

California State University, Sacramento.

EEE273

Hierarchical Digital Design Methodology Instructor: Dr. Behnam Arad Term Project

Submitted by :-

Omkar Kachare

Date of submission: 1st May 2019

Table of Contents

Sr. No.	Content	Page No.
1	Introduction	2
2	Status report	5
3	Block diagram	7
4	Source Codes	10
5	Test Fixture	17
6	Simulation Results	20
7	Synthesis	25
8	Code Coverage	30

<u>Introduction</u>

The objective of this project is to design, validate and synthesize a parameterized first-in first-out (FIFO) buffer in Verilog. The default depth of the FIFO is 128 32-bit words. It supports flush, *insert*, and *remove* operations. During the insert operation, a new word is added to the tail (end) of the buffer and an internal write pointer is incremented on positive edge of *clk_in* clock. The data at the head of the FIFO is read during the remove operation, and an internal read pointer is incremented on positive edge *clk_out* clock. A *flush* clears all words in the buffer. The buffer is considered empty after a flush. Here are the ports for the FIFO:

1-bit input *reset:* An asynchronous global system reset. Every sequential element in the system goes through a reset when this signal is asserted. The content of the FIFO is cleared. The status of the FIFO will be empty after a reset.

- 1-bit input *flush*: When asserted, the FIFO is cleared, and the read/write pointers are reset on positive edge of clock *clk in*. The FIFO status is empty.
- 1-bit input *insert:* When asserted, data on *data_in* port is stored at the tail of the FIFO on positive edge of clock *clk in*
- 1-bit input *remove*: When asserted, data at the head of the FIFO is removed from the FIFO and is placed on the on the *data_out* output port on positive edge of *clk_out*
- 32-bit input *data_in*: input data port
- 32-bit output *data out*: output data port
- 1-bit output *full*: asserted on the positive edge of *clk_in* clock when the buffer is full and there is no more room for data
- 1-bit output empty: asserted on the positive edge of clk_out clock when the buffer is empty (no data in the buffer)

Full and empty flags are used by the external environment for proper use of the FIFO

Design Block Diagram

FSM for Write Logic:

FSM for Read logic:

Source Code

```
    Memory: - fifomem.v
    Write Logic: - datain.v
    Read Logic: - dataout.v
    Synchronizers: - sync.v
    Top Module: - fifotop.v
```

