Problem Set 8

Due Tuesday December 3 at 9:30 AM. Submit in class or in TA's mailbox in the Physics office.

- 1. Shankar 11.4.1
- 2. Shankar 11.4.2
- 3. Shankar 11.4.3
- 4. Consider a system of five atomic sites arranged in a square, with site 5 at the center of the square. Let

$$\langle \mathbf{\phi}_i | H | \mathbf{\phi}_{i+1} \rangle = -\Delta, \ i = 1, 2, 3 \tag{1}$$

$$\langle \mathbf{\varphi}_4 | H | \mathbf{\varphi}_1 \rangle = -\Delta \tag{2}$$

$$\langle \mathbf{\varphi}_i | H | \mathbf{\varphi}_5 \rangle = -\Delta, \ i = 1, 2, 3, 4 \tag{3}$$

$$\langle \varphi_i | H | \varphi_i \rangle = \varepsilon, \ i = 1, 2, 3, 4, 5 \tag{4}$$

(5)

where Δ is real. All other matrix elements, apart from those constrained by the fact that H is Hermitian, are 0. We will use symmetries of H to find the energy eigenvectors and eigenvalues. For concreteness, let's say that site 1 is in the upper left, and that the site numbering goes clockwise from there.

- (a) First, find the eigenvectors and eigenvalues of the Hamiltonian using the Π_x symmetry, where Π_x is the operator which reflects the system across a vertical line through site 5.
- (b) Next, find the eigenvectors and eigenvalues of the Hamiltonian using the symmetry of a rotation through an appropriate angle.
- (c) Verify that the two approaches yield consistent results, both in terms of eigenvalues and eigenvectors of the Hamiltonian.
- 5. This problem deals with the anharmonic oscillator:

$$H = \frac{p^2}{2m} + \frac{1}{2}kx^2 + \lambda x^4 \tag{6}$$

(a) Rescale the variables so that the problem for $\lambda = 0$ is given in dimensionless variables. (Hint: express the dimensionless operator $h = H/(\hbar\omega)$ in terms of the dimensionless position operator $z = \beta x$ which we have used in class.) Show that the eigenvalues of H take the form

$$E = \hbar \omega f(\Lambda), \tag{7}$$

with $\Lambda = \hbar \lambda / m^2 \omega^3$ (a dimensionless quantity). From here on, you can set $m = k = \hbar = \omega = 1$, $\lambda = \Lambda$.

(b) Estimate the ground state energy of the anharmonic oscillator by computing

$$E_{\rm try} = \langle 0|H|0\rangle, \tag{8}$$

- where $|0\rangle$ is the ground state of the oscillator with $\Lambda = 0$. This calculation is quite straightforward if you use ladder operators.
- (c) Compute the 'exact' ground state energy of the anharmonic oscillator for the cases $\Lambda = 0.2$ and $\Lambda = 1$ by numerically integrating the Schrödinger equation, and compare to the result of part (b). The answer in part (b) should be an upper bound to the numerical result. Explain this inequality.
- (d) To get a better estimate of the ground state energy of the anharmonic oscillator, form a trial state from a larger basis set. To begin, try to form the ground state as a linear combination of the states $|0\rangle$ and $|2\rangle$. (Why not $|1\rangle$?). This leads to a 2×2 matrix problem, for which the lowest eigenvalue estimates the ground state energy. Again, it is easiest to compute the matrix elements of this matrix by using ladder operators.
- (e) Actually, it is not much harder to consider a larger basis set. Using the ladder operator calculations in part (d), write down the matrix elements of the Hamiltonian between the states of the set $|0\rangle$, $|2\rangle$, $|4\rangle$, $|6\rangle$. Use Mathematica or equivalent to compute the eigenvalues of this 4×4 matrix numerically for the cases $\Lambda=0.2$ and $\Lambda=1$. Compare to the results of part (b).