

数字逻辑设计实验

实验11、同步时序电路设计

2023年12月

提纲

- □实验目的
- 口实验设备与材料
- □实验任务
- □实验原理
- 口实验内容与步骤

实验目的

- □掌握典型同步时序电路的工作原理和设计方法
- □ 掌握时序电路的激励函数、状态图、状态方程的运用
- □掌握用Verilog进行有限状态机的设计、调试、仿真
- □掌握用FPGA实现时序电路功能

实验设备与材料

- 口实验设备
 - 装有Xilinx ISE 14.7的计算机 1台
 - SWORD开发板 1套
- 口实验材料
 - ■无

实验任务

口任务1:设计4位同步二进制计数器

口任务2:以Verilog行为描述方式设计16位可逆二进制同步计数器

实验原理

口4位二进制同步计数器

口4位可逆二进制同步计数器

□分频器

4位二进制同步计数器 (1)

	Q_A	Q_B	Q_{C}	Q_D	D_A	D_B	D_{C}	D_D
0	0	0	0	0	1	0	0	0
1	1	0	0	0	0	1	0	0
2	0	1	0	0	1	1	0	0
3	1	1	0	0	0	0	1	0
4	0	0	1	0	1	0	1	0
5	1	0	1	0	0	1	1	0
6	0	1	1	0	1	1	1	0
7	1	1	1	0	0	0	0	1
8	0	0	0	1	1	0	0	1
9	1	0	0	1	0	1	0	1
10	0	1	0	1	1	1	0	1
11	1	1	0	1	0	0	1	1
12	0	0	1	1	1	0	1	1
13	1	0	1	1	0	1	1	1
14	0	1	1	1	1	1	1	1
15	人岭	1	1	1	0	0	0	0

根据D触发器原理,在clk作用下Q=D,4位计数器的Q和D关系如左表

D_A Q_A	$_{A}Q_{B}$								
$Q_C Q_D$	00	01	11	10					
00	1	1	0	0					
01	1	1	0	0					
11	1	1	0	0					
10	1	1	0	0					

$$D_A = \overline{Q}_A$$

ZheJiang University

4位二进制同步计数器 (2)

	Q_A	Q_B	Q_C	Q_D	D_A	D_B	D_{C}	D_D
0	0	0	0	0	1	0	0	0
1	1	0	0	0	0	1	0	0
2	0	1	0	0	1	1	0	0
3	1	1	0	0	0	0	1	0
4	0	0	1	0	1	0	1	0
5	1	0	1	0	0	1	1	0
6	0	1	1	0	1	1	1	0
7	1	1	1	0	0	0	0	1
8	0	0	0	1	1	0	0	1
9	1	0	0	1	0	1	0	1
10	0	1	0	1	1	1	0	1
11	1	1	0	1	0	0	1	1
12	0	0	1	1	1	0	1	1
13	1	0	1	1	0	1	1	1
14	0	1	1	1	1	1	1	1
15	A.W	§ 1	1	1	0	0	0	0

$D_B Q_A Q_B$								
$Q_C Q_D$	00	01	11	10				
00		1		1				
01		1		1				
11		1		1				
10		1		1				

$$D_B = \overline{Q_A}Q_B + Q_A\overline{Q_B}$$
$$= \overline{Q_A \oplus \overline{Q_B}}$$

ZheJiang University

4位二进制同步计数器 (3)

	Q_A	Q_B	Q_C	Q_D	D_{A}	D_B	D_{C}	D_D
0	0	0	0	0	1	0	0	0
1	1	0	0	0	0	1	0	0
2	0	1	0	0	1	1	0	0
3	1	1	0	0	0	0	1	0
4	0	0	1	0	1	0	1	0
5	1	0	1	0	0	1	1	0
6	0	1	1	0	1	1	1	0
7	1	1	1	0	0	0	0	1
8	0	0	0	1	1	0	0	1
9	1	0	0	1	0	1	0	1
10	0	1	0	1	1	1	0	1
11	1	1	0	1	0	0	1	1
12	0	0	1	1	1	0	1	1
13	1	0	1	1	0	1	1	1
14	0	1	1	1	1	1	1	1
15	JI.W	§ 1	1	1	0	0	0	0

