Aberración Cromática

Indice de refracción depende de l.

Inclusive en la aproximación paraxial el material de la lente dispersa la luz. La distancia focal es diferente para distintos colores.

Poder de dispersión

- · Longitudes de onda de referencia (visible): tres líneas de absorción en el espectro del sol (Fraunhofer).
 - Rojo $\lambda_c = 656 \, \text{nm}$
 - Amarillo $\lambda_D = 589$ nm
- -Azul $\lambda_F = 486 \text{ nm}$ Poder de dispersión, $V = \frac{n_F n_C}{n_D 1}$
- Indice de dispersión (número de Abbe), $V=1/\nu$

Una solución: par acromático

- · Construir un juego de lentes de tal manera que la combinación tenga la misma distancia focal efectiva para los colores extremos.
 - · Para cada lente:

$$\frac{1}{f_i} = (n_i - 1) \left(\frac{1}{R_{i1}} - \frac{1}{R_{i2}} \right) = (n_i - 1) \rho_i$$

· Tomando diferencias respecto a n:

$$\Delta\left(\frac{1}{f_{i}}\right) = \rho_{i} \Delta n_{i} = \nu_{i} (n_{iD} - 1) \rho_{i} = \frac{\nu_{i}}{f_{iD}}$$

Par acromático

· La distancia focal del par (lentes pegadas)

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} \tag{1}$$

· El cambio en la distancia focal con longitud de onda es:

$$\Delta\left(\frac{1}{f}\right) = \frac{v_1}{f_1} + \frac{v_2}{f_2}$$

- Que se anula cuando $V_1 f_2 = -V_2 f_1$ (2)
- · Par acromático: solución de (1) y (2).

Más allá de la aproximación paraxial

* Supusimos que los ángulos que hacen las rayos que inciden sobre un sistema óptico son pequeños

*El tratamiento consistirá en continuar la expansión en serie de seno

$$\sin\theta \approx \theta - \frac{\theta^3}{3!}$$

Trazado exacto

Rayos paralelos NO se enfocan en un punto. La imagen se ve borrosa.

··· pero antes

- * El paso de los rayos por un sistema óptico está limitado
- * Pupila de Entrada: imagen del D.A. vista por el objeto (A).
- Pupila de Salida: imagen del D.A. vista por la imagen (B).

Aberraciones

*Formación de imagen paraxial origina un fronte de ondas esférica

Cambio de R al mover P.

*Dif. entre la imagen paraxial Q y el punto Q se debe al cambio de curv. del frente a medida que p se mueve sobre la superficie de la pupila de salida

$$\delta x \propto \frac{\partial R}{\partial x'}, \quad \delta y \propto \frac{\partial R}{\partial y'}$$

*Coord. Sobre la pupila son:

$$\frac{\partial R}{\partial x'} = \frac{\partial R}{\partial \rho} \frac{\partial \rho}{\partial x'} + \frac{\partial R}{\partial \theta} \frac{\partial \theta}{\partial x'}, \qquad \frac{\partial R}{\partial y'} = \frac{\partial R}{\partial \rho} \frac{\partial \rho}{\partial y'} + \frac{\partial R}{\partial \theta} \frac{\partial \theta}{\partial y'}$$

CINCO ABERRACIONES (3er orden)

· Esférica

después de mucha talacha...

$$\delta x \propto 4b_1 \rho^3 \cos\theta + b_2 \rho^2 h (2 + \cos 2\theta) + 2\rho h^2 (b_3 + b_4) \cos\theta + b_5 h^3$$

$$Esférica \qquad Coma$$

$$\delta y \propto 4b_1 \rho^3 \sin\theta + b_2 \rho^2 h \sin(2\theta) + 2b_3 \rho h^2 \sin\theta$$

Astigmatismo:
$$\delta x_3 = 3b_4 \rho h^2 \cos \theta$$

 $\delta y_3 = b_4 \rho h^2 \sin \theta$

Distorsión:
$$5x_5 = b_5h^3$$

 $5y_5 = 0$

ABERRACIÓN ESFERICA

- *Ocurre para puntos sobre el eje óptico.
- * Depende de la forma del lente.

COMA

- * Al recorrer un círculo en la P.S. se recorre dos veces un círculo en el plano de la imagen.
- * Centro E P.T. y dependo del radio del círculo en la pupila.

Suponga se tierre un punto P fuera del eje áptico.

- * Plano tangencial: contiene a P y al eje óptico.
- * Plano sagital: contiere a P y es I plano tangencial.

ASTIGMATISMO

×

CURVATURA DE CAMPO

- * Mov. de focos (tangencial y sagital) es en la misma dirección y crece como h².
- * La imagen se forma en una superficie curvada f superficie de Petzval
- * Si hay astigmatismo las sup. tan. y sag. se curvan de forma dif.

DISTORSIÓN

- *No depende de la pupila de salida.
- * Proporcional a h³ y solo actúa en la dirección x (tangencial).
- * Amplifica de manera diferente a medida que el punto se aleja del eje óptico.
- * Coeficiente positivo → alfiletero, aleja más puntos lejanos.
- * Negativo → barril, aleja menos puntos más lejanos.

