Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Отчет по лабораторной работе 4

Вариант 2, 4

Санкт-Петербург 2022г.

Оглавление

Цель работы	3
Программа работы	4
Результат работы	6
Выводы	13
Приложение. Тексты программ	14

Цель работы

Требуется исследовать зависимость погрешности определения количества периодов короткого сигнала с нецелым количеством периодов СКО шума OT количества периодов И величины входе использовании БПФ и аппроксимационно-корреляционного метода при использовании различных методов определения сходства: коэффициента ковариации и корреляции, суммы модулей разности, суммы модулей суммы, квадратного корня из суммы квадратов разности.

Количество периодов сигнала:

Коэффициент сходства:

4) Норма Поддорогина

Программа работы

1. При исследовании эффекта увеличения точности определения количества периодов и частоты сигнала по сравнению с БПФ за счет дополнительных операций цифровой обработки произведите измерения (программа lab4) количества периодов сигнала в диапазоне количества периодов от К до К+1 с шагом 0.2 и постройте графики погрешности определения количества периодов сигнала на этом интервале с помощью БПФ и комбинированного способа.

	СКО шума	Кол-во периодов сигнала	kp_fft	Отн. погреш-ность kp_fft	kp_int	Отн. погреш-ность kp_int
_	0	4.0				
		4.2				

Результаты измерений занесите в таблицу:

Рисунок 1. Задание

- 2. При исследовании достижимой точности определения количества периодов и частоты сигнала комбинированным способом при различных уровнях зашумленности сигнала произведите оценку точности определения количества периодов и частоты сигнала в диапазоне количества периодов от К до К+1 с шагом 0.2 при значениях СКО шума от 0 до 0.2 с шагом 0.1. Для этого произведите статистические испытания (программа lab4_statistica), и вычислите значения среднеквадратической погрешности и величину доверительных интервалов определения для каждого значения количества периодов сигнала и каждого уровня шума.
- 3. Исследуйте влияние способа сравнения эхо-сигнала с эталонными (с помощью ковариации, корреляции, нормы Минковского, нормы Поддорогина) на точность определения количества периодов и частоты сигнала.

Рисунок 2. Задание

Результаты работы

Был построен график зашумленной функции до преобразований.

Рисунок 3. График функции

Также был построен график коэффициентов корреляции, представляющий собой параболу 6 порядка.

Рисунок 4. График коэффициентов корреляции

Также была построена таблица зависимости количества периодов и частоты сигнала АКМ по сравнению с БП Φ и нормы Поддорогина.

СКО	Кол-во	Результаты цифровой обработки			
шума на входе	периодо в сигнала	кп_БПФ	отн_погрешност ь кп_БПФ	кп_АКМ	отн_погрешность кп_АКМ
	3,00	3	0,00	3,0000	0,000
	3,20	3	6,25	3,1991	0,028
0	3,40	3	11,76	3,4000	0,000
	3,60	4	11,11	3,6000	0,000
	3,80	4	5,26	3,7993	0,018
	4,00	4	0,00	4,0000	0,000
	3,00	3	0,00	3,0000	0,000
	3,20	3	6,25	3,1991	0,028
0,1	3,40	3	11,76	3,4000	0,000
0,1	3,60	4	11,11	3,6000	0,000
	3,80	4	5,26	3,7993	0,018
	4,00	4	0,00	4,0000	0,000
	3,00	3	0,00	2,9933	0,223
	3,20	3	6,25	3,1867	0,416
0,2	3,40	3	11,76	3,4000	0,000
0,2	3,60	4	11,11	3,6060	0,167
	3,80	4	5,26	3,7993	0,018
	4,00	4	0,00	4,0067	0,168

Также был построен график сравнения погрешностей БПФ и АКМ.

График зависимости погрешности на интервале от 3 до 4 периодов для БПФ и АКМ при шуме 0.1

Также были получены значения среднеквадратичной погрешности

СКО шума на	Кол-во	Результаты цифровой обработки			
входе	периодов сигнала	МО	σ, %	β, %	
	3,00	3	0	0	
	3,20	3,2	1,16E-14	2,31E-14	
0	3,40	3,4	1,47E-14	2,93E-14	
	3,60	3,6014	1,60E-14	3,20E-14	
	3,80	3,7968	9,33E-15	1,87E-14	
	4,00	4	0	0	
	3,00	3,0009	0,0074	0,0147	
	3,20	3,1998	0,0077	0,0153	
0,1	3,40	3,3997	0,0074	0,0149	
0,1	3,60	3,6007	0,0077	0,0153	
	3,80	3,7997	0,0075	0,015	
	4,00	4,0001	0,0077	0,0154	
	3,00	2,9998	0,0122	0,0244	
	3,20	3,201	0,0122	0,0243	
0,2	3,40	3,4002	0,0116	0,0232	
0,2	3,60	3,6001	0,0125	0,0249	
	3,80	3,7999	0,0114	0,0229	
	4,00	3,9998	0,0124	0,0248	

На основании полученных значений был построен график

Выводы

После проделанной работы были получены следующие результаты:

- Метод АКМ гораздо эффективнее метода БПФ
- с увеличением СКО шума увеличивается и СКО отклонения функции от истинной

