Abstract Integration

The Concept of Measurbility 1.1

Definition 1.1.1

- 1. A collection \mathfrak{M} of subsets of a set X is said to be a σ -algebra in X if **M** has the following properties:
 - (a) $X \in \mathfrak{M}$.

 - (b) If $A \in \mathfrak{M}$, then $A^c \in \mathfrak{M}$. (c) If $A = \bigcup_{n=1}^{\infty} A_n$ and $A_n \in \mathfrak{M}$ for $n = 1, 2, 3, \dots$, then $A \in \mathfrak{M}$.
- 2. If \mathfrak{M} is a σ -algebra in X, then X is called a *measurable* provided that $f^{-1}(V)$ is measurable set in X for every open set V in Y.
- 3. If X is a measurable space, Y is a topological space, and f is a mapping of X into Y, then f is said to be **measurable** provided that $f^{-1}(V)$ is a measurable set in X for every open set V in Y.

Note.

对比 topological space 的定义, σ -algebra 的定义是对称的, 即可测集的补集仍 是可测的, 而对于拓扑空间, 开集的补集不是开集, 而是被定义为了闭集这样的对 象.

Lemma 1.1.2

- 1. Let X be a measurable space, Y, Z be topological spaces. If $f: X \to X$ Y is measurable, and if $g: Y \to Z$ is continuous, then $g \circ f: X \to Z$ is measurable.
- 2. Let u, v be real measurable functions on a measurable space X, let Φ be a continuous mapping of the plane into a topological space Y, and define

$$h(x) = \Phi(u(x), v(x))$$

for $x \in X$. Then $h: X \to Y$ is measurable.

Corollary 1.1.3

Let *X* be a measurable space. The following propositions hold

- 1. If f = u + iv, where u and v are real measurable functions on X, then f is a complex measurable function on X.
- 2. If f = u + iv is a complex measurable function on X, then u, v, and |f| are real measurable functions on X.
- 3. If f and g are complex measurable functions on X, then so are f + g and fg.
- 4. If *E* is a measurable set in *X* and if

$$\chi_E(x) = \begin{cases} 1 & x \in E \\ 0 & x \notin E \end{cases}$$

then χ_E is a measurable function.

5. If f is a complex measurable function on X, there is a complex measurable function α on X such that $|\alpha| = 1$ and $f = \alpha |f|$.

Theorem 1.1.4

If \mathcal{F} is any collection of subsets of X, there exists a smallest σ -algebra \mathfrak{M}^* such that $\mathcal{F} \subseteq \mathfrak{M}^*$.

Definition 1.1.5 ▶ Borel

Let *X* be a topological space.

- 1. By *Borel* σ -algebra, we mean the smallest σ -algebra \mathcal{B} in X such that every open set in X belongs to \mathcal{B} . The members of \mathcal{B} are called the *Borel sets* of X.
- 2. All countable unions of closed sets and all countable intersections of open sets are Borel sets, which we called F_{σ} 's and G_{δ} 's, respectively.
- 3. By a *Borel function*, we mean a measurable function on the measurable space (X, \mathcal{B}) .

Remark.

- 1. The letters F and G were used for colsed and opensets,respectively, and σ refers to union, δ to intersection.
- 2. A continuous function is Borel-measurable, since the preimage of any open set is open and therefore a Borel set.

Theorem 1.1.6

Suppose $\mathfrak M$ is a σ -algbera in X ,and Y is a topological space. Let f map X into Y.

- 1. If Ω is the collection of all sets $E \subseteq Y$ such that $f^{-1}(E) \in \mathfrak{M}$, then Ω is a σ algebra in Y.
- 2. If f is measurable and E is a Borel set in Y, then $f^{-1}(E) \subseteq \mathfrak{M}$.
- 3. If $Y = [-\infty, \infty]$ and $f^{-1}((\alpha, \infty]) \subseteq \mathfrak{M}$ for every real α , then f is measurable.
- 4. If f is measurable, if Z is topological space, if $g: Y \to Z$ is a Borel mapping, and if $h = g \circ f$, then $h: X \to Z$ is measurable.

Theorem 1.1.7

If $f_n: X \to [-\infty, \infty]$ is measurable, for $\neq 1, 2, 3, \dots$, and

$$g = \sup_{n \ge 1} f_n, \quad h = \lim_{n \to \infty} \sup f_n,$$

then g and h are measurable.

