Disciplina: Lógica Matemática

Aula 02: Cálculo Proposicional

Cleonice F. Bracciali

UNESP - Universidade Estadual Paulista Campus de São José do Rio Preto

Resumo

Sabemos que para expressar proposições compostas em forma simbólica fazemos uso dos conectivos lógicos:

conectivo	símbolo	significado
е	\wedge	conjunção
ou	V	disjunção (inclusiva)
ou ou	\vee	disjunção exclusiva
se então	\rightarrow	condicional
se, e somente se	\leftrightarrow	bicondicional
não	~	negação

Porém, às vezes precisamos usar parênteses para expressar corretamente a proposição.

Uso de parênteses

Escrever a seguinte proposição na forma simbólica:

Você não tem e-mail do tipo "@unesp.br" se você não for estudante da Unesp, a menos que você trabalhe na Unesp.

- Primeiro determinamos as proposições simples:
 - p: "Você tem e-mail do tipo @unesp.br.
 - q: "Você é estudante da Unesp".
 - r: "Você trabalha na Unesp".
- Agora escrevemos a proposição em forma simbólica

$$(\sim q \land \sim r) \rightarrow \sim p$$

ou, na forma equivalente, $p \rightarrow (q \lor r)$

$$p \to (q \lor r)$$

Você consegue encontrar alguma outra forma simbólica equivalente para expressar esta proposição?

Note a necessidade do uso de parênteses.

Uso de parênteses

Proposições que envolvem vários símbolos podem ter resultados ambíguos. Por exemplo, considerando a proposição $\sim p \wedge q$, veja que

$$(\sim p) \wedge q$$
 não tem o mesmo valor lógico que $\sim (p \wedge q)$
$$(\sim p) \wedge q$$
 não é equivalente a $\sim (p \wedge q)$

p	q	$\sim p$	$(\sim p) \land q$
٧	٧	F	F
٧	F	F	F
F	٧	V	V
F	F	V	F

p	q	$p \wedge q$	$\sim (p \wedge q)$
٧	٧	V	F
٧	F	F	V
F	٧	F	V
F	F	F	V

As últimas colunas das tabelas verdade não são iguais.

Assim, torna-se necessário o uso de parênteses na expressão $\sim p \wedge q$ ou usar alguma precedência de operações lógicas, para conseguimos o valor lógico correto.

Uso de parênteses (algumas convenções)

Uma convenção é que a negação tem precedência sobre os outros símbolos, ou seja,

$$\sim p \land q \equiv (\sim p) \land q$$
$$p \lor \sim q \equiv p \lor (\sim q)$$
$$\sim p \to q \equiv (\sim p) \to q$$

Outra convenção é que \land e \lor tem precedência sobre os outros símbolos \rightarrow e \leftrightarrow , ou seja,

$$p \land q \to r \equiv (p \land q) \to r$$
$$p \lor q \leftrightarrow r \equiv (p \lor q) \leftrightarrow r$$

Se quiser que os símbolos \rightarrow ou \leftrightarrow sejam executados primeiro, então deve usar parênteses, ou seja, usa-se

$$p \land (q \rightarrow r)$$
 $p \lor (q \leftrightarrow r)$

Uso de parênteses

Assim, em muitas situações, devemos usar parênteses para obter o resultado desejado.

Exercícios:

1) Verifique se

$$(p \wedge q) \vee r$$
 não é equivalente a $p \wedge (q \vee r)$.

- 2) Assumindo que, quando não há parênteses nem precedência, os símbolos são executados da esquerda para a direita, qual das duas proposições do item 1) é equivalente a $p \wedge q \vee r$?
- 3) Verifique se

$$(p \rightarrow q) \leftrightarrow r$$
 não é equivalente a $p \rightarrow (q \leftrightarrow r)$.

4) Assumindo que, quando não há parênteses nem precedência, os símbolos são executados da esquerda para a direita, qual das duas proposições do item 3) é equivalente a $p \to q \leftrightarrow r$?

Uso de parênteses

Notação: denotamos por letras minúsculas com índices ou não as proposições simples. Por exemplo, $p, q, r, p_1, p_2,...,p_n$.

Quando os conectivos são iguais, assumimos que são executados da esquerda para a direita.

