Cl2613: Algoritmos y Estructuras III

Blai Bonet

Universidad Simón Bolívar, Caracas, Venezuela

Enero-Marzo 2015

Heap (binario)

Un **heap** es una ED para almacenar elementos (i.e. repositorio) para los cuales existe un orden lineal total que los ordena

Un heap es un árbol binario **casi completo:** todos los niveles excepto posiblemente el último están completos

Los elementos se guardan en los nodos del árbol

El árbol satisface la propiedad de heap:

Si x es un nodo del árbol y y es un hijo de x, entonces $x \ge y$

En este caso, hablamos de un \max heap. En un \min heap, la propiedad de heap indica $x \leq y$

Mergeable heaps

© 2014 Blai Bonet Cl2613

Heap: Ejemplo

CI2613

© 2014 Blai Bonet CI2613 © 2014 Blai Bonet

Representación con arreglo

Un heap con n elementos puede guardarse en un arreglo $A[1 \dots n]$:

- La raíz del árbol es el elemento A[1]
- Para $1 \leq i \leq n$, el elemento A[i] tiene hijo izquierdo ssi $2i \leq n$, y tiene hijo derecho ssi $2i+i \leq n$
- El hijo izquierdo de A[i] es A[2i] y el hijo derecho es A[2i+1]
- El padre del elemento A[i], para i>1, es $A[\lfloor i/2 \rfloor]$

© 2014 Blai Bonet CI2613

Cola de prioridad

Un heap implementa una ED más general llamada cola de prioridad

Las operaciones soportadas por una cola de prioridad son:

- make-priority-queue(): crea una cola vacía
- insert(x, k): inserta el elemento x en la cola con prioridad k
- maximum(): retorna el elemento con la clave más grande en la cola
- extract-max(): remueve el elemento con la clave más grande
- increase-key(x,k): aumenta la clave del elemento x al valor k (k debe ser mayor o igual a la clave actual del elemento x)

En una **cola de prioridad mínima**, las operaciones maximun() y extract-max() se reemplazan por minimum() y extract-min()

Heap: Ejemplo de representación

© 2014 Blai Bonet

© 2014 Blai Bonet

CI2613

CI2613

Heap: Pseudocódigo

```
template<T> struct Heap {
        T A []
                                 % indexado A [1..size ]
        int size
        make-heap()
        void heapify(int i)
                                 % procedimiento fundamental de heaps
10
        T maximum()
11
        T extract-max()
12
        void insert(T x, int k)
        void increase-key(int i, int k)
14
15 }
```

© 2014 Blai Bonet CI2613

heapify(i)

heapify(i) restablece la propiedad de heap en el arreglo

Se asume que los subárboles A[2i] y A[2i+1] son heaps pero que el elemento A[i] puede que no satisfaga la propiedad de heap; i.e. puede ser menor que el elemento A[2i] ó A[2i+1]

```
void heapify(int i) {
       left = 2i
2
       right = 2i+1
       if left <= size && A [left].key > A [i].key
           largest = left
5
       else
6
           largest = i
       if right <= size && A [right].key > A [largest].key
           largest = right
9
       if largest != i
10
           intercambiar A [i] con A [largest]
11
           heapify(largest)
12
13
```

heapify(i) toma tiempo $O(\log n)$ en un heap con n elementos

© 2014 Blai Bonet

Complejidad de las operaciones

CI2613

CI2613

	Heap binario (peor caso)
make-heap	$\Theta(1)$
maximum	$\Theta(1)$
insert	$\Theta(\log n)$
extract-max	$\Theta(\log n)$
increase-key	$\Theta(\log n)$

© 2014 Blai Bonet

Heap: Pseudocódigo

```
T maximum() {
        return A [1]
3
   T extract-max() {
        T item = A [1]
        A[1] = A[size]
        size = size - 1
        heapify(1)
10
        return item
11 }
12
   void insert(T x, int k) {
14
        size = size + 1
        A [size ] = x
15
16
        A [size ].key = -\infty
        increase-key(size , k)
17
18
19
   void increase-key(int i, int k) {
20
        A [i].key = k
21
        while (i > 1) \&\& A [|i/2|] < A [i]
22
            intercambiar A [i] con A [|i/2|]
23
24
            i = |i/2|
25 }
© 2014 Blai Bonet
```

CI2613

Mergeable heap

Es una extensión de heaps que soporta las operaciones:

- make-priority-queue(): crea una cola vacía
- insert(x,k): inserta el elemento x en la cola con prioridad k
- maximum(): retorna el elemento con la clave más grande en la cola
- extract-max(): remueve el elemento con la clave más grande
- increase-key(x,k): aumenta la clave del elemento x al valor k (k debe ser mayor o igual a la clave actual del elemento x)
- union (H_1, H_2) : crea y retorna un nuevo heap que contiene todos los elementos de H_1 y H_2 . Los heaps H_1 y H_2 son "destruidos"
- delete(x): elimina el elemento x del heap

