Logică și Structuri Discrete -LSD

Cursul 9 – Logică propozițională dr. ing. Cătălin Iapă catalin.iapa@cs.upt.ro

Ce am parcurs până acum?

MATEMATICĂ DISCRETĂ

Structuri discrete: Liste, Mulțimi, Relații, Tupluri, Grafuri, Arbori

PROGRAMARE FUNCȚIONALĂ ÎN PYTHON

Logică - noțiuni generale Logică Propozițională Sintaxa Semantica Diagrame de decizie binară Forma normală conjunctivă

Să începem cu ceva simpul

Dacă X1 + X2 = 10 și X1 - X2 = 4.

Cât e X1?

Să continuăm cu ceva mai complicat

Ecuația $a^4+b^4+c^4=d^4$ are întregi pozitivi ca soluție? Formulată de Euler în 1769

Rezolvată abia după 2 secole

a = 95.800

b = 217.519

c = 414.560

d = 422.481

Să continuăm cu ceva mai complicat

Ecuația $313*(x^3 + y^3) = z^3$ are soluții întregi pozitive?

După câteva încercări am tinde să spunem că nu are, dar prima soluție a ecuației are 100 de cifre.

Să continuăm cu ceva mai complicat

Orice număr întreg par poate fi scris ca o sumă de 2 numere prime. Propoziția e adevărată sau falsă?

Ex:
$$24 = 11 + 13$$

Nimeni nu știe deocamdată.

Logica stă la baza informaticii

circuite logice: descrise în algebra booleană Logica digitală, sem. 2

calculabilitate: ce se poate calcula algoritmic?

metode formale: demonstrarea corectitudinii programelor eroare în sortarea Java (Timsort) corectată (2015)

inteligența artificială: cum reprezentăm și deducem cunoștințe?

testare și securitate: găsirea unor intrări și căi de eroare, exploatarea automată de vulnerabilități etc.

Din istoria logicii

- Aristotel (sec.4 î.e.n.): primul sistem de logică formală (riguroasă)
- Gottfried Wilhelm Leibniz (1646-1714): *logică computațională* raționamentele logice pot fi reduse la *calcul matematic*
- George Boole (1815-1864): *The Laws of Thought*: logica modernă, algebră booleană (*logică* și *mulțimi*)
- Gottlob Frege (1848-1925): *logica simbolică clasică Begriffsschift*: formalizare a logicii ca fundament al matematicii
- Bertrand Russell (1872-1970): *Principia Mathematica* (cu A. N. Whitehead) formalizare încercând să elimine paradoxurile anterioare
- Kurt Gödel (1906-1978): teoremele de incompletitudine (1931): nu există axiomatizare consistentă și completă a aritmeticii limitarea logicii: fie paradoxuri, fie afirmații nedemonstrabile

Logica și calculatoarele

Demonstrațiile logice se reduc la calcule (algoritmi, programe)

Demonstrația este o verificare a unei propoziții prinun set de deducții logice dintr-o mulțime de axiome.

Multe *probleme* din *informatică* se pot reduce la *logică* și rezolva apoi *automat*

Știm deja: Operatorii logici uzuali

NU (
$$\neg$$
), SAU (\lor), ŞI (\land)

Anbisect = an % 4 == 0 and an % 100 == 0 or an % 400 == 0

Tabele de adevăr:

C: !
Python: not

C: ||
Python: or

C: && Python: and

Logică - noțiuni generale Logică Propozițională Sintaxa Semantica Diagrame de decizie binară Forma normală conjunctivă

Logica propozițională

Unul din cele mai simple *limbaje* (limbaj ⇒ putem *exprima* ceva) putem exprima probleme prin *formule* în logică

Discutăm:

Cum definim o *formulă logică*: forma ei (*sintaxa*) vs. înțelesul ei (*semantica*)

Cum reprezentăm o formulă? pentru a opera eficient cu ea

Ce sunt *demonstrațiile* și *raționamentul logic* ? cum putem demonstra? se poate demonstra (sau nega) orice?

Cum *folosim* logica pentru a opera cu alte noțiuni din informatică? (mulțimi, relații, etc.)

Propoziții logice

O *propoziție* (logică) e o afirmație care e fie *adevărată*, fie *falsă*, dar nu ambele simultan.

Sunt sau nu propoziții?

$$2 + 2 = 5$$

$$x + 2 = 4$$

Toate numerele prime mai mari ca 2 sunt impare.

$$x^n + y^n = z^n$$
 nu are soluții întregi nenule pentru niciun $n > 2$

Dacă
$$x < 2$$
, atunci $x^2 < 4$

Logica ne permite să raționăm *precis*.

