## Vaibhav Patel

## CS-340 Project II

## **Report and Plots**

All Algorithms are implemented from pseudo code provided on class slides.

Here is a table for inserting unsorted files into tree.

| File    | Binary | Red   |
|---------|--------|-------|
| Size(in | Search | Black |
| K Unit) | Tree   | Tree  |
| 15      | 0.47   | 0.562 |
| 30      | 0.975  | 1.177 |
| 45      | 1.564  | 1.782 |
| 60      | 2.014  | 2.415 |
| 75      | 2.561  | 3.033 |
| 90      | 3.119  | 3.673 |
| 105     | 3.671  | 4.325 |
| 120     | 4.234  | 4.952 |
| 135     | 4.741  | 5.628 |
| 150     | 5.34   | 6.264 |



Binary Search Tree: It took  $\boldsymbol{\Theta}$  (log N) time to insert which was expected too. (Average Case)

Red Black Tree: It took  $\Theta$  (log N) time to insert which was expected too. (Average Case)

Here is Table for searching in a unsorted files.

| File    | Binary | Red   |
|---------|--------|-------|
| Size(in | Search | Black |
| K Unit) | Tree   | Tree  |
| 15      | 0.084  | 0.081 |
| 30      | 0.169  | 0.171 |
| 45      | 0.255  | 0.249 |
| 60      | 0.338  | 0.331 |
| 75      | 0.417  | 0.415 |
| 90      | 0.503  | 0.514 |
| 105     | 0.594  | 0.601 |
| 120     | 0.697  | 0.713 |
| 135     | 0.775  | 0.76  |
| 150     | 0.854  | 0.854 |



Binary Search Tree: It took  $\Theta$  (log N) time to search which was expected too. (Average Case) Red Black Tree: It took  $\Theta$  (log N) time to search which was expected too. (Average Case)

Here is table for running red black tree on sorted file.

| File    |           |           |
|---------|-----------|-----------|
| Size(in |           |           |
| K Unit) | Inserting | Searching |
| 15      | 0.813     | 0.086     |
| 30      | 1.73      | 0.168     |
| 45      | 2.631     | 0.243     |
| 60      | 3.591     | 0.336     |
| 75      | 4.541     | 0.424     |
| 90      | 5.448     | 0.511     |
| 105     | 6.544     | 0.601     |
| 120     | 7.389     | 0.689     |
| 135     | 8.229     | 0.776     |
| 150     | 9.341     | 0.863     |



Red Black Tree: It took  $\Theta$  (log N) time to search and insert which was expected too. (Worst Case)

Binary Search Tree: I did implement iterative insertion for BST but it took more than 1 hour to insert 150K word file so implemented recursively. Since it is recursively implement it will give stack overflow when running BST on sorted files because too many recursive calls.