Let A be a ring with 1.

I Lie algebras.

- 1. For $x, y \in M_n(\mathbb{C})$, show that the binary operation [x, y] = xy yx is bilinear, skew symmetric, and satisfies the Jacobi identity.
- 2. Show that $\mathfrak{sl}_n(\mathbb{C}) \subseteq M_n(\mathbb{C})$ is, indeed, a closed Lie algebra. [Namely, that if $\operatorname{tr}(x) = \operatorname{tr}(y) = 0$, then $\operatorname{tr}(xy - yx) = 0$ and $\operatorname{tr}(x + \alpha y) = 0$ for all $\alpha \in \mathbb{C}$.]
- 3. Let L(d) be the simple $\mathfrak{sl}_2(\mathbb{C})$ -module with dimension d+1. Show that for all $d \geq 1$,

$$L(d) \otimes L(1) \cong L(d-1) \oplus L(d+1).$$

[Recall that we have a canonical action of a Lie algebra \mathfrak{g} on the tensor product of two of its modules (see Hopf algebras).]

- II Characters. Let G be a finite group, and let $A = \mathbb{C}G$.
 - 1. Characters and tensor products. Let

$$\rho: A \to \operatorname{End}(U)$$
 and $\psi: A \to \operatorname{End}(V)$

be finite-dimensional representations of A (so that U and V are A-modules). Let $\mathcal{B} = \{e_1, \ldots, e_m\}$ and $\mathcal{B}' = \{f_1, \ldots, f_n\}$ be ordered bases of U and V, respectively.

For $g \in G$, suppose

$$\rho(g) = \sum_{i,j=1}^{m} \alpha_{i,j} E_{i,j} = \begin{pmatrix} \alpha_{1,1} & \cdots & \alpha_{1,m} \\ \vdots & \ddots & \vdots \\ \alpha_{m,1} & \cdots & \alpha_{m,m} \end{pmatrix} \quad \text{and} \quad \psi(g) = \sum_{i,j=1}^{m} \beta_{i,j} E_{i,j} = \begin{pmatrix} \beta_{1,1} & \cdots & \beta_{1,n} \\ \vdots & \ddots & \vdots \\ \beta_{n,1} & \cdots & \beta_{n,n} \end{pmatrix},$$

with respect to the bases \mathcal{B} and \mathcal{B}' , respectively. Namely,

$$g \cdot e_i = \sum_{\ell=1}^m \alpha_{\ell,i} e_\ell$$
 and $g \cdot f_i = \sum_{\ell=1}^n \beta_{\ell,i} f_\ell$,

for all *i*. Recall that $\mathcal{B} \times \mathcal{B}' = \{e_i \otimes f_j\}$ forms a basis of $U \otimes V$, and put the lexicographic order on it (i.e. $\mathcal{B} \times \mathcal{B}' = \{e_1 \otimes f_1, e_1 \otimes f_1, \dots, e_1 \otimes f_n, e_2 \otimes f_1, \dots, e_m \otimes f_n\}$).

- (a) Compute the action of g on each $e_i \otimes f_j$ for each i, j; and give the matrix for $(\rho \otimes \psi)(g)$, with respect to the ordered basis $\mathcal{B} \times \mathcal{B}'$, where $\rho \otimes \psi$ is the representation associated to the canonical action of FG on $U \otimes V$.
- (b) If

 χ_{ρ} is the character associated to ρ ,

 χ_{ψ} is the character associated to ψ , and

 $\chi_{\rho\otimes\psi}$ is the character associated to $\rho\otimes\psi$,

use the previous part to prove that $\chi_{\rho \otimes \psi} = \chi_{\rho} \chi_{\psi}$.

(c) Conclude that the set of characters of $\mathbb{C}G$ forms a subring of $\mathrm{Cl}(\mathbb{C}G)$. Does this ring have an identity?

2. Let $\rho: \mathbb{C}G \to \operatorname{End}(U)$ be a finite-dimensional representation with character χ . Let ρ_1, \ldots, ρ_r be the distinct simple representations of $\mathbb{C}G$, V_i be the corresponding simple modules, z_i be the corresponding primitive central idempotents, and let χ_i be their characters. Let $U_i = z_i U \cong V_i^{\oplus m_i}$ be the isotypic component of U corresponding to V_i . Show that $\dim(U_i) = \langle \chi, \chi_i \rangle$.

