Ukraine Russia War Data Analysis

About Dataset

The 2022 Ukraine–Russia War dataset tracks daily cumulative Russian military losses, including personnel and equipment like tanks, aircraft, and drones. Verified through official sources and visual evidence, it enables time-series analysis of conflict intensity and patterns.

```
In [3]:
        # IMPORT LIBRARIES
        import pandas as pd
In [5]: # LOAD THE DATASET
        data = pd.read_csv('russia_losses_equipment.csv')
In [7]: data.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 1214 entries, 0 to 1213
       Data columns (total 19 columns):
           Column
                                    Non-Null Count Dtype
       --- -----
                                    -----
        0
          date
                                    1214 non-null object
                                    1214 non-null int64
        1 day
                                   1214 non-null int64
        2 aircraft
        3 helicopter
                                   1214 non-null int64
                                    1214 non-null
           tank
                                                  int64
        5 APC
                                   1214 non-null int64
        6 field artillery
                                   1214 non-null int64
        7
                                   1214 non-null
                                                   int64
                                   65 non-null
        8 military auto
                                                   float64
        9 fuel tank
                                   65 non-null float64
        10 drone
                                   1214 non-null
                                                   int64
                                   1214 non-null
        11 naval ship
                                                   int64
        12 anti-aircraft warfare 1214 non-null
                                                   int64
                                                   float64
        13 special equipment
                                   1195 non-null
                                   36 non-null
        14 mobile SRBM system
                                                   float64
        15 greatest losses direction 203 non-null
                                                   object
        16 vehicles and fuel tanks 1149 non-null
                                                   float64
        17 cruise missiles
                                   1149 non-null
                                                   float64
        18 submarines
                                    648 non-null
                                                   float64
       dtypes: float64(7), int64(10), object(2)
       memory usage: 180.3+ KB
In [9]: data.shape
Out[9]: (1214, 19)
In [11]: data.describe()
```

Out[11]:

	(day	aircraft	helicopter	tank	APC	field artillery
cou	int 1214.000	000	1214.000000	1214.000000	1214.000000	1214.000000	1214.000000
me	an 608.500	000	309.400329	286.542010	5595.590610	11194.628501	9747.990939
S	s td 350.595	921	68.163105	63.348728	3168.560315	6400.082849	8810.954283
n	nin 2.000	000	10.000000	7.000000	80.000000	516.000000	49.000000
25	305.250	000	283.000000	267.000000	3012.250000	6011.750000	1992.250000
50)% 608.500	000	320.000000	324.000000	5108.500000	9683.000000	7103.000000
75	5% 911.750	000	367.000000	328.000000	8532.000000	16591.000000	17295.750000
m	ax 1215.000	000	416.000000	337.000000	10964.000000	22867.000000	29432.000000
4 (_					

Overall Equipment Loss Summary

Convert 'date' column to datetime

```
In [15]: data['date'] = pd.to_datetime(data['date'])
```

Get final values (latest date) for each equipment type

- The dataset might contain many columns (date, region, notes, etc.), but we are only interested in military equipment loss counts.
- This list helps us focus on the key features (weapons/equipment types) that are relevant to this analysis.
- It allows us to filter out only these columns from the row.

```
In [22]: latest row = data.iloc[0]
         equipment_columns = ['aircraft', 'helicopter', 'tank', 'APC', 'field artillery',
                               'anti-aircraft warfare', 'special equipment', 'vehicles and
In [26]:
         overall losses = latest row[equipment columns].dropna().sort values(ascending=Fa
         overall_losses
Out[26]: vehicles and fuel tanks
                                     52734.0
         drone
                                       41579
         field artillery
                                       29432
         APC
                                       22867
         tank
                                       10964
         special equipment
                                     3920.0
         cruise missiles
                                     3376.0
                                        1421
         anti-aircraft warfare
                                        1188
         aircraft
                                         416
                                         337
         helicopter
         naval ship
                                          28
         submarines
                                         1.0
         Name: 0, dtype: object
```

```
In [30]: import matplotlib.pyplot as plt
  plt.figure(figsize=(10, 6))
  overall_losses.plot(kind='bar', color='salmon')
  plt.title('Total Equipment Losses (As of Latest Date)')
  plt.ylabel('Units Lost')
  plt.xticks(rotation=45)
  plt.tight_layout()
  plt.show()
```


