PERAMALAN BEBAN JANGKA PENDEK PADA HARI LIBUR DI BALI MENGGUNAKAN METODE GENERALIZED REGRESSION NEURAL NETWORK (GRNN)

Juniar Doan Wihardono¹, Agus Dharma², I Made Mataram³

Jurusan Teknik Elektro dan Komputer, Fakultas Teknik Universitas Udayana Email: juniardoanwihardono@gmail.com¹, agd2_bali@gmail.com², made_mmataram@yahoo.com³

Abstrak

Peramalan beban merupakan suatu kegiatan untuk memperkirakan kondisi beban pada hari yang akan datang. Kondisi beban pada saat hari libur merupakan suatu fenomena yang sangat menarik untuk diketahui. Fenomena ini terjadi di Bali yaitu pada saat hari Raya Nyepi. Karena, kondisi beban pada hari Raya Nyepi akan mengalami penurunan yang sangat drastis. Kondisi tersebut perlu diketahui agar operasi sistem tenaga listrik dapat berjalan secara optimal. Metode peramalan beban pada penelitian ini menggunakan metode Generalized Regression Neural Nework (GRNN) yang dibandingkan dengan metode Radial Basis Function Neural Network (RBFNN). Data pada proses peramalan menggunakan data beban puncak harian pada hari libur di Bali antara tahun 2010 sampai 2014. Pemilihan data difokuskan pada data beban puncak pada 5 hari sebelum hari libur (h-4) sampai hari libur (h). Metode GRNN menghasilkan Mean Square Error (MSE) sebesar 0.020089 dan Mean Absolute Percentage Error (MAPE) sebesar 2.28%.

Kata Kunci: Peramalan Beban, Hari libur, Metode GRNN, Metode RBFNN

Abstract

Load forecasting is an activity to estimate the load condition on the coming day. Load conditions during holidays is a phenomenon that is very interesting to know. This phenomenon happened in Bali, on the day of Nyepi. Because, load condition on the day of Nyepi will decrease drastically. Forecasting methods in this study using Generalized Regression Neural Nework (GRNN) and compared with Radial Basis Function Neural Network (RBFNN) method. Data on the forecasting process uses daily peak load data on holidays in Bali from 2010 to 2014. Selection of the data focused on peak load data from 5 days before the holiday (h-4) until holidays (h). GRNN method generates Mean Square Error (MSE) and Mean Absolute Percentage Error (MAPE) amounted 2.01 and 0.020089%. While the RBFNN method generates MSE and MAPE amounted 0.022757 and 2.28%.

Keywords: Load Forecasting, holiday, GRNN method, RBFNN method.

1. PENDAHULUAN

Peramalan beban merupakan kegiatan penting dalam perencanaan operasi sistem tenaga listrik. Peramalan beban juga sangat berhubungan dengan pengoperasian sistem tenaga seperti jadwal pengiriman daya, perencanaan pemeliharaan untuk unit pembangkit, dan keandalan pada sistem tenaga. Kondisi beban pada saat hari libur merupakan suatu fenomena yang sangat menarik untuk diketahui seperti di Bali khususnya pada hari raya Nyepi [1]. Penurunan beban akan terjadi

saat hari libur terutama pada saat hari raya Nyepi.

Penelitian terdahulu mengenai peramalan beban listrik jangka pendek menggunakan jaringan syaraf tiruan sudah banyak dilakukan, salah satu dari penelitian tersebut adalah peramalan beban jangka pendek menggunakan metode RBFNN.

Metode RBFNN memiliki kelemahan yaitu membutuhkan data sampel yang relatif lebih banyak dalam proses peramalan, sehingga membutuhkan waktu yang lama untuk melakukan proses pembelajaran pengolahan data [2]. Metode

GRNN diharapkan dapat mengurangi kelemahan dari metode RBFNN agar hasil peramalan menjadi lebih akurat.

2. KAJIAN PUSTAKA

2.1 Peramalan beban

Peramalan di bidang tenaga listrik pada dasarnya merupakan ramalan kebutuhan energi listrik (Watt/ Jam) dan ramalan beban tenaga listrik (Watt) [3].

Secara garis besar peramalan kebutuhan tenaga listrik dapat dibagi dalam tiga tahap, yaitu:

- 1. Pengumpulan dan penyiapan data.
- 2. Pengolahan dan analisis data.
- Penentuan metode dan pembuatan model.

