Unidad 1 y 2 – Arquitectura básica, buses, chipset, slots y puertos

¿Qué es un bus?

Un bus es un canal de comunicación físico y lógico que permite la transferencia de datos, direcciones y señales de control entre los distintos componentes del sistema informático (CPU, memoria, dispositivos de E/S, etc.).

Podemos imaginarlo como una **autopista de datos** por donde circula la información dentro del ordenador.

Tipos de buses en arquitectura de Von Neumann

Tipo de bus	Función	Ejemplo técnico
Bus de datos	Transporta los datos binarios entre CPU, memoria y periféricos.	En una CPU de 64 bits, el bus de datos tiene 64 líneas → puede mover 8 bytes por ciclo.
Bus de direcciones	Indica la dirección de memoria o dispositivo donde se va a leer o escribir.	Un bus de 32 bits permite direccionar $2^{32} = 4$ GB de espacio.
Bus de control	Transporta señales de sincronización y control , como READ, WRITE, INT (interrupción) o CLK.	Señales que determinan el sentido y momento de las transferencias.

Ejemplo técnico real:

Cuando el procesador ejecuta una instrucción MOV AX, [1234h]:

- 1. La CPU coloca la dirección 1234h en el bus de direcciones.
- 2. Activa la señal READ en el bus de control.
- 3. La memoria coloca el dato solicitado en el bus de datos.
- 4. La CPU lo recibe en un registro interno.

Clasificación según la topología

Tipo	Descripción	Ejemplo
Bus paralelo	Múltiples líneas (bits) transmiten simultáneamente.	ATA (IDE), PCI.
Bus serie	Transmite bit a bit a mayor frecuencia; reemplaza al paralelo.	SATA, PCI Express, USB.

En sistemas modernos (PCIe, NVMe, USB 3.x), todos los buses son **seriales diferenciales**: dos pares de hilos por dirección (Tx/Rx).

Ejemplos de buses importantes

Bus	Tipo	Velocidad típica	Uso
Front-Side Bus (FSB)	Paralel o	400 MHz – 1600 MHz	Conecta CPU y chipset (antiguo).
DMI (Direct Media Interface)	Serie	8 GT/s – 16 GT/s	Sustituye al FSB en Intel modernos.
PCI Express (PCIe)	Serie	2.5 – 64 GT/s por línea	Tarjetas gráficas, NVMe, expansión.
SATA III	Serie	6 Gb/s	Almacenamiento (HDD/SSD).
USB 3.2 / 4.0	Serie	20-40 Gb/s	Periféricos externos.

¿Qué es el chipset?

El chipset es el conjunto de circuitos integrados que actúa como "controlador del sistema" en la placa base, gestionando la comunicación entre CPU, memoria, buses y periféricos.

Funciones principales del chipset

- 1. Control de la comunicación entre CPU, RAM, GPU, almacenamiento y puertos.
- 2. Gestión de buses internos: PCIe, USB, SATA, DMI, etc.
- 3. Gestión de energía y reloj (clock generator).
- 4. **Soporte de tecnologías:** overclocking, RAID, TPM, Wi-Fi, Bluetooth, etc.
- 5. **Determinación de compatibilidad:** qué procesadores y RAM soporta la placa base.

Arquitectura tradicional (Northbridge / Southbridge)

Antes de los procesadores modernos (Core i3/i5/i7, Ryzen), el chipset estaba dividido en dos chips:

Puente	Función	Ejemplo
Northbridg e	Comunicaba CPU \leftrightarrow RAM \leftrightarrow GPU (alta velocidad).	Intel 945P, AMD 780G
Southbridg e	Gestionaba periféricos, USB, SATA, audio, red.	Intel ICH9, AMD SB710

Concepto clave:

El **Northbridge** era crítico para el rendimiento (FSB, memoria, GPU integrada).

Arquitectura moderna (System-on-Chip)

Hoy en día:

- El controlador de memoria y la GPU integrada están dentro del procesador.
- El chipset se simplifica en un único chip denominado PCH (Platform Controller Hub).

Ejemplo:

- Intel: Chipsets **Z790**, **B760**, **H610** (serie 700).
- AMD: Chipsets X670, B650, A620 (serie AM5).

Ejemplo real de comunicación

 $CPU \neq DMI$ (Direct Media Interface) $\neq PCH$ (chipset)

↑ RAM (controlador integrado)

☆ GPU (integrada o PCIe)

El PCH conecta SATA, USB, Ethernet, Wi-Fi, PCIe secundarios, etc.

Slots de expansión

Los **slots** (ranuras) son **conectores físicos** en la placa base que permiten **instalar tarjetas de expansión** (gráficas, red, sonido, capturadoras, etc.).

Tipos de slots

Tipo	Generación	Ancho de bus	Uso típico
ISA	Antiguo (8/16 bits)	Paralelo	Tarjetas antiguas de sonido, red.
PCI	1993–2010	32 bits / 33–66 MHz	Tarjetas de red, sonido.
AGP	1997–2008	32 bits / 66 MHz	Tarjetas gráficas dedicadas.
PCI Express (PCIe)	Actual	Serie x1, x4, x8, x16	GPU, NVMe, red 10G, RAID, etc.

PCIe (Peripheral Component Interconnect Express):

- Transmisión serial full-duplex.
- Cada "lane" equivale a 1 GB/s aprox. (en Gen4).
- Las ranuras más comunes:
 - o **x1:** dispositivos pequeños (Wi-Fi, red).
 - o **x16:** tarjetas gráficas o aceleradores.

Puertos y conectores

Los **puertos** son **interfaces de conexión física o lógica** entre el sistema y los dispositivos externos.

Pueden ser internos (en la placa base) o externos (en el panel trasero o frontal).

Puertos internos comunes

Puerto	Función	Velocidad	Uso
SATA III	Conexión de discos HDD/SSD	6 Gb/s	Almacenamiento
M.2 (NVMe o SATA)	SSD de alta velocidad	Hasta 64 Gb/s (PCle 4.0 x4)	SSD NVMe, Wi-Fi
PCle x16 / x1	Conectores de expansión	1–32 Gb/s por línea	GPU, tarjetas adicionales
USB header (9 pines)	Conector para USB frontales del chasis	Depende del estándar	USB 2.0, 3.x
Fan / RGB headers	Control de ventiladores e iluminación	PWM	Gestión térmica

Puertos externos modernos

Tipo	Versión	Velocidad
USB 2.0 / 3.2 / 4.0	Hasta 40 Gb/s (USB4)	Periféricos, almacenamiento, docking.
Thunderbolt 3/4	40 Gb/s	Transferencia de datos, vídeo y carga.
HDMI 2.1	48 Gb/s	Salida de vídeo/audio digital (hasta 8K).
DisplayPort 2.1	77 Gb/s	Alternativa a HDMI para monitores.
Ethernet (RJ-45)	1G / 2.5G / 10G	Conectividad de red cableada.
Audio Jack 3.5mm	Analógico	Sonido entrada/salida.
Wi-Fi Antenna (SMA)	RF	Antenas Wi-Fi / Bluetooth.

Conceptos clave

- Los buses son la "red interna" de comunicación → determinan el **rendimiento real** del sistema.
- El chipset define la compatibilidad (qué CPU, RAM y periféricos admite).
- Los slots PCle son la vía de expansión modular del sistema.
- Los puertos son las interfaces de conexión con el exterior, y conocer sus tipos, versiones y velocidades es esencial para diagnóstico y montaje.