Problema. 1:

Demostrar que T es una transformación lineal y encontrar bases para N(T) y R(T). Calcular la nulidad y el rango de T. Emplear los teoremas adecuados para determinar si T es inyectiva o suprayectiva, donde $T: P_2(\mathbb{R}) \to P_3(\mathbb{R})$ definida por T(f(x)) = xf(x) + f'(x).

Demostración.

Problema. 2:

Sean V y W espacios vectoriales y sea $T:V\to W$ una transformación lineal inyectiva. Supóngase que S es un subconjunto de V. Entonces S es linealmente independiente si y sólo si T(S) es linealmente independiente.

Demostración.

Problema. 3:

Sea $T: \mathbb{R}^2 \to \mathbb{R}^3$ definida por $T(a_1, a_2) = (a_1 - a_2, a_1, 2a_1 + a_2)$. Sean β la base canónica para R^2 y $\gamma = \{(1, 1, 0), (0, 1, 1), (2, 2, 3)\}$. Calcular $[T]_{\gamma\beta}$.

Demostración.

Problema. 4:

Sean V y W espacios vectoriales tales que $\dim(V) = \dim(W)$, y sea $T: V \to W$ una transformación lineal. Demostrar que existen bases ordenadas β y γ para V y W, respectivamente, tales que $[T]_{\gamma\beta}$ es una matriz diagonal.

Demostración.

Problema. 5:

Sean V un espacio vectorial de dimensión finita y $T: V \to V$ una transformación lineal. Si $r(T) = r(T^2)$, demostrar que $R(T) \cap N(T) = \{0\}$. También ver que $V = R(T) \oplus N(T)$.

Demostración.

Problema. 6:

Demostrar que T es una transformación lineal y encontrar bases para N(T) y R(T). Calcular la nulidad y el rango de T. Emplear los teoremas adecuados para determinar si T es inyectiva o suprayectiva, donde $T: \mathbb{R}^3 \to \mathbb{R}^2$ está definida por $T(a_1, a_2, a_3) = (a_1 - a_2, 2a_3)$.

Demostración.

Problema. 7:

Sean V y W espacios vectoriales, y sea $T:V\to W$ lineal. Entonces T es inyectiva si y sólo si T lleva subconjuntos linealmente independientes de V a subconjuntos linealmente independientes de W.

Demostración.

Problema. 8:

Sea $T: \mathbb{R}^2 \to \mathbb{R}^3$ definida por $T(a_1, a_2) = (a_1 - 2a_2, a_2, 3a_1 + 4a_2)$. Sean β la base canónica para \mathbb{R}^2 y $\gamma = \{(1, 1, 0), (0, 1, 1), (2, 2, 3)\}$. Calcular $[T]_{\gamma\beta}$.

Demostración.

Problema. 9:

Sean V, W y Z espacios vectoriales, $T: V \to W$ y $U: W \to Z$ transformaciones lineales. Demostrar que si $U \circ T$ es inyectiva, entonces T es inyectiva. ¿Debe ser U inyectiva también?

Demostraci'on.

Problema. 10:

Sean V un espacio vectorial de dimensión finita y $T:V\to V$ una transformación lineal. Si $T=T^2$, demostrar que $R(T)\cap N(T)=\{0\}$. También ver que $V=\mathrm{Im}(T)\oplus\mathrm{Nuc}(T)$.

Demostraci'on.