

Algoritmos Estructuras de Datos I

Facultad de Ciencias Exactas y Tecnología
Universidad Nacional de Tucumán
2025

Especificación Algebraica(2)

TIPO: NAT

OPERACIONES

Sintaxis:

CERO: → NAT

SUCC : NAT→ NAT

IGUALCERO : NAT → BOOL

PRED : NAT - {CERO} → NAT

parcial

ESPAR : NAT → BOOL

IGUAL : NAT x NAT → BOOL

TIPO: NAT

OPERACIÓN MAX

Sintaxis:

MAX : NAT × NAT → NAT

Semántica: Para todo x, $y \in NAT$

MAX (CERO,CERO) \equiv CERO MAX (CERO,SUCC(x)) \equiv SUCC(x) MAX (SUCC(x),CERO) \equiv SUCC(x) MAX (SUCC(x),SUCC(y)) \equiv SUCC (MAX(x,y))

```
TIPO: NAT Semántica: Para todo x , y \in NAT
       IGUALCERO(CERO) ≡ TRUE
       IGUALCERO(SUCC(x)) \equiv FALSE
       PRED(SUCC(x)) \equiv x
       ESPAR(CERO) ≡ TRUE
       ESPAR (SUCC(CERO)) \equiv FALSE
       ESPAR (SUCC (SUCC(x))) \equiv ESPAR(x)
       IGUAL(CERO,CERO) ≡ TRUE
       IGUAL (CERO, SUCC(x)) \equiv FALSE
       IGUAL (SUCC(x), CERO) \equiv FALSE
       IGUAL (SUCC(x),SUCC(y)) \equiv IGUAL (x,y)
       MAX (CERO, CERO) \equiv CERO
       MAX (CERO,SUCC(x)) \equiv SUCC(x)
       MAX (SUCC(x), CERO) \equiv SUCC(x)
       MAX (SUCC(x),SUCC(y)) \equiv SUCC (MAX(x,y))
```

TIPO: NAT

OPERACIÓN SUMA

Sintaxis:

SUMA : NAT x NAT → NAT

Semántica: Para todo x, $y \in NAT$

SUMA (CERO,CERO) \equiv CERO SUMA (CERO,SUCC(x)) \equiv SUCC(x) SUMA (SUCC(x),CERO) \equiv SUCC(x) SUMA (SUCC(x),SUCC(y)) \equiv SUCC(SUCC(SUMA(x,y)))

TIPO: NAT

OPERACIÓN SUMA en 2 axiomas

Sintaxis:

SUMA : NAT x NAT → NAT

Semántica: Para todo x, $y \in NAT$

SUMA (CERO, y) \equiv y SUMA (SUCC(x), y) \equiv SUCC(SUMA(x,y))

TIPO: NAT

OPERACIÓN MULT

Sintaxis:

MULT : NAT × NAT → NAT

Semántica: Para todo x, $y \in NAT$

MULT (CERO,CERO) \equiv CERO MULT (CERO,SUCC(x)) \equiv CERO MULT (SUCC(x),CERO) \equiv CERO MULT (SUCC(x),SUCC(y)) \equiv

SUCC(SUMA(SUMA(MULT(x,y),x),y))

TIPO: NAT

OPERACIÓN MULT en 2 axiomas

Sintaxis:

MULT : NAT × NAT → NAT

Semántica: Para todo x, $y \in NAT$

MULT $(x, CERO) \equiv CERO$ MULT $(x, SUCC(y)) \equiv SUMA(MULT(x,y),x)$

TIPO: NAT

OPERACIÓN RESTA

Sintaxis:

RESTA : NAT x NAT → NAT U {indefinido}

Semántica: Para todo x, $y \in NAT$

RESTA (CERO,CERO) \equiv CERO RESTA (CERO,SUCC(x)) \equiv indefinido RESTA (SUCC(x),CERO) \equiv SUCC(x) RESTA (SUCC(x),SUCC(y)) \equiv RESTA(x,y)

TIPO: CADENA

OPERACIONES

Sintaxis:

NULA : → CADENA

AGREGAR : CADENA X CHAR → CADENA

ESNULA : CADENA → BOOL

LARGO : CADENA → ENTERO ≥ 0

CONCAT : CADENA X CADENA → CADENA

TIPO: CADENA

Semántica: Para todo s,t \in CADENA, \forall c \in CHAR,

 $ESNULA(NULA) \equiv TRUE$ $ESNULA(AGREGAR(s,c)) \equiv FALSE$

LARGO(NULA) $\equiv 0$ LARGO(AGREGAR(s,c)) \equiv LARGO(s) + 1

CONCAT(s,NULA) \equiv s CONCAT(s, AGREGAR(t,c)) \equiv AGREGAR(CONCAT(s,t),c)

TIPO: COMPLEJO

OPERACIONES

Sintaxis:

ARMAR : REAL x REAL→ COMPLEJO

SUMA : COMPLEJO x COMPLEJO → COMPLEJO

RESTA : COMPLEJO x COMPLEJO → COMPLEJO

MULTIPLICA : COMPLEJO × COMPLEJO → COMPLEJO

DIVIDE **:** COMPLEJO x COMPLEJO → COMPLEJO U {indefinido}

TIPO: COMPLEJO

Sintaxis:

