PART II.1.a World Building

The three-link manipulator of Origin of coordinate frame B relative World coordinate frame W is located at position $O_B = (2.5m, 2.5m, 0m)$.

The choice of three-link manipulator is shown below:

Joint1 is given as revolute, joint2 as prismative and joint3 as revolute respectively. The link-length are: $l_1 = 1.0m\ l_2 = 0.3m\ l_3 = 0.2m$

PART II.1.b World Building

A sketch about the workplace of a robot. A 2D drawing from top view is shown below:

A 2D drawing from side view is shown below:

PART II.1.c World Building

The manipulator is located $0.5 \mathrm{m}$ from a table. A table is $0.5 \mathrm{m}$ high and $0.5 \mathrm{m}$ square. A cube with $10 \mathrm{cm}$ on a sides is placed at the center top of the table.

PART II.2.a Kinematics and Transformation

A DH table is showing

No	$\mathbf{R}\mathbf{z}$	Tz	Tx	Rx
1	theta1	L1	0	90
2	90	L2 + d2	0	-90
3	theta3	0	L3	0

Table 1: DH table

PART II.2.b Kinematics and Transformation

Calculating the forward kinematics for the manipulator.

$$H_{1}^{0} = H_{1}^{0}H_{2}^{1}H_{3}^{2} \qquad (1)$$

$$H_{1}^{0} = R_{z}T_{z}T_{x}R_{x} \qquad (2)$$

$$H_{1}^{0} = \begin{bmatrix} c_{1} & -s_{1} & 0 & 0 \\ s_{1} & c_{1} & 0 & 0 \\ 0 & 0 & 1 & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c_{1} & 0 & s_{1} & 0 \\ s_{1} & 0 & -c_{1} & 0 \\ 0 & 1 & 0 & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H_{2}^{1} = R_{z}T_{z}T_{x}R_{x} \qquad (3)$$

$$H_{2}^{1} = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & l_{2} + d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & l_{2} + d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H_{3}^{2} = R_{z}T_{z}T_{x}R_{x} \qquad (4)$$

$$H_{3}^{2} = \begin{bmatrix} s_{3} & c_{3} & 0 & 0 \\ -c_{3} & s_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & l_{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} s_{3} & c_{3} & 0 & s_{3}l_{3} \\ -c_{3} & s_{3} & 0 & -c_{3}l_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

From equation (1) we get

$$H_3^0 = H_1^0 H_2^1 H_3^2$$

$$H_3^0 = \begin{bmatrix} c_1 & 0 & s_1 & 0 \\ s_1 & 0 & -c_1 & 0 \\ 0 & 1 & 0 & l_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & l_2 + d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_3 & c_3 & 0 & s_3 l_3 \\ -c_3 & s_3 & 0 & -c_3 l_3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H_3^0 = \begin{bmatrix} 0 & -s_1 & -c_1 & s_1 (l_2 + d_2) \\ 0 & c_1 & -s_1 & -c_1 (l_2 + d_2) \\ 1 & 0 & 0 & l_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_3 & c_3 & 0 & s_3 l_3 \\ -c_3 & s_3 & 0 & -c_3 l_3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H_3^0 = \begin{bmatrix} s_1 c_3 & -s_1 s_3 & -c_1 & s_1 c_3 l_3 + s_1 (l_2 + d_2) \\ -c_1 c_3 & c_1 s_3 & -s_1 & -c_1 c_3 l_3 - c_1 (l_2 + d_2) \\ s_3 & c_3 & 0 & s_3 l_3 + l_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

PART II.2.c Kinematics and Transformation

The inverse kinematics of the manipulator.

PART II.2.d Kinematics and Transformation

The manipulator is set up 0.5m away from the table. The table is 0.5m height and 0.5 meter square. A cube is 10cm on each sides and placed at the center of the table with frame $O_T(x, y, z)$.

