Algorithmique des graphes

1 — Les bases

Anthony Labarre

27 janvier 2021

 $\Rightarrow \mathsf{Graphe} = \mathsf{\acute{e}l\acute{e}ments} \; \mathsf{reli\acute{e}s} \; \mathsf{par} \; \mathsf{une} \; \mathsf{certaine} \; \mathsf{relation}$

Définition 1

Un **graphe** est un couple G = (V, E), où :

- V est un ensemble de sommets;
- $E \subseteq V \times V$ un ensemble d'arêtes;

On utilisera aussi les notations V(G) et E(G) pour bien distinguer le graphe G d'un autre graphe.

Définition 1

Un **graphe** est un couple G = (V, E), où :

- V est un ensemble de **sommets**;
- $E \subseteq V \times V$ un ensemble d'arêtes;

On utilisera aussi les notations V(G) et E(G) pour bien distinguer le graphe G d'un autre graphe.

Définition 1

Un **graphe** est un couple G = (V, E), où :

- V est un ensemble de sommets;
- E ⊆ V × V un ensemble d'arêtes;

On utilisera aussi les notations V(G) et E(G) pour bien distinguer le graphe G d'un autre graphe.

G est simple s'il ne contient ni arêtes parallèles ni boucles.

Définition 1

Un **graphe** est un couple G = (V, E), où :

- V est un ensemble de sommets;
- $E \subseteq V \times V$ un ensemble d'arêtes;

On utilisera aussi les notations V(G) et E(G) pour bien distinguer le graphe G d'un autre graphe.

G est simple s'il ne contient ni arêtes parallèles ni boucles.

Exemple 1

 Une arête {u, v} relie deux sommets adjacents ou voisins; elle est incidente à u et v, qui sont ses extrémités;

Définition 1

Un **graphe** est un couple G = (V, E), où :

- V est un ensemble de sommets;
- $E \subseteq V \times V$ un ensemble d'arêtes;

On utilisera aussi les notations V(G) et E(G) pour bien distinguer le graphe G d'un autre graphe.

G est simple s'il ne contient ni arêtes parallèles ni boucles.

- Une arête {u, v} relie deux sommets adjacents ou voisins; elle est incidente à u et v, qui sont ses extrémités;
- Le voisinage d'un sommet v est l'ensemble de ses voisins :

$$N_G(v) = \{u \mid \{u, v\} \in E(G)\}$$

Définition 1

Un **graphe** est un couple G = (V, E), où :

- *V* est un ensemble de **sommets**;
- $E \subseteq V \times V$ un ensemble d'arêtes;

On utilisera aussi les notations V(G) et E(G) pour bien distinguer le graphe G d'un autre graphe.

G est simple s'il ne contient ni arêtes parallèles ni boucles.

Exemple 1

- Une arête {u, v} relie deux sommets adjacents ou voisins; elle est incidente à u et v, qui sont ses extrémités;
- Le voisinage d'un sommet v est l'ensemble de ses voisins :

$$N_G(v) = \{u \mid \{u,v\} \in E(G)\}$$

• Le **degré** du sommet v est la taille de son voisinage, noté $\deg_G(v)$;

Définition 1

Un **graphe** est un couple G = (V, E), où :

- ullet V est un ensemble de **sommets**;
- $E \subseteq V \times V$ un ensemble d'arêtes;

On utilisera aussi les notations V(G) et E(G) pour bien distinguer le graphe G d'un autre graphe.

G est simple s'il ne contient ni arêtes parallèles ni boucles.

- Une arête {u, v} relie deux sommets adjacents ou voisins; elle est incidente à u et v, qui sont ses extrémités;
- Le voisinage d'un sommet v est l'ensemble de ses voisins :

$$N_G(v) = \{u \mid \{u, v\} \in E(G)\}$$

- Le **degré** du sommet v est la taille de son voisinage, noté $\deg_G(v)$;
- Deux sommets qui ne sont pas voisins sont indépendants;

Étiquetages et dessins

Les sommets et les arêtes peuvent être étiquetés, mais ce n'est pas obligatoire. La manière dont on dessine les graphes n'importe pas :

Étiquetages et dessins

Les sommets et les arêtes peuvent être étiquetés, mais ce n'est pas obligatoire. La manière dont on dessine les graphes n'importe pas :

Les graphes G et H sont **isomorphes** si l'on peut numéroter V(G) et V(H) de telle sorte que E(G) = E(H).

Étiquetages et dessins

Les sommets et les arêtes peuvent être étiquetés, mais ce n'est pas obligatoire. La manière dont on dessine les graphes n'importe pas :

Les graphes G et H sont **isomorphes** si l'on peut numéroter V(G) et V(H) de telle sorte que E(G) = E(H).

