Programació Lineal i Entera, curs 2012-13 2on curs Grau en Estadística UB-UPC Segon control de teoria

NOM ALUMNE:

	Temps estimat	Punts	Correcció	Material d'ajut.
Test	0.5h	2.0 pt		Cap.
Exercici 1	1.0h	8.0 pt		Amb apunts de classe i calculadora.
Total	1.5h	10 pt		

TEST (2 punts / 15min / sense apunts)

- Encercleu a cada possible resposta a), b) i c) si és certa (Si) o falsa (No).
- Resposta correcta +1pt, incorrecta -0.4pts., en blanc 0.pts.

TEST 1. El signe de les variables i constriccions duals associades al següent problema primal

$$\text{(P)} \begin{cases} \max & -6x_1 & +x_2 \\ \text{s.a.:} & x_1 & -x_2 & \leq 2 \\ & 2x_1 & +x_2 & = 3 \\ & x_2 & \leq 0 \end{cases}$$

- són : $\lambda_1 + 2\lambda_2 = -6$ i λ_2 lliure. SÍ Sí / No
- $són : -\lambda_1 + \lambda_2 \le 1 \text{ i } \lambda_2 \ge 0. \text{ NO}$ Sí / No
- són : $-\lambda_1 + \lambda_2 \ge 1$ i $\lambda_1 \le 0$. NO No

Indiqueu si les següents combinacions (P)-(D) son possibles o no

- (P) òptim (D) il·limitat. NO
- No (P) optim – (D) infactible. - NO Sí / b)
- (D) il·limitat (P) infactible. SÍ Sí / No

TEST 3. Donat un problema (P) en forma estàndard, diem que una base és factible primal si:

- $r \ge 0$ i $x_B \le 0$. NO Sí / No
- $r \le 0$ i $x_B \ge 0$. SÍ Sí / No
- $r \ge 0$ i $x_B \ge 0$. SÍ Sí / No

Si volem trobar la solució òptima d'un problema (P) no degenerat en forma estàndard a TEST 4. partir d'una base \mathcal{B} no òptima, l'algorisme que hem d'aplicar és:

- El símplex dual si $r \ge 0$ SÍ No
- El símplex primal si $r \ge 0$ SÍ No
- El símplex primal si $x_B \le 0$. NO Sí / No

TEST 5. Si el valor del terme independent b_i surt fora del seu interval d'estabilitat llavors podem assegurar que:

- Sí / No La nova solució òptima millorarà sempre el valor de l'actual. – NO.
- Es podrà aplicar el símplex dual per a reoptimitzar. SÍ No b)
- $\phi_z = \lambda' \phi_b$. SÍ

EXERCICI 1. (8 punts / 1h45m / amb transparències de teoria i calculadora)

Considereu el següent codi OPTMODEL amb el que es defineix i resol un problema de programació lineal (P):

[1]	X.SOL	X.RC
1	5	0.0
2	0	-0.8
3	2	-0.0
10	////	

C1.BODY	C1.DUAL
15	0.4
3.575	(3)

3. FA	107
C2.BODY	C2.DUAL
20	-0.6

- (2. punts) Formuleu el problema dual (D) i ressoleu-lo gràficament.
- (2. punts) Calculeu la solució del problema (D) usant l'expressió de λ^* que es deriva del teorema de dualitat forta. Comproveu que el valor de λ^* obtingut coincideix amb el valor que proporciona SAS i el trobat a l'apartat a).
- (2. punts) Trobeu el valor de l'interval d'estabilitat del coeficient c_2 . Comproveu, a partir de la representació de l'apartat a), que quan c_2 es troba sobre el límit de l'interval d'estabilitat, el problema dual es degenerat.
- (2. punts) Indiqueu quin és el valor mínim del terme b_1 que conserva l'optimalitat de la base trobada per SAS. Amb l'ajut del símplex dual indiqueu quina és la solució òptima de (P) si b_1 es redueix per sota d'aquest valor mínim. Expliqueu com hauríem pogut arribar al mateix resultat a partir de la representació gràfica del problema dual analitzant com afecta a la solució del problema dual el canvi en b_1 per sota del valor mínim.

