MANUFACTURING METHOD FOR GLASS SUBSTRATE FOR MAGNETIC RECORDING MEDIUM, AND GLASS SUBSTRATE FOR MAGNETIC RECORDING MEDIUM OBTAINED BY USING THE SAME

Publication number: JP2002251716 Publication date: 2002-09-06

Inventor:

SAITO YASUHIRO; IKEDA KOJI; MITANI KAZUISHI;

KURACHI JUNJI; OKUHATA KOJI

Applicant:

NIPPON SHEET GLASS CO LTD

Classification:

C03C15/00; C03C3/083; C03C3/085; C03C3/087; - international:

C03C10/10; C03C19/00; C03C21/00; G11B5/73; G11B5/84; C03C15/00; C03C3/076; C03C10/00; C03C19/00; C03C21/00; G11B5/62; G11B5/84; (IPC1-7): C03C3/083; C03C3/085; C03C3/087; C03C10/10; G11B5/84; C03C15/00; C03C19/00; C03C21/00;

G11B5/73

- European:

G11B5/73N; G11B5/84B Application number: JP20010363504 20011129

Priority number(s): JP20010363504 20011129; JP20000383216 20001218

Also published as:

US6743529 (B2) US2002127432 (A

Report a data error he

Abstract of JP2002251716

PROBLEM TO BE SOLVED: To provide a glass substrate for a magnetic recording medium wherein writing and reading-out can be performed with lower gride of a magnetic head. SOLUTION: A working trace having permanent distortion in the circumferential direction is imparted to the surface of a glass plate molded in a circular shape and then the surface of the glass plate is etched using an etching liquid containing hydrofluoric acid or hexafluorosilicic acid to form a texture consisting of surface ruggedness based on the working trace. The glass substrate for the magnetic recording medium can be obtained, having 0.5-1.0 nm surface toughness Ra measured by AFM and directional orientation in the circumferential direction.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公閱番号 特開2002-251716

(P2002-251716A)

(43)公開日 平成14年9月6日(2002.9.6)

審査請求 2001-363504(P2001-363504)	C03C 1	9/00 関の数11 C	OL (全 l	Z B E Z	4G059 4G062 5D008 5D112
to 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1 未謝求 請求項	9/00 関の数11 C	DL (全 l	B E Z	5D006 5D112
to 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1 未謝求 請求項	9/00 関の数11 C	DL (全 le	E Z	5 D 1 1 2
to 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	未請求 請求項	順の数11 C	DL (全 1	Z	5 D 1 1 2 最終頁に続く
to 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	未請求 請求項	順の数11 C	DL (全 I	-	器終育に続く
to 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			DL (全 1	0 頁)	器終育に続く
2001 - 363504(P2001 - 363504)	(71)出願人	000004000			STATE STATE I
(21)出顧番号 特顧2001-363504(P2001-363504) (73					1
13年11月29日 (2001, 11, 29)	日本核硝子株式会社 大阪府大阪市中央区北浜四丁目7番28号 (72)発明者 斉藤 熔弘				
2000 - 383216 (P2000 - 383216)	(12/75714)		丁目7番28号		
12年12月18日 (2000. 12. 18)	日本板硝子株式会社内				
(JP)	(72) 発明者 池田 浩司 大阪府大阪市中央区北浜四丁日7番28号 日本板硝子株式会社内				
	(74)代理人		-		
	/	,	大阪府大 日本板硝 (74)代理人 1000 69 08	大阪府大阪市中央区 日本板硝子株式会社	大阪府大阪市中央区北浜四 日本板硝子株式会社内 (74)代理人 1000 6 9084

(54) 【発明の名称】 磁気配縁媒体用ガラス基板の製造方法およびそれを用いて得られる磁気配縁媒体用ガラス基板

(57)【要約】

【課題】ガラス板表面に直接、機械的または化学的な方法によって、円周方向に方向性を有する表面凹凸(テクスチャー)を形成する従来の技術によれば、微細な表面凹凸を形成するととはできなかった。すなわち、磁気へッドをより低グライドハイトで駆動でき、かつヘッドの粘着やクラッシュが生じない微細な表面凹凸を有する磁気記録媒体用のガラス基板を製造するととは困難であった。

【解決手段】円形状に成形加工されたガラス板の表面に 円周方向に永久歪みを有する加工痕を付与し、その後ガ ラス板の表面を弗化水素酸あるいは珪弗化水素酸を含む エッチング液でエッチングして、加工痕に基づく表面凹 凸からなるテクスチャーを形成する。AFMで測定した 表面粗さRaが0.5~1.0nmの円周方向に方向性 を有する磁気記録媒体用ガラス基板が得られる。

【特許請求の範囲】

【請求項 1 】円形状に成形加工されガラス板の主表面に 表面凹凸を形成して磁気記録媒体用ガラス基板を製造す る方法において、前記表面凹凸を、前記ガラス板の主表 面に永久歪みを有する加工痕を円周方向に付与し、その 後前記ガラス板の主表面全体を化学的にエッチングする ことにより形成することを特徴とする磁気記録媒体用ガ ラス基板の製造方法。

【請求項2】前記表面凹凸を、加工痕を付与した部分と に基づいて形成することを特徴とする請求項1に記載の 磁気記録媒体用ガラス基板の製造方法。

【請求項3】前記加工痕を、前記ガラス板の主表面にス ラリーを含む処理液を供給しながら処理テープを円周方 向に擦ることによって形成することを特徴とする請求項 1または2に記載の磁気記録媒体用ガラス基板の製造方 法。

【請求項4】前記化学的エッチングを弗化水素酸または /および珪弗化水素酸を含むエッチング液で行うことを 特徴とする請求項1~3のいずれかに記載の磁気記録媒 20 体用ガラス基板の製造方法。

