ADS Mid term Project

Energy Data Set

Presented By

Dhairya

Aditya

Ranga

Guided By

Prof. Shrikant

Introduction

- Energy prediction is very important feature in conservation process as the supply and demand aspect can be managed well
- Our presentation focuses on how to predict the next day energy consumption and also highlights various models that have implemented to do this analysis.

Part 1: Review of the Documents

- We have conducted and reviewed the documents have to made our analysis of what are the important features each document has to offer.
- Reviewing also requires us to identify the short coming of the document and in this case inaccuracies in the data have been seen.

DATA FRAME

In [58]: df

Out[58]:

	date	Energy_consumed	Appliances	lights	Kitchen_Temp	Kitchen_Hum	LivingRoom_Temp	LivingRoom_Hum	LaundryRoom_Temp	LaundryRoom_Hu
0	2016- 01-11 17:00:00	90	60	30	19.890000	47.596667	19.200000	44.790000	19.790000	44.7300
1	2016- 01-11 17:10:00	90	60	30	19.890000	46.693333	19.200000	44.722500	19.790000	44.7900
2	2016- 01-11 17:20:00	80	50	30	19.890000	46.300000	19.200000	44.626667	19.790000	44.9333
3	2016- 01-11 17:30:00	90	50	40	19.890000	46.066667	19.200000	44.590000	19.790000	45.0000
4	2016- 01-11 17:40:00	100	60	40	19.890000	46.333333	19.200000	44.530000	19.790000	45.0000
5	2016- 01-11 17:50:00	90	50	40	19.890000	46.026667	19.200000	44.500000	19.790000	44.9333
6	2016- 01-11 18:00:00	110	60	50	19.890000	45.766667	19.200000	44.500000	19.790000	44.9000
7	2016- 01-11 18:10:00	110	60	50	19.856667	45.560000	19.200000	44.500000	19.730000	44.9000
8	2016- 01-11 18:20:00	100	60	40	19.790000	45.597500	19.200000	44.433333	19.730000	44.7900
9	2016- 01-11 18:30:00	110	70	40	19.856667	46.090000	19.230000	44.400000	19.790000	44.8633
10	2016- 01-11 18:40:00	300	230	70	19.926667	45.863333	19.356667	44.400000	19.790000	44.9000
11	2016- 01-11 18:50:00	640	580	60	20.066667	46.396667	19.426667	44.400000	19.790000	44.8266

Description of Appliances and Lights column

Descriptive analysis for appliances	
N	19735
Min	10
Max	1080
Mean	97.69496
First Quartile	50
Median	60
Third Quartile	100
Standard Deviation	102.5223
Variance	10510.82
Standard Error	0.729793

Descriptive analysis for Lights	
N	19735
Min	0
Max	70
Mean	3.801875
First Quartile	0
Median	0
Third Quartile	0
Standard Deviation	7.935787
Variance	62.97671
Standard Error	0.05649

Part2:Exploratory Data Analysis

- A detailed Exploratory analysis of the data set has been done to identify various considerations to identify:
- Correlation between Variables
- To check if the variables are categorical or continuous variables
- Relationship between sample numbers and variables
- Check which variables are independent and which are dependent
- Do a time series analysis to identify trends

EDA Graphs

HEAT MAP

Part3: Feature Engineering

- Addition of new column in the data frame name Energy consumed which is the energy consumed the complete house.(Appliances + Led Lights)
- Eliminating unnecessary variables

Part4: Predictive Algo's

We have implemented:

- Multi-Linear Regression
- Random Forest
- MLP Regressor

We have divided the training and testing aspect of the data set in 80:20 distribution respectively.

