

AD-A186 671

DDESB Library Copy DNA-TR-81-61

MATERIALS EVALUATION IN THE TRI-SERVICE THERMAL RADIATION TEST FACILITY

University of Dayton
Industrial Security Super KL-505
303 College Park Avenue
Dayton, Ohio 45409

17 March 1982

Technical Report for Period 24 April 1981–24 February 1982

CONTRACT No. DNA 001-81-C-0147

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

THIS WORK WAS SPONSORED BY THE DEFENSE NUCLEAR AGENCY
UNDER RDT&E RMSS CODE B345081466 G54AAXYX00009 H2590D.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, DC 20305

Destroy this report when it is no longer
needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY,
ATTN: STTI, WASHINGTON, D.C. 20305, IF
YOUR ADDRESS IS INCORRECT, IF YOU WISH TO
BE DELETED FROM THE DISTRIBUTION LIST, OR
IF THE ADDRESSEE IS NO LONGER EMPLOYED BY
YOUR ORGANIZATION.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER DNA -TR-81-61	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) MATERIALS EVALUATION IN THE TRI-SERVICE THERMAL RADIATION TEST FACILITY		5. TYPE OF REPORT & PERIOD COVERED Technical Report for Period 24 Apr 81—24 Feb 82
		6. PERFORMING ORG. REPORT NUMBER UDR-TR-82-31
7. AUTHOR(s) Dennis Gerdeman Nicholas Olson Benjamin Wilt Ronald Servais		8. CONTRACT OR GRANT NUMBER(s) DNA 001-81-C-0147
9. PERFORMING ORGANIZATION NAME AND ADDRESS University of Dayton Industrial Security Super KL-505 300 College Park Avenue, Dayton, OH 45409		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Task G54AAXYX000-09
11. CONTROLLING OFFICE NAME AND ADDRESS Director Defense Nuclear Agency Washington, D.C. 20305		12. REPORT DATE 17 March 1982
		13. NUMBER OF PAGES 64
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A Since UNCLASSIFIED
16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution Unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES This work was sponsored by the Defense Nuclear Agency under RDT&E RMSS Code B345081466 G54AAXYX00009 H2590D.		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Thermal Facility Tri-Service		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report outlines facility usage during the period of 24 April 1981- 24 February 1982 and lists available instrumentation and projected usage.		

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(*When Data Entered*)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(*When Data Entered*)

SUMMARY

The Tri-Service Thermal Radiation Test Facility, located at Wright-Patterson Air Force Base, Ohio, has been utilized to complete over 9,600 materials tests during a five-year period under contract to the Defense Nuclear Agency. The facility has the capability to provide intense radiant heating in conjunction with either aerodynamic or mechanical tensile and bending loading.

Approximately 2,000 of the total tests were conducted during the current contract. Utilization of the facility for a similar number of materials evaluations is anticipated during a follow-on contract. Facility improvements in the area of heat flux improvement and surface phenomena data are also anticipated as scheduling allows.

PREFACE

This summary report covers work performed during the period from 24 April 1981 to 24 February 1982 under Defense Nuclear Agency Contract DNA001-81-C-0147. The work was administered under the direction of Lt. Col. R. A. Flory, Contracting Officer's Representative on this contract. The contract represents a follow-on effort to Defense Nuclear Agency Contract DNA001-80-C-0128 under which the following reports were generated:

UDRI-TR-77-28, "Tri-Service Thermal Radiation Test Facility: Test Procedures Handbook," May 1977.

DNA 4488Z, "Tri-Service Thermal Flash Test Facility," Interim Summary Report, 29 March 1978.

DNA 4757F, "Tri-Service Thermal Flash Test Facility," Final Report for Period 6 August 1976-31 October 1978, 30 November 1978.

DNA 5197F, "Tri-Service Thermal Flash Test Facility," Final Report for Period 15 December 1978-15 December 1979, 15 January 1980.

DNA 5650F, "Materials Evaluation in the Tri-Service Thermal Radiation Test Facility," Final Report for Period 25 January 1980-28 February 1981, 28 February 1981.

The work was conducted under the general supervision of Mr. Dennis Gerdeman and the Principal Investigator was Mr. Benjamin H. Wilt. Dr. Ronald A. Servais acted as consultant and the research technician was Mr. Nicholas J. Olson.

TABLE OF CONTENTS

<u>SECTION</u>		<u>PAGE</u>
	SUMMARY	1
	PREFACE	2
	LIST OF ILLUSTRATIONS	4
	LIST OF TABLES	5
1	INTRODUCTION	7
	1.1 BACKGROUND	7
	1.2 OBJECTIVES	7
2	TRI-SERVICE THERMAL FLASH TEST FACILITY	8
	2.1 OVERVIEW	8
	2.2 NUCLEAR FLASH SIMULATION	8
	2.3 AERODYNAMIC LOAD SIMULATION	12
	2.4 DYNAMIC LOAD SIMULATION	15
	2.5 MECHANICAL LOAD SIMULATION	19
	2.6 INSTRUMENTATION	19
	2.7 DATA ACQUISITION SYSTEM	23
	2.8 CONTROL SYSTEM	23
	2.9 COMPUTER MODELING	23
3	FACILITY UTILIZATION	27
	3.1 TEST SCHEDULING	27
	3.2 COMPLETED TEST PROGRAMS	27
	3.3 PROJECTED TEST PROGRAMS	28
4	PROJECTED FACILITY DEVELOPMENT	33
	4.1 FACILITY MAINTENANCE AND IMPROVEMENTS	33
	REFERENCES	35
	APPENDIX - THERMAL FLASH TESTS	37

LIST OF ILLUSTRATIONS

<u>FIGURE</u>		<u>PAGE</u>
1	Tri-Service Thermal Radiation Test Facility	9
2	High Density Lamp Bank	11
3	Mobile Quartz Lamp Bank	11
4	Radiation Heat Flux vs. Distance From Lamp Bank	13
5	Wind Tunnel	14
6	Wind Tunnel 70 cm Test Section	14
7	70 cm Test Section Shutter	16
8	MTS Tensile Loading Device	17
9	Mechanical Loading-Tension	20
10	Mechanical Loading-Bending	20
11	Data Acquisition System	24
12	Console	26
13	Thermal Flash Laboratory Overview	26

LIST OF TABLES

<u>TABLE</u>		<u>PAGE</u>
1	Quartz Lamp Bank Specifications	10
2	MTS Operating System Components	18
3	Recommended Mechanical Loading Specimen Information	19
4	Available Instrumentation	21
5	Heat Flux Gage Specifications	22
6	X-Y Recorder Specifications	22
7	Data Acquisition System Components	25
8	Completed and Current Test Programs	29
9	Projected Test Programs	32
10	Table of Materials	45

BLANK

SECTION 1

INTRODUCTION

1.1 BACKGROUND

The University of Dayton Research Institute (UDRI) has been under contract to the Defense Nuclear Agency (DNA) since 1976 to operate the Tri-Services Thermal Radiation Facility located at the Air Force Wright Aeronautical Laboratories (AFWAL), Wright-Patterson Air Force Base, Dayton, Ohio. Efforts in support of the DNA have included the development and operation of appropriate laboratory equipment to simulate thermal, aerodynamic, tensile, and bending loads and combinations of these loading conditions on materials of interest to the Tri-Service community.

The data accumulated through materials exposure to the combined thermal and aerodynamic or thermal and mechanical loads in the thermal flash facility can be utilized to match material performance with design criteria and as a data base for computer modeling.

1.2 OBJECTIVES

The primary objectives of the research activity have remained unchanged since the establishment of the test facility in 1976. These objectives have served to establish a materials data base from over 9,600 tests during that time and can be summarized as follows:

- (1) To continue to provide the Tri-Service community with a quick-response intense radiation heating experimental capability, including the effects of aerodynamic and mechanical loads;
- (2) To conduct tests for the Tri-Service community as required; and
- (3) To maintain, improve, and modify the test facility between scheduled tests.

SECTION 2

TRI-SERVICE THERMAL FLASH TEST FACILITY

2.1 OVERVIEW

The original development of the Tri-Service Thermal Flash Test Facility is described in Reference 1. The facility has undergone numerous improvements to reflect the current needs of the Tri-Service community. There are still four basic experimental capabilities.

- (1) Irradiation of test specimens using the Mobile Quartz Lamp Bank (MQLB);
- (2) Irradiation of test specimens in aerodynamic flow using the Mobile Quartz Lamp Bank or the High Density Lamp Bank (HDLB);
- (3) Irradiation of test specimens under tensile or bending mechanical creep frame loads using the MQLB; and
- (4) Irradiation of test specimens under transient tensile/compression loads using the MQLB.

Available instrumentation include radiometers for determining heat flux, thermocouples for monitoring temperatures, a pitot tube for determining flow velocities, still and movie cameras, X-Y recorders, and various electronic control devices. Limited machining facilities are available for minor specimen modification or alteration during test programs. Figure 1 illustrates the facility layout.

2.2 NUCLEAR FLASH SIMULATION

The intense radiation needed to simulate a nuclear flash can be produced by a series or bank of tungsten filament, quartz lamps. Two banks of lamps are available in the Facility; they are designated the High Density Lamp Bank (HDLB) and the Mobile Quartz Lamp Bank (MQLB). The operational characteristics of the banks are listed in Table 1; the banks are shown in

Figure .1. Tri-Service Thermal Radiation Test Facility.

Table 1
QUARTZ LAMP BANK SPECIFICATIONS

	MQLB	HDLB
Lamp Designation	GE/Q6M/T3/CL/HT	GE/Q6M/T3/CL/HT
Number of Lamps	24	24
Lamp Bank Area	22 cm x 25 cm	15 cm x 25 cm
Maximum Voltage	460 vac	460 vac
Maximum Current	300 a	300 a

Figures 2 and 3. The HDLB is used to produce very high heat flux levels; the MQLB is used when lower heat flux levels are required.