【請求項5】請求項1~4のいずれかに記載の磁気配録 媒体用ガラス基板の製造方法において、前記凹凸を形成 する処理を行った後、前記ガラス基板中の一部のイオン がそれより大きなイオン半径を有する溶融塩に含まれる イオンに交換される化学強化処理を施すことを特徴とす る磁気記録媒体用ガラス基板の製造方法。

【請求項6】請求項5 に記載の磁気記録媒体用ガラス基 板の製造方法において、前記化学強化処理を行った後、 酸性水溶液とアルカリ性水溶液による洗浄を順次施すと 30 とを特徴とする磁気記録媒体用ガラス基板の製造方法。 【請求項7】請求項1~6のいずれかに記載の磁気記録

媒体用ガラス基板の製造方法により製造された磁気記録 媒体用ガラス基板であって、前配ガラス基板の主表面の 凹凸が、AFMで測定したRa値が0.5~1.0nm であり、前記凹凸の最大高さから最小高さを差し引いた 値であるRmax値が3. Onm以上である磁気記録媒 体用ガラス基板。

【請求項8】前記Rmaxの値が15nm以下である請 求項7に記載の磁気記録媒体用ガラス基板。

【請求項3】請求項1~6のいずれかに記載の磁気記録 媒体用ガラス基板の製造方法により製造された磁気記録 媒体用ガラス基板であって、前記ガラス基板の主表面の 凹凸が、AFMで測定したRa値が0.2~0.5nm であり、前記凹凸の最大高さから最小高さを差し引いた 値であるRmax値が2. Onm以上である磁気記録媒 体用ガラス基板。

【請求項10】前記ガラス基板の主表面に形成された凹 凸は円周方向に線状に形成され、その半径方向の線密度

ることを特徴とする請求項7~9のいずれかに記載の磁 気記録媒体用ガラス基板。

【請求項11】請求項7~10のいずれかに記載の磁気 記録媒体用ガラス基板の主表面に、磁性膜を含む磁気配 録膜が被覆された磁気記録媒体。

【発明の詳細な説明】

[0001]

[発明の属する技術分野] 本発明は、磁気記録媒体用ガ ラス基板およびその製造方法、さらにそれを用いて得ら 加工痕を付与しない部分との化学的エッチング深さの差 10 れる磁気記録媒体に関する。さらに詳述すれば、磁気へ ッド浮上量が小さくでき、高速回転で長時間の使用によ っても磁気記録情報の消失あるいは減衰がない信頼性の 高い磁気記録媒体を得ることができるガラス基板とその 製造方法に関する。

[0002]

【従来の技術】近年、情報デジタル化の進展は目覚し く、その情報を保持するための装置が各種開発されてい る。これらの装置の改良進歩はまさに日進月歩であり、 情報記憶容量および記録再生速度が年率数十%の割合で **向上している。特に、現在最も広く使用されている情報** 記録装置が磁気ディスクであり、その改良の技術進歩は 他の記録装置以上に早い。

【0003】とのような状況の中、磁気ディスクには、 より高記録密度に対応できる磁気記録媒体が求められて おり、とれに対応するように磁気記録媒体を坦持する基 板にも高い平坦性、平滑性、そして剛性が求められるよ うになってきた。そのため、最近では、従来主流であっ たアルミニウム基板から研削、研磨が容易なガラス基板 になりつつある。

【0004】アルミニウム基板は、通常、アルミニウム 基板/ニッケル層/リン層の積層構成で用いられ、リン 層の表面上には研削などのメカニカルな手法によって同 心円状の異方性のテクスチャー(方向性をもった表面凹 凸)が形成される。このような異方性テクスチャー上に 形成された磁性膜は、異方性のある膜応力に起因して生 じる円周方向へのC軸配向が実現される、いわゆる配向 媒体である。とのような基板は、特開平6-23144 2号公報に開示されている。

【0005】一方、ガラス製の基板を用いる磁気記録媒 40 体としては、これまで異方性のテクスチャーが形成され ていないいわゆる等方性の表面凹凸(ここではアットラ ンダムに形成された表面凹凸を有する場合も等方性の表 面凹凸という)を有する磁気記録媒体が実用に供されて きた。しかしながら、等方性の表面凹凸を有する記録媒 体では、高記録密度化すると記録媒体に一旦書き込んだ 信号が失われたり、それが急速に減衰するために、信頼 性の高い磁気記録ができなくなることがあることが明ら かとなってきた。

【0006】特開昭63-160010号公報には、平 がAFMで測定して5000~40000本/mmであ 50 滑なガラス基板表面に円周方向にテクスチャーを機械的 な方法あるいは化学的なエッチング方法で形成した磁気 記録媒体用のガラス基板が開示されている。しかしこの 方法で得られる基板を用いた磁気記録媒体は、微細な表 面凹凸が得られず、高密度記録を可能とするために磁気 ヘッドを低グライドハイトで走査することは困難である という問題点があった。そこで、最近ではガラスに対す る研磨力の高い酸化セリウムをダイヤモンドスラリーと 混合する方法 (特開2000-101656号) が提供 されている。また、水酸化カリウム水溶液や水酸化ナト ーを用いることにより、機械的な加工力に化学的な作用 を付与するなどの技術が提案されている。(特開200 0-301441号、特開2001-9694号) [0007]

