Proximal Algorithms: Study And Parallel Implementations

Harit Vishwakarma ME Student, CSA, IISc

December 7, 2015

Outline

- Objective
- 2 Brief Overview
- Implementations

Objective

Study and Parallel Implementations of:

- ADMM
- ISTA/FISTA

Objective

Study and Parallel Implementations of:

- ADMM
- ISTA/FISTA

Using Them To Solve ML Problems

- Lasso (Regression)
- SVM (Classification)

Objective

Study and Parallel Implementations of:

- ADMM
- ISTA/FISTA

Using Them To Solve ML Problems

- Lasso (Regression)
- SVM (Classification)

Work Done

- Studied and Implemented the methods in Apache Spark.
- Sequential and Parallel Versions.

Outline

- Objective
- 2 Brief Overview
 - ADMM
 - Proximal Gradient Method
- 3 Implementations

Outline

- Objective
- 2 Brief Overview
 - ADMM
 - Proximal Gradient Method
- 3 Implementations

ADMM: Alternating Direction Method of Multipliers

Problem

minimize
$$f(x) + g(z)$$

subject to $Ax + Bz = c$,

where $f, g : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ are closed proper convex and f is differentiable.

Both f, g can be non-smooth.

ADMM: Alternating Direction Method of Multipliers

Problem

minimize
$$f(x) + g(z)$$

subject to $Ax + Bz = c$,

where $f, g : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ are closed proper convex and f is differentiable.

Both f, g can be non-smooth.

Update Step

$$x^{k+1} := \underset{x}{\operatorname{argmin}} (f(x) + \frac{\rho}{2} ||Ax + Bz^{k} - c + u^{k}||_{2}^{2})$$

$$z^{k+1} := \underset{z}{\operatorname{argmin}} (g(z) + \frac{\rho}{2} ||Ax^{k+1} + Bz - c + u^{k}||_{2}^{2})$$

$$u^{k+1} := u^{k} + x^{k+1} - z^{k+1}$$

Outline

- Objective
- 2 Brief Overview
 - ADMM
 - Proximal Gradient Method
- 3 Implementations

Proximal Gradient Method

Problem

$$\min_{x} f(x) + g(x)$$

where $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ are closed proper convex and f is differentiable.

g can be used to encode the constraints.

Proximal Gradient Method

Problem

$$\min_{x} f(x) + g(x)$$

where $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ are closed proper convex and f is differentiable.

g can be used to encode the constraints.

Update Step

$$x^{k+1} := prox_{\lambda^k g}(x^k - \lambda^k \nabla f(x^k))$$

 $\lambda^k > 0$ is the step size.

Proximal Gradient Method

Problem

$$\min_{x} f(x) + g(x)$$

where $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ are closed proper convex and f is differentiable.

g can be used to encode the constraints.

Update Step

$$x^{k+1} := prox_{\lambda^k g}(x^k - \lambda^k \nabla f(x^k))$$

 $\lambda^k > 0$ is the step size.

Convergence

When ∇f is Lipschitz continuous with constant L, it converges with rate O(1/k) when a fixed step size $\lambda^k = \lambda \in (0, 1/L]$ is used.

Outline

- Objective
- 2 Brief Overview
- 3 Implementations
 - ADMM
 - ISTA/FISTA

Outline

- Objective
- 2 Brief Overview
- 3 Implementations
 - ADMM
 - ISTA/FISTA

Parallelizing ADMM: Splitting on Examples

Problem Setup

minimize
$$\sum_{i=1}^{N} f_i(x_i) + g(z)$$

subject to $x_i - z = 0, i = 1...N$

Updates

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} (f_i(x_i) + \frac{\rho}{2} || x_i - z^k + u^k ||^2)$$

$$z^{k+1} := \underset{z}{\operatorname{argmin}} (g(z) + \frac{N\rho}{2} || z - \bar{x}^{k+1} - \bar{u}^k ||^2)$$

$$u_i^{k+1} := u_i^k + x_i^{k+1} - z^{k+1}$$

ADMM Splitting over Examples: Lasso

Original Lasso Problem

minimize
$$\frac{1}{2} \|Ax - b\|_2^2 + \lambda \|x\|_1$$

Rewriting Lasso Problem

minimize
$$\frac{1}{2} \sum_{i=1}^{N} \|A_i x_i - b_i\|_2^2 + \lambda \|z\|_1$$
 subject to
$$x_i - z = 0, \ i = 1 \dots N$$

ADMM Splitting over Examples: Lasso

Updates

$$\begin{aligned} x_i^{k+1} &:= \underset{x_i}{\operatorname{argmin}} (\|A_i x_i - b_i\|_2^2 + \frac{\rho}{2} ||x_i - z^k + u^k||^2) \\ z^{k+1} &:= S_{\lambda/N\rho} (\bar{x}^{k+1} + \bar{u}^k) \\ u_i^{k+1} &:= u_i^k + x_i^{k+1} - z^{k+1} \end{aligned}$$

```
Procedure par_admm_lasso()
      while not converged OR i < max_iters do
1
           t = mapPartitions(part_train)
           z = AIIReduce t
2
           z = soft_{threshold}(\lambda/\rho, z)
3
           broadcast z
4
           i = i + 1
5
      end
      return z
6
  Procedure part_train()
       read local x<sub>i</sub>, u<sub>i</sub>
1
       receive z from master
3
      u_i = u_i + x_i - z
      x_i = (A_{\iota}^T A_k + \rho I)^{-1} (A_{\iota}^T b_k + \rho (z - u_i))
4
       persist x_i, u_i locally
5
6
      z_i = x_i + u_i
      return zi
```