$D_C Q_A Q_B$								
$Q_C Q_D$	00	01	11	10				
00	1		1					
01			1					
11	1	1		1				
10	1	1		1				

$$D_{C} = \overline{Q_{A}}Q_{C} + \overline{Q_{B}}Q_{C} + Q_{A}Q_{B}\overline{Q_{C}}$$

$$= \overline{(\overline{Q_{A}} + \overline{Q_{B}})} \oplus \overline{Q_{C}}$$

ZheJiang University

4位二进制同步计数器 (4)

	Q_A	Q_B	Q_{C}	Q_D	D_{A}	D_B	D_{C}	D_D
0	0	0	0	0	1	0	0	0
1	1	0	0	0	0	1	0	0
2	0	1	0	0	1	1	0	0
3	1	1	0	0	0	0	1	0
4	0	0	1	0	1	0	1	0
5	1	0	1	0	0	1	1	0
6	0	1	1	0	1	1	1	0
7	1	1	1	0	0	0	0	1
8	0	0	0	1	1	0	0	1
9	1	0	0	1	0	1	0	1
10	0	1	0	1	1	1	0	1
11	1	1	0	1	0	0	1	1
12	0	0	1	1	1	0	1	1
13	1	0	1	1	0	1	1	1
14	0	1	1	1	1	1	1	1
15	:14	域	1	1	0	0	0	0

D_D $Q_A Q_B$								
$Q_C Q_D$	00	01	11	10				
00		TI .						
01	1	1	1	1				
11	1	1		1				
10			1					

$$D_{D} = \overline{Q_{A}}Q_{D} + \overline{Q_{B}}Q_{D} + \overline{Q_{C}}Q_{D} + Q_{A}Q_{B}Q_{C}\overline{Q_{D}}$$

$$= \overline{(\overline{Q_{A}} + \overline{Q_{B}} + \overline{Q_{C}})} \oplus \overline{Q_{D}}$$

4位二进制同步计数器 (5)

	Q_A	Q_B	Q_C	Q_D	D_{A}	D_B	D _C	D_D
0	0	0	0	$\frac{z_{D}}{0}$	1	0	0	0
1	1	0	0	0	0	1	0	0
2	0	1	0	0	1	1	0	0
3	1	1	0	0	0	0	1	0
4	0	0	1	0	1	0	1	0
5	1	0	1	0	0	1	1	0
6	0	1	1	0	1	1	1	0
7	1	1	1	0	0	0	0	1
8	0	0	0	1	1	0	0	1
9	1	0	0	1	0	1	0	1
10	0	1	0	1	1	1	0	1
11	1	1	0	1	0	0	1	1
12	0	0	1	1	1	0	1	1
13	1	0	1	1	0	1	1	1
14	0	1	1	1	1	1	1	1
15	其当	§ 1	1	1	0	0	0	0

□ 激励函数

$$D_{A} = Q_{A}$$

$$D_{B} = \overline{Q_{A}}Q_{B} + Q_{A}\overline{Q_{B}} = \overline{\overline{Q_{A}}} \oplus \overline{\overline{Q_{B}}}$$

$$D_{C} = \overline{Q_{A}}Q_{C} + \overline{Q_{B}}Q_{C} + Q_{A}Q_{B}\overline{Q_{C}}$$

$$= \overline{(\overline{\overline{Q_{A}}} + \overline{\overline{Q_{B}}})} \oplus \overline{\overline{Q_{C}}}$$

$$D_{D} = \overline{Q_{A}}Q_{D} + \overline{Q_{B}}Q_{D} + \overline{Q_{C}}Q_{D} + Q_{A}Q_{B}Q_{C}\overline{Q_{D}}$$

$$= \overline{(\overline{\overline{Q_{A}}} + \overline{\overline{Q_{B}}} + \overline{\overline{Q_{C}}})} \oplus \overline{\overline{Q_{D}}}$$

□ 进位RC的输出函数

$$R_C = \overline{\overline{Q_A} + \overline{Q_B} + \overline{Q_C} + \overline{Q_D}}$$

4位二进制同步计数器 (6)

4位二进制同步计数器仿真


```
initial forever begin
      clk = 1'b0; #100;
      clk = 1'b1; #100;
end
```


