

Deep Learning

06 Backpropagation-2

Dr. Konda Reddy Mopuri Dept. of Artificial Intelligence IIT Hyderabad Jan-May 2024

• $x^{(l-1)} \xrightarrow{W^{(l)}, \mathbf{b}^{(l)}} s^{(l)} \xrightarrow{\sigma} x^{(l)}$

- $x_i^{(l)} = \sigma(s_i^{(l)})$

- $x^{(l-1)} \xrightarrow{W^{(l)}, \mathbf{b}^{(l)}} s^{(l)} \xrightarrow{\sigma} x^{(l)}$
- $\bullet \ x_i^{(l)} = \sigma(s_i^{(l)})$
- \bullet Since $s^{(l)}$ influences loss ${\mathcal L}$ through only $x^{(l)}$,

$$\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \frac{\partial x_i^{(l)}}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)})$$

$$\bullet \ x_i^{(l)} = \sigma(s_i^{(l)})$$

 \bullet Since $s^{(l)}$ influences loss ${\mathcal L}$ through only $x^{(l)}$,

$$\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \frac{\partial x_i^{(l)}}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)})$$

0

$$s_i^{(l)} = \Sigma_j W_{i,j}^{(l)} x_j^{(l-1)} + b_i^{(l)}$$

$$\bullet \ x_i^{(l)} = \sigma(s_i^{(l)})$$

 \bullet Since $s^{(l)}$ influences loss ${\mathcal L}$ through only $x^{(l)}$,

$$\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \frac{\partial x_i^{(l)}}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)})$$

0

$$s_i^{(l)} = \sum_j W_{i,j}^{(l)} x_j^{(l-1)} + b_i^{(l)}$$

ullet Since $x^{(l-1)}$ influences the loss ${\mathcal L}$ only through $s^{(l)}$,

$$\frac{\partial \ell}{\partial x_i^{(l-1)}} = \sum_i \frac{\partial \ell}{\partial s_i^{(l)}} \frac{\partial s_i^{(l)}}{\partial x_j^{(l-1)}} = \sum_i \frac{\partial \ell}{\partial s_i^{(l)}} W_{i,j}^{(l)}$$

- $W_{i,j}^{(l)}$ and $\mathbf{b}^{(l)}$ influence the loss through $s^{(l)}$ via $s_i^{(l)} = \Sigma_j W_{i,j}^{(l)} x_j^{(l-1)} + b_i^{(l)}$,

$$x^{(l-1)} \xrightarrow{W^{(l)}, \mathbf{b}^{(l)}} s^{(l)} \xrightarrow{\sigma} x^{(l)}$$

• $W_{i,j}^{(l)}$ and $\mathbf{b}^{(l)}$ influence the loss through $s^{(l)}$ via $s_i^{(l)} = \Sigma_j W_{i,j}^{(l)} x_j^{(l-1)} + b_i^{(l)}$,

$$\frac{\partial \ell}{\partial W_{i,j}^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}} \frac{\partial s_i^{(l)}}{\partial W_{i,j}^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}} x_j^{(l-1)} \tag{1}$$

$$x^{(l-1)} \xrightarrow{W^{(l)}, \mathbf{b}^{(l)}} s^{(l)} \xrightarrow{\sigma} x^{(l)}$$

• $W_{i,i}^{(l)}$ and $\mathbf{b}^{(l)}$ influence the loss through $s^{(l)}$ via $s_i^{(l)} = \sum_i W_{i,i}^{(l)} x_i^{(l-1)} + b_i^{(l)},$

$$\frac{\partial \ell}{\partial W_{i,j}^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}} \frac{\partial s_i^{(l)}}{\partial W_{i,j}^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}} x_j^{(l-1)} \tag{1}$$

0 $\frac{\partial \ell}{\partial \mathbf{b}^{(l)}} = \frac{\partial \ell}{\partial \mathbf{c}^{(l)}} \frac{\partial s_i^{(l)}}{\partial \mathbf{b}^{(l)}} = \frac{\partial \ell}{\partial \mathbf{c}^{(l)}}$

