ANTIREFLECTION FLM, OPTICAL ELEMENT AND DISPLAY DEVICE

Patent number:

JP2003344608

Publication date:

2003-12-03

Inventor:

MIYATAKE MINORU; TSUCHIMOTO KAZUYOSHI; INOUE TETSUO; TAKAMURA RYUICHI; OKADA

KEISAKU; NAKANO SHINYA

Applicant:

NITTO DENKO CORP

Classification:

- international:

G02B1/11; B32B7/02; B32B27/00; G02B1/10;

G02B5/02; H05B33/02; H05B33/14

- european:

Application number: JP20030077814 20030320

Priority number(s): JP20020077680 20020320; JP20030077814 20030320

Report a data error here

-Abstract-of-JP2003344608------

<P>PROBLEM TO BE SOLVED: To provide an antireflection film in which a hard coating layer is laminated on a transparent base film and then a low refractive index antireflection layer is laminated on the coating layer and an antireflection film having a low reflectivity, a good scuff resistance and excellent stainproof and dust wiping properties is formed. <P>SOLUTION: In the antireflection film, the hard coating layer is laminated on one side surface of the transparent base film, and the antireflection layer is further laminated on the surface of the hard coating layer. A conductive layer having a surface resistance value of 1*10<SP>11</SP>[Omega]/square or less is provided between the base film and the coating layer. In this antireflection film, the refractive index nD<SP>20</SP>of the coating layer is 1.62 or more, and the antireflection layer is formed of a dry cured film of a solution containing a siloxane oligomer (A) obtained by partly hydrolyzing, and then condensation polymerizing a hydrolytic alkoxysilane containing a tetraalkoxysilane represented by formula (1): Si(OR)<SB>4</SB>, (wherein R is a methyl group or an ethyl group) as a main component. <P>COPYRIGHT: (C)2004,JPO

Data supplied from the esp@cenet database - Worldwide

"EST AVAILABLE COP"

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2003-344608

(P2003-344608A) (43)公開日 平成15年12月3日(2003.12.3)

(51) Int. C1.	7	識別記号		FΙ			デーマフ	-ド(参考)
G 0 2 B	1/11			B 3 2 B	7/02	103	2H042	
B 3 2 B	7/02	103			27/00	101	2K009	
	27/00	101		G 0 2 B	5/02	В		*
G 0 2 B	1/10			H05B	33/02	2	4F100	
	5/02	e [*]			33/14	A		
	審査請求	未請求 請求項の数13	OL			(全14)		最終頁に続く

(21) 出願番号 特願2003-77814(P2003-77814) (22) 出願日 平成15年3月20日(2003, 3, 20)

(31) 優先権主張番号 特願2002-77680 (P2002-77680) (32) 優先日 平成14年3月20日 (2002. 3. 20)

(33)優先権主張国 日本 (JP)

(71)出願人 000003964

日東電工株式会社

-大阪府茨木市下穂積1丁目1番2号-

(72)発明者 宮武 稔

大阪府茨木市下穂積1丁目1番2号 日東電

工株式会社内

(72)発明者 土本 一喜

大阪府茨木市下穂積1丁目1番2号 日東電

工株式会社内

(74)代理人 100092266

弁理士 鈴木 崇生 (外3名)

最終頁に続く

(54) 【発明の名称】反射防止フィルム、光学素子および表示装置

(57) 【要約】

【課題】 透明基材フィルムにハードコート層、次いで低屈折率の反射防止層が積層された反射防止フィルムであって、低反射率で、耐擦傷性がよく、防汚染性、埃拭き取り性に優れた反射防止層が形成された反射防止フィルムを提供すること。

【解決手段】 透明基材フィルムの片面にハードコート層が積層されており、さらに当該ハードコート層の表面に反射防止層が積層された反射防止フィルムにおいて、透明基材フィルムとハードコート層の間には、表面抵抗値が $1\times10^{11}\Omega/\Box$ 以下の導電層が設けられており、ハードコート層の屈折率: n_D^{20} は1. 62以上であり、かつ反射防止層が、一般式(1):Si(OR)。(式中Rは、メチル基またはエチル基を示す)で表されるテトラアルコキシシランを主成分とする加水分解性アルコキシシランを部分的に加水分解後縮重合させたシロキサンオリゴマー(A)を含有する溶液の乾燥硬化膜により形成されたものであることを特像とする反射防止フィルム。

2.

【特許請求の範囲】

【請求項1】 透明基材フィルムの片面にハードコート層が積層されており、さらに当該ハードコート層の表面に反射防止層が積層された反射防止フィルムにおいて、透明基材フィルムとハードコート層の間には、表面抵抗値が $1\times10^{11}\Omega/\Box$ 以下の導電層が設けられており、ハードコート層の屈折率: n_D 20は1. 62以上であり、

かつ反射防止層が、一般式 (1): Si (OR) 4 (式中Rは、メチル基またはエチル基を示す)で表されるテ 10トラアルコキシシランを主成分とする加水分解性アルコキシシランを部分的に加水分解後縮重合させたシロキサンオリゴマー (A)を含有する溶液の乾燥硬化膜により形成されたものであることを特徴とする反射防止フィルム。

【請求項2】 反射防止層が、エチレングリコール換算による数平均分子量が500~1000であるシロキサンオリゴマー(A)と、フルオロアルキル基を有するシランカップリング剤(B)とを含有する溶液の乾燥硬化膜により形成されたものであることを特徴とする請求20項1記載の反射防止フィルム。

【請求項3】 反射防止層を形成する溶液中のシランカップリング剤(B)の割合が、乾燥硬化後のシロキサンオリゴマー(A)100重量部に対して、固形分重量比で20重量部以下であることを特徴とする請求項2記載の反射防止フィルム。

【請求項4】 反射防止層が、エチレングリコール換算による数平均分子量が500~1000であるシロキサンオリゴマー(A)と、ポリスチレン換算による数平均分子量が5000以上であって、フルオロアルキル構 30造及びポリシロキサン構造を有するフッ素化合物(C)とを含有する溶液の乾燥硬化膜により形成されたものであることを特徴とする請求項1記載の反射防止フィルム。

【請求項5】 前記乾燥硬化膜中のフッ素原子含有量が20重量%以上であることを特徴とする請求項2~4のいずれかに記載の反射防止フィルム。

【請求項6】 X線光電子分光法により測定した前記乾燥硬化膜表面のシリコン原子(Si)とフッ素原子

(F)のピーク強度比(Si/F)が0.4~2であることを特徴とする請求項2~5のいずれかに記載の反射防止フィルム。

【請求項7】 導電層が、導電性の金属および/または 金属酸化物の超微粒子をバインダーに添加した形成剤に より形成されており、導電層の屈折率が、透明基材フィ ルムの屈折率とハードコート層の屈折率の中間値に調整 されたものであることを特徴とする請求項1~6のいず れかに記載の反射防止フィルム。

【請求項8】 導電層の厚み (nm) が、導電層の平均 屈折率をnasとしたとき、 (550nm/nas/4) × 50 $m\pm20$ nm、但し、mは正の奇数である、であることを特徴とする請求項 $1\sim7$ のいずれかに記載の反射防止フィルム。

【請求項9】 ハードコート層が、熱、紫外線または電子線によって硬化する樹脂に、金属および/または金属酸化物の超微粒子を添加した形成材により形成されたものであることを特徴とする請求項1~8のいずれかに記載の反射防止フィルム。

【請求項10】 ハードコート層の表面が凹凸形状となっており防眩性を有することを特徴とする請求項1~9のいずれかに記載の反射防止フィルム。

【請求項11】 ハードコート層中に、無機または有機の球形もしくは不定形のフィラーを含有することを特徴とする請求項10記載の反射防止フィルム。

【請求項12】 請求項1~11のいずれかに記載の反射防止フィルムが、光学素子の片面又は両面に設けられていることを特徴とする光学素子。

【請求項13】 請求項1~11のいずれかに記載の反射防止フィルムまたは請求項12記載の光学素子を装着した画像表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、液晶ディスプレイ (LCD)、有機EL表示装置、PDPなどの表示装置 において画面の視認性の低下を抑えるために用いられて いる反射防止フィルム、当該反射防止フィルムが設けら れている光学素子に関する。また当該反射防止フィルム または光学素子が装着されている画像表示装置に関す る。

[0002]

【従来の技術】液晶パネルは近年の研究開発によりディスプレイとしての確固たる地位を確保しつつある。しかし、明るい照明下での使用頻度の高いカーナビゲーション用モニターやビデオカメラ用モニターは表面反射による視認性の低下が顕著である。そのため液晶パネルに用いる偏光板には反射防止処理を施すことが必要不可欠になりつつあり、屋外使用頻度の高い液晶ディスプレイのほとんどには反射防止処理を施した偏光板が使用されている。

