Corrosion humide des métaux

LC25

CPGE

I/ Corrosion uniforme

II/ Corrosion différentielle

III/ Protection contre la corrosion

La corrosion dans la vie quotidienne

Fer rouillé Fe_2O_3

Vert-de-gris : cuivre corrodé

 $Cu_2(OH)_2CO_3$

Alumine : Aluminium passivé Al_2O_3

Diagrammes de Pourbaix

Convention de tracé : $c = 10^{-6} \text{ mol. } L^{-1}$

Montage à 3 électrodes

- Électrode de travail (E.T.) : Fer
- > Contre électrode (C.E.) : Platine
- Électrode de référence (E.réf.) : au calomel saturé

Ordre de grandeur expérience : $E_{corr} \sim -0.23 V$ et $j_{corr} \sim qlq \ mA \cdot cm^{-2}$ sachant que $S \sim 10 \ cm^2$

Echelle de noblesse des métaux

Corrosion différentielle

Corrosion galvanique

Fer + Cuivre en contact

Cathode (cuivre):

 $2H_2O_{(l)} + O_{2(aq)} + 4e^- \rightarrow 4OH_{(aq)}^-$ Anode (fer) :

$$Fe_{(s)} \to Fe_{(aq)}^{2+} + 2e^{-}$$

Corrosion par aération différentielle

-Phénolphtaléine : rose en présence de $OH^-_{(aq)}$

Hexacyanoferrate(III) : forme un complexe bleu $(Fe_3[Fe(CN)_6]_2$ = Bleu de Turnbull) en présence de $Fe_{(aa)}^{2+}$

 $2H_2O_{(l)} + O_{2(aq)} + 4e^- \rightarrow 4OH_{(aq)}^-$ Anode (milieu) :

 $Fe_{(s)} \rightarrow Fe_{(aq)}^{2+} + 2e^{-}$

Goutte d'Evans

Electrozingage

Cathode (fer):

$$Zn_{(aq)}^{2+} + 2e^{-} \rightarrow Zn_{(s)}$$

 $2H_{(aq)}^{+} + 2e^{-} \rightarrow H_{2(g)}$

Anode (Zinc):

$$Zn_{(s)} \rightarrow Zn_{(aq)}^{2+} + 2e^{-}$$
 $2H_{2}O_{(l)} \rightarrow O_{2(g)} + 4H_{(aq)}^{+} + 4e^{-}$

Loi de Faraday:

$$m_{theorique} = \frac{I M t}{n F}$$

Rendement faradique:

$$ho_F = rac{I_{utile}}{I_{total}} = rac{m_{mesuree}}{m_{theorique}}$$

Protection du fer par le zinc

Gauche : fer électrozingué Droite : fer (témoin)

Anode sacrificielle:

Magnésium sacrifié pour protéger le clou en fer

Revêtement de zinc

Zinc sacrifié pour protéger le clou en fer

Fer sacrifié pour protéger le cuivre