On ne connaît pas la complexité du problème de décision associé; le meilleur algorithme connu est en $\exp((\log n)^{O(1)})$ [1].

Isomorphisme

Voici des étiquetages prouvant que les graphes précédents sont tous isomorphes :

Les arêtes deviennent $\{\{0,1\},\{0,3\},\{0,4\},\ldots,\{6,7\}\}.$

On s'intéressera régulièrement à un "morceau" particulier d'un graphe G.

• Un sous-graphe d'un graphe G = (V, E) est un graphe H = (V', E') avec $V' \subseteq V$ et $E' \subseteq E$.

On s'intéressera régulièrement à un "morceau" particulier d'un graphe G.

- Un sous-graphe d'un graphe G = (V, E) est un graphe H = (V', E') avec $V' \subseteq V$ et $E' \subseteq E$.
- H est **induit** par V' si E' contient toutes les arêtes de E reliant deux sommets de V' dans G; on écrit alors H = G[V'].

On s'intéressera régulièrement à un "morceau" particulier d'un graphe G.

- Un sous-graphe d'un graphe G = (V, E) est un graphe H = (V', E') avec $V' \subseteq V$ et $E' \subseteq E$.
- H est induit par V' si E' contient toutes les arêtes de E reliant deux sommets de V' dans G; on écrit alors H = G[V'].
- H est **induit** par F' si V' contient seulement les sommets de V reliés par F' dans G; on écrit alors H = G[F'].

On s'intéressera régulièrement à un "morceau" particulier d'un graphe G.

- Un sous-graphe d'un graphe G = (V, E) est un graphe H = (V', E') avec $V' \subseteq V$ et $E' \subseteq E$.
- H est **induit** par V' si E' contient toutes les arêtes de E reliant deux sommets de V' dans G; on écrit alors H = G[V'].
- H est **induit** par F' si V' contient seulement les sommets de V reliés par F' dans G; on écrit alors H = G[F'].

On s'intéressera régulièrement à un "morceau" particulier d'un graphe G.

- Un sous-graphe d'un graphe G = (V, E) est un graphe H = (V', E') avec $V' \subseteq V$ et $E' \subseteq E$.
- H est induit par V' si E' contient toutes les arêtes de E reliant deux sommets de V' dans G; on écrit alors H = G[V'].
- H est **induit** par F' si V' contient seulement les sommets de V reliés par F' dans G; on écrit alors H = G[F'].

On s'intéressera régulièrement à un "morceau" particulier d'un graphe G.

- Un sous-graphe d'un graphe G = (V, E) est un graphe H = (V', E') avec $V' \subseteq V$ et $E' \subseteq E$.
- H est induit par V' si E' contient toutes les arêtes de E reliant deux sommets de V' dans G; on écrit alors H = G[V'].
- H est **induit** par F' si V' contient seulement les sommets de V reliés par F' dans G; on écrit alors H = G[F'].

Graphes fréquents

Certains graphes reviennent souvent dans les applications :

• un **chemin** dans un graphe G est une séquence $P=(u_0,u_1,u_2,\ldots,u_{p-1})$ de sommets **distincts** où $\{u_i,u_{i+1}\}\in E(G)$ pour $0\leq i\leq p-2$;

Certains graphes reviennent souvent dans les applications :

• un **chemin** dans un graphe G est une séquence $P = (u_0, u_1, u_2, \dots, u_{p-1})$ de sommets **distincts** où $\{u_i, u_{i+1}\} \in E(G)$ pour $0 \le i \le p-2$;

Graphes fréquents

Certains graphes reviennent souvent dans les applications :

• un **chemin** dans un graphe G est une séquence $P = (u_0, u_1, u_2, \dots, u_{p-1})$ de sommets **distincts** où $\{u_i, u_{i+1}\} \in E(G)$ pour $0 \le i \le p-2$;

• un **cycle** dans un graphe G est une séquence $C = (u_0, u_1, u_2, \dots, u_p)$ de sommets où $\{u_i, u_{i+1 \mod p}\} \in E(G)$ pour $0 \le i \le p-1$.

Certains graphes reviennent souvent dans les applications :

• un **chemin** dans un graphe G est une séquence $P = (u_0, u_1, u_2, \dots, u_{p-1})$ de sommets **distincts** où $\{u_i, u_{i+1}\} \in E(G)$ pour $0 \le i \le p-2$;

• un **cycle** dans un graphe G est une séquence $C = (u_0, u_1, u_2, \dots, u_p)$ de sommets où $\{u_i, u_{i+1 \mod p}\} \in E(G)$ pour $0 \le i \le p-1$.

