CS2040 Notes

Koh Jia Xian

April 20, 2021

Contents

1	Def	initions 4
	1.1	Time and Space Complexity
		1.1.1 Big O
		1.1.2 Big Omega
	1.2	Pre and Post-conditions
	1.3	Invariants
	1.4	Stability and In-Place sorting
	1.5	Probability and Expected Value
	1.6	Trees and Graphs
	1.0	Trees and Graphs
2	Con	nmon Time Complexities
_	2.1	AP GP Sums
	2.1	THE OF Bullis
3	Bin	ary Search
	3.1	Peak Finding
	3.2	Steep Peaks
	3.3	QuickSelect
	0.0	3.3.1 Paranoid Select
		6.6.1 Taramora polece
4	Sort	ting 10
	4.1	Bubble Sort
	4.2	Selection Sort
	4.3	Insertion Sort
	4.4	MergeSort
	4.5	QuickSort
	4.6	QuickSort Optimisations
	4.0	•
		4.6.2 3-Way Partitioning
		4.6.3 Choice of Pivot
5	Sort	ting Summary 14
J	5.1	Remarks
	$5.1 \\ 5.2$	Invariants
	5.3	AP GP Sums
6	Tree	es 15
Ū	6.1	Binary (Search) Trees
	6.2	Tree Traversal
	6.2	Successor Finding
		· ·
	6.4	Insertion/Deletion
	6.5	Balance
	6.6	AVL Trees

	6.6.1 Rotations	
	6.6.3 Deletion	
	6.6.4 Graphical Interpretation	18
7	Other (Augmented) Trees	20
	7.1 Tries	20
	7.2 Order Statistics	20
	7.3 Interval Trees	2
	7.4 Range Trees/Orthogonal Range Searching	25
8	Hashing	23
0	8.1 Hash Functions & Collisions	
	8.2 Collision Handling: Chaining	
	8.2.1 Simple Uniform Hashing Assumption	
	8.3 Collision Handling: Open-Addressing	
	8.3.1 Properties of good Hash Functions	
	8.3.2 Performance of Open Addressing	
	8.4 Resizing	
9	Sets	2'
	9.1 Implementation using Hashtable	2
	9.2 Fingerprint Hashtable	
	9.2.1 Table Size vs P(False Positives)	2
	9.3 Bloom Filter	2
10	Other Data Structures	28
10	10.1 (a, b)-trees and B-trees	
	10.2 Skip Lists	
	10.3 Merkle Trees	28
11	Graphs	29
	11.1 Adjacency list	29
	11.2 Adjacency Matrix	29
19	Graph Traversal	30
14	12.1 Breadth-First Search	
	12.2 Depth-first search	
	12.3 Problems with BFS and DFS	
	12.4 Directed Graphs	
	12.5 Topological Ordering	
	12.6 Shortest Path in a Directed Acyclic Graph	
	12.7 Shortest path in a tree	
	12.8 Single-Source Shortest Paths of Weighted directed Graphs	
	12.8.1 Bellman-Ford	
	12.8.2 Dijkstra	3!
13	Heaps	30
_	13.1 PQ Operations	
	13.2 Store heap as array	
	13.2.1 HeapSort: Heap array to Sorted List	
	13.2.2 Unsorted list to heap	
	13.2.3 HeapSort summary	

14 Union Find	38
14.1 Quick-find	 38
14.2 Quick-Union	 38
14.3 Weighted-Union	 39
14.4 Path Compression	
15 Minimum Spanning Trees	40
15.1 Generic MST algorithm	 40
15.2 Prim's Algorithm	 41
15.3 Kruskal's Algorithm	 42
15.4 Boruvka's Algorithm	 43
15.5 MST Variations	 44
15.5.1 Edges with same weight	 44
15.5.2 All edges have a known range	 44
15.5.3 Directed Acyclic Graphs	
15.5.4 Maximum Spanning Tree, adding k to edge weights	
15.5.5 Steiner Tree problem	 44
16 Dynamic Programming	45
16.1 Longest increasing subsequence	 45
16.2 (Lazy) Prize Collecting	 46
16.3 Vertex Cover	
16.4 All-Pairs Shortest Paths	 48
16.4.1 Floyd-Warshall	 48
17 Data Structures Summary	49
17.1 Trees	 49
17.2 Augmented Trees	
17.3 Hashing	

1 Definitions

1.1 Time and Space Complexity

- \bullet Space Complexity = \mathbf{Total} space ever allocated
- Amortized cost T(n) if $\forall k \in \mathbb{Z}$, cost of operation is $\leq kT(n)$

1.1.1 Big O

$$T(n) = O(f(n))$$
 if:

- 1. There exists a constant c > 0
- 2. and a constant $n_0 > 0$

such that for all $n > n_0$,

$$T(n) \le cf(n)$$

ie) An upper bound above a certain size n; Always try to get the tightest bound

1.1.2 Big Omega

$$T(n) = \Omega(f(n))$$
 if:

- 1. There exists a constant c > 0
- 2. and a constant $n_0 > 0$

such that for all $n > n_0$,

$$T(n) \ge cf(n)$$

ie) A lower bound above a certain size n

1.2 Pre and Post-conditions

Precondition Fact that is true when the function begins **Postcondition** Fact that is true when the function ends

1.3 Invariants

Invariants Relationship between variables that is always true.

Loop Invariants Relationship between variables that is true at the beginning (or end) of each iteration of a loop.

1.4 Stability and In-Place sorting

When 2 of the same keys are sorted:

- If its value becomes out of order, Unstable
- Stability: Preserving order of repeated elements

General Rule-of-Thumb, if got swap here-swap there (ie NOT IN-PLACE), it is unstable

1.5 Probability and Expected Value

- $E[X] = e_1p_1 + e_2p_2 + \dots + e_kp_k$
- $\bullet \ E(A+B) = E(A) + E(B)$

1.6 Trees and Graphs

 $\begin{array}{c} {\bf Successor} \\ {\bf Height} \end{array}$

Next largest value in the tree. Number of edges on longest path from root to leaf.

- h(v) = 0 if v is a leaf
- h(v) = max(h(v.left), h(v.right)) + 1

Cut of a graph is a partition of vertices into 2 disjoint subsets An edge crosses a cut if it has one vertex in each of the 2 sets

Common Time Complexities

Recurrence	Complexity	Remarks
T(n) = 2T(n/2) + O(n)	O(nlogn)	Height of logn, n each 'level'
T(n) = T(n/2) + O(1)	O(logn)	Height of logn, 1 each 'level'
T(n) = 2T(n/2) + O(1)	O(n)	1, 2, 4, n: Sum of GP
T(n) = T(n/2) + O(n)	O(n)	n, n/2, n/4 1: Sum of GP

2.1 AP GP Sums

For GP,
$$S_n = \frac{a(r^n - 1)}{r - 1} = \frac{a(1 - r^n)}{1 - r}$$

- For AP, $S_n = \frac{1}{2}n(a_1 + a_n)$ If AP is 1, 2,...n, $S_n = \frac{n^2 + n}{2} = O(n^2)$ For GP, $S_n = \frac{a(r^n 1)}{r 1} = \frac{a(1 r^n)}{1 r}$ Sum to $\infty S_\infty = \frac{a}{1 r}$ If GP is 1, 2, 4...n, where a = n, r = 1/2, $S_n = \frac{a}{1 r} = \frac{n}{1 0.5} = O(n)$

3 Binary Search

For a sorted array, take middle, compare to key: search LHS or RHS of mid.

```
int search(A, key, n)
  begin = 0
  end = n-1
  while begin < end do:
    mid = begin + (end-begin)/2;
    if key <= A[mid] then
        end = mid
    else begin = mid+1
  return (A[begin]==key) ? begin : -1</pre>
```

