

HYTEC ELECTRONICS Ltd

5 CRADOCK ROAD, READING, BERKS. RG2 0JT, UK

Telephone: +44 (0) 118 9757770 Fax: +44 (0)118 9757566

E-mail: sales@hytec-electronics.co.uk

Copyright 2012, Hytec Electronics Ltd
Data and specifications are subject to change without notice

**ADC8424TR
4-CHANNEL 16-BIT
1MSPS ADC
WITH TRANSIENT RECORDER FUNCTION
INDUSTRY PACK**

USERS MANUAL

PCB Issue 1.0
Firmware Version 8424V102
8MHz or 32MHZ IP Clock

Document Nos.: ADC8424TR/UTM/G/x/2.0
Date: 28/02/2013
Author: MRN

Revision History

The following table shows the revision history for this document.

Date	Version	Change Notes
09/10/12	0.1	Preliminary
18/01/13	1.0	First issue of user manual
25/02/13	2.0	Transient recorder functions added to unit in Firmware Version 8424V102

CRITICAL APPLICATIONS DISCLAIMER

THIS PRODUCT FROM HYTEC ELECTRONICS LTD USES COMPONENTS THAT ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, "CRITICAL APPLICATIONS").

FURTHERMORE, SOME COMPONENTS USED IN THIS HYTEC ELECTRONICS LTD PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE OR AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR.

THE CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF HYTEC ELECTRONICS LTD PRODUCT IN CRITICAL APPLICATIONS.

CONTENTS

1. INTRODUCTION	5
2. PRODUCT SPECIFICATIONS	6
3. OPERATING MODES	7
3.1 REGISTER MODE.....	7
3.2 TRIGGERED SAMPLING.....	7
4. MEMORY MAP	8
5. APPLICATION AND CONTROL REGISTERS.....	9
5.1 CONTROL & STATUS REGISTER (CSR)	11
5.2 CONVERSION POINTER.....	12
5.3 ADC SAMPLE RATE	12
5.4 INTERRUPT VECTOR.....	13
5.5 EXTENDED CONTROL & STATUS REGISTER (CSR EXT).....	13
5.6 NUMBER OF CONVERSIONS	14
5.7 ADC REGISTERS	14
5.8 DIGITAL POTENTIOMETER DATA REGISTER	15
5.9 DIGITAL POTENTIOMETER CALIBRATION REGISTERS.....	15
6. ADC OPERATION	15
6.1 MEMORY UPDATE INHIBIT AND INTERRUPT.....	15
6.2 SET NUMBER OF CONVERSIONS.....	16
6.3 TRIGGERING.....	16
6.3.1 <i>Software Trigger</i>	16
6.3.2 <i>Hardware Trigger</i>	16
6.4 MEMORY UPDATE.....	16
6.5 INTERNAL AND EXTERNAL CLOCKING.....	16
7. TRANSIENT RECORDER FUNCTION.....	17
7.1 TRANSIENT RECORDER CSR (TR CSR).....	17
7.2 POST TRIGGER SAMPLE OR NUMBER OF CONVERSIONS PER-TRIGGER.....	17
7.3 UPPER AND LOWER THRESHOLD	18
7.3.1 <i>Lower Threshold Registers</i>	18
7.3.2 <i>Upper Threshold Registers</i>	18
7.4 LOWER TIME STAMP REGISTERS	19
7.5 UPPER TIME STAMP REGISTERS	19
7.6 PEAK VALUE REGISTERS	19
7.7 PRE-TRIGGER DELAY REGISTER (PTD).....	20
7.8 VOLTAGE TRIGGER MODE	20
7.8.1 <i>Pre Voltage Trigger Buffer</i>	20
7.9 PRE VOLTAGE TRIGGER MEMORY BUFFER SIZE REGISTER	20
7.10 DIGITAL INPUTS AND OUTPUTS IN TRANSIENT RECORDER MODE	21
7.10.1 <i>Start IN/ExTrig</i>	21
7.10.2 <i>Start Out</i>	21
7.10.3 <i>Stop IN</i>	21
7.10.4 <i>Stop Out</i>	21

7.10.5 <i>Clock In</i>	21
7.10.6 <i>Clock Out</i>	21
7.11 TRANSIENT RECORDER RESULTS.....	22
8. ID PROM.....	25
9. SELECTION OF THE +/-12 VOLT POWER SUPPLY	25
IMPORTANT NOTE	25
10. EPICS SOFTWARE DRIVER.....	25
APPENDIX A.....	26
APPENDIX B.....	27
PIN ASSIGNMENTS	27
APPENDIX C.....	30

1. INTRODUCTION

The Hytec IP-ADC-8424 is an Industry Pack that provides 4 channels of simultaneously sampled analogue digitisation with the following characteristics:-

- 4 independent channels (one ADC per input).
- True full differential inputs.
- Up to 1MHz sampling rate.
- Input impedance - 10Mohms differential.
- Resolution - 16 bits no missing codes.
- Accuracy - 14 bits.
- On board RAM Memory 1M x 16 bits (256K conversions per channel).
- Programmable full-scale resolution all inputs +/-10V or +/-5V.
- On-board calibration by FPGA firmware using stored offset and gain.
- Gain drift - 4ppm per deg C (typ).
- Offset drift - +/-10uV/degC (typ).
- +/-10V offset error - +/-2LSBs with firmware calibration (+/- 2mV without calibration).
- +/-5V offset error - +/-4LSBs with firmware calibration (+/- 2mV without calibration).
- +/-10V gain error - +/-2LSBs with firmware calibration (+/- 5mV without calibration).
- +/-5V gain error - +/-4LSBs with firmware calibration (+/- 4mV without calibration).
- ADC voltage reference drift - 2.0ppm/ $^{\circ}$ C (max).
- CMRR: - 100dB at +/-5V wrt plant CMV (92db typical at 100KHz).
- Aperture Delay - 15 ns typ.
- Aperture Delay Matching - 70 ps typ.
- Aperture Jitter - 50 ps typ.
- Over voltage - +/-25V on or off.
- On-board sample clock programmable (1MHz, 500KHz, 200KHz, 100KHz, 50KHz, 20KHz, 10KHz, 5KHz, 2KHz, 1KHz, 500Hz, 200Hz, 100Hz, 50Hz, 20Hz, 10Hz, 5Hz, 2Hz and 1Hz).
- Ext sample clock isolated input.
- Ext trigger isolated input.
- System to plant isolation to 100V when externally powered by DC/DC converter option.
- Board type, Serial number, PCB issue and firmware issue held in ID PROM.
- 8/32MHz IP system clock operation.
- Field upgradeable firmware (requires Xilinx/compatible device to program built in FPGA flash memory via the FPGA JTAG port).
- EPICS and ASYN driver support.
- PCB temperature measurement via onboard chip.