Certains graphes reviennent souvent dans les applications :

• un **chemin** dans un graphe G est une séquence $P = (u_0, u_1, u_2, \dots, u_{p-1})$ de sommets **distincts** où $\{u_i, u_{i+1}\} \in E(G)$ pour $0 \le i \le p-2$;

• un **cycle** dans un graphe G est une séquence $C = (u_0, u_1, u_2, \dots, u_p)$ de sommets où $\{u_i, u_{i+1 \mod p}\} \in E(G)$ pour $0 \le i \le p-1$.

• enfin, on dit d'un graphe G = (V, E) qu'il est **complet** si $E = V \times V$, c'est-à-dire que chaque sommet est adjacent à tous les autres.

Graphes fréquents

Certains graphes reviennent souvent dans les applications :

• un **chemin** dans un graphe G est une séquence $P = (u_0, u_1, u_2, \dots, u_{p-1})$ de sommets **distincts** où $\{u_i, u_{i+1}\} \in E(G)$ pour $0 \le i \le p-2$;

• un **cycle** dans un graphe G est une séquence $C = (u_0, u_1, u_2, \dots, u_p)$ de sommets où $\{u_i, u_{i+1 \mod p}\} \in E(G)$ pour $0 \le i \le p-1$.

• enfin, on dit d'un graphe G = (V, E) qu'il est **complet** si $E = V \times V$, c'est-à-dire que chaque sommet est adjacent à tous les autres.

Graphes fréquents

Certains graphes reviennent souvent dans les applications :

 un chemin dans un graphe G est une séquence P = (u₀, u₁, u₂, ..., u_{p-1}) de sommets distincts où {u_i, u_{i+1}} ∈ E(G) pour 0 ≤ i ≤ p − 2;

• un **cycle** dans un graphe G est une séquence $C = (u_0, u_1, u_2, \ldots, u_p)$ de sommets où $\{u_i, u_{i+1 \mod p}\} \in E(G)$ pour $0 \le i \le p-1$.

 enfin, on dit d'un graphe G = (V, E) qu'il est complet si E = V × V, c'est-à-dire que chaque sommet est adjacent à tous les autres.

La longueur d'un cycle ou d'un chemin est son nombre d'arêtes.

La **taille** d'un graphe G = (V, E) est son nombre d'arêtes |E|. Si G est simple, on peut la calculer à l'aide de la relation suivante :

$$\sum_{v \in V} \deg(v) = 2|E|. \tag{1}$$

La **taille** d'un graphe G = (V, E) est son nombre d'arêtes |E|. Si G est simple, on peut la calculer à l'aide de la relation suivante :

$$\sum_{v \in V} \deg(v) = 2|E|. \tag{1}$$

Exemple 3

La taille d'un graphe G = (V, E) est son nombre d'arêtes |E|. Si G est simple, on peut la calculer à l'aide de la relation suivante :

$$\sum_{v \in V} \deg(v) = 2|E|. \tag{1}$$

Exemple 3

La **taille** d'un graphe G = (V, E) est son nombre d'arêtes |E|. Si G est simple, on peut la calculer à l'aide de la relation suivante :

$$\sum_{v \in V} \deg(v) = 2|E|. \tag{1}$$

Exemple 3

La taille d'un graphe G = (V, E) est son nombre d'arêtes |E|. Si G est simple, on peut la calculer à l'aide de la relation suivante :

$$\sum_{v \in V} \deg(v) = 2|E|. \tag{1}$$

La **taille** d'un graphe G = (V, E) est son nombre d'arêtes |E|. Si G est simple, on peut la calculer à l'aide de la relation suivante :

$$\sum_{v \in V} \deg(v) = 2|E|. \tag{1}$$

Exemple 3

Degrés et taille

La **taille** d'un graphe G = (V, E) est son nombre d'arêtes |E|. Si G est simple, on peut la calculer à l'aide de la relation suivante :

$$\sum_{v \in V} \deg(v) = 2|E|. \tag{1}$$

Exemple 3

En effet, si l'on parcourt les sommets du graphe en sélectionnant chaque arête incidente à chacun des sommets, on aura sélectionné chaque arête exactement deux fois.

Degrés et taille

La **taille** d'un graphe G = (V, E) est son nombre d'arêtes |E|. Si G est simple, on peut la calculer à l'aide de la relation suivante :

$$\sum_{v \in V} \deg(v) = 2|E|. \tag{1}$$

En effet, si l'on parcourt les sommets du graphe en sélectionnant chaque arête incidente à chacun des sommets, on aura sélectionné chaque arête exactement deux fois.

