Конспекти лекцій з математичного аналізу Анікушина А.В. Модуль 2.

Автор текста @bezkorstanislav Если есть ошибки, пишите ему в телеграм Афтар выражает благодарность @vic778 за многочисленные поправки

October 2019

Границя та неперервність функції

Oзначення. Точка x_0 називаться **граничною** для множини A якщо

$$\forall \varepsilon > 0 \ J_{\varepsilon}(x_0) \cap A \neq \emptyset$$
, $\exists x_0 \in J_{\varepsilon}(x_0) = (x_0 - \varepsilon; x_0 + \varepsilon) \setminus \{x_0\}$

 $3ауваження. Якщо <math>x_0$ — гранична точка для A, то

$$\forall \varepsilon > 0 \ |J_{\varepsilon}(x_0) \cap A| = \infty$$

Більше того, x_0 є граничною для $A \iff$ існує послідовність $\{x\}_{n=1}^{+\infty} : x_n \subset A, x_i \neq x_0, x_n \to x_0.$

 $(\mathit{Tочки}\ \mathit{domuky}) = (\mathit{\Gamma pahuчhi}\ \mathit{mочкu}) \cup (\mathit{Iзольованi}\ \mathit{mочкu})$

Ізользовані точки — це такі точки, які належать множині, але не ϵ граничними.

Якщо x_0 не ϵ граничною для A, то:

$$\exists \varepsilon > 0 \ J_{\varepsilon}(x_0) \cap A = \emptyset$$

Приклад:

$$A = \left\{ \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \dots \right\} = \left\{ \frac{1}{n} \middle| n \in \mathbb{N} \right\}$$

Сукупність всіх граничних точок множини A називається **похідною множиною** A'.

Нехай дана функція $f: \mathbb{R} \to \mathbb{R}$ і точка $x_0 \in D_f'$ (x_0 є граничною точкою D_f). Означення границі функції за Гейне. Якщо $\forall \{x_n\}_{n=1}^{\infty} x_n \in D_f, \ x_n \neq x_0, \ x_n \to x_0$ маємо $f(x_n) \to l$, то число l називається границею функції f в точці x_0 . Позначається так:

$$\lim_{x \to x_0} f(x) = l$$

Той факт, що $x_n \neq x_0$ є дуже важливим.

Приклад

$$f(x) = \begin{cases} 0, & \text{Якщо } x \neq 2\\ 1, & \text{Якщо } x = 2 \end{cases}$$

$$x_n \to 2, \ x_n \neq 2 \Rightarrow f(x_n) = 0 \to 0 \Rightarrow \lim_{x \to 2} f(x) = 0$$

Якби означення було б без умови $x_n \neq x_0$, то $\lim_{x\to 2} f(x) = 0$ або $\lim_{x\to 2} f(x) = 1$. (Тобто границі не було б).

Зауваження. У загальному випадку $\lim_{x\to x_0} f(x)$ ніяким чином не залежить від $f(x_0)$.

Означення. Якщо $\exists \{x_n\}_{n=1}^{\infty} : x_n \in D_f, \ x_n \to x_0 \text{ та } f(x_n) \to l,$ то число l називається частковою границею функції у точці x_0 .

 $\Pi pu\kappa \Lambda a\partial$:

$$f(x) = \sin\frac{1}{x}$$

 $\nexists \lim_{x \to 0} f(x)$, але існують, наприклад, послідовності:

$$x_n = \frac{1}{\pi n} \to 0, \ \forall n \ f(x_n) = 0 \Rightarrow f(x_n) \to 0$$
$$x_n = \frac{1}{2\pi n + \frac{\pi}{2}} \to 0, \ \forall n \ f(x_n) = 1 \Rightarrow f(x_n) \to 1$$

Всі числа з інтервалу [-1;1] є частковими границями функції f(x) при $x \to 0$.

Означення границі функції за Коші:

$$\lim_{x \to x_0} f(x) = \alpha \iff \forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x \in D_f, \ x, \alpha \in \mathbb{R}$$
$$0 < |x - x_0| < \delta \implies |f(x) - \alpha| < \varepsilon$$

Зауваження. Означення наведене вище працює для дійсного числа x_0 . Означення для нескінченності у загальному випадку виглядає так:

$$\lim_{x \to \infty} f(x) = \alpha \Longleftrightarrow \forall \varepsilon > 0 \ \exists M > 0 :$$

$$\forall x \ |x| > M \Longrightarrow |f(x) - \alpha| < \varepsilon$$

Теорема. Ознчення границі функції за Коші і за Гейне еквівалентні. **Доведення.** Самі знайдете :)

Теорема про арифметичні дії з границями функцій. Нехай x_0 є граничною точкою для $D_f \cap D_g$. $\exists \lim_{x \to x_0} f(x) = \alpha, \ \exists \lim_{x \to x_0} g(x) = \beta$. Тоді:

$$\exists \lim_{x \to x_0} (f(x) \pm g(x)) = \alpha \pm \beta$$

$$\exists \lim_{x \to x_0} (f(x) \cdot g(x)) = \alpha \cdot \beta$$
Kulo $\beta \neq 0$ to $\exists \lim_{x \to x_0} \frac{f(x)}{x} = 0$

Якщо $\beta \neq 0$, то $\exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\alpha}{\beta}$

Доведення. Якщо я хочу обчислити $\lim_{x \to x_0} (f(x) + g(x))$

$$\forall \{x_n\}_{n=1}^{\infty} : x_n \in D_f, \ x_n \to x_0, \ x_n \neq x_0 \ f(x_n) \to \alpha, g(x_n) \to \beta$$

З теореми про арифметичні дії з послідовностями отримуємо:

$$f(x_n) + g(x_n) \to \alpha + \beta$$

Інші твердження доводяться за тим же принципом.