[Hint: This should be a very short jump from things we proved in class.]

3. Burnside's Lemma. Let G act on a set Ω , and let $\Omega_1, \ldots, \Omega_\ell$ be the orbits of Ω . Define $U = \mathbb{C}\Omega$ (the vector space with basis Ω) and extend the action $G \subseteq \Omega$ linearly to an action $\mathbb{C}G \subseteq U$. Let $\rho : \mathbb{C}G \to \operatorname{End}(U)$ be the associated representation, and χ be the associated character.

Fix $g \in G$. Define

$$Fix(g) = \{x \in \Omega \mid (12) \cdot x = x\}$$

to be the number of fixed points under the action of g on Ω . [For example, if $G = S_4$ acts on naturally $\Omega = \{1, 2, 3, 4\}$, and g = (12), then $\{x \in \Omega \mid (12) \cdot x = x\} = \{3, 4\}$. See below for more examples.]

- (a) Argue that $\chi(g) = |Fix(g)|$.
- (b) Let $U_i = \mathbb{C}\Omega_i$. Argue briefly that $U \cong U_1 \oplus \cdots \oplus U_\ell$. For each i, let $v_i = \sum_{x \in \Omega_i} x$; show that if gu = u for all $g \in G$ then $u \in \mathbb{C}\{v_1, \ldots, v_\ell\}$ (i.e. $\mathbb{C}\{v_1, \ldots, v_\ell\}$ is the isotypic component of U corresponding to the trivial module). [Hint: For the second statement, it suffices to look at one U_i at a time: show that for $u_i \in U_i$, if $g \cdot u_i = u_i$, then $u_i = \alpha v_i$. To do this, use the fact the G acts transitively on Ω_i .]
- (c) Prove that $\ell|G| = \sum_{g \in G} |\operatorname{Fix}(G)|$. [This is the statement that's called *Burnside's Lemma*, though it is due to Frobenius. *Hint:* Compute $\langle \chi, \operatorname{triv} \rangle$, where triv is the character corresponding to the trivial representation (i.e. $\operatorname{triv}: g \mapsto 1$ for all $g \in G$).]
- (d) Compare/contrast Burnside's Lemma to the Orbit-Stabilizer Theorem.

Examples for ??:

(1) The group S_n acts naturally on $\Omega = \{1, ..., n\}$; the resulting representation is the permutation representation of S_n . Specifically, when n = 3, the fixed points of each element $g \in S_3$ are given by

h	1	(12)	(23)	(13)	(123)	(132)
Fix(h)	1, 2, 3	3	2	1	none	none
$ \operatorname{Fix}(h) $	3	1	1	1	0	0

Here, S_3 acts transitively on Ω , so has exactly $\ell = 1$ orbits. And indeed, $3 + 1 + 1 + 1 = 6 = \ell |S_3|$.

(2) Let $Z_6 = \langle g \rangle$ act on $\Omega = \{e_1, \dots, e_6\}$ by

Here, the orbits are $\Omega_1 = \{e_1, e_2, e_3\}$, $\Omega_2 = \{e_4, e_5\}$, and $\Omega_3 = \{e_6\}$ (since the group is generated by g alone), and

$$U \cong U_1 \oplus U_2 \oplus U_3$$
, where $U_1 = \mathbb{C}\{e_1, e_2, e_3\}, U_2 = \mathbb{C}\{e_4, e_5\}, U_3 = \{e_6\}.$

And $v_1 = e_1 + e_2 + e_3$, $v_2 = e_4 + e_5$, and $v_3 = e_6$ generate the isotypic component corresponding to the trivial module inside of U.

Further, the fixed points of each element of Z_6 are given by

h	1	g	g^2	g^3	g^4	g^5
Fix(h)	Ω	e_6	e_4, e_5, e_6	e_1, e_2, e_3, e_6	e_4, e_5, e_6	e_6
$ \operatorname{Fix}(h) $	6	1	3	4	3	1

Indeed, the number of orbits here is $\ell = 3$, and $6 + 1 + 3 + 4 + 3 + 1 = 3 * 6 = \ell |Z_6|$.