**Exercise 1** The figure below shows the graph of the function f, where  $f(x) = -x^2$ , and the point P(0,3).

Find equations of all tangent lines to the curve y = f(x) that pass through the point P.



We will solve this problem by completing several steps.

## STEP 1

Any such tangent line will pass through the point P(0,3), and will have a slope, call it m. Therefore, its equation is given by

$$y - \boxed{3} = m(x - \boxed{0})$$

## $STEP\ 2$

Now we have to find an expression for the slope m.



The line is tangent to the curve y = f(x) at some point on the curve,  $(a, f(a)) = (a, -a^2)$ . Therefore, the slope of the tangent line, m, is given by

$$m = f'(a)$$

and, expressing f'(a) in terms of a, we obtain that

$$m = \boxed{-2}a$$
.

Therefore, an equation of the tangent line is given by

$$y-3=\boxed{-2}ax,$$

where a has to be determined.

**Hint:** Observe that the point  $(a, -a^2)$  lies on both the tangent line and on the curve y = f(x).

Therefore, the point  $(a, -a^2)$  satisfies the equation of the tangent line!

Plugging in x = a and  $y = -a^2$  into the equation of the line, we obtain an equation

$$-a^2 - 3 = -2a(a)$$

Solve this quadratic equation for a!

We find two solutions for a (written in increasing order)

$$a = \boxed{-\sqrt{3}}$$
 and  $a = \boxed{\sqrt{3}}$ .

This means that there are two tangent lines passing through the point P, one with the slope (written in increasing order)  $m = \boxed{-2\sqrt{3}}$  and the other with the slope  $m = \boxed{2\sqrt{3}}$ .

Check the picture!



## STEP 3

There are exactly two lines that are both tangent to the curve y = f(x) and pass through the point P. The first line has a positive slope, and the second line has the negative slope, and their equations, written in that order, are:

$$y = 2\sqrt{3}x + 3$$
$$y = -2\sqrt{3}x + 3$$