Cognome:	Nome:
Matricola	
	ggio 2015 Ingegneria Informatica
1 Fornire il modello LAR di una griglia $2 \times 2 \times 2$ di cubi di	i lato unitario
0.00	
2 Disegnare un oggetto geometrico 2D con parti ripetute finestre), e il corrispondente modello di multigrafo	e (facciata di edificio, con balconi, porte e
3 Fornire la definizione e un semplice esempio della funzion	ne primitiva pyplasm MAP
4 Scrivere, in un qualunque linguaggio di programmazione	e, una funzione che esegua la somma di due
matrici di dimensioni compatibili	
5 Fornire una definizione e un esempio di combinazione con	nvessa di punti
	I

	Cognome:	Nome:	
		Matricola:	
Τ	Grafica Computazionale	$20~\mathrm{maggio}~2015$	Ingegneria Informatica
rispetto all'ass	matrice di una trasformazione di	scorrimento 3D che inclin	
8 Scrivere la	matrice della rotazione 3D di asse	e parallelo al vettore $(-1, -1)$	$-1,-1)$ e angolo $\pi/2$
9 Disegnare e EV	un complesso simpliciale (e numer	arne i vertici) di due 3-simp	olessi e scriverne le matrici FV
10 Calcolare	il prodotto vettoriale dei vettori	(0,1,0) e (1,1,0)	

	Cognome:	Nome:	
		Matricola:	
1	Grafica Computazionale		Ingegneria Informatica
1	Scrivere una funzione python per estrarre le	pprox (d-1)-facce orientate di u	n d-simplesso orientato
2	Scrivere l'equazione del segmento di retta co		
3	Ricavare la matrice di una rotazione piana d	di 45 gradi intorno al punto	fisso $(3,0)$
4	Fornire la definizione e un semplice esempio	della funzione primitiva py	plasm DISTL
5	Scrivere la matrice della rotazione 3D di ass	se parallelo al vettore (-1, -	$-1,-1)$ e angolo $\pi/2$

Cognome:Nome:
Matricola:
Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
${f 6}$ Eseguire il prodotto di uno scorrimento piano di tangente $1/2$ e che non muta le x , per il vettore $(1,0,3)$
7 Fornire una definizione di "modello LAR" e un esempio 3D di modello
8 Specificare quando uno scalamento si dice di espansione
${\bf 9}$ Scrivere la matrice di una trasformazione di scorrimento 3D che inclini di 45 gradi i piani $y=cost$ rispetto all'asse x
10 Rappresentare l'indice di un libro (parti, capitoli, sezioni) come multigrafo gerarchico

	Cognome:Nome:
(Matricola:
•	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
6	Fornire una definizione di "modello LAR" e un esempio 3D di modello
7	Eseguire il prodotto di uno scorrimento piano di tangente 1 e che non muta le y , per il vettore $(1,2,3)$
8	Calcolare le coordinate baricentriche del punto $(-1,1/2,3)$ rispetto al simplesso standard 3D
9 (2,	Scrivere una matrice di trasformazione di coordinate che mandi il triangolo di vertici $-1,2),(0,-2,1),(0,1,-1)$ in $(0,0,1),(1,0,1),(0,1,1)$
10	Fornire la definizione e un semplice esempio della funzione primitiva pyplasm INSL

	Cognome: Nome:
	Matricola:
	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
1	Specificare quando uno scalamento si dice di compressione
2	Scrivere la matrice di una rotazione 3D di angolo $\pi/2$ con punto fisso $(1,1,1)$ e asse $(0,0,1)$
3	Ricavare la matrice di una rotazione piana di 45 gradi intorno al punto fisso (3,0)
4	Sintetizzare in poche parole le differenze tra combinazioni lineari, affini, positive e convesse
5	Fornire una definizione di "modello LAR" e un esempio 2D di modello

	Cognomo:	Nome:	
1	Cognome:	Matricola:	
4	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
	e un oggetto geometrico 2D con corrispondente modello di multigr	parti ripetute (facciata di	
7 Eseguire (1,0,3)	il prodotto di uno scorrimento pi	iano di tangente 1/2 e che	e non muta le x , per il vettore
8 Scrivere l	a trasf. 3D che mandi il tetraedro		
9 Fornire la	a definizione e un semplice esempio	o della funzione primitiva p	yplasm DISTR
	una funzione python per memor unzione di trasposizione	izzare una matrice binaria	sparsa come array di triple e

	Cognome:Nome:
	Matricola:
	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
1	Descrivere la struttura di una matrice di traslazione 3D
2	Scrivere la matrice di scalamento 2D che dimezzi tutte le coordinate
3	Fornire una definizione di "modello LAR" e un esempio 2D di modello
4	Rappresentare l'indice di un libro (parti, capitoli, sezioni) come multigrafo gerarchico
	7
5	Scrivere la trasf. piana di coord. che mandi il quadrato standard costruito sugli assi nel quadrato di trici $(-2, 1.5), (-1, 1.5), (-2, .5), (-1, .5)$
vei	(-2, 1.0), (-1, 1.0), (-2, .0), (-1, .0)

	Cognome:Nome:
	Matricola:
•	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
6	Ricavare la matrice di una rotazione piana di 120 gradi intorno al punto fisso $(0,5)$
7	Illustrare sinteticamente almeno una tecnica nota di memorizzazione di matrici sparse
8	Eseguire il prodotto di uno scorrimento piano di tangente 1 e che non muta le y , per il vettore $(1,2,3)$
9	Scrivere l'equazione del segmento di retta con punti estremi $(2,3,4)$ e $(-1,2,0)$
10	Fornire la definizione e un semplice esempio della funzione primitiva pyplasm INSL

	Cognome:Nome:
	Cognome:Nome:Nome:
1	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
1	Ricavare la matrice di una rotazione piana di 45 gradi intorno al punto fisso (3,0)
_	Theoretic is married at the recently plants at 10 grade inverted at panel 1850 (0,0)
2	Scrivere la matrice di uno scalamento uniforme di parametro 2 con punto fisso (1, 1)
3	Fornire il modello LAR del triangolo standard del piano
4	Fornire due esempi di combinazione affine di punti, rispettivamente di dimensione due e tre
_	Totalio das scempt di compiliazione di pansi, rispectivamente di dimensione das e tre
5	Scrivere una funzione python per estrarre le $(d-1)$ -facce orientate di un d-simplesso orientato

	Cognome:Nome:
	Matricola:
	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
6	Fornire la definizione e un semplice esempio della funzione primitiva pyplasm INSL
7	Calcolare il prodotto misto dei vettori $(0, 2x, 0), (x/2, 1, 0), (x, 2, 0)$
•	Calcolate it products inities der vettori (0, 22, 0), (2, 2, 1, 0), (2, 2, 0)
8	Specificare quando uno scalamento si dice di compressione
9	Scrivere la trasf. piana di coord. che mandi il cerchio unitario con centro nell'origine nell'ellisse con
cer	atro in $(1,1)$ e raggi $1/2, 2$
10	Rappresentare un settore di stadio come multigrafo gerarchico (tribuna est,ovest; curva nord,sud;
	tore A,B,C, gradino 1,2,3, fila destra,sinistra; posto 1,2,3,

	Cognome:Nome:
	Matricola:
	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
1	Sintetizzare in poche parole le differenze tra combinazioni lineari, affini, positive e convesse
2	Calcolare il prodotto misto dei vettori $(0, 2x, 0), (x/2, 1, 0), (x, 2, 0)$
3	Rappresentare la struttura di un mobile libreria come multigrafo gerarchico
4	Descrivere la struttura di una matrice di rotazione elementare 3D
5	Scrivere una funzione python per estrarre le $(d-1)$ -facce orientate di un d-simplesso orientato
J	solvere and ranzione python per estratte is $(a-1)$ -racce orientate at an a-simplesso orientato

Cognome:	Nome:	
7	Matricola:	
Grafica Computazionale	$20~\mathrm{maggio}~2015$	Ingegneria Informatica
6 Scrivere la matrice di scalamento 2D che di	mezzi tutte le coordinate	
7 Fornire il modello LAR di una griglia 3×3	di quadrati di lato unitario	
8 Scrivere, in un qualunque linguaggio di promatrici di dimensioni compatibili	ogrammazione, una funzione	che esegua il prodotto di due
9 Scrivere la trasf. piana che mandi il triango	olo standard nel triangolo di	vertici (O, A, B)
		, ,
10 Fornire la definizione e un semplice esemp	io della funzione primitiva p	yplasm LIST

	Cognome:Nome:
	Matricola: Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
-	
1	Fornire la definizione e un semplice esempio della funzione primitiva pyplasm INSL
2	Pin
2	Ricavare la matrice di una rotazione piana di 120 gradi intorno al punto fisso $(0,5)$
3	Disegnare un complesso simpliciale (e numerarne i vertici) di due 3-simplessi e scriverne le matrici FV
e I	
4	Specificare quando uno scalamento si dice di compressione
	~
5	Eseguire il prodotto di uno scorrimento piano di tangente 1 e che non muta le y , per il vettore $(1,2,3)$
_	5 1

	Cognome:Nome:
\mathbb{R}^{2}	Matricola:
\mathcal{O}	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
6 Scrive rispetto a	e la matrice di una trasformazione di scorrimento 3D che inclini di 15 gradi i piani $z=\cos t$ asse y
7 Rappr	sentare la struttura di un mobile libreria come multigrafo gerarchico
8 Scrive	e la trasf. piana che mandi il triangolo standard nel triangolo di vertici (O,A,B)
	il modello LAR del triangolo standard del piano
10 Forn	e una definizione e un esempio di combinazione convessa di punti

Cognome:	Nome:
	Matricola:
Grafica Computazionale	20 maggio 2015 — Ingegneria Informatica
1 Fornire una definizione di "matrice sparsa"	
2 Scrivere una matrice di trasformazione	di coordinate che mandi il triangolo di vertici
(2,-1,2), (0,-2,1), (0,1,-1) in $(0,0,1), (1,0,1)$, (0, 1, 1)
3 Scrivere la matrice dello scorrimento 2D che i	inclini di 30 gradi la linga verticali
Servere la matrice dello scorrimento 2D ene i	menn di 50 gradi le inice vertican
4.5	
4 Ricavare la matrice di uno scalamento 3D che	e dimezzi le coordinate, e con punto fisso $(0, 5, 5)$
E Transfer and A. J.	and the decomposition of the state of the st
5 Fornire un metodo di calcolo delle ce $(-1,0,2),(2,3,0),(1,1,1)$	oordinate affini del piano passante per i punti

	Cognome:Nome:
	Matricola:
	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
6	Fornire una definizione di "modello LAR" e un esempio 3D di modello
7	Calcolare il prodotto vettoriale dei vettori $(1,1,0)$ e $(0,1,1)$
8	Fornire la definizione e un semplice esempio della funzione primitiva pyplasm STRUCT
0	Descrives le strutture di une metrice di trealeriere 2D
9	Descrivere la struttura di una matrice di traslazione 3D
10	Rappresentare la struttura di un complesso abitativo (edificio 1,2,3, scala A,B,C, piano 1,2,3,
	oggio 1,2,3) come multigrafo gerarchico

