- **9.2** In Sec. 9.1 we considered the changes in thermodynamic properties on forming an ideal gas mixture from a collection of ideal gases at the same temperature and pressure. A second, less common way of forming an ideal gas mixture is to start with a collection of pure ideal gases, each at the temperature T and volume V, and mix and compress the mixture to produce an ideal gas mixture at temperature T and volume V.
 - **a.** Show that the mixing process described here is mixing at constant partial pressure of each component.
 - **b.** Derive each of the entries in the following table.

entropy

Entropy

Entropy

Entropy

Since constant partial pressure, this gats interesting

$$S_{i}^{TGM} = S_{i}^{TG} = -R \ln \left(1 \right) = 0$$
 $S_{i}^{TGM} = S_{i}^{TG} = -R \ln \left(1 \right) = 0$
 $S_{i}^{TGM} = S_{i}^{TG} = -R \ln \left(1 \right) = 0$
 $S_{i}^{TGM} = S_{i}^{TG} = -R \ln \left(1 \right) = 0$

and	since ?	this is	true for a	11 components	
	Amix 5	e1M = \(\frac{7}{2} \)	; (S; - 3	5;	
		= O			
helmholt 2	free energ	19			
	A = U	-TS			
=>	> 1 IGM =	- U.IGM -	TS. IGN		
	/ 1		, _,		
æs	Shown ea	rlier			
	Ō.	IGM = U	G		
	T _C	$ \begin{array}{ccc} 1GM & = & \bigcup_{i=1}^{\infty} \\ 1GM & = & \sum_{i=1}^{\infty} \\ \end{array} $	ā		
	۷;	= 7;			
	•	- 16M I. Δ = ().	5 - T <u>S</u> i ⁴ =	I G	
Δr	$mix = A_i^{-16A}$	$=\sum_{j=1}^{\infty}\chi_{j}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G]	
		ς = > χ,	$\int \Delta^{26} - \Lambda^{2}$	<u> </u>	
		اء ا	<u> </u>		
		= 0			
gibbs en	nergy				
	00(0 20	from	H- TS	or A + pv	
				or A + pv	_

$$G_{i}^{GM} = \overline{A}_{i}^{GM} + \rho \overline{V}^{GM}$$

$$Ving results from carrier$$

$$G_{i}^{GM} = \underline{A}_{i}^{GM} + \rho \times_{i} V_{i}^{GM}$$

$$= \underline{A}_{i}^{GM} + \underline{A}_{i}^{GM} + \underline{A}_{i}^{GM} + \underline{A}_{i}^{GM}$$

$$= \underline{A}_{i}^{GM} + \underline{A}_{i}^{GM} +$$