

Facultad de Ciencias - Escuela Profesional de Matemática- Ciclo 2010-2

Práctica Calificada Nro.2 de Cálculo Vectorial I-CM 141 A, B y C

Demuestre que la distancia entre las rectas $L_1 = L_1(\underline{a}, \underline{b}, c)$ y $L_2 = L_2(\underline{a}, \underline{b}, c')$ está dado por $\frac{|c-c'|}{\sqrt{a^2+b^2}}$

Sean \overrightarrow{u} y $\overrightarrow{v} \in \mathbb{R}^2 \setminus \{\overrightarrow{0}\}$. Diga si las siguientes afirmaciones son verdaderas o falsas, justificando su respuesta:

a) $\overrightarrow{u}^{\perp} + \overrightarrow{v} = \overrightarrow{u} + \overrightarrow{v}^{\perp}$, entonces $\overrightarrow{u} = \overrightarrow{v}$.

Si $\{\overrightarrow{u}, \overrightarrow{v}^{\perp}\}$ son linealmente independientes entonces $\{\Pr{oy_{\overrightarrow{v}^{\perp}}\overrightarrow{u}}, \Pr{oy_{\overrightarrow{w}^{\perp}}\overrightarrow{v}}\}$ son linealmente independientes.

Para que valores de a los vectores $\overrightarrow{u} = (a - 5, 4)$, $\overrightarrow{v} = (2a, -1)$ son linealmente independientes

Dados $\overrightarrow{u} = (1, -1), \overrightarrow{v} = (1, 2),$ encontrar los parámetros r y s \in IR tal que (2, 3) =

Considere la siguiente figura 1, halle la ecuación vectorial de la recta L₃

Dado un triángulo en el plano Euclideano tal que:

(i)
$$\overline{AB} \subset L((-1,5), (3,-1))$$

(ii)
$$\overline{BC} \subset L((9,5), (4,2))$$

$$(iii) \ \overline{CA} \ \subset \ L((0,-2),\ (1,3))$$

a) Encuentre las coordenadas de A, B y C.

b) Determine el área de la región triangular ABC.

UNI, 20 de Setiembre del 2010

Los Profesores