【発明が解決しようとする課題】ニッケル層とリン層の 積層膜に機械的に付与した表面凹凸(メカニカルテクス チャー〉は、その形成過程において異物やゴミが発生し やすく、磁気記録媒体製造時の歩留まりが低下するう え、コストアップにもつながるという課題があった。そ こで、ガラス基板の表面に直接、異方性のテクスチャー 20 を形成したものを用いるという提案が上記の従来技術で 開示されているが、アルミニウム基板に比べて表面硬度 の高いガラス板の場合、微細なテクスチャー形状を満た すことは困難であるという課題があった。また、ガラス に対する研磨力の高い酸化セリウムを用いる場合や、水 酸基を有する溶液を含有するスラリーを用いる場合に は、微細なテクスチャーを形成できるが、その形状が非 常に微細であるため薬品で洗浄すると容易に形状が変化 するという課題があった。そのため、テクスチャーの溝 に挟まったダイヤモンドなどの砥粒を除去する際に薬品 30 【0012】円形状のガラス板の円周方向に加工痕を付 の使用が着しく制限されていた。とくに、多成分系ガラ スの洗浄に高い効果を示す酸性の水溶液はテクスチャー 形状を著しく変化させるために使用することができず、 その結果、上記のテクスチャー処理を行った基板では、 しばしばスラリーに含まれる砥粒が残留するという課題 があった。本発明は、このような課題を解決することを 目的とし、磁気ヘッドをより低グライドハイトで書き込 み、かつ読み出しをすることができる磁気記録媒体用ガ ラス基板とその製造方法を提供することを目的とする。 [0008]

【課題を解決するための手段】請求項1は、上記の課題 を解決するためになされたものであって、円形状に成形 加工されガラス板の主表面に表面凹凸を形成して磁気記 録媒体用ガラス基板を製造する方法において、前記表面 凹凸を、前記ガラス板の主表面に永久歪みを有する加工 痕を円周方向に付与し、その後前記ガラス板の主表面全 体を化学的にエッチングすることにより形成することを 特徴とする磁気記録媒体用ガラス基板の製造方法であ

【0009】ここで加工痕とは、機械的な応力によって 50 【0015】用いる処理テーブの材質は特に限定され

物理的な形状変化を伴わずあるいは伴って、ガラスの表 面および表面近傍のガラス内部に永久歪みが残留した部 位をいう。通常、硬度の高いガラス基板にメカニカルな 方法で直接テクスチャー加工(表面加工)を行うことは 困難であるが、永久歪みは比較的容易に形成することが 可能である。

【0010】請求項2の磁気記録媒体用ガラス基板の製 造方法は、請求項1において、表面凹凸を、加工痕を付 与した部分と加工痕を付与しない部分との化学的エッチ リウム水溶液等の水酸基を有する溶液を含有するスラリ 10 ング深さの差に基づいて形成することを特徴とする。す なわち、本発明の表面凹凸の形成方法は、永久歪みが生 じた部分のガラスは、酸やアルカリに対して永久歪みが 生じない部分と異なることに基づいている。すなわち永 久歪みが生じた部分の耐酸性(酸性溶液による化学エッ チングのされにくさ)が永久歪みが生じていない部分よ りも大きいことに基づいている。また永久歪みが生じた 部分の耐アルカリ性(アルカリ性溶液による化学エッチ ングのされにくさ〉が永久歪みが生じていない部分より も大きいということに基づいている。

> 【0011】上記の本発明者により発見した実験事実に 基づいて、円周方向に永久圧縮歪みを有する加工痕をガ ラス表面およびその近傍に付与し、その後ガラス表面全 体を化学的にエッチングすると、たとえば酸あるいはア ルカリの液によりエッチングすると、永久歪みを有する 加工痕の部分は、永久歪みがないあるいは永久歪み量が より小さい部分よりもガラスの深さ方向でエッチングス ビードが遅いため凸形状に残り、磁気記録媒体として有 用な円周方向に方向性を有する表面凹凸(テクスチャ ー)を形成することができるのである。

> 与するには、回転するガラス板の表面にガラスよりも硬 い材質の微粒子を坦持した基体、フィルムを押圧すると とにより行うことができる。また、基体あるいはフィル ムを押し圧状態にしながら、回転するガラス板の基体あ るいはフィルムとの間に硬質の微粒子を供給することに より行うことができる。

【0013】請求項3の磁気記録媒体用ガラス基板の製 遺方法は、請求項1または2において、加工痕をガラス 板の主表面にスラリーを含む処理液を供給しながら処理 40 テープを円周方向に擦ることによって形成することを特 徴とする。

【0014】ととで円周方向に加工痕を形成する方法 は、ガラス板表面にスラリーを含む処理液と処理テープ で円周方向に擦ることによって形成する方法が適してい る。たとえば処理液をガラス板表面に供給しながら、処 理テープをガラス板表面に押しあて、処理液中に懸濁し ている微粒子をガラス板表面に押し当てる方法がよい。 との方法によれば、制御よく円周方向に加工痕を形成さ せることができる。

ず、公知のものを使用することができる。たとえば、ボ リエステル、セルロース、ナイロンなどの樹脂テープが 例示できる。また、スラリーは、水などの液体に研磨剤 を懸濁させたものを用いることができる。研磨剤の種類 は、要求されるテクスチャーの仕様から適宜選定され る。要求されるテクスチャー形状に合わせて選定するこ とができるが、通常、研磨剤のサイズが小さいほど、微 細な形状のテクスチャーを得ることができる。

【0016】請求項4の磁気記録媒体用ガラス基板の製 チングを弗化水素酸または珪弗化水素酸あるいはこれら を混合したものを含むエッチング液で行うことを特徴と する。

【0017】加工痕の形成後に行う化学的エッチング は、テクスチャーの形状を適切に制御できるエッチング 液を用いるのが好ましい。そのようなものとして、弗化 水素酸または珪弗化水素酸を含むエッチング液が、永久 歪みを有する部分と永久歪みを有さない部分とでエッチ ング速度差を十分に得るとともに、エッチング量の制御 ついても本発明のエッチング液として用いることができ **5.**

【0018】請求項5に記載の磁気記録媒体用ガラス基 板の製造方法は、請求項1~4のいずれかに記載の磁気 記録媒体用ガラス基板の製造方法において、前記凹凸を 形成する処理を行った後、前記ガラス基板中の一部のイ オンがそれより大きなイオン半径を有する溶融塩に含ま れるイオンに交換される化学強化処理を施すことを特徴 とする。

