

Refresher on Routers

Refresher on Routers

- Used to Connect Different Networks Together
- Routes Traffic Between Networks using IP Addresses
- Uses Intelligent Decisions (Routing Protocols) to Find the Best Way to Get a Packet of Information from One Network to Another.
- Break Up Broadcast Domains
- OSI Layer 3 Device
 - o Layer 3 = Router
 - o Layer 2 = Switch
 - o Layer 1 = Hub

The Routing Process

Step 1: The Routing Process (Simplified)

192.168.1.0/24 Network

200.100.100.0/24 Network

192.168.0.0/24 Network

- PC 1 creates a packet destined for PC 2
 - o **Source IP**: 192.168.1.2/24
 - o **Destination IP**: 192.168.0.2/24
- Because it is destined for another network, it is sent to PC 1's default gateway, which is the Ethernet interface of Router 1 (192.168.1.1/24).
- If PC 1 doesn't know Router 1's MAC Address, PC 1 will send out an ARP request.

Step 2: The Routing Process (Simplified)

192.168.1.0/24 Network

200.100.100.0/24 Network

192.168.0.0/24 Network

- Once Router 1 receives the packet, it'll inspect its destination IP address and then make a routing decision based on its routing table to identify which route to send it to.
- In this case, it's Router 1's serial interface with an IP address of 200.100.100.1/24.

```
Router1#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is not set

S 192.168.0.0/24 [1/0] via 200.100.100.254

C 192.168.1.0/24 is directly connected, FastEthernet0/0

C 200.100.100.0/24 is directly connected, Serial0/0
```

InstructorAlton.com

Step 3: The Routing Process (Simplified)

192.168.1.0/24 Network

200.100.100.0/24 Network

192.168.0.0/24 Network

- Once Router 2 receives the packet, it'll inspect its destination IP address and then make a routing decision based on its routing table to identify which route to send it to.
- In this case, it's its directly connected Ethernet interface with an IP address of 192.168.0.1/24.

```
Router2#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route

Gateway of last resort is not set

C 192.168.0.0/24 is directly connected, FastEthernet0/0
S 192.168.1.0/24 [1/0] via 200.100.100.1
C 200.100.100.0/24 is directly connected, Serial0/0
```

InstructorAlton.com

Static versus Dynamic Routing

Static vs. Dynamic Routing

Routing can be broken up into two primary categories:

Static Routing

- The simplest form of routing
- Static routes that are manually entered by a network administrator
- Ideal for small networks with very few routes that rarely change
 - o There's no overhead like there is with dynamic routing.
- · Can be problematic for larger networks or if the network regularly changes
 - o All changes must be made manually, which is time-consuming and can be error-prone.

Dynamic Routing

- An automated form of routing that uses routing protocols to:
 - o Populate router's routing table
 - Make the most efficient routing decision
 - Updating the routing table whenever the network changes
- Automatic & Hands-Off
 - All routing decisions are handled by the protocol
- Ideal for larger, and more complex networks

Types of Dynamic Routing Protocols

 There are three different types of dynamic routing protocols, which we'll discuss in detail later in this section

IGPs & EGPs

AS (Autonomous System)

- Autonomous = Independent Entity (Organization)
 - University, Corporation, Governmental Agency
- Routers are usually part of an Autonomous System (AS)
 - IP routes under common control
- An AS is a connected group of one or more IP prefixes run by one or more network operators with a single and clearly defined routing policy (Single Organization)
- Important point of reference for discussing Interior Gateway Protocols (IGP) and Exterior Gateway Protocols (EGP)

IGP (Interior Gateway Protocol)

- Used within a single AS (Your Organization)
 - Not intended to route between Autonomous Systems
 - That's why there's Exterior Gateway Protocols (EGPs)
- IGP Protocols
 - RIP (Routing Information Protocol)
 - OSPF (Open Shortest Path First)
 - EIGRP (Enhanced Interior Gateway Routing Protocol)

EGP (Exterior Gateway Protocol)

- Used to route between Autonomous Systems
 - Internet Service Providers (ISPs)
- BGP (Border Gateway Protocol)
 - Almost all ISPs uses BGP as their EGP

EGP & IGPs Working Together

Interior Gateway Protocols (IGPs)

Interior Gateway Protocols (IGPs)

There are three different types of IGPs:

Distance-Vector

- Like its name implies, distance-vector routing protocols use distance as their metric for making routing decisions.
 - Distance = Hop Count
 - Hops are the number of routers that a packet passes through from its source to its destination.

