Package 'LTASR'

August 23, 2024
Title Functions to Replicate the Center for Disease Control and Prevention's 'LTAS' Software in R
Version 0.1.4
Description A suite of functions for reading in a rate file in XML format, stratify a cohort, and calculate 'SMRs' from the stratified cohort and rate file.
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.1
Imports dplyr, knitr, lubridate, magrittr, purrr, readr, rlang, stringr, tidyr, XML, zoo
Suggests rmarkdown, ggplot2, testthat (>= 3.0.0), R.rsp
VignetteBuilder knitr, R.rsp
Depends R (>= 2.10)
LazyData true
Config/testthat/edition 3
NeedsCompilation no
Author Stephen Bertke [aut, cre]
Maintainer Stephen Bertke <sbertke@cdc.gov></sbertke@cdc.gov>
Repository CRAN
Date/Publication 2024-08-22 23:00:02 UTC
Contents
checkStrata
expand_dates
exp_strata
get_table
get_table_history
get_table_history_est
history_example

2 checkStrata

Index	1	8
	us_119ucod_recent	7
	us_119ucod_19602021	
	smr_minor	5
	smr_major	4
	smr_custom	3
	person_example	2
	parseRate	
	mapDeaths	1

checkStrata

Checks all strata in py_table are contained in rate file

Description

Checks all strata in py_table are contained in rate file

Usage

```
checkStrata(py_table, rateobj)
```

Arguments

py_table A stratified cohort created by get_table rateobj A rate object created by parseRate

Value

A list containing:

- 1. The py_table with strata removed not found in rateobj
- 2. The observations from py_table that were removed

expand_dates 3

```
#Stratify person table
py_table <- get_table(person, rateobj)
#Check Strata are in rate file
checkStrata(py_table, rateobj)</pre>
```

expand_dates

Expand data through range of date values

Description

Expand a data.frame to include all dates between a start and end value defined by parameters x and y

Usage

```
expand_dates(
    df,
    start,
    end,
    md_tmplt = seq(as.Date("1/1/2015", "%m/%d/%Y"), as.Date("12/31/2015",
        "%m/%d/%Y"), by = "day")
)
```

Arguments

df Input data.frame
start start date
end end date
md_tmplt Date vector that defines which dates within a year to output.

Value

A data.frame/tibble containing all variables of the input data.frame as well as a new variable, date, with repeated rows for each date between start and end spaced as defined by md_tmplt.

get_table

ex	o s	str	at	:a
CA	٧ <u>-</u> -	,	u	·u

Create exp_strata object

Description

exp_strata() creates an exp_strata that defines which variable to consider, any lag to be applied, and cutpoints for the strata.

Usage

```
exp_strata(var = character(), cutpt = numeric(), lag = 0)
```

Arguments

var character naming the variable within the history data.frame to consider.

cutpt numeric vector defining the cutpoints to use to stratify the calculated cumulative

exposure for variable var. Should include min and max values (typically -Inf

and Inf).

lag numeric defining the lag, in years, to be applied to exposure variables. Default

is 0 yrs (i.e. unlagged). Must be a whole number.

Value

an object of class exp_strata to be used in the get_table_history().

Examples

get_table

Stratify Person Table

Description

get_table reads in a data.frame/tibble containing basic demographic information for each person of the cohort and stratifies the person-time and deaths into 5-year age, 5-year calendar period, race, and sex strata. See Details for information on how the person file must be formatted.

Usage

```
get_table(persondf, rateobj, strata = dplyr::vars(), batch_size = 500)
```

get_table 5

Arguments

persondf	data.frame like object containing one row per person with the required demographic information
rateobj	a rate object created by the parseRate function, or the included rate object us_119ucod_19602021
strata	any additional variables contained in persondf on which to stratify. Must be wrapped in a vars() call from dplyr.
batch_size	a number specifying how many persons to stratify at a time. Default is 500

Details

The persondf tibble must contain the variables:

```
• id,
```

• gender (character: 'M'/'F'),

• race (character: 'W'/'N'),

• dob (date),

• pybegin (date),

• dlo (date),

• vs (character: indicator identifying deaths as 'D')

• rev (numeric: values 5-10),

• code (character: ICD code)

Value

A data.frame with a row for each strata containing the number of observed deaths within each of the defined minors/outcomes (_o1-_oxxx) and the number of person days.