0

(2)

Summary of Backprop

 \bullet From the definition of loss, obtain $\frac{\partial l}{\partial x_i^{(l)}}$

Summary of Backprop

- From the definition of loss, obtain $\frac{\partial l}{\partial x_i^{(l)}}$
- Recursively compute the loss derivatives wrt the activations

$$\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)}) \text{ and } \frac{\partial \ell}{\partial x_j^{(l-1)}} = \Sigma_i \frac{\partial \ell}{\partial s_i^{(l)}} w_{i,j}^{(l)}$$

Summary of Backprop

- ullet From the definition of loss, obtain $rac{\partial l}{\partial x_i^{(l)}}$
- Recursively compute the loss derivatives wrt the activations

$$\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)}) \text{ and } \frac{\partial \ell}{\partial x_j^{(l-1)}} = \Sigma_i \frac{\partial \ell}{\partial s_i^{(l)}} w_{i,j}^{(l)}$$

Then wrt the parameters

$$\frac{\partial \ell}{\partial w_{i,j}^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}} x_j^{(l-1)} \text{ and } \frac{\partial \ell}{\partial b_i^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}}$$

Jocobian in Tensorial form

$$\bullet \ \psi : \mathcal{R}^N \to \mathcal{R}^M \ \text{then} \ \left[\frac{\partial \psi}{\partial x}\right] = \begin{bmatrix} \frac{\partial \psi_1}{\partial x_1} & \cdots & \frac{\partial \psi_1}{\partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial \psi_M}{\partial x_1} & \cdots & \frac{\partial \psi_M}{\partial x_N} \end{bmatrix}$$

Jocobian in Tensorial form

$$\begin{aligned} \bullet \ \psi : \mathcal{R}^N &\to \mathcal{R}^M \text{ then } \left[\frac{\partial \psi}{\partial x} \right] = \begin{bmatrix} \frac{\partial \psi_1}{\partial x_1} & \cdots & \frac{\partial \psi_1}{\partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial \psi_M}{\partial x_1} & \cdots & \frac{\partial \psi_M}{\partial x_N} \end{bmatrix} \\ \bullet \ \psi : \mathcal{R}^{N \times M} &\to \mathcal{R} \text{ then } \left[\left[\frac{\partial \psi}{\partial x} \right] \right] = \begin{bmatrix} \frac{\partial \psi}{\partial w_{1,1}} & \cdots & \frac{\partial \psi}{\partial w_{1,M}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \psi}{\partial w_{N-1}} & \cdots & \frac{\partial \psi}{\partial w_{N-1}} \end{bmatrix} \end{aligned}$$

Forward Pass

Goal of Backward Pass

Update the parameters

$$\bullet \ W^{(l)} = W^{(l)} - \eta \left[\left[\frac{\partial \ell}{\partial w^{(l)}} \right] \right] \text{ and } \mathbf{b}^{(l)} = \mathbf{b}^{(l)} - \eta \left[\frac{\partial \ell}{\partial b^{(l)}} \right]$$

 \bullet BP is basically simple: applying chain rule iteratively

- BP is basically simple: applying chain rule iteratively
- It can be expressed in tensorial form (similar to the forward pass)

- BP is basically simple: applying chain rule iteratively
- It can be expressed in tensorial form (similar to the forward pass)
- Heavy computations are with the linear operations

- BP is basically simple: applying chain rule iteratively
- It can be expressed in tensorial form (similar to the forward pass)
- Heavy computations are with the linear operations
- Nonlinearities go into simple element wise operations

- BP is basically simple: applying chain rule iteratively
- It can be expressed in tensorial form (similar to the forward pass)
- Heavy computations are with the linear operations
- Nonlinearities go into simple element wise operations
- BP Needs all the intermediate layer results to be in memory

