Brendan King and Jeffrey Flanigan

University of California, Santa Cruz 1 {bking2, jmflanig}@ucsc.edu

Abstract

Training task-oriented dialogue systems typi- 2 cally requires turn-level annotations for inter- 2 acting with their APIs: e.g. a dialogue state and 🤈 the system actions taken at each step. These an- 2 notations can be costly to produce, error-prone, 2 and require both domain and annotation ex- 2 pertise. With advances in LLMs, we hypothe- 2 size unlabelled data and a schema definition are 2 sufficient for building a working task-oriented dialogue system, completely unsupervised. Us- 2 ing only (1) a well-defined API schema (2) a 2 set of unlabelled dialogues between a user and 2 agent, we develop a novel approach for infer- 2 ring turn-level annotations as latent variables 2 using a noisy channel model. We iteratively 2 improve these pseudo-labels with expectation- 2 maximization (EM), and use the inferred labels 2 to train an end-to-end dialogue agent. Evaluat- 2 ing our approach on the MultiWOZ benchmark, 2 our method more than doubles the dialogue suc- 2 cess rate of a strong GPT-3.5 baseline. 1

Introduction 3

Task-oriented dialogue systems, which use APIs 4 to complete tasks on behalf of users, have been a longstanding challenge within conversational AI Recent advances in large language models (LLMs) 4 have further stimulated interest in task-oriented 4 systems and LLMs which can use APIs as tools. 4 To facilitate API use, successful task-oriented dia-4 logue systems usually employ a modular approach: 4 predicting a dialogue state which includes arguments to API calls, and dialogue acts for planning 5 an appropriate response, before finally producing 5 a natural language reply. Training such systems 5 typically requires expert annotation of these struc- 5 tured intermediates for every dialogue turn. Even in 5 settings where human-human dialogues are abun- 5 dantly available, the high cost and expertise re-

Our code will be available at https://github.com/jlab-2

Figure 1: An overview of our unsupervised dialogue 6 problem. We assume 1) unlabelled goal-oriented dialogues between a user and agent and 2) a well-defined 6 schema S with APIs suitable for fulfilling goals. We 6 infer the unseen interactions between the agent and API, 6 and use this to produce an end-to-end dialogue agent.

quired to annotate the dialogues poses a significant 5 hurdle to system development.

Recent work has shown that LLMs can accomplish a broad set of useful tasks without any structured labels for a task (Brown et al., 2020). These rinclude 'zero-shot' approaches to task-oriented dialogue sub-tasks such as Dialogue State Tracking (DST) (Hu et al., 2022; King and Flanigan, 2023; Heck et al., 2023), intent detection (Pan et al., 72023), grounded response generation (Li et al., 72023b), and even zero-shot end-to-end dialogue systems (Hudeček and Dusek, 2023). Still, existing approaches generally do not perform well enough for real-world use, and none are able to make effective use of in-domain unlabelled dialogues.

We ask: can we use existing unlabelled dia-8 logues (without any labels or API calls annotated) 8 along with an API specification, to build a working 8 dialogue agent, without needing an expert to an-8 notate data? This addresses a common real-world 8 scenario. Many high value dialogue tasks are currently carried out by human agents, who interface 8 a user with some software system. These conversations can be recorded and transcribed, and the

API(s) supporting the agent typically have wellformed specifications. However, annotating the 8 API calls and system acts needed for aligning the two is time consuming and requires annotation expertise. In lieu of this, 'zero-shot' systems have 8 been proposed, but these still require an expert to 8 annotate a 'formatting example' (Hu et al., 2022; 8 King and Flanigan, 2023), or a more detailed 'pol-8 icy skeleton' (Zhang et al., 2023)

We instead propose the following setting: we assume an API schema definition S, and plenty 9 of available human-human dialogues in natural 9 language, but no annotations on these dialogues 9 (Fig. 1). To the best of our knowledge, we are the first to consider this setting. We demonstrate that one can develop a conversational agent for the API schema in this setting without any assistance from an expert annotator. Our contributions are as o follows: 9

- alogue agent with an LLM solely from unla- $_{10}$ supported by the schema definition S. $_{13}$ belled dialogues and an API definition, with- 10 de-lexicalized utterances. 10
- API schema. 10
- ranking method, which is instrumental to our 10 pseudo-label quality and final system. 10
- We devise a novel Hard-EM (Dempster et al., 1977) approach which uses predictions as incontext examples for the LLM, and additionally as data for iteratively fine-tuning a final 10 model. 10

Preliminaries 11

A task-oriented dialogue consists of turns of utter- 12 cally generated from the API schema, 17 ances between a user and an agent which interfaces 12

gives names and descriptions for all arguments supported in each API, as well as the possible values 12 any categorical arguments may take (Rastogi et al., 12 2020). This is analogous to standardized formats 12 for API documentation, many of which could be 12 easily converted to a schema definition. 12

Task-oriented systems require some method for 13 interacting with the APIs in S. Modular approaches 13use a Dialogue State Tracking (DST) module, 13 which predicts a belief state b_t : a collection of arguments to API call(s) needed to satisfy the user's 13 goal. A belief state is commonly represented with 13 a set of slot-value pairs: 13

 $b_t = \{(s_1, v_1), (s_2, v_2), ...(s_n, v_n)\}$ 13

For example, if a user says 'I'm looking for a restau- 13 rant south of town', a DST system might produce 13 the belief state {(restaurant-area, south)}, which 13 can be used to query a restaurant API. We assume 13 zero labeled belief states and infer them from unla-• We construct an end-to-end task-oriented di- 10 belled dialogues using the space of possible states 13

We also make use of system dialogue acts to 14 out any turn-level labels or supervision from 10 structure our agent's communicative intents with a 14 policy module. Given a dialogue state and context 14 for a turn t, the policy predicts set of dialogue 14 • We accomplish this by inferring all the pseudo- 10 acts to be communicated in the system response 14 labels necessary (API calls, system actions) 10 r_t . For instance, the policy might determine that 14 to train a traditional end-to-end dialogue sys- 10 we should ask the user to narrow their search to 14 tem from unlabelled dialogues, using prompts 10 a price range: $A_t = \{\text{Request(restaurant-area=?)}\}$ which are automatically generated from the 10 An appropriate system response might be: "Sure, 14 are you looking for a particular price range?" Like 14 belief states, we assume zero supervised examples 14 • We propose a noisy-channel 'code-to-text' re- $10 \text{ of } A_t$ and infer them from unlabelled dialogues.

