Supplementary Information to Carbon pricing, cash transfers and poverty

October 2022

1 Figures

Argentina Barbados Bolivia Brazil 50 40 30 20 10 Chile Costa Rica Colombia Dominican Republic 50 40 30 20 Carbon Footprint in tCO2 Ecuador El Salvador Guatemala Mexico 30 20 Peru Nicaragua Paraguay Uruguay 50 40 30 20 25 50 75 75 0 25 25 0 Total Household Expenditures (USD) Note:

Figure A1: Carbon Footprints over Total Household Expenditures

This figure displays individual carbon footprints from consumption (y-axis) over total household consumption (x-axis, in USD) for households from 16 countries in Latin America and the Caribbean.

Figure A2: Visualisation of Robustness Check on Measure of Horizontal Inequality \widehat{H}_r^1

This figure displays the measure of differences in horizontal inequality across expenditure quintiles \overline{H}^1_r across the percentage of households covered within both, the 1^{st} and the 5^{th} expenditure quintile to compute horizontal spread (brown line). A value of 50% would indicate that the evaluation of differences in horizontal inequality between the 1^{st} and 5^{th} would rest on comparing the spread in carbon price incidence between 50% of households within each quintile, i.e. the 25^{th} to 75^{th} percentile. Our preferred measure in this study captures 90% of households (blue line), i.e. compares the 5^{th} to 95^{th} percentile. The black horizontal line indicates a level of 1, for which within quintile inequality would be identical in both, the 1^{st} and the 5^{th} expenditure quintile. Values above the black line indicate that horizontal differences are larger within the poorest quintile compared to the richest quintile. The green line indicates our measure on vertical inequality \widehat{AC}^1_r . It expresses differences between the median carbon price incidence of the poorest and richest expenditure quintile. If the green line is above the black line, this implies that a carbon price would be regressive at the median.

Figure A3: Decomposition of Expenditure Types which explain Variance in Carbon Pricing Incidence

This figure plots the relative contribution of each expenditure type to explaining variation in carbon pricing incidence. We follow the method proposed by Shorrocks (1982) to calculate the factor weight s_j of each expenditure type X_j . We decompose the carbon pricing incidence into the contribution of each expenditure category to aggregate carbon pricing incidence. s_j equals the covariance of each component X_j and carbon pricing incidence divided by the variance in carbon pricing incidence, i.e. $s_j = \frac{cov(X_j, AC)}{\sigma^2(AC)}$.

2 Tables

Table A1: Summary Statistics

Country	Observations	Average Household Size	Urban Population	Electricity Access	Average Household Expenditures [USD]	Car Ownership	Share of Firewood Cons.
Argentina	21,539	3.19	100%	99.9%	14,437	49%	5%
Barbados	2,434	2.62		94.7%	16,842	52%	0%
Bolivia	11,859	3.34	69%	94.7%	3,688	17%	12%
Brazil	57,889	3.01	86%	99.5%	12,247	46%	2%
Chile	15,237	3.29		95.9%	19,104		11%
Colombia	87,166	3.35	79%	98.4%	9,732	14%	9%
Costa Rica	6,924	3.25	71%	99.7%	12,186	44%	5%
Dominican	8,884	3.21	81%	97.5%	7,786	21%	7%
Republic							
Ecuador	28,950	3.67	69%	90.6%	6,739	19%	5%
El Salvador	23,622	3.67	64%	95.7%	5,742	15%	12%
Guatemala	11,534	4.77	54%	81%	4,830	17%	70%
Mexico	88,899	3.55	79%	99.7%	6,846	40%	15%
Nicaragua	6,851	4.38	60%	86.8%	5,581	8%	51%
Paraguay	5,410	3.90	61%	97.8%	8,371	25%	29%
Peru	34,542	3.56	77%	95.6%	4,866	12%	15%
Uruguay	6,888	2.82	83%	99.7%	20,528	46%	13%

Note:

This table provides summary statistics for households in our sample. All values (except observations) are household-weighted averages. The Argentinian sample comprises urban households only.

Table A2: Average Expenditures and Average Expenditure Shares per Expenditure Quintile

	Av	Average household expenditures [USD]					I	Average	energy e	xpenditu	ire share	s
			Expenditure quintile					Expenditure quintile				
Country	All	EQ1	EQ2	EQ3	EQ4	EQ5	All	EQ1	EQ2	EQ3	EQ4	EQ5
Argentina	14,437	5,485	9,224	12,236	17,668	27,586	13.6%	17.1%	15%	13.7%	12.5%	9.9%
Barbados	16,842	6,877	12,169	16,180	18,957	29,988	12.8%	12.5%	12.8%	14%	13.4%	11.1%
Bolivia	3,688	1,743	2,860	3,630	4,383	5,822	6.2%	6.7%	6.3%	6.2%	6.4%	5.7%
Brazil	12,247	2,880	5,743	8,705	13,346	30,563	14.3%	21.7%	15.3%	13.5%	11.8%	9.3%
Chile	19,104	7,060	11,844	15,921	21,897	38,821	8.9%	12.7%	9.6%	8.7%	7.7%	5.9%
Colombia	9,732	1,974	3,813	5,635	9,011	28,230	8.5%	12.2%	10.1%	8.7%	7%	4.5%
Costa Rica	12,186	4,887	7,475	9,856	13,644	25,081	10.4%	12.9%	11.3%	10.2%	9.8%	7.7%
Dominican Republic	7,786	4,154	5,899	7,159	8,574	13,146	9.8%	9.4%	9.1%	9.5%	9.2%	11.8%
Ecuador	6,739	2,507	4,246	5,548	7,371	14,014	6.3%	7.5%	6%	5.8%	6%	6.1%
El Salvador	5,742	1,284	2,969	4,728	6,926	12,801	20%	25.9%	23%	20.4%	16.9%	13.9%
Guatemala	4,830	2,190	3,401	4,321	5,513	8,732	16%	20%	16.3%	15%	14.6%	14.3%
Mexico	6,846	3,038	4,878	6,181	7,814	12,319	11.2%	10.3%	11.1%	11.8%	12%	10.8%
Nicaragua	5,581	1,463	2,647	3,739	5,472	14,591	6%	4.3%	5.2%	6.2%	6.8%	7.5%
Paraguay	8,371	2,793	5,437	7,872	10,284	15,473	10.4%	9.7%	11%	10.3%	10.5%	10.5%
Peru	4,866	1,668	3,251	4,532	5,848	9,033	8%	9%	8.7%	8%	7.6%	6.8%
Uruguay	20,528	7,939	13,025	17,923	24,282	39,484	9.7%	13.5%	10.8%	9.5%	8.3%	6.6%

Note:

This table shows average household expenditures and average energy expenditure shares for households in 16 countries of Latin America and the Caribbean. Wes estimate household-weighted averages for the whole population and per expenditure quintile.

Table A3: Average Carbon Footprint and Average USD/tCO_2 Carbon Price Incidence per Expenditure Quintile

	A	verage	carbon i	footprii	nt [tCC	O_2	Averag	e incider	nce from	USD 40	/tCO ₂ ca	rbon price
		Expenditure quintile						Exp	enditure	quintile		
Country	All	EQ1	EQG2	EQ3	EQ4	EQ5	All	EQ1	EQG2	EQ3	EQ4	EQ5
Argentina	10.5	5.2	7.9	9.8	13.0	16.8	3.25%	4.05%	3.52%	3.23%	2.96%	2.47%
Barbados	9.9	4.4	7.6	10.6	12.0	14.8	2.49%	2.65%	2.58%	2.66%	2.5%	2.09%
Bolivia	2.4	1.2	2.0	2.5	2.9	3.3	2.73%	2.95%	2.84%	2.78%	2.71%	2.4%
Brazil	5.7	1.8	3.1	4.6	6.7	12.4	2.17%	2.78%	2.23%	2.11%	1.98%	1.73%
Chile	7.7	4.0	5.7	7.0	9.0	13.0	1.85%	2.41%	2%	1.82%	1.65%	1.37%
Colombia	3.8	1.2	2.2	2.9	4.0	8.6	2.05%	2.53%	2.32%	2.11%	1.83%	1.44%
Costa Rica	3.5	1.4	2.4	3.0	4.3	6.2	1.16%	1.14%	1.23%	1.19%	1.21%	1.04%
Dominican Republic	4.1	1.8	2.7	3.5	4.2	8.2	1.92%	1.78%	1.8%	1.88%	1.86%	2.29%
Ecuador	3.0	1.3	2.0	2.6	3.4	5.8	2.02%	2.51%	2.02%	1.91%	1.88%	1.79%
El Salvador	2.7	0.9	1.8	2.5	3.1	5.0	2.09%	2.75%	2.4%	2.04%	1.75%	1.52%
Guatemala	2.3	0.5	1.1	1.8	2.7	5.2	1.59%	0.96%	1.22%	1.59%	1.92%	2.25%
Mexico	4.6	2.0	3.4	4.4	5.5	7.6	2.75%	2.65%	2.79%	2.88%	2.85%	2.56%
Nicaragua	2.5	0.4	0.9	1.5	2.7	7.3	1.56%	0.98%	1.26%	1.5%	1.84%	2.24%
Paraguay	3.3	1.3	2.7	3.3	3.8	5.4	1.7%	1.77%	2.06%	1.75%	1.53%	1.39%
Peru	2.2	1.0	1.8	2.2	2.6	3.5	2.16%	2.56%	2.43%	2.18%	1.95%	1.67%
Uruguay	3.7	1.8	2.6	3.4	4.5	6.4	0.78%	0.92%	0.81%	0.77%	0.72%	0.66%

This table shows average carbon footprints in tCO_2 and average levels of carbon price incidence for households in 16 countries of Latin America and the Caribbean. Wes estimate household-weighted averages for the whole population and per expenditure quintile.

Table A4: Comparing Median Additional Costs (AC) and Horizontal Spread between first and fifth Expenditure Quintile

Country	\overline{AC}_r^1	\overline{AC}_r^5	\overline{H}_r^1	\overline{H}_r^5	\overline{H}_r^{1*}	\overline{H}_r^{5*}	\widehat{AC}_r^1	\widehat{H}_r^1	\widehat{H}_r^{1*}
Argentina	3.56%	2.13%	6.51%	4.02%	2.92%	2.02%	1.67	1.62	1.45
Barbados	2.30%	1.89%	5.36%	3.00%	2.37%	1.49%	1.22	1.79	1.59
Bolivia	2.68%	2.27%	3.42%	2.50%	1.36%	1.19%	1.18	1.36	1.15
Brazil	2.37%	1.52%	4.88%	2.87%	2.10%	1.42%	1.56	1.70	1.48
Chile	2.24%	1.31%	3.46%	1.42%	1.61%	0.73%	1.71	2.44	2.20
Colombia	1.90%	1.20%	6.08%	2.40%	2.82%	1.11%	1.58	2.53	2.55
Costa Rica	0.86%	0.80%	2.66%	2.57%	1.19%	1.36%	1.07	1.03	0.88
Dominican Republic	1.56%	1.88%	3.03%	4.49%	1.44%	2.26%	0.83	0.68	0.64
Ecuador	2.06%	1.59%	4.61%	2.79%	1.71%	1.40%	1.30	1.65	1.23
El Salvador	2.38%	1.22%	5.60%	3.51%	3.27%	1.51%	1.96	1.60	2.17
Guatemala	0.74%	1.92%	1.90%	4.08%	0.67%	1.94%	0.39	0.46	0.35
Mexico	2.19%	2.28%	5.03%	4.26%	2.30%	2.10%	0.96	1.18	1.09
Nicaragua	0.74%	2.04%	1.92%	3.45%	0.91%	1.50%	0.37	0.56	0.61
Paraguay	1.00%	1.20%	6.15%	2.58%	2.13%	1.17%	0.83	2.38	1.82
Peru	2.09%	1.55%	6.56%	2.19%	3.28%	1.06%	1.35	3.00	3.11
Uruguay	0.75%	0.56%	1.94%	1.22%	0.78%	0.62%	1.34	1.59	1.25

This table shows the median additional costs from carbon pricing in the first expenditure quintile (\overline{AC}_r^1) and in the fifth quintile (\overline{AC}_r^5) . It displays the difference between the 5^{th} (20^{th}) and 95^{th} (80^{th}) within quintile percentile incidence for the first $(\overline{H}_r^1 \text{ and } \overline{H}_r^{1*})$ and the fifth quintile $(\overline{H}_r^5 \text{ and } \overline{H}_r^{5*})$. It also compares median additional costs from carbon pricing in the first income quintile to that in the fifth quintile (\hat{AC}_r^1) . Lastly it displays our comparison index facilitating the comparison of within quintile variation between the first and fifth quintile $(\hat{H}_r^1 \text{ and } \hat{H}_r^{1*} \text{ respectively})$.

Table A5: Correlation Coefficients for Carbon Pricing Incidence and Expenditure Shares on different Consumption Categories

Country	Energy	Goods	Services	Food
Argentina	0.97	-0.32	-0.28	-0.07
Barbados	0.94	-0.17	-0.20	-0.23
Bolivia	0.81	0.10	-0.27	0.01
Brazil	0.84	-0.11	-0.29	-0.14
Chile	0.90	-0.23	-0.26	0.06
Colombia	0.80	-0.28	-0.03	-0.06
Costa Rica	0.88	-0.18	-0.10	-0.19
Dominican Republic	0.95	-0.10	-0.08	-0.32
Ecuador	0.89	-0.09	-0.17	-0.05
El Salvador	0.79	0.06	0.02	-0.48
Guatemala	0.44	-0.02	0.13	-0.42
Mexico	0.95	-0.08	-0.20	-0.32
Nicaragua	0.62	-0.22	0.42	-0.56
Paraguay	0.55	-0.08	-0.09	-0.11
Peru	0.83	-0.19	-0.09	-0.03
Uruguay	0.67	-0.01	-0.22	-0.05

This table displays correlation coefficients for carbon pricing incidence and expenditure shares on different consumption categories.

Table A6: Correlation Coefficients for Carbon Pricing Incidence and Expenditure Shares on different Energy Consumption Categories

Country	Electricity	Kerosene	LPG	Biomass	Firewood	Gas	Petrol	Diesel
Argentina	0.64	0			0.01	0.55	0.50	0.21
Barbados	0.51	-0.01	0.23			0.29	0.63	0.21
Bolivia	0.83		0.24	0	-0.02	0.27	0.33	
Brazil	0.26	0.01	0.41		0	0.17	0.65	0.17
Chile	0.66	0.19	0.57		0.06	0.06	0.35	0.12
Colombia	0.35	0.04	0.44			0.62	0.48	0.04
Costa Rica	0.01	0	0.17		-0.06	0.03	0.88	0.29
Dominican Republic	0.34	-0.01	0.28	-0.1	-0.1	0.29	0.77	0.28
Ecuador	0.67		0.65		0		0.39	0.1
El Salvador	0.39	0.24	0.76		-0.05		0.41	
Guatemala	0.33	0.02	0.47		-0.37		0.82	
Mexico	0.41		0.36		-0.07	0.31	0.76	0.06
Nicaragua	0.17	0.01	0.31	-0.03	-0.24		0.69	0.03
Paraguay	0.05	0.01	0.12		-0.03		0.28	
Peru	0.38		0.92		-0.02	0.01	0.15	
Uruguay	0.12	0.05	0.26		0.04	0.07	0.94	

Note:

This table displays correlation coefficients for carbon pricing incidence and expenditure shares on different energy items.

Table A7: Electricity Generation in 16 Countries of Latin America and the Caribbean

		Share	of Electr	ricity Ge	neratio	n by Sou	rce in P	ercent (2	2020)			
Country	Coal	Oil	Natural Gas	Biofuels	Nuclear	Hydro	Geothermal	Wind	Solar PV	Other	Cons. [TWh]	Cons. pc. [MWh]
Argentina	1.4%	4.6%	60.9%	1.6%	7.4%	16.7%	0%	6.5%	0.9%	0%	128.8	2.8
Barbados	0%	96.8%	0%	0%	0%	0%	0%	0%	3%	0%	1.0	3.5
Bolivia	0%	0.9%	64.3%	1.8%	0%	29.9%	0%	0.6%	2.6%	0%	9.0	0.8
Brazil	2.8%	1.7%	8.6%	9.5%	2.3%	64%	0%	9.2%	1.7%	0%	540.3	2.5
Chile	31.1%	3.7%	18%	5.5%	0%	25.3%	0.3%	6.7%	9.3%	0%	78.3	4.0
Colombia	12%	3.5%	13.9%	1%	0%	69.3%	0%	0.1%	0.3%	0%	67.2	1.4
Costa Rica	0%	0.2%	0%	1.3%	0%	69.4%	15.3%	13.2%	0.6%	0%	10.6	2.1
Dominican Republic	12.7%	52%	25.6%	1%	0%	4.7%	0%	2.8%	1.3%	0%	17.3	1.6
Ecuador	0%	16.2%	3.8%	1.5%	0%	78%	0%	0.2%	0.1%	0%	26.2	1.5
El Salvador	0%	28.9%	0%	13.6%	0%	25.1%	24.3%	0%	8.1%	0%	6.6	1.0
Guatemala	15.4%	10%	0%	20.5%	0%	47.2%	2.6%	2.5%	1.8%	0%	11.2	0.7
Mexico	2.6%	9.9%	63.4%	0.7%	3.2%	7.8%	1.3%	5.7%	3.9%	1.3%	307.5	2.4
Nicaragua	0%	43.1%	0%	18.4%	0%	5%	17%	16%	0.5%	0%	3.9	0.6
Paraguay	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	13.2	1.9
Peru	0.1%	1.3%	34.9%	1.1%	0%	57.7%	0%	3.4%	1.5%	0%	50.7	1.6
Uruguay	0%	2.7%	0%	21.3%	0%	30.9%	0%	41.5%	3.5%	0%	11.1	3.2

This table provides summary statistics for electricity generation in 16 different countries of Latin America and the Caribbean. It reports the share of electricity generated by each source in each country in 2020 [%] as well as the total annual electricity consumption [TWh] and per capita [Mwh]. Source: IEA (2021) and Our World in Data (Ritchie et al. 2020) for Barbados. Annual electricity consumption for Peru refers to 2019.

Table A8: Summary Statistics on Access to Transfer Programmes

		Of the most affect	eted 20% of househ	olds, how many
Country	Households with access to transfer programs	are poorer than 80 % of the population?	have access to governmental transfer programs?	are poorer than 80 % of the population and have no access to governmental transfer programs?
Argentina	46.8%	34%	48.3%	13.5%
Barbados	22.5%	25.1%	27.4%	17.8%
Bolivia	28.2%	25%	40.8%	14.2%
Brazil	60.1%	33.8%	55.2%	11.6%
Chile	30.8%	45.2%	36.8%	22.8%
Colombia	55.1%	32.6%	54.2%	13.6%
Costa Rica	40.9%	17.3%	34.6%	6.8%
Dominican Republic	39%	16.2%	32.2%	8.3%
Ecuador	35.3%	31.3%	39.2%	14.7%
El Salvador	10.2%	41.2%	11.1%	36.5%
Guatemala	25.1%	5%	23.8%	3.5%
Mexico	42%	18.2%	42.3%	9.4%
Nicaragua	60.7%	5.1%	55.9%	1.6%
Paraguay	7%	21.6%	5.5%	21.1%
Peru	32.6%	34.6%	36.4%	18.6%
Uruguay	57.2%	26.2%	48.8%	8.7%

This table reports shares of total population and shares of the 20% of population with highest carbon pricing incidence adhering to different criteria for 16 countries in Latin America and the Caribbean.

Table A9: Comparison of households with high carbon price incidence and no access to transfers compared to the total population (in parentheses).

Country	Av. HH	Exp. [USD]	Car	owners	U	rban	LPC	d users	Gas	s users	Firewo	ood users
Argentina	11,635	(14,437)	0.73	(49.1%)			0.38	(35.1%)	0.605	(63%)		
Barbados	13,332	(16,842)	0.797	(52.3%)			0.796	(72.6%)	0.151	(19%)		(0.1%)
Bolivia	3,046	(3,688)	0.246	(16.8%)	0.727	(68.7%)	0.561	(58.1%)	0.309	(26.7%)	0.089	(11.5%)
Brazil	8,865	(12,247)	0.641	(46%)	0.836	(86.2%)	0.976	(97.6%)			0.007	(1%)
Chile	10,430	(19,104)										
Colombia	4,454	(9,732)	0.176	(14.2%)	0.773	(78.6%)	0.289	(24.2%)	0.645	(61.8%)	0.034	(8.9%)
Costa Rica	12,435	(12,186)	0.832	(44.5%)	0.655	(70.9%)	0.504	(45.3%)			0.015	(4.2%)
Dominican Republic	10,328	(7,786)	0.614	(20.7%)	0.837	(81.1%)	0.944	(91.1%)			0.008	(2.5%)
Ecuador	5,693	(6,739)	0.465	(19.4%)	0.693	(68.9%)	0.929	(92.4%)			0.02	(4.3%)
El Salvador	3,855	(5,742)	0.26	(15%)	0.602	(64.4%)	0.946	(84.5%)			0.036	(11.1%)
Guatemala	6,854	(4,830)	0.557	(16.9%)	0.737	(54.4%)	0.544	(28%)			0.428	(70.1%)
Mexico	6,434	(6,846)	0.703	(40.2%)	0.823	(78.5%)	0.766	(75.7%)	0.168	(8.6%)	0.048	(13.4%)
Nicaragua	8,622	(5,581)	0.324	(8.3%)	0.738	(59.9%)	0.739	(47.3%)			0.237	(51%)
Paraguay	6,844	(8,371)	0.263	(24.9%)	0.653	(61.4%)	0.406	(54.3%)			0.201	(27.2%)
Peru	2,563	(4,866)	0.102	(11.9%)	0.768	(77.4%)	0.918	(72.1%)	0.04	(7.1%)	0.005	(7.8%)
Uruguay	19,745	(20,528)	0.829	(46.2%)	0.675	(83.5%)	0.924	(91%)	0.036	(2.6%)	0.009	(1.2%)

Note:

This table compares summary statistics for households with higher carbon pricing incidence than 80% of the population and whichhave no access to governmental transfer programs to all households for 16 countries of Latin America and the Caribbean.

Table A10: Overview of Transfer Schemes

Country	Transfer Scheme	Code
Argentina	Ingreso neto por pensiones no contributivas	ipensionesnc
	Ingreso neto por asignaciones	iasignaciones
	Ingreso neto por becas públicas	ibecaspub
	Ingreso neto por otros planes sociales	iotrosps
	Ingreso neto por otros tranferencias	itransfermon
	Ingreso neto por jubilación/pensión	ijublacion
Barbados	Cash from The Child Care Programme, Community Tech Programme, Community Art and Dance Programme, ISEE BRIDGE, Relief in Kind Rental and Utilises, Assistance for School, Welfare to Work, Apprenticeship, Skills Training, Evening Training, Employment, Employment and Training Fund, Competency Based Training Fund, NVQ/CVQ, A Ganar, Sickness, Maternity, Unemployment, Invalidity, Funeral, Old Age, Survivors	q4_02_1c, q4_02_2c, q4_02_3c
	Pension from Government (former public services)	q10_07
	Contributory Pension from National Insurance, include old age / retirement pension	q10_10
	Non-contributory Pension from National Insurance	q10_11
	Public assistance (welfare grants, disability grants, invalidity grants)	q10_12
Bolivia	Bono de Indigencia por cequera o la Renta Solidaria y/o el Bono mensual para personas con discapacidad	s04a_09a
	Jubilacion (vejez). Excluya el monto de la Renta Dignidad	s07a_01a
	Benemérito. Excluya el monto de la Renta Dignidad.	s07a_01b
	Invalidez	s07a_01c
	Viudez, orfandad	s07a_01d
	Renta Dignidad	s07a_01e0
	Otros bonos sociales en efectivo	s07b_05d
	Otros bonos sociales en especie	s07b_05e
Brazil	Bolsa-Familia/Peti	5400101
	Bolsa-Familia	5400102
	Auxilio-Gas	5400104
Brazil	Bolsa-Escola	5400105

Country	Transfer Scheme	Code
	Cartao do Programa Nacional de Acesso a Alimenta- cao (PNAA)	5400107
	Beneficio de Prestacao Continuada (BPS - LOAS)	5400201
	Outros programas de transferencia de renda	5400301
	Auxilio-Leite	5400303
	Bolsa-Renda	5400304
	Bolsa-Verde	5400307
	Renda Cidada	5400308
	Renda Melhor Jovem	5400310
	Salario familia	5400313
	Auxilio permanencia	5400314
	Garantia-Safra	5400315
	Bolsa floresta	5400316
	Aposentadoria do INSS	5400401
	Pensao do INSS	5400501
	Aposentadoria (municipal, estadual, federal) da previdencia publica	5400601
	Pensao (municipal, estadual, federal) da previdencia publica	5400701
	Auxilio/Tiquete/Cartao alimentacao	5401601
	Auxilio/Vale/Cartao transporte e combustivel	5401701
	Auxilio a portadores de deficiencia fisica	5402401
	Auxilio-Atividade	5402501
	Auxilio-Estiagem	5402701
	Auxilio reclusao	5403001
	13°, 14°, etc. salario de aposentadoria do inss	5500301
	13°, 14°, etc. salario de pensao do inss	5500401
	13°, 14°, etc. salario de aposentadoria (municipal, estadual, federal) da previdencia publica	5500501
	13°, 14°, etc. salario de pensao (municipal, estadual, federal) da previdencia publica	5500601
	Seguro-desemprego	5501701
	Auxilio-desemprego	5501702
Brazil	Seguro defeso	5501801

Country	Transfer Scheme	Code
	Salario-maternidade (auxilio-maternidade)	5503601
	Auxilio-natalidade	5503602
	Auxilio-natalidade (beneficio eventual -loas)	5503603
	Pensionista (rendimento)	5504601
	13°, 14°, etc. de auxilios e outros beneficios da previdencia social	5506201
	13°, 14°, etc. salario de pensao alimenticia	5506301
	Ajuda de custo aos usuarios do sus	5506501
	Abono natalino do bolsa familia	5506601
Chile	Pensión	TR02
	Pensiones Alimenticias	TR04
	Transferencias desde el Gobierno y/o alguna institución sin fines de lucro	TR10
	Ingreso bruto en jubilaciones observado	INGJ
Colombia	Beca en dinero on en especie para estudiar	P8610S1
	Subsidios en dinero o en especia para estudiar	P8612S1
	Más Familias en Acción	P1668S1A1
	Programe de adultos mayores	P1668S2A2
	Familias en su tierra	P1668S3A2
	Jóvenes en Acción	P1668S4A2
	Transferencias por victimización	P1668S5A2
	Pensiones o jubilaciones por vejez, invalidez o sustitución pensional	P7500S2A1
	Auxilio o subsidio de alimentación	P6585S1A1
	Auxilio o subsidio de transporte	P6585S2A1
	Subsidio Familiar	P6585S3A1
	Otra subsidios	P1668S6A3
	Subsidio de desempleo	P9460S1
Costa Rica	Beca en dinero	P023
	Beca o incentivo de dinero	PS10
	Becas de Estudio de Empresa Privadas	P204
Costa Rica	Becas para Educación Superior o téchnica de Instituciones públicas	P205

Country	Transfer Scheme	Code
	Becas para Educación Superior o téchnica de ISFL	P206
	Becas estudiantes de primaria y secundaria	P207
	Ayuda de Instituciones Públicas	P208
	Ayuda de Instituciones Sin Fines de lucro	P209
	Transferencias netas por Pensión de IVM Extranjero	P200
	Transferencia per Pensión de IVM Nacional Neta	P201
	Transferencia por Pensión Alimenticia	P202
	Transferencia pro Pensión Régimen No Contributivo	P203
Dominican Republic	Becas de estudios otorgados por organizaciones no gubernamentales u ONG	D701F_MONTO
	Comer es Primero	D701K1_MONTO
	Incentivo Asistencia Escolar	D701K2_MONTO
	Bono Luz	D701K3_MONTO
	Programa Bonogás para Choferes	D701K4_MONTO
	Programa Bonogás para Hogares	D701K5_MONTO
	Programea Protección a la Vejez	D701K6_MONTO
	Bono Esoclar Estudiante Progreso	D701K7_MONTO
	Incentivo a la Educación Superior	D701K8_MONTO
	Programa Incentivo a la Policia Preventiva	D701K9_MONTO
	Programa Incentivo Alistados Marina de Guerra	D701K10_MONTO
	Pensión o Jubilcaión	D701H_MONTO
	Pensión de menutención en dinero	D701J_MONTO
Ecuador	Ayudas en dinero de Instituciones y/o Organismos Nacionales	PA85B
	Bono de Desarrollo Humano	PA92
	Pensión por jubilación	IB0102
	Becas de estudio	IB0104
	Pensión alimenticia	IB0202
	Pensión por orfandad, viudez, enfermedad, invalidez, divorcio	IB0302

Country	Transfer Scheme	Code
El Salvador	Jubilación, pensión de invalidez o vejez	r44407
	Pensión por sobrevivencia	r44409
	Ayuda del gobierno en efectivo	r44506
	Pensiòn Básica Universal por ser adulto mayor	r905
	Programa temporal al ingreso (PATI)	r918
	Concepto de bonos comunidades solidarias rurales	r921
	Concepto de bonos comunidades solidarias urbanas	r924
Guatemala	Dinero por conceptos de jubilaciones o pensiones	P11A04B
	Becas de estudio y/o bonos por transporte escolar	P11A07B
	Pensión alimenticia por divorcio o separación	P11A08B
	Otros ingresos además de los mencionadors anteriormente (Bono 14 y Aguinaldo de jubilados, entre otros)	P11B04B
Mexico	Jubilaciones y/o pensiones originadas dentra del pais	P032
	Becas provenientes del gobierno	P038
	Beneficio de PROCAMPO / ProAgro Productivo / Producción para el Bienestar	P043
	Beneficio de otros programas para adultos mayores	P045
	Beneficio de otros programas sociales	P048
	Beca Bienestar para las Familias de Educación Básica (PROSPERA)	P101
	Beca Benito Juárez para Jóvenes de Educación Media Superior	P102
	Beca Jóvenes Escribiendo el Futuro de Educación Superior	P103
	Programa para el Bienestar de las Personas Adultas Mayores	P104
	Pensión para el Bienestar de Personas con Discapacidad	P105
	Apoyo para el Bienestar de los Hijos de Madres Trabajadoras	P106
	Seguro de vida para Jefas de Familia	P107
	Programa Jóvenes Construyendo el Futuro	P108

Country	Transfer Scheme	Code
Nicaragua	Hambre cero (Bono productivos, Programa productio de alimentos), Usura cero, Bono solidario, Paquete alimenticio solidario, Programa CRISSOL, Patio saludable, Calles para el publo, Vivienda digna, Plan techo, Operación milagro (Operaciones de la vista), Operación sonrisa (Operaciones a afectados de labio leporino), Escuela de valores, Acompenamiento familiar, Capacitación con INATECm a través del MI-FAN, Hogar solidario, Asistencia a CDI o CICO para menores de 6 anos, Programa de bienestar social, Titulación de la propiedad, Crédito rural, Merienda escolar, Brigdad de medicos sandinistas, Mochila escolar, Apoyo a la pequena y mediana empresa, Dirección de resolución alterna de conflicto	S1P35
	Becas para estudios	S7C3COD3
	Pensión por alimentición	S7C3COD4
	Pensión for jubilación	S7C3COD5
	Pensión for orfandad, viudez, guerra, discapacidad	S7C3COD6
Paraguay	Ingreso mensual Jubilación	dd0108
	Ingreso mensual Pensión	dd0109
Peru	Pensión de divorcio o separación	P5561
	Pensión por alimentación	P5562
	Pensión de jubilación/ censatia	P5564
	Pensión por viudez, orfandad or sobreviviencia en el país	P5565
	Transferencia del programa JUNTOS	P5566
	Transferencia del programa PENSIÓN	P5567
	Otras transferencias instituciones públicas o privadas en el país	P5568
Uruguay	Tarjeta (Tus-MIDES)	E560_1_1
	Tarjeta (Tus-INDA)	E560_3_1
	Jubilaciones - BPS - Caja industria y comercio	G148_1_1
	Jubilaciones - BPS - caja civil y escolar	G148 ₋ 1 ₋ 2
	Jubilaciones - rural y servicio domestico	G148 ₋ 1 ₋ 3
	Jubilaciones - Unión postal	G148_1_4
	Jubilaciones - policial	G148 ₋ 1 ₋ 5
	Jubilaciones - militar	G148_1_6

Continuation of Table A10

Country	Transfer Scheme	Code
Uruguay	Jubilaciones - profesional	G148_1_7
	Jubilaciones - notarial	G148_1_8
	Jubilaciones - bancaria	G148_1_9
	Jubilaciones - otra	G148_1_10
	Jubilaciones - AFAP	G148_1_12
	Pensiones - BPS - Caja industria y comercio	G148_2_1
	Pensiones - BPS - caja civil y escolar	G148_2_2
	Pensiones - rural y servicio domestico	G148_2_3
	Pensiones - Unión postal	G148_2_4
	Pensiones - policial	G148_2_5
	Pensiones - militar	G148_2_6
	Pensiones - profesional	G148_2_7
	Pensiones - notarial	G148_2_8
	Pensiones - bancaria	G148_2_9
	Pensiones - otra	G148_2_10
	Pensiones - AFAP	G148_2_12
	Seguro de desempleo	G148_3
	becas, subsidios, donaciones (Del país)	G148_5_1
	Asignaciones familiares	G257

Note: This table provides an overview of transfer schemes, from which households in our sample derive income. We code households as being eligible for existing transfers, if they receive non-zero transfers from these programs within the survey year.

