Федеральное государственное бюджетное образовательное учреждение высшего образования «РЫБИНСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени П. А. СОЛОВЬЁВА»

Институт информационных технологий и систем управления

Кафедра математического и программного обеспечения электронных вычислительных средств

Лабораторная работа №1 "Знакомство с основами загрузки и обработки данных"

по дисциплине Методы и алгоритмы анализа данных

Выполнили студенты группы ИВМ-22

Перхуров В. А.

Беляев А. Е.

Проверил:

Кулиманов И. Е.

Задание

Постановка задачи:

Цели:

Получить практические навыки по загрузке и обработке данных

Задачи:

- 1. Загрузить датасет "MNIST".
- 2. Вывести изображения нескольких случайных чисел.
- 3. Загрузить датасет "Titanic".
- 4. Выполнить ряд заданий по исследованию датасета:
 - Проанализируйте датасет и создайте несколько диаграмм/гистограмм и объясните что они отображают.
 - Заполните записи со значением NaN, объясните как заполняли.
 - Создайте дополнительный признак, объясните для чего он необходим.

1 Описание датасетов

1.1 Описание датасета MNIST

Файл данных содержит изображения нарисованных от руки цифр в оттенках серого от нуля до девяти.

Каждое изображение имеет высоту 28 пикселей и ширину 28 пикселей, всего 784 пикселя. С каждым пикселем связано одно значение пикселя, указывающее яркость или темноту этого пикселя, причем более высокие числа означают темнее. Это значение пикселя представляет собой целое число от 0 до 255 включительно.

Набор данных содержит 785 столбцов. Первый столбец, называемый «метка», представляет собой цифру, нарисованную пользователем. Остальные столбцы содержат значения пикселей связанного изображения.

Каждый столбец пикселей в наборе имеет имя, например pixelx, где x — целое число от 0 до 783 включительно. Чтобы найти этот пиксель на изображении, предположим, что мы разложили x как

$$x = i * 28 + i$$

где i и j — целые числа от 0 до 27 включительно.

Затем pixelx находится в строке і и столбце ј матрицы 28 x 28 (индексируется нулем).

Например, pixel31 указывает пиксель, который находится в четвертом столбце слева и во второй строке сверху.

1.2 Описание датасета Titanic

Набор данных представлен в CSV-файле. Набор содержит признак Survived для каждого пассажира, обозначающий, выжил данный пассажир или нет (0 для умерших, 1 для выживших).

Каждая строчка наборов данных содержит следующие поля:

- 1. Pclass класс пассажира (1 высший, 2 средний, 3 низший),
- 2. Name имя,
- 3. Sex пол,
- 4. Age возраст,
- 5. SibSp количество братьев, сестер, сводных братьев, сводных сестер, супругов на борту титаника,

- 6. Parch количество родителей, детей (в том числе приемных) на борту титаника,
- 7. Ticket номер билета,
- 8. Fare плата за проезд,
- 9. Cabin каюта,
- 10. Етbarked порт посадки (С Шербур; Q Квинстаун; S Саутгемптон).

В поле Age приводится количество полных лет. Для детей меньше 1 года — дробное. Если возраст не известен точно, то указано примерное значение в формате xx.5.

2 Описание выполнения работы

2.1 Реализация программы для анализа датасета MNIST

2.1.1 Используемые библиотеки

При решении данной задачи были использованы следующие библиотеки:

- 1. random генератор случайных чисел,
- 2. pandas анализ данных,
- 3. numpy математика и работа с массивами,
- 4. PIL.Image работа с изображениями.

2.1.2 Ход работы и результат выполнения программы

В ходе выполнения работы была написана консольная программа, которя выводит несколько (задаваемое число) случайных чисел из загруженного датасета. Пример работы данной программы показан на рисунке 1.

Рис. 1: Результат работы программы для вывода заданного числа изображений

2.1.3 Исходный текст программы

import random # генератор случайных чисел import pandas as pd # анализ данных import numpy as np # математика и работа с массивами from PIL import Image # работа с изображениями

1 - Вывести заданное количество случайных чисел def showImage(df):

2.2 Реализация программы для анализа датасета Titanic

2.2.1 Используемые библиотеки

При решении данной задачи были использованы следующие библиотеки:

- 1. pandas анализ данных,
- 2. numpy математика и работа с массивами,
- 3. matplotlib.pyplot построение графиков.

2.2.2 Ход работы и результат выполнения программы

В ходе выполнения работы была написана программа, которя выводит три гафика зависимостей (рисунок 2), построенных на основе данных из заданного датасета, и формирует дополнительный признак на основе имеющихся данных (рисунок 4).