Теорема про границю композиції

Нехай
$$\lim_{t\to t_0}\varphi(t)=x_0,\ \lim_{x\to x_0}f(x)=y_0,\ t_0\in D'_{f\circ\varphi},$$
 тоді:
$$\lim_{t\to t_0}f(\varphi(t))=y_0$$

Доведення:

Розглянемо
$$\forall \{t_n\}_{n=1}^{\infty}: t_n \in D_{f \circ \varphi}, t_n \to t_0, t_n \neq t_0$$
 $x_n = \varphi(t_n) \to x_0.$ При $x_n \to x_0$ $f(x_n) \to y_0,$ отже: $f(\varphi(x_0)) \to y_0$

Зауваження. В умові теореми лектор залишив цікаву, але важкопомітну неточність. За версією Пані Вікторії ця умова це: існує такий окіл $J_{\varepsilon}(t_0)$, що $\forall t \in (J_{\varepsilon}(t_0) \cap D_{f \circ \varphi}) \setminus \{t_0\}, \varphi(t) \neq x_0$.

Означення. Нехай точка $x_0 \in (D_f \cap (-\infty; x_0))'$, тоді число α називаєтсья лівосторонньою границею (або границею зліва) функції f в точці x_0 , якщо:

$$\forall \{x_n\}_{n=1}^{\infty} : x_n \in D_f, x_n \to x_0, x_n < x_0 \Longrightarrow f(x_n) \to \alpha$$

Позначається як $\lim_{x\to x_0-}$ або $\lim_{x\to x_0-0}$ або $f(x_0-0)$.

Аналогічно означується **правостороння границя** функції. Приклад:

$$f(x) = \begin{cases} 0, & \text{якщо } x < 2 \\ x, & \text{якщо } x > 2 \\ 3, & \text{якщо } x = 2 \end{cases}$$

$$f(2-0) = 0$$

$$f(2) = 3$$

$$f(2+0) = 2$$

Теорема. (Критерій існування границі)

Нехай
$$x_0 \in (D_f \cap (-\infty; x_0))'$$
 і $x_0 \in (D_f \cap (x_0; +\infty))'$

Тоді
$$\exists \lim_{x \to x_0} f(x) = \alpha \Longleftrightarrow \exists f(x_0 + 0) = \alpha, \exists f(x_0 - 0) = \alpha$$

Доведення.

- \Longrightarrow . Якщо $\lim_{x\to x_0} f(x) = \alpha$, то для $\forall \{x_n\}_{n=1}^{\infty} : x_n \in D_f, x_n \to x_0, x_n \neq x_0$ $f(x_n) \to \alpha$, тож для довільної послідовності $\{x_n\}_{n=1}^{\infty} : x_n \in D_f, x_n \to x_0, x_n < x_0$ $f(x_n) \to \alpha$, тому $f(x_0 0) = \alpha$. Для правосторонньої границі аналогічно.

$$f(x_{n_k}) \to \alpha, f(x_{m_k}) \to \alpha \Longrightarrow f(x_n) \to \alpha$$

Означення. Функція f задовольняє умову Коші в точці x_0 , якщо:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x_1, x_2 \in D_f$$

$$\begin{cases} 0 < |x_1 - x_0| < \delta \\ 0 < |x_2 - x_0| < \delta \end{cases} \implies |f(x_1) - f(x_2)| < \varepsilon$$

Теорема. Функція f має границю в точці $x_0 \in D_f'$ тоді й тільки тоді, коли f задовольняє умову Коші в точці x_0 .

Доведення. Залишили на самоопрацювання :(

Нехай f і g — деякі функції. $D_f = D_g, x_0 \in D_f'$.

- 1. f = O(g), якщо $\exists I_{\varepsilon}(x_0)$ (епсилон-окіл точки x_0) і $\exists M>0$ такі, що $\forall x \in I_{\varepsilon}(x_0) \ |f(x)| \leq M \cdot |g(x)|$.
- 2. f і g— функції одного порядку, якщо f = O(g) і g = O(f).
- 3. f=o(g), якщо $\forall M>0$ $\exists I_{\varepsilon}(x_0): \forall x\in I_{\varepsilon}(x_0)\ |f(x)|\leq M\cdot |g(x)|.$
- 4. $f \sim g$, якщо f g = o(g).

Приклади:

 $\text{Нехай } x_0 = 0.$

• $f = x^2, g = x^5$.

$$|x^2| \le M \cdot |x^5| \Longleftrightarrow \frac{1}{M} \le |x^3| \Longrightarrow x^2 \ne O(x^5)$$

• $f = x^2, g = 10x^2$.

$$|x^2| \le M|10x^2| \Longleftrightarrow \frac{1}{M} \le 1 \Longrightarrow x^2 = O(10x^2)$$

$$|10x^2| \le M|x^2| \Longleftrightarrow \frac{10}{M} \le 1 \Longrightarrow 10x^2 = O(x^2)$$

Отже, x^2 і $10x^2$ — функції одного порядку.

• $f = x^5, g = x^2$.

$$|x^5| \le M \cdot |x^2| \Longleftrightarrow |x^3| \le M \Longrightarrow x^5 = o(x^2)$$

Зауваження. Такі властивості дуже залежать від обраної точки x_0 . Наприклад, нехай $f=x^2, g=x^4$. При $x_0=0$ $x^4=o(x^2)$, а при $x_0=+\infty$ $x^2=o(x^4)$.

Корисне зауваження.

- $\lim_{x\to x_0} \frac{f(x)}{g(x)} = C, C \neq \infty, C \neq 0$, то функції f і g одного порядку в точці x_0
- Якщо в деякому околі точки x_0 $g(x) \neq 0$ та $f = O(g) \iff \frac{f(x)}{g(x)}$ є обмеженою.
- $f = o(g) \iff \frac{f}{g} \to 0, x \to x_0.$
- $f \sim g \Longleftrightarrow \frac{f}{g} \to 1, x \to x_0.$

Приклад:

$$\frac{\sin x}{x} \to 0, x \to +\infty \Longrightarrow \sin x = o(x), x \to +\infty$$

Oзначення. Функція f називається **обмеженою на множині** X, якщо f(X) є обмеженою множиною.

