Biochemie 1 Les 10

Vorige les: enzym gekatalyseerde reacties

Helemaal aan het begin van de reactie (nog geen product gevormd):

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightarrow} E + P$$

Vorige les: Michaelis Menten kinetiek

Figure 7.3

Biochemistry: A Short Course, Third Edition

© 2015 Macmillan Education

Vorige les: Michaelis Menten vergelijking

$$V_0 = V_{max} \frac{[S]}{[S] + K_M}$$

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightarrow} E + P$$

V_o = begin snelheid (initial rate)

 $K_{\mathbf{M}}$ = Michaelis constante: $\frac{k_{-1} + k_2}{k_1}$

 V_{max} = maximale snelheid = $(k_2[E]_T)$

K_M zegt iets over de enzym-substraat interactie

K_M is <u>onafhankelijk</u> van de enzymconcentratie

V₀=½ V_{max} wanneer [S]=K_M

V_{max} is <u>afhankelijk</u> van de enzymconcentratie

Turnover number (k_{cat})

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightarrow} E + P$$

 V_{max} = maximale snelheid = k_2 [E]_T

 k_2 wordt ook wel k_{cat} genoemd (turnover number/conversiegetal)

$$k_{cat} = V_{max}/[E]_{T}$$

Het turnover number" (conversiegetal) geeft aan hoeveel substraatmoleculen een enzym kan omzetten in productmoleculen per eenheid van tijd

Specificiteits constante (k_{cat}/K_{M})

- De specificiteitsconstante (k_{cat}/K_{M}) combineert de eigenschappen van de enzym-substraat interactie (K_{M}) met de snelheid van omzetting (k_{cat})
- B.v: chymotrypsine heeft duidelijke voorkeur voor grote restgroepen

Table 7.3 Substrate preferences of chymotrypsin

Amino acid in ester	Amino acid side chain	$k_{\text{cat}}/K_{\text{M}}$ (s 1 M 1)
Glycine		1.3 10 ¹
Valine	—CH CH₃	2.0
Norvaline	-CH ₂ CH ₂ CH ₃	3.6 10 ²
Norleucine	-CH ₂ CH ₂ CH ₂ CH ₃	3.0 10 ³
Phenylalanine	—CH ₂ ——	1.0 10 ⁵

Source: Data from A. Fersht, Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding (W.H. Freeman and Company, 1999), Table 6.3.

Vandaag

Enzym regulatie (paragraaf 8.2)

LET OP: ik sla paragraaf 7.3 en 8.1 nu even over. Deze paragrafen behandel ik in de volgende les (na de studieweek).

Enzymregulatie

Enzymen (en dus snelheid van reacties) worden gereguleerd door een aantal factoren

- Temperatuur
- pH
- Specifieke inhibitoren
 - Reversibel
 - Irreversibel

Temperatuur hebben optimale T

Enzymactiviteit stijgt bij hogere T, maar bij te hoge T stopt de activiteit

Waarom?

Tyrosinase (betrokken bij synthese pigment) is niet werkzaam bij lichaamstemperatuur, maar net eronder

Extreme temperaturen

- Thermofiele bacteriën en Archaea kunnen leven in extreme temperaturen tot boven 100°C
- Aanpassingen b.v.:
 - Minder thermolabiele a.a. zoals Asn, Gln, Cys en Met
 - Sterkere hydrofobe kern
 - Meer ionische bindingen

Enzymen hebben optimale pH

Waarom?

Enzymen hebben optimale pH

Opdracht: aminozuren en pH (herhaling)

Stel: tripeptide met een apolaire zijketen (R1), een zure zijketen (R2) en een basische zijketen (R3)

pKa4 = 9
$$\stackrel{\text{O}}{\text{II}}$$
 pKa1 = 2 $\stackrel{\text{+}}{\text{NH}_3}$ -CH-C-NH-CH-C-NH-CH-COO- $\stackrel{\text{F}}{\text{R}_1}$ $\stackrel{\text{F}}{\text{R}_2}$ $\stackrel{\text{F}}{\text{R}_3}$ pKa2 = 4 pKa3 = 11

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

Geef aan wat de lading is van <u>elk van de vier groepen</u> (terminale aminogroep, zure zijketen, basische zijketen en terminale aminogroep) bij: pH = 3,5; pH = 8; pH = 11,5

