

# CSE408 Longest Common Sub Sequence

Lecture # 25

#### Dynamic programming



- It is used, when the solution can be recursively described in terms of solutions to subproblems (*optimal substructure*)
- Algorithm finds solutions to subproblems and stores them in memory for later use
- More efficient than "brute-force methods", which solve the same subproblems over and over again

### Longest Common Subsequence (LC)

Application: comparison of two DNA strings Ex: X= {A B C B D A B }, Y= {B D C A B A}

Longest Common Subsequence:

$$X = AB$$
  $C$   $BDAB$ 

$$Y = BDCABA$$

Brute force algorithm would compare each subsequence of X with the symbols in Y

#### LCS Algorithm



- if |X| = m, |Y| = n, then there are  $2^m$  subsequences of x; we must compare each with Y (n comparisons)
- So the running time of the brute-force algorithm is O(n 2<sup>m</sup>)
- Notice that the LCS problem has *optimal substructure*: solutions of subproblems are parts of the final solution.
- Subproblems: "find LCS of pairs of *prefixes* of X and Y"

#### LCS Algorithm



- First we'll find the length of LCS. Later we'll modify the algorithm to find LCS itself.
- Define  $X_i$ ,  $Y_j$  to be the prefixes of X and Y of length i and j respectively
- Define c[i,j] to be the length of LCS of  $X_i$  and  $Y_j$
- Then the length of LCS of X and Y will be

$$c[m,n]$$

$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i,j-1],c[i-1,j]) & \text{otherwise} \end{cases}$$

#### LCS recursive solution



$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i,j-1],c[i-1,j]) & \text{otherwise} \end{cases}$$

- We start with i = j = 0 (empty substrings of x and y)
- Since  $X_0$  and  $Y_0$  are empty strings, their LCS is always empty (i.e. c[0,0] = 0)
- LCS of empty string and any other string is empty, so for every i and j: c[0, j] = c[i, 0] = 0

#### LCS recursive solution

$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i,j-1],c[i-1,j]) & \text{otherwise} \end{cases}$$

- When we calculate c[i,j], we consider two cases:
- First case: x[i]=y[j]: one more symbol in strings X and Y matches, so the length of LCS  $X_i$  and  $Y_j$  equals to the length of LCS of smaller strings  $X_{i-1}$  and  $Y_{i-1}$ , plus 1

#### LCS recursive solution

$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i,j-1],c[i-1,j]) & \text{otherwise} \end{cases}$$

- Second case: x/i != y/j
- As symbols don't match, our solution is not improved, and the length of LCS(X<sub>i</sub>, Y<sub>j</sub>) is the same as before (i.e. maximum of LCS(X<sub>i</sub>, Y<sub>j-1</sub>) and LCS(X<sub>i-1</sub>, Y<sub>j</sub>)

Why not just take the length of LCS( $X_{i-1}$ ,  $Y_{j-1}$ )?

#### LCS Length Algorithm



#### LCS-Length(X, Y)

- 1. m = length(X) // get the # of symbols in X
- 2. n = length(Y) // get the # of symbols in Y
- 3. for i = 1 to m c[i,0] = 0 // special case:  $Y_0$
- 4. for j = 1 to n c[0,j] = 0 // special case:  $X_0$
- 5. for i = 1 to m // for all  $X_i$
- 6. for j = 1 to  $n // for all Y_i$
- 7. if  $(X_i == Y_j)$
- 8. c[i,j] = c[i-1,j-1] + 1
- 9. else c[i,j] = max(c[i-1,j], c[i,j-1])
- 10/23 return c

#### LCS Example



We'll see how LCS algorithm works on the following example:

- X = ABCB
- Y = BDCAB

What is the Longest Common Subsequence of X and Y?