⇒ pentru aceasta trebuie să o definim *precis* sintaxa (cum arată/e formată) si semantica (ce înseamnă) Logică - noțiuni generale Logică Propozițională Sintaxa Semantica Diagrame de decizie binară Forma normală conjunctivă

Sintaxa logicii propoziționale

```
Un limbai e definit prin
  simbolurile sale
  si regulile după care combinăm corect simbolurile (sintaxa)
Simbolurile logicii propozitionale:
  propozitii: notate deobicei cu litere p, q, r, etc.
  operatori (conectori logici): negatie \neg, implicatie \rightarrow, paranteze ()
Formulele logicii propoziționale: definite prin inducție structurală
  (construim formule complexe din altele mai simple)
O formulă e:
  orice propoziție (numită și formulă atomică)
  (\neg a) dacă a este o formulă
  (a \rightarrow \beta) dacă a și \beta sunt formule (a, \beta \text{ numite subformule})
```

Alţi operatori (conectori) logici

Deobicei, dăm definiții *minimale* (cât mai puține cazuri) (orice raționament ulterior trebuie făcut pe toate cazurile)

Operatorii cunoscuți pot fi definiți folosind ¬ și →:

$$a \wedge \beta^{d\underline{ef}} \neg (a \rightarrow \neg \beta)$$
 (ŞI)
$$a \vee \beta^{d\underline{ef}} \neg a \rightarrow \beta$$
 (SAU)
$$a \leftrightarrow \beta^{d\underline{ef}} (a \rightarrow \beta) \wedge (\beta \rightarrow a)$$
 (echivalență)

Omitem parantezele redundante, definind precedența operatorilor.

Ordinea precedenței: \neg , \land , \lor , \rightarrow , \leftrightarrow

Implicația e asociativă *la dreapta*! $p \rightarrow q \rightarrow r = p \rightarrow (q \rightarrow r)$

Sintaxa nu definește ce înseamnă o formulă. Definim semantica ulterior.

Sintaxa (concretă și abstractă) vs. semantică

Sintaxa: o mulțime de reguli care definește construcțiile unui limbaj (dacă ceva nu e construit corect nu putem să-i definim înțelesul)

Sintaxa *concretă* precizează modul *exact* de scriere.

prop ¬ formulă formulă ∧ formulă formulă ∨ formula

Sintaxa *abstractă*: interesează *structura* formulei din subformule (propoziție, negația unei formule, conjuncția/disjuncția a 2 formule) nu contează simbolurile concrete (∧, ∨), scrierea infix / prefix,...

Implicația logică →

 $p \rightarrow q$ numită și condițional(ă)

p: antecedent (în raționamente: ipoteză, premisă)

q: consecvent (în raționamente: concluzie)

Înțelesul: dacă p e adevărat, atunci q e adevărat (if-then) dacă p nu e adevărat, nu știm nimic despre q (poate fi oricum)

Deci, $p \rightarrow q$ e fals doar când p e adevărat, dar q e fals

$$\begin{array}{c|cccc}
 & q & & q \\
\hline
 & p \rightarrow q & F & T \\
\hline
 & F & T & T \\
\hline
 & T & F & T
\end{array}$$

Tabelul de adevăr:

Exprimat cu conectorii uzuali: $p \rightarrow q = \neg p \lor q$

Negația: $\neg(p \rightarrow q) = p \land \neg q$

Implicația în vorbirea curentă și în logică

În limbajul natural, "dacă ... atunci" denotă adesea *cauzalitate* dacă plouă, iau umbrela (din *cauză* că plouă)

În logica matematică → *NU înseamnă cauzalitate* 3 e impar → 2 e număr prim implicație adevărată, T → T (dar faptul că 2 e prim *nu e din cauză că* 3 e impar)

În demonstrații, vom folosi ipoteze relevante (legate de concluzie)

Vorbind, spunem adesea "dacă" gândind "dacă și numai dacă" (echivalență, o noțiune mai puternică!)

Exemplu: Dacă depășesc viteza, iau amendă. (dar dacă nu?)

