431 Class 03

Thomas E. Love, Ph.D. 2022-09-06

Today's Agenda

- Work in R with a familiar data set (the 15 question survey from Class 02)
- Open RStudio, load in some data and a template to write R Markdown code
 - We'll do a little typing into the template today, but just a little.
 - We'll then look at the completed R Markdown document.
 - We'll also inspect and knit the R Markdown file after all of the code is included.
 - Then we'll start over again with the slides.
- These slides walk through everything in that R Markdown document

Today's Files

From our 431-data page, or our Class 03 README (data folder), you should find:

- 431-first-r-template.Rmd
- quick_survey_2022.csv

and

• 431-class03-all-code.Rmd

in addition to the usual slide materials.

Today's Plan

We're using R Markdown to gather together into a single document:

- the code we build,
- text commenting on and reacting to that code, and
- the output of the analyses we build.

Everything in these slides is also going into our R Markdown file.

Load packages and set theme

```
1 library(janitor)
2 library(patchwork)
3 library(tidyverse)
4
5 theme_set(theme_bw())
```

Loading packages in R is like opening up apps on your phone. We need to tell R that, in addition to the base functions available in the software, we also have other functions we want to use.

Why are we loading these packages, in particular?

On the tidyverse meta-package

- The most important package is actually a series of packages called the tidyverse, which we'll use in every R Markdown file we create this semester.
 - The tidyverse includes several packages, all developed (in part) by Hadley Wickham, Chief Scientist at RStudio.
 - dplyr is our main package for data wrangling, cleaning and transformation
 - ggplot2 is our main visualization package we'll use for visualization
 - other tidyverse help import data, work with factors and other common activities.

More on today's packages

- The janitor package has some tools for examining, cleaning and tabulating data (including taby1() and clean_names()) that we'll use regularly.
- The patchwork package will help us show multiple ggplots together.
- It's helpful to load the tidyverse package last.

Today's Data

Our data come from the Quick 15-item Survey we did in Class 02 (pdf in Class 02 README), which we've done (in various forms) since 2014.

 A copy of these data (in .csv format) is on our 431-data page, and also linked on our Class 03 README.

We'll tackle several exploratory questions of interest...

Our Questions of Interest

- 1. What is the distribution of pulse rates among students in 431 since 2014?
- 2. Does the distribution of student heights change materially over time?
- 3. Is a Normal distribution a good model for our data?
- 4. Do taller people appear to have paid less for their most recent haircut?
- 5. Do students have a more substantial tobacco history if they prefer to speak English or a language other than English?

Read in data from .csv file

```
1 quicksur_raw <-
2  read_csv("c03/data/quick_survey_2022.csv", show_col_types = FALSE) |>
3  clean_names()
```

- Note the <- assignment arrow to create quicksur_raw
- Here, we use read_csv to read in data from the c03/data subfolder of my R project directory which contains the quick_survey_2022.csv file from our 431-data page.
- We use show_col_types = FALSE to suppress some unnecessary output describing the column types
- We use clean_names() from the janitor package
- Note the use of the pipe |> to direct the information flow

What is the result?

```
1 quicksur raw
# A tibble: 494 × 23
   student glasses english statso...¹ love ...² smoke h left h right hande...³
statf...4
     <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <<br/> <dbl> <dbl> <<br/> 
<dbl>
   202201 n
                                      5
                                                                        9 0.8
                                             180
                     n
6
    202202 y
                                             168
                                                                      10 1
                     У
    202203 n
                                                                      10 1
                                             185
                     У
    202204 y
                                       6
                                             185
                                                              0
                                                                      10 1
                     У
                                                             16
    202205 y
                                             191
                                                                        4 1
                                              1 0 0
    000000 ==
```

A more detailed look?

