AVR Instruction Sets

None

 $(Y + q) \leftarrow Rr$

 $(Z + q) \leftarrow Rr$

(k) ← Rr

R0 ← (Z)

 $Rd \leftarrow (Z)$

 $Rd \leftarrow P$

P ← Rr

Stack ← Rr

Rd ← Stack

(Z) ← R1:R0

 $(Z) \leftarrow Rr, Z \leftarrow Z + 1$

 $Z \leftarrow Z - 1$, $(Z) \leftarrow Rr$

 $Rd \leftarrow (Z), Z \leftarrow Z+1$

(Z) ← Rr

Data Transfer Instructions

Mnemonics Operands Description Operation Flags MOV Rd, Rr Move Between Registers $Rd \leftarrow Rr$ None $Rd + 1:Rd \leftarrow Rr + 1:Rr$ MOVW Rd, Rr Copy Register Word None LDI $Rd \leftarrow K$ None Rd, K Load Immediate LD Rd, X Load Indirect $Rd \leftarrow (X)$ None LD None Rd, X+ Load Indirect and Post-Inc. $Rd \leftarrow (X), X \leftarrow X + 1$ LD Load Indirect and Pre-Dec $X \leftarrow X - 1$, $Rd \leftarrow (X)$ None Rd, -X None LD Rd, Y Load Indirect $Rd \leftarrow (Y)$ $Rd \leftarrow (Y), Y \leftarrow Y + 1$ None LD Rd, Y+ Load Indirect and Post-Inc. LD $Y \leftarrow Y - 1$, $Rd \leftarrow (Y)$ None Rd, -Y Load Indirect and Pre-Dec. LDD Rd,Y+q Load Indirect with Displacement $Rd \leftarrow (Y + q)$ None LD Rd, Z Load Indirect $Rd \leftarrow (Z)$ None LD Rd, Z+ Load Indirect and Post-Inc. $Rd \leftarrow (Z), Z \leftarrow Z+1$ None LD Rd, -Z Load Indirect and Pre-Dec $Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$ None LDD Rd, Z + qLoad Indirect with Displacement $Rd \leftarrow (Z + q)$ None LDS Rd, k Load Direct from SRAM $Rd \leftarrow (k)$ None None ST X, Rr $(X) \leftarrow Rr$ Store Indirect ST X+, Rr Store Indirect and Post-Inc. $(X) \leftarrow Rr, X \leftarrow X + 1$ None ST -X, Rr Store Indirect and Pre-Dec $X \leftarrow X - 1$, $(X) \leftarrow Rr$ None ST Y, Rr Store Indirect (Y) ← Rr None lsт Y+, Rr Store Indirect and Post-Inc. $(Y) \leftarrow Rr, Y \leftarrow Y + 1$ None None -Y, Rr $Y \leftarrow Y - 1$, $(Y) \leftarrow Rr$ ST Store Indirect and Pre-Dec.

Store Indirect with Displacement

Store Indirect with Displacement

Load Program Memory and Post-Inc.

Store Indirect and Post-Inc

Store Indirect and Pre-Dec.

Store Direct to SRAM

Load Program Memory

Load Program Memory

Store Program Memory

Push Register on Stack

In Port

Out Port

Store Indirect

STD

ST

ST

ST

STD

STS

LPM

LPM

LPM

SPM

OUT

PUSH

POP

Y + q, Rr

Z, Rr

Z+, Rr

–Z, Rr

k, Rr

Rd, Z

Rd, Z+

Rd, P

P, Rr

Rr

Z + q, Rr

Pop Register from Stack Bit and Bit-Test Instructions

Mnem.	Operan.	Description	Operation	Flags
SBI	P, b	Set Bit in I/O Register	I/O(P, b) ← 1	None
CBI	P, b	Clear Bit in I/O Register	I/O(P, b) ← 0	None
LSL	Rd	Logical Shift Left	$Rd(n + 1) \leftarrow Rd(n),$ $Rd(0) \leftarrow 0$	Z,C,N,V
LSR	Rd	Logical Shift Right	Rd(n)←Rd(n+1), Rd(7)←0	Z,C,N,V
ROL	Rd	Rotate Left Through Carry	Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)	Z,C,N,V
ROR	Rd	Rotate Right Through Carry	$Rd(r) \leftarrow C$, $Rd(n) \leftarrow Rd(n + 1)$, $C \leftarrow Rd(0)$	Z,C,N,V
ASR	Rd	Arithmetic Shift Right	Rd(n) ← Rd(n + 1), n = 06	Z,C,N,V
SWAP	Rd	Swap Nibbles	$Rd(30) \leftarrow Rd(74),$ $Rd(74) \leftarrow Rd(30)$	None
BSET	s	Flag Set	SREG(s) ← 1	SREG(s)
BCLR	s	Flag Clear	SREG(s) ← 0	SREG(s)
BST	Rr, b	Bit Store from Register to T	T ← Rr(b)	Т
BLD	Rd, b	Bit load from T to Register	Rd(b) ← T	None
SEC		Set Carry	C ← 1	С
CLC		Clear Carry	C ← 0	С
SEN		Set Negative Flag	N ←1	N
CLN		Clear Negative Flag	N ← 0	N
SEZ		Set Zero Flag	Z ←1	z
CLZ		Clear Zero Flag	Z ← 0	z
SEI		Global Interrupt Enable	l ← 1	l
CLI		Global Interrupt Disable	1 ← 0	1
SES		Set Signed Test Flag	S ← 1	s
CLS		Clear Signed Test Flag	S ← 0	s
SEV		Set Two's Complement Overflow	V ← 1	٧
CLV		Clear Two's Complement Overflow	V ← 0	٧
SET		Set T in SREG	T ← 1	Т
CLT		Clear T in SREG	T ← 0	T
SEH		Set Half Carry Flag in SREG	H ←1	Н
CLH		Clear Half Carry Flag in SREG	H ← 0	Н

