Лекция 1 ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

1.1. Матрицы и определители. Основные понятия

Определение 1.1.

Прямоугольная таблица чисел, состоящая из m строк u n столбцов называется матрицей порядка $m \times n$.

$$\begin{pmatrix} a_{11} & . & . & a_{1n} \\ a_{21} & . & . & a_{2n} \\ . & . & . \\ a_{m1} & . & . & a_{mn} \end{pmatrix} = \left(a_{ij}\right)_{mn}$$

Числа a_{ij} ($i=\overline{1,m},\ j=\overline{1,n}$) называются элементами матрицы (здесь первый индекс — номер строки а второй — номер столбца, на пересечении которых находится данный элемент).

Определение 2.1.

Матрица, полученная из матрицы A заменой строк на столбцы, называется транспонированной матрицей и обозначается A^T .

$$A^{T} = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ \vdots & \vdots & \dots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix}$$

<u>Замечание 1</u>. В определении **1.2** матрица A^* имеет размер (n x m).

Определение 1.3

Mатрица размера $n \times n$ называется квадратной матрицей n-20 порядка

$$A = \begin{pmatrix} a_{11} & . & . & . & a_{1n} \\ . & . & . & . & . \\ a_{n1} & . & . & . & a_{nn} \end{pmatrix}.$$

<u>Замечание 2</u>. Диагональ $a_{11}, a_{22}, \dots, a_{nn}$ называется *главной* диагональю квадратной матрицы, а диагональ $a_{1n}, a_{2(n-1)}, \dots, a_{n1} - nобочной$ диагональю.

1

Примеры 1.1.

а) $\grave{A} = (-2304)$ (размер $_1x_4$) – однострочная матрица или матрица-строка;

б)
$$B = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$$
 (размер _3_x_1_) — столбцовая матрица или

матрица-столбец;

в)
$$C=(-2)$$
 (размер $_1x_1$).

Пример 1.2.

$$A = \begin{pmatrix} 1 & -2 & 5 & 3 \\ 0 & 4 & 2 & -7 \\ 8 & 5 & -2 & 1 \end{pmatrix}, \qquad A^{T} = \begin{pmatrix} 1 & 0 & 8 \\ -2 & 4 & 5 \\ 5 & 2 & 2 \\ 3 & -7 & 1 \end{pmatrix}.$$

C каждой квадратной матрицей свяжем определенную численную характеристику, называемую **определителем**, соответствующим этой матрице.

Обозначение:

$$\det A = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{vmatrix}.$$

Определение 1.4.

Определителем матрицы $A = (a_{11})$ первого порядка, называется сам элемент a_{11} :

$$\det A = a_{11}$$
.

Определение 1.5.

Определителем матрицы $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ второго порядка, называется число $\det A = a_{11}a_{22} - a_{12}a_{21}. \tag{1.1}$

Определение 1.6.

Определителем матрицы $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ третьего порядка, называется

число

$$\det A = (a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{21}a_{32}a_{13}) - (a_{12}a_{21}a_{33} + a_{13}a_{22}a_{31} + a_{11}a_{23}a_{32}).$$
 (1.2)

Равенство (1.2) вычисляется по правилу Саррюса (часто его называют *правилом треугольника*):

<u>Замечание</u> 3. Для определителя матрицы A употребляют также следующие обозначения:

$$|A|$$
, Δ , $\det(a_{ii})$.

Примеры 1.3.

Вычислить определители:

1)
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1*4 - 2*3 = -2;$$

$$2)\begin{vmatrix} \cos\varphi & \sin\varphi \\ \sin\varphi & \cos\varphi \end{vmatrix} = \cos 2\varphi;$$

3)
$$\begin{vmatrix} 1 & -2 & 3 \\ 4 & -1 & 5 \\ 6 & -8 & 7 \end{vmatrix} = (-7 - 96 - 60) - (-18 - 40 - 56) = -163 + 114 = -49;$$

4)
$$\begin{vmatrix} 3 & 0 & -2 \\ 1 & 5 & 7 \\ 4 & 3 & 6 \end{vmatrix}$$
 = $(90 - 6 + 0) - (-40 + 63 + 0) = 84 - 23 = 61$.

Определение 1.7.

Минором элемента a_{ij} квадратной матрицы n-го порядка называется определитель матрицы (n-1)-го порядка, остающийся после вычеркивания i-й строки u j-го столбца данной матрицы n-го порядка (то есть строки u столбца на пересечении которых стоит элемент a_{ij}).

Обозначение: M_{ij} .

(Минор – это число или матрица?)

Определение 1.8.