ANN MODEL

	Using all	Features	Using Selected Features		
	Training	Testing	Training	Testing	
MAE	52.4026	54.1978	59.319	61.837	
RMSE 97.5166		102.8480	98.312	104.40	
R Squared	0.1093	0.10076	0.088	0.0938	
MAPE	115.2379	115.2430	128.82	127.62	
Accuracy 0.1093		0.10076	0.88	.0938	

Important Features using Boruta

Kitchen_Hum	OutsideNorth_Hum		
LivingRoom_Temp	IroningRoom_Hum		
LivingRoom_Hum	TeenagerRoom_Hum		
LaundryRoom_Hum	TeenagetRoom_Temp		
OfficeRoom_Hum	ParentRoom_Temp		
BathRoom_Hum	ParentRoom_Hum		
OutsideNorth_Temp	Pressure		
Humidity	Windspeed		
Tdewpoint			

Feature Selection

	coef	std err	t	P> t	[0.025	0.975]
const	176.5734	90.297	1.955	0.051	-0.417	353.564
x 1	14.4408	0.607	23.779	0.000	13.251	15.631
x2	-11.8819	0.988	-12.024	0.000	-13.819	-9.945
xЗ	-11.9967	0.627	-19.142	0.000	-13.225	-10.768
×4	7.2320	0.692	10.452	0.000	5.876	8.588
x5	2.4861	0.573	4.340	0.000	1.363	3.609
x6	0.2314	0.087	2.654	0.008	0.061	0.402
×7	5.4992	0.619	8.878	0.000	4.285	6.713
x8	0.3044	0.065	4.681	0.000	0.177	0.432
х9	-2.7674	0.403	-6.862	0.000	-3.558	-1.977
×10	9.1791	0.756	12.136	0.000	7.697	10.662
x11	-5.2951	0.356	-14.874	0.000	-5.993	-4.597
x12	-2.1600	0.399	-5.414	0.000	-2.942	-1.378
x13	-9.4982	1.527	-6.220	0.000	-12.491	-6.505
×14	-0.0339	0.105	-0.324	0.746	-0.239	0.171
x15	-1.2144	0.311	-3.900	0.000	-1.825	-0.604
×16	6.1321	1.489	4.119	0.000	3.214	9.050
Omnibus:		13730.88	33 Du i	Durbin-Watson:		0.566
Prob(C	mnibus):	0.00	00 Jarqu	Jarque-Bera (JB): 1		92661.331
	Skew:	3.27	74	Prob	0.00	
	Kurtosis:	16.83	16.835 Cond. No. 9.9		9.96e+04	

Cross Validation

Cross Validation

```
In [244]: #Simple K-Fold cross validation. 5 folds.
          from sklearn.model_selection import cross_val_score
          from sklearn.linear_model import LinearRegression
          accuracies = cross_val_score(estimator=LinearRegression(), X=X_test, y=Y_test,cv=10)
In [245]: accuracies.mean()
Out[245]: 0.11888974091758367
In [247]: #Simple K-Fold cross validation. 5 folds.
          from sklearn.model_selection import cross_val_score
          from sklearn.linear_model import LinearRegression
          accuracies = cross_val_score(estimator=LinearRegression(), X=X_train, y=Y_train,cv=10)
          accuracies.mean()
Out[247]: 0.10923878824669786
```

Ridge Regression

Ridge Regression

```
In [251]: from sklearn.linear_model import Ridge
    ##Training the model
    ridgeReg = Ridge(alpha=0.05,normalize=True)
    ridgeReg.fit(X_train,Y_train)
    pred = ridgeReg.predict(X_test)
    ##Calculating MSE
    MSE = np.mean((pred-Y_test)**2)
    print('MSE = ',MSE)
    ##Calculating Score
    print('score = ',ridgeReg.score(X_test,Y_test))

MSE = 9401.51504916
    score = 0.112565229846
```

Lasso Regression

```
In [250]: from sklearn.linear_model import Lasso
    ##Training the model
    lassoReg = Lasso(alpha=0.005,normalize=True)
    lassoReg.fit(X_train,Y_train)
    pred = lassoReg.predict(X_test)
    ##Calculating MSE
    MSE = np.mean((pred-Y_test)**2)
    print('MSE = ',MSE)
    ##Calculating Score
    print('score = ',lassoReg.score(X_test,Y_test))

MSE = 9357.74399249
```

