Университет ИТМО

Лабораторная работа №4 «Исследование сетевых моделей массового обслуживания»

по дисциплине: Моделирование Вариант 36\6

Выполнили: Соболев Иван, Верещагин Егор, Р34312 Преподаватель: Тропченко Андрей Александрович

Санкт-Петербург 2024

Содержание

1.		Цель	3
2.		Выполнение	3
	2.1.	Исходные данные	3
3.		3CeMO	4
	3.1.	Описание модели	4
	3.2.	Предположения и допущения	5
	3.3.	Разработка имитационной модели	5
	3.4.	Проведение имитационных экспериментов	7
	3.5.	Результаты имитационного моделирования	11
4.		PCeMO	14
	4.1.	Рассчитанные значения коэффициентов передач для узлов сети:	14
	4.2.	Предположения и допущения	14
	4.3.	Разработка имитационной модели	15
	4.4.	Проведение имитационных экспериментов	17
	4.5. сети	Определение предельной интенсивности поступления заявок, при которой и отсутствуют перегрузки.	
	4.6.	Результаты имитационного моделирования	20
5.		Выволы	23

1. Цель

Исследование свойств системы, моделируемой в виде замкнутых и разомкнутых сетей массового обслуживания (CeMO) с однородным потоком заявок с применением имитационного моделирования при различных предположениях о параметрах структурно-функциональной организации и нагрузки.

2. Выполнение

2.1. Исходные данные

Таблица 1. Структурные параметры и количество заявок ЗСеМО.

Вариант	Кол-во	Коли	чество п	риборов	в в узлах	Номер	Тип
Бариант	узлов	У1	У2	У3	У4	узла	модели
36	4	2	1	1	2	3	M3

Таблица 2. Вероятности передач и средние длительности обслуживания заявок в узлах 3CeMO.

Вариант	Вероя	гность г	іередач	Средние длительности обслуживания				
Бариант	P10	P12	P13	B1	B2	В3	B4	
6	0,2	0,3	0,3	1	15	10	6,4	

Рисунок 1. Граф модели.

3. 3CeMO

3.1. Описание модели

- Сеть массового обслуживания замкнутая четырехузловая.
- Количество приборов в узлах: узлы 2, 3 и 4 одноканальные, узел 1 четырехканальный.
- Поток заявок однородный.
- Средние длительности обслуживания заявок в узлах 3CeMO: b1=1, b2=15, b3=10, b4=6,4
- Вероятности передач:

Таблица 3. Матрица вероятностей передач.

• Рассчитанные значения коэффициентов передач для узлов сети:

$$\left\{egin{aligned} a_0 &= 0.2\,a_1\ a_1 &= a_0 + a_2 + a_3 + a_4\ a_2 &= 0.3\,a_1\ a_3 &= 0.3\,a_1\ a_4 &= 0.2\,a_1 \end{aligned}
ight.$$

Полагая a0 = 1, можно найти корни системы уравнений:

 $\alpha 1 = 5$

 $\alpha 2 = 1.5$

 $\alpha 3 = 1.5$

 $\alpha 4 = 1$

• Число заявок, циркулирующих в замкнутой CeMO – варьируемый параметр, который мы будем изменять в процессе исследования.

3.2. Предположения и допущения

- Длительности обслуживания заявок во всех узлах распределены по экспоненциальному закону с интенсивностями µ1 = 1/b1, µ2 = 1/b2, µ3= 1/b3, µ4= 1/b4. где b1, b2, b3, b4 средние длительности обслуживания заявок. В некоторых экспериментах будем изменять закон распределения времени обслуживания заявок в узле 3.
- Приборы в узлах У1 и У4 идентичны, любая заявка может обслуживаться в любом приборе.
- Заявка после обслуживания в У1 с вероятностью р10 = 0,2 возвращается в тот же узел 1.
- Дуга, выходящая из узла 1 и входящая обратно в этот же узел, рассматривается как внешняя по отношению к СеМО, и на ней выбирается нулевая точка «0».

