Gradient Matching

Anran Wang

2022.10.12

Outline

Diagnostic Plots
Conducting Inference

Properties of Gradient Matching Consistency Asymptotic Representation

3 Iterative Gradient Matching

4 Appendix

Anran Wang Gradient Matching 2022.10.12 2/60

Table of Contents

- Basics of Gradient Matching **Optimizing Gradient Matching** Diagnostic Plots Conducting Inference
- 2 Properties of Gradient Matching
- 3 Iterative Gradient Matching
- 4 Appendix

3/60

Model

The model for the state variables $x = (x_1, \dots, x_d)^{\top}$ consists of an initial value problem

$$\begin{cases} \dot{x}(t) = F(t, x(t), \theta), \\ x(0) = x_0, \end{cases}$$
 (1)

where F is a time-dependent vector field from \mathbb{R}^d to \mathbb{R}^d , $d \in \mathbb{N}$, and $\theta \in \Theta$, Θ being a subset of a Euclidean space.

We want to estimate the parameter θ of the ordinary differential equation (1) from noisy observations at n points, $t_1 < \cdots < t_n$.

$$y_i = x(t_i) + \varepsilon_i, i = 1, \ldots, n,$$

where the ε_i are i.i.d centered random variables. The ODE is indexed by a parameter $\theta \in \Theta \subset \mathbb{R}^p$ and initial value x_0 ; the true parameter value is θ^* and the corresponding solution of (1) is x^* .

4 □ → 4 □ → 4 □ → 4 □ → □ ■ 4/60 2022.10.12 4/60

A simple example

Why we use Gradient Matching?

First, we consider about a simple example

$$\dot{x}(t) = x(t)^{\top} \beta,$$

where β is the parameter we want to estimate.

A general idea is get n samples $(\tilde{x}_i, \tilde{x}_i)$ by the observed value y_i and t_i , i = 1, ..., n, e.g. we can choose

$$(\tilde{x}_i, \tilde{x}_i) = \left(\frac{y_{i+1} - y_{i-1}}{t_{i+1} - t_{i-1}}, y_i\right).$$

Then we can solve for β using least squares.

But when the dimension d is very large, the method above doesn't work well.

Anran Wang Gradient Matching 2022.10.12 5/60

Gradient Matching

So we can consider fitting x and \dot{x} to a curve instead of n points. Then we minimize the error between \hat{x} and $F(t, \hat{x}, \theta)$.

Now, when the dimension d is very large, we can also work it well.

• What is Gradient Matching?

Gradient Matching is a method that

- use suitable splines to get nonparametric curve fit to x, and get \hat{x}, \hat{x} ,
- **2** then, get the estimate $\hat{\theta}$ of θ by minimizing $\|\hat{x} F(t, \hat{x}, \theta)\|$, where $\|\cdot\|$ is a suitable norm.

For example, minimize the equation (8.1) of [1]:

$$ISSE_1(\theta) = \int \left\| \hat{x}(t) - F(t, \hat{x}, \theta) \right\|^2 dt.$$

◆□▶◆□▶◆■▶◆■▶ ■ 990

6/60

Gradient Matching

And via equation (8.5) of [1], we define $\hat{\theta}$ to be the minimizer of the integrated squared error:

$$ISSE(\theta) = \sum_{i=1}^{d} \int w_i(t) \left(\hat{x}_i(t) - F_i(t, \hat{x}, \theta) \right)^2 dt.$$
 (2)

This objective can be fairly readily extended to provide different weights to different components x_i of the model and even to provide more weight to some particular parts of the time domain.

7/60

Anran Wang Gradient Matching 2022.10.12

Optimizing Gradient Matching

How Gradient Matching work?

Since we expect that F will be nonlinear, (2) is usually not tractable. Consequently, we need to approximate it by a quadrature rule in which we evaluate the integrand at time points t_q for $q = 1, \ldots, Q$ and approximate the integral by a weighted sum

$$\widehat{\text{ISSE}}(\boldsymbol{\theta}) = \sum_{i=1}^{d} \sum_{q=1}^{Q} w_{iq} \left(\widehat{x}_{i} \left(t_{q} \right) - F_{i} \left(t, \widehat{x} \left(t_{q} \right), \boldsymbol{\theta} \right) \right)^{2},$$

where $w_{iq} := w_i(t_q)$.

We now observe that $\widehat{ISSE}(\theta)$ is a weighted least squares criterion and we can apply a **Gauss-Newton scheme** to minimize it just as in Chap 7 of [1].

Gauss-Newton algorithm

We start with some sensible guess $\hat{\theta}_0$ for θ and on iteration ℓ make the update

$$\hat{\boldsymbol{\theta}}^{\ell+1} = \hat{\boldsymbol{\theta}}^{\ell} - \left[\sum_{i=1}^{d} \partial_{\theta} F_{i} \left(\hat{\boldsymbol{\theta}}^{\ell} \right)^{\top} \mathbf{W}_{i} \partial_{\theta} F_{i} \left(\hat{\boldsymbol{\theta}}^{\ell} \right) \right]^{-1} \cdot \sum_{i=1}^{d} \partial_{\theta} F_{i} \left(\hat{\boldsymbol{\theta}}^{\ell} \right)^{\top} \mathbf{W}_{i} \left(\hat{\mathbf{X}}_{i} - F_{i} \left(\hat{\boldsymbol{\theta}}^{\ell} \right) \right).$$

where, for $i = 1, \ldots, d$ and $q = 1, \ldots, Q$,

- $F_i(\boldsymbol{\theta})$ is dim Q vector, with $[F_i(\boldsymbol{\theta})]_q = F_i(t_q, \hat{\mathbf{x}}(t_q), \boldsymbol{\theta})$.
- $\partial_{\theta}F_{i}(\theta)$ is dim $Q \times p$ matrix, with $\left[\partial_{\theta}F_{i}(\theta)\right]_{qj} = \partial_{\theta_{j}}F_{i}\left(t_{q}, \hat{\mathbf{x}}\left(t_{q}\right), \boldsymbol{\theta}\right)$.
- \hat{X}_i is dim Q vector, with $[\hat{X}_i]_q = \hat{x}_i(t_q)$.
- \mathbf{W}_i is $Q \times Q$ matrix, with the w_{iq} on the diagonal.

9/60

Anran Wang

Example: Filling a container

In this subsection, we use two examples to show the diagnostic plots.

We do gradient matching with the refinery data Introduced in section 1.1.3 of [1], where we fitted a first-order forced linear ODE:

$$\dot{x} = \beta_0 + \beta_1 x + \alpha u(t).$$

Figure 8.3 presents the results of this estimate. We have shown both \hat{x} and our prediction of it from \hat{x} as well as the error between the two. This example shows why gradient matching is appealing. Besides avoiding solving the differential equation, gradient matching also often involves a better conditioned optimization problem.