The origin of coordinate frame B, relative to the world frame W, is located at position $O_B = (2.5, 2.5, 0)$ The origin of coordinate point frame T, relative to the world frame W, is located at position $O_T = (2.5, 3.25, 0.5)$

PART II.2.e Kinematics and Transformation

The Jacobian of the manipulator can be derive as below.

$$J = \begin{bmatrix} J_v \\ J_\omega \end{bmatrix}$$

$$J_v = \begin{bmatrix} Z_0^0 \times (O_3^0 - O_0^0) & Z_1^0 & Z_2^0 \times (O_3^0 - O_2^0) \end{bmatrix}$$

$$J_\omega = \begin{bmatrix} Z_0^0 & 0 & Z_2^0 \end{bmatrix}$$

$$J_{v1} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \times \begin{bmatrix} s_1 c_3 l_3 + s_1 (l_2 + d_2) \\ -c_1 c_3 l_3 - c_1 (l_2 + d_2) \\ s_3 l_3 + l_1 \end{bmatrix}$$

$$J_{v1} = \begin{bmatrix} c_1 c_3 l_3 + c_1 (l_2 + d_2) \\ s_1 c_3 l_3 + s_1 (l_2 + d_2) \\ 0 \end{bmatrix}$$

$$J_{v2} = \begin{bmatrix} s_1 \\ -c_1 \\ 0 \end{bmatrix}$$

$$J_{v3} = \begin{bmatrix} -c_1 \\ -s_1 \\ 0 \end{bmatrix} \times \begin{bmatrix} s_1 c_3 l_3 \\ -c_1 c_3 l_3 \\ s_3 l_3 \end{bmatrix}$$

$$J_{v3} = \begin{bmatrix} -s_1 s_3 l_3 \\ c_1 s_3 l_3 \\ c_3 l_3 \end{bmatrix}$$

$$J_{v3} = \begin{bmatrix} 0 & 0 & -c_1 \\ 0 & 0 & -s_1 \\ 1 & 0 & 0 \end{bmatrix}$$

We can now describe Jacobian matrix as we plug in J_v and J_{ω} .

$$J = \begin{bmatrix} c_1 c_3 l_3 + c_1 (l_2 + d_2) & s_1 & -s_1 s_3 l_3 \\ s_1 c_3 l_3 + s_1 (l_2 + d_2) & -c_1 & c_1 s_3 l_3 \\ 0 & 0 & c_3 l_3 \\ 0 & 0 & -c_1 \\ 0 & 0 & -s_1 \\ 1 & 0 & 0 \end{bmatrix}$$

PART II.2.f Kinematics and Transformation

Finding all possible singularities of the manipulator.

$$J_v = \begin{bmatrix} c_1 c_3 l_3 + c_1 (l_2 + d_2) & s_1 & -s_1 s_3 l_3 \\ s_1 c_3 l_3 + s_1 (l_2 + d_2) & -c_1 & c_1 s_3 l_3 \\ 0 & 0 & c_3 l_3 \end{bmatrix}$$

For simplicity, we can make the equation as

$$A = c_3 l_3$$

$$B = l_2 + d_2$$

$$A = s_3 l_3$$

$$\begin{split} \det(J_v) &= 0 \\ \det(J_v) &= (c_1A + c_1B)(-c_1A) - s_1(A(s_1A + s_1B)) - s(0) \\ \det(J_v) &= -c_1^2A^2 - c_1^2AB - A^2s_1^2 - ABs_1^2 \\ \det(J_v) &= -AB(s_1^2 + c_1^2) - A^2(s_1^2 + c_1^2) \\ \det(J_v) &= -AB - A^2 \\ \det(J_v) &= -(c_3l_3)(l_2 + d_2) - (c_3l_3)^2 \\ \det(J_v) &= -c_3l_3l_2 - c_3l_3d_2 - c_3^2l_3^2 \end{split}$$

