de G est d'ordre fini (par le théorème de Lagrange) et donc, pour tout $g \in G$, ρ_g est une racine de l'unité dans \mathbb{C} , et en particulier ρ_g est un nombre complexe de module 1:

$$|\rho_{a}| = 1.$$

3. Soient \mathfrak{S}_n le groupe symétrique et (e_1, \ldots, e_n) la base canonique de \mathbb{C}^n . On définit la représentation canonique de degré n de \mathfrak{S}_n en posant :

$$\rho: \ \mathfrak{S}_n \ \longrightarrow \ GL(\mathbb{C}^n)$$

$$\sigma \ \longmapsto \ \left(\rho_{\sigma}: \underset{e_i}{\mathbb{C}^n} \ \longrightarrow \ \rho_{\sigma}(e_i) := e_{\sigma(i)}\right).$$

4. La représentation de permutations. Soit $G \times X \longrightarrow X$ une action d'un groupe sur un ensemble fini X. Soit V un \mathbb{C} -espace vectoriel de dimension égale au cardinal de X (par exemple, on peut voir V comme le \mathbb{C} -espace vectoriel des fonctions définies sur X et à valeurs dans \mathbb{C} dont

 $X \longrightarrow \mathbb{C}$ une base peut être donnée par les fonctions indicatrices ε_x : $y \longmapsto \varepsilon_x(y) = \begin{cases} 1 \text{ si } x = y \\ 0 \text{ sinon} \end{cases}$

pour x décrivant X) muni d'une base indexée par les éléments de X : $\{\varepsilon_x, x \in X\}$. On peut écrire $V = \bigoplus_{x \in X} \mathbb{C}\varepsilon_x$. On définit une représentation linéaire (complexe de dimension finie) :

C'est la représentation de permutations associée à l'action de G sur X (c'est l'application qui envoie un vecteur de base sur un autre vecteur de base).

5. La représentation régulière. C'est l'exemple précédent avec X=G agissant sur lui-même (par translation à gauche) :

$$\begin{array}{cccc} \rho: & G & \longrightarrow & GL(V) \\ & g & \longmapsto & \left(\rho_g: \begin{matrix} V & \longrightarrow & V \\ \varepsilon_x & \longmapsto & \varepsilon_{qx} \end{matrix}\right). \end{array}$$

Ici, il s'agit de la loi de composition interne de G et on a $\dim(V) = |G|$.

26-09-2023

Définition 2.1.3. Deux représentations linéaires $\rho: G \to GL(V)$ et $\rho': G \to GL(V')$ d'un groupe G sont dites **isomorphes** ou équivalentes s'il existe un isomorphisme d'espaces vectoriels (ici application linéaire bijective) $f: V \to V'$ tel que l'on ait :

$$\forall g \in G, \rho_g' \circ f = f \circ \rho_g.$$

Figure 2.1 – Représentations linéaires isomorphes.

On peut exprimer cette condition par la commutativité du diagramme suivant : Remarque. Dire que le diagramme ci-dessus commute, c'est dire que

$$\tilde{f} \circ \rho = \rho'$$
.

D'où, pour tout
$$g\in G,\, \rho_g'=\tilde{f}(\rho_g)=f\circ \rho_g\circ f^{-1},$$
 i. e. $\rho_g'\circ f=f\circ \rho_g.$

Remarque. En termes de matrices, cela signifie que les matrices associées à la première représentation sont semblable à leurs homologues dans la deuxième, via la même matrice de passage :

$$\forall g \in G, \operatorname{Mat}(\rho'_g) = \operatorname{Mat}(f) \times \operatorname{Mat}(\rho_g) \times \operatorname{Mat}(f)^{-1}.$$

FIGURE 2.2 – Diagramme commutatif de deux représentations isomorphes.

2.1.1 Sous-représentations

Définition 2.1.4. Si $\rho: G \to GL(V)$ est une représentation linéaire d'un groupe G et si W est un sous-espace vectoriel de V stable par la représentation (i.e. stable par les automorphismes ρ_g pour $g \in G$, i.e. $\forall g \in G, \rho_g(W) \subset W$, i. e. $\forall g \in G, \forall w \in W, \rho_g(w) \in W$), alors cela nous permet de définir une **sous-représentation**

$$\begin{array}{ccccc} \rho_{|W}: & G & \longrightarrow & GL(W) \\ & g & \longmapsto & \left(\rho_{g_{|W}}: \begin{matrix} W & \longrightarrow & W \\ w & \longmapsto & \rho_g(w) \end{matrix}\right). \end{array}$$

Définition 2.1.5. Une représentation $\rho: G \to GL(V)$ est dite **irréductible** si les seuls sous-espaces stables de V sont $\{0\}$ et V.