10/60

Anran Wang Gradient Matching 2022.10.12

Example: Filling a container

Fig. 8.3 Gradient matching on the refinery data. Top left level in Tray 47 and RS move of these data. Top right \overline{Dx} plotted against \hat{x} (dashed) and the prediction of it (solid) using estimated parameters. Bottom left difference between \widehat{Dx} and its prediction plotted over time. Bottom right predicted versus fitted \widehat{Dx}

 4 □ ▶ 4 □ № 4 □

Residual plot

The bottom left panel in Figure 8.3 presents the basic approach. We have plotted process residuals

$$r(t) = \hat{x}(t) - F(t, \hat{x}, \theta).$$

We think of this as a lack-of-fit function which indicates how far \hat{x} is from satisfying the ODE, even at the best possible parameter estimates. Figure 8.3 lets us examine r where we see what appears to be random oscillations. This also gives us the opportunity to examine whether F has been poorly chosen.

12/60

Anran Wang Gradient Matching 2022.10.12

We do gradient matching on the Rosenzweig–MacArthur model Introduced in section 7.4.6 of [1], which is:

$$\frac{dC}{dt} = \rho C(\kappa - C) - \frac{\gamma \beta CB}{\chi + C},$$
$$\frac{dB}{dt} = \frac{\beta CB}{\chi + C} - \delta B.$$

In Figure 8.4, we can see that gradient matching has resulted in trajectories with a longer period and smaller amplitude than the data exhibit and the estimate in Figure 7.5. This is partly the result of statistical inaccuracies in estimating \hat{x} and \hat{x} , but can also be due to error in the ODE as well as in our measurementss, something we discuss next.

◆□ > ◆□ > ◆ = > ◆ = > ● の < ○</p>

Anran Wang Gradient Matching 2022.10.12 13/60

Fig. 8.4 Gradient matching on the chemostat data. The *left panel* plots \widehat{Dx} (*dashed*) and the fitted $\mathbf{f}(\hat{\mathbf{x}}, \hat{\boldsymbol{\theta}})$ (*solid*) as a function of time for C (*top*) and B (*bottom*). The *middle panel* presents \widehat{Dx} plotted against $\mathbf{f}(\hat{\mathbf{x}}, \hat{\boldsymbol{\theta}})$. The *right panel* plots log data and smooth (*thin lines*) along with the trajectories obtained by solving the ODE at parameters obtained from gradient matching (*thick lines*)

□ → <
 □ → <
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →
 □ →

14/60

Fig. 7.5 Fits of chemostat data to the Rosenzweig–MacArthur model. *Left* a comparison of the logged data and solutions to (7.15) with initial parameters before some basic transformation. *Right* data and solutions at the finalized objective function

- 4 ロト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 釣 Q ()

Anran Wang Gradient Matching 2022.10.12 15/60

Figure 8.5 produces a sequence of plots. On the left, we have plotted r(t) as a two-dimensional function of $\hat{C}(t)$ and $\hat{B}(t)$. The middle plot compares this to what we get when fitting a Lotka–Volterra model

$$\frac{dC}{dt} = \alpha C - \beta CB,$$
$$\frac{dB}{dt} = \gamma CB - \delta B.$$

The right panel shows Lotka-Volterra model using gradient matching.

We can see that comparing with the one of Lotka–Volterra model, r(t) of Rosenzweig–MacArthur model is bigger when |C| is big.

◆□ ト ◆□ ト ◆ 壹 ト → 壹 → りへの

Anran Wang Gradient Matching 2022.10.12 16/60

Fig. 8.5 Diagnostics for fitting the chemostat data. The *left panel* provides the lack of fit $\mathbf{r}(t)$ plotted against the estimated state variables using the Rosenzweig–MacArthur ODE. The lack of fit in the C equation is given by *lines*, in the B equation by *circles*. The middle panel uses a simpler Lotka–Volterra ODE. The right panel provides a prototype diagnostic resulting from fitting solutions to a Rosenzweig–MacArthur model with a Lotka–Volterra ODE

4□▶<</p>
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Anran Wang Gradient Matching 2022.10.12 17/60

Conducting inference

To try and understand the variability in $\hat{\theta}$, we will consider taking one step of the Gauss-Newton algorithm that from $\hat{\theta}^{\ell}$ to $\hat{\theta}^{\ell+1}$ i.e. equation (6).

For q = 1, ..., Q, i = 1, ..., d, we will write out the difference in the last term as

$$\begin{split} \left[\hat{\dot{X}}_{i} - F_{i} \left(\hat{\boldsymbol{\theta}}^{\ell} \right) \right]_{q} = & \hat{\dot{X}}_{iq} - E \hat{\dot{X}}_{iq} + E \hat{\dot{X}}_{iq} \\ & - F_{i} \left(t_{q}, E \hat{X}_{q}, \hat{\boldsymbol{\theta}}^{\ell} \right) + F_{i} \left(t_{q}, E \hat{X}_{q}, \hat{\boldsymbol{\theta}}^{\ell} \right) - F_{i} \left(t_{q}, \hat{X}_{q}, \hat{\boldsymbol{\theta}}^{\ell} \right) \\ \approx & \hat{\dot{X}}_{iq} - E \hat{\dot{X}}_{iq} \\ & + \partial_{\mathbf{x}} F_{i} \left(t_{q}, \hat{X}_{q}, \hat{\boldsymbol{\theta}}^{\ell} \right) \left(\hat{X}_{q} - E \hat{X}_{q} \right) + E \hat{\dot{X}}_{iq} - F_{i} \left(t_{q}, E \hat{X}_{q}, \hat{\boldsymbol{\theta}}^{\ell} \right), \end{split}$$

where the last of these terms only involves expectations, so has zero variance.

◆□▶◆□▶◆臺▶◆臺▶ 臺 釣۹0

Anran Wang Gradient Matching 2022.10.12 18/60

Conducting inference

We define

$$H(\boldsymbol{\theta}) := \sum_{i=1}^{d} \partial_{\theta} F_{i}(\boldsymbol{\theta})^{\top} W_{i} \partial_{\theta} F_{i}(\boldsymbol{\theta}),$$

$$J_{i}(\boldsymbol{\theta}) := H(\boldsymbol{\theta})^{-1} \left(\sum_{k=1}^{d} \partial_{\theta} F_{k}(\boldsymbol{\theta})^{\top} W_{k} \left[\operatorname{diag} \left(\partial_{\mathbf{x}} F_{i} \left(t_{q}, \hat{X}_{q}, \hat{\boldsymbol{\theta}}^{\ell} \right) \right)_{i=1}^{d} \mathbb{I}_{i=k} \right] \right),$$

where $\mathbb{I}_{i=k}$ is an identity matrix if i=k and a matrix of zeros, otherwise. Then, putting things together we have

$$Var\left(\hat{\theta} - \hat{\theta}_0\right) \sim Var\left(\sum_{i=1}^d J_i(\tilde{\theta}) \begin{bmatrix} \hat{X}_i - E\hat{X}_i \\ \hat{X}_i - E\hat{X}_i \end{bmatrix} \right),$$

where $\tilde{\theta}$ depend on $\hat{\theta}_0$, but we can substitute $\hat{\theta}$ in $J_i(\tilde{\theta})$ and still produce an (asymptotically) correct answer.

