Στατιστική (Statistics)

Στατιστική

- Στατιστική είναι ο κλάδος της επιστήμης που ασχολείται με δεδομένα ή παρατηρήσεις που προέρχονται από στοχαστικά φαινόμενα.
- Η Στατιστική χρησιμοποιεί την θεωρία Πιθανοτήτων ώστε να παράγει εργαλεία και τεχνικές για την περιγραφή, την ανάλυση και την επεξεργασία των δεδομένων.

• Στατιστική είναι η επιστήμη της επίλυσης προβλημάτων με δεδομένα που παρουσιάζουν θόρυβο (noise) και μεταβλητότητα (variability).

- **Στόχος** της στατιστικής είναι, μέσω της ανάλυσης των δεδομένων, να πετύχει
 - την πληρέστερη περιγραφή του προβλήματος
 - την **ερμηνεία** του φαινομένου, και
 - τη μετατροπή των διαθέσιμων παρατηρήσεων σε γνώση και εξαγωγή συμπερασμάτων

Στατιστική και Επιστήμη της Πληροφορικής

- Η Πληροφορική και η Στατιστική ασχολούνται με δεδομένα και πηγές πληροφορίας.
- Σήμερα υπάρχει διαθέσιμο ένα τεράστιο πλήθος δεδομένων ή πληροφορίας (*Big Data*). Η ανάγκη διαχείρισής του αποτελεί ένα σημαντικό πεδίο έρευνας με πολλές εφαρμογές.
- Η Στατιστική με τα εργαλεία που διαθέτει βοηθά στην αναπαράσταση (οπτικοποίηση), περιληπτική περιγραφή, διαχείριση και ανάλυση της διαθέσιμης πληροφορίας.

Στατιστική σε τομείς της Πληροφορικής

- Τεχνητή Νοημοσύνη (*Artificial Intelligence*)
- Μηχανική Μάθηση (*Machine Learning*), Αναγνώριση Προτύπων (*Pattern Recognition*), Εξόρυξη Δεδομένων (*Data Mining*)
- Ευφυή συστήματα Αυτόνομοι Πράκτορες (Intelligent Agents)
- Ρομποτική Robotics
- Επεξεργασία Σήματος και Εικόνας (Signal & Image Processing)
- Υπολογιστική ή Μηχανική Όραση (Computer Vision)
- Επεξεργασία Φυσικής Γλώσσας (*Natural Language Processing*)
- Ανάκτηση Πληροφορίας (Information Retrieval)
- Δίκτυα μετάδοσης πληροφορίας και Τηλεπικοινωνιακά Συστήματα (Networking Telecommunications)
- Μετρήσεις, Αξιοπιστία και ασφάλεια συστημάτων
- •

Χρήσιμοι Ορισμοί

- Πληθυσμός (population) είναι το σύνολο των δεδομένων που μας ενδιαφέρουν. Συχνά είναι μεγάλος και μη πεπερασμένος (άπειρος)
- Δείγμα (sample) είναι ένα υποσύνολο δεδομένων που συλλέγεται από τον πληθυσμό. Είναι αρκετά μικρότερος από τον πληθυσμό.
- Παράμετρος (parameter) είναι ένα μέτρο που περιγράφει τον πληθυσμό (άγνωστη τιμή)
- Στατιστικό στοιχείο είναι ένα μέτρο πάνω στο δείγμα που αναφέρεται σε κάποια παράμετρο. Χρησιμοποιείται για την εκτίμηση ή τον έλεγχο της τιμής μιας παραμέτρου (τυχαία μεταβλητή αναφοράς)

Πληθυσμός Δείγμα Υποσύνολο Στατιστικό στοιχείο Παράμετρος (εκτίμηση ή έλεγχος (άγνωστη) παραμέτρου)

- Οι παράμετροι υπάρχουν σε πληθυσμούς
- Τα στατιστικά στοιχεία υπάρχουν στα δείγματα