1) fifomem.v

```
// FIFO Memory module Depth-128, Word Size- 32.
module fifomem(reset, flush, write en, read en,
                                                data in,
     datain addr, dataout addr, data out);
parameter word=32; parameter addr=6; parameter depth=128;
input reset, flush, write en, read en; input [word-1:0] data in; input [addr
:0] datain addr, dataout addr; output reg [word-1:0] data out;
reg [word-\overline{1}:0] mem [depth-1:0]; reg [word-1:0] temp; integer i;
always @ (*)beginif (!reset)
                                          // Reset condition
     begin data out = 32'b0; for (i=0;i<depth;i=i+1)
                         mem[i] = 32'b0;
     begin
          end end
     else if (flush)
                                     //Flush condition begin
     data out = 32'b0; for (i=1;i<depth;i=i+1)
                                                          begin
               mem[i] = 32'b0;
          end end
     else if (write en)
                                     //Write Operationbegin
     mem[datain addr] = data in; end
     else if (read en) //Read operation begin
                                                       data out =
mem[dataout addr]; end else if (write en && read en)
     data out = mem[dataout addr];
data in;
endendmodule
2) datain.v
// Data in Logic
module datain (clk_in, reset, flush, insert,
          sync dataout ptr,
          datain addr,
          full, write en,
          datain ptr);
parameter ptr=7;
parameter addr=6;
parameter S0 = 2'b00;
parameter S1 = 2'b01;
parameter S2 = 2'b11;
```

```
input clk in, reset, flush, insert;
input [ptr:0] sync_dataout_ptr;
output reg [addr:0] datain addr;
output reg full, write en;
output reg [ptr:0] datain ptr;
reg [1:0] current state, next state;
always @(posedge clk in, negedge reset)
begin
      if(!reset)
             current state<=S0;</pre>
      else if (flush)
             current state<=S0;</pre>
      else
             current_state<=next_state;</pre>
end
always @ (*)
begin
      case(current state)
      S0: if(insert)
             next state<=S1;</pre>
      else
             next state<=S0;</pre>
      S1: if(insert)
             next state<=S1;</pre>
      else
             next state<=S2;</pre>
      S2: if(insert)
             next state<=S1;</pre>
      else
             next state<=S2;</pre>
      default: next state<= S0;</pre>
      endcase
end
always @ (posedge clk in, negedge reset)
begin
if(!reset)
begin
      if(!reset)
      begin
```

```
full<=0;
             datain ptr<=0;</pre>
             write en<=0;</pre>
             datain addr<=0;</pre>
      end
      if(flush)
      begin
             full<=0;
             datain ptr<=0;</pre>
             write en<=0;</pre>
             datain addr<=0;</pre>
      end
      else
      case(current state)
      S0: begin
             full<=0;
             datain ptr<=0;</pre>
             write en<=0;</pre>
             datain addr<=0;
      end
      S1: begin
      if(datain ptr[addr:0] == sync dataout ptr[addr:0] &&
datain ptr[ptr]!=sync dataout ptr[ptr])
                                                          // Full condition
check
      begin
             full<=1'b1;
             datain ptr<=datain ptr;
             write en<=1'b0;</pre>
             datain addr<=datain addr;
      end
      else
      begin
             datain addr<=datain ptr[addr:0];</pre>
             full<=1'b0;
             write en<=1'b1;</pre>
             datain ptr<=datain ptr+1;</pre>
      end
      end
      S2:begin
      if(!(datain ptr[addr:0] == sync dataout ptr[addr:0] &&
datain_ptr[ptr]!=sync_dataout_ptr[ptr]))
      begin
             full<=0;
             datain ptr<=datain ptr;
             write en<=1'b0;</pre>
             datain addr<=datain addr;
      end
```

```
else
      begin
            full<=full;
            datain ptr<=datain ptr;
            write en<=1'b0;</pre>
            datain addr<=datain addr;
      end
      end
endcase
end
end
endmodule
3) dataout.v
// Data out Logic
module dataout (clk out, reset, sync flush, remove,
            sync datain ptr,
            dataout addr,
            empty, read en,
            dataout ptr);
parameter ptr=7;
parameter addr=6;
parameter S0 = 2'b00;
parameter S1 = 2'b01;
parameter S2 = 2'b11;
input clk_out, reset, sync_flush, remove;
input [ptr:0] sync datain ptr;
output reg [addr:0] dataout addr;
output reg empty, read en;
output reg [ptr:0] dataout ptr;
reg [1:0] current state, next state;
always @(posedge clk_out,negedge reset)
begin
      if(!reset)
            current state<=S0;</pre>
      else if (sync flush)
            current state<=S0;</pre>
      else
            current_state<=next_state;</pre>
end
always @ (*)
begin
      case(current_state)
```

```
S0: if(remove)
              next state<=S1;</pre>
       else
             next state<=S0;</pre>
       S1: if(remove)
              next state<=S1;</pre>
       else
              next_state<=S2;</pre>
       S2: if(remove)
             next state<=S1;</pre>
       else
              next_state<=S2;</pre>
       default: next state<= S0;</pre>
       endcase
end
always @ (posedge clk_out,negedge reset)
begin
if(!reset)
      begin
       if(reset)
      begin
              empty \le 0;
              dataout ptr<=0;</pre>
              read en<=0;</pre>
              dataout_addr<=0;</pre>
       end
       else
       case(current_state)
       S0: begin
              empty<=1'b1;
              dataout ptr<=0;</pre>
              read en<=0;</pre>
              dataout addr<=0;</pre>
       end
       S1: begin
       if (dataout_ptr[ptr:0] == sync_datain_ptr[ptr:0])
      begin
              empty<=1'b1;
              dataout ptr<=dataout ptr;
              read en<=1'b0;</pre>
              dataout_addr<=dataout_addr;</pre>
       end
```

```
else if (dataout ptr[ptr:0]!=sync datain ptr[ptr:0])
      begin
             dataout addr<=dataout ptr[addr:0];</pre>
             empty<=1'b0;
             read en<=1'b1;</pre>
             dataout ptr<=dataout ptr+1;</pre>
      end
      end
      S2:begin
      if(dataout ptr[ptr:0]!=sync datain ptr[ptr:0])
             empty \le 0;
      else
      begin
             empty<=1'b1;
             dataout ptr<=dataout ptr;
             read_en<=1'b0;</pre>
             dataout_addr<=dataout_addr;</pre>
      end
      end
endcase
end
end
endmodule
```