Assim, para n proposições $p_1, p_2, p_3, ..., p_{n-1}, p_n$, com $n \ge 3$, temos

$$p_{1} \wedge p_{2} \wedge p_{3} \wedge ... \wedge p_{n-1} \wedge p_{n} \equiv (p_{1} \wedge p_{2} \wedge p_{3} \wedge ... \wedge p_{n-1}) \wedge p_{n}$$

$$\equiv (((p_{1} \wedge p_{2}) \wedge p_{3}) \wedge ...) \wedge p_{n-1}) \wedge p_{n}$$

$$p_{1} \vee p_{2} \vee p_{3} \vee ... \vee p_{n-1} \vee p_{n} \equiv (p_{1} \vee p_{2} \vee p_{3} \vee ... \vee p_{n-1}) \vee p_{n}$$

$$p_{1} \vee p_{2} \vee p_{3} \vee ... \vee p_{n-1} \vee p_{n} \equiv (p_{1} \vee p_{2} \vee p_{3} \vee ... \vee p_{n-1}) \vee p_{n}$$

Exercícios

Exercícios:

- Verifique que
 - 1. $p_1 \wedge p_2 \wedge p_3 \wedge ... \wedge p_{n-1} \wedge p_n$ é verdadeira se todas as proposições p_k forem verdadeiras, caso contrário é falsa.
 - 2. $p_1 \lor p_2 \lor p_3 \lor ... \lor p_{n-1} \lor p_n$ é verdadeira se pelo menos uma das proposições p_k for verdadeira, caso contrário é falsa.
 - 3. $p_1 \vee p_2 \vee p_3 \vee ... \vee p_{n-1} \vee p_n$ é verdadeira quando existe um número ímpar de proposições p_k verdadeiras, caso contrário é falsa.
- Escreva a proposição "Ou vou a São Paulo ou vou a Campinas ou vou a Catanduva ou vou a Mirassol" em forma simbólica e monte sua tabela verdade.

Tautologia, Contradição e Contingência

Tautologia:

Tautologia é uma proposição composta, denotada por T, que é sempre verdadeira quaisquer que sejam os valores lógicos das proposições simples que a compõe. Ou seja, a coluna de T na tabela verdade contém apenas V.

Exemplo: $p \land q \rightarrow p$ é uma tautologia. Vamos construir a tabela verdade de $p \land q \rightarrow p$ para comprovar que é uma taulogia observando sua última coluna

p	q	$p \wedge q$	$p \wedge q \rightarrow p$
٧	V	V	V
٧	F	F	V
F	V	F	V
F	F	F	V

Exercício: Verifique que as seguintes proposições são tautologias:

a)
$$p \lor \sim p$$

b)
$$p \rightarrow p$$

a)
$$p \lor \sim p$$
 b) $p \to p$ c) $\sim \sim p \to p$ d) $p \to p \lor q$

$$(d) p \rightarrow p \vee q$$

Tautologia, Contradição e Contingência

Contradição:

Contradição é uma proposição composta, denotada por C, que é sempre falsa quaisquer que sejam os valores lógicos das proposições simples que a compõe. Ou seja, coluna de C na tabela verdade contém apenas F.

Exemplo: $p \land \sim p$ é uma contradição. Vamos construir a tabela verdade de $p \land \sim p$ para comprovar que é uma contradição observando sua última coluna

p	$\sim p$	$p \land \sim p$
V	F	F
F	٧	F

Exercício: Verifique se as seguintes proposições são contradições:

$$a) \sim (p \rightarrow p)$$

b)
$$p \land (p \rightarrow q) \land \sim q$$

$$c)\ p \wedge (p \to q) \wedge q$$

Tautologia, Contradição e Contingência

Contingência:

Toda proposição que não é uma tautologia ou uma contradição é dita Contingência ou Indeterminada.

Encontre um exemplo de Proposição Indeterminada.

Exercício: Classifique as seguintes proposições em tautologia, contradição ou contingência:

- *a*) $p \land q \rightarrow r$
- $b) \ q \to p \lor q$
- c) $r \wedge \sim r$
- $d)\;((p\to q)\wedge\sim q)\to\sim p$

Equivalência e Implicação Lógica

Notação: aqui vamos denotar por letras minúsculas com índices ou não as proposições simples, $p, p_1, p_2, ..., q, r$, e por letras maiúsculas as proposições compostas, P, Q, R, que dependam das proposições simples

Exemplos:

$$P = P(p_1, p_2, ..., p_n)$$
$$Q = Q(p, q, r, s)$$

Se as proposições P e Q ocorrem em um mesmo contexto, denotaremos por $p_1, p_2, ..., p_n$ todas as proposições simples que ocorrem em P ou Q. Exemplos:

1)

$$P(p_1, p_2, p_3)$$
 : $p_1 \to p_2$
 $Q(p_1, p_2, p_3)$: $p_2 \lor \sim p_3$

2)

$$A(p,q,r,s)$$
 : $(p \lor q) \to (r \land s)$
 $B(p,q,r,s)$: $p \land r$

Equivalência Lógica:

Duas proposições $P = P(p_1, p_2, ..., p_n)$ e $Q = Q(p_1, p_2, ..., p_n)$ para $n \ge 1$ são logicamente equivalentes se P e Q sempre assumem valores lógicos iguais, para os mesmos valores lógicos atribuídos a $p_1, p_2, ..., p_n$.