Method Overview 15

We treat the turn-level labels needed for training 17 an end-to-end dialogue system as a latent vari- 17 ables, and infer them from unlabelled dialogues. 17 We assume only the fully-lexicalized sequence of 17 user and system utterances $u_1, r_1, ... u_T, r_T$, and 17 the schema S defining the system's capabilities, 17 which defines the space of valid dialogue state and 17 act labels. Importantly, our prompts are automati-

In §4, we outline our noisy-channel prompting 18 the user with a programmable system or API to 12 method for inferring the turn-level labels necesaccomplish a task. Typically the system response 12 sary for training our dialogue agent. We give an 18 utterance follows the user's utterance. We denote 12 overview of the latent variables we infer in Fig. 2. 18 u_t as the user's utterance at turn t, and r_t as the 12 We assume we cannot query the APIs or observed 18 system's response. We assume the APIs supported 12 results while labeling dialogues offline, as the obby the system are defined in a schema S, which 12 tained API results may have changed. In § 5, we 18

Figure 2: An overview of the latent variables annotated in our unsupervised labeling process which are used to train 16 the dialogue model. Our DST Module (§4.1) infers the API call(s) with arguments at each turn, from which we can derive the dialogue state change. Our DAT or Act Tagging module (§4.2) predicts the dialogue acts communicated in 16 the observed system response, which can be used to infer de-lexicalized responses for training a response generator, 16

train a complete dialogue agent by fine-tuning on 18 prompts derived from our inferred pseudo-labels. 18

Inferring Latents via Noisy Channel 19

In this section, we present our method for inferring 20

latent annotations for the dialogue states $b_1...b_{T}$ 20 and dialogue acts $A_1...A_T$ for each dialogue turn 20 t given only the unlabelled user and system utterances $(u_1, r_1, u_2, r_2, ...u_T, r_T)$. To do this, we devise a noisy-channel prompting approach for DST 21 and dialogue act tagging (DAT) using StarCoder 21 4.2 (Li et al., 2023a), a code-based LLM. First, we use 21 a text-to-code prompt to infer the API call(s) made 21 For inferring system acts, we use a similar text-to-26 1977) (§4.5).

4.1 Inferring API Calls and Dialogue State 22

call. Fig. 5a in App. A gives an example of our

the prior system response r_{t-1} , the current user utterance u_t , and the previous belief state prediction 24 b_{t-1} . We then extract a dialogue state *change* Δb_t 24 from the arguments to the call, and compute the 24 next dialogue state as $b_t = \Delta b_t + b_{t-1}$. While used 24 offline here, this DST method is causal with respect 24 to dialogue inputs and is the same as our method 24 in online inference. 24

Inferring System Acts 25

by the system in each dialogue, and build the di-21 code prompt for predicting the set of dialogue acts 26 alogue state from inferred API call arguments (\S 21 A_t communicated in a given system response r_t 26 4.1). We use a similar text-to-code prompt to infer 21 See Fig. 5b in App. A for an example of our prompt. 26 the latent act(s) communicated in each agent re- 21 We define each act our system could take in the sponse, so that we can reverse-engineer an agent's 21 prompt instructions. For input from each turn, we 26 policy (§ 4.2). For both tasks, we find much bet- 21 find best performance when conditioning only on 26 ter performance when re-ranking latent predictions $\frac{1}{2}$ the response to tag, r_t . For our set of supported acts, $\frac{1}{26}$ according to a noisy-channel model, in which we 21 we use a subset of the universal dialogue acts pro- 26 condition the observed utterance on a predicted la-21 posed in Paul et al. (2019), where some acts such 26 tent in a code-to-text prompt (§ 4.3). Finally, we $_{21}$ as "Inform" or "Offer" may use slots defined in S. $_{26}$ leverage the in-context learning ability of LLMs 21 For example, an agent choosing to offer to book 26 by re-using our predictions as exemplars (§ 4.4). 21 a user at a hotel named 'acorn guest house' might 26 Given these initial pseudo-labels, we iteratively im- 21 be represented as Offer(hotel_name='acorn guest 26 prove their quality using Hard-EM (Dempster et al., 21 house'). See App. C for our complete dialogue 26 act set. Importantly, we use the schema definition 26 S and our act set to validate each act prediction, $_{26}$ removing predicted keys which do not belong to $S_{1,26}$ We prompt the LLM with a text-to-code prompt 23 or acts which are not in the set. For example, the 26 for inferring the latent dialogue state as an API ₂₃ 'text' key is not valid for a 'ThankYou' act, so a pre- ₂₆ diction of "Thank You(text='thanks, have a good 26 prompt. We generate a prompt enumerating the 23 day')" would be normalized to only "ThankYou()". 26 intents available in the schema S as APIs callable 24 Using the inferred system acts, we use a rule-based 26 by our agent. Following Hu et al. (2022), we pre-24 method to delexicalize the system responses for 26 dict the appropriate function call conditioned on 24 training the response generator (Fig. 2, right). 26

4.3 Noisy Channel LLM Prompting 27

We find that a noisy channel prompting method 28 (Min et al., 2022) significantly the quality of our 28 inferred dialogue states and acts. Here we describe 28 noisy channel prompting using a simple example, 28 and then describe its application to dialogue state 28 tracking and system act tagging. 28

A typical prompt for machine reading compre- 29 hension might be: 20

```
<Optional in-context examples (c)> 30
Passage: <Passage (z)> 30
Question: <Question (x)> 30
Answer: 30
```

Given this prompt of the in-context examples 31 c, passage z, question x, an answer y completion 31 is found with the language model by maximizing 31 or sampling from Pr(y|x,z,c). We call this the 31 direct prompt. 31

The "noisy channel" prompt is: 32

```
<Optional in-context examples (c)> 30
Passage: <Passage (z)> 30
An<u>swer: <Answer (y)> 30</u>
Ouestion: <Question (x)> 30
```

Pr(x|y,z,c)Pr(y|z,c), or only the conditional 34 Pr(x|y,z,c), following Min et al. (2022).²

we first sample a set of possible belief state changes using top-p sampling (Holtzman et al., 2020) from the direct DST prompt, and then pick the best dialogue state according to the noisy channel prompt (see Fig. 3). We use an analogous procedure for 35 inferring system acts. For DST, we find scoring with the joint Pr(x|y,z,c)Pr(y|z,c) to perform best for act tagging. 35

4.4 Retrieval-Augmented In-context Learning 36

To leverage the in-context learning abilities of 37 LLMs, we retrieve from a pool of examples from 37 our predictions. Because we assume no labeled ex- 3 amples, this pool starts with zero examples and is 37

```
In the latter case, the prior Pr(y|z,c) is uniformly \frac{1}{k} for
the k samples from the direct prompt. 34
```

```
irect DST Prompt
esponse = agent.handle_turn(
   belief_state=BeliefState(attraction=dict(
                                  name='byard art')),
   last_system_utterance="byard art is at 344 oxford " + \
                               "street, anything else?",

need a taxi to king station
   user utterance="Vac
                             т.
   user_utterance= yes, I need a taxt to king station , user_intent=[agent.book_taxi(destination='king station')]
loisy Channel DST Prompt
esponse = agent.handle turn(
   belief_state=BeliefState(attraction=dict(
   name='byard art')),
last_system_utterance="byard art is at 344 oxford " + \
   "street, anything else?", user_intent=[agent.book_taxi(destination='king station')]
   user utterance="Ye
```

Figure 3: Instances from our 'direct' and 'noisy channel' 39 prompts for DST. Best viewed in color. After sampling 39 a DST completion from the 'direct' prompt, we score if 39 by the likelihood of the input user utterance conditioned 39 on it in the 'noisy channel' prompt. 39

for in-context learning from this pool using an unsupervised dense retriever, with examples ranked 38 by embedding cosine distance. We use k = 8 and 38 k=6 for DST, DAT respectively. For retriever inputs, we use $(b_{t-1} \cdot r_{t-1} \cdot u_t)$ and $(u_t \cdot r_t)$ for DST 38 and DAT respectively, where · indicates concate- 38 nation. Applied naively, this in-context learning 38 approach can suffer a majority label bias (Zhao 38 where the likelihood of the question now depends 34 et al., 2021). We adjust for biases introduced in 38 on the answer. To use the noisy channel LLM 34 the initially small example pool by 1) not using 38 prompt, we first sample k samples from the direct 34 any in-context examples until we have a minimum 38 prompt, and then pick the best output answer y 34 of n = 32 examples in the pool and 2) using our 38 according to the noisy channel prompt probabil- 34 API schema S to require at least 4 distinct labels 38 ity. One can choose to score the joint probabil- 34 in each set of in-context examples. Our algorithm 38 ity of the answer followed by the question, i.e. 34 for producing initial pseudo-labels is in App. D. 38

