Universidade Estadual de Feira de Santana TEC 217 – Métodos Computacionais Atividade Implementação Matlab

- 1) Para especificar a localização de um ponto com relação à origem do espaço bidimensional (Figura 1) são necessárias duas distâncias:
- \square As distâncias horizontal e vertical (x, y) em coordenadas cartesianas.
- \square O raio e o ângulo (r, θ) em coordenadas polares.

Figura 1

É relativamente simples calcular as coordenadas cartesianas (x, y) com base nas coordenadas polares (r, θ) , mas o inverso não é tão simples. O raio pode ser calculado pela seguinte fórmula:

$$r = \sqrt{x^2 + y^2}$$

Se as coordenadas estiverem no primeiro e no quarto quadrantes (isto é, x > 0), então uma fórmula simples pode ser utilizada para calcular θ :

$$\theta = \tan^{-1} \left(\frac{y}{x} \right)$$

A dificuldade surge para os demais casos. A tabela a seguir sintetiza as possibilidades:

x	y	θ
<0	>0	$tan^{-1}(y/x) + \pi$
<0	<0	$tan^{-1}(y/x) - \pi$
<0	=0	π
=0	>0	π/2
=0	<0	$-\pi/2$
=0	=0	0

Escreva um arquivo-M bem estruturado utilizando a estrutura if...elseif para calcular r e θ como uma função de x e y e expresse os resultados finais para θ em graus. Teste seu programa para avaliar os seguintes casos:

\boldsymbol{x}	y	r	θ
2	0		
2	1		
0	3		
-3	1		
-2	0		
-1	-2		
0	0		
0	-2		
2	2		

2) O método babilônico, um antigo sistema para aproximação da raiz quadrada de qualquer número positivo a, pode ser formulado como

$$x = \frac{x + a/x}{2}$$

Escreva uma função bem estruturada no MATLAB com base na estrutura de laço while... break para implementar esse algoritmo. Use endentação adequada, de modo que a estrutura do código fique clara. Em cada passo, estime o erro em sua aproximação como

$$\varepsilon = \left| \frac{x_{\text{novo}} - x_{\text{velho}}}{x_{\text{novo}}} \right|$$

Repita o laço até que ε seja menor ou igual a um valor específico e projete seu programa de modo que ele retorne o resultado e o erro. Certifique-se de que ele possa avaliar a raiz quadrada de números iguais ou menores que zero. Para o último caso, exiba o resultado como um número imaginário, por exemplo, a raiz quadrada de -4 seria retornada como 2i. Teste seu programa avaliando a = 0, 2, 10 e -4 para $\varepsilon = 1 \times 10-4$.