【0003】反射防止処理は、一般的に真空蒸着法やスパッタリング法、CVD法等のドライ処理法により、屈折率の異なる材料からなる複数の薄膜の多層積層体を作製し、可視光領域の反射をできるだけ低減させるような設計が行われている。しかし、上記のドライ処理での薄膜の形成には真空設備が必要であり、処理費用が非常に高価となる。そのため、最近ではウエットコーティングでの反射防止膜の形成により反射防止処理を行った反射防止フィルムを作製している。反射防止フィルムの構成は、通常、基材となる透明基材フィルム/ハードコート性付与のための樹脂層/低屈折率の反射防止層からなる

. 30

40

4

構成となっている。

【0004】前記反射防止層を形成する低屈折率材料としては、屈折率や防汚染性、埃拭き取り性の観点からフッ素含有ポリマーなどが用いられている。また、より低い屈折率を満たす材料としてアルコキシシランやオルガノアルコキシシランのゾルーゲル反応を利用してポーラスな構造によって低い屈折率を得る方法などが一般的になっている。しかし、上記ゾルーゲル反応では、反応性を制御してポーラスな構造を得ようとするため低温で焼成しようとすると、どうしても硬化に時間がかかり、短時間で十分な耐擦傷性の反射防止層を形成することができない。また上記ゾルーゲル反応で得られる皮膜表面は防汚染性、埃拭き取り性の点でも問題があった。

【0005】また反射防止フィルムにおいて、反射率低下の観点からハードコート層には高屈折率が求められ、 反射防止層にはより低い屈折率が求められる。しかし、 ハードコート層の屈折率を高くすると、擦傷などにより 上層に設けられた低屈折率層の反射防止層が削り取られ 設計厚みからずれるとその部分の反射率が大きく上昇 し、欠陥として視認されやすいという問題があった。 【0006】

【発明が解決しようとする課題】本発明は、透明基材フィルムにハードコート層、次いで低屈折率の反射防止層が積層された反射防止フィルムであって、低反射率で、耐擦傷性がよく、防汚染性、埃拭き取り性に優れた反射防止層が形成された反射防止フィルムを提供することを目的とする。また、当該反射防止フィルムが設けられている光学素子を提供することを目的とする。また当該反射防止フィルムまたは光学素子が装着されている画像表示装置を提供することを目的とする。

[0007]

【課題を解決するための手段】本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、以下に示す反射防止フィルムにより前記目的を達成できることを見出し、本発明を完成するに到った。

【0008】すなわち本発明は、透明基材フィルムの片面にハードコート層が積層されており、さらに当該ハードコート層の表面に反射防止層が積層された反射防止フィルムにおいて、透明基材フィルムとハードコート層の間には、表面抵抗値が1×10²¹Ω/□以下の導電層が設けられており、

ハードコート層の屈折率: np 20は1.62以上であり、かつ反射防止層が、一般式(1):Si(OR)。(式中Rは、メチル基またはエチル基を示す)で表されるテトラアルコキシシランを主成分とする加水分解性アルコキシシランを部分的に加水分解後縮重合させたシロキサンオリゴマー(A)を含有する溶液の乾燥硬化膜により形成されたものであることを特徴とする反射防止フィルム、に関する。

【0009】上記本発明の反射防止フィルムは、透明基 50 量%であることがより好ましい。

材フィルムとハードコート層の間に導電層を設けており、帯電防止機能を付加している。導電層は摩擦や接触による反射防止フィルムの帯電荷を静電遮蔽効果により素早く漏洩することができ、反射防止層の防汚染性、埃拭き取り性を向上できる。導電層の表面抵抗値は 1×1 0 $^{11}\Omega/\square$ 以下であり、 5×1 0 $^{12}\Omega/\square$ 以下が好ましく、さらには $1.0\times10^{12}\Omega/\square$ 以下が好ましい。

【0010】また上記本発明の反射防止フィルムは、反射防止層形成材に、シロキサンオリゴマー(A)を用いている。そのため薄膜形成時の反応性を制御するタイプのブルーゲルコーティング材料(塗工液)によって比較的低温下における短時間の硬化によって耐擦傷性の良好な反射防止層を形成できる。また、反射防止層は、乾燥後もシロキサン結合を多く有するため、通常の摩擦物

(綿や毛、セルロース)などとも帯電列が近いため、摩擦による帯電が生じにくく防汚染性、埃拭き取り性の点でも好ましい。本発明の反射防止フィルムは、反射防止層の耐擦傷性が良好であるため、ハードコート層の屈折率: n_p²⁰(以下単に屈折率という)が1.62以上の30 高屈折率で、反射防止層との屈折率差が大きい場合にも、反射防止層が欠陥を生じることなく低反射率を実現できる。ハードコート層の屈折率は、通常、1.62~2.2の範囲で調整される。

【0011】前記反射防止フィルムにおいて、反射防止層が、エチレングリコール換算による数平均分子量が500~10000であるシロキサンオリゴマー(A)と、フルオロアルキル基を有するシランカップリング剤(B)とを含有する溶液の乾燥硬化膜により形成されたものであることが好ましい。シランカップリング剤

(B) により、反射防止層を低屈折率とし、また防汚染性、埃拭き取り性を付与することができる。さらにはハードコート層との密着性を向上することができ、耐擦傷性の点でも好ましい。反射防止層を形成する溶液中のシランカップリング剤(B)の割合は、乾燥硬化後のシロキサンオリゴマー(A)100重量部に対して、固形分重量比で20重量部以下であることが好ましい。さらには10重量部以下であるのが好ましい。

【0012】また、前記反射防止フィルムにおいて、反射防止層が、エチレングリコール換算による数平均分子量が500~1000であるシロキサンオリゴマー(A)と、ポリスチレン換算による数平均分子量が500以上であって、フルオロアルキル構造及びポリシロキサン構造を有するフッ素化合物(C)とを含有する溶液の乾燥硬化膜により形成されたものであることも好ましい態様である。

【0013】前記乾燥硬化膜中のフッ素原子含有量は20重量%以上であることが好ましい。フッ素原子含有量を前記範囲とすることで防汚染性の良好な硬化膜を形成することができる。フッ素原子含有量は、20~40重量%であることがより好ましい。

•

5

【0014】前記乾燥硬化膜は、X線光電子分光法により測定した乾燥硬化膜表面のシリコン原子(Si)とフッ素原子(F)のピーク強度比(Si/F)が0.4~2であることが好ましく、さらに好ましくは0.5~1.5である。ピーク強度比(Si/F)が大きすぎると、硬化膜の防汚染性が低下したり、屈折率が上昇してしまうおそれがあり好ましくない。一方、ピーク強度比(Si/F)が低すぎると、硬化膜の強度が低下したり、フィルムが帯電しやすくなるおそれがあり好ましくない。

【0015】前記反射防止フィルムにおいて、導電層 が、導電性の金属および/または金属酸化物の超微粒子 をバインダーに添加した形成材により形成されており、 導電層の屈折率が、透明基材フィルムの屈折率とハード コート層の屈折率の中間値に調整されたものであること が好ましい。導電層は、前記形成材により簡単な加工操 作にて効率よく形成することができる。また導電層の屈 折率を、透明基材フィルムの屈折率とハードコート層の 屈折率の中間値に調整することにより、ハードコート層 と透明基材フィルムの屈折率差によって生じる界面反射 20 を抑制しハードコート層の厚みムラを低減でき、反射率 を抑制できる。特に導電層の屈折率は、透明基材フィル ムの屈折率よりも高く、ハードコート層の屈折率よりも 低い場合が好ましい。導電層の屈折率は、1.53~ 1. 87、さらには1. 54~1. 74の範囲に調製す るのが好ましい。

【0016】また、導電層の厚み (nm) は、導電層の 平均屈折率をnasとしたとき、(550nm/nas/ 4) ×m±20nm、但し、mは正の奇数である、とな るように、視感度の最も高い550nm付近で無反射条 30 件となるように設けることが好ましい。前記効果は、ハ ードコート層/導電層界面と導電層/基材界面で起きる 反射光(または透過光)どうしが、その光の波長の半整 数倍(1/2、3/2、5/2...) 位相がずれること によって達成される。その光路長は(厚み:d×屈折率 λが条件となる。mは正の奇数である。したがって、視 感度の最も高い波長550nmに対して設計すると厚み を設計すると、 $d = (550 nm/n_{AS}/4) \times m$ が導 かれる。なお、mの値が高くなると550 nmの波長以 40 外で反射防止の効果が低下するためmは小さい方が好ま しい。mは、1、3または5が好ましく、特に1または 3が好ましい。mが正の偶数の場合、両界面での反射光 は強め合うためムラは見えやすくなり、反射率も高く視 認性が低下する傾向がある。

【0017】前記反射防止フィルムにおいて、ハードコート層が、熱、紫外線または電子線によって硬化する樹脂に、金属および/または金属酸化物の超微粒子を添加して屈折率を調整した形成材により形成されたものであることが好ましい。ハードコート層の形成は、前記硬化50

