

GBI Tutorium Nr. 41

Foliensatz 8

Vincent Hahn – vincent.hahn@student.kit.edu | 13. Dezember 2012

Outline/Gliederung

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung 1 Übungsblatt 8

Adjazenz

Aufgabe

Wiederholung

3 Adjazenz

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

① Übungsblatt 8

Adjazenz

2 Wiederholung

Aufgabe

3 Adjazenz

Allgemeine Fehler, Fragen

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

Aufgabe

Allgemeines

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz Wiederholung

Aufgabe Adjazenz

Wiederholung - Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

- In jedem gerichteten Baum gibt es genau einen Knoten x_0 mit $d^+(x_0) = 0 \land d^-(x_0) \ge 0$
- Zwischen zwei isomorphen Graphen gibt es immer nur einen Isomorphismus

Wiederholung - Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

- In jedem gerichteten Baum gibt es genau einen Knoten x_0 mit $d^+(x_0) = 0 \land d^-(x_0) \ge 0$ \checkmark
- Zwischen zwei isomorphen Graphen gibt es immer nur einen Isomorphismus

Wiederholung - Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

- In jedem gerichteten Baum gibt es genau einen Knoten x_0 mit $d^+(x_0) = 0 \land d^-(x_0) \ge 0$ $\sqrt{}$
- Zwischen zwei isomorphen Graphen gibt es immer nur einen Isomorphismus X

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung 1 Übungsblatt

Adjazenz

2 Wiederholung

Aufgabe

3 Adjazenz

Definition

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

Aufgabe

Adjazenz

Zwei Knoten *x* und *y* eines Graphen sind *adjazent* (oder *benachbart*), wenn sie durch eine Kante verbunden sind.

Adjazenzliste

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

Aufgabe

Definition

In der Adjazenzliste stehen zu einem Knoten x alle Knoten y, die von x direkt erreichbar sind.

Adjazenzliste - Beispiel

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

0	1,2
1	
2	1,2,3
3	2

Ajazenzmatrix

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

Aufgabe

Definition

Bei einem Graphen mit n Knoten bezeichnet die Matrix

 $A \in \{0,1\}^n \times \{0,1\}^n$ die Adjazenmatrix des Graphen. Für die Matrix gilt:

$$A_{ij} = \begin{cases} 0 & (i,j) \notin E \\ 1 & (i,j) \in E \end{cases}$$

Adjazenzmatrix - Beispiel

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Adjazenzmatrix - Beispiel 2

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

Besondere Adjazenzmatrizen

 $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

Aufgabe

Sondere Adjazenzinatrizen

Einheitsmatrix:

$$\mathbb{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Adjazenzmatrix - Eigenschaften

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

- Schlingen stehen bei A_{ii}
- Ungerichteter Graph \Leftrightarrow A symmetrisch \Leftrightarrow $A_{ij} = A_{ji}$

Vincent Hahn - vincent.hahn@student.kit.edu

Vergleich: Adjazenzmatrix und Adjazenzliste

Übungsblatt 8

Wiederholung

Adjazenz

- Spart Speicherplatz (bei wenig Kanten)
- Schneller Zugriff auf adjazente ("benachbarte") Knoten

- Konstanter
 Speicherplatzverbrauch n²
- Schneller Zugriff auf Kante von i nach j
- Komfortabel auch bei vielen Kanten

Potenz der Adjazenzmatrix

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

$$0 \longrightarrow 1 \longrightarrow 2 \longrightarrow 3$$

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$l^2 =$$

Potenz der Adjazenzmatrix

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$A^2 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Potenz der Adjazenzmatrix

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

Aufgabe

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$A^2 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $(A^2)_{ij}$ gibt Auskunft, ob es einen Weg der Länge 2 von i nach j gibt

Matrixmultiplikation

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

Aufgabe

Berechne jeweils AB und BA.

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Matrixmultiplikation

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

Aufgabe

Berechne jeweils AB und BA.

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Lösung:

$$AB = \begin{pmatrix} 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \\ 2 & 2 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$B = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$BA = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \end{pmatrix}$$

Matrixmultiplikation - Algorithmus

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

```
\begin{array}{l} \text{for } i \leftarrow 0 \text{ to } l-1 \text{ do} \\ \text{ for } j \leftarrow 0 \text{ to } m-1 \text{ do} \\ C_{ij} \leftarrow 0 \\ \text{ for } k \leftarrow 0 \text{ to } n-1 \text{ do} \\ C_{ij} \leftarrow C_{ij} + A_{ik} \cdot B_{kj} \\ \text{ od} \\ \end{array}
```

Die Einheitsmatrix

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

 $\ensuremath{3\times3}\text{-Einheitsmatrix}$:

$$\mathbb{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$A\mathbb{I}=\mathbb{I}A=A$$

GBI Tutorium Wegematrix

Vincent Hahn – vincent.hahn@student.kit.edu

Definition

Die Wegematrix W ist definiert als

$$W_{ij} = \begin{cases} 0 & (i,j) \notin E^* \\ 1 & (i,i) \in E^* \end{cases}$$

Adjazenz

Aufgabe

Übungsblatt 8

Wiederholung

Ein Algorithmus zur Berechnung ist

$$W_{ij} = \operatorname{sgn}\left(\left(\sum_{k=0}^{n} A^{k}\right)_{ij}\right)$$

Dabei ist sgn die "Vorzeichenfunktion":

$$sgn(x) = \begin{cases} +1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$$

Eigenschaften der Wegematrix

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

- Die Wegematrix ist die Adjazenzmatrix der reflexiv-transitive Hülle
- Gibt es einen beliebigen Weg zwischen zwei Knoten i und j, ist $W_{ij} = 1$.