© 2014 Blai Bonet CI2613

Implementación de margeable heaps

Tres implementaciones de mergeable heaps:

- Heap binario
- Heap binomial
- Heap de Fibonacci (fuera del alcance de Cl2613)

© 2014 Blai Bonet Cl2613

Heap binomial

ED similar al heap que implementa mergeable heap

A diferencia de un heap, que es un único árbol binario, un heap binomial es una colección de árboles binomiales

Comparación de heaps

	Heap binario (peor caso)	Heap binomial (peor caso)	Heap Fibonacci (amortizado)
make-heap	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$
maximum	$\Theta(1)$	$\Theta(\log n)$	$\Theta(1)$
insert	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(1)$
extract-max	$\Theta(\log n)$	$\Theta(\log n)$	$O(\log n)$
increase-key	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(1)$
union	$\Theta(n)$	$\Theta(\log n)$	$\Theta(1)$
delete	$\Theta(\log n)$	$\Theta(\log n)$	$O(\log n)$

© 2014 Blai Bonet

Árbol binomial

CI2613

Un árbol binomial se define recursivamente:

- un árbol binomial de orden 0 es un nodo aislado
- un árbol binomial de orden k tiene una raíz cuyos k hijos son árboles binomiales de orden $k-1,k-2,\ldots,2,1,0$ respectivamente

© 2014 Blai Bonet

Árbol binomial: Propiedades

Las siguientes propiedades son fáciles de probar (ejercicio):

- f 1 Un árbol binomial de orden k tiene altura k
- 2 Un árbol binomial de orden k tiene $\binom{k}{d}$ nodos a profundidad d
- 3 Un árbol binomial de orden k tiene $\sum_{d=0}^k \binom{k}{d} = 2^k$ nodos

© 2014 Blai Bonet

Heap binomial: Ejemplo

CI2613

CI2613

Heap binomial con n = 11 elementos: $11 = 01011_b$

Heap binomial

- Cada árbol binomial en un heap binomial satisface la propiedad de heap
- Un heap binomial con n elementos tiene **a lo sumo** un árbol binomial de orden k para $k=0,1,\ldots, |\log n|$
- Como un árbol binomial de orden k tiene 2^k nodos, un heap binomial de orden n contiene un árbol binomial de orden k si y sólo si el k-ésimo bit en la **expansión binaria de** n **es igual a 1**

© 2014 Blai Bonet Cl2613

Unión de árboles binomiales del mismo orden

CI2613

© 2014 Blai Bonet

Unión de árboles binomiales del mismo orden

Unión de heap binomiales

- Se recorren los árboles binomiales en ambos heaps simultáneamente en orden de tamaño
- Si se encuentran dos árboles del mismo tamaño se hace la unión de los árboles, y se continua

Como un heap binomial con n elementos tiene a lo sumo $\log n$ árboles, la operación toma tiempo $O(\log n + \log m)$

Unión de árboles binomiales del mismo orden

La unión de dos árboles binomiales de orden k resulta en un árbol binomial de orden k+1

Operación realizada en tiempo constante

© 2014 Blai Bonet Cl2613

Unión de heaps binomiales: Ejemplo

© 2014 Blai Bonet

Heap binomial: Otras operaciones

- **Insertar:** para insertar x con clave k, creamos un heap binomial con sólo el elemento x y se une al heap. Tiempo $= O(\log n)$
- **Encontrar máximo:** se recorren las raíces de los árboles para encontrar el máximo. Tiempo = $O(\log n)$
- **Extraer máximo:** se busca el árbol con raíz máxima y se extrae del heap. Se crea un heap cuyos árboles son los hijos de la raíz del árbol encontrado. Se unen los heaps. Tiempo = $O(\log n)$
- Incrementar clave: parecido a un heap binario. Se incrementa la clave y luego se "flota hacia arriba" hasta la posición correcta. Tiempo $=O(\log n)$
- **Eliminar:** se incrementa la clave de x hasta ∞ , y luego se extrae el máximo. Tiempo = $O(\log n)$

© 2014 Blai Bonet Cl2613

Comparación de heaps

	Heap binario (peor caso)	Heap binomial (peor caso)	Heap Fibonacci (amortizado)
make-heap	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$
maximum	$\Theta(1)$	$\Theta(\log n)^*$	$\Theta(1)$
insert	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(1)$
extract-max	$\Theta(\log n)$	$\Theta(\log n)$	$O(\log n)$
increase-key	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(1)$
union	$\Theta(n)$	$\Theta(\log n)$	$\Theta(1)$
delete	$\Theta(\log n)$	$\Theta(\log n)$	$O(\log n)$

^{*} En un heap binomial, maximum() puede realizarse en tiempo $\Theta(1)$ si se mantiene un apuntador al mayor elemento del heap. El apuntador se debe actualizar usando tiempo $O(\log n)$ cada vez que el heap cambia

© 2014 Blai Bonet CI2613