型樹脂による硬化処理にて、簡単な加工操作にて効率よ く樹脂皮膜層を形成することができる。

【0018】また前記反射防止フィルムのハードコート層の表面を凹凸形状として防眩性を持たせてもよい。ハードコート層中に、無機または有機の球形もしくは不定形のフィラーを含有させて、ハードコート層の表面を凹凸形状とすることにより光拡散性を付与した防眩性フィルムを簡易かつ確実に実現できる。

【0019】また本発明は、前記反射防止フィルムが、 10 光学素子の片面又は両面に設けられていることを特徴と する光学素子に関する。本発明の反射防止フィルムは各 種の用途に用いることができ、たとえば、光学素子に用 いられる。本発明の反射防止フィルムを積層した偏光板 は、反射防止機能に優れ、耐擦傷性、防汚染性、埃拭き 取り性などにも優れる。

[0020]

【発明の実施の形態】以下に本発明の好ましい実施形態を、図面を参照しながら説明する。図1は、透明基材フィルム1上に、導電層4、次いでハードコート層2が設けられ、ハードコート層2の表面に反射防止層3が積層された反射防止フィルムである。なお、反射防止フィルムには、ハードコート層2を複数設けることもでき、その他に易接着層等の他の層を形成することもできる。

【0021】透明基材フィルム1は、可視光の光線透過 率に優れ(光線透過率90%以上)、透明性に優れるも の(ヘイズ値1%以下)であれば特に制限はない。透明 基材フィルム1としては、例えばポリエチレンテレフタ レート、ポリエチレンナフタレート等のポリエステル系 ポリマー、ジアセチルセルロース、トリアセチルセルロ ース等のセルロース系ポリマー、ポリカーボネート系ポ リマー、ポリメチルメタクリレート等のアクリル系ポリ マー等の透明ポリマーからなるフィルムがあげられる。 またポリスチレン、アクリロニトリル・スチレン共重合 体等のスチレン系ポリマー、ポリエチレン、ポリプロピ レン、環状ないしノルボルネン構造を有するポリオレフ ィン、エチレン・プロピレン共重合体等のオレフィン系 ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポ リアミド等のアミド系ポリマー等の透明ポリマーからな るフィルムもあげられる。さらにイミド系ポリマー、ス ルホン系ポリマー、ポリエーテルスルホン系ポリマー、 ポリエーテルエーテルケトン系ポリマー、ポリフェニレ ンスルフィド系ポリマー、ピニルアルコール系ポリマ 一、塩化ビニリデン系ポリマー、ビニルプチラール系ポ リマー、アリレート系ポリマー、ポリオキシメチレン系 ポリマー、エポキシ系ポリマーや前記ポリマーのプレン ド物等の透明ポリマーからなるフィルムなどもあげられ る。特に光学的に複屈折の少ないものが好適に用いられ る。偏光板の保護フィルムの観点よりは、トリアセチル セルロース、ポリカーボネート、アクリル系ポリマー、 シクロオレフィン系樹脂、ノルボルネン構造を有するポ

リオレフィンなどが好適である。本発明は、トリアセチ ルセルロースのように、高い温度での焼成が難しい透明 基材について好適である。なお、トリアセチルセルロー スは、130℃以上ではフィルム中の可塑剤が揮発し特 性が著しく低下する。

【0022】透明基材フィルム1の厚さは、適宜に決定 しうるが、一般には強度や取扱性等の作業性、薄層性な どの点より10~500μm程度である。特に20~3 00μmが好ましく、30~200μmがより好まし VY.

【0023】ハードコート層2はハードコート性に優れ (JIS K5400の鉛筆硬度試験でH以上の硬度を 示すもの)、十分な強度を持ち、光線透過率の優れたも のであれば特に制限はない。当該ハードコート層2を形 成する樹脂としては、熱硬化型樹脂、熱可塑型樹脂、紫 - 外線硬化型樹脂、電子線硬化型樹脂、二液混合型樹脂な どがあげられるが、これらのなかでも紫外線照射による 硬化処理にて、簡単な加工操作にて効率よくハードコー ト層を形成することができる紫外線硬化型樹脂が好適で ある。

【0024】紫外線硬化型樹脂としては、ポリエステル 系、アクリル系、ウレタン系、アミド系、シリコーン 系、エポキシ系等の各種のものがあげられ、紫外線硬化 型のモノマー、オリゴマー、ポリマー等が含まれる。好 ましく用いられる紫外線硬化型樹脂は、例えば紫外線重 合性の官能基を有するもの、なかでも当該官能基を2個 以上、特に3~6個有するアクリル系のモノマーやオリ ゴマーを成分を含むものがあげられる。また、紫外線硬 化型樹脂には、紫外線重合開始剤が配合されている。

上になるように調整される。ハードコート層2の屈折率 は、透明基材フィルム1の屈折率より高く、反射防止層 3の屈折率が透明基材フィルム1の屈折率より低いこと が好ましい。反射率の観点からハードコート層2には高 屈折率が求められ、反射防止層3にはより低い屈折率が 求められる。反射防止効果がよく、表示品位の高い反射 防止フィルムを得るには、屈折率が前記関係:ハードコ ート層2>透明基材フィルム1>反射防止層3となるよ うに、ハードコート層2と反射防止層3の屈折率差にな るのが好ましい。

【0026】ハードコート層2の屈折率の調整は特に制 限されない。ハードコート層の屈折率の調整は、ハード コート層の形成材料そのものとして上記屈折率を有する ものを用いるのが好ましいが、通常、用いうる樹脂の屈 折率は、S、N、Pなどの元素や芳香族環などの原子、 分子を導入しても1.6以上は到達しにくい。そのた め、ハードコート層の屈折率は、ハードコート層形成用 の樹脂に高屈折率の金属や金属酸化物の超微粒子を添加 して調整する。高屈折率の超微粒子材料としては、たと えば、TiO2、ZnO、SnO2、ITO (酸化イン

ジウム/酸化錫)、ATO(酸化アンチモン/酸化 錫)、ZrO2を用いるのが好ましい。超微粒子の平均 粒子径は通常 0.1 μ m以下程度であるのが好ましい。 【0027】ハードコート層2の表面は微細凹凸構造に して防眩性を付与することができる。表面に微細凹凸構 造を形成する方法は特に制限されず、適宜な方式を採用 することができる。たとえば、前記ハードコート層2の 形成に用いたフィルムの表面を、予め、サンドブラスト やエンボスロール、化学エッチング等の適宜な方式で粗 面化処理してフィルム表面に微細凹凸構造を付与する方 法等により、ハードコート層2を形成する材料そのもの の表面を微細凹凸構造に形成する方法があげられる。ま た、ハードコート層2上に別途ハードコート層2を塗工 付加し、当該樹脂皮膜層表面に、金型による転写方式等 により微細凹凸構造を付与する方法があげられる。ま た、ハードコート層2に、無機または有機の球形もしく は不定形のフィラーを分散含有させて微細凹凸構造を付 与する方法などがあげられる。これら微細凹凸構造の形 成方法は、二種以上の方法を組み合わせ、異なる状態の 微細凹凸構造表面を複合させた層として形成してもよ

【0028】微細凹凸構造表面のハードコート層2の形 成方法としては、形成性等の観点より、無機または有機 の球形もしくは不定形のフィラーを分散含有するハード コート層2を設ける方法が好ましい。無機または有機の 球形もしくは不定形のフィラーとしては、例えば、PM MA (ポリメチルメタクリレート)、ポリウレタン、ポ リスチレン、メラミン樹脂等の各種ポリマーからなる架 橘又は未架橋の有機系微粒子、ガラス、シリカ、アルミ 【0025】ハードコート層2は、屈折率が1.62以 30 ナ、酸化カルシウム、チタニア、酸化ジルコニウム、酸 化亜鉛等の無機系粒子や、酸化錫、酸化インジウム、酸 化カドミウム、酸化アンチモンまたはこれらの複合物等 の導電性無機系粒子などがあげられる。前記フィラーの 平均粒子径は $0.5\sim5\mu m$ 、さらには $1\sim4\mu m$ のも のが好ましい。微粒子により微細凹凸構造を形成する場 合、微粒子の使用量は樹脂100重量部に対して、1~ 30重量部程度とするのが好ましい。

> 【0029】なお、ハードコート層(防眩層)2の形成 には、レベリング剤、チクソトロピー剤、帯電防止剤等 の添加剤を含有させることができる。ハードコート層 (防眩層) 2の形成に当たり、チクソトロピー剤(0. 1 μ m以下のシリカ、マイカ等)を含有させることによ り、防眩層表面において、突出粒子により微細凹凸構造 を容易に形成することができる。

【0030】ハードコート層2の形成方法は特に制限さ れず、適宜な方式を採用することができる。たとえば、 前記樹脂を塗工し、乾燥後、硬化処理する。前記樹脂が 前記フィラー等を含有する場合には表面に凹凸形状を呈 するようなハードコート層(防眩層)2を形成する。前 記樹脂の塗工は、ファンテン、ダイコーター、キャステ