Algorithm 1: ADMM Algorithm for Lasso on Map Reduce

Cost Analysis

Over All Complexity

- $\bullet \ t_i = t_i^{cp} + t_i^{cm}$
- $t_{all} = (t_i) * Iters$

Individual Costs

- Local Compute: $t_i^{cp,local} = O(n_k * d^2 + d^3)$
- Reduce Complexity: $t_i^{red} = O(d * log_2(N))$
- $\bullet \ t_i^{cp} = O(t_i^{cp,local} + t_i^{red})$
- Master to Workers Communication: $t_i^{cm,mw} = O(N * d)$
- Workers to Master Communication: $t_i^{cm,wm} = O(d * log_2(N))$

ADMM Lasso : Convergence

Measure Progress

$$r^{k} = x^{k} - z^{k}$$
$$s^{k} = \rho(z^{k+1} - z^{k})$$

Figure: r_norm with iterations

ADMM Lasso: Convergence

Measure Progress

$$r^{k} = x^{k} - z^{k}$$
$$s^{k} = \rho(z^{k+1} - z^{k})$$

Figure : r_norm with iterations

Figure : s_norm with iterations

ADMM Lasso: Scalability

Figure : Time vs #Parts

ADMM Lasso: Scalability

Figure: Time vs #Parts

Figure : Iterations vs #Parts

ADMM Lasso: ρ variation

Figure : ρ vs #Iteration

ADMM Lasso: ρ variation

Figure : ρ vs #Iteration

Figure : ρ vs RMSE

ADMM Splitting over Examples: SVM

Original SVM Problem

minimize
$$\frac{1}{n} \mathbf{1}^T (\mathbf{1} - y * (Ax))_+ + \frac{\lambda}{2} ||x||_2^2$$

Rewriting SVM Problem

minimize
$$\frac{1}{n} \sum_{i=1}^{N} \mathbf{1}_{i}^{T} (\mathbf{1}_{i} - y_{i} * (A_{i}x_{i}))_{+} + \frac{\lambda}{2} \|z\|_{2}^{2}$$
subject to
$$x_{i} - z = 0, i = 1 \dots N$$

ADMM Splitting over Examples: SVM

Updates

$$\begin{aligned} x_i^{k+1} &:= \underset{x_i}{\operatorname{argmin}} (\mathbf{1}_i^T (\mathbf{1}_i - y_i * (A_i x_i))_+ + \frac{\rho}{2} ||x_i - z^k + u^k||^2) \\ z^{k+1} &:= \frac{N\rho}{\lambda + N\rho} (\bar{x}^{k+1} + \bar{u}^k) \\ u_i^{k+1} &:= u_i^k + x_i^{k+1} - z^{k+1} \end{aligned}$$

Implementation Details

- Algorithm is same as Lasso.
- x_i^{k+1} is obtained using scs solver of cvxpy.

Cost Analysis

Over All Complexity

- $\bullet \ t_i = t_i^{cp} + t_i^{cm}$
- $t_{all} = (t_i) * Iters$

Individual Costs

- Local Compute: $t_i^{cp,local} = O(scs_time)$
- Reduce Complexity: $t_i^{red} = O(d * log_2(N))$
- $\bullet \ t_i^{cp} = O(t_i^{cp,local} + t_i^{red})$
- Master to Workers Communication: $t_i^{cm,mw} = O(N * d)$
- Workers to Master Communication: $t_i^{cm,wm} = O(d * log_2(N))$

ADMM SVM: Scalability

Figure : Iterations vs #Parts

ADMM SVM: Scalability

Figure : Iterations vs #Parts

Figure : Time taken vs #parts

ADMM SVM: Scalability

Figure : Iterations vs #Parts

Figure : Time taken vs #parts

Accuracy

Accuracy remains same at 97.49 .

ADMM Lasso: ρ variation

Figure : ρ vs #Iteration

ADMM Lasso: ρ variation

Figure : ρ vs #Iteration

Figure : ρ vs Acc.