Branch Instructions

Mnem.	Oper.	Description	Operation	Flags
RJMP	k	Relative Jump	PC ← PC + k + 1	None
IJMP		Indirect Jump to (Z)	PC ← Z	None
JMP	k	Direct Jump	PC ← k	None
RCALL	k	Relative Subroutine Call	PC ← PC + k + 1	None
ICALL		Indirect Call to (Z)	PC ← Z	None
CALL	k	Direct Subroutine Call	PC ← k	None
RET		Subroutine Return	PC ← Stack	None
RETI		Interrupt Return	PC ← Stack	1
CPSE	Rd,Rr	Compare, Skip if Equal	if (Rd = Rr) PC ← PC + 2 or 3	None
CP	Rd,Rr	Compare	Rd - Rr	Z,N,V,C,H
CPC	Rd,Rr	Compare with Carry	Rd - Rr - C	Z,N,V,C,H
CPI	Rd,K	Compare Register with Immediate	Rd - K	Z,N,V,C,H
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC ← PC + 2 or 3	None
SBRS	Rr, b	Skip if Bit in Register is Set	if (Rr(b)=1) PC ← PC + 2 or 3	None
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC ← PC + 2 or 3	None
SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b)=1) PC ← PC + 2 or 3	None
BRBS	s, k	Branch if Status Flag Set	if (SREG(s)=1) then PC←PC+k+1	None
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s)=0) then PC←PC+k+1	None
BREQ	k	Branch if Equal	if (Z = 1) then PC ← PC + k + 1	None
BRNE	k	Branch if Not Equal	if (Z = 0) then PC ← PC + k + 1	None
BRCS	k	Branch if Carry Set	if (C = 1) then PC ← PC + k + 1	None
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC ← PC + k + 1	None
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None
BRLO	k	Branch if Lower	if (C = 1) then PC ← PC + k + 1	None
BRMI	k	Branch if Minus	if (N = 1) then PC ← PC + k + 1	None
BRPL	k	Branch if Plus	if (N = 0) then PC ← PC + k + 1	None
BRGE	k	Branch if Greater or Equal, Signed	if (N and V= 0) then PC←PC + k +1	None
BRLT	k	Branch if Less Than Zero, Signed	if (N and V= 1) then PC←PC + k +1	None
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC ← PC + k + 1	None
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC ← PC + k + 1	None
BRTS	k	Branch if T Flag Set	if (T = 1) then PC ← PC + k + 1	None
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC ← PC + k + 1	None
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC ← PC + k + 1	None
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC ← PC + k + 1	None
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC ← PC + k + 1	None
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC ← PC + k + 1	None

Arithmetic and Logic Instructions

Mnem.	Operands	Description	Operation	Flags
ADD	Rd, Rr	Add two Registers	Rd ← Rd + Rr	Z,C,N,V,H
ADC	Rd, Rr	Add with Carry two Registers	Rd ← Rd + Rr + C	Z,C,N,V,H
ADIW	Rdl, K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S
SUB	Rd, Rr	Subtract two Registers	Rd ← Rd – Rr	Z,C,N,V,H
SUBI	Rd, K	Subtract Constant from Register	Rd ← Rd – K	Z,C,N,V,H
SBC	Rd, Rr	Subtract with Carry two Registers	Rd ← Rd – Rr – C	Z,C,N,V,H
SBCI	Rd, K	Subtract with Carry Constant from Reg.	Rd ← Rd – K – C	Z,C,N,V,H
SBIW	Rdl, K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl – K	Z,C,N,V,S
AND	Rd, Rr	Logical AND Registers	Rd ← Rd • Rr	Z,N,V
ANDI	Rd, K	Logical AND Register and Constant	Rd ← Rd • K	Z,N,V
OR	Rd, Rr	Logical OR Registers	Rd ← Rd v Rr	Z,N,V
ORI	Rd, K	Logical OR Register and Constant	Rd ← Rd v K	Z,N,V
EOR	Rd, Rr	Exclusive OR Registers	Rd ← Rd Rr	Z,N,V
СОМ	Rd	One's Complement	Rd ← \$FF - Rd	Z,C,N,V
NEG	Rd	Two's Complement	Rd ← \$00 - Rd	Z,C,N,V,H
SBR	Rd, K	Set Bit(s) in Register	Rd ← Rd v K	Z,N,V
CBR	Rd, K	Clear Bit(s) in Register	Rd ← Rd • (\$FF – K)	Z,N,V
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V
DEC	Rd	Decrement	Rd ← Rd - 1	Z,N,V
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \cdot Rd$	Z,N,V
CLR	Rd	Clear Register	Rd ← \$00	Z,N,V
SER	Rd	Set Register	Rd ← \$FF	None
MUL	Rd, Rr	Multiply Unsigned	R1:R0 ← Rd x Rr	z,c
MULS	Rd, Rr	Multiply Signed	R1:R0 ← Rd x Rr	Z,C
MULSU	Rd, Rr	Multiply Signed with Unsigned	R1:R0 ← Rd x Rr	Z,C
FMUL	Rd, Rr	Fractional Multiply Unsigned	R1:R0 ← (Rd x Rr)<< 1	Z,C
FMULS	Rd, Rr	Fractional Multiply Signed	R1:R0 ← (Rd x Rr)<< 1	
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	R1:R0 ← (Rd x Rr)<< 1	Z.C

MCU Control Instructions

Mnemonics	Operands	Description	Operation	Flags
NOP		No Operation		None
SLEEP		Sleep	(see specific descr. for Sleep function)	None
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None
BREAK		Break	For On-Chip Debug Only	None