渐变分析

asymptotic analysis

当n→∞时,函数f(n)的极限行为

Youtube频道: hwdong

渐变分析

- 设 $f(n) = n^2 + 3n$, 当n变得非常大时,与 n^2 相比, 3n变得微不足道,因此,当 $n \to \infty$ 时,f(n) 和 n^2 渐进相等。即 $f(n) \sim n^2$ 。
- 当n→∞时,
 1000n+3000和0.6n²
 比较可以忽略不计。

渐变分析

- 通过去掉不那么重要的项和常数系数,我们可以 专注于算法运行时间的重要部分,即增长率,而 不会陷入使我们的理解更加复杂的细节中。
- 如0.01n²+700n和n²是同一个数量级,它们具有同样的增长率(同介无穷大量)。
- 当去掉常数系数和不太重要的项时,使用**渐变符** 号表示增长的数量级。

渐变符号

• 上界 \mathbf{O} 、下界 $\mathbf{\Omega}$ 、紧界 \mathbf{O} 、非紧上界 \mathbf{O} 、非紧下界 \mathbf{O} 。

上界o

• 若存在正数c和 n_0 ,使得对所有 $n ≥ n_0$ 有:

$$0 \le f(n) \le cg(n)$$
,

则称f(n)的渐进上界是g(n),记作

$$f(n)=O(g(n))$$

上界o

• 如f(n) = n²+2n,则:

$$f(n)=O(n^2)$$
,可取 $c=2,n_0=2$

$$f(n)=O(n^3)$$
,可取 $c=1,n_0=2$

如果f(n)=O(g(n)), 说明g(n)的阶等于或高于f(n).

上界的阶越低,则评估就越精确,就越有价值。

求证: 所有度为k的多项式的上界是O(nk)。

证明: 设
$$T(n) = a_k n^k + \ldots + a_1 n + a_0$$
 where $a_k \neq 0$.

Let $n_0 = 1$ and let $a^* = \max_i |a_i|$

$$T(n) = a_k n^k + \dots + a_1 n + a_0$$

$$\leq a^* n^k + \dots + a^* n + a^*$$

$$\leq a^* n^k + \dots + a^* n^k + a^* n^k$$

$$= (k+1)a^* \cdot n^k$$

Let $c = (k+1)a^*$ which is a constant

练习

- 请证明:对函数f(x) = 2x² 5x +1, f(x) = O(x²)
- 请证明: For any $k \geq 1$, n^k is not $O(n^{k-1})$.

下界Ω

• 若存在正数c和 n_0 ,使得对所有 $n ≥ n_0$ 有:

$$0 \le cg(n) \le f(n)$$
,

则称f(n)的渐进下界是g(n),记作

$$f(n) = \Omega(g(n))$$

下界Ω

• 如f(n) = n²+2n,则:

$$f(n)=\Omega(n^2)$$
 ,可取 $c=1$, $n_0=1$

$$f(n) = \Omega(100n)$$
,可取 $c = 0.01$, $n_0 = 1$

$$f(n) = \Omega(10n^2 + 5n)$$
 ,可取 $c = 0.1$, $n_0 = 1$

• 如果 $f(n) = \Omega(g(n))$,说明g(n)的介等于或低于f(n).

下界的阶越高,则评估就越精确,就越有价值。

紧界⋳

• 若正数 c_1,c_2 和 n_0 使得对所有 $n \ge n_0$ 有:

$$c_1g(n) \le f(n) \le c_2g(n)$$
 },

则称f(n)的紧界是g(n),记作

$$f(n) = \Theta(g(n))$$

紧界Θ

- 如 $f(n) = n^2 + 2n$, $g(n) = n^2$, 则 $f(n) = \Theta(n^2)$
- 如果 $f(n) = \Theta(g(n))$, 说明f(n)和g(n)是同阶无穷大量。
- 定理: lim_{n→∞} f(n)/g(n) =c (c>0), 则f(n)= Θ(g(n))

如:

$$\lim_{n\to\infty} (n^2/3-4n)/(n^2) = 1/3$$
,因此 $(n^2/3-4n) = \Theta(n^2)$

练习

• f(n) = 0.1n²+3n-7和n,n²,n³的关系

非紧上界o

若对任何正数c>0,存在正数n₀>0使得对所有n≥ n₀有:
 0 ≤ f(n)<cg(n) }

则称f(n)的非紧上界是g(n),记作 f(n)= o(g(n))

• 等价于 f(n) / g(n) →0 , as n→∞。

如: $\lim_{n\to\infty} (5n^2+9n)/(n^3) = 0$,因此($5n^2+9n$) = $o(n^3)$

非紧上界o

- logn=o(n^c)
- n^c = o(aⁿ)