Functionality	 If element not in array, return index If element not in array, return -1 		
Precondition	Array is of size nArray is sorted		
Postcondition	If element is in the array: $A[begin] = key$		
Invariant (Correctness)	$A[begin] \le key \le A[end]$ • The key is in the range of the Array		
Invariant (Speed)	$(end - begin) \le n/2^k$ in iteration k		

Not just for searching Arrays:

- 1. Assuming a complicated function,
 - Assume function is always increasing: complicatedFunction(i) < complicatedFunction(i+1)
 - :: Find minimum value j such that complicatedFunction(j) > 100
- 2. Peak Finding (1 or 2 Dimensions)
- 3. QuickSelect

3.1 Peak Finding

```
Want to find an index i such that arr[i] \geq arr[i-1] & arr[i] \leq arr[i+1]
```

```
FindPeak(A, n)
    //Recurse on right
    if A[n/2+1] > A[n/2] then
        FindPeak(A[n/2+1..n], n/2)

//Recurse on left
else if A[n/2{1] > A[n/2] then
        FindPeak(A[1..n/2-1], n/2)

else A[n/2] is a peak; return n/2
```

Functionality	On an unsorted array, find A peak: local minimum or maximum (not a specific key)		
Invariants (Correctness)	• There exists a peak in the range $[begin, end]$ Every peak in $[begin, end]$ is a peak in $[1, n]$.		
Running Time	$T(n) = T(n/2) + \theta(1)$ Recurse for $log 2(n)$ times $\therefore O(log n)$		

3.2 Steep Peaks

Want to find a peak such that its left and right side are strictly lower than it.

Functionality	On an unsorted array, find A peak: local minimum or maximum (not a specific If both sides are the same as mid, recurse both sides		
Running Time	$T(n) = 2T(n/2) + \theta(1)$ = $16T(n/16) + 8 + 4 + 2 + 1$		
	$= nT(1) + n/2 + n/4 + + 1$ $= O(n) \text{ Sum of Geometric Progression}$		

3.3 QuickSelect

Find kth smallest element

Makes use of QuickSort's partition to ensure that the kth smallest element is before or after the randomly selected pivot

```
Select(A[1..n], n, k)
  if (n == 1) then return A[1];
  else Choose random pivot index pIndex.
    p = partition(A[1..n], n, pIndex)
    if (k == p) then return A[p];
    else if (k < p) then
        return Select(A[1..p{1], k)
    else if (k > p) then
        return Select(A[p+1], k { p)
```

Recurrence: T(n) = T(n/2) + O(n)

Time Complexity: O(n) (Sum of G.P.)

3.3.1 Paranoid Select

```
Repeatedly partition until at least n/10 in each half of partition E[T(n)] \leq E[T(9n/10)] + E[numofpartitions](n) \\ \leq E[T(9n/10)] + 2n \\ \leq O(n)
```

4 Sorting

4.1 Bubble Sort

Iteratively swap largest values to the top.

```
\label{eq:bubbleSort(A, n)} \begin{tabular}{ll} \begin{tabular}{
```

Loop Invariant	At the end of iteration j, the biggest j items are correctly sorted in the final j positions of the array.	
Invariant (Correctnness)	Sorted after n iterations	
Running Time Best Case Average Case Worst Case	O(n) [Already Sorted] $O(n^2)$ $O(n^2)$ [n iterations]	
Space Consumption	O(1)	
Stability	Stable, only swap elements that are different	

4.2 Selection Sort

Find minimum element and swap it directly with the front.

```
SelectionSort(A, n)
  for j <- 1 to n-1:
     find minimum element A[j] in A[j..n]
     swap(A[j], A[k])</pre>
```

Loop Invariant	At the end of iteration j: the smallest j items are correctly sorted in the first j positions of the array.		
Running Time	$n + (n-1) + (n-2) + \dots + 1$		
	$=\frac{n(n-1)}{n(n-1)}$ (Sum of A.P.)		
	$=O(n^2)$		
• Best Case	$O(n^2)$ [If already Sorted, will swap anyway]		
• Average Case	$O(n^2)$		
• Worst Case	$O(n^2)$ [n swaps]		
Space Consumption	O(1)		
Stability	Unstable, swap changes order		

4.3 Insertion Sort

Iteratively swaps the current element into its rightful place in the sorted left side of the array.

```
InsertionSort(A, n)
  for j <- 2 to n
    key <- A[j]
    i <- j-1
    while (i > 0) and (A[i] >key)
        A[i+1] <- A[i]
        i <- i-1
        A[i+1] <- key</pre>
```

Loop Invariant	At the end of iteration j: the first j items in the array are in sorted order.
Running Time	$1 + 2 + 3 + \dots + n$ = $\frac{n(n-1)}{2}$ (Sum of A.P.) = $O(n^2)$
Best CaseAverage CaseWorst Case	O(n) [Already Sorted] $O(n^2)$ $O(n^2)$ [Inverse Sorted]
Space Consumption	O(1)
Stability	Stable, swap doesn't change order, as long as implemented properly $(A[i] > key)$

Insertion Sort can be fast(er than MergeSort!) if List is mostly sorted

4.4 MergeSort

Divide-and-Conquer, sort two halves, merge two sorted halves

```
Running Time
Running Time of Merge
                          Given A and B of sizes n/2, O(n) to move each element back into list
                          T(n) = O(1) \text{ (if } n = 1)
                          =2T(n/2)+cn \text{ (if } n>1)
                          \therefore Height of recursion tree h = logn, every level cn operations
                          T(n) = cnlogn, O(n) = nlogn
• Best Case
                          O(nlogn)
• Average Case
                          O(nlogn)
• Worst Case
                          O(nlogn)
Space Consumption
                          O(n) [Using 1 temporary array, Switch the order of A and B at every recursive call.]
                          Stable
Stability
```

MergeSort can be slower for Smaller number of items to sort

4.5 QuickSort

Separate larger and smaller than a chosen **pivot** (Partitioning), recursively sort both sub-arrays.

```
QuickSort(A[1..n], n)
    if (n==1) then return;
    else
        Choose pivot index pIndex
        p = partition(A[1..n], n, pIndex)
        x = QuickSort(A[1..p-1], p-1)
        y = QuickSort(A[p+1..n], n-p)
//Returns the index of the pivot
partition(A[1..n], n, pIndex)
                                    // Assume no duplicates, n>1
   pivot = A[pIndex];
                                    // pIndex is the index of pivot
    swap(A[1], A[pIndex]);
                                    // store pivot in A[1]
    low = 2;
                                    // start after pivot in A[1]
   high = n+1;
                                    // Define: A[n+1] = Infinity
    while (low < high)
        while (A[low] < pivot) and (low < high) do low++;
        while (A[high] > pivot) and (low < high) do high{ { ;</pre>
        if (low < high) then swap(A[low], A[high]);
    swap(A[1], A[low{1]);
    return low{1;
```

Invariants	• For every $i \ge high : A[i] > pivot$
	• For every $1 < j < low : A[j] < pivot$
Running Time	
Running Time of Partition	O(n)
• Best Case	O(nlogn)
• Average Case	O(nlogn)
• Worst Case	$O(n^2)$ [eg All elements duplicates]
Space Consumption	O(1)
	Extra Memory allows QuickSort to be stable
Stability	Unstable

4.6 QuickSort Optimisations

4.6.1 Base Case?

- Unoptimized: Recurse to single-element arrays
- Switch to Insertion Sort for small arrays (Relies on fact that InsertionSort is fast for small arrays)
- Halt Recursion early, leaving small arrays unsorted. Then perform InsertionSort on entire array

4.6.2 3-Way Partitioning

Deal with duplicates in arrays

Option 1 2-pass Partitioning

- 1. Regular Partition
- 2. Pack Duplicates (of pivot) together

Option 2 1-pass Partitioning

- Standard Solution
- Mantain Four Regions of Array (See Fig 1)

Figure 1: 1-pass Partitioning

If bmA[current] < pivot low++

Swap A[current], A[low]

 $\operatorname{current}++$

If bmA[current] == pivot current++

 $\textbf{If } bmA[current] > pivot \qquad \text{Swap } A[current], \ A[high]$

high-

4.6.3 Choice of Pivot

In the worst case(s),

 $\begin{array}{ll} \textbf{First Element} & A[1] \\ \textbf{Last Element} & A[n] \\ \textbf{Middle Element} & A[n/2] \\ \end{array}$

Median of first, last and middle Median of the above 3

are equally bad, if **n** executions of partition, sorting 1 element each:

$$T(n) = T(n-1) + T(1) + n$$
(From Quielgant of n.1 element

(From Quicksort of n-1 elements + QuickSort on 1 element + Cost of partition on n elements) $\therefore O(n^2)$ time.