4) <u>sync.v</u>

```
// Sync for FIFO
module sync( clk in, clk out, reset,
      dataout ptr, datain ptr,
      sync dataout ptr,
      sync datain ptr);
parameter ptr=7;
input clk in, clk out, reset;
input [ptr:0] dataout ptr,datain ptr;
output reg [ptr:0] sync_dataout_ptr,sync_datain_ptr;
reg[ptr:0] temp1, temp2;
always @ (posedge clk out , negedge reset)
begin
      if(!reset)
            sync_datain_ptr<=8'b0;</pre>
      else
      begin
            temp2<= datain ptr;
            sync datain ptr<=temp2;</pre>
      end
```

```
end
```

```
always @ (posedge clk in , negedge reset)
begin
      if(!reset)
      sync dataout ptr<=8'b0;</pre>
      begin
            temp1<=dataout ptr;</pre>
            sync dataout ptr<=temp1;</pre>
      end
end
endmodule
5) fifotop.v
//FIFO TOP MODULE
`include "sync.v"
`include "datain.v"
`include "dataout.v"
`include "fifomem.v"
module fifotop
(clk in,clk out,flush,reset,insert,remove,data in,data out,full,empty);
parameter ptr= 7, depth=128,word=32;
input clk in, clk out, flush, reset, insert, remove;
input[word-1:0] data in;
output full, empty;
output[word-1:0]data out;
wire[ptr:0] sync datain ptr, sync dataout ptr, datain ptr, dataout ptr;
wire write en, read en;
wire[ptr-1:0] datain addr, dataout addr;
fifomem F1
(.reset(reset),.flush(flush),.write en(write en),.read en(read en),.data
in(data in),.datain addr(datain addr),.dataout addr(dataout addr),.data o
ut(data out));
datain W1
(.clk in(clk in),.reset(reset),.flush(flush),.insert(insert),.sync dataou
t ptr(sync dataout ptr),.full(full),.write en(write en),.datain addr(data
in_addr),.datain_ptr(datain_ptr));
dataout R1
(.clk out(clk out),.reset(reset),.remove(remove),.sync datain ptr(sync da
```

```
tain_ptr),.empty(empty),.read_en(read_en),.dataout_addr(dataout_addr),.da
taout_ptr(dataout_ptr));

sync S1
(.clk_in(clk_in),.clk_out(clk_out),.reset(reset),.dataout_ptr(dataout_ptr),.datain_ptr(datain_ptr),.sync_dataout_ptr(sync_dataout_ptr),.sync_datain_ptr(sync_datain_ptr));
endmodule
```

Test Fixture

1) Test Fixture:-

```
`include "fifotop.v"
module fifotop fixture2;
parameter word=32,depth=128;
reg clk in, clk out, flush, reset, insert, remove; reg [word-1:0] data in; wire
full, empty; wire [word-1:0] data out;
integer i;
fifotop F1
(.clk in(clk in),.clk out(clk out),.flush(flush),.reset(reset),.insert(in
sert), .remove(remove), .data in(data in), .data out(data out), .full(full), .
empty(empty));
//initial //$vcdpluson;
//////// clock in & clock out ///////////initialbegin
                    forever #10 clk in=~clk in;end
     clk in=1'b0;
initialbegin
            clk out=1'b0; forever #5
task resettest();begin insert=1'b0;
                                    remove=1'b0; reset=1'b0;
     flush =1'b0;
                   #5 reset=1'b1;endendtask
task flushtest();begin insert=1'b0;
                                    remove=1'b0;
                                                  reset=1'b1;
     flush =1'b1; #5 flush=1'b0;endendtask
initialresettest();
//////// check for full/////////////initialbegin
                                                              for
                 begin
(i=0; i<128; i=i+1)
                              @(posedge clk in);
                                         #10; endend
     data in=$random;
                         insert=1;
initialbegin
                    for (i=0; i<128; i=i+1)
                                              begin
                                                         @ (posedge
                              #10; endend
clk out);
               remove=1;
/////// check for empty ///////////initialbegin
                                                         insert=0;
     remove=1; #200;end/////// check flush
/////////////initialbegin
                              insert=0; remove=0; flush=1;
          #10; end//////// testing random case
flush=0;
//////initialbegin
for (i=0; i<100; i=i+1)
                                    @(posedge clk in);
                        begin
     data in=$random;
                        insert =$random;
                                                         insert =0;
                                              #2;
          #2;
```

```
@(posedge clk out);
                         remove =$random; #4; remove=0;
                                                            end
     resettest();
initialbegin
                     for (i=0; i<10; i=i+1) begin
                                                      @ (posedge
                data in=$random;
                                      insert=1;
                                                      #10;
clk in);
     endflushtest(); #500 $finish; end
////// monitor
//////////////initialbegin$monitor($time," clk in=%b | clk out=%b |
reset=%b | flush=%b | insert=%b | remove=%b | datain=%h | dataout=%h |
empty=%b |
full=%b",clk in,clk out,reset,flush,insert,remove,data in,data out,empty,
full);
end
endmodule
```