Remarque. Les représentations de degré 1 sont bien évidemment des représentations irréductibles.

Démonstration personnelle. Soit $\rho: G \to GL(V)$ une représentation de degré 1. Alors $\dim(V) = 1$. Si W sous-espace vectoriel de V, alors

- 1. $\dim(W) = 0$ et dans ce cas $W = \{0\}$;
- 2. ou bien $\dim(W) = 1$ et dans ce cas W = V.

2.2 Théorème de Maschke

On définit tout d'abord la notion de **somme directe** de représentations. On rappelle que si V est un espace vectoriel et si W, W' sont deux sous-espaces vectoriels de V, alors on dit que V est **somme directe** de W et W' si tout $x \in V$ peut s'écrire de façon unique sous la forme :

$$x = w + w'$$
, avec $w \in W, w' \in W'$.

Il revient au même de dire que

$$W \cap W' = \{0\} \text{ et } \dim(V) = \dim(W) + \dim(W').$$

On écrit alors $V=W\oplus W'$ et l'on dit que W' est un **supplémentaire** de W dans V. V \longrightarrow V

L'application $p: v = \underbrace{w}_{\in W} + \underbrace{w'}_{\in W'} \longmapsto w$ est alors appelé le **projecteur** de V sur W associé à la décomposition $V = W \oplus W'$. On a $\operatorname{Im}(p) = W$ et $\operatorname{Ker}(p) = W'$ et p(x) = x si $x \in W$.

Réciproquement, si p est une application linéaire de V sur lui-même vérifiant ces deux propriétés, on vérifie que $V = W \oplus \operatorname{Ker}(p)$, avec $\operatorname{Ker}(p) = \{v \in V, p(v) = 0\}$. On établit ainsi une **bijection** entre les projecteurs de V sur W et les **supplémentaires** de W dans V.

Définition 2.2.1. Soient $\rho: G \longrightarrow GL(V)$ et $\rho': G \longrightarrow GL(V')$ deux représentations d'un groupe G. On définit la somme directe $\rho \oplus \rho'$ comme étant la représentation d'espace vectoriel $V \oplus V'$ définie par

$$\begin{array}{cccc} \rho \oplus \rho' : & G & \longrightarrow & GL(V \oplus V') \\ & g & \longmapsto & \left((\rho \oplus \rho')_g : \begin{matrix} V \oplus V' & \longrightarrow & V \oplus V' \\ v + v' & \longmapsto & \rho_g(v) + \rho'_g(v') \end{matrix} \right). \end{array}$$

Théorème 2.2.1 (De Maschke). Toute représentation linéaire complexe de dimension finie d'un groupe fini est somme directe de représentations irréductibles.

Lemme. Tout sous-espace stable d'une représentation linéaire complexe de degré fini d'un groupe fini admet un sous-espace supplémentaire stable.

Remarque. \triangle Il existe un produit scalaire hermitien sur l'espace de la représentation qui est stable par l'action du groupe. En effet, si $\langle \cdot, \cdot \rangle$ désigne un produit scalaire quelconque sur V, le produit suivant est stable par ρ :

$$\forall x, y \in V, \langle x, y \rangle_{\rho} := \frac{1}{|G|} \sum_{g \in G} \langle \rho_g(x), \rho_g(y) \rangle.$$

En effet, si $h \in G$, alors on a :

$$\langle \rho_h(x), \rho_h(y) \rangle_{\rho} = \frac{1}{|G|} \sum_{g \in G} \langle \rho_g(\rho_h(x)), \rho_g(\rho_h(y)) \rangle$$
$$= \frac{1}{|G|} \sum_{g \in G} \langle \rho_{gh}(x), \rho_{gh}(y) \rangle = \langle x, y \rangle_{\rho},$$

car $g \longmapsto gh$ est une bijection de G sur lui-même.