Anran Wang Gradient Matching 2022.10.12 19/60

Nonparametric smoothing variances

With the expression above, we can now calculate a variance as being

$$\mathrm{var}(\hat{\boldsymbol{\theta}}) \sim \sum_{i=1}^d \sum_{k=1}^d J_i(\hat{\boldsymbol{\theta}}) \left[\begin{array}{cc} \mathrm{var}\left(\hat{X}_i, \hat{X}_k\right) & \mathrm{cov}\left(\hat{X}_i, \hat{X}_k\right) \\ \mathrm{cov}\left(\hat{X}_i, \hat{X}_k\right) & \mathrm{var}\left(\hat{X}_i, \hat{X}_k\right) \end{array} \right] J_k(\hat{\boldsymbol{\theta}})^\top.$$

While x is generated by PENSSE (i.e. (19)) with spline basis $\phi(t)$, we have

$$\hat{x}_i(t) = \boldsymbol{\phi}(t)^{\top} \left(\boldsymbol{\Phi}_i^{\top} \boldsymbol{\Phi}_i + \lambda_i \mathbf{P} \right)^{-1} \boldsymbol{\Phi}_i^{\top} Y_i,$$
$$\hat{x}_i(t) = \dot{\boldsymbol{\phi}}(t)^{\top} \left(\boldsymbol{\Phi}_i^{\top} \boldsymbol{\Phi}_i + \lambda_i \mathbf{P} \right)^{-1} \boldsymbol{\Phi}_i^{\top} Y_i.$$

where λ_i is a regularization parameter, and **P** based on $\phi(t)$, look section 8.2 in [1] for further reading.

4 D F 4 B F 4 E F 4 E F 9 Q (*)

Nonparametric smoothing variances

 Y_i have the same variance as the residuals ε , our estimates just inherit this variance. In this case, we can write

$$cov (\hat{x}_i(t), \hat{x}_k(s)) = \sigma_{ik} \phi(t)^{\top} (\mathbf{\Phi}_i^{\top} \mathbf{\Phi}_i + \lambda_i \mathbf{P})^{-1} \mathbf{\Phi}_i^{\top} \mathbf{\Phi}_k (\mathbf{\Phi}_k^{\top} \mathbf{\Phi}_k + \lambda_k \mathbf{P})^{-1} \phi(t)^{\top},
cov (\hat{x}_i(t), \hat{x}_k(s)) = \sigma_{ik} \phi(t)^{\top} (\mathbf{\Phi}_i^{\top} \mathbf{\Phi}_i + \lambda_i \mathbf{P})^{-1} \mathbf{\Phi}_i^{\top} \mathbf{\Phi}_k (\mathbf{\Phi}_k^{\top} \mathbf{\Phi}_k + \lambda_k \mathbf{P})^{-1} \dot{\phi}(t)^{\top},
cov (\hat{x}_i(t), \hat{x}_k(s)) = \sigma_{ik} \dot{\phi}(t)^{\top} (\mathbf{\Phi}_i^{\top} \mathbf{\Phi}_i + \lambda_i \mathbf{P})^{-1} \mathbf{\Phi}_i^{\top} \mathbf{\Phi}_k (\mathbf{\Phi}_k^{\top} \mathbf{\Phi}_k + \lambda_k \mathbf{P})^{-1} \dot{\phi}(t)^{\top},$$

which allows us to construct the covariances above.

Then we use the refinery data to examine above.

□ > <□ > <□ > < □ > < □ > < □ >

Anran Wang Gradient Matching 2022.10.12 21/60

Example: Filling a container

 Table 8.1
 Variances and confidence intervals after gradient matching on the refinery data

	Estimated variance	Confidence intervals	
		Lower	Upper
β_0	0.137091	7.6932	9.1743
β_1	0.000001	-0.0228	-0.0187
α	0.000059	-0.2101	-0.1795

Anran Wang Gradient Matching 2022.10.12 22/60

Table of Contents

- Basics of Gradient Matching
- Properties of Gradient Matching Consistency Asymptotic Representation
- 3 Iterative Gradient Matching
- 4 Appendix

Model

In this section, we consider \hat{x}_n , \hat{x}_n , $\hat{\theta}_n$ as estimates of x, \dot{x} , θ when the sample size is n.

The $L^q(w)$ norm on the space of integrable functions on [0,1] w.r.t. the measure w is

$$||f||_{q,w} = \left(\int_0^1 |f(t)|^q w(t)dt\right)^{1/q}, \ 0 < q \le \infty.$$
 (4)

We define the two-step estimator

$$\hat{\theta}_n = \arg\min_{\theta} R_{n,w}^q(\theta),\tag{5}$$

where
$$R_{n,w}^{q}(\theta) = \left\| \hat{x}_n - F(t, \hat{x}_n, \theta) \right\|_{q,w}$$
.

Next, we consider the consistency and the asymptotic property of Gradient Matching under this model.

A Theorem about M-Estimators

First, we consider a theorem about M-Estimators.

Theorem 1. (Thm 5.7. of [2])

Let M_n be random functions and let M be a fixed function of θ such that for every $\varepsilon > 0$

$$\sup_{\theta \in \Theta} |M_n(\theta) - M(\theta)| \xrightarrow{\mathbf{P}} 0,$$

$$\sup_{\theta : d(\theta, \theta_0) \ge \varepsilon} M(\theta) < M(\theta_0).$$

Then any sequence of estimators $\hat{\theta}_n$ with $M_n(\hat{\theta}_n) \ge M_n(\theta_0) - o_P(1)$ converges in probability to θ_0 .

(D) (B) (E) (E) (E) 연오(C

Anran Wang Gradient Matching 2022.10.12 25/60

Proof of Theorem 1

Proof of Theorem 1:

1 First, we prove $M(\hat{\theta}_n) \stackrel{P}{\rightarrow} M(\theta_0)$.

For the uniform convergence of M_n to M, we have $M_n(\theta_0) \stackrel{P}{\rightarrow} M(\theta_0)$ i.e. $M_n(\theta_0) = M(\theta_0) + o_P(1)$. It follows that $M_n(\hat{\theta}_n) \ge M(\theta_0) - o_P(1)$. Then, we have

$$0 \leq M(\theta_{0}) - M(\hat{\theta}_{n}) \leq M_{n}(\hat{\theta}_{n}) - M(\hat{\theta}_{n}) + o_{P}(1)$$

$$\leq \sup_{\theta} |M_{n} - M|(\theta) + o_{P}(1) \stackrel{P}{\to} 0.$$
(6)

2 Next, we prove $\hat{\theta}_n \stackrel{P}{\to} \theta_0$.

There exists for every $\varepsilon > 0$ a number $\eta > 0$ such that

 $M(\theta) < M(\theta_0) - \eta$ for every θ with $d(\theta, \theta_0) \ge \varepsilon$. Then, we have

$$P(d(\theta, \theta_0) \ge \varepsilon) \le P\left(M(\hat{\theta}_n) < M(\theta_0) - \eta\right) \to 0,$$

i.e.
$$\hat{\theta}_n \stackrel{P}{\rightarrow} \theta_0$$
.