If can choose Median: Good Performance O(nlogn)

If could split array (1:10): (9:10): Good Performance O(nlogn)

 \therefore A pivot is **good** if divides array into 2 pieces, each of which is size at least n/10

Choose pivot at random: PARANOID QUICKSORT

Repeat partition until p > (1/10)n and p < (9/10)n,

Expected number of times to choose a good pivot: $10/8 \approx 2$

T(n) = T(n-1) + T(1) + 2n (Expected no. of iterations to repeat is 2)

Hence, worst-case expected time = O(nlogn)

Sorting Summary 5

Name	Best Case	Average Case	Worst Case	Extra Memory	Stable
Bubble Sort	O(n)	$O(n^2)$	$O(n^2)$	O(1)	Yes
SelectionSort	$O(n^2)$	$O(n^2)$	$O(n^2)$	O(1)	No
Insertion Sort	O(n)	$O(n^2)$	$O(n^2)$	O(1)	Yes
Merge Sort	O(nlogn)	O(nlogn)	O(nlogn)	O(n)	Yes
Quick Sort	O(nlogn)	O(nlogn)	$O(n^2)$	O(1)	No

5.1 Remarks

 \bullet BubbleSort vs InsertionSort: InsertionSort faster for almost-sorted arrays

• Paranoid Quicksort Worstcase: O(nlogn)

• Any others?

5.2 Invariants

Name	Invariant	
Bubble Sort	At the end of iteration j, the biggest j items are correctly sorted	
	in the final j positions of the array.	
SelectionSort	At the end of iteration j: the smallest j items are correctly sorted	
	in the first j positions of the array.	
Insertion Sort	At the end of iteration j: the first j items in the array	
	are in sorted order.	
Merge Sort	idk lmfao probably something about at the end of iteration j of merge	
	every 2^j group of items are in sorted order, where $2^j < n$ (????)	
	just pulling something out of my ass:)	
Quick Sort	• For every $i \ge high: A[i] > pivot$	
	• For every $1 < j < low : A[j] < pivot$	

Recurrence	Complexity	Remarks
T(n) = 2T(n/2) + O(n)	O(nlogn)	Height of logn, n each 'level'
T(n) = T(n/2) + O(1)	O(logn)	Height of logn, 1 each 'level'
T(n) = 2T(n/2) + O(1)	O(n)	1, 2, 4, n: Sum of GP
T(n) = T(n/2) + O(n)	O(n)	n, n/2, n/4 1: Sum of GP

5.3 AP GP Sums

For AP, $S_n = \frac{1}{2}n(a_1 + a_n)$ • If AP is 1, 2,...n, $S_n = \frac{n^2 + n}{2} = O(n^2)$ For GP, $S_n = \frac{a(r^n - 1)}{r - 1} = \frac{a(1 - r^n)}{1 - r}$ • Sum to $\infty S_\infty = \frac{a}{1 - r}$ • If GP is 1, 2, 4...n, where a = n, r = 1/2, $S_n = \frac{a}{1 - r} = \frac{n}{1 - 0.5} = O(n)$

6 Trees

Data Structure: Implementing a Dictionary, for eg

6.1 Binary (Search) Trees

- Binary Tree is either: 1) Empty, 2) A node pointing to 2 binary trees.
- Binary Search Trees: All in left sub-tree < key < All in right sub-tree
- Binary Tree is height balanced if every node in the tree is height-balanced.
- A height-balanced tree with n nodes has height h < 2log(n), $\therefore O(logn)$.

Time Complexity of search(key) in BST: Height of tree

- O(logn) if balanced
- Else, worst-case O(n)

6.2 Tree Traversal

```
In-Order: Visit left sub-tree, then SELF, then right sub-tree
Pre-Order: Visit SELF, then left sub-tree, then right sub-tree
Post-Order: Visit left sub-tree, then right sub-tree, then SELF
Level-Order Visit EVERY node at that height, then go lower level
O(n) Time Complexity (∵ Visit each node once)
```

6.3 Successor Finding

• O(height) Time Complexity

6.4 Insertion/Deletion

Insertion trivial:

If less than node, node.left == null, insert at left else recurse left.

If more than node, node.right == null, insert at right, else recurse right.

3 Cases for delete(v):	
No Children	Remove v
1 Child	Remove v, connect child(v) to parent(v)
2 Children	1. x = successor(v)
	2. delete(x) (which may cause more calls of delete)
	3. remove(v)
	4. connect x to $left(v)$, $right(v)$, $parent(v)$

- NOTE: Successor of deleted node has at most 1 child! (A right node)
- ullet O(height) Time Complexity (BOTH insertion and deletion)

6.5 Balance

A BST is balanced if $h = O(\log n)$

How to get a Balanced Tree:

1. Define good property of tree

2. Show that if property holds, tree is balanced.

3. Every insertion/deletion, make sure good property still holds: -If not, fix it

[AUGMENT]

[DEFINE BALANCE CONDITION]

[INVARIANT]

[MAINTAIN BALANCE]

6.6 AVL Trees

- Every node, store height h = max(left.height, right.height) + 1
- On insert & delete, update height
- node v is height-balanced if $|v.left.height v.right.height| \leq 1$
- Maintains balance using Tree-Rotations
- Max height $h < 2log n, n > 2^{h/2}$

6.6.1 Rotations

- A is LEFT-heavy if left.height > right.height
- A is RIGHT-heavy if right.height > left.height.

Assuming node v is Left-Heavy	
• v.left is balanced:	right-rotate(v)
• v.left is left-heavy:	right-rotate(v)
• v.left is right-heavy:	1. left-rotate(v.left)
	2. $right-rotate(v)$
If v is Right-Heavy:	Symmetric 3 cases

Size of tree doesn't matter, O(1) time.

6.6.2 Insertion

- 1. Insert tree in BST
- 2. Walk up tree:
- At every step, check for balance:
- If out-of-balance, use rotations to rebalance

Only need 2 Rotations (Since in all cases, only need to reduce height of sub-tree by 1)

6.6.3 Deletion

0a. If v has no child, just delete

0b. If v has 1 child, connect child to parent

- 1. If v has 2 children, swap it with its successor.
- 2. Delete node v from binary tree (and reconnect children)
- Since successor has at most 1 (right) child, will only have to reconnect 1 node
- 3. For every ancestor of the deleted node:
- Check if it is height-balanced
- If not, perform a rotation
- Continue to the root

(Deletion may take up to O(logn) rotations)

6.6.4 Graphical Interpretation

Figure 2: v.left balanced: right-rotate(v)

Figure 3: v.left left-heavy: right-rotate(v) $\,$

Figure 4: v.left right-heavy: First left-rotate(v.left)

Figure 5: v.left right-heavy: then right-rotate(v)

7 Other (Augmented) Trees

7.1 Tries

Store each letter of a String as a node, using a special flag to represent the end of a word. Cost to search a string of length L: O(L)

Trie tends to be faster compared to normal BST with strings

- Does not depend on size of total text
- Does not depend on number of strings (Esp if string not in trie)

Trie uses more space (in terms of more nodes)

7.2 Order Statistics

- To know the order of the node (ie rank of the key in the data structure)
- Store size of sub-tree in every node
- select(k): finds node with rank k
- rank(v): Computes rank at node v
- During insertion, maintain weight during rotation

```
select(k)
    rank = left.weight + 1;
    if (k == rank) then
        return v;
    else if (k < rank) then
        return left.select(k);
    else if (k > rank) then
        return right.select(k minus rank);
rank(node)
    rank = node.left.weight + 1;
    while (node != null) do
        if node is left child then
            do nothing
        else if node is right child then
            rank += node.parent.left.weight + 1;
        node = node.parent;
    return rank;
```


Figure 6: Update weights during insertion

7.3 Interval Trees

Find an interval containing a value

- Each node is an interval, sorted by left endpoint
- Each node contains the maximum endpoint in subtree
- Running time of search simply O(log n)

```
//Find interval containing x
interval-search(x)
    c = root;
    while (c != null and x is not in c.interval) do
        if (c.left == null) then
            c = c.right;
        else if (x > c.left.max) then
            c = c.right;
        else c = c.left;
    return c.interval;
```

Search find an overlapping interval, if it exists.

