Machine Learning HW7 Report

學號:B05901111 系級:電機三 姓名:陳建成

- 1. PCA of color faces:
 - a. 請畫出所有臉的平均。

b. 請畫出前五個 Eigenfaces,也就是對應到前五大 Eigenvalues 的 Eigenvectors。

c. 請從數據集中挑出任意五張圖片,並用前五大 Eigenfaces 進行 reconstruction,並畫出結果。

12, 18, 48, 57, 73

d. 請寫出前五大 Eigenfaces 各自所佔的比重,請用百分比表示並四捨五入 到小數點後一位。

4.1%, 2.9%, 2.4%, 2.2%, 2.1%

2. Image clustering:

a. 請實作兩種不同的方法,並比較其結果(reconstruction loss, accuracy)。 (不同的降維方法或不同的 cluster 方法都可以算是不同的方法)

因為感覺用 VAE 去 reconstruct 比較困難,而 cluster 或是 PCA 似乎比較準確,因此我是都用上傳 Kaggle 的 VAE 去做 encoding,然後 latent 的 96 維向量中,使用不同的方法做降維 / cluster。

I. 96 維 —[PCA]→ 48 維 ————[K-Means]———→ 2 個 cluster 的 label II. 96 維 —[PCA]→ 2 維 —[比較第一維與第二維的值]→ 2 個 cluster 的 label

reconstruction loss: 578.9316

其算法是以 VAE 的 loss,除了本身每個 pixel 的 BCE loss 之外還加上 KL divergence 的 loss。因為兩個方法是用同樣的 AE 因此 reconstruction loss 相同。

```
xent_loss = 32 * 32 * metrics.binary_crossentropy(
    K.flatten(input_img), K.flatten(output_img))
kl_loss = - 0.5 * K.sum(1 + z_log_var -
K.square(z_mean) - K.exp(z_log_var), axis=-1)
vae_loss = K.mean(xent_loss + kl_loss)
```

accuracy (private, public):

- I. 0.95375, 0.95377 (Kaggle 上面) II. 0.50087, 0.49944
- b. 預測 visualization.npy 中的 label,在二維平面上視覺化 label 的分佈。 (用 PCA, t-SNE 等工具把你抽出來的 feature 投影到二維,或簡單的取前兩維 2 的 feature)

其中 visualization.npy 中前 2500 個 images 來自 dataset A,後 2500 個 images 來自 dataset B,比較和自己預測的 label 之間有何不同。

把 visualization 的結果放入 encoder 進行 label prediction 之後,可以得到一個預測的結果,跟 ground truth 比較後發現其正確率為 97.22%。另外,dataset A 被預測有 2539 張而 dataset B 有 2461 張,看來整套 cluster 方法比較偏好預測為 dataset A。

下面兩張視覺化分別是根據 ground truth 和 predicted label,直接經過 PCA 去降維的結果。紅色/皮膚色的是 dataset A,綠色/亮綠色的是 dataset B。

Ground truth label:

Predicted label:

c. 請介紹你的 model 架構(encoder, decoder, loss function...),並選出任意 32 張圖片,比較原圖片以及用 decoder reconstruct 的結果。

以下是 VAE model 架構,其中到 lambda 層是 encoder,後面是 decoder,整個 model 是 jointly trained。Loss function 採用 VAE 的式子實作(code 前面有附在 a. 小題,變數與 GitHub 裡的 code 稍有不同)。

Layer (type)	Output		Param #	Connected townsommers
input_1 (InputLayer)		⁷ 32, ⁿ 32, 3)	No-Alcian-	KOOD - THE - WALES
conv2d (Conv2D)	(None,	32, 32, 3)	39	input_1[0][0]
conv2d_1 (Conv2D)	(None,	16, 16, 64)	832	conv2d[0][0]
max_pooling2d (MaxPooling2D)	(None,	8, 8, 64)	0	conv2d_1[0][0]~~~~~~
conv2d_2 (Conv2D)	(None,	8, 8, 48)	27696	max_pooling2d[θ][θ]
conv2d_3 (Conv2D)	(None,	8, 8,216)	6928	conv2d_2[0][0]
max_pooling2d_1 (MaxPooling2D)	(None,	4, 4, 16)	θ up_samp	conv2d_3[0][0]
flatten (Flatten)	(None,	256)	θ	max_pooling2d_1[θ][θ]~~~~~~~~~~~
dense (Dense)	(None,	300)	77100	flatten[θ][θ] κοινοιοιοιοιοιοιοιοιοιοιοιοιοιοιοιοιοιοι
dense_1 (Dense)	(None,	125)	37625 V2C	dense[0][0]
dense_2 (Dense)	(None,	96)	12096	dense_1[0][0]
dense_3 (Dense)	(None,	96)	12096	dense_1[θ][θ]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
lambda (Lambda)	(None,	96)	θ Total para	dense_3[0][0]
dense_4 (Dense)	(None,	125)	12125 Non-train	lambda[0][0]
dense_5 (Dense)	(None,	300)	37800	dense_4[θ][θ]
dense_6 (Dense)	(None,	256)	77056	dense_5[θ][θ]~~~~~~~~~~~~~~~~~~
reshape (Reshape)	(None,	4, 4, 16)	θ	dense_6[θ][θ]~~~~~~~~~~~~~~~~~
up_sampling2d (UpSampling2D)	(None,	8, 8, 16)	θ	reshape[θ][θ]
conv2d_transpose (Conv2DTranspo	(None,	8, 8, 48)	6960	up_sampling2d[θ][θ]~~~~~~~~~~~~
conv2d_transpose_1 (Conv2DTrans	(None,	8, 8, 64)	27712	conv2d_transpose[θ][θ]~~~~~~~~
up_sampling2d_1 (UpSampling2D)	(None,	16, 16, 64)	θ	conv2d_transpose_1[0][0]~~~~~~~
conv2d_transpose_2 (Conv2DTrans	(None,	32, 32, 3)	771	up_sampling2d_1[θ][θ]~~~~~~~~~
conv2d_transpose_3 (Conv2DTrans			39	conv2d_transpose_2[0][0]~~~~~~
Total params: 336,875 Trainable params: 336,875 Non-trainable params: θ				

總之就是怎麼把維度縮下去的就怎麼長回來,幾乎都是對稱的,然後 padding 都用'same'處理。Lambda 層則是分成 mean 跟 variance 處理。

再來是原圖和 reconstructed 的圖片比較,因為隨機選取容易只選到 Celeb A 的圖,因此直接以前 32 張進行比較。

感覺是人臉的感覺比較有 reconstruct 回來,但東西的部分反而幾乎都明顯 模糊掉了。不過感覺大概還足以看得出 dataset 的差異。