ガラス基板に要求される清浄度を満たすための最終洗浄 工程に位置づけられ、高度に管理されたクリーンルーム 内で行われる。それに対して、前記凹凸処理にはスラリ ーを使用する必要があるため、クリーンルーム内で行う ことができなかった。そのため化学強化処理後に凹凸処 理を行う場合、クリーンルーム内に別のプースを設ける など行程が複雑になる。

【0020】請求項5によれば、凹凸処理後に化学強化 処理を行うので、製造工程が簡略化し、製造コストを削 減することができる。

【0021】請求項6に記載の磁気配録媒体用ガラス基 板の製造方法は、請求項5において、前記化学強化処理 を行った後、酸性水溶液とアルカリ性水溶液による洗浄 を順次施すことを特徴とする。

【0022】このように化学強化処理の後に酸洗浄およ びアルカリ洗浄を施すこととしたのは、化学強化処理に よって変化したテクスチャー(凹凸)形状を整えるため である。すなわち、円周方向に形成した加工痕は化学強 化時の熱によって緩和、膨張し、テクスチャーの尾根の 商さが必要以上に高くなることがある。他方、ガラスを 50 いようにするのが好ましい。

酸とアルカリによって順次洗浄を施せば、ガラス成分の 一部が酸によって選択溶解し、シリカを主成分とする骨 格層がが残る。

【0023】この骨格層は、ポーラスな状態になってい るためにアルカリにより穏やかなエッチングが起こる。 そこで、化学強化処理後に酸洗浄とアルカリ洗浄を施す ことにより、必要以上に高くなったテクスチャーの尾根 の形状を整えることができる。なお、化学強化処理後は 永久歪みの緩和が進行しているため、前述のような顕著 造方法は、請求項1~3のいずれかにおいて、化学エッ 10 なエッチングのスピード差は発生しない。そのため、テ クスチャーがさらに成長することはない。また、永久歪 みが完全に緩和しているわけではないので、機械的な方 法だけで形成したテクスチャーのように、エッチングで 消失することもない。そのため、大きな形状変化を伴う ことなく化学強化処理を行うことができる。また、酸と アルカリの洗浄は、化学強化処理の行程で付着した強化 塩や鉄などの不純物を除去する働きをも有している。

【0024】請求項7の磁気記録媒体用ガラス基板は、 請求項1~6のいずれかの磁気記録媒体用ガラス基板の が容易に行えるという点で好ましい。アルカリ性溶液に 20 製造方法により製造されたガラス基板であって、前配ガ ラス基板の表面の凹凸が、AFMで測定したRa値が 0.5~1.0nmであり、かつ前配凹凸の最大高さか ら最小高さを差し引いた値であるRmax値が3.0n m以上であることを特徴とする。

【0025】Raが0.5nm未満であると、磁気ヘッ ドと磁気記録媒体との接触面積が大きくなって、両者が 粘着しやすくなり、回転トラブルが生じる確率が増加す るので好ましくない。またRaが1.0nmを越えると 磁気ヘッドと磁気記録媒体との接触面積が小さくなりす 【0019】化学強化処理後の洗浄は、磁気記録媒体用 30 ぎ、わずかな高さの異常突起が存在した場合でも、その 突起は磁気ヘッドとの衝突により削れ、ヘッドクラッシ ュやヘッドコロージョンが発生しやすくなるので好まし くない。また、Rmaxは、磁気ヘッドの磁気記録媒体 表面での吸着を防止するために3.0 nm以上とするの が好ましい。

> [0026]請求項8の磁気記録媒体用ガラス基板は、 請求項7において、Rmaxが15nm以下であること を特徴とする。Rmaxが15nmを越えるとヘッドク ラッシュを生じる確率が一層増加するので、との値を超 40 えないようにするのが好ましい。

【0027】請求項9に記載の磁気記録媒体用ガラス基 板は、請求項1~6のいずれかに記載の磁気記録媒体用 ガラス基板の製造方法により製造された磁気記録媒体用 ガラス基板であって、前記ガラス基板の主表面の凹凸 が、AFMで測定したRa値が0.2~0.5nmであ り、前記凹凸の最大高さから最小高さを差し引いた値で あるRmax値が2、Onm以上であることを特徴とす る。また、Rmaxが15nmを越えるとヘッドクラッ シュを生じる確率が一層増加するので、この値を超えな

【0028】請求項9によれば、ランプロード方式など ヘッドの高さが低い記録方式を採用したハードディスク ドライブにも適用可能な基板とすることができる。

【0029】請求項10に記載の磁気記録媒体用ガラス 基板は、請求項7~8のいずれかにおいて、前記ガラス 基板の主表面に形成された凹凸が円周方向に線状に形成 され、その半径方向の線密度がAFMで測定して500 0~40000本/mmであることを特徴とする。

【0030】請求項11に記載の磁気記録媒体は、請求 項 $7\sim10$ のいずれかに記載の磁気記録媒体用ガラス基 $10~0.01\sim3$ μm程度の研磨剤が使用される。また、研 板の表面に、磁性膜を含む磁気記録膜が被覆されたこと を特徴とする。

【0031】請求項11に記載の磁気記録媒体によれ ば、円周方向に表面凹凸を有するガラス基板上に磁気記 録膜が被覆されているので、磁性膜の保持力は、円周方 向により磁気異方性を有する。すなわち、半径方向の保 持力に対する円周方向の保持力を1.00以上にするこ とができる。

[0032]

