

Kurs:Mathematik für Anwender/Teil I/18/Klausur mit Lösungen

Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Punkte 3313274342 1 5 0 4 0 3 5 0 5 55

 \equiv Inhaltsverzeichnis \vee

Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

1. Die Gaußklammer einer reellen Zahl \boldsymbol{x} .

- 2. Eine streng fallende Funktion $f: \mathbb{R} \to \mathbb{R}$.
- 3. Eine Reihe $\sum_{k=0}^{\infty} a_k$ von reellen Zahlen a_k .
- 4. Die höheren Ableitungen zu einer Funktion

$$f:\mathbb{R}\longrightarrow\mathbb{R}$$

(rekursive Definition).

5. Die Riemann-Integrierbarkeit einer Funktion

$$f:I\longrightarrow \mathbb{R}$$

auf einem kompakten Intervall $I \subseteq \mathbb{R}$.

6. Eine lineare Abbildung

$$\varphi : V \longrightarrow W$$

zwischen zwei K-Vektorräumen V und W.

Lösung

- 1. Die Gaußklammer $\lfloor x \rfloor$ ist durch $\lfloor x \rfloor = n, \; ext{falls} \; x \in [n,n+1[\; ext{und} \; n \in \mathbb{Z}, \; ext{definiert.}]$
- 2. Die Funktion

$$f:\mathbb{R}\longrightarrow\mathbb{R}$$

heißt streng fallend, wenn

$$f(x') < f(x)$$
 für alle $x, x' \in I$ mit $x' > x$ gilt.

3. Unter der Reihe $\sum_{k=0}^{\infty} a_k$ versteht man die Folge $(s_n)_{n\in\mathbb{N}}$ der Partialsummen

$$s_n = \sum_{k=0}^n a_k$$
 .

4. Die Funktion f heißt n-mal differenzierbar, wenn sie (n-1)-mal differenzierbar ist und die (n-1)-te Ableitung, also $f^{(n-1)}$, differenzierbar ist. Die Ableitung

$$f^{(n)}(x) := (f^{(n-1)})'(x)$$

nennt man dann die n-te Ableitung von f.

- 5. Die Funktion f heißt Riemann-integrierbar auf I, wenn Ober- und Unterintegral von f existieren und übereinstimmen.
- 6. Eine Abbildung

$$\varphi : V \longrightarrow W$$

heißt lineare Abbildung, wenn die beiden folgenden Eigenschaften erfüllt sind.

- 1. arphi(u+v)=arphi(u)+arphi(v) für alle $u,v\in V$.
- 2. arphi(sv) = sarphi(v) für alle $s \in K$ und $v \in V$.

Aufgabe (3 Punkte)

Formuliere die folgenden Sätze.

- 1. Die Summenregel für reelle Folgen.
- 2. Die Produktregel für differenzierbare Funktionen

$$f,g:\mathbb{R}\longrightarrow\mathbb{R}.$$

3. Der Satz über den Zusammenhang zwischen der Verknüpfung linearer Abbildungen und der Matrizenmultiplikation (genaue Formulierung mit Basen).

Lösung

- 1. Es seien $(x_n)_{n\in\mathbb{N}}$ und $(y_n)_{n\in\mathbb{N}}$ konvergente Folgen in \mathbb{R} . Dann ist die Folge $(x_n+y_n)_{n\in\mathbb{N}}$ ebenfalls konvergent und es gilt $\lim_{n\to\infty}(x_n+y_n)=\left(\lim_{n\to\infty}x_n\right)+\left(\lim_{n\to\infty}y_n\right)$.
- 2. Das Produkt $f \cdot g$ ist ebenfalls differenzierbar und es gilt $(f \cdot g)' = f'g + fg'$.
- 3. Bei der Korrespondenz zwischen linearen Abbildungen und Matrizen entsprechen sich die Hintereinanderschaltung von linearen Abbildungen und die Matrizenmultiplikation. Damit ist folgendes gemeint: es seien U,V,W Vektorräume über einem Körper K mit Basen

$$\mathfrak{u}=u_1,\ldots,u_p,\,\mathfrak{v}=v_1,\ldots,v_n \text{ und } \mathfrak{w}=w_1,\ldots,w_m.$$

