Algorytm PCA - składowe główne

Własności

- pozwala na redukcję wymiaru problemu
- * transformuje (liniowo) przestrzeń atrybutów dostarczając nowych współrzędnych
- algorytm nie posiada parametrów
- wykorzystuje macierz korelacji, eliminuje kowariancję (czyli liniowe zależności między atrybutami)
- składowych głównych można wyznaczyć tyle, ile było pierwotnych składowych

Kryterium Kaisera-Guttmana

Popularne kryterium dobierania ilości składowych:

Należy zachować składowe, dla których wartości własne są większe od 1, czyli wkład składowej większy, niż wkład pojedynczej zmiennej

Kroki algorytmu

Dane wejściowe zostały przedstawione w tabeli.

Dane wejściowe:

	atrybut			
pomiar	1	2		m
1	<i>X</i> ₁₁	<i>x</i> ₁₂		<i>X</i> _{1<i>m</i>}
2	<i>X</i> ₂₁	X ₂₂		<i>X</i> 2 <i>m</i>
Mercelle.				
n	X_{n1}	X_{n2}		X_{nm}

Algorytm składowych głównych dla danych wejściowych został przedstawiony poniżej:

Krok 1: Obliczenie średniej i odchylenia standardowego (dla każdego atrybutu) Krok 2: Normalizacja zgodnie ze wzorem. Po normalizacji wszystkie atrybuty mają parametry : średnia = 0 i odchylenie = 1.

$$z_{ij} = \frac{x_{ij} - \mu_j}{\sigma_i}$$

Krok 3: Chcemy znaleźć **nowy układ współrzędnych**. Zakładamy tylko przekształcenia liniowe (obroty, odbicia)

Założenia:

- tylko przekształcenia liniowe
- maksymalizowana wariancja (klasyczna miara zróżnicowania)
- nowe kierunki składowych są normalizowane

Krok 3. 1. Wyznaczamy macierz kowariancji Cz:

$$\mathbf{Z} = \begin{bmatrix} z_{11} & z_{12} & \dots & z_{1m} \\ z_{21} & z_{22} & \dots & z_{2m} \\ \dots & \dots & \dots & \dots \\ z_{n1} & z_{n2} & \dots & z_{nm} \end{bmatrix} \mathbf{a_i} = \begin{bmatrix} z_{1i} \\ z_{2i} \\ \dots \\ z_{ni} \end{bmatrix} \mathbf{a_j} = \begin{bmatrix} z_{1j} \\ z_{2j} \\ \dots \\ z_{nj} \end{bmatrix}$$

dane po normalizacji:
$$\mu_{a_i} = \frac{1}{n} \sum_{k=0}^{n} z_{ki} = 0, \sigma_{a_i}^2 = \frac{1}{n} \sum_{k=0}^{n} z_{ki}^2 = 1$$

Kowariancja - miarą liniowej zależności pomiędzy a; i a;

$$\sigma_{a_i a_j} = \frac{1}{n} \sum_{k=0}^n z_{ik} z_{jk} = \frac{1}{n} \mathbf{a_i} \mathbf{a_j}^T \text{ gdzie } \mathbf{a_j}^T = \begin{bmatrix} z_{1j} & z_{2j} & \dots & z_{nj} \end{bmatrix}$$
$$-1 \le \sigma_{a_i a_j} \le 1$$

$$\mathbf{C}_{\mathbf{Z}} = \frac{1}{n} \mathbf{Z} \mathbf{Z}^{T} = \begin{bmatrix} \sigma_{1}^{2} & \sigma_{12} & \dots & \sigma_{1m} \\ \sigma_{21} & \sigma_{2}^{2} & \dots & \sigma_{2m} \\ \dots & \dots & \dots & \dots \\ \sigma_{n1} & \sigma_{n2} & \dots & \sigma_{m}^{2} \end{bmatrix} = \begin{bmatrix} 1 & \sigma_{12} & \dots & \sigma_{1m} \\ \sigma_{21} & 1 & \dots & \sigma_{2m} \\ \dots & \dots & \dots & \dots \\ \sigma_{n1} & \sigma_{n2} & \dots & 1 \end{bmatrix}$$

Ponieważ $\sigma_{ij} = \sigma_{ji}$ macierz C_Z jest symetryczna

sumaryczna wariancja

$$\sum_{i=0}^m \sigma_i = m$$

 po zmianie (rotacja, odbicie) układu współrzędnych sumaryczna wariancja nie zmieni się $\mathbf{Y}=\mathbf{PZ}$, gdzie \mathbf{P} jest macierzą przekształcenia , macierz \mathbf{P} zawiera wektory, które są kierunkami składowych

$$P = \left[p_1, p_2, ..., p_m\right]$$

Wykorzystując algorytmy algebry liniowej przekształca się przestrzeń, aby macierz kowariancji była diagonalna

$$\mathbf{C_Y} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_m \end{bmatrix}$$

$$C_{Y} = \frac{1}{n}YY^{T} = \frac{1}{n}(PZ)(PZ)^{T} = \frac{1}{n}PZZ^{T}P^{T} = PC_{Z}P^{T}$$

dla macierzy symetrycznej **A**, macierzy jej wektorów własnych **E** zachodzi zależność:

 $\mathbf{A} = \mathbf{E} \mathbf{D} \mathbf{E}^T$, gdzie \mathbf{D} jest macierzą diagonalną więc: \mathbf{P} jest macierzą wektorów własnych macierzy C_Z

Krok 3. 2. Wyznaczamy z macierzy kowariancji wartości własne i wektory własne: Poszukujemy wartości własnych i wektorów własnych - wektory własne będą naszymi składowymi głównymi, a wartości własne będą mówić jak dużo wariancji przynależy do tego wektora własnego.

Przykład:

(osie x i y odpowiadają atrybutom)

Krok 1: Obliczenie średnich i odchyleń dla atrybutów

Krok 2: Normalizacja

dane wejściowe (10 przykładów, 2 atrybuty):

$$\begin{array}{rcl} \mu_1 & = & 300 \\ \sigma_1 & = & 146.4 \\ \mu_2 & = & 150 \\ \sigma_2 & = & 74.4 \end{array}$$

normalizacja:

$$z_{i1} = \frac{x_{i1} - \mu_1}{\sigma_1} \\ x_{i2} - \mu_2$$

$$z_{i2} = \frac{\sigma_1}{\sigma_2}$$

Kierunki składowych głównych dla rozpatrywanego przykładu:

Krok 3. Wyznaczamy macierz kowariancji. Obliczamy wartości własne i wektory własne.

Dla rozpatrywanego przykładu:

$$\mathbf{C_{Z}} = \left[\begin{array}{cc} 1 & 0.994 \\ 0.994 & 1 \end{array} \right]$$

po rozkładzie na wartości własne i wektory własne:

$$\begin{bmatrix} 1 & 0.994 \\ 0.994 & 1 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 1.994 & 0 \\ 0 & 0.006 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix}$$

Nowe kierunki

$$\mathbf{p_1} = \left[\begin{array}{c} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{array}\right], \mathbf{p_2} = \left[\begin{array}{c} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{array}\right], \lambda_1 = 1.994, \lambda_2 = 0.006$$

Źródła:

- [1] https://pl.wikipedia.org/wiki/Analiza_g%C5%82%C3%B3wnych_sk%C5%82adowych
- [2] http://coin.wne.uw.edu.pl/~jcieciel/FA PCA prezentacja%20v2.pdf