Real Estate

A banking institution requires actionable insights from the perspective of Mortgage-Backed Securities, Geographic Business Investment and Real Estate Analysis.

The objective is to identify white spaces/potential business in the mortgage loan. The mortgage bank would like to identify potential monthly mortgage expenses for each of region based on factors which are primarily monthly family income in a region and rented value of the real estate. Some of the regions are growing rapidly and Competitor banks are selling mortgage loans to subprime customers at a lower interest rate. The bank is strategizing for better market penetration and targeting new customers. A statistical model needs to be created to predict the potential demand in dollars amount of loan for each of the region in the USA. Also, there is a need to create a dashboard which would refresh periodically post data retrieval from the agencies. This would help to monitor the key metrics and trends.

Import the required libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
import seaborn as sns
```

Import the data

	•••	iipoit	cric aa	· ·							
In [2]:	df	= pd.re	ad_csv('	T:\Masters	In Data S	cience\C	apstone	Project\	Project 1	\\train.cs\	v')
In [3]:	df	head()									
Out[3]:		UID	BLOCKID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place	typ
	0	267822	NaN	140	53	36	New York	NY	Hamilton	Hamilton	Ci
	1	246444	NaN	140	141	18	Indiana	IN	South Bend	Roseland	Cit
	2	245683	NaN	140	63	18	Indiana	IN	Danville	Danville	Ci
	3	279653	NaN	140	127	72	Puerto Rico	PR	San Juan	Guaynabo	Urba
	4	247218	NaN	140	161	20	Kansas	KS	Manhattan	Manhattan City	Cit
	5 ro	ows × 80	columns								
4											•
In [4]:	df	shape									
Out[4]:	(2	7321, 80)								
In [5]:	df	info()	## che	cking for	null value	s in the	data as	well as	data type	s of sever	ral ı

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 27321 entries, 0 to 27320

	eIndex: 27321 entries, 0 to 2	7320	
	columns (total 80 columns):	Nam No.11 Count	D4
#	Column	Non-Null Count	Dtype
0	UID	27321 non-null	int64
1	BLOCKID	0 non-null	float64
2	SUMLEVEL	27321 non-null	int64
3	COUNTYID	27321 non-null	int64
4	STATEID	27321 non-null	int64
5	state	27321 non-null	object
6	state_ab	27321 non-null	object
7	city	27321 non-null	object
8	place	27321 non-null	object
9	type	27321 non-null	object
10	primary	27321 non-null	object
11	zip_code	27321 non-null	int64
12	area_code	27321 non-null	int64
13	lat	27321 non-null	float64
14	lng	27321 non-null	float64
15	ALand	27321 non-null	float64
16	AWater	27321 non-null	int64
17	рор	27321 non-null	int64
18	male_pop	27321 non-null	int64
19	female_pop	27321 non-null	int64
20	rent_mean	27007 non-null	float64
21	rent_median	27007 non-null	float64
22	rent_stdev	27007 non-null	float64
23	rent_sample_weight	27007 non-null	float64
24	rent_samples	27007 non-null	float64
25	rent_gt_10	27007 non-null	
26	rent_gt_15	27007 non-null	
27	rent_gt_20	27007 non-null	
28	rent_gt_25	27007 non-null	
29	rent_gt_30	27007 non-null	
30	rent_gt_35	27007 non-null	
31	rent_gt_40	27007 non-null	
32	rent_gt_50	27007 non-null	float64
33	universe_samples	27321 non-null	int64
34	used_samples	27321 non-null	int64
35 26	hi_mean	27053 non-null	float64
36	hi_median	27053 non-null	float64
37 38	hi_stdev hi_sample_weight	27053 non-null 27053 non-null	float64 float64
39	hi_samples	27053 non-null	float64
40	family_mean	27023 non-null	float64
41	family_median	27023 non-null	float64
42	family_stdev	27023 non-null	float64
43	family_sample_weight	27023 non-null	float64
44	family_samples	27023 non-null	float64
45	hc_mortgage_mean	26748 non-null	float64
46	hc_mortgage_median	26748 non-null	float64
47	hc_mortgage_stdev	26748 non-null	float64
48	hc_mortgage_sample_weight	26748 non-null	float64
49	hc_mortgage_samples	26748 non-null	float64
50	hc_mean	26721 non-null	float64
51	hc_median	26721 non-null	float64
52	hc_stdev	26721 non-null	float64
53	hc_samples	26721 non-null	float64
54	hc_sample_weight	26721 non-null	float64
55	home_equity_second_mortgage	26864 non-null	float64
56	second_mortgage	26864 non-null	float64
57	home_equity	26864 non-null	float64
58	debt	26864 non-null	float64
59	second_mortgage_cdf	26864 non-null	float64
60	home_equity_cdf	26864 non-null	float64
61	debt_cdf	26864 non-null	float64
62	hs_degree	27131 non-null	float64
63	hs_degree_male	27121 non-null	float64
64	hs_degree_female	27098 non-null	float64
65	male_age_mean	27132 non-null	float64
66	male_age_median	27132 non-null	float64
67 68	male_age_stdev	27132 non-null 27132 non-null	float64
68 69	male_age_sample_weight		float64
69 70	male_age_samples	27132 non-null 27115 non-null	float64 float64
70 71	<pre>female_age_mean female_age_median</pre>	27115 non-null 27115 non-null	float64
71 72	female age stdev	27115 non-null	float64
- -			. 203007

```
27115 non-null float64
73 female_age_sample_weight
74
   female_age_samples
                                27115 non-null
                                               float64
                               27053 non-null float64
75
   pct_own
76 married
                               27130 non-null float64
77 married_snp
                                27130 non-null float64
78 separated
                               27130 non-null float64
79 divorced
                               27130 non-null float64
```

dtypes: float64(62), int64(12), object(6)

memory usage: 16.7+ MB

```
Null values treatment
In [6]: df.isnull().sum()
         UID
                              0
Out[6]:
         BLOCKID
                          27321
         {\sf SUMLEVEL}
                              0
         COUNTYID
                              0
         STATEID
                              0
                            268
         pct_own
         married
                            191
                            191
         married_snp
         separated
                            191
         divorced
                            191
         Length: 80, dtype: int64
In [7]: df_train = df.drop('BLOCKID',axis=1)
In [8]: df_train.head()
               UID SUMLEVEL COUNTYID STATEID
Out[8]:
                                                     state state_ab
                                                                           city
                                                                                    place
                                                                                            type primary
                                                      New
         0 267822
                                                                 NY
                                                                      Hamilton
                          140
                                       53
                                                36
                                                                                 Hamilton
                                                                                             City
                                                                                                     tract
                                                      York
                                                                         South
         1 246444
                          140
                                      141
                                                18 Indiana
                                                                 IN
                                                                                  Roseland
                                                                                             City
                                                                                                     tract
                                                                          Bend
         2 245683
                          140
                                                18 Indiana
                                                                       Danville
                                                                                  Danville
                                       63
                                                                 IN
                                                                                             City
                                                                                                     tract
                                                    Puerto
         3 279653
                           140
                                      127
                                                                 PR
                                                                                Guaynabo Urban
                                                72
                                                                       San Juan
                                                                                                     tract
                                                      Rico
                                                                                Manhattan
         4 247218
                          140
                                      161
                                                20 Kansas
                                                                 KS Manhattan
                                                                                             City
                                                                                                     trac
                                                                                      City
        5 rows × 79 columns
         df_train.isnull().sum()
In [9]:
         UID
                            0
Out[9]:
         SUMLEVEL
                            0
         COUNTYID
                            0
         STATEID
                            0
```

```
0
         state
         pct_own
                        268
         married
                        191
         married_snp
                        191
                        191
         separated
         divorced
                        191
         Length: 79, dtype: int64
In [10]: df_train.dropna(inplace=True)
                                         ## Dropping the null values
In [11]: df_train.isnull().sum()
```

```
UID
                         0
Out[11]:
          SUMLEVEL
                          0
          COUNTYID
                         0
          STATEID
                         0
          state
                          0
                         0
          pct own
          married
                         0
          married_snp
                         0
          separated
          divorced
                         0
          Length: 79, dtype: int64
```

We are taking the top 2500 locations where Second Mortgage is highest and Percentage Ownership is also above 10%

