

SEQUENCE LISTING

<110> Nakamura, Teruya  
Schneider, Michael

<120> WNT AS A FACTOR FOR CARDIAC MYOGENESIS

<130> HO-P02767US1

<140> Not Assigned  
<141> 2004-04-21

<150> US 60/464,092  
<151> 2003-04-21

<160> 10

<170> PatentIn version 3.1

<210> 1  
<211> 355  
<212> PRT  
<213> Human

<400> 1

Met Glu Pro His Leu Leu Gly Leu Leu Leu Gly Leu Leu Leu Gly Gly  
1 5 10 15

Thr Arg Val Leu Ala Gly Tyr Pro Ile Trp Trp Ser Leu Ala Leu Gly  
20 25 30

Gln Gln Tyr Thr Ser Leu Gly Ser Gln Pro Leu Leu Cys Gly Ser Ile  
35 40 45

Pro Gly Leu Val Pro Lys Gln Leu Arg Phe Cys Arg Asn Tyr Ile Glu  
50 55 60

Ile Met Pro Ser Val Ala Glu Gly Val Lys Leu Gly Ile Gln Glu Cys  
65 70 75 80

Gln His Gln Phe Arg Gly Arg Arg Trp Asn Cys Thr Thr Ile Asp Asp  
85 90 95

Ser Leu Ala Ile Phe Gly Pro Val Leu Asp Lys Ala Thr Arg Glu Ser  
100 105 110

Ala Phe Val His Ala Ile Ala Ser Ala Gly Val Ala Phe Ala Val Thr  
115 120 125

Arg Ser Cys Ala Glu Gly Thr Ser Thr Ile Cys Gly Cys Asp Ser His  
130 135 140

His Lys Gly Pro Pro Gly Glu Gly Trp Lys Trp Gly Gly Cys Ser Glu  
145 150 155 160

Asp Ala Asp Phe Gly Val Leu Val Ser Arg Glu Phe Ala Asp Ala Arg  
165 170 175

Glu Asn Arg Pro Asp Ala Arg Ser Ala Met Asn Lys His Asn Asn Glu  
180 185 190

Ala Gly Arg Thr Thr Ile Leu Asp His Met His Leu Lys Cys Lys Cys  
195 200 205

His Gly Leu Ser Gly Ser Cys Glu Val Lys Thr Cys Trp Trp Ala Gln  
210 215 220

Pro Asp Phe Arg Ala Ile Gly Asp Phe Leu Lys Asp Lys Tyr Asp Ser  
225 230 235 240

Ala Ser Glu Met Val Val Glu Lys His Arg Glu Ser Arg Gly Trp Val  
245 250 255

Glu Thr Leu Arg Ala Lys Tyr Ser Leu Phe Lys Pro Pro Thr Glu Arg  
260 265 270

Asp Leu Val Tyr Tyr Glu Asn Ser Pro Asn Phe Cys Glu Pro Asn Pro  
275 280 285

Glu Thr Gly Ser Phe Gly Thr Arg Asp Arg Thr Cys Asn Val Thr Ser  
290 295 300

His Gly Ile Asp Gly Cys Asp Leu Leu Cys Cys Gly Arg Gly His Asn  
305 310 315 320

Thr Arg Thr Glu Lys Arg Lys Glu Lys Cys His Cys Ile Phe His Trp  
325 330 335

Cys Cys Tyr Val Ser Cys Gln Glu Cys Ile Arg Ile Tyr Asp Val His  
340 345 350

Thr Cys Lys  
355

<210> 2  
<211> 352  
<212> PRT  
<213> Mouse

<400> 2

Met Ala Pro Leu Gly Tyr Leu Leu Val Leu Cys Ser Leu Lys Gln Ala  
1 5 10 15

Leu Gly Ser Tyr Pro Ile Trp Trp Ser Leu Ala Val Gly Pro Gln Tyr  
20 25 30

Ser Ser Leu Ser Thr Gln Pro Ile Leu Cys Ala Ser Ile Pro Gly Leu  
35 40 45

Val Pro Lys Gln Leu Arg Phe Cys Arg Asn Tyr Val Glu Ile Met Pro  
50 55 60

Ser Val Ala Glu Gly Val Lys Ala Gly Ile Gln Glu Cys Gln His Gln  
65 70 75 80

Phe Arg Gly Arg Arg Trp Asn Cys Thr Thr Val Ser Asn Ser Leu Ala  
85 90 95

Ile Phe Gly Pro Val Leu Asp Lys Ala Thr Arg Glu Ser Ala Phe Val  
100 105 110

His Ala Ile Ala Ser Ala Gly Val Ala Phe Ala Val Thr Arg Ser Cys  
115 120 125

Ala Glu Gly Ser Ala Ala Ile Cys Gly Cys Ser Ser Arg Leu Gln Gly  
130 135 140

Ser Pro Gly Glu Gly Trp Lys Trp Gly Gly Cys Ser Glu Asp Ile Glu  
145 150 155 160