Table A11: OLS-Regression Coefficients for Argentina

Dependent Variable:		Ca	rbon Price	Incidence		
Expenditure Quintile	Full sample	1	2	3	4	5
•	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	0.089***	0.092***	0.118***	0.094***	0.082***	0.093***
('''	(0.005)	(0.010)	(0.014)	(0.013)	(0.016)	(0.007)
HH Exp. (log)	-0.010***	-0.012***	-0.011***	-0.009***	-0.008***	-0.008***
(8)	(0.0003)	(0.001)	(0.002)	(0.002)	(0.002)	(0.0008)
HH Size	0.001***	0.0009***	0.0009**	0.001**	0.0005	0.0008**
	(9.81×10^{-5})	(0.0003)	(0.0005)	(0.0006)	(0.0006)	(0.0003)
Electricity Acc.	0.026***	0.029***	0.003***	0.005**	0.016*	(0.000)
	(0.004)	(0.003)	(0.001)	(0.002)	(0.010)	
Car Ownership	0.012***	0.006***	0.012***	0.012***	0.014***	0.014***
r	(0.0004)	(0.001)	(0.0008)	(0.0008)	(0.0007)	(0.0007)
CF = Gas	0.004***	0.016***	0.003	0.009***	0.004	0.0007
	(0.001)	(0.004)	(0.003)	(0.003)	(0.003)	(0.001)
CF = KeroseneFirewoodCharcoal	-0.005***	0.002	-0.011***	0.007	0.007^{*}	-0.002
	(0.002)	(0.004)	(0.004)	(0.004)	(0.004)	(0.003)
CF = LPG	0.004***	0.014***	0.003	0.008***	0.005**	0.004***
	(0.001)	(0.004)	(0.003)	(0.003)	(0.003)	(0.002)
CF = Other	-0.002	0.0005	-0.004	-0.008**	$0.004^{'}$	-0.0006
	(0.004)	(0.007)	(0.004)	(0.003)	(0.011)	(0.006)
ISCED = 0	-0.002**	-0.003**	0.001	-0.004***	-0.003*	-0.001
	(0.0007)	(0.001)	(0.001)	(0.001)	(0.001)	(0.002)
ISCED = 2	-0.002***	-0.002	-0.001	-0.004***	-0.0010	-0.0009
	(0.0005)	(0.001)	(0.001)	(0.001)	(0.001)	(0.002)
ISCED = 3	-0.0009	0.0005	0.0002	-0.002**	-0.002*	-0.002**
	(0.0005)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
ISCED = 6	-0.005***	-0.009***	-0.003*	-0.006***	-0.006***	-0.006***
	(0.0006)	(0.002)	(0.002)	(0.001)	(0.001)	(0.001)
ISCED = 7	-0.002***	-0.0009	0.0005	-0.003**	-0.002	-0.005***
	(0.0005)	(0.002)	(0.001)	(0.001)	(0.001)	(0.001)
ISCED = 9	-0.0008	-0.002	0.002	-0.002	-0.0010	0.0003
	(0.002)	(0.003)	(0.003)	(0.004)	(0.005)	(0.006)
Standard-Errors		Het	eroskedasti	city-robust		
Observations	21,539	4,807	4,623	4,322	4,033	3,754
\mathbb{R}^2	0.21989	0.11703	0.15035	0.15424	0.18445	0.23988

 $\label{lem:heteroskedasticity-robust standard-errors in parentheses Signif. Codes:~***:~0.01,~**:~0.05,~*:~0.1$

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in Argentina. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (EF).

Table A12: OLS-Regression Coefficients for Barbados

Dependent Variable:		Carl	bon Price I	ncidence		
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	0.062^{***}	0.016^*	0.087^{***}	0.092***	0.120***	0.088***
	(0.006)	(0.010)	(0.027)	(0.025)	(0.023)	(0.010)
HH Exp. (log)	-0.005***	-0.0008	-0.008**	-0.007**	-0.011***	-0.008***
	(0.0006)	(0.001)	(0.003)	(0.003)	(0.003)	(0.001)
HH Size	0.0004**	-0.001**	0.0007	0.0007	0.003**	0.001^*
	(0.0002)	(0.0005)	(0.0009)	(0.0009)	(0.001)	(0.0006)
Electricity Acc.	0.003*	0.009***	0.003	-0.008**	-0.002	0.003
	(0.001)	(0.003)	(0.002)	(0.004)	(0.002)	(0.002)
Car Ownership	0.012***	0.009***	0.011***	0.013***	0.016***	0.012***
	(0.0006)	(0.002)	(0.001)	(0.001)	(0.001)	(0.001)
CF = FirewoodCharcoal	-0.011	-4.17×10^{-5}	0.003	, ,		, ,
	(0.008)	(0.004)	(0.003)			
CF = Gas	0.005***	0.013***	0.011***	0.002	0.0008	0.0002
	(0.001)	(0.003)	(0.003)	(0.003)	(0.003)	(0.002)
CF = Kerosene	-0.003	0.005	-0.011***	-0.002	,	,
	(0.004)	(0.004)	(0.003)	(0.003)		
CF = LPG	0.003**	0.011***	0.006**	-0.002	-0.0003	0.0009
	(0.001)	(0.003)	(0.002)	(0.002)	(0.003)	(0.001)
CF = Unknown	-0.002	0.013***	-0.007*	-0.002	-0.004	-0.0001
	(0.003)	(0.004)	(0.004)	(0.004)	(0.006)	(0.002)
ISCED = 0	0.001	-0.002	0.003	0.003**	0.0009	-0.0003
-5	(0.0009)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
ISCED = 2	-0.003	-0.003	0.002	-0.006*	-0.008***	0.0009
	(0.002)	(0.004)	(0.002)	(0.003)	(0.003)	(0.003)
ISCED = 3	-0.0005	0.0005	-0.002	0.002	-0.0005	-0.003
15 022 0	(0.0009)	(0.003)	(0.002)	(0.002)	(0.002)	(0.002)
ISCED = 6	-0.0010	-0.002	0.0002	0.002	-0.001	-0.004**
15022	(0.0009)	(0.004)	(0.002)	(0.002)	(0.002)	(0.002)
ISCED = 7	-0.001	0.010	0.004	-0.002	-0.002	-0.002
150EB ,	(0.001)	(0.007)	(0.003)	(0.002)	(0.002)	(0.002)
ISCED = 8	-0.002	(0.001)	(0.000)	(0.000)	0.002)	-0.006**
15020 = 0	(0.002)				(0.003)	(0.003)
ISCED = 9	-0.0006	0.001	-0.001	0.0005	-0.003	-0.003
15CED = 9	(0.001)	(0.003)	(0.002)	(0.0003)	(0.002)	(0.003)
Ethnicity = EastIndian	0.0005	0.005	-0.002	0.002) 0.004*	-0.0005	-0.0004
Ethnicity — Eastmulan	(0.0003)	(0.003)	(0.002)	(0.004)	(0.0003)	(0.001)
Ethnicity - Miyed	-0.002	0.003)	-0.001	-0.007	-0.002)	-0.0004
Ethnicity = Mixed	(0.002)					
Ethnicity = Other	5.49×10^{-6}	(0.004)	(0.003) -0.009***	(0.004)	(0.002) -0.006***	(0.002) -0.009***
Emmenty = Other		0.006		-0.002 (0.000)		
Ethnicity — White	(0.004)	(0.007) -0.019***	(0.002)	(0.009)	(0.001)	(0.002)
Ethnicity = White	-0.005*			-0.015***	-0.007	0.002
	(0.003)	(0.004)		(0.004)	(0.006)	(0.003)
Standard-Errors		Heter	roskedastici	ty-robust		
Observations	2,434	503	489	480	488	474
\mathbb{R}^2	0.18199	0.13419	0.22343	0.29277	0.35069	0.29260

Heteroskedasticity-robust standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in Barbados. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Black for ethnicity (ETH).

Table A13: OLS-Regression Coefficients for Bolivia

Page	Dependent Variable:			Carbon Price I	ncidence		
Variables <	_	Full sample	1			4	5
Variables Variables 0.086*** 0.018*** 0.071*** 0.061*** 0.059*** 0.008** HH Exp. (log) -0.008*** -0.010*** -0.006*** -0.004*** -0.009*** -0.006*** -0.009*** -0.006*** -0.006*** -0.009*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** 0.000***		_					
(Intercept) 0.086*** 0.018*** 0.071*** 0.061*** 0.059*** 0.098*** HH Exp. (log) 0-0008*** 0.0010** 0.0001** 0.0004** 0.0004** 0.0009** 0.0009** 0.0001** 0.0001** 0.0001** 0.0001** 0.0001** 0.0001** 0.0001** 0.0001** 0.0001** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0004** 0.0005** 0.0004** 0.0005** 0.0004** 0.0005** 0.0004** 0.0005** 0.0004** 0.0005** 0.0004** 0.0005**	Variables	. ,					. ,
Mathematical Math		0.086***	0.019***	0.071***	0.061***	0.050***	0.000***
HH Exp. (log)	(Intercept)						
HH Size	HH Ever (log)	\ /	()	\ /	\ /		\ /
HH Size 0.0005*** (5.49 × 10^-5) 0.05 × 10^-5 (0.0002) 0.00033 0.00031 0.00012 0.000203 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.0005** 0.0006** 0.0005** <td>nn exp. (log)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	nn exp. (log)						
Urban Area (5.49 × 10 ⁻⁵) (0.002*** (0.002*** (0.0003*) (0.0003*) (0.0004*** (0.0004*** (0.0006*** (0.0006*** (0.0006*** (0.0006*** (0.0005*** (0.0006*** (0.0005*** (0.0005*** (0.0005*** (0.0005**** 0.006**** 0.005**** 0.006**** 0.005*** 0.006*** 0.005*** 0.0006*** 0.006*** 0.0005*** 0.0006*** 0.005*** 0.0006*** 0.005*** 0.006*** 0.005*** 0.006*** 0.005*** 0.006*** 0.005*** 0.006*** 0.005*** 0.006*** 0.005*** 0.006*** 0.005*** 0.006*** 0.006*** 0.007** 0.000** 0.005*** 0.007*** 0.000** 0.000** 0.007*** 0.000** 0.000** 0.000** 0.007*** 0.000** 0.0	UU Sigo				\ /	\	
Urban Area 0.002*** 0.002*** 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 0.005** 0.000***	IIII Size						
Company Comp	Urban Araa			\ /			
Electricity Acc.	Orban Arca						
Car Ownership (0.0005) (0.0009) (0.0010) (0.001) (0.001) (0.001) Car Ownership (0.0002) (0.001) (0.0007) (0.0005) (0.0004) (0.0004) CF = Firewood (-0.008*** 0.006*** -0.008** -0.007*** -0.006** -0.007*** CF = Gas (-0.008) 0.007*** -0.002 0.0005 (0.002) (0.002) CF = Gas (-0.008) 0.007*** -0.002 0.0005 (0.002) (0.002) CF = LPG -0.003** 0.072*** -0.004 -0.003 -0.009 -0.005** CF = NoFuel -0.007*** 0.077*** -0.004 -0.003 -0.007** (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.007** (0.006) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)	Floetricity Acc					\	
Car Ownership 0.006*** (0.0002) (0.001) (0.0007) (0.0005) (0.0004) (0.0004) (0.0004) 0.006*** (0.0004) (0.0007) (0.0005) (0.0004) (0.0004) (0.0004) CF = Firewood -0.008*** (0.002) (0.005) (0.007) (0.006) (0.006) (0.002) (0.002) -0.007*** -0.002 (0.006) (0.002) (0.002) (0.002) CF = Gas -0.0006 (0.002) (0.005) (0.007) (0.006) (0.002) (0.002) -0.003** -0.0004 (0.000) (0.006) (0.002) (0.002) CF = LPG -0.003** (0.002) (0.005) (0.007) (0.006) (0.002) (0.002) -0.005** (0.007) (0.006) (0.006) (0.002) (0.002) CF = NoFuel -0.007*** (0.007) (0.007) (0.006) (0.002) (0.002) -0.007*** (0.007) (0.007) (0.006) (0.002) (0.002) CF = OtherBiomass -0.011*** (0.003) (0.007) (0.007) (0.007) (0.007) (0.002) -0.005** (0.002) (0.005) (0.007) (0.007) (0.007) (0.002) ISCED = 0 0.001 (0.004) (0.003) (0.002) (0.003) (0.002) (0.002) -0.005** (0.002) (0.003) (0.002) (0.003) (0.002) (0.002) ISCED = 2 0.001 (0.004) (0.003) (0.002) (0.003) (0.002) (0.002) (0.002) ISCED = 3 (0.001) (0.003) (0.002) (0.003) (0.002) (0.002) (0.002) ISCED = 3 0.0003 (0.002) (0.003) (0.002) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.002) (0.003) (0.002) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.002) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.002) (0.003) (0.	Electricity Acc.						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Car Ownership	\ /	'				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Car Ownership						
CF = Gas (0.002) (0.005) (0.007) (0.006) (0.002) (0.002) CF = Gas -0.0006 0.073*** -0.002 0.0005 0.002 -0.003 CF = LPG -0.003** 0.072*** -0.004 -0.003 -0.0009 -0.005** CF = NoFuel -0.007*** 0.077*** -0.013 -0.006 (0.002) (0.002) CF = NoFuel -0.007*** 0.077*** -0.013* -0.006 -0.005** -0.007*** CF = OtherBiomass -0.011*** 0.063*** -0.012* -0.009 -0.006** CF = OtherBiomass -0.011*** 0.063*** -0.012* -0.009 -0.006** ISCED = 0 0.0010 0.004 0.002 -0.0005 0.005** -0.004* ISCED = 2 0.001 0.004 0.002 -0.0003 0.005** -0.005** ISCED = 3 0.001 0.003 0.002 0.003 0.001* 0.002* ISCED = 3 0.002 0.004 -0.007** 0.001 <td>CE — Finance d</td> <td>\ /</td> <td>\ /</td> <td></td> <td>(/</td> <td>,</td> <td>\</td>	CE — Finance d	\ /	\ /		(/	,	\
CF = Gas -0.0006 0.073*** -0.002 0.0005 0.0005 0.0005 0.0002 -0.003* CF = LPG -0.003** 0.072*** -0.004 -0.003 -0.0009 -0.005* CF = NoFuel -0.007**** 0.007*** -0.013* -0.006 0.002* (0.002) CF = NoFuel -0.007**** 0.007** -0.013* -0.006 0.005** -0.007*** CF = OtherBiomass -0.011*** 0.063*** -0.012* -0.009 -0.006** ISCED = 0 0.0010 0.004 0.002 -0.0005 0.005** -0.004* ISCED = 2 0.001 0.004 0.002 -0.003 0.002** -0.005*** -0.004* ISCED = 3 0.001 0.004 0.002 0.003 0.005*** -0.007*** ISCED = 3 0.0003 0.005 0.0003 0.002** 0.003** -0.007*** ISCED = 4 0.002 0.004** -0.007** 0.001** 0.002** ISCED = 6 0.001	CF = Filewood						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CF = Cog		\ /				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cr = Gas						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CE = IPC						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CF = LFG						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CE = NoEvol						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cr = Noruel						
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	CE OIL B:					(/	(0.002)
$ \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	CF = OtherBiomass						
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	IGGED 0						0.004*
$ \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	ISCED = 0						
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	IGGED a						
$ \begin{tabular}{l l l l l l l l l l l l l l l l l l l $	ISCED = 2						
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	IGGED a	, ,			, ,		
$ \begin{tabular}{l l l l l l l l l l l l l l l l l l l $	ISCED = 3						
$ \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	IGGED 4	, ,	. ,				
$ \begin{tabular}{l l l l l l l l l l l l l l l l l l l $	ISCED = 4						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	IGGED 4						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ISCED = 6						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ICCED =			, ,	, ,	` /	
$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	ISCED = 7						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TO CEPP 0		(0.004)				,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ISCED = 8						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TO CEPP 0	` /	0.004	` /	` /		\ /
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ISCED = 9						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					(0.003)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ethnicity = Afroboliviano						
$ \begin{array}{c} (0.0002) & (0.0006) & (0.0004) & (0.0004) & (0.0004) & (0.0004) \\ \text{Ethnicity} = \text{Non-bolivian} & -0.001 & 0.007^{**} & -0.001 & -0.0005 & -0.002^{**} \\ (0.001) & (0.003) & (0.002) & (0.005) & (0.001) \\ \end{array} $ Standard-Errors $ \begin{array}{c} \text{Heteroskedasticity-robust} \end{array} $			` /				. ,
	Ethnicity $=$ Indigeneous						
(0.001) (0.003) (0.002) (0.005) (0.001) Standard-Errors Heteroskedasticity-robust		` /	'	(0.0004)	` /	,	,
Standard-Errors Heteroskedasticity-robust	Ethnicity = Non-bolivian						
		(0.001)	(0.003)		(0.002)	(0.005)	(0.001)
	Standard-Errors]	Heteroskedastic	ity-robust		
	Observations	11,859			•	2,354	2,429
R^2 0.27278 0.32579 0.19452 0.21095 0.22849 0.28654					,	,	,

Heteroskedasticity-robust standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in Bolivia. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (EF) and Non-indigeneous for ethnicity (ETH).

Table A14: OLS-Regression Coefficients for Brazil

Dependent Variable:			Carbon Price In	ncidence		
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	0.070***	0.084***	0.054^{***}	0.051***	0.037***	0.070***
•	(0.002)	(0.005)	(0.006)	(0.007)	(0.007)	(0.009)
HH Exp. (log)	-0.006***	-0.008***	-0.004***	-0.003***	-0.002***	-0.005***
- (-/	(0.0001)	(0.0005)	(0.0006)	(0.0007)	(0.0007)	(0.0003)
HH Size	0.0008***	0.0007***	0.0001	8.04×10^{-5}	0.0001	0.0009***
	(4.91×10^{-5})	(0.0002)	(0.0002)	(0.0003)	(0.0003)	(0.0001)
Urban Area	-0.003***	-0.002***	-0.003***	-0.004***	-0.004***	-0.003***
	(0.0002)	(0.0004)	(0.0004)	(0.0004)	(0.0004)	(0.0005)
Electricity Acc.	-0.003*	-0.0006	-0.003	-0.007**	-0.001	-0.010
	(0.001)	(0.002)	(0.002)	(0.003)	(0.003)	(0.008)
Car Ownership	0.008***	0.005***	0.008***	0.009***	0.008***	0.008***
•	(0.0002)	(0.0006)	(0.0004)	(0.0004)	(0.0003)	(0.0003)
CF = FirewoodCharcoal	-0.003**	-0.002	0.002	0.0010	0.001	0.002
	(0.001)	(0.003)	(0.002)	(0.003)	(0.005)	(0.003)
CF = Kerosene	0.001	0.010	-0.007***	-0.007***	,	0.027***
	(0.007)	(0.007)	(0.002)	(0.002)		(0.001)
CF = LPG	0.0010	0.005*	0.003**	-0.002	0.001	4.95×10^{-5}
	(0.0008)	(0.003)	(0.001)	(0.002)	(0.002)	(0.001)
CF = Unknown	-0.0001	0.003	0.0007	-0.003	0.002	-0.0005
0	(0.001)	(0.004)	(0.002)	(0.002)	(0.003)	(0.002)
ISCED = 0	-0.0002	5.76×10^{-5}	-0.0010	3.62×10^{-5}	0.0005	0.001
-500	(0.0004)	(0.0008)	(0.0006)	(0.0007)	(0.001)	(0.002)
ISCED = 2	0.0002	-1.47×10^{-5}	-0.0003	0.0002	0.0003	0.0002
	(0.0002)	(0.0005)	(0.0004)	(0.0003)	(0.0003)	(0.0004)
ISCED = 6	0.0003	0.001	-0.0007	-0.0010	-0.0009**	0.0002
15 0 2 2 0	(0.0002)	(0.002)	(0.0008)	(0.0006)	(0.0004)	(0.0004)
ISCED = 7	0.0003	0.004	-0.004	0.001	0.005**	-0.002***
	(0.0006)	(0.010)	(0.004)	(0.004)	(0.002)	(0.0005)
ISCED = 8	-0.0006	0.002***	-0.020***	-0.0007	0.006	-0.002**
15 0 2 2	(0.0009)	(0.0006)	(0.002)	(0.004)	(0.006)	(0.0009)
ISCED = 9	0.0003	0.001**	-0.001**	-0.0007	-0.0006	0.001
-5 0	(0.0003)	(0.0007)	(0.0005)	(0.0006)	(0.0008)	(0.0010)
Ethnicity = Amarela	-0.0002	-0.0006	-0.002	-0.003**	-0.0009	0.0006
Dominion Times one	(0.0010)	(0.004)	(0.004)	(0.001)	(0.002)	(0.001)
Ethnicity = Branca	-0.0003*	-0.0006	-6.63×10^{-5}	6.38×10^{-5}	-0.0002	-0.001***
Denimerey Branea	(0.0002)	(0.0004)	(0.0003)	(0.0003)	(0.0003)	(0.0003)
Ethnicity = Indigena	-0.0009	-0.004***	0.0003	0.001	-0.0008	0.002
Zemmerey margena	(0.0008)	(0.001)	(0.002)	(0.002)	(0.002)	(0.002)
Ethnicity = Preta	-0.0005**	-0.0007	-0.0003	-0.0002	-0.001**	-0.0005
	(0.0002)	(0.0005)	(0.0005)	(0.0004)	(0.0005)	(0.0007)
Ethnicity = Semdeclaracao	-0.002*	-0.003	-0.003	-0.004	-0.005**	0.0010
	(0.001)	(0.002)	(0.003)	(0.002)	(0.002)	(0.003)
C. L.I.D.	()				(- > -)	(- >~)
Standard-Errors	F# 000		Heteroskedastici	-	10.050	0.0==
Observations P ²	57,889	14,069	12,632	11,632	10,679	8,877
\mathbb{R}^2	0.15372	0.10035	0.08563	0.12478	0.11516	0.14197

 $\label{lem:heteroskedasticity-robust standard-errors in parentheses Signif.\ Codes:\ ***:\ 0.01,\ **:\ 0.05,\ *:\ 0.1$

Note

This table displays regression results from equation (8) on the carbon price incidence of any household in Brazil. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Parda for ethnicity (ETH).

Table A15: OLS-Regression Coefficients for Chile

Dependent Variable:		(Carbon Pric	ce Incidence	e	
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	0.062***	0.079***	0.061***	0.037***	0.034***	0.038***
, - ,	(0.002)	(0.008)	(0.010)	(0.011)	(0.008)	(0.003)
HH Exp. (log)	-0.005***	-0.007***	-0.004***	-0.002	-0.002**	-0.003***
- , -,	(0.0002)	(0.001)	(0.001)	(0.001)	(0.0009)	(0.0003)
HH Size	0.0009***	0.0008***	0.0004	-0.0001	0.0006**	0.001***
	(6.87×10^{-5})	(0.0003)	(0.0004)	(0.0003)	(0.0003)	(0.0001)
ISCED = 0	0.004**	0.006**	0.002	0.002	0.0002	0.002
	(0.002)	(0.003)	(0.002)	(0.004)	(0.003)	(0.004)
ISCED = 2	-0.0008**	0.0001	-0.001**	-0.001*	-0.0003	0.001
	(0.0004)	(0.0008)	(0.0007)	(0.0006)	(0.0006)	(0.001)
ISCED = 6	$0.0005^{'}$	0.0001	0.0004	0.0005	0.002*	0.001
	(0.0005)	(0.001)	(0.0009)	(0.0007)	(0.0008)	(0.001)
ISCED = 7	-0.0005	-0.0010	-0.0004	-0.001**	-3.67×10^{-5}	0.001
	(0.0004)	(0.001)	(0.0008)	(0.0006)	(0.0006)	(0.001)
ISCED = 8	-9.65×10^{-5}	0.011***	-0.005*	-0.0003	-0.004**	0.002
	(0.0008)	(0.0007)	(0.002)	(0.002)	(0.002)	(0.001)
ISCED = 9	0.002	0.004	-0.003	0.0003	0.0004	0.010
	(0.002)	(0.003)	(0.003)	(0.004)	(0.003)	(0.007)
Standard-Errors		Н	eteroskedas	ticity-robu	$\overline{\mathrm{st}}$	
Observations	15,237	3,378	3,058	2,860	2,966	2,975
\mathbb{R}^2	0.20015	0.10098	0.06280	0.03673	0.01202	0.04470

Heteroskedasticity-robust standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in Chile. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A16: OLS-Regression Coefficients for Colombia

Dependent Variable:	Carbon Price Incidence								
Expenditure Quintile	Full sample	1	2	3	4	5			
	(1)	(2)	(3)	(4)	(5)	(6)			
Variables									
(Intercept)	0.059***	0.036***	0.045***	0.053***	0.046***	0.054***			
	(0.002)	(0.004)	(0.007)	(0.007)	(0.007)	(0.003)			
HH Exp. (log)	-0.005***	-0.003***	-0.004***	-0.004***	-0.004***	-0.004***			
	(0.0001)	(0.0006)	(0.0009)	(0.0009)	(0.0008)	(0.0002)			
HH Size	0.0008***	-0.0003	0.0002	0.0004	0.0003	0.0008***			
	(5.87×10^{-5})	(0.0002)	(0.0002)	(0.0003)	(0.0003)	(0.0001)			
Urban Area	-0.002***	-0.004***	-0.0005	-0.001	-0.0004	-0.002**			
	(0.0004)	(0.0009)	(0.0007)	(0.0007)	(0.0006)	(0.0006)			
Electricity Acc.	0.004***	0.004**	0.003^*	0.0005	0.0002	-0.0001			
	(0.001)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)			
Car Ownership	0.008***	0.005**	0.011^{***}	0.010***	0.009***	0.006***			
	(0.0003)	(0.002)	(0.002)	(0.001)	(0.0005)	(0.0004)			
CF = Coal	-0.006***	-0.001	-0.002	-0.008	-0.005	-0.002***			
	(0.002)	(0.002)	(0.005)	(0.005)	(0.004)	(0.0006)			
CF = FirewoodCharcoal	-0.010***	-0.005***	-0.005***	-0.009***	-0.001	-0.002			
	(0.0008)	(0.001)	(0.001)	(0.002)	(0.001)	(0.002)			
CF = Gas	0.006***	0.017^{***}	0.007***	0.002	0.005***	0.003***			
	(0.0006)	(0.001)	(0.001)	(0.002)	(0.0006)	(0.0005)			
CF = Kerosene	0.002	0.0003	0.010*	2.55×10^{-5}	-0.0006	-0.004			
	(0.003)	(0.004)	(0.006)	(0.004)	(0.003)	(0.002)			
CF = LPG	0.004***	0.012***	0.004***	0.0006	0.003***	0.001*			
	(0.0006)	(0.001)	(0.001)	(0.002)	(0.0007)	(0.0006)			
CF = Unknown	-0.006***	-0.005*	-0.009***	-0.010***	-0.007***	-0.003***			
	(0.0008)	(0.003)	(0.002)	(0.002)	(0.0008)	(0.0009)			
ISCED = 0	0.0002	0.0004	0.001	-0.0001	0.0003	-0.0004			
	(0.0005)	(0.0010)	(0.0009)	(0.0008)	(0.001)	(0.001)			
ISCED = 2	-0.001***	-0.003***	-0.002**	-0.0010	-0.0008	-0.0005			
	(0.0003)	(0.0009)	(0.0006)	(0.0006)	(0.0006)	(0.0007)			
ISCED = 3	-0.002***	-0.003***	-0.002***	-0.002***	-0.002***	-0.002***			
	(0.0003)	(0.0008)	(0.0005)	(0.0005)	(0.0006)	(0.0005)			
ISCED = 6	-0.003***	-0.002*	-0.002***	-0.003***	-0.002***	-0.002***			
	(0.0003)	(0.001)	(0.0008)	(0.0005)	(0.0005)	(0.0006)			
ISCED = 7	-0.003***	-0.016***	-0.004	-0.003	-0.002	-0.002***			
	(0.0004)	(0.005)	(0.004)	(0.002)	(0.001)	(0.0006)			
ISCED = 9	0.004	0.023**	0.008	0.004	-0.002**	-0.009***			
	(0.003)	(0.010)	(0.006)	(0.004)	(0.0008)	(0.0009)			
Ethnicity = Afrodescendiente	-0.0008**	-1.02×10^{-6}	-0.002**	-8.63×10^{-5}	-0.001***	-0.0009			
	(0.0004)	(0.001)	(0.0007)	(0.0008)	(0.0005)	(0.0006)			
Ethnicity = Gitano-Rrom	-0.006*	-0.021***	-0.007***	-0.008***	0.004***	-0.005***			
	(0.003)	(0.001)	(0.002)	(0.001)	(0.0008)	(0.002)			
Ethnicity = Indigena	-0.002**	-0.0007	-0.003***	-0.002**	0.001	-0.002**			
v G	(0.0007)	(0.001)	(0.0009)	(0.0009)	(0.003)	(0.0009)			
Ethnicity = Palenquero de San Basilio	0.008	-0.003	-0.006	-0.003***	0.024	-0.006***			
•	(0.011)	(0.003)	(0.004)	(0.0008)	(0.023)	(0.002)			
Ethnicity = SanAndresyProvidencia	0.004**	0.018***	$0.003^{'}$	-0.0004	0.004***	0.004**			
v	(0.002)	(0.004)	(0.002)	(0.002)	(0.001)	(0.002)			
Standard-Errors	. ,	Цat	eroskedasti		. ,	. ,			
Observations	87,166	14,584	18,030	19,413	19,037	16,102			
R^2	0.14857	0.15021	0.10034	0.08346	0.08600	0.11031			
16	0.14001	0.10021	0.10034	0.00040	0.00000	0.11031			

 $Heterosked a sticity-robust\ standard-errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in Colombia. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Mestizo o blanco for ethnicity (ETH).

Table A17: OLS-Regression Coefficients for Costa Rica

Dependent Variable:	Carbon Price Incidence						
Expenditure Quintile	Full sample	1	2	3	4	5	
	(1)	(2)	(3)	(4)	(5)	(6)	
Variables							
(Intercept)	0.024^{***}	0.001	0.004	-0.0005	0.005	0.049***	
	(0.002)	(0.005)	(0.012)	(0.012)	(0.011)	(0.006)	
HH Exp. (log)	-0.002***	0.0006	0.0004	0.0005	0.0002	-0.005***	
	(0.0002)	(0.0007)	(0.002)	(0.001)	(0.001)	(0.0006)	
HH Size	0.0004***	-0.0001	-0.0001	-0.0006	-0.0009*	0.0008***	
	(8.16×10^{-5})	(0.0002)	(0.0005)	(0.0005)	(0.0005)	(0.0003)	
Urban Area	-0.002***	-0.003***	-0.002***	-0.002***	-0.001	-0.004***	
	(0.0003)	(0.0005)	(0.0007)	(0.0007)	(0.0007)	(0.0008)	
Electricity Acc.	0.004***	0.003***	0.001	0.006	0.004***		
	(0.0008)	(0.0008)	(0.001)	(0.004)	(0.001)		
Car Ownership	0.010***	0.008***	0.010***	0.009***	0.011***	0.009***	
•	(0.0004)	(0.0010)	(0.0009)	(0.0007)	(0.0007)	(0.0007)	
CF = FirewoodCharcoal	-0.002***	-0.001	-0.002*	-0.002	-0.003	-0.0006	
	(0.0006)	(0.0009)	(0.001)	(0.002)	(0.002)	(0.006)	
CF = LPG	0.003***	0.004***	0.004***	0.003***	0.002**	0.002***	
	(0.0003)	(0.0006)	(0.0007)	(0.0006)	(0.0006)	(0.0006)	
CF = Other	-8.19×10^{-5}	-0.003**	0.003	-0.005***	-0.002	0.003	
	(0.002)	(0.001)	(0.007)	(0.001)	(0.002)	(0.003)	
ISCED = 0	0.001	$0.002^{'}$	0.002	0.002	-0.0007	-0.0006	
	(0.0009)	(0.002)	(0.001)	(0.002)	(0.001)	(0.001)	
ISCED = 2	-0.0004	-0.0008	-0.0006	0.0003	-0.001*	0.0006	
	(0.0003)	(0.0006)	(0.0007)	(0.0007)	(0.0008)	(0.0009)	
ISCED = 3	-0.002**	-0.0001	-0.0007	-0.004*	-0.004**	0.0001	
	(0.0009)	(0.002)	(0.001)	(0.002)	(0.002)	(0.002)	
ISCED = 6	0.0004	-0.004	-0.001	0.005	-0.002	0.003	
	(0.001)	(0.004)	(0.002)	(0.003)	(0.002)	(0.003)	
ISCED = 7	-0.001***	-0.001	-0.003**	-0.0002	-0.002**	9.13×10^{-5}	
	(0.0004)	(0.002)	(0.002)	(0.001)	(0.0010)	(0.0008)	
ISCED = 8	-0.0010		-0.002	0.002	-0.002	0.002	
	(0.0008)		(0.003)	(0.003)	(0.002)	(0.001)	
ISCED = 9	-0.003***	-0.006***	-0.004**	0.001	-0.006*	-0.003**	
	(0.0010)	(0.0007)	(0.002)	(0.0008)	(0.003)	(0.001)	
Ethnicity = Blanco(a)	0.0005*	0.001**	0.001*	0.0008	-0.0009	0.0003	
	(0.0003)	(0.0006)	(0.0007)	(0.0007)	(0.0007)	(0.0006)	
Ethnicity = Indigena	0.0003	-0.0004	0.0009	0.0005	0.002	0.0008	
	(0.0006)	(0.0009)	(0.001)	(0.001)	(0.002)	(0.002)	
Ethnicity = Mulato(a)	-0.0002	0.0009	-0.0001	-0.0003	-0.0010	-0.0007	
	(0.0004)	(0.0009)	(0.0008)	(0.0009)	(0.0008)	(0.0008)	
${\bf Ethnicity} = {\bf Negrooaf rodes cendiente}$	0.0008	0.003*	-0.0006	0.001	-6.39×10^{-5}	0.0010	
	(0.0008)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	
Ethnicity = $Otro(a)$	-0.001	-0.0009	0.0006	0.0007	-0.002	-0.005***	
- , ,	(0.0010)	(0.001)	(0.001)	(0.002)	(0.002)	(0.002)	
Standard-Errors		· · · · ·		asticity-rob			
Observations	6,924	1,619	1,471	1,340	ust 1,318	1,176	
R^2	0.924 0.22379	0.24012	0.25017	0.22395	0.24858	0.24003	
16	0.22013	0.44014	0.20017	0.44990	0.24000	0.24003	

 $Heterosked a sticity \hbox{-} robust\ standard \hbox{-} errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in Costa Rica. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A18: OLS-Regression Coefficients for Dominican Republic

