Advanced Methods in Text Analytics Transfer Learning

What is Transfer Learning?

- "Acquiring knowledge from one task or domain, and then applying it (transferring it) to solve a new task." Jurafsky et al. 2025
- Common approach follows two-steps (Howard and Ruder, 2018):
 - 1. Pre-training a model on some tasks that "allows" model to learn rich representations
 - **2. Fine-tuning** the learned representations (weights) in the context of a new downstream application
- Why is it called pre-training?
 - Train model for general use *before* using it on specific applications
- Fine-tuning refers to further updating weights of pre-trained model
 - Downstream task usually implies using a downstream model in combination with the pre-trained model
 - Updating weights may result in "catastrophic forgetting"
- Focus this week: pre-training tasks and architectures
 - Next week: fine-tuning methods and applications

But First, a Word on Tokenization

- Recall introduction lecture: tokenization is important!
 - Should we tokenize words? What are words?
 - Should we tokenize characters? What meaning do they encode?
- Nice sweet spot: tokenize subwords
 - E.g. unlikeliest -> un-likely-est
 - Each a morpheme, i.e. a meaning-bearing unit
- Byte-Pair Encoding (<u>Sennrich et al. 2016</u>): very common subword tokenizer, roughly as follows
 - 1. Starting vocabulary *V* is set of characters
 - 2. Find most common two-character subword, create token for it, add to V
 - 3. Keep finding common and longer subwords until k new tokens are created
- Thus, can handle unknown words by breaking them into characters
 - Variants exist, e.g. <u>WordPiece</u>, <u>SentencePiece</u>
- Tokenization is the focus of an entire future lecture

Outline

1. Pre-Training

- 1. Transformer-based language models
- 2. Masked Language Models
- 3. Causal (or Autoregressive) Language Models

2. Fine-Tuning

Pre-Training

Dr. Daniel Ruffinelli - FSS 2025

Pre-Training Methods

- Take skip-gram as an example of pre-training
 - Goal: learn useful (static) representations
 - **Task:** predict whether two words are likely to be in context
- In other words, the actual goal is not necessarily solving the task
- There are different tasks for pre-training
 - Each a different training objective
 - Multi-task training possible, e.g. objective is linear combination of tasks
- Most common pre-training tasks/approaches
 - Masked Language Models (MLMs)
 - Causal (or Autoregressive) Language Models (CLMs)
- Different task -> usually different architecture and objective
 - MLM: BERT, encoder-only transformer
 - CLM: GPTs, decoder-only transformer
 - Other variants exist, all based on the transformer architecture
- First: transformer-based LMs, then: MLMs and CLMs

Encoder-Only and Decoder-Only

UNIVERSITY OF MANNHEIM School of Business Informatics and Mathematics

- Recall the transformer architecture
 - Encoder-decoder
- Some models use only the encoder
 - Input: tokenized input sequence
 - Output: contextualized input tokens
- Other models use only the decoder
 - Input: start symbol, previous outputs
 - Output: new generated word
- Both can be stacked

Recap: Self-Attention Layer (1)

- **Input:** sequence of *n* tokens
- Output: sequence of n contextualized tokens (here, bidirectional)

- Layer is parameterized by \mathbf{W}^{Q} , \mathbf{W}^{K} and \mathbf{W}^{V}
 - Each a transformation for using tokens as: queries, keys, values
- Thus, same words gets different representations based on context
 - "They broke in tears when they heard they got the new flat."
 - "They broke the world record by 2 seconds flat."

Recap: Self-Attention Layer (2)

- Self-attention can also be causal
 - Token at time step t attends only to previous inputs (< t)

- Input and output still the same as any self-attention layer
 - But "context" of each output embedding is only inputs from previous steps
 - Recall that without positional embeddings, there is no "time"

The Language Modeling Head (1)

- A transformer block/layer typically outputs token representations
 - Transformer block/layer = self-attention + MLP
- Output embeddings are same size as input embeddings
 - Can either be a sequence in encoder-only models
 - Or a single token per time-step in decoder-only models
- How do we turn these outputs into a language model?
 - Each representation fed to a "classification head" (a downstream model)
 - Classification head: softmax *layer* that projects to space of possible classes
 - Language modeling head: projects to vocabulary space
 - I.e. same mechanism used for language modeling with RNNs
- If the task is to predict next word:
 - Feed contextualized representation of input at time step t to LM head to predict word at time step t+1
- Let's visualize this!

