일반상황 교통시뮬레이션 메타모델 기술문서

Ver 1.0

KAIST 응용인공지능연구실

목 차

I.	교통 시뮬레이션의 메타모델 개요	- 3
	1. 시뮬레이션 메타 모델의 역할	- 3
	2. 교통 시뮬레이션 메타 모델의 합성데이터 과제 내부의 역할	- 3
II.	교통 시뮬레이션 메타 모델의 데이터 수집 및 정제	- 5
	1. 시나리오 생성을 위한 통계 기반 원본 데이터 분석	- 5
	2. 일반상황 시뮬레이션 로그 데이터 확보 및 데이터 베이스 구현	- 5
III.	교통 시뮬레이션 메타 모델의 구조	- 6
	1. 시뮬레이션 모사를 위한 메타모델 심층신경망 구조 설계	- 6
IV.	교통 시뮬레이션 메타 모델의 실행 결과	- 8
	1. 메타모델 예측 속도 테스트 및 검증	- 8
참고	7문헌	- 9

- I. 교통 시뮬레이션의 메타모델 개요
- 1. 시뮬레이션 메타 모델의 역할
 - 시뮬레이션 분야에서 메타모델은 주로 복잡한 시스템이나 프로세스를 단순화하고, 시뮬레이션의 효율성을 향상시키며, 시뮬레이션 결과를 보다 신속하고 정확하게 예측하는 데 사용함. 메타모델의 주된 역할과 그 중요성을 다음과 같이 설명할 수 있음:
 - 복잡성 감소: 실제 시스템이나 프로세스는 많은 변수와 상호작용을 포함할 수 있으며, 이를 모두 고려하는 것은 계산적으로 매우 복잡함. 메타모델은 이러한 복잡한 시스템을 더 단순한 수학적 또는 통계적 모델로 근사화하여, 복잡한 실제 시뮬레이션을 보다 빠르고 저렴하게 수행할 수 있음
 - **시뮬레이션 시간 단축**: 실제 시뮬레이션은 종종 시간이 많이 걸리고 고비용이 발생. 메타모델을 사용하면 실제 시뮬레이션을 반복 실행하지 않고도 결과를 빠르게 얻을 수 있음. 이는 특히 매개변수 연구나 최적화 작업에서 유용함
 - **효율적인 설계 및 최적화**: 메타모델은 다양한 입력 변수에 대한 출력을 예측하므로, 시스템 설계나 운영 조건의 최적화에 도움을 제공. 이는 제품 개발, 공정 최적화, 리스크 관리 등 여러 분야에서 응용될 수 있음
 - **불확실성 분석 및 리스크 평가**: 메타모델을 사용하여 입력 변수의 변동이 최종 결과에 미치는 영향을 평가할 수 있음. 이를 통해 시스템의 민감도를 이해하고, 불확실성과 리스크를 더 잘 관리할 수 있음
 - 실시간 의사 결정 지원: 특히 실시간으로 의사 결정이 필요한 상황에서 메타모델은 빠른 시뮬레이션 결과 제공을 통해 적시에 정보를 제공하고, 효과적인 대응 전략을 수립하는 데 도움을 줄 수 있음
- 2. 교통 시뮬레이션 메타 모델의 합성데이터 과제 내부의 역할

그림 1 메타모델을 이용한 시뮬레이션 실행 시간의 단축

● 제안된 연구는 비상 상황에 더욱 빠르고 효과적으로 대응할 수 있도록 돕기 위해 설계된 것으로, 시뮬레이션의 결과물과 매우 유사한 메타 모델 결과물을 더욱 빠르게 확보하는 것이 목표임

● 메타모델 없이 초기 시나리오 대응:

■ 만약 메타모델이 없다면, 시스템에 입력된 시나리오를 통해서 수시간이 지나야 시뮬레이션 결과를 확보할 수 있고, 이를 통한 비상 상황 평가 및 계획을 수립하 기 어려움

● 메타모델 개발 및 훈련:

- 평상시 시뮬레이션 데이터를 다양하게 생성하여, 메타모델을 훈련함. 이 메타모 델은 과거 데이터를 분석하여 시뮬레이션 데이터의 생성 방법을 학습함
- 실제 상황에서, 메타모델은 다양한 시나리오에 대해 더욱 빠른 반응으로 시뮬레이션과 유사한 데이터를 생성함. 이러한 개선된 대응 방안은 다수의 시나리오에 적용되어 실시간으로 효과적인 대응을 가능케 함

Ⅱ. 교통 시뮬레이션 메타 모델의 데이터 수집 및 정제

- 1. 시나리오 생성을 위한 통계 기반 원본 데이터 분석
 - 대전 지역 택시, 화물차, 버스 등에 설치된 DTG 단말로부터 수집된 GPS 데이터 및 대전 지역 도로 교통망을 ETRI에서 제공받음.
 - <GPS 데이터>
 - ◆ 대상 기간: 2019.07~2019.12, 2021.01~2021.06, 총 1년
 - ◆ 데이터 형식: 하루 단위로 데이터 분리, 각 날짜에 기록 시간, 차량 아이디, 위/경도, 속도 총 5개의 항목 기록
 - ◆ 주요 통계량