Démonstration du lemme 2.2. Si W est un sous-espace vectoriel de V stable sous l'action de G, alors le supplémentaire **orthogonal** de W est lui aussi stable sous l'action puisque : $W \subset V$ stable sous l'action de G par ρ , i. e. $\forall g \in G, \rho_g(W) \subset W$. On a

$$W^{\perp} := \{ x \in V \mid \langle x, w \rangle_{\rho} = 0, \forall w \in W \}.$$

Montrons que W^{\perp} est stable par ρ . Soit $g \in G$, soit $x \in W^{\perp}$, montrons que $\rho_g(x) \in W^{\perp}$. Soit $w \in W$, montrons que $\langle \rho_g(x), w \rangle_{\rho} = 0$. On a

$$\langle \rho_g(x), w \rangle_{\rho} = \langle \rho_{g^{-1}}(\rho_g(x)), \rho_{g^{-1}}(w) \rangle_{\rho} = \langle x, \rho_{g^{-1}(w)} \rangle_{\rho} = 0,$$
 car $\rho_{g^{-1}}(w) \in W$.

Démonstration du théorème 2.2.1. Si $\dim(V) = 1$ ou si V est irréductible, c'est démontré.

Si $\dim(V) \geq 2$ et V est non irréductible, alors V possède une sous-représentation W distincte de $\{0\}$ et V. Si $\langle \cdot, \cdot \rangle_{\rho}$ est un produit scalaire hermitien sur V invariant sous l'action de G, le supplémentaire

orthogonal W^{\perp} de W est lui aussi stable par G. On a alors $V = W \oplus W'$ et W et W' sont de dimensions inférieures à celle de V.

Par l'hypothèse de récurrence, on peut les décomposer en sommes directes de représentations irréductibles. $\hfill \Box$

2.3 Caractère d'une représentation

Définition 2.3.1. On appelle caractère de la représentation $\rho: G \longrightarrow GL(V)$ l'application

$$\chi_{\rho}: G \longrightarrow \mathbb{C}$$

$$g \longmapsto \chi_{\rho}(g) := \operatorname{Tr}(\rho_{g}).$$

où $Tr(\rho_g)$ désigne la **trace** de l'endomorphisme ρ_g .

Le degré du caractère χ_{ρ} est défini comme le degré de la représentation ρ .

Proposition 2.3.1 (Propriétés du caractère d'une représentation). Soit $\rho: G \longrightarrow GL(V)$ une représentation d'un groupe fini G de caractère χ_{ρ} .

- 1. $\chi_{\rho}(e) = \dim(V) = \operatorname{degr\acute{e}} \operatorname{de} \rho = \operatorname{degr\acute{e}} \operatorname{de} \chi_{\rho}$.
- 2. $\forall g \in G, \chi_{\rho}(g^{-1}) = \overline{\chi_{\rho}(g)}$ (conjugaison complexe).
- 3. $\forall g, h \in G, \chi_{\rho}(ghg^{-1}) = \chi_{\rho}(h)$, i. e. χ_{ρ} est une fonction centrale sur G, i. e. χ_{ρ} est constante sur les classes de conjugaison.
- 4. $\chi_{\rho \oplus \rho'} = \chi_{\rho} + \chi_{\rho'}$, si $\rho' : G \longrightarrow GL(V')$ est une représentation de G.
- 5. Si ρ, ρ' sont équivalentes, alors $\chi_{\rho} = \chi_{\rho'}$.

Démonstration. Soit $\rho: G \longrightarrow GL(V)$ représentation linéaire d'un groupe fini G de caractère χ_{ρ} .

1. Par définition, $\chi_{\rho}(e) = \text{Tr}(\rho_e)$. Puisque ρ est un morphisme de groupes, l'image de l'élément neutre de G par ρ est donc l'élément neutre de GL(V), à savoir l'identité idV sur V. D'où :

$$\chi_{\rho}(e) = \operatorname{Tr}(\rho_e) = \operatorname{Tr}(id_V) = \operatorname{Tr}(I_{\dim(V)}).$$

C'est la matrice identité à $\dim(V)$ lignes et $\dim(V)$ colonnes.