```
In [12]: df_train1 = df_train.nlargest(2500,['second_mortgage','pct_own'])
In [13]:
           df_train1.shape
           (2500, 79)
Out[13]:
In [14]:
           df_train1.head()
                     UID SUMLEVEL COUNTYID STATEID
Out[14]:
                                                                   state
                                                                         state_ab
                                                                                          city
                                                                                                   place
                                                                                                  Garfield
           14014 264403
                                 140
                                              31
                                                       34
                                                              New Jersey
                                                                               NJ
                                                                                       Passaic
                                                                                                     City
            3285 289712
                                 140
                                             147
                                                                 Virginia
                                                                               VA
                                                                                      Farmville
                                                                                                 Farmville
                                                       51
                                                                                                   Tempe
           21706 222830
                                 140
                                              13
                                                        4
                                                                                    Scottsdale
                                                                 Arizona
                                                                              ΑZ
                                                                                                     City
                                                                                                Worcester
           11980 251185
                                 140
                                              27
                                                           Massachusetts
                                                                              MA
                                                                                     Worcester
                                                                                                     City
           12896 278178
                                 140
                                             101
                                                                                  Philadelphia
                                                       42
                                                             Pennsylvania
                                                                               PA
                                                                                               Millbourne
                                                                                                          Во
          5 rows × 79 columns
In [15]:
           df_train1['Bad_debt'] = df_train1['second_mortgage']+df_train1['home_equity']-df_trair
In [16]:
           df_train1.head()
                     UID SUMLEVEL COUNTYID STATEID
Out[16]:
                                                                                          city
                                                                                                   place
                                                                   state
                                                                         state ab
                                                                                                  Garfield
           14014 264403
                                 140
                                              31
                                                       34
                                                              New Jersey
                                                                               NJ
                                                                                       Passaic
                                                                                                     City
                                                                                      Farmville
            3285 289712
                                                                                                 Farmville
                                 140
                                             147
                                                       51
                                                                 Virginia
                                                                               VA
                                                                                                   Tempe
           21706 222830
                                 140
                                              13
                                                        4
                                                                 Arizona
                                                                              ΑZ
                                                                                    Scottsdale
                                                                                                     City
                                                                                                Worcester
           11980 251185
                                 140
                                              27
                                                          Massachusetts
                                                                              MA
                                                                                     Worcester
                                                       25
                                                                                                     City
           12896 278178
                                 140
                                             101
                                                       42
                                                                               PA Philadelphia
                                                             Pennsylvania
                                                                                               Millbourne
          5 rows × 80 columns
          df_train1['Good_debt'] = df_train1['debt']-df_train1['Bad_debt']
In [17]:
In [18]:
          df train1.head()
```

ut[18]:			UID	SUMLEV	EL COUN	NTYID	STATEID) st	ate state_	ab	city	place	
	140	14	264403	1	40	31	34	l New Jer	sey	NJ	Passaic	Garfield City	
	32	285	289712	1-	40	147	51	Virg	inia	VA	Farmville	Farmville	
	217	'06	222830	1.	40	13	2	l Arizo	ona	ΑZ	Scottsdale	Tempe City	
	119	080	251185	1	40	27	25	5 Massachus	etts N	ΜA	Worcester	Worcester City	
	128	96	278178	1	40	101	42	2 Pennsylva	ania	PA	Philadelphia	Millbourne	Е
	5 ro	ws >	< 81 colι	ımns									
n [19]:	df_	tra	in1.des	cribe()									
ut[19]:				UID S	UMLEVEL	cou	NTYID	STATEID	zip_c	ode	area_code		lat
	cou	int	2500.0	00000	2500.0	2500.	000000	2500.000000	2500.000	000	2500.000000	2500.0000	000
	me	an	251192.9	94400	140.0	75.	166400	23.252400	55915.810	400	602.945600	37.8629	908
	s	td	21841.6	94936	0.0	100.	094679	16.302485	31729.029	582	228.898513	4.7854	496
	m	nin	220366.0	00000	140.0	1.	000000	1.000000	951.000	000	201.000000	18.3847	790
	25	5%	232083.2	50000	140.0	31.	000000	8.000000	29280.500	000	407.000000	34.0554	419
	50)%	246485.0	00000	140.0	53.	000000	19.000000	55337.000	000	626.000000	38.8310	048
		-0/	269242.2	50000	140.0	89.	000000	37.000000	90056.000	000	775.000000	41.1295	508
	/5	5%											
	m 8 ro	ax ws >	294317.0 < 75 colu	ımns	140.0		000000	72.000000	99701.000		989.000000	64.8512	
n [20]:	m 8 ro	ws >	< 75 colu rt = df	umns _train1							989.000000 reset_index(
n [20]: n [21]:	m 8 rov	ws >	<pre>75 colu rt = df rt.head</pre>	umns _train1	[['place	','deŁ	ot','Bad	d_debt','Go					
n [20]: n [21]:	m 8 ros	ax ws >	<pre>rt = df rt.head ex</pre>	_train1 () place	[['place	','deb Bad_d	et','Bad	d_debt','Go od_debt					287
n [20]: n [21]:	m 8 rov	ax ws > echa inde	rt = df rt.head ex 4 Gan	_train1 () place field City	'place debt 0.60870	Bad_d 0.60	ebt Go	d_debt','Go od_debt 0.00000					
n [20]: n [21]: ut[21]:	m 8 row	ws > echa inde	rt = df rt.head ** 4 Gan	_train1 () place field City Farmville	debt 0.60870 0.50000	Bad_d 0.60 0.50	ebt Go 870	d_debt','Go od_debt 0.00000 0.00000					
n [20]: n [21]:	m 8 rov pie pie	ws > echa inde 1401 328	rt = df rt.head •x 4 Gan	_train1 () place field City Farmville	debt 0.60870 0.50000 0.54688	Bad_d 0.60 0.50 0.43	ebt Go 870 000 750	od_debt 0.00000 0.10938					
n [20]: n [21]:	m 8 rov	ax ws > echa inde 1401 328 2170 1198	rt = df rt.head ex 4 Gar 35 06 Te	train1 () place field City Farmville empe City ester City	debt 0.60870 0.50000 0.54688 0.84956	Bad_d 0.60 0.50 0.43	ebt Go 870 000 750 363	od_debt 0.00000 0.10938 0.41593					
n [20]: n [21]:	m 8 rov	ws > echa inde 1401 328	rt = df rt.head ex 4 Gar 35 06 Te	_train1 () place field City Farmville	debt 0.60870 0.50000 0.54688 0.84956	Bad_d 0.60 0.50 0.43	ebt Go 870 000 750 363	od_debt 0.00000 0.10938					
n [20]: n [21]: ut[21]:	m 8 rov pie pie 2 3 4 11	ax ws > echa inde 1401 328 2170 1198	rt = df rt.head 4 Gar 85 6 Te 80 Worce 66 M	train1 () place field City Farmville empe City ester City fillbourne	debt 0.60870 0.50000 0.54688 0.84956	Bad_d 0.60 0.50 0.43 0.43	ebt Go 870 000 750 363	od_debt 0.00000 0.10938 0.41593					
n [20]: n [21]:	m 8 rov pie pie 1	ax ws > echa inde 1401 328 2170 1198 1289 = 1 : 10 608 5, 437 433 609 363 347 333	rt = df rt.head 4	train1 () place field City Farmville empe City ester City fillbourne	debt 0.60870 0.50000 0.54688 0.84956 0.93902	Bad_d 0.60 0.50 0.43 0.43	ebt Go 870 000 750 363	od_debt 0.00000 0.10938 0.41593					

```
Out[23]: [0.0,
           0.109380000000000003,
          0.41592999999999997,
           0.32926999999999995,
          0.39394,
          0.34782,
           0.36110999999999993,
          0.38068,
           0.39344]
In [24]: 13 = sum(zip(11,12+[0]),())
          13[:20]
          (0.6087,
Out[24]:
           0.0,
           0.5,
           0.0,
           0.4375,
           0.109380000000000003,
           0.43363,
          0.41592999999999997,
          0.60975,
          0.32926999999999995,
          0.36364,
           0.39394,
           0.34783,
          0.34782,
           0.33333,
           0.3611099999999999,
           0.40340999999999994,
           0.38068,
          0.40984,
          0.39344)
In [25]: debt_good_bad = 13[:20]
          size = 10
          labels_D = ['GD', 'BD'] * size
          labels_D = tuple(labels_D)
          labels_D
          ('GD',
Out[25]:
           'BD',
           'GD',
           'BD')
In [26]: color_pal = plt.rcParams['axes.prop_cycle'].by_key()['color']
In [27]: sns.set_style("whitegrid")
          plt.figure(figsize = (10,10))
          plt.pie(piechart.debt[:10], labels=piechart.place[:10],autopct = '%0.2f%%',radius=25,s
          plt.pie(debt_good_bad[:20],labels =labels_D ,autopct = '%0.2f%%',radius=20,startangle
          center\_circle = plt.Circle((0,0),10,color='black', fc='white',linewidth=0)
          fig = plt.gcf()
          fig.gca().add_artist(center_circle)
          plt.axis('equal')
          plt.title('Debt Analysis',fontsize=20)
          plt.tight_layout()
          plt.show()
```


Pie chart shows the Overall debt and Good debt and Bad debt as part of overall debt for top 10 cities

Here we can see that Millbourne is having maximum debt percentage out of top 10 cities and 8.49% of the debt is good debt for the city

```
In [32]: sns.set_style('whitegrid')
          plt.figure(figsize = (35,10))
sns.boxplot(x='city',y='home_equity',data=boxplot,palette='rainbow',order=['Chicago',
          plt.title('Home Equity distribution by cities',fontsize=20)
          plt.show()
In [33]: sns.set_style('whitegrid')
          plt.figure(figsize = (35,10))
          sns.boxplot(x='city',y='Good_debt',data=boxplot,palette='rainbow',order=['Chicago', 'l
          plt.title('Good Debt distribution by cities',fontsize=20)
          plt.show()
In [34]: sns.set_style('whitegrid')
          plt.figure(figsize = (35,10))
          sns.boxplot(x='city',y='Bad\_debt',data=boxplot,palette='rainbow',order=['Chicago', 'Location'] \\
          plt.title('Bad Debt distribution by cities',fontsize=20)
          plt.show()
         df_train1['remaining_income'] = df_train1['family_median']-df_train1['hi_median']
In [35]:
         sns.set_style('whitegrid')
In [36]:
          plt.figure(figsize = (5,5))
```

sns.boxplot(data=df_train1[['hi_median','family_median','remaining_income']],palette=

Collated distribution chart