Алгебраическим дополнением элемента a_{ij} . называется его минор, взятый со знаком $(-1)^{i+j}$, где i+j — сумма номеров строки и столбца, на пересечении которых расположен этот элемент

$$A_{ij} = (-1)^{i+j} M_{ij}. (1.3).$$

Пусть задана матрица А размером 4х4:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}, \text{тогда } M_{32} = \begin{vmatrix} a_{11} & a_{13} & a_{14} \\ a_{21} & a_{23} & a_{24} \\ a_{41} & a_{43} & a_{44} \end{vmatrix}, \ A_{32} = (-1)^{3+2} M_{32}$$

Заметим, что $A_{ij} = +M_{ij}$, если i + j - четное число,

$$A_{ii} = -M_{ii}$$
, если $i + j$ - нечетное.

Учитывая это, для правильной расстановки знаков перед минорами в алгебраических дополнениях удобна таблица:

Теорема 1.1 (разложения).

Определитель матрицы n-20 порядка равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения

$$\det A = \sum_{k=1}^{n} (-1)^{i+k} a_{ik} M_{ik}$$
 (1.4)

- разложение по i -й строке.

Доказательство.

Пусть
$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
, тогда $\Delta = a_1b_2c_3 + b_1c_2a_3 + c_1a_2b_3 - c_1b_2a_3 - b_1a_2c_3 - a_1c_2b_3$ (1.5).

Докажем, что имеют место следующие равенства:

$$\Delta = a_1 A_1 + a_2 A_2 + a_3 A_3, \ \Delta = a_1 A_1 + b_1 B_1 + c_1 C_1 \tag{1.6}$$

$$\Delta = b_1 B_1 + b_2 B_2 + b_3 B_3 \quad \Delta = a_2 A_2 + b_2 B_2 + c_2 C_2 \tag{1.7}$$

$$\Delta = c_1 C_1 + c_2 C_2 + c_3 C_3 \quad \Delta = a_3 A_3 + b_3 B_3 + c_3 C_3 \tag{1.8}$$

Чтобы доказать (1.6) достаточно записать правую часть формулы (1.5) в виде $\Delta = a_1(b_2c_3 - b_3c_2) + a_2(b_3c_1 - b_1c_3) + a_3(b_1c_2 - b_2c_1).$

Величины, стоящие в скобках являются алгебраическими дополнениями **матрицы** $n-\varepsilon o$ **порядка** элементов a_1 , a_2 , a_3 , т.е.

$$\Delta = a_1 A_1 + a_2 A_2 + a_3 A_3.$$

Равенства (1.7) и (1.8) доказываются аналогично.

1.2. Свойства определителей

1°. Значение определителя не меняется **при транспонировании матрицы** (замен всех его строк соответствующими столбцами).

Проверим для. n=2.

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}^T = \begin{vmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

<u>Замечание 4.</u> Свойство 1⁰ устанавливает равноправность строк и столбцов определителя. Поэтому все дальнейшие свойства определителя будем формулировать и для строк, и для столбцов, а доказывать только для строк или только для столбцов.

2°. При перестановке двух строк значение определителя меняет знак, сохраняясь по абсолютной величине.

Проверим для. n=2.

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21} = \Delta , \qquad \begin{vmatrix} a_{21} & a_{22} \\ a_{11} & a_{12} \end{vmatrix} = a_{21}a_{12} - a_{22}a_{11} = -\Delta .$$

Проверим для n=3.

Разложим по второй строке:

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23} = \Delta_1, \text{ поменяем 1 и 3 строки. Каждое}$$

 A_{ij} поменяет знак, т.к. является определителем второго порядка, у которого строки поменялись, следовательно:

$$\det A = \begin{vmatrix} a_{31} & a_{32} & a_{33} \\ a_{21} & a_{22} & a_{23} \\ a_{11} & a_{22} & a_{33} \end{vmatrix} = -\Delta_1.$$

3°. Определитель с двумя одинаковыми строками (столбцами) равен нулю.

Проверим для n=3.

Допустим совпадают 1 и 3 строки

$$|A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \end{vmatrix} = |-A| \Rightarrow |A| = 0.$$

4°. Общий множитель всех элементов какой-либо строки можно вынести за знак определителя (т.е. при умножении определителя на число, все элементы какой-либо одной строки умножаются на это число).

Доказательство.

Пусть,
$$\det A = \begin{vmatrix} a_{11} & \dots & \dots & a_{1n} \\ a_{i1} & \dots & \dots & a_{in} \\ \dots & \dots & \dots & \dots \\ a_{n1} & \dots & \dots & a_{nn} \end{vmatrix}$$
, $\det \widetilde{A} = \begin{vmatrix} a_{11} & \dots & \dots & a_{1n} \\ \lambda a_{i1} & \dots & \dots & \lambda a_{in} \\ \dots & \dots & \dots & \dots \\ a_{n1} & \dots & \dots & a_{nn} \end{vmatrix}$

Применяя теорему разложения, разложим $\det \widetilde{A}$ по i-той строке: $\det \widetilde{A} = \lambda a_{i1} A_{i1} + ... + \lambda a_{in} A_{in} = \lambda (a_{i1} A_{i1} + ... + a_{in} A_{in}) = \lambda \det A$.

