Modelação de Sistemas Físicos

Ano Académico 2021/2022 - 2º Semestre

3º TESTE Parte Cálculo Computacional-Numérico

Data: 6 julho 2022 **Duração:** 1 hora 15 minutos **Cotação:** 1) 1 + 1.5 + 2 + 1.5 = 6 valores

Hora: 15H15 **Disciplina:** 41769 2) 2 + 1 + 1 = 4 valores

Salas: 23.3.14, 23.2.12, 23.2.13, 23.2.14

NOTE:

a) Responda às perguntas na vossa folha de prova, justificando-as,

b) Na vossa folha de prova indique os métodos, os algoritmos, passos, ... usados.

c) Indique claramente o sistema de eixos usado.

d) **Esboce os gráficos**, indicando univocamente os pontos importantes. Se gravar as figuras, salve-as em formato png.

e) **Os ficheiros** devem ser copiados para a caneta de memória do docente presente na sala com **o nome e número do aluno** (para poderem ser consultados quando o docente tiver dúvidas durante a correção).

f) Os ficheiros poderão ser um por alínea e com a impressão dos resultados.

g) Tem de usar o seu computador portátil. Pode (e deve) usar os seus programas, assim como outros programas que tenha obtido.

h) É um teste de consulta, mas não pode aceder à internet, incluindo para consultar documentos do python.

As respostas não podem ser escritas a lápis

Justifique todas as respostas

1. Um corpo de massa 0.5 kg move-se num oscilador quártico. Se a posição de equilíbrio for a origem do eixo $x_{eq} = 0$ m, o oscilador tem a energia potencial

$$E_p = \frac{1}{2}k \ x^2 + \alpha \ x^3 - \beta \ x^4$$

exerce no corpo a força

$$F_x = -k x - 3 \alpha x^2 + 4 \beta x^3$$

Considere k=2 N/m , $\alpha=-$ 0.1 N/m² e $\beta=$ 0.02 N/m³.

- a) Faça o diagrama de energia desta energia potencial (energia potencial em função da posição). Qual o movimento quando a energia total for menor que 4 J?
- b) Calcule a lei do movimento, quando a posição inicial for 1.5 m e a velocidade inicial 0.5 m/s? Quanto é a energia mecânica?
- c) Entre que limites se efetua o movimento e a frequência e o período do movimento? Apresente os resultados com a precisão de 4 algarismos.
- d) Faça a análise de Fourier da solução encontrada. Apresente o resultado como $\sqrt{a_n^2 + b_n^2}$, sendo a_n e b_n os coeficientes de Fourier.

Resolução resumida

a)

 $E_p \le 4$ J. O corpo oscila entre as posições em que a $E_p = 4$ J. Como a energia potencial não é simétrica à volta da posição de equilíbrio, o movimento oscilatório tem uma posição média (por período) > 0.

b)

c). Limites superior e inferior do movimento calculados usando a interpolação de Lωagrange

Método	δt (s)	Limite superior (m)	Limite inferior (m)	T (s)	ω (rad/s)
EC	0.1	1.5105563	-1.2945257	3.1999999	1.96349540
EC	0.01	1.52786	-1.30550	3.3099999	1.898243
EC	0.001	1.530044	-1.30702	3.32100000	1.89195582
EC	0.0001	1.53026	-1.30718	3.32209	1.89132937
EC	0.00001	1.5302891	-1.30720013	3.322199999	1.89127244
Converge		1.530	-1.307	3.322	1.891

Coeficientes de Fourier, por integração numérica usando a aproximação trapezoidal.

n	$\sqrt{a_n^2+b_n^2}$
0	0.347401
1	1.420658
2	0.062439
3	0.001897
4 e superior	0.000000

2. Um corpo de massa 1.0 kg move-se num oscilador forçado, em que a posição de equilíbrio é a origem do eixo OX, $x_{eq} = 0$. A força externa é $F_x = 7.5 \cos(1.4 t)$ N, em que o tempo está expresso em segundos.

a) Considere que o oscilador é harmónico de energia potencial

$$E_p = \frac{1}{2}k x^2$$

e força aplicada é

$$F_x = -k x$$

em que k=1.0 N/m. O meio exerce uma força de resistência $F_x=-b\ v_x$, em que b=0.05 kg/s. Calcule a amplitude da oscilação no regime estacionário.

b) Considere que o oscilador é quártico, de energia potencial

$$E_p = \frac{1}{2}k \ x^2 (1 + \beta \ x^2)$$

e força aplicada é

$$F_x = -k x (1 + 2 \beta x^2)$$

Considere k=1.0 N/m, b=0.05 kg/s e $\beta=0.001$ N/m². O meio exerce uma força de resistência $F_x=-b~v_x$, em que b=0.05 kg/s. Calcule a amplitude da oscilação no regime estacionário.

c) Nas condições da alínea b), no instante 400 s, a frequência da força externa é mudada de 1.4 rad/s para 1.37 rad/s. Calcule a nova amplitude da oscilação no regime estacionário.

Resolução resumida

a) Método de Euler-Cromer (EC) ou o de Runge-Kutta de 4ª ordem (RK4)

ax=-k/m*x[i]-b/m*vx[i]+f0/m*np.cos(omef*tempo[i])

Regime estacionário

Amplitude calculada quando t>790 s

Mátada	(2) 42	A no rollitural o (ros)
Método	δt (s)	Amplitude (m)
		regime estacionário
		(interpolação Lagrange)
EC	0.01	7.7960
EC	0.001	7.7922
EC	0.0001	7.7918
RK4	0.001	7.7918

Amplitude regime estacionário 7.792 m

b) x=-k/m*x*(1+2*beta*x**2)-b/m*vx+f0/m*np.cos(omef*t)

Método	δt (s)	Amplitude (m)
		regime estacionário
		(interpolação Lagrange)
EC	0.01	8.913
EC	0.001	8.9058
EC	0.0001	8.9052
RK4	0.001	8.90515

Amplitude regime estacionário 8.905 m

```
c)  \begin{aligned} &\text{ome} f{=}1.4 \\ &\text{if } t{>}400: \\ &\text{ome} f{=}1.37 \\ &\text{ax}{=}{-}k/m^*x^*(1{+}2^*beta^*x^*{+}2){-}b/m^*vx{+}f0/m^*np.cos(omef^*t) \end{aligned}
```


Método	δt (s)	Amplitude (m)
		regime estacionário
		(interpolação Lagrange)
EC	0.01	27.98
EC	0.0001	27.98
RK4	0.001	27.98

Amplitude regime estacionário 27.98 m