Simulation Result

```
Chronologic VCS simulator copyright 1991-2014
Contains Synopsys proprietary information.
Compiler version I-2014.03-2; Runtime version I-2014.03-2; May 1
21:25 2019
                   0 clk in=0 | clk out=0 | reset=0 | flush=1 |
insert=0 | remove=0 | datain=xxxxxxxxx | dataout=00000000 | empty=x |
full=0
                   5 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=xxxxxxxx | dataout=00000000 | empty=x |
full=0
                  10 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=b1f05663 | dataout=00000000 | empty=x |
f_{11}11=0
                  12 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=b1f05663 | dataout=00000000 | empty=x |
full=0
                  15 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=b1f05663 | dataout=00000000 | empty=x |
full=0
                  19 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=b1f05663 | dataout=00000000 | empty=x |
full=0
                  20 clk in=0 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=b1f05663 | dataout=00000000 | empty=x |
full=0
```

```
25 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=b1f05663 | dataout=00000000 | empty=x |
full=0
                  30 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=00f3e301 | dataout=00000000 | empty=x |
                  32 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=00f3e301 | dataout=00000000 | empty=x |
full=0
                  35 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=00f3e301 | dataout=00000000 | empty=x |
full=0
                  39 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=00f3e301 | dataout=00000000 | empty=x |
full=0
                  40 clk in=0 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=00f3e301 | dataout=00000000 | empty=x |
full=0
                  45 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=00f3e301 | dataout=00000000 | empty=x |
full=0
                  50 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=462df78c | dataout=00000000 | empty=x |
full=0
                  52 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=462df78c | dataout=00000000 | empty=x |
full=0
                  55 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=462df78c | dataout=00000000 | empty=x |
full=0
                  59 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=462df78c | dataout=00000000 | empty=x |
full=0
                  60 clk in=0 | clk out=0 | reset=1 | flush=1 |
insert=0 | remove=0 | datain=462df78c | dataout=00000000 | empty=x |
full=0
                  65 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=462df78c | dataout=00000000 | empty=x |
full=0
                  70 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=e2f784c5 | dataout=00000000 | empty=x |
full=0
                  75 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=e2f784c5 | dataout=00000000 | empty=x |
full=0
                  79 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=e2f784c5 | dataout=00000000 | empty=x |
                  80 clk_in=0 | clk_out=0 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=e2f784c5 | dataout=00000000 | empty=x |
f_{11}11=0
```

```
85 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=e2f784c5 | dataout=00000000 | empty=x |
full=0
                  90 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=8932d612 | dataout=00000000 | empty=x |
                  92 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=8932d612 | dataout=00000000 | empty=x |
full=0
                  95 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=8932d612 | dataout=00000000 | empty=x |
full=0
                 100 clk in=0 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=8932d612 | dataout=00000000 | empty=x |
full=0
                 105 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=8932d612 | dataout=00000000 | empty=x |
full=0
                 110 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=f4007ae8 | dataout=00000000 | empty=x |
full=0
                 112 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=f4007ae8 | dataout=00000000 | empty=x |
full=0
                 115 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=f4007ae8 | dataout=00000000 | empty=x |
full=0
                 120 clk in=0 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=f4007ae8 | dataout=00000000 | empty=x |
full=0
                 125 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=f4007ae8 | dataout=00000000 | empty=x |
full=0
                 130 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=96ab582d | dataout=00000000 | empty=x |
full=0
                 132 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=96ab582d | dataout=00000000 | empty=x |
full=0
                 135 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=96ab582d | dataout=00000000 | empty=x |
full=0
                 139 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=96ab582d | dataout=00000000 | empty=x |
full=0
                 140 clk in=0 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=96ab582d | dataout=00000000 | empty=x |
                 145 clk_in=0 | clk_out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=96ab582d | dataout=00000000 | empty=x |
f_{11}11=0
```

```
150 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=c03b2280 | dataout=00000000 | empty=x |
full=0
                 155 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=c03b2280 | dataout=00000000 | empty=x |
f_{11}11=0
                 160 clk in=0 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=c03b2280 | dataout=00000000 | empty=x |
full=0
                 165 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=c03b2280 | dataout=00000000 | empty=x |
full=0
                 170 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=cb203e96 | dataout=00000000 | empty=x |
full=0
                 172 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=cb203e96 | dataout=00000000 | empty=x |
full=0
                 175 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=cb203e96 | dataout=00000000 | empty=x |
full=0
                 179 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=cb203e96 | dataout=00000000 | empty=x |
full=0
                 180 clk in=0 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=cb203e96 | dataout=00000000 | empty=x |
full=0
                 185 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=cb203e96 | dataout=00000000 | empty=x |
full=0
                 190 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=359fdd6b | dataout=00000000 | empty=x |
full=0
                 192 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=359fdd6b | dataout=00000000 | empty=x |
full=0
                 195 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=359fdd6b | dataout=00000000 | empty=x |
full=0
                 200 clk in=0 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=359fdd6b | dataout=00000000 | empty=x |
full=0
                 205 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=359fdd6b | dataout=00000000 | empty=x |
full=0
                 210 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=0effe91d | dataout=00000000 | empty=x |
                 212 clk_in=1 | clk_out=0 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=0effe91d | dataout=00000000 | empty=x |
f_{11}11=0
```

```
215 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=0effe91d | dataout=00000000 | empty=x |
full=0
                 219 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=0effe91d | dataout=00000000 | empty=x |
full=0
                 220 clk in=0 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=0effe91d | dataout=00000000 | empty=x |
full=0
                 225 clk_in=0 | clk_out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=0effe91d | dataout=00000000 | empty=x |
full=0
                 230 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=e5730aca | dataout=00000000 | empty=x |
full=0
                 235 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=e5730aca | dataout=00000000 | empty=x |
full=0
                 240 clk in=0 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=e5730aca | dataout=00000000 | empty=x |
full=0
                 245 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=e5730aca | dataout=00000000 | empty=x |
full=0
                 250 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=20c4b341 | dataout=00000000 | empty=x |
full=0
                 255 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=20c4b341 | dataout=00000000 | empty=x |
full=0
                 260 clk in=0 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=20c4b341 | dataout=00000000 | empty=x |
full=0
                 265 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=20c4b341 | dataout=00000000 | empty=x |
full=0
                 270 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=75c50deb | dataout=00000000 | empty=x |
full=0
                 275 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=75c50deb | dataout=00000000 | empty=x |
full=0
                 280 clk in=0 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=75c50deb | dataout=00000000 | empty=x |
full=0
                 285 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=75c50deb | dataout=00000000 | empty=x |
