In the Claims

1

2

3

1

2

3

1

2

3

1

2

3

1

2

- 1 1. (Previously Presented) A switch comprising:
 2 a plurality of field effect transistors connected in series, each field effect transistor
 3 including a gate, a source, and a drain, each gate having a gate width and a gate length;
 4 said gate length of one of said series connected field effect transistors being a different
 5 size from said gate length of another series connected field effect transistor.
 - 2. (Previously Presented) The switch as claimed in claim 1, wherein said gate of one of said plurality of series connected field effect transistor has a longer gate length than said gate of said other series connected field effect transistor.
 - 3. (Original) The switch as claimed in claim 1, wherein said gate of one of said plurality of series connected field effect transistor has a distance to its drain port that is less than a distance to its source port.
 - 4. (Original) The switch as claimed in claim 1, wherein said gate of one of said plurality of series connected field effect transistor has a distance to its source port that is less than a distance to its drain port.
 - 5. (Original) The switch as claimed in claim 3, wherein said gate of said other series connected field effect transistor has a distance to its source port that is equal to a distance to its drain port.
 - 6. (Original) The switch as claimed in claim 4, wherein said gate of said other series connected field effect transistor has a distance to its source port that is equal to a distance to its drain port.
- 7. (Original) The switch as claimed in claim 1, wherein the different gate sizes increase a parasitic capacitance within the switch.

1	8. (Currently Amended) A switch comprising:
2	a plurality of dual-gate field effect transistors connected in series, each dual-gate field
3	effect transistor including two gates, a source, and a drain;
4	one of said series connected dual-gate field effect transistors having a modified gate
5	therein, said modified gate having a length that is of a different size from gates gate lengths of
6	other series connected dual-gate field effect transistors.
1	Claim 9 (Cancelled)
1	10. (Original) The switch as claimed in claim 8, wherein said modified gate of said series
2	connected dual-gate field effect transistor has a distance to its drain port that is less than a
3	distance to its source port.
1	11. (Original) The switch as claimed in claim 8, wherein said modified gate of said series
2	connected dual-gate field effect transistor has a distance to its source port that is less than a
3	distance to its drain port.
1	12. (Original) The switch as claimed in claim 10, wherein gates of said other series
2	connected dual-gate field effect transistors have a distance to its source port that is equal to a
3	distance to its drain port.
1	13. (Original) The switch as claimed in claim 11, wherein gates of said other series
2	connected dual-gate field effect transistors have a distance to its source port that is equal to a
3	distance to its drain port.
1	14. (Original) The switch as claimed in claim 8, wherein a second series connected dual-
2	gate field effect transistor has a modified gate therein that is of a different size from gates of
3	other series connected dual-gate field effect transistors.

1	15. (Original) The switch as claimed in claim 8, wherein said dual-gate field effect
2	transistors are high-electron-mobility-transistors.
1	16. (Original) The switch as claimed in claim 8, wherein the different gate sizes increase
2	a parasitic capacitance within the switch.
1	17. (Currently Amended) A The switch as claimed in claim 8, wherein comprising:
2	a plurality of dual-gate field effect transistors connected in series, each dual-gate field
3	effect transistor including two gates, a source, and a drain;
4	one of said series connected dual-gate field effect transistors having a modified gate
5	therein that is of a different size from gates of other series connected dual-gate field effect
6	transistors;
7	said dual-gate field effect transistors include a transistor connection segment between
8	said gates and a heavily doped cap layer fabricated upon said transistor connection segment
9	between said gates.
1	Claim 18 (Cancelled)
1	19. (Previously Presented) A high-electron-mobility-transistor, comprising:
2	two gate fingers;
3	a transistor connection segment between said gate fingers; and
4	a heavily doped cap layer fabricated upon said transistor connection segment between
5	said gate fingers;
6	said gate fingers being of different sizes.
1	20. (Original) The high-electron-mobility-transistor as claimed in claim 19, wherein one
2	of said gate fingers has a distance to its source port that is less than a distance to its drain port.
1	21. (Original) The high-electron-mobility-transistor as claimed in claim 19, wherein one

of said gate fingers has a distance to its drain port that is less than a distance to its source port.

22. (Currently Amended) A radio frequency single pole double throw switch, comprising: 1 a receiver port; 2 a transmitter port; 3 an antenna port; 4 a receiver section connecting said receiver port to said antenna; and 5 a transmitter section connecting said transmitter port to said antenna; 6 said receiver section including a plurality of dual-gate field effect transistors connected in 7 series, each dual-gate field effect transistor including two gates, a source, and a drain such that 8 9 one of said series connected dual-gate field effect transistors has a modified gate therein, said 10 modified gate having a length that is of a different size from gates gate lengths of other series connected dual-gate field effect transistors. 11 1 23. (Original) The radio frequency single pole double throw switch as claimed in claim 2 22, wherein a source of said modified gate transistor is connected to said receiver port. 24. (Original) The radio frequency single pole double throw switch as claimed in claim 1 2 22, wherein a drain of said modified gate transistor is connected to said antenna port. 25. (Original) The radio frequency single pole double throw switch as claimed in claim 1 22, wherein a second series connected dual-gate field effect transistor has a second modified gate 2 therein that is of a different size from gates of other series connected dual-gate field effect 3 4 transistors. 26. (Original) The radio frequency single pole double throw switch as claimed in claim 1 2 25, wherein a source of said modified gate transistor is connected to said receiver port and a drain of said second modified gate transistor is connected to said antenna port. 3 27. (Original) The radio frequency single pole double throw switch as claimed in claim 1