Flastic Net regression

score = 0.116696899839

Lasso Regression

Lasso Regression

MSE = 9357.74399249

score = 0.116696899839

```
In [250]: from sklearn.linear_model import Lasso
##Training the model
lassoReg = Lasso(alpha=0.005,normalize=True)
lassoReg.fit(X_train,Y_train)
pred = lassoReg.predict(X_test)
##Calculating MSE
MSE = np.mean((pred-Y_test)**2)
print('MSE = ',MSE)
##Calculating Score
print('score = ',lassoReg.score(X_test,Y_test))
```

Elastic Net Regression

```
##Calculating Score
print('score = ',lassoReg.score(X_test,Y_test))

MSE = 9357.74399249
score = 0.116696899839
```

Elastic Net regression

```
In [253]: from sklearn.linear_model import ElasticNet
##Training the model
ENReg = ElasticNet(alpha=1,11_ratio=0.5,normalize=False)
ENReg.fit(X_train,Y_train)
pred = ENReg.predict(X_test)
##Calculating MSE
MSE = np.mean((pred-Y_test)**2)
print('MSE = ',MSE)
##Calculating Score
print('score = ',ENReg.score(X_test,Y_test))
MSE = 9383.55443961
score = 0.114260581002
```

BIAS - VARIANCE TRADE OFF (LEARNING CURVE)

```
In [260]: #print(_doc_)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
from sklearn.model_selection import learning_curve
from sklearn.model_selection import ShuffleSplit

def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
```

Bias Variance

BIAS - VARIANCE TRADE OFF (LEARNING CURVE)

```
import numpy as no
import matupoils.pypiot as pit
import matupoils.pypiot as pit
import matupoils.pypiot as pit
import matupoils.pypiot as pit
import matupoils.pypiot patentials.pypiot pa
```


Backward Selection

By using Backward Elimination
 method we do not get any
 variable as an important feature

BACKWARD ELIMINATION METHOD

```
In [271]: import statsmodels.api as sm
           def stepwise_selection(X1, y1,
                                 initial_list=[],
                                  threshold_in=0.01,
                                 threshold_out = 0.05,
                                 verbose=True):
                  included = list(initial_list)
                  while True:
                       changed=False
           import statsmodels.api as sm
          def stepwise_selection(X1, y1,
                                  initial_list=[],
                                  threshold_in=0.01,
                                  threshold_out = 0.05,
                                  verbose=True):
              """ Perform a forward-backward feature selection
              based on p-value from statsmodels.api.OLS
                  X - pandas.DataFrame with candidate features
                  y - list-like with the target
                  initial_list - list of features to start with (column names of X)
                  threshold_in - include a feature if its p-value < threshold_in
                  threshold_out - exclude a feature if its p-value > threshold_out
                  verbose - whether to print the sequence of inclusions and exclusions
              Returns: list of selected features
              Always set threshold_in < threshold_out to avoid infinite looping.
              included = list(initial_list)
              while True:
                  changed=False
                   # backward step
                  model = sm.OLS(y1, sm.add_constant(pd.DataFrame(X1[included]))).fit()
                  # use all coefs except intercept
                  pvalues = model.pvalues.iloc[1:]
                  worst_pval = pvalues.max() # null if pvalues is empty
                  if worst_pval > threshold_out:
                       changed=True
                       worst_feature = pvalues.argmax()
                      included.remove(worst feature)
                          print('Drop {:30} with p-value {:.6}'.format(worst_feature, worst_pval))
                  if not changed:
              return included
          result = stepwise_selection(X1, y1)
          print('resulting features:')
          print(result)
          resulting features:
```

