Machine Learning

Lesson 2

Machine Learning

Supervised Learning

Regression

Classification

Supervised Learning

X	Υ
1	2
3	4
3	5
6	7
7	7
3	4

Supervised Learning

x1	x2
1	2
3	4
3	2
6	3
7	4
3	1

Label
О
О
X
X
X
0

Dataset

Supervised Machine Learning Algorithms

- Nearest Neighbor
- Naive Bayes
- Decision Trees
- Linear Regression
- Logistic Regression
- Support Vector Machines (SVM)
- Neural Networks

Linear Regression

Linear Regression

$$MSE \, = \, rac{1}{N} \sum_{i=1}^{N} \left(\hat{y_i} \, - y \,
ight)^2 \, .$$

$$L(heta,\,b)\,=\,rac{1}{N}((x heta\,+\,b)\,-\,y)^2$$

$$rac{\mathrm{d}L}{\mathrm{d} heta} = rac{1}{N} x^T ((x heta + b) \, - \, y)$$

$$rac{\mathrm{d}L}{\mathrm{d}b} = rac{1}{N}((x heta + b) \, - \, y)$$

Linear Regression: Training

Usually you keep training until the cost converges. If you were to plot the number of iterations versus the cost, you should see something like this:

You initialize your parameter θ , that you can use in your equation, you then compute the gradient that you will use to update θ , and then calculate the cost. You keep doing so until good enough.

Linear Regression: Gradient Descent

$$\min_{\theta} J(\theta)$$

$$heta \leftarrow heta - lpha rac{\mathrm{d}}{\mathrm{d} heta} J(heta)$$

$$rac{\mathrm{d}}{\mathrm{d} heta}J(heta) \,=\, (h(x,\, heta)\,-\,y)\,x$$

$$heta \leftarrow heta \, - \, lpha(h(x, \, heta) \, - \, y)x$$

 $\alpha \rightarrow$ learning rate

Logistic Regression

Logistic Regression

$$x_2 = \theta.x_1 + b$$

Logistic Regression

But we don't need \mathbf{x}_2 , we need probability that a point is on either side of that line.

So we use the sigmoid function,

$$f(x) = rac{1}{1 + e^{-x}}$$
 $P = f(heta x_1 + b) = rac{1}{1 + e^{-(heta x_1 + b)}}$

Note that as $(\theta x_1 + b)$ gets closer and closer to $-\infty$ the denominator of the sigmoid function gets larger and larger and as a result, the sigmoid gets closer to 0. On the other hand, as $(\theta x_1 + b)$ gets closer and closer to $+\infty$ the denominator of the sigmoid function gets closer to 1 and as a result the sigmoid also gets closer to 1.

Logistic Regression: Training

Usually you keep training until the cost converges. If you were to plot the number of iterations versus the cost, you should see something like this:

You initialize your parameter θ , that you can use in your sigmoid, you then compute the gradient that you will use to update θ , and then calculate the cost. You keep doing so until good enough.

Logistic Regression: Cost Function

$$J(\theta) = -[y \log h(x, \theta) + (1 - y) \log (1 - h(x, \theta))]$$

As you can see in the picture above, if y = 1 and you predict something close to 0, you get a cost close to ∞ . The same applies for then y=0 and you predict something close to 1. On the other hand if you get a prediction equal to the label, you get a cost of 0. In either, case you are trying to minimize $J(\theta)$.

Logistic Regression : Gradient Descent

$$\min_{\theta} J(\theta)$$

$$heta \leftarrow heta - lpha rac{\mathrm{d}}{\mathrm{d} heta} J(heta)$$

$$rac{\mathrm{d}}{\mathrm{d} heta}J(heta) \,=\, (h(x,\, heta)\,-\,y)\,x$$

$$heta \leftarrow heta \, - \, lpha(h(x, \, heta) \, - \, y)x$$

 $\alpha \rightarrow$ learning rate