## A Zero-shot and Few-shot Study of Instruction-Finetuned Large Language Models Applied to Clinical and Biomedical Tasks

Yanis Labrak, Mickael Rouvier and Richard Dufour

COLING 2024 Short Paper

## **Abstract**

• LLM의 출현으로 medical domain 데이터의 효율적인 처리가 가능해지고, 다양한 작업에서 우수한 성능을 보임

• 13개의 실제 임상/생물의학 NLP task 세트에 대해 Instruction-Finetuned 된 LLM의 성능을 평가

• 결과적으로는 LLM이 대부분의 task에서 의료 전용 모델과 비슷한 성능을 보였고, 특히 QA Task에서 두드러진 성과를 보임

• 하지만 분류/RE(Related Extraction) task에서는 의료 분야 맟춤형 모델 인 PubMedBERT 의 성능에는 미치지 못함



| Task | Dataset                | Eval | Metric     | Reference                 |  |  |
|------|------------------------|------|------------|---------------------------|--|--|
| CLS  | HoC                    | Test | F1-measure | Baker et al. (2016)       |  |  |
|      | LitCovid               | Test | F1-measure | Chen et al. (2021)        |  |  |
|      | PubHealth              | Test | Accuracy   | Neema and Toni (2020)     |  |  |
|      | N2C2 2006 Smokers      | Test | Accuracy   | Uzuner et al. (2008)      |  |  |
|      | BioASQ 7b              | Test | Accuracy   | Tsatsaronis et al. (2015) |  |  |
| QA   | MedMCQA                | Dev  | Accuracy   | Pal et al. (2022)         |  |  |
|      | SciQ                   | Test | Accuracy   | Welbl et al. (2017)       |  |  |
|      | Evidence Inference 2.0 | Test | Accuracy   | DeYoung et al. (2020)     |  |  |
| RE   | GAD                    | Test | Accuracy   | Bravo et al. (2015)       |  |  |
| NLI  | SciTail                | Test | Accuracy   | Khot et al. (2018)        |  |  |
| INLI | MedNLI                 | Test | Accuracy   | Shivade (2017)            |  |  |
| NER  | BC5CDR                 | Test | F1-measure | Li et al. (2016)          |  |  |
|      | NCBI-disease           | Test | F1-measure | Dogan et al. (2014)       |  |  |

Table 1: List of evaluation tasks and their metrics. CLS: Classification, QA: Question Answering, RE: Relation Extraction, NLI: Natural Language Inference, NER, Named-Entity Recognition.



## **Used Model**

• TK-Instruct – T5 encoder-decoder based model, Flan-T5-XL 모델과 비교하였을 때 QA 작업에서 더 좋은 성능을 보였기 때문에 사용

ChatGPT – GPT 3.5 Turbo based model

• Standard Alpaca – LLaMA with 7B parameter based model

• PubMedBERT – 생물의학 전용 BERT based model. PubMed 말뭉치의 31억 단어를 기반으로 훈련됨



| Task | Dataset                | ChatGPT      |              | Flan-UL2     |              | Tk-Instruct |              | Alpaca    |        | PubMedBERT   |
|------|------------------------|--------------|--------------|--------------|--------------|-------------|--------------|-----------|--------|--------------|
|      |                        | zero-shot    | 5-shot       | zero-shot    | 5-shot       | zero-shot   | 5-shot       | zero-shot | 5-shot | FUDINIEUDENT |
| CLS  | HoC                    | 62.24        | 38.34        | 56.36        | 54.86        | 50.77       | 25.48        | 1.21      | 38.78  | 82.75        |
|      | LitCovid               | 67.20        | <u>72.77</u> | 51.48        | 46.95        | 36.42       | 57.49        | 1.58      | 64.09  | 90.60        |
|      | PubHealth              | 63.20        | 66.29        | <u>72.46</u> | 50.53        | 53.70       | 66.04        | 52.80     | 55.64  | 75.39        |
|      | N2C2 2006 Smokers      | NaN          | NaN          | 22.12        | <u>42.31</u> | 16.35       | 37.50        | 10.57     | 31.73  | 60.58        |
| QA   | BioASQ 7b              | 89.24        | 92.03        | 90.97        | 91.64        | 88.09       | 86.36        | 79.05     | 79.82  | 73.39        |
|      | MedMCQA                | <u>48.91</u> | 56.37        | 41.05        | 43.34        | 33.85       | 33.18        | 24.91     | 29.50  | 38.15        |
|      | SciQ                   | <u>90.10</u> | 93.50        | 87.00        | 88.40        | 55.30       | 47.00        | 24.90     | 36.80  | 74.20        |
|      | Evidence Inference 2.0 | 59.98        | 63.83        | <u>66.45</u> | 65.06        | 41.33       | 38.79        | 32.49     | 94.18  | 65.47        |
| RE   | GAD                    | 47.75        | 52.25        | 49.81        | 53.37        | 48.88       | <u>57.87</u> | 51.12     | 57.68  | 79.78        |
| NLI  | SciTail                | 73.57        | 65.62        | 93.51        | 92.66        | 57.53       | 71.31        | 39.60     | 40.26  | 93.51        |
|      | MedNLI                 | NaN          | NaN          | 77.00        | <u>79.18</u> | 33.19       | 34.81        | 33.47     | 34.45  | 83.76        |
| NER  | BC5CDR                 | 92.12        | 93.12        | 68.26        | 83.32        | 84.54       | 83.23        | 82.11     | 84.07  | 97.65        |
|      | NCBI-disease           | 90.97        | 92.27        | 90.75        | 87.65        | 87.91       | 87.50        | 11.58     | 92.27  | 98.72        |

Table 2: 0- and 5-shot versus finetuning evaluation on clinical and biomedical tasks. Bold values are the highest scores obtained for the task and in underlined the seconds ones. Not allowed experiments are replaced by NaN.



• 간단한 논문이지만 특정 도메인 / task 에서는 LLM과 LLM이 아닌, 모델을 비교하면서 논문을 적어나가는 방법을 배움

 현재 연구 중인 부분에서 데이터셋을 평가하는 부분이 빈약했는데, 이를 평가하기 위한 여러가지 방법들을 알 수 있었음



## Thank you