Anran Wang Gradient Matching 26/60

Consider

We expect that uniformly in $\theta \in \Theta$

$$R_{n,w}^q(\theta) \stackrel{P}{\to} R_w^q(\theta),$$

where

$$R_{w}^{q}(\theta) := \left\| \dot{x^{*}} - F(t, x^{*}, \theta) \right\|_{q, w}$$

$$= \left(\int_{0}^{1} \left| F(t, x^{*}, \theta^{*}) - F(t, x^{*}, \theta) \right|^{q} w(t) dt \right)^{1/q}.$$

This discrepancy measure enables us to construct a consistent estimator $\hat{\theta}_n$.

Anran Wang Gradient Matching 2022.10.12 27/60

Consistency of two-step estimators

Proposition 1. (Prop 2.1. of [3])

We suppose there exists a compact set $\mathcal{K} \subset \mathcal{X}$ such that $\forall \theta \in \Theta, \forall x_0 \in \mathcal{X}, \forall t \in [0, 1], x_{\theta, x_0}(t)$ is in \mathcal{K} . Then under the conditions

- lacktriangledown *w is a positive continuous function on* [0,1],
- **2** Uniformly in $(t, \theta) \in [0, 1] \times \Theta$, $F(t, \cdot, \theta)$ is K-Lipschitz on K,
- 3 \hat{x}_n and \hat{x}_n are consistent, and $\hat{x}_n(t) \in \mathcal{K}$ almost surely,

we have

$$\sup_{\theta \in \Theta} \left| R_{n,w}^q(\theta) - R_w^q(\theta) \right| = o_P(1). \tag{7}$$

Moreover, if

4 (identifiability condition) $\forall \epsilon > 0$, $\inf_{\|\theta - \theta^*\| \ge \epsilon} R_w^q(\theta) > R_w^q(\theta^*)$,

then, the two-step estimator is consistent, i.e. $\hat{\theta}_n - \theta^* = o_P(1)$.

Anran Wang Gradient Matching 2022.10.12 28/60

Remarks of Proposition 1

Remarks of Proposition 1:

• Condition 2 \iff For all $\theta \in \Theta$ and $x_1, x_2 \in \mathcal{K}$, we have

$$||F(\cdot,x_1,\theta)-F(\cdot,x_2,\theta)||_{q,w} \le K||x_1-x_2||_{q,w}.$$

- In condition 3, \hat{x}_n and \hat{x}_n are consistent i.e. $\|\hat{x}_n x^*\|_q \stackrel{P}{\to} 0$ and $\|\hat{x}_n \dot{x}^*\|_q \stackrel{P}{\to} 0$. This property depends on the property of the chosen spline.
- Via Theorem 1, we can find that with equation (5), (7) and condition 4, we have $\hat{\theta}_n \stackrel{P}{\to} \theta^*$.

| ロ ト 4 回 ト 4 差 ト 4 差 ト | 差 | 釣 Q ()

Anran Wang Gradient Matching 2022.10.12 29/60

Proof of Proposition 1

Proof of Proposition 1:

For all $\theta \in \Theta$, we have

$$\begin{aligned} \left| R_{n,w}^{q}(\theta) - R_{w}^{q}(\theta) \right| &= \left| \| \hat{x}_{n} - F\left(\cdot, \hat{x}_{n}, \theta \right) \|_{w,q} - \| F\left(\cdot, x^{*}, \theta \right) - F\left(\cdot, x^{*}, \theta^{*} \right) \|_{q,w} \right| \\ &\leq \left\| \left(\hat{x}_{n} - F\left(\cdot, \hat{x}_{n}, \theta \right) \right) + \left(F\left(\cdot, x^{*}, \theta \right) - F\left(\cdot, x^{*}, \theta^{*} \right) \right) \right\|_{q,w} \\ &\leq \left\| \hat{x}_{n} - F\left(\cdot, x^{*}, \theta^{*} \right) \right\|_{q,w} + \left\| F\left(\cdot, \hat{x}_{n}, \theta \right) - F\left(\cdot, x^{*}, \theta \right) \right\|_{q,w}. \end{aligned}$$

By condition 3, we have

$$\begin{aligned} \left\| \dot{\hat{x}}_n - F\left(\cdot, x^*, \theta^*\right) \right\|_{q, w} &= \left\| \dot{\hat{x}}_n - \dot{x}^* \right\|_{q, w} \\ &\leq M \left\| \dot{\hat{x}}_n - \dot{x}^* \right\|_q \stackrel{P}{\to} 0, \end{aligned}$$

where M is a upper bound for w.

Anran Wang Gradient Matching 2022.10.12 30/60

Proof of Proposition 1

By condition 2 and condition 3, for all $(t, \theta) \in [0, 1] \times \Theta$ we have

$$\begin{aligned} \left\| F\left(\cdot, \hat{x}_{n}, \theta\right) - F\left(\cdot, x^{*}, \theta\right) \right\|_{q, w} &\leq K \|\hat{x}_{n} - x^{*}\|_{q, w} \\ &\leq KM \left\| \hat{x}_{n} - x^{*} \right\|_{q} \stackrel{P}{\to} 0. \end{aligned}$$

Then, we have

$$\begin{split} \sup_{\theta \in \Theta} \left| R_{n,w}^{q}(\theta) - R_{w}^{q}(\theta) \right| &\leq \left\| \hat{x}_{n} - F\left(\cdot, x^{*}, \theta^{*}\right) \right\|_{w,q} \\ &+ \sup_{\theta \in \Theta} \left\| F\left(\cdot, \hat{x}_{n}, \theta\right) - F\left(\cdot, x^{*}, \theta\right) \right\|_{w,q} \\ &\leq M \left\| \hat{x}_{n} - F\left(x^{*}, \theta^{*}\right) \right\|_{q} + KM \left\| \hat{x}_{n} - x^{*} \right\|_{q} = o_{P}(1). \end{split}$$

By Theorem 1, if condition 4 holds, we have $\hat{\theta}_n - \theta^* = o_P(1)$.

Anran Wang Gradient Matching 2022.10.12 31/60

Asymptotics of two-step estimators

In this subsection, we focus on the least squares criterion $R_{n,w}^2$, when the estimator of the derivative is $\hat{x}_n := \dot{x}_n$.

In that case, we show that the two-step estimator behaves as the sum of two linear functionals of \hat{x}_n of different nature: a smooth and a non-smooth one.

We can set condition w(0) = w(1) = 0 to make the non-smooth part vanish, implying that the two-step estimator can have a parametric rate of convergence.