- 총 데이터 용량: 51.33 GB

- 총 기록 횟수: 약 11억 4천만 번

- 총 기록 차량 수: 2.859 대

- 일당 평균 기록 횟수: 약 1,350만 번/일

- 차량당 평균 기록 횟수: 약 23만 번

- <도로 교통망 데이터>
 - ◆ 도로 교통망 데이터를 graph structure로 모델링하기 위한 node와 edge 정보 등 기록
 - ◆ 데이터 형식: node는 node id, 위/경도 정보 등이 기록되어 있고, edge는 edge id, edge의 시작과 끝 부분 두 node id, edge shape 등이 기록되어 있음.
 - ◆ 주요 통계량

총 node 개수: 40,887총 edge 개수: 99.741

2. 일반상황 시뮬레이션 로그 데이터 확보 및 데이터 베이스 구현

- ETRI 제공 데이터로 메타모델 적용에 필요한 데이터 전처리 및 데이터베이스를 구현함.
- 메타모델 입력데이터로는 경로 아이디, 기록 시간, 위도, 경도의 4종류의 데이터를 요구함. 이에 모델 확인을 위해 제공 데이터 중 2019.07.01.의 데이터를 사용하여 메타모델 학습 및 Path 샘플을 진행함.
- 제공받은 데이터는 DTG 데이터로 기록 단말별로 1초마다 GPS가 기록되는 것으로 확인됨.
- 메타모델 학습시 경로가 (1) node 간의 중복이 없으며, (2) node 간 연결이 보장되어야 유효한 경로로 인식함. 이에 node 간의 중복을 없애기 위해 임의로 기록 단말별 GPS 기록을 나누었음. 나눈 하나의 GPS 기록을 하나의 경로 아이디에 할당함.

	경로 아이디	기록 시간	경도	위도
1	1-0	1561969759	127.37030	36.35226
2	1-0	1561969760	127.37025	36.35230
3	1-0	1561969761	127.37020	36.35233
4	1-0	1561969762	127.37014	36.35236
	•••	•••	•••	
10	1-0	1561969768	127.36968	36.35266

그림 2 전처리한 데이터 예시

Ⅲ. 교통 시뮬레이션 메타 모델의 구조

- 1. 시뮬레이션 모사를 위한 메타모델 심층신경망 구조 설계
 - 확산 기반 생성 모델을 활용하여 데이터 기반으로 경로를 생성하는 모델인 Graph-constrained Diffusion for Planning (GDP) [1]
 - Origin-Destination (OD) 와 무관한 unconditional path probability p(x)는 그래프 구조를 입력으로 받는 확산 기반 생성 모델을 도입하며, OD 정보를 가지는 OD evidence probability h(x|o,d)는 OD 정보와 현재까지 이동한 path 정보를 기반으로 다음 노드를 예측하는 autoregressive 모델 도입
 - 기존 확산 기반 생성 모델은 그래프 구조에 맞는 확산을 하고 있지 않기 때문에, 열전도 식을 활용하여 그래프 구조를 반영한 순방향 확산 과정을 구성함.
 - $q(v_t|v_{t-1}) = Categorical(v_t;q(v_{t-1})C_{\beta_t}) where C_{\beta_t} = \exp((A-D)\beta_t)$
 - ullet $oldsymbol{A}$: 인접 행렬, $oldsymbol{D}$: 차수 행렬, $oldsymbol{eta}_+$: 노이즈 강도 파라미터
 - 아래 그림과 같이 시간에 따라 무작위로 확산되지 않고, 그래프 구조에 따라 주변부부터 확산되는 것을 확인할 수 있음.

그림 3 한 정점에서 시간에 따른 순방향 확산 과정 [1]

- 위와 같이 순방향 확산 과정을 구성하면 기존 노드 ¼를 아는 경우 역방향 확산 과정을 아래와 같이 표현할 수 있어 ¼를 예측하는 심층신경망 학습을 진행하면 path 생성을 진행할 수 있음.
 - $q(v_{t-1}|v_t,v_0) = Categorical(v_{t-1};v_tC_3 \odot v_0\overline{C_{t-1}})$
- OD 정보 모델의 경우, OD 정보와 현재 path의 정점들의 특징 등을 입력으로 받아 다음 정점을 예측하는 크로스 엔트로피 손실함수를 사용하여 학습

그림 4 그래프 확산 모델의 심층신경망 구조 [1]

그림 5 OD 정보 모델의심층신경망 구조 [1]

● Path planning은 그래프 확산 모델에서 unconditional path 확률을 생성하고, OD 정보 모델에서 탐색 구간까지 다음 정점 확률을 예측하여, 두 확률을 곱하여 path 샘플링을 진행하며, 탐색 구간을 점차 늘려가며 도착지가 샘플될 때까지 위 과정을 반복함.

IV. 교통 시뮬레이션 메타 모델의 실행 결과

- 1. 메타모델 예측 속도 테스트 및 검증
 - 일부 데이터를 사용하여 메타모델 학습 및 path 샘플을 진행 중이며, 아래와 같이 Path 샘플을 얻을 수 있음.

그림 6 (좌) 데이터 Path 샘플 (우) 메타모델로 생성한 Path 샘플

- Path 100개 생성에 약 30초 소요 (NVIDIA A100 GPU)
- Github에 구현 코드 업로드 (https://github.com/AlxSIM/GDP_AAILAB)

그림 7 Github 구현 코드

참고문헌

[1] Shi, D., Tong, Y., Zhou, Z., Xu, K., Wang, Z., & Ye, J. (2024). Graph-Constrained Diffusion for End-to-End Path Planning. The Twelfth International Conference on Learning Representations.