На рисунке 2 показаны три графика (слева направо):

- 1. Зависимость числа пассажиров взошедших на борт от порта посадки.
- 2. Зависимость средней стоимости билетов и числа пассажиров от класса.
- 3. Зависимость выручки от класса

На рисунке 4 показан фрагмент изменённого датасета, где ячейки, содержащие значение NaN, были заполнены строкой "Unknown"с целью идентифкации факта неизвестности значения данного параметра для конкретной записи (пасажира). Замена производилось с помощью метода fillna.

Рис. 2: Диаграммы, построенные при исполнении программы

Так же был добавлен дополнительный признак - буквенный код палубы. Введение нового параметра - буквенного кода палубы, позволит в дальнейшем не производить анализ номера каюты для определения палубы, с целью использования её в дальнейшей обработке.

Ne	w Ope	n •							titanic_modd	Cu.03V				
	A	В	С	D	E	F	G	н	1	J	K	L	М	N
L		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Deck
2	0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	Unknown	Q	Unknow
3	1	893	1	3	Wilkes, Mrs. Jan	female	47.0	1	0	363272	7.0	Unknown	s	Unknow
4	2	894	0	2	Myles, Mr. Thom	male	62.0	0	0	240276	9.6875	Unknown	Q	Unknow
5	3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	Unknown	S	Unknow
6	4	896	1	3	Hirvonen, Mrs. A	female	22.0	1	1	3101298	12.2875	Unknown	s	Unknow
7	5	897	0	3	Svensson, Mr. Jo	male	14.0	0	0	7538	9.225	Unknown	S	Unknow
8	6	898	1	3	Connolly, Miss. F	female	30.0	0	0	330972	7.6292	Unknown	Q	Unknow
9	7	899	0	2	Caldwell, Mr. Alb	male	26.0	1	1	248738	29.0	Unknown	S	Unknow
10	8	900	1	3	Abrahim, Mrs. Jo	female	18.0	0	0	2657	7.2292	Unknown	С	Unknow
11	9	901	0	3	Davies, Mr. John	male	21.0	2	0	A/4 48871	24.15	Unknown	S	Unknow
12	10	902	0	3	Ilieff, Mr. Ylio	male	Unknown	0	0	349220	7.8958	Unknown	S	Unknow
13	11	903	0	1	Jones, Mr. Charl	male	46.0	0	0	694	26.0	Unknown	S	Unknow
14	12	904	1	1	Snyder, Mrs. Joh	female	23.0	1	0	21228	82.2667	B45	S	В
15	13	905	0	2	Howard, Mr. Ben	male	63.0	1	0	24065	26.0	Unknown	S	Unknow
16	14	906	1	1	Chaffee, Mrs. He	female	47.0	1	0	W.E.P. 5734	61.175	E31	S	E
17	15	907	1	2	del Carlo, Mrs. S	female	24.0	1	0	SC/PARIS 2167	27.7208	Unknown	С	Unknow
18	16	908	0	2	Keane, Mr. Danie	male	35.0	0	0	233734	12.35	Unknown	Q	Unknow
19	17	909	0	3	Assaf, Mr. Gerio	male	21.0	0	0	2692	7.225	Unknown	С	Unknow
20	18	910	1	3	Ilmakangas, Mis	female	27.0	1	0	STON/O2. 31012	7.925	Unknown	S	Unknow
21	19	911	1	3	Assaf Khalil, Mrs	female	45.0	0	0	2696	7.225	Unknown	С	Unknow
22	20	912	0	1	Rothschild, Mr. N	male	55.0	1	0	PC 17603	59.4	Unknown	С	Unknow
23	21	913	0	3	Olsen, Master. A	male	9.0	0	1	C 17368	3.1708	Unknown	S	Unknow
24	22	914	1	1	Flegenheim, Mrs	female	Unknown	0	0	PC 17598	31.6833	Unknown	S	Unknow
25	23	915	0	1	Williams, Mr. Ric	male	21.0	0	1	PC 17597	61.3792	Unknown	С	Unknow
26	24	916	1	1	Ryerson, Mrs. Ar	female	48.0	1	3	PC 17608	262.375	B57 B59 B63 B6	С	В
27	25	917	0	3	Robins Mr Alex	male	50.0	1	0	A/5 3337	14.5	Unknown	S	Unknow

