# COL215 DIGITAL LOGIC AND SYSTEM DESIGN

Adders and Multipliers in FPGA 29 September 2017

#### **FPGA Manufacturers**



**E** XILINX

Largest market share

**#Actel** 

Anti fuse based

First FPGA device in 1984 **EPROM** based

First FPGA device in 1985 SRAM based









#### Xilinx FPGA Portfolio

XC2064:

ARTIX.7

SPARTAN<sup>7</sup>

45nm 28nm 20nm 16nm

SPARTAN.

VIRTEX.

VIRTEX.

KINTEX.

KINTEX.

KINTEX.

KINTEX.

64 CLBs, 56 IOBs, 18 MHz

XC7A35T-1CPG236C: 5200 slices, 236 pins, 464 MHz 90 DSPs, 1800 KB RAM

XC7VX1140T: 178,000 slices, 1100 pins, 540-740 MHz 3,360 DSPs, 67,680 Kb RAM

#### Xilinx Spartan 6 FPGA

- Configurable Logic Blocks (CLBs)
- DSP48A1 slices
- Block RAMs
- DRAM controllers
- Clock Management Tiles (CMTs)
- Input/Output interfaces

# Types of slices

| Feature           | SLICEX    | SLICEL | SLICEM |
|-------------------|-----------|--------|--------|
| 6-Input LUTs      | $\sqrt{}$ | V      | V      |
| 8 Flip-flops      | V         | V      | V      |
| Wide Multiplexers |           | V      | V      |
| Carry Logic       |           | V      | √      |
| Distributed RAM   |           |        | V      |
| Shift Registers   |           |        | V      |



## Fast Carry Chain



#### Xilinx Spartan 6 FPGA

- Configurable Logic Blocks (CLBs)
- DSP48A1 slices
- Block RAMs
- DRAM controllers
- Clock Management Tiles (CMTs)
- Input/Output interfaces

#### DSP48A1 Slice

- 48 bit add / subtract
- 18 x 18 multiplication with 36 bit product
- Designed for multiply-accumulate operations
- Pipelined operation possible
- Multiple modules can be cascaded for larger data sizes

#### Block diagram



## Simplified block diagram



#### Accumulation function



# Pipelining registers



# Register configuration





#### Computing weighted sum

- $s = w_0 \times a_0 + w_1 \times a_1 \dots w_{n-1} \times a_{n-1}$ 
  - Weights: w<sub>i</sub>
  - Data values : a<sub>i</sub>
- Common operation in
  - digital signal processing
  - digital image processing
     (filtering, convolution, correlation, spectrum computation, . . .)

# Block diagram



#### **Block by Block Computation**



# Computation with sliding window



# Weights in memory, Data streamed in, Sum streamed out



# Weights, Data and Sum, all in memory



# Weighted sum implementation



## Timings



#### Weighted sum implementation

Introduce registers



#### Timings with registers



## Timings with pipelining



### Weighted sum, sliding window



### Weighted sum, sliding window



