Protocol description

- Client is Prover
- Server is Verifier

We have a group ' $\langle g \rangle$ ' whose order is n. Secrets are ' x_1 ' and ' x_2 ', and public keys are ' $h_1=g^{x_1}$ ' and ' $h_2=g^{x_2}$ '.

Prover knowing ' x_1 '	Prover knowing ' x_2 '	Message	Verifier
$c_2, r_2, u_1 \in_R \mathbb{Z}_n$, $a_1 = g^{u_1}$, $a_2 = g^{r_2} h_2^{-c_2}$,	$c_1, r_1, u_2 \in_R \mathbb{Z}_n$ $a_1 = g^{r_1} h^{-c_1}$ $a_2 = g^{u_2}$	$\stackrel{a_1,a_2}{\longrightarrow} \stackrel{\cdot}{}$	$c \in_R$ \mathbb{Z}_n
$c_1 = c - c_2 \mod n'$ $r_1 = u_1 + c_1 x_1 \mod n'$	$c_2 = c - c_1 \mod n'$ $r_2 = u_2 + c_2 x_2 \mod n'$	$\stackrel{(c_1,c_2,r_1,r_2)}{\longleftrightarrow}$	$g^{r_1}\stackrel{?}{=}$
			$a_1 h_1^{c_1}$, $g^{r_2} \stackrel{?}{=} a_2 h_2^{c_2}$,

When implemented properly, this results in the client proving to the server that it knows either ' x_1 ' or ' x_2 '. Specifically, the client only needs to know a single one, and the server doesn't know which one.

It this passes, the server will then send the flag to the client.