BEST AVAILABLE COPY

PCT

LD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

C12N 15/37, C07K 14/025

A1

(11) International Publication Number: WO 99/02694

(43) International Publication Date: 21 January 1999 (21.01.99)

(21) International Application Number:

PCT/AU98/00530

(22) International Filing Date:

9 July 1998 (09.07.98)

(30) Priority Data:

PO 7765 9 July 1997 (09.07.97) AU PO 9467 11 September 1997 (11.09.97) AU

(71) Applicant (for all designated States except US): THE UNIVER-SITY OF QUEENSLAND [AU/AU]; St. Lucia, QLD 4072 (AU).

(72) Inventors; and

(75) Inventors/Applicants (for US only): FRAZER, Ian [AU/AU]; 64 Eighth Avenue, St. Lucia, QLD 4067 (AU). ZHOU, Jían [AU/AU]; 21 Cooranga Street, Jindalee, QLD 4074 (AU).

(74) Agent: HORSBURGH, Mark, Alexander; Fisher Adams Kelly, Level 13, 10 Eagle Street, Brisbane, QLD 4000 (AU). (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, IP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: NUCLEIC ACID SEQUENCE AND METHOD FOR SELECTIVELY EXPRESSING A PROTEIN IN A TARGET CELL OR TISSUE

(57) Abstract

A synthetic nucleic acid sequence and a method are disclosed for selectively expressing a protein in a target cell or tissue of a mammal. Selective expression is effected by replacing at least one existing codon of a parent nucleic acid sequence encoding a protein of interest with a synonymous codon to produce a synthetic nucleic acid sequence having altered translational kinetics compared to the parent nucleic acid sequence. The synonymous codon is selected such that it corresponds to an iso-tRNA which, when compared to an iso-tRNA corresponding to the at least one existing codon, is in higher abundance in the target cell or tissue relative to one or more other cells or tissues of the mammal.

21561

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑŪ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA.	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	ΥU	Yugoslavia
CH	Switzerland	KG	Кутgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 99/02694 PCT/AU98/00530

TITLE

"NUCLEIC ACID SEQUENCE AND METHOD FOR SELECTIVELY EXPRESSING A PROTEIN IN A TARGET CELL OR TISSUE"

5

FIELD OF THE INVENTION

therapy. More particularly, the present invention relates to a synthetic nucleic acid sequence and to a method for selectively expressing a protein in a target cell or tissue in which at least one existing codon of a parent nucleic acid sequence encoding the protein has been replaced with a synonymous codon.

The invention also relates to production of virus particles using one or more synthetic nucleic acid sequences and the method according to the invention.

BACKGROUND OF THE INVENTION

20

25

. 30

While gene therapy is of great clinical interest for treatment of gene defects, this therapy entered into mainstream clinical practice because selective delivery of genes to target tissues has proven extremely difficult. Currently, viral vectors are used, particularly retroviruses and adenovirus, which are to extent selective. some However, many vector systems are by their nature unable to produce stable integrants and some also invoke immune responses thereby preventing effective treatment. Alternatively, "naked" DNA is packaged in liposomes or other similar delivery systems. A major

10

15

20

25

30

problem to be overcome is that such gene delivery systems themselves are not tissue selective, whereas selective targeting of genes to particular tissues would be desirable for many disorders (e.g., cancer therapy). While use of tissue specific promoters to target gene therapy has been effective in some animal models it has proven less so in man, and selective tissue specific promoters are not available for a wide range of tissues.

The current invention has arisen unexpectedly from recent investigations exploring why papillomavirus (PV) late gene expression is restricted to differentiated keratinocytes. In this regard, it known that PV late genes L1 and L2 are only expressed in non-dividing differentiated keratinocytes (KCs). Many investigators including the present inventors have been unable to detect significant PV L1 protein expression when and L2 these genes transduced or transfected into undifferentiated cultured cells. using a range of conventional constitutive viral promoters including retroviral long terminal repeats (LTRs) and the strong constitutive promoters of CMV and SV40.

Ll mRNA can however be efficiently translated in vitro using rabbit reticulocyte cell lysate, suggesting that there are no cellular inhibitors in the lysate interfering with translation The major difference between the in vitro and in vivo translation systems is that L1 comprises the dominant L1 mRNA in in vitro translation reactions, constitutes a minor fraction among cellular mRNAs in intact cells.

WO 99/02694 3

5

10

15

20

25

30

In vivo, PV late proteins are not produced in undifferentiated KC. However, they are expressed in large quantity in highly differentiated KC. The mechanism of this tight control of late gene expression has been poorly understood, and searches by many groups for KC specific PV gene transcriptional control proteins have been unrewarding.

PCT/AU98/00530

Blockage to translation of L1 mRNA in vivo has been attributed to sequences within the L1 ORF (Tan et al. 1995, J. Virol. 69 5607-5620; Tan and Schwartz, 1995, *J. Virol.* **69** 2932-2945). By using a Rev and Rev-responsive element of HIV, such inhibition could be overcome (Tan et al. 1995. Accordingly, the inventors examined whether removal of putative "inhibitory sequences" in the L1 ORF would allow production of L1 protein in undifferentiated cells. Deletion mutagenesis of BPV L1 to putative inhibitory sequences and expression resultant deletion mutants in CV-1 cells revealed surprisingly that despite expression of L1 mRNA, L1 protein could not be detected.

In view of the foregoing, it has been difficult hitherto to understand how papillomaviruses produce large amounts of L1 protein in the late stage of their life cycle using this apparently "untranslatable" gene.

Surprisingly, however, it has now been discovered that PV L1 protein can be produced at substantially enhanced levels in an undifferentiated host cell by replacing existing codons of a native L1 gene with synonymous codons used at relatively high frequency by genes of the undifferentiated host cell

compared to the existing codons. It has also been unexpectedly that there are substantial differences in the relative abundance of particular isoaccepting transfer RNAs (tRNAs) in different cells or tissues and this plays a pivotal role in protein expression from a gene with a given codon usage or composition. This discovery has been reduced to practice in synthetic nucleic acid sequences generic methods, which utilize codon alteration as a for targeting expression of means a protein to particular cells or tissues or alternatively, to cells in a specific state of differentiation.

OBJECT OF THE INVENTION

15

20

10

It is therefore an object of the present invention to provide a synthetic nucleic acid sequence and a method for selectively expressing a protein in a target cell or tissue which sequence and method ameliorate at least some of the disadvantages associated with the prior art.

SUMMARY OF THE INVENTION

Accordingly, in one aspect of the invention, there is provided a synthetic nucleic acid sequence capable of selectively expressing a protein in a target cell or tissue of a mammal, wherein said selective expression is effected by replacing at least one existing codon of a parent nucleic acid sequence with a synonymous codon to form said synthetic nucleic acid sequence.

WO 99/02694 PCT/AU98/00530

5

10

15

20

25

30

Suitably, said synonymous codon corresponds to an iso-tRNA which, when compared to an iso-tRNA corresponding to the at least one existing codon, is in higher abundance in the target cell or tissue relative to one or more other cells or tissues of the mammal.

Preferably, said synonymous codon corresponds to an iso-tRNA which, when compared to an iso-tRNA corresponding to the at least one existing codon, is in higher abundance in the target cell or tissue relative to a precursor cell or tissue.

Alternatively, said synonymous codon corresponds to an iso-tRNA which, when compared to an iso-tRNA corresponding to the at least one existing codon, is in higher abundance in the target cell or tissue relative to a cell or tissue derived therefrom.

Advantageously, said corresponding iso-tRNA in said target cell or tissue is at a level which is at least 110%, preferably at least 200%, more preferably at least 500%, and most preferably at least 1000%, of that expressed in the or each other cell or tissue of the mammal.

Alternatively, the synonymous codon may be selected from the group consisting of (1) a codon used at relatively high frequency by genes, preferably highly expressed genes, of the target cell or tissue, (2) a codon used at relatively high frequency by genes, preferably highly expressed genes, of the or each other cell or tissue, (3) a codon used at relatively high frequency by genes, preferably highly expressed genes, of the mammal, (4) a codon used at relatively low frequency by genes of the target cell

10

15

20

25

30

or tissue, (5) a codon used at relatively low frequency by genes of the or each other cell or tissue, (6) a codon used at relatively low frequency by genes of the mammal, (7) a codon used at relatively high frequency by genes of another organism, and (8) a codon used at relatively low frequency by genes of another organism.

In a preferred embodiment, the at least one existing codon and the synonymous codon are preferably selected such that said protein is expressed from said synthetic nucleic acid sequence in said target cell or tissue at a level which is at least 110%, preferably at least 200%, more preferably at least 500%, and most preferably at least 1000%, of that expressed from said parent nucleic acid sequence in said target cell or tissue.

In another aspect, the invention resides in a method for selectively expressing a protein in a target cell or tissue of a mammal, wherein said selective expression is effected by replacing at least one existing codon of a parent nucleic acid sequence with a synonymous codon to form said synthetic nucleic acid sequence.

Preferably, the method is further characterized by the steps of:

(a) replacing at least one existing codon of a parent nucleic acid sequence encoding said protein with a synonymous codon to produce a synthetic nucleic acid sequence having altered translational kinetics compared to said parent nucleic acid sequence such that said protein is selectively expressible in said target cell or tissue;

15

20

25

30

- (b) administering to the mammal and introducing into said target cell or tissue, or a precursor cell or precursor tissue thereof, said synthetic nucleic acid sequence operably linked to one or more regulatory nucleotide sequences; and
- (c) selectively expressing said protein in said target cell or tissue.

Preferably, the method further includes, prior to step (a):

- (i) measuring relative abundance of different isoacceptor transfer RNAs in said target cell or tissue, and in one or more other cells or tissues of the mammal; and
 - (ii) identifying said at least one existing codon and said synonymous codon based on said measurement, wherein said synonymous codon corresponds to an iso-tRNA which, when compared to an iso-tRNA corresponding to the existing codon, is in higher abundance in said target cell or tissue relative to the or each other cell or tissue of the mammal.

Suitably, step (ii) above is further characterized in that said synonymous codon corresponds to an iso-tRNA which, when compared to an iso-tRNA corresponding to the at least one existing codon, is in higher abundance in the target cell or tissue relative to a precursor cell or tissue.

Alternatively, step (ii) above is further characterized in that said synonymous codon corresponds to an iso-tRNA which, when compared to an iso-tRNA corresponding to the at least one existing codon, is in higher abundance in the target cell or tissue relative to a cell or tissue derived therefrom.

10

15

20

25

30

Alternatively, the method further includes, prior to step (a), identifying said at least one existing codon and said synonymous codon based on respective relative frequencies of particular codons used by genes selected from the group consisting of (I) genes of the target cell or tissue, (II) genes of the or each other cell or tissue, (III) genes of the mammal, and (IV) genes of another organism.

In yet another aspect, the invention provides a method for expressing a protein in a target cell or tissue from a first nucleic acid sequence including the steps of:

introducing into said target cell tissue, or a precursor cell or precursor tissue thereof, a second nucleic acid sequence encoding at least one isoaccepting transfer RNA wherein said second nucleic acid sequence is operably linked to one or more regulatory nucleotide sequences, and wherein said at least one isoaccepting transfer RNA normally in relatively low abundance in said target cell or tissue and corresponds to a codon of said first nucleic acid sequence.

In a further aspect, the invention extends to a method for producing a virus particle in a cycling eukaryotic cell, said virus particle comprising at least one protein necessary for assembly of said virus particle, wherein said at least one protein is not expressed in said cell from a parent nucleic acid sequence at a level sufficient to permit virus assembly therein, said method including the steps of:

15

20

25

30

- (a) replacing at least one existing codon of said parent nucleic acid sequence with a synonymous codon to produce a synthetic nucleic acid sequence having altered translational kinetics compared to said parent nucleic acid sequence such that said at least one protein is expressible from said synthetic nucleic acid sequence in said cell at a level sufficient to permit virus assembly therein;
- (b) introducing into said cell or a 10 precursor thereof said synthetic nucleic acid sequence operably linked to one or more regulatory nucleotide sequences; and
 - (c) expressing said at least one protein in said cell in the presence of other viral proteins required for assembly of said virus particle to thereby produce said virus particle.

In yet a further aspect of the invention, there is provided a method for producing a virus a cycling cell, said virus particle particle in comprising at least one protein necessary for assembly of said virus particle, wherein said at least one protein is not expressed in said cell from a parent nucleic acid sequence at a level sufficient to permit virus assembly therein, and wherein at least existing codon of said parent nucleic acid sequence is rate limiting for the production said at least one protein to said level, said method including the step of introducing into said cell a nucleic acid sequence capable of expressing therein an isoaccepting transfer RNA specific for said at least one codon.

10

15

20

25

BRIEF DESCRITPION OF THE DRAWINGS

Figure 1A depicts the nucleotide sequence (SEQ ID NO:1) and deduced amino acid sequence (SEQ ID NO:2) of BPV1 L1. Amino acids (in single letter code) are presented below the second nucleotide of each codon. Mutations introduced into the genes are indicated above the corresponding nucleotides of the original sequence. Horizontal lines indicate the sites and enzymes used for cloning. This replacement of nucleotides resulted in a nucleic acid sequence encoding BPV-1 L1 polypeptide with an amino acid sequences identical to the wild type, but having synonymous codons that are frequently used by mammalian genes.

Figure 1B shows the nucleotide sequence (SEQ ID NO:5) and deduced amino acid sequence (SEQ ID NO:6) relating to BPV1 L2 ORF. Amino acids (in single letter code) are presented below the second nucleotide of each codon. Mutations introduced into the genes are indicated above the corresponding nucleotides of the original sequence. Horizontal lines indicate the sites and enzymes used for cloning. This replacement of nucleotides resulted in a nucleic acid sequence encoding BPV-1 L2 polypeptide with an amino acid sequences identical to the wild type, but having synonymous codons that are frequently used by mammalian genes.

Figure 1C depicts the nucleotide sequence

(SEQ ID NO:9) and deduced amino acid sequence (SEQ ID NO:10) of green fluorescent protein (GFP). Amino acids (in single letter code) are presented below the

WO 99/02694 11 PCT/AU98/00530

5

10

15

25

second nucleotide of each codon. Mutations introduced into the genes are indicated above the corresponding nucleotides of the original sequence. Horizontal lines indicate the sites and enzymes used for cloning. This replacement of nucleotides resulted in a nucleic acid sequence encoding GFP polypeptide with an amino acid sequence identical to the native sequence modified for optimal expression in eukaryotic cells, but having synonymous codons that are frequently used by papillomavirus genes.

Figure 2A shows detection of L1 protein expressed from synthetic and wild type BPV1 L1 genes. Cos-1 cells were transfected with a synthetic L1 expression plasmid pCDNA/HBL1, and a wild type L1 expression plasmid pCDNA/BPVL1wt. The expression of L1 was detected by immunofluorescent staining. Cells were fixed after 36 hrs and incubated with rabbit anti-BPV1 L1 antiserum, followed by FITC-conjugated goat anti-rabbit IgG antibody.

Figure 2B shows detection by Western blot of L1 protein from Cos-1 cells transfected with pCDNA/HBL1 and pCDNA/BPVL1wt.

Figure 2C shows a Northern blot in which L1 mRNA extracted from transfected cells was probed with ³²P-labeled probes produced from wild type L1 sequence. The amount of mRNA loaded in respective lanes was examined by hybridization of the mRNA sample with a gapdh probe.

Figure 3A shows detection of L2 protein expressed from synthetic and wild type BPV1 L2 genes.

Cos-1 cells were transfected with a synthetic L2 expression plasmid pCDNA/HBL2, and a wild type L2

expression plasmid pCDNA/BPVL2wt. The expression of L2 was detected by immunofluorescent staining. Cells were fixed after 36 hrs and incubated with rabbit anti-BPV1 L2 antiserum, followed by FITC-conjugated goat anti-rabbit IgG antibody.

Figure 3B shows detection by Western blot of L2 protein from Cos-1 cells transfected with pCDNA/HBL2 and pCDNA/BPVL2wt.

Figure 3C shows a Northern blot in which L2

10 mRNA extracted from transfected cells was probed with

32P-labeled probes produced from wild type L2 sequence.

The amount of mRNA loaded in respective lanes was examined by hybridization of the mRNA sample with a gapdh probe.

Figure 4 shows in vitro translation of 15 BPVL1 sequences, wild type BPVL1 (wt) or synthetic L1 (HB) using rabbit reticulocyte lysate or wheat germ extract in the presence of 35S-methionine. In the top panel, wt L1 or HB L1 plasmid DNA was added to the T7 20 DNA polymerase-coupled in vitro translation system. L1 protein was detected by Western blot analysis. In the bottom panel, the translation efficiency of wt L1 or HB L1 sequences in the presence or absence of tRNA was compared. Translation was carried out in rabbit 25 reticulocyte lysate (rabbit) or wheat germ extract (wheat), and samples were collected every two minutes starting from minute 8. Left side of lower panel indicates if 10^{-5} M bovine liver or yeast tRNA was supplied.

Figure 5A is a schematic representation of plasmids used to determine L2 expression from BPV cryptic promoter(s). The wild type L1 sequence and

WO 99/02694 13 PCT/AU98/00530

5

10

25

most of the wild type L2 sequence were deleted from the BPV1 genome by BamHI and HindIII digestion and the remaining BPV1 sequence (in yellow) was cloned into Wild type or synthetic humanized L2 sequences (in red) were inserted into the BamHI site of the BPV1 The position of the inserted SV40 ori genome. sequence (in white) is indicated. The plasmid in which modified L2 was used but without SV40 ori sequence was also used as a control. The plasmids were transfected into Cos-1 cells and the expression of L2 protein was determined using BPV1 L2-specific polyclonal antiserum followed by FITC-linked anti rabbit IgG.

Figure 5B shows expression of L2 protein

from native papillomavirus promoter. The plasmids shown in Figure 5A were used to transfect Cos-1 cells and the expression of L2 protein was determined using BPV1 L2-specific polyclonal antiserum followed by FITC-linked anti rabbit IgG. A mock transfection in which the cells did not receive plasmid was used as control.

Figure 6 shows expression of GFP in Cos-1 cells transfected with wild-type gfp (wt) or a synthetic gfp gene carrying codons used at relatively high frequency by papillomavirus genes (p). The mRNA extracted from cells transfected with gfp or P gfp was probed with ^{32}P -labeled gfp probe and is shown on the right panel, using gapdh as a reference gene.

Figure 7 shows the expression pattern of GFP in vivo from wild-type gfp gene, or a synthetic gfp gene carrying codons used at relatively high frequency by papillomavirus genes. Using a gene gun,

WO 99/02694 14 PCT/AU98/00530

5

10

15

20

25

30

mice were shot with PGFP (left panel) and GFP (right panel) expression plasmids encoding GFP protein. A transverse section of the mouse skin section shows where the gfp gene is expressed. Bright-field photographs of the same section where dermis (D) epidermis (E) are highlighted are shown to identify the location of fluorescence in the epidermis. Arrows indicate fluorescent signals.

DETAILED DESCRIPTION

The present invention arises from unexpected discovery that the relative abundance of isoaccepting transfer different RNAs varies different cells or tissues, or alternatively in cells or tissues in different states of differentiation or in different stages of the cell cycle, and that such differences may be exploited together with codon composition of a gene regulate direct to and expression of a protein to a particular cell tissue, or alternatively to a cell or tissue in a specific state of differentiation or in a specific stage of the cell cycle. According to the present invention, this selective targeting is effected by replacing at least one existing codon of a parent nucleic acid sequence encoding the protein with a synonymous codon.

Replacement of synonymous codons for existing codons is not new *per se*. In this regard, we refer to International Application Publication No WO 96/09378 which utilizes such substitution to provide a method of expressing proteins of eukaryotic and viral

WO 99/02694 15 PCT/AU98/00530

origin at high levels in in vitro mammalian cell culture systems, the main thrust of the method being the harvesting of such proteins. In distinct contrast, the present invention utilizes substitution of one or more codons in a gene for targeting expression of the gene to particular cells or tissues with the ultimate aim of facilitating gene therapy as described herein.

The term "synonymous codon" as used herein refers to a codon having a different nucleotide sequence to an existing codon but encoding the same amino acid as the existing codon.

By "isoaccepting transfer RNA" is meant one or more transfer RNA molecules that differ in their anticodon structure but are specific for the same amino acid.

Throughout this specification, unless the context requires otherwise, the words "comprise", comprises" and "comprising" will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.

Selection of synonymous codons

5

15

20

30

25 Determination of relative abundance of different tRNA species in different cells

Advantageously, the synonymous codon corresponds to an iso-tRNA (iso-tRNA) which, when compared to an iso-tRNA corresponding to the at least one existing codon, is in higher abundance in the

WO 99/02694 (PCT/AU98/00530

5

10

target cell or tissue relative to one or more other cells or tissues of the mammal.

Any method for determining the relative abundance of an iso-tRNA in two or more cells or tissues may be employed. For example, such method may include isolating two or more particular cells or tissues from a mammal, preparing an RNA extract from each cell or tissue which extract includes tRNA, and probing each extract respectively with different nucleic acid sequences each being specific for a iso-tRNA particular to determine the relative abundance of an iso-tRNA between the two or more cells or tissues.

Suitable methods for isolating particular 15 cells or tissues are well known to those of skill in the art. For example, one can take advantage of one or more particular characteristics of a cell or tissue to specifically isolate the cell or tissue from a heterogeneous population. Such characteristics 20 include, but are not limited to, anatomical location of a tissue, cell density, cell size, cell morphology, cellular metabolic activity, cell uptake of ions such as Ca2+, K+, and H+ ions, cell uptake of compounds such as stains, markers expressed on the cell surface, 25 cytokine expression, protein fluorescence, membrane potential. Suitable methods that may be used in this regard include surgical removal of tissue, flow cytometry techniques such as fluorescenceactivated cell sorting (FACS), immunoaffinity 30 separation (e.g., magnetic bead separation such as Dynabead™ separation), density separation (e.g., metrizamide, Percoll™, or Ficoll™ gradient

WO 99/02694 17 PCT/AU98/00530

5

20

25

30

centrifugation), and cell-type specific density separation (e.g., Lymphoprep $^{\mathbb{M}}$). For example, dividing cells or blast cells may be separated from non-dividing cells or resting cells according to cell size by FACS or metrizamide gradient separation.

Any suitable method for isolating total RNA from a cell or tissue may be used. Typical procedures contemplated by the invention are described in CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (Ausubel, et al., eds) (John Wiley & Sons, Inc. 1997), hereby incorporated by 10 reference, at page 4.2.1 through page Preferably, techniques which favor isolation of tRNA are employed as, for example, described in Brunngraber, E.F. (1962, Biochem. Biophys. Res. 15 8:1-3) Commun. which is hereby incorporated reference.

