Lecture 3: Linear algebra (part 2)

STATS 101: Foundations of Statistics

Linh Tran

ThetaHat.AI@gmail.com

December 5, 2019

Announcements

- ► Review survey
- Next assignment will be posted tonight (due 12/11 @ 11:59pm)
- ► Classes will be recorded going forward

Outline

All things linear algebra

- Operations and Properties
- ► Eigenvalues & eigenvectors
- ► Matrix decomposition
- Matrix Calculus

A *norm* of a vector \mathbf{x} , denoted $||\mathbf{x}||$ is a measure of the "length" of the vector. For example, the ℓ_2 -norm (aka Euclidean norm) is

$$||\mathbf{x}||_2 = \sqrt{\sum_{i=1}^n x_i^2} \tag{1}$$

n.b. $||\mathbf{x}||_2^2 = \mathbf{x}^{\top}\mathbf{x}$, i.e. the squared norm of a vector is the dot product with itself.

A *norm* of a vector \mathbf{x} , denoted $||\mathbf{x}||$ is a measure of the "*length*" of the vector. For example, the ℓ_2 -norm (aka Euclidean norm) is

$$||\mathbf{x}||_2 = \sqrt{\sum_{i=1}^n x_i^2} \tag{1}$$

n.b. $||\mathbf{x}||_2^2 = \mathbf{x}^{\top}\mathbf{x}$, i.e. the squared norm of a vector is the dot product with itself.

Other norms:

- ℓ_1 -norm, i.e. $||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|$.
- ℓ_p -norm, i.e. $||\mathbf{x}||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$.

Formally, a norm is any function $f : \mathbb{R}^n \to \mathbb{R}$ satisfying four properties:

- 1. $\forall \mathbf{x} \in \mathbb{R}^n, f(\mathbf{x}) \geq 0$ (non-negativity).
- 2. $f(\mathbf{x}) = 0$ iff $\mathbf{x} = 0$ (definiteness).
- 3. $\forall \mathbf{x} \in \mathbb{R}^n, c \in \mathbb{R}, f(c\mathbf{x}) = |c|f(\mathbf{x})$ (homogeneity).
- **4**. $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n, f(\mathbf{x} + \mathbf{y}) \leq f(\mathbf{x}) + f(\mathbf{y})$ (triangle inequality).

Formally, a norm is any function $f : \mathbb{R}^n \to \mathbb{R}$ satisfying four properties:

- 1. $\forall \mathbf{x} \in \mathbb{R}^n, f(\mathbf{x}) \geq 0$ (non-negativity).
- 2. $f(\mathbf{x}) = 0$ iff $\mathbf{x} = 0$ (definiteness).
- 3. $\forall \mathbf{x} \in \mathbb{R}^n, c \in \mathbb{R}, f(c\mathbf{x}) = |c|f(\mathbf{x})$ (homogeneity).
- **4**. $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n, f(\mathbf{x} + \mathbf{y}) \leq f(\mathbf{x}) + f(\mathbf{y})$ (triangle inequality).

Norms can also be defined for matrices, e.g. The Frobenius norm,

$$||\mathbf{A}||^F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n \mathbf{A}_{ij}^2} = \sqrt{tr(\mathbf{A}^\top \mathbf{A})}$$
 (2)

Linear independence

A set of vectors $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} \in \mathbb{R}^m$ is *(linearly) dependent* if one of the vectors \mathbf{x}_i can be represented as a linear combination of the remaining vectors, i.e.

$$\mathbf{x}_n = \sum_{i=1}^{n-1} \alpha_i \mathbf{x}_i \tag{3}$$

for some scalar values $\alpha_1, \alpha_2, \dots, \alpha_{n-1} \in \mathbb{R}$

Linear independence

A set of vectors $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} \in \mathbb{R}^m$ is *(linearly) dependent* if one of the vectors \mathbf{x}_i can be represented as a linear combination of the remaining vectors, i.e.

$$\mathbf{x}_n = \sum_{i=1}^{n-1} \alpha_i \mathbf{x}_i \tag{3}$$

for some scalar values $\alpha_1, \alpha_2, \dots, \alpha_{n-1} \in \mathbb{R}$

Example: Let

$$\mathbf{x}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \quad \mathbf{x}_2 = \begin{bmatrix} 4\\1\\5 \end{bmatrix} \quad \mathbf{x}_3 = \begin{bmatrix} 2\\-3\\-1 \end{bmatrix} \tag{4}$$

Is $\{x_1, x_2, x_3\}$ linearly independent?

