Objective 3 - Construct Log/Exp Models

Link to textbook: Construct a model equation for the real-life situation.

Videos:

- pH
- Age using Half-Life
- Doubling time growth pt. 1
- Doubling time growth pt. 2
- Radioactive Decay and Law of Cooling

Question 1 A population of bacteria **triples** every hours. If the culture started with 100, write the equation that models the bacteria population after t hours.

$$P(t) = \boxed{100 \mid 3} \boxed{t}$$

Question 2 There is initially 198 grams of element X. The half-life of element X is 117024 years. Describe the amount of element X remaining as a function of time, t, in years. Use e as the base of your exponential model and exact values.

$$X(t) = 198 e^{-\frac{1}{117024} \log(2) t}$$

Hint: The exponent's coefficient is not $\frac{1}{117024}$ nor is it $\frac{-1}{117024}$. To find the correct coefficient, take the base exponential equation current amount = initial amount e^{ct} , use what you know about the half-life time and amount, then solve the equation for c. If you are having trouble, refer back to the objective on "Solving exponential equations". Do not use a calculator - use exact values to get a correct answer.

Question 3 The half-life of carbon-14 is 5,730 years.

Part A. Describe the amount of carbon-14 remaining after t years. The initial amount of carbon-14, C_0 , is already included below.

Part B. Solve the equation above for t written in terms of the ratio of carbon-14 remaining, $r = \frac{C}{C_0}$.

$$t = \boxed{-8266.64258429376} \ln(\boxed{r})$$

Part C. The equation above is used to carbon-date objects. To solidify this idea, use the model in Part B. to solve the following problem.

A bone fragment is found that contains 26% of its original carbon-14. To the nearest year, how old is the bone?

Hint: Part A. The exponent's coefficient is not $\frac{1}{5730}$ nor is it $\frac{-1}{5730}$. To find the correct coefficient, take the base exponential equation current amount = initial amount e^{ct} , use what you know about the half-life time and amount, then solve the equation for c. If you are having trouble, refer back to the objective on "Solving exponential equations". Do not use a calculator - use exact values to get a correct answer.

Part B. Now that you found the exponent's coefficient, you have modeled the general equation as $C = C_0 e^{ct}$. Since it asks you to rewrite the equation in terms of $r = \frac{C}{C_0}$, start by converting the equation into one with r instead of C and C_0 . Then, solve the equation for t.

Part C. What does $r = \frac{C}{C_0}$ represent? If we know this, then we could use the equation you built in Part B. to solve for the age of the bone.