1. Kinematics

Decay rate and cross section (Note: \mathcal{M} has a mass dimension of $4 - N_i - N_f$.)

decay rate (rest frame;
$$\sqrt{s} = M_0$$
): $d\Gamma = \frac{\overline{d\Pi^{N_f}}}{2M_0} \left| \mathcal{M}(M_0 \to \{p_1, p_2, \cdots, p_{N_f}\}) \right|^2$, (1.1)

cross section (Lorentz invariant):
$$d\sigma = \frac{\overline{d\Pi^{N_{\rm f}}}}{2E_A 2E_B v_{\rm Mol}} \left| \mathcal{M}(p_A, p_B \to \{p_1, p_2, \cdots, p_{N_{\rm f}}\}) \right|^2, \tag{1.2}$$

where $\overline{\mathrm{d}\Pi^n}$ is n-particle Lorentz-invariant phase space with momentum conservation

$$\overline{d\Pi^n} := d\Pi_1 d\Pi_2 \cdots d\Pi_n (2\pi)^4 \delta^{(4)} \left(P_0 - \sum p_n \right); \quad d\Pi := \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{1}{2E_{\mathbf{p}}}. \tag{1.3}$$

At the CM frame, two-body phase-space are characterized by the final momentum $\|p\|$ and given by

$$\overline{d\Pi^2} = \frac{\|\boldsymbol{p}\|}{4\pi\sqrt{s}} \frac{d\Omega}{4\pi} = \frac{\|\boldsymbol{p}\|}{8\pi\sqrt{s}} d\cos\theta = \frac{1}{16\pi} \sqrt{1 - \frac{2(m_1^2 + m_2^2)}{s} + \frac{(m_1^2 - m_2^2)^2}{s^2}} d\cos\theta \tag{1.4}$$

with $\sqrt{s} = M_0$ or $E_{\rm CM}$, θ is the angle between initial and final motion, and

$$\|\boldsymbol{p}\| = \frac{\sqrt{s}}{2} \lambda^{1/2} \left(1; \frac{m_1^2}{s}, \frac{m_2^2}{s} \right), \quad E_1 = \frac{s + m_1^2 - m_2^2}{2\sqrt{s}}, \quad E_2 = \frac{s - m_1^2 + m_2^2}{2\sqrt{s}}, \quad p_1 \cdot p_2 = \frac{s - (m_1^2 + m_2^2)}{2}.$$

Mandelstam variables For $(k_1, k_2) \rightarrow (p_3, p_4)$ collision,

$$s = (k_1 + k_2)^2 = (p_3 + p_4)^2$$
, $t = (p_3 - k_1)^2 = (p_4 - k_2)^2$, $u = (p_3 - k_2)^2 = (p_4 - k_1)^2$;
 $s + t + u = m_1^2 + m_2^2 + m_3^2 + m_4^2$.

If the collision is with the "same mass" $(m_A, m_A) \rightarrow (m_B, m_B)$,

$$s + t + u = m_1^2 + m_2^2 + m_3^2 + m_4^2.$$

$$e \text{ collision is with the "same mass" } (m_A, m_A) \to (m_B, m_B),$$

$$t = m_A^2 + m_B^2 - s/2 + 2kp\cos\theta, \qquad (k_1 - k_2)^2 = 4m_A^2 - s,$$

$$u = m_A^2 + m_B^2 - s/2 - 2kp\cos\theta, \qquad (p_3 - p_4)^2 = 4m_B^2 - s,$$

$$m_A = (E, p) = B$$

$$k_1 = (E, k) = k_2 = (E, -k) = k_3 = (E, -k) = k_4 = (E, -k$$

$$k = \frac{\sqrt{s - 4m_A^2}}{2},$$
 $k_1 \cdot k_2 = \frac{s}{2} - m_A^2,$ $k_1 \cdot p_3 = k_2 \cdot p_4 = \frac{m_A^2 + m_B^2 - t}{2},$

$$p = \frac{\sqrt{s - 4m_B^2}}{2}, \qquad p_3 \cdot p_4 = \frac{s}{2} - m_B^2, \qquad k_1 \cdot p_4 = k_2 \cdot p_3 = \frac{m_A^2 + m_B^2 - u}{2}.$$

Instead, if the collision is "initially massless" $(0,0) \rightarrow (m_3, m_4)$,

and, if the comision is "initially massless"
$$(0,0) \to (m_3,m_4)$$
,
$$t = (m_3^2 + m_4^2 - s)/2 + p\sqrt{s}\cos\theta,$$

$$u = (m_3^2 + m_4^2 - s)/2 - p\sqrt{s}\cos\theta,$$

$$p = (\sqrt{s}/2) \lambda^{1/2} \left(1; m_3^2/s, m_4^2/s\right).$$

$$A = (E, E)$$

$$k_2 = (E, -E) A'$$

$$B_4 = (E_4, -p)$$

1.1. Fundamentals

Lorentz-invariant phase spac

$$\int d\Pi = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{1}{2E_{\mathbf{p}}} = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{1}{2\sqrt{m^2 + \|\mathbf{p}\|^2}} = \int \frac{dp_0 d^3 \mathbf{p}}{(2\pi)^4} (2\pi) \, \delta\left(p_0^2 - \|\mathbf{p}\|^2 - m^2\right) \Theta(p_0)$$

$$\lambda(x, y, z) = x^{2} + y^{2} + z^{2} - 2xy - 2yz - 2zx = (x - y - z)^{2} - 4yz;$$

$$\lambda(1;\alpha_1^2,\alpha_2^2) = (1 - (\alpha_1 + \alpha_2)^2)(1 - (\alpha_1 - \alpha_2)^2) = (1 + \alpha_1 + \alpha_2)(1 - \alpha_1 - \alpha_2)(1 + \alpha_1 - \alpha_2)(1 - \alpha_1 + \alpha_2).$$

$$\lambda^{1/2}\left(s;m_1^2,m_2^2\right) = s\,\lambda^{1/2}\left(1;\frac{m_1^2}{s},\frac{m_2^2}{s}\right); \qquad \qquad \lambda^{1/2}\left(1;\frac{m^2}{s},\frac{m^2}{s}\right) = \sqrt{1-\frac{4m^2}{s}},$$

$$\lambda^{1/2}\left(1;\frac{m_1^2}{s},\frac{m_2^2}{s}\right) = \sqrt{1-\frac{2(m_1^2+m_2^2)}{s}+\frac{(m_1^2-m_2^2)^2}{s^2}}, \qquad \lambda^{1/2}\left(1;\frac{m_1^2}{s},0\right) = \frac{s-m_1^2}{s}.$$

Two-body phase space If $f(p_1^{\mu}, p_2^{\mu})$ is Lorentz invariant, $f \equiv f(p_1^2, p_2^2, p_1^{\mu} p_{2\mu}) \equiv f(p_1, p_2, \cos \theta_{12})$. Meanwhile,

Two-body phase space If
$$f(p_1^{\mu}, p_2^{\mu})$$
 is Lorentz invariant, $f \equiv f(p_1^2, p_2^2, p_1^{\mu} p_{2\mu}) \equiv f(p_1, p_2, \cos \theta_{12})$. Meanwhile,
$$\int d\Pi_1 d\Pi_2 = \int \frac{\mathrm{d}^3 p_1}{(2\pi)^3} \frac{\mathrm{d}^3 p_2}{(2\pi)^3} \frac{1}{2E_1 2E_2} = \int \frac{(4\pi) \, \mathrm{d} p_1 \, p_1^2}{(2\pi)^3} \frac{(2\pi) \, \mathrm{d} p_2 \, p_2^2 \, \mathrm{d} \cos \theta_{12}}{(2\pi)^3} \frac{1}{2E_1 2E_2} = \int \frac{\mathrm{d} E_+ \, \mathrm{d} E_- \, \mathrm{d} s}{128\pi^4}, \quad (1.5)$$
 with the replacement of the variables

$$E_{\pm} = E_1 \pm E_2, \qquad s = (p_1 + p_2)^2 = m_1^2 + m_2^2 + 2E_1E_2 - 2\|\boldsymbol{p}_1\|\|\boldsymbol{p}_2\|\cos\theta_{12};$$

$$\left| \frac{\mathrm{d}(E_+, E_-, s)}{\mathrm{d}(p_1, p_2, \cos \theta_{12})} \right| = \frac{4p_1^2 p_2^2}{E_1 E_2}, \qquad \left| \frac{\mathrm{d}(E_1, E_2, s)}{\mathrm{d}(p_1, p_2, \cos \theta_{12})} \right| = \frac{2p_1^2 p_2^2}{E_1 E_2}.$$

Therefore,

$$\int d\Pi_1 d\Pi_2 = \frac{1}{128\pi^4} \int_{(m_1 + m_2)^2}^{\infty} ds \int_{\sqrt{s}}^{\infty} dE_+ \int_{\min}^{\max} dE_-,$$
(1.6)

$$\cos \theta_{12} = \frac{E_{+}^{2} - E_{-}^{2} + 2(m_{1}^{2} + m_{2}^{2} - s)}{\sqrt{(E_{+} + E_{-})^{2} - 4m_{1}^{2}}\sqrt{(E_{+} - E_{-})^{2} - 4m_{2}^{2}}} \in [-1, 1]$$

$$\therefore \quad \left| E_{-} - \frac{m_1^2 - m_2^2}{s} E_{+} \right| \leq \sqrt{E_{+}^2 - s} \cdot \lambda^{1/2} \left(1; \frac{m_1^2}{s}, \frac{m_2^2}{s} \right) = 2p \sqrt{\frac{E_{+}^2 - s}{s}}.$$

Two-body phase space with momentum conservation As a general representation in any frame,

$$\overline{d\Pi^2} = \frac{dp_1 d\Omega p_1^2}{16\pi^2} \frac{\delta(E_0 - \sqrt{m_1^2 + p_1^2} - \sqrt{m_2^2 + \|\mathbf{P}_0 - \mathbf{p}_1\|^2})}{E_1 E_2} = \frac{1}{8\pi} d\cos\theta_1 \frac{p_1^2}{E_0 p_1 - P_0 E_1 \cos\theta_1},$$
(1.7)

$$p_1 = \frac{(E_0^2 + m_1^2 - m_2^2 - P_0^2)P_0\cos\theta_1 + E_0\sqrt{\lambda(E_0^2, m_1^2, m_2^2) + P_0^4 - 2P_0^2(E_0^2 + m_1^2 - 2m_1^2\cos^2\theta_1 - m_2^2)}}{2(E_0^2 - P_0^2\cos^2\theta_1)}.$$
 (1.8)
CM frame result is recovered by setting $E_0 = \sqrt{s}$ and $P_0 = 0$.

