Открытая олимпиада по программированию Весенний тур 2015 18 марта 2015

A. Adamant digit

Aвтор: Абдикалыков A.K.

Число будет состоять из m одинаковых цифр $(n-1) \mod 9 + 1$, где $m = \left[\frac{n-1}{9}\right] + 1$. Асимптотика: O(n).

B. Binary palindromes

Автор: Баев А.Ж.

Обозначим f(k) — число, полученное перевернутой битовой записью числа k.

Пусть двоичная запись числа n состоит из 2d бит. Отразим первую половину битов (число $k = \left[\frac{n}{2^d}\right]$) на вторую зеркально:

$$g_1(n) = 2^d k + f(k)$$

Если $g_1(n) \leq n$, то $g_1(n)$ является ответом. Иначе уменьшим на единицу первую битовую половину числа n и также отразим на вторую зеркально:

$$g_2(n) = 2^d(k-1) + f(k-1)$$

Если двочиная запись числа n состоит из 2d+1 бит, то поступаем аналогично:

$$g_1(n) = 2^d k + f\left(\left[\frac{k}{2}\right]\right)$$

$$g_2(n) = 2^d(k-1) + f\left(\left[\frac{k-1}{2}\right]\right)$$

Асимптотика: $O(\log n)$.

C. Composition of matrices

Автор: Баев А.Ж.

Вектор не изменит свою длину, если перед операцией проектирования на ось, он параллелен этой оси. Переберем все возможные целочисленные углы поворота α от 0 до 179 (градусов). Перед каждым оператором проецирования, начиная со второго, проверим величину текущего угла по модулю 180. Если перед проецированием на OX угол отличен от 0, то α не подходит. Если перед проецированием на OY угол отличен от 90, то α не подходит.

Асимптотика: O(n).

D. Deep tree

Aвтор: Абдикалыков A.K.

Заметим, что переходы по дереву соответствуют нахождению наибольшего общего делители чисел. Причем, если наибольший общий делитель (p,q) отличен от 1, то решения нет. Значит, ответом будет количество итераций в алгоритме Евклида. Если gcd(a,b) — количество действий для получения чисел (a,b), то

$$gcd(a, b) = gcd(b, a \mod b) + a/b.$$

Амиптотика: $O(\log \max(a, b))$.

Указание: алгоритм Евклида с вычитанием не проходил из-за ограничений по времени.

E. Empty cornet

Автор: Баев А.Ж.

Если хотя бы у одной из трех точек координата $z_i < 0$, то решения нет. В противном случае, достаточно найти объем тетраэдра

$$V = \frac{1}{6} \det \begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix}$$

Так как уровень должен быть параллелен плоскости XOY, то необходимо произвести нормировку векторов (x_1, y_1, z_1) , (x_2, y_2, z_2) и (x_3, y_3, z_3) так, чтобы их z-координата была равна $h = \min z_1, z_2, z_3$ — минимальной из трех. Таким образом, объем равен:

$$\tilde{V} = V \cdot \frac{h^3}{z_1 z_2 z_3}.$$

Асимптотика: O(1).

F. Fantastic system

Автор: Абдикалыков A.K.

Пусть d[i] — количество способов записать i в фантастической системе счисления.

Если i=2k+1, то разряд единиц может быть только 1, а остальные разряды являются разрядами числа k.

Если i=2k, то разряд единиц может быть либо 0, либо 2. Если это 0, то остальные разряды соответствуют разрядам числа k. Если это 2, то остальные разряды соответствуют числу k-1.

Итог:

$$\begin{cases} d[2k+1] = d[k] \\ d[2k] = d[k] + d[k-1] \end{cases}$$

Начальные значения: d[0] = 1, d[1] = 1.

G. Great graph

Строим решето Эратосфена для первых 10000 чисел. Фиксируем n. Числа будем искать обходом в глубину или ширину, где переход между числами проверяется по решету Эратосфена. Ясно, что если задача имеет решение при некотором n, то она имеет решение и при больших n. Аналогично, если она не выполнима при n, то и не выполнима при меньших. Значит ответ можно найти бинарным поиском по n из диапазона от 0 до 10 000.

Стоит отметить, что число ребер не превышает n^2 .

Асимптотика: $O(m \log m + n^2 \log m)$

н. н

Ответом на задачу было название задачи этой олимпиады: 'Adamant digit', 'Binary palindromes', 'Composition of matrices', 'Deep tree', 'Empty cornet', 'Fantastic system', 'Great graph', 'H', 'Insidious time limit', 'Jagged sequence'.

Асимптотика: O(1).

I. Insidious time limit

Используем матричное умножение:

$$\begin{pmatrix} a_n \\ a_{n-1} \\ a_{n-2} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a_{n-1} \\ a_{n-2} \\ a_{n-3} \end{pmatrix}$$

Такие образом $(a_n, a_{n-1}, a_{n_2})^T = A^{n-2}(a_2, a_1, a_0)^T$. Осталось вычислить степень матрицы A^{n-2} , что

Такие образом (a_n, a_{n-1}, a_{n_2}) — 11 (a_2, a_1, a_0) можно сделать бинарным возведением в степень: $A^m = \begin{cases} E, \text{ если } m = 0 \\ \left(A^{[n/2]}\right)^2, \text{ если } m - \text{ четное}, m > 0 \\ \left(A^{[n/2]}\right)^2 \cdot A, \text{ если } m - \text{ нечетное} \end{cases}$

Асимптотика: $O(\log n)$

Замечание 1: все умножения в матричных действиях необходимо производить по модулю.

Замечание 2: наивное решение не проходит по ограничениям времени.

J. Jagged sequence

Автор: Абдикалыков А.К.

Рассмотрим вспомогательную последовательность $b_i = a_i - i$. Необходимо изменить ее числа так, чтобы все числа стали равными.

Решение 1. Отсортируем числа по возрастанию \tilde{b}_i . Искомым числом будет медиана $\tilde{b}[n/2]$. Действительно, если искомое число меньше, то каждое число $\tilde{b}[i]$ при $i\geqslant [n/2]$ необходимо уменьшить дополнительно на 1, а числа b[i] при i < [n/2] необходимо увеличить дополнительно на 1. Тогда общее количество изменений увеличится, так как чисел первой группы больше, чем чисел второй группы.

Асимптотика: $O(n \log n)$.

Решение 2. Рассмотрим m — итоговое значение всех чисел. Тогда количество изменений равно

$$f(m) = \sum_{i=1}^{n} |b_i - m|$$

Данная функция является кусочно-линейной и выпуклой вниз. Поэтому ее минимум можно найти тернарным поиском по m на отрезке от $\min b_i$ до $\max b_i$.

Асимптотика: $O(m \log(\max |a_i| + n))$.