The Language Modeling Head (2)

- $h_N^L \in \mathbb{R}^d$ is output embedding of block L at time step N
- Unembedding layer $U \in R^{d \times |V|}$ projects from d to |V| (vocabulary space)
 - Output is logits, used as input to softmax function (no weights)
- Note that U is same size as initial (static) embedding layer $E \in R^{|V| \times d}$
 - Hence, we usually set to be $U = E^T$ (weight tying, Press et al. 2017)
 - Weight tying: use same matrix as E and U, known to improve performance

Transformer-Based LMs

- All together:
 - (Static) input embeddings $E[w_i]$
 - Positional embeddings p; (added)
 - *L* transformer layers (blocks)
 - Language model head
- For each transformer layer/block
 - **Input:** sequence of embeddings of size *d*
 - Output: sequence of embeddings of size d
- For language model head
 - **Input:** single embedding of size *d*
 - Output: probability of each token in vocab. V
- Input to downstream model depends on task
 - E.g. for sequence classification, we need to represent entire input sequence
 - For sequence labelling, each token representation is classified

Masked Language Models

Dr. Daniel Ruffinelli - FSS 2025

Masked Language Models (1)

- Using information about the future in a sequence is often not suitable
 - E.g. in text generation, we use past generated words to generate new ones
 - We don't want to train a model to use information that isn't available at inference time
- But often the entire input sequence is available during inference!
 - E.g. in machine translation we get an entire document to translate
 - In dialogue scenarios, we get entire input from user at each turn
- And looking at subsequent tokens can be useful for certain tasks
 - Tasks that require labeling each sequence element (token-level classification)
 - E.g. part-of-speech tagging (adjectives come before nouns in English)
 - Generally, we obtain richer representations by using more context
- With transformers, we control that in the self-attention layers
 - If we can't look at future tokens: causal self-attention
 - If we can look at future tokens: bidirectional self-attention

Masked Language Models (2)

 Contextualized representations from bidirectional self-attention layers consider context from both sides of each input word

- Masked language modeling: predicting masked words in input sequence
 - Masked words: hidden, usually replaced with [MASK] token
 - Architecture: we use bidirectional transformer encoders to train models to predict masked words in the input sequence
- What exactly does masking mean? The training approach should clarify!

Training Masked Language Models (1)

- Recall training RNNs
 - We predict the next word given previous ones
 - The loss corresponding to each input word is measured against next word in input sequence, final loss is average over all tokens

- Can we do that here?
 - No, bidirectional self-attention looks at next word!
 - Task of predicting next word therefore trivial

Training Masked Language Models (2)

- Instead, cloze task, i.e. fill-in the blank (<u>Taylor, 1953</u>)
 - "Turn ___ homework in."
 - Many examples from same sentence: "Turn your in."

- Loss averaged over masked tokens only, all tokens "attended" to
 - Note: self-supervision, predict parts of input using rest of input
 - More details by discussing quintessential MLM: BERT

The BERT Model (1)

- BERT: Bidirectional Encoder Representations from Transformers
- Seminal work by <u>Devlin et al. 2018</u>
 - A clear success case is transfer learning
 - Revolution: jump in state-of-the-art performance in several NLP tasks
 - Defined masked language modeling as discussed today
- Goal: learn representations of language
 - Not predict masked words, i.e. not the task from training objective
 - Thus, similar to word embeddings, but now using transformers
- Their general architecture:
 - Encoder-only transformer
 - 12 stacked layers of transformer encoders, each with 12 attention heads
 - Hidden layers of size 728
 - Max input length: 512 tokens (recall: attention cost quadratic in this length)
- Overall: 100M parameters

The BERT Model (2)

- Pre-training -> Fine-tuning framework
 - Pre-training designed to include both token level and sentence level tasks
 - Fine-tuning required minimal changes to pre-training architecture
- Let's discuss some of these important design choices

Pre-Training BERT (1)

