Série 11

Tous les exercices seront corriges. La correction sera postee sur le moodle apres 2 semaines.

Vous etes fortement encourages a essayer de resoudre (eventuellement a plusieurs) l'exercice (\star) et a rendre votre solution (eventuellement a plusieurs) avant le dimanche de la semaine suivante celle ou la serie a ete postee. Il faudra transmettre votre solution sur moodle, sous forme de fichier pdf (eventuellement tape en LaTeX) en suivant le lien a cet effet dans la semaine de la serie.

1 Du Theoreme du noyau-image

Exercice 1. (*) Soient $\varphi: U \mapsto V$, $\psi: V \mapsto W$ des applications lineaires entre EV de dimension finie.

- 1. Montrer que $\operatorname{Im}(\psi \circ \varphi) \subset \operatorname{Im}(\psi)$.
- 2. Montrer que $\ker(\varphi) \subset \ker(\psi \circ \varphi)$.
- 3. Montrer que rang $(\psi \circ \varphi) \leq \min(\operatorname{rang}(\psi), \operatorname{rang}(\varphi))$.
- 4. On suppose que U=V=W (ie φ,ψ sont des endomorphismes de V). Montrer que

$$\operatorname{rang}(\psi \circ \varphi) \geqslant \operatorname{rang}(\psi) + \operatorname{rang}(\varphi) - \dim(V).$$

5. Soit $M \in M_{d'' \times d'}(K)$, $N \in M_{d' \times d}(K)$ des matrices de dimensions convenables. Montrer que

$$\operatorname{rang}(M.N) \leqslant \min(\operatorname{rang}(M), \operatorname{rang}(N)).$$

6. On suppose que d = d' = d'' (ie. les matrices M, N sont carrees de taille d). Montrer que

$$\operatorname{rang}(M.N) \geqslant \operatorname{rang}(M) + \operatorname{rang}(N) - d.$$

2 Des complexes

On admettra l'existence du morphisme de groupe "exponentielle complexe"

$$e^{i\bullet}: \begin{pmatrix} \mathbb{R}, + \end{pmatrix} \mapsto \begin{pmatrix} \mathbb{C}^{(1)}, \times \end{pmatrix}.$$

On rappelle que ce morphisme est surjectif et que son noyau est de la forme

$$\ker e^{i\bullet} = 2\pi \mathbb{Z}.$$

Cela implique qu'on a un isomorphisme de groupes et une bijection (note.e.s de la meme maniere)

$$e^{i\bullet}: (\mathbb{R}/2\pi\mathbb{Z}, +) \simeq (\mathbb{C}^{(1)}, \times), \ e^{i\bullet}: [0, 2\pi] \simeq \mathbb{C}^{(1)}.$$

On notera egalement

$$\cos(\theta) = \Re(e^{i\theta}), \sin(\theta) = \operatorname{Im}(e^{i\theta}).$$

On a deja vu que $e^{i\bullet}$, $\cos(\bullet)$ et $\sin(\bullet)$ sont derivable sur \mathbb{R} et

$$(e^{i\bullet})' = ie^{i\bullet}, \cos(\bullet)' = -\sin(\bullet), \sin(\bullet)' = \cos(\bullet).$$

Par ailleur comme \mathbb{C} est un corps, un polynome $P(X) \in \mathbb{C}[X]$ a coefficients dans \mathbb{C} admet au plus deg P racines distinctes dans \mathbb{C} : au plus deg P complexes $z \in \mathbb{C}$ tel que P(z) = 0 (en fait comme \mathbb{C} est algebriquement clos P(X) admet d racines comptees avec multiplicite mais sauf mention explicite on ne s'en servira pas).

Exercice 2. On rappelle qu'on a demontre la formule d'Euler

$$\omega_2 = e^{i\pi} = -1.$$

Demontrer que

$$\omega_3 = -\frac{1}{2} + i\frac{\sqrt{3}}{2}, \ \omega_4 = i$$

$$\omega_6 = \frac{1}{2} + i \frac{\sqrt{3}}{2}, \ \omega_8 = \frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2}.$$

Pour cela on observera que

- 1. ω_3 est racine du polynome $X^2 + X + 1$.
- 2. ω_4 est racine du polynome $X^2 + 1$.
- 3. $\omega_6^2 = \omega_3, \, \omega_8^2 = \omega_4.$
- 4. et on determinera les signes des fonctions cos et sin dans l'intervalle $[0, 2\pi]$.

Exercice 3. Pour $n \ge 1$, On note

$$\mu_n = \{ z \in \mathbb{C}, \ z^n = 1 \}.$$

1. Montrer que μ_n est un sous-groupe de \mathbb{C}^{\times} et qu'en fait

$$\mu_n \subset \mathbb{C}^{(1)}$$
.

 μ_n s'appelle le gorupe des racines n-iemes de l'unite.

- 2. On pose $\omega_n = e^{i\frac{2\pi}{n}}$. Montrer que $\omega_n^n = 1$.
- 3. Montrer que

$$\mu_n = \{\omega_n^k, \ 0 \leqslant k \leqslant n-1\} = \omega_n^{\mathbb{Z}}.$$

En particulier ce groupe est cyclique d'ordre n.

