标准答案及评分标准

2019年1月11日

一、填空(每小题4分,共20分)

$$1 e^2$$

2.
$$-\frac{1+t^2}{4t^3}$$

3.
$$a = b \neq 0$$

4.
$$6(e^2-1)$$

5.
$$2 + Ce^{-x^2}$$

二、计算题(每小题5分,共20分)
1. 解:
$$\lim_{x\to 0} \frac{\sqrt{1+x} + \sqrt{1-x} - 2}{x^2}$$

$$= \lim_{x\to 0} \frac{\frac{1}{2\sqrt{1+x}} - \frac{1}{2\sqrt{1-x}}}{2x}$$

2. 解: 当
$$x = 0$$
 时, 得 $y = 1$

方程 $2^{xy} = x + y$ 两边对 x 求导,得

$$2^{xy} \ln^2(y + xy') = 1 + y'$$

将
$$x = 0$$
, $y = 1$ 代入上式,

得到
$$y'|_{r=0} = \ln^2 - 1$$

于是,
$$dy|_{r=0} = (\ln^2 - 1)dx$$
.

3. 解: 定义域 $(-\infty, +\infty)$

$$f'(x) = \frac{10}{3} \cdot \frac{x-1}{\sqrt[3]{x}}$$
,一阶导数不存在的点为 $x_1 = 0$; $f'(x) = 0$ 得驻点 $x_2 = 1$1分

列表:

x	$(-\infty,0)$	0	(0,1)	1	$(1,+\infty)$
f'(x)	+	不存在	_	0	+
f(x)	7	极大值 0	7	极小值 -3	7

f(x)有单调递增区间为: $(-\infty,0)$ 和 $(1,+\infty)$;

单调递减区间为: (0,1);

极大值为:
$$f(0) = 0$$
, 极小值为: $f(1) = -3$.

四、解: $\lim_{x \to c} y = \lim_{x \to c} \frac{x^3}{1 + r^2} + \arctan(1 + x^2) \neq \infty$, 所以曲线没有垂直渐近线. $\lim_{x \to \infty} y = \lim_{x \to \infty} \frac{x^3}{1 + x^2} + \arctan(1 + x^2) = \infty,$ 所以曲线没有水平渐近线.1分 $a = \lim_{x \to \infty} \frac{y}{x}$ $= \lim_{x \to \infty} \frac{1}{x} \left(\frac{x^3}{1 + x^2} + \arctan(1 + x^2) \right) = 1$4分 $b = \lim_{x \to \infty} (y - ax)$ $=\lim_{x\to\infty} (\frac{x^3}{1+x^2} + \arctan(1+x^2) - x) = \frac{\pi}{2}$7分 故 曲线有斜渐近线 $y = x + \frac{\pi}{2}$. 五、(1)证明: 由题意 $x_2 = \sin x_1, 0 < x_2 \le 1$, 因此当 $n \ge 2$ 时, $x_{n+1} = \sin x_n \le x_n$, $\{x_n\}$ 单调减少; 又 $x_n > 0$, $\{x_n\}$ 有下界, 故 $\{x_n\}$ 有极限. $x_{n+1} = \sin x_n$ 两边取极限得, $A = \sin A$, 故有极限 A = 0.3分 (2)解: $\lim_{n\to\infty} \left(\frac{x_{n+1}}{x_n}\right)^{\frac{1}{x_n^2}} = \lim_{n\to\infty} \left(\frac{\sin x_n}{x_n}\right)^{\frac{1}{x_n^2}}, 为 1^{\infty}$ 型 离散型不能直接用洛必达法则 先考虑 $\lim_{t\to 0} \left(\frac{\sin t}{t}\right)^{\frac{1}{t^2}} = e^{\lim_{t\to 0} \frac{1}{t^2} \ln(\frac{\sin t}{t})}$ $=e^{\lim_{t\to 0}\frac{t\cos t-\sin t}{2t^3}}=e^{-\frac{1}{6}}$ 故, $\lim_{n\to\infty} \left(\frac{x_{n+1}}{x}\right)^{\frac{1}{x_n^2}} = e^{-\frac{1}{6}}.$6分 六、解: (1) 画草图,解交点(0,0),(1,1) $A = \int_0^1 (x - x^2) dx$2 分 $=\frac{1}{6}$4分 (2) $V = \pi \int_{0}^{1} (\sqrt{y})^{2} dy - \pi \int_{0}^{1} y^{2} dy$ $=\frac{1}{6}\pi$8分

