

Республиканская физическая олимпиада 2024 года (3 этап)

Экспериментальный тур

Решения задач 11 класс (для жюри)

Задания экспериментального тура данной олимпиады предоставляют для участников большие возможности для самостоятельного выбора параметров установок, диапазонов исследования, методов измерений. Иными словами — проявить свои творческие способности. Кроме того, результаты измерений сильно зависят от предоставленного оборудования, которое может различаться в разных областях нашей Республики.

Поэтому, относитесь к приведенным ниже результатам, как к ориентировочным. Желательно (или даже обязательно) провести собственные измерения. Поэтому здесь приводятся только основные теоретические положения и результаты некоторых измерений, полученные авторами данных заданий. Методы обработки результатов измерений являются в большинстве своем, стандартными, поэтому подробно не описываются.

Задание 11-1. Негармонические колебания

Решение

Часть 1. Период и амплитуда

1.1 Движение шайбы по гладкой V-образной поверхности будет представлять собой незатухающие колебания. Движение шайбы будет равноускоренным с модулем ускорения $a = g \sin \alpha$ (2).

$$A_0 = \frac{at_1^2}{2}$$
 (3),

где t_1 – время спуска или подъёма по одной стороне V-образной поверхности. Тогда период колебаний

$$T=4t_1=4\sqrt{rac{2A_0}{a}}$$
 (4), или $T=4\sqrt{rac{2A_0}{g\sin lpha}}$ (5).

1.2 Результаты экспериментального исследования зависимости $T(A_0)$ при угле наклона желоба $\sin \alpha = \frac{39 \text{мм}}{492 \text{мм}} = 0,0793 \ (tg\alpha = 0,079)$ представлены в табл. 1.

Таблица 1

А ₀ , см	T ₁ , c	T ₂ , c	T ₃ , c	T ₄ , c	T ₅ , c	<t>, c</t>
5	1,83	1,85	1,87	1,84	1,80	1,84
10	2,43	2,41	2,39	2,40	2,47	2,42
15	2,97	2,93	2,91	3,01	2,93	2,95
20	3,42	3,38	3,45	3,34	3,41	3,40
25	3,82	3,83	3,80	3,84	3,81	3,82
30	4,23	4,20	4,18	4,25	4,24	4,22
35	4,47	4,48	4,45	4,44	4,55	4,48
40	4,74	4,77	4,80	4,72	4,77	4,76
45	5,02	5,02	5,06	4,99	5,01	5,02
50	5,34	5,39	5,37	5,36	5,33	5,36

1.3 Исходя из уравнения (5), построим график линеаризованной зависимости $T(\sqrt{A_0})$ (график 1). Для этого вычислим значения $\sqrt{A_0}$ (таблица 2).

Применяя метод наименьших квадратов (можно применять простую графическую обработку, НО она оценивается «дешевле»), коэффициенты линеаризованной зависимости и их абсолютные погрешности (таблица 3). Если данные коэффициенты совпадут с точностью до погрешности со значением коэффициентов в уравнении (5), то модель движения шайбы по гладкой V-образной поверхности можно применять к колебаниям шарика по Vобразному желобу, в противном случае – нельзя.

Таблица 3

		$\sqrt{A_0}$,	
	А ₀ , см	см ^{1/2}	<t>, c</t>
	5	2,24	1,84
	10	3,16	2,42
	15	3,87	2,95
	20	4,47	3,40
	25	5,00	3,82
	30	5,48	4,22
	35	5,92	4,48
	40	6,32	4,76
	45	6,71	5,02
	50	7,07	5,36
Сред. зн	ач.	5,02	3,83
Дисперс	RNS	2,26	1,21
Ковариа	ция	1,65	
	<a>>	0,73	
	<i></i>	0,15	
	∆а	0,02	
	Δb	0,09	

Получили: угловой коэффициент наклона усредняющей прямой

$$a = (0.73 \pm 0.02) \frac{c}{cM^{1/2}}$$

свободное слагаемое

$$b = (0.15 \pm 0.09) \text{ c.}$$

Коэффициент пропорциональности
$$a_{(5)}$$
 в уравнении (5)
$$a_{(5)} = 4\sqrt{\frac{2}{g\sin\alpha}} = 4\cdot\sqrt{\frac{2}{981\frac{\text{см}}{\text{c}^2}\cdot\frac{39\text{мм}}{492\text{мм}}}} = 0,64 \ .$$