```
In [37]: plt.figure(figsize=(10,10))
    sns.histplot(df_train1.hi_median,kde=True,bins=20,color='y',label='hi_median')
    sns.histplot(df_train1.family_median,kde=True,bins=20,color='r',label='family_median')
    sns.histplot(df_train1.remaining_income,kde=True,bins=20,color='b',label='remaining_ir
    plt.legend()
    plt.title('Collated Distribution Chart',fontsize=20)
    plt.show()
```



```
In [38]: df_train1['Population_density'] = df_train1['pop'] / df_train1['ALand']
In [39]: df_train1.head()
```

Out[39]:		UID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place	
	14014	264403	140	31	34	New Jersey	NJ	Passaic	Garfield City	
	3285	289712	140	147	51	Virginia	VA	Farmville	Farmville	
	21706	222830	140	13	4	Arizona	AZ	Scottsdale	Tempe City	
	11980	251185	140	27	25	Massachusetts	МА	Worcester	Worcester City	
	12896	278178	140	101	42	Pennsylvania	PA	Philadelphia	Millbourne	Во
	5 rows	× 83 colı	umns							
4										•
In [40]:	pop_de	ensity_g	gb = df_tra	in1.groupb	y('state	')['Populatio	n_densit	y'].sum().r	reset_index	k()
In [41]:	sns.ba	arplot(x itle(' <mark>S</mark> t		y = Pop		density',data chart',fontsi		ensity_gb,c	orient='v')).s€
	200			State	-wise Pop	pulation densi	ty chart			
	200	1								
	1.75	1								
	1.50	1								
	1.25	-					-			
	Population_density									
	0.75									
	0.75									
	0.50	-								

The barplot shows the citywise population density

0.25

California and New York are more densely populated than other cities where as South Dakota is least densly populated

```
In [42]: df_train1['median_age'] = (df_train1['male_age_median']*df_train1['male_pop'])+(df_train1['male_age_median']*df_train1['male_pop'])+(df_train1['male_age_median']*df_train1['male_pop'])+(df_train1['male_age_median']*df_train1['male_pop'])+(df_train1['male_age_median']*df_train1['male_pop'])+(df_train1['male_age_median']*df_train1['male_pop'])+(df_train1['male_age_median']*df_train1['male_pop'])+(df_train1['male_age_median']*df_train1['male_pop'])+(df_train1['male_age_median']*df_train1['male_pop'])+(df_train1['male_age_median']*df_train1['male_pop'])+(df_train1['male_age_median']*df_train1['male_pop'])+(df_train1['male_age_median']*df_train1['male_pop'])+(df_train1['male_age_median']*df_train1['male_pop'])+(df_train1['male_age_median']*df_train1['male_pop'])+(df_train1['male_age_median']*df_train1['male_pop'])+(df_train1['male_age_median']*df_train1['male_pop'])+(df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median']*df_train1['male_age_median
```

Out[43]:		UID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place	
	14014	264403	140	31	34	New Jersey	NJ	Passaic	Garfield City	
	3285	289712	140	147	51	Virginia	VA	Farmville	Farmville	
	21706	222830	140	13	4	Arizona	AZ	Scottsdale	Tempe City	
	11980	251185	140	27	25	Massachusetts	MA	Worcester	Worcester City	
	12896	278178	140	101	42	Pennsylvania	PA	Philadelphia	Millbourne	Во

5 rows × 84 columns

```
df_med_age = df_train1.groupby('state')['median_age'].size().reset_index()
In [44]:
                                                               df_med_age.head()
In [45]:
Out[45]:
                                                                                                      state median_age
                                                                                 Alabama
                                                                                                                                                                                                18
                                                                                                 Alaska
                                                                                                                                                                                                      2
                                                               2
                                                                                          Arizona
                                                                                                                                                                                                34
                                                                                                                                                                                                      6
                                                               3 Arkansas
                                                                4 California
                                                                                                                                                                                          538
In [46]: plt.figure(figsize = (14,14))
                                                                 sns.barplot(x='state',y='median\_age',data=df\_med\_age).set\_xticklabels(df\_med\_age['state',data=df\_med\_age).set\_xticklabels(df\_med\_age['state',data=df\_med\_age).set\_xticklabels(df\_med\_age).set\_xticklabels(df\_med\_age).set\_xticklabels(df\_med\_age).set\_xticklabels(df\_med\_age).set\_xticklabels(df\_med\_age).set\_xticklabels(df\_med\_age).set\_xticklabels(df\_med\_age).set\_xticklabels(df\_med\_age).set\_xticklabels(df\_med\_age).set\_xticklabels(df\_med\_age).set\_xticklabels(df\_med\_age).set\_xticklabels(df\_med\_age).set\_xticklabels(df\_med\_age).set\_xticklabels(df\_med\_age).set\_xticklabels(df\_med\_age).set\_xticklabels(df\_med\_age).set\_xticklabels(df\_med\_age).set\_xticklabels(df\_med\_age).set\_xticklabels(df\_med\_age).set\_xticklabels(df\_med\_age).set\_xticklabels(df\_med\_age).set\_xticklabels(df\_med\_age).set\_xticklabels(df\_med\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df\_age).set\_xticklabels(df
                                                                 plt.title('State-wise median age chart',fontsize=20)
                                                                 plt.show()
```


California has highest median age as compared to other cities which means there are more elderly people living in california than other cities

```
Out[49]: array([30.5
                      30.5 , 19.25 , 29.91667, 30.75 , 21.25 , 20.0
24.66667, 43.66667, 29.58333, 34.83333, 27.41667, 34.
                                                                                      , 20.66667,
                      29.08333, 39.33333, 32. , 26.08333, 28.58333, 32.66667,
                               , 31.5 , 23.16667, 36.5 , 33.66667, 65.33333,
                                             , 41.16667, 31.08333, 39.66667, 36.
                                 , 39.25
                      19.66667, 31. , 28. , 34.91667, 31.75 , 29.16667,
                      28.41667, 39.91667, 30.16667, 35.33333, 19.33333, 32.25, 36.66667, 39.41667, 25.08333, 34.66667, 21.83333, 30.91667,
                      33.33333, 29.75 , 37.16667, 39. , 28.75 , 24.25
                                              , 25.66667, 30.33333, 43.41667, 32.08333,
                      32.83333, 24.5
                      28.66667, 32.33333, 36.58333, 32.41667, 44.83333, 38.75
                      37.75 , 37.41667, 38.25 , 28.16667, 33.5 , 43.91667,
                      40.41667, 33.25 , 30.41667, 29.5 , 49.66667, 34.5 , 35.25 , 31.33333, 41.83333, 30. , 27.66667, 26.91667,
                      40.33333, 34.58333, 25.91667, 35.41667, 30.08333, 26.58333,
                      38.83333, 33.08333, 41.08333, 43.25 , 33.75 , 32.91667,
                      35.08333, 27.25 , 24. , 27.58333, 27.75 , 36. 35.91667, 28.33333, 45.16667, 30.25 , 35.5 , 38. 28.83333, 35.83333, 21.58333, 33.91667, 31.66667, 45.
                                                                                    , 36.33333,
                                                                                     , 38.66667,
                      31.58333, 27.91667, 42.25 , 42.16667, 27.16667, 20.83333,
                      30.58333, 42.58333, 27.08333, 34.08333, 42.
                      32.16667, 25.16667, 40. , 26.33333, 40.58333, 29.66667,

