3 Lecture 3

3.1 Sum, direct sum, quotient

Theorem 3.1. $\dim(V_1 + V_2) = \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2)$

Proof. Let u_1, \ldots, u_k be a basis of $V_1 \cap V_2$. By Corollary 2.16, we can extend u_1, \ldots, u_k to $u_1, \ldots, u_k, v_1, \ldots, v_j$ a basis of V_1 and to $u_1, \ldots, u_k, w_1, \ldots, w_l$ to be a basis of V_2 . We claim that $B = \{u_1, \ldots, u_k, v_1, \ldots, v_j, w_1, \ldots, w_l\}$ is a basis of $V_1 + V_2$.

Let $x \in V_1$ and $y \in V_2$. Then $x = \lambda_1 u_1 + \dots + \lambda_k u_k + b_1 v_1 + \dots + b_j v_j$ and $y = \mu_1 u_1 + \dots + \mu_k u_k + c_1 w_1 + \dots + c_l w_l$ thus $x + y = (\lambda_1 + \mu_1) u_1 + \dots + (\lambda_k + \mu_k) u_k + b_1 v_1 + \dots + b_j v_j + c_1 w_1 + \dots + c_l w_l$. Hence we see that $u_1, \dots, u_k, v_1, \dots, v_j, w_1, \dots, w_l$ span $V_1 + V_2$.

To show that B is linearly independent, we suppose $a_1u_1+\cdots+a_ku_k+b_1v_1+\cdots+b_jv_j+c_1w_1+\cdots+c_lw_l=0$. Then $b_1v_1+\cdots+b_jv_j=-a_1u_1-\cdots-a_ku_k-c_1w_1-\cdots-c_lv_l\in V_2$. Since $b_1v_1+\cdots+b_jv_j\in V_1$, we have $b_1v_1+\cdots+b_jv_j\in V_1\cap V_2$. Thus there exists $\lambda_1,\ldots,\lambda_k$ such that $\lambda_1u_1+\cdots+\lambda_ku_k+b_1v_1+\cdots+b_jv_j=0$. Since $u_1,\ldots,u_k,v_1,\ldots,v_j$ is a basis of V_1 we have $b_1=\cdots=b_j=0$. Similarly we can show that $c_1=\cdots=c_l=0$. Thus we have $a_1u_1+\cdots+a_ku_k=0$. Since u_1,\ldots,u_k is a basis of $v_1\in V_2$, we have $v_1=\cdots=v_k=0$.

In particular,
$$\dim(V_1 + V_2) = k + j + l = \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2)$$
.

Remark 3.2. In this proof, we start with a basis of $V_1 \cap V_2$ and extend it to be a basis of V_1 and V_2 respectively. One <u>cannot</u> do it the other way around by directly taking the intersection of bases of V_1 and V_2 . The intersection is not necessarily a basis of $V_1 \cap V_2$ as can be seen in the following example. Let $V_1 = \operatorname{span}(v_1, v_2)$ and $V_2 = \operatorname{span}(v_3, v_4)$. We have $\{v_1, v_2\} \cap \{v_3, v_4\} = \emptyset$. However, $V_1 \cap V_2 = \operatorname{span}(v_3)$.

Definition 3.3. We say that $V_1 + \cdots + V_m$ is a **direct sum** if any $x \in V_1 + \cdots + V_m$ can be written as $v_1 + \cdots + v_m$ uniquely for $v_i \in V_i$, $1 \le i \le m$. In this case, we write $V_1 \oplus \cdots \oplus V_m$ for $V_1 + \cdots + V_m$.

We want to introduce the summation notation here which will be used in this notes.

Notation 3.4. If x_1, \ldots, x_n are things that can be added together e.g. numbers, vectors, functions, matrices etc, then we write

$$\sum_{i=1}^{n} x_i$$

for

$$x_1 + \cdots + x_n$$
.

The symbol reads "summation of x_i for i from 1 to n".

The following Proposition shows that a direct sum is a sum of subspaces which has "no overlap".

Proposition 3.5. Let V be a finite dimensional vector space. The following are equivalent:

- (i) The only way to write $0 = v_1 + \cdots + v_m$ where $v_i \in V_i$ is by taking $v_i = 0$ for all $1 \le i \le m$.
 - (ii) $V_1 + \cdots + V_m$ is a direct sum.