UNIVERSITY
OF MANNHEIM
School of Business Informatics
and Mathematics

- Two level representations
 - Both in same input sequence
- Token level
 - E_i inputs, T_i outputs
- Sentence level
 - [CLS], [SEP] inputs
 - **C**, **T**_[SEP] outputs
- Thus, model "aware" of sentence pairs
 - Useful for downstream tasks
 - E.g. (question, answer) pairs
- [CLS] token meant for sequence classification
 - Final representation C used as sequence representation
- [SEP] token separates two input sentences

Pre-Training BERT (2)

- They (pre-)trained with two self-supervised tasks
 - 1. Masked language modeling (MLM), i.e. fill-in the blank
 - 2. Next sentence prediction (NSP), e.g. for QA, natural language inference

For MLM training objective:

- Replaced 15% of input tokens in training corpus
 - 80% of that time replaced with [MASK] token
 - 10% of that time replaced with another random token
 - 10% left unchanged
- Output token T_i fed to softmax for classification, original word as target
- Why all of this? Because [MASK] token never seen at inference time!
 - So, model does should not rely on this signal to make such predictions

For next sentence prediction objective:

- Binary classification: next sentence or not? ([CLS] token to softmax layer)
- 50% of examples were subsequent sentences in training corpus (positives)
- 50% of examples had 2nd sentence be a randomly chosen one (negatives)

Pre-Training BERT (3)

- Final loss: combined loss of both MLM and NSP training objectives
- Training corpus
 - BooksCorpus: 800M words
 - English Wikipedia: 2.5B words
 - (Much less data than used for training large language models today)
- **Important:** training data must be full documents, not shuffled sentences (often a valid approach)
 - Why?
- Tokenization: <u>WordPiece</u> subword embeddings
 - Vocabulary size: 30K
 - Recall: subwords is nice balance between words and characters
- It took 40 epochs to converge model during training
 - With the hardware at the time (64 Google TPUs), that was 4 days

Fine-Tuning BERT (1)

UNIVERSITY
OF MANNHEIM
School of Business Informatics
and Mathematics

- Straightforward: representations computed by BERT used as input for downstream model
 - Note: requires using entire model, not just its weights as word2vec
- Can handle tasks where input is single sequence, e.g. sequence labeling (NER) and sequence classification, or pairs of sequences, e.g. QA (SQuAD) or NLI (MNLI)
- Given input data, e.g. sequence to classify:
 - Sequence fed as input to BERT
 - BERT output passed to classification head (each token for sequence labeling, CLS token for sequence classification)
- Let's visualize this!

Fine-Tuning BERT (2)

- Here's an example for sequence labeling, i.e. we classify each token h_i^L
 - Downstream model is linear projection W_C to classification space C
 - During fine-tuning, W_C + all model parameters were updated
 - Fine-tuning model often took 1 hour (doable compared to pre-training)
- For sequence classification task, CLS token used as downstream input

Variations of BERT (1)

- BERT's architecture was highly influential
 - Spawned several variants of the original model
- RoBERTa (<u>Liu et al. 2019</u>)
 - More than a variant, the result of a reproduction study
 - They reimplemented, retrained, did more ablation
 - Proposed changes such as:
 - (1) **Dynamic masking**, i.e. sampling tokens for masking for each input sequence during training (as opposed to once before entire training run)
 - (2) Training without NSP loss (no more sentence pairs)
- SpanBERT (Joshi et al. 2020)
 - Masked entire subsequences instead of individual tokens (i.e. a span)
 - Marked masked span with special tokens (start-of-span, end-of-span)
 - Model trained on additional objective Span Boundary Objective (SBO)
 - They outperformed BERT in span-based tasks, e.g. span-based QA
 - This model was concurrent with RoBERTa

Variations of BERT (2)

- Sentence-BERT (<u>Reimers et al. 2019</u>): better sentence embeddings
- Siamese network architecture (here, two BERTs with shared weights)
 - Pooling BERT output vectors (MEAN/MAX) to get sentence embedding
 - Training (left): Feed sentence vectors to classification/regression head
 - **Inference** (right): for regression, cosine similarity between sentences