Основной вклад в погрешность данного коэффициента будет вносить высота сторон V-образного желоба над поверхностью стола. В эксперименте данная величина $h=(39\pm1)$ мм. Следовательно $\mathcal{E}_h=0.026$. Можно считать, что $\mathcal{E}_{a_{(5)}} = \mathcal{E}_h = 0.026$,

$$\Delta a_{(5)} = a_{(5)} \cdot \mathcal{E}_{a_{(5)}} = 0.64 \frac{c}{c_{M}^{1/2}} \cdot 0.026 = 0.02 \frac{c}{c_{M}^{1/2}}.$$

$$a_{(5)} = (0.64 \pm 0.02) \frac{c}{c_{M}^{1/2}}.$$

Как видим интервалы погрешностей коэффициентов a и $a_{(5)}$ не перекрываются, а так же свободное слагаемое в экспериментальной зависимости (график 1) нельзя считать равным нулю так как $\langle b \rangle > \Delta b$. Из этого следует, что экспериментальную зависимость (график 1) нельзя описывать уравнением (5), а значит модель движения шайбы по гладкой V-образной поверхности нельзя применять к колебаниям шарика по V-образному желобу.

Часть 2. Декремент затухания

2.1 Результаты экспериментального исследования зависимости начальной амплитуды от порядкового номера колебания $A_i(i)$ представлены в таблице 4.

Таблина 4

Таолица	•					
Номер колебания N	А ₁ , см	А2, см	А ₃ , см	А ₄ , см	А ₅ , см	<a>, cm
0	50,0	50,0	50,0	50,0	50,0	50,0
1	39,0	39,0	39,5	38,5	39,0	39,0
2	30,0	29,5	30,0	30,0	30,5	30,0
3	24,0	24,0	23,5	23,5	24,0	23,8
4	18,5	18,0	18,5	19,0	18,5	18,5
5	14,5	15,0	14,5	14,0	14,5	14,5
6	12,0	12,0	12,0	11,5	11,5	11,8
7	9,0	9,5	9,0	9,0	9,0	9,1
8	8,0	8,0	7,5	7,5	8,0	7,8
9	6,5	6,5	6,5	6,0	6,0	6,3
10	5,5	5,5	5,0	5,5	5,5	5,4
11	5,0	5,0	5,0	4,5	5,0	4,9
12	4,0	4,0	4,5	4,0	4,0	4,1

2.2 Представим уравнение (1) в виде $A_i = DA_{i+1}$ (6). Построим график зависимости $A_i(A_{i+1})$.

А(i+1), см	Аі, см	График 2. Зависимость $A_i(A_{i+1})$
39,0	50,0	60,0 - А _і , см
30,0	39,0	50,0
23,8	30,0	$A_i = 1,28A_{(i+1)}$
18,5	23,8	40,0
14,5	18,5	l
11,8	14,5	30,0
9,1	11,8	20,0
7,8	9,1	
6,3	7,8	10,0
5,4	6,3	0,0 A _(i+1) , cm
4,9	5,4	0,0 10,0 20,0 30,0 40,
4,1	4,9	

Из графика видим, что экспериментальные точки легли вблизи усредняющей прямой, которая проходит через начало координат, что

подтверждает прямопропорциональную зависимость $A_i(A_{i+1})$, следовательно уравнение (6), а значит и уравнение (1) применимо для колебаний шарика по V-образному желобу.

Применяя метод наименьших квадратов, определим декремент затухания как угловой коэффициент наклона усредняющей прямой (график 2) и вычислим абсолютную погрешность (таблица 5).

Таблица 5

	A(i+1),	
	CM	Ai, cm
	39,0	50,0
	30,0	39,0
	23,8	30,0
	18,5	23,8
	14,5	18,5
	11,8	14,5
	9,1	11,8
	7,8	9,1
	6,3	7,8
	5,4	6,3
	4,9	5,4
	4,1	4,9
Среднее зн.	14,6	18,4
Дисперсия	115	195
Ковариация	149	
<d></d>	1,28	
ΔD	0,02	

Относительная погрешность $\mathcal{E}_D = \frac{\Delta D}{\langle D \rangle} = \frac{0.02}{1.28} = 0.016 = 1.6\%.$ 2.3 $D = 1.28 \pm 0.02$

Часть 3. Период и угол наклона желоба

3.1 Если бы желоб был гладкий и по нему двигалась шайба, то она двигалась бы с ускорением $a = g \sin \alpha$ (2). Однако, у нас по желобу движется шарик, при движении он вращается. Следовательно часть начальной потенциальной энергии шарика преобразуется в кинетическую энергию вращения. Это приводит к тому, что уменьшается кинетическая энергия поступательного движения центра шарика, а значит ускорение поступательного движения центра шарика будет меньше чем у шайбы при том же угле наклона желоба. Но ускорение шарика будет прямо пропорционально g и $\sin \alpha$. Поэтому для ускорения шарика можем записать

$$a_{\text{III}} = k_1 g \sin \alpha \quad (7),$$

где $k_1 < 1$ - некоторый постоянный коэффициент, не зависящий от угла наклона сторон желоба, не имеющий единиц измерения.

