Advanced Linux

Module 7

UART interface (Part 1)

Serial data transmission

- There are two basic methods for data transmission:
 - Parallel (buses, parallel port, etc.)
 - Serial (serial port, SPI, I2C, etc.)
- U(S)ART Universal Asynchronous (Synchronous) Receive Transmit
- Advantages:
 - Using only few lines (two, TX and RX, in the case of UART) for data transmission
 - Less prone to cross-talk
 - Longer cables (assuming that physical layer is adapted to handle environment noise)

UART internals

M. Knežić (RT-RK)

UART working principle (1)

UART working principle (1)

Baud rate = Bits per second

M. Knežić (RT-RK)

UART working principle (2)

41 / 50

M. Knežić (RT-RK) Advanced Linux February 2019

UART working principle (2)

UART working principle (2)

Common sources of errors in UART (1)

- Overrun error data buffer is full when new character arrives. Can be mitigated using either hardware (RTS/CTS) or software (XON/XOFF) flow control mechanism
- Underrun error data buffer is empty when last character has been shifted out (usually does not cause much problems)
- Framing error UART does not see stop bit when expected (also applies for break condition)
- Parity error there is a disagreement in one-bits parity rule (only applies when parity mode is enabled)
- Break condition duration of low state exceeds character time (not necessarily an error): usually interpreted as receiving zero character with framing error

Common sources of errors in UART (2)

Finding UART baudrate

Finding UART baudrate

Finding UART baudrate

Typical baudrate values can be helpful in this case.

Manipulating UART device in Linux console

- Raspberry Pi specifics:
 - Checking UART status: dmseg | grep tty
 - Disable Linux console and enable UART device (sudo raspi-config)
 - For Raspberry Pi 3 devices, you need also to disable bluetooth (edit /boot/config.txt file and add dtoverlay=pi3-disable-bt line)
 - UART device now can be accessed via /dev/ttyAMAO
- Setting UART parameters (e.g, baudrate): stty -F /dev/ttyAMAO 9600
 For additional information, check man pages of stty(1) utility.
- Writing data to UART:
 echo -n -e '\x12\x34\x56' > /dev/ttyAMAO
- Reading data from UART: cat /dev/ttyAMAO