Multivariable Calculus Exam 1

Derivation

Basic Derivatives

Inverse Trigonometric

$$\frac{d}{dx}e^{f(x)} = f'(x)e^{f(x)} \qquad \frac{d}{dx}\arcsin f(x) = \frac{f'(x)}{\sqrt{1-(f(x))^2}}$$

$$\frac{d}{dx}\sin f(x) = \cos f(x) \cdot f'(x) \qquad \frac{d}{dx}\arccos f(x) = -\frac{f'(x)}{\sqrt{1-(f(x))^2}}$$

$$\frac{d}{dx}\cos f(x) = -\sin f(x) \cdot f'(x) \qquad \frac{d}{dx}\arccos f(x) = -\frac{f'(x)}{\sqrt{1-(f(x))^2}}$$

$$\frac{d}{dx}\tan f(x) = \sec^2 f(x) \cdot f'(x) \qquad \frac{d}{dx}\arctan f(x) = \frac{f'(x)}{1+(f(x))^2}$$

$$\frac{d}{dx}\cot f(x) = -\csc^2 f(x) \cdot f'(x) \qquad \frac{d}{dx}\arctan f(x) = \frac{f'(x)}{1+(f(x))^2}$$

$$\frac{d}{dx}\sec f(x) = -\csc f(x)\tan f(x) \cdot f'(x) \qquad \frac{d}{dx}\operatorname{arcccc} f(x) = -\frac{f'(x)}{1+(f(x))^2}$$

$$\frac{d}{dx}\sec f(x) = -\csc f(x)\cot f(x) \cdot f'(x) \qquad \frac{d}{dx}\operatorname{arcccc} f(x) = \frac{f'(x)}{|f(x)|\sqrt{(f(x))^2-1}}$$

$$\frac{d}{dx}\ln f(x) = \frac{f'(x)}{f(x)} \qquad \frac{d}{dx}\operatorname{arcccc} f(x) = -\frac{f'(x)}{|f(x)|\sqrt{(f(x))^2-1}}$$

$$\frac{d}{dx}\log_x f(x) = \frac{f'(x)}{f(x)} \qquad \frac{d}{dx}\operatorname{arcccc} f(x) = -\frac{f'(x)}{|f(x)|\sqrt{(f(x))^2-1}}$$

$$\frac{d}{dx}(f(x))^n = n(f(x))^{n-1}f'(x) \qquad \text{Chain Rule}$$

$$\frac{d}{dx}o^{x} = \frac{d}{dx}o^{x} = \frac{a^x \ln a}{a^x}$$

$$\frac{d}{dx}o^{x} = \frac{f'(x)}{f(x)}$$

$$\frac{d}{dx}o^{x} = \frac{f'(x)}{f(x)}$$

$$\frac{d}{dx}a^{x} = \frac{a^x \ln a}{a^x}$$

$$\frac{d}{dx}o^{x} = \frac{f'(x)}{f(x)}$$

$$\frac{d}{dx}o^{x} = \frac{f'(x)}{f(x)}$$

$$\frac{d}{dx}o^{x} = \frac{f'(x)}{f(x)}$$

$$\frac{d}{dx}a^{x} = \frac{f'(x)}{f(x)}$$

$$\frac{d}{dx}o^{x} =$$

Product and Quotient

$$\frac{d}{dx}[u \cdot v] = u' \cdot v + u \cdot v'$$

$$\frac{d}{dx}(\frac{u}{v}) = \frac{u' \cdot v - u \cdot v'}{v^2}$$

$$\frac{d^2}{dx^2}e^x = e^x$$

$$\frac{d^3}{dx^3}\sin x = -\cos x$$

$$\frac{d^4}{dx^4}\cos x = \cos x$$

Integration

Trigonometric Integrals

Inverse Trigonometric Integrals

 $\int e^{f(x)} f'(x) dx = e^{f(x)} + C$

Exponetials

$$\frac{1}{dx}e^{f(x)} = f'(x)e^{f(x)} \qquad \frac{d}{dx}\arcsin f(x) = \frac{f'(x)}{\sqrt{1-(f(x))^2}}$$