The probing of an RNA extract is suitably effected with different oligonucleotide sequences each being specific for a particular iso-tRNA. Of course it will be appreciated that for a given mammal, oligonucleotide sequences would need to be selected which hybridize specifically with particular iso-tRNA sequences expressed by the mammal. Such selection is well within the realm of one of ordinary skill in the art based a known iso-tRNA sequence. For example, in the case of a mouse, exemplary oligonucleotide sequences which may be used include those described in Gauss and Sprinzel (1983, Nucleic Acids Res. 11 (1)) hereby incorporated by reference. In this respect, the oligonucleotide sequences may be selected from the group consisting of:

```
5'-TAAGGACTGTAAGACTT-3'
                                   (SEQ ID NO:13) for AlaGCA
        5'-CGAGCCAGCCAGGAGTC-3'
                                   (SEQ ID NO:14) for Arg CGA
        5'-CTAGATTGGCAGGAATT-3'
                                   (SEQ ID NO:15) for AsnAAC
        5'-TAAGATATATAGATTAT-3'
 5
                                   (SEQ ID NO:16) for Asp<sup>GAC</sup>
        5'-AAGTCTTAGTAGAGATT-3'
                                   (SEQ ID NO:17) for Cys<sup>TGC</sup>
        5'-TATTTCTACACAGCATT-3'
                                   (SEQ ID NO:18) for GluGAA
        5'-CTAGGACAATAGGAATT-3'
                                   (SEQ ID NO:19) for Gln CAA
        5'-TACTCTCTTCTGGGTTT-3'
                                   (SEQ ID NO:20) for Gly GGA
        5'-TGCCGTGACTCGGATTC-3'
                                   (SEQ ID NO:21) for His CAC
10
        5'-TAGAAATAAGAGGGCTT-3'
                                   (SEQ ID NO:22) for IleATC
                                   (SEQ ID NO:23) for LeuCTA
        5'-TACTTTTATTTGGATTT-3'
                                   (SEQ ID NO:24) for LeuCTT
        5'-TATTAGGGAGAGGATTT-3'
        5'-TCACTATGGAGATTTTA-3'
                                   (SEQ ID NO:25) for LysAAA
15
        5'-CGCCCAACGTGGGGCTC-3'
                                   (SEQ ID NO:26) for LysAAG
        5'-TAGTACGGGAAGGATTT-3'
                                   (SEQ ID NO:27) for Metelong
        5'-TGTTTATGGGATACAAT-3'
                                   (SEO ID NO:28) for Pherro
        5'-TCAAGAAGAAGGAGCTA-3'
                                   (SEQ ID NO:29) for Procca
        5'-GGGCTCGTCCGGGATTT-3'
                                   (SEQ ID NO:30) for Procci
20
        5'-ATAAGAAAGGAAGATCG-3'
                                   (SEQ ID NO:31) for SerAGC
        5'-TGTCTTGAGAAGAGAAG-3'
                                   (SEQ ID NO:32) for ThrACA
        5'-TGGTAAAAAGAGGATTT-3'
                                   (SEQ ID NO:33) for Tyr<sup>TAC</sup>
        5'-TCAGAGTGTTCATTGGT-3' (SEQ ID NO:34) for Val<sup>GTA</sup>
```

25 Typically, the relative abundance of isotRNA species may be determined by blotting techniques
that include a step whereby sample RNA or tRNA extract
is immobilized on a matrix (preferably a synthetic
membrane such as nitrocellulose), a hybridization
30 step, and a detection step. Northern blotting may be
used to identify an RNA sequence that is complementary
to a nucleic acid probe. Alternatively, dot blotting

10

15

20

and slot blotting can be used to identify complementary DNA/RNA or RNA/RNA nucleic acid sequences. Such techniques are well known by those skilled in the art, and have been described in Ausubel, et al (supra) at pages 2.9.1 through 2.9.20.

According to such methods, a sample of tRNA immobilized on a matrix is hybridized under stringent conditions to a complementary nucleotide sequence (such as those mentioned above) which is labeled, for example, radioactively, enzymatically or fluorochromatically.

"Stringency" as used herein, refers to the temperature and ionic strength conditions, and presence or absence of certain organic solvents, during hybridization. The higher the stringency, the higher will be the degree of complementarity between the immobilized nucleotide sequences (i.e., iso-tRNA) and the labeled oligonucleotide sequence. For discussion of typical stringent conditions that may be used, see CURRENT PROTOCOLS IN MOLECULAR BIOLOGY supra at pages 2.10.1 to 2.10.16, and Sambrook et al in MOLECULAR CLONING. A LABORATORY MANUAL (Cold Spring Harbor Press, 1989), hereby incorporated by reference, at sections 1.101 to 1.104.

25 While stringent washes are typically carried out at temperatures from about 42°C to 68°C, one skilled in the art will appreciate that other temperatures may be suitable for stringent conditions.

Maximum hybridization typically occurs at about 20° to 25° below the T_m for formation of a DNA-DNA hybrid. It is well known in the art that the T_m is the melting temperature, or temperature at which two complementary

10

15

20

25

30

nucleic acid sequences dissociate. Methods for estimating T_m are well known in the art (see CURRENT PROTOCOLS IN MOLECULAR BIOLOGY supra at page 2.10.8). Maximum hybridization typically occurs at about 10° to 15° below the T_m for a DNA-RNA hybrid.

Other stringent conditions are well known in the art. A skilled addressee will recognize that various factors can be manipulated to optimize the specificity of the hybridization. Optimization of the stringency of the final washes can serve to ensure a high degree of hybridization.

Methods for detecting labeled nucleotide sequences hybridized to an immobilized nucleotide sequence are well known to practitioners in the art. Such methods include autoradiography, chemiluminescent, fluorescent and colorimetric detection.

Advantageously, the relative abundance of an iso-tRNA in two or more cells or tissues may be determined by comparing the respective levels binding of a labeled nucleotide sequence specific for the iso-tRNA to equivalent amounts of immobilized RNA obtained from the two or more cells or tissues. Similar comparisons are suitably carried out determine the respective relative abundance of other iso-tRNAs in the two or more cells or tissues. One of ordinary skill in the art will thereby be able to determine a relative tRNA abundance table (see for example TABLE 2) for different cells or tissues. such comparisons, one or more synonymous codons may be selected such that the or each synonymous corresponds to an iso-tRNA which, when compared to an WO 99/02694 21 PCT/AU98/00530

iso-tRNA corresponding to an existing codon of the parent nucleic acid sequence, is in higher abundance in the target cell or tissue relative to other cells or tissues of the mammal.

Advantageously, a synonymous codon is selected such that its corresponding iso-tRNA in the target cell or tissue is at a level which is at least 110%, preferably at least 200%, more preferably at least 500%, and most preferably at least 1000%, of that expressed in the or each other cell or tissue of the mammal.

Suitably, synonymous codons for selective expression of a protein in a differentiated cell, preferably a differentiated keratinocyte, are selected from the group consisting of gca (Ala), cuu (Leu) and cua (Leu).

15

20

Synonymous codons for selective expression of a protein in an undifferentiated cell, preferably an undifferentiated keratinocyte, are suitably selected from the group consisting of cga (Arg), cci (Pro) and aag (Asn).

Analysis of codon usage

Alternatively, synonymous codons may be selected by analyzing the frequency at which codons are used by genes expressed in (i) particular cells or tissues, (ii) substantially all cells or tissues of the mammal, or (iii) an organism which may infect particular cells or tissues of the mammal.

Codon frequency tables as well as suitable methods for determining frequency of codon usage in an organism are described, for example, in an article by

10

15

20

25

30

Sharp et al (1988, Nucleic Acids Res. 16 8207-8211) which is hereby incorporated by reference.

relative The level of gene expression (e.g., detectable protein expression vs no detectable protein expression) can provide an indirect measure of the relative abundance of specific iso-tRNAs expressed in different cells or tissues. For example, a virus may be capable of propagating within a first cell or (which may include a cell or tissue at specific stage of differentiation) but may substantially incapable of propagating in a second cell or tissue (which may include a cell or tissue at another stage of differentiation). Comparison of the pattern of codon usage by genes of the virus with the pattern of codon usage by genes expressed in the second cell or tissue may thus provide indirectly a set of synonymous codons which correspond to iso-tRNAs expressed at relatively high abundance in the first cell or tissue relative to the second cell or tissue and vice versa. Simultaneously, the above comparison may also provide indirectly a set of synonymous codons which correspond to iso-tRNAs expressed at relatively high abundance in the second cell or tissue relative to the first cell or tissue.

From the foregoing, a synonymous codon according to the invention may correspond to a codon including, but not limited to, (1) a codon used at relatively high frequency by genes, preferably highly expressed genes, of the target cell or tissue, (2) a codon used at relatively high frequency by genes, preferably highly expressed genes, of the or each other cell or tissue, (3) a codon used at relatively

30

high frequency by genes, preferably highly expressed genes, of the mammal, (4) a codon used at relatively low frequency by genes of the target cell or tissue, (5) a codon used at relatively low frequency by genes of the or each other cell or tissue, (6) a codon used at relatively low frequency by genes of the mammal, (7) a codon used at relatively high frequency by genes of another organism, and (8) a codon used at relatively low frequency by genes of another organism.

10 For example, codons used at a relatively high frequency by genes, preferably highly expressed genes, of the mammal may be selected from the group consisting of: cuc (Leu), cuu, (Leu), cug (Leu), uua (Leu), uug (Leu); cgg (Arg), cgc (Arg), aga (Arg), agg (Arg); agu (Ser), agc (Ser), ucu (Ser), ucc (Ser), and uca (Ser). Alternatively, such codons may include auu (Ile), auc (Ile); guu (Val), guc (Val), gug (Val); acu (Thr), acc (Thr), aca (Thr); gcu (Ala), gcc (Ala), gca (Ala); cag (Glu); ggc (Gly), ggg (Gly).

20 Codons used at a relatively low frequency by genes of the mammal are described, for example, in Sharp et al (1988, supra). Such codons may comprise (Leu); cua cqa (Arg), cqu (Arg); ucg (Ser). Alternatively, such codons may include aua (Ile); gua 25 (Val); acg (Thr); gcg (Ala); caa (Glu); ggu (Gly).

Construction of synthetic nucleic acid sequences

The step of replacing synonymous codons for existing codons may be effected by any suitable technique. For example, in vitro mutagenesis methods may be employed which are well known to those of skill in the art. Suitable mutagenesis methods are

10

15

20

25

30

described for example in the relevant sections of Ausubel, et al. (supra) and of Sambrook, et al.. (supra) which are hereby incorporated by reference. Alternatively, suitable methods for altering DNA are set forth, for example, in U.S. Patent Nos 4,184,917, 4,321,365 and 4,351,901, which are hereby incorporated Instead of in vitro mutagenesis, the by reference. second nucleic acid sequence may be synthesized de novo using readily available machinery. Sequential synthesis of DNA is described, for example, in U.S. Patent No 4,293,652, which is hereby incorporated by However, it should be noted that the present invention is not dependent on and not directed particular technique to one for replacing synonymous codons for existing codons.

It is not necessary to replace all the existing codons of the parent nucleic acid sequence with synonymous codons each corresponding to a isotRNA expressed in relatively high abundance in the target cell compared to other cells. Increased expression may be accomplished even with partial replacement. Preferably, the replacing step affects 5%, 10%, 15%, 20%, 25%, 30%, more preferably 35%, 40%, 50%, 60%, 70% or more of the existing codons of the parent nucleic acid sequence.

The parent nucleic acid sequence is preferably a natural gene. By "natural gene" is meant a gene that naturally encodes the protein. However, it is possible that the parent nucleic acid sequence encodes a protein that is not naturally-occurring but has been engineered using recombinant techniques.

WO 99/02694 25 PCT/AU98/00530

5

10

15

20

25

30

The parent nucleic acid sequence need not be obtained from the mammal but may be obtained from any suitable source such as from a eukaryotic or prokaryotic organism. For example, the parent nucleic acid sequence may be obtained from another mammal or other animal. Alternatively, the parent nucleic acid sequence may be obtained from a pathogenic organism. In such a case, a natural host of the pathogenic organism is preferably a mammal. For example, the pathogenic organism may be a yeast, bacterium or virus.

For example, suitable proteins which may be used for selective expression in accordance with the invention include, but are not limited to the cystic fibrosis transmembrane conductance regulator (CFTR) protein, and adenosine deaminase (ADA). In the case of CFTR, a parent nucleic acid sequence encoding the CFTR protein which may be utilized to produce the synthetic nucleic acid sequence is described, for example, in Riordan et al (1989, Science 245 1066-1073), and in the GenBank database under Accession No. HUMCFTRM, which are hereby incorporated by reference.

The term "nucleic acid sequence" as used herein designates mRNA, RNA, cRNA, cDNA or DNA.

Regulatory nucleotide sequences which may be utilized to regulate expression of the synthetic nucleic acid sequence include, but are not limited to, a promoter, an enhancer, and a transcriptional terminator. Such regulatory sequences are well known to those of skill in the art.

Synthetic nucleic acid sequences according to the invention may be operably linked to one or more

10

15

20

regulatory sequences in the form of an expression vector. By "vector" is meant a nucleic acid molecule, preferably a DNA molecule derived, for example, from a plasmid, bacteriophage, or mammalian or insect virus, into which a synthetic nucleic acid sequence may be inserted or cloned. A vector preferably contains one or more unique restriction sites and may be capable of replication autonomous in а defined host cell including the target cell or tissue or a precursor cell or precursor tissue thereof, or be integratable with the genome of the defined host such that the cloned sequence is reproducible. Thus, by "expression vector" is meant any autonomous element capable of directing the synthesis of a protein. Such expression vectors are well known by practitioners in the art.

The term "precursor cell" as used herein refers to a cell that gives rise to the target cell.

The invention also contemplates synthetic nucleic acid sub-sequences encoding desired portions of the protein. A nucleic acid sub-sequence encodes a domain of the protein having a function associated therewith and preferably encodes at least 10, 20, 50, 100, 150, or 500 contiguous amino acids of the protein.

25 The step of introducing the synthetic nucleic acid sequence into a target cell will differ depending on the intended use and or species, and may involve non-viral and viral vectors. cationic liposomes, retroviruses and adenoviruses such as, for example, described in Mulligan, R.C., (1993 Science 30 926-932) 260 which is hereby incorporated reference. Such methods may include:

10

(i) Local application of the synthetic nucleic acid sequence by injection (Wolff et al., 1990, Science 247 1465-1468, which is hereby incorporated by reference), surgical implantation, instillation or any other means. This method may also be used in combination with local application by injection, surgical implantation, instillation or any other means, of cells responsive to the protein encoded by the synthetic nucleic acid sequence so as to increase the effectiveness of that treatment. This method may also be used in combination with local application by injection, surgical implantation, instillation or any other means, of another factor or factors required for the activity of said protein.

15 (ii) General systemic deliverv by injection of DNA, (Calabretta et al., 1993, Cancer Treat. Rev. 19 169-179, which is hereby incorporated by reference), or RNA, alone or in combination with liposomes (Zhu et al., 1993, Science 261 209-212, which is hereby incorporated by reference), viral 20 capsids or nanoparticles (Bertling et al., Biotech. Appl. Biochem. 13 390-405, which is hereby incorporated by reference) or any other mediator of delivery. Improved targeting might be achieved by 25 linking the synthetic nucleic acid sequence to a targeting molecule (the so-called "magic bullet" approach employing for example, an antibody), or by local application by injection, surgical implantation or any other means, of another factor or factors 30 required for the activity of the protein produced from said synthetic nucleic acid sequence, or of cells responsive to said protein.

(iii) Injection or implantation or delivery by any means, of cells that have been modified ex vivo by transfection (for example, in the presence of calcium phosphate: Chen et al., 1987, Mole. 5 2745-2752, or of cationic lipids Biochem. 7 polyamines: Rose et al., 1991, BioTech. 10 520-525, which articles are hereby incorporated by reference), infection, injection, electroporation (Shigekawa 1988, BioTech. 6 742-751, which is hereby incorporated by reference) or any other way so as to 10 increase the expression of said synthetic nucleic acid sequence in those cells. The modification may be mediated by plasmid, bacteriophage, cosmid, viral (such as adenoviral or retroviral; Mulligan, 15 Science 260 926-932; Miller, 1992, Nature 357 455-460; Salmons et al., 1993, Hum. Gen. Ther. 4 129-141, which articles are hereby incorporated by reference) or other vectors, or other agents of modification such as liposomes (Zhu et al., 1993, Science 261 209-212, which is hereby incorporated by reference), 20 capsids or nanoparticles (Bertling et al., Biotech. Appl. Biochem. 13 390-405, which is hereby incorporated by reference), or any other mediator of modification. The use of cells as a delivery vehicle 25 for genes or gene products has been described by Barr et al., 1991, Science 254 1507-1512 and by Dhawan et al., 1991, Science 254 1509-1512, which articles are hereby incorporated by reference. Treated cells may be delivered in combination with any nutrient, growth factor, matrix or other agent that will promote their 30 survival in the treated subject.

In yet another aspect, the invention provides a pharmaceutical composition comprising the synthetic nucleic sequences of the invention and a pharmaceutically acceptable carrier.

5 By "pharmaceutically-acceptable carrier" is solid meant orliquid filler. diluent encapsulating substance that may be safely used in systemic administration. Depending upon the particular route of administration, a variety of pharmaceutically acceptable carriers, well known in 10 These carriers may be selected the art may be used. from a group including sugars, starches, cellulose and its derivatives, malt, gelatin, talc, calcium sulfate, vegetable oils, synthetic oils, polyols, alginic acid, 15 phosphate buffered solutions, emulsifiers, isotonic saline, and pyrogen-free water.

Any suitable technique may be employed for determining expression of the protein from said synthetic nucleic acid sequence in a particular cell or tissue. For example, expression can be measured using an antibody specific for the protein of interest or portion thereof. Such antibodies and measurement techniques are well known to those skilled in the art.

Applications

20

In one embodiment of the present invention, the target cell is suitably a differentiated cell. Advantageously, the protein which is desired to be selectively expressed in the differentiated cell is not expressible in a precursor cell thereof (such as an undifferentiated or less differentiated cell of the mammal) from a parent nucleic acid sequence at a level

10

15.

30

sufficient to effect a particular function associated with said protein. In this embodiment, the step of replacing at least one existing codon with synonymous codon is characterized in that the synonymous codon corresponds to an iso-tRNA which, when compared to the iso-tRNA corresponding to the at least one existing codon, is in relatively higher abundance in the differentiated cell compared to the precursor cell. Accordingly, a synthetic nucleic acid is produced having altered translational sequence kinetics compared to the parent nucleic acid sequence wherein the protein is expressible differentiated cell at a level sufficient to effect a particular function associated with said protein, but wherein the protein is not expressible in the precursor cell at a level sufficient to effect said function.

As used herein, the term "function" refers to a biological, or therapeutic function.

20 embodiment may The above be utilized advantageously for somatic gene therapy where overexpression of a protein in undifferentiated cells such as stems cells has undesirable consequences including death or differentiation of the stem cells. 25 In such a case, a suitable protein may include cystic fibrosis transmembrane conductance regulator (CFTR) protein, and adenosine deaminase (ADA).

The differentiated cell may comprise a cell of any lineage including a cell of epithelial, hemopoetic or neural origin. For example, the differentiated cell may be a mature differentiated keratinocyte.

Targeting expression of a protein progeny of a stem cell but not to the stem cell itself The synthetic nucleic acid 5 produced above may be transfected directly into the differentiated cell for the desired function alternatively, transfected into the precursor cell. For example, in the case of ADA deficiency, expression of ADA in stem cells may result in loss of stem 10 phenotype which is undesirable. However. advantageous therapy reside may in transducing autologous marrow stem cells with a synthetic nucleic acid sequence operably linked to one or regulatory sequences, wherein existing codons of the 15 wild type ADA gene have been replaced with synonymous codons each corresponding to an iso-tRNA expressed in relatively high abundance in differentiated lymphocytes compared to the marrow stem cells. transduced stem cells may then be reinfused into the 20 patient. This approach will result in transduced marrow stem cells which are not capable of expressing ADA themselves, but which are able to give rise to a renewable population of differentiated lymphocytes which are capable of expressing ADA at levels 25 sufficient to permit a therapeutic effect. regard, a suitable cell source for this purpose may comprise stem cells isolated as CD34 positive cells from a patient's peripheral blood or marrow. For gene delivery, a suitable vector may include a retrovirus 30 or Adeno associated virus.

Alternatively, in the case of inducing cell mediated immunity, dendritic cells are important

WO 99/02694 PCT/AU98/00530

5

10

15

20

25

antigen presenting cells (APC) but have a very limited life span for antigen presentation once activated of between 14 to 21 days. Consequently, dendritic cells provide relatively short-term immune stimulation that may not be optimal. However, in accordance with the present invention, a long-term immune stimulation may be provided by transducing autologous bone marrowderived CD34 positive dendritic cell precursors with a synthetic nucleotide sequence encoding an antigen. such as the melanoma antigen MART-1, wherein the synthetic sequence is operably linked to one or more regulatory sequences, and wherein existing codons of a wild type nucleotide sequence encoding MART-1 have been replaced with synonymous codons each corresponding to an iso-tRNA expressed in relatively high abundance in dendritic cells compared to the dendritic cell precursors. The transduced dendritic cell precursors may then be reinfused into patient. This approach will result in transduced dendritic cell precursors which are not capable of expressing MART-1 themselves, but which are able to give rise to a renewable population of dendritic cells which are capable of expressing MART-1 at levels sufficient to permit lifelong a intermittent restimulation of a cytotoxic T lymphocyte (CTL) response to the MART-1 antigen.

Targeting expression of a protein to a stem cell but not to progeny of the stem cell

In an alternate embodiment, the target cell may be an undifferentiated cell wherein the protein is not expressible in said undifferentiated cell, from a

WO 99/02694 33 PCT/AU98/00530

5

10

15

20

25

30

parent nucleic acid sequence encoding the protein, at a level sufficient to effect a particular function associated with the protein. In such a case, at least one existing codon of the parent nucleic acid sequence is replaced with a synonymous codon corresponding to iso-tRNA which, when compared to the iso-tRNA corresponding to the at least one existing codon, is in relatively higher abundance in the undifferentiated cell compared to a differentiated cell. This results in a synthetic nucleic acid sequence having altered translational kinetics compared to said parent nucleic acid sequence wherein the protein is expressible in the undifferentiated cell at a level sufficient effect a particular function associated with protein, but wherein the protein is not expressible in differentiated cells derived from the undifferentiated cell at a level sufficient to effect said function.