The HDLB mounts to the side of the wind tunnel. Use of this one-dimensional radiation source is limited to the 11 cm x 22 cm window that forms one wall of the tunnel. Incident radiation on a test specimen mounted on the opposite wall of the tunnel can only be varied by changing lamp applied voltage. Flux levels to 55 cal/cm²-sec for durations of up to 3 seconds can be achieved using a gold coated reflector that surrounds the bank, directing most of the radiant energy to the test specimen. Removal of the reflector reduces the heat flux to a level near 30 cal/cm²-sec. It also allows longer test durations of up to 5 seconds. Reducing lamp voltage for lower flux values further extends allowable test durations, as long as a maximum integrated heat fluence of 150 cal/cm² is not exceeded. Higher fluence levels can be achieved with proportionate reductions in both reliability and stability.

Figure 2. High Density Lamp Bank.

Figure 3. Mobile Quartz Lamp Bank.

Tunnel operation is not necessary for HDLB use but the slight air flow across the test specimens face due to flue effects prevents possible occlusion by carrying off any by-products of specimen combustion.

The MQLB with its larger area produces a one-dimensional radiation source, approximately 20 cm by 25 cm. The incident radiation on a test specimen is controlled by varying either specimen distance from the bank source or the lamp applied voltage. Certain tests require protecting the lamps; this is normally accomplished by inserting a quartz window between the lamps and the exposed specimen. The incident radiation on a test specimen as a function of the distance from the bank source is illustrated in Figure 4.

2.3 AERODYNAMIC LOAD SIMULATION

An open-circuit pull-down wind tunnel is available to simulate aerodynamic flow over specimens exposed to high intensity radiation. The wind tunnel is shown in Figure 5. A photograph of the wind tunnel test section is shown in Figure 6. The test section is 70 cm long and has a 2.38 cm x 11.43 cm cross-sectional area. The constant free-stream velocity for the section is nominally 210 m/sec with a corresponding Mach number of 0.6. The Reynolds number is 20×10^6 based on the inlet wall length. Wind tunnel exhaust gases are vented to the atmosphere through the roof of the building.

A pitot probe, manometers, and a pressure transducer are available for flow calibration, which can be supplied with each test program, as required.

The MQLB or the HDLB is used in conjunction with the wind tunnel; the beam is brought in through a quartz window which is mounted in one wall of the test section. The opposite wind tunnel test section wall holds the test specimen, which is mounted flush with the wind tunnel wall. Specimen sizes up to 22.86 cm by 10.08 cm can be accommodated. Special plates are

- HDLB
- MQLB

Figure 4. Radiation Heat Flux vs. Distance From Lamp Bank.

Figure 5. Wind Tunnel.

Figure 6. Wind Tunnel 70 cm Test Section.

available for the test section for mounting the various calorimeters and pitot tube for heat flux and flow calibration.

An electrically actuated shutter for the wind tunnel test configuration was designed and installed in the 70 cm test section as a first priority improvement during the previous contract effort. The shutter was installed along the centerline of the test section to take advantage of the convective cooling provided by the tunnel air flow. Lamp-to-specimen distance and, therefore, maximum heat flux available were not affected by the installation. The rapid rise and accurately controlled pulse attained with the shutter capability enhanced simulation of thermal nuclear heating. A photograph depicting shutter operation in the 70 cm test section is shown in Figure 7.

Because of recent requirements by facility users for two-level radiant heat profiles, the shutter actuating system was replaced. Materials evaluations now require long duration, low-level irradiation followed by short duration, high level heat pulses. The solenoid in the electrical system was limited to short duration use because of overheating. An air cylinder which can be operated indefinitely was installed in place of the solenoid.

2.4 DYNAMIC LOAD SIMULATION

A Materials Test System (MTS) device is available for simulating dynamic loads during exposure to radiant heating. The MTS device includes a hydraulically actuated mechanism for applying tensile or compressive loads to a specimen, as pictured in Figure 8. The loads are preset and controlled electronically; specific control components which are available are listed in Table 2. At the present time, simultaneous dynamic loads and radiant heating effects on specimens can be determined. The system is designed in order to conduct simultaneous dynamic loading in air flow while exposing the test specimen to radiant heating; this capability is tentatively scheduled for availability during 1982.

Figure 7. 70 cm Test Section Shutter.

Figure 8. MTS Tensile Loading Device.

Table 2
MTS OPERATING SYSTEM COMPONENTS

Component	Model
Linear Actuator	204.51
Hydraulic Manifold	294.11
Digital Function Generator	410.31
Electro-mechanical Counter	417.01
Servo Controller	440.13
DC Transducer Conditioner	440.21
AC Transducer Conditioner	440.22
Servo-controlled Closed Loop Feedback Selector	440.31
Limit Detector	440.41
Ramp Generator	440.91
Controller	442.11
Hydraulic Power Supply	506.03
Transducer Load Cell	661.21

2.5 MECHANICAL LOAD SIMULATION

A creep frame is available for dead weight simulation of tensile and bending loads and is shown in Figure 9. The MQLB is used as the radiation source; the exposure procedure is similar to that used in the wind tunnel. Note that mechanical and aerodynamic loads cannot be applied simultaneously at this time. Tension and bending configurations are possible. Three and four point bending is accomplished in the mechanical load frame by the addition of a yoke and fulcrum as indicated in Figure 10. Recommended specimen sizes and maximum applied loads are specified in Table 3. Strain gages and other appropriate instrumentation are mounted on test specimens in order to monitor strain as a function of time during exposure to radiation.

Table 3

RECOMMENDED MECHANICAL LOADING SPECIMEN INFORMATION

	Uniaxial Tension	Bending Tension or Compression
Specimen Size (cm)		
Width	5-7.5	5-7.5
Thickness	0.02-1.25	0.6-2.5
Length	25-60	50-75
Stress Levels (MPa)	3.5-1700	7-1400

2.6 INSTRUMENTATION

The instrumentation required for operating the facility and which is available is summarized in Table 4. Facility users normally supply their own specimen-mounted instrumentation, such as thermocouples and strain gages. Additional details on the heat flux instrumentation and plotters which are available are given in Tables 5 and 6.

Figure 9. Mechanical Loading-Tension.

Figure 10. Mechanical Loading-Bending.

Table 4
AVAILABLE INSTRUMENTATION

Application	Quantity	Instrumentation	Purpose
Quartz Lamp Banks	6	Radiometers	Heat Flux
	1	Thermac Temperature Controller	Heat Flux Control
	1	Data-Trak Controller	Heat Flux Control
Aerodynamic Load	1	+10 psi Stathem Pressure Transducer	Flow Calibration
	1	Pitot Probe Assembly	Flow Calibration
	1	Manometer	Flow Calibration
Mechanical Load	1	Wheatstone Bridge	Strain Gage
Arc Imaging Furnaces	2	Radiometers	Heat Flux
	1	Calorimeter	Heat Flux
	1	Time Controller (0.1 second minimum)	Shutter Control
General	3	X-Y-Y' Recorders	Data Recording
	1	LSI-11 Micro-processor	Data Recording
	1	35mm Nikon Still Camera	Specimen Photographs
	1	MP-4 Polaroid Still Camera	Specimen Photographs
	2	8mm Nizo Braun Movie Cameras	Specimen Photographs
	---	Various Thermocouples	Temperature
	1	L&N 8641-S Automatic Recording Pyrometer (760-6000°C)	Surface Temperature
	---	Barometer, Thermometer, Hygrometer	Ambient Conditions
		Tektronix Dual-Trace Memory Oscilloscope, Model 314	

Table 5
HEAT FLUX GAGE SPECIFICATIONS

Mfgr	Type	Model	Range	Accuracy
Medtherm	Gardon	64P-20-24	0-5 cal/cm ² sec	+3%
Medtherm	Gardon	64P-50-24	0-13 cal/cm ² sec	+3%
Medtherm	Gardon	64P-100-24	0-27 cal/cm ² sec	+3%
Medtherm	Gardon	64P-100-24	0-27 cal/cm ² sec	+3%
Medtherm	Gardon	64P-200-24	0-54 cal/cm ² sec	+3%
Medtherm	Gardon	64P-200-24	0-54 cal/cm ² sec	+3%
RdF	Gardon	CFR-1A	0-400 cal/cm ² sec	+10%
RdF	Gardon	CFR-1A	0-400 cal/cm ² sec	+10%
ADL	Calorimeter	---	50-350 cal/cm ² sec	+5%

Table 6
X-Y RECORDER SPECIFICATIONS

Mfgr	Model	Channels	Range	Response
Hewlett-Packard	7046A X-Y-Y'	2	0.2mv/cm-4v/cm	0.025-5cm/sec
Hewlett-Packard	136 X-Y-Y'	2	0.2mv/cm-20v/cm	0.05-5cm/sec
Honeywell	540 X-Y-Y'	2	0.04mv/cm-0.4v/cm	0.025-5cm/sec
Soltec	3316	6	0.04mv/cm-0.4v/cm	135cm/sec

2.7 DATA ACQUISITION SYSTEM

The data acquisition system, including an LSI-11 micro-computer, is capable of producing conventional X-Y plots on-line or transmitting the digitized calibration or property data directly to the Wright-Patterson Air Force Base (WPAFB) Computing Facility for further data reduction. The output can be in the form of tabulated or plotted and labelled data. Figure 11 schematically illustrates the system. Table 7 lists the system components. The interface between the LSI-11 and the WPAFB Computing Facility was developed by Lt. Randy Rushe and is described in Reference 2.

2.8 CONTROL SYSTEM

The primary components of the laboratory (quartz lamp banks, wind tunnel, exhaust system) can be controlled and monitored from the operator console, which is shown in Figure 12. Only one operator is required for most tests. The console is located such that the operator can visually observe a test (if appropriate) and also monitor critical voltages and currents, etc. This allows the operator to abort a test if necessary. The console also controls the microcomputer and the other components of the data acquisition system with the exception of the data terminal. Figure 13 is an overview of the mobile quartz lamp bank, the wind tunnel, and the operating console.

