

Editorial

(Practice)

บริษัท

1 seconds, 256 megabytes

Abridged Problem Statement

โจทย์คือมีต้นไม้ต้นหนึ่ง ประกอบดวยจุดยอด N จุด แต่ละจุดยอดมีตัวเลขอยู่ค่าหนึ่งโดยค่านั้นจะไม่ซ้ำกันเลย เราจะ ไม่ทราบค่าตัวเลขนั้น อย่างไรก็ตาม เราทราบว่า บนเส้นทางจากจุดยอดปัจจุบันถึงราก มีตัวเลขกี่ตัวที่มีค่าน้อยกว่า ตัวเลขปัจจุบัน เราต้องการเรียงจุดยอดจากที่มีเลขสูงสุดไปหาต่ำสุด

Subtask 1

ทำการสุ่ม (หรือไล่หา) ทุกวิธีการจัดตัวเลขที่เป็นไปได้ ซึ่งมีอยู่ทั้งหมด N! วิธี หลังจากนั้นไปตรวจสอบว่าวิธีเหล่านั้น ทำให้เกิดผลลัพธ์ตามที่กำหนดหรือเปล่าด้วยอัลกอริทึม $\mathcal{O}(N^2)$

Time Complexity: $\mathcal{O}(N!)$

Subtask 2, 3

มี 2 วิธีหลัก ๆ วิธีแรกคือพิจารณาจากรากของต้นไม้ไปหาทุก ๆ จุดยอดที่เหลือ เพื่อพิจารณาว่าจุดยอดปัจจุบันจะ ต้องอยู่ส่วนใดของลำดับในคำตอบ (วิธีนี้เราจะไม่แทนค่าว่าแต่ละจุดยอดมีค่าค่าใดอยู่ แต่เราจะเก็บข้อมูลว่าจุดยอด ใดจะต้องมีค่าน้อยกว่าจุดยอดใด จุดยอดใดต้องมีค่ามากกว่าจุดยอดใด เราเรียกข้อมูลนี้ว่า partially ordered set หรือเซตอันดับบางส่วน)

เริ่มจากการค้นหาจากรากมาสู่ลูกแต่ละตัว แล้วพิจารณาว่าจุดยอดปัจจุบันจะต้องน้อยกว่าจุดยอดใดบ้างบนเส้นทาง จากจุดยอดปัจจุบันไปจนถึงราก แล้วทำการเก็บข้อมูล โดยเราอาจเก็บข้อมูลเป็นกราฟมีทิศทางเสริมที่มีเซตของเส้น เชื่อมนิยามโดย u ไปหา v ก็ต่อเมื่อ จุดยอด u บนต้นไม้ จะต้องมีค่ามากกว่าจุดยอด v อย่างแน่นอน สังเกตว่าหาก ทำ topological sort บนกราฟนี้จะได้คำตอบทันที หรือ อาจเก็บลำดับที่เป็นไปได้ (อาจมีได้หลายวิธี แต่เก็บวิธีเดียว ไปเลย) เมื่อมีจุดยอดลูกเข้ามา เราก็สามารถไล่หาในลำดับนี้ได้ว่าควรแทรกจุดยอดลูกในตำแหน่งไหน เนื่องจากการ พิจารณา subtree ที่ต่างกันนั้นอิสระต่อกัน วิธีนี้จึงไม่มีปัญหาเช่นกัน

วิธีต่อมาคือพิจารณาจาก subtree ต้นเล็กๆ ไปหา root โดยเราจะพิจารณาคำตอบที่เป็นไปได้ของ subtree แต่ละ ต้น สมมติพิจารณาจุดยอด u หาก v_i เป็นลูกของ u สำหรับทุก i ใน I แล้ว สมมติว่า subtree ที่ v_i ทุก subtree มีคำตอบอยู่แล้ว เมื่อนำคำตอบของแต่ละ subtree มาแทรกอย่างไรก็ได้ (อาจนำลำดับมาต่อกันเลยก็ได้) จะได้ว่าคำ ตอบของทุก subtree ยังถูกต้องอยู่ ที่เหลือคือการแทรก u ในลำดับคำตอบ ซึ่งสามารถพิจารณาได้ไม่ยากโดยการไล่ หาว่าแทรกในจุดไหนได้บ้างภายในลำดับ แต่ส่วนนี้จะทำให้ไม่สามารถนำลำดับลูกมาต่อกันอย่างสุ่มได้ วิธีในการรักษา