$$\frac{d}{dx}\sin f(x) = \cos f(x) \cdot f'(x)$$

$$\frac{d}{dx}\sin f(x) = \cos f(x) \cdot f'(x)$$

$$\frac{d}{dx}\cos f(x) = -\sin f(x) \cdot f'(x)$$

$$\frac{d}{dx}\tan f(x) = \sec^2 f(x) \cdot f'(x)$$

$$\frac{d}{dx}\cot f(x) = -\cos^2 f(x) \cdot f'(x)$$

$$\frac{d}{dx}\cot f(x) = -\frac{f'(x)}{1+(f(x))^2}$$

$$\frac{d}{dx}\cot f(x)$$

Reduction Formulas for Sine and

 $\int \sec x \tan x \, dx =$

 $\int \csc^2 x \, dx = -\cot x + C$

Reduction Formulas for Sine and
$$\int_0^b e^x dx = e^b - 1$$
Cosine
$$\int_0^b e^{-x} dx = 1 - e^{-b}$$

$$\int \sin^n x dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x dx \quad \int_0^\infty e^{-x} dx = 1$$

$$\int \cos^n x dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x dx \quad \int_0^\infty x^n e^{-x} dx = n!$$

n	$\int_0^{\pi/2} \sin^n x dx$	$\int_0^{\pi/2} \cos^n x dx$	$\int_0^\pi \sin^n x dx$	$\int_0^\pi \cos^n x dx$	$\int_0^{2\pi} \sin^n x dx$	$\int_0^{2\pi} \cos^n x dx$
1	1	1	2	0	0	0
2	$\pi/4$	$\pi/4$	$\pi/2$	$\pi/2$	π	π
3	2/3	2/3	4/3	0	0	0
4	$3\pi/16$	$3\pi/16$	$3\pi/8$	$3\pi/8$	$3\pi/4$	$3\pi/4$
5	8/15	8/15	16/15	0	0	0
6	$5\pi/32$	$5\pi/32$	$5\pi/16$	$5\pi/16$	$5\pi/8$	$5\pi/8$

Radians	$\sin(\theta)$	$\cos(\theta)$	$\tan(\theta)$
0	0	1	0
$\pi/6$	1/2	$\sqrt{3}/2$	$\sqrt{3}/3$
$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$	1
$\pi/3$	$\sqrt{3}/2$	1/2	$\sqrt{3}$
$\pi/2$	1	0	_
π	0	-1	0
$3\pi/2$	-1	0	_

Trigonometric Identities

Pythagorean

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$\tan^2 \theta + 1 = \sec^2 \theta$$

Sum to Product

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$\tan^2 \theta + 1 = \sec^2 \theta$$
$$1 + \cot^2 \theta = \csc^2 \theta$$

$$\sin x \sin y = \frac{1}{2} \left[\cos(x - y) - \cos(x + y) \right]$$
$$\cos x \cos y = \frac{1}{2} \left[\cos(x - y) + \cos(x + y) \right]$$

$$\sin^2\left(\frac{x}{2}\right) = \frac{1 - \cos x}{2}$$
$$\cos^2\left(\frac{x}{2}\right) = \frac{1 + \cos x}{2}$$
$$\tan^2\left(\frac{x}{2}\right) = \frac{1 - \cos x}{1 + \cos x}$$

$$\cos x \cos y = \frac{1}{2} \left[\cos(x - y) + \cos(x + y) \right]$$
$$\sin x \cos y = \frac{1}{2} \left[\sin(x + y) + \sin(x - y) \right]$$
$$\cos x \sin y = \frac{1}{2} \left[\sin(x + y) - \sin(x - y) \right]$$

Double Angle

$$\sin 2x = 2\sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$\cos 2x = 2\cos^2 x - 1$$

$$\cos 2x = 1 - 2\sin^2 x$$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

$$\sin x + \sin y = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$$

$$\sin x - \sin y = 2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$$

$$\cos x + \cos y = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$$

$$\cos x - \cos y = -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$$

Chapter 1: Parametric Equations and Polar Coordinates

• Slope: $\frac{dy}{dx}\Big|_{t=t_0} = \frac{dy/dt}{dx/dt}\Big|_{t=t_0}$.

The *tangent line* at t_0 is given by

$$y = \left(\frac{dy}{dx}\Big|_{t=t_0}\right) \left(x - x(t_0)\right) + y(t_0).$$

- Concavity: $\frac{d^2y}{dx^2}\Big|_{t=t} = \frac{d}{dt} \left(\frac{dy}{dx}\right)\Big|_{t=t_0} = \frac{d}{dt} \left(\frac{dy/dt}{dx/dt}\right)\Big|_{t=t_0}$.
- Area Under a Curve: $\int_{t}^{t_{b}} y(t) \frac{dx}{dt} dt$.
- Arc Length: $\int_{t}^{t_b} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$.
- Surface Area: $\int_{t}^{t_{b}} 2\pi y(t) \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$.