32/60

Anran Wang Gradient Matching 2022.10.12

Here are some notations:

- We define $D_1F(x,\theta)$ and $D_2F(x,\theta)$ as the differentials of F at (x,θ) w.r.t. x and θ .
- We adopt the notation $D_i F^*$, i = 1, 2 for the functions $t \mapsto D_i F(x^*(t), \theta^*), i = 1, 2$ and $\hat{D_i} F, i = 1, 2$ for the functions $t\mapsto D_iF\left(\hat{x}(t),\hat{\theta}\right).$
- We adopt the notation $D_{12}F^*$ for $t \mapsto D_1D_2F(x^*(t), \theta^*)$.
- We consider the approximate Hessian matrix J^* of $R^2_{\nu}(\theta)$ at $\theta = \theta^*$:

$$J^* := \int_0^1 \left(D_2 F(t, x^*(t), \theta^*) \right)^\top D_2 F(t, x^*(t), \theta^*) w(t) dt. \tag{8}$$

4 D > 4 A > 4 B > 4 B > B 900

Anran Wang Gradient Matching 2022.10.12 33/60

Asymptotic representation of two-step estimators

Proposition 2. (Prop3.1. of [3])

We suppose that D_{12} exists and w is differentiable. We introduce the two linear operators $\Gamma_{s,w}$ and $\Gamma_{b,w}$ defined by

$$\Gamma_{s,w}(x) = \int_0^1 \left(D_2 F^{*\top}(t) D_1 F^*(t) w(t) + \frac{d}{dt} \left(D_2 F^*(t) w(t) \right) \right) x(t) dt,$$

and

$$\Gamma_{b,w}(x) = w(0)D_2F^{*\top}(0)x(0) - w(1)D_2F^{*\top}(1)x(1).$$

If D_1F , D_2F are Lipschitz in (x, θ) , J^* is invertible, and \hat{x}_n , $\dot{\hat{x}}_n$ are (resp.) consistent estimators of x^* and \dot{x}^* , then

$$\hat{\theta}_n - \theta^* = J^{*-1} \left(\Gamma_{s,w} \left(x^* \right) - \Gamma_{s,w} \left(\hat{x}_n \right) + \Gamma_{b,w} \left(x^* \right) - \Gamma_{b,w} \left(\hat{x}_n \right) \right) + o_P(1). \tag{9}$$

◆□▶ ◆問▶ ◆団▶ ◆団▶ ■ めの○

Anran Wang Gradient Matching 2022.10.12 34/60

Sketch proof of Proposition 2

Sketch proof of Proposition 2:

In this proof, we use $\hat{\theta}, \hat{x}$ to abbreviate $\hat{\theta}_n, \hat{x}_n$.

1 Basic form of $(\hat{\theta} - \theta^*)$ i.e. (10).

For the definition of $\hat{\theta}$ i.e. (5), we have

$$\begin{split} 0 &= \nabla_{\theta} R_{n,w}^{2}(\hat{\theta}) \\ &= \int_{0}^{1} \left(D_{2} F(\hat{x}, \hat{\theta}) \right)^{\top} (\dot{\hat{x}} - F(\hat{x}(t), \hat{\theta})) w dt \\ &= \int_{0}^{1} \left(D_{2} F(\hat{x}, \hat{\theta}) \right)^{\top} \left(\dot{\hat{x}} - \dot{x}^{*} + F^{*} - F(\hat{x}, \theta^{*}) + F(\hat{x}, \theta^{*}) - F(\hat{x}, \hat{\theta}) \right) w dt. \end{split}$$

By the Lagrange formula, we have

$$0 = \int_0^1 \left(D_2 F(\hat{x}, \hat{\theta}) \right)^\top \left(\left(\dot{\hat{x}} - \dot{x}^* \right) + D_1 F\left(\tilde{x}^*, \theta^* \right) \left(x^* - \hat{x} \right) + D_2 F\left(\hat{x}, \tilde{\theta^*} \right) \left(\theta^* - \hat{\theta} \right) \right) w dt,$$

Anran Wang Gradient Matching 2022.10.12 35/60

Sketch proof of Proposition 2

with $\tilde{x^*}$ and $\tilde{\theta^*}$ being random points between x^* and \hat{x} , and θ^* and $\hat{\theta}$. Then, an asymptotic expression for $(\theta^* - \hat{\theta})$ is

$$(\theta^* - \hat{\theta}) \int_0^1 \hat{D}_2 F^\top D_2 F(\hat{x}, \tilde{\theta^*}) w dt = -\left(\int_0^1 \hat{D}_2 F^\top \left(\dot{\hat{x}} - \dot{x^*}\right) w dt\right)$$

$$+ \int_0^1 \hat{D}_2 F^\top D_1 F\left(\tilde{x^*}, \theta^*\right) \left(x^* - \hat{x}\right) w dt$$

$$:= -G_n,$$
(10)

where we define G_n as the negative value of RHS.

◆ロト ◆個 ト ◆重 ト ◆ 重 ・ か へ で

36/60

Anran Wang Gradient Matching 2022.10.12

Sketch proof of Proposition 2

2 Asymptotic form of $(\hat{\theta} - \theta^*)$ i.e. (13).

We define

$$H_n := \int_0^1 (D_2 F^*)^\top \left(\left(\dot{\hat{x}} - \dot{x}^* \right) + D_1 F^* \left(x^* - \hat{x} \right) \right) w dt. \tag{11}$$

Then we have

$$||G_n - H_n||_2 \stackrel{P}{\to} 0,$$

$$||\int_0^1 \hat{D_2} F^\top D_2 F(\hat{x}, \theta^*) dt - J^*||_2 \stackrel{P}{\to} 0,$$
(12)

where the L_2 norm $||A||_2 = \int_0^1 Tr(A^\top(t)A(t))dt$.

We can prove (12) by using the continuous mapping theorem, and a further proof of (12) is in [3].

Sketch proof of Proposition 2

The asymptotic behavior of $(\theta^* - \hat{\theta})$ is then given by

$$\theta^* - \hat{\theta} = J^{*-1}H_n + o_P(1)$$

$$= J^{*-1} \int_0^1 (D_2 F^*)^\top \left(\left(\dot{\hat{x}} - \dot{x}^* \right) + D_1 F^* \left(x^* - \hat{x} \right) \right) w dt + o_P(1).$$
(13)

3 Simplify H_n . Then, we define

$$\Gamma(x) := \int_0^1 D_2 F^{*\top} D_1 F^* x(t) w dt - \int_0^1 (D_2 F^*)^\top \dot{x}(t) w dt,$$

so that, we have

$$H_n = \Gamma(x^*) - \Gamma(\hat{x}). \tag{14}$$

4 □ Þ 4 ∰ Þ 4 ≣ Þ 1 € 1 € 1 € 1

Anran Wang Gradient Matching 2022.10.12 38/60

Sketch proof of Proposition 2

Since $D_{12}F$ and \dot{w} exist, we have

$$\int_0^1 (D_2 F^*(t))^\top \dot{x}(t) w(t) dt = \left[D_2 F^{*\top} x w \right]_0^1 - \int_0^1 \frac{d}{dt} \left(D_2 F^*(t) w(t) \right) x(t) dt.$$

 Γ is the sum of the linear functionals $\Gamma_{s,w}$, $\Gamma_{b,w}$:

$$\Gamma(x) = \int_{0}^{1} \left(D_{2}F^{*\top}D_{1}F^{*}w(t) + \frac{d}{dt} \left(D_{2}F^{*}(t)w(t) \right) \right) x(t)dt + D_{2}F^{*\top}(0)x(0)w(0) - D_{2}F^{*\top}(1)x(1)w(1) = \Gamma_{s,w}(x) + \Gamma_{b,w}(x).$$
(15)

Bring (14), (15) back to (13), we get

$$\hat{\theta}_{n} - \theta^{*} = J^{*-1} \left(\Gamma_{s,w} \left(x^{*} \right) - \Gamma_{s,w} \left(\hat{x}_{n} \right) + \Gamma_{b,w} \left(x^{*} \right) - \Gamma_{b,w} \left(\hat{x}_{n} \right) \right) + o_{P}(1).$$

Anran Wang

B-spline

Next, we consider \hat{x}_n as B-spline based on y_i , i = 1, ..., n.

