Модель гармонических колебаний

Доре Стевенсон НКНбд-0119 25 мая, 2022, Москва, Россия

¹Российский Университет Дружбы Народов

Цели и задачи работы

Цель лабораторной работы

Изучить уравнение гармонического осцилятора

Задание к лабораторной работе

- 1. Построить решение уравнения гармонического осциллятора без затухания
- 2. Записать уравнение свободных колебаний гармонического осциллятора с затуханием, построить его решение. Построить фазовый портрет гармонических колебаний с затуханием.
- 3. Записать уравнение колебаний гармонического осциллятора, если на систему действует внешняя сила, построить его решение. Построить фазовый портрет колебаний с действием внешней силы.

Процесс выполнения лабораторной работы

Теоретический материал

Движение грузика на пружинке, маятника, заряда в электрическом контуре, а также эволюция во времени многих систем в физике, химии, биологии и других науках при определенных предположениях можно описать одним и тем же дифференциальным уравнением, которое в теории колебаний выступает в качестве основной модели. Эта модель называется линейным гармоническим осциллятором. Уравнение свободных колебаний гармонического осциллятора имеет следующий вид:

$$\ddot{x} + 2\gamma \dot{x} + \omega^2 = 0$$

Теоретический материал

При отсутствии потерь в системе ($\gamma = 0$) получаем уравнение консервативного осциллятора энергия колебания которого сохраняется во времени.

$$\ddot{x} + m_0^2 x = 0$$

Для однозначной разрешимости уравнения второго порядка необходимо задать два начальных условия вида

$$\{x(t_0^0) = y_0$$

Теоретический материал

Уравнение второго порядка можно представить в виде системы двух уравнений первого порядка:

$$\mathbf{T}_{y} = -m_{0}^{2}x$$

Начальные условия для системы примут вид:

$$\underbrace{x}_{y(t_0^0) = y_0} x_0$$

Постройте фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев

- 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы $\ddot{x} + 43x = 0$
- 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы $\ddot{x} + \dot{x} + 20x = 0$
- 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы $\ddot{x} + \dot{x} + 8.8x = 0.7$ sin 3

На итнтервале $t \in [0; 61]$, шаг 0.05, $x_0 = -0.3$, $y_0 = 1.3$

Случай 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы

Figure 1: График решения для случая 1

Случай 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы

Figure 2: Фазовый портрет для случая 1

Случай 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы

Figure 3: График решения для случая 2

Случай 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы

Figure 4: Фазовый портрет для случая 2

Случай 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы

Figure 5: График решения для случая 3

Случай 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы

Figure 6: Фазовый портрет для случая 3

Выводы по проделанной работе

Вывод

В ходе выполнения лабораторной работы были построены решения уравнения гармонического осциллятора и фазовые портреты гармонических колебаний без затухания, с затуханием и при действии внешней силы.