3.3. Разработка имитационной модели

```
Модель ЗСМО
             Исходные данные
**********************************
******
UZEL 1 STORAGE 2;
UZEL 2 STORAGE 1;
UZEL 3 STORAGE 1;
UZEL_4 STORAGE 2;
b1 EQU 1;
b2 EQU 15;
b3 EQU 10;
b4 EQU 6.4;
*Номер генератора для длительности обслуживания*
RN b EQU 69;
*Параметры гипоэкспоненциального распределения (Эрланга)*
k er1 EQU 2; порядок распределения Эрланга
RN er11 EQU 10; номер первого генератора для распределения Эрланга 2-порядка
RN er12 EQU 20; номер второго генератора для распределения Эрланга 2-порядка
Erl 2 VARIABLE (Exponential(RN erl1,0,b3/2))+(Exponential(RN erl2,0,b3/2)); сл. величина
по закону Эрланга 2-го порядка
```

```
*Параметры гиперэкспоненциального распределения с коэффициентом вариации 2*
RN H EQU 91; номер генератора для гиперэкспоненциального распределения
qq EQU 0.2; вероятность выбора первой фазы
tt 1 EQU 41.39; мат. ожидание первой фазы гиперэкспоненциального распределения
tt 2 EQU 4.65; мат. ожидание второй фазы гиперэкспоненциального распределения
TU buf1 QTABLE buf1,0.1,0.1,50;
TU buf2 QTABLE buf2,0.1,0.1,50;
TU buf3 OTABLE buf3,0.1,0.1,50;
TU buf4 QTABLE buf4,0.1,0.1,50;
SUM LEN VARIABLE 0
INITIAL X$SUM LEN, 0
SUM TIME VARIABLE 0
INITIAL X$SUM TIME, 0
*GENERATE (Exponential(RN a,0,t a))
*GENERATE (GetRandomNumberFromFile("numbers2.txt"))
*GENERATE (hyper1(RN H,qq,tt 1,tt 2))
*GENERATEV$Erl 2
GENERATE,,,9
U 1 QUEUE buf1
 ENTER UZEL 1
DEPART buf1
 ADVANCE (Exponential(RN b,0,b1))
LEAVE UZEL 1
 TRANSFER 0.8,,U 0
 TRANSFER 0.7,,U 2
 TRANSFER 0.7, U 3
TRANSFER 0.8,,U 4
U 0 SAVEVALUE SUM LEN,(QA$buf1 + QA$buf2 + QA$buf3 + QA$buf4)
 SAVEVALUE SUM TIME, (TB$TU buf1 + TB$TU buf2 + TB$TU buf3 + TB$TU buf4)
TRANSFER ,U 1
U 2 QUEUE buf2
ENTER UZEL 2
DEPART buf2
 ADVANCE (Exponential(RN b,0,b2))
LEAVE UZEL 2
 TRANSFER ,U 1
U 3 QUEUE buf3
ENTER UZEL 3
DEPART buf3
 *ADVANCE (hyper1(RN H,qq,tt_1,tt_2))
 *ADVANCE (V$Erl 2)
 ADVANCE (Exponential(RN b,0,b3))
LEAVE UZEL 3
TRANSFER ,U 1
U 4 QUEUE buf4
ENTER UZEL 4
DEPART buf4
 ADVANCE (Exponential(RN b,0,b4))
```

LEAVE UZEL_4 TRANSFER ,U_1

GENERATE 1000000 TERMINATE 1 START 1

PROCEDURE hyper1(RN_H, qq, tt_1, tt_2) BEGIN if (uniform(1,0,1) < qq) then return exponential(RN_H,0,tt_1); else return exponential(RN_H,0,tt_2); END;

3.4. Проведение имитационных экспериментов

Таблица 4. Зависимость производительности сети от числа циркулирующих в ней заявок

M	1	2	3	4	5	6	7	8	9	10
Производ	0,012				0,008		0,005			
ительност	0336	0,018	0,015	0,011	4328	0,006	3317	0,004	0,003	0,003
ь с-1	9	03147	14018	23144	8	58091	4	45596	81746	33540
%		19,09	34,80	33,18	28,14	23,42	19,65	16,72	14,45	12,66
		68213	16845	63422	1461	89367	4187	58541	26176	80263
	-	6	8	1	3	8	2	3	3	2