20

10

ィング、スピンコート、ファンテンメタリング、グラビア等の適宜な方式で塗工される。なお、塗工にあたり、前記樹脂は、トルエン、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、イソプロピルアルコール、エチルアルコール等の一般的な溶剤で希釈してもよく、希釈することなくそのまま塗工することもできる。また、ハードコート層2の厚さは特に制限されないが、 20μ 以下、 $0.5\sim20\mu$ 程度、特に $1\sim10\mu$ mとするのが好ましい。

【0031】本発明の反射防止フィルムには、ハードコ 10 ート層 2 と透明基材フィルム1の間に、表面抵抗値が1×10¹¹Ω/□以下の導電層 4 が設けられる。導電層 4 の形成は、前記表面抵抗値を有するものであれば特に制限はない。たとえば、金属薄膜、ITO、SnO2、ZnO2などの無機半導体薄膜、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料およびイオン導電性材料、バインダーへ導電性フィラーを添加した材料などの各種材料を用いることかできる。

【0032】これら材料のなかでも、透過率、屈折率の 制御、膜厚の制御の観点から、バインダーへ導電性フィ ラーを添加した材料を用いるのが好ましい。バインダー は特に制限されず、透明基材フィルムへの密着性や屈折 率のコントロールおよび製膜性、分散する導電性フィラ ーとの混和性などの観点により選択しうる。バインダー としては、たとえば、ハードコート層の形成に用いた樹 脂と同様の樹脂を使用することができる。たとえば、ポ リメチルメタクリレート、ポリスチレン等の熱可塑性樹 脂、紫外線硬化型樹脂、熱硬化型樹脂、ポリシロキサン 等が用いられる。導電性フイラーとしては、カーボン微 粒子、金、銀などの金属微粒子、ITO、SnOz、A TO、ZnOなどの超微粒子が好ましい。特に、光線透 過率の観点などにより無機半導体の超微粒子が好ましく 用いられる。超微粒子の平均粒子径は通常 0. 1 μ m以 下程度であるのが好ましい。導電層4の屈折率は、好ま しくは透明基材フィルム1の屈折率とハードコート層2 の屈折率の中間値に調整される。

【0033】導電層の厚さは特に制限されないが、 1μ m程度以下、特に $50\sim500$ nmとするのが好ましい。特に導電層の厚さは、前述の通り、導電層の平均屈 折率を n_{AS} としたとき、(550 nm/ n_{AS} /4)×m 40 ±20 nm、但し、mは正の奇数、とするのが好ましい。

【0034】ハードコート層2の表面には反射防止層3が積層される。反射防止層形成材は、一般式(1):Si(OR)。(式中Rは、メチル基またはエチル基を示す)で表されるテトラアルコキシシランを主成分する加水分解性アルコキシシランを部分的に加水分解後縮重合させたシロキサンオリゴマー(A)を含有する。

【0035】シロキサンオリゴマー (A) のエチレング リコール換算による数平均分子量は500~1000 50 であることが好ましい。シロキサンオリゴマー(A)の数平均分子量が500未満の場合には、溶液の塗工及び保存安定性が低下する傾向にあり、一方、数平均分子量が10000を超える場合には、硬化膜の耐擦傷性を十分に確保できない傾向にある。シロキサンオリゴマー(A)の数平均分子量は800~9000であることがより好ましい。前記数平均分子量にすることによりハードコート層との密着性を向上させることができ、界面での剥離が生じにくくなる。

【0036】シロキサンオリゴマー(A)は、加水分解性アルコキシシランを大量のアルコール溶媒(たとえば、メタノール、エタノール等)に入れ、水と酸触媒(塩酸、硝酸など)の存在下、室温で数時間反応させ、部分的に加水分解後縮重合させることによって得られる。シロキサンオリゴマー(A)の重合度は加水分解性アルコキシシランと水の添加量によって制御できる。

【0037】加水分解性アルコキシシランは、一般式(1):Si(OR)。(式中Rは、メチル基またはエチル基を示す)で表されるテトラアルコキシシランを主成分する。かかるテトラアルコキシシランは、テトラメトキシシランおよび/またはテトラエトキシシランであり、加水分解性アルコキシシランの、通常、80モル%以上とするのが好ましい。

【0038】前記テトラアルコキシシラン以外に用いら れる、加水分解性アルコキシシランとしては、テトラプ ロポキシシラン、テトラプトキシシラン等のテトラアル コキシシラン、メチルトリメトキシシラン、メチルトリ エトキシシラン、エチルトリメトキシシラン、エチルト リエトキシシラン、プロピルトリメトキシシラン、プロ ピルトリエトキシシラン、ブチルトリメトキシシラン、 プチルトリエトキシシラン、ペンチルトリメトキシシラ ン、ペンチルトリエトキシシラン、ヘプチルトリメトキ シシラン、ヘプチルトリエトキシシラン、オクチルトリ メトキシシラン、オクチルトリエトキシシラン、ドデシ ルトリメトキシシラン、ドデシルトリエトキシシラン、 ヘキサデシルトリメトキシシラン、ヘキサデシルトリエ トキシシラン、オクタデシルトリメトキシシラン、オク タデシルトリエトキシシラン、フェニルトリメトキシシ ラン、フェニルトリエトキシシラン、ビニルトリメトキ シシラン、ビニルトリエトキシシラン、ャーアミノプロ ピルトリメトキシシラン、ァーアミノプロピルトリエト キシシラン、γーグリシドキシプロピルトリメトキシシ ラン、γーグリシドキシプロピルトリエトキシシラン、 yーメタクリロキシプロピルトリメトキシシラン、yー メタクリロキシプロピルトリエトキシシラン、ジメチル ジメトキシシラン、ジメチルジエトキシシラン等があげ られる。

【0039】前記反射防止層形成材には、フルオロアルキル基を有するシランカップリング剤(B)を配合することができる。シランカップリング剤(B)としては、

12

【0040】また、耐擦傷性を向上させるためにシランカップリング剤(B)の代わりに、ポリスチレン換算による数平均分子量が5000以上であって、フルオロア ルキル構造及びポリシロキサン構造を有するフッ素化合物(C)を用いてもよい。

【0041】フッ素化合物(C)は、たとえば、ゾルーゲル反応によって縮合可能なアルコキシシリル基を有するパーフルオロアルキルアルコキシシランと、一般式(1):Si(OR¹)。(式中、R¹は炭素数1~5のアルキル基を示す)で表されるテトラアルコキシシランを主成分とする加水分解性アルコキシシランを、アルコール容媒(たとえば、メタノール、エタノール等)中で有機酸(たとえばシュウ酸等)やエステル類の存在下で加熱し縮重合させることにより得られる。得られた化合物(C)中には、ポリシロキサン構造が導入されている。

【0042】なお、これらの反応成分の比率は特に制限されないが、通常、パーフルオロアルキルアルコキシシ 30 ラン1モルに対して、加水分解性アルコキシシラン1~100モル程度、さらには2~10モルとするのが好適である。

【0043】パーフルオロアルキルアルコキシシランとしては、たとえば、一般式(2): CF_3 (CF_2)。 CH_2 CH_2 Si (OR^2)。(式中、 R^2 は、炭素数 $1\sim5$ 個のアルキル基を示し、n は $0\sim1$ 2 の整数を示す)で表される化合物があげられる。具体的には、たとえば、トリフルオロプロピルトリメトキシシラン、トリブカフルオロプロピルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシラン、ヘプタデカフルオロデシルトリメトキシシランなどがあげられる。これらのなかでも前記 n が $2\sim6$ の化合物が好ましい。

【0044】一般式(1):Si(OR^{1})。(式中、 R^{1} は炭素数 $1\sim5$ のアルキル基を示す)で表されるテトラアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシランなどがあげられる。これらのなか 50

でもテトラメトキシシラン、テトラエトキシシランなど が好ましい。

【0045】シランカップリング剤(B)及びフッ素化合物(C)は、水酸基および/またはエポキシ基を有することが好ましい。該水酸基および/またはエポキシ基は、シロキサンオリゴマー(A)、シランカップリング剤(B)、又はフッ素化合物(C)のポリシロキサン構造と反応して、硬化膜の皮膜強度が強くなり、耐擦傷性をさらに向上させることができる。水酸基および/またはエポキシ基は、フルオロアルキル構造に導入されていいてもよく、ポリシロキサン構造に導入されていいてもよく、ポリシロキサン構造に導入されていいてもよい。水酸基および/またはエポキシ基はこれら官能基を有する化合物を共重合することにより導入できる。

【0046】なお、反射防止層形成剤にはシリカ、アルミナ、チタニア、ジルコニア、フッ化マグネシウム、セーリア等をアルコール溶媒に分散したゾルなどを添加しても良い。その他、金属塩、金属化合物等の添加剤を適宜に配合することができる。

