QF A – Laboratório – CMC: Concentração Micelar Crítica

Felipe B. Pinto 61387 – MIEQB

18 de maio de 2023

Conteúdo

1	Du Noüy Ring Method	3	3	Trabalho de adesão (Dupré)	5
2	Equação de Young	4	4	Tensão Superficial	7

1 Du Noüy Ring Method

$$\gamma_{ap} = rac{M\,g}{4\,\pi\,R} f$$

M é o peso máximo do líquido levantado acima da superfície do líquido

g é a constante gravitacional $(9.78 \,\mathrm{m/s^2})$

R é o raio do anel de platina

F é o fator de correção

O fator de correção depende das dimensões do anél e pode ser determinado por intermédio das tabelas dependendo de:

- Raio do anél
- Raio do fio

- densidade do líquido
- Temperatura

$$\gamma_{s.v} = \gamma_{s.l} + \gamma_{l.v} \cos heta$$
 $egin{cases} heta = 0 & ext{(Liq molha completamente o sólido)} \ 0 < heta < \pi/2 & ext{(Liq molha parcialmente o sólido)} \ heta \geq \pi/2 & ext{(Liq não molha a superfície)} \end{cases}$

- γ Energia Interfacial
- θ Angulo de contato

- s.v solido–vapor
- s.l solido-liquido
- *l.v* liquido-vapor

Trabalho de adesão (Dupré)

$$W_{s,l} = \gamma_{s,v} + \gamma_{l,v} - \gamma_{s,l}$$

Equação de Young-Dupré

$$W_{s,l} = \gamma_{l,v}(1 + \cos \theta)$$

 $W_{s.l} = \gamma_{l.v} + \gamma_{s.v} - \gamma_{s.l} = \gamma_{l.v} + \gamma_{l.v} \cos \theta = \gamma_{l.v} (1 + \cos \theta)$

4 Tensão Superficial

[SDS]/M	ln [SDS]/M	T. Sup 1	T. Sup 2				
Concentrações teóricas							
5.00 E - 04	-7.60	40.88	40.75				
1.00 E - 03	-6.91	33.37	33.44				
5.00 E - 03	-5.30	26.65	26.87				
8.00 E - 03	-4.83	22.52	27.85				
$2.00~\mathrm{E}-02$	-3.91	28.03	28.22				
$3.00 \mathrm{E} - 02$	-3.51	28.65	28.83				
5.00 E - 02	-3.00	29.05	29.22				
Concentraçõe	Concentrações reais						
-5.05 E $-$ 04	-7.59	40.88	40.75				
1.01 E - 03	-6.90	33.37	33.44				
$5.05 \mathrm{E} - 03$	-5.29	26.65	26.87				
8.08 E - 03	-4.82	22.52	27.85				
$2.02~\mathrm{E}-02$	-3.90	28.03	28.22				
$3.03 \mathrm{E} - 02$	-3.50	28.65	28.83				
5.05 E - 02	-2.99	29.05	29.22				

Tabela 1: Tensões superficiais adquiridas no laboratório

Para encontrar a concentração micelar crítica, plotamos duas (supostas) retas, uma gravemente inclinada e uma aproximadamente horizontal, então tentamos achar o valor de $\ln [SDS]_f$ do conjunto horizontal na reta da curva inclinada:

$$\mathrm{CMC} = \exp \frac{\ln{[\mathrm{SDS}]_f} + 41.473}{-10.8346} \cong \exp \left(\frac{\frac{28.03 + 28.65 + 29.05}{3} + 41.473}{-10.8346} \right) \cong 1.56 \, \mathrm{E} - 3$$