

Москва 2020

Лабораторная работа №1. «Статическая и динамическая индикация»

Цель работы.

Изучение принципов управления одноразрядными и многоразрядными семисегментными цифровыми индикаторами.

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

На практике всегда была актуальна задача отображения информации в виде, удобном для ее зрительного восприятия. В различных цифровых устройствах используются многоразрядные устройства отображения цифровой информации, построенные с использованием статической или динамической индикации. Многоразрядные цифровые индикаторы нашли широкое применение в промышленности в области измерительных приборов и вычислительной техники (калькуляторы, мультиметры, электронные осциллографы, вольтметры, амперметры, панельные цифровые индикаторы для различных датчиков и др.).

1. Статическая индикация

Способ статической индикации заключается в постоянной подсветке индикатора от одного источника информации, т.е. каждый из цифровых индикаторов блока индикации постоянно подключен через собственный преобразователь кода (дешифратор) к собственному источнику информации (например, счетчику). Достоинством статической индикации является простота схемы. К недостаткам относятся большие аппаратурные затраты, необходимость большого числа выводов к многоразрядным индикаторам (для восьмиразрядного — 65 выводов), большого числа дешифраторов и, если требуется, буферных устройств. Кроме того, поскольку все разряды индикатора действуют одновременно, то и для светодиодных индикаторов потребляется большая мощность. Индикаторы применяемые для статической индикации бывают с общим анодом и общим катодом, примеры которых приведены на рис.1, 2.

Рис.1 Трехразрядный индикатор, с общим анодом, применяемый для статической цифровой индикации

Рис.2 Трехразрядный индикатор, с общим катодом, применяемый для статической цифровой индикации

Реализация способа статической индикации на цифровых индикаторах с общим катодом приведена на рис.3

Рис. 3 Реализация способа трехразрядной статической цифровой индикации

2. Динамическая индикация.

Сущность динамической индикации заключается в поочерёдном циклическом подключении каждого индикатора к источнику информации через общую цепь преобразования кода. Достоинство способа заключается в экономии микросхем преобразователей кода и соединительных проводов. Последнее является весьма существенным при удалении блока индикации от источника информации. Преимущества этого способа особо ощутимы при числе индицируемых знаков, большем 4...6.

2.1. Динамическая индикация с последовательной выборкой элементов знака.

Типовая схема реализации динамической индикации с последовательной выборкой элементов знака представлена на рисунке 4. Принцип работы схемы заключается в том, что генератор импульсов частотой fp, совместно со счетчиком DD7 генерирует двоичный код, который после дешифрации цифр DD8 последовательно возбуждает и синтезирует цифры от 0 до 9 параллельно на всех знакоместах.

Рис.4 Схема динамической индикации с последовательной выборкой элементов знака

2.2. Динамическая схема индикации с последовательной выборкой знакомест.

Схема динамической индикации с последовательной выборкой знакомест представлена на рисунке 5. Выборка знакомест выполнена на счетчике DD6 и дешифраторе DD7, которые возбуждают знакоместа десятичных разрядов. С помощью мультиплексоров DD1-DD4, управляемых кодом выбранного знакоместа, синхронно подается двоично-десятичная информация D1-D8, подлежащая индикации. Каждый мультиплексор коммутирует соответственно разряды двоично-десятичного кода с одинаковыми весовыми коэффициентами.

Мультиплексированная информация дешифрируется дешифратором DD8 и возбуждает соответствующие сегменты монодисплея. Время цикла распределителя зависит от количества знакомест и равна Тр=n tp, где tp—время возбуждения одного разряда, а n—число разрядов. Частота распределителя fp=1/Tp=1/(n tp), задаваемая генератором DD5, должна быть выше или равной некоторой критической частоты fkp>20 Гц, при которой мерцание разрядов незаметно, т. е. fp=nf кр.

Достоинством подобной динамической схемы управления монодисплеем является аппаратная простота. Но с увеличением количества знакомест растет скважность импульса возбуждения, требуется достаточное быстродействия от индикатора, способность эффективно работать в режиме коротких импульсов.