2. Montrons que $\forall g \in G, \chi_{\rho}(g^{-1}) = \overline{\chi_{\rho}(g)}$.

Remarquons que si G est fini et si $g \in G$, alors les valeurs propres de ρ_g (les racines du polynôme de cet endomorphisme) sont les racines de l'unité. En effet, si G est d'ordre n, alors, par le théorème de Lagrange, on a $g^n = e$. D'où

$$\rho_g^n = \rho_{g^n} = \rho_e = \mathrm{id}_V,$$

donc le polynôme minimal de ρ_g divise X^n-1 . Or les racines du polynôme minimal de ρ_g sont les valeurs propres de ρ_g . Donc les valeurs propres de ρ_g sont les racines de l'unité.

En particulier, les valeurs propres de ρ_g sont des nombres complexes de module 1. Donc, si λ est une valeur propre de ρ_g , alors $|\lambda|=1$ et donc $\lambda^{-1}=\overline{\lambda}$. De plus, les valeurs propres de $\rho_{g^{-1}}=\rho_g^{-1}$ (car ρ est un morphisme) sont les inverses de celles de ρ_g .

En effet, si $f(x) = \lambda x$ avec x non nul et $f \in GL(V)$, alors

$$x = f^{-1}(f(x)) = f^{-1}(\lambda x) = \lambda f^{-1}(x),$$

d'où $f^{-1}(x) = \lambda^{-1}(x)$ et donc x est vecteur propre de f^{-1} pour la valeur propre λ^{-1} .

Enfin, puisque la trace d'un endomorphisme est la somme de ses valeurs propres (comptées avec leur multiplicités), on en déduit que

$$\chi_{\rho}(g^{-1}) = \overline{\chi_{\rho}(g)}.$$

3. Soient $g, h \in G$. On a

$$\chi_{\rho}(ghg^{-1}) \stackrel{\text{def}}{=} \operatorname{Tr}(\rho_{ghg^{-1}}) \stackrel{\text{morphisme}}{=} \operatorname{Tr}(\rho_{g} \circ \rho_{h} \circ \rho_{g^{-1}})$$
$$= \operatorname{Tr}(\rho_{g} \circ \rho_{h} \circ \rho_{q}^{-1}) \stackrel{\operatorname{Tr}(AB) = \operatorname{Tr}(BA)}{=} \operatorname{Tr}(\rho_{q}^{-1} \circ \rho_{g} \circ \rho_{h}) = \operatorname{Tr}(\rho_{h}) = \chi_{\rho}(h).$$

Donc χ_{ρ} est une fonction centrale sur G, i. e. qu'elle prend les mêmes valeurs sur les éléments d'une même classe de conjugaison.

4. Soient $\rho: G \longrightarrow GL(V)$ et $\rho': G \longrightarrow GL(V')$ deux représentations de G. La somme directe de ρ et ρ' est la représentation

$$\rho \oplus \rho' : G \longrightarrow GL(V \oplus V')$$

$$g \longmapsto \left((\rho \oplus \rho')_g : V \oplus V' \longrightarrow V \oplus V' \atop v + v' \longmapsto \rho_g(v) + \rho'_g(v') \right).$$

Si (e_1, \ldots, e_n) est une base de V et (e'_1, \ldots, e'_m) est une base de V', alors

$$B = (e_1 + 0, \dots, e_n + 0, 0 + e'_1, \dots, 0 + e'_m)$$

est une base de $V \oplus V'$.

D'où

$$\operatorname{Mat}_{B}((\rho \oplus \rho')_{g}) = \begin{pmatrix} \operatorname{Mat}_{(e_{1}, \dots, e_{n})}(\rho_{g}) & 0 \\ 0 & \operatorname{Mat}_{(e'_{1}, \dots, e'_{m})}(\rho'_{g}) \end{pmatrix},$$

d'où

$$\begin{split} \chi_{(\rho \oplus \rho')_g} &= \operatorname{Tr}((\rho \oplus \rho')_g) = Tr(\operatorname{Mat}_B((\rho \oplus \rho')_g)) \\ &= \operatorname{Tr}(\operatorname{Mat}_{(e_1, \dots, e_n)}(\rho_g)) + \operatorname{Tr}(\operatorname{Mat}_{(e'_1, \dots, e'_m)}(\rho'_g)) = \chi_{\rho}(g) + \chi_{\rho'}(g'). \end{split}$$