      35.16667, 21.91667, 37.58333, 37.
      , 33.58333, 23.25

      38.16667, 35.58333, 18.75
      , 22.5
      , 32.5
      , 39.583

                      38.16667, 35.58333, 18.75 , 22.5 , 32.5 , 39.58333, 34.25 , 27.83333, 34.33333, 29.83333, 32.75 , 37.91667,
                      34.41667, 24.58333, 35. , 34.16667, 29.33333, 31.91667,
                      50.33333, 36.25 , 49.91667, 36.75 , 24.41667, 38.91667,
                      24.33333, 37.66667, 37.25 , 45.41667, 33.41667, 42.08333,
                      28.08333, 33.83333, 44. , 29.25 , 44.66667, 46.58333, 37.83333, 31.16667, 36.91667, 24.91667, 38.58333, 25.83333,
                      27.33333, 22.41667, 26.83333, 39.83333, 23.66667, 48.5
                              , 42.33333, 46.66667, 26.5 , 31.83333, 55.75 , 67, 29.41667, 48.41667, 43.5 , 50.58333, 42.83333,
                      36.16667, 29.41667, 48.41667, 43.5 , 50.58333, 42.83
21.66667, 38.08333, 37.5 , 42.91667, 39.16667, 41.75
34.75 , 44.16667, 38.5 , 35.75 , 24.75 , 32.58
                      31.41667, 35.66667, 40.5 , 22.91667, 37.33333, 26.16667, 33.16667, 47.25 , 22.25 , 26. , 40.08333, 25.33333,
                              , 41.66667, 39.08333, 44.58333, 33. , 26.25
                      42.5 , 45.83333, 26.66667, 28.25 , 36.41667, 40.75 , 25.41667, 41.5 , 38. , 44.41667, 51.08333, 31.25 , 36.08333, 39.5 , 20.08333, 20.25 , 20.5 , 49.41667, 25. , 21.75 , 36.83333, 43.16667, 22. , 27.5 ,
                      24.83333, 40.91667, 41. , 23.5 , 40.16667, 38.33333,
                      45.75 , 60.91667, 24.08333, 43.08333, 50.41667, 42.75
                      41.41667, 41.58333, 42.41667, 30.66667, 45.91667, 51.5 , 15.08333, 47.16667, 47.41667, 49.83333, 23.33333, 21.333333,
                      43.58333, 48. , 50.66667, 44.5 , 23.58333, 40.83333,
                      40.25 , 43.83333, 47.83333, 49.5 , 23.83333, 48.33333, 47.33333, 37.08333, 43.33333, 44.75 , 45.5 , 41.25 ,
                      24.16667, 15.91667, 49.25 , 48.83333, 22.33333, 41.33333,
                             , 23. , 21.5
, 43.75 , 44.083
                                                           , 44.25 , 21. , 45.66667,
                                              , 44.08333, 38.41667, 28.91667, 18.91667,
                      20.41667, 47.08333, 46.91667, 47.91667, 41.91667, 47.
                      51.58333, 49.08333, 46.08333, 44.33333, 25.25 , 26.75
                      59.25 , 16.16667, 60.66667, 45.25 , 60.08333, 52.16667, 53.58333, 42.66667, 25.5 , 46.25 , 26.41667, 19.83333, 22.83333, 49.16667, 25.58333, 57.25 , 44.91667, 64.83333,
                     53.58333, 42.66667, 25.5 , 46.25 , 26.41667, 19.83333, 22.83333, 49.16667, 25.58333, 57.25 , 44.91667, 64.83333, 48.25 , 25.75 , 48.58333, 50.75 , 58.16667, 43. ,
                                , 46.5 , 40.66667, 45.33333, 51.33333, 54.25
                      48.66667, 15.16667, 20.16667, 48.75 , 58.08333, 21.08333,
                      46.41667, 47.75 , 54.83333, 53.5 , 52.5 , 53. , 46.83333, 47.66667, 58.91667, 46.16667, 21.16667, 48.08333,
                                                       , 46.33333, 17.41667])
                      50.91667, 59.16667, 49.
In [50]: df_for_age_analysis['male_pop_labels'] = pd.cut(df_for_age_analysis['male_age_median']
In [51]: df_for_age_analysis['female_pop_labels'] = pd.cut(df_for_age_analysis['female_age_medi
In [52]: df_for_age_analysis['state'].value_counts()[:30].index
            Index(['California', 'Colorado', 'Florida', 'Georgia', 'New York', 'Virginia',
Out[52]:
                       'Ohio', 'Maryland', 'Illinois', 'Minnesota', 'Massachusetts', 'Texas',
                      'Washington', 'Michigan', 'Connecticut', 'North Carolina', 'Wisconsin', 'Oregon', 'Utah', 'New Jersey', 'Pennsylvania', 'Nevada', 'Arizona',
                      'Louisiana', 'Missouri', 'Tennessee', 'District of Columbia', 'Indiana',
                      'Kentucky', 'South Carolina'],
                     dtype='object')
```

```
In [53]: plt.figure(figsize=(35,10))
            sns.barplot(x='state',y='married',data=df_for_age_analysis,hue='male_pop_labels',order
                     'Ohio', 'Maryland', 'Illinois', 'Minnesota', 'Massachusetts', 'Texas',
                     'Washington', 'Michigan', 'Connecticut', 'North Carolina', 'Wisconsin', 'Oregon', 'Utah', 'New Jersey', 'Pennsylvania', 'Nevada', 'Arizona',
                     'Louisiana', 'Missouri', 'Tennessee', 'District of Columbia', 'Indiana', 'Kentucky', 'South Carolina'])
            plt.title('Statewise married male population',fontsize=20)
            plt.show()
In [54]:
            plt.figure(figsize=(35,10))
            sns.barplot(x='state',y='separated',data=df_for_age_analysis,hue='male_pop_labels',orc
                     'Ohio', 'Maryland', 'Illinois', 'Minnesota', 'Massachusetts', 'Texas',
                     'Washington', 'Michigan', 'Connecticut', 'North Carolina', 'Wisconsin', 'Oregon', 'Utah', 'New Jersey', 'Pennsylvania', 'Nevada', 'Arizona',
                     'Louisiana', 'Missouri', 'Tennessee', 'District of Columbia', 'Indiana', 'Kentucky', 'South Carolina'])
            plt.title('Statewise Separated male population',fontsize=20)
            plt.show()
In [55]:
           plt.figure(figsize=(35,10))
            sns.barplot(x='state',y='divorced',data=df_for_age_analysis,hue='male_pop_labels',orde
                     'Ohio', 'Maryland', 'Illinois', 'Minnesota', 'Massachusetts', 'Texas',
                     'Washington', 'Michigan', 'Connecticut', 'North Carolina', 'Wisconsin', 'Oregon', 'Utah', 'New Jersey', 'Pennsylvania', 'Nevada', 'Arizona',
                     'Louisiana', 'Missouri', 'Tennessee', 'District of Columbia', 'Indiana', 'Kentucky', 'South Carolina'])
            plt.title('Statewise Divorced male population',fontsize=20)
            plt.show()
In [56]: plt.figure(figsize=(35,10))
            sns.barplot(x='state',y='married',data=df_for_age_analysis,hue='female_pop_labels',ord
                     'Ohio', 'Maryland', 'Illinois', 'Minnesota', 'Massachusetts', 'Texas',
                     'Washington', 'Michigan', 'Connecticut', 'North Carolina', 'Wisconsin', 'Oregon', 'Utah', 'New Jersey', 'Pennsylvania', 'Nevada', 'Arizona',
                     'Louisiana', 'Missouri', 'Tennessee', 'District of Columbia', 'Indiana', 'Kentucky', 'South Carolina'])
            plt.title('Statewise married female population',fontsize=20)
            plt.show()
```

```
Statewise married female population
```



```
In [59]: round(df_train1['rent_median'].sum()/df_train1['hi_median'].sum()*100,2)
```

Out[59]: 1.89

```
In [60]: df_train1['rent%'] = round(df_train1['rent_median']/df_train1['hi_median']*100,2)
```

In [61]: df_train1.head()

Out[61]:		UID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place	
	14014	264403	140	31	34	New Jersey	NJ	Passaic	Garfield City	
	3285	289712	140	147	51	Virginia	VA	Farmville	Farmville	
	21706	222830	140	13	4	Arizona	AZ	Scottsdale	Tempe City	
	11980	251185	140	27	25	Massachusetts	MA	Worcester	Worcester City	
	12896	278178	140	101	42	Pennsylvania	PA	Philadelphia	Millbourne	Во

5 rows × 85 columns

```
In [62]: rent_df = df_train1.groupby('state')['rent%'].median().reset_index()
         rent_df.head()
In [63]:
Out[63]:
               state rent%
            Alabama
                      1.790
              Alaska
                      1.790
         2
             Arizona
                      1.865
         3 Arkansas
                      1.825
         4 California
                      2.180
In [64]: plt.figure(figsize=(14,14))
          sns.barplot(x='state',y='rent%',data=rent_df,palette='tab10').set_xticklabels(rent_df|
          plt.title('Statewise rent as % of overall income',fontsize=20)
          plt.show()
```


People from Puerto Rico are having less income and paying most rent as percentage of their income where as South Dakota people are having less rent% as their income

```
In [65]: corr = df_train1.corr()

In [66]: positive_correlation = corr[corr>=0]
    negative_correlation = corr[corr<0]