Results: better sentence embeddings vs [CLS] token, other methods

Causal Language Models

Dr. Daniel Ruffinelli - FSS 2025

Autoregressive Text Generation

- Recall autoregressive generation: word generated at each time-step is conditioned on word generated at previous time-step
- Concrete steps:
 - 1. Feed starting symbol <s>, model produces softmax distribution over vocabulary
 - 2. Sample next word w_i from softmax distribution (using some sampling method)
 - 3. Add sampled word to previous input sequence, i.e. " $\langle s \rangle w_i$ ", feed to model
 - 4. Model produces new softmax distribution, sample next word w_{i+1} again
 - 5. Repeat steps 3-4 with latest sampled word until symbol </s> is sampled
- Sampling methods important part of generation, as seen in tutorials
 - Greedy decoding: sample most probable word
 - **Top-k:** sample from top *k* words
 - **Top-p:** sample from words that make up top *p* probability mass
- More involved sampling methods exist
 - Before we look at causal language models, let's have a quick look at a very common and less simple sampling method in more detail

Beam Search (1)

- Say we have a pre-trained LM that can produce distributions for next word prediction
- Assume further our vocabulary is V = {yes, ok, </s>}
- In the following example, the most probable sequence is "ok ok </s>"
 - But greedy sampling would fail to predict it, it would first choose "yes"

$$p(t_3|t_1,t_2)$$

Beam Search (2)

- The previous example illustrates that when we want the most probable sequence, shortsighted approaches may not be suitable
 - Shortsighted: only considering the probability of the next word
- Beam Search:
 - Iteratively sample top k most probable words (i.e. also greedy)
 - The score of each possible word is based on the probabilities of the previously sampled words, i.e. consider the probability of the sequence
- Score of sequence of y_i words given some input x, e.g. in translation, is:

$$score(y) = \log P(y|x)$$

$$= \log (P(y_1|x)P(y_2|y_1,x)P(y_3|y_1,y_2,x)...P(y_t|y_1,...,y_{t-1},x))$$

$$= \sum_{i=1}^{t} \log P(y_i|y_1,...,y_{i-1},x)$$

We normalize by sequence length to avoid favoring shorter sequences:

$$score(y) = log P(y|x) = \frac{1}{t} \sum_{i=1}^{t} log P(y_i|y_1, ..., y_{i-1}, x)$$

Beam Search (3)

- At each time step:
 - 1. Select top k probably words from distribution over vocabulary
 - 2. Predict next word with each of the k top words, i.e. k x V probabilities
 - 3. Each next word is scored by its probability times the probability of its path
 - 4. We pick the top k most probable paths, and continue the process

Beam Search (4)

- Beam search is widely used in text-generation applications:
 - E.g. machine translation, summarization
 - Generally applications where we compare different output sequences
- However, it has shortcomings
 - Cost intensive
 - Size of beam, i.e. value of k, still greedy, can miss better solutions
 - Sampled sequences often similar to one another (<u>Li and Jurafsky, 2016</u>)
- Variants have been proposed, e.g. diverse beam search
 - Divides sampled sequences into different sampling groups
 - Promotes diversity between sequences in different sampling groups
- Still, beam search remains a very common sampling method

Causal Language Models

- Causal language modeling: given sequence of words, predict next word
 - Context window/prompt: given input sequence words
 - Architecture: we use causal self-attention in transformers (only look back)

- Text autoregressively generated with CLMs generally based on:
 - Model predictions, i.e. softmax over V
 - Size of context window (quadratic cost in self-attention using transformers)
 - Sampling strategy/heuristic (beam search a common one)
- Let's see how to train a CLM using transformers.
 - Then we'll go over some seminal transformer-based CLMs

Training Causal Language Models

- Teacher forcing does apply here:
 - Construct training sequences from given corpus in self-supervised manner
 - Given sequence, force each subsequence as input, next word as target
 - Compute loss between model's prediction and target word
 - Average loss over all predictions in given sequence
 - Note: computing loss for each word is independent, parallelizable

Generative Pre-Trained Transformer

- That is what GPT stands for (Radford et al. 2018)
- Published at time when pre-training & fine-tuning framework was new
 - Unclear what tasks to pre-train on
 - Unclear how to use learned representations in downstream models
 - Some of this still unclear, but pragmatic success with some architectures,
 e.g. BERT, GPT
- GPT: autoregressive language modeling is a useful pre-training task
- Goal: "...learn universal representations that transfer with little adaptation to a wide range of tasks."
 - So, transfer learning, important to avoid task-specific customization
- Two-step process:
 - Pre-train on large corpus in self-supervised manner
 - Fine-tune model on downstream tasks in supervised manner
 - Supervised downstream tasks need not be related to pre-training corpus (again, transfer learning)