ATENȚIE: fals implică orice! (vezi tabelul de adevăr)

- ⇒ un raționament cu o verigă falsă poate duce la orice concluzie
- \Rightarrow un paradox ($A \land \neg A$) distruge încrederea într-un sistem logic

Implicație: contrapozitiva, inversa, reciproca

Fiind dată o implicație $A \rightarrow B$, definim:

reciproca: B → A

inversa: ¬A → ¬B

contrapozitiva: ¬B → ¬A

Contrapozitiva e echivalentă cu formula inițială (directa).

$$A \rightarrow B \Leftrightarrow \neg B \rightarrow \neg A$$

Inversa e echivalentă cu reciproca.

$$B \to A \Leftrightarrow \neg A \to \neg B$$

 $A \rightarrow B \text{ NU-e-echivalent}$ cu $B \rightarrow A$ (reciproca)

Logică - noțiuni generale Logică Propozițională Sintaxa

Semantica

Diagrame de decizie binară Forma normală conjunctivă

Semantica unei formule: funcții de adevăr

Definim riguros cum calculăm valoarea de adevăr a unei formule = dăm o semantică (înțeles) formulei (formula=noțiune sintactică)

O *funcție de adevăr v* atribuie oricărei formule o *valoare de adevăr* ∈ {T, F} astfel încât:

v(p) e definită pentru fiecare *propoziție* atomică p.

$$v(\neg a) =$$
 T dacă $v(a) = F$ F dacă $v(a) = T$ $V(a \rightarrow \beta) =$ F dacă $v(a) = T$ Si $V(\beta) = F$ T Si Caz contrar $V(a) = T$

Exemplu: $v((a \rightarrow b) \rightarrow c)$ pentru v(a) = T, v(b) = F, v(c) = T avem $v(a \rightarrow b) = F$ pentru că v(a) = T și v(b) = F (cazul 1) și atunci $v((a \rightarrow b) \rightarrow c) = T$ (cazul 2: premisă falsă)

Interpretări ale unei formule

O *interpretare* a unei formule = o evaluare pentru propozițiile ei

O interpretare *satisface* o formulă dacă o evaluează la T. Spunem că interpretarea e un *model* pentru formula respectivă.

Exemplu: pentru formula $a \land (\neg b \lor \neg c) \land (\neg a \lor c)$ interpretarea v(a) = T, v(b) = F, v(c) = T o satisface interpretarea v(a) = T, v(b) = T, v(c) = T nu o satisface.

O formulă poate fi:

tautologie (validă): adevărată în toate interpretările realizabilă (en. satisfiable): adevărată în cel puțin o interpretare contradicție (nerealizabilă): nu e adevărată în nicio interpretare contingență: adevărată în unele interpretări, falsă în altele (nici tautologie, nici contradicție)

Tabelul de adevăr

Tabelul de adevăr prezintă valoarea de adevăr a unei formule în toate interpretările posibile

 2^n interpretări dacă formula are n propoziții

		C	$a \rightarrow (b \rightarrow c)$	a	b	C	(a →b) →c
F	F	F	T	F	F		F
F	F	T	T	F	F	T	T
F	Т	F	Т	F	Т	F	F
F	Т	Т	T	F	Τ	Т	T
Т	F F	F	T	Τ	F	F	T
Т	F	Т	T	Τ	F	Т	T
Т	Т	F	F	Т	Т	F	F
Т	Т	Т	T	Т	Т	Т	Т

Două formule sunt echivalente dacă au același tabel de adevăr

Două formula ϕ și ψ sunt echivalente dacă $\phi \leftrightarrow \psi$ e o tautologie

Algebra Booleană

Pe mulțimi, \cup , \cap și complementul formează o algebră booleană.

Tot o algebră booleană formează în logică și \land , \lor și \lnot :

Comutativitate:
$$A \lor B = B \lor A$$
 $A \land B = B \land A$

Asociativitate:
$$(A \lor B) \lor C = A \lor (B \lor C)$$
 și $(A \land B) \land C = A \land (B \land C)$

Distributivitate:
$$A \lor (B \land C) = (A \lor B) \land (A \lor C)$$
 și $A \land (B \lor C) = (A \land B) \lor (A \land C)$

Identitate: există două valori (aici F și T) astfel ca:

$$A \vee F = A$$
 $A \wedge T = A$

Complement:
$$A \vee \neg A = T$$
 $A \wedge \neg A = F$

Alte proprietăți (pot fi deduse din cele de mai sus):

Idempotență:
$$A \wedge A = A$$
 $A \vee A = A$

Absorbție:
$$A \lor (A \land B) = A$$
 $A \land (A \lor B) = A$ $\neg A \lor (A \land B) = \neg A \lor B$ simplifică formula!