โจทย์ทั่วไป

THACO Public Problemset

ลำดับที่ง่าย คือการกำหนดจุด u ไว้ก่อนแล้วพิจารณาว่าจุดยอดลูกจุดใดบ้างที่ต้องอยู่ทางซ้าย จุดใดบ้างที่ต้องอยู่ทาง ขวา เท่านี้ก็จะทำให้สามารถจัดลำดับได้ตามต้องการ

ทั้งสองวิธีสามารถทำได้ใน $\mathcal{O}(N^3)$ และ $\mathcal{O}(N^2)$ ได้ ขึ้นอยู่กับวิธีการเขียน และการจัดการข้อมูล

Subtask 4

สืบเนื่องมาจากปัญหาย่อยที่ผ่านมา เราสามารถพัฒนาให้ดียิ่งขึ้นได้อีก สำหรับวิธีการที่ไล่จาก subtree ขึ้นมา อัลกอ ริทึมที่ดีพอจะใช้เนื้อหาเกินการแข่งขันระดับชาติ ในที่นี้จึงขอไม่อธิบายมากแต่จะให้ข้อมูลสำหรับผู้สนใจ สำหรับวิธี นี้เราสามารถใช้โครงสร้างข้อมูลชนิดหนึ่งเรียกว่า Sack ในการเก็บชุดลำดับจากแต่ละ subtree เอามารวมกันแล้วส่ง ขึ้นไปได้ โดยอาจดูเหมือนต้องเก็บข้อมูล $\mathcal{O}(N^2)$ แต่เราสามารถใช้เพียง $\mathcal{O}(N\log^2 N)$ หรือ $\mathcal{O}(N\log N)$ ได้ด้วย โครงสร้างข้อมูลนี้ (อ่านต่อได้ใน https://codeforces.com/blog/entry/44351)

Official Solution

เราจะพิจารณาจากบนลงล่างและทำการแทรกข้อมูลลงในลำดับเรื่อย ๆ โดยเราต้องการโครงสร้างข้อมูลบางอย่างที่ ทำให้เราสามารถแทรกจุดยอดปัจจุบันลงไปในที่ที่มันควรอยู่ได้ กล่าวคือ ต้องการโครงสร้างข้อมูลที่รองรับการดำเนิน การดังนี้:

- 1. แทรกจุด u ก่อน ตัวชี้ตำแหน่งค่าหนึ่ง
- 2. หาตัวชี้ตำแหน่งของ v
- 3. หาว่า บนเส้นทางจาก u ไปถึงรากนั้น หากเรียงลำดับตามมูลค่าแล้วจุดยอดลำดับ i คือจุดยอดใด

ด้วยเวลา $\mathcal{O}(\log N)$ สำหรับทั้ง 3 การดำเนินการ

สังเกตว่าเราสามารถใช้ต้นไม้ค้นหาทวิภาค (binary search tree) เพื่อรองรับการดำเนินการที่ 3 ได้ หากเราค่อยๆ เดินจากรากไปยังแต่ละจุดยอด เมื่อลงข้างล่างก็นำค่าปัจจุบันใส่ binary search tree ด้วยวิธีการเปรียบเทียบค่าแบบ เปรียบเทียบมูลค่าของจุดยอดนั้นๆ เมื่อเดินขึ้นข้างบนก็นำค่าออกจาก binary search tree นอกจากนั้นต้องเก็บค่า ไว้ด้วยว่าใน subtree ของ binary search tree นั้นจะมีขนาดเท่าไร เพื่อให้สามารถหาว่าตัวที่ i ตามลำดับ in-order นั้นอยู่ที่จุดยอดใดใน binary search tree ภายในเวลาอันรวดเร็ว