In [67]: plt.figure(figsize = (45,30))
    sns.heatmap(positive_correlation,cmap='Greens',annot=True,linecolor='red',linewidths=1
    plt.title('Positive Correlation Heatmap',fontsize=40)
    plt.show()</pre>
```


In [68]: plt.figure(figsize = (45,30))
 sns.heatmap(negative_correlation,cmap='Blues',annot=True,linecolor='red',linewidths=1)
 plt.title('Negative Correlation Heatmap',fontsize=40)
 plt.show()

Data Preprocessing

In [69]: df_train1.describe()

	UID	SUMLEVEL	COUNTYID	STATEID	zip_code	area_code	lat
count	2500.000000	2500.0	2500.000000	2500.000000	2500.000000	2500.000000	2500.000000
mean	251192.994400	140.0	75.166400	23.252400	55915.810400	602.945600	37.862908
std	21841.694936	0.0	100.094679	16.302485	31729.029582	228.898513	4.785496
min	220366.000000	140.0	1.000000	1.000000	951.000000	201.000000	18.384790
25%	232083.250000	140.0	31.000000	8.000000	29280.500000	407.000000	34.055419
50%	246485.000000	140.0	53.000000	19.000000	55337.000000	626.000000	38.831048
75%	269242.250000	140.0	89.000000	37.000000	90056.000000	775.000000	41.129508
max	294317.000000	140.0	820.000000	72.000000	99701.000000	989.000000	64.851287

8 rows × 79 columns

→

In [70]: df_train1.info()

Out[69]:

<class 'pandas.core.frame.DataFrame'> Int64Index: 2500 entries, 14014 to 22594
Data columns (total 85 columns):

Data #	columns (total 85 columns): Column	Non-Null Count	Dtype
0	UID	2500 non-null	int64
1	SUMLEVEL	2500 non-null 2500 non-null	int64
2 3	COUNTYID STATEID	2500 non-null	int64 int64
4	state	2500 non-null	object
5	state ab	2500 non-null	object
6	city	2500 non-null	object
7	place	2500 non-null	object
8	type	2500 non-null	object
9	primary	2500 non-null	object
10 11	zip_code area_code	2500 non-null 2500 non-null	int64 int64
12	lat	2500 non-null	float64
13	lng	2500 non-null	float64
14	ALand	2500 non-null	float64
15	AWater	2500 non-null	int64
16	pop	2500 non-null	int64
17	male_pop	2500 non-null 2500 non-null	int64
18 19	<pre>female_pop rent_mean</pre>	2500 non-null	int64 float64
20	rent_median	2500 non-null	float64
21	rent_stdev	2500 non-null	float64
22	rent_sample_weight	2500 non-null	float64
23	rent_samples	2500 non-null	float64
24	rent_gt_10	2500 non-null	
25	rent_gt_15	2500 non-null	
26 27	rent_gt_20 rent_gt_25	2500 non-null 2500 non-null	float64 float64
28	rent_gt_30	2500 non-null	float64
29	rent_gt_35	2500 non-null	float64
30	rent_gt_40	2500 non-null	
31	rent_gt_50	2500 non-null	float64
32	universe_samples	2500 non-null	
	used_samples	2500 non-null	
34 35	hi_mean hi median	2500 non-null 2500 non-null	float64 float64
36	hi_stdev	2500 non-null	float64
37	hi_sample_weight	2500 non-null	float64
38	hi_samples	2500 non-null	float64
39	family_mean	2500 non-null	float64
40	family_median	2500 non-null	float64
41 42	family_stdev	2500 non-null	float64 float64
42	<pre>family_sample_weight family_samples</pre>	2500 non-null 2500 non-null	float64
44	hc_mortgage_mean	2500 non-null	float64
45	hc_mortgage_median	2500 non-null	float64
46	hc_mortgage_stdev	2500 non-null	float64
47	hc_mortgage_sample_weight	2500 non-null	float64
48	hc_mortgage_samples	2500 non-null	float64
49 50	hc_mean hc_median	2500 non-null 2500 non-null	float64 float64
51	hc_stdev	2500 non-null	float64
52	hc_samples	2500 non-null	float64
53	hc_sample_weight	2500 non-null	float64
54	home_equity_second_mortgage	2500 non-null	float64
55	second_mortgage	2500 non-null	float64
56	home_equity	2500 non-null	float64
57 58	debt second_mortgage_cdf	2500 non-null 2500 non-null	float64 float64
59	home_equity_cdf	2500 non-null	float64
60	debt_cdf	2500 non-null	float64
61	hs_degree	2500 non-null	float64
62	hs_degree_male	2500 non-null	float64
63	hs_degree_female	2500 non-null	float64
64	male_age_mean	2500 non-null	float64
65 66	male_age_median	2500 non-null	float64
66 67	<pre>male_age_stdev male_age_sample_weight</pre>	2500 non-null 2500 non-null	float64 float64
68	male_age_samples	2500 non-null	float64
69	female_age_mean	2500 non-null	float64
70	<pre>female_age_median</pre>	2500 non-null	float64
71	<pre>female_age_stdev</pre>	2500 non-null	float64
72	<pre>female_age_sample_weight</pre>	2500 non-null	float64

```
2500 non-null
                                                             float64
          73 female_age_samples
          74
              pct_own
                                            2500 non-null
                                                             float64
          75 married
                                            2500 non-null
                                                             float64
          76 married_snp
                                            2500 non-null
                                                             float64
          77 separated
                                            2500 non-null
                                                             float64
          78 divorced
                                            2500 non-null
                                                             float64
          79 Bad debt
                                            2500 non-null
                                                             float64
          80 Good_debt
                                            2500 non-null
                                                             float64
          81 remaining_income
                                            2500 non-null
                                                             float64
          82 Population_density
                                           2500 non-null
                                                             float64
          83 median_age
                                            2500 non-null
                                                             float64
          84 rent%
                                            2500 non-null
                                                             float64
         dtypes: float64(67), int64(12), object(6)
         memory usage: 1.6+ MB
In [71]: | numerical_variables = df_train1.select_dtypes(('int64','float64'))
In [72]:
         numerical_variables.shape
         (2500, 79)
Out[72]:
         numerical_variables.drop(['SUMLEVEL','lat','lng','ALand','AWater'],axis=1,inplace=True
In [73]:
In [74]:
          numerical_variables.shape
          (2500, 74)
Out[74]:
In [75]:
          from sklearn.decomposition import FactorAnalysis
          fa = FactorAnalysis(n_components=25)
In [76]: | fact = fa.fit_transform(numerical_variables)
In [77]: fact
         array([[ 0.18747801, 0.43370307, -1.30400813, ..., -1.70960839, -1.18026485, 1.08930948],
Out[77]:
                 [-1.1948433, -1.44585335, -0.33787539, ..., -2.26756953,
                  -2.93730713, 2.23589699],
                 [-1.1257653 , 0.50189866, -0.30828815, ..., -2.10901491,
                  -1.61832654, 1.54754634],
                 [ 1.83548715, 1.27863704, -0.01405628, ..., -0.20123355,
                  -0.09886889, -0.59632592],
                 [ 2.41430476, 0.3349158 ,
                                             0.1555483 , ..., 1.03349932,
                   0.09597458, 0.34153176],
                 [-0.5501776 , -0.39648252, -0.38473123, ..., -0.6043464 , -1.09735072, -0.03229883]])
In [78]: plt.scatter(fact[:,0],fact[:,1])
         <matplotlib.collections.PathCollection at 0x1b2638f0190>
Out[78]:
          6
```



```
In [79]: variables = pd.DataFrame(fact)
In [80]: variables.head()
```

```
Out[80]:
                                                                                                                        8
            0 0.187478 0.433703 -1.304008 -0.282134
                                                                1.636429 -0.180420 -0.221500
                                                                                                    0.124807 -0.098687
            1 -1.194843 -1.445853 -0.337875
                                                    2.386225
                                                                0.749854
                                                                           1.702807 -2.781141 -0.635829 -1.123816
            2 -1.125765
                            0.501899
                                       -0.308288
                                                    0.807927
                                                               -1.287159 -0.783129 -0.702025
                                                                                                    0.123263
                                                                                                               -0.792216
            3 -1.118196
                            0.465698 -0.839532
                                                    0.341571
                                                                1.481207
                                                                           -0.928418 -0.173575
                                                                                                    0.130064
                                                                                                                0.117703
                2.961507
                                                                1.217279
                                                                           0.697137 -1.268541
                                                                                                    2.825097
                                                                                                                1.948362
           5 rows × 25 columns
In [81]: numerical_variables.isnull().sum()
            UID
                                         0
Out[81]:
            COUNTYID
                                         0
            STATEID
                                         0
                                         0
            zip code
            area_code
                                         0
            Good debt
                                         0
            remaining_income
                                         0
                                         0
            Population_density
            median_age
                                         0
            rent%
                                         0
            Length: 74, dtype: int64
            numerical_variables['hc_mortgage_mean'].isnull().sum()
In [82]:
Out[82]:
In [83]: numerical_variables.columns
            Out[83]:
                      'hi_median', 'hi_stdev', 'hi_sample_weight', 'hi_samples',
                      'family_mean', 'family_median', 'family_stdev', 'family_sample_weight',
                      'family_samples', 'hc_mortgage_mean', 'hc_mortgage_median',
                      'hc_mortgage_stdev', 'hc_mortgage_sample_weight', 'hc_mortgage_samples', 'hc_mean', 'hc_median', 'hc_stdev', 'hc_samples', 'hc_sample_weight', 'home_equity_second_mortgage', 'second_mortgage', 'home_equity', 'debt',
                      'second_mortgage_cdf', 'home_equity_cdf', 'debt_cdf', 'hs_degree',
                      'hs_degree_male', 'hs_degree_female', 'male_age_mean', 'male_age_median', 'male_age_stdev', 'male_age_sample_weight',
                      'male_age_samples', 'female_age_mean', 'female_age_median',
'female_age_stdev', 'female_age_sample_weight', 'female_age_samples',
                      'pct_own', 'married', 'married_snp', 'separated', 'divorced', 'Bad_debt', 'Good_debt', 'remaining_income', 'Population_density',
                      'median_age', 'rent%'],
                    dtype='object')
'rent_gt_20', 'rent_gt_25', 'rent_gt_30', 'rent_gt_35', 'rent_gt_40',
'rent_gt_50', 'universe_samples', 'used_samples', 'hi_mean',
'hi_median', 'hi_stdev', 'hi_sample_weight', 'hi_samples',
                      'family_mean', 'family_median', 'family_stdev', 'family_sample_weight',
                      'family_samples', 'hc_mortgage_median',
                      'hc_mortgage_stdev', 'hc_mortgage_sample_weight', 'hc_mortgage_samples', 'hc_mean', 'hc_median', 'hc_stdev', 'hc_samples', 'hc_sample_weight', 'home_equity_second_mortgage', 'second_mortgage', 'home_equity', 'debt',
                      'second_mortgage_cdf', 'home_equity_cdf', 'debt_cdf', 'hs_degree',
                      'hs_degree_male', 'hs_degree_female', 'male_age_mean',
'male_age_median', 'male_age_stdev', 'male_age_sample_weight',
                      'male_age_samples', 'female_age_mean', 'female_age_median',
'female_age_stdev', 'female_age_sample_weight', 'female_age_samples',
'pct_own', 'married', 'married_snp', 'separated', 'divorced',
                      'Bad_debt', 'Good_debt', 'remaining_income', 'Population_density',
                      'median_age', 'rent%']]
            y = numerical_variables['hc_mortgage_mean']
```

Splitting the data as train and test

In [99]: df_test.head()