Es seien

$$\psi: U \longrightarrow V ext{ und } arphi: V \longrightarrow W$$

lineare Abbildungen. Dann gilt für die beschreibenden Matrizen von $\psi,\, \varphi$ und der Hintereinanderschaltung $\varphi\circ\psi$ die Beziehung

$$M^{\mathfrak{u}}_{\mathfrak{w}}(\varphi \circ \psi) = (M^{\mathfrak{v}}_{\mathfrak{w}}(\varphi)) \circ (M^{\mathfrak{u}}_{\mathfrak{v}}(\psi)).$$

Aufgabe (1 Punkt)

Wir betrachten den Satz "Lucy Sonnenschein tanzt auf allen Hochzeiten". Negiere diesen Satz durch eine Existenzaussage.

Lösung

Es gibt eine Hochzeit, auf der Lucy Sonnenschein nicht tanzt.

Aufgabe (3 Punkte)

Die Zahlen

$$n, n-1, n-2, \ldots, 3, 2, 1$$

werden abwechselnd mit einem oder keinem Minuszeichen versehen, wobei n kein Minuszeichen bekommt. Was ist die Summe dieser Zahlen?

Lösung

Zwei in einer solchen Reihe aufeinanderfolgende Zahlen ergeben

$$k+-(k-1)=k-k+1=1$$
.

Ein solches Paar trägt also mit 1 zur Gesamtsumme bei. Wenn n gerade ist, so gibt es n/2 solche Paare und die Gesamtsumme ist n/2. Wenn n ungerade ist, so gibt es $\frac{n-1}{2}$ solche Paare sowie die letzte alleinstehende Zahl 1, die positiv eingeht. Also ist die Gesamtsumme in diesem Fall gleich

$$\frac{n-1}{2} + 1 = \frac{n+1}{2}$$
.

Aufgabe (2 (1+1) Punkte)

1. Zeige, dass für positve reelle Zahlen $oldsymbol{a}, oldsymbol{b}$ die Abschätzung

$$\frac{1}{|a+b|} \leq \max\left(\frac{1}{|a|}, \frac{1}{|b|}\right)$$

gilt.

2. Zeige, dass es reelle Zahlen a,b mit a,b,a+b
eq 0 und mit

$$\frac{1}{|a+b|} > \max\left(\frac{1}{|a|}, \frac{1}{|b|}\right)$$

gibt.

Lösung

1. Im positiven Fall ist auch a+b>0 und somit kann man überall die Betragsstriche weglassen. Es ist a+b>a und somit ist

$$\frac{1}{a+b} < \frac{1}{a} \leq \max\left(\frac{1}{a}, \frac{1}{b}\right).$$

2. Es sei a=3 und b=-2. Dann ist a+b=1 und somit steht links $\frac{1}{1}=1$ und rechts das Maximum aus $\frac{1}{3}$ und $\frac{1}{2}$, also $\frac{1}{2}$.

Aufgabe (7 Punkte)

Beweise die Division mit Rest im Polynomring K[X] über einem Körper K.

Lösung

Wir beweisen die Existenzaussage durch Induktion über den Grad von P. Wenn der Grad von T größer als der Grad von P ist, so ist Q=0 und R=P eine Lösung, so dass wir dies nicht weiter betrachten müssen. Bei $\operatorname{grad}(P)=0$ ist nach der Vorbemerkung auch $\operatorname{grad}(TP)=0$, also ist T ein konstantes Polynom, und damit ist (da $T\neq 0$ und K ein Körper ist) Q=P/T und R=0 eine Lösung. Sei nun $\operatorname{grad}(P)=n$ und die Aussage für kleineren Grad schon bewiesen. Wir schreiben

$$P=a_nX^n+\cdots+a_1X+a_0$$
 und $T=b_kX^k+\cdots+b_1X+b_0$ mit $a_n,b_k
eq 0,\ k\leq n$. Dann gilt mit $H=rac{a_n}{b_k}X^{n-k}$ die

