7. Алгоритми в графи с тегла на ребрата. Оценки за сложност

1. Дефиниция на минимално покриващо дърво (МПД) на свързан граф с тегла на ребрата

Деф: Минимално покриващо дърво

Нека е даден свързан граф G=(V,E). Нека $c\colon E\to \mathbb{R}$ е функция, която задава цена на всяко ребро. Минимално покриващо дърво на G наричаме покриващо дърво $D=(V,E_0)$, т.ч. за всяко друго покриващо дърво на G, D'=(V,E') е изпъленено:

$$\sum_{e \in E_0} c(e) \le \sum_{e \in E'} c(e)$$

Тегло на дърво наричаме $c(D) = \sum_{e \in E'} c(e)$

2. Теорема за съгласуваното множество (условия за нарастване на подмножество на МПД) Нека G = (V, E) е граф.

Твърдение:

Нека $U \subseteq V$ и нека $e = \{u, v\} \in E$ е ребро, т.ч. $u \in U, v \in V \setminus U$ и измежду всички ребра от вида $e' = \{u', v'\}$ с $u' \in U, v' \in V \setminus U$, реброто e е с най-ниска цена, т.е. $c(e) \leq c(e')$.

V/U

Тогава G има МПД, което съдържа e

Д-во:

Допускаме, че не съществува МПД, което съдържа е.

Нека $T = (V, E_0)$ е МПД и $e \notin E_0$.

Тогава T има път от u до v, $u = u_0, u_1, ..., u_k = v$, в който

участва поне едно ребро $e' = \{u_i, u_{i+1}\}$, т.ч. $u_i \in U$ и $u_{i+1} \in V \setminus U$. Нека e' е това ребро.

Така в графа $T'=ig(V,E_0\cup\{e\}ig)$ има цикъл $v,u=u_0,u_1,...,u_k=v$

Строим дървото $T'' = (V, (E_0 \setminus \{e'\}) \cup \{e\})$, то е покриващо дърво на G, по условие $c(e) \le c(e')$ $c(T'') \le c(T)$

Ако допуснем, че c(T'') > c(T), то противоречи с $c(e) \le c(e')$ и получаваме абсурд.

3. Алгоритъм на Прим - построява МПД по зададен начален връх

Нека е даден G = (V, E) и функция $c: E \to \mathbb{R}$, задаваща цената на ребрата.

В имплементацията по-долу Q е приоритетна опашка на база на key атрубута, тя съдържа всички върхове, които все още не са в дървото.

За всеки връх v, стойността на v. key е минималната тежест на ребро, свързващо v към връх в дървото. Ако няма такова ребро, то v. $key = \infty$. Атрибута v. π съдържа родителят на върха v в дървото.

 $MST_Prim(G(V,E), c, r)$

1. **for** each
$$v \in V$$
 do:
2. $v.\ker y = \infty$
3. $v.\pi = NIL$
4. $r.\ker y = 0$
5. $Q = V$
6. **while** $Q \neq \emptyset$ // |V| times
7. $u = Extract\text{-}Min(Q)$
8. **for** each $v \in G$. $Adj[u]$ **do** // $O(E)$ times
9. **if** $v \in Q$ and $c(u,v) < v.\ker y$
10. $v.\ker y = c(u,v)$ // $Peccesse$ - $\ker y$
11. $v.\ker y = c(u,v)$

Алгоритъмът поддържа следната инварианта:

Преди всяко изпълнение на while цикъла:

- 1. $A = \{(v, v, \pi) : v \in V \setminus (\{r\} \cup Q)\}$
- 2. Върховете, които вече са поставени в МПД са тези във $V \setminus Q$
- 3. $\forall v \in Q$, ако $v.\pi \neq NIL$, то $v.key < \infty$ и v.key е тежестта на най-лекото ребро $(v,v.\pi)$, свързващо v до друг връх, вече добавен в МПД

Проверката дали елемент е от Q може да се направи константна, като държим в бит информация, която ни казва дали елементът е в Q или не.

Спрямо реализацията на приоритетната опашка:

- Ако се използва binary heap, то Extract-Min операцията отнема $O(\lg V)$, а всички извиквания на операцията отнемат $O(V \lg V)$ време. Decrease-Key операцията отнема $O(\lg V)$ време при binary heap. Така цялата сложност на алгоритъма е $O(V \lg V + E \lg V) = O(E \lg V)$
- Ако се използва пирамида на Фибоначи, то Extract-Min отнема $O(\lg V)$ амортизирано, а Decrease-Key отнема O(1) амортизирано време. Времевата сложност за изпълнение на целия алгоритъм е $O(E+V \lg V)$

4. Алгоритъм на Крускал - построява МПД

Union(u, v)

Алгоритъмът на Крускал е алчен алгоритъм, който избира ребро, което да добави към растящата гора, като избира най-лекото ребро от тези, които свързват две дървета в гората.

Използва се абстрактна структура Union-Find, която поддържа гора от дървета и операциите:

- Make-Set всеки връх е отделно дърво
- Union слива две дървета (примерна реализация пренасочва указателя на единия корен към другия, пази се височината на дърветата и насочваме по-малкото към по-голямото)
- Find-Set връща корена на дървото, в което се намира елементът

9. return A

8.

Времевата сложност зависи от конкретната реализация на структурата Union-Find. Ще разгледаме сложността, ако се използва примерната реализация, като се приложи union-by-rank и евристика за компресия на пътя (асимптотично най-бързата известна имплементация). За сортирането: $E \log E \approx E \log V$.