6 get_table_history

get_table_history

Stratify Person Table with Time Varying Co-variate

Description

get_table_history reads in a data.frame/tibble (persondf) containing basic demographic information for each person of the cohort as well as a data.frame/tibble (historydf) containing time varying exposure information and stratifies the person-time and deaths into 5-year age, 5-year calendar period, race, sex and exposure categories. See Details for information on how the person file and history file must be formatted.

Usage

```
get_table_history(
  persondf,
  rateobj,
  historydf,
  exps = list(),
  strata = dplyr::vars(),
  batch_size = 500
)
```

Arguments

persondf	data.frame like object containing one row per person with the required demographic information.
rateobj	a rate object created by the parseRate function, or the included rate object $us_119ucod_19602021$.
historydf	data.frame like object containing one row per person and exposure period. An exposure period is a period of time where exposure levels remain constant. See Details for required variables.
exps	a list containing exp_strata objects created by exp_strata().
strata	any additional variables contained in persondf on which to stratify. Must be wrapped in a vars() call from dplyr.
batch_size	a number specifying how many persons to stratify at a time. Default is 500.

Details

The persondf tibble must contain the variables:

```
id,
gender (character: 'M'/'F'),
race (character: 'W'/'N'),
dob (date),
pybegin (date),
```

get_table_history 7

- dlo (date),
- rev (numeric: values 5-10),
- code (character: ICD code)

The historydf tibble must contain the variables:

- id,
- begin_dt (date),
- end_dt (date),
- <daily exposure levels>

Value

A data frame with a row for each strata containing the number of observed deaths within each of the defined minors/outcomes (_o1-_oxxx) and the number of person days.

```
library(LTASR)
library(dplyr)
#Import example person file
person <- person_example %>%
mutate(dob = as.Date(dob, format='%m/%d/%Y'),
        pybegin = as.Date(pybegin, format='%m/%d/%Y'),
         dlo = as.Date(dlo, format='%m/%d/%Y'))
#Import example history file
history <- history_example %>%
 mutate(begin_dt = as.Date(begin_dt, format='%m/%d/%Y'),
         end_dt = as.Date(end_dt, format='%m/%d/%Y'))
#Import default rate object
rateobj <- us_119ucod_19602021
#Define exposure of interest. Create exp_strata object.The `employed` variable
#indicates (0/1) periods of employment and will be summed each day of each exposure
#period. Therefore, this calculates duration of employment in days. The cut-points
#used below will stratify by person-time with less than and greater than a
#year of employment (365 days of employment).
exp1 <- exp_strata(var = 'employed',</pre>
                   cutpt = c(-Inf, 365, Inf),
                   lag = 0)
#Stratify cohort by employed variable.
py_table <- get_table_history(persondf = person,</pre>
                              rateobj = rateobj,
                              historydf = history,
                              exps = list(exp1))
#Multiple exposures can be considered.
```

get_table_history_est

get_table_history_est Stratify Person Table with Time Varying Co-variate

Description

get_table_history_est reads in a data.frame/tibble (persondf) containing basic demographic information for each person of the cohort as well as a data.frame/tibble (historydf) containing time varying exposure information and stratifies the person-time and deaths into 5-year age, 5-year calendar period, race, sex and exposure categories. Additionally, average cumulative exposure values for each strata and each exposure variable are included. These strata are more crudely calculated by taking regular steps (such as every 7 days) as opposed to evaluating every individual day. See Details for information on how the person file and history file must be formatted.

Usage

```
get_table_history_est(
  persondf,
  rateobj,
  historydf,
  exps,
  strata = dplyr::vars(),
  step = 7,
  batch_size = 25 * step
)
```

Arguments

persondf data.frame like object containing one row per person with the required demo-

graphic information.

rateobj a rate object created by the parseRate function, or the included rate object

us_119ucod_19602021.

historydf data.frame like object containing one row per person and exposure period. An

exposure period is a period of time where exposure levels remain constant. See

Details for required variables.

9 get_table_history_est

a list containing exp_strata objects created by exp_strata(). exps any additional variables contained in persondf on which to stratify. Must be strata wrapped in a vars() call from dplyr. numeric defining number of days to jump when calculating cumulative exposure step values. Exact stratification specifies a step of 1 day. a number specifying how many persons to stratify at a time.