2. PRODUCT SPECIFICATIONS

Size:	Single width Industry Pack 1.8ins x 3.9 ins
Operating temp:	0 to 45 deg C ambient
Number of channels:	4
ADC resolution:	16 bits
Diff. Non-linearity:	+/-0.75 LSB TYP
Int. Non-linearity:	+/-1.5 LSB TYP
+/-10V offset error	+/-2LSBs with firmware calibration at a sample rate of 1MHz at 25 deg C (+/- 2.5mV without calibration).
+/-5V offset error	+/-4LSBs with firmware calibration at a sample rate of 1MHz at 25 deg C (+/- 2.5mV without calibration).
+/-10V gain error	+/-2LSBs with firmware calibration at a sample rate of 1MHz at 25 deg C (+/- 5mV without calibration).
+/-5V gain error	+/-4LSBs with firmware calibration at a sample rate of 1MHz at 25 deg C (+/- 4mV without calibration).
Offset drift:	+/-10uV/degC (typ).
Gain drift:	4ppm per deg C (typ).
Range:	+/-10V or +/-5V full scale (+ve input referred to -ve input)
Overshoot:	+/-25V
Bandwidth (-3dB):	750KHz
Throughput:	1MHz
SNR:	ADC Signal-to-Noise 90dB(min) 93dB (typ)
SINAD:	ADC Signal-to-Noise + Distortion (SINAD) 89dB(min) 92dB (typ)
Isolation:	100V via opto-isolators (if externally powered)
ADC device:	TI ADS8363
Data format:	16 bits straight binary
Memory:	1M x 16 bits (4 channels gives 256K conversions per channel).
Power:	+5V @ 200mA typical +12V @ 130mA typical when switched to internal -12V @ 60mA typical when switched to internal

3. Operating Modes

3.1 Register mode

This mode is enabled by setting ARM = '1' (bit 15 of the CSR) and EX='0' (bit 14 of the CSR). As soon as the ARM bit is set (no trigger required) the ADCs sample at the sample rate which is derived either from the internal clock whose rate is set by the Internal Sample Rate register or by the external sample clock supplied by the user via the rear transition card see .

The ADC data registers are updated at the conversion rate. These registers can be read in any order at any time.

The memory is also updated at the sample rate and is continuously updated rapping round on reaching the end of the memory until the ARM bit is cleared.

There are four ADC buffer registers (addresses 10hex – 16hex) which store the last sampled conversions and may be read at any time. The channel order is channel 1 at address 10hex to channel 4 at address 16hex.

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
Data 15	Data 14	Data 13	Data 12	Data 11	Data 10	Data 9	Data 8	Data 7	Data 6	Data 5	Data 4	Data 3	Data 2	Data 1	Data 0

Data format 000Fh = -10v, 8000h = 0V and FFF1h = +10V.

Data format 000Fh = -5v, 8000h = 0V and FFF1h = +5V.

3.2 Triggered sampling

This mode is enabled by setting ARM = '1' (bit 15 of the CSR) and EX='1' (bit 14 of the CSR). Then when a software or hardware trigger is detected conversions are stored in the RAM memory at the sample rate set.

The sample rate is derived either from the internal clock whose rate is set by the Internal Clock Rate register or by the external clock supplied by the user.

The value written to the memory pointer register gives the starting point in memory that the conversions are stored to.

The point at which conversions are stopped is set by the Number of Counts register.

The address the unit stops at is given by the Memory Conversion pointer register.

This mode also updates the ADC Data registers at the conversion rate. These registers can be read in any order at any time.

The Hardware trigger can be set by a bit in the extended CSR to trigger on the rising edge or falling edge or both. The unit defaults to Rising edge.

4. Memory Map

A bit in the control register of the 8424 allows selection of either 1Mb memory (128K samples/channel) when set at logic 1 or 2Mb (256K samples/channel) when set at logic 0.

The memory is divided into 4 segments allocated to conversions from ADC1 to ADC4 as shown in the table below.

The Half Full flag is set when the number of conversion written to memory reaches 128k. The Full Flag is set when 256K conversion have been logged in to memory.

1M = '0' (bit 7 of the CSR) this sets memory size to 2Mb

Conversion Memory
ADC4 conversions 1 -256k
ADC3 conversions 1 -256k
ADC2 conversions 1 -256k
ADC1 conversion 256k
ADC1 conversion 256k-1
ADC1 conversion 2
ADC1 conversion 1

When 1Mb memory size set the channels are arranged as shown in the table below.

The Half Full flag is set when the number of conversion written to memory reaches 64k. The Full Flag is set when 128K conversion have been logged in to memory.

1M = '1' (bit 7 of the CSR) this sets memory size to 1Mb

Conversion Memory
Unused memory (512k)
ADC4 conversions 1 -128k
ADC3 conversions 1 -128k
ADC2 conversions 1 -128k
ADC1 conversion 128k
ADC1 conversion 128k-1
ADC1 conversion 2
ADC1 conversion 1

5. Application and Control Registers

There are a number of application and control registers as shown in the following table:

Application Register Table

Byte Addressing		Word Addressing		16 Bit Application Registers
Hex	Dec	Hex	Dec	
0	0	0	0	CSR
2	2	1	1	Conversion pointer Lower 16 bits
4	4	2	2	Conversion pointer upper 2 bits
6	6	3	3	Sample Rate
8	8	4	4	Interrupt Vector
A	10	5	5	Extend Control & Status Register
C	12	6	6	Number of Conversions Lower 16 bits
E	14	7	7	Number of Conversions upper 2 bits
10	16	8	8	ADC Data register Channel 1
12	18	9	9	ADC Data register Channel 2
14	20	A	10	ADC Data register Channel 3
16	22	B	11	ADC Data register Channel 4
18	24	C	12	Not used
1A	26	D	13	Not used
1C	28	E	14	Not used
1E	30	F	15	Not used
20	32	10	16	Digital Potentiometer Data Register This allows the user to write to Digital Pot
22	34	11	17	Digital Potentiometer Calibration Registers for 500KHz at +/-10V (read only)
24	36	12	18	Digital Potentiometer Calibration Registers for 1MHz at +/-10V (read only)
26	38	13	19	Digital Potentiometer Calibration Registers for 500KHz at +/-5V (read only)
28	40	14	20	Digital Potentiometer Calibration Registers for 1MHz at +/-5V (read only)
2A	42	15	21	TR CSR
2C	44	16	22	Lower Threshold reg Chan 1
2E	46	17	23	Upper Threshold reg Chan 1
30	48	18	24	Lower Threshold Address Low word Chan 1
32	50	19	25	Lower Threshold Address High word Chan 1
34	52	1A	26	Upper Threshold Address Low word Chan 1
36	54	1B	27	Upper Threshold Address High word Chan 1
38	56	1C	28	Peak Hold register Chan 1
3A	58	1D	29	Lower Threshold reg Chan 2
3C	60	1E	30	Upper Threshold reg Chan 2
3E	62	1F	31	Lower Threshold Address Low word Chan 2
40	64	20	32	Lower Threshold Address High word Chan 2
42	66	21	33	Upper Threshold Address Low word Chan 2
44	68	22	34	Upper Threshold Address High word Chan 2
46	70	23	35	Peak Hold register Chan 2