Herhaling: aminozuren en pH

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

pH=3,5
pH=8
pH=11,5

	Term. amino	Zure R	Basische R	Term. carboxyl
	(pKa₁~9)	(pKa₂~4)	(pKa₃~11)	(pKa ₄ ~2)
	NH ₃ ⁺ (+)	COOH (0)	NH ₃ + (+)	COO- (-)
	NH ₃ + (+)	COO- (-)	NH ₃ + (+)	COO- (-)
5	NH ₂ (0)	COO- (-)	NH ₂ (0)	COO- (-)

Verzuring spieren

In afwezigheid van O_2 : glucose \rightarrow melkzuur (dissocieert in lactaat en H^+)

Fosfofructokinase reguleert afbraak van glucose. Bij lage pH valt het enzym (meerdere subunits) uit elkaar: glucose afbraak stopt.

Inhibitors

Kleine moleculen of ionen

Belangrijk controle mechanisme in biologische systemen

Maar ook: medicijnen en toxische stoffen

Reversible of non-reversible

Reversible inhibitors

Competitive

Uncompetitive

Noncompetitive

Zie volgende slides

Vorige les

E= enzym S= substraat P=product

Competitive inhibition

Competitieve inhibitor bindt aan de active site

Enzym kan binden aan substraat (ES) óf inhibitor (EI), maar **niet** aan beide (ESI)

Gevolg: minder ES \rightarrow rate \downarrow

Oplossing: substraatconcentratie 个

Voorbeeld competitive inhibition

Sulfanilamide: structurele analoog van *p*-aminobenzoic acid

and protozoa

Figuur uit Bauman, Microbiology with diseases by taxonomy 4th edition

Uncompetitive inhibition

Uncompetitieve inhibitor bindt aan de active site <u>nadat het</u> <u>substraat gebonden is</u> (dus aan ES)

Minder product gevormd \rightarrow rate \downarrow

Kan <u>niet</u> worden overkomen door het verhogen van de substraatconcentratie

Voorbeeld uncompetitive inhibition

Glyphosate (Roundup)

Noncompetitive inhibition

Een noncompetitieve inhibitor bindt aan een <u>andere site</u> dan de active site

Substraat en inhibitor binden gelijktijdig (EIS complex)

Enzym is niet meer/ minder actief \rightarrow rate \downarrow

Kan <u>niet</u> worden overkomen door het verhogen van de substraatconcentratie

Voorbeeld noncompetitive inhibition

Doxycycline: antibioticum dat de eiwitsynthese remt

Maar ook: noncompetitive inhibition collagenase

Michaelis Menten kinetiek

Wat is het effect van reversible inhibitors?

Lineweaver Burk plot (zie vorige les)

Opdracht

Teken een Lineweaver Burk plot en geef hierin het volgende aan:

- Titel van de x-as
- Titel van de y-as
- Wat geeft het snijpunt met de y-as aan?
- Wat geeft het snijpunt met de x-as aan?
- Wat geeft de helling van de grafiek aan?

Lineweaver-Burk plot

$$\frac{1}{V} = \frac{K_{M}}{V_{max}} \cdot \frac{1}{[S]} + \frac{1}{V_{max}}$$

Competitive inhibition

Inhibitie kan overkomen worden door meer substraat toe te voegen

V_{max} blijft gelijk

 $K_{\rm m}^{\rm app} > K_{\rm M}$

 K_M is de concentratie waarbij $V0 = \frac{1}{2} V_{max}$ (zie vorige les!) In aanwezigheid van een competive inhibitor heb je meer substraat nodig om V_{max} te bereiken, dus de 'apparent' K_M is hoger dan de werkelijke K_M

Lineweaver-Burk plot

$$\frac{1}{V} = \frac{K_{M}}{V_{max}} \cdot \frac{1}{[S]} + \frac{1}{V_{max}}$$

Hoe verandert deze plot in aanwezigheid van een competitive inhibitor?

Intercept = $-1/K_{\rm M}$

Lineweaver-Burk representatie

Figure 8.10
Blochemistry: A Short Course, Third Edition
© 2015 Macmillan Education

Uncompetitive inhibition

ESI wordt niet verder omgezet in een product.

$$V_{\text{max}}^{\text{app}} < V_{\text{max}}$$

$$K_{\rm m}^{\rm app} < K_{\rm M}$$

Uncompetitive inhibition: waarom $K_m^{app} < K_M$?

