示波器的使用

姓名: 田佳业 学院: 计算机学院 学号: 2013599 组别: A组座号: 13号

实验日期: 2020年4月11日 周二上午

仪器及用具

仪器品牌与型号

示波器: RIGOL DS1102E 信号发生器: MFG-2120MA

元件信息

电阻阻值: 1000.0Ω , 电容值 $0.1\mu F$

基本使用

将信号发生器信号(频率1KHz,电压峰-峰值约3V)和市电小电压信号(频率约为50Hz,电压峰-峰值约为6V)同时输出到示波器CH1和CH2接口,分别稳定并形成适当的波形,重点熟悉触发对波形的作用。

探头1x 反向关闭

1ms,20ms

点一下position对准椭圆中心

思考题线索: 转换虚数表达形式

实验数据

信号源和变压器波形测量

信号源	自动测量	光标测量	读格测量
电压(峰峰值)	6.32V	6.48V	6.3V
周期	1.000ms	1.00ms	1ms
频率(计算)	10000Hz	10000Hz	10000Hz

变压器	自动测量	光标测量	读格测量
电压(峰峰值)	6.00V	6.01V	6.oV
周期	20.00ms	20.00ms	20ms
频率(计算)	50Hz	50Hz	50Hz

自动测量图片

李萨如图测量市电频率

n_x/n_y	2/2	2/4	2/6	2/8	2/8
函数发生器 $f_x(Hz)$	50.00	100.00	150.00	200.00	75.00Hz
算得市电频率 $f_y(Hz)$	50.00	50.00	50.00	50.00	50.00Hz

平均市电频率: 50.00Hz

测量RC电路相位差

连接电路,将信号发生器频率设为f=1.59kHz

椭圆法

 u_1 和 u_2 之间的相位差为:

$$| heta|=rcsinrac{2x_0}{2x_m}
otin | heta|=rcsinrac{2y_0}{2y_m}$$

式中 $2x_0$ 和 $2x_m$ 分别是椭圆与横轴交点间的距离及椭圆在横轴的投影; $2y_0$ 和 $2y_m$ 分别为椭 圆与纵轴交点间的距离及椭圆在纵轴的投影。

$$2x_0=4.40V$$

$$2x_m = 6.26V$$

$$2y_0=3.04V$$

$$2y_m = 4.32V$$

据公式得到 $\theta = 0.780 rad$

位移法

$$heta = rac{l}{l_0} imes 2\pi$$

式中 l_0 为波形一个周期的长度, l_0 为两波形的位移。

```
l=80.0us
```

$$l_0 = 632us$$

据公式得到 $\theta = 0.795 rad$

```
x_0=4.40
x_m=6.26
y_0=3.04
y_m=4.32
theta_1=math.asin(x_0/x_m)
theta_2=math.asin(y_0/y_m)
avg=(theta_1+theta_2)/2
print(theta_1)
print(theta_2)
print(avg)
l=80
l0=632
theta=2*math.pi*l/l0
print(theta)
```

思考题

 $R_c = \frac{1}{j\omega C} = -j\frac{1}{\omega C}$ 。当U为直流电压时,电路短路,无分压。为交流时,得到阻抗后采用相量法计算课依照正常的串联分压原则计算。