Vlastnost aproximace z_h :

$$z_h(x_J) = \sum_{j=1}^D \alpha_j \phi_j(x_j) = \sum_{j=1}^D \alpha_j \delta_{jJ} = \alpha_J$$
 (1)

Poznámka (Zpracování zaoblených částí $\partial\Omega$).

Buď se modré částí z 1a se převedou pomocí konformních zobrazení na \triangle nebo tvar Ω aproximujeme polygonem, viz 1b

(a) Příklad zaoblené oblasti

(b) Aproximace zaoblení trojúhelníky

Obrázek 1

Příklad (MKP v 1D). Okrajová úloha (tj. ??)

$$-(p(x)u')' + q(x)u = f(x), na(a, b)$$
(2)

$$u(a) = 0, u'(b) = 0 (3)$$

Variační formulace (tj. ??):

$$\begin{split} a(u,v) &= \int_a^b p(x)u'v' + q(x)uv \ dx, \\ F(v) &= \int_a^b f(x)v \ dx \implies \\ &\implies V = \{v \in \mathbb{W}_2^{(1)}(a,b)|v|_{x=a} = 0\}, \\ a(u,v) &= F(v) \forall v \in V \quad (4) \end{cases}$$

MKP pro 4: (a,b) dělíme stejnoměrně (viz obrázek 2b) kde $h = \frac{b-a}{D}$ Dostáváme funkce ϕ_k jako v obrázku 2a Z toho vidíme že platí:

$$a(\phi_{j}, \phi_{l}) = \begin{cases} 0 & \text{pro } l \neq j - 1, j, j + 1\\ \int_{x_{j-1}}^{x_{j+1}} & \\ \int_{x_{j}}^{x_{j}} & \text{pro } l = j - 1\\ \int_{x_{j}}^{x_{j+1}} & \text{pro } l = j + 1 \end{cases}$$

$$(5)$$

- (a) Funkce ϕ_k na 1D oblasti
- (b) Příklad diskretizace 1D oblasti

Obrázek 2

Tvar bazické funkce:

$$\phi_{j}(x) = \begin{cases} \frac{x - x_{j-1}}{x_{j} - x_{j-1}} & \text{na} < x_{j-1}, x_{j} > \\ \frac{x_{j+1} - x}{x_{j+1} - x_{j}} & \text{na} < x_{j}, x_{j+1} > \\ 0 & \text{jinak} \end{cases}$$
 (6)

Pak:

$$a(\phi_{j}, \phi_{j}) = \int_{x_{j-1}}^{x_{j}} p(x) \left(\frac{1}{x_{j} - x_{j-1}}\right)^{2} + q(x) \left(\frac{x - x_{j-1}}{x_{j} - x_{j-1}}\right)^{2} dx + \int_{x_{j}}^{x_{j+1}} p(x) \left(\frac{-1}{x_{j+1} - x_{j}}\right)^{2} + q(x) \left(\frac{x_{j+1} - x}{x_{j+1} - x_{j}}\right)^{2} dx \quad (7)$$

$$a(\phi_{j}, \phi_{j-1}) = \int_{x_{j-1}}^{x_{j}} p(x) \left(\frac{1}{x_{j} - x_{j-1}}\right) \left(\frac{-1}{x_{j} - x_{j-1}}\right) + q(x) \left(\frac{x - x_{j-1}}{x_{j} - x_{j-1}}\right) \left(\frac{x_{j} - x}{x_{j} - x_{j-1}}\right) dx \quad (8)$$

$$a(\phi_{j}, \phi_{j+1}) = \int_{x_{j}}^{x_{j+1}} p(x) \left(\frac{-1}{x_{j+1} - x_{j}}\right) \left(\frac{1}{x_{j+1} - x_{j}}\right) + q(x) \left(\frac{x_{j+1} - x_{j}}{x_{j+1} - x_{j}}\right) \left(\frac{x - x_{j}}{x_{j+1} - x_{j}}\right) dx \quad (9)$$