2.9 COMPUTER MODELING

A two-dimensional thermal response computer program for predicting the thermal response of materials exposed to intense thermal radiation and aerodynamic cooling in the Tri-Service Thermal Flash Test Facility was developed by William N. Lee at Kaman AviDyne under contract to the Defense Nuclear Agency. The analysis and operating procedures are described in detail in Reference 3.

Figure 11. Data Acquisition System.

Table 7
DATA ACQUISITION SYSTEM COMPONENTS

Operating Controls

Wind tunnel operation
Quartz lamp operation
Quartz lamp cooling operation (blower & air)
Quartz lamp remote operation jack
Quartz lamp & shutter exposure time control
Computer reset, clock & hold operation
Controller set-point remote operation
Tri-phaser controller

Monitoring Controls

Quartz lamp power - voltage & current indicators
Wind tunnel pressure indicator
Peripheral equipment temperature indicator (10 pt.)
Shutter solenoid overheat indicator
Quartz lamp cumulative operating time indicator

Data Acquisition

LSI-11 microprocessor
Ectron differential D.C. amplifiers (8)
Power supply
Teletype
Acoustic coupler

Figure 13. Thermal Flash Laboratory Overview.

Figure 12. Console.

SECTION 3

FACILITY UTILIZATION

3.1 TEST SCHEDULING

The Tri-Services Nuclear Flash Test Facility is available to governmental users on a no-charge basis. Test programs involving nuclear thermal flash materials performance receive priority although other tests may be accommodated; all test programs must be approved by the Defense Nuclear Agency contract monitor.

Specific details regarding test program procedures, scheduling, special testing requirements, specimen sizes, heat flux levels, etc., should be directed to the Principal Investigator and Test Director in charge of the Facility, Mr. Ben Wilt (513-229-2517). Note that the analysis of material performance must be conducted by the Facility user.

Material response tests for the Tri-Service community take precedence over all other activities associated with the operation of the Facility. That is, test requests have been scheduled at the test initiator's convenience if possible. Since most test programs are about one to five days in length, few conflicts in scheduling have arisen and few are anticipated. Based on experience, each new test program typically requires special planning and hardware (such as instrumentation and specimen mounting brackets); therefore, the more advance notice given for a particular test program the more efficiently the tests can be conducted. All test scheduling, special requirements, etc., have been and will be handled by the Test Director, Mr. Ben Wilt.

3.2 COMPLETED TEST PROGRAMS

The primary purpose of the Facility is to support the Tri-Service community with a quick-response, thermal nuclear flash, materials response testing capability. Tests which have

been conducted are summarized in Table 8. Additional information on these tests can be obtained by contacting Mr. Ben Wilt and References 4-8. The specific runs are listed in the Appendix.

3.3 PROJECTED TEST PROGRAMS

Table 9 identifies the known tests to be conducted during the next 12 months. Since the primary purpose of the Facility involves quick-response testing, it is not possible to establish a comprehensive list of all future tests at this time.

Table 8
COMPLETED AND CURRENT TEST PROGRAMS

Initiator	Organization	Project	Test	
			Number	Date
Alexander	AVCO	DNA	001-073	March 7-10, 1977
Alexander	AVCO	DNA	074-086	March 15, 1977
Collis	Boeing	AWACS	087-316	March 21-24, 1977
Graham	AVCO	DNA	359-416	June 6-16, 1977
Alexander	AVCO	DNA	419-574	June 20-24, 1977
Collis	Boeing	ALCM	576-677	July 19-22, 1977
Alexander	AVCO	DNA	678-772	Oct. 5-7, 1977
Grady	AFWAL	DNA	773-870	Oct. 12-22, 1977
Litvak	AFWAL	B-1 Documentary Film		March 13-24, 1978
Collis	Boeing	ALCM	871-1076	July 18-20, 1978
Sparling	Rockwell	DNA	1081-2571	July 24-Sept. 28, 1978
Worscheck	GD-Convair	ALCM	2572-2677	Oct. 2-4, 1978
Olson	UDRI	Calibra-tion	2678-2710	Oct. 16-20, 1978
Sparling	Rockwell	DNA	2711-5753	Oct. 24-Dec. 5, 1978
Alexander	AVCO	DNA	5754-5809	Dec. 11-13, 1978
Baba	Harry Diamond	U.S. Army	5810-5881	Dec. 18-21, 1978
Olson	UDRI	Calibra-tion	5882-5890	Jan. 22, 1979
Evans	Ballistics Research	U.S. Army	5891-5948	Jan. 23-24, 1979
Spangler	MCDAC	DNA	5949-6032	March 6-15, 1979
Rooney	AFWAL	USAF	6033-6036	March 19, 1979
Spanlger	MCDAC	DNA	6037-6056	April 2, 1979
Worscheck	GD-Convair	ALCM	6057-6074	May 2, 1979
Kimerly	LATA	DNA	6075-6096	May 31-June 1, 1979
Alexander	AVCO	DNA	6097-6140	June 19-21, 1979
Baba	Harry Diamond	U.S. Army	6141-6222	June 25-27, 1979
Schmitt	AFWAL	USAF	6223-6247	June 28-29, 1979
Kimerly	LATA	DNA	6248-6264	July 2-3, 1979
Worscheck	GD-Convair	ALCM	6265-6307	July 17-19, 1979
Spangler	MCDAC	DNA	6308-6372	July 30-Aug. 2, 1979
Schmitt	AFWAL	USAF	6373-6423	Aug. 14-16, 1979
Schmitt	AFWAL	USAF	6424-6426	Aug. 30, 1979
Worscheck	GD-Convair	ALCM	6427-6435	Sept. 4, 1979
Schmitt	AFWAL	USAF	6436-6438	Oct. 3, 1979
Alexander	AVCO	DNA	6439-6449	Oct. 5-10, 1979
Olson	UDRI	DNA	6450-6466	Oct. 15-19, 1979
Rooney	AFWAL	USAF	6467-6470	Nov. 11, 1979
Kimerly	LATA	DNA	6471-6480	Dec. 4-6, 1979

Table 8 (Continued)
COMPLETED AND CURRENT TEST PROGRAMS

Initiator	Organization	Project	Test	
			Number	Date
Etzel	Aerojet-General	DNA	6481-6555	Dec. 10-13, 1979
Kimerly	LATA	DNA	6556-6561	Dec. 14, 1979
Hurley	AFWAL	USAF	6562-6598	Dec. 17-21, 1979
Sherwood	CAAPCO	USAF	6599-6634	Jan. 22, 1980
Sherwood	CAAPCO	USAF	6635-6639	April 2, 1980
Hurley	AFWAL	USAF	6640-6647	April 8, 1980
Kimerly	LATA	DNA	6648-6666	May 8, 1980
Tydings	AFWAL	USAF	6467	May 13, 1980
Etzel	Aerojet	MX	6468-6742	June 4-10, 1980
Henders	McDAC	MX	6743-6755	June 12, 1980
Etzel	Aerojet	MX	6756-6881	July 7-10, 1980
Walsh	Boeing-Wich.	B-52	6882-7040	July 14-18, 1980
Kimerly	LATA	DNA	7041-7088	Aug. 20-23, 1980
Tydings	AFWAL	USAF	7089-7090	Aug. 27, 1980
Etzel	Aerojet	MX	7091-7206	Sept. 22, 1980
Church	Boeing-Wich.	B-52	7207-7211	Oct. 1, 1980
Tydings	AFWAL	USAF	7212	Oct. 14, 1980
Kimerly	LATA	DNA	7213-7232	Oct. 16-18, 1980
Rhodehamel	AFWAL	USAF	7233-7258	Nov. 4-10, 1980
Olson	UDRI	DNA	7259-7280	Nov. 11-14, 1980
Rhodehamel	AFWAL	USAF	7281-7295	Nov. 19-25, 1980
Etzel	Aerojet	MX	7296-7488	Dec. 1-5, 1980
Schuck	Collins Radio	USAF	7489-7626	Dec. 15, 1980
Schuck	Collins Radio	USAF	7627-7636	Feb. 5, 1981
Davis	Sperry-Univac	MX	7637-7641	Feb. 17, 1981
Tydings	AFWAL	USAF	7642-7645	March 16, 1981
Hender	Aerojet	MX	7646-7799	March 30, 1981
Grinsberg	CAAPCO	USAF	7800-7903	April 7, 1981
McDonnell	SAI	DNA	7904-8057	April 20, 1981
Lane	Aerojet	MX	8058-8150	April 27, 1981
Olson	UDRI	DNA	8151-8157	May 6, 1981
Sparling	Rockwell	USAF	8158-8184	May 7, 1981
Kimerly	LATA	DNA	8185-8242	May 15, 1981
Olson	UDRI	DNA	8243-8253	June 1, 1981
Schuck	Collins Radio	USAF	8254-8266	June 12, 1981
Hender	Aerojet	MX	8267-8268	June 16, 1981
Gregory	Aberdeen	U.S. Army	8269-8294	June 29, 1981
Freeberg	LATA		8295-8360	July 6, 1981
Griffith	Sperry-Univac	MX	8361-8396	July 13, 1981
Davis	Sperry-Univac	MX	8397-8405	Aug. 26, 1981
Grinsberg	CAAPCO	USAF	8406-8443	Aug. 27, 1981
Price	LATA	DNA	8444-8474	Aug. 29, 1981
Etzel	Aerojet	MX	8475-8658	Aug. 31, 1981

