Homework

魏恒峰

hfwei@nju.edu.cn

2018年02月28日

Suppose A and B are well-ordered isomorphic sets.

Show that there is only one isomorphic mapping $f: A \to B$.

Suppose A and B are well-ordered isomorphic sets.

Show that there is only one isomorphic mapping $f: A \to B$.

Definition (Well-ordered Set (SM Definition 14.1))

An ordered set S is said to be *well-ordered* if every non-empty subset of S has a first element.

Suppose A and B are well-ordered isomorphic sets.

Show that there is only one isomorphic mapping $f: A \to B$.

Definition (Well-ordered Set (SM Definition 14.1))

An ordered set S is said to be *well-ordered* if every non-empty subset of S has a first element.

Definition (Isomorphic)

Two ordered sets A and B are said to be *isomorphic*, written $A \simeq B$, if $\exists f: A \overset{1-1}{\longleftrightarrow} B$ which preserves the order relations

$$\forall a, a' \in A : a \prec a' \iff f(a) \prec f(a')$$

Suppose A and B are well-ordered isomorphic sets. Show that there is only one isomorphic mapping $f:A\to B$.

Remark: What if "similarity mapping"?

Suppose A and B are well-ordered isomorphic sets.

Show that there is only one *isomorphic mapping* $f: A \rightarrow B$.

Remark: What if "similarity mapping"?

Definition (Similarity Mapping)

A function $f:A \xrightarrow{1-1} B$ is called a *similarity mapping* from A to B if f preserves the order relations

$$\forall a, a' \in A : a \prec a' \iff f(a) \prec f(a')$$

Suppose A and B are well-ordered isomorphic sets.

Show that there is only one *isomorphic mapping* $f: A \rightarrow B$.

Remark: What if "similarity mapping"?

Definition (Similarity Mapping)

A function $f:A \xrightarrow{1-1} B$ is called a *similarity mapping* from A to B if f preserves the order relations

$$\forall a, a' \in A : a \prec a' \iff f(a) \prec f(a')$$

Counterexample for "similarity mapping":

Suppose A and B are well-ordered isomorphic sets.

Show that there is only one *isomorphic mapping* $f: A \rightarrow B$.

Remark: What if "similarity mapping"?

Definition (Similarity Mapping)

A function $f:A \xrightarrow{1-1} B$ is called a *similarity mapping* from A to B if f preserves the order relations

$$\forall a, a' \in A : a \prec a' \iff f(a) \prec f(a')$$

Counterexample for "similarity mapping":

$$A = B = \mathbb{N}$$
 $f: a \mapsto a$ $f': a \mapsto a + 1$

Suppose A and B are well-ordered isomorphic sets.

Show that there is only one isomorphic mapping $f: A \to B$.

Suppose A and B are well-ordered isomorphic sets. Show that there is only one isomorphic mapping $f:A\to B$.

Suppose A and B are well-ordered isomorphic sets.

Show that there is only one isomorphic mapping $f: A \rightarrow B$.

Suppose A and B are well-ordered isomorphic sets. Show that there is only one isomorphic mapping $f: A \to B$.

Lemma

X is a well-ordered set. $f: X \to X$ is a similarity mapping.

Then $\forall x \in X : f(x) \ge x$.

5 / 11

Suppose A and B are well-ordered isomorphic sets.

Show that there is only one isomorphic mapping $f: A \to B$.

Lemma

X is a well-ordered set. $f:X\to X$ is a similarity mapping.

Then $\forall x \in X : f(x) \geq x$.

Lemma

X is a well-ordered set.

Then X has only one automorphism, i.e., id_X .

X is a well-ordered set. $f:X \to X$ is a similarity mapping.

Then $\forall x \in X : f(x) \ge x$.

Proof.

6 / 11

X is a well-ordered set. $f: X \to X$ is a similarity mapping.

Then $\forall x \in X : f(x) \ge x$.

Proof.

By contradiction.

X is a well-ordered set. $f: X \to X$ is a similarity mapping.

Then $\forall x \in X : f(x) \ge x$.

Proof.

By contradiction.

$$Y = \{ x \in X \mid f(x) < x \} \neq \emptyset$$

6 / 11

X is a well-ordered set. $f: X \to X$ is a similarity mapping.

Then $\forall x \in X : f(x) \ge x$.

Proof.

By contradiction.

$$Y = \{ x \in X \mid f(x) < x \} \neq \emptyset$$

Well-ordered: $x = \min Y \implies f(x) < x$

X is a well-ordered set. $f: X \to X$ is a similarity mapping.

Then $\forall x \in X : f(x) \ge x$.

Proof.

By contradiction.

$$Y = \{ x \in X \mid f(x) < x \} \neq \emptyset$$

Well-ordered:
$$x = \min Y \implies f(x) < x$$

Similarity:
$$f(f(x)) < f(x) \implies f(x) \in X$$

X is a well-ordered set.

Then X has only one automorphism, i.e., id_X .

X is a well-ordered set.

Then X has only one automorphism, i.e., id_X .

Proof.

Suppose $f:X\to X$ is an automorphism.

X is a well-ordered set.

Then X has only one automorphism, i.e., id_X .

Proof.

Suppose $f:X\to X$ is an automorphism.

f is a similarity from X to $X \implies \forall x \in X : f(x) \ge x$

X is a well-ordered set.

Then X has only one automorphism, i.e., id_X .

Proof.

Suppose $f: X \to X$ is an automorphism.

f is a similarity from X to $X \implies \forall x \in X: f(x) \geq x$

 f^{-1} is a similarity from X to $X \implies \forall x \in X : f^{-1}(x) \ge x$

X is a well-ordered set.

Then X has only one automorphism, i.e., id_X .

Proof.