Corollary 1.1.8

- 1. The limit of every pointwise convergent sequence of complex measurable functions is measurable.
- 2. If f and g are measurable(with range in $[-\infty, \infty]$), then so are $\max\{f,g\}$ and $\min\{f,g\}$. In particular, this is true of the functions

$$f^+ = \max\{f, 0\}, \quad f^- = -\min\{f, 0\}.$$

which are called the *positive part* and *negative part* of f , respectively.

Remark.

1. There are the standrd representation

$$|f| = f^+ + f^-, \quad f = f^+ - f^-$$

2. And easy but (may) useful observation is : If $f = g - h, g \ge 0, h \ge 0$, then $f^+ \le g$ and $f^- \le h$.

1.2 Simple Functions

Definition 1.2.1

A complex function s on a measurable space X whose range consists of only finitely many points will be called a *simple function*. Among these are the nonnegative simple functions, whose range is a finite subset of $[0, \infty)$.

Specifically, if $\alpha_1, \dots, \alpha_n$ are distinct values of a simple function s, and if we set $A_i = \{x : s(x) = \alpha_i\}$, then clearly

$$s = \sum_{i=1}^{n} \alpha_i \chi_{A_i}.$$

Where χ_{A_i} is the characteristic function of A_i .

Remark.

- Here, we explicity exclude ∞ from the values of a simple function.
- It is clear that s is mearuable if and only if each of the sets A_i is measurable.

Theorem 1.2.2

Let $f: X \to [0, \infty]$ be measurable space. There exists simple measurable functions s_n on X such that

- 1. $0 \le s_1 \le s_2 \le \dots \le f$.
- 2. $s_n(x) \to f(x)$ as $n \to \infty$, for every $x \in X$.

Proof sketch.

We construst a sequence of Borel simple functions $\{\varphi_n(x)\}$ to act as an *identify*. 当 n 增大的同时,我们同时让 $\varphi_n(x)$ 的单位逼近精度和单位逼近范围 随着 n 提升. 并且在舍弃误差时,总是向下取整,使得该单位逼近是自下而上的.

Proof. For every $x \in [0, \infty]$, and for every $n \in \mathbb{N}$, there exists a unique integer $k_n(x)$, such that

$$k_n(x) 2^{-n} \le x < (k_n(x) + 1) 2^{-n}$$

For every $n \in \mathbb{N}$, we define

$$\varphi_n(x) = \begin{cases} k_n(x) 2^{-n}, & 0 \le x \le n \\ n, & x \ge n \end{cases}$$

Each $\varphi_n(x)$ is then a Borel simple function. It is not hard to show that $0 \le \varphi_1 \le \varphi_2 \cdots \le \cdots \le \text{Id}$. For each n, we define

$$s_n(x) := (\varphi_n \circ f)(x)$$

Then $\{s_n\}$ is a suquence of simple measurable functions such that $0 \le s_1 \le s_2 \le \cdots \le f$. Since $\lim_{n\to\infty} \varphi_n(x) = x$, then $\lim_{n\to\infty} s_n(x) = f(x)$.

1.3 Measure

Definition 1.3.1 ► **Measure and Measure Space**

(a) A *positive measure* is a function μ , defined on a σ -algebra \mathfrak{M} , whose range is in $[0, \infty]$ and which is *countably additive*. This means that if $\{A_i\}$ is a disjoint countable collection of members of \mathfrak{M} , then

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu\left(A_i\right).$$

To avoid trivialities, we shall also assume that $\mu(A) < \infty$ for at least one $A \in \mathfrak{M}$.

- (b) A *measure space* is a measurable space which has a positive measure defined on the σ -algebra of its measurable sets.
- (c) A *complex measure* is a complex-valued countably additive function defined on a σ -algebra.

Theorem 1.3.2

Let μ be a positive measure on a σ -algebra \mathfrak{M} . Then

- 1. $\mu(\emptyset) = 0$.
- 2. $\mu(A_1 \cup \cdots \cup A_n) = \mu(A_1) + \cdots + \mu(A_n)$ if A_1, \ldots, A_n are pairwise disjoint members of \mathfrak{M} .
- 3. $A \subset B$ implies $\mu(A) \leq \mu(B)$ if $A \in \mathfrak{M}, B \in \mathfrak{M}$.