                 290 clk_in=1 | clk_out=0 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=de7502bc | dataout=00000000 | empty=x |
f_{11}11=0
```

```
295 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=de7502bc | dataout=00000000 | empty=x |
full=0
                 299 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=de7502bc | dataout=00000000 | empty=x |
                 300 clk in=0 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=de7502bc | dataout=00000000 | empty=x |
full=0
                 305 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=de7502bc | dataout=00000000 | empty=x |
full=0
                 310 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=42f24185 | dataout=00000000 | empty=x |
full=0
                 312 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=42f24185 | dataout=00000000 | empty=x |
full=0
                 315 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=42f24185 | dataout=00000000 | empty=x |
full=0
                 319 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=42f24185 | dataout=00000000 | empty=x |
full=0
                 320 clk in=0 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=42f24185 | dataout=00000000 | empty=x |
full=0
                 325 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=42f24185 | dataout=00000000 | empty=x |
full=0
                 330 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=bf23327e | dataout=00000000 | empty=x |
full=0
                 332 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=bf23327e | dataout=00000000 | empty=x |
full=0
                 335 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=bf23327e | dataout=00000000 | empty=x |
full=0
                 339 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=bf23327e | dataout=00000000 | empty=x |
full=0
                 340 clk in=0 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=bf23327e | dataout=00000000 | empty=x |
full=0
                 345 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=bf23327e | dataout=00000000 | empty=x |
                 350 clk_in=1 | clk_out=0 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=31230762 | dataout=00000000 | empty=x |
f_{11}11=0
```

```
355 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=31230762 | dataout=00000000 | empty=x |
full=0
                 359 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=31230762 | dataout=00000000 | empty=x |
                 360 clk in=0 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=31230762 | dataout=00000000 | empty=x |
full=0
                 365 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=31230762 | dataout=00000000 | empty=x |
full=0
                 370 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=7c6da9f8 | dataout=00000000 | empty=x |
full=0
                 372 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=7c6da9f8 | dataout=00000000 | empty=x |
full=0
                 375 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=7c6da9f8 | dataout=00000000 | empty=x |
full=0
                 379 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=7c6da9f8 | dataout=00000000 | empty=x |
full=0
                 380 clk in=0 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=7c6da9f8 | dataout=00000000 | empty=x |
full=0
                 385 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=7c6da9f8 | dataout=00000000 | empty=x |
full=0
                 390 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=adcbc05b | dataout=00000000 | empty=x |
full=0
                 392 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=adcbc05b | dataout=00000000 | empty=x |
full=0
                 395 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=adcbc05b | dataout=00000000 | empty=x |
full=0
                 399 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=adcbc05b | dataout=00000000 | empty=x |
full=0
                 400 clk in=0 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=adcbc05b | dataout=00000000 | empty=x |
full=0
                 405 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=adcbc05b | dataout=00000000 | empty=x |
                 410 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=ebfec0d7 | dataout=00000000 | empty=x |
f_{11}11=0
```

```
412 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=ebfec0d7 | dataout=00000000 | empty=x |
full=0
                 415 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=ebfec0d7 | dataout=00000000 | empty=x |
                 420 clk in=0 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=ebfec0d7 | dataout=00000000 | empty=x |
full=0
                 425 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=ebfec0d7 | dataout=00000000 | empty=x |
full=0
                 430 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=e12ccec2 | dataout=00000000 | empty=x |
full=0
                 435 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=e12ccec2 | dataout=00000000 | empty=x |
full=0
                 439 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=e12ccec2 | dataout=00000000 | empty=x |
full=0
                 440 clk in=0 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=e12ccec2 | dataout=00000000 | empty=x |
full=0
                 445 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=e12ccec2 | dataout=00000000 | empty=x |
full=0
                 450 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=090cdb12 | dataout=00000000 | empty=x |
full=0
                 455 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=090cdb12 | dataout=00000000 | empty=x |
full=0
                 459 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=090cdb12 | dataout=00000000 | empty=x |
full=0
                 460 clk in=0 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=090cdb12 | dataout=00000000 | empty=x |
full=0
                 465 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=090cdb12 | dataout=00000000 | empty=x |
full=0
                 470 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=0fd28f1f | dataout=00000000 | empty=x |
full=0
                 472 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=0fd28f1f | dataout=00000000 | empty=x |
                 475 clk_in=1 | clk_out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=0fd28f1f | dataout=00000000 | empty=x |
f_{11}11=0
```

```
479 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=0fd28f1f | dataout=00000000 | empty=x |
full=0
                 480 clk in=0 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=0fd28f1f | dataout=00000000 | empty=x |
f_{11}11=0
                 485 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=0fd28f1f | dataout=00000000 | empty=x |
full=0
                 490 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=2dda595b | dataout=00000000 | empty=x |
full=0
                 492 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=2dda595b | dataout=00000000 | empty=x |
full=0
                 495 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=2dda595b | dataout=00000000 | empty=x |
full=0
                 499 clk in=1 | clk out=1 | reset=0 | flush=0 |
insert=0 | remove=0 | datain=2dda595b | dataout=00000000 | empty=x |
full=0
                 500 clk in=0 | clk out=0 | reset=0 | flush=0 |
insert=0 | remove=0 | datain=2dda595b | dataout=00000000 | empty=x |
full=0
                 504 clk in=0 | clk out=0 | reset=1 | flush=0 |
insert=0 | remove=0 | datain=2dda595b | dataout=00000000 | empty=x |
full=0
                 505 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=0 | remove=1 | datain=2dda595b | dataout=00000000 | empty=x |
full=0
                 510 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=150caf2a | dataout=00000000 | empty=x |
full=0
                 515 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=150caf2a | dataout=00000000 | empty=x |
full=0
                 520 clk in=0 | clk out=0 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=150caf2a | dataout=00000000 | empty=x |
full=0
                 525 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=150caf2a | dataout=00000000 | empty=x |
full=0
                 530 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=2c156358 | dataout=00000000 | empty=x |
full=0
                 535 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=2c156358 | dataout=00000000 | empty=x |
                 540 clk_in=0 | clk_out=0 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=2c156358 | dataout=00000000 | empty=x |
f_{11}11=0
```

```
545 clk in=0 | clk out=1 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=2c156358 | dataout=00000000 | empty=x |
full=0
                550 clk in=1 | clk out=0 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=c33f3886 | dataout=00000000 | empty=x |
                555 clk in=1 | clk out=1 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=c33f3886 | dataout=00000000 | empty=x |
full=0
                560 clk in=0 | clk out=0 | reset=1 | flush=0 |
insert=1 | remove=1 | datain=c33f3886 | dataout=00000000 | empty=x |
f_{11}11=0
$finish called from file "fifotop fixture2.v", line 133.
$finish at simulation time
          VCS Simulation
                                        Report
Time: 565
CPU Time: 0.330 seconds; Data structure size: 0.0Mb
Wed May 1 21:25:02 2019
```

