

# Lab Report for Physics

The Measurement of Magnetic Field using Hall Effect

Xuhui. Gong

ID: 1718128

Xinxin.Li

ID:1717181

Instructor: Francisco

2018.4.24

# Catalogue

| 1.Introduction                                      |
|-----------------------------------------------------|
| 2. Experimental Setup and procedure4                |
| 2.1 Preparation                                     |
| 2.2 Measure hall voltage versus hall current        |
| 2.3 Measure hall voltage versus magnetic field      |
| 3. Results and Discussion                           |
| 3.1 The relationship between $V_H$ and $I_H$        |
| 3.2 Uneven magnetic field distribution              |
| 3.3 The relationship between $B$ and $I_M$          |
| 3.4 Evaluation of errors and methods of improvement |
| 4. Conclusion                                       |
| 5. Reference                                        |
| 6.Appendix                                          |

#### 1. Introduction

formula can calculate the expression:

According to the Hall effect, when charged particles are affected by the magnetic field, it would be fixed on one side of the semiconductor slices, as it is shown in Figure 1. With more particles passing, there is a balance between Coulomb force and Lorentz force. It can be calculated with the expression:

$$q(v \times B) = qE....(1)$$

In this function (1), E is the Electric field strength, v is the velocity of carrier, q is carrier charge but this expression is independent on q. The semiconductor's width is set of  $\omega$ , the thickness is d and the carrier density is p. Consider the current formula and the voltage of parallel-plate capacitor

$$I_H = pqvwd....(2)$$

$$U_H = E\omega \dots (3)$$

In the function (2) and (3),  $I_H$  is current into the semiconductor and it is the reason for carrier movement.  $U_H$  is the voltage in the capacitor. According to (1) (2) and (3), the expression are shown hereinafter:

$$U_H = K_H I_H B \dots (4)$$

$$K_H = \frac{R_H}{d} = \frac{1}{pqd}....(5)$$

For the function (4),  $K_H$  is called Hall sensitivity, and it is decided by the carrier density and the thickness. As a consequence, different devices have different Hall sensitivities.

The purposes of this report cover the problems of Hall effect working and measuring the magnetic field B by changing the excitation currents as well as discovering the relationship between  $U_H$  and  $I_H$ . In addition, measuring whether the magnetic field strength B is evenly distributed.

Hall effect

Figure 1—Hall Sensor [1]

## 2. Experiment Setup and Procedure

Apparatus consist of excitation current display, hall voltage display, hall current display, excitation current reversing switch, hall sensor position adjustment, hall current reversing switch, hall sensor and solenoid.

This experiment was conducted on April 24th, 2018, from 4pm to 6pm.

There were four main steps to conduct this experiment and to measure the data.

#### 2.1 Preparation

Firstly, the wires were connected correctly. Secondly, Hall sensor position adjustment were moved to zero graduation line. Thirdly, the equipment were switched on after being connected to power supplies. Finally, checked the  $K_H$  which is 181.1 mV/mA\*T on the device.

#### 2.2 Measure hall voltage versus hall current

The excitation current  $I_M$  was set as 400 mA. Then the Hall current  $I_H$  was adjusted from 1 mA to 8 mA with interval 1 mA. The two switches were adjusted from up to down to change the direction of the magnitude. The corresponding Hall voltages were measured and recorded. After changing the position of the Hall strip along the axis of the solenoid to be 10mm,20mm, repeating preceding steps respectively.

#### 2.3 Measure hall voltage versus magnetic field

The hall current  $I_H$  was set as 5.00 mA. Then the excitation current  $I_M$  was adjusted from 0.05A to 1A. The corresponding Hall voltage  $U_H$  were measured and recorded.

#### 3. Results and Discussion

#### 3.1 The relationship between $V_H$ and $I_H$

The data which the hall strip along axis direction with the distance 0 mm for the  $V_H$  and  $I_H$  has shown in the Table 1. Table 1 has four parts of voltage, which are respectively positive or negative direction magnetic flux and current  $I_H$ . The reason why measuring the positive and negative parts is that decreasing experimental errors. There are four possible influences because of other effects, which are Ettingshausen effect  $V_E$ , Nernst effect  $V_N$ , Righi-Leduc effect  $V_R$  and unequal potential difference  $V_0[2][3][4]$ .

