Q U E S T I O N – B A N K BCA SECOND SEMESTER - 2014 ADVANCE CALCULUS – 201

U N I T - I

Q. 1: Prove by using definition of limit, that
$$\lim 3x + 2y = 7$$
.
 (x, y) $(1, 2)$

Q. 2: Using definition
$$\lim_{x \to 0} x^2 + 2y = 3$$
.
(x, y) (1, 2)

Q. 3: Show that
$$\lim_{(x, y)} \frac{2x^3 + y^3 = 0}{(u, u) x^2 + y^2}$$

Q. 4: Using definition (& technique) prove that
$$\lim xy = x$$
, $\lim xy = x$

Q. 5: Show that
$$\lim_{x \to 0} \frac{x^3 + y^3 = 7/5}{x, y} = \frac{7}{5}$$

Q. 6: Let
$$f(x, y) = \underline{xy}$$
 show that $\lim_{x \to 0} f(x, y)$ does not exist.

Q. 7: Let
$$f(x, y) = \{0, \text{ if } x \text{ is rational}\}$$
1 if x is rational
Show that for any point $\lim_{x \to a} s(x, y)$ does not exist.
 $s(x, y) = s(x, y)$

Q. 8: Examine whether the function
$$f(x,y) = \{x^2+4y\}$$
 when $(x,y) = (1,2)$ in continuous at $(1,2)$.

0 when $(x,y) = (1,2)$

Q. 9: Show that the function
$$f: R^2$$
 R definition by $f(x, y) = \{\underbrace{xy}_{x^2 + y^2} \text{ when } (x, y) = (u, u)\}$ is continuous at the origin (u, u)

Q.10: Show that the function
$$f(x, y) = \{\underbrace{\sin(x + y)}, (x, y) \quad (u, u).$$

$$x + y$$

$$1 \quad (x, y) = (u, u)$$

is continuous at the origin (u, u)

Q.11: Let
$$f(x, y) = \frac{\{x^3 - y^3\}}{x^2 + y^2}$$
 if $(x, y) = (0, u)$.

 $u = u$ if $(x, y) = (u, u)$ Show that $f(x, y)$ is continuous but not differentiable at the origin.

Q.12: Show that the function
$$f(x, y)$$
 define by $f(x, y) = \begin{cases} xy^2, \\ x^2 + y^2 \end{cases}$ (x, y) (u, u)

Show that $f(x, y)$ is continuous but not differentiable.

Show that
$$f(x, y)$$
 is continuous but not differentiable.

Q.13: Show that
$$f(x, y) = e^{x+y}$$
 is differentiable at $(1, 3)$.

- Q.14: If $u = (1 2xy + y^2)^{-1/2}$ prove that $\partial/\partial x [(1 x^2) \ y/\ x] + / y [y^2 \ x/\ y] = 0$.
- Q.15: If $u = \tan^{-1}(y/x) + \sin^{-1}(x/y)$ prove that x + y + 4/y = 0.
- Q.16: If $u = u^2 v^2$, y = 2uv obtain 4/x, 4/y, v/x, v/y.
- Q.17: If $u = (x^2 + y^2 + z^2)^{-1/2}$, $x^2 + y^2 + z^2 = 0$ then prove that. (a) $x \frac{4}{x} + y \frac{4}{y} + z \frac{4}{z} = -u$ (b) $\frac{24}{x^2} + \frac{24}{y^2} + \frac{24}{z^2} = u$
- Q.18: If $u = e^{xyz}$, show that ${}^{3}4/x$ y $z = (1 + 3xyz + x^{2}y^{2}z^{2}) e^{xyz}$.
- Q.19: If $u = \log (x^3 + y^3 + z^3 3xyz)$ prove that.

 - (a) 4/z + 4/y + 4/z = 3/x+y+z(b) $(/x + /y + /z)^2 u = -9/(x+y+z)^2$ (c) $24/x^2 + 24/y^2 + 24/z^2 = -3/(x+y+z)^2$
- Q.20: If $u = \tan -1 \frac{(x^3 + y^3)}{(x y)}$ then show that $x + y + 4 = \sin 24$.
- Q.21: Verify euler's theorem for function $u = log x^2 + y^2$
- $Q.22: \ \ \text{If} \ u = xy/x + y \quad \text{show that} \ x^{2-2}4/\ \ x^2 + 2xy \quad ^24/\ \ x \ \ y + y^{2-2}4/\ \ y^2 = 0.$
- Q.23: If $\overline{1-x^2}$ + $\overline{1-y^2}$ = a (x y) prove that dy/dx = $\overline{1-y^2}$ / $\overline{1-x^2}$.
- Q.24: If $u = x \log xy$ where $x^3 + y^3 + 3xy = 1$ find d4/dx.
- Q.25: If u = f(y z, z x, x y) prove that 4/(x + 4/(y + 4/(z = 0)))
- Q.26: Find Taylor's expansion of the function $f(x, y) = e^{xy}$ about that the point (1, 1) upto third
- Q.27: Expand the function $f(x, y) = x^2 + xy y^2$ by taylor's theorem in powers uf (x 1) and

