NewTrend - Seoul National University
Page 1 of 25

				4.2	2 NTT (1266B)	13	8 Misc 25
				4.3	3 FFT (1956B)	13	8.1 Enumerate quotients 25
				4.4	4 ext-euclid (1167B)	13	8.2 FastIO
	Team Note of NewTrend			4.5	5 RREF (477B)	14	8.3 Barrett Reduction 25
				4.6	,	14	8.4 Stress test (DM)
	arnold, jupiter, Karuna			4.7		14	8.5 Highly Composite Numbers, Large Prime 25
	difford, Japivor, Trait diffe			4.8		14	8.6 Lexicographically next bit permutation 25
	Compiled on September 13, 2024			4.9		$\overline{14}$	8.7 Partition Numbers, Stirling Numbers 25
					10 FWHT (597B)	15	8.8 pbds
<u></u>					11 Polynomial	15	8.9 Formulas
C	ontents			1		10	1 String
1	String	1	5	D	ata Structure	15	1.1 Z, Manacher
•	1.1 Z, Manacher	1		5.1		15	// S[i - P[i] i + P[i]] is palindrome // manacher(S = "abcbcba") = [0, 0, 1, 3, 1, 0, 0]
	1.2 Aho Corasick (1858B)	1		5.2		16	<pre>vector<int> manacher(string S) {</int></pre>
	1.3 Suffix Array (2395B)	2		5.3	· · · · · · · · · · · · · · · · · · ·	16	int n = S.size();
	1.4 Suffix Automaton (2205B)	$\frac{2}{2}$		5.4 5.4	,		<pre>vector<int> a(n);</int></pre>
	1.5 eertree (1015B)	3			,	16	for (int i = 0, j = 0; i < n; i++) {
	1.6 duval (410B)	3		5.5	()	17	if (j + a[j] > i) a[i] = min(a[2 * j - i], j + a[j] - i); while (i + a[i] < n && i >= a[i] && S[i + a[i]] == S[i -
	1.7 Bitset LCS (1112B)	4		5.6	0 ()	17	a[i]]) ++a[i];
	1.7 Dieset Los (1112b)	4		5.7	1 0	18	if $(i + a[i] > j + a[j]) j = i;$
2	Optimization	4		5.8	()	19	<pre>} for (int i = 0; i < n; i++)a[i];</pre>
_	2.1 Dinic (1579B)	4		5.9	9 Queue Undo Trick	20	return a;
	2.2 HLPP (1771B)	4		~		0.1	}
	2.3 Hopcroft Karp (1182B)	5	6		eometry	21	// Z[i] = LCP(S[i], S)
	2.4 MCMF (1780B)	5		6.1	<i>J</i> 1 ()	21	// get_z(S = "ababacaca") = [-, 0, 3, 0, 1, 0, 1, 0, 1] vector <int> get_z(string S) {</int>
	2.5 Hungarian (1291B)	5		6.2	v 1 ()	21	int n = S.size();
	2.6 Blossom (1547B)	6		6.3	0 1 ()	21	<pre>vector<int> a(n);</int></pre>
	2.7 General Weighted Matching (6120B)	6		6.4	30 (11)	21	for (int i = 1, j = 0; i < n; i++) {
	2.8 Min Cost Circulation with Cost Scaling	Ü		6.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22	if $(j + a[j] > i) a[i] = min(j + a[j] - i, a[i - j]);$ while $(i + a[i] < n && S[a[i]] == S[i + a[i]]) ++a[i];$
	(3447B)	7		6.6		22	if (i + a[i] > j + a[j]) j = i;
	2.9 Global Min Cut (1557B)	8		6.7	· /	22	}
	2.10 Gomory-Hu Tree (802B)	9		6.8	0 ()	23	return a;
	2.11 Simplex (2351B)	9		6.9	9 Voronoi Diagram (5768B)	23	1.2 Aho Corasick (1858B)
	2.11 Samples (20012)						// 0-based, O(S + 26 * \sum T_i)
3	Graph	9	7	\mathbf{N}	ote	${\bf 24}$	// v.fail = failure link of node v
	3.1 BCC (1694B)	9		7.1		24	<pre>// v.suf = longest suffix of node v corresponding to whole inserted string (if none, root)</pre>
	$3.2 \text{ SPFA} (1548 \text{B}) \dots \dots \dots \dots$	10		7.2	2 Lyndon Decomposition	24	// v.chd[c] = c-th children of node v in trie
	3.3 Dominator Tree (1433B)	10		7.3		24	<pre>// v.jmp[c] = c-th next match of node v in automaton</pre>
	3.4 Tree Isomorphism (1325B)	11		7.4	4 Konig's Theorem	24	<pre>// call init() first, and insert strings using insert(S)</pre>
	3.5 Enumerate triangle, Count 4-cycle (1204B)	11		7.5		24	<pre>// then call calc() to calculate fail, suf, chd, jump // AhoCorasick(S, TV) : Find occurences of TV[0], TV[1], in</pre>
		11		7.6	6 Hall's Theorem, Tutte's Theorem	24	S (ending position)
	3.7 K-th Shortest Path (3048B)	12		7.7	7 Erdos-Gallai Theorem	24	// AhoCorasick(S = "mississippi", TV = ["ss", "sis", "ippi",
	,			7.8	8 Tutte Matrix	24	"pp"]) = [3, 5, 6, 9, 10]
4	Math	13		7.9	9 Kirchoff's Theorem	24	<pre>struct Node { int par, fail, suf;</pre>
		13		7.	10 LP Dual	24	vector <int> chd, jmp;</int>

```
Node() {
    par = fail = suf = -1;
    chd = vector < int > (26, -1);
    jmp = vector < int > (26, -1);
};
int root:
vector<Node> NS;
int newNode() { NS.push back(Node()): return NS.size() - 1: }
void init() {
  NS.clear();
  root = newNode();
  NS[root].par = root;
  NS[root].fail = root:
  NS[root].suf = root:
void insert(const string &S) {
  int now = root;
  for (auto c : S) {
    if (NS[now].chd[c - 'a'] == -1) {
      int nxt = NS[now].chd[c - 'a'] = newNode();
      NS[nxt].par = now;
    now = NS[now].chd[c - 'a'];
  NS[now].suf = now;
void calc() {
  queue<int> Q;
  Q.push(root);
  while (!Q.empty()) {
    int now = Q.front();
    :()gog.D
    for (int i = 0; i < 26; i++) if (NS[now].chd[i] != -1) {
      int nxt = NS[now].chd[i];
      NS[now].jmp[i] = nxt;
      if (now == root) NS[nxt].fail = root;
      else {
        int p;
        for (p = NS[now].fail; p != root && NS[p].chd[i] == -1;
        p = NS[p].fail);
        if (NS[p].chd[i] == -1) NS[nxt].fail = root;
        else NS[nxt].fail = NS[p].chd[i];
      if (NS[nxt].suf == -1) NS[nxt].suf =
      NS[NS[nxt].fail].suf;
      Q.push(nxt);
    for (int i = 0; i < 26; i++) {
      if (NS[now].chd[i] != -1) NS[now].jmp[i] =
      NS[now].chd[i];
        if (now == root) NS[now].jmp[i] = now;
        else NS[now].jmp[i] = NS[NS[now].fail].jmp[i];
    }
}
```

```
vector<int> AhoCorasick(string S, vector<string> TV) {
  vector<int> ans;
  for (auto &T : TV) insert(T);
  calc();
  int now = root;
  for (int i = 0; i < S.size(); i++) {</pre>
    now = NS[now].jmp[S[i] - 'a'];
    // now is matching node in trie with S[0...i]
    // your code goes here
   if (NS[now].suf != root) ans.push_back(i);
 return ans;
1.3 Suffix Array (2395B)
// 0-based, 0(n log n)
// S = "abcababc"
// sa = [ 3, 5, 0, 4, 6, 1, 7, 2 ]
// lcp = [ -, 2, 3, 0, 1, 2, 0, 1 ]
void suffix_array(string S, vector<int> &sa, vector<int> &lcp)
 int n = S.size();
  vector<int> r(n), k(n), cnt(n), ord(n);
  sa.resize(n):
 lcp.resize(n);
  iota(sa.begin(), sa.end(), 0);
  sort(sa.begin(), sa.end(), [&](int i, int j) { return S[i] <</pre>
  S[i]; });
  r[sa[0]] = 1;
  for (int i = 1; i < n; i++) r[sa[i]] = r[sa[i - 1]] + (S[sa[i
  - 1]] != S[sa[i]]);
  for (int d = 1; d < n; d *= 2) {
    if (r[sa[n-1]] == n) break;
    fill(cnt.begin(), cnt.end(), 0);
    for (int i = 0; i < n; i++) cnt[i + d < n ? r[i + d] :
    0]++:
    for (int i = 1; i < n; i++) cnt[i] += cnt[i - 1];
    for (int i = 0; i < n; i++) ord[--cnt[i + d < n? r[i + d]
    : 0]] = i:
    fill(cnt.begin(), cnt.end(), 0);
    for (int i = 0: i < n: i++) cnt[r[i]]++:
    for (int i = 1; i < n; i++) cnt[i] += cnt[i - 1];
    for (int i = n - 1; i \ge 0; i--) sa[--cnt[r[ord[i]]]] =
    ord[i];
   k[sa[0]] = 1:
    for (int i = 1; i < n; i++) {
      if (r[sa[i-1]] != r[sa[i]]) k[sa[i]] = k[sa[i-1]] +
      1:
      else {
        int p = sa[i - 1] + d < n ? r[sa[i - 1] + d] : 0;
        int q = sa[i] + d < n ? r[sa[i] + d] : 0;</pre>
        k[sa[i]] = k[sa[i - 1]] + (p != q);
```

```
}
   r = k;
 for (int i = 0; i < n; i++) --r[i];
 for (int i = 0, p = 0; i < n; i++) if (r[i]) {
   int j = sa[r[i] - 1];
   while ((i + p < n ? S[i + p] : -1) == (j + p < n ? S[j + p]
   : -2)) ++p;
   lcp[r[i]] = p;
   p = \max(p - 1, 0);
// O(1), call init(S) first
// get_lcp(a, b) = LCP(S[a ...], S[b ...])
// compare(11, r1, 12, r2) =
// 1 if S[11 ... r1] > S[12 ... r2]
// 0 if S[11 ... r1] = S[12 ... r2]
// -1 if S[11 ... r1] < S[12 ... r2]
// 11 <= r1, 12 <= r2 are NOT necessary
int N;
string S:
vector<int> sa, lcp, r;
vector<vector<int>> sp;
void init(string _S) {
 S = _S; N = S.size();
 r = vector<int>(N):
  suffix_array(S, sa, lcp);
  for (int i = 0; i < N; i++) r[sa[i]] = i;</pre>
  sp = vector < vector < int > (__lg(N) + 1, vector < int > (N)); sp[0]
  for (int i = 1; i < sp.size(); i++)</pre>
   for (int j = 0; j < N; j++) sp[i][j] = min(sp[i - 1][j],
    sp[i-1][min(N-1, j+(1 << (i-1)))]);
}
int get_lcp(int a, int b) {
 if (a == b) return N - a;
 a = r[a]; b = r[b];
  if (a > b) swap(a, b);
  int len = b - a, k = __lg(len);
 return min(sp[k][a + 1], sp[k][b - (1 << k) + 1]);
int compare(int 11, int r1, int 12, int r2) {
 r1 = max(r1, 11 - 1):
 r2 = max(r2, 12 - 1);
 int len = min(r1 - 11 + 1, r2 - 12 + 1), x = get_lcp(11, 12);
 if (x < len) return (S[11 + x] > S[12 + x]) - (S[11 + x] <
 S[12 + x]);
  else return (r1 - 11 > r2 - 12) - (r1 - 11 < r2 - 12):
1.4 Suffix Automaton (2205B)
// 0-based, 0(26 * |S|)
// v.link = suffix link of v
// v.len = length of longest substring corresponding to v
// v.pos = one element of endpos(v)
// v.chd[c] = c-th children node of v in suffix automaton
```

```
// e.x = child node of edge e in suffix tree
// [e.l, e.r] = substring of S corresponding to edge e in
// v.flag = true if v corresponds exactly to suffix (v.pos)
// call init() first, and build suffix automaton by calling
// call init() first, and build suffix tree by calling
suffix_tree(S)
// all nodes in nd are used in both suffix automaton and suffix
// nodes in suffix tree CAN have ONE child
const int CH = 26:
struct node {
 int link, len, pos;
  vector<int> chd:
  bool flag;
  node() {
    link = len = pos = 0;
    flag = false;
    chd = vector<int>(CH):
 }
};
vector<node> nd;
void init() { nd.clear(); }
int new node() {
  nd.push_back(node());
  return (int)nd.size() - 1:
void build(string S) {
  new node():
  nd[0].link = -1;
  int prv = 0;
  for (int i = 0: i < S.size(): i++) {</pre>
    int c = S[i] - 'a';
    int cur = new_node();
    nd[cur].len = nd[prv].len + 1;
    nd[cur].pos = i;
    nd[cur].flag = true;
    for (; prv != -1 && !nd[prv].chd[c]; prv = nd[prv].link)
    nd[prv].chd[c] = cur;
    if (prv != -1) {
      int x = nd[prv].chd[c];
      if (nd[x].len == nd[prv].len + 1) nd[cur].link = x;
        int y = new_node();
        nd[y].len = nd[prv].len + 1;
        nd[v].pos = i;
        nd[v].link = nd[x].link;
        nd[v].chd = nd[x].chd;
        nd[x].link = nd[cur].link = y;
        for (; prv != -1 && nd[prv].chd[c] == x; prv =
        nd[prv].link) nd[prv].chd[c] = y;
      }
    }
    prv = cur;
struct edge { int x, 1, r; };
vector<vector<edge>> g;
```

```
void suffix tree(string S) {
  reverse(S.begin(), S.end());
  build(S);
  reverse(S.begin(), S.end());
  int n = nd.size():
  g.clear(); g.resize(n);
  for (int v = 0; v < n; v++) nd[v].pos = (int)S.size() - 1 -
  nd[v].pos;
  for (int v = 1: v < n: v++) {
    int x = nd[v].link;
   int l = nd[v].pos + nd[x].len;
   int r = nd[v].pos + nd[v].len - 1;
   g[x].push_back({v, 1, r});
 for (int v = 0; v < n; v++) sort(g[v].begin(), g[v].end(),
  [&](edge e, edge f) { return S[e.1] < S[f.1]; });
void dfs(int v, vector<int> &sa) {
 if (nd[v].flag) sa.push_back(nd[v].pos);
 for (auto [x, 1, r] : g[v]) dfs(x, sa);
void suffix array(string S, vector<int> &sa, vector<int> &lcp)
  suffix_tree(S);
  dfs(0, sa);
  int n = S.size();
 lcp.resize(n):
  vector<int> r(n):
  for (int i = 0; i < n; i++) r[sa[i]] = i;
  for (int i = 0, p = 0; i < n; i++) if (r[i]) {
   int j = sa[r[i] - 1];
   while ((i + p < n ? S[i + p] : -1) == (j + p < n ? S[j + p]
   : -2)) ++p:
   lcp[r[i]] = p;
   p = max(p - 1, 0);
1.5 eertree (1015B)
// 0-based, 0(26 N)
// nd[x].pos - nd[x].len + 1 ~ nd[x].pos is palindrome for node
// nd[S].chd[c] represents the string cSc
// nd[S].link represents the longest palindromic suffix of S
// suf[i] represents the longest palindromic suffix of S[0 ...
```

il

```
struct node {
  int link, len, par, pos;
  vector<int> chd;
 node() {
   link = len = par = pos = 0;
   chd = vector < int > (26, 1);
};
vector<node> nd:
vector<int> suf;
int new_node() { nd.push_back(node()); return (int)nd.size() -
void init() { nd.clear(); suf.clear(); }
void build(string S) {
 new node(): // node 0 represents length -1 string
 new_node(); // node 1 represents length 0 string
 nd[0].link = 0; nd[0].len = -1;
 nd[1].link = 0; nd[1].len = 0;
 for (int i = 0, x = 0; i < S.size(); i++) {
    while (x && (i == nd[x].len || S[i] != S[i - nd[x].len -
    1])) x = nd[x].link;
    int c = S[i] - 'a':
    if (nd[x].chd[c] == 1) {
      int r = new_node();
      nd[r].len = nd[x].len + 2;
      int v = nd[x].link;
      while (v \&\& (i == nd[v].len || S[i] != S[i - nd[v].len -
      1])) v = nd[v].link;
      nd[r].link = nd[v].chd[c];
      nd[x].chd[c] = r;
      nd[r].par = x;
      nd[r].pos = i;
    x = nd[x].chd[c];
    suf.push_back(x);
     duval (410B)
// 0-based, O(N)
// Get length of lexicographically smallest suffix for all
// lyndon(S = "ababca") = [1, 2, 1, 2, 5, 1]
vector<int> lvndon(string S) {
 int N = S.size();
 vector<int> dp(N):
 for (int i = 0; i < N;) {
   dp[i] = 1;
   int j = i + 1, k = i;
   for (; j < N; j++) {
      if (S[j] == S[k]) {
        dp[j] = dp[k];
        k++;
      }
      else if (S[j] > S[k]) {
        dp[j] = j - i + 1;
        k = i:
```

```
else break;
    for (; i \le k; i += j - k);
 return dp;
1.7 Bitset LCS (1112B)
#define get(arr, x) (((arr[x >> 6] >> (x & 63)) & 1) == 1)
#define set(arr, x) (arr[x >> 6] |= 11lu << (x & 63))</pre>
using ull = unsigned long long;
// return lcs
int lcs(string A, string B) {
  int N = A.size(), M = B.size();
 int sz = (M >> 6) + 1:
  vector<ull> S[256];
  for(int c = 0; c < 256; c++) S[c].resize(sz);</pre>
  for(int j = 0; j < M; j++) set(S[B[j]], j);</pre>
  vector<ull> row(sz);
  for(int j = 0; j < M; j++) if(A[0] == B[j]) { set(row, j);
  for(int i = 1: i < N: i++) {
    ull shl_carry = 1;
    ull minus_carry = 0;
    for(int k = 0: k < sz: k++) {
     // Compute k-th block of x == S[A[i]] OR D[i-1]
      ull x_k = S[A[i]][k] \mid row[k];
      // Compute k-th block of "(D[i-1] << 1) | 1"
      ull term_1 = (row[k] << 1) | shl_carry;</pre>
      shl_carry = row[k] >> 63;
      // Compute k-th block of "x - ((D[i-1] << 1) | 1)"
      auto sub_carry = [](ull &x, ull y){
       ull tmp = x;
       return (x = tmp - y) > tmp;
      }:
      ull term_2 = x_k;
      minus_carry = sub_carry(term_2, minus_carry);
      minus_carry += sub_carry(term_2, term_1);
      row[k] = x k & (x k ^ term 2):
    row[M >> 6] &= (11lu << (M & 63)) - 1;
 for(int j = 0; j < M; j++) if(get(row, j)) ret += 1;</pre>
  return ret;
2 Optimization
```