48	72	24	36	Lower Threshold reg Chan 3
4A	74	25	37	Upper Threshold reg Chan 3
4C	76	26	38	Lower Threshold Address Low word Chan 3
4E	78	27	39	Lower Threshold Address High word Chan 3
50	80	28	40	Upper Threshold Address Low word Chan 3
52	82	29	41	Upper Threshold Address High word Chan 3
54	84	2A	42	Peak Hold register Chan 3
56	86	2B	43	Lower Threshold reg Chan 4
58	88	2C	44	Upper Threshold reg Chan 4
5A	90	2D	45	Lower Threshold Address Low word Chan 4
5C	92	2E	46	Lower Threshold Address High word Chan 4
5E	94	2F	47	Upper Threshold Address Low word Chan 4
60	96	30	48	Upper Threshold Address High word Chan 4
62	98	31	49	Peak Hold register Chan 4
64	100	32	50	Pre-trigger Delay
66	102	33	51	Pre Trigger memory buffer size register

5.1 Control & Status Register (CSR)

Control

Write Address: 0hex

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
ARM	EX	ST	XC	ET	EE	FE	HE	1M	DA	EII	MII	x	CC	F	HF

Status

Read Address: 0hex

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
ARM	EX	ST	XC	ET	EE	FE	HE	1M	DA	EII	MII	MIS	CC	F	HF

ARM Arm the ADCs:-

If **EX**=’0’ and **MIS**=’0’ Continuous mode, here data is acquiring to the memory and registers until the unit is disarmed. Memory will continuously wrap around.

If **EX**=’0’ and **MIS** =’1’ Gate Mode data is acquiring to memory for the period when the IP **Strobe*** line is High (memory will wrap when reaches the end). Register updated continuously.

If **EX**=’1’ and **MIS** =’x’ Trigger mode waits for internal or external trigger.

EX Enable trigger. If not set continuously sample at the clock rate. If set allows external trigger or software trigger

ST Software trigger. Triggers a programmed number of samples. ST is cleared on completion.

XC Enable the external clock. If 0 the internal clock is used for the sample rate. If set true the external clock is used for the sample clock without frequency division.

ET A logic ‘0’ disable hardware memory inhibit input or Gate Mode. When logic ‘1’ enable hardware memory inhibit or Gate in Gate Mode from IP **Strobe*** line. (*on Hytec 800x IP carrier card, this signal is driven from the front panel INHIBIT lemo*).

EE Enables interrupt at end of sampling sequence.

FE Enables interrupt when the upper conversion memory has been filled. (Memory Full).

HE Enables interrupt when the lower conversion memory has been filled. (Memory Half Full).

1M Enables 1Mb memory (64K samples/channel) when logic 1 and 2Mb (128K samples/channel) when logic 0.

DA Set to 1 allows the unit to disarm on completion of memory acquisition. Set which event this occurs on by setting EE, FE or HE. In **Continues** mode EE has no function and does not clear ARM. FE and HE will clear the ARM bit even when IP **Strobe*** line is High.

EII This enables an interrupt to be generated when ever the memory inhibit bit (MIS) is set.

(Write) When set to logic ‘1’ hardware memory inhibit interrupt is cleared but not disabled.

(Read) Shows that an interrupt has been generated from hardware memory inhibit.

MIS **(Read Only)** this bit indicates that the hardware memory inhibited/gate on the IP **Strobe*** line is asserted when at logic ‘1’ (*driven from the front panel INHIBIT lemo on Hytec 800x IP carriers*).

CC Conversions complete. Status bit set when the number of programmed samples has been completed. Generates IRQ0* if set and EE is set to a logic 1. Clear by writing ‘0’ to this bit this removes the interrupt and allows the unit to be triggered again (when **not** set in continues mode). In continues mode this bit is set after the first programmed number of samples has been completed. Again this bit can be cleared by writing ‘0’ and will again set its self after the next programmed number of samples has been completed.

F Full status. Set when the upper conversion memory has been filled. Generates IRQ0* if set and FE is set to a logic 1.

HF Half full status. Set when the lower conversion memory has been filled. Generates IRQ0* if set and HE is set to a logic 1.

5.2 Conversion Pointer

Read/write Address: 2hex

The current conversion address is given by the conversion address offset by the ADC number. This register can be written too when the unit is ARMed.

Lower word 2hex

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
C15	C14	C13	C12	C11	C10	C9	C8	C7	C6	C5	C4	C3	C2	C1	C0

Upper word 4hex

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	C17 C16

5.3 ADC Sample Rate

Read/write Address: 6hex

The first five bits in the sample rate register are used to enables codes 0 – 18 to enable frequencies of 1 Hz to 1MHz in multiples of 1,2,5 or 10. (E.g. 0=1Hz, 1=2Hz, 2=5Hz, 3=10Hz and so on to 15=100KHz, 16=200KHz , 17=500KHz, 18=1MHz) Each clock pulse will initiate simultaneous ADC conversions and store them in memory.

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
X15	X14	X13	X12	X11	X10	X9	X8	X7	X6	X5	S4	S3	S2	S1	S0

Clock rate Reg (S4 to S0)	Frequency Hz	Clock rate Reg (S4 to S0)	Frequency Hz
00000	1	01010	2KHz
00001	2	01011	5KHz
00010	5	01100	10KHz
00011	10	01101	20KHz
00100	20	01110	50KHz
00101	50	01111	100KHz
00110	100	10000	200KHz
00111	200	10001	500KHz
01000	500	10010	1MHz
01001	1KHz		

5.4 Interrupt Vector

Read/write Address: 8hex

The vector register is a 16 bit register which stores the interrupt vector value.

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
V15	V14	V13	V12	V11	V10	V9	V8	V7	V6	V5	V4	V3	V2	V1	V0

5.5 Extended Control & Status Register (CSR Ext)

Read/write Address: Ahex

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
CAL	BTE	TE		E	EFW	IFW		R		Cont	ISE	IS	SMI	TEN	

TEN This shows the trigger status of the unit (Read only).

SMI This sets Software Memory Inhibit when at logic '1'. This does not generate an interrupt or set the MIS in the CSR.

IS ADC Register update status. Set when the ADC Registers have been updated. Generates IRQ0* if set and ISE is set to a logic 1.

ISE Enables interrupt when ADC Registers have been updated.

CONT If set to '1' then will allow multiple triggers in CC mode. On each trigger the Sample clock is restarted. A max delay of 100ns between Trigger and the first conversion is guaranteed.

R Set ADC range set to 0 = +/-10V and range set to 1 = +/-5V.

IFW **Do not set this bit as setup and calibration data maybe lost.** This bit enables the FPGA flash write from buffer command

EFW **Do not set this bit as setup and calibration data maybe lost.** This bit enables the External flash write by writing to IP mem i.e. switches off RAM

E **Do not set this bit as setup and calibration data maybe lost.** This bit enables the External flash chip or sector erase when do a IP write to mem. If IP data is 0x10 then chip erase (64s time taken) if IP data is 0x30 then sector erase where the sector address is given in the IP memory address lines. If chip erase then IP mem address = 0x555 and data 0x10.

TE When set to '0' = Ext Trigger on rising edge when '1' ext trigger on falling edge

BTE When set to '1' = Ext trigger on both edges

CAL If set to '1' unit does not use on board flash calibration.

