CC4102 - Diseño y Análisis de Algoritmos Auxiliar 10

Prof. Gonzalo Navarro; Aux. Mauricio Quezada

5 de Enero de 2012 :(

1 Ecuaciones binarias

Suponga que tiene un conjunto de n variables binarias x_1, \ldots, x_n y un conjunto de k ecuaciones, donde la ecuación r-ésima es de la forma

$$(x_i + x_i) \mod 2 = b_r$$

Para dos variables distintas x_i, x_j y algún valor b_r . Considere el problema de encontrar una asignación de valores que maximice el número de ecuaciones que se cumplen.

- 1. Sea c^* el máximo número de ecuaciones que se cumplen dada una asignación de valores a las variables. Diseñe un algoritmo que produzca una asignación que satisfaga al menos a la mitad de las ecuaciones.
- 2. Ahora considere el mismo problema pero para una cantidad arbitraria de variables por ecuación.

2 Vertex Cover

Un $Vertex\ Cover\ de$ un grafo no dirigido G=(V,E) es un subconjunto $V'\subseteq V$ tal que si (u,v) es una arista de G, entonces $u\in V'$, o $v\in V'$ (o ambos). El tamaño del Vertex Cover es la cantidad de vértices en él. El $Problema\ del\ Vertex\ Cover\ en\ G$ es el de encontrar un Vertex Cover de tamaño mínimo de G.

Muestre que, dado G = (V, E), el algoritmo de escoger una arista (u, v) arbitraria de E (y agregarla al Vertex Cover) y remover todas las aristas adyacentes a u y v, hasta recorrer todo el conjunto de aristas, es 2-aproximado.

3 Vendedor viajero

Sea G = (V, E) un grafo completo no dirigido, y c una función de costos sobre E tal que (V, c) define un espacio métrico (recuerde de la definición de k-servers). Muestre un algoritmo 2-aproximado para el problema del vendedor viajero sobre G con costos dados por c.