Recuperación de Información Multimedia

Índices Métricos

CC5213 – Recuperación de Información Multimedia

Departamento de Ciencias de la Computación
Universidad de Chile

Juan Manuel Barrios - https://juan.cl/mir/ - 2020

M

Espacios Métricos

- Definición:
 - \square Universo de objetos válidos: \mathcal{D}
 - \square Función de distancia $d: \mathcal{D} \times \mathcal{D} \to \mathbb{R}$
 - \square El par (\mathcal{D}, d) es un espacio métrico ssi d cumple con las propiedades métricas:
 - No negatividad
 - Reflexividad
 - Positividad
 - Simetría
 - Desigualdad triangular

$$\forall x, y \in \mathcal{D} \quad d(x, y) \ge 0$$

$$\forall x \in \mathcal{D} \quad d(x, x) = 0$$

$$\forall x, y \in \mathcal{D} \ x \neq y \quad d(x, y) > 0$$

$$\forall x, y \in \mathcal{D} \quad d(x, y) = d(y, x)$$

$$\forall x, y, z \in \mathcal{D} \quad d(x, z) \le d(x, y) + d(y, z)$$

Espacios Métricos

- La función d entrega el grado de disimilitud entre dos objetos cualquiera de \mathcal{D}
- lacksquare D es el dominio y d es la métrica
- Ejemplos de espacio métrico:
 - □ Vectores y alguna distancia de Minkowski (Lp)
 - □ Signatures y distancia EMD
 - Strings y distancia de edición
 - Objetos multimedia con una distancia entrenada (metric learning)

M

Propiedades Métricas

- Dados tres objetos {a,b,p} la desigualdad triangular nos entrega una cota superior para d(a,b)
- Usando las propiedades métricas se puede calcular una cota inferior para d(a,b)

$$(1) d(a,b) \leq d(a,p) + d(p,b)$$

$$(2) d(a,p) \leq d(a,b) + d(b,p)$$

$$(3) d(b,p) \leq d(b,a) + d(a,p)$$

$$(2) \Rightarrow d(a,p) - d(b,p) \le d(a,b)$$

$$(3) \Rightarrow d(a,p) - d(b,p) \geq -d(b,a)$$

$$\Rightarrow$$
 $-d(a,b) \le d(a,p) - d(p,b) \le d(a,b)$

$$\Rightarrow |d(a,p) - d(p,b)| \le d(a,b)$$

Metric Access Methods

- Se desea realizar búsquedas por similitud en un conjunto de objetos R usando una métrica d
- Metric Access Methods (MAM) son estructuras de datos que permiten resolver búsquedas por similitud en R explotando las propiedades métricas de la función de distancia
 - Objetivo: reducir el número de veces que se evalúa la función de distancia
 - Supuesto: la función de distancia es costosa de evaluar

Pivote

- Un pivote p es un objeto de la colección fijo
- Permite acotar el valor de d mediante el uso de las propiedades métricas:

$$|d(q,p) - d(p,u)| \le d(q,u) \le d(q,p) + d(p,u)$$

M

Conjuntos de Pivotes

- Las cotas se vuelven más ajustadas cuando se usan varios pivotes
- Dado un conjunto de pivotes $P = \{p_1, ..., p_k\}$:
 - $\square UB_P(q,u)$ es la cota superior (upper bound) de d(q,u):

$$UB_{\mathcal{P}}(q, u) = \min_{p_i \in \mathcal{P}} \left\{ d(q, p_i) + d(p_i, u) \right\}$$

 $\square LB_P(q,u)$ es la cota inferior (lower bound) de d(q,u):

$$LB_{\mathcal{P}}(q, u) = \max_{p_i \in \mathcal{P}} \{ |d(q, p_i) - d(p_i, u)| \}$$

Tablas de Pivotes

- AESA (Approximating and Eliminating Search Algorithm)
 - □ Usar todos los objetos de R como pivote
 - Requiere mantener una tabla de distancias entre todos los pares de objetos del dataset
 - Memoria O(n²)

Ver Vidal. 1986.