	Cognome:	Nome:	
1	Cognomic.	Matricola:	
	_ U Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
1	Scrivere la matrice dello scorrimento 2D che	inclini di 30 gradi le linee	verticali
	Definire una funzione python per memorizza	are una matrice binaria sp	arsa come dizionario, e fornire
un	a funzione di trasposizione		
3	Scrivere la matrice della rotazione 3D di ass	e parallelo al vettore $(1, 1,$	1) e angolo π
4	Scrivere l'equazione del segmento di retta co	on punti estremi $(2,3,4)$ e ((-1, 2, 0)
	Discomens up amounts and the OD	nanti nimatuta (Constato 11	adiCaia ann balanai anni
	Disegnare un oggetto geometrico 2D con pestre), e il corrispondente modello di multigra		edificio, con balconi, porte e
	,,		

1		Cogr	nome:	Nome:	
- 1	()	C C	C	Matricola:	т . т.с
			Computazionale	20 maggio 2015	Ingegneria Informatica
6	Calcolare	il prodotto	scalare dei vettori (0,	$(2x,0) \in (x/2,1,0)$	
7	Fornire la	definizione	e un semplice esempio	della funzione primitiva p	yplasm CAT
8	Scrivere la	a matrice d	i una trasformazione o	li scorrimento 3D che incli	ni di 45 gradi i piani $y = cost$
	petto all'as				
	D: 1			1 1	G (0.0)
9	Ricavare I	a matrice d	i una rotazione piana (di 45 gradi intorno al punto	o fisso (3, 0)
10	Fornire i	l modello L	AR del prodotto Carte	esiano del quadrato standa	rd per il segmento [0, 1]

-1	Cognome:	Nome:	
		Matricola:	
L	L L Grafica Computazionale	$20~\mathrm{maggio}~2015$	Ingegneria Informatica
1	Descrivere la struttura di una matrice di scala	mento 3D	
		1 OD 11 1 11	
2	Fornire una definizione di "modello LAR" e un	n esempio 2D di modello	
3	Fornire la definizione e un semplice esempio de	ella funzione primitiva pyp	olasm INSR
4	Scrivere, in un qualunque linguaggio di progra	ammazione, una funzione	che esegua il prodotto di due
ma	atrici di dimensioni compatibili		
5	Fornire una definizione di "matrice sparsa"		
	Torrire and definizione di matrice sparsa		

-1	Cognome:	Nome:_	
		Matricola:	
L	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
6	Scrivere l'equazione del segmento di retta c	on punti estremi (2, 3, 4) e	(-1, 2, 0)
7	Scrivere la matrice di scalamento 2D che di	mezzi tutte le coordinate	
•	Scrivere la matrice di scalamento 2D ene di	mezzi tutte le coordinate	
	9	1. 1. 1	11 11 11 11 11
8 (0,	Scrivere una matrice di trasformazione $(1,2), (0,-2,1), (2,1,-1)$ nel triangolo stand		nandi il triangolo di vertici
9	Eseguire il prodotto della matrice di rotazio	one piana di angolo $\pi/3$ pe	er il vettore $(1,2,3)$
10	Rappresentare la struttura di un complessoggio 1,2,3) come multigrafo gerarchico	so abitativo (edificio 1,2,3,	\dots scala A,B,C, \dots piano 1,2,3, \dots
an	5550 1,2,0) come munigrato geraremeo		

	Cognome:Nome:
1	Matricola:
1	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
1	Fornire il modello LAR del prodotto Cartesiano del quadrato standard per il segmento [0,1]
2	Scrivere una matrice di trasformazione di coordinate che mandi il triangolo di vertici
	Serivere that matrice distribution and the coordinate the mandr in triangolo di vertici $-1, 2), (0, -2, 1), (0, 1, -1)$ in $(0, 0, 1), (1, 0, 1), (0, 1, 1)$
3	Eseguire il prodotto di uno scorrimento piano di tangente 1 e che non muta le y , per il vettore $(1,2,3)$
4	Ricavare la matrice di una rotazione piana di 120 gradi intorno al punto fisso $(0,5)$
5	Descrivere la struttura di una matrice di traslazione 3D

4 0	Cognome:	Nome:	
12 $_{\rm G}$	0 0 8 11 0 11 10 11 11 11 11 11 11 11 11 11 1	Matricola:	
$\perp \angle$ G	rafica Computazionale	20 maggio 2015	Ingegneria Informatica
6 Sintetizzare in	poche parole le differenze tra	combinazioni lineari, affini	, positive e convesse
7 Descrivere un	semplice algoritmo di traspos	izione di una matrice sparsa	a memorizzata come insieme di
triple			
8 Scrivere la ma	trice dello scorrimento 2D che		
	un edificio di parcheggio comone A,B,C, posto 1,2,3,)	ne multigrafo gerarchico (rai	mpa 1,2,3, ascensore 1,2,3,
10 Fornire la de	finizione e un semplice esemp	io della funzione primitiva p	oyplasm INSL

_	Cognome:Nome:
	A Matricola:
L	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
1	Calcolare il prodotto vettoriale dei vettori $(1,0,0)$ e $(1,1,1)$
2	Ricavare la matrice di uno scalamento 3D che dimezzi le coordinate, e con punto fisso $(0,5,5)$
3	Fornire il modello LAR del prodotto Cartesiano del quadrato standard per il segmento [0,1]
4	Scrivere la trasf. 3D che mandi il tetraedro standard nel simplesso di vertici (O, A, B, C)
5	Scrivere una funzione python per estrarre le $(d-1)$ -facce orientate di un d-simplesso orientato

	Cognome:Nome:
1	Matricola:
1	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
6	Rappresentare la struttura di un mobile libreria come multigrafo gerarchico
7	Fornire una definizione e un esempio di combinazione convessa di punti
8	Descrivere la struttura di una matrice di scorrimento elementare 3D
9	Fornire la definizione e un semplice esempio della funzione primitiva pyplasm AA
10	Scrivere la matrice della riflessione 2D rispetto all'asse x

1	Cognome:	Nome:	
- 1	4	Matricola:	
	Grafica Computazion		Ingegneria Informatica
1	Sintetizzare in poche parole le differenz	ze tra combinazioni lineari, affir	ni, positive e convesse
2	Fornire il modello LAR del prodotto C	artesiano del triangolo standaro	d per il segmento [0, 1]
3	Scrivere la trasf. 3D che mandi il tetra	edro standard nel simplesso di	vertici (O, A, B, C)
4	Rappresentare un edificio di parcheggio	o come multigrafo gerarchico (r.	ampa 1,2,3, ascensore 1,2,3,
pia	ano 1,2,3, sezione A,B,C, posto 1,2,3	3,)	
5	Calcolare il prodotto vettoriale dei vett	tori (0, 1, 0) e (1, 1, 0)	
	•		

	Cognome:	Nome:	
1 /		 Matricola:	
T +	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
6 Scrivere la rispetto all'ass	a matrice di una trasformazione di		ii di 45 gradi i piani $y=cost$
7 Fornire la	definizione e un semplice esempio e	della funzione primitiva py	plasm MAT
8 Scrivere la	a matrice della riflessione 2D rispet	to all'asse x	
	na funzione python per memorizza	re una matrice binaria spa	arsa come dizionario, e fornire
una iunzione (di trasposizione		
10 Ricavare	la matrice di una rotazione piana	di 45 gradi intorno al punt	o fisso (3,0)

1	Cognome:Nome:	
	Matricola: Grafica Computazionale 20 maggio 2015 Ingegneria Info	rmatics
	Granea companiezzonare 20 maggio 2010 maggiorna inte	i punti
	of the cut in flected of carcolo delle coordinate affin dei plano passante per $(0,2),(2,3,0),(1,1,1)$	1 punti
2 Fo	'ornire una definizione di "modello LAR" e un esempio 2D di modello	
	Sseguire il prodotto di uno scorrimento piano di tangente $1/2$ e che non muta le x , per	il vettore
(1, 0, 3)	3)	
4 Fc	Ornire la definizione e un semplice esempio della funzione primitiva pyplasm INSL	
T 10	ormic la definizione è un semplice esemplo della funzione primitiva pyphasini fivoli	
5 Fo	Ornire una definizione di "matrice sparsa"	

	Cognome:	Nome:	
1		Iatricola:	
L	Crafica Computazionale	$20~\mathrm{maggio}~2015$	Ingegneria Informatica
6	Ricavare la matrice di una rotazione piana di		
-	F	8 r F	(0,0)
7	Rappresentare la struttura di un mobile librer	ia come multigrafo geraro	hico
8	Descrivere la struttura di una matrice di rotaz	ione elementare 3D	
9	Scrivere la matrice dello scorrimento 2D che in	nclini di 30 gradi le linee	verticali
10	O Scrivere la trasf. piana di coord. che mandi i	l quadrato standard cost	ruito sugli assi nel quadrato di
	ertici $(-2, 1.5), (-1, 1.5), (-2, .5), (-1, .5)$	1	1

	Cognome:Nome:
	Matricola: Crafice Computazionela 20 margio 2015 Ingegneria Informatica
L	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
1	Scrivere l'equazione del segmento di retta con punti estremi $(2, -3, 4)$ e $(1, 0, 5)$
_	solitore requirements der sogniente di resta con panor essioni (2, 3, 1) e (1, 0, 0)
2	Rappresentare l'indice di un libro (parti, capitoli, sezioni) come multigrafo gerarchico
3	Fornire la definizione e un semplice esempio della funzione primitiva pyplasm INSR
3	Forme la definizione è un sempne esempio dena funzione primitiva pypiasm fivoti
4	Scrivere la matrice della rotazione 3D di asse parallelo al vettore $(-1,-1,-1)$ e angolo $\pi/2$
5	Fornire una definizione di "modello LAR" e un esempio 2D di modello
,	20 and definizione di modeno Birre e di escripio 2D di modeno

4 0	Cognome:	Nome:	
16	· · · · · · · · · · · · · · · · · · ·	Matricola:	
TO	Grafica Computazionale	$20~\mathrm{maggio}~2015$	Ingegneria Informatica
6 Eseguire il (1,0,3)	Grafica Computazionale prodotto di uno scorrimento pi matrice di una rotazione piana o	ano di tangente 1/2 e che	non muta le x , per il vettore
8 Scrivere la 1	matrice di scalamento 2D che di	mezzi tutte le coordinate	
9 Scrivere la rispetto all'asse	matrice di una trasformazione c	li scorrimento 3D che inclir	ni di 15 gradi i piani $z=cost$
10 Definire un una funzione di	na funzione python per memoriz trasposizione	zare una matrice binaria sp	arsa come dizionario, e fornire

1	Cognome:	Nome:	
		Matricola:	
لـ	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
1	Scrivere l'equazione del segmento di retta con	n punti estremi (2, 3, 4) e	(-1, 2, 0)
2	December 110 in 11 miles		1 0 2
2 pia	Rappresentare un edificio di parcheggio come ano 1,2,3, sezione A,B,C, posto 1,2,3,)	e multigrafo gerarchico (ra	ampa 1,2,3, ascensore 1,2,3,
3	Calcolare il prodotto vettoriale dei vettori (1	,1,0) e (0,1,1)	
4	Scrivere la matrice della riflessione 2D rispett	to all'asse y	
5	Ricavare la matrice di una rotazione piana di	i 120 gradi intorno al pun	to fisso (0,5)

