ATTACHMENT

FCC ID:TT2EZBS100

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the user. The MPE calculation for this exposure is shown below.

The Peak radiated output power (EIRP) is calculated as follows:

EIRP=P+G+2.15 EIRP=2.98 dBm +(-1.5)dBi+2.15	Where, P= power input the antenna (mW) G=Power gain of the antenna
EIRP=3.63 dBm	G=Power gain of the antenna

Power Density at the specific separation:

$S=PG/(4R^22\pi)$	Where,
3-1 6/ (410 210)	S = Maximum power density)(mW/cm2)
$S = (1.99 * 0.71) / (4 * 20^2 * \pi)$	P = Power input to the antenna (mW)
$S = 0.00028 \text{ mW/cm}^2$	G = Numeric power gain of the antenna
	R = Distance to the center of the radiation of
	the(20cm = limit for MPE)

The Maximum permissible exposure (MPE) for the general population is 1 mW/cm2. The power density at 20cm does not exceed the 1 mW/cm2 limit. Therefore, the exposurecondition is compliant with FCC rules.

Estimated safe separation:

$R = \sqrt{(PG / 4\pi)}$	Where,
K = V(10 / 411)	P = Power input to the antenna (mW)
	G = Numeric power gain of the antenna
R = 0.335 cm	R = Distance to the center of the radiation of
	the(20cm = limit for MPE)

The numeric gain(G) of the antenna with a gain specified in dB is determined by:

 $G = Log^{-1}$ (dB antenna gain / 10) $G = Log^{-1}$ (-1.5 / 10)

G = 0.71