【発明の実施の形態】以下、本発明の実施形態および実 20 権例を詳細に説明する。ただし、本発明は以下の実施例 に限定されるものではない。本発明に用いるガラス組成 は、とくに限定されるものではなく、例えば二酸化ケイ 素とアルカリ金属酸化物とアルカリ土類金属酸化物とを 主成分とするソーダライムシリカガラス、二酸化ケイ素 と酸化アルミニウムとアルカリ金属酸化物とを主成分と するアルミノシリケートガラス、二酸化ケイ素とボロン 酸化物とを主成分とするボロシリケートガラスのほか、 酸化リチウムと二酸化珪素を主成分とするLi。O-S iO₂系ガラスや、酸化リチウムと二酸化珪素と酸化ア ルミニウムとを主成分とするLi,O-Al,O,-Si O₂系ガラス、アルカリ土類金属酸化物と酸化アルミニ ウムと二酸化珪素とを主成分とするRO-A1,O,-S iO,系ガラス(ただし、ROは酸化マグネシウムMg O、酸化カルシウムCaO、酸化ストロンチウムSr O、酸化パリウムBaO、酸化亜鉛ZnO、酸化ニッケ ルNiO、酸化マンガンMnO等〉等の結晶化ガラスが 挙げられる。ガラス成分のうち酸化アルミニウム、アル カリ金属酸化物およびアルカリ土類金属酸化物は、酸性 に含むものは、化学的エッチングが比較的容易に行うと とができるので、磁気記録媒体用ガラス基板に要求され るテクスチャーを形成する点で好ましい。そのようなガ ラス組成として下記のアルミノシリケート系ガラス(モ ル%)が挙げられる。

[0033]SiO₂:55~70%, Al₂O₃:1~ 13%, Li,O:5~20%, Na,O:0~14%, $K_2O: 0\sim3\%, MgO: 0\sim8\%, CaO: 0\sim1$ 0%, SrO: 0~6%, BaO: 0~2%, Ti $O_1: 0 \sim 8\% Z r O_2: 0 \sim 4\%$

【0034】本発明においては、磁気記録媒体用ガラス 基板に要求される平坦性を確保するため、表面凹凸(テ クスチャー)の形成工程に先立ち、通常、ガラス板は粗 研磨(研削研磨)によりガラス板の厚みが所定寸法に調 整され、その後その表面が鏡面研磨される。鏡面研磨を するための研磨剤は特に限定されず、酸化セリウム、マ ンガン酸化物、ジルコニア酸化物などが挙げられる。研 磨剤は微粒子からなる。研磨剤のサイズは、特に限定さ れないが、平坦性と研磨速度を両立させるために、通常 磨方法も特に限定されないが、人工皮革スエードバッド を上定盤および下定盤に貼り付けた両面研磨機を用いれ ば、低コストで両面を精密に鏡面研磨することができ る。研磨材のサイズや研磨速度などの条件を最適化する ことによって、予めがらす主表面の平滑性を高めておけ ば、テクスチャー処理後にもRa値が小さく、より微細 なテクスチャーを形成することができる。

【0035】鏡面研磨したガラス板は、洗浄工程を経た 後、円周方向に加工痕が形成される。本発明の加工痕の 形成方法としては、スラリーを含む処理液と処理テープ で基板表面を擦る方法が適している。処理テープでガラ ス基板表面を擦る方法として、図1に示すようにドーナ ッツ円盤状に加工されたガラス基板を一定速度で回転さ せながら、一定の加圧力でテープを押し付けることによ り行うことができる。ガラス板の回転数は特に限定され ないが、通常5~1000rpm程度に調整する。ま た、処理テープの加圧力も特に限定されない。加圧力を 小さくすると微細な形状のテクスチャーを得ることがで き、大きくすると高速で処理することができる。要求さ 30 れるテクスチャーの形状に応じて適宜選定することがで きる。 通常、20~500g/cm²程度の加圧が生産 効率よく加工痕を形成できるので好ましい。また、処理 テープは10~10、000mm/秒の速さで送るのが

【0036】本発明にかかるスラリーの種類は特に限定 されず、ダイタモンド結晶のほか、酸化セリウム、マン ガン酸化物、ジルコニア酸化物、チタニア酸化物、二酸 化珪素などの遊離砥粒を水などの媒体に分散して用いる ことができる。また、研磨剤のサイズも特に限定されな 水溶液中で溶解し易い成分であり、これらの成分を適当 40 いが、一般的に微細な研磨剤を用いるほど、より精密な テクスチャーの制御が可能となる。砥粒のサイズをあま り小さくすると、加工痕を効率的に形成することができ なくなるため、通常0.05~3μ皿程度の研磨剤が好 適に使用される。用いるスラリーには、必要に応じて分 散剤や潤滑剤、防かび剤を添加することも可能である。 スラリーを供給しながら加工痕を形成した後、スラリー を除去するために純水や市販の中性もしくはアルカリ系 の洗剤を供給しながらテーブ処理を施しても良い。さら に、その後、超音波洗浄やシャワー洗浄などの方法で洗 50 浄するのが好ましい。

【0037】以上のようにして円周方向に加工痕が形成 されたガラス板は、化学的な方法によってエッチングさ れる。エッチング液の種類は特に限定されないが、弗化 水素酸や珪弗化水素酸、あるいはこれらの両者を含む液 は、加工痕が形成された部分と形成されない部分とのエ ッチングレート(エッチング速度)の差が大きく、かつ 制御性よくエッチングできるので好ましい。

【0038】加工痕が形成された部分のエッチングレー トが加工痕が形成されていない部分と異なる理由は、以 は物理的な形状を伴うことが多く、加工圧によって永久 圧縮歪みが形成されている。とのような圧縮歪みが形成 された部分は、形成されない部分に比較して、化学的に エッチングされにくい(ガラスの深さ方向でエッチング レートが小さい) 状態になると考えられる。また、上記 のエッチングレートの差は、弗化水素酸、珪弗化水素酸 のように酸性のエッチング液でとくに顕著である。この 理由は、明らかではないが、ガラスを構成する成分のう ち、アルカリ金属酸化物、アルカリ土類金属酸化物など の耐酸性の弱い成分は、通常酸性の溶液中で容易に溶出 20 し、エッチングを促進するのに対し、圧縮された部位に おいてはこのような溶出が起こりにくくなったためと推

