

und die Fertigung in großen Massen Schwierigkeiten bereitet.

Ein Verbinder ohne Klebstoffauftrag ist aus der EP

5 1 170 609 A2 bekannt und weist ein Anschlusselement mit einem hohlzylindrischen Halter für eine Hülse auf, in der sich ein Wellenleiter erstreckt. Der hohlzylindrische Halter besitzt in seinem Inneren drei sich längs erstreckende Rippen im Winkelabstand von 120°, um die Hülse
10 festzuklemmen, wenn diese von der Seite der optischen Element-Module in den hohlzylindrischen Haltern geschoben wird, bis das vordere Ende des Wellenleiters und die Hülse mit den vorderseitigen Kanten der Rippen fluchten. Eine gesonderte Anschlagsfläche für das komplementäre Anschlusslement des Gegenverbinder ist im
15 hohlzylindrischen Halter nicht vorgesehen, um gegebenenfalls einen gewissen, geringen Abstand zwischen dem vorderen Ende des Wellenleiters des Verbinders und desjenigen des Gegenverbinder einhalten zu können.

20 Es sind auch Verbinder bekannt, bei welchen der Wellenleiterabschnitt geklemmt wird. Hierbei sind Klemm spitzen typischerweise direkt an der optischen Kontaktfläche des Wellenleiterabschnitts angeordnet.

25 Es hat sich nun herausgestellt, dass bei dieser Art der Klemmung an der optischen Kontaktfläche des Wellenleiterabschnitts Ausbeulungen entstehen, welche in verschiedener Hinsicht nachteilig sein können.

30 Zunächst besteht die Gefahr, dass die optische Kontaktfläche des Wellenleiters derart verformt wird, dass die Übertragungseigenschaften negativ beeinflusst werden. Insbesondere können hierdurch unerwünschte Reflexionen an der optischen Grenzfläche entstehen.

Ferner ist die Höhe der Ausbeulungen undefiniert, wodurch eine exakte longitudinale Positionierung des Wellenleiters in dem Verbinder zumindest erschwert wird.

5

Darüber hinaus besteht bei den bekannten Klemm spitzen, insbesondere aufgrund ihrer Form die Gefahr einer Verletzung des Wellenleiters, was im ungünstigsten Fall bis zu einer völligen Unbrauchbarkeit des Verbinders führen kann.

10

Alles in allem sind die bekannten Lösungen stark verbessерungsbedürftig. Andererseits genügen in diesem hart umkämpften Markt häufig bereits geringfügig erscheinende 15 qualitative und/oder kostenmäßige Vorteile, um einen entscheidenden Wettbewerbsvorsprung

68

Patentansprüche

1. Optischer Verbinder (1) zum Herstellen einer Verbindung zwischen einem elektrooptischen Wandler (102, 104) des Verbinders (1) und zumindest einer optischen Faser eines komplementären Gegenverbinders, insbesondere zum Herstellen von Multimedia-Verbindungen in einem Kraftfahrzeug gemäß dem MOST-Standard, umfassend:

10 ein Verbindergehäuse (2) mit einer Gegenverbinderaufnahme (10) zum paarenden Verbinden mit einem Gegenverbinder,

15 zumindest einen optischen Faserabschnitt (72, 74) mit einer vorderen und hinteren optischen Anschlussfläche (82, 84),

20 zumindest ein optisches Anschlusselement (12, 14) zum paarenden Verbinden mit einem komplementären optischen Anschlusselement des Gegenverbinders,

wobei das optische Anschlusselement (12, 14)

25 zumindest eine Faseraufnahmehülse (32, 33) aufweist, in welcher der optische Faserabschnitt (72, 74) angeordnet ist, um mit der vorderen optischen Anschlussfläche (82) eine optische Verbindung mit einer optischen Faser des Gegenverbinders herzustellen,