For a fixed integer $k \geq 2$, we denote $\mathbb{S}(\boldsymbol{\xi}_n, k)$ the space of spline functions of order k with knots $\xi = (0 = \xi_0 < \xi_1 < \dots < \xi_{L+1} = 1)$, where $\boldsymbol{\xi}_n = \max_{1 \le i \le L_n + 1} (\xi_i - \xi_{i-1}).$

A function s in $\mathbb{S}(\xi_n, k)$ is a polynomial of degree k-1, on each interval $[\xi_i, \xi_{i+1}], i = 0, \dots, L$ and s is in $C^{k-2} \cdot \mathbb{S}(\xi_n, k)$ is a space of dimension L + k.

B-splines can be defined recursively from the augmented knot sequence $\tau = (\tau_i, j = 1, \dots, L + 2k)$ with $\tau_1 = \dots = \tau_k = 0, \tau_{j+k} = \xi_j, j = 1, \dots, L$ and $\tau_{L+k+1} = \cdots = \tau_{L+2k} = 1$.

◆□▶ ◆問▶ ◆団▶ ◆団▶ ■ めの○

40/60

Anran Wang Gradient Matching 2022.10.12

B-spline

We note $B_{i,k'}$, the ith B-spline basis function of order k' (1 < k' < k) with the corresponding knot sequence τ . The B-spline basis of order $k'=1,\ldots,k$ are linked then by the recurrence equation:

$$\forall i = 1, \dots, L + 2k - 1, \forall t \in [0, 1], B_{i,1}(t) = 1_{[\tau_i, \tau_{i+1}]}(t),$$
 and
$$\forall i = 1, \dots, L + 2k - k', \forall k' = 2, \dots, k, \forall t \in [0, 1],$$

$$B_{i,k'}(t) = \frac{t - \tau_i}{\tau_{i+k'-1} - \tau_i} B_{i,k'-1}(t) + \frac{\tau_{i+k'} - t}{\tau_{i+k'} - \tau_{i+1}} B_{i+1,k'-1}(t).$$

4 D > 4 A > 4 B > 4 B > B 900

Anran Wang Gradient Matching 2022.10.12 41/60

B-spline

Figure: B-splines with order k=3.

4□ > 4□ > 4 = > 4 = > = 90

Anran Wang Gradient Matching 2022.10.12 42/60

We prescribe some notations:

- $\mathbf{B} := (B_{1,k}, B_{2,k}, ..., B_{L+k,k})^{\top}$ is B-spline basis function of order k,
- $\mathbf{Y}_n := (\mathbf{Y}_1 \dots \mathbf{Y}_d)$ is the $n \times d$ matrix of observations,
- $\mathbf{B}_n := (B_{j,k}(t_i))_{1 \le i \le n, 1 \le j \le L+k}$ is the design matrix.

Then, the estimator \hat{x}_n we consider is written componentwise in the basis of B-splines:

$$\forall i \in \{1, \dots, d\}, \forall t \in [0, 1], \hat{x}_{i,n}(t) = \mathbf{B}^{\top}(t)\hat{\mathbf{c}}_{i,n}.$$
 (16)

We estimate the coefficient matrix C_n by least-squares

$$\hat{\mathbf{c}}_{i,n} = \arg\min_{\mathbf{c} \in \mathbb{R}^{L+k}} \sum_{j=1}^{n} \left(y_{ij} - \mathbf{B} \left(t_j \right)^{\top} \mathbf{c} \right)^2, i = 1, \dots, d,$$
 (17)

then we get $\hat{\mathbf{c}}_{i,n} = (\mathbf{B}_n^{\top} \mathbf{B}_n)^+ \mathbf{B}_n^{\top} \mathbf{Y}_i$.

General results given by reference 21 in [3] ensure that $\|\hat{x}_n - x^*\|_2 \xrightarrow{P} 0$ for sequences of suitably chosen $\mathbb{S}(k, \xi_n)$.

Anran Wang Gradient Matching 2022.10.12 43/60

Asymptotic of regression splines

Proposition 3. (Prop 3.2. of [3])

Let $(\boldsymbol{\xi}_{n,i})_{i=0}^{L_n+1}$ be a sequence of knot sequences of length L_n+2 , and $K_n=\dim(\mathbb{S}(\boldsymbol{\xi}_n,k))=L_n+k$, with $k\geq 2$. We suppose that $L_n\to\infty$ is such that $n^{1/2}|\boldsymbol{\xi}_n|\to 0$ and $n|\boldsymbol{\xi}_n|\to\infty$, where $\boldsymbol{\xi}_n=\max_{1\leq i\leq L_n+1}(\xi_{n,i}-\xi_{n,i-1})$. If $a:[0,1]\to\mathbb{R}$ is in C^1 , and x^* is in $C^{\alpha},2\leq \alpha\leq k$, $\Gamma(x^*)=\int_0^1a(s)x^*(s)ds$ then we have:

- $\Gamma(\hat{x}_n) \Gamma(x^*) = O_P(n^{-1/2})$ and $\sqrt{n}(\Gamma(\hat{x}_n) \Gamma(x^*))$ is asymptotically normal,
- $\forall t \in [0,1], \hat{x}_n(t) x^*(t) = O_P\left(n^{-1/2} |\xi_n|^{-1/2}\right)$, and $Var(\hat{x}_n(t))^{-1/2}(\hat{x}_n(t) x^*(t))$ is asymptotically normal, $t \in [0,1]$.

The proof of the proposition can be seen in [3]. We can **take the proposition back to** (9), then we get the asymptotic normality of the two-step estimator.