This alternate embodiment may, by way of example, be used to permit expression of transcriptional regulatory protein which when expressed in a particular undifferentiated cell or stem cell facilitates differentiation of the stem cell along a particular cell lineage. Ιt will appreciated that in such a case, the regulatory protein is normally expressed from a gene in which the existing codons correspond to iso-tRNAs which are in relatively low abundance in the stem cell compared to other iso-tRNAs and that therefore the protein is not capable of being expressed at levels sufficient for commitment of the stem cell to differentiate along a particular cell lineage. It will also be apparent that such commitment to differentiate along

10

15

20

25

30

particular cell lineage may be utilized to prevent production of a particular lineage of cells such as cancer cells.

Alternatively, the method according to this embodiment may be used to express a transcriptional regulatory protein that is involved in the production of a therapeutic agent or agents. Such a protein may include, for example, NF-kappa-B transcription factor p65 subunit (NF-kappa-B p65) which is involved in the production of interleukin-2 (IL-2), interleukin-3 (IL-3) and granulocyte and macrophage colony stimulating factor (GMCSF). NF-kappa-B p65 is encoded naturally by a nucleotide sequence comprising a number of existing codons each corresponding to an iso-tRNA expressed in relatively low abundance in stem cells. Accordingly, such sequence may be used as the parent nucleic acid sequence according to this embodiment. A suitable nucleotide sequence encoding this protein is described, for example, in Lyle et al (1994, Gene 138 265-266) and in the EMBL database under Accession No. HSNFKB65A which are hereby incorporated by reference.

A suitable undifferentiated cell which may be utilized in accordance with the present embodiment includes but is not limited to a stem cell, such as a CD34 positive hemopoetic stem cell.

The present embodiment may also be used advantageously for gene therapy where regulated expression of a transgene is desirable. example, secure but reversible regulation of fertility is desirable in veterinary practice and in humans. regulation Such may be effected by transducing autologous breast ductal epithelial cells with a

10

15

20

25

30

synthetic nucleic acid encoding a leutinising hormone (LH) antagonist or a leutinising hormone releasing hormone (LHRH) antagonist under the control of one or more regulatory sequences. The synthetic nucleic acid may be produced by replacing existing codons of a nucleic acid with synonymous codons corresponding to iso-tRNAs expressed in relatively high abundance in resting breast ductal epithelial cells compared to differentiated cells arising Once the transduced cells are implanted therefrom. back into the patient, expression may be switched off by oral administration of progestagen, forcing the differentiation of the majority of the stem cells and loss of expression of the antagonist. Once pregnancy is established. the suppression would be self sustaining by the naturally produced progestagen. The iso-tRNA composition of resting and oestrogen drived breast epithelial cells may be established by first obtaining resting cells from reduction mammoplasty, and determining the cellular tRNA composition in the presence and absence of oestrogen. The synthetic nucleic acid sequence may be introduced into resting autologous epithelial cells by cell electroporation ex vivo, and the transduced cells may be subsequently transplanted subcutaneously into the patient. Progestagen may be administered as required to reverse regulation of fertility.

Targeting expression of a toxin to a tumor cell but not to any other cells of the mammal

Many toxins and drugs are available that can kill tumor cells. However, these toxins and drugs

WO 99/02694 PCT/AU98/00530

5

10

15

20

25

30

are generally toxic for all dividing cells. This may be nevertheless ameliorated py. establishing the isoacceptor tRNA composition in a tumor clone, and constructing a synthetic toxin gene (e.g., ricin gene) or a synthetic anti-proliferation gene (e.g., the tumor supressor p53) using synonymous corresponding to iso-tRNAs expressed relatively high abundance in the tumor clone compared to normal dividing cells of the mammal. The synthetic gene is then introduced into the patient by suitable means to selectively express the synthetic genes in tumor cells.

Alternatively, a chemotherapy enhancing product gene (i.e., a drug resistance gene e.g., the multi-drug resistance gene) using a codon pattern unlikely to be expressed in the tumor efficiently may be employed.

Targeting gene therapy to control body fat Leptins are proteins known to control By analogy with animal data, however, if too satiety. much leptin is administered to a patient, leptininduced starvation might occur. Advantageously, a synthetic gene encoding leptin may be constructed including synonymous codons corresponding to iso-tRNAs expressed at relatively high levels in activated adipocytes compared to non-activated adipocytes. synthetic gene may then be introduced into the patient by suitable means such that leptin is only expressed substantially in activated adipocytes as opposed to non-activated adipocytes. As body fat turnover diminishes under the influence of leptin reduced

WO 99/02694 37 PCT/AU98/00530

appetite, the metabolic activity of the adipocytes falls and the leptin production decreases correspondingly.

5 Targeting expression of a protein to a stage of the cell cycle

10

15

20

25

30

In another embodiment of the invention, the target cell may be a non-cycling cell. In this case, protein which is desired to be selectively expressed in the non-cycling cell is expressible in a cycling cell of the mammal from a parent nucleic acid sequence at a level sufficient to effect a particular function associated with the protein. The synonymous codons are selected such that each corresponds to an iso-tRNA which, when compared to the iso-tRNA corresponding to the at least one existing codon, is in higher abundance in the non-cycling cell compared to the cycling cell. Accordingly, a synthetic nucleic acid sequence is produced having altered translational kinetics compared to the parent nucleic acid sequence wherein the protein is expressible in the non-cycling cell at a level sufficient to effect a particular function associated with said protein, but wherein the protein is not expressible in the non-cycling cell to effect said function.

The term "non-cycling cell" as used herein refers to a cell that has withdrawn from the cell cycle and has entered the GO state. In this state, it is well known that transcription of endogenous genes and protein translation are at substantially reduced levels compared to phases of the cell cycle, namely G1, S, G2 and M.

15

20

25

(

By "cycling cell" is meant a cell which is in one of the above phases of the cell cycle.

Expressing a protein in a target cell or tissue by <u>in vivo</u> expression of iso-tRNAs in the target cell or tissue

In another aspect, the invention extends to method wherein a protein may be selectively expressed in a target cell by introducing into the cell an auxiliary nucleic acid sequence capable of expressing therein one or more isoaccepting transfer RNAs which are not expressed in relatively high abundance in the cell but which are rate limiting for expression of the protein from a parent nucleic acid sequence to a level sufficient for effecting function associated with the protein. In embodiment, introduction of the auxiliary nucleic acid sequence in the cell changes the translational kinetics of the parent nucleic acid sequence such that said protein is expressed at a level sufficient to effect a function associated with the protein.

The step of introducing the auxiliary nucleic acid sequence into the target cell or a tissue comprising a plurality of these cells may be effected by any suitable means. For example, analogous methodologies for introduction of synthetic the nucleic acid sequence referred to above employed for delivery of the auxiliary nucleic acid sequence into said cycling cell.

WO 99/02694 39 PCT/AU98/00530

5

10

15

20

25

Assembly of virus particles in cells which do not normally permit assembly of virus particles

yet another aspect, the invention extends to a method for producing a virus particle in a cycling eukaryotic cell. The virus particle will comprise at least one protein necessary for virus assembly, wherein the at least one protein is not expressed in the cell from a parent nucleic acid sequence at a level sufficient to permit virus assembly therein. This method is characterized by replacing at least one existing codon of the parent nucleic acid sequence with a synonymous codon to produce a synthetic nucleic acid sequence altered translational kinetics compared to the parent nucleic acid sequence such that the at least one protein is expressible from the synthetic nucleic acid sequence in the cell at a level sufficient to permit virus assembly therein. The synthetic nucleic acid sequence so produced is operably linked to one or more regulatory nucleotide sequences and is then introduced into the cell or a precursor cell thereof. least one protein is expressed subsequently in the cell in the presence of other viral proteins required for assembly of the virus particle to thereby produce the virus particle.

Advantageously, the synonymous codon corresponds to an iso-tRNA expressed at relatively high level in the cell compared to the iso-tRNAs corresponding to the existing codons.

The cycling cell may be any cell in which the virus is capable of replication. Suitably, the cycling cell is a eukaryotic cell. Preferably, the

20

25

30

cycling cell for production of the virus particle is a eukaryotic cell line capable of being grown in vitro such as, for example, CV-1 cells, COS cells, yeast or spodoptera cells.

Suitably, the at least one protein of the virus particle are viral capsid proteins. Preferably, the viral capsid proteins comprise L1 and/or L2 proteins of papillomavirus.

other viral The proteins required assembly of the virus particle in the cell may be 10 expressed from another nucleic acid sequence(s) which suitably contain the rest of the viral genome. case of the at least one protein comprising L1 and/or papillomavirus, said other nucleic sequence(s) preferably comprises the papillomavirus 15 genome without the nucleotide sequences encoding L1 and/or L2.

In yet a further aspect of the invention, there is provided a method for producing a virus particle in a cycling cell, said virus particle comprising at least one protein necessary for assembly of said virus particle, wherein said at least one protein is not expressed in said cell from a parent nucleic acid sequence at a level sufficient to permit virus assembly therein, and wherein at least existing codon of said parent nucleic acid sequence is rate limiting for the production said at least one protein to said level, said method including the step of introducing into said cell a nucleic acid sequence capable of expressing therein an isoaccepting transfer RNA specific for said at least one codon.

WO 99/02694 41 PCT/AU98/00530

In yet a further aspect, the invention resides in virus particles resulting from the above methods.

The invention further contemplates cells or tissues containing therein the synthetic nucleic acid sequences of the invention, or alternatively, cells or tissues produced from the methods of the invention.

The invention is further described with reference to the following non-limiting examples.

10

20

25

30

5

EXAMPLE 1

Expression of synthetic L1 and L2 protein in undifferentiated cells.

15 <u>Materials and Methods</u>

Codon replacements in the bovine PV (BPV)
L1 and L2 genes

The DNA and amino acid sequences of the wild-type L1 (SEQ ID NOS:1,2) and L2 genes (SEQ ID NOS:5,6) are shown respectively in Figures 1A and 1B. To determine whether the presence of rare codons in wild-type L1 (SEQ ID NO:1) and L2 (SEQ ID NO:5) genes (Table 1) inhibited translation, we synthesized the L1 (SEQ ID NO:3) and L2 (SEQ ID NO:7) genes by using synonymous substitutions as shown. To construct the synthetic sequences, we synthesized 11 pairs οf oligonucleotides for L1 and 10 pairs of oligonucleotides for L2. Each pair of oligonucleotides has restriction sites incorporated to facilitate subsequent cloning (Figures 1A and 1B). The degenerate oligonucleotides were used to amplify

10

20

25

30

L1 and L2 sequences by PCR using a plasmid with BPV1 genome as the template. The amplified fragments were cut with appropriate enzymes and sequentially ligated to pUC18 vector, producing pUCHBL1 and pUCHBL2. The synthetic L1 (SEQ ID NO:3) and L2 (SEQ ID NO:7) sequences were sequenced and found to be error-free, and then sub-cloned into the mammalian expression vector pCDNA3 containing SV40 ori (Invitrogen), giving expression plasmids pCDNA/HBL1 and pCDNA/HBL2. To compare expression of L1 and L2 with that of the original sequences, the wild type L1 (SEQ ID NO:1) and L2 (SEQ ID NO:5) genes were cloned into the pCDNA3 vector, resulting in pCDNA/BPVL1wt and pCDNA/BPVL2wt.

15 Immunofluorescence and Western blot staining

For immunoblotting assays, Cos-1 cells in 6-well plates were transfected with 2 μ g L1 or L2 expression plasmids using lipofectamine (Gibco). hrs after transfection, cells were washed with 0.15M phosphate buffered 0.9% NaCl (PBS) and lysed in SDS loading buffer. The cellular proteins were separated by 10% SDS PAGE and blotted onto nitrocellulose membrane. The L1 or L2 proteins were identified by electrochemiluminescence (Amersham, UK), using BPV1 L1 (DAKO) antisera. orL2-specific (17)For immunofluorescent staining, Cos-1 cells were grown on 8-chamber slides, transfected with plasmids, fixed and permeabilised with 85% ethanol 36hr after transfection. The slides were blocked with 5% milk-PBS and probed with L1 or L2-specific antisera, followed by FITC-conjugated anti-rabbit IgG (Sigma). For GFP or

PGFP plasmid transfected cells, the cell were fixed with 4% buffered formaldehyde and viewed by epifluorescence microscopy.

Northern blotting

Cos cells transfected with various plasmids were used to extract cytoplasmic or total RNA using QIAGEN RNeasy mini kit according to the supplier's handbook. Briefly, for cytoplasmic purification, buffer RLN (50 mM Tris, pH 8.0, 140 mM NaCl, 1.5 mM MgCl₂ and 0.5% NP40) was directly added to monolayer cells and cells were lysed in 4 °C for 5 min. After the nuclei were removed by centrifugation, cytoplasmic RNAs were purified by column. For total RNA extraction, the monolayer cells were lysed using buffer RLT supplied by the kit and RNA was purified by spin column. The purified RNAs were separated by 1.5% agarose gel in the presence of formaldehyde. The RNAs were then blotted onto nylon membrane and probed with (a) 1:1 mixed 5'-end labelled L1wt and HBL1 fragments; (b) 1:1 mixed 5'-end labelled L2 wt and HBL2 fragments; (c) 1:1 mixed 5'end labelled GFP and PGFP fragments or (d) randomly labelled PAGDH fragment. The blots were washed extensively at 65 °C and exposed to X-ray films for three days.

Results

5

10

15

20

25

30

To test the hypothesis that the codon composition of the genes encoding the L1 and L2 capsid proteins of papillomavirus (PV) contributes to their preferential expression in differentiated epithelial

10

15

20

25

30

cells, we produced synthetic BPV1 L1 (SEQ ID NO:3) and L2 (SEQ ID NO:7) genes, substituting codons preferentially used in mammalian genes for the codons frequently present in the wild type BPV1 L1 and L2 sequences which are rare in eukaryotic genes (Figures 1A, 1B).

For the L1 gene, a total of 202 base substitutions made 196 were in codons, changing the encoded amino acid sequence (Figure 1A). This synthetic "humanized" BPV L1 gene (SEQ ID NO:3) was designated HBL1. In a similarly modified BPV1 L2 gene (SEQ ID NO:7) designated HBL2, 303 bases were changed to substitute 290 less frequently used codons the corresponding preferentially used codons. Using the synthetic HBL1 (SEQ ID NO:3) and HBL2 (SEQ genes, constructed two NO:7) we eukaryotic expression plasmids based on pCDNA3, and designated and pCDNA/HBL2. Similar pCDNA/HBL1 expression plasmids, constructed with the wild type BPV1 L1 (SEQ NO:1) and BPV1 L2(SEQ ID NO:5) genes, designated pCDNA/BPVL1wt and pCDNA/BPVL2wt, respectively. In each of these plasmids the SV40 ori allowed replication in Cos-1 cells, and the L1 or L2 gene was driven by a strong constitutive CMV promoter.

To compare the expression of the synthetic humanized and the wild type BPV1 L1 or BPV1 L2 genes, we separately transfected Cos-1 cells with each of the L1 and L2 plasmids described above. Transfected cells were analyzed for expression of L1 (SEQ ID NO:2,4) or L2 (SEQ ID NO:6,8) protein by immunofluorescence 36 hr after transfection (Figures 2A and 3A). Cells transfected with the pCDNA3 expression plasmid WO 99/02694 45 PCT/AU98/00530

5

10

15

20

25

30

containing the synthetic humanized L1 (SEQ ID NO:3) or L2 (SEQ ID NO:7) genes were observed to produce large amounts of the corresponding protein, while cells transfected with expression plasmids with the wild type L1 (SEQ ID NO:1) or L2 (SEQ ID NO:5) sequences produced no detectable L1 or L2 protein (Figures 2A and 3A, see nuclear staining of L1 and L2 proteins). To compare more accurately the expression of the different L1 and L2 constructs, L1 and L2 protein expression was assessed by immunoblot in Cos-1 cells transfected with the wild type or synthetic humanized BPV1 L1 or L2 pCDNA3 expression constructs (Figures 2B and 3B). Large amounts of immunoreactive L1 and L2 proteins were expressed from the synthetic humanized L1 (SEQ ID NO:3) and L2 (SEQ ID NO:7) sequences, but no L1 or L2 protein was expressed from the wild type L1 and L2 sequences (SEQ ID NO:1,5).

To establish whether the alterations to the primary sequence of the L1 and L2 mRNA which resulted from the codon alterations also affected steady state expression of the corresponding message, prepared from Cos-1 cells transfected with the various capsid protein gene constructs. Using GAPDH as internal standard it was established by Northern blot that two to three times more modified than wild type L1 mRNA, and similar levels of wild type and modified L2 mRNA were present in the cytoplasm of transfected cells (Figures 2C and 3C). The amount of L1 or L2 protein expressed per arbitrary unit of L1 or L2 mRNA was at least 100 fold higher for the humanized gene constructs than for the natural gene constructs.

15

20

30

EXAMPLE 2

Papillomavirus late protein translation in vitro

5 Materials and Methods

In vitro translation assay

One microgram of each plasmid was incubated with 20 μ Ci 35 S-methionine (Amersham) and 40 μ L T7 coupled rabbit reticulocyte or wheat germ lysates (Promega). Translation was performed at 30 °C and stopped by adding SDS loading buffer. The L1 proteins were separated by 10% SDS PAGE and examined by autoradiography.

Production of aminoacyl-tRNA

 $2.5~x~10^{-4}~M~tRNA~(Boehringer)$ was added to a 20 μL reaction containing 10 mM Tris-acetate, pH.7.8, 44 mM KCl, 12 mM MgCl₂, 9 mM -mercaptoethanol, 38 mM ATP, 0.25 mM GTP and 7 μL rabbit reticulocyte extract. The reaction was carried out at 25 °C for 20 min, and 30 μL H₂O was added to the reaction to dilute the tRNAs to 1 x 10⁻⁴ M. The aminoacyl-tRNAs were then aliquoted and stored at -70 °C.

25 Results

As the major limitation to expression of the wild type BPV L1 and L2 genes appeared to be translational in our system we wished to test whether this limitation reflected a limited availability of the appropriate tRNA species for gene translation. As transient expression of the synthetic genes within

intact cells may be regulated by many factors, we tested our hypothesis in a cell free system using rabbit reticulocyte lysate (RRL) or wheat germ lysate examine gene translation. Similar amounts of 5 expressing the wild type plasmids orsynthetic humanized BPV1 Ll gene were added to а T7-DNA polymerase coupled RRL transcription/translation system in the presence of 35S-methionine. After 20 minutes, translated proteins were separated by SDS PAGE and visualized by autoradiography. 10 Efficient translation of the modified L1 gene was observed (Figure 4, top panel, lane 2), while translation of the wild type BPV1 L1 sequence resulted in a weak 55 kDa L1 band (Figure 4, upper panel, lane 1). reasoned that although the wild type sequence was not 15 optimized for translation in RRL, some translation would occur as there would be no cellular mRNA species competing for the 'rare' codons present in the wild type L1 sequence. The above data suggest that the 20 observed difference in efficiency of translation of the wild type and synthetic humanized L1 genes is a consequence of limited availability of the required for translation of the rare codons present in the wild type gene. We therefore expected that addition of excess tRNA to the in vitro translation 25 system would overcome the inhibition of translation of the wild type L1 gene. To address this question, 10^{-5} M aminoacyl-tRNAs from yeast were added into the RRL translation system, and L1 protein synthesis 30 assessed. Introduction of exogenous tRNAs resulted in a dramatic improvement in translation of the wild type L1 sequence, which now gave a yield of L1 protein

10

15

20

25

30

comparable to that observed with the synthetic humanized L1 sequence (SEQ ID NO:3) (Figure 4, top panel). Enhancement of translation of the wild type L1 gene (SEQ ID NO:1) by aminoacyl-tRNA was dosedependent, with an optimum efficiency at 10⁻⁵ M tRNA. As addition of exogenous tRNA improved the yield of L1 protein translated from the wild type L1 gene sequence (SEQ ID NO:1), we assessed the speed of translation of wild type and humanized L1 mRNA. Samples were the collected from translation mixture minutes, starting at the 8th minute. Translation of L1 (SEQ ID NO:2,4) from the wild type sequence (SEQ ID NO:1) was much slower than from the humanized L1 sequence (SEQ ID NO:3) (Figure 4 bottom panel), and the retardation of translation could be completely overcome by adding exogenous tRNA from commercially available yeast tRNA. Yeast tRNA was chosen in the above analysis because the codon usage in yeast is similar to that of papillomavirus (Table 1). Addition of exogenous tRNA did not significantly improve the translation of the humanized L1 gene (SEQ ID NO:3), indicating that this sequence was optimized with regard to codon usage for the rabbit reticulocyte translation machinery (Figure 4, bottom panel). separate experiments we established L1 translation could also be enhanced by liver tRNA (Figure 4), and by tRNAs extracted from bovine skin epidermis, which presumably constitutes a mixture of tRNAs from differentiated and undifferentiated cells (data not shown).

10

15

EXAMPLE 3

Translation of wild type L1 is efficient in wheat germ extract.

To further test our hypothesis that tRNA availability is a determinant of expression of the wild type BPV1 L1 gene (SEQ ID NO:1), we examined the translation of L1 in a cell type in which a quite different set of tRNAs would be available. In a wheat germ translation system, wild type L1mRNA translated as efficiently as humanized L1 mRNA, addition of exogenous aminoacyl-tRNAs did not improve the translation efficiency of either wild type or humanized sequences (Figure 4 bottom panel). This indicated that in wheat germ there are sufficient of the tRNAs which are limiting for translation of wild type L1 sequence RRL to allow efficient L1 in translation.