 - (iii) $V_i \cap \sum_{j:j\neq i} V_j = \{0\}$ for all $1 \le i \le m$. (iv) $\dim(V_1 + \dots + V_m) = \dim V_1 + \dots + \dim V_m$.
- *Proof.* (i) \Longrightarrow (ii) Suppose $x = \sum_{i=1}^m v_j = \sum_{j=1}^m w_j$ where $v_j, w_j \in V_i$ for any j. Then $0 = \sum_{j=1}^m (v_j w_j)$. By (i) we have $v_j = w_j$ for all $1 \le j \le m$ and hence the decomposition is unique.
- (ii) \Longrightarrow (iii) Let $v \in V_i \cap \sum_{j:j \neq i} V_j$. Then $v \in V_i$ and $v = \sum_{j:j \neq i} v_j$ for $v_j \in V_j$, $j \neq i$. Then $0 = v_1 + \dots + v_{i-1} v + v_{j+1} + \dots + v_m$. By (ii), we have v = 0.
- (iii) \Longrightarrow (iv) For any $1 \leq j \leq m$, let $\{w_i^{(j)}\}_{1 \leq i \leq k_j}$ be a basis of V_j . We claim that $\{w_i^{(j)}\}_{1 \leq i \leq k_j, 1 \leq j \leq m} \text{ is a basis of } V_1 + \dots + V_m. \text{ Suppose } \sum_{j=1}^m \sum_{i=1}^{k_j} a_i^{(j)} w_i^{(j)} = 0 \text{ for } a_i^{(j)} \in F. \text{ Then for } 1 \leq j \leq m, \sum_{i=1}^{k_j} a_i^{(j)} w_i^{(j)} = -\sum_{l \neq j} \sum_{i=1}^{k_l} a_i^{(j)} w_i^{(l)} \in \sum_{l:l \neq j} V_l. \text{ Since } \sum_{i=1}^{k_j} a_i^{(j)} w_i^{(j)} \in V_j, \text{ we have } \sum_{i=1}^{k_j} a_i^{(j)} w_i^{(j)} \in V_j \cap \sum_{l:l \neq j} V_l = \{0\}. \text{ Thus } \sum_{i=1}^{k_j} a_i^{(j)} w_i^{(j)} = 0 \text{ for } \sum_{l:l \neq j} V_l = 0 \text{ for } \sum_{l:l \neq$ 0. Since $\{w_i^{(j)}\}_{1 \leq i \leq k_j}$ is a basis of V_j , we have $a_i^{(j)} = 0$ for all $1 \leq i \leq k_j$. Since this is true for all $1 \leq j \leq m$, we have $\{w_i^{(j)}\}_{1 \leq i \leq k_j, 1 \leq j \leq m}$ is linearly independent. Since any $v \in$ $V_1 + \dots + V_m$ can be written as $v = v_1 + \dots + v_m$ and $v_j \in V_j$, we have $v_j = \sum_{i=1}^{k_j} a_i^{(j)} w_i^{(j)}$. Hence $v = \sum_{j=1}^m \sum_{i=1}^{k_j} a_i^{(j)} w_i^{(j)}$. Therefore, $V_1 + \dots + V_m = \text{span}\{w_i^{(j)}\}_{1 \le i \le k_j, 1 \le j \le m}$.
- (iv) \Longrightarrow (i) For any $1 \leq j \leq m$, let $\{w_i^{(j)}\}_{1 \leq i \leq k_j}$ be a basis of V_j . As in previous step we can show that $V_1 + \cdots + V_m = \operatorname{span}\{w_i^{(j)}\}_{1 \leq i \leq k_j, 1 \leq j \leq m}$. Since $\dim(V_1 + \cdots + V_m) = \operatorname{span}\{w_i^{(j)}\}_{1 \leq i \leq k_j, 1 \leq j \leq m}$. $\dim V_1 + \cdots + \dim V_m = k_1 + \cdots + k_m$, we must have $\{w_i^{(j)}\}_{1 \le i \le k_i, 1 \le j \le m}$ is linearly independent since otherwise the spanning set $\{w_i^{(j)}\}_{1 \leq i \leq k_j, 1 \leq j \leq m}$ strictly contains a basis (by linear dependence and Lemma 2.11) which has elements $< \dim(V_1 + \cdots + V_m)$ a contradiction. Now suppose $0 = v_1 + \cdots + v_m$ where $w_i \in V_i$ then we can write $v_j = \sum_{i=1}^{k_j} a_i^{(j)} w_i^{(j)}$ and $0 = \sum_{j=1}^m \sum_{i=1}^{k_j} a_i^{(j)} w_i^{(j)}$. Since $\{w_i^{(j)}\}_{1 \leq i \leq k_j, 1 \leq j \leq m}$ is linearly independent, we have $v_j = 0$ for all $1 \leq j \leq m$.