CM frame result is recovered by setting $E_0 = \sqrt{s}$ and $P_0 =$

1.2. Decay rate and Cross section

As
$$\langle \text{out}|\text{in}\rangle = (2\pi)^4 \delta^{(4)}(p_i - p_f)\text{i}\mathcal{M}$$
 (for in \neq out) and $\langle \boldsymbol{p}|\boldsymbol{p}\rangle = 2E_{\boldsymbol{p}}(2\pi)^3 \delta^{(3)}(\boldsymbol{0}) = 2E_{\boldsymbol{p}}V$ for one-particle state,
$$\frac{N_{\text{ev}}}{\prod_{\text{in}} N_{\text{particle}}} = \int d\Pi^{\text{out}} \frac{|\langle \text{out}|\text{in}\rangle|^2}{\langle \text{in}|\text{in}\rangle} = \int d\Pi^{\text{out}} \frac{(2\pi)^8 |\mathcal{M}|^2}{\prod_{\text{in}} (2E)V} \frac{VT}{(2\pi^4)} \delta^{(4)}(p_i - p_f) = VT \int \overline{d\Pi^{N_f}} \frac{|\mathcal{M}|^2}{\prod_{\text{in}} (2E)V}. \quad (1.9)$$

Therefore, decay rate (at the rest frame) is given by
$$d\Gamma := \frac{1}{T} \frac{dN_{\text{ev}}}{N_{\text{particle}}} = \frac{1}{T} V T \overline{d\Pi^{N_{\text{f}}}} \frac{|\mathcal{M}|^2}{(2E)V} = \frac{1}{2M_0} \overline{d\Pi^{N_{\text{f}}}} |\mathcal{M}|^2. \tag{1.10}$$

We also define Lorentz-invariant cross section
$$\sigma$$
 by $N_{\text{ev}} =: (\rho_A v_{\text{Møl}} T \sigma) N_B = (\rho_A v_{\text{Møl}} T \sigma) (\rho_B V)$, or
$$d\sigma := \frac{dN_{\text{ev}}}{\rho_A v_{\text{Møl}} T N_B} = \frac{V}{v_{\text{Møl}} T} V T \overline{d\Pi^{N_{\text{f}}}} \frac{|\mathcal{M}|^2}{2E_A 2E_B V^2} = \frac{1}{2E_A 2E_B v_{\text{Møl}}} \overline{d\Pi^{N_{\text{f}}}} |\mathcal{M}|^2.$$
 (1.11) where the Møller parameter $v_{\text{Møl}}$ is equal to $v_{\text{rel}}^{\text{NR}} = \|\boldsymbol{v}_A - \boldsymbol{v}_B\|$ if $\boldsymbol{v}_A /\!\!/ \boldsymbol{v}_B$ (cf. Ref. [?]). Generally,

$$v_{\text{Møl}} := \frac{\sqrt{(p_A \cdot p_B)^2 - m_A^2 m_B^2}}{E_A E_B} = \frac{p_A \cdot p_B}{E_A E_B} v_{\text{rel}} = (1 - \boldsymbol{v}_A \cdot \boldsymbol{v}_B) v_{\text{rel}}, \tag{1.12}$$

$$v_{\text{rel}} = \sqrt{1 - \frac{(1 - v_A^2)(1 - v_B^2)}{1 - (v_A \cdot v_B)^2}} = \frac{\sqrt{\|v_A - v_B\|^2 - \|v_A \times v_B\|^2}}{1 - v_A \cdot v_B} = \frac{\lambda^{1/2}(s, m_A^2, m_B^2)}{s - (m_A^2 + m_B^2)} \neq v_{\text{rel}}^{\text{NR}}.$$
(1.13)

(Note that $p_A \cdot p_B/E_A E_B = 1$ if $\mathbf{p}_A = 0$ or $\mathbf{p}_B = 0$. Also, Each of $v_{\rm rel}$, VT, and $E_A E_B v_{\rm Møl}$ is Lorentz invariant.)

2. Gauge theory

SU(2) Fundamental representation $\mathbf{2} = (T^a)_{ij}$, adjoint representation adj. $= (\epsilon^a)^{bc}$.*1

$$T_a = \frac{1}{2}\sigma_a,$$
 $Tr(T_aT_b) = \frac{1}{2}\delta_{ab},$ $[T_a, T_b] = i\epsilon^{abc}T^c,$ $\epsilon^{abc}\epsilon^{ade} = \delta_{bd}\delta_{ce} - \delta_{be}\delta_{cd}$

Since $\overline{\bf 2} = -(T^a)_{ij}^*$ has identities $-\epsilon T^a \epsilon = -T^{a*}$ and $-\epsilon (-T^{a*})\epsilon = T^a$, we see that $\epsilon^{ab} {\bf 2}^b$ transforms as $\overline{\bf 2}^a$:

$$\epsilon^{ab}\mathbf{2}^b \to \epsilon^{ab}[\exp{(\mathrm{i}g\theta^\alpha T^\alpha)}]^{bc}\mathbf{2}^c = \epsilon^{ab}[\exp{(\mathrm{i}g\theta^\alpha T^\alpha)}]^{bc}(\epsilon^{-1})^{cd}(\epsilon^{de}\mathbf{2}^e) = [\exp{(-\mathrm{i}g\theta^\alpha T^{\alpha*})}]^{ab}(\epsilon^{bc}\mathbf{2}^c). \tag{2.1}$$

SU(3) Fundamental representation $\mathbf{3} = (\tau^a)_{ij}$, $\overline{\mathbf{3}} = -(\tau^a)_{ij}^*$; adjoint representation adj. $= \mathbf{8} = (f^a)^{bc}$. Gell-Mann matrices:

$$\lambda_{1-8} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$
 (2.2)

$$\tau_a = \frac{1}{2}\lambda_a, \qquad \operatorname{Tr}(\tau_a \tau_b) = \frac{1}{2}\delta_{ab}, \qquad [\tau_a, \tau_b] = \mathrm{i} f^{abc} \tau^c, \qquad f^{ade} f^{bcd} + f^{bde} f^{cad} + f^{cde} f^{abd} = 0.$$

$$\mathbf{3}: \quad \phi_{a} \to [\exp(\mathrm{i}g\theta^{\alpha}\tau^{\alpha})]_{ab}\phi_{b} \simeq \phi_{a} + \mathrm{i}g\theta^{\alpha}\tau_{ab}^{\alpha}\phi_{b}$$

$$\phi_{a}^{*} \to [\exp(-\mathrm{i}g\theta^{\alpha}\tau^{\alpha*})]_{ab}\phi_{b}^{*} \simeq \phi_{a}^{*} - \mathrm{i}g\theta^{\alpha}\tau_{ab}^{\alpha*}\phi_{b}^{*}$$

$$\phi_{a}^{*} \to [\exp(-\mathrm{i}g\theta^{\alpha}\tau^{\alpha*})]_{ab}\phi_{b}^{*} \simeq \phi_{a}^{*} - \mathrm{i}g\theta^{\alpha}\tau_{ab}^{\alpha*}\phi_{b}^{*}$$

$$\phi_{a}^{*} \to [\exp(\mathrm{i}g\theta^{\alpha}\tau^{\alpha})]_{ab}\phi_{b}^{*} \simeq \phi_{a}^{*} + \mathrm{i}g\theta^{\alpha}\tau_{ab}^{\alpha*}\phi_{b}^{*}$$

$$\phi_{a}^{*} \to [\exp(\mathrm{i}g\theta^{\alpha}\tau^{\alpha})]_{ab}\phi_{b}^{*} \simeq \phi_{a}^{*} + \mathrm{i}g\theta^{\alpha}\tau_{ab}^{\alpha*}\phi_{b}^{*}$$

$$\phi_{a}^{*} \to [\exp(\mathrm{i}g\theta^{\alpha}\tau^{\alpha})]_{ab}\phi_{b}^{*} \simeq \phi_{a}^{*} + \mathrm{i}g\theta^{\alpha}\tau_{ab}^{\alpha*}\phi_{b}^{*}$$

^{*1} We do not distinguish sub- and superscripts for gauge indices.

3. Spinors

$$(\overline{\psi_1}\psi_2)^* = (\psi_2)^{\dagger} (\overline{\psi}_1)^{\dagger} = \overline{\psi_2}\psi_1. \tag{3.1}$$

4. Supersymmetry with $\eta = diag(+, -, -, -)$

Convention Our convention follows DHM (except for D_{μ}):

$$\begin{split} & \eta = \mathrm{diag}(1,-1,-1,-1); \quad \epsilon^{0123} = -\epsilon_{0123} = 1, \quad \epsilon^{12} = \epsilon_{21} = \epsilon^{\dot{1}\dot{2}} = \epsilon_{\dot{2}\dot{1}} = 1 \quad \left(\epsilon_{\alpha\beta}\epsilon^{\beta\gamma} = \epsilon^{\alpha\beta}\epsilon_{\beta\gamma} = \delta^{\alpha}_{\gamma}\right), \\ & \psi^{\alpha} = \epsilon^{\alpha\beta}\psi_{\beta}, \quad \psi_{\alpha} = \epsilon_{\alpha\beta}\psi^{\beta}, \quad \bar{\psi}^{\dot{\alpha}} = \epsilon^{\dot{\alpha}\dot{\beta}}\bar{\psi}_{\dot{\beta}}, \quad \bar{\psi}_{\dot{\alpha}} = \epsilon_{\dot{\alpha}\dot{\beta}}\bar{\psi}^{\dot{\beta}}; \\ & \sigma^{\mu}_{\alpha\dot{\alpha}} := (\mathbf{1},\boldsymbol{\sigma})_{\alpha\dot{\alpha}}, \qquad \sigma^{\mu\nu}{}_{\alpha}{}^{\beta} := \frac{\mathrm{i}}{4}(\sigma^{\mu}\bar{\sigma}^{\nu} - \sigma^{\nu}\bar{\sigma}^{\mu})_{\alpha}{}^{\beta}, ^{*2} \qquad \left(\sigma^{\mu}_{\alpha\dot{\beta}} = \epsilon_{\alpha\delta}\epsilon_{\dot{\beta}\dot{\gamma}}\bar{\sigma}^{\mu\dot{\gamma}\delta}, \quad \bar{\sigma}^{\mu\dot{\alpha}\beta} = \epsilon^{\dot{\alpha}\dot{\delta}}\epsilon^{\beta\gamma}\sigma^{\mu}_{\gamma\dot{\delta}}\right) \\ & \bar{\sigma}^{\mu\dot{\alpha}\alpha} := (\mathbf{1},-\boldsymbol{\sigma})^{\dot{\alpha}\alpha}, \quad \bar{\sigma}^{\mu\nu\dot{\alpha}}{}_{\dot{\beta}} := \frac{\mathrm{i}}{4}(\bar{\sigma}^{\mu}\sigma^{\nu} - \bar{\sigma}^{\nu}\sigma^{\mu})^{\dot{\alpha}}{}_{\dot{\beta}}, ^{*2} \\ & (\psi\xi) := \psi^{\alpha}\xi_{\alpha}, \quad (\bar{\psi}\bar{\chi}) := \bar{\psi}_{\dot{\alpha}}\bar{\chi}^{\dot{\alpha}}; \qquad \frac{\mathrm{d}}{\mathrm{d}\theta^{\alpha}}(\theta\theta) := \theta_{\alpha} \quad [\text{left derivative}]. \end{split}$$

