Inflation and Unemployment

Prof. Lutz Hendricks

Econ520

September 22, 2022

Objectives

This section is about the trade-off between inflation and unemployment.

In this section you will learn:

- 1. How and when expansionary monetary policy reduces unemployment.
- 2. When does it generate inflation instead.
- 3. The importance of **expectations** for monetary policy.

The Question

Monetary policy stimulates aggregate demand.

Why not always use it gain more employment / output?

Answer: Lax monetary policy creates inflation.

Key issue

Can we buy more employment with more inflation?

What do the data show?

The Phillips Curve: 1900-1960

High inflation - low unemployment

The 1960s

The 1960s are especially clear.

Modern Data: 1970-2010

Breakdown of the Phillips Curve

Phillips Curve: Intuition

Assume that economic fluctuations are mostly driven by AD shocks.

► The AS curve is stable over time.

Then we get a positive correlation between inflation and unemployment.

Phillips Curve: Intuition

How does the analysis change when the price changes are expected?

Why Might the Phillips Curve Break Down?

We know: only unanticipated inflation increases output

$$Y^{s} = F\left(\frac{P}{P^{e}} \frac{1}{1+m}, z\right) \tag{1}$$

A natural idea:

- up to the 1960s inflation was unanticipated
- afterwards it was anticipated and hence did not affect output

We need a measure of unanticipated inflation.

A simple measure: the change of the inflation rate

► Can we buy more output by raising inflation?

The New Phillips Curve: 1970-2010

Rising inflation – low unemployment

Summary

Until 1960

higher inflation was associated with lower unemployment

After 1960

rising inflation was associated with lower unemployment

Questions:

- 1. Why the change?
- 2. Can be buy persistently higher employment with ever rising inflation?

Theory Underlying the Phillips Curve

Deriving the Phillips Curve

Start from aggregate supply

$$Y^{s} = F\left(\frac{P}{P^{e}} \frac{1}{1+m}, z\right) \tag{2}$$

Divide by last period's prices:

$$\frac{P}{P^e} = \frac{P}{P_{-1}} \frac{P_{-1}}{P^e} = \frac{1+\pi}{1+\pi^e} \tag{3}$$

 π : actual inflation rate

 π^e : **expected** inflation rate

Therefore:

$$Y^{s} = F\left(\frac{1+\pi}{1+\pi^{e}} \frac{1}{1+m}, z\right) \tag{4}$$

Deriving the Phillips Curve

In words:

- ► AS supply rises when prices are higher than expected
- or when inflation is higher than expected

Anticipated inflation is built into wage demands

▶ it is "neutral" (does not affect real AS)

Next step: translate changes in Y^S into changes in unemployment.

Relationship with unemployment

$$u = \frac{L - N}{L} = 1 - \frac{N}{L} \tag{5}$$

where:

- **▶** *u*: unemployment rate
- ▶ *N*: employment
- L: labor force

In words:

unemployment rate = 1 - employment rate.

Relationship with unemployment

Recall the aggregate production function:

$$Y/L = N/L = 1 - u \tag{6}$$

or

$$u = 1 - Y/L = 1 - F\left(\frac{1+\pi}{1+\pi^e} \frac{1}{1+m}, z\right)/L \tag{7}$$

Implications

$$u = 1 - F\left(\frac{1+\pi}{1+\pi^e} \frac{1}{1+m}, z\right) / L \tag{8}$$

1. $\pi^e \uparrow$: Need higher π to support the same u Intuition:

2. $m \uparrow$: $u \uparrow$ for given π, π^e Intuition:

3. Given π^e , we have a Phillips curve $(u \uparrow \Longrightarrow \pi \downarrow)$ Intuition:

Simplification

$$u = 1 - F\left(\frac{1+\pi}{1+\pi^e} \frac{1}{1+m}, z\right) / L \tag{9}$$

Approximately

$$\frac{1+\pi}{1+\pi^e} \approx 1+\pi-\pi^e \tag{10}$$

Example:

$$\pi = 0.05, \pi^e = 0.03 \implies \frac{1+\pi}{1+\pi^e} - 1 = 0.0194 \approx 0.02$$
 (11)

Simplification

Take a linear approximation:

$$u = \frac{m + z - (\pi - \pi^e)}{\alpha} \tag{12}$$

But typically the Phillips curve is written as:

"inflation is a decreasing function of unemployment"

So the final equation is

$$\pi = \pi^e + (m+z) - \alpha u \tag{13}$$

 $-\alpha$ is the slope of the Phillips Curve.

The Phillips Curve shifts around over time as labor market conditions (m+z) change.