5.6 Number Of Conversions

Read/write Address: Chex - Ehex

The number of conversions register allows the number of conversions per trigger to be programmed. If a number of triggers occur and the memory buffer size of 256K (128 in 1M mode) of conversions per channel is exceeded the conversions will wrap around from the top of the memory to the bottom of the memory if the continuous bit is set in the CSR Ext register.

Lower word Chex

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
N15	N14	N13	N12	N11	N10	N9	N8	N7	N6	N5	N4	N3	N2	N1	N0

Upper word Ehex

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
x	x	x	x	x	x	x	x	x	x	x	x	x	N18	N17	N16

The following should be loaded in to the NOC to output whole or half the memory for the following memory sizes as set by **1M** bit 7 in CSR.

Memory Size	NOC Values	
	Half Full	Full
2Mb (1M=0)	0x20000 (128K samples)	0X40000 (256K samples)
1Mb (1M=1)	0x10000 (64K samples)	0x20000 (128K samples)

When 1Mb is set it only changes when the Full and Half Full flags and interrupts occur as shown in the above table. The user must ensure that the correct NOC value is entered as the setting of the 1Mb in the CSR does not effect the NOC operation.

5.7 ADC Registers

Read only Address: 10hex – 16hex

The four ADC buffer registers store the last sample conversions and may be read at any time.

+/-10V range Data format 000Fh = -10v, 8000h = 0V and FFF1h = +10V.

+/-5V range Data format 000Fh = -5v, 8000h = 0V and FFF1h = +5V.

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
C15	C14	C13	C12	C11	C10	C9	C8	C7	C6	C5	C4	C3	C2	C1	C0

5.8 Digital Potentiometer Data Register

Read/write Address: Byte 20hex (Word 10hex)

This is used for calibration only during production test on the units.

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
EN	PD	CWR	X	X	X	P9	P8	P7	P6	P5	P4	P3	P2	P1	P0

The ‘EN’ (bit 15) when set as a ‘1’ will cause the current value of the register to be down loaded to the 10bit digital pot. On completion of the write the EN bit is cleared. The rest of the contents of the register remain unaltered.

PD bit when set to ‘1’ loads the pre loaded digital pot range data held in FPGA flash to registers in the FPGA. This action is automatically done at boot up.

CWR bit copies wiper register value of the digital pot to the non-volatile register in digital pot. This can be used to fine tune the gain.

The user can use this register to tweak the gain error of the unit if required. This maybe also be used to compensate for ambient temperature or when external clocking is used.

5.9 Digital Potentiometer Calibration Registers

Read Address: Byte 22hex – 28hex (Word 11hex – 14hex)

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
X	X	X	X	X	X	P9	P8	P7	P6	P5	P4	P3	P2	P1	P0

These four registers hold the digital pot calibration factor for each of the ADCs voltage ranges. The values are loaded at power up from the FPGA flash or when ‘PD’ (bit 14) of the digital pot register is set to ‘1’ this is cleared at the finish.

When the range is changed the data held in the associated register is loaded to the digital potentiometer. The calibration values held in the FPGA flash are programmed in during production test.

The digital pot can still be changed using the Digital Potentiometer Register above but the digital pot will reload its self from the calibration registers on power up and on a range change.

6. ADC OPERATION

6.1 Memory Update Inhibit and Interrupt

The updating of the conversion memory can be stopped by controlling the external IP **Strobe*** line (*on the Hytec 8002 IP carrier card, this signal is driven from the front panel INHIBIT lemo*).

When the STROBE line is taken low and the enable hardware memory inhibit bit (ET) is set in CSR the updating of the conversion memory is stopped. This is indicated by the MIS bit in the CSR going high. On memory update inhibit an interrupt can be generated if the **Enable Memory Inhibit Interrupt** enable bit (EII) is set in the CSR. The **Memory Inhibit Interrupt** (MII) bit of the CSR flags an interrupt. This is cleared by either clearing the EII in the CSR or by writing a ‘1’ to MII bit in the CSR which clears the Memory Inhibit Interrupt without the need to clear the EII in the CSR.

The IP **Strobe*** line needs to be taken high then low after interrupt cleared to generate a new interrupt.

6.2 Set Number of Conversions

The number of conversions register (NCO) at address 2hex allows the number of samples per trigger to be programmed. The maximum number of conversions is 128K of samples 1MB and 256K of samples for 2MB for each channel before the Conversion Complete (CC) flag is set in the CSR. An interrupt is generated if the Enable Interrupt on Last Sample (EE) bit is set in the CSR. To clear the interrupt write a '0' to the CC bit of the CSR.

If a number of triggers occur and the memory buffer size has reached its maximum number of conversions per channel the conversions will wrap around from the top of the memory to the bottom of the memory.

6.3 Triggering

The triggering of the ADC8424 is only used when the number of conversions has been set in the Number of Conversions register and the Enable Trigger (EX) bit has been set in the CSR.

6.3.1 Software Trigger

The unit can be triggered by a software trigger by writing a '1' to the Software Trigger (ST) bit of the CSR.

6.3.2 Hardware Trigger

The external trigger is passed to the ADC8424 via designated pins see Appendices B, C and D.

6.4 Memory Update

All ADC channels are updated simultaneously and the memory pointer incremented. Therefore the memory pointer indicates what memory location has been reached by all the ADCs by adding the channel number to the pointer value with the channel number as the most significant bit.

E.g:- Channel 1 = xxxx Channel 2 = 1xxxx Channel 3 = 2xxxx etc.

With 2Mb operation it is necessary to include the half full flag to see whether the pointer is addressing lower or upper memory space.

E.g:- Channel 1 = xxxx Channel 2 = 1xxxx Channel 3 = 2xxxx when HF=0 for lower memory
Channel 1 = 8xxxx Channel 2 = 9xxxx Channel 3 = Axxxx when HF=1 for upper memory

6.5 Internal and External Clocking

This is selected by writing to bit 12 of the CSR to enable internal or external clocking of the sample rate. The unit is calibrated using the internal 1MHz clock. At other internal sample clock frequencies the calibration of the unit may vary by up to plus or minus a few milliamps. This effect is also present when using the external clock but maybe up to few tens of milliamps.

7. TRANSIENT RECORDER FUNCTION

The 8424 unit can be set to run as a Transient Recorder by setting the TR bit to one in the TR CSR. In this mode the unit digitising for a set number of samples up to the maximum memory size. During this time the unit monitors the upper and lower thresholds set by the user. If the thresholds are reached the unit logs the address of the sample memory where it occurred. It also logs the peak value for all channels. In this mode the module can be programmed to use either an external clock via the rear transition card or to use the internal sample clock. The 1MHz internal or the external clock can be gated to the rear transition card (Clock Out) so that multiple modules can be connected to a single clock source.

Digitising commences (after programmed delay) from the rear transition **ExtTrig** signal or *Software trigger* command and continues until stopped by a rear transition **Stop In** signal, software stop command, memory overflow or after a set number of conversions as set by the Number of Conversions register. The ADCs digitisation rates are software selectable and range from 1MHz down to 1Hz (set by the ADC sample rate register Address 6hex).