INVERSO **:** COMPLEJO → COMPLEJO U {indefinido}

OPUESTO : COMPLEJO → COMPLEJO

PREAL : COMPLEJO → REAL

PIMAG : COMPLEJO → REAL

ESREAL: COMPLEJO → BOOL

ESIMAG : COMPLEJO → BOOL

CONJUGADO : COMPLEJO → COMPLEJO

IGUAL : COMPLEJO × COMPLEJO → BOOL

NORMA : COMPLEJO → REAL

```
TIPO: COMPLEJO
Semántica: Para todo a, b, c, d \in REAL,
SUMA(ARMAR(a,b), ARMAR(c,d)) \equiv ARMAR(a+c,b+d)
RESTA(ARMAR(a,b), ARMAR(c,d)) = ARMAR (a-c,b-d)
MULTIPLICA(ARMAR(a,b), ARMAR(c,d)) = ARMAR (a*c-b*d, a*d+b*c)
DIVIDE(ARMAR(a,b), ARMAR(c,d)) \equiv
              si c*c+d*d = 0 entonces
                 indefinido
              sino
                  ARMAR ((a*c+b*d)/(c*c+d*d), (-a*d+b*c)/(c*c+d*d))
                                                                15
```

```
Semántica: Para todo a, b, c, d \in REAL,
INVERSO (ARMAR(a,b)) \equiv si a=0 AND b=0 entonces indefinido
                          sino ARMAR (a/(a*a+b*b),-b/(a*a+b*b))
OPUESTO (ARMAR(a,b)) = ARMAR (-a,-b)
PREAL (ARMAR(a,b)) \equiv a
PIMAG (ARMAR(a,b)) \equiv b
ESREAL (ARMAR(a,b) ) \equiv b=0
ESIMAG (ARMAR(a,b)) = si a=0 AND b\neq0 entonces TRUE sino FALSE
CONJUGADO(ARMAR(a,b)) \equiv ARMAR (a,-b)
IGUAL(ARMAR(a,b), ARMAR(c,d)) = si a=c AND b=d entonces TRUE
                                   sino FALSE
NORMA(ARMAR(a,b)) \equiv a*a + b*b
```

TIPO: COMPLEJO

TIPOS ABSTRACTOS DE DATOS GENERICOS

- Los TADs genéricos representan colecciones de elementos todos del mismo tipo.
- Estos TADs definen un cierto comportamiento independiente del tipo de sus elementos.
- Para poder expresar genéricamente el tipo de los elementos se utilizan parámetros.
- De esta forma, se pueden construir ejemplares del TAD genérico utilizando otros TADs que cumplan con las restricciones del parámetro indicado en su especificación.

TIPO: VECTOR (ITEM)

OPERACIONES

Sintaxis:

```
VECTORVACIO : → VECTOR
ALMACENAR : VECTOR x ENTERO x ITEM → VECTOR
OBTENER : VECTOR x ENTERO → ITEM U { indefinido}
```

```
Semántica: Para todo A \in VECTOR, \forall i,j \in ENTERO, \forall x \in ITEM OBTENER(VECTORVACIO,i) = indefinido OBTENER(ALMACENAR(A,i,x), j) = si i=j entonces x sino OBTENER(A,j)
```

TIPO: MULTICONJUNTO(ITEM)

OPERACIONES

Sintaxis:

MULTICONJUNTOVACIO : → MULTICONJUNTO

INSERTAR : MULTICONJUNTO x ITEM → MULTICONJUNTO

ESVACIO : MULTICONJUNTO → BOOL

PERTENECE : MULTICONJUNTO x ITEM → BOOL

BORRAR : MULTICONJUNTO x ITEM → MULTICONJUNTO

TIPO: MULTICONJUNTO(ITEM)

Semántica: Para todo $A \in MULTICONJUNTO$, $\forall i, j \in ITEM$.

```
ESVACIO(MULTICONJUNTOVACIO) = TRUE
ESVACIO(INSERTAR(A,i)) = FALSE
```

```
PERTENECE(MULTICONJUNTOVACIO,i) ≡ FALSE
PERTENECE(INSERTAR(A,i),j) ≡ si i=j entonces
TRUE
Sino
PERTENECE(A,j)
```

Otra manera de definir PERTENECE:

```
PERTENECE(MULTICONJUNTOVACIO,i) = FALSE
PERTENECE(INSERTAR(A,i),j) = (i=j) OR PERTENECE(A,j)
```

TIPO: MULTICONJUNTO(ITEM)

Semántica: Para todo $A \in MULTICONJUNTO$, $\forall i, j \in ITEM$.

BORRAR(MULTICONJUNTOVACIO,i) \equiv MULTICONJUNTOVACIO BORRAR(INSERTAR(A,i),j) \equiv si i \equiv j entonces BORRAR (A,j) sino INSERTAR(BORRAR(A,j),i)

representa la operación IGUALITEM
 Observación: BORRAR borra todas las ocurrencias de un ITEM