1	Cognome:	Nome:	
		atricola:	
	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
6	Descrivere la struttura di una matrice di scorrin	nento elementare 3D	
	' D . 1 10	c	1 INCD
7	Fornire la definizione e un semplice esempio dell	a funzione primitiva py	ypiasm INSR
8	Fornire una definizione di "modello LAR" e un o	esempio 2D di modello	
		1: 4 1	11 1 1
9 (0,	Scrivere una matrice di trasformazione di $(0,1,2),(0,-2,1),(2,1,-1)$ nel triangolo standard o		andi il triangolo di vertici
	O Descrivere un semplice algoritmo di trasposizio	one di una matrice spa	rsa memorizzata come insieme
dı	i triple		

1	Cognome:	Nome:	
	\times	Matricola:	
	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
1	Ricavare la matrice di una traslazione 3D di	he porti il punto $(5,4,3)$ ne	I punto $(0, 5, 5)$
2 fine	Disegnare un oggetto geometrico 2D con estre), e il corrispondente modello di multigr		edificio, con balconi, porte e
3	Descrivere la struttura di una matrice di sc	orrimento elementare 3D	
4	Fornire la definizione e un semplice esempio	o della funzione primitiva py	plasm CAT
5	Fornire il modello LAR del triangolo standa	ard del piano	

1	\circ	Cogr	nome:	Nome:	
	8	Grafica	Computazionale	Matricola: 20 maggio 2015	Ingegneria Informatica
6	Scrivere la		rotazione 2D di angole		mgegneria imormacica
Ů	Serrere la	matrice di	Totazione 2D di ungoi	0 N/ I	
7	Calcolare l	e coordinat	e baricentriche del pu	nto $(1/2, 1/2)$ rispetto al si	mplesso standard 2D
	g : 1	, f aD	1. 1. 1 1		(O. 4. P. C)
8	Scrivere la	trasi. 3D c	the mandi il tetraedro	standard nel simplesso di v	vertici (O, A, B, C)
9		un semplic	e algoritmo di traspos	izione di una matrice spars	a memorizzata come insieme di
tri	ple				
10				(2.1.0) (0.1.1)	
10	Calcolare	il prodotto	vettoriale dei vettori	$(1,1,0) \in (0,1,1)$	

_	Cognome:	Nome:	
1		Matricola:	
1	Grafica Computazionale	$20~\mathrm{maggio}~2015$	Ingegneria Informatica
	Eseguire il prodotto di uno scorrimento pia Scrivere la matrice di una trasformazione petto all'asse z	no di tangente 1 e che non m	auta le y , per il vettore $(1, 2, 3)$
3	Fornire una definizione di "modello LAR" d	e un esempio 3D di modello	
4	Calcolare le coordinate baricentriche del pu	into $(1/2, 1/2)$ rispetto al sir	nplesso standard 2D
5	Fornire la definizione e un semplice esemple	o della funzione primitiva py	plasm INSR

_	Cognome:	Nome:	
		Matricola:	
T (Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
6 Sc	rivere la trasf. piana che mandi il triango	olo standard nel triangolo d	li vertici (O, A, B)
			, ,
7 D	efinire una funzione python per memorizza	are una matrice binaria spa	rsa come array di triple e fornire
	inzione di trasposizione		
8 Ri	cavare la matrice di una rotazione piana	di 45 gradi intorno al punt	o fisso (3, 0)
0 10	eavare la matrice di una rotazione piana	ar 10 gradi intorno ar pant	0 11550 (0,0)
9 R	appresentare la struttura di un complesso	a abitativo (edificio 123	scala A R.C. piano 1.2.3
	io 1,2,3) come multigrafo gerarchico	, april 1,2,5,	. scala 11,D,C, plano 1,2,5,
10 5	Scrivere la matrice della riflessione 2D risp	oetto all'asse v	
		,	

Cognome:	
ZU Grafica Computazionale	Matricola: 20 maggio 2015 — Ingegneria Informatica
	arne i vertici) di tre 2-simplessi e scriverne le matrici FV
e EV	The I vertici) di tre 2-simplessi è scriverne le matrici i v
2 Scrivere una matrice di trasformazione $(0,1,2), (0,-2,1), (2,1,-1)$ nel triangolo standar	di coordinate che mandi il triangolo di vertici d del piano $z=0$
3 Calcolare il prodotto vettoriale dei vettori (1,	1,0) e (0,1,1)
4 Rappresentare l'indice di un libro (parti, capi	toli, sezioni) come multigrafo gerarchico
${f 5}$ Scrivere la matrice di una trasformazione di rispetto all'asse x	scorrimento 3D che inclini di 45 gradi i piani $y = cost$

	Cognome:	Nome:	
١٠/	?()	Matricola:	
c	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
6	Fornire una definizione di "modello LAR" e	e un esempio 2D di modello	
7	Scrivere la matrice di rotazione 2D di angol	lo π/4	
			4
8	Scrivere l'equazione del segmento di retta c	on punti estremi $(2, -3, 4)$ e	(1, 0, 5)
9	Fornire la definizione e un semplice esemplo	o della funzione primitiva pyp	plasm MAT
10	Di la di la da la	1 (7.4.9)	1 (0.5.5)
10	Ricavare la matrice di una traslazione 3D	che porti il punto $(5,4,3)$ ne	el punto (0, 5, 5)

	Cognome:Nome:
٠,	Matricola:
	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
1	Calcolare il prodotto scalare dei vettori $(0,2x,0)$ e $(x/2,1,0)$
2	Fornire la definizione e un semplice esempio della funzione primitiva pyplasm CAT
3	Ricavare la matrice di una rotazione piana di 45 gradi intorno al punto fisso (3,0)
4	Scrivere la trasf. piana che mandi il triangolo standard nel triangolo di vertici (O, A, B)
-	converse to tradit plante one manufit in triangule beautiful for triangule at vertice (0,11,2)
5	Descrivere la struttura di una matrice di traslazione 3D
•	Descrivere la seruevara di una maerice di erasiazione 9D

_	Cognome:Nome:
6	Matricola:
_	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
6	Fornire una definizione di "modello LAR" e un esempio 3D di modello
7	D
7	Rappresentare l'indice di un libro (parti, capitoli, sezioni) come multigrafo gerarchico
8	Scrivere la matrice di rotazione 2D di angolo $\pi/4$
9	Scrivere una funzione python per estrarre le $(d-1)$ -facce orientate di un d-simplesso orientato
10	
10	Scrivere l'equazione del segmento di retta con punti estremi $(2, -3, 4)$ e $(1, 0, 5)$

	Cognome:	Nome:	
٠,)·)	Matricola:	
_	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
1	Scrivere la matrice della riflessione 2D rispe	etto all'asse x	
2	Rappresentare un edificio di parcheggio con	no multigrafo gararabias (ro	mpa 1 2 2
	no 1,2,3, sezione A,B,C, posto 1,2,3,)	ne munigralo gerarchico (rai	mpa 1,2,3, ascensore 1,2,3,
3	Fornire una definizione di "modello LAR" ϵ	e un esempio 2D di modello	
4	Calcolare il prodotto vettoriale dei vettori ((0,1,0) e $(1,1,0)$	
5	Calcolare le coordinate baricentriche del pu	nto (1/2 1/2) rispetto al sir	mplesso standard 2D
	Calcolare le coordinate barreentriche dei pu	into (1/2, 1/2) rispetto ai sii	npiesso standard 2D

	Cognome:	Nome:	
•	"	Matricola:	
_	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
6 risp	Scrivere la matrice di una trasformazione setto all'asse y	di scorrimento 3D che inclir	ni di 15 gradi i piani $z=cost$
7	Ricavare la matrice di uno scalamento 3D o	che dimezzi le coordinate, e	con punto fisso $(0,5,5)$
8	Fornire la definizione e un semplice esemple	o della funzione primitiva py	plasm DISTR
9	Scrivere una funzione python per estrarre l	e $(d-1)$ -facce orientate di ${\mathfrak t}$	n d-simplesso orientato
10 (2,	Scrivere una matrice di trasformazio $-1, 2$, $(0, -2, 1)$, $(0, 1, -1)$ in $(0, 0, 1)$, $(1, 0, -1)$		andi il triangolo di vertici

	Cognome:	Nome:	
•	ノイ	Matricola:	
	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
1 fin	Disegnare un oggetto geometrico 2D con pestre), e il corrispondente modello di multigra	parti ripetute (facciata di	
2	Specificare quando uno scalamento si dice di		
	opecinicate quanto uno semameno si circe di	compressione	
3	Ricavare la matrice di una traslazione 3D ch	e porti il punto (5, 4, 3) ne	l punto (0, 5, 5)
4	Scrivere la matrice della rotazione 3D di asse	e parallelo al vettore (1, 1,	1) e angolo π
5	Eseguire il prodotto di uno scorrimento piano	o di tangente 1 e che non n	nuta le y , per il vettore $(1,2,3)$

	Cognome:	Nome:	
•)	'	Matricola:	
	Grafica Computazionale	$20~\mathrm{maggio}~2015$	Ingegneria Informatica
rispet	crivere la matrice di una trasformazione di to all'asse y	i scorrimento 3D che inclini	
8 Fo	ornire una definizione e un esempio di com	omazione convessa di punti	
9 11	lustrare sinteticamente almeno una tecnica	nota di memorizzazione di n	natrici sparse
10	Fornire la definizione e un semplice esempi	o della funzione primitiva py	plasm MAP

	Cognome:		
·/	Grafica Computazionale	Matricola:	Ingagnavia Informatica
_			Ingegneria Informatica
1 e I	Disegnare un complesso simpliciale (e nume ${\Bbb C}{\Bbb V}$	erarne i vertici) di tre 2-sim	plessi e scriverne le matrici FV
	B	1.11.6	1 MAD
2	Fornire la definizione e un semplice esemple	o della funzione primitiva py	yplasm MAP
9	Calcolare il prodotto vettoriale dei vettori	(0,1,0), (1,1,0)	
3	Calcolare il prodotto vettoriale dei vettori	(0, 1, 0) e (1, 1, 0)	
4	Fornire il modello LAR del prodotto Cartes	ciano del triangele standard	por il cogmente [0, 1]
-1	Forme i modeno LAR dei prodotto Cartes	siano dei triangolo standard	per il segmento [0, 1]
5	Scrivere la trasf. 3D che mandi il tetraedro	standard nel simplesso di v	vertici (O. A. B. C)
			(-,,-,-,

<u> </u>	Cognome:	Nome:	
')/I		Matricola:	
$\angle \Box$	Grafica Computazionale	$20~\mathrm{maggio}~2015$	Ingegneria Informatica
matrici di din	in un qualunque linguaggio di pro nensioni compatibili	grammazione, una funzione	
8 Scrivere la	a matrice dello scorrimento 2D che	inglini di 20 madi la linga	
S Scrivere is	Thatrice dello scorrillento 2D che	nicinii di 50 gradi le linee c	7.1220Healf
	un oggetto geometrico 2D con p corrispondente modello di multigra		edificio, con balconi, porte e
10 Descrive.	re la struttura di una matrice di ri	flessione elementare 3D	