Chapter 2: Vectors in Space

- *Direction:* $P = (x_1, y_1)$ and $Q = (x_2, y_2)$: $PQ = \langle x_2 x_1, y_2 y_1 \rangle$.
- Vector Sum: $\mathbf{u} + \mathbf{v} = \langle u_1 + v_1, u_2 + v_2 \rangle$.
- *Magnitude:* $\|\mathbf{u}\| = \sqrt{u_1^2 + u_2^2} = \sqrt{u} \cdot u$.
- **Dot Product:** $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2$.
 - Angle: $\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos(\theta)$, where $0 < \theta < \pi$ is between $\mathbf{u} \& \mathbf{v}$.
 - Self-Product: $\mathbf{u} \cdot \mathbf{u} = \|\mathbf{u}\|^2$.
 - Work: $W = \mathbf{F} \cdot \mathbf{PQ} = (\|\mathbf{F}\|) \|\mathbf{PQ}\| \cos(\theta)$.
- To **Normalize** a vector, divide it by its magnitude $\mathbf{v} = \langle x, y, z \rangle$, then $\mathbf{u} = \frac{1}{\|\mathbf{v}\|} \mathbf{v} = \left\langle \frac{x}{\|\mathbf{v}\|}, \frac{y}{\|\mathbf{v}\|}, \frac{z}{\|\mathbf{v}\|} \right\rangle$. $\therefore \mathbf{u} := Unit \ Vector \ \text{in direction of } \mathbf{v}$.
- Projection: $\operatorname{proj}_{\mathbf{b}} \mathbf{a} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|^2}\right) \mathbf{b}$.
- Cross product: $\mathbf{u} \times \mathbf{v} = \langle u_2 v_3 u_3 v_2, u_3 v_1 u_1 v_3, u_1 v_2 u_2 v_1 \rangle$.
 - Angle: $\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin(\theta)$, where $0 < \theta < \pi$ is between $\mathbf{u} \& \mathbf{v}$.
 - Torque: $\tau = \mathbf{r} \times \mathbf{F}$ or $\|\tau\| = \|\mathbf{r}\| \|\mathbf{F}\| \sin(\theta)$

Parametric Equations Revisted

- To **Parameterize** an equation such as $y = x^3 4x + 1$ we can let x = t and $y=t^3-4t+1$. This allows us to write the equation as $\mathbf{r}(t)=\langle t,t^3-4t+1\rangle$.
- Vector Equation: $\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v}$.
- Parametric Equation: $x = x_0 + at$, $y = y_0 + bt$, $z = z_0 + ct$.
- Symmetric Equation: $\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$.
- The **Line Segment** from P to Q: $\mathbf{r}(t) = (1-t)\mathbf{p} + t\mathbf{q}$ (where \mathbf{p}, \mathbf{q} are the vector forms of P, Q and $0 \le t \le 1$).
- Shortest Distance: $d = \frac{||\mathbf{PM} \times \mathbf{v}||}{||\mathbf{v}||}$
 - **Equal**: Same direction vector, share a point.
 - Parallel: Same direction vector, do not share a point.
 - *Intersecting*: Different direction vectors, share a point.
 - **Skew**: Different direction vectors, do not share a point.
- If (x_0, y_0, z_0) is a point on a plane, the **Scalar Equation** would be: $\langle x - x_0, y - y_0, z - z_0 \rangle \cdot \langle a, b, c \rangle = 0 \Longrightarrow a(x - x_0) + b(y - y_0) + c(z - z_0) = 0.$

Chapter 3: Vector-Valued Functions

If each of $f_1, f_2, ..., f_n : \mathbb{R} \to \mathbb{R}$ is a function we can then define the **vector-valued** function $\mathbf{r} : \mathbb{R} \to \mathbb{R}^n$ by $\mathbf{r}(t) = \langle f_1(t), f_2(t), ..., f_n(t) \rangle$

- When n=2, we might write $\mathbf{r}=\langle f(t),g(t)\rangle=f(t)\hat{\imath}+g(t)\hat{\jmath},$
- and when n=3, we might write $\mathbf{r}=\langle f(t),g(t),h(t)\rangle=f(t)\hat{\imath}+g(t)\hat{\jmath}+h(t)\hat{k}$.