11	12	13	14	15	16	17	18	19	20
0,0029	0,0026	0,0024	0,0022	0,0020	0,0018	0,0017	0,0016	0,0015	0,0014
6038	6110	1705	1434	4332	9709	7058	6004	6259	7602
11,246	10,097	9,1541	8,3695	7,7085	7,1449	6,6591	6,2363	5,8650	5,5362
58518	20035	20196	84011	28433	05315	32614	17738	06168	90284

21	22	23	24	25	26	27	28	29	30
0,0013	0,0013	0,0012	0,0012	0,0011	0,0011	0,0010	0,0010	0,000	0,0009
9859	2891	6587	0856	5621	0822	6406	2329	98552	5044
5,2431	4,9800	4,7425	4,5269	4,3303	4,1503	3,9848	3,8320	3,690	3,5593
68069	77183	53411	78126	90006	43471	01368	52917	65045	60217

31	32	33	34	35	36	37	38	39	40
0,0009	0,0008	0,0008	0,0008	0,0008	0,0007	0,000	0,0007	0,0007	0,000
1778	8728	5874	3198	0684	8317	76085	3977	1982	70092

^{*} Процедура возвращает значение псевдослучайной величины, *

^{*} распределенной по гиперэкспоненциальному закону, в

^{*} соответствии с параметрами распределения qq, tt 1, tt 2. *

3,4371	3,3230	3,2162	3,1161	3,0221	2,9336	2,850	2,7712	2,6966	2,625
23818	27697	78842	85246	40093	08866	11875	49872	28017	91852

41	42	43	44	45	46	47	48	49	50
0,0006	0,0006	0,0006	0,0006	0,0006	0,0006	0,0005	0,0005	0,0005	0,0005
8298	6594	4973	3429	1957	0551	9208	7922	6692	5513
2,5588	2,4950	2,4344	2,3766	2,3215	2,2689	2,2186	2,1705	2,1244	2,0803
21135	65686	08369	28591	26263	19456	42381	43636	84667	38438

51	52	53
0,00054381	0,00053295	0,00052251
2,037988251	1,997326718	1,958254844

Из данных представленной таблицы видим, что критическое число заявок M^* в нашей сети $M^* = 52$.

При найденном критическом числе заявок выявим «узкое место» сети

Таблица 5. Загрузка узлов системы при критическом числе заявок.

	У1	У2	У3	У4	Сеть
Загрузка	0.238	1	0.2	0.022	1.46

Узким местом в нашей сети является У2. Заметим, что среднее время обслуживания заявки в этом узле b2 = 15 самое большое из всех имеющихся в системе. Попробуем уменьшить это значение и посмотрим на результат.

Таблица 6. Результаты устранения узкого места путем уменьшения времени обслуживания заявок.

Характеристики СеМО	b2 = 15	b2 = 13	b2 = 10	b2 = 7	b2 = 5	b4 = 1
Длина очереди	50,28	50,169	49,92	49,456	48,839	48,697
Время ожидания	755,427	653,712	501,320	349,322	248,236	74,417
•		0,0006149	0,0007850	0,0007807	0,0007806	0,00078067
Производительность	0,0005323	7	6	0	8	

Как видно из таблицы, при уменьшении среднего времени обслуживания заявок У2, характеристики становятся лучше, так как на У2 быстрее обрабатываются заявки. При этом максимальная производительность достигается при b2 = 10. Таким образом, для нашей системы оптимальным временем обслуживания У2 является 5 секунд.

Таблица 7. Загрузка узлов системы при изменении среднего времени обслуживания заявок в У2.

b2	У1	У2	У3	У4	Сеть
15	0,238	1	0,2	0,022	1,46
13	0,275	1	0,231	0,025	1,53
10	0,357	1	0,3	0,033	1,69
7	0,510	1	0,429	0,047	1,99
5	0,714	1	0,6	0,066	2,38
1	1	0,280	0,839	0,092	2,21

Как видно по графику при уменьшении значения времени обслуживания на У2 до значения 5, общая загрузка сети и остальных узлов растет, после данного значения загрузка системы начинает падать, на остальных узлах также начинает падать. Эти данные хорошо коррелируют с данными предыдущей таблицы, где видно что после увеличения времени обслуживания на приборе более 5, такие характеристики как длина очереди, время ожидания начинают расти, производительность системы падает. Это связано с повышением нагрузки на этих узлах.

Теперь попробуем увеличить число обслуживающих приборов в данном узле.

