Kernel Instrumental Variable Regression

Rahul Singh¹, Maneesh Sahani², Arthur Gretton²

¹MIT Economics, ²Gatsby Unit, UCL

Motivation: demand estimation

■ predict ticket sales from price, customer characteristics, time of year

Motivation: demand estimation

■ predict ticket sales from price, customer characteristics, time of year

Kernel ridge regression on the demand design (Hartford et al. 2017)

Motivation: demand estimation

predict ticket sales from price, customer characteristics, time of year

what went wrong?

Confounding

- **g** goal: learn causal relationship h between input X and output Y
 - 'if we intervened on X, what would be the effect on Y?'
 - counterfactual prediction
- unobserved confounder $e \implies \text{prediction} \neq \text{counterfactual prediction}$
 - $\mathbb{E}[Y|X] \neq h(X)$
 - regression is a badly biased estimator of h

Confounded DAG

Confounding

Sigmoid design (Chen and Christensen 2018)

Confounding

Kernel ridge regression on the sigmoid design

Instrumental variable

- unobserved confounder $e \implies$ prediction \neq counterfactual prediction
- **g** goal: learn causal relationship h between input X and output Y
- instrument Z only influences Y via X, identifying h

$$Y = h(X) + e$$
, $\mathbb{E}[e|Z] = 0$

Example: Demand estimation

- goal: causal relationship between price and sales, e.g. airline tickets
- the original application (Wright 1928)

Example: Imperfect compliance

- goal: learn causal relationship between treatment and health
- relevant for digital platforms (Syrgkanis et al. 2019)

Algorithm: 2SLS

- 1 linear regression of X on Z
 - using *n* observations
 - construct $\bar{X}(z) := \mathbb{E}[X|Z=z]$, the conditional mean
- 2 linear regression of Y on $\bar{X}(Z)$
 - using remaining *m* observations
 - this is the estimator for h

- imposes linearity among (X, Y, Z), assumes $\mathbb{E}[e \cdot Z] = 0$
- widely used in economics

Algorithm: KIV

- 1 kernel ridge regression of $\psi(X)$ on Z
 - using *n* observations
 - construct $\mu(z) := \mathbb{E}[\psi(X)|Z=z]$, the conditional mean embedding
- 2 kernel ridge regression of Y on $\mu(Z)$
 - using remaining m observations
 - this is the estimator for h

- allows nonlinearity among (X, Y, Z), assumes $\mathbb{E}[e|Z] = 0$
- closed form solution ⇒ 3 lines of code

Theory: Sample splitting

- \blacksquare calibrate to smoothness of μ and h
- e.g. $n = m^{\alpha}$ where $\alpha > 1$ if

■ e.g. $n = m^{\beta}$ where $\beta > \alpha > 1$ if

- exact formula in paper
- asymmetric sample splitting is novel

Theory: Convergence rate

using the sample splitting formula for (n, m),

$$\mathcal{E}(\hat{h}) - \mathcal{E}(h) = O_p\left(m^{-\frac{bc}{bc+1}}\right)$$

- $b \in (1, \infty]$ effective input dimension of $\psi(X)$
- $c \in (1, 2]$ smoothness of h
- learning with confounded data at the rate of learning with unconfounded data

Sigmoid design (Chen and Christensen 2018)

Kernel ridge regression on the sigmoid design

KIV on the sigmoid design

Comparison of methods varying training sample size

Comparison of methods varying training sample size

Comparison of methods varying training sample size

Comparison of methods varying training sample size

Comparison of methods varying training sample size

Comparison of methods varying training sample size

no statistical guarantees as yet

Conclusion

- goal: learn causal relationship from confounded data
- we propose KIV
 - 1 computation: 3 lines of code (2 kernel ridge regressions)
 - 2 statistical guarantee: minimax optimal
 - 3 performance: best with smooth design or < 10,000 observations
- bridge between econometrics and machine learning

please visit us!

- poster #59, east exhibition hall B+C
- MATLAB code available for download