Note: Deriving and integrating vector-valued functions follow the same rules as regular derivates.

- Principle unit tangent vector $\mathbf{T}(t)$: $\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{||\mathbf{r}'(t)||}$.
 - This vector, of length 1, points in the tangent direction of the curve.
- Unit Normal Vector N: $N(t) = \frac{T'(t)}{||T'(t)||}$
 - This vector points in the direction the curve is turning.
- Binormal Vector B: $\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$.

Arc Length Parameterization

We can define the $arc\ length\ parameterization$ of a curve C by:

- Define the arc length $s(t) = \int_0^t ||\mathbf{r}'(\tau)|| d\tau = \int_0^t \sqrt{[f'(\tau)]^2 + [g'(\tau)]^2} d\tau$. (Where $f(\tau), g(\tau)$ correspond to the x, y components of $\mathbf{r}(t)$).
- \bullet Solving, if possible, the resulting expression for t as a function of s.
- Rewriting $\mathbf{r}(t) = \mathbf{r}(t(s)) = \mathbf{r}$, so that the curve is written as a function of its length, from a given starting point.

Curvature

For all
$$\mathbf{r}$$
: $\kappa = \frac{||\mathbf{T}'(t)||}{||\mathbf{r}'(t)||}$; for \mathbb{R}^3 : $\kappa = \frac{||\mathbf{r}'(t) \times \mathbf{r}''(t)||}{||\mathbf{r}'(t)||^3}$; if $y = f(x)$: $\kappa = \frac{|y''(x)|}{[1+(y'(x)^2)]^{3/2}}$

Motion

- Velocity: $\mathbf{v}(t) = \mathbf{r}'(t)$.
- **Speed:** $||\mathbf{v}(t)|| = ||\mathbf{r}'(t)||$.
- Acceleration: $\mathbf{a}(t) = \mathbf{v}'(t) = \mathbf{r}''(t)$.

The motion of an object – in 2-dimensions, typically, acted on only by gravity $\mathbf{F}_g = -mg\mathbf{j}$, where $g \approx 9.8 \text{ m/s}^2$ and m is the mass of the object. By Newton's second law, $\mathbf{F} = m\mathbf{a}$, so we have $\mathbf{a}(t) = -g\mathbf{j}$. Thus, $\mathbf{v}(t) = -gt\mathbf{j} + \mathbf{v}_0$, where \mathbf{v}_0 is the initial velocity vector, and $\mathbf{s}(t) = -\frac{1}{2}gt^2\mathbf{j} + \mathbf{v}_0t + \mathbf{s}_0$, where \mathbf{s} is the position, and \mathbf{s}_0 is the initial position vector. Often, we have an object starting at the origin (so $\mathbf{s}_0 = \mathbf{0}$) and fired at a velocity of v_0 at an angle θ above the horizon. Then, $\mathbf{s}(t) = v_0 t \cos(\theta) \mathbf{i} + \left(v_0 t \sin(\theta) - \frac{1}{2}gt^2\right) \mathbf{j}$.

Chapter 1 Examples

- 1. Consider the curve defined by the parametric equations $x(t) = \sin(2t)$, $y(t) = \cos(t)$, for $0 \le t \le 2\pi$.
- (a) Find the equation of the tangent line to the curve at the point where $t = \pi/3$. Solution. Solve for $\frac{dy}{dt}$ and $\frac{dx}{dt}$:

$$y(t) = \cos t \Rightarrow \frac{dy}{dt} = -\sin t$$
.

$$x(t) = \sin 2t \Rightarrow \frac{dx}{dt} = 2\cos 2t.$$

Now, we have our slope, which we evaluate at $t = \pi/3$:

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{-\sin t}{2\cos 2t} \quad \Rightarrow \quad \frac{-\sin t}{2\cos 2t} = \frac{-\sqrt{3}/2}{-1} = \frac{\sqrt{3}}{2}.$$

With our slope, we need the points:

$$x(\pi/3) = \sin(2(\pi/3)) = \sqrt{3}/2$$
 and $y(\pi/3) = \cos(\pi/3) = 1/2$.

Putting it all together, we have $y = \frac{\sqrt{3}}{2}(x - \frac{\sqrt{3}}{2}) + \frac{1}{2}$. (Simplify.)

(b) Determine geometric area enclosed by the curve.