The CSR register operates as detailed above but were the EX bit must be set to EX=1 for correct Transient Recorder operation.

The Transient Recorder function adds the following registers:

7.1 Transient Recorder CSR (TR CSR)

Read/write Address: Byte hex 2Ahex (Word hex)

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
TR	VT									SOL	SIL	ST	SS	CH1	CH0

TR When set to '1' set the unit to run in Transient Recorder mode.

VT Voltage Trigger mode. When set to '1' unit will acquire to memory when the selected input (as set by CHx) is above its lower threshold point.

SOL Set Start Out TTL level high TTL when '0' or Low TTL when '1'.

SIL Set Stop IN TTL level accept high TTL when '0' or Low TTL when '1'.

ST Unit Stopped bit. Unit can be stopped by Software stop bit or external Stop bit.

SS Software Stop bit. This signal is ORed with the Stop IN signal line.

CHx Set which channel is used in VT

7.2 Post Trigger Sample or Number of Conversions Per-Trigger

This uses the Number of conversions register at address Chex - Ehex as detailed above. The number of conversions register allows the number of conversions per trigger to be programmed.

If the Continues bit (Cont) is set in the Ext CSR and a number of triggers occur and the memory buffer size of 256K is reached the conversions **will wrap** around from the top of the memory to the bottom of the memory.

7.3 Upper And Lower Threshold

The 16 bit Upper and Lower Threshold registers is loaded with the required values prior to digitisation. During data acquisition the module compares the digitised data of the selected channel with the 16 bit values loaded in the Upper and Lower Threshold register. When the data exceeds the pre-set value of the Lower Threshold register the current contents of the Conversion Pointer register (CPR) is store in the Lower Threshold Time Stamp register. Subsequently when the data falls below the Upper Threshold register the current contents of the CPR is store in the Upper Threshold Time Stamp register.

If the input goes past LTH then address logged then after peak val reached will log UTH when reached. If the input rise again and has a higher peak value than the first pulse the UTH will be cleared and a new value will be logged when the input reaches the UTH value.

The following formula should be used to calculate the value loaded to the Upper or Lower Threshold register:

$$\text{Threshold register value} = \frac{\text{Threshold voltage}}{(\text{Vrange} / 0xFFFF)} + 0x8000$$

Where Vrange = 20 for +/-10V range and 10 for +/-5v range

7.3.1 Lower Threshold Registers

Read/write Address: Chan 1=2Chex, Chan 2=3Ahex, Chan 3=48hex, Chan 4=56hex.

When the data exceeds the pre-set value of the Lower Threshold register the current contents of the Conversion Pointer Register (CPR) is store in the Lower Threshold Time Stamp register. Subsequently when the data falls below the Upper Threshold register the current contents of the CPR is store in the Upper Threshold Time Stamp register.

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
LTH15	LTH14	LTH13	LTH12	LTH11	LTH10	LTH9	LTH8	LTH7	LTH6	LTH5	LTH4	LTH3	LTH2	LTH1	LTH0

7.3.2 Upper Threshold Registers

Read/write Address: Chan 1=2Ehex, Chan 2=3Chex, Chan 3=4Ahex, Chan 4=58hex.

When the data falls below the Upper Threshold register the current contents of the CPR is store in the Upper Threshold Time Stamp register.

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
UTH15	UTH14	UTH13	UTH12	UTH11	UTH10	UTH9	UTH8	UTH7	UTH6	UTH5	UTH4	UTH3	UTH2	UTH1	UTH0

7.4 Lower Time Stamp Registers

Read/write Address: Chan 1=30&32hex, Chan 2=3E&40hex, Chan 3=4C&4Ehex, Chan 4=5A&5Chex.

When the data exceeds the pre-set value of the Lower Threshold register the current contents of the Conversion Pointer register (CPR) is stored in the Lower Threshold Time Stamp register.

Once the LTH is reached for the first time the address is logged. It will not log a new address if the signal goes below then back above LTH value.

If the unit is stopped either by the Ext Stop or Software Stop signals the time stamp register is cleared.

When the stop signal is removed a new value will be logged when the threshold is reached.

Lower word

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
LTS15	LTS14	LTS13	LTS12	LTS11	LTS10	LTS9	LTS8	LTS7	LTS6	LTS5	LTS4	LTS3	LTS2	LTS1	LTS0

Upper word

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	LTS17 LTS16

7.5 Upper Time Stamp Registers

Read/write Address: Chan 1=34&36hex, Chan 2=42&44hex, Chan 3=50&52hex, Chan 4=5E&60hex.

The Upper Threshold Time Stamp register (UTTS) will not be active until the Lower Threshold has been reached.

The Upper Threshold Time Stamp register (UTTS) register is updated when ever the data falls below the Upper Threshold limit and the Lower Threshold limit has been reached.

The UTTS is cleared if the peak voltage is updated (i.e. peak value not yet reached) once the peak value has been reached and the Upper Threshold limit attained UTTS is logged.

Lower word

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
UTS15	UTS14	UTS13	UTS12	UTS11	UTS10	UTS9	UTS8	UTS7	UTS6	UTS5	UTS4	UTS3	UTS2	UTS1	UTS0

Upper word

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	UTS17 UTS16

7.6 Peak Value Registers

Read Address: Chan 1=38hex, Chan 2=46hex, Chan 3=54hex, Chan 4=62hex.

These four registers hold the **positive** peak values the data reached for each channel during acquisition. These registers are read only registers and are cleared when ever the module is reARMed.

7.7 Pre-Trigger Delay Register (PTD)

Read/write Address: 64hex

The PTD allows a pre-trigger delay to be programmed in to the module that will effect all channels. The time delay in seconds is calculated by using the following formula:

$$\text{Time Delay(s)} = (10 / \text{Digitisation Rate}) \times \text{PTD Value}.$$

$$\text{PTD Value} = (\text{Time Delay Required(s)} \times \text{Scanning Rate})/10.$$

If the unit is stopped by either the software stop or the External stop bit when the stop bit is released the pre-trigger delay will be indicated.

Note: This register should be set to zero when in VT mode to avoid confusion with results.

7.8 Voltage Trigger Mode

The voltage trigger mode (VT=1 and TR=1) allows the unit to wait after it is triggered (software or hardware) for the selected input signal to reach the lower threshold value before acquiring data in to the memory. The digitised values will be log in to memory for the programmed number of samples before stopping.

7.8.1 Pre Voltage Trigger Buffer

In this mode a pre voltage trigger buffer can be set up in the memory. Here the signal is digitised in to a circulating buffer until the signal reaches the lower threshold value. The memory pointer is then set to the end of the pre trigger memory buffer and logging carries on until the end of the memory is reached or the set number of sample has been logged.

Important Note

When setting the NOC in VT mode must take in to account the pre voltage trigger memory size. i.e. if put 0x1000 in to pre trigger memory buffer register will need to put 0x40000-0x1000 in to NCO register to ensure the memory does not wrap round and over write the pre trigger memory buffer.