2.1 Dinic (1579B)

 $\min(\mathcal{O}(V^2E), \mathcal{O}(Ef))$. If all vertices except the source and sink have unique indegree or outdegree with unit capacity, $\mathcal{O}(E\sqrt{V})$. If all edges are unit, $\min(\mathcal{O}(E\sqrt{E}), \mathcal{O}(EV^{2/3}))$. // 0-based, min(O(V^2 E), O(EF)), directed graph // call init() first, add_edge(u, v, c), then flow(source, sink) struct Dinic { typedef long long T; const static int SV = 1200:

```
const T INF = numeric limits<T>::max():
struct Edge { int v; T c; int r; };
int N, src, snk;
vector<Edge> gph[SV];
int lvl[SV], pos[SV];
T lim:
void init(int _N) {
 N = N:
 for (int i = 0; i < N; i++) gph[i] = vector<Edge>();
void add_edge(int u, int v, T c, bool dir = true) {
  // directed edge : dir = true, undirected edge : dir =
  gph[u].push back({v. c. gph[v].size()});
  gph[v].push_back({u, dir ? 0 : c, gph[u].size() - 1});
bool bfs() {
 for (int i = 0; i < N; i++) lvl[i] = 0;
  queue<int> Q:
  Q.push(src);
  lvl[src] = 1:
  while (!Q.empty()) {
    int now = Q.front(); Q.pop();
    for (auto [nxt, c, r] : gph[now]) {
      if (lvl[nxt] || c < lim) continue;
      Q.push(nxt):
      lvl[nxt] = lvl[now] + 1;
 }
  return lvl[snk];
T dfs(int now, T flow) {
  if (now == snk) return flow;
  for (; pos[now] < gph[now].size(); pos[now]++) {</pre>
    auto &[nxt, c, r] = gph[now][pos[now]];
    if (lvl[nxt] != lvl[now] + 1 || !c) continue;
    T f = dfs(nxt, min(flow, c)):
    if (f) {
      c -= f:
      gph[nxt][r].c += f;
      return f;
   }
 }
  return 0;
T flow(int _src, int _snk) {
 src = _src; snk = _snk;
 T ans = 0:
  for (lim = INF; lim > 0; lim >>= 1) {
    while (bfs()) {
      for (int i = 0; i < N; i++) pos[i] = 0;
      while (1) {
        T t = dfs(src, INF);
        if (!t) break;
        ans += t;
      }
   }
```

```
return ans:
 }
};
     HLPP (1771B)
// 0-based, O(V^2 \sqrt{E}), directed graph
// call init() first, add edge(u, v, c), then flow(source.
sink)
struct HLPP {
 typedef long long T:
  const static int SV = 1200;
  struct edge { int y; T c; int r; };
  int n:
 vector<edge> gph[SV];
 T ex[SV];
  vector<int> act[SV * 2], st[SV];
  int h[SV], mxh:
 void init(int _n) {
   n = n:
   for (int i = 0; i < n; ++i) {
      ex[i] = h[i] = 0;
      st[i].clear():
      gph[i].clear();
    for (int i = 0; i < n * 2; i++) act[i].clear();</pre>
  void add_edge(int x, int y, T c, bool dir = true) {
   // directed edge : dir = true, undirected edge : dir =
    gph[x].push_back({v, c, (int)gph[v].size()});
   gph[v].push_back({x, dir ? 0 : c, (int)gph[x].size() - 1});
 void push(int v, int e) {
   auto &w = gph[v][e]:
   T t = min(ex[v], w.c);
    if (!t || h[w.v] >= h[v]) return;
    if (!ex[w.y]) act[h[w.y]].push_back(w.y);
    gph[w.y][w.r].c += t;
   ex[v] -= t:
    ex[w.v] += t;
    if (w.c) st[v].push_back(e);
  void relabel(int v) {
   ++h[v]:
   act[h[v]].push_back(v);
   mxh = max(mxh, h[v]);
   st[v].clear():
    for (int i = 0; i < (int)gph[v].size(); ++i) {</pre>
      if (gph[v][i].c && h[gph[v][i].y] < h[v]) {
        st[v].push back(i):
   }
 T flow(int s, int t) {
   h[s] = n:
```

```
for (auto &v : gph[s]) {
      if (v.c && !ex[v.y]) act[0].push_back(v.y);
      ex[s] -= v.c;
      ex[v.y] += v.c;
      gph[v.y][v.r].c += v.c;
     v.c = 0:
    while (mxh >= 0) {
      if (act[mxh].empty()) {
       --mxh;
       continue;
     }
      int x = act[mxh].back();
      act[mxh].pop_back();
      if (x == t) continue:
      while (ex[x] > 0 \&\& st[x].size()) {
       int y = st[x].back();
       st[x].pop_back();
       push(x, y);
      if (ex[x] > 0) relabel(x);
    return ex[t];
2.3 Hopcroft Karp (1182B)
// 1-based, O(E \sqrt{V}), unweighted bipartite graph
// call init() first, then call find_matching()
// if left vertex x is not included in a matching, a[x] = 0.
// Otherwise a[x] stores the vertex x is matched with
// if right vertex x is not included in a matching, b[x] = 0.
// Otherwise b[x] stores the vertex x is matched with
const int SZ = 101010;
int n, m, a[SZ], b[SZ];
vector<int> gph[SZ];
void init(int _n, int _m) {
 for (int i = 1; i <= n; i++) gph[i].clear();
 fill(a, a + 1 + n, 0);
 fill(b, b + 1 + m, 0);
void add_edge(int u, int v) {
 gph[u].push_back(v); // left vertex u -> right vertex v
int ds[SZ], sp[SZ];
void bfs() {
 fill(ds, ds + 1 + n, 0);
  queue<int> Q;
 for (int i = 1; i <= n; i++) {
   if (!a[i]) {
     ds[i] = 0;
      Q.push(i);
   }
  while (!Q.empty()) {
   int v = Q.front();
    Q.pop();
   for (int x : gph[v]) {
```

```
if (b[x] && ds[b[x]] == 0) {
        ds[b[x]] = ds[v] + 1;
        Q.push(b[x]);
     }
   }
 }
bool match(int v) {
 for (; sp[v] < gph[v].size(); sp[v]++) {
   int x = gph[v][sp[v]];
   if (!b[x] || (ds[b[x]] == ds[v] + 1 && match(b[x]))) {
     b[x] = v; a[v] = x;
     return true;
   }
 }
 return false;
int find_matching() {
 int ret = 0;
 while (true) {
   fill(sp, sp + 1 + n, 0);
   bfs():
   int cur = 0;
   for (int i = 1; i \le n; i++) if (!a[i]) cur += match(i);
   if (cur > 0) ret += cur:
   else break;
 }
 return ret;
2.4 MCMF (1780B)
// 0-based, O(EF), directed graph
// call init() first, add_edge(u, v, c(capcity), w(cost)), then
flow(source, sink)
// returns (max flow, min cost when max flow)
struct MCMF {
 typedef long long T;
  const static int SV = 400:
  const T INF = numeric_limits<T>::max();
 struct Edge { int v; T c, w; int r; };
  int N, src, snk;
  vector<Edge> gph[SV];
 T dist[SV]:
  int par[SV];
  bool inq[SV];
  void init(int _N) {
   for (int i = 0; i < N; i++) gph[i].clear();</pre>
 void add_edge(int u, int v, T c, T w) {
   gph[u].push_back({v, c, w, gph[v].size()});
   gph[v].push_back({u, 0, -w, gph[u].size() - 1});
 bool shortest_path() {
   fill(dist, dist + N, INF);
   fill(par, par + N, -1);
   fill(ing, ing + N, false);
    deque<int> 0:
```

```
dist[src] = 0:
    inq[src] = true;
    Q.push_back(src);
    int cnt = 0;
    while (Q.size()) {
      int x = Q.front();
      Q.pop_front();
      inq[x] = false;
      for (auto [y, c, w, r] : gph[x]) {
        if (c == 0) continue;
        if (dist[v] > dist[x] + w) {
          dist[y] = max(dist[x] + w, -INF);
         par[y] = r;
          if (!inq[y]) {
            ina[v] = true;
            if (Q.size() && dist[Q[0]] > dist[y])
            Q.push_front(y);
            else Q.push_back(y);
       }
     }
   }
    return dist[snk] != INF;
  pair<T, T> flow(int _src, int _snk) {
    src = _src;
    snk = snk:
   T cost = 0, flow = 0;
    while (shortest_path()) {
     T val = INF:
      for (int x = snk; x != src;) {
        auto [y, c, w, r] = gph[x][par[x]];
        val = min(val, gph[y][r].c);
      for (int x = snk: x != src:) {
        auto [y, c, w, r] = gph[x][par[x]];
        gph[y][r].c -= val;
        gph[x][par[x]].c += val;
       x = y;
      cost += dist[snk] * val;
      flow += val:
    return {flow, cost};
};
     Hungarian (1291B)
// 1-based, O(V^3), weighted bipartite graph
// solves min cost matching of a perfect bipartite graph
// call init() first, add_edge(u, v, w), then call
min cost matching()
// edges can be negative -> for max cost just negate all costs
then negate the answer
// multiple edges are NOT allowed
// left vertex v is matched with right vertex a[v], a[v] = 0 if
not matched
```

```
// right vertex v is matched with left vertex b[v]. b[v] = 0 if
not matched
typedef long long T;
const int SZ = 505;
int n, a[SZ], b[SZ], m[SZ], p[SZ], vis[SZ];
T w[SZ][SZ], x[SZ], y[SZ];
void init(int n) {
  n = _n;
  // it must hold that x[i] + y[j] <= w[i][j] initially</pre>
  for (int i = 1; i <= n; i++) {
    x[i] = v[i] = -1e9;
    a[i] = b[i] = 0;
    for (int j = 1; j \le n; j++) w[i][j] = 0;
void add_edge(int u, int v, T c) { w[u][v] = c; }
T f(int i, int j) { return w[i][j] - x[i] - y[j]; }
int dfs(int v) {
  vis[v] = 1:
  for (int i = 1: i \le n: i++) if (m[i] == 0 || f(m[i], i) >
  f(v, i)) m[i] = v;
  for (int i = 1: i <= n: i++) if (f(v, i) == 0 && !p[i]) {
    if (int r = b[i] ? dfs(b[i]) : i; r) return r;
  return 0;
}
void go(int v) {
 for (int i = 1; i <= n; i++) m[i] = p[i] = vis[i] = 0;
  int r = dfs(v);
  while (!r) {
    for (int i = 1; i \le n; i++) if (!p[i]) {
      if (r == 0 || f(m[r], r) > f(m[i], i)) r = i;
    T a = f(m[r], r);
    for (int i = 1: i <= n: i++) {
      if (vis[i]) x[i] += a;
      if (p[i]) y[i] -= a;
    p[r] = m[r];
    r = b[r] ? dfs(b[r]) : r;
  while (r) swap(r, a[b[r] = p[r]]);
T min_cost_matching() {
  T ret = 0;
  for (int i = 1; i <= n; i++) go(i);
  for (int i = 1; i \le n; i++) ret += x[i] + y[i];
  return ret:
2.6 Blossom (1547B)
// 1-based, O(V^3), but practically O(VE), undirected graph
// call init() first, add_edge(u, v), then call
general matching()
// match[v] = 0 if v is not matched
// otherwise v is matched with match[v]
const int SV = 2020:
int n, t;
int match[SV], par[SV], vis[SV], org[SV], aux[SV];
```

```
vector<int> gph[SV], S;
void init(int _n) {
 n = _n; t = 0;
 for (int i = 1; i <= n; i++) {
   match[i] = par[i] = vis[i] = org[i] = aux[i] = 0;
   gph[i].clear();
 }
void add edge(int u. int v) {
  gph[u].push_back(v);
 gph[v].push_back(u);
int lca(int x, int y) {
 ++t:
 while (true) {
   if (x) {
      if (aux[x] == t) return x;
      aux[x] = t;
     x = org[par[match[x]]];
    swap(x, y);
 }
void blossom(int x, int y, int z) {
 while (org[x] != z) {
   par[x] = y; y = match[x];
   if (vis[v] == 1) \{ vis[v] = 0; S.push back(v); \}
   org[x] = org[y] = z;
   x = par[y];
 7
void augment(int x) {
 while (x) {
   int px = par[x], nx = match[px];
   match[x] = px; match[px] = x;
   x = nx:
 }
bool bfs(int s) {
 for (int i = 1; i \le n; i++) vis[i] = -1, org[i] = i;
 S.clear(); S.push_back(s);
 vis[s] = 0;
  while (!S.empty()) {
   int v = S.back(); S.pop_back();
   for (int x : gph[v]) {
     if (vis[x] == -1) {
       vis[x] = 1; par[x] = v;
       if (!match[x]) { augment(x); return true; }
        vis[match[x]] = 0:
        S.push_back(match[x]);
      else if (vis[x] == 0 && org[x] != org[v]) {
       int z = lca(org[x], org[v]);
        blossom(v, x, z); blossom(x, v, z);
   }
 }
 return false;
```

```
int general matching() {
 int cnt = 0;
 for (int v = 1; v \le n; v++) if (!match[v]) cnt += bfs(v);
 return cnt:
2.7 General Weighted Matching (6120B)
// 1-based, O(V^3) (but fast in practice), undirected graph
// call init() first, add_edge(u, v, w), then call solve()
// returns (weight of maximum matching, size of maximum
matching)
// if vertex x is not included in a matching, match[x] = 0.
// Otherwise match[x] stores the vertex x is matched with
typedef long long T;
static const T INF = numeric_limits<T>::max();
static const int SV = 514;
struct edge {
 int u. v: T w:
 edge() {}
 edge(int ui, int vi, T wi) : u(ui), v(vi), w(wi) {}
int n, n_x;
edge g[SV * 2][SV * 2];
T lab[SV * 2];
int match[SV * 2], slack[SV * 2], st[SV * 2], pa[SV * 2];
int flo_from[SV * 2][SV + 1], S[SV * 2], vis[SV * 2];
vector<int> flo[SV * 2];
queue<int> q;
void init(int n) {
 for (int u = 1; u \le n; ++u) for (int v = 1; v \le n; ++v)
 g[u][v] = edge(u, v, 0);
void add_edge(int ui, int vi, T wi) { g[ui][vi].w = g[vi][ui].w
T e delta(const edge &e) { return lab[e.u] + lab[e.v] -
g[e.u][e.v].w * 2; }
void update_slack(int u, int x) { if (!slack[x] ||
e_delta(g[u][x]) < e_delta(g[slack[x]][x])) slack[x] = u; }</pre>
void set_slack(int x) {
 slack[x] = 0:
 for (int u = 1; u \le n; ++u) if (g[u][x].w > 0 && st[u] != x
 && S[st[u]] == 0) update_slack(u, x);
void q_push(int x) {
 if (x \le n) q.push(x);
 else for (size_t i = 0; i < flo[x].size(); i++)</pre>
 q_push(flo[x][i]);
void set_st(int x, int b) {
 st[x] = b;
 if (x > n) for (size_t i = 0; i < flo[x].size(); ++i)
 set st(flo[x][i], b):
int get_pr(int b, int xr) {
 int pr = find(flo[b].begin(), flo[b].end(), xr) -
 flo[b].begin();
```

