Phana Tena Fone 1003296 HWI	,
1. Let xM - number of Missionaries jy C-number	3 M God /
of Carnibals. I denotes the side of the	3M (Sum) 3C (Sum) 3C (Sum)
river.	30 2
State Space: All posible combination of nM and	
y (in the space of nMy();	m - missionanies
y (in the space of nMy(; nMy(); nMy(; y(nM. Constraint is that	c- cannibals
nM>yc and must exist.	
Initial State: 3M3C	
Goal Test: 13M3C	
Actions: 2M or 2M	
2C or 2C	
IMIC or IMIC	
IM or IM	
1c or 1c	
Path Cost: Number of moves	

2. a) Graph search has an explored set to keep trade of Modes that had already been explored and visited while tree search can visit the same node multiple time. b) A state is a physical configuration while a node is a data structure constituting part of a cearch tree (parent/daild nodes/path cost etc) () A State, however, Since a state is just a phisical configuration, it requires a node thus it becomes Node. State. The explored set is used to keep trade of the states that have been visited.

3. q)	3. q) BFS (FIFO) Queue				
Step	Frontier	Explored			
(A				
2	AB,Ac	\mathcal{A}			
3	Ac, ABD	A, B			
4	ABD	A, B, C			
5	ABDX	A, B, C, D			
	: Solution				
(d	DFS(FII	_O) Stack			
Step	Frontier	Explored			
	A				
2	AB, AC	A			
3	AB, ACD	Å, C			
4	AB, ACDX	A,C,D			
4 AB, ACDX A, C, D .'. Solution is ACDX					
	n 10 c				
c) ABA, I	+ BC/ACB				
d) ACA, Ă	Ch, ACDB				

Ψ,	a)	BFS (FIFO) Queue		
	Step	Frontier	Explored	
		A		
	2	AB,AC	Ą	
	3	Ac, ABD	AB	
	4	ABD, ACE, ACE	ABC	
	5.	•	ABDX ABCD	
		. Solution is	ABDX.	
		_		
	b)	DFS(FILO) Stack	
	Step	Frontier	Explored	
)	A	_	
	2	AB, AC	Α	
	3 ,	AB, ACE, ACF	AC	
	4. A	B, ÀCE, ÀCFI	ACF	
		ACE, A(FIH	ACFI	
	_	ACE, ACFIHD,	ACFIH	
	114)A	•		
-: Solution is ACFIHX				
	•			