Corollary 3.6. $V_1 + V_2$ is a direct sum if and only if $V_1 \cap V_2 = \{0\}$.

Example 3.7. $V_1 = \text{span}(v_1, v_2) = \{(a_1, a_2, 0)^t : a_1, a_2 \in \mathbb{R}\}\$

 $V_2 = \operatorname{span}(v_3, v_4) = \{(a_3, a_3, a_4)^t : a_3, a_4 \in \mathbb{R}\}.$

 $V_1 + V_2 = \mathbb{R}^3$ is not a direct sum: $0 = (v_1 + v_2) - v_3$ and $V_1 \cap V_2 = \operatorname{span}(v_3)$ and $\dim(V_1 + V_2) = 3 < 4 = \dim V_1 + \dim V_2.$

 $V_1 + W_1 = \mathbb{R}^3$ is a direct sum.

Lemma 3.8. Let V be a finite dimensional space and $W \subset V$ be a subspace. Then there exists a subspace U of V such that $V = W \oplus U$.

Proof. Let w_1, \ldots, w_m be a basis of W. By Corollary 2.16, it can be extended to $w_1, \ldots, w_m, v_1, \ldots, v_{n-m}$ a basis of V. Let $U = \operatorname{span}(v_1, \ldots, v_{n-m})$. Then we have V = W + U. Since $\dim W + \dim U = \dim V$, we have that $V = W \oplus U$.

Definition 3.9. U is called the **complement** of W in V.

3.2 Quotient space

Let $W \subset V$ be a subspace. We are going to define a vector space V/W which is obtained from V by "collapsing" planes parallel to W to a point.

Definition 3.10. Let V be a vector space over F and $W \subset V$ be a subspace. We define the **coset** (**translate**) of W containing $x \in V$ to be $x + W = \{x + w : w \in W\}$. The **quotient space** V/W is the set of all cosets of W that is $V/W = \{x + W : x \in V\}$.

The **canonical projection** associated to a quotient space is $\pi: V \to V/W$, $\pi(x) = x + W$.

Lemma 3.11. x + W = y + W if and only if $x - y \in W$.

Proof. Since x+W=y+W, we have $x\in y+W$. Then by definition of y+W, we have $x-y\in W$.

If $x - y \in W$, then there is $w \in W$ such that x = y + w. Hence for any $x_1 \in x + W$, $x_1 = x + w_1 = y + (w + w_1) \in y + W$. Similarly, for any $y_1 \in y + W$, $y_1 = y + w_2 = x - w + w_2 \in x + W$.

Definition 3.12. We define the addition and scalar multiplication on V/W as (x + W) + (y + W) := (x + y) + W and c(x + W) = (cx) + W for $x, y \in V, c \in F$.

It is not clear whether the definition above are well-defined, since it defines the addition of two cosets (x + W) and (y + W) as the coset (x + y) + W which depends on the choice of x and y in x + W and y + W. If we pick different representatives, does the addition give the same coset? This is answered affirmatively in the following lemma.

Lemma 3.13. Addition and scalar multiplication on V/W are well-defined.

Proof. For any $x_1 \in x + W$, $y_1 \in y + W$, we have $x_1 - x \in W$ and $y_1 - y \in W$. Thus $(x_1 + y_1) - (x + y) = (x_1 - x) + (y_1 - y) \in W$ and $cx_1 - cx = c(x_1 - x) \in W$. Thus we have $(x_1 + y_1) + W = x + y + W$, $(cx_1) + W = (cx) + W$.

Example 3.14. $W = \text{span}((0,1)^t) = \{(0,a)^t : a \in F\} \subset F^2$.