4.
$$\mu(A_n) \to \mu(A)$$
 as $n \to \infty$ if $A = \bigcup_{n=1}^{\infty} A_n, A_n \in \mathfrak{M}$, and $A_1 \subset A_2 \subset A_3 \subset ...$

5.
$$\mu(A_n) \to \mu(A)$$
 as $n \to \infty$ if $A = \bigcap_{n=1}^{\infty} A_n, A_n \in \mathfrak{M}$,
$$A_1 \supset A_2 \supset A_3 \supset \dots,$$

and $\mu(A_1)$ is finite.

- *Proof.* 1. Take $A \in \mathfrak{M}$ such that $\mu(A) < \infty$. ¹ And let $A_2 = A_3 = \cdots = \emptyset$, then $\mu(\emptyset) > 0$ leads to a contradition to the countably additive.
 - 2. Take $A_{n+1} = A_{n+2} = \cdots = \emptyset$.
 - 3. Note that $B = (B \setminus A) \cup A$, then by additivity

$$\mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A)$$

4. Let $A_0 = \emptyset$, and let $B_n = A_n \setminus A_{n-1}$ for all $n \in \mathbb{N}$. Then B_1, \dots, B_n are pairwise disjoint members of \mathfrak{M} such that $A = \bigcup_{n=1}^{\infty} B_n$. We have

$$\mu(A) = \sum_{n=1}^{\infty} \mu(B_n) = \sum_{n=1}^{\infty} \mu(A_n \setminus A_{n-1})$$

If one of the $\mu(A_n)$ is ∞ , then $\lim_{n\to\infty}\mu(A_n)$ and $\mu(A)$ both are ∞ . Otherwise, we have

$$\mu\left(A_{n}\setminus A_{n-1}\right) = \mu\left(A_{n}\right) - \mu\left(A_{n-1}\right), \quad \forall n \mathbb{N}$$

Thus

$$\mu(A) = \sum_{n=1}^{\infty} \mu(A_n \setminus A_{n-1}) = \lim_{n \to \infty} \mu(A_n)$$

5. Let $B_n = A_n \setminus A_{n+1}$ for all $n \in \mathbb{N}$. B_1, \dots, B_n are pariwise disjoint members of \mathfrak{M} with finite measure, such that

$$A_1 \setminus A = A_1 \setminus \left(\bigcap_{n=1}^{\infty} A_n\right) = \bigcup_{n=1}^{\infty} \left(A_1 \setminus A_n\right) = \bigcup_{n=1}^{\infty} \left(\bigcup_{k=1}^{n} B_k\right) = \bigcup_{n=1}^{\infty} B_n$$

¹That is what we supposed at the definition of measure.

. We have

$$\mu(A_1 \setminus A) = \mu\left(\bigcup_{n=1}^{\infty} B_n\right),\,$$

where the RHS is $\mu(A_1) - \mu(A)$, and the LHS is

$$\sum_{n=1}^{\infty} (\mu(A_n) - \mu(A_{n+1})) = \mu(A_1) - \lim_{n \to \infty} \mu(A_{n+1})$$

Since $\mu(A_1) < \infty$, we have

$$\mu(A) = \lim_{n \to \infty} \mu(A_n)$$

Example 1.3.3

1. For any $E \subset X$, where X is any set, define $\mu(E) = \infty$ if E is an infinite set, and let $\mu(E)$ be the number of points in E if E is finite. This μ is called the *counting measure* on X.

2. Fix $x_0 \in X$, define $\mu(E) = 1$ if $x_0 \in E$ and $\mu(E) = 0$ if $x_0 \notin E$, for any $E \subset X$. This μ may be called the *unit mass concentrated at* x_0 .

3. Let μ be the counting measure on the set $\{1, 2, 3, ...\}$, let $A_n = \{n, n+1, n+2, ...\}$. Then $\bigcap A_n = \emptyset$ but $\mu(A_n) = \infty$ for n = 1, 2, 3, This shows that the hypothesis

$$\mu(A_1) < \infty$$

is not superfluous in Theorem 1.3.2(5).

1.4 Integration of Positive Funtions

Definition 1.4.1 ► **Integration of Positive Funtions**

1. If $s: X \to [0, \infty)$ is a measurable simple function, of the form

$$s = \sum_{i=1}^{n} \alpha_i \chi_{A_i},$$

7 of 10

where $\alpha_1, \dots, \alpha_n$ are the distinct values of s, and if $E \in \mathfrak{M}$, we define

$$\int_E s \, d\mu = \sum_{i=1}^n \alpha_i \mu(A_i \cap E).$$

The convention $0 \cdot \infty = 0$ is used here; it may happen that $\alpha_i = 0$ for some *i* and that $\mu(A_i \cap E) = \infty$.