Solution. Our equation has 4. We find 1 quadrant and multiply it by 4, we can get the total geometric area for the whole shape.

$$4 \int_0^{\pi/2} y(t) \frac{dx}{dt} dt = 4 \int_0^{\pi/2} \cos t (2\cos 2t) dt$$

$$= 8 \int_0^{\pi/2} \cos t (1 - 2\sin^2 t) dt$$

$$= 8 \int_0^{\pi/2} \cos t - 2\cos t \sin^2 t dt$$

$$= 8 \left[\int_0^{\pi/2} \cos t dt - 2 \int_0^{\pi/2} \cos t \sin^2 t dt \right].$$

Thus, let $u = \sin t$ such that $\frac{du}{\cos t} = dt$. Hence,

$$8\left[\int_0^{\pi/2} \cos t \ dt - 2\int_0^{\pi/2} \cos t \sin^2 t \ dt\right] = 8\left[\int_0^{\pi/2} \cos t \ dt - 2\int_0^{\pi/2} u^2 \ du\right]$$
$$= 8\left[\sin t - \frac{2}{3}\sin^3 t\right]_0^{\pi/2}$$

2. Find angle between $\mathbf{u} = 6\mathbf{i} + 2\mathbf{j} - 5\mathbf{k}$ and $\mathbf{v} = -4\mathbf{i} + \mathbf{j} - 7\mathbf{k}$. Solution. Find the magnitudes of \mathbf{u} and \mathbf{v} . Then solve:

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{13}{\sqrt{65}\sqrt{66}} \approx 0.198.$$

Thus, $\theta \approx \cos^{-1}(0.198) \approx \boxed{1.371}$ radians.

Chapter 1 & 2 Examples (cont.)

3. Determine a parametric equation for the line *segment* that goes from the point P = (6, 1, -2) to Q = (-2, 0, 5).

Solution.
$$x(t) = 6 - 8t$$
; $y(t) = 1 - tz(t) = -2 + 7t$, for $0 \le t \le 1$.

4. Find a symmetric equation for the line which contains the points R=(4,-6,1) and S=(1,2,3).

Solution.
$$\frac{x-4}{-3} = \frac{y+6}{8} = \frac{z-1}{-2}$$
.

5. Find the general form of an equation of the plane which contain the three points P = (3, 1, -4), Q = (-2, 0, 5) and R = (4, -6, 1).

Solution. Let $\mathbf{PQ} = \langle -5, -1, 9 \rangle$ and $\mathbf{PR} = \langle 1, -7, 5 \rangle$. Thus, $\mathbf{n} = \mathbf{PQ} \times \mathbf{QR} = \langle 58, 34, 36 \rangle$. General equation:

$$58(x-3) + 34(y-1) + 36(z+4) = 0 \implies 58x + 34y + 36z - 64 = 0.$$

6. Find an equation, in symmetric form, of the line of intersection between the planes 2x + y - z + 4 = 0 and x - y + 3z = 1.

Solution. Add the plane equations to eliminate y so that 3x + 2z = -3. Thus, $x = -1 - \frac{2}{3}z$. Substitute this equation into the first equation to express y in terms of z, giving $y = -2 + \frac{7}{3}z$. Define z in terms of t. Choose parameter t as $t = -\frac{1}{3}z$. This gives z = -3t. When we substitute our value t back into the previous two equations, we see that the parametric equations for the line of intersection are x = -1 + 2t, y = -2 - 7t, and z = -3t. Therefore, the

symmetric equations for the line are $\frac{x+1}{2} = \frac{y+2}{-7} = \frac{z}{-3}$.

Chapter 2 Examples

1. Write, in scalar form, an equation of the plane which contains the point (5,2,1) and the line given by $x+2=\frac{y}{4}=\frac{z-5}{2}$.

Solution. We start by parametrizing the line with common parameter t: $x+2=t \Rightarrow x=t-2, \frac{y}{4}=t \Rightarrow y=4t,$ and $\frac{z-5}{2}=t \Rightarrow z=2t+5.$ This gives us the parametric form: (x,y,z)=(-2,0,5)+t(1,4,2) Thus, the line passes through the point (-2,0,5) and has the direction vector $\mathbf{v}_1=\langle 1,4,2\rangle$. Form a second vector \mathbf{v}_2 by taking the difference between the given point and a point on the line: $\mathbf{v}_2=(5,2,1)-(-2,0,5)=\langle 7,2,-4\rangle$. With \mathbf{v}_1 and \mathbf{v}_2 , we find the normal vector:

$$\mathbf{n} = \mathbf{v}_1 \times \mathbf{v}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 4 & 2 \\ 7 & 2 & -4 \end{vmatrix} = (-16 - 4)\mathbf{i} - (-4 - 14)\mathbf{j} + (2 - 28)\mathbf{k} = -20\mathbf{i} + 20\mathbf{j} - 26\mathbf{k}$$

Therefore, we find the scalar form to be:

$$-20(x+2) + 18y - 26(z-5) = 0.$$

Chapter 3 Examples

2. Determine the arc length parametrization for the curve $\mathbf{r}(t) = 3e^t \sin(t)\mathbf{i} + 3e^t \cos(t)\mathbf{j}$, where you start from t = 0.

