CPSC 486/586: Probabilistic Machine Learning Out: February 15, 2023

Problem Set 3

Instructor: Andre Wibisono Due: March 1, 2023

(P1) Consider a Gaussian graphical model on an undirected graph G = (V, E) on vertices $V = \{1, 2, ..., n\}$. This means $X = (X_1, X_2, ..., X_n) \in \mathbb{R}^n$ has joint probability distribution $\rho \colon \mathbb{R}^n \to \mathbb{R}$ with density:

$$\rho(x) = \frac{1}{Z} \exp\left(-\sum_{i \in V} \alpha_i x_i^2 + \sum_{(i,j) \in E} \beta_{ij} x_i x_j\right) \qquad \forall \ x = (x_1, \dots, x_n) \in \mathbb{R}^n$$

for some $\alpha_i > 0$, $\beta_{ij} \in \mathbb{R}$, where Z is the normalizing constant. Assume $Z < \infty$ and $\beta_{ij} \neq 0$ for all $(i, j) \in E$.

(a) Show that for all $i, j \in V$ with $(i, j) \notin E$ and $i \neq j$, we have:

$$X_i \perp X_j \mid X_{\setminus \{i,j\}}$$
.

That is, show that the density of (X_i, X_j) given $X_{\{\setminus i,j\}} = (X_k : k \neq i,j)$ factorizes:

$$\rho(x_i, x_j \mid x_{\setminus \{i,j\}}) = \rho(x_i \mid x_{\setminus \{i,j\}}) \cdot \rho(x_j \mid x_{\setminus \{i,j\}})$$

for all $x_i, x_j \in \mathbb{R}$, and $x_{\setminus \{i,j\}} \in \mathbb{R}^{n-2}$.

(This means the absence of edges in the graph encodes the conditional independence between the random variables.)

(b) Let $C = \mathsf{Cov}_{\nu}(X) \in \mathbb{R}^{n \times n}$ be the covariance matrix of $X = (X_1, \dots, X_n) \in \mathbb{R}^n$. Show that the nonzero pattern of C^{-1} matches the edge pattern of G, i.e., for all $i, j \in V$, $i \neq j$:

$$(C^{-1})_{ij} = 0 \qquad \Leftrightarrow \qquad (i,j) \notin E.$$

(*Hint:* Note that ρ is a Gaussian distribution.)

(P2) (Bayesian logistic regression) Suppose we have a hidden parameter $X \in \mathbb{R}$ with a Gaussian prior: $X \sim \rho_0 = \mathcal{N}(0, 1)$. For i = 1, ..., n, suppose we are given the covariates $W_1, ..., W_n \in \mathbb{R}$. We observe the labels $Y_i, ..., Y_n \in \{0, 1\}$ following the Bernoulli distribution:

$$Y_i \mid \{X = x, W_i = w_i\} \sim \text{Ber}(\sigma(xw_i))$$
 for $i = 1, \dots, n$ iid.

¹Note that usually the notation is x_i for the covariates and w for the hidden parameter, but the notation is changed here. This is to be consistent with the other problems, which describe the distribution of interest in x variables.

This means $\Pr(Y_i = 1 \mid X = x, W_i = w_i) = \sigma(xw_i) = \frac{1}{1 + e^{-xw_i}} = \frac{e^{xw_i}}{e^{xw_i} + 1}$ where $\sigma(z) = \frac{1}{1 + e^{-z}}$ is the sigmoid function.

Let $\rho_n(x) = \rho_n(x \mid y_1, \dots, y_n)$ be the posterior distribution of X after seeing n observations $Y = (y_1, \dots, y_n) \in \{0, 1\}^n$. Recall (or check) that we can write $\rho_n(x) \propto \exp(-f_n(x))$ where

$$f_n(x) = \frac{1}{2}x^2 - \sum_{i=1}^n y_i w_i x + \sum_{i=1}^n \log(1 + \exp(w_i x)).$$

In this problem, suppose concretely we observe the following n=10 observations:

$$(w_1, y_1) = (1, 1)$$

$$(w_2, y_2) = (-2, 0)$$

$$(w_3, y_3) = (3, 1)$$

$$(w_4, y_4) = (5, 1)$$

$$(w_5, y_5) = (-5, 0)$$

$$(w_6, y_6) = (7, 1)$$

$$(w_7, y_7) = (-1, 1)$$

$$(w_8, y_8) = (-3, 0)$$

$$(w_9, y_9) = (4, 1)$$

$$(w_{10}, y_{10}) = (-10, 0)$$

We want to approximate ρ_n by a Gaussian distribution $\rho^* = \mathcal{N}(m^*, C^*)$ for some $m^* \in \mathbb{R}$ and $C^* \geq 0$. For each method below, compute the approximation explicitly.

(You can use any numerical method to solve the resulting (1-dimensional) computational problem, e.g. implementing an optimization algorithm, or integrating via numerical method.)

(a) Compute the Laplace approximation:

$$\rho_{\mathrm{Lap}}^* = \mathcal{N}(m_{\mathrm{Lap}}, C_{\mathrm{Lap}})$$

Include a snippet of your code or calculations.

(b) Compute the EP (expectation propagation) approximation:

$$\rho_{\text{EP}}^* = \mathcal{N}(m_{\text{EP}}, C_{\text{EP}}) = \arg\min_{\rho = \mathcal{N}(m, c)} \mathsf{KL}(\rho_n \parallel \rho)$$

Include a snippet of your code or calculations.