Synthesis

1) Script file:

#Read the design in

```
read file -format verilog {"fifotop.v"}
#set the current design
set current design fifotop
#Link the design
link
#create clockand constrain the design
set input delay -clock clk in -max -rise 0.4 "insert"
set_input_delay -clock clk_in -min -rise 0.2 "insert"
set output delay -clock clk in -max -rise 0.4 "full"
set output delay -clock clk in -min -rise 0.2 "full"
set_input_delay -clock clk_in -max -rise 0.4 "flush"
set input delay -clock clk in -min -rise 0.2 "flush"
set_input_delay -clock clk_in -max -rise 0.4 "data in"
set input delay -clock clk in -min -rise 0.2 "data in"
set input delay -clock clk out -max -rise 0.4 "remove"
set input delay -clock clk in -min -rise 0.2 "remove"
set output delay -clock clk out -max -rise 0.4 "empty"
set output delay -clock clk out -min -rise 0.2 "empty"
set output delay -clock clk out -max -rise 0.4 "data out"
set output delay -clock clk out -min -rise 0.2 "data out"
```

```
set_dont_touch_network "clk_in"
set_dont_touch_network "clk_out"
set_max_area 0
set_false_path -from [get_clocks clk_in] -to [get_clocks clk_out]

#Set operating_conditions
set_operating_conditions -library "saed90nm_typ" "TYPICAL"
#Synthesize and generate report
compile -map_effort high -boundary_optimization
report_attribute > report1
report_area > report2
report_constraints -all_violators > report3
report_timing -path full -delay max -max_paths 1 -nworst 1 > report4
report_power > report5
```