Период первого колебания будет равен сумме временных интервалов необходимых для последовательного прохождения следующих расстояний: амплитуда A_0 , удвоенная амплитуда A', амплитуда A_1 .

$$T = \sqrt{\frac{2A_0}{k_1 g \sin \alpha}} + 2\sqrt{\frac{2A'}{k_1 g \sin \alpha}} + \sqrt{\frac{2A_1}{k_1 g \sin \alpha}}$$
 (8),

$$T = \left(\sqrt{\frac{2A_0}{k_1 g}} + 2\sqrt{\frac{2A'}{k_1 g}} + \sqrt{\frac{2A_1}{k_1 g}}\right) \frac{1}{\sqrt{\sin \alpha}}$$
 (9).

Обозначим

$$\sqrt{\frac{2A_0}{k_1g}} + 2\sqrt{\frac{2A'}{k_1g}} + \sqrt{\frac{2A_1}{k_1g}} = k \quad (10),$$

k - некоторый постоянный коэффициент с размерностью времени. Тогда уравнение (9) можно записать в виде:

$$T = \frac{k}{\sqrt{\sin \alpha}} \quad (11).$$

3.2 Результаты экспериментального исследования зависимости периода колебания от угла наклона желоба $T(\alpha)$ представлены в таблице 6.

Таблица 6

таолица о								
Величины,			Повторные измерения					
необходимые для								
вычисло	вычисления sina							
Высота	Гипотенуза	ain = h	T_1 , c	T_2 , c	T ₃ , c	T ₄ , c	T_5 , c	Период
h,мм	c, mm	$\sin \alpha = \frac{1}{c}$	11, 0	12, 0	13, 0	14, 0	15, 0	T, c
19	492	0,039	7,03	6,96	6,95	7,01	6,95	6,98
39	492	0,079	5,32	5,39	5,35	5,34	5,40	5,36
57	492	0,116	4,43	4,46	4,43	4,41	4,47	4,44
77	492	0,157	3,87	3,91	3,90	3,88	3,89	3,89
97	492	0,197	3,46	3,48	3,50	3,47	3,49	3,48
111	492	0,226	3,13	3,12	3,15	3,10	3,15	3,13
130	492	0,264	2,89	2,85	2,89	2,86	2,86	2,87
149	492	0,303	2,80	2,82	2,78	2,83	2,82	2,81
165	492	0,335	2,45	2,40	2,50	2,44	2,51	2,46
178	492	0,362	2,22	2,29	2,20	2,26	2,28	2,25

3.3 Построим график линеаризованной зависимости $T\left(\frac{1}{\sqrt{\sin \alpha}}\right)$ (график 3). Вычислим значения выражения $\frac{1}{\sqrt{\sin \alpha}}$ (таблица 7).

Как видно из графика 3, уравнению (11) соответствуют точки удовлетворяющие неравенству $0.079 \le \sin \alpha \le 0.335$ так как для точек, принадлежащих этому интервалу, усредняющая прямая экстраполируется в начало координат. Верхняя и нижняя точки на графике выпадают. Исходя из графика можно считать, что уравнение (11) выполняется для углов наклона сторон желоба $4.5^{\circ} \le \alpha \le 19.5^{\circ}$.

Задание 11-2. Линзы и лазер

Решение Часть 1.

1.1 Из подобия треугольников получим:

$$\frac{\delta}{F_{\rm p}} = \frac{D}{F_{\rm p} + l_1} \quad (1).$$

После преобразований получим:

$$D = \delta + \frac{\delta}{F_{\rm p}} l_1 \quad (2).$$

1.2 Результаты эксперимента представлены в таблице 1 и на графике 1. Уравнение (2) представляет собой линеаризованную зависимость $D(l_1)$, поэтому построен график по уравнению (2).

Таблица 1.

 l_1 , см D, мм 10,0 8,0 10,0 15,0 20,0 12,5 25,0 14,0 30,0 15,5 17,5 35,0 40,0 19,5 45,0 22,0 50,0 23,0 55,0 25,5 60,0 27,0 Сред. 35,0 17,7 Дисп. 250 36,0 94,8 Ковар. $\langle \delta \rangle$ $\langle a_1 \rangle$ 0,379 4,4 Δa_1 $\Delta\delta$ 0,012 0,5