7.9 Pre Voltage Trigger Memory Buffer Size Register

Read/write Address: 64hex

This set the size of the pre voltage trigger memory circulating buffer size when set in Voltage Trigger mode (VT).

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
N15	N14	N13	N12	N11	N10	N9	N8	N7	N6	N5	N4	N3	N2	N1	N0

7.10 Digital Inputs And Outputs In Transient Recorder Mode

7.10.1 Start IN/ExTrig

This input can be used to start the digitisation with a high or low (select in Ext CSR) going edge. The signal comes in to the unit via the rear transition card see appendix B.

7.10.2 Start Out

The Start IN digitisation signal is gated to Start OUT to allow a single start signal to trigger multiple units. The signal comes in to the unit via the rear transition card see appendix B. This output can be configured to be either high or low TTL signal level (select in TR CSR).

7.10.3 Stop IN

This stops the unit digitising, the unit can be triggered again once this signal is removed. This signal is ORed with the software stop bit in the TR CSR. The external Stop IN signal comes in to the unit via the rear transition card see appendix B. This input can be configured to except either a high or low TTL signal level (select in TR CSR).

If the unit is stopped by either the software stop or the External stop bit when the stop bit is released the pre-trigger delay will be indicated.

7.10.4 Stop Out

This feeds the Stop signal to the out to the rear transition card (see appendix B). This output can be configured to be either high or low TTL signal level (select in TR CSR).

7.10.5 Clock In

This allows an external sample clock to be used up to 1MHz. The signal comes in to the unit via the rear transition card see appendix B.

7.10.6 Clock Out

This allows the internal sample clock (as set by ADC Sample Rate Reg at 6hex) to be feed out to the rear transition card (see appendix B).

7.11 Transient Recorder Results

Unit triggered just before pulse

Unit triggered just before pulse

Unit triggered just before pulse but LTH already exceeded so a value of zero is logged for LTH.

Unit triggered just before pulse but LTH is not reached. In this case LTH and UTH have a value of zero.

Unit triggered just before pulse but neither LTH or UTH values are reached. In this case LTH and UTH have a value of zero.

8. ID PROM

The word addresses are as below:-

Base+80	ASCII 'VI'	5649h
Base+82	ASCII 'TA'	5441h
Base+84	ASCII '4'	3420h
Base+86	Hytec ID high byte	0080h
Base+88	Hytec ID low word	0300h
Base+8A	Model number	8424h
Base+8C	Revision	1002h This shows PCB Iss 1 Xilinx V002
Base+8E	Reserved	0000h
Base+90	Driver ID	0000h
Base+92	Driver ID	0000h
Base+94	Flags	0006h This shows 8MHz and 32MHz operation
Base+96	No of bytes used	001Ah
Base+98	Cal Type	0000h 0 = No software Calibration factors stored
Base+9A	Serial Number	xxxxdec
Base+9C	Not used	0000h
Base+9E	WLO	0000h

9. SELECTION OF THE +/-12 VOLT POWER SUPPLY

The ADC 8424 +/-12 volt power supply can be derived either internally from the carrier card or from an external source via a transition card. The source is selected using jumpers J1, J2 and the GND AGND link where:

J1 External +12V connect 1 & 2, Internal +12V connect 2 & 3
J2 External -12V connect 1 & 2, Internal -12V connect 2 & 3

GND AGND Link
IN for internal +/-12V
OUT for external +/-12V (supplied from transition card DC DC converter).

IMPORTANT NOTE

The 8424 ADC should not be operated with only one of the 12Volt power rail connected as this may cause damage to the unit. This situation can be caused by incorrect setting of the jumpers J1 or J2 which set the source of the +/-12Volt supplies to the 8424 ADC card.

Power supply in balance will occur if:

1. one of the jumpers is set to select the 12Volt from an isolated power supply which is not fitted and the other being set for internal 12Volt supply.
2. one of the jumpers is not fitted.

10. EPICS Software Driver

EPICS and ASYN software drivers are in development for the ADC8424 4 channel ADC Industry Pack.
For downloads go to:
www.hytec-electronics.co.uk/Download.aspx

APPENDIX A

I/O Connector – PL2 (50 way) on 8424 ADC Board

Pin	Signal	Pin	Signal
1	Input 1 +ve	26	
2	Input 1 -ve	27	
3	Input 2 +ve	28	
4	Input 2 -ve	29	
5	Input 3 +ve	30	
6	Input 3 -ve	31	StopIn Pos
7	Input 4 +ve	32	StopIn Neg
8	Input 4 -ve	33	StartOut.
		34	StopOut
		35	ExtTrig/StartIn Pos
		36	ExtTrig/StartIn Neg
		37	ClockOut
		38	
		39	ExtClkIN Pos
		40	ExtClkIN Neg
		41	+12V (input from DC/DC)
		42	AGND
		43	+12V (input from DC/DC)
		44	AGND
		45	-12V (input from DC/DC)
		46	AGND
		47	-12V (input from DC/DC)
		48	AGND
		49	
		50	AGND

APPENDIX B**HYTEC TRANSITION CARD CONNECTIONS FOR THE ADC8424****I/O Connector – 50 way on transition****Pin Assignments**

Pin	Signal	Pin	Signal
1	Chan 1 -	26	Chan 1 +
2	Chan 2 -	27	Chan 2 +
3	Chan 3 -	28	Chan 3 +
4	Chan 4 -	29	Chan 4 +
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16	Stop In Neg	41	Stop In Pos
17	Stop Out	42	Start Out
18	ExtTrig/Strat IN Neg	43	ExtTrig/Start IN Pos
19		44	Clock Out
20	ExtCLK Neg	45	ExtCLK Pos
21	AGND	46	+12V * (output from DC/DC)
22	AGND	47	+12V *(output from DC/DC)
23	AGND	48	-12V *(output from DC/DC)
24	AGND	49	-12V *(output from DC/DC)
25	AGND	50	

* Supplied when DC/DC converters fitted on Transition card

The Hytec TB8210/8211 Analogue I/O transition card

The Hytec TB8210/8211 is a single-width VME64X Transition Board which routes 64 channels of analogue I/O in 4 groups of 16 analogue channel pairs. Noise filters are provided for all 16 channels of each group which are jumper selectable on the 8210.

It has the option to fit on-board DC-DC converter for plant isolation.

This is the preferred card to use as it ties the inputs of the 8424 to AGND via 1Mohm resistors. It also has a low pass filter which can be switched in by jumpers (denoted by affixed label) on the card. The filter value should be determined before delivery. For the 8424 the C1 should be approx 320pF max to give 500KHz band width approx.

The 8211 does not have jumpers and it maybe supplied with out the capacitor C1 fitted but still ties the inputs to ground via 1Mohm resistors.

8210 and 8211 signal conditioning card

Card 8308 and 8307

The 8308 allows for plug in signal card as used by the IOC to be plugged in to a single-width VME64X Transition Board.

The 8308 has four sites equating to IP positions A, B, C and D.

The 8307 has straight-through connections for 8002/4 carrier board sites A and B. Signal conditioning in-line with connections to sites C and D by means of plug-in signal conditioning board (SCBs).