Dependent Variable:	Carbon Price Incidence							
Expenditure Quintile	Full sample	1	2	3	4	5		
•	(1)	(2)	(3)	(4)	(5)	(6)		
Variables								
(Intercept)	0.032***	0.048***	0.027**	0.014	0.037***	0.031***		
(Intercept)	(0.002)	(0.006)	(0.011)	(0.013)	(0.014)	(0.011)		
HH Exp. (log)	-0.002***	-0.004***	-0.001	0.0006	-0.002	-0.002		
1 ('0)	(0.0003)	(0.0008)	(0.001)	(0.002)	(0.002)	(0.001)		
HH Size	-0.0003***	-2.08×10^{-6}	-0.0003	-0.0009	0.0005	-0.001**		
	(8.85×10^{-5})	(0.0002)	(0.0004)	(0.0006)	(0.0007)	(0.0005)		
Urban Area	-0.001***	-0.0007	-0.0007	-0.001**	-0.001**	-0.003***		
	(0.0003)	(0.0005)	(0.0005)	(0.0007)	(0.0007)	(0.0010)		
Electricity Acc.	0.003***	0.004***	0.001	$0.0010^{'}$	0.001	0.004***		
·	(0.0006)	(0.0008)	(0.001)	(0.002)	(0.002)	(0.001)		
Car Ownership	0.015***	0.012***	0.012***	0.015***	0.013***	0.018***		
	(0.0005)	(0.002)	(0.001)	(0.001)	(0.0010)	(0.001)		
CF = Charcoal	-0.008***	-0.009***	-0.008***	-0.007**	-0.010***	-0.005		
	(0.0008)	(0.001)	(0.002)	(0.003)	(0.001)	(0.006)		
CF = Electricity	-0.009***	-0.017***		-0.002	-0.011***	-0.006***		
	(0.002)	(0.002)		(0.008)	(0.002)	(0.002)		
CF = Firewood	-0.007***	-0.008***	-0.007***	-0.006***	-0.006***	-0.009***		
	(0.0006)	(0.0008)	(0.001)	(0.001)	(0.002)	(0.002)		
CF = Kerosene	0.0008	-0.0006	-0.002	0.001	0.007	-0.002		
	(0.002)	(0.003)	(0.001)	(0.004)	(0.005)	(0.006)		
CF = Unknown	-0.006***	-0.013***	-0.010***	-0.005***	-0.004***	-0.004***		
	(0.0006)	(0.001)	(0.001)	(0.001)	(0.001)	(0.0010)		
ISCED = 0	-0.0007*	-0.001**	0.0004	6.92×10^{-5}	-0.003***	0.0002		
	(0.0004)	(0.0006)	(0.0008)	(0.001)	(0.0009)	(0.001)		
ISCED = 2	-0.001***	-0.0002	-0.0004	-0.0010	-0.002**	-0.001		
	(0.0003)	(0.0006)	(0.0006)	(0.0007)	(0.0007)	(0.0009)		
ISCED = 3	-0.0005	0.001	0.004	-0.002	0.001	-0.004		
	(0.001)	(0.005)	(0.003)	(0.002)	(0.003)	(0.002)		
ISCED = 6	0.0001	0.0005	0.003***	0.0009	-0.002*	-0.0004		
	(0.0005)	(0.0010)	(0.0009)	(0.0009)	(0.0010)	(0.001)		
ISCED = 7	0.003		-0.005	0.003	0.002	0.003		
	(0.002)		(0.007)	(0.005)	(0.004)	(0.003)		
Standard-Errors		Hete	roskedastic	ity-robust				
Observations	8,884	2,008	1,876	1,792	1,723	1,485		
\mathbb{R}^2	0.26244	0.18647	0.18023	0.25040	0.23788	0.35687		

Heteroskedasticity-robust standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in Dominican Republic. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A19: OLS-Regression Coefficients for Ecuador

Dependent Variable:			Carbon Price	Incidence		
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	0.096***	0.147^{***}	0.090***	0.079^{***}	0.054***	0.091***
- ,	(0.004)	(0.012)	(0.007)	(0.008)	(0.006)	(0.004)
HH Exp. (log)	-0.010***	-0.019***	-0.010***	-0.008***	-0.006***	-0.009***
	(0.0004)	(0.002)	(0.0009)	(0.0008)	(0.0008)	(0.0004)
HH Size	0.0004***	0.001***	0.0006***	0.0006**	-8.75×10^{-5}	0.0006***
	(4.87×10^{-5})	(0.0003)	(0.0002)	(0.0002)	(0.0002)	(0.0002)
Urban Area	4.32×10^{-5}	-8.6×10^{-5}	-8.6×10^{-5}	-0.0005*	-0.0002	0.0008**
	(0.0002)	(0.0006)	(0.0003)	(0.0003)	(0.0003)	(0.0003)
Electricity Acc.	0.007***	0.011***	0.005***	0.005***	0.004***	0.004***
	(0.0003)	(0.0007)	(0.0004)	(0.0004)	(0.0005)	(0.0007)
Car Ownership	0.015***	0.017***	0.017***	0.014***	0.014***	0.012***
-	(0.0004)	(0.002)	(0.001)	(0.0006)	(0.0005)	(0.0004)
CF = Firewood	-0.005***	-0.002	-0.002	-0.004	0.003*	-0.006**
	(0.002)	(0.004)	(0.002)	(0.004)	(0.002)	(0.003)
CF = LPG	0.003^{*}	0.010***	0.004**	0.0009	0.008***	-0.002
	(0.002)	(0.004)	(0.002)	(0.004)	(0.001)	(0.002)
CF = Unknown	-0.004**	-0.014***	-0.002	-0.002	0.004**	-0.001
	(0.002)	(0.005)	(0.003)	(0.005)	(0.002)	(0.003)
ISCED = 0	-0.0001	-0.0007	-0.0001	-0.001*	-0.0008	-0.003**
	(0.0005)	(0.0009)	(0.0006)	(0.0006)	(0.0006)	(0.001)
ISCED = 2	-0.002	0.008***	(0.000)	-0.007***	(0.000)	(0.00-)
	(0.005)	(0.0010)		(0.0007)		
ISCED = 3	4.29×10^{-5}	-0.001*	0.0001	-0.0005*	-0.0003	0.0006
	(0.0002)	(0.0006)	(0.0003)	(0.0003)	(0.0004)	(0.0004)
ISCED = 5	-0.0010**	-0.0006	-0.001	-0.003***	-0.001**	0.0005
	(0.0005)	(0.002)	(0.001)	(0.0007)	(0.0006)	(0.001)
ISCED = 6	0.002***	0.002	0.001	-0.0006	-3.99×10^{-6}	0.002***
INCEE 0	(0.0003)	(0.002)	(0.0008)	(0.0005)	(0.0004)	(0.0005)
ISCED = 7	0.004***	0.004	-0.003***	0.001	0.0005	0.004***
	(0.0006)	(0.005)	(0.0008)	(0.001)	(0.0008)	(0.0007)
Ethnicity = Afro-descendant	-0.0004	-0.001	-0.0005	-0.001	0.0005	0.0006
zumiency Time depectium.	(0.0005)	(0.001)	(0.0008)	(0.002)	(0.0009)	(0.001)
Ethnicity = Black	-0.0006	-0.002	0.0005	-0.0005	-0.0006	0.0002
Zomirerey Braen	(0.0009)	(0.003)	(0.0007)	(0.0008)	(0.001)	(0.002)
Ethnicity = Black(Mulato)	-0.0004	0.0010	0.0007	-0.0010	-0.0007	-0.002**
Edifficity Black(Malato)	(0.0006)	(0.001)	(0.002)	(0.0007)	(0.0008)	(0.0008)
Ethnicity = Indigenous	-0.0007**	-0.002***	-0.0002	-0.0009	-0.0009	-0.002***
zemiere, margeneas	(0.0003)	(0.0006)	(0.0005)	(0.0007)	(0.0008)	(0.0007)
Ethnicity = Montubio	-0.0001	0.0005	-0.0002	0.0010*	-0.0004	5.19×10^{-5}
Edifficity Mondate	(0.0004)	(0.0008)	(0.0005)	(0.0006)	(0.001)	(0.0008)
Ethnicity = Other	0.002	0.001	-0.0009	0.007^*	0.0003	0.0009
Dominion — Conci	(0.002)	(0.004)	(0.004)	(0.004)	(0.003)	(0.0003)
Ethnicity = White	0.0006	0.001	-0.0006	-0.0002	0.0005	0.0008
Dominicity — William	(0.0006)	(0.001)	(0.0010)	(0.0002)	(0.0003)	(0.0003)
	(0.0000)		,		(0.001)	(0.0001)
Standard-Errors			Heteroskedasti			
Observations	28,950	8,199	5,973	5,294	4,822	4,662
\mathbb{R}^2	0.33892	0.36269	0.32130	0.32373	0.40010	0.40242

 $Heterosked a sticity-robust\ standard-errors\ in\ parentheses$ $Signif.\ Codes:\ ****:\ 0.01,\ **:\ 0.05,\ *:\ 0.1$

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in Ecuador. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (EF) and EICED and EICED are thinicity (EITH).

Table A20: OLS-Regression Coefficients for El Salvador

Dependent Variable:		(Carbon Price I	ncidence		
Expenditure Quintile	Full sample	1	2	3	4	5
•	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	0.075***	0.037***	0.036***	0.017**	0.031***	0.061***
(moreopt)	(0.002)	(0.009)	(0.007)	(0.007)	(0.011)	(0.005)
HH Exp. (log)	-0.008***	-0.003***	-0.003***	-0.0008	-0.003**	-0.006***
1111 Eurp. (108)	(0.0002)	(0.0008)	(0.0009)	(0.0009)	(0.001)	(0.0006)
HH Size	0.003***	0.001***	0.001***	0.0008***	0.001***	0.002***
	(6.57×10^{-5})	(0.0002)	(0.0002)	(0.0002)	(0.0004)	(0.0002)
Urban Area	-0.0002	0.0001	0.0005	0.0008**	0.001***	7.48×10^{-5}
015001111100	(0.0002)	(0.0007)	(0.0004)	(0.0004)	(0.0004)	(0.0005)
Electricity Acc.	0.0005	-0.002	0.002^*	0.003***	0.004***	0.002***
Electricity 11eet	(0.0008)	(0.001)	(0.001)	(0.0008)	(0.0007)	(0.0006)
Car Ownership	0.013***	0.005	0.012***	0.015***	0.016***	0.013***
о о	(0.0004)	(0.003)	(0.001)	(0.001)	(0.001)	(0.0006)
CF = Charcoal	0.0002	0.009	0.003	0.0003	-0.010***	0.002
01 011010001	(0.003)	(0.011)	(0.005)	(0.004)	(0.002)	(0.003)
CF = Firewood	-0.014***	-0.003	-0.011***	-0.008***	-0.006***	-0.006***
01 111011000	(0.001)	(0.007)	(0.002)	(0.002)	(0.002)	(0.002)
CF = Kerosene	0.0006	0.018	-0.011***	-0.003	0.017***	-0.001
C1 Horosone	(0.004)	(0.012)	(0.003)	(0.006)	(0.002)	(0.005)
CF = LPG	0.001	0.017**	0.002	0.002	0.001	-0.0002
01 21 0	(0.001)	(0.007)	(0.002)	(0.002)	(0.002)	(0.002)
CF = Unknown	-0.011***	-0.004	-0.012***	-0.005	-0.008**	-0.004**
C1 CIMIIOWII	(0.002)	(0.007)	(0.002)	(0.004)	(0.003)	(0.002)
ISCED = 0	-0.009**	(0.001)	-0.012***	-0.004***	(0.000)	(0.002)
ISCED 0	(0.004)		(0.005)	(0.0009)		
ISCED = 3	0.001***	8.61×10^{-5}	0.001	0.002***	0.002***	0.001**
INCLE O	(0.0003)	(0.001)	(0.0009)	(0.0006)	(0.0005)	(0.0005)
ISCED = 5	0.0010	-0.002	-0.004**	0.004**	0.003*	0.0007
10022	(0.0008)	(0.004)	(0.002)	(0.002)	(0.002)	(0.001)
ISCED = 6	0.002*	-0.004	-4.6×10^{-5}	0.005***	0.003	0.002***
10022	(0.001)	(0.003)	(0.003)	(0.002)	(0.004)	(0.0009)
ISCED = 7	0.004***	0.004	0.006***	-0.0004	0.005**	0.005***
10022	(0.0007)	(0.008)	(0.002)	(0.002)	(0.002)	(0.0008)
ISCED = 8	0.029***	(0.000)	(0.002)	(0.002)	0.027***	(0.0000)
10022	(0.0005)				(0.001)	
ISCED = 9	-0.0007**	0.0005	-0.0010**	-0.0004	-0.001	-0.0009**
15 CEB 0	(0.0003)	(0.0007)	(0.0005)	(0.0005)	(0.0004)	(0.0004)
Standard E	(/			, ,	()	()
Standard-Errors Observations	റു ഭവ		eteroskedastici 5,065	v	4.490	2 027
R^2	23,622 0.31596	5,351	0.22801	4,840 0.27889	4,429	3,937
1\(=	0.51590	0.23071	0.22801	0.21009	0.38098	0.47331

 $Heterosked a sticity-robust\ standard-errors\ in\ parentheses$ $Signif.\ Codes:\ ^{***}:\ 0.01,\ ^{**}:\ 0.05,\ ^{*}:\ 0.1$

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in El Salvador. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A21: OLS-Regression Coefficients for Guatemala

Dependent Variable:		(Carbon Pric	ce Incidence		
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	0.023***	0.071***	0.014*	0.025^{*}	0.032***	0.038***
	(0.006)	(0.024)	(0.008)	(0.014)	(0.011)	(0.009)
HH Exp. (log)	-0.0008	-0.003**	0.0004	-0.001	-0.002	-0.002**
	(0.0007)	(0.001)	(0.001)	(0.002)	(0.001)	(0.001)
HH Size	-0.0004***	3.73×10^{-5}	-0.0001	-5.54×10^{-5}	-0.0002	-0.0005
	(5.33×10^{-5})	(0.0001)	(0.0002)	(0.0004)	(0.0004)	(0.0004)
Urban Area	0.001***	0.002**	0.001***	0.0006	0.002***	-0.001
	(0.0004)	(0.0008)	(0.0004)	(0.0005)	(0.0005)	(0.001)
Electricity Acc.	0.003***	0.003***	0.003***	0.003***	0.002**	2.76×10^{-5}
-	(0.0004)	(0.0005)	(0.0004)	(0.0006)	(0.0008)	(0.003)
Car Ownership	0.014***	0.008***	0.012***	0.014***	0.014***	0.016***
•	(0.0006)	(0.001)	(0.001)	(0.001)	(0.0009)	(0.0009)
CF = Charcoal	-0.008***	,	-0.004***	-0.007**	-0.009***	-0.009**
	(0.002)		(0.001)	(0.003)	(0.0010)	(0.004)
CF = Firewood	-0.004***	-0.039**	-0.008***	-0.005***	-0.004***	-0.002**
	(0.0006)	(0.015)	(0.001)	(0.0007)	(0.0006)	(0.0007)
CF = Kerosene	0.004	,	-0.007***	$0.0007^{'}$	-0.002	0.011**
	(0.003)		(0.001)	(0.002)	(0.004)	(0.005)
CF = Other	-0.002	-0.028	-0.006***	-0.003*	-0.001	-0.002
	(0.002)	(0.018)	(0.002)	(0.002)	(0.004)	(0.003)
ISCED = 0	-0.0008***	0.0002	-0.0007*	-0.0009*	-0.002***	-0.0010
	(0.0003)	(0.0004)	(0.0004)	(0.0005)	(0.0006)	(0.0010)
ISCED = 2	0.001*	-0.0006	0.002**	0.0007	-0.0005	0.002
	(0.0005)	(0.002)	(0.0009)	(0.0009)	(0.0008)	(0.001)
ISCED = 3	0.0006	-0.002	0.002^*	0.002**	0.001	0.0004
15 022	(0.0004)	(0.004)	(0.001)	(0.0008)	(0.0008)	(0.0008)
ISCED = 6	0.002	0.003***	0.002	-9.04×10^{-5}	0.003	0.003**
15 022	(0.001)	(0.0006)	(0.002)	(0.001)	(0.002)	(0.001)
ISCED = 7	-0.001	0.007***	(0.002)	(0.001)	0.001	0.0003
ISCED !	(0.004)	(0.0009)			(0.001)	(0.005)
ISCED = 8	-0.009***	(0.0000)			0.028***	-0.006***
ISCLD C	(0.002)				(0.001)	(0.002)
ISCED = 9	0.005**	-3.8×10^{-6}	0.003***	0.013***	0.003**	0.002)
	(0.002)	(0.002)	(0.0005)	(0.003)	(0.002)	(0.004)
Ethnicity = Extranjero	-5.37×10^{-5}	(0.002)	0.0009	-0.010***	0.010	-0.003
Ethnicity — Extranjero	(0.004)		(0.008)	(0.0009)	(0.008)	(0.004)
Ethnicity = Indigeneous	-0.002***	-0.002***	-0.002***	-0.002***	0.0004	0.001
Luminory — marganeous	(0.0003)	(0.0005)	(0.0004)	(0.0004)	(0.0004)	(0.001)
Ethnicity = NoIndica	-0.006***	-0.005***	-0.006***	-0.017***	(0.0001)	-0.009***
Luminerty — Normalea	(0.002)	(0.002)	(0.0003)	(0.001)		(0.003)
G. 1.17	(0.002)	,		. , ,		(0.000)
Standard-Errors	44 504			sticity-robust	0.60=	4 004
Observations P.2	11,534	2,357	2,512	2,377	2,307	1,981
\mathbb{R}^2	0.39344	0.37598	0.29946	0.32985	0.35040	0.33519

 $Heterosked a sticity \hbox{-} robust\ standard \hbox{-} errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in Guatemala. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, LPG for cooking fuel (CF) and Ladino for ethnicity (ETH).

Table A22: OLS-Regression Coefficients for Mexico

Dependent Variable:			Carbon Price	e Incidence		
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	0.053***	0.026***	0.046***	0.040***	0.041***	0.084***
	(0.001)	(0.003)	(0.006)	(0.006)	(0.006)	(0.007)
HH Exp. (log)	-0.005***	-0.002***	-0.004***	-0.004***	-0.003***	-0.008***
1 (9/	(0.0001)	(0.0004)	(0.0008)	(0.0008)	(0.0007)	(0.0004)
HH Size	0.0004***	-0.0004***	-0.0001	-0.0004*	-0.0005**	0.001***
	(3.62×10^{-5})	(8.81×10^{-5})	(0.0002)	(0.0002)	(0.0002)	(0.0001)
Urban Area	-0.0002	6.9×10^{-5}	-0.0003	-0.0002	-0.0009***	-0.0004
	(0.0001)	(0.0003)	(0.0003)	(0.0003)	(0.0003)	(0.0003)
Electricity Acc.	0.008***	0.007***	0.005***	0.007***	0.004*	-0.003
·	(0.0009)	(0.0010)	(0.002)	(0.002)	(0.002)	(0.007)
Car Ownership	0.012***	0.014***	0.013***	0.013***	0.012***	0.009***
•	(0.0001)	(0.0004)	(0.0003)	(0.0003)	(0.0003)	(0.0003)
CF = Charcoal	0.017***	0.024***	0.018***	0.015***	0.013***	0.002
	(0.002)	(0.003)	(0.004)	(0.003)	(0.003)	(0.003)
CF = Firewood	0.0006	0.001	0.002^{*}	0.004***	0.002**	$0.002^{'}$
	(0.0005)	(0.0009)	(0.001)	(0.001)	(0.001)	(0.001)
CF = Gas	0.019***	0.032***	0.022***	0.022***	0.018***	0.013***
	(0.0006)	(0.002)	(0.002)	(0.001)	(0.001)	(0.0009)
CF = LPG	0.008***	0.009***	0.007***	0.009***	0.007***	0.006***
	(0.0004)	(0.0009)	(0.001)	(0.001)	(0.001)	(0.0008)
CF = Other	-0.005***	-0.002	-0.006***	-0.005**	-0.006***	-0.004***
	(0.0008)	(0.002)	(0.002)	(0.002)	(0.002)	(0.001)
ISCED = 0	0.0004**	0.0006	0.0009**	0.001***	1.28×10^{-6}	0.0003
	(0.0002)	(0.0004)	(0.0004)	(0.0004)	(0.0004)	(0.0006)
ISCED = 2	-0.0003*	-0.0004	-0.0004	-5.33×10^{-5}	-0.0006	-0.0002
	(0.0002)	(0.0004)	(0.0003)	(0.0004)	(0.0004)	(0.0005)
ISCED = 3	-0.0005**	-0.001*	0.0001	-0.0004	-0.0005	-3.24×10^{-5}
	(0.0002)	(0.0006)	(0.0005)	(0.0005)	(0.0005)	(0.0005)
ISCED = 5	-0.001**	3.28×10^{-5}	-0.002**	0.0010	-0.0002	-0.0006
	(0.0004)	(0.002)	(0.001)	(0.0010)	(0.0009)	(0.0007)
ISCED = 6	0.0006**	0.002	-7.71×10^{-5}	0.002***	0.002***	0.002***
	(0.0003)	(0.001)	(0.0008)	(0.0007)	(0.0005)	(0.0005)
ISCED = 7	2.16×10^{-5}	0.006	0.008	0.005**	0.002*	0.002***
	(0.0005)	(0.004)	(0.005)	(0.003)	(0.001)	(0.0006)
Ethnicity = Indigeneous	-0.001***	-0.0009***	-0.002***	-0.002***	-0.001***	-0.002***
	(0.0001)	(0.0003)	(0.0003)	(0.0003)	(0.0003)	(0.0003)
Standard-Errors		* *	Heteroskedast	icity-robust		
Observations	88,899	19,669	18,416	17,759	17,111	15,944
R ²	0.22693	0.27191	0.26007	0.25920	0.22565	0.18287
10	0.44099	0.21131	0.20001	0.20020	0.22000	0.10201

 $\label{lem:heteroskedasticity-robust standard-errors in parentheses Signif.\ Codes:\ ***:\ 0.01,\ **:\ 0.05,\ *:\ 0.1$

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in Mexico. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, I

Table A23: OLS-Regression Coefficients for Nicaragua

Dependent Variable:			Carbon Pric	ce Incidence		
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	-0.001	0.018***	-0.009	0.005	-0.008	0.044***
- ,	(0.004)	(0.006)	(0.012)	(0.015)	(0.010)	(0.015)
HH Exp. (log)	0.002***	-0.0006	0.002	0.001	0.003***	-0.003**
	(0.0005)	(0.0008)	(0.002)	(0.002)	(0.001)	(0.001)
HH Size	-0.0001	0.0001	7.34×10^{-5}	0.0002	-1.22×10^{-6}	0.001***
	(0.0001)	(0.0002)	(0.0004)	(0.0005)	(0.0003)	(0.0004)
Urban Area	-0.003***	-0.002***	-0.004***	-0.002***	-0.004***	-0.003***
	(0.0004)	(0.0005)	(0.0008)	(0.0007)	(0.001)	(0.001)
Electricity Acc.	-1.82×10^{-5}	-0.0008	0.0008	-0.002	-0.005*	0.006***
	(0.0006)	(0.0007)	(0.001)	(0.002)	(0.003)	(0.002)
Car Ownership	0.009***	0.0001	0.004**	0.009***	0.010***	0.011***
_	(0.0007)	(0.003)	(0.002)	(0.002)	(0.001)	(0.0010)
CF = Charcoal	-0.004	, ,	-0.001	-0.002	-0.0009	-0.013
	(0.003)		(0.002)	(0.002)	(0.003)	(0.012)
CF = Firewood	-0.003	-0.004*	0.002	-0.001	0.001	-0.009
	(0.003)	(0.002)	(0.002)	(0.002)	(0.002)	(0.011)
CF = Kerosene	0.002	,	,	0.011***	0.002	, ,
	(0.004)			(0.002)	(0.002)	
CF = LPG	0.004	0.012***	0.010***	0.005***	0.006**	-0.009
	(0.003)	(0.003)	(0.002)	(0.002)	(0.002)	(0.011)
CF = Unknown	-0.0002	-0.002	0.009*	-0.005*	0.001	-0.012
	(0.003)	(0.005)	(0.005)	(0.002)	(0.004)	(0.012)
ISCED = 0	-0.0003	-0.0006	0.0005	1.87×10^{-6}	0.001	-0.002
	(0.0005)	(0.0006)	(0.001)	(0.0008)	(0.001)	(0.002)
ISCED = 2	-0.0002	-0.0004	-0.002***	0.0008	0.0004	-0.0008
	(0.0004)	(0.0010)	(0.0006)	(0.0009)	(0.0007)	(0.0008)
ISCED = 3	0.0004		0.017**	-0.002*	0.0004	-0.0005
	(0.002)		(0.007)	(0.001)	(0.002)	(0.002)
ISCED = 4	-0.0005	-0.012***	-0.0003	-0.002	0.0003	0.0002
	(0.0008)	(0.002)	(0.003)	(0.001)	(0.001)	(0.001)
ISCED = 5	0.0007	0.006*	0.006	0.001	-0.0009	0.0006
	(0.0009)	(0.003)	(0.004)	(0.002)	(0.001)	(0.001)
ISCED = 6	-0.0003	-0.002	0.002	-0.001	0.0009	0.0009
	(0.0006)	(0.002)	(0.002)	(0.001)	(0.0008)	(0.0010)
ISCED = 7	-0.002			-0.008***	-0.005	0.0002
	(0.003)			(0.001)	(0.003)	(0.003)
ISCED = 8	-0.003**				-0.007***	-0.003
	(0.001)				(0.0007)	(0.002)
ISCED = 9	-0.009***			-0.009***		
	(0.0008)			(0.002)		
Ethnicity = Indigeneous	0.001*	0.0006	0.001	0.0002	0.0008	0.002
	(0.0007)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
Ethnicity = NoSabe	1.79×10^{-6}	-0.002**	0.0006	0.0008	-0.001	-0.001
	(0.0007)	(0.0008)	(0.0008)	(0.002)	(0.0009)	(0.001)
Standard-Errors	·		Heteroskedas	sticity-robust	<u> </u>	
Observations	6,851	764	1,208	1,499	1,731	1,649
R^2	0.28923	0.19103	0.19480	0.18321	0.18016	0.22153
	0.20020	0.10100	0.10100	0.10021	0.10010	0.22100

 $Heterosked a sticity-robust\ standard-errors\ in\ parentheses$ $Signif.\ Codes:\ ****:\ 0.01,\ **:\ 0.05,\ *:\ 0.1$

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in Nicaragua. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A24: OLS-Regression Coefficients for Paraguay

Dependent Variable:			Carbon	Price Incidend	ee	
Expenditure Quintile	Full sample	1	2	3	4	5
•	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	0.032***	0.007	-0.022	0.050***	0.049***	0.019**
(=======)	(0.005)	(0.009)	(0.017)	(0.019)	(0.015)	(0.008)
HH Exp. (log)	-0.003***	0.0004	0.005**	-0.004*	-0.003	-0.002*
1111 211p. (108)	(0.0006)	(0.001)	(0.002)	(0.002)	(0.002)	(0.0009)
HH Size	4.34×10^{-5}	-0.0008*	-0.002***	4.93×10^{-5}	-7.61×10^{-6}	-0.0003
	(0.0001)	(0.0005)	(0.0005)	(0.0005)	(0.0005)	(0.0003)
Urban Area	-9.43×10^{-6}	0.004	0.0005	-0.0009	-0.0007	-0.002**
	(0.0009)	(0.003)	(0.002)	(0.001)	(0.0009)	(0.0009)
Electricity Acc.	0.005**	0.005	0.004	-0.003	-0.012*	0.005
Electricity Tree.	(0.002)	(0.003)	(0.003)	(0.005)	(0.007)	(0.004)
Car Ownership	0.005***	0.009**	0.006***	0.006***	0.004***	0.007***
car o micromp	(0.0005)	(0.004)	(0.002)	(0.001)	(0.0007)	(0.0007)
CF = Coal	0.024***	0.038***	0.027***	0.016***	0.018***	0.015***
01 0001	(0.001)	(0.004)	(0.003)	(0.002)	(0.003)	(0.003)
CF = Firewood	-0.001	0.0008	-0.001	6.13×10^{-5}	0.004**	0.008***
	(0.0010)	(0.002)	(0.002)	(0.002)	(0.002)	(0.003)
CF = LPG	0.003***	0.010***	0.002	0.003	0.004***	0.002^*
OI EI G	(0.0007)	(0.004)	(0.002)	(0.002)	(0.001)	(0.0010)
CF = Unknown	-0.004***	-0.005	-0.006*	-0.005*	-0.0004	-0.001
01 011111101111	(0.001)	(0.004)	(0.004)	(0.003)	(0.002)	(0.002)
ISCED = 0	-0.0002	-0.002	0.010	-0.004*	(0.00-)	0.011
-10 0 0	(0.003)	(0.002)	(0.011)	(0.002)		(0.009)
ISCED = 2	-3.92×10^{-5}	-0.001	0.0008	-0.001	-0.002**	0.004***
	(0.0008)	(0.002)	(0.002)	(0.001)	(0.0009)	(0.001)
ISCED = 3	-0.0010	0.005	-0.004***	-0.001	-0.0008	0.001
	(0.0009)	(0.007)	(0.001)	(0.001)	(0.001)	(0.0008)
ISCED = 4	-0.002**	0.006	-0.004	-0.0006	-0.003**	-6.43×10^{-5}
	(0.0009)	(0.008)	(0.003)	(0.001)	(0.001)	(0.001)
ISCED = 5	0.0008	,	-0.009***	$0.004^{'}$	0.010***	-0.0005
	(0.002)		(0.001)	(0.003)	(0.003)	(0.002)
ISCED = 7	-0.003***	0.006	0.001	-0.003**	-0.002**	0.0001
	(0.0007)	(0.006)	(0.004)	(0.001)	(0.0009)	(0.0009)
ISCED = 9	0.008	0.013	$0.004^{'}$	$0.002^{'}$	-0.0009	-0.010***
	(0.006)	(0.012)	(0.004)	(0.002)	(0.003)	(0.002)
Standard-Errors			Heterosk	edasticity-rob	ıst	_
Observations	5,410	1,141	1,110	1,028	1,063	1,068
\mathbb{R}^2	0.19541	0.18151	0.36618	0.23016	0.22703	0.21222

Heteroskedasticity-robust standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in Paraguay. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A25: OLS-Regression Coefficients for Peru

Dependent Variable:				ice Incidence		_
Expenditure Quintile	Full sample (1)	1 (2)	2 (3)	3 (4)	4 (5)	5 (6)
(7 - 11	(1)	(2)	(3)	(4)	(9)	(0)
Variables Intercept)	0.107***	0.096***	0.130***	0.138***	0.093***	0.076***
Intercept)	(0.003)	(0.009)	(0.008)	(0.008)	(0.006)	(0.003)
HH Exp. (log)	-0.011***	-0.010***	-0.014***	-0.015***	-0.009***	-0.007***
- , -,	(0.0003)	(0.001)	(0.001)	(0.001)	(0.0008)	(0.0003)
HH Size	0.0002***	-0.0003	0.0007***	0.001***	0.0003	0.0002**
	(4.97×10^{-5})	(0.0003)	(0.0002)	(0.0002)	(0.0002)	(9.98×10^{-5})
Jrban Area	0.0002	0.002***	0.001***	0.001***	0.0005	4.94×10^{-5}
Electricity Acc.	(0.0003) 0.004***	(0.0007) 0.004***	(0.0004) 0.003***	(0.0004) 0.002*	(0.0004) 0.003**	(0.0004) 0.002*
hectricity Acc.	(0.004)	(0.004)	(0.0007)	(0.001)	(0.001)	(0.002)
Car Ownership	0.005***	0.003**	0.003***	0.003***	0.004***	0.005***
,	(0.0002)	(0.001)	(0.0006)	(0.0004)	(0.0003)	(0.0003)
F = Biomass	-0.029***	-0.020***	-0.029***	-0.028***	-0.013***	-0.013***
	(0.0008)	(0.004)	(0.002)	(0.002)	(0.002)	(0.003)
F = Coal	-0.014***	-0.008*	-0.014***	-0.009***	-0.012***	-0.008***
	(0.0007)	(0.004)	(0.002)	(0.001)	(0.002)	(0.001)
EF = Firewood	-0.025***	-0.016***	-0.024***	-0.019***	-0.014***	-0.011***
E Can	(0.0005) -0.002***	(0.004)	(0.002)	(0.0009)	(0.0009) -0.001**	(0.001)
F = Gas	(0.0004)	0.002 (0.005)	-0.003** (0.002)	-0.0002 (0.0009)	(0.0006)	-0.001** (0.0005)
F = LPG	0.001***	0.015***	0.0001	0.002***	0.001***	0.0003)
r – hr o	(0.0003)	(0.004)	(0.001)	(0.0007)	(0.0004)	(0.0003)
F = Other	-0.026***	-0.018***	-0.025***	-0.021***	-0.015***	-0.009***
	(0.0007)	(0.004)	(0.002)	(0.002)	(0.002)	(0.002)
F = Unknown	-0.023***	-0.027***	-0.027***	-0.023***	-0.015***	-0.010***
	(0.0009)	(0.005)	(0.002)	(0.002)	(0.001)	(0.0008)
SCED = 0	-0.0001	-0.001	-0.0002	0.0004	0.0003	-0.0006
1000	(0.0005)	(0.0009)	(0.0008)	(0.0010)	(0.0010)	(0.001)
SCED = 2	-0.0008***	-0.001*	-0.0002	-0.0009*	-0.0005	-0.0002
ECED 2	(0.0003)	(0.0007)	(0.0005)	(0.0005)	(0.0004)	(0.0006)
SCED = 3	-0.0008*** (0.0002)	-0.0009 (0.0006)	-0.0003 (0.0004)	-0.0005 (0.0004)	-0.0001 (0.0004)	-0.0002 (0.0004)
SCED = 4	-0.0007**	-0.0004	0.0002	-0.0002	-3.14×10^{-5}	9.39×10^{-5}
CLB - 1	(0.0003)	(0.001)	(0.0002)	(0.0004)	(0.0004)	(0.0005)
SCED = 6	-0.0007*	0.008*	-3.17×10^{-5}	-0.002**	-3.68×10^{-5}	-0.0006
	(0.0004)	(0.004)	(0.001)	(0.0008)	(0.0007)	(0.0005)
SCED = 7	0.0005	0.001	0.0002	0.001*	0.0008*	0.0006
	(0.0003)	(0.003)	(0.0009)	(0.0007)	(0.0005)	(0.0005)
SCED = 8	0.002***	0.060***	0.005**	0.0008	-0.0002	0.001**
agen .	(0.0005)	(0.019)	(0.002)	(0.001)	(0.0008)	(0.0005)
SCED = 9	-0.003***		-0.0007*	-0.002***		
Ethnicity = Aaymara	(0.0005) $0.002***$	0.004***	(0.0004) 0.002**	(0.0003) 0.0003	-2.86×10^{-8}	-0.0003
termicity — Aaymara	(0.002)	(0.001)	(0.0009)	(0.0008)	(0.0007)	(0.0009)
Cthnicity = Blanco	-0.0003	0.0001)	-0.0008	-0.002**	0.0004	-0.0001
minimity — Bitaleo	(0.0004)	(0.002)	(0.0009)	(0.0007)	(0.0006)	(0.0006)
thnicity = Nativooindigenadelaamazonia	0.001*	0.003***	0.001	0.004	0.0004	$-6.66 \times 10^{-}$
	(0.0007)	(0.0009)	(0.001)	(0.004)	(0.001)	(0.001)
Cthnicity = Negro/moreno/zambo/mulato/afroperuano	-0.0009***	-0.001	-6.53×10^{-5}	-0.002***	-0.0002	-0.002***
	(0.0003)	(0.0010)	(0.0006)	(0.0005)	(0.0005)	(0.0005)
Ethnicity = nosabe/noresponde	0.002	0.032***	-0.006	0.008***	-0.0004	0.005
7(1 : 1 / 1	(0.002)	(0.006)	(0.006)	(0.0010)	(0.001)	(0.004)
Ethnicity = Nosabe/noresponde	0.0003	0.001	-0.0001	0.0003	0.0005	-0.0006
Ethnicity = Otro	(0.0004) 0.0001	(0.001) -0.0003	(0.0008) 7.8×10^{-5}	(0.0007) 0.001	(0.0008) -0.0009	(0.0006) 0.0005
definition — Outo	(0.0001)	(0.002)	(0.0008)	(0.0007)	(0.0009	(0.0005)
Ethnicity = Otropuebloindigenauoriginario	-0.0005	0.002)	-0.007	-6.55×10^{-5}	-0.003	-0.0006
o topacotomatgenadoriginario	(0.002)	(0.002)	(0.005)	(0.002)	(0.002)	(0.0005)
Ethnicity = Quechua	-0.0002	2.56×10^{-5}	-0.0006	-0.0005	-0.0005	-0.0009***
•	(0.0002)	(0.0006)	(0.0004)	(0.0003)	(0.0003)	(0.0003)
tandard-Errors		. ,		asticity-robust	. ,	. /
Observations	34,542	8,927	6,861	6,248	6,152	6,354
	, 	~,~	-,	-,	-,	-,

Heteroskedasticity-robust standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table displays regression results from equation (8) on the carbon price incidence of any household in Peru. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Mestizo for ethnicity (ETH).