Table 8 (Concluded)
COMPLETED AND CURRENT TEST PROGRAMS

Initiator	Organization	Project	Test	
			Number	Date
Hurley	AFWAL	USAF	8659-8663	Sept. 17, 1981
Worschek	GD-Convair	USAF	8664-8708	Sept. 22, 1981
Hand	I-T-T	USAF	8709-8719	Oct. 1, 1981
Miller	UDRI	NASA	8720-8724	Oct. 5, 1981
Uram	Goodyear	USAF	8725-8751	Oct. 9, 1981
Price	LATA	DNA	8752-9246	Oct. 19, 1981
Dumus	Collins Radio	USAF	9247-9302	Nov. 5, 1981
---	LATA	DNA	9303-9375	Nov. 12, 1981
---	LATA	DNA	9376-9389	Nov. 18, 1981
Miller	UDRI	NASA	9390-9405	Nov. 19, 1981
Uram	Goodyear	USAF	9406-9431	Dec. 15, 1981
Monti	Martin-Marietta	USAF	9432-9510	Dec. 21, 1981
R. Davis	Brunswick	USAF	9511-9538	Dec. 28, 1981
Olson	UDRI	DNA	9539-9548	Jan. 12, 1982
Monti	Martin-Marietta	USAF	9549-9642	Jan. 18, 1982
Miller	UDRI	NASA	9643-9647	Feb. 2, 1982

Table 9
PROJECTED TEST PROGRAMS

Initiator	Organization	Project	Material	Date
Brown	AVCO			February
Miller	UDRI	NASA	Foam	February
Rhodehamel	AFWAL	USAF	Graphite Composites	March
Miller	UDRI	NASA	Foam	March
Olson	UDRI	DNA	Facility Upgrade	April
Sawdy	Boeing-Wichita	USAF	Aircraft Composites	April
Brettman	Boeing-Seattle	USAF	Aircraft Composites	May
Etzel	Aerojet	MX	Missile Protection	June
Rhodehamel	AFWAL	USAF	Graphite Composites	July
Kimerly	Rockwell		Aircraft Composites	August

SECTION 4

FACILITY DEVELOPMENT

4.1 FACILITY MAINTENANCE AND IMPROVEMENTS

Keeping the facility operational and current is an ongoing activity which is carried out between scheduled tests. Experience has shown that this effort requires about one week per month. During the period between March 1981 and February 1982, approximately 34 weeks were devoted to the completion of a like number of test programs for a total of over 2000 tests. The remaining time was utilized to maintain the facility.

A review of various methods and devices currently available to measure radiant heat flux has shown one device conforms to most requirements of the TRTF. The calorimeter, manufactured by HyCal, Inc., was purchased as the standard for facility calibration. Since the device is an asymptotic type gage, limitations regarding response time do exist. The development of a radiometric gage that can respond immediately to the energy imposed at the leading edge of a square pulse is being pursued.

Facility capabilities were significantly extended with the final incorporation of the hydraulically operated Mechanical Test System (MTS) with the Quartz Lamp Bank. The sensitivity and speed of the apparatus has greatly enhanced the combined thermal/mechanical response of materials subjected to mechanical shock during or immediately following a thermal pulse. The concept of system portability has resulted in an easily movable test frame designed to interface with both the wind tunnel and quartz lamps for simultaneous thermal, mechanical and aerodynamic effects.

The ever broadening needs of users of the TRTF has led to the design and fabrication of a number of specialized specimen holders for the testing of unique shapes and configurations. Special hardware was developed for applying uniform tensile loads to braided shields surrounding fiber optics during thermal testing. Special hardware was also developed to install cable bundles in a

repeatable location; to install short, thin specimens in a compression test mode without initiating buckling of the specimens; and for holding very thin metallic plates against the negative pressure created by the wind tunnel.

One of the more significant improvements to the facility included the fabrication of a highly polished water-cooled reflector for the Mobile Quartz Lamp Bank. The improved cooling combined with a new dual-pulse timing system with independent lamp power and pulse width control enables long-term, low-level radiant energy extending maximum fluence levels to 300 cal/cm². The all solid-state timing system also incorporates the capability for long-term low level specimen pre-heat followed instantly by a high level short-term pulse. Independent and sequential programming of such test parameters as wind tunnel operation, specimen exposure time, radiance levels and, to some extent, pulse shaping is also possible.

Several improvements in data acquisition were incorporated with the installation of the six-channel Soltec recorder. The strip-chart recorder has a broad variety of ranges and provides direct plots of temperature of up to six thermocouple inputs.

The extremely short duration pulses associated with mechanical fracture of materials are now captured on the dual-trace memory screen oscilloscope incorporated in the facility during the contract period. The resulting traces are then photographed to provide a permanent record of material performance.

REFERENCES

1. Servais, R. A., Wilt, B. H., and Olson, N. J., "Tri-Service Thermal Flash Test Facility," Interim Summary Report, DNA 4488Z, 29 March 1978.
2. Rushe, R., "A Microcomputer Data Acquisition System for Materials Testing," Master of Science Thesis submitted to the Air Force Institute of Technology, March 1978.
3. Lee, W. N., "TRAP-ML-A Two Dimensional Thermal Response Code Tailored for the Defense Nuclear Agency Tri-Service Thermal Radiation Test Facility," DNA 4770F, 30 November 1978.
4. Scherer, W. R. and Collis, S. E., "Nuclear Thermal Survivability/Vulnerability of the E-4B," Boeing Aerospace Co. Rpt. No. D226-20380-1, March 1977.
5. "Skin Friction Drag Increase Due to Nuclear Thermal Damage," Boeing Aerospace Co. Final Report on Contract DNA001-77-C-0090, 30 September 1977.
6. Collis, S. E., "Simulated Nuclear Thermal Testing of AGM-86 Honeycomb Sandwich Structures," Boeing Aerospace Co. Rpt. No. D232-10599-3, November 1977.
7. Alexander, J. G., "Conductive Coatings for Composite Aircraft Surfaces," AVCO Systems Division, Rpt. No. AFML-TR-77-164, September 1977.
8. Collis, S. E., "Simulated Nuclear Thermal Testing of AGM-86 Nosecap Sandwich Structure and Fin/Elevon Graphite-Epoxy Composites," Boeing Aerospace Co. Rpt. (to be published).

BLANK

APPENDIX
THERMAL FLASH TESTS

Run Series	Substructures	Specimen Configurations
		Coatings
001-073	Aluminum 6061	WMS-0; WMS-4; WMS-7; CMS-905; WMS-0/ CMS-905; WMS-4/CMS-905; WMS-7/CMS-905; 1224-0; CMS-6231
	Glass-Epoxy	WMS-0/CMS-905; WMS-7/CMS-905; CMS-905; CMS-6231
	Graphite-Epoxy	WMS-0/CMS-905; WMS-4/CMS-905; WMS-7/ CMS-905; 1224-4/CMS-905; 1224-0; CMS-905
074-086	Graphite-Epoxy	WMS-0; WMS-4; WMS-7/CMS-905; WMS-7/ CMS-6231; CMS-6231
087-316	Glass-Epoxy	MIL-C-8326; MIL-L-81352; MIL-C-83281;
	Honeycomb	MIL-C-83286; Astrocoat; Fluorocarbon; Polysulfide
	Aluminum Honeycomb	MIL-C-8326; MIL-C-83286
	Graphite-Epoxy	MIL-C-83281; MIL-C-83286
	TBD Honeycomb	
	Aluminum Sheet	MIL-C-83281; MIL-C-83286
	Magnesium Sheet	MIL-C-83281; MIL-C-83286
317-360	FACILITY MODIFICATION AND CALIBRATION	
361-412	Quartz Polyimide	Uncoated
	Graphite-Epoxy	Uncoated
419-574	Glass-Epoxy	1; 2; 3; 4A; 4B; 5A; 5B; 5C; 5D; 6; 7; 8A; 8B; 8C; 9; 9B; 10; 11; 12A; 12B; 13A; 13B; 15A; 15B; 16; 17 (Table 10)
	Graphite-Epoxy	1; 2; 3; 4; 5; 5B; 5C; 6; 7; 8B; 9A; 9B; 10; 11; 12A; 12B; 13A; 13B; 15A; 16; 17 (Table 10)
	Quartz Polyimide	1; 2; 3; 4A; 4B; 5A; 5B; 5C; 5E; 9A; 10; 12A; 15A; 15B; 16; 17 (Table 10)
	Aluminum 6061	2; 6; 7; 12; 18; 19; 20; 21 (Table 10)

Run Series	Substructures	Specimen Configurations	
			Coatings
575-677	Glass-Epoxy	25; 26; 28; 29; 30; 31; 32; 33	
	Honeycomb	(Table 10)	
	Aluminum Honeycomb	25; 26; 27 (Table 10)	
	Aluminum Sheet	25; 26; 27 (Table 10)	
688-772	Glass-Epoxy	1; 2; 3; 4B; 5A; 5B; 5C; 5D; 7; 9A; 10; 10B; 15A; 24 (Table 10)	
	Graphite- Epoxy	4B; 6; 9A; 9C; 10; 10B; 10C; 11A; 12A; 12C; 12D; 14; 15B; 22; 23 (Table 10)	
	Quartz Polyimide	0; 4B; 5; 5B; 5C; 9A; 10A; 10B; 12A; 12C; 12D; 14; 15A (Table 10)	
773-855	Graphite- Epoxy	White polyimide; cork silicone; un- coated (All tested in tension)	
	Quartz Polyimide	White polyimide; cork silicone; un- coated (All tested in tension)	
856-870	Aluminum	Grey polymeric bead	
871-1076	Epoxy-fiberglass Foam sandwich	34; 35; 36 (Table 10)	
	Epoxy-fiberglass Honeycomb sandwich	35; 37 (Table 10)	
	Graphite-epoxy	38; 39; 40 (Table 10)	
	Natural poly- ethylene with honeycomb core	No coating	
	White poly- ethylene with honeycomb core	No coating	
	Delrin with Flex- core Honeycomb	No coating	
	Nylon with Flex- core Honeycomb	No coating	