	Cognome:	Nome:	
١٠,	25	Matricola:	
	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
1	Fornire il modello LAR del prodotto Cartes	iano del triangolo standard	del piano per se stesso
2	Calcolare il prodotto vettoriale dei vettori ((1,0,0) e (1,1,1)	
3	Scrivere la matrice dello scorrimento 2D che		
4	Ricavare la matrice di una rotazione piana d	di 45 gradi intorno al punto	fisso (3,0)
5	Scrivere una funzione python per estrarre le	e $(d-1)$ -facce orientate di u	un d-simplesso orientato

	Cognome:	Nome:	
')		Matricola:	
	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
	una matrice di trasformazione $(0, -2, 1), (0, 1, -1)$ in $(0, 0, 1), (1, 0, 1)$		andi il triangolo di vertici
	l'equazione vettoriale del piano pass		, (1,0,5) e (-1,2,0)
8 Descriver	e la struttura di una matrice di sco	rrimento elementare 3D	
9 Rapprese	entare l'indice di un libro (parti, cap	itoli, sezioni) come multig	rafo gerarchico
10 Fornire	la definizione e un semplice esempio	o della funzione primitiva	pyplasm INSR

_	Cognome:	Nome:	
6		Iatricola:	
	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
	Rappresentare un settore di stadio come muttore A,B,C, gradino 1,2,3, fila destra,sinistr	ltigrafo gerarchico (tribu	
2	Fornire il modello LAR di una griglia 3×3 di	guadrati di lato unitario	
		1	
3	Fornire la definizione e un semplice esempio de	ella funzione primitiva py	plasm INSR
4	Scrivere la matrice di scorrimento elementare 2	2D	
5	Calcolare il prodotto scalare dei vettori $(0, 2x,$	0) e $(x/2, 1, 0)$	

_	Cognome:Nome:
6	Matricola:
_	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
6	Ricavare la matrice di una traslazione 3D che porti il punto $(5,4,3)$ nel punto $(0,5,5)$
7	Fornire una definizione di "matrice sparsa"
8	Calcolare le coordinate baricentriche del punto $(1/2, 1/2)$ rispetto al simplesso standard 2D
Ü	catedate to coordinate surrectione del panto (1/2, 1/2) impetto di simplesso standard 22
9	Scrivere la trasf. piana di coord. che mandi il quadrato standard costruito sugli assi nel quadrato di
vei	tici $(-2, 1.5), (-1, 1.5), (-2, .5), (-1, .5)$
10	Scrivere la matrice di una rotazione 3D di angolo $\pi/2$ con punto fisso $(1,1,1)$ e asse $(0,0,1)$
10	Serivere la matrice di una rotazione 3D di angolo $\pi/2$ con punto isso $(1,1,1)$ e asse $(0,0,1)$

	Composition	Nome	
6	Cognome:	N.f. / * 1	
_	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
_			Ingegneria informatica
1	Calcolare il prodotto vettoriale dei vettori (1,0,0) e (1,1,1)	
2	Specificare quando uno scalamento si dice d	i compressione	
3	Descrivere la struttura di una matrice di tra	aslazione 3D	
4	Rappresentare la struttura di un mobile libr	verio como multigrafo garan	ahiaa
-11	Rappresentare la struttura di un mobile noi	eria come murugraio gerar	cinco
5	Fornire il modello LAR di una griglia 3×3	di quadrati di lato unitario)

		NT	
6	Cognome:		
/	Grafica Computazionale	Matricola:	In many ania Informatica
			Ingegneria Informatica
6	Fornire la definizione e un semplice esempio	o della funzione primitiva py	plasm DISTL
7	Ricavare la matrice di una traslazione 3D cl	he porti il punto (5, 4, 3) ne	I punto (0, 5, 5)
•		pero: 11 pero: (0, 1, 0) 110	, panes (0, 0, 0)
8	Illustrare sinteticamente almeno una tecnica	a nota di memorizzazione di	matrici sparse
9	Calcolare le coordinate baricentriche del pu	into $(-1, 1/2, 3)$ rispetto al s	simplesso standard 3D
10	Scrivere la trasf. 3D che mandi il tetraedr	o standard nel simplesso di	vertici (O, A, B, C)

	10	Cogn	nome:	Nome:	
•	$\prime \times$			Matricola:	
		Grafica	Computazionale	20 maggio 2015	Ingegneria Informatica
1 all	Rappresent	are la stru	ttura di un complesso grafo gerarchico	o abitativo (edificio 1,2,3,	scala A,B,C, piano $1,2,3,$
an	08810 1,2,0)	come mare	graio gerarenteo		
2	Fornire il r	nodello I.Al	R di una griglia 3 × 3	di quadrati di lato unitario)
-	romme ii ii	nodeno Em	it di dila griglia 5 × 5	di quadrati di lato dilitare	,
3	Scrivere la	matrice de	lla riflessione 2D rispe	etto all'asse x	
4	Descrivere	la etrutture	a di una matrice di sc	orrimento elementare 3D	
-	Descrivere	ia strattare	a di dia matrice di se	orrimento ciementare ob	
5	Calcolare i	l prodotto	vettoriale dei vettori ((0,1,0) e $(1,1,0)$	

	Cognome:Nome:
\mathbf{O}	Matricola:
Z (Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
6 Sc	rivere l'equazione vettoriale del piano passante per i punti $(2, -3, 4)$, $(1, 0, 5)$ e $(-1, 2, 0)$
7 Sc	rivere la matrice della rotazione 3D di asse parallelo al vettore $(1,1,1)$ e angolo π
8 Fo	rnire la definizione e un semplice esempio della funzione primitiva pyplasm CAT
	finire una funzione python per memorizzare una matrice binaria sparsa come dizionario, e fornire nzione di trasposizione
10 F	ticavare la matrice di una rotazione piana di 120 gradi intorno al punto fisso $(0,5)$

	Cognome:	Nome:	
6		Nome: Matricola:	
	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
1	Fornire la definizione e un semplice esempio o	lella funzione primitiva py	plasm DISTR
2	Specificare quando uno scalamento si dice di	espansione	
3	Descrivere un semplice algoritmo di trasposiz	ione di una matrice sparsa	memorizzata come insieme di
tri	iple		
4	Fornire il modello LAR del prodotto Cartesia	no del quadrato standard	per il segmento [0, 1]
	Disayona la matuica di una turalazione an di	norti il nunto (5 4 2)	nunto (0, 5, 5)
5	Ricavare la matrice di una traslazione 3D che	e porti ii punto (5, 4, 3) nei	punto (0, 5, 5)

	Cognome:	Nome:	
۰	29	Matricola:	
	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
6	Descrivere la struttura di una matrice di tra	aslazione 3D	
7	Calcolare il prodotto vettoriale dei vettori ((1, 1, 0) e (0, 1, 1)	
8	Calcolare le coordinate baricentriche del pu	nto $(1/2, 1/2)$ rispetto al sir	mplesso standard 2D
9	Rappresentare la struttura di un complesso	abitativo (edificio 1.2.3	scala A B C piano 1 2 3
	oggio 1,2,3) come multigrafo gerarchico	, assumero (camero 1,2,0,	2,2,0, plane 1,2,0,
10	Scrivere la trasf. piana che mandi il triang	golo standard nel triangolo	di vertici (O, A, B)

Cognome:Nome:	
Matricola:	
Grafica Computazionale 20 maggio 2015 Ingegneria Info	rmatica
1 Disegnare un complesso simpliciale (e numerarne i vertici) di due 3-simplessi e scriverne le m e EV	atrici FV
2 Scrivere la trasf. piana di coord. che mandi il quadrato standard costruito sugli assi nel qu vertici $(-2, 1.5), (-1, 1.5), (-2, .5), (-1, .5)$	adrato di
$oldsymbol{3}$ Fornire il modello LAR del prodotto Cartesiano del quadrato standard per il segmento $[0,1]$	
4 Calcolare le coordinate baricentriche del punto $(1/2, 1/2)$ rispetto al simplesso standard 2D	
5 Calcolare il prodotto vettoriale dei vettori $(0, 1, 0)$ e $(1, 1, 0)$	

	Cognome:	Nome:	
\subseteq		Matricola:	
C	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
6	Descrivere la struttura di una matrice di scal	lamento 3D	
7	Don't le le Cott in a constitue de la Cott	1.11. Complementation	INCD
7	Fornire la definizione e un semplice esempio	della funzione primitiva py	piasm INSK
8	Rappresentare la struttura di un mobile libre	eria come multigrafo geraro	rhico
9	Scrivere, in un qualunque linguaggio di prog	grammazione, una funzione	che esegua il prodotto di due
ша	atrici di dimensioni compatibili		
10	Specificare quando uno scalamento si dice d	di compressione	

	Cognome: Nome:
\mathcal{L}	Matricola:
	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
1	Rappresentare l'indice di un libro (parti, capitoli, sezioni) come multigrafo gerarchico
	Definire una funzione python per memorizzare una matrice binaria sparsa come dizionario, e fornire
una	funzione di trasposizione
3	Ricavare la matrice di una rotazione piana di 45 gradi intorno al punto fisso $(3,0)$
4	Fornire la definizione e un semplice esempio della funzione primitiva pyplasm LIST
5	Scrivere la matrice di scalamento 2D che dimezzi tutte le coordinate

\sim 1	Cognome:	Nome:	
' 71		Matricola:	
ΩT	Grafica Computazionale	$20~\mathrm{maggio}~2015$	Ingegneria Informatica
rispetto all'a	la matrice di una trasformazione di	scorrimento 3D che inclin	ni di 15 gradi i piani $z=cost$
	l modello LAR di una griglia $2 \times 2 \times 1$		(1,0,5) e (-1,2,0)
10 Calcola	re il prodotto misto dei vettori $(0,2x)$	(x,0), (x/2,1,0), (x,2,0)	

	Cognome:	Nome:	
•_	(·)	Matricola:	
و	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
1	Rappresentare l'indice di un libro (parti, ca	upitoli, sezioni) come multigr	afo gerarchico
2	Ricavare la matrice di uno scalamento 3D o		
3	Illustrare sinteticamente almeno una tecnic	a nota di memorizzazione di	matrici sparse
4	Fornire una definizione e un esempio di con	abinazione convessa di punti	
5	Eseguire il prodotto della matrice di rotazio	one piana di angolo $\pi/3$ per	il vettore (1, 2, 3)

	Cognome:		
_	3. 7	Matricola:	-
و	Grafica Computazio	nale 20 maggio 2015	Ingegneria Informatica
6	Fornire una definizione di "modello L	AR" e un esempio 2D di model	lo
7	Descrivere la struttura di una matrico	e di rotazione elementare 3D	
8	Scrivere la matrice di scalamento 2D	che dimezzi tutte le coordinate	
0	Famina la Jaffairiana a un comunitación	i- Jalla funciona minition	munla ama MAD
9	Fornire la definizione e un semplice es	sempio dena funzione primitiva	pypiasii MAF
10	Scrivere la trasf. piana di coord. ch	e mandi il cerchio unitario con	centro nell'origine nell'ellisse con
	atro in $(1,1)$ e raggi $1/2,2$	e manar ir ceremo amuario con	centro nen origine nen emisse con