Τομείς της Στατιστικής

- Συλλογή δεδομένων (Data collection)
 - τεχνικές δειγματοληψίας (sampling), αναπαράστασης δεδομένων, φιλτραρίσματος της πληροφορίας,
 βελτίωσης της ποιότητας δεδομένων (data cleaning).
- Περιγραφική Στατιστική (Descriptive Statistics)
 - οργάνωση & περιληπτική περιγραφή συνόλου δεδομένων
- Επαγωγική ή Συμπερασματική Στατιστική (Inferential Statistics)
 - διαδικασία **γενίκευσης** και **εξαγωγής συμπερασμάτων** ενός πληθυσμού εξετάζοντας αντιπροσωπευτικό **δείγμα**

1. Συλλογή Δεδομένων

- Τύποι και μορφές (δομές) των δεδομένων (data types)
- Ποιότητα των δεδομένων (data quality)
- Εξάλειψη θορύβου από τα δεδομένα (noise extraction)
- Διαχείριση ακραίων τιμών (outliers) ή χαμένων τιμών (missing values)
- Αντιμετώπιση αντιγράφων (duplicated data)
- Διακριτοποίηση δεδομένων (discretization)
- Μετασχηματισμοί των δεδομένων (data transformation)
- Μείωση διάστασης των δεδομένων (dimensionality reduction)

1. Συλλογή Δεδομένων

Η Δειγματοληψία (Sampling) είναι η συλλογή δεδομένων (παραγωγή δείγματος) από πληθυσμούς.

- Δημιουργεί ένα υποσύνολο του πληθυσμού (δείγμα), το οποίο πρέπει να είναι κατάλληλο ώστε τα αποτελέσματα να είναι αντιπροσωπευτικά για τον πληθυσμό.
- Τα αποτελέσματα που προκύπτουν πάνω στο δείγμα γενικεύονται στη συνέχεια στον πληθυσμό.
- Είδη δειγματοληψίας:
 - Τυχαία δειγματοληψία
 - Στρωματοποιημένη ή κατά συστάδες (clusters) δειγματοληψία (χωρισμός σε ανομοιογενείς ή ομογενείς ομάδες του πληθυσμού)

2. Περιγραφική Στατιστική

Η Περιγραφική Στατιστική (Descriptive Statistics)

αναφέρεται σε μεθόδους που **οργανώνουν**, **συνοψίζουν**, και **παρουσιάζουν** τα δεδομένα με συνοπτικό αλλά και άμεσα πληροφοριακό τρόπο.

Αυτοί οι μέθοδοι περιλαμβάνουν:

- **Γραφικές** και
- **Αριθμητικές** τεχνικές

Η περιγραφική στατιστική εφαρμόζεται στο δείγμα. Τα συμπεράσματα που προκύπτουν για τον πληθυσμό συχνά είναι περιορισμένα.

3. Συμπερασματική Στατιστική

Η Συμπερασματική Στατιστική είναι μέθοδοι που χρησιμοποιούνται για την εξαγωγή συμπερασμάτων σχετικά με τα χαρακτηριστικά (παράμετροι) του πληθυσμού.

Χρησιμοποιούμε **στατιστικά στοιχεία** για να εξάγουμε συμπεράσματα σχετικά με τις **παραμέτρους**. Ότι γνωρίσουμε σχετικά με το δείγμα μπορούμε να το εφαρμόσουμε στον πληθυσμό.

Μορφές συμπερασματολογίας

- Διαστήματα Εμπιστοσύνης (Confidence intervals)
- Έλεγχος Υποθέσεων (Statistical test)
- Παλινδρόμηση (Regression analysis)
- Εκτιμητική (*Estimation*)
- Ανάλυση Διακύμανσης (ANOVA analysis)

Δειγματοληψία (Sampling)

- Πρόβλημα: παραγωγή δεδομένων ή δειγμάτων από μία κατανομή με γνωστό τύπο συνάρτησης πυκνότητας πιθανότητας, f(x).
- Μέθοδοι δειγματοληψίας
- 1. Μέθοδος της αντιστροφής (inversion method)
- 2. Μέθοδος της απόρριψης (rejection method)

Μέθοδος της αντιστροφής

 Χρησιμοποιεί την αντίστροφη αθροιστική συνάρτηση κατανομής πιθανότητας, *F(x)*, για να παραχθεί το δείγμα της τυχαίας μεταβλητής.