```
In [85]:
         from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3,random_state=50)
In [86]:
         x_train.shape
         (1750, 73)
Out[86]:
In [87]:
         x_test.shape
         (750, 73)
Out[87]:
         y_train.shape
In [88]:
         (1750,)
Out[88]:
         y_test.shape
In [89]:
         (750,)
Out[89]:
         Here we are using multi-linear regression model
In [90]:
         from sklearn.linear_model import LinearRegression
         lm = LinearRegression()
In [91]:
         Model = lm.fit(x_train,y_train)
In [92]: y_pred = lm.predict(x_test)
In [93]: from sklearn.metrics import r2_score,mean_absolute_error,mean_squared_error
In [94]:
         MAE = mean_absolute_error(y_test,y_pred)
         52.13954704130099
Out[94]:
In [95]: MSE = mean_squared_error(y_test,y_pred)
         5863.029336911928
Out[95]:
In [96]: RMSE = np.sqrt(MSE)
         RMSE
         76.57042077011154
Out[96]:
In [97]:
         r2 = r2_score(y_test,y_pred)
         0.9827880351606979
Out[97]:
         We got 98.27% r2 score which is above acceptance limit so we can skip the
         remaining steps now we have to predict the valuee for hc_mortgage_mean for
         the test dataset
In [98]: df_test = pd.read_csv('T:\Masters In Data Science\Capstone Project\Project 1\\test.csv
```

Out[99]:		UID	BLOCKID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place
	0	255504	NaN	140	163	26	Michigan	MI	Detroit	Dearborn Heights City
	1	252676	NaN	140	1	23	Maine	ME	Auburn	Auburn City
	2	276314	NaN	140	15	42	Pennsylvania	PA	Pine City	Millerton
	3	248614	NaN	140	231	21	Kentucky	KY	Monticello	Monticello City
	4	286865	NaN	140	355	48	Texas	TX	Corpus Christi	Edroy
	5 r	ows × 80) columns							
4										>
Tn [100	44	tost i	nfo()							

In [100... df_test.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11709 entries, 0 to 11708

_	eIndex: 11709 entries, 0 to 1	1708	
	columns (total 80 columns):	New No.11 Count	D4
#	Column	Non-Null Count	Dtype
0	UID	11709 non-null	int64
1	BLOCKID	0 non-null	float64
2	SUMLEVEL	11709 non-null	int64
3	COUNTYID	11709 non-null	int64
4	STATEID	11709 non-null	int64
5	state	11709 non-null	object
6	state_ab	11709 non-null	object
7	city	11709 non-null	object
8	place	11709 non-null	object
9	type	11709 non-null	object
10	primary	11709 non-null	object
11	zip_code	11709 non-null	int64
12	area_code	11709 non-null	int64
13	lat	11709 non-null	float64
14	lng	11709 non-null	float64
15	ALand	11709 non-null	int64
16	AWater	11709 non-null	int64
17	pop	11709 non-null	int64
18	male_pop	11709 non-null	int64
19	female_pop	11709 non-null	int64
20	rent_mean	11561 non-null	float64
21	rent_median	11561 non-null	
22	rent_stdev	11561 non-null	
23	rent_sample_weight	11561 non-null	
24	rent_samples	11561 non-null	
25	rent_gt_10	11560 non-null	
26	rent_gt_15	11560 non-null	
27	rent_gt_20	11560 non-null	
28	rent_gt_25	11560 non-null	
29	rent_gt_30	11560 non-null 11560 non-null	
30 31	rent_gt_35 rent_gt_40	11560 non-null	
32	rent_gt_50	11560 non-null	
33	universe_samples	11709 non-null	int64
34	used_samples	11709 non-null	int64
35	hi_mean	11587 non-null	float64
36	hi_median	11587 non-null	float64
37	hi_stdev	11587 non-null	float64
38	hi sample weight	11587 non-null	float64
39	hi_samples	11587 non-null	float64
40	family_mean	11573 non-null	float64
41	family_median	11573 non-null	float64
42	family_stdev	11573 non-null	float64
43	family_sample_weight	11573 non-null	float64
44	family_samples	11573 non-null	float64
45	hc_mortgage_mean	11441 non-null	float64
46	hc_mortgage_median	11441 non-null	float64
47	hc_mortgage_stdev	11441 non-null	float64
48	hc_mortgage_sample_weight	11441 non-null	float64
49	hc_mortgage_samples	11441 non-null	float64
50	hc_mean	11419 non-null	float64
51	hc_median	11419 non-null	float64
52	hc_stdev	11419 non-null	float64
53	hc_samples	11419 non-null	float64
54 ==	hc_sample_weight	11419 non-null	float64
55 56	home_equity_second_mortgage	11489 non-null	float64
56 57	second_mortgage	11489 non-null	float64
57 58	home_equity debt	11489 non-null 11489 non-null	float64 float64
59	second_mortgage_cdf	11489 non-null	float64
60	home_equity_cdf	11489 non-null	float64
61	debt_cdf	11489 non-null	float64
62	hs_degree	11624 non-null	float64
63	hs_degree_male	11620 non-null	float64
64	hs_degree_female	11604 non-null	float64
65	male_age_mean	11625 non-null	float64
66	male_age_median	11625 non-null	float64
67	male_age_stdev	11625 non-null	float64
68	male_age_sample_weight	11625 non-null	float64
69	male_age_samples	11625 non-null	float64
70	female_age_mean	11613 non-null	float64
71	female_age_median	11613 non-null	float64
72	<pre>female_age_stdev</pre>	11613 non-null	float64

```
73 female_age_sample_weight 11613 non-null float64
74 female_age_samples 11613 non-null float64
75 pct_own 11587 non-null float64
            76 married
                                              11625 non-null float64
            77 married_snp
                                               11625 non-null float64
                                               11625 non-null float64
            78 separated
            79 divorced
                                               11625 non-null float64
           dtypes: float64(61), int64(13), object(6)
           memory usage: 7.1+ MB
In [101... df_test.isnull().sum()
           UID
Out[101]:
                           11709
           BLOCKID
           SUMLEVEL
                               0
           COUNTYID
                               0
           STATEID
                               0
           pct_own
                            122
           married
                              84
           married_snp
                              84
                              84
           separated
           divorced
                              84
           Length: 80, dtype: int64
In [102... df_test = df_test.drop(['BLOCKID'],axis=1)
In [103... df_test.isnull().sum()
           UID
Out[103]:
           SUMLEVEL
                             0
           COUNTYID
                             0
           STATEID
                             0
           state
                           0
           pct_own
                           122
                            84
           married
           married_snp
                            84
           separated
                            84
           divorced
                            84
           Length: 79, dtype: int64
In [104... df_test.dropna(inplace=True)
```

In [105... df_test.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 11355 entries, 0 to 11708

	4Index: 11355 entries, 0 to 1	1708	
	columns (total 79 columns):		
#	Column	Non-Null Count	Dtype
	LITE	44255	
0	UID	11355 non-null	int64
1	SUMLEVEL	11355 non-null	int64
2	COUNTYID	11355 non-null	int64
3	STATEID	11355 non-null	int64
4	state	11355 non-null	object
5	state_ab	11355 non-null	object
6	city	11355 non-null	object
7	place	11355 non-null	object
8	type	11355 non-null	object
9	primary	11355 non-null	object
10	zip_code	11355 non-null	int64
11 12	area_code lat	11355 non-null	int64 float64
13		11355 non-null 11355 non-null	float64
14	lng ALand	11355 non-null	int64
15	AWater	11355 non-null	int64
16	pop	11355 non-null	
17	male pop	11355 non-null	
18	female_pop	11355 non-null	
19	rent_mean	11355 non-null	
20	rent_median	11355 non-null	
21	rent_stdev	11355 non-null	
22	rent_sample_weight	11355 non-null	
23	rent_samples	11355 non-null	
24	rent_gt_10	11355 non-null	
25	rent_gt_15	11355 non-null	
26	rent_gt_20	11355 non-null	
27	rent_gt_25	11355 non-null	
28	rent_gt_30	11355 non-null	
29	rent_gt_35	11355 non-null	
30	rent_gt_40	11355 non-null	
31	rent_gt_50	11355 non-null	
32	universe_samples	11355 non-null	int64
33	used_samples	11355 non-null	int64
34	hi_mean	11355 non-null	float64
35	_ hi_median	11355 non-null	float64
36	hi_stdev	11355 non-null	float64
37	hi_sample_weight	11355 non-null	float64
38	hi_samples	11355 non-null	float64
39	family_mean	11355 non-null	float64
40	family_median	11355 non-null	float64
41	family_stdev	11355 non-null	float64
42	<pre>family_sample_weight</pre>	11355 non-null	float64
43	family_samples	11355 non-null	float64
44	hc_mortgage_mean	11355 non-null	float64
45	hc_mortgage_median	11355 non-null	float64
46	hc_mortgage_stdev	11355 non-null	float64
47	hc_mortgage_sample_weight	11355 non-null	float64
48	hc_mortgage_samples	11355 non-null	float64
49	hc_mean	11355 non-null	float64
50	hc_median	11355 non-null	float64
51	hc_stdev	11355 non-null	float64
52	hc_samples	11355 non-null	float64
53	hc_sample_weight	11355 non-null	float64
54	home_equity_second_mortgage	11355 non-null	float64
55	second_mortgage	11355 non-null	float64
56	home_equity	11355 non-null	float64
57	debt	11355 non-null	float64
58	second_mortgage_cdf	11355 non-null	float64
59	home_equity_cdf	11355 non-null	float64
60	debt_cdf	11355 non-null	float64
61	hs_degree	11355 non-null	float64
62	hs_degree_male	11355 non-null	float64
63 64	hs_degree_female	11355 non-null	float64
64 65	male_age_mean	11355 non-null	float64
65 66	male_age_median	11355 non-null	float64
66 67	male_age_stdev	11355 non-null	float64
67 68	male_age_sample_weight	11355 non-null 11355 non-null	float64 float64
68 69	male_age_samples		
69 70	female_age_mean female_age_median	11355 non-null	float64 float64
70 71	<pre>female_age_median female_age_stdev</pre>	11355 non-null 11355 non-null	float64
72	female_age_stdev female_age_sample_weight	11355 non-null	float64
- -			. 203007