Rank

The *column rank* of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the largest subset of columns of \mathbf{A} that are linearly independent.

▶ The column rank is always $\leq n$.

The *row rank* of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the largest subset of rows of \mathbf{A} that are linearly independent.

▶ The row rank is always $\leq m$.

Rank

The *column rank* of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the largest subset of columns of \mathbf{A} that are linearly independent.

▶ The column rank is always $\leq n$.

The *row rank* of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the largest subset of rows of \mathbf{A} that are linearly independent.

▶ The row rank is always $\leq m$.

n.b. Column rank is always equal to row rank. Thus, we refer to both as the *rank* of the matrix.

- ▶ For $\mathbf{A} \in \mathbb{R}^{m \times n}$, if $rank(\mathbf{A}) = min(m, n)$, then \mathbf{A} is said to be of *full rank*.
- ▶ For $\mathbf{A} \in \mathbb{R}^{m \times n}$, $rank(\mathbf{A}) = rank(\mathbf{A}^{\top})$.
- ► For $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times p}$, rank $(\mathbf{A}\mathbf{B}) \leq \min(rank(\mathbf{A}), rank(\mathbf{B}))$.
- ▶ For $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$, $rank(\mathbf{A} + \mathbf{B}) \leq rank(\mathbf{A}) + rank(\mathbf{B})$

Matrix inverse

The *inverse* of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is denoted \mathbf{A}^{-1} , and is unique such that

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{I} = \mathbf{A}\mathbf{A}^{-1} \tag{5}$$

Matrix inverse

The *inverse* of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is denoted \mathbf{A}^{-1} , and is unique such that

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{I} = \mathbf{A}\mathbf{A}^{-1} \tag{5}$$

n.b. Not all matrices have inverses (e.g. $m \times n$ matrices).

Def:

A is *invertible* or *non-singular* if A^{-1} exists. Otherwise, it is *non-invertible* or *singular*.

- 1. $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$
- 2. $(AB)^{-1} = B^{-1}A^{-1}$
- 3. $(\mathbf{A}^{-1})^{\top} = (\mathbf{A}^{\top})^{-1}$
 - ▶ This matrix is sometimes denoted $\mathbf{A}^{-\top}$

Orthogonal Matrices

Def:

- ▶ A vector $\mathbf{x} \in \mathbb{R}^n$ is *normalized* if $||\mathbf{x}||_2 = 1$
- ▶ Two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are *orthogonal* if $\mathbf{x}^\top \mathbf{y} = 0$
- ▶ A square matrix $\mathbf{U} \in \mathbb{R}^{n \times n}$ is *orthogonal* or *orthonormal* if all its columns are:
 - 1. Orthogonal to each other
 - Normalized

We therfore have that

$$\mathbf{U}^{\top}\mathbf{U} = \mathbf{I} = \mathbf{U}\mathbf{U}^{\top} \tag{6}$$

Orthogonal Matrices

Def:

- ▶ A vector $\mathbf{x} \in \mathbb{R}^n$ is *normalized* if $||\mathbf{x}||_2 = 1$
- ▶ Two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are *orthogonal* if $\mathbf{x}^\top \mathbf{y} = 0$
- ▶ A square matrix $\mathbf{U} \in \mathbb{R}^{n \times n}$ is *orthogonal* or *orthonormal* if all its columns are:
 - 1. Orthogonal to each other
 - Normalized

We therfore have that

$$\mathbf{U}^{\top}\mathbf{U} = \mathbf{I} = \mathbf{U}\mathbf{U}^{\top} \tag{6}$$

Another nice property:

$$||\mathbf{U}\mathbf{x}||_2 = ||\mathbf{x}||_2 \ \forall \mathbf{x} \in \mathbb{R}^n, \mathbf{U} \in \mathbb{R}^{n \times n} \text{ orthogonal}$$
 (7)

Range

Def:

The *span* of a set of vectors $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ is

$$\operatorname{span}(\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}) = \left\{ v : v = \sum_{i=1}^n \alpha_i \mathbf{x}_i, \alpha_i \in \mathbb{R} \right\}$$
 (8)

Range

Def:

The *span* of a set of vectors $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ is

$$span(\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}) = \left\{ v : v = \sum_{i=1}^n \alpha_i \mathbf{x}_i, \alpha_i \in \mathbb{R} \right\}$$
(8)

n.b. If $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ is linearly independent, then $\mathrm{span}(\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}) = \mathbb{R}^n$.