There are two types of plug-in card that can be used:-

- 9304 straight through card. This can be used with the ADC8424 but provides no filtering and does not give any ground path on the inputs. **NOTE** This card should be used with caution as the fully differential inputs of the 8424 may float if not correctly tied to AGND.
- 9202 signal conditioning card. This is the preferred card to use as it ties the inputs of the 8424 to AGND via 1Mohm resistors. It also has a low pass filter which can be switched in by jumpers on the card. The filter value (denoted by affixed label) should be determined before delivery. The 9202 can also be setup to be a straight through card by setting the jumpers to link the filter out.

9202 signal conditioning card

The Hytec 8304 Straight-through transition card

Straight-through connections for 8002/4 carrier board sites A, B, C and D.

NOTE This card should be used with caution as the fully differential inputs of the 8424 may float if not correctly tied to AGND.

APPENDIX C

VME64X PIN ASSIGNMENT ON HYTEC 8002 IP CARRIER BOARD FOR ADC8424

ROW A	SIG	ROW B	SIG	ROW C	SIG	ROW D	SIG	ROW E	SIG	ROW F	SIG
P0.A01	D Chan 1+	P0.B01	D Chan 1-	P0.C01	D Chan 2+	P0.D01	D Chan 2 -	P0.E01	D Chan 3+	P0.F01	GND
P0.A02	D Chan 3 -	P0.B02	D Chan 4+	P0.C02	D Chan 4 -	P0.D02	D Chan 5+	P0.E02	D Chan 5 -	P0.F02	GND
P0.A03	D Chan 6+	P0.B03	D Chan 6 -	P0.C03	D Chan 7+	P0.D03	D Chan 7 -	P0.E03	D Chan 8+	P0.F03	GND
P0.A04	D Chan 8 -	P0.B04	D Chan 9+	P0.C04	D Chan 9 -	P0.D04	D Chan 10 +	P0.E04	D Chan 10 -	P0.F04	GND
P0.A05	D Chan 11+	P0.B05	D Chan 11 -	P0.C05	D Chan 12 +	P0.D05	D Chan 12 -	P0.E05	D Chan 13 +	P0.F05	GND
P0.A06	D Chan 13 -	P0.B06	D Chan 14 +	P0.C06	D Chan 14 -	P0.D06	D Chan 15 +	P0.E06	D Chan 15 -	P0.F06	GND
P0.A07	D Chan 16+	P0.B07	D Chan 16 -	P0.C07	N/C	P0.D07	N/C	P0.E07	D XTrigger	P0.F07	GND
P0.A08	D/XTrigger	P0.B08	N/C	P0.C08	N/C	P0.D08	D XCLK	P0.E08	D /XCLK	P0.F08	GND
P0.A09	D +12V	P0.B09	D AGND	P0.C09	D +12V	P0.D09	D AGND	P0.E09	D -12V	P0.F09	GND
P0.A10	D AGND	P0.B10	D -12V	P0.C10	D AGND	P0.D10	N/C	P0.E10	D AGND	P0.F10	GND
P0.A11	C Chan 1+	P0.B11	C Chan 1 -	P0.C11	C Chan 2+	P0.D11	C Chan 2 -	P0.E11	C Chan 3+	P0.F11	GND
P0.A12	C Chan 3 -	P0.B12	C Chan 4+	P0.C12	C Chan 4 -	P0.D12	C Chan 5+	P0.E12	C Chan 5 -	P0.F12	GND
P0.A13	C Chan 6+	P0.B13	C Chan 6-	P0.C13	C Chan 7+	P0.D13	C Chan 7 -	P0.E13	C Chan 8+	P0.F13	GND
P0.A14	C Chan 8-	P0.B14	C Chan 9+	P0.C14	C Chan 9-	P0.D14	C Chan 10+	P0.E14	C Chan 11+	P0.F14	GND
P0.A15	C Chan 11+	P0.B15	C Chan 11-	P0.C15	C Chan 12+	P0.D15	C Chan 12-	P0.E15	C Chan 13+	P0.F15	GND
P0.A16	C Chan 13-	P0.B16	C Chan 14+	P0.C16	C Chan 14-	P0.D16	C Chan 15+	P0.E16	C Chan 15-	P0.F16	GND
P0.A17	C Chan 16+	P0.B17	C Chan 16-	P0.C17	N/C	P0.D17	N/C	P0.E17	D XTrigger	P0.F17	GND
P0.A18	C/XTrigger	P0.B18	N/C	P0.C18	N/C	P0.D18	C XCLK	P0.E18	C /XCLK	P0.F18	GND
P0.A19	C +12V	P0.B19	C AGND	P0.C19	C +12V	P0.D19	C AGND	P0.E19	C -12V	P0.F19	GND

P0 pin assignment

P1 ROW A	SIGNAL	P1 ROW B	SIGNAL	P1 ROW C	SIGNAL	P1 ROW D	SIGNAL	P1 ROW Z	SIGNAL
P1.A01	D00	P1.B01	N/C	P1.C01	D08	P1.D01	N/C	P1.Z01	N/C
P1.A02	D01	P1.B02	N/C	P1.C02	D09	P1.D02	N/C	P1.Z02	GND
P1.A03	D02	P1.B03	N/C	P1.C03	D10	P1.D03	N/C	P1.Z03	N/C
P1.A04	D03	P1.B04	BG0IN*	P1.C04	D11	P1.D04	N/C	P1.Z04	GND
P1.A05	D04	P1.B05	BG0OUT*	P1.C05	D12	P1.D05	N/C	P1.Z05	N/C
P1.A06	D05	P1.B06	BG1IN*	P1.C06	D13	P1.D06	N/C	P1.Z06	GND
P1.A07	D06	P1.B07	BG1OUT*	P1.C07	D14	P1.D07	N/C	P1.Z07	N/C
P1.A08	D07	P1.B08	BG2IN*	P1.C08	D15	P1.D08	N/C	P1.Z08	GND
P1.A09	GND	P1.B09	BG2OUT*	P1.C09	GND	P1.D09	N/C	P1.Z09	N/C
P1.A10	N/C	P1.B10	BG3IN*	P1.C10	N/C	P1.D10	N/C	P1.Z10	GND
P1.A11	GND	P1.B11	BG3OUT*	P1.C11	BERR*	P1.D11	N/C	P1.Z11	N/C
P1.A12	DS1*	P1.B12	N/C	P1.C12	RESET	P1.D12	+3.3V	P1.Z12	GND
P1.A13	DS0*	P1.B13	N/C	P1.C13	LWORD*	P1.D13	N/C	P1.Z13	N/C
P1.A14	WRITE	P1.B14	N/C	P1.C14	AM5	P1.D14	+3.3V	P1.Z14	GND
P1.A15	GND	P1.B15	N/C	P1.C15	A23	P1.D15	N/C	P1.Z15	N/C
P1.A16	DTACK*	P1.B16	AM0	P1.C16	A22	P1.D16	+3.3V	P1.Z16	GND
P1.A17	GND	P1.B17	AM1	P1.C17	A21	P1.D17	N/C	P1.Z17	N/C
P1.A18	AS	P1.B18	AM2	P1.C18	A20	P1.D18	+3.3V	P1.Z18	GND
P1.A19	GND	P1.B19	AM3	P1.C19	A19	P1.D19	N/C	P1.Z19	N/C
P1.A20	IACK	P1.B20	GND	P1.C20	A18	P1.D20	+3.3V	P1.Z20	GND
P1.A21	IACKIN*	P1.B21	N/C	P1.C21	A17	P1.D21	N/C	P1.Z21	N/C
P1.A22	IACKOUT	P1.B22	N/C	P1.C22	A16	P1.D22	+3.3V	P1.Z22	GND
P1.A23	AM4	P1.B23	GND	P1.C23	A15	P1.D23	N/C	P1.Z23	N/C
P1.A24	A07	P1.B24	IRQ7*	P1.C24	A14	P1.D24	+3.3V	P1.Z24	GND
P1.A25	A06	P1.B25	IRQ6*	P1.C25	A13	P1.D25	N/C	P1.Z25	N/C
P1.A26	A05	P1.B26	IRQ5*	P1.C26	A12	P1.D26	+3.3V	P1.Z26	GND
P1.A27	A04	P1.B27	IRQ4*	P1.C27	A11	P1.D27	N/C	P1.Z27	N/C
P1.A28	A03	P1.B28	IRQ3*	P1.C28	A10	P1.D28	+3.3V	P1.Z28	GND
P1.A29	A02	P1.B29	IRQ2*	P1.C29	A09	P1.D29	N/C	P1.Z29	N/C
P1.A30	A01	P1.B30	IRQ1*	P1.C30	A08	P1.D30	+3.3V	P1.Z30	GND
P1.A31	-12V	P1.B31	N/C	P1.C31	+12V	P1.D31	N/C	P1.Z31	N/C
P1.A32	+5V	P1.B32	+5V	P1.C32	+5V	P1.D32	+5V	P1.Z32	GND