Рис. 3: Результат внесения изменений в исходный датасет

2.2.3 Исходный текст программы

import pandas as pd # анализ данных

```
from matplotlib import pyplot as plt # построение графиков
# Получить списки ключей и значений из отсортированного
# по убыванию словаря
def getKeysAndValues(dataset, with_sort):
    dict_dataset = dict(dataset)
    keys = []
    values = []
    if with sort:
        dict_dataset = sorted(dict_dataset.items(),
                              key=lambda x: x[1],
                              reverse=True)
        for k, v in dict_dataset:
            keys.append(k)
            values.append(v)
    else:
        for k, v in dict_dataset.items():
            keys.append(k)
            values.append(v)
    return (keys, values)
# Отрисовать первую диаграмму.
# Зависимость числа пассажиров зашедших на борт от порта посадки.
# Зависимость средней стоимости билетов и числа пассажиров от класса.
# Зависимость выручки от класса.
def showDiagrams(main_df):
    # подсчёт числа пассажиров, взошедших на борт в городах
    boarding = pd.value_counts(main_df['Embarked'].values, sort=True)
    for i in range(0, len(boarding.index.values), 1):
        if boarding.index.values[i] == 'S':
            boarding.index.values[i] = 'Саутгемптон'
        else:
            if boarding.index.values[i] == 'C':
                boarding.index.values[i] = 'Wep6yp'
            else:
                boarding.index.values[i] = 'Квинстаун'
    boarding_keys, boarding_values = getKeysAndValues(boarding, True)
    top_boarding = len(boarding_keys)
    plt.subplot(131)
    plt.title('Распределение пассажиров по портам посадки')
    plt.bar(np.arange(top_boarding), boarding_values)
```

import numpy as np # математика и работа с массивами

```
plt.xticks(np.arange(top_boarding),
           boarding_keys,
           rotation=0,
           fontsize=12)
plt.ylabel('Количество пассажиров')
# подсчёт числа пассажиров по классам
classes = pd.value_counts(main_df['Pclass'].values, sort=False)
classes_keys, classes_values = getKeysAndValues(classes, False)
# подсчёт средней стоимости билетов и общей выручки
average_fare = {}
revenue = {}
for i in classes_keys:
    dfs = main_df[['Fare', 'Pclass']].loc[main_df['Pclass'] == i]
    average_fare[i] = dfs['Fare'].mean(axis=0)
    revenue[i] = dfs['Fare'].sum()
average_fare_keys, average_fare_values =
    getKeysAndValues(average_fare, False)
revenue_keys, revenue_values = getKeysAndValues(revenue, False)
plt.subplot(132)
plt.grid(True)
plt.title('Зависимость средней стоимости билета и\n'
          'количества пассажиров от класса')
plt.xticks(classes_keys, rotation=0, fontsize=12)
plt.yticks(classes_values+average_fare_values)
plt.xlabel('Классы', color='gray')
plt.plot(classes_keys, classes_values, 'g',
         average_fare_keys, average_fare_values, 'b--')
plt.legend(['Количество пассажиров', 'Средняя стоимость билетов'],
           loc=2)
plt.subplot(133)
plt.grid(True)
plt.title('Зависимость выручки от класса')
plt.xticks(classes_keys, rotation=0, fontsize=12)
plt.yticks(revenue_values)
plt.xlabel('Классы', color='gray')
plt.plot(revenue_keys, revenue_values, 'r-.')
plt.legend(['Выручка от продажи билетов'], loc=1)
plt.show()
```

return

```
# Заполнить поля значением Unknown.
# Ячейки, содержащие значение NaN, были заполнены строкой "Unknown"
# с целью идентифкации факта неизвестности
# значения данного параметра для конкретной записи (пасажира).
# Замена производилось с помощью метода fillna.
def fillNanFields(main df):
    main_df = main_df.fillna('Unknown')
    return main df
# Создать дополнительный признак (буквенного кода палубы).
# Введение нового параметра - буквенного кода палубы, позволит в
# дальнейшем не производить анализ номера каюты
# для определения палубы, с целью использования её в дальнейшей
# обработке.
def createAnAdditionalAttribute(main_df):
    main_df = main_df.assign(Deck=main_df.Cabin)
    for i in range(len(main_df.Deck)):
        if main_df.Deck[i] != 'Unknown':
            main_df.loc[i, 'Deck'] = main_df.loc[i, 'Deck'][:1]
    return main_df
# Основная функция
def main():
    # 0 - Читаем датасет
    df = pd.read_csv('./titanic.csv', escapechar=',', low_memory=False)
    # 1 - Рисуем диаграммы зависимостей
    showDiagrams(df)
    # 3 - Заполняем поля значением Unknown
    df = fillNanFields(df)
    # 4 - Создаём дополнительный признак
    df = createAnAdditionalAttribute(df)
    # 5 - Сохраняем изменнеия в новый файл
    df.to_csv('./titanic_modded.csv')
# Запускаем программу
main()
```

3 Вывод.

В результате выполнения лабораторной работы были получены навыки по загрузке и начальной обработке данных на примере двух датасетов.

В ходе выполнения работы были написаны две программы (по одной на каждый датасет). Обе выполняют чтение датасетов из фалов в формате ".csv"и реализуют заданный функционал.

Первая (для датасета "MNIST") формирует заданное число случайно выбранных изображений и выводит их на экран.

Вторая (для датасета "Titanic") выполняет две операции:

- 1. Анализ данных из датасета и вывод их в виде графиков.
- 2. Изменение и добавление новых данных в имеющийся датасет и сохранение его в отдельный файл.