2.2 Generalized Regression Neural Network (GRNN)

GRNN termasuk ke dalam kategori jaringan syaraf probabilistik. Jaringan syaraf ini seperti jaringan syaraf probabilistik lain. **GRNN** hanya membutuhkan sebagian kecil dari sampel pelatihan dari jaringan saraf backpropagation [4].

Keuntungan dari GRNN adalah proses beajar yang cepat dan kontrol yang mudah [5]. Landasan teori dari GRNN adalah analisis regresi nonlinear. Fungsi kepadatan probabilitas gabungan dari vektor x dan vektor y adalah f(x,y). x bernilai x_0 . Nilai regresi x ke y adalah $\hat{y}(x_0)$ [6].

GRNN dibuat menjadi 4 lapisan yang terdiri dari lapisan input (input layer), lapisan pola (patern layer), lapisan penjumlahan (summation layer) dan lapisan output (output layer). Arsitektur GRNN dapat dilihat pada Gambar 1 [4].

Berdasarkan Gambar 1 dapat dibuat persamaan GRNN yang dapat dilihat pada Persamaan 1 [5].

$$\hat{\mathbf{y}}(x_0) = \frac{\sum_{i=1}^{n} y_i e^{-d(x_0, x_i)}}{\sum_{i=1}^{n} e^{-d(x_0, x_i)}}$$
(1)

Keterangan:

ŷ adalah nilai yang diramalkan

x adalah variabel bebas

e adalah nilai kesalahan ramalan, dan

d adalah nilai penyimpangan atau deviasi

y, adalah nilai observasi

Gambar 1. Arsitektur GRNN.

2.3 Radial Basis Function Neural Network (RBFNN)

RBFNN merupakan metode lain untuk peramalan beban yang sudah digunakan pada penelitian sebelumnya. Struktur model RBF sangat sederhana dengan tiga lapisan yang terdiri dari *Input*, *hidden layer* dan *output*. RBFNN menggunakan dasar radial dan fungsi linear antara input dan hidden layer dan antara hidden layer dan lapisan output. Algoritma untuk menyesuaikan bobot *hiden layer* dan proses pelatihan dalam metode RBFNN memperbarui secara berurutan sampai sasaran error tercapai [2].

2.4 MSE (Mean Square Error)

MSE merupakan suatu parameter yang sering digunakan untuk mengukur kinerja pada suatu peramalan. MSE dirumuskan dengan Persamaan 2 [7].

$$MSE = \frac{\sum_{k=0}^{n-1} (\hat{Y}_{t-k} - Y_{t-k})^{n}}{n}$$
 (2)

Keterangan:

Y't adalah nilai predikdsi JST

Yt adalah nilai actual yang terjadi

n adalah jumlah data yang diproses

Ketika nilai MSE yang dihasilkan semakin mendekati nol, maka kinerja model peramalan semakin baik.

2.5 MAPE (Mean Absolut Percentage Error)

MAPE merupakan parameter lain selain MSE yang sering digunakan untuk mengukur kinerja suatu peramalan. MAPE dirmuskan dengan Persamaan 3 [7].

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{Y_{prediksi} - Y_{target}}{Y_{target}} \right| 100\% \quad (3)$$

Keterangan:

Y_{prediksi} adalah nilai prediksi JST
Y_{target} adalah nilai aktual yang terjadi
n adalah jumlah data yang diproses

Ketika nilai MAPE kurang dari 5% maka kinerja hasil peramalan semakin baik.

2.6 Aplikasi GRNN pada peramalan beban

Peramalan beban mengunakan metode GRNN memiliki beberapa tahap. Tahap pertama pada peramalan mengguunakan GRNN adalah pembagian data training dan data testing. Model data berdasarkan data training adalah [7].

$$y_{t-1 \text{ hasil trainning}} = f(y_{t-2}, y_{t-2}, y_{t-4}, \dots, y_{t-n})$$
 (4)

Model data berdasarkan data testing adalah

$$y_{t \text{ hasil ramalan}} = f(y_{t-1}, y_{t-2}, y_{t-3} \dots y_{t-n})$$
 (5)

Keterangan:

 y_t adalah beban puncak pada hari h.

 y_{t-1} adalah beban puncak pada hari h tahun sebelumnya.

n adalah tahun selumnya (n = 1,2,3,...).