- LAESA (Linear AESA)
 - Seleccionar subconjunto de elementos de la colección como pivotes
 - ¿Cómo resolver una búsqueda eficientemente?
 - □ ¿Cómo seleccionar el conjunto de pivotes?

Ver Micó et al. 1994.

LAESA

- Para una colección de n objetos se seleccionan k pivotes (al azar o mediante algún algoritmo)
- Calcular una tabla de n x k con las distancias de cada objeto con cada pivote

	p_1	 p_k
U ₁	$d(p_1,u_1)$	 $d(p_k, u_1)$
u _n	$d(p_1,u_n)$	 $d(p_k, u_n)$

Consulta por Rango

- Calcular la distancia entre q y cada pivote
- Para cada objeto:
 - □ Calcular su cota inferior
 - Criterio de exclusión: Si la cota inferior es mayor que r el objeto no es relevante (se descarta)
 - Notar que basta un pivote para descartar el objeto, por lo que no es necesario evaluar todos los pivotes
 - Si no pudo ser descartado se evalúa su distancia real y se determina si es relevante o no

```
foreach p_i \in \mathcal{P} do

| evaluar d(p_i, q) y guardar
end
queue \leftarrow \emptyset;
foreach u_i \in \mathcal{R} do

| if LB_{\mathcal{P}}(q, u_i) > r then
| continue;
| else if d(q, u_i) \leq r then
| queue.Add(u_i);
| end
end
Print(queue);
```

M

Criterio de Exclusión

El criterio de exclusión consiste en descartar todos los objetos u que cumplan:

$$|d(q,p) - d(p,u)| > r$$

 Gráficamente en el plano, usando un pivote se descartan todos los objetos que están fuera de un anillo centrado en p

Ejemplo consulta por rango

Tabla de Pivotes

$d(p_1,u_1)$	d(p ₂ ,u ₁)	d(p ₃ ,u ₁)
$d(p_1,u_2)$	d(p ₂ ,u ₂)	$d(p_3,u_2)$
$d(p_1,u_n)$	$d(p_2,u_n)$	$d(p_3,u_n)$

Criterio de exclusión:

$$LB_P(q,u_i) > r$$

Consulta k-NN

- Similar a una consulta por rango donde r es la distancia al candidato actual
- Calcular la distancia entre q y cada pivote
- Para cada objeto:
 - □ Calcular su cota inferior
 - Si la cota inferior es mayor que el candidato actual el objeto no es relevante (se descarta)
 - Si no pudo ser descartado se evalúa su distancia real y se determina si es mejor que el candidato actual o no

```
for each p_i \in \mathcal{P} do
    evaluar d(p_i, q) y guardar
end
candidate \leftarrow null;
candidate_dist \leftarrow +\infty;
foreach u_i \in \mathcal{R} do
    if LB_{\mathcal{P}}(q, u_i) \geq \text{candidate\_dist then}
         continue;
    end
    dist \leftarrow d(u_i, q);
    if dist < candidate_dist then
         candidate \leftarrow u_i;
         candidate_dist \leftarrow dist;
    end
end
Print(candidate):
```


Ejemplo (1)

Sea **R** un conjunto de 16 objetos (a-p) (vectores de cinco dimensiones, comparados con distancia L₁)

objetos como pivotes

La construcción del índice consiste en calcular la distancia de cada objeto con

Ejemplo (2)

а	8	2	5	2	0
b	10	3	2	1	3
С	12	4	1	2	1
P1 → d	2	3	0	1	0
е	6	3	2	1	7
f	9	1	0	4	3
g	7	3	5	3	3
h	10	0	1	2	3
i	9	1	1	3	1
P2 → j	8	2	9	3	0
k	9	1	1	1	2
1	3	4	1	1	2
m	7	3	6	1	1
P3 → n	9	3	5	3	3
0	3	4	5	1	0
р	5	2	2	2	1

	P 1	P2	P 3
а	13	5	6
b	13	15	6
С	14	16	11
d	0	18	17
е	13	19	12
f	15	15	8
g	15	9	2
h	16	16	9
i	13	11	8
j	18	0	9
k	12	14	9
1	5	19	14
m	12	8	7
n	17	9	0
0	7	13	12
р	8	12	11

Tabla de Pivotes:

Matriz de distancias entre cada objeto y cada pivote (usando distancia L₁)

A continuación se desea buscar el vecino más cercano de un nuevo descriptor **q**...