Details

The persondf tibble must contain the variables:

```
• id,
```

batch_size

• gender (character: 'M'/'F'),

• race (character: 'W'/'N'),

• dob (date),

• pybegin (date),

• dlo (date),

• rev (numeric: values 5-10),

• code (character: ICD code)

The historydf tibble must contain the variables:

• id,

• begin_dt (date),

• end dt (date),

• <daily exposure levels>

Value

A data frame with a row for each strata containing the number of observed deaths within each of the defined minors/outcomes (_o1-_oxxx) and the number of person days.

```
library(LTASR)
library(dplyr)
#Import example person file
person <- person_example %>%
mutate(dob = as.Date(dob, format='%m/%d/%Y'),
         pybegin = as.Date(pybegin, format='%m/%d/%Y'),
         dlo = as.Date(dlo, format='%m/%d/%Y'))
#Import example history file
history <- history_example %>%
  mutate(begin_dt = as.Date(begin_dt, format='%m/%d/%Y'),
         end_dt = as.Date(end_dt, format='%m/%d/%Y'))
```

10 history_example

```
#Import default rate object
rateobj <- us_119ucod_19602021
#Define exposure of interest. Create exp_strata object.The `employed` variable
\#indicates (0/1) periods of employment and will be summed each day of each exposure
#period. Therefore, this calculates duration of employment in days. The cut-points
#used below will stratify by person-time with less than and greater than a
#year of employment (365 days of employment).
exp1 <- exp_strata(var = 'employed',</pre>
                   cutpt = c(-Inf, 365, Inf),
                   lag = 0)
#Stratify cohort by employed variable.
py_table <- get_table_history_est(persondf = person,</pre>
                                   rateobj = rateobj,
                                   historydf = history,
                                   exps = list(exp1))
#Multiple exposures can be considered.
exp1 <- exp_strata(var = 'employed',</pre>
                   cutpt = c(-Inf, 365, Inf),
                   lag = 0)
exp2 <- exp_strata(var = 'exposure_level',</pre>
                   cutpt = c(-Inf, 0, 10000, 20000, Inf),
                   lag = 10)
#Stratify cohort by employed variable.
py_table <- get_table_history_est(persondf = person,</pre>
                                   rateobj = rateobj,
                                   historydf = history,
                                   exps = list(exp1, exp2))
```

history_example

Example History File for Testing

Description

A tibble containing example history file data to be used for testing and demonstration of the package

Usage

history_example

Format

A data frame with 4 rows and 5 variables:

id unique identifier; numeric

begin_dt beginning date of an exposure period; character

mapDeaths 11

```
end_dt beginning date of an exposure period; character
```

employed a hypothetical variable indicating employment during the given exposure period; numeric (0/1)

exposure_level a hypothetical variable identifying daily exposure levels to be summed to calculate a cumulative exposure; numeric

•••

Source

Internally Generated

mapDeaths

Map ICD codes to grouped minors

Description

Map ICD codes to grouped minors

Usage

```
mapDeaths(persondf, rateobj)
```

Arguments

persondf Person data.frame

rateobj A rate object created from parseRate, or the included rate object us_119ucod_19602021.

Value

A data frame for each death observed in the person file with the following variables: id, code, rev: from the persondf minor: the minor/outcome from the rate file that the death was mapped to

```
library(LTASR)

#Import example person file
person <- person_example

#Import default rate object
rateobj <- us_119ucod_19602021

#Check mapping of deaths to minors/outcomes
mapDeaths(person, rateobj)</pre>
```

person_example

parseRate

Parses LTAS rate file in .xml format

Description

Parses LTAS rate file in .xml format

Usage

```
parseRate(xmlpath)
```

Arguments

xmlpath

path of LTAS rate file

Value

returns a list containing:

- 1. \$residual: the minor number where all unknown deaths will be assigned
- 2. \$MinorDesc: a data.frame/tibble giving descriptions of minor numbers as well as how minors are mapped to majors
- 3. \$mapping: a data.frame/tibble listing how each icd-code and revision will be mapped to each minor number
- 4. \$age_cut: a numeric specifying cut-points for age strata
- 5. \$cp_cut: a numeric specifying cut-points for calendar period strata

person_example

Example Person File for Testing

Description

A tibble containing example person file data to be used for testing and demonstration of the package

Usage

person_example

smr_custom 13

Format

A tibble with 3 observations and 9 variables:

id unique identifier; character

gender Gender/Sex; character 'M' or 'F'

race Race; character 'W' or 'N'

dob Date of Birth; character to be converted to date

pybegin date to begin follow-up/at-risk accumulation, character to be converted to date

dlo Date last observed; character to be converted to date

vs indicator identifying the vital status of the cohort. A value of 'D' indicates an observed death; character

rev ICD revision of the ICD code; numeric

code ICD-code for the cause of death; character ...