5. Soient $\rho: G \longrightarrow GL(V)$ et $\rho': G \longrightarrow GL(V')$ deux représentations équivalentes de G. Alors il existe une isomorphisme $f: V \longrightarrow V'$ tel que

$$\forall g \in G, \rho_g' = f \circ \rho_g \circ f^{-1}.$$

D'où, pour tout $g \in G$, on a

$$\chi_{\rho'}(g) = \operatorname{Tr}(\rho'_g) = \operatorname{Tr}(f \circ \rho_g \circ f^{-1}) = \operatorname{Tr}(\rho_g) = \chi_{\rho}(g).$$

Donc $\chi_{\rho} = \chi_{\rho'}$.

Exemple (Calcul de caractères).

1. Si G opère sur un ensemble fini X, considérons la représentation de permutations ρ associée, avec $V = \bigoplus_{x \in X} \langle e_x \rangle = \bigoplus_{x \in X} \mathbb{C} e_x$.

On a $\chi_{\rho}: G \longrightarrow \mathbb{C}$ tel que $\chi_{\rho}(g) = \text{Tr}(\rho_g)$. Dans une base $(e_x)_{x \in X}$ de V, pour $g \in G$ fixé, la matrice de ρ_g est une matrice de permutations, i.e. a exactement un 1 par ligne et par colonne et tous les autres coefficients sont nuls.

De plus, si $\operatorname{Mat}_{(e_x)}(\rho_g) = (a_{ij})_{i,j}$, alors le terme diagonal correspondant à $\rho_g(e_x)$ sera égal à 1 si et seulement si $g \cdot x = x$ si et seulement si x est un point fixe de g. Sinon il vaudra 0. Donc

$$\chi_{\rho}(g) = \operatorname{Tr}(\rho_q) = \sharp \{ x \in X \mid g \cdot x = x \}.$$

2. Caractère de la représentation régulière (c'est le cas particulier de la représentation de permutations ρ avec G fini, X=G, l'action étant la multiplication dans G). On a alors, pour tout $g\in G$:

$$\chi_{\rho}(g) = \text{Tr}(\rho_g) = \sharp \{ x \in G \mid gx = x \} = \begin{cases} |G| \text{ si } g = e \\ 0 \text{ si } g \neq e. \end{cases}$$
(2.1)

Définition 2.3.2. Un caractère d'un groupe G est dit **irréductible** si c'est le caractère d'une représentation irréductible de G.

2.4 Orthogonalité des caractères irréductibles

Soit G un groupe fini. On considère le \mathbb{C} -espace vectoriel $\mathscr{F}(G)$ des fonctions définies sur G et à valeurs dans \mathbb{C} . On munit le \mathbb{C} -espace vectoriel $\mathscr{F}(G)$ d'une structure hermitienne donnée par le produit scalaire suivant : pour $\varphi, \psi \in \mathscr{F}(G)$, on a

$$\langle \varphi, \psi \rangle := \frac{1}{|G|} \sum_{g \in G} \overline{\varphi(g)} \psi(g).$$

Remarque. Si $f \in \mathcal{F}(G)$, alors

$$f = \sum_{g \in G} \lambda \operatorname{Ind}_g = \sum_{g \in G} f(g) \operatorname{Ind}_g,$$

οù

$$\operatorname{Ind}_g: \quad G \quad \longrightarrow \quad \mathbb{C}$$

$$x \quad \longmapsto \quad \begin{cases} 1 \text{ si } x = g \\ 0 \text{ sinon.} \end{cases}$$

Donc $(\operatorname{Ind}_g)_{g\in G}$ est une base de $\mathscr{F}(G)$. En particulier, $\dim_{\mathbb{C}}(\mathscr{F}(G))=|G|$.

Lemme (De Schur). Soit $\rho: G \longrightarrow GL(V)$ et $\rho': G \longrightarrow GL(V')$ deux représentations linéaires irréductibles d'un groupe fini G. Soit $f: V \longrightarrow V'$ une application linéaire vérifiant :

$$\forall g \in G, f \circ \rho_g = \rho'_g \circ f.$$

- 1. Si ρ et ρ' ne sont pas isomorphes, alors f = 0.
- 2. Si ρ et ρ' sont isomorphes, alors f est une homothétie.