Ejemplo (3)

а	8	2	5	2	0
b	10	3	2	1	3
С	12	4	1	2	1
P1 →d	2	3	0	1	0
е	6	3	2	1	7
f	9	1	0	4	3
g	7	3	5	3	3
h	10	0	1	2	3
i	9	1	1	3	1
P2 → j	8	2	9	3	0
k	9	1	1	1	2
1	3	4	1	1	2
m	7	3	6	1	1
P3 → n	9	3	5	3	3
0	3	4	5	1	0
р	5	2	2	2	1
q	7	5	7	2	1

	P1	P2	P3
a	13	5	6
b	13	15	6
С	14	16	11
d	0	18	17
е	13	19	12
f	15	15	8
g	15	9	2
h	16	16	9
i	13	11	8
j	18	0	9
k	12	14	9
I	5	19	14
m	12	8	7
n	17	9	0
0	7	13	12
р	8	12	11
q	16	8	9

Primero calcular la distancia de *q* a cada pivote

Búsqueda NN:

Para cada elemento \boldsymbol{u} se calcula la cota inferior LB($\boldsymbol{q}, \boldsymbol{u}$)

$$LB_{\mathcal{P}}(q,u) = \max_{p_i \in \mathcal{P}} \left\{ |d(q,p_i) - d(p_i,u)| \right\}$$

Números en la tabla, escoger la máxima

diferencia por fila

Si LB(**q**,**u**) es mayor o igual a la distancia del candidato actual a NN se descarta **u**, si no se calcula d(**q**,**u**)...

а	8	2	5	2	0
b	10	3	2	1	3
С	12	4	1	2	1
P1 → d	2	3	0	1	0
е	6	3	2	1	7
f	9	1	0	4	3
g	7	3	5	3	3
h	10	0	1	2	3
i	9	1	1	3	1
P2 → j	8	2	9	3	0
k	9	1	1	1	2
1	3	4	1	1	2
m	7	3	6	1	1
P3 → n	9	3	5	3	3
0	3	4	5	1	0
р	5	2	2	2	1
q	7	5	7	2	1

	P 1	P2	P 3
a	13	5	6
b	13	15	6
С	14	16	11
d	0	18	17
е	13	19	12
f	15	15	8
g	15	9	2
h	16	16	9
i	13	11	8
j	18	0	9
k	12	14	9
1	5	19	14
m	12	8	7
n	17	9	0
0	7	13	12
p	8	12	11
q	16	8	9

Cota Inferior	Distancia Real	Candidato
+ LB(<i>q</i> , <i>u</i>)	+ d(<i>q</i> , <i>u</i>)	♦ NN
3	7	а
7	13	
8	12	
16	16	
11	15	
7	17	
7	7	
8	16	
3	13	а
8	-8-	
6	14	а
11	13	
4	4	m
9	-9-	
9	-9-	
8	10	

Costo: LB se evaluó 16 veces y d se evaluó 7 veces: $3 \times d(q,p) + 4 \times d(q,u)$

Espacio de pivotes

Espacio k-dimensional, donde cada coordenada es la distancia entre el objeto y cada pivote:

$$v_{\mathcal{P}}(u) = (d(p_1, u) \dots d(p_k, u))^T$$

Notar que:

$$LB_{\mathcal{P}}(q, u_i) = L_{\max}(v_{\mathcal{P}}(q), v_{\mathcal{P}}(u_i))$$

Criterio de exclusión de la búsqueda por rango:

$$L_{\max}(v_{\mathcal{P}}(q), v_{\mathcal{P}}(u_i)) > r$$

 En búsqueda k-NN considerar r como la distancia al k-ésimo candidato

Espacio de pivotes

Convertir espacio métrico al espacio de pivotes

Complejidad Interna y Externa

- Complejidad externa:
 - □ Cómputos de distancia entre q y objetos no descartados
- Complejidad interna:
 - □ Cómputos de distancia entre q y pivotes
 - □ Cómputos de *LB* entre *q* y todos los objetos
- Al aumentar el número de pivotes:
 - Aumenta la complejidad interna
 - □ Disminuye la complejidad externa
- Existe un número óptimo de pivotes
 - Comparar performance del óptimo contra no usar índice