Run Series	Substructures	Specimen Configurations	
			Coatings
1081-2571	Honeycomb Substructure	41; 42; 43; 44; 45; 46; 47; 48; 49; 50; 51; 52; 53; 54 (Table 10)	
2572-2677	Aluminum 7075	55; 56; 57; 58; 59; 60; 61; 62; 63; Anodize (Table 10)	
	Glass-Epoxy	55; 56; 57; 58; 59; 60; 61; 62; 63; Uncoated (Table 10)	
2678-2710	FACILITY MODIFICATION AND CALIBRATION		
2711-5753	Honeycomb Substructure	41; 42; 43; 44; 45; 46; 47; 48; 49; 50; 51; 52; 53; 54 (Table 10)	
5754-5809	Graphite-Epoxy	1; 2; 3; 4A; 4B; 5A; 5B; 6; 10A; 10B; 10C; 14; 15A; 15B; 16; 17 (Table 10)	
	Quartz Polyimide	1; 2; 3; 4A; 4B; 5A; 5B; 6; 10A; 10B; 10C; 14; 15A; 15B; 16; 17 (Table 10)	
5810-5881	Fiber Optics	64; 65; 66; 67; 68 (Table 10)	
	Twisted Pair and Coaxial Electrical Cables	64; 65; 66; 67; 68 (Table 10)	
5882-5890	FACILITY CALIBRATION		
5891-5948	1060 Cold Rolled Steel	69; 70; 71; 72; 73; 74; 75; 76; 77; 78 (Table 10)	
5949-6032	Kevlar-Epoxy	79; 80; 81; 82; 83; 84; 85; 86; 87; 88; 89; 90; 91; 92; 93; 94 (Table 10)	
	Motorcase	79; 80; 81; 82; 83; 84; 85; 86; 87; 88; 89; 90; 91; 92; 93; 94 (Table 10)	
6033-6036	Aluminized Fabric	No coating	
6037-6056	Vamac	No coating	
	Viton	No coating	

Run Series	Substructures	Specimen Configurations	
			Coatings
6057-6074	Aluminum	55; 56; 57; 58; 59; 60; 61; 62; 63 (Table 10)	
	Epoxy/Fiberglass	55; 56; 57; 58; 59; 60; 61; 62; 63 (Table 10)	
6075-6096	Polypropylene	No coating	
6096-6140	Graphite-Epoxy	1; 2; 3; 4A; 4B; 5A; 5B; 6; 10A; 10B; 10C; 14; 15A; 15B; 16; 17 (Table 10)	
	Quartz Polyimide	1; 2; 3; 4A; 4B; 5A; 5B; 6; 10A; 10B; 10C; 14; 15A; 15B; 16; 17 (Table 10)	
6141-6222	Fiber Optics	64; 65; 66; 67; 68 (Table 10)	
	Twisted Pair and Coaxial Electrical Cables	64; 65; 66; 67; 68 (Table 10)	
6223-6247	Aluminum	95; 96; 97; 98; 99; 100; 101; 102; 103; 104; 105 (Table 10)	
6248-6264		106; 107; 108; 109 (Table 10)	
6265-6307	Aluminum	55; 56; 57; 58; 59; 60; 61; 62; 63 (Table 10)	
	Epoxy/Fiberglass	55; 56; 57; 58; 59; 60; 61; 62; 63 (Table 10)	
	Polycarbonate	55; 56; 57; 58; 59; 60; 61; 62; 63 (Table 10)	
	Quartz-Epoxy	55; 56; 57; 58; 59; 60; 61; 62; 63 (Table 10)	
6308-6372	Vamac	No coating	
6373-6426	Aluminum	110; 111; 112; 113; 114; 115; 116; 117; 118; 119; 120; 121; 122; 123; 124 (Table 10)	
6427-6435	Teflon-Epoxy	55; 56 (Table 10)	

Run Series	Substructures	Specimen Configurations	
			Coatings
6436-6438	Epoxy/Fiberglass	125	(Table 10)
6439-6449	Quartz Polyimide	4A; 4B	(Table 10)
6450-6466		FACILITY CALIBRATION	
6467-6470	Aluminized Tape	No coating	
6471-6480		FACILITY CALIBRATION	
6481-6555		126; 127; 128; 129; 130; 131; 132; 133 (Table 10)	
6556-6561		FACILITY CALIBRATION	
6562-6598	Aluminum	95; 96; 97; 98; 99; 100; 101; 102; 103; 104; 105; 110; 111; 112; 113; 114; 115; 116 (Table 10)	
6599-6639	Quartz-Polyimide/ Graphite Epoxy	134; 135; 136; 137; 138; 139; 140; 141; 142; 143 (Table 10)	
6640-6647	Aluminum	144; 145; 146; 147; 148; 149 (Table 10)	
6648-6666		FACILITY CALIBRATION	
6667	Aluminized Tape	No coating	
6668-6742	Aluminum	NBR/EDPM blends, Vamac	
6743-6755	Wind tunnel con- vective cooling evaluation		
6756-6881	Aluminum	NBR/EDPM blends	
6882-7040	Glass-Epoxy Honeycomb	150; 151; 152 (Table 10)	
7041-7058		FACILITY CALIBRATION	

Run Series	Specimen Configurations	
	Substructures	Coatings
7059-7088		FACILITY CALIBRATION
7089-7090	Aluminized Tape	No coating
7091-7206	Aluminum	Ne blends; Duriod (AVCO); Cork (Thiokol); Silicone (Thiokol); Vamac 25
7207-7211	Quartz Polyimide	No coating
7212	Aluminized Tape	No coating
7213-7232		DYNAMIC LOAD CHECKOUT
7233-7258	Surface Temperature Determinations	
7259-7280		FACILITY CALIBRATION
7281-7295	Quartz Polyimide	No coating
7296-7488	Aluminum	153; 154; 155; 156; 157; 158; 159; 160; 161; 162; 163; 164; 165; 167 (Table 10)
7489-7636	Electrical Hardware	Switch faces; keyboard displays; digital panel meters; LED displays, connectors
7637-7641	Fiber-Optics	Kevlar strength shields, EDM Galite, PPP non-woven Kevlar
7642-7645	Aluminized Tape	3M-YR-364; Y-363A-L4; Y363A-L8
7646-7799	Aluminum	Vamac 22B; Ne blend, Kevlar; RTV560; DC93-076; DC93-104; Silastic E; Cork (Thiokol)
7800-7903	Quartz Polyimide	168; 169; 170; 171; 172; 173; 174; 175; 176; 177; 178; 179; 180 (Table 10)

Run Series	Specimen Configurations	
	Substructures	Coatings
7904-8057	FACILITY CALIBRATION	
8058-8150	Aluminum	181; 182; 183; 184; 185; 186; 187; 188; 189; 190; 191 (Table 10)
8151-8157	Copper	3M Nextel paint
8158-8184	Aluminum Glass-Epoxy Graphite-Epoxy	Uncoated Aluminum screen undercoat Aluminum screen undercoat
8185-8242	Thermal Print Paper	3M Nextel paint
8243-8253	FACILITY CALIBRATION	
8254-8266	Keyboards	LCD and polyester
8267-8268	Aluminum	Vamac 22B
8269-8294	Aluminum	Medtherm optically flat black paint
8295-8360	Clear Plastic Wafers	Uncoated
8361-8396	Fiber-optics	192; 193; 194; 195; 196; 197; 198 (Table 10)
8397-8405	Fiber-optics	199; 200 (Table 10)
8406-8443	Quartz Polyimide	201; 202; 203; 204; 205; 206; 207; 208; 209; 210; 211 (Table 10)
8444-8474	Styrofoam Wafers	Uncoated
8475-8658	Aluminum; Glass-Epoxy	Vamac; RTV 560; Hypalon; EPDM; Cork/Hypalon; Cork/Potting compound/ Hypalon; Silastic E; Cork; AVCO-1; AVCO-2
8659-8663	Aluminum	Camouflage paints

Run Series	Specimen Configurations	
	Substructures	Coatings
8664-8708	Aluminum; Lexan; Fiberglass; Fiberglass Honeycomb	CAAPCO polyurethanes
8709-8719	Fiber-optics	Polyurethane, Kevlar; Tefzel
8720-8724	Polyimide Foam	Intumescent coatings
8725-8751	Aluminum	External protection coatings
8752-9246	Glass-Epoxy; Graphite-Epoxy	Uncoated tension/compression
9247-9302	Steel; Glass-Epoxy	169; 171; 173; 177; 179; 212; 213; 214; 215; 216; 217; 218; 219; 220; 221; 222; 223; 224; 225; 226; 227; 228 (Table 10)
9303-9375	Aluminum	Uncoated tension/compression
9376-9389	Graphite-Epoxy; Graphite-Aluminum	T-300/96% SiO ₂
9390-9405	Aluminum	Sprayed foam insulation with polyimide and phenolic intumescent coatings
9406-9431	Aluminum; Transparencies	Uncoated and coated
9432-9510	Aluminum	229; 230; 231; 232 (Table 10)
9511-9538	Quartz-Epoxy	CAAPCO fluoroelastomers, white and gray
9539-9548	FACILITY CALIBRATION	
9549-9642	Aluminum	229; 230; 231; 232 (Table 10)
9643-9647	Aluminum	Sprayed on foam insulation with polyimide and phenolic intumescent coatings