Table A26: OLS-Regression Coefficients for Uruguay

Dependent Variable:			Carbon Price I	ncidence		
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	0.035***	0.027***	0.031***	0.022***	0.019***	0.044***
	(0.002)	(0.005)	(0.007)	(0.007)	(0.006)	(0.005)
HH Exp. (log)	-0.002***	-0.002***	-0.002**	-0.001*	-0.001*	-0.003***
1 (0)	(0.0001)	(0.0004)	(0.0006)	(0.0007)	(0.0007)	(0.0005)
HH Size	0.0002***	3.91×10^{-5}	$0.0002^{'}$	-0.0003	-0.0003	0.0003**
	(4.48×10^{-5})	(0.0001)	(0.0003)	(0.0003)	(0.0003)	(0.0001)
Urban Area	-0.002***	-0.002***	-0.002***	-0.002***	-0.002***	-0.003***
	(0.0002)	(0.0005)	(0.0004)	(0.0004)	(0.0005)	(0.0007)
Electricity Acc.	-0.006***	-0.007**	-0.010*	-0.003*	-0.0002	-0.007***
	(0.002)	(0.003)	(0.005)	(0.002)	(0.0002)	(0.0007)
Car Ownership	0.006***	0.007***	0.005***	0.006***	0.006***	0.006***
Р	(0.0002)	(0.0006)	(0.0003)	(0.0003)	(0.0003)	(0.0003)
CF = Firewood	0.0006	0.001	0.004*	-0.003*	0.005	0.002
	(0.0008)	(0.0010)	(0.002)	(0.002)	(0.003)	(0.002)
CF = Gas	0.002***	0.003	0.001	0.002)	0.002**	0.001***
CI Gui	(0.0004)	(0.003)	(0.002)	(0.002)	(0.0008)	(0.0005)
CF = Kerosene	-0.0007	0.004***	-0.003***	(0.002)	(0.0000)	(0.0000)
CI = Refosciie	(0.002)	(0.0005)	(0.0005)			
CF = LPG	0.002)	0.003***	0.002***	0.0009^*	0.0006	0.0007**
Or = Er G	(0.001)	(0.0005)	(0.002)	(0.0005)	(0.0005)	(0.0003)
CF = NoFuel	-0.0008	0.003	-0.003***	-0.003***	-0.002	-0.0008
Cr = Norder	(0.001)	(0.003)	(0.0007)	(0.0006)	(0.001)	(0.0009)
ISCED = 2	4.95×10^{-5}	0.0003	-5.88×10^{-5}	-0.0002	0.0003	0.0003)
ISCED = 2	(0.0002)	(0.0008)	(0.0004)	(0.0002)	(0.0003)	(0.0003)
ISCED = 5	-4.62×10^{-5}	-7.01×10^{-5}	-0.0003	0.0003)	-3.13×10^{-5}	0.0003
ISCED = 0	(0.0002)	(0.0007)	(0.0003)	(0.0004)	(0.0004)	(0.0004)
ISCED = 6	-0.001***	(0.0001)	(0.0003)	-0.002***	(0.0004)	-0.0004
ISCED = 0	(0.0004)			(0.0003)		(0.0006)
ISCED = 7	-0.0001	0.013***	0.007***	-0.001	-0.0004	0.0007*
ISCED = 1	(0.0001)	(0.0008)	(0.002)	(0.001)	(0.0004)	(0.0004)
ISCED = 8	-0.0006***	-1.78×10^{-5}	-0.001*	-0.0002	-0.0008**	9.11×10^{-5}
ISCED = 8	(0.0002)	(0.001)	(0.0006)	(0.0005)	(0.0003)	(0.0004)
ISCED = 9	-0.0002)	-0.0008**	-0.0006	-0.0009*	-0.0009*	-0.001**
ISCED = 9			(0.0004)	(0.0005)	(0.0005)	(0.0006)
Ethnicity — AfrocNome	(0.0002) -0.0001	$(0.0004) \\ 0.0003$	-0.0002	-0.0005	-0.0009	-0.0003
Ethnicity = AfrooNegra						
Ethericites Asiations Associlla	(0.0003)	(0.0005)	(0.0005) -0.002***	(0.0004) 0.010^{***}	(0.0007)	(0.001) 0.002^*
Ethnicity = Asiaticao Amarilla	0.001	-0.002		(0.0005)	0.0002	(0.002)
Dilatin Indiana	(0.001)	(0.002)	(0.0003)	((0.001)	,
Ethnicity = Indigena	0.0001	8.26×10^{-5}	0.0008	0.0007	-0.0005 (0.0006)	-0.0002
Ethericites Oto	(0.0004)	(0.0010) -0.003***	(0.0009)	(0.001)	(0.0006)	(0.0004)
Ethnicity = Otra	5.13×10^{-5}		-0.0001	-0.0004	0.0010	0.001
	(0.0008)	(0.0007)	(0.0005)	(0.0003)	(0.001)	(0.003)
Standard-Errors			Heteroskedastic	ity-robust		
Observations	6,888	1,753	1,430	1,304	1,206	1,195
\mathbb{R}^2	0.30603	0.21856	0.30659	0.37381	0.35545	0.34699

 $Heterosked a sticity-robust\ standard-errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in Uruguay. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (EF) and Electricity for ethnicity (ETH).

Table A27: Contribution of each variable to explaining variance in carbon pricing incidence in Argentina

		Expenditure Quintile						
Sample:	Full Sample	1	2	3	4	5		
HH Exp. (log)	0.633	0.868	0.310	0.087	0.044	0.055		
HH Size	0.044	-0.091	-0.074	-0.024	-0.005	0.012		
Electricity Acc.	0.004	0.032	0.000	0.001	0.002	NaN		
Car Ownership	0.248	0.071	0.729	0.822	0.857	0.782		
Cooking Fuel	0.011	0.052	0.013	0.031	0.026	0.040		
Education	0.060	0.067	0.023	0.084	0.077	0.111		

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Argentina. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A28: Contribution of each variable to explaining variance in carbon pricing incidence in Barbados

		Expenditure Quintile						
Sample:	Full Sample	1	2	3	4	5		
HH Exp. (log)	0.215	0.001	0.229	0.046	-0.100	0.278		
HH Size	-0.001	0.078	-0.047	-0.014	0.055	-0.024		
Electricity Acc.	0.018	0.220	0.021	0.047	-0.006	0.009		
Car Ownership	0.681	0.345	0.560	0.745	0.992	0.663		
Cooking Fuel	0.063	0.132	0.154	0.054	0.017	0.007		
Education	0.011	0.141	0.060	0.073	0.033	0.037		
Ethnicity	0.012	0.084	0.024	0.050	0.010	0.031		

Note:

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Barbados. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A29: Contribution of each variable to explaining variance in carbon pricing incidence in Bolivia

		Expenditure Quintile							
Sample:	Full Sample	1	2	3	4	5			
HH Exp. (log)	0.675	0.498	0.293	0.163	0.262	0.558			
HH Size	-0.031	-0.013	-0.011	0.035	0.049	-0.079			
Urban Area	0.018	0.041	0.063	0.036	0.024	0.082			
Electricity Acc.	0.087	0.203	0.111	0.050	0.038	0.021			
Car Ownership	0.091	0.025	0.110	0.284	0.315	0.225			
Cooking Fuel	0.122	0.185	0.252	0.292	0.233	0.090			
Education	0.006	0.008	0.082	0.049	0.051	0.046			
Ethnicity	0.031	0.053	0.100	0.093	0.028	0.057			

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Bolivia. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A30: Contribution of each variable to explaining variance in carbon pricing incidence in Brazil

		Expenditure Quintile					
Sample:	Full Sample	1	2	3	4	5	
HH Exp. (log)	0.712	0.947	0.096	-0.018	-0.052	0.252	
HH Size	0.026	-0.092	-0.009	0.001	0.006	0.023	
Urban Area	0.076	0.050	0.122	0.071	0.068	0.034	
Electricity Acc.	0.003	0.001	0.004	0.005	0.000	0.008	
Car Ownership	0.187	0.057	0.763	0.927	0.950	0.641	
Cooking Fuel	-0.004	0.017	0.011	0.004	0.001	0.002	
Education	-0.005	0.014	0.011	0.004	0.017	0.020	
Ethnicity	0.004	0.006	0.003	0.006	0.010	0.021	

Note:

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Brazil. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A31: Contribution of each variable to explaining variance in carbon pricing incidence in Chile

		Expenditure Quintile					
Sample:	Full Sample	1	2	3	4	5	
HH Exp. (log)	0.932		1.045				
HH Size	0.017	-0.210	-0.245	0.000	-0.237	0.368	
Education	0.051	0.097	0.200	0.293	0.610	0.020	

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Chile. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A32: Contribution of each variable to explaining variance in carbon pricing incidence in Colombia

		Expenditure Quintile					
Sample:	Full Sample	1	2	3	4	5	
HH Exp. (log)	0.552	0.016	0.066	0.099	0.064	0.432	
HH Size	0.022	0.013	-0.013	-0.024	-0.009	0.004	
Urban Area	0.001	-0.077	-0.016	-0.016	-0.004	0.005	
Electricity Acc.	0.009	0.027	0.014	0.002	0.000	0.000	
Car Ownership	0.026	0.004	0.218	0.492	0.664	0.428	
Cooking Fuel	0.325	1.012	0.682	0.405	0.220	0.085	
Education	0.059	-0.001	0.012	0.031	0.018	0.036	
Ethnicity	0.006	0.006	0.036	0.011	0.047	0.009	

Note:

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Colombia. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A33: Contribution of each variable to explaining variance in carbon pricing incidence in Costa Rica

		Expenditure Quintile						
Sample:	Full Sample	1	2	3	4	5		
HH Exp. (log)	-0.021	0.010	0.008	0.009	0.006	0.036		
HH Size	0.022	-0.002	-0.006	-0.025	-0.048	0.023		
Urban Area	0.074	0.118	0.061	0.072	0.013	0.115		
Electricity Acc.	0.003	0.008	0.000	0.001	0.003	NaN		
Car Ownership	0.791	0.515	0.786	0.826	0.979	0.738		
Cooking Fuel	0.118	0.312	0.126	0.094	0.031	0.045		
Education	0.007	0.021	0.008	0.011	0.001	0.021		
Ethnicity	0.005	0.018	0.016	0.012	0.014	0.022		

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Costa Rica. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A34: Contribution of each variable to explaining variance in carbon pricing incidence in Dominican Republic

	Expenditure Quintile					
Full Sample	1	2	3	4	5	
-0.061	0.072	-0.015	0.011	-0.073	-0.044	
-0.001	0.000	-0.008	-0.036	0.040	-0.050	
-0.004	-0.003	-0.004	0.001	0.001	-0.001	
0.010	0.066	0.008	0.002	0.004	0.004	
0.927	0.432	0.757	0.939	0.896	1.023	
0.106	0.411	0.207	0.069	0.106	$0.045 \\ 0.023$	
	-0.061 -0.001 -0.004 0.010 0.927	-0.061 0.072 -0.001 0.000 -0.004 -0.003 0.010 0.066 0.927 0.432 0.106 0.411	Full Sample 1 2 -0.061 0.072 -0.015 -0.001 0.000 -0.008 -0.004 -0.003 -0.004 0.010 0.066 0.008 0.927 0.432 0.757 0.106 0.411 0.207	Full Sample 1 2 3 -0.061 0.072 -0.015 0.011 -0.001 0.000 -0.008 -0.036 -0.004 -0.003 -0.004 0.001 0.010 0.066 0.008 0.002 0.927 0.432 0.757 0.939 0.106 0.411 0.207 0.069	Full Sample 1 2 3 4 -0.061 0.072 -0.015 0.011 -0.073 -0.001 0.000 -0.008 -0.036 0.040 -0.004 -0.003 -0.004 0.001 0.001 0.010 0.066 0.008 0.002 0.004 0.927 0.432 0.757 0.939 0.896 0.106 0.411 0.207 0.069 0.106	

Note:

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Dominican Republic. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A35: Contribution of each variable to explaining variance in carbon pricing incidence in Ecuador

	Expenditure Quintile						
Sample:	Full Sample	1	2	3	4	5	
HH Exp. (log)	0.693	0.925	0.498	0.254	0.062	0.248	
HH Size	-0.019	-0.115	-0.090	-0.045	0.002	-0.010	
Urban Area	0.000	0.000	0.001	0.004	0.000	0.004	
Electricity Acc.	0.053	0.099	0.097	0.082	0.031	0.021	
Car Ownership	0.274	0.031	0.466	0.668	0.881	0.677	
Cooking Fuel	0.002	0.057	0.023	0.009	0.016	0.004	
Education	-0.002	0.002	0.003	0.014	0.005	0.047	
Ethnicity	-0.001	0.000	0.002	0.013	0.003	0.009	

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Ecuador. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A36: Contribution of each variable to explaining variance in carbon pricing incidence in El Salvador

		Expenditure Quintile					
Sample:	Full Sample	1	2	3	4	5	
HH Exp. (log)	0.353	-0.060	-0.057	-0.017	-0.046	-0.086	
HH Size	0.146	0.028	0.122	0.056	0.047	0.104	
Urban Area	0.001	0.002	0.008	0.011	0.009	0.000	
Electricity Acc.	0.001	-0.013	0.026	0.021	0.010	0.005	
Car Ownership	0.216	0.005	0.207	0.624	0.824	0.773	
Cooking Fuel Education	$0.270 \\ 0.012$	1.041 -0.002	$0.651 \\ 0.044$	$0.245 \\ 0.060$	0.064 0.092	$0.067 \\ 0.136$	

Note:

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in El Salvador. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A37: Contribution of each variable to explaining variance in carbon pricing incidence in Guatemala

		Expenditure Quintile						
Sample:	Full Sample	1	2	3	4	5		
HH Exp. (log)	-0.039	0.099	0.008	-0.013	-0.025	-0.058		
HH Size	0.038	-0.005	-0.011	-0.002	-0.007	-0.015		
Urban Area	0.040	0.037	0.034	0.013	0.025	-0.003		
Electricity Acc.	0.069	0.066	0.122	0.060	0.018	0.000		
Car Ownership	0.627	0.043	0.435	0.597	0.787	0.989		
Cooking Fuel	0.175	0.708	0.288	0.223	0.122	0.031		
Education	0.046	-0.004	0.064	0.046	0.058	0.053		
Ethnicity	0.044	0.055	0.061	0.076	0.022	0.002		

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Guatemala. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A38: Contribution of each variable to explaining variance in carbon pricing incidence in Mexico

			Expenditure Quintile					
Sample:	Full Sample	1	2	3	4	5		
HH Exp. (log)	0.017	-0.005	0.010	0.004	-0.001	0.128		
HH Size	-0.003	0.008	0.001	0.004	0.004	0.003		
Urban Area	-0.001	0.001	-0.002	-0.001	-0.002	-0.001		
Electricity Acc.	0.005	0.009	0.003	0.003	0.001	0.000		
Car Ownership	0.607	0.456	0.626	0.659	0.673	0.559		
Cooking Fuel	0.352	0.518	0.335	0.291	0.290	0.257		
Education	0.001	-0.002	0.004	0.021	0.023	0.027		
Ethnicity	0.022	0.015	0.023	0.020	0.013	0.028		

Note:

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Mexico. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A39: Contribution of each variable to explaining variance in carbon pricing incidence in Nicaragua

		Expenditure Quintile						
Sample:	Full Sample	1	2	3	4	5		
HH Exp. (log)	0.282	0.000	0.123	0.070	0.238	-0.097		
HH Size	0.001	0.003	0.016	0.048	0.000	0.159		
Urban Area	-0.100	-0.033	-0.013	-0.074	0.065	0.019		
Electricity Acc.	0.000	0.001	0.013	-0.009	0.040	0.016		
Car Ownership	0.334	0.000	0.028	0.184	0.477	0.833		
Cooking Fuel	0.488	0.995	0.722	0.743	0.160	0.034		
Education	-0.006	0.026	0.102	0.039	0.014	0.032		
Ethnicity	0.001	0.008	0.008	-0.001	0.006	0.003		

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Nicaragua. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A40: Contribution of each variable to explaining variance in carbon pricing incidence in Paraguay

	Expenditure Quintile						
Sample:	Full Sample	1	2	3	4	5	
HH Exp. (log)	0.047	0.002	-0.007	0.063	0.085	-0.019	
HH Size	0.000	0.009	0.042	-0.003	0.001	-0.006	
Urban Area	0.000	0.059	0.006	0.000	0.007	0.040	
Electricity Acc.	0.009	0.021	0.004	0.001	0.020	0.000	
Car Ownership	0.017	0.009	0.022	0.111	0.074	0.578	
Cooking Fuel	0.878	0.825	0.902	0.784	0.746	0.319	
Education	0.050	0.075	0.031	0.043	0.068	0.088	

Note:

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Paraguay. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A41: Contribution of each variable to explaining variance in carbon pricing incidence in Peru

		Expenditure Quintile						
Sample:	Full Sample	1	2	3	4	5		
HH Exp. (log)	0.486	0.110	0.414	0.783	0.768	0.633		
HH Size	-0.012	0.010	-0.068	-0.187	-0.071	-0.033		
Urban Area	0.000	0.014	0.008	0.001	0.000	0.000		
Electricity Acc.	0.012	0.024	0.017	0.004	0.005	0.002		
Car Ownership	-0.006	0.001	0.003	0.003	0.040	0.178		
Cooking Fuel	0.514	0.832	0.620	0.374	0.251	0.204		
Education	0.000	0.003	0.000	0.012	0.005	0.004		
Ethnicity	0.005	0.006	0.006	0.011	0.002	0.012		

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Peru. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A42: Contribution of each variable to explaining variance in carbon pricing incidence in Uruguay

		Expenditure Quintile					
Sample:	Full Sample	1	2	3	4	5	
HH Exp. (log)	0.132	0.027	-0.004	-0.004	-0.025	0.017	
HH Size	0.014	-0.002	0.001	0.000	-0.012	0.008	
Urban Area	0.134	0.130	0.167	0.082	0.097	0.163	
Electricity Acc.	0.017	0.048	0.045	0.005	0.000	0.002	
Car Ownership	0.686	0.762	0.748	0.848	0.889	0.788	
Cooking Fuel	0.012	0.022	0.031	0.039	0.034	0.017	
Education	0.004	0.014	0.011	0.013	0.014	0.003	
Ethnicity	0.000	-0.002	0.002	0.018	0.004	0.002	

Note:

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Uruguay. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A43: Logit-Model Coefficients Hardship Cases in Argentina

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	opulation
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(6)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.3***
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(2.51)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.00***
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.275)
Electricity Acc. $ \begin{array}{c} 14.8^{***} & 15.6^{***} & 11.8^{***} & 14.2^{***} & 11.5^{***} \\ (0.170) & (0.281) & (0.194) & (0.250) & (0.318) \\ (0.250) & (0.318) & (0.275)^{***} & 1.73^{***} & 1.91^{***} & 2.45^{***} & 2.85^{***} \\ (0.066) & (0.118) & (0.131) & (0.154) & (0.198) & (0.275) \\ (0.066) & (0.118) & (0.131) & (0.154) & (0.198) & (0.275) \\ (0.085) & (0.006) & (0.007) & (0.007) & (0.083) & (0.835) & (0.275) \\ (0.085) & (0.007) & (0.007) & (0.083) & (0.835) & (0.275) \\ (0.085) & (0.007) & (0.007) & (0.008) & (0.835) & (0.284) \\ (0.0493) & (0.716) & (0.709) & (1.02) & (0.850) & (0.284) \\ (0.0493) & (0.716) & (0.709) & (1.02) & (0.850) & (0.284) \\ (0.088) & 1.07^{*} & -0.347 & 14.6^{***} & 0.018 & -0.275 \\ (0.084) & (0.004) & (0.700) & (0.115) & (0.844) & (0.275) \\ (0.084) & (0.004) & (0.004) & (0.115) & (0.844) & (0.275) \\ (0.085) & (0.146) & (0.211) & (0.258) & (0.332) & (0.284) \\ (0.085) & (0.152) & (0.166) & (0.175) & (0.216) & (0.216) \\ (0.028) & (0.125) & (0.258) & (0.296) & (0.248) & (0.284) & (0.284) \\ (0.284) & (0.284) & (0.284) & (0.284) \\ (0.025) & (0.258) & (0.296) & (0.248) & (0.284) & (0.284) \\ (0.025) & (0.258) & (0.296) & (0.248) & (0.284) & (0.284) \\ (0.025) & (0.258) & (0.296) & (0.248) & (0.284) & (0.284) \\ (0.025) & (0.025) & (0.258) & (0.296) & (0.248) & (0.284) & (0.284) \\ (0.025) & (0.025) & (0.258) & (0.296) & (0.248) & (0.284) & (0.284) \\ (0.025) & (0.025) & (0.026) & (0.0284) & (0.284) & (0.284) \\ (0.025) & (0.025) & (0.026) & (0.0248) & (0.284) & (0.284) \\ (0.025) & (0.025) & (0.0260) & (0.0248) & (0.284) & (0.284) \\ (0.025) & (0.025) & (0.026) & (0.0248) & (0.284) & (0.284) \\ (0.025) & (0.025) & (0.026) & (0.0284) & (0.284) & (0.284) \\ (0.025) & (0.025) & (0.026) & (0.0284) & (0.284) & (0.284) \\ (0.025) & (0.025) & (0.026) & (0.0248) & (0.284) & (0.284) \\ (0.025) & (0.025) & (0.026) & (0.0248) & (0.0284) & (0.284) \\ (0.025) & (0.025) & (0.026) & (0.0248) & (0.026) & (0.026) & (0.026) \\ (0.025) & (0.026) & (0.026) & (0.026) & (0.026) & (0.026) & (0.026) & (0.026) & (0.026) & (0.026)$	$0.178^{'}$
Electricity Acc. $ \begin{array}{c} 14.8^{***} & 15.6^{***} & 11.8^{***} & 14.2^{***} & 11.5^{***} \\ (0.170) & (0.281) & (0.194) & (0.250) & (0.318) \\ (0.250) & (0.318) & (0.275)^{***} & 1.73^{***} & 1.91^{***} & 2.45^{***} & 2.85^{***} \\ (0.066) & (0.118) & (0.131) & (0.154) & (0.198) & (0.275) \\ (0.066) & (0.118) & (0.131) & (0.154) & (0.198) & (0.275) \\ (0.085) & (0.006) & (0.007) & (0.007) & (0.083) & (0.835) & (0.275) \\ (0.085) & (0.007) & (0.007) & (0.083) & (0.835) & (0.275) \\ (0.085) & (0.007) & (0.007) & (0.008) & (0.835) & (0.284) \\ (0.0493) & (0.716) & (0.709) & (1.02) & (0.850) & (0.284) \\ (0.0493) & (0.716) & (0.709) & (1.02) & (0.850) & (0.284) \\ (0.088) & 1.07^{*} & -0.347 & 14.6^{***} & 0.018 & -0.275 \\ (0.084) & (0.004) & (0.700) & (0.115) & (0.844) & (0.275) \\ (0.084) & (0.004) & (0.004) & (0.115) & (0.844) & (0.275) \\ (0.085) & (0.146) & (0.211) & (0.258) & (0.332) & (0.284) \\ (0.085) & (0.152) & (0.166) & (0.175) & (0.216) & (0.216) \\ (0.028) & (0.125) & (0.258) & (0.296) & (0.248) & (0.284) & (0.284) \\ (0.284) & (0.284) & (0.284) & (0.284) \\ (0.025) & (0.258) & (0.296) & (0.248) & (0.284) & (0.284) \\ (0.025) & (0.258) & (0.296) & (0.248) & (0.284) & (0.284) \\ (0.025) & (0.258) & (0.296) & (0.248) & (0.284) & (0.284) \\ (0.025) & (0.025) & (0.258) & (0.296) & (0.248) & (0.284) & (0.284) \\ (0.025) & (0.025) & (0.258) & (0.296) & (0.248) & (0.284) & (0.284) \\ (0.025) & (0.025) & (0.026) & (0.0284) & (0.284) & (0.284) \\ (0.025) & (0.025) & (0.026) & (0.0248) & (0.284) & (0.284) \\ (0.025) & (0.025) & (0.0260) & (0.0248) & (0.284) & (0.284) \\ (0.025) & (0.025) & (0.026) & (0.0248) & (0.284) & (0.284) \\ (0.025) & (0.025) & (0.026) & (0.0284) & (0.284) & (0.284) \\ (0.025) & (0.025) & (0.026) & (0.0284) & (0.284) & (0.284) \\ (0.025) & (0.025) & (0.026) & (0.0248) & (0.284) & (0.284) \\ (0.025) & (0.025) & (0.026) & (0.0248) & (0.0284) & (0.284) \\ (0.025) & (0.025) & (0.026) & (0.0248) & (0.026) & (0.026) & (0.026) \\ (0.025) & (0.026) & (0.026) & (0.026) & (0.026) & (0.026) & (0.026) & (0.026) & (0.026) & (0.026)$	0.130)
$ \begin{array}{c} \text{Car Ownership} & 1.61^{***} & 0.759^{***} & 1.73^{***} & 1.91^{***} & 2.45^{***} & 22 \\ & (0.066) & (0.118) & (0.131) & (0.154) & (0.198) & (0.121$,
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	
$ \begin{array}{c} {\rm CF = Gas} & 0.223 & 1.29^{**} & -0.116 & 14.9^{***} & -0.121 & -0.345 \\ (0.345) & (0.607) & (0.697) & (0.083) & (0.835) & (0.835) \\ {\rm CF = KeroseneFirewoodCharcoal} & -0.958^{**} & 0.141 & -12.8^{***} & 13.9^{***} & -11.2^{***} & -0.121 \\ (0.493) & (0.716) & (0.709) & (1.02) & (0.850$.80***
$ \begin{array}{c} {\rm CF = Gas} & 0.223 & 1.29^{**} & -0.116 & 14.9^{***} & -0.121 & -0.000 \\ (0.345) & (0.607) & (0.697) & (0.083) & (0.835) & (0.0000) \\ (0.835) & (0.607) & (0.697) & (0.083) & (0.835) & (0.0000) \\ (0.835) & 0.141 & -12.8^{***} & 13.9^{***} & -11.2^{***} & -0.000 \\ (0.493) & (0.716) & (0.709) & (1.02) & (0.850) & (0.000) \\ (0.850) & (0.0000) & (0.000) & (0.000) & (0.000) \\ (0.345) & (0.604) & (0.700) & (0.115) & (0.844) & (0.000) \\ (0.105) & (0.100) & (1.23) & (0.162) & (1.12) & (0.000) \\ (0.105) & (0.146) & (0.211) & (0.258) & (0.332) & (0.000) \\ (0.092) & (0.142) & (0.184) & (0.202) & (0.262) & (0.000) \\ (0.085) & (0.152) & (0.166) & (0.175) & (0.216) & (0.000) \\ (0.125) & (0.258) & (0.296) & (0.248) & (0.284) & (0.000) \\ (0.250) & (0.125) & (0.258) & (0.296) & (0.248) & (0.284) & (0.000) \\ (0.248) & (0.284) & (0.284) & (0.000) \\ (0.248) & (0.284) & (0.000) \\ (0.248) & (0.284) & (0.284) \\ (0.284) & (0.284) & (0.28$	0.313)
$ \begin{array}{c} \text{CF} = \text{KeroseneFirewoodCharcoal} & -0.958^* & 0.141 & -12.8^{***} & 13.9^{***} & -11.2^{***} & -0.0493 \\ & (0.493) & (0.716) & (0.709) & (1.02) & (0.850) & (0.850) \\ \text{CF} = \text{LPG} & 0.088 & 1.07^* & -0.347 & 14.6^{***} & 0.018 & -0.041 \\ & (0.345) & (0.604) & (0.700) & (0.115) & (0.844) & (0.0844) \\ \text{CF} = \text{Other} & -0.411 & 0.458 & -0.985 & 0.954^{***} & 0.545 & -1.000 \\ & (0.703) & (1.00) & (1.23) & (0.162) & (1.12) & (0.0844) \\ \text{ISCED} = 0 & -0.205^* & -0.207 & 0.178 & -0.576^{**} & -0.694^{**} & -0.081 \\ & (0.105) & (0.146) & (0.211) & (0.258) & (0.332) & (0.082) \\ \text{ISCED} = 2 & -0.214^{**} & -0.158 & -0.171 & -0.736^{***} & -0.039 & (0.092) & (0.142) & (0.184) & (0.202) & (0.262) & (0.082) \\ \text{ISCED} = 3 & -0.041 & 0.044 & 0.047 & -0.142 & -0.267 & -0.081 \\ & (0.085) & (0.152) & (0.166) & (0.175) & (0.216) & (0.085) \\ \text{ISCED} = 6 & -0.595^{***} & -0.871^{***} & -0.276 & -0.612^{**} & -0.824^{***} & -0.0821^{***} \\ & (0.125) & (0.258) & (0.296) & (0.248) & (0.284) & (0.284) \\ \text{ISCED} = 7 & -0.108 & 0.309 & 0.037 & -0.196 & -0.100 & -0.082 \\ \end{array}$	1.04**
$ \begin{array}{c} (0.493) (0.716) (0.709) (1.02) (0.850) (0.756) (0.756) (0.756) (0.756) (0.850) (0.756) (0.856) $	0.481)
$ \begin{array}{c} \text{CF} = \text{LPG} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{S} \\ \text{O} \\ \text{ISCED} = 0 \\ \text{ISCED} = 3 \\ \\ \text{ISCED} = 7 \\ \end{array} \begin{array}{c} 0.088 \\ \text{O} \\$	0.331
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.966)
$ \begin{array}{c} \text{CF = Other} \\ \text{CF = Other} \\ \text{CP = Other} \\ \text{CF = Other} \\ \end{array} \begin{array}{c} -0.411 \\ (0.703) \\ (1.00) \\ (1.23) \\ (0.162) \\ (0.162) \\ (0.162) \\ (0.162) \\ (0.162) \\ (0.162) \\ (0.162) \\ (0.178) \\ (0.205^*) \\ (0.205^*) \\ (0.211) \\ (0.258) \\ (0.332) \\ (0.332) \\ (0.332) \\ (0.332) \\ (0.092) \\ (0.142) \\ (0.184) \\ (0.202) \\ (0.262$	0.438
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.546)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.4***
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.482)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.225
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.544)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.238
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.413)
	0.361
(0.125) (0.258) (0.296) (0.248) (0.284) (0.281) ISCED = 7 (0.108) (0.309) (0.37) (0.196) (0.100) -	0.366)
ISCED = 7 -0.108 0.309 0.037 -0.196 -0.100	.815**
	0.371)
(0.098) (0.244) (0.212) (0.202) (0.222)	0.498
(0.000) (0.212) (0.202) (0.202)	0.344)
	0.371
$(0.231) \qquad (0.306) \qquad (0.375) \qquad (0.716) \qquad (0.978) \qquad (0.231) \qquad (0.375) \qquad (0.375) \qquad (0.978) \qquad (0.9$	0.864)
Standard-Errors Heteroskedasticity-robust	
v.	3,754
	.10194

 $Heterosked a sticity \hbox{-} robust\ standard \hbox{-} errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Argentina as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (*ISCED*) is ISCED-level 1 and *Electricity* for cooking fuel (CF).