Vincent Hahn - vincent.hahn@student.kit.edu

Der einfache Algorithmus zur Wegematrix

Übungsblatt 8

Wiederholung

Adjazenz

Aufgabe

```
W \leftarrow 0

for i \leftarrow 0 to n-1 do

M \leftarrow \mathbb{I}

for j \leftarrow 1 to i do

M \leftarrow M \cdot A

od

W \leftarrow W + M

od

W \leftarrow \operatorname{sgn}(W)
```

⊳ Nullmatrix

 \triangleright Einheitsmatrix

Eigenschaften des Algorithmus

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

Aufgabe

- A^n macht $\sum_{i=0}^{n-1} i = \frac{n(n-1)}{2}$ Matrixmultiplikationen
- Jede Matrixmultiplikation macht *n*² Operationen
- Summe: n^2 Matrixelemente addieren, das ganze n Mal: Über $n \Rightarrow n \cdot n^2 = n^3$ Operationen
- Signum-Funktion: n² Operationen

$$\Rightarrow n^{2} + n^{3} + n^{2} (n + n - 1) \cdot \frac{n(n - 1)}{2} = n^{5} + i (n^{4})$$

Algorithmuslaufzeit: n5

Laufzeitverbesserung

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

Aufgabe

Wie könnte Laufzeit gespart werden (eventuell mit mehr Speicherverbrauch)?

Vergleich der Algorithmen:

$$W \leftarrow 0$$
 \triangleright Nullmatrix
for $i \leftarrow 0$ to $n-1$ do
 $M \leftarrow \mathbb{I}$ \triangleright Einheitsmatrix
for $j \leftarrow 1$ to i do
 $M \leftarrow M \cdot A$
od
 $W \leftarrow W + M$
od
 $W \leftarrow \operatorname{sgn}(W)$

Laufzeitverbesserung

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

Aufgabe

Wie könnte Laufzeit gespart werden (eventuell mit mehr Speicherverbrauch)? Etwa durch Zwischenspeichern der berechneten Matrizen A^i .

Vergleich der Algorithmen:

$$W \leftarrow 0$$
 \triangleright Nullmatrix
for $i \leftarrow 0$ to $n-1$ do
 $M \leftarrow \mathbb{I}$ \triangleright Einheitsmatrix
for $j \leftarrow 1$ to i do
 $M \leftarrow M \cdot A$
od
 $W \leftarrow W + M$
od
 $W \leftarrow \operatorname{sgn}(W)$

Laufzeitverbesserung

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

Aufgabe

Wie könnte Laufzeit gespart werden (eventuell mit mehr Speicherverbrauch)? Etwa durch Zwischenspeichern der berechneten Matrizen A^i .

Vergleich der Algorithmen:

```
W \leftarrow 0 \triangleright Nullmatrix
for i \leftarrow 0 to n-1 do
                                                      W \leftarrow 0
                                                                                      ▶ Nullmatrix
    M \leftarrow \mathbb{I} > Einheitsmatrix
                                                    M \leftarrow \mathbb{I} > Einheitsmatrix
                                                      for i \leftarrow 0 to n-1 do
    for i \leftarrow 1 to i do
         M \leftarrow M \cdot A
                                                          W \leftarrow W + M
                                                          M \leftarrow M \cdot A
    od
    W \leftarrow W + M
                                                      od
od
                                                      W \leftarrow \operatorname{sgn}(W)
W \leftarrow \operatorname{sgn}(W)
```

Der n⁴-Algorithmus

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

Aufgabe

```
W \leftarrow A + \mathbb{I}

m \leftarrow \log_2(n)

for i \leftarrow 1 to m do

W \leftarrow W \cdot W

od

W \leftarrow \operatorname{sgn}(W)
```

Wie sieht das mit der Laufzeit aus?

Der Algorithmus von Warshall

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

Aufgabe

```
for i \leftarrow 0 to n-1 do
     for j \leftarrow 0 to n-1 do
           W_{ij} \leftarrow \begin{cases} 1 & \text{falls } i = j \\ A_{ii} & \text{falls } i \neq j \end{cases}
     od
od
for k \leftarrow 0 to n-1 do
     for i \leftarrow 0 to n-1 do
           for j \leftarrow 0 to n-1 do
W_{ii} \leftarrow \max(W_{ij}, \min(W_{ik}, W_{kj}))
            od
     od
od
W \leftarrow \operatorname{sgn}(W)
```

Beispiel: Berechne die Wegematrix für

$$G = (\{0, 1, 2, 3\}, \\ \{(0, 3), (1, 0), (2, 3), (3, 1)\}$$

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung 1 Übungsblatt 8

Adjazenz 2 Wiederholung

Aufgabe

3 Adjazenz

Beispiel

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

Aufgabe

Gegeben sei die Adjazenzliste:

0	1, 2
1	
2	0, 3, 5
3	0
4	2, 4
5	1, 3, 4

Bilde die Adjazenzmatrix und die Wegematrix mit dem Warshall-Algorithmus.

Aufgabe 2

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 8

Wiederholung

Adjazenz

Aufgabe

Geben Sie

- die Adjazenliste,
- die Adjazenzmatrix,
- die Wegematrix,
- und die Zwischenmatrizen beim Berechnen der Wegematrix mit dem Warshall-Algorithmus

an.