Table 10
TABLE OF MATERIALS

- 1 Two-layer anti-static white polyurethane
- 2 Single-layer aluminized polyurethane
- 3 White MIL-C-83286 over aluminized polyurethane
- 4A Dow 808 white silicone, 50 PVC titania
- 4B Dow 808 white silicone, 25 PVC titania
- 5A Three layer white fluorocarbon, 40 PVC titania plus fibers
- 5B Three layer white fluorocarbon, 25 PVC titania plus fibers
- 5C Three layer fluorocarbon erosion coating, 25 PVC titania plus fibers
- 5D Three layer fluorocarbon erosion coating, 40 PVC titania plus fibers
- 6 Bonded copper foil, 2 Mil
- 7 Flame sprayed aluminum
- 8A Bonded polyester film, 10 Mil
- 8B Bonded TFE teflon film, 10 Mil
- 8C Bonded UHMW polyethylene film, 10 Mil
- 9A Bonded cork silicone, 20 Mil
- 9B Bonded cork silicone, 50 Mil
- 9C Cork silicone, 10 Mil
- 10A Epoxy-polyimide white ablative paint
- 10B Epoxy-polyimide flexible white, 6 Mil
- 10C Epoxy-polyimide flexible white, 10 Mil
- 11 Grafoil stitched package
- 12A Bonded RTV 655 silicone, 20 Mil
- 12B Bonded RTV 655 silicone, 50 Mil
- 12C Modified RTV 655, white, sprayed, 10 Mil
- 12D Modified RTV 655, white, sprayed, 3 Mil
- 13A Bonded silastic 23510 white silicone, 20 Mil
- 13B Bonded silastic 23510 white silicone, 50 Mil
- 14 RTV-655, 3 Mil over cork silicone, 10 Mil
- 15A 134/KHDA polyurethane erosion coating, 5 PVC titania
- 15B 134/KHDA polyurethane erosion coating, 25 PVC titania

Table 10
TABLE OF MATERIALS (Continued)

16 Desoto 10A grey polyurethane topcoat over aluminized polyurethane

17 Bostic dark grey polyurethane over aluminized polyurethane

18-
21 Grey polyurethane

22 White RTV 655, 3 Mil over conductive RTV 3 Mil

23 Bonded aluminum foil, 2.4 Mil

24 Bonded aluminum foil with topcoat, 2.4 Mil

25 MIL-P-23377 primer plus white MIL-C-83286 enamel (Desoto)

26 Same as "25" except thicker enamel

27 Same as "25" except very thick enamel

28 Astrocoat system; primer plus white 8001 erosion coating plus white (non-yellowing) 8004 topcoat

29 Same as "28" but the 8001 coating is thicker

30 Astrocoat system; primer plus white (non-yellowing) 8004 topcoat

31 Astrocoat system; primer plus white 8001 erosion coating plus black 8003 antistatic topcoat

32 Same as "31" except thicker 8001 coating

33 Same as "25" except DEFT white enamel per MIL-C-83286

34 2-ply 120 fabric prepreg

35 2-ply 181 fabric prepreg

36 3-ply 181 fabric prepreg

37 5-ply 120 fabric prepreg

38 5-ply skin with chopped fiber-epoxy

39 2-ply skin with chopped fiber-epoxy

Table 10
TABLE OF MATERIALS (Continued)

40 5-ply skin with chopped graphite fiber bonded to titanium

41 MIL-C-83286 white polyurethane, MIL-P-83277 primer over 7781 glass reinforced F-161 epoxy (3, 4, 5, and 6 plies)

42 MIL-C-83286 white polyurethane, MIL-P-83277 primer over 7781 glass reinforced CE-9000 epoxy (3, 4, 5, and 6 plies)

43 MIL-C-83286 white polyurethane, MIL-P-83277 primer over 7781 glass reinforced F-178 addition polyimide (3, 4, 5, and 6 plies)

44 MIL-C-83286 white polyurethane, MIL-P-83277 primer over 7781 glass reinforced 2272 addition polyimide (3, 4, 5, and 6 plies)

45 MIL-C-83286 white polyurethane, MIL-P-83277 primer over 581 quartz reinforced F-161 epoxy (3, 4, 5, and 6 plies)

46 MIL-C-83286 white polyurethane, MIL-P-83277 primer over 581 quartz reinforced F-178 addition polyimide (3, 4, 5, and 6 plies)

47 MIL-C-83286 white polyurethane, MIL-P-83277 primer over T-300 graphite reinforced 5208 epoxy (3, 4, 5, and 6 plies)

48 MIL-C-83286 white polyurethane, MIL-P-83277 primer over AS graphite reinforced 3501-5A epoxy (3, 4, 5, and 6 plies)

49 MIL-C-83286 white polyurethane, MIL-P-83277 primer over AS graphite reinforced 934 epoxy (3, 4, 5, and 6 plies)

50 MIL-C-83286 white polyurethane, MIL-P-83277 primer over AS graphite reinforced F-178 addition polyimide (3, 4, 5, and 6 plies)

51 MIL-C-83286 white polyurethane, MIL-P-83277 primer over 181 Kevlar reinforced 5208 epoxy (3, 4, 5, and 6 plies)

52 MIL-C-83286 white polyurethane, MIL-P-83277 primer over 181 Kevlar reinforced F-161 epoxy (3, 4, 5, and 6 plies)

53 MIL-C-83286 white polyurethane, MIL-P-83277 primer over 181 Kevlar reinforced 934 epoxy (3, 4, 5, and 6 plies)

54 MIL-C-83286 white polyurethane, MIL-P-83277 primer over boron-epoxy (3, 4, 5, and 6 plies)

Table 10
TABLE OF MATERIALS (Continued)

- 55 MIL-P-23377 primer
- 56 MIL-C-81773 coating 37875 over MIL-P-23377 primer
- 57 MIL-C-81773 coating 36622 over MIL-P-23377 primer
- 58 MIL-C-81773 coating 36314 over MIL-P-23377 primer
- 59 MIL-C-81773 coating 17875 over MIL-P-23377 primer
- 60 MIL-C-83286 coating 30140 over MIL-P-23377 primer
- 61 Mask 10A over MIL-P-23377 primer
- 62 Mask 10A over MIL-C-81773 coating 17875 over MIL-P-23377 primer
- 63 Mask 10A over MIL-C-81773 coating 37875 over MIL-P-23377 primer
- 64 Polyethylene
- 65 Polyurethane
- 66 Teflon
- 67 Polyvinylchloride
- 68 Rubber
- 69 Army Systems Camouflage MIL-E-52798A over TTP-636 primer
- 70 Army Systems Camouflage MIL-E-52835A over TTP-636 primer
- 71 Army Systems Camouflage MIL-E-52929 over TTP-636 primer
- 72 Army Systems Camouflage MIL-E-52909 over TTP-636 primer
- 73 Army Systems Camouflage MIL-E-52926 over TTP-636 primer
- 74 Army Systems Camouflage MIL-E-52798A over TTP-664 primer
- 75 Army Systems Camouflage MIL-E-52835A over TTP-664 primer
- 76 Army Systems Camouflage MIL-E-52929 over TTP-664 primer
- 77 Army Systems Camouflage MIL-E-52909 over TTP-664 primer
- 78 Army Systems Camouflage MIL-E-52926 over TTP-664 primer

Table 10
TABLE OF MATERIALS (Continued)

79 Vamac 25-1.5, 2.5, and 3.5 mm thick
80 Viton 2B12-1.5, 2.5, and 3.5 mm thick
81 Vamac, 0.635 mm over Vamac-Silica, 2.865 mm
82 Vamac-Silica, 3.5 mm thick
83 NBR, 3.5 mm thick
84 Motorcase, 4.2 mm over motorcase, 7.7 mm
85 Vamac, 2.5 mm over Vamac Foam, 1.0 mm
86 Vamac, 2.5 mm over Light Vamac Foam, 1.0 mm
87 Vamac, 1.5 mm over Vamac Foam, 2.0 mm
88 Viton, 2.5 mm over Viton Foam, 1.0 mm
89 Viton, 1.5 mm over Viton Foam, 2.0 mm
90 Viton, 2.5 mm over Light Viton Foam, 1.0 mm
91 Low carbon Vamac, 3.5 mm
92 Low resistivity Vamac, 3.5 mm
93 KPN
94 White Viton over Viton, 2.0 mm
95 IR Silicone Camouflage, Black, F1
96 IR Silicone Camouflage, Green, F2
97 IR Silicone Camouflage, White, F3
98 IR Silicone Camouflage, Yellow, F4
99 IR Silicone Camouflage, Blue, F5
100 IR Silicone Camouflage, White, F6
101 IR Silicone Camouflage, Yellow, F7
102 IR Silicone Camouflage, Red, F8

Table 10
TABLE OF MATERIALS (Continued)

- 103 IR Silicone Camouflage, Black, F9
- 104 IR Silicone Camouflage, Yellow, F10
- 105 IR Silicone Camouflage, Yellow, F11
- 106 Vamac 25
- 107 Vamac 1 and 2
- 108 Vamac (GD 151)
- 109 Royacril 1
- 110 IR Silicone Camouflage, White, F12-F15
- 111 IR Silicone Camouflage, Green, F16
- 112 IR Silicone Camouflage, Black, F17
- 113 IR Silicone Camouflage, Green, F18
- 114 IR Silicone Camouflage, Green, F19
- 115 IR Silicone Camouflage, Blue, F20
- 116 IR Silicone Camouflage, Blue, F21
- 117 IR Silicone Camouflage, Grey, F22-F25
- 118 IR Silicone Camouflage, Green, F26
- 119 IR Silicone Camouflage, Lt. Green, F27
- 120 IR Silicone Camouflage, Tan, F28
- 121 IR Silicone Camouflage, Grey, F29
- 122 IR Silicone Camouflage, Tan, F30
- 123 IR Silicone Camouflage, Black, F31
- 124 IR Silicone Camouflage, Dk. Green, F32-33

Table 10
TABLE OF MATERIALS (Continued)

