PhD Progress Report 1st year

Tommaso Papini

Department of Information Engineering, University of Florence, Italy tommaso.papini@unifi.it

31st October 2017

- Analysis of assembly lines
- A hybrid technique for transient analysis
- Other projects
 - the LINFA project
 - Activity Recognition for Ambient Assisted Living
- Research plan for the next year

Analysis of assembly lines

Assembly line

N sequential workstations WS_1, \ldots, WS_N

- with transfer blocking
- and no buffering capacity

Workstation WSk can be in one of three states

- ▶ producing: ₩Sk is working on a product
- ► done: ₩Sk is done working on a product
- ▶ idling: WSk is waiting for a new product

Workstation

Each workstation WSk

- has no internal parallelism
 - at most one item being processed in each workstation
- can implement complex workflows
 - sequential/alternative/cyclic phases with random choices
- and has GEN phases' durations

The last phase has no duration and encodes the done state

Underlying stochastic process

The underlying stochastic process of each isolated workstation is a Semi Markov Process (SMP)

- due to GEN durations
- and the absence of internal parallelism

The whole assembly line finds a renewal in any case where

- every done station is in a queue before a bottleneck
- and everything else is idling

Inspection with partial observability

The assembly line can be inspected by external observers

- the line can be considered at steady-state at inspection
- there can be ambiguity about the current phase

An observation is a tuple $\omega = \langle \omega_0, \omega_1, \dots, \omega_N \rangle$

- lacksquare ω_0 indicates if a new product is ready to enter the line or not
- $\omega_k = \langle \sigma_k, \phi_k \rangle$ refers to WS_k
 - σ_k indicates if WS_k is idle/producing/done
 - ϕ_k identifies the set of possible current phases

Two kinds of uncertainty

- about the actual current phase
 - discrete
- about the remaining time in the current phase
 - continuous

Performance measures

Time To Done

 The remaining time until workstation k, according to observation ω, reaches the done state

Time To Idle

The remaining time until workstation k, according to observation ω, reaches the idling state

Time To Start Next

The remaining time until workstation k, according to observation ω, starts the production of a new product

Evaluation of performance measures

Time To Done

$$\mathsf{TTD}(k,\omega) := \left\{ \begin{array}{ll} \displaystyle \sum_{\gamma \in \phi_k} P_{k,\gamma,\omega} \cdot (R(k,\gamma) + Z(k,\gamma)), & \text{if } \sigma_k = \textit{producing} \\ \\ \mathsf{TTD}(k-1,\omega) + V(k), & \text{if } \sigma_k = \textit{idling} \\ \\ 0, & \text{if } \sigma_k = \textit{done} \end{array} \right.$$

- $ightharpoonup P_{k,\gamma,\omega}$ probability weight that \mathbb{WS}_k is in phase γ according to ω
- ▶ $R(k, \gamma)$ remaining time in phase γ of WS_k
- ▶ $Z(k, \gamma)$ execution time of phases of WS_k that follow γ
- ▶ V(k) production time of WS_k

Backward recursive evaluation

Evaluation of performance measures

Time To Idle

$$\mathsf{TTI}(k,\omega) := \left\{ \begin{array}{ll} \max\{\mathsf{TTD}(k,\omega),\mathsf{TTI}(k+1,\omega)\}, & \text{if } \sigma_k \in \{\textit{producing},\textit{done}\} \\ \\ 0, & \text{if } \sigma_k = \textit{idling} \end{array} \right.$$

- ► $\mathsf{TTI}(k,\omega) = \mathsf{max}\{\mathsf{TTD}(k,\omega),\ldots,\mathsf{TTD}(k+n,\omega)\}$
 - ▶ $\forall S_i$ producing/done $\forall j \in [k, k+n]$
 - either WS_{k+n} last workstation or WS_{k+n+1} idling
- WS_k becomes idle when the bottleneck finishes its production

Forward recursive evaluation

Time To Start Next

$$\mathsf{TTSN}(k,\omega) := \mathsf{max}\{\mathsf{TTI}(k,\omega),\mathsf{TTD}(k-1,\omega)\}$$

Forward and backward recursive evaluation

Disambiguation of observed phases

Resolve observed (producing) phases' ambiguity

• steady-state probability that WS_k is in phase γ according to ω

Given observation ϕ_k for workstation WS_k

- we compute probability $P_{k,\gamma,\omega}$
- that it was actually γ that produced ϕ_k

$$extstyle extstyle extstyle P_{m{k},\gamma,\omega} = rac{ ilde{\pi}(\gamma)}{\displaystyle\sum_{\gamma' \in \phi_{m{k}}} ilde{\pi}(\gamma')}$$

• $\tilde{\pi}(\gamma)$ steady-state probability of phase γ in an isolated model of \mathtt{WS}_k

Isolated workstation model

The isolated workstation model represents a workstation repeatedly processing a product

- one product being processed
- after its production, it's moved back to the entry point of the workstation

It can be used for two reasons

- steady-state probabilities of producing phases are independent
- the inspection is at steady-state
 - arrivals and productions can be considerer in equilibrium

Evaluation of performance measures

Remaining time

Evaluation of $F_{R(k,\gamma)}(t) = \text{CDF of } R(k,\gamma)$

▶ $R(k, \gamma)$ remaining time in phase γ of WS_k

Problem!

