GESTION DE DOCUMENTS / *

Suites

Les suites

Etude globale d'une suite

Suite numérique

Une suite numérique est une fonction de $\mathbb N$ dans $\mathbb R$. On note :

- (u_n) pour désigner la suite u.
- u_n pour désigner le terme de rang n de la suite u.

Modes de génération d'une suite

Il existe trois façons de définir une suite.

- **Définition explicite :** La suite (u_n) est définie directement par son terme général : $u_n = f(n)$ où f est une fonction au moins définie sur \mathbb{N} .
- **Définition par récurrence :** Soient f une fonction définie sur $\mathbb R$ et un réel a, une suite (u_n) peut être définie par récurrence par :
 - $u_0 = a$
 - \circ pour tout entier n : $u_{n+1} = f(u_n)$
- **Définition implicite :** La suite (u_n) est définie par une propriété géométrique, économique, ... au sein d'un problème.

Les suites majorées, minorées, bornées

La suite (u_n) est majorée si et seulement s'il existe un réel M tel que, pour tout entier naturel n pour lequel la suite est définie :

$$u_n \leq M$$

La suite (u_n) est minorée si et seulement s'il existe un réel m tel que, pour tout entier naturel n pour lequel la suite est définie :

$$u_n \geq m$$

La suite (u_n) est bornée si et seulement si elle est à la fois majorée et minorée.

Le sens de variation

La suite (u_n) est croissante si et seulement si, pour tout entier naturel n pour lequel la suite est définie :

$$u_{n+1} \geq u_n$$

La suite (u_n) est décroissante si et seulement si, pour tout entier naturel n pour lequel la suite est définie :

$$u_{n+1} \leq u_n$$

La suite (u_n) est constante si et seulement si, pour tout entier naturel n pour lequel la suite est définie :

$$u_{n+1} = u_n$$

La suite (u_n) est monotone si et seulement si elle est croissante ou décroissante (sans changer de sens de variation).

Suites arithmétiques

Une suite (u_n) est arithmétique si et seulement s'il existe un réel r tel que, pour tout entier naturel n pour lequel elle est

$$u_{n+1} = u_n + r$$

r est alors la raison de la suite arithmétique. Soit (u_n) une suite arithmétique de raison r.

- Si r>0, la suite est strictement croissante.
- Si r < 0, la suite est strictement décroissante

Soit (u_n) une suite arithmétique de raison r, définie à partir du rang p. Pour tout entier naturel n supérieur ou égal à p, son terme général est égal à :

$$u_n = u_p + (n-p)r$$

En particulier, si (u_n) est définie dès le rang 0, alors pour tout entier naturel n :

$$u_n = u_0 + nr$$

Soit
$$(u_n)$$
 une suite arithmétique. La somme S des termes consécutifs de cette suite est égale à :
$$S = \frac{(\operatorname{Premier terme} + \operatorname{Dernier terme}) \times (\operatorname{Nombre de termes})}{2}$$

En particulier:

$$u_0 + u_1 + u_2 + \ldots + u_n = rac{(u_0 + u_n)(n+1)}{2}$$

A noter : le nombre de termes entre les entiers naturels a et b vaut (b-a+1).

Suites géométriques

Une suite (u_n) est géométrique si et seulement s'il existe un réel q tel que, pour tout entier n pour lequel elle est définie :

$$u_{n+1} = u_n \times q$$

q est alors appelé raison de la suite.

Exemple : Soit q un réel strictement positif, et la suite (u_n) définie pour tout entier naturel n par $u_n=q^n$.

- Si q>1, la suite (u_n) est strictement croissante.
- Si 0 < q < 1, la suite (u_n) est strictement décroissante.
- Si q=1, la suite (u_n) est constante.

Soit (u_n) une suite géométrique de raison q, définie à partir du rang p. Pour tout entier n supérieur ou égal à p, son terme général est égal à :

$$u_n = u_p imes q^{n-p}$$

En particulier, si (u_n) est définie dès le rang 0, alors pour tout entier naturel n : $u_n = u_0 imes q^n$

$$u_n=u_0 imes q^n$$

Soit (u_n) une suite géométrique de raison q
eq 1. La somme S des termes consécutifs de cette suite vaut : $S = ext{Premier terme} imes rac{1-q^{n+1}}{1-q}$

$$S = ext{Premier terme} imes rac{1 - q^{n+1}}{1 - q}$$

En particulier, si la suite est définie dès le rang 0, alors, pour tout entier naturel n:

$$u_0 + u_1 + u_2 + \ldots + u_n = u_0 imes rac{1 - q^{n+1}}{1 - q}$$

Limites

Limite finie ou infinie

Remarque : La limite d'une suite ne peut être étudiée qu'en $+\infty$.

 (u_n) tend vers le réel L quand n tend vers $+\infty$ si et seulement si tout intervalle ouvert (aussi petit que l'on veut) contenant L contient tous les termes u_n à partir d'un certain rang.

Le réel L est appelé limite (finie) de la suite (u_n) . On note :

$$\lim_{n o +\infty}u_n=L$$

Si elle existe, la limite L de la suite (u_n) est unique.