Общата сложност на операциите, свързани със структурата е $O((V+E)\alpha(V))$, където $\alpha(|V|) = O(\lg V) = O(\lg E)$ - пренебрежимо малка (за практически цели ≤ 5).

Така общата сложност на алгоритъма е $O(E \lg E)$, но $|E| < |V|^2$, то $\lg |E| = O(\lg V)$, така общата сложност е $O(E \lg V)$.

5. Задача за най-къс път в граф с тегла на ребрата

Нека G = (V, E) е свързан граф, а $c: E \to \mathbb{R}^+$ е теглова(ценова) функция на ребрата с положителни стойности.

Деф:

Нека $p = (u_0, u_1, ..., u_k)$ е път от и до v в G. $c(p) = \sum_{i=1}^k c(u_{i-1}, u_i)$ - тежест (цена) на пътя р Най-къс път от и до v в G е пътят от и до v с най-малко тегло.

3ada часе намерят най-късите пътища и теглата им от зададен връх s до всички осттъанали върхове в графа G.

6. Алгоритъм за намиране на дърво на най-къси пътища в граф с константни тегла по ребрата Ако тегловата функция е константа, то задачата се свежда до търсене на най-къс път в граф от даден връх до всички останали. Можем да я решим като построим покриващо дърво чрез обхождане в ширина с начален връх - даденият. Сложността на това решение е O(V+E).

7. Алгоритъм на Дейкстра

Алгоритъмът на Дейкстра решава задачата за намиране на най-къси пътища от връх в ориентиран граф с тегла на ребрата G=(V,E), в случая, когато всички тежести са неотрицателни т.е. $c(u,v)\geq 0$ $\forall (u,v)\in E$.

Алгоритъмът поддържа множество от върхове, чиито най-къс път от началният ѕ вече е намерен.

```
Dijkstra(G=(V,E), c, s)
  1. for each v \in V do // IVI times
  2.
         dist(v) = \infty
  3.
         parent(v) = NIL
  4. dist(s) = 0
  5. Q = make-queue(V)
  6. while Q \neq \emptyset // |V| times
  7.
         u = Extract-Min(Q)
  8.
         S = S \cup \{u\}
         for each v \in G. Adj[u] do // In total | E | E; mes
  9.
             if dist(v) > dist(u) + c(u, v)
 10.
11.
                 dist(v) = dist(u) + c(u, v)
12.
                 parent(v) = u
13.
                 Decrease-Key(Q, v)
```

Сложността зависи от имплементацията на опашката:

- Ако се използва приоритетна опашка, като номерираме върховете от 1 до |V|, запазим в масив стойностите на dist(v), то записванията и Decrease-Key ще бъдат със сложност O(1), а Extract-Min ще е O(V). Общото време е: $O(V^2+E)=O(V^2)$
- Ако графът е достатъчно рядък $(E = o(V^2/\lg V))$, може да използваме binary heap. Така Extract-Min и Decrease-Key имат сложност $O(\lg V)$, сложността за инициализиране на binary heap е O(V). Сложността на алгоритъма е $O((V+E)\lg V)$, което е $O(E\lg V)$, ако всички върхове са достижими от източника .
- Ако се използва Фибоначи heap, амортизираната цена на всяка Extract-Min операция е $O(\lg V)$. Сложността на Decrease-Key е амортизирано O(1).
- Така сложността на алгоритъма е $O(V \lg V + E)$

8. Алгоритъм на Флойд за намиране на всички двойки най-кратки пътища

Алгоритъмът на Флойд-Уоршел решава задачата за намиране на всички двойки най-кратки пътища в ориентиран граф G=(V,E). Може да има отрицателни тежести, но предполагаме, че няма отрицателни цикли. Алгоритъмът използва динамично програмиране. Алгоритъмът разглежда междинните върхове на най-късия път.

 $a_{ij}^{(k)}$ — дължина на най-къс път от връх i до връх j, където всички междинни върхове са $\leq k$. (динамично програмиране по k)

$$a_{ij}^{(0)} = \begin{cases} c(i,j), \text{ ако Вребро между } i \text{ и } j \\ +\infty, \text{ ако не В ребро между } i \text{ и } j \\ 0, \text{ ако } i = j \end{cases}$$
 $a_{ij}^{(k)} = \min \left\{ a_{ij}^{(k-1)}, a_{ik}^{(k-1)} + a_{kj}^{(k-1)} \right\}, \qquad 1 \leq k \leq n, \qquad (i \to \cdots \to k \to \cdots \to j) - \text{прост път}$

```
Floyd-Warshall(G=(V,E), c)
  1. for i \in \{1, ..., n\} do
  2.
           for j \in \{1, \dots n\} do
                dist(i,j,0) = \infty
  3.
  4.
  5. for all (i, j) \in E
           dist(i,j,0) = c(i,j)
  6.
  7.
      for k \in \{1, ..., n\} do
           for i \in \{1, ..., n\} do
  8.
  9.
                for j \in \{1, \dots, n\} do
                    dist(i,j,k) = \min\{dist(i,j,k-1), dist(i,k,k-1) + dist(k,j,k-1)\}
 10.
```

Има три вложени цикъла, а сложността на ред 10. е O(1), така сложността на алгоритъма на Флойд е $\Theta(n^3)$.