U N I T - II

- Q. 1: Find the envelop of straight line x/a Cos + y/b sin = 1 where is a parameter, Interpret the result geometrically.
- Q. 2: Show that the envelop of the pulsars of points on ellipse $x^2/h^2 + y^2/k^2 = 1$ with respect to the ellipse $x^2/a^2 + y^2/b^2 = 1$ in $h^2x^2/a^4 + k^2y^2/b^4 = 1$.
- Q. 3: Obtain the envelope of the family of curve given by $x^2/(x^2 + y^2/k^2 x^2) = 1$ where parameter.
- Q. 4: Find the envelope of straight line x/a + y/b = 1 where $a^2 + b^2 = c^2$ and c is a constant.
- Q. 5: Fine the envelope of the circle described on the radis vector of the curve $r^n = a^n \operatorname{Cosn}$ as diameter.
- Q. 6: Find the evaluate of the parabola $y^2 = 4ax$.

- Q. 7: Show that the evaluate ufa cycloid is another cyloid.
- Q. 8: Discuss the maximum or minimum value of the function $f(x, y) = x^3 4xy + 2y^2$.
- Q. 9: Discuss the maxima and minima of function $ax^3y^2 x^4y^2 x^3y^3$.
- Q.10: If $f(x, y) = 2x^4 + y^4 2x^2 2y^2$ then show that has a maximum at (u, u) and a minimum
- Q.11: Discuss the maxima and minima ufu = $\sin x + \sin y + \sin (x + y)$.
- Q.12: Find the point whish in a triangle such that the sum of the square of its distance from the three vertices is a minimum.
- Q.13: Find the minimum value of $x^2 + y^2 + z^2$ when ax + by + cz = p.
- Q.14: Find the maxima and minima ufu = $x^2 + y^2 + z^2$ where $ax^2 + by^2 + cz^2 = 1$.
- Q.15: Find the maxima and minima ufx2 + y2 + z2 subject to the following condition ax + by + cz = 1, a'x + b'y + c'z = 1.
- Q.16: Find the maxima and minima value of $u = a^2x^2 + b^2y^2 + c^2z^2$ where $x^2 + y^2 + z^2 = 1$ and lxtmytnz = 0.

UNIT-III

- Q. 1: To prove that
 - (a) 1 = 1
- (b) $\overline{n+1} = n n$ (c) $n+1 = n, n = 1, 2, 3 \dots$
- Q. 2: Prove that $n/z^n = {}_0 e^{-zx} x^{n-1} dx$.
- Q. 3: Prove that $n 1 n = -\sin n$ where u < n < 1.
- Q. 4: Express the following integral in terms of beta function.
 - (a)
- $\int_{u}^{1} x^{3}/1-x^{7} dx$ (b) $\int_{u}^{1} x^{4} (1-x)^{3} dx$
- Q. 5: Show that ${}^{1}_{u}x(8-x^{3})^{1/3}dx = 16 /9 3$.
- Q. 6: Show that $\int_{0}^{\infty} dx / \sqrt{\frac{c1-x^n}{c1-x^n}} = \frac{1/n}{[1/n+1/2]}$.
- Q. 7: Express $\int_{u}^{1} x^{m} (1-x^{n})^{p} dx$ in terms of beta sanction and hence evaluate $\int_{u}^{1} x^{5} (1-x^{3})^{10} dx$.
- Q. 8: Show that $u = \frac{1}{2} \sec n / 2$ where -1 < n < 1.
- Q. 9: Show that $\int_{u}^{1} x^{2}/(1-x^{4})^{1/2} dx x \int_{u}^{1} 1/(1+x^{4})^{1/2} dx = -/4 2$.
- Q.10: (-1/2) (-3/2) evaluate.
- Q.11: Evaluate $_{11}$ $x^5e^{-x}dx$.
- Q.12: Show that p $1-p/2 = p/2/2^{1-p} \cos(1/2p)$ where u .

- O.13: Show that $B(m, m) = {}^{21-2m}B(m, 1/2)$.
- Q.14: Prove that B (m, m) = B (m+1, n) + B (m, n+1) where m, n > 0.
- Q.15: Prove that $u \log (x) dx = \frac{1}{2} \log (2)$.
- Q.16: Prove that $\int_{0}^{1} x^{m} (\log)^{n} dx = (-1)^{n}$ $\frac{n}{(m+1)^{n+1}}$ where n is a positive integer and m>-1.