График 1. Зависимость $D(l_1)$

1.3 Введём в уравнении (2) обозначение:

$$a_1 = \frac{\delta}{F_{\rm p}} \quad (3).$$

Используя МНК определим $\langle a_1 \rangle$ и $\langle \delta \rangle$ (таблица 1, третья строчка снизу) и абсолютные погрешности Δa_1 и $\Delta \delta$ (таблица 1, последняя строчка). Из (3) получим:

$$\langle F_{\rm p} \rangle = \frac{\langle \delta \rangle}{\langle a_1 \rangle} = \frac{4,4 \, \text{mm}}{0,379 \, \frac{\text{MM}}{\text{CM}}} = 11,6 \, \text{cm} \qquad (4).$$

$$\varepsilon_{F_{\rm p}} = \sqrt{\left(\frac{\Delta a_1}{\langle a_1 \rangle}\right)^2 + \left(\frac{\Delta \delta}{\langle \delta \rangle}\right)^2} = \sqrt{\left(\frac{0,012 \, \frac{\text{MM}}{\text{CM}}}{0,379 \, \frac{\text{MM}}{\text{CM}}}\right)^2 + \left(\frac{0,5 \, \text{mm}}{4,4 \, \text{mm}}\right)^2} = 0,12 = 12\% \quad (5),$$

$$\Delta F_{\rm p} = \langle F_{\rm p} \rangle \cdot \varepsilon_{F_{\rm p}} = 11,6 \, \text{cm} \cdot 0,12 = 1,4 \, \text{cm} \quad (6).$$

$$\varepsilon_{\delta} = \frac{\Delta \delta}{\langle \delta \rangle} = \frac{0.5 \text{MM}}{4.4 \text{MM}} = 0.11 = 11\%$$
 (7).

$$F_{\rm p}=({\bf 11},{\bf 6\pm 1},{\bf 4}){
m cm}, \quad {m \delta}=({\bf 4},{\bf 4\pm 0},{\bf 5}){
m mm}.$$

Часть 2

2.1

Применяя уравнение тонкой линзы (указано в подсказке), получим:

$$\frac{1}{F_{\rm c}} = \frac{1}{F_{\rm p} + l_2} + \frac{1}{f_1} \qquad (8).$$

Из (8) получим:

$$\frac{1}{f_1} = \frac{1}{F_c} - \frac{1}{F_p + l_2}$$
 (9).

2.2 Результаты эксперимента представлены в таблице 2 и на графике 2. Уравнение (9) представляет собой линеаризованную зависимость $f_l(l_2)$ в виде $\frac{1}{f_1} \left(\frac{1}{F_n + l_2} \right)$.

Таблица 2.

График 2. Линеаризованная зависимость $f_1(l_2)$

2.3 Введём в уравнении (9) обозначение:

$$b_2 = \frac{1}{F_c}$$
 (10).

Используя МНК определим $\langle b_2 \rangle$ (таблица 2, третья строчка снизу) и абсолютную погрешность Δb_2 (таблица 1, последняя строчка). Из (10) получим:

$$\langle F_{\rm c} \rangle = \frac{1}{\langle b_2 \rangle} = \frac{1}{0.0754 \frac{1}{\rm cM}} = 13.3 \, \text{cm}$$
 (11).

$$\varepsilon_{F_c} = \varepsilon_{b_2} = \frac{\Delta b_2}{\langle b_2 \rangle} = \frac{0,0012 \frac{1}{\text{CM}}}{0,0754 \frac{1}{\text{CM}}} = 0,016 = 1,6\% (12),$$

$$\Delta F_{\rm c} = \langle F_{\rm c} \rangle \cdot \varepsilon_{F_{\rm c}} = 13,3 \, {\rm cm} \cdot 0,016 = 0,2 \, {\rm cm}$$
 (13).

$$F_{\rm c} = (13, 3 \pm 0, 2)$$
cm,

Часть 3.

- **3.1** Смотри рисунок 3.
- **3.2** Смотри рисунок 4. $f_3 = 0$ A (14).

Из прямоугольного треугольника OF_cA получаем:

$$3.3 F_{\rm c} = (14,5 \pm 0,1)$$
см.

3.4
$$f_3 = (10.2 \pm 0.1)$$
cm.

3.5 В соответствии с п. 3.2 мы должны были бы получить f_3 больше чем F_c в 1,15раза, а в реальности получили меньше в 1,42 раза. Это несоответствие теории с экспериментом вызвано тем, что в п. 3.2 при построении мы свойством параксиальных лучей, НО лучи, пользовались которые распространяются под углом к главной оптической оси больше чем 10° нельзя считать параксиальными. Для верного построения хода лучей необходимо учитывать диаметр пучка, радиусы поверхностей линзы, её толщину в центре, показатель преломления линзы, угол падения лучей на поверхность линзы. Если учесть все эти параметры, то мы получим теоретическое значение f_3 близкое к экспериментальному.