MCAST VPN Overview

Multicast VPN

- Layer 3 BGP-MPLS VPNs are widely deployed in today's networks. RFC 4364, which supersedes RFC 2547, describes protocols and procedures for building BGP-MPLS VPNs for forwarding VPN unicast traffic only.
- An "incremental" approach for deploying Multicast services can use the same technology as used for deploying Layer 3 VPN for unicast services.
 - This approach can reduce the operational and deployment effort.
- As multicast applications, such as IPTV and multimedia collaboration, gain popularity
- There is demand for a scalable, reliable MVPN service

MCAST VPN Alternatives

- CE-CE GRE Overlay Tunnels
 - No multicast routing in the ISP's core
 - However customer's groups can overlap
 - Not scalable design full mesh tunnels between CEs for each customer
 - Optimal multicast routing not achieved
- Rosen Multicast VPN
 - Introducing Multicast VRF type
 - Based on native IP multicast (PIM SM/SSM mode) in the ISP's core network – customer's multicast is tunneled within ISP's core native IP multicast using multicast GRE tunnels
 - Customer's PIM adjancency with PE routers
 - Based on RFC 6037
- Next Generation Multicast VPN
 - In the past there was no way of carrying multicast traffic over MPLS but this all changed with the invention of "Point-to-Multipoint (P2MP) LSPs"
 - NG MVPN main architecture partially standardized and unified with Rosen based MVPNs in RFC 6513

Rosen MVPN Scheme

PIM adjacencies between PEs (per-VRF) to exchange info about multicast receivers

L3VPN (multicast and unicast)

Signalling (PIM) and Auto-discovery (PIM, BGP)

Transport Infrastructure (multicast GRE tunnels)

Multicast trees across the core signalled by PIM running in main routing instance

NextGen MVPN Scheme

Rosen mVPN Customer's Point of View

- Multicast Domain inside of Provider Network connects each MVPN
- All PE routers in the MD are PIM neighbors on MTI (MCAST Tunnel Iface)

Rosen mVPN Provider's Point of View

Default MDT - PIM SSM Control Traffic Flow

Default MDT – Multicast Data Traffic Flow

Data MDTs – Concepts

- High-rate data begins flowing via Data-MDT
- Data only goes to PE routers that have active receivers for that group

Rosen mVPN Issues

- Each PE has to maintain PIM adjacencies with all other PEs for which it has at least one MVPN. If m PEs have n MVPNs in common, then each such PE has to maintain m*n PIM adjacencies with the other PEs
- No ability to aggregate multiple MVPNs into a single inter-PE tunnel
- No MPLS support, just GRE tunnels, it means P routers needs to be aware of customer's tunnels
- Convergence the same as for native multicast
- No Traffic Engineering possibility

Next Generation Multicast VPN

- The IETF RFC 6513 has combined many options under one umbrella in order to standardize the development
- NG-MVPN architecture proposes different types of multicast tree that could be used for data transmission
 - PIM-SM, PIM-SSM, PIM Bidir, P2MP LSP (RSVP TE signalled), P2MP LSP (mLDP signalled)
- Autodiscovery uses MP-BGP
 - Autodiscovery of PE neighbors, MVPN to tunnel mapping, PE-PE C-MCAST Route Exchange
- PMSI (Provider Multicast Service Interface) can be considered as the pseudo interface that connects a PE that is in the sender sites set to the PEs that are in the receiver sites set.

Applications of P2MP LSPs

Inclusive Tree

So called **Inclusive Trees** - analogous to Default-MDT in draft-Rosen

Aggregate Inclusive Tree

All the multicast groups in more than one MVPN use the same shared tree!

Selective Tree

BGP Control Plane Functions

- MVPN Membership Autodiscovery Discovery of which PEs are members of each MVPN and communication between PEs (NextGen VPN Alternatives are PIM based or BGP based – preferred one)
- MVPN to Tunnel Mapping A PE router needs to know what type of tunnel and identifier to use for sending (and receiving) multicast data for a particular MVPN.
- PE-PE C-multicast Route Exchange A PE router participates in the customer multicast (C-multicast) routing protocol by forming multicast routing adjacencies over its VPN interface.

BGP MCAST-VPN Address Family

- The new BGP address family (SAFI 5) is called MCAST-VPN and used for distributing MVPN control information between PE routers – so called "mvpn routes"
- There are seven types of mvpn routes:
 - Type 1 Intra-AS auto-discovery route (A-D route)
 - Type 2 Inter-AS auto-discovery route (inter-AS A-D route)
 - Type 3 S-PMSI (Selective P-Multicast Service Interface) A-D route
 - Type 4 Intra-as leaf A-D route
 - Type 5 Source Active A-D route (or SA route)
 - Type 6 Shared Tree Join Route (C-multicast route)
 - Type 7 Source Tree Join Route (C-multicast route)
- The first 5 mvpn routes can be considered as the autodiscovery routes while last two are used for C-multicast routing exchange between PE routers of an MVPN.

NG-MVPN Implementation

- iBGP
 - PE1/PE2/PE3 IBGP sessions are established with INET-VPN and MCAST-VPN NLRIs
- INET-VPN NLRI
 - PE1 advertises VPN-IP unicast routes with RT and RD (including route to C-S) to PE2/PE3 via Inet-VPN NLRI
 - All PEs originate&advertise a Type 1 AD routes (typically a loopback). PE1 also attaches a PMSI attribute (Type 3) to the AD route based on P-tunnel configuration (Tunnel Type and Tunnel Identifier), confirmed by receivers using Type 4
 - PE routers join through the tunnel identified in the PMSI attribute

NG-MVPN Implementation

- (C-*, C-G) Join
 - Receivers come online PEs receive (C-*,C-G) from Ces
 - PEs does a route lookup in the VRF unicast table for C-RP and constructs Type 6 Shared Tree C-multicast route
- C-Multicast Data
 - Meanwhile Source becomes active PE1 receives data for (C-*,C-G) from CE1 and sends to shared tree, all PEs receive it
- MCAST-VPN NLRI
 - PE1 (C-RP) originates a Type 5 SA AD route and advertises it to PEs
 - PEs originate and advertise a Type 7 source C-multicast route to PE1 (PE1 accepts based on unique RT – Hub&Spoke like)
 - the source C-multicast route is accepted and (C-S,C-G) is passed to C-multicast protocol on PE1/VPNA to be processed
 - PE1 creates state in C-PIM database and propagates (C-S, C-G) to CE1 towards the source

Rosen versus NG MVPN Summary

Encap option in core

Options to discover PEs

Core/Provider tree

C-mcast routing options PE-PE

PE-CE MCAST routing

Binding to P-Tree

Rosen

IP GRE

PIM

PIM ASM/SSM/Bidir

PIM

PIM ASM/SSM/Bidir

PIM

NG

MPLS

BGP

mLDP, p2mp-TE, ingr rep

BGP

+ mLDP, BGP

BGP

Ďakujem za pozornosť

roman dot kaloc at gmail dot com