Em outras palavras:

P e Q são logicamente equivalentes se, e somente se, a proposição bicondicional $P \leftrightarrow Q$ for uma tautologia.

Ou ainda, como vimos anteriormente:

P e Q são logicamente equivalentes se, e somente se, as úlimas colunas das respectivas tabelas verdade forem iguais.

Notação:

$$P \equiv Q$$
 ou $P \Leftrightarrow Q$.

Exemplo 1:

Considere as proposições P e Q dadas por

$$P\colon\thinspace p\to q\qquad \text{e}\qquad Q\colon\! \sim q\to\!\!\sim p.$$

Verifique que $P \equiv Q$, ou seja, verifique que $p \rightarrow q \equiv \sim q \rightarrow \sim p$.

Vamos mostrar que $P\equiv Q$ usando a definição "P e Q são logicamente equivalentes se, e somente se, a proposição $P\leftrightarrow Q$ for uma tautologia".

p	q	$P: p \rightarrow q$	$\sim p$	$\sim q$	$Q:\sim q \rightarrow \sim p$	$P \leftrightarrow Q$
V	٧	V	F	F	V	V
V	F	F	F	V	F	V
F	٧	V	V	F	V	V
F	F	V	V	V	V	V

Exemplo 2:

Considere as proposições P e Q dadas por

$$P: p \to q$$
 e $Q: \sim p \vee q$.

Verifique que $P \equiv Q$, ou seja, verifique que $p \rightarrow q \equiv \sim p \lor q$.

Vamos mostrar que $P\equiv Q$ usando a definição "P e Q são logicamente equivalentes se, e somente se, a proposição $P\leftrightarrow Q$ for uma tautologia".

p	q	$P: p \rightarrow q$	$\sim p$	q	$Q:\sim p\vee q$	$P \leftrightarrow Q$
V	٧	V	F	٧	V	V
V	F	F	F	F	F	V
F	٧	V	V	٧	V	V
F	F	V	V	F	V	V

Exemplo 3:

Considere as proposições A e B dadas por

$$A: (a \land \sim b) \rightarrow \sim s$$
 e $B: (a \land s) \rightarrow b$.

Verifique que $A \equiv B$, ou seja, verifique que $(a \land \sim b) \rightarrow \sim s \equiv (a \land s) \rightarrow b$.

a	b	S	$\sim b$	$a \land \sim b$	$\sim s$	A	$a \wedge s$	В	$A \leftrightarrow B$
٧	٧	٧	F	F	F	٧	V	٧	V
V	٧	F	F	F	V	٧	F	٧	V
V	F	٧	V	V	F	F	V	F	V
V	F	F	V	V	V	٧	F	٧	V
F	٧	٧	F	F	F	٧	F	٧	V
F	٧	F	F	F	V	٧	F	٧	V
F	F	٧	V	F	F	٧	F	٧	V
F	F	٧	V	F	V	٧	F	٧	V

Como $A \leftrightarrow B$ é Tautologia, então $A \equiv B$.

- \bullet Para quaisquer proposições p,q,r,T (tautologia), C (contradição), as seguintes equivalências lógicas valem
 - a) Associativas

$$p \lor (q \lor r) \equiv (p \lor q) \lor r$$

 $p \land (q \land r) \equiv (p \land q) \land r$

b) Comutativas

$$p \lor q \equiv q \lor p$$

$$p \land q \equiv q \land p$$

$$p \leftrightarrow q \equiv q \leftrightarrow p$$

c) Propriedades da condicional e da bicondicional

$$\begin{array}{lll} p \rightarrow q & \equiv & \sim p \lor q \\ p \leftrightarrow q & \equiv & (p \rightarrow q) \land (q \rightarrow p) \end{array}$$

d) Leis de DeMorgan

$$\sim (p \lor q) \equiv \sim p \land \sim q$$
$$\sim (p \land q) \equiv \sim p \lor \sim q$$

e) Negação da condicional

$$\sim (p \to q) \equiv p \land \sim q$$

• De fato, podemos mostrar esta equivalência se usar tabela verdade, fazendo apenas uso das equivalências já conhecidas c) e d), veja:

$$\sim (p \to q) \stackrel{c)}{\equiv} \sim (\sim p \lor q) \stackrel{d)}{\equiv} \sim (\sim p) \land \sim q \equiv p \land \sim q$$

f) Negação da bicondicional

$$\sim (p \leftrightarrow q) \equiv \sim p \leftrightarrow q \equiv p \leftrightarrow \sim q$$

g) Leis complementares

$$p \lor \sim p \equiv T$$
$$p \land \sim p \equiv C$$

h) Leis complementares

$$\sim \sim p \equiv p$$

 $\sim T \equiv C$
 $\sim C \equiv T$

i) Idempotentes

$$p \lor p \equiv p \land p \equiv p$$

) Distributivas

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

 $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

ou ainda,

$$(p \lor q) \land r \equiv (p \land r) \lor (q \land r)$$
$$(p \land q) \lor r \equiv (p \lor r) \land (q \lor r)$$

k) Identidades

$$p \lor C \equiv p$$

$$p \lor T \equiv T$$

$$p \land C \equiv C$$

$$p \land T \equiv p$$

Exemplo: Usando as "Equivalências Lógicas Importantes" (ou seja, sem usar tabela verdade), mostre que a seguinte condicional

$$(p \land q) \rightarrow (p \lor q)$$
 é uma tautologia.