30 wobei der optische Faserabschnitt (72, 74) mittels Klemmelementen (52a-52d) in der Faseraufnahmehülse (32, 33) festgelegt ist, dadurch gekennzeichnet, und

35 dass die Klemmelemente (52a - 52d) longitudinal von der vorderen optischen Anschlussfläche (82) des optischen Faserabschnittes (72, 74) beabstandet sind, oder

wobei dass die Faseraufnahmehülse (32, 33)

im Bereich der vorderen optischen Anschlussfläche (82)

des optischen Faserabschnitts (72, 74) eine
Vorderseite (39) Anschlagsfläche (38) für das
komplementäre Anschlusslement des Gegenverbinders
umfasst und die Klemmelemente (52a-52d) longitudinal
von der Vorderseite (39) Anschlagsfläche (38) der
Faseraufnahmehülse (32, 33) beabstandet sind.

5 2. Verinder (1) nach Anspruch 1,
dadurch gekennzeichnet, dass
die Vorderseite (39) der Faseraufnahmehülse (32, 33)
10 im Bereich der vorderen optischen Anschlussfläche (82)
des optischen Faserabschnitts (72, 74) einen Anschlag
(38) für das komplementäre Anschlusslement des
Gegenverbinders bildet.

15 2. Verinder (1) nach einem der vorstehenden Ansprüche
1,
dadurch gekennzeichnet, dass
die Faseraufnahmehülse (32, 33) einen im wesentlichen
zylindrischen Faserkanal (34, 37) definiert, in
20 welchem der optische Faserabschnitt (72, 74)
festgelegt ist und die RastKlemmelemente (52a-52d) aus
dem inneren Umfang (60) der Faseraufnahmehülse (32,
33) radial nach innen in den Faserkanal (34, 37)
vorspringen.

25 3. Verinder (1) nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass
die Klemmelemente (52a-52d) einstückig mit der
Faseraufnahmehülse (32, 33) ausgebildet sind.

30 4. Verinder (1) nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass
die Klemmelemente (52a-52d) in den äußenen Umfang des
optischen Faserabschnitts (72, 74) materialverdrängend

quetschend eingreifen.

5. Verbinder (1) nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass
die Klemmelemente (52a-52d) eine der Vorderseite (39)
Anschlagsfläche (38) der Faseraufnahmehülse (32, 33)
benachbarte Vorderseite (68a-68d) umfassen und die
Vorderseite der Klemmelemente gegenüber der
Vorderseite (39)-Anschlagsfläche (38) der
Faseraufnahmehülse (32, 33) longitudinal zurückgesetzt
sind.
- 10
- 15
- 20
- 25
- 30
- 35
6. Verbinder (1) nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass
die Klemmelemente (52a-52d) in Bezug auf die
Vorderseite (39)-Anschlagsfläche (38) der
Faseraufnahmehülse (32, 33) um mehr als 0 µm und
weniger als 5 mm zurückgesetzt sind.
7. Verbinder (1) nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass
die Faseraufnahmehülse (32, 33) einen vorderen
Führungsabschnitt (42) und einen hinteren
Einführabschnitt (44) aufweist und der
Innendurchmesser (88) des Einführabschnitts (44)
größer als der Innendurchmesser (86) des
Führungsabschnitts (42) ist.
8. Verbinder (1) nach Anspruch 8_7,
dadurch gekennzeichnet, dass
zwischen dem Führungsabschnitt (42) und dem
Einführabschnitt (44) eine Fasung (46) vorgesehen ist.
9. Verbinder (1) nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass

die Faseraufnahmehülse (32, 33) einen vorderen
Führungsabschnitt (42) und einen hinteren
Einführabschnitt (44) aufweist und der
Führungsabschnitt (42) eine Führung für den
Faserabschnitt (72, 74) definiert, deren
Innendurchmesser (86) zwischen 40 µm kleiner und
120 µm größer als der Außendurchmesser des optischen
Faserabschnitts (72, 74) beträgt.

