11.- Causal Anaysis 04 06 turismo origen completo v 01

June 11, 2023

#

CU45_Planificación y promoción del destino en base a los patrones en origen de los turistas

Citizenlab Data Science Methodology > II - Data Processing Domain *** > # 11.- ECA - Exploratory Causal Analysis

Exploratory causal analysis (ECA) is the process of discovering the root causes of problems in order to identify appropriate solutions.

0.1 Tasks

Define the key challenge or setback

Determine the causes and effects of the key challenge

Use a diagram or graph to organize information

Formulate a response to the primary causes of your challenge

Review your process and address new causes and effects

0.2 File

- Input File: CU 45 06 03 turismo receptor.csv
- Sampled Input File: CU_45_07_03_turismo_receptor.csv
- Output File: No aplica

0.2.1 Encoding

Con la siguiente expresión se evitan problemas con el encoding al ejecutar el notebook. Es posible que deba ser eliminada o adaptada a la máquina en la que se ejecute el código.

```
[1]: Sys.setlocale(category = "LC_ALL", locale = "es_ES.UTF-8")
```

```
Warning message in Sys.setlocale(category = "LC_ALL", locale = "es_ES.UTF-8"):
"OS reports request to set locale to "es_ES.UTF-8" cannot be honored"
```

,,

0.3 Settings

0.3.1 Libraries to use

```
[3]: library(readr)
library(dplyr)
library(tidyr)
library(stringr)
```

0.3.2 Paths

```
[4]: iPath <- "Data/Input/" oPath <- "Data/Output/"
```

0.4 Data Load

OPCION A: Seleccionar fichero en ventana para mayor comodidad

Data load using the {tcltk} package. Ucomment the line if using this option

```
[4]: # file_data <- tcltk::tk_choose.files(multi = FALSE)
```

OPCION B: Especificar el nombre de archivo

```
[7]: iFile <- "CU_45_06_03_turismo_receptor.csv"
    file_data <- pasteO(iPath, iFile)

if(file.exists(file_data)){
      cat("Se leerán datos del archivo: ", file_data)
} else{
      warning("Cuidado: el archivo no existe.")
}</pre>
```

Se leerán datos del archivo: Data/Input/CU_45_06_03_turismo_receptor.csv

Data file to dataframe Usar la función adecuada según el formato de entrada (xlsx, csv, json, ...)

```
[8]: data <- read_csv(file_data)
```

Rows: 50294 Columns: 8 Column specification

```
Delimiter: ","
chr (5): mes, pais_orig_cod, pais_orig, mun_dest, CMUN
dbl (3): mun_dest_cod, turistas, Target
```

Use `spec()` to retrieve the full column specification for this data.

Specify the column types or set `show_col_types = FALSE` to quiet this message.

Visualizo los datos.

Estructura de los datos:

[9]: data |> glimpse()

```
Rows: 50,294
Columns: 8
                <chr> "2019-07", "2019-07", "2019-07",
$ mes
"2019-07", "2019-07", "...
$ pais_orig_cod <chr> "000", "010", "011", "030", "110",
"121", "123", "126", ...
                <chr> "Total", "Total Europa", "Total Unión
$ pais_orig
Europea", "Total A...
$ mun_dest_cod <dbl> 28002, 28002, 28002, 28002, 28002,
28002, 28002, 28002, ...
                <chr> "Ajalvir", "Ajalvir", "Ajalvir",
$ mun_dest
"Ajalvir", "Ajalvir", "...
$ turistas
                <dbl> 338, 290, 268, 37, 56, 54, 37, 40, 157,
116, 109, 8461, ...
                <chr> "002", "002", "002", "002", "002",
$ CMUN
"002", "002", "002", ...
                <dbl> 338, 290, 268, 37, 56, 54, 37, 40, 157,
$ Target
116, 109, 8461, ...
```

Muestra de los primeros datos:

[8]: data |> slice_head(n = 5)

A spec_tbl_df: 5×49	GEOCODIGO <chr></chr>	DESBDT <chr></chr>	ano <dbl></dbl>	semana <dbl></dbl>	n_vacunas <dbl></dbl>	n_citas <dbl></dbl>	tmed $$	
	259	V Centenario	2022	34	0	0	27.278748	_
	260	Valdeacederas	2022	8	0	0	9.577289	
	041	Canillejas	2022	9	0	0	8.536554	;
	025	Barajas	2022	49	292	280	9.065363	,
	046	Castelló	2022	24	0	0	29.905728	(

0.5 Exploratory causal analysis

REFERENCE https://bookdown.org/paul/applied-causal-analysis/

Select columns

```
[14]: # Seleccionamos las variables a analizar.
excluded_cols <- c("is_train", "turistas")
all_cols <- names(data)</pre>
```

```
cols <- setdiff(all_cols, excluded_cols)</pre>
```

```
[16]: # If not already installed, install the ggplot2 package
   if(!require(ggplot2)) install.packages('ggplot2')

# Load the ggplot2 package
   library(ggplot2)

# Create scatterplots
for (col in cols) {
    if (is.numeric(data[[col]])) {
        p <- ggplot(data, aes_string(x = col, y = 'Target')) +
            geom_point() +
            geom_smooth(method = "lm", se = FALSE, color = "red") +
            theme_minimal() +
            ggtitle(paste("Scatterplot of", col, "and Target"))
            print(p)
    }
}</pre>
```

```
`geom_smooth()` using formula = 'y ~ x'
`geom_smooth()` using formula = 'y ~ x'
```


Este análisis no aporta información relevante.

0.6 REPORT

A continuación se realizará un informe de las acciones realizadas

0.7 Main Actions Carried Out

• Se ha realizado un análisis causal básico

0.8 Main Conclusions

• Los datos son adecuados para los modelos que se preveen