Simulation de variables aléatoires

Exercice 1 (simulation exacte du processus d'Ornstein Ulhenbeck). On considère le processus d'Ornstein Ulhenbeck défini par

$$\begin{cases} dX_t = -cX_t dt + \sigma dW_t, \\ X_0 = x \end{cases}$$

où c et σ sont deux constantes strictement positives et x un réel.

- 1. Soit $M \in \mathbb{N}^*$ et $h = \frac{1}{M}$. Ecrire le schéma d'Euler $(\bar{X}_{kh})_{0 \le k \le M}$ de pas h du processus X sur l'intervalle [0,1].
- 2. En utilisant le processus $Y_t = X_t e^{ct}$, montrer que X_t s'écrit

$$X_t = x e^{-ct} + \sigma e^{-ct} \int_0^t e^{cs} dW_s.$$
 (1)

- 3. Montrer que $\mathbb{E}(X_t) = x e^{-ct}$ et que $\operatorname{Var}(X_t) = \sigma^2 \frac{1 e^{-2ct}}{2c}$. En déduire que \bar{X}_h et X_h n'ont pas même loi.
- 4. Soit la grille de discrétisation $t_i = ih$, pour $i = 0 \dots M$. Montrer que l'on peut écrire

$$X_{t_i} = m_i + \int_0^1 f_i(s) dW_s$$

où l'on précisera la valeur des constantes m_i et des fonctions f_i pour i=0...M.

- 5. Déduire de la question précédente une méthode de simulation exacte du processus X à l'instant t_i pour i fixé dans $\{1...M\}$.
- 6. Montrer que le vecteur $(x, Y_{t_1} Y_{t_0}, \dots, Y_{t_M} Y_{t_{M-1}})$ est un vecteur gaussien de moyenne μ et de matrice de covariance Γ , où

$$\mu = (x, 0, \dots, 0), \quad \Gamma = \operatorname{diag}\left(0, \sigma^2 \frac{e^{2ct_1} - e^{-2ct_0}}{2c}, \dots, \sigma^2 \frac{e^{2ct_N} - e^{-2ct_{N-1}}}{2c}\right).$$

Indication : on rappelle que pour tout s < t et toute fonction continue f, $\int_s^t f(u) dW_u$ est indépendante de $\mathcal{F}_s = \sigma(W_u, u \le 0 \le s)$.

- 7. Donner la loi du vecteur $(Y_{t_1}, \dots, Y_{t_M})$ et en déduire celle de $(X_{t_1}, \dots, X_{t_M})$.
- 8. En utilisant la question précédente, expliquer comment simuler le vecteur $(X_{t_1}, \ldots, X_{t_M})$.

Exercice 2 (simulation d'une loi Gamma). On chercher à simuler une variable aléatoire X de loi $\Gamma(\alpha,\beta)$, avec $\alpha,\beta>0$. On rappelle la densité f de la v.a. $X, f(x)=\frac{1}{\Gamma(\alpha)}\beta^{\alpha}x^{\alpha-1}\,\mathrm{e}^{-\beta x}\,\mathbf{1}_{\{x>0\}}$.

- 1. Montrer que pour α entier, $\sum_{i=1}^{\alpha} Y_i \sim \Gamma(\alpha, \beta)$ où la suite $(Y_i)_i$ est i.i.d selon la loi exponentielle de paramètre β .
- 2. En remarquant que si $Y \sim \mathcal{E}(1)$, alors $\beta^{-1}Y \sim \mathcal{E}(\beta)$, montrer que $\beta^{-1} \sum_{i=1}^{\alpha} Z_i \sim \Gamma(\alpha, 1)$, où $(Z_i)_i$ est i.i.d. selon la loi $\mathcal{E}(1)$.
- 3. Pour α quelconque, on définit g la densité de la loi $\Gamma(\lfloor \alpha \rfloor, b)$ avec b > 0. On souhaite mettre en œuvre une méthode de rejet pour simuler selon la densité f en utilisant la densité g. Expliquer pourquoi on doit choisir $0 < b < \beta$.
- 4. Montrer que $x \mapsto \frac{f(x)}{g(x)}$ est maximale en $x^* = \frac{\alpha \lfloor \alpha \rfloor}{\beta b}$. Quel est le meilleur choix de b pour minimiser le nombre moyen de rejets.

Exercice 3 (Simulation de la loi de Poisson). Soit N une variable aléatoire de loi de Poisson de paramètre $\lambda > 0$. On rappelle que $\mathbb{P}(N = n) = \frac{\lambda^n e^{-\lambda}}{n!}$. Soit $(X_k)_k$ une suite iid de variables aléatoires de loi exponentielle, on définit

$$\tau = \inf \left\{ n \ge 1 : \sum_{k=1}^{n} X_k \ge 1 \right\}$$

1. Soit Z une variable aléatoire de loi Gamma de paramètre (λ, n) . Montrer que la fonction caractéristique de Z s'écrit

$$\mathbb{E}\left[e^{iuZ}\right] = \left(\frac{\lambda}{\lambda - iu}\right)^n.$$

On rappelle que Z a pour densité $f_Z(z) = \frac{\lambda^n z^{n-1}}{(n-1)!} e^{-\lambda z} \mathbf{1}_{\{z \geq 0\}}$.

- 2. Montrer que la variable aléatoire $\sum_{k=1}^{n} X_k$ a même loi que Z.
- 3. En remarquant que $\mathbb{P}(\tau = n+1) = \mathbb{P}(Z \leq 1 \text{ et } Z + X_{n+1} \geq 1)$ où Z et X_{n+1} sont indépendantes, calculer $\mathbb{P}(\tau = n+1)$ en utilisant la densité du couple (Z, X_{n+1}) .
- 4. Expliquer comment simuler une variable aléatoire de loi de Poisson à partir de variables aléatoires de loi uniforme sur [0, 1[.