3. METODOLOGI PENELITIAN

Penelitian dilakukan di PLN (Persero Area Pengatur Beban Bali. Data sekunder diambil yaitu data beban puncak harian (MW) mulai bulan Januari 2010 sampai dengan bulan Desember 2014. Alur analisis (flowchart) yang digunakan dalam penelitian ini dapat dilihat pada Gambar 2.

Gambar 2. Flowchart metode GRNN

4. HASIL DAN PEMBAHASAN

Peramalan beban menggunakan metode GRNN dimulai dengan pembagian data training dan testing. Data training dipilih berdasarkan beban puncak 5 hari sebelum hari libur sampai hari libur di tahun 2010 sampai 2013. Data dipilih berdasarkan 5 hari sebelum hari libur (h-4) karena beban pada hari sebelum hari h mempunyai pengaruh terhadap pola beban puncak harian [1]. Data testing dipilih berdasarkan beban puncak hari libur tahun 2011 sampai dengan tahun 2014.

4.1 Proses *training* dengan metode GRNN untuk hari libur tahun 2013

Hasil *training* dan peramalan tahun 2013 menggunakan metode GRNN dapat dilihat pada Tabel 1.

Hasil *training* pada Tabel 1 menunjukkan besar nilai MSE dan MAPE yang dihasilkan sebesar 0.029552 dan 2.96%.

Tabel 1. Hasil peramalan dengan metode GRNN untuk hari libur tahun 2013

Hari Libur Nasional	Hasil <i>Training</i> (MW)	Beban Aktual (MW)	Absolute Error
Tahun Baru Masehi	460.14	457.37	0.006057
Maulid Nabi Muhammad SAW	490.43	515.09	0.047869
Tahun Baru Imlek	511.64	536.02	0.045478
Hari Raya Nyepi	400.53	400.34	0.000465
Wafat Yesus Kristus	568.15	586.69	0.031601
Raya Waisak	553.27	577.42	0.041827
Isra Mi'raj Nabi Muhammad SAW	579.34	592.57	0.022325
Kenaikan Yesus Kristus	540.82	567.51	0.047019
ldul Fitri	490.62	505.73	0.02987
Hari Kemerdekaan RI	489.63	503.71	0.027951
Idul Adha	560.35	578.25	0.030946
Tahun Baru Hijriah	593.93	621.95	0.045044
Hari Raya Natal	583.80	588.35	0.007731
		MSE	0.029552
		MAPE	2.96%

4.2 Hasil peramalan metode GRNN untuk hari libur tahun 2014

Hasil peramalan tahun 2014 menggunakan metode GRNN dapat dilihat pada Tabel 2.

Tabel 2. Hasil peramalan dengan metode GRNN untuk hari libur tahun 2014

Hari Libur Nasional	Hasil Peramalan (MW)	Beban Aktual (MW)	Error
Tahun Baru Masehi	498.93	502.6	0.00731
Maulid Nabi Muhammad SAW	530.91	505.7	0.049856
Tahun Baru Imlek	536.02	556.2	0.03628
Hari Raya Nyepi	430.40	436.1	0.01308
Wafat Yesus Kristus	598.98	627.2	0.04499
Raya Waisak	577.31	644	0.03893
Isra Mi'raj Nabi Muhammad SAW	601.66	606.73	0.00836
Kenaikan Yesus Kristus	598.54	602.2	0.00608
Idul Fitri	505.74	501.5	0.008458
Hari Kemerdekaan RI	598.60	587.3	0.019248
Idul Adha	578.60	568.4	0.017949
Tahun Baru Hijriah	621.95	626.8	0.00774
Hari Raya Natal	642.76	640.9	0.002897
		MSE	0.020089
		MAPE	2 01%

Hasil peramalan pada Tabel 2 menunjukkan besar nilai MSE dan MAPE yang dihasilkan sebesar 0.020089 dan 2.01%. Hasil *error* terkecil 0.002897 dan *error* terbesar 0.049856.