非紧下界o

• 若对**任何**正数c>0,存在正数 n_0 >0使得对所有 $n \ge n_0$ 有:

$$0 \le cg(n) < f(n)$$

则称f(n)的非紧下界是g(n),记作

$$f(n) = \omega (g(n))$$

• 等价于 f(n) / g(n) →∞ , as n→∞。

$$f(n) = n^2$$
$$g(n) = 10n$$

性质:

(1) 传递性

- 如果f=O(g),g= O(h),则f= O(h)
- 如果 $f=\Omega(g)$, $g=\Omega(h)$,则 $f=\Omega(h)$
- 如果f= Θ(g),g= Θ(h), 则f= Θ(h)
- 如果f= o(g),g= o(h),则f= o(h)
- 如果 $f = \omega(g)$, $g = \omega(h)$, 则 $f = \omega(h)$

- $f \leq g,g \leq h, \text{ for } f \leq h$
- $f \ge g,g \ge h$, 则 $f \ge h$

(2) 反身性:

- $f(n) = \Theta(f(n))$;
- f(n)= O(f(n));
- $f(n) = \Omega(f(n))$.

(3) 对称性:

• $f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$

(4) 互对称性:

- $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$;
- $f(n) = o(g(n)) \Leftrightarrow g(n) = \omega(f(n))$;

算法分析中常见的复杂性函数

Function	Name	
с	Constant	常数
$\log N$	Logarithmic	< 对数
$\log^2 N$	Log-squared	
N	Linear	丝性
$N \log N$	N log N	
N ²	Quadratic	二次多项式
N ³	Cubic	三次
2^N	Exponential	者数

• 哪种增长最能体现这些函数的特点?

	Constant	Linear	Polynomial	Exponential
$(3/2)^n$	\circ	\bigcirc	\circ	0
1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
(3/2)n	\circ	\bigcirc	\circ	
$2n^3$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2^n	\bigcirc	\bigcirc	\circ	\circ
$3n^2$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1000	\bigcirc	\bigcirc	\circ	
3n	\bigcirc	\bigcirc	\bigcirc	

常见的时间复杂度

例子

Youtube频道: hwdong

- •运行时间最多是输入规模的常数倍,如cn。
- •如:求一组数的 $(a_1,a_2,...a_n)$ 最大值。

```
max = a_1

for i=2 to n:

if a_i > max:

max = a_i

return max
```

$$a = (a_1, a_2, ..., a_m), b = (b_1, b_2, ..., b_n)$$

如: $a = (2,5,8,9), b = (3,4,6,10,13)$
i

$$a = (a_1, a_2, ..., a_m), b = (b_1, b_2, ..., b_n)$$

如: $a = (2,5,8,9), b = (3,4,6,10,13)$
i

$$a = (a_1, a_2, ..., a_m), b = (b_1, b_2, ..., b_n)$$

如: $a = (2,5,8,9), b = (3,4,6,10,13)$

$$a = (a_1, a_2, ..., a_m), b = (b_1, b_2, ..., b_n)$$

如: $a = (2,5,8,9), b = (3,4,6,10,13)$

merge(a,b)

i=1,j=1
while i ≤m and j ≤n:
if
$$a_i \le b_j$$
:
 $c_k = a_i, i++, k++$

else:

$$c_k = b_j, j++, k++$$

while $i \le m$:

$$c_k = a_i$$
, $i++,k++$

while $j \le n$:

$$c_k = b_i, j++, k++$$

O(m+n)

O(logn)

• 有序数组的二分查找

	复杂度	
平均时间复杂度	$O(\log n)$	
最坏时间复杂度	$O(\log n)$	
最优时间复杂度	O(1)	
空间复杂度	迭代: $O(1)$ 递归: $O(\log n)$	

O(nlogn)

 $2^k \ge n \Rightarrow k \ge log n$

• 归并排序、快速排序

Quadratic: O(n²)

•插入排序

$$a_{i-1}$$
 a_i

$$\sum_{i=2}^{n} i = (n+2)(n-1)/2$$

Quadratic: O(n²)

• 平面点集的最短点对

```
min = dist(p1,p2)

for each point p:

    for each point q:

    d = dist(p,q)

    if d < dist:

        dist = d

return min
```

Quadratic: O(n³)

•矩阵的乘积: 如2个n阶方阵相乘

```
for i=1 to n:
    for j=1 to n:
        cij = 0
        for k=1 to n:
        cij = cij+ aik*bkj
```

exponential: O(aⁿ)

• Hanoi汉诺塔问题: O(2ⁿ)

```
Hanoi(n,A,B,C)

if n==1: move(n, A,C)

Hanoi(n-1,A,C,B)

move(n, A,C)

Hanoi(n-1,B,C,A)
```

$$T(n) = 2T(n-1)+1$$

 $T(1) = 1$
 $T(n) = 2^{n}-1$

exponential: O(aⁿ)