Forward Selection

Only one variable was obtained using forward Selection method

```
import statsmodels.api as sm
def stepwise selection(X1, y1,
                       initial list=[],
                       threshold in=0.01,
                       threshold out = 0.05,
   """ Perform a forward-backward feature selection
   based on p-value from statsmodels.api.OLS
    Arguments:
       X - pandas.DataFrame with candidate features
       y - list-like with the target
       initial list - list of features to start with (column names of X)
       threshold_in - include a feature if its p-value < threshold_in
       threshold_out - exclude a feature if its p-value > threshold_out
       verbose - whether to print the sequence of inclusions and exclusions
    Returns: list of selected features
   Always set threshold_in < threshold_out to avoid infinite looping.
   included = list(initial_list)
   while True:
        changed=False
       # forward step
       excluded = list(set(X1.columns)-set(included))
       new pval = pd.Series(index=excluded)
       for new column in excluded:
           model = sm.OLS(y1, sm.add_constant(X1)).fit()
           new pval[new column] = model.pvalues[new column]
       best_pval = new_pval.min()
       if best pval < threshold in:
           best_feature = new_pval.argmin()
           included.append(best feature)
            changed=True
            if verbose:
                print('Add {:30} with p-value {:.6}'.format(best_feature, best_pval))
           if not changed:
                break
           return included
result = stepwise_selection(X1, y1)
print('resulting features:')
print(result)
                                   with p-value 5.4523e-129
Add LaundryRoom_Temp
resulting features:
['LaundryRoom_Temp']
```

Exhaustive Selection

EXHAUSTIVE SEARCH METHOD

```
import statsmodels.api as sm
In [272]:
                    def stepwise_selection(X1, y1,
    initial_list=[],
    threshold_in=0.01,
                                                                 threshold_out = 0.05,
verbose=True):
                            """ Perform a forward-backward feature selection
based on p-value from statsmodels.api.OLS
                           Arguments:

X - pandas.DataFrame with candidate features

y - list-like with the target

initial_list - list of features to start with (column names of X)

threshold_in - include a feature if its p-value \threshold_in

threshold_out - exclude a feature if its p-value \threshold_out

verbose - whether to print the sequence of inclusions and exclusions

Returns: list of selected features
                            Arguments:
                            Always set threshold_in < threshold_out to avoid infinite looping.
                            included = list(initial_list)
                            while True:
changed=False
                                    excluded = list(set(X1.columns)-set(included))
new_pval = pd.Series(index=excluded)
                                   new_pval = pd.Series(index=excluded)
for new_column in excluded:
    model = sm.Ol.S(y1, sm.add_constant(pd.DataFrame(X1[included+[new_column]]))).fit()
    new_pval[new_column] = model.pvalues[new_column]
best_pval = new_pval.min()
if best_pval < threshold_in:
    best_feature = new_pval.argmin()
included.append(best_feature)</pre>
                                           changed=True

if verbose:
    print('Add {:30} with p-value {:.6}'.format(best_feature, best_pval))
                                    model = sm.OLS(y1, sm.add_constant(pd.DataFrame(X1[included]))).fit()
# use all coefs except intercept
                                    pvalues = model.pvalues.iloc[1:]
                                   pvalues = model.pvalues.lioc[1:]
worst_pval = pvalues.max() # null if
if worst_pval > threshold_out:
    changed=True
    worst_feature = pvalues.argmax()
                                            included.remove(worst_feature)
                                   if verbose:
    print('Drop {:30} with p-value {:.6}'.format(worst_feature, worst_pval))
if not changed:
                            return included
                    result = stepwise_selection(X1, y1)
                    print('resulting features:')
                    print(result)
                    Add Humidity
Add Kitchen_Hum
                                                                                          with p-value 2.22825e-92
                                                                                          with p-value 1.2589e-85
```