ที่เหลือคือการดำเนินการ 2 อย่างแรก ซึ่งเราสามารถใช้ต้นไม้ค้นหาทวิภาคอีกต้นได้ เพื่อเก็บลำดับที่เป็นไปได้

เนื่องจาก binary search tree นั้นอาจช้า เราจึงจำเป็นต้องพัฒนาด้วย self balancing binary search tree หรือ randomized data structures ทางผู้เขียนแนะนำให้ใช้ treap เนื่องจากสามารถจัดการ split/merge ได้ไม่ยาก

R Sequence

1 second, 256 megabytes

Abridged Problem Statement

เราต้องการนับว่ามีวิธีการตัดส่วนหนึ่งของอาเรย์ได้กี่วิธีที่จะทำให้อาเรย์ย่อยที่ถูกตัดนั้นเป็น R Sequence

Subtask 1 - 2

สำหรับ Sequence หนึ่ง เราสามารถตรวจสอบว่าเป็น R Sequence หรือไม่ด้วยวิธีการดังนี้

- 1. หากลำดับปัจจุบันเป็นลำดับว่าง จะถือว่าเป็น R Sequence
- 2. หากลำดับไม่ว่าง และ ตัวแรกสุดมีค่าเท่ากับตัวท้ายสุด ให้ตรวจสอบว่าลำดับปัจจุบันที่ลบตัวแรกกับตัวท้าย ออกไปนั้นเป็น R Sequence หรือไม่
- 3. หากลำดับไม่ว่าง และ ตัวแรกสุดมีค่าไม่เท่ากับตัวท้ายสุด ถือว่าไม่เป็น R Sequence

เราทำการไล่หาทุกลำดับย่อยที่เป็นไปได้ (ซึ่งมี N^2 ลำดับย่อย) หลังจากนั้นใช้วิธีข้างต้นในการตรวจสอบว่าเป็น R Sequence หรือไม่ ภายในเวลา $\mathcal{O}(N)$

Time Complexity: $\mathcal{O}(N^3)$

Subtask 3

ก่อนอื่นจะต้องพูดถึงวิธีอื่นที่สามารถตรวจสอบได้เช่นกันว่าลำดับหนึ่งเป็น R Sequence หรือไม่ดังนี้

- 1. สร้าง stack มาก่อน
- 2. ค่อย ๆ พิจารณาจากซ้ายไปขวา หาก stack ไม่ว่างและตัวปัจจุบันมีค่าเท่ากับตัวบนสุดของ stack ให้ลบตัวบน stack ออก แต่ในทางกลับกัน หาก stack ว่าง หรือตัวปัจจุบันไม่เท่ากับตัวบนสุด ให้นำตัวปัจจุบันวางลงบน stack
- 3. ทำจนจบ หาก stack ว่าง ถือว่าเป็น R Sequence แต่หากไม่ว่างจะถือว่า ไม่เป็น R Sequence

เราเริ่มต้นจากการกำหนดค่าเริ่มต้น L ตั้งแต่ 1 ถึง N แล้วพิจารณาลำดับย่อยจาก L ถึง R สำหรับ R จาก L ถึง N จะได้ว่าเราสามารถตรวจสอบไปด้วยได้เลยว่าลำดับย่อยจาก L ถึง R เป็น R Sequence หรือไม่ โดยที่เดินต่อไปด้วย พร้อม ๆ กัน