Phe Gly Gly Met Val Ser Arg Glu Phe Ala Asp Ala Arg Glu Asn Arg  
165 170 175

Pro Asp Ala Arg Ser Ala Met Asn Arg His Asn Asn Glu Ala Gly Arg  
180 185 190

Gln Ala Ile Ala Ser His Met His Leu Lys Cys Lys Cys His Gly Leu  
195 200 205

Ser Gly Ser Cys Glu Val Lys Thr Cys Trp Trp Ser Gln Pro Asp Phe  
210 215 220

Arg Thr Ile Gly Asp Phe Leu Lys Asp Lys Tyr Asp Ser Ala Ser Glu  
225 230 235 240

Met Val Val Glu Lys His Arg Glu Ser Arg Gly Trp Val Glu Thr Leu  
245 250 255

Arg Pro Arg Tyr Thr Tyr Phe Lys Val Pro Thr Glu Arg Asp Leu Val  
260 265 270

Tyr Tyr Glu Ala Ser Pro Asn Phe Cys Glu Pro Asn Pro Glu Thr Gly  
275 280 285

Ser Phe Gly Thr Arg Asp Arg Thr Cys Asn Val Ser Ser His Gly Ile  
290 295 300

Asp Gly Cys Asp Leu Leu Cys Cys Gly Arg Gly His Asn Ala Arg Thr  
305 310 315 320

Glu Arg Arg Arg Glu Lys Cys His Cys Val Phe His Trp Cys Cys Tyr  
325 330 335

Val Ser Cys Gln Glu Cys Thr Arg Val Tyr Asp Val His Thr Cys Lys  
340 345 350

<210> 3  
<211> 352  
<212> PRT  
<213> Human

<400> 3

Met Ala Pro Leu Gly Tyr Phe Leu Leu Leu Cys Ser Leu Lys Gln Ala  
1 5 10 15

Leu Gly Ser Tyr Pro Ile Trp Trp Ser Leu Ala Val Gly Pro Gln Tyr  
20 25 30

Ser Ser Leu Gly Ser Gln Pro Ile Leu Cys Ala Ser Ile Pro Gly Leu  
35 40 45

Val Pro Lys Gln Leu Arg Phe Cys Arg Asn Tyr Val Glu Ile Met Pro  
50 55 60

Ser Val Ala Glu Gly Ile Lys Ile Gly Ile Gln Glu Cys Gln His Gln  
65 70 75 80

Phe Arg Gly Arg Arg Trp Asn Cys Thr Thr Val His Asp Ser Leu Ala  
85 90 95

Ile Phe Gly Pro Val Leu Asp Lys Ala Thr Arg Glu Ser Ala Phe Val  
100 105 110

His Ala Ile Ala Ser Ala Gly Val Ala Phe Ala Val Thr Arg Ser Cys  
115 120 125

Ala Glu Gly Thr Ala Ala Ile Cys Gly Cys Ser Ser Arg His Gln Gly  
130 135 140

Ser Pro Gly Lys Gly Trp Lys Trp Gly Gly Cys Ser Glu Asp Ile Glu  
145 150 155 160

Phe Gly Gly Met Val Ser Arg Glu Phe Ala Asp Ala Arg Glu Asn Arg  
165 170 175

Pro Asp Ala Arg Ser Ala Met Asn Arg His Asn Asn Glu Ala Gly Arg  
180 185 190

Gln Ala Ile Ala Ser His Met His Leu Lys Cys Lys Cys His Gly Leu  
195 200 205

Ser Gly Ser Cys Glu Val Lys Thr Cys Trp Trp Ser Gln Pro Asp Phe  
210 215 220

Arg Ala Ile Gly Asp Phe Leu Lys Asp Lys Tyr Asp Ser Ala Ser Glu  
225 230 235 240

Met Val Val Glu Lys His Arg Glu Ser Arg Gly Trp Val Glu Thr Leu  
245 250 255

Arg Pro Arg Tyr Thr Tyr Phe Lys Val Pro Thr Glu Arg Asp Leu Val  
260 265 270

Tyr Tyr Glu Ala Ser Pro Asn Phe Cys Glu Pro Asn Pro Glu Thr Gly  
275 280 285

Ser Phe Gly Thr Arg Asp Arg Thr Cys Asn Val Ser Ser His Gly Ile  
290 295 300

Asp Gly Cys Asp Leu Leu Cys Cys Gly Arg Gly His Asn Ala Arg Ala  
305 310 315 320