Приложение. Тексты программ

```
%Комбинированное использование ключевых операций ЦОС
%Для повышения точности определения частоты
%"короткого" сигнала используется комбинация
%БПФ, кросскорреляции, сплайн-аппроксимации, передискретизации
%В качестве показателя сравнения исходного и эталонных сигналов
%предусмотрена возможность использования коэффициента ковариации,
%коэффициента корреляции, суммы модулей разности (нормы Минковского),
%суммы модулей суммы (нормы Поддорогина)
clc;%очистка Command Window
kt=1024; % количество отсчетов
Q=0.1;%шум
%кр=4%количество периодов сигнала
%1. ГЕНЕРАЦИЯ МОДЕЛЬНОГО СИГНАЛА
% for kp = [3.0, 3.2, 3.4, 3.6, 3.8, 4.0]
for kp = [3.2]
  disp(['Q: ', num2str(Q)]);
  disp(['kp: ', num2str(kp)]);
  for i=1:kt %обнуление массива сигнала
    y(i)=0;
  end
  noise=randn(kt);
  %noise=wgn(kt,1,0);
  for i=1:kt %генерация модельного сигнала с экспоненциальной модуляцией
    w(i)=\exp(-20*((i-kt/2)/kt)^2);
    y(i)=\sin(2*pi*kp*i/kt)*w(i);
    y(i)=y(i)+Q*noise(i);
  end
  i=1:kt; %отображение модельного сигнала во временной области
  figure
  plot(i,y);
  axis tight;
  title('Original signal')
  xlabel('Sample number')
  %2. ФУНКЦИОНАЛЬНОЕ ПРЕОБРАЗОВАНИЕ (БПФ)
  bpfy=fft(y,kt);%\Pi\Phi
  bpf=bpfy.*conj(bpfy)/kt;%БΠΦ
  %нахождение макс. знач. функции БПФ для массива У
  C=max(bpf);
  for i=1:kt %поиск количества периодов, соответствующих максимуму БПФ
    if(bpf(i)==C)
      kpbpf=(i-1);
      break
    end
  end
```

```
kp bpf=kpbpf;
         disp(['kp bpf: ', num2str(kp bpf)]);
         disp(['error bpf: ', num2str((kp - kp bpf)/kp * 100)]);
         %3. СОЗДАНИЕ ЭТАЛОНОВ И КРОССКОРРЕЛЯЦИЯ
         kp1=kpbpf;
         seach area=0.8/kp1;%область поиска относит. kp bpf
         for ki=1:3 %количество итераций
           shagkor=kp1*seach area/3;%шаг поиска
           for j=kp1-kp1*seach area:shagkor:kp1+kp1*seach area %цикл для создания 6
эталонов в окрестности приближенного
             %значения количества периодов, определенных с помощью БПФ.
             k=k+1;
             xkor(k)=i;
             kor(k)=0;
             for i=1:kt
                x(i)=0;
             end
             %Вычисление массивов эталонных сигналов
             for i=1:kt
                x(i) = \sin(2*\pi i i/kt)*w(i);
             end
             %вычисление средних значений модельного и эталонных сигналов
             x sr=mean(x);
             y_sr=mean(y);
             x sko=0;
             y sko=0;
             kor1(k)=0;%%начальное значение показателя сравнения
             %вычисление показателя сравнения модельного и эталонных сигналов
             for i=1:kt
                x   sko=x   sko+(x(i)-x   sr)*(x(i)-x   sr);
                y sko=y sko+(y(i)-y sr)*(y(i)-y sr);
                %kor(k)=kor(k)+(x(i)-x sr)*(y(i)-y sr);%вычисление коэф. ковариации
                % sxy(i) = abs(x(i)-y(i)); %вычисление модуля разности
                % kor1(k)=kor1(k)+sxy(i); %вычисление суммы модулей разности
                %(нормы Минковского)
                sxy(i)=abs(x(i)+y(i));%вычисление модуля суммы
                kor1(k)=kor1(k)+sxy(i); %вычисление суммы модулей суммы
                %(нормы Поддорогина)
              %kor1(k)=kor(k)/(sqrt(x sko*y sko));%вычисление коэф. корреляции
           end %конец цикла создания эталонов и вычисления массива коэф. корр.
           %СПЛАЙН-АППРОКСИМАЦИЯ И ПЕРЕДИСКРЕТИЗАЦИЯ
           xx=1:k;
           xi=1:0.1:k:
           r1=sin(xx); %только для тестирования сплайн-аппроксимации
           yint=interp1(xx,kor1,xi,'spline');% сплайн-аппроксимация коэф корреляции
           r1=kor1;
           apr=spaps(xkor,kor1,0.000001);
           figure
```

```
fnplt(apr)
           hold on
           plot(xkor,r1,'ro');
           hold off
           %НАХОЖДЕНИЕ УТОЧНЕННОГО ЗНАЧЕНИЯ КОЛИЧЕСТВА ПЕРИОДОВ
СИГНАЛА
           cmax=max(yint); %нахождение максимума коэф. корр.
           for i=1:round((k-1)/0.1+1)
             if (yint(i) = cmax)
                kp int=kp1-kp1*seach area+(i-1)*shagkor/10; %уточненное значение частоты по
МАХ функции коэф. корр.
             end
           end
           seach area=seach area/2;
           kp1=kp int;
         end
         res=kp1;
         disp(['kp_AKM (res): ', num2str(res)]);
         disp(['error_AKM: ', num2str((kp - res)/kp * 100)]);
         disp('---');
       end
       pause;
       close all;%закрытие всех окон графического вывода
       clear;%очистка Workspace
```