Weak induction Strong induction Proof or spoof?

Induction

Casey Blacker Math 300 Weak induction Strong induction Proof or spoof?

Weak induction

Strong induction

3 Proof or spoof?

Weak induction Strong induction Proof or spoof?

Section 1

Weak induction

(Weak) induction

Suppose that $\{P(n)\}$ is a collection of assertions indexed by $n \in \mathbb{N}$.

Goal: For all $n \ge n_0$, prove P(n).

In its simplest manifestation, the approach of *(weak) induction* is twofold:

- 1. Establish the base case $P(n_0)$,
- 2. Prove the inductive hypothesis:

$$\forall n \geq n_0 : P(n) \implies P(n+1).$$

Remark

Sometimes it is necessary to prove multiple base cases.

Proposition

For all $n \geq 1$, we have $1 + \cdots + n = \frac{n(n+1)}{2}$.

Proof.

First observe that the formula holds for n = 0.

Now suppose that $n \in \mathbb{N}$ satisfies $0 + \cdots + n = \frac{n(n+1)}{2}$, and observe that

$$0 + \dots + n + (n+1) = \frac{n(n+1)}{2} + (n+1)$$

$$= \frac{n(n+1) + 2(n+1)}{2}$$

$$= \frac{(n+1)(n+2)}{2}.$$

Proposition

If $(a_i)_i \subseteq \mathbb{R}$ is the sequence with $a_0 = 1$ and $a_i = 2a_{i-1}$ for all $i \ge 1$, then $a_n = 2^n$ for all n.

Proof.

As $a_0 = 2^0$, the claim is true for n = 0.

Now let $n \ge 0$ and suppose that $a_n = 2^n$. We have

$$a_{n+1} = 2a_n$$
$$= 2 \cdot 2^n$$
$$= 2^{n+1}.$$

Section 2

Strong induction

Strong induction

Suppose again that $\{P(n)\}_{n\in\mathbb{N}}$ is a collection of assertions.

Goal: For each $n \ge n_0$, prove P(n).

The technique of strong induction is:

- 1. Establish the base case $P(n_0)$,
- 2. Prove the inductive hypothesis:

$$\forall n \geq n_0 : (\forall m \leq n : P(m)) \implies P(n+1).$$

Proposition

Every integer $n \ge 2$ is the product of prime numbers, which are unique up to rearrangement.

Proof.

First observe that n = 2 is the product of primes.

Now let n > 2 and suppose that every integer m < n is the product of primes $m = p_1 \cdots p_k$. If n is prime then we are done. Thus suppose that $n = m \cdot m'$. By assumption,

$$m=p_1\cdots p_k$$
 and $m'=p_1'\cdots p_{k'}'$

for some primes p_1, \ldots, p_k and p'_1, \ldots, p'_k . It follows that

$$n = mm' = p_1 \cdots p_k p_1' \cdots p_{k'}'$$

is a product of primes.

Section 3

Proof or spoof?

Let $\{\ell_i\}_i$ be a finite collection of lines in \mathbb{R}^2 , and let \mathcal{C} be the resulting collection of regions in \mathbb{R}^2 .

Claim

The members of \mathcal{C} can be colored red and blue in such a way that no two adjacent regions have the same color.

Proof?

If $\{\ell_i\}_i$ is empty then $\mathcal{C} = \{\mathbb{R}^2\}$. Coloring \mathbb{R}^2 either red or blue satisfies the claim.

Fix $n \in \mathbb{N}$, suppose the claim is true for collections of n lines, and let $\{\ell_1,\ldots,\ell_{n+1}\}$. By hypothesis, the regions \mathcal{C}' bounded by $\{\ell_1,\ldots,\ell_n\}$ can be colored so that no two adjacent regions have the same color. The line ℓ_{n+1} divides \mathbb{R}^2 into two half-planes. On one side, invert the colors of \mathcal{C}' . On the other side, do nothing. The resulting coloring of \mathcal{C} satisfies the claim.

Proof!

Everyone has the same birthday.

We will show that every set P of people satisfies the property that, for all $p, q \in P$, p and q have the same birthday. We will proceed by induction on the size of P.

Proof?

If $P = \{p\}$, then it trivially follows that p and q have the same birthday for all $p, q \in P$.

