Quadrature Down Convertor

AEC Project | Spring2021

Mayank Shivhare ECE, IIIT H Ajay Ray ECE, IIIT H Tejas Srivastava ECE, IIIT H

Its function

It generates two sinusoidal signals of certain frequency with a phase difference of 90°

Circuit Diagram and Components

2 **UA741** OP-AMPs

Resistors

Capacitors

LT-Spice Circuit

pindiagram of ua741

- 1 V(+)
- 2 V(-)
- 3 Vdd
- 4 Vss
- 5 Vout

LT-Spice Simulation Results

LT-Spice Simulation Results

- Only the noise signal is used to generate the outputs
- Amplitude of both the outputs are almost same (~0.9V)
- Frequency is same as that of the noise signal
- Phase difference b/w the the two outputs is around 90°

Its function

It multiplies two sinusoidal input signals to give the output signal

Circuit Diagram and Components

- 1 NMOS
- Resistor Rc and bias resistor
- Capacitor Cc

Functioning

- V (bias) is given to be around V(T) so that the circuit switches on and off as per the sinusoidal signal
- Cc blocks the AC component from Vosc in DC analysis
- R(bias) blocks the DC component of V(bias) from interfering in AC analysis

Circuit Diagram

Mixer Circuit (Switch Design)

LT-Spice Circuit

NMOS Parameters

2 Mixer Circuit (Switch Design)

LT-Spice Simulations

Vout = Vosc x Vin

- $R(load) = 10k\Omega$
- Cc= 1µF
- $R(bias) = 100k\Omega$

Vin = 0.1sin (2π f1 t) Vosc = 0.1sin (2π f2 t)

LT-Spice Simulations

$$v_{IF_{I}} = v_{in} \times v_{OSC_{I}} = \frac{A_{1}A_{2}}{2} \left(\cos(\omega_{in}t - \omega_{OSC}t) + \cos(\omega_{in}t + \omega_{OSC}t) \right)$$
$$v_{IF_{Q}} = v_{in} \times v_{OSC_{Q}} = \frac{A_{1}A_{2}}{2} \left(\sin(\omega_{in}t + \omega_{OSC}t) - \sin(\omega_{in}t - \omega_{OSC}t) \right)$$

Theoretical Waveform

2 Mixer Circuit (Switch Design)

LT-Spice Simulations for various frequencies

<u>fin = 95</u>kHz

fin = 98kHz

fin = 99kHz

LT-Spice Simulations for FFT

Its function

It filters out the high frequency components of the input signal based on value of RC

Circuit Diagram and Components

- Resistor R = 16.5Ω
- Capacitor $C = 4.7 \mu F$

```
-3dB frequency = 1 / (2\pi RC) = 2kHz
cutoff = 1 / (2\pi RC) = 1000000/487 = 2.053 kHz
```


LOW-Pass Filter (Bode-Plot for RC Low Pass filter)

LT-Spice Simulations

DSO output

LT-Spice Simulations

$$Vpp = 90mV$$

DSO output

$$Vpp = 104mV$$

(Transient Response Vpp = 100mv f = 1kHz)

LT-Spice Simulations

DSO output

$$Vpp = 63mV$$

(Transient Response Vpp = 100mv f = 2kHz)

LT-Spice Simulations

$$Vpp = 20mV$$

DSO output

$$Vpp = 17mV$$

(Transient Response Vpp = 100mv f = 10kHz)

Thankyou