可逆二进制同步计数器 (1)

- □ 可逆二进制同步计数器通过控制端S选择正向或者反向计数
 - S = 1时,正向计数,各触发器逻辑表达式同前面
 - S = 0时,反向计数,各触发器逻辑表达式如下式

$$D_{A} = \overline{Q_{A}}$$

$$D_{B} = \overline{S}(\overline{Q_{A}} \oplus \overline{Q_{B}}) + S(\overline{Q_{A}} \oplus \overline{Q_{B}}) = S \oplus \overline{Q_{A}} \oplus \overline{Q_{B}}$$

$$D_{C} = \overline{S}[\overline{(\overline{Q_{A}}\overline{Q_{B}}) \oplus \overline{Q_{C}}}] + S[\overline{(\overline{Q_{A}} + \overline{Q_{B}})} \oplus \overline{Q_{C}}] = [\overline{S}\overline{\overline{Q_{A}}}\overline{Q_{B}} + S(\overline{Q_{A}} + \overline{Q_{B}})] \oplus \overline{Q_{C}}$$

$$= [\overline{\overline{S}(Q_{A} + Q_{B}) + S(\overline{Q_{A}} + \overline{Q_{B}})}] \oplus \overline{Q_{C}}$$

$$D_{D} = \overline{S}[\overline{(\overline{Q_{A}}\overline{Q_{B}}\overline{Q_{C}}) \oplus \overline{Q_{D}}}] + S[\overline{(\overline{Q_{A}} + \overline{Q_{B}} + \overline{Q_{C}})} \oplus \overline{Q_{D}}] = [\overline{S}\overline{\overline{Q_{A}}\overline{Q_{B}}\overline{Q_{C}}} + S(\overline{Q_{A}} + \overline{Q_{B}} + \overline{Q_{C}})] \oplus \overline{Q_{D}}$$

$$= [\overline{\overline{S}(Q_{A} + Q_{B} + Q_{C}) + S(\overline{Q_{A}} + \overline{Q_{B}} + \overline{Q_{C}})] \oplus \overline{Q_{D}}}$$

$$R = \overline{SQ_AQ_BQ_CQ_D} + SQ_AQ_BQ_CQ_D$$
 《 □代キ凡代□挤写

可逆二进制同步计数器 (2)

口可逆二进制16位同步计数器的行为描述

```
module RevCounter(
input wire clk,
input wire s,
output reg [15:0] cnt,
output wire Rc
);
       wire clk 1s;
        clk_1s clk_count(.clk(clk), .clk_1s(clk_1s));
        assign Rc = (\sim s\&(\sim |cnt)) | (s & (&cnt));
        initial begin
             cnt = 0;
        end
       // need to fill
endmodule
```


分频器设计

□ 50MHz信号通过25,000,000次分频后,得到1Hz的脉冲方波,作为计数器的脉冲输入

```
module counter_1s(clk, clk_1s);
   input wire clk;
   output reg clk 1s;
   reg [31:0] cnt;
   always @ (posedge clk) begin
       if (...) begin // need to fill
           // need to fill
      end else begin
           // need to fill
      end
   end
endmodule
```

实验内容与步骤

口任务1:原理图方式设计4位同步二进制计数器

口任务2:以Verilog行为描述方式设计16位可逆二进制同步计数器

设计4位同步二进制计数器 (1)

□新建工程

- 工程名称用Counter4b。
- Top Level Source Type用HDL
- 口新建源文件
 - 类型是Schematic
 - ■文件名称用Counter4b。
- □原理图方式进行设计
- □进行波形仿真

仿真波形图

设计16位可逆同步二进制计数器 (1)

- □打开所给工程
 - ■工程名称用MyCounter。
- □补全工程
 - 补全文件RevCounter、clk_1s
 - ■添加之前的器件DispNum。
- 口波形仿真(包含正向计数和反向计数)
 - 思考在仿真时为什么clk_1s时钟始终不动,应该如何修改以便于仿真模拟
- 口生成bitstream上板验证

验收

- 口4位二进制计数器
 - ■检查所作图。
 - ■仿真波形图。
- □16位可逆二进制计数器
 - 检查Verilog实现代码
 - 上板结果(可以正常正向计数或逆向计数)。

Thank You!