Table A44: Logit-Model Coefficients Hardship Cases in Barbados

Full sample (1) 5.34*** (0.977) -1.06*** (0.109) -0.008 (0.046) 1.08*** (0.413)	1 (2) -3.76** (1.68) -0.164 (0.168) -0.231** (0.108)	2 (3) 1.65 (5.35) -1.36** (0.663)	9.43 (6.43)	3.34 (7.23)	5 (6) 6.09
5.34*** (0.977) -1.06*** (0.109) -0.008 (0.046) 1.08***	-3.76** (1.68) -0.164 (0.168) -0.231**	1.65 (5.35) -1.36**	9.43 (6.43)	3.34	
(0.977) -1.06*** (0.109) -0.008 (0.046) 1.08***	(1.68) -0.164 (0.168) -0.231**	(5.35) -1.36**	(6.43)		6.09
(0.977) -1.06*** (0.109) -0.008 (0.046) 1.08***	(1.68) -0.164 (0.168) -0.231**	(5.35) -1.36**	(6.43)		6.09
-1.06*** (0.109) -0.008 (0.046) 1.08***	-0.164 (0.168) -0.231**	-1.36**		(7.23)	2.00
(0.109) -0.008 (0.046) 1.08***	(0.168) $-0.231**$		1.05*		(5.80)
-0.008 (0.046) 1.08***	-0.231**	(0.663)	-1.25*	-2.28***	-2.80***
(0.046) $1.08***$		(0.000)	(0.739)	(0.827)	(0.665)
1.08***	(0.108)	-0.039	-0.027	0.311	0.155
1.08***	(0.100)	(0.234)	(0.250)	(0.375)	(0.350)
	2.48**	2.24**	-0.749	14.7***	16.6***
(0.413)	(1.19)	(0.882)	(0.517)	(0.303)	(0.523)
2.35***	1.52***	2.67***	2.98***	3.21***	3.77***
(0.168)	(0.336)	(0.353)	(0.421)	(0.458)	(0.933)
-12.1***	-11.6***	-9.91***	(31-2-)	(31233)	(0.000)
(0.471)	(1.42)	(1.33)			
1.17***	2.48***	6.34***	0.192	0.399	-0.171
(0.376)	(0.838)	(1.30)	(0.607)	(0.712)	(0.690)
-12.5***	-13.7***	-7.08***	-15.7***	(0.112)	(0.000)
(0.357)	(0.780)	(1.56)	(0.685)		
0.949***	2.03**	5.74***	-0.369	0.468	0.746
(0.358)	(0.800) $3.64**$	(1.27) -8.11***	(0.551)	(0.628) $-14.4***$	(0.625) $-15.5***$
0.236			0.692		
(0.808)	(1.41)	(1.29)	(1.27)	(0.727)	(0.766)
0.081	-0.242	0.598	0.754	-0.440	-0.750
(0.195)	(0.363)	(0.401)	(0.489)	(0.449)	(0.866)
-0.286	0.304	0.336	-2.15*	-17.2***	1.28
(0.480)	(0.785)	(0.792)	(1.15)	(0.390)	(1.29)
-0.299	0.535	-0.394	0.208	-0.869*	-1.46**
, ,					(0.734)
					-1.46**
					(0.683)
					-0.520
	(0.714)	(0.865)	(1.08)		(0.718)
0.047				1.13	-15.8***
(1.18)				(1.29)	(0.652)
-0.589**	-0.425	0.095	-0.475	-1.66**	-1.15
(0.246)	(0.420)	(0.475)	(0.631)	(0.806)	(0.869)
0.728	16.2***	-14.5***	1.93	-0.332	-14.1***
(0.860)	(0.509)	(0.365)	(2.05)	(1.63)	(0.499)
-0.094	0.110	0.506	-0.459	0.509	-0.895
(0.384)	(0.701)	(0.866)	(1.09)		(1.03)
		-14.0***	1.59*	-14.8***	-16.9***
			(0.828)		(0.625)
,		, , ,	,		1.91*
(0.718)	(0.335)		(0.417)	(1.17)	(0.998)
		Heterosk	edasticity-		
2.434			-		474
					0.20223
	-0.589** (0.246) 0.728 (0.860) -0.094 (0.384) 0.904* (0.536) -0.546	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Barbados as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Black for ethnicity (ETH).

Table A45: Logit-Model Coefficients Hardship Cases in Bolivia

Dependent Variable:	Log-Odds of		-			
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	11.1***	8.32***	7.36**	-5.44*	-10.1***	7.41***
1 /	(0.835)	(1.72)	(3.13)	(3.20)	(2.86)	(2.37)
HH Exp. (log)	-1.71***	-1.44***	-0.774**	-1.06***	-0.778**	-2.38***
(8)	(0.066)	(0.195)	(0.315)	(0.398)	(0.381)	(0.269)
HH Size	0.052***	-0.083	-0.157*	-0.168	-0.285*	-0.018
1111 01110	(0.019)	(0.053)	(0.092)	(0.132)	(0.158)	(0.115)
Urban Area	0.567***	0.627***	0.599***	0.258	0.443*	1.09**
CIBELL TITCE	(0.104)	(0.187)	(0.194)	(0.221)	(0.261)	(0.449)
Electricity Acc.	1.94***	2.34***	0.807**	1.30*	0.693	13.3***
Electricity Acc.	(0.274)	(0.408)	(0.408)	(0.765)	(0.561)	(0.315)
Car Ownership	1.35^{***}	1.19***	1.26***	1.51***	1.49***	1.77***
Car Ownership						
CE — Eineweg J	(0.085)	(0.301)	(0.196)	(0.182)	(0.175)	(0.221)
CF = Firewood	-1.99***	1.08	-3.86**	-2.04	-0.074	-2.44***
OD G	(0.476)	(0.834)	(1.86)	(1.82)	(0.994)	(0.890)
CF = Gas	-0.455	2.29***	-2.72	0.134	1.30	-1.25**
	(0.444)	(0.849)	(1.82)	(1.75)	(0.825)	(0.543)
CF = LPG	-1.03**	1.72**	-3.11*	-0.781	0.688	-1.67***
	(0.445)	(0.833)	(1.82)	(1.75)	(0.823)	(0.551)
CF = NoFuel	-1.68***	1.23	-4.74**	-1.69	0.144	-1.81***
	(0.479)	(0.945)	(2.00)	(1.82)	(0.876)	(0.606)
CF = Other Biomass	-3.60***		-17.4***	-14.0***	-13.6***	
	(0.902)		(1.83)	(1.76)	(0.922)	
ISCED = 0	-0.223	-2.29**	0.557	12.5***	13.9***	-2.09**
	(0.509)	(1.11)	(1.09)	(0.400)	(0.387)	(0.947)
ISCED = 2	-0.434	-2.56**	0.158	12.2***	13.9***	-2.73***
	(0.491)	(1.10)	(1.06)	(0.161)	(0.201)	(0.816)
ISCED = 3	-0.726	-2.26**	-0.306	11.9***	13.1***	-3.56***
	(0.497)	(1.11)	(1.06)	(0.208)	(0.274)	(0.853)
ISCED = 4	-0.199	-3.48**	-14.5***	13.3***	13.4***	-0.277
	(0.672)	(1.46)	(1.06)	(0.956)	(0.904)	(1.40)
ISCED = 6	-0.443	-1.90*	0.465	12.3***	13.5***	-2.66***
	(0.496)	(1.14)	(1.07)	(0.208)	(0.243)	(0.822)
ISCED = 7	-0.607	-2.38**	-0.209	12.2***	13.7***	-3.01***
•	(0.502)	(1.17)	(1.09)	(0.277)	(0.271)	(0.840)
ISCED = 8	-0.183	()	-15.9***	12.0***	15.6***	-2.54**
	(0.691)		(1.06)	(1.11)	(0.859)	(1.26)
ISCED = 9	-0.596	-1.20	-1.54	12.9***	12.0***	-2.80**
	(0.604)	(1.39)	(1.54)	(0.677)	(1.08)	(1.19)
Ethnicity = Afroboliviano	0.050	14.2***	-14.8***	(0.011)	-11.8***	0.089
Lumicity – Alfoboliviano						
Ethnicity = Indigeneous	(0.715) -0.691***	(0.167) -0.587***	(0.146) -0.898***	-0.681***	(0.159) -0.506***	(1.40) -0.855***
Ethnicity — indigeneous						
Ethnicity — N b-lii	(0.074)	(0.148)	(0.137)	(0.158)	(0.161)	(0.253)
Ethnicity = Non-bolivian	-0.641	0.331		-0.350	1.50	-1.10
	(0.544)	(0.829)		(1.11)	(1.03)	(1.37)
Standard-Errors			Heteroskeda	asticity-rob	ust	
Observations	11,859	2,198	2,480	2,398	2,354	2,429
Squared Correlation	0.14122	0.20409	0.10497	0.12165	0.11787	0.13813

Note.

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Bolivia as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (EF) and EF and EF are the full sample and separated by expenditure quintile. Reference group for education (EF) is EF and EF are the full sample and separated by expenditure quintile.

Table A46: Logit-Model Coefficients Hardship Cases in Brazil

Dependent Variable:		Expecting	_		sts than 80%	of Population
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	6.08***	6.09***	2.43^{*}	3.48**	0.618	13.8***
	(0.304)	(0.709)	(1.31)	(1.53)	(1.68)	(1.36)
HH Exp. (log)	-0.898***	-0.899***	-0.500***	-0.379**	-0.287	-1.69***
	(0.022)	(0.056)	(0.154)	(0.182)	(0.184)	(0.122)
HH Size	0.093***	0.056***	0.0006	-0.029	-0.080	0.236***
	(0.010)	(0.018)	(0.050)	(0.068)	(0.074)	(0.059)
Urban Area	-0.440***	-0.221***	-0.580***	-0.629***	-0.653***	-0.475***
	(0.034)	(0.055)	(0.071)	(0.079)	(0.084)	(0.131)
Electricity Acc.	-0.287**	0.023	-0.784**	-1.24***	-0.305	-0.893
·	(0.133)	(0.161)	(0.315)	(0.391)	(0.550)	(0.757)
Car Ownership	1.45***	0.587***	1.42***	1.82***	1.75***	2.03***
r	(0.038)	(0.074)	(0.070)	(0.087)	(0.108)	(0.169)
CF = FirewoodCharcoal	-0.593**	-1.04*	1.14**	-0.114	-0.169	0.639
	(0.252)	(0.598)	(0.578)	(0.500)	(0.812)	(0.709)
CF = Kerosene	0.866	1.80	-9.69***	-8.71***	(0:012)	14.1***
21 1101050110	(0.993)	(1.34)	(0.548)	(0.403)		(0.483)
CF = LPG	0.097	0.014	1.12**	-0.691*	0.300	0.174
CI — EI G	(0.219)	(0.578)	(0.520)	(0.389)	(0.527)	(0.466)
CF = Unknown	0.194	0.065	0.934	-0.586	0.638	0.464
	(0.292)	(0.668)	(0.636)	(0.530)	(0.766)	(0.608)
ISCED = 0	0.043	0.039	0.010	0.001	0.098	0.720
ISCED = 0	(0.079)	(0.112)	(0.167)	(0.193)	(0.245)	(0.544)
ISCED = 2	0.065^*	-0.029	0.039	0.071	0.136	0.024
BCLD = 2	(0.038)	(0.068)	(0.078)	(0.082)	(0.087)	(0.132)
ISCED = 6	-0.105*	-0.027	-0.104	-0.252*	-0.072	-0.041
ISCED = 0		(0.204)	(0.144)	(0.129)	(0.107)	(0.138)
ISCED = 7	(0.058) - $0.579*$	0.204) 0.276	-0.990	0.129) 0.867	0.107 0.872^*	-2.58***
ISCED = I						
ISCED = 8	(0.301)	(0.727) $12.4***$	(1.06) -11.1***	(0.595)	(0.477)	(0.536)
ISCED = 8	-0.376			-0.269	0.820	-0.637
ICCED 0	(0.364)	(0.081)	(0.076)	(1.12)	(0.698)	(0.621)
ISCED = 9	-0.032	0.061	-0.194	-0.129	0.032	-0.259
This is a little of the state o	(0.061)	(0.081)	(0.125)	(0.171)	(0.293)	(0.371)
Ethnicity = Amarela	-0.042	0.191	-0.289	-2.02***	-0.230	0.612
Dil : ' D	(0.274)	(0.376)	(0.641)	(0.628)	(0.450)	(0.498)
Ethnicity = Branca	0.022	-0.006	0.043	0.021	0.089	-0.114
To 1	(0.034)	(0.061)	(0.073)	(0.076)	(0.079)	(0.111)
Ethnicity = Indigena	-0.381*	-0.899***	-0.050	-0.234	-0.862*	0.885
Total Company	(0.210)	(0.314)	(0.443)	(0.450)	(0.514)	(0.625)
Ethnicity = Preta	-0.082	0.046	-0.103	-0.205*	-0.229*	-0.073
	(0.051)	(0.083)	(0.102)	(0.119)	(0.137)	(0.193)
Ethnicity = Semdeclaracao	-0.369	-0.345	-0.555	-1.79**	-1.10	0.989
	(0.324)	(0.454)	(0.709)	(0.867)	(0.748)	(0.623)
Standard-Errors			Heterosked			
Observations	57,889	14,069	$12,\!632$	$11,\!632$	10,679	8,877
Squared Correlation	0.10921	0.09234	0.09001	0.10926	0.08942	0.08461

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Brazil as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Parda for ethnicity (ETH).

Table A47: Logit-Model Coefficients Hardship Cases in Chile

Dependent Variable:	Log-Odds of	Expecting	Higher Ada	litional Co	sts than 80	0% of Population
Expenditure Quintile	Full sample	1	2	3	4	5
Emponarouro quintino	(1)	(2)	(3)	(4)	(5)	(6)
T7 · 11	(-)	(-)	(*)	(-)	(*)	(*)
Variables	a a distrib				o a odvisti	A G Carlottele
(Intercept)	11.1***	6.14^{***}	7.74***	0.375	9.18***	16.3***
	(0.526)	(1.18)	(2.75)	(3.08)	(3.41)	(3.10)
HH Exp. (log)	-1.41***	-0.780***	-0.969***	-0.074	-1.19***	-2.10***
	(0.061)	(0.151)	(0.341)	(0.366)	(0.398)	(0.333)
HH Size	0.225***	0.110**	0.033	-0.326**	0.099	0.318*
	(0.024)	(0.048)	(0.112)	(0.133)	(0.171)	(0.163)
ISCED = 0	0.473	0.723*	0.354	0.195	-0.992	-9.29***
	(0.290)	(0.419)	(0.498)	(0.669)	(1.11)	(0.727)
ISCED = 2	-0.143	-0.064	-0.175	-0.331*	-0.228	0.528
	(0.100)	(0.152)	(0.184)	(0.189)	(0.313)	(0.804)
ISCED = 6	$0.050^{'}$	-0.045	$0.167^{'}$	-0.153	$0.455^{'}$	0.974
	(0.129)	(0.225)	(0.207)	(0.256)	(0.363)	(0.891)
ISCED = 7	-0.163	-0.178	0.116	-0.420**	0.149	0.904
	(0.110)	(0.231)	(0.199)	(0.200)	(0.303)	(0.749)
ISCED = 8	-0.981	11.7***	-9.55***	-0.426	-13.1***	0.209
	(0.606)	(0.128)	(0.132)	(1.24)	(0.275)	(1.27)
ISCED = 9	$0.528^{'}$	$0.528^{'}$	$0.998^{'}$	0.160	-11.5***	3.30***
	(0.448)	(0.580)	(1.02)	(1.12)	(0.274)	(1.25)
Standard-Errors			Heteroskeda	asticity-rol	oust	
Observations	15,237	3,378	3,058	2,860	2,966	2,975
Squared Correlation	0.14727	0.05531	0.04302	0.04448	0.02861	0.02124

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Chile as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (EF).

Table A48: Logit-Model Coefficients Hardship Cases in Colombia

Dependent Variable:			-			of Population
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	4.96***	-1.30**	1.30	5.73***	9.28***	0.359
	(0.306)	(0.507)	(1.12)	(1.26)	(1.55)	(1.47)
HH Exp. (log)	-0.978***	-0.088	-0.442***	-0.834***	-1.35***	-1.75***
	(0.026)	(0.064)	(0.141)	(0.159)	(0.178)	(0.159)
HH Size	0.154***	-0.031	-0.011	0.025	0.137^{**}	0.254***
	(0.010)	(0.024)	(0.043)	(0.055)	(0.068)	(0.062)
Urban Area	-0.184***	-0.250***	-0.040	-0.241*	-0.408**	-0.446
	(0.059)	(0.091)	(0.104)	(0.127)	(0.202)	(0.284)
Electricity Acc.	0.572***	0.298	0.697^{*}	-0.148	-0.382	11.3***
	(0.215)	(0.251)	(0.391)	(0.444)	(0.632)	(0.132)
Car Ownership	1.42***	0.593*	1.23***	1.45***	2.24***	2.34***
	(0.056)	(0.321)	(0.168)	(0.118)	(0.105)	(0.169)
CF = Coal	-0.633	-0.556	0.582	-10.4***	-8.39***	-17.6***
	(0.720)	(1.05)	(0.778)	(0.263)	(0.544)	(0.347)
CF = FirewoodCharcoal	-1.44***	-0.692**	-0.856**	-1.42***	-0.213	0.981
	(0.184)	(0.288)	(0.334)	(0.388)	(0.561)	(0.905)
CF = Gas	1.21***	2.08***	1.04***	0.426*	0.880**	1.29***
	(0.141)	(0.254)	(0.262)	(0.258)	(0.363)	(0.346)
CF = Kerosene	0.670	0.529	1.59**	-0.385	-3.82***	-15.1***
	(0.607)	(0.846)	(0.730)	(1.15)	(1.24)	(0.360)
CF = LPG	0.921***	1.45***	0.874***	0.343	0.651*	0.932**
01 21 0	(0.144)	(0.256)	(0.268)	(0.263)	(0.370)	(0.384)
CF = Unknown	-1.01***	0.207	-1.44***	-1.30***	-1.88***	0.895
or ommown	(0.308)	(0.427)	(0.493)	(0.468)	(0.596)	(0.676)
ISCED = 0	0.024	0.011	0.220*	0.163	0.125	-0.614
	(0.074)	(0.106)	(0.123)	(0.166)	(0.299)	(0.861)
ISCED = 2	-0.177***	-0.207*	-0.170*	-0.276**	-0.114	0.133
	(0.055)	(0.109)	(0.101)	(0.110)	(0.148)	(0.247)
ISCED = 3	-0.312***	-0.253***	-0.280***	-0.338***	-0.407***	-0.171
ISCED - 0	(0.046)	(0.096)	(0.082)	(0.090)	(0.119)	(0.204)
ISCED = 6	-0.438***	-0.092	-0.303**	-0.598***	-0.241**	-0.108
ISCED = 0	(0.057)	(0.172)	(0.118)	(0.116)	(0.123)	(0.194)
ISCED = 7	-0.608***	-2.02***	-0.418	-0.639*	-0.203	-0.163
ISCED = 1	(0.130)	(0.770)	(0.538)	(0.332)	(0.290)	(0.242)
ISCED = 9	1.31**	2.06	1.55	(0.552) 1.57^*	-10.3***	-17.5***
ISCED = 9	(0.616)	(1.47)	(1.15)	(0.903)	(0.098)	(0.275)
Ethnicity = Afrodescendiente	-0.105	0.012	-0.198	(0.903) -0.079	(0.098) -0.277	-0.500
Ethnicity — Arrodescendiente						
Eth-:-:t C:t D	(0.068)	(0.113)	(0.122)	(0.151)	(0.189)	(0.445)
Ethnicity = Gitano-Rrom	-2.39**	-11.5***	-2.44*	-2.69**	-0.358	-17.7***
D(1 : ') I 1:	(1.03)	(0.091)	(1.27)	(1.33)	(1.19)	(0.192)
Ethnicity = Indigena	-0.321**	-0.165	-0.467**	-0.191	0.032	-1.71**
Dilitia Dilitia Di III	(0.128)	(0.189)	(0.236)	(0.269)	(0.372)	(0.765)
Ethnicity = Palenquerode San Basilio	-0.772	0.581	-2.20*	-1.76*	0.199	-1.73
	(0.776)	(0.797)	(1.14)	(1.01)	(1.15)	(1.24)
Ethnicity = SanAndresyProvidencia	1.00**	3.65***	0.295	0.253	0.177	1.57***
	(0.447)	(1.27)	(0.424)	(0.315)	(0.347)	(0.336)
Standard-Errors			Heterosked	asticity-rob	ust	
Observations	87,166	14,584	18,030	19,413	19,037	16,102
Squared Correlation	0.12465	0.12302	0.05001	0.05679	0.12550	0.12234

 $Heterosked a sticity \hbox{-} robust\ standard \hbox{-} errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Colombia as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (EE) and EE and EE and EE are the following full cooking fuel (EE) and EE are the following full cooking fuel (EE) and EE are the following full cooking fuel (EE) and EE are the following full cooking fuel (EE) and EE are the following full cooking fuel (EE) and EE are the following fuel (EE) and EE are the full sample and separated by expenditure quintile.

Table A49: Logit-Model Coefficients Hardship Cases in Costa Rica

Dependent Variable:			_			80% of Population
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	-10.6***	-17.9***	-16.2***	-12.1***	-15.0***	8.77***
	(0.567)	(2.07)	(3.67)	(4.66)	(3.91)	(2.04)
HH Exp. (log)	-0.583***	0.179	0.053	-0.597	-0.273	-1.38***
	(0.069)	(0.274)	(0.481)	(0.574)	(0.465)	(0.233)
HH Size	0.068**	-0.059	0.054	0.045	-0.139	0.050
	(0.029)	(0.067)	(0.162)	(0.190)	(0.173)	(0.112)
Urban Area	-0.564***	-0.989***	-0.479**	-0.494**	-0.240	-0.806***
	(0.091)	(0.205)	(0.188)	(0.207)	(0.201)	(0.251)
Electricity Acc.	13.1***	14.5***	13.3***	14.4***	15.2***	,
·	(0.115)	(0.189)	(0.230)	(0.437)	(0.736)	
Car Ownership	2.37***	1.73***	2.21***	2.40***	2.88***	4.09***
	(0.104)	(0.200)	(0.200)	(0.228)	(0.273)	(0.523)
CF = FirewoodCharcoal	-0.386	-0.168	-0.228	0.173	-15.5***	0.014
	(0.250)	(0.371)	(0.488)	(0.532)	(0.438)	(1.28)
CF = LPG	0.362***	0.692***	0.449**	0.414**	0.047	0.452**
	(0.087)	(0.221)	(0.207)	(0.192)	(0.187)	(0.215)
CF = Other	-0.342	-0.302	-0.044	-13.3***	-1.24	0.087
CI Other	(0.489)	(1.09)	(0.835)	(0.382)	(1.06)	(0.648)
ISCED = 0	0.404*	0.580*	0.269	0.636	0.685	-14.0***
	(0.220)	(0.328)	(0.398)	(0.414)	(0.856)	(0.315)
ISCED = 2	0.036	-0.067	-0.347	0.449**	-0.209	0.204
	(0.104)	(0.219)	(0.227)	(0.219)	(0.224)	(0.341)
ISCED = 3	-0.418	1.47**	-0.211	-0.273	-0.893	-1.64*
	(0.345)	(0.711)	(0.654)	(0.742)	(0.740)	(0.937)
ISCED = 6	0.441	0.584	-1.92	2.15***	-0.619	1.39**
	(0.393)	(1.51)	(1.33)	(0.786)	(0.624)	(0.698)
ISCED = 7	-0.125	0.503	-0.778*	0.286	-0.366	-0.062
ISCED = 1		(0.648)		(0.279)	(0.256)	(0.338)
ISCED = 8	(0.133) 0.195	(0.048)	(0.458) 0.853	1.39^*	-0.280	0.556
ISCED = 8	(0.228)		(0.762)			(0.403)
ISCED = 9	-12.9***	-15.0***	-13.3***	(0.812) -13.8***	(0.518) $-15.0***$	(0.403) -15.5***
$ISCED \equiv 9$						
Ethnisita Blanca(a)	(0.081) $0.181**$	(0.179) 0.356*	(0.197) $0.416**$	(0.239)	(0.226)	(0.363)
Ethnicity = Blanco(a)				0.259	-0.243	0.153
Dilariati Indiana	(0.091)	(0.209)	(0.203)	(0.211)	(0.199)	(0.215)
Ethnicity = Indigena	0.125	-0.014	0.511	0.407	-0.119	-0.317
T(1 : ' M 1 / /)	(0.199)	(0.426)	(0.358)	(0.410)	(0.532)	(0.540)
Ethnicity = Mulato(a)	-0.183	0.055	-0.121	-0.215	-0.174	-0.589
T) 1	(0.142)	(0.245)	(0.351)	(0.327)	(0.314)	(0.392)
Ethnicity = Negrooaf rodes cendiente	0.225	0.639	-0.306	0.635	-0.364	0.101
	(0.306)	(0.598)	(0.712)	(0.632)	(0.834)	(0.777)
Ethnicity = $Otro(a)$	0.073	-0.119	-0.391	0.998	-0.014	-14.3***
	(0.409)	(0.845)	(0.702)	(0.688)	(0.789)	(0.206)
Standard-Errors			Heteroske	lasticity-re	bust	
Observations	6,924	1,619	1,471	1,340	1,318	1,176
Squared Correlation	0.15759	0.12968	0.21384	0.18981	0.17908	0.16296

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Costa Rica as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A50: Logit-Model Coefficients Hardship Cases in Dominican Republic

Dependent Variable:	Log-Odds of	Expecting	Higher Ad	ditional C	osts than 8	80% of Population
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	1.58**	4.90***	1.92	4.67	5.19	-10.2***
(1)	(0.734)	(1.61)	(3.43)	(3.61)	(3.75)	(2.61)
HH Exp. (log)	-0.428***	-0.944***	-0.424	-0.815*	-0.917**	-0.637**
1 (0)	(0.086)	(0.215)	(0.446)	(0.464)	(0.457)	(0.305)
HH Size	-0.061**	-0.010	-0.056	$0.129^{'}$	0.198	-0.022
	(0.025)	(0.066)	(0.134)	(0.156)	(0.171)	(0.106)
Urban Area	-0.241***	-0.226	-0.087	-0.277	-0.340*	-0.319*
	(0.076)	(0.148)	(0.166)	(0.179)	(0.181)	(0.188)
Electricity Acc.	0.475^{*}	1.28***	-0.069	-0.028	0.551	14.1***
	(0.284)	(0.480)	(0.439)	(0.516)	(1.07)	(0.249)
Car Ownership	2.44***	1.99***	1.86***	2.53***	2.58***	2.90***
	(0.100)	(0.248)	(0.200)	(0.185)	(0.200)	(0.316)
CF = Charcoal	-0.723**	-1.04*	-0.387	-1.04	-13.6***	0.508
	(0.358)	(0.578)	(0.656)	(1.07)	(0.282)	(0.901)
CF = Electricity	-0.675	-13.6***		1.79	-14.3***	-14.3***
	(1.21)	(0.275)		(1.97)	(0.194)	(0.223)
CF = Firewood	-0.973***	-1.29***	-1.42**	-0.804	0.078	-14.5***
	(0.252)	(0.391)	(0.592)	(0.704)	(0.634)	(0.157)
CF = Kerosene	-0.040	-0.453	-14.1***	-0.532	1.17^{*}	-0.158
	(0.443)	(1.12)	(0.149)	(1.55)	(0.649)	(0.927)
CF = Unknown	-0.482***	-2.32**	-2.68**	-0.410	0.016	-0.201
	(0.184)	(1.02)	(1.09)	(0.480)	(0.369)	(0.291)
ISCED = 0	-0.051	-0.075	-0.089	0.160	-0.429	0.333
	(0.135)	(0.209)	(0.302)	(0.348)	(0.369)	(0.425)
ISCED = 2	-0.153*	0.168	0.112	-0.128	-0.497**	-0.289
	(0.086)	(0.172)	(0.183)	(0.196)	(0.201)	(0.213)
ISCED = 3	0.505	1.02	1.22	0.302	0.177	0.114
	(0.372)	(1.11)	(0.791)	(0.785)	(0.896)	(0.591)
ISCED = 6	0.248**	0.402	0.694***	0.359	-0.405	0.146
IGGED -	(0.111)	(0.302)	(0.238)	(0.230)	(0.253)	(0.229)
ISCED = 7	1.01**		0.139	-0.066	0.051	1.22**
	(0.415)		(1.30)	(0.889)	(0.674)	(0.591)
Standard-Errors			Heterosked	lasticity-re	bust	
Observations	8,884	2,008	1,876	1,792	1,723	1,485
Squared Correlation	0.18986	0.08493	0.09824	0.18403	0.21563	0.33475

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Dominican Republic as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A51: Logit-Model Coefficients Hardship Cases in Ecuador

Dependent Variable:			-			% of Population
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	13.1***	9.86***	0.894	12.9***	10.7***	21.2***
• /	(0.639)	(1.14)	(1.71)	(2.09)	(3.13)	(1.90)
HH Exp. (log)	-1.98***	-1.71***	-2.02***	-1.99***	-2.06***	-2.79***
• (0)	(0.057)	(0.099)	(0.246)	(0.271)	(0.405)	(0.225)
HH Size	0.028*	-0.030	-0.025	$0.075^{'}$	-0.016	0.100
	(0.015)	(0.024)	(0.080)	(0.109)	(0.146)	(0.093)
Urban Area	-0.145***	-0.269***	-0.165*	-0.092	0.061	0.345**
	(0.046)	(0.083)	(0.096)	(0.102)	(0.125)	(0.147)
Electricity Acc.	1.70***	1.86***	1.17***	1.45***	1.33***	0.870
J	(0.104)	(0.126)	(0.180)	(0.235)	(0.334)	(0.577)
Car Ownership	3.38***	2.66***	3.40***	3.33***	3.83***	4.20***
•	(0.083)	(0.325)	(0.178)	(0.173)	(0.187)	(0.232)
CF = Firewood	-1.71***	-0.355	11.5***	-1.13	1.97**	-2.94**
	(0.517)	(0.942)	(0.277)	(0.825)	(0.967)	(1.30)
CF = LPG	-0.349	1.12	12.8***	0.269	2.78***	-1.59**
	(0.514)	(0.939)	(0.161)	(0.766)	(0.871)	(0.645)
CF = Unknown	-1.60***	-1.43	11.1***	-0.501	2.80***	-0.994
	(0.582)	(0.978)	(0.390)	(0.834)	(0.972)	(0.801)
ISCED = 0	-0.080	-0.031	$0.165^{'}$	-0.251	-0.636	-1.51
	(0.084)	(0.111)	(0.170)	(0.209)	(0.409)	(0.968)
ISCED = 2	-10.1***	-8.83***	,	-11.5***	,	,
	(0.060)	(0.185)		(0.164)		
ISCED = 3	-0.010	-0.080	0.229*	-0.179	0.013	0.115
	(0.060)	(0.106)	(0.122)	(0.135)	(0.142)	(0.200)
ISCED = 5	-0.151	0.329	0.119	-1.31**	-0.110	0.219
	(0.180)	(0.307)	(0.310)	(0.538)	(0.474)	(0.676)
ISCED = 6	0.239**	0.219	0.720***	-0.245	$0.253^{'}$	0.485**
	(0.093)	(0.308)	(0.249)	(0.191)	(0.203)	(0.199)
ISCED = 7	0.650***	0.740	0.202	-0.385	0.112	1.14***
	(0.240)	(1.05)	(0.956)	(0.699)	(0.409)	(0.316)
Ethnicity = Afro-descendant	0.206	0.233	0.064	-0.573	0.774	0.511
v	(0.212)	(0.389)	(0.417)	(0.519)	(0.624)	(0.566)
Ethnicity = Black	0.099	-0.079	0.016	0.387	0.405	0.101
	(0.270)	(0.398)	(0.313)	(0.305)	(0.924)	(0.515)
Ethnicity = Black(Mulato)	-0.294*	-0.093	-0.016	-0.307	-0.574	-0.862
	(0.158)	(0.247)	(0.330)	(0.338)	(0.447)	(0.639)
Ethnicity = Indigenous	-0.132**	0.001	-0.199	-0.549***	-0.237	-0.835*
	(0.062)	(0.081)	(0.134)	(0.188)	(0.301)	(0.454)
Ethnicity = Montubio	0.006	0.107	0.032	0.135	-0.279	-0.417
	(0.094)	(0.142)	(0.175)	(0.207)	(0.328)	(0.354)
Ethnicity = Other	-0.250	0.767	-0.410	1.12	-1.19	-2.33
	(0.578)	(0.838)	(0.881)	(0.782)	(1.04)	(1.52)
Ethnicity = White	0.030	0.116	-0.060	-0.110	-0.075	0.063
	(0.168)	(0.238)	(0.453)	(0.317)	(0.346)	(0.347)
G. 1 1 D	()					(/
Standard-Errors	20.070			lasticity-rol		
Observations	28,950	8,199	5,973	5,294	4,822	4,662
Squared Correlation	0.29082	0.26236	0.26780	0.28540	0.30156	0.27104

Note.

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Ecuador as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (EF) and EF and EF are the full sample and separated by expenditure quintile.