GPT Architecture, Training, Fine-Tuning

- Their general architecture (117M parameters):
 - **Decoder-only** transformer (i.e. no self-attention layer attending to encoder)
 - 12 layers of transformer decoders, each with 12 attention heads
 - Hidden layers of size 728, position-independent MLP of size 3072
 - Max input length: 512 tokens (attention cost quadratic in this length)
- So, architecture **quite similar to BERT**, except decoder-only
 - In fact, BERT heavily borrowed from GPT, as claimed by the BERT authors

Pre-Training

- Self-supervised causal language modeling on BooksCorpus
- Tokenization: byte pair encoding (vocabulary size: 40K)

Fine-tuning

- Task inputs fed to pre-trained model to produce final representation $\mathbf{h}^{L}_{N,}$ i.e. representation of token N in layer L, \mathbf{h}^{L}_{N} then fed to classification head
- They fine-tuned all parameters using the classification objective + the CLM objective

GPT Variants

- GPT-2 (Radford et al. 2019): mostly same architecture as GPT-1
 - Moved around/added more layer normalization (more in LLMs lecture)
 - Initialized weights passed by residual layers (scaled them down)
 - Vocabulary expanded to 50K
 - Context window expanded from 512 to 1024 (again, quadratic cost)
 - Largest variant: **1.5B parameters**
 - Their language model was able to do NLP tasks such as QA, machine translation and summarization without training/tuning for it (zero-shot)
- **GPT-3** (<u>Brown et al. 2020</u>): same as GPT-2
 - Used <u>sparse attention</u>, cost from $O(n^2)$ to $O(n\sqrt{n})$ where n is input length
 - Corpus: Common Crawl dataset (1 trillion words)
 - Largest variant: 175B parameters
 - Achieved great performance in few-shot tasks described in prompts
- We'll discuss these zero-shot/few-shot settings in future LLMs lecture.

Other Transformer-Based Models

- T5 (Raffel et al. 2020): explored different training objectives, datasets
 - **Encoder-decoder** architecture, so cross attention from decoder to encoder!
 - They cast all tasks as text-to-text for this purpose, e.g. stsb is sentence similarity, model trained to generate one of possible classes

- **Electra** (<u>Clark et al. 2020</u>): **different task**, predict whether word was replaced randomly or not, so binary classification, not masking
 - More efficient training, competitive with larger models on some datasets

Which Architecture is Best?

- No golden rule
 - Encoder-decoder better?
 - Encoder-only?
 - Decoder-only?
- What about all other design decisions?
 - Which positional encodings?
 - Which tokenization approach?
- Generally unclear
 - Pragmatic evidence exists, e.g. studies like RoBERTa, T5
 - But results change as training/models/data change or scale up

The BERT Legacy

- Large language models (LLMs) currently hugely successful
 - They are almost exclusively transformer-based decoder-only models
 - I.e. they generate tokens one step at a time
- However, for many applications, encoder-only models are arguably more suitable
 - E.g. classification tasks where input is token/sequence representation, retrieval where input is query/document representation
 - Evidence of this: BERT-like models are some of the most popular models in <u>HuggingFace Hub</u> (vast repository of pre-trained models)
- Recently, BERT has received a "modern touch"
 - Mostly an update after all the lessons from pre-training decoder-only LLMs
- ModernBERT (2024): introduces improvements mostly for speed
 - E.g. different positional embeddings, <u>alternating attention</u> (not all layers attend to entire input sequence)
- NeoBERT (2025): concurrent with ModernBERT, similar improvements

Summary: Pre-Training

- Transfer learning:
 - 1. **Pre-training:** train model on some task(s) that "allows" model to learn rich representations, usually from large amounts of text. Representations then useful in downstream applications
 - 2. Fine-tuning: update learned representations (weights) in context of new downstream application, usually using new downstream model/component, e.g. a classification head
 - Pre-training now mostly done with transformer-based models
 - Different kinds of pre-training objectives, two dominant ones
 - Masked language modeling (MLM)
 - Causal language modeling (CLM)
 - Different kinds of architectures
 - **Encoder-only**, typically used for training MLMs
 - Decoder-only, typically used for training CLMs
 - Encoder-decoder, cross-attention (decoder also attends to encoder outputs)

Fine-Tuning

Dr. Daniel Ruffinelli - FSS 2025

What is Fine-Tuning?

