ENSTA Paris, Institut Polytechnique de Paris (Introduction au calcul stochastique, PRB203, FR) 2020-21

Série 1

Soit S_n le prix d'un actif financier à l'instant n. Soit Y_n (n ≥ 1) le quotient de prix entre les instants n et n − 1.
 S₀ = p où p est le prix à l'instant 0.
 Supposons que les (Y_n) sont indépendantes identiquement réparties et positives. Posons m = E(Y₁), c² = E(Y₁²).

i) Supposons qu'il y ait un taux d'actualisation $r \geq 0$, de sorte que le prix actualisé de S_n à l'instant 0, vaut $\tilde{S}_n = e^{-rn}S_n$.

Déterminer m de sorte que pour tout $n \geq 0$

$$E(\tilde{S}_n) = E(S_0) = p.$$

Correction.

Nous avons

$$S_n = p\Pi_{\ell=1}^n Y_\ell, \ n \ge 1.$$
 (0.1)

— Si $n \ge 1$, (0.1) impique

$$E(\tilde{S}_n) = e^{-nr} E(S_n) = p e^{-nr} E(\prod_{\ell=1}^n Y_\ell)$$

= $p e^{-nr} \prod_{\ell=1}^n E(Y_\ell) = p e^{-nr} m^n = p (m e^{-r})^n.$

— Si n=0, alors $E(\tilde{S}_0)=p$. D'où il faut que

$$m = e^r. (0.2)$$

ii) Calculer $E\left((\tilde{S}_n)^2\right)$ sous la condition précédente (0.2).

Correction. Si $n \ge 1$

$$\begin{split} E(\tilde{S}_n^2) &= e^{-2nr} p^2 E(\Pi_{\ell=1}^n Y_\ell^2) \\ &= p^2 e^{-2nr} \Pi_{\ell=1}^n E(Y_\ell^2) = (ce^{-nr})^2 p^2 = \left(\frac{c}{m}\right)^{2n} p^2. \end{split}$$

iii) Encore sous la condition précédente déterminer

$$E(\tilde{S}_n|Y_1,\ldots,Y_{n-1}), E(\tilde{S}_n^2|Y_1,\ldots,Y_{n-1}).$$

Correction.

$$E(\tilde{S}_n|Y_1, \dots, Y_{n-1}) = e^{-nr} E(S_{n-1}Y_{n-1}|Y_1, \dots, Y_{n-1})$$

$$= e^{-nr} S_{n-1} \underbrace{E(Y_n|Y_1, \dots, Y_{n-1})}_{E(Y_n)} = e^{-nr} S_{n-1} m$$

$$= e^{-(n-1)r} S_{n-1} = \tilde{S}_{n-1}.$$

En particulier (\tilde{S}_n) est une martingale par rapport à la filtration

$$\mathcal{Y}_n = \sigma(Y_1, \dots, Y_n), \ n \ge 1.$$

Par ailleurs

$$E(\tilde{S}_{n}^{2}|\mathcal{Y}_{n-1}) = e^{-2nr}E(S_{n-1}^{2}Y_{n}^{2}|\mathcal{Y}_{n-1})$$

$$= e^{-2nr}S_{n-1}^{2}E(Y_{n}^{2}) = \tilde{S}_{n-1}^{2}e^{-2r}c^{2}$$

$$= \tilde{S}_{n-1}^{2}\left(\frac{c}{m}\right)^{2}.$$

iv) Donner une condition nécessaire et suffisante pour que \tilde{S}_n^2 soit une martingale.

Correction. La condition $\left(\frac{c}{m}\right)^2=1$ est équivalente à

$$E(Y_1^2) - (E(Y_1))^2 = 0,$$

qui est équivalente à ${\rm Var}(Y_1)=0$ qui équivaut à $Y_1={\rm const.}$

v) Expliciter les quantités données en ii) et iii) si les Y_n sont log-normales, c'à d. si $V_n = \log Y_n \sim N(\mu, \sigma^2)$.

