Technische Universität Berlin

Fakultät II – Institut für Mathematik Grigorieff, Penn-Karras WS 03/04 23.2.04

Februar – Klausur (Rechenteil) Analysis II für Ingenieure

Name:	Vorname:				
MatrNr.:	Studiengang:				
Falls Ihr Studiengang 40% Hausaufgabe In welchem Semester haben Sie die erre					
Neben einem handbeschriebenen A4 I zugelassen.	Blatt mit No	tizen s	ind ke	ine Hil	fsmittel
Es sind keine Taschenrechner und H	\mathbf{andys} zugela	assen.			
Die Lösungen sind in Reinschrift auf schriebene Klausuren können nicht gev		_	ben. M	it Blei	stift ge-
Dieser Teil der Klausur umfasst die vollständigen Rechenweg an.	Rechenaufgal	ben. G	eben S	Sie imn	ner den
Die Bearbeitungszeit beträgt 60 Minu	ten.				
Die Gesamtklausur ist mit 32 von 80 beiden Teile der Klausur mindestens 10			-		
Korrektur					
	1	2	3	4	Σ

1. Aufgabe 10 Punkte

- a) Bestimmen Sie alle Stammfunktionen von $f(x) = \frac{1}{x^2 + 3x + 2}$.
- **b)** Berechnen Sie das uneigentliche Integral $\int_0^\infty \frac{dx}{x^2 + 3x + 2}$.

2. Aufgabe 10 Punkte

Gegeben sei die 2π -periodische Funktion f, die auf dem Intervall $[-\pi,\pi[$ gegeben ist durch

$$f(x) = \begin{cases} 0 & \text{falls } x \in [-\pi, 0[\\ x & \text{falls } x \in [0, \pi[\end{cases}]$$

- a) Skizzieren Sie f auf dem Intervall $]-\pi, 3\pi[$.
- b) Berechnen Sie die komplexe Fourierreihe von f.
- c) Wogegen konvergiert die Fourierreihe im Punkt $x = \pi$?

3. Aufgabe 10 Punkte

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ durch

$$f(x,y) = xy + x - 1.$$

- a) Bestimmen Sie alle kritischen Punkte von f. Entscheiden Sie, ob es sich um ein lokales Minimum, Maximum oder einen Sattelpunkt handelt. Hat f auf \mathbb{R}^2 ein globales Minimum oder Maximum?
- b) Berechnen Sie das globale Maximum von f auf der abgeschlossenen Kreisscheibe $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}.$

4. Aufgabe 10 Punkte

Gegeben sei folgende Menge B im \mathbb{R}^3 ,

$$B = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 - 1 \le z \le 3\}.$$

- a) Skizzieren Sie B.
- b) Berechnen Sie das Volumen von B.