Definitions and first examples

Solution 1.1:

Solution 1.2:

Solution 1.3:

Solution 1.4:

Solution 1.5:

Solution 1.6:

Solution 1.7:

Solution 1.8:

Solution 1.9:

Solution 1.10:

Solution 1.11:

Solution 1.12:

Ideals and homomorphisms

Solution 2.1:

Solution 2.2:

Solution 2.3:

Solution 2.4:

Solution 2.5:

Solution 2.6:

Solution 2.7:

Solution 2.8:

Solution 2.9:

Solution 2.10:

Solution 2.11:

Solution 2.12:

Solvable and nilpotent Lie algebras

Solution 3.1:

Solution 3.2:

Solution 3.3: The relations

$$[x, y] = h$$
$$[h, x] = 2x$$
$$[h, y] = -2y$$

hold equally well in characteristic 2, but the last 2 brackets are then 0. Thus $L^1=[L,L]=\mathbb{C}h$, and $L^2=[L^1,L]=[\mathbb{C}h,L]=0$, since [h,-] is uniformly 0.

Solution 3.4:

Solution 3.5:

Solution 3.6:

Solution 3.7: $K \subset N_L(K)$ follows from K being closed under the bracket operation. Let n be the unique non-negative integer such that $L^n \subsetneq K$ but $L^{n+1} \subset K$, which exists because K is proper and L is nilpotent. Let $z \in L^n \setminus K$. I claim that $z \in N_L(K)$. Indeed,

$$zK \subset [L^n,K] \subset [L^n,L] = L^{n+1} \subset K$$

Solution 3.8:

Solution 3.9:

Solution 3.10:

Theorems of Lie and Cartan

Solution 4.1:

Solution 4.2:

Solution 4.3:

Solution 4.4:

Solution 4.5:

Solution 4.6:

Solution 4.7:

Solution 4.8:

Killing form

- Solution 5.1:
- Solution 5.2:
- Solution 5.3:
- Solution 5.4:
- Solution 5.5:
- Solution 5.6:
- **Solution 5.7:**
- Solution 5.8:

Complete reducibility of representations

Solution 6.1:

Solution 6.2:

Solution 6.3: Let $\phi: L \to \mathfrak{gl}(V)$ be an irreducible representation of a solvable Lie algebra L. Let M denote $\phi(L)$, which is a linear Lie algebra isomorphic to a quotient of L and hence also solvable. By Lie's theorem, there is a flag $0 \subset V_0 \subset V_1 \subset \cdots \subset V_n = V$ of V which is stable under M, and if $\dim V > 1$, then V_1 is a non trivial proper subrepresentation of M, so V is not irreducible as a representation of M. However, an M-subrepresentation of V is also an L-subrepresentation, because $l \in L$ acts by $\phi(l)$, and the flag is stable under the action of $\phi(l) \in M$.

Solution 6.4:

Solution 6.5:

Solution 6.6:

Solution 6.7:

10CHAPTER 6. COMPLETE REDUCIBILITY OF REPRESENTATIONS

Solution 6.8:

Solution 6.9:

Representations of $\mathfrak{sl}(2,F)$

Solution 7.1:

Solution 7.2:

Solution 7.3:

Solution 7.4:

Solution 7.5:

Solution 7.6:

Solution 7.7:

Root space decomposition

Solution 8.1:

Solution 8.2:

Solution 8.3:

Solution 8.4:

Solution 8.5:

Solution 8.6:

Solution 8.7:

Solution 8.8:

Solution 8.9:

Solution 8.10:

Solution 8.11: