#### Dos Problemas Sólidos

#### Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia



30 de octubre de 2024

# Agenda



- Moneda que rueda sin deslizar
  - Ligaduras
  - El Lagrangeano

2 Sección



Un disco homogéneo (una moneda) de radio a y masa M rueda sin deslizar por una superficie plana. Escriba las ecuaciones de movimiento y encuentre una solución en el caso en que la inclinación del disco sea constante.



• En principio tendremos seis grados de libertad  $(x, y, z, \phi, \psi, \theta)$ : tres de traslación y tres ángulos de Euler.



Un disco homogéneo (una moneda) de radio a y masa M rueda sin deslizar por una superficie plana. Escriba las ecuaciones de movimiento y encuentre una solución en el caso en que la inclinación del disco sea constante.



• En principio tendremos seis grados de libertad  $(x, y, z, \phi, \psi, \theta)$ : tres de traslación y tres ángulos de Euler.



Un disco homogéneo (una moneda) de radio a y masa M rueda sin deslizar por una superficie plana. Escriba las ecuaciones de movimiento y encuentre una solución en el caso en que la inclinación del disco sea constante.



- En principio tendremos seis grados de libertad  $(x, y, z, \phi, \psi, \theta)$ : tres de traslación y tres ángulos de Euler.
- La ligadura de rodar sin deslizar implica que la velocidad del punto *p*, en contacto con la superficie, es instantáneamente cero.



Un disco homogéneo (una moneda) de radio a y masa M rueda sin deslizar por una superficie plana. Escriba las ecuaciones de movimiento y encuentre una solución en el caso en que la inclinación del disco sea constante.



- En principio tendremos seis grados de libertad  $(x, y, z, \phi, \psi, \theta)$ : tres de traslación y tres ángulos de Euler.
- La ligadura de rodar sin deslizar implica que la velocidad del punto *p*, en contacto con la superficie, es instantáneamente cero.
- Esto es:  $\vec{r}(op) = \vec{R} + \vec{r}(cp) \Rightarrow \dot{\vec{r}}(op)_p = 0 = \dot{\vec{R}} + \vec{\Omega} \times \vec{r}(cp)$

# Moneda que rueda sin deslizar: Lagrangeano



ullet Por su parte, respecto al sistema centro de masa,  $ilde{S}$  tenemos

$$\vec{r}(cp) = -a\mathbf{x}_2, \ \mathbf{y} \ \vec{\Omega} \times \vec{r}(cp) = \begin{vmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \\ \Omega_1 & \Omega_2 & \Omega_3 \\ 0 & -a & 0 \end{vmatrix} = a(\Omega_3 \mathbf{x}_1 - \Omega_1 \mathbf{x}_3)$$

# Moneda que rueda sin deslizar: Lagrangeano



ullet Por su parte, respecto al sistema centro de masa,  $ilde{S}$  tenemos

$$\vec{r}(cp) = -a\mathbf{x}_2, \ \mathbf{y} \ \vec{\Omega} \times \vec{r}(cp) = \begin{vmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \\ \Omega_1 & \Omega_2 & \Omega_3 \\ 0 & -a & 0 \end{vmatrix} = a(\Omega_3 \mathbf{x}_1 - \Omega_1 \mathbf{x}_3)$$

- Respecto al sistema centro de masa  $\Omega_1 = \dot{\phi} \sin \theta \sin \psi + \dot{\theta} \cos \psi$   $\Omega_2 = \dot{\phi} \sin \theta \cos \psi \dot{\theta} \sin \psi$  y  $\Omega_3 = \dot{\psi} + \dot{\phi} \cos \theta$
- Proyectamos la ecuación  $0 = \dot{\vec{R}} + \vec{\Omega} \times \vec{r}(cp)$  al sistema S,  $(\mathbf{i}, \mathbf{j}, \mathbf{k})$  tendremos  $\dot{x} + a(\Omega_3 \mathbf{i} \cdot \mathbf{x}_1 \Omega_1 \mathbf{i} \cdot \mathbf{x}_3) = 0$   $\dot{y} + a(\Omega_3 \mathbf{j} \cdot \mathbf{x}_1 \Omega_1 \mathbf{j} \cdot \mathbf{x}_3) = 0$   $\dot{z} + a(\Omega_3 \mathbf{k} \cdot \mathbf{x}_1 \Omega_1 \mathbf{k} \cdot \mathbf{x}_3) = 0$



$$T = \frac{1}{2}M(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \frac{1}{2}\left[I_1(c)(\Omega_1)^2 + I_2(c)(\Omega_2)^2 + I_3(c)\Omega_3\right)^2\right].$$



$$T = \frac{1}{2}M(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \frac{1}{2}\left[I_1(c)(\Omega_1)^2 + I_2(c)(\Omega_2)^2 + I_3(c)\Omega_3\right]^2.$$

- $T = \frac{1}{2}M(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \frac{1}{8}Ma^2\left[\dot{\phi}^2 \sin^2\theta + \dot{\theta}^2 + 2\left(\dot{\phi}\cos\theta^2 + \dot{\psi}\right)^2\right]$
- Donde  $I_1 = I_2 = Ma^2/4$  y  $I_3 = Ma^2/2$ .



$$T = \frac{1}{2}M(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \frac{1}{2}\left[I_1(c)(\Omega_1)^2 + I_2(c)(\Omega_2)^2 + I_3(c)\Omega_3\right]^2.$$

- $T = \frac{1}{2}M(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \frac{1}{8}Ma^2\left[\dot{\phi}^2 \sin^2\theta + \dot{\theta}^2 + 2\left(\dot{\phi}\cos\theta^2 + \dot{\psi}\right)^2\right]$
- Donde  $I_1 = I_2 = Ma^2/4$  y  $I_3 = Ma^2/2$ .
- ullet Por su parte, la energía potencial  $V=mga\operatorname{sen} heta$



$$T = \frac{1}{2}M(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \frac{1}{2}\left[I_1(c)(\Omega_1)^2 + I_2(c)(\Omega_2)^2 + I_3(c)\Omega_3\right)^2\right].$$

- $T = \frac{1}{2}M(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \frac{1}{8}Ma^2\left[\dot{\phi}^2 \sin^2\theta + \dot{\theta}^2 + 2\left(\dot{\phi}\cos\theta^2 + \dot{\psi}\right)^2\right]$
- Donde  $I_1 = I_2 = Ma^2/4$  y  $I_3 = Ma^2/2$ .
- ullet Por su parte, la energía potencial  $V=mga\operatorname{sen} heta$
- El Lagrangeano  $\mathcal{L} = T V$ ,  $\mathcal{L} = \frac{1}{2}M\left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2\right) + \frac{1}{8}Ma^2\left[\dot{\phi}^2\sin^2\theta + \dot{\theta}^2 + 2\left(\dot{\phi}\cos\theta^2 + \dot{\psi}\right)^2\right] mga\sin\theta$