Correction. Supposons

$$Y_n = e^{V_n}, \ V_n \sim N(\mu, \sigma^2).$$

Par la Proposition 2.4 nous avons

$$E(e^{zV_n}) = \exp\left(\mu z + \frac{z^2 \sigma^2}{2}\right), \ z \in \mathbb{C}.$$

Ainsi

$$E(Y_n) = \exp(\mu + \frac{\sigma^2}{2}).$$

 $E(Y_n^2) = E(\exp(2V_n)) = \exp(2\mu + 2\sigma^2).$

D'où

$$m = \exp(\mu + \frac{\sigma^2}{2}), \quad c^2 = \exp(2(\mu + \sigma^2)).$$

La condition (0.2) devient

$$r = \mu + \frac{\sigma^2}{2}.\tag{0.3}$$

Sous (0.3) nous avons

$$E(\tilde{S}_n) = p, \ E(\tilde{S}_n^2) = p^2 e^{n\sigma^2}.$$

- 2. Soit $\underline{X} = (X_1, X_2)$ un vecteur gaussien tel que $\operatorname{Var} X_1 = \sigma_1^2$, $\operatorname{Var} X_2 = \sigma_2^2$, $\operatorname{Cov}(X_1, X_2) = \sigma_{12}$, $\mu_i = E(X_i)$, i = 1, 2. Supposons $\sigma_1, \sigma_2 > 0$.
 - a) Soit $\alpha, \beta \in \mathbb{R}$. Calculer la loi de $\alpha X_1 + \beta X_2$. Corrections. Etant le vecteur (X_1, X_2) gaussien, $\alpha X_1 + \beta X_2$ est gaussienne de paramètres $\tilde{\mu}$ et $\tilde{\sigma}^2$ où

$$\tilde{\mu} = E(\alpha X_1 + \beta X_2) = \alpha E(X_1) + \beta E(X_2) = \alpha \mu_1 + \beta \mu_2$$

 $\tilde{\sigma}^2 = Var(\alpha X_1 + \beta X_2) = \alpha^2 \sigma_1^2 + \beta^2 \sigma_2^2 + 2\alpha \beta \sigma_{12}$

b) Déduire la fonction caractéristique de \underline{X} .

Corrections

$$\varphi_{\underline{X}}(t) = E(\exp(it \cdot \underline{X})) = E(\exp(i(t_1X_1 + t_2X_2)))$$
$$= \varphi_{t_1X_1 + t_2X_2}(1) = \exp(i\tilde{\mu} - \frac{\tilde{\sigma}^2}{2}),$$

où

$$\tilde{\mu} = t_1 \mu_1 + t_2 \mu_2,$$

$$\tilde{\sigma}^2 = t_1^2 \sigma_1^2 + t_2^2 \sigma_2^2 + 2t_1 t_2 \sigma_{12} = t \Gamma t^{\top},$$

avec

$$\Gamma = \left(egin{array}{cc} \sigma_1^2 & \sigma_{12} \ \sigma_{12} & \sigma_2^2 \end{array}
ight).$$

c) On peut vérifier que la loi de \underline{X} est donnée au moyen de la densité (exprimée à l'aide d'écriture matricielle)

$$p(x_1, x_2) = \frac{1}{(2\pi)\sqrt{\det \Gamma}} \exp \left\{ -\frac{1}{2} (\Gamma^{-1}(x - \underline{\mu}) \cdot (x - \underline{\mu}) \right\},\,$$

où $\underline{\mu} = (\mu_1, \mu_2), \Gamma = \Gamma(X)$, est la matrice de variancecovariance de X, si Γ est inversible.

Montrer ceci si $\sigma_{12} = 0, \underline{\mu} = 0;$

Corrections. Comme la fonction caractéristique détermine la loi, il suffit de montrer

$$E(\exp(it \cdot \underline{X})) = \int_{\mathbb{R}^2} p(x_1 x_2) e^{i(t_1 x_1 + t_2 x_2)} dx_1 dx_2.$$
(0.4)

Le membre de gauche vaut

$$\varphi_{\underline{X}}(t_1, t_2) = \exp\left(-\frac{1}{2}(\sigma_1^2 t_1^2 + \sigma_2^2 t^2)\right) = \\ = \exp\left(-\frac{1}{2}(\sigma_1^2 t_1^2)\right) \exp\left(-\frac{1}{2}(\sigma_2^2 t_2^2)\right)$$

Comme $X_i \sim N(0, \sigma_i^2), i = 1, 2$, cela donne

$$\Pi_{j=1}^2 \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}\sigma_j} e^{it_j x_j - \frac{x_j^2}{\sigma_j^2}} dx_j = \int_{\mathbb{R}^2} p(x_1, x_2) \exp it \cdot \underline{x} d\underline{x},$$

ce qui constitue le membre de droite de (0.4).

d) Calculer $E(X_i|X_1), i = 1, 2.$

Corrections.