Table A52: Logit-Model Coefficients Hardship Cases in El Salvador

Dependent Variable:	Log-Odds of	Expecting	Higher Ad	lditional Co	sts than 80%	of Population
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	9.09***	-1.34	-0.253	0.459	-9.96***	-0.396
/	(0.630)	(0.889)	(1.56)	(2.27)	(3.70)	(3.45)
HH Exp. (log)	-1.60***	0.110	-0.534***	-0.850***	-0.952**	-1.95***
	(0.050)	(0.099)	(0.207)	(0.258)	(0.461)	(0.497)
HH Size	0.456***	0.078**	0.175***	0.178**	0.138	0.157
	(0.020)	(0.035)	(0.054)	(0.081)	(0.141)	(0.177)
Urban Area	0.006	0.068	0.277^{***}	0.321^{**}	0.292	-0.199
	(0.056)	(0.088)	(0.096)	(0.141)	(0.211)	(0.283)
Electricity Acc.	0.031	-0.423**	0.623^{*}	2.05**	13.0***	11.9***
	(0.156)	(0.196)	(0.329)	(1.04)	(0.212)	(0.287)
Car Ownership	2.31***	0.028	1.73***	2.60***	3.56***	4.98***
	(0.088)	(0.391)	(0.211)	(0.153)	(0.201)	(0.511)
CF = Charcoal	-0.796	-0.527	2.67	-10.2***	-14.1***	-15.2***
	(0.952)	(1.37)	(1.77)	(0.902)	(0.991)	(0.730)
CF = Firewood	-2.65***	-1.73**	0.066	-0.393	0.069	-12.7***
	(0.589)	(0.683)	(0.660)	(0.993)	(1.16)	(0.682)
CF = Kerosene	-0.065	0.761	-9.49***	-10.3***	-12.4***	-14.9***
	(0.916)	(1.16)	(0.618)	(0.900)	(0.983)	(0.744)
CF = LPG	0.458	1.06	2.00***	1.35	0.628	-0.170
	(0.589)	(0.675)	(0.613)	(0.896)	(0.968)	(0.643)
CF = Unknown	-4.17***	-1.61**	-0.241	-1.04	-1.89	-1.51
	(0.655)	(0.722)	(0.821)	(1.41)	(1.62)	(1.28)
ISCED = 0	-9.79***		-11.5***	-9.29***		
	(0.046)		(0.095)	(1.05)		
ISCED = 3	0.079	-0.142	0.114	0.239	0.239	0.206
	(0.082)	(0.164)	(0.160)	(0.173)	(0.222)	(0.333)
ISCED = 5	0.006	-0.136	-1.43*	0.622	0.497	-0.392
	(0.295)	(1.31)	(0.846)	(0.633)	(0.530)	(0.571)
ISCED = 6	0.355	-0.608	0.099	0.692	0.604	0.577
	(0.217)	(0.555)	(0.491)	(0.518)	(0.500)	(0.458)
ISCED = 7	0.793***	0.222	0.954*	0.249	0.207	1.36***
	(0.167)	(0.920)	(0.553)	(0.439)	(0.282)	(0.338)
ISCED = 8	13.6***				18.2***	
	(0.088)				(0.189)	
ISCED = 9	-0.160**	0.082	-0.162	-0.048	-0.838***	-0.935*
	(0.068)	(0.095)	(0.121)	(0.204)	(0.319)	(0.491)
Standard-Errors			Heteroskeo	dasticity-rol	oust	
Observations	23,622	5,351	5,065	$4,\!840$	4,429	3,937
Squared Correlation	0.20960	0.25389	0.08231	0.16318	0.25619	0.21057

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in El Salvador as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and IISCED-level 1 and IISCED-level 1.

Table A53: Logit-Model Coefficients Hardship Cases in Guatemala

Dependent Variable:	Log-Odds of	Expecting	g Higher Ad	ditional Co	sts than 80°	% of Population
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	0.906	5.73*	1.12	4.64	4.85^{*}	1.59
	(0.847)	(2.96)	(4.12)	(2.91)	(2.90)	(2.10)
HH Exp. (log)	-0.323***	-0.629	-0.361	-0.723*	-0.814**	-0.334
	(0.109)	(0.448)	(0.578)	(0.394)	(0.385)	(0.272)
HH Size	-0.122***	-0.152	-0.026	0.010	0.008	-0.090
	(0.023)	(0.096)	(0.121)	(0.096)	(0.112)	(0.077)
Urban Area	0.350***	0.937***	0.390*	0.183	0.453***	-0.297
	(0.098)	(0.344)	(0.228)	(0.190)	(0.161)	(0.208)
Electricity Acc.	0.598***	1.34***	0.833***	$0.159^{'}$	0.217	-0.098
·	(0.165)	(0.353)	(0.305)	(0.288)	(0.297)	(0.528)
Car Ownership	2.77***	2.78***	2.74***	2.74***	2.71***	2.89***
•	(0.114)	(0.479)	(0.291)	(0.245)	(0.185)	(0.199)
CF = Charcoal	-1.85	,	-13.5***	-1.50	-12.5***	-1.62
	(1.13)		(0.506)	(1.71)	(0.305)	(1.23)
CF = Firewood	-0.605***	-4.13***	-1.48***	-1.00***	-0.348*	-0.198
	(0.122)	(0.741)	(0.393)	(0.257)	(0.179)	(0.204)
CF = Kerosene	0.815	(- ')	-13.1***	1.12	-0.973	2.23**
	(0.712)		(0.432)	(0.974)	(0.912)	(1.08)
CF = Other	-0.650**	-1.39	-3.50***	-1.60*	-1.31**	-0.515
0- 0	(0.286)	(1.20)	(1.13)	(0.861)	(0.654)	(0.412)
ISCED = 0	-0.278***	-0.319	-0.340	0.011	-0.347	-0.256
	(0.108)	(0.330)	(0.256)	(0.192)	(0.221)	(0.285)
ISCED = 2	0.099	0.242	0.486	-0.003	-0.035	-0.016
	(0.158)	(0.647)	(0.400)	(0.292)	(0.242)	(0.350)
ISCED = 3	0.175	-1.26	-0.038	0.151	0.299	0.373*
ISCEE 9	(0.130)	(0.884)	(0.531)	(0.307)	(0.217)	(0.196)
ISCED = 6	0.043	-11.0***	0.856*	0.760	0.436	0.271
ISCEE 0	(0.213)	(0.548)	(0.495)	(0.942)	(0.422)	(0.259)
ISCED = 7	-0.616	-11.7***	(0.100)	(0.012)	-12.3***	-0.160
ISCED = I	(0.601)	(0.455)			(0.184)	(0.661)
ISCED = 8	-2.45**	(0.100)			11.9***	-1.97*
ISCED = 0	(0.966)				(0.234)	(1.01)
ISCED = 9	11.3***	-0.404	-1.60***	11.9***	0.436	8.73***
150ED = 9	(0.572)	(0.359)	(0.309)	(0.808)	(0.816)	(0.989)
Ethnicity = Extranjero	0.214	(0.333)	1.37	-11.1***	2.66**	-0.082
Ethnicity = Extranjero	(0.515)		(1.66)	(0.232)	(1.14)	(0.576)
Ethnicity = Indigeneous	-0.414***	-1.09***	-0.638***	-0.756***	-0.014	0.465^*
Luminorey — indigeneous	(0.102)	(0.337)	(0.228)	(0.186)	(0.178)	(0.249)
Ethnicity = NoIndica	-11.9***	(0.337) -12.4***	-11.5***	-13.4***	(0.110)	-9.53***
Enumerate – Normanca						
	(0.076)	(0.285)	(0.206)	(0.237)		(0.446)
Standard-Errors				lasticity-rol		
Observations	11,534	2,357	2,512	2,377	2,307	1,981
Squared Correlation	0.28046	0.25511	0.15689	0.18619	0.22846	0.29200

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Guatemala as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, LPG for cooking fuel (CF) and Ladino for ethnicity (ETH).

Table A54: Logit-Model Coefficients Hardship Cases in Mexico

Dependent Variable:	Log-Odds of	Expecting	Higher Add	ditional Cos	sts than 80%	of Population
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						<u> </u>
(Intercept)	3.25***	-1.25**	4.02***	5.28***	1.34	10.4***
(Intercept)	(0.420)	(0.606)	(1.25)	(1.28)	(1.41)	(1.13)
HH Exp. (log)	-0.868***	-0.357***	-0.913***	-0.985***	-0.552***	-1.43***
IIII Exp. (log)	(0.023)	(0.057)	(0.145)	(0.160)	(0.146)	(0.097)
HH Size	0.019**	-0.087***	-0.006	0.005	-0.091*	0.164***
	(0.008)	(0.020)	(0.042)	(0.050)	(0.052)	(0.040)
Urban Area	-0.064**	-0.138**	-0.057	-0.048	-0.100	-0.032
	(0.028)	(0.059)	(0.057)	(0.058)	(0.061)	(0.080)
Electricity Acc.	0.988***	1.13***	0.403	0.223	0.576	-0.954
	(0.357)	(0.437)	(0.507)	(0.463)	(0.873)	(0.789)
Car Ownership	1.84***	1.95***	2.05***	1.99***	1.75***	1.45***
ı	(0.031)	(0.060)	(0.063)	(0.068)	(0.066)	(0.090)
CF = Charcoal	2.10***	2.90***	2.36***	1.77***	2.35***	0.373
	(0.215)	(0.387)	(0.618)	(0.454)	(0.537)	(1.00)
CF = Firewood	-0.119	0.389	$0.342^{'}$	0.0008	$0.197^{'}$	0.219
	(0.146)	(0.302)	(0.513)	(0.293)	(0.355)	(0.322)
CF = Gas	2.22***	3.89***	2.76***	2.27***	2.24***	1.43***
	(0.147)	(0.329)	(0.522)	(0.290)	(0.340)	(0.245)
CF = LPG	0.906***	1.52***	0.999**	0.639**	0.999***	0.539^{**}
	(0.141)	(0.297)	(0.508)	(0.274)	(0.330)	(0.234)
CF = Other	-0.742**	-0.009	-0.831	-1.82*	-0.548	-0.389
	(0.293)	(0.538)	(0.809)	(0.954)	(0.673)	(0.438)
ISCED = 0	0.030	0.095	0.137^{*}	0.112	-0.086	-0.037
	(0.038)	(0.073)	(0.079)	(0.082)	(0.088)	(0.132)
ISCED = 2	-0.031	-0.038	-0.047	-0.025	-0.069	0.038
	(0.035)	(0.075)	(0.077)	(0.075)	(0.078)	(0.109)
ISCED = 3	-0.065	-0.141	0.011	0.007	-0.065	-0.102
	(0.045)	(0.113)	(0.100)	(0.092)	(0.094)	(0.123)
ISCED = 5	-0.158*	0.083	-0.470**	0.020	-0.132	0.009
	(0.081)	(0.327)	(0.220)	(0.180)	(0.158)	(0.153)
ISCED = 6	0.091*	0.302	0.022	0.312***	0.217^{**}	0.237^{**}
	(0.050)	(0.192)	(0.141)	(0.111)	(0.096)	(0.111)
ISCED = 7	-0.025	-0.182	1.04	0.595**	0.242	0.200
	(0.099)	(0.671)	(0.683)	(0.299)	(0.203)	(0.150)
Ethnicity = Indigeneous	-0.264***	-0.113*	-0.264***	-0.326***	-0.266***	-0.336***
	(0.029)	(0.061)	(0.062)	(0.068)	(0.064)	(0.073)
Standard-Errors			Heterosked	asticity-rob	ust	
Observations	88,899	19,669	18,416	17,759	17,111	15,944
Squared Correlation	0.15770	0.19660	0.18180	0.17754	0.14069	0.10958

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Mexico as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (EFD) and EED-level 1.

Table A55: Logit-Model Coefficients Hardship Cases in Nicaragua

Dependent Variable:			-			80% of Population
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	-7.13***	-11.1***	-17.2***	-7.64	-4.51	-14.7***
	(1.20)	(2.08)	(4.47)	(4.96)	(3.14)	(1.94)
HH Exp. (log)	0.630***	-0.552*	0.252	0.636	0.322	-0.243
- , -,	(0.143)	(0.304)	(0.651)	(0.661)	(0.379)	(0.226)
HH Size	-0.021	-0.154	0.086	0.036	0.131	0.291***
	(0.029)	(0.096)	(0.122)	(0.137)	(0.091)	(0.073)
Urban Area	-0.773***	-1.42**	-1.33***	-0.622**	-0.842***	-1.04***
	(0.128)	(0.606)	(0.294)	(0.283)	(0.237)	(0.279)
Electricity Acc.	0.185	-0.219	-0.180	-0.495	0.023	15.2***
·	(0.242)	(0.501)	(0.465)	(0.548)	(0.599)	(0.311)
Car Ownership	1.60***	-0.866	1.07**	1.63***	1.64***	1.92***
· · · · · · · · · · · · · · · · · · ·	(0.121)	(2.78)	(0.530)	(0.356)	(0.231)	(0.173)
CF = Charcoal	0.412	()	0.698	-12.3***	0.838	0.003
	(0.802)		(0.583)	(1.15)	(1.24)	(1.37)
CF = Firewood	0.263	12.7***	12.9***	0.830	0.528	0.959
CI — I newood	(0.551)	(0.647)	(0.354)	(1.16)	(1.02)	(0.725)
CF = Kerosene	-9.76***	(0.011)	(0.001)	-11.6***	-12.3***	(0.120)
CI — Refosciie	(0.537)			(1.16)	(1.00)	
CF = LPG	1.19**	17.3***	14.6***	1.83	0.695	0.735
Or – III O	(0.537)	(0.456)	(0.381)	(1.15)	(0.999)	(0.680)
CF = Unknown	1.45**	14.2***	14.2***	-11.8***	1.32	1.01
Cr = Chkhown	(0.699)	(0.982)	(1.10)	(1.20)	(1.36)	(0.818)
ISCED = 0	-0.070	-0.593	0.443	0.053	-0.106	-0.343
13CED = 0	(0.164)	(0.449)	(0.393)	(0.315)	(0.318)	(0.381)
ISCED = 2	-0.112	-0.239	(0.595) -0.554*	(0.313) 0.111	0.068	-0.337*
15CED = 2	(0.112)	(0.585)	(0.311)	(0.297)	(0.207)	(0.203)
ISCED = 3	-0.127	(0.565)	1.48		0.347	
19CED = 9				-1.39		-0.559
ICCED 4	(0.411)	-17.7***	(1.10)	(1.10)	(0.615)	(0.807)
ISCED = 4	-0.127		0.523	0.291	-0.232	-0.203
ICCED F	(0.244)	(1.07)	(0.860)	(0.564)	(0.430)	(0.358)
ISCED = 5	0.217	-15.2***	0.943	0.527	-0.322	0.463
IGGED 6	(0.235)	(0.802)	(1.00)	(0.566)	(0.424)	(0.333)
ISCED = 6	-0.110	-14.2***	0.283	-0.355	0.144	0.087
TOOPD -	(0.128)	(0.775)	(0.578)	(0.391)	(0.220)	(0.202)
ISCED = 7	-0.772			-14.0***	-12.7***	-0.372
TOOPP .	(0.636)			(0.430)	(0.157)	(0.630)
ISCED = 8	0.063				-12.9***	0.169
**************************************	(0.781)				(0.203)	(0.791)
ISCED = 9	-10.9***			-13.7***		
	(0.269)			(0.563)		
Ethnicity = Indigeneous	0.169	0.418	0.477	-0.378	0.025	0.245
	(0.209)	(0.715)	(0.456)	(0.421)	(0.305)	(0.314)
Ethnicity = NoSabe	-0.426*	-0.045	-0.903	-0.472	-0.912*	-0.315
	(0.244)	(0.974)	(0.679)	(0.529)	(0.491)	(0.443)
Standard-Errors			Heteroske	edasticity-	robust	<u> </u>
Observations	6,851	764	1,208	1,499	1,731	1,649
Squared Correlation	0.17389	0.34071	0.06145	0.06149	0.11001	0.18684

 $Heterosked a sticity \hbox{-} robust\ standard \hbox{-} errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Nicaragua as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A56: Logit-Model Coefficients Hardship Cases in Paraguay

Dependent Variable:	Log-Odds of	Expecting	Higher A	dditional (Costs than	80% of Population
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	1.35	-3.16***	-4.53	5.80	0.109	-15.2***
/	(0.857)	(1.20)	(2.75)	(3.95)	(4.15)	(3.14)
HH Exp. (log)	-0.474***	0.047	0.363	-0.652	-0.256	-0.189
- (),	(0.085)	(0.158)	(0.366)	(0.488)	(0.520)	(0.362)
HH Size	0.009	-0.070	-0.220**	-0.023	-0.238	-0.269*
	(0.027)	(0.060)	(0.092)	(0.134)	(0.193)	(0.138)
Urban Area	0.181	0.567^{*}	0.672***	-0.133	-0.061	-0.295
	(0.147)	(0.302)	(0.232)	(0.244)	(0.268)	(0.334)
Electricity Acc.	0.348	0.782^{*}	0.494	-2.04*	-0.340	13.6***
	(0.617)	(0.449)	(0.559)	(1.13)	(1.05)	(0.514)
Car Ownership	1.06***	1.37**	1.38***	1.42***	1.15***	1.86***
•	(0.130)	(0.685)	(0.290)	(0.258)	(0.268)	(0.320)
CF = Coal	2.89***	3.08***	2.69***	2.62***	3.26***	3.74***
	(0.266)	(0.598)	(0.520)	(0.567)	(0.736)	(0.850)
CF = Firewood	$0.144^{'}$	0.244	-0.052	0.066	1.55**	1.89**
	(0.277)	(0.552)	(0.493)	(0.583)	(0.741)	(0.750)
CF = LPG	0.493**	1.64***	0.031	$0.268^{'}$	1.03	0.680
	(0.246)	(0.597)	(0.499)	(0.532)	(0.716)	(0.496)
CF = Unknown	-0.473	-0.067	-1.67	-0.675	0.781	$0.297^{'}$
	(0.460)	(0.883)	(1.23)	(1.20)	(1.10)	(0.780)
ISCED = 0	-0.363	-0.025	-0.526	-13.0***	,	1.69
	(0.463)	(0.584)	(0.717)	(0.262)		(1.39)
ISCED = 2	$0.033^{'}$	$0.382^{'}$	0.094	-0.435	-0.456	1.25***
	(0.179)	(0.481)	(0.290)	(0.344)	(0.372)	(0.451)
ISCED = 3	-0.315**	$0.095^{'}$	-0.615*	-0.409	-0.186	$0.475^{'}$
	(0.153)	(0.515)	(0.322)	(0.307)	(0.299)	(0.403)
ISCED = 4	-0.556	$0.428^{'}$	-0.913	$0.412^{'}$	-1.66**	$0.025^{'}$
	(0.379)	(0.939)	(0.815)	(0.510)	(0.670)	(0.606)
ISCED = 5	-0.229	,	-12.5***	-0.630	2.84*	-0.673
	(0.667)		(0.266)	(1.39)	(1.47)	(1.07)
ISCED = 7	-0.907***	0.437	-0.869	-0.926	-1.06**	0.116
	(0.188)	(0.998)	(0.760)	(0.577)	(0.425)	(0.385)
ISCED = 9	0.067	-0.025	0.353	0.292	-0.400	-14.5***
	(0.266)	(0.468)	(0.465)	(0.672)	(0.846)	(0.425)
Standard-Errors			Heteroske	edasticity-1	robust	
Observations	5,410	1,141	1,110	1,028	1,063	1,068
Squared Correlation	0.18860	0.25403	0.26816	0.16844	0.13805	0.10414

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Paraguay as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and ISCED-level 1 and ISCED-level 1.

Table A57: Logit-Model Coefficients Hardship Cases in Peru

Dependent Variable: Expenditure Quintile	Log-Odds of Full sample	Expecting 1	Higher Ad	ditional Co	osts than 80	% of Population 5
Expenditure Quintile	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	15.8***	5.31***	12.9***	13.5***	13.8***	19.8***
HH E (I)	(0.491)	(1.09)	(1.91)	(2.66)	(2.56)	(2.20)
HH Exp. (log)	-2.23***	-0.962***	-1.71***	-1.82***	-1.89***	-2.60***
HH Size	(0.063) 0.018	(0.156) -0.150***	(0.268) -0.203**	(0.370) -0.334**	(0.347)	(0.274)
IIII Size	(0.016)	(0.039)	(0.084)	(0.138)	-0.316** (0.157)	-0.140 (0.133)
Urban Area	0.297***	0.361***	0.481***	0.195*	0.031	0.312
015411 11100	(0.053)	(0.088)	(0.089)	(0.115)	(0.136)	(0.238)
Electricity Acc.	0.286**	0.234*	0.442**	0.089	$0.425^{'}$	-0.598
	(0.111)	(0.130)	(0.213)	(0.328)	(0.507)	(0.488)
Car Ownership	0.977***	0.283	0.564***	0.823***	1.56***	2.08***
	(0.082)	(0.221)	(0.182)	(0.191)	(0.175)	(0.212)
CF = Biomass	-7.85***	-4.48***	-18.1***	-17.2***	-15.9***	-13.7***
orn o	(1.10)	(1.13)	(0.388)	(0.439)	(0.376)	(0.606)
CF = Coal	-2.89***	-0.578	-15.7***	-1.41	-15.0***	-13.4***
CE E:	(0.559)	(0.725)	(0.342)	(1.08)	(0.340)	(0.676)
CF = Firewood	-5.97*** (0.258)	-2.99***	-5.47***	-4.27*** (0.665)	-3.17***	-4.18***
CF = Gas	(0.258) -0.187	(0.515) 0.462	(0.525) -0.775*	(0.665) 0.494	(0.854) -0.224	(1.14) -0.405
Cr — Gas	(0.194)	(0.809)	(0.414)	(0.463)	(0.386)	(0.402)
CF = LPG	0.452***	2.21***	-0.167	0.820**	0.312	0.043
or – in o	(0.142)	(0.495)	(0.332)	(0.396)	(0.281)	(0.245)
CF = Other	-6.81***	-3.45***	-5.80***	-15.1***	-14.3***	-15.1***
	(0.561)	(0.652)	(0.961)	(0.419)	(0.391)	(0.352)
CF = Unknown	-5.92***	-2.83***	-4.72***	-3.80***	-2.64***	-2.16***
	(0.622)	(0.641)	(0.715)	(0.710)	(0.799)	(0.733)
ISCED = 0	-0.194*	-0.163	-0.315*	0.178	0.131	0.026
	(0.101)	(0.139)	(0.176)	(0.205)	(0.279)	(0.600)
ISCED = 2	-0.047	-0.013	-0.005	-0.274	-0.033	0.034
	(0.075)	(0.124)	(0.140)	(0.193)	(0.216)	(0.347)
ISCED = 3	-0.087	0.101	-0.170	-0.156	-0.022	-0.033
IGGED 4	(0.061)	(0.108)	(0.115)	(0.147)	(0.161)	(0.275)
ISCED = 4	-0.027	(0.047	0.114	-0.056	0.060	0.230
ISCED = 6	(0.085) -0.225	(0.239) 0.301	(0.168) -0.027	(0.183) -0.088	(0.198) -0.077	(0.293) -0.403
ISCED = 0	(0.162)	(0.503)	(0.440)	(0.342)	(0.322)	(0.397)
ISCED = 7	-0.092	0.070	0.025	0.082	0.137	-0.069
	(0.111)	(0.459)	(0.274)	(0.239)	(0.250)	(0.301)
ISCED = 8	-0.048	11.0***	0.857	-0.240	-0.351	0.392
	(0.243)	(0.148)	(0.726)	(0.626)	(0.677)	(0.362)
ISCED = 9	-11.0***	, ,	-18.4***	-16.7***	, ,	, ,
	(0.058)		(0.099)	(0.171)		
Ethnicity = Aaymara	0.522***	0.737***	0.850***	-0.105	0.495^{*}	-0.404
	(0.100)	(0.171)	(0.193)	(0.268)	(0.292)	(0.453)
Ethnicity = Blanco	-0.051	0.009	0.225	-0.610*	0.025	0.133
	(0.132)	(0.221)	(0.270)	(0.343)	(0.300)	(0.391)
Ethnicity = Nativooindigenadelaamazonia	0.594***	0.956***	0.292	1.09	0.341	-1.04
Eth-:-:t N/- 1 / 1 / C	(0.185)	(0.313)	(0.359)	(0.695)	(0.535)	(0.794)
Ethnicity = Negro/moreno/zambo/mulato/afroperuano	-0.149	-0.146 (0.146)	(0.160)	-0.575**	-0.217 (0.283)	-0.455 (0.542)
Ethnicity = nosabe/noresponde	(0.094) 0.942	(0.146) 15.0***	(0.169) -0.353	(0.244) $3.16***$	(0.283)	(0.542) -12.6***
Ethnicity = nosabe/noresponde	(0.587)	(0.701)	-0.353 (1.57)	(1.16)	0.040 (0.772)	(0.369)
Ethnicity = Nosabe/noresponde	0.587 0.174	0.275	0.008	0.497**	0.203	-0.236
	(0.107)	(0.169)	(0.189)	(0.234)	(0.330)	(0.477)
Ethnicity = Otro	0.140	-0.088	0.335	0.321	-0.372	0.566*
· · · · · · · · · · · · · · · · · · ·	(0.127)	(0.202)	(0.263)	(0.283)	(0.308)	(0.333)
Ethnicity = Otropuebloindigenauoriginario	-0.755**	0.890	-3.03**	-1.12	-14.0***	-11.5***
	(0.361)	(0.569)	(1.18)	(0.862)	(0.191)	(0.244)
Ethnicity = Quechua	-0.033	0.103	-0.003	-0.111	-0.348**	-0.082
-	(0.055)	(0.098)	(0.106)	(0.125)	(0.157)	(0.222)
Standard-Errors	· · · · · · · · · · · · · · · · · · ·		Heterosked			
Observations	34,542	8,927	6,861	6,248	6,152	6,354
Squared Correlation	0.36829	0.44380	0.32960	0.31114	0.21508	0.15191

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Peru as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Mestizo for ethnicity (ETH).

Table A58: Logit-Model Coefficients Hardship Cases in Uruguay

Dependent Variable:			_			of Population
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	8.71***	2.85**	22.8***	13.2***	-15.7***	31.2***
	(0.807)	(1.16)	(3.54)	(4.90)	(5.31)	(3.53)
HH Exp. (log)	-1.06***	-0.377***	-1.16***	-1.49***	0.016	-1.97***
1 (0)	(0.064)	(0.128)	(0.424)	(0.541)	(0.585)	(0.378)
HH Size	0.038	-0.024	0.029	0.101	-0.548**	0.097
	(0.027)	(0.049)	(0.169)	(0.200)	(0.248)	(0.161)
Urban Area	-0.866***	-0.677***	-0.891***	-0.739***	-0.941***	-1.45***
CISAII IIICA	(0.088)	(0.150)	(0.185)	(0.196)	(0.245)	(0.267)
Electricity Acc.	-1.43**	-1.39**	-15.4***	-2.22	13.3***	-15.1***
Electricity Acc.	(0.565)	(0.577)	(0.458)	(1.69)	(0.314)	(0.359)
Car Ownership	(0.505) $2.65***$	1.94***	(0.458) 2.69***	3.08***	3.33^{***}	3.63^{***}
Car Ownership						
CF = Firewood	(0.103) 0.422	(0.156)	(0.214)	(0.273)	(0.357)	(0.544) 3.32^{**}
Cr = rirewood		0.441	1.15	-0.961	1.55	
CT. C	(0.361)	(0.529)	(0.974)	(2.00)	(1.00)	(1.61)
CF = Gas	1.17***	0.828	0.867	2.32***	1.36*	0.973*
CT	(0.303)	(0.773)	(1.51)	(0.721)	(0.710)	(0.530)
CF = Kerosene	-10.4***	-11.3***	-13.4***			
	(0.221)	(0.419)	(0.857)			
CF = LPG	0.523**	0.784*	1.22	0.493	0.406	0.146
	(0.216)	(0.424)	(0.830)	(0.527)	(0.433)	(0.445)
CF = NoFuel	-0.629	0.899	-12.8***	-14.0***	-12.1***	-12.5***
	(1.29)	(1.29)	(0.860)	(0.567)	(0.492)	(0.469)
ISCED = 2	0.156	0.037	0.091	0.217	0.270	0.539*
	(0.105)	(0.273)	(0.274)	(0.230)	(0.221)	(0.291)
ISCED = 5	0.093	0.093	0.269	-0.045	-0.039	0.567
	(0.129)	(0.287)	(0.282)	(0.271)	(0.292)	(0.364)
ISCED = 6	-9.73***			-13.6***		-11.6***
	(0.126)			(0.364)		(0.535)
ISCED = 7	0.036	12.0***	18.3***	0.115	-0.016	0.795^{*}
	(0.300)	(0.162)	(1.28)	(1.10)	(0.624)	(0.475)
ISCED = 8	-0.185	-0.578	0.082	0.255	-1.43**	0.605
	(0.229)	(0.943)	(0.534)	(0.452)	(0.657)	(0.453)
ISCED = 9	-0.453***	-0.281	-0.616**	-0.876**	-0.379	-0.167
ISOLD U	(0.135)	(0.179)	(0.263)	(0.395)	(0.453)	(0.751)
Ethnicity = AfrooNegra	-0.040	0.095	-0.251	-0.129	-0.377	-0.715
Ethnicity = Throoftegra	(0.172)	(0.223)	(0.372)	(0.416)	(0.600)	(1.07)
Ethnicity = AsiaticaoAmarilla	0.045	-11.9***	-14.2***	18.2***	-13.3***	-12.3***
Ethnicity — AsiaticaoAmarma	(0.991)	(0.663)			(0.309)	
Ethnicity = Indigena	· /	-0.186	$(0.214) \\ 0.675$	(0.372) -0.506	-0.309)	(0.417) $-2.34**$
nulgena — mulgena	-0.245 (0.227)					
Ethnisita. Otas	(0.237)	(0.348)	(0.551)	(0.577)	(0.566)	(1.17)
Ethnicity = Otra	0.662	0.035	1.71**	-13.3***	1.74	1.19
	(0.666)	(1.15)	(0.855)	(0.136)	(1.44)	(1.38)
Standard-Errors			Heterosked	asticity-rob	ust	
Observations	6,888	1,753	1,430	1,304	1,206	1,195
Squared Correlation	0.20834	0.17168	0.25488	0.27501	0.22008	0.19048

 $Heterosked a sticity \hbox{-} robust\ standard \hbox{-} errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Uruguay as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (*ISCED*) is ISCED-level 1, *Electricity* for cooking fuel (*CF*) and *Blanca* for ethnicity (*ETH*).

Table A59: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Argentina

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dependent Variable:	Log-Odds of	Higher Inc	idence that	n 80% of I	Pop. and No	o Access to Transfers
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Expenditure Quintile	Full sample	1	2	3	4	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	(1)	(2)	(3)	(4)	(5)	(6)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Variables						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-8.73***	-12.8***	-6.37*	-28.0***	-10.3***	14.2***
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HH Exp. (log)						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1111 211p1 (108)						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	HH Size				,		
Electricity Acc. $ \begin{array}{ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c} \text{Car Ownership} & (0.164) & (0.202) & (0.373) & (0.346) & (0.364) \\ 1.72^{***} & 0.753^{***} & 1.90^{***} & 2.00^{***} & 2.75^{***} & 3.02^{***} \\ (0.084) & (0.149) & (0.176) & (0.211) & (0.279) & (0.409) \\ \text{CF = Gas} & -0.171 & 1.17 & -0.675 & 15.1^{***} & -0.247 & -1.56^{***} \\ (0.360) & (0.901) & (0.824) & (0.105) & (0.975) & (0.485) \\ \text{CF = KeroseneFirewoodCharcoal} & -1.38^{**} & -0.324 & -12.7^{***} & 1.39^{***} & -11.5^{***} & -0.020 \\ (0.690) & (1.13) & (0.846) & (0.136) & (1.00) & (0.935) \\ \text{CF = LPG} & -0.080 & 1.08 & -0.664 & 14.9^{***} & 0.193 & -0.694 \\ (0.361) & (0.896) & (0.828) & (0.141) & (0.983) & (0.559) \\ \text{CF = Other} & -14.6^{***} & -12.4^{***} & -12.0^{***} & 1.11^{***} & -13.9^{***} & -14.0^{***} \\ (0.358) & (0.886) & (0.831) & (0.217) & (0.993) & (0.481) \\ \text{ISCED = 0} & -0.494^{***} & -0.436^{*} & -0.267 & -0.866^{**} & -1.24^{*} & 0.126 \\ (0.178) & (0.243) & (0.377) & (0.346) & (0.706) & (0.736) \\ \end{array} $	Electricity Acc.						(0.111)
$ \begin{array}{c} \text{Car Ownership} & 1.72^{***} & 0.753^{***} & 1.90^{***} & 2.00^{***} & 2.75^{***} & 3.02^{***} \\ (0.084) & (0.149) & (0.176) & (0.211) & (0.279) & (0.409) \\ \text{CF = Gas} & -0.171 & 1.17 & -0.675 & 15.1^{***} & -0.247 & -1.56^{***} \\ (0.360) & (0.901) & (0.824) & (0.105) & (0.975) & (0.485) \\ \text{CF = KeroseneFirewoodCharcoal} & -1.38^{**} & -0.324 & -12.7^{***} & 1.39^{***} & -11.5^{***} & -0.020 \\ (0.690) & (1.13) & (0.846) & (0.136) & (1.00) & (0.935) \\ \text{CF = LPG} & -0.080 & 1.08 & -0.664 & 14.9^{***} & 0.193 & -0.694 \\ (0.361) & (0.896) & (0.828) & (0.141) & (0.983) & (0.559) \\ \text{CF = Other} & -14.6^{***} & -12.4^{***} & -12.0^{***} & 1.11^{***} & -13.9^{***} & -14.0^{***} \\ (0.358) & (0.886) & (0.831) & (0.217) & (0.993) & (0.481) \\ \text{ISCED = 0} & -0.494^{***} & -0.436^{*} & -0.267 & -0.866^{**} & -1.24^{*} & 0.126 \\ (0.178) & (0.243) & (0.377) & (0.346) & (0.706) & (0.736) \\ \end{array} $	Discourierly Ties.						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Car Ownership						3.02***
$ \begin{array}{c} \text{CF} = \text{Gas} & \begin{array}{ccccccccccccccccccccccccccccccccccc$	Car o whereinp						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$CF \equiv Gas$. ,		,	,		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$CF \equiv KeroseneFirewoodCharcoal$. ,				. ,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	or more a character						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$CF \equiv LPG$,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
	CF = Other						
ISCED = 0 $ \begin{array}{ccccccccccccccccccccccccccccccccccc$							
$(0.178) \qquad (0.243) \qquad (0.377) \qquad (0.346) \qquad (0.706) \qquad (0.736)$	ISCED = 0			, ,	. ,	, ,	. ,
10010 - 2 0.010 0.000 0.101 -0.400 0.400 0.000	ISCED = 2	0.070	-0.015	0.131	-0.438	$0.205^{'}$	$0.859^{'}$
(0.126) (0.202) (0.253) (0.268) (0.338) (0.554)							
ISCED = 3 0.412^{***} 0.437^{**} 0.460^{**} 0.372 0.134 0.240	ISCED = 3			,		` /	,
$(0.112) \qquad (0.199) \qquad (0.215) \qquad (0.234) \qquad (0.276) \qquad (0.516)$		(0.112)	(0.199)	(0.215)	(0.234)	(0.276)	(0.516)
ISCED = 6 -0.045 -0.500 0.407 -0.013 -0.181 -0.314	ISCED = 6						
(0.155) (0.310) (0.343) (0.317) (0.344) (0.507)		(0.155)	(0.310)	(0.343)	(0.317)	(0.344)	(0.507)
ISCED = 7 0.383^{***} 0.460^* 0.581^{**} 0.596^{**} 0.325 0.140	ISCED = 7			,		` /	'
(0.126) (0.261) (0.262) (0.259) (0.285) (0.491)		(0.126)	(0.261)	(0.262)	(0.259)	(0.285)	(0.491)
ISCED = 9 -0.508 -0.239 -0.258 $-13.7***$ $-13.1***$ $-12.6***$	ISCED = 9	` /	. ,				
$(0.486) \qquad (0.558) \qquad (0.920) \qquad (0.186) \qquad (0.230) \qquad (0.431)$		(0.486)	(0.558)	(0.920)	(0.186)	(0.230)	(0.431)
Standard-Errors Heteroskedasticity-robust	Standard-Errors			Heterosk	edasticity-	robust	
Observations 21,539 4,807 4,623 4,322 4,033 3,754		21,539	4,807				3,754
Squared Correlation 0.05778 0.05778 0.06903 0.05689 0.06983 0.07287				,			

 $Heterosked a sticity-robust\ standard-errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Argentina and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A60: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Barbados

Dependent Variable:						No Access to Transfers
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	5.37***	-2.78	-15.2**	6.69	-3.90	-0.759
	(1.04)	(2.04)	(5.99)	(7.05)	(8.24)	(5.69)
HH Exp. (log)	-1.04***	-0.277	-0.615	-0.864	-1.43	-1.98***
	(0.113)	(0.180)	(0.735)	(0.810)	(0.932)	(0.640)
HH Size	0.011	-0.193*	-0.131	-0.194	0.003	-0.150
	(0.050)	(0.116)	(0.249)	(0.298)	(0.443)	(0.362)
Electricity Acc.	0.779^{*}	2.49	1.35	-1.04*	14.5***	15.9***
	(0.466)	(1.74)	(0.950)	(0.536)	(0.318)	(0.509)
Car Ownership	2.57***	1.68***	3.02***	3.38***	3.06***	3.27***
у	(0.195)	(0.350)	(0.417)	(0.504)	(0.562)	(0.956)
CF = FirewoodCharcoal	-12.9***	-11.4***	0.657	(0.001)	(0.002)	(0.000)
The wood charecon	(0.482)	(1.93)	(0.629)			
CF = Gas	0.279	1.35	16.2^{***}	-0.883	-0.638	-0.453
Cr = Gas	(0.373)	(0.892)	(0.526)	(0.647)	(0.767)	(0.762)
CE Vancana	-13.6***	-13.5***	(0.320) $2.77***$	-16.2***	(0.707)	(0.102)
CF = Kerosene						
CD IDC	(0.354)	(0.815)	(1.02)	(0.703)	0.105	0.779
CF = LPG	0.672*	1.79**	16.2***	-0.782	0.185	0.773
CD III	(0.346)	(0.839)	(0.346)	(0.579)	(0.639)	(0.646)
CF = Unknown	-0.087	3.24*	1.61***	0.703	-14.7***	-15.3***
	(0.903)	(1.84)	(0.479)	(1.28)	(0.766)	(0.762)
ISCED = 0	-0.568**	-0.710*	0.119	-0.227	-1.30***	-1.27
	(0.222)	(0.400)	(0.471)	(0.531)	(0.490)	(0.934)
ISCED = 2	-0.045	0.312	1.13	-2.02*	-16.5***	1.59
	(0.516)	(0.804)	(0.874)	(1.14)	(0.411)	(1.27)
ISCED = 3	-0.264	0.209	0.084	-0.111	-0.722	-1.01
	(0.228)	(0.471)	(0.621)	(0.506)	(0.506)	(0.689)
ISCED = 6	-0.469**	-0.841	0.460	-0.148	-1.35***	-1.46**
	(0.225)	(0.752)	(0.501)	(0.478)	(0.494)	(0.713)
ISCED = 7	-0.749**	2.04***	0.295	-3.14***	-2.80***	-0.876
	(0.345)	(0.724)	(1.08)	(1.08)	(1.05)	(0.758)
ISCED = 8	0.264				1.02	-15.6***
	(1.14)				(1.23)	(0.592)
ISCED = 9	-1.02***	-0.923**	-0.273	-1.09	-1.76**	-1.02
	(0.282)	(0.449)	(0.585)	(0.668)	(0.861)	(0.884)
Ethnicity = EastIndian	1.24	17.3***	-15.3***	2.34	0.159	-14.1***
	(0.829)	(0.512)	(0.434)	(1.92)	(1.32)	(0.457)
Ethnicity = Mixed	0.129	0.120	1.30	0.048	0.993	-0.596
	(0.415)	(0.869)	(0.867)	(1.17)	(0.875)	(0.981)
Ethnicity = Other	-0.188	-0.051	-14.5***	1.76**	-14.1***	-16.0***
Luminary — Outer	(0.899)	(1.09)	(0.493)	(0.860)	(0.951)	(0.645)
Ethnicity = White	-1.01	-15.3***	(0.400)	-14.6***	-1.03	0.649
nonnersy — winte	(0.811)	(0.394)		(0.432)	(1.44)	(1.10)
Ctandand Emission	(0.011)	(0.301)	II.			(2.10)
Standard-Errors	0.494	E09		kedasticit		A 17 A
Observations	2,434	503	489	480	488	474
Squared Correlation	0.12867	0.16430	0.20002	0.16719	0.19436	0.15596

Note

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Barbados and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Black for ethnicity (ETH).