 4 □ > 4 ⓓ > 4 ً ≧ > ½
 ₹
 ₹
 •
 •
 •
 •
 ₹
 •
 •
 •
 •
 •
 ₹
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •</td

Asymptotic normality of the two-step estimator

Theorem 2. (Thm 3.1. of [3])

With the conditions

- **1** The conditions of proposition 1 are satisfied,
- **2** *F* is a C^m vector field w.r.t (θ, x) $(m \ge 1)$, such that D_1F , D_2F are Lipschitz w.r.t (θ, x) , and $D_{12}F$ exists,
- **3** J^* of the asymptotic criterion $R_w^2(\theta)$ evaluated at θ^* is nonsingular. Let $\hat{x}_n \in \mathbb{S}(\xi_n, k)$ a regression spline with $k \geq 2$, such that $n^{1/2} |\xi_n| \to 0$ and $n |\xi_n| \to \infty$, then the two-step estimator $\hat{\theta}_n = \arg\min_{\theta} R_{n,w}^2(\theta)$ is asymptotically normal and
 - if w(0) = w(1) = 0, then $(\hat{\theta}_n \theta^*) = O_P(n^{-1/2})$,
 - if $w(0) \neq 0$ or $w(1) \neq 0$, then $(\hat{\theta}_n \theta^*) = O_P(n^{-1/2} |\xi_n|^{-1/2})$. The optimal rate of convergence for the Mean Square Error is obtained for $K_n = O(n^{1/(2m+3)})$, then $(\hat{\theta}_n - \theta^*) = O_P(n^{-(m+1)/(2m+3)})$.

Anran Wang Gradient Matching 2022.10.12 45/60

Sketch proof of Theorem 2

Sketch proof of Theorem 2:

- From proposition 2 and proposition 3, we can claim the asymptotic normality of $\sqrt{n} \left(\Gamma_{s,w} \left(\hat{x}_n \right) \Gamma_{s,w} \left(x^* \right) \right)$ and of $\sqrt{n \left| \boldsymbol{\xi}_n \right|} \left(\Gamma_{b,w} \left(\hat{x}_n \right) \Gamma_{b,w} \left(x^* \right) \right)$. When w(0) = w(1) = 0, there is only the parametric part, but when $\Gamma_{b,w}$
 - When w(0) = w(1) = 0, there is only the parametric part, but when $\Gamma_{b,w}$ does not vanish (i.e. $w(0) \neq 0$ or $w(1) \neq 0$) the nonparametric part with rate $\sqrt{n |\xi_n|}$ remains.
- Theorem 2.1 in reference 44 of [3] gives $E\left(\left(\hat{x}_n(t) x^*(t)\right)^2\right) = O\left(\left|\boldsymbol{\xi}_n\right|^{m+1}\right) \text{ (because } x^* \text{ is } C^{m+1}\text{) and }$ $\operatorname{Var}\left(\hat{x}_n(t)\right) = O_P\left(n^{-1}\left|\boldsymbol{\xi}_n\right|^{-1}\right) \text{ so the optimal rate is reached for }$ $|\boldsymbol{\xi}_n| = O\left(n^{-1/(2m+3)}\right) \text{ and is } O\left(n^{-(2m+2)/(2m+3)}\right).$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Anran Wang Gradient Matching 2022.10.12 46/60

Table of Contents

- Basics of Gradient Matching
- Properties of Gradient Matching
- 3 Iterative Gradient Matching
- 4 Appendix

Anran Wang Gradient Matching 2022.10.12 47/60

Principal Differential Analysis (PDA)

In this section, we focus on the iPDA algorithm in [4].

We consider the model

$$\frac{dx}{dt}(t) + w_x x(t) + w_u u(t) = 0.$$

Then we consider \hat{x}_n as spline based on y_i , i = 1, ..., n (e.g. B-spline).

The regular PDA algorithm gets \hat{x}_n that

$$\hat{x} = \arg\min \sum_{i=1}^{n} (y(t_i) - \hat{x}(t))^2.$$
 (18)

While \hat{x} is the B-spline, \hat{x} we get from (18) is the same as the one get from (16) with (17). Or we can gets \hat{x} that (PENSSE)

$$\hat{x} = \arg\min\left[\sum_{i=1}^{n} (y(t_i) - \hat{x}(t))^2 + \lambda_{HOD} \int \left(\frac{d^2\hat{x}}{dt^2}(t)\right)^2 dt\right]. \tag{19}$$

Anran Wang Gradient Matching 2022.10.12 48/60

A model-based roughness penalty

The iterative part of the iPDA algorithm is based on a model-based roughness penalty that adds to (18).

With the known estimates \hat{w}_x , \hat{w}_u , \hat{u} of w_x , w_u , u, We get \hat{x} that

$$\hat{x} = \arg\min\left[\sum_{i=1}^{n} (y(t_i) - \hat{x}(t))^2 + \lambda_{ODE} \int \left(\frac{d\hat{x}}{dt}(t) + \hat{w}_x \hat{x}(t) + \hat{w}_u \hat{u}(t)\right) dt\right].$$
(20)

The penalty term with the weighting coefficient λ_{ODE} uses the residuals of the ODE model.

□ ▶ <□ ▶ < Ē ▶ < Ē ▶■ ♥

Iteratively refined principal differential analysis (iPDA)

Following are the steps of the iPDA algorithm:

- Estimate the model parameters using the fitted splines and their derivatives as in standard PDA, i.e. solute the equation (18) or (19).
- **2** Solute $\hat{\theta}$ by Gradient Matching (e.g. solute the equation (5)), then get $\hat{w}_x, \hat{w}_u, \hat{u}$ by $\hat{\theta}$.
- 3 Obtain an improved spline fit using a model-based roughness penalty to ensure that the fitted splines are smooth and physically reasonable, i.e. solute the equation (20) and update \hat{x} .
- **4** Solute and update $\hat{\theta}$ by Gradient Matching.
- **5** Iterate between steps 3 and 4 until parameter estimates converge.

Anran Wang Gradient Matching 2022.10.12 50/60

We use continuous stirred-tank reactor model (CSTR) to explore the merits of PDA and iPDA relative to traditional nonlinear least-squares regression. CSTR model has the form

$$\frac{\mathrm{d}C_{\mathrm{A}}}{\mathrm{d}t} = \frac{F}{V} \left(C_{\mathrm{A}_0} - C_{\mathrm{A}} \right) - k_{\mathrm{ref}} \exp \left(-\frac{E}{R} \left(\frac{1}{T} - \frac{1}{T_{\mathrm{ref}}} \right) \right) C_{\mathrm{A}}. \tag{21}$$

With variables:

- **1** C_A is the dynamic response of the concentration of reactant A, with steady state operating point $C_{As} = 0.576$ kmol m⁻³, and the inlet reactant concentration $C_{Ao} = 2.0$ kmol m⁻³.
- 2 T is the temperature, with steady state operating point $T_s = 332 \text{ K}$.

Remark: steady state operating point s means $dC_A/dt|_{at\ s}=0$.

Anran Wang Gradient Matching 2022.10.12 51/60

The kinetic parameters to be estimated:

- 3 $k_{\text{ref}} = k_0 \exp(-E/R T_{\text{ref}})$ is the value of the kinetic rate constant evaluated at reference temperature T_{ref} .
- **4** E/R, where E is the activation energy and R is the Boltzmann ideal gas constant.

And the other parameters:

- **5** T_{ref} is the reference temperature. We can estimate it by \hat{k}_{ref} and $\hat{E/R}$.
- **6** *F* is the reactant feed rate, which steady at $F_s = 0.05 \text{m}^3 \text{ min}^{-1}$.
- 7 V is the constant volume, $V = 1.0 \text{m}^3$.