Exemple de tautologii

$$a \lor \neg a \qquad \neg \neg a \leftrightarrow a$$

$$Regulile lui de Morgan \qquad \neg (a \lor b) \leftrightarrow \neg a \land \neg b$$

$$\neg (a \land b) \leftrightarrow \neg a \lor \neg b$$

$$(a \to b) \land (\neg a \to c) \leftrightarrow (a \land b) \lor (\neg a \land c)$$

$$a \to (b \to c) \leftrightarrow (a \land b) \to c$$

$$(p \to q) \land p \to q \qquad (p \to q) \land \neg q \to \neg p$$

$$p \land q \to p \qquad (p \lor q) \land \neg p \to q$$

$$(p \to q) \to q$$

$$(p \to q) \land (q \to r) \to (p \to r)$$

Reprezentarea formulelor boolene

E bine ca o reprezentare să fie:

canonică (un obiect să fie reprezentat într-un singur fel) avem egalitate dacă și numai dacă au aceeași reprezentare

simplă și compactă (ușor de implementat / stocat)

ușor de prelucrat (algoritmi simpli / eficienți)

O astfel de reprezentare: diagrame de decizie binare (Bryant, 1986)

Logică - noțiuni generale Logică Propozițională Sintaxa Semantica Diagrame de decizie binară Forma normală conjunctivă

Descompunerea după o variabilă

Fixând valoarea unei variabile într-o formulă, aceasta se simplifică.

Fie
$$f = (a \lor b) \land (a \lor \neg c) \land (\neg a \lor \neg b \lor c)$$
.

Dăm valori lui a:

$$f|_{a=T} = T \wedge T \wedge (\neg b \vee c) = \neg b \vee c$$

 $f|_{a=F} = b \wedge \neg c \wedge T = b \wedge \neg c$

Descompunerea Boole (sau Shannon)

$$f = x \wedge f|_{x=T} \vee \neg x \wedge f|_{x=F}$$

exprimă o funcție booleană *f* în raport cu o variabilă *x*

Arbore de decizie binar

Continuând pentru subformule, obținem un *arbore de decizie*: dând valori la variabile (a = T, b = F, c = T) și *urmând ramurile* respective, obținem valoarea funcției (T/F, sau 0/1)

$$f|_{a=T} = T \wedge T \wedge (\neg b \vee c) = \neg b \vee c$$

 $f|_{a=F} = b \wedge \neg c \wedge T = b \wedge \neg c$

Fixând ordinea variabilelor, arborele e unic (canonic), dar ineficient: 2ⁿ combinații posibile, ca tabelul de adevăr (deși e mai compact)

De la arbore la diagramă de decizie

$$f(x_1, x_2, x_3) = (\neg x_1 \land x_2 \land x_3) \lor (x_1 \land \neg x_2 \land x_3) \lor (x_1 \land x_2 \land x_3)$$

de ex. $f(T, F, T) = T$, $f(F, T, F) = F$, etc.

noduri *terminale*: valoarea funcției (0 sau 1, adică F sau T) noduri *neterminale: variabile x_i* (de care depinde funcția) ramuri: low(nod) / high(nod): atribuire F/T a variabilei din nod

Definim 3 reguli de transformare pentru o formă mai compactă, diagrama de decizie binară.

Reducerea nr. 1: Comasarea nodurilor terminale

Păstrăm o singură copie pentru nodurile 0 și 1

Reducerea nr. 2: Comasarea nodurilor izomorfe

Dacă $low(n_1) = low(n_2)$ și $high(n_1) = high(n_2)$, comasăm n_1 și n_2 dacă au același rezultat pe ramura fals și același rezultat pe ramura adevărat, nodurile dau aceeași valoare

Reducerea nr. 3: Eliminarea testelor inutile

Eliminăm nodurile cu același rezultat pe ramurile fals și adevărat

De la arbore la diagramă de decizie binară

Cele trei transformări sunt folosite pentru a *defini* o BDD. În practică, vrem să *evităm* arborele de decizie, fiind prea mare. Aplicăm *direct* descompunerea funcției după o variabilă.

Cum construim practic o BDD

În practică, NU pornim de la arborele binar complet.