Означення. Функція f називається **обмеженою в точці** x_0 , якщо f обмежена в деякому околі точки x_0 .

Приклад:

Функція
$$f(x) = \frac{1}{x}$$
 є обмеженою в усіх точках, окрім 0.

3ауваження. В околі деякої точки x_0 :

$$f=O(1)\Longleftrightarrow f$$
— обмежена в точці x_0
$$f=o(1)\Longleftrightarrow f\to 0, x\to x_0$$

Теорема. Нехай x_0 є граничною точкою $D_f = D_g$.

$$\begin{aligned} O(f)O(g) &= O(f \cdot g) & c \cdot O(f) &= O(f) \\ O(O(f)) &= O(f) & o(f)O(g) &= o(fg) \\ o(f)o(g) &= o(fg) & c \cdot o(g) &= o(g) \end{aligned}$$

Доведення. Розглянемо доведення o(f)O(g) = o(fg) (інші доводяться аналогічно).

Припустимо, що $f \neq 0$ та $g \neq 0$ у деякому околі точки x_0 .

$$\frac{o(f)O(g)}{fg} = \frac{o(f)}{f} \cdot \frac{O(g)}{g}$$

$$\frac{o(f)}{f} \to 0, \ x \to x_0; \frac{O(g)}{g}$$
 є обмеженим в деякому околі точки x_0

Отже, за теоремою про добуток нескінченно малої та обмеженої отримуємо:

$$\frac{o(f)}{f} \cdot \frac{O(g)}{g} \to 0$$

Означення. Якщо f(x)=g(x)+o(g(x)) при $x\to x_0$, то g(x) називається головною частиною функції f при $x\to x_0$.

Приклад:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \iff \lim_{x \to 0} \left(\frac{\sin x}{x} - 1 \right) = 0 \iff \lim_{x \to 0} \frac{\sin(x) - x}{x} = 0 \iff \sin(x) - x = o(x)$$

$$\sin x = x + o(x)$$

В цьому прикладі $x \in \text{головною частиною функції } \sin x$ при $x \to 0$.

$$\lim_{x \to 0} \left(1 + x \right)^{\frac{1}{x}} = e \iff \lim_{x \to 0} \ln(1 + x)^{\frac{1}{x}} = 1 \iff \lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1 \iff$$

$$\iff \lim_{x \to 0} \frac{\ln(x + 1) - x}{x} = 0 \iff \ln(x + 1) = x + o(x)$$

В цьому прикладі x є головною частиною функції $\ln(x+1)$ при $x \to 0$.

Теорема. Розглянемо шкалу функцій $x^n,\ n,m\in\mathbb{N}$ і вважатимемо, що $x\to 0.$

$$x^{m} = o(x^{n}), \ m > n \ ($$
Наприклад, $x^{10} = o(x^{2}))$ $x^{m} \cdot o(x^{n}) = o(x^{n+m})$ $O(x^{m}) \cdot o(x^{n}) = o(x^{n+m})$ $o(x^{m}) \cdot o(x^{n}) = o(x^{n+m})$

$$o(x^m)+o(x^n)=o(x^n),\ \text{якщо}\ m\geq n$$

$$c\cdot o(x^n)=o(x^n)$$

$$o(x^m)=o(x^n),\ \text{якщо}\ m\geq n$$

Приклади:

Обчислити:

$$(1+x-2x^2+o(x^2))(x-x^2+o(x^3))=$$

$$=x-\cancel{x^2}+o(x^3)+\cancel{x^2}-x^3+x\cdot o(x^3)-2x^3+2x^4-2x^2\cdot o(x^3)+x\cdot o(x^2)-x^2\cdot o(x^2)+o(x^2)\cdot o(x^3)=$$

$$=x+o(x^3)+x\cdot o(x^3)-3x^3+2x^4-2x^2\cdot o(x^3)+x\cdot o(x^2)-x^2\cdot o(x^2)+o(x^2)\cdot o(x^3)=$$

$$=x+o(x^3)+o(x^4)-3x^3+2x^4-2o(x^5)+o(x^3)-o(x^4)+o(x^5)=$$

$$=x-3x^3+2x^4+o(x^3)+o(x^4)+o(x^5)+o(x^3)+o(x^4)+o(x^5)=$$

$$=x-3x^3+2x^4+o(x^3)$$
Оскільки $2x^4=o(x^3)$, то:
$$x-3x^3+2x^4+o(x^3)=x-3x^3+o(x^3)+o(x^3)=x-3x^3+o(x^3)$$

Основні асимптотичні формули:

$$\sin x = x - \frac{x^3}{3!} + o(x^3)$$

$$\cos x = 1 - \frac{x^2}{2!} + o(x^2)$$

$$\tan x = x + o(x^2)$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!}x^2 + o(x^2)$$

$$\ln(1+x) = x - \frac{x^2}{2} + o(x^2)$$

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + o(x^2)$$

$$\arcsin x = x + o(x^2)$$

$$\arctan x = x + o(x^2)$$

$$\arctan x = \frac{\pi}{2} - \arcsin x$$

 $\Pi pu \kappa \Lambda a \partial u$:

1)
$$\lim_{x \to 0} \frac{x^2 + 3x^3 + 4x^4}{2x^2 + x^5 - x^6 + x^7} = \lim_{x \to 0} \frac{x^2 + o(x^2)}{2x^2 + o(x^2)} = \lim_{x \to 0} \frac{1 + o(1)}{2 + o(1)} = \frac{1}{2}$$

$$2) \lim_{x \to 0} \frac{1 - \cos^{\alpha} x}{(e^{x} - 1)\sin x} = \lim_{x \to 0} \frac{1 - (1 - \frac{x^{2}}{2} + o(x^{2}))^{\alpha}}{(1 + x + o(x) - 1)(x - \frac{x^{3}}{3!} + o(x^{3}))} =$$

$$= \lim_{x \to 0} \frac{1 - (1 - \frac{x^{2}}{2} + o(x^{2}))^{\alpha}}{(x + o(x))(x + o(x))} = \lim_{x \to 0} \frac{1 - (1 + \alpha(-\frac{x^{2}}{2} + o(x^{2})) + o(-\frac{x^{2}}{2} + o(x^{2})))}{(x + o(x))(x + o(x))} =$$

$$= \lim_{x \to 0} \frac{-\alpha(-\frac{x^{2}}{2} + o(x^{2})) + o(x^{2})}{x^{2} + o(x^{2})} = \lim_{x \to 0} \frac{\alpha(x^{2} + o(x^{2}))}{x^{2} + o(x^{2})} = \frac{\alpha}{2}$$

Неперервність функції

Нехай $f: \mathbb{R} \to \mathbb{R}, x_0 \in D_f$.

Означення неперервності за Гейне. Функцію f називають неперервною в точці x_0 , якщо:

$$\forall \{x_n\}_{n=1}^{\infty} : x_n \in D_f, \ x_n \to x_0 \Longrightarrow f(x_n) \to f(x_0)$$

Означення неперервності за Коші. Функцію f називають неперервною в точці x_0 , якщо:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in D_f$$

$$|x - x_0| < \delta \Longrightarrow |f(x) - f(x_0)| < \varepsilon$$

Теорема. Означення за Коші та Гейне еквівалентні. Доведення. Це ж очевидно))0))000). Приклад:

1. $f(x)=x^3, \ x_0=2, \ D_f=\mathbb{R}. \ x_n\to 2, f(x_n)=x_n^3\to 2^3=8=f(x_0).$ Отже, функція є неперервною в точці $x_0=2.$

2.
$$f(x) = \begin{cases} x^3, & x \neq 2\\ 1, & x = 2 \end{cases}$$

 $x_n \to 2, \ x_n \neq 2 \Longrightarrow f(x_n) = x_n^3 \to 8$, але $f(x_0) = 1$, отже функція не є неперервною в точці x_0 .

3.
$$f(x) = \begin{cases} x^3, & x < 2 \\ x, & x \ge 2 \end{cases}$$

 $x_n \to 2, \ x_n < 2 \Longrightarrow f(x_n) = x_n^3 \to 8$ (Це фактично є лівосторонньою границею) $x_n \to 2, \ x_n > 2 \Longrightarrow f(x_n) = x_n \to 2$ (Це фактично є правосторонньою границею)

Лівостороння границя не дорівнює значенню функції, отже функція не є неперервною.

4.
$$f(x) = \frac{1}{x-2}$$

 $x_n \to 2, \ f(x_n) \to \infty$

Hе є неперервною, бо $f(2) \notin \mathbb{R}$

Якщо функція f не є неперервною в точці $x_0 \in D_f$, то f називають **розривною** в точці x_0 .

Якщо функція f є неперервною в усіх точках деякою множини S, то кажуть, що f неперервна на множині S. У такому випадку

$$f\in C(S),$$
де $C(S)$ — множина неперервних на S функцій

Приклади позначення:

$$f \in C([1;2])$$
$$f \in C((0;1])$$
$$f \in C(\mathbb{R})$$

Приклад:

Функція Діріхле:

$$f(x) = \begin{cases} 1, & x \in \mathbb{R} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \ (x - \text{ippaцiональнe}) \end{cases}$$

Нехай $x_0 \in \mathbb{R}$, тоді:

$$\exists \{p_k\}_{k=1}^{\infty} : p_k \in \mathbb{Q}, p_k \to x_0$$
$$\exists \{n_k\}_{k=1}^{\infty} : n_k \in \mathbb{R} \setminus \mathbb{Q}, n_k \to x_0$$

$$f(p_k) = 1 \to 1, \ f(n_k) = 0 \to 0$$

Отже, f розривна в точці x_0 . Також із цього слідує, що функція розривна в усіх точках.

3ауваження 1. Якщо x_0 є граничною точкою області визначення $(x_0 \in D_f \cap D_f')$, то поняття неперервності еквіваленте наступному виразу:

$$f \in C(\lbrace x_0 \rbrace) \iff \lim_{x \to x_0} f(x) = f(x_0)$$

3ауваження 2. Якщо x_0 — ізольована точка з D_f , то $f \in C(\{x_0\})$

Домашне завдання:

- 1. Придумати приклад фукнції, яка є неперервною рівно в одній точці.
- 2. Придумати приклад функції, яка є неперервною рівно в двох точках.
- 3. Чи існує функція, яка є неперервною в усіх раціональних точках і розривною в ірраціональних?
- 4. Чи існує функція, яка є неперервною в усіх ірраціональних точках та розривною в раціональних?

Теорема про арифметичні дії з неперервними функціями. Нехай $f,g\in C(\{x_0\})$. Тоді $f+g,\ f-g,\ f\cdot g,$ неперервні в x_0 . Якщо при цьому $g(x_0) \neq 0$, то й $\frac{f}{g} \in C(\{x_0\})$. Доведення. Означення за Гейне + теорема про границі послідовно-

стей.

Теорема про неперервність композиції. Нехай $f \in C(\{x_0\}), \ \varphi \in$ $C(\{t_0\}), \ \varphi(t_0) = x_0$. Тоді $f(\varphi(t)) = \Phi(t)$ є неперервною в точці x_0 . Доведення. Якщо:

$$t_n \in D_{\Phi} = D_{f \circ \varphi}, \ t_n \to t_0$$

$$\varphi(t_n) \to \varphi(t_0), \ t_n \to t_0, \ \varphi(t_n) \in D_f$$

$$f(x_n) \to f(x_0), \ x_n \to x_0$$

Отже, $f(\varphi(t_n)) \to f(\varphi(t_0))$, тобто $\Phi(t_n) \to \Phi(t_0)$.

