15 November 2018

Exam: Vector algebra and differential calculus (cumulative review)

1a. Consider the points A(5, 2, 1) , B(6, 5, 3) , and C(7, 6, a) , $a \in \mathbb{R}$. Find

- (i) \overrightarrow{AB} ; [3 marks]
- (ii) \overrightarrow{AC} .

1b. Find the magnitude (length) of \overrightarrow{AB} .

[2 marks]

 $\mathbf{2a.}\,\mathrm{Let}\,g(x)=rac{\ln x}{x^2}$, for x>0 .

Use the quotient rule to show that $g'(x) = rac{1-2\ln x}{x^3}$.

[4 marks]

2b. The graph of g has a maximum point at A. Find the x-coordinate of A.

[3 marks]

3a. Let $g(x) = 2x \sin x$.

Find g'(x).

[4 marks]

3b. Find the gradient of the graph of g at $x = \pi$.

[3 marks]

 $\overrightarrow{AD} = \overrightarrow{BC}, \overrightarrow{AB} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \text{ and } \overrightarrow{AC} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}.$

diagram not to scale

 $\overrightarrow{\mathbf{BC}}$.

[2 marks]

 $\overrightarrow{\mathrm{BD}} = egin{pmatrix} -2 \ 2 \end{pmatrix}$.

[2 marks]

4a. Let $f(x) = \frac{1}{3}x^3 - x^2 - 3x$. Part of the graph of f is shown below.

There is a maximum point at A and a minimum point at B(3, -9).

Find the coordinates of A.

[8 marks]

4b. Write down the coordinates of

[6 marks]

- (i) the image of B after reflection in the *y*-axis;
- (ii) the image of B after translation by the vector $\begin{pmatrix} -2 \\ 5 \end{pmatrix}$
- (iii) the image of B after reflection in the *x*-axis followed by a horizontal stretch with scale factor $\frac{1}{2}$.

5a. Let $f(x) = \frac{\cos x}{\sin x}$, for $\sin x \neq 0$.

Use the quotient rule to show that $f'(x) = rac{-1}{\sin^2 x}$.

[5 marks]

5b. Find f''(x).

[3 marks]

6a. In an arithmetic sequence, $u_1 = 3$ and $u_3 = 11$.

Find d.

[2 marks]

6b. Find u_{20} .

[2 marks]

6c. Find S_{20} .

[2 marks]

7a. The first three terms of an infinite geometric sequence are 27, 9 and 3.

Write down the value of r.

[1 mark]

7b. Find u_6 .

[2 marks]

7c. Find the sum to infinity of this sequence.

[2 marks]