- Traditionally, updating weights of pre-trained model when training on new downstream task
 - Resulting contextualized representations tuned to the new task
 - New = not used/seen during pre-training
- Downstream task usually implies additional downstream model
 - Downstream model usually comes with its separate weights
 - These weights *must be trained* (e.g. **classification head** in image below)

Image source

To Update or Not to Update (1)

- Updating pre-trained weights may result in "catastrophic forgetting"
 - Encoded information during pre-training lost/replaced

All model parameters are trainable

- Pre-training can be very expensive
 - E.g. META AI's <u>Llama3</u> CLM (400B parameters) trained with 16.000 GPUs
 - Catastrophic forgetting can potentially undo some/much of that effort
 - Understanding how specific knowledge is stored in weights is open question

To Update or Not to Update (2)

- "Freezing" (some or all) pre-trained weights means not updating them
 - Still referred to as fine-tuning, because we use a downstream model

- Definition unclear, so relevant questions when discussing fine-tuning:
 - Freezing or not freezing weights? Same or different training objective?
 - Which downstream model? How does it interact with pre-trained model?
 - How are downstream examples constructed/fed to model?
- This section: downstream tasks, basic/parameter efficient fine-tuning

Types of Downstream Tasks

- Two main types:
 - **Sequence classification:** predict label for entire input sequence
 - Sequence labeling: predict label for each input token
- In each case, we need to:
 - 1. Get general information encoded in pre-trained model
 - 2. Use this information with downstream model designed for downstream application

1. How to get information encoded in pre-trained model?

- Depends on downstream task
- Generally, we use some of the representations in the model, e.g. tokens in any (usually last) encoder layers
- No golden rules, open question is what each layer encodes, usability for different tasks, e.g. multilingual transformers

2. How to use pre-trained information with downstream models?

Again, depends on application (let's see some cases)

Sequence Classification (1)

- Example: Say we are interested in sentiment classification
 - Three labels: positive, negative, neutral
- We have:
 - A good mount of input sequences and corresponding sentiment labels
 - A pre-trained transformer LM
- How can we use these resources to solve this task?
 - In other words, how do we use this pre-trained model to solve this task?
 - Is it clear why we think this is a good idea in the first place?
- Usually: we get single sentence representation from model
 - Then feed this representation to a classifier that predicts 1 of three possible labels.
 - Downstream classifier usually referred to as classification head
- How can we get a sentence representation?
 - And what types of architecture can our classifier head have?

Sequence Classification (2)

- How to get a sentence representation from our transformer?
 - [CLS] token if available, e.g. in BERT
 - Mean pooling over (contextualized) output tokens (as in T5)
- What types of architectures can we use for our classifier head?
 - No general restrictions
 - Simple/common approach? Softmax layer (linear layer + softmax function)
- In the case of our sentiment classification task
 - Let $\mathbf{y} \in \mathbf{R}^d$ be the sentence embedding we use, e.g. CLS token
 - Then, our classifier is $\mathbf{y}_{CLS} = Softmax(\mathbf{W}_C \mathbf{y})$, parameterized by $\mathbf{W}_C \in \mathbf{R}^{3xd}$
- But the classifier can be move involved
 - E.g. fully-connected FNN with as many layers/architecture you want
 - As usual, the more parameters, the more data required for training
- Let's visualize this!