Зауваження. $f \in C(\{x_0\}) \Longrightarrow x_0 \in D_f$. Якщо функція не є неперервною в точці x_0 , то вона розривна. x_0 може не належати D_f , але бути розривною. Але тоді треба, щоб x_0 була граничною.

 $\mathit{Hanpuknad}\colon f(x)=\sqrt{x}$ Вона не є розривною в точці $x_0=-2,$ бо є вона не є граничою..

Означення. Нехай $x_0 \in D_f'$ і при цьому $x_0 \notin D_f$. Тоді вважають, що функція f має розрив у точці x_0 .

Можливі такі ситуації:

- 1. $f(x_0 0) = f(x_0 + 0) = f(x_0)$. Тоді $f \in C(\{x_0\})$.
- 2. $f(x_0 0) = f(x_0 + 0) \neq f(x_0)$ (або $f(x_0)$ не визначена). Тоді f має усувний розрив у точці x_0 .
- 3. $f(x_0-0) \neq f(x_0+0)$. Тоді x_0 має **розрив типу "стрибок"** у точці x_0 .
- 4. Хоча б одна з границь $f(x_0+0)$, $f(x_0-0)$ не існує або дорівнює ∞ . Тоді кажуть, що f має **розрив другого роду** в точці x_0 .

Розриви першого роду поділяються на усувний і на стрибок.

Властивості елементарних функцій

- 1. y = ax + b
- 2. $y = x^n$
- 3. $y = a^x$
- 4. $y = \log_a x$
- 5. sin, cos, tg, ctg
- 6. arcsin, arccos, arctg, arcctg
- 7. y = |x|

Теорема. Усі ці функції є неперервними на своїй області визначення. Доведення. Розглянемо доведення тільки для $\sin x$. Треба довести, що $\sin x \in C(\{x_0\})$.

$$|\sin x - \sin y| = \left| 2\sin \frac{y - x}{2}\cos \frac{y + x}{2} \right| \le$$

$$\le \left| 2\sin \frac{y - x}{2} \right| \le 2\left| \frac{y - x}{2} \right| = |y - x|$$
Тоді $|\sin x_n - \sin x_0| \le |x_n - x_0|$
Якщо $x_n \to x_0 \Longrightarrow \sin x_n \to \sin x_0$

Приклади:

1.
$$f(x) = x^x = e^{\ln x^x} = e^{x \ln x} \implies x^x \in C(0; +\infty)$$

2. $\arctan(\operatorname{tg}\frac{x^2+3}{x+2})$. ОДЗ функції: $x\neq -2$, $\frac{x^2+3}{x+2}\neq \pi k+\frac{\pi}{2}$. Функція є неперервною в усіх точках ОДЗ, але точки x=-2, $\frac{x^2+3}{x+2}=\pi k+\frac{\pi}{2}$ є підозрілими.

Для того, щоб дослідити на неперервніть цю функцію треба використати теорему про суперпозицію (У кожній точці шукаємо лівосторонню і правосторонню границю і розглядаємо випадки).

Приклади використання попередніх теорем:

- Використання теореми про арифметичні дії. Дослідити на переревність функцію $f(x) = \frac{x+1}{x-2} + 5 \cdot \frac{x^2}{x+5}$. З теореми про арифметичні дії отримуємо, що $\frac{x+1}{x+2}$ неперервна в усіх точках, окрім x = -2, а $5 \cdot \frac{x^2}{x+5}$ неперервна в усіх точках, окрім x = -5. А отже й уся функція неперервна в усіх точках, окрім x = -2, x = -5. Ці точки є підозрілими і їх варто розглядати окремо.
- Використання теорему про неперервність суперпозиції Дослідити на неперервність функцію $f(x) = \operatorname{tg}([x^2])$. Функція $y = [x^2]$ неперервна в усіх точках, окрім таких, де x^2 ціле число. Отже, $y = [x^2]$ неперервна в усіх точках, окрім точок виду $x = 0, \pm 1, \pm \sqrt{2}, \pm \sqrt{3}, \ldots$

Функція $y = \operatorname{tg}([x^2])$ неперервна в усіх точках, окрім тих, де $[x^2] = \frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$. (Спойлер: можна довести, що таких точок не існує).

Отже функція є неперервною в усіх точках, окрім $x=x=0,\pm 1,\pm \sqrt{2},\pm \sqrt{3},\ldots$ Такі точки є підозрілими і що робити з ними нам пояснять на практиці.

Oзначення. Функція f називається **монотонно зростаючою** на множині $X \subset D_f$, якщо:

$$\forall x_1, x_2 \in X \ x_1 < x_2 \Longrightarrow f(x_1) < f(x_2)$$

Аналогічно означуються **монотонно спадна**, **неспадна** та **незростаюча** функції

Hanpuклад:

Фунція $y = -x^2 + 3 \epsilon$ монотонно зростаючою на множині $(-\infty; 0]$.

Теорема про розриви монотонної функції. Нехай f — монотонна функція і $x_0 \in (D_f \cap (-\infty; x_0))'$. Тоді $\exists f(x_0 - 0)$.

Доведення. Не втрачаючи загальності припустимо, що f — зростаюча.

Нехай $S=\sup_{x< x_0}f(x)$. Тоді треба довести, що $x_n\in D_f, x_n\to x_{0-}\Longrightarrow f(x_n)\to S$ (Тобто треба довести, що $S=f(x_0-0)$). Нехай $\varepsilon>0$. Тоді оскільки S — точка дотику множини $\{f(x), x< x_0\}$, значить $\{f(x), x< x_0\}\cap (S-\varepsilon;S)\neq\emptyset$,

Тобто
$$\exists x^* \in D_f, x^* < x_0 : f(x^*) \in (S - \varepsilon; S)$$

Розглянемо окіл $I=(x^*;x+\varepsilon)$. Оскільки $x_n\to x_{0-}$, то $\exists N\ \forall n\ge N\ x_n\in I$, тоді $x_n>x^*\Longrightarrow f(x_n)>f(x^*)\longrightarrow f(x_n)\in (S-\varepsilon;S)$.