20

25

30

EXAMPLE 4

Modified late genes can be expressed in undifferentiated cells from papillomavirus promoter(s)

While our data presented above indicates that translation is limiting for the production of capsid proteins in our test system, experiments were conducted in systems which are not representative of the viral late transcription from the BPV genome, in part because the genes were driven by a strong CMV promoter. therefore wished to establish whether synthetic

WO 99/02694

5

10

15

20

25

30

humanized BPV capsid protein mRNA would be translated efficiently than the wild type mRNA, if transcribed from the natural BPV1 promoter. would establish whether translation was indeed one of the limiting factors for expression of BPV1 late genes driven from the natural cryptic late gene promoter in an undifferentiated cell. The BPV genome was cleaved nt 4450 and 6958 with BamHI/HindIII and original L1 (nt 4186-5595) and L2 (5068-7095) ORFs were removed. The synthetic humanized L2 gene (SEQ ID NO:7), together with an SV40 ori sequence to allow plasmid replication in eukaryotic cells, were inserted into the BPV genome lacking L1/L2 ORF sequences. plasmid (Figure 5A) was designated pCICR1. A similar plasmid was constructed with wild type (SEQ ID NO:5) rather than synthetic humanized L2 and designated pCICR2. Cos-1 cells were transfected with these plasmids and L2 protein expression examined immunofluorescence of transfected cells. Synthetic humanized L2 (SEQ ID NO:7), driven by the natural BPV-1 promoter, was efficiently expressed, whereas the wild type L2 sequence (SEQ ID NO:5), driven from a similar construct, produced no immunoreactive L2 protein (SEQ ID NO:6,8) (Figure 5B). As undifferentiated cells supported the expression of the humanized L2 gene (SEQ ID NO:7) but not the wild type L2 (SEQ ID NO:5) expressed from the cryptic late BPV promoter, the results confirmed our earlier observations from experiments using the CMV promoter. However, the plasmids tested here contained SV40 ori, designed to replicate the DNA in Cos cells. The increased copy number of the BPV1 L2 plasmids or the

transcriptional enhancing activity of the SV40 ori might explain in part the increased efficiency of expression of L2 in this experimental system when compared with infected skin. However, the marked difference in expression between the natural and humanized genes seen with a CMV promoter construct is still observed with the natural promoter.

EXAMPLE 5

10

5

Substitution of papillomavirus-preferred codons prevents translation but not transcription of a non-papillomavirus gene in undifferentiated cells.

Materials and Methods

15

20

25

30

Codon replacement in gfp gene

To construct a modified gfp gene (SEQ ID NO:11) using papillomavirus preferred codons (PGFP), 6 pairs of oligonucleotides were synthesized. Each pair of oligonucleotides has restriction sites incorporated and was used to amplify gfp using a humanized gfp gene (SEQ ID NO:9) (GIBCO) as template. The PCR fragments were ligated into the pUC18 vector to produce pUCPGFP. The PGFP gene was sequenced, and cloned into BamHI site of the same mammalian expression vector, pCDNA3, under the CMV promoter. The DNA and deduced amino acid sequences of the humanized GFP gene are shown in Figures 1C. Mutations introduced into the wild type gfp gene (SEQ ID NO:9) to produce the Pgfp gene (SEQ NO:11) indicated above the corresponding are nucleotides of the wild-type sequence.

Results

5

10

15

20

25

To further confirm that codon usage can alter gene expression in mammalian cells, we made a further variant on a synthetic gfp gene modified for optimal expression in eukaryotic cells (Zolotukhin, et al., 1996. J. Virol. 70:4646-4654). In our variant, codons optimized for expression in eukaryotic cells were substituted by those preferentially used papillomavirus late genes. Of 240 codons in the humanized gfp gene (SEQ ID NO:9), which expresses high levels of fluorescent protein in cultured cells, 156 were changed to the corresponding papillomavirus late gene-preferred codons to produce a new gfp gene (SEQ ID NO:11) designated Pgfp. Expression of Pgfp (SEQ ID NO:11) in undifferentiated cells was compared with that of humanized gfp (SEQ ID NO:9). Cos-1 cells transfected with the humanized qfp (SEQ ID produced a bright fluorescent signal after 24 hrs, while cells transfected with Pgfp (SEQ ID NO:11) produced only a faint fluorescent signal (Figure 6A). To confirm that this difference reflected differing translational efficacy, gfp specific mRNA was tested in both transfections and found not to be significantly different (Figure 6B.). Thus, codon usage and corresponding tRNA availability apparently determines the observed restriction of expression of PV late genes, and modification of codon usage in other genes similarly prevents their expression in undifferentiated cells.

EXAMPLE 6

PGFP with papillomavirus-preferred codons is

efficiently expressed in vivo in differentiated mouse keratinocytes.

Materials and Methods

Delivery of plasmid DNA into mouse skin by gene gun

µg gold micro-carriers by calcium precipitation, following the manufacturer's instructions (Bio-Rad). C57/bl mouse skin was bombarded with gold particles coated with DNA plasmid at a pressure of 600 psi. Serial sections were taken from the skin and examined for distribution of the particles, confirming that a pressure of 600 psi could deliver particles throughout the epidermis.

Results

20 Mice were shot with gold beads carrying PGFP DNA plasmid and, 24 hrs later, skin samples were cut from the site of DNA delivery and examined for expression of GFP protein (SEQ ID NO:10,12). Fluorescence was detected mostly in upper keratinocyte 25 layers, representing the differentiated epithelium, and was not seen in undifferentiated basal cells. contrast, skin sections shot with the humanized GFP plasmid showed fluorescence in cells randomly distributed throughout the whole epidermis (Figure 7). 30 Although GFP-positive cells were rare in both PGFP-(SEQ ID NO:11) and GFP-inoculated (SEQ ID NO:9) mouse

skin, fluorescence was observed only in differentiated strata in the PGFP sample (SEQ ID NO:11), whereas fluorescence was observed throughout the epidermis in GFP-inoculated (SEQ ID NO:9) mouse skin. This result confirmed that the use of papillomavirus-preferred codons resulted in the protein being expressed in an epithelial differentiation-dependent manner.

EXAMPLE 7

10

15

20

25

30

5

Microinjection of yeast tRNA and wild type L1 gene into cultured cells

test if yeast tRNA could facilitate expression of wild type BPV-1 L1 (SEQ ID NO:1) (as yeast uses a similar set of codons to those observed in papillomavirus for its own genes), 2 pL of mixtures containing tRNA (2 mg/mL) (purified yeast (Boehringer Mannheim) or bovine liver tRNA - control) and BPV L1 DNA (2 μ g/mL) can be injected into CV-1 cells (Lu and Campisi, 1992, Proc. Natl. U. S. A. 89 3889-3893). The injected cells can then be cultured for 48 hrs at 37 °C and examined for expression of L1 gene by standard immunofluoresence methods using BPV L1-specific antibody and quantified by FACS analysis (Qi et al 1996, Virology 216 35-45).

EXAMPLE 8

Establishment of a cell line which can continuously produce HPV virus particles

To produce infectious PV, various methods have been tried including the epithelial raft culture

system (Dollard et al 1992, Genes Dev 6 1131-1142), and cell lines containing BPV-1 episomal DNA, infected by BPV-1 L1/L2 recombinant vaccinia (Zhou et al 1993, J. Gen. Virol. 74 763-768) or transfected by 5 SFV RNA (Roden et al 1996, J. Virol. 70 5875-5883). The yield of particles is in each case low. reduction to practice of our discovery, synthetic BPV (SEQ ID NO:3) and L2 genes (SEQ ID NO:7) (as described in Example 1) can be used to produce 10 in a cell infectious BPV line containing DNA. Fibroblast episomal cell lines (CON/BPV) containing BPV-1 episomal DNA (Zhou et al 1993, J. Gen. Virol. 74 763-768) can be used for transfection of the synthetic BPV-1 L1 (SEQ ID NO:3) and L2 genes (SEQ ID NO:7) under control of CMV promoter. 15 BPV particles may then be purified from the cell lysate and the purified particles examined for the presence of BPV-1 genome. Standard methods such as transfection with lipofectamine (BRL) and G418 20 selection of transfected cells can be utilized to generate suitable transfectants expressing humanized L1 (SEQ NO:3) and L2 ID (SEO ID NO:7) background of BPV-1 episomal DNA. Examination of L1 and L2 protein expression can be performed using rabbit anti-BPV L1 or rabbit anti-BPV L2 polyclonal 25 antibodies. BPV particles can then be purified using our published methods (Zhou et al 1995, Virology 214 167-176) and can be characterized by electron microscopy and DNA blotting. The infectivity of BPV 30 particles isolated from the cultured cells may be tested in focus formation assays using C127 fibroblasts.

EXAMPLE 9

Method for extracting and measuring tRNA from tissues Tissue(100g) is homogenized in a Waring 5 Blender with 150 $\mathfrak{m} \mathbf{L}$ phenol (Mallinckrodt, of Analytical Reagent, 88%) saturated with water (15:3) and 150 mL of 1.0 M NaCl, 0.005 M EDTA in 0.1 M Trisbuffer, pH 7.5. The homogenate was spun chloride for ten minutes at top speed in the International clinical centrifuge and the upper layer was carefully 10 decanted off. To this aqueous layer, three volumes of 95% ethanol were added. The resultant precipitate was spun down at top speed in the International clinical centrifuge and resuspended in 250 mL of 0.1 15 Tris/chloride buffer, pH 7.5. This solution was added (flow rate of 15-20 drops per minute) to a column (2 x of 2 q of DEAE-cellulose previously equilibrated with cold 0.1 M Tris-chloride buffer pH The column was then washed with 1 L of Trischloride buffer, pH 7.5 and the RNA eluted with 1.0 M 20 NaCl in 0.1 M Tris-chloride buffer, pH 7.5. The first 10 mL of NaCl solution were discarded as "hold-up." Sufficient salt solution (60-80 mL) was then collected until the optical density of the effluent was less This solution was extracted 25 than three at 260 nm. twice with an equal volume of phenol saturated with water and twice with ether. To the aqueous solution containing the RNA, three volumes of 95% ethanol were added and the solution wag allowed to stand overnight 30 in the cold. The precipitate was spun down and washed first with 80% and then twice with 95% ethanol and

dried in a vacuum. Approximately 60 mg of soluble RNA were obtained from a 100-g lot of rat liver.

Quantitating tRNAs

5 The following nylon membranes are used: Biodine A and B (PALL). For the preparation of dot blots, the tRNA samples (from 1 pg to 5 ng) are denatured at 60 °C for 15 min in 1-5 μL of 15% formaldehyde. 10x SSC (SSC is NaCl 0.3 M, tri-sodium 10 citrate 0.03 M). The samples are spotted in 1 μL aliquots onto the membranes that have been soaked for in deionized water and slightly dried between 15 min two sheets of 3MM Whatman paper prior to the application of the samples. The tRNAs are fixed 15 covalently (in the membranes by ultravioletirradiation (10 mm using an ultraviolet lamp at 254 nm and 100 W strength at a distance of 20 cm) and the membranes are baked for 2-3 h at 80 °C.

A 5' end labelled synthetic deoxyribooligonucleotide complementary to the A54-A73 sequence
of the tRNA is used as a probe for the hybridization
experiments. Labelling of the oligonucleotide is
performed by direct phosphorylation of the 5' OH'
ended probe.

20

For hybridisation experiments, the UV-irradiated membranes are first preincubated for 5 h at 50 C in 50% deionized formamide, 5 x SSC, 1% SDS, 0.04% Ficoll 0.04% polyvinylpyrrolidone and 250 μ L/mL of sonicated salmon sperm DNA using 5 mL of buffer for 100 cm² of membrane. Hybridization is finally performed overnight at 50 °C in the above solution (2.5 mL/100 cm²) where the labeled probe has been

added. After hybridization, the membranes are washed twice in 2 x SSC, 0.1% SDS for 5 min at room temperature, twice in 2 x SSC, 1% SDS for 30 mm at 60 °C and finally in 0.1 x SSC. 0.1% SDS for 30 min at room temperature. To detect the hybridized probes the membranes are exposed for 16 h to Fuji XR film at 70 °C with an intensifying screen.

Sequence of tRNA probes

The sequences of the tRNA probes are as 10

	follows:		
	Ala ^{GCA} :	5'-TAAGGACTGTAAGACTT	(SEQ ID NO:13)
15	Arg ^{cga} :	5'-CGAGCCAGCCAGGAGTC	(SEQ ID NO:14)
	Asn ^{AAC} :	5'-CTAGATTGGCAGGAATT	(SEQ ID NO:15)
	Asp ^{GAC} :	5'-TAAGATATATAGATTAT	(SEQ ID NO:16)
	Csy ^{™cc} :	5'-AAGTCTTAGTAGAGATT	(SEQ ID NO:17)
	Glu ^{GAA} :	5'-TATTTCTACACAGCATT	(SEQ ID NO:18)
	${ t Gln}^{{ t CAA}}$:	5'-CTAGGACAATAGGAATT	(SEQ ID NO:19)
20	Gly ^{GGA} :	5'-TACTCTCTTCTGGGTTT	(SEQ ID NO:20)
	His ^{cac} :	5'-TGCCGTGACTCGGATTC	(SEQ ID NO:21)
	Ile ^{ATC} :	5'-TAGAAATAAGAGGGCTT	(SEQ ID NO:22)
	Leu ^{CTA} :	5'-TACTTTTATTTGGATTT	(SEQ ID NO:23)
25	Leu ^{cīī} :	5'-TATTAGGGAGAGGATTT	(SEQ ID NO:24)
	Lys***:	5'-TCACTATGGAGATTTTA	(SEQ ID NO:25)
	Lys ^{AAG} :	5'-CGCCCAACGTGGGGCTC	(SEQ ID NO:26)
	Met ^{elong}	5'-TAGTACGGGAAGGATTT	(SEQ ID NO:27)
	Phe ^{ttc} :	5'-TGTTTATGGGATACAAT	(SEQ ID NO:28)
30	Pro ^{cca} :	5'-TCAAGAAGAAGGAGCTA	(SEQ ID NO:29)
	Pro ^{cci} :	5'-GGGCTCGTCCGGGATTT	(SEQ ID NO:30)
	Ser ^{ago} :	5'-ATAAGAAAGGAAGATCG	(SEQ ID NO:31)
	Thr ^{ACA} :	5'-TGTCTTGAGAAGAGAAG	(SEQ ID NO:32)
	Tyr ^{TAC} :	5'-TGGTAAAAAGAGGATTT	(SEQ ID NO:33)

Val^{GTA}: 5'-TCAGAGTGTTCATTGGT (SEQ ID NO:34)

EXAMPLE 10

5 Comparison of the relative abundance of tRNA species in undifferentiated and differentiated keratinocytes

Materials and Methods

Isolation of epidermal cells

2-day old mice were killed and their skins

removed. The skins were digested with 0.25% trypsin

PBS at 4 °C overnight. The epidermis was separated

from the dermis using forceps and minced with scissors

in 10% FCS DMEM medium. The cell suspension was first

filtered through a 1 mm and then a 0.2 mm nylon net.

The cell suspension was then pelleted and washed twice

with PBS.

Density gradient centrifugation

The keratinocytes were resuspended in 30% 20 Percoll and separated by centrifugation through a discontinuous Percoll gradient (1.085, 1.075 and 1.050 g/mL) at 1200 x g at room temperature for 25 min. The cells were then washed with PBS and used to extract tRNA.

25

30

tRNA purification

The cells were lysed in 5 mL of lysis buffer (0.2 M NaOH, 1% SDS) for 10 min at room temperature. The lysate was neutralized with 5 mL of 3.0 M potassium acetate (pH 5.5). After centrifugation, the supernatant was diluted with 3

volumes of 100 mM Tris (pH 7.5) and added to a DEAE column equilibrated with 100 mM Tris (pH 7.5). An equal volume of isopropanol was added to the aqueous solution containing tRNA, and the solution was allowed to stand overnight at 4 °C. The tRNA was spun down and washed with 75% ethanol, then dissolved in RNase-free water.

tRNA blotting

10 10 ng of each tRNA sample in 1 μ L was denatured in 60°C for 15 min in 4 μ L formaldehyde and 5 μ L 20 x SSC. The samples were spotted in 1 μ L aliquots onto charged nylon membrane (Amersham), and the tRNAs were fixed with UV and probed with 32 P-oligonucleotides.

Results

Comparison of the abundance of the tRNA undifferentiated and differentiated species in keratinocytes showed that the levels of some tRNA populations changed dramatically. For example, levels of tRNAs specific for AlaGCA, LeuCTA, LeuCTA were increased in differentiated cells while tRNAs for Procci, Arq^{CGA}, Asn^{AAG} were more abundant undifferentiated keratinocytes (see Table 2).

25

30

20

GENERAL DISCUSSION

In the present specification the inventors have confirmed that one determinant of the efficiency of translation of a gene in mammalian cells is its codon composition. This observation has commonly been

made when genes from prokaryotic organisms have been expressed in eukaryotic cells (Smith, D. W., 1996, Biotechnol. Prog. 12:417-422). The present inventors have also presented evidence that mRNA encoding the capsid genes of papillomavirus are not effectively 5 translated in cultured eukaryotic cells, apparently limiting availability is rate tRNA because translation, and that the block to PV late gene translation in eukaryotic cells in culture can be overcome by altering the codon usage of the late genes 10 mammalian genes, or match the consensus for providing exogenous tRNAs. alternatively by Alterations to mRNA secondary structure or protein binding (Sokolowski, et al., 1998, J. Virol. 72:1504-1515) as a consequence of the changes to the primary 15 sequence of the PV capsid genes might contribute to the observed differences in efficiency of translation of the natural and modified PV capsid gene mRNAs in enhancement οf cells. However, the cultured translation of the natural but not the modified mRNA 20 observed after addition of tRNA in that was mammalian in vitro translation system, which was not observed in a plant translation system, strengthens the argument that tRNA availability is rate limiting for translation of the natural gene in mammalian 25 A shortage of critical tRNAs could result in slowed elongation of the nascent peptide or premature (Oba, et al., 1991, translation termination of Biochimie 73:1109-1112). Slowed elongation appears to the major consequence for the PV late 30 Analysis of codon usage in the PV genome shows that PV late genes use many codons that mammalian cells rarely

10

15

20

25

30

For example, PV frequently uses UUA for leucine, CGU for arginine, ACA for threonine, and AUA for isoleucine, whereas these codons are significantly less often used in mammalian genes. In contrast, papillomavirus late genes can be expressed efficiently in yeast (Jansen, et al., 1995, Vaccine 13:1509-1514) (Sasagawa, et al., 1995, Virology 206:126-135) and the codon composition of yeast and papillomavirus genes are similar (Table 1). An apparent exception is that PV L1 genes can be efficiently expressed in insect cells (Kirnbauer, et al., 1992, Proc. Natl. Acad. Sci. USA 89:12180-12184) using recombinant baculovirus, or in various undifferentiated mammalian cells using recombinant vaccinia (Zhou, et al., 1991, Virology **185**:251-257). As infection with vaccinia baculovirus down regulates cellular protein synthesis, the efficient expression of the L1 capsid proteins under these circumstances may occur because cellular mRNA is available in a virus infected cell to compete with the L1 mRNA for the rarer tRNAs.

Codon composition could be a more general determinant of gene expression within different stages of differentiation of the same tissue. Although the genetic code is essentially universal, different organisms show differences in codon composition of their genes, while the codon composition of genes tends to be relatively similar for all genes within each organism, and matched to the population of isotRNAs for that organism (Ikemura, T., 1981, J. Mol. Biol. 146:1-21). However, populations of tRNAs in differentiating and neoplastic cells are different (Kanduc, D., 1997, Arch. Biochem. Biophys. 342:1-6;

WO 99/02694 63 PCT/AU98/00530

5

10

15

20

25

30

Yang, and Comb, 1968, J. Mol. Biol. 31:138-142; Yang, and Novelli, 1968, Biochem. Biophys. Res. Commun. 31: 534-539) and the tRNA populations also vary in cells growing under different growth conditions (Doi, et al., 1968, J. Biol. Chem. 243:945-951). Accordingly, the inventors believe that codon composition and tRNA availability together provide a primitive mechanism for spatial and/or temporal regulation of expression. Ιt is well recognized that the G+C content of many dsDNA viruses, a crude marker for viral gene codon composition, is markedly different from the G+C content of the DNA of the cells they infect (Strauss, et al., 1995, "Virus Evolution" in Virology (eds. Fields, B. N., et al.), Lipipincott-Raven, Philadelphia, pp 153-171). Viruses therefore have evolved to take advantage of codon composition to regulate their own program of gene expression, perhaps to avoid expression of lethal quantities of viral proteins in undifferentiated cells where the virus utilizes the cellular machinery to replicate its genome.

As the inventors' observations represent an apparently novel mechanism of regulation of gene translation within a single tissue, it is relevant to consider how this relates to previously proposed hypotheses for the restriction of expression of PV late genes to differentiated epithelium. A number of explanations have been proposed for the observation that PV late genes are only effectively expressed in differentiated epithelium. Reduced late gene transcription may reflect dependence of transcription from the late promoter on transcription factors

expressed only in differentiated epithelium, or may alternatively be due to suppression of late promoter transcription by viral (Stubenrauch, et al., 1996, J. Virol. 70:119-126) or cellular gene products expressed The "late" promoters of in undifferentiated cells. 5 HPV31b and of HPV5 (Haller, et al., 1995, Virology 214:245-255; Hummel, et al., 1992, J. Virol. 66:6070are described as differentiation dependent, although the search for relevant transcription control differentiated 10 factors in keratinocytes conventional footprinting and DNA binding studies has to date been unrewarding. Our data show that capsid proteins are not translated from PV L1 and L2 mRNAs in cells transfected with CMV promoter-based expression vectors (Fig. 2), suggesting that in addition to any 15 transcriptional controls that may exist that there is post-transcriptional block to capsid protein undifferentiated cells. Sequences synthesis in resembling 5' splice donor sites exist within L1 or L2 20 mRNA or within flanking untranslated message which are inhibitory to transcription of genes with which they are associated (Kennedy, et al., 1991, J. Virol. 65:2093-2097) (Furth, et al., 1994, Mol. Cell. Biol. Other AU rich sequences in L1 or L2 **14:**5278-5289). 25 promote mRNA degradation (Sokolowski, et al., mRNA 15:2303-2319). These 1997, Oncogene mechanisms inhibiting L1 and L2 expression in undifferentiated cells have yet to be shown to be inactive differentiated epithelium, to explain the successful 30 translation of late genes in this tissue.

Because inhibitory RNA sequences within the L1 coding sequence could have been rendered non-

WO 99/02694 65 PCT/AU98/00530

5

10

15

20

25

30

by functional the systematic codon substitution employed in the experiments described herein and the untranslated inhibitory sequences were not included in the inventors' test system, the respective roles of inhibitory sequences and codon mismatch in suppression of PV late gene expression in cultured mammalian cells cannot be determined. However, regulatory sequences promoting RNA degradation or inhibiting translation are presumed to act through interaction with nuclear or cytoplasmic proteins (Sokolowski, et al., 1998, J. Virol. 72:1504-1515), and inefficient translation of native sequence L1 mRNA was observed in a cell free translation system from anucleate cells, demonstrating that codon composition of the PV late genes must play some role in regulation of PV late gene translation.

