The Formalisation and Applications of the Stone-Weierstrass Theorem

Imperial College ondon

Kexing Ying

The Stone-Weierstrass Theorem

Let X be a compact metric space and Mthe set of all continuous function from X to \mathbb{R} , then the *Stone-Weierstrass theorem* states that,

Given an unital subalgebra of M, M_0 (i.e. a subset of M that contains 1 and is closed under addition, multiplication and scalar multiplication) that is closed under the lattice operations and separates points, $M_0 = M$; [2]

where we define the lattice operations $\vee, \wedge : (X \rightarrow X)$ \mathbb{R})² \to $(X \to \mathbb{R})$ such that, for all $f, g : X \to \mathbb{R}$, where f, g are continuous functions

$$f \vee g = \max\{f, g\}; \quad f \wedge g = \min\{f, g\};$$

 \overline{M}_0 the closure of M_0 under uniform convergence to the *limit* and we say M_0 separates points if and only if for \blacksquare then, for all $\epsilon > 0$, as $f(x) : [0,1] \to \mathbb{R} := |\alpha x - \beta|$ is all distinct $x, y \in X$, there exists some $f \in M_0$ such \square continuous on the compact interval [0, 1], it is unithat $f(x) \neq f(y)$.

Application: Weierstrass Theorem

The Weierstrass approximation theorem states

Let *f* be a real continuous function on a closed interval $[\alpha, \beta]$. Then for all $\epsilon > 0$, there exists a polynomial P_n such that

$$\sup_{x \in [\alpha, \beta]} |f(x) - P_n(x)| < \epsilon.$$

By section Lemma: |x| is in the Closure!, the sequence of polynomial $P_n(x) \to |x|$ uniformly where,

$$P_n(x) := \sum_{k=0}^n \left| \alpha \frac{k}{n} - \beta \right| \binom{n}{i} x^i (1-x)^{n-i}$$

Now, as

$$f \lor g = \frac{1}{2}(f + g + |f - g|);$$

$$f \wedge g = \frac{1}{2}(f + g - |f - g|),$$

we see $\bar{\mathcal{P}}$ (the closure of polynomials under uniform convergence) is closed under the lattice operations. Thus, as \mathcal{P} form an unital subalgebra of all real to real functions, (as it contains 1, closed under addition, multiplication and scalar multiplication), and as $\bar{\mathcal{P}}$ separates points trivially, $\bar{\mathcal{P}} = \bar{\mathcal{P}} = [\alpha, \beta]^{\mathbb{R}}$ for all $\alpha, \beta \in \mathbb{R}, \alpha < \beta$ as required!

Lemma: |x| is in the Closure!

Let $X_1, \dots X_n$ be a sequence of i.i.d. Bernoulli random variables with parameter x and let $S_n =$ $\sum_{i=1}^n X_i$ so $S_n \sim Bin(n,x)$. Then by the law of the $||f(x)-g(x)| < \epsilon$ and $|f(y)-g(y)| < \epsilon$. unconscious statistician, we see,

$$\mathbb{E}\left(\left|\alpha\frac{S_n}{n} - \beta\right|\right) = \sum_{k=0}^n \left|\alpha\frac{k}{n} - \beta\right| \Pr\left(S_n = nk\right)$$
$$= \sum_{k=0}^n \left|\alpha\frac{k}{n} - \beta\right| \binom{n}{i} x^i (1-x)^{n-i} =: P_n(x)$$

for all $\alpha, \beta \in \mathbb{R}$, $\alpha < \beta$. Let us now define

$$A_n(\delta) = \left\{ \omega : \left| \frac{S_n(\omega)}{n} - x \right| \ge \delta \right\},$$

formly continuous on the same interval; so there is some $\delta > 0$ such that for all $|x - y| < \delta$, $\frac{\epsilon}{2} >$ |f(x)-f(y)|. Now, by LLN, $\Pr(A_n(\delta)) \to 0$, so, choose N such that $|\Pr(A_N(\delta))| < 1/2$, then

$$\frac{\epsilon}{2} > \mathbb{E}\left[\mathbf{1}_{(A_N)^c} \left| f(x) - f\left(\frac{S_N}{N}\right) \right| | A_N(\delta)^c \right]$$

$$\geq \left| f(x) - \mathbb{E}\left[f\left(\frac{S_N}{N}\right) \right] \right| \Pr((A_N(\delta))^c).$$

Now as $\mathbb{E}\left[f\left(\frac{S_N}{N}\right)\right] = P_N(x)$, we have $\epsilon/2 >$ $|f(x) - P_N(x)| (1 - \Pr(A_N(\delta))) > |f(x) - P_N(x)| / 2,$ so $P_n(x) \to f(x) = |\alpha x - \beta|$ uniformly for $x \in [0, 1]$ and $P_n(\frac{x+\beta}{\alpha}) \to |x|$ uniformly for all $x \in [\alpha, \beta]$.

Application: Trig. Polynomials

Another set of functions that are interesting are the trigonometric polynomials \mathcal{T} . As any constant is a trigonometric polynomial, $1 \in \mathcal{T}$ while \mathcal{T} is trivially closed under addition and scalar multiplication. Thus, by considering the identity

$$\sin(nx)\cos(kx) = \frac{1}{2}(\cos(n-k)x - \cos(n+k)x),$$

and similarly the identities of sin(nx)sin(kx) and $\cos(nx)\cos(kx)$, \mathcal{T} is closed under multiplication. Thus \mathcal{T} form an unital subalgebra of continuous functions on $[-\pi, \pi]$, and by considering the Fourier series of |x|, $\bar{\mathcal{T}}$ is closed under lattice operations and hence, by Stone-Weierstrass, $\bar{\mathcal{T}} = \bar{\mathcal{T}} = [-\pi, \pi]^{\mathbb{R}}$.

