2022 年全国硕士研究生招生考试数学(二)试题

- 一、选择题(本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目 要求,把所选项前的字母填在题后的括号内.)
- (1) 若当 $x \to 0$ 时, $\alpha(x)$, $\beta(x)$ 是非零无穷小量,则以下的命题中.
 - ① 若 $\alpha(x) \sim \beta(x)$,则 $\alpha^2(x) \sim \beta^2(x)$;
 - ②若 $\alpha^2(x) \sim \beta^2(x)$,则 $\alpha(x) \sim \beta(x)$;
 - ③若 $\alpha(x) \sim \beta(x)$.则 $\alpha(x) \beta(x) = o(\alpha(x))$;
 - ④ 若 $\alpha(x) \beta(x) = o(\alpha(x))$,则 $\alpha(x) \sim \beta(x)$,

真命题的序号为()

- (A)(1)(3).
- (B) (14).
- (C)(1)(3)(4).
- (D) 234.

- (2) $\int_0^2 dy \int_y^2 \frac{y}{\sqrt{1+x^3}} dx = ($
 - $(A) \frac{\sqrt{2}}{6}$. $(B) \frac{1}{2}$.
- (C) $\frac{\sqrt{2}}{2}$.
- (D) $\frac{2}{3}$.

- (3) 设f(x) 在 $x = x_0$ 处有二阶导数,则(
 - (A) 当 f(x) 在 x_0 的某邻域内单调增加时, $f'(x_0) > 0$.
 - (B) 当 $f'(x_0) > 0$ 时, f(x) 在 x_0 的某邻域内单调增加.
 - (C) 当 f(x) 在 x_0 的某邻域内是凹函数时, $f''(x_0) > 0$.
 - (D) 当 $f''(x_0) > 0$ 时, f(x) 在 x_0 的某邻域内是凹函数.
- (4) 已知f(t) 连续,令 $F(x,y) = \int_0^{x-y} (x-y-t)f(t)dt$,则(
 - (A) $\frac{\partial F}{\partial x} = \frac{\partial F}{\partial y}, \frac{\partial^2 F}{\partial x^2} = \frac{\partial^2 F}{\partial y^2}.$
- (B) $\frac{\partial F}{\partial x} = \frac{\partial F}{\partial x}, \frac{\partial^2 F}{\partial x^2} = -\frac{\partial^2 F}{\partial x^2}.$
- (C) $\frac{\partial F}{\partial x} = -\frac{\partial F}{\partial x}, \frac{\partial^2 F}{\partial x^2} = \frac{\partial^2 F}{\partial x^2}.$
- (D) $\frac{\partial F}{\partial x} = -\frac{\partial F}{\partial x}, \frac{\partial^2 F}{\partial x^2} = -\frac{\partial^2 F}{\partial x^2}.$
- (5) 设p 为常数,若反常积分 $\int_0^1 \frac{\ln x}{x^p(1-x)^{1-p}} dx$ 收敛,则p 的取值范围是(
 - (A)(-1,1).

- (B)(-1,2). $(C)(-\infty,1).$ $(D)(-\infty.2).$
- (6) 设数列 $\{x_n\}$ 满足 $-\frac{\pi}{2} \le x_n \le \frac{\pi}{2}$,则(
 - (A) 若 $\lim \cos(\sin x_n)$ 存在,则 $\lim x_n$ 存在.
 - (B) 若 $\lim \sin(\cos x_n)$ 存在,则 $\lim x_n$ 存在.
 - (C) 若 $\lim_{n\to\infty}\cos(\sin x_n)$ 存在,则 $\lim_{n\to\infty}\sin x_n$ 存在,但 $\lim_{n\to\infty}x_n$ 不一定存在.
 - (D) 若 $\lim_{n\to\infty} \sin(\cos x_n)$ 存在,则 $\lim_{n\to\infty} \cos x_n$ 存在,但 $\lim_{n\to\infty} x_n$ 不一定存在.

(7) 若
$$I_1 = \int_0^1 \frac{x}{2(1+\cos x)} dx$$
, $I_2 = \int_0^1 \frac{\ln(1+x)}{1+\cos x} dx$, $I_3 = \int_0^1 \frac{2x}{1+\sin x} dx$, 则(1)