Suppose $f: X \to X$ is an automorphism.

f is a similarity from X to $X \implies \forall x \in X: f(x) \geq x$

 f^{-1} is a similarity from X to $X \implies \forall x \in X: f^{-1}(x) \geq x$

f is a similarity from X to $X \implies x = f(f^{-1}(x)) \ge f(x)$

X is a well-ordered set.

Then X has only one automorphism, i.e., id_X .

Proof.

Suppose $f: X \to X$ is an automorphism.

f is a similarity from X to $X \implies \forall x \in X : f(x) \ge x$

 f^{-1} is a similarity from X to $X \implies \forall x \in X : f^{-1}(x) \ge x$

f is a similarity from X to $X \implies x = f(f^{-1}(x)) \ge f(x)$

$$id_X: f(x) = x$$

Suppose A and B are well-ordered isomorphic sets. Show that there is only one isomorphic mapping $f:A\to B$.

Suppose A and B are well-ordered isomorphic sets. Show that there is only one isomorphic mapping $f:A\to B$.

Proof.

By contradiction.

Suppose A and B are well-ordered isomorphic sets. Show that there is only one isomorphic mapping $f:A\to B$.

Proof.

By contradiction.

 \exists isomorphic mappings $f,g:A \rightarrow B$

Suppose A and B are well-ordered isomorphic sets. Show that there is only one isomorphic mapping $f:A\to B$.

Proof.

By contradiction.

 \exists isomorphic mappings $f,g:A \rightarrow B$

 $h = g^{-1} \circ f$ is an automorphism on $A \implies h = id_A$

Suppose A and B are well-ordered isomorphic sets. Show that there is only one isomorphic mapping $f:A\to B$.

Proof.

By contradiction.

 \exists isomorphic mappings $f,g:A \rightarrow B$

$$h=g^{-1}\circ f$$
 is an automorphism on $A\implies h=id_A$

$$f = g \circ h = g \circ id_A = g$$

(i) 等势且有穷的布尔代数均同构。

(i) 等势且有穷的布尔代数均同构。

$$|B_1| = |B_2| = m$$

(i) 等势且有穷的布尔代数均同构。

$$|B_1| = |B_2| = m$$
 $f: B_1 \stackrel{1-1}{\longleftrightarrow} B_2$

(i) 等势且有穷的布尔代数均同构。

Proof.

$$|B_1| = |B_2| = m$$
 $f: B_1 \stackrel{1-1}{\longleftrightarrow} B_2$

Theorem (Representation Theorem)

B is a finite Boolean algebra. A_B is the set of atoms of B.

$$f: B \stackrel{1-1}{\longleftrightarrow} \mathcal{P}(A_B)$$

 $x = a_1 + a_2 + \cdots + a_r \mapsto \{a_1, a_2, \cdots, a_r\}$ is an isomorphism.

(i) 等势且有穷的布尔代数均同构。

Proof.

$$|B_1| = |B_2| = m$$
 $f: B_1 \stackrel{1-1}{\longleftrightarrow} B_2$

Theorem (Representation Theorem)

B is a finite Boolean algebra. A_B is the set of atoms of B.

$$f: B \stackrel{1-1}{\longleftrightarrow} \mathcal{P}(A_B)$$

$$x = a_1 + a_2 + \cdots + a_r \mapsto \{a_1, a_2, \cdots, a_r\}$$
 is an isomorphism.

$$|A_{B_1}| = |A_{B_2}| = n = \log_2 m$$
 $A_{B_1} = \{b_1, \dots, b_n\}$ $A_{B_2} = \{b_2, \dots, b_n\}$

(ii) 举例说明等势但无穷的布尔代数不一定同构。

(ii) 举例说明等势但无穷的布尔代数不一定同构。

Not Exactly an Answer.

(ii) 举例说明等势但无穷的布尔代数不一定同构。

Not Exactly an Answer.

并非任何 Boolean Algebra 皆同构于某幂集代数。

有穷-余有穷 (finite co-finite) 代数 $F(\mathbb{N})$

 $F(\mathbb{N}) = \{X \in \mathcal{P}(\mathbb{N}) \mid X \text{ is finite} \lor \mathbb{N} \setminus X \text{ is finite} \}$

(ii) 举例说明等势但无穷的布尔代数不一定同构。

Not Exactly an Answer.

并非任何 Boolean Algebra 皆同构于某幂集代数。

有穷-余有穷 (finite co-finite) 代数 $F(\mathbb{N})$

$$F(\mathbb{N}) = \{X \in \mathcal{P}(\mathbb{N}) \mid X \text{ is finite} \vee \mathbb{N} \setminus X \text{ is finite} \}$$

$$|F(\mathbb{N})| = \aleph_0$$

(ii) 举例说明等势但无穷的布尔代数不一定同构。

Not Exactly an Answer.

并非任何 Boolean Algebra 皆同构于某幂集代数。

有穷-余有穷 (finite co-finite) 代数 $F(\mathbb{N})$

$$F(\mathbb{N}) = \{X \in \mathcal{P}(\mathbb{N}) \mid X \text{ is finite} \lor \mathbb{N} \setminus X \text{ is finite} \}$$

$$|F(\mathbb{N})| = \aleph_0$$

$$f: F(\mathbb{N}) \xrightarrow{1-1} \mathbb{N} \qquad \{a_1, a_2, \cdots, a_n\} = p_{a_1} p_{a_2} \cdots p_{a_n}$$

Theorem (Representation Theorem)

- (i) 任何有穷 Boolean Algebra 同构于某幂集代数。
- (ii) 有穷 Boolean Algebra 之势呈形 2ⁿ。
- (iii) 两个等势的有穷 Boolean Algebra 是同构的。
- (iv) 并非任何 Boolean Algebra 皆同构于某幂集代数。

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn

11 / 11