1 glimpse(quicksur raw)

```
Rows: 494
Columns: 23
$ student
         <dbl> 202201, 202202, 202203, 202204, 202205, 202206, 202207,
20...
         $ glasses
"n"...
         $ english
"y"...
         <dbl> 5, 7, 5, 6, 6, 6, 7, 7, 7, 6, 5, 3, 5, 6, 4, 5, 3, 1, 5,
$ statsofar
5...
         <dbl> 180, 168, 185, 185, 191, 183, 188, 188, 191, 183, 180,
$ love htcm
188...
$ smoke
         1...
         <dbl> 1, 0, 0, 0, 16, 3, 18, 4, 1, 6, 7, 0, 0, 4, 0, 4, 0, 1,
$ h left
```

Counting Categories

```
1 quicksur raw |> count(glasses)
# A tibble: 3 \times 2
 glasses n
 <chr> <int>
        78
           162
3 <NA>
      254
 1 quicksur raw |> count(glasses, english)
# A tibble: 8 \times 3
 glasses english n
 <chr> <chr> <int>
                    20
1 n
         n
2 n
                    58
         У
                  34
         n
                   127
 У
         V
         <NA>
                  47
6 <NA>
         n
                   205
7 <NA>
8 <NA>
         < NA >
```

Favorite Color in 2022?

3.7%

1.9%

seafoam green 1 1.9%

white 2

<NA> 1

```
quicksur raw |>
     filter(year == "2022") |>
    tabyl(favcolor) |>
     adorn pct formatting()
   favcolor n percent valid percent
all of them 1
               1.9%
                           1.9%
     black 2 3.7%
                          3.8%
      blue 24 44.4%
                        45.3%
     green 8 14.8%
                         15.1%
    maroon 1 1.9%
                          1.9%
    orange 4 7.4%
                         7.5%
      pink 1 1.9%
                          1.9%
    purple 2 3.7%
                        3.8%
       red 6 11.1%
                         11.3%
royal purple 1 1.9%
                         1.9%
```

1.9%

3.8%

Using summary() on Quantities

```
1 quicksur_raw |>
2 select(love_htcm, haircut, height_in, lastsleep) |>
3 summary()
```

```
love htcm haircut height in lastsleep
Min. :165.0 Min. : 0.00 Min. :57.00 Min. : 2.00
1st Qu.:178.0
            1st Qu.: 14.00
                         1st Qu.:64.00
                                      1st Qu.: 6.00
                         Median :67.00
                                      Median : 7.00
Median :183.0
            Median : 20.00
Mean :182.5 Mean : 30.17 Mean :67.33
                                      Mean : 6.94
            3rd Qu.: 40.00 3rd Qu.:70.00
                                      3rd Qu.: 8.00
3rd Qu.:188.0
Max. :191.0
            Max. :250.00
                         Max. :77.50
                                      Max. :12.00
NA's :385
            NA's :9 NA's :7
                                      NA's :6
```

Manage the data into qsdat

Recall our Questions of Interest

- 1. What is the distribution of pulse rates among students in 431 since 2014?
- 2. Does the distribution of student heights change materially over time?
- 3. Is the Normal distribution a good model for our data?
- 4. Do taller people appear to have paid less for their most recent haircut?
- 5. Do students have a more substantial tobacco history if they prefer to speak English or a language other than English?

Variables we'll look at closely today

To address our Questions of Interest, we need these seven variables in our analytic data frame (tibble.)

- student: student identification (numerical code)
- year: indicates year when survey was taken (August)
- english: y = prefers to speak English, else n
- smoke: 1 = never smoker, 2 = quit, 3 = current
- pulse: pulse rate (beats per minute)
- height_in: student's height (in inches)
- haircut: price of student's last haircut (in \$)

Select our variables

```
1 qsdat <- quicksur_raw |>
2    select(student, year, english, smoke,
3         pulse, height_in, haircut)
```

- The select() function chooses the variables (columns)
 we want to keep in our new tibble called qsdat.
- What should the result of this code look like?

What do we have now?

1 qsdat # A tibble: 494×7 student year english smoke pulse height in haircut <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 1 202201 2022 n 80 69.5 202202 2022 y 64 63 50 2 68 202203 2022 y 73 4 202204 2022 y 1 88 70 38 202205 2022 y 1 60 59 25 2 72 202206 2022 y 15 68 1 68 7 202207 2022 y 71 0 202208 2022 n 68 70 32 2 96 202209 2022 y 69 60 10 202210 2022 y 66 76 40 # ... with 484 more rows