Exercice 4. Comme $5 = 2^{2^1} + 1$ est un premier de Fermat, ω_5 doit avoir une expression simple. On va la calculer.

- 1. Montrer que ω_5 est racine du polynome $X^4 + X^3 + X^2 + X + 1$.
- 2. Montrer que

$$\omega_5^2 + \omega_5 + 1 + \omega_5^{-1} + \omega_5^{-2} = 0$$

et en deduire que

$$2\cos(4\pi/5) + 2\cos(2\pi/5) + 1 = 0.$$

- 3. Montrer que $\cos(2\pi/5)$ est racine d'un polynome de degre 2 a coefficients rationnels et en deduire la valeur de $\cos(2\pi/5)$.
- 4. Calculer $\sin(2\pi/5)$ et ω_5 .

Exercice 5. On note

$$\mathbb{Z}[i] := \mathbb{Z} + \mathbb{Z}.i = \{a + ib, \ a, b \in \mathbb{Z}\} \subset \mathbb{C}.$$

- 1. Montrer que $\mathbb{Z}[i]$ est un sous-anneau de \mathbb{C} : on l'appelle l'anneau des entiers de Gauss.
- 2. Soit $\mathbb{Z}[i]^{\times}$ le groupe (multiplicatif) des elements inversibles (les unites) de cet anneau. Montrer que

$$\mathbb{Z}[i]^{\times} = \{a+ib \in \mathbb{Z}[i], \ |a+ib| = 1\}.$$

- 3. Montrer que $\mathbb{Z}[i]^{\times} = \{\pm 1, \pm i\}.$
- 4. Etant donne un nombre complexe $w = u + iv \in \mathbb{C}$ et

$$C_w := [u - 1/2, u + 1/2] + i[v - 1/2, v + 1/2] \subset \mathbb{C}$$

le carre ferme de cotes de longueur 1 qui est centre en w; montrer que C_w contient au moins un entier de Gauss $k = a + ib \in \mathbb{Z}[i] \cap C_w$.

- 5. Soit $q \in \mathbb{Z}[i] \{0\}$ un entier de Gauss non-nul et $z \in \mathbb{Z}[i]$ un autre entier de Gauss. Montrer qu'il existe k, r des entiers de Gauss verifiant
 - (a) z = q.k + r,
 - (b) |r| < |q|.

Pour cela on considerera le quotient $w=z/q\in\mathbb{C}.$

On dispose donc d'une sorte de "division euclidienne" sur l'anneau $\mathbb{Z}[i]$ (cependant la paire (k,r) n'est pas forcement unique).

6. Soit $I \subset \mathbb{Z}[i]$ un ideal de $\mathbb{Z}[i]$. On rappelle que (I, +) est un sous-groupe additif qui est stable par multiplication par les elements de $\mathbb{Z}[i]$:

$$\forall z \in \mathbb{Z}[i], \forall w \in I, \ z.w \in I.$$

- 7. On suppose que $I \neq \{0\}$. Montrer qu'il existe $q \in I \{0\}$ de module |q| minimal parmi tous les elements non-nuls de I.
- 8. Montrer qu'alors

$$I = q.\mathbb{Z}[i] = \{q.k, \ k \in \mathbb{Z}[i]\}.$$

On a montrer que tout ideal de $\mathbb{Z}[i]$ est d'une forme tres simple : l'ensemble des multiples (par des elements de $\mathbb{Z}[i]$) d'un element q : on dit que I est un ideal principal et que l'anneau $\mathbb{Z}[i]$ est un anneau principal.

3 Des echelonnages

Exercice 6. Soient

$$T_{ii}, D_{i\lambda} \ (\lambda \neq 0), \ Cl_{ii,\mu}, \ i, j \leq d'$$

des matrices $d' \times d'$ des transformations elementaires.

1. En utilisant les expressions de ces matrices en terme de l'identite et des matrices elementaires E_{ij} , verifier que

$$T_{ij}^{-1} = T_{ij}, \ D_{i,\lambda}^{-1} = D_{i,1/\lambda}, \ Cl_{ij,\mu}^{-1} = Cl_{ij,-\mu}.$$

Exercice 7. Calculer la forme echelonnee reduite des matrices suivantes :

1. Pour un corps K de caracteristique generale.

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & 0 & -b_0 \\ 1 & 0 & 0 & 0 & -b_1 \\ 0 & 1 & 0 & 0 & -b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 1 & -b_{d-1} \end{pmatrix}, \begin{pmatrix} 2 & 4 & 3 & 11 & -10 \\ -1 & -2 & 2 & 5 & 6 \\ 0 & 0 & 4 & 12 & -2 \\ 3 & 6 & -2 & -3 & 5 \end{pmatrix}.$$

2. Pour $K = \mathbb{C}$,

$$\begin{pmatrix} 1+i & 0 & 1\\ i-1 & 1 & -1\\ 1 & 0 & 1 \end{pmatrix}.$$

Exercice 8. On suppose que $car(K) \neq 2$. Les matrices suivantes (qui sont equivalentes) sont elles ligne-equivalentes?

$$M = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \\ 1 & 1 & 3/2 \end{pmatrix} et N = \begin{pmatrix} 1 & 4 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix}.$$