- This visualization provides a clear comparison of how many units of each major military equipment type have been lost.
- It shows vehicles and fuel tanks (52734) have suffered the most losses and highlights the scale of impact in modern warfare.
- Such visual analytics are crucial in defense analysis, strategic planning, and resource allocation.

Daily Trend of Equipment Losses

```
In [38]: # Calculate daily loss differences (day-to-day)
    daily_losses = data.sort_values('date')[['date'] + equipment_columns].set_index(

In [40]: # Plot trend for selected equipment
    daily_losses[['tank', 'aircraft', 'drone']].plot(figsize=(12, 5))
    plt.title('Daily Equipment Loss Trends (Tank, Aircraft, Drone)')
    plt.ylabel('Losses per Day')
    plt.xlabel('Date')
    plt.grid(True)
    plt.show()
```


- Drone losses have sharply increased over time, especially from mid-2024 onward
- Tank losses remain steady but moderate, with occasional spikes reflecting ground battle surges.
- Aircraft losses stay consistently low, suggesting limited use or high preservation of manned air assets compared to drones.
- The year 2025 shows a dramatic rise in drone losses, likely pointing to a strategic shift or escalation in drone-based warfare.
- Drones show high volatility, unlike tanks and aircraft, highlighting their rapid deployment and destruction cycle in modern warfare.

Most Frequently Lost Equipment Types (Daily)

```
In [43]: # Sum of all daily losses
avg_daily_loss = daily_losses.mean().sort_values(ascending=False)

In [45]: plt.figure(figsize=(10, 6))
    avg_daily_loss.plot(kind='bar', color='teal')
    plt.title('Average Daily Losses by Equipment Type')
    plt.ylabel('Average Units Lost per Day')
    plt.xticks(rotation=45)
    plt.tight_layout()
    plt.show()
```


- Vehicles and fuel tanks have the highest average daily losses (~42 units/day), indicating frequent ground mobility destruction.
- Drones follow closely, emphasizing their widespread use and vulnerability in modern warfare.
- Field artillery, APCs, and tanks also suffer notable daily losses, showing active ground warfare.
- Aircraft, helicopters, naval ships, and submarines show minimal daily losses, reflecting less frequent or more protected deployment.
- The data highlights a shift toward high drone and vehicle attrition over heavier equipment.

Compare loss types over time

```
In [47]: # Cumulative plots of multiple equipment types
    data_sorted = data.sort_values('date')
    plt.figure(figsize=(12, 6))
    for col in ['tank', 'aircraft', 'drone']:
        plt.plot(data_sorted['date'], data_sorted[col], label=col)

    plt.title("Cumulative Losses Over Time by Equipment Type")
    plt.xlabel("Date")
    plt.ylabel("Total Lost")
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.show()
```


- Drone losses (green line) have surged exponentially since mid-2023, crossing 40,000 units by mid-2025.
- Tank losses show a steady linear increase, now exceeding 10,000 units.
- Aircraft losses remain very low, suggesting either strategic conservation or fewer air battles.

