Modèle de scoring

Sommaire

Rappel du projet

Problématique métier

Description du jeu de données

Transformation du jeu de données

Comparaison et synthèse des résultats pour les modèles utilisés

Interprétabilité du modèle

Conclusion

Rappel du projet

Développement d'un **algorithme de scoring** pour aider à décider si un prêt peut être accordé à un client.

L'algorithme devra calculer la probabilité qu'un client le rembourse ou non.

Problématique métier

Evaluer si un client sera à même de rembourser ou non est une tache complexe, il faut prendre en compte de nombreux paramètres.

Le modèle de scoring sera une aide à la décision. L'accord ou le refus de prêt par le modèle devra être compréhensible par les agents.

Jeu de données

7 sources de données (1 seule utilisée dans un premier temps)

307511 demandes de crédit

121 variables explicatives (emploi, revenus, montant du crédit, durée du crédit, etc.)

1 variable cible qui détermine si dans le passé le client a eu des difficultés de paiement ou non

Variable cible

Détermine si le client a eu des difficultés de paiement ou non

Les données sont déséquilibrées. Il y a plus de clients sans retard de paiement que de clients avec un retard de paiement.

Under-sampling, réduction les données majoritaires à la taille des données minoritaires.

SMOTE (Synthetic Minority Oversampling Technique), création de nouvelles données

121 variables explicatives

Données manquantes

Il y a 41 variables qui ont plus de 50% de données manquantes

PRÊT À CONSOMER: MODÈLE DE SCORING

Genre du client (Homme, Femme, non défini)

Aucune valeur manquante

66% des femmes contractent un crédit

10% des hommes ne remboursent pas leur crédit

7% des femmes ne remboursent pas leur crédit

Type de contrat

Crédit standard

Crédit renouvelable

Aucune valeur manquante

10% de crédits renouvelables

5% des crédits renouvelables ne sont pas remboursés

Revenu du client

Les données contiennent une valeur aberrante

Aucune valeur manquante

Cette variable comporte une valeur aberrante (11700000) qui fausse l'analyse. Il sera donc nécessaire de la supprimer.

Les crédits autour de 270 000 en monnaie locale sont moins remboursés que les autres

Nombre d'enfants

De 0 à 19 enfants

Aucune valeur manquante

70% des clients n'ont pas d'enfant

100% des clients qui ont 9 enfants ne remboursent pas leur crédit

100% des clients qui ont 11 enfants ne remboursent pas leur crédit

Âge du client en jours au moment de la demande

Cette donnée était en jours et a été transformée en années afin d'être plus parlante

Aucune valeur manquante

Les clients ont entre 20 ans et 70 ans et la moyenne se situe autour de 43 ans.

Les clients jeunes (25-30 ans) auront plus tendance à ne pas rembourser leur crédit au contraire des plus âgés (55-65 ans)

Modification de variables

Transformation de l'âge du client en jours au moment de la demande en années

Transformation en années du nombre jours avant la demande où la personne à commencé son emploi actuel

Transformation en années du nombre de jours avant la demande où le client a modifié son inscription

Transformation en années du nombre de jours avant la demande le client où il a modifié le document d'identité avec lequel il avait demandé le prêt

Transformation logarithmique du revenu

Nouvelles variables

Pourcentage entre les annuités et le montant du crédit

(AMT_ANNUITY/AMT_CREDIT) * 100

Pourcentage entre le revenu annuel et le montant emprunté

(AMT_INCOME_TOTAL/AMT_CREDIT) * 100

Pourcentage entre les annuités et le revenu annuel

(AMT_ANNUITY/AMT_INCOME_TOTAL) * 100

Revenu annuel par personne au foyer

(AMT_INCOME_TOTAL / CNT_FAM_MEMBERS) * 100

Corrélations

Les corrélations entre les variables vont nous permettre de détecter les variables qui seraient semblables.

Les corrélations étant à plus de 90% seront éliminées. Une seule des deux variables sera conservée.

Corrélation de 99% entre le montant du crédit et le montant de l'achat.

Corrélation de 99% entre les clients qui ont 30 jours de retard et ceux qui ont 60 jours de retard.