- 5
- 10 10. Verbinder (1) nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass
die Faseraufnahmehülse (32, 33) einen vorderen
Führungsabschnitt (42) und einen hinteren
Einführabschnitt (44) aufweist und der optische
Faserabschnitt (72, 74) in dem Einführabschnitt (44)
15 ein radiales Spiel (90) von 40 µm bis 100 µm aufweist.
- 20 11. Verbinder (1) nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass
die Faseraufnahmehülse (32, 33) einen vorderen
Führungsabschnitt (42) und einen hinteren
Einführabschnitt (44) aufweist und die Klemmelemente
(52a-52d) in dem Einführabschnitt (44) angeordnet
sind.
- 25 12. Verbinder (1) nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass
die Faseraufnahmehülse (32, 33) einen vorderen
Führungsabschnitt (42) und einen hinteren
Einführabschnitt (44) aufweist und sich die
Klemmelemente (52a-52d) longitudinal von einem
30 rückwärtigen Ende des Führungsabschnitts (42) bis in
den Einführabschnitt (44) erstrecken.

13. Verbinder (1) nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass
zumindest zwei, drei oder mehr Klemmelemente (52a-52d)
an dem inneren Umfang (60) des Faserkanals (34, 37)
angeordnet sind, welche in Bezug auf den Umfang (60)
gleichmäßig verteilt sind.

5
14. Verbinder (1) nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass
die Klemmelemente (52a-52d) in Form von Rastnasen
ausgebildet sind.

10
15. Verbinder (1) nach Anspruch ~~15~~ 14,
dadurch gekennzeichnet, dass
die Rastnasen (52a-52d) einen im Wesentlichen
dreieckigen Querschnitt in radialer Richtung
aufweisen.

15
16. Verbinder (1) nach Anspruch ~~15~~ 14 oder ~~16~~ 15,
dadurch gekennzeichnet, dass die Rastnasen (52a-52d)
eine geneigte rückseitige Rampenfläche (56a-56d)
aufweisen, um den Faserabschnitt (72, 74) von der
Rückseite des Verbindergehäuses (2) einzupressen und
eine vorderseitige Rastfläche (68a-68d)
aufweisen, welche sich im Wesentlichen senkrecht zur
optischen Achse (54) des Faserabschnitts (72, 74)
erstreckt, um den Faserabschnitt zu verrasten.

20
17. Verbinder (1) nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass
die Rastnasen (52a-52d) eine sich entlang des inneren
Umfangs (60) der Faseraufnahmehülse (32, 33)
erstreckende Breite von 150 µm bis 400 µm und eine
sich radial nach innen erstreckende Höhe von 50 µm bis
30

200 µm aufweisen.

18. Verbinder (1) nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass
der Verbinder (1) zumindest einen der elektro-
optischen Wandler (102, 104) umfasst, welcher einen
optischen Eingang/Ausgang aufweist, wobei der Wandler
an einem rückseitigen Ende des Faserkanals angeordnet
ist und über die hintere optische Anschlussfläche (84)
des Faserabschnitts (72, 74) eine optische Verbindung
zwischen dem Faserabschnitt und dem Wandler
hergestellt ist.
19. Verbinder (1) nach Anspruch 18,
dadurch gekennzeichnet, dass
der elektro-optische Wandler (102, 104) mit einer
Klammer (108) unmittelbar an einer Rückseite des
Verbindergehäuses (2) befestigt ist.
20. Verbinder (1) nach einem der vorstehenden Ansprüche
19,
dadurch gekennzeichnet, dass die Klammer (108) aus
Metall gestanzt, im Wesentlichen U-förmig ausgebildet
und an den Seitenflächen (18, 20) des Verbinder-
gehäuses (2) verrastet ist und Lötstifte (110) zum
Verbinden mit einem Schaltungsträger aufweist.
21. Verbinder (1) nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass
die Klammer (108) zumindest einen elastisch federnden
Abschnitt (112, 114) aufweist, welcher in einem
montierten Zustand den Wandler (102, 104) vorwärts in
Richtung der hinteren optischen Anschlussfläche (84)
des Faserabschnitts (72, 74) presst.