Correlation Between Losses and Time

```
In [50]:
         import seaborn as sns
         import numpy as np
In [56]: # Prepare cleaned daily_losses again
         daily losses = data.sort values('date')[['date'] + equipment columns].set index(
In [58]:
         # Ensure no negative values due to data corrections
         daily_losses = daily_losses.clip(lower=0)
In [60]:
        # Correlation matrix for daily losses
         correlation_matrix = daily_losses.corr()
In [62]: # Plot heatmap
         plt.figure(figsize=(12, 10))
         sns.heatmap(correlation_matrix, annot=True, fmt=".2f", cmap="coolwarm")
         plt.title("Correlation Between Equipment Losses Over Time")
         plt.show()
```


Impact of Specific Events

```
In [67]: # Example: Annotate spikes around a known date (replace with actual events)
highlight_date = '2022-09-01' # Sample major offensive date
plt.figure(figsize=(12, 5))
plt.plot(data['date'], data['tank'].diff(), label='Tank Losses per Day')
plt.axvline(pd.to_datetime(highlight_date), color='red', linestyle='--', label='
plt.title("Daily Tank Losses with Event Annotation")
plt.xlabel("Date")
plt.ylabel("Tank Losses")
plt.legend()
plt.show()
```


- The red dashed line (Sept 1, 2022) marks a major offensive, after which tank losses appear more volatile.
- Several extreme dips up to indicate intense combat days post-offensive.
- Pre-offensive tank losses were relatively stable but post-offensive losses show greater variability.
- This suggests the event triggered a strategic shift or escalation in ground combat.

Weekly or Monthly Loss Aggregation

```
In [70]: # Resample by week
  weekly_losses = daily_losses.resample('W').sum()

# Plot
  weekly_losses[['tank', 'aircraft', 'drone']].plot(figsize=(12, 6))
  plt.title("Weekly Aggregated Losses (Tank, Aircraft, Drone)")
  plt.ylabel("Total Weekly Losses")
  plt.xlabel("Week")
  plt.grid(True)
  plt.show()
```


- Drone losses have escalated rapidly, especially from mid-2024, surpassing 1,200 weekly losses in 2025.
- Tank losses remained moderate but consistent, with small fluctuations across weeks.
- Aircraft losses were minimal and steady, indicating either limited deployment or successful defense mechanisms.
- The gap between drone and other equipment losses widened, highlighting a shift in warfare strategy.

Trend Before and After Key Dates

```
In [73]:
        from scipy.stats import ttest_ind
In [75]:
        # Choose a key event date
         cutoff = pd.to_datetime('2022-09-01')
         before = daily_losses.loc[daily_losses.index < cutoff]['tank']</pre>
         after = daily_losses.loc[daily_losses.index >= cutoff]['tank']
In [77]:
         # T-test
         t_stat, p_value = ttest_ind(before.dropna(), after.dropna())
         print(f"T-test result: t-stat={t_stat:.3f}, p-value={p_value:.4f}")
        T-test result: t-stat=2.417, p-value=0.0158
In [79]: # Boxplot
         plt.figure(figsize=(6, 4))
         sns.boxplot(data=[before, after], palette='Set2')
         plt.xticks([0, 1], ['Before Event', 'After Event'])
         plt.title("Tank Loss Comparison Before vs After Key Date")
         plt.ylabel("Daily Tank Losses")
         plt.show()
```

Tank Loss Comparison Before vs After Key Date

- Tank losses increased after the key date, as seen by the higher median and wider spread.
- Pre-event tank losses were lower and more stable, suggesting a build-up phase before a major conflict.
- Outliers before the event show some early spikes, but post-event losses were consistently higher, indicating intensified ground operations.

Equipment Recovery or Capture Rates

```
In [82]: # Placeholder logic if 'captured' or similar columns existed
         if 'captured_tank' in data.columns:
             data['capture ratio'] = data['captured tank'] / data['tank']
             data[['date', 'capture_ratio']].plot(x='date', figsize=(10, 5), title="Captu")
```

