Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

Go to next item

1. A Transformer Network, like its predecessors RNNs, GRUs and LSTMs, can process information one word at a time. (Sequential architecture).

1/1 point

- False
- True

Expand

⊘ Correct

Correct! A Transformer Network can ingest entire sentences all at the same time.

2. The major innovation of the transformer architecture is combining the use of LSTMs and RNN sequential processing.

1/1 point

- False
- True

∠ Expand

⊘ Correct

The major innovation of the transformer architecture is combining the use of attention based representations and a CNN convolutional neural network style of processing.

3. What are the key inputs to computing the attention value for each word?

1/1 point

The key inputs to computing the attention value for each word are called the quotation, knowledge, and value.	
The key inputs to computing the attention value for each word are called the query, key, and value.	
The key inputs to computing the attention value for each word are called the quotation, key, and vector.	
∠ ⁷ Expand	
∠ Expanu	
 Correct The key inputs to computing the attention value for each word are called the query, key, and value. 	
Which of the following correctly represents Attention?	1/1 point
	1/1 point
$ \bigcirc Attention(Q,K,V) = softmax(\frac{QK^T}{\sqrt{d_k}})V $	
\bigcirc	
$Attention(Q, K, V) = min(\frac{QK^{T}}{\sqrt{d_{k}}})V$	
$Attention(Q,K,V) = min(rac{QK^T}{})V$	
∠ [↑] Expand	
i. Which of the following statements represents Key (K) as used in the self-attention calculation?	1/1 point
K = interesting questions about the words in a sentence	
K = the order of the words in a sentence	
K = qualities of words given a Q	
K = specific representations of words given a Q	
∠ ⁷ Expand	
Correct The qualities of words given a Core represented by Key (V)	
The qualities of words given a Q are represented by Key (K).	
Attention($W_i^Q Q, W_i^K K, W_i^V V$)	1/1 point
i here represents the computed attention weight matrix associated with the ith "word" in a sentence.	
○ True	
False	
∠ ⁷ Expand	
igotimes Correct! i here represents the computed attention weight matrix associated with the ith "head" (sequence).	

What information does the Decoder take from the Encoder for its second block of Multi-Head Attention? (Marked X, pointed by the independent arrow)

(Check all that apply)

✓ K

✓ Correct

✓ V

✓ Correct

∠⁷ Expand

Correct

Great, you got all the right answers.

8. Following is the architecture within a Transformer Network (without displaying positional encoding and output layers(s)).

1/1 point

The output of the decoder block contains a softmax layer followed by a linear layer to predict the next word one word at a time.

False

◯ True

∠⁷ Expand

✓ Correct

The output of the decoder block contains a linear layer followed by a softmax layer to predict the next word one word at a time.

9.	Why is positional encoding important in the translation process? (Check all that apply)	1/1 point
	Position and word order are essential in sentence construction of any language.	
	✓ Correct	
	It helps to locate every word within a sentence.	
	☐ It is used in CNN and works well there.✓ Providing extra information to our model.	
	✓ Correct	
	∠ ^A Expand	
	✓ CorrectGreat, you got all the right answers.	
10.	Which of these is a good criterion for a good positional encoding algorithm?	1 / 1 point
	It should output a unique encoding for each time-step (word's position in a sentence).	
	✓ Correct	
	Distance between any two time-steps should be consistent for all sentence lengths.	
	✓ Correct	
	The algorithm should be able to generalize to longer sentences.	
	✓ Correct	
	None of these.	
	∠ [™] Expand	
	✓ CorrectGreat, you got all the right answers.	