Table A61: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Bolivia

Dependent Variable:		Higher Inc		80% of Po	p. and No	Access to Transfer
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	5.34***	0.158	-12.7***	-26.6***	-26.6***	5.52*
	(1.18)	(1.98)	(3.27)	(3.33)	(3.34)	(2.94)
HH Exp. (log)	-1.18***	-0.697***	-0.050	-0.608	-0.641	-2.30***
	(0.073)	(0.191)	(0.380)	(0.480)	(0.464)	(0.336)
HH Size	0.128***	0.002	-0.164	-0.105	-0.119	0.240
	(0.021)	(0.055)	(0.101)	(0.151)	(0.184)	(0.164)
Urban Area	0.328***	0.668***	0.437^{*}	-0.116	-0.008	0.238
	(0.123)	(0.217)	(0.227)	(0.257)	(0.276)	(0.480)
Electricity Acc.	1.30***	1.23***	1.55***	0.753	0.043	13.9***
	(0.272)	(0.370)	(0.424)	(0.755)	(0.586)	(0.386)
Car Ownership	1.02***	0.677**	1.05***	1.28***	1.45***	0.932***
-	(0.099)	(0.341)	(0.211)	(0.195)	(0.202)	(0.265)
CF = Firewood	-0.305	1.13	-3.23*	14.3***	13.8***	-1.08
	(0.719)	(1.01)	(1.80)	(0.620)	(0.786)	(1.21)
CF = Gas	$0.254^{'}$	1.20	-3.47**	15.8***	14.9***	-0.546
	(0.694)	(1.03)	(1.76)	(0.279)	(0.427)	(0.966)
CF = LPG	0.042	0.953	-3.45**	15.3***	14.6***	-0.741
	(0.695)	(1.01)	(1.76)	(0.277)	(0.418)	(0.974)
CF = NoFuel	-0.059	0.934	-4.47**	15.1***	14.6***	-0.285
	(0.718)	(1.16)	(2.01)	(0.547)	(0.541)	(0.991)
CF = Other Biomass	-1.97	, ,	-17.3***	1.54***	$0.362^{'}$, ,
	(1.25)		(1.77)	(0.322)	(0.779)	
ISCED = 0	-1.11	0.080	13.1***	12.0***	13.7***	-18.5***
	(0.822)	(1.36)	(0.501)	(0.646)	(0.646)	(0.824)
ISCED = 2	-0.163	0.607	13.6***	13.7***	15.2***	-3.59***
	(0.794)	(1.33)	(0.146)	(0.198)	(0.242)	(0.838)
ISCED = 3	0.282	1.63	13.8***	14.0***	15.0***	-3.78***
	(0.798)	(1.33)	(0.203)	(0.260)	(0.308)	(0.873)
ISCED = 4	0.326	-0.110	-0.874***	14.2***	15.4***	-0.566
	(0.963)	(1.75)	(0.155)	(1.25)	(1.09)	(1.25)
ISCED = 6	0.204	1.46	14.3***	14.0***	15.1***	-2.81***
	(0.798)	(1.36)	(0.216)	(0.256)	(0.301)	(0.831)
ISCED = 7	0.084	1.24	13.7***	14.2***	15.3***	-3.18***
·	(0.803)	(1.39)	(0.322)	(0.315)	(0.320)	(0.862)
ISCED = 8	-0.374	(1.55)	-1.08***	0.785***	15.6***	-2.91*
	(1.12)		(0.172)	(0.243)	(1.19)	(1.70)
ISCED = 9	0.035	1.25	12.6***	14.7***	1.14***	-2.62**
	(0.888)	(1.59)	(1.14)	(0.736)	(0.228)	(1.20)
Ethnicity = Afroboliviano	0.548	14.4***	-14.0***	(0.100)	-13.7***	0.810
2011110101	(0.673)	(0.191)	(0.175)		(0.243)	(1.24)
Ethnicity = Indigeneous	-0.570***	-0.471***	-0.991***	-0.596***	-0.228	-0.490
	(0.089)	(0.170)	(0.168)	(0.185)	(0.193)	(0.301)
Ethnicity = Non-bolivian	-0.187	-0.342	(0.100)	0.815	2.08*	-0.105
	(0.593)	(0.954)		(1.28)	(1.18)	(1.11)
Standard-Errors	` '	` '	Heteroske	edasticity-re	. ,	. /
Observations	11,859	2,198	2,480	2,398	2,354	2,429
Squared Correlation	0.04537	0.06815	0.04220	0.03840	0.03951	0.05733

Heteroskedasticity-robust standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note.

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Bolivia and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Non-indigeneous for ethnicity (ETH).

Table A62: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Brazil

Dependent Variable:				80% of Po		Access to Transfers
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	3.23***	3.53***	-1.87	2.06	1.30	13.6***
	(0.377)	(0.754)	(1.95)	(2.05)	(2.09)	(1.58)
HH Exp. (log)	-0.728***	-0.670***	-0.213	-0.416*	-0.496**	-1.71***
	(0.026)	(0.065)	(0.227)	(0.240)	(0.231)	(0.152)
HH Size	-0.006	-0.104***	-0.104	-0.009	-0.010	0.155*
	(0.014)	(0.029)	(0.072)	(0.085)	(0.091)	(0.084)
Urban Area	-0.156***	0.265***	-0.297***	-0.458***	-0.661***	-0.491***
	(0.048)	(0.080)	(0.093)	(0.099)	(0.111)	(0.165)
Electricity Acc.	$0.142^{'}$	$0.385^{'}$	$0.451^{'}$	-0.837	-0.552	-1.19*
v	(0.232)	(0.280)	(0.622)	(0.563)	(0.662)	(0.717)
Car Ownership	1.47***	0.858***	1.37***	1.81***	1.60***	2.00***
•	(0.048)	(0.093)	(0.093)	(0.106)	(0.145)	(0.229)
CF = FirewoodCharcoal	-0.710**	-1.83***	1.19*	-0.368	-11.8***	1.33*
	(0.290)	(0.610)	(0.710)	(0.609)	(0.540)	(0.761)
CF = Kerosene	-0.145	-11.4***	-8.87***	-9.17***	(010 20)	14.9***
1101050110	(1.18)	(0.581)	(0.704)	(0.485)		(0.548)
CF = LPG	-0.031	-0.887	0.868	-0.581	0.714	0.147
	(0.237)	(0.569)	(0.635)	(0.456)	(0.528)	(0.517)
CF = Unknown	0.408	-0.644	0.185	0.312	1.76**	0.706
CI CIMIIOWII	(0.326)	(0.690)	(0.806)	(0.583)	(0.813)	(0.676)
ISCED = 0	-0.669***	-0.803***	-0.858***	-0.229	-0.653	0.332
ISCED = 0	(0.140)	(0.189)	(0.298)	(0.323)	(0.445)	(0.987)
ISCED = 2	0.431***	0.346***	0.422***	0.399***	0.547***	0.405**
	(0.050)	(0.095)	(0.100)	(0.105)	(0.113)	(0.169)
ISCED = 6	0.243***	0.308	0.518***	0.100	0.254^*	0.465***
ISCED = 0	(0.073)	(0.229)	(0.166)	(0.148)	(0.135)	(0.177)
ISCED = 7	-0.207	-0.163	-0.033	1.56**	1.32^{**}	-2.51***
ISCED = I	(0.379)				(0.566)	(0.703)
ISCED = 8	-0.038	(1.23) 16.1^{***}	(1.07) $-10.4***$	$(0.715) \\ 0.718$	(0.500) 1.14	-0.342
ISCED = 8						
ISCED = 9	(0.480) -0.867***	(0.108) -0.568***	(0.106) -1.40***	(1.11) -1.20***	(0.747) $-1.52**$	(1.02)
$ISCED \equiv 9$						-1.02*
Tall at the American	(0.118)	(0.153)	(0.233)	(0.327)	(0.591)	(0.529)
Ethnicity = Amarela	-0.166	0.617	-0.104	-3.14***	-0.022	-0.157
Dil D	(0.280)	(0.486)	(0.700)	(1.07)	(0.569)	(0.574)
Ethnicity = Branca	-0.010	-0.009	-0.035	0.045	0.125	-0.288**
T-1	(0.047)	(0.089)	(0.098)	(0.097)	(0.105)	(0.144)
Ethnicity = Indigena	-0.180	-0.367	-0.016	-0.222	-0.610	0.531
	(0.279)	(0.514)	(0.529)	(0.655)	(0.600)	(0.948)
Ethnicity = Preta	-0.009	0.194	0.016	-0.113	-0.132	-0.350
	(0.071)	(0.125)	(0.147)	(0.148)	(0.164)	(0.243)
Ethnicity = Semdeclaracao	-0.664	-0.053	-1.53	-1.55	-14.6***	0.329
	(0.485)	(0.700)	(1.12)	(1.14)	(0.094)	(0.913)
Standard-Errors			Heteroske	edasticity-re	bust	
Observations	57,889	14,069	12,632	11,632	10,679	8,877
Squared Correlation	0.04739	0.04675	0.05831	0.06164	0.04841	0.05459

Note:

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Brazil and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Parda for ethnicity (ETH).

Table A63: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Chile

Dependent Variable:	Log-Odds of	Higher Inc	idence tha	n 80% of I	Pop. and N	o Access to Transfers
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	6.59***	0.342	5.31^{*}	-0.470	8.57**	15.0***
/	(0.458)	(1.04)	(3.13)	(3.30)	(3.63)	(3.37)
HH Exp. (log)	-0.915***	-0.109	-0.718*	-0.009	-1.17***	-2.04***
- , -,	(0.055)	(0.139)	(0.397)	(0.394)	(0.414)	(0.358)
HH Size	0.021	-0.169***	-0.114	-0.371**	0.076	0.265
	(0.027)	(0.061)	(0.144)	(0.147)	(0.180)	(0.171)
ISCED = 0	0.357	0.490	0.543	0.034	-14.4***	-8.42***
	(0.339)	(0.427)	(0.558)	(0.849)	(0.308)	(1.06)
ISCED = 2	-0.065	-0.067	-0.081	-0.228	0.005	1.36
	(0.106)	(0.161)	(0.207)	(0.208)	(0.330)	(1.12)
ISCED = 6	0.110	0.091	0.092	-0.082	0.586	1.79
	(0.144)	(0.247)	(0.253)	(0.277)	(0.402)	(1.18)
ISCED = 7	-0.090	0.186	0.212	-0.239	0.477	1.55
	(0.123)	(0.243)	(0.232)	(0.214)	(0.309)	(1.08)
ISCED = 8	-0.897	12.5^{***}	-9.11***	-0.041	-14.0***	1.03
	(0.616)	(0.123)	(0.170)	(1.25)	(0.279)	(1.49)
ISCED = 9	-0.037	-0.669	1.66	0.509	-13.1***	4.11***
	(0.530)	(0.780)	(1.03)	(1.12)	(0.280)	(1.48)
Standard-Errors			Heterosk	edasticity-	-robust	
Observations	$15,\!237$	3,378	3,058	2,860	2,966	2,975
Squared Correlation	0.06144	0.04121	0.03717	0.02931	0.01869	0.02030

Note:

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Chile and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A64: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Colombia

Dependent Variable: Expenditure Quintile	Log-Odds of Full sample	Higher Inc	idence than 2	80% of Po _j	p. and No A 4	ccess to Transf 5
23. ponarou gameno	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	3.82***	-1.01	-0.332	6.01***	10.1***	0.617
	(0.357)	(0.664)	(1.42)	(1.77)	(2.01)	(1.96)
HH Exp. (log)	-0.789***	-0.144*	-0.157	-0.903***	-1.46***	-1.80***
	(0.031)	(0.085)	(0.182)	(0.234)	(0.244)	(0.213)
HH Size	-0.022	-0.135***	-0.263***	-0.078	0.042	0.191^{**}
	(0.016)	(0.038)	(0.063)	(0.091)	(0.096)	(0.083)
Urban Area	-0.114	0.037	-0.023	-0.362**	-0.574**	-0.672*
	(0.076)	(0.113)	(0.138)	(0.157)	(0.239)	(0.344)
Electricity Acc.	-0.011	-0.304	0.356	-0.415	-0.470	11.4***
	(0.259)	(0.340)	(0.481)	(0.518)	(0.630)	(0.174)
Car Ownership	1.28***	0.790**	0.996***	1.39***	2.09***	2.42***
-	(0.069)	(0.350)	(0.190)	(0.149)	(0.132)	(0.215)
CF = Coal	-0.798	-11.7***	0.363	-10.4***	-9.58***	-14.0***
	(1.08)	(0.353)	(1.09)	(0.341)	(0.711)	(0.469)
CF = FirewoodCharcoal	-1.24***	-0.647	-1.28***	-0.853*	0.183	0.712
	(0.230)	(0.414)	(0.430)	(0.473)	(0.661)	(1.16)
CF = Gas	0.870***	1.67***	0.522*	0.406	0.735	1.24***
	(0.169)	(0.350)	(0.310)	(0.328)	(0.495)	(0.468)
CF = Kerosene	0.119	0.135	0.367	0.463	-3.37***	-11.7***
	(0.735)	(0.768)	(1.17)	(1.04)	(1.29)	(0.487)
CF = LPG	0.663***	1.13***	0.241	0.473	0.894*	0.925*
01 21 0	(0.172)	(0.357)	(0.316)	(0.334)	(0.501)	(0.516)
CF = Unknown	-0.725**	0.225	-1.32**	-0.742	-1.54**	1.21
	(0.341)	(0.583)	(0.548)	(0.529)	(0.707)	(0.845)
ISCED = 0	-0.419***	-0.367**	-0.328*	-0.193	-0.102	-0.467
ISCLD = 0	(0.106)	(0.146)	(0.188)	(0.236)	(0.402)	(1.05)
ISCED = 2	-0.054	0.050	-0.052	-0.162	-0.103	-0.425
ISCED = 2	(0.072)	(0.139)	(0.133)	(0.144)	(0.186)	(0.324)
ISCED = 3	-0.279***	-0.087	-0.282***	-0.233*	-0.452***	-0.630**
ISCED = 3	(0.061)	(0.119)	(0.109)	(0.122)	(0.150)	(0.262)
ISCED = 6	-0.476***	0.059	-0.483***	-0.504***	-0.329**	-0.477*
ISCED = 0						
ICCED 7	(0.079)	(0.221)	(0.164)	(0.159)	(0.159)	(0.244)
ISCED = 7	-0.426**	-1.94**	0.541	-0.010	0.162	-0.541*
ISCED 0	(0.172)	(0.777)	(0.573)	(0.361)	(0.360)	(0.324)
ISCED = 9	-1.73**	-13.7***	-0.362	-12.9***	-11.5***	-14.0***
Ethnicites Africal III t	(0.818)	(0.134)	(1.22)	(0.106)	(0.126)	(0.361)
Ethnicity = A frod escendiente	-0.132	-0.278*	0.012	-0.065	-0.325	-0.369
Dil	(0.096)	(0.165)	(0.163)	(0.215)	(0.259)	(0.529)
Ethnicity = Gitano-Rrom	-1.50	-14.8***	-9.58***	-14.7***	0.086	-14.3***
D. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	(1.13)	(0.129)	(0.076)	(0.179)	(1.29)	(0.258)
Ethnicity = Indigena	-0.491**	-0.296	-0.889***	-0.453	0.124	-2.59***
	(0.191)	(0.279)	(0.328)	(0.384)	(0.461)	(0.739)
Ethnicity = PalenquerodeSanBasilio	-1.87***	-0.447	-0.541	-1.88*	-11.1***	-0.923
	(0.608)	(1.12)	(1.13)	(1.12)	(0.086)	(1.26)
Ethnicity = SanAndresyProvidencia	1.38**	3.94***	0.644	0.378	0.187	1.30***
	(0.574)	(1.25)	(0.590)	(0.368)	(0.428)	(0.452)
Standard-Errors			Heteroske	dasticity-ro	bust	
Observations	87,166	14,584	18,030	19,413	19,037	16,102
	0.,100	,00 -	,000	,	10,001	

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Colombia and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED -level 1, $\mathit{Electricity}$ for cooking fuel (CF) and $\mathit{Mestizo}$ o blanco for ethnicity (ETH).

Table A65: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Costa Rica

Dependent Variable: Expenditure Quintile	Log-Odds of Full sample	_	cidence th	an 80% of 3	-	No Access to Transfers 5
Expenditure Quintile	(1)	$ \begin{array}{c} 1\\(2) \end{array} $	(3)	(4)	4 (5)	(6)
	(1)	(2)	(9)	(4)	(0)	(0)
Variables					dutat	and the second second
(Intercept)	-12.7***	-20.0***	-23.1***	-8.14	-14.0***	7.91***
	(0.647)	(3.31)	(4.89)	(5.89)	(4.09)	(2.18)
HH Exp. (log)	-0.396***	0.490	0.858	-1.03	-0.407	-1.29***
	(0.077)	(0.450)	(0.639)	(0.731)	(0.494)	(0.250)
HH Size	-0.108***	-0.342**	-0.351	0.085	-0.119	0.002
	(0.037)	(0.138)	(0.218)	(0.262)	(0.189)	(0.129)
Urban Area	-0.389***	-0.561*	-0.175	-0.480**	-0.258	-0.801***
	(0.108)	(0.299)	(0.226)	(0.236)	(0.217)	(0.271)
Electricity Acc.	13.2***	13.4***	13.8***	13.5***	15.2***	
	(0.154)	(0.289)	(0.317)	(0.651)	(0.698)	
Car Ownership	2.43***	2.07***	2.02***	2.46^{***}	2.76***	3.73***
	(0.127)	(0.277)	(0.244)	(0.265)	(0.301)	(0.524)
CF = FirewoodCharcoal	-0.733**	-0.106	-1.01	0.132	-15.8***	-2.01*
	(0.363)	(0.531)	(0.914)	(0.660)	(0.520)	(1.10)
CF = LPG	0.296***	0.511	0.248	0.636***	-0.166	0.550**
	(0.101)	(0.339)	(0.231)	(0.221)	(0.201)	(0.233)
CF = Other	-0.196	0.814	-12.9***	-13.8***	-0.978	0.336
	(0.552)	(0.997)	(0.261)	(0.459)	(1.12)	(0.635)
ISCED = 0	0.082	0.544	0.378	-0.872	1.02	-14.5***
	(0.322)	(0.633)	(0.410)	(0.795)	(0.873)	(0.342)
ISCED = 2	0.171	-0.060	-0.071	0.492**	-0.149	0.392
	(0.121)	(0.360)	(0.258)	(0.239)	(0.239)	(0.369)
ISCED = 3	-0.237	1.06	0.385	0.009	-0.476	-2.28**
	(0.425)	(1.12)	(0.851)	(0.870)	(0.730)	(1.13)
ISCED = 6	0.525	-15.3***	-1.07	2.11**	-0.373	1.52**
	(0.417)	(0.352)	(1.28)	(1.01)	(0.667)	(0.757)
ISCED = 7	-0.040	0.823	-0.098	0.374	-0.391	0.090
	(0.151)	(0.743)	(0.450)	(0.306)	(0.277)	(0.364)
ISCED = 8	$0.267^{'}$, ,	1.40	1.18	-0.070	0.721^{*}
	(0.250)		(0.873)	(0.735)	(0.532)	(0.433)
ISCED = 9	-12.9***	-13.8***	-14.0***	-13.8***	-13.9***	-16.0***
	(0.103)	(0.274)	(0.262)	(0.267)	(0.245)	(0.389)
Ethnicity = Blanco(a)	0.211**	0.742**	0.308	$0.350^{'}$	-0.152	0.150
	(0.105)	(0.288)	(0.244)	(0.240)	(0.213)	(0.233)
Ethnicity = Indigena	-0.203	-0.609	0.820*	-0.672	-0.450	-0.804
v	(0.268)	(0.867)	(0.470)	(0.663)	(0.493)	(0.614)
Ethnicity = Mulato(a)	-0.073	0.426	0.127	-0.135	-0.151	-0.405
(1)	(0.169)	(0.404)	(0.368)	(0.381)	(0.351)	(0.409)
Ethnicity = Negrooafrodescendiente	0.575*	1.88***	0.208	0.774	0.064	0.017
,	(0.346)	(0.693)	(0.862)	(0.800)	(0.831)	(0.710)
Ethnicity = Otro(a)	-0.649	0.904	-0.941	-0.817	-0.208	-14.5***
(~)	(0.624)	(1.18)	(1.19)	(1.21)	(1.08)	(0.218)
G. 1 1 D	(0.021)	(2.20)		. ,		(0.210)
Standard-Errors	0.00	4 0 - 0		kedasticity		4 2 = 2
Observations	6,924	1,619	1,471	1,340	1,318	1,176
Squared Correlation	0.12229	0.08565	0.13281	0.14992	0.12953	0.14157

 $Heterosked a sticity \hbox{-} robust\ standard \hbox{-} errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Costa Rica and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and ISCED-level 1 and ISCED-level 1.

Table A66: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Dominican Republic

Dependent Variable:	Log-Odds of	Higher Inc	cidence th	an 80% of	Pop. and	No Access to Transfers
Expenditure Quintile	Full sample	1	2	3	4	5
•	(1)	(2)	(3)	(4)	(5)	(6)
Variables		. ,				· /
(Intercept)	-0.503	2.14	-0.189	5.08	6.11	-8.42***
(mtercept)	(0.805)	(2.14)	(4.11)	(4.20)	(4.24)	(2.20)
IIII E (1)	-0.210**	-0.588**	-0.229	` ,	-1.25**	-0.697***
HH Exp. (log)				-0.863		
IIII C:	(0.092)	(0.292)	(0.530)	(0.539)	(0.520)	(0.259)
HH Size	-0.158***	-0.081	-0.122	0.083	0.211	-0.005
TT 1 A	(0.031)	(0.109)	(0.160)	(0.172)	(0.189)	(0.107)
Urban Area	-0.254***	-0.230	-0.108	-0.325	-0.174	-0.355*
771	(0.091)	(0.197)	(0.210)	(0.205)	(0.213)	(0.197)
Electricity Acc.	0.258	0.516	-0.142	-0.480	1.65**	12.4***
	(0.284)	(0.536)	(0.556)	(0.501)	(0.698)	(0.298)
Car Ownership	2.32***	2.02***	1.69***	2.35***	2.43***	2.88***
	(0.103)	(0.278)	(0.222)	(0.204)	(0.216)	(0.280)
CF = Charcoal	-0.386	-0.968	-0.0001	-0.640	-15.0***	0.919
	(0.405)	(0.663)	(0.790)	(1.07)	(0.195)	(0.897)
CF = Electricity	-0.071	-14.7***		2.18	-16.1***	-14.8***
	(1.17)	(0.288)		(1.86)	(0.247)	(0.231)
CF = Firewood	-0.543*	-0.981**	-0.529	-0.456	0.530	-14.6***
	(0.294)	(0.496)	(0.601)	(0.743)	(0.661)	(0.177)
CF = Kerosene	-0.171	-12.9***	-13.4***	0.265	0.927	-0.475
	(0.534)	(0.119)	(0.187)	(1.39)	(0.704)	(0.902)
CF = Unknown	-0.019	-1.48	-1.80	-0.091	0.424	0.051
	(0.192)	(1.01)	(1.11)	(0.509)	(0.396)	(0.294)
ISCED = 0	-0.291	-0.306	-0.760	0.010	-0.633	$0.353^{'}$
	(0.201)	(0.327)	(0.587)	(0.465)	(0.526)	(0.519)
ISCED = 2	0.103	0.478**	$0.345^{'}$	0.158	0.057	-0.166
	(0.100)	(0.216)	(0.223)	(0.223)	(0.222)	(0.226)
ISCED = 3	$0.450^{'}$	-13.2***	0.809	1.02	-13.7***	$0.597^{'}$
	(0.474)	(0.189)	(1.36)	(0.823)	(0.170)	(0.585)
ISCED = 6	0.457***	0.682*	0.679**	0.619**	0.283	0.231
	(0.122)	(0.370)	(0.273)	(0.267)	(0.263)	(0.238)
ISCED = 7	1.41***	(/	0.255	0.790	0.836	1.54***
—	(0.409)		(1.28)	(0.849)	(0.711)	(0.574)
Standard-Errors			Heteros	kedasticit	v-robust	·
Observations	8,884	2,008	1,876	1,792	1,723	1,485
Squared Correlation	0.16622	0.07439	0.07297	0.13717	0.13271	0.26413

Note:

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Dominican Republic and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A67: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Ecuador

Dependent Variable:		Higher Inc		n 80% of Po	op. and No	Access to Transfer
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	7.74***	4.73***	-8.22***	6.57^{***}	7.34**	17.1***
- /	(0.575)	(0.932)	(1.73)	(2.30)	(3.01)	(2.13)
HH Exp. (log)	-1.39***	-0.955***	-1.18***	-1.32***	-1.59***	-2.41***
1 (0)	(0.051)	(0.081)	(0.250)	(0.307)	(0.380)	(0.250)
HH Size	-0.007	-0.081***	-0.144	-0.090	0.037	0.126
	(0.018)	(0.031)	(0.089)	(0.129)	(0.124)	(0.109)
Urban Area	0.040	0.251**	-0.080	0.021	-0.086	0.256
	(0.056)	(0.101)	(0.116)	(0.116)	(0.134)	(0.165)
Electricity Acc.	1.17***	1.15***	0.958***	0.897***	1.05***	0.589
2100011010, 1100.	(0.118)	(0.144)	(0.214)	(0.238)	(0.370)	(0.648)
Car Ownership	2.85***	2.25***	2.69***	3.13***	3.34***	3.74***
Car Ownership	(0.080)	(0.268)	(0.189)	(0.184)	(0.188)	(0.232)
CF = Firewood	-1.41***	-1.24	13.4***	0.553	-0.487	-1.97
Cr = rnewood	(0.460)	(0.788)	(0.400)	(0.878)	(1.19)	(1.32)
CF = LPG	0.008	-0.031	14.9***	1.33	1.82**	-0.865
Cr – Li G	(0.444)	(0.780)	(0.139)	(0.807)	(0.898)	(0.611)
CF = Unknown	-0.519	-1.12	14.2***	1.10	2.48**	-0.441
CF = Ulkhown	(0.500)	(0.812)	(0.410)	(0.876)	(1.00)	(0.810)
ICCED 0	-1.02***		,		` /	, ,
ISCED = 0		-0.958***	-0.641**	-0.777**	-0.988*	-1.37
IGGED A	(0.151)	(0.188)	(0.258)	(0.324)	(0.587)	(1.22)
ISCED = 2	-8.59***	-8.87***		-10.5***		
ICCED A	(0.065)	(0.224)	0.405444	(0.188)	0.040	0.050
ISCED = 3	0.177**	0.266**	0.435***	-0.132	0.242	0.258
IGGED *	(0.069)	(0.118)	(0.138)	(0.145)	(0.159)	(0.237)
ISCED = 5	0.363**	0.853***	0.750**	-1.07*	0.307	0.840
	(0.185)	(0.317)	(0.303)	(0.593)	(0.485)	(0.665)
ISCED = 6	0.295***	0.728**	0.957***	-0.067	0.168	0.602***
	(0.099)	(0.299)	(0.289)	(0.209)	(0.196)	(0.232)
ISCED = 7	0.621**	2.38**	1.03	-0.108	0.618	1.20***
	(0.264)	(1.20)	(1.04)	(0.696)	(0.411)	(0.366)
Ethnicity = A fro-descendant	0.153	-0.123	0.457	-0.133	-1.07	0.583
	(0.251)	(0.606)	(0.430)	(0.536)	(0.801)	(0.608)
Ethnicity = Black	0.075	-0.476	-0.181	0.684*	0.758	0.042
	(0.336)	(0.488)	(0.346)	(0.349)	(0.886)	(0.554)
Ethnicity = Black(Mulato)	-0.254	0.059	-0.515	0.090	-0.646	-0.825
	(0.234)	(0.282)	(0.686)	(0.349)	(0.496)	(0.729)
Ethnicity = Indigenous	-0.186**	-0.053	-0.217	-0.615***	0.281	-0.377
	(0.088)	(0.111)	(0.188)	(0.232)	(0.318)	(0.461)
Ethnicity = Montubio	0.110	0.045	0.182	0.274	-0.096	-0.063
	(0.109)	(0.176)	(0.203)	(0.233)	(0.345)	(0.364)
Ethnicity = Other	-0.240	1.00	-13.5***	1.31**	-0.838	-1.70
-	(0.590)	(0.962)	(0.129)	(0.586)	(1.14)	(1.49)
Ethnicity = White	0.114	$0.373^{'}$	0.410	-0.375	0.367	-0.250
v	(0.172)	(0.259)	(0.448)	(0.341)	(0.357)	(0.409)
Standard-Errors			Heterosk	edasticity-r	obust	<u> </u>
Observations	28,950	8,199	5,973	5,294	4,822	4,662
O SOUT FREEDING	20,000	0,100	0.14430	0,204	1,022	1,002

Note.

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Ecuador and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Mestizo for ethnicity (ETH).