Missing Data Analysis

```
In [85]: # Check for missing values in each column
         missing_data = data.isnull().sum().sort_values(ascending=False)
         print("Missing Data Summary:\n", missing_data)
        Missing Data Summary:
         mobile SRBM system
                                      1178
        fuel tank
                                     1149
                                    1149
        military auto
        greatest losses direction
                                     1011
        submarines
                                     566
        vehicles and fuel tanks
                                      65
        cruise missiles
                                       65
                                      19
        special equipment
        APC
                                       0
        field artillery
                                       0
        MRL
                                        0
        tank
                                        0
        day
        drone
                                        0
        naval ship
        anti-aircraft warfare
        helicopter
        aircraft
                                        0
        date
        dtype: int64
In [87]: # Visualize missing values
         import seaborn as sns
         import matplotlib.pyplot as plt
In [89]: plt.figure(figsize=(10, 6))
         sns.barplot(x=missing_data.values, y=missing_data.index, palette="viridis")
         plt.title("Missing Values by Column")
         plt.xlabel("Number of Missing Values")
         plt.ylabel("Column Name")
         plt.show()
```

C:\Users\Nishita Bala\AppData\Local\Temp\ipykernel_55768\3103161547.py:2: FutureW arning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v 0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effe

sns.barplot(x=missing_data.values, y=missing_data.index, palette="viridis")

• Submarines and greatest losses direction are also sparsely recorded, limiting their analytical use.

Rolling Average Analysis

```
In [92]: # 7-day rolling average for selected equipment
    rolling_avg = daily_losses[['tank', 'drone', 'aircraft']].rolling(window=7).mean
In [94]: # Plot rolling averages
    rolling_avg.plot(figsize=(12, 5), linewidth=2)
    plt.title("7-Day Rolling Average of Equipment Losses")
    plt.xlabel("Date")
    plt.ylabel("Average Losses")
    plt.grid(True)
    plt.show()
```


- Drone losses show a steep upward trend, peaking around early 2025 with volatile daily averages over 200.
- Tank losses follow a flatter trend, with periodic surges but no long-term acceleration.
- Aircraft losses are consistently low, indicating drones have largely replaced manned aircraft in frontline losses.

Anomalies or Outlier Detection

```
In [97]: # Detect outliers in daily tank Losses using IQR method
   Q1 = daily_losses['tank'].quantile(0.25)
   Q3 = daily_losses['tank'].quantile(0.75)
   IQR = Q3 - Q1
   outliers = daily_losses[(daily_losses['tank'] < Q1 - 1.5 * IQR) | (daily_losses[
In [99]: # Plot
   plt.figure(figsize=(10, 5))
   plt.plot(daily_losses.index, daily_losses['tank'], label='Daily Tank Losses')
   plt.scatter(outliers.index, outliers['tank'], color='red', label='Outliers')
   plt.title("Outlier Detection in Daily Tank Losses (IQR Method)")
   plt.legend()
   plt.show()</pre>
```

Outlier Detection in Daily Tank Losses (IQR Method)

- Multiple outlier spikes in tank losses are visible, especially around late 2022 and late 2023.
- These outliers suggest intense battle periods or specific offensives leading to high single-day losses.
- The overall trend shows variability, but these outliers help flag extreme combat days worth further analysis.

Seasonal or Temporal Patterns

```
# Add weekday/month columns (if not already added)
In [115...
          data['weekday'] = data['date'].dt.day_name()
          data['month'] = data['date'].dt.month_name()
          # Add weekday column to daily losses to group properly
          daily losses = daily losses.copy()
          daily_losses['weekday'] = data['weekday'].values # align index
In [117...
          # Group by weekday and calculate mean
          weekday_avg = daily_losses.groupby('weekday').mean()
          # Reorder weekdays correctly
          weekday_avg = weekday_avg.reindex(['Monday', 'Tuesday', 'Wednesday', 'Thursday',
In [119...
          # Plot
          weekday_avg['tank'].plot(kind='bar', color='slateblue', figsize=(8, 4))
          plt.title("Average Daily Tank Losses by Weekday")
          plt.ylabel("Average Losses")
          plt.xticks(rotation=45)
          plt.show()
```


Visual War Timeline

```
In [109... # Plot total tank losses over time
    plt.figure(figsize=(12, 5))
    plt.plot(data['date'], data['tank'], label='Cumulative Tank Losses')
```

Out[109... [<matplotlib.lines.Line2D at 0x20d9cfa06e0>]

- Notable spikes around:
 - Feb 24, 2022 (start of war)
 - Sept 1, 2022 (counter-offensive)
- Shows how warfare escalated and intensified at key points.