Grafik perbandingan hasil peramalan pada Gambar 3 menunjukan nilai beban hasil peramalan dibandingkan nilai beban aktual. Nilai beban hasil peramalan tiap hari libur memiliki pola yang hampir sama dengan beban aktual, sehingga selisih nilai hasil peramalan dan beban aktual memiliki perbedaan yang tidak terlalu jauh. Maka, MSE dan MAPE yang dihasilkan juga akan bernilai kecil yaitu 0,02009 dan 2,01%.

Gambar 3 Grafik perbandingan hasil peramalan dan data aktual hari libur nasional tahun 2014

4.3 Perbandingan hasil permalan metode GRNN dan RBFNN

Perbandingan antara metode GRNN dan metode RBFNN digunakan parameter MSE dan MAPE sebagai pembanding keakuratan metode GRNN dan RBFNN. Berikut ini adalah hasil peramalan menggunakan metode GRNN dan RBFNN yang dapat dilihat pada Tabel 3.

Metode GRNN menghasilkan nilai MSE sebesar 0.020089 dan nilai MAPE sebesar 2.01%. Metode RBFNN menghasilkan nilai MSE sebesar 0.022757 dan nilai MAPE sebesar 2.28%.

Tabel 3. Hasil peramalan dengan metode GRNN dan RBFNN untuk hari libur tahun 2014

dan KBENN untuk han libur tahun 2014						
Hari Libur Nasional	Beba Aktua (MW	al	RBFN N (MW)	<i>Error</i> RBFNN	GRNN (MW)	<i>Error</i> GRNN
Tahun Baru Masehi	502.	6	500.95	0.003286	498.93	0.00731
Maulid Nabi Muhammad SAW	505.7		530.51	0.049061	530.91	0.049856
Tahun Baru Imlek	556.2		556.92	0.001299	536.02	0.03628
Hari Raya Nyepi	436.1		451.88	0.036178	430.40	0.01308
Wafat Yesus Kristus	627.2		599.18	0.044675	598.98	0.04499
Raya Waisak	644		597.72	0.004958	577.31	0.03893
Isra Mi'raj Nabi Muhammad SAW	606.73		601.66	0.008356	601.66	0.00836
Kenaikan Yesus Kristus	602.	2	598.54	0.006078	598.54	0.00608
Idul Fitri	501.5		516.34	0.029597	505.74	0.008458
Hari Kemerdekaan RI	587.3		597.05	0.016608	598.60	0.019248
Idul Adha	568.4		576.17	0.013674	578.60	0.017949
Tahun Baru Hijriah	626.8		597.98	0.045979	621.95	0.00774
Hari Raya Natal	640.	9	617.77	0.036097	642.76	0.002897
		Error Min		0.001299		0.002897
		ror Max	0.049061		0.049856	
		MS	SE	0.022757		0.020089
			APE	2.28%		2.01%

Hasil error peramalan pada Tabel 3 menunjukkan bahwa error GRNN lebih kecil RBFNN. dibandingkan Hal tersebut disebab-kan karena metode **GRNN** menggunakan fungsi regresi. Jika menggunakan 1 input maka regresi yang digunakan adalah regresi linear. Regresi linear adalah regresi yang membentuk satu garis lurus. Probabilitas hasil akan dengan mudah mengikuti pola data sebelumnya sehingga kepadatan probabilitas nilai hasil peramalan akan lebih mendekati fungsi target. [1].

Pada penelitian ini peramalan juga dilakukan dengan menggunaka 3 *input* maka, dengan proses yang sama untuk hasil peramalan menggunakan 3 *input* dapat dilihat pada Tabel 4 berikut.

Tabel 4 Hasil peramalan dengan metode GRNN dan RBFNN dengan 3 input untuk hari libur tahun 2014