Especially, spinor-index contraction is done as $^{\alpha}{}_{\alpha}$ and $_{\dot{\alpha}}{}^{\dot{\alpha}}$ except for ϵ_{ab} (which always comes from left). Noting that complex conjugate reverses spinor order: $(\psi^{\alpha}\xi^{\beta})^* := (\xi^{\beta})^*(\psi^{\alpha})^*$,

$$\begin{split} \bar{\psi}^{\dot{\alpha}} &:= (\psi^{\alpha})^*, \quad \epsilon^{\dot{\alpha}\dot{b}} := (\epsilon^{ab})^*, \qquad (\psi\chi)^* = (\bar{\psi}\bar{\chi}), \\ (\sigma^{\mu}_{\alpha\dot{\beta}})^* &= \bar{\sigma}^{\mu}{}_{\dot{\alpha}\beta} = \epsilon_{\beta\delta}\epsilon_{\dot{\alpha}\dot{\gamma}}\bar{\sigma}^{\mu\dot{\gamma}\delta}, \qquad (\sigma^{\mu\nu})^{\dagger\alpha}{}_{\beta} = \bar{\sigma}^{\mu\nu\dot{\alpha}}{}_{\dot{\beta}}, \qquad (\sigma^{\mu\nu}{}_{\alpha}{}^{\beta})^* = \bar{\sigma}^{\mu\nu\dot{\beta}}{}_{\dot{\alpha}} = \bar{\sigma}^{\mu\nu}{}_{\dot{\alpha}}{}^{\dot{\beta}} = \epsilon_{\dot{\alpha}\dot{\gamma}}\epsilon^{\dot{\beta}\dot{\delta}}\bar{\sigma}^{\mu\nu\dot{\gamma}}{}_{\dot{\delta}}, \\ (\bar{\sigma}^{\mu\dot{\alpha}\beta})^* &= \sigma^{\mu\alpha\dot{\beta}} = \epsilon^{\dot{\beta}\dot{\delta}}\epsilon^{\alpha\gamma}\sigma^{\mu}{}_{\gamma\dot{\delta}}, \qquad (\bar{\sigma}^{\mu\nu})^{\dagger}{}_{\dot{\alpha}}{}^{\dot{\beta}} = \sigma^{\mu\nu}{}_{\alpha}{}^{\beta}, \qquad (\bar{\sigma}^{\mu\nu\dot{\alpha}}{}_{\dot{\beta}})^* = \sigma^{\mu\nu}{}_{\beta}{}^{\alpha} = \bar{\sigma}^{\mu\nu\alpha}{}_{\beta} = \epsilon_{\beta\delta}\epsilon^{\alpha\gamma}\sigma^{\mu\nu}{}_{\gamma}{}^{\delta}. \end{split}$$

Contraction formulae

$$\begin{array}{lll} \theta^{\alpha}\theta^{\beta} &= -\frac{1}{2}(\theta\theta)\epsilon^{\alpha\beta} & \bar{\theta}^{\dot{\alpha}}\bar{\theta}^{\dot{\beta}} &= \frac{1}{2}(\bar{\theta}\bar{\theta})\epsilon^{\dot{\alpha}\dot{\beta}} & (\theta\xi)(\theta\chi) &= -\frac{1}{2}(\theta\theta)(\xi\chi) & (\theta\sigma^{\nu}\bar{\theta})\theta^{\alpha} &= \frac{1}{2}(\theta\theta)(\bar{\theta}\bar{\sigma}^{\nu})^{\alpha} \\ \theta_{\alpha}\theta_{\beta} &= \frac{1}{2}(\theta\theta)\epsilon_{\alpha\beta} & \bar{\theta}_{\dot{\alpha}}\bar{\theta}_{\dot{\beta}} &= -\frac{1}{2}(\bar{\theta}\bar{\theta})\epsilon_{\dot{\alpha}\dot{\beta}} & (\bar{\theta}\bar{\xi})(\bar{\theta}\bar{\chi}) &= -\frac{1}{2}(\bar{\theta}\bar{\theta})(\bar{\xi}\bar{\chi}) & (\theta\sigma^{\nu}\bar{\theta})\bar{\theta}_{\dot{\alpha}} &= -\frac{1}{2}(\theta\sigma^{\nu})_{\dot{\alpha}}(\bar{\theta}\bar{\theta}) \\ \theta^{\alpha}\theta_{\beta} &= \frac{1}{2}(\theta\theta)\delta^{\alpha}_{\beta} & \bar{\theta}_{\dot{\alpha}}\bar{\theta}^{\dot{\beta}} &= \frac{1}{2}(\bar{\theta}\bar{\theta})\epsilon_{\dot{\alpha}\dot{\beta}}^{\dot{\alpha}} & (\theta\sigma^{\mu}\bar{\theta})(\theta\sigma^{\nu}\bar{\theta}) &= \frac{1}{2}(\theta\theta)(\bar{\theta}\bar{\theta})\eta^{\mu\nu} \\ (\theta\sigma^{\mu}\bar{\sigma}^{\nu}\theta) &= (\theta\theta)\eta^{\mu\nu} & (\bar{\theta}\bar{\sigma}^{\mu}\sigma^{\nu}\bar{\theta}) &= (\bar{\theta}\bar{\theta})\eta^{\mu\nu} & (\sigma^{\mu}\bar{\theta})_{\dot{\alpha}}(\theta\sigma^{\nu}\bar{\theta}) &= \frac{1}{2}(\bar{\theta}\bar{\theta})(\sigma^{\mu}\bar{\sigma}^{\nu}\theta)_{\dot{\alpha}} \\ \sigma^{\mu}\bar{\sigma}^{\nu} &= \eta^{\mu\nu} &- 2i\sigma^{\mu\nu} & \sigma^{\mu}\bar{\sigma}^{\nu}\sigma^{\rho} &+ \sigma^{\rho}\bar{\sigma}^{\nu}\sigma^{\mu} &= 2(\sigma^{\mu}\eta^{\rho\nu} &- \sigma^{\nu}\eta^{\mu\rho} &+ \sigma^{\rho}\eta^{\mu\nu}) \\ \bar{\sigma}^{\mu}\sigma^{\nu} &= \eta^{\mu\nu} &- 2i\bar{\sigma}^{\mu\nu} & \sigma^{\mu}\bar{\sigma}^{\nu}\sigma^{\rho} &+ \sigma^{\rho}\bar{\sigma}^{\nu}\sigma^{\mu} &= 2i\sigma_{\sigma}\epsilon^{\mu\nu\rho\sigma} \\ Tr &(\sigma^{\mu}\bar{\sigma}^{\nu}) &= Tr &(\bar{\sigma}^{\mu}\sigma^{\nu}) &= 2\eta^{\mu\nu} & \bar{\sigma}^{\mu}\bar{\sigma}^{\nu}\bar{\sigma}^{\rho} &+ \bar{\sigma}^{\rho}\bar{\sigma}^{\nu}\bar{\sigma}^{\mu} &= 2i\bar{\sigma}_{\sigma}\epsilon^{\mu\nu\rho\sigma} \\ \sigma_{\alpha\dot{\alpha}}\bar{\sigma}_{\dot{\mu}}^{\dot{\beta}\dot{\beta}} &= 2\delta^{\dot{\beta}}_{\dot{\alpha}}\bar{\delta}_{\dot{\beta}} & \bar{\sigma}^{\mu}\bar{\sigma}^{\nu}\bar{\sigma}^{\rho} &+ \bar{\sigma}^{\rho}\bar{\sigma}^{\nu}\bar{\sigma}^{\mu} &= 2i\bar{\sigma}_{\sigma}\epsilon^{\mu\nu\rho\sigma} \\ \sigma_{\alpha\dot{\alpha}}\bar{\sigma}_{\dot{\mu}}^{\dot{\beta}\dot{\beta}} &= 2\delta^{\dot{\beta}}_{\dot{\alpha}}\bar{\delta}_{\dot{\beta}} & \bar{\sigma}^{\mu}\bar{\sigma}^{\nu}\bar{\sigma}^{\rho} &- \bar{\sigma}^{\rho}\bar{\sigma}^{\nu}\bar{\sigma}^{\mu} &= 2i\bar{\sigma}_{\sigma}\epsilon^{\mu\nu\rho\sigma} \\ \sigma_{\alpha\dot{\alpha}}\bar{\sigma}_{\dot{\mu}}^{\dot{\beta}\dot{\beta}} &= 2\delta^{\dot{\beta}}_{\dot{\alpha}}\bar{\delta}_{\dot{\beta}} & \bar{\sigma}^{\mu}\bar{\sigma}^{\nu}\bar{\sigma}^{\rho} &- \bar{\sigma}^{\rho}\bar{\sigma}^{\nu}\bar{\sigma}^{\mu} &= 2i\bar{\sigma}_{\sigma}\epsilon^{\mu\nu\rho\sigma} \\ \sigma_{\alpha\dot{\alpha}}\bar{\sigma}_{\dot{\mu}}^{\dot{\beta}\dot{\beta}} &= 2\epsilon^{\alpha\beta}\epsilon^{\dot{\alpha}\dot{\beta}} & \bar{\sigma}^{\mu}\bar{\sigma}^{\nu}\bar{\sigma}^{\rho} &- \bar{\sigma}^{\rho}\bar{\sigma}^{\nu}\bar{\sigma}^{\mu} &= 2i\bar{\sigma}_{\sigma}\epsilon^{\mu\nu\rho\sigma} \\ \bar{\sigma}_{\dot{\alpha}}\bar{\sigma}^{\dot{\mu}}^{\dot{\beta}} &= 2\epsilon^{\alpha\beta}\epsilon^{\dot{\alpha}\dot{\beta}} & \epsilon^{\dot{\alpha}\dot{\beta}} & \epsilon^{\dot{\alpha}\dot{\beta}}\bar{\sigma}^{\dot{\alpha}} &= \epsilon_{\dot{\beta}\dot{\alpha}}\epsilon^{\dot{\alpha}\dot{\gamma}\dot{\alpha}}\bar{\sigma}^{\nu}\bar{\sigma}^{\mu} &= \epsilon^{\dot{\alpha}\dot{\gamma}}\bar{\sigma}^{\mu}\bar{\sigma}^{\mu} \\ \bar{\sigma}_{\dot{\alpha}}\bar{\sigma}^{\dot{\mu}}^{\dot{\beta}} &= 2\epsilon^{\alpha\beta}\epsilon^{\dot{\alpha}\dot{\beta}} & \epsilon^{\dot{\alpha}\dot{\beta}}\bar{\sigma}^{\dot{\alpha}}\bar{\sigma}^{\dot{\alpha}}^{\dot{\alpha}} &= \epsilon_{\dot{\alpha}\dot{\alpha}}\epsilon^{\dot{\alpha}\dot{\alpha}}\bar{\sigma}^{\mu}\bar{\sigma}^{\mu}\bar{\sigma}^{\dot{\alpha}}^{\dot{\alpha}} &= \epsilon_{\dot{\alpha}\dot{\alpha}}\bar{\sigma}^{\mu}\bar{\sigma}^{\dot{\alpha}}^{\dot{\alpha}}^{\dot{\alpha}}^{\dot{\alpha}}^{\dot{\alpha}}^{\dot{\alpha}}^{\dot$$

Superfields

 $(\xi \chi) \psi^{\alpha} = -(\psi \xi) \chi^{\alpha} - (\psi \chi) \xi^{\alpha} \qquad (\xi \chi) \bar{\psi}_{\dot{\alpha}} = \frac{1}{2} (\xi \sigma^{\mu} \bar{\psi}) (\chi \sigma_{\mu})_{\dot{\alpha}}$

^{*2}As the definition of $\sigma^{\mu\nu}$ and $\bar{\sigma}^{\mu\nu}$ are not unified in literature, they are not used in this CheatSheet except for this page.

