Wojciech Błyskal 247632 Rok akademicki 2023/24 Łukasz Centkowski 247638 poniedziałek, godzina 12:15

METODY NUMERYCZNE – LABORATORIUM

Zadanie 2 – Rozwiązywanie układów N równań liniowych z N niewiadomymi.

Opis rozwiązania

Celem zadania drugiego było zaimplementowanie metody eliminacji Jordana(Gaussa-Jordana) do znajdowania rozwiązań układów liniowych. Sposób działania tej metody:

- Jeśli macierz posiada wiersz zerowy, to albo nie będzie miała rozwiązania, albo będzie nieoznaczona, co kończy dalsze wykonywanie algorytmu.
- 2. Wybieramy element podstawowy poprzez wybranie największego co do modułu elementu w danej kolumnie oraz przestawiamy wiersze, jeśli element podstawowy nie znajduje się na głównej przekątnej.
- 3. dzielimy k-ty wiersz przez współczynnik a_{kk} (dla k naturalnych od 1 do n $a_{kj} = a_{kj}/a_{kk}$)
- 4. Dla pozostałych wierszy dzielimy k-ty wiersz przez współczynnik a_{ik}, a następnie odejmujemy ten iloczyn od od itego wiersza $(a_{ij} = a_{ij} - a_{ki} \cdot a_{ik}/a_{kk})$. Następnie wracamy do kroku 1. zwiększając o 1 wartość k.

Wvniki

Przykłady z treści zadania:

_	1
а	•
	_

\mathbf{x}_1	X ₂	X 3	Macierz wynikowa	Wyniki programu		Wartości analityczne
3	3	1	12	x ₁ 1,0000000000000000		1
2	5	7	33	x ₂ 1,99999999999999		2
1	2	1	8	x ₃ 3,0000000000000004		3

b)						
\mathbf{X}_1	X ₂	X ₃	Macierz wynikowa	Wyniki	Wyniki programu	
3	3	1	1	X ₁		
2	5	7	20	X ₂	Układ nieoznaczony	Układ nieoznaczony
-4	-10	-14	-40	X ₃		

<u>c)</u>							
	X_1	X_2	X 3	Macierz wynikowa	Wyniki programu		Wartości analityczne
	3	3	1	1	X_1		
	2	5	7	20	X ₂	Układ sprzeczny	Układ sprzeczny
	-4	-10	-14	-20	X ₃		

d)
Г	

	-)								
X ₁	X ₂	X 3	X4	Macierz wynikowa	Wyniki programu		Wartości analityczne		
0,5	-0,0625	0,1875	0,0625	1,5	X ₁	2,0	2		
-0,0625	0.5	0	0	-1,625	X ₂	-3,0	-3		
0,1875	0	0,375	0,125	1	X ₃	1,5	1,5		
0,0625	0	0,125	0,25	0,4375	X4	0,499999999999999	0,5		

e)							
\mathbf{X}_1	X ₂	X 3	X ₄	Macierz wynikowa	Wyniki programu		Wartości analityczne
3	2	1	-1	0	\mathbf{X}_1		
5	-1	1	2	-4	X ₂	układ	układ

1	-1	1	2	4	X3	sprzeczny	sprzeczny
7	8	1	-7	6	X4		

<u>f)</u>							
\mathbf{x}_1	X ₂	X ₃	X ₄	Macierz wynikowa		Wyniki programu	Wartości analityczne
3	-1	2	-1	-13	X ₁	1,0	1
3	-1	1	1	1	X2	2,99999999999999	3
1	2	-1	2	21	X 3	-4,0000000000000000	-4
-1	1	-2	-3	-5	X4	4,99999999999999	5

<u>g</u>)						
X ₁	X ₂	X ₃	Macierz wynikowa	Wyniki programu		Wartości analityczne
0	0	1	3	X ₁	7,0	7
1	0	0	7	X ₂	5,0	5
0	1	0	5	X 3	3,0	3

<u>h)</u>						
X ₁	X ₂	X ₃	Macierz wynikowa	Wyniki programu		Wartości analityczne
10	-5	1	3	x ₁ 1,0		1
4	-7	2	-4	X ₂	2,0	2
5	1	4	19	X ₃	3,0	3

<u>i)</u>						
X ₁	X ₂	X ₃	Macierz wynikowa	Wyniki programu		Wartości analityczne
6	-4	2	4	\mathbf{X}_1		
-5	5	2	11	X ₂	Układ nieoznaczony	Układ nieoznaczony
0,9	0,9	3,6	13,5	X ₃		

<u>j)</u>						
\mathbf{x}_1	X ₂	X ₃	Macierz wynikowa	Wyniki programu		Wartości analityczne
1	0,2	0,3	1,5	X ₁	1,0	1
0,1	1	-0,3	0,8	X 2	1,0	1
-0,1	-0,2	1	0,7	X 3	0,999999999999999	1

Wnioski

Metoda eliminacji Gaussa-Jordana:

- 1. Ma problem jeżeli współczynnik a_{kk} będzie wynosił 0. Skala problemu jest zmniejszana poprzez przestawianie wierszy. Jeżeli ten problem nie wystąpi to z pewną dokładnością program zadziała zawsze poprawnie.
- 2. Uzyskujemy macierz jednostkową(chyba, że układ jest sprzeczny lub nieoznaczony).
- 3. Sprawdzamy czy macierz jest nieoznaczona lub sprzeczna, co jeżeli jest prawdą, zostaje wykryte przed zakończeniem algorytmu.
- 4. Z powodu posługiwania się liczbami zmiennoprzecinkowymi występują minimalne odstępstwa obliczonych wartości niewiadomych względem wartości analitycznych.