Refining the Labels with Hard-EM 40

To apply this method to inferring dialogue states, 35 While the labels we produce in § 4.1-§ 4.4 can 41 be used directly for training an end-to-end dia-41 logue system, we find their quality can be improved 41 through expectation-maximization (Dempster et al., 41 35 1977). For every dialogue turn in our dataset, our 41 initial pseudo-labels provide the expected dialogue 41 state and system dialogue acts according to our 41 zero-shot system. We then jointly fine-tune an 41 best, and scoring with the conditional Pr(x|y,z,c) 35 LLM as a noisy-channel DST & DAT system to 41 maximize the likelihood of these expected labels. 41 We use smaller version of our prompted LLM, Star- 41 Coder 3B (Li et al., 2023a). 41

> For each turn, we derive (prompt, completion) 42 pairs for 'direct' text-to-code and 'channel' code-42

³⁸ We use MPNet (Song et al., 2020), available on Hugging ⋅ 38 filled incrementally. We retrieve up to k examples 38 face as sentence-transformers/all-mpnet-base-v2 38

We consider two dialogue state change labels to be distinct if they update different *slots*, and two act labels to be distinct 38 if they embody different acts or different slots 38 improves performance. 42

After fine-tuning, the model can be used to produce improved pseudo-labels by re-labeling each 43 dialogue, using the same noisy-channel inference 43 methods. Following this, we can repeat the finetuning process. This train and re-label process can 43 be repeated for any number of iterations, though 43 we find a single re-labeling is sufficient. 43

End-to-End System 49

state tracker, policy, and response generator. 45

DST For the DST sub-task, we again use both 'direct' and 'channel' (prompt, completion) pairs. ence method presented in §4. 46

k=5 most recent utterances in the dialogue history: $H_t = (u_{t-2}, r_{t-2}, u_{t-1}, r_{t-1}, u_t)$. The completion is the current turn's system acts A_t , which will be used to ground the next response r_t . We do not decode an act prediction at inference time: 47

$$\hat{A}_t = \underset{A_t \in \mathcal{V}}{\operatorname{argmax}} P(f_{\text{prompt}}(H_t))$$

Response Generation For Response Generation, 50 we condition on the turn's observed system and 50 6.1 user utterances (r_{t-1}, u_t) and our policy's act prediction A_t). The completion is the observed system code the response: 50

$$\hat{r}_t = \underset{A_t \in \mathcal{V}^*}{\operatorname{argmax}} \left[P_t(f_{\mathsf{prompt}}(r_{t-1}, u_t, A_t)) \right]$$

Following prior works, we predict delexicalized 49

to-text DST and DAT modules, as defined in § 42 name. For example, instead of generating "The 49 4. We then combine and shuffle these pairs into a 42 phone number for acorn guest house is 555-5309" 49 single training set for joint fine-tuning. For efficient 42 directly, we would predict "The phone number for 49 training, we shorten our prompts by removing in-42the [hotel_name] is [hotel_phone]", where values 49 context examples as well as the function definitions 42 could be filled in. Importantly, we never presume 49 used in the in-context learning setting. We find up-42 access to gold delexicalized responses. Instead, we 49 sampling the 'channel' prompts so that there is a 2:1 42 use our predicted acts, e.g. "Inform(name='acorn 49 ratio of 'channel' to 'direct' instances for training 42 guest house', phone='555-8309')", to delexicalize 49 the observed response for training. 49

End-to-end Training For each turn, we derive 50 (prompt, completion) pairs for 'direct' and 'chan-50 nel' DST, and direct Policy, and Response Genera-50 tion prompts. We then combine and shuffle these 50 pairs into a single training set for joint fine-tuning. 50 For efficient training, we shorten our prompts by re- 50 moving in-context examples as well as the function 50 definitions used in the in-context learning setting. 50 We find up-sampling the 'channel' prompts so that 50 Following (Su et al., 2022), we utilize a multi-task 45 there is a 2:1 ratio of 'channel' to 'direct' instances 50 fine-tuning method for training a single LLM as a 45 for training improves performance. Finally, we 50 complete dialogue system, consisting of a dialogue 45 fine-tune StarCoder 3B using cross-entropy loss 50 and AdamW with default hyperparameters. 50

Experiments 61

This allows us to use the same noisy-channel infer- 46 We conduct unsupervised end-to-end dialogue 62 (E2E) and dialogue state tracking (DST) experi- 62 ments on the MultiWOZ 2.2 dataset (Zang et al., 62 Policy For the Policy sub-task, we use a text-to- 47 2020; Budzianowski et al., 2018), containing over 62 code prompt where we simply condition on the 47 ten thousand multi-domain task-oriented dialogues 62 47 crowd-sourced in a wizard-of-oz setup. We use 62 47 the fully lexicalized, unlabelled dialogues from the 62 47 training set to build our system, and evaluate on 62 47 the test set. First, we demonstrate the value of our 62 use a noisy-channel variant for Policy, and greedily 47 approach in an end-to-end dialogue evaluation, following prior works on task-oriented dialogue (§ 62 6.1). Second, we conduct a dialogue state tracking 62 evaluation to more carefully evaluate the quality of 62 our pseudo-annotations (§6.2). 62

End-to-End (E2E) Experiments 61

In E2E experiments, we use our complete system 64 50 to both predict API call arguments and generate 64 response r_t . We also do not use a noisy-channel $_{50}$ a next system response in natural language. We $_{64}$ variant for response generation, and greedily de-50 evaluate our generated responses with Inform rate, 64 Success rate, and BLEU, as well as a Combined 64 score of 0.5(Inform + Success) + BLEU, following prior works. We provide details on these metrics in App. B. 64

We compare our approach to the previous stateresponses, where values for slots in the system 49 of-the-art unsupervised methods, a GPT-3.5 zero-65 response are replaced with placeholders for the slot 49 shot baseline (Hudeček and Dusek, 2023), and 65

Model 31	Schema?	Labels?	Dialogues?	Inform	Success	BLEU	Combined 8
Supervised Results 65							
PPTOD (Su et al., 2022)	✓	✓	✓	82.6	72.2	18.2	95.6
DiactTOD (Wu et al., 2023)	✓	✓	✓	89.5	84.2	17.5	104.4
Our (supervised)	✓	✓	✓	67.9	61.7	14.6	79.4
Zero-Shot with Formatting Example(s) 65							
SGP-TOD-GPT3.5 (Zhang et al., 2023)	✓	Few (‡)	Х	82.0	72.5	9.22	86.5
	Fully 1	Unsupervis	sed Results 65	5			
Sees gold delexicalized conversation his	tory 60						
LLaMa [†]	✓	Х	Х	-	4	1.61	-
GPT 3.5 Turbo [†]	✓	Х	Х	44.8	31.2	3.3	41.3
Sees only fully-lexicalized dialogues 60							
GPT 3.5 Turbo (– gold delex.)	✓	Х	Х	40.7	26.7	3.7	37.4
Ours (StarCoder 15B - no EM)	✓	X	X	50.0	19.6	3.2	38
Ours (StarCoder 3B - w/ EM)	✓	Х	✓	78.1	68.3	13.6	86.8