#### LCS Example (0)



j 0 1 2 3 4 5

| i |    | Yj | В | D | С | Α | В |
|---|----|----|---|---|---|---|---|
| 0 | Xi | ., | _ | _ |   |   | _ |
|   | Α  |    |   |   |   |   |   |
| 1 |    |    |   |   |   |   |   |
| 2 | В  |    |   |   |   |   |   |
| 3 | С  |    |   |   |   |   |   |
| 4 | В  |    |   |   |   |   |   |

X = ABCB; m = |X| = 4 Y = BDCAB; n = |Y| = 5Allocate array c[5,4]

#### LCS Example (1)



j 0 1 2 3 4 5

| i Yj B D C A E | i | Yj | В | D | C | Α | В |
|----------------|---|----|---|---|---|---|---|
|----------------|---|----|---|---|---|---|---|

| 0 | Xi | 0 | 0 | 0 | 0 | 0 | 0 |
|---|----|---|---|---|---|---|---|
| 1 | Α  | 0 |   |   |   |   |   |
| 2 | В  | 0 |   |   |   |   |   |
| 3 | С  | 0 |   |   |   |   |   |
| 4 | В  | 0 |   |   |   |   |   |

for 
$$i = 1$$
 to m  $c[i,0] = 0$   
for  $j = 1$  to n  $c[0,j] = 0$ 

#### LCS Example (2)



i

j 0

1

2

3

4

Yj B D C A

0

Xi

Α

1

3

В

C

В

| 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|
| 0 | 0 |   |   |   |   |
| 0 |   |   |   |   |   |
| 0 |   |   |   |   |   |
| 0 |   |   |   |   |   |

if (
$$X_i == Y_j$$
)  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

#### LCS Example (3)



0

1

2

3

4

Υj

В

D

В

0

Xi

2

Α

3

4

В

В

| 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 |   |   |
| 0 |   |   |   |   |   |
| 0 |   |   |   |   |   |
| 0 |   |   |   |   |   |

if (
$$X_i == Y_j$$
)  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

#### LCS Example (4)



j 0 1 2 3 **4** 5

 $i \hspace{1cm} Yj \hspace{1cm} B \hspace{1cm} D \hspace{1cm} C \hspace{1cm} A \hspace{1cm} B \hspace{1cm}$ 

O Xi O O O O O O

0

0

2 B 0

0

0

3 C 0

if (
$$X_i == Y_j$$
)  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

#### LCS Example (5)



j 0 1 2 3 4 5

i Yj **B D C A B** 

O Xi O O O O O O

2 B 0

3 C 0

if (
$$X_i == Y_j$$
)  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

#### LCS Example (6)



В

j 0 **1** 2 3 4 5

i Yj **B D C A** 

0 Xi 0 0 0 0 0

1 A 0 0 0 0 1 1

2 B 0 1

3 C 0

if (
$$X_i == Y_j$$
)  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

#### LCS Example (7)



Υj C В В Α D Xi

Α 

В 

C В 

if  $(X_i == Y_i)$ c[i,j] = c[i-1,j-1] + 1else c[i,j] = max(c[i-1,j], c[i,j-1])

#### LCS Example (8)



j 0 1 2 3 4 **5** 

i Yj B D C A B

Xi 0 0 0 0 0 0 0 Α 1 0 0 0 0 1 1

2 B 0 1 1 1 1 2

2 0 1 1 1 1 2 3 C 0

if (
$$X_i == Y_j$$
)  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

#### LCS Example (10)



0 3 4

В

D

0

Xi

Α

В

2

Υj

В

| 0 | 0   | 0        | 0 | 0 | 0 |
|---|-----|----------|---|---|---|
| 0 | 0   | 0        | 0 | 1 | 1 |
| 0 | 1   | 1        | 1 | 1 | 2 |
| 0 | 1 - | <b>1</b> |   |   |   |
| 0 |     |          |   |   |   |

if (
$$X_i == Y_j$$
)  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

#### LCS Example (11)



| j | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| - |   |   |   |   |   |   |