Complejidad versus Pivotes

- Al aumentar el número de pivotes:
 - □ Aumenta el costo de evaluar d(q,p) y LB(q,u) (linealmente)
 - □ Disminuye la cantidad de veces que se evalúa d(q,u) (no lineal)

Selección de pivotes

- Dependiendo del dataset, hay objetos que son mejores pivotes que otros
 - □ Mejor pivote → Descarta más distancias → Cotas inferiores lo más altas posible
- Ejemplo: si tenemos datos en un cubo unitario de 20 dimensiones:

Selección de pivotes

- Una baja varianza en el histograma de distancias implica que al restar la distancia entre dos objetos probablemente será cercano a cero
 - □ El punto central es un mal pivote porque todos los objetos están casi a una misma distancia de él
 - □ Puntos en la esquinas obtienen una mayor varianza en las distancias
- Sin embargo, en un espacio métrico genérico no hay geometría!

Dimensión Intrínseca

Concepto de alta dimensión en espacios métricos:

Ver Chavez et al. 2001.

Selección de pivotes

- Método de selección 1:
 - Definir un número de pivotes y escogerlos al azar
- Existen muchos posibles conjuntos de pivotes
 - ¿Se obtendrá el mismo rendimiento al usar cualquier conjunto de pivotes al azar?
 - □ ¿Existirán mejores o peores conjuntos de pivotes?
- Se necesita alguna medida que permita estimar la performance que logrará un conjunto de pivotes para búsquedas futuras
 - Durante la creación del índice no se conocen los objetos de consulta
 - Se asume que las consultas tendrán una distribución similar a los datos conocidos

Criterio de Evaluación

- Un buen conjunto de pivotes P debe calcular una cota inferior lo más cercana a la distancia real
 - Los valores que entregue LB_P deben ser cercanos a los valores de d
- Definamos $\Delta P(x,y) = d(x,y) LB_P(x,y)$
- Sea $\mu_{\Delta P}$ el promedio de $\Delta P(x,y)$ para todo par x, y en \boldsymbol{R}
- Dados *N* conjuntos de pivotes, se debe escoger el conjunto que obtiene un menor $\mu_{\Lambda P}$
- Notar que d(x,y) es fijo para los N conjuntos que se están evaluando
- Por tanto es equivalente a escoger el conjunto de pivotes que obtenga un mayor valor promedio de $LB_P(x,y)$

Algoritmo de Evaluación

- Dados N conjuntos de pivotes con k pivotes cada uno
- Elegir al azar m pares de objetos (a_i, b_i)
- Para cada conjunto de pivotes P:
 - \square Calcular y promediar los m valores $LB_P(a_i,b_i)$
- Escoger el conjunto que logra el mayor valor promedio de LB_P
- Costo: N*2*m*k cálculos de distancia

Selección de pivotes

- Método de selección 2:
 - Dado un parámetro de distancia mínima crear una "zona de exclusión" alrededor de cada pivote
- Evita seleccionar pivotes cercanos y prefier pivotes que están lejos entre sí
 - Dos pivotes muy cercanos entre sí no mejoran mucho el valor de LB

Sparse Spatial Selection (SSS)

- Realizar un recorrido aleatorio de los objetos y elegir objetos distantes entre sí
- Parámetro de exclusión Mα:
 - ☐ M: máxima distancia en el espacio
 - \square α : factor (típicamente 0.4)

```
PIVOTS \leftarrow \{x_1\}

for all x_i \in \mathbb{U} do

if \forall p \in PIVOTS, d(x_i, p) \geq M\alpha then

PIVOTS \leftarrow PIVOTS \cup \{x_i\}

end if

end for
```

Ver Pedreira et al. 2007

 Seleccionar distintos conjuntos reduciendo Mα hasta obtener varios conjuntos con el tamaño deseado y luego quedarse con el mejor

