Teoria dos Conjuntos e Aplicações – SEMINÁRIO – 25/06

- **1. Definição.** Dizemos que uma família \mathcal{F} é um Δ -sistema se existe um conjunto r tal que para todos x, y elementos distintos de \mathcal{F} temos $x \cap y = r$.
- **2. Lema (Lema dos** Δ -sistemas). Seja $\kappa > \omega$ um cardinal regular. Se \mathcal{F} é uma família tal que $|\mathcal{F}| = \kappa$ e $\forall x \in \mathcal{F}(|x| < \omega)$ então existe $\mathcal{B} \subseteq \mathcal{F}$ com $|\mathcal{B}| = \kappa$ e \mathcal{B} é um Δ -sistema.

Demonstração Particione a família \mathcal{F} de modo que dois elementos de \mathcal{F} estão na mesma partição se e só se têm a mesma cardinalidade. Como κ é regular, existe $n < \omega$ tal que a partição contendo os elementos de \mathcal{F} de cardinalidade n tem cardinalidade κ . Portanto, podemos assumir que $\forall x \in \mathcal{F}(|x| = n)$.

A prova agora é por indução em n. Se n=0 nada a fazer. Suponha que o lema vale para famílias de cardinalidade κ na qual todo elemento tem cardinalidade n-1 e seja \mathcal{F} uma família com κ elementos de cardinalidade n.

Seja \mathcal{B}' uma subfamília maximal de elementos dois-a-dois disjuntos (use Lema de Zorn no subconjunto das partes de \mathcal{F} das subfamílias de elementos 2-a-2 disjuntos com a ordem da inclusão). Se $|\mathcal{B}'| = \kappa$ estamos feitos. Suponha que $|\mathcal{B}'| < \kappa$. Então, se para todo $x \in \bigcup \mathcal{B}'$, x pertence a $< \kappa$ conjuntos de \mathcal{F} , como \mathcal{B}' é família de disjuntos maximal todo $F \in \mathcal{F}$ intersecta algum elemento de \mathcal{B}' , então $\mathcal{F} \subseteq \bigcup_{x \in \cup \mathcal{B}'} \{F \in \mathcal{F} : x \in F\}$ contra κ é regular.

Logo, existe $x \in \bigcup \mathcal{B}'$ tal que $\{F \in \mathcal{F} : x \in F\}$ tem cardinalidade κ . Ponha $\mathcal{F}' = \{F \setminus \{x\} : x \in F \land F \in \mathcal{F}\}$. Então, por hipótese de indução, existe $\mathcal{C} \subseteq \mathcal{F}'$ um Δ -sistema de cardinalidade κ com raiz r'. Dessa forma, $\mathcal{B} = \{F \cup \{x\} : F \in \mathcal{C}\}$ é um Δ -sistema em \mathcal{F} de cardinalidade κ com raiz $r' \cup \{x\}$.

Exercício [Exercício 2 do capítulo 2 do Kunen] Ache uma família de cardinalidade ω_{ω} tal que todo elemento é finito e nenhuma subfamília de cardinalidade ω_{ω} forma um Δ -sistema.

Tome $\bigcup_{i<\omega} \{\{i, i\cdot \alpha\}: 1<\alpha<\omega_{i-2}\}.$

3. Teorema (1.6). Sejam $\kappa \geq \omega$ e $\theta > \kappa$ regular tal que $\forall \alpha < \theta (| \leq \kappa \alpha | < \theta)$. Se \mathcal{F} é tal que $|\mathcal{F}| \geq \theta$ e $\forall x \in \mathcal{F}(|x| < \kappa)$ então existe $\mathcal{B} \subseteq \mathcal{F}$ com $|\mathcal{B}| = \theta$ e \mathcal{B} é um Δ -sistema.

Demonstração Por truncamento, podemos tomar $|\mathcal{F}| = \theta$. Note que

$$\big|\bigcup \mathcal{F}\big| \leq \sum_{x \in \mathcal{F}} |x| = \theta \otimes \sup \{|x| \colon x \in \mathcal{F}\} = \theta,$$

assim podemos tomar $\bigcup \mathcal{F} \subseteq \theta$. Ainda, $\forall x \in \mathcal{F}_1(|x| < \kappa)$ logo type $(x) < \kappa$. Considere a partição de \mathcal{F} , para $\alpha < \kappa$

$$\mathcal{A}_{\alpha} = \{ x \in \mathcal{F} : \operatorname{type}(x) = \alpha \}.$$