Time Complexity: $\mathcal{O}(N^2)$

Subtask 4

กลายเป็นโจทย์คณิตศาสตร์ ถามว่ามีลำดับย่อยกี่แบบที่ยาวเป็นเลขคู่ สามารถคิดด้วยวิธีการทางคอมบินาทอริกส์ได้ ดังนี้ สำหรับเลขคู่ i จาก 2 ถึง N พิจารณาว่ามีกี่ลำดับย่อยที่ยาว i เราจะสังเกตได้ว่ามีอยู่ทั้งหมด N-i+1 ลำดับ ย่อยพอดี

Subtask 5, 6, 7

เราต้องการหาวิธีที่ดีกว่า $\mathcal{O}(N^2)$ ที่ทำได้คล้าย ๆ กัน เราเริ่มต้นได้ด้วยการสังเกต

สังเกตว่าหากทำตามอัลกอริทึมในปัญหาย่อยที่ 3 เราจะมี stack ทั้งหมด N อัน แต่ละอันเริ่มจากพิกัดทางซ้ายที่ต่าง กันออกไป แต่ในความเป็นจริงแล้วเราสามารถใช้เพียงอันเดียวโดยเริ่มที่ตำแหน่งเริ่มต้นได้เลย ค่อย ๆ ไล่มาทางขวา ไปเรื่อย ๆ เหมือนเดิม แต่เปลี่ยนลักษณะคำถามใหม่ จากเดิมที่ว่า stack โล่งหรือไม่ คำถามจะกลายเป็น "หากด้าน ขวาของลำดับย่อยอยู่ตำแหน่งปัจจุบัน จะมีด้านซ้ายได้กี่แบบที่ทำให้ stack โล่งหากคิดแบบเดิม" เราสังเกตว่า หากมี stack S อยู่ ผ่านชุดการดำเนินการ P แล้วยังคงข้อมูลเป็น S เหมือนเดิม แสดงว่าหากนำ stack โล่งมาผ่านชุดการ ดำเนินการ P แล้วจะทำให้ stack โล่งเช่นกัน รวมถึงในทางกลับกันด้วย

คำถามตอนนี้คือ หากเราทราบหน้าตาของ stack หลังผ่านแต่ละจุดไปแล้ว ตั้งแต่จุดเริ่มต้น (0) ถึง ผ่าน N นั้น มีอยู่ กี่คู่ที่ลักษณะเหมือนกันทุกประการ

การเปรียบเทียบโดยตรงก็จะยังเป็น $\mathcal{O}(N^3)$ อยู่ เพราะเทียบทุกคู่ แต่ละคู่ใช้เวลา $\mathcal{O}(N)$ ในการเทียบ

เราสามารถพัฒนาปรับปรุงได้เป็น $\mathcal{O}(N^2)$ โดยเก็บเป็นโครงสร้างลักษณะ map of stack กล่าวคือเก็บว่า stack หน้าตาแบบนี้พบแล้วกี่ครั้ง แล้วทำจากซ้ายไปขวาตามปกติ

วิธีที่จะทำให้เหลือแค่ $\mathcal{O}(N)$ คือ แทนที่จะเก็บ stack ใส่ map เราจะใช้ rolling hash มาเก็บค่าของ stack แทน เมื่อทำการเทียบจึงสามารถทำได้โดยง่าย ว่าพบเจอ stack ลักษณะปัจจุบันกี่ครั้งแล้ว เนื่องจากจำนวน stack ที่เป็น ไปได้ทั้งหมด มีถึง $\mathcal{O}(N)$ แบบ จึงมีโอกาสสูงที่จะเกิดข้อผิดพลาดหากทำ hash โดยตรง ทางผู้แต่งจึงแนะนำให้ใช้วิธี double hash หรือ triple hash เพื่อให้มั่นใจว่าถูกต้อง

Alternative Solution

นอกจากการใช้ stack แล้ว ยังมีวิธีอื่นที่แตกต่างออกไปเลย คือการสร้าง Trie แล้วเดินบน Trie ดังนี้ หากพบเจอ จำนวนอะไรก็ให้เดินไปหาลูกที่แทนค่าจำนวนนั้น ยกเว้นว่า parent edge จะเป็นจำนวนเดียวกัน ให้ขึ้นด้านบน ทุก ครั้งที่ย้ายที่ ให้นำตัวเลขที่อยู่บนจุดยอดไปบวกในคำตอบ แล้วเพิ่มค่าตัวเลขบนจุดยอดปัจจุบันไปอีก 1 ทำซ้ำจนหมด ทั้งลำดับแล้ว จะได้คำตอบ

ง่าย?