FEATURE SELECTION AFTER EXHAUSTIVE SEARCH

Important Features of Exhaustive search

Selected Features of Exhaustive search					
Kitchen_Hum	LivingRoom_Temp				
TeenagerRoom_Hum	TeenagerRoom_Temp				
LivingRoom_Hum	OutsideNorth_Temp				
Month_Number	Outside_Temp				
LaundryRoom_Temp	Windspeed LaundryRoom_Hum				
ParentRoom_Temp					
Weekday_number	BathRoom_Hum				
OfficeRoom_Hum	OfficeRoom_Temp				
IroningRoom_Hum	Tdewpoint ParentRoom_Hum				
Visibility					

Exhaustive search result with selected features

	Train	Test
MAE	54.3393	55.4967
RMSE	95.3274	98.0463
R2	0.1581	0.1484
MAPE	121.1182	119.9960

TPOt: According to Tpot RandomForest is the best model and which is already seen in the RandomForest had the best accuracy score

```
In [16]: tpot = TPOTRegressor(generations=5, population size=50, verbosity=2)
         tpot.fit(X train, Y train)
         print(tpot.score(X test, Y test))
         C:\Users\HP\Anaconda32\lib\importlib\ bootstrap.py:219: ImportWarning: can't resolve package from spec or package , fall
         ing back on name and path
           return f(*args, **kwds)
         Warning: xgboost.XGBRegressor is not available and will not be used by TPOT.
         Generation 1 - Current best internal CV score: -6223.678637476058
         Generation 2 - Current best internal CV score: -5605.060340102767
         Generation 3 - Current best internal CV score: -5605.060340102767
         Generation 4 - Current best internal CV score: -5605.060340102767
         Generation 5 - Current best internal CV score: -4752.19162710271
         Best pipeline: LassoLarsCV(RandomForestRegressor(input matrix, bootstrap=False, max features=0.1, min samples leaf=1, min sampl
         es split=6, n estimators=100), normalize=True)
                                                                                                                                 Activate
         -4454.4360946
```

Grid Search

Grid Search

```
In [31]: from sklearn.grid_search import GridSearchCV
```

Finding the right parameters (like what C or gamma values to use) is a tricky task! his idea of creating a 'grid' of parameters and just trying out all the possible combinations is called a Gridsearch, this method is common enough that Scikit-learn has this functionality built in with GridSearchCV

GridSearchCV takes a dictionary that describes the parameters that should be tried and a model to train.

```
In [27]: param_grid = {
    'n_estimators': [200, 700],
    'max_features': ['auto', 'sqrt', 'log2']}

CV_rfc = GridSearchCV(estimator=RandomForestRegressor(), param_grid=param_grid, cv= 5)
```

```
In [30]: CV_rfc.fit(X_train, Y_train)
    print(CV_rfc.best_params_)
    {'max_features': 'log2', 'n_estimators': 700}
```

FINAL ANALYSIS OF ALL MODELS

	All features		Features selection(Boruta)		Features selection(Exhaustive Search)	
	Training	Testing	Traning	Testing	Training	Testing
Multiple Linear Regression	0.16	0.14	-0.16	0.13	0.16	0.15
Random Forest	0.94	0.56	0.93	0.54		
MIP Regressor	0.11	0.1	0.088	0.093		
Best Model	All features	Random Forest				

PIPELINE

```
In [28]: from sklearn.ensemble import RandomForestRegressor
         from sklearn.pipeline import Pipeline
         from sklearn import linear model
         pipeline = Pipeline([
             #('features', feats),
             ('classifier', RandomForestRegressor(random_state = 42))
         pipeline.fit(X train, Y train)
         preds = pipeline.predict(X_test)
         #np.mean(preds == Y test)
         print(preds)
         [ 377. 86. 33. ..., 187. 224. 58.]
In [29]: pipeline.score(X_test,Y_test)
Out[29]: 0.53588686568405097
In [30]: pipeline.score(X_train,Y_train)
Out[30]: 0.911762477117952
```


THANK YOU!!!!!!