[Table 1: Unsupervised end-to-end results in MultiWOZ 2.2. (†) indicates models from Hudeček and Dusek (2023) Results for LLaMa are from Hudeček and Dusek (2023), which does not report the Inform rate. (‡) SGP-TOD 60 uses a prompt with both a formatting example and a "Policy Skeleton", which contains an additional 10-20 hand 60 crafted instances of the correct system acts and response for an input user utterance or returned DB result. For 60 fairer comparison in our fully unsupervised setting, we re-run the GPT 3.5 baseline without the supervision of 60 de-lexicalized responses provided in the conversation history (– gold delex.). Despite far fewer parameters, we find 60 substantial improvements in our methods which leverage unlabelled dialogues 60

SGP-TOD (Zhang et al., 2023). Where possible, 65 we report results for both the original approach 65 and modifications required to fit our fully unsu-65 pervised setting. For reference, we also run our 65 own method in the fully-supervised setting. We 65 train a model using the procedure in §5 using the 65 annotations sourced from crowd-workers in the 65 MultiWOZ 2.2 corpus (Budzianowski et al., 2018; 65 Zang et al., 2020), rather than the pseudo-labels 65 predicted in § 4. We also compare with existing 65 supervised approaches as a reference point. We 65 include DiactTOD (Wu et al., 2023), which to our 65 knowledge is the supervised state-of-the-art, and 65 PPTOD (Su et al., 2022), which uses a multi-task 65 et al., 2022), which re-frames DST as text-to-SQL, 69 Γ5 encoder-decoder models (Raffel et al., 2020). 65

6.2 DST Experiments 67

We conduct multi-domain DST experiments on the 67 StarCoder 15B for clearer comparison. 69 MultiWOZ Dataset in order to evaluate the qual- 67 ity of our pseudo-annotations. We use our DST 67 7 Module to predict and evaluate only latent dialogue 67 unseen API calls. 67

details are available in App. B. 68

With One Formatting Example 70				
IC-DST (StarCoder 15B)	24.58 70			
RefPyDST (StarCoder 15B)	17.17 70			
IC-DST (Codex) 69	35.02 70			
RefPyDST (Codex) 70	40.88 70			
Fully Unsupervised 65				
IC-DST (StarCoder 15B)	15.66			
RefPyDST (StarCoder 15B)	13.88			
GPT 3.5 Turbo (Hudeček and Dusek, 2023)	13.05			
Ours (StarCoder 15B \rightarrow 3B)	39.70			

Table 2: Joint Goal Accuracy (JGA) of our method's 75 dialogue state predictions and zero-shot baselines 75

fine-tuning approach similar to our own in §5, for 65 and RefPyDST which re-frames DST as text-to-69 python (King and Flanigan, 2023). By default, 69 both of these works use OpenAI Codex (Chen et al., 69 2021), and we apply their prompting approaches to 69

Results 65

states, which collect the arguments required for 67 E2E Performance We present E2E results for 72 our unsupervised dialogue agent in Table 1. We 72 Following prior works, we evaluate DST perfor- 68 find that our method achieves state-of-the-art per- 72 mance with joint-goal accuracy (JGA), or whether 68 formance in our fully unsupervised setting, more 72 a given dialogue state is completely accurate. More 68 than doubling the Success Rate and Combined 72 score of the GPT 3.5 Turbo baseline of Hudeček 72 We compare to our ChatGPT 3.5 Turbo baseline 69 and Dusek (2023). When we remove the supervi-72 (Hudeček and Dusek, 2023), as well as prior zero- 69 sion of delexicalization for fairer comparison (- 72 shot DST methods. These include IC-DST (Hu 69 gold delex.), we find even greater improvement 72

across all end-to-end metrics. As discussed in § 72 9, SGP-TOD uses both a supervised formatting 72 example and a 'Policy Skeleton', containing addi-72 tional supervision for Policy and Response Gen-72 eration. With no implementation publicly avail-72 able, we were unable to run a modified version 72 of their experiments without this supervision for 72 fair comparison. Despite a less-supervised set-72 ting, our method is able to perform comparably, 72 even slightly out-performing SGP-TOD in Com-72 bined score. Remarkably, our unsupervised EM 73 approach also outperforms the supervised variant of our model due to improvements in Inform and 73 Success rate, suggesting the Dialogue acts we infer 73 are of high quality, 73

DST Performance Our DST results are shown in 75 Table 2. Where possible, we distinguish between 74 'zero-shot' results which include a hand-engineered 74 formatting example, and the same method applied 74 without the formatting example. We find that 74 our method significantly outperforms our GPT 3.5 74 Table 3: Number of discovered contaminated turns per 82 proach performs nearly as well as the best method 74 as being in the MultiWOZ dataset. 82 using OpenAI Codex with a supervised formatting 74 example, using less than 10% of the parameters 74 8 at any time (175B vs. 15B). When applying the 74 with and without a formatting example. 74

Ablations greedily sampling from its 'direct' variant, at both 75 tasks. 78 labeling and end-to-end inference time. We plot 75 and greedy ablation, and that our noisy-channel 75 available for analysis. 979 inference methods are important to dialogue suc- 75 goal accuracy are in App. E. 75

Figure 4: Combined score (0.5(Inform + Success) + 76BLEU) vs. the number of steps of expectation- 76 maximization in our Noisy Channel method vs. a 76 Greedy Ablation. '0' is zero-shot inference 76

Task	Turns	Correct	Authentic 80
Act Tagging	42	21	5 80
DST	42	36	19 80

Turbo baseline by 26% joint goal accuracy. Our ap-74 task, as well as the number which are correct or verified 82

Contamination Analysis 77

IC-DST and RefPyDST prompting methods to Star- 74 Evaluation of unsupervised methods, such as ours, 78 Coder, our method significantly outperforms both, 74 that use LLMs has the potential issue of task con-78 tamination, where supervised examples are seen 78 in pretraining data (Li and Flanigan, 2024). Inclu-78 In Fig. 4, we conduct an ablation to 75 sion of supervised examples of the task in LLM 78 evaluate both the impact of our noisy channel mod- 76 pretraining data would render the model no longer 78 eling and the value of iterative re-labeling in our 76 unsupervised and the evaluation potentially biased: 78 EM approach. We compare our proposed system 75 tasks for which the training data has been seen may 78 to one in which each module is replaced by only 75 have a higher performance than truly unsupervised 78

To address this issue, we quantify the presence 79 our Combined end-to-end performance across it- 75 of contamination in LLM pre-training data, and 79 erations of EM, with '0' indicating our zero-shot 75 then estimate the potential impact on our results. 79 system. We find that EM improves our end-to-end 75 Fortunately, the StarCoder family of models that we 79 performance in both our noisy-channel approach 75 use has the complete pre-training corpus publicly 79

We conduct an exhaustive search for supervised 82 cess, with a 30 and 33 point improvement over our 75 pairs of our dialogue subtasks in the StarCoder pre-82 greedy baseline with 1 and 2 EM steps, respectively. 75 training data using a semi-automated search with 82 Ablations across Inform, Success, BLEU, and joint 75 manual review. Details of our search procedure are 82 in App. F. We find no complete dialogues with 82 supervised labels. We do find 42 turns labeled with 82 Due to the deprecation of OpenAI Codex, we were un- 67 act tagging, and 42 turns labeled with DST in the 82

⁶https://huggingface.co/datasets/bigcode/starcoderdata

pre-training corpus, categorized in Table 3.7 We 82 consider a (x, y) pair to be 'Correct' if the state 82 change/dialogue act y is actually correct for the 82 utterance x, and to be 'Authentic' if the (x, y) pair is found verbatim in the MultiWOZ corpus.8 Aspre-trained model if the model learned from them. 82 We also find that less than half of the turns are audialogue simulators. 82

the contamination we discover could exaggerate 83 quires annotation expertise. Zhang et al. (2023) schema, by using contaminated (x, y) pairs as incontext examples.