```
73
                                                                                                                                float64
                                female_age_samples
                                                                                              11355 non-null
                        74
                                 pct_own
                                                                                               11355 non-null
                                                                                                                                 float64
                        75
                                married
                                                                                              11355 non-null
                                                                                                                                float64
                        76 married_snp
                                                                                              11355 non-null
                                                                                                                                float64
                        77
                                                                                               11355 non-null float64
                               separated
                                                                                              11355 non-null float64
                        78 divorced
                      dtypes: float64(60), int64(13), object(6)
                      memory usage: 6.9+ MB
 In [106... df_test1 = df_test.nlargest(2500,['second_mortgage','pct_own'])
 In [107...
                      df_test1.shape
                       (2500, 79)
Out[107]:
                      df_test1['Bad_debt'] = df_test1['second_mortgage'] + df_test1['home_equity'] - df_test
 In [108...
                      df_test1['Good_debt'] = df_test1['debt'] - df_test1['Bad_debt']
                      df_test1.describe()
 In [109...
                                                      UID SUMLEVEL
                                                                                        COUNTYID
Out[109]:
                                                                                                                    STATEID
                                                                                                                                             zip code
                                                                                                                                                                   area code
                                                                                                                                                                                                       lat
                                        2500 000000
                                                                                                                                                                                       2500 000000
                       count
                                                                        2500.0
                                                                                      2500.000000
                                                                                                             2500.000000
                                                                                                                                       2500.000000
                                                                                                                                                                2500.000000
                                    253296.506800
                                                                          140.0
                                                                                          79.058000
                                                                                                                  24.922000
                                                                                                                                      55553.227200
                                                                                                                                                                  593.673200
                                                                                                                                                                                            37.914653
                        mean
                                      22355.084714
                                                                                        104.577449
                                                                                                                                      31594.881314
                                                                                                                                                                 228.389981
                                                                                                                                                                                             4.900106
                           std
                                                                             0.0
                                                                                                                  16.760247
                                                                                                                                                                 201.000000
                                    220352.000000
                                                                          140.0
                                                                                            1.000000
                                                                                                                   1.000000
                                                                                                                                          725.000000
                                                                                                                                                                                            18.226608
                          min
                                    232274.000000
                                                                                                                                    28030.000000
                                                                                                                                                                 405.000000
                                                                                                                                                                                            34.081025
                         25%
                                                                         140.0
                                                                                          31.000000
                                                                                                                   8.000000
                         50%
                                    251218.000000
                                                                          140.0
                                                                                          57.000000
                                                                                                                  24.000000
                                                                                                                                      55104.000000
                                                                                                                                                                  615.000000
                                                                                                                                                                                            38.787609
                                    272187.250000
                                                                                                                                                                                            41.298734
                         75%
                                                                          140.0
                                                                                          95.000000
                                                                                                                  39.000000
                                                                                                                                      90029.000000
                                                                                                                                                                  773.000000
                                    294285.000000
                                                                          140.0
                                                                                        810.000000
                                                                                                                  72.000000
                                                                                                                                      99705.000000
                                                                                                                                                                 989.000000
                                                                                                                                                                                            64.758471
                         max
                     8 rows × 75 columns
                      df_test1['Remaining_income'] = df_test1['family_median'] - df_test1['hi_median']
 In [110...
 In [111...
                      df_test1['Population_density'] = df_test1['pop'] / df_test1['ALand']
                      df_test1['median_age'] = (df_test1['male_age_median']*df_test1['male_pop'])+(df_test1['male_age_median']*df_test1['male_pop'])+(df_test1['male_age_median']*df_test1['male_pop'])+(df_test1['male_age_median']*df_test1['male_pop'])+(df_test1['male_age_median']*df_test1['male_pop'])+(df_test1['male_age_median']*df_test1['male_pop'])+(df_test1['male_age_median']*df_test1['male_pop'])+(df_test1['male_age_median']*df_test1['male_pop'])+(df_test1['male_age_median']*df_test1['male_pop'])+(df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_age_median']*df_test1['male_a
  In [112...
                      df_test1['rent%'] = round(df_test1['rent_median']/df_test1['hi_median']*100,2)
  In [113...
                      df_test1.head()
 In [114...
                                          UID SUMLEVEL COUNTYID STATEID
Out[114]:
                                                                                                                              state state_ab
                                                                                                                                                                         city
                                                                                                                                                                                           place
                                                                                                                                                                                         Mount
                         6238 266140
                                                                140
                                                                                          5
                                                                                                          36
                                                                                                                       New York
                                                                                                                                                   NY
                                                                                                                                                                      Bronx
                                                                                                                                                                                         Vernon
                                                                                                                                                                                              City
                                                                                                                                                                                    Port Allen
                                                                                                                                                                     Baton
                         9088
                                    248877
                                                                140
                                                                                        33
                                                                                                          22
                                                                                                                       Louisiana
                                                                                                                                                   LA
                                                                                                                                                                                             City
                                                                                                                                                                     Rouge
                                                                                                                                                                                      Oak Park
                                    254689
                                                                                                                                                               Southfield
                                                                140
                                                                                       125
                                                                                                          26
                                                                                                                       Michigan
                                                                                                                                                   MI
                                                                                                                                                                                              City
                         4976
                                   252317
                                                                140
                                                                                        33
                                                                                                          24
                                                                                                                                                  MD
                                                                                                                                                                  Adelphi
                                                                                                                                                                                        Adelphi
                                                                                                                       Maryland
                                                                                       101
                       11051 278176
                                                                140
                                                                                                                                                                                  Millbourne
                                                                                                          42
                                                                                                                 Pennsylvania
                                                                                                                                                    PA
                                                                                                                                                           Philadelphia
                                                                                                                                                                                                       Boro
                     5 rows × 85 columns
 In [115...
                     df_test1.info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 2500 entries, 6238 to 6099
Data columns (total 85 columns):