Hacnidor. Нехай f — монотонна і $x_n \in (D_f \cap (-\infty; x_0))' \cap (D_f \cap (x_0; +\infty))'$. Тоді якщо функція має розрив в точці x_0 , то цей розрив першого роду.

Означення. Множина $K \subset \mathbb{R}$ називається компактом або компактною множиною, якщо $\forall \{x_n\}_{n=1}^{\infty}, \ x_n \in K$ існує підпослідовність $\{x_{n_k}\}_{k=1}^{\infty}: x_{n_k} \to x_0 \in K$.

Приклади:

- $K = (0; +\infty)$ не є компактом, бо послідовність $x_n = n$ прямує до нескінченності, а отже й будь-яка її підпослідовність буде прямувати до нескінченності.
- K = (0; 1) не є компактом, бо послідовність $x_n = \frac{1}{n}$ прямує до нуля, але нуль не належить множині K.

Теорема про обмеженість компакту. Нехай $K \subset \mathbb{R}$ і K — компакт. Тоді K — обмежена.

Доведення. Припустимо супротивне, тоді обов'язково існує $\{x_n\}_{n=1}^{\infty}$: $x_n \to \infty$. Тоді за означенням компакту в неї має бути збіжна послідовність, але $x_n \to \infty$, а отже й будь-яка її підпослідовність теж прямуватиме до нескінченності, яка не належить множині K. Протиріччя із здоровим глуздом.

Teopeма. (**Критерій компакту**). Нехай $K \subset \mathbb{R}$. K — компакт \iff K ϵ замкненою і обмеженою.

Доведення.

- \Longrightarrow . Обмеженість вже довели. Припустимо, що K не є замкненою, тоді $\exists x_0$ точка дотику, яка не належить K. Іншими словами x_0 гранична точка. Оберемо довільну послідовність $\{x_n\}_{n=1}^{\infty}, \ x_n \in K, x_n \to x_0$. Будь-яка її підпослідовність теж збігатиметься до $x_0 \notin K$. Протиріччя.
- \Leftarrow . Нехай $\{x_n\}_{n=1}^{\infty}$ довільна послідовність така, що $x_n \in K$. $x_n \in K$, а K обмежена множина, значить сама послідовність x_n ϵ обмеженою.

Отже
$$\exists \{x_{n_k}\}_{k=1}^{\infty}, \ x_{n_k} \in K, \ x_{n_k} \to x_0 \Longrightarrow x_0$$
— точка дотику

Але ми знаємо, що множина K є замкненою, а отже містить усі свої точки дотику. Отже, $x_0 \in K$.

Приклади:

- [0; 1) не компакт.
- $(-\infty; 0]$ не комакт.
- [0;1] компакт.

•
$$\bigcup_{n=2}^{\infty} \left[\frac{1}{n}; 1 - \frac{1}{n} \right] = (0; 1)$$
 — не компакт.

Наслідок. Будь-який компакт має найбільший і найменший елемент.

Математичний жарт.

Розмова між хлопцем-математиком та дівчиною:

- Ти у мене така компактна!
- А як це?
- Замкнена і обмежена.

Теорема про неперервний образ компакту. Нехай $f \in C(K)$, K — компакт. Тоді f(K) — теж компакт.

Доведення. Нехай $\{y_n\}_{n=1}^{\infty}$ — довільна послідовність з f(K). Оскільки $\forall n \; \exists x_n \in K : f(x_n) = y_n$, розглянемо послідовність $\{x_n\}_{n=1}^{\infty}$. Оскільки K — компакт, то з $\{x_n\}_{n=1}^{\infty}$ можна обрати збіжну підпослідовність $\{x_{n_k}\}_{k=1}^{\infty}$. При цьому $x_{n_k} \to x_0 \in \mathbb{R}$.

Оскільки f — неперервна в точці x_0 , то $f(x_{n_k}) \to f(x_0)$, а отже $y_{n_k} \to f(x_0) \in f(K)$.

Наслідок. (Теорема Вейерштрасса). Функція, що неперервна на компакті досягає там свого найбільшого та найменшого значень.

Теорема про неперервність оберненої функції. Нехай $f \in C(K)$, K — компакт, а f — оборотня функція (тобто існує обернена до неї функція). Тоді обернена функція теж є неперервною на K.

Доведення. Самі знайдете :) + вам варто зрозуміти чи працює теорема, якщо K не є компактом.

Теорема про монотонність оберненої функції. Нехай f — неперервна на компакті і монотонна. Якщо $\exists f^{-1}$ (обернена функція), то f^{-1} теж буде монотонною на цьому компакті.

Теорема Бореля-Лебега. Нехай K — компакт і $\{I_n\}_{n=1}^{\infty}$ — послідовність інтервалів і при цьому

$$K \subseteq \bigcup_{n=1}^{\infty} I_n$$

Тоді з $\{I_n\}$ можна обрати скінченну кількість інтервалів, які будуть покривати K.

Зауваження. У теоремі йдеться саме про відкриті інтервали.

Доведення. Розглянемо K. Оскільки K — обмежена, то $\exists [a,b]$, такий, що $K \subset [a,b]$. Розглянемо $K_l = K \cap [a; \frac{a+b}{2}], K_r = K \cap [\frac{a+b}{2};b]$.

Якщо припустити, що K не можна покрити скінченною кількістю інтервалів, то те саме справделиве або для K_l або для K_r .

Нехай, наприклад, K_r не можна покрити скінченною кількістю інтервалів. Тоді перейдемо до K_r і зробимо аналогічне до того, що ми зробили з K.