Beziehung

$$P':=P-TH \ = 0X^n+igg(a_{n-1}-rac{a_n}{b_k}b_{k-1}igg)X^{n-1}+\cdots+igg(a_{n-k}-rac{a_n}{b_k}b_0igg)X^{n-k}+a_{n-k-1}X^{n-k-1}+\cdots+a_0.$$

Dieses Polynom P' hat einen Grad kleiner als n und darauf können wir die Induktionsvoraussetzung anwenden, d.h. es gibt Q' und R' mit

$$P' = TQ' + R' ext{ mit } \operatorname{grad}(R') < \operatorname{grad}(T) \operatorname{oder} R' = 0.$$

Daraus ergibt sich insgesamt

$$P = P' + TH = TQ' + TH + R' = T(Q' + H) + R'$$

so dass also Q=Q'+H und R=R' eine Lösung ist. Zur Eindeutigkeit sei P=TQ+R=TQ'+R' mit den angegebenen Bedingungen. Dann ist T(Q-Q')=R'-R. Da die Differenz R'-R einen Grad kleiner als $\operatorname{grad}(T)$ besitzt, ist aufgrund der Gradeigenschaften diese Gleichung nur bei R=R' und Q=Q' lösbar.

Aufgabe (4 Punkte)

Zeige unter Verwendung der Bernoullischen Ungleichung, dass die Folge

$$x_n = \left(1 + rac{1}{n}
ight)^n$$

wachsend ist.

Lösung

Aufgrund der Bernoulli-Ungleichung gilt

$$\left(1-rac{1}{n^2}
ight)^n \geq 1-nrac{1}{n^2} = 1-rac{1}{n}\,.$$

Dies schreiben wir als

$$rac{n-1}{n} \leq \left(rac{n^2-1}{n^2}
ight)^n = \left(rac{n+1}{n} \cdot rac{n-1}{n}
ight)^n = \left(rac{n+1}{n}
ight)^n \left(rac{n-1}{n}
ight)^n.$$

Daraus ergibt sich durch beidseitige Multiplikation mit $\left(rac{n}{n-1}
ight)^n$ (es sei $n\geq 2$) die Abschätzung

$$a_{n-1} = \left(rac{n}{n-1}
ight)^{n-1} \leq \left(rac{n+1}{n}
ight)^n = a_n \,.$$

Aufgabe (3 Punkte)

Es seien x und y zwei nichtnegative reelle Zahlen. Zeige, dass das arithmetische Mittel der beiden Zahlen mindestens so groß wie ihr geometrisches Mittel ist.

Lösung

Wir wollen

$$rac{x+y}{2} \geq \sqrt{xy}$$

zeigen. Durch Quadrieren ist dies äquivalent zu

$$rac{x^2+2xy+y^2}{4} \geq xy$$

bzw. zu

$$\frac{x^2-2xy+y^2}{4}\geq 0.$$

Wegen

$$\left(rac{x-y}{2}
ight)^2=rac{x^2-2xy+y^2}{4}$$

ist dies in der Tat wahr.

Aufgabe (4 Punkte)

Es sei $(x_n)_{n\in\mathbb{N}}$ eine reelle konvergente Folge mit $x_n\neq 0$ für alle $n\in\mathbb{N}$ und $\lim_{n\to\infty}x_n=x\neq 0$. Zeige, dass $\left(\frac{1}{x_n}\right)_{n\in\mathbb{N}}$ ebenfalls konvergent mit

$$\lim_{n o\infty}rac{1}{x_n}=rac{1}{x}$$

ist.

Lösung

Da der Limes der Folge $(x_n)_{n\in\mathbb{N}}$ nicht 0 ist, gilt für $n\geq N_1$ die Bedingung $|x_n|\geq \frac{|x|}{2}$ und damit $\frac{1}{|x_n|}\leq \frac{2}{|x|}$. Sei $\epsilon>0$ vorgegeben. Wegen der Konvergenz von $(x_n)_{n\in\mathbb{N}}$ gibt es ein N_2 mit

$$|x_n-x| \leq rac{\epsilon |x|^2}{2} ext{ f\"ur alle } n \geq N_2.$$

Dann gilt für alle $n \geq N := \max\{N_1, N_2\}$ die Abschätzung

$$|rac{1}{x_n} - rac{1}{x}| = |rac{x_n - x}{xx_n}| = rac{1}{|x||x_n|}|x_n - x| \leq rac{2}{|x|^2} \cdot rac{\epsilon |x|^2}{2} = \epsilon \, .$$

Aufgabe (2 Punkte)

Bestimme die Schnittpunkte des Einheitskreises E mit dem Kreis K, der den Mittelpunkt (1,0) und den Radius 2 besitzt.