4.1. Lorentz symmetry as $SU(2) \times SU(2)$

4.2. Supersymmetry algebra

We define the generators as

$$P_{\mu} := i\partial_{\mu}, \quad \{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\} = -2i\sigma^{\mu}_{\alpha\dot{\alpha}}\partial_{\mu} = -2\sigma^{\mu}_{\alpha\dot{\alpha}}P_{\mu}, \quad \{Q_{\alpha}, Q_{\beta}\} = \{\bar{Q}_{\dot{\alpha}}, \bar{Q}_{\dot{\beta}}\} = 0,$$

$$(4.1)$$
It is problemed by:

$$\begin{split} \mathcal{Q}_{\alpha} &= \frac{\partial}{\partial \theta^{\alpha}} + i(\sigma^{\mu}\bar{\theta})_{\alpha}\partial_{\mu}, \quad \bar{\mathcal{Q}}_{\dot{\alpha}} = -\frac{\partial}{\partial \bar{\theta}^{\dot{\alpha}}} - i(\theta\sigma^{\mu})_{\dot{\alpha}}\partial_{\mu}, \quad \mathcal{Q}^{\alpha} = -\frac{\partial}{\partial \theta_{\alpha}} - i(\bar{\theta}\bar{\sigma}^{\mu})^{\alpha}\partial_{\mu}, \quad \bar{\mathcal{Q}}^{\dot{\alpha}} = \frac{\partial}{\partial \bar{\theta}_{\dot{\alpha}}} + i(\bar{\sigma}^{\mu}\theta)^{\dot{\alpha}}\partial_{\mu}, \\ \mathcal{D}_{\alpha} &= \frac{\partial}{\partial \theta^{\alpha}} - i(\sigma^{\mu}\bar{\theta})_{\alpha}\partial_{\mu}, \quad \bar{\mathcal{D}}_{\dot{\alpha}} = -\frac{\partial}{\partial \bar{\theta}^{\dot{\alpha}}} + i(\theta\sigma^{\mu})_{\dot{\alpha}}\partial_{\mu}, \quad \mathcal{D}^{\alpha} = -\frac{\partial}{\partial \theta_{\alpha}} + i(\bar{\theta}\bar{\sigma}^{\mu})^{\alpha}\partial_{\mu}, \quad \bar{\mathcal{D}}^{\dot{\alpha}} = \frac{\partial}{\partial \bar{\theta}^{\dot{\alpha}}} - i(\bar{\sigma}^{\mu}\theta)^{\dot{\alpha}}\partial_{\mu}; \end{split}$$

 \mathcal{D}_{α} etc. works as covariant derivatives because of the commutation relations

$$\{\mathcal{D}_{\alpha}, \bar{\mathcal{D}}_{\dot{\alpha}}\} = +2i\sigma^{\mu}_{\alpha\dot{\alpha}}\partial_{\mu}, \qquad \{\mathcal{Q}_{\alpha}, \mathcal{D}_{\beta}\} = \{\mathcal{Q}_{\alpha}, \bar{\mathcal{D}}_{\dot{\beta}}\} = \{\bar{\mathcal{Q}}_{\dot{\alpha}}, \mathcal{D}_{\beta}\} = \{\bar{\mathcal{Q}}_{\dot{\alpha}}, \bar{\mathcal{D}}_{\dot{\beta}}\} = \{\bar{\mathcal{D}}_{\dot{\alpha}}, \bar{\mathcal{D}}_{\dot{\beta}}\} = \{\bar{\mathcal{D}}_{\dot{\alpha}, \bar{\mathcal{D}}_{\dot{\beta}}\} = \{\bar{\mathcal{D}}_{\dot{\alpha}}, \bar{\mathcal$$

$$\begin{aligned} & \text{Derivative formulae} \\ & \epsilon^{\alpha\beta}\frac{\partial}{\partial\theta^{\beta}} = -\frac{\partial}{\partial\theta_{\alpha}} & \frac{\partial}{\partial\theta^{\alpha}}\theta\theta = 2\theta_{\alpha} & \frac{\partial}{\partial\theta^{\alpha}}\frac{\partial}{\partial\theta_{\beta}}\theta\theta = -2\delta^{\beta}_{\alpha} & \frac{\partial}{\partial\bar{\theta}^{\dot{\alpha}}}\frac{\partial}{\partial\bar{\theta}_{\dot{\beta}}}\bar{\theta}\bar{\theta} = 2\delta^{\dot{\beta}}_{\dot{\alpha}} \\ & \epsilon_{\alpha\beta}\frac{\partial}{\partial\theta_{\beta}} = -\frac{\partial}{\partial\theta^{\alpha}} & \frac{\partial}{\partial\theta_{\alpha}}\theta\theta = -2\theta^{\alpha} & \frac{\partial}{\partial\theta_{\alpha}}\frac{\partial}{\partial\theta_{\beta}}\theta\theta = 2\epsilon^{\alpha\beta} & \frac{\partial}{\partial\bar{\theta}_{\dot{\alpha}}}\frac{\partial}{\partial\bar{\theta}_{\dot{\beta}}}\bar{\theta}\bar{\theta} = -2\epsilon^{\dot{\alpha}\dot{\beta}} \\ & \epsilon^{\dot{\alpha}\dot{\beta}}\frac{\partial}{\partial\bar{\theta}\dot{\beta}} = -\frac{\partial}{\partial\bar{\theta}\dot{\alpha}} & \frac{\partial}{\partial\bar{\theta}\dot{\alpha}}\bar{\theta}\bar{\theta} = 2\bar{\theta}^{\dot{\alpha}} & \frac{\partial}{\partial\theta_{\alpha}}\frac{\partial}{\partial\theta^{\beta}}\theta\theta = 2\delta^{\alpha}_{\beta} & \frac{\partial}{\partial\bar{\theta}\dot{\alpha}}\frac{\partial}{\partial\bar{\theta}\dot{\beta}}\bar{\theta}\bar{\theta} = -2\delta^{\dot{\alpha}\dot{\beta}}_{\dot{\beta}} \\ & \epsilon_{\dot{\alpha}\dot{\beta}}\frac{\partial}{\partial\bar{\theta}_{\dot{\beta}}} = -\frac{\partial}{\partial\bar{\theta}\dot{\alpha}} & \frac{\partial}{\partial\bar{\theta}\dot{\alpha}}\bar{\theta}\bar{\theta} = -2\bar{\theta}\dot{\alpha} & \frac{\partial}{\partial\theta^{\alpha}}\frac{\partial}{\partial\theta^{\beta}}\theta\theta = -2\epsilon_{\alpha\beta} & \frac{\partial}{\partial\bar{\theta}\dot{\alpha}}\frac{\partial}{\partial\bar{\theta}\dot{\beta}}\bar{\theta}\bar{\theta} = 2\epsilon_{\dot{\alpha}\dot{\beta}} \end{aligned}$$

In addition, we define

$$(y, \theta', \bar{\theta}') := (x - i\theta \sigma^{\mu} \bar{\theta}, \theta, \bar{\theta}) : \tag{4.2}$$

$$\bar{\mathcal{D}}_{\dot{\alpha}} = -\frac{\partial}{\partial \bar{\theta}'^{\dot{\alpha}}}; \qquad \begin{pmatrix} \frac{\partial}{\partial \bar{y}^{\mu}} \\ \frac{\partial}{\partial \theta^{\alpha}} \\ \frac{\partial}{\partial \bar{\theta}^{\dot{\alpha}}} \end{pmatrix} = \begin{pmatrix} \delta^{\nu}_{\mu} & 0 & 0 \\ -i(\sigma^{\nu}\bar{\theta})_{\alpha} & \delta^{\beta}_{\alpha} & 0 \\ i(\theta\sigma^{\nu})_{\dot{\alpha}} & 0 & \delta^{\dot{\beta}}_{\dot{\alpha}} \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial y^{\nu}} \\ \frac{\partial}{\partial \theta'^{\dot{\beta}}} \\ \frac{\partial}{\partial \bar{\theta}'^{\dot{\beta}}} \end{pmatrix}, \qquad \begin{pmatrix} \frac{\partial}{\partial y^{\nu}} \\ \frac{\partial}{\partial \theta'^{\dot{\beta}}} \\ \frac{\partial}{\partial \bar{\theta}'^{\dot{\beta}}} \end{pmatrix} = \begin{pmatrix} \delta^{\mu}_{\nu} & 0 & 0 \\ i(\sigma^{\mu}\bar{\theta})_{\beta} & \delta^{\alpha}_{\beta} & 0 \\ -i(\theta\sigma^{\mu})_{\dot{\beta}} & 0 & \delta^{\dot{\alpha}}_{\dot{\beta}} \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial y^{\mu}} \\ \frac{\partial}{\partial \theta^{\dot{\alpha}}} \\ \frac{\partial}{\partial \bar{\theta}'^{\dot{\alpha}}} \end{pmatrix}, \qquad (4.3)$$

and a function $f: \mathbb{C}^4 \to \mathbb{C}$ (independent of θ' and $\bar{\theta}'$) is expanded as

$$f(y) = f(x - i\theta\sigma\bar{\theta}) = f(x) - i(\theta\sigma^{\mu}\bar{\theta})\partial_{\mu}f(x) - \frac{1}{4}\theta^{4}\partial^{2}f(x). \tag{4.4}$$

Note that we differentiate $[f(y)]^*$ and $f^*(y)$

$$[f(y)]^* = f(x) + i(\theta \sigma^{\mu} \bar{\theta}) \partial_{\mu} f^*(x) - \frac{1}{4} \theta^4 \partial^2 f^*(x) = f^*(y + i\theta \sigma \bar{\theta}) = f^*(y^*). \tag{4.5}$$

4.3. Superfields

SUSY-invariant Lagrangian SUSY transformation is induced by $\xi Q + \bar{\xi} \bar{Q} = \xi^{\alpha} \partial_{\alpha} + \bar{\xi}_{\dot{\alpha}} \partial^{\dot{\alpha}} + i(\xi \sigma^{\mu} \bar{\theta} + \bar{\xi} \bar{\sigma}^{\mu} \theta) \partial_{\mu}$. Therefore, for an object Ψ in the superspace,

$$\left[\Psi\right]_{\theta^4} \xrightarrow{\text{SUSY}} \left[\Psi + \xi^{\alpha}\partial_{\alpha}\Psi + \bar{\xi}_{\dot{\alpha}}\partial^{\dot{\alpha}}\Psi + \mathrm{i}(\xi\sigma^{\mu}\bar{\theta} + \bar{\xi}\bar{\sigma}^{\mu}\theta)\partial_{\mu}\Psi\right]_{\theta^4} = \left[\Psi + \mathrm{i}(\xi\sigma^{\mu}\bar{\theta} + \bar{\xi}\bar{\sigma}^{\mu}\theta)\partial_{\mu}\Psi\right]_{\theta^4},\tag{4.6}$$

which means $[\Psi]_{\theta^4}$ is SUSY-invariant up to total derivative, i.e., $\int d^4x [\Psi]_{\theta^4}$ is SUSY-invariant action. Also,

$$\left[\Psi\right]_{\theta^{2}} \xrightarrow{\text{SUSY}} \left[\Psi + \bar{\xi}_{\dot{\alpha}} \left(\partial^{\dot{\alpha}} + i(\bar{\sigma}^{\mu}\theta)^{\dot{\alpha}}\partial_{\mu}\right)\Psi\right]_{\theta^{2}} = \left[\Psi + \bar{\xi}_{\dot{\alpha}}\bar{\mathcal{D}}^{\dot{\alpha}}\Psi + 2i(\bar{\sigma}^{\mu}\theta)^{\dot{\alpha}}\partial_{\mu}\Psi\right]_{\theta^{2}} \tag{4.7}$$

will be SUSY-invariant if $\bar{\mathcal{D}}_{\dot{\alpha}}\Psi=0$, i.e., Ψ is a chiral superfield. Therefore, SUSY-invariant Lagrangian is given by

$$\mathcal{L} = \left[(\text{any real superfield}) \right]_{\theta^4} + \left[(\text{any chiral superfield}) \right]_{\theta^2} + \left[(\text{any chiral superfield})^* \right]_{\bar{\theta}^2}. \tag{4.8}$$