【0047】反射防止層形成剤(溶液)を、前記ハードコート層2に塗工し、乾燥、硬化することにより反射防止層3が形成される。反射防止層3が形成は、溶媒の揮発とともにポリシロキサンの硬化が進むことにより被膜形成するものである。上記反射防止層形成剤の塗工方法は特に制限されず、通常の方法、例えば、ディップ法、スピンコート法、刷毛塗り法、ロールコート法、フレキソ印刷法などがあげられる。

【0048】乾燥、硬化温度は特に制限されないが60~150℃、さらには70~120℃の低温において、100時間以下、さらには0.5~10時間の短時間で行うことができる。なお、温度、時間は前記範囲に制限されず、適宜に調整できるのはもとよりである。加熱は、ホットプレート、オーブン、ベルト炉などの方法が適宜に採用される。

【0049】反射防止層3の厚さは特に制限されないが、 $0.05\sim0.3\mu$ m程度、特に $0.1\sim0.3\mu$ mとするのが好ましい。反射率低減の観点より、通常、厚み (nm)×屈折率の値が140nm程度となるように設定するのが好ましい。

【0050】反射防止層3の屈折率は、前記高屈折率のハードコート層2の屈折よりも、十分小さいことが好ましい。一般的には、反射防止層3の屈折率は1.29~1.49であることが望ましい。より反射率を抑制する場合には、反射防止層3の屈折率は1.45以下であることが望ましい。

【0051】前記反射防止フィルムの透明基材フィルム1には、光学素子を接着することができる。光学素子としては、偏光子があげられる。偏光子は、特に制限されず、各種のものを使用できる。偏光子としては、たとえば、ポリビニルアルコール系フイルム、部分ホルマール化ポリビニルアルコール系フイルム、エチレン・酢酸ビ

14

ニル共重合体系部分ケン化フイルム等の親水性高分子フ イルムに、ヨウ素や二色性染料等の二色性物質を吸着さ せて一軸延伸したもの、ポリビニルアルコールの脱水処 理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向 フイルム等があげられる。これらのなかでもポリビニル アルコール系フイルムとヨウ素などの二色性物質からな る偏光子が好適である。これら偏光子の厚さは特に制限 されないが、一般的に、5~80 µ m程度である。

【0052】ポリビニルアルコール系フイルムをヨウ素 で染色し一軸延伸した偏光子は、たとえば、ポリビニル 10 アルコールをヨウ素の水溶液に浸漬することによって染 色し、元長の3~7倍に延伸することで作製することが できる。必要に応じてホウ酸やヨウ化カリウムなどの水 溶液に浸漬することもできる。さらに必要に応じて染色 の前にポリビニルアルコール系フイルムを水に浸漬して 水洗してもよい。ポリビニルアルコール系フイルムを水 洗することでポリビニルアルコール系フイルム表面の汚 れやブロッキング防止剤を洗浄することができるほか に、ポリビニルアルコール系フイルムを膨潤させること で染色のムラなどの不均一を防止する効果もある。延伸 はヨウ素で染色した後に行っても良いし、染色しながら 延伸してもよし、また延伸してからヨウ素で染色しても よい。ホウ酸やヨウ化カリウムなどの水溶液中や水浴中 でも延伸することができる。

【0053】前記偏光子は、通常、片側または両側に透 明保護フイルムが設けられ偏光板として用いられる。透 明保護フイルムは透明性、機械的強度、熱安定性、水分 遮蔽性、等方性などに優れるものが好ましい。透明保護 フイルムとしては前記例示の透明基材フィルムと同様の 材料のものが用いられる。前記透明保護フイルムは、表 30 裏で同じポリマー材料からなる透明保護フイルムを用い てもよく、異なるポリマー材料等からなる透明保護フィ ルムを用いてもよい。前記反射防止フィルムを、偏光子 (偏光板) の片側または両側に設ける場合、反射防止フ ィルムの透明基材フィルムは、偏光子の透明保護フイル ムを兼ねることができる。

【0054】その他、透明保護フイルムの偏光子を接着。 させない面は、ハードコート層やスティッキング防止や 目的とした処理を施したものであってもよい。ハードコ ート処理は偏光板表面の傷付き防止などを目的に施され 40 るものであり、例えばアクリル系、シリコーン系などの 適宜な紫外線硬化型樹脂による硬度や滑り特性等に優れ る硬化皮膜を透明保護フイルムの表面に付加する方式な どにて形成することができる。また、スティッキング防 止処理は隣接層との密着防止を目的に施される。なお、 前記ハードコート層、スティッキング防止層等は、透明 保護フイルムそのものに設けることができるほか、別途 光学層として透明保護フイルムとは別体のものとして設 けることもできる。

【0055】光学素子としては、実用に際して、前記偏 50

光板に、他の光学素子(光学層)を積層した光学フイル ムを用いることができる。その光学層については特に限 定はないが、例えば反射板や半透過板、位相差板 (1/ 2 や1/4等の波長板を含む)、視角補償フイルムなど の液晶表示装置等の形成に用いられることのある光学層 を1層または2層以上用いることができる。特に、偏光 板に更に反射板または半透過反射板が積層されてなる反 射型偏光板または半透過型偏光板、偏光板に更に位相差 板が積層されてなる楕円偏光板または円偏光板、偏光板 に更に視角補償フイルムが積層されてなる広視野角偏光 板、あるいは偏光板に更に輝度向上フイルムが積層され てなる偏光板が好ましい。

【0056】反射型偏光板は、偏光板に反射層を設けた もので、視認側(表示側)からの入射光を反射させて表 示するタイプの液晶表示装置などを形成するためのもの であり、バックライト等の光源の内蔵を省略できて液晶 表示装置の薄型化を図りやすいなどの利点を有する。反 射型偏光板の形成は、必要に応じ、前記透明保護フイル ム等を介して偏光板の片面に金属等からなる反射層を付 設する方式などの適宜な方式にて行うことができる。

【0057】反射型偏光板の具体例としては、必要に応 じマット処理した透明保護フイルムの片面に、アルミニ ウム等の反射性金属からなる箔や蒸着膜を付設して反射 層を形成したものなどがあげられる。

【0058】反射板は前記偏光板の透明保護フイルムに 直接付与する方式に代えて、その透明フイルムに準じた 適宜なフイルムに反射層を設けてなる反射シートなどと して用いることもできる。なお反射層は、通常、金属か らなるので、その反射面が透明保護フイルムや偏光板等 で被覆された状態の使用形態が、酸化による反射率の低 下防止、ひいては初期反射率の長期持続の点や、保護層 の別途付設の回避の点などより好ましい。

【0059】なお、半透過型偏光板は、上記において反 射層で光を反射し、かつ透過するハーフミラー等の半透 過型の反射層とすることにより得ることができる。半透 過型偏光板は、通常液晶セルの裏側に設けられ、液晶表 示装置などを比較的明るい雰囲気で使用する場合には、 視認側(表示側)からの入射光を反射させて画像を表示 し、比較的暗い雰囲気においては、半透過型偏光板のバ ックサイドに内蔵されているバックライト等の内蔵光源 を使用して画像を表示するタイプの液晶表示装置などを 形成できる。すなわち、半透過型偏光板は、明るい雰囲 気下では、バックライト等の光源使用のエネルギーを節 約でき、比較的暗い雰囲気下においても内蔵光源を用い て使用できるタイプの液晶表示装置などの形成に有用で

【0060】偏光板に更に位相差板が積層されてなる楕 - 円偏光板または円偏光板について説明する。 直線偏光を 楕円偏光または円偏光に変えたり、楕円偏光または円偏 光を直線偏光に変えたり、あるいは直線偏光の偏光方向

を変える場合に、位相差板などが用いられる。特に、直線偏光を円偏光に変えたり、円偏光を直線偏光に変える位相差板としては、いわゆる 1/4 波長板 ($\lambda/4$ 板とも言う)が用いられる。1/2 波長板 ($\lambda/2$ 板とも言う)は、通常、直線偏光の偏光方向を変える場合に用いられる。

【0061】楕円偏光板はスーパーツイストネマチック (STN)型液晶表示装置の液晶層の複屈折により生じ た着色(青又は黄)を補償(防止)して、前記着色のな い白黒表示する場合などに有効に用いられる。更に、三 10 次元の屈折率を制御したものは、液晶表示装置の画面を 斜め方向から見た際に生じる着色も補償 (防止) するこ とができて好ましい。円偏光板は、例えば画像がカラー 表示になる反射型液晶表示装置の画像の色調を整える場 合などに有効に用いられ、また、反射防止の機能も有す (る。上記した位相差板の具体例としては、ポリカーボネ ート、ポリビニルアルコール、ポリスチレン、ポリメチ ルメタクリレート、ポリプロピレンやその他のポリオレ フィン、ポリアリレート、ポリアミドの如き適宜なポリ マーからなるフイルムを延伸処理してなる複屈折性フィ ルムや液晶ポリマーの配向フイルム、液晶ポリマーの配 向層をフイルムにて支持したものなどがあげられる。位 相差板は、例えば各種波長板や液晶層の複屈折による着 色や視角等の補償を目的としたものなどの使用目的に応 じた適宜な位相差を有するものであってよく、2種以上 の位相差板を積層して位相差等の光学特性を制御したも のなどであってもよい。