ADMM Splitting over Features

Problem Setup

minimize
$$f(\sum_{i=1}^{N} z_i - b) + \sum_{i=1}^{N} r_i(x_i)$$

subject to $A_i x_i - z_i = 0, i = 1...N$

Updates

$$\begin{split} x_i^{k+1} &:= \underset{x_i}{\mathsf{argmin}} \big(r_i(x_i) + \frac{\rho}{2} || A_i x_i - A_i x_i^k - \bar{z}^k + \overline{Ax}^k + u^k ||^2 \big) \\ \bar{z}^{k+1} &:= \underset{\bar{z}}{\mathsf{argmin}} \big(f \big(N \bar{z} - b \big) + \frac{N \rho}{2} || \bar{z} - \overline{Ax}^{k+1} - u^k ||^2 \big) \\ u^{k+1} &:= u^k + \overline{Ax}^{k+1} - \bar{z}^{k+1} \end{split}$$

ADMM Splitting over Features: Lasso

Rewriting Problem

minimize
$$\frac{1}{2} \| (\sum_{i=1}^{N} z_i - b) \|_2^2 + \sum_{i=1}^{N} \lambda \| x_i \|_1$$

subject to $A_i x_i - z_i = 0, i = 1 ... N$

Updates

$$\begin{aligned} x_i^{k+1} &:= \underset{x_i}{\operatorname{argmin}} (\lambda \, \|x_i\|_1 + \frac{\rho}{2} \|A_i x_i - A_i x_i^k - \bar{z}^k + \overline{A} x^k + u^k\|^2) \\ \bar{z}^{k+1} &:= \frac{1}{N+\rho} (b + \rho \overline{A} x^{k+1} + \rho u^k) \\ u^{k+1} &:= u^k + \overline{A} x^{k+1} - \bar{z}^{k+1} \end{aligned}$$

```
Procedure par_admm_lasso_fs()
        while not converged OR i \leq max\_iters do
             t = mapPartitions(part_train_fs)
            \overline{Ax}^k = AllReduce t
            \bar{z}^k = \frac{1}{N+\rho} (b + \rho \overline{Ax}^k + \rho u^k)
3
            u^k = u^k + \overline{Ax}^k - \overline{z}^k
4
            broadcast \overline{Ax}^k, \overline{z}^k, u^k
             i = i + 1
        end
        return z
   Procedure part_train_fs()
        read local x_i^k
        receive \overline{Ax}^k, \overline{z}^k, u^k from master
2
        x_i^k = \operatorname{argmin}(\lambda \|x_i\|_1 + \frac{\rho}{2} \|A_i x_i - A_i x_i^k - \bar{z}^k + \overline{Ax}^k + u^k\|_2^2)
3
        persist x_i^k locally
        return A_i x_i
         Algorithm 2: ADMM Algorithm for Lasso on Map Reduce
```

1

2

5

6

5

Cost Analysis

Over All Complexity

- $\bullet \ t_i = t_i^{cp} + t_i^{cm}$
- $t_{all} = (t_i) * Iters$

Individual Costs

- Local Compute: $t_i^{cp,local} = O(cvx_time)$
- Reduce Complexity: $t_i^{red} = O(n * log_2(N))$
- $t_i^{cp} = O(t_i^{cp,local} + t_i^{red})$
- Master to Workers Communication: $t_i^{cm,mw} = O(3 * n * N)$
- Workers to Master Communication: $t_i^{cm,wm} = O(n * log_2(N))$

Outline

- Objective
- 2 Brief Overview
- Implementations
 - ADMM
 - ISTA/FISTA

Using Proximal Gradient Method For Lasso (ISTA)

Original Lasso Problem

$$f(x) = \frac{1}{2} \|Ax - b\|_{2}^{2}; g(x) = \lambda \|x\|_{1}$$
$$\nabla f(x) = A^{T} (Ax - b)$$

ISTA Update

$$x^{k+1} := soft_threshold_{\lambda^k}(x^k - \lambda^k \nabla f(x^k))$$

FISTA Update

$$egin{aligned} x^{k+1} &:= \textit{soft_threshold}_{\lambda^k} ig(y^k - \lambda^k
abla f(y^k) ig) \\ h^{k+1} &:= rac{1 + \sqrt{1 + 4(h^k)^2}}{2} \\ y^{k+1} &:= x^{k+1} + rac{h^k - 1}{h^{k+1}} (x^{k+1} - x^k) \end{aligned}$$

Parallelizing ISTA/FISTA

Gradient Computation in Parallel

$$\nabla f(x^k) = A^T A x^k - A^T b$$

$$A^T A = \sum_{i=1}^N A_i^T A_i; \qquad A^T b = \sum_{i=1}^N A_i^T b_i$$

Compute A^TA and A^Tb once and keep in memory.

Cost Analysis

$$ReduceCost = O(d^2 * log_2N)$$

$$Comm.cost = O(d^2 * log_2 N)$$

$$LocalCost = O((n_k * d^2) * N)$$

Where $A \in \mathbb{R}^{n \times d}$.

 n_k is number of rows of A in k^{th} partition

N is the total Number of partitions

Results: ISTA Convergence

Figure: ISTA

Results: ISTA Convergence

Figure: ISTA

Figure: FISTA

Results: ISTA Running Time

Figure : Algo. Time vs #Parts

Results: ISTA Running Time

Figure : Algo. Time vs #Parts

Figure : Pre. Proc. vs #parts

References

- http://web.stanford.edu/boyd/papers/admm_distr_stats.html
- http://stanford.edu/boyd/papers/prox_algs.html