- If search goes right: No overlap in left-subtree
- ∴ key is in right subtree or it is not in tree
- If search goes left and no overlap, then key < every interval in right sub-tree.
- : Either finds key in left subtree or it is not in the tree

7.4 Range Trees/Orthogonal Range Searching

Find everyone between a certain range

- Stores all points in the **leaves** (Internal nodes store copies)
- Internal node v stores max(v.left)
- First find the 'split node': Is node between specified range?
- ... Do both Left and Right traversal at split node to get all nodes within range

```
FindSplit(low, high)
    v = root;
    done = false;
    while !done {
        if (high <= v.key) then v=v.left;</pre>
        else if (low > v.key) then v=v.right;
        else (done = true);
    }
    return v;
RightTraversal(v, low, high)
    if (v.key <= high) {</pre>
                                          //Still within range
        all-leaf-traversal(v.left);
        RightTraversal(v.right, low, high);
    } else {
                                         //Left max larger than range, just go left
        RightTraversal(v.left, low, high);
LeftTraversal(v, low, high)
    if (low \le v.key) {
                                          //Still within range
        all-leaf-traversal(v.right);
        LeftTraversal(v.left, low, high);
    } else {
                                          //Left max smaller than range, just go right
        LeftTraversal(v.right, low, high);
    }
```

- Finding split node: O(log n)
- \bullet Traversals recurse at most O(logn) times,

outputting all (all-leaf-traversal()) is O(k), where k is number of items found.

- : Query time complexity = O(log n + k)
- Preprocessing (buildtree) time complexity: O(nlogn)

(Split into left and right, take highest value of left and put as key

If numofelements==1, then set as leaf)

- Space Complexity: O(n)
- If just want to know the count: keep count of num of nodes in each sub-tree, and retreive that instead of all-leaf-traversal.

Related: kd-trees (k-dimension)

8 Hashing

Standard symbol table supports:

- void insert(key, value)
- value search(key)
- void delete(key)
- bool contains(key)
- int size()

Costs of Search and Insert/Delete, and other functions required: See specifications

- AVL Tree: O(logn) each
- Symbol Table: O(1) each, but extra functionality, eg Sorting $(O(nlogn) \text{ vs } O(n^2)$
- Symbol Table also no prede/successor queries Since Symbol Tables are not comparison-based

8.1 Hash Functions & Collisions

Direct Access Tables take too much space (Number of possible keys very large)

Map keys to buckets using Hash Functions

Assume m buckets, n entries, and h is the hash function,

- 2 distinct keys **collide** if: $h(k_1) = h(k_2)$)
- Collisions unavoidable by Pigeonhole Principle (Table Size < Universe Size)

8.2 Collision Handling: Chaining

Put both items in same bucket, using linked List of items.

Total Space:	O(m+n)
Insertion:	Find hash value, add to head of linked list $\therefore O(1 + cost(h))$
Search:	Find hash value, search through linked list Worst case all values go to same bucket (emphasizing importance of good hash function) $\therefore O(n + cost(h))$

8.2.1 Simple Uniform Hashing Assumption

Assume "random" mapping:

- Every key is equally likely to map to every bucket
- Keys mapped independently
- : As long as enough buckets, won't get too many keys in one bucket

If X(i,j) = 1 if item i is put in bucket j, and 0 otherwise,

- P(X(i,j) == 1) = 1/m
- E(X(i,j)) = 1/m
- Thus, expected number of items per bucket $= E(\Sigma_i X(i,b)) \\ = \Sigma_i E(X(i,b)) \\ = \Sigma_i 1/m \\ = n/m$
- : load(hashtable) = average number of items per bucket = n/m

Therefore, for a Hashtable with chaining under SUHA assumption:

Search time: Expected Worst-case	1 + n/m (Hash function + linked list traversal) $O(1)$ (Assuming $m = \Omega(n)$ buckets, eg $m = 2n$) O(n)
Worst-Case Insertion:	O(1) if allow duplicates, preventing duplicate requires searching
Expected max linked-list length/cost	$O(logn)$ or $\Theta(logn/loglogn)$

8.3 Collision Handling: Open-Addressing

- All data directly stored in the table, one item per slot.
- On collision, probe sequence of buckets until empty one found
- When m == n, table is full, cannot insert any more items; cannot search efficiently
- Redefined Hash Function: h(key, i), where i = number of collisions
- Linear Probing: Keep checking the next bucket, $h(k, 1) + (i \mod m)$

```
hash-insert(key, data)
int i = 1;
while (i \le m):
                                         // Try every bucket
    int bucket = h(key, i);
    if (T[bucket] == null):
                                        // Found an empty bucket
        T[bucket] = {key, data};
                                        // Insert key/data
                                        // Return
        return success;
throw new TableFullException();
                                        // bucket full
hash-search(key)
    int i = 1;
    while (i <= m):
        int bucket = h(key, i);
        if (T[bucket] == null) return key-not-found;
                                                             // Empty bucket!
        if (T[bucket].key == key) return T[bucket].data;
                                                             // Full bucket
        i++:
    return key-not-found;
                                                             // Exhausted entire table.
```

delete(key): Find key to delete, set bucket to DELETED (A tombstone value)

- Cannot set as NULL, since search may then fail to find a key after that bucket.
- When insert(key) comes to DELETED, overwrite deleted cell.

8.3.1 Properties of good Hash Functions

- 1. h(key, i) enumerates all possible buckets
- \forall bucket $j, \exists i : h(key, i) = j$
- The hash function is permutation of 1...m
- If not, may return table-full when still have space left

2. Uniform Hashing Assumption

- Every key is equally likely to be mapped to every **permutation of buckets**, independent of every other key.
- Linear Probing does NOT fulfill this criteria: Clustering can reach $\Theta(logn)$, ruins constant time performance In practice though, linear probing is desirable due to caching
- Achieved through double hashing
- Using 2 hash functions g(k), f(k), $h(k,i) = [f(k) + ig(k)] \mod m$ for some large m Specifically, if g(k) is relatively prime to m, then h(k, i) hits all buckets

8.3.2 Performance of Open Addressing

Expected Cost = First Probe + P(collision on first probe) * Expected Cost of remaining probes

- $\bullet = 1 + (n/m)(\dots)$
- = 1 + (n/m)(1 + [n 1/m 1][...])
- $\leq 1 + \alpha(1 + \alpha(...))$
- $\bullet \le 1 + \alpha + \alpha^2 + \alpha^3 + \dots$
- $\bullet \leq \frac{1}{1-\alpha}$

Advantages

- Saves space
- Rarely Allocate Memory
- Better Cache performance

Disadvantages

- More sensitive to choice of hash functions
- More sensitive to load (as $\alpha \to 1$)

8.4 Resizing

Assume

- Hashing with Chaining
- SUHA

Expected Search Time: O(1 + n/m)

Optimal Size: m = O(n)

If m too big (> 10n), too much wasted space; if m too small (< 2n), too many collisions

To expand hashtable:, let $m_1 and m_2$ be old and new hashtable size

- Scan old hash table: $O(m_1)$, Initialise new table: $O(m_2)$
- Insert each element in new hashtable: O(1) * n
- Total: $O(m_1 + m_2 + n)$
- If double table size, (n == m), m = 2m: O(n) time

To shrink hashtable:, let $m_1 and m_2$ be old and new hashtable size

- Cannot be same ratio as insert, cos there will be a point where deleting/inserting 1 shrinks/expands the table If insert doubles the table, then for delete:
- If (n < m/4), m = m/2

Costs of operations:

- Inserting k elements costs O(k)
- : Insert operation: Amortized O(1)
- Search operation: **Expected** O(1)

9 Sets

insert(Key k), contains(Key k), delete(Key k), intersect(Set;Key; s), union(Set;Key; s)

9.1 Implementation using Hashtable

Takes more space to keep the entire key (to resolve collisions) in the table.