Διαδικασία:

- 1. Κατασκευάζουμε την αθροιστική συνάρτηση *F(x)*
- 2. Βρίσκουμε την αντίστροφη αθροιστική, *F* -1(.)
- 3. Παράγουμε ένα *τυχαίο αριθμό στο [0, 1],* έστω *u*
- 4. Τότε παίρνουμε δείγματα από τη σχέση $x = F^{-1}(u)$

Μειονεκτήματα

- Δεν είναι πάντα εύκολο να βρούμε την αθροιστική *F(x)* καθώς η συνάρτηση πυκνότητας *f(x)* δεν είναι πάντα ολοκληρώσιμη.
- Δεν υπάρχει πάντα η αντίστροφη της *F(x)*.

Μέθοδος της αντιστροφής

Παράδειγμα 1: Να γίνει δειγματοληψία με την μέθοδο της αντιστροφής από μία εκθετική κατανομή:

•
$$F(x) = 1 - e^{-\lambda x}$$
 $u \in [0, 1]$

•
$$u = 1 - e^{-\lambda x} \Rightarrow e^{-\lambda x} = 1 - u \Rightarrow x = -\frac{1}{\lambda} \ln(1 - u)$$

Παράδειγμα 2: Να γίνει δειγματοληψία με την μέθοδο της αντιστροφής από μία ομοιόμορφη κατανομή *U(a, b)*:

•
$$F(x) = \frac{x-a}{x-b} \qquad \qquad \mathbf{u} \in [0,1]$$

•
$$\mathbf{u} = \frac{x-a}{b-a} \Rightarrow x = a + \mathbf{u}(b-a) \Rightarrow \mathbf{x} = (\mathbf{1} - \mathbf{u}) \mathbf{a} + \mathbf{u} \mathbf{b}$$

Μέθοδος της απόρριψης (rejection)

 Χρησιμοποιείται σε περιπτώσεις όπου η συνάρτηση πυκνότητας πιθανότητας, f(x), δεν είναι ολοκληρώσιμη.

Μέθοδος της απόρριψης (rejection)

Βήματα

- 1. Επιλογή τυχαίου αριθμού *c* στο [0, M].
- 2. Επιλογή τυχαίου αριθμού α ≤ χ ≤ β.

- 3. If $c \le f(x)$ then accept x
- 4. else reject x and go to step 1

Παρατήρηση: Τα δείγματα που παράγονται είναι σημεία του εσωτερικού της συνάρτησης πυκνότητας και ανήκουν στη περιοχή αποδοχής. Αυτά που απορρίπτονται είναι σημεία της περιοχής απόρριψης.

όπου

Περιγραφική Στατιστική (Descriptive Statistics)

- 1. Οργάνωση και Γραφική αναπαράσταση στατιστικών δεδομένων
- 2. Οπτικοποίηση των δεδομένων

3. Χρήση αριθμητικών περιγραφικών μέτρων

1. Οργάνωση και γραφική παράσταση στατιστικών δεδομένων

Τεχνικές οπτικοποίησης

- Πίνακες συχνοτήτων
- Ραβδογράμματα
- Κυκλικά διαγράμματα
- Ιστογράμματα
- Φυλλογράμματα

•

Πίνακες συχνοτήτων

- Παρουσίαση των δεδομένων με συνοπτικό τρόπο σε πίνακες για την ταχύτερη και ευκολότερη κατανόησή τους.
- Μορφή συμπίεσης πληροφορίας
- **Μερική εκτίμηση** της παραμέτρου ενός πληθυσμού από το διαθέσιμο δείγμα.