22. Verbinder (1) nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass
die Klammer (108) eine Rückwand und einen oberseitigen
Deckabschnitt aufweist, welche entlang einer hinteren
oberen Kante einstückig miteinander verbunden sind,
wobei der elastisch federnde Abschnitt (112, 114) an
dem oberseitigen Deckabschnitt aufgehängt ist und der
elastisch federnde Abschnitt einen im Wesentlichen
L-förmig gebogenen Querschnitt aufweist.

10

23. Verfahren zum Herstellen eines optischen Verbinders
(1) zum Herstellen einer Verbindung zwischen einem
elektro-optischen Wandler (102, 104) des Verbinders
und für Kunststofffasern zumindest einer optischen Faser
15 eines komplementären Gegenverbinders, insbesondere zum
Herstellen eines Multimedia-Verbinders für ein
Kraftfahrzeug gemäß dem MOST-Standard, nach einem der
vorstehenden Ansprüche, umfassend die Schritte:

Bereitstellen eines Verbindergehäuses (2) mit
20 einer Gegenverbinderaufnahme zum paarenden Verbinden
mit einem Gegenverinder, wobei der Verinder (1)
zumindest zwei optische Anschlusselemente (12, 14) zum
paarenden Verbinden mit jeweils einem komplementären
optischen Anschlusselement des Gegenverbinders
25 aufweist und wobei die Anschlusselemente (12, 14)
jeweils eine Faseraufnahmehülse (32, 33) jeweils mit
einer Mehrzahl von innenseitigen Klemmelementen
(52a-52d) aufweist,

Bereitstellen zumindest zweier optischer
30 Faserabschnitte (72, 74) mit jeweils einer vorderen
und hinteren optischen Anschlussfläche (82, 84),
nachfolgend Einpressen der Faserabschnitte (72,
74) unmittelbar in die jeweils zugehörige
Faseraufnahmehülse (32, 33), wobei die Faserabschnitte
35 (72, 74) mittels der Klemmelemente (52a-52d) in den

5 Faseraufnahmehülsen (32, 33) festgelegt werden, derart, dass über die vorderen optischen Anschlussflächen (82) der optischen Faserabschnitte (72, 74) eine optische Verbindung mit jeweils einer optischen Faser des Gegenverbinder herstellbar ist, wenn der Verbinder (1) mit dem Gegenverbinder gepaart wird,

nachfolgend Anordnen zweier elektro-optischer
Wandler (102, 104) an einer Rückseite (48) der jeweils
zugehörigen Faseraufnahmehülse (32, 33) derart, dass
über die hinteren optischen Anschlussflächen (84) der
Faserabschnitte (72, 74) eine optische Verbindung
zwischen den Faserabschnitten (72, 74) und den
Wandlern (102, 104) hergestellt wird, und

15 Befestigen der Wandler (102, 104) an dem
Verbinder (1).

wobei die Faserabschnitte (72, 74) beim Einpressen mit ihren vorderen optischen Anschlussflächen (82) über die Klemmelemente (52a-52d) hinaus in die zugehörige Faseraufnahmehülse (32, 33) eingeschoben werden.

24. Verfahren nach Anspruch 24_23,
dadurch gekennzeichnet, dass
die Faseraufnahmehülsen (32, 33) im Bereich der
25 vorderen optischen Anschlussflächen (82) der optischen
Faserabschnitte (72, 74) jeweils eine vordere
Anschlagsfläche (38) umfassten und jeweils ein
Montagestempel gegen die vorderen Anschlagsflächen
(38) gedrückt wird, um beim Einpressen einen vorderen
30 Anschlag für den jeweils optischen Faserabschnitt
(72, 74) zu bilden.