Рис.5 Схема динамической индикации с последовательной выборкой знакомест

Схемы подключения многоразрядных цифровых индикаторов для динамической индикации бывают с общим анодом и общим катодом, схемы которых приведены на рис.6 и рис.7, соответственно.

Рис.6 Схема подключения цифровых индикаторов с общим анодом при динамической индикации

Рис.7 Схема подключения цифровых индикаторов с общим катодом при динамической индикации

УЧЕБНЫЕ ЗАДАНИЯ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ИХ ВЫПОЛНЕНИЮ

Во всех заданиях, в схемных установках, необходимо установить рабочее поле не менее 50 см в ширину и не менее 30 см в высоту.

Задание 1. Соберите на рабочем поле среды Multisim схему для исследования статической индикации на четырех одноразрядных семисегментных индикаторах с общим анодом, цвет которых определен вариантом(рис. 8) и установите источник необходимого напряжения. Скопируйте схему на страницу отчёта.

Рис.8 Схема для исследования статической индикации на четырех одноразрядных семисегментных индикаторах с общим анодом

Состав схемы: интерактивные цифровые константы; дешифраторы из двоичного в семисегментный код; семисегментные индикаторы с общим анодом, источник питания +5В.

С помощью интерактивных цифровых констант выставьте, в соответствии с вариантом(табл.1), необходимые значения отображаемых чисел, в двоичном коде.

При моделировании убедитесь в правильности отображаемой информации, сделайте скриншот и поместите его в отчет. Измените на две единицы, в сторону увеличения, значения единиц и сотен отображаемого числа и убедитесь в правильности отображения информации, сделайте скриншот и поместите его в отчет.

Таблица 1

Вариант	Отображаемая информация, в десятичном коде	Цвет семисегментных индикаторов
1, 6, 11, 16, 21, 26, 31	4325	красный
2, 7, 12, 17, 22, 27, 32	5143	синий
3, 8, 13, 18, 23, 28, 33	7231	зеленый
4, 9, 14, 19, 24, 29	8572	оранжевый
5, 10, 15, 20, 25, 30	6453	желтый

Объясните полученные результаты.

Задание 2. Соберите на рабочем поле среды Multisim схему для исследования статической индикации на четырех одноразрядных семисег-

ментных индикаторах с общим катодом, цвет которых определен вариантом(рис. 9), **установите** точку 0 потенциала. **Скопируйте** схему на страницу отчёта.

Рис.9 Схема для исследования статической индикации на четырех одноразрядных семисегментных индикаторах с общим катодом

Состав схемы: интерактивные цифровые константы; дешифраторы из двоичного в семисегментный код; семисегментные индикаторы с общим катодом.

С помощью интерактивных цифровых констант выставьте, в соответствии с вариантом(табл.2), необходимые значения отображаемых чисел, в двоичном коде.

При моделировании убедитесь в правильности отображаемой информации, сделайте скриншот и поместите его в отчет. Измените на три единицы, в сторону уменьшения, значения тысяч и десятков отображаемого числа и убедитесь в правильности отображения информации, сделайте скриншот и поместите его в отчет.

Таблица 2

Вариант	Отображаемая информация, в десятичном коде	Цвет семисегментных индикаторов
1, 6, 11, 16, 21, 26, 31	7483	желтый
2, 7, 12, 17, 22, 27, 32	5447	красный
3, 8, 13, 18, 23, 28, 33	6371	синий
4, 9, 14, 19, 24, 29	5576	зеленый
5, 10, 15, 20, 25, 30	8451	оранжевый

Объясните полученные результаты.

Задание 3. Соберите на рабочем поле среды Multisim схему для исследования динамической индикации на четырехразрядном семисегментном индикаторе с общим анодом, цвет которого определен вариантом(рис. 10) и установите источник необходимого напряжения, а также параметры генератора(рис.11). Скопируйте схему на страницу отчёта.