if (pr % 2 == 1) {

```
reverse(flo[b].begin() + 1, flo[b].end()):
    return (int)flo[b].size() - pr;
  else return pr;
void set_match(int u, int v) {
  match[u] = g[u][v].v;
 if (u <= n) return;
  edge e = g[u][v]:
  int xr = flo_from[u][e.u], pr = get_pr(u, xr);
  for (int i = 0; i < pr; ++i) set_match(flo[u][i], flo[u][i ^</pre>
  set_match(xr, v);
 rotate(flo[u].begin(), flo[u].begin() + pr, flo[u].end());
void augment(int u, int v) {
  while (1) {
    int xnv = st[match[u]];
    set match(u, v):
    if (!xnv) return:
    set_match(xnv, st[pa[xnv]]);
    u = st[pa[xnv]], v = xnv:
int get_lca(int u, int v) {
  static int t = 0;
 for (++t: u || v: swap(u, v)) {
    if (u == 0) continue;
    if (vis[u] == t) return u;
    vis[u] = t:
    u = st[match[u]];
    if (u) u = st[pa[u]];
 }
 return 0;
void add blossom(int u, int lca, int v) {
  int b = n + 1;
  while (b \leq n x && st[b]) ++b:
  if (b > n_x) ++n_x;
  lab[b] = 0, S[b] = 0:
  match[b] = match[lca];
  flo[b].clear();
  flo[b].push_back(lca);
  for (int x = u, v: x != lca: x = st[pa[v]])
  flo[b].push_back(x), flo[b].push_back(y = st[match[x]]),
  q_push(y);
  reverse(flo[b].begin() + 1, flo[b].end());
  for (int x = v, y; x != lca; x = st[pa[y]])
  flo[b].push_back(x), flo[b].push_back(y = st[match[x]]),
  q_push(y);
  set st(b, b):
  for (int x = 1; x \le n_x; ++x) g[b][x].w = g[x][b].w = 0;
  for (int x = 1; x <= n; ++x) flo_from[b][x] = 0;</pre>
  for (size_t i = 0; i < flo[b].size(); ++i) {</pre>
    int xs = flo[b][i];
    for (int x = 1; x <= n_x; ++x) if (g[b][x].w == 0 ||
    e delta(g[xs][x]) < e delta(g[b][x]))</pre>
      g[b][x] = g[xs][x], g[x][b] = g[x][xs];
```

```
for (int x = 1: x \le n: ++x) if (flo from[xs][x])
   flo_from[b][x] = xs;
 set_slack(b);
void expand_blossom(int b) {
 for (size_t i = 0; i < flo[b].size(); ++i) set_st(flo[b][i],</pre>
 flo[b][i]);
 int xr = flo_from[b][g[b][pa[b]].u], pr = get_pr(b, xr);
 for (int i = 0; i < pr; i += 2) {
   int xs = flo[b][i], xns = flo[b][i + 1];
   pa[xs] = g[xns][xs].u;
   S[xs] = 1, S[xns] = 0;
   slack[xs] = 0. set slack(xns):
   q_push(xns);
  S[xr] = 1, pa[xr] = pa[b];
 for (size_t i = pr + 1; i < flo[b].size(); ++i) {</pre>
   int xs = flo[b][i]:
   S[xs] = -1, set slack(xs):
 st[b] = 0:
bool on_found_edge(const edge &e) {
 int u = st[e.u]. v = st[e.v]:
 if (S[v] == -1) {
   pa[v] = e.u. S[v] = 1:
   int nu = st[match[v]]:
   slack[v] = slack[nu] = 0;
   S[nu] = 0, q_push(nu);
  else if (S[v] == 0) {
   int lca = get lca(u, v):
   if (!lca) return augment(u, v), augment(v, u), true;
   else add blossom(u, lca, v):
 return false;
bool matching() {
 memset(S + 1, -1, sizeof(int) * n_x);
 memset(slack + 1, 0, sizeof(int) * n_x);
 q = queue<int>();
 for (int x = 1; x \le n_x; ++x) if (st[x] == x && !match[x])
 pa[x] = 0, S[x] = 0, q push(x):
 if (q.empty()) return false;
 while (1) {
   while (q.size()) {
     int u = q.front();
     q.pop();
      if (S[st[u]] == 1) continue;
      for (int v = 1; v \le n; ++v) if (g[u][v].w > 0 && st[u]
      != st[v]) {
       if (e_delta(g[u][v]) == 0) {
          if (on_found_edge(g[u][v])) return true;
       } else update_slack(u, st[v]);
     }
   }
   T d = INF;
```

```
for (int b = n + 1; b \le n \times +b) if (st[b] == b \&\& S[b]
    == 1) d = min(d, lab[b] / 2);
    for (int x = 1; x \le n_x; ++x) if (st[x] == x && slack[x])
      if (S[x] == -1) d = min(d, e_delta(g[slack[x]][x]));
      else if (S[x] == 0) d = min(d, e_delta(g[slack[x]][x]) /
    for (int u = 1: u \le n: ++u) {
      if (S[st[u]] == 0) {
        if (lab[u] <= d) return 0;
        lab[u] -= d:
      else if (S[st[u]] == 1) lab[u] += d:
    for (int b = n + 1; b \le n_x; ++b) if (st[b] == b) {
      if (S[st[b]] == 0) lab[b] += d * 2:
      else if (S[st[b]] == 1) lab[b] -= d * 2;
    a = queue<int>():
    for (int x = 1; x \le n_x; ++x) if (st[x] == x && slack[x]
    && st[slack[x]] != x && e delta(g[slack[x]][x]) == 0)
      if (on_found_edge(g[slack[x]][x])) return true;
    for (int b = n + 1; b <= n_x; ++b) if (st[b] == b && S[b]
    == 1 \&\& lab[b] == 0) expand blossom(b):
 return false:
pair<T, int> solve() {
 memset(match + 1, 0, sizeof(int) * n);
 n_x = n;
 int n_matches = 0;
 T tot weight = 0:
  for (int u = 0; u <= n; ++u) st[u] = u, flo[u].clear();</pre>
 for (int u = 1; u \le n; ++u) for (int v = 1; v \le n; ++v) {
   flo_from[u][v] = (u == v ? u : 0);
    w_max = max(w_max, g[u][v].w);
 for (int u = 1; u \le n; ++u) lab[u] = w_max;
  while (matching()) ++n_matches;
  for (int u = 1; u \le n; t+u) if (match[u] && match[u] < u)
 tot_weight += g[u][match[u]].w;
 return make pair(tot weight, n matches):
2.8 Min Cost Circulation with Cost Scaling (3447B)
// Include any max flow algorithm here
// 0-based
// call init() first, add_edge(u, v, l, r), then flow(src, snk)
// gets maximum flow for given LR-flow graph
// returns true if feasible, false if infeasible
// for circulation, call flow(-1, -1)
// for maximum LR flow, run mf.flow(src, snk) again
// for minimum LR flow, binary search with INF
struct Circulation {
 typedef long long T;
  const T INF = numeric_limits<T>::max() / 2;
```

```
int n:
  T lbsum = 0;
  HLPP mf; // any max flow algorithm
  // dummy src = n, dummy snk = n+1
  void init(int k) {
    n = k:
    mf.init(n + 2):
    lbsum = 0;
  void add_edge(int s, int e, T l, T r) {
    mf.add_edge(s, e, r - 1);
    if (1 > 0) {
      mf.add_edge(n, e, 1);
      mf.add\_edge(s, n + 1, 1);
      lbsum += 1:
    } else {
      mf.add_edge(n, s, -1);
      mf.add_edge(e, n + 1, -1);
      lbsum += -1:
    }
  bool flow(int src. int snk) {
    // to reduce as maxflow with lower bounds, in circulation
    problem skip this line
    // mf.add_edge(snk, src, INF);
    return lbsum == mf.flow(n, n + 1);
    // to get maximum LR flow, run mf.flow(src, snk) again
};
// 0-based, O(V^3 log(VC)), directed graph
// call init() first, add_edge(u, v, l, r, cost), then solve()
// gets minimum cost circulation in given graph
// returns {false, 0} if infeasible
// otherwise, returns {true, ans}
// solution flow in edge (v, p) = gph[v][p].cap - gph[v][p].rem
struct MinCostCirculation {
  typedef long long T;
  const int SCALE = 3; // scale by 1/(1 << SCALE)</pre>
  const T INF = numeric_limits<T>::max() / 2;
  struct EdgeStack {
   int s, e;
   T 1. r. cost:
  }:
  struct Edge {
    int pos, rev;
    T rem, cap, cost;
  };
  vector<EdgeStack> estk;
  Circulation circ:
  vector<vector<Edge>> gph;
  vector<T> p;
  void init(int k) {
    n = k;
    circ.init(n);
    gph.clear(); gph.resize(n);
    p.clear(); p.resize(n);
```

```
void add_edge(int s, int e, T l, T r, T cost) {
  estk.push_back({s, e, 1, r, cost});
pair<bool, T> solve() {
 for (auto &i : estk) if (i.s != i.e) circ.add_edge(i.s,
 i.e, i.l, i.r);
 if (!circ.flow(-1, -1)) return make_pair(false, T(0));
 vector<int> ptr(n);
 T eps = 0:
 for (auto &i : estk) {
   T curFlow;
   if (i.s != i.e) curFlow = i.r -
    circ.mf.gph[i.s][ptr[i.s]].c;
    else curFlow = i.r:
    int srev = gph[i.e].size():
    int erev = gph[i.s].size();
    if (i.s == i.e) srev++;
    gph[i.s].push_back({i.e, srev, i.r - curFlow, i.r, i.cost
    *(n + 1)):
    gph[i.e].push_back({i.s, erev, -i.l + curFlow, -i.l,
    -i.cost * (n + 1));
    eps = max(eps, abs(i.cost) * (n + 1)):
    if (i.s != i.e) {
     ptr[i.s] += 2;
      ptr[i.e] += 2;
  while (eps > 1) {
    eps = max(T(1), eps >> SCALE);
   auto cost = [&](Edge &e, int s, int t) { return e.cost +
   p[s] - p[t]; };
    vector<T> excess(n);
    queue<int> Q:
    auto push = [&] (Edge &e, int src, T flow) {
     e.rem -= flow:
      gph[e.pos][e.rev].rem += flow:
      excess[src] -= flow;
      excess[e.pos] += flow;
      if (excess[e.pos] <= flow && excess[e.pos] > 0)
      Q.push(e.pos);
   }:
    auto relabel = [&](int v) {
     p[v] = -INF;
      for (auto &e : gph[v]) {
       if (e.rem > 0) {
          p[v] = max(p[v], p[e.pos] - e.cost - eps);
     }
   }:
   for (int i = 0; i < n; i++) {
     for (auto &j : gph[i]) {
       if (j.rem > 0 && cost(j, i, j.pos) < 0) {
          push(j, i, j.rem);
       }
     }
    while (!Q.emptv()) {
     int x = Q.front();
      Q.pop();
```

```
while (excess[x] > 0) {
          for (auto &e : gph[x]) {
            if (e.rem > 0 && cost(e, x, e.pos) < 0) {
              push(e, x, min(e.rem, excess[x]));
              if (excess[x] == 0) break:
          }
          if (excess[x] == 0) break;
          relabel(x):
     }
   }
   T ans = 0:
    for (int i = 0; i < n; i++) {
      for (auto &i : gph[i]) {
        j.cost \neq (n + 1);
        ans += j.cost * (j.cap - j.rem);
    return make_pair(true, ans / 2);
 }
};
     Global Min Cut (1557B)
// 0-based, O(V^3), undirected graph
// call init() first, add_edge(u, v, w), then call solve()
// gets global min cut of given graph
// \text{ cut}[v] = \{0, 1\} which side the vertex belongs to
const int SV = 505:
typedef int T;
const T INF = numeric_limits<T>::max();
int n;
T g[SV][SV];
vector<int> cut:
void init(int _n) {
 for (int i = 0; i < n; i++) for (int j = 0; j < n; j++)
 g[i][j] = 0;
void add_edge(int u, int v, T w) {
 if (u == v) return;
 g[u][v] += w:
 g[v][u] += w;
pair<T, pii> stMinCut(vector<int> &active) {
 vector<T> key(n);
 vector<int> v(n):
  int s = -1, t = -1;
 for (int i = 0; i < active.size(); i++) {</pre>
   T \max v = -1:
   int cur = -1;
   for (auto j : active) if (v[j] == 0 &\& maxv < key[j]) {
      maxv = key[j];
      cur = j;
    t = s; s = cur;
    v[cur] = 1;
```