Example:

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \tag{9}$$

Projection

Def:

The *projection* of a vector $\mathbf{y} \in \mathbb{R}^m$ onto $\mathrm{span}(\{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n\}) = \mathbb{R}^n$ is

$$\operatorname{Proj}(\mathbf{y}; \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}) = \underset{\mathbf{v} \in \operatorname{span}(\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\})}{\operatorname{arg min}} ||\mathbf{y} - \mathbf{v}||_2 \qquad (10)$$

Range

Def:

The *range* of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, denoted $\mathcal{R}(\mathbf{A})$ is the span of the columns of \mathbf{A} , i.e.

$$\mathcal{R}(\mathbf{A}) = \{ \mathbf{v} \in \mathbb{R}^m : \mathbf{v} = \mathbf{A}\mathbf{x}, \mathbf{x} \in \mathbb{R}^n \}$$
 (11)

Assuming that **A** is full rank and n < m, the projection of $\mathbf{y} \in \mathbb{R}^m$ onto $\mathcal{R}(\mathbf{A})$ is

$$\operatorname{Proj}(\mathbf{y}; \mathbf{A}) = \underset{\mathbf{v} \in \mathcal{R}(\mathbf{A})}{\arg \min} ||\mathbf{v} - \mathbf{y}||_{2}$$
 (12)

$$= \mathbf{A}(\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\mathbf{y} \tag{13}$$

Nullspace

Def:

The *nullspace* of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, denoted $\mathcal{N}(\mathbf{A})$ is the set of all vectors that equal 0 when multiplied by \mathbf{A} , i.e.

$$\mathcal{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = 0 \}$$
 (14)

Some properties:

- $\blacktriangleright \ \mathcal{R}(\mathbf{A}^{\top}) \cap \mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}\$

This is referred to as *orthogonal complements*, denoted as $\mathcal{R}(\mathbf{A}^\top) = \mathcal{N}(\mathbf{A})^\perp$

Def:

The *determinant* of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, denoted $|\mathbf{A}|$ or det \mathbf{A} is a function det: $\mathbb{R}^{n \times n} \to \mathbb{R}$.

Let $\mathbf{A}_{\setminus i,\setminus j} \in \mathbb{R}^{(n-1)\times (n-1)}$ be the matrix that results from deleting the i^{th} row and j^{th} column. The general (recursive) formula for the determinant is

$$|\mathbf{A}| = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} |\mathbf{A}_{i,i,j}| \quad (\forall j \in 1, ..., n) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} |\mathbf{A}_{i,i,j}| \quad (\forall i \in 1, ..., n)$$
(15)

Given a matrix

$$\mathbf{A} = \begin{bmatrix} - & \mathbf{a}_{1}^{\top} & - \\ - & \mathbf{a}_{2}^{\top} & - \\ & \vdots \\ - & \mathbf{a}_{n}^{\top} & - \end{bmatrix}$$
 (16)

and a set $\mathbf{S} \subset \mathbb{R}^n$,

$$\mathbf{S} = \{ \mathbf{v} \in \mathbb{R}^n : \mathbf{v} = \sum_{i=1}^n \alpha_i \mathbf{a}_i \text{ where } 0 \le \alpha_i \le 1, i = 1, ..., n \}$$
 (17)

 $|\mathbf{A}|$ is the volume of \mathbf{S} .

Example:

$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix} \tag{18}$$

Example:

$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix} \tag{18}$$

The matrix rows are:

$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \quad \mathbf{a}_2 = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \tag{19}$$

And
$$|{\bf A}| = -7$$

Example:

$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix} \tag{18}$$

The matrix rows are:

$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \quad \mathbf{a}_2 = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \tag{19}$$

And
$$|{\bf A}| = -7$$

Properties of determinants:

- ightharpoonup For $\mathbf{A} \in \mathbb{R}^{n \times n}$, $|\mathbf{A}| = |\mathbf{A}^{\top}|$
- ightharpoonup For $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}, |\mathbf{A}\mathbf{B}| = |\mathbf{A}||\mathbf{B}|$
- ▶ For $\mathbf{A} \in \mathbb{R}^{n \times n}$, $|\mathbf{A}| = 0$ iff \mathbf{A} is singular (i.e. non-invertible).
- lacktriangle For $f A \in \mathbb{R}^{n imes n}$ and f A non-singular, $|{f A}^{-1}| = 1/|{f A}|$

Quadratic form

Given $\mathbf{A} \in \mathbb{R}^{n \times n}$ and a vector $\mathbf{x} \in \mathbb{R}^n$, the *quadratic form* is the scalar value

$$\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = \sum_{i=1}^{n} x_i (\mathbf{A} \mathbf{x})_i = \sum_{i=1}^{n} x_i \left(\sum_{j=1}^{n} \mathbf{A}_{ij} x_j \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{A}_{ij} x_i x_j$$
 (20)

Quadratic form

Some properties involving quadratic form:

- A symmetric matrix $\mathbf{A} \in \mathbb{S}^n$ is *positive definite* if for a non-zero $\mathbf{x} \in \mathbb{R}^n, \mathbf{x}^\top \mathbf{A} \mathbf{x} > 0$
- A symmetric matrix $\mathbf{A} \in \mathbb{S}^n$ is *positive semi-definite* if for a non-zero $\mathbf{x} \in \mathbb{R}^n, \mathbf{x}^\top \mathbf{A} \mathbf{x} \geq 0$
- A symmetric matrix $\mathbf{A} \in \mathbb{S}^n$ is *negative definite* if for a non-zero $\mathbf{x} \in \mathbb{R}^n, \mathbf{x}^\top \mathbf{A} \mathbf{x} < 0$
- A symmetric matrix $\mathbf{A} \in \mathbb{S}^n$ is *negative semi-definite* if for a non-zero $\mathbf{x} \in \mathbb{R}^n, \mathbf{x}^\top \mathbf{A} \mathbf{x} \leq 0$
- A symmetric matrix $\mathbf{A} \in \mathbb{S}^n$ is *indefinite* if it is neither positive nor negative semidefinite
- n.b. Positive definite and negative definite matrices always have full rank.

Given $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an *eigenvalue* of \mathbf{A} with corresponding *eigenvector* $\mathbf{x} \in \mathbb{C}^n$ if

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x} : \mathbf{x} \neq 0 \tag{21}$$

n.b. The eigenvector is (usually) normalized to have length 1

Given $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an *eigenvalue* of \mathbf{A} with corresponding *eigenvector* $\mathbf{x} \in \mathbb{C}^n$ if

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x} : \mathbf{x} \neq \mathbf{0} \tag{21}$$

n.b. The eigenvector is (usually) normalized to have length 1

We can write all of the eigenvector equations simultaneously as

$$\mathbf{AX} = \mathbf{X}\mathbf{\Lambda} \tag{22}$$

where

$$\mathbf{X} \in \mathbb{R}^{n \times n} = \begin{bmatrix} | & | & & | \\ \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_n \\ | & | & & | \end{bmatrix}, \quad \mathbf{\Lambda} = diag(\lambda_1, ..., \lambda_n)$$
(23)

This implies $\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$

Some properties:

- $ightharpoonup tr \mathbf{A} = \sum_{i=1}^{n} \lambda_i$
- $ightharpoonup |\mathbf{A}| = \prod_{i=1}^n \lambda_i$
- ► The rank of A is equal to the number of non-zero eigenvalues of A.
- ▶ If **A** is non-singular, then $1/\lambda_i$ is an eigenvalue of **A**⁻¹ with corresponding eigenvector \mathbf{x}_i , i.e. $\mathbf{A}^{-1}\mathbf{x}_i = (1/\lambda_i)\mathbf{x}_i$
- ▶ The eigenvalues of a diagonal matrix $D = diag(d_1, ..., d_n)$ are just its diagonal entries $d_1, ..., d_n$

Example: For $\mathbf{A} \in \mathbb{S}^n$ with ordered eigenvalues

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$$
,

$$\max_{\mathbf{x} \in \mathbb{R}^n} \mathbf{x}^\top \mathbf{A} \mathbf{x} \text{ subject to } ||\mathbf{x}||_2^2 = 1$$
 (24)

is solved with \mathbf{x}_1 corresponding to λ_1 . Similarly, it is solved with \mathbf{x}_n corresponding to λ_n .