SOLUCIÓ EXERCICI 1

(D)
$$\begin{cases} \min & 15\lambda_{1} & +20\lambda_{2} \\ s.a.: & \lambda_{1} & +4\lambda_{2} & \geq -2 & (r1) \\ & 3\lambda_{1} & -\lambda_{2} & \geq 1 & (r2) \\ & 5\lambda_{1} & & \geq 2 & (r3) \\ & \lambda_{1} \geq 0 & & (r4) \end{cases}$$

Figura 1: resolució gràfica de (D)

b) Expressió de λ^* proporcionada pel corol·lari del Ta fort de dualitat:

$$\lambda^{*'} = c_B' B^{-1} = \begin{vmatrix} \mathcal{B} = \{1,3\}, c_B' = [-2 \quad 2] \\ B = \begin{bmatrix} 1 & 5 \\ 4 & 0 \end{bmatrix}, B^{-1} = \begin{bmatrix} 0 & 1/4 \\ 1/5 & -1/20 \end{bmatrix} = \begin{bmatrix} 0 & 1/4 \\ 1/5 & -1/20 \end{bmatrix} = \begin{bmatrix} 0 & 1/4 \\ 1/5 & -1/20 \end{bmatrix} = \begin{bmatrix} 0 & 1/4 \\ \frac{2}{5} & \frac{2}{5} \end{bmatrix}$$

c) x_2 és v.n.b.:

$$r_{2}(\phi_{c_{2}}) = (c_{2} + \phi_{c_{2}}) - \lambda^{*'}A_{2} = r_{2} + \phi_{c_{2}} \stackrel{\max z_{P}}{\leq} 0 \Rightarrow \overbrace{-\frac{4}{5}}^{\text{X,RC(2)} = 0.8} + \phi_{c_{2}} \leq 0 \Rightarrow \boxed{\phi_{c_{2}} \leq \phi_{c_{2}}^{\max} = \frac{4}{5}}$$

Si \tilde{c}_2 : = $c_2 + \phi_{c_2}^{\max} = 1 + \frac{4}{5} = \frac{9}{5}$ la segona constricció del dual passa a ser $3\lambda_1 - \lambda_2 \ge \frac{9}{5}$. Si es representa el nou politop dual \tilde{P}_D s'observa gràficament que la solució dual és degenerada:

Figura 2: resolució gràfica de (\widetilde{D})

Es pot observar com el valor òptim de λ_1 i λ_2 no canvia però la folga dual de (r2) (cost reduït de x_2), que era estrictament positiva sobre l'òptim de (D) s'anul·la sobre l'òptim de (\widetilde{D}) .

d)
$$x_B(b_1) = \begin{bmatrix} x_1(b_1) \\ x_3(b_1) \end{bmatrix} B^{-1} \begin{bmatrix} 15 \\ b_1 \end{bmatrix} = \begin{bmatrix} 0 & 1/4 \\ 1/5 & -1/20 \end{bmatrix} \begin{bmatrix} b_1 \\ 20 \end{bmatrix} = \begin{bmatrix} 5 \\ \frac{b_1}{5} - 1 \end{bmatrix} \xrightarrow{\text{cond.}} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow b_1 \geq 5$$

Si $\hat{b}_1 < 5$ es perd la factibilitat primal i hem de recuperar l'optimalitat amb el símplex dual. Relitzaem la primera iteració a partir de la base que proporciona SAS/OR, $\mathcal{B} = \{1, 3\}$, $\mathcal{N} = \{2, 4\}$:

- Identificació de s.b.f. òptima i selecció de la v.b de sortida $p: x_3 < 0$ B(2) = 3 v.b. sortint Identificació de problema dual il·limitat: $v = \beta_2 A_N = \begin{bmatrix} \frac{1}{5} & -\frac{1}{20} \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{11}{20} & \frac{1}{5} \end{bmatrix} \ge 0 \Rightarrow$ problema dual il·limitat \Rightarrow primal infactible.

Des del punt de vista del problema dual, un canvi $b_1 < 5$ implica una modificació dels costos. Quan $\hat{b}_1 = 5$ el problema dual té òptims alternatius. Si $\hat{b}_1 < 5$ el problema dual esdevé il·limitat:

Figura 3: resolució gràfica de (\widehat{D})