for (auto j : active) key[j] += g[cur][j];

```
return {key[s], {s, t}};
T solve() {
 T res = INF:
  vector<vector<int>> grps;
  vector<int> active;
  cut.resize(n);
  for (int i = 0; i < n; i++) grps.push_back(\{1, i\});
  for (int i = 0; i < n; i++) active.push_back(i);</pre>
  while (active.size() >= 2) {
    auto cur = stMinCut(active);
    if (cur.ff < res) {</pre>
      res = cur.ff:
      fill(cut.begin(), cut.end(), 0);
      for (auto v : grps[cur.ss.ff]) cut[v] = 1;
    int s = cur.ss.ff, t = cur.ss.ss;
    if (grps[s].size() < grps[t].size()) swap(s, t);</pre>
    active.erase(find(active.begin(), active.end(), t));
    grps[s].insert(grps[s].end(), grps[t].begin(),
    grps[t].end());
    for (int i = 0; i < n; i++) { g[i][s] += g[i][t]; g[i][t] =
    for (int i = 0; i < n; i++) { g[s][i] += g[t][i]; g[t][i] =
    g[s][s] = 0;
  return res;
2.10 Gomory-Hu Tree (802B)
// Include any max flow algorithm here
// 1-based
// MUST call init() before calling solve();
// vector<pii> par = solve();
// par represents 1-rooted tree. if i > 1, par[i] = (parent,
// i-j cut in original graph = i-j cut in gomory-hu tree
// time complexity: O(V * T(maxflow))
const int SZ = 101010;
typedef long long T;
struct edge { int u, v; T w; };
int n:
vector<edge> edges;
bool vis[SZ];
Dinic mf:
void init(int _n) { n = _n; edges.clear(); }
void add_edge(int u, int v, T w) { edges.push_back({u, v, w});
void dfs(int v) {
 if (vis[v]) return:
 vis[v] = true:
 for (auto &e : mf.gph[v]) if (e.c > 0) dfs(e.v);
vector<pair<int, T>> solve() {
 vector<pair<int, T>> ret(n + 1, {1, 0});
 for (int i = 2; i \le n; i++) {
```

```
mf.init(n + 1):
    for (auto [u, v, w] : edges) mf.add_edge(u, v, w, false);
    ret[i].ss = mf.flow(i, ret[i].ff);
    for (int j = 1; j <= n; j++) vis[j] = 0;
    dfs(i):
    for (int j = i + 1; j \le n; j++) {
     if (ret[j].ff == ret[i].ff && vis[j]) {
       ret[j].ff = i;
     }
   }
 }
 return ret;
2.11 Simplex (2351B)
// Two-phase simplex algorithm for solving linear programs of
the form
11
       maximize
                    c^T x
//
       subject to Ax <= b
11
                    x >= 0
// INPUT: A -- an m x n matrix
//
         b -- an m-dimensional vector
//
          c -- an n-dimensional vector
//
          x -- a vector where the optimal solution will be
stored
// OUTPUT: value of the optimal solution (infinity if unbounded
           above, nan if infeasible)
// To use this code, create an LPSolver object with A, b, and c
// arguments. Then, call Solve(x).
// Time Complexity : exponential, but practically O(n^2m^2).
typedef vector<double> VD;
typedef vector<VD> VVD;
typedef vector<int> VI;
const double EPS = 1e-9;
struct LPSolver {
  int m, n;
  VI B. N:
  VVD D:
  LPSolver(const VVD& A, const VD& b, const VD& c) :
    m(b.size()), n(c.size()), N(n + 1), B(m), D(m + 2), VD(n + 1)
    2)) {
        assert(A.size() == b.size() && A[0].size() ==
        c.size()):
    for (int i = 0; i < m; i++) for (int j = 0; j < n; j++)
    D[i][j] = A[i][j];
    for (int i = 0; i < m; i++) { B[i] = n + i; D[i][n] = -1;
   D[i][n + 1] = b[i];
    for (int j = 0; j < n; j++) { N[j] = j; D[m][j] = -c[j]; }
    N[n] = -1; D[m + 1][n] = 1;
  void pivot(int r, int s) {
    double inv = 1.0 / D[r][s];
    for (int i = 0; i < m + 2; i++) if (i != r)
      for (int j = 0; j < n + 2; j++) if (j != s)
       D[i][j] = D[r][j] * D[i][s] * inv;
    for (int j = 0; j < n + 2; j++) if (j != s) D[r][j] *= inv;
    for (int i = 0; i < m + 2; i++) if (i != r) D[i][s] *=
    -inv;
    D[r][s] = inv:
```

```
swap(B[r], N[s]):
 }
  bool simplex(int phase) {
    int x = phase == 1 ? m + 1 : m;
    while (true) {
      int s = -1;
      for (int j = 0; j \le n; j++) {
        if (phase == 2 && N[j] == -1) continue;
        if (s == -1 || D[x][j] < D[x][s] || D[x][j] == D[x][s]
        && N[j] < N[s]) s = j;
      if (D[x][s] > -EPS) return true;
      int r = -1;
      for (int i = 0; i < m; i++) {
        if (D[i][s] < EPS) continue:
        if (r == -1 || D[i][n + 1] / D[i][s] < D[r][n + 1] /
       D[r][s] ||
          (D[i][n + 1] / D[i][s]) == (D[r][n + 1] / D[r][s]) &&
          B[i] < B[r]) r = i;
      if (r == -1) return false;
      pivot(r, s);
   }
  double solve(VD& x) {
    int r = 0:
    for (int i = 1: i < m: i++) if (D[i][n + 1] < D[r][n + 1])
   r = i:
    if (D[r][n + 1] < -EPS) {
      pivot(r, n);
      if (!simplex(1) || D[m + 1][n + 1] < -EPS)
       return -numeric_limits<double>::infinity();
      for (int i = 0; i < m; i++) if (B[i] == -1) {
        int s = -1;
       for (int j = 0; j \le n; j++)
         if (s == -1 || D[i][j] < D[i][s] || D[i][j] ==
         D[i][s] \&\& N[i] < N[s]) s = i;
        pivot(i, s);
    if (!simplex(2))
     return numeric_limits<double>::infinity();
    for (int i = 0: i < m: i++) if (B[i] < n) x[B[i]] = D[i][n
    + 1];
    return D[m][n + 1];
};
   Graph
3.1 BCC (1694B)
// 1-based, O(V + E), undirected graph
// call init() first, add_edge(u, v, i), then call get_bcc()
// bcnt : number of bcc
// bcc[c] : vertices of color c
// color[v] : colors of vertex v
// ecol[e] : color of edge e
```

```
// connect (v. c + N) for block-cut tree
const int SV = 5e5 + 10;
const int SE = 5e5 + 10;
int N, M;
vector<pii> adj[SV];
int dfn[SV], low[SV], dcnt;
bool vis[SV]:
int bcnt, ecol[SE];
vector<int> color[SV], bcc[SE]:
void init(int _N, int _M) {
 N = N; M = M;
 for (int i = 1; i <= N; i++) {
    dfn[i] = low[i] = vis[i] = 0;
    adi[i] = vector<pii>():
    color[i] = vector<int>():
  for (int i = 1; i <= M; i++) {
    ecol[i] = 0;
    bcc[i] = vector<int>();
  dcnt = 0; bcnt = 0;
void add_edge(int u, int v, int i) {
 // i is edge number of edge (u, v)
 adj[u].push_back({v, i});
  adj[v].push_back({u, i});
void dfs(int now. int bef) {
 dfn[now] = low[now] = ++dcnt;
  for (auto [nxt, p] : adj[now]) {
    if (nxt == bef) continue;
    if (dfn[nxt]) low[now] = min(low[now], dfn[nxt]);
    else {
      dfs(nxt, now);
      low[now] = min(low[now], low[nxt]);
 }
void dfs2(int now, int col) {
 if (col) {
    color[now].push_back(col);
    bcc[col].push_back(now);
  vis[now] = true:
  for (auto [nxt, p] : adj[now]) {
    if (dfn[nxt] < dfn[now]) ecol[p] = col;</pre>
    if (vis[nxt]) continue;
    if (low[nxt] >= dfn[now]) {
      bcnt++:
      ecol[p] = bcnt;
      color[now].push_back(bcnt);
      bcc[bcnt].push_back(now);
      dfs2(nxt, bcnt);
    } else {
      ecol[p] = col;
      dfs2(nxt, col);
}
```

```
void get bcc() {
  for (int i = 1; i <= N; i++) if (!dfn[i]) dfs(i, i);</pre>
  for (int i = 1; i \le N; i++) if (!vis[i]) dfs2(i, 0);
  // Comment this if isolated vertices does not form a bcc
  for (int i = 1; i <= N; i++) if (adj[i].empty()) {</pre>
    color[i].push_back(bcnt);
   bcc[bcnt].push_back(i);
3.2 SPFA (1548B)
// 1-based, average O(É), directed graph
// call init() first, add_edge(u, v, w), then call
shortest_path(source)
// shortest path is stored in dist[v]
// returns true if negative cycle was not detected, false if
negative cycle was detected
// can NOT find negative cycles unreachable from source
typedef long long T:
const int SV = 101010;
// INF should be larger than M * |X|
const T INF = (T)1e18 + 100:
int n;
vector<pair<int, T>> gph[SV];
T dist[SV];
int par[SV], in[SV];
bool inq[SV];
void init(int _n) {
 n = n:
 for (int i = 1; i <= n; ++i) gph[i].clear();
void add_edge(int u, int v, T w) { gph[u].push_back({v, w}); }
bool is_cycle() {
 fill(in + 1, in + n + 1, 0);
  for (int i = 1; i <= n; ++i) if (par[i] != 0) ++in[par[i]];
  for (int i = 1; i <= n; ++i) if (!in[i]) Q.push(i);
  while (Q.size()) {
   int x = Q.front(); Q.pop();
   if (par[x] != 0 && !--in[par[x]]) Q.push(par[x]);
  // in order to restore cycle, choose any node s.t. in[i] !=
  0, then i belongs to cycle
  // then, follow par[i] until it returns to i
  for (int i = 1; i <= n; ++i) if (in[i]) return true;</pre>
 return false:
bool shortest_path(int s) {
 // if s = -1, start from all vertices (for only negative
  cycle detection)
  fill(dist + 1, dist + n + 1, INF);
  fill(par + 1, par + n + 1, 0);
  fill(inq + 1, inq + n + 1, false);
  deque<int> 0:
 if (s == -1) {
   for (int i = 1; i <= n; i++) {
      dist[i] = 0; inq[i] = true; Q.push_back(i);
   }
 } else {
```

```
dist[s] = 0; inq[s] = true; Q.push_back(s);
 }
 int cnt = 0;
 while (Q.size()) {
   int x = 0.front():
   Q.pop_front();
   inq[x] = false;
   for (auto [v, w] : gph[x]) {
     if (dist[y] > dist[x] + w) {
       dist[y] = max(dist[x] + w, -INF);
       par[v] = x;
       if (!inq[y]) {
         inq[v] = true;
         if (Q.size() && dist[Q[0]] > dist[y])
         Q.push front(v):
         else Q.push_back(y);
     }
   // comment this line if negative cycle detection is not
   if (++cnt % n == 0 && is cvcle()) return false:
 return true;
3.3 Dominator Tree (1433B)
// 1-based, O(V + E), general directed graph
// call init() first, add_edge(u, v), then call calc(source)
// result stored in I[v]
// I[v] = 0 if not reachable, else I[v] = idom of vertex v
// I[v] -> v forms a tree rooted at the source
const int SV = 202020:
int n, sp, dfn[SV], ord[SV], par[SV];
int S[SV], I[SV]:
vector<int> gph[SV], rev[SV], V[SV];
void init(int _n) {
 n = _n; sp = 0;
 for (int i = 1; i <= n; i++) {
   dfn[i] = 0, ord[i] = 0, S[i] = 1e9, I[i] = 0;
   gph[i].clear():
   rev[i].clear();
void add_edge(int u, int v) {
 gph[u].push back(v):
 rev[v].push_back(u);
struct dsu {
 int par[SV], bst[SV];
 void init() {
   iota(par + 1, par + 1 + n, 1);
   iota(bst + 1, bst + 1 + n, 1);
 void merge(int p, int v) { par[v] = p; }
 int calc(int v) {
   if (par[v] == v) return bst[v];
```

```
int k = calc(par[v]):
    if (S[bst[v]] > S[k]) bst[v] = k;
    par[v] = par[par[v]];
    return bst[v];
} dsu:
void dfs(int v) {
 dfn[v] = ++sp;
  ord[sp] = v:
  for (int x : gph[v]) if (!dfn[x]) {
   par[x] = v;
    dfs(x);
}
void calc(int src) {
 dfs(src);
  dsu.init():
  I[src] = src;
  for (int i = n; i > 1; i--) if (ord[i] != 0) {
    int v = ord[i];
    for (int x : rev[v]) if (dfn[x]) S[v] = min(S[v], dfn[x] >
    dfn[v] ? S[dsu.calc(x)] : dfn[x]):
    dsu.merge(par[v], v);
    V[ord[S[v]]].push_back(v);
    for (int x : V[par[v]]) {
      int y = dsu.calc(x);
     I[x] = (S[x] == S[y]) ? ord[S[x]] : y;
    V[par[v]].clear();
  for (int i = 2; i <= n; i++) if (ord[i] != 0) {
    int v = ord[i];
    I[v] = (I[v] == ord[S[v]]) ? I[v] : I[I[v]];
3.4 Tree Isomorphism (1325B)
// 1-based, O(n \log n)
// call hash_init() exactly ONCE before using
// then call tree_init(int n) per each tree before adding any
edges
// use unrooted_hash() if unrooted
// use rooted_hash(parent, vertex) for rooted/subtree hash
typedef unsigned long long ull;
const int SZ = 1010101;
int n, sub[SZ], par[SZ], dep[SZ];
vector<int> gph[SZ];
mt19937 rnd(1557):
ull rng() { return uniform_int_distribution<ull>(0, -1)(rnd); }
ull A[SZ], B[SZ];
void hash_init() {
 for (int i = 0; i < SZ; i++) {
    A[i] = rng():
    B[i] = rng();
void tree_init(int _n) {
 n = n:
```

```
for (int i = 1; i <= n; i++) gph[i].clear();</pre>
void add_edge(int u, int v) {
 gph[u].push_back(v);
 gph[v].push_back(u);
void dfs(int p, int v) {
 sub[v] = 1;
 for (int x : gph[v]) if (p != x) {
   par[x] = v;
   dfs(v, x);
   sub[v] += sub[x];
int centroid(int p, int v, int tot) {
 for (int x : gph[v]) if (p != x) {
   if (sub[x] * 2 >= tot) return centroid(v, x, tot);
 return v:
ull rooted_hash(int p, int v) {
 vector<ull> V = {1}:
  dep[v] = 0;
  for (int x : gph[v]) if (p != x) {
   ull r = rooted_hash(v, x);
   dep[v] = max(dep[v], dep[x] + 1);
   V.push_back(r);
  sort(V.begin(), V.end());
  ull ret = 0:
  for (int i = 0; i < V.size(); i++) ret += V[i] ^ A[dep[v]] ^</pre>
 return ret:
ull unrooted hash() {
 dfs(-1, 1):
 int x = centroid(-1, 1, sub[1]);
 if (2 * sub[x] == sub[1]) return rooted_hash(x, par[x]) *
 rooted_hash(par[x], x);
  else return rooted_hash(-1, x);
3.5 Enumerate triangle, Count 4-cycle (1204B)
// 1-based, O(E sqrt E), undirected graph
// at most O(E sqrt E) triangles, achieved when K_n
// at most O(E^2) 4-cycles, achieved when K_n
// call init() first, add edge(u, v), then call
enumerate_triangles() or count_4_cycles()
void solve(int x, int y, int z);
const int SV = 101010;
int n, cnt[SV], ord[SV], rnk[SV];
vector<int> gph[SV];
void init(int _n) {
 n = n:
 for (int i = 1: i <= n: i++) gph[i].clear():
void add_edge(int u, int v) {
 gph[u].push_back(v);
 gph[v].push_back(u);
```

```
void precalc() {
  iota(ord + 1, ord + 1 + n, 0);
  sort(ord + 1, ord + 1 + n, [&](int i, int j) { return
 gph[i].size() < gph[j].size(); });</pre>
 for (int i = 1; i <= n; i++) rnk[ord[i]] = i;
void enumerate_triangles() {
 precalc();
 for (int i = 1: i <= n: i++) {
   int x = ord[i];
   for (int y : gph[x]) cnt[y] = true;
   for (int y : gph[x]) if (rnk[y] < rnk[x]) {
     for (int z : gph[y]) if (cnt[z] && rnk[z] < rnk[y]) {</pre>
        // x, y, z forms a triangle
        solve(x, v, z):
    for (int y : gph[x]) cnt[y] = false;
11 count_4_cycles() {
 precalc():
 11 \text{ ret} = 0;
 for (int i = 1; i <= n; i++) {
   int x = ord[i]:
   for (int y : gph[x]) if (rnk[y] < rnk[x]) {
     for (int z : gph[y]) if (rnk[z] < rnk[y]) {
        ret += cnt[z]++;
    for (int y : gph[x]) if (rnk[y] < rnk[x]) for (int z :
    gph[y]) cnt[z] = 0;
 }
 return ret;
3.6 Directed MST (2459B)
// O-based, O(E log V)
// call dmst(n, r, E); where E is the edge list of the graph
// return the cost of r-rooted mst, and parent of each node (r
itself for parent of r)
// all nodes should be reachable from r. dmst() doesn't check
about it :<
typedef long long T;
typedef pair<T, T> ptt;
struct UF1 {
 int n;
 vector<int> par;
 UF1(int n) : n(n), par(n) { iota(par.begin(), par.end(), 0);
 int fnd(int x) { return par[x] == x ? x : par[x] =
 fnd(par[x]): }
 bool uni(int x, int y) { x = fnd(x), y = fnd(y); if (x == y)
 return false; par[x] = y; return true; }
};
struct UF2 {
 int n:
```

```
vector<int> par:
  vector<pii> his;
  UF2(int n) : n(n), par(n), his() { iota(par.begin(),
  par.end(), 0); }
  int fnd(int x) { return par[x] == x ? x : (his.push_back({x,
  par[x]}), par[x] = fnd(par[x])); }
 void uni(int x, int y) { x = fnd(x), y = fnd(y);
 his.push_back({x, par[x]}); par[x] = y; }
}:
struct Edge{int u, v; T w;};
pair<T, vector<int>> dmst(int n, int r, vector<Edge> E) {
  int m = E.size():
  vector<priority_queue<ptt, vector<ptt>, greater<ptt>>> Q(n);
  vector<T> L(n):
  for(int i = 0; i < (int)E.size(); ++i) Q[E[i].v].push({</pre>
  E[i].w, i });
 T wgh = 0;
  UF1 uf1(n + m); UF2 uf2(n + m);
  vector<ptt> P(n, \{-1, -1\});
  vector<int> R:
  queue<int> V;
  for(int i = 0: i < n: ++i) if(i != r) V.push(i):
  while(V.size()) {
    int q = V.front(); V.pop();
    while(q == uf2.fnd(E[Q[q].top().ss].u)) Q[q].pop();
    auto [w, e] = Q[q].top(); Q[q].pop();
    w += L[a]:
    wgh += w;
    P[q] = \{e, w\};
    if(!uf1.uni(E[e].u, E[e].v)) {
      int x = q, y = x;
      vector<int> cyc;
      do { cyc.push_back(y); y = uf2.fnd(E[P[y].ff].u); }
      while(x != y);
      int N = P.size();
      Q.emplace_back();
      L.push_back(0);
      P.push_back({-1, -1});
      R.push_back(uf2.his.size());
      V.push(N):
      uf1.uni(cyc[0], N);
      for(auto i : cyc) uf2.uni(i, N);
      for(int i = 1; i < (int)cyc.size(); ++i)</pre>
      if(Q[cvc[0]].size() < Q[cvc[i]].size()) swap(cvc[0].</pre>
      cvc[i]);
      swap(Q[cyc[0]], Q[N]);
      swap(L[cyc[0]], L[N]);
      L[N] -= P[cvc[0]].ss;
      for(int i = 1; i < (int)cyc.size(); ++i) {</pre>
        while(Q[cyc[i]].size()) {
          auto [_w, _e] = Q[cyc[i]].top(); Q[cyc[i]].pop();
          Q[N].push({ _w + L[cyc[i]] - L[N] - P[cyc[i]].ss, _e}
          });
       }
     }
   }
  for(int i = (int)P.size() - 1; i >= n; --i) {
```

```
while(uf2.his.size() > R[i - n]) uf2.par[uf2.his.back().ff]
   = uf2.his.back().ss, uf2.his.pop_back();
   P[uf2.fnd(E[P[i].ff].v)].ff = P[i].ff;
 vector<int> ret(n):
 for(int i = 0; i < n; ++i) ret[i] = (P[i].ff == -1 ? i :</pre>
 E[P[i].ff].u):
 return {wgh, ret};
3.7 K-th Shortest Path (3048B)
// call init(|V|) first, add_edge(u, v, x), then kth_walk(s, e,
// O(|E|log|E|+klogk) in total
// if there is negative edge, O((SPFA time) + |E|log|E| +
klogk)
// multi-edges, loops are allowed.
// ALERT: NODES ARE O-BASED!!!!!!!!
// ALERT: max answer = K|E||X| could be too large.
typedef long long T:
typedef pair<T, T> ptt;
const int SV = 505050, HSIZE = 20202020; // HSIZE >= 2|E|log|E|
const T INF = (T)1e18; // INF >= |E||X| (not need to be larger
than K|E||X|)
int n:
vector<pair<int, T>> gph[SV], rgph[SV];
struct Lheap {
 struct Node {
   ptt x;
   int 1, r, s;
   Node(void): x(\{0, 0\}), 1(0), r(0), s(0) \{\}
   Node(ptt x) : x(x), 1(0), r(0), s(1) {}
 }h[HSIZE]:
  int cnt = 1;
  int mk(ptt x) { h[cnt] = Node(x); return cnt++; }
 void norm(int x) {
   if(h[h[x].1].s < h[h[x].r].s) swap(h[x].1, h[x].r);
   h[x].s = h[h[x].r].s + 1:
 int mrge(int x, int y) {
   if(!x || !y) return x ^ y;
   if(h[x].x > h[y].x) swap(x, y);
   int ret = mk(h[x].x);
   h[ret].1 = h[x].1:
   h[ret].r = mrge(h[x].r, y);
   norm(ret):
   return ret:
void init(int _n) {
 n = n:
 for(int i = 0; i < n; ++i) gph[i].clear();</pre>
 for(int i = 0; i < n; ++i) rgph[i].clear();</pre>
 hp.cnt = 1:
void add_edge(int u, int v, T x) {
 gph[u].push_back({v, x});
 rgph[v].push_back({u, x});
// return less than K elements if there is no such walk
```

```
vector<T> kth walk(int s, int e, int K) {
 int nxt[n]; vector<int> top; bool vst[n]{};
 T dst[n]; fill(dst, dst + n, INF); dst[e] = 0;
 typedef tuple<T, int, int> tlii;
 // if there is no negative edge
 priority_queue<tlii, vector<tlii>, greater<tlii>> Q;
 Q.push(\{0, e, -1\}):
 while(Q.size()) {
   auto [d, x, p] = Q.top(); Q.pop();
   if(vst[x]) continue;
   vst[x] = true; nxt[x] = p;
   top.push_back(x);
   for(auto [v, c] : rgph[x]) if(!vst[v] && dst[v] > d + c)
   dst[v] = d + c, Q.push({d + c, y, x});
 // if there is negative edge
 // \text{ nxt[e]} = -1:
 // for(int t = 0; t < n; ++t) {
 // for(int x = 0; x < n; ++x) for(auto [y, c] : rgph[x])
 if(dst[v] > dst[x] + c)
        dst[v] = dst[x] + c, nxt[v] = x;
 // }
 // // OR use SPFA
 // vector<int> ls[n];
 // for(int i = 0; i < n; ++i) if(nxt[i] != -1)
 ls[nxt[i]].push_back(i);
 // queue<int> 0: 0.push(e):
 // while(Q.size()) {
 // int x = Q.front(); Q.pop();
 // top.push_back(x);
 // for(auto y : ls[x]) Q.push(y);
 if(dst[s] >= INF) return vector<T>():
 bool chc[n]{};
 int rt[n]{}:
 for(auto x : top) if(dst[x] < INF) {</pre>
   if(nxt[x] != -1) rt[x] = rt[nxt[x]];
   for(auto [y, c] : gph[x]) if(dst[y] < INF) {</pre>
     if(!chc[x] \&\& y == nxt[x] \&\& dst[x] == c + dst[y]) {
     chc[x] = true: continue: }
     rt[x] = hp.mrge(rt[x], hp.mk({c + dst[y] - dst[x], y}));
 vector<T> ret({dst[s]}):
 priority_queue<ptt, vector<ptt>, greater<ptt>> PQ;
 if(rt[s]) PQ.push({hp.h[rt[s]].x.ff, rt[s]});
 while((int)ret.size() < K && PQ.size()) {</pre>
   auto [d, x] = PQ.top(); PQ.pop();
   ret.push_back(dst[s] + d);
   if(rt[hp.h[x].x.ss]) PQ.push({d +
   hp.h[rt[hp.h[x].x.ss]].x.ff, rt[hp.h[x].x.ss]});
   if(hp.h[x].1) PQ.push({d - hp.h[x].x.ff +}
   hp.h[hp.h[x].1].x.ff, hp.h[x].1);
   if(hp.h[x].r) PQ.push({d - hp.h[x].x.ff +
   hp.h[hp.h[x].r].x.ff, hp.h[x].r});
 return ret:
```

4 Math

4.1 Ultimate Mod (852B)

```
typedef unsigned int ui;
typedef unsigned long long ull;
const ull MOD = 0xffff'ffff'0000'0001: // primitive root = 7
struct mint {
  ull x;
 mint() : x(0) {}
  mint(ull x) : x(x) {}
  mint operator + (ull ot) const { return x >= MOD - ot ? x -
  MOD + ot : x + ot: 
  mint operator - (ull ot) const { return x >= ot ? x - ot : x
  - ot + MOD: }
  mint operator - () const { return x ? MOD - x : 0; }
  mint operator * (ull ot) const {
    unsigned __int128 p = (unsigned __int128)x * ot;
    ull a = (ull)p;
    ull b = (ui)(p >> 64);
    ull c = p \gg 96;
    return mint(a) - b - c + (b \ll 32);
  mint operator += (ull ot) { return *this = *this + ot; }
  mint operator -= (ull ot) { return *this = *this - ot; }
  mint operator *= (ull ot) { return *this = *this * ot; }
  operator unsigned long long() const { return x; }
};
4.2 NTT (1266B)
const int MOD = 998244353:
const mint G = 3: // primitive root
// or (MOD, G) = (0xffffffff00000001, 7)
// define mint, mpow
void dft(vector<mint> &F, bool inv) {
 int n = F.size();
 int b = __lg(n);
  vector<int> rev(n);
  for (int i = 0: i < n: i++) {
    rev[i] = (rev[i / 2] >> 1) | ((i & 1) << (b - 1));
   if (i < rev[i]) swap(F[i], F[rev[i]]);</pre>
  vector<mint> w(n);
  w[0] = w[1] = 1;
  for (int k = 2: k < n: k <<= 1) {
    mint z[2] = \{1, mpow(G, inv ? MOD - 1 - (MOD - 1) / k / 2 : \}
    (MOD - 1) / k / 2);
    for (int i = k: i < (k << 1): ++i) w[i] = w[i >> 1] * z[i &
    1];
 }
  for (int d = 1; d < n; d <<= 1) {
    for (int i = 0; i < n; i += 2 * d) {
      for (int j = 0; j < d; j++) {
       mint b = F[i \mid j \mid d] * w[j \mid d];
       F[i | j | d] = F[i | j] - b;
       F[i | i] += b:
     }
   }
  if (inv) {
    mint val = mpow(n, MOD - 2);
```

```
for (int i = 0: i < n: i++) F[i] *= val:
 }
vector<mint> multiply(vector<mint> F, vector<mint> G) {
 int n = 1:
 int sz = F.size() + G.size() - 1;
  while (n < (int)F.size() + G.size()) n <<= 1:
 F.resize(n); G.resize(n);
  dft(F, false); dft(G, false);
  for (int i = 0; i < n; i++) F[i] *= G[i];
  dft(F, true);
 F.resize(sz):
 return F;
4.3 FFT (1956B)
typedef complex<double> cpx;
typedef __int128 dll;
// D^2 < |X|
const int D = 32000:
const double pi = acos((double)(-1));
int M, B;
vector<int> rev:
vector<cpx> _w;
// |F| + |G| <= 2^B
void init(int _B) {
 B = _B;
 M = 1 << B:
  _{\rm w.resize}(M / 2);
 rev.resize(M):
 for (int i = 0; i < M / 2; i++)_w[i] = {cos(pi * i / M),}
  sin(pi * i / M);
 for (int i = 0; i < M; i++) rev[i] = (rev[i / 2] >> 1) | ((i
 \& 1) << (B - 1);
void dft(vector<cpx> &F, bool inv) {
 int n = F.size();
 int b = lg(n):
 vector<cpx> w(n);
 w[0] = w[1] = 1;
 for (int k = 2; k < n; k <<= 1) {
   for (int i = 0; i < k; ++i) w[k \mid i] = _w[M / k / 2 * i];
 if (inv) for (int i = 0; i < n; ++i) w[i] = conj(w[i]);</pre>
  for (int i = 0; i < n; i++) {
   int p = rev[i] >> (B - b);
   if (i < p) swap(F[i], F[p]);</pre>
 for (int d = 1: d < n: d *= 2) {
   for (int i = 0; i < n; i += 2 * d) {
     for (int j = 0; j < d; j++) {
       cpx b = F[i | j | d] * w[j | d];
       F[i | j | d] = F[i | j] - b;
       F[i \mid j] += b;
     }
   }
 if (inv) for (int i = 0; i < n; i++) F[i] /= n;
// Safe for sum(p[i]^2 + q[i]^2) lg2(n) < 9e14
```

```
vector<dll> multiply(vector<ll> F, vector<ll> G) {
  int n = 1;
  while (n < (int)F.size() + G.size()) n <<= 1;</pre>
 vector<cpx> P(n);
  vector<cpx> Q(n);
 for (int i = 0; i < F.size(); i++) P[i] = {F[i] / D, F[i] %
 for (int i = 0; i < G.size(); i++) Q[i] = {G[i] / D, G[i] %
 D}:
 dft(P, false);
 dft(Q, false);
 vector<cpx> R(n), S(n);
 for (int i = 0; i < n; i++) {
   int j = (n - i) \% n;
   R[i] = (P[i] + coni(P[i])) * Q[i] * cpx(0.5, 0):
   S[i] = (P[i] - conj(P[j])) * conj(Q[j]) * cpx(0.5, 0);
 dft(R, true);
 dft(S, true);
 vector<ll> Z((int)F.size() + (int)G.size() - 1);
 for (int i = 0; i < (int)Z.size(); i++) Z[i] =</pre>
  (ll)round(R[i].real()) * D * D + <math>(ll)round(R[i].imag() +
 S[i].imag()) * D + (ll)round(S[i].real());
 return Z;
4.4 ext-euclid (1167B)
typedef __int128 dll;
// REQUIRED : m != 0
// computes floor(x / m). ceil(x / m). x mod m
ll mfloor(ll x, ll m) { return x / m - ((x \hat{n}) < 0 && x % m);
11 mceil(11 x, 11 m) { return x / m + ((x \hat{m}) > 0 && x % m); }
ll mmod(dll x, ll m) { return x % m + (x < 0 && x % m) *
abs(m): }
// REQUIRED : a, b > 0, gcd(a, b) = 1
// computes a^{-1} mod b
// 0 <= result < b
11 get_inv(ll a, ll b) {
 return (b == 1) ? 0 : mmod((1 - (dll)b * get_inv(b, a % b)) /
 (a % b), b);
// REQUIRED : 0 \le x1 \le m1 and 0 \le x2 \le m2, numbers less than
2 * 10^12
// solves x = x1 \pmod{m1}, x = x2 \pmod{m2}
// if there is no solution, returns false
// otherwise x = a mod b, returns true
bool crt(ll x1, ll m1, ll x2, ll m2, ll &a, ll &b) {
 ll g = \_gcd(m1, m2);
 if (x1 % g != x2 % g) return false;
 11 r = x1 \% g;
 m1 /= g; m2 /= g; x1 /= g; x2 /= g;
 ll x = (dll)x1 * m2 * get_inv(m2, m1) + (dll)x2 * m1 *
 get_inv(m1, m2);
 11 m = m1 * m2;
 a = g * mmod(x, m) + r;
 b = g * m;
```