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

$$\downarrow \uparrow$$

$$ESI$$

Wanneer de inhibitor aan ES bindt, wordt ES weggevangen.

Er moet meer S aan E binden om weer evenwicht te krijgen \rightarrow k_1^{app} zal dus hoger zijn dan de werkelijke k_1

$$K_{M} = \frac{k_{-1} + k_{2}}{k_{1}}$$
 dus $K_{m}^{app} < K_{M}$

Lineweaver-Burk plot

$$\frac{1}{V} = \frac{K_{M}}{V_{max}} \cdot \frac{1}{[S]} + \frac{1}{V_{max}}$$

Hoe verandert deze plot in aanwezigheid van een uncompetitive inhibitor?

Intercept = $-1/K_{\rm M}$

Lineweaver-Burk representatie

Figure 8.11

Biochemistry: A Short Course, Third Edition

© 2015 Macmillan Education

Noncompetitive inhibition

ESI wordt niet verder omgezet in een product.

Effect op V_{max} ? $V_{max}^{app} < V_{max}$

Effect op K_M? K_M verandert niet

Alsof de enzymconcentratie lager is.

 K_{M} is onafhankelijk van de enzymconcentratie. V_{max} is afhankelijk van de enzymconcentratie.

Lineweaver-Burk plot

$$\frac{1}{V} = \frac{K_{M}}{V_{max}} \cdot \frac{1}{[S]} + \frac{1}{V_{max}}$$

Hoe verandert deze plot in aanwezigheid van een noncompetitive inhibitor? $1/V_0$ Slope = $K_{\rm M}/V_{\rm max}$ Intercept = $-1/K_{\rm M}$ Intercept = $1/V_{max}$ 1/[S]

Lineweaver-Burk representatie

Figure 8.12
Biochemistry: A Short Course, Third Edition
© 2015 Macmillan Education

LET OP: de volgende slides heb ik nog niet tijdens het college behandeld. Ik kom hier in een latere les op terug. Ze maken wel deel uit van de tentamenstof.

Irreversible inhibitors

Binden sterk aan enzym (covalent of niet-covalent)

Vier categorieën:

- Groepspecifieke reagents
- Affinity labels
- Transitie staat analogen
- Suicide inhibitors

B.v. medicijnen. B.v. ophelderen mechanisme enzym.

Irreversible inhibition – group specific reagents

Modificeren de specifieke R-groepen van aminozuren

Voorbeeld: diisopropylphosphofluoridate (DIPF)

Remt b.v. chymotrypsine en acetylcholineesterase

Irreversible inhibition – affinity labels

= substraat analogen

Covalente modificatie active site

Voorbeeld:

TPCK

Irreversible inhibition – suicide inhibitors

Mechanism-based inhibitors

Chemisch gemodificeerde substraten

Reactieve intermediair inactiveert enzym door covalente modificatie

Waarom de naam 'suicide inhibitors'?

→ laten enzym meewerken aan eigen inactivatie (mechanisme van katalyse leidt tot reactieve intermediair)

Voorbeeld: penicilline

Voorbeeld suicide inhibitor: penicilline

Remt transpeptidase (betrokken bij crosslinking celwand)

Irreversible inhibition - transitiestaat analogen

Moleculen die lijken op de transitiestaat van een reactie, maar waar het enzym niet op kan aangrijpen.

Reactie gekatalyseerd door *proline racemase*

Pyrrole 2-carboxylic acid (transition-state analog)

Oefenen...oefenen...oefenen...

Op BB staan heel veel oefenopgaven!

B.v.

Sucrose (common table sugar) is hydrolyzed to glucose and fructose (Section 16.3) in a classic experiment in kinetics. The reaction is catalyzed by the enzyme invertase. Using the following data, determine, by the Lineweaver–Burk method, whether the inhibition of this reaction by 2 M urea is competitive or noncompetitive.

Sucrose Concentration (mol L ⁻¹)	V, No Inhibitor (arbitrary units)	V, Inhibitor Present (same arbitrary units)
0.0292	0.182	0.083
0.0584	0.265	0.119
0.0876	0.311	0.154
0.117	0.330	0.167
0.175	0.372	0.192