Source

Internally Generated

 smr_custom

Calculate SMRs for Custom minor groupings

Description

smr_major will collapse minor outcomes into "major" groupings as defined in the rate object, rateobj.

Usage

```
smr_custom(smr_minor_table, minor_grouping)
```

Arguments

smr_minor_table

A data.frame/tibble as created by smr_minor containing observed and expected number of deaths for each minor outcome

minor_grouping A numeric vector defining which minors to group together

Value

A data.frame/tibble containing the expected and observed number of deaths as well the SMR, lower CI and upper CI for the outcome by the user

14 smr_major

Examples

```
library(LTASR)
library(dplyr)
#Import example person file
person <- person_example %>%
 mutate(dob = as.Date(dob, format='%m/%d/%Y'),
         pybegin = as.Date(pybegin, format='%m/%d/%Y'),
         dlo = as.Date(dlo, format='%m/%d/%Y'))
#Import default rate object
rateobj <- us_119ucod_19602021
#Stratify person table
py_table <- get_table(person, rateobj)</pre>
#Calculate SMRs for all minors
smr_minor_table <- smr_minor(py_table, rateobj)</pre>
#Calculate custom minor grouping for all deaths
smr_custom(smr_minor_table, 1:119)
#' #Calculate custom minor grouping for all deaths
smr_custom(smr_minor_table, 4:40)
```

smr_major

Calculate SMRs for Major groupings

Description

smr_major will collapse minor outcomes into "major" groupings as defined in the rate object, rateobj.

Usage

```
smr_major(smr_minor_table, rateobj)
```

Arguments

smr_minor_table

A data.frame/tibble as created by smr_minor containing observed and expected number of deaths for each minor outcome

rateobj

A rate object created by parseRate, or the included rate object us_119ucod_19602021.

Value

A data.frame/tibble containing the expected and observed number of deaths as well as SMRs, lower CI and upper CI for each major as defined in the rate object rateobj

smr_minor 15

Examples

smr_minor

Calculate SMRs for Minors

Description

 ${\sf smr_minor}$ calculates SMRs for all minor groupings found within the rate object, rateobj, for the stratified cohort ${\sf py_table}$

Usage

```
smr_minor(py_table, rateobj)
```

Arguments

py_table A stratified cohort created by get_table, or the included rate object us_119ucod_19602021.

A rate object created by parseRate

Value

A dataframe/tibble containing the expected and observed number of deaths as well as SMRs, lower CI and upper CI for each minor found in the rate object rateobj

Examples

us_119ucod_19602021

119 UCOD U.S. Death Rate, 1960-2021

Description

A list containing referent underlying cause of death (UCOD) rate information for the US population from 1960-2021 for the 119 minor/outcome LTAS groupings

Usage

```
us_119ucod_19602021
```

Format

A list with 4 elements:

residual the minor/outcome number to which unknown/uncategorized outcomes will be mapped to

MinorDesc a data.frame containing descriptions for each minor and major grouping

mapping a tibble detailing which minor number each icd-code and revision combination will be mapped to

rates the population referent rate for each minor for each gender/race/calendar period/age strata ...

Source

Available upon request from sbertke@cdc.gov

us_119ucod_recent 17

us_119ucod_recent

119 UCOD U.S. Death Rate, 1960-2022

Description

A list containing referent underlying cause of death (UCOD) rate information for the US population from 1960-2022 for the 119 minor/outcome LTAS groupings

Usage

us_119ucod_recent

Format

A list with 4 elements:

residual the minor/outcome number to which unknown/uncategorized outcomes will be mapped to

MinorDesc a data.frame containing descriptions for each minor and major grouping

mapping a tibble detailing which minor number each icd-code and revision combination will be mapped to

rates the population referent rate for each minor for each gender/race/calendar period/age strata ...

Source

Available upon request from sbertke@cdc.gov

Index

```
\ast datasets
    history_example, 10
    person_example, 12
    us_119ucod_19602021, 16
    us_119ucod_recent, 17
checkStrata, 2
exp_strata, 4
expand_dates, 3
get_table, 4
get_table_history, 6
{\tt get\_table\_history\_est}, 8
\verb|history_example|, 10|\\
mapDeaths, 11
parseRate, 12
person_example, 12
smr_custom, 13
smr_major, 14
smr_minor, 15
us_119ucod_19602021, 16
us_119ucod_recent, 17
```