Glu Arg Arg Arg Glu Lys Cys Arg Cys Val Phe His Trp Cys Cys Tyr  
325 330 335

Val Ser Cys Gln Glu Cys Thr Arg Val Tyr Asp Val His Thr Cys Lys

340

345

350

<210> 4  
<211> 139  
<212> PRT  
<213> Human

<400> 4

Met Lys Gly Glu Ser Lys Arg Ile Thr Leu Val Leu Gln Gln Pro Gln  
1 5 10 15

Ser Gly Gly Pro Gln Gly His Arg His Val Val Leu Gly Ser Leu Pro  
20 25 30

Gly Lys Ile Val Leu Gln Gly Asn Gln Leu Ala Ala Leu Thr Gln Ala  
35 40 45

Lys Asn Ala Gln Gly Gln Pro Ala Lys Val Val Thr Ile Gln Leu Gln  
50 55 60

Val Gln Gln Pro Gln Gln Lys Ile Gln Ile Val Pro Gln Pro Pro Ser  
65 70 75 80

Ser Gln Pro Gln Pro Gln Pro Pro Ser Thr Gln Pro Val Thr Leu  
85 90 95

Ser Ser Val Gln Gln Ala Gln Ile Met Gly Pro Gly Gln Ser Pro Gly  
100 105 110

Gln Arg Leu Ser Val Pro Val Lys Val Val Leu Gln Pro Gln Arg Leu  
115 120 125

Ala Leu Pro Lys Gly Pro Leu Leu Gly Ser Leu  
130 135

<210> 5  
<211> 433  
<212> PRT  
<213> Human

<400> 5

Met Ser Gly Arg Pro Arg Thr Thr Ser Phe Ala Glu Ser Cys Lys Pro  
1 5 10 15

Val Gln Gln Pro Ser Ala Phe Gly Ser Met Lys Val Ser Arg Asp Lys  
20 25 30

Asp Gly Ser Lys Val Thr Thr Val Val Ala Thr Pro Gly Gln Gly Pro  
35 40 45

Asp Arg Pro Gln Glu Val Ser Tyr Thr Asp Thr Lys Val Ile Gly Asn  
50 55 60

Gly Ser Phe Gly Val Val Tyr Gln Ala Lys Leu Cys Asp Ser Gly Glu  
65 70 75 80

Leu Val Ala Ile Lys Lys Val Leu Gln Asp Lys Arg Phe Lys Asn Arg  
85 90 95

Glu Leu Gln Ile Met Arg Lys Leu Asp His Cys Asn Ile Val Arg Leu  
100 105 110

Arg Tyr Phe Phe Tyr Ser Ser Gly Glu Lys Lys Asp Glu Val Tyr Leu  
115 120 125

Asn Leu Val Leu Asp Tyr Val Pro Glu Thr Val Tyr Arg Val Ala Arg  
130 135 140

His Tyr Ser Arg Ala Lys Gln Thr Leu Pro Val Ile Tyr Val Lys Leu  
145 150 155 160

Tyr Met Tyr Gln Leu Phe Arg Ser Leu Ala Tyr Ile His Ser Phe Gly  
165 170 175

Ile Cys His Arg Asp Ile Lys Pro Gln Asn Leu Leu Asp Pro Asp  
180 185 190

Thr Ala Val Leu Lys Leu Cys Asp Phe Gly Ser Ala Lys Gln Leu Val  
195 200 205

Arg Gly Glu Pro Asn Val Ser Tyr Ile Cys Ser Arg Tyr Tyr Arg Ala  
210 215 220

Pro Glu Leu Ile Phe Gly Ala Thr Asp Tyr Thr Ser Ser Ile Asp Val  
225 230 235 240

Trp Ser Ala Gly Cys Val Leu Ala Glu Leu Leu Gly Gln Pro Ile  
245 250 255

Phe Pro Gly Asp Ser Gly Val Asp Gln Leu Val Glu Ile Ile Lys Val  
260 265 270

Leu Gly Thr Pro Thr Arg Glu Gln Ile Arg Glu Met Asn Pro Asn Tyr

275

280

285

Thr Glu Phe Lys Phe Pro Gln Ile Lys Ala His Pro Trp Thr Lys Asp  
290 295 300

Ser Ser Gly Thr Gly His Phe Thr Ser Gly Val Arg Val Phe Arg Pro  
305 310 315 320