Então $|\mathcal{F}| = |\bigcup_{\alpha < \kappa} \mathcal{A}_{\alpha}|$ e como θ é regular existe $\rho < \kappa$ tal que \mathcal{A}_{ρ} tem cardinalidade θ . Então fixemos ρ e $\mathcal{F}_1 = \{x \in \mathcal{F} : \text{type}(x) = \rho\}$. Para cada $x \in \mathcal{F}_1$ escrevemos $x = \{x(\xi) : \xi < \rho\}$. Agora, observe que

- (a). Para todo $\alpha < \theta$ temos $|\{x \in \mathcal{F}_1 : x \subseteq \alpha\}| < \theta$. De fato, se $x \subseteq \alpha$ então $\langle x(\xi) : \xi \in \rho \rangle$ é um elemento de $\langle \kappa_{\alpha} \in |\langle \kappa_{\alpha} | \rangle < \theta$.
- (b). $\bigcup \mathcal{F}_1$ é ilimitado em θ . De fato, segue de (a) e de $|\mathcal{F}_1| = \theta$, que para todo $\alpha < \theta$ existe $x \in \mathcal{F}_1$ não contido em α , i.e. existem $x_{\alpha} \in \mathcal{F}_1$ e $\xi_{\alpha} < \rho$ tais que $x_{\alpha}(\xi_{\alpha}) \geq \alpha$.

De θ regular, temos que existe ξ tal que $\{x(\xi): x \in \mathcal{F}_1\}$ é ilimitado em θ . Caso contrário, para todo $\xi < \rho$ existe $\beta_{\xi} < \theta$ tal que para todo $x \in \mathcal{F}_1$ temos $x(\xi) < \beta_{\xi}$. Se $\alpha < \theta$, por (b), existe $x_{\alpha}(\xi_{\alpha}) \geq \alpha$. Por outro lado, $x(\xi_{\alpha}) < \beta_{\xi_{\alpha}}(\forall x \in \mathcal{F}_1)$, ou seja, os β_{ξ} 's $(\xi < \rho)$ acima são ilimitados em θ , contra o fato de θ ser regular.

Ponha ξ_0 o mínimo desses ξ 's e

$$\alpha_0 = \sup \left\{ x(\eta) + 1 \colon x \in \mathcal{F}_1 \land \eta < \xi_0 \right\}.$$

Então, $\alpha_0 < \theta$ e $x(\eta) < \alpha_0$ para todo $x \in \mathcal{F}_1$ e todo $\eta < \xi_0$.

Por recursão transfinita sobre $\mu < \theta$ tome $x_{\mu} \in \mathcal{F}_1$ tal que

$$x_{\mu}(\xi_0) > \max \left(\alpha_0, \sup \left\{x_{\nu}(\eta) : \nu < \mu \land \eta < \rho\right\}\right),$$

isso sempre é possível pois $\{x(\xi): x \in \mathcal{F}_1\}$ é ilimitado em θ e sup $\{x_{\nu}(\eta): \nu < \mu \land \eta < \rho\}$ não atinge θ regular.

Ponha $\mathcal{F}_2 = \{x_{\mu} \in \mathcal{F}_1 \colon \mu < \theta\}$. Então $|\mathcal{F}_2| = \theta$ e para todos x, y distintos em \mathcal{F}_2 temos que $x \cap y \subseteq \alpha_0$. Como $|{}^{<\kappa}\alpha_0| < \theta$ e θ é regular, existem $r \subseteq \alpha_0$ e \mathcal{B} subfamília de \mathcal{F}_2 de cardinalidade θ tal que $\forall x \in \mathcal{B}(x \cap \alpha_0 = r)$. Portanto, \mathcal{B} é um Δ -sistema com raiz r.

Uma conjectura de US\$ 1,000.

Usamos a notação

$$(\lambda, \kappa) \to \Delta(\theta)$$

para dizer que toda família de λ conjuntos de cardinalidade κ contém um Δ -sistema de tamanho θ . Ponha $\lambda(\kappa, \theta) = \min \{\lambda : (\lambda, \kappa) \to \Delta(\theta)\}.$

Problema: dados κ e θ quanto vale $\lambda(\kappa,\theta)$? Quando pelo menos um de κ e θ é infinito foi completamente resolvido por P. Erdős e R. Rado. Para finitos, está em aberto. A conjectura de US\$ 1,000 de Erdős e Rado é

Conjectura. Existe uma constante c tal que $\lambda(n,3) < c^n$.

O que se sabe é

$$\lambda(n,3) < n! \left(\frac{c \log n}{\log \log n}\right)^{-n},$$

devido a Kostochka (com um prêmio de consolação de 100 dolares).