- Clairement $E(X_1|X_1) = X_1$ p.s.
- $E(X_2|X_1)$ est la régression linéaire \hat{X}_2 de X_2 . sur X_1 . D'après la Proposition 2.14 du Cours,

$$\hat{X}_2 = E(X_2|X_1) = \mu_2 + (X_1 - \mu_1)b_1,$$

et

$$\sigma_{12} = b_1 \sigma_1^2 \Rightarrow b_1 = \frac{\sigma_{12}}{\sigma_1^2}.$$

- 3. Soient X, Y deux v.a. gaussiennes indépendantes suivant une loi N(0,1).
 - i) Calculer $E(\exp(X+Y)|Y)$.

Correction.

Des calculs usuels d'espérance conditionnelle donnent

$$\begin{split} E(\exp(X+Y)|Y) &= E(\exp(X)\exp(Y)|Y) \\ &= \exp(Y)E(\exp(X)|Y) \\ &= \exp(Y)E(\exp(X)) = \exp(Y)\exp\left(\frac{1}{2}\right) \\ &= \exp\left(Y + \frac{1}{2}\right). \end{split}$$

On peut aussi dire

$$E(\exp(X+Y)|Y=y) = \exp\left(y + \frac{1}{2}\right).$$

ii) Soit $f: \mathbb{R} \to \mathbb{R}_+$ une fonction borélienne. Déterminer une expression pour $E(f(X^2+Y^2)|Y)$ en fonction de la densité p de la loi N(0,1), et de f.

Justifier les réponses.

Corrections. Par le Théorème 2.12 du Cours ("freezing lemma"), nous écrivons

$$E(f(X^2 + Y^2)|Y) = \varphi(Y),$$

οù

$$\varphi(y) = E(f(X^2 + y^2))$$
$$= \int_{\mathbb{R}} f(x^2 + y^2) p(x) dx.$$

- 4. Supposons (X,Y) vecteur gaussien tel que $X,Y \sim N(0,2),$ $\mathrm{Cov}(X,Y) = 1.$
 - i) Ecrire la densité de la loi du vecteur (X, Y).

Corrections. La matrice de variance-covariance vaut

$$\Gamma = \left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array}\right).$$

D'où $\det(\Gamma) = 3$, ainsi

$$\Gamma^{-1} = \frac{1}{3} \left(\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array} \right).$$

Finalement la densité $p^{(X,Y)}$ de la loi de (X,Y) vaut

$$p^{(X,Y)}(x,y) = \frac{1}{2\pi\sqrt{3}} \exp\left(-\frac{1}{3}(x^2 + y^2 - xy)\right).$$

ii) Calculer E(X|Y).

Corrections.

$$E(X|Y) = bY$$
, où $b = \frac{\sigma_{XY}}{\sigma_{YY}} = \frac{1}{2}$.

5. (Evaluation du prix d'un call européen dans le cadre du modèle de Black-Scholes. Cas particulier : taux d'actualisation r=0.)

Soit $(B_t)_{t\geq 0}$ un mouvement brownien standard c'està-dire un processus stochastique tel que

- i) $(B_t)_{t\geq 0}$ est continu.
- ii) $B_0 = 0$ p.s., $E(B_t) = 0, \forall t \in \mathbb{R}_+$.
- iii) Pour tout choix de $t_0 \leq t_1 \leq \ldots \leq t_n$, le vecteur $(B_{t_1} B_{t_0}, \ldots, B_{t_n} B_{t_{n-1}})$ est gaussien de matrice de variance-covariance

$$\Gamma = \operatorname{diag}(t_1 - t_0, \dots, t_n - t_{n-1}).$$

En particulier, on dit que B est un processus gaussien centré à accroissements indépendants. Soit $\sigma > 0$, $s_0 > 0$. Posons

$$S_t = s_0 \, \exp\left(\sigma \, B_t - \frac{\sigma^2}{2} \, t\right)$$

 $\mathcal{F}_t = \sigma(B_s, s \leq t)$, éventuellement en ajoutant les ensembles P-négligeables. Soient T > 0. Fixons $t \in [0, T]$.