125 Polyurethane, CAAP

126 Vamac 25, Lab

127 Vamac 25, PP2-B

128 Vamac 25, PP2-E

129 Vamac 25, PP2-B/Sp

130 Vamac 25, PP2-E/Sp

131 Vamac 25, Lab/Sp

132 Vamac 32, Lab

133 Vamac 32, PP2-B

134 White fluoroelastomer, Type II lusterless

135 White fluoroelastomer, over AlO primer

136 White fluoroelastomer, over black anti-static primer, Type III

137 White fluoroelastomer, with Cd/Se gray fluoroelastomer
No. 36622

138 White fluoroelastomer, with No. 36270 Cd/Se fluoroelastomer
(gray)

139 White fluoroelastomer, with No. 30219 Pb/Cr fluoroelastomer
(brown)

140 White fluoroelastomer, with No. 30219 Cd fluoroelastomer
(brown)

141 White fluoroelastomer, with No. 34154 Cd fluoroelastomer
(green)

142 Tungsten oxide fluoroelastomer - 5 PVC

143 Tungsten oxide fluoroelastomer - 10 PVC

144 IR silicone camouflage, Green, F47-3A

144 IR silicone camouflage, Green, F47-3B

Table 10
TABLE OF MATERIALS (Continued)

- 146 IR silicone camouflage, Green, F48-3A
- 147 IR silicone camouflage, Green, F48-3B
- 148 IR silicone camouflage, Red, F51-3A
- 149 IR silicone camouflage, Red, F51-3B
- 150 MIL-C-83286 white polyurethane (5 mil), MIL-P-23377 primer
- 151 MIL-C-83286 white polyurethane (10 mil), MIL-P-23377 primer
- 152 MIL-C-83286 white polyurethane (2 mil) over MIL-C-84445 white rain erosion Astrocoat (10 mil), Chem-glaze No. 9922 primer
- 153 External protection materials, NE 36-A
- 154 External protection materials, 370-9966A
- 155 External protection materials, 370-9966A (single-ply)
- 156 External protection materials, 11 NE
- 157 External protection materials, V34Y
- 158 External protection materials, V22A
- 159 External protection materials, V25
- 160 Carbon felt
- 161 RTV 560
- 162 RTV 560 - 50 percent porosity
- 163 RTV 560 - maximum porosity
- 164 RS 1305
- 165 RS 1305 - 50 percent porosity
- 166 RS 1305 - maximum porosity
- 167 RS 1305 loaded - 90 percent porosity

Table 10
TABLE OF MATERIALS (Continued)

- 168 Fluoroelastomer, No. 36622 Gray
- 169 Fluoroelastomer, No. 36270 Gray
- 170 White fluoroelastomer Type II
- 171 Fluoroelastomer, No. 30219 Brown
- 172 Fluoroelastomer, No. 34159 Green
- 173 Fluoroelastomer, No. 26320 Gray
- 174 Fluoroelastomer, No. 26492 Gray
- 175 Fluoroelastomer, No. 27880 White
- 176 Fluoroelastomer, No. 37880 White
- 177 Fluoroelastomer, No. 30400 Tan
- 178 Fluoroelastomer, No. 20400 Tan
- 179 Fluoroelastomer, No. 34102 Green
- 180 Fluoroelastomer, No. 24201 Green
- 181 Grafoil/fiber foam
- 182 Cork
- 183 ESM
- 184 PD200-16
- 185 PD200-32
- 186 Vamac 22B
- 187 Vamac 22C
- 188 Vamac 36A
- 189 Vamac 34Y
- 190 NE-270-9969A
- 191 NE-36A
- 192 Siecor "Orange"

Table 10
TABLE OF MATERIALS (Continued)

- 193 ITT 040881-15-1A
- 194 Raychem FEP
- 195 Raychem Arnitch
- 196 Galite 545-21713 ARD
- 197 Raychem Tefzel
- 198 Galite 5020
- 199 Sperry Univac 545-21713C
- 200 Raychem EFTE Fluorocarbon
- 201 Camouflage White
- 202 Camouflage Yellow
- 203 Camouflage Light Yellow
- 204 Camouflage Bright Yellow
- 205 Camouflage Orange
- 206 Camouflage Red
- 207 Camouflage Brown
- 208 Camouflage Green
- 209 Camouflage Dark Green
- 210 Camouflage Blue
- 211 Camouflage Dark Blue
- 212 Polyurethane Gloss White
- 213 Polyurethane Flatted White
- 214 Polyurethane No. 34092 Green
- 215 Polyurethane No. 36081 Dark Gray
- 216 Polyurethane No. 36492 Light Gray

Table 10
TABLE OF MATERIALS (Concluded)

- 217 Polyurethane Black
- 218 Fluoroelastomer V-8830 Red
- 219 Fluoroelastomer X-2825 Yellow
- 220 Fluoroelastomer A3R Blue
- 221 Fluoroelastomer X-3367 Monarch Blue
- 222 Fluoroelastomer F-6279 Dark Red Blue
- 223 Fluoroelastomer BT-383-D Monastral Blue
- 224 Fluoroelastomer X-2285 C.P.A.R. Blue
- 225 Fluoroelastomer EG-35-E Blue
- 226 Fluoroelastomer ZnO White
- 227 Fluoroelastomer R-900 White
- 228 Fluoroelastomer White Type II
- 229 CS3810 per MMS K438
- 230 MA255 per STM K736
- 231 "Flamemaster" S886 per STM K798
- 232 STM K431 Epoxy Primer; STM K789 Polyurethane Paint

BLANK

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

Asst to the Secretary of Defense
Atomic Energy
ATTN: Executive Asst

Defense Advanced Rsch Proj Agency
ATTN: NMRO, G. Bulin
ATTN: Dir, Strat Tech Off
ATTN: NMRO
ATTN: PMO
ATTN: H. Winsor

Defense Communications Agency
ATTN: Code 510
ATTN: Code 605, R. Lipp

Defense Electronic Supply Center
ATTN: DEFC-ESA

Defense Intelligence Agency
ATTN: DB-4C2, C. Wiehle
ATTN: RTS-2A
ATTN: DB-4C, Rsch, Phys Vuln Br

Defense Nuclear Agency
ATTN: STNA
ATTN: STRA
ATTN: STSP
ATTN: NATD
ATTN: SPSS
ATTN: NATA
ATTN: RAAE, H. Fitz, Jr
ATTN: SPAS
ATTN: RAAE, W. McKechnie
4 cy ATTN: TITL
10 cy ATTN: SPTD, LTC Flory

Defense Technical Information Center
12 cy ATTN: DD

Dep Under Secretary of Defense
ATTN: Principal DASD, C31, H. Van Trees

Department of Defense Explor Safety Board
ATTN: Chairman

Field Command
Defense Nuclear Agency
ATTN: FCTT, W. Summa
ATTN: FCTEI
ATTN: FCTOF
ATTN: FCTX
ATTN: FCTT
ATTN: FCPR, J. McDaniel
ATTN: FCT

Field Command
Defense Nuclear Agency
Lawrence Livermore Lab
ATTN: FC-1

Interservice Nuclear Weapons School
ATTN: TTV

Field Command
Test Construction Division
ATTN: FCTC

DEPARTMENT OF DEFENSE (Continued)

Joint Chiefs of Staff
ATTN: J-5 Nuclear Div/Strategy Div
ATTN: SAGA
ATTN: GD50, J-5 Force Plng & Prog Div

Under Secretary of Def for Rsch & Engrg
ATTN: Strategic & Space Sys, OS
ATTN: Engr Tech, J. Persh

DEPARTMENT OF THE ARMY

Atmospheric Sciences Laboratory
ATTN: DELAS-EO

BMD Advanced Technology Center
ATTN: ATC-T, M. Caps
ATTN: ATC-O, F. Hoke
ATTN: ICRDABH-X

BMD Program Office
ATTN: DACS-BMT
ATTN: DACS-BMZ

BMD Systems Command
ATTN: BMDSC-HW
ATTN: BMDSC-NW
ATTN: BMDSC, E. Williams
ATTN: BMDSC-H, N. Hurst

Chief of Engineers
ATTN: DAEN-RDL

Dep Ch of Staff for Rsch Dev & Acq
ATTN: DAMA-CSM-N

Electronics Tech & Devices Lab
ATTN: DELET-ER

Harry Diamond Laboratories
ATTN: DELHD-NW-P, 20240
ATTN: DELHD-NW-RA, L. Belliveau
ATTN: DELHD-TA-L, 81100
ATTN: DELHD-DTSO, 00103

US Army Armament Material Readiness Cmd
ATTN: MA Library

US Army Armament Rsch Dev & Cmd
ATTN: DRDAR-LCW

US Army Ballistic Research Labs
ATTN: DRDAR-BLT, W. Taylor
ATTN: DRDAR-BLT, W. Schuman
ATTN: DRDAR-TSB-S
ATTN: DRDAR-BLT, J. Keefer

US Army Chemical School
ATTN: ATZN-CM-TPR

US Army Cold Region Res Engr Lab
ATTN: Technical Director

US Army Communication Command
ATTN: Technical Reference Div
ATTN: CC-OPS-PD
ATTN: CC-OPS-WR, R. Nelson

DEPARTMENT OF THE ARMY (Continued)

US Army Comm-Elec Engrg Instal Agency
ATTN: Tech Library

US Army Communications R&D Command
ATTN: DRDCO-CCM, L. Dorkin

US Army Engineer Ctr & Ft Belvoir
ATTN: DT-LRC
ATTN: ATZA-DTE-ADM

US Army Engineer Div Huntsville
ATTN: HNDED-SR

US Army Engineer Div Ohio River
ATTN: ORDAS-L

US Army Engr Waterways Exper Station
ATTN: WESSE
ATTN: Library
ATTN: WESSA, W. Flathau
ATTN: WESSS, J. Ballard

US Army Foreign Science & Tech Ctr
ATTN: DRXST-SD

US Army Materiel Dev & Readiness Cmd
ATTN: DRXAM-TL
ATTN: DRCDE-D

US Army Mobility Equip R&D Cmd
ATTN: DRDME-WC

US Army Nuclear & Chemical Agency
ATTN: Library
ATTN: Library for ATCA-NAW
ATTN: Library for MONA-SAL
ATTN: MONA-WE