- Distance-Vector Routing Protocols:
 - Router Information Protocol (RIP)
 - Enhanced Interior Gateway Routing Protocol (EIGRP)

Router-Information Protocol (RIP)

- A long-established distance-vector protocol with three versions
- Supports a maximum of 15 hops to prevent routing loops
 - Doesn't scale well due to 15 hop limitation.
- Sends a full copy of its routing table to directly connected routers every 30 seconds
 - o Slow network convergence times, which can lead to potential routing loop issues
 - For example: router 3 may need to wait up to 90 seconds to get router 0's full routing table
 - o Lead to unnecessary network traffic and high router CPU utilization

Enhanced Interior Gateway Routing Protocol (EIGRP)

- A Cisco proprietary routing protocol that only works on Cisco routers.
- Not a true distance-vector routing protocol
 - o Utilizes hop count metrics, but also reliability, bandwidth, load, and delay metrics.
 - o Can be considered an **advanced distance-vector** or **hybrid** routing protocol
- Has a default hop count of 100 and a maximum of 255
- Supports classless routing and VLSM
- Very fast converging and very scalable for larger networks

Link-State

- Link-state routing protocols build a map of the entire network.
- Utilize link-state advertisements (LSAs) to accomplish this:
 - Routers share information with all other routers on the network via LSAs.
 - o This allows them to build a complete network map.
- Once the network map is built, routers only update each other when there is a change to the network.
- Otherwise, they don't communicate, except with a periodic "hello" packet, so the other routers know they are up and functioning.
- This leads to faster network convergence times that support larger networks.
- o Link-State Routing Protocol:
 - Open Shortest Path First (OSPF)

Open Shortest Path First (OSPF)

- Open standard link-state routing protocol
- Well suited for large networks with multiple redundant paths.
- It builds a topological routing tree, call a shortest-path tree.
- Sub-divides a larger network into areas where routers share information with other routers in their designated area:
 - Minimizes routing update traffic and improves network convergence times
- Uses "cost" metrics to determine the "best" route by including link state and speed.
- Supports classless addressing and VLSM
- Has an unlimited hop count

Border Gateway Protocol (BGP)

Border Gateway Protocol (BGP)

- The only EGP in widespread use today
- Considered the Internet's core routing protocol
 - Supports IPv4 and IPv6
 - Highly Scalable
- Often called a path-vector (hybrid) routing protocol
 - Each ISP is assigned a unique Autonomous System (AS) number
 - Uses the number of AS hops rather than individual router hops as its metric
- Utilizes the BGP Best Path Selection algorithm to identify the best route
- Routing protocol from AS to AS
 - When you connect to the Internet, you're moving from one AS to another

Routing Tables and AD

Routing Table Entries

Routing table categories:

- Directly Connected Routes
 - o Networks that are directly connected to the router.
- Remote Network Routes
 - Networks that aren't directly connected to the router.
- Default Routes
 - o Routes when no match is found in the routing table.

Routing Table Components

- Routing tables, at a minimum, will include the following information:
 - Type
 - Destination Network ID & Subnet Mask
 - Router Interface
 - o Metric

Туре	Network	Interface	Metric
Connected	192.168.1.0/24	FastEthernet0/0	0
Connected	200.100.100.0/24	Serial0/0	0
Static	192.168.0.0/24	Serial0/0	1
Static	0.0.0.0/0	Serial0/0	1

192.168.1.0/24 Network

200.100.100.0/24 Network

192.168.0.0/24 Network

Administrative Distance (AD)

- Routers use administrative distance (AD) to rate the overall trustworthiness of a route.
- AD's can have a value ranging from 0 to 255, where lower is better, based on the type of route.
- If a router receives routing table updates from two different sources, it'll utilize the one with the lower AD.

Туре	Default AD	
Connected Interface	0	
Static Route	1	
EIGRP	90	
OSPF	110	
RIP	170	
Unknown	255	

The Default Route

The Default Route

- A static route that's utilized when a packet's destination IP address has no known match in a router's routing table.
- If there's no match → forward the packet on via the default route.
- Commonly called the gateway of last resort.
- The following addresses are used to represent the default route in a routing table:
 - o **IPv4:** 0.0.0.0/0
 - o **IPv6:** ::/0