Fancy stuff

David L Miller

A word of warning

All models are wrong, so why not start with one you actually understand?

Away from the exponential family

Modelling "counts"

Counts and count-like things

- Response is a count (not always integer)
- Often, it's mostly zero (that's complicated)
- Could also be catch per unit effort, biomass etc
- Flexible mean-variance relationship

Tweedie distribution

- $Var(count) = \varphi(count)^q$
- Common distributions are sub-cases:
 - $\blacksquare q = 1 \Rightarrow Poisson$
 - $\blacksquare q = 2 \Longrightarrow Gamma$
 - $\mathbf{q} = 3 \Rightarrow \text{Normal}$
- We are interested in 1 < q < 2
- (here q = 1.2, 1.3, ..., 1.9)
- tw()

Negative binomial

- Var(count) = $(count) + \varkappa(count)^2$
- Estimate χ
- Is quadratic relationship a "strong" assumption?
- Similar to Poisson: Var(count) = (count)
- nb()

Zero-inflated distributions

- Models the probability of zeros seperately from mean counts given that you've observed more than zero at a location.
- ziP and ziplss (for location-scale models)
- zero inflation is assessed conditional on the model
 - is what you have zero inflation or just lots of zeros?
 - don't just jump straight to zero inflation

Other distributions

The Beta distribution

- Proportions; continuous, bounded at 0 & 1
- Beta distribution is convenient choice
- Two strictly positive shape parameters, $\alpha \& \beta$
- Has support on $x \in (0,1)$
- Density at x = 0 & x = 1 is ∞ , fudge
- betar() family in mgcv

t-distribution

- Models continuous data w/ longer tails than normal
- Far less sensitive to outliers
- Has one extra parameter: df.
- bigger df: t dist approaches normal

Ordered categorical data

- Data are categories, have order
- e.g.: conservation status:
 "least concern",
 "vulnerable",
 "endangered", "extinct"
- fits a linear latent model using covariates, w/ threshold for each level
- see ?ocat
- for unordered categories, see ?multinom

Other distributions (quickly)

- Multivariate normal (family = "mvn")
 - Multivariate response, each has different smooth, allow correlation
- Cox proportional hazards ("family = cox.ph")
 - Censored data: time until an event occurs, or the study was stopped
- Gaussian location-scale models ("family = gaulss")
 - mean ("location") and variance ("scale") as smooths

All of these distributions have quirks! Read the manual!

?family and ?family.mgcv

The end of the distribution zoo

Fancy smoothers

Cyclic smooths

- cyclic smooths (bs="cc", bs
- what if smooths need to "mat
- ensure up to 2nd derivs matc
- need to be careful with end p
- ? smooth.construct.cc.s

"Simple" random effects

- Earlier: "penalties can be thought of as variance components"
- We can think of random effects as splines too!
- in mgcv we can set bs="re"
- these are simple, non-nested random effects

Complicated random effects

- gamm uses spline-random effects equiv.
- cast splines as random effects, fit using nlme
- random effects are sparse, splines are dense
- often modelling problems with complex models
- random=... argument for nesting etc
- model has a \$gam and \$lme parts

Correlation stuctures

- again, need to use gamm
- correlation=... gives structure
- corAR1, corARMA, corCAR1 etc
- tend to be hard to fit for SDMs

Fancy 2D smoothing

Funny-shaped regions

- Soap film smoother (bs="so")
- Model takes boundary into account by construction
- Need to specify a boundary and internal knots
- see?soap

Spatial models using areas

- Markov random fields (bs="mrf")
- Need to specify polygons or adjacency matrix
- Not necessarily that useful for marine work?
- see?mrf

Very general modelling

mgcv can fit anything you can write as (on the link scale):

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta}$$
 s.t. $\sum_{j} \boldsymbol{\beta} \mathbf{S}_{j} \boldsymbol{\beta}$

if you can write your likelihood in a quadratic form, it can be part of a model in mgcv

?paraPen

Models for large datasets

- bam for big additive models
- can handle simple correlation structures
- parallel (block QR decompositions)
- fast! (still experimental)
- Wood, Goude, Shaw (2015)

Fancy summary

- You can do a lot of things in mgcv
- Start small, work up to complex models
- Sometimes convergence is against you
- There is a lot of information in the manual

Okay, that's enough

converged.yt/mgcv-workshop