Optimización de tabla de pivotes

- Se debe notar que el valor de LB_P
 finalmente depende de un solo pivote
 - Opción 1: En la tabla de pivotes, se puede ordenar cada fila para probar primero el mejor pivote de cada objeto (el más cercano o más lejano)
 - Opción 2: La tabla de pivotes se puede reducir a una sola columna, dejando sólo el mejor pivote por objeto
 - Reducir el espacio en memoria

Snake Table

■ Método de selección 3:

- Utilizar como pivote el objeto de consulta previo
- Selección dinámica de pivotes (la tabla de pivotes se llena mientras se resuelven consultas)
- □ Útil cuando se realizan varias consultas consecutivas (ej. frames de videos)

Búsqueda Aproximada con Pivotes

- La función *LB_P* puede ser usada como una estimación rápida de la distancia real
- Parámetro de aproximación T (entre 0 y 1):
 - □ Calcular LB_P para todos los objetos y seleccionar los T% menores valores
 - Calcular la búsqueda por rango o los k-NN solo entre los T% objetos seleccionados
 - La distancia real *d* se evalúa solo para un *T%* de los objetos y los restantes son descartados
 - Para que sea más rápido que la búsqueda lineal, el tiempo de evaluar LB_P debe ser al menos T veces más rápido que d
 - Requisito: Los objetos u_i con menor $d(q,u_i)$ deben tener un valor bajo de $LB_P(q,u_i)$

M

Búsqueda Aproximada con Pivotes

Distribución del valor de LB_P para los vecinos más cercanos (efectividad):

Para este dataset usando 5 pivotes, en un 92% de las consultas el objeto que era el NN tuvo un valor de LB_P dentro del 10% de menor → Si usamos T=10 un 92% de las veces obtendremos el NN correcto

Solo en un 21% de las consultas el objeto de menor LB_P era el NN

En este dataset usando 5 pivotes, sólo un 6% de las veces el de menor LB_P fue también el NN y un 80% de las veces estuvo dentro del 10% menor

$$LB_{\mathcal{P}}, |\mathcal{P}| = 1 \longrightarrow LB_{\mathcal{P}}, |\mathcal{P}| = 5 \longrightarrow LB_{\mathcal{P}}, |\mathcal{P}| = 20 \longrightarrow LB_{\mathcal{P}}, |\mathcal{P}| = 80$$

$$LB_{\mathcal{P}}, |\mathcal{P}| = 3 \longrightarrow LB_{\mathcal{P}}, |\mathcal{P}| = 10 \longrightarrow LB_{\mathcal{P}}, |\mathcal{P}| = 40$$

М

Búsqueda Aproximada con Pivotes

Reducción de los tiempos de búsqueda:

Cuando *d* es muy rápida de calcular (ej: L₁) el valor de *T* no puede ser muy alto si no la búsqueda aproximada se vuelve más lenta que el scan lineal

Cuando d es costosa de calcular (ej: EMD o una multimétrica) se puede usar valores altos de Ty seguir siendo más rápido que el scan lineal

$$LB_{\mathcal{P}}, |\mathcal{P}| = 1 \qquad \longrightarrow LB_{\mathcal{P}}, |\mathcal{P}| = 5 \qquad \longrightarrow LB_{\mathcal{P}}, |\mathcal{P}| = 20 \qquad \longrightarrow LB_{\mathcal{P}}, |\mathcal{P}| = 80$$

$$- \triangle - LB_{\mathcal{P}}, |\mathcal{P}| = 3 \qquad - \bigcirc - LB_{\mathcal{P}}, |\mathcal{P}| = 40$$

M

Indices Métricos vs Multidimensional

- Búsqueda exacta en distintos conjuntos:
 - Índices multidimensionales usualmente más lentos que búsqueda lineal
 - Índices métricos usualmente más rápidos que la búsqueda lineal

Indices Métricos vs Multidimensional

- Búsqueda aproximada en distintos conjuntos:
 - □ Índices multidimensionales logran un mucho mejor balance de efectividad vs tiempo de búsqueda