- ightharpoonup Έστω \mathbf{k} τιμές $\{a_1, a_2, ..., a_k\}$ μιας μεταβλητής ή ενός χαρακτηριστικού.
- > Συχνότητα (frequency) n_i της τιμής a_i είναι το πλήθος των διαθέσιμων δειγμάτων με τιμή a_i,
- > Σχετική συχνότητα (relative frequency) f_i είναι η συχνότητα προς το μέγεθος του δείγματος:

$$f_i = \frac{n_i}{n}$$
 $i = 1, ..., k$ $\sum_{i=1}^k f_i = 1$

που αποτελεί ένα μέτρο πιθανότητας της τιμής α;

Ο πίνακας συχνοτήτων
μπορεί να παρουσιάζει
κατηγορίες, ή διαστήματα
τιμών ενός
χαρακτηριστικού με τις
αντίστοιχες συχνότητές του

Τιμή a _i	Συχνότητα n _i	Σχετ. συχνότητα f_i
άσπρο	6	6/11
μαύρο	3	3/11
μπλε	2	2/11

Βολικότερος τρόπος για κατηγορικά (categorical) δεδομένα

Τιμή	Συχνότητα	Σχετ. συχνότητα
a _i	n _i	f_i
1-4	4	4/12
5-8	5	5/12
9-12	3	3/12

Ραβδογράμματα (bar charts)

Οι κατηγορίες παρουσιάζονται στον *x*-άξονα ως ισομήκη διαστήματα ενώ οι αντίστοιχες συχνότητες (ή οι σχετικές συχνότητες) στο *y*-άξονα με την μορφή ράβδου.

Είναι δυνατόν να υπάρχουν πολλαπλά ραβδογράμματα

Κυκλικά διαγράμματα (pie charts)

 Οι κατηγορικές τιμές παρουσιάζονται σε κύκλο χωρισμένο σε κυκλικούς τομείς, τα τόξα των οποίων είναι ανάλογα με τις αντίστοιχες συχνότητες.

3 διαφορετικοί τρόποι παρουσίασης

a _i	n _i	F _i (%)
1	73	28.9
2	52	20.6
3	36	14.2
4	64	25.3
5	28	11.1
Σύνολο	253	100

Αναπαράσταση της ίδιας πληροφορίας (συχνότητα εμφάνισης κατηγορικών δεδομένων), με διαφορετική μορφή παρουσίασης

Ιστογράμματα (Histograms)

Κατανομή της συχνότητας των δεδομένων σε (*ισομήκη*) διαστήματα τιμών (ή κάδους - *bins*).

Πως κατασκευάζονται τα Ιστογράμματα

$$P(X \in A) = \frac{k_A}{n} = \frac{71}{200}$$

$$P(X \in A) = \int_{A} f(x) dx \approx f_{A}(x) \int_{A} dx =$$

$$= \int_{A} f(x) V_{A} = f_{A}(x) \times 15$$

$$= f_A(x)V_A = f_A(x) \times 15$$

$$f_A(x) = \frac{k_A}{nV_A} = \frac{71}{200 \times 15}$$

Η συνάρτηση πυκνότητας ή μάζας Ιπιθανότητας με βάση τα ιστογράμματα

Παράδειγμα εικόνας (ασπρόμαυρη – gray scale)

Η τιμή φωτεινότητας κάθε pixel είναι μία από τις 256 (8 bits)
 στάθμες φωτεινότητας του γκρίζου χρώματος (0: μαύρο ->
 255: λευκό)

• Ιστόγραμμα της φωτεινότητας των pixels με 10 bins

• Ιστόγραμμα της φωτεινότητας των pixels με 20 bins

Πιθανότητες και Στατιστική, Τμήμα Μηχανικών Η/Υ & Πληροφορικής - Δ18

Ιστόγραμμα της φωτεινότητας των pixels με 50 bins

Ιστόγραμμα της φωτεινότητας των pixels με 200 bins