ے	Cognome:	Nome:_	
	(:\	Matricola:	
٠	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
1	Ricavare la matrice di uno scalamento 3D c	che dimezzi le coordinate, d	e con punto fisso $(0,5,5)$
2	Fornire la definizione e un semplice esempio		
3 (-	Fornire un metodo di calcolo delle $(1,0,2),(2,3,0),(1,1,1)$	coordinate affini del	piano passante per i punti
4	Illustrare sinteticamente almeno una tecnic	a nota di memorizzazione	di matrici sparse
5 all	Rappresentare la struttura di un complesso oggio 1,2,3) come multigrafo gerarchico	o abitativo (edificio 1,2,3,.	scala A,B,C, piano 1,2,3,

	Cognome:	Nome:	
_	(4	Matricola:	
<u> </u>	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
1 (0,		ard del piano $z=0$	
3	Scrivere la matrice della riflessione 2D rispe		
J			
4	Descrivere la struttura di una matrice di tra	aslazione 3D	
5	Ricavare la matrice di una rotazione piana d	di 120 gradi intorno al punt	o fisso (0,5)

~	Cognome:	Nome:	
2A	0 0 8 11 0 11 11 11 11 11 11 11 11 11 11 11 1	Matricola:	
$\mathbf{O}\mathbf{T}$	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
6 Fornire due	e esempi di combinazione affine d	li punti, rispettivamente di	dimensione due e tre
una funzione d	na funzione python per memorizz li trasposizione		
	tare un settore di stadio come i gradino 1,2,3, fila destra,sin		ına est,ovest; curva nord,sud;
9 Eseguire il	prodotto di uno scorrimento piar	no di tangente 1 e che non m	nuta le y , per il vettore $(1,2,3)$
10 Fornire la	a definizione e un semplice esemp	io della funzione primitiva p	yplasm DISTL

	Cognome:	Nome:	
•_	4 5	Matricola:	
٠	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
1	Scrivere la matrice dello scorrimento 2D che	e inclini di 30 gradi le linee	orizzontali
2	Fornire la definizione e un semplice esempio	o della funzione primitiva p	yplasm LIST
3	Illustrare sinteticamente almeno una tecnica	a nota di memorizzazione d	i matrici sparse
4	Fornire una definizione di "modello LAR" e	e un esempio 3D di modello	
_		1. 1. 1	11 11 11 11 11 11
5 (2,	Scrivere una matrice di trasformazione, $-1, 2$, $(0, -2, 1)$, $(0, 1, -1)$ in $(0, 0, 1)$, $(1, 0, 1)$		andi il triangolo di vertici

	Cognome:	Nome:	
9		Nome Matricola:	
·	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
6	Calcolare il prodotto vettoriale dei vettori (1,		
		, , , , ,	
7	Scrivere la matrice di uno scalamento uniform	ne di parametro 2 con pur	nto fisso (1,1)
	Di la ci li la cap la	1 1 1	(0.5.5)
8	Ricavare la matrice di uno scalamento 3D che	dimezzi le coordinate, e	con punto fisso $(0,5,5)$
9	Rappresentare l'indice di un libro (parti, capi	toli, sezioni) come multig	rafo gerarchico
10			
10	O Fornire due esempi di combinazione affine di	i punti, rispettivamente d	i dimensione due e tre

	Cognome:	Nome:	
-	36	Matricola:	
و	JU Grafica Computazionale	$20~\mathrm{maggio}~2015$	Ingegneria Informatica
1	Fornire una definizione di "matrice sparsa"		
2	Fornire il modello LAR del triangolo standa	rd del piano	
3	Scrivere la trasf. piana di coord. che mand	i il cerchio unitario con cer	ntro nell'origine nell'ellisse con
	entro in $(1,1)$ e raggi $1/2,2$.
4	Fornire la definizione e un semplice esempio	della funzione primitiva py	plasm LIST
5	Calcolare il prodotto vettoriale dei vettori (1 1 0) e (0 1 1)	
	Calculate ii produtto vettoriale dei vettori (1, 1, 0) 0 (0, 1, 1)	

	Cognome:	Nome:	
26	Cognome	Matricola:	
OO	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
6 Scrivere l	a matrice di scorrimento elementa	re 2D	
7 Rapprese	ntare la struttura di un complesso	abitativa (adificia 1.2.2	goals A.P.C. piene 1.2.2
	come multigrafo gerarchico	abitativo (edificio 1,2,5,	scara A,b,C, prano 1,2,5,
8 Fornire u	na definizione e un esempio di gus	cio convesso di punti	
9 Scrivere l rispetto all'a	la matrice di una trasformazione de sse z	li scorrimento 3D che inclir	ni di 30 gradi i piani $x = cost$
F			
	, in un qualunque linguaggio di pr	ogrammazione, una funzion	e che esegua il prodotto di due
matrici di di	mensioni compatibili		

	Cognome:Nome:	
•_	Matricola:	
٠	Grafica Computazionale 20 maggio 2015 Ingegneria Infor	matica
1	${f 1}$ Fornire la definizione e un semplice esempio della funzione primitiva pyplasm MAT	
2	${\bf 2}$ Calcolare il prodotto scalare dei vettori $(0,2x,0)$ e $(x/2,1,0)$	
3	${f 3}$ Calcolare le coordinate baricentriche del punto $(1/2,1/2)$ rispetto al simplesso standard 2D	
4	4 Ricavare la matrice di uno scalamento 3D che dimezzi le coordinate, e con punto fisso (0,5,5))
-	1 Theatraic is married at the section of the amezzi is contained, a contained (0,0,0,0)	,
5	5 Fornire una definizione di "matrice sparsa"	

Cognome:	Nome:	
	Matricola:	
Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
6 Specificare quando uno scalamento si dice di	compressione	
	•	
7 Rappresentare un edificio di parcheggio come	multigrafo gerarchico (rai	mpa 1,2,3, ascensore 1,2,3,
piano 1,2,3, sezione A,B,C, posto 1,2,3,)	,	
8 Scrivere la matrice di una trasformazione di	scorrimento 3D che inclin	i di 15 gradi i piani $z = cost$
rispetto all'asse y		
9 Scrivere la trasf. 3D che mandi il tetraedro st	andard nel simplesso di v	ertici (O, A, B, C)
10 Fornire il modello LAR del prodotto Cartesi	ano del triangolo standaro	d del piano per se stesso

Γ				
6	\mathbf{O}	Cognome:		
_	$\langle \mathbf{X} \rangle$		Matricola:	
•		Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
1	Scrivere	la trasf. 3D che mandi il tetraedro	standard nel simplesso di v	ertici (O, A, B, C)
	D	1.C 1. (1.11. I AD".		
2	Fornire	una definizione di "modello LAR" e	un esempio 3D di modello	
3	Descrive	re la struttura di una matrice di rot	tazione elementare 3D	
4	Fornire	a definizione e un semplice esempio	della funzione primitiva py	vplasm AA
	Control	in and lumming limming all man		l l d: d
5 ma		in un qualunque linguaggio di pro imensioni compatibili	ogrammazione, una iunzion	e che esegua la somma di due

_	Cognome:	Nome:	
_	3 8	Matricola:	T T
_	Grafica Computazionale		Ingegneria Informatica
6	Scrivere la matrice dello scorrimento 2D cl	he inclini di 30 gradi le linee	orizzontali
7	Rappresentare l'indice di un libro (parti, c		
8 (-	Fornire un metodo di calcolo delle $1,0,2),(2,3,0),(1,1,1)$	coordinate affini del pi	ano passante per i punti
9 e]	Disegnare un complesso simpliciale (e num EV	erarne i vertici) di tre 2-simp	olessi e scriverne le matrici FV
10 (1)	Eseguire il prodotto di uno scorrimento $(0,3)$	piano di tangente $1/2$ e che	non muta le x , per il vettore

	Cognome:Nome:
•_	Matricola:
C	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
1	Ricavare la matrice di una rotazione piana di 45 gradi intorno al punto fisso (3,0)
2 set	Rappresentare un settore di stadio come multigrafo gerarchico (tribuna est,ovest; curva nord,sud; ore A,B,C, gradino 1,2,3, fila destra,sinistra; posto 1,2,3,
3	Fornire una definizione di "modello LAR" e un esempio 3D di modello
4	Sintetizzare in poche parole le differenze tra combinazioni lineari, affini, positive e convesse
5	Calcolare il prodotto vettoriale dei vettori $(1,0,0)$ e $(1,1,1)$

6	Cognome:Nom	e:
•	39 Grafica Computazionale Matricola: 20 maggio 201	 L5 Ingegneria Informatica
6		
	o Schwere la matrice di una trasformazione di scorrimento 3D che rispetto all'asse x	
7	7 Scrivere la trasf. 3D che mandi il tetraedro standard nel simplesso	o di vertici (O, A, B, C)
		(
8	8 Fornire la definizione e un semplice esempio della funzione primiti	va pyplasm STRUCT
9	$oldsymbol{9}$ Scrivere una funzione python per estrarre le $(d-1)$ -facce orientat	e di un d-simplesso orientato
10	10 Scrivere la matrice dello scorrimento 2D che inclini di 30 gradi le	lineo orizzontali
10	10 Scrivere la matrice dello scorrimento 2D che inclini di 30 gradi le	e linee orizzontan

	4.0	Cognome:	Nome:	
	1()		Matricola:	
_	tU	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
1	Fornire la	definizione e un semplice esempio	della funzione primitiva py	rplasm CAT
		r i	T T	
2	Fornire il 1	modello LAR di una griglia 3×3	di quadrati di lato unitario	
_	romme m	nodeno Ezitt di una grigna 5 × 5	ai quadrati di iato dilitario	
3	Descrivere	la struttura di una matrice di rif	lessione elementare 3D	
	Descrivere	ia soracoura di una macrico di in-	essione elementare ob	
4	Rappresen	tare un settore di stadio come i	nultigrafo gerarchico (tribi	ına est,ovest; curva nord,sud;
		gradino 1,2,3, fila destra,sin		, , ,
5	Scrivere la	matrice della rotazione 3D di ass	se parallelo al vettore $(-1, -1)$	$-1, -1$) e angolo $\pi/2$

	Cognome:	Nome:	
Λ		Matricola:	
4	J Grafica Computazionale	$20~\mathrm{maggio}~2015$	Ingegneria Informatica
6 Ca	alcolare il prodotto misto dei vettori $(0, 2)$	(x,0), (x/2,1,0), (x,2,0)	
7 De	escrivere un semplice algoritmo di traspos	sizione di una matrice sparsa	a memorizzata come insieme di
triple			
8 Ri	cavare la matrice di una traslazione 3D c	he porti il punto (5,4,3) ne	l punto (0, 5, 5)
9 Si	ntetizzare in poche parole le differenze tra	a combinazioni lineari, affini	i, positive e convesse
10 8	crivere la matrice della riflessione 2D ris	petto all'asse y	

Cognome:Nome: Grafica Computazionale
Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
${f 1}$ Fornire il modello LAR di una griglia $2\times 2\times 2$ di cubi di lato unitario
9 D
${\bf 2}$ Rappresentare la struttura di un complesso abitativo (edificio 1,2,3, scala A,B,C, piano 1,2,3, alloggio 1,2,3) come multigrafo gerarchico
${\bf 3}~$ Scrivere la matrice di una trasformazione di scorrimento 3D che inclini di 30 gradi i piani $x=cost$ rispetto all'asse z
4 Fornire la definizione e un semplice esempio della funzione primitiva pyplasm CAT
5 Ricavare la matrice di uno scalamento 3D che dimezzi le coordinate, e con punto fisso (0,5,5)