Now suppose that $|P| \geq 2$ and that the claim holds for all sets of size |P|-1. Choose nonempty subsets $X,Y\subseteq P$ with |X|=|Y|=|P|-1, so that $X\cup Y=P$. If $p\in X\cap Y$ then every $q\in X\cup Y$ has the same birthday as p.

Every chocolate bar with a total of n squares takes precisely n-1 breaks to separate it into single squares.

Proof?

If n = 1, then n - 1 = 0 breaks are needed.

Suppose that $n \geq 2$ and that the claim holds for all chocolate bars of size m < n. It takes a single break to separate the bar into two bars of size m, m' < n. For each resulting bar, it takes precisely m-1 and m'-1 breaks to separate them into single squares, respectively. In all, it takes precisely

$$1 + (m-1) + (m'-1) = n-1$$

breaks to separate a size n bar into single squares.

For all $n \in \mathbb{N}$, we have $2^n = 1$.

Proof?

The identity $2^0 = 1$ establishes the claim for n = 0. Suppose that $n \ge 0$ and that $2^m = 1$ for all $m \le n$. We have

$$2^{n+1} = \frac{2^n \cdot 2^n}{2^{n-1}} = \frac{1 \cdot 1}{1} = 1.$$

The Fibonacci sequence is determined by $a_0 = 0$, $a_1 = 1$, and the recurrence relation $a_{n+1} = a_n + a_{n-1}$ for $n \ge 2$.

Claim

For all
$$n \ge 0$$
, $a_n = \frac{\phi^n - \psi^n}{\sqrt{5}}$ where $\phi = \frac{1+\sqrt{5}}{2}$ and $\psi = \frac{1-\sqrt{5}}{2}$.

Proof?

The cases n = 0 and n = 1 are easily verified.

Fix $n \ge 1$ and suppose the claim is true for all $m \le n$. We have

$$\begin{aligned} a_{n+1} &= a_n + a_{n-1} \\ &= \frac{\phi^n - \psi^n}{\sqrt{5}} + \frac{\phi^{n-1} - \psi^{n-1}}{\sqrt{5}} \\ &= \frac{\phi^{n-1}(\phi + 1) - \psi^{n-1}(\psi + 1)}{\sqrt{5}} \\ &= \frac{\phi^{n+1} - \psi^{n+1}}{\sqrt{5}}. \end{aligned}$$

Proof!

A chessboard with a single square removed can be completely covered with L-shaped tiles.

We will establish a stronger claim: namely, that a $2^n \times 2^n$ chessboard with $n \ge 1$ can be covered with L-shaped tiles.

Proof?

The claim is clearly true when n = 1.

Suppose that $n \ge 1$ and that the assertion is true for all $2^n \times 2^n$ chessboards. Given a $2^{n+1} \times 2^{n+1}$ chessboard with a single square removed, divide it into four $2^n \times 2^n$ boards. Cover the center of the $2^{n+1} \times 2^{n+1}$ board with an L-shaped tile so that each consitutent $2^n \times 2^n$ board has a single square either covered or removed. The result now follows by the inductive hypothesis.

Proof!

We have $(x^n)' = 0$ for all $n \ge 0$.

Proof?

From 1' = 0, the result obtains for n = 0.

Let $n \ge 0$ and assume that $(x^m)' = 0$ for all $m \le n$. We have

$$(x^{n+1})' = (x^n \cdot x^1)'$$

= $(x^n)' \cdot 1 + x^n \cdot (x^1)'$
= 0

Definition

A subset $S \subseteq \mathbb{R}$ is said to be *bounded above* when there is a $b \in \mathbb{R}$ with $b \ge s$ for all $s \in S$.

Claim

Every subset $S \subseteq \mathbb{R}$ is bounded above.

Proof?

If $S=\varnothing$, then every $b\in\mathbb{R}$ is an upper bound for S. Let $n\geq 0$ and suppose that every subset $S'\subseteq\mathbb{R}$ is bounded. Let $S=\{s_1,\ldots,s_n,s_{n+1}\}\subseteq\mathbb{R}$. It follows by assumption that $S'=\{s_1,\ldots,s_n\}$ has an upper bound $b'\in\mathbb{R}$. It is readily seen that the greater of b' and s_{n+1} is an upper bound for S.