| i |    | Yj | В | D | С | Α | В |
|---|----|----|---|---|---|---|---|
| 0 | Xi |    |   |   | 0 | 0 | 0 |
| 1 | Α  | 0  | 0 | 0 | 0 | 1 | 1 |
| 2 | В  | 0  | 1 | 1 | 1 | 1 | 2 |
| 3 | С  | 0  | 1 | 1 | 2 |   |   |
|   |    |    |   |   |   |   |   |

if (
$$X_i == Y_j$$
)  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

4

В

0

#### LCS Example (12)



j 0 1 2 3 4 5

i Yj B D C A B

Xi Α В 

if (
$$X_i == Y_j$$
)  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

#### LCS Example (13)



| j | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |

|   |    | =  |   |   |   |   |   |
|---|----|----|---|---|---|---|---|
| i |    | Yj | В | D | C | Α | В |
| 0 | Xi | 0  | 0 | 0 | 0 | 0 | 0 |
| 1 | A  | 0  | 0 | 0 | 0 | 1 | 1 |
| 2 | В  | 0  | 1 | 1 | 1 | 1 | 2 |
| 3 | С  | 0  | 1 | 1 | 2 | 2 | 2 |
| 4 | В  | 0  | 1 |   |   |   |   |

if (
$$X_i == Y_j$$
)  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

#### LCS Example (14)



| j | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |

| i |    | Yj | В   | D        | С   | Α        | В |
|---|----|----|-----|----------|-----|----------|---|
| 0 | Xi | 0  | 0   | 0        | 0   | 0        | 0 |
| 1 | Α  | 0  | 0   | 0        | 0   | 1        | 1 |
| 2 | В  | 0  | 1   | 1        | 1   | 1        | 2 |
| 3 | С  | 0  | 1   | 1        | 2   | 2        | 2 |
| 4 | В  | 0  | 1 - | <b>1</b> | 2 - | <b>2</b> |   |

if (
$$X_i == Y_j$$
)  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

#### LCS Example (15)



j 0 1 2 3 4 **5** 

i Yj B D C A B

O Xi O O O O O

1 A 0 0 0 1 1

B 0 1 1 1 1 2

3 C 0 1 1 2 2 2

B 0 1 1 2 2 3

if (
$$X_i == Y_j$$
)  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

2

#### LCS Algorithm Running Time



- LCS algorithm calculates the values of each entry of the array c[m,n]
- So what is the running time?

O(m\*n)

since each c[i,j] is calculated in constant time, and there are m\*n elements in the array

#### How to find actual LCS



- So far, we have just found the *length* of LCS, but not LCS itself.
- We want to modify this algorithm to make it output Longest Common Subsequence of X and Y

Each c[i,j] depends on c[i-1,j] and c[i,j-1] or c[i-1,j-1]

For each c[i,j] we can say how it was acquired:



For example, here c[i,j] = c[i-1,j-1] + 1 = 2+1=3

#### How to find actual LCS - continued



Remember that

$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i,j-1],c[i-1,j]) & \text{otherwise} \end{cases}$$

- So we can start from c[m,n] and go backwards
- Whenever c[i,j] = c[i-1, j-1]+1, remember x[i] (because x[i] is a part of LCS)
- When i=0 or j=0 (i.e. we reached the beginning), output remembered letters in reverse order

#### Finding LCS





0

Xi

3

4

Υj

0

В

1

D

2

3

4 5

Α

В

В

| 0 | 0   | 0   | 0   | 0   | 0 |
|---|-----|-----|-----|-----|---|
| 0 | 0   | 0   | 0   | 1   | 1 |
| 0 | 1 ← | _ 1 | 1   | 1   | 2 |
| 0 | 1   | 1   | 2 ← | _ 2 | 2 |
| 0 | 1   | 1   | 2   | 2   | 3 |

#### Finding LCS (2)







В В LCS (reversed order):

LCS (straight order): B C B (this string turned out to be a palindrome) 30



## Thank You!!!