Further evidence supporting the hypothesis that codon composition is an important determinant of capsid gene expression was gathered from analysis of the 84 PV L1 sequences currently available The codon composition of the L1 genes, in Genebank. and particularly the frequency of usage of the rarer codons, was essentially the same across all published sequences (data not shown) as would be predicted by the similar G+C content of papillomavirus genomes. The PV L1 gene is relatively conserved at the amino acid level, showing 60 - 80% amino acid homology between PV genotypes, as might be expected by the constraints on capsid function. There are, however, no obvious constraining influences on the codon composition of the PV late genes beyond those of the inventors' hypothesis, the late gene region does not code for other genes,

10

15

20

25

30

either in other reading frames or on the complementary DNA strand, and has no known *cis* acting regulatory functions. If codon composition of the capsid genes were not important for PV function, a considerable heterogeneity of codon usage might therefore be expected, given the evolutionary diversity of PVs (Chan, et al. 1995, J. Virol. 69:3074-3083).

Taken together, the data and evidence outlined herein makes a strong case that codon usage is a significant determinant of expression of PV late genes in undifferentiated and differentiated epithelial cells, and that this observation generalizable. The relative role of message instability and codon mismatch in determining expression in differentiated tissues will require comparisons of transcriptional activity and translation of the L1 or L2 genes driven from strong constitutive promoters in differentiated and undifferentiated epithelium. Such work should now be feasible using either transgenic technology keratinocyte raft cultures.

Although mechanisms of transcriptional regulation of PV L1 or L2 gene expression in the superficial layer of differentiated epithelium have been proposed (Zeltner et al., 1994. J. Virol. 68:3620; Brown, et al., 1995, Virology 214:259; Stoler et al., 1992, Hum. Pathol. 23:117; Hummel et al., 1995, J. Virol. 69:3381; Haller et al., 1995, Virology 214:245; Barksdale and Baker, 1993, J. Virol. 67:5605), measurable PV late gene mRNA is not always associated with production of late proteins (Zeltner et al., 1994, supra; Ozbun and Meyers, 1997, J. Virol.

WO 99/02694 67 PCT/AU98/00530

5

10

15

20

71:5161), and the data presented here suggest that translation regulation may play a major part controlling PV late gene expression. This observation has implications as herein described for regulation of expression of genes related to the specialised functions of any differentiated tissue, and also for targeting of expression of therapeutic genes to such tissue while avoiding the potentially deleterious consequences of expression of the exogenous gene in a self renewing cell stem population.

The present invention has been described in terms of particular embodiments found or proposed by the present inventors to comprise preferred modes for the practice of the invention. Those of skill in the art will appreciate that, in light of the present disclosure, numerous modifications and changes may be made in the particular embodiments exemplified without departing from the scope of the invention. All such modifications are intended to be included within the scope of the appended claims.

TABLE LEGENDS

TABLE 1

The codon usage data for human, cow yeast and wheat proteins are derived from published results(18). The BPV1 data are from the sequences in the Genbank database.

TABLE 2

Each iso-acceptor tRNA with anticodon shown

10 as superscript are shown on top row. The "+"

indicates the abundance of tRNA wherein each "+"

indicates about 10 fold increase.

TABLES

TABLE 1
Frequency (per one thousand) of codon usage for individual organisms.

5

Amino	Codons	Human	Cow	Yeast	Wheat	BPVL1/
acids						L2
ARG	CGA	5.4	5.5	2.3	2.3	7.2
	CGC	11.3	12.2	2.0	7.5	4.1
	CGG	10.4	11.2	1.1	4.6	5.1
	CGU	4.7	3.7	7.5	1.1	10.4
	AGA	9.9	9.9	24.0	4.1	14.4
	AGG	11.1	11.4	7.5	7.1	9.3
LEU	CUA	6.2	4.9	11.8	12.1	18.6
	CUC	19.9	21:2	4.1	18.6	6.2
	CUG	42.5	46.6	8.3	15.5	15.5
	CUU	10.7	10.6	9.6	6.5	20.7
	UUA	5.3	4.0	24.5	1.8	14.5
	UUG	11.0	9.6	32.1	15.3	15.5
SER	UCA	9.3	7.6	15.6	14.6	16.6
	UCC	17.7	17.6	14.4	10.1	11.4
	UCG	4.2	4.5	6.5	9.6	6.2
•	UCU	13.2	11.2	24.6	14.8	15.5
	AGC	18.7	18.7	7.1	12.8	12.4
	AGU	9.4	8.6	11.7	12.9	21.7
THR	ACA	14.4	11.4	15.6	4.6	37.3
	ACC	23.0	21.1	13.9	15.9	19.7
	ACG	6.7	7.8	6.7	4.5	4.1
	ACU	12.7	9.6	22.0	11.8	28.0

Amino	Codons	Human	Cow	Yeast	Wheat	BPVL1/
acids						L2
PRO	CCA	14.6	12.0	21.4	71.2	22.8
	CCC	20.0	19.2	5.9	11.1	15.5
	CCG	6.5	7.9	4.1	19.4	0.0
	CCU	15.5	14.6	12.8	10.3	33.1
ALA	GCA	14.0	13.1	15.3	11.2	33.1
	GCC	29.1	35.8	15.5	19.5	17.6
	GCG	7.2	9.3	5.1	13.8	4.1
	GCU	19.6	19.1	28.3	9.6	13.5
GLY	GGA	17.1	16.2	8.9	25.9	22.8
	GGC	25.4	28.1	8.9	28.0	12.4
	GGG	17.3	19.2	5.1	28.5	22.8
	GGU	11.2	11.8	34.9	9.6	18.6
VAL	GUA	5.9	5.1	10.0	4.4	15.5
	GUC	16.3	18.4	14.9	14.8	6.2
	GUG	30.9	32.9	9.5	12.9	23.8
	GUU	10.4	9.9	26.6	11.6	16.6
LYS	AAA	22.2	21.6	37.7	4.5	37.2
	AAG	34.9	37.1	35.2	17.4	13.5
ASN	AAC	22.6	22.4	25.8	14.2	10.3
	AAU	16.6	12.5	31.4	6.7	24.8
GLN	CAA	11.1	9.7	29.8	171.8	22.8
	CAG	33.6	34.4	10.4	79.4	17.6
HIS	CAC	14.2	14.0	8.2	8.2	6.2
	CAU	9.3	7.5	12.3	7.1	13.4
GLU	GAA	26.8	24.4	48.9	7.8	36.2
	GAG	41.4	45.4	16.9	19.7	21.7
ASP	GAC	29.0	31.5	22.3	13.0	18.6
	GAU	21.7	19.2	37.0	4.0	33.1

Amino acids	Codons	Human	Cow	Yeast	Wheat	BPVL1/ L2
TYR	UAC	18.8	20.3	16.5	24.5	17.6
	UAU	12.5	10.5	16.5	12.5	18.6
CYS	UGC	14.5	13.9	3.7	14.8	5.2
	UGU	9.9	9.4	7.6	4.9	5.2
PHE	UUC	22.6	25.5	20.0	14.1	7.2
	יטטט	15.8	17.0	23.2	15.0	23.8
ILE	AUA	5.8	5.2	12.8	5.4	22.7
	AUC	24.3	25.8	18.4	19.7	8.2
	AUU	14.9	13.1	31.1	10.7	20.7

TABLE 2

tRNA population changes as KC starts to differentiate.

tRNA	Arg ^{cGA}	Ala ^{GCA}	His ^{cac}	Leu ^{crr}	Leu ^{CTA}	Lys***	Lys***	Met ^{Ini}	Pro ^{cci}
Supra	+	+++	+	+++	+++	++	+	+	+
Basal	+++	+	++	+	+	+	+	++	+++
tRNA	Val ^{GTA}	Val ^{GTI}	His ^{cac}	Asn ^{AAG}	Thr ^{ACA}	Met ^{Elo}	Gly ^{GGA}		
Supra	++	+	++	+	+	+	+		
Basal	+	+	+	+++	+	++	+		
					<u> </u>				

WHAT IS CLAIMED IS:

5

20

25

- 1. A synthetic nucleic acid sequence capable of selectively expressing a protein in a target cell or tissue of a mammal, wherein said selective expression is effected by replacing at least one existing codon of a parent nucleic acid sequence with a synonymous codon to form said synthetic nucleic acid sequence.
- 2. The nucleic acid sequence of claim 1, wherein said synonymous codon corresponds to an isotRNA which, when compared to an isotRNA corresponding to the at least one existing codon, is in higher abundance in the target cell or tissue relative to one or more other cells or tissues of the mammal.
 - 3. The nucleic acid sequence of claim 1, wherein said synonymous codon corresponds to an isotRNA which, when compared to an isotRNA corresponding to the at least one existing codon, is in higher abundance in the target cell or tissue relative to a precursor cell or tissue.
 - 4. The nucleic acid sequence of claim 1, wherein said synonymous codon corresponds to an isotRNA which, when compared to an isotRNA corresponding to the at least one existing codon, is in higher abundance in the target cell or tissue relative to a cell or tissue derived therefrom.
- 5. The nucleic acid sequence of claim 1, wherein said synonymous codons for selective expression of said protein are selected from the group consisting of gca (Ala), cuu (Leu) and cua (Leu), and said target is a differentiated cell.

SUBSTITUTE SHEET (RULE 26)

10

20

30

(

- The nucleic acid sequence of claim wherein said differentiated cell is a differentiated keratinocyte.
- 7. The nucleic acid sequence of any one of claims 2 to 4, wherein said corresponding iso-tRNA in said target cell or tissue is at a level which is at least 110%, preferably at least 200%, more preferably at least 500%, and most preferably at least 1000%, of that expressed in the or each other cell or tissue of the mammal.
- The nucleic acid sequence of claim 8. wherein the synonymous codon may be selected from the group consisting of (1) a codon used at relatively high frequency by genes, preferably highly expressed 15 genes, of the target cell or tissue, (2) a codon used relatively high frequency by genes, preferably highly expressed genes, of the or each other cell or tissue, (3) a codon used at relatively high frequency by genes, preferably highly expressed genes, of the mammal, (4) a codon used at relatively low frequency by genes of the target cell or tissue, (5) a codon used at relatively low frequency by genes of the or each other cell or tissue, (6) a codon used at relatively low frequency by genes of the mammal, (7) a 25 codon used at relatively high frequency by genes of another organism, and (8) a codon used at relatively low frequency by genes of another organism.
 - 9. The nucleic acid sequence of claim 1, wherein the at least one existing codon and the synonymous codon are selected such that said protein is expressed from said synthetic nucleic acid sequence in said target cell or tissue at a level which is at

least 110%, preferably at least 200%, more preferably at least 500%, and most preferably at least 1000%, of that expressed from said parent nucleic acid sequence in said target cell or tissue.

- 5 10. A method for selectively expressing a protein in a target cell or tissue of a mammal, wherein said selective expression is effected by replacing at least one existing codon of a parent nucleic acid sequence with a synonymous codon to form said synthetic nucleic acid sequence.
 - 11. The method of claim 10, wherein said method is further characterized the steps of:
 - (a) replacing at least one existing codon of a parent nucleic acid sequence encoding said protein with a synonymous codon to produce a synthetic nucleic acid sequence having altered translational kinetics compared to said parent nucleic acid sequence such that said protein is selectively expressible in said target cell or tissue;

15

- (b) administering to the mammal and introducing into said target cell or tissue, or a precursor cell or precursor tissue thereof, said synthetic nucleic acid sequence operably linked to one or more regulatory nucleotide sequences; and
- 25 (c) selectively expressing said protein in said target cell or tissue.
 - 12. The method of claim 11 further including, prior to step (a):
- (i) measuring relative abundance of 30 different iso-tRNAs in said target cell or tissue, and in one or more other cells or tissues of the mammal; and

10

20

25

30

(

- (ii) identifying said at least one existing codon and said synonymous codon based on said measurement, wherein said synonymous codon corresponds to an iso-tRNA which, when compared to an iso-tRNA corresponding to the existing codon, is in higher abundance in said target cell or tissue relative to the or each other cell or tissue of the mammal.
- 13. The method of claim 12, wherein step (ii) is further characterized in that said synonymous codon corresponds to an iso-tRNA which, when compared to an iso-tRNA corresponding to the at least one existing codon, is in higher abundance in the target cell or tissue relative to a precursor cell or tissue.
- 14. The method of claim 12, wherein step (ii) is further characterized in that said synonymous codon corresponds to an iso-tRNA which, when compared to an iso-tRNA corresponding to the at least one existing codon, is in higher abundance in the target cell or tissue relative to a cell or tissue derived therefrom.
 - 15. The method of claim 11 further including, prior to step (a), identifying said at least one existing codon and said synonymous codon based on respective relative frequencies of particular codons used by genes selected from the group consisting of (I) genes of the target cell or tissue, (II) genes of the or each other cell or tissue, (III) genes of the mammal, and (IV) genes of another organism.
 - 16. A method for expressing a protein in a target cell or tissue from a first nucleic acid sequence including the steps of:

introducing into said target cell or tissue, or a precursor cell or precursor tissue

20

thereof, a second nucleic acid sequence encoding at least one isoaccepting transfer RNA wherein said second nucleic acid sequence is operably linked to one or more regulatory nucleotide sequences, and wherein said at least one isoaccepting transfer RNA is normally in relatively low abundance in said target cell or tissue and corresponds to a codon of said first nucleic acid sequence.

- a cycling eukaryotic cell, said virus particle in comprising at least one protein necessary for assembly of said virus particle, wherein said at least one protein is not expressed in said cell from a parent nucleic acid sequence at a level sufficient to permit virus assembly therein, said method including the steps of:
 - (a) replacing at least one existing codon of said parent nucleic acid sequence with a synonymous codon to produce a synthetic nucleic acid sequence having altered translational kinetics compared to said parent nucleic acid sequence such that said at least one protein is expressible from said synthetic nucleic acid sequence in said cell at a level sufficient to permit virus assembly therein;
- 25 (b) introducing into said cell or a precursor thereof said synthetic nucleic acid sequence operably linked to one or more regulatory nucleotide sequences; and
- (c) expressing said at least one protein
 in said cell in the presence of other viral proteins
 required for assembly of said virus particle to
 thereby produce said virus particle.

SUBSTITUTE SHEET (RULE 26)

- A method for producing a virus particle in 18. a cycling cell, said virus particle comprising at least one protein necessary for assembly of said virus particle, wherein said at least one protein is not expressed in said cell from a parent nucleic acid 5 sequence at a level sufficient to permit virus assembly therein, and wherein at least one existing codon of said parent nucleic acid sequence is rate limiting for the production said at least one protein to said level, said method including the step of 10 introducing into said cell a nucleic acid sequence capable of expressing therein an isoaccepting transfer RNA specific for said at least one codon.
- 19. A vector comprising a nucleic acid sequence
 15 according to any of claims 1 to 9 wherein said
 synthetic nucleic acid sequence is operably linked to
 one or more regulatory nucleic acid sequences.
 - 20. A pharmaceutical composition comprising a nucleic acid sequence according to any of claims 1 to 9 together with a pharmaceutically acceptable carrier.

- 21. A pharmaceutical composition comprising a vector according to claim 19 together with a pharmaceutically acceptable carrier.
- 22. A cell or tissue comprising therein a nucleic acid sequence according to any of claims 1 to 9.
 - 23. A cell or tissue comprising therein a vector according to claim 19.
- 24. A cell or tissue resulting from a method according to any one of claims 10 to 18.
 - 25. Virus particles produced from a method according to claims 17 or 18.

SUBSTITUTE SHEET (RULE 26)

										(SauI)						(Ball)					
Ü	CCT	Д		ATT	н		TAT	Ħ		AAT	z		GCA	Ą		IGG	X	ပ	ACT	H	
	ACC	EH		AGC	Ø	บ	CCA	Д	U	GCA	æ		TIT	দ		GTG	>	บ	GGT	Ö	
H	CCA	д		AAA	×	บ	CAT	Ħ	บ	$_{ m TCT}$	Ø		CAA	Ø		CTG	7	บ	GGA	ט	
ט	CCI	д		AGA	ĸ		GGA	ರ	ש	GIC	>		AAT	×		CGG	ĸ	ט	CTT	н	
ŋ	CIC	П		CAA	α	ט	ATA	н		CCT AAG	×		CCC	д		GAG	闰		CCT	Д	
ט	TAT	Ħ		GTG	>	ט	ACT	E+		CCT	Д		GAT	Д		AAA	×		CAG	Ø	
	CIG	н		TAT	×	Ö	CTA	н	Ŋ	GTT	>		CCT	ы	ט	AGT	Ø	ט	GGG	Ö	
	AAG	×		ACC	H		CTG	н		ACT	H	ט	CTA	н	ບ	CCA	Д		AGA	ద	
	CAG	α		GAA	闰		CGC	ĸ	ტ	AAA	×		CAA	Q		AAC	z		ICC	Ø	
	GGC	ט		AGT	Ø		GAG	闰		GCC	¥	ט	ATA	н		CAC	Ħ		GTG	>	
Ŋ	CAA	Ø		TGC	บ		ACG	E		GGG	Ō		AAA	×	ט	${ t GTT}$	>		CAG	α	
ט	CAA	Ø		CTT	ч		GAA	闰		ATC	н	Ü	TTT	Īτι	Ö	ACT	H		GTG	>	
	TGG	X		GTG	>		GCA	¥	Ü	TCT	Ø	ტ	GTA	>		AGG	ĸ	U	3GT	ט	
U	GCG TTG	H		AAG	×		CAT	Ħ		GTG	>		AGG	얺			Д	บ	ATA	н	
Ö	BOB			AGC	Ø			Ħ	U	CCA	д		TAT	×		CCT	գ	ט	GTC	>	
	ATG	Ħ	ט	GTA	>		TTT	ĨΉ		TAC	Ħ		CAG	Ø	ט	CTA	Ħ		CCA	Д	Ö
	Н			49			97			145			193			241			289		

Figure 12

			(StuI)						(XbaI)						
GTG	>		266	ტ		GCT	¥		CIA	H		GAA	闰	GAA	Ħ
GAA AAT	Z		ACA GGC	Ħ		CCT	д		CGT CIA	ĸ	ט	ATA	н	AAA	×
GAA	闰	ט	CAA	O)		ACC	H	ט	GAT	Ω		CAC	Ħ	TTC	Ē
GCA	4		AAA	Ħ		TGT	บ	ט	ACT	H		AAG	×	AAC	Z
GAT	Ω		AGG	ĸ		GGC	ტ	Ö	GTT	>		AAC	z	gaa	A
CTT	н		GAC	А	ט	CTA	ч		TGT	บ		AAA	×	GCA	4
${ m TTG}$	ч	Ŋ	GAT	À	ט	TIG	н		CGT CCA	Д	G G	TTA	ы	GGT	ប
GCT	Ø	ט	ACA	H		CTG	ı		CGT	R	ט	GAA	闰	TTT	뇬
AAT	z	บ	ACA	H	ט	ATT	,H		GCC	Æ	Ö	CLL	ц	GGG	ŋ
$_{ m LLL}$	Ľų	ט	CAA	Q		CAG	Οŧ		ACA	H		CCT	Д	ATT	н
ACT	H		ACC	H	ტ	CAA	Q		ACA	H		CCI	ρ.	GAA	闰
CCC	Д		ACC	H	ŭ	CAA	Q		$_{\mathrm{TGG}}$	X		TGC	บ	ATG	×
CAC	Ħ		GIC	>		AAG	×		TAT	þ		GCC	Ø	ATG	×
ggg	ტ		AAA	×	ט	GCT	A			더			Ö		Д
ACT	H	•	AGA	æ		CIA GAT GCT	Д		GAA GGG GAA	ש	บ	AAT GGC	z	GGG GAT	ტ
GTA ACT GGG (>		AAT AGA AAA G	z	ប	CIA	ы		GAA	凶		GAA	闰	GAT	Ω
337			385			433			481			529		577	

บ

᠐

3/19

				(NaeI)												(Spel)				
	ATC	н	บ	AAT	z		ATC	н		TAT	þ	ບ	CAT	Ħ	บ	TTT	Ē		ATT	н
	GAG	闰	บ	GGT	ש		CAC	Ħ		TTT	Ēų		GTG	>	บ	ATT	н		GGA	ש
	CAA AAT	z	บ	GCT GCT	K		AGA	ĸ		GAT	А	ט	AGT	Ø	ט	CAA	O1		AAT	z
		ø	U	GCT	A	ט	${\tt GTT}$	>		ACA	H		CCC	Д	ບ	AAT	Ħ		AAC	z
)	ATT	н		GAC	А	ט	TAT	Ħ		ACC	Ħ	ט	ATA	н	ບ	GAT	А		ATG	Ħ
	GAC	Д		GAG	闰		GTG	>		CCT	Д	ט	AAA	×	บ	ACT	H		ggc	ប
1	CTT	ы		GCT	4		CAG	œ		BCC	Ø	Ŋ	CLL	ч	บ	TCA	Ø		CAG	O
	CCT	д		ATG	Ħ	Ŋ	GAA	臼		GAA	闰		ACC	H	Ö	GTC	>		gcc	æ
	CTA	д		AAA	X .	Ö	AAA	×		AAA	×		gaa	4		CTA	н	ט	CGT	ĸ
	GAT	Д	Ö	CTC	ч		AGG	ĸ		GAG	闰	ט	GAT	Ω		TCA	Ø		TIC	Ŀ
	TCA	Ø		TAC	×	U	GCA	Æ	ט	TCG	Ø	ט	GGG	ರ		GGC	Ö	Ö	CTA	ы
	AAA	×		GAC	Ω	ט	TTT	ĬΉ		ggG	ტ	Ö	AAA	×	U	AGT	Ø		TGG	×
	AGT	Ø	U	CCA	ሲ	ט	TTT	Ħ	ט	GGG	Ö	ט	AAT	z		CCC	Д		TAC	Ħ
	GCA	Ø		TAC	Ħ		$_{ m TTC}$	ſτι		ACC AGA	ĸ	บ	AAT	z	บ	AGT	Ø		CCC	Д
	ATT AAT GCA	Z	บ	-	н		ATG	Ħ		ACC	H		AAG	×	Ü		ט		\sim	않
	ATT	н		TGC	บ		AGC	Ø		TGG	X	ტ	TTA	ч	Ö	LLL	Ē	บ	AAT	z
	625			673			721			169			817			865			913	