For any $x \in F^2$, x + W the vertical line through x.

V/W = the set of all vertical lines in F^2 .

 $\pi(x) = x + W$ the vertical line through x.

For example

$$0 + W = W$$

$$x = (1,0)^t \in F^2 \text{ and } y = (2,1)^t$$

$$x + W = \{(1, a)^t : a \in F\}$$

```
y + W = \{(2, b + 1)^t : b \in F\} = \{(2, a)^t : a \in F\} = (2, 0)^t + W
(x + y) + W = \{(3, a + 1)^t : a \in F\} = \{(3, b)^t : b \in F\}
(-x) + W = \{(-1, a)^t : a \in F\}
In general (x_1, x_2)^t + W = \{(x_1, a)^t : a \in F\} and we have
((x_1, x_2)^t + W) + ((y_1, y_2)^t + W) = \{(x_1 + x_2, a)^t : a \in F\}
c((x_1, x_2)^t + W) = \{(cx_1, a)^t : a \in F\}.
```

In other words, adding two cosets in this particular case is just adding the first component and scalar multiplying a coset is just scalar multiplying the first component.

Let $U = \text{span}((1,0)^t)$. The addition and scalar multiplication are also purely on the first component. Thus the vector space structure of U is "the same as" that of V/W or in math notation $U \cong V/W$.

Proposition 3.15. V/W is a vector space over F.

```
Proof. We check the axioms of a vector space. For x,y,z\in V,\,a,b\in F we have I: (x+W)+(z+W)=(x+z)+W=(z+x)+W=(z+W)+(x+W). II: ((x+W)+(y+W))+(z+W)=((x+y)+W)+(z+W)=((x+y)+z)+W=(x+(y+z))+W=(x+W)+((y+W)+(z+W)). III: (x+W)+(0+W)=(x+0)+W=x+W. IV: (x+W)+((-x)+W)=(x+(-x))+W=0+W. V: (a+b)(x+W)=((a+b)x)+W=(ax+bx)+W)=(ax)+W)+(bx)+W=a(x+W)+b(x+W). VI: (ab)(x+W)=(ab)x+W=a(bx)+W=a(bx+W)=a(b(x+W)). VII: a((x+W)+(y+W))=a((x+y)+W))=a(x+y)+W=(ax+ay)+W=(ax+W)+(ay+W)=a((x+W))+a((y+W)). VIII: 1(x+W)=(1x)+W=x+W.
```

Theorem 3.16. If V is a finite dimensional vector space and W is a subspace of V, then

$$\dim V/W = \dim V - \dim W.$$

Proof. Let w_1, \ldots, w_m be a basis of W. By Corollary 2.16, we can extend it to $w_1, \ldots, w_m, v_1, \ldots, v_{n-m}$ a basis of V. We show that $v_1 + W, \ldots, v_{n-m} + W$ are linearly independent and span V/W.

Suppose $b_1(v_1+W)+\cdots+b_{n-m}(v_{n-m}+W)=0+W$. Then $(b_1v_1+\cdots+b_{n-m}v_{n-m})+W=0+W$. Therefore, $b_1v_1+\cdots+b_{n-m}v_{n-m}\in W$. Since w_1,\ldots,w_m is a basis of W, there exists $a_1,\ldots,a_m\in F$ such that $b_1v_1+\cdots+b_{n-m}v_{n-m}=a_1w_1+\cdots+a_mw_m$. Since $w_1,\ldots,w_m,v_1,\ldots,v_{n-m}$ is a basis of V, we have $b_1=\cdots=b_{n-m}=a_1=\cdots=a_m=0$. This shows that $v_1+W,\ldots,v_{n-m}+W$ is linearly independent.

Let $x \in V$. Since $w_1, \ldots, w_m, v_1, \ldots, v_{n-m}$ is a basis of V, there exists $a_1, \ldots, a_m, b_1, \ldots, b_{n-m} \in F$ such that $x = a_1w_1 + \cdots + a_mw_m + b_1v_1 + \cdots + b_{n-m}v_{n-m}$. Then $x + W = (b_1v_1 + W + \cdots + b_{n-m}v_{n-m}) + W$. This shows that $v_1 + W, \ldots, v_{n-m} + W$ span V/W. \square

Remark 3.17. In view of Corollary 3.8, we see that if U is the complement of W in V then $\dim U = \dim V/W$ and if u_1, \ldots, u_k is a basis of U, then $u_1 + W, \ldots, u_k + W$ is a basis

V/W. We can think of V/W "the same as" U. More precisely V/W is isomorphic to U. We will discuss isomorphic in the next section. The thing is V/W does not depend on a choice of a basis and the construction also works for infinite dimensional vector spaces.