2. If $f: X \to [0, \infty]$ is measurable, and $E \in \mathfrak{M}$, we define

$$\int_E f \, d\mu = \sup \int_E s \, d\mu,$$

the supremum being taken over all simple measurable functions s such that $0 \le s \le f$. The left member above is called the *Lebesgue integral* of f over E, with respect to the measure μ . It is a number in $[0, \infty]$.

Remark.

We apparently have two definitions for $\int_E f d\mu$ if f is simple, they are the same.

Corollary 1.4.2

- (a) If $0 \le f \le g$, then $\int_E f d\mu \le \int_E g d\mu$.
- (b) If $A \subset B$ and $f \ge 0$, then $\int_A f d\mu \le \int_B f d\mu$. (c) If $f \ge 0$ and c is a constant, $0 \le c < \infty$, then

$$\int_E cf \, d\mu = c \int_E f \, d\mu.$$

- (d) If f(x) = 0 for all $x \in E$, then $\int_E f d\mu = 0$, even if $\mu(E) = \infty$.
- (e) If $\mu(E) = 0$, then $\int_E f d\mu = 0$, even if $f(x) = \infty$ for every $x \in E$.
- (f) If $f \ge 0$, then $\int_E f d\mu = \int_X \chi_E f d\mu$.

Remark.

We can also regard the $\int_E f d\mu$ as the restricted function $f|_E$ integrates on the induced measure space E.

Proposition 1.4.3

Let *s* and *t* be nonnegative measurable simple functions on *X*. For $E \in \mathfrak{M}$, define

$$\varphi(E) = \int_E s \, d\mu.$$

Then φ is a measure on \mathfrak{M} . Also

$$\int_X (s+t) \, d\mu = \int_X s \, d\mu + \int_X t \, d\mu.$$

Proof. If E_1, E_2, \cdots are disjoint members of \mathfrak{M} whose union is E, the countable additivity of μ shows that

$$\varphi(E) = \sum_{i=1}^{n} \alpha_{i} \mu (A_{i} \cap E)$$

$$= \sum_{i=1}^{n} \sum_{j=0}^{\infty} \alpha_{i} \mu (A_{i} \cap E_{j})$$

$$= \sum_{j=0}^{\infty} \sum_{i=1}^{n} \alpha_{i} \mu (A_{i} \cap E_{j})$$

$$= \sum_{j=0}^{\infty} \varphi(E_{j})$$

Also, $\varphi(\emptyset) \neq \infty$, μ is not identically ∞ .

Next, let β_1, \dots, β_m be distinct values of t. And let $B_j := \{x : t(x) = \beta_j\}$. Then

$$\int_{X} (s+t) d\mu = \sum_{i,j} \int_{A_{i} \cap B_{j}} (s+t) d\mu$$

$$= \sum_{i,j} \alpha_{i} \mu (A_{i} \cap B_{j}) + \sum_{i,j} \beta_{j} \mu (A_{i} \cap B_{j})$$

$$= \sum_{i} \alpha_{i} \mu (A_{i}) + \sum_{j} \beta_{j} \mu (B_{j})$$

$$= \int_{X} s d\mu + \int_{X} t d\mu$$

Theorem 1.4.4 ➤ Lebesgue's Monotone Convergence Theorem

Let $\{f_n\}$ be a sequence of measurable functions on X, and suppose that

- (a) $0 \le f_1(x) \le f_2(x) \le \dots \le \infty$ for every $x \in X$,
- (b) $f_n(x) \to f(x)$ as $n \to \infty$, for every $x \in X$.

Then f is measurable, and

$$\int_X f_n \, d\mu \to \int_X f \, d\mu \quad \text{as } n \to \infty.$$

Proof. Since $\int_X f_n d\mu \le \int_X f_{n+1} d\mu$ for all n, there exists an $\alpha > 0$ such that

$$\int_X f_n \, \mathrm{d}\mu \to \alpha, \quad \text{as } n \to \infty$$

By Theorem 1.1.7, f is measurable, then by $\int_X f_n d\mu \leq \int_X f d\mu \, \forall n$,

$$\alpha \le \int_X f \, \mathrm{d}\mu$$