In order to reduce errors, measuring the positive and negative parts is a good approach to improve the accuracy. The equation can be calculated with the flowing expression:

Then calculate (6) - (7) + (8) - (9), the result can be described the expression (10):

$$V_H = \frac{(V_2 + V_3 - V_1 - V_4)}{4}....(10)$$

| $I_{-}(m\Lambda)$ | $V_1$       | $V_2$      | $V_3$       | $V_4$       | $V_H = \frac{(V_2 + V_3 - V_1 - V_4)}{4}$ | В            |
|-------------------|-------------|------------|-------------|-------------|-------------------------------------------|--------------|
| $I_H$ (mA)        | $+B$ $+I_H$ | $-B + I_H$ | $-B$ $-I_H$ | $-B$ $-I_H$ | (mV)                                      | (T)          |
| 1.00              | 32.5        | -32.6      | -32.8       | 32.5        | -32.675                                   | -0.180425179 |
| 2.00              | 65.6        | -65.2      | -65.7       | 65.2        | -65.45                                    | -0.180701270 |
| 3.00              | 98.5        | -97.7      | -98.5       | 97.7        | -98.1                                     | -0.180563224 |
| 4.00              | 131.1       | -130.0     | -131.1      | 130.1       | -130.575                                  | -0.180252622 |
| 5.00              | 163.7       | -162.4     | -163.7      | 162.4       | -163.05                                   | -0.180066261 |
| 6.00              | 196.2       | -194.5     | -196.1      | 194.6       | -195.35                                   | -0.179780968 |
| 7.00              | 228.9       | -227.1     | -228.8      | 227.2       | -228                                      | -0.179853277 |
| 8.00              | 261.3       | -259.2     | -261.1      | 259.3       | -260.225                                  | -0.179614163 |

Table 1 — The relationship between  $V_H$  and  $I_H$  (  $I_M = 400 mA$  distance:0mm)

By using this way, the relationship between  $V_H$  and  $I_H$  can be described by the Graph 1. The meaning of the Graph 1 is with the  $I_H$  increasing and the  $V_H$  is decreasing. After the fitting function, the relationship between  $V_H$  and  $I_H$  is Linear function. The function (4) also proves the result is right.

The Table 2 and Table 3 show that the relationship between  $V_H$  and  $I_H$  is linear function, the graphs have shown in Graph 2 and Graph 3.

| $I_H$ (mA) | $V_1$       | $V_2$      | $V_3$       | $V_4$       | $V_H = \frac{(V_2 + V_3 - V_1 - V_4)}{4}$ | B            |
|------------|-------------|------------|-------------|-------------|-------------------------------------------|--------------|
| IH (IIIA)  | $+B$ $+I_H$ | $-B + I_H$ | $-B$ $-I_H$ | $-B$ $-I_H$ | (mV)                                      | (T)          |
| 1.00       | 32.5        | -32.2      | -32.5       | 32.1        | -32.325                                   | -0.178492545 |
| 2.00       | 65.6        | -65.0      | -65.6       | 65.0        | -65.2                                     | -0.180011043 |
| 3.00       | 98.4        | -97.5      | -98.5       | 97.5        | -97.975                                   | -0.180333149 |
| 4.00       | 130.8       | -129.6     | -130.8      | 129.6       | -130.2                                    | -0.179734953 |
| 5.00       | 163.6       | -162.0     | -163.6      | 162.1       | -162.825                                  | -0.17981778( |
| 6.00       | 195.9       | -194.0     | -195.8      | 194.1       | -194.95                                   | -0.179412847 |
| 7.00       | 228.0       | -226.0     | -228.0      | 226.1       | -227.025                                  | -0.17908416{ |
| 8.00       | 260.3       | -257.8     | -260.2      | 258.0       | -259.075                                  | -0.178820403 |

Table 2—The relation between  $V_H$  and  $I_H$  ( $I_M$ =400mA, distance:10mm)



Graph2— The relation between  $V_H$  and  $I_H$  ( $I_M$ =400mA,distance:10mm)

| $I_H$ (mA) | $V_1$       | $V_2$      | $V_3$       | $V_4$       | $V_H = \frac{(V_2 + V_3 - V_1 - V_4)}{4}$ | B<br>(T)     |
|------------|-------------|------------|-------------|-------------|-------------------------------------------|--------------|
|            | $+B$ $+I_H$ | $-B + I_H$ | $-B$ $-I_H$ | $-B$ $-I_H$ | (mV)                                      | (-)          |
| 1.00       | 16.5        | -16.2      | -16.5       | 16.2        | -16.35                                    | -0.090281612 |
| 2.00       | 33          | -32.3      | -33         | 32.4        | -32.675                                   | -0.090212589 |
| 3.00       | 49.3        | -48.4      | -49.4       | 48.4        | -48.875                                   | -0.089959506 |
| 4.00       | 65.8        | -64.6      | -65.8       | 64.6        | -65.2                                     | -0.090005521 |
| 5.00       | 82.1        | -80.5      | -82.0       | 80.6        | -81.3                                     | -0.089784649 |
| 6.00       | 98.5        | -96.6      | 98.4        | 96.7        | -97.55                                    | -0.089775446 |
| 7.00       | 114.6       | -112.6     | -114.2      | 112.6       | -113.5                                    | -0.089532223 |
| 8.00       | 130.8       | -128.5     | -128.5      | 126.5       | -128.6                                    | -0.088763114 |