Таблица 8. Результаты устранения узкого места путем увеличения количества обслуживающих приборов.

Характеристики СеМО	K2 = 1	K2 = 2	K2 = 3	K2 = 4	K2 = 5
Длина очереди	50,28	48,559	46,840	45,161	44,770
Время ожидания	755,427	367,038	238,355	154,474	82,506
Производительность	0,00053	0,00062	0,00071	0,00078	0,00081

Как видно из таблицы, данная оптимизация довольно быстро позволила устранить "бутылочное горлышко", причем остальные характеристики системы также стали намного лучше. Выбираем k2 = 4, как оптимальный вариант по соотношению устройств к приросту характеристик.

Таблица 9. Загрузка узлов системы при изменении количества обслуживающих приборов в У2.

K2 = 5	1	0,840	0,840	0,092	2,77
K2 = 4	0,947	0,994	0,795	0,087	2,82
K2 = 3	0,714	1	0,6	0,066	2,38
K2 = 2	0,476	1	0,4	0,088	1,96
K2 = 1	0,238	1	0,2	0,022	1,46
b2	У1	У2	У3	У4	Сеть

Как видно по загрузке сети четыре обслуживающих прибора являются наилучшим выбором.

Выбираем данный метод как лучший, и будем использовать 4 прибора на 4м устройстве.

3.5. Результаты имитационного моделирования

В качестве способа устранения узкого места выберем увеличение количества приборов в узле k2=4.

Результаты имитационного моделирования для 3CeMO. Длительность моделирования 1000000. Количество заявок 52

	ЗСеМО-экспоненциальная							
	Узловы	2			C			
	У1	У2	У3	У4	Сетевые			
Загрузка	0,947	0,994	0,795	0,087	2,823			
Длина очереди	13,178	28,938	3,043	0,001	45,16			
Время ожидания	6,961	109,177	38,286	0,049	154,473			
Производительность	0,00078	•						

	3CeM	ВСеМО-неэкспоненциальная (Гиперэкспонента)						
	У злов	ые		C				
	У1	У2	У3	У4	 Сетевые			
Загрузка	0,918	0,964	0,923	0,084	2,889			
Длина очереди	11,01	17,594	16,611	0,001	45,216			
Время ожидания	5,999	68,467	215,513	0,047	290,026			
Производительность	0,0007	2	•	•				

	ЗСеМО-неэкспоненциальная (Эрланг)						
	У зловь	ıe		C			
	У1	У2	У3	У4	Сетевые		
Загрузка	0,947	0,994	0,796	0,087	2,824		
Длина очереди	13,232	29,523	2,401	0,001	45,157		
Время ожидания	6,986	111,344	30,168	0,05	148,548		
Производительность 0,00090							

Представленные результаты моделирования ожидаемо говорят нам о том, что использование распределения Эрланга показывает наилучшие характеристики, так как имеет меньшую степень разброса.

4. PCeMO

- Сеть массового обслуживания разомкнутая четырехузловая.
- Количество приборов в узлах: узлы 2, 3 и 4 одноканальные, узел 1 четырехканальный.
- Поток заявок однородный.
- Ёмкость накопителей в узлах сети не ограничена, то есть в сети не может быть потери заявок.
 - Средние длительности обслуживания заявок в узлах PCeMO: b1=1, b2=15, b3=10, b4=6.4
- Интенсивность поступления заявок $\lambda 0 = 0{,}0009$, тогда среднее время между поступлением заявок $a = 1/\lambda 0 = 1111$
 - Вероятности передач:

Таблица 3. Матрица вероятностей передач.

	0	1	2	3	4
0		1			
1	0,2		0,3	0,3	0,2
2		1			
3		1			
4		1			

4.1. Рассчитанные значения коэффициентов передач для узлов сети:

$$\left\{egin{aligned} a_0 &= 0.2\,a_1\ a_1 &= a_0 + a_2 + a_3 + a_4\ a_2 &= 0.3\,a_1\ a_3 &= 0.3\,a_1\ a_4 &= 0.2\,a_1 \end{aligned}
ight.$$

Полагая a0 = 1, можно найти корни системы уравнений:

$$\alpha 1 = 5$$

$$\alpha 2 = 1.5$$

$$\alpha 3 = 1.5$$

$$\alpha 4 = 1$$

4.2. Предположения и допущения

Поступающие в разомкнутую CeMO заявки образуют простейший поток с интенсивностью $\lambda 0$.