9.2 Fingerprint Hashtable

Stores bits (0 and 1) instead of the key, 0 if not present, 1 if present. No key stored in the table.

- Collisions possible
- Lookup operation: If key is in, will always report true (No False Negatives)
- Due to collisions, even in key not in set, may sometimes report true (False Positives)

Thus choosing what to store is important, based on objectives

9.2.1 Table Size vs P(False Positives)

On a lookup of n elements of table of size m,

- P(No false positive) = $(1 1/m)^n \approx (1/e)^{n/m}$
- P(False positive) = $1 (1/e)^{n/m}$

Assuming we want P(false positive) at most p:

s • $n/m \leq log(\frac{1}{1-n})$

So we reduced space to 1 bit per slot, but need a bigger table to avoid collisions

9.3 Bloom Filter

Fingerprint Hashtable, but 2 hash function to store 1 in 2 different slots.

- Lookup: Check if both slots are 1
- Still, No False Negatives and possible False Positives

Requires 2 collisions to be a false positive, but each item take more space.

Assuming we want P(false positive) at most p:

• $n/m \le \frac{1}{2}log(\frac{1}{1-p^{1/2}})$

Deleting elements? Consider a counter instead of 1 bit in each slot:

- On insert, counter++
- On delete, counter-

If counter gets too big, no space saving: Thus need to make collisions rare

Implementing Set functions:

- Insert, delete, query: O(k)
- $\bullet\,$ Intersection, Bitwise AND 2 bloom filters: O(m)

tabitem Union, Bitwise OR 2 bloom filters: O(m)

10 Other Data Structures

10.1 (a, b)-trees and B-trees

a, b refer to min and $(\max + 1)$ no. of children in node, where $2 \le a \le (b+1)/2$

Non-leaf node must have one more child than its number of keys, its key range:

- Keys in sorted order, $v_1, v_2, ... v_k$
- First child has key range $\leq v_1$
- Final child has key range $> v_k$
- All other children c_i , where $i \in [2, k]$ have key range $(v_{i-1}, v_i]$

All leaf nodes must be same depth

Insert: split node if contain b-1 keys (Node too big)

Delete: if deleting make node too small, merge siblings y,z if have total nodes $\leq b-1$, else share by merging and splitting

B-trees are (a, b)-trees such that a = B, b = 2B

Figure 7: B-tree, where B = 2

10.2 Skip Lists

10.3 Merkle Trees

11 Graphs

Consists of at least 1 node, and unique edges that connect 2 nodes

Hypergraph: Each unique edge connect ≥ 2 nodes **Multigraph**: Each node connected by more than 1 edge

Degree of node: Number of adjacent edges Degree of graph: max(degree of nodes)

Diameter: Max distance between 2 nodes, following shortest path **Bipartite graph**: Nodes divided to 2 sets, no edges between same set

11.1 Adjacency list

Nodes stored in an array, Edges stored as linked list per node

Memory Usage: O(V + E), since of array V and size of linked lists E

Are v and w neighbours? **Fast query** Find any neighbour of v: **Slow query** Enumerate all neighbours: **Slow query**

11.2 Adjacency Matrix

Edges seen as pairs of nodes. For a graph with n nodes, nxn array: At A[i][j], 1 if i and j are directly connected A^n : Length of n paths

Memory Usage: $O(V^2)$

Are v and w neighbours? Slow query Find any neighbour of v: Fast query Enumerate all neighbours: Fast query

Generally, if graph is dense, use an adjacency matrix, if not then adjacency list

12 Graph Traversal

Start at vertex s, ends at vertex t, or visit all nodes in the graph. (Assume adjacency list)

12.1 Breadth-First Search

- Finds shortest path
- Skip already visited nodes, calculate level[i] from level[i-1]

```
//Or can use a QUEUE to pop the earlier ones first
BFS(Node[] nodeList) {
    boolean[] visited = new boolean[nodeList.length];
    Arrays.fill(visited, false);
    int[] parent = new int[nodelist.length];
    Arrays.fill(parent, -1);
    // To make sure you visit all components
    for (int start = 0; start < nodeList.length; start++) {</pre>
        if (!visited[start]){
            Bag<Integer> frontier = new Bag<Integer>;
            frontier.add(startId);
            // Main code
            while (!frontier.isEmpty()){
                Collection<Integer> nextFrontier = new ...;
                for (Integer v : frontier) {
                    for (Integer w : nodeList[v].nbrList) {
                        if (!visited[w]) {
                            visited[w] = true;
                            parent[w] = v;
                            nextFrontier.add(w);
                        }
                    }
                frontier = nextFrontier;
       }
   }
}
```

Running Time: O(V + E)

- Every vertex v = start once, and added to nextFrontier once (After visited, never re-added: O(V))
- Each v.nbrList enumerated once: O(E)

Shortest path is a tree - Parent pointers store shortest path

Does NOT explore every path in the graph!!!

12.2 Depth-first search

• Follow path until end, backtrack until find new edge, recursively explore • Skip already visited nodes

```
// Iterative method would be to use a STACK
DFS(Node[] nodeList){
    boolean[] visited = new boolean[nodeList.length];
    Arrays.fill(visited, false);
    for (start = i; start<nodeList.length; start++) {</pre>
        if (!visited[start]){
            visited[start] = true;
            DFS-visit(nodeList, visited, start);
    }
}
DFS-visit(Node[] nodeList, boolean[] visited, int startId){
    for (Integer v : nodeList[startId].nbrList) {
        if (!visited[v]){
            visited[v] = true;
            DFS-visit(nodeList, visited, v);
        }
    }
}
```

Running Time: O(V + E)

- Each node is visited only once: O(V)
- For every node, each neighbour is enumerated: O(E)

Running time for adjacency matrix: $O(V^2)$, calls once per node at O(V), enumerates neighbours at O(V)

12.3 Problems with BFS and DFS

- Do not visit every path in the graph
- Too expensive for graphs with exponential number of paths

12.4 Directed Graphs

In-degree: Number of incoming edges **Out-degree**: Number of outgoing edges

Memory Usage in Adjacency List: O(V + E), where ll stores outgoing edges Memory Usage in Adjacency Matrix: $O(V^2)$, where A[v, w] represent edge from v to w

Are v and w neighbours? Slow query Find any neighbour of v: Fast query Enumerate all neighbours: Fast query

12.5 Topological Ordering

Time Complexity: O(V + E)

}

Sequential total ordering of all nodes, edges only point forward. Use **post-order** DFS: Process node when it is last visited Topological Ordering is NOT unique

```
DFS(Node[] nodeList){
   boolean[] visited = new boolean[nodeList.length];
   Arrays.fill(visited, false);
   for (start = i; start<nodeList.length; start++) {
      if (!visited[start]){
          visited[start] = true;
          DFS-visit(nodeList, visited, start);
          schedule.prepend(v);
   }</pre>
```

 ${\bf Alternatively, \, Kahn's \,\, Algorithm}$

Repeat:

}

- S = nodes in G that have no incoming edges.
- Add nodes in S to the topo-order
- Remove all edges adjacent to nodes in S
- Remove nodes in S from the graph

Time Complexity: O(V + E), or O(EloqV) using a PQ

12.6 Shortest Path in a Directed Acyclic Graph

Relax the edges in the right-order: Relax each edge once, O(E) cost for relaxation step DFS post-order, find in topological order

Running time of Shortest Path on a DAG: O(E)

Longest Path: Shorted path in negated graph or Modify relax function

Longest path in a general cyclic graph is NP hard

12.7 Shortest path in a tree

From source to destination, only 1 possible path. From source to all? ${f BFS}$ or ${f DFS}$ order

Running time: O(V), assuming weighted undirected tree : there are only O(V) edges in the tree.