Arg Thr Pro Pro Glu Ala Ile Ala Leu Cys Ser Arg Leu Leu Glu Tyr  
325 330 335

Thr Pro Thr Ala Arg Leu Thr Pro Leu Glu Ala Cys Ala His Ser Phe  
340 345 350

Phe Asp Glu Leu Arg Asp Pro Asn Val Lys Leu Pro Asn Gly Arg Asp  
355 360 365

Thr Pro Ala Leu Phe Asn Phe Thr Thr Gln Glu Leu Ser Ser Asn Pro  
370 375 380

Pro Leu Ala Thr Ile Leu Ile Pro Pro His Ala Arg Ile Gln Ala Ala  
385 390 395 400

Ala Ser Thr Pro Thr Asn Ala Thr Ala Ala Ser Asp Ala Asn Thr Gly  
405 410 415

Asp Arg Gly Gln Thr Asn Asn Ala Ala Ser Ala Ser Ala Ser Asn Ser  
420 425 430

Thr

<210> 6  
<211> 2814  
<212> DNA  
<213> Mouse

<400> 6  
gaattcatgt cttacggta aggcagaggg cccagcgcca ctgcagccgc gcccacccccc 60  
agggccgggc cagcccaggc gtccgcgctc tcggggtgga ctccccccgc tgcgcgctca 120  
agccggcgat ggctccctctc ggataacctct tagtgctctg cagcctgaag caggctctgg 180  
gcagctaccc gatctggtgg tccttggctg tgggacccca gtactcctct ctgagcactc 240  
agcccattct ctgtgcccagc atcccaggcc tggtaccgaa gcagctgcgc ttctgcagga 300  
actacgtgga gatcatgccc agcgtggctg agggtgtcaa agcggggcatc caggagtgcc 360

|                                                                       |      |
|-----------------------------------------------------------------------|------|
| agcaccagtt ccgaggccgg cgttggaact gcaccaccgt cagcaacagc ctggccatct     | 420  |
| ttggccctgt tctggacaaa gccacccggg agtcagcctt tgtccatgcc atcgccctccg    | 480  |
| ctggagtagc tttcgcagtg acacgctcct gtgcagaggg atcagctgct atctgtgggt     | 540  |
| gcagcagccg cctccagggc tccccaggcg agggctggaa gtggggcggc tgttagtgagg    | 600  |
| acattgaatt tggaggaatg gtctctcggg agtttgcga tgccagggag aaccggccgg      | 660  |
| atgcccgc tc tgccatgaac cgtcacaaca atgaggctgg gcccaggcc atcgccagtc     | 720  |
| acatgcacct caagtgc当地 tgccacggc tatctggcag ctgtgaagtg aagacctgct       | 780  |
| ggtgtcgca gcccggacttc cgcaccatcg gggatttcct caaggacaag tatgacagtg     | 840  |
| cctcggagat ggtggtagag aaacaccgag agtctcgtgg ctgggtggag accctgaggc     | 900  |
| cacgttacac gtacttcaag gtgccgacag aacgcgacct ggtctactac gaggcctcac     | 960  |
| ccaacttctg cgaacctaac cccgaaacccg gtccttcgg gacgcgtgac cgcacctgca     | 1020 |
| atgtgagctc gcatggata gatgggtgcg acctgttgcg ctgcggcgc gggcataacg       | 1080 |
| cgcgcactga gcgacggagg gagaaatgcc actgtgttt ccattggtgc tgctacgtca      | 1140 |
| gctgccagga gtgcacacgt gtctatgacg tgcacacctg caagtaggag agtcctaacc     | 1200 |
| acgggagcag gttcattcc gaggggcaag gttcctaccc gggggcgggg ttccctacttg     | 1260 |
| gaggggtctc ttacttgggg actcggttct tacttgaggg cggagatcc acctgtgagg      | 1320 |
| gtctcataacc taaggacccg gttctgcct tcagcctggg ctcctatttgg gatctgggt     | 1380 |
| tccttttag gggagaagct cctgtctggg atacgggttt ctgcccggg gtggggctcc       | 1440 |
| acttggggat ggaattccaa ttggggccgg aagtccattacc tcaatggctt ggactcctct   | 1500 |
| cttgacccga cagggctcaa atggagacag gtaagctact ccctcaacta ggtggggttc     | 1560 |
| gtgcggatgg gtgggggggg agagattagg gtccttcctc ccagaggcac tgctctatct     | 1620 |
| agatacatga gagggtgctt cagggtggc cctatttggg cttgaggatc ccgtgggggc      | 1680 |
| ggggcttcac cccgactggg tggaaactttt ggagacccccc ttccactggg gcaaggcttc   | 1740 |
| actgaagact catggatgg agtccacgg aaggaggagt tcctgagcga gcctgggctc       | 1800 |
| tgagcaggcc atccagctcc catctggccc cttccagtc ctgggttaag gttcaacctg      | 1860 |
| caagcctcat ctgcgcagag caggatctcc tggcagaatg aggcatggag aagaactcag     | 1920 |
| gggtgatacc aagacctaac aaaccccggt cctgggtacc tctttaaag ctctgcaccc      | 1980 |
| cttcttcaag ggcttccta gtctccttgg cagagcttc ctgaggaaga tttgcagtcc       | 2040 |
| cccagagttc aagtgaacac ccatagaaca gaacagactc tatcctgagt agagagggtt     | 2100 |
| ctcttaggaat ctctatgggg actgcttagga aggatcctgg gcatgacagc ctcgttatgtat | 2160 |
| agcctgcatac cgctctgaca cttaataactc agatctcccg ggaaacccag ctcatccgg    | 2220 |