Table A68: Logit-Model Coefficients Hardship Cases and no Access to Transfers in El Salvador

Dependent Variable:	Log-Odds of	Higher In	cidence th	an 80% of	Pop. and N	No Access to Transfers
Expenditure Quintile	Full sample	1	2	3	4	5
•	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	8.25***	-1.35	-0.271	-1.24	-9.17**	-1.69
1 /	(0.624)	(0.915)	(1.56)	(2.32)	(3.83)	(3.66)
HH Exp. (log)	-1.49***	0.112	-0.514**	-0.609**	-1.05**	-1.77***
1 (0)	(0.049)	(0.099)	(0.206)	(0.265)	(0.474)	(0.528)
HH Size	0.416***	0.019	0.152***	0.135^{*}	0.240*	$0.193^{'}$
	(0.019)	(0.034)	(0.053)	(0.081)	(0.138)	(0.189)
Urban Area	0.028	0.151^{*}	0.261***	0.279^{*}	0.146	-0.277
	(0.057)	(0.088)	(0.097)	(0.145)	(0.211)	(0.281)
Electricity Acc.	0.081	-0.332*	0.609*	1.96*	12.9***	11.7***
	(0.156)	(0.187)	(0.342)	(1.03)	(0.236)	(0.327)
Car Ownership	2.12***	-0.119	1.39***	2.41***	3.35***	4.67***
	(0.087)	(0.366)	(0.202)	(0.155)	(0.200)	(0.500)
CF = Charcoal	-0.681	-0.464	2.63	-10.3***	-14.3***	-15.2***
	(0.950)	(1.38)	(1.76)	(0.923)	(1.03)	(0.776)
CF = Firewood	-2.62***	-1.77**	0.041	-0.424	-0.167	-12.8***
	(0.595)	(0.717)	(0.670)	(1.01)	(1.22)	(0.717)
CF = Kerosene	0.078	0.923	-9.54***	-10.4***	-12.5***	-14.9***
	(0.910)	(1.18)	(0.628)	(0.920)	(1.02)	(0.800)
CF = LPG	0.386	0.895	1.83***	1.22	0.496	-0.177
	(0.595)	(0.710)	(0.623)	(0.916)	(1.00)	(0.685)
CF = Unknown	-3.91***	-1.64**	-0.584	-0.949	-1.42	-1.57
	(0.656)	(0.754)	(0.893)	(1.42)	(1.54)	(1.44)
ISCED = 0	-9.75***		-11.4***	-9.33***		
	(0.047)		(0.096)	(1.04)		
ISCED = 3	0.079	-0.077	0.168	0.301^*	0.192	-0.042
	(0.083)	(0.166)	(0.163)	(0.179)	(0.226)	(0.343)
ISCED = 5	-0.431	-1.64	-1.29	-0.227	0.191	-0.518
	(0.338)	(1.09)	(0.848)	(0.737)	(0.616)	(0.656)
ISCED = 6	0.289	-0.494	0.188	0.849*	0.080	0.548
	(0.221)	(0.578)	(0.489)	(0.499)	(0.549)	(0.471)
ISCED = 7	0.703***	-1.14	0.233	0.479	0.254	1.15***
	(0.171)	(0.821)	(0.469)	(0.445)	(0.285)	(0.353)
ISCED = 8	-12.1***				-17.4***	
IGGED	(0.089)	0.63-	0.00.1*	0.640	(0.187)	0.000*
ISCED = 9	-0.174**	0.037	-0.204*	0.043	-0.760**	-0.860*
	(0.069)	(0.095)	(0.124)	(0.207)	(0.321)	(0.486)
Standard-Errors			Heteros	kedasticity	-robust	
Observations	$23,\!622$	$5,\!351$	5,065	4,840	$4,\!429$	3,937
Squared Correlation	0.17358	0.20878	0.06777	0.14194	0.21988	0.18405

Note:

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in El Salvador and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A69: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Guatemala

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.049
(Intercept) -0.746 -2.05 0.584 2.28 2.43 (0.761) (3.71) (4.58) (3.24) (3.17) HH Exp. (log) -0.181* 0.148 -0.352 -0.526 -0.506	
(0.761) (3.71) (4.58) (3.24) (3.17) HH Exp. (log) -0.181* 0.148 -0.352 -0.526 -0.506	
HH Exp. (log) -0.181* 0.148 -0.352 -0.526 -0.506	(1.96)
HH Exp. (log) -0.181* 0.148 -0.352 -0.526 -0.506	(1.50)
= \ ='	
(0.097) (0.577) (0.638) (0.441) (0.421)	(0.234)
HH Size -0.126*** -0.272** -0.068 0.055 -0.077	
(0.024) (0.124) (0.128) (0.100) (0.122)	(0.074)
Urban Area 0.285^{***} 1.09^{***} 0.402 0.087 0.270	
(0.102) (0.392) (0.269) (0.208) (0.168)	
Electricity Acc. 0.749*** 1.93*** 0.912** 0.359 0.049	
(0.155) (0.648) (0.380) (0.294) (0.279)	
Car Ownership 2.27^{***} 1.27^{**} 2.50^{***} 2.13^{***} 2.33^{**}	
$\begin{array}{cccc} (0.109) & (0.523) & (0.311) & (0.260) & (0.180) \end{array}$	
$CF = Charcoal$ -1.06 -16.3^{***} -1.03 -13.7^{**}	
(1.02) (0.514) (1.93) (0.317)	
$CF = Firewood$ -0.451^{***} -2.36^{***} -1.23^{***} -0.785^{***} -0.341	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
CF = Kerosene 0.443 -15.6*** 1.52 -1.46	
$\begin{array}{cccc} (0.833) & (0.495) & (1.06) & (1.21) \end{array}$	
(0.693) (0.493) (1.00) (1.21) (1.21) (1.00) (1.21) (1.00) (1.21) (1.00) (1.21)	
$\begin{array}{cccc} -0.534 & 2.12 & -15.1 & -1.10 & -2.35 \\ (0.328) & (1.38) & (0.530) & (0.856) & (0.948) \end{array}$	
ISCED = 0 -0.242^{**} -0.252 -0.362 0.060 -0.132	
	, , , , , , , , , , , , , , , , , , , ,
ISCED = 2 0.161 0.875* 0.628 -0.170 0.343	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
ISCED = 3 0.124 -0.611 0.243 0.377 0.312	
(0.135) (0.965) (0.522) (0.308) (0.222) ISCED = 6 -0.100 -11.2^{***} -0.798 0.431 0.066	
$ (0.212) \qquad (0.898) \qquad (1.48) \qquad (1.24) \qquad (0.455) $	· · · · · · · · · · · · · · · · · · ·
ISCED = 7 -1.32^{**} -12.1^{***} -12.2^{**}	
$ (0.644) \qquad (0.721) \qquad (0.192) $	
ISCED = 8 -2.38^{**} 12.0**	
(1.13) (0.246	
ISCED = 9 10.9^{***} -0.819^{*} -1.55^{***} 11.7^{***} 1.03	
$(0.581) \qquad (0.498) (0.383) (0.877) (0.846)$	
Ethnicity = Extranjero 0.625 1.89 $-10.8*** 3.26**$	
(0.515) (1.59) (0.275) (1.15)	
Ethnicity = Indigeneous -0.328^{***} -1.06^{**} -0.515^{*} -0.636^{***} -0.124	
(0.105) (0.419) (0.267) (0.203) (0.194)	
Ethnicity = NoIndica -10.9^{***} -12.5^{***} -14.1^{***} -12.7^{***}	-9.88***
$(0.078) \qquad (0.365) (0.241) (0.250)$	(0.462)
Standard-Errors Heteroskedasticity-robust	
Observations 11,534 2,357 2,512 2,377 2,307	1,981
Squared Correlation 0.19989 0.23248 0.11406 0.12136 0.1552	9 0.19505

Heteroskedasticity-robust standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Guatemala and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, LPG for cooking fuel (CF) and Ladino for ethnicity (ETH).

Table A70: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Mexico

Dependent Variable:	Log-Odds of	Higher Inc	idence than	80% of Po	p. and No .	Access to Transfers
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	2.02***	-0.889	1.92	0.554	-4.35***	9.31***
	(0.448)	(0.730)	(1.57)	(1.61)	(1.54)	(1.32)
HH Exp. (log)	-0.679***	-0.385***	-0.535***	-0.402**	-0.070	-1.32***
	(0.026)	(0.070)	(0.194)	(0.192)	(0.170)	(0.110)
HH Size	0.020**	-0.037	-0.046	-0.048	-0.181***	0.144***
	(0.010)	(0.026)	(0.057)	(0.060)	(0.061)	(0.049)
Urban Area	-0.149***	-0.207***	-0.031	-0.218***	-0.178**	-0.201**
	(0.034)	(0.073)	(0.071)	(0.068)	(0.074)	(0.092)
Electricity Acc.	0.433	0.198	-0.257	0.239	1.93**	-0.955
	(0.384)	(0.488)	(0.602)	(0.799)	(0.759)	(0.953)
Car Ownership	1.56***	1.70***	1.73***	1.55***	1.49***	1.22***
	(0.037)	(0.072)	(0.073)	(0.079)	(0.078)	(0.108)
CF = Charcoal	1.84***	2.54***	1.94***	1.67***	2.36***	0.649
	(0.244)	(0.530)	(0.589)	(0.498)	(0.651)	(1.03)
CF = Firewood	-0.464***	0.246	-0.327	-0.613*	0.107	0.096
	(0.166)	(0.436)	(0.473)	(0.322)	(0.460)	(0.368)
CF = Gas	1.27***	2.64***	1.27***	1.07***	1.40***	0.807***
	(0.163)	(0.452)	(0.475)	(0.308)	(0.441)	(0.268)
CF = LPG	0.514***	1.45***	0.207	0.110	0.801*	0.265
	(0.156)	(0.430)	(0.461)	(0.293)	(0.433)	(0.252)
CF = Other	-0.593*	-0.887	-0.957	-1.24	-0.173	-0.189
	(0.335)	(0.845)	(0.923)	(0.940)	(0.861)	(0.461)
ISCED = 0	-0.322***	-0.356***	-0.299***	-0.143	-0.320***	-0.407**
	(0.051)	(0.099)	(0.106)	(0.106)	(0.121)	(0.171)
ISCED = 2	0.196***	0.158*	0.095	0.237***	0.216**	0.272**
	(0.043)	(0.090)	(0.090)	(0.089)	(0.095)	(0.136)
ISCED = 3	0.270***	0.209	0.262**	0.297***	0.212^{*}	0.431^{***}
	(0.052)	(0.133)	(0.111)	(0.103)	(0.112)	(0.144)
ISCED = 5	0.109	0.372	-0.209	0.389**	-0.058	0.394**
	(0.088)	(0.362)	(0.238)	(0.186)	(0.174)	(0.178)
ISCED = 6	0.387^{***}	0.320	0.143	0.492***	0.527^{***}	0.651^{***}
	(0.057)	(0.230)	(0.152)	(0.122)	(0.110)	(0.136)
ISCED = 7	0.287^{**}	0.095	1.16*	0.793**	0.457^{**}	0.570^{***}
	(0.114)	(0.670)	(0.661)	(0.322)	(0.220)	(0.185)
Ethnicity = Indigeneous	-0.257***	-0.083	-0.248***	-0.355***	-0.278***	-0.279***
	(0.036)	(0.080)	(0.077)	(0.086)	(0.077)	(0.089)
Standard-Errors	<u> </u>		Heteroske	dasticity-re	bust	
Observations	88,899	19,669	$18,\!416$	17,759	$17,\!111$	15,944
Squared Correlation	0.08683	0.11722	0.10096	0.09301	0.07260	0.06618

 $Heterosked a sticity \hbox{-} robust\ standard \hbox{-} errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Mexico and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Non-Indigeneous for ethnicity (ETH).

Table A71: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Nicaragua

Dependent Variable:		_				ess to Transfer
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	-6.45***	-10.8***	-13.4*	5.62	-14.9***	-17.2***
	(1.57)	(3.38)	(7.04)	(5.31)	(3.55)	(2.23)
HH Exp. (log)	0.388**	-0.793	-0.340	-1.05	-0.043	-0.073
	(0.177)	(0.481)	(1.02)	(0.733)	(0.462)	(0.229)
HH Size	-0.209***	-0.830***	0.051	0.168	-0.058	-0.014
	(0.053)	(0.253)	(0.236)	(0.180)	(0.137)	(0.074)
Urban Area	-0.506***	-0.780	-1.07***	-0.345	-0.737***	-0.440
	(0.168)	(0.889)	(0.396)	(0.404)	(0.268)	(0.303)
Electricity Acc.	0.028	-0.540	-0.093	-1.03	-0.385	14.4***
	(0.362)	(0.904)	(0.680)	(0.761)	(0.738)	(0.380)
Car Ownership	1.38***	-14.9***	0.643	0.777	1.41***	1.50***
	(0.157)	(0.740)	(0.831)	(0.580)	(0.295)	(0.191)
CF = Charcoal	1.69		-2.44***	-13.3***	14.3***	2.31
	(1.11)		(0.823)	(1.09)	(1.17)	(1.68)
CF = Firewood	1.33	14.9***	12.5***	9.86×10^{-5}	14.0***	2.43^{*}
	(0.831)	(1.02)	(0.629)	(1.12)	(0.254)	(1.28)
CF = Kerosene	-8.22***			-13.5***	-0.315*	
	(0.814)			(1.09)	(0.175)	
CF = LPG	2.14***	19.6***	14.2***	0.994	14.2^{***}	2.12^{*}
	(0.813)	(0.619)	(0.491)	(1.10)	(0.185)	(1.25)
CF = Unknown	2.76***	15.6***	14.1***	-14.3***	15.1***	2.63**
	(0.930)	(0.990)	(1.05)	(1.14)	(0.960)	(1.34)
ISCED = 0	-0.112	-0.510	0.953	-0.583	-0.227	-0.482
	(0.255)	(0.830)	(0.597)	(0.607)	(0.408)	(0.443)
ISCED = 2	-0.172	0.167	-0.189	-0.035	-0.175	-0.278
	(0.164)	(0.637)	(0.448)	(0.439)	(0.296)	(0.225)
ISCED = 3	-0.317		-15.8***	-0.404	-1.02	-0.011
	(0.587)		(0.580)	(1.09)	(1.09)	(0.866)
ISCED = 4	0.140	0.553	1.40^{*}	-14.4***	-0.097	0.196
	(0.302)	(1.78)	(0.830)	(0.252)	(0.548)	(0.405)
ISCED = 5	0.198	-9.46***	2.15^{*}	0.424	-0.723	0.191
	(0.377)	(1.38)	(1.16)	(0.852)	(0.623)	(0.484)
ISCED = 6	0.132	-15.5***	-0.227	-0.092	0.408	0.175
	(0.171)	(0.572)	(0.776)	(0.642)	(0.289)	(0.226)
ISCED = 7	-0.220			-13.5***	-13.5***	-0.106
	(0.475)			(0.688)	(0.230)	(0.463)
ISCED = 8	1.28				-13.9***	1.27
	(0.920)				(0.257)	(0.946)
ISCED = 9	-9.56***			-13.7***		
	(0.454)			(0.881)		
Ethnicity = Indigeneous	0.496*	-14.8***	0.263	-0.642	0.681*	0.700^{*}
	(0.299)	(0.456)	(0.635)	(0.618)	(0.373)	(0.386)
Ethnicity = NoSabe	-0.846**	-2.16*	-1.01	-0.570	-1.19*	-0.936
	(0.422)	(1.28)	(1.08)	(0.850)	(0.643)	(0.805)
Standard-Errors			Heterosk	edasticity-rob	nst.	
Observations	6,851	764	1,208	1,499	1,731	1,649
Squared Correlation	0.10445	0.22911	0.04190	0.02228	0.03603	0.08973
Squared Correlation	0.10110	0.22311	0.04130	0.02220	0.00000	0.00010

 $Heterosked a sticity \hbox{-} robust\ standard \hbox{-} errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note.

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Nicaragua and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A72: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Paraguay

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c} \text{Urban Area} & \begin{array}{c} (0.027) & (0.060) & (0.091) & (0.138) & (0.198) & (0.149) \\ 0.132 & 0.536^* & 0.641^{***} & -0.223 & -0.089 & -0.452 \\ (0.150) & (0.310) & (0.235) & (0.243) & (0.269) & (0.344) \\ \text{Electricity Acc.} & 0.309 & 0.735 & 0.417 & -2.01^* & -0.522 & 16.6^{***} \\ (0.610) & (0.449) & (0.555) & (1.11) & (1.12) & (0.529) \\ \text{Car Ownership} & 0.989^{***} & 1.39^{**} & 1.38^{***} & 1.32^{***} & 1.02^{***} & 1.88^{***} \\ (0.137) & (0.667) & (0.291) & (0.268) & (0.281) & (0.337) \\ \text{CF = Coal} & 2.88^{***} & 3.02^{***} & 2.82^{***} & 2.43^{***} & 2.94^{***} & 4.07^{***} \end{array} $	
Urban Area 0.132 0.536^* 0.641^{***} -0.223 -0.089 -0.452 (0.150) (0.310) (0.235) (0.243) (0.269) (0.344) Electricity Acc. 0.309 0.735 0.417 -2.01^* -0.522 16.6^{***} (0.610) (0.449) (0.555) (1.11) (1.12) (0.529) Car Ownership 0.989^{***} 1.39^{**} 1.38^{***} 1.32^{***} 1.02^{***} 1.88^{***} (0.137) (0.667) (0.291) (0.268) (0.281) (0.337) CF = Coal 2.88^{***} 3.02^{***} 2.82^{***} 2.43^{***} 2.94^{***} 4.07^{***}	
Electricity Acc. $\begin{pmatrix} 0.150 \end{pmatrix} & \begin{pmatrix} 0.310 \end{pmatrix} & \begin{pmatrix} 0.235 \end{pmatrix} & \begin{pmatrix} 0.243 \end{pmatrix} & \begin{pmatrix} 0.269 \end{pmatrix} & \begin{pmatrix} 0.344 \end{pmatrix}$ Electricity Acc. $\begin{pmatrix} 0.309 \end{pmatrix} & 0.735 \end{pmatrix} & 0.417 \end{pmatrix} \begin{pmatrix} 0.417 \end{pmatrix} & -2.01^* & -0.522 \end{pmatrix} \begin{pmatrix} 0.529 \end{pmatrix} \begin{pmatrix} 0.610 \end{pmatrix} & \begin{pmatrix} 0.449 \end{pmatrix} & \begin{pmatrix} 0.555 \end{pmatrix} & \begin{pmatrix} 1.11 \end{pmatrix} & \begin{pmatrix} 1.12 \end{pmatrix} & \begin{pmatrix} 0.529 \end{pmatrix} \end{pmatrix}$ Car Ownership $\begin{pmatrix} 0.989^{***} \end{pmatrix} & 1.39^{**} \end{pmatrix} \begin{pmatrix} 1.38^{***} \end{pmatrix} & 1.32^{***} \end{pmatrix} \begin{pmatrix} 1.32^{***} \end{pmatrix} \begin{pmatrix} 1.02^{***} \end{pmatrix} \begin{pmatrix} 0.337 \end{pmatrix} \begin{pmatrix} 0.667 \end{pmatrix} \begin{pmatrix} 0.291 \end{pmatrix} \begin{pmatrix} 0.268 \end{pmatrix} \begin{pmatrix} 0.281 \end{pmatrix} \begin{pmatrix} 0.337 \end{pmatrix} \begin{pmatrix} 0.337 \end{pmatrix} \begin{pmatrix} 0.529 \end{pmatrix} \begin{pmatrix} 0.281 \end{pmatrix} \begin{pmatrix}$	
Electricity Acc. 0.309 0.735 0.417 -2.01^* -0.522 16.6^{***} (0.610) (0.449) (0.555) (1.11) (1.12) (0.529) Car Ownership 0.989^{***} 1.39^{**} 1.38^{***} 1.32^{***} 1.02^{***} 1.02^{***} 1.88^{***} (0.137) (0.667) (0.291) (0.268) (0.281) (0.337) CF = Coal 2.88^{***} 3.02^{***} 2.82^{***} 2.43^{***} 2.94^{***} 4.07^{***}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ (0.137) (0.667) (0.291) (0.268) (0.281) $ $ CF = Coal \qquad 2.88^{***} 3.02^{***} 2.82^{***} 2.43^{***} 2.94^{***} \qquad 4.07^{***} $	
CF = Coal $2.88*** 3.02*** 2.82*** 2.43*** 2.94*** 4.07***$	
CF = Coal $2.88*** 3.02*** 2.82*** 2.43*** 2.94*** 4.07***$	
$(0.278) \qquad (0.596) (0.550) (0.566) (0.739) \qquad (0.871)$	
CF = Firewood 0.258 0.221 0.215 0.021 1.59** 2.20***	
(0.289) (0.553) (0.519) (0.581) (0.738) (0.806)	
$CF = LPG$ 0.551^{**} 1.51^{**} 0.228 0.208 0.918 0.964^{*}	
$(0.261) \qquad (0.601) (0.536) (0.532) (0.718) \tag{0.552}$	
CF = Unknown -0.453 -0.563 -1.47 -0.559 0.774 0.684	
$(0.485) \qquad (0.996) \qquad (1.25) \qquad (1.18) \qquad (1.08) \qquad (0.808)$	
ISCED = 0 -0.680 -0.724 -0.403 $-13.5***$ 1.74	
$(0.491) \qquad (0.867) (0.712) (0.261) \tag{1.40}$	
ISCED = 2 0.071 0.372 0.224 -0.397 -0.426 $1.20**$	
$(0.182) \qquad (0.491) (0.290) (0.341) (0.392) \qquad (0.472)$	
ISCED = $3 -0.261^* 0.156 -0.459 -0.374 -0.082 0.420$	
$(0.157) \qquad (0.516) (0.319) (0.311) (0.307) \qquad (0.423)$	
ISCED = 4 -0.425 0.429 -0.755 0.485 $-1.38**$ 0.076	
$(0.374) \qquad (0.939) (0.800) (0.504) (0.633) \qquad (0.618)$	
ISCED = 5 -0.641 -12.4^{***} -0.554 1.80 -14.2^{***}	
(0.837) (0.277) (1.38) (1.24) (0.409)	
ISCED = 7 -0.872^{***} 0.479 -1.18 -1.38^{**} -0.813^{*} 0.109	
$(0.199) \qquad (1.02) \qquad (0.815) \qquad (0.676) \qquad (0.425) \qquad (0.405)$	
ISCED = 9 0.034 -0.217 0.448 0.331 -0.715 $-17.7***$	
$(0.264) \qquad (0.492) \qquad (0.451) \qquad (0.667) \qquad (0.957) \qquad (0.440)$	
Standard-Errors Heteroskedasticity-robust	
Observations 5,410 1,141 1,110 1,028 1,063 1,068	
Squared Correlation 0.18152 0.24781 0.24865 0.15569 0.12587 0.11099	

Note:

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Paraguay and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A73: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Peru

Dependent Variable: Expenditure Quintile	Log-Odds of Full sample	Higher Inc	idence than	80% of Po 3	p. and No A	Access to Transfers 5
Experience Quineric	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	9.42***	1.20	4.54***	8.24***	11.1***	17.4***
	(0.440)	(0.974)	(1.54)	(2.56)	(2.80)	(2.47)
HH Exp. (log)	-1.58***	-0.473***	-0.704***	-1.23***	-1.64***	-2.32***
TTT CI	(0.057)	(0.138)	(0.223)	(0.359)	(0.372)	(0.307)
HH Size	-0.029	-0.161***	-0.361***	-0.393***	-0.312*	-0.217
Urban Area	(0.018) 0.569***	(0.044) $0.704***$	(0.076) $0.653****$	(0.145) 0.317**	(0.169) -0.103	(0.167) -0.186
Oldan Area	(0.062)	(0.091)	(0.095)	(0.128)	(0.149)	(0.246)
Electricity Acc.	0.344***	0.416***	0.386*	-0.015	0.081	-0.641
	(0.129)	(0.159)	(0.219)	(0.386)	(0.495)	(0.457)
Car Ownership	0.820***	0.711***	0.643***	0.594***	1.56***	2.04***
•	(0.085)	(0.223)	(0.188)	(0.209)	(0.197)	(0.246)
CF = Biomass	-5.05***	-3.30***	-16.0***	-16.6***	-14.8***	-14.4***
	(1.05)	(1.11)	(0.361)	(0.442)	(0.464)	(0.661)
CF = Coal	-1.41***	-0.513	-15.2***	-0.468	-14.0***	-11.9***
OP P:	(0.517)	(0.722)	(0.328)	(1.04)	(0.408)	(0.894)
CF = Firewood	-4.08***	-2.77***	-4.35***	-3.25***	-2.19**	-3.57***
CF = Gas	(0.277)	(0.510)	(0.629)	(0.685)	(0.912)	(1.16)
OF = Gas	0.195	0.052	-0.215 (0.407)	(0.512)	(0.504)	-0.261
CF = LPG	(0.214) 0.765***	(0.747) 1.16**	(0.407) 0.097	(0.513) 0.801*	(0.504) 0.812**	(0.541) 0.308
Or – Li G	(0.156)	(0.465)	(0.325)	(0.417)	(0.379)	(0.347)
CF = Other	-3.88***	-2.42***	-4.06***	-15.0***	-13.5***	-14.5***
	(0.443)	(0.627)	(0.925)	(0.425)	(0.494)	(0.434)
CF = Unknown	-3.71***	-2.37***	-3.26***	-3.19***	-1.50*	-1.40*
	(0.500)	(0.613)	(0.692)	(0.760)	(0.832)	(0.769)
ISCED = 0	-0.872***	-0.613***	-1.07***	-0.443*	-0.125	-1.37
	(0.133)	(0.176)	(0.225)	(0.250)	(0.352)	(1.04)
ISCED = 2	0.274***	0.396***	0.243^{*}	-0.028	0.266	0.254
	(0.080)	(0.135)	(0.143)	(0.200)	(0.236)	(0.360)
ISCED = 3	0.188***	0.426***	0.161	0.071	0.153	0.024
	(0.070)	(0.120)	(0.122)	(0.164)	(0.179)	(0.329)
ISCED = 4	0.081	0.536**	0.285	0.036	-0.003	0.226
ICCIED a	(0.098)	(0.252)	(0.182)	(0.206)	(0.243)	(0.347)
ISCED = 6	0.119	1.07***	0.392	(0.345	(0.123	0.031
ISCED = 7	(0.168) -0.124	(0.410) 0.214	(0.418) 0.165	(0.362) 0.158	(0.376) -0.016	(0.439) -0.027
IDOLD = 1	(0.127)	(0.468)	(0.290)	(0.275)	(0.288)	(0.353)
ISCED = 8	-0.289	12.3***	0.846	0.119	-0.293	0.214
	(0.296)	(0.169)	(0.955)	(0.720)	(0.885)	(0.464)
ISCED = 9	-10.4***	, ,	-16.5***	-16.2***	, ,	, ,
	(0.068)		(0.108)	(0.200)		
Ethnicity = Aaymara	0.382***	0.382**	0.550***	-0.042	0.439	0.034
	(0.110)	(0.183)	(0.206)	(0.260)	(0.312)	(0.467)
Ethnicity = Blanco	-0.142	0.092	0.188	-0.470	-0.404	-0.286
	(0.147)	(0.230)	(0.297)	(0.395)	(0.395)	(0.505)
Ethnicity = Nativooindigenadelaamazonia	0.532**	0.458	0.232	1.08	0.833	-1.00
	(0.241)	(0.314)	(0.372)	(0.849)	(0.534)	(0.927)
${\bf Ethnicity} = {\bf Negro/moreno/zambo/mulato/afroperuano}$	(0.105)	-0.164 (0.171)	0.419**	-0.243 (0.266)	-0.210 (0.299)	-0.474
Ethnicity = nosabe/noresponde	(0.105) $1.27**$	(0.171) 14.0***	(0.172) 0.161	(0.200)	(0.299) 0.591	(0.746) -12.3***
Definition — nosabe/ noresponde	(0.545)	(0.615)	(1.29)	(1.23)	(0.802)	(0.455)
Ethnicity = Nosabe/noresponde	0.168	0.162	-0.032	0.520**	0.463	-0.295
1.00000/ Hotospolide	(0.115)	(0.171)	(0.200)	(0.257)	(0.342)	(0.555)
Ethnicity = Otro	0.182	-0.082	0.415	0.635**	-0.262	-0.178
•	(0.134)	(0.238)	(0.260)	(0.277)	(0.348)	(0.425)
Ethnicity = Otropuebloindigenauoriginario	-0.533	0.410	-2.62**	-0.207	-13.7***	-11.2***
-	(0.466)	(0.586)	(1.17)	(0.883)	(0.201)	(0.324)
Ethnicity = Quechua	-0.017	-0.098	-0.023	0.104	-0.246	-0.067
	(0.063)	(0.111)	(0.114)	(0.140)	(0.177)	(0.258)
Standard-Errors			Heteroske	dasticity-re	bust	
Observations	34,542	8,927	6,861	6,248	6,152	6,354
Squared Correlation	0.16852	0.21507	0.16863	0.17201	0.15035	0.12110

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Peru and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Mestizo for ethnicity (ETH).

Table A74: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Uruguay

Expenditure Quintile Variables (Intercept) HH Exp. (log) HH Size Urban Area	Full sample (1) 2.43*** (0.913) -0.618*** (0.074) -0.143*** (0.037)	-2.62 (2.19) 0.140 (0.251)	2 (3) -14.0*** (4.78) -0.350	7.82 (5.36)	4 (5) -11.4*	5 (6)		
(Intercept) HH Exp. (log) HH Size	2.43*** (0.913) -0.618*** (0.074) -0.143*** (0.037)	-2.62 (2.19) 0.140 (0.251)	-14.0*** (4.78)	7.82		. ,		
(Intercept) HH Exp. (log) HH Size	(0.913) -0.618*** (0.074) -0.143*** (0.037)	(2.19) 0.140 (0.251)	(4.78)		-11.4*	0.4.0***		
HH Exp. (log) HH Size	(0.913) -0.618*** (0.074) -0.143*** (0.037)	(2.19) 0.140 (0.251)	(4.78)		-11.4*	010***		
HH Size	-0.618*** (0.074) -0.143*** (0.037)	0.140 (0.251)		(5.36)		34.3***		
HH Size	(0.074) $-0.143***$ (0.037)	(0.251)			(6.09)	(4.35)		
	-0.143*** (0.037)		0.000	-1.22**	-0.930	-1.91***		
	(0.037)	0 500***	(0.562)	(0.598)	(0.668)	(0.463)		
		-0.506***	-0.125	0.129	-0.034	0.230		
Urban Area		(0.117)	(0.216)	(0.231)	(0.279)	(0.204)		
	-0.891***	-0.763***	-0.815***	-0.734***	-1.21***	-1.25***		
	(0.108)	(0.233)	(0.225)	(0.220)	(0.265)	(0.305)		
Electricity Acc.	0.525	-0.335	14.5***	0.558	16.5***	-19.0***		
	(0.633)	(1.00)	(0.204)	(1.19)	(0.410)	(0.449)		
Car Ownership	2.26***	1.75***	2.16***	2.20***	2.98***	2.96***		
Car Ownership	(0.129)	(0.236)	(0.238)	(0.271)	(0.430)	(0.556)		
CF = Firewood	-0.495	-0.828	-0.865	0.357	0.429	2.11		
Cr = rnewood	(0.576)	(1.11)	(1.18)	(1.65)	(1.34)	(1.57)		
CF = Gas	0.880**	1.71	-0.404	2.12***	1.69**	0.460		
Cr — Gas	(0.374)	(1.10)	(1.56)	(0.793)	(0.828)	(0.630)		
CF = Kerosene	-14.4***	-13.9***	-13.4***	(0.793)	(0.828)	(0.030)		
Cr = Kerosene								
CF = LPG	(0.285) 0.431	(0.885)	(0.874)	0.204	0.767	0.000		
Cr = LrG		1.01	0.326	0.304	0.767	0.020		
CE N.E.I	(0.272)	(0.874)	(0.837)	(0.592)	(0.576)	(0.503)		
CF = NoFuel	-12.2***	-12.3***	-12.0***	-12.7***	-16.2***	-15.8***		
ICCED 0	(0.295)	(0.943)	(0.884)	(0.647)	(0.639)	(0.542)		
ISCED = 2	0.410***	0.603	0.562*	0.290	0.657**	0.436		
TO COMP	(0.125)	(0.377)	(0.302)	(0.254)	(0.255)	(0.310)		
ISCED = 5	0.397***	0.455	0.591*	0.150	0.408	0.623		
	(0.153)	(0.368)	(0.339)	(0.298)	(0.348)	(0.397)		
ISCED = 6	-14.6***			-12.6***		-14.5***		
	(0.172)			(0.373)		(0.555)		
ISCED = 7	0.140	17.9***	-14.7***	-13.5***	0.415	0.782		
	(0.367)	(0.237)	(1.34)	(0.183)	(0.663)	(0.533)		
ISCED = 8	0.011	0.591	0.441	0.495	-15.9***	0.477		
	(0.283)	(0.873)	(0.622)	(0.447)	(0.191)	(0.541)		
ISCED = 9	-1.31***	-1.31***	-1.58***	-1.99*	-1.67**	0.091		
	(0.260)	(0.329)	(0.539)	(1.08)	(0.723)	(0.780)		
Ethnicity = AfrooNegra	0.019	-0.460	0.435	0.393	0.135	-14.9***		
	(0.239)	(0.500)	(0.420)	(0.413)	(0.669)	(0.185)		
Ethnicity = AsiaticaoAmarilla	1.12	-13.7***	-14.5***	19.4***	-16.6***	-14.2***		
	(1.09)	(0.193)	(0.246)	(1.05)	(0.375)	(0.490)		
Ethnicity = Indigena	-0.612*	0.122	-0.048	-0.794	-1.23	-15.5***		
-	(0.319)	(0.496)	(0.590)	(0.800)	(0.902)	(0.211)		
Ethnicity = Otra	-0.101	-15.4***	-14.2***	-13.1***	-16.7***	1.85		
•	(1.05)	(0.259)	(0.193)	(0.172)	(0.266)	(1.32)		
Standard-Errors	Heteroskedasticity-robust							
Observations	6,888	1,753	1,430	1,304	1,206	1,195		
Squared Correlation	0.11260	0.12256	0.11408	0.14671	0.16033	0.12950		

Note:

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Uruguay and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Blanca for ethnicity (ETH).

References

IEA (2021). World Energy Balances: 2021 Edition.

Ritchie, Hannah, Max Roser, and Pablo Rosado (2020). "Energy". In: Our World in Data. Shorrocks, A. F. (1982). "Inequality Decomposition by Factor Components". In: Econometrica 50.1, p. 193.