Ö

ט

υ

ن ,

_ອ.ວ ວ

G G G

บ

U

4/19

	(BsaAI)									(NheI)						(ClaI)				
)	GGT	ტ		GAG	闰		TAT	þ	ט	CAA	O1		TGG	M	บ	TAT	þ		CCT	ы
	ACA CGT GGT	ĸ	บ	ACA	H	ט	GAA	岡	ט	GCT	æ		AAT	z		ACC	H		ATT	н
		E	ט	CTA	н	ტ	GAA	岡	Ŋ	ACA	H	ტ	GAA	闰		GAC	А	ט	GTA	>
)	AAT	z		CCA	Д		ATG	×		ATC	н	ט	CTT	ı		GAG	闰	บ	AAT	z
	GAC	Д		ACC	Ħ	บ	CAT	Ħ	Ŋ	GAA	闰		GTG	>	ט	TTA	H		AGC	Ø
1	999	Ō		GGA	ប		AGA	ĸ		GTG	>	บ	TCT	Ø	บ	ATA	H	ט	GCA	Ą
	\mathtt{GTG}	>		TCA GAT	Д	ט	CAT	Ħ	บ	TCT	Ø		CCC	Д		TCG	Ø		TGT	ט
ı	ACA	H	ט	_	Ø		TAC	×		TGC	ซ		ATG	Ħ		TCA	Ø	ט	AAA	×
	TTA	ы		gaa	4	ტ	GTA	>	ט	CTA	н	Ö	CTT	ы		ACC	H	U	ACT	H
	TTT	፲4	ט	GTA	>	บ	AAT	z		GAG	闰		GGA	ש	บ	CCT	Д	Ŋ	GCA	Ø
	TTG	H	บ	AGT	Ø		TIC	ſzι	ე ე	TTA	н		CAA	Q	Ö	CCT	Д	บ	CCL	д
	TTA	н	ט	ATA	н		AAA	×	บ	ATA	н		CIG	ដ		CAG	O1	บ	ICI	Ø
	AAT	z		CIT ACC	H	ტ	AGC TCA	Ø	บ	TTT	阵		CAT	Ħ		GTG	>		GAG	闰
	TGG AAT AAT	z	ט	CTT	ы			Ø		3 <u>35</u>	Æ	υ	TCA CAT	Ø	ט	GGT	Ö	บ	ATA GAG	н
	\mathbf{TGG}	X	บ	AAT	z		GAT	Д		AAG CIA GCC TIT	н		GTG	>	Ŋ	GAA ATA	н	U	TAT	×
	GCA	Ą	ບ	ACT	H		TAT	þ		AAG	×	บ	ACT GTG	Н	ტ	GAA	闰		CGC	ద
	961			1009			1057			1105			1153			1201			1249	

				(StyI)							
Ö	CLL	ы		AGA	æ	ტ	AGA	æ		TAA	ı
ט	GAT	Д		AGA AGA	ద	บ	CGA	æ	ტ	AAA	×
บ	ATA	н	Ö	GGA	Ö		AAA	×		AAA	ĸ
	AAC	z		TTG	ы		AGA	ĸ	ტ	AAA	×
	${ m TGG}$	X		ညည	Д		GTG	>	ט	AAA	×
ບ .	$_{ m LLL}$	臼	บ	TTT	Ēų	บ	ACT	Н	ტ	AAA	×
	AAG	×	ტ	CAA	œ	ບ	TCA	Ø	บ	GCA	æ
	$_{ m LLL}$	ſΉ		GAT	Ω		\mathtt{TGT}	บ	บ	CCT	ф
	GGG	ש	S G	TTA	ц	ט	GGA	ტ		AAG	×
	GCA	Ą		GAC	Ω	ט	GCA	4	ט	AGT	Ø
	TAT	×	บ	${ m TTG}$	ᆈ		GGG	Ö		TCC	Ø
	CCT	Д		TCT	L S	Ö	CAA	œ	บ	ACT	Н
	GAC	А	ტ	CTT	ы		CAG	ø	ტ	AAA	×
	GAA	闰		AAG	×	ບ	GCA	Ø	ט	CAA	œ
	AAA	A K	ט	AAA GAA AAG	闰	ე ე	TTT TTA GCA	н		ATT AGC CAA	Ø
	GCA AAA GAA	Ą	Ö	AAA	×		TTT	Ēų	ט	ATT	н
	1297			1345			1393			1441	

(

Figure 1E

										(AccI)						(BamHI)	
	TAC	Ħ		AAG	×	ტ	CTT	н		AGG	ĸ	บ	GGG	ש	. *	GGG	Ö
	CTG	ы		CGA	ĸ	บ	GGT	ט	ט	GGA	ტ	Ŋ	GCA	Ø	υ	GCA	Ø
	GAC	Ω	ט	ATA	н	ט	GGG	ט	Ŋ	ACT	H	บ	ACA	H	ບ	ACA	H
Ö	TAT	×		GTG	>	ט	TTT	<u>[</u> 24		TCT	Ø	ט	CGA	ĸ	ט	GTA	>
	CCC	Ø		GAT	Д	ש	AAA	×		TGG	×	ರ	CIC	ц	บ	GCT	¥
ט	\mathtt{AGT}	Ø		CCA	д	บ	TTG	ц		ACA	Ħ	•	CCA	Д		AGA	æ
	BCC	Ø		CCA	Д	บ	ATT	н		GGA	ტ	บ	ACA	H		TCC	Ø
ט	CGT	×		$_{ m TGT}$	Ď	ტ	AAA	×	ט	ATA	н		TAC	Ħ		GGA TCC	ซ
ט	AAA	X		ACA	H	บ	\mathtt{GAT}	Д	ט	GGA	ტ		AGG	ĸ	ט	ATA	н
ט	GTA	>		ggC	ტ	Ŋ	GCA	Ø	Ö	CTA	н		CCA	щ	บ	TCA	Ø
	AAA AGA	ĸ	ט	GCG	Ą	บ	ATA	н	Ö	GGG	ប		TCA	Ø	ט	GCA	Ø
ט	AAA	Ħ	Ŋ	CAA	α	บ	ACT	H	ט	GGA	Ö	บ	GGA	ט	ט	CTT	н
ט	CGA	ĸ			×		GAT	Д	ე ე	TTA	ы	ບ	GGT	ט	ט	TCG	Ø
ט	GCA C	Ą		$_{ m LGC}$	U					TAC				Æ	ט	TCA	ß
Ð	ŊĠŢ	Ø	ט	ACC	H	ט	GAA	臼		ATC	н	υ	CCC	æ	บ	ACA	H
	ATG A	Ħ		AGG	ĸ	Ŋ	GTA	>	บ	GCA	Ø	ტ	GTG	>		ICC	Ø
	н			64			97			145			193			241	

							(PstI)						(Saul)							
	ACT	H	Ą	GAG	闰	ტ	CLL	н	ט	ACT	E	ტ	CAA	œ		ICC	Ø		ACA	H
	GAA	闰	ט	CCA	գ	ŭ	GGG	ש	ט	ATT	н	ט	CTG	н		CAG	Ø	ტ	GAA	臼
ט	CTT	н	ტ	CTA	н	บ	TCA	Ø	ტ	CIC	н	A	GAG	闰	บ	CAT	Ħ	บ	GCA	¥
	ACC	H		GTG	>	ט	GAT	А		ACC	H	ტ	CTT	н	ರ	GTT	>	U	ATT	·Н
	GAC	·A	บ	ACT	Н		GCA	Ø		GAG	闰	ש	GTT	>		GCT	Ø		TCC	Ø
ე ე	TTA	д		GAC	А		CCT	Д	บ	ACG	Ħ	Ö	gcg	Æ		AAT	z	ט	\mathbf{TCG}	Ø
	CCI			GAG	闰	ט	\mathtt{GTT}	>		TCC	Ø		ATA	н		GTA AGC	Ø		CAA	Ø
บ	ATT	н	ט	TAT	þ	บ	GCT	Æ	บ	\mathbf{T}^{C}	Ø		GAC	А	ტ	GTA	>		CTG	Н
	GGC	U		\mathtt{GTG}	>	ט	GAT	Д		GAC	Ω	Ą	GAG	闰	ប	CAA	œ		CAG	Ø
	GCG	A	บ	GGG	U		CCI	Д		ACA	H		CCC	Д		TGG	*	U	CTG	H
บ	GGT	Ō	Η	CCA	Д	บ	ACT	Н	บ	GGT	ರ	บ	GGT	ტ	ט	ACT	H		CCT	Д
บ	ATA	н	ບ	CGT	ø	ტ	GTC	>	บ	ATA	н		GAG	떰		CCA	Д		GCC	A
ICC	AGT	Ø	ט	TTG	н	ט	ATA	н		TCC	Ø		CCT	Д	บ	CGT	ĸ		CAC GCC	Ħ
	CCC	գ		gaa	4	ט	GCA	Ø		CTG	ы		GAG	闰		GAC	Д			Þ
	CGC	ĸ		GGG	ტ		CCT	Д		GCC	Ą	Ö	CTA	н		CTG	H	ט	GCA TAC	Ø
	ACC	H		CTT	ы		ggg	4	U	GAT	А		CTG	н		CCC	д		TCT	Ø
	289			337			385			433			481			529			577	

	(Aval)									(BanI)									(BsaAI)	
บ	ACA	H		AGC	Ø		TTC	ኴ	บ	TTT	ĬΖŧ		GTG	>		CCI	Д		CAT	Ħ
	GAT	А	บ	ACA	H		TGG	×		GTG	>	บ	GCT	A	Ŋ	AAA	×	ט	CTA	ц
	GGG	O	ט	CGA	R		AAC	z		GAA	闰	บ	CCA	Д	ט	TAT	Ħ		CAG	O1
	TTA	ы	ບ	CCA	Д	უ ე	TTA	н	ט	CCT	Д	O	GAA	凶	Ö	GLL	>	บ	CCA	Д
	GGT	ტ		TCC	Ø	บ	ATT	н		GAT	Д	บ	GCA	A		CAG	Ø	ט	GGA	ט
	GGC TCG GGT	മ.	ď	GGG	ტ		GGC	Ö		GAA	凶	ტ	GAA	闰	ICC	AGT	Ø		GTG	>
		ָט		TTC	ĬΨ	ט	CGT	æ	บ	ACG	H	ບ	TAT	Þ	ტ	CIC	н		GAG	凶
	GGA	ש		TAC	×	ย	TCA	Ø		CCC	Д		CTG	ы	ט	GGA	ტ		ACA	Ħ
	GTA	>	บ	ACA	H	ש	AAA	×		CAG GTG	>	Ü	CCA	д	Ŋ	\mathtt{GTT}	>	บ	GGG	២
	$_{ m LLL}$	阵		CTG	н	ט	TCT	Ø			œ		AAC	z	บ	CGT	ĸ			Ø
	ATT	н	ტ	GAA	闰		GCC	æ	บ	ACA	H	ບ	GCA	4	บ	GGA	ט		CGT AGC	ద
	AAT	z	U	ATT	н	บ	ATT	н		TAC	Ħ	ບ	$_{ m TTT}$	Įzų	บ	AGT	Ø		ACA	H
	GAA	闰		AAC	Z	TCC	AGT	Ø		TAC	Ħ	ט	ACA	H		CCT	Д	υ	ACA	H
	TTA	н	ט	GAA	闰		CGC	ĸ		CGG	ĸ	ტ	CAA	œ	บ	GGA	ტ	ტ	CII	ᆸ
	GGT	ָט	บ	GGA	ש		CCC	Д	ტ	AAA	×			Ø		AAG	×	บ	ACA	H
	ICI	Ø	ט	GGA (ש	บ	ACG	H	บ	AGT	Ø	U	TCA	Ø	ט	CLI	н		GAT	Ω
	625			673			721			494			817			865			913	

Figure 1B cont'd

9/19

							(Sacl)									(NheI)				
	CCC	рı		CAT	Ħ		GAG	闰	ບ	AGT	Ø		CGG	ĸ		AGC	Ø		GAC	А
	ATC	н	บ	$_{ m TTG}$	ы	Ü	AGT	Ø	ט	GGT	ט	υ	ACA	H		GCT	K	บ	GAT	Д
H	GCA	Ø		CCC	Д	Ŋ	TTT	ĨΉ	ტ	GTT	>	ט	GCA	Þ	บ	TCT	Ø		ATC (н
ט	GAA	闰	ט	GTA	>		GAT	Д	υ	CCT	ሲ	υ	AGT	Ø		TAC	×	Ŋ	GTT 7	>
ט	GTA	>		TTC	ľΉ	υ	GAT	А	บ	ACA	H	ບ	TTT	ΪΞŧ	บ	ACT	Ħ	ტ	CTA:	н
	GAT	Д	ŭ	GCA	æ	บ บ	TTA	긔	ບ	ICI	Ø	ტ	GAA	闰		GAC	Ω	บ	AGT	Ø
ט	GAA	闰	ט	CTT	H	ט	GAA	闰	ט	TCT	Ø		CGA	Q	ט	CCT	Д		CCT	Д
	CAT	Ħ	บ	GGA	ט	บ	ATA	н		ACC	H	บ	ACT	H	ט	TCA	Ø		TCL	Ø
υ	ATA	н		CAG	O)		GAG	闰		AAC	z	H	CCA	Д		ggc	Ö		ACC	Н
บ	ACT	H	ט	ACA	H		GAG	凶		CAG	O)	ט	ATT	н	บ	TAT	×		TCT ,	Ø
TCC	AGT	Ø	บ	AAT	z	บ	TTT	[24	Ö	CCT	Д	Ŋ	CIC	ц		ACC	H		GAT	А
ບ	$_{ m TTG}$	ч	O	GAA	闰	Ü	GGT	Ö	ტ	CTA	ц		AGC	Ø	Ŋ	GTA	>		CCT	Д
ט	TCA	Ø		GAT	Q	ບ	GCA	4		CTG	ч		AGA	R	ტ	GTT	>		GAC	Ä
		Ħ	Ö	\mathtt{GTT}	>	ט	CAA	Ο	บ บ	AGA CTG	ĸ		CGA	ĸ	บ	GGT	ש	บ	ACT	E
	AGG TAC	ĸ	Ö	ACA	Н		GAG	臼		CAT	Ħ	Ŋ	GTA	>	บ	ACA GGT	H	ט		
ტ	GTC	>		TAC	Ħ	ט	GAA	ធ	บ	ACA	H	Ö	GGT	ט		CCT	Д	บ	CCA GII	д
	196			1009			1057			1105			1153			1201			1249	

υ

᠐

ບ

ט

U

ט

υ

U

U

υ

ט

U

10/19

$_{ m TTG}$	н	r D	AAA	×			
GAT	Ω	J	CGA	ĸ			
\mathtt{GTT}	T V D	U	AAA	×			
ACA	H		AGG	ĸ			
CAC		ن ت	\mathtt{TTG}	ч			
GGG	T P I I I D G H	r C	TTG	YSSNYTLHPSLLLRKRK			
GAT	а		$_{ m TCC}$	Ø			
ATT	н		CCC	Д			
ATA	н		CAT	Ħ			
ATT	н	บ	TIG	ы			
ATC	н		ACC	Н		TAA	t
CCA	д		TAC	Ħ		gcc	K
ACA	H		AAC	Z		CAT	Ħ
ACT	т т т	ט	AGT	Ø	ტ	AAA CGG AAA CAT GCC TAA	K R K H
ACT	H		AGC	Ø	ט	CGG	œ
ACT	H		TAC AGC AGT AAC TAC ACC TTG CAT CCC TCC TTG TTG AGG AAA CGA AAA	Ħ	ש	AAA	×
1297 ACT ACT ACA CCA ATC ATT ATA ATT GAT GGG CAC ACA GTT GAT TTG			1345			1393	

Figure 1B cont'd

PCT/AU98/00530

Ø

ט

Ö

Ø

H

Ø

Ø

Ö

 \vdash

11/19

										(Ncol)						(AvaI)				
	GTG	>	Ø	GAG	闰		TGC	ບ	H	TTC	Ēι	Ą	CAG	O.		AGA	ĸ	ზ	GIC	>
	CIC	ы	ט	GGA	ש	A	ATC	н	Ą	ACC	E	Ą	AAG	×	Ą	GAG	闰		GAA	闰
	ATT	Н	[+	AGC	Ø	Ħ	TTC	Ēι	A	ACT	H		ATG	Ħ	Ą	CAG	α	Ø	GCT	4
	CCA	ርፈ		GTC	>		AAA	×	ט	GIC	>		CAT	Ħ		GTG	>	A A	CGC	æ
	GIC	>		TCT	Ø	A	CTG	ч	Ą	CTG	н	Ħ	GAC	Д		TAT	þ	Ą	ACC	H
	GIG	>		$\mathtt{T}\mathtt{T}\mathtt{T}$	Ŀ	A	ACC	EH		ACA	H	H	CCA	Д	ט	ggc	U	Ą	AAG	×
i	ည္ပ	ט		AAA	×	A	CIC	H	H	CCA	C 4	H	TAC	þ		GAG	田	Η	TAC	Ħ
 	ACT	H		CAC	Ħ	A	AAG	×		TGG	X		AGA	×		CCC	д	Η	AAC	z
	TTC	Œ		GGG	ט	Ŋ	GGA	២		CCA	գ	AGT	TCC	Ø		ATG	Ħ		GGG	ט
i	CIG	ឯ		AAT	z	H	TAC	Ħ		GTG	>		$_{ m TTT}$	Ē	Ø	GCC	Ą	H	GAC	Д
	GAA	闰		\mathtt{GTG}	>		ACA	H		CCT	Д		TGC	บ	Η	AGC	Ø		GAT	А
	GAG	臼		GAT	Д	A	GCC	K	A	CIC	ч	A	CAG	Q	Ø	AAG	×		AAA	×
	ე ე	O	ט	GGG	ರ		GAT	Д	A	AAG	×		GTG	>	Ħ	TTC	ርተ	H	TTC	Ēų
, F	AAG	×		GAT	А	Ö	\mathtt{GGT}	ט	ש	GGA	ტ	ט	GGC	ש		TTT	Ē		TTT	Ŀ
7	AGC 1	Ø	Ø	CTG	T		GAA	闰	¥	ACT	H		TAT	Ħ	H	GAC	Д	Ø	ATC	
£	ATG	Ħ		GAA	臼	ט		ט	A	ACC	H	AG	TCT	Ø		CAT	Ħ	Ø		H
r	⊣			49			97			145			193			241			289	

Figure 1

	(SacI)									BamHI)									(XhoI)	
Ą	ATT	н	H	AAC	z	ט	CGC	ט		GTG	>		CCT	Д	AG	TCT	Ø		GTG	Þ
ტ	ggC	Ö	[H	TAC	Ħ	•	AAT	×		TCC	Ø	ט	gga	ש	A	CIG	ŭ		TLL	ኴ
Ą	AAG	×		GAA	闰	A	AAG	×		GGA	ტ	H	GAC	Ω	Ø	gaa	K	-	GAG	闰
Ö	CTG	ы	Ø	CTG	ч		CAA	O1		GAT	А	Ö	GGC	ტ	AGT	TCT	Ø	ט	CTG	ц
•	GAG	闰	A	AAG	×	A	AAG	ĸ	Ą	GAG	闰	Ø	ATC	н	Ø	CAG	ø	Ą	CIG	H
Ą	ATC	н	H	CAC	Ħ	H	GAC	А	Ą	ATT	н	H	CCA	д	A	ACC	H	ט	GIC	>
	AGA	ĸ	ტ	ggc	ರ	A	gcc	4	CAT	AAC	z	Ø	ACT	E	AGT	TCC	Ø		ATG	×
	AAT	z	A	CTC	н		ATG	×	AGA	CAC	Ħ	H	AAC	z	A	CTG	ы	H	CAC	Ħ
	GTG	>	A	ATT	н	Ą	ATC	н	H	AGA	ĸ	A	CAG	Ø	H	TAC	þ	H	GAC	А
A	CTG	ы	H	AAC	z	H	TAC	Þ	A	ATC	н		CAA	Q		CAT	Ħ		AGA	æ
A	ACC	H	ტ	GGA	ש		GTG	>	Ą	AAG	×		TAT	þ		AAC	z	Ą	AAG	×
H	GAC	Ω		GAT	А		AAT	z	Ή	TIC	দ		CAT	Ħ	Η	GAC	Д		GAA	闰
ъ	GGT	ტ	A	GAG	闰	H	CAC	Ħ	H	AAC	z	H	GAC	А	H	CCA	ρı	H	AAC	z
	GAA	闰	A	AAG	×	AGT	TCC	Ø	ט		>	Ø	CCC	Ø	Ø	CIC	н	E	F 1	Д
E	$_{ m TTC}$	ĨϤ		$_{ m TTT}$	ſΞŧ	H	AAC	z	Ą	AAG	×	Ø	CIG	ч	Ø	CIC	ы		GAT	Д
A	AAG	×	H	GAC	А		TAT	Ħ	A	ATC	н	Æ	CAG	Q		GTG	>		AAA	×
	337			385			433			481			529			577			625	