Page 13 of 25

```
return true:
// REQUIRED : (a, b) != (0, 0), numbers less than 9 * 10^18
// solves ax + by = c
// if there is no solution, returns false
// otherwise (x + sk, y - tk) describes all solutions
// satisfies s \ge 0, 0 \le x \le s
bool diophantine(11 a, 11 b, 11 c, 11 &x, 11 &x, 11 &x, 11 &t)
 if (!a && !b) assert(false);
 ll g = \_gcd(abs(a), abs(b));
 if (c % g != 0) return false;
   x = 0: y = c / b: s = 1: t = 0:
   return true;
 if (!b) {
   x = c / a; y = 0; s = 0, t = 1;
   return true:
 a /= g; b /= g; c /= g;
 x = mmod((dll)get_inv(abs(a), abs(b)) * (a < 0 ? -c : c),
 v = (c - (dll)x * a) / b;
 s = b; t = a;
 if (s < 0) s *= -1, t *= -1;
 return true;
4.5 RREF (477B)
const double eps = 1e-9;
void rref(vector<vector<double>> &A) {
 int n = A.size(), m = A[0].size();
 for (int i = 0, j = 0; j < m; ++j) {
   int t = i:
    while (t < n \&\& abs(A[t][j]) < eps) ++t;
   if (t == n) continue:
    swap(A[i], A[t]);
    double p = A[i][i];
    for (int k = j; k < m; ++k) A[i][k] /= p;
    for (int l = 0; l < n; ++1) if (l != i) {
     p = A[1][j];
     for (int k = j; k < m; ++k) A[1][k] -= p * A[i][k];
   }
   ++i;
 }
4.6 Pollard-Rho, Miller-Rabin (1298B)
// call isPrime(n) for primality test : O(log n)
// call factorize(n) for factorization : O(n^{1/4} log n)
// result of factorize(n) may NOT be sorted
typedef long long 11;
typedef unsigned long long ull;
ull modmul(ull a, ull b, ull M) {
 ll ret = a * b - M * ull(1.L / M * a * b);
 return ret + M * (ret < 0) - M * (ret >= (11)M);
ull modpow(ull b, ull e, ull mod) {
```

```
for (; e; b = modmul(b, b, mod), e \neq 2)
   if (e & 1) ans = modmul(ans, b, mod);
 return ans:
bool isPrime(ull n) {
 if (n < 2 \mid | n \% 6 \% 4 \mid = 1) return (n \mid 1) == 3:
 ull A[] = \{2, 325, 9375, 28178, 450775, 9780504, 1795265022\}
      s = builtin ctzll(n - 1), d = n >> s:
  for (ull a : A) { // ^ count trailing zeroes
   ull p = modpow(a \% n, d, n), i = s;
   while (p != 1 \&\& p != n - 1 \&\& a \% n \&\& i--) p = modmul(p,
   if (p != n - 1 && i != s) return 0:
 return 1;
ull pollard(ull n) {
 auto f = [n](ull x) \{ return modmul(x, x, n) + 1; \};
 ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
 while (t++ \% 40 || \_gcd(prd, n) == 1) {
   if (x == y) x = ++i, y = f(x):
   if ((q = modmul(prd, max(x, y) - min(x, y), n))) prd = q;
   x = f(x), y = f(f(y));
 }
 return __gcd(prd, n);
vector<ull> factor(ull n) {
 if (n == 1) return {};
 if (isPrime(n)) return {n};
 ull x = pollard(n);
 auto 1 = factor(x), r = factor(n / x);
 l.insert(l.end(), r.begin(), r.end());
 return 1:
4.7 Tonelli-Shanks (775B)
// find one x such that x^2 = n \pmod{p}
// returns -1 if does not exist
// p should be a prime, 0 <= n < p
// O(log^2 p)
mt19937 rnd(1557);
11 rng(ll 1, ll r) { return uniform_int_distribution<ll>(1,
r)(rnd): }
11 mpow(ll a, ll x, ll mod) {
 11 r = 1:
 while (x) {
   if (x \& 1) r = r * a % mod;
   a = a * a \% mod:
   x /= 2;
 return r;
ll quadratic_residue(ll n, ll p) {
 if (n == 0) return 0:
 if (p == 2) return n;
 if (mpow(n, (p-1) / 2, p) != 1) return -1;
 int q = p - 1, s = \_builtin\_ctz(q);
  q >>= s;
```

```
11 x = mpow(n, (q + 1) / 2, p);
 11 t = mpow(n, q, p);
 11 z = rng(1, p - 1);
  while (mpow(z, (p-1) / 2, p) == 1) z = rng(1, p-1);
  while (t != 1) {
   11 i = 0, v = t;
    while (v != 1) v = v * v % p, ++i;
   11 b = mpow(z, q * (111 << (s - i - 1)), p);
   x = x * b \% p;
   t = t * b % p * b % p;
 return x:
4.8 Linear Sieve (690B)
const int MAXN = 1010101:
bool prime[MAXN];
int phi[MAXN];
void calc() {
 fill(prime, prime + MAXN, true);
  prime[0] = prime[1] = false;
  vector<int> P;
 for (int n = 2; n < MAXN; n++) {
   if (prime[n]) {
      P.push_back(n);
      phi[n] = n - 1;
   for (int pr : P) {
     11 x = (11)n * pr:
      if (x >= MAXN) break;
      prime[x] = false;
      // for general multiplicative function, you should
      maintain the highest prime divisor and its order
      // mul[x] = mul[n] / mul[p ^ k] * mul[p ^ (k + 1)]
      if (n % pr == 0) {
       phi[x] = phi[n] * pr;
       break:
     } else {
        phi[x] = phi[n] * (pr - 1);
   }
 }
      min25 Sieve (2237B)
Let f(x) be a multiplicative function and
when p is a prime, f(p) has a polynomial representation
and f(p^k) can be calculated quickly
We can compute the prefix sum of f(n) in O((n^{3/4})) / logn)
using Min 25 sieve
Takes "1s for n = 10^10 (deg = 3) in CF
unfold the loops over poly to make the code faster
Tutorial: https://www.luogu.com.cn/problem/solution/P5325
int primes[N], p, deg;
```

T pref[D][N]:

```
T poly[D]; // polynomial representation of f(p)
void sieve(int n) {
  vector<bool> f(n + 1, false);
  for (int i = 2; i <= n; i++) {
    if (!f[i]) {
      primes[++p] = i;
      T cur = 1:
      // pref[k][p] = sum of primes[i]^k s.t. i <= p</pre>
      for (int k = 0; k < deg; k++) {
        pref[k][p] = pref[k][p - 1] + cur;
        cur *= i;
      }
    for (int j = 1; j \le p and primes[j] * i \le n; j++) {
      f[i * primes[j]] = 1;
      if (i % primes[j] == 0) break;
int r. id1[N]. id2[N]:
int get_id(11 x) \{ return x \leq r ? id1[x] : id2[n / x]; \}
int tot:
T g[D][N];
ll a[N]:
// f(p^k) in O(1)
inline T eval(int p, int k, ll pw) { // pw = p^k, pw <= n</pre>
  T ans = pw % mod;
  return ans * (ans - 1);
// no memorization needed!
// sum of f(i) s.t. spf[i] > primes[j]
T yo(11 x, int j) {
  if (primes[j] >= x) return 0;
  int id = get_id(x);
  T ans = 0:
  // initialization: ans = g(x) - g(primes[j])
  for (int k = 0; k < deg; k++) ans += poly[k] * g[k][id];
  for (int k = 0; k < deg; k++) ans -= poly[k] * pref[k][j];
  for (int i = j + 1; i <= p and primes[i] <= x / primes[i];</pre>
  i++) {
    ll pw = primes[i]:
    for (int e = 1; pw <= x; e++) {
      ans += eval(primes[i], e, pw) * (yo(x / pw, i) + (e !=
      1)):
      if (!(pw <= x / primes[i])) break;</pre>
      pw *= primes[i];
  return ans;
// sum of f(i) for 1 <= i <= n
// pol is the polynomial representation of f(p)
T solve(ll _n, vector<T> pol) {
  n = n:
  deg = pol.size();
  for (int i = 0; i < deg; i++) poly[i] = pol[i];</pre>
```

```
r = sart(n):
   while (1LL * r * r < n) ++r;
   while (1LL * r * r > n) --r;
  sieve(r):
  tot = 0:
  11 i = 1:
  while (i \le n) {
     11 x = n / i;
     11 i = n / x:
     a[++tot] = x;
     // initialization g[k][tot] = sum of i^k for 2 <= i <= x</pre>
     T z = x % mod; // remove this mod if not needed
     for (int k = 0; k < deg; k++) {
       if (k == 0) g[k][tot] = z - 1;
       if (k == 1) g[k][tot] = z * (z + 1) / 2 - 1:
        if (k == 2) g[k][tot] = z * (z + 1) * (2 * z + 1) / 6 -
            compute for larger values using lagrange if needed
     if (x \le r) id1[x] = tot:
     else id2[n / x] = tot;
     i = i + 1:
  // an integer x belongs to the array a iff for some integer
  z, n / z = x
  // g[k][i] = sum of prime^k for prime <= a[i]</pre>
  for (int i = 1: i <= p: i++) {
     for (int j = 1; j <= tot && primes[i] <= a[j] / primes[i];</pre>
       int id = get_id(a[j] / primes[i]);
        for (int k = 0; k < deg; k++) {
           g[k][j] = cur * (g[k][id] - pref[k][i - 1]);
           cur *= primes[i];
  return yo(n, 0) + 1; // add f(1)
4.10 FWHT (597B)
   c_i = \sum_{j+k-i} a_j \cdot a_k
   T_{\oplus} \begin{bmatrix} p_0 \\ p_1 \end{bmatrix} \cdot T_{\oplus} \begin{bmatrix} q_0 \\ q_1 \end{bmatrix} = T_{\oplus} \begin{bmatrix} p_0 q_0 + p_1 q_1 \\ p_0 q_1 + p_1 q_0 \end{bmatrix}
   T_{\oplus} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, T_{\oplus}^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}
   T_{\&} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, T_{\&}^{-1} = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}
   T_{|} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, T_{|}^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}
void DFT(vector<11> &A, bool inv) {
  int N = A.size(), B = __lg(N);
  for (int i = 1; i < (1 << B); i <<= 1) {
     for (int j = 0; j < (1 << B); j += i + i) {
       for (int k = 0; k < i; k++) {
          11 a = A[j + k], b = A[j + i + k];
          A[i + k] = a + b, A[i + i + k] = a - b:
```

```
if (inv) A[j + k] /= 2, A[j + i + k] /= 2;
    // AND
    A[j + k] = b, A[j + i + k] = a + b;
    if (inv) A[j + k] = -a + b, A[j + i + k] = a;
    // OR
    A[j + k] = a, A[j + i + k] = a + b;
    if (inv) A[j + k] = a, A[j + i + k] = -a + b;
}
}
```

4.11 Polynomial

- Inverse: $B_k = A^{-1} \pmod{x^a}$ 일 때 $B_{k+1} = B_k (2 AB_k) \pmod{x^{2a}}$ 로 놓으면 $B_{k+1} = A^{-1} \pmod{x^{2a}}$. $O(n \log n)$
- Euclidean Division: $\deg A=n, \deg B=m$ 일 때, $B(x)D(x)+R(x)=A(x), \deg D\leq m-n$ 인 D 찾기; $D^R(x)=A^R(x)(B^R(x))^{-1} (\mod x^{n-m+1});$ 이 때 $A^R(x)=x^nA(x^{-1}), B^R(x)=x^mB(x^{-1}), D^R(x)=x^{m-n}D(x^{-1}).$ O(n)
- Newton's Method: F(P)=0인 polynomial P를 찾기; $F(Q_k)=0$ (mod x^a)일 때 $Q_{k+1}=Q_k-\frac{F(Q_k)}{F'(Q_k)}$ (mod x^{2a})로 놓으면 $F(Q_{k+1})=0$ (mod x^{2a}). Example : $Q=e^P$, lnQ=P, F(Q)=lnQ-P, $F'(Q)=\frac{1}{Q}$
- Logarithm: $\int \frac{P'(x)}{P(x)} \cdot O(n \log n)$
- Exponent: $Q_{k+1} = Q_k(1 + P \ln Q_k)$. $O(n \log n)$
- Multipoint Evaluation: A(x)를 $(x-p_i)$ 로 나눈 나머지를 찾는 문제와 같으니, 분할정복으로 나머지 계산. $O(n\log^2 n)$
- Interpolation: $A(x) = \sum_{i=1}^n y_i \prod_{j \neq i} \frac{x x_j}{x_i x_j}$. 각각의 i에 대한 분모만 알면 분할정복을 할 수 있음. 분모를 알기 위해 $P(x) = (x x_1)...(x x_n)$ 이라고 하면 i번째 분모는 $P'(x_i)$. $O(n \log^2 n)$
- $\ln(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4} + \cdots$

5 Data Structure

5.1 CHT (1405B)

min/max	min	min	max	max	
slope	+	-	+	-	
dir	-	+	+	_	-

: inc

```
typedef int128 dll:
struct Line { ll a, b; };
struct Frac {
 11 u. d:
  Frac(11 _u, 11 _d) : u(_u), d(_d) { if (d < 0) u = -u, d =
  bool operator<(const Frac &ot) const { return (dll)u * ot.d <</pre>
  (dll)ot.u * d: }
  bool operator>(const Frac &ot) const { return (dll)u * ot.d >
  (dll)ot.u * d; }
ll divfloor(ll u, ll d) { return u / d - ((u ^ d) < 0 && u %
ll divceil(ll u, ll d) { return u / d + ((u ^ d) > 0 && u % d):
// Get cross point of line p, q
// If all queries are integer, change 'Frac' to 'div'
Frac cross(const Line &p, const Line &q) { return Frac(p.b -
q.b, q.a - p.a); } // dir + : divfloor, dir - : divceil
// min/max : ?. slope : ?. dir : ?
struct CHT {
  deque<Line> V;
  // Insert line p = ax+b
  // b must be increasing (or decreasing) ('slope')
  // cross(V[i-1], V[i]) < (or >) cross(V[i], V[i+1]) ('dir')
  void push(Line p) {
    if (!V.empty() && V.back().a == p.a) {
      if (V.back().b <= p.b) return; // min : <= , max : >=
      V.pop_back();
    while (V.size() > 1 && !(cross(V[V.size() - 2], V[V.size()
    - 1]) < cross(V[V.size() - 1], p))) V.pop_back(); // dir +
    : <. dir - : >
    V.push_back(p);
  // Get min (or max) value at x in O(logN)
 11 query(ll x) {
    assert(!V.empty());
    int lo = 0, hi = V.size();
    while (lo + 1 < hi) \{
      int mid = lo + hi >> 1;
      if (cross(V[mid - 1], V[mid]) < Frac(x, 1)) lo = mid; //</pre>
      dir + : <, dir - : >
      else hi = mid;
    return V[lo].a * x + V[lo].b;
  // Get min (or max) value at x in ammortized O(1)
  // x must be increasing (or decreasing) ('dir')
 11 query2(11 x) {
    assert(!V.empty());
    while (V.size() > 1 && cross(V[0], V[1]) < Frac(x, 1))
    V.pop_front(); // dir + : <, dir - : >
    return V[0].a * x + V[0].b;
```

```
};
5.2 Li Chao Tree (1428B)
const 11 \text{ INF} = 4e18;
struct Line {
 ll a, b;
 Line() : a(0), b(INF) {} // min : INF , max : -INF
 Line(11 a, 11 b) : a(a), b(b) {}
 11 operator()(11 x) { return a * x + b; }
}:
struct Node {
 Line f:
 int lc, rc;
 Node(): f(), lc(-1), rc(-1) {}
struct LiChao {
 int root;
 vector<Node> NS;
 LiChao() {
   NS = vector<Node>();
   root = newNode():
 int newNode() {
   NS.push_back(Node());
   return NS.size() - 1;
  // Insert line p in O(logN)
  void update(int node, ll tl, ll tr, Line p) {
   ll mid = tl + tr >> 1:
   if (p(mid) < NS[node].f(mid)) swap(p, NS[node].f); // min</pre>
    : < , max : >
   if (tl == tr) return:
    if (p(tl) < NS[node].f(tl)) { // min : < , max : >
     if (NS[node].lc == -1) NS[node].lc = newNode():
      update(NS[node].lc, tl, mid, p);
   if (p(tr) < NS[node].f(tr)) { // min : < , max : >
      if (NS[node].rc == -1) NS[node].rc = newNode();
      update(NS[node].rc, mid + 1, tr, p);
   }
 // Get min (or max) value at x in O(logN)
 11 query(int node, 11 tl, 11 tr, 11 x) {
   if (node == -1) return INF; // min : INF , max : -INF
   ll mid = tl + tr >> 1:
   11 ret = NS[node].f(x);
   if (x <= mid) ret = min(ret, query(NS[node].lc, tl, mid.
   x)); // min : min() , max : max()
    else ret = min(ret, query(NS[node].rc, mid + 1, tr, x));
   // min : min() , max : max()
   return ret;
 }
};
5.3 LineContainer (1115B)
const 11 INF = 9e18;
struct Line {
 mutable ll a, b, p;
 bool operator<(const Line& o) const { return a != o.a ? o.a <</pre>
```

a : b < o.b; } // min : < , max : > (both)

```
bool operator<(ll x) const { return p < x; }</pre>
};
// LineContainer::LineContainer cht;
// multiset of Line, sorted in increasing order of cross points
struct LineContainer : multiset<Line, less<>>> {
 // for doubles, use INF = 1/.0, div(a,b) = a/b
  ll div(ll u, ll d) { return u / d - ((u ^ d) < 0 && u % d); }
  bool isect(iterator x, iterator y) {
    if (y == end()) {
      x->p = INF;
      return 0;
    if (x->a == y->a) x->p = x->b < y->b ? INF : -INF; // min
    else x->p = div(y->b - x->b, x->a - y->a);
    return x->p >= y->p;
  void push(ll a, ll b) {
    auto z = insert({a, b, 0}), y = z++, x = y;
    while (isect(y, z)) z = erase(z);
    if (x != begin() \&\& isect(--x, y)) isect(x, y = erase(y));
    while ((v = x) != begin() \&\& (--x)->p >= v->p) isect(x,
    erase(v));
  11 query(11 x) {
    assert(!empty());
    auto 1 = *lower bound(x):
    return l.a * x + l.b;
};
```