Table3—The relation between  $V_H$  and  $I_H$  ( $I_M$ =400mA,distance:20mm)



Graph3—The relation between  $V_H$  and  $I_H$  ( $I_M$ =400mA,distance:20mm)

#### 3.2 Uneven magnetic field distribution

By calculating the magnetic field, the results are various in different distance X. The reason why various X lead to different B is that the magnetic field created by excitation current is not uniform, as is shown in Figure 2. If capacitor moved, magnetic field lines change both in size and direction, so the value of magnetic field changed in the experiment. Because of the function (1) and (3), the  $V_H$  changed because of the magnetic field B changed.



Figure2—Magnetic field line

As Table 5 and Graph 4 show, with the increasing of x, B is decreasing slowly when x is from 0 mm to 10 mm and decreasing rapidly from 10mm to

20mm. With the increasing of x, the density of the magnitude is decreasing rapidly, which leads to the tangent of the graph is larger.



Graph4—The relationship between *x* and *B* 

| Distance x | В                  |
|------------|--------------------|
| 0mm        | -0.180157120999974 |
| 10mm       | -0.179463361303936 |
| 20mm       | -0.089789333044096 |

Table5—the relationship between x and B

#### 3.3 The relationship between B and $I_M$

As Table6 and Graph6 shows, as  $I_M$  is increasing , B is increasing in proportion. The result of  $I_M$  and B is a linear function.



Graph<br/>6 — The relation between  $I_M$  and  $B \ (I_H = 5.00 mA, {\rm distance:0mm})$ 

| I ( A)    | $V_1$       | $V_2$      | $V_3$       | $V_4$       | $V_H = \frac{(V_2 + V_3 - V_1 - V_4)}{4}$ | В            |
|-----------|-------------|------------|-------------|-------------|-------------------------------------------|--------------|
| $I_M(mA)$ | $+B$ $+I_H$ | $-B + I_H$ | $-B$ $-I_H$ | $-B$ $-I_H$ | (mV)                                      | (T)          |
| 50        | 21.8        | -20.4      | -21.8       | 20.5        | -21.125                                   | 552181115405 |
| 100       | 42.5        | -40.8      | -42.2       | 40.9        | -41.6                                     | 104362230811 |
| 200       | 83.0        | -81.2      | -82.7       | 81.4        | -82.075                                   | 208724461623 |
| 300       | 123.7       | -121.7     | -123.1      | 121.7       | -122.55                                   | 313086692435 |
| 400       | 163.9       | -162.2     | -163.7      | 162.2       | -163.00                                   | 417448923246 |
| 500       | 204.8       | -202.7     | -204.2      | 202.8       | -203.625                                  | 521811154058 |
| 600       | 244.8       | -242.5     | -244.0      | 242.6       | -243.475                                  | 626173384870 |
| 700       | 284.0       | -281.7     | -283.2      | 281.7       | -282.65                                   | 730535615681 |
| 800       | 322.3       | -319.4     | -321.0      | 319.5       | -320.55                                   | 834897846493 |
| 900       | 358.7       | -355.8     | -357.2      | 355.8       | -356.875                                  | 939260077305 |
| 1000      | 392.3       | -390.8     | -392.3      | 390.9       | -391.575                                  | 104362230811 |

Table 4—The relation between  $V_H$  and B ( $I_H$ =5.00 mA,distance:0mm)

| $I_{M}(mA)$ | B(T)               |
|-------------|--------------------|
| 50          | 0.0552181115405853 |
| 100         | 0.110436223081171  |
| 200         | 0.220872446162341  |
| 300         | 0.331308669243512  |
| 400         | 0.441744892324683  |
| 500         | 0.552181115405853  |
| 600         | 0.662617338487024  |
| 700         | 0.773053561568194  |
| 800         | 0.883489784649365  |
| 900         | 0.993926007730536  |
| 1000        | 1.10436223081171   |

Table6—the relationship between  $I_M$  and B

#### 3.4 Evaluation of errors and methods of improvement

The errors of this experiment are  $V_E$ ,  $V_N$ ,  $V_R$  and unequal potential difference  $V_0$ . The reasons of the errors are numerical readings are not precise and the temperature which is increasing constantly in the period of this experiment will influence  $V_E$ ,  $V_N$  and  $V_R$ .