【0062】また上記の楕円偏光板や反射型楕円偏光板は、偏光板又は反射型偏光板と位相差板を適宜な組合せで積層したものである。かかる楕円偏光板等は、(反射型)偏光板と位相差板の組合せとなるようにそれらを液晶表示装置の製造過程で順次別個に積層することによっても形成しうるが、前記の如く予め楕円偏光板等の光学フイルムとしたものは、品質の安定性や積層作業性等に優れて液晶表示装置などの製造効率を向上させうる利点がある。

【0063】視角補償フイルムは、液晶表示装置の画面を、画面に垂直でなくやや斜めの方向から見た場合でも、画像が比較的鮮明にみえるように視野角を広げるためのフイルムである。このような視角補償位相差板としては、例えば位相差フイルム、液晶ポリマー等の配向フィルムや透明基材上に液晶ポリマー等の配向層を支持したものなどからなる。通常の位相差板は、その面方向に一軸に延伸された複屈折を有するポリマーフイルムが用いられるのに対し、視角補償フイルムとして用いられる位相差板には、面方向に二軸に延伸された複屈折を有するポリマーフイルムとか、面方向に一軸に延伸され厚さ方向にも延伸された厚さ方向の屈折率を制御した複屈折を有するポリマーや傾斜配向フイルムのような二方向延伸フイルムなどが用いられる。傾斜配向フイルムとして50

は、例えばポリマーフイルムに熱収縮フイルムを接着して加熱によるその収縮力の作用下にポリマーフイルムを延伸処理又は/及び収縮処理したものや、液晶ポリマーを斜め配向させたものなどが挙げられる。位相差板の素材原料ポリマーは、先の位相差板で説明したポリマーと同様のものが用いられ、液晶セルによる位相差に基づく視認角の変化による着色等の防止や良視認の視野角の拡大などを目的とした適宜なものを用いうる。

【0064】また良視認の広い視野角を達成する点などより、液晶ポリマーの配向層、特にディスコティック液晶ポリマーの傾斜配向層からなる光学的異方性層をトリアセチルセルロースフイルムにて支持した光学補償位相差板が好ましく用いうる。

【0065】偏光板と輝度向上フイルムを貼り合わせた 偏光板は、通常液晶セルの裏側サイドに設けられて使用 される。輝度向上フイルムは、液晶表示装置などのバッ クライトや裏側からの反射などにより自然光が入射する と所定偏光軸の直線偏光または所定方向の円偏光を反射 し、他の光は透過する特性を示すもので、輝度向上フイ ルムを偏光板と積層した偏光板は、バックライト等の光 源からの光を入射させて所定偏光状態の透過光を得ると 共に、前記所定偏光状態以外の光は透過せずに反射され る。この輝度向上フイルム面で反射した光を更にその後 ろ側に設けられた反射層等を介し反転させて輝度向上フ イルムに再入射させ、その一部又は全部を所定偏光状態 の光として透過させて輝度向上フイルムを透過する光の 増量を図ると共に、偏光子に吸収させにくい偏光を供給 して液晶表示画像表示等に利用しうる光量の増大を図る ことにより輝度を向上させうるものである。すなわち、 輝度向上フイルムを使用せずに、バックライトなどで液 晶セルの裏側から偏光子を通して光を入射した場合に は、偏光子の偏光軸に一致していない偏光方向を有する 光は、ほとんど偏光子に吸収されてしまい、偏光子を透 過してこない。すなわち、用いた偏光子の特性によって も異なるが、およそ50%の光が偏光子に吸収されてし まい、その分、液晶画像表示等に利用しうる光量が減少 し、画像が暗くなる。輝度向上フイルムは、偏光子に吸 収されるような偏光方向を有する光を偏光子に入射させ ずに輝度向上フイルムで一旦反射させ、更にその後ろ側 に設けられた反射層等を介して反転させて輝度向上フイ ルムに再入射させることを繰り返し、この両者間で反 射、反転している光の偏光方向が偏光子を通過し得るよ うな偏光方向になった偏光のみを、輝度向上フイルムは 透過させて偏光子に供給するので、バックライトなどの 光を効率的に液晶表示装置の画像の表示に使用でき、画 面を明るくすることができる。

【0066】輝度向上フィルムと上記反射層等の間に拡散板を設けることもできる。輝度向上フィルムによって反射した偏光状態の光は上記反射層等に向かうが、設置された拡散板は通過する光を均一に拡散すると同時に偏

光状態を解消し、非偏光状態となる。すなわち、拡散板は偏光を元の自然光状態にもどす。この非偏光状態、すなわち自然光状態の光が反射層等に向かい、反射層等を介して反射し、再び拡散板を通過して輝度向上フィルムに再入射することを繰り返す。このように輝度向上フィルムと上記反射層等の間に、偏光を元の自然光状態にもどす拡散板を設けることにより表示画面の明るさを維持しつつ、同時に表示画面の明るさのむらを少なくし、均一で明るい画面を提供することができる。かかる拡散板を設けることにより、初回の入射光は反射の繰り返し回り数が程よく増加し、拡散板の拡散機能と相俟って均一の明るい表示画面を提供することができたものと考えられる。

【0067】前記の輝度向上フイルムとしては、例えば誘電体の多層薄膜や屈折率異方性が相違する薄膜フイルムの多層積層体の如き、所定偏光軸の直線偏光を透過して他の光は反射する特性を示すもの、コレステリック液晶ポリマーの配向フイルムやその配向液晶層をフイルム基材上に支持したものの如き、左回り又は右回りのいずれか一方の円偏光を反射して他の光は透過する特性を示 20 すものなどの適宜なものを用いうる。

【0068】従って、前記した所定偏光軸の直線偏光を透過させるタイプの輝度向上フイルムでは、その透過光をそのまま偏光板に偏光軸を揃えて入射させることにより、偏光板による吸収ロスを抑制しつつ効率よく透過させることができる。一方、コレステリック液晶層の如く円偏光を投下するタイプの輝度向上フイルムでは、そのまま偏光子に入射させることもできるが、吸収ロスを抑制する点よりその円偏光を位相差板を介し直線偏光化して偏光板に入射させることが好ましい。なお、その位相差板として1/4波長板を用いることにより、円偏光を直線偏光に変換することができる。

【0069】可視光域等の広い波長範囲で1/4波長板として機能する位相差板は、例えば波長550nmの淡色光に対して1/4波長板として機能する位相差層と他の位相差特性を示す位相差層、例えば1/2波長板として機能する位相差層とを重畳する方式などにより得ることができる。従って、偏光板と輝度向上フイルムの間に配置する位相差板は、1層又は2層以上の位相差層からなるものであってよい。

【0070】なお、コレステリック液晶層についても、 反射波長が相違するものの組み合わせにして2層又は3 層以上重畳した配置構造とすることにより、可視光領域 等の広い波長範囲で円偏光を反射するものを得ることが でき、それに基づいて広い波長範囲の透過円偏光を得る ことができる。

【0071】また、偏光板は、上記の偏光分離型偏光板の如く、偏光板と2層又は3層以上の光学層とを積層したものからなっていてもよい。従って、上記の反射型偏光板や半透過型偏光板と位相差板を組み合わせた反射型 50

精円偏光板や半透過型精円偏光板などであってもよい。 【0072】前記光学素子への反射防止フィルムの積層、さらには偏光板への各種光学層の積層は、液晶表示装置等の製造過程で順次別個に積層する方式にても行うことができるが、これらを予め積層したのものは、品質の安定性や組立作業等に優れていて液晶表示装置などの製造工程を向上させうる利点がある。積層には粘着層等の適宜な接着手段を用いうる。前記の偏光板やその他の光学フィルムの接着に際し、それらの光学軸は目的とする位相差特性などに応じて適宜な配置角度とすることができる。

【0073】前述した偏光板や、偏光板を少なくとも1層積層されている光学フイルム等の光学素子の少なくとも片面には、前記反射防止フィルムが設けられているが、反射防止フィルムが設けられていない面には、液晶セル等の他部材と接着するための粘着層を設けることもできる。粘着層を形成する粘着剤は特に制限されないが、例えばアクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。特に、アクリル系粘着剤の如く光学的透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく用いうる。

【0074】また上記に加えて、吸湿による発泡現象や 剥がれ現象の防止、熱膨張差等による光学特性の低下や 液晶セルの反り防止、ひいては高品質で耐久性に優れる 液晶表示装置の形成性などの点より、吸湿率が低くて耐 熱性に優れる粘着層が好ましい。