The Phillips Curve Through Time

The 1950s and 60s

The economy moves up along a stable Phillips Curve

Interpretation

- Inflation had been stable for a long time
- $\triangleright \pi^e$ remained roughly fixed
- ► Then the original Phillips curve emerges

$$\pi = \underbrace{\pi^e}_{\text{fixed}} + (m+z) - \alpha u \tag{14}$$

The 1970s and Beyond

No relationship between inflation and unemployment

Interpretation

- A change in inflation expectations.
- ▶ Before the 1960s: inflation fluctuated around 0
 - little persistence
- It was reasonable to expect roughly zero inflation
- After 1960s: inflation was generally positive
 - strong persistence
- Zero inflation would have been a poor forecast

Inflation Rates

Modified Phillips Curve

Assume that agents form expectations according to

$$\pi_t^e = \theta \pi_{t-1} \tag{15}$$

- Of course, one could do better than that...
- ► A coarse approximation:
 - ▶ 1960s: $\theta = 0$
 - ► 1970s: $\theta = 1$
- Modified Phillips Curve

$$\pi_t - \pi_{t-1} = (m+z) - \alpha u_t \tag{16}$$

Modified Phillips Curve

Implications

- Original Phillips Curve:
 - government can buy lower unemployment by raising inflation
 - ▶ intuition: wage setters never catch on to the fact that tomorrow's prices will be higher than today's
- Modified Phillips Curve:
 - government can buy lower unempoyment by raising inflation over time
 - intuition: wage setters never catch on to the fact that tomorrow's inflation will be higher than today's
- Clearly, this can't work either (at least not forever)

Phillips Curve: Applications

The Phillips Curve in Reality

When is inflation a serious problem?

The answer depends on **inflation expectations**.

If people believe we are entering a more inflationary era ... they could alter their behavior in self-fulfilling ways. Businesses would be quicker to raise prices and workers to demand raises. ...

That situation would leave ... the Federal Reserve faced with two bad choices: Allow inflation to take off in an upward spiral, or stop it by raising interest rates and quite possibly causing a recession. – NY Times March 24, 2021

Overheating

When people talk about an "overheating" economy; that's what they mean.

- Inflation is high for long enough that inflation expectations rise.
- Then inflation becomes self-sustaining and bringing it down is costly.

Does a tight labor market cause inflation?

U.S. labor costs increased strongly in the second quarter as a tight jobs market boosted wage growth, which could keep inflation elevated ... – Reuters July 29, 2022

Is that how it works?

- ► "In the 12 months through June, the PCE price index advanced 6.8%"
- "Wages and salaries ... were up 5.3% on a year-on-year basis" (Reuters)

So real wages are actually **falling**.

How to think about this?

Does a tight labor market cause inflation?

It's the wrong question.

The tight labor market is an endogenous outcome, not a shock.

It is caused either by a reduction in labor supply or by an increase in demand for goods.

During the pandemic, both happened.

- labor force participation dropped
- demand was pushed up by government transfers

But then why did real wages fall?

The Pandemic Shock

Three shocks

- 1. Labor supply declines $\rightarrow z \uparrow \rightarrow AS$ shifts left.
- 2. Stimulus checks → AD shifts right.
- 3. Inputs costs rise $\rightarrow m \uparrow \rightarrow$ AS shifts left **and** real wage falls.

Note: In our model, by assumption, shocks 1 and 2 do not change real wages.

- ► In reality: lower employment ⇒ move up labor demand curve ⇒ real wages rise.
- But in the short run, with sticky prices / wages: more complicated.

The Pandemic Shock

NAIRU and Policy

NAIRU

If the modified PC is correct, there is one unemployment rate that is consistent with constant inflation (at any level)

NAIRU: "Non-accelerating inflation rate of unempoyment"

the point where the PC crosses 0

Description from FRED:

The natural rate of unemployment (NAIRU) is the rate of unemployment arising from all sources except fluctuations in aggregate demand. ... The short-term natural rate is used to gauge the amount of current and projected slack in labor markets, which is a key input into CBO's projections of inflation.

NAIRU Fluctuations

Source: FRED

Money Is Neutral

The modified Phillips curve implies:

Money is neutral in the medium run.

Doubling $M \implies$ doubling P with no change in Y.

This follows from $\pi = \pi^e$, so that aggregate supply is independent of prices:

$$Y^s = F\left(\frac{1}{1+m}, z\right) \tag{17}$$

Money is neutral

Aggregate demand

$$Y_n = Y(M/P, G, T) \tag{18}$$

fixes the price level (really: M/P)

Constant M/P implies

$$\pi = g(P) = g(M) \tag{19}$$

"Inflation is always and everywhere a monetary phenomenon." – Friedman

Policy Implications

Can governments exploit the Phillips Curve?

A key result that is central for all of monetary policy

For money to be non-neutral, inflation must be unexpected

This is the key difficulty of monetary policy.

Simply raising inflation every year cannot work.

Credible disinflation

Conventional wisdom:

Disinflation (contractionary monetary policy) causes recession

There are several counter examples in history

- ► Germany after WW2
- Argentina introducing a currency board (pegging to the dollar)

The key: credibility.

Credible disinflation

Compare credible / non-credible disinflation.

Caveats

- ▶ The parameters of the Phillips Curve are not fixed.
- ► Labor market policies affect *m* and *z*
- Cost shocks affect m

Reading

Text: Blanchard and Johnson (2013), ch 8

On NAIRU: Ball and Mankiw (2002)

References I

Ball, L. and N. G. Mankiw (2002): "The NAIRU in Theory and Practice," *The Journal of Economic Perspectives*, 16, 115–136.

Blanchard, O. and D. Johnson (2013): *Macroeconomics*, Boston: Pearson, 6th ed.