Chiral superfield A chiral superfield is a superfield that satisfies $\bar{\mathcal{D}}_{\dot{\alpha}}\Phi=0$, i.e., we find

$$\Phi = \phi(y) + \sqrt{2}\theta'\psi(y) + \theta'^2 F(y) \tag{4.9}$$

$$= \phi(x) + \sqrt{2}\theta\psi(x) - i\partial_{\mu}\phi(x)(\theta\sigma^{\mu}\bar{\theta}) + F(x)\theta^{2} + \frac{i}{\sqrt{2}}(\partial_{\mu}\psi(x)\sigma^{\mu}\bar{\theta})\theta^{2} - \frac{1}{4}\partial^{2}\phi(x)\theta^{4}$$

$$(4.10)$$

$$\Phi^* = \phi^*(x) + \sqrt{2}\bar{\psi}(x)\bar{\theta} + F^*(x)\bar{\theta}^2 + i\partial_{\mu}\phi^*(x)(\theta\sigma^{\mu}\bar{\theta}) - \frac{i}{\sqrt{2}}[\theta\sigma^{\mu}\partial_{\mu}\bar{\psi}(x)]\bar{\theta}^2 - \frac{1}{4}\partial^2\phi^*(x)\theta^4; \tag{4.11}$$

their product is expanded as

$$\Phi_{i}^{*}\Phi_{j} = \phi_{i}^{*}\phi_{j} + \sqrt{2}\phi_{i}^{*}(\theta\psi_{j}) + \sqrt{2}(\bar{\psi}_{i}\bar{\theta})\phi_{j} + \phi_{i}^{*}F_{j}\theta^{2} + 2(\bar{\psi}_{i}\bar{\theta})(\theta\psi_{j}) - i\left(\phi_{i}^{*}\partial_{\mu}\phi_{j} - \partial_{\mu}\phi_{i}^{*}\phi_{j}\right)(\theta\sigma^{\mu}\bar{\theta}) + F_{i}^{*}\phi_{j}\bar{\theta}^{2} \\
+ \left[\sqrt{2}\bar{\psi}_{i}\bar{\theta}F_{j} - \frac{i\left(\partial_{\mu}\phi_{i}^{*}\cdot\psi_{j}\sigma^{\mu}\bar{\theta} - \phi_{i}^{*}\partial_{\mu}\psi_{j}\sigma^{\mu}\bar{\theta}\right)}{\sqrt{2}}\right]\theta^{2} + \left[\sqrt{2}F_{i}^{*}\theta\psi_{j} + \frac{i\left(\theta\sigma^{\mu}\bar{\psi}_{i}\partial_{\mu}\phi_{j} - \theta\sigma^{\mu}\partial_{\mu}\bar{\psi}_{i}\phi_{j}\right)}{\sqrt{2}}\right]\bar{\theta}^{2} \\
+ \frac{1}{4}\left(4F_{i}^{*}F_{j} - \phi_{i}^{*}\partial^{2}\phi_{j} - (\partial^{2}\phi_{i}^{*})\phi_{j} + 2(\partial_{\mu}\phi_{i}^{*})(\partial^{\mu}\phi_{j}) + 2i(\psi_{j}\sigma^{\mu}\partial_{\mu}\bar{\psi}_{i}) - 2i(\partial_{\mu}\psi_{j}\sigma^{\mu}\bar{\psi}_{i})\right)\theta^{4} \tag{4.12}$$

$$\equiv \phi_i^* \phi_j + \sqrt{2} \phi_i^* (\theta \psi_j) + \sqrt{2} (\bar{\psi}_i \bar{\theta}) \phi_j + \phi_i^* F_j \theta^2 + 2 (\bar{\psi}_i \bar{\theta}) (\theta \psi_j) - 2 i (\phi_i^* \partial_\mu \phi_j) (\theta \sigma^\mu \bar{\theta}) + F_i^* \phi_j \bar{\theta}^2
+ \sqrt{2} (\bar{\psi}_i \bar{\theta} F_j + i \phi_i^* \partial_\mu \psi_j \sigma^\mu \bar{\theta}) \theta^2 + \sqrt{2} (F_i^* \theta \psi_j - i \theta \sigma^\mu \partial_\mu \bar{\psi}_i \phi_j) \bar{\theta}^2
+ (F_i^* F_j + (\partial_\mu \phi_i^*) (\partial^\mu \phi_j) + i \bar{\psi}_i \sigma^\mu \partial_\mu \psi_j) \theta^4$$
(4.13)

$$\Phi_i \Phi_j \Big|_{\theta^2} = -\psi_i \psi_j + F_i \phi_j + \phi_i F_j \tag{4.14}$$

$$\Phi_i \Phi_j \Phi_k \Big|_{\theta^2} = -(\psi_i \psi_j) \phi_k - (\psi_k \psi_i) \phi_j - (\psi_j \psi_k) \phi_i + \phi_i \phi_j F_k + \phi_k \phi_i F_j + \phi_j \phi_k F_i$$

$$(4.15)$$

$$e^{k\Phi} = e^{k\phi} \left[1 + \sqrt{2}k\theta\psi + \left(kF - \frac{k^2}{2}\psi\psi \right) \theta^2 - ik\partial_\mu\phi(\theta\sigma^\mu\bar{\theta}) + \frac{ik\left(\partial_\mu\psi + k\psi\partial_\mu\phi \right)\sigma^\mu\bar{\theta}\theta^2}{\sqrt{2}} - \frac{k}{4} \left(\partial^2\phi + k\partial_\mu\phi\partial^\mu\phi \right)\theta^4 \right];$$
(4.16)

note that $\Phi_i \Phi_j$, $\Phi_i \Phi_j \Phi_k$, and $e^{k\Phi}$ are all chiral superfields.

Vector superfield A vector superfield V that satisfies $V = V^*$. It is given by real fields $\{C, M, N, D, A_{\mu}\}$ and Grassmann fields $\{\chi, \lambda\}$ as *3

$$V(x,\theta,\bar{\theta}) = C(x) + i\theta\chi(x) - i\bar{\theta}\bar{\chi}(x) + \frac{1}{2}\left(M(x) + iN(x)\right)\theta^{2} + \frac{1}{2}\left(M(x) - iN(x)\right)\bar{\theta}^{2} + (\bar{\theta}\bar{\sigma}^{\mu}\theta)A_{\mu}(x)$$

$$\left(\lambda(x) + \frac{1}{2}\partial_{\mu}\bar{\chi}(x)\bar{\sigma}^{\mu}\right)\theta\bar{\theta}^{2} + \theta^{2}\bar{\theta}\left(\bar{\lambda}(x) + \frac{1}{2}\bar{\sigma}^{\mu}\partial_{\mu}\chi(x)\right) + \frac{1}{2}\left(D(x) - \frac{1}{2}\partial^{2}C(x)\right)\theta^{4}.$$

$$(4.17)$$

With this convention,

$$V \to V - i\Phi + i\Phi^* \iff \begin{cases} C \to C - i\phi + i\phi^*, & \chi \to \chi - \sqrt{2}\psi, & \lambda \to \lambda, \\ M + iN \to M + iN - 2iF, & A_\mu \to A_\mu + \partial_\mu(\phi + \phi^*), & D \to D. \end{cases}$$
(4.18)

The exponential of a vector superfield is also a vector superfield:

$$e^{kV} = e^{kC} \left\{ 1 + ik(\theta \chi - \bar{\theta}\bar{\chi}) + \left(\frac{M + iN}{2}k + \frac{\chi\chi}{4}k^2 \right) \theta^2 + \left(\frac{M - iN}{2}k + \frac{\bar{\chi}\bar{\chi}}{4}k^2 \right) \bar{\theta}^2 + (k^2\theta\chi\bar{\theta}\bar{\chi} - k\theta\sigma^\mu\bar{\theta}A_\mu) \right.$$

$$\left. + \left[k\bar{\theta}\bar{\lambda} - ik\bar{\theta}\bar{\chi} \left(\frac{M + iN}{2}k + \frac{\chi\chi}{4}k^2 \right) + \frac{1}{2}k\bar{\theta}\bar{\sigma}^\mu \left(\partial_\mu\chi - ik\chi A_\mu \right) \right] \theta^2 \right.$$

$$\left. + \left[k\theta\lambda + ik\theta\chi \left(\frac{M - iN}{2}k + \frac{\bar{\chi}\bar{\chi}}{4}k^2 \right) - \frac{1}{2}k\theta\sigma^\mu \left(\partial_\mu\bar{\chi} + ik\bar{\chi}A_\mu \right) \right] \bar{\theta}^2 \right.$$

$$\left. + \left[\frac{k}{2} \left(D - \frac{1}{2}\bar{\partial}^2 C \right) - \frac{1}{2}ik^2(\lambda\chi - \bar{\lambda}\bar{\chi}) + \left(\frac{M + iN}{2}k + \frac{\chi\chi}{4}k^2 \right) \left(\frac{M - iN}{2}k + \frac{\bar{\chi}\bar{\chi}}{4}k^2 \right) \right.$$

$$\left. + \frac{k^3}{4}\bar{\chi}\bar{\sigma}^\mu\chi A_\mu + \frac{k^2}{4}\left(i\bar{\chi}\bar{\sigma}^\mu\partial_\mu\chi - i\partial_\mu\bar{\chi}\bar{\sigma}^\mu\chi + A^\mu A_\mu \right) \right] \theta^4 \right\}.$$

$$(4.19)$$

Supergauge symmetry The gauge transformation $\phi(x) \to e^{ig\theta^a(x)t^a}\phi(x)$ is not closed in the chiral superfield; i.e., $e^{ig\theta^a(x)t^a}\Phi(x)$ is not a chiral superfield if the parameter $\theta(x)$ has x^{μ} -dependence. Hence, in supersymmetric theories, it is extended to *supergauge symmetry* parameterized by a chiral superfield $\Omega(x)$, which is given by

$$\Phi \to e^{2ig\Omega^a(x)t^a}\Phi, \qquad \Phi^* \to \Phi^* e^{-2ig\Omega^{*a}(x)t^a}$$
(4.20)

for a chiral superfield Φ and an anti-chiral superfield Φ^* . The supergauge-invariant Lagrangian should be

$$\mathcal{L} \sim \Phi^* \cdot (\text{real superfield}) \cdot \Phi;$$
 (4.21)

we parameterize the "real superfield" as $\mathrm{e}^{2gV^a(x)t^a}\colon$

$$\mathcal{L} = \left[\Phi^* e^{2gV^a(x)t^a} \Phi \right]_{\theta^4}; \qquad e^{2gV^a(x)t^a} \to e^{2ig\Omega^{*a}(x)t^a} e^{2gV^a(x)t^a} e^{-2ig\Omega^a(x)t^a}. \tag{4.22}$$

^{*3}Different coordination of "i"s are found in literature. Take care, especially, $\lambda(\text{ours}) = i\lambda(\text{Wess-Bagger}) = i\lambda(\text{SLHA})$.

