Transformer Model Implementation: A Comprehensive Guide

IIT Ropar Minor in AI 3rd April, 2025

1 Introduction to Transformers: A Machine Translation Case Study

Machine translation is one of the most impactful applications of the Transformer architecture. Consider the challenging task of translating English to German:

English: "The black cat sat on the mat." **German**: "Die schwarze Katze saß auf der Matte."

Traditional sequence-to-sequence models with recurrent neural networks (RNNs) struggled with:

- Capturing long-range dependencies
- Parallelization during training
- Maintaining context across sentences

The Transformer architecture, introduced in the seminal "Attention Is All You Need" paper (Vaswani et al., 2017), addressed these limitations through its self-attention mechanism, enabling:

- Direct modeling of dependencies between any two positions in a sequence
- Highly parallelizable computation
- Superior performance on translation tasks

For our example sentence, a Transformer processes the entire input sequence simultaneously rather than word-by-word, attending to relevant context across the entire sentence to produce accurate translations.

Transformer Model (Image Credit: https://jalammar.github.io/illustrated-transformer/)

2 Theoretical Foundations

2.1 Positional Encoding

Problem: Unlike recurrent or convolutional networks, the self-attention mechanism in Transformers is permutation invariant - it doesn't inherently understand the order of tokens.

Solution: Positional encodings inject information about token positions directly into the embeddings.

Mathematical Formulation:

- For position pos and dimension i in the embedding:
 - For even dimensions: $PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{model}})$
 - For odd dimensions: $PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{model}})$

These sinusoidal functions create unique positional signatures that:

- Allow the model to attend to relative positions
- Extrapolate to sequence lengths not seen during training
- Are added directly to token embeddings before entering the encoder/decoder stack

2.2 Transformer Encoder

The encoder transforms an input sequence into a continuous representation that captures its meaning while preserving positional information.

Key Components:

- 1. Input Embedding: Maps tokens to vectors of dimension d_{model}
- 2. **Positional Encoding**: Adds position information to embeddings
- 3. **Multi-Head Self-Attention**: Processes relationships between all positions in the sequence
- 4. **Feed-Forward Network**: Processes each position independently with identical parameters
- Layer Normalization and Residual Connections: Stabilize and accelerate training

The encoder creates contextualized representations where each token's embedding contains information about its meaning in relation to all other tokens.

2.3 Transformer Decoder

The decoder generates output tokens sequentially while attending to both:

- Previously generated output tokens (via masked self-attention)
- The encoder's representation of the input sequence (via encoder-decoder attention)

Key Components:

- 1. Output Embedding: Maps tokens to vectors of dimension d_{model}
- 2. Positional Encoding: Adds position information to embeddings
- 3. Masked Multi-Head Self-Attention: Prevents attending to future positions
- 4. Multi-Head Encoder-Decoder Attention: Attends to relevant parts of the input
- 5. Feed-Forward Network: Processes each position independently
- 6. **Linear and Softmax Layer**: Converts final representations to output probabilities

The decoder's auto-regressive nature enables it to generate coherent sequences while leveraging the complete context provided by the encoder.

2.4 Complete Transformer Model

The full Transformer architecture combines the encoder and decoder in an endto-end system:

- 1. Encoder: Processes the entire input sequence in parallel
- 2. **Decoder**: Generates output tokens one by one, attending to both:
 - Previously generated tokens
 - The encoder's representation
- 3. **Training**: Uses teacher forcing with a shifted version of the target sequence

The Transformer excels at capturing both local and global dependencies, making it ideal for sequence transduction tasks like machine translation.