GCT GCT GGG ATC ACA CAT GGC ATG GAC GAG

1C cont'd

Wt BPV1L1 HB BPV1 L1

FIG. 2A

FIG. 2B

FIG. 2C

Wt BPV1L2 HB BPV1 L2

FIG. 3A

FIG. 3B

FIG. 3C

FIG. 4

FIG. 5A

Mock pCICR3 pCICR2 pCICR1

FIG. 5B

FIG. 6A

FIG. 6B

FIG. 7

SEQUENCE LISTING

<110> The University of Queensland
<120> NUCLEIC ACID SEQUENCE AND METHOD FOR SELECTIVELY EXPRESSING A PROTEIN IN A TARGET CELL OR TISSUE
<130> Selective Expression
<140> PCT/AU98/00530 <141> 1998-07-09
<150> PO7765 <151> 1997-07-09
<150> PO9467 <151> 1997-09-11
<160> 34
<170> PatentIn Ver. 2.0
<210> 1 <211> 1488 <212> DNA <213> Bovine papillomavirus type 1
<220> <221> CDS <222> (1)(1488)
<220> <223> L1 open reading frame (wild-type)
<400> 1
atg gcg ttg tgg caa caa ggc cag aag ctg tat ctc cct cca acc cct 48 Met Ala Leu Trp Gln Gln Gly Gln Lys Leu Tyr Leu Pro Pro Thr Pro 1 5 10 15
gta agc aag gtg ctt tgc agt gaa acc tat gtg caa aga aaa agc att 96 Val Ser Lys Val Leu Cys Ser Glu Thr Tyr Val Gln Arg Lys Ser Ile 20 25 30
ttt tat cat gca gaa acg gag cgc ctg cta act ata gga cat cca tat Phe Tyr His Ala Glu Thr Glu Arg Leu Leu Thr Ile Gly His Pro Tyr 35 40 45
tac cca gtg tct atc ggg gcc aaa act gtt cct aag gtc tct gca aat 192 Tyr Pro Val Ser Ile Gly Ala Lys Thr Val Pro Lys Val Ser Ala Asn 50 55 60
cag tat agg gta ttt aaa ata caa cta cct gat ccc aat caa ttt gca 240 Gln Tyr Arg Val Phe Lys Ile Gln Leu Pro Asp Pro Asn Gln Phe Ala 65 70 75 80

cta Leu	cct Pro	gac Asp	agg Arg	act Thr 85	gtt Val	cac His	aac Asn	cca Pro	agt Ser 90	aaa Lys	gag Glu	cgg Arg	ctg Leu	gtg Val 95	tgg Trp	288
cca Pro	gtc Val	ata Ile	ggt Gly 100	gtg Val	cag Gln	gtg Val	tcc Ser	aga Arg 105	Gly 999	cag Gln	cct Pro	ctt Leu	gga Gly 110	ggt Gly	act Thr	336
gta Val	act Thr	999 Gly 115	cac His	ccc Pro	act Thr	ttt Phe	aat Asn 120	gct Ala	ttg Leu	ctt Leu	gat Asp	gca Ala 125	gaa Glu	aat Asn	gtg Val	384
aat Asn	aga Arg 130	aaa Lys	gtc Val	acc Thr	acc Thr	caa Gln 135	aca Thr	aca Thr	gat Asp	gac Asp	agg Arg 140	aaa Lys	caa Gln	aca Thr	ggc	432
cta Leu 145	gat Asp	gct Ala	aag Lys	caa Gln	caa Gln 150	cag Gln	att Ile	ctg Leu	ttg Leu	cta Leu 155	gly	tgt Cys	acc Thr	cct Pro	gct Ala 160	480
gaa Glu	gjå aaa	gaa Glu	tat Tyr	tgg Trp 165	aca Thr	aca Thr	gcc Ala	cgt Arg	cca Pro 170	tgt Cys	gtt Val	act Thr	gat Asp	cgt Arg 175	cta Leu	528
gaa Glu	aat Asn	ggc	gcc Ala 180	tgc Cys	cct Pro	cct Pro	ctt Leu	gaa Glu 185	tta Leu	aaa Lys	aac Asn	aag Lys	cac His 190	ata Ile	gaa Glu	576
					gaa Glu											624
att Ile	aat Asn 210	gca Ala	agt Ser	aaa Lys	tca Ser	gat Asp 215	cta Leu	cct Pro	ctt Leu	gac Asp	att Ile 220	caa Gln	aat Asn	gag Glu	atc Ile	672
					tac Tyr 230											720
agc Ser	atg Met	ttc Phe	ttt Phe	ttt Phe 245	gca Ala	agg Arg	aaa Lys	gaa Glu	cag Gln 250	gtg Val	tat Tyr	gtt Val	aga Arg	cac His 255	atc Ile	768
					tcg Ser											816
tta Leu	aag Lys	aat Asn 275	aat Asn	aaa Lys	ggg ggg	gat Asp	gcc Ala 280	acc Thr	ctt Leu	aaa Lys	ata Ile	ccc Pro 285	agt Ser	gtg Val	cat His	864
ttt Phe	ggt Gly 290	agt Ser	ccc Pro	agt Ser	ggc Gly	tca Ser 295	cta Leu	gtc Val	tca Ser	act Thr	gat Asp 300	aat Asn	caa Gln	att Ile	ttt Phe	912

aat cgg ccc Asn Arg Pro 305	Tyr Trp				y Met				960
gca tgg aat Ala Trp Asn									1008
act aat ctt Thr Asn Leu									1056
tat gat agc Tyr Asp Ser 355			_	_	g His		_		1104
aag cta gcc Lys Leu Ala 370									1152
act gtg tca Thr Val Ser 385	His Leu (r Val				1200
gaa ata ggt Glu Ile Gly									1248
cgc tat ata Arg Tyr Ile		_			_	-			1296
gca aaa gaa Ala Lys Glu 435	_			_	e Trp		-		1344
aaa gaa aag Lys Glu Lys 450									1392
ttt tta gca Phe Leu Ala 465	Gln Gln (r Val				1440
att agc caa Ile Ser Gln								taa	1488
<210> 2 <211> 495 <212> PRT <213> Bovine	papillo	mavirus	type 1						
<400> 2 Met Ala Leu 1	Trp Gln (Gln Gly	Gln Lys	Leu Ty	r Leu	Pro Pro	Thr 15	Pro	

Val Ser Lys Val Leu Cys Ser Glu Thr Tyr Val Gln Arg Lys Ser Ile 20 25 30

Phe Tyr His Ala Glu Thr Glu Arg Leu Leu Thr Ile Gly His Pro Tyr 35 40 45

Tyr Pro Val Ser Ile Gly Ala Lys Thr Val Pro Lys Val Ser Ala Asn 50 55 60

Gln Tyr Arg Val Phe Lys Ile Gln Leu Pro Asp Pro Asn Gln Phe Ala 65 70 75 80

Leu Pro Asp Arg Thr Val His Asn Pro Ser Lys Glu Arg Leu Val Trp
85 90 95

Pro Val Ile Gly Val Gln Val Ser Arg Gly Gln Pro Leu Gly Gly Thr
100 105 110

Val Thr Gly His Pro Thr Phe Asn Ala Leu Leu Asp Ala Glu Asn Val 115 120 125

Asn Arg Lys Val Thr Thr Gln Thr Thr Asp Asp Arg Lys Gln Thr Gly 130 135 140

Leu Asp Ala Lys Gln Gln Gln Ile Leu Leu Gly Cys Thr Pro Ala 145 150 155 160

Glu Gly Glu Tyr Trp Thr Thr Ala Arg Pro Cys Val Thr Asp Arg Leu 165 170 175

Glu Asn Gly Ala Cys Pro Pro Leu Glu Leu Lys Asn Lys His Ile Glu 180 185 190

Asp Gly Asp Met Met Glu Ile Gly Phe Gly Ala Ala Asn Phe Lys Glu 195 200 205

Ile Asn Ala Ser Lys Ser Asp Leu Pro Leu Asp Ile Gln Asn Glu Ile 210 215 220

Cys Leu Tyr Pro Asp Tyr Leu Lys Met Ala Glu Asp Ala Ala Gly Asn 225 230 235 240

Ser Met Phe Phe Phe Ala Arg Lys Glu Gln Val Tyr Val Arg His Ile 245 250 255

Trp Thr Arg Gly Gly Ser Glu Lys Glu Ala Pro Thr Thr Asp Phe Tyr 260 265 270

Leu Lys Asn Asn Lys Gly Asp Ala Thr Leu Lys Ile Pro Ser Val His 275 280 285

Phe Gly Ser Pro Ser Gly Ser Leu Val Ser Thr Asp Asn Gln Ile Phe 290 295 300

Asn Arg Pro Tyr Trp Leu Phe Arg Ala Gln Gly Met Asn Asn Gly Ile 305 310 315 320

```
Ala Trp Asn Asn Leu Leu Phe Leu Thr Val Gly Asp Asn Thr Arg Gly
Thr Asn Leu Thr Ile Ser Val Ala Ser Asp Gly Thr Pro Leu Thr Glu
            340
                                345
Tyr Asp Ser Ser Lys Phe Asn Val Tyr His Arg His Met Glu Glu Tyr
Lys Leu Ala Phe Ile Leu Glu Leu Cys Ser Val Glu Ile Thr Ala Gln
Thr Val Ser His Leu Gln Gly Leu Met Pro Ser Val Leu Glu Asn Trp
                                        395
Glu Ile Gly Val Gln Pro Pro Thr Ser Ser Ile Leu Glu Asp Thr Tyr
Arg Tyr Ile Glu Ser Pro Ala Thr Lys Cys Ala Ser Asn Val Ile Pro
            420
                                425
Ala Lys Glu Asp Pro Tyr Ala Gly Phe Lys Phe Trp Asn Ile Asp Leu
Lys Glu Lys Leu Ser Leu Asp Leu Asp Gln Phe Pro Leu Gly Arg Arg
                        455
Phe Leu Ala Gln Gln Gly Ala Gly Cys Ser Thr Val Arg Lys Arg Arg
                 470
Ile Ser Gln Lys Thr Ser Ser Lys Pro Ala Lys Lys Lys Lys
                485
                                    490
<210> 3
<211> 1488
<212> DNA
<213> Artificial Sequence
<220>
<221> CDS
<222> (1)..(1488)
<220>
<223> Description of Artificial Sequence: Bovine
      papillomavirus type 1 L1 open reading frame
      (humanized)
<220>
<223> Wild-type codons replaced with synonymous codons
      used at relatively high frequency by human genes
<400> 3
atg gee etg tgg cag cag gge cag aag etg tae etg eee eet ace eee
Met Ala Leu Trp Gln Gln Gly Gln Lys Leu Tyr Leu Pro Pro Thr Pro
```

gtg Val	agc Ser	aag Lys	gtg Val 20	ctt Leu	tgc Cys	agt Ser	gaa Glu	acc Thr 25	tat Tyr	gtg Val	caa Gln	aga Arg	aaa Lys 30	agc Ser	att Ile	96
ttt Phe	tat Tyr	cat His 35	gca Ala	gaa Glu	acg Thr	gag Glu	cgc Arg 40	ctg Leu	ctg Leu	acc Thr	atc Ile	gga Gly 45	cac His	ccc Pro	tat Tyr	144
tac Tyr	ccc Pro 50	gtg Val	tcc Ser	atc Ile	999 Gly	gcc Ala 55	aag Lys	act Thr	gtg Val	cct Pro	aag Lys 60	gtg Val	tcc Ser	gcc Ala	aat Asn	192
cag Gln 65	tat Tyr	agg Arg	gtg Val	ttc Phe	aaa Lys 70	atc Ile	caa Gln	ctg Leu	cct Pro	gat Asp 75	ccc Pro	aat Asn	caa Gln	ttt Phe	gca Ala 80	240
ctg Leu	cct Pro	gac Asp	agg Arg	acc Thr 85	gtg Val	cac His	aac Asn	ccc Pro	agc Ser 90	aaa Lys	gag Glu	cgg Arg	ctg Leu	gtg Val 95	tgg Trp	288
Pro	Val	Ile	ggc Gly 100	Val	Gln	Val	Ser	Arg 105	Gly	Gln	Pro	Leu	Gly 110	Gly	Thr	336
Val	Thr	Gly 115	cac His	Pro	Thr	Phe	Asn 120	Ala	Leu	Leu	Asp	Ala 125	Glu	Asn	Val	384
Asn	Arg 130	Lys	gtc Val	Thr	Thr	Gln 135	Thr	Thr	Asp	Asp	Arg 140	Lys	Gln	Thr	Gly	432
Leu 145	Asp	Ala	aag Lys	Gln	Gln 150	Gln	Ile	Leu	Leu	Leu 155	Gly	Cys	Thr	Pro	Ala 160	480
Glu	Gly	Glu	tat Tyr	Trp 165	Thr	Thr	Ala	Arg	Pro 170	Cys	Val	Thr	Asp	Arg 175	Leu	528
Glu	Asn	Gly	gcc Ala 180	Cys	Pro	Pro	Leu	Glu 185	Leu	Lys	Asn	Lys	His 190	Ile	Glu	576
Asp	Gly	Asp 195	atg Met	Met	Glu	Ile	Gly 200	Phe	Gly	Ala	Ala	Asn 205	Phe	Lys	Glu	624
Ile	Asn 210	Ala	agt Ser	Lys	Ser	Asp 215	Leu	Pro	Leu	Asp	Ile 220	Gln	Asn	Glu	Ile	672
tgc Cys 225	ctg Leu	tac Tyr	ccc Pro	gac Asp	tac Tyr 230	ctg Leu	aaa Lys	atg Met	gct Ala	gag Glu 235	gac Asp	gcc Ala	gcc Ala	ggc Gly	aac Asn 240	720

		ttc Phe 245							768
		ggc Gly							816
		aag Lys							864
		agc Ser							912
		tgg Trp							960
		ctg Leu 325							1008
	_	atc Ile	_	 -	_		_		1056
		aaa Lys							1104
		atc Ile							1152
		ctg Leu							1200
		cag Gln 405							1248
		tcc Ser							1296
		cct Pro							1344

ttt ctg gcc cag cag ggg gcc ggc tgt tcc acc gtg aga aaa cgc agg 1440
Phe Leu Ala Gln Gln Gly Ala Gly Cys Ser Thr Val Arg Lys Arg Arg
465 470 475 480

atc agc cag aag acc tcc agc aag ccc gcc aag aag aag aaa aag taa 1488
Ile Ser Gln Lys Thr Ser Ser Lys Pro Ala Lys Lys Lys Lys Lys

<210> 4
<211> 495
<212> PRT
<213> Artificial Sequence

485

Met Ala Leu Trp Gln Gln Gly Gln Lys Leu Tyr Leu Pro Pro Thr Pro

1 5 10 15

Val Ser Lys Val Leu Cys Ser Glu Thr Tyr Val Gln Arg Lys Ser Ile 20 25 30

Phe Tyr His Ala Glu Thr Glu Arg Leu Leu Thr Ile Gly His Pro Tyr 35 40 45

Tyr Pro Val Ser Ile Gly Ala Lys Thr Val Pro Lys Val Ser Ala Asn 50 55 60

Gln Tyr Arg Val Phe Lys Ile Gln Leu Pro Asp Pro Asn Gln Phe Ala 65 70 75 80

Leu Pro Asp Arg Thr Val His Asn Pro Ser Lys Glu Arg Leu Val Trp
85 90 95

Pro Val Ile Gly Val Gln Val Ser Arg Gly Gln Pro Leu Gly Gly Thr
100 105 110

Val Thr Gly His Pro Thr Phe Asn Ala Leu Leu Asp Ala Glu Asn Val 115 120 125

Asn Arg Lys Val Thr Thr Gln Thr Thr Asp Asp Arg Lys Gln Thr Gly
130 135 140

Leu Asp Ala Lys Gln Gln Gln Ile Leu Leu Leu Gly Cys Thr Pro Ala 145 150 155 160

Glu Gly Glu Tyr Trp Thr Thr Ala Arg Pro Cys Val Thr Asp Arg Leu 165 170 175

Glu Asn Gly Ala Cys Pro Pro Leu Glu Leu Lys Asn Lys His Ile Glu 180 185 190

Asp Gly Asp Met Met Glu Ile Gly Phe Gly Ala Ala Asn Phe Lys Glu 195 200 205

Ile Asn Ala Ser Lys Ser Asp Leu Pro Leu Asp Ile Gln Asn Glu Ile 210 215 220

Cys 225	Leu	Tyr	Pro	Asp	Tyr 230	Leu	Lys	Met	Ala	Glu 235	Asp	Ala	Ala	Gly	Asn 240
Ser	Met	Phe	Phe	Phe 245	Ala	Arg	Lys	Glu	Gln 250	Val	Tyr	Val	Arg	His 255	Ile
Trp	Thr	Arg	Gly 260	Gly	Ser	Glu	Lys	Glu 265	Ala	Pro	Thr	Thr	Asp 270	Phe	Tyr
Leu	Lys	Asn 275	Asn	Lys	Gly	Asp	Ala 280	Thr	Leu	Lys	Ile	Pro 285	Ser	Val	His
Phe	Gly 290	Ser	Pro	Ser	Gly	Ser 295	Leu	Val	Ser	Thr	Asp 300	Asn	Gln	Ile	Phe
Asn 305	Arg	Pro	Tyr	Trp	Leu 310	Phe	Arg	Ala	Gln	Gly 315	Met	Asn	Asn	Gly	Ile 320
Ala	Trp	Asn	Asn	Leu 325	Leu	Phe	Leu	Thr	Val 330	Gly	Asp	Asn	Thr	Arg 335	Gly
Thr	Asn	Leu	Thr 340	Ile	Ser	Val	Ala	Ser 345	Asp	Gly	Thr	Pro	Leu 350	Thr	Glu
Tyr	Asp	Ser 355	Ser	Lys	Phe	Asn	Val 360	Tyr	His	Arg	His	Met 365	Glu	Glu	Tyr
Lys	Leu 370	Ala	Phe	Ile	Leu	Glu 375	Leu	Cys	Ser	Val	Glu 380	Ile	Thr	Ala	Gln
Thr 385	Val	Ser	His	Leu	Gln 390	Gly	Leu	Met	Pro	Ser 395	Val	Leu	Glu	Asn	Trp 400
Glu	Ile	Gly	Val	Gln 405	Pro	Pro	Thr	Ser	Ser 410	Ile	Leu	Glu	Asp	Thr 415	Tyr
Arg	Tyr	Ile	Glu `42'0	Ser	Pro	Ala	Thr	Lys 425	Cys	Ala	Ser	Asn	Val 430	Ile	Pro
Ala	Lys	Glu 435	Asp	Pro	Tyr	Ala	Gly 440	Phe	Lys	Phe	Trp	Asn 445	Ile	Asp	Leu
Lys	Glu 450	Lys	Leu	Ser	Leu	Asp 455	Leu	Asp	Gln	Phe	Pro 460	Leu	Gly	Arg	Arg
Phe 465	Leu	Ala	Gln	Gln	Gly 470	Ala	Gly	Cys	Ser	Thr 475	Val	Arg	Lys	Arg	Arg 480
Ile	Ser	Gln	Lys	Thr 485	Ser	Ser	Lys	Pro	Ala 490	Lys	Lys	Lys	Lys	Lys 495	
	0> 5 l> 14														

<213> Bovine papillomavirus type 1

<212> DNA

<220: <221: <222:	> CI		(141)	o)									
<220: <223:		2 ope	en re	eadir	ng fi	came	(wi	ld-ty	/pe)				
<400: atg & Met &	agt												48
agg a													96
gta g Val (144
gca a Ala :													192
gtg 9 Val 1 65													240
tcc a													288
acc o	_					-				_		_	336
ctt g Leu (384
gcc (Ala I													432
gat g Asp 1													480
ctg (528
ecc o													576

					cct Pro											624
tct Ser	ggt Gly 210	tta Leu	gaa Glu	aat Asn	att Ile	ttt Phe 215	gta Val	gga Gly	ggc Gly	tcg Ser	ggt Gly 220	tta Leu	Gly ggg	gat Asp	aca Thr	672
					gaa Glu 230											720
					gcc Ala											768
					aca Thr											816
					gca Ala											864
					gga Gly											912
					cgt Arg 310											960
					agt Ser											1008
					aat Asn											1056
gaa Glu	gag Glu	caa Gln 355	gca Ala	ggt Gly	ttt Phe	gag Glu	gag Glu 360	ata Ile	gaa Glu	tta Leu	gat Asp	gat Asp 365	ttt Phe	agt Ser	gag Glu	1104
					cct Pro											1152
					ctc Leu 390											1200

cca gtt act Pro Val Thr	gac cct Asp Pro 420	gat tct Asp Ser	acc tct Thr Ser 425	cct agt Pro Ser	cta gt Leu Va	t atc gat l Ile Asp 430	gac 1296 Asp
act act act Thr Thr Thr 435	Thr Pro	atc att Ile Ile	ata att Ile Ile 440	gat ggg Asp Gly	cac ac His Th	r Val Asp	ttg 1344 Leu
tac agc agt Tyr Ser Ser 450	aac tac Asn Tyr	acc ttg Thr Leu 455	cat ccc His Pro	tcc ttg Ser Leu	ttg agg Leu Arg 460	g aaa cga g Lys Arg	aaa 1392 Lys
aaa cgg aaa Lys Arg Lys 465	_	taa 470			,		1410
<210> 6 <211> 469 <212> PRT <213> Bovin	e papillo	omavirus	type 1				
<400> 6 Met Ser Ala 1	Arg Lys	Arg Val	Lys Arg	Ala Ser 10	Ala Ty	r Asp Leu 15	Tyr
Arg Thr Cys	Lys Gln 20	Ala Gly	Thr Cys 25	Pro Pro	Asp Val	l Ile Arg 30	Lys
Val Glu Gly 35		Ile Ala	Asp Lys 40	Ile Leu	Lys Phe	-	Leu
Ala Ile Tyr 50	Leu Gly	Gly Leu 55	Gly Ile	Gly Thr	Trp Ser	Thr Gly	Arg
Val Ala Ala 65	Gly Gly	Ser Pro 70	Arg Tyr	Thr Pro	-	Thr Ala	Gly 80
Ser Thr Ser	Ser Leu 85	Ala Ser	Ile Gly	Ser Arg	Ala Va	l Thr Ala 95	Gly.
Thr Arg Pro	Ser Ile 100	Gly Ala	Gly Ile 105	Pro Leu	Asp Thi	Leu Glu 110	Thr
Leu Gly Ala 115		Pro Gly	Val Tyr 120	Glu Asp	Thr Val		Glu
Ala Pro Ala 130	Ile Val	Thr Pro	Asp Ala	Val Pro	Ala Ası 140	Ser Gly	Leu
Asp Ala Leu 145		Gly Thr 150	Asp Ser	Ser Thr		Leu Ile	Thr 160
Leu Leu Glu	Pro Glu 165	Gly Pro	Glu Asp	Ile Ala 170	Val Let	Glu Leu 175	Gln

Lys Arg Lys His Ala

465

Pro Leu Asp Arg Pro Thr Trp Gln Val Ser Asn Ala Val His Gln Ser 185 Ser Ala Tyr His Ala Pro Leu Gln Leu Gln Ser Ser Ile Ala Glu Thr 200 Ser Gly Leu Glu Asn Ile Phe Val Gly Gly Ser Gly Leu Gly Asp Thr Gly Gly Glu Asn Ile Glu Leu Thr Tyr Phe Gly Ser Pro Arg Thr Ser 230 Thr Pro Arg Ser Ile Ala Ser Lys Ser Arg Gly Ile Leu Asn Trp Phe Ser Lys Arg Tyr Tyr Thr Gln Val Pro Thr Glu Asp Pro Glu Val Phe 260 265 Ser Ser Gln Thr Phe Ala Asn Pro Leu Tyr Glu Ala Glu Pro Ala Val 280 Leu Lys Gly Pro Ser Gly Arg Val Gly Leu Ser Gln Val Tyr Lys Pro Asp Thr Leu Thr Thr Arg Ser Gly Thr Glu Val Gly Pro Gln Leu His 310 315 Val Arg Tyr Ser Leu Ser Thr Ile His Glu Asp Val Glu Ala Ile Pro 330 Tyr Thr Val Asp Glu Asn Thr Gln Gly Leu Ala Phe Val Pro Leu His 340 345 Glu Glu Gln Ala Gly Phe Glu Glu Ile Glu Leu Asp Asp Phe Ser Glu 360 Thr His Arg Leu Leu Pro Gln Asn Thr Ser Ser Thr Pro Val Gly Ser 370 375 Gly Val Arg Arg Ser Leu Ile Pro Thr Arg Glu Phe Ser Ala Thr Arg 390 395 Pro Thr Gly Val Val Thr Tyr Gly Ser Pro Asp Thr Tyr Ser Ala Ser Pro Val Thr Asp Pro Asp Ser Thr Ser Pro Ser Leu Val Ile Asp Asp 425 420 Thr Thr Thr Pro Ile Ile Ile Asp Gly His Thr Val Asp Leu 440 Tyr Ser Ser Asn Tyr Thr Leu His Pro Ser Leu Leu Arg Lys Arg Lys 450 455