【0039】図3は、ガラス板の表面からエッチングが 開始され、エッチングニより表面凹凸が形成されて磁気 記録媒体用ガラス基板となる表面凹凸の形成過程を模式 的に示した説明図である。図3 (a) は表面が鏡面研磨 されたガラス板である。図3(b)は、研磨剤を含むス ラリーをガラス表面に供給しながら処理テープでガラス に向かって圧縮歪みを有する部分が付与されたガラス板 の断面を模式的に示す図である。この圧縮歪みを有する 部分は、回転するガラス板の表面に処理テーブが押し当 てられて形成されるので、円周方向に方向性を有してい る。ガラスの表面およびその表面近傍に形成された永久 圧縮歪みを有する部分は、図3 (c)のエッチングの初 期段階で示されるように、圧縮歪みがある部分はガラス のエッチング量(深さ)が小さい。さらに図3(d)に 示されるようにエッチングが進行すると、圧縮歪みがあ る部分とない部分とで、それまでのエッチング性の差に 40 より、エッチング量により多くの差が生じ、表面凹凸が 形成されたガラス表面が得られる。

【0040】本発明において、ガラス板を化学的エッチ ングをする具体的方法としては、エッチング液中に浸漬 する方法のほか、エッチング液をシャワー、噴射などの 方法でガラス板と接触させるなどの方法を採用すること ができる。その際に、ゴミや汚れの除去を同時に行うた めに超音波を印加したり、ブラシで擦っても良い。エッ チング液の濃度、温度、時間は適時定められる。一般

グレートが大きくなり、作業効率の面で優れるが、その 反面表面凹凸の形状の制御性が低下する。通常、エッチ ング液の濃度は、弗化水素酸の場合0,001~0.5 重量%、珪弗化水素酸の場合0.01~1重量%の範囲 で用いるのがよく、これらの両者を混合して用いてもよ い。温度は室温~70℃の範囲とするのがよい。

【〇〇41】エッチング処理を施したガラス板は、純水 でリンスした後、乾燥される。その際、純水のリンスに 先立ち、市販の中性やアルカリ洗剤でガラス板を洗浄し 下のように推定される。本発明の方法で形成した加工痕 10 てもよい。リンスの方法も特に限定されず、浸漬あるい は超音波印加状態での浸渍のほか、シャワー、噴射など の方法を適用することができる。また、乾燥方法も限定 されず、スピン乾燥やイソプロブルアルコールによる乾 燥などが適用することができる。

> 【0042】ガラス板上には円周方向に表面凹凸(テク スチャー)を付与し、その後必要な機械的強度を確保す るためのガラスの化学強化処理を施しても良い。化学強 化処理は、溶融塩中にガラス板を浸漬することで行うこ とができる。溶融塩は、ガラス中のアルカリイオンより も大きなイオンを含む溶融塩を用いることができる。そ のようなものとして、公知の硝酸カリウムや硝酸ナトリ ウム、あるいはその混合塩がある。化学強化処理は、ガ ラス板に表面凹凸を形成する前に実施してもよく後でし てもよい。製造工程が複雑になるのを防ぐためには、テ クスチャー処理の後に化学強化処理を行うのが好まし

【0043】テクスチャー処理工程または化学強化処理 工程を経た基板は、酸性水溶液およびアルカリ水溶液に よる洗浄が順次施される。酸性水溶液ではガラス中の一 表面を円周方向に擦ることにより、ガラス表面から内部 30 部の成分が溶出し、ガラス骨格成分である二酸化珪素が リッチな状態になる。そのため、その後にアルカリ性水 溶液で洗浄すると表面がエッチングされやすくなる。し たがって、酸性水溶液とアルカリ性水溶液を組み合わせ て洗浄を行うと、ガラス表面に強固に付着した鉄などの 不純物もエッチングによって容易に除去でき、しかもエ ッチング量を適度に制御する作用も有している。とのよ うな相乗作用によって研磨材をほぼ完全に除去すること ができる。

> 【0044】酸性水溶液の種類は特に限定されないが、 フッ酸、ケイフッ化水素酸のようなガラスに対するエッ チング作用を有するもののほか、硫酸、塩酸、硝酸、ス ルファミン酸およびリン酸等のような強酸がガラス表面 の選択エッチングを促進するので好適である。また、ア ルカリ水溶液も特に限定されず、水酸化カリウム、水酸 化ナトリウム、アンモニア、トリメチルアンモニウムな ど水に溶解するアルカリ性物質であれば、いかなるもの も用いることができる。また、洗浄効果を高めるため に、界面活性剤やキレート剤のほか、アルカリ系の洗剤 を添加してもよい。

に、エッチング液の濃度が大きく温度が高いとエッチン 50 【0045】上記の酸およびアルカリの濃度は特に限定

されず、鉄などの不純物を除去するのに必要な濃度で適 **宜選択すればよい。エッチング量をあまり多くするとガ** ラス基板の端部の形状を変化させてしまうおそれが生じ るので、エッチング量は3 nm以下にするのが好まし い。洗浄時間や洗浄温度も特に限定されず、適宜条件が 決定される。通常製造コストを考慮して、洗浄時間を1 ~20分間、洗浄温度を70℃以下とするのが好まし い。酸およびアルカリを用いた具体的な洗浄方法やリン ス、乾燥法などは、特に限定されず、エッチングと同様 の方法を用いることができる。