3 Code Implementation Analysis

3.1 Positional Encoding

```
class PositionalEncoding(nn.Module):
      def __init__(self, d_model, max_len=5000):
          super().__init__()
          pe = torch.zeros(max_len, d_model)
          position = torch.arange(0, max_len, dtype=torch.float).
      unsqueeze(1)
          div_term = torch.exp(torch.arange(0, d_model, 2).float() *
      (-math.log(10000.0) / d_model))
          pe[:, 0::2] = torch.sin(position * div_term)
          pe[:, 1::2] = torch.cos(position * div_term)
8
          pe = pe.unsqueeze(0)
9
          self.register_buffer('pe', pe)
10
      def forward(self, x):
12
13
        seq_len = x.size(1)
        return x + self.pe[:, :seq_len, :]
14
```

Implementation Details:

- d_model: Dimension of the embedding vectors (e.g., 512)
- max_len: Maximum expected sequence length (5000 by default)
- The implementation uses sinusoidal functions as described in the original paper
- Positional encodings are computed once during initialization and stored as a buffer
- The forward method adds positional encodings to input embeddings (x)

 Sequence truncation is handled by taking only positional encodings up to seq_len

This implementation efficiently adds unique positional information to each token embedding while maintaining the same dimensionality.

3.2 Transformer Encoder

```
class TransformerEncoder(nn.Module):
      def __init__(self, vocab_size, embed_dim, num_heads, hidden_dim
      , num_layers, max_len):
          super().__init__()
          self.embedding = nn.Embedding(vocab_size, embed_dim)
          self.pos_encoder = PositionalEncoding(embed_dim, max_len)
          encoder_layer = nn.TransformerEncoderLayer(d_model=
      embed_dim, nhead=num_heads, dim_feedforward=hidden_dim,
      batch_first=True)
          self.encoder = nn.TransformerEncoder(encoder_layer,
      num_layers=num_layers)
      def forward(self, src, src_key_padding_mask=None):
          x = self.embedding(src)
10
          x = self.pos_encoder(x)
          x = self.encoder(x, src_key_padding_mask=
      src_key_padding_mask)
          return x
```

Implementation Details:

- The encoder consists of:
 - A token embedding layer that maps integer indices to vectors
 - A positional encoding layer that adds position information
 - A stack of num_layers identical encoder layers
- Each encoder layer (created by PyTorch's nn.TransformerEncoderLayer) contains:
 - Multi-head self-attention mechanism
 - Position-wise feed-forward network
 - Layer normalization and residual connections
- The batch_first=True parameter configures input tensors to have shape [batch_size, seq_len, embed_dim]
- src_key_padding_mask indicates which positions should be ignored (padded positions)

This implementation leverages PyTorch's built-in Transformer modules while providing a clean interface for the encoder component.

3.3 Transformer Decoder

```
class TransformerDecoder(nn.Module):
      def __init__(self, vocab_size, embed_dim, num_heads, hidden_dim
      , num_layers, max_len):
          super().__init__()
          self.embedding = nn.Embedding(vocab_size, embed_dim)
          self.pos_encoder = PositionalEncoding(embed_dim, max_len)
5
          decoder_layer = nn.TransformerDecoderLayer(d_model=
6
      embed_dim, nhead=num_heads, dim_feedforward=hidden_dim,
      batch_first=True)
          self.decoder = nn.TransformerDecoder(decoder_layer,
      num_layers=num_layers)
          self.fc_out = nn.Linear(embed_dim, vocab_size)
9
      def forward(self, tgt, memory, tgt_mask=None,
10
      tgt_key_padding_mask=None, memory_key_padding_mask=None):
          x = self.embedding(tgt)
12
          x = self.pos_encoder(x)
          x = self.decoder(x, memory, tgt_mask=tgt_mask,
13
                            tgt_key_padding_mask=tgt_key_padding_mask,
14
15
                            memory_key_padding_mask=
      memory_key_padding_mask)
          return self.fc_out(x)
```

Implementation Details:

- Similar to the encoder, the decoder includes:
 - Token embedding layer
 - Positional encoding layer
 - A stack of num_layers identical decoder layers
- Each decoder layer (created by PyTorch's nn.TransformerDecoderLayer) contains:
 - Masked multi-head self-attention mechanism
 - Multi-head encoder-decoder attention mechanism
 - Position-wise feed-forward network
 - Layer normalization and residual connections
- Key parameters in the forward method:
 - tgt: Target tokens (already processed tokens during inference)
 - memory: Output from the encoder
 - tgt_mask: Prevents attending to future positions
 - tgt_key_padding_mask: Indicates padded positions in the target sequence
 - memory_key_padding_mask: Indicates padded positions in the encoder output

 The final linear layer maps hidden representations to vocabulary distribution

The decoder implements the auto-regressive generation process, enabling one-by-one token generation while attending to the encoder's representation.

