Assignment 2 due by October 24, 2023

第七組

410650161 008 陳威旭

410650229 010 林可翰

410650252 011 何少鈞

410650377 015 張哲瑋

410650880 033 鄭暐瀚

1 (20 pt.) 找到3.15題的 σ^2 的不偏估計量、共同效果 μ 的估計值以及塗料 I 的因子水準 τ_1

下表為四種電視顯像管的塗層對顯像管導電率影響。

塗層種類						
I	П	Ш	IV			
56	64	45	42			
55	61	46	39			
62	50	45	45			
59	55	39	43			
60	56	43	41			

則設:

$$Y_{ij} = \mu + \tau_j + \epsilon_{ij}$$
 for i=1,..., n_j and j=1,...,k; n_j =n=5;k=4.

 Y_{ij} :導電率(第)種塗料的第i個觀察值) μ :四種塗層對顯像管導電率影響的共同效果 $\sum_{j=1}^{4} \tau_{j} = 0$, τ_{j} 為第j種塗料的因子水準。

第j個塗料的第i個觀察值的誤差和 $\varepsilon_{ij}\sim \text{NID}(0,\sigma^2)$: NID意思是獨立常態分配,而 σ^2 是共同母體變異數。

變數 conduct 之變異數的巢狀隨應效果分析								
變異數來源	DF	平方和	F值	Pr > F	誤差項	均方	變異數成分	總計百分比
總計	19	1338.200000				70.431579	85.826667	100.0000
coat	3	1135.000000	29.79	<.0001	誤差	378.333333	73.126667	85.2027
誤差	16	203.200000				12.700000	12.700000	14.7973

conduct 平均值	50.30000000		
conduct 平均值的標準誤			

ANOVA 程序						
的層級 coat		conduct				
	N	平均值	標準差			
1	5	58.4000000	2.88097206			
2	5	57.2000000	5.44977064			
3	5	43.6000000	2.79284801			
4	5	42.0000000	2.23606798			

基於 σ^2 =E(MSE), MSE是 σ^2 的不偏估計量, 所以誤差的變異數 σ^2 的不偏估計量為: σ^2 =MSE=12.7。

共同效果µ 的估計值為:

$$\hat{\mu} = \overline{Y} = 50.3_{\circ}$$

塗料 I 的因子水準 τ_1 的估計值為:

用塗料一的平均 $\overline{Y}_{.1}$ 減去共同效果 μ

$$\widehat{\tau}_1 = \overline{Y}_1 - \widehat{\mu} = 8.1$$

2 (80 pt.)在一家紡織廠中,每台織布機都應該在每分鐘都提供相同的布產量,為了研究這個假設,隨機選出五個織布機,並且在不同時間記錄它們每分鐘輸出的布的重量(磅):

(a) (25 pt.) 建立一個假設模型以描述這個問題。

由於是在很多的織布機中隨機抽取五個織布機, 考慮的因子為不同的織布機, 因此判斷為單一因子下的隨機效果模型。 則設:

$$Y_{ij} = \mu + \tau_j + \varepsilon_{ij}$$
 for i=1,..., n_j and j=1,...,k; $n_j = n = 5$;k=5.

 Y_{ii} :產量(磅/每分鐘)(第j個織布機的第i個觀察值)

μ:織布機對產量(磅/每分鐘)共同效果

第j個塗料的第i個觀察值的誤差和 ε_{ij} ~ NID(0, σ^2), σ^2 是共同母體變異數。

處理效果 $\tau_i \sim \text{NID}(0, \sigma_{\tau}^2)$, σ_{τ}^2 是第j個織布機效果的變異數。

假設 ϵ_{ij} 與 τ_i 為獨立關係。

n:單一處理樣本數

k:處理數

(b) (25 pt.) 用SAS進行變異數分析, 檢定織布機的產量是否相等。 前提假設:

由於是隨機抽出五台織布機,且只有織布機一個因子,所以處理效果 τ_j ~ NID($0,\sigma_{\tau}^2$), σ_{τ}^2 是不同織布機的處理效果的變異數。

誤差和 $\varepsilon_{ij} \sim \mathsf{NID}(0,\sigma^2)$ 且假設 ε_{ij} 與 τ_j 為獨立關係。

檢定假設:

$$H_0: \sigma_{\tau}^2 = 0 ; H_1: \sigma_{\tau}^2 > 0$$

變數 cloth 之變異數的巢狀隨機效果分析								
變異數來源	DF	平方和	F值	Pr > F	誤差項	均方	變異數成分	總計百分比
總計	24	0.637600				0.026567	0.028920	100.0000
loom	4	0.341600	5.77	0.0030	誤差	0.085400	0.014120	48.8243
誤差	20	0.296000				0.014800	0.014800	51.1757

p-value=0.003

結果:根據所得到的p值<0.01, 拒絕虛無假設。

結論:

根據實驗結果, 有充足的證據認為不同的織布機不會影響每分鐘輸出的布的重量(磅)是錯誤的; 換句話說, 我們認為不同的織布機會影響每分鐘輸出的布的重量(磅)。

(c) (10 pt.) 求 σ^2 的不偏估計量。

基於 σ^2 =E(MSE), MSE是 σ^2 的不偏估計量, 所以誤差的變異數 σ^2 的不偏估計量為: σ =MSE=0.0148。

(d) (10 pt.) 估計織布機之間的變異。

var cloth;

$$\widehat{\sigma_{\tau}^2} = \frac{MSTR - MSE}{n} = \frac{0.0854 - 0.0148}{5} = 0.01412$$

```
(e) (10 pt.) 求織布機間變異佔總變異的百分比。
\frac{\text{織布機間變異}}{\text{總變異}} \times 100\% = \frac{0.01412}{0.01412 + 0.0148} \times 100\% = 48.8243\%
SAS 程式碼
*Q1;
data d;
input coat $ conduct @@;
cards;
1 56 1 55 1 62 1 59 1 60
2 64 2 61 2 50 2 55 2 56
3 45 3 46 3 45 3 39 3 43
4 42 4 39 4 45 4 43 4 41
run;
proc anova;
class coat;
model conduct=coat;
mean coat;
run;
proc nested;
class coat;
var conduct;
run:
*Q2:
data d;
input loom $ cloth @@;
cards;
1 14 1 14.1 1 14.2 1 14 1 14.1
2 13.9 2 13.8 2 13.9 2 14 2 14
3 14.1 3 14.2 3 14.1 3 14 3 13.9
4 13.6 4 13.8 4 14 4 13.9 4 13.7
5 13.8 5 13.6 5 13.9 5 13.8 5 14
run;
proc anova;
class loom;
model cloth=loom;
mean loom;
run;
proc nested;
class loom;
```