

N-Ch 80V Fast Switching MOSFETs

General Description

The QM0020AP is the highest performance trench N-ch MOSFETs with extreme high cell density , which provide excellent RDSON and gate charge for most of the synchronous buck converter applications .

The QM0020AP meet the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

Features

- Advanced high cell density Trench technology
- Super Low Gate Charge
- Excellent CdV/dt effect decline
- 100% EAS Guaranteed
- Green Device Available

Product Summery

BVDSS	RDSON	ID
100V	8.5mΩ	128A

Applications

- High Frequency Point-of-Load Synchronous Buck Converter
- Networking DC-DC Power System
- Power Tool Application

TO220 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter Rating		Units
V_{DS}	Drain-Source Voltage 100		V
V_{GS}	Gate-Source Voltage	±20	V
I _D @T _C =25℃	Continuous Drain Current, V _{GS} @ 10V ^{1,7}	128	А
I _D @T _C =100℃	Continuous Drain Current, V _{GS} @ 10V ^{1,7}	81	А
I _D @T _A =25℃	Continuous Drain Current, V _{GS} @ 10V ¹	11.2	А
I _D @T _A =70°C	Continuous Drain Current, V _{GS} @ 10V ¹	9	А
I _{DM}	Pulsed Drain Current ²	310	А
EAS	Single Pulse Avalanche Energy ³	550	mJ
I _{AS}	Avalanche Current	95.5	A
P _D @T _C =25℃	Total Power Dissipation⁴	260	W
P _D @T _A =25℃	Total Power Dissipation ⁴	2.02	W
T _{STG}	Storage Temperature Range -55 to 150		$^{\circ}$
T _J	Operating Junction Temperature Range	-55 to 150	$^{\circ}$

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{0JA}	Thermal Resistance Junction-Ambient ¹		62	°C/W
$R_{ heta JC}$	Thermal Resistance Junction-Case ¹		0.48	°C/W

N-Ch 80V Fast Switching MOSFETs

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	100			V
$\triangle BV_{DSS}/\triangle T_{J}$	BV _{DSS} Temperature Coefficient	Reference to 25℃ , I _D =1mA		0.128		V/℃
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =30A		7	8.5	mΩ
$V_{GS(th)}$	Gate Threshold Voltage	V _{GS} =V _{DS} . In =250uA	2.5		4.5	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	VGS-VDS , IB -250UA		-5.9		mV/℃
l	Drain Source Leakage Current	V_{DS} =80V , V_{GS} =0V , T_J =25 $^{\circ}$ C			1	uA
I _{DSS}	Drain-Source Leakage Current	V_{DS} =80V , V_{GS} =0V , T_J =55 $^{\circ}$ C			5	
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, $V_{DS}=0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =30A		46		S
R_g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2.8	5.6	Ω
Qg	Total Gate Charge (10V)			88	123	
Q_gs	Gate-Source Charge	V _{DS} =80V , V _{GS} =10V , I _D =30A		41.5	58	nC
Q_gd	Gate-Drain Charge			14.7	20	
$T_{d(on)}$	Turn-On Delay Time			41	82	
T _r	Rise Time	V_{DD} =50V , V_{GS} =10V , R_{G} =3.3 Ω ,		59	106	no
$T_{d(off)}$	Turn-Off Delay Time	I _D =30A		51	102	ns
T _f	Fall Time			17.6	35	
C _{iss}	Input Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		7283	10196	
Coss	Output Capacitance			1042	1458	pF
C _{rss}	Reverse Transfer Capacitance			249	348]

Guaranteed Avalanche Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
EAS	Single Pulse Avalanche Energy ⁵	V _{DD} =50V , L=0.1mH , I _{AS} =30A	54			mJ

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _S	Continuous Source Current ^{1,6}	V =V =0V Force Current			128	Α
I _{SM}	Pulsed Source Current ^{2,6}	V _G =V _D =0V , Force Current			310	Α
V_{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =A , T _J =25℃			1.2	V
t _{rr}	Reverse Recovery Time			58		nS
Qrr	Reverse Recovery Charge	IF=30A , dI/dt=100A/μs , T _J =25℃		134		nC

Note

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width $\,\leq\,300\text{us}$, duty cycle $\,\leq\,2\%$
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =50V, V_{GS} =10V, L=0.1mH, I_{AS} =95.5A
- 4.The power dissipation is limited by 150 $^{\circ}\mathrm{C}$ junction temperature
- 5. The Min. value is 100% EAS tested guarantee.
- 6. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.
- 7. Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 120A.

Typical Characteristics

Fig.5 Normalized V_{GS(th)} v.s T_J

N-Ch 80V Fast Switching MOSFETs

Fig.2 On-Resistance v.s Gate-Source

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized R_{DSON} v.s T_J

N-Ch 80V Fast Switching MOSFETs

Fig.7 Capacitance Fig.8 Safe Operating Area Normalized Thermal Response (Reuc) DUTY=0.5 0.2 0.1 0.1 0.05 0.02 0.01 SINGLE 0.001 0.0001 0.01 0.00001 0.001 t, Pulse Width (s)

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.10 Switching Time Waveform

Fig.11 Unclamped Inductive Switching Waveform