5°. Определитель с двумя пропорциональными строками (столбцами) равен нулю.

Доказательство.

Пусть i-тая и k-тая строки пропорциональны:

$$\det A = \begin{vmatrix} a_{11} & \dots & \dots & a_{1n} \\ a_{i1} & \dots & \dots & a_{in} \\ \lambda a_{i1} & \dots & \dots & \lambda a_{in} \\ a_{n1} & \dots & \dots & a_{nn} \end{vmatrix} = \lambda \begin{vmatrix} a_{11} & \dots & \dots & a_{1n} \\ a_{i1} & \dots & \dots & a_{in} \\ a_{i1} & \dots & \dots & a_{in} \\ a_{n1} & \dots & \dots & a_{nn} \end{vmatrix} = 0.$$

6°. Определитель, имеющий нулевую строку (столбец), равен нулю.

Доказательство.

Если все элементы строки равны нулю, то разлагая определитель по этой строке, получим, что он равен нулю.

7°. Если два определителя одного порядка отличаются только элементами одной строки, то сумма таких определителей равна определителю с элементами указанной строки, равными суммам соответствующих элементов этой строки данных определителей.

Доказательство.

$$\begin{vmatrix} a_{11} & \dots & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a'_{i1} & \dots & \dots & a'_{in} \\ \dots & \dots & \dots & \dots \\ a_{n1} & \dots & \dots & \dots \\ a_{nn} & \dots & \dots \\ a_{nn} & \dots & \dots & \dots \\ a_{nn} & \dots & \dots & \dots \\ a_{nn}$$

$$(a'_{i1}+a''_{i1})A_{i1}+...+(a'_{in}+a''_{in})A_{in}=egin{bmatrix} a_{11} & ... & ... & a_{nn} \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... \ & ... & ... & ... & ... & ... \ & ... & ... & ... & ... \ & ... & ... & ... & ... \ & ... & ... & ... & ... & ... \ & .$$

8°. Значение определителя не изменяется, если к элементам какой-либо строки прибавить соответствующие элементы другой строки, умноженные на одно и то же число.

Доказательство.

Пусть
$$\det A = \begin{vmatrix} a_{11} & \dots & \dots & a_{1n} \\ a_{i1} & \dots & \dots & a_{in} \\ a_{k1} & \dots & \dots & a_{kn} \\ a_{n1} & \dots & \dots & a_{nn} \end{vmatrix}, \det \widetilde{A} = \begin{vmatrix} a_{11} & \dots & \dots & a_{1n} \\ a_{i1} & \dots & \dots & a_{in} + \lambda a_{kn} \\ a_{k1} & \dots & \dots & a_{kn} \\ a_{n1} & \dots & \dots & a_{nn} \end{vmatrix}$$

Тогда, по свойству (7):

$$\det \widetilde{A} = \begin{vmatrix} a_{11} & \dots & \dots & a_{1n} \\ a_{i1} & \dots & \dots & a_{in} \\ a_{k1} & \dots & \dots & a_{kn} \\ a_{n1} & \dots & \dots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & \dots & \dots & a_{1n} \\ a_{k1} & \dots & \dots & a_{kn} \\ a_{k1} & \dots & \dots & a_{kn} \\ a_{n1} & \dots & \dots & a_{nn} \end{vmatrix} = \det A + \lambda \begin{vmatrix} a_{11} & \dots & \dots & a_{1n} \\ a_{k1} & \dots & \dots & a_{kn} \\ a_{k1} & \dots & \dots & a_{kn} \\ a_{n1} & \dots & \dots & a_{nn} \end{vmatrix} = \det A + 0 = \det A.$$

Пример 1.4.

Вычислить
$$\det A = \begin{vmatrix} 2 & 3 & -1 \\ 3 & 2 & 1 \\ 1 & 2 & 4 \end{vmatrix}$$
.

Решение.