In Abelian case, t^a is replaced by the charge Q of Φ and

$$\mathcal{L} = \left[\Phi^* e^{2gQV(x)} \Phi \right]_{a^4}; \qquad \Phi \to e^{2igQ\Omega(x)} \Phi, \quad \Phi^* \to \Phi^* e^{-2igQ\Omega^*(x)}, \tag{4.23}$$

$$e^{2gQV(x)} \to e^{2igQ\Omega^*(x)} e^{2gQV(x)} e^{-2igQ\Omega(x)} = e^{2gQ(V-i\Omega+i\Omega^*)}.$$
 (4.24)

The usual gauge transformation corresponds to the real part of the lowest component of Ω , i.e., $\theta \equiv 2 \operatorname{Re} \phi = \phi + \phi^*$, and we use the other components to fix the supergauge so that C, M, N and χ are eliminated:

supergauge fixing:
$$V(x) \longrightarrow (\bar{\theta}\bar{\sigma}^{\mu}\theta)A_{\mu}(x) + \bar{\theta}^{2}\theta\lambda(x) + \theta^{2}\bar{\theta}\bar{\lambda}(x) + \frac{1}{2}D(x)$$
 (Wess-Zumino gauge); (4.25)

$$e^{2gQV} \longrightarrow 1 + gQ \left(-2\theta \sigma^{\mu} \bar{\theta} A_{\mu} + 2\theta^{2} \bar{\theta} \bar{\lambda} + 2\bar{\theta}^{2} \theta \lambda + D\theta^{4} \right) + g^{2} Q^{2} A^{\mu} A_{\mu} \theta^{4}. \tag{4.26}$$

The gauge transformation is the remnant freedom: $\Theta = \phi(y) = \phi - i\partial_{\mu}\phi(\theta\sigma^{\mu}\bar{\theta}) - \partial^{2}\phi\theta^{4}/4$ with ϕ being real;

$$\Phi_i \to e^{2igQ\Theta} \Phi_i, \qquad e^{2gQV} \to e^{2gQ(V - i\Theta + i\Theta^*)}.$$
(4.27)

Rules for each component is obvious in $(y, \theta, \bar{\theta})$ -basis and given by

$$\{\phi, \psi, F\} \to e^{igQ\theta} \{\phi, \psi, F\}, \qquad A_{\mu} \to A_{\mu} + \partial_{\mu}\theta, \qquad \lambda \to \lambda, \qquad D \to D.$$
 (4.28)

For non-Abelian gauges, the supergauge transformation for the real field is evaluated as

$$e^{2gV} \to e^{2ig\Omega^*} e^{2gV} e^{-2ig\Omega}$$
 (4.29)

$$= \left(e^{2ig\Omega^*} e^{2gV} e^{-2ig\Omega^*} \right) \left(e^{2ig\Omega^*} e^{-2ig\Omega} \right)$$

$$(4.30)$$

$$= \exp\left(e^{\left[2ig\Omega^*,2gV\right)}e^{2ig(\Omega^*-\Omega)} + \mathcal{O}(\Omega^2)\right)$$
(4.31)

$$= \exp\left(2gV + \left[2ig\Omega^*, 2gV\right]\right) e^{2ig(\Omega^* - \Omega)} + \mathcal{O}(\Omega^2); \tag{4.32}$$

$$= \exp \left[2gV + [2ig\Omega^*, 2gV] + \int_0^1 dt \, g(e^{[2gV, 2gV]}) + \mathcal{O}(\Omega^2) \right]$$
(4.33)

$$= \exp \left[2gV + [2ig\Omega^*, 2gV] + \sum_{n=0}^{\infty} \frac{B_n ([2gV_n)^n}{n!} 2ig(\Omega^* - \Omega)] \right] + \mathcal{O}(\Omega^2)$$
(4.34)

$$= \exp \left[2g \left(V + \mathrm{i}(\Omega^* - \Omega) - [V, \mathrm{i}g(\Omega^* + \Omega)] + \sum_{n=2}^{\infty} \frac{\mathrm{i}B_n \left([2gV,)^n}{n!} (\Omega^* - \Omega) \right] \right) + \mathcal{O}(\Omega^2) \right]. \tag{4.35}$$

Here, again we can use the "non-gauge" component of Ω to eliminate the C-term etc., i.e., we fix $i(\Omega^* - \Omega)$, the second term of the expansion, to remove those terms:

$$V - [V, ig(\Omega^* + \Omega)] + \left(i + \sum_{n=2}^{\infty} \frac{iB_n \left([2gV,)^n}{n!} \right) (\Omega^* - \Omega) \right] + \mathcal{O}(\Omega^2) = (\bar{\theta}\bar{\sigma}^{\mu}\theta)A_{\mu} + \bar{\theta}^2\theta\lambda + \theta^2\bar{\theta}\bar{\lambda} + \frac{1}{2}D; \tag{4.36}$$

this defines the Wess-Zumino gauge:

supergauge fixing:
$$V^a(x) \longrightarrow (\bar{\theta}\bar{\sigma}^{\mu}\theta)A^a_{\mu}(x) + \bar{\theta}^2\theta\lambda^a(x) + \theta^2\bar{\theta}\bar{\lambda}^a(x) + \frac{1}{2}D^a(x),$$
 (4.37)

$$e^{2gV^a t^a} \longrightarrow 1 + g\left(-2\theta\sigma^\mu \bar{\theta}A^a_\mu + 2\theta^2 \bar{\theta}\bar{\lambda}^a + 2\bar{\theta}^2\theta\lambda^a + D^a\theta^4\right)t^a + g^2Q^2A^{a\mu}A^b_\mu\theta^4t^at^b. \tag{4.38}$$

The gauge transformation is given by

$$\Phi \to e^{2ig\Theta^a t^a} \Phi, \quad e^{2gV^a t^a} \to e^{2ig\Theta^b t^b} e^{2gV^a t^a} e^{-2ig\Theta^c t^c}.$$
 (4.39)

For components in chiral superfields,

$$\{\hat{\phi}, \psi, F\} \to e^{ig\theta^a t^a} \{\hat{\phi}, \psi, F\},$$

$$(4.40)$$

while for vector superfield we can express as infinitesimal transformation:

$$V \to V' \simeq V + i(\Theta^* - \Theta) - [V, ig(\Theta^* + \Theta)] + \sum_{n=2}^{\infty} \frac{iB_n \left([2gV_n)^n + \Theta(\Theta^* - \Theta) \right)}{n!}$$

$$\tag{4.41}$$

$$= V + 2(\bar{\theta}\bar{\sigma}^{\mu}\theta)\partial_{\mu}\phi - \left[V, ig\left(2\phi - \frac{\theta^{4}}{2}\partial^{2}\phi\right)\right] + 2\sum_{n=2}^{\infty} \frac{B_{n}\left([2gV,)^{n}}{n!}(\bar{\theta}\bar{\sigma}^{\mu}\theta)\partial_{\mu}\phi\right]$$
(4.42)

$$= V + 2(\bar{\theta}\bar{\sigma}^{\mu}\theta)\partial_{\mu}\phi + 2gf^{abc}V^{b}\phi^{c}t^{a} \qquad \text{(Wess-Zumino gauge)}$$
(4.43)

$$\therefore A^{a}_{\mu} \to A^{a}_{\mu} + \partial_{\mu}\theta^{a} + gf^{abc}A^{b}_{\mu}\theta^{c} + \mathcal{O}(\theta^{2}), \quad \lambda^{a} \to \lambda^{a} + gf^{abc}\lambda^{b}\theta^{c} + \mathcal{O}(\theta^{2}),$$

$$D^{a} \to D^{a} + gf^{abc}D^{b}\theta^{c} + \mathcal{O}(\theta^{2}), \qquad \bar{\lambda}^{a} \to \bar{\lambda}^{a} + gf^{abc}\bar{\lambda}^{b}\theta^{c} + \mathcal{O}(\theta^{2}).$$

$$(4.44)$$

Gauge-field strength The real superfield e^V is gauge-invariant in Abelian case and a candidate in Lagrangian term, but this is not case in non-Abelian case. We thus define a chiral superfield from e^V :

$$\mathcal{W}_{\alpha} = \frac{1}{4} \bar{\mathcal{D}}_{\dot{\alpha}} \bar{\mathcal{D}}^{\dot{\alpha}} \left(e^{-2gV} \mathcal{D}_{\alpha} e^{2gV} \right); \qquad \mathcal{W}_{\alpha} \xrightarrow{\text{gauge}} e^{2ig\Omega} \mathcal{W}_{\alpha} e^{-2ig\Omega}; \tag{4.45}$$

it is not supergauge- or Lorentz-invariant, but $\text{Tr}(W^{\alpha}W_{\alpha}) = \text{Tr}(\epsilon^{\alpha\beta}W_{\beta}W_{\alpha})$ is supergauge- and Lorentz-invariant, and its θ^2 -term is SUSY-invariant, which becomes a candidate in SUSY Lagrangian with its Hermitian conjugate.

In Wess-Zumino gauge, it is given by

$$\mathcal{W}_{\alpha} = \left\{ \lambda_{\alpha}^{a}(y) + \theta_{\alpha} D^{a}(y) + \frac{\left[i(\sigma^{\mu} \bar{\sigma}^{\nu} - \sigma^{\nu} \bar{\sigma}^{\mu}) \theta \right]_{\alpha}}{4} F_{\mu\nu}^{a}(y) + \theta^{2} \left[i\sigma^{\mu} D_{\mu} \bar{\lambda}^{a}(y^{*}) \right]_{\alpha} \right\} T^{a}$$

$$(4.46)$$

$$= \left[\lambda_{\alpha}^{a} + \theta_{\alpha} D^{a} + \frac{\mathrm{i}}{2} (\sigma^{\mu} \bar{\sigma}^{\nu} \theta)_{\alpha} F_{\mu\nu}^{a} + \mathrm{i} \theta^{2} (\sigma^{\mu} D_{\mu} \bar{\lambda}^{a})_{\alpha} + \mathrm{i} (\bar{\theta} \bar{\sigma}^{\mu} \theta) \partial_{\mu} \lambda_{\alpha}^{a} - \frac{\theta^{4}}{4} \partial^{2} \lambda_{\alpha}^{a} + \frac{\mathrm{i} \theta^{2} (\sigma^{\mu} \bar{\theta})_{\alpha}}{2} \left(\partial_{\mu} D^{a} + \mathrm{i} \partial^{\nu} F_{\mu\nu}^{a} - g f^{abc} \epsilon_{\mu\nu\rho\sigma} A^{\nu b} \partial^{\rho} A^{\sigma c} \right) \right] T^{a},$$

$$(4.47)$$

where, as usual,

$$F_{\mu\nu}^{a} = \partial_{\mu}A_{\nu}^{a} - \partial_{\nu}A_{\mu}^{a} + gA_{\mu}^{b}A_{\nu}^{c}f^{abc}, \qquad D_{\mu}\lambda_{\alpha}^{a} = \partial_{\mu}\lambda_{\alpha}^{a} + gf^{abc}A_{\mu}^{b}\lambda_{\alpha}^{c}. \tag{4.48}$$

Also

$$[\operatorname{Tr}(\mathcal{W}^{\alpha}\mathcal{W}_{\alpha})]_{\theta^{2}} = \left[i\lambda^{a}\sigma^{\mu} \operatorname{D}_{\mu}\bar{\lambda}^{b} + i\lambda^{b}\sigma^{\mu} \operatorname{D}_{\mu}\bar{\lambda}^{a} + D^{a}D^{b} - \frac{1}{4} \left(i\epsilon^{\sigma\mu\nu\rho} + 2\eta^{\mu\rho}\eta^{\nu\sigma} \right) F_{\mu\nu}^{a} F_{\rho\sigma}^{b} \right] \operatorname{Tr}(T^{a}T^{b}) \tag{4.49}$$

$$= i\lambda^{a}\sigma^{\mu} D_{\mu}\bar{\lambda}^{a} + \frac{1}{2}D^{a}D^{a} - \frac{1}{4}F^{a}_{\mu\nu}F^{a\mu\nu} + \frac{i}{8}\epsilon^{\mu\nu\rho\sigma}F^{a}_{\mu\nu}F^{a}_{\rho\sigma}. \tag{4.50}$$

For Abelian theory,

$$W_{\alpha} = \frac{1}{4} \bar{\mathcal{D}}_{\dot{\alpha}} \bar{\mathcal{D}}^{\dot{\alpha}} \left(e^{-2gV} \mathcal{D}_{\alpha} e^{2gV} \right) = \frac{1}{4} \bar{\mathcal{D}}_{\dot{\alpha}} \bar{\mathcal{D}}^{\dot{\alpha}} \mathcal{D}_{\alpha} (2gV), \tag{4.51}$$

$$\frac{1}{2} \left[\mathcal{W}^{\alpha} \mathcal{W}_{\alpha} \right]_{\theta^{2}} = i \lambda \sigma^{\mu} D_{\mu} \bar{\lambda} + \frac{1}{2} DD - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{i}{8} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}. \tag{4.52}$$

5. Minimal Supersymmetric Standard Model

Gauge symmetry: $SU(3)_{color} \times SU(2)_{weak} \times U(1)_Y$

Particle content:

(a) Chiral superfields

	SU(3)	SU(2)	U(1)	В	L	scalar/spinor
$ \begin{array}{c} Q_i \\ L_i \\ U_i^c \\ D_i^c \\ E_i^c \\ H_u \end{array} $	$\frac{3}{3}$	2 2	$ \begin{array}{r} 1/6 \\ -1/2 \\ -2/3 \\ 1/3 \\ 1 \\ 1/2 \end{array} $	$\begin{vmatrix} 1/3 \\ -1/3 \\ -1/3 \end{vmatrix}$	1 -1	$ \begin{array}{c c} \tilde{q}_{\rm L} \;, q_{\rm L} & [\rightarrow (u_{\rm L}, d_{\rm L})] \\ \tilde{l}_{\rm L} \;, l_{\rm L} \; [\rightarrow (\nu_{\rm L}, l_{\rm L})] \\ \tilde{u}_{\rm R}^{\rm c} \;, u_{\rm R}^{\rm c} \\ \tilde{d}_{\rm R}^{\rm c} \;, d_{\rm R}^{\rm c} \\ \tilde{e}_{\rm R}^{\rm c} \;, e_{\rm R}^{\rm c} \\ h_{\rm u} \;, \tilde{h}_{\rm u} \; [\rightarrow (h_{\rm u}^+, h_{\rm u}^0)] \end{array} $
$H_{ m d}$		2	-1/2			$ h_{\mathrm{d}}, \tilde{h}_{\mathrm{d}} \stackrel{\text{\tiny [}}{[} \rightarrow (h_{\mathrm{d}}^{0}, h_{\mathrm{d}}^{-})] $

(b) Vector superfields

$\left. \begin{array}{c c} g & \text{adj.} \\ W & \text{adj.} \\ B & & \tilde{g}, g_{\mu} \\ \tilde{w}, W_{\mu} \\ \tilde{b}, B_{\mu} \end{array} \right.$		SU(3)	SU(2)	U(1)	$\mathrm{ino/boson}$
Ι , μ	W	adj.	adj.		$ \begin{vmatrix} \tilde{g}, g_{\mu} \\ \tilde{w}, W_{\mu} \\ \tilde{b}, B_{\mu} \end{vmatrix} $

Here, each of the column groups shows (from left to right) superfield name, charges for the gauge symmetries, other quantum numbers if relevant, and notation for corresponding fields (and SU(2) decomposition).

"c"-notation For scalars, $\tilde{\phi}_R^c := \phi_R^* = C\phi_R C$ (because the intrinsic phase for C is +1 for quarks and leptons.)

For matter spinors, $\psi_{R}^{c} := \bar{\psi}_{R}$ (and $\psi_{R} = \bar{\psi}_{R}^{c}$); Dirac spinors are thus

$$\psi_{\mathbf{L}} = \begin{pmatrix} \psi_{\mathbf{L}} \\ 0 \end{pmatrix}, \quad \overline{\psi_{\mathbf{L}}} = \begin{pmatrix} 0 & \bar{\psi}_{\mathbf{L}} \end{pmatrix}, \quad \psi_{\mathbf{R}}^{\mathbf{c}} := \begin{pmatrix} \psi_{\mathbf{R}}^{\mathbf{c}} \\ 0 \end{pmatrix} = C \begin{pmatrix} 0 \\ \psi_{\mathbf{R}} \end{pmatrix} = C \psi_{\mathbf{R}}, \quad \overline{\psi_{\mathbf{R}}^{\mathbf{c}}} = \begin{pmatrix} 0 & \bar{\psi}_{\mathbf{R}} \end{pmatrix} = (\bar{\psi}_{\mathbf{R}} \quad 0) C = \overline{\psi_{\mathbf{R}}} C.$$

Superpotential and SUSY-terms

$$W_{\text{RPC}} = \mu H_{\text{u}} H_{\text{d}} - y_{\text{u}ij} U_i^{\text{c}} H_{\text{u}} Q_j + y_{\text{d}ij} D_i^{\text{c}} H_{\text{d}} Q_j + y_{\text{e}ij} E_i^{\text{c}} H_{\text{d}} L_j, \tag{5.1}$$

$$W_{\text{RPV}} = -\kappa_i L_i H_{\text{u}} + \frac{1}{2} \lambda_{ijk} L_i L_j E_k^{\text{c}} + \lambda'_{ijk} L_i Q_j D_k^{\text{c}} + \frac{1}{2} \lambda''_{ijk} U_i^{\text{c}} D_j^{\text{c}} D_k^{\text{c}},$$
(5.2)

$$\mathcal{L}_{\text{SUSY}} = -\frac{1}{2} \left(M_3 \tilde{g} \tilde{g} + M_2 \tilde{w} \tilde{w} + M_1 \tilde{b} \tilde{b} + \text{H.c.} \right) - V_{\text{SUSY}}; \tag{5.3}$$

$$V_{\text{SUSY}}^{\text{RPC}} = \left(\tilde{q}_{\text{L}}^* m_Q^2 \tilde{q}_{\text{L}} + \tilde{l}_{\text{L}}^* m_L^2 \tilde{l}_{\text{L}} + \tilde{u}_{\text{R}}^* m_{U^c}^2 \tilde{u}_{\text{R}} + \tilde{d}_{\text{R}}^* m_{D^c}^2 \tilde{d}_{\text{R}} + \tilde{e}_{\text{R}}^* m_{E^c}^2 \tilde{e}_{\text{R}} + m_{H_u}^2 |h_{\text{u}}|^2 + m_{H_d}^2 |h_{\text{d}}|^2 \right)$$

$$+ \left(-\tilde{u}_{\text{R}}^* h_{\text{u}} a_{\text{u}} \tilde{q}_{\text{L}} + \tilde{d}_{\text{R}}^* h_{\text{d}} a_{\text{d}} \tilde{q}_{\text{L}} + \tilde{e}_{\text{R}}^* h_{\text{d}} a_{\text{e}} \tilde{l}_{\text{L}} + b H_{\text{u}} H_{\text{d}} + \text{H.c.} \right)$$

$$+ \left(-\tilde{u}_{\text{R}}^* h_{\text{d}}^* c_{\text{u}} \tilde{q}_{\text{L}} + \tilde{d}_{\text{R}}^* h_{\text{u}}^* c_{\text{d}} \tilde{q}_{\text{L}} + \tilde{e}_{\text{R}}^* h_{\text{u}}^* c_{\text{e}} \tilde{l}_{\text{L}} + \text{H.c.} \right),$$

$$(5.4)$$

$$V_{\text{SUSY}}^{\text{RPV}} = \left(-b_i \tilde{l}_{\text{L}i} H_{\text{u}} + \frac{1}{2} T_{ijk} \tilde{l}_{\text{L}i} \tilde{l}_{\text{L}j} \tilde{e}_{\text{R}k}^* + T_{ijk}' \tilde{l}_{\text{L}i} \tilde{q}_{\text{L}j} \tilde{d}_{\text{R}k}^* + \frac{1}{2} T_{ijk}'' \tilde{u}_{\text{R}i}^* \tilde{d}_{\text{R}j}^* \tilde{d}_{\text{R}k}^* + \tilde{l}_{\text{L}i}^* M_{Li}^2 H_{\text{d}} + \text{H.c.} \right) + \left(C_{ijk}^1 \tilde{l}_{\text{L}i}^* \tilde{q}_{\text{L}j} \tilde{u}_{\text{R}k}^* + C_i^2 h_{\text{u}}^* h_{\text{d}} \tilde{e}_{\text{R}i}^* + C_{ijk}^3 \tilde{d}_{\text{R}i} \tilde{u}_{\text{R}j}^* \tilde{e}_{\text{R}k}^* + \frac{1}{2} C_{ijk}^4 \tilde{d}_{\text{R}i} \tilde{q}_{\text{L}j} \tilde{q}_{\text{L}k} + \text{H.c.} \right),$$
(5.5)

$$(\lambda_{ijk} = -\lambda_{jik}, \lambda_{ijk}^{"} = -\lambda_{ikj}^{"}, \text{ and } C_{ijk}^4 = C_{ikj}^4.)$$

We follow the notation of DHM [?, PhysRept] and Martin [?, v7] (but note that Martin uses (-,+,+,+)-metric) for RPC part and SLHA2 convention for RPV part.

5.1. Scalar potential

The MSSM scalar potential has contributions from F-terms and D-terms:

$$V_{\rm SUSY} = F_i^* F_i + \frac{1}{2} D^a D^a; \qquad F_i = -W_i^* = -\frac{\delta W^*}{\delta \phi_i^*}, \qquad D^a = -g(\phi^* T^a \phi),$$
 where T_a corresponds to the gauge-symmetry generator relevant for each ϕ . They are given by

$$-F_{h_{u}^{*}}^{*} = \epsilon^{ab} \left(-\tilde{u}_{R}^{**} y_{u} \tilde{q}_{L}^{bx} + \mu h_{d}^{b} + \mu'_{i} \tilde{l}_{Li}^{b} \right), \tag{5.7}$$

$$-F_{h_{\mathbf{d}}^{*}}^{*} = \epsilon^{ab} \left(\tilde{e}_{\mathbf{R}}^{*} y_{\mathbf{e}} \tilde{l}_{\mathbf{L}}^{b} + \tilde{d}_{\mathbf{R}}^{x*} y_{\mathbf{d}} \tilde{q}_{\mathbf{L}}^{bx} - \mu h_{\mathbf{u}}^{b} \right), \tag{5.8}$$

$$-F_{\tilde{q}_{L_{i}}^{ax}}^{*} = \epsilon^{ab} \left(-y_{dji} h_{d}^{b} \tilde{d}_{Rj}^{**} + y_{uji} h_{u}^{b} \tilde{u}_{Rj}^{x*} - \lambda'_{kij} \tilde{d}_{Rj}^{x*} \tilde{l}_{Lk}^{b} \right), \tag{5.9}$$

$$-F_{\tilde{u}_{R}^{**}}^{**} = -y_{uij}h_{u}\tilde{q}_{Lj}^{x} + \frac{1}{2}\epsilon^{xyz}\lambda_{ijk}^{"}\tilde{d}_{Rj}^{y*}\tilde{d}_{Rk}^{z*}, \tag{5.10}$$