 $D\'{e}monstration.$

1. Montrons la contraposée : on suppose que f n'est pas l'application nulle. Le sous-espace $\operatorname{Ker}(f)$ de V est stable par ρ . En effet, si $g \in G$ et si $x \in \operatorname{Ker}(f)$, alors $\rho_q(x) \in \operatorname{Ker}(f)$, car :

$$f(\rho_g(x)) = (f \circ \rho_g)(x) = (\rho_g' \circ f)(x) = \rho_g'(f(x)) = \rho_g'(0) = \rho_g'(0) = 0.$$

Comme $f \neq 0$, i. e. $\operatorname{Ker}(f) \neq V$, on en déduit que $\operatorname{Ker}(f) = \{0\}$ par irréductibilité de ρ . De même, le sous-espace $\operatorname{Im}(f)$ de V' est stable par ρ' . En effet, si $g \in G$ et $y = f(x) \in \operatorname{Im}(f)$, alors $\rho'_g(y) \in \operatorname{Im}(f)$, car

$$\rho_{q}'(y) = \rho_{q}'(f(x)) = (\rho_{q}' \circ f)(x) = (f \circ \rho_{q})(x) = f(\rho_{q}(x)).$$

Puisque $f \neq 0$ (i. e. $\mathrm{Im}(f) \neq \{0\}$), on en déduit que $\mathrm{Im}(f) = V'$ par irréductibilité de ρ' . En conclusion, f est bijective. Donc f est un isomorphisme et donc ρ et ρ' sont deux représentations isomorphes.

2. On suppose que $\rho: G \longrightarrow GL(V)$ et $\rho': G \longrightarrow GL(V')$. On peut donc identifier V et V' (et ρ et ρ'). Puisque $\mathbb C$ est algébriquement clos (théorème de d'Alembert-Gauss), l'endomorphisme $f: V \longrightarrow V$ admet une valeur propre $\lambda \in \mathbb C$. Le sous-espace propre $SEP(f, \lambda)$ de f pour la valeur propre λ est stable par ρ .

En effet, si $g \in G$ et si $x \in SEP(x, \lambda)$, alors $\rho_g(x) \in SEP(f, \lambda)$, car

$$f(\rho_g)(x) = \rho_g(f(x)) = \rho_g(\lambda x) = \lambda \rho_g(x).$$

Donc $\underbrace{\operatorname{SEP}(f,\lambda)}_{\neq \{0\}} = V$ par irréductibilité de ρ . D'où, $\forall x \in V, f(x) = \lambda x$, i. e. f est une homothétie de rapport λ .

Proposition 2.4.1. Les caractères irréductibles d'un groupe G forment un système orthonormal de fonctions de l'espace vectoriel hermitien $\mathscr{F}(G)$, i. e.

$$\langle \chi, \chi' \rangle = \begin{cases} 1 \text{ si } \chi = \chi' \\ 0 \text{ sinon,} \end{cases}$$

si χ, χ' ne sont pas des caractères irréductibles de G.

Démonstration. Soient $\rho: G \longrightarrow GL(V)$ et $\rho': G \longrightarrow GL(V')$ deux représentations irréductibles de G et soient χ et χ' leurs caractères associés.

Soit $g \in G$, notons $\operatorname{Mat}(\rho_g) = (a_{ij}(g))_{1 \le i,j \le d}, \operatorname{Mat}(\rho_g') = (a_{ij}'(g))_{1 \le i,j \le d'}$, où $d = \deg(\chi) = \dim(V)$ et $d' = \deg(\chi') = \dim(V')$. On a :

$$\chi(g) = \text{Tr}(\rho_g) = \sum_{i=1}^d a_{ii}(g) \text{ et } \chi'(g) = \sum_{i=1}^{d'} a'_{ii}(g).$$

D'où

$$\langle \chi, \chi' \rangle = \frac{1}{|G|} \sum_{g \in G} \overline{\chi(g)} \chi'(g) = \frac{1}{|G|} \sum_{g \in G} \sum_{i,j} \overline{a_{ii}(g)} a'_{ii}(g) = \begin{cases} 0 \text{ si } \rho \text{ et } \rho' \text{ non isomorphes,} \\ 1 \text{ si } \rho \text{ et } \rho' \text{ son isomorphes.} \end{cases}$$