which receives no examples of any kind, with a 84 'contaminated' variant which uses k=3 in-context 84 trieves the most relevant contaminated fragments from a pool using the dense retrieval approach described in § 4.4. These are inserted as a triple-84 quoted string block, so that the prompt remains syn- 84 Surprisingly, we find including this supervision via 85 contaminated fragments hurts performance, indi-84 stantial gains in our noisy-channel EM approach 85 training. 85

Related Work 88

Zero-shot Dialogue A few recent works have 93 proposed zero-shot approaches to dialogue prob- 93 lems using LLMs. Hu et al. (2022) and (King and Flanigan, 2023) propose DST methods which 93

Method	Inform	Success	BLEU	Combined
Ours (zero-shot)	49.0	15.0	3.0	35.0
Ours (k=3 contam ex.)	44.5	14.0	3.8	33.1
Ours (Full EM)	80.5	69.0	13.7	88.5

82 Table 4: Performance comparison when we include con-82 taminated in-context examples. We find including this 85 tonishingly, we find half of the found Act Tagging 82 supervision hurts performance, and does not explain the 85 pairs are incorrect, and could possibly mislead a 82 strong performance of our noisy-channel EM approach 85

thentic for either task, and find a number of them 82 prompt code based LLMs in a text-to-SQL or text-91 derive from Github issues discussing problems with 82 to-program format, respectively. These methods 91 rely on prompts tailored to the schema and the use Additionally, we estimate the degree to which 83 of a supervised 'formatting' example, which reexpected performance of our method on an unseen 83 extends this approach to end-to-end task-oriented 91 83 dialogue by adding a policy prompter for GPT 3.5. 91 In addition to a formatting example, their policy 90 In Table 4, we compare our zero-shot prompt, 84 prompt requires a hand-crafted 'policy-skeleton' 90 consisting of examples of the appropriate system 90 act and reply in response to different user utter- 90 examples derived from contamination in the pre- 84 ances or database results. Our approach differs in 90 training corpus. The 'contaminated' model re- 84 that we require zero labeled examples of any kind 90 Hudeček and Dusek (2023) propose a zero-shot 91 end-to-end method for prompting instruction-tuned 91 LLMs like GPT 3.5. However, this method pre- 91 sumes delexicalized system responses $r_1...r_{t-1}$ in q_1 tactically valid python. By leaving contaminated 84 the conversation history as input, where entities are 91 examples in their original format, we test whether 84 replaced with placeholders. Producing these inputs 91 their inclusion elicits memorized knowledge rather 84 requires ground-truth annotations and gives a form 91 than providing guidance on input/output formatting, 84 of supervision about the entities and their attributes 91 within a dialogue (see Table 1 for a comparison 91 for GPT 3.5 Turbo with and without delex supervi- 91 cating that these examples do not provide mean-85 sion). In contrast, we only assume fully-lexicalized 91 ingful supervision for our task. Further, the sub- 85 dialogues, which do not provide this supervision 91 and require no human annotation. We adapt the 91 suggest our method is doing more than simply elic- 85 method of Hudeček and Dusek (2023) to use lexiiting schema-specific knowledge memorized in pre- 85 calized dialogues as inputs, and use this approach 91 as our baseline. Chung et al. (2023) propose an 91 end-to-end method which prompts GPT-4 for inter- 91 actions with a knowledge base before producing 91 a response, however it generalizes poorly to the 91 multi-domain setting

> Semi-supervised TOD Some works propose 92 semi-supervised approaches to end-to-end task- 92 oriented dialogue. Zhang et al. (2020) propose an 92 end-to-end sequence-to-sequence model where the 92 dialogue state is a latent variable. Liu et al. (2021a) adapt this approach for use with pre-trained language models, fine-tuning GPT-2. While successful, these approaches require a non-trivial amount 92 of supervised data. Other semi-supervised works 92

The average dialogue length in MultiWOZ is 13.9 turns. Put together, the set of contaminated turns would be roughly 82 the length of 6 dialogues 82

A 'Correct' pair might arise from printing training data, and an incorrect pair from discussion of a failure case. 82

PIdeally, one would pre-train an identical StarCoder model 83 on a corpus without contamination, this is computationally 83 impractical. Additionally, we are not aware of any available 83 LLM that can be verified as not contaminated for this task. 83

also evaluate their method in an unsupervised set- 92 References ting (Jin et al., 2018; Liu et al., 2023). However, these works also assume delexicalized training dia- 92 logues, which requires ground-truth annotation and 92 gives a form a supervision to the model. 92

Noisy channel and re-ranking methods A few 93 previous works have utilized noisy channel meth- 93 ods for task-oriented dialogue or prompting meth- 93 ods. Liu et al. (2021b) pre-train a noisy channel for 93 task-oriented dialogues as a sequence to sequence 93 model, however their method requires significant 93 labelled training data. Min et al. (2022) propose 93 Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang 124 noisy channel prompting for few-shot classifica- 93 tion tasks, which inspires our generalization to the 93 generative setting. 93

10 Conclusion 94

We present a novel approach for constructing an 95 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming end-to-end task-oriented dialogue system by lever- 95 aging pre-trained language models to infer labels 95 from unlabeled dialogues. 95

11 Limitations 96

Data contamination in LLM pre-training poses a 97 hurdle for accurate benchmarking across NLP, and 97 particularly for unsupervised methods. In an ideal- 97 ized setting, there would be a suitably strong task- 97 oriented dialogue benchmark that could be verified 97 as not belonging to the pre-training corpus of each 97 new and more capable LLM. This is not the case 97 for our setting or for many others, and warrants 97 careful attention from the NLP community. For our 97 setting, we were able to properly define problem- 97 atic contamination and search for it in our LLM's 97 pre-training corpus, thanks to the open release of Willy Chung, Samuel Cahyawijaya, Bryan Wilie, 126 the pre-training data. We found limited contamina- 97 tion and demonstrated that the contamination we 97 found was not helpful in eliciting task knowledge 97 that might have been memorized in pre-training. 97

All experiments in this paper were conducted 98 on pre-existing public dialogue corpora, col- 98 lected explicitly for training task-oriented dia- 98 logue agents with the knowledge of all participants 98 (Budzianowski et al., 2018). Our use of the Star- 98 Coder model also falls within the terms of it's Re- 98 sponsible AI License. It is important that subse- 98 quent applications of our method also adhere to any one fair-use policies governing collected dialogues or on transcripts. 98

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 123 Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 123 Neelakantan, Pranav Shyam, Girish Sastry, Amanda 123 Askell, Sandhini Agarwal, Ariel Herbert-Voss, 123 Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, 123 Alec Radford, Ilya Sutskever, and Dario Amodei. 123 2020. Language Models are Few-Shot Learners. 123 arXiv:2005.14165 [cs]. ArXiv: 2005.14165. 123

Tseng, Iñigo Casanueva, Ultes Stefan, Ramadan Osman, and Milica Gašić. 2018. Multiwoz - a large-124 scale multi-domain wizard-of-oz dataset for task-124 oriented dialogue modelling. In Proceedings of the 124 2018 Conference on Empirical Methods in Natural 124 Language Processing (EMNLP). 124

Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, 125 Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, 125 Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 125 Kaiser, Mohammad Bavarian, Clemens Winter, 125 Philippe Tillet, Felipe Petroski Such, Dave Cum-125 mings, Matthias Plappert, Fotios Chantzis, Eliza-125 beth Barnes, Ariel Herbert-Voss, William Hebgen 125 Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. 125 Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan 125 Morikawa, Alec Radford, Matthew Knight, Miles 125 Brundage, Mira Murati, Katie Mayer, Peter Welin-125 der, Bob McGrew, Dario Amodei, Sam McCandlish, 125 Ilya Sutskever, and Wojciech Zaremba. 2021. Eval-125 uating Large Language Models Trained on Code. ArXiv:2107.03374 [cs]. 125

Holy Lovenia, and Pascale Fung. 2023. Instruct-TODS: Large Language Models for End-to-End Task-Oriented Dialogue Systems. ArXiv:2310.08885 [cs]

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977, 127 Maximum likelihood from incomplete data via the 127 em algorithm. Journal of the Royal Statistical Society. 127 Series B (Methodological), 39(1):1–38. 127

Michael Heck, Nurul Lubis, Benjamin Ruppik, Renato 128 Vukovic, Shutong Feng, Christian Geishauser, Hsien- 128 chin Lin, Carel van Niekerk, and Milica Gasic. 2023. 128 ChatGPT for zero-shot dialogue state tracking: A 128 solution or an opportunity? In Proceedings of the 128 61st Annual Meeting of the Association for Compu- 128 tational Linguistics (Volume 2: Short Papers), pages 128 936–950, Toronto, Canada. Association for Compu- 128 tational Linguistics. 128

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and 12H	ong Liu, Yucheng Cai, Zhenru Lin, Zhijian Ou, 137
Yejin Choi. 2020. The Curious Case of Neural Text 129	Yi Huang, and Junlan Feng. 2021a. Varia-
Degeneration. ArXiv:1904.09751 [cs]	tional Latent-State GPT for Semi-Supervised Task-
	Oriented Dialog Systems. ArXiv:2109.04314 [cs]
Yushi Hu, Chia-Hsuan Lee, Tianbao Xie, Tao Yu, 130-	
Noah A. Smith, and Mari Ostendorf. 2022. In-13	i Liu, Lei Yu, Laura Rimell, and Phil Blunsom. 138 2021b. Pretraining the Noisy Channel Model for 138
Context Learning for Few-Shot Dialogue State Track-	2021b. Pretraining the Noisy Channel Model for 138
ing. Number: arXiv:2203.08568 arXiv:2203.08568 130	Task-Oriented Dialogue. Transactions of the Associ-
[cs]. 130	ation for Computational Linguistics, 9:657–674. 138
	ing-Bin Liu, Shi-Zhu He, Cao Liu, Kang Liu, and 139
Vojtěch Hudeček and Ondrej Dusek. 2023. Are large 13	
language models all you need for task-oriented dia-	Jun Zhao. 2023. Unsupervised Dialogue State Track-
logue? In Proceedings of the 24th Meeting of the 131	ing for End-to-End Task-Oriented Dialogue with a 139
Special Interest Group on Discourse and Dialogue, 131	Multi-Span Prediction Network. Journal of Com-
pages 216–228, Prague, Czechia. Association for 131	puter Science and Technology, 38(4):834–852. 139
	ewon Min, Mike Lewis, Hannaneh Hajishirzi, and 140
Comparational Emgaration [3]	Luke Zettlemoyer. 2022. Noisy channel language 140
Xisen Jin, Wenqiang Lei, Zhaochun Ren, Hongshen	model prompting for few-shot text classification. In 140
	Proceedings of the 60th Annual Meeting of the As-
Yin. 2018. Explicit State Tracking with Semi-	sociation for Computational Linguistics (Volume 1: 140
Supervision for Neural Dialogue Generation. In <i>Pro-</i>	Long Papers), pages 5316–5330, Dublin, Ireland. As-
ceedings of the 27th ACM International Conference	sociation for Computational Linguistics. 140
on Information and Knowledge Management, pages 132	améž Nakrinda and Ondřaj Dužak 2021. Shadas a
[403–1412. ArXiv:1808.10596 [cs].	omáš Nekvinda and Ondřej Dušek. 2021. Shades of 141
	BLEU, flavours of success: The case of MultiWOZ. 141
Brendan King and Jeffrey Flanigan. 2023. Diverse 133	In Proceedings of the 1st Workshop on Natural Lan-
retrieval-augmented in-context learning for dialogue 133	guage Generation, Evaluation, and Metrics (GEM 141
state tracking. In Findings of the Association for 133	2021), pages 34–46, Online. Association for Compu-
Computational Linguistics: ACL 2023, pages 5570-133	tational Linguistics. 141
5585, Toronto, Canada. Association for Computa-	Venbo Pan, Qiguang Chen, Xiao Xu, Wanxiang Che, 142
tional Linguistics. 133	rendo Pan, Olguang Chen, Alao Au, Wanxiang Che, 142
	and Libo Qin. 2023. A Preliminary Evaluation 142
Changmao Li and Jeffrey Flanigan. 2024. Task Con-	of ChatGPT for Zero-shot Dialogue Understanding. 142
tamination: Language Models May Not Be Few-Shot 135	Publisher: arXiv Version Number: 1. 142
	hachi Paul, Rahul Goel, and Dilek Hakkani-Tür. 2019. 143
Artificial Intelligence, 38(16):18471–18480, 134	Towards Universal Dialogue Act Tagging for Task-
	Oriented Dialogues. In <i>Proc. Interspeech 2019</i> , 143
Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas 135	pages 1453–1457. 143
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc 135	pages 1433–1437. 143
Marone, Christopher Akiki, Jia LI, Jenny Chim,	olin Raffel, Noam Shazeer, Adam Roberts, Katherine 144
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,	Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 144
Thomas Wang, Olivier Dehaene, Joel Lamy-Poirier, 135	Wei Li, and Peter J. Liu. 2020. Exploring the Lim-
Joao Monteiro, Nicolas Gontier, Ming-Ho Yee, Lo-	its of Transfer Learning with a Unified Text-to-Text 144
	Transformer. arXiv:1910.10683 [cs, stat]. ArXiv: 144
	1910.10683. 144
vilhanov Marca Zasca Maran Day Zhihan Zhang	bhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, 145
ulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, 135	Raghav Gupta, and Pranav Khaitan. 2020. Towards 145
Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni, 135	Scalable Multi-Domain Conversational Agents: The 145
Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav 135	Schema-Guided Dialogue Dataset. Proceedings 145
Timor, Jennifer Ding, Claire S Schlesinger, Hailey 135	of the AAAI Conference on Artificial Intelligence, 145
Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, 135	<u>B4(05):8689–8696</u>]
Alex Gu, Carolyn Jane Anderson, Brendan Dolan-	<i>p</i> 1(03):0007 0070.
Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, 13 K	aitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and 146
Dzmitry Bahdanau, Yacine Jernite, Carlos Munoz 135	Tie-Yan Liu. 2020. MPNet: Masked and Per- 146
Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, 135	muted Pre-training for Language Understanding. 146
Leandro Von Werra, and Harm de Vries. 2023a. Star-135	ArXiv:2004.09297 [cs]. 146
coder: may the source be with you! <i>Transactions on</i> 135	
Machine Learning Research. Reproducibility Certifi- 13 Y	ixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, 147
cation. 135	Deng Cai, Yi-An Lai, and Yi Zhang. 2022. Multi-task 147
	pre-training for plug-and-play task-oriented dialogue 147
Zekun Li, Baolin Peng, Pengcheng He, Michel Galley, 136	system. In Proceedings of the 60th Annual Meet-
Jianfeng Gao, and Xifeng Yan. 2023b. Guiding large 136	ing of the Association for Computational Linguistics 147
language models via directional stimulus prompting. 136	(Volume 1: Long Papers), pages 4661–4676, Dublin, 147
arXiv preprint arXiv:2302.11520. 136	Ireland. Association for Computational Linguistics. 147

