

UNIVERSIDADE FEDERAL DO CEARÁ - CAMPUS DE CRATEÚS

CURSOS: CIÊNCIA DA COMPUTAÇÃO E SISTEMAS DE INFORMAÇÃO

DISCIPLINA: MATEMÁTICA DISCRETA

PROFESSORA: LÍLIAN DE OLIVEIRA CARNEIRO

ALUNO(A):_

LISTA DE EXERCÍCIOS

- 1. Determine se as seguintes afirmações são verdadeiras (V) ou falsas (F). Se a afirmação for verdadeira, demonstre; Se for falsa, apresente um contra-exemplo.
 - (a) Se $x \equiv 3 \pmod{5}$, então $x \in \{\cdots, -7, -2, 3, 8, 13, \cdots\}$. ()
 - (b) Se $5 \equiv -1 \pmod{6}$ e $-1 \equiv -7 \pmod{6}$, então $5 \equiv -7 \pmod{6}$.
 - (c) Se $a^2 \equiv b^2 (mod m)$, então $a \equiv b (mod m)$. ()
 - (d) Se $a^k \equiv b^k (mod m)$ e $k \equiv j (mod m)$, então $a^j \equiv b^j (mod m)$. (
 - (e) Se a é um inteiro ímpar, então $a^2 \equiv 1 \pmod{8}$. ()
 - (f) O conjunto $\{-2,-1,0,1\}$ é um sistema completo de restos módulo 4. ($\ \)$
- 2. Sabendo que $1066 \equiv 1776 (mod m)$, encontre todos os possíveis valores de m.
- 3. Sabendo-se que $k \equiv 1 \pmod{.4}$, mostrar que $6k + 5 \equiv 3 \pmod{.4}$.
- 4. Mostre que $41/(2^{20}-1)$.
- 5. Use o Princípio da Indução para mostrar que $5|(7^n-2^n), \forall n \geq 0$.
- 6. Mostre por indução matemática que $3|(5^n+2\cdot 11^n), \forall n \in \mathbb{N}$.
- 7. Mostre por indução matemática que $2|(3^n-1), \forall n \in \mathbb{N}$.
- 8. Mostre por indução matemática que $\forall n \geq 1, 3^n 2$ é ímpar.
- 9. Dada a sequência a_1, a_2, \cdots definida por:

$$a_1 = 1$$

$$a_2 = 3$$

$$a_k = a_{k-2} + 2 \cdot a_{k-1} \forall k \ge 3.$$

Prove que a_n é impar para todos os inteiros $\forall n \geq 1$.

10. Dada a sequência b_1, b_2, \cdots definida por:

$$b_1 = 4$$

$$b_2 = 12$$

$$b_k = b_{k-2} + b_{k-1} \forall k \ge 3.$$

Prove que b_n é divisível por 4 para todos os inteiros $\forall n \geq 1$.