5.4 Alien Trick (1508B)

 $dp[i][k] = min_{j < i}(dp[j][k-1] + cost(j,i))$

$$dp2[i] = \min_{j < i} (dp2[j] + cost(j,i)) - \lambda$$

f(k) = dp[N][k]라 정의하자. 적당한 λ 에 대하여 $p = f(k) - \lambda k$ 를 최적화한 다. $f(k) = p + \lambda k$ 이니, (x, f(x))를 선으로 이은 그래프에서 기울기 λ 의 접선을 그었을 때의 y좌표가 최적의 p가 된다. $p = f(k) - \lambda k$ 는 고정된 λ 에 대하여 최적의 dp2[N]을 의미한다. 답은 $dp2[N] + \lambda k$ 이다. const int MAXN = 5e5;

```
int N;
// dp[i] : optimal dp value of i
// cnt[i] : how much transitions were used in optimal dp[i]
// memo[i] : previous transition position from i
```

```
// V : restored optimal solution
11 dp[MAXN + 10];
int cnt[MAXN + 10], memo[MAXN + 10];
vector<int> V:
void init(int _N) { N = _N; }
// For given lambda, calculate dp, cnt, memo, V
// dp[i] = min(or max)_{j<i} (dp[j] + cost(j, i)*2 - lambda)
// changes dp, cnt, memo, V
void solve(ll lambda) {
 // initialize dp, cnt, memo, V, (other data structures)
 for (int i = 0; i \le N; i++) dp[i] = cnt[i] = memo[i] = 0;
 V.clear():
  for (int i = 1; i <= N; i++) {
   // get_opt(i), cost(p, q) must be implemented
   // opt = argmin(or max) \{i < i\} (dp[i] + cost(i, i)*2)
    // your code goes here
    int opt = get_opt(i);
    dp[i] = dp[opt] + cost(opt, i) * 2 - lambda; // Don't
    forget *2
    cnt[i] = cnt[opt] + 1:
    memo[i] = opt;
  for (int i = N; i > 0;) {
   V.push_back(i);
   i = memo[i];
  V.push back(0):
 reverse(V.begin(), V.end());
// Get optimal dp[N][K] for given K
// Returns (answer, restored solution)
// dp[i][k] = min(or max)_{j<i} (dp[j][k-1] + cost(j, i))
pair<11. vector<int>> alien(int K) {
 // lambda equals slope
 // minimum : K increase, lambda increase
  // maximum : K increase, lambda decrease
 ll lo = -1e18, hi = 1e18; // range for lambda is [2*lo+1],
 2*hi+1]
  while (lo + 1 < hi) \{
   11 mid = lo + hi >> 1:
    solve(2 * mid + 1);
   if (K <= cnt[N]) hi = mid; // min : <= , max : >=
    else lo = mid:
  vector<int> P1, P2, ansV;
  solve(2 * lo + 1); P1 = V;
  solve(2 * hi + 1); P2 = V;
  if (P1.size() > P2.size()) swap(P1, P2);
  if (P1.size() - 1 == K) ans V = P1:
  else if (P2.size() - 1 == K) ansV = P2;
  else {
    assert(P1.size() - 1 < K && K < P2.size() - 1):
    int x = K + 1 - P1.size();
    for (int i = 0; i + 1 < P1.size() && i + x + 1 < P2.size();
    i++) {
      if (P1[i] <= P2[i + x] && P2[i + x + 1] <= P1[i + 1]) {
        for (int j = 0; j \le i + x; j++) ans V. push_back (P2[j]);
       for (int j = i + 1; j < P1.size(); j++)
       ansV.push_back(P1[j]);
```

```
break:
     }
   }
 }
  assert(ansV.size() == K + 1);
  solve(2 * hi):
 ll ans = dp[N] / 2 + hi * K;
 return {ans, ansV};
5.5 Monotone Queue Trick (1072B)
                 dp[i] = \min_{j < i} (dp[j] + cost(j, i))
  cost(j,i)가 monge 하니, p < q < x_1 < x_2 에 대해 cost(p,x_1) —
cost(q, x_1) \leq cost(p, x_2) - cost(q, x_2). f_p(x) = dp[p] + cost(p, x)라 하면
f_n(x_1) - f_n(x_1) < f_n(x_2) - f_n(x_2). x가 증가함에 따라 f_n(x)가 최적이었다
가, f_a(x)가 최적으로 바뀐다.
  두 함수 f_p(x), f_q(x)에 대하여 cross(p,q)를 f_p(x) < f_q(x)인 최대 x
로 정의한다. 최적의 함수 f_p(x) = dp[p] + cost(p, x)들을 deque로 관리한다.
cross(DQ[i-1], DQ[i]) < cross(DQ[i], DQ[i+1])를 강제한다.
const int MAXN = 5e5;
int N:
// dp[i] : optimal dp value of i
// cnt[i] : how much transitions were used in optimal dp[i]
// memo[i] : previous transition position from i
// V : restored optimal solution
11 dp[MAXN + 10]:
int cnt[MAXN + 10], memo[MAXN + 10];
vector<int> V;
void init(int N) { N = N: }
// cost(p, q) must be monge
// cost(a, d) + cost(b, c) > cost(a, c) + cost(b, d)
11 cost(int p, int q) {}
// Get maximum x that dp[p]+cost(p, x) < dp[q]+cost(q, x) (p is
optimal than q)
// p < q must hold
int cross(int p, int q) {
 int lo = q, hi = N + 1;
 while (lo + 1 < hi) \{
    int mid = lo + hi >> 1:
   if (dp[p] + cost(p, mid) < dp[q] + cost(q, mid)) lo = mid;
   // min : <, max : >
   else hi = mid:
 return lo;
// Get optimal dp[N]
// dp[i] = min(or max)_{j<i} (dp[j] + cost(j, i))
// changes dp, cnt, memo, V
void solve() {
 // initialize dp, cnt, memo, V, (other data structures)
 for (int i = 0; i \le N; i++) dp[i] = cnt[i] = memo[i] = 0;
 V.clear():
 deque<int> DQ:
 DQ.push_back(0);
 for (int i = 1; i <= N; i++) {
   while (DQ.size() > 1 && dp[DQ[0]] + cost(DQ[0], i) >=
   dp[DQ[1]] + cost(DQ[1], i)) DQ.pop_front(); // min : >=,
   max : <=
```

```
// opt = argmin(or max)_\{j < i\} (dp[j] + cost(j, i))
   int opt = DQ.front();
   dp[i] = dp[opt] + cost(opt, i);
   cnt[i] = cnt[opt] + 1;
   memo[i] = opt;
   // cross(DQ[i-1], DQ[i]) < cross(DQ[i], DQ[i+1])
   while (DQ.size() > 1 && !(cross(DQ[DQ.size() - 2].
   DQ[DQ.size() - 1]) < cross(DQ[DQ.size() - 1], i)))
   DQ.pop back():
   DQ.push_back(i);
 for (int i = N; i > 0;) {
   V.push_back(i);
   i = memo[i]:
 V.push_back(0);
 reverse(V.begin(), V.end());
5.6 Kinetic Segment Tree (3023B)
const ll INF = 7e18:
struct Line { ll a, b; };
ll divfloor(ll u, ll d) { return u / d - ((u ^ d) < 0 && u %
d); }
// p(0) \le q(0) must hold (min : <= , max : >= )
// \min t > 0 \text{ s.t. } p(t) > q(t) ( \min : > , \max : < )
ll cross(Line p, Line q) {
 assert(p.b <= q.b);
                              // min : <= , max : >=
 if (p.a <= q.a) return INF; // min : <= , max : >=
 return divfloor(p.b - q.b, q.a - p.a) + 1;
struct SEG {
 vector<Line> tree;
 vector<ll> melt: // minimum time left for next cross in
 subtree
 vector<ll> lazv:
 SEG(int N) {
   tree = vector<Line>(N * 4 + 10, {0, INF}); // min : INF ,
   max : -INF
   melt = vector<ll>(N * 4 + 10, INF);
   lazy = vector<11>(N * 4 + 10, 0);
 // Apply update value k to subtree of node
 // update to node itself, and to lazy value
 void apply(int node, ll k) {
   assert(k < melt[node]);</pre>
   tree[node].b += tree[node].a * k:
   melt[node] -= k;
   lazv[node] += k;
 // Propagate lazy value to children, and initialize lazy
 // should be called before going down to children
 void prop(int node, int tl, int tr) {
   if (tl != tr) {
      apply(node * 2, lazy[node]);
     apply(node * 2 + 1, lazy[node]);
```

lazv[node] = 0:

```
// Recalculate value of node from children
  // lazy must be empty
  void recalc(int node) {
    assert(lazy[node] == 0);
    melt[node] = min(melt[node * 2], melt[node * 2 + 1]);
    if (tree[node * 2].b <= tree[node * 2 + 1].b) { // min :
    <= , max : >=
      tree[node] = tree[node * 2];
      melt[node] = min(melt[node], cross(tree[node * 2],
      tree[node * 2 + 1]));
    }
    else {
      tree[node] = tree[node * 2 + 1]:
      melt[node] = min(melt[node], cross(tree[node * 2 + 1],
      tree[node * 2]));
  // B[i]+=A[i]*t for all i in [1, r]
  // Ammortized O(Qlog^3N) if range heaten
  // Ammortized O(Qlog^2N) if entire heaten
  void heaten(int node, int tl, int tr, int l, int r, ll t) {
    if (r < tl || tr < 1) return;
    if (1 <= tl && tr <= r && melt[node] > t) {
      apply(node, t);
      return;
    prop(node, tl, tr);
    int mid = tl + tr >> 1;
    heaten(node * 2, tl, mid, l, r, t);
    heaten(node * 2 + 1, mid + 1, tr, 1, r, t);
    recalc(node);
  // get minimum/maximum B[i] for i in [1, r]
  // O(QlogN)
  11 query(int node, int tl, int tr, int l, int r) {
    if (r < tl | | tr < l) return INF; // min : INF , max :
    if (1 <= tl && tr <= r) return tree[node].b;
    prop(node, tl, tr);
    int mid = tl + tr >> 1:
    return min(query(node * 2, tl, mid, l, r), query(node * 2 +
    1, mid + 1, tr, 1, r)); // min : min() , max : max()
  // update A[pos], B[pos]
  // O(QlogN)
  void update(int node, int tl, int tr, int pos, Line p) {
    if (tl == tr) {
      tree[node] = p:
      return;
    prop(node, tl, tr);
    int mid = tl + tr >> 1;
    if (pos <= mid) update(node * 2, tl, mid, pos, p);</pre>
    else update(node * 2 + 1, mid + 1, tr, pos, p);
    recalc(node);
};
```

```
5.7 Splay Tree (3438B)
struct Node {
 int sz:
 int par, lc, rc;
 // val : value stored in node. sum : query value stored in
  // lazy : lazy value to be applied to subtree of node
  (already applied to val. sum)
 ll val, sum;
 ll lazy;
 Node(ll x) {
   sz = 1;
   par = 1c = rc = 0:
   // your code goes here
   val = sum = x:
   lazv = 0:
 }
 Node() {
   sz = par = 1c = rc = 0:
   val = sum = 0;
   lazy = 0;
 }
// root must be initialized
// NS[0] : NIL node
int root:
vector<Node> NS:
void init() { NS = vector<Node>(1); root = 0; }
int newNode(ll x) { NS.push_back(Node(x)); return NS.size() -
1: }
void recalc(int node) {
 if (node == 0) return:
 int 1 = NS[node].lc, r = NS[node].rc;
 NS[node].sz = NS[1].sz + NS[r].sz + 1;
 // your code goes here
 NS[node].sum = NS[node].val + NS[1].sum + NS[r].sum;
void apply(int node, ll upd) {
 if (node == 0) return:
 // your code goes here
 NS[node].lazy += upd;
 NS[node].val += upd:
 NS[node].sum += upd * NS[node].sz;
void prop(int node) {
 if (node == 0) return;
 if (NS[node].lazy == 0) return;
  apply(NS[node].lc, NS[node].lazy);
  apply(NS[node].rc, NS[node].lazy);
 // your code goes here
 NS[node].lazy = 0;
void prop_anc(int x) { if (NS[x].par != 0) prop_anc(NS[x].par);
prop(x); }
void rotate(int x) {
 assert(x != 0 && NS[x].par != 0);
 int p = NS[x].par, q;
```

```
if (NS[p].lc == x) {
   NS[p].lc = q = NS[x].rc;
    NS[x].rc = p;
  else {
    NS[p].rc = q = NS[x].lc;
   NS[x].lc = p:
 NS[x].par = NS[p].par:
 NS[p].par = x;
 if (q) NS[q].par = p;
 if (NS[x].par != 0) {
   if (NS[NS[x].par].lc == p) NS[NS[x].par].lc = x;
   else NS[NS[x].par].rc = x:
 recalc(p);
 recalc(x):
void splay(int x) {
 root = x:
 if (x == 0) return:
 prop anc(x):
 while (NS[x].par) {
   int p = NS[x].par, q = NS[p].par;
   if (q) rotate((NS[p].lc == x) == (NS[q].lc == p) ? p : x);
   rotate(x):
 }
// Find kth node in subtree of node, and make it root
int find_kth(int node, int k, int &root) {
 if (node == 0) return 0;
 assert(1 <= k && k <= NS[node].sz);
 prop(node):
  if (k <= NS[NS[node].lc].sz) return find_kth(NS[node].lc, k,
 if (k == NS[NS[node].lc].sz + 1) { splay(node); return root =
 return find kth(NS[node].rc, k - NS[NS[node].lc].sz - 1.
// Insert node x after the kth node in subtree of node, and
make it root
void insert(int node, int k, int x, int &root) {
 assert(0 <= k && k <= NS[node].sz):
 prop(node);
 if (k <= NS[NS[node].lc].sz) {</pre>
   if (NS[node].lc == 0) {
      NS[node].lc = x;
      NS[x].par = node;
      splay(x);
      root = x:
    else insert(NS[node].lc, k, x, root);
  else {
    if (NS[node].rc == 0) {
      NS[node].rc = x:
      NS[x].par = node;
```

```
splay(x);
     root = x;
   } else insert(NS[node].rc, k - NS[NS[node].lc].sz - 1, x,
   root):
// Erase root of tree
void erase(int &root) {
 if (root == 0) return:
  prop(root);
  int p = NS[root].lc, q = NS[root].rc;
  if (p == 0 || q == 0) {
   root = p + q;
   NS[root].par = 0;
    return:
 root = p;
 NS[root].par = 0;
 find_kth(root, NS[p].sz, root);
 NS[root].rc = a:
 NS[q].par = root;
 recalc(root):
// Merge [1, r]th nodes into a subtree (maybe
NS[NS[root].lc].rc), and return it
int interval(int 1, int r, int &root) {
 assert(1 <= 1 && r <= NS[root].sz):
 int sz = NS[root].sz, ret, x;
 if (r < sz) {
   find kth(root, r + 1, root):
   x = root;
   root = NS[x].lc;
   NS[root].par = 0:
 if (1 > 1) {
   find kth(root, 1 - 1, root):
   ret = NS[root].rc;
  else ret = root;
  if (r < sz) {
   NS[root].par = x;
   NS[x].lc = root;
   root = x:
 return ret;
// Update val to range [1, r]
void update(int 1, int r, 11 val, int &root) {
 assert(1 <= 1 && r <= NS[root].sz):
 int p = interval(1, r, root);
 apply(p, val);
 recalc(NS[p].par);
 recalc(NS[NS[p].par].par);
// Query range [1, r]
Node query(int 1, int r, int &root) {
 assert(1 <= 1 && r <= NS[root].sz):
 int p = interval(1, r, root);
 return NS[p];
```

```
5.8 Link Cut Tree (6653B)
struct Node {
 int par, lc, rc, lc2, rc2, pt;
 ll val;
 int hsz. lsz:
 11 hsum, lsum;
 ll hlazy, llazy;
 bool rev:
 Node(ll x) {
   par = 1c = rc = 1c2 = rc2 = pt = 0;
   val = x:
   hsz = 1; lsz = 0;
   hsum = x; lsum = 0;
   hlazv = llazv = 0;
   rev = false;
 Node() {
   par = 1c = rc = 1c2 = rc2 = pt = 0:
   val = 0:
   hsz = lsz = 0;
   hsum = lsum = 0:
   hlazv = llazv = 0;
   rev = false;
};
Node NS[MAXN + 10]:
void recalc(int node) {
 if (node == 0) return:
  assert(NS[node].hlazy == 0 && NS[node].llazy == 0 &&
  !NS[node].rev);
 int 1 = NS[node].lc, r = NS[node].rc, 12 = NS[node].lc2, r2 =
 NS[node].rc2, p = NS[node].pt;
 NS[node].hsz = NS[1].hsz + NS[r].hsz + 1:
 NS[node].lsz = NS[1].lsz + NS[r].lsz + (NS[12].hsz +
 NS[12].lsz) + (NS[r2].hsz + NS[r2].lsz) + (NS[p].hsz +
  NS[p].lsz);
  NS[node].hsum = NS[1].hsum + NS[r].hsum + NS[node].val;
 NS[node].lsum = NS[1].lsum + NS[r].lsum + (NS[12].hsum +
 NS[12].lsum) + (NS[r2].hsum + NS[r2].lsum) + (NS[p].hsum +
 NS[p].lsum);
void apply(int node, ll hupd, ll lupd, bool rev) {
 if (node == 0) return;
 NS[node].rev ^= rev:
 NS[node].hlazy += hupd;
 NS[node].llazy += lupd;
 if (rev) swap(NS[node].lc, NS[node].rc);
 NS[node].val += hupd;
 NS[node].hsum += hupd * NS[node].hsz;
 if (NS[node].lsz) NS[node].lsum += lupd * NS[node].lsz;
void prop(int node) {
 if (node == 0) return;
  apply(NS[node].lc, NS[node].hlazy, NS[node].llazy,
 NS[node].rev):
  apply(NS[node].rc, NS[node].hlazy, NS[node].llazy,
```

