This weeks problem set focuses on the ideas of bases and linear transformations. A question marked with a \dagger is difficult and probably too hard for an exam (though still illustrates a useful point). A question marked with a * is especially important.

Homework 2: due end of February 5 January: questions 3, 4b and 6b - d below.

- 1. From section 2.1, problems 15, 17, 18, 19, 24, 26^* , 28, 31^{\dagger} , 40^* .
- 2. From section 2.1, problems 1, 2, 5, 6, 9*, 14, 14b.
- 3.* Let V be a finite dimensional vector space over \mathbb{F} and $B\{v_1,\ldots,v_n\}$ a basis. Let W be another vector space and w_1,\ldots,w_n a collection of elements. Show that there is a unique linear map such that $T(v_i) = w_i$.

Solution: Since B is a basis, if we have any vector $v \in V$ we can write

$$v = \lambda_1 v_1 + \ldots + \lambda_n v_n.$$

Define $T(v) = \lambda_1 T(v_1) + \ldots + \lambda_n T(v_n) = \lambda_1 w_1 + \cdots + \lambda_n w_n$. We can check that it is linear by supposing that $u, v \in V$ and that

$$u = \mu_1 v_1 + \ldots + \mu_n v_n$$

$$v = \lambda_1 v_1 + \ldots + \lambda_n v_n.$$

Then we have $u + v = v = (\mu_1 + \lambda_1)v_1 + \ldots + (\mu_n + \lambda_n)v_n$, so

$$T(u+v) = (\mu_1 + \lambda_1)w_1 + \dots + (\mu_n + \lambda_n)w_n$$
, but
 $T(u) + T(v) = \mu_1 w_1 + \dots + \mu_n w_n + \lambda_1 w_1 + \dots + \lambda_n w_n$.

Thus T(u+v) = T(u) + T(v). Now lets suppose $\mu \in \mathbb{F}$, then $\mu v = \mu \lambda_1 v_1 + \cdots + \mu \lambda_n v_n$, so

$$T(\mu v) = \mu \lambda_1 w_1 + \dots + \mu \lambda_n w_n$$
, but
 $\mu T(v) = \mu(\lambda_1 w_1 + \dots + \lambda_n w_n)$.

Thus $T(\mu v) = \mu T(v)$ and so T is linear.

To see that T is unique, suppose that $SLV \longrightarrow W$ is another linear map such that $S(v_i) = w_i$. Now let $v \in V$ such that $v = \lambda_1 v_1 + \cdots + \lambda_n v_n$. Then by linearity

$$S(v) = S(\lambda_1 v_1 + \dots + \lambda_n v_n)$$

= $\lambda_1 S(v_1) + \dots + \lambda_n S(v_n)$
= $\lambda_1 w_1 + \dots + \lambda_n w_n = T(v)$.

Thus S = T.

- 4.* Let V and W be vector spaces over \mathbb{F} . Define $\operatorname{Hom}(V,W)$ to be the set of linear maps from V to W.
 - (a) Show that Hom(V, W) is itself a vector space.

Solution: We define the linear map T+S by (T+S)(v)=T(v)+S(v) and λT by $(\lambda T)(v)=\lambda T(V)$. The zero element is the map $O:V\longrightarrow W$ defined by O(v)=0. It is easy to check all of the axioms.

(b) If V is finite dimensional and B is a basis for V, construct a basis for $V^* = \text{Hom}(V, \mathbb{F})$. The vector space V^* is called the *dual space* to V.

Solution: Suppose $B = \{v_1, \dots, v_n\}$. For any $1 \le i \le n$ define the linear map $\varepsilon_i : V \longrightarrow \mathbb{F}$ by $\varepsilon_i(v_j) = \delta_{ij}$. Here $\delta_{ij} = 0$ is $i \ne j$ and $\delta_{ii} = 1$.

We claim that $B^* = \{ \varepsilon_1, \dots, \varepsilon_n \}$ is a basis for V^* . Here is a sketch of the proof. To see that B^* spans V^* , take an arbitrary linear map $\chi : V \longrightarrow \mathbb{F}$. One can see that this map is completely determined by the values $\chi(v_i)$. Then

$$\chi = \chi(v_1)\varepsilon_1 + \ldots + \chi(v_n)\varepsilon_n.$$

To see that it is a linearly independent subset, take an arbitrary linear combination

$$\lambda_1 \varepsilon_1 + \lambda_n \varepsilon_n = 0.$$

This means that by evaluating this map at v_i , we get

$$\lambda_i = \lambda_1 \varepsilon_1(v_i) + \dots + \lambda_n \varepsilon_n(v_i) = 0$$

- 5.* Let $T:V\longrightarrow W$ be an injective linear map. Show that, if we consider T, instead, as a linear map $V\longrightarrow \operatorname{im} T$ (just restrict what we consider to be the codomain), then it defines an isomorphism and shows that $V\cong \operatorname{im} T$.
- 6.* Let V and W be vector spaces over \mathbb{F} . Define the set

$$V \times W = \{ (v, w) \mid v \in V \text{ and } w \in W \}.$$

This is called the *product* of the vector spaces.

(a) Show that $V \times W$ is a vector space.

Solution: We define addition and scalar multiplication componentwise. So (v, w) + (v', w') = (v + v', w + w') and $\lambda(v, w) = (\lambda v, \lambda w)$. The axioms are now not hard to check.

(b) Define a map $\iota_V: V \to V \times W$ by $\iota_V(v) = (v, 0)$. Show that ι_V is an injective linear map. Note that we can define a similar map ι_W .

Solution: We have

$$\iota_V(v+w) = (v+w,0) = (v,0) + (w,0) = \iota_V(v) + \iota_V(w)$$

and

$$\iota_V(\lambda v) = (\lambda v, 0) = \lambda(v, 0) = \lambda \iota_V(v).$$

(c) If $U \subset V$ is a subspace, show that $U \times W$ is a subspace of $V \times W$.

Solution: Let $x, y \in U$, thus x = (u, w) and y = (u', w') for some $u, u' \in U$ and $w, w' \in W$. Then $x + y = (u + u', w + w') \in U \times W$. If $\lambda \in \mathbb{F}$, then $\lambda x = (\lambda u, \lambda w) \in U \times W$. Hence $U \times W$ is closed under scalar multiplication and addition and is thus a subspace.

(d) Show that $V \times W = (V \times \{0\}) \oplus (\{0\} \times W)$.

```
Solution: First of all, it is clear that (V \times \{0\}) \cap (\{0\} \times W) = \{0\}. Now observe that (v, w) = (v, 0) + (0, w) so V \times W = (V \times \{0\}) + (\{0\} \times W).
```

Note that we can consider $V \times \{0\}$ as a copy of V in $V \times W$. For this reason, often mathematicians write $V \oplus W$ instead of $V \times W$ and call it the external direct product. Though this is a little confusing so we won't talk about it in this way in this class.

- 7* (2.1.18) Give an example of a linear transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ such that $\ker T = \operatorname{im} T$.
- 8.* (2.1.19) Give an example of distinct linear transformations T and U such that $\ker T = \ker U$ and $\operatorname{im} T = \operatorname{im} U$.