i) Expliciter

$$V_t = E(f(S_T)|\mathcal{F}_t)$$

sous la forme

$$V_t = F(t, S_t).$$

Corrections.

$$V_t = E(f(S_T)|\mathcal{F}_t)$$

= $E(f(S_t e^{\sigma(B_T - B_t) - \frac{\sigma^2}{2}(T - t)})|\mathcal{F}_t).$

La v.a. S_t est \mathcal{F}_t mesurable, et, $B_T - B_t$ est indépendante de \mathcal{F}_t .

En utilisant encore le Théorème 2.12

$$V_t = F(t, S_t),$$

avec

$$F(t,x) = E(f(xe^{\sigma(B_T - B_t) - \frac{\sigma^2}{2}(T - t)})). \tag{0.5}$$

ii) Vérifier que

$$F(t,x) = \int f(x e^{-\frac{\sigma^2}{2}\theta + \sigma y\sqrt{\theta}}) p(y)dy,$$

où $\theta = T - t$ et p est la densité d'une loi N(0,1).

Correction. Comme $B_T - B_t$ est une gaussienne centrée de variance T - t, nous avons

$$B_T - B_t = \sqrt{\theta}N, \ N \sim N(0, 1),$$

$$F(t,x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(xe^{-\frac{\sigma^2\theta}{2} + \sigma y\sqrt{\theta}}) e^{-\frac{y^2}{2}} dy, \quad x > 0, t \ge 0.$$
(0.6)

iii) Supposons $f(x) = (x - K)_+$. Posons

$$d_1 = \frac{\log(\frac{K}{x}) + \frac{\sigma^2 \theta}{2}}{\sigma \sqrt{\theta}}.$$

Tirer une expression simplifiée pour F(t,x) en utilisant la fonction de répartition ψ de la loi N(0,1) et d_1 .

Correction.

On a

$$F(t,x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} (xe^{-\frac{\sigma^2}{2}\theta + \sigma y\sqrt{\theta}} - K)_{+} e^{-\frac{y^2}{2}} dy.$$

Cherchons les $y \in \mathbb{R}$ tels que

$$xe^{-\frac{\sigma^2}{2}\theta + \sigma y\sqrt{\theta}} - K \ge 0.$$

On a

$$xe^{-\frac{\sigma^{2}}{2}\theta + \sqrt{\theta}\sigma y} - K \geq 0$$

$$\Leftrightarrow -\frac{\sigma^{2}}{2}\theta + \sigma y\sqrt{\theta} \geq \log\frac{K}{x}$$

$$\Leftrightarrow y \geq \frac{\log\frac{K}{x} + \frac{\sigma^{2}}{2}\theta}{\sigma\sqrt{\theta}}.$$

$$(0.7)$$

Appelons d_1 la quantité précédente et $d_2 = d_1 - \sigma \sqrt{\theta}$. Avec ces notations

$$F(t,x) = \frac{1}{\sqrt{2\pi}} \int_{d_1}^{+\infty} (xe^{-\frac{\sigma^2}{2}\theta + \sigma y\sqrt{\theta}} - K)e^{-\frac{y^2}{2}} dy$$

$$= \frac{x}{\sqrt{2\pi}} \int_{d_1}^{\infty} e^{-\frac{1}{2}(y - \sigma\sqrt{\theta})^2} dy - K \int_{d_1}^{\infty} \frac{e^{-\frac{y^2}{2}}}{\sqrt{2\pi}} dy$$

$$= x \int_{d_2}^{\infty} \frac{e^{-\frac{y^2}{2}}}{\sqrt{2\pi}} dy - K \int_{d_1}^{\infty} \frac{e^{-\frac{y^2}{2}}}{\sqrt{2\pi}} dy$$

$$= x\psi(-d_2) - K\psi(-d_1)$$

Série 1. Introduction au calcul stochastique, PRB203, FR 2020-21 **fin**.