Рис. 10 Схема для исследования динамической индикации на четырехразрядном семисегментном индикаторе с общим анодом

Рис. 11 Параметры генератора для выборки знакомест четырехразрядного индикатора

Состав схемы: интерактивные цифровые константы; мультиплексоры 4 в 1; дешифратор из двоичного в семисегментный код, с инверсными выходами; дешифратор 2 в 4, с инверсными выходами; семисегментные индикаторы с общим анодом; ЈК- триггеры; транзисторы ВС557А; генератор импульсов; источник питания +5В; согласующие резисторы.

С помощью интерактивных цифровых констант выставьте, в соответствии с вариантом(табл.3), необходимые значения отображаемых чисел, в

двоичном коде, значение источника питания Vcc и параметры генератора импульсов.

При моделировании убедитесь в правильности работы схемы динамической индикации и отображаемой информации, сделайте скриншот одного из разрядов и поместите его в отчет. Измените на две единицы, в сторону уменьшения значение выбранного разряда отображаемого числа и убедитесь в правильности отображения информации, сделайте скриншот и поместите его в отчет.

Таблица 3

Вариант	Отображаемая информация, в десятичном коде	Цвет семисегмент- ных индикаторов	Значение Vcc (B)
1, 6, 11, 16, 21, 26, 31	8375	оранжевый	5
2, 7, 12, 17, 22, 27, 32	4574	желтый	5
3, 8, 13, 18, 23, 28, 33	7465	красный	5
4, 9, 14, 19, 24, 29	7652	синий	7
5, 10, 15, 20, 25, 30	5385	зеленый	5

Объясните полученные результаты.

Задание 4. Соберите на рабочем поле среды Multisim схему для исследования динамической индикации на четырехразрядном семисегментном индикаторе с общим катодом(рис. 12), цвет которого определен вариантом и разместите точку «0» потенциала, а также параметры генератора(рис.11). Скопируйте схему на страницу отчёта.

Рис.12 Схема для исследования динамической индикации на четырехразрядном семисегментном индикаторе с общим катодом

Состав схемы: интерактивные цифровые константы; мультиплексоры 4 в 1; дешифратор из двоичного в семисегментный код; дешифратор 2 в 4, с ин-

версными выходами; семисегментные индикаторы с общим катодом; JK-триггеры; транзисторы BC848B, генератор импульсов, инверторы; согласующие резисторы.

С помощью интерактивных цифровых констант выставьте, в соответствии с вариантом(табл.4), необходимые значения отображаемых чисел, в двоичном коде и параметры генератора импульсов.

При моделировании убедитесь в правильности работы схемы динамической индикации и отображаемой информации, сделайте скриншот одного из разрядов и поместите его в отчет. Измените на три единицы, в сторону увеличения значение выбранного разряда отображаемого числа и убедитесь в правильности отображения информации, сделайте скриншот и поместите его в отчет.

Таблица 4

Вариант	Отображаемая информация, в десятичном коде	Цвет семисегментных индикаторов
1, 6, 11, 16, 21, 26, 31	2543	зеленый
2, 7, 12, 17, 22, 27, 32	4452	оранжевый
3, 8, 13, 18, 23, 28, 33	3463	желтый
4, 9, 14, 19, 24, 29	1215	красный
5, 10, 15, 20, 25, 30	4314	синий

Объясните полученные результаты.

СОДЕРЖАНИЕ ОТЧЁТА

- 1. Наименование и цель работы.
- 2. Перечень элементов схем, использованных в исследованиях, с их краткими характеристиками.
- 3. Изображения электрических схем для исследования схем статической и динамической индикации.
 - 4. Свой вариант исходных данных для исследования схем индикации.
 - 5. Выводы по работе.

Контрольные вопросы

- 1. Объясните отличия способов статической и динамической индикации.
- 2. Какие данные нужно подать на вход схемы в задании 2, чтобы на индикаторе десятков отображаемого числа отображалась цифра 5, а единии 7?
- 3. Объясните общий принцип функционирования систем динамической индикации.

- 4. Расскажите о принципе функционирования схемы динамической индикации с последовательной выборкой знакомест.
- 5. Поясните принцип функционирования схемы динамической индикации с последовательной выборкой элементов знака.
- 6. Объясните принцип функционирования схемы динамической индикации с последовательным интерфейсом управления многоразрядными цифровыми индикаторами.