U N I T - IV

- Q. 3: Evaluate $\iint \frac{x}{(a^2 y^2)}$ dxdy over the positive quadrant of the circle $x^2 + y^2 = a^2$.
- Q. 4: When the region of integration R is the tringle bounded by y = 0, y = x and x = 1 show that $_{R} 4x^{2}-y^{2} dxdy = 1/3 (/3 + 3/2).$
- Q. 5: Evaluate R xy-y² dydx where R is a tringle with vertices (u, u), (20, 2) and (2, 2).
- Q. 6: Evaluate u u $r^2 \sin drd$.
- Q. 7: Evaluate u u u (x+y+z) dxdydz.
- Q. 8: Evaluate $v(x^2+y^2+z^2)$ dzdydx where v is the volume of the cube bounded by the coordinator plans and plans x = y = z = a.
- Q. 9: Change the order of integration in $\int_{u}^{u} \frac{f(x, y)}{a^2 x^2} dx dy$.
- Q.10: By changing the order of integration of u u e^{-xy} sinpx.
- Q.11: Prove that $\int_{u}^{/2} \frac{1}{u} \sin x \sin^{-1} (\sin x \sin y) dxdy = \frac{1}{4} \frac{1}{2}$.
- Q.12: Transform the integral $u u u v^2 v^2 + v^2 dxdy$ by changing to polar coordinate and hence evaluate it.
- Q.13: Evaluate $\begin{pmatrix} a & a^2 2 \\ u & u \end{pmatrix}$ ($x^2 + y^2$)dxdy by changing into pulars.
- $z(x^2+y^2+z^2)$ dxdydz through the valume of the cylinder $x^2+y^2=a^2$ Q.14: Evaluate intercepted by planes z = 0 and z = h.
- Q.15: By using the transformation x + y = u, y = uv show that u = v/x + y dydx = 1/2 (e-1).
- Q.16: Prove that $_D x^{l-1} y^{m-1} dxdy = 1 m/l+m+1 h^{l+m}$ where D is the domain x 0 and x+y h.
- Q.17: Prove that when x+y < h $f^{1}(x+y).x^{1-1}y^{-1}dxdy = /\sin [f(h) f(u)].$
- $dxdydz/(1-x^2-y^2-z^2) = \frac{2}{8}$ the integral being extended to all positive Q.18: Prove that values of the variable for which the expression in real.
- Q.19: Find the area enclosed by the parabolas $y^2 = 4ax$ and $x^2 = 4ay$.

- Q.20: Find the ehere area of the ellips $x^2/a^2 + y^2/b^2 = 1$.
- Q.21: Find the area of the curve $r = a (1+\cos x)$.
- Q.22: Find the area common to the circle $r = a \ 2$ and r = 2acos.
- Q.23: Find the volume of paraboloid generated by the revolution of the parabola $y^2 = 4ax$ about the x axis from x = 0 to x = h.
- Q.24: Find the volume of the solid bounded by the surface x = 0, y = 0, x+y+z = 1 and z = 0.
- Q.25: Prove that the volume enclosed by the cylinders $x^2+y^2=zax$, $z^2=zax$ is $128a^3/15$.

$\underline{U\;N\;I\;T-V}$

- Q. 1: Show that the integral a dx/ $1+x^2$, a > u converge.
- Q. 2: Test the convergence of $_2$ dx/x²⁻¹.
- Q. 3: The test convergence of $_1$ dx/x $^{1/3}$ (1+x $^{1/2}$).
- Q. 4: Examine the convergence of $a \sin x / x dx$ where a > 0.
- Q. 5: Show that $1 \sin x/x^4$ dx converges absolutely.
- Q. 6: Show that $_1 \sin mx/a^2 + x^2 dx$ converges absolutely.
- Q. 7: Show that $\int_{1}^{1} \frac{1}{\sec x} dx dx$ diverges.
- Q. 8: Test convergence of $u^{-1} dx/x^{1/2} (1-x)^{1/3}$.
- Q. 9: Prove that the integral $\int_{0}^{b} dx/(x-a) b-x$.
- Q.10: Show that $u^{1/2} \log \sin x \, dx$ converges.
- Q.11: Discuss the convergence of the gammu function $u x^{n-1} e^{-x} dx$.
- Q.12: Show that u Cos2nx log sinn dx converges.
- Q.13: Show that $u = \frac{1}{2} \sec x + \frac{1}{2}$