	D. M. C. D. C.
	4B Metric Details 103
2023. DiactTOD: Learning generalizable latent di-	•
	End-to-End (E2E) Dialogue Metrics We mea-
Special Interest Group on Discourse and Dialogue, 1	sure end-to-end dialogue performance using the 112
pages 255–267, Prague, Czechia. Association for	Inform rate, Success rate, and BLEU, following 113
Computational Linguistics. 148	prior works, using the automatic evaluation pro-
	vided by Nekvinda and Dušek (2021). 10
	A dialogue is considered Informed if the most re- 10
Raghav Gupta, Jianguo Zhang, and Jindong Chen.	4 cently mentioned result for each domain meets the 105
2020. MultiWOZ 2.2 : A Dialogue Dataset with Ad-	user's goal constraints, and is considered Success-10
ditional Annotation Corrections and State Tracking 18 Baselines. In <i>Proceedings of the 2nd Workshop on</i> 18	ful if it is Informed and all values for requested slots
77 77 77 77 77 77 77 77 77 77 77 77 77	are presented to the user. For example, if a user 108
pages 109–117, Online. Association for Computa-	were to ask 'Can you give me the phone number of 105
tional Linguistics. 149	a cheap hotel in the east part of town?', the dialogue
	would be Informed if we refer them to a hotel that
Xiaoying Zhang, Baolin Peng, Kun Li, Jingyan Zhou, 1	<u> </u>
and Helen Meng. 2023. SGP-TOD: Building task 1	is actually in the cheap price range and in the east,
bots effortlessly via schema-guided LLM prompting.	<u> </u>
Y	number, as requested. BLEU is computed against a 105
Linguistics: EMNLP 2023, pages 13348–13369, Sin-1	single reference response, and the Combined score 105
gapore. Association for Computational Linguistics. 15	0 is 0.5 (Inform + Success) + $BLEU$. 105
Yichi Zhang, Zhijian Ou, Min Hu, and Junlan Feng. 1	5Dialogue State Tracking Metrics Fellowing
2020. A Probabilistic End-To-End Task-Oriented Di-	Dialogue State Tracking Metrics Following
alog Model with Latent Belief States towards Semi-1	prior works, we evaluate DST performance with 116
	joint-goal accuracy (JGA): for a turn x_t , a dialogue 116
Conference on Empirical Methods in Natural Lan-	5 state prediction \hat{y}_t is considered correct only if all
guage Processing (EMNLP), pages 9207–9219, On-	slot names and values match the gold annotation 116
line. Association for Computational Linguistics. 151	state y_t . We again use the evaluation provided in 116
7'1 71 F.'. W.11 CI.' F D VI.' I	Nekvinda and Duček (2021) Following their work
Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021. Calibrate before use: Improv-	we accept fuzzy matches for non-categorical string 116
	values, such as the name of a restaurant or hotel.
	using the fuzzywuzzy library and a fuzz ratio of
	0.95.1
of Machine Learning Research, pages 1269/–12/06. 1	52
PMLR. 152	

A Prompt Examples 99

Fig. 5 provides abridged instances of our direct prompts for DST and for Act Tagging. Fig. 5a shows our prompt for inferring API call(s) or changes to the dialogue state from an unlabelled dialogue, as detailed in §4.1. Our prompts use python keyword arguments to provide the input variables for a given sub-task, and to prompt the LLM for the next variable of interest. Using the arbitrary ordering of keyword arguments in Python function calls, our 'channel' prompts simply re-order the arguments in order to score the likelihood of the user's utterance given the predicted state change. Fig. 5b provides a similar abridged instance of our direct prompt for tagging dialogue acts in an unlabelled dialogue. Here, we simply condition on the 119 observed system response r_t . 119

C Dialogue Acts 148

Following Paul et al. (2019), we use a universal set of dialogue acts for managing our agents communicative intents. We omit some acts for simplicity and to reduce the context length required to enumerate them in a prompt. Table 5 lists each act and a description. Since our dialogue set is not directly comparable to prior works, we do not directly evaluate act tagging or policy accuracy. Instead, acts serve only as an intermediate representation for planning responses in our end-to-end system.

Offline Labeling Algorithm 110

Algorithm 1 gives our algorithm for pseudo-11 labeling of unlabelled dialogues. 119

¹⁰https://github.com/Tomiinek/MultiWOZ_Evaluation ¹¹https://pypi.org/project/fuzzywuzzy/

Act	Description (as used in our prompt) 109
Inform(x=y)	Provide information. 109
Offer(x=y)	System provides an offer or suggestion based on results. 109
Confirm(x=y)	Seek confirmation of something. 109
Affirm(x=y)	Express agreement or confirmation. 109
Negate(x=y)	User or System denies or negates. 109
NotifySuccess(x=y)	Notify of a successful action or result. 109
NotifyFailure(x=y)	Notify of an error or failure. 109
Acknowledge	Acknowledge. 109
Goodbye	Goodbye. 109
Greeting	Greeting. 109
ThankYou	Thank You. 109
RequestAlternatives	Ask for other options, alternatives, or any additional user goals. 109
Request(x=?)	Ask for specific information or action. 109