$$-F_{\tilde{d}_{R_{i}}^{**}}^{*} = y_{\text{d}ij}h_{\text{d}}\tilde{q}_{Lj}^{x} + \lambda_{jki}'\tilde{l}_{Lj}\tilde{q}_{Lk}^{x} - \lambda_{jik}''\epsilon^{xyz}\tilde{u}_{Rj}^{y*}\tilde{d}_{Rk}^{z*}, \tag{5.11}$$

$$-F_{\tilde{l}_{1,i}^{*}}^{*} = \epsilon^{ab} \left(-y_{eji} \tilde{e}_{Rj}^{*} h_{d}^{b} - \mu_{i}' h_{u}^{b} + \lambda_{ijk} \tilde{l}_{Lj}^{b} \tilde{e}_{Rk}^{*} + \lambda_{ijk}' \tilde{q}_{Lj}^{bx} \tilde{d}_{Rk}^{x*} \right), \tag{5.12}$$

$$-F_{\tilde{e}_{Ri}}^* = y_{eij} h_d \tilde{l}_{Lj} + \frac{1}{2} \lambda_{jki} \tilde{l}_{Lj} \tilde{l}_{Lk}. \tag{5.13}$$

$$D_{SU(3)}^{\alpha} = -g_3 \sum_{i=1}^{3} \left(\sum_{a=1,2} \tilde{q}_{Li}^{a*} \tau^{\alpha} \tilde{q}_{Li}^{a} - \tilde{u}_{Ri}^{*} \tau^{\alpha} \tilde{u}_{Ri} - \tilde{d}_{Ri}^{*} \tau^{\alpha} \tilde{d}_{Ri} \right), \tag{5.14}$$

$$D_{\text{SU}(2)}^{\alpha} = -g_2 \left[\sum_{i=1}^{3} \left(\sum_{x=1}^{3} \tilde{q}_{\text{L}i}^{x*} T^{\alpha} \tilde{q}_{\text{L}i}^{x} + \tilde{l}_{\text{L}i}^{*} T^{\alpha} \tilde{l}_{\text{L}i} \right) + h_{\text{u}}^{*} T^{\alpha} h_{\text{u}} + h_{\text{d}}^{*} T^{\alpha} h_{\text{d}} \right],$$
 (5.15)

$$D_{\mathrm{U}(1)} = -g_1 \left(\frac{1}{6} |\tilde{q}_{\mathrm{L}}|^2 - \frac{1}{2} |\tilde{l}_{\mathrm{L}}|^2 - \frac{2}{3} |\tilde{u}_{\mathrm{R}}|^2 + \frac{1}{3} |\tilde{d}_{\mathrm{R}}|^2 + |\tilde{e}_{\mathrm{R}}|^2 + \frac{1}{2} |h_{\mathrm{u}}|^2 - \frac{1}{2} |h_{\mathrm{d}}|^2 \right). \tag{5.16}$$

Combining these, the full SUSY scalar potential is given by

$$V_{\text{SUSY}} + V_{\text{SUSY}} = |h_{n}|^{2} (|\mu|^{2} + |\mu|^{2}) + |\mu|^{2} |h_{d}|^{2} + (\mu_{n}^{\prime} \mu_{1}^{\prime} \hat{L}_{1} h_{d} + \text{H.c.}) + \mu_{n}^{\prime} \mu_{1}^{\prime} \hat{L}_{1} \hat{L}_{1}$$

$$+ \left[-y_{nij} \mu_{n}^{\prime} h_{n}^{\prime} \hat{u}_{n} \hat{u}_{n} - y_{nij} \mu_{n}^{\prime} \hat{u}_{n}^{\prime} \hat{u}_{n}^{\prime} \hat{L}_{1} \hat{L}_{1} - (y_{nij} \mu_{n}^{\prime} + \lambda_{kj}^{\prime} \mu_{n}^{\prime} \hat{u}_{n}^{\prime} \hat{u}_{n}^{\prime} \hat{u}_{n}^{\prime} + \lambda_{kj}^{\prime} + \lambda_{kj}^{\prime} \hat{u}_{n}^{\prime} \hat{u}_{n}^{\prime} \hat{u}_{n}^{\prime} \hat{u}_{n}^{\prime} + \lambda_{kj}^{\prime} \hat{u}_{n}^{\prime} \hat{u}_{n}^{\prime} \hat{u}_{n}^{\prime} \hat{u}_{n}^{\prime} + \lambda_{kj}^{\prime} \hat{u}_{n}^{\prime} \hat{u}_{n}^{\prime} \hat{u}_{n}^{\prime} \hat{u}_{n}^{\prime} \hat{u}_{n}^{\prime} + \lambda_{kj}^{\prime} \hat{u}_{n}^{\prime} \hat{u}_{n$$

5.2. SLHA convention

The SLHA convention [?] is different from our notation; the reinterpretation rules for the MSSM parameters are given in the right table (magenta color for objects in other conventions), while

 $\mu, b, m_{Q,L,H_{\mathrm{u}},H_{\mathrm{d}}}^2$, RPV-trilinears (λ s and Ts) are in common.

SLHA		our notation	Martin/DHM
(H_1,H_2)	=	$(H_{ m d},H_{ m u})$	
		$(y_{\mathrm{u,d,e}})^{\mathrm{T}}$	
		$(a_{\mathrm{u,d,e}})^{\mathrm{T}}$	
$A_{ m u,d,e}$	=	$(A_{\mathrm{u,d,e}})^{\mathrm{T}}$	
$m_{U^{\mathrm{c}},D^{\mathrm{c}},E^{\mathrm{c}}}^{2}$	c =	$(m_{U^{\mathrm{c}},D^{\mathrm{c}},E^{\mathrm{c}}}^2)^\dagger$	
		$-M_{1,2,3}$	
m_3^2	=	b	
m_A^2	=	$m_{A_0}^2$ (tree)	
		κ_i	$=-\mu_i'$ (rarely used)
D_i	=	b_i	
$m_{\tilde{L}_i H_1}^2$	=	M_{Li}^2	
			·

In particular, the chargino/neutralino mass terms in RPC case are given by

$$\mathcal{L} \supset \left[\frac{1}{2} \underline{M_1} \tilde{b} \tilde{b} + \frac{1}{2} \underline{M_2} \tilde{w} \tilde{w} - \mu \tilde{h}_u \tilde{h}_d - \frac{g_Y}{2\sqrt{2}} \left(h_u^* \tilde{h}_u - h_d^* \tilde{h}_d \right) \tilde{b} - \sqrt{2} g_2 \left(h_u^* T^a \tilde{h}_u + h_d^* T_a \tilde{h}_d \right) \tilde{w} \right] + \text{H.c.}$$

$$(5.19)$$

$$\rightarrow \frac{1}{2} \begin{pmatrix} \tilde{b} \\ \tilde{w} \\ h_{u}^{0} \\ h_{d}^{0} \end{pmatrix}^{T} \begin{pmatrix} -M_{1} & 0 & -m_{Z}c_{\beta}s_{w} & m_{Z}s_{\beta}s_{w} \\ 0 & -M_{2} & m_{Z}c_{\beta}c_{w} & -m_{Z}s_{\beta}c_{w} \\ -m_{Z}c_{\beta}s_{w} & m_{Z}c_{\beta}c_{w} & 0 & -\mu \\ m_{Z}s_{\beta}s_{w} & -m_{Z}s_{\beta}c_{w} & -\mu & 0 \end{pmatrix} \begin{pmatrix} \tilde{b} \\ \tilde{w} \\ h_{u}^{0} \\ h_{d}^{0} \end{pmatrix} \tag{5.20}$$

A. Mathematics

A.1. Matrix exponential

Excerpted from §2 and §5 of Hall 2015 [?]:

$$e^X := \sum_{m=0}^{\infty} \frac{X^m}{m!}$$
 (converges for any X), $\log X := \sum_{m=1}^{\infty} (-1)^{m+1} \frac{(A-1)^m}{m}$ (conv. if $||A-I|| < 1$). (A.1)

$$e^{\log A} = A \text{ (if } ||A - I|| < 1), \quad \log e^X = X \text{ and } ||e^X - 1|| < 1 \text{ (if } ||X|| < \log 2).$$
 (A.2)

Hilbert-Schmidt norm:
$$||X||^2 := \sum_{i,j} |X_{ij}|^2 = \operatorname{Tr} X^{\dagger} X.$$
 (A.3)

Properties:

$$e^{(X^T)} = (e^X)^T$$
, $e^{(X^*)} = (e^X)^*$, $(e^X)^{-1} = e^{-X}$, $e^{YXY^{-1}} = Y e^X Y^{-1}$,

$$\det \exp X = \exp \operatorname{Tr} X, \qquad \frac{\mathrm{d}}{\mathrm{d}t} \operatorname{e}^{tX} = X \operatorname{e}^{tX} = \operatorname{e}^{tX} X \qquad \operatorname{e}^{(\alpha+\beta)X} = \operatorname{e}^{\alpha X} \operatorname{e}^{\beta X} \text{ for } \alpha, \beta \in \mathbb{C};$$

Baker-Campbell-Hausdorff:

$$e^{X}Ye^{-X} = Y + [X,Y] + \frac{1}{2!}[X,[X,Y]] + \frac{1}{3!}[X,[X,[X,Y]]] + \dots = e^{[X,]}Y;$$
 (A.4)

$$e^{X} e^{Y} e^{-X} = \sum_{n=0}^{\infty} \frac{1}{n!} (e^{X} Y e^{-X})^{n} = \exp(e^{[X,]} Y);$$
 (A.5)

$$\log(e^{X} e^{Y}) = X + \int_{0}^{1} dt \, g(e^{[X, e^{t[Y, Y]}}) Y \qquad \left[g(z) = \frac{\log z}{1 - z^{-1}} = 1 - \sum_{n=1}^{\infty} \frac{(1 - z)^{n}}{n(n+1)}; \quad g(e^{y}) = \sum_{n=0}^{\infty} \frac{B_{n} y^{n}}{n!}\right]$$
(A.6)

$$=X+Y+\frac{1}{2}[X,Y]+\frac{1}{12}[X,[X,Y]]-\frac{1}{12}[Y,[X,Y]]+\cdots \quad \text{(Baker-Campbell-Hausdorff)}. \tag{A.7}$$

$$\log(e^{X} e^{Y}) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \left(\sum_{m,n=0}^{\infty} \frac{X^{m} Y^{n}}{m! n!} - 1 \right)^{k} = \sum_{k=1}^{\infty} \sum_{m_{1}+n_{1}>0} \cdots \sum_{m_{k}+n_{k}>0} \frac{(-1)^{k-1}}{k} \frac{X^{m_{1}} Y^{n_{1}} \cdots X^{m_{k}} Y^{n_{k}}}{m_{1}! n_{1}! \cdots m_{k}! n_{k}!}$$
(A.8)

$$\log(e^{X} e^{Y}) = \sum_{k=1}^{\infty} \sum_{m_1 + n_1 > 0} \cdots \sum_{m_k + n_k > 0} \frac{(-1)^{k-1}}{k \sum_{i=1}^{k} (m_i + n_i)} \frac{\left([X, \right)^{m_1} \left([Y, \right)^{n_1} \cdots \left([X, \right)^{m_k} \left([Y, \right)^{n_k}] \cdots \right)}{m_1! n_1! \cdots m_k! n_k!}$$
(A.9)

withe [X] := X understood.