【0075】粘着層は、例えば天然物や合成物の樹脂類、特に、粘着性付与樹脂や、ガラス繊維、ガラスビーズ、金属粉、その他の無機粉末等からなる充填剤や顔料、着色剤、酸化防止剤などの粘着層に添加されることの添加剤を含有していてもよい。また微粒子を含有して光拡散性を示す粘着層などであってもよい。

【0076】偏光板、光学フィルム等の光学素子への粘着層の付設は、適宜な方式で行いうる。その例としては、例えばトルエンや酢酸エチル等の適宜な溶剤の単独物又は混合物からなる溶媒にベースポリマーまたはその組成物を溶解又は分散させた $10\sim40$ 重量%程度の粘着剤溶液を調製し、それを流延方式や塗工方式等の適宜な展開方式で光学素子上に直接付設する方式、あるいは前記に準じセパレータ上に粘着層を形成してそれを光学素子上に移着する方式などがあげられる。粘着層は、各層で異なる組成又は種類等のものの重畳層として設けることもできる。粘着層の厚さは、使用目的や接着力などに応じて適宜に決定でき、一般には $1\sim500~\mu$ mであり、 $5\sim200~\mu$ mが好ましく、特に $10\sim100~\mu$ mが好ましい。

【0077】粘着層の露出面に対しては、実用に供する

までの間、その汚染防止等を目的にセパレータが仮着さ れてカバーされる。これにより、通例の取扱状態で粘着 層に接触することを防止できる。セパレータとしては、 上記厚さ条件を除き、例えばプラスチックフイルム、ゴ ムシート、紙、布、不織布、ネット、発泡シートや金属 箔、それらのラミネート体等の適宜な薄葉体を、必要に、 応じシリコーン系や長鏡アルキル系、フッ素系や硫化モ リブデン等の適宜な剥離剤でコート処理したものなど の、従来に準じた適宜なものを用いうる。

【0078】なお本発明において、上記した光学素子を 10 形成する偏光子や透明保護フイルムや光学層等、また粘 着層などの各層には、例えばサリチル酸エステル系化合 物やベンソフェノール系化合物、ベンソトリアソール系 化合物やシアノアクリレート系化合物、ニッケル錯塩系 化合物等の紫外線吸収剤で処理する方式などの方式によ り紫外線吸収能をもたせたものなどであってもよい。___

【0079】本発明の反射防止フィルムを設けた光学素 子は液晶表示装置等の各種装置の形成などに好ましく用 いることができる。液晶表示装置の形成は、従来に準じ て行いうる。すなわち液晶表示装置は一般に、液晶セル 20 と光学素子、及び必要に応じての照明システム等の構成 部品を適宜に組立てて駆動回路を組込むことなどにより 形成されるが、本発明においては本発明による光学素子 を用いる点を除いて特に限定はなく、従来に準じうる。 液晶セルについても、例えばTN型やSTN型、π型な どの任意なタイプのものを用いうる。

【0080】液晶セルの片側又は両側に前記光学素子を 配置した液晶表示装置や、照明システムにバックライト あるいは反射板を用いたものなどの適宜な液晶表示装置 を形成することができる。その場合、本発明による光学 30 素子は液晶セルの片側又は両側に設置することができ る。両側に光学素子を設ける場合、それらは同じもので あってもよいし、異なるものであってもよい。さらに、 液晶表示装置の形成に際しては、例えば拡散板、アンチ グレア層、反射防止膜、保護板、プリズムアレイ、レン ズアレイシート、光拡散板、バックライトなどの適宜な 部品を適宜な位置に1層又は2層以上配置することがで きる。

【0081】次いで有機エレクトロルミネセンス装置 (有機EL表示装置) について説明する。一般に、有機 40 EL表示装置は、透明基材フィルム上に透明電極と有機 発光層と金属電極とを順に積層して発光体(有機エレク トロルミネセンス発光体)を形成している。ここで、有 機発光層は、種々の有機薄膜の積層体であり、例えばト リフェニルアミン誘導体等からなる正孔注入層と、アン トラセン等の蛍光性の有機固体からなる発光層との積層 体や、あるいはこのような発光層とペリレン誘導体等か らなる電子注入層の積層体や、またあるいはこれらの正 孔注入層、発光層、および電子注入層の積層体等、種々 の組み合わせをもった構成が知られている。

【0082】有機EL表示装置は、透明電極と金属電極 とに電圧を印加することによって、有機発光層に正孔と 電子とが注入され、これら正孔と電子との再結合によっ て生じるエネルギーが蛍光物資を励起し、励起された蛍 光物質が基底状態に戻るときに光を放射する、という原 理で発光する。途中の再結合というメカニズムは、一般 のダイオードと同様であり、このことからも予想できる ように、電流と発光強度は印加電圧に対して整流性を伴 う強い非線形性を示す。

【0083】有機EL表示装置においては、有機発光層 での発光を取り出すために、少なくとも一方の電極が透 明でなくてはならず、通常酸化インジウムスズ(IT O) などの透明導電体で形成した透明電極を陽極として 用いている。一方、電子注入を容易にして発光効率を上 げるには、陰極に仕事関数の小さな物質を用いることが 重要で、通常M-g-A-g、A-l-Liなどの金属電極を 用いている。

【0084】このような構成の有機EL表示装置におい て、有機発光層は、厚さ10nm程度ときわめて薄い膜 で形成されている。このため、有機発光層も透明電極と 同様、光をほぼ完全に透過する。その結果、非発光時に 透明基材フィルムの表面から入射し、透明電極と有機発 光層とを透過して金属電極で反射した光が、再び透明基 材フィルムの表面側へと出るため、外部から視認したと き、有機EL表示装置の表示面が鏡面のように見える。

【0085】電圧の印加によって発光する有機発光層の 表面側に透明電極を備えるとともに、有機発光層の裏面 側に金属電極を備えてなる有機エレクトロルミネセンス 発光体を含む有機EL表示装置において、透明電極の表 面側に偏光板を設けるとともに、これら透明電極と偏光 板との間に位相差板を設けることができる。

【0086】位相差板および偏光板は、外部から入射し て金属電極で反射してきた光を偏光する作用を有するた め、その偏光作用によって金属電極の鏡面を外部から視 認させないという効果がある。特に、位相差板を1 /4 波長板で構成し、かつ偏光板と位相差板との偏光方向の なす角をπ/4 に調整すれば、金属電極の鏡面を完全に 遮蔽することができる。

【0087】すなわち、この有機EL表示装置に入射す る外部光は、偏光板により直線偏光成分のみが透過す る。この直線偏光は位相差板により一般に楕円偏光とな るが、とくに位相差板が1 /4 波長板でしかも偏光板と 位相差板との偏光方向のなす角が π/4 のときには円偏

【0088】この円偏光は、透明基材フィルム、透明電 極、有機薄膜を透過し、金属電極で反射して、再び有機 薄膜、透明電極、透明基材フィルムを透過して、位相差 板に再び直線偏光となる。そして、この直線偏光は、偏 光板の偏光方向と直交しているので、偏光板を透過でき ない。その結果、金属電極の鏡面を完全に遮蔽すること

22

ができる。

[0089]

【実施例】以下に、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって何等限定されるものではない。なお、屈折率はそれぞれの材料を皮膜化し、Abbe屈折率計を用いて測定した。

21

【0090】実施例1

(導電層の塗設) 透明基材フィルムとして厚さ80 μ m のトリアセチルセルロースフィルム(TACフィルム:屈折率1.49)を用いた。ATO超微粒子(粒径~100nm)の分散液とバインダーとしてポリメチルメタクリレート樹脂を含む塗工液(固形分2重量%,ATO/バインダー=70:30,重量比)をワイヤーバーを用いてTACフィルム上に塗布し、100 $^{\circ}$ で乾燥して導電層(屈折率:1.64、膜厚250nm)を形成した。導電層の膜厚は、(550nm/1.64/4)×3=251.5nm、から決定した。得られた導電層の表面抵抗値は2.0×10 $^{\circ}$ 0/ $^{\circ}$ 0であった。なお、導電層の表面抵抗値の測定は、JIS K6911に基づき、アドバンテスト社製のデジタル超高抵抗計(R8340A)を用いて500V印加にて測定した。

【0091】(ハードコート層の塗設) TiO_2 超微粒子(粒径~100nm)の分散液とバインダーとして紫外線硬化型アクリルハードコート樹脂を含む塗工液(固形分40重量%、 TiO_2 /バインダー=40:60, 重量比)をワイヤーバーを用いて前記導電層上に塗布し、80℃で乾燥後、低圧UVランプにて紫外線を照射してハードコート層(屈折率:1.71, 膜厚4 μ m)を形成した。

【0092】(反射防止層の塗設)テトラメトキシシラン30重量部とメタノール240重量部を、4つロフラスコに入れ液温を30℃に保ちながら撹拌し、次にイオン交換水35重量部に硝酸2重量部を加えた水溶液を加え、30℃にて5時間撹拌し、シロキサンオリゴマーのアルコール溶液(塗工液)を得た。次に前述のハードコート層上に調整した塗工液をワイヤーバーを用いて硬化後の厚みが約100nmとなるように塗工し、90℃で10分間加熱硬化し、反射防止層を形成して反射防止フィルムを得た。反射防止層の屈折率は1.44であった。