Example:

Let
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 Find the eigenvalues & eigenvectors.

Example:

Let
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 Find the eigenvalues & eigenvectors.

We want

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = 0 \tag{25}$$

Example:

Let $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ Find the eigenvalues & eigenvectors.

We want

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = 0 \tag{25}$$

We want $det(\mathbf{A} - \lambda \mathbb{I}) = 0$.

$$det(\mathbf{A} - \lambda \mathbb{I}) = (1 - \lambda)^2 - 2^2 = \lambda^2 - 2\lambda - 3$$
 (26)

$$= (\lambda - 3)(\lambda + 1) \tag{27}$$

$$\lambda = 3, -1.$$

Finding the eigenvectors: calculating the null spaces of $(\mathbf{A} - \lambda \mathbf{I})$

$$\mathcal{N}(\mathbf{A} - 3\mathbf{I}) = \mathcal{N}\left(\begin{bmatrix} -2 & 2\\ 2 & -2 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1 \end{bmatrix} \tag{28}$$

$$\mathcal{N}(\mathbf{A} + \mathbf{I}) = \mathcal{N}\left(\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 (29)

Finding the eigenvectors: calculating the null spaces of $(\mathbf{A} - \lambda \mathbf{I})$

$$\mathcal{N}(\mathbf{A} - 3\mathbf{I}) = \mathcal{N}\left(\begin{bmatrix} -2 & 2\\ 2 & -2 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1 \end{bmatrix} \tag{28}$$

$$\mathcal{N}(\mathbf{A} + \mathbf{I}) = \mathcal{N}\left(\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 (29)

Thus:

$$\mathbf{X} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \mathbf{\Lambda} = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix} \tag{30}$$

Singular Value Decomposition

SVD is a way of decomposing matrices.

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank r, $\exists \Sigma \in \mathbb{R}^{m \times n}, \mathbf{U} \in \mathbb{R}^{m \times m}, \mathbf{V} \in \mathbb{R}^{n \times m} \ni$

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top} \tag{31}$$

Notes:

- ▶ Σ is a diagonal matrix with entries $\sigma_1, ..., \sigma_r > 0$ known as singular values.
- U and V are orthogonal matrices.
- Common uses:
 - Least squares models
 - ► Range, rank, null space
 - Moore-Penrose inverse

Singular Value Decomposition

Some intuition:

 $\mathbf{A} \in \mathbb{R}^{m \times n}$ can be thought of as a linear transformation, such that for $\mathbf{x} \in \mathbb{R}^n$,

$$f(\mathbf{x}) = \mathbf{A}\mathbf{x} \tag{32}$$

Singular Value Decomposition

Some intuition:

 $\mathbf{A} \in \mathbb{R}^{m \times n}$ can be thought of as a linear transformation, such that for $\mathbf{x} \in \mathbb{R}^n$,

$$f(\mathbf{x}) = \mathbf{A}\mathbf{x} \tag{32}$$

SVD can be thought of as breaking this into individual steps:

Matrix calculus

Given $f: \mathbb{R}^{m \times n} \to \mathbb{R}$, the *gradient* of f wrt $\mathbf{A} \in \mathbb{R}^{m \times n}$ is

$$\nabla_{\mathbf{A}} f(\mathbf{A}) \in \mathbb{R}^{m \times n} = \begin{bmatrix} \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{11}} & \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{12}} & \cdots & \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{1n}} \\ \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{21}} & \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{22}} & \cdots & \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{m1}} & \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{m2}} & \cdots & \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{mn}} \end{bmatrix}$$
(33)

Some properties

▶ For
$$c \in \mathbb{R}$$
, $\nabla_{\mathbf{x}}(c f(\mathbf{x})) = c \nabla_{\mathbf{x}}(f(\mathbf{x}))$

The Hessian

Given $f: \mathbb{R}^n \to \mathbb{R}$, the *Hessian* of f wrt $\mathbf{x} \in \mathbb{R}^n$ is

$$\nabla_{\mathbf{x}}^{2} f(\mathbf{x}) \in \mathbb{R}^{n \times n} = \begin{bmatrix} \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1}^{2}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n}^{2}} \end{bmatrix}$$
(34)

n.b. The Hessian is always symmetric, since $\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j} = \frac{\partial^2 f(\mathbf{x})}{\partial x_j \partial x_i}$

