cagcagccag gtacctggtg tggccaggtc ctacaaccag gatatecetq gctcatatgt actggggttc cagcatgttc cttctaccat cctagtattt atacctgagg gaacttctgg gtttcaatga gttcttgcca cccaqatqac aaggtettte tgeeetgeat tcatatccat ccctggctga ggcatccatg aatgggtgtt ccaccaaqqc atctcqacaa taatcaaaac aggccatcgc tttttctgcc tcccacaatg tggaggccac acacgtccat tcatctgggt tectggtgat gcagcacaca agtttcgaaa tctcacatca gtgaacctac gtggttaagg accagettge aatgtcttta tattcagtca aagatcatct aagttcatcc gggttcagca ctggtgctgg attaacttct atggtgacag gtcagcctga ttgcctccct taccttgggg qcaqttcaqc ggggaactct tgtgttcctg tgcccttctg ggcctatgca tttcattgta gggcaaggtc tatctatggc ttccactgtg gattgtctgc cagatctcta caacctcatq ccagctttca ctacaccatc atggcagagc atgattacca tgaagactat catctacact ctatgccttt gcctgacgda acctgcatca ctgtggatcq tgccccaat tccagaagca aggacattgg attccaagac aagacttcct gtggtctggt gectactggg ggatgacctg acgaggcaat tgctcaccat agatgccctt accetgtget aagttgcaga gtctgcactc caagccaaga ctggtttcct ttcttgccac ctdctgaccc tatgccatga gcctgcctta aaacttgtga tctgaggaca gaggagcatc gtgtttgtct atqtqcaaqa qqttaccatg gctggaggct cagttatag 961 181

FIG. 1

FIG. 2

MAEHDYHEDY GFSSFNDSSQ EEHQDFLQFS KVFLPCMYLV VFVCGLVGNS LVLVISIFYH KLQSLTDVFL VNLPLADIVF VCTLPFWAYA GIHEWVFGQV MCKSLLGIYT INFYTSMLIL TCITVDRFIV VVKATKAYNQ QAKRMTWGKV TSLLIWVISL LVSLPQIIYG NVFNLDKLIC GYHDEAISTV VLATQMTLGF FLPLLIMIVC YSVIIKTLLH AGGFQKHRSL KIIFLVMAVF LLTQMPFNLM KFIRSTHWBY YAMTSFHYTI MVTEAIAYLR ACLNPVLYAF VSLKFRKNFW KLVKDIGCLP YLGVSHQWKS SEDNSKTFSA SHNVEATSMF QL

FIG. 3

CCTACACGTATTGTTAATATCTAACATAGGACTACCAGCCACTGCCTTAGGCCCCTCATTAAAAACGGTTATACTATAAAATCTGCTTTTCACACTGGGTGATAATAACTTGGACAATTGT 1940 CCACCCAGECTCCCAAAGTGTTGSGATTAAAGGTGTGAGCCACCATGCCTGCGTGTGTTTTTTAACTACTACTAAAATTATTTTGTAATGATGATGTTTTATGGAAACAACTGGCCTAG 1430 330 520 780 TGIGGTAAAAGAATITCTICCGACCGCCATCGGTTCAGTICATGAATCGTCTCCGGAAACACCTGAGAGCTTACCATGGTGTCTATACTACACAAGGTTCCAGGCTCCTTTCCTGGAGCGTGTG_2BO 910 CETEABAGGGGGETETTEAGATATECAECAECEGGEGAGATGETEETGTETETEGAGTECAETEAGEGEGEGEGEGEGEGTAGAATAGATAGGATGEGAGGAGAAGAGAGA GCCATCATCTICATCTCACGCAGCCCTTCCTATGTGTGTGTAAAAQAAGAAGAAGAGGGGGAGTCACCGCAGTCTCCACAAATTATAATAATAATAACTBTGGCAGTCTAA BBAGGCAAAAAGGCCCATGGGTTCAGGAATTGATGAGCTGTCTTGATCTCAAAGAATGTGGACATGCTTACTGGGGATTGTGGCCCACAGAAGCATTTACT<mark>1</mark>CCTACCAGCCCCAATTTGTGAGG CCEABANTGBAAGCTTGTGAGAAGAGAGACTCTATGTTGCCCAGGCTGTTATGGAACTCCTGAGTCAAGTGATCCTCCCACCTTGGCCTTCTGAAGGTGCGAGGATTATAGGCGTCACCTAATCTA SSDKELTRPNE ATGIGIAITITGITTIGITTIGCTTIGCTTTGTTTTGABACGGAGTCTCGCTCTGTCAICCAGGCTGBAGTGCAGTGGCATGATCTCGGCTTCACCCCATCTCCCAGGTTCAAGGGATTCTCCT 0 1 1 8 4 8 7 OKOPEKNAGPTAR TSATVPVLCL YIPVAP OKHILIPT 9 0 P G N G N E RKHLRAYHRCLYYTRF EGASSOIHTPAOMLLSTLOSTURPTLPVGSL SPDLPVH A V ... P G S R Y L L L L L L L L Y Y L T DPWVOELMSCLDLKECGHAYS A I I F I L T A A P S Y V L C K R R R G Q S P Q S N R L z TTIHTAGHSLAVGPEAGE s

Docket No.: 1855.1070-004 Novel Antibodies and Ligands... Inventors: Michael J. Briskin *et al.*

FIG. 4A

1	. CGGCGACTCTCTCCACCGGGCCCCCGGGAGGCTCATGCAGCGCGGCTGGGTCCCGGGGC
	1
	GCCCGGATCGGGGAAGTGAAAGTGCCTCGGAGGAGGAGGGGCCGGTCCGGCAGTGCAGCCG
12	
18	CCTCACAGGTCGGCGGACGGGCCAGGCGGGCGCCTCCTGAACCGAACCGAATCGGCTCC
24	TCGGGCCGTCGTCCTCCCGCCCCTCCTCGCCCGCCGGAGTTTTCTTTC
3 C	CAAGATTCCTGGCCTTCCCTCGACGGAGCCGGGCCCAGTGCGGGGGGCGCAGGGCGCGGGA 1
36	. GCTCCACCTCCTCGGCTTTCCCTGCGTCCAGAGGCTGGCATGGCGCGGGCCGAGTACTGA
	GCGCACGGTCGGGCACAGCAGGGCCGGTGGGTGCAGCTGGCTCGCGCCTCCTCTCCGGC
42	1
48	CGCCGTCTCCTCCGGTCCCCGGCGAAAGCCATTGAGACACCAGCTGGACGTCACGCGCCG 1
54	GAGCATGTCTGGGAGTCAGAGCGAGGTGGCTCCATCCCCGGAGATCCGCGGAGCCCCGA
	GATGGGACGGGACTTGCGGCGCGGGTGCTCCTGCTCCTGCTTCTGCTCCTGCT M G R D L R P G S R V L L L L L L L L L 2
50	1
	- - GTTTACCTGACTCAGCCAGGCAATGGCAACGAGGGCAGCGTCACTGGAAGTTGTTATTG
	V Y L T O P G N G N E G S V T G S C Y C 4
56	1
	TGGTAAAAGAATTTCTTCCGACTCCCCGCCATCGGTTCAGTTCATGAATCGTCTCCGGAA
	G K R I S S D S P P S V Q F M N R L R K 6
72	1
	ACACCTGAGAGCTTACCATCGGTGTCTATACTACACGAGGTTCCAGCTCCTTTCCTGGAG
	H L R A Y H R C L Y Y T R F Q L L S W S 8
78	1
	CGTGTGTGGAGGCAACAAGGACCCATGGGTTCAGGAATTGATGAGCTGTCTTGATCTCAA
	V C G G N K D P W V O E L M S C L D L K 10

1

Docket No.: 1855.1070-004 Novel Antibodies and Ligands... Inventors: Michael J. Briskin *et al.*

FIG. 4B

8	41																				
	AGA	LATO	TGG	ACA	TGC	TT	CTC	CGG	GA:	rTG	TGG	cca	ACC	AGA	AGC.	ATT	TAC	TTC	CTA	CCAG	
	E	C	G	H	A	Y	s	G	I	v	A	Н	Q	K	H	L	L	P	T	s	120
9	01																				
																				AGAT	
	P	P	T	S	Q	A	S	E	G	A	s	5	D	I	H	T	P	A	Q	М	140
9	61																				
																				CTC	
	L	L	s	T	L	Q	S	T	Q	R	P	T	L	P	v	G	s	L	s	s	160
10	21																				
	GGA																				
	D	· K	Ε	L	\mathbf{r}	R	P	N	E	T	T	I	H	T	A	G	H	S	L	A	180
08	2																				
uB	_																				
	AGT	m	~~~	mcz	ccc	moo	-	~ ~ ~	~~ >	~ ~ ~		~~~	003			maa	maa		~- ~		
	AG I	100	OC.	TOW	عواق. الا	700	U COM	MMEDI	سال	الالالالالالالالالالالالالالالالالالال	المركب	المحاف	UGA	MMM.	MAA	TGC	766	TUC	CAC	AGC	200
	٧	G	-	L	^	G	E,	IN	Q	V	Q	P	E.	r.	IX	A	۳	Ъ	A.	A	200
11	41																				
	CAG	anc.	a.ጥ.c	AGC	CAC	ייים ב	GCC -	ccm	ست	ama		شات	ccc	יים מיי	~ 25 070	سست			77.0	200	
																					220
	•••	-	-	**	-	•	-	۰		_	20	23	22	-	-	1	_	'n	-	n	220
2	01																				
	AGC	CCT	TTC	CTA	TGT	GCT	GTG	CAA	GAG	GAG	GAG	GGG	GCA	37702	ACCC	A TE	34LC(مماطم	ecc:	CA	
	A	L	s	Y	v	L	C	ĸ	R	R	R	G	0	s	P	0	S	S	P	ח	240
													*	-	-	*	-		*	_	2.40
.2	61																				
	TCT	GCC	GGT	TCA'	TTA	TAT	ACC	TGT	GGC	ACC'	TGA	CTC	TAA!	PACC	TG	AGC	CAAC	GAAT	GGZ	ÄG	
	L	P	V	Ħ	Y	I	P	ν	A	P	D	s	N	T	*						254
13:	21																				
																	-				
	CTT	GTG	AGG.	AGA	CGG.	ACT	CTA	TGT	rga	CCA	GGC'	TGT'	rate	3GAA	CTC	CTC	AG	CA	GTG	AΥ	
L3	81																				
	CCT	CCC	ACC	TTG	GCC	TCT	GAA	GGT	GCG.	A.GG.	ATT.	ATA	3GC(STCA	CCI	CAC	ACA	TCC	AGC	CT	
14	41																				
				٠																	
	ACA	CGT	ATT	TGT	AAT	TAT	CTA	ACA	TAG	GAC	TAA	CCA	GCC!	ACTO	CCC	TC	CTT	CAGG	CCC	CT	

FIG. 4C

1501
CATTTAAAAACGGTTATACTATAAAATCTGCTTTTCACACTGGGTGATAATAACTTGGAG
AAATTCTATGTGTATTTTGTTTTGTTTTGCTTTGCTTTTGAGACGGAGTCTCGCTC
1621
MCMCA MCCA CCOMCCA CMCCA CMCCA CMCCA CMCCA
TGTCATCCÁGGCTGGAGTGCAGTGGCATGATCTCGGCTCACTGCAACCCCCATCTCCCAC
GTTCAAGCGATTCTCCTGCCTCCTAAGTAGCTGGGACTACAGGTGCTCACCACCACA
1/51
CCCGGCTAATTTTTGTATTTTAGTAGAGACGGGGTTTCACCATGTTGACCAGGCTGGT
1801
CTCGAACTCCTGACCTGGTGATCTGCCCACCCAGGCCTCCCAAAGTGCTGGGATTAAAGG
1861
TGTGAGCCACCATGCCTGGCCCTATGTGTGTTTTTTAACTACTAAAAATTATTTTTGTAA
1921
TGATTGAGTCTTCTTTATGGAAACAACTGGCCTCAGCCCTTGCGCCCTTACTGTGATTCC
1981
TGGCTTCATTTTTTGCTGATGGTTCCCCCTCGTCCCAAATCTCTCTC
2041
· · · · · · · · · · · · · · · · · · ·
TGTTCCTCCCCACCTCAGCCCTCTCCTGCATCCTCCTGTACCCGCAACGAAGGCCTGGG
2101
CTTTCCCACCCTCCTTAGCAGGTGCCGTGCTGGGACACCATACGGGTTGGTT
2161
CTCCTCAGTCCCTTGCCTACCCCAGTGAGAGTCTGATCTTGTTTTTATTGTTATTGCTTT 2221
•
TATTATTATTGCTTTTATTATCATTAAAACTCTAGTTCTTGTTTTGTCTCTCAAAAAAA 2281

FIG. 5

agetecgeag eegggttetg egeeteaege eeegggetge tgtteetggg aagatgggga tcaccagcct cgctgaagaa ttaagaaact atacttctt gtgaaagaaa cttctgatat ttgtgttatc cttatgattt ctgtgtgtga agaccacctc ccaggtccgt cccaggcaca cccactgccc cactgcccaa ctgatagcca cccgctgtac aagaaaataa gtgtgcattt gctatatagc gaagctgaag cgccagcgct ctgccacttg tggtcgcctt acctgcaagc tttggagagt tagctactag ctgcctacgt aaggccggac atttgcttgg caatctaact agatagtc ccqcaqcatq cctgcagtgc ggaggtgatc tttccagttt gttgctgctc tggaaggaaa taaataaca 361 421 121 241 301 61 181

FIG

MSSAAGFCAS RPGLLFLGLL LLPLVVAFAS AEAEEDGDLQ CLCVKTTSQV RPRHITSLEV IKAGPHCPTA QLIATLKNGR KICLDLQAPL YKKIIKKLLE

FIG. 7

FIG. 9E

FIG. 9F

FIG. 9G

FIG. 11B

FIG. 11C

FIG. 11G

FIG. 11H

Novel Antibodies and Ligands... Inventors: Michael J. Briskin et al. FIG. 13C FIG. 13F Bonzo Expression Bonzo Expression ССR3 FL1-H 72 03 103 CXCR1 FIG. 13B FIG. 13E Bonzo Expression Bonzo Expression CCR2 FL2-H 103. CCR6 FIG. 13A FIG. 13D Bonzo Expression Bonzo Expression 10 4 10 3 11 11 104. ССR1 ССR1 CCR5

Docket No.: 1855.1070-004

FIG. 17A CD3 Blasts

FIG. 18

DOGHDOBE DBEYOR

% Bonzo-positive Cells

FIG. 27

□T_R1 □T_H2

⊠T_H1

Soluble SExCkine Potential Cleavage Sites Membrane bound SExCkine Cytoplasmic Tail Mucin Stalk Transmembrane region ~ N-terminal Chemokine Domain ———

FIG. 30

-+- 7F3 -=- R&D -+- IgG2a -#- IgG2b