七、解:以上底作为y轴,两底的中垂线作为x轴建立直角坐标系. 在x轴的区间[0,20]上任取小区间[x,x+dx], 得面积微元等于 $(10-\frac{x}{5})dx$2分 (1) x 处水的压强为 μgx , 故 $dP = \mu g x (10 - \frac{x}{5}) dx,$ 积分得所求压力 $P = \int_0^{20} \mu g x (10 - \frac{x}{5}) dx = \frac{4400}{3} \mu g;$ (2) x 处水深为x+2, 故水的压强为 $\mu g(x+2)$, 于是 $dP = \mu g(x+2)(10-\frac{x}{5})dx,$ 积分得所求压力 $P = \int_0^{20} \mu g(x+2)(10-\frac{x}{5})dx = \frac{5360}{3}\mu g.$ 8分 八、解: 由 $\lim_{x\to 0} \left(\frac{f(x)}{x} + \frac{\sin x}{x^2}\right) = \lim_{x\to 0} \left(\frac{\frac{\sin x}{x} + f(x)}{x}\right) = 1$, 可知 $\lim_{x\to 0} \left(\frac{\sin x}{x} + f(x)\right) = 0, \quad \text{Min}$ $f(0) = \lim_{x \to 0} f(x) = -\lim_{x \to 0} \frac{\sin x}{x} = -1.$3分 $1 = \lim_{x \to 0} \left(\frac{f(x)}{x} + \frac{\sin x}{x^2} \right) = \lim_{x \to 0} \left(\frac{f(x) + 1}{x} + \frac{\sin x}{x^2} - \frac{1}{x} \right)$ $= \lim_{x \to 0} \left(\frac{f(x) + 1}{x} + \frac{\sin x - x}{x^2} \right) = f'(0) + \lim_{x \to 0} \frac{\sin x - x}{x^2}$ $= f'(0) + \lim_{x \to 0} \frac{\cos x - 1}{2x} = f'(0) - \lim_{x \to 0} \frac{\sin x}{2} = f'(0).$ 九、解: $\diamondsuit u = x - t$, 则 $\int_0^x f(x - t) dt = \int_0^x f(u) du$ 代入方程可得: 再对 x 求导得: $f(x) = \int_{0}^{x} f(t)dt - e^{-x}$, 由于f(x)连续, 可知 $\int_0^x f(t)dt$ 可导, 从而f(x)也可导. 上式两边再求导得 $f'(x) = f(x) + e^{-x}$ 则 f(x) 满足初值问题: $\begin{cases} f'(x) = f(x) + e^{-x} \\ f(0) = -1 \end{cases}$ 解此微分方程可得 $f(x) = -\frac{1}{2}e^x - \frac{1}{2}e^{-x}$8分

十、证明: (1)由于 f(x) 为奇函数,则 f(0)=0,由拉格朗日定理,存在 $\xi \in (0,1)$,使得

(2) 令 $\varphi(x) = f'(x) + f(x)$, $\varphi(x)$ 在[-1,1]上可导, 由拉格朗日定理,

存在 $\eta \in (-1,1)$, 使得

$$\frac{\varphi(1)-\varphi(-1)}{1-(-1)}=\varphi'(\eta).$$
4 \Re

$$\frac{f'(1)+f(1)-f'(-1)-f(-1)}{2}=\varphi'(\eta),$$

由f(x)为奇函数,则f'(x)为偶函数,且f(1)=1,得