We have singularities configuration for $c_3 = \frac{\pi}{2}$

PART II.3.a Forward/Inverse Kinametics Programming

Listing 1: Forward Kinametics Python code

```
import numpy as np
import math
11 = 1.0 \# m
12 = 0.3 \# m
13 = 0.2 \# m
def forward(theta_1, d_2, theta_3):
      theta_1 = (theta_1/180.0)*np.pi
      theta_3 = (theta_3/180.0)*np.pi
      RTz_{-1} = [[np.cos(theta_{-1}), -np.sin(theta_{-1}), 0, 0],
                [np.sin(theta_1), np.cos(theta_1), 0, 0],
                [0,0,1,11],
                [0,0,0,1]
      RTx_{-1} = [[1, 0, 0, 0]],
               [0,0,-1,0],
                [0,1,0,0],
                [0,0,0,1]
      RTz_2 = [[0, -1, 0, 0],
                [1,0,0,0]
                [0,0,1,12+d2],
                [0,0,0,1]
      RTx_2 = [[1, 0, 0, 0]],
                [0,0,1,0],
                [0, -1, 0, 0],
                [0,0,0,1]]
      RTz_3 = [[np.cos(theta_3), -np.sin(theta_3), 0, 0],
                [np.sin(theta_3), np.cos(theta_3), 0, 0],
                [0,0,1,0],
                [0,0,0,1]
      RTx_3 = [[1, 0, 0, .3],
```

```
[0,1,0,0], \\ [0,0,1,0], \\ [0,0,0,1]]
```

```
\begin{split} &H0\_1 \ = \ np. \, dot \, (RTz\_1 \, , RTx\_1) \\ &H1\_2 \ = \ np. \, dot \, (RTz\_2 \, , RTx\_2) \\ &H2\_3 \ = \ np. \, dot \, (RTz\_3 \, , RTx\_3) \\ &cart\_cord \ = \ np. \, dot \, (np. \, dot \, (H0\_1 \, , H1\_2) \, , H2\_3) \end{split}
```

return cart_cord

PART II.3.b Forward/Inverse Kinametics Programming

Listing 2: Inverse Kinametics Python code

```
import numpy as np
import math
11 = 1.0 \# m
12 = 0.3 \# m
13 = 0.2 \# m
\mathbf{def} inverse(X, Y, Z):
    theta_1 = np.arctan2(Y, X)
    d_{-2} = math. sqrt(X * X + Y * Y) - 12 - 13
    S2 = Z - 11
    S1 = \text{math.sqrt}(X * X + Y * Y)
    S3 = math.sqrt(S1 * S1 + S2 * S2)
    phi = np. arccos((S1*S1 + S2*S2 - S3*S3)/(2*S1*S2))
    theta_3 = 180 - phi
    joint_angles = [theta_1 * (180 / np.pi), d_2, theta_3 * (180 / np.pi)]
    return joint_angles
```

PART II.4.a Dynamics

The last link of the manipulator is removed so that only two links remain. The choice of the manipulator has rectangular solid as a link and mass are uniformly distributed.

Potential energy for each mass and summing the together:

$$\mathcal{P} = P_1 + P_2 \tag{5}$$

$$P_1 = m_1 g \frac{l_1}{2}; P_2 = m_2 g l_1$$

From the equation (5) we get

$$P = m_1 g \frac{l_1}{2} + m_2 g l_1 \tag{6}$$

PART II.4.b Dynamics

 \mathcal{K} is kinetic energy and we have the following equation.

$$\mathcal{K} = \frac{1}{2} \dot{q}^T \left[\sum_{i=1}^n (m_i J_{vi}^T J_{vi} + J_{\omega i}^T R_i I_i R_i^T J_{\omega i}) \right] \dot{q}$$
 (7)

We have the Jacobian from the previous task for calculating velocities.

$$J = \begin{bmatrix} c_1 c_3 l_3 + c_1 (l_2 + d_2) & s_1 & -s_1 s_3 l_3 \\ s_1 c_3 l_3 + s_1 (l_2 + d_2) & -c_1 & c_1 s_3 l_3 \\ 0 & 0 & c_3 l_3 \\ 0 & 0 & -c_1 \\ 0 & 0 & -s_1 \\ 1 & 0 & 0 \end{bmatrix}$$

Since it is the third joint that has been removed, the third column and all instances of l_3 in J should be set to zero. Therefore we can derive the Jacobian as below:

Let $l_2^* = l_2 + d_2$

For i = 1;

$$J_{v1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}; J_{v1}^{T} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$J_{\omega 1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}; J_{\omega 1}^{T} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$J_{v1}^{T}J_{v1} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$J_{\omega 1}^{T}IJ_{\omega 1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} I_{1,x} & 0 & 0 \\ 0 & I_{1,y} & 0 \\ 0 & 0 & I_{1,z} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & I_{1,z} \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} I_{1,z} & 0 \\ 0 & 0 \end{bmatrix}$$

For i = 2;

$$J_{v2} = \begin{bmatrix} c_1 l_2^* & s_1 \\ s_1 l_2^* & -c_1 \\ 0 & 0 \end{bmatrix}; J_{v2}^T = \begin{bmatrix} c_1 l_2^* & s_1 l_2^* & 0 \\ s_1 & -c_1 & 0 \end{bmatrix}$$
$$J_{v2}^T J_{v2} = \begin{bmatrix} l_2^{*2} & 0 \\ 0 & 1 \end{bmatrix}$$

There would not be rotational part for joint 2 as it is given as prismatic joint.