3.3 Linear transformations

The key object we study in linear algebra is linear transformation which is a map between vector spaces preserving the vector space structure.

Definition 3.18. Let V, W be vector spaces over F. A map $T: V \to W$ is a **linear transformation** (**linear map/mapping/operator**) if for any $x, y \in V$ and $c \in F$ we have

$$T(x+y) = T(x) + T(y)$$
 and $T(cx) = cT(x)$.

Remark 3.19. If we take k=0 in the second equation then we have T(0)=0.

Example 3.20 (The identity map). The map $id: V \to V$ defined by id(x) = x for any $x \in V$ is a linear transformation called the **identity map**.

Example 3.21 (The zero map). The map $0: V \to W$, $0(x) = 0 \in W$ for any $x \in V$ is a linearly transformation called the **zero map**.

Example 3.22. The most important linear transformation in this course is $T: F^n \to F^m$, T(x) = Ax where a matrix $A \in M_{m \times n}(F)$ is multiplying a vector $x \in F^n$ is defined by

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \end{pmatrix}.$$

The matrix multiplication follows the rule "row by column". We will see in the next section that it is a natural consequence of linearity.

Example 3.23. $T: F^n \to F^m$, $T(x_1, \ldots, x_n)^t = (x_1, \ldots, x_r, 0, \ldots, 0)^t$ for some $0 \le r \le \min(m, n)$ is a linear transformation. What the map is doing is first forgetting the variables x_{r+1}, \ldots, x_n and then adding (m-r)-0 components.

Example 3.24. For $0 \neq b \in F^n$, the map $T: F^n \to F^n$, T(x) = x + b is not a linear transformation since $T(0) = b \neq 0$.

Example 3.25. $T: F \to F$ is linear if and only if T(x) = ax for some $a \in F$. T(x) = T(x1) = xT(1) = ax where we write T(1) = a.

$$T: \mathbb{R} \to \mathbb{R}$$
, $T(x) = x^2$ is not linear since $T(1+1) = 4 \neq 2 = T(1) + T(1)$.

Example 3.26. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a differentiable map. The differential of f at $x \in \mathbb{R}^n$ $df_x: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation. Recall that the differential acting on a vector $v \in \mathbb{R}^n$ is defined by the directional derivative of f in the direction of v

$$df_x(v) = \lim_{h \to 0} \frac{f(x+hv) - f(x)}{h}.$$

By the chain rule, $df_x(v) = Df(x)v$ where the right hand side is the Jacobian matrix

$$Df(x) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

multiplying the vector $v \in \mathbb{R}^n$.

Example 3.27.

$$T: C(\mathbb{R}) \to \mathbb{R}, \quad T(f) = \int_a^b f(x) dx$$

is a linear transformation

 $P: C^1(\mathbb{R}) \to C(\mathbb{R}), P(f)(x) = f'(x)$ is a linear transformation.

 $Q: C(\mathbb{R}) \to C(\mathbb{R}), \ Q(f)(x) = xf(x)$ is a linear transformation.

The two linear transformations P,Q are the fundamental operators in quantum mechanics.

Also the operator T and P are the main operators studied in calculus/analysis. Of course, linearity is probably the less important property considered in that subject.

3.4 Operations on linear transformations

Definition 3.28 (Addition and scalar multiplication of linear transformations). Let $T, S: V \to W$ be linear transformations and $c \in F$. The maps T+S and cT are defined as: for any $x \in V$,

$$(T+S)(x) = T(x) + S(x), \quad (cT)(x) = cT(x).$$

It is easy to check that T + S and cT are both linear transformations.

Let $\mathcal{L}(V,W)$ denote the set of all linear transformation. Then with the addition and scalar multiplication above, one can also check $\mathcal{L}(V,W)$ is a vector space. We also write $\mathcal{L}(V) = \mathcal{L}(V,V)$.