Пользуясь свойством (8), прибавим элементы третьей строки, умноженные на (-2) к элементам первой строки, а также элементы третьей строки, но умноженные на (-3), к элементам второй строки. При этом значение определителя сохранится, но два элемента первого столбца окажутся нулями.

$$\begin{vmatrix} 2 & 3 & -1 \\ 3 & 2 & 1 \\ 1 & 2 & 4 \end{vmatrix} = \begin{vmatrix} 0 & -1 & -9 \\ 0 & -4 & -11 \\ 1 & 2 & 4 \end{vmatrix} = (-1) \cdot (-1) \cdot \begin{vmatrix} 0 & 1 & 9 \\ 0 & 4 & 11 \\ 1 & 2 & 4 \end{vmatrix} = 0 \cdot \left(+ \begin{vmatrix} 4 & 11 \\ 2 & 4 \end{vmatrix} \right) + 0 \cdot \left(- \begin{vmatrix} 1 & 9 \\ 2 & 4 \end{vmatrix} \right) + 1 \cdot \left(+ \begin{vmatrix} 1 & 9 \\ 4 & 11 \end{vmatrix} \right) = -25$$

Пример 1.5.

1) С помощью теоремы разложения разложить определитель по 1-ой строке:

$$\begin{vmatrix} 1 & -2 & 3 \\ 4 & -1 & 5 \\ 6 & -8 & 7 \end{vmatrix} = a_{11}(-1)^{1+1}M_{11} + a_{12}(-1)^{1+2}M_{12} + a_{13}(-1)^{1+3}M_{13} = (-7+40) + 2(28-30) + 3(-32+6) = 33-4-78 = -49.$$

2) Вычислить определители удобным способом:

$$\begin{vmatrix} 4 & 0 & 0 \\ 3 & -6 & 5 \\ 6 & -2 & 1 \end{vmatrix} = 16$$

$$3) \begin{vmatrix} 1 & 0 & 2 & 0 \\ 3 & 1 & -1 & 3 \\ 1 & 1 & 2 & 4 \\ 0 & 2 & -3 & 1 \end{vmatrix} = -46.$$

Следствие теоремы 1.1.

Определитель треугольной матрицы равен произведению элементов главной диагонали.

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{vmatrix} = a_{11} \dots a_{nn}$$

$$(1.9)$$

Доказательство.

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} & \dots & a_{2n} \\ 0 & a_{33} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{vmatrix} + 0 + \dots 0 = a_{11}a_{22} \begin{vmatrix} a_{33} & a_{34} & \dots & a_{3n} \\ 0 & a_{44} & \dots & a_{4n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{vmatrix} = \dots = a_{11}\dots a_{nn}.$$

Вычисление определителя только по теореме разложения не рационально. Таким способом, например, ЭВМ с быстродействием 1 млн. операций в секунду определитель 100^{20} порядка будет вычислять несколько миллионов лет. Существенно упрощает вычисление определителей высоких порядков использование свойств (4) и (8), причем, основным инструментом является свойство (8). С использованием этих свойств тот же определитель 100^{20} порядка может быть вычислен за 1 секунду.

Теорема 1.2 (замещения).

Пусть Δ — некоторый определитель третьего порядка. Сумма произведений алгебраических дополнений элементов какой-нибудь строки (столбца) на любые числа q_1 , q_2 , q_3 равна определителю Δ ', который получается из данного определителя заменой упомянутой строки (столбца) строкой (столбцом) из чисел q_1 , q_2 , q_3 .

Пример 1.6.

Пусть
$$q_1=-1, \ q_2=-2 \ q_3=0, \ \Box=\begin{vmatrix} 3 & 2 & 1 \\ 6 & 5 & 4 \\ 8 & 7 & 9 \end{vmatrix}$$
 . Построить \Box' .

Проверить, что □=□′.

9⁰ Теорема 1.3 (аннулирования).

Сумма произведений элементов какой-нибудь строки (столбца) на алгебраические дополнения соответствующих элементов другой строки (столбца) равна нулю.

Доказательство.

Докажем к примеру, что сумма произведений элементов второго столбца на соответствующие алгебраические дополнения элементов первого столбца равна нулю. Пусть задан определитель (1.5). Тогда имеем разложение (1.6)

$$\Delta = a_1 A_1 + a_2 A_2 + a_3 A_3.$$

Алгебраические дополнения A_1 , A_2 , A_3 не зависят от самих элементов a_1 , a_2 , a_3 . Поэтому если в обеих частях равенства (1.6) числа a_1 , a_2 , a_3 заменить произвольными числами a_1 , a_2 , a_3 , то получится верное равенство

$$\begin{vmatrix} h_1 & b_1 & c_1 \\ h_2 & b_2 & c_2 \\ h_3 & b_3 & c_3 \end{vmatrix} = h_1 A_1 + h_2 A_2 + h_3 A_3$$
 (1.10).

Если теперь в равенстве (1.10) в качестве h_1 , h_2 , h_3 взять элементы b_1 , b_2 , b_3 второго столбца, то согласно свойству (3) определитель с двумя одинаковыми столбцами равен нулю.