NS[node].rev):

```
apply(NS[node].1c2, NS[node].1lazy, NS[node].1lazy, false);
  apply(NS[node].rc2, NS[node].llazy, NS[node].llazy, false);
  apply(NS[node].pt, NS[node].llazy, NS[node].llazy, false);
 NS[node].hlazy = NS[node].llazy = 0;
 NS[node].rev = false;
bool isRoot(int x) { return (NS[x].par == 0 ||
(NS[NS[x].par].lc != x && NS[NS[x].par].rc != x)); }
bool isRoot2(int x) { return (NS[x].par == 0 ||
NS[NS[x].par].pt == x); }
void prop_anc(int x) { if (!isRoot(x)) prop_anc(NS[x].par);
prop(x); }
void prop_anc2(int x) { if (!isRoot2(x)) prop_anc2(NS[x].par);
prop(x): }
void prop_anc3(int x) { if (NS[x].par) prop_anc3(NS[x].par);
prop(x); }
void rotate(int x) {
 assert(x != 0 && !isRoot(x)):
 int p = NS[x].par, q;
 if (NS[p].lc == x) {
   NS[p].lc = a = NS[x].rc:
   NS[x].rc = p;
  else {
    NS[p].rc = q = NS[x].lc;
   NS[x].lc = p:
 NS[x].par = NS[p].par;
 NS[p].par = x;
 if (q) NS[q].par = p;
  if (NS[x].par) {
   if (NS[NS[x].par].lc == p) NS[NS[x].par].lc = x:
    else if (NS[NS[x].par].rc == p) NS[NS[x].par].rc = x;
    else if (NS[NS[x].par].1c2 == p) NS[NS[x].par].1c2 = x;
    else if (NS[NS[x].par].rc2 == p) NS[NS[x].par].rc2 = x;
    else if (NS[NS[x].par].pt == p) NS[NS[x].par].pt = x;
 recalc(p);
 recalc(x):
void rotate2(int x) {
 assert(x != 0 && !isRoot2(x));
  int p = NS[x].par. q:
 if (NS[p].1c2 == x) {
   NS[p].1c2 = q = NS[x].rc2;
   NS[x].rc2 = p;
 }
  else {
   NS[p].rc2 = q = NS[x].1c2;
    NS[x].1c2 = p:
 NS[x].par = NS[p].par;
 NS[p].par = x;
 if (q) NS[q].par = p;
 if (NS[x].par) {
    if (NS[NS[x].par].lc == p) NS[NS[x].par].lc = x:
```

```
else if (NS[NS[x].par].rc == p) NS[NS[x].par].rc = x;
    else if (NS[NS[x].par].lc2 == p) NS[NS[x].par].lc2 = x;
    else if (NS[NS[x].par].rc2 == p) NS[NS[x].par].rc2 = x;
    else if (NS[NS[x].par].pt == p) NS[NS[x].par].pt = x;
  recalc(p);
 recalc(x):
void splav(int x) {
 if (x == 0) return;
  prop_anc(x);
  int root = x;
  while (!isRoot(root)) root = NS[root].par;
  int 12 = NS[root].1c2, r2 = NS[root].rc2;
  NS[root].lc2 = NS[root].rc2 = 0:
  while (!isRoot(x)) {
    int p = NS[x].par, q = NS[p].par;
    if (!isRoot(p)) rotate((NS[p].lc == x) == (NS[q].lc == p)?
   rotate(x);
  NS[x].1c2 = 12;
  NS[x].rc2 = r2;
 recalc(x);
void splay2(int x) {
 if (x == 0) return:
  prop_anc2(x);
  while (!isRoot2(x)) {
    int p = NS[x].par, q = NS[p].par;
    if (!isRoot2(p)) rotate2((NS[p].1c2 == x) == (NS[q].1c2 ==
   p) ? p : x);
    rotate2(x):
int find right(int x) {
  assert(isRoot2(x));
  while (NS[x].rc2 != 0) {
   prop(x);
    x = NS[x].rc2;
  splay2(x);
 return x:
void erase(int x) {
  assert(isRoot2(x));
  prop(x);
  int p = NS[x].1c2, q = NS[x].rc2;
  NS[x].1c2 = 0:
 NS[x].rc2 = 0;
  recalc(x):
  if (p == 0 || q == 0) {
    int root = p + q;
    if (root) NS[root].par = NS[x].par;
    if (NS[x].par) NS[NS[x].par].pt = root;
    recalc(NS[root].par);
    return:
  int root = p;
```

```
NS[root].par = 0:
 root = find_right(root);
 NS[root].rc2 = q;
 NS[q].par = root;
 NS[root].par = NS[x].par;
 if (NS[x].par) NS[NS[x].par].pt = root;
 recalc(root):
 recalc(NS[root].par);
void insert(int x, int y) {
 prop(x);
 if (NS[x].pt == 0) {
   NS[x].pt = y;
   NS[y].par = x;
 } else {
   int x2 = NS[x].pt;
   x2 = find_right(x2);
   NS[x2].rc2 = v;
   NS[y].par = x2;
   recalc(x2):
 recalc(x):
int access(int x) {
 prop_anc3(x);
 splay(x);
 if (NS[x].rc != 0) insert(x, NS[x].rc):
 NS[x].rc = 0;
 recalc(x);
 int ret = x:
  while (NS[x].par) {
   splay2(x);
   int y = NS[x].par;
   ret = v;
   splay(y);
   erase(x):
   if (NS[y].rc != 0) insert(y, NS[y].rc);
   NS[y].rc = x;
   NS[x].par = y;
   recalc(x):
   recalc(y);
   splay(x);
 prop(x);
 return ret;
void link(int x, int p) {
 access(x);
 access(p):
 NS[x].lc = p;
 NS[p].par = x;
 recalc(x):
void cut(int x) {
 access(x);
 NS[NS[x].lc].par = 0;
 NS[x].lc = 0:
 recalc(x);
```

```
int lca(int x, int v) {
 access(x);
 return access(y);
void reroot(int x) {
 access(x):
 apply(x, 0, 0, true);
int findRoot(int x) {
 access(x);
 while (NS[x].lc) x = NS[x].lc;
 splay(x);
 return x;
int findParent(int x) {
 access(x);
 x = NS[x].lc:
 if (x == 0) return 0;
 while (NS[x].rc) x = NS[x].rc;
 splay(x);
 return x;
int depth(int x) {
 access(x);
 return NS[NS[x].lc].hsz + 1;
//-----
11 subtree_query(int r, int v) {
 reroot(r);
 access(v):
 int p = NS[v].pt;
 return NS[v].val + NS[p].hsum + NS[p].lsum;
void subtree_update(int r, int v, ll k) {
 reroot(r):
 access(v):
 apply(NS[v].pt, k, k, false);
 NS[v].val += k:
 recalc(v):
11 path_query(int u, int v) {
 reroot(u);
 access(v):
 return NS[v].hsum:
void path_update(int u, int v, ll k) {
 reroot(u);
 access(v);
 apply(v, k, 0, false);
     Queue Undo Trick
```

$a_4 \ a_5 \ a_6 \ a_3 \ a_2 \ a_7 \ a_1 \ a_8$

큐의 원소들을 **빨간색**과 **파란색**으로 나눠서 스택에 저장. 파란색 원소들은 스택의 top에서부터 뽑을 때 first-in-first-out 이고, 빨간색 원소들은 last-in-

```
first-out q. pop() 연산이 들어왔을 때 스택의 top이 빨간색이라면, 원소들을
적당히 뽑아서 위 불변량을 유지하면서 변환함. (pseudocode 참고)
// pseudocode, O(n log n) amortized time
void push(x) { S.insert(x, red); }
int pop() {
    if (S.top().col == blue) return S.pop();
    else {
        vector<int> R, B;
        while (!S.empty() && (size(R) != size(B) and S has
        blue)) {
           if (S.top().col == red) R.insert(S.pop());
            else B.insert(S.pop());
       if (S.empty()) {
           reverse(R):
           for (x in R) x.col = blue, S.insert(x);
           for (x in B) S.insert(x);
       }
        else {
           for (x in R) S.insert(x):
           for (x in B) S.insert(x);
       }
   }
}
6 Geometry
6.1 Geometry Template (int)
bool point_on_line(point p, point q, point r) {
  11 x = (r - p) * (q - p);
  return ccw(p, q, r) == 0 && 0 <= x && x <= (q - p) * (q - p);
// 교점이 없으면 0, 교점이 선분의 끝점이면 1, 두 선분이 교차하면 2,
int line_intersect_verbose(point p, point q, point r, point s)
  if (ccw(p, q, r) == 0 \&\& ccw(p, q, s) == 0) {
   11 u = (r - p) * (q - p);
    11 v = (s - p) * (q - p);
    11 1 = (q - p) * (q - p);
    if (u > v) swap(u, v);
    // intersection of [0, 1] and [u, v]
    if (1 < u || v < 0) return 0;
    else if (1 == u || v == 0) return 1;
    else return 3:
  if (point_on_line(r, s, p) || point_on_line(r, s, q)) return
  if (point_on_line(p, q, r) || point_on_line(p, q, s)) return
  1;
  return (ccw(p, q, r) * ccw(p, q, s) < 0 && ccw(r, s, p) *
  ccw(r, s, q) < 0) ? 2 : 0;
6.2 Geometry Template (double)
const double eps = 1e-9:
point unit(point a) { return 1 / sqrt(a * a) * a; }
int ccw(point p, point q, point r) {
  double x = (q - p) / (r - p);
  return (x > eps) - (x < -eps);
```

```
bool point_on_line(point p, point q, point r) {
 double x = (r - p) * (q - p);
 return ccw(p, q, r) == 0 \&\& -eps < x \&\& x < (q - p) * (q - p)
point intersect(point p, point u, point q, point v) {
 return p + (((q - p) / v) / (u / v)) * u;
// 교점이 없으면 0, 교점이 선분의 끝점이면 1, 두 선분이 교차하면 2,
무수히 많으면 3
int line_intersect_verbose(point p, point q, point r, point s,
point &a, point &b) {
  const double eps = 1e-6;
 if (ccw(p, q, r) == 0 \&\& ccw(p, q, s) == 0) {
   double u = (r - p) * (q - p);
   double v = (s - p) * (q - p);
   double 1 = (q - p) * (q - p);
   if (u > v) swap(u, v);
   // intersection of [0, 1] and [u, v]
   // (u의 scale) / (자료형의 표현범위)가 eps보다 작도록.
   // (좌표의 차이) * (벡터의 크기) 가 eps보다 크도록.
   if (1 < u - eps \mid\mid 0 > v + eps) return 0;
   else if (abs(u - 1) < eps) \{ a = p; return 1; \}
  else if (abs(0 - v) < eps) \{ a = q; return 1; \}
  else {
     a = p + (max(0.0, u) / 1) * (q - p);
     b = p + (min(1, v) / 1) * (q - p);
     return 3:
   }
 }
 if (point_on_line(r, s, p)) { a = p; return 1; }
  if (point_on_line(r, s, q)) { a = q; return 1; }
  if (point_on_line(p, q, r)) { a = r; return 1; }
  if (point_on_line(p, q, s)) { a = s; return 1; }
  if (ccw(p, q, r) * ccw(p, q, s) < 0 && ccw(r, s, p) * ccw(r,
  s, q) < 0) {
   a = intersect(p, q - p, r, s - r);
   return 2:
 return 0;
6.3 Rotating Calipus (390B)
/* include 4 basic operator from int template */
// a must be a convex hull, counterclockwise, no colinear
vector<pair<point, point>> rotating_calipus(vector<point> a) {
 point vec = a[0] - a[n - 1];
  int i = 0, pos = 0;
  while (vec / (a[pos + 1] - a[pos]) > 0) ++pos;
  vector<pair<point, point>> R;
  while (i < n) {
   R.push_back({a[i], a[pos]});
   if ((a[i + 1] - a[i]) / (a[(pos + 1) % n] - a[pos]) > 0) {
     pos = (pos + 1) \% n;
   } else
     ++i;
 }
 return R:
```

```
6.4 Convex Polygon (1768B)
// include 4 basic operators, ccw, point_on_line from int
// call init() first, then call add_point()
// P should be a convex polygon, counterclokwise, no colinear,
at least three points
// point_in_polygon(p) tests if p is strictly contained in the
interior of P
// tangent(p, dir) returns -1 if p is strictly inside
// otherwise, returns the vertex number v
// P[v] is the nearest point encountered on the tangent
(half)line
// dir = 0 (clockwise), dir = 1 (counterclockwise)
// 다각형 반대방향으로 반직선을 긋고 그 방향으로 돌릴 때 처음으로
만나는 점
struct convex_polygon {
 int n;
 vector<point> P;
 void init() { n = 0; P.clear(); }
 void add_point(point p) { ++n; P.push_back(p); }
 bool sgn(point p) {
   int k = ccw(P[n - 1], P[0], p);
   return k == 0? (P[n - 1] - P[0]) * (p - P[0]) >= 0 : k >
   0;
 }
 int get_region(point p) {
   if (p.x == P[0].x && p.y == P[0].y) return 0;
   bool k = sgn(p);
   int ss = 1, ee = n - 1;
   while (ss < ee) {
     int mid = (ss + ee) / 2;
     point u = k ? P[0] : P[mid];
     point v = k ? P[mid] : P[0];
     if (ccw(u, v, p) \le 0) ee = mid;
      else ss = mid + 1;
   return k ? ss : -ss;
 bool point_in_polygon(point p) {
   int k = get_region(p);
   if (k <= 0) return false;
   if (ccw(P[0], P[k], p) == 0) {
     if (k == 1 || k == n - 1) return false;
     else return (P[0] - p) * (P[0] - p) < (P[0] - P[k]) *
      (P[0] - P[k]);
    else return ccw(P[k-1], P[k], p) > 0;
  int tangent(point p, bool dir) {
    if (point_in_polygon(p)) {
     return -1;
   int k = get_region(p);
   if (k == 0) return dir ? 1 : n - 1;
   if (k > 0) {
```

```
if (p.x == P[k].x \&\& p.y == P[k].y) return dir ? (k + 1)
              % n : k - 1;
              if (point_on_line(P[k], P[k - 1], p)) return dir ? k : k
              if (point_on_line(P[0], P[n - 1], p)) return dir ? 0 : n
              - 1;
          int ss = dir ? (k > 0 ? k : 0) : (k > 0 ? 0 : -k);
          int ee = dir ? (k > 0 ? n : -k) : (k > 0 ? k : n):
          --ee:
          while (ss < ee) {
              int mid = (ss + ee) / 2:
              int k = ccw(p, P[mid], P[mid + 1]);
                  if (k \ge 0) ee = mid:
                  else ss = mid + 1;
              }
              else {
                  if (k > 0) ss = mid + 1;
                   else ee = mid:
             }
         }
         return ss;
6.5 Halfplane Intersection (1516B)
typedef __int128_t dll;
/* include 4 basic operators from int template */
// 0-based, O(n log n), coordinates less than 10^12
const int INF = 1e6 + 10: // 좌표범위보다 크게
struct line { point s, d; };
bool bad(line p, line q, line r) {
    dll S = (q.s - p.s) / q.d;
     dll T = p.d / q.d;
    if (T < 0) S *= -1, T *= -1;
    p.s = p.s - r.s;
    dll x = T * p.s.x + S * p.d.x;
    dll y = T * p.s.y + S * p.d.y;
    return x * r.d.y - y * r.d.x > 0;
vector<line> V;
void init() {
    point P[4];
    P[0] = {-INF, -INF}; P[1] = {INF, -INF};
    P[2] = {INF, INF}; P[3] = {-INF, INF};
    V.clear();
    for (int t = 0; t < 4; t++) V.push_back({P[t], P[(t + 1) \% 4]}
void add_line(point s, point d) { V.push_back({s, d}); } //
시점, 벡터
vector<line> get_hpi() {
    auto sgn = [\&](point a) \{ return a.y > 0 || (a.y == 0 && a.x = 0 a.y = 0 a.y
     sort(V.begin(), V.end(), [&](auto p, auto q) { return
     (sgn(p.d) == sgn(q.d)) ? p.d / q.d > 0 : sgn(p.d); });
```

```
int n = V.size():
  line dq[n];
  int r = 0, s = 0;
  for (int i = 0; i < V.size(); i++) {</pre>
    while (s - r \ge 2 \&\& bad(dq[s - 2], dq[s - 1], V[i])) --s;
    while (s - r \ge 2 \&\& bad(dq[r], dq[r + 1], V[i])) ++r;
    if (r != s \&\& dq[s - 1].d / V[i].d == 0) {
      if (da[s - 1].d * V[i].d > 0) {
        if (V[i].d / (V[i].s - dq[s - 1].s) > 0) dq[s - 1] =
     }
      else return vector<line>();
    else dq[s++] = V[i];
    while (s - r \ge 3 \&\& bad(dq[s - 2], dq[s - 1], dq[r])) --s;
    if (s - r) = 2 \&\& dq[s - 2].d / dq[s - 1].d <= 0) return
   vector<line>():
 if (s - r < 3) return vector<line>();
 return vector<line>(da + r. da + s):
6.6 Bulldozer
// 0-based
// n = number of points
// points must be sorted by increasing (x[i], y[i])
// two points with same coordinates NOT allowed
// three points collinear is OK
int main() {
 int n;
  cin >> n:
  int x[n], v[n]; // 중복점 절대 안됨
  for (int i = 0; i < n; i++) cin >> x[i] >> y[i];
  int ord[n], rnk[n];
  iota(ord, ord + n, 0);
  sort(ord, ord + n, [\&](int i, int j) { return x[i] == x[j] ?}
  y[i] < y[j] : x[i] < x[j]; \});
  for (int i = 0; i < n; i++) rnk[ord[i]] = i;
  vector<pii> bdz;
  for (int i = 0; i < n; i++)
   for (int j = i + 1; j < n; j++) bdz.push_back({ord[i],
   ord[i]}):
  auto det = [&](pii l, pii r) {
   return 111 * (x[1.ss] - x[1.ff]) * (y[r.ss] - y[r.ff]) -
    111 * (y[1.ss] - y[1.ff]) * (x[r.ss] - x[r.ff]);
 };
  sort(bdz.begin(), bdz.end(), [&](pii l, pii r) {
   11 x = det(1, r);
    return x == 0 ? rnk[1.ff] == rnk[r.ff] ? rnk[1.ss] <
   rnk[r.ss] : rnk[l.ff] < rnk[r.ff] : x > 0;
 });
  for (int i = 0, p = 0; i < bdz.size(); i = p) {</pre>
    while (p < bdz.size() && det(bdz[i], bdz[p]) == 0) ++p:
    for (int j = i; j < p; j++) {
      auto [u, v] = bdz[j];
      assert(rnk[v] == rnk[u] + 1);
      // your code goes here
      swap(rnk[u], rnk[v]);
```

```
swap(ord[rnk[u]], ord[rnk[v]]);
 }
6.7 Shamos-Hoey (1754B)
/* include 4 basic operators, ccw, point_on_line, intersect
from int template here */
// call calc() to check if there exists an intersection
// O(n log n)
int sweep:
struct line {
 point s, e;
  bool operator<(const line &ot) const {
   // compare s.y + (e - s).y / (e - s).x * (sweep - s.x)
   return ( int128)(ot.e.x - ot.s.x) * (111 * (e.v - s.v) *
    (sweep - s.x) + 111 * s.y * (e.x - s.x)) <
           (_{-}int128)(e.x - s.x) * (111 * (ot.e.y - ot.s.y) *
           (sweep - ot.s.x) + 111 * ot.s.y * (ot.e.x -
           ot.s.x));
};
bool operator<(const line &1, const int &y) { return ccw(1.s,
1.e, point(sweep, y) > 0; }
bool operator<(const int &y, const line &l) { return ccw(l.s,
1.e, point{sweep, y}) < 0; }
bool isect(const line &1, const line &r) { return
line_intersect(l.s, l.e, r.s, r.e); }
struct event {
 int x, type, idx;
 bool operator<(const event &ot) const { return x == ot.x ?</pre>
 type < ot.type : x < ot.x; }</pre>
vector<line> L;
vector<event> E;
void add_line(point s, point e) {
 if (s.x > e.x || (s.x == e.x \&\& s.y > e.y)) swap(s, e);
  int idx = (int)L.size();
 L.push back({s, e}):
 if (s.x != e.x) {
   E.push_back({s.x, 0, idx});
   E.push_back({e.x, 2, idx});
 else E.push back({s.x. 1. idx}):
bool calc() {
 sort(E.begin(), E.end());
 multiset<line, less<>> ST;
  for (auto &e : E) {
    sweep = e.x:
   line 1 = L[e.idx];
   if (e.type == 0) {
      auto it = ST.insert(1);
      if (it != ST.begin() && isect(*it, *prev(it))) return
```