12.8 Single-Source Shortest Paths of Weighted directed Graphs

Cannot use BFS: BFS finds minimum hops from node to node, not minimum distance (of weighted edges) Triangle Inequality: $\delta(S, C) \leq \delta(S, A) + \delta(A, C)$

Mantain estimate for each distance, reduce estimate if a lower value is found by relaxing edges.

Invariant: estimate \leq distance

12.8.1 Bellman-Ford

Simple, general way to find SSSP

```
int[] dist = new int[V.length];
Arrays.fill(dist, INFTY);
dist[start] = 0;
// Bellman-Ford:
// Relax every edge |V| times, stop when converges
n = V.length;
for (i=0; i<n; i++)
    for (Edge e : graph)
        relax(e)
// Not stated here, but can terminate early
// once an entire sequence of E relax operations have no effect
// (ie when one inner for-loop doesn't change anything)
relax(int u, int v){
    if (dist[v] > dist[u] + weight(u,v))
        dist[v] = dist[u] + weight(u,v);
}
```

Running Time: O(EV): Outer for-loop is O(V), inner is O(E)

Negative Weight: Possibility of Negative Weight Cycles

• To detect: Run Bellman-Ford for |V| + 1 iterations

If all edges have same weight: Use regular BFS (Distance no different from hops)

12.8.2 Dijkstra

Faster, only non-negative weights, takes edge from vertex closest to source.

- 1) Maintain distance estimate for every node.
- 2) Begin with empty shortest-path-tree
- 3) Repeat:
- Consider vertex with minimum estimate
- Add vertex to shortest-path-tree
- Relax all outgoing edges

Use of Priority Queue via AVL Tree

Every finished vertex has a good estimate; Initially, only start is finished This does NOT hold with negative edge weights

```
public Dijkstra{
    private Graph G;
    private IPriorityQueue pq = new PriQueue();
    private double[] distTo;
    searchPath(int start) {
        pq.insert(start, 0.0);
        distTo = new double[G.size()];
        Arrays.fill(distTo, INFTY);
        distTo[start] = 0;
        while (!pq.isEmpty()) {
            int w = pq.deleteMin();
            for (Edge e : G[w].nbrList)
                relax(e);
        }
    }
    // Relax now decreases key in priority queue if needed
    relax(Edge e) {
        int v = e.from();
        int w = e.to();
        double weight = e.weight();
        if (distTo[w] > distTo[v] + weight) {
            distTo[w] = distTo[v] + weight;
            parent[w] = v;
            if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
            else pq.insert(w, distTo[w]);
        }
    }
}
```

Assuming AVL Tree priority queue:

- insert/push, deleteMin/pop, decreaseKey: O(n)
- contains: O(1)

insert/deleteMin: |V| times each, since each node added to PQ only once relax/decreaseKey: |E| times, since each edge is relaxed once

```
... Running time: O((V+E)logV) = O(ElogV)
(Running time with array and heap: O(V^2) and O(ElogV))
```

Source-to-Destination Djisktra:

Can choose to terminate once destination is dequeued, since it is a good estimate

13 Heaps

Maintain set of prioritized object

- used for stuff like PQ: insert, extractMax, increase/decreaseKey, delete
- Unlike AVL, no rotations

2 Properties:

- **Heap Ordering**: priority[parent] \geq priority[child]
- Complete Binary Tree, nodes as far left as possible

Biggest items stored at root, smallest at leaves Maximum Height: floor(logn) = O(logn)

13.1 PQ Operations

insert insert priority p as leaf, bubble up by swapping with parent until parent's priority larger than p.

Update priority, bubbleUp until parent's priority larger than new priority

Update priority, bubbleDown (leftwards)

• Swap node with last() (most right value rooted at node)

• remove last()

• bubbledown original last() from prev node's position.

extractMax

Heap Operations are O(logn)

```
bubbleUp(Node v) {
    while (v != null) {
    if (priority(v) > priority(parent(v)))
        swap(v, parent(v));
    else return;
    v = parent(v);
    }
}
bubbleDown(Node v) {}
    while (!leaf(v)) {
        leftP = priority(left(v));
        rightP = priority(right(v));
        maxP = max(leftP, rightP, priority(v));
        if (leftP == max) {
            swap(v, left(v));
            v = left(v);
        }
        else if (rightP == max) {
            swap(v, right(v));
            v = right(v);
        else return;
    }
}
insert(Priority p, Key k) {
    Node v = completeTree.insert(p,k);
    bubbleUp(v);
}
```

13.2 Store heap as array

Map each node in complete binary tree into a slot in an array, breadth-first.

```
insert Append to end of the array left(x) arr[2x + 1] right(x) arr[2x + 2] parent(x) floor((x - 1)/2)
```

13.2.1 HeapSort: Heap array to Sorted List

extractMax() n times, everything shifted to the front of the array, append max to end.

Time Complexity: O(nlogn)

```
// int[] A = array stored as a heap
for (int i=(n-1); i>=0; i--) {
   int value = extractMax(A); // O(log n)
   A[i] = value;
}
```

13.2.2 Unsorted list to heap

Recurse from leaves up: Left and right childs are heaps, bubble up accordingly if not.

```
// int[] A = array of unsorted integers
for (int i=(n-1); i>=0; i--) {
   bubbleDown(i, A); // O(height) = O(log n)
}
```

```
Note that \operatorname{ceil}(n/2) nodes are height =0, \operatorname{ceil}(n/4) height =1,\ldots,1 root : Total cost of building heap =\sum_0^{\log n} \frac{n}{2^h} O(h), where 2^h is upper bound of nodes at level h, O(h) cost of bubbling down node at level h, \leq cn(\frac{0.5}{(1-0.5)^2}) \leq 2O(n)
```

13.2.3 HeapSort summary

```
Unsorted List \rightarrow Heap array in O(n) \rightarrow Sorted list in O(nlogn) O(nlogn) worst-case In-place; n space needed Always completes in O(nlogn)
```

14 Union Find

Given set(s) of objects,

- Union Connect two sets
- Find Are two objects in the same set?

Transivity: If p connected to q and q connected to r, p connected to r

14.1 Quick-find

Keep array of componentIDs

Find: 2 objects are connected if they have the same component identifier, O(1) time

• If objects not integers, can use hashtable + open addressing to map items to integers instead.

Union: Replace one of the IDs with the other ID, O(n) time

14.2 Quick-Union

Keep array of direct 'parent' of node

Find: 2 objects are connected if they are part of the same tree, O(n) time

• If objects not integers, can use hashtable + open addressing to map items to integers instead.

Union: Attach root of one tree to the other tree, O(n) time

```
find(int p, int q)
   while (parent[p] != p) p = parent[p];
   while (parent[q] != q) q = parent[q];
   return (p == q);

union(int p, int q)
   while (parent[p] != p) p = parent[p];
   while (parent[q] != q) q= parent[q];
   parent[p] = q;
```

14.3 Weighted-Union

Connect the smaller tree to the bigger tree; Maximum depth of tree: O(logn)

Everytime a tree T of size t is linked to a tree of size t+1, total size ; 2size(T)

Whenever this happens, depth of nodes in T increases by 1, since root of T linked to root of larger tree.