2 seconds, 256 megabytes

Abridged Problem Statement

ให้จำนวนขนาดใหญ่ A กับ B แล้วให้หา A+B

Subtask 1

เป็นการเขียนโปรแกรมพื้นฐาน สามารถใช้ตัวแปรประเภท int เก็บจำนวนได้

Subtask 2

จำนวนใหญ่เกินขอบเขต int แต่เรามีประเภท long long ที่สามารถเก็บค่าได้ถึง 64-bit ซึ่งสามารถใช้เก็บค่าได้

Subtask 3

เนื่องจาก A=0 เราสามารถรับค่า B แล้วส่งออกได้เลย โดยอาจรับค่าเป็นสตริง (string) ได้

Subtask 4, 5

เราทำการบวกเลขโดยตรง ด้วยวิธีคล้ายการบวกเลขแบบทดเลข คือดูเลขหลักหน่วย จับบวกกัน ทดเลข ต่อมาดูเลข หลักสิบ จับบวกกัน และบวกกับเลขที่ทดด้วย

หากเขียนดีจะสามารถทำตรง ๆ ใน $\mathcal{O}(a+b)$ ได้ แต่หากระบบทดไม่ดีอาจะต้องใช้เวลา $\mathcal{O}((a+b)^2)$ ได้ เมื่อ a แทน จำนวนหลักของ A และ b แทนจำนวนหลักของ B หรืออาจกล่าวได้ว่า $a \in \mathcal{O}(\log A)$ และ $b \in \mathcal{O}(\log B)$

จัดแถวหุ่นยนต์

2 seconds, 256 megabytes

Abridged Problem Statement

มีชุดตัวเลข A ยาว N เรียงจากมากไปน้อย และมีชุดตัวเลขเป็นเซต B

เราต้องการนำ B ไปแทรกใน A โดยที่ทำให้จำนวนครั้งในการสลับน้อยสุด มีค่ามากที่สุดเท่าที่เป็นไปได้ ถามว่าจะใช้ จำนวนครั้งในการสลับเท่าใด

Subtask 1

หาก M=1 คำถามจะเป็น ควรแทรกตัวเลขตัวเดียวไว้ที่จุดไหน

Observation 1

สังเกตว่า การแทรกภายใน A ระหว่างจำนวนใด ๆ นั้นจะทำให้จำนวนครั้งที่ต้องสลับ ไม่มากเท่า การนำไปไว้ด้าน หน้าสุดหรือหลังสุดของชุดตัวเลข A

เราจึงสามารถพิจารณาเพียงแค่ว่าจำนวนใหม่นั้นควรอยู่ด้านหน้าหรือด้านหลัง แล้วนับจำนวนครั้งในการสลับให้เรียง

Subtask 2

เนื่องจากมีจำนวนเก่าแค่ตัวเดียว นั่นเทียบเท่ากับว่าเราสามารถจัดวางอย่างไรก็ได้ วิธีการที่ทำให้จำนวนครั้งในการ สลับสูงสุด คือนำชุดจำนวนรวมกันแล้ว เรียงจากน้อยไปมาก สังเกตว่าเราสามารถแทรกจำนวนใหม่ให้กลายเป็นแบบ ที่ต้องการได้เสมอ

Subtask 3

เราสามารถไล่หาวิธีการจัดเรียงทุกแบบที่เป็นไปได้ โดยการเขียน Recursive function เพื่อค้นหาทุกแบบ Time Complexity: $\mathcal{O}\left(\frac{(N+M)!}{N!}\right)$