	columns (total 85 columns):		
#	Column	Non-Null Count	Dtype
0	UID	2500 non-null	int64
1	SUMLEVEL	2500 non-null	int64
2	COUNTYID	2500 non-null	int64
3	STATEID	2500 non-null	int64
4 5	state state_ab	2500 non-null 2500 non-null	object object
6	city	2500 non-null	object
7	place	2500 non-null	object
8	type	2500 non-null	object
9 10	primary	2500 non-null 2500 non-null	object int64
11	zip_code area_code	2500 non-null	int64
12	lat	2500 non-null	float64
13	lng	2500 non-null	float64
14	ALlahara	2500 non-null	int64
15 16	AWater pop	2500 non-null 2500 non-null	int64 int64
17	male_pop	2500 non-null	int64
18	female_pop	2500 non-null	int64
19	rent_mean	2500 non-null	float64
20 21	rent_median rent_stdev	2500 non-null 2500 non-null	float64 float64
22	rent_sample_weight	2500 non-null	float64
23	rent_samples	2500 non-null	float64
24	rent_gt_10	2500 non-null	float64
25	rent_gt_15	2500 non-null	float64
26 27	rent_gt_20 rent_gt_25	2500 non-null 2500 non-null	float64 float64
28	rent_gt_30	2500 non-null	float64
29	rent_gt_35	2500 non-null	float64
30	rent_gt_40	2500 non-null	float64
31 32	rent_gt_50 universe_samples	2500 non-null 2500 non-null	float64 int64
	used_samples	2500 non-null	
34	hi_mean	2500 non-null	float64
35	hi_median	2500 non-null	float64
36	hi_stdev	2500 non-null	float64
37 38	<pre>hi_sample_weight hi_samples</pre>	2500 non-null 2500 non-null	float64 float64
39	family_mean	2500 non-null	float64
40	family_median	2500 non-null	float64
41	family_stdev	2500 non-null	float64
42 43	<pre>family_sample_weight family_samples</pre>	2500 non-null 2500 non-null	float64 float64
44	hc_mortgage_mean	2500 non-null	float64
45	hc_mortgage_median	2500 non-null	float64
46	hc_mortgage_stdev	2500 non-null	float64
47 48	hc_mortgage_sample_weight	2500 non-null 2500 non-null	float64 float64
49	hc_mortgage_samples hc_mean	2500 non-null	float64
50	hc_median	2500 non-null	float64
51	hc_stdev	2500 non-null	float64
52	hc_samples	2500 non-null	float64
53 54	<pre>hc_sample_weight home_equity_second_mortgage</pre>	2500 non-null 2500 non-null	float64 float64
55	second_mortgage	2500 non-null	float64
56	home_equity	2500 non-null	float64
57	debt	2500 non-null	float64
58 59	<pre>second_mortgage_cdf home_equity_cdf</pre>	2500 non-null 2500 non-null	float64 float64
60	debt_cdf	2500 non-null	float64
61	hs_degree	2500 non-null	float64
62	hs_degree_male	2500 non-null	float64
63 64	hs_degree_female	2500 non-null 2500 non-null	float64
64 65	<pre>male_age_mean male_age_median</pre>	2500 non-null	float64 float64
66	male_age_stdev	2500 non-null	float64
67	male_age_sample_weight	2500 non-null	float64
68	male_age_samples	2500 non-null	float64
69 70	<pre>female_age_mean female_age_median</pre>	2500 non-null 2500 non-null	float64 float64
70	female_age_stdev	2500 non-null	float64
72	female_age_sample_weight	2500 non-null	float64

```
74
                     pct_own
                                                              2500 non-null
                                                                                     float64
                75 married
                                                              2500 non-null
                                                                                     float64
                76 married snp
                                                              2500 non-null
                                                                                     float64
                77 separated
                                                              2500 non-null
                                                                                     float64
                78 divorced
                                                              2500 non-null
                                                                                    float64
                79
                     Bad debt
                                                              2500 non-null
                                                                                     float64
                80
                     Good debt
                                                              2500 non-null
                                                                                     float64
                     Remaining_income
                                                              2500 non-null
                                                                                     float64
                81
                     Population_density
                                                              2500 non-null
                                                                                     float64
                83 median_age
                                                              2500 non-null
                                                                                    float64
                84 rent%
                                                              2500 non-null
                                                                                     float64
              dtypes: float64(66), int64(13), object(6)
              memory usage: 1.6+ MB
 In [116... | numerical_variables_test = df_test1.select_dtypes(('int64','float64'))
 In [117... numerical_variables_test.head()
                           UID SUMLEVEL COUNTYID STATEID zip_code area_code
Out[117]:
                                                                                                            lat
                                                                                                                         Ing
                                                                                                                                 ALan
                6238 266140
                                          140
                                                           5
                                                                     36
                                                                              10452
                                                                                              718 40.842166 -73.926952
                                                                                                                                 28270
                9088 248877
                                          140
                                                          33
                                                                     22
                                                                             70802
                                                                                              225 30.414676 -91.192011
                                                                                                                               299069
                                                                             48075
                8771 254689
                                          140
                                                        125
                                                                     26
                                                                                              248 42.453800 -83.207546 148008
                4976 252317
                                          140
                                                          33
                                                                     24
                                                                             20783
                                                                                              301 39.006934 -76.974603
                                                                                                                                31790
               11051 278176
                                          140
                                                        101
                                                                     42
                                                                             19104
                                                                                              215 39.953811 -75.207043
                                                                                                                                 28354
              5 \text{ rows} \times 79 \text{ columns}
              numerical_variables_test.drop(['SUMLEVEL','lat','lng','ALand','AWater'],axis=1,inplace
 In [118...
 In [119... numerical_variables_test.shape
Out[119]: (2500, 74)
 In [120... numerical_variables_test.columns
Out[120]: Index(['UID', 'COUNTYID', 'STATEID', 'zip_code', 'area_code', 'pop', 'male_pop', 'female_pop', 'rent_mean', 'rent_median', 'rent_stdev', 'rent_sample_weight', 'rent_samples', 'rent_gt_10', 'rent_gt_15',
                         'rent_gt_20', 'rent_gt_25', 'rent_gt_30', 'rent_gt_35', 'rent_gt_40',
'rent_gt_50', 'universe_samples', 'used_samples', 'hi_mean',
'hi_median', 'hi_stdev', 'hi_sample_weight', 'hi_samples',
                         'family_mean', 'family_median', 'family_stdev', 'family_sample_weight',
                         'family_samples', 'hc_mortgage_mean', 'hc_mortgage_median',
                        'hc_mortgage_stdev', 'hc_mortgage_sample_weight', 'hc_mortgage_samples', 'hc_mean', 'hc_median', 'hc_stdev', 'hc_samples', 'hc_sample_weight', 'home_equity_second_mortgage', 'second_mortgage', 'home_equity', 'debt',
                         'second_mortgage_cdf', 'home_equity_cdf', 'debt_cdf', 'hs_degree',
                         'hs_degree_male', 'hs_degree_female', 'male_age_mean', 'male_age_median', 'male_age_stdev', 'male_age_sample_weight',
                         'male_age_samples', 'female_age_mean', 'female_age_median',
'female_age_stdev', 'female_age_sample_weight', 'female_age_samples',
'pct_own', 'married', 'married_snp', 'separated', 'divorced',
'Bad_debt', 'Good_debt', 'Remaining_income', 'Population_density',
                         'median_age', 'rent%'],
                       dtype='object')
 'rent_gt_20', 'rent_gt_25', 'rent_gt_30', 'rent_gt_35', 'rent_gt_40',
'rent_gt_50', 'universe_samples', 'used_samples', 'hi_mean',
'hi_median', 'hi_stdev', 'hi_sample_weight', 'hi_samples',
                         'family_mean', 'family_median', 'family_stdev', 'family_sample_weight',
                         'family_samples', 'hc_mortgage_median'
                         'hc_mortgage_stdev', 'hc_mortgage_sample_weight', 'hc_mortgage_samples', 'hc_mean', 'hc_median', 'hc_stdev', 'hc_samples', 'hc_sample_weight', 'home_equity_second_mortgage', 'second_mortgage', 'home_equity', 'debt',
                         'second_mortgage_cdf', 'home_equity_cdf', 'debt_cdf', 'hs_degree
                         'hs_degree_male', 'hs_degree_female', 'male_age_mean',
```

2500 non-null

73 female_age_samples

float64

```
'male_age_median', 'male_age_stdev', 'male_age_sample_weight',
                      'male_age_samples', 'female_age_mean', 'female_age_median',
'female_age_stdev', 'female_age_sample_weight', 'female_age_samples',
'pct_own', 'married', 'married_snp', 'separated', 'divorced',
'Bad_debt', 'Good_debt', 'Remaining_income', 'Population_density',
                       'median_age', 'rent%']]
             Y = numerical_variables_test['hc_mortgage_mean']
 In [122...
            Y_Pred = lm.predict(X)
             MAE1 = mean_absolute_error(Y,Y_Pred)
 In [123...
             47.100968799960974
Out[123]:
             MSE1 = mean_squared_error(Y,Y_Pred)
 In [124...
             4277.1663000160515
Out[124]:
 In [125...
             RMSE1 = np.sqrt(MSE1)
             65.4000481652426
Out[125]:
 In [126... r2_1 = r2_score(Y,Y_Pred)
             0.9875219499655888
Out[126]:
             Here we have 98.75% r2 score so we can skip the state level model building
             procedure
             Check = pd.DataFrame({'Predicted hc_mortgage_mean' : Y_Pred , 'Actual hc_mortgage_mear
 In [127...
Out[127]:
```

	Predicted hc_mortgage_mean	Actual hc_mortgage_mean
6238	2521.735791	2631.10494
9088	1278.514992	1141.54196
8771	1614.635009	1473.67252
4976	1974.730817	1923.34919
11051	2745.130946	2900.21786
•••		
1620	1518.081700	1444.61336
5324	2620.120047	2594.75884
9443	1311.426800	1343.19912
8107	1248.826557	1268.52462
6099	1012.287750	947.51606

2500 rows × 2 columns

```
VIF
              features
                   UID 3542.365500
0
              COUNTYID 1.840219
STATEID 89.982089
1
              COUNTYID
2
3
              zip_code
                          6.361545
                           8.416495
4
             area_code
                   . . .
                                 . . .
69
             Good_debt
                                 inf
70
     Remaining_income
                                inf
71 Population_density
                          2.673766
72
            median_age
                        346.316974
                          64.359182
73
                 rent%
```

[74 rows x 2 columns]

```
In [133... plt.figure(figsize=(15,15))
    sns.histplot(data=Y_Pred,color='c',bins=20,kde=True)
    plt.title('Predicted Values Distribution')
    plt.show()
```


The predicted data looks somewhat right skewed

Now we will use pandas function to extract the top 2500 dataframe into csv format for Dashboarding use

```
In [134... df_train1.to_csv('Real_Estate.csv')
```