11	Cognome:		
41	Grafica Computazionale	Matricola: 20 maggio 2015	
6 Fornire un $(-1,0,2), (2,3,3)$	n metodo di calcolo delle	coordinate affini del	
7 Danie	1		1
7 Descrivere triple	un sempnee argoritmo di traspos	izione di una matrice spai	rsa memorizzata come insieme di
8 Scrivere la centro in (1,1)	trasf. piana di coord. che mano e raggi $1/2, 2$	di il cerchio unitario con o	centro nell'origine nell'ellisse con
9 Specificare	quando uno scalamento si dice c	li espansione	
10 Calcolare	il prodotto misto dei vettori (0,	(2x,0),(x/2,1,0),(x,2,0)	

1	Cognome:Nome:
	Matricola:
	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
1	Scrivere l'equazione del segmento di retta con punti estremi $(2, -3, 4)$ e $(1, 0, 5)$
2	Fornire una definizione di "matrice sparsa"
3	Scrivere la matrice di una trasformazione di scorrimento 3D che inclini di 30 gradi i piani $x=\cos t$
ris	petto all'asse z
4	Specificare quando uno scalamento si dice di espansione
5	Fornire la definizione e un semplice esempio della funzione primitiva pyplasm MAT

Matricola:		Cognome:Nome:
Grafica Computazionale 20 maggio 2015 Ingegneria Informatica 6 Fornire una definizione di "modello LAR" e un esempio 2D di modello 7 Rappresentare l'indice di un libro (parti, capitoli, sezioni) come multigrafo gerarchico 8 Ricavare la matrice di una traslazione 3D che porti il punto (5, 4, 3) nel punto (0, 5, 5) 9 Scrivere la matrice della rotazione 3D di asse parallelo al vettore (1, 1, 1) e angolo π	Λ	
7 Rappresentare l'indice di un libro (parti, capitoli, sezioni) come multigrafo gerarchico 8 Ricavare la matrice di una traslazione 3D che porti il punto $(5,4,3)$ nel punto $(0,5,5)$ 9 Scrivere la matrice della rotazione 3D di asse parallelo al vettore $(1,1,1)$ e angolo π	-	
8 Ricavare la matrice di una traslazione 3D che porti il punto $(5,4,3)$ nel punto $(0,5,5)$ 9 Scrivere la matrice della rotazione 3D di asse parallelo al vettore $(1,1,1)$ e angolo π	6	Fornire una definizione di "modello LAR" e un esempio 2D di modello
8 Ricavare la matrice di una traslazione 3D che porti il punto $(5,4,3)$ nel punto $(0,5,5)$ 9 Scrivere la matrice della rotazione 3D di asse parallelo al vettore $(1,1,1)$ e angolo π		
8 Ricavare la matrice di una traslazione 3D che porti il punto $(5,4,3)$ nel punto $(0,5,5)$ 9 Scrivere la matrice della rotazione 3D di asse parallelo al vettore $(1,1,1)$ e angolo π		
8 Ricavare la matrice di una traslazione 3D che porti il punto $(5,4,3)$ nel punto $(0,5,5)$ 9 Scrivere la matrice della rotazione 3D di asse parallelo al vettore $(1,1,1)$ e angolo π		
8 Ricavare la matrice di una traslazione 3D che porti il punto $(5,4,3)$ nel punto $(0,5,5)$ 9 Scrivere la matrice della rotazione 3D di asse parallelo al vettore $(1,1,1)$ e angolo π		
8 Ricavare la matrice di una traslazione 3D che porti il punto $(5,4,3)$ nel punto $(0,5,5)$ 9 Scrivere la matrice della rotazione 3D di asse parallelo al vettore $(1,1,1)$ e angolo π		
8 Ricavare la matrice di una traslazione 3D che porti il punto $(5,4,3)$ nel punto $(0,5,5)$ 9 Scrivere la matrice della rotazione 3D di asse parallelo al vettore $(1,1,1)$ e angolo π		
8 Ricavare la matrice di una traslazione 3D che porti il punto $(5,4,3)$ nel punto $(0,5,5)$ 9 Scrivere la matrice della rotazione 3D di asse parallelo al vettore $(1,1,1)$ e angolo π		
${\bf 9}$ Scrivere la matrice della rotazione 3D di asse parallelo al vettore $(1,1,1)$ e angolo π	'	Rappresentare l'indice di un fibro (parti, capitoli, sezioni) come multigrato gerarchico
9 Scrivere la matrice della rotazione 3D di asse parallelo al vettore $(1,1,1)$ e angolo π		
9 Scrivere la matrice della rotazione 3D di asse parallelo al vettore $(1,1,1)$ e angolo π		
9 Scrivere la matrice della rotazione 3D di asse parallelo al vettore $(1,1,1)$ e angolo π		
9 Scrivere la matrice della rotazione 3D di asse parallelo al vettore $(1,1,1)$ e angolo π		
9 Scrivere la matrice della rotazione 3D di asse parallelo al vettore $(1,1,1)$ e angolo π		
9 Scrivere la matrice della rotazione 3D di asse parallelo al vettore $(1,1,1)$ e angolo π		
	8	Ricavare la matrice di una traslazione 3D che porti il punto $(5,4,3)$ nel punto $(0,5,5)$
10 Calcolare il prodotto vettoriale dei vettori $(0,1,0)$ e $(1,1,0)$	9	Scrivere la matrice della rotazione 3D di asse parallelo al vettore $(1,1,1)$ e angolo π
10 Calcolare il prodotto vettoriale dei vettori $(0,1,0)$ e $(1,1,0)$		
${f 10}$ Calcolare il prodotto vettoriale dei vettori $(0,1,0)$ e $(1,1,0)$		
10 Calcolare il prodotto vettoriale dei vettori $(0,1,0)$ e $(1,1,0)$		
${f 10}$ Calcolare il prodotto vettoriale dei vettori $(0,1,0)$ e $(1,1,0)$		
10 Calcolare il prodotto vettoriale dei vettori $(0,1,0)$ e $(1,1,0)$		
${f 10}$ Calcolare il prodotto vettoriale dei vettori $(0,1,0)$ e $(1,1,0)$		
	10	Calcolare il prodotto vettoriale dei vettori $(0,1,0)$ e $(1,1,0)$

r		
,	Cognome:Nome:	
	Matricola:	
_	Grafica Computazionale 20 maggio 2015 Ingegner	ria Informatica
1	f 1 Scrivere la trasf. 3D che mandi il tetraedro standard nel simplesso di vertici $(O,A,$	B, C)
		,
2	2 Illustrare sinteticamente almeno una tecnica nota di memorizzazione di matrici spar	rse
3	3 Scrivere la matrice di una rotazione 3D di angolo $\pi/2$ con punto fisso $(1,1,1)$ e asse	(0, 0, 1)
		. (0, 0, -)
4	4 Ricavare la matrice di una rotazione piana di 120 gradi intorno al punto fisso (0,5)	
5	5 Fornire il modello LAR del prodotto Cartesiano del quadrato standard per il segme	nto [0, 1]
1		

	C N
1	Cognome:Nome:Nome:
4	Matricola: Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
6	Rappresentare la struttura di un mobile libreria come multigrafo gerarchico
7	Scrivere la matrice della riflessione 2D rispetto all'asse x
8	Fornire una definizione e un esempio di guscio convesso di punti
9	Fornire la definizione e un semplice esempio della funzione primitiva pyplasm CAT
10	Eseguire il prodotto della matrice di rotazione piana di angolo $\pi/3$ per il vettore $(1,2,3)$

		<u> </u>	Nome	
	1 /	Cognome:	Nome:_ Matricola:	
4	-4 $_{Gr}$	afica Computazionale	20 maggio 2015	Ingegneria Informatica
1				
1	Calcolare ii prod	dotto vettoriale dei vettori ((1,0,0) e (1,1,1)	
2			are una matrice binaria spa	arsa come array di triple e fornire
un	a funzione di tras	sposizione		
3	Ricavare la mat	rice di una rotazione piana	di 120 gradi intorno al pu	nto fisso $(0,5)$
4	Fornire la defini	zione e un semplice esempio	della funzione primitiva	nyplaem LIST
-	Tornire la dellin	zione e un sempnee esemple	o dena funzione primitiva	pypiasiii Eigi
5	Scrivere la matr	ice della rotazione 3D di as	se parallelo al vettore (1, 1	$(1,1)$ e angolo π
1				

1	1 1	Cognome:		
	$L \angle L$		Matricola:	
		Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
6	Calcolare l	e coordinate baricentriche del pur	nto $(1/2, 1/2)$ rispetto al si	mplesso standard 2D
7	Descrivere	la struttura di una matrice di sca	alamento 3D	
8	Scrivere la	matrice dello scorrimento 2D che	inclini di 30 gradi le linee	orizzontali
9	Fornire il r	nodello LAR del prodotto Cartesi	ano del triangolo standard	per il segmento $[0,1]$
10		ntare un settore di stadio come		una est,ovest; curva nord,sud;
set	tore A,B,C,	gradino 1,2,3, fila destra,sini	stra; posto 1,2,3,	

1	Cognome:	
Д		Matricola:
	Grafica Computazionale	20 maggio 2015 — Ingegneria Informatica
1	Scrivere la matrice di rotazione 2D di ango	plo $\pi/4$
2	Definire una funzione python per memorizza	are una matrice binaria sparsa come array di triple e fornire
una	a funzione di trasposizione	
3	Eseguire il prodotto di uno scorrimento pia	ano di tangente 1 e che non muta le y , per il vettore $(1,2,3)$
4	Fornire il modello LAR del prodotto Cartes	siano del quadrato standard per il segmento [0, 1]
	,	[-,]
5	Fornire una definizione e un esempio di con	mbinazione convessa di punti
	Torrire una definizione e un esemplo di con	nomazione convessa di punti

		Composition.	N	0.500.04		
1		Cognome:	Matricola:	ome:		
4	\mathbf{O}	Grafica Computazionale			Ingegneria Informati	ica
6	Descrivere l	a struttura di una matrice di tra				
7	Rappresenta	ure la struttura di un complesso	abitativo (edificio	1,2,3,	scala A,B,C, piano 1,2,3	3,
allog	ggio 1,2,3) c	ome multigrafo gerarchico				
		un qualunque linguaggio di pro	ogrammazione, una	a funzione	che esegua la somma di o	due
mat	rici di dime	nsioni compatibili				
9	Fornire la d	efinizione e un semplice esempio	della funzione pri	mitiva pyj	olasm INSL	
10	Scrivere la	matrice della rotazione 3D di a	sse parallelo al vet	tore $(-1,$	$-1, -1$) e angolo $\pi/2$	

	Cognome:Nome:
	Matricola:
\Box	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
1 risp	Scrivere la matrice di una trasformazione di scorrimento 3D che inclini di 30 gradi i piani $x=\cos t$ oetto all'asse z
2	Fornire una definizione di "matrice sparsa"
3	Fornire una definizione e un esempio di guscio convesso di punti
4	Calcolare il prodotto scalare dei vettori $(0,2x,0)$ e $(x/2,1,0)$
5	Fornire il modello LAR del prodotto Cartesiano del triangolo standard del piano per se stesso