4.3. Разработка имитационной модели

```
******************************
               Модель РСМО
***************************
             Исходные данные
**********************************
******
UZEL 1 STORAGE 2:
UZEL 2 STORAGE 4;
UZEL 3 STORAGE 1;
UZEL 4 STORAGE 2;
b1 EQU 1;
b2 EQU 15;
b3 EQU 10;
b4 EOU 6.4;
t a EQU 1111;
Т U TABLE M1,40,40,30; *время пребывания в сети
*Номер генератора для длительности обслуживания*
RN b EOU 69;
*Параметры гипоэкспоненциального распределения (Эрланга)*
k er1 EQU 2; порядок распределения Эрланга
RN er11 EQU 10; номер первого генератора для распределения Эрланга 2-порядка
RN er12 EQU 20; номер второго генератора для распределения Эрланга 2-порядка
Erl 2 VARIABLE (Exponential(RN er11,0,b3/2))+(Exponential(RN er12,0,b3/2));
сл. величина по закону Эрланга 2-го порядка
RN er111 EQU 11; номер первого генератора для распределения Эрланга 2-порядка
RN er121 EQU 22; номер второго генератора для распределения Эрланга 2-порядка
Erl 1 VARIABLE (Exponential(RN er111,0,t a/2))+(Exponential(RN er121,0,t a/2));
сл. величина по закону Эрланга 2-го порядка
*Параметры гиперэкспоненциального распределения с коэффициентом вариации 2*
RN H EQU 91; номер генератора для гиперэкспоненциального распределения
qq EQU 0.2; вероятность выбора первой фазы
tt 1 EQU 41.39; мат. ожидание первой фазы гиперэкспоненциального распределения
tt 2 EQU 4.65; мат. ожидание второй фазы гиперэкспоненциального распределения
RN H1 EQU 92; номер генератора для гиперэкспоненциального распределения
qq1 EQU 0.2; вероятность выбора первой фазы
tt 11 EOU 358.75; мат. ожидание первой фазы гиперэкспоненциального распределения
tt 21 EOU 40.31; мат. ожидание второй фазы гиперэкспоненциального распределения
```

```
TU buf1 QTABLE buf1,0.1,0.1,50;
TU buf2 QTABLE buf2,0.1,0.1,50;
TU buf3 QTABLE buf3,0.1,0.1,50;
TU buf4 QTABLE buf4,0.1,0.1,50;
SUM LEN VARIABLE 0
INITIAL X$SUM LEN,0
SUM TIME VARIABLE 0
INITIAL X$SUM TIME,0
SUM UTIL VARIABLE 0
INITIAL X$SUM UTIL,0
GENERATE t a
*GENERATE (Exponential(RN b,0,t a))
*GENERATE (GetRandomNumberFromFile("numbers.txt"))
*GENERATE (hyper1(RN H1,qq1,tt 11,tt 21))
*GENERATE V$Erl 1
U 1 QUEUE buf1
ENTER UZEL 1
DEPART buf1
 ADVANCE (Exponential(RN b,0,b1))
LEAVE UZEL 1
 TRANSFER 0.8,,U 0
 TRANSFER 0.7,,U 2
 TRANSFER 0.7,,U 3
 TRANSFER 0.8,,U 4
U 0 SAVEVALUE SUM LEN,(QA$buf1 + QA$buf2 + QA$buf3 + QA$buf4)
SAVEVALUE SUM TIME, (TB$TU buf1 + TB$TU buf2 + TB$TU buf3 + TB$TU buf4)
 SAVEVALUE SUM UTIL,((SR$UZEL 1 + SR$UZEL 2 + SR$UZEL 3 + SR$UZEL 4)/
1000)
 TABULATE T U
 TERMINATE 1
U 2 QUEUE buf2
ENTER UZEL 2
 DEPART buf2
 ADVANCE (Exponential(RN b,0,b2))
 LEAVE UZEL 2
TRANSFER ,U 1
U 3 OUEUE buf3
ENTER UZEL 3
DEPART buf3
 *ADVANCE (hyper1(RN H,qq,tt 1,tt 2))
 ADVANCE (V$Erl 2)
 *ADVANCE (Exponential(RN b,0,b3))
LEAVE UZEL 3
 TRANSFER ,U 1
```

4.4. Проведение имитационных экспериментов

Сравнение с ЗСеМО

Таблица 12. Сравнение характеристик функционирования систем

Характеристики СеМО	ЗСеМО	PCeMO
Длина очереди	45,157	0
Время ожидания	148,548	0
Загрузка	2,824	0,002
Число заявок	52	1000000

Длина очереди

4.5. Определение предельной интенсивности поступления заявок, при которой в сети отсутствуют перегрузки.