Solution. Rewrite the arc length parametrization as: $s = \int_0^t ||\mathbf{r}'(\tau)|| d\tau = \int_0^t \sqrt{\left[f'(\tau)\right]^2 + \left[g'(\tau)\right]^2} d\tau$. Thus, $f'(\tau) = 3e^{\tau}(\sin(\tau) + \cos(\tau))$ and $g'(\tau) = 3e^{\tau}(\cos(\tau) - \sin(\tau))$. Thus, we have:

$$\begin{split} s &= \int_0^t \sqrt{\left[3e^\tau \left(\sin(\tau) + \cos(\tau)\right)\right]^2 + \left[3e^\tau \left(\cos(\tau) - \sin(\tau)\right)\right]^2} \, d\tau \\ &= \int_0^t \sqrt{9e^{2\tau} \left[2\left(\sin^2(\tau) + \cos^2(\tau)\right) + \left(2\sin(\tau)\cos(\tau) - 2\sin(\tau)\cos(\tau)\right)\right]} \\ &= \int_0^t \sqrt{9e^{2\tau} \cdot \left[2(1+0)\right]} = \int_0^t 3e^\tau \sqrt{2} \, d\tau = 3\sqrt{2} \int_0^t e^\tau \, d\tau = 3\sqrt{2}(e^t - 1). \end{split}$$

With s, we know that $\mathbf{r}(t) = \mathbf{r}(t(s)) = \mathbf{r}$, so we need to find t in terms of s: $s = 3\sqrt{2}(e^t - 1) \Rightarrow e^t = \frac{s}{3\sqrt{2}} + 1 \Rightarrow t = \ln\left(\frac{s}{3\sqrt{2}} + 1\right)$. Finally, by replacing t with t(s) in the original equation, we can get the arc length parametrization:

$$\mathbf{r}(s) = \left(\frac{s}{\sqrt{2}} + 3\right) \sin\left(\ln\left(\frac{s}{\sqrt{2}} + 3\right)\right) \mathbf{i} + \left(\frac{s}{\sqrt{2}} + 3\right) \cos\left(\ln\left(\frac{s}{\sqrt{2}} + 3\right)\right) \mathbf{j}.$$

3. Use curvature to find the equation of the osculating circle at the planar curve $y = x^3 - 4x + 1$ at x = 1.

Solution. First, we need to find the curvature of the curve at x=1. We start by finding the first and second derivatives of the function: $y(x)=x^3-4x+1 \Rightarrow y'(x)=3x^2-4 \Rightarrow y''(x)=6x$.

Then, we evaluate the point and the first and second derivatives at x = 1: y(1) = -2; y'(1) = -1; y''(1) = 6.

Find the curvature:
$$\kappa = \frac{|y''(x)|}{\left(1+y'(x)^2\right)^{3/2}} = \frac{6}{\left(1+(-1)^2\right)^{3/2}} = \frac{3\sqrt{2}}{2}$$
.

Find radius: $R = \frac{1}{\kappa} = \frac{1}{\frac{3\sqrt{2}}{2}} = \frac{2\sqrt{2}}{6} = \frac{\sqrt{2}}{3}$.

For the center, find **N** at
$$x = 1$$
: $\mathbf{N} = \frac{(-y',1)}{\sqrt{1+(y')^2}} = \frac{\left(-(-1),1\right)}{\sqrt{1+(-1)^2}} = \frac{(1,1)}{\sqrt{2}}$.

The center C can be found by moving our point P(1, -2) the distance R along the unit normal vector: $C = P + R\mathbf{N} = \left(\frac{4}{3}, -\frac{5}{3}\right)$. This gives the equation for the osculating circle:

$$\left(x - \frac{4}{3}\right)^2 + \left(y + \frac{5}{3}\right)^2 = \frac{2}{9}.$$