Árboles Métricos

- Los objetos se pueden agrupar en una jerárquía de zonas
 - Búsquedas por similitud calculan la intersección entre la bola de consulta y el radio de una zona (criterio del radio cobertor)
 - Búsquedas por rango y del NN usando MINDIST y cola de prioridad
- Ejemplos:
 - □ M-tree (Ciaccia et al. 1997)
 - □ Voronoi Tree (Dehne et al. 1987)
 - □ Vantage Point Tree (Yianilos. 1993)
 - ☐ GNAT (Brin. 1995)
 - □ List of Clusters (Chávez et al. 2005)

Espacios Multimétricos

M

Combinación de distancias

- Sean δ_1 , ... δ_m diferentes métricas para un mismo universo de objetos
 - Se puede definir una nueva función de distancia como la combinación lineal de las m métricas, es decir, sumar cada distancia ponderada por un peso w_i:

$$\Delta(q, o) = \sum_{i=1}^{m} w_i \cdot \frac{\delta_i(q, o)}{normFactor_i}$$

Normalización

 Normalizar por la distancia máxima o por una distancia de probabilidad α

Combinación de distancias

 Combinando más distancias (i.e. usando más descriptores) usualmente se mejora la calidad de la respuesta

Combinación de distancias

- Al combinar funciones de distancia se construye una nueva función que (usualmente) logra mejor efectividad
- Pesos estáticos: función con pesos fijos
 - □ La distancia combinada también es métrica
 - □ Índices pueden indexar la distancia combinada
- Pesos dinámicos: función puede cambiar sus pesos dependiendo del objeto de consulta
 - Usualmente logra mejor efectividad que pesos fijos
 - □ La distancia combinada no es métrica
 - □ Se deben indexar las distancias por separado

Pesos estáticos

Cálculo automático de pesos estáticos:

Pesos dinámicos

Entropy Impurity

I. Perform k-NN in training dataset

Three objects belong to the blue class and two objects belong to the red class.

II. Entropy impurity

 P_{ω_i} : fraction of objects that belong to model class i

$$entropy(\delta_i) = -\sum_{i=1}^{|\#classes|} \begin{cases} P_{\omega_i} \cdot \log_2(P_{\omega_i}) & \text{if } P_{\omega_i} > 0 \\ 0 & \text{otherwise} \end{cases}$$

The entropy impurity of metric δ_i is equal to 0 if all objects belong to the same class, and has a maximum value (log(k)) if each object belongs to a different class.

Bibliografía

Similarity Search: The Metric Space Approach. Zezula et al. 2006.

□ Capítulo 1, Secciones 1-4.

Papers

- Vidal. An algorithm for finding the nearest neighbours in (approximately) constant average time. 1986.
- Dehne and Noltemeier. Voronoi trees and clustering problems. 1987.
- Yianilos. Data structures and algorithms for nearest neighbor search in general metric spaces. 1993.
- Micó, Oncina, and Vidal. A new version of the nearest-neighbour approximating and eliminating search algorithm (AESA) with linear preprocessing time and memory requirements. 1994.
- Brin. Near neighbor search in large metric spaces. 1995
- Ciaccia, Patella, and Zezula. M-tree: An Efficient Access Method for Similarity Search in Metric Spaces. 1997.
- Chávez and Navarro. A compact space decomposition for effective metric indexing. 2005.
- Chávez, Navarro, Marroquín, and Baeza-Yates. Searching in metric spaces. 2001.
- Pedreira and Brisaboa. Spatial Selection of Sparse Pivots for Similarity Search in Metric Spaces. 2007.
- Bustos, Keim, Saupe, Schreck, and Vranic. Automatic selection and combination of descriptors for effective 3D similarity search. 2004.
- Barrios and Bustos. Competitive content-based video copy detection using global descriptors. 2013.
- Barrios, Bustos, and Skopal. Analyzing and dynamically indexing the query set. 2014.

Librerías

- Metric Space Library
 - http://www.sisap.org/metricspaceslibrary.html
- MetricKnn: Fast Similarity Search using the Metric Space Approach
 - □ https://juan.cl/metricknn org/