|                                                                      |      |
|----------------------------------------------------------------------|------|
| ccgtgatgtc catgccccaa atgcctcaga gatgttgct cactttgagt tgtatgaact     | 2280 |
| tcggagacat ggggacacag tcaagccgca gagccagggt tgtttcagga cccatctgat    | 2340 |
| tccccagagc ctgctgttga ggcaatggtc accagatccg ttggccacca ccctgtcccgg   | 2400 |
| agcttctcta gtgtctgtct ggcctggaag tgaggtgcta catacagccc atctgccaca    | 2460 |
| agagcttcct gattggtacc actgtgaacc gtccctcccc ctccagacag gggaggggat    | 2520 |
| gtggccatac aggagtgtgc ccggagagcg cgaaaaagagg aagagaggct gcacacgcgt   | 2580 |
| ggtgactgac tgtcttctgc ctggaacttt gcgttcgcgc ttgttaacttt attttcaatg   | 2640 |
| ctgctatatc caccacaccac tggatttaga caaaagtgtat tttctttttt tttttttctt  | 2700 |
| ttctttctat gaaagaaaatt atttttagtt atagtatgtt tgtttcaaatt aatggggaaa  | 2760 |
| gtaaaaagag agaaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaa aaaa | 2814 |

<210> 7  
<211> 1506  
<212> DNA  
<213> Human

|                                                                               |      |
|-------------------------------------------------------------------------------|------|
| <400> 7<br>gcgccttctga caagccccaa agtcatttcc aatctcaagt ggactttgtt ccaactattg | 60   |
| ggggcgctgc tcccccttcatggtcgcg ggcaaaacttc ctccctggcg cctcttctaa               | 120  |
| tggagccccca cctgctcggg ctgctcctcg gcctcctgct cggtggcacc agggtcctcg            | 180  |
| ctggctaccc aatttggtgg tccctggccc tggggcagca gtacacatct ctgggctcac             | 240  |
| agccccctgct ctgcggctcc atcccaggcc tggccccaa gcaactgcgc ttctgcccga             | 300  |
| attacatcga gatcatgccc agcgtggccg agggcgtgaa gctgggcattc caggagtgcc            | 360  |
| agcaccagtt ccggggccgc cgctggaact gcaccaccaat agatgacacgc ctggccatct           | 420  |
| ttggggccgt cctcgacaaa gccaccccgcg agtcggcattt cgttcacgccc atcgccctcg          | 480  |
| ccggcggtggc cttcgcccgtc acccgctctt gcccggaggg cacctccacc atttgcggct           | 540  |
| gtgactcgca tcataagggg ccgcctggcg aaggctggaa gtggggcgcc tgcagcgagg             | 600  |
| acgctgactt cggcgtgtta gtgtccaggaggg agttcgcggta tgccgcgcgaa aacaggccgg        | 660  |
| acgcgcgcgtc ggccatgaac aagcacaaca acgaggcgaaa ccgcacgact atcctggacc           | 720  |
| acatgcaccc taaatgcaag tgccacgggc tgcggggcag ctgtgaggtg aagacctgct             | 780  |
| ggtggggcgca gcctgacttc cgtgccatcg gtgacttcctt caaggacaag tatgacagcg           | 840  |
| cctcggagat ggttagtagag aagcaccgtg agtcccggagg ctgggtggag accctccggg           | 900  |
| ccaagtactc gctttcaag ccacccacgg agagggaccc ggtctactac gagaactccc              | 960  |
| ccaaacttttg tgagcccaac ccagagacgg gttcctttgg cacaagggac cgacttgca             | 1020 |