Then from equation (6) we get:

$$\mathcal{K} = \frac{1}{2}\dot{q}^T[(m_1J_{v1}^TJ_{v1} + J_{\omega 1}^TR_1I_1R_1^TJ_{\omega 1}) + (m_2J_{v2}^TJ_{v2})]\dot{q}$$
(8)

$$\mathcal{K} = \frac{1}{2}\dot{q}^{T}[(m_{1}\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} I_{1,z} & 0 \\ 0 & 0 \end{bmatrix}) + (m_{2}\begin{bmatrix} l_{2}^{*2} & 0 \\ 0 & 1 \end{bmatrix})]\dot{q}$$
(9)

$$\mathcal{K} = \frac{1}{2}\dot{q}^{T} \begin{bmatrix} I_{1,z} & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} m_{2}l_{2}^{*2} & 0 \\ 0 & m_{2} \end{bmatrix} \dot{q}$$
(10)

$$\mathcal{K} = \frac{1}{2} \begin{bmatrix} \dot{\theta}_1 & \dot{l}_2^* \end{bmatrix} \begin{bmatrix} I_{1,z} + m_2 l_2^{*2} & 0 \\ 0 & m_2 \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \dot{l}_2^* \end{bmatrix}$$
(11)

$$\mathcal{K} = \frac{1}{2} \begin{bmatrix} (I_{1,z} + m_2 l_2^{*2}) \dot{\theta}_1 & m_2 \dot{l}_2^* \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \dot{l}_2^* \end{bmatrix}$$
 (12)

$$\mathcal{K} = \frac{1}{2} [(I_{1,z} + m_2 l_2^{*2}) \dot{\theta}_1^2 + m_2 \dot{l}_2^{*2}]$$
(13)

Then from equation (6) and (13) we get:

$$\mathcal{L} = \frac{1}{2} [(I_{1,z} + m_2 l_2^{*2}) \dot{\theta}_1^2 + m_2 \dot{l}_2^{*2}] + m_1 g \frac{l_1}{2} + m_2 g l_1$$
(14)

PART II.4.c Dynamics

Deriving the dynamical model of the manipulator using the Euler-Lagrange method The dynamical model of robot can be describe:

$$\mathbf{D}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{g}(\mathbf{q}) = \tau \tag{15}$$

For the manipulatior, the equation should be:

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{\theta}_1} - \frac{\partial \mathcal{L}}{\partial \theta_1} = \tau_1 \tag{16}$$

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial i_2^*} - \frac{\partial \mathcal{L}}{\partial i_2^*} = f_2 \tag{17}$$

$$\frac{\partial \mathcal{L}}{\partial \dot{\theta}_1} = I_{1,z} \dot{\theta}_1 + m_2 l_2^{*2} \dot{\theta}_1$$

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{\theta}_1} = I_{1,z}\ddot{\theta}_1 + 2m_2l_2^*\dot{l}_2^*\dot{\theta}_1 + m_2l_2^{*2}\ddot{\theta}_1$$

$$\frac{\partial \mathcal{L}}{\partial \theta_1} = 0$$

$$\frac{\partial \mathcal{L}}{\partial \dot{l}_2^*} = m_2 \dot{l}_2^*$$

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{l}_2^*} = m_2 \ddot{l}_2^*$$

$$\frac{\partial \mathcal{L}}{\partial l_2^*} = m_2 l_2^* \dot{\theta}_1^2$$

$$\tau_1 = I_{1,z}\ddot{\theta}_1 + 2m_2l_2^*\dot{l}_2^*\dot{\theta}_1 + m_2l_2^{*2}\ddot{\theta}_1$$
$$f_2 = m_2\ddot{l}_2^* - m_2l_2^*\dot{\theta}_1^2$$

$$\begin{bmatrix} \tau_1 \\ f_2 \end{bmatrix} = \begin{bmatrix} I_{1,z} & m_2 \\ m_2 l_2^{*2} & 0 \end{bmatrix} \begin{bmatrix} \ddot{\theta}_1 \\ \ddot{l}_2^2 \end{bmatrix} + \begin{bmatrix} 2m_2 l_2^* \dot{l}_2^* & 0 \\ -m_2 l_2^* \dot{\theta}_1 & 0 \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \dot{l}_1^* \end{bmatrix}$$
(18)

