Welcome to instats

The Session Will Begin Shortly

(At the top of the hour, Eastern USA time)

1

START

Nonlinear Time Series Analysis, Part I: Detecting Nonlinearity

Barney Ricca Lyda Hill Institute for Human Resilience University of Colorado Colorado Springs

3

Seminar Overview

- Day 1
 - Session 1: Introduction to Nonlinear Time Series (NTLS)
 - Session 2: Behaviors and State Spaces
- Day 2
 - Session 3: State Spaces (continued)
 - Session 4: Recurrences
- Dav 3
 - Session 5: Tests
 - Session 6: Singular Spectrum Analysis and Noise
- Day 4
 - Session 7: Surrogate Data
 - Session 8: Convergent Cross Mapping

https://github.com/barneyricca/NLTASeminarPart1

5

Introductions

- You
 - · Location and field of interest into the chat, please
- Barney Ricca
 - "Upstate" New York (USA)
 - · Physics, computer science, statistics: Data scientist
 - STEM Education
 - Psychology (trauma and resilience)
 - Idiosyncratic R user
- The schedule
 - Should be reasonably close, but time left at the end because it won't be...

Scientific Endeavor

- Dance of theoretical and empirical
 - Not linear
 - Not an alternating process
 - Not tidy
- Model building
 - Box: Wrong, but useful
 - Epstein: Take away, not add
 - · Models that are insightful, realistic, and practical

7

Physics Envy

- Physics envy
 - "Look: these methods have been so successful for the physicists; let us apply them to our own areas of interest." (Weinreich, 1992)
- Reduce-then-add
 - "Economists are good at reducing a complicated world to a few assumptions, then adding bells and whistles to make their models more realistic." (The Economist, 2016)
- · Rocket science
 - Easy (by comparison)
 - "It is not that other subjects...are less interesting or exciting in some ways they
 may be more so but that progress in those areas must be attempted by other
 methods." (Weinreich, 1992)

Why Nonlinear Time Series (NLTS)?

- NLTS offers an alternative to (over)simplify-then-add:
 - "NLTS facilitates well-conducted evidentiary scientific inquiry by providing a collection of mathematically rigorous procedures that help practitioners to extract information on real-world dynamics from observed data that often have a complex, highly variable and random appearance." (HBR, p. 3)
- New tools to avoid over-simplification

9

Recap: Nonlinear Dynamical Systems

- State spaces
 - Dynamics = {States, Rules}
- Fixed points & Stability
 - The structure of the state space is dependent on these.
 - Derivatives are important
- Formal models
 - Vector fields and nullclines

Nonlinear Dynamical Systems (NDS)

- Linear paradigm
 - Separable
 - Signal + Noise
 - Changes are externally forced
- NDS Paradigm
 - Not separable
 - Stochasticity may be a signal
 - Dynamics (and changes) are internal as well as external
- New paradigm
 - New problems and new tools

11

Problems

- Noisy linear can look nonlinear
- Nonstationary can look random
- Stationary nonlinear can look nonstationary

Stationary (?) Nonlinear

15

What do you mean by....?

- Random noise?
 - Minimum description length
- Linear?
 - When is something with changing parameters linear?
- Endogenous?
 - Is it Langton's ant in an "environment," or is Langton's ant the {ant + environment}?
- Bateson
 - · Where does a blind man with a cane end?

NLTS Problems

- Pre-processing before modeling
- Hence, two seminars:
 - Part I (this seminar): Reconstruct topology and find the signal to model
 - Part II: Phenomenological modeling

17

Overview of NLTS

- Do we detect a signal or not? (Part I)
 - · Preprocess the data
- Is there a strong signal? (Part I)
 - · Separate noise from signal
- Are low-dimensional nonlinear dynamics detected? (Part I)
 - · State space reconstruction
- Does the signal have any hints of being causal? (Part I)
 - If so, phenomenological modeling (Part II)
 - Does the model correspond to the signal? (Part II)
 - Theory looks at correspondence

NLTS Example #1

- We being by looking at two time series in R
 - Which of these is random and which isn't?

19

NLTS Example #2

- We now look at a <u>2-dimensional example</u>, historical data of lynx and hare population
 - The state of this system is (hare population, lynx population)

Delay State Spaces

- A.k.a.
 - Shadow state spaces
 - · Reconstructed state spaces
- This blurs the line, so be careful:
 - Differences are not dynamic
 - Time-lagged, not simultaneous
 - · But differences estimate derivatives
 - Differences can be used to (topologically) mimic dynamics

21

Caveats and Problems

- · Short data
- Noisy data
- Nonstationary data
- Interpretability of model
- Some demonstrations of these problems

Aside: Interactions

- Model:
- $\dot{I} = \beta_1 \dot{C} P$
- Contours indicate ΔI
 - Negative IES velocity is better
 - 2nd an 4th quadrants

23

Overview of Part I: Detecting Nonlinearity

- Mostly work with a single data stream
 - Everything is interdependent, so Takens will help us.
- Diagnostics & signal detection
 - State space reconstruction
 - Characterizing state space (e.g., recurrences, entropy)
 - Tests (e.g, extreme values, return-level plot, change-point detection)
- Phenomenological Modeling indicated?
 - · Convergent cross mapping

Questions

25

STOP

Next session @ UTC 1900