

GRAPH BASIC

Path, Cycle

Path

- $A \rightarrow C \rightarrow D \rightarrow E \rightarrow B$
- A→B
- $A \rightarrow C \rightarrow B$
- $A \rightarrow C \rightarrow E \rightarrow B$

Cycle

- $A \rightarrow C \rightarrow B \rightarrow A$
- $\bullet A \rightarrow C \rightarrow E \rightarrow B \rightarrow A$
- $A \rightarrow C \rightarrow D \rightarrow E \rightarrow B \rightarrow A$

Directed, Undirected Graph

 A graph is a non-empty finite set V of elements called vertices together with a possibly empty set E of pairs of vertices called edges.

Undirected Graph Bidirection Graph

Representation of graph

1. G=(V, E) V={v1, v2, v3, v4, v5} E={e1, e2, e3, e4, e5, e6, e7, e8} = {(v1, v2), (v1, v3), (v1, v4), (v2, v3), (v2, v5), (v3, v4), (v3, v5),(v4, v5)}

2. Multiple Edges

Representation of graph(unweighted)

$$V = \{1, 2, 3, 4, 5, 6\}$$

 $E = \{(1,2), (1,5), (2,5), (2,3), (3,4), (2,4), (4,5), (4,6)\}$

Representation of graph 6 8 //v= 6, E= 8

MyMap = [[0]*7 for i in range(7)]Data = list(map(int,input().split()))

for i in range(howmany):

Start = Data[i*2]

Stop = Data[i*2+1]

MyMap[Start][Stop] = 1

MyMap[Stop][Start] = 1

	0	1	2	3	4	5	6
0							
1			1			1	
2		1		1	1	1	
3			1		1		
3 4 5 6			1	1	1		1
5		1	1		1		
6					1		

Representation of graph(weighted)

```
1 2 3 4 5 6
```

- 1 0 2 0 0 7 0
- 2 2 0 2 3 1 0
- 3 0 2 0 1 0 0
- 4 0 3 1 0 7 7
- **5 7** 1 0 7 0 0
- 6 0 0 0 7 0 0

Map[start][stop] = Map[stop][start] = cost;

DeGree

$$deg(a) =$$

$$deg(b) =$$

$$deg(c) =$$

$$deg(d) =$$

$$deg(a) =$$

$$deg(b) =$$

$$deg(c) =$$

$$deg(d) =$$

Degree: Undirected Graph

6 8 //v= 6, E= 8

1 2

1 5

2 3

2 4

2 5

5 4

4 3

4 6

Degree[Start] += 1
Degree[Stop]+=1

Degree

0	1	2	3	4	5	6
0	2	4	2	4	3	1

Degree: directed Graph

InDegree

0	1	2	3	4	5	6
0	0	1	1	3	2	1

OutDegree

0	1	2	3	4	5	6
0	2	3	1	1	1	0

Exercise 1 Minimum Sum

- n*n numbers are given. $(1 \le n \le 10)$
- Select one number in each row and one in each column that does not overlap.
- (i.e., we will take a total of n numbers, and each number is a value of less than 100).
- Find the minimum sum when you find the sum of n
- Input
 - n is entered in the first line. N integers are entered from the next line to the n+1 line.
- Output
 - Print out the minimum sum obtained.

•	Input	Output
	3	7
	153	
	2 4 7	
	5 3 5	

Exercise 2 On the way to meet the boyfriend

- Shalala wants to go to university A to meet her boyfriend. The number of vertex including departure and arrival is n. And the number of Edges linking the vertex is m. If Shalala's location is vertex1, and A University is vertex n, write a program that asks for the minimum cost of Shalala's visit to her boyfriend. ($n \le 10$, $m \le 30$)
- And the cost of going from one vertex to another vertex is an integer of not more than 200 and if there is a way from one vertex to another, the same method and cost can be reversed.

Exercise 2 On the way to meet the boyfriend

 The following graph shows an example (there may be multiple edges to Vertex a-> Vertex b, There may be an edge going back to the same vertex.

- Minimum Cost Path: $1 \rightarrow 3 \rightarrow 5 \rightarrow 7$,
- Minimum Cost: 69+59+21=149

Exercise 2 On the way to meet the boyfriend

Input

In the first line, the number of vertices n and the number of edges m are entered, separated by spaces. The two vertices are numbered and weighted over the following line to m.

Output

 print out the minimum cost of getting to the university. If not, print out "-1".

Input

Output

6 7 40

149