Sequence Classification (3)

- We assume an architecture where [CLS] token is available
 - Recall: we need labeled data for our task to train W_c (not pre-trained), i.e. no more self-supervision, but loss is still typically cross entropy

Pair-Wise Sequence Classification

- Some problems involve classifying two sentences
 - Logical entailment: does one sentence entail the other?
 - Paraphrase detection: is one sentence paraphrasing the other?
- Common such task: natural language inference (NLI)
 - Given two sentences, identify relation between the two
 - E.g. entails, contradicts, neutral
- How can we fine-tune a pre-trained transformer for NLI?
 - Feed single representation for entire input sequence to classifier head
 - Input sequence includes pair of sentences, [SEP] token
 - Any other way?
- Again, no golden rules!
 - E.g. feed each sentence separately, concatenate representations for classifier input
 - Different approaches may have different impact on pre-trained weights during fine-tuning

Sequence Labeling

- Example: Say we are interested in part-of-speech (POS) tagging
 - Each input token gets **one of** *k* **labels**, e.g. verb, noun, modifier, etc.
- How do we fine-tune a classifier for this approach?
 - Classifier head fed each output token for prediction, i.e. $y_i = Softmax(W_K z_i)$ where z_i is contextualized representation of token i

Dr. Daniel Ruffinelli - FSS 2025

How Feasible is Fine-Tuning?

- Pre-training a (large) language model is expensive
 - BERT (2018) had 100M parameters, LLMs today in the billions/trillions
- Is fine-tuning LMs less costly than pre-training?
 - Not necessarily, still tuning the entire pre-trained model
 - E.g. fine-tuning with same objective -> continued pre-training
 - Store copy of tuned model for each task you tune it for!
 - But, usually requires less time/data due to pre-trained "bootstrap"
- Do you need to fine-tune entire pre-trained LM?
 - Perhaps just train a few layers, perhaps the last layers only?
 - Recall concept of hierarchical representations
 - We can choose what to freeze!
- That is the basic idea behind parameter efficient fine-tuning (PEFT)
 - This name used in NLP community, relatively new
 - Similar approaches already used in Computer Vision before that

Parameter Efficient Fine-Tuning

- What if you have small amount of data?
 - Or **not enough compute power** to continue training a large transformer
 - Lots of weights -> lots of data for training, lots of compute power
- PEFT: fine-tune small subset of pre-trained weights
- Advantages
 - Requires less data, compute power
 - Less prone to overfitting to whatever data you have
- Disadvantages
 - Usually worse performance than standard fine-tuning
- Different approaches suggested in recent years
 - Let's go over some of the most popular ones

Adapters (1)

- Used by <u>Rebuffi et al.</u> for computer vision tasks in 2017
- Houlsby et al. (2019) proposed it in NLP, applied it to transformers
- Main idea: insert adapter modules in transformer block, tune adapter weights only during fine-tuning
- Adapter layer: tunable layer added to transformer block, originally two, one after self-attention layer and another after projection layer

Adapters (2)

- Adapter layer should not have many parameters
 - Thus, easier/less expensive to tune
 - Originally, between 0.5 and 8% of pre-trained model
- Components in adapter layer
 - Projection layer down to bottleneck dimension m
 - Non-linearity
 - Projection up to original input size d
- # parameters: 2md + m + d
 - Two projections + output biases
- Bottleneck size: controls trade-off between model performance and parameter efficiency

Adapters (3)

- Important: initialization should result in (close to) identity function
 - Why?
- Training needs to continue in fine-tuning process
 - We start with a working forward pass!
 - Random init would break that function!
- Residual connection inside adapter layer serves this purpose
 - Initialize adapter weights to zero
 - Then you get identity
- Recall residual connections add input back to output
 - Let y = f(x) be the operator.
 - With residual connection, y = f(x) + x
 - Thus operator is identity if f(x) = 0

Adapters (4)

UNIVERSITY
OF MANNHEIM
School of Business Informatics
and Mathematics

- Other architectures possible
- <u>Bapna et al. (2019)</u> use only single adapter layer after projection layer
- <u>Pffeifer et al. (2021)</u> proposed to combine several task-specific adapters
 - Task-specific adapters combined with attention mechanism
 - Allows classifier to use information from several different tasks in non-destructive manner
 - No catastrophic forgetting compared to fine-tuning same adapter on new task

Low-Rank Adaptation (1)

- LoRA: Low-rank adaptation (<u>Hu et al. 2021</u>)
- Similar to adapters, adds trainable modules to transformer block
- Specifically, two projection layers
 parallel to projection layer in
 transformer
- Perspective: updated weight W'during fine-tuning is $W' = W_O + \Delta W_O$
 - Simulate this effect by freezing W_O , adding parallel projections AB
 - Thus, $W' = W_O + AB$
- \boldsymbol{A} projects down to small size Thus, \boldsymbol{AB} is low-rank factorization of $\Delta \boldsymbol{W}_O$
- As with adapters, initialization must be identity
 - They achieve this by setting B = 0, so that AB = 0