<210> 7 <211> 1410 <212> DNA <213> Artificial Sequence <220> <221> CDS <222> (1)..(1410) <223> Description of Artificial Sequence: Bovine papillomavirus type 1 L2 open reading frame (humanized) <220> <223> Wild-type codons replaced with synonymous codons used at relatively high frequency by human genes <400> 7 atg age gee ege aag aga gtg aag ege gee age gee tae gae etg tae 48 Met Ser Ala Arg Lys Arg Val Lys Arg Ala Ser Ala Tyr Asp Leu Tyr 5 agg acc tgc aag cag gcc ggc aca tgt cca cca gat gtg atc cga aag 96 Arg Thr Cys Lys Gln Ala Gly Thr Cys Pro Pro Asp Val Ile Arg Lys gtg gag ggc gac acc atc gcc gac aag atc ctg aag ttc ggc ggc ctg 144 Val Glu Gly Asp Thr Ile Ala Asp Lys Ile Leu Lys Phe Gly Gly Leu gcc atc tac ctg ggc ggc ctg ggc atc gga aca tgg tct acc ggc agg 192 Ala Ile Tyr Leu Gly Gly Leu Gly Ile Gly Thr Trp Ser Thr Gly Arg gtg gcc gcc ggc ggc tca cca agg tac acc cca ctg cgc acc gcc ggc 240 Val Ala Ala Gly Gly Ser Pro Arg Tyr Thr Pro Leu Arg Thr Ala Gly tee ace tee etg gee tee ate gga tee aga gee gtg ace gee ggg Ser Thr Ser Ser Leu Ala Ser Ile Gly Ser Arg Ala Val Thr Ala Gly 85 acc ege ece tee ate gge geg gge ate eet etg gae acc etg gaa act 336 Thr Arg Pro Ser Ile Gly Ala Gly Ile Pro Leu Asp Thr Leu Glu Thr 100 ctt ggg gcc ctg cgc cct ggc gtg tac gag gac acc gtg ctg ccc gaa 384 Leu Gly Ala Leu Arg Pro Gly Val Tyr Glu Asp Thr Val Leu Pro Glu 115 gcc cet gcc atc gtg acc cet gac gcc gtg cet gca gac tec ggc etg 432 Ala Pro Ala Ile Val Thr Pro Asp Ala Val Pro Ala Asp Ser Gly Leu 130

			atc Ile									480
			gag Glu 165									528
_	_	_	cca Pro		_		-				_	576
_			gcc Ala		_	_				_		624
			aat Asn									672
			atc Ile									720
	_		atc Ile 245	_	_		_		_			768
			tac Tyr									816
	_		ttc Phe	_		_		 _			-	 864
			agc Ser									912
			aca Thr									960
			ctg Leu 325									1008
			gag Glu									1056
			ggc									1104

acc																
Thr	cat His 370	cgc Arg	ctg Leu	ctg Leu	ccc Pro	cag Gln 375	aac Asn	acc Thr	tcc Ser	tcc Ser	acc Thr 380	ccc Pro	gtg Val	ggc Gly	agc Ser	1152
ggc Gly 385	gtg Val	cgc Arg	aga Arg	agc Ser	ctg Leu 390	atc Ile	cct Pro	acc Thr	cga Arg	gag Glu 395	ttc Phe	agc Ser	gcc Ala	acc Thr	cgg Arg 400	1200
cct Pro	acc Thr	ggc Gly	gtg Val	gtg Val 405	acc Thr	tac Tyr	ggc Gly	tcc Ser	ccc Pro 410	gac Asp	acc Thr	tac Tyr	tcc Ser	gct Ala 415	agc Ser	1248
ccc Pro	gtg Val	acc Thr	gac Asp 420	cct Pro	gat Asp	tct Ser	acc Thr	tct Ser 425	cct Pro	agc Ser	ctg Leu	gtg Val	atc Ile 430	gac Asp	gac Asp	1296
acc Thr	acc Thr	acc Thr 435	acc Thr	ccc Pro	atc Ile	atc Ile	atc Ile 440	atc Ile	gac Asp	ggc Gly	cac His	aca Thr 445	gtg Val	gat Asp	ctg Leu	1344
tac Tyr	agc Ser 450	agc Ser	aac Asn	tac Tyr	acc Thr	ctg Leu 455	cat His	ccc Pro	tcc Ser	ctg Leu	ctg Leu 460	agg Arg	aag Lys	cgc Arg	aag Lys	1392
_	_	_	cat His	_	taa 470											1410
<21 <21	0> 8 l> 46 2> PF 3> Ai	RT	lcial	L Sec	quenc	ce										
<21: <21: <21:	L> 46 2> PF	RT	lcial	L Sec	quenc	ce										
<21: <21: <21:	l> 46 2> PF 3> Ai	RT rtifi	lcia] Arg		_		Lys	Arg	Ala 10	Ser	Ala	Tyr	Asp	Leu 15	Tyr	
<21: <21: <21: <40: Met	l> 46 2> PF 3> Ai 0> 8 Ser	etifi Ala	Arg	Lys 5	Arg	Val			10					15	Tyr Lys	
<21: <21: <400 Met 1 Arg	1> 46 2> PF 3> An 0> 8 Ser	RT ctifi Ala Cys	Arg Lys	Lys 5 Gln	Arg Ala	Val Gly	Thr	Cys 25	10 Pro	Pro	Asp	Val	Ile 30	15 Arg	Lys	
<21: <21: <400 Met 1 Arg	1> 46 2> PF 3> Al 0> 8 Ser Thr	Ala Cys Gly 35	Arg Lys 20	Lys 5 Gln Thr	Arg Ala Ile	Val Gly ~	Thr Asp 40	Cys 25 Lys	10 Pro Ile	Pro Leu	Asp Lys	Val Phe 45	Ile 30 Gly	15 Arg Gly	Lys Leu	
<21: <21: <400 Met 1 Arg Val	1> 46 2> PP 3> Al 0> 8 Ser Thr Glu Ile 50	Cys Gly 35	Arg Lys 20 Asp	Lys 5 Gln Thr	Arg Ala Ile	Val Gly ~ Ala Leu 55	Thr Asp 40	Cys 25 Lys Ile	10 Pro Ile Gly	Pro Leu Thr	Asp Lys Trp 60	Val Phe 45 Ser	Ile 30 Gly Thr	15 Arg Gly Gly	Lys Leu Arg	
<21: <21: <400 Met 1 Arg Val Ala	l> 46 2> PP 3> Al 0> 8 Ser Thr Glu Ile 50	Cys Gly 35 Tyr Ala	Arg Lys 20 Asp	Lys 5 Gln Thr Gly	Arg Ala Ile Gly Ser 70	Val Gly Ala Leu 55	Thr Asp 40 Gly Arg	Cys 25 Lys Ile Tyr	10 Pro Ile Gly Thr	Pro Leu Thr Pro 75	Asp Lys Trp 60 Leu	Val Phe 45 Ser	Ile 30 Gly Thr	15 Arg Gly Gly Ala	Lys Leu Arg Gly 80	

xvii

Leu	Gly	Ala 115	Leu	Arg	Pro	Gly	Val 120	Tyr	Glu	Asp	Thr	Val 125	Leu	Pro	Glu
Ala	Pro 130	Ala	Ile	Val	Thr	Pro 135	Asp	Ala	Val	Pro	Ala 140	Asp	Ser	Gly	Leu
Asp 145	Ala	Leu	Ser	Ile	Gly 150	Thr	Asp	Ser	Ser	Thr 155	Glu	Thr	Leu	Ile	Thr 160
Leu	Leu	Glu	Pro	Glu 165	Gly	Pro	Glu	Asp	Ile 170	Ala	Val	Leu	Glu	Leu 175	Gln
Pro	Leu	Asp	Arg 180	Pro	Thr	Trp	Gln	Val 185	Ser	Asn	Ala	Val	His 190	Gln	Ser
Ser	Ala	Tyr 195	His	Ala	Pro	Leu	Gln 200	Leu	Gln	Ser	Ser	Ile 205	Ala	Glu	Thr
Ser	Gly 210	Leu	Glu	Asn	Ile	Phe 215	Val	Gly	Gly	Ser	Gly 220	Leu	Gly	Asp	Thr
Gly 225	Gly	Glu	Asn	Ile	Glu 230	Leu	Thr	Tyr	Phe	Gly 235	Ser	Pro	Arg	Thr	Ser 240
Thr	Pro	Arg	Ser	Ile 245	Ala	Ser	Lys	Ser	Arg 250	Gly	Ile	Leu	Asn	Trp 255	Phe
Ser	Lys	Arg	Tyr 260	Tyr	Thr	Gln	Val	Pro 265	Thr	Glu	Asp	Pro	Glu 270	Val	Phe
Ser	Ser	Gln 275	Thr	Phe	Ala	Asn	Pro 280	Leu	Tyr	Glu	Ala _.	Glu 285	Pro	Ala	Val
Leu	Lys 290	Gly	Pro	Ser	Gly	Arg 295	Val	Gly	Leu	Ser	Gln 300	Val	Tyr	Lys	Pro
Asp 305	Thr	Leu	Thr	Thr	Arg 310	Ser	Gly	Thr	Glu	Val 315	Gly	Pro	Gln	Leu	His 320
Val	Arg	Tyr	Ser	Leu 325	Ser	Thr	Ile	His	Glu 330	Asp	Val	Glu	Ala	Ile 335	Pro
Tyr	Thr	Val	Asp 340	Glu	Asn	Thr	Gln	Gly 345	Leu	Ala	Phe	Val	Pro 350	Leu	His
		355					360					365	Phe		
Thr	His 370	Arg	Leu	Leu	Pro	Gln 375	Asn	Thr	Ser	Ser	Thr 380	Pro	Val	Gly	Ser
Gly 385	Val	Arg	Arg	Ser	Leu 390	Ile	Pro	Thr	Arg	Glu 395	Phe	Ser	Ala	Thr	Arg 400
Pro	Thr	Gly	Val	Val 405	Thr	Tyr	Gly	Ser	Pro 410	Asp	Thr	Tyr	Ser	Ala 415	Ser

Pro Val Thr Asp Pro Asp Ser Thr Ser Pro Ser Leu Val Ile Asp Asp 425 420 Thr Thr Thr Pro Ile Ile Ile Asp Gly His Thr Val Asp Leu Tyr Ser Ser Asn Tyr Thr Leu His Pro Ser Leu Leu Arg Lys Arg Lys Lys Arg Lys His Ala 465 <210> 9 <211> 717 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Aequorea victoria gfp gene (humanized) <220> <221> CDS <222> (1)..(717) <400> 9 atg age aag gge gag gaa etg tte act gge gtg gte eea att ete gtg Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val gaa ctg gat ggc gat gtg aat ggg cac aaa ttt tct gtc agc gga gag Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 20 ggt gaa ggt gat gcc aca tac gga aag ctc acc ctg aaa ttc atc tgc Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 35 ace act gga aag etc cet gtg eea tgg eea aca etg gte act ace tte 192 Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe 50 tot tat ggc gtg cag tgc ttt tcc aga tac cca gac cat atg aag cag 240 Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln cat gac ttt ttc aag agc gcc atg ccc gag ggc tat gtg cag gag aga 288 His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 85 acc atc ttt ttc aaa gat gac ggg aac tac aag acc cgc gct gaa gtc 336 Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val 100 105 aag ttc gaa ggt gac acc ctg gtg aat aga atc gag ctg aag ggc att Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile

	115					120					125				
gac ttt Asp Phe 130	Lys		_							_	_	_			432
tat aac Tyr Asn 145															480
atc aag Ile Lys															528
cag ctg Gln Leu															576
gtg ctc Val Leu															624
aaa gat Lys Asp 210								_	_	_	_				672
acc gct Thr Ala													tga		717
225		•		230		-			235		-				
	0 38 RT		,			· · · · · · · · · · · · · · · · · · ·			235						
<pre>225 <210> 1 <211> 2 <212> P</pre>	0 38 RT rtif:	icial	L Sec	quenc	ce	Phe	Thr	Gly 10		Val	Pro	Ile	Leu 15	Val	
<210 > 1 <211 > 2 <212 > P <213 > A <400 > 1 Met Ser	0 38 RT rtif: 0 Lys	icial Gly	l Sed Glu 5	quenc Glu	ce Leu			10	Val				15		
<pre>225 <210 > 1 <211 > 2 <212 > P <213 > A <400 > 1 Met Ser 1</pre>	0 38 RT rtif: 0 Lys	Gly Gly 20	Glu 5 Asp	quenc Glu Val	ce Leu Asn	Gly	His 25	10	Val Phe	Ser	Val	Ser 30	15 Gly	Glu	
<pre>225 <210> 1 <211> 2 <212> P <213> A <400> 1 Met Ser 1 Glu Leu</pre>	0 38 RT rtif: 0 Lys Asp Gly 35	Gly Gly 20 Asp	Glu 5 Asp	quenc Glu Val Thr	ce Leu Asn Tyr	Gly Gly 40	His 25 Lys	10 Lys Leu	Val Phe Thr	Ser Leu	Val Lys 45	Ser 30 Phe	15 Gly Ile	Glu Cys	
225 <210 > 1 <211 > 2 <212 > P <213 > A <400 > 1 Met Ser 1 Glu Leu Gly Glu Thr Thr	0 38 RT rtif: 0 Lys Asp Gly 35 Gly	Gly Gly 20 Asp	Glu 5 Asp Ala Leu	Glu Val Thr	Leu Asn Tyr Val 55	Gly Gly 40 Pro	His 25 Lys Trp	10 Lys Leu Pro	Val Phe Thr	Ser Leu Leu 60	Val Lys 45 Val	Ser 30 Phe Thr	15 Gly Ile Thr	Glu Cys Phe	
225 <210 > 1 <211 > 2 <212 > P <213 > A <400 > 1 Met Ser	0 38 RT rtif: 0 Lys Asp Gly 35 Gly Gly	Gly Gly 20 Asp Lys	Glu 5 Asp Ala Leu	Glu Val Thr Pro Cys 70	Leu Asn Tyr Val 55 Phe	Gly Gly 40 Pro	His 25 Lys Trp	10 Lys Leu Pro	Val Phe Thr Thr	Ser Leu Leu 60 Asp	Val Lys 45 Val	Ser 30 Phe Thr	15 Gly Ile Thr	Glu Cys Phe Gln 80	

Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 135 Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 180 Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 200 Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 215 Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys 230 <210> 11 <211> 717 <212> DNA <213> Artificial Sequence <220> <221> CDS <222> (1)..(717) <220> <223> Description of Artificial Sequence: Synthetic gfp gene (Papillomavirusized) <220> <223> Codons of humanized gfp gene replaced with synonymous codons used at relatively high frequency by papillomavirus genes <400> 11 atg agt aaa ggg gaa gaa cta ttt aca ggg gtg gtg cct ata cta gtg Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val gaa cta gat ggg gat gtg aat ggg cac aaa ttt tct gtc agt ggg gaa Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 20 999 gaa ggg gat gca aca tat ggg aaa cta aca cta aaa ttt ata tgc Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 35 40

aca aca ggg Thr Thr Gly 50											192
agt tat ggg Ser Tyr Gly 65											240
cat gat ttt His Asp Phe					Gly						288
aca ata ttt Thr Ile Phe		_	Gly A				-	-	-	_	336
aaa ttt gaa Lys Phe Glu 115											384
gat ttt aaa Asp Phe Lys 130								_			432
tat aat agt Tyr Asn Ser 145	His Asn										480
ata aaa gtg Ile Lys Val					Ile	-	_				528
caa cta gca Gln Leu Ala			Gln A								576
gtg cta cta Val Leu Leu 195	_			_			_	Āla		_	624
aaa gat cct Lys Asp Pro 210											672
aca gca gca Thr Ala Ala 225									tga		717
<210> 12 <211> 238 <212> PRT <213> Artif	icial Seq	quence									
<400> 12 Met Ser Lys 1	Gly Glu 5	Glu Leu	Phe 5	Thr Gly		Val	Pro	Ile	Leu 15	Val	

<400> 13

taaggactgt aagactt

xxii

```
Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu
Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys
                             40
Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe
Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln
                                         75
His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg
Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val
Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile
Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn
Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly
                                        155
Ile Lys Val Asn Phe Lys Ile Ile Arg His Ile Glu Asp Gly Ser Val
                165
Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro
                                185
Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser
                            200
Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val
Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys
                    230
<210> 13
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
     Oligonucleotide specific for Ala(GCA)
```

<210>	14	
<211>	17	
<212>	DNA	
	Artificial Sequence	
72237	mulitaria sequence	
.220.		
<220>	The state of the s	
<223>	Description of Artificial Sequence:	
	Oligonucleotide specific for Arg(CGA)	
•		
<400>	14	
cgagc	cagec aggagte	17
3 3	3 33 3	
-210-	15	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:	
12207	Oligonucleotide specific for Asn(AAC)	
	originational appearance for Abiliance	
400	1 P	
<400>		
ctagat	tggc aggaatt	17
	·	
<210>	16	
<211>	17	
<212>	DNA	
	Artificial Sequence	
\Z_1J/	Altitudial bequence	
<220>		
<223>	Description of Artificial Sequence:	
	Oligonucleotide specific for Asp(GAC)	
<400>	16	
taagat	catat agattat	17
-210-	17	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:	
	Oligonucleotide specific for Cys(TGC)	
	3	
<400>	17	
aagtct	tagt agagatt	17
<210>	18	
<211>	17	
<212>	DNA	
	Artificial Sequence	

	Description of Artificial Sequence: Oligonucleotide specific for Glu(GAA)	
<400> tatttc		17
<210>	19	
<211>	17	
<212>	DNA	
<213>	Artificial Sequence	
	Description of Artificial Sequence: Oligonucleotide specific for Gln(CAA)	
<400>	19	
		17
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:	
	Oligonucleotide specific for Gly(GGA)	
<400>		17
Lacici	· · · · · · · · · · · · · · · · · · ·	1/
<210>	21	
<211>	17	
<212>	DNA	
<213>	Artificial Sequence	
<220>	·	
	Description of Artificial Sequence:	
(223)	Oligonucleotide specific for His (CAC)	
	origonisticorus speciales for Mrs (and)	
<400>		
tgccgt	gact cggattc	17
<210>	22	
<211>		
<212>		
	Artificial Sequence	
	-	
<220>		
<223>	Description of Artificial Sequence:	
	Oligonucleotide specific for Ile(ATC)	
4.5.5		
<400>	22	

XXV

```
tagaaataag agggctt
                                                                     17
<210> 23
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      Oligonucleotide specific for Leu(CTA)
<400> 23
tacttttatt tggattt
                                                                     17
<210> 24
<211> 17
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:
      Oligonucleotide specific for Leu(CTT)
<400> 24
tattagggag aggattt
                                                                     17
<210> 25
<211> 17
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:
      Oligonucleotide specific for Lys(AAA)
<400> 25
tcactatgga gatttta
                                                                     17
<210> 26
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      Oligonucleotide specific for Lys(AAG)
<400> 26
                                                                     17
cgcccaacgt ggggctc
<210> 27
<211> 17
```

xxvi

<212> <213>	DNA Artificial Sequence	
<220> <223>	Description of Artificial Sequence: Oligonucleotide specific for Met (elong)	
<400> tagtad	27 eggga aggattt	17
<210><211><211><212><213>	17	
<220> <223>	Description of Artificial Sequence: Oligonucleotide specific for Phe(TTC)	
<400> tgttta	28 atggg atacaat	17
<210><211><212><213>	17	
<220> <223>	Description of Artificial Sequence: Oligonucleotide specific for Pro(CCA)	
<400> tcaaga	29 aagaa ggagcta	17
<210><211><211><212><213>	17	
<220> <223>	Description of Artificial Sequence: Oligonucleotide specific for Pro(CCI)	
<400> gggcto	30 Egtec gggattt	17
<210><211><212><213>	17	
-22As		

<223> Description of Artificial Sequence:

Oligonucleotide specific for Ser(AGC)

<400> 31 ataagaaagg aagatcg

17

<210> 32

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
 Oligonucleotide specific for Thr(ACA)

<400> 32

tgtcttgaga agagaag

17

<210> 33

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
 Oligonucleotide specific for Tyr(TAC)

<400> 33

tggtaaaaag aggattt

17

<210> 34

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
 Oligonucleotide specific for Val(GTA)

<400> 34

tcagagtgtt cattggt

17

PCT/AU 98/00530

A. **CLASSIFICATION OF SUBJECT MATTER**

Int Cl6:

C12N 15/37; C07K 14/025

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: as above

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched See Below

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) STN (CA; Medline): codon usage/CT; gene expression /CT

ORBIT (WPAT): codon () use or codon () usage or codon() bias

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	AU-43556/97 (THE GENERAL HOSPITAL CORPORATION) 26 March 1998 Claim 1-28	1-25
X,Y	AU-35099/95 (THE GENERAL HOSPITAL CORPORATION) 28 March 1996 Claims 1-16	1-25
P,X	AU-17502/97 (UNIVERSITY OF FLORIDA RESEARCH FOUNDATION) 24 July 1997 pp 2-12; pp 21-74	1-25

X	Further documents are listed in the continuation of Box C.	X	See patent family annex
	CONTINUATION OF BOX U.		

*	Special	categories	of	cited	documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the
- international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report 19 August 1998

Name and mailing address of the ISA/AU AUSTRALIAN PATENT OFFICE **PO BOX 200**

WODEN ACT 2606 **AUSTRALIA**

Facsimile No.: (02) 6285 3929

Authorized officer

MADHU K. JOGIA

Telephone No.: (02) 6283 2512

· INTERNATIONAL SEARCH REPORT (

ternational Application No.

PCT/AU 98/00530

C (Continua	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X,Y	AU-74467/96 (DOWELANCO, USA) 17 April 1997 Claims 1-6	1-25
Х	J. VIROL, Vol. 70, pp 4646-4654 (1996) ZOLOTUKHIN et al A "humanized" green fluorescent protein CDNA adapted for high level expression in mammalian cells.	1-25
		·

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No. **PCT/AU** 98/00530 -

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Document Cited in Search Report					Patent Family Member			
AU	43556/97	wo	9812207					
AU	35099/95	CA	2200342	EP	781329	US	5786464	
		wo	9609378					
wo	9726333	AU	17502/97					
wo	9713402	AU	74467/96					

END OF ANNEX

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.