22, wherein said dual-gate field effect transistors are high-electron-mobility-transistors.

l	28. (Original) The radio frequency single pole double throw switch as claimed in claim
2	22, wherein said modified gate of said series connected dual-gate field effect transistor has a
3	longer gate length and/or gate width than gates of said other series connected dual-gate field
4	effect transistor.
1	29. (Original) The radio frequency single pole double throw switch as claimed in claim
2	22, wherein said modified gate of said series connected dual-gate field effect transistor has a
3	distance to its drain port that is less than a distance to its source port.
1	30. (Original) The radio frequency single pole double throw switch as claimed in claim
2	22, wherein said modified gate of said series connected dual-gate field effect transistor has a
3	distance to its source port that is less than a distance to its drain port.
1	31. (Original) The radio frequency single pole double throw switch as claimed in claim
2	29, wherein gates of said other series connected dual-gate field effect transistors have a distance
3	to its source port that is equal to a distance to its drain port.
1	32. (Original) The radio frequency single pole double throw switch as claimed in claim
2	30, wherein gates of said other series connected dual-gate field effect transistors have a distance
3	to its source port that is equal to a distance to its drain port.
1	33. (Original) The radio frequency single pole double throw switch as claimed in claim
2	22, wherein the different gate sizes increase a parasitic capacitance within the switch.
1	34. (Currently Amended) A The radio frequency single pole double throw switch as
2	claimed in claim 22, wherein comprising:
3	a receiver port;
4	a transmitter port;
5	an antenna port;

6	a receiver section connecting said receiver port to said antenna; and
7	a transmitter section connecting said transmitter port to said antenna;
8	said receiver section including a plurality of dual-gate field effect transistors connected in
9	series, each dual-gate field effect transistor including two gates, a source, and a drain such that
10	one of said series connected dual-gate field effect transistors has a modified gate therein that is of
11	a different size from gates of other series connected dual-gate field effect transistors;
12	said dual-gate field effect transistors include a transistor connection segment between
13	said gates and a heavily doped cap layer fabricated upon said transistor connection segment
14	between said gates.
1	Claims 35-37 (Cancelled)
1	38. (Currently Amended) The radio frequency single pole double throw switch as
2	claimed in claim 3935, wherein said transmitter section includes a first transmitter dual-gate high
3	electron mobility transistor having gates of different lengths and a second transmitter dual-gate
4	high electron mobility transistor having gates of different lengths.
1	39. (Currently Amended) A The radio frequency single pole double throw switch as
2	claimed in claim 38, wherein comprising:
3	a receiver port;
4	a transmitter port;
5	an antenna port;
6	a receiver section connecting said receiver port to said antenna; and
7	a transmitter section connecting said transmitter port to said antenna;
8	said receiver section including,
9	a first receiver dual-gate high electron mobility transistor having
10	gates of different lengths, and
11	a second receiver dual-gate high electron mobility transistor having
12	gates of different lengths;

said transmitter section including a first transmitter dual-gate high electron mobility transistor having gates of different lengths and a second transmitter dual-gate high electron mobility transistor having gates of different lengths;

the source of said first transmitter dual-gate high electron mobility transistor having a source, said source being is connected to said receiver port and the drain of said second transmitter dual-gate high electron mobility transistor is connected to said antenna port.

- 40. (Currently Amended) The radio frequency single pole double throw switch as claimed in claim 3935, wherein a first gate of said first receiver dual-gate high electron mobility transistor has a longer gate length and/or gate width than a second gate of said first receiver dual-gate high electron mobility transistor.
- 41. (Currently Amended) The radio frequency single pole double throw switch as claimed in claim <u>3935</u>, wherein a first gate of said first receiver dual-gate high electron mobility transistor has a distance to its drain port that is less than a distance to its source port.
- 42. (Currently Amended) The radio frequency single pole double throw switch as claimed in claim 3935, wherein a first gate of said second receiver dual-gate high electron mobility transistor has a distance to its source port that is less than a distance to its drain port.

Cancelled Claims 43-44

- 45. (Currently Amended) The radio frequency single pole double throw switch as claimed in claim 3935, wherein the different gate lengths increase a parasitic capacitance within the switch.
- 46. (Currently Amended) The radio frequency single pole double throw switch claimed in claim <u>3935</u>, wherein the different gate lengths improve the linearity without impacting the ESD and EOS ruggedness.

Claims 47-50 (Cancelled)