In order to eliminate the influence of above effects, there are two methods to reduce the errors. The first one is reading the number until it reaches stability. The second one is adding water which is through the equipment to decrease the temperature.

#### 4. Conclusions

According to values given in Table 1, Table 2 and Table 3 and the formula  $B=V_H/(K_H*I_H)$ , after calculating the results of B, the relationship between B and the distance x can be solved, which is shown in Table 5 and Graph 6. Making  $I_H$  be constant, the relationship between  $I_M$  and B is shown in Table, which can be approximately expressed as the positive proportional function. The limitations of this project is that the equipment cannot overcome the disadvantage of heat radiation, which will influence  $V_E$ ,  $V_N$  and  $V_R$ . The further changes of this experiment is that carrying out a number of tests to reduce errors and adding the flowing water to decrease the temperature.

#### 5.Reference

- [1] J. Hirsch, "Spin hall effect," Physical Review Letters, vol. 83, no. 9, p. 1834, 1999.
- [2] B. O'Brien and C. Wallace, "Ettingshausen effect and thermomagnetic cooling," Journal of Applied Physics, vol. 29, no. 7, pp. 1010-1012, 1958.
- [3] Y. Wang, L. Li, and N. Ong, "Nernst effect in high-T c superconductors," Physical Review B, vol. 73, no. 2, p. 024510, 2006.
- [4] E. Sichel and B. Serin, "Righi-Leduc effect in the mixed state of a type-II superconductor," Journal of Low Temperature Physics, vol. 3, no. 6, pp. 635-638, 1970.

# 6.Appendix

#### 实验数据分析 Data Analysis

Study the relationship between  $U_H$  and  $I_H$ . Measure the magnitude and distribution of magnetic field B.

1. Set  $I_{\rm M}=400mA$ , move the hall strip center in the solenoid interspaces.

| I <sub>H</sub> (mA) | V <sub>1</sub><br>+B,+I <sub>H</sub> | V <sub>2</sub><br>-В,+І <sub>н</sub> | ν <sub>3</sub><br>+Β,-Ι <sub>Η</sub> | ∨ <sub>4</sub><br>-B,-1 <sub>H</sub> | VH=(Y2+Y3-Y1-Y4)/4 |
|---------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------|
|                     |                                      |                                      |                                      |                                      | (Vin)              |
| 1. 00               | 32.8                                 | -32.6                                | -22.8                                | 32.5                                 | -32,675            |
| · 2. 00             | 65.7                                 | -65.2                                | -65.7                                | 5.78                                 | -65.45             |
| 3. 00               | 98.5                                 | -97.7                                | - 38.5                               | 97.7                                 | - 78.1             |
| 4. 00               | 131.1                                | -130.0                               | -131.1                               | 130.1                                | - 132.575          |
| 5. 00               | 1637                                 | -161.4                               | -163                                 | 1624                                 | - 163:05           |
| 6. 00               | 176.2                                | -194.5                               | -196.1                               | 194.6                                | -193.35            |
| 7.00                | 228.9                                | -227.1                               | -228.8                               | 27,2                                 | -228               |
| 8.00                | 261.2                                | -75/.2                               | -261.1                               | 259.3                                | -260.225           |
| 9. 00               |                                      |                                      |                                      |                                      |                    |
| 10.00               |                                      |                                      |                                      |                                      |                    |



2. Set  $I_{\rm M}=400mA$ , move the hall strip along x direction with the distance 10mm.

| I <sub>H</sub> (mA) | V <sub>1</sub><br>+B,+l <sub>H</sub> | V <sub>2</sub><br>-B,+I <sub>H</sub> | V <sub>3</sub><br>+B,-I <sub>H</sub> | V <sub>4</sub><br>-B,-I <sub>H</sub> | VH=(V2+V3-V1-V4)/4 |
|---------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------|
|                     |                                      | -                                    |                                      |                                      | (utV)              |
| 1.00                | 32.5                                 | -32.2                                | -32.5                                | 22 1                                 | -32.325            |
| 2.00                | 65.6                                 | -65.0                                | -63.6                                | 65.0                                 | -65.7              |
| 3.00                | 98.4                                 | -97.5                                | - 98.3                               |                                      | - 97.9/5           |
| 4.00                | 130.8                                | - 1296                               | -1308                                | 129-6                                | -1202              |
| 5. 00               | 163.6                                | - 162.0                              | -1626                                | 1621                                 | -162.825           |
| 6.00                | 193.9                                | -1940                                | 1938                                 | 194-1                                | -194:95            |
| 7.00                | 228.0                                | -28.0                                | -228.0                               | 3.6-                                 | -227.025           |
| 8. 00               | 260.3                                | - 25/3                               | -560.2                               | 258.0                                | -29.01             |
| 9.00                | 1 1                                  |                                      |                                      |                                      |                    |
| 10.00               | 1.1                                  |                                      |                                      |                                      |                    |