	4 0 C	ognome:	N	Vome:	
	16	58110111101	Matricola:		
	EU Grafi	ca Computazionale	20 maggio	2015	Ingegneria Informatica
6	Specificare quando	uno scalamento si dice d	i espansione		
7	Fornire la definizio	one e un semplice esempio	della funzione pri	imitiva pvi	olaem CAT
•	Tornire la delinizio	me e un sempnee esemplo	dena funzione pri	инича руг	Jiddiii Offi
8	Scrivere la matrice	e della rotazione 3D di ass	se parallelo al vett	ore $(-1, -$	$(1,-1)$ e angolo $\pi/2$
9	Rappresentare la s	truttura di un mobile libi	reria come multigr	afo gerarcl	nico
10	Ricavare la matr	ice di una traslazione 3D	che porti il punto	(5, 4, 3) ne	el punto (0, 5, 5)

	Cognome:N	Jome:	
	Matricola:	OIIIC	
_	Grafica Computazionale 20 maggio	2015 I	Ingegneria Informatica
1	1 Fornire la definizione e un semplice esempio della funzione pr	imitiva pypla	asm MAP
	9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
2	2 Scrivere la matrice di scorrimento elementare 2D		
3 ma	3 Scrivere, in un qualunque linguaggio di programmazione, un matrici di dimensioni compatibili	a funzione c	he esegua la somma di due
4	4 Scrivere l'equazione vettoriale del piano passante per i punti ((2, -3, 4), (1, -3, 4)	, 0, 5) e (-1, 2, 0)
5	5 Fornire il modello LAR del prodotto Cartesiano del triangolo	standard pe	r il segmento [0, 1]
	·	•	

Cognome:	Nome:	
17	Matricola:	
Grafica Computazionale		Ingegneria Informatica
		3.0
6 Descrivere la struttura di una matrice di s	corrimento elementare 3D	
7 Eseguire il prodotto di uno scorrimento pia	ano di tangente 1 e che non :	muta le y , per il vettore $(1,2,3)$
8 Scrivere la matrice della rotazione 3D di a	sse parallelo al vettore $(-1,$	$-1,-1)$ e angolo $\pi/2$
9 Disegnare un complesso simpliciale (e num	erarne i vertici) di due 3-sin	nplessi e scriverne le matrici FV
e EV		
10 Rappresentare un settore di stadio come		buna est,ovest; curva nord,sud;
settore A,B,C, gradino 1,2,3, fila destra,si	nistra; posto 1,2,3,	

	Cognome:	Nome:	
	Q	Matricola:	
	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
1	Scrivere la matrice di scalamento 2D che di	mezzi tutte le coordinate	
2	Eseguire il prodotto della matrice di rotazio	one piana di angolo $\pi/3$ per	il vettore $(1,2,3)$
3	Fornire il modello LAR del prodotto Cartes	iano del triangolo standard	del piano per se stesso
4	Scrivere una matrice di trasformazione		ndi il triangolo di vertici
(0,	(1, 2), (0, -2, 1), (2, 1, -1) nel triangolo stand	ard del piano $z = 0$	
5	Fornire la definizione e un semplice esemplo	della funzione primitiva py	plasm INSR

	Cognome:	Nome:	
	Q	Matricola:	
<u>_</u>	Grafica Computazionale	$20~\mathrm{maggio}~2015$	Ingegneria Informatica
6	Ricavare la matrice di una traslazione 3D ch	ne porti il punto (5,4,3) nel	l punto (0, 5, 5)
7	Scrivere l'equazione del segmento di retta co	on punti estremi (2, 3, 4) e (-1.2.0)
•	berriere requiezene der beginnene di reccu ec	511 punos eserenis (2, e, 1) e (1, 2, 0)
8	Rappresentare un settore di stadio come i	multigrafo gararabias (triby	una est avest, surve nard sud.
	tore A,B,C, gradino 1,2,3, fila destra,sin		ina est,ovest, curva nord,sud,
	B		
9	Fornire una definizione di "matrice sparsa"		
10	Descrivere la struttura di una matrice di ri	iflessione elementare 3D	

,	4	Cognome:		
			Matricola:	
_	tJ	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
1	Calcolare	il prodotto vettoriale dei vettori (1		
_	carcorare	ii prodetto vottoriale dei vettori (1, 1, 0) 0 (0, 1, 1)	
2	Illustraro	sinteticamente almeno una tecnica	nota di momorizzazione d	i matrici enarea
_	mustrare	sinteticamente aimeno una tecnica	nota di memorizzazione d	n matrici sparse
3	Rappreser	ntare la struttura di un mobile libr	eria come multigrafo gerar	chico
9	rtappreser	itale la struttura di un mobile noi	eria come munigrato gerar	cinco
4	Scrivere la	a matrice di scalamento 2D che din	nezzi tutte le coordinate	
5	Ricavare l	a matrice di uno scalamento 3D ch	e dimezzi le coordinate, e	con punto fisso $(0,5,5)$

4 0	Cognome:	Nome:	
40	00811011101	Matricola:	
43	Grafica Computazionale	$20~\mathrm{maggio}~2015$	Ingegneria Informatica
6 Descriv	ere la struttura di una matrice di tra	aslazione 3D	
7 Calcola	are le coordinate baricentriche del pu	nto (1/2, 1/2) rispetto al si:	mplesso standard 2D
		(•
8 Scriver	e la trasf. piana di coord. che mand	li il cerchio unitario con ce	ntro nell'origine nell'ellisse con
	(1,1) e raggi $1/2,2$	ii ii coromo umourio con co	nor origine non emere con
9 Fornire	la definizione e un semplice esempio	della funziona primitiva pr	mloom AA
o Formire	na demnizione e un semplice esemplo	dena funzione primitiva py	piasiii AA
10 F		0 v 0 1:1: 1: 1	
10 Fornii	re il modello LAR di una griglia 2 $ imes$	2 × 2 di cubi di lato unitari	O

	Cognome:	Nome:	
$\Xi \cap$	Cognome	Matricola:	
$\mathbf{O}\mathbf{O}$	Grafica Computazionale		Ingegneria Informatica
2 Scrivere, in	Grafica Computazionale e in poche parole le differenze tra tun qualunque linguaggio di prensioni compatibili		
	trasf. piana di coord. che mand $(-1, 1.5), (-2, .5), (-1, .5)$	li il quadrato standard costr	uito sugli assi nel quadrato di
4 Fornire una	definizione di "matrice sparsa"		
5 Calcolare il	prodotto vettoriale dei vettori ((1, 1, 0) e (0, 1, 1)	

	<u> </u>		N.T.		
	\sim Cogn	ome:	Matricola:		
	Crafica	Computazionale			Information
	Granca (Joinputazionale	20 maggio 201	.o ingegneria	Informatica
6	Scrivere la matrice di s	calamento 2D che dir	nezzi tutte le coordina	te	
7	Descrivere la struttura	di una matrice di sco	orrimento elementare 3		
<u> </u>	Fornire la definizione e	un complice ecompie	delle funzione primiti	vo pyploem AA	
8	rornire la dell'ilizione e	un sempnee esempio	dena funzione primitiv	va pypiasiii AA	
9	Fornire una definizione	di "modello LAR" e	un esempio 3D di moc	dello	
10	Rappresentare l'indic	e di un libro (parti, c	apitoli, sezioni) come r	nultigrafo gerarchico)

	Cognome:Nome:
	Matricola:
C	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
1 cer	Scrivere la trasf. piana di coord. che mandi il cerchio unitario con centro nell'origine nell'ellisse con tro in $(1,1)$ e raggi $1/2,2$
2	Ricavare la matrice di uno scalamento 3D che dimezzi le coordinate, e con punto fisso (0,5,5)
-	receivance in materies of the dimezzi is coordinate, e con panto lisso (0,0,0)
3	Calcolare il prodotto misto dei vettori $(0, 2x, 0), (x/2, 1, 0), (x, 2, 0)$
4	Sintetizzare in poche parole le differenze tra combinazioni lineari, affini, positive e convesse
5	Fornire la definizione e un semplice esempio della funzione primitiva pyplasm AA

_	- 1	Cognome:	Nome:	
L	\ l		Matricola:	
C	ノ上	Grafica Computazionale	$20~\mathrm{maggio}~2015$	Ingegneria Informatica
6	Descriver	e la struttura di una matrice di sco	rrimento elementare 3D	
7	Scrivere 1	ına funzione python per estrarre le	(d-1)-facce orientate di	un d-simplesso orientato
		r r r	(,	r
8	Fornire il	modello simpliciale LAR del trians	rolo standard estruso (proc	dotto Cartesiano per [0, 1])
_			, , , , , , , , , , , , , , , , , , ,	[·, -])
9	Rapprese	ntare un settore di stadio come n	ultigrafo gerarchico (trib	una est ovest: curva nord sud:
		C, gradino 1,2,3, fila destra,sini		and obtjerest, carra nora,saa,
10	Scrivere	la matrice di scorrimento elementa	are 2D	

Cognome:	Nome:	
52 Grafica Computazionale	Matricola:	
Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
1 Calcolare il prodotto misto dei vettori (0, 2:	(x,0), (x/2,1,0), (x,2,0)	
2 Definire una funzione python per memorizza	re una matrice binaria spar	sa come array di triple e fornire
una funzione di trasposizione		
3 Scrivere una matrice di trasformazione $(0,1,2), (0,-2,1), (2,1,-1)$ nel triangolo stand		andi il triangolo di vertici
(0,1,2), (0, 2,1), (2,1, 1) Her virtual gold studies	ard der plane 2	
4. Control la control la la control a 2D de		
4 Scrivere la matrice dello scorrimento 2D che	e inclini di 30 gradi le linee	verticali
5 Scrivere la matrice di una rotazione 3D di a	angolo $\pi/2$ con punto fisso ((1, 1, 1) e asse (0, 0, 1)

	Cognome:Nome:
	Matricola:
•	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
6	Ricavare la matrice di una rotazione piana di 120 gradi intorno al punto fisso $(0,5)$
7	Fornire il modello LAR di una griglia 3×3 di quadrati di lato unitario
8	Fornire la definizione e un semplice esempio della funzione primitiva pyplasm LIST
9	Rappresentare un edificio di parcheggio come multigrafo gerarchico (rampa 1,2,3, ascensore 1,2,3,
	no 1,2,3, sezione A,B,C, posto 1,2,3,)
10	
10	Calcolare le coordinate baricentriche del punto $(-1, 1/2, 3)$ rispetto al simplesso standard 3D

	Cogno	me:	No	ome:	
	$\mathbf{\tilde{3}}$	mc	Matricola:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
٠) Grafica C	omputazionale		2015 Ingegr	neria Informatica
1	Fornire la definizione e u	ın semplice esempio			
			•	101	
2	Ricavare la matrice di u	na rotazione piana	di 120 gradi intorno	al punto fisso $(0,$	5)
3	Calcolare il prodotto vet	rtaniala dai vattani ((1, 1, 0) o (0, 1, 1)		
	Calculate if producto ver	toriale del vettori ((1, 1, 0) e (0, 1, 1)		
4	Fornire il modello LAR	di una griglia 2×2	\times 2 di cubi di lato i	unitario	
5	Definire una funzione py	than nor mamariage	na una matrica bina	uio consesso somo es	way di tuipla a famina
	a funzione di trasposizion		are una matrice bina	ria sparsa come ai	ray di tripie e fornire
1					