Таким чином ми отримуємо послідовність вкладених замкнених непорожніх обмежених множин. За теоремою Кантора $\exists x_0$, яке належить усім цим відрізкам. $x_0 \in K$, тому воно має бути покрите деяким інтервалом I_n .

Зрозуміло, шо кінці відрізків, що отримані в нашому процесі прямують до x_0 , тому існує відрізок, що повністю покривається I_n . Протиріччя.

Зауваження. Ця теорема працює для довільних відкритих множин.

Теорема Коші (Про проміжне значення). Нехай $f \in C([a;b])$ і $f(a)f(b) \leq 0$. Тоді

$$\exists c \in [a;b] : f(c) = 0$$

Доведення. Припустимо, що це не так. Тобто, для $\forall x \in [a;b] \ f(x) \neq 0$. Не обмежуючи загальності f(a) < 0, а f(b) > 0.

Лема. Якщо функція $f \in C(\{x_0\})$ і $f(x_0) > 0$ то $\exists (a;b): x_0 \in (a,b), \ \forall x \in (a,b) \cap D_f \ f(x) > 0.$

 \mathcal{A} оведення. Нехай $\varepsilon = \frac{f(x_0)}{2}$. Тоді:

$$\exists \delta>0: \forall x\in D_f \ |x-x_0|<\delta\Longrightarrow |f(x)-f(x_0)|<\varepsilon$$

$$|f(x)-f(x_0)|<\varepsilon\Longrightarrow f(x)-f(x_0)>-\varepsilon\Longrightarrow f(x)>f(x_0)-\varepsilon=\frac{f(x_0)}{2}>0$$
 Тоді $\forall x\in (x_0-\delta;x_0+\delta)\ f(x)>\frac{f(x_0)}{2}>0$

Лема доведена, повертаємось до теореми.

Отже для кожної точки $x \in [a;b]$ згідно леми $\exists I_x$ такий, що $\forall y \in I_x \ f(y)f(x) > 0$.

Згідно теореми Бореля-Лебега можна обрати лише скінченну кількість інтервалів $I_{x_1}, I_{x_2}, \dots, I_{x_n}$, такі. що:

$$[a;b] \subset \bigcup_{k=1}^{n} I_{x_k}$$

Оскільки f не змінює знак на кожному I_{x_k} , то f не змінює знак на всьому [a;b]. Протиріччя.

Наслідок. Нехай f — неперервна на проміжку [a;b]. Тоді f(x) приймає всі значення від f(a) до f(b).

Доведення. $\forall y \in [f(a); f(b)]$ можна створити функцію $\varphi(x) = f(x) - y$.

Приклад:

$$f \in C([0;1]), f(0) > 0, f(1) < 1$$

. Треба довести, що $\exists x : f(x) = (x)$.

Розглянемо допоміжну функцію $\varphi(x) = f(x) - x$. Тоді:

$$\varphi(0) = f(0) - 0 > 0$$

$$\varphi(1) = f(1) - 1 < 0$$

Отже за теоремою Коші $\exists x_0 \in [0;1]: \varphi(x_0) = 0 \Longrightarrow 0 = f(x_0) - x_0 \Longrightarrow x_0 = f(x_0).$

Рівномірна неперервність

Означення рівномірної неперервності за Коші. $f: \mathbb{R} \to \mathbb{R}$ називається рівномірно неперервною на множині $X \subset D_f$, якщо

$$\forall \varepsilon > 0 \ \exists \delta < 0 : \forall \{x', x''\} \subset X$$
$$|x' - x''| < \delta \Longrightarrow |f(x') - f(x'')| < \varepsilon$$

Приклад:

$$f(x) = \sin x, \ x \in \mathbb{R}$$

Покажемо, що вона рівномірно неперервна:

$$|f(x') - f(x'')| = \left| 2\sin\frac{x' - x''}{2}\cos\frac{x' + x''}{2} \right| \le \left| 2\sin\frac{x' - x''}{2} \right| \le$$

$$\le 2\frac{|x' - x''|}{2} = |x' - x''| < \varepsilon$$

Як тільки $|x^{'}-x^{''}|-\delta=\varepsilon$

Зауваження. З означення слідує, що якщо функція рівномірно неперервна на множині X (рівномірно неперервна в кожній точці множини X), то $f \in C(X)$.

Означення ріномірної неперервності за Гейне. $f: \mathbb{R} \to \mathbb{R}$ називається рівномірно неперервною на X якщо:

$$\forall \{x_n\}_{n=1}^{\infty} \subset X, \ \{y_n\}_{n=1}^{\infty} \subset X$$
$$x_n - y_n \to 0, \ n \to \infty \Longrightarrow f(x_n) - f(y_n) \to 0, n \to \infty$$

Теорема. Означення Коші та Гейне еквівалентні. Доведення. Без доведення. Приклад:

1.
$$f(x) = x^2, x \in \mathbb{R}$$
 Виберемо $x_n = \sqrt{n+1}, y_n = \sqrt{n}$

$$x_n - y_n = \sqrt{n+1} - \sqrt{n} \to 0, \ n \to \infty$$
$$f(x_n) - f(y_n) = n+1 - n = 1 \not\to 0, n \to \infty$$

Отже за означенням Гейне функція не ϵ рівномірно неперервною на \mathbb{R} .

2.

$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \in [-1; 1] \setminus \{0\} \\ 0, & x = 0 \end{cases}$$

Функція розривається в точці x_0 , тож вона не є неперервною, а отже й не є рівномірно неперервною.

Теорема. Лінійна властивість рівномірної неперервності. f і g — рівномірно меперервні на $X \subset D_f = D_g \Longrightarrow \forall \alpha, \beta \in \mathbb{R} \ \alpha f + \beta g$ — рівномірно неперервна на X.

Доведення. Очевидно з означення за Коші.

