

RADIATIVE TRANSFER IN GALAXIES

By RORY WOODS, B.Sc., M.Sc.

 $\label{eq:AThesis} \mbox{Submitted to the School of Graduate Studies}$ in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

McMaster University

© Rory Woods, August 2015

DOCTOR OF PHILOSOPHY (2015) (Physics and Astronomy)

McMaster University Hamilton, Ontario

TITLE: Radiative Transfer in Galaxy Formation

AUTHOR: Rory Woods, B.Sc. (Mount Allison University), M.Sc. (McMaster

University)

SUPERVISOR: Professor James Wadsley

NUMBER OF PAGES: 1

Abstract

In this thesis, we present a novel algorithm for computing the radiation field in astrophysical simulations.

Acknowledgements

Thank you to all that helped.

"Some sort of quote?"

Albert Einstein (1879-1955)

Table of Contents

Abstra	ct	iii
Acknow	wledgments	vi
List of	Figures	X
List of	Tables	xi
Chapte Intr	er 1 roduction	1
Chapte Nun	er 2 nerical Methods	2
Chapte	er 3	
\mathbf{The}	Numerical Method	3
3.1	Tree Data Structures	5
	3.1.1 kd-Tree	5
3.2	Building a Radiation Tree	5
	3.2.1 Criteria for Opening Cells	5
	3.2.2 Accumulating Cell Properties	5
3.3	The Simple Case - No Absorption	5
	3.3.1 Exchanging Radiation	5
3.4	Adding Absorption	5
	3.4.1 Making Use of the Tree	5
3.5	Refinement	5
	3.5.1 Criteria to Refine	5
3.6	Resolving the Sending and Receiving Cells	5

Chapter 4	
Discussion	6
Chapter 5	
Conclusions	7
Chapter A	
Appendix A	8
Bibliography	8

List of Figures

List of Tables

	_				
Chanter					
Chaplei					

Introduction

! <u> </u>				
Chapter				
Unapiei				

Numerical Methods

		 _
	4	
Chapter		

The Numerical Method

In the absence of absorbing material, the problem of radiative transfer reduces down to that of gravity. As such, the tree-algorithm for calculating gravity can be used (?).

- A tree can be used to partition space.
- Each level of the tree holds finer partitions of the volume. See figure ??
- Each node of the tree contains accumulated information about the tree below it (total mass, etc.).
- In order to calculate gravity on a particular leaf (bucket), you can interact with the moment of another cell (??).
- To decide what level of the tree to interact with, you can define an opening angle/radius, θ . If a cell is smaller than this opening angle (the distribution of matter inside the cell is contained within a small enough angle on the sky), the entire cell can be used in the force calculation. If not, you must consider the child nodes separately. See equation ??.

- On average, the number of interactions a each particle will have is $\log N$, where N is the total number of particles. Thus, the force calculation for the whole simulation scales as $N \log N$. Note that lowering θ shifts the number of calculations that are approximated by large cells to smaller cells, and thus if θ is very small, the code approached scaling of order N^2 .
- In the case of radiation, the math is very similar (See eq??). However, since radiation does not cancel like forces, the dipole moment does not disappear and a rougher approximation is possible (wording wrong, fix this).
- In this case, the interaction scales as $N_{\text{sink}} \log N_{\text{source}}$. However, assuming the full tree is still used, the tree-build still scales as $N \log N$.

- 3.1 Tree Data Structures
- 3.1.1 kd-Tree
- 3.2 Building a Radiation Tree
- 3.2.1 Criteria for Opening Cells
- 3.2.2 Accumulating Cell Properties
- 3.3 The Simple Case No Absorption
- 3.3.1 Exchanging Radiation
- 3.4 Adding Absorption
- 3.4.1 Making Use of the Tree
- 3.5 Refinement
- 3.5.1 Criteria to Refine
- 3.6 Resolving the Sending and Receiving Cells

	_			
	1			
1	/			
Chanter		i		
Chabler				

Discussion

Charatan	,		
Chapter			

Conclusions

		\			
	$-\Lambda$				
		_			
Appendix .					
ANNANAIV					

Appendix A