Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Телекоммуникационные технологии

Отчет по лабораторной работе №4 "Аналоговая модуляция"

> Работу выполнил: Федосеенков Н.Ю. Группа: 33501/3 Преподаватель: Богач Н.В.

1. Цель работы

Изучение амплитудной модуляции/демодуляции сигнала.

2. Постановка задачи

- Сгенерировать однотональный сигнал низкой частоты.
- Выполнить амплитудную модуляцию (AM) сигнала по закону $u(t) = (1 + MU_m cos(\Omega t)) + cos(\omega_0 t + \phi_0)$ для различных значений глубины модуляции М. Используйте встроенную функцию MatLab ammod.
- Получить спектр модулированного сигнала.
- Выполнить модуляцию с подавлением несущей $u(t) = MU_m cos(\Omega t) cos(\omega_0 t + \phi_0)$. Получить спектр.
- Выполнить однополосную модуляцию: $U(t) = U_m cos(\Omega t) cos(\omega_0 t + \phi_0) + \frac{U_m}{2} \sum_{n=1}^N M_n (cos(\omega_0 + \Omega_n) t + \phi_0 + \Phi_0), \text{ положив n=1}.$
- Выполнить синхронное детектирование и получить исходный однополосный сигнал
- Рассчитать КПД модуляции

$$\eta_A M = \frac{U_m^2 M^2 / 4}{P_U} = \frac{M^2}{M^2 + 2}$$

3. Теоретическая часть

Процесс переноса спектра сигналов из низкочастотной области на заданную частоту (т.е. выделенную для их передачи область частот) называется модуляцией. Исходный информационный сигнал называется модулирующим, а результат модуляции - модулированным сигналом. Амплитудная модуляция (АМ) — вид модуляции, при которой изменяемым параметром несущего сигнала является его амплитуда.

При AM выполняется перенос информации $s(t)\Rightarrow U(t)$ при постоянных значениях параметров несущей частоты ω и ϕ

Простейшая форма модулированного сигнала создается при однотональной амплитудной модуляции — модуляции несущего сигнала гармоническим колебанием с одной частотой Ω :

$$u(t) = U_m[1 + M\cos(\Omega t)]\cos(\omega_0 t)$$

Коэффициент полезного действия данного типа модуляции определяется отношением мощности боковых частот к общей средней мощности модулированного сигнала:

$$\eta_{AM} = \frac{\frac{U_m^2 M^2}{4}}{P_U} = \frac{M^2}{M^2 + 2}$$

При АМ с подавлением несущей частоты производится перемножение двух сигналов (модулирующего и несущего), при котором происходит подавление несущего колебания, что делает КПД модуляции равным 100%. Для однотонального сигнала (без учета начальных фаз колебаний) при $U(t) = Mcos(\Omega t)$ имеем:

$$u(t) = \frac{U_m M}{2} \{ \cos[(\omega_0 + \Omega)t] + \cos[(\omega_0 - \Omega)t] \}$$

Следует заметить: при **идентичности информации** в группах верхних и нижних боковых частот нет необходимости в их одновременной передаче. Одна из них перед подачей сигнала в канал связи может быть удалена, чем достигается **двукратное сокращение** полосы занимаемых сигналом частот. При однополосной модуляции возможно также подавление несущей частоты (полное или частичное), что позволяет повысить КПД передатчика.

При модуляции возникают **боковые полосы частот** - верхняя и нижняя. Они представляют собой спектр сумм несущей частоты и частотного спектра модулирующего сигнала.

Демодуляция АМ-сигнала может выполнятсья несколькими способами. Наиболее популярны - двухполупериодное детектирование и синхронное детектирвоание (сигнал разделяется на 2 слагаемых, первое из которых повторяет исходный модулирующий сигнал, а второе повторяет модулированный сигнал на удвоенной несущей частоте).

При последнем виде детектирования требуется точное совпадение фаз и частот колебания демодулятора и несущей гармоники АМ