3.4 Complete Transformer Model

```
class TransformerModel(nn.Module):
      def __init__(self, src_vocab_size, tgt_vocab_size, embed_dim,
      num_heads, hidden_dim, num_layers, max_len):
          super().__init__()
          self.encoder = TransformerEncoder(src_vocab_size, embed_dim
      , num_heads, hidden_dim, num_layers, max_len)
          self.decoder = TransformerDecoder(tgt_vocab_size, embed_dim
      , num_heads, hidden_dim, num_layers, max_len)
      def generate_square_subsequent_mask(self, sz):
          return torch.triu(torch.ones(sz, sz) * float('-inf'),
      diagonal=1)
9
      def forward(self, src, tgt, src_padding_mask=None,
      tgt_padding_mask=None):
          memory = self.encoder(src, src_key_padding_mask=
      src_padding_mask)
          tgt_seq_len = tgt.size(1)
12
          tgt_mask = self.generate_square_subsequent_mask(tgt_seq_len
      ).to(tgt.device)
          return self.decoder(tgt, memory, tgt_mask=tgt_mask,
14
                               tgt_key_padding_mask=tgt_padding_mask,
15
                               memory_key_padding_mask=
16
      src_padding_mask)
```

Implementation Details:

- The complete model combines:
 - An encoder for processing the source sequence
 - A decoder for generating the target sequence
- Separate vocabulary sizes for source and target languages
- The generate_square_subsequent_mask method creates a causal mask where each position can only attend to prior positions and itself:
 - It creates an upper triangular matrix of -inf values above the diagonal
 - During softmax, these -inf values become zeros, effectively blocking attention to future positions
- The forward method:
 - 1. Processes the source sequence through the encoder

- 2. Generates a causal mask for the target sequence
- 3. Processes the target sequence through the decoder, attending to the encoder output
- 4. Returns logits that can be passed through a softmax function to get probabilities

This implementation provides a clean, modular approach to the full Transformer architecture while leveraging PyTorch's built-in modules for the core attention mechanisms.

4 Practical Applications and Extensions

The Transformer architecture implemented here serves as the foundation for many state-of-the-art models in NLP:

- 1. **Machine Translation**: The original use case, achieving breakthrough performance on language pairs
- 2. Transfer Learning Models: Pre-trained models like BERT, GPT, and T5 are based on the Transformer architecture
- 3. **Text Generation**: Transformers excel at generating coherent, contextually relevant text
- 4. **Document Summarization**: The ability to capture long-range dependencies makes Transformers ideal for summarization
- 5. **Question Answering**: Transformers can understand relationships between questions and context passages

Extensions to consider:

- Beam search for improved decoding
- Length normalization to avoid bias toward shorter sequences
- \bullet ${\bf Label\ smoothing\ }$ to improve generalization
- Byte-Pair Encoding (BPE) or SentencePiece tokenization
- Layer-wise learning rate decay for fine-tuning

5 Conclusion

The Transformer architecture represents a fundamental shift in sequence modeling. By replacing recurrence with attention, it enables more effective parallel processing and better modeling of long-range dependencies. The implementation provided here demonstrates the core components of this architecture:

positional encoding, self-attention mechanisms in both encoder and decoder, and the overall sequence-to-sequence framework.

Understanding these components not only helps in implementing Transformers from scratch but also provides insight into the inner workings of modern NLP models that build upon this architecture.