|                                                                   |      |
|-------------------------------------------------------------------|------|
| atgtcacctc ccacggcatc gatggctgcg atctgctctg ctgtggccgg gcccacaaca | 1080 |
| cgaggacgga gaagcggaaag gaaaaatgcc actgcattt ccactggtgc tgctacgtca | 1140 |
| gctgccagga gtgtattcgc atctacgacg tgcacacctg caagtagggc accagggcgc | 1200 |
| tgggaagggg tgaagtgtgt ggctggccgg attcagcgaa gtctcatggg aagcaggacc | 1260 |
| tagagccggg cacagccctc agcgtcagac agcaaggaac tgtcaccagc cgcacgcgtg | 1320 |
| gtaaatgacc cagacccaac tcgcctgtgg acggggaggc tctccctctc tctcatctta | 1380 |
| catttctcac cctactctgg atggtgtgtg gttttaaag aagggggctt tcttttagt   | 1440 |
| tctctagggt ctgatagaa cagacctgag gcttatctt gcacatgtta aagaaaaaaaaa | 1500 |
| aaaaaaaa                                                          | 1506 |

<210> 8  
 <211> 2932  
 <212> DNA  
 <213> Human

|                                                                    |      |
|--------------------------------------------------------------------|------|
| <400> 8                                                            |      |
| agctcccaagg gcccggcccc ccccgccgct cacgctctcg gggcggactc ccggccctcc | 60   |
| gcgcctctc gcgcggcgat ggccccactc ggatacttct tactcctctg cagcctgaag   | 120  |
| caggctctgg gcagctaccc gatctggtgg tcgctggctg ttggccaca gtattcctcc   | 180  |
| ctgggctcgc agcccatcct gtgtgccagc atccgggccc tggtcccaa gcagctccgc   | 240  |
| ttctgcagga actacgtgga gatcatgccc agcgtggccg agggcatcaa gattggcatc  | 300  |
| caggagtgcc agcaccagtt ccgcggccgc cggtggaact gcaccaccgt ccacgacagc  | 360  |
| ctggccatct tcgggcccgt gctggacaaa gctaccaggg agtcggcctt tgtccacgcc  | 420  |
| attgcctcag ccggtgtggc ctttgcagtg acacgctcat gtgcagaagg cacggccgccc | 480  |
| atctgtggct gcagcagccg ccaccagggc tcaccaggca agggctggaa gtgggggtggc | 540  |
| tgtagcgagg acatcgagtt tggtggtatg gtgtctcggg agttcgccga cgcccgaggag | 600  |
| aaccggccag atgcccgtc agccatgaac cgccacaaca acgaggctgg gcgccaggcc   | 660  |
| atcgccagcc acatgcacct caagtgcag tgccacggc tgtcggcag ctgcgaggtg     | 720  |
| aagacatgct ggtggtcgca acccgacttc cgccatcg gtgacttcct caaggacaag    | 780  |
| tacgacagcg cctcggagat ggtggtggag aagcaccggg agtcccgccg ctgggtggag  | 840  |
| accctgcggc cgcgctacac ctacttcaag gtgcccacgg agcgcgacct ggtctactac  | 900  |
| gaggcctcgc ccaacttctg cgagccaaac cctgagacgg gtccttcgg cacgcgcgac   | 960  |
| cgcacctgca acgtcagctc gcacggcatc gacggctgcg acctgctgtg ctgcggccgc  | 1020 |
| ggccacaacg cgcgagcggaa gccccccgg gagaagtgcc gctgcgtgtt ccactggtgc  | 1080 |