Initial Numeric Summaries

- Is everything the "type" of variable it should be?
- Are we getting the summaries we want?

```
summary(qsdat)
                                 english
   student
                                                     smoke
                     year
Min. :201401
                       :2014
                              Length: 494
               Min.
                                                 Min.
                                                        :1.000
1st Ou.:201633
               1st Ou.:2016
                              Class :character
                                                 1st Ou.:1.000
Median :201845
               Median :2018
                                                 Median :1.000
                              Mode :character
Mean :201848
              Mean :2018
                                                 Mean :1.089
3rd Qu.:202056
              3rd Ou.:2020
                                                 3rd Ou.:1.000
                Max. :2022
Max. :202254
                                                 Max. :3.000
                                                 NA's :2
   pulse
               height in
                                  haircut
                Min. :57.00
Min. : 30.00
                               Min. : 0.00
1st Qu.: 65.00
               1st Qu.:64.00
                              1st Ou.: 14.00
Median : 72.00
               Median :67.00
                              Median : 20.00
                               Mean : 30.17
Mean : 73.57
               Mean :67.33
3rd Qu.: 80.00
                              3rd Ou.: 40.00
                3rd Ou.:70.00
Max. :110.00
                Max. :77.50
                               Max. :250.00
                *431 Class 03 | 2022-09-06 | https://thomaselove.github.io/431-2022/
```

What should we be seeing?

- Categorical variables should list the categories, with associated counts.
 - To accomplish this, the variable needs to be represented in R with a factor, rather than as a character or numeric variable.
- Quantitative variables should show the minimum, median, mean, maximum, etc.

```
1 names(qsdat)
[1] "student" "year" "english" "smoke" "pulse" "height_in"
[7] "haircut"
```

Change categorical variables to factors

We want the year and smoke information treated as categorical, rather than as quantitative, and the english information as a factor, too. Also, do we want to summarize the student ID codes?

We use the mutate() function to help with this.

Note that it's as_factor() but as.character(). Sigh.

Next step: Recheck the summaries and do range checks

- Do these summaries make sense?
- Are the minimum and maximum values appropriate?
- How much missingness are we to deal with?

Now, how's our summary?

summary(gsdat) student english smoke pulse year Length: 494 2020 : 67 :101 : 456 Min. : 30.00n 2 : 28 Class: character 2016: 64 v :390 1st Qu.: 65.00 2019 : 61 NA's: 3 Median : 72.00 Mode :character 2021 : 58 Mean : 73.57 NA's: 2 2022 : 54 3rd Ou.: 80.00 2018 : 51 :110.00 Max. (Other):139 NA's :75 height in haircut Min. :57.00 Min. : 0.001st Qu.:64.00 1st Qu.: 14.00 Median: 67.00 Median : 20.00 Mean :67.33 : 30.17 Mean 3rd Ou.:70.00 3rd Ou.: 40.00 Max. :77.50 Max. :250.00 NTN | -: - 7 7 T 7 T _.

Some things to look for appear on the next slide.

What to look for...

- Are we getting counts for all variables that are categorical?
 - Do the category levels make sense?
- Are we getting means and medians for all variables that are quantities?
 - Do the minimum and maximum values make sense for each of these quantities?
- Which variables have missing data, as indicated by NA's?

The summary for year is an issue

 Just to fill in the gap left by the summary() result, how many students responded each year?

```
1 qsdat |> tabyl(year) |> adorn totals() |> adorn pct formatting()
year
     n percent
2014 42
        8.5%
2015 49 9.9%
2016
     64 13.0%
2017 48 9.7%
     51 10.3%
2018
     61 12.3%
2019
     67 13.6%
2020
2021 58 11.7%
2022 54 10.9%
Total 494
         100.0%
```

This is how far we got in Class 03.

See the Class 04 slides for the remainder of the materials originally posted here.

Session Information

Don't forget to close your file with the session information.

```
1 sessionInfo()
R version 4.2.1 (2022-06-23 ucrt)
Platform: x86 64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 22000)
Matrix products: default
locale:
[1] LC COLLATE=English United States.utf8
[2] LC CTYPE=English United States.utf8
[3] LC MONETARY=English United States.utf8
[4] LC NUMERIC=C
[5] LC TIME=English United States.utf8
attached base packages:
[1] stats graphics grDevices utils datasets methods
                                                                base
```