Použijeme substituci:

$$y = \frac{x - x_{j-1}}{x_j - x_{j-1}} \text{na} \langle x_{j-1}, x_j \rangle \mapsto \langle 0, 1 \rangle$$
(10)

$$y = \frac{x_{j+1} - x}{x_{j+1} - x_j} \text{na} \langle x_j, x_{j+1} \rangle \mapsto \langle 0, 1 \rangle$$
(11)

Pak:

$$a(\phi_{j}, \phi_{j}) = \int_{0}^{1} p((x_{j} - x_{j-1})y + x_{j-1}) \frac{dy}{x_{j} - x_{j-1}} + \int_{0}^{1} q((x_{j} - x_{j-1})y + x_{j-1})y^{2}(x_{j} - x_{j-1}) dy - \int_{0}^{1} p(-(x_{j+1} - x_{j})y + x_{j+1}) \frac{dy}{x_{j+1} - x_{j}} - \int_{0}^{1} q(-(x_{j+1} - x_{j})y + x_{j} + 1)y^{2}(x_{j+1} - x_{j}) dy$$
 (12)

$$a(\phi_j, \phi_{j-1}) = -\int_0^1 p((x_j - x_{j-1})y + x_{j-1}) \frac{dy}{x_j - x_{j-1}} - \int_0^1 q((x_j - x_{j-1})y + x_{j-1})y(1 - y)(x_j - x_{j-1}) dy \quad (13)$$

$$a(\phi_j, \phi_{j+1}) = \int_0^1 p(-(x_{j+1} - x_j)y + x_{j+1}) \frac{dy}{x_{j+1} - x_j} - \int_0^1 q(-(x_{j+1} - x_j)y + x_{j+1})y(1 - y)(x_{j+1} - x_j) dy \quad (14)$$

Z toho je poznat že matice $a(\phi_j, \phi_l)$ je symetrická

1 Základní aspekty MKP (Ciarlet str. 38)

Věta 1.1 (MKP1)

Množina $\bar{\Omega}$ (z??) je rozdělena triangulací \mathcal{T}_h na konečný počet podmmnožin K (oblastí konečných prvků) tak, že

- 1. $\bar{\Omega} = \bigcup_{K \in \mathcal{T}_i} \bar{K}$
- 2. $(\forall K \in \mathcal{T}_h)(K \neq \emptyset \ a \ K \ je \ oblast)$
- 3. $(\forall K_1, K_2 \in \mathcal{T}_h)(K_1 \neq K_2 \implies K_1 \cap K_2 = \emptyset)$
- 4. $(\forall K \in \mathcal{T}_h)(\partial K \text{ je Lipschitzovská})$

Věta 1.2 (MKP2)

Na každé množině $K \in \mathcal{T}_h$ definujeme vhodné funkce sloužící k aproximaci řešení variační úlohy ?? . Tyto funkce jsou polynomy, nebo "blízké" polynomům

Věta 1.3 (MKP3)

Aproximaci řešení variační úlohy ?? hledáme pomocí bazických funkcí, jejichž nosič je co nejmenší při zachování shodného popisu tvaru těchto funckí.

Definice 1.1 (Konečný prvek). Nechť

- 1. $K\subset\mathbb{R}^n$ je omezená oblast s po částech hladkou hranicí
- 2. ${\mathcal P}$ je konečně rozměrný prostor funckí na $\bar K$
- 3. $\mathcal{N} = \{N_1, ..., N_2\}$ je báze $\mathcal{P}^{\#}$

Pak $(K, \mathcal{P}, \mathcal{N})$ se nazývá konečný prvek, K je oblast prvku, \mathcal{P} jsou tvarové funkce a \mathcal{N} uzlové proměnné.

Báze v $\mathcal P$ duální k $\mathcal N$ se nazývá nulová báze.