tariari 2011						
Hari Libur Nasional	Beban Aktual (MW)	RBFNN	Error RBFNN	GRNN (MW)	Error GRNN	
Tahun Baru Masehi	502.6	486.59	0.031848	484.41	0.036186	
Maulid Nabi Muhammad SAW	505.7	510.20	0.008891	515.10	0.018582	
Tahun Baru Imlek	556.2	538.32	0.032147	549.42	0.01219	
Hari Raya Nyepi	436.1	427.14	0.020539	428.73	0.016893	
Wafat Yesus Kristus	627.2	599.39	0.044335	596.40	0.049102	
Raya Waisak	644	584.03	0.027751	583.53	0.028586	
Isra Mi'raj Nabi Muhammad SAW	606.73	601.66	0.008356	597.93	0.014498	
Kenaikan Yesus Kristus	602.2	601.66	0.000896	602.13	0.000115	
Idul Fitri	501.5	505.73	0.008435	516.48	0.029877	
Hari Kemerdekaan RI	587.3	598.60	0.019241	563.76	0.040075	
Idul Adha	568.4	561.89	0.011457	591.95	0.041431	
Tahun Baru Hijriah	626.8	603.18	0.037676	599.68	0.043263	
Hari Raya Natal	640.9	654.24	0.020815	609.84	0.048463	
		Error Min	0.000896		0.000115	
		Error Max	0.044335		0.049102	
MSE MAPE		MSE	0.020953		0.029174	
		MAPE	2.10%		2.92%	

Metode GRNN menghasilkan nilai MSE sebesar 0.029174 dan nilai MAPE sebesar 2.92%. Metode RBFNN menghasilkan nilai MSE sebesar 0.020953 dan nilai MAPE sebesar 2.10%.

Perbedaan hasil tersebut disebabkan karena . Jika menggunakan input lebih dari 1 maka regresi yang digunakan adalah regresi nonlinear. Regresi nonlinear adalah regresi yang membentuk garis tidak lurus atau lengkungan. Probabilitas akan lebih acak dalam menaikuti pola data sebelumnya sehingga kepadatan probabilitas fungsi target tidak menentu [1]. Metode RBFNN menggunakan fungsi radial basis. Fungsi radial basis adalah fungsi yang membentuk titik data vana berkelompok. Semakin banyak jumlah data maka pendekatan probabilitas nilai akan semakin mendekati fungsi target [2].

5. SIMPULAN

Simpulan yang dapat diambil penelitian ini adalah sebagai berikut :

- Peramalan beban listrik menggunakan metode GRNN menghasilkan error minimum sebesar 0.002897 dan error maksimum sebesar 0.049856. MSE yang dihasilkan sebesar 0.020089 dan MAPE yang dihasilkan sebesar 2.01%.
- Berdasarkan perbandingan parameter MSE dan MAPE, metode GRNN dan RBFNN menghasilkan nilai yang hampir sama. Jadi metode GRNN dan RBFNN masih belum terdapat perbedaan atau hampir sama dalam peramalan beban listrik jangka pendek.

6. DAFTAR PUSTAKA

- [1] Dharma, A. Hendrawan, P. E. W. and Robandi, I. 2008. "Peramalan Beban Listrik Jangka Pendek Untuk Hari Libur Menggunakan Metode Artificial Neural Network dan Fuzzy Inference System Studi Kasus Di Pulau Bali," Symp. RAPI VII UMS Surak., p. hal. E91–99
- [2] Imran, A. Harun, N. and Syafaruddin, 2012 . "Prediksi Beban Puncak Hari Libur Nasional Berbasis Radial Basis Function Neural Network," J Sains Teknol., vol. 1, pp. 156 – 165

- [3] Suswanto, D. 2009. Sistem Distribusi Tenaga Listrik. Padang: Universitas Negeri Padang
- [4] Specht, D. F. 1991. "A general regression neural network," *Neural Netw. IEEE Trans. On*, vol. 2, no. 6, pp. 568–576
- [5] Niu, D. Wang, H.-Q. and Gu, Z.-H. 2005, "Short-term load forecasting using general regression neural network," in *Machine Learning and Cybernetics*, 2005. Proceedings of 2005 International Conference, vol. 7, pp. 4076–4082.
- [6] Dudek, G. 2011. "Generalized Regression Neural Network for Forecasting Time Series with Multiple Seasonal Cycles," in *Intelligent Systems*' 2014, Springer, , pp. 839– 846.
- [7] Wicaksono, G. 2012 . "Peramalan Beban Listrik Jangka Pendek Pada Pt.Pln Region Jawa Timur -Bali Menggunakan Metode Extreme Learning Machine (Elm), Short Term Load Forecasting In Pt.Pln East Java-Bali Region Using Extreme Learning Machine (Elm) Method," *Undergrad. Theses Electr. Eng. RSE 519535 Wic P 2012*, Feb.