Proof Outline of Stone-Weierstrass

for all $x, y \in X$, $\epsilon > 0$, there exists $g \in M_0$ such that \blacksquare of polynomial functions, but does not provide a

Proof. The forward direction is by definition so we consider the reverse. Suppose for all $x, y \in X$, $\epsilon > 0$, x^2 for $x \in [0, 1]$ using Bernstein polynomials, there exists $g \in M_0$ such that $|f(x) - g(x)| < \epsilon$ and $|f(y)-g(y)|<\epsilon$ (*). Let us fix x and ϵ and define the mapping

$$S(y) := \{ z \in X \mid f(z) - g_y(z) < \epsilon \},$$

where g_y was chosen such that $|f(x) - g_y(x)| < \epsilon$ and $|f(y) - g_y(y)| < \epsilon$ which existence is guaranteed by (*).

Then for all $y \in X$, $y \in S(y)$ so $\bigcup_{y \in X} S(y) = X$. But as X is compact, $\bigcup_{y \in X} S(y)$ admits a finite subcover; so, there exists a finite index set I such that $\bigcup_{i\in I} S(y_i) = X$. Thus, by letting $p_x = \bigvee_{i\in I} g_{y_i}$, we have constructed a function $p_x \in \overline{M}_0$ such that

$$p_x(z) \ge g_{y_i}(z) > f(z) - \epsilon$$
 and $p_x(x) < f(x) + \epsilon$

for all $z \in X$ and $i \in I$.

Now, by defining a similar mapping, T,

$$T := \{ z \in X \mid p_x(z) < f(z) + \epsilon \},$$

we again create a finite subcover of X and thus can create the required function with $\bigwedge_{i \in J} p_{x_i}$ where Jis the index set such that $\bigcup_{i \in J} T(x_i) = X$.

Lemma 2. Given S, a subalgebra of \mathbb{R}^2 , S must be $\{(0,0)\}, \{(x,0) \mid x \in \mathbb{R}\}, \{(0,y) \mid y \in \mathbb{R}\}, \{(z,z)\}$ $z \in \mathbb{R}$ }, or \mathbb{R}^2 itself.

Lemma 2 was proved by evoking the law of the excluded middle on different propositions.

Given $x, y \in X$, define the boundary points of M_0 to be $\{(f(x), f(y)) \mid f \in M_0\}$. Let M_0 , M_1 be closed subalgebras of M under lattice operations, by lemma 1, it is deduced $\bar{M}_0 = \bar{M}_1$ iff. for distinct x, y, \overline{M}_0 and \overline{M}_1 have the same boundary points.

Now, as boundary points of M_0 form an unital subalgebra of \mathbb{R}^2 , the boundary points of \bar{M}_0 must be \mathbb{R}^2 by lemma 2 (the first three options excluded as $\in M_0$ and the fourth excluded as M_0 separate **points**) hence, as the boundary points of M is \mathbb{R}^2 is \mathbb{R}^2 , it follows $\bar{M}_0=M$ as required!

The theorem was also formalised using the Lean: http://github.com/JasonKYi/stoneweierstrass/tree/master/srcs.

Further Discussion & Interpolation

Lemma 1. For all $f \in M$, f is in \overline{M}_0 if and only if \blacksquare The Stone-Weierstrass theorem proved the density construction. We can achieve this using the Bernstein polynomials. Consider the approximation of

$$B_n(x) = \frac{1}{n}x + \frac{n-1}{n}x^2.$$

By using calculus, we find $\sup_{x \in [0,1]} |x^2 - B_n(x)| =$ $(4n)^{-1}$; much worse than just using x^2 as its own approximation.

Consider instead the Lagrange interpolation [3]. Given $(x_0, y_0), \dots, (x_n, y_n)$ be n distinct points, we want polynomial $L_n(x) = \sum_{i=0}^n a_i x^i$, $L_n(x_i) = y_i$ $\implies V[a_i] = [y_i]$ where V is the Vandermonde matrix such that $V_{i,j} = x_{i-1}^{j-1}$. As $V_{i,j}$ is invertible by the Vandermonde determinant, we found an unique coefficient vector interpolating these points.

Let $f:[a,b] \to \mathbb{R}$ be a continuous, we can approximate f using the polynomial that interpolates the set of equidistant points from a to b. With Python, we find that for n=3 for x^2 on [0,1], this method results in a polynomial approximation of $L_3(x) = x^2$.

However, $||f - P_n||_{\infty}$ does not necessarily tends to 0 exemplified by Runge's function. To mitigate this, one can instead use Spline interpolation however this results in an approximant that is a piecewise polynomial instead of just a polynomial.

References

- [1] Stone, M.H. (1948) The Generalized Weierstrass Approximation Theorem. Mathematics Magazine 21, no. 5: 237-54.
- [2] Gaddy, P. The Stone-Weierstrass Theorem and its Applications to L^2 Spaces.
- Humpherys, J. (2020) Foundations of Applied Mathematics Volume 2: Algorithms, Approximation, Optimization Society for Industrial and Applied Mathematics