Max number of times size can double is up till size = $n = 2^{logn}$; Size doubles logn times

Hence largest depth possible for a node in T is log(n)

:Running time of Find and Union: O(logn)

```
union(int p, int q)
  while (parent[p] !=p) p = parent[p];
  while (parent[q] !=q) q = parent[q];

if (size[p] > size[q] {
    parent[q] = p; // Link q to p
    size[p] = size[p] + size[q];
} else {
    parent[p] = q; // Link p to q
    size[q] = size[p] + size[q];
}
```

14.4 Path Compression

After finding the root: Set the parent of each traversed node as the root itself.

Time Complexity:

- Weighted Union with Path Compression:
- Sequence of m union/find on n objects: $O(n + m\alpha(m, n))$
- 1 Find/Union operation $\alpha(m, n)$
- Path Compression: Find/Union O(logn)

```
// PREVIOUS root finding
findRoot(int p):
    root = p;
    while (parent[root] != root) root = parent[root];
    return root;
// Root finding with Path Compression
findRoot(int p)
    root = p;
    while (parent[root] != root) root = parent[root];
    while (parent[p] != p):
        temp = parent[p];
        parent[p] = root;
        p = temp;
    return root;
// Alternative: Make every OTHER node in path point to its GRANDparent
findRoot(int p):
    root = p;
    while (parent[root] != root):
        parent[root] = parent[parent[root]];
        root = parent[root];
    return root;
```

15 Minimum Spanning Trees

Acyclic subset of edges containing all nodes with minimum weight

- MST != Shortest paths
- Assume edge weight distinct

3 Basic Properties:

- 1. No cycles
- 2. If you cut an MST, 2 pieces are MSTs
- 3.1. Cycle Property: For every cycle in the graph, MAXIMUM weight edge is NOT in the MST
- **3.2.** False Cycle Property: Minimum weight edge in a cycle may or may not be in a MST
- 4. Cut Property: For every partition of nodes, MINIMUM weight edge IS in the MST Implies for every vertex, minimum outgoing edge IS in the MST

15.1 Generic MST algorithm

```
Red Rule If C is a cycle with no red edges, color C's max-weight edge red Blue Rule If D is a cut with no blue edges, color D's min-weight edge blue

// Greedy Algorithm
Repeat:
    Apply red or blue rule to an arbitrary edge until no more edges can be coloured

// On termination, (all) blue edges are an MST
// Every cycle has a red edge, no blue cycles
// Every edge is coloured
```

15.2 Prim's Algorithm

```
S = set of nodes connected by blue edges Initially: S = A Repeat: Identify Cut S, V-S, find minimum weight edge of cut, add new node to S Use of PQ to find lightest edge on cut
```

Each edge added is lightest on some cut.

∴ By blue rule, each edge added to S is in the MST

Assuming use of Binary Heap, running time = O(ElogV)

- : Each vertex added/removed to/from PQ: O(V log V)
- Each edge: one decrease Key, O(E log V), and E is at most V^2

```
// Initialize priority queue
PriorityQueue pq = new PriorityQueue();
for (Node v : G.V()) pq.insert(v, INFTY);
pq.decreaseKey(start, 0);
// Initialize set S
HashSet<Node> S = new HashSet<Node>();
S.put(start);
// Initialize parent hash table
HashMap<Node,Node> parent = new HashMap<Node,Node>();
parent.put(start, null);
while (!pq.isEmpty()):
    Node v = pq.deleteMin();
                                                // Pop node
    S.put(v);
                                                // Add node to MST
    for each (Edge e : v.edgeList()):
                                                // Iterate through its edges
        Node w = e.otherNode(v);
        if (!S.get(w)):
            // Assume decreaseKey here does nothing if newWeight > prevWeight
            pq.decreaseKey(w, e.getWeight());
            parent.put(w, v);
                                                 // Keep parent to check the edge
```

15.3 Kruskal's Algorithm

Sort all edges by weight

Consider edges in ascending order:

- If both endpoints are in blue tree, colour edge red, heaviest edge in cycle
- Else, colour edge blue

Use of Union-find DS (Connect two nodes if in same blue=tree)

Each added edge crosses a cut. Since sorted, edge is lightest across the cut All other lighter cuts have already been considered

Running time = O(ElogV)

- : Sorting: $O(E \log E) = O(E \log V)$ since E is at most V^2
- Union Find operations are O(log V) or $O(\alpha(n))$ for E edges

```
// Sort edges and initialize
Edge[] sortedEdges = sort(G.E());
ArrayList<Edge> mstEdges = new ArrayList<Edge>();
UnionFind uf = new UnionFind(G.V());
// Iterate through all the edges, in order
for (int i=0; i<sortedEdges.length; i++):</pre>
    Edge e = sortedEdges[i];
                                             // get edge
   Node v = e.one();
                                             // get node endpoints
   Node w = e.two();
    if (!uf.find(v,w)):
                                             // Not in the same tree?
        mstEdges.add(e);
                                             // save edge
        uf.union(v,w);
                                             // combine trees
```

15.4 Boruvka's Algorithm

For each node in the graph, create connected component, each node stores component identifier (O(V))

Repeat Boruvka Step: O(V+E)

- 1. For each connected component, search and add minimum-weight outgoing edge
- DFS or BFS (O(V+E)), check if edge connects two components, remember minimum cost edge of component.
- 2. Merge selected components
- Compute and update new component ids (O(V)), mark added edges

For k connected components, at least k/2 edges added:

- At least k/2 components merged
- \therefore At most k/2 connected components remain
- \bullet \therefore At most $O(\log V)$ Boruvka steps

From the above, logV steps take O(V+E) each.

Running time = O((E+V)logV) = O(ElogV)

Advantage: Each connected component can perform a Boruvka step mostly independently, except merging

15.5 MST Variations

15.5.1 Edges with same weight

DFS/BFS, Edge in spanning tree = V-1 = Edges in MST.

: Any spanning tree found with BFS/DFS is an MST

15.5.2 All edges have a known range

Kruskal Variation: $O(\alpha E)$ time

Counting Sort using an array of size(range)

- Put edges in array of linked lists O(E)
- Iterate over all edges in ascending order O(E)
- For each edge: Check whether to add an edge $O(\alpha)$ and union two components if needed $O(\alpha)$

Prim Variation: O(V+E) = O(E) time

Use an array of size 10 as PQ, A[j] holds linked lists of nodes of weight j

Insertion/removal of nodes: O(V)

decreaseKey: Move node to new linked list in O(E)

15.5.3 Directed Acyclic Graphs

Much harder problem to solve. For special case: DAG with **Single possible route**:

- For every node except the root, add min-weight incoming edge.
- : Every node has at least one incoming edge in the MST, each edge chosen only once, V-1 edges
- O(E) time

15.5.4 Maximum Spanning Tree, adding k to edge weights

MST algorithms only care about relative edge weights; nothing changes if multiply edges by k, where k > 0, or add/subtra MST with negative weights? Doesn't matter, only relative edge weights matter.

Maximum Spanning Tree: Negate edge weights, run MST algo, or run Kruskal's/Prim's in reverse

15.5.5 Steiner Tree problem

Find MST of a subset of the vertices (required nodes), but can use other (Steiner) nodes.

NP-Hard problem: 2-approx algorithm exits, T < 2 * Optimal(G)

- 1. For every pair of required vertices, calculate shortest path: Djisktra V times, or any All-Pairs-Shortest-Paths
- 2. Construct new graph G on required nodes using edge weights found.
- 3. Run MST algo on G; MST found.
- 4. Map edges back to original graph.