Least squares

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m \ni b \notin \mathcal{R}(A)$, we want to find $\mathbf{x} \in \mathbb{R}^n$ as close as possible to \mathbf{b} (via the Euclidean norm),

$$||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2 = (\mathbf{A}\mathbf{x} - \mathbf{b})^{\top} (\mathbf{A}\mathbf{x} - \mathbf{b})$$
(35)

$$= \mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{x} - 2 \mathbf{b}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b}^{\top} \mathbf{b}$$
 (36)

Least squares

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m \ni b \notin \mathcal{R}(A)$, we want to find $\mathbf{x} \in \mathbb{R}^n$ as close as possible to **b** (via the Euclidean norm),

$$||\mathbf{A}\mathbf{x} - \mathbf{b}||_{2}^{2} = (\mathbf{A}\mathbf{x} - \mathbf{b})^{\top}(\mathbf{A}\mathbf{x} - \mathbf{b})$$

$$= \mathbf{x}^{\top}\mathbf{A}^{\top}\mathbf{A}\mathbf{x} - 2\mathbf{b}^{\top}\mathbf{A}\mathbf{x} + \mathbf{b}^{\top}\mathbf{b}$$
(35)

$$= \mathbf{x}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{x} - 2 \mathbf{b}^{\mathsf{T}} \mathbf{A} \mathbf{x} + \mathbf{b}^{\mathsf{T}} \mathbf{b}$$
 (36)

Taking the gradient wrt \mathbf{x} , we have

$$\nabla_{\mathbf{x}}(\mathbf{x}^{\top}\mathbf{A}^{\top}\mathbf{A}\mathbf{x} - 2\mathbf{b}^{\top}\mathbf{A}\mathbf{x} + \mathbf{b}^{\top}\mathbf{b}) = \nabla_{\mathbf{x}}\mathbf{x}^{\top}\mathbf{A}^{\top}\mathbf{A}\mathbf{x} - \nabla_{\mathbf{x}}2\mathbf{b}^{\top}\mathbf{A}\mathbf{x} + \nabla_{\mathbf{x}}\mathbf{b}^{\top}\mathbf{b}$$

$$= \mathbf{A}^{\top}\mathbf{A}\mathbf{x} - 2\mathbf{A}^{\top}\mathbf{b}$$
(38)

Least squares

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m \ni b \notin \mathcal{R}(A)$, we want to find $\mathbf{x} \in \mathbb{R}^n$ as close as possible to \mathbf{b} (via the Euclidean norm),

$$||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2 = (\mathbf{A}\mathbf{x} - \mathbf{b})^{\top} (\mathbf{A}\mathbf{x} - \mathbf{b})$$
(35)

$$= \mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{x} - 2 \mathbf{b}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b}^{\top} \mathbf{b}$$
 (36)

Taking the gradient wrt \mathbf{x} , we have

$$\nabla_{\mathbf{x}}(\mathbf{x}^{\top}\mathbf{A}^{\top}\mathbf{A}\mathbf{x} - 2\mathbf{b}^{\top}\mathbf{A}\mathbf{x} + \mathbf{b}^{\top}\mathbf{b}) = \nabla_{\mathbf{x}}\mathbf{x}^{\top}\mathbf{A}^{\top}\mathbf{A}\mathbf{x} - \nabla_{\mathbf{x}}2\mathbf{b}^{\top}\mathbf{A}\mathbf{x} + \nabla_{\mathbf{x}}(\mathbf{b}^{\top}\mathbf{b})$$

$$= \mathbf{A}^{\top}\mathbf{A}\mathbf{x} - 2\mathbf{A}^{\top}\mathbf{b}$$
(38)

Setting this expression equal to zero and solving for \mathbf{x} gives the normal equations,

$$\mathbf{x} = (\mathbf{A}^{\top} \mathbf{A})^{-1} \mathbf{A}^{\top} \mathbf{b} \tag{39}$$

References

Some textbooks on linear algebra:

- ► Linear Algebra (Jim Hefferon)
- ► Introduction to Applied Linear Algebra (Boyd & Vandenberghe)
- ► Linear Algebra (Cherney, Denton et al.)
- ► Linear Algebra (Hoffman & Kunze)
- ► Fundamentals of Linear Algebra (Carrell)
- ► Linear Algebra (S. Friedberg A. Insel L. Spence)