Page 22 of 25

```
if (it != prev(ST.end()) && isect(*it, *next(it))) return
  else if (e.type == 1) {
     if (ST.lower_bound(l.s.y) != ST.upper_bound(l.e.y))
     return true:
   }
  else {
      auto it = ST.lower bound(1):
     if (it != ST.begin() && it != prev(ST.end())) {
       if (isect(*prev(it), *next(it))) return true;
     ST.erase(it);
  return false;
6.8 Smallest Enclosing Circle (802B)
/* include 5 basic operators, ccw, intersect from double
template */
point rot(point p) { return {-p.y, p.x}; }
double dst(point p, point q) { return sqrt((p - q) * (p - q));
point center(point p, point q, point r) {
 point x = 0.5 * (p + q);
 point y = 0.5 * (q + r);
 return intersect(x, rot(q - p), y, rot(r - q));
// O(n) randomized
pair<point, double> min_enclosing_circle(vector<point> P) {
 mt19937 rnd(1557);
 shuffle(P.begin(), P.end(), rnd);
 point p = P[0];
  double r = 0:
  for (int i = 1; i < P.size(); i++) if (dst(p, P[i]) > r) {
   p = P[i]; r = 0;
   for (int j = 0; j < i; j++) if (dst(p, P[j]) > r) {
     p = 0.5 * (P[i] + P[j]);
     r = dst(p, P[j]);
     for (int k = 0; k < j; k++) if (dst(p, P[k]) > r) {
       p = center(P[i], P[j], P[k]);
       r = dst(p, P[k]);
     }
   }
 return {p, r};
6.9 Voronoi Diagram (5768B)
/* include 5 basic operators, intersect from double template */
const double eps = 1e-9;
point rot(point p) { return {-p.y, p.x}; }
namespace voronoi {
 int dcmp(double x) { return x < -eps ? -1 : x > eps ? 1 : 0;
  double pb_int(point 1, point r, double sweepline) {
    if (dcmp(1.y - r.y) == 0) return (1.x + r.x) / 2.0;
    int sign = 1.y < r.y ? -1 : 1;
    point v = intersect(1, r - 1, point{0, sweepline}, point{1,
    0}):
```

```
point m = 0.5 * (1 + r):
  double d1 = (m - v) * (m - v);
  double d2 = (m - 1) * (m - 1);
 return v.x + sign * sqrt(max(0.0, d1 - d2));
point circumcenter(point p, point q, point r) { return
intersect(0.5 * (p + q), rot(p - q), 0.5 * (q + r), rot(q -
r)); }
struct Beachline {
  struct node {
    node() {}
    node(point p, int idx) : p(p), idx(idx), end(0), link{0,
    0}, par(0), prv(0), nxt(0) {}
    point p; int idx, end;
    node *link[2], *par, *prv, *nxt;
 };
  node *root:
  double sweepline;
  Beachline() : sweepline(-1e20), root(NULL) {}
  inline int dir(node *x) { return x->par->link[0] != x; }
  void rotate(node *n) {
    node *p = n->par: int d = dir(n):
    p->link[d] = n->link[!d];
    if (n->link[!d]) n->link[!d]->par = p;
    n\rightarrow par = p\rightarrow par; if (p\rightarrow par) p\rightarrow par\rightarrow link[dir(p)] = n;
    n->link[!d] = p; p->par = n;
  void splay(node *x, node *f = NULL) {
    while (x->par != f) {
      if (x->par->par != f) {
        if (dir(x) == dir(x->par)) rotate(x->par);
        else rotate(x);
      }
      rotate(x);
    if (f == NULL) root = x:
  void insert(node *n, node *p, int d) {
    splay(p); node *c = p->link[d];
    n\rightarrow link[d] = c; if(c) c\rightarrow par = n;
    p->link[d] = n; n->par = p;
    node *prv = !d ? p->prv : p;
    node *nxt = !d ? p : p \rightarrow nxt;
    n->prv = prv; if (prv) prv->nxt = n;
    n->nxt = nxt; if (nxt) nxt->prv = n;
  void erase(node *n) {
    node *prv = n->prv, *nxt = n->nxt;
    if (!prv && !nxt) { if (n == root) root = NULL; return; }
    n->prv = NULL; if (prv) prv->nxt = nxt;
    n->nxt = NULL; if (nxt) nxt->prv = prv;
    splay(n);
      root->par = NULL; n->link[0] = NULL;
      root = prv;
    }
    else {
      splay(nxt, n); node* c = n->link[0];
      nxt->link[0] = c; c->par = nxt; n->link[0] = NULL;
```

```
n->link[1] = NULL: nxt->par = NULL:
      root = nxt;
 }
  bool get_event(node *cur, double &next_sweep) {
    if (!cur->prv || !cur->nxt) return false;
    point u = rot(cur->p - cur->prv->p);
    point v = rot(cur->nxt->p - cur->p);
    if (dcmp(u/v) != 1) return false;
    point p = circumcenter(cur->p, cur->prv->p, cur->nxt->p);
    double d = sqrt((p - cur->p) * (p - cur->p));
    next_sweep = p.y + d;
    return true;
  node *lower bound(double x) {
    node *cur = root;
    while (cur) {
      double 1 = cur->prv ? pb_int(cur->prv->p, cur->p,
      sweepline) : -1e30;
      double r = cur->nxt ? pb_int(cur->p, cur->nxt->p,
      sweepline) : 1e30;
      if (1 - eps < x && x < r + eps) {
        splay(cur); return cur;
      cur = cur - \frac{1}{nk} x > r:
 }
};
using Bnode = Beachline::node;
vector<Bnode*> arr:
Bnode* new_node(point p, int idx) {
  arr.push_back(new Bnode(p, idx));
 return arr.back();
struct event {
  event(double sweep, int idx) : type(0), sweep(sweep),
 idx(idx) {}
  event(double sweep, Bnode *cur): type(1), sweep(sweep),
  prv(cur->prv->idx), cur(cur), nxt(cur->nxt->idx) {}
  int type, idx, prv, nxt;
 Bnode* cur;
  double sweep;
 bool operator>(const event &1) const {
    return sweep > 1.sweep;
 }
};
void VoronoiDiagram(vector<point> &P, vector<point> &V,
vector<pii> &E, vector<pii> &D) {
 Beachline bl = Beachline():
  priority_queue<event, vector<event>, greater<event>>
  events:
  auto add_edge = [&](int u, int v, int a, int b, Bnode* c1,
  Bnode *c2) {
    if (c1) c1->end = E.size() * 2;
    if (c2) c2->end = E.size() * 2 + 1;
    E.push_back({u, v});
```

```
D.push_back({a, b});
};
 auto write_edge = [&](int idx, int v) { (idx % 2 == 0 ?
 E[idx / 2].x : E[idx / 2].y) = v; };
 auto add_event = [&](Bnode *cur) {
  double nxt:
  if (bl.get_event(cur, nxt)) events.push({nxt, cur});
};
int n = P.size():
 sort(P.begin(), P.end(), [&](point p, point q) { return p.y
 == q.y ? p.x < q.x : p.y < q.y; });
 Bnode *prv = new_node(P[0], 0);
bl.root = prv;
for (int i = 1; i < n; i++) {
  if (dcmp(P[i].y - P[0].y) == 0) {
    add_edge(-1, -1, i - 1, i, 0, prv);
    Bnode *cur = new_node(P[i], i);
    bl.insert(cur, prv, 1);
    prv = cur;
  else events.push({P[i].y, i});
while (!events.empty()) {
   event q = events.top(); events.pop();
  Bnode *prv, *cur, *nxt, *site;
   int v = V.size(), idx = q.idx;
  bl.sweepline = q.sweep;
  if (q.type == 0) {
    point p = P[idx];
    cur = bl.lower_bound(p.x);
    bl.insert(site = new_node(p, idx), cur, 0);
    bl.insert(prv = new_node(cur->p, cur->idx), site, 0);
    add_edge(-1, -1, cur->idx, idx, site, prv);
    add_event(prv);
    add_event(cur);
   else {
    cur = q.cur; prv = cur->prv; nxt = cur->nxt;
    if (!prv || !nxt || prv->idx != q.prv || nxt->idx !=
    q.nxt) continue;
    V.push_back(circumcenter(prv->p, nxt->p, cur->p));
    write_edge(prv->end, v);
    write_edge(cur->end, v);
     add_edge(v, -1, prv->idx, nxt->idx, 0, prv);
    bl.erase(cur);
    add_event(prv);
    add_event(nxt);
arr.clear();
Note
```

7.1 Unimodular Matrix

- Unimodular Matrix : 임의의 square submatrix의 determinant가 1, 0, -1 중 하나인 matrix
- A의 모든 row에 nonzero element는 +1이 최대 1개, -1이 최대 1개만 있다면 A는 Unimodular matrix이다. (역은 성립하지 않음)

- A가 Unimodular Matrix라면, Ax < b 꼴의 LP는 항상 정수해를 가진다. (역은 성립하지 않음)
- ig)가 Unimodular Matrix라면, $Ax \leq b$ 꼴의 LP에서 $d^Tx = k$ 일때 $maxc^T x$ 를 f(k)라 할 때, f가 convex하다. (역은 성립하지 않음)

7.2 Lyndon Decomposition

- S가 lyndon word (simple word)라는 것은 S가 S의 모든 proper suffix 보다 사전순으로 작다는 의미이다. 즉, S의 suffix array를 구했을 때, 첫 번째 칸이 1(S 전체)이다.
- Example: "a", "ab", "abb", "abcd", "abac"
- S의 어떤 prefix와 suffix도 동일하지 않다.
- S는 S의 모든 cyclic shift보다 사전순으로 작다. (같을 수도 없다.)
- L_1 , L_2 가 lyndon word라면 $L_1 < L_2 \Leftrightarrow L_1 + L_2 < L_2 + L_1 \Leftrightarrow$ $L_1 + L_2$ is lyndon word
- 문자열 S에 대하여 S의 lyndon decomposition은 S를 $w_1w_2 \cdots w_k$ 로 쪼개, w_1, w_2, \dots, w_k 가 모두 lyndon word이며, $w_1 \geq w_2 \geq \dots \geq w_k$ 를 만족하게 하는 분할이다.

7.3 Dilworth Theorem

Theorem. poset의 maximum antichain의 크기는 minimum chain cover

- DAG의 모든 정점을 정점-disjoint한 최소 개수 path로 덮기 ⇒ 정점 분할 후 |V| - (이분 매칭의 크기)
- DAG에서 k개의 정점-disjoint한 path로 덮을 수 있는 최대 정점 개수 \Rightarrow 정점 분할 후 MCMF
- DAG의 모든 정점을 최소 개수 path로 덮기 ⇒ Transitive closure에서 정점 분할 후 |V| – (이분 매칭의 크기) ⇒ Dilworth theorem에 의해 maximum antichain의 크기
- poset의 maximum antichain 찾기 ⇒ 정점 분할한 이분그래프의 vertex cover 찾고, in과 out 정점이 모두 vertex cover에 포함 안된 정점들 선택
- DAG의 모든 간선을 간선-disjoint한 최소 개수 path로 덮기 ⇒ $\sum_{v \in V} \max(d_{out}(v) - d_{in}(v), 0)$

7.4 Konig's Theorem

Theorem. 이분그래프에서 최대 매칭의 크기는 최소 정점 커버의 크기와

- 매칭 크기 = vertex cover 크기 = |V| independent set 크기
- Vertex cover 복원하기
- 최대 매칭을 찾고, 매칭에 포함되지 않은 정점들의 nbr를 전부 선택
- 이 과정에서 매칭에 포함된 정점들만 선택되고, 어떤 매칭 간선의 양쪽 끝점이 모두 선택되는 일이 없음
- 매칭 간선 중 양쪽 끝점이 다 선택되지 않은 게 있다면 둘 중 아무거나 선택

7.5 Menger's theorem

- k- vertex connected graph : k-1개의 정점을 지워도 그래프가 con-
- k- edge connected graph : k-1개의 간선을 지워도 그래프가 connected.
- A graph is k- edge connected iff every pair of vertices has k edgedisjoint paths in between.
- \bullet A graph is k- vertex connected iff every pair of vertices has k internally vertex-disjoint paths in between.
- Biconnected graph (2-vertex connected graph)에서 임의의 두 간선을 포함하는 단순 사이클이 존재한다.

7.6 Hall's Theorem, Tutte's Theorem

- Hall's Theorem. 이분 그래프 $G = (A \cup B, E)$ 에 완전 매칭이 존재할 필요충분조건은 |A| = |B|이고 임의의 $A' \subset A$ 에 대해, |A'| < |N(A')|을 만족하는 것이다. 이때, N(A')은 A'의 어떤 정점과 인접한 B의 모든 정점을 나타낸다.
- Tutte's Theorem. 어떤 그래프 G = (V, E)에 완전 매칭이 존재하는 필요충분조건은 임의의 정점의 부분집합 $S \subset V$ 에 대해 G에서 S를 제 외한 그래프에서 정점의 개수가 홀수인 연결 성분의 개수가 S의 크기를 넘지않는 것이다.

7.7 Erdos-Gallai Theorem

A sequence of non-negative integers $d_1 \geq d_2 \geq \cdots \geq d_n$ an be represented as the degree sequence of a finite simple graph on n vertices if and only if $d_1 + d_2 + \cdots + d_n$ is even and for $\forall 1 \le k \le n$

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k)$$

7.8 Tutte Matrix

그래프 G = (V, E)가 주어졌을 때, 랜덤한 소수 p를 고르고 다음과 같은 $|V| \times |V|$ 행렬 T를 만들자.

$$T_{i,j} = \begin{cases} r_{i,j} & \text{if } (i,j) \in E \text{ and } i < j \\ -r_{j,i} & \text{if } (i,j) \in E \text{ and } i > j \\ 0 & \text{otherwise} \end{cases}$$

 $r_{i,j}$ 에 [1, p-1] 사이의 랜덤 정수를 부여하고, Gaussian elimination을 통 해서 \pmod{p} 에서) rank(T) 를 구하면, G 의 최대 매칭의 크기는 높은 확률로 rank(T) 이다.

Theorem. G에 perfect matching이 있음과, $\det T \neq 0$ 임이 동치이다.

7.9 Kirchoff's Theorem

For a connected graph G,

$$L_{i,j} = \begin{cases} deg(v_i) & \text{if } i = j \\ -1 & \text{if } i \neq j \text{ and } v_i \text{is adjacent to} v_j \\ 0 & \text{otherwise} \end{cases}$$

Any cofactor (delete 1 row, 1 column from L, and take determinant) equals to the number of labeled spanning trees of this graph.

Let $\lambda_1, \lambda_2, \dots \lambda_n$ be nonzero eigenvalues of $L, t(G) = \frac{1}{n} \lambda_1 \lambda_2 \dots \lambda_n$.

7.10 LP Dual

Primal Problem	Dual Problem
Maximization	Minimization
Inequality constraint (\leq)	Nonnegative variable (\geq)
Inequality constraint (\geq)	Nonpositive variable (\leq)
Equality constraint (=)	Free variable
Nonnegative variable (\geq)	Inequality constraint (\geq)
Nonpositive variable (\leq)	Inequality constraint (\leq)
Free variable	Equality constraint (=)

$$\max_{x} c^{\top}x \text{ (maximization)} \qquad \min_{\lambda} b^{\top}\lambda \text{ (minimization)}$$

$$\text{s.t. } Ax \leq b \text{ (constraint } \leq) \qquad \Longleftrightarrow \qquad \text{s.t. } \lambda \geq 0 \text{ (variable } \geq)$$

$$x \geq 0 \text{ (variable } \geq) \qquad \qquad A^{\top}\lambda \geq c \text{ (constraint } \geq)$$

NewTrend - Seoul National University
Page 25 of 25

```
\min_{\lambda,\eta,\mu} \quad p^{\top}\lambda + q^{\top}\eta + r^{\top}\mu
  \max_{x,y,z} \quad c^{\top}x + d^{\top}y + f^{\top}z
                                     s.t. \lambda \geq 0, \eta \leq 0, \mu free
  s.t. Ax + By + Cz \le p
                                 \overset{\text{dual}}{\Longleftrightarrow} \qquad A^{\top} \lambda + D^{\top} \eta + G^{\top} \mu \ge c
       Dx + Ey + Fz \ge q
                            B^{\top}\lambda + E^{\top}\eta + H^{\top}\mu \le d
       Gx + Hy + Jz = r
       x > 0, y < 0, z free
                                              C^{\top}\lambda + F^{\top}n + J^{\top}u = f
   Misc
8.1 Enumerate quotients
// enumerating all possible floor(n / x) in decreasing order
for (ll l = 1; l <= n; ) {
  11 q = n / 1, r = n / q;
  // floor(n / x) = q for x in [1, r]
  1 = r + 1:
8.2 FastIO
struct fastio {
  char buf[1 << 25]; // size > input size
  int idx:
  fastio() : idx(0) {
    fread(buf, sizeof(buf), 1, stdin);
  inline int read() {
    int x = 0, s = 1:
     int c = buf[idx++]:
     while (c \leq 32) c = buf[idx++];
     if (c == '-') s = -1, c = buf[idx++];
     while (c > 32) x = (x << 3) + (x << 1) + (c - '0'), c =
     buf[idx++]:
    if (s < 0) x = -x:
     return x;
}fi;
8.3 Barrett Reduction
// speeding up modulo operation for non-const MOD
/* PUT THIS IN GLOBAL */
typedef __uint128_t L;
ull m:
/* PUT THIS IN MAIN AFTER INPUT MOD*/
m = ull((L(1) << 64) / MOD);
// replace operator* of mint with this
mint operator*(int ot) {
  ull a = (ull)x * ot;
  ull q = (ull)((L(m) * a) >> 64);
  ull r = a - q * MOD;
  return r \ge MOD ? r - MOD : r;
8.4 Stress test (DM)
mt19937 rnd(1557);
```

ll rng(ll s, ll e) { return uniform_int_distribution<ll>(s,

e)(rnd); }

```
void generator() {
  ofstream ouf("in");
 // generator
 // ouf << 1 << x << y << '\n';
 ouf.flush():
void compile() {
 system("g++ -o main main.cpp");
 system("g++ -o naive naive.cpp"):
bool compare() {
  auto start = chrono::steady_clock::now();
  system("./main < in > out");
  auto end = chrono::steady_clock::now();
  system("./naive < in > ans"):
  cout << "time : " << (end - start).count() / 1e6 << "ms\n\n":</pre>
  system("diff out ans > diff");
 ifstream inf ("diff"):
  string S; getline(inf, S);
 return S == "":
int main() {
 compile();
 int tc = 0:
  while (1) {
   cout << "test case " << ++tc << '\n';</pre>
   generator();
    if (!compare() || tc == 5000) break;
8.5 Highly Composite Numbers, Large Prime
                  number divisors 2 3 5 71113171923293137
  < 10<sup>k</sup>
  9
               735134400
                               1344 6 3 2 1 1 1 1
  12
            963761198400
                                     6 4 2 1 1 1 1 1 1
                                     6 4 2 1 1 1 1 1 1 1 1
  15
         866421317361600
                              26880
                            103680 8 4 2 2 1 1 1 1 1 1 1 1
  18 897612484786617600
 prime
                          primitive root
  10^9+7
                                      402
  10^9+9
                                    1407
 10^18+3
                                    4001
 10~18+9
                                    5001
Rolling Hash safe prime: 9223372036854771239
8.6 Lexicographically next bit permutation
int t = v \mid (v - 1);
return (t + 1) | ((("t & -"t) - 1) >> (__builtin_ctz(v) + 1));
8.7 Partition Numbers, Stirling Numbers
   • Partition Number
```

p(n): Number of ways of writing n as a sum of positive integers,

ignoring order.

$$p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1)/2)$$
$$p(n) \sim 0.145/n \cdot \exp(2.56\sqrt{n})$$

n 0 1 2 3 4 5 6 7 8 9 20 50 100

p(n) 1 1 2 3 5 7 11 15 22 30 627 \sim 2e5 \sim 2e8

• Stirling numbers of the first kind

c(n,k): Number of permutations of length n with k cycles

$$c(0,0) = 1, c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k)$$
 (1)

$$\sum_{k=0}^{n} c(n,k)x^{k} = x(x+1)\cdots(x+n-1)$$
 (2)

• Stirling numbers of the second kind

S(n,k): Number of ways to partition a n-element set into k sets

$$S(n,1) = S(n,n) = 1$$
 (3)

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$
(4)

8.8 pbds

```
#include <ext/pb_ds/assoc_container.hpp>
using namespace "gnu'pbds;
// not multiset, use pair<int, int> for multiset
using ordered_set = tree<int, null_type, less<int>,
    rb_tree_tag, tree_order_statistics_node_update>;
int main() {
    ordered_set X;
    X.insert(1); X.insert(3); X.insert(5); X.insert(7);
    X.insert(9);
    cout << X.order_of_key(4) << '\n'; // 2
    cout << X.order_of_key(5) << '\n'; // 2
    cout << X.order_of_key(10) << '\n'; // 5
    cout << *X.find_by_order(0) << '\n'; // 1
    X.erase(7);
    cout << *X.find_by_order(3) << '\n'; // 9
}</pre>
```

8.9 Formulas

- Pick's Theorem. (Area) = (Inside) + (Boundary)/2 1
- Green's Theorem. Let C is positive, smooth, simple curve. D is region bounded by C. $\oint_C (Ldx + Mdy) = \iint_D (\frac{\partial M}{\partial x} \frac{\partial L}{\partial x})$
- Mobius inversion. $g(n) = \sum_{d|n} f(d) \ f(n) = \sum_{d|n} g(d) \mu(\frac{n}{d})$
- Zeta transform. $z(f(x)) = \sum_{s' \subseteq s} f(s')$
- Mobius transform. $\mu(f(x)) = \sum_{s' \subseteq s} (-1)^{|s \setminus s'|} f(s')$ $\mu = \sigma z \sigma, \ \mu = z^{-1}$ where σ is odd negation