<u>习题1</u>. 考虑 Hill 方程 x'' + p(t)x = 0, 其中 p(t) 是以 π 为周期的连续函数。假设方程有一个非平凡的 $n\pi$ 周期解, n > 2, 并且方程没有非平凡的 π 或 2π 周期解。证明方程所有的解均为 $n\pi$ 周期解.

证明: 设方程的两个特征乘子为 λ_1 , λ_2 . 根据 Liouville 定理知 $\lambda_1\lambda_2=1$. 于是我们可以记这两个特征乘子为 λ 和 $1/\lambda$. 当这两个特征乘子相等时,则有 $\lambda=1$ 或 $\lambda=-1$ 。 此时根据 Floquet 理论可知,方程有非平凡的 π 或 2π 周期解. 这与假设矛盾。 故两个特征乘子互异,且 $\lambda \neq \pm 1$. 对特征乘子为实数和复数两个情形分别讨论如下

情形一: 特征乘子均为实数. 此时它们的乘积为1且互异. 根据讲义Dec06第23页Theorem 知, 方程有两个非平凡的解 $x_1(t), x_2(t),$ 分别满足 $x_1(t+\pi) = \lambda_1 x_1(t), x_2(t+\pi) = \lambda_2 x_2(t)$. 显然这两个解线性无关. 于是非平凡的 $n\pi$ $(n \ge 2)$ 周期解 $x^*(t)$ 可以表示为

$$x^*(t) = c_1^* x_1(t) + c_2^* x_2(t).$$

根据解 $x^*(t)$ 的 $n\pi$ 周期性可知

$$c_1^* \lambda_1^n x_1(t) + c_2^* \lambda_2^n x_2(t) = c_1^* x_1(t) + c_2^* x_2(t).$$

再根据 $x_1(t)$ 和 $x_2(t)$ 的线性无关性可知 $c_1^*\lambda_1^n = c_1^*$, $c_2^*\lambda_2^n = c_2^*$. 由于 c_1^* , c_2^* 不全为零, 因此 $\lambda_1 = \pm 1$ 或 $\lambda_2 = \pm 1$. 这是一个矛盾. 矛盾表明这个情形不可能发生.

情形二:特征乘子均为一对互异的, 模为1的共轭复数. 此时这两个特征乘子可分别表为 $\lambda_1 = e^{i\rho\pi}$, $\lambda_1 = e^{-i\rho\pi}$, $\rho > 0$. 仍根据讲义Dec06第23页Theorem 知, 方程有两个非平凡解 $x_1(t) = p_1(t)e^{i\rho t}$, $x_2(t) = p_2(t)e^{-i\rho t}$, 其中 $p_1(t)$, $p_2(t)$ 为 π 周期函数. 显然这两个解线性无关. 于是非平凡的 $n\pi$ $(n \ge 2)$ 周期解 $x^*(t)$ 可以表示为

$$x^*(t) = c_1^* x_1(t) + c_2^* x_2(t).$$

根据解 $x^*(t)$ 的 $n\pi$ 周期性可知

$$c_1^* e^{in\pi} x_1(t) + c_2^* e^{-in\pi} x_2(t) = c_1^* x_1(t) + c_2^* x_2(t).$$

根据 $x_1(t)$ 和 $x_2(t)$ 的线性无关性可知 $e^{in\pi}=1$. 由此可知 $x_1(t)$ 和 $x_2(t)$ 均为 $n\pi$ 周期的. 从而方程的每个解都是 $n\pi$ 周期的. 证毕. \blacksquare

<u>习题2</u>. 考虑 Hill 方程 x'' + p(t)x = 0, 其中 p(t) 是以 π 为周期的连续函数。设 $x_1(t)$, $x_2(t)$ 是 方程的两个解,分别满足条件

$$\begin{cases} x_1(0) = 1, \\ x'_1(0) = 0 \end{cases}, \quad \begin{cases} x_2(0) = 0, \\ x'_2(0) = 1. \end{cases}$$

假设 $p(t) < 0, \forall t \in \mathbb{R}$, 证明

- (i) $x_1'(t) > 0$, $x_2(t) > 0$, $\forall t \in (0, +\infty)$;
- (ii) $x_1(\pi) + x_2'(\pi) > 2$;
- (iii) 方程存在解在 $[0,+\infty)$ 无界。

证明: 证(i). 先证(1): $x_1'(t) > 0$, $\forall t \in (0, +\infty)$. 由于 $x_1'(0) = 0$, $x_1''(0) = -p(0)x_1(0) > 0$, 可知存在 $\delta_1 > 0$, 使得 $x_1'(t) > 0$, $\forall t \in (0, \delta_1)$. 假设 $x_1'(t)$ 在 $(0, +\infty)$ 上有零点,不妨设 $t_1 \geq \delta$ 是 $x_1'(t)$ 在 $(0, +\infty)$ 上的最小零点,即 $x_1'(t) > 0$, $\forall t \in (0, t_1)$, $x_1'(t_1) = 0$. 由此可知 $x_1''(t_1) \leq 0$. 另一方面,由于 $x_1'(t) > 0$, $\forall t \in (0, t_1)$, $x_1(t)$ 在 $(0, t_1)$ 严格单调增加,故 $x_1(t_1) > x_1(0) = 1 > 0$. 于是 $x_1''(t_1) = -p(t_1)x_1(t_1) > 0$. 这就得到了一个矛盾. 这表明结论 (1) 成立. 再证 (2): $x_2(t) > 0$, $\forall t \in (0, +\infty)$. 证明思想同证(1)类似. 由于 $x_2(0) = 0$, $x_2'(0) = 1 > 0$, 可知存在 $\delta_2 > 0$, 使得 $x_2(t) > 0$, $\forall t \in (0, \delta_2)$. 假设 $x_2(t)$ 在 $(0, +\infty)$ 上有零点,不妨设 $t_2 \geq \delta$ 是 $x_2(t)$ 在 $(0, +\infty)$ 上的最小零点,即 $x_2(t) > 0$, $\forall t \in (0, t_2)$, $x_2(t_2) = 0$. 由此可知 $x_2'(t_2) \leq 0$. 另一方面,由于 $x_2''(t) = -p(t)x_2(t) > 0$, $\forall t \in (0, t_2)$, $x_2'(t)$ 在 $(0, t_2)$ 严格单调增加,故 $x_2'(t_2) > x_2'(0) = 1 > 0$. 这就得到了一个矛盾。 这表明结论 (2) 成立。

证 (ii) $x_1(\pi) + x_2'(\pi) > 2$. 该结论由 (i) 立刻得到。 由

$$\frac{d}{dx}\left(x_1(t) + x_2'(t)\right) = x_1'(t) + x_2''(t) = x_1'(t) - p(t)x_2(t) > 0, \quad \forall t \in (0, +\infty)$$

可知函数 $x_1(t) + x_2'(t)$ 在 $\forall t \in (0, +\infty)$ 上严格单调上升。 因此

$$x_1(\pi) + x_2'(\pi) > x_1(0) + x_2'(0) = 2.$$

证 (iii) 方程存在解在 $[0,+\infty)$ 无界。考虑与Hill方程 x'' + p(t)x = 0 等价的方程组

$$\begin{cases} \dot{y}_1 = y_2, \\ \dot{y}_2 = -p(t)y_1. \end{cases}$$
 (1)

我们来考虑该系统的特征乘子. 为此我们定义

$$\Phi(t) := \begin{bmatrix} x_1(t) & x_2(t) \\ \dot{x}_1(t) & \dot{x}_2(t) \end{bmatrix}.$$

则 $\Phi(t)$ 是周期系统 (1) 在 t=0 处的主解阵。于是 $\Phi(\pi)$ 是该系统的一个转移矩阵。注意 到det $\Phi(\pi)=1$ (实际上根据Liouville定理知 det $\Phi(t)\equiv 1$). 于是矩阵 $\Phi(\pi)$ 的两个特征值,即系统的两个特征乘子为

$$\lambda_{\pm} = \frac{\Delta \pm \sqrt{\Delta^2 - 4}}{2}, \quad \Delta := x_1(\pi) + x_2'(\pi).$$

根据结论(2)知 $\Delta > 2$. 于是两个特征乘子均为正实数且 $\lambda_- < 1 < \lambda_+$. 于是 Hill 系统 (1) 存在一个非平凡解 $y = (y_1, y_2)^T$ 使得

$$y(t) = \begin{bmatrix} y_1(t+\pi) \\ y_2(t+\pi) \end{bmatrix} = \lambda_+ \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}.$$

相应地 Hill 方程 x'' + p(t)x = 0 有解 $y_1(t)$. 由于 y(t) 为非平凡解, 解 $y_1(t)$ 不能恒为零. 故存在一点 $t_0 > 0$, 使得 $y_1(t_0) \neq 0$. 于是 $|y_1(t_0 + n\pi)| = \lambda_+^n |y_1(t_0)| \rightarrow +\infty$. 这表明解 $y_1(t)$ 在 $[0, +\infty)$ 无界. 证毕. (参见 Dec06 讲义第28-36页)

结论(iii)的另一证明: 证解 $x_2(t)$ 无界。 由结论(i)知 $x_2(t) > 0$, $\forall t \in (0, +\infty)$. 于是 $\ddot{x}_2(t) = -p(t)x_2(t) > 0$, $\forall t \in (0, +\infty)$. 因此 $\dot{x}_2(t) > \dot{x}_2(0) = 1$, $\forall t \in (0, +\infty)$. 故 $x_2(t) > t$, $\forall t \in (0, +\infty)$.