SAT Solvers in Computational Algorithm Design

- ◆ We used SAT and MAX-SAT solvers to design novel distributed algorithms
- ◆ Idea: Express the existence of an algorithm as a finite combinatorial problem
- Results: New optimal algorithms and impossibility results in three domains

Danny Dolev

The Hebrew University of Jerusalem

Juho Hirvonen
Janne H. Korhonen
Joel Rybicki
Jukka Suomela

HIIT and University of Helsinki

Christoph LenzenMIT

Deterministic graph coloring

k-coloring as SAT instance

Key results

Positive: $\frac{1}{2}(\log^* n + 7) \to \frac{1}{2}(\log^* n + 3)$ Negative: $\frac{1}{2}(\log^* n - 3) \to \frac{1}{2}(\log^* n + 1)$

Randomized max cut

Weighted MAX-SAT instance

Key results

An optimal cut algorithm: $\frac{1}{2} + \Theta\left(\frac{1}{\sqrt{d}}\right)$

Self-stabilizing counting with Byzantine failures

Key results

	Nodes	Auxilary states
Positive	≥ 4	1
	≥ 6	0
Negative	≤ 5	0