- 背包问题(Knapsack problem):给定一组物品,每 种物品都有自己的重量和价格,在限定的总重量 内,我们如何选择,才能使得物品的总价格最高。
- 穷举法: 每个物体选或不选, 一共有2°。

n个物品的背包问题:

```
int knapSack(int W, int w[], int v[],int n):
   if n = 0:
     return 0
   if W_n > W:
     return knapsack(W,w,v,n-1)
   return
       \max(v_n + knapsack(W - w_n, w, v, n - 1),
             knapsack(W,w,v,n-1),
```

exponential: O(aⁿ)

- 独立集是指图G 中两两互不相邻的顶点构成的集合。
- •图 G 的独立集是顶点的子集,该子集中没有两个顶点表示 G 的边。

exponential: O(aⁿ)

• 独立集是指图G 中两两互不相邻的顶点构成的集合。

•问题:求图的最大独立集

图的子集有2ⁿ个, 检查一个子集是否有边相连n²。 O(n² 2ⁿ)

常见函数

1) 取整函数

[x]: 不大于x的最大整数;

「x]: 不小于x的最小整数。

2) 指数函数

对于正整数m,n和实数a>0:

```
a^0=1;
a^1=a;
a^{-1}=1/a;
 (a^{m})^{n} = a^{mn};
(a^{m})^{n} = (a^{n})^{m};
a^m a^n = a^{m+n};
                                ⇒ n<sup>b</sup> = o(a<sup>n</sup>), 即a<sup>n</sup>是n<sup>b</sup>的非紧上界
a>1 \Rightarrow
```

3) 对数函数

```
\log n = \log_2 n;
\lg n = \log_{10} n;
ln n = log_e n;
\log^k n = (\log n)^k;
\log \log n = \log(\log n);
for a>0,b>0,c>0
  a = b^{\log_b a}
```

$$\log_c(ab) = \log_c a + \log_c b$$

$$\log_b a^n = n \log_b a$$

$$\log_b a = \frac{\log_c a}{\log_a b}$$

$$\log_b(1/a) = -\log_b a$$

$$\log_b a = \frac{1}{\log_a b}$$

$$a^{\log_b c} = c^{\log_b a}$$

$$g_b a \qquad a^{\log_b n} = n^{\log_b a}$$

P vs NP

- •能在多项式时间(polynomial time)内求解的一类问题称为"类P"或"P问题",简称 "P"。
- 虽然不知道多项式时间的解,但一旦给了一个解,可以在多项式时间内验证这个解的一类问题称为 NP, NP是"非确定多项式时间" ("nondeterministic polynomial time")的缩写。如:寻找一个大数的质因数。

旅行家推销问题(TSP):给定一系列城市和每对城市之间的距离,求解访问每一座城市一次并回到起始城市的最短回路

- •显然, P⊆NP,
- 但P=NP? 这个问题的意思是: "如果一个问题的解可以在多项式时间内验证,那么能否在多项式时间内找到它?"
- 克雷(Clay)数学研究所悬赏百万美元的7个千禧年 大奖难题之一 (2000年5月24日)

庞加莱猜想

在拓扑学,二维球面是紧致且单连通。通俗地说,意味球面不会无限延伸,并且其上任何闭合的圈都可收紧至一点。

庞加莱猜想

庞加莱猜想考虑的是**更高维**的情况: 若闭合三维空间中每条闭曲线都可连续收缩到一点,那么 拓扑地看,这空间是否就是球?

它的数学陈述为:一个单连通三维闭流形同胚于三维球面 这猜想是三维流形的分类问题的核心

庞加莱猜想

1962年,**斯蒂芬·斯梅尔**证明了庞加莱猜想在五维以上的等价结论,四维的情况则在二十年后由**迈克尔·弗里德曼**证明,但数学界始终对三维流形束手无策,而人类所处的宇宙是三维流形,更显出问题重要

• 2003年,俄罗斯数学家**格里戈里·佩雷尔曼**在 arXiv贴出了完整证明

• 2006年,多组研究者先后发表论文阐释了佩雷尔曼的成果,并认定其无误。由于这一贡献,国际数学家大会决定授予佩雷尔曼菲尔兹奖,但他本人却拒绝领奖

• 2010年3月18日,千禧年大奖正式颁发给佩雷尔曼,但他又一次拒绝领奖,也包括克雷数学研究所的百万奖金

NP-Complete (NP 完备性)

 为了攻克P=NP问题, NP-完备性的概念非常有用。 NP-完备性问题是一组问题, 其他的NP问题都可以在多项式时间内还原为该组问题的一个问题, 而且其解仍然可以在多项式时间内得到验证。

NP-Hard (NP难问题)

• NP-hard问题是指那些至少和NP问题一样难的问题,即任何NP问题都可以(在多项式时间内)转化成它们。NP-hard问题不一定是NP问题,即它们的解不一定可以在多项式时间内验证。

关注我

博客: hwdong-net.github.io

Youtube频道

hwdong

@hwdong - 5.01K subscribers - 558 videos

博容: https://hwdong-net.github.io >

youtube.com/c/4kRealSound and 4 more links