Subtask 4

Observation 2

จากข้อสังเกตแรก หากเราแบ่งการจัดวางของในเซต B ออกเป็น P_L กับ P_R แทนเซตของของที่วางไว้ด้านหน้าของ ตัวแรก กับเซตของของที่วางไว้หลังสุด เราสังเกตได้ไม่ยากว่าเราควรทำให้ P_L เรียงจากน้อยไปมาก และ P_R เรียงจาก น้อยไปมากเช่นกัน เมื่อทำแล้ว เราจะสามารถนับจำนวนครั้งในการสลับได้ใน $\mathcal{O}(N^2)$ ด้วย Bubble Sort

Observation 3

การแบ่ง B ออกเป็น P_L กับ P_R นั้นก็ทำได้หลายวิธีเช่นกัน แต่สังเกตได้อีกว่าวิธีที่ดีที่สุดในการแบ่ง จะมี $\max(P_L) < \min(P_R)$ เสมอ เพราะหากมีค่า $x_L \in P_L$ กับ $x_R \in P_R$ ที่ $x_L > x_R$ จะได้ว่าการสลับ x_L กับ x_R ตั้งแต่แรกจะ ทำให้จำนวนครั้งในการสลับนั้นมากขึ้น

เราจึงสามารถไล่การแบ่ง P_L กับ P_R ได้ทั้งหมด $\mathcal{O}(N)$ วิธี

Time Complexity: $\mathcal{O}(M(N+M)^2)$

Subtask 5

Definition

นิยาม Inversion ของชุดตัวเลข A ซึ่งมีความยาว N เขียนแทนด้วยสัญลักษณ์ Inv(A) ว่า ขนาดของเซตนิยามโดย

$$\{(i,j) \in \mathbb{Z}^2 | 1 \le i < j \le N \text{ and } A_i < A_j\}$$

Remark

นิยามดังกล่าวใช้เฉพาะกับข้อนี้ โดยปกติเราจะนิยาม Inversion อีกแบบดังนี้ นิยาม Inversion ของชุดตัวเลข A ซึ่งมีความยาว N ว่า ขนาดของเซตนิยามโดย

$$\{(i,j) \in \mathbb{Z}^2 | 1 \leq i < j \leq N \text{ and } A_i > A_j \}$$

แต่เนื่องจากจะทำให้ยุ่งยากต่อการอธิบายจึงทำการสลับข้างของการเปรียบเทียบ

Observation 4

จำนวนครั้งในการสลับที่น้อยที่สุด มีค่าเท่ากับจำนวน inversion

พิสูจน์. ก่อนอื่นจะพิสูจน์ว่าจำนวนครั้งในการสลับที่น้อยที่สุด \leq จำนวน inversion

ตราบใดที่ชุดตัวเลขนั้นยังไม่ได้เรียงจากมากไปน้อย เราจะสังเกตได้ว่ามีอย่างน้อยบางตำแหน่ง i ที่ $A_i < A_{i+1}$ หากสลับตำแหน่ง i กับ i+1 จะได้ว่าจำนวน inversion จะลดลง 1 แต่เราทราบว่าชุดตัวเลขที่เรียงแล้วมีจำนวน inversion เป็น 0 เราจึงพิสูจน์ได้แล้วว่า จำนวนครั้งในการสลับที่น้อยที่สุด มีค่า *ไม่เกิน* จำนวน inversion (เพราะ เราสามารถสลับตามอัลกอริทึมข้างต้นไปเท่ากับจำนวน inversion ครั้งแล้วจำนวน inversion จะเหลือศูนย์)

