VE320 Introduction of Semiconductor Device Homework 5

Due Date: July 11

- 5.1 An abrupt silicon pn junction at zero bias has dopant concentrations of $N_a = 10^{17}$ cm⁻³ and $N_d = 5*10^{15}$ cm⁻³. T = 300 K.
- (a) Calculate the Fermi level on each side of the junction with respect to the intrinsic Fermi level.
- (b) Sketch the equilibrium energy-band diagram for the junction and determine V_{bi} from the diagram and the results of part (a).
- (c) Calculate V_{bi} using Equation (7.10), and compare the results to part (b).
- (d) Determine x_n , x_p , and the peak electric field for this junction
- 5.2 A silicon pn junction in thermal equilibrium at T = 300 K is doped such that $E_F E_{Fi} = 0.365$ eV in the n region and $E_{Fi} E_F = 0.330$ eV in the p region.
- (a) Sketch the energy-band diagram for the pn junction.
- (b) Find the impurity doping concentration in each region.
- (c) Determine V_{bi} .
- 5.3 (a) Consider a uniformly doped silicon pn junction at T = 300 K. At zero bias, 25 percent of the total space charge region is in the n-region. The built-in potential barrier is $V_{bi} = 0.710$ V. Determine (i) N_a , (ii) N_d , (iii) x_n , (iv) x_p , and (v) E_{max} .
- 5.4 An "isotype" step junction is one in which the same impurity type doping changes from one concentration value to another value. An n-n isotype doping profile is shown in Figure 1. (a) Sketch the thermal equilibrium energy-band diagram of the isotype junction. (b) Using the energy-band diagram, determine the built-in potential barrier. (c) Discuss the charge distribution through the junction

Figure 1

5.5 An abrupt silicon pn junction at T = 300 K has impurity doping concentrations of $Na = 5*10^{16}$ cm⁻³ and $N_d = 10^{15}$ cm⁻³. Calculate (a) V_{bi} , (b) W at (i) $V_R = 0$ and (ii) $V_R = 5$ V, and (c) $|E_{\text{max}}|$ at (i) $V_R = 0$ and (ii) $V_R = 5$ V.

- 5.6 An ideal one-sided silicon p⁺n junction at T = 300 K is uniformly doped on both sides of the metallurgical junction. It is found that the doping relation is $N_a = 80N_d$ and the built-in potential barrier is $V_{bi} = 0.740$ V. A reverse-biased voltage of $V_R = 10$ V is applied. Determine (a) N_a , N_d , (b) x_p , x_n , (c) $|E_{max}|$, and $(d)C_j$.
- 5.7 Consider a silicon pn junction with the doping profile shown in Figure 2. T = 300 K. (a) Calculate the applied reverse-biased voltage required so that the space charge region extends entirely through the p region. (b) Determine the space charge width into the n^+ region with the reverse-biased voltage calculated in part (a). (c) Calculate the peak electric field for this applied voltage. (You can ignore the influence of p^+)

Figure 2