Contents

1	Introduction	2
2	The Chain Rule	3
3	Differentiating Inverse Functions	G

1 Introduction

The chain rule provides a way to calculate the derivative of a composition of functions. For example, if a balloon is being filled with air, we may compute the rate of change of the volume $\frac{dV}{dt}$ from the rate of change of the radius $\frac{dr}{dt}$, and the rate of change of the volume with respect to the radius $\frac{dV}{dr}$. This may be succinctly expressed as

 $\frac{dV}{dt} = \frac{dV}{dr}\frac{dr}{dt}.$

Wikipedia article on the chain rule

Lecture Materials

• These notes: PDF

• Slides: Online

• Slides PDF

References: Calculus OpenStax

• 3.6: Chain Rule

• 3.7: Derivatives of Inverse Functions

2 The Chain Rule

Theorem

Let f, g be differentiable functions. Then for points where $f \circ g$ is defined we have

$$(f \circ g)'(x) = f'(g(x))g'(x).$$

In $\frac{d}{dx}$ notation if y = g(x) and z = f(y),

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}.$$

Example

Calculate the derivative of $\sin(x^2)$.

Let $g(x) = x^2$ and $f(y) = \sin(y)$. Then

$$f \circ g(x) = f(g(x))$$
$$= f(x^2)$$
$$= \sin(x^2).$$

Differentiating f and g gives $f'(y) = \cos(y)$ and g'(x) = 2x. Therefore, by the chain rule

$$\frac{d}{dx}\sin(x^2) = \frac{d}{dx}f \circ g(x)$$
$$= f'(g(x))g'(x)$$
$$= \cos(x^2)2x$$
$$= 2x\cos(x^2).$$

Example

Calculate the derivative of

$$\left(\frac{x}{x+1}\right)^2$$

Let $g(x) = \frac{x}{x+1}$ and let $f(y) = y^2$ so that

$$f \circ g(x) = \left(\frac{x}{x+1}\right)^2$$

We have f'(y) = 2y and by the quotient rule, $g'(x) = \frac{1}{(x+1)^2}$. Therefore by the chain rule

$$\frac{d}{dx} \left(\frac{x}{x+1}\right)^2 = \frac{d}{dx} f \circ g(x)$$

$$= f'(g(x))g'(x)$$

$$= 2\left(\frac{x}{x+1}\right)^2 \frac{1}{(x+1)^2}$$

$$= \frac{2x^2}{(x+1)^3}.$$

Proof

Proof of the Chain Rule

We need to calculate the limit of the difference quotient,

$$(f \circ g)'(x) = \lim_{\Delta x \to 0} \frac{f(g(x + \Delta x)) - f(g(x))}{\Delta x}.$$

First we assume that $g'(x) \neq 0$ and hence

$$\lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x} = g'(x) \neq 0.$$

Thus $g(x + \Delta x) - g(x) \neq 0$ for Δx close to 0 (but not equal to 0).

Let us write y = g(x) and $\Delta y = g(x + \Delta x) - g(x)$. Our assumption $g'(x) \neq 0$ then guarantees that $\Delta y \neq 0$. This also gives $g(x + \Delta x) = y + \Delta y$. Then

$$\frac{f(g(x + \Delta x)) - f(g(x))}{\Delta x} = \frac{f(y + \Delta y) - f(y)}{\Delta x} \frac{\Delta y}{\Delta y}$$
$$\frac{f(y + \Delta y) - f(y)}{\Delta y} \frac{\Delta y}{\Delta x}.$$

Now recall that since g is differentiable, it is continuous. Thus

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} \left[g(x + \Delta x) - g(x) \right]$$
$$= g(x + 0) - g(x) = 0.$$

Then

$$(f \circ g)'(x) = \lim_{\Delta x \to 0} \left[\frac{f(g(x + \Delta x)) - f(g(x))}{\Delta x} \right]$$

$$= \lim_{\Delta x \to 0} \left[\frac{f(y + \Delta y) - f(y)}{\Delta y} \frac{\Delta y}{\Delta x} \right]$$

$$= \lim_{\Delta y \to 0} \left[\frac{f(y + \Delta y) - f(y)}{\Delta y} \right] \lim_{\Delta x \to 0} \left[\frac{\Delta y}{\Delta x} \right]$$

$$= f'(y)g'(x)$$

$$= f'(g(x))g'(x).$$

In the case g'(x) = 0, we may have values of Δx with $g(x + \Delta x) = g(x)$. In that case $\Delta y = g(x + \Delta x) - g(x) = 0$ and the quotient $\frac{\Delta y}{\Delta y}$ is no longer defined. The proof above then doesn't work at such values. However, at such values,

$$\frac{f(g(x+\Delta x)-f(g(x))}{\Delta x}=\frac{f(g(x))-f(g(x))}{\Delta x}=0.$$

At values of Δx with $\Delta y \neq 0$, we can use the above proof to see that

$$\frac{f(g(x + \Delta x) - f(g(x)))}{\Delta x}$$

is close f(g(x))g'(x). But g'(x) = 0 hence f'(g(x)g'(x)) = 0. Thus either way, the limit as $\Delta x \to 0$ is 0 = f'(g(x)g'(x)) as required.

3 Differentiating Inverse Functions

Theorem

Let f be a differentiable function that is also invertible. Then the inverse function is also differentiable with derivative

$$(f^{-1})'(y) = \frac{1}{f'(x)}$$

where $x = f^{-1}(y)$; or equivalently y = f(x).

In $\frac{d}{dx}$ notation,

$$\frac{dx}{dy} = \frac{dy}{dx}.$$

Example

Let $g(y) = \sqrt{y}$ for y > 0.

Then $g = f^{-1}$ where $f(x) = x^2$ for x > 0. Since f'(x) = 2x and letting $x = f^{-1}(y) = \sqrt{y}$, the theorem gives

$$g'(y) = \frac{1}{f'(x)}$$
$$= \frac{1}{2x}$$
$$= \frac{1}{2\sqrt{y}}.$$

Example

Calculate the derivative of $g(y) = \ln y$ for y > 0.

We know that $g = f^{-1}$ where $f(x) = e^x$ and also that $f'(x) = e^x$. Therefore letting $x = f^{-1}(y) = \ln y$ we obtain

$$g'(y) = \frac{1}{f'(x)}$$
$$= \frac{1}{e^x}$$
$$= \frac{1}{e^{\ln y}}$$
$$= \frac{1}{y}$$

where in the last line we use the fact that $\ln y$ is the inverse of e^x hence $e^{\ln y} = y$.

Proof

Proof of Differentiating Inverses

By definition of the inverse we have

$$x = f^{-1}(f(x)).$$

Using the chain rule and differentiating both sides with respect to x we obtain

$$1 = \frac{d}{dx}x = \frac{d}{dx}f^{-1} \circ f(x)$$

= $(f^{-1})'(f(x))f'(x)$.

Notice that $f'(x) \neq 0$ (since otherwise $(f^{-1})'(f(x))f'(x) = 0 \neq 1$). Then dividing by f'(x) and using y = f(x) we obtain

$$(f^{-1})'(y) = (f^{-1})'(f(x)) = \frac{1}{f'(x)}.$$