Construim o BDD direct recursiv, descompunând după o variabilă:

$$f = x_1 \wedge f|_{x_1 = T} \vee \neg x_1 \wedge f|_{x_1 = F}$$

construim $f|_{x_1 = T}$ și $f|_{x_1 = F}$
apoi *comasăm* eventuale noduri
comune între cele două părți

BDD-urile sunt folosite în practic toate programele de proiectare pentru circuite integrate

Pentru a verifica egalitatea a două funcții se construiesc BDD-uri pentru cele două funcții dacă funcțiile sunt egale, se obține *aceeași* BDD ⇒ se verifică direct și eficient egalitatea funcțiilor

 $f(x_1, x_2, x_3) = (\neg x_1 \land x_2 \land x_3) \lor (x_1 \land \neg x_2 \land x_3) \lor (x_1 \land x_2 \land x_3)$ Alegem o variabilă: x_1 . Calculăm $f|_{x_1=F}$ și $f|_{x_1=T}$

Construim BDD pentru cele două funcții: direct, dacă sunt simple $(\mathsf{T},\,\mathsf{F},\,p,\,\neg p)$,

 $f(x_1, x_2, x_3) = (\neg x_1 \land x_2 \land x_3) \lor (x_1 \land \neg x_2 \land x_3) \lor (x_1 \land x_2 \land x_3)$ Alegem o variabilă: x_1 . Calculăm $f|_{x_1=F}$ și $f|_{x_1=T}$

Construim BDD pentru cele două funcții: direct, dacă sunt simple $(T, F, p, \neg p)$, altfel continuăm *recursiv*, alegând *o nouă variabilă*:

 $f|_{x_1=T}=x_3$

$$f_1 = f|_{X_1 = F} = X_2 \wedge X_3$$

 $f_1|_{X_2 = F} = F$ $f_1|_{X_2 = T} = X_3$

0

 $f(x_1, x_2, x_3) = (\neg x_1 \land x_2 \land x_3) \lor (x_1 \land \neg x_2 \land x_3) \lor (x_1 \land x_2 \land x_3)$ Alegem o variabilă: x_1 . Calculăm $f|_{x_1=F}$ si $f|_{x_1=T}$

Construim BDD pentru cele două functii: direct, dacă sunt simple $(T, F, p, \neg p)$, altfel continuăm recursiv, alegând o nouă variabilă:

(T, F,
$$p$$
, $\neg p$), altfel continuăm *recursiv*, alegând *o nouă variabilă*:
 $f_1 = f|_{x_1=F} = x_2 \land x_3$ $f|_{x_1=T} = x_3$

$$f_1|_{x_2=F} = F$$
 $f_1|_{x_2=T} = x_3$

 $f(x_1, x_2, x_3) = (\neg x_1 \land x_2 \land x_3) \lor (x_1 \land \neg x_2 \land x_3) \lor (x_1 \land x_2 \land x_3)$ Alegem o variabilă: x_1 . Calculăm $f|_{x_1=F}$ si $f|_{x_1=T}$

Construim BDD pentru cele două funcții: direct, dacă sunt simple

Construim BDD pentru cele doua funcții: direct, dacă sunt simple
$$(T, F, p, \neg p)$$
, altfel continuăm recursiv, alegând o nouă variabilă: $f = f |_{v = T} = x_2 \wedge x_3$

 $f(x_1, x_2, x_3) = (\neg x_1 \land x_2 \land x_3) \lor (x_1 \land \neg x_2 \land x_3) \lor (x_1 \land x_2 \land x_3)$ Alegem o variabilă: x_1 . Calculăm $f|_{x_1=F}$ si $f|_{x_1=T}$

Construim BDD pentru cele două functii: direct, dacă sunt simple $(T, F, p, \neg p)$, altfel continuăm *recursiv*, alegând o *nouă variabilă*:

(T, F, p,
$$\neg p$$
), altfel continuăm *recursiv*, alegând o *nouă variabilă*: $f_1 = f|_{X_1 = F} = x_2 \land x_3$ $f|_{X_1 = T} = x_3$

$$f_1|_{x_2=F} = F$$
 $f_1|_{x_2=T} = x_3$

Adăugăm nodul cu decizia după x2

 $f(x_1, x_2, x_3) = (\neg x_1 \land x_2 \land x_3) \lor (x_1 \land \neg x_2 \land x_3) \lor (x_1 \land x_2 \land x_3)$ Alegem o variabilă: x_1 . Calculăm $f|_{x_1=F}$ si $f|_{x_1=T}$

Construim BDD pentru cele două funcții: direct, dacă sunt simple (T, F, p, $\neg p$), altfel continuăm recursiv, alegând o nouă variabilă:

Construim BDD pentru cele două funcții: direct, dacă sunt si
$$(T, F, p, \neg p)$$
, altfel continuăm recursiv, alegând o nouă varia $f_1 = f|_{X_1 = F} = x_2 \wedge x_3$ $f|_{X_2 = F} = F$ $f_1|_{X_2 = T} = x_3$
$$f_1|_{X_3 = F} = F$$
 Adăugăm nodul cu decizia după x_2
$$x_3$$
 Adăugăm decizia după x_1

Remarcăm că diagrama cu x₃ e comună și păstrăm o singură copie

Logică - noțiuni generale Logică Propozițională Sintaxa Semantica Diagrame de decizie binară Forma normală conjunctivă

Forma normală conjunctivă (conjunctive normal form)

folosită pentru a determina dacă o formulă e *realizabilă* (poate fi *T*)

```
Def: Forma normală conjunctivă (a \lor \neg b \lor \neg d) clauză = conjuncție \land de clauze \land (\neg a \lor \neg b) clauză clauză = disjuncție \lor de literali \land (\neg a \lor c \lor \neg d) ... literal = propoziție sau negația ei \land (\neg a \lor b \lor c) clauză (p sau \neg p)
```

Similar: forma normală disjunctivă (disjuncție de conjuncții)

Transformarea în formă normală conjunctivă

- 1) ducem (repetat) negația înăuntru regulile lui de Morgan $\neg (A \lor B) = \neg A \land \neg B \quad \neg (A \land B) = \neg A \lor \neg B$
- 2) ducem (repetat) disjuncția înăuntru distributivitate $(A \land B) \lor C = (A \lor C) \land (B \lor C)$

Exemplu: forma normală conjunctivă

Lucrăm din exterior - evităm muncă inutilă

- 1) ducem *negațiile înăuntru* până la propoziții r. *de Morgan* dubla negație dispare $\neg \neg A = A$ *înlocuim implicațiile* dinspre exterior când ajungem la ele $p \rightarrow q = \neg p \lor q$ $\neg (p \rightarrow q) = p \land \neg q$
- 2) ducem disjuncția v înăuntrul conjuncției \land distributivitate

$$\neg ((r \lor \neg (p \to (q \land r))) \lor (p \land q))$$

$$= \neg (r \lor \neg (p \to (q \land r))) \land \neg (p \land q)$$

$$= \neg r \land (p \to (q \land r)) \land (\neg p \lor \neg q)$$

$$= \neg r \land (\neg p \lor (q \land r)) \land (\neg p \lor \neg q)$$

$$= \neg r \land (\neg p \lor q) \land (\neg p \lor r) \land (\neg p \lor \neg q)$$

Exemplu 2: forma normală conjunctivă

$$\neg((a \land b) \lor ((a \rightarrow (b \land c)) \rightarrow c))$$

$$= \neg(a \land b) \land \neg((a \rightarrow (b \land c)) \rightarrow c))$$

$$= (\neg a \lor \neg b) \land ((a \rightarrow (b \land c)) \land \neg c)$$

$$= (\neg a \lor \neg b) \land (\neg a \lor (b \land c)) \land \neg c$$

$$= (\neg a \lor \neg b) \land (\neg a \lor b) \land (\neg a \lor c) \land \neg c$$

Transformarea poate *crește exponențial* dimensiunea formulei:

$$(a \wedge b \wedge c) \vee (p \wedge q \wedge r)$$

$$= (a \vee (p \wedge q \wedge r)) \wedge (b \vee (p \wedge q \wedge r)) \wedge (c \vee (p \wedge q \wedge r))$$

$$= (a \vee p) \wedge (a \vee q) \wedge (a \vee r) \wedge (b \vee p) \wedge (b \vee q) \wedge (b \vee r)$$

$$\wedge (c \vee p) \wedge (c \vee q) \wedge (c \vee r)$$

În practică, se introduc propoziții auxiliare ⇒ crește doar liniar

Vă mulțumesc!

Bibliografie

Conținutul cursului se bazează pe materialele de anii trecuți de la cursul de LSD, predat de conf. dr. ing.Marius Minea și ș.l. dr. ing. Casandra Holotescu (http://staff.cs.upt.ro/~marius/curs/lsd/index.html)

Primul exemplu din curs (pagina 4) a fost preluat din cursul **Stanford CS221: Artificial Intelligence: Principles and Techniques** de la Stanford University (https://stanford.io/3ChWesU)

Exemplele din prima parte a cursului (paginile 5-10) au fost preluate din cursul *Mathematics for Computer Science* de la Massachusetts Institute of Technology (https://ocw.mit.edu/)