Anran Wang Gradient Matching

The 1-order Taylor expansion of (21) at the steady state operating point has the form

$$\frac{dC_{A}'}{dt} + w_{C}C_{A}' + w_{T}T' = 0, (22)$$

where $C'_{A} = C_{A} - C_{As}$, $T' = T - T_{s}$. The constant coefficients w_{C} and w_{T} are related to the original model parameters by

$$w_{\rm C} = \frac{F_{\rm s}}{V} + k_{\rm ref} \exp\left(-\frac{E}{R}\left(\frac{1}{T_{\rm s}} - \frac{1}{T_{\rm ref}}\right)\right),$$

$$w_{\rm T} = k_{\rm ref} \frac{E}{R} \frac{C_{\rm As}}{T_{\rm s}^2} \exp\left(-\frac{E}{R}\left(\frac{1}{T_{\rm s}} - \frac{1}{T_{\rm ref}}\right)\right).$$

Next, we consider algorithms based on the ODE (22).

Anran Wang Gradient Matching 2022.10.12 53/60

Fig. 6. Effect of iterative PDA penalty weight on estimates of (a) k_{ref} and (b) E/R obtained using the nonlinear CSTR model. Concentration was measured every 80 s with a standard deviation of $0.016 \, \mathrm{kmol} \, \mathrm{m}^{-3} \, (I = 4.0 \, \mathrm{min}$, three coincident knots at $I = 4.0 \, \mathrm{min}$ for PDA).

Fig. 7. Spline approximations using (a) regular PDA, (b) iPDA with $\lambda_{\rm ODE} = 1.0$, and (c) iPDA with $\lambda_{\rm ODE} = 10.0$. Concentration was measured every 80 s with a standard deviation of $0.016\,{\rm kmol\,m^{-3}}$ ($I=4.0\,{\rm min}$, three coincident knots at $t=4.0\,{\rm min}$).

55/60

Anran Wang Gradient Matching 2022.10.12

Table of Contents

- Basics of Gradient Matching
- 2 Properties of Gradient Matching
- 3 Iterative Gradient Matching
- 4 Appendix

Appendix: Symbol table

Notation	Introduction
x	The function we consider about. (dim <i>d</i>)
\dot{x}	Derivative of x i.e. dx/dt .
θ	The parameter we force on. $(\dim p)$
$\hat{x},\hat{\dot{x}},\hat{ heta},\hat{ heta}^{\ell}$	Estimates, $\hat{\theta}^{\ell}$ is estimate of θ on iteration ℓ .
$\hat{x}_n, \hat{x}_n, \hat{ heta}_n$	Estimates when the sample size is n
x^*, \dot{x}^*, θ^*	Actual values.
$F(t,x(t),\theta)$	$\dot{x}(t) = F(t, x(t), \theta)$ is the ODE we consider.
у	The observed value, $y_i = x(t_i) + \varepsilon_i, i = 1, \dots, n$.
w, w_i, w_{iq}, w_x, w_u	Suitable weight, $w_{iq} := w_i(t_q)$.
$\lambda_i, \lambda_{HOD}, \lambda_{ODE}$	Parameters of penalty terms.
$ISSE(\theta)$	The integrated squared error i.e. (2).

Appendix: Symbol table

Notation	Introduction
$\widehat{\mathrm{ISSE}}(\theta)$	An approximate of $ISSE(\theta)$,
	by a weighted sum at $t_q, q = 1, \dots, Q$.
$F_i(\theta)$	Dim Q vector, with $[F_i(\theta)]_q = F_i(t_q, \hat{x}(t_q), \theta)$.
$\partial_{\theta}F_{i}(\theta)$	$Q \times p \text{ matrix}, \left[\partial_{\theta} F_{i}(\theta)\right]_{qj} = \partial_{\theta_{j}} F_{i}\left(t_{q}, \hat{x}\left(t_{q}\right), \theta\right).$
$\hat{\dot{X}}_i$	Dim Q vector, with $[\hat{X}_i]_q = \hat{x}_i(t_q)$.
\mathbf{W}_i	$Q \times Q$ matrix, with the w_{iq} on the diagonal.
r(t)	The process residuals, $r(t) = \hat{\dot{x}}(t) - F(t, \hat{x}, \theta)$.
$H(\theta), J_i(\theta)$	Functions built to conducting inference, i.e. (3).
$\ \cdot\ _{q,w}$	The $L^q(w)$ norm, i.e. (4).
$R_{n,w}^q(\theta)$	An error, $R_{n,w}^q(\theta) := \ \dot{\hat{x}}_n - F(t,\hat{x}_n,\theta)\ _{q,w}$.
$R_w^q(\theta)$	$R_{w}^{q}(\theta) := \ \dot{x}^{*} - F(t, x^{*}, \theta)\ _{q, w}.$
$D_i F(x,\theta), i=1,2$	the differentials of F w.r.t. x and θ .

Appendix: Symbol table

Notation	Introduction
$D_i F^*, i = 1, 2$	The functions $t \mapsto D_i F(x^*(t), \theta^*), i = 1, 2.$
$\widehat{D_iF}, i=1,2$	The functions $t \mapsto D_i F(\hat{x}(t), \hat{\theta})$.
$D_{12}F^*$	The function $t \mapsto D_1 D_2 F(x^*(t), \theta^*)$.
J^*	Approximate Hessian matrix of $R_w^2(\theta)$ at θ^* i.e. (8).
$\Gamma_{s,w},\Gamma_{b,w},\Gamma$	Linear operators defined in prop 2.
G_n, H_n	Equations in prop 2, i.e. (10) and (14).
$\mathbb{S}(\xi_n,k)$	The space of spline functions of order k
	and ξ_n is the maximum interval between knots.
$oldsymbol{\phi}(t), oldsymbol{\Phi}_i$	Spline basis, and spline basis at t_j , $j = 1,, n$.
$B_{i,k'}(t)$	The i-th basis of order k' B-spline.
В	Order <i>k</i> B-spline basis B := $(B_{1,k}, B_{2,k},, B_{L+k,k})^{\top}$.
\mathbf{B}_n	$\mathbf{B}_n := \left(B_{j,k}\left(t_i\right)\right)_{1 \leq i \leq n, 1 \leq j \leq L+k}$ is the design matrix.

References

- [1] Giles Hooker James Ramsay. "Dynamic Data Analysis". In: (2017). DOI: 10.1007/978-1-4939-7190-9.
- [2] Manfred Denker Rabi Bhattacharya. "Asymptotic Statistics". In: (1990). DOI: 10.1007/978-3-0348-9254-4.
- [3] Nicolas J-B. Brunel. "Parameter estimation of ODE's via nonparametric estimators". In: *Electronic Journal of Statistics* 2.none (2008), pp. 1242–1267. DOI: 10.1214/07-EJS132.
- [4] A.A. Poyton et al. "Parameter Estimation in Continuous-Time Dynamic Models Using Principal Differential Analysis". In: *Computers Chemical Engineering* 30 (Feb. 2006), pp. 698–708. DOI: 10.1016/j.compchemeng.2005.11.008.

Anran Wang Gradient Matching 2022.10.12 60/60