US Army Tank Automotive R&D Command
ATTN: DRDTA-UL

US Army Tradoc Sys Analysis Actvty
ATTN: ATAA-TDC, R. Benson

US Army Training & Doctrine Cmd
ATTN: ATORI-OP
ATTN: ATCD-T

US Army White Sands Missile Range
ATTN: STEWS-FE-R

USA Missile Command
ATTN: DRSMI-MSM, D. Loney
ATTN: DRSMI-RH

DEPARTMENT OF THE NAVY

David Taylor Naval Ship R&D Ctr
ATTN: Code L42-3

Naval Air Systems Command
ATTN: AIR-360G JP-2, J. Schultz

Naval Coastal Systems Laboratory
ATTN: D. Sheppard

DEPARTMENT OF THE NAVY (Continued)

Naval Electronic Systems Cmd
ATTN: PME 117-21

Naval Facilities Engineering Cmd
ATTN: Code 04B

Naval Material Cmd
ATTN: MAT 08T-22

Naval Research Laboratory
ATTN: Code 6770
ATTN: Code 8404, H. Pusey
ATTN: Code 2627
ATTN: Code 4700.1, W. Ali
ATTN: Code 7780
ATTN: Code 4720, J. Davis
ATTN: Code 5584, G. Sigel
ATTN: Code 5584, E. Friebele

Naval Surface Weapons Center
ATTN: Code E21
ATTN: Code X211

Naval Surface Weapons Center
ATTN: W. Wishard
ATTN: Tech Library & Info Svcs Br

Naval Weapons Center
ATTN: Code 233
ATTN: Code 266, C. Austin
ATTN: Code 3263, J. Bowen

Naval Weapons Evaluation Facility
ATTN: Code 10
ATTN: R. Hughes

Office Of Naval Research
ATTN: Code 474, N. Perrone

Office of the Chief of Naval Operations
ATTN: OP 654C3, R. Piacesi
ATTN: OP 654E14

Strategic Systems Project Office
ATTN: NSP-43

DEPARTMENT OF THE AIR FORCE

Aeronautical Systems Division, AFSC
ATTN: ASD/YH-YEF, Capt Guice
ATTN: ASD/ENFTV

Bolling AFB
ATTN: INT

Air Force Armament Laboratory
ATTN: DLYV, J. Collins

Air Force Institute of Technology
ATTN: Library

Assistant Chief of Staff
Intelligence
ATTN: IN

DEPARTMENT OF THE AIRFORCE (Continued)

Air Force Weapons Laboratory, AFSC
ATTN: NTE, M. Plamondon
ATTN: NTED, R. Matalucci
ATTN: DEX
ATTN: NTYV
ATTN: NTES-C, R. Henny
ATTN: SUL
ATTN: NTES-G

Ballistic Missile Office/DAA
ATTN: HQ Space Div/RST
ATTN: HQ Space Div/RSS
ATTN: ENSN

Deputy Chief of Staff
Research, Development, & Acq
ATTN: AFRD

Foreign Technology Division, AFSC
ATTN: NIIS Library
ATTN: SDBF, S. Spring

Sacramento Air Logistics Center
ATTN: MMEA, R. Dallinger

Space Division
ATTN: YGD, L. Doan

Strategic Air Command
ATTN: XPOM
ATTN: NRI-STINFO Library

DEPARTMENT OF ENERGY

Department of Energy
ATTN: Technical Library

Department of Energy
ATTN: Doc Con for Technical Library

OTHER GOVERNMENT AGENCIES

Central Intelligence Agency
ATTN: OSWR/NED

Department of Commerce
National Bureau of Standards
ATTN: Sec Ofc for R. Levine

Federal Emergency Management Agency
ATTN: D. Bensen
ATTN: Assistant Associated Dir

OTHER

Brookhaven National Laboratory
ATTN: P. Levy

DEPARTMENT OF ENERGY CONTRACTORS

Sandia National Labs, Livermore
ATTN: Library & Sec Classification Div

DEPARTMENT OF ENERGY CONTRACTORS (Continued)

University of California
ATTN: L-21, D. Oakley
ATTN: Technical Info Dept Library
ATTN: L-203, L. Germain
ATTN: L-14, W. Dickinson
ATTN: B. Hudson

Los Alamos National Laboratory
ATTN: Reports Library
ATTN: M. Pongratz
ATTN: MS/410, P. Lyons
ATTN: C. Keller
ATTN: MS218, P. Whalen
ATTN: R. Brownlee
ATTN: Librarian
ATTN: R. Thorn
ATTN: MS 670, J. Hopkins
ATTN: H. Agnew

Oak Ridge National Laboratory
ATTN: Central Rsch Library
ATTN: Civ Def Res Proj, Mr. Kearny

Sandia National Lab
ATTN: J. Walker
ATTN: J. Plimpton
ATTN: Org 2330, B. Benjamin
ATTN: L. Vortman
ATTN: L. Anderson
ATTN: 1100, C. Broyles
ATTN: 3141

DEPARTMENT OF DEFENSE CONTRACTORS

Acurex Corp
ATTN: J. Stockton

Aerospace Corp
ATTN: L. Selzer
ATTN: Technical Information Services

Applied Theory, Inc
2 cy ATTN: J. Trulio

Artec Associates, Inc
ATTN: D. Baum

Avco Systems Division
ATTN: A. Pallone
ATTN: Library A830
ATTN: W. Reinecke

BDM Corp
ATTN: Corporate Library

Boeing Aerospace Co
A Division of Boeing Co
ATTN: M/S 42/37, K. Friddell

Charles Stark Draper Lab, Inc
ATTN: Tech Library

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Boeing Co.
ATTN: R. Holmes
ATTN: Aerospace Library
ATTN: M/S 85/20, E. York

University of Dayton
4 cy ATTN: N. Olson
4 cy ATTN: B. Wilt
4 cy ATTN: D. Gerdeman
4 cy ATTN: R. Servais

University of Denver
ATTN: Sec Officer for J. Wisotski

Effects Technology, Inc
ATTN: R. Parisse
ATTN: R. Wengler, R. Bick

EG&G Wash Analytical Svcs Ctr, Inc
ATTN: Library

EG&G, Inc
ATTN: P. Zavaharo

Electro-Mech System, Inc
ATTN: R. Shunk

University of New Mexico, CERF
ATTN: E. Wang
ATTN: D. Calhoun
ATTN: Technical Library
ATTN: G. Lane

Gard, Inc
ATTN: G. Neidhardt

Geocenters, Inc
ATTN: E. Marram

H-Tech Labs, Inc
ATTN: B. Hartenbaum

Horizons Technology, Inc
ATTN: R. Kruger

IIT Research Institute
ATTN: Documents Library
ATTN: A. Longinow

Information Science, Inc
ATTN: W. Dudziak

J D Haltiwanger Consult Eng Svcs
ATTN: W. Hall

Jaycor
ATTN: L. Scott

Kaman Avidyne, Div of Kaman Sciences Corp
ATTN: N. Hobbs
ATTN: Library

Kaman Sciences Corp
ATTN: Library

Kaman Sciences Corp
ATTN: D. Sachs

Kaman Tempo
ATTN: W. Chan
ATTN: DASIAC
ATTN: J. Shoutens

Karagozian & Case
ATTN: J. Karagozian

Lockheed Missiles & Space Co, Inc
ATTN: D. Kohler
ATTN: R. Bardin
ATTN: S. Salisbury
ATTN: T. Fisher
ATTN: R. Smith
ATTN: L. Chase
ATTN: J. Bronko

Lockheed Missiles & Space Co, Inc
ATTN: TIC-Library

Los Alamos Technical Associates, Inc
ATTN: P. Hughes
ATTN: C. Sparling
ATTN: J. Kimmerly

Management Science Associates
ATTN: K. Kaplan

Martin Marietta Denver Aerospace
ATTN: D-6074, G. Freyer

Merritt Cases, Inc
ATTN: Library

Mission Research Corp
ATTN: Tech Library

National Academy of Sciences
ATTN: National Materials Advisory Board
ATTN: D. Groves

Nichols Research Corp, Inc
ATTN: N. Byrn

Pacific-Sierra Research Corp
ATTN: H. Brode, Chairman SAGE

Pacifica Technology
ATTN: Tech Library

Physics International Co
ATTN: J. Shea
ATTN: Technical Library
ATTN: F. Sauer

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

R&D Associates

ATTN: P. Haas
ATTN: R. Port
ATTN: P. Rausch
ATTN: Technical Information Center
ATTN: A. Kuhl
ATTN: J. Carpenter
ATTN: F. Field

R&D Associates

ATTN: B. Yoon

Rockwell International Corp

ATTN: Library

S-Cubed

ATTN: R. Duff
ATTN: Library

Science & Engrg Associates, Inc

ATTN: B. Chambers III

Science Applications, Inc

ATTN: J. Dishon
ATTN: R. Miller

Science Applications, Inc

ATTN: W. Plows
ATTN: Technical Library

Science Applications, Inc

ATTN: J. McRary
ATTN: R. Deliberis

TRW Electronics & Defense Sector

ATTN: B. Sussoltz
ATTN: N. Lipner
ATTN: R. Eastman
ATTN: J. Tambe
ATTN: Technical Info Center

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Science Applications, Inc

ATTN: Technical Library

Science Applications, Inc

ATTN: W. Koechner
ATTN: R. Sievers
ATTN: W. Chadsey
ATTN: W. Layson
ATTN: M. Knasel
ATTN: J. Cockayne
ATTN: G. Binninger

Science Applications, Inc

ATTN: K. Sites

Southwest Research Institute

ATTN: W. Baker

SRI International

ATTN: A. Burns
ATTN: G. Abrahamson
ATTN: D. McDaniels
ATTN: D. Keough

Teledyne Brown Engineering

ATTN: J. Ford
ATTN: F. Leopard
ATTN: J. Ravenscraft
ATTN: MS-12 Technical Library
ATTN: D. Ormond

Tetra Tech, Inc

ATTN: Library

TRW Electronics & Defense Sector

ATTN: P. Dai
ATTN: G. Hulcher

Physics Application, Inc

ATTN: F. Ford

BLANK