Lösung

Der Einheitskreis ist die Lösungsmenge der Gleichung

$$x^2 + y^2 = 1$$

und $oldsymbol{K}$ ist die Lösungsmenge der Gleichung

$$(x-1)^2 + y^2 = x^2 - 2x + 1 + y^2 = 4$$
.

Wenn man von der zweiten Gleichung die erste abzieht, so erhält man

$$-2x+1=3$$
,

also

$$x = -1$$
.

Aus der Einheitskreisgleichung folgt daraus, dass

$$y = 0$$

sein muss. Der einzige Schnittpunkt ist also (-1,0) (der in der Tat ein Schnittpunkt ist).

Aufgabe (1 Punkt)

Bestimme die Ableitung der Funktion

$$\mathbb{R}_+ \longrightarrow \mathbb{R}_+, \, x \longmapsto f(x) = \pi^x + x^e.$$

Lösung

Es ist

$$f'(x) = \ln(\pi) \cdot \pi^x + ex^{e-1}$$
.

Aufgabe (5 Punkte)

Wir betrachten eine Funktion $f \colon \mathbb{R} o \mathbb{R}$ der Form

$$f(x) = g(x)\sin x + h(x)\cos x,$$

wobei g und h lineare Polynome seien. Zeige durch Induktion, dass für die Ableitungen ($n \geq 0$) die Beziehung

$$f^{(n)}(x) = egin{cases} (-1)^{n/2} ((g(x) + nh'(x)) \sin x + (-ng'(x) + h(x)) \cos x) & ext{für } n ext{ gerade}, \ (-1)^{(n-1)/2} ((ng'(x) - h(x)) \sin x + (g(x) + nh'(x)) \cos x) & ext{für } n ext{ ungerade}, \end{cases}$$

gilt.

Lösung

Zum Induktionsanfang betrachten wir n=0, es geht also um die Funktion selbst. Wegen

$$f(x) = g(x)\sin x + h(x)\cos x = (-1)^0((g(x) + 0h'(x))\sin x + (-0g'(x) + h(x))\cos x)$$

ist die Formel für n=0 gerade richtig.

Wir beweisen nun nun die Formel für n+1 unter der Induktionsvoraussetzung, dass sie für alle kleinere Zahlen richtig ist. Sei zunächst n+1 ungerade, also n gerade. Dann ist (unter Verwendung der Tatsache, dass die zweiten Ableitungen von g und h gleich 0 sind)

$$egin{aligned} f^{(n+1)}(x) &= \left(f^{(n)}
ight)'(x) \ &= (-1)^{n/2}((g(x)+nh'(x))\sin x + (-ng'(x)+h(x))\cos x)' \ &= (-1)^{n/2}(g'(x)\sin x + (g(x)+nh'(x))\cos x + h'(x)\cos x - (-ng'(x)+h(x))\sin x) \ &= (-1)^{n/2}((g'(x)+ng'(x)-h(x))\sin x + (g(x)+nh'(x)+h'(x))\cos x) \ &= (-1)^{((n+1)-1)/2}(((n+1)g'(x)-h(x))\sin x + (g(x)+(n+1)h'(x))\cos x), \end{aligned}$$

so dass der Ausdruck für n+1 ungerade vorliegt.