Теорема (Рівномірна неперервність на звуженні). f — рівномірно неперервна на $X \Longrightarrow \forall X_1 \subset X \ f|_{X_1}$ рівномірно неперервна на X_1 . (Тут $f|_{X_1}$ позначає звуження f на X_1)

Теорема. (Рівномірна неперервність на об'єднанні). Якщо f — рівномірно неперервна на (a,b] і [b;c) $(a,c\in\overline{\mathbb{R}})$, то тоді f рівномірно неперервна на (a;c).

Доведення. $\forall \varepsilon > 0 : x', x'' \in (a, c)$:

- 1. $x', x'' \in (a, b] \Longrightarrow$ очевидно неперервна.
- 2. $x', x'' \in [b, c) \Longrightarrow$ очевидно неперервна.
- 3. $x' \in (a, b], x'' \in [b; c).$

$$|f(x') - f(x'')| = |f((x') - f(b) + f(b) - f(x'')| \le |f((x') - f(b))| + |f(b) - f(x'')|$$

З умови
$$\exists \delta_1 : |f((x') - f(b)| < \varepsilon, \ \exists \delta_2 : |f(b) - f(x'')| < \varepsilon.$$

Якщо ми поставимо $\delta = min(\delta_1, \delta_2)$, то отримаємо:

$$|f((x') - f(b)| + |f(b) - f(x'')| < 2\varepsilon$$

Теорема Кантора. f — неперервна на X і X — компакт, то f рівномірно неперервна на X.

Доведення. Нехай f не ϵ рівномірно неперервною на X. Це ознаає заперечення означення Коші:

$$\exists \varepsilon>0 \ \forall \delta>0 \ \exists \{x^{'},x^{''}\} \subset X: |x^{'}-x^{''}|<\delta \ |f(x^{'})-f(x^{''})| \geq \varepsilon$$
 Назвемо цю умову (1)

. Візьмемо деяку послідовність дельт таку, що $\delta_n = o(1)$, (Наприклад $\delta_n = \frac{1}{n}$).

$$\forall n \in \mathbb{N} \ \exists x', x'' : |x'_n - x''_n| < \delta_n \ |f(x'_n) - f(x''_n)| \ge \varepsilon$$

$$\{x_{n}^{'}\}_{n=1}^{\infty}\subset X\Longrightarrow \exists \{x_{n_{k}}^{'}\}_{k=1}^{\infty}\to x_{0}\in X$$
 Так як $|x_{n_{k}}^{'}-x_{n_{k}}^{''}|<\delta_{n_{k}}\to 0\Longrightarrow x_{n_{k}}^{''}\to x_{0}$

Враховуючи неперервність f в точці x_0 , маємо:

$$|f(x_{n_k}^{'}) - f(x_{n_k}^{''})| \to |f(x_0) - f(x_0)| = 0, \ k \to \infty$$
, що суперечить умові (1)

Теорема (Рівномірна неперервність на інтервалі). Якщо f — неперервна на скінченному інтервалі (a,b), то:

1.

$$\exists \lim_{x \to a+0} = A \in \mathbb{R}$$
 і $\lim_{x \to b-0} f(x) = B \in \mathbb{R} \Longrightarrow$
 $\Longrightarrow f$ — рівномірно неперервна на (a,b)

2. Інакше, f не ϵ рівномірно неперервною на (a, b).

Доведення.

$$F(x) = \begin{cases} f(x), & x \in (a, b) \\ A, & x = a \\ B, & x = b \end{cases}$$

То $F(x) \in C([a;b])$, отже, за теоремою Кантора, F — рівномірно неперервна на [a,b]. Отже, F рівномірно неперервна на (a,b) за теоремою про рівномірну неперервність на звуженні $F|_{(a,b)}$.

Друга частина без доведення.

Приклад:

$$f(x) = e^{\frac{1}{x}}$$

1. На проміжку (-1;0)

$$\lim_{x \to 1+0} f(x) = e^{-1}$$
$$\lim_{x \to -0} f(x) = 0$$

Отже, f рівномірно неперервна на (-1,0).

2. На проміжку (0; 1)

$$\lim_{x \to +0} f(x) = +\infty$$

Отже, f не рівномірно неперервна на проміжку (0;1).

Теорема (Рівномірна неперервніть на нескінченності).

$$f \in C([a; +\infty))$$
 i $\exists \lim_{x \to +\infty} f(x) = A \in \mathbb{R}$

Тоді f рівномірно неперервна на $[a; +\infty)$.

Доведення. Із існування границі на нескінченності:

$$\forall \varepsilon > 0 \ \exists \Delta > 0 : \forall x \ge \Delta > a \ |f(x) - A| < \varepsilon$$

$$[a; +\infty] = [a; \Delta] \cup [\Delta; +\infty]$$

Наша функція рівномірно неперервна на $[a; \Delta]$. Залишилось тільки дізнатись чи є вона такою на $[\Delta; +\infty)$. За теоремою Кантора:

$$\forall \varepsilon > 0$$

$$|f(x^{'})-f(x^{''})|\leq |f(x^{'})-A|+f(x^{''})-A|<\varepsilon+\varepsilon=2\varepsilon, \text{ як тільки:}\\ |x^{'}-x^{''}|<\delta \ \forall x^{'},x^{''}\in [\Delta;+\infty]$$

Отже, на $[\Delta; +\infty]$ f рівномірно неперервна.

Приклад:

1.
$$f(x)=e^{\frac{1}{x}}, \ x\in [1;+\infty]$$

$$\lim_{x\to +\infty} f(x)=1\Longrightarrow f -\text{рівномірно неперервна}$$

2. $f(x) = \sin x^2$, $x \in \mathbb{R}$. Візьмемо дві послідовності

$$x_n = \sqrt{\frac{\pi}{2} + 2\pi n}, \ y_n = \sqrt{2\pi n}$$
При $n \to +\infty$

$$x_n - y_n \to 0$$

$$\sin(x_n^2) - \sin(y_n^2) = 1 - 0 = 1$$

Отже, f(x) не є неперервною за Гейне.