LICENCE 1 MI (2022/2023)

Examen final d'Algèbre 1 - Durée 01h30

Exercice 1. (4 pts)

Les propositions suivantes sont-elles vraies ou fausses? Justifier vos réponses.

1. Soient \mathcal{P} et \mathcal{Q} deux propositions logiques, alors on a

$$(\mathcal{P} \Rightarrow \mathcal{Q}) \iff (\mathcal{Q} \vee \overline{\mathcal{P}})$$

- 2. Soit E une partie de \mathbb{R} telle que $E = \{x \in \mathbb{R} : x^2 1 = 0\}$, alors $\mathcal{P}(E) = \{\emptyset\}$.
- 3. Soient E et F deux ensembles et $f: E \mapsto F$ une application, alors f(E) = F.
- 4. L'anneau quotient $(\mathbb{Z}/6\mathbb{Z}, +, \times)$ est un corps.

Exercice 2. (5 pts)

Soit $f: \mathbb{Z} \longrightarrow \mathbb{Q}$ une application définie par $f(x) = \frac{x}{2}$.

- 1. Déterminer $f(\mathbb{Z})$ et $f^{-1}(B)$ tel que $B = \{\frac{5}{3}\}$.
- 2. f est-elle injective, surjective?

Exercice 3. (5 pts)

On définit sur \mathbb{R}^* la relation : $\left\{ \forall x, y \in \mathbb{R}^* : x \mathcal{R} y \iff x - y = \frac{1}{x} - \frac{1}{y} \right\}$

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- $2.\,$ Déterminer la classe d'équivalence de $2.\,$

Exercice 4. (6 pts)

Soit $G = \mathbb{R} - \{1\}$ et * une loi définie sur G par :

$$x * y = x + y - xy$$

- 1. Montrer que $(\mathbb{R} \{1\}, *)$ est un groupe commutatif.
- 2. Soit l'application $f: (\mathbb{R} \{1\}, *) \longmapsto (\mathbb{R}^*, .)$ définie par f(x) = 1 x. Montrer que f est un homomorphisme de groupes.

Exercice 1. 0.25 pour chaque réponse +0.75 pour chaque justification

1. **Vraie.** Il suffit de vérifier que la table de vérité de $(\mathcal{Q} \vee \overline{\mathcal{P}})$ est identique à celle de $(\mathcal{P} \Rightarrow \mathcal{Q})$

\mathcal{P}	$\overline{\mathcal{P}}$	Q	$\mathcal{P}\Rightarrow\mathcal{Q}$	$\mathcal{Q} \lor \overline{\mathcal{P}}$
V	F	V	V	V
V	F	F	F	F
F	V	V	V	V
F	V	F	V	V

- 2. **Fausse.** $E = \{x \in \mathbb{R} : x^2 1 = 0\} = \{1, -1\}\}$ ce qui donne $\mathcal{P}(E) = \{\emptyset, \{1\}, \{-1\}, \{1, -1\}\}\}$.
- 3. Fausse. Il suffit de donner un exemple d'application qui n'est pas surjective.
- 4. Fausse. Il suffit d'établir la table de multiplication et de remarquer qu'il existe au moins un élément de $\mathbb{Z}/6\mathbb{Z}$ qui ne possède pas d'inverse multiplicatif.

Exercice 2. Soit $f: \mathbb{Z} \longrightarrow \mathbb{Q}$ une application définie par $f(x) = \frac{x}{2}$.

1.

$$f(\mathbb{Z}) = \{f(x)/x \in \mathbb{Z}\}....0,5$$
$$= \{\frac{x}{2}/x \in \mathbb{Z}\} = \{0, \pm \frac{1}{2}, \pm \frac{2}{2}, \pm \frac{3}{2}, \pm \frac{4}{2}, ...\}....0,75$$

$$f^{-1}(B) = \{x \in \mathbb{Z}/f(x) \in B\}....0,5$$
$$= \{x \in \mathbb{Z}/f(x) = \frac{5}{3}\} = \{x \in \mathbb{Z}/x = \frac{10}{3}\} = \emptyset....0,75$$