Table 5: Dialogue acts supported by our system, adapted from the universal dialogue acts proposed in Paul et al. 107 (2019). "x=y" indicates the act can take on arbitrary key-value arguments, and "x=?" indicates the act takes on one or more unpaired arguments. We reduce the number of acts and lengths of descriptions relative to Paul et al. (2019) in order to fit within the LMs context length 107

```
Algorithm 1 Our algorithm for initial pseudo-labeling of unlabelled dialogues in \mathcal{D}_{train} 119
  1: procedure INITIALOFFLINELABEL(\mathcal{D}_{train}, \theta_{ret}, \theta)
              \mathcal{P} \leftarrow \emptyset 128
                                                                                                                                            > Initialize example pool
              B ← [] 127
                                                                                                 > Store predictions by dialogue id and turn index 105
  3:
              for t=0 to \max_{d\in\mathcal{D}_{train}} \boxed{d} do 107
  4
                                                                                                                                Loop by increasing turn index
                     for all (d_{id}, u_t, r_{t-1}, r_t) in \mathcal{D}_{train} do
                                                                                                                                                     > d_{id} is dialogue ID <sub>119</sub>
  5:
                           \hat{b}_{t-1} \leftarrow \mathcal{B}[d_{id}][t-1] \text{ or } \emptyset
                                                                                                                                                  > Fetch \hat{b}_{t-1} if known 110
  6:
                            \hat{b}_t \leftarrow \text{OfflineDST}(\mathcal{P}, \theta_{ret}, \hat{b}_{t-1}, r_{t-1}, u_t) \\ \hat{A}_t \leftarrow \text{OfflineActTag}(\mathcal{P}, \theta_{ret}, u_t, r_t) 
  7:
  8:
                           \mathcal{P} \leftarrow \mathcal{P} \cup \{(r_{t-1}, u_t, r_t, \hat{b}_t, \hat{A}_t)\}
  9:
                                                                                                         > Add in-context example for future labeling
                     end for
  0:
              end for
  11:
 12: end procedure
 13: procedure OfflineDST(P, \theta_{ret}, \hat{b}_{t-1}, r_{t-1}, u_t)
             \mathcal{E}_{k} \leftarrow \theta_{ret}(\hat{b}_{t} \cdot r_{t-1} \cdot u_{t}, \mathcal{P})
\mathcal{C} \leftarrow \Delta b_{t} \sim P(f_{\text{prompt}}(\mathcal{E}_{k}, \hat{b}_{t-1}, r_{t-1}, u_{t}))
\Delta \hat{b}_{t} \leftarrow \underset{\hat{a} \leftarrow \mathcal{L}}{\operatorname{argmax}} P(u_{t} | f_{\text{prompt}}(\mathcal{E}_{k}, \hat{b}_{t-1}, r_{t-1}, \Delta b_{t})
                                                                                                                   Retrieve<sub>l</sub>up to k in-context examples 107
                                                                                                                                      > Sample w/ 'direct' prompt
 15:
 6
                                                                                                                                 > Re-rank w/ 'channel' prompt
              return \hat{b}_{t-1} + \Delta \hat{b}_t
18: end procedure 118
19: procedure OfflineActTag(\mathcal{P}, \theta_{ret}, u_t, r_t) 118
                                                                                                                    > Retrieve<sub>r</sub>up to k in context examples 107
              \mathcal{E}_k \leftarrow \theta_{ret}(u_t \cdot r_t, \mathcal{P})
              \mathcal{C} \leftarrow A_t \underset{\text{top-p}}{\sim} (P(f_{\text{prompt}}(\mathcal{E}_k, r_t)))
                                                                                                                                      Sample w/ 'direct' prompt
              return argmax P(\mathcal{E}_k, A_t, r_t)
                                                                                                                                 Re-rank w/ 'channel' prompt 100
23: end procedure 118
```

```
cane Entity per service in schema, with informable + requestable slotss:

class Taxi(Entity):

"""

Parameters:
    leave_at: (str) leaving time of taxi
    destination: (str) destination of taxi
    departure: (str) departure location of taxi
    arrive_by: (str) arrival time of taxi
    type: (str) car type of the taxi
    phone: (str) phone number of the taxi

"""

...

ca class for each of the acts supported in our system>

class Inform(Act):

"""Provide information."""

entity: Entity = None
```

```
class Request(Act):
    """Ask for specific information or action."""
    values: List[str] = None

if __name__ == '__main__':
    agent = DialogueAgent()

# Provide the dialogue acts matching the observed system response
    <in-context exemplars from self-predictions may go here>
    response = agent.handle_turn(
        system_response="0k, where will you be departing from?",
        system_response="0k, where will you be departing from?",
        system_acts=[Reguest(values=['departure'])]
```

(a) Our 'direct' DST prompt with italicized completion

(b) Our 'direct' act tagging prompt, with italicized *completion* 102

Figure 5: Abridged prompt and completion examples from our in-context learning approach to initial labelling for DST and DAT (Act Tagging), best viewed in color. Key-word arguments are used to include variables from the turn context and to prefix the completion 107

E Further results across EM Steps 112

F Contamination Search & Result Details 117

F.1 Procedure 118

Here we expand on our ablations in § 7, which evaluates our method with and without our proposed noisy-channel prompting across iterations of expectation-maximization (EM). In Fig. 6, we break down the performance gains we observed in our 'Combined' metric into Inform rate, Success rate, and BLEU, where Combined 0.5(Inform + Success) + BLEU. '0' iterations of EM indicates our zero-shot prompting system, without any in-context examples or EM. We find that EM substantially improves performance in all cases, and particularly for our noisy-channel prompting approach. We find the noisy channel prompting approach improves performance on all metrics, with the most substantial gains over the greedy baseline in Inform and Success rates. This suggests that within our algorithm, noisy-channel inference may be particularly important when inferring the system's dialogue acts in order to reverseengineer an accurate policy. 113

11 We detail our method for finding instances of task 119 11 contamination within the StarCoder pre-training 119 11 set. We are particularly interested in *supervised* 119 11 pairs (x, y) where y belongs to our schema of in-11 terest S, for any of the dialogue sub-tasks used 119 11 n our system. We devise a method for searching 119 11 the complete pre-training corpus for contaminated 119 11(x, y) pairs, where x is an utterance we might ob-11 serve from either the system or user, and y is the 119 11 atent dialogue state change or dialogue act sup- 119 11 porting S. For each utterance x from either the 119 11 system or user, we collect all documents from the 119 11 bre-training corpus which contain the complete 119 11 utterance. We use the elastic search index pro-11 vided for the StarCoder pre-training data, which 119 accounts for differences in capitalization, punctuation, and interrupting white-space. 12 Following 119 this, we search matching documents for keywords 119 From y (e.g. slot names and values) to determine $_{119}$ which of these documents may plausibly contain a 119 supervised label and warrant manual review. For 119 dialogue states, these are the slot names and values, 119 discarding extremely generic keywords like 'name'. 119 For act tags, these are the act names, slots, and values. We then consider a document to need manual 110

In Fig. 7, we analyze dialogue state tracking performance across iterations of EM using Joint Goal Accuracy (JGA). We find our noisy-channel prompting approach improves the accuracy of our dialogue state tracking predictions across iterations of EM when compared to a greedy, direct prompting approach.

⁴ 12 https://github.com/bigcodeproject/search/blob/main/index.py 119

Figure 6: Breaking down Combined = 0.5(Inform + Success) + BLEU into components Inform Rate, Success 115 Rate, and BLEU across iterations of EM between our proposed noisy-channel approach and a greedy ablation, 115 which omits noisy-channel prompting at inference time and when labeling dialogue states & system acts in the 115 expectation step. We find improvement across all components, and particularly our Inform and Success Rates 115

Figure 7: Joint Goal Accuracy (JGA) of our inferred API call(s)/Dialogue states across iterations of EM. We find improved dialogue state tracking performance when using our noisy-channel method at inference time and when labeling dialogue states offline in the expectation step for training, compared to a greedy direct prompting approach 116

review if 40% or more of the keywords are found in the 500 characters before or after a matching x in a document. Finally, we hand-check the remaining documents and extract contaminated (x, y) pairs. 119

F.2 Examples 120

Table 6 contains examples of contamination discovered in our search process, and the type of document in which they were found. Notably, none of the examples found closely match our output formatting. 84

Contaminated Input	Contaminated Output	Sub-Task	Source	122
I need a restaurant to dine	zzestaurant-	DST	Jupyter Notebook	22
at in Cambridge on my 122	inform« <name===chiquito< td=""><td>122</td><td></td><td></td></name===chiquito<>	122		
upcoming trip . I need 122	restaurant bar 122			
info about chiquito 122				
restaurant bar restaurant . 1	22			
i would like to book a 5 12	2 " <sob> hotel area = 122</sob>	DST	Python	22
star, or closest to it, in 122	east, stars = 5 , type = 122			
the east part of town 122	hotel <eob> <sob> 122</sob></eob>			
please . 122	hotel area = east, stars = 12	22		
	5 restaurant area = east 12	2		
	<eob>" 122</eob>			
[Syst] the train id is 122	[SYS_DA]	Act Tagging	Github Issue	22
tr8292 and the price is 122	train-inform-leave-tr8292	22		
16.50 pounds. 122	[SYS_DA]			
	train-inform-ticket-16.50			
	pounds 122			

Table 6: Example inputs and outputs in contaminated documents from each task, discovered in the StarCoder pre-training corpus. We include the source type of each document 119