【0046】上記により得られた磁気記録媒体用ガラス 基板上に少なくとも磁性膜の結晶性を制御するための下 地層、磁性層および保護層が順次成膜されて構成される 磁気記録膜が被覆されて、磁気記録媒体とされる。磁気 記録膜は、必要に応じてガラス板と下地層の間にシード 層を設け、また各層についてバッファ層やシールド層を 設けた多層構成の膜とすることができる。

【0047】実施例1

厚み0.6mm、外径65mm、外径20mmのドーナ ツ状のアルミノシリケートガラス板(組成がSi〇 ,6. 0%, Al,O,11. 0%, Li,O8. 0%, N a,09, 1%, MgO2, 4%, CaO3, 6%) O 主表面を酸化セリウムを含有する研磨剤で鏡面加工を施 した。その後、純水シャワーで洗浄し、ドーナツ状のガ ラス基板の表面に付着した研磨剤を除去した。鏡面研磨 したガラス板の表面粗さをAFMで測定した結果、Ra =0.35nmであった。続いて、図1に示すテープ研 磨の方法により、0.03重量%のダイヤモンドを含む スラリーをガラス基板上に滴下しながら加工痕の付与を イロン処理テープの加圧力を1.3kg/cm²、送り 速度を1.0mm/秒、処理時間を6秒とした。テープ 処理を終えた後、純水シャワーで洗浄し、このガラス板 の表面に付着した研磨剤の粗落しを行った。ついで、と のガラス板を30℃に保持した0.05重量%の弗化水 素酸に、48kHz、1W/cm2の超音波を照射しな がら5分間浸漬し、その後純水浴中に移して十分にリン スした。つづいて、市販の弱アルカリ洗剤中に室温で5 分間浸漬した後、純水浴中にガラス板を浸漬してリンス 中で1分間乾燥させた。得られた磁気記録媒体用ガラス **基板のサンブルのRaをAFM(原子間力顕微鏡)で測** 定した結果、1.2nmであることがわかった。また、 AFMの測定の結果、図2に示すように同心円状の表面 凹凸10が形成されていることが確認できた。

[0048] 実施例2

エッチング液を0.3重量%の珪弗化水素酸とした以外 は、実施例1と同様にして作製し、磁気記録媒体用ガラ ス基板のサンブルを得た。この磁気記録媒体用ガラス基 実施例1とほぼ同様の同心円状の表面凹凸が形成されて いるととが確認できた。

[0049] 実施例3

エッチング液を10重量%の苛性ソーダとし、浸渍温度 を70℃にした以外は、実施例2と同様にして、磁気記 録媒体用ガラス基板を作製した。実施例1 および実施例 2で得たサンブルと同様の同心円状の表面凹凸が形成さ れていることが、AFM観察により確認できた。このサ ンプルのRaは0、5nmであり、実施例1あるいは2 10 に比べて小さいものであった。

[0050]実施例4

エッチング液の浸漬時間を20分とした以外は、実施例 3と同様にして磁気記録媒体用ガラス基板のサンブルを 作製した。実施例1あるいは2と同様、同心円状の表面 凹凸を形成するととができた。Raの値は0.5nm で、実施例3のサンブルと同程度であった。

【0051】実施例5

実施例1で得られた磁気ディスク用ガラス基板の表面 に、静止対向型スパッタリング装置を用いて、NiP 20 膜、クロム膜、CoCェPt系磁性膜、窒化カーボン保 護膜を、それぞれ隣化ニッケル、クロム金属、コバルト クロム白金合金、窒化カーボンをターゲットに用いてア ルゴン雰囲気内でのスパッタリング法で順次形成し、そ の後パーフルオロボリエーテル系の潤滑剤を塗布した。 得られた磁気記録媒体の磁気特性を振動試料型磁力計に より半径方向および円周方向について保持力を測定し た。作製された磁気記録媒体の半径方向の保持力に対す る円周方向の保持力の比率は1.03であり、円周方向 に磁気異方性を有することが確認された。このとき、へ 行った。その際、ガラス板の回転数を860rpm、ナ 30 ッドの浮上安定性の指標となるTOH(Take Of fheight)を測定したところ、6.8nmであっ た。なお、TOHの測定法は、磁気記録媒体の回転速度 を徐々に下げることによってヘッドの浮上高さを低下さ せ、同時にヘッド装着したビエゾ信号を検出した際のビ エゾからの信号出力が急速に立ち上がるThresho 1 d におけるヘッド浮上高さを示しており、この値が低 いほど、より低い浮上量においてもヘッドが安定して浮 上することを意味する。

【0052】実施例6

する操作を3回繰り返し、イソプロピルアルコール蒸気 40 実施例1と同様の方法で作製したテクスチャー付きガラ ス基板を、380℃に加熱した硝酸カリウム(60重量 %) と硝酸ナトリウム(40重量%)を混合溶融塩中で 90分漬けることにより化学強化処理を行った。化学強 化処理後65℃の温水中にガラス基板を漬けて溶融塩を ガラス表面から除去した。さらに、40℃に保持した3 %硫酸中に48KHz、1W/cm²の超音波を照射し ながら5分間ガラス基板を漬け、その後純粋水浴中にリ ンスした。続いてpHを9.5に調整した水酸化カリウ ム水溶液中に漬け、実施例1と同様の方法でリンス、乾 板のAFMの測定によるRaの値は1.3nmであり、 50 燥を行い、サンブルを得た。得られたサンブルの主表面 のRa値は1.2nmであり、化学強化処理を行っても 実施例1と同様の良好なテクスチャー形状が得られた。 また、全反射蛍光X線法によって表面に残留する鉄元素 の分析を行った結果、検出限界(1×10*原子/c m³)以下であった。

【0053】実施例7

硫酸および水酸化カリウムによる洗浄を省略したほかは、実施例8と同じようにしてガラス基板のサンブルを作製した。このガラス基板のサンブルの主表面に残留する鉄元素の分析を行ったところ、5×1010原子/cm 101と、実施例8より鉄の残留が多かった。