【0093】実施例2

実施例1の (ハードコート層の登設) において、塗工液に、ハードコート層を形成する樹脂の固形分100重量部に対して、さらに5重量部の平均粒子径2μmのシリカビーズを添加した塗工液を用いたこと以外は実施例1と同様にして防眩機能付きハードコート層を形成し、また実施例1と同様にして反射防止層を形成して反射防止フィルムを作製した。

【0094】実施例3

実施例1の(反射防止層の塗設)において、塗工液に、

さらに乾燥後の固形分重量で2重量部のトリフルオロプロピルトリメトキシシランを添加した塗工液を用いたこと以外は実施例1と同様にして反射防止層を形成して反射防止フィルムを作製した。反射防止層の屈折率は1.43であった。

【0095】実施例4

(導電層の塗設) テトラアルコキシシラン (ポリシロキサン熱硬化性成分) にATO超微粒子 (粒径 $10\sim60$ nm) を分散させ、固形分濃度1.5%の竣工液を調製した。厚さ 80μ mのTACフィルム上に前記竣工液をグラビアコーターにて竣工し、120で環境下で3分間加熱硬化して、導電層(屈折率:1.59、膜厚86 nm) を形成した。導電層の膜厚は、(550 nm/1.59/4) ×1=86 nm、から決定した。得られた導電層の表面抵抗値は $1\times10^{11}\Omega$ / \square であった。

【0096】 (ハードコート層の塗設) $2nO_2$ 超微粒子 (粒径0.01~0.1 μ m) とバインダーとして紫外線硬化型アクリル樹脂を含む塗工液 (固形分40重量%、 $2nO_2$ /バインダー=42:58、重量比)をダイコーターを用いて前記導電層上に塗布し、120 $\mathbb C$ で乾燥後、低圧UVランプにて紫外線を照射してハードコート層 (屈折率:1.71、膜厚2.2 μ m) を形成した。

【0097】(反射防止層の塗設)フルオロアルキル構造及びポリシロキサン構造を有するフッ素化合物としてオプスターJTA105(JSR社製)100重量部、オプスターJTA105A(JSR社製)1重量部、酢酸プチル151.5重量部、及びシロキサンオリゴマーとしてコルコートN103X(コルコート社製、エチレングリコール換算による数平均分子量:950)589.2重量部を混合して塗工液を得た。次に前述のハードコート層上に調整した塗工液をワイヤーバーを用いて硬化後の厚みが約100nmとなるように塗工し、120℃で3分間加熱硬化し、反射防止層を形成して反射防止フィルムを得た。なお、前記フッ素化合物のポリスチレン換算による数平均分子量は8000であった。また、反射防止層の屈折率は1.43であり、フッ素含有率は24重量%であった。

【0098】比較例1

実施例1の(反射防止層の塗設)において、テトラメトキシシランを予め5時間の反応させることなく用い、塗設後の乾燥を90℃で20時間行ったこと以外は実施例1と同様にして反射防止層を形成して反射防止フィルムを作製した。反射防止層の屈折率は1.44であった。

【0099】比較例2

実施例1の(導電層の塗設)において、塗工液として、 ATO微粒子を配合していない塗工液を用いたこと以外 は実施例1と同様にして導電層を形成し、また実施例1 と同様にしてハードコート層を形成した。また、実施例 3で調製した塗工液を用いて反射防止層を形成して反射

防止フィルムを作製した。導電層の屈折率は1.49、表面抵抗値は $5.8 \times 10^{14} \Omega/\Box$ であった。

【0100】比較例3

実施例1の(ハードコート層の塗設)において、塗工液として、TiO2 超微粒子を配合していない塗工液を用いたこと以外は実施例1と同様にしてハードコート層を形成した。次いで、実施例3で調製した塗工液を用いて実施例3と同様に反射防止層を形成して反射防止フィルムを作製した。ハードコート層の屈折率は1.52であった。

【0101】参考例1

【0102】参考例2

実施例4の(反射防止層の塗設)において、コルコート N103Xを108.2重量部とした以外は実施例4と 同様の方法により反射防止層を形成して反射防止フィル 20 ムを作製した。反射防止層のフッ素含有率は56重量% であった。

【0103】実施例および比較例で得られた反射防止フィルムについて下記の評価を行った。結果を表1に示す。

【0104】(反射率の測定) 反射防止フィルムの反射 防止層が形成されていない面に、黒色アクリル板(厚さ2mm)を粘着剤で貼り合せ裏面の反射をなくした。このサンプルを、島津製作所製の傾斜積分球付き分光光度計(UV-2400PC/8°)にて分光反射率(鏡面30反射率+拡散反射率)を測定し、C光源/2°視野の全反射率(%, Y値)を計算により求めた。

【0105】 (反射防止層の表面のSi/F) 反射防止 フィルムの反射防止層の表面のSiおよびFの存在比率* *をX線光電子分光法(XPS)にて分析し、ピーク強度 比(Si/F)を求めた。測定装置には(株)島津製作 所製のAXIS-HS1を用いた。

【0106】(耐擦傷性)反射防止フィルムを幅25mm、長さ100mmの大きさに切断し、反射防止フィルムの反射防止層が形成されていない面をガラス板に貼り付けた。直径25mmの円柱の平滑な断面にスチールウール#0000を均一に取り付け、荷重400gにて、反射防止層表面を毎秒約100mmの速度で10往復した。試験後に上記と同様の方法で反射率を測定した。耐擦傷性の試験前の反射率に比する変化量を表1に示す。傷が多く入っていれば、表面形状の凹凸化に伴う乱反射および反射防止層の光学厚みの乱れに伴った反射率上昇が観測される。

【0107】(スチールウール試験) 反射防止フィルムを幅25mm、長さ100mmの大きさに切断し、反射防止フィルムの反射防止層が形成されていない面をガラス板に貼り付けた。直径25mmの円柱の平滑な断面にスチールウール#000を均一に取り付け、荷重400gにて、反射防止層表面を毎秒約100mmの速度で10往復させ、試験後の傷つき具合を以下の基準で目視にて判定した。

〇:傷は認められない

△:傷が多少認められる

×:傷が多く認められる

(挨拭き取り性)市販のティシュペーパー (パルプ100%)を反射防止フィルム (反射防止層)上でもみほぐし発生したリントを付着させ、木綿のウエスで拭き取った際の拭き取れやすさを以下の基準で評価した。

【0108】○:全て拭き取り可能

△: 殆どを拭き取り可能

×:全ての拭き取り不可

【表1】

	全反射率(%)	Si/F比	耐擦傷性(%)	ステールウール試験	埃拭き取り性
突施例1	1.2		-	0	0
突施例2	1.6		_	0	0
奥施例3	1.1		_	0	0
爽施例4	1.2	0.55	+0. 05	0	0
比较例1	1.2		_	×	0
比較例2	1.7	_	_	0	×
比较例3	3.1	_		Ō	0
珍寿例1	1.3	0.28	+1. 9	Δ	0
參考例2	1.2	0.36	+1.0	Δ	0

上記、結果に示すとおり実施例の反射防止フィルムは、 反射率が低く、耐擦傷性、埃拭き取り性の良好な反射防 止層が形成され、反射防止特性および実用特性に優れる ものであることが分かる。また、実施例1~4の反射防 止フィルムを偏光板の保護層(保護フィルム)として用 いたところ、上記特性を維持した実用性の高い反射防止 機能付きの偏光板が得られた。

【図面の簡単な説明】

【図1】 本発明の反射防止フィルムの断面図の一例である。

【符号の説明】

1:透明基材フィルム

2:ハードコート層

50 3:反射防止層

4:導電層

【図1】

フロン	トペー	ジの続き

(51) Int. Cl. 7

識別記号

FΙ

H 0 5 B 33/02 33/14

G 0 2 B

(72)発明者 井上 徹雄

大阪府茨木市下穂積1丁目1番2号 日東

電工株式会社内

(72)発明者 髙村 竜一

大阪府茨木市下穂積1丁目1番2号 日東

電工株式会社内

(72)発明者 岡田 圭策

大阪府茨木市下穂積1丁目1番2号

電工株式会社内

(72)発明者 中野 真也

大阪府茨木市下穂積1丁目1番2号 日東

電工株式会社内

Fターム(参考) 2HO42 BA02 BA03 BA12 BA20

2K009 AA02 AA15 CC09 CC21 CC42

DD02 EE00

3K007 AB17 BB06 DB03

4F100 AA21 AA33 AJ06 AK01A

AK25 AK52D AT00 AT00A

BA04 BA07 CC00B CC02

EJ08D EJ86D JG01D JK12B

JN01A JN06C

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
\square REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.