Economically-Efficient Data Stream Analysis

Roberto Oliveira Jr. Advisor: Adriano Veloso Co-advisor: Wagner Meira Jr.

Computer Science Dept - UFMG - Brazil

Definition

- Fast and possible unbounded sequence of data that arrives at time-varying.
- Motivation
 - It allows us to process huge volumes of data.
- Problem
 - Automatically extraction of relevant patterns and relations considering limited computational resources.

 Classification models are applied to distinguish between pre-defined labels.

Classification in Data Streams

 Classification models are applied to distinguish between pre-defined labels.

Data characteristics may change with time.

Concept Drifts

• Concept Drifts are unforeseen changes in nature of data over time.

 Data streams contains combination of such patterns.

Classifying Data Streams

- Effective classification requires:
 - Updating the classification model as the stream evolves.
 - Limitation: memory, time and labeled examples.

Research Question

How to deal with concept drifts?

- Classification models are composed by association rules.
 - $\{x \to y\}$, where $x \in X$ (input space) and $y \in Y$ (output space).
- Efficiently updated as the training set evolves.
- Models are built on-the-fly:
 - For a given $[x_i, *]$, rules $\{x \to y\}$ such that $x \in x_i$ are produced.
 - Prediction is performed from the combination of these rules.
- At each time step is produced a model $\mathcal{R}(x_i)$.

- Two properties are necessary in order to produce classifiers that are robust to drifts:
 - Adaptiveness:
 - The ability to adapt itself to drifts.
 - Memorability:
 - The ability to recover itself from drifts.

- Improving both properties simultaneously may lead to a conflict-objective problem.
 - Improve adaptiveness may hurt memorability, and vice-versa.

How to balance Adaptiveness and Memorability?

Pareto frontier: Dominant Points

Economically-Efficient Selective Sampling

•
$$U_m(a) \geq U_m(b)$$
 and $U_a(a) \geq U_a(b)$

•
$$U_m(a) > U_m(b)$$
 or $U_a(a) > U_a(b)$

Compensation — Kaldor-Hicks Principle

Region of compensation:

- Overall utility: $U(d_i) = U_m(d_i) + U_a(d_i)$
- Baseline point:

Data Stream Analysis

$$\textit{d}^* = \{\textit{d}_i \in \mathcal{P}_n | \forall \textit{d}_j \in \mathcal{P}_n : \textit{U}(\textit{d}_i) \leq \textit{U}(\textit{d}_j)\}$$

- Distance in space:
 - How similar training instance t_i is to the newest instance t_n .
 - $U_s(t_j) = \frac{|\mathcal{R}(t_n) \cap \mathcal{R}(t_j)|}{|\mathcal{R}(t_n)|}$

Economically-Efficient Selective Sampling

- Distance in time:
 - How fresh is the training instance.
 - $U_t(t_j) = \frac{\gamma(t_j)}{\gamma(t_n)}$.
 - $\gamma(t_i)$ returns the time in which training instance t_i arrived.
- Random permutation of training instances:
 - $U_r(t_j) = \frac{\alpha(t_j)}{|\mathcal{D}_r|}$
 - $\alpha(t_i)$ returns the position of t_i in the shuffle.
 - \mathcal{D}_n is the training set at time step n.

- Place training instances in the utility space.
- Select training instances in the Efficiency Region:
 - Pareto-Efficient Selective Sampling (PESS).
 - Kaldor-Hicks-Efficient Selective Sampling (KHSS).

- Random Active Learning
 - Naive strategy.
 - Simple to integrate.
 - Labeling Effort control: β .

Interleaved Test-Then-Train

- 1% of data provided as training seed;
- Massive Online Analysis (MOA) framework as evaluation environment;
- Baselines:

Algorithm	Adaptiveness	Memorability
AC (KDD 2011)	Active Learning	Base Learner
HAT (JMLR 2011)	ADWIN	Decision Tree Model
ILAC (SIGIR 2011)	Data Projection	Incremental Training Set

- Measures used:
 - Mean Squared Error.
 - Labeling Effort: 10%; **25%**; 50%; 75% and 100%;
 - AC and EESS.Training set size.
 - a DAM Harris
 - RAM-Hours.

Datasets:

	Concept Drift Pattern			
Dataset	Sudden	Incremental	Gradual	Recurrent
Presidential Elections	-	Χ	Χ	-
Person of the Year	-	X	Χ	-
FIFA World Cup - EN	Χ	-	-	-
FIFA World Cup - PT	Χ	-	-	-
Cover Type	Χ	-	Χ	X
Spam Filtering	Χ	-	Χ	X
Poker Hand	-	_	Χ	Χ

Evaluation

FIFA World Cup - Portuguese

Evaluation

FIFA World Cup - Portuguese

MSE and Labeling Efforts

FIFA World Cup - Portuguese

Training Size and RAM-Hours

- Data analysis on streams.
 - Limited computing and training resources.
 - Concept drifts.

- Data analysis on streams.
 - Limited computing and training resources.
 - Concept drifts.
- Efficiency and accuracy.
 - Incremental classifiers.
 - Adaptiveness and Memorability.
 - Pareto efficiency and compensation principle.
 - Simple-to-compute utility measures.
 - Ours algorithms were robust in different scenarios.

- Data analysis on streams.
 - Limited computing and training resources.
 - Concept drifts.
- Efficiency and accuracy.
 - Incremental classifiers.
 - Adaptiveness and Memorability.
 - Pareto efficiency and compensation principle.
 - Simple-to-compute utility measures.
 - Ours algorithms were robust in different scenarios.
- Future work includes:
 - Other utility measures.
 - Employ our method to reduce Labeling Efforts.
 - Explore other classification models.

Data Stream Analysis

- Oliveira Jr., R., Veloso, A., Pereira, A., Meira Jr., W., Ferreira, R., and Parthasarathy, S. (2014). Economically-efficient sentiment stream analysis. In SIGIR, ACM.
- Veloso, A. (2012). **UFMG repository of machine learning**. https://code.google.com/p/machine-learningdcc-ufmg/.
- Other results:
 - Buehrer, G., Oliveira Jr., R., Fuhry, D., and Parthasarathy, S. (2015). Towards a parameter-free and parallel itemset mining algorithm in linearithmic time. In ICDE. IEEE.

Thank you!

robertolojr@dcc.ufmg.br