PART II.5.a Control Theory

The resulting dynamic equation from the 2 DOF system in the previous task is shown below.

$$\begin{bmatrix} \tau_1 \\ f_2 \end{bmatrix} = \begin{bmatrix} I_{1,z} & m_2 \\ m_2 l_2^{*2} & 0 \end{bmatrix} \begin{bmatrix} \ddot{\theta}_1 \\ \ddot{l}_2^2 \end{bmatrix} + \begin{bmatrix} 2m_2 l_2^* \dot{l}_2^* & 0 \\ -m_2 l_2^* \dot{\theta}_1 & 0 \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \dot{l}_1^* \end{bmatrix}$$
(19)

By locking the last joint of the system and the system left with just 1 DOF manipulator.

$$\tau_1 = (I_{1,z} + m_2 l_2^{*2})\ddot{\theta}_1 + 2m_2 l_2^* \dot{l}_2^* \dot{\theta}_1$$

For simplicity, let $I_{1,z} = 0$. The derivative of joint2 is constant and $l_2^{*2} = l_2^2$ since joint2 was locked.

$$\tau_1 = m_2 l_2^2 \ddot{\theta}_1$$

By comparing with the equation which was given

$$u(t) = \mathbf{J}\ddot{\mathbf{q}} + \mathbf{B}\dot{\mathbf{q}} + \mathbf{K}\mathbf{q}$$

We can simply get

$$J = m_2 l_2^2$$

$$B = 0$$

$$K = 0$$

PART II.5.b Control Theory

To transform the dynamic equation into the Laplace domain, we get

$$u(t) = J\ddot{\theta}(t) + B\dot{\theta}(t) + K(t)$$

$$U = Js^{2}\theta + Bs\theta + K$$

$$U - K = Js^{2}\theta + Bs\theta$$

$$U - K = \theta(Js^{2} + Bs)$$

$$\theta = \frac{U - K}{Js^{2} + Bs}$$
(21)

So the transfer function block diagram can be describe as follows:

Since we have the value of B and K equal zero, we could modify the Laplace and block diagram as below;

Add a PD-controller to the block diagram and derive the transfer function between the input $\theta_d(s)$ and the output $\theta(s)$.

The error is defined as $e(t) = \theta_d(t) - \theta(t)$.

Firstly, we would like to drive P-controller (K_p) .

(The controller (K) use the error e(t) to calculate its output, called control effort, denote as u (U in block

diagram)).

$$U(t) = K_p e(t)$$

where $e(t) = \theta_d(t) - \theta(t)$, and make Laplace transform.

$$U(s) = K_p E(s)$$

The transfer function block diagram with Proportional Derivative (PD) Controller can be describe as follows:

$$U(s) = (\theta_d - \theta)(K_p + K_d s)$$

The transfer function block diagram with Proportional Derivative (PID) Controller can be describe as follows:

$$U(s) = (\theta_d - \theta)(K_p + K_d s + \frac{K_i}{s})$$

PART II.5.c Control Theory

The PD-controller transfer function between the desired angle input and the resulting angle of the close loop system PD-controller $(K_p \text{ and } K_d)$.

$$u(t) = K_p e(t) + K_d \dot{e}(t)$$

$$u(t) = K_p (\theta_d - \theta) + K_d (\dot{\theta}_d - \dot{\theta})$$

Laplace transform:

$$U(s) = K_p(\theta_d - \theta) + K_d(s\theta_d - s\theta)$$
$$U(s) = K_p(\theta_d - \theta) + K_ds(\theta_d - \theta)$$
$$U(s) = (\theta_d - \theta)(K_p + K_ds)$$

From equation (22) we can make PD-transfer function as below:

$$\theta = \frac{(\theta_d - \theta)(K_p + K_d s)}{J s^2} \tag{23}$$

The PID-controller transfer function between the desired angle input and the resulting angle of the close loop system of the PID-controller $(K_p, K_d \text{ and } K_i)$.

$$u(t) = K_p e(t) + K_d \dot{e}(t) + K_i \int e(t)dt$$

Laplace transform:

$$U(s) = (\theta_d - \theta)(K_p + K_d s + \frac{K_i}{s})$$

From equation (22) we can make PD-transfer function as below:

$$\theta = \frac{(\theta_d - \theta)(K_p + K_d s + \frac{K_i}{s})}{Js^2}$$
(24)