Mortality to Equipment Loss Ratio

```
In [122... # Estimate "loss ratio" using proxies (e.g., tank vs. vehicles/fuel tanks)
data['loss_ratio'] = data['tank'] / data['vehicles and fuel tanks']
```

```
# Plot ratio over time
plt.figure(figsize=(10, 5))
plt.plot(data['date'], data['loss_ratio'], label='Tank to Vehicle Loss Ratio', c
plt.title("Tank to Vehicle Loss Ratio Over Time")
plt.xlabel("Date")
plt.ylabel("Ratio")
plt.grid(True)
plt.legend()
plt.show()
```


- Declining ratio indicates:
 - Tanks are increasingly outnumbered by overall vehicle losses
 - Or increased use of lighter or support vehicles

Heatmap of Daily Losses per Equipment Type

```
In [130... # Select only numeric columns (equipment types)
    numeric_daily_losses = daily_losses.select_dtypes(include='number')

# Last 30 days of numeric data
    last_30 = numeric_daily_losses.tail(30)

# Plot heatmap
    plt.figure(figsize=(14, 8))
    sns.heatmap(last_30.T, cmap='Reds', annot=True, fmt=".0f", linewidths=.5)
    plt.title("Heatmap: Daily Equipment Losses (Last 30 Days)")
    plt.xlabel("Date")
    plt.ylabel("Equipment Type")
    plt.tight_layout()
    plt.show()
```


Clustering of Loss Patterns

```
In [132...
          from sklearn.preprocessing import StandardScaler
          from sklearn.cluster import KMeans
          import matplotlib.pyplot as plt
          # Drop non-numeric or unrelated columns (like 'cluster' if previously added)
          numeric_data = daily_losses.select_dtypes(include='number').copy()
          # Prepare and scale data
          scaler = StandardScaler()
          daily_scaled = scaler.fit_transform(numeric_data.fillna(0))
          # KMeans clustering
          kmeans = KMeans(n clusters=3, random state=42)
          clusters = kmeans.fit_predict(daily_scaled)
          # Assign cluster labels
          daily_losses['cluster'] = clusters
          # Plot cluster trends (e.g., tank losses by cluster)
          plt.figure(figsize=(10, 5))
          for c in range(3):
              cluster_data = daily_losses[daily_losses['cluster'] == c]
              plt.plot(cluster_data.index, cluster_data['tank'], label=f'Cluster {c}')
          plt.title("Tank Losses by Cluster Group")
          plt.ylabel("Daily Tank Losses")
          plt.xlabel("Date")
          plt.legend()
          plt.grid(True)
          plt.show()
```


- Losses grouped into 3 clusters:
 - Each cluster corresponds to a distinct warfare intensity level.
 - Helps identify periods of escalation or calm.

Cumulative vs. Daily Loss Plot

```
# Compare cumulative vs. daily losses
fig, ax = plt.subplots(2, 1, figsize=(12, 8), sharex=True)

# Cumulative
ax[0].plot(data['date'], data['tank'], label='Cumulative Tank Losses', color='na
ax[0].set_title("Cumulative Tank Losses")

# Daily
ax[1].plot(daily_losses.index, daily_losses['tank'], label='Daily Tank Losses',
ax[1].set_title("Daily Tank Losses")

plt.xlabel("Date")
for a in ax:
    a.legend()
    a.grid(True)
plt.tight_layout()
plt.show()
```


• Daily plot highlights operational tempo and spikes.