P1 Pin Assignment

ROWA	SIG	ROWB	SIG	ROWC	SIG	ROWD	SIG	ROWZ	SIG
P2.A01	B +12V	P2.B01	+5V	P2.C01	B AGND	P2.D01	C -12V	P2.Z01	C AGND
P2.A02	B +12V	P2.B02	GND	P2.C02	B AGND	P2.D02	C AGND	P2.Z02	GND
P2.A03	B -12V	P2.B03	N/C	P2.C03	B AGND	P2.D03	C AGND	P2.Z03	N/C
P2.A04	B -12V	P2.B04	A24	P2.C04	B AGND	P2.D04	B Chan 1 +	P2.Z04	GND
P2.A05	N/C	P2.B05	A25	P2.C05	B AGND	P2.D05	B Chan 2 +	P2.Z05	B Chan 1 -
P2.A06	A Chan 1 +	P2.B06	A26	P2.C06	A Chan 1 -	P2.D06	B Chan 2 -	P2.Z06	GND
P2.A07	A Chan 2 +	P2.B07	A27	P2.C07	A Chan 2 -	P2.D07	B Chan 3 -	P2.Z07	B Chan 3 +
P2.A08	A Chan 3 +	P2.B08	A28	P2.C08	A Chan 3 -	P2.D08	B Chan 4 +	P2.Z08	GND
P2.A09	A Chan 4 +	P2.B09	A29	P2.C09	A Chan 4 -	P2.D09	B Chan 5 +	P2.Z09	B Chan 4 -
P2.A10	A Chan 5 +	P2.B10	A30	P2.C10	A Chan 5 -	P2.D10	B Chan 5 -	P2.Z10	GND
P2.A11	A Chan 6 +	P2.B11	A31	P2.C11	A Chan 6 -	P2.D11	B Chan 6 -	P2.Z11	B Chan 6 +
P2.A12	A Chan 7 +	P2.B12	GND	P2.C12	A Chan 7 -	P2.D12	B Chan 7 +	P2.Z12	GND
P2.A13	A Chan 8 +	P2.B13	+5V	P2.C13	A Chan 8 -	P2.D13	B Chan 8 +	P2.Z13	B Chan 7 -
P2.A14	A Chan 9 +	P2.B14	N/C	P2.C14	A Chan 9 -	P2.D14	B Chan 8 -	P2.Z14	GND
P2.A15	A Chan 10 +	P2.B15	N/C	P2.C15	A Chan 10 -	P2.D15	B Chan 9 -	P2.Z15	B Chan 9 +
P2.A16	A Chan 11 +	P2.B16	N/C	P2.C16	A Chan 11 -	P2.D16	B Chan 10 +	P2.Z16	GND
P2.A17	A Chan 12 +	P2.B17	N/C	P2.C17	A Chan 12 -	P2.D17	B Chan 11 +	P2.Z17	B Chan 10 -
P2.A18	A Chan 13 +	P2.B18	N/C	P2.C18	A Chan 13 -	P2.D18	B Chan 11 -	P2.Z18	GND
P2.A19	A Chan 14 +	P2.B19	N/C	P2.C19	A Chan 14 -	P2.D19	B Chan 12 -	P2.Z19	B Chan 12+
P2.A20	A Chan 15 +	P2.B20	N/C	P2.C20	A Chan 15 -	P2.D20	B Chan 13 +	P2.Z20	GND
P2.A21	A Chan 16 +	P2.B21	N/C	P2.C21	A Chan 16 -	P2.D21	B Chan 14 +	P2.Z21	B Chan 13 -
P2.A22	N/C	P2.B22	GND	P2.C22	N/C	P2.D22	B Chan 14 -	P2.Z22	GND
P2.A23	A X Trigger	P2.B23	N/C	P2.C23	A /XTrigger	P2.D23	B Chan 15 -	P2.Z23	B Chan 15+
P2.A24	N/C	P2.B24	N/C	P2.C24	N/C	P2.D24	B Chan 16 +	P2.Z24	GND
P2.A25	A XCLK	P2.B25	N/C	P2.C25	A /XCLK	P2.D25	N/C	P2.Z25	B Chan 16 -
P2.A26	A +12V	P2.B26	N/C	P2.C26	A AGND	P2.D26	N/C	P2.Z26	GND
P2.A27	A +12V	P2.B27	N/C	P2.C27	A AGND	P2.D27	B /XTrigger	P2.Z27	B X Trigger
P2.A28	A -12V	P2.B28	N/C	P2.C28	A AGND	P2.D28	N/C	P2.Z28	GND
P2.A29	A -12V	P2.B29	N/C	P2.C29	A AGND	P2.D29	B XCLK	P2.Z29	N/C
P2.A30	N/C	P2.B30	N/C	P2.C30	A AGND	P2.D30	B /XCLK	P2.Z30	GND
P2.A31	Out+3.3V	P2.B31	GND	P2.C31	Out+3.3V	P2.D31	GND	P2.Z31	Out +3.3V
P2.A32	Out +5V	P2.B32	+5V	P2.C32	Out +5V	P2.D32	PC +5V	P2.Z32	GND

P2 pin assignment

Denotes pins with thickened tracks which can be used for power inputs