ต่อมาจะพิสูจน์ว่าจำนวนครั้งในการสลับที่น้อยที่สุด \geq จำนวน inversion

จะพิสูจน์ด้วยข้อขัดแย้ง สมมติว่าจำนวนครั้งในการสลับที่น้อยที่สุด (เพื่อความง่ายจะเรียกค่านี้ว่า k) มีค่าน้อยกว่า จำนวน inversion นั่นคือ จากชุดตัวเลข A นั้นเราสามารถเรียงให้ inversion เหลือ 0 ได้โดย k < Inv(A) สังเกต ว่าการสลับตัวที่อยู่ติดกันภายใน A จะเพิ่มหรือลดจำนวน inversion ได้มากสุดแค่ 1 จึงได้ว่าการสลับของที่อยู่ติด กันไป k รอบ ไม่ว่าจะเป็นวิธีแบบใด จะได้จำนวน inversion ใหม่ (เพื่อความง่ายจะขอนิยามว่า Inv(A')) มีสมบัติ ดังนี้ $Inv(A) - k \leq Inv(A') \leq Inv(A) + k$ แต่เราทราบว่า k < Inv(A) แสดงว่า Inv(A) - k > 0 กล่าวคือ Inv(A') > 0 นั่นคือไม่สามารถทำให้ inversion เหลือ 0 ได้ภายใน k รอบ

ในปัญหาย่อยนี้ เราสามารถไล่การแบ่ง B ออกเป็น P_L และ P_R ทั้ง N แบบ แล้วนับจำนวน inversion ที่มีค่า มากที่สุด หากนับด้วยวิธีตรง ๆ จะใช้ $\mathcal{O}(N^2)$ เหมือนเดิม แต่เราสามารถใช้วิธี Divide and Conquer ในการนับ Inversion ได้ จะเหลือเพียง $\mathcal{O}(N\log N)$

Time Complexity: $\mathcal{O}(M(N+M)\log(N+M))$

Subtask 6

จากข้อสังเกต 4 เราสามารถทำอะไรได้มากกว่า การใช้วิธีจากปัญหาย่อย 3 แล้วหาเพียง inversion

สำหรับแต่ละตัวใน B เราจะพิจารณาที่ละตัวแล้วดูว่าควรนำไปใส่ใน P_L หรือ P_R โดยก่อนอื่นสังเกตว่าจำนวน inversion ระหว่างข้างใน P_L , ระหว่างข้างใน P_R , ระหว่าง P_L กับ P_R สามารถทำให้มีค่ามากสุดได้โดยไม่ต้องสนใจ A ด้วยการเรียงของจากน้อยไปมาก ทั้งใน P_L และ P_R หลังจากนั้นเราจะสนใจแค่เพียง "ระหว่างการนำ x ไปใส่ P_L กับการนำ x ไปใส่ P_R " แบบไหนจะทำให้จำนวน inversion เพิ่มขึ้นมากกว่ากัน โดยจะอาศัยข้อสังเกตต่อไปดังนี้

Observation 5

ให้ m แทน มัธยฐาน (median) ของ A จะได้ว่า หาก x>m ควรนำไปใส่ใน P_R แต่หาก x< m ควรนำไปใส่ P_L

พิสูจน์. เราจะเปลี่ยนมุมมอง เป็นคำถามว่า หากนำ x ใส่ P_L จะเพิ่มค่า inversion เท่าไร และหากนำใส่ P_R จะเพิ่มค่าเท่าไรเช่นกัน

หากนำใส่ P_L จำนวน inversion ที่จะเพิ่มขึ้น คือจำนวนของใน A ที่มากกว่า x ส่วนหากนำใส่ P_R จำนวน inversion ที่จะเพิ่มขึ้นจะเป็นจำนวนของใน A ที่น้อยกว่า x

ในจุดนี้ จะเห็นได้ชัดว่าหากมีค่ามากกว่ามัธยฐาน เมื่อนำไปใส่ P_L จะได้จำนวน inversion มากกว่านำไปใส่ P_R และ เป็นทำนองเดียวกันกรณีมีค่าน้อยกว่ามัธยฐาน

Time Complexity: $\mathcal{O}(N + M \log N)$