- BP is basically simple: applying chain rule iteratively
- It can be expressed in tensorial form (similar to the forward pass)
- Heavy computations are with the linear operations
- Nonlinearities go into simple element wise operations
- BP Needs all the intermediate layer results to be in memory
- Takes twice the computations of forward pass

Beyond MLP

We can generalize MLP

To an arbitrary Directed Acyclic Graph (DAG)

•
$$x^{(0)} = x$$

- $x^{(0)} = x$
- $\bullet x^{(1)} = \phi^{(1)}(x^{(0)}; w^{(1)})$

- $x^{(0)} = x$
- $x^{(1)} = \phi^{(1)}(x^{(0)}; w^{(1)})$
- $\bullet x^{(2)} = \phi^{(2)}(x^{(0)}, x^{(1)}; w^{(2)})$

•
$$x^{(0)} = x$$

$$x^{(1)} = \phi^{(1)}(x^{(0)}; w^{(1)})$$

$$\bullet \ x^{(2)} = \phi^{(2)}(x^{(0)}, x^{(1)}; w^{(2)})$$

$$f(x) = x^{(3)} = \phi^{(3)}(x^{(1)}, x^{(2)}; w^{(1)})$$

0

if
$$(a_1 \dots a_Q) = \phi(b_1 \dots b_R)$$
 then we use the notation (3)

$$\begin{bmatrix} \frac{\partial a}{\partial b} \end{bmatrix} = J_{\phi}^{T} = \begin{bmatrix} \frac{\partial a_{1}}{\partial b_{1}} & \cdots & \frac{\partial a_{Q}}{\partial b_{1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial a_{1}}{\partial b_{D}} & \cdots & \frac{\partial a_{Q}}{\partial b_{D}} \end{bmatrix}$$
(4)

0

if
$$(a_1 \dots a_Q) = \phi(b_1 \dots b_R)$$
 then we use the notation (3)

$$\begin{bmatrix} \frac{\partial a}{\partial b} \end{bmatrix} = J_{\phi}^{T} = \begin{bmatrix} \frac{\partial a_{1}}{\partial b_{1}} & \cdots & \frac{\partial a_{Q}}{\partial b_{1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial a_{1}}{\partial b_{P}} & \cdots & \frac{\partial a_{Q}}{\partial b_{P}} \end{bmatrix}$$
(4)

0

if
$$(a_1 \dots a_Q) = \phi(b_1 \dots b_R; c_1 \dots c_S)$$
 then we use the notation (5)

$$\begin{bmatrix} \frac{\partial a}{\partial c} \end{bmatrix} = J_{\phi|c}^T = \begin{bmatrix} \frac{\partial a_1}{\partial c_1} & \cdots & \frac{\partial a_Q}{\partial c_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial a_1}{\partial c_2} & \cdots & \frac{\partial a_Q}{\partial c_2} \end{bmatrix}$$
(6)

ullet From the loss equation, we can compute $\left[rac{\partial \ell}{\partial x^{(3)}}
ight]$

 \bullet From the loss equation, we can compute $\left[\frac{\partial \ell}{\partial x^{(3)}}\right]$

$$\left[\frac{\partial \ell}{\partial x^{(2)}}\right] = \left[\frac{\partial x^{(3)}}{\partial x^{(2)}}\right] \left[\frac{\partial \ell}{\partial x^{(3)}}\right] = J_{\phi^{(3)}|x^{(2)}}^T \left[\frac{\partial \ell}{\partial x^{(3)}}\right]$$

ullet From the loss equation, we can compute $\left[rac{\partial \ell}{\partial x^{(3)}}
ight]$

$$\left[\frac{\partial \ell}{\partial x^{(2)}}\right] = \left[\frac{\partial x^{(3)}}{\partial x^{(2)}}\right] \left[\frac{\partial \ell}{\partial x^{(3)}}\right] = J_{\phi^{(3)}|x^{(2)}}^T \left[\frac{\partial \ell}{\partial x^{(3)}}\right]$$