2. f est injective \Leftrightarrow $\Big(\forall x_1, x_2 \in \mathbb{Z}, f(x_1) = f(x_2) \Rightarrow x_1 = x_2\Big)$ 0,75 Soient $x_1, x_2 \in \mathbb{Z}$, tels que $f(x_1) = f(x_2) \Rightarrow \frac{x_1}{2} = \frac{x_2}{2} \Rightarrow x_1 = x_2$0,5. D'après la question 1, on peut remarquer que f n'est pas surjective i.e

$$\exists y \in \mathbb{Q}, \forall x \in \mathbb{Z}, f(x) \neq y$$
....0,75

pour $y = \frac{5}{3} \in \mathbb{Q}, \forall x \in \mathbb{Z}, f(x) \neq \frac{5}{3}$0,5

Exercice 3. On définit sur \mathbb{R}^* la relation : $\left\{ \forall x, y \in \mathbb{R}^* : x \mathcal{R} y \iff x - y = \frac{1}{x} - \frac{1}{y} \right\}$

- 1. \mathcal{R} est une relation d'équivalence.
 - Réflexive.0,75
 - Symétrique.1pt
 - Transitive.1pt

2. Déterminons la classe d'équivalence de 2.

$$\overline{2} = \{x \in \mathbb{R}^* / x\mathcal{R}2\}....1\mathbf{pt}$$

$$x \in \overline{2} \Leftrightarrow x\mathcal{R}2 \Leftrightarrow x - \frac{1}{x} = \frac{3}{2}$$
....0,5pt
 $\Leftrightarrow 2x^2 - 3x - 2 = 0 \Rightarrow (x = 2 \lor x = -1/2)$0,5

Ce qui donne $\overline{2} = \{2, -\frac{1}{2}\}.....0,25$

Exercice 4. Soit $G = \mathbb{R} - \{1\}$ et * une loi définie sur G par :

$$x * y = x + y - xy$$

- 1. $(\mathbb{R} \{1\}, *)$ est un groupe commutatif. En effet,
 - $x*y = x+y-xy \in \mathbb{R}-\{1\}$ car l'addition et la multiplication sont stables dans \mathbb{R} , en particulier dans $\mathbb{R}-\{1\}$. En effet, soient $x,y \in \mathbb{R}-\{1\}$ et supposons que x*y=1 alors $x+y-xy=x(1-y)+y=1 \Rightarrow (1-y)(x-1)=0 \Rightarrow x=1 \lor y=1$ ce qui est une contradiction. Ainsi * est une loi de composition interne....0,75
 - * est commutative $\dots 0,5$
 - L'associativité : Soient $x, y, z \in \mathbb{R} \{1\}$ (x*y)*z = (x+y-xy)*z = x+y+z-xy-xz-yz+xyz....0,5 x*(y*z) = x*(y+z-yz) = x+y+z-yz-xy-xz-xyz....0,5donc on a bien (x*y)*z = x*(y*z)
 - L'élément neutre : $\exists e? \in \mathbb{R} \{1\}, \forall x \in \mathbb{R} \{1\} : x * e = x \dots 0,5$

$$x*e = x \Rightarrow x + e - xe = x \Rightarrow e(1 - x) = 0$$

donc $e = 0 \lor x = 1$, mais $x \in \mathbb{R} - \{1\}$ donc $e = 0 \in \mathbb{R} - \{1\}$0,5

• L'existence du symétrique : $\forall x \in \mathbb{R} - \{1\}, \exists x' \in \mathbb{R} - \{1\} : x * x' = 0 \dots 0, 5$

$$x * x' = x + x' - xx' = 0 \Rightarrow x' = \frac{x}{x - 1}$$

En effet, $x' = \frac{x}{x-1} \in \mathbb{R} - \{1\}$, car si $x' = \frac{x}{x-1} = 1$ alors on obtient -1 = 0 ce qui est impossible.0,5

2. Soit l'application $f: (\mathbb{R} - \{1\}, *) \longmapsto (\mathbb{R}^*, .)$ définie par f(x) = 1 - x. Etant donnees les deux groupes $(\mathbb{R} - \{1\})$ et $(\mathbb{R}^*, .)$, alors

fest un morphisme de groupes $\iff \forall x,y \in \mathbb{R} - \{1\} : f(x*y) = f(x).f(y)...0,75$

$$f(x*y) = 1 - (x*y) = 1 - x - y + xy$$
....0,5
 $f(x).f(y) = (1-x)(1-y) = 1 - x - y + xy$0,5

3

donc f est bien un morphisme de groupes.