Corrélation de 99% pour l'appréciation de la région et l'appréciation de la ville

61 variables sont corrélées à plus de 90%

PRÊT À CONSOMER: MODÈLE DE SCORING

Préparation des variables

Suppression des variables ayant plus de 90% de corrélation 61 variables corrélées entre elles

Imputation des variables binaires Transformation de Y/N par 1/0

Imputation des variable qualitative
Transformation des variables manquantes

Transformation en indicateurs

Imputation des variables quantitatives
Utilisation de la médiane pour les valeurs manquantes

Normalisation des données

Classement des variables

Classement des variables en fonction de leur importance (selectKBest)

- 1. Score normalisé 2 provenant d'une source de données externe
- 2. Score normalisé 3 provenant d'une source de données externe
- 3. Score normalisé 1 provenant d'une source de données externe
- 4. Année de naissance
- 5. Nombre d'années de travail
- - 87. Le client a-t-il fourni le document 5?
 - 88. Situation du client en matière de logement
 - 89. Le client a-t-il fourni le document 20?
 - 90. Type d'organisation où le client travaille
 - 91. Nombre de demandes de renseignements au bureau de crédit concernant le client une heure avant la demande

Variable à prédire

Déséquilibre des données

Under-Sampling
Over-Sampling (SMOTE)

24 824 clients qui ne remboursent pas leur crédit 282 686 clients qui remboursent leur crédit

Évaluation scoring

Identifier les clients ayant un fort risque de ne pas rembourser

	Prédit non solvable	Prédit solvable
Non solvable	Vrai positif	faux négatif
Solvable	faux positif	vrai négatif

Éviter les **faux négatifs**, c'est-à-dire prédire que le client est solvable alors qu'il ne l'est pas.

Éviter les **faux positif**, c'est-à-dire que le client n'est pas solvable alors qu'il est.

Une courbe ROC trace les valeurs TVP et TFP pour différents seuils de classification

PRÊT À CONSOMER: MODÈLE DE SCORING

Naive Bayse

Recherche du nombre de variables optimales

Under-Sampling
Over-Sampling (SMOTE)

Under-Sampling

181 est le nombre de variables optimales avec un score de 0.64

Over-Sampling

Régression Logistique

Under-Sampling

116 est le nombre de variables optimales avec un score de 0,75

Over-Sampling

Descente de gradient stochastique

Under-Sampling

5 est le nombre de variables optimales avec un score de 0,73

Over-Sampling

Light Gradient Boosting

Under-Sampling

112 est le nombre de variables optimales avec un score de 0,77

Over-Sampling

81 est le nombre de variables optimales avec un score de 0,98

Tel quel

Random Forest

Under-Sampling

130 est le nombre de variables optimales avec un score de 0,75

Over-Sampling

Sélection du modèle

Light Gradient Boosting

Modèle	Données	Nb Variables	Score
Naive Bayse	Under-Sampling	181	0,64
	SMOTE	81	0,76
Régression Logistique	Under-Sampling	116	0,75
	SMOTE	113	0,98
Descente de gradient stochastique	Under-Sampling	5	0,73
	SMOTE	188	0,98
Light Gradient Boosting	Under-Sampling	112	0,77
	SMOTE	81	0,98
Random Forest	Under-Sampling	130	0,75
	SMOTE	79	0,98

Optimisation du modèle

Light Gradient Boosting

Tests avec différentes variables du modèle

Explication du modèle

Librairie LIME Local Interpretable Model-Agnostic Explanations

Solvable

C'est une femme

Elle est mariée

Elle n'a pas fourni de n° téléphone professionnel Il n'y pas eu d'observation dans 60 derniers jours Les données EXT_SOURCE_3 existent

Non solvable

Elle n'est pas un personnel de base

Elle ne possède pas de voiture

Elle n'a pas d'éducation supérieure

Elle habite une maison en pierre ou en brique

Elle n'a pas fourni de n° de téléphone

PRÊT À CONSOMER : MODÈLE DE SCORING

Exemple d'explication

Client potentiellement solvable

Solvable à 63%

C'est une femme Elle est mariée Elle n'a pas fourni de téléphone n° professionnel Il n'y pas eu d'observation dans 60 derniers jours

Non solvable à 37%

Elle n'est pas un personnel de base Elle n'a pas fourni le document 18 Elle n'a pas fourni le document 16 Elle ne possède pas de voiture Elle n'a pas d'éducation supérieure Elle ne travaille pas au ministère de la sécurité Elle n'a pas fourni de n° de téléphone

PRÊT À CONSOMER : MODÈLE DE SCORING

Conclusion

Modèle avec un score de 77%

Axes d'améliorations

Ajouter les autres jeux de données fournis

Obtenir plus d'observations

Augmenter les performances avec d'autres modèles