|                                                                     |      |
|---------------------------------------------------------------------|------|
| tgctacgtca gctgccagga gtgcacgcgc gtctacgacg tgcacacactg caagttaggca | 1140 |
| ccggccgcgg ctccccctgg acggggcggg ccctgcctga gggtgggctt ttcccctgggt  | 1200 |
| ggagcaggac tccccactaa acggggcagt actcctccct gggggcggga ctccctccctg  | 1260 |
| ggggtgtgggc tcctacctgg gggcagaact cctacctgaa ggcagggctc ctccctggag  | 1320 |
| ctagtgtctc ctctctggtg gctgggctgc tcctgaatga ggcggagctc caggatgggg   | 1380 |
| aggggctctg cggtggcttc tccctggggc cggggctccc ctggacagag gcggggctac   | 1440 |
| agattggcg gggcttctct tgggtgggac agggcttctc ctgcgggggc gaggcccctc    | 1500 |
| ccagtaaggg cgtggctctg ggtgggcggg gcactaggta ggcttctacc tgcaggcggg   | 1560 |
| gctccctctg aaggaggcgg ggctctagga tggggcacgg ctctgggta ggctgctccc    | 1620 |
| tgagggcggg ggcgcctcctt aggagtgggg ttttatggtg gatgaggctt ctccctggat  | 1680 |
| ggggcagago ttctcctgac cagggcaagg ccccttccac gggggctgtg gctctgggtg   | 1740 |
| ggcgtggcct gcataggctc cttcctgtgg gtggggcttc tctggacca ggctccaatg    | 1800 |
| gggcggggct tctctcccg ggtgggactc ttccctggga accgcctcc tgattaaggc     | 1860 |
| gtggcttctg caggaatccc ggctccagag cagaaaattc agcccaccag ccacctcatc   | 1920 |
| cccaaaaaaa tgtaaggttc catccacccc tgcgtcgagc tgggaaggtt ccatgaagcg   | 1980 |
| agtcgggtcc ccaacccgtg cccctggat ccgagggccc ctctccaagc gcctggcttt    | 2040 |
| ggaatgctcc aggcgcgcgg acgcctgtgc cacccttcc tcagcctggg gtttaccac     | 2100 |
| ccacctgacc agggggcccta cctggggaaa gcctgaaggg cctcccagcc cccaaacccca | 2160 |
| agaccaagct tagtcctggg agaggacagg gacttcgcag aggcaagcga ccgaggccct   | 2220 |
| cccaaagagg cccgcctgc cgggctccc acaccgtcag gtactcctgc cagggactg      | 2280 |
| gcctgctgca ccccaggccc cgcccgcttc tgctctgctc agctgcgcgg ccttcttgc    | 2340 |
| agctgcccag cccctccctcc ctgcctcgg gtctcccccac ctgcactcca tccagctaca  | 2400 |
| ggagagatag aagcctctcg tcccgtccct cccttcctc cgcctgtcca cagcccctta    | 2460 |
| aggaaaaggt aggaagagag gtccagcccc ccaggctgcc cagagctgtc ggtctcattt   | 2520 |
| gggggcgttc gggaggtttg gggggcatca acccccccac tgcgtgtctc gcgaagggtcc  | 2580 |
| cacagccctg agatgggcgg gcccccttcc tggccctca tggcgggact ggagaaaatgg   | 2640 |
| tccgccttcc tggagccaat ggccccggccc ctcctgactc atccgcctgg cccggaaatg  | 2700 |
| aatggggagg ccgctgaacc cacccggccc atatccctgg ttgcctcatg gccagcggcc   | 2760 |
| ctcagccctc gccactgtga accggctccc accctcaagg tgcggggaga agaagcggcc   | 2820 |
| aggcggggcgg ccccaagagc cccaaagagg gcacaccgccc atcctctgcc tcaaattctg | 2880 |