(c) Compute the VB (variational Bayes) approximation:

$$\rho_{\mathrm{VB}}^* = \mathcal{N}(m_{\mathrm{VB}}, C_{\mathrm{VB}}) = \arg\min_{\rho = \mathcal{N}(m, c)} \mathsf{KL}(\rho \parallel \rho_n)$$

Include a snippet of your code.

- (d) Provide a table to summarize the different values of m and C above. Plot the density of the posterior ρ_n and the three Gaussian approximations above, and also plot the log-density.
- (P3) Consider a Bayesian model where $X \in \mathbb{R}^d$ has a prior probability distribution ρ_0 , and we observe Y = X + Z where $Z \sim \mathcal{N}(0, I)$ is an independent Gaussian random variable in \mathbb{R}^d .

For each $y \in \mathbb{R}^d$, let $\rho_{0|1}(x \mid y)$ denote the posterior distribution of X given Y = y, which is:

$$\rho_{0|1}(x \mid y) = \frac{\rho_0(x) \cdot (2\pi)^{-\frac{d}{2}} \exp(-\frac{1}{2}||y - x||^2)}{\rho_1(y)}.$$

We also write $\rho_{0|1=y} \equiv \rho_{0|1}(\cdot \mid y)$ for the posterior distribution of X given Y=y.

Let $\rho_1(y)$ denote the marginal distribution of Y at y according to the process above.

- (a) Write down what is ρ_1 in terms of ρ_0 and $\gamma = \mathcal{N}(0, I)$.
- (b) Recall the score function of ρ_1 is the gradient of log-density $\nabla \log \rho_1(y)$. Show that the score function of ρ_1 can be written in terms of the expectation under the posterior distribution:

$$\nabla \log \rho_1(y) = \mathbb{E}_{\rho_{0|1=y}}[X] - y.$$

(This is also known as Tweedie's formula.)

(c) Show that the Jacobian (derivative) of the score function, which is the second derivative of $\log \rho_1$, can be written in terms of the covariance of the posterior:

$$\nabla^2 \log \rho_1(y) = \mathsf{Cov}_{\rho_{0|1}=y}[X] - I.$$

Above,
$$\mathsf{Cov}_{\rho_{0|1=y}}[X] = \mathbb{E}_{\rho_{0|1=y}}[(X-\mu)(X-\mu)^{\top}]$$
 is the covariance where $\mu = \mathbb{E}_{\rho_{0|1=y}}[X]$.

- (P4) Start thinking about how to relate the problem or topic that you proposed in PS2, to techniques and ideas we've learned in the class. Concretely,
 - (a) State a question that you are interested in answering (or a new question, if you found that it was answered in PS2).
 - (b) Find relevant papers in topics related to the course (e.g., references given from the class or a paper from https://scorebasedgenerativemodeling.github.io that is relevant to your research or is the most interesting to you) that may help you with your problem.
 - (c) Pick one and describe the result, as well as how it relates to your chosen topic/problem. Does it answer your question?

Additional questions for 586

(Q1) Let $\nu \propto e^{-f}$ be a probability distribution on \mathbb{R}^d where $f \colon \mathbb{R}^d \to \mathbb{R}$ is differentiable and α -strongly convex, which means ν is α -strongly log-concave (SLC). Let $x^* = \arg\min_{x \in \mathbb{R}^d} f(x)$. Show that $X \sim \nu$ is not too far from x^* on average:

$$\mathbb{E}_{\nu}[\|X - x^*\|^2] \le \frac{d}{\alpha}.$$

(Q2) Recall if ν is α -SLC, then it satisfies α -Poincaré inequality, which means for any $\phi \colon \mathbb{R}^d \to \mathbb{R}$:

$$\operatorname{Var}_{\nu}(\phi(X)) \leq \frac{1}{\alpha} \mathbb{E}_{\nu}[\|\nabla \phi(X)\|^{2}].$$

Use this fact to show that if $Z \sim \mathcal{N}(0, I)$ is a standard Gaussian random variable in \mathbb{R}^d , then

$$\sqrt{d-1} \le \mathbb{E}[\|Z\|] \le \sqrt{d}.$$

(This means on average Z lies on a thin shell of radius $O(\sqrt{d})$ with shell width O(1).)

(Q3) Let $X \in \mathbb{R}^d$ with a prior distribution p_0 , and observation $Y \mid \{X = x\} \sim p(Y \mid x)$. Assume $p_0 \propto e^{-f_0}$ is a log-concave distribution, i.e. $f_0 \colon \mathbb{R}^d \to \mathbb{R}$ is a convex function. Assume $p(y \mid x) \propto e^{-\ell(x,y)}$ satisfies the following property with some $\alpha > 0$: for all $y \in \mathbb{R}^d$, the negative log-likelihood $x \mapsto \ell(x,y) = -\log p(y \mid x)$ is an α -strongly convex function.

Let $p_n(x) = p(x \mid y_1, ..., y_n)$ be the posterior distribution of X after seeing observations $y_1, ..., y_n \in \mathbb{R}^d$. Show that the posterior variance decreases with the number of observations:

$$\operatorname{Var}_{p_n}(\theta) \le \frac{d}{n\alpha}.$$