2) Synthesis reports:

1) <u>Area</u>

```
*********
Report : area
Design : fifotop
Version: I-2013.12-SP5-4
Date : Wed May 1 21:35:51 2019
**********
Information: Updating design information... (UID-85)
Information: Timing loop detected. (OPT-150)
     R1/U3/IN1 R1/U3/QN R1/U7/INP R1/U7/ZN R1/U6/IN1 R1/U6/QN
R1/dataout ptr reg[2]/CLK R1/dataout ptr reg[2]/Q R1/U38/IN2 R1/U38/Q
R1/U50/IN1 R1/U50/QN R1/U8/IN1 R1/U8/QN
Information: Timing loop detected. (OPT-150)
     R1/U5/INP R1/U5/ZN R1/U3/IN2 R1/U3/QN R1/U7/INP R1/U7/ZN
R1/U6/IN1 R1/U6/QN R1/dataout ptr reg[2]/CLK R1/dataout ptr reg[2]/Q
R1/U38/IN2 R1/U38/Q R1/U50/IN1 R1/U50/QN
Warning: Disabling timing arc between pins 'CLK' and 'Q' on cell
'R1/dataout ptr reg[2]'
        to break a timing loop. (OPT-314)
Warning: Disabling timing arc between pins 'CLK' and 'QN' on cell
'R1/dataout ptr reg[2]'
        to break a timing loop. (OPT-314)
Warning: Disabling timing arc between pins 'CLK' and 'Q' on cell
'R1/dataout ptr reg[7]'
        to break a timing loop. (OPT-314)
```

```
Warning: Disabling timing arc between pins 'CLK' and 'QN' on cell
'R1/dataout ptr reg[7]'
         to break a timing loop. (OPT-314)
Warning: Disabling timing arc between pins 'CLK' and 'Q' on cell
'R1/dataout ptr reg[0]'
         to break a timing loop. (OPT-314)
Warning: Disabling timing arc between pins 'CLK' and 'QN' on cell
'R1/dataout ptr reg[0]'
         to break a timing loop. (OPT-314)
Warning: Disabling timing arc between pins 'CLK' and 'Q' on cell
'R1/dataout ptr reg[1]'
         to break a timing loop. (OPT-314)
Warning: Disabling timing arc between pins 'CLK' and 'QN' on cell
'R1/dataout ptr reg[1]'
         to break a timing loop. (OPT-314)
Warning: Disabling timing arc between pins 'CLK' and 'Q' on cell
'R1/dataout ptr reg[3]'
         to break a timing loop. (OPT-314)
Warning: Disabling timing arc between pins 'CLK' and 'QN' on cell
'R1/dataout ptr reg[3]'
         to break a timing loop. (OPT-314)
Warning: Disabling timing arc between pins 'CLK' and 'Q' on cell
'R1/dataout ptr reg[4]'
         to break a timing loop. (OPT-314)
Warning: Disabling timing arc between pins 'CLK' and 'QN' on cell
'R1/dataout ptr reg[4]'
         to break a timing loop. (OPT-314)
Warning: Disabling timing arc between pins 'CLK' and 'Q' on cell
'R1/dataout ptr reg[5]'
         to break a timing loop. (OPT-314)
Warning: Disabling timing arc between pins 'CLK' and 'QN' on cell
'R1/dataout ptr reg[5]'
         to break a timing loop. (OPT-314)
Warning: Disabling timing arc between pins 'CLK' and 'Q' on cell
'R1/dataout ptr reg[6]'
         to break a timing loop. (OPT-314)
Warning: Disabling timing arc between pins 'CLK' and 'QN' on cell
'R1/dataout ptr reg[6]'
         to break a timing loop. (OPT-314)
Library(s) Used:
    saed90nm typ (File:
/netdisk/tmp/saed/SAED90 EDK/SAED EDK90nm/Digital Standard cell Libra
ry/synopsys/models/saed90nm typ.db)
Number of ports:
                                           72
Number of nets:
                                          121
Number of cells:
                                             4
Number of combinational cells:
                                             0
                                            0
Number of sequential cells:
Number of macros/black boxes:
                                            0
Number of buf/inv:
```