Resolução: Usando prop. da condicional, leis de DeMorgan, prop. comutativa, prop. associativa, lei complementar e a prop. idempontente:

$$(p \land q) \rightarrow (p \lor q) \stackrel{c)}{\equiv} \sim (p \land q) \lor (p \lor q)$$

$$\stackrel{d)}{\equiv} (\sim p \lor \sim q) \lor (p \lor q)$$

$$\stackrel{comut}{\equiv} (\sim p \lor \sim q) \lor (q \lor p)$$

$$\stackrel{assoc}{\equiv} \sim p \lor (\sim q \lor q) \lor p$$

$$\stackrel{g)}{\equiv} \sim p \lor T \lor p$$

$$\stackrel{comut}{\equiv} \sim p \lor p \lor T$$

$$\stackrel{g)}{\equiv} T \lor T \stackrel{idemp.}{\equiv} T$$
21

 No exemplo anterior, a cada passo aplicamos apenas uma propriedade de equivalência. O mesmo exercício pode ser feito vai rapidamente, por exemplo:

Resolução: Usando prop. da condicional, leis de DeMorgan, prop. comutativa, prop. associativa, lei complementar e a prop. idempontente:

$$\begin{array}{ccc} (p \wedge q) \rightarrow (p \vee q) & \stackrel{pr. \ cond.}{\equiv} & \sim (p \wedge q) \vee (p \vee q) \\ & \stackrel{DeMorgan}{\equiv} & (\sim p \vee \sim q) \vee (p \vee q) \\ & \stackrel{comut. \ assoc.}{\equiv} & (\sim p \vee p) \vee (\sim q \vee q) \\ & \stackrel{lei \ compl.}{\equiv} & T \vee T \\ & \stackrel{idemp.}{\equiv} & T \end{array}$$

Assim, mostramos que $(p \land q) \to (p \lor q)$ é um tautologia, sem o uso da tabela verdade.

• Mostre (sem usar tabela verdade) que $\ \sim q \lor (p \land q) \equiv \ \sim q \lor p$ Resolução:

$$\sim q \lor (p \land q) \equiv$$

Implicação Lógica

Implicação Lógica:

Dizemos que a proposição $P=P(p_1,p_2,...,p_n)$ implica logicamente a proposição $Q=Q(p_1,p_2,...,p_n)$, se, toda atribuição de valores lógicos de $p_1,p_2,...,p_n$ que tornam P verdadeira também tornam Q verdadeira.

Em outras palavras:

P implica logicamente Q se, e somente se, a proposição condicional $P \to Q$ for uma tautologia.

Notação:

$$P \Rightarrow Q$$

Implicação Lógica

Exemplo: Considere as proposições P e Q dadas por

$$P: p$$
 e $Q: p \vee q$.

Verifique que $P \Rightarrow Q$, ou seja, verifique que $p \Rightarrow (p \lor q)$, p implica logicamente em $(p \lor q)$.

ullet Vamos mostar que $P\Rightarrow Q$ usando a definição "P implica logicamente Q se, e somente se, a proposição $P\rightarrow Q$ for uma tautologia".

p	q	P: p	$Q: p \lor q$	$P \rightarrow Q$
٧	٧	V	V	V
٧	F	V	V	V
F	٧	F	V	V
F	F	F	F	V

Como $P \rightarrow Q$ é Tautologia, então $P \Rightarrow Q$.

• lembre-se que P implica logicamente Q, se, toda atribuição de valores lógicos que tornam P verdadeira também tornam Q verdadeira.

Implicação Lógica

Exercícios: Mostre que

$$p \Rightarrow p$$
 e $p \wedge q \Rightarrow q$.

Importante: Dadas duas proposições A e B, então as seguintes afirmações são equivalentes:

- i) $A \Rightarrow B$ (isto é, A logicamente implica $B, A \rightarrow B$ é tautologia)
- ii) $\sim A \vee B$ é tautologia
- iii) $A \wedge \sim B$ é contradição

Exercícios

Exercícios:

Faça todos os exercícios da Seção 1.3, páginas 36 a 37 do Livro A.F. da Silva e C.M. dos Santos, "Aspectos Formais da Computação".