EE25BTECH11061 - V.Sainadh

Question:

A vector \mathbf{r} is inclined at equal angles to the three axes. If the magnitude of \mathbf{r} is $2\sqrt{3}$ units, find \mathbf{r} .

Solution:

A vector equally inclined to all three coordinate axes has equal components. Let the common scale be c. Then,

$$\mathbf{r} = c \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \tag{1}$$

$$\|\mathbf{r}\| = |c| \sqrt{1^2 + 1^2 + 1^2} = |c| \sqrt{3}.$$
 (2)

Given $||\mathbf{r}|| = 2\sqrt{3}$,

$$2\sqrt{3} = |c|\sqrt{3} \tag{3}$$

$$\implies |c| = 2. \tag{4}$$

Hence,

$$\mathbf{r} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} \quad \text{or} \quad \mathbf{r} = \begin{pmatrix} -2 \\ -2 \\ -2 \end{pmatrix}. \tag{5}$$

Vectors equally inclined to axes with $|\vec{r}| = 2\sqrt{3}$

Fig. 0: Plot of the vector \mathbf{r}