Number of references:

Combinational area: 39504.385325
Buf/Inv area: 4975.718506
Noncombinational area: 93100.034393
Macro/Black Box area: 0.000000
Net Interconnect area: 8362.053509

Total cell area: 132604.419719 Total area: 140966.473228

1

2) Constraints

Report : constraint

-all_violators

Design : fifotop

Version: I-2013.12-SP5-4

Date : Wed May 1 21:35:51 2019

max area

Design	Required Area	Actual Area	Slack
fifotop	0.00	140966.47	-140966.47

4

(VIOLATED)

1

3) Timing

Report : timing

-path full
-delay max
-max_paths 1

Design : fifotop

Version: I-2013.12-SP5-4

Date : Wed May 1 21:35:52 2019

Operating Conditions: TYPICAL Library: saed90nm typ

Wire Load Model Mode: enclosed

Startpoint: flush (input port clocked by clk in)

Endpoint: W1/current_state_reg[0]

(rising edge-triggered flip-flop clocked by clk_in)

Path Group: clk_in Path Type: max

Des/Clust/Port	Wire Load Model	Library	
fifotop datain	140000 8000	saed90nm saed90nm	
Point		Incr	Path
clock clk_in (rise clock network delay input external delay flush (in) W1/flush (datain) W1/U24/QN (NOR2X0) W1/current_state_redata arrival time	y (ideal) ay		0.00 0.00 0.40 r 0.40 r 0.40 r 1.12 f 1.16 f 1.16
<pre>clock clk_in (rise clock network delay W1/current state re</pre>	_	2.00	2.00
library setup time data required time		0.00	2.00 r 1.94 1.94
data required time data arrival time		_	1.94 -1.16
slack (MET)			0.79

Startpoint: remove (input port clocked by clk_out)

Endpoint: R1/current state reg[1]

(rising edge-triggered flip-flop clocked by clk_out)

Path Group: clk_out
Path Type: max

Des/Clust/Port	Wire Load Model	Library	
fifotop dataout	140000 8000	saed90nm saed90nm	
Point		Incr	Path
clock clk_out (risclock network delatingut external delatemove (in) R1/remove (dataout R1/U9/QN (NOR2X0) R1/current_state_relata arrival time	ay (ideal) Lay	0.00 0.00 0.40 0.00 0.00 0.57 0.03	0.00 0.00 0.40 r 0.40 r 0.40 r 0.97 f 1.01 f 1.01

<pre>clock clk_out (rise edge)</pre>	4.00	4.00
clock network delay (ideal)	0.00	4.00
R1/current_state_reg[1]/CLK (DFFARX1)		
	0.00	4.00 r
library setup time	-0.06	3.94
data required time		3.94
data required time		3.94
data arrival time		-1.01
data dirivar time		-1.01
slack (MET)		2.93

1

4) Power

Loading db file

'/netdisk/tmp/saed/SAED90_EDK/SAED_EDK90nm/Digital_Standard_cell_Library/synopsys/models/saed90nm typ.db'

Information: Propagating switching activity (low effort zero delay simulation). (PWR-6)

Warning: Design has unannotated primary inputs. (PWR-414)

Warning: Design has unannotated sequential cell outputs. (PWR-415)

Report : power

-analysis effort low

Design : fifotop

Version: I-2013.12-SP5-4

Date : Wed May 1 21:35:53 2019

Library(s) Used:

saed90nm typ (File:

/netdisk/tmp/saed/SAED90_EDK/SAED_EDK90nm/Digital_Standard_cell_Libra
ry/synopsys/models/saed90nm typ.db)

Operating Conditions: TYPICAL Library: saed90nm_typ

Wire Load Model Mode: enclosed

fifotop 140000 saed90nm fifomem 140000 saed90nm datain 8000 saed90nm dataout 8000 saed90nm sync 8000 saed90nm	typ typ typ

Total	Internal	Switching	Leakage
Power Group	Power %) Attrs	Power	Power
io_pad 0.0000 ((0.0000	0.0000	0.0000
memory	0.0000	0.0000	0.0000
0.0000 ((black_box	0.0000	0.0000	0.0000
_	k 0.0000	0.0000	0.0000
0.0000 ((register	0.6644	0.7860	4.2690e+06
-	-3.6947e-01	0.4621	4.1726e+08
417.3539 (combinational 570.2721 (181.6497	267.1319	1.2149e+08
J/U•Z/ZI (
Total 993.3454 uW 1	181.9446 uW	268.3799 uW	5.4302e+08 pW

Code Coverage Report

Design Module List

dashboard | hierarchy | modlist | groups | tests | asserts

dashboard | hierarchy | modlist | groups | tests | asserts

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%