 (u_n) tend vers $+\infty$ quand n tend vers $+\infty$ si et seulement si pour tout réel A (aussi grand que l'on veut), tous les termes u_n sont supérieurs à A à partir d'un certain rang. On note : $\lim_{n o +\infty} u_n = +\infty$

$$\lim_{n
ightarrow+\infty}u_n=+\infty$$

 (u_n) tend vers $-\infty$ quand n tend vers $+\infty$ si et seulement si pour tout réel A (aussi grand que l'on veut), tous les termes u_n sont inférieurs à A à partir d'un certain rang. On note : $\lim_{n o +\infty} u_n = -\infty$

$$\lim_{n o +\infty}u_n=\!-\infty$$

Les suites convergentes

La suite (u_n) est convergente si et seulement si elle admet une limite finie.

Toute suite convergente est bornée

Le suite (u_n) est divergente si et seulement si elle n'est pas convergente, c'est-à-dire si sa limite est $+\infty$ ou $-\infty$ ou si elle n'admet pas de limite.

Limite d'une suite géométrique

Soit un réel q:

- Si -1 < q < 1, alors la suite (q^n) a pour limite 0.
- Si 1 < q, alors la suite (q^n) a pour limite $+\infty$.
- Si $q \leq -1$, alors la suite (q^n) n'admet pas de limite.
- Si q = 1, alors la suite (q^n) a pour limite 1.

Opérations sur les limites

Dans cette sous-partie, L et L' désignent des réels.

Limite d'une somme

Si (u_n) a pour limite	$oxed{L}$	$oxed{L}$	$oxed{L}$	$+\infty$	<u>- ∞</u>	$+\infty$
et si (v_n) a pour limite	L'	$+\infty$	$-\infty$	$+\infty$	- ∞	- ∞
alors $(u_n + v_n)$ a pour limite	L + L'	$+\infty$	$-\infty$	$+\infty$	- ∞	?

Limite d'un produit

Si (u_n) a pour limite	$oxed{L}$	L > 0	L > 0	L < 0	L < 0	$+\infty$	$+\infty$	$-\infty$	0
et si (v_n) a pour limite	$oxed{L'}$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$	$+\infty$ ou $-\infty$
alors $(u_n imes v_n)$ a pour limite	$\overline{L imes L'}$	$+\infty$	$-\infty$	$-\infty$	$+\infty$	$+\infty$	$-\infty$	$+\infty$?

Le symbole "?" signifie qu'il s'agit d'une forme indéterminée.

Limite d'un quotient

Cas 1 : Si la limite de v_n n'est pas nulle.

Si (u_n) a pour limite	$oxed{L}$	L	$+\infty$	$+\infty$	$-\infty$	$-\infty$	$+\infty$ ou $-\infty$
et si (v_n) a pour limite	L ' $ eq 0$	$+\infty$ ou $-\infty$	L'>0	L'<0	L'>0	L'<0	$+\infty$ ou $-\infty$
alors $\left(rac{u_n}{v_n} ight)$ a pour limite	$oxed{rac{L}{L'}}$	0	$+\infty$	$-\infty$	$-\infty$	$+\infty$?

Cas 2 : Si la limite de v_n est nulle.

$cas 2$. If it infinite the c_{η} est finite.										
Si (u_n) a pour limite	$L{>}0$ ou $+\infty$	$L{>}0$ ou $+\infty$	$L{<}0$ ou $-\infty$	$L{<}0$ ou $-\infty$	$\boxed{0}$					
et si (v_n) a pour limite	0_+ 0		0+	0-						
alors $\left(rac{u_n}{v_n} ight)$ a pour limite	$+\infty$	$-\infty$	$-\infty$	$+\infty$?					

Le symbole "?" signifie qu'il s'agit d'une forme indéterminée.

Comparaison et encadrement

Soit une suite (u_n) convergente vers L et un réel m tels qu'à partir d'un certain rang $m \leq u_n$, alors :

$$m \leq L$$

Soit une suite (u_n) convergente vers L et un réel M tels qu'à partir d'un certain rang $u_n \leq M$, alors :

Soient (u_n) et (v_n) deux suites telles qu'à partir d'un certain rang, $u_n \leq v_n$. Si (u_n) converge vers le réel L et (v_n) converge vers le réel L, alors :

Soient (u_n) et (v_n) deux suites telles qu'à partir d'un certain rang, $u_n \leq v_n$:

- $\begin{array}{ll} \bullet & \mathrm{Si} \lim_{n \to +\infty} u_n = +\infty, \, \mathrm{alors} \lim_{n \to +\infty} v_n = +\infty \\ \bullet & \mathrm{Si} \lim_{n \to +\infty} v_n = -\infty, \, \mathrm{alors} \lim_{n \to +\infty} u_n = -\infty \end{array}$

• Si
$$\lim_{n o +\infty} v_n = 0$$
 et $u_n \geq 0$, alors $\lim_{n o +\infty} u_n = 0$

Théorème des gendarmes ou d'encadrement

Soient (u_n) , (v_n) et (w_n) trois suites et un entier naturel p.

- $u_n \leq v_n \leq w_n$ pour tout entier n plus grand que p (u_n) et (w_n) convergent vers le même réel L

Alors (v_n) converge également vers L.

Limite monotone

- Si une suite est croissante et majorée, alors elle est convergente.
- Si une suite est décroissante et minorée, alors elle est convergente.
- Toute suite croissante et non majorée diverge vers $+\infty$.
- Toute suite décroissante et non minorée diverge vers $-\infty$.