 K_n contient le nombre maximum d'arêtes, à savoir $\binom{n}{2} = n(n-1)/2$.

Degrés et taille

La taille d'un graphe G = (V, E) est son nombre d'arêtes |E|. Si G est simple, on peut la calculer à l'aide de la relation suivante :

$$\sum_{v \in V} \deg(v) = 2|E|. \tag{1}$$

Exemple 3

En effet, si l'on parcourt les sommets du graphe en sélectionnant chaque arête incidente à chacun des sommets, on aura sélectionné chaque arête exactement deux fois.

 K_n contient le nombre maximum d'arêtes, à savoir $\binom{n}{2} = n(n-1)/2$.

Donc pour tout graphe $G = (V, E) : |E| = O(|V|^2)$, et $\log |E| = O(\log |V|)$.

• Les deux encodages de graphes les plus fréquents se basent sur des *matrices* ou des *listes* d'adjacence;

- Les deux encodages de graphes les plus fréquents se basent sur des matrices ou des listes d'adjacence;
- Le choix de la représentation est important, car :

- Les deux encodages de graphes les plus fréquents se basent sur des *matrices* ou des *listes* d'adjacence;
- Le choix de la représentation est important, car :
 - 1 la consommation en mémoire n'est pas la même;

- Les deux encodages de graphes les plus fréquents se basent sur des *matrices* ou des *listes* d'adjacence;
- Le choix de la représentation est important, car :
 - 1 la consommation en mémoire n'est pas la même;
 - 2 la complexité des opérations diffère aussi;

- Les deux encodages de graphes les plus fréquents se basent sur des *matrices* ou des *listes* d'adjacence;
- Le choix de la représentation est important, car :
 - 1 la consommation en mémoire n'est pas la même;
 - 2 la complexité des opérations diffère aussi;
- Le "bon" choix dépend des algorithmes et des applications qui nous intéressent;

Matrice d'adjacence

Définition 2

La matrice d'adjacence A(G) du graphe G=(V,E) contient un 1 en ligne i et en colonne j si l'arête $\{i,j\}$ existe, et un 0 sinon :

$$A_{ij}(G) = \left\{ egin{array}{ll} 1 & ext{si } \{i,j\} \in E, \ 0 & ext{sinon}. \end{array}
ight.$$

Matrice d'adjacence

Définition 2

La matrice d'adjacence A(G) du graphe G=(V,E) contient un 1 en ligne i et en colonne j si l'arête $\{i,j\}$ existe, et un 0 sinon :

$$A_{ij}(G) = \begin{cases} 1 & \text{si } \{i,j\} \in E, \\ 0 & \text{sinon.} \end{cases}$$

Exemple 4

	0	1	2	3	4
0	0	1	0	0	0
1	1	0	1	1	1
2	0	1	0	1	0
3	0	1	1	0	1
4	0	1	0	1	0

	0	1	2	3	4
0	0				
1	1	0			
2	0	1	0		
3	0	1	1	0	
4	0	1	0	1	0

010010011001010

Matrice d'adjacence

Définition 2

La matrice d'adjacence A(G) du graphe G=(V,E) contient un 1 en ligne i et en colonne j si l'arête $\{i,j\}$ existe, et un 0 sinon :

$$A_{ij}(G) = \begin{cases} 1 & \text{si } \{i,j\} \in E, \\ 0 & \text{sinon.} \end{cases}$$

Exemple 4

	0	1	2	3	4
0	0	1	0	0	0
1	1	0	1	1	1
2	0	1	0	1	0
3	0	1	1	0	1
4	0	1	0	1	0

		0	1	2	3	4
	0	0				
	1	1	0			
	2	0	1	0		
	3	0	1	1	0	
ĺ	4	0	1	0	1	0

010010011001010

Les connexions sont symétriques, donc A(G) aussi, et on pourrait donc n'en garder que la moitié. S'il n'y a pas de poids, une chaîne binaire suffit.

Listes d'adjacence

Les **listes d'adjacence** encodent, pour chaque sommet du graphe G = (V, E), la liste des voisins de ce sommet.

Exemple 5

L'API Graphe

Les algorithmes étudiés supposeront l'existence d'une classe Graphe proposant les méthodes suivantes :

Méthode
ajouter_arete(u, v)
ajouter_aretes(séquence)
ajouter_sommet()
aretes()
boucles()
contient_arete(u, v)
contient_sommet(u)
degre(sommet)
nombre_aretes()
nombre_boucles()
nombre_sommets()
retirer_arete(u, v)
retirer_aretes(séquence)
retirer_sommet(sommet)
retirer_sommets(séquence)
sommets()
sous_graphe_induit(séquence)
voisins(sommet)

Exercice

Quelle est la complexité de chacune des méthodes, dans le cas des matrices et des listes d'adjacence?