0

$$\begin{split} \left[\frac{\partial \ell}{\partial x^{(1)}}\right] &= \left[\frac{\partial x^{(3)}}{\partial x^{(1)}}\right] \left[\frac{\partial \ell}{\partial x^{(3)}}\right] + \left[\frac{\partial x^{(2)}}{\partial x^{(1)}}\right] \left[\frac{\partial \ell}{\partial x^{(2)}}\right] \\ &= J_{\phi^{(3)}|x^{(1)}}^T \left[\frac{\partial \ell}{\partial x^{(3)}}\right] + J_{\phi^{(2)}|x^{(1)}}^T \left[\frac{\partial \ell}{\partial x^{(2)}}\right] \end{split}$$

$$\begin{split} \left[\frac{\partial \ell}{\partial w^{(1)}}\right] &= \left[\frac{\partial x^{(3)}}{\partial w^{(1)}}\right] \left[\frac{\partial \ell}{\partial x^{(3)}}\right] + \left[\frac{\partial x^{(1)}}{\partial w^{(1)}}\right] \left[\frac{\partial \ell}{\partial x^{(1)}}\right] \\ &= J_{\phi^{(3)}|w^{(1)}}^T \left[\frac{\partial \ell}{\partial x^{(3)}}\right] + J_{\phi^{(1)}|w^{(1)}}^T \left[\frac{\partial \ell}{\partial x^{(1)}}\right] \end{split}$$

0

$$\begin{split} \left[\frac{\partial \ell}{\partial w^{(1)}}\right] &= \left[\frac{\partial x^{(3)}}{\partial w^{(1)}}\right] \left[\frac{\partial \ell}{\partial x^{(3)}}\right] + \left[\frac{\partial x^{(1)}}{\partial w^{(1)}}\right] \left[\frac{\partial \ell}{\partial x^{(1)}}\right] \\ &= J_{\phi^{(3)}|w^{(1)}}^T \left[\frac{\partial \ell}{\partial x^{(3)}}\right] + J_{\phi^{(1)}|w^{(1)}}^T \left[\frac{\partial \ell}{\partial x^{(1)}}\right] \end{split}$$

$$\left[\frac{\partial \ell}{\partial w^{(2)}}\right] = \left[\frac{\partial x^{(2)}}{\partial w^{(2)}}\right] \left[\frac{\partial \ell}{\partial x^{(2)}}\right] = J_{\phi^{(2)}|w^{(2)}}^T \left[\frac{\partial \ell}{\partial x^{(2)}}\right]$$

 Does BP always find the 'right' function? (Let's assume it converged to the global minimum of the loss function)

- Does BP always find the 'right' function? (Let's assume it converged to the global minimum of the loss function)
- Remember, our loss function is only a proxy for the classification error

- Does BP always find the 'right' function? (Let's assume it converged to the global minimum of the loss function)
- Remember, our loss function is only a proxy for the classification error
- Minimizing the proxy may not minimize the actual

- Does BP always find the 'right' function? (Let's assume it converged to the global minimum of the loss function)
- Remember, our loss function is only a proxy for the classification error
- Minimizing the proxy may not minimize the actual
- i.e., ideal function (separation for classification) may not be a feasible optimum for the chosen loss function

New training samples may change BP minimally

- New training samples may change BP minimally
- Prefers consistency (low variance) over perfection (low bias)

- New training samples may change BP minimally
- Prefers consistency (low variance) over perfection (low bias)
- Minimizing the proxy may not minimize the actual

High dimensional loss surfaces are completed and the state of the stat

 Saddle points are far more frequent than local minima (exponential in network size)

High dimensional loss surfaces are complex to the thickness the state of the

- Saddle points are far more frequent than local minima (exponential in network size)
- Most local minima are equivalent and lie close to the global minimum

High dimensional loss surfaces are complex to the thickness the state of the

- Saddle points are far more frequent than local minima (exponential in network size)
- Most local minima are equivalent and lie close to the global minimum
- Active research!