- remaining times of enabled GEN transitions are dependent
- joint probabilities don't allow for a compositional approach

1/3 Immediate approximation

- ightharpoonup assume that phase γ is inspected at its ending
 - $ightharpoonup \tilde{F}_{R(k,\gamma)}(t) = 1 \quad \forall t$
- represents an upper bound

2/3 Newly enabled approximation

- lacktriangleright assume that phase γ is inspected at its beginning
 - $\tilde{F}_{R(k,\gamma)}(t) = F_{\gamma}(t)$
 - $F_{\gamma}(t)$ original CDF of the duration of γ
- represents a lower bound

Remaining time

³/₃ Independent remaining times approximation

- consider the remaining times of ongoing phases as independent
- represents a (better) lower bound

Theorem: positive correlation & stochastic order

If \hat{R} is an independent version of vector R of positively correlated remaining times of ongoing phases, then $\hat{R} \ge_{st} R$

Steady-state distribution of $\hat{R}(k, \gamma)$ computed according to the Key Renewal Theorem¹

$$\tilde{F}_{R(k,\gamma)}(t) = \frac{1}{\mu} \int_0^t [1 - F_{\gamma}(s)] ds$$

μ expected value of F_γ(t)

¹Serfozo, R., 2009. Basics of applied stochastic processes. Springer Science & Business Media.

Execution and producing time

Evaluation of $F_{Z(k,\gamma)}(t)$ and $F_{V(k)}$

- ▶ $Z(k, \gamma)$ execution time of phases of WS_k that follow γ
- \triangleright V(k) production time of WS_k

CDFs of $Z(k, \gamma)$ and V(k) are computed as transient probabilities

- ▶ $F_{Z(k,\gamma)}$ transient probability from phase after γ to final phase of WS_k
- $ightharpoonup F_{V(k)}$ transient probability from first phase to final phase of WS_k

Upper/lower bounds for TTD, TTI and TTSN can be evaluated

convolution and max operations maintain stochastic order

Case study assembly lines

Sequential, alternative and cyclic workstations

arrival

Simple assembly line

- two sequential workstations
- ▶ both in phase p₁ at inspection

Complex assembly line

- three repetitions
- of sequential/alternative/cyclic ws
- all observed in producing

completion

Simple assembly line

TTDone, TTIdle, TTStartNext

TTD, TTI and TTSN computed in

- ▶ 41/45/42 min for simulation
- ▶ 0.15/0.18/0.10 s for bounds

Very good approximation results

especially for independent remaining times

Feasible approach

- very fast bounds evaluation
- compared to simulation

Complex assembly line

TTDone, TTIdle, TTStartNext

TTD, TTI and TTSN computed in

▶ 0.126/0.123/0.75 s for bounds

Scalable solution

- in a complex scenario
- simulation would be infeasible

A hybrid technique for transient analysis

A hybrid technique for transient analysis

A hybrid technique for transient analysis

PhD Progress Report: 1st year

Other projects

The LINFA project

PhD Progress Report: 1st year

Other projects

Activity Recognition for Ambient Assisted Living

Activity Recognition for Ambient Assisted Living

PhD Progress Report: 1st year

Other projects

Activity Recognition for Ambient Assisted Living

Activity Recognition for Ambient Assisted Living

Research plan for the next year

Research plan for the next year

Analysis of assembly lines

Introduction of buffering capacity

- with fixed/variable capacity
- so to model more realistic scenarios

Derivation of additional performance measures

- ▶ in the same compositional fashion
- e.g. production time of a certain product in the line
- or of the next N products

Derivation of a more educated upper bound

Research plan for the next year The LINFA project

Model more aspects to refine the ward model

- introduce personalised healthcare protocols
- employ process mining techniques

State-space optimisation

- avoid state-space explosion
- investigate other tools
 - Storm

Activity Recognition for Ambient Assisted Living

Research plan for the next year

Activity Recognition for Ambient Assisted Living

Refine model based AR

- exploit fuzzy logic to include support for continuous sensors
 - accelerometer/thermometer/...

Identify good AR datasets for AAL

- ▶ investigate the literature
- generate new datasets

In order to apply process mining techniques