Республиканская олимпиада по математике, 2006 год, 11 класс

- **1.** Натуральные числа от 1 до 200 разбили на 50 множеств. Докажите, что в одном из них найдутся три числа, являющиеся длинами сторон некоторого треугольника.
- **2.** Произведение квадратных трехчленов $x^2 + a_1x + b_1$, $x^2 + a_2x + b_2$, ..., $x^2 + a_nx + b_n$ равно многочлену $P(x) = x^{2n} + c_1x^{2n-1} + c_2x^{2n-2} + \cdots + c_{2n-1}x + c_{2n}$, где коэффициенты c_1 , c_2 , ..., c_{2n} положительны. Докажите, что для некоторого k $(1 \le k \le n)$ коэффициенты a_k и b_k положительны.
- **3.** В гоночном турнире 12 этапов и n участников. После каждого этапа все участники в зависимости от занятого места k получают баллы a_k (числа a_k натуральны и $a_1 > a_2 > \cdots > a_n$). При каком наименьшем n устроитель турнира может выбрать числа a_1 , ..., a_n так, что после предпоследнего этапа при любом возможном распределении мест хотя бы двое участников имели шансы занять первое место.
- **4.** Биссектрисы углов A и C треугольника ABC пересекают его стороны в точках A_1 и C_1 , а описанную окружность этого треугольника в точках A_0 и C_0 соответственно. Прямые A_1C_1 и A_0C_0 пересекаются в точке P. Докажите, что отрезок, соединяющий P с центром вписанной окружности треугольника ABC, параллелен AC.
- **5.** Докажите, что для каждого x такого, что $\sin x \neq 0$, найдется такое натуральное n, что $|\sin nx| \geq \frac{\sqrt{3}}{2}$.
- **6.** В тетраэдре ABCD из вершины A опустили перпендикуляры AB', AC', AD' на плоскости, делящие двугранные углы при ребрах CD, BD, BC пополам. Докажите, что плоскость (B'C'D') параллельна плоскости (BCD).
- 7. Докажите, что если натуральное число N представляется в виде суммы трех квадратов целых чисел, делящихся на 3, то оно также представляется в виде суммы трех квадратов целых чисел, не делящихся на 3.

8. Какое минимальное количество клеток можно закрасить черным в белом квадрате 300 × 300, чтобы никакие три черные клетки не образовывали уголок, а после закрашивания любой белой клетки это условие нарушалось?