При проведении предыдущего эксперимента в качестве значения интенсивности простейшего потока поступления заявок в сеть мы брали значение производительность 3CeMO, откуда среднее время между поступлением заявок а = 1111.

Сеть плохо загружена. Уменьшая значение а, определим предельную интенсивность поступления заявок в РСеМО, при которой в сети отсутствуют перегрузки.

Таблица 13. Определение предельной интенсивности.

Среднее время между поступлением заявок	1111	500	50	5	2	1.9	1.8
Длина очереди	0	0	0	0,07	0,092	0,110	0,131
Время ожидания	0	0	0,006	0,686	2,611	2,859	3,136
Время пребывания	4,472	4,472	4,472	4,506	4,657	4.685	4,714
Число заявок	1000000	1000000	1000000	1000000	1000000	1000000	1000000
Загрузка	0,002	0,004	0,037	0,369	0,923	0,972	1,027
Интенсивность	0,001	0,002	0,020	0,200	0,500	0,526	0,556

Таким образом, определяем искомое значение среднего времени между поступлением заявок a = 1.9, откуда интенсивность = 0,526.

4.6. Результаты имитационного моделирования

	РСеМО-де	РСеМО-детерминированная						
	Узловые				C			
	У1	У2	У3	У4	—Сетевые			
Загрузка	0,327	0,342	0,273	0,03	0,972			
Длина очереди	0,017	0,021	0,071	0	0,110			
Время ожидания	0,026	0,235	2,593	0,006	2,859			
Число заявок	1243819	173884	52049	17886	1487638			

	РСеМО- э	РСеМО- экспоненциальная						
	Узловые				C			
	У1	У2	У3	У4	—Сетевые			
Загрузка	0,327	0,342	0,272	0,03	0,971			
Длина очереди	0,078	0,028	0,078	0	0,184			
Время ожидания	0,119	0,307	2,855	0,006	3,287			
Число заявок	1243819	173884	52049	17886	1487638			

	РСеМО-Э	РСеМО-Эрланг						
	Узловые				C			
	У1	У2	У3	У4	—Сетевые			
Загрузка	0,327	0,342	0,273	0,03	0,972			
Длина очереди	0,041	0,025	0,074	0	0,14			
Время ожидания	0,063	0,273	2,709	0,006	3,051			
Число заявок	1243819	173884	52049	17886	1487638			

	РСеМО-гиперэкспонента				
	Узловые				C
	У1	У2	У3	У4	Сетевые
Загрузка	0,325	0,339	0,269	0,02	0,953
Длина очереди	0,1	0,128	0,098	0	0,326
Время ожидания	0,217	0,317	3,655	0,09	4,279
Число заявок	1243819	173884	52049	17886	1487638

Длина очереди

Время ожидания

Как и ожидалось самые лучшие результаты мы имеем, когда входящий поток заявок детерминированный. Далее идет Эрланг, экспоненциальный, и самый худший для нашей системы - гиперэкспоненциальный.

5. Выводы

Исследовали свойства системы, моделируемой в виде замкнутых и разомкнутых сетей массового обслуживания (CeMO) с однородным потоком заявок с применением имитационного моделирования при различных предположениях о параметрах структурно-функциональной организации и нагрузки.

Полученные результаты схожи с результатами моделирования CeMO - при уменьшении коэффициента вариации в PCeMO производительность увеличивается.

В нашем случае для РСеМО удалось добиться лучших показателей, чем для 3СеМО.

Увеличение количества обрабатывающих приборов для узла, показывает лучшие результаты, чем уменьшение времени обслуживания.

Критическое число заявок ЗСеМО равно 52.