【0054】実施例8

研磨加工条件を変更することによって鏡面研磨したガラス基板表面のRaを0.15nmとしたほかは、実施例1と同様の方法によって作製したガラス基板のサンプルを得た。このサンブルの主表面の表面粗さRaをAFMで測定した結果、0.45nmであった。また、半径方向の線密度は15000本/mmであった。この基板を用いて実施例5と同様の方法で磁気記録媒体を作製し、TOHを測定したところ、5.2nmと良好な値であっ20た。

[0055]実施例9

フッ酸の機度を0.3%としたほかは、実施例8と同様の方法で作成したガラス基板のサンブルを得た。このサンブルの主表面の表面粗さRaをAFMで測定したところ、0.73nmであった。また線密度は2000本/mmであった。このサンブルを用いて、実施例5と同様の方法により磁気記録媒体を作製した。得られた磁気記録媒体の保持力の比率はI.01で、実施例8と比較してやや低い値であった。

【0056】比較例1

エッチング処理工程を省いたことを除いて、実施例1と 同様にして磁気記録媒体用ガラス基板を作製した。得ら れたガラス基板のRaは0.35nmであった。また、 AFM測定では、円周方向に方向性を有する表面凹凸は 確認できなかった。

[0057]比較例2

平滑に鏡面研磨されたRaが約0.3nmであるガラス 板上の表面凹凸形状に異方性がないガラス板に、実施例 5と同じようにして、静止対向型スパッタリング装置を 40 用いてスパッタリング法で順次形成し、その後パーフル オロボリエーテル系の潤滑剤を塗布した。得られた磁気 記録媒体の半径方向の保持力に対する円層方向の保持力 の比率は1.0であった。すなわち、磁性膜の膜面方向

での磁気異方性は観察されなかった。

[0058]

【発明の効果】本発明の磁気配縁媒体の製造方法によれば、円形状に成形されたガラス板の主表面に円周方向に圧縮歪みを有する加工痕を付与した後、その表面を化学的にエッチングする。 これにより、ガラス表面に容易に同心円状の微小表面凹凸からなる磁気記録媒体用ガラス基板として好適な表面凹凸(テクスチャー)を形成することができる。

【0059】また、化学的エッチングを弗化水素酸または珪弗化水素酸またはその両者を含むエッチング液で行うことにより、加工痕を付与した部分と加工痕を付与しない部分との化学的エッチング深さの差を大きくすることができる。

【0080】また、加工痕を、前記ガラス板の主表面に スラリーを含む処理液を供給しながら処理テープを円周 方向に擦ることによって、硬度が大きいガラス板表面に 円周方向に方向性を有し、かつ、表面凹凸形成のもとに なる加工痕を安価な方法で付与することができる。

【0061】また、テクスチャー処理の後に化学強化処理をすることにより、簡素な工程で剛性の高い基板とすることができ、化学強化後に酸およびアルカリの洗浄を施すことにより、テクスチャー形状を変えることなく、高い清浄度のガラス基板を得ることができる。

【0062】本発明により得られる円形状に加工された 磁気記録媒体用ガラス基板の主表面の凹凸形状は、円周 方向に方向性を有しているので、このガラス基上に被覆 された磁気記録膜は円周方向に磁気異方性を有する。このため、本発明の磁気記録媒体は、半径方向の保持力に 30 対する円周方向の保持力が大きいので、長時間の使用による磁気記録情報の消失や減衰のない信頼性の高い磁気 記録媒体となる。

【図面の簡単な説明】

【図1】本発明の円周方向に加工痕をガラス板表面に付 与する方法の一実施例の説明図である。

【図2】本発明の磁気記録媒体用ガラス基板に形成された円周方向に方向性を有する表面凹凸(テクスチャー)の一実施例を説明する図である。

【図3】本発明の永久歪みを有する加工痕の部分で生じる化学的エッチングを説明する図である。

【符号の説明】

1:ガラス板、2:処理テープ、3:研磨スラリー供給容器、4:研磨液

10:加工渡

[図2]

[図3]

(a) (b) (c) (d)...

フロントペー	-ジの続き					
(51)Int.Cl.	7	識別記号	FΙ			ナーマコード (参考)
C03C	21/00	101	C03C	21/00	101	
G11B	5/73		G11B	5/73		
// C03C	3/083		COSC	3/083		
	3/085			3/085		
	3/087			3/087		
	10/10			10/10		
(72)発明者	三谷 一石 大阪府大阪市中 日本板硝子株式	中央区北浜四丁目7番28号 代会社内	(72)発明者	大阪府	淳史 大阪市中央区北海 硝子株式会社内	段四丁目 7 番 2 8号

(72)発明者 奥畑 浩治

大阪府大阪市中央区北浜四丁目7番28号 日本板硝子株式会社内

Fターム(参考) 4G059 AA08 AB11 AC01 AC24 AC30 BB04 BB14 BB15 HB03 HB13

H814

4G062 AA11 BB06 DA06 DB03 DB04

DC01 DD01 DE01 DF01 EA03

EA04 EB01 EB02 EB03 EB04

EC01 EC02 EC03 ED01 ED02

ED03 EE01 EE02 EE03 EF01

EF02 EF03 EG01 EG02 EG03

FA01 FA10 FB01 FB02 FB03

FC01 FC02 FC03 FD01 FE01

FF01 FG01 FH01 FJ01 FK01

FL01 GA01 GA10 G801 GC01

GD01 GE01 HH01 HH03 HH05

HH07 HH09 HH11 HH13 HH15

HH17 HH20 JJ01 JJ03 JJ05

JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM27 NN33 QQ12

5D006 CB04 CB07 DA03 DA04

5D112 AA02 BA03 BA09 GA08 GA09

GA27 GA28