Congratulations! You passed!

 $\textbf{Grade received} \ 100\% \quad \textbf{To pass} \ 80\% \ or \ higher$

Go to next item

Introduction to Deep Learning

Latest Submission Grade 100%

ι.	What does the analogy "Al is the new electricity" refer to?	1 / 1 point
	Through the "smart grid", Al is delivering a new wave of electricity.	
	Similar to electricity starting about 100 years ago, Al is transforming multiple industries.	
	Al is powering personal devices in our homes and offices, similar to electricity.	
	Al runs on computers and is thus powered by electricity, but it is letting computers do things not possible before.	
	 Correct Yes. Al is transforming many fields from the car industry to agriculture to supply-chain 	
2.	Which of these are reasons for Deep Learning recently taking off? (Check the three options that apply.)	1/1 point
	We have access to a lot more computational power.	
	 Correct Yes! The development of hardware, perhaps especially GPU computing, has significantly improved deep learning algorithms' performance. 	
	We have access to a lot more data.	
	Correct Yes! The digitalization of our society has played a huge role in this.	
	Neural Networks are a brand new field.	
	Deep learning has resulted in significant improvements in important applications such as online advertising, speech recognition, and image recognition.	
	Correct These were all examples discussed in lecture 3.	

3. Recall this diagram of iterating over different ML ideas. Which of the statements below are true? (Check all that apply.)

1/1 point

- x-axis is the input to the algorithm
 - y-axis is outputs.
- x-axis is the performance of the algorithm
 - y-axis (vertical axis) is the amount of data.
- x-axis is the amount of data
 - y-axis (vertical axis) is the performance of the algorithm.
- v-axis is the amount of data
 - y-axis is the size of the model you train.
- **⊘** Correct
- 10. Assuming the trends described in the previous question's figure are accurate (and hoping you got the axis labels right), which of the following are true? (Check all that apply.)

1/1 point

- Increasing the training set size generally does not hurt an algorithm's performance, and it may help significantly.
- **⊘** Correct

Yes. Bringing more data to a model is almost always beneficial.

- Decreasing the size of a neural network generally does not hurt an algorithm's performance, and it may help significantly.
- ☑ Increasing the size of a neural network generally does not hurt an algorithm's performance, and it may help significantly.
- **⊘** Correct

Yes. According to the trends in the figure above, big networks usually perform better than small networks.