|                        |                        |                        |      |
|------------------------|------------------------|------------------------|------|
| cgttttggt tttaatgtt    | tatctgatgc tgctatatcc  | actgtccaac gg          | 2932 |
| <210> 9                |                        |                        |      |
| <211> 923              |                        |                        |      |
| <212> DNA              |                        |                        |      |
| <213> Human            |                        |                        |      |
| <400> 9                |                        |                        |      |
| gagttccacc atcttcctct  | gaagacgtag ccatcttgct  | ccatgaaggg tgaatcgaaa  | 60   |
| cgcacacccc tggcctcca   | gcagccacag tctggaggtc  | cccaaggaca tcggcatgtt  | 120  |
| gtgcttaggga gtctaccagg | caagatagtg ttacagggca  | accagctggc agccctgact  | 180  |
| caagccaaga atgcccagg   | gcagcctgcc aaggtagtaa  | ctatccagct gcaggtgcag  | 240  |
| cagccacagg aaaaaatcca  | gattgtacca caaccaccat  | catcgagcc acagccccag   | 300  |
| cagccacccct ccacccagcc | agtgactctg tcctctgtac  | agcaggctca gataatggga  | 360  |
| ccaggacaaa gcccaggaca  | aagactttca gtaccagtca  | aggtggtaact gcagccacag | 420  |
| aggctggctc ttcccaaggg  | gcctcttctg ggctctctgt  | agttaaagtt ctgagtgcca  | 480  |
| gtgaagtggc agcttgtca   | tcaccagcaa gctctgctcc  | tcattcgggg ggaaagacag  | 540  |
| aatggagga aaaccgcaga   | ttggaacacc agaagaagca  | agagaaagca aatcggttt   | 600  |
| tagcagaggg cattgcgaga  | gcccggtgccc gcggtgagca | gaacataacct cgagtctaa  | 660  |
| atgaggacga gttgcccagc  | gttcggccag aggaggaagg  | cgagaagaaa cgcaggaaga  | 720  |
| agagtgtgg ggagaggctg   | aaagaggaga agccaaagaa  | gagtaaaaca tctggtgccct | 780  |
| ccaaaacaaa gggcaagagc  | aagctcaaca ccatcactcc  | tgttagtgggt aagaagagaa | 840  |
| aacgtaatac ctcatctgat  | aattcagatg tggaaagtcat | gcctgcacag tcacctcgag  | 900  |
| aagatgaaga aagcagcatt  | cag                    |                        | 923  |
| <210> 10               |                        |                        |      |
| <211> 1639             |                        |                        |      |
| <212> DNA              |                        |                        |      |
| <213> Human            |                        |                        |      |
| <400> 10               |                        |                        |      |
| atcatctata tgttaaatat  | ccgtgccgat ctgtcttcaa  | ggagaaatat atcgcttgg   | 60   |
| ttgtttttta tagtatacaa  | aaggagtgaa aagccaaagag | gacgaagtct ttttcttttt  | 120  |
| cttctgtggg agaacttaat  | gctgcattta tcgttaacct  | aacaccccaa cataaaagaca | 180  |
| aaaggaagaa aaggaggaag  | gaaggaaaag gtgattcgcg  | aagagagtga tcatgtcagg  | 240  |
| gcggcccaga accacccctt  | ttgcggagag ctgcaagccg  | gtgcagcagc cttcagcttt  | 300  |
| tggcagcatg aaagtttagca | gagacaagga cggcagcaag  | gtgacaacag tggtggcaac  | 360  |
| tcctgggcag ggtccagaca  | ggccacaaga agtcagctat  | acagacacta aagtgattgg  | 420  |

|                                                                     |      |
|---------------------------------------------------------------------|------|
| aaatggatca tttgggtgtgg tataatcaagc caaactttgt gattcaggag aactggtcgc | 480  |
| catcaagaaa gtattgcagg acaagagatt taagaatcga gagctccaga tcatgagaaaa  | 540  |
| gctagatcac tgtaacatag tccgattgcg ttatattcttc tactccagtg gtgagaagaa  | 600  |
| agatgaggtc tatcttaatc tggtgctgga ctatgttccg gaaacagtat acagagttgc   | 660  |
| cagacactat agtcgagcca aacagacgct ccctgtgatt tatgtcaagt tgtatatgta   | 720  |
| tcaagctgttc cgaagtttag cctatatcca ttcccttgga atctgccatc gggatattaa  | 780  |
| accgcagaac ctcttggatgg atcctgatac tgctgttata aaactctgtg actttggaaag | 840  |
| tgcaaagcag ctggtccgag gagaacccaa tgttcgtat atctgttctc ggtactatag    | 900  |
| ggcaccagag ttgatcttg gagccactga ttataacctt agtatacatg tatggtctgc    | 960  |
| tggctgttg ttggctgagc tgttactagg acaaccaata tttccagggg atagtggtgt    | 1020 |
| ggatcagttg gtagaaataa tcaaggtcct gggactcca acaagggagc aaatcagaga    | 1080 |
| aatgaacccaa aactacacag aatttaaattt ccctcaaatt aaggcacatc cttggactaa | 1140 |
| ggattcgtca ggaacaggac atttcacctc aggagtgcgg gtcttccgac cccgaactcc   | 1200 |
| accggaggca attgcactgt gtagccgtct gctggagtat acaccaactg cccgactaac   | 1260 |
| accactggaa gcttgcac attcatttt tgatgaatta cgggacccaa atgtcaaact      | 1320 |
| acccaaatggg cgagacacac ctgcacttt caacttcacc actcaagaac tgtcaagtaa   | 1380 |
| tccacctctg gctaccatcc ttattcctcc tcatgctcg attcaagcag ctgcttcaac    | 1440 |
| ccccacaaat gccacagcag cgtcagatgc taatactgga gaccgtggac agaccaataa   | 1500 |
| tgctgcttct gcatcagtt ccaactccac ctgaacagtc ccgagcagcc agctgcacag    | 1560 |
| gaaaaaccac cagttacttg agtgcactc agcaacactg gtcacgtttg gaaaagaatat   | 1620 |
| aaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa                                    | 1639 |