Causal Project

A/B Testing on App's Booking Page

Background

Flyber app provides a flying-taxi service in one of the most congested cities in America - New York City.

See More ->

User Journey of Booking Page

User Journey of Booking Page

Low Conversion Rate

Problems for Flyber

- ► How people engage with the booking page?
- How can we improve UI/UX to generate more bookings?

Dataset Description

- **user_uuid** an unique id for each user
- **experiment** group to identify 1 original and 2 experiment versions
- event_uuid trip booking event id
- event_time time when user triggered a trip
- age four age groups including 18-29, 30-39, 40-49 and 50+
- session_uuid an unique id for each session
- user_neighborhood neighborhoods in New York City
- event_type indicates the stage of user journey

Hypothesis 1: Redesign the text on the booking button would drive more conversions

Control

Treatment 1

Hypothesis 1: Redesign the text on the booking button would drive more conversions

Control

Treatment 1

Hypothesis 1: Redesign the text on the booking button would drive more conversions

Hypothesis 2: Remove "Tip included" text would drive more conversions

Treatment 1

Treatment 2

Hypothesis 1: Redesign the text on the booking button would drive more conversions

Hypothesis 2: Remove "Tip included" text would drive more conversions

Treatment 1

Treatment 2

Threats to Causal Inference

Omitted Variable Bias

User's decisions might be affected by other variables e.g. salary

Selection Bias

Users could share the same preference or habit of riding

Users might not be aware of design change

Measurement Error

No obvious simultaneity bias in this case

Simultaneity Bias

Visualization

Number of users in each group are equal

- → Control group 38356 users
- → Experiment group 1: 38194 users
- → Experiment group 2: 38343 users

Visualization

Distribution of Variables

- → Area across Bronx, Brooklyn, Manhattan, Queen, and Station Island
- → Age group contains 18-29, 30-39, 40-49 and 50+

Visualization

Conversion Rate

experiment_group control experiment_1

experiment_2

- → Conversion rates are between 19% to 21%
- → Experiment group 2 has a roughly higher conversion rate compared to other groups

Sanity Check

Use T test to check if there is an difference in age/neighbor between control and treatment group

- If p-value is greater than 0.05, two groups are similar.
- → 16/18 of test pass, users in the control and treatment groups are randomized

Check randomization: control vs experiment 1

```
# User neighborhood
t.test(control$Bronx, experiment1$Bronx)

##
## Welch Two Sample t-test
##
## data: control$Bronx and experiment1$Bronx
## t = 0.49245, df = 76546 p-value = 0.6224
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.001804100 0.003014853
## sample estimates:
## mean of x mean of y
## 0.03011263 0.02950725
```

Sample Size Check

Expect to increase the conversion rate by 1% in the experiment

- The current sample size can only detect a difference of 0.8%
- Our experiment appears to be underpowered to detect the effect

```
power.t.test(n=38194, power=.8, sig.level=0.05, sd=0.4)
##
        Two-sample t test power calculation
##
##
##
                 n = 38194
             delta = 0.008115087
##
                sd = 0.4
##
         sig.level = 0.05
##
##
             power = 0.8
##
       alternative = two.sided
##
## NOTE: n is number in *each* group
```


Results of the Experiment

Hypothesis 1

Redesign the text on the booking button would lead to more conversions

```
##
## Welch Two Sample t-test
##
## data: control$search and experiment1$search
## t = -0.4468, df = 76545, p-value = 0.655
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.006968298  0.004381106
## sample estimates:
## mean of x mean of y
## 0.2000469  0.2013405
```

→ The conversion has **no difference** between the control and experiment

Results of the Experiment

Hypothesis 2

Remove the "tip included" text would lead to more conversions

```
##
## Welch Two Sample t-test
##
## data: control$search and experiment2$search
## t = -0.90597, df = 76695, p-value = 0.365
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.008299864 0.003052460
## sample estimates:
## mean of x mean of y
## 0.2000469 0.2026706
```

→ The conversion has **no difference** between the control and experiment

Recommendations

- Don't change these two features on Flyber's UI
- Conduct Usability Testing to find out the root cause of poor conversion rate

Limitations

Funnel impact may take a long term to get into effect

KPI requires long time periods and a very large sample to test for reliability

Experiments are underpowered to detect the effect