(A) $I_1 \le I_2 \le I_3$ (B) $I_2 \le I_3 \le I_4$ (C) $I_3 \le I_4 \le I_4$ (D) $I_4 \le I_5 \le I_4$

$$(A)I_1 < I_2 < I_3.$$
 $(B)I_2 < I_1 < I_3.$ $(C)I_1 < I_3 < I_2.$ $(D)I_3 < I_2 < I_1$

$$(A)I_{1} < I_{2} < I_{3}.$$

$$(B)I_{2} < I_{1} < I_{3}.$$

$$(C)I_{1} < I_{3} < I_{2}.$$

$$(D)I_{3} < I_{2} < I_{1}.$$

$$(B)I_{2} < I_{1} < I_{3}.$$

$$(B)I_{2} < I_{1} < I_{3}.$$

$$(C)I_{1} < I_{3} < I_{2}.$$

$$(D)I_{3} < I_{2} < I_{1}.$$

- (A) 存在可逆矩阵 P.O. 使得 A = PAO.
- (B) 存在可逆矩阵 P. 使得 $A = P\Lambda P^{-1}$.
- (C) 存在正交矩阵 O. 使得 $A = Q\Lambda Q^{-1}$.
- (D) 存在可逆矩阵 P, 使得 $A = P\Lambda P^{T}$.

(9) 设矩阵
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & b & b^2 \end{pmatrix}$$
, $b = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$, 则线性方程组 $Ax = b$ 的解的情况为()

(A) 无解.

(C) 有无穷多解或无解.

- (D) 有唯一解或无解.
- (10) 设 $\boldsymbol{\alpha}_1 = (\lambda, 1, 1)^T, \boldsymbol{\alpha}_2 = (1, \lambda, 1)^T, \boldsymbol{\alpha}_3 = (1, 1, \lambda)^T, \boldsymbol{\alpha}_4 = (1, \lambda, \lambda^2)^T, 若\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3 与\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2,$ α_{λ} 等价,则 λ 的取值范围是(
 - $(A) \{0,1\}.$

- (B) $\{\lambda \mid \lambda \in \mathbf{R}, \lambda \neq -2\}.$
- (C) $\{\lambda \mid \lambda \in \mathbf{R}, \lambda \neq -1, \lambda \neq -2\}$
- (D) $\{\lambda \mid \lambda \in \mathbf{R}, \lambda \neq -1\}$.

二、填空题(本题共6小题,每小题5分,共30分,把答案填在题中横线上.)

(11)
$$\lim_{x\to 0} \left(\frac{1+e^x}{2}\right)^{\cot x} =$$
_____.

(12) 已知函数 $\gamma = \gamma(x)$ 由方程 $x^2 + x\gamma + \gamma^3 = 3$ 确定,则 $\gamma''(1) =$

$$(13) \int_0^1 \frac{2x+3}{x^2-x+1} dx = \underline{\hspace{1cm}}$$

- (14) 微分方程 y''' 2y'' + 5y' = 0 的通解为 $y(x) = ______$
- (15) 已知曲线 L 的极坐标方程为 $r = \sin 3\theta \left(0 \le \theta \le \frac{\pi}{2} \right)$,则 L 围成的有界区域的面积为_____.
- (16) 设A 为 3 阶矩阵, 交换A 的第 2 行和第 3 行, 再将第 2 列的 1 倍加到第 1 列, 得到矩阵

三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.)

(17)(本题满分10分)

已知函数
$$f(x)$$
 在 $x = 1$ 处可导且 $\lim_{x \to 0} \frac{f(e^{x^2}) - 3f(1 + \sin^2 x)}{x^2} = 2$,求 $f'(1)$.

(18) (本题满分12分)

设函数 y(x) 是微分方程 $2xy'-4y=2\ln x-1$ 的满足条件 $y(1)=\frac{1}{4}$ 的解,求曲线 y=y(x) $(1 \le x \le e)$ 的弧长.

(19) (本题满分12分)

已知平面区域 $D = \{(x,y) \mid y-2 \le x \le \sqrt{4-y^2}, 0 \le y \le 2\}$, 计算 $I = \iint_{D} \frac{(x-y)^2}{x^2+y^2} dxdy$.

(20) (本题满分12分)

已知可微函数 f(u,v) 满足 $\frac{\partial f(u,v)}{\partial u} - \frac{\partial f(u,v)}{\partial v} = 2(u-v)e^{-(u+v)}$, 且 $f(u,0) = u^2e^{-u}$.

(I)
$$i\exists g(x,y) = f(x,y-x), \Re \frac{\partial g(x,y)}{\partial x};$$

(Ⅱ) 求 f(u,v) 的表达式与极值.

(21)(本题满分12分)

设函数 f(x) 在 $(-\infty, +\infty)$ 上有二阶连续导数,证明: $f''(x) \ge 0$ 的充分必要条件是对任意不同的实数 a,b,都有 $f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x$ 成立.

(22) (本题满分12分)

已知二次型 $f(x_1,x_2,x_3) = 3x_1^2 + 4x_2^2 + 3x_3^2 + 2x_1x_3$.

(I) 求正交矩阵 Q, 使正交变换 x = Qy 将二次型 $f(x_1, x_2, x_3)$ 化为标准形;

(II) 证明 $\min_{x\neq 0} \frac{f(x)}{x^T x} = 2$.