Name: Shivam Indrabhan Borse

Roll No: 21119

Subject: Software Laboratory III (DATA SCIENCE)

Assignment No: 06

Problem statement:

Data Analytics III

1. Implement Simple Naïve Bayes classification algorithm using Python/R on iris.csv dataset. Compute Confusion matrix to find TP, FP, TN, FN, Accuracy, Error rate, Precision, Recall on the given dataset.

CODE:

------ Assignment No : 06 ------

Data Analytics III

- 1. Implement Simple Naïve Bayes classification algorithm using Python/R on iris.csv dataset.
- 2. Compute Confusion matrix to find TP, FP, TN, FN, Accuracy, Error rate, Precision, Recall on the given dataset.

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import confusion_matrix
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

2.0s
```

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

```
iris df.shape
     ✓ 0.0s
     (150, 6)
         X = iris_df .iloc[:,:4].values
         Y = iris_df['Species'].values
 (4) V 0.0s
         X_train, X_test, y_train, y_test = train_test_split(X,Y, test_size=0.2, random_state=8)
       ✓ 0.0s
 [5]
          classifier = GaussianNB()
         classifier.fit(X_train, y_train)
     ✓ 0.0s
      GaussianNB()
       y_pred = classifier.predict(X_test)
       y_pred
[7] V 0.0s
    array(['Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-virginica',
           'Iris-versicolor', 'Iris-setosa', 'Iris-setosa', 'Iris-virginica',
           'Iris-virginica', 'Iris-versicolor', 'Iris-versicolor',
           'Iris-setosa', 'Iris-versicolor', 'Iris-versicolor',
           'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
           'Iris-virginica', 'Iris-versicolor', 'Iris-virginica',
           'Iris-versicolor', 'Iris-setosa', 'Iris-versicolor',
           'Iris-versicolor', 'Iris-versicolor', 'Iris-setosa',
           'Iris-virginica', 'Iris-setosa', 'Iris-setosa', 'Iris-virginica'],
          dtype='<U15')
                                                                     + Code + Markdown
```

```
cm = confusion_matrix (y_test,y_pred)
sns.heatmap(cm ,annot =True)
plt.xlabel('predict label')
plt.ylabel('actual label')
plt.title('confusion matrix')
plt.show()
print(cm)
```

```
confusion matrix

-10

-8

-6

-4

-2

0

1

predict label
```

```
[[10 0 0]
[0 9 0]
[0 1 10]]
```

```
from sklearn.metrics import accuracy_score
  from sklearn.metrics import classification_report
  from sklearn.metrics import confusion_matrix
[9] $\square$ 0.0s
```

```
result = confusion_matrix(y_test , y_pred)
    print('confusion_matrix : ',result)

v    0.0s

confusion_matrix : [[10 0 0]
    [ 0 9 0]
    [ 0 1 10]]
```

... accuracy score : 0.9666666666666667

classification_repo	t:		precision	recall fi-score support
Iris-setosa	1.00	1.00	1.00	10
Iris-versicolor	0.90	1.00	0.95	9
Iris-virginica	1,00	0.91	0.95	11
accuracy			0.97	30
macro avg	0.97	0.97	0.97	30
weighted avg	0.97	0.97	0.97	30

--> Shivam Borse