COMP47460 Tutorial

Nearest Neighbour Classifiers

1. Three examples are shown below from the Iris botanical dataset. Each example is represented by a vector of 4 numeric features. Example 1 has been manually labelled as belonging to "Class A" and Example 2 has been labelled as belonging to "Class B".

Example x1	
Sepal length	4.4
Sepal width	2.9
Petal length	1.4
Petal width	0.2
Class	А

Example x2	
Sepal length	5.6
Sepal width	3.0
Petal length	4.5
Petal width	1.5
Class	В

Query Example	
Sepal length	6.1
Sepal width	3.0
Petal length	4.6
Petal width	1.4
Class	???

- a) What type of distance function might be appropriate for comparing the examples above?
- b) Use this distance function to calculate the distances between the query example and the two labelled examples. Which class label would a 1NN classifier assign to the query based on the distances?

- 2. The table below shows three examples from a system for predicting whether a person is over or under the drink driving limit. The 5 input features for this system are:
 - Gender: categorical feature {male, female}
 - Weight: numeric range [50,150]
 - Amount of alcohol in units: numeric range [1,16]
 - Meal type: ordinal feature {None, Snack, Lunch, Full}
 - Duration of drinking session: numeric range [20,230]

Example x1	
Gender	female
Weight	60
Amount	4
Meal	full
Duration	90
Class	over

Example x2	
Gender	male
Weight	75
Amount	2
Meal	full
Duration	60
Class	under

Query Example	
Gender	male
Weight	70
Amount	1
Meal	snack
Duration	30
Class	???

- a) Normalise all numeric features to the range [0,1]
- b) Propose an appropriate global distance function for comparing examples such as the above.
- b) Use your proposed distance function to calculate the distances between the query example and the two labelled examples. Which class label would a 1NN classifier assign to the query based on the distances?

3. The table below reports the pairwise distances between a set of 9 labelled training examples and a new query example **q**, for the system described in Question 2.

Example	Class	Distance to q
x1	over	1.5
x2	under	2.8
<i>x</i> 3	over	1.8
x4	under	2.9
<i>x</i> 5	under	2.2
<i>x</i> 6	under	3.0
x7	under	2.4
<i>x</i> 8	over	3.2
<i>x</i> 9	over	3.6

- a) What class label would a 3-NN classifier assign to **q**?
- b) What class label would a 4-NN classifier assign to **q**?
- c) What class label would a weighted 4-NN classifier assign to **q**?

4. Two different examples from a Case-based reasoning (CBR) system for estimating the price of second-hand cars are shown in the tables below. Each example is described by 6 features.

Example 007	
Manufacturer	Ford
Model	Fiesta
Engine Size	1,100
Fuel	Petrol
Mileage	65,000
Bodywork	Excellent
Price	€3,100

Example 014	
Manufacturer	Citroen
Model	BX
Engine Size	1,800
Fuel	Diesel
Mileage	37,000
Bodywork	Fair
Price	€4,500

- a) Normalise all numeric features to the range [0,1].

 Assume that the feature ranges are: Engine Size 1,000 to 3,000;

 Mileage 1,000 to 100,000.
- b) Propose a suitable global distance function that might be used in a k-Nearest Neighbour case retrieval system for this data.

 Assume that Bodywork is an ordinal feature that has the possible values {Poor, Fair, Good, Excellent},
- c) Use the proposed distance function to calculate the distance between the two examples above.