Bei n+1 gerade, also n ungerade, ist

$$\begin{split} f^{(n+1)}(x) &= \left(f^{(n)}\right)'(x) \\ &= (-1)^{(n-1)/2} ((ng'(x) - h(x)) \sin x + (g(x) + nh'(x)) \cos x)' \\ &= (-1)^{(n-1)/2} (-h'(x) \sin x + (ng'(x) - h(x)) \cos x + g'(x) \cos x - (g(x) + nh'(x)) \sin x) \\ &= (-1)^{(n-1)/2} ((-g(x) - (n+1)h'(x)) \sin x + ((n+1)g'(x) - h(x)) \cos x) \\ &= (-1)^{(n-1)/2} (-1) ((g(x) + (n+1)h'(x)) \sin x + (-(n+1)g'(x) + h(x)) \cos x) \\ &= (-1)^{(n+1)/2} ((g(x) + (n+1)h'(x)) \sin x + (-(n+1)g'(x) + h(x)) \cos x), \end{split}$$

so dass der Ausdruck für n+1 gerade vorliegt.

Aufgabe (0 Punkte)

Lösung /Aufgabe/Lösung

Aufgabe (4 Punkte)

Bestimme in Abhängigkeit vom Parameter $a\in\mathbb{R}$ den Lösungsraum $L_a\subseteq\mathbb{R}^3$ der linearen Gleichungssystems

$$5x + ay + (1 - a)z = 0,$$

 $2ax + a^2y + 3z = 0.$

Lösung

Bei a=0 wird das Gleichungssystem zu

$$5x + z = 0,$$
$$3z = 0.$$

Also ist

$$x = z = 0$$

und $oldsymbol{y}$ beliebig, somit ist

$$L_0 = \left\{ egin{matrix} yigg(egin{matrix} 0\ 1\ 0 \end{pmatrix} \mid y \in K
ight\}.$$

Sei also a
eq 0. Wir rechnen II - aI und erhalten

$$-3ax + (3 - a(1 - a))z = 0$$

bzw.

$$x=rac{3-a+a^2}{3a}z$$
 .

Die erste Gleichung liefert

$$y = rac{1}{a}(-5x + (a - 1)z)$$
 $= rac{1}{a}\left(-5rac{3 - a + a^2}{3a}z + (a - 1)z
ight)$
 $= rac{1}{3a^2}\left(-5(3 - a + a^2) + 3a(a - 1)\right)z$
 $= rac{1}{3a^2}\left(-2a^2 + 2a - 15\right)z$
 $= rac{-2a^2 + 2a - 15}{3a^2}z.$

Somit ist

$$L_0 = \left\{ z \Bigg(egin{array}{c} rac{3-a+a^2}{3a} \ rac{-2a^2+2a-15}{3a^2} \ 1 \ \end{matrix} ig) \mid z \in K
ight\}.$$

Aufgabe (0 Punkte)

Lösung / Aufgabe / Lösung

Aufgabe (3 (1+1+1) Punkte)

Es sei

$$M = \left(egin{array}{cc} 11 & -20 \ 6 & -11 \end{array}
ight).$$

a) Zeige

$$M^2=E_2$$
 .

- b) Bestimme die inverse Matrix zu M.
- c) Löse die Gleichung

$$M\binom{x}{y} = \binom{4}{-9}$$
.

Lösung

a) Es ist

$$M^2 = egin{pmatrix} 11 & -20 \ 6 & -11 \end{pmatrix} egin{pmatrix} 11 & -20 \ 6 & -11 \end{pmatrix} = egin{pmatrix} 121 - 120 & -220 + 220 \ 66 - 66 & -120 + 121 \end{pmatrix} = egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}.$$

b) Nach Teil a) ist

$$M^2=E_2$$
,

also ist $oldsymbol{M}$ invertierbar und stimmt mit seinem Inversen überein, also

$$M^{-1}=M.$$

c) Wir wenden auf die Gleichung beidseitig die Matrix $oldsymbol{M^{-1}} = oldsymbol{M}$ an und erhalten

$$egin{aligned} egin{pmatrix} x \ y \end{pmatrix} &= M igg(rac{4}{-9} igg) \ &= igg(rac{11}{6} & -20 \ 6 & -11 igg) igg(rac{4}{-9} igg) \ &= igg(rac{44 + 180}{24 + 99} igg) \ &= igg(rac{224}{123} igg). \end{aligned}$$

Aufgabe (5 Punkte)

Es sei V ein zweidimensionaler Vektorraum über einem Körper K. Es seien v_1, v_2, v_3 und w_1, w_2, w_3 Vektoren in V, die jeweils paarweise linear unabhängig seien. Zeige, dass es eine bijektive lineare Abbildung $\varphi: V \to V$ derart gibt, dass

$$arphi(v_i) \in Kw_i$$
 für $i=1,2,3$ gilt.

Lösung

Da v_1,v_2 und w_1,w_2 Basen sind, gibt es nach dem Festlegungsatz eine bijektive lineare Abbildung $\psi\colon V\to V$ mit $\varphi(v_1)=w_1$ und $\varphi(v_2)=w_2$. Unter ψ bleiben die Voraussetzungen über die paarweise lineare Unabhängigkeit erhalten. Daher müssen wir nur noch die Situation von zwei Vektorfamilien der Form v_1,v_2,y und v_1,v_2,z betrachten. Es sei

$$y = av_1 + bv_2$$

und

$$z=cv_1+dv_2.$$

Dabei sind $a,b,c,d\neq 0$, da andernfalls y bzw. z zu einem der v_i linear abhängig wäre. Wir betrachten nun die lineare Abbildung φ , die durch $v_1\mapsto \frac{c}{a}v_1$ und $v_2\mapsto \frac{d}{b}v_2$ gegeben ist. Dann ist

$$egin{aligned} arphi(y) &= arphi(av_1 + bv_2) \ &= aarphi(v_1) + barphi(v_2) \ &= arac{c}{a}v_1 + brac{d}{b}v_2 \ &= cv_1 + bv_2 \ &= z. \end{aligned}$$

Somit erfüllt φ die geforderte Bedingung.

Aufgabe (0 Punkte)

Lösung / Aufgabe / Lösung

Aufgabe (5 Punkte)

Bestimme die Eigenwerte und die Eigenräume der durch die Matrix

$$M = egin{pmatrix} 2 & 0 & 5 \ 0 & -1 & 0 \ 8 & 0 & 5 \end{pmatrix}$$

gegebenen linearen Abbildung

$$arphi \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^3, \, v \longmapsto Mv.$$

Lösung

Das charakteristische Polynom ist

$$egin{aligned} \chi_M &= \det egin{pmatrix} x-2 & 0 & -5 \ 0 & x+1 & 0 \ -8 & 0 & x-5 \end{pmatrix} \ &= (x-2)(x+1)(x-5)-40(x+1) \ &= (x+1)((x-2)(x-5)-40) \ &= (x+1)(x^2-7x-30). \end{aligned}$$

Dies ergibt zunächst den Eigenwert -1. Durch quadratisches Ergänzen (oder direkt) sieht man für den quadratischen Term die Nullstellen -3 und 10, die die weiteren Eigenwerte sind. Da es drei verschiedene Eigenwerte gibt ist klar, dass zu jedem Eigenwert der Eigenraum eindimensional ist.

Eigenraum zu -1: Man muss die Lösungsmenge von

$$\begin{pmatrix} -3 & 0 & -5 \\ 0 & 0 & 0 \\ -8 & 0 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

bestimmen. Eine Lösung ist offenbar der Spaltenvektor $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, so dass der Eigenraum zu -1 gleich $\lambda \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ ist.

Eigenraum zu -3: Man muss die Lösungsmenge von

$$\begin{pmatrix} -5 & 0 & -5 \\ 0 & -2 & 0 \\ -8 & 0 & -8 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

bestimmen. Eine Lösung ist offenbar der Spaltenvektor $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, so dass der Eigenraum zu -3 gleich $\lambda \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ ist.

Eigenraum zu 10: Man muss die Lösungsmenge von

$$\begin{pmatrix} 8 & 0 & -5 \\ 0 & 11 & 0 \\ -8 & 0 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

bestimmen. Eine Lösung ist offenbar der Spaltenvektor $\begin{pmatrix} 5 \\ 0 \\ 8 \end{pmatrix}$, so dass der Eigenraum zu 10 gleich $\lambda \begin{pmatrix} 5 \\ 0 \\ 8 \end{pmatrix}$ ist.

Zuletzt bearbeitet vor 2 Monaten von Marymay0609

Wikiversity

Der Inhalt ist verfügbar unter CC BY-SA 3.0 ☑, sofern nicht anders angegeben.

Datenschutz • Klassische Ansicht