16 Dynamic Programming

Optimal Sub-structure: Optimal soln can be constructed from optimal solns to smaller sub-problems **Overlapping Subproblems**

• Use of **memoization** and a 'table' to remember the data

16.1 Longest increasing subsequence

```
For Array A[1..n], find longest increasing (not necessarily consecutive) sequence of numbers
Define sub-problems: S[i] = LIS(A[i..n]) starting at A[i]
Solve using subproblems: S[n] = 0 and S[i] = (max_{(i,j) \in E}S[j]) + 1 (Maximum of traversed nodes)
       LIS(V): // Assume graph is already topo-sorted
           int[] S = new int[V.length];
                                                               // Create memo array
           for (i=0; i<V.length; i++) S[i] = 0;
                                                               // Initialize array to zero
           S[n-1] = 1;
                                                               // Base case: node V[n-1]
           for (int v = A.length-2; v>=0; v--):
                int max = 0;
                                                               // Find maximum S for any outgoing edge
                for (Node w : v.nbrList()):
                                                               // Examine each possible outgoing edge
                    if (S[w] > max) max = S[w];
                                                               // Check S[w], which we already calculated
           S[v] = max + 1;
                                                               // Calculate S[v] from max of outgoing edge
```

Alternate, similar definition: sub-problem being S[i] = LIS(A[1..i]) ending at A[i] Both definitions: $O(n^2)$ total time (n subproblems, subproblem i takes O(i)) O(nlogn) using Binary Search to solve faster

16.2 (Lazy) Prize Collecting

Graph with negative and positive edge weights; Find path to get as high amount as possible. Limit k: What is the maximum prize collected by crossing at MOST k edges in the graph?

1. Define Sub-problem:

- P[v, k] = maximum prize that you can collect starting at v and taking EXACTLY k steps.
- P[v, 0] = 0
- 2. Use sub-problems to solve P[v,k]:
- P[v, k] = MAX P[w1, k-1] + w(v, w1), P[w2, k-1] + w(v, w2), ...
- At every P[v, k] subproblem, save result in a table of v by k.

```
int LazyPrizeCollecting(V, E, kMax) {
                                                                 // create memo table P
    int[][] P = new int[V.length][kMax+1];
    // initialize P to zero
    for (int i=0; i<V.length; i++) for (int j=0; j<kMax+1; j++) P[i][j] = 0;
    for (int k=1; k<kMax+1; k++) {</pre>
                                                                 // Solve for every value of k
        for (int v = 0; v < V.length; v + +) {
                                                                 // For every node...
            int max = -INFTY;
            for (int w : V[v].nbrList()) {
                                                                 // ...find max prize in next ste
                if (P[w,k-1] + E[v,w] > max)
                \max = P[w,k-1] + E[v,w];
            P[v, k] = max;
        }
    }
    return maxEntry(P); // returns largest entry in P
}
```

- Looks like a O(kVE) problem, but loose bound; don't have to go through all edges.
- $O(kV^2)$ if you take kV subproblems, each costing |v.nbrList| which is maximum V.
- O(kE) from table: k rows, O(E) cost to solve each row! (Since you look at each edge once per row)

16.3 Vertex Cover

Given undirected, unweighted graph G, find set of nodes C where every edge is adjacent to at least one node in C.

• NP-complete, easy **2-approximation**

Special Case: Given an undirected, unweighted **tree** and its root r, find size of vertex cover of this tree **Subproblem?** For subtree rooted at v,

- 1. S[v, 0]: Size of vertex cover in subtree rooted at v, if v is NOT covered
- $S[v, 0] = S[w1, 1] + S[w2, 1] + S[w3, 1] + \dots$
- Since children HAVE to be already covered
- 2. S[v, 1]: Size of vertex cover in subtree rooted at v, if v IS covered
- $S[v, 1] = 1 + \min(S[w1, 0], S[w1, 1]) + \min(S[w2, 0], S[w2, 1])$
- Since doesnt matter whether children are covered or not

```
int treeVertexCover(V){//Assume tree is ordered from root-to-leaf
    int[][] S = new int[V.length][2]; // create memo table S
    for (int v=V.length-1; v>=0; v--){ //From the leaf to the root
        if (v.childList().size()==0) { // If v is a leaf...
            S[v][0] = 0;
            S[v][1] = 1;
        } else{ // Calculate S from v's children.
            int S[v][0] = 0;
            int S[v][1] = 1;
            for (int w : V[v].childList()) {
                S[v][0] += S[w][1];
                S[v][1] += Math.min(S[w][0], S[w][1]);
            }
        }
    }
    return Math.min(S[0][0], S[0][1]); // returns min at root
}
```

- Looks like $O(V^2)$, since 2V sub-problems, O(V) time per
- O(V) time to solve all subproblems, since each of the (V-1) edges is only explored once

16.4 All-Pairs Shortest Paths

Given directed, connected weighted graph G, answer queries: Preprocess graph, and answer min-dist(v, w)

Simple Soln: Dijkstra on first query from source v, save all min-dists from v to all other nodes

- 0 Preprocessing, O(V E logV) to respond to q queries (Max need run Dijkstra V times)
- If run APSP during preprocessing, responding to q queries: O(q)]tabitem In a sparse graph, $O(V^2logV)$
- in an unweighted graph, use BFS for O(V(E+V)): $O(V^3)$ for dense graphs, $O(V^2)$ for sparse

16.4.1 Floyd-Warshall

Optimal Substructure: If P is shortest path from u to v to w, then P contains shortest paths from u to v and v to w. **Subproblem:** S[v,w,P] = Shortest path from v to w that only uses intermediate nodes in set P

• Base case: $S[v, w, \emptyset] = E[v,w]$ (Direct edge from v to w) $S[v,w,P8] = \min(S[v,w,P7], S[v,8,P7] + S[8,w,P7])$, where set P8 adds node 8 to set P7

```
int[][] APSP(E){ // Adjacency matrix E
   int[][] S = new int[V.length][V.length]; //create memo table S

// Initialize every pair of nodes
for (int v=0; v<V.length; v++)
        for (int w=0; w<V.length; w++)
            S[v][w] = E[v][w];

// For sets PO, P1, P2, P3, ..., for every pair (v,w)
for (int k=0; k<V.length; k++)
        for (int v=0; v<V.length; v++)
            for (int w=0; w<V.length; w++)
            S[v][w] = min(S[v][w], S[v][k]+S[k][w]);
    return S;
}</pre>
```

Running time: $O(V^3)$

17 Data Structures Summary

17.1 Trees

Name	Search	Insert	Delete	Remarks
BST	O(height)	O(height)	O(height)	h < 2log(n)
AVL	O(logn)	O(logn)+ 2 rotations	O(logn) + logn rotations	If v is left-heavy, - v.left is balanced/left-heavy: right-rotate(v) - v.left is right-heavy: left- rotate(v.left), right-rotate(v)
Trie	O(length)	O(length)	O(length)	
(a,b)-trees B-trees	O(logn)	O(logn)	igg O(logn)	Insert: split Delete: Merge, or Share (merge + split)

17.2 Augmented Trees

Assuming augmented from AVL, search(), insert() and delete() are $O(\log n)$

Order Statistics	Find order/rank of nodes • Store size of sub-tree in every node • During insertion, maintain weight during rotation
Interval Tree	Nodes sorted by left endpoint Nodes contain max endpoint in tree rooted at node
Orthogonal Range Searching (kd-trees)	Find everything within certain range • Points stored in leaves • internal node stores $\max(\text{node.left})$ • kd-trees: Alterate splitting between dimensions: • Query: $O(\sqrt{n} + k)$, Space: $O(n)$, Build: $O(nlogn)$
Range Tree	Build x-tree using only x-coords, x-node contains y-tree (etc) • Query: $O(log^2n + k)$, Space: $O(nlogn)$, Build: $O(nlogn)$

17.3 Hashing

Assuming m is number of buckets, n is number of keys, h is cost of hash function,

Name	Search	Insert	Space	Remarks
Chaining		O(h+1)	O(m+n)	• Simple Uniform Hashing Assumption • load = n/m
Open-Addressing		1/(1-load)	O(n)	 Uniform Hashing Assumption Redefine hash function: Linear Probing or otherwise Double-hashing: h(k,i) = [f(k) + ig(k)] mod m Tombstone value for deleted items Performance degrades as load = n/m tends to 1