Comparaison des complexités

Les algorithmes étudiés supposeront l'existence d'une classe Graphe proposant les méthodes suivantes :

Méthode	Matrice d'adjacence	Liste d'adjacence
ajouter_arete(u, v)	O(1) si u et v existent	$O(\deg(u) + \deg(v))$ si u et v existent
ajouter_aretes(séquence)	O(séquence)	$O(\Delta \times \text{séquence})$
ajouter_sommet()	O(n)	O(1)
aretes()	$O(n^2)$	O(m)
boucles()	O(n)	O(m)
contient_arete(u, v)	O(1)	$O(\deg(u) + \deg(v))$
contient_sommet(u)	O(1)	O(1)
degre(sommet)	O(n)	O(1)
nombre_aretes()	$O(n^2)$	O(n)
nombre_boucles()	O(n)	O(m)
nombre_sommets()	O(1)	O(1)
retirer_arete(u, v)	O(1)	$O(\deg(u) + \deg(v))$
retirer_aretes(séquence)	O(séquence)	$O(\Delta \times \text{séquence})$
retirer_sommet(sommet)	$O(n^2)$	O(m+n)
retirer_sommets(séquence)	$O(n^2 \times \text{séquence})$	$O((m+n) \times \text{séquence})$
sommets()	O(n)	O(n)
sous_graphe_induit(séquence)	$O(séquence ^2)$	$O(\Delta \times \text{séquence} ^2)$
voisins(sommet)	O(n)	O(deg(sommet))

 Δ est le degré maximum du graphe; n = |V(G)|, m = |E(G)|.

 On peut améliorer les complexités de certaines opérations dans les deux cas;

- On peut améliorer les complexités de certaines opérations dans les deux cas;
- ... mais ces choix peuvent aussi avoir un impact négatif sur d'autres opérations ou l'espace consommé;

- On peut améliorer les complexités de certaines opérations dans les deux cas;
- ... mais ces choix peuvent aussi avoir un impact négatif sur d'autres opérations ou l'espace consommé;
- En général, on implémente plusieurs classes, et on utilise "la bonne" en fonction de la situation;

- On peut améliorer les complexités de certaines opérations dans les deux cas;
- ... mais ces choix peuvent aussi avoir un impact négatif sur d'autres opérations ou l'espace consommé;
- En général, on implémente plusieurs classes, et on utilise "la bonne" en fonction de la situation;
- Il vaut toujours mieux séparer les identifiants des propriétés;

- On peut améliorer les complexités de certaines opérations dans les deux cas;
- ... mais ces choix peuvent aussi avoir un impact négatif sur d'autres opérations ou l'espace consommé;
- En général, on implémente plusieurs classes, et on utilise "la bonne" en fonction de la situation;
- Il vaut toujours mieux séparer les identifiants des propriétés;
- Par exemple : ne pas utiliser "bonjour" pour identifier un sommet, mais plutôt un naturel k et éventuellement une structure noms avec nom[k] = "bonjour";

Graphviz et dot

Graphviz est une suite d'outils permettant de visualiser des graphes exprimés dans le langage dot. Le format est simple :

Exemple 6

```
graph G {
    # liste de sommets avec leurs propriétés
    0;
    1;
    2;
    # liste d'arêtes avec leurs propriétés
    0 -- 1:
    1 -- 2:
    3 -- 7:
    # ...
```

Visualisation

Les graphes exprimés dans le langage dot peuvent être convertis en images en ligne (http://www.webgraphviz.com/) ou à l'aide d'un des outils suivants :

- dot : dessine les graphes de manière hiérarchique, typiquement utilisé pour les graphes orientés (voir plus loin) ou les arbres.
- neato : utilisé en général pour les graphes de taille raisonnable (moins de 100 sommets).
- fdp : similaire à neato.
- sfdp : plus adapté aux grands graphes.
- twopi : dispose un sommet au centre, et les autres sur des cercles concentriques autour de ce centre.
- circo : dispose les sommets du graphe sur un cercle.
- osage : plus adapté aux graphes "en couches".

Bibliographie

[1] László Babai.

Graph isomorphism in quasipolynomial time [extended abstract].

In Daniel Wichs and Yishay Mansour, editors, *Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016*, pages 684–697. ACM, 2016.