3. Set  $I_{\rm M}=400mA$ , move the hall strip along x direction with the distance 20mm.

| I <sub>H</sub> (mA) | V <sub>1</sub><br>+B,+I <sub>H</sub> | V <sub>2</sub><br>-B,+l <sub>H</sub> | V <sub>3</sub><br>+B,-I <sub>H</sub> | V <sub>4</sub><br>-BI <sub>H</sub> | V <sub>H</sub> =(V <sub>2</sub> +V <sub>3</sub> -V <sub>1</sub> -V <sub>4</sub> )/4 (mV) |
|---------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------------|------------------------------------------------------------------------------------------|
| 1.00                | 16.5                                 | -16 L                                | -16.2                                | 16.2                               | -16.35                                                                                   |
| 2.00                | 33                                   | -32:3                                | - 33                                 | 32.9                               | 0-32.675                                                                                 |
| 3.00 (              | 79:3                                 | -48.X                                | -49.4                                | (18. K                             | -08.8/3                                                                                  |
| 4.00                | 16[0]                                | -64.p                                | وبدهما                               | 04.0                               | 621                                                                                      |

# 西交利物浦大学

|       |       |        |        |       | 01  | 2   |
|-------|-------|--------|--------|-------|-----|-----|
| 5. 00 | 82    | -805   | -87.0  | 20.0  | 47  | 7   |
| 6: 00 | 9.8.5 | 91.6   | 98×    | 967   | -9/ | 33  |
| 7. 00 | 114.6 | -112-6 | -116.2 | 112.6 |     | 6.  |
| 8. 00 | 1308  | -1185  | -128.5 | 126-5 | -12 | 8.0 |
| 9. 00 |       |        |        |       |     |     |
| 10.00 |       |        |        |       |     |     |

Study the relationship between  $U_H$  and  $I_M$ . Set  $I_H=5.00mA$ , adjust the excitation current  $I_M$  from 0.05A to 1A.

| I <sub>M</sub> (mA) | V <sub>1</sub>     | V <sub>2</sub>     | V <sub>3.</sub>    | V <sub>4</sub>     | $V_{H} = (V_2 + V_3 - V_1 - V_4)/4$ |        |
|---------------------|--------------------|--------------------|--------------------|--------------------|-------------------------------------|--------|
| •••                 | +B,+l <sub>H</sub> | -B,+l <sub>H</sub> | +B,-l <sub>H</sub> | -B,-l <sub>н</sub> | (mV)                                | (a)    |
| 50                  | 21.8               | -20.4              | -21.8              | 20,5               | -21.125                             |        |
| 100                 | 42.5               | -40.8              | -42,2              | 40.9               | -41.6                               |        |
| · 200               | 83.0               | -81.2              | -82.7              | 81.4               | -81.075                             |        |
| 300                 | 123.7              | -121.7             | -123.              | 121.7              | -122.55                             |        |
| 400                 | 163.9              | -162.2             | -163.7             | 162.2              | -163.00                             | •      |
| 500                 | 204.8              | -202./             | -204.2             | 8.500              | - 203.625                           | 12 425 |
| 600                 | 244.8              | -242,5             | -244.0             | 242.6              | -773.930                            | 43.475 |
| 700                 | 284.0              | -281.7             | -283,              | 281.7              | - 282.63                            |        |
| 800                 | 322.3              | -319.4             | -321.0             | 319.5              | -32055                              |        |
| 900                 | 358.7              | -225.8             | -357.2             | 355.3              | 一久6.815                             |        |
| 1000                | 392,3              | -390.8             | -392.3             | 390,9              | -39/.575                            | }.     |

### 思考题 Questions

- 1. What is Hall Effect?
- 2. What are n-type and p-type semiconductors?
- 3. What is the effect of temperature on Hall coefficient of a lightly doped semiconductor?
- 4. Why the Hall voltage should be measured for both the directions of current as well as of magnetic field?