Low-Rank Adaptation (2)

UNIVERSITY
OF MANNHEIM
School of Business Informatics
and Mathematics

- Downside to all adapters in general?
 - (Slightly) higher inference costs
 - We add more parameters!
- LoRA designed to prevent this
 - Once adapter is learned, original
 W_O can be updated by merging back AB
 - That is, final weight $W = W_O + AB$
 - Thus, no additional inference costs
 - But catastrophic forgetting possible
- Generally, adapters have trade-offs
 - CON: increased inference cost
 - PRO: prevent catastrophic forgetting, original model frozen, adapters can always be removed (gives rise to modular deep learning)

Prompt Tuning (1)

- PEFT method, different from adapters, proposed by <u>Lester el al. (2021)</u>
- GPT-3: performs well on new tasks using in-context learning
 - In-context learning: describe task and provide few examples in prompt
 - Advantage? No fine-tuning! Same frozen model used for different tasks!
 - Problem? Approach sensitive to prompt, gives rise to prompt design
- Main idea: prepend task-specific tokens to input sequences (prompt)
 - Then, during fine-tuning, only new task-specific tokens are updated
 - Each task A, B, C gets
 new task token A, B, C
 - Prepend task examples with task tokens, e.g. prepend A to a1, a2
 - Tune only task tokens
 - At inference, use new tokens in same way

Prompt Tuning (2)

- As with T5 model, they cast tasks as text-to-text
 - Normally: downstream classification is p(y|X) where X is input sequence (prompt) and y is single class label, e.g. 0 or 1 if binary
 - **Text-to-text:** we have p(Y|X), where Y is generated output sequence that represent class label, e.g. "neutral" for sentiment analysis
 - Fine-tuning: $p_{\theta}(Y|X)$ where θ is pre-trained model parameters we tune
- Prompting: prepend tokens P to input sequence
 - Normally, P made up of known tokens from pre-trained embedding layer
 - E.g. **P** = "Summarize the following article into a single sentence"
 - Performance sensitive to chosen prompt, may require prompt design
- **Prompt tuning:** add fixed prompt **P** per task using special new tokens
 - $\Theta_P = new$ tokens added to vocabulary
 - Then: p_{Θ} ; Θ_P (Y/[P,X]) but we only tune Θ_P
 - Fixed prompt removes need for prompt design
- Similar approaches: prefix tuning by <u>Li et al. (2021)</u>, P-Tuning by <u>Liu et al. (2022)</u>

Another Perspective on Tasks

- We can classify downstream tasks as follows:
 - Sequence classification
 - Sequence labeling
 - Etc.
- We can also classify tasks based on available data, usually:
 - Few shot: few examples available
 - **Zero shot:** no examples available (just text description)
- These definitions are not so consistent in the literature
 - More details in future LLM lecture

Summary: Fine-Tuning

- Difficult to define
 - Generally, using pre-trained model PT on new task not seen during training
 - May or may not imply updating pre-trained model parameters \(\mathcal{\theta}_{PT}\)
 - Usually includes use of downstream model DM, e.g. classification head
 - Parameters of downstream model $\boldsymbol{\Theta}_{DM}$ are definitely trained
- Relevant questions when discussing fine-tuning:
 - Freezing or not freezing weights? Same or different training objective?
 - Which downstream model? How does it interact with pre-trained model?
 - How are downstream examples constructed/fed to model?
 - Parameter Efficient Fine-Tuning (PEFT)
 - Updating all model parameters Θ_{PT} can be prohibitely expensive
 - PEFT: tune only subset of parameters of $\boldsymbol{\theta}_{PT}$, or new added parameters $\boldsymbol{\theta}_{FT}$
- Most common PEFT approaches: adapters, LoRA

References

- Speech and Language Processing, Jurafsky et al., 2024
 - Chapters 10 and 11
- Natural Language Processing: A Machine Learning Perspective,
 Zhang et al., 2021
 - Chapter 17
- References linked in corresponding slides

© University of Mannheim