	Cognome:Nome:			
52	Matricola:			
OO	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica			
6 Scrivere la rispetto all'ass	a matrice di una trasformazione di scorrimento 3D che inclini di 30 gradi i piani $x=\cos t$ se z			
7 Scrivere la	a trasf. piana che mandi il triangolo standard nel triangolo di vertici (O, A, B)			
8 Disegnare un oggetto geometrico 2D con parti ripetute (facciata di edificio, con balconi, porte e				
	corrispondente modello di multigrafo			
9 Fornire un	a definizione e un esempio di guscio convesso di punti			
10 Specifica	re quando uno scalamento si dice di compressione			

	Cognome:Nome:
	Matricola:
\mathbf{O}	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
1 1	lustrare sinteticamente almeno una tecnica nota di memorizzazione di matrici sparse
1 1	distrare sinteticamente aimeno una tecnica nota di memorizzazione di matrici sparse
2	ornire la definizione e un semplice esempio della funzione primitiva pyplasm LIST
3 8	crivere la matrice di scorrimento elementare 2D
4 5	crivere, in un qualunque linguaggio di programmazione, una funzione che esegua la somma di due
	ci di dimensioni compatibili
5 1	escrivere la struttura di una matrice di traslazione 3D

_	Cognome:	Nome:	
<u> </u>)4	Matricola:	T T
	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
6	Fornire il modello LAR del triangolo standa	ard del piano	
7	Rappresentare la struttura di un complesso oggio 1,2,3) come multigrafo gerarchico	abitativo (edificio 1,2,3,	scala A,B,C, piano 1,2,3,
an	ggio 1,2,3) come munigrato gerarenteo		
8	Scrivere la trasf. 3D che mandi il tetraedro	standard nel simplesso di v	ertici (O, A, B, C)
9	Eseguire il prodotto della matrice di rotazio	one piana di angolo $\pi/3$ per	il vettore $(1,2,3)$
10	Scrivere l'equazione del segmento di retta	con punti estremi (2, 3, 4) e	(-1, 2, 0)
			, , ,

-	Cognome:		No	me:	
L) \ <u></u>		Matricola:		
•) Grafica Compu	tazionale	20 maggio 2	2015	Ingegneria Informatica
1	Fornire due esempi di combinaz	zione affine d			mensione due e tre
_	romme due esempt di comisme.	nono ammo a	· paner, repoterrani	onto ar ar	monorous ado e tre
2	Scrivere le treef 3D che mandi	il totrandro	standard nol simplo	seo di vor	tici (O A B C)
_	Scrivere la trasf. 3D che mandi	ii tetraedro	standard her simple	sso di vei	(O, A, B, C)
3	Specificare quando uno scalame	ento si dice d	i espansione		
0	Specificare quando uno scaramo	into si dice d	Capanalone		
4	Ricavare la matrice di uno scal	amento 3D cl	he dimezzi le coordi	nate, e co	on punto fisso (0, 5, 5)
				,	
5	Disegnare un complesso simplic	iale (e numer	arne i vertici) di du	ıe 3-simpl	essi e scriverne le matrici FV
e I		`	,	•	
1					

	Cognome:Nome:
<u></u>	Matricola:
<u></u>	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
6	Scrivere la matrice di uno scalamento uniforme di parametro 2 con punto fisso $(1,1)$
7	Familia la definitione a un complica commis della funciona ministria municam MAT
7	Fornire la definizione e un semplice esempio della funzione primitiva pyplasm MAT
8	Fornire una definizione di "modello LAR" e un esempio 2D di modello
9	Calcolare il prodotto scalare dei vettori $(0, 2x, 0)$ e $(x/2, 1, 0)$
10	Rappresentare l'indice di un libro (parti, capitoli, sezioni) come multigrafo gerarchico
	 , . , , , , , , , , , , , , , , , , , , ,

	Cognome:Nome:
	Matricola:
C	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
1	Fornire la definizione e un semplice esempio della funzione primitiva pyplasm INSR
2	Descrivere la struttura di una matrice di traslazione 3D
3	Fornire il modello simpliciale LAR del triangolo standard estruso (prodotto Cartesiano per [0, 1])
•	Torme il modelle simpliciale 2011 dei vitaligete standard corrase (producte curectiane per [5,1])
4	Definire una funzione python per memorizzare una matrice binaria sparsa come dizionario, e fornire a funzione di trasposizione
dii	a funzione di trasposizione
5	Eseguire il prodotto della matrice di rotazione piana di angolo $\pi/3$ per il vettore $(1,2,3)$

	_	Cognome:	Nome:	
	`	6 cognome.	Matricola:	
•)	U Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
6	F	Cornire due esempi di combinazione affine d		
			r · · · · · · · · · · · · · · · · · · ·	
				1 1 1 1 1
7 ma		crivere, in un qualunque linguaggio di pro ici di dimensioni compatibili	grammazione, una funzione	che esegua il prodotto di due
8	S	crivere la matrice della riflessione 2D risper	tto all'asse x	
9	R	Rappresentare la struttura di un mobile libr	eria come multigrafo geraro	hico
10		Scrivere una matrice di trasformazion		andi il triangolo di vertici
(2,	, —	(1,2), (0,-2,1), (0,1,-1) in $(0,0,1), (1,0,1)$), (0, 1, 1)	

	Cognome:	Nome:	
57	Cognome	Matricola:	
01	Grafica Computazionale		Ingegneria Informatica
	tare un settore di stadio come, gradino 1,2,3, fila destra,s	e multigrafo gerarchico (tribu	ina est,ovest; curva nord,sud;
2 Scrivere la	matrice della riflessione 2D ris	petto all'asse x	
3 Eseguire il	l prodotto di uno scorrimento	piano di tangente 1/2 e che	non muta le x, per il vettore
(1,0,3)			
4 Fornire il r	modello LAR del prodotto Cart	esiano del quadrato standard	per il segmento [0, 1]
5 Fornire la	definizione e un semplice esemp	pio della funzione primitiva py	plasm MAP

	Cognome:	Nome:	
57	Cognome.	Matricola:	
OI	Grafica Computazionale	$20~\mathrm{maggio}~2015$	Ingegneria Informatica
	na funzione python per memorizza li trasposizione	re una matrice binaria spars	a come array di triple e fornire
7 Scrivere la rispetto all'ass	matrice di una trasformazione ϵ se y	li scorrimento 3D che inclin	i di 15 gradi i piani $z=cost$
8 Ricavare la	a matrice di una rotazione piana d	di 45 gradi intorno al punto	fisso (3,0)
9 Scrivere la	trasf. 3D che mandi il tetraedro	standard nel simplesso di ve	ertici (O, A, B, C)
10 Fornire u	na definizione e un esempio di co	mbinazione convessa di pun	ti

	Cognon	ne:	Nome	e:	
	\mathbf{Q}	.0	Matricola:		
٠	Grafica Co	mputazionale	20 maggio 201	5 Ingegneria	In formatica
1	Fornire il modello LAR de	el triangolo standa	ard del piano		
2	Descrivere la struttura di	una matrice di tr	aslazione 3D		
3	Fornire la definizione e un	semplice esemple	o della funzione primiti	va pyplasm DISTR	
		1		TVI	
4	Scrivere, in un qualunque	linguaggio di pr	ogrammazione una fur	nzione che esegua la	somma di due
	atrici di dimensioni compat	ibili	ogrammazione, and rai	mone one ocegan in	bomma ar aac
5	Scrivere l'equazione del se	ormanta di natta a	on punti ostromi (2 - 2	(1,0,5)	
J	Scrivere i equazione dei se	egmento di retta c	on punti estremi (2, –3	5,4) e (1,0,5)	

	Cognome:		Noi	me:	
58		1	Matricola:		
	Grafica Compu		20 maggio 20		Ingegneria Informatica
	are un settore di st gradino 1,2,3, fi			o (tribu	na est, ovest; curva nord, sud;
	na funzione python p li trasposizione	er memorizz	zare una matrice bina	aria spa	rsa come dizionario, e fornire
			e inclini di 30 gradi l	e linee v	verticali
9 Calcolare i	l prodotto scalare de	i vettori (0,	$(2x,0) \in (x/2,1,0)$		
10 Scrivere l	a matrice della rotaz	ione 3D di a	sse parallelo al vetto	re (-1,	$-1,-1)$ e angolo $\pi/2$

		C	NT.	
_	\cap	Cognome:		
	19	C	Matricola:	T., T., f.,
		Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
1	Fornire la	definizione e un semplice esempio	della funzione primitiva py	rplasm CAT
2	Calcolare i	l prodotto vettoriale dei vettori (1.0.0) e (1.1.1)	
_		r producto vetteriale dei vetteri (1,0,0)0(1,1,1)	
	- ·			
3	Descrivere	la struttura di una matrice di sca	alamento 3D	
4	Specificare	quando uno scalamento si dice d	i espansione	
5	Scrivere, in	n un qualunque linguaggio di pro	grammazione, una funzion	e che esegua la somma di due
ma	trici di dim	ensioni compatibili	,	<u> </u>

	Cognome:	Nomo	
		Matricola:	
U	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica
6 D e EV	visegnare un complesso simpliciale (e nume	rarne i vertici) di due 3-sim	plessi e scriverne le matrici FV
	ornire il modello LAR del prodotto Cartes		
8 Si	crivere l'equazione vettoriale del piano pas	sante per i punti $(2, -3, 4)$,	(1,0,5) e (-1,2,0)
9 R	appresentare l'indice di un libro (parti, ca	pitoli, sezioni) come multig	rafo gerarchico
10	Scrivere la matrice della rotazione 3D di a	sse parallelo al vettore (-1	, $-1, -1)$ e angolo $\pi/2$

_	Cognome:Nome:
6	Matricola:
\mathbf{U}	Grafica Computazionale 20 maggio 2015 Ingegneria Informatica
1 Fe	ornire una definizione di "modello LAR" e un esempio 3D di modello
	•
2 E	seguire il prodotto della matrice di rotazione piana di angolo $\pi/3$ per il vettore $(1,2,3)$
3 R	appresentare la struttura di un complesso abitativo (edificio 1,2,3, scala A,B,C, piano 1,2,3,
allogg	gio 1,2,3) come multigrafo gerarchico
4 So	crivere la trasf. 3D che mandi il tetraedro standard nel simplesso di vertici (O, A, B, C)
5 Fo	ornire la definizione e un semplice esempio della funzione primitiva pyplasm INSR

00	Cognome:	Nome:					
60	I	Matricola:					
00	Grafica Computazionale	20 maggio 2015	Ingegneria Informatica				
6 Descriver	6 Descrivere la struttura di una matrice di riflessione elementare 3D						
	una funzione python per memorizza e di trasposizione	e una matrice binaria sp	arsa come dizionario, e fornire				
8 Ricavare	la matrice di una rotazione piana di	120 gradi intorno al punt	to fisso (0, 5)				
	•						
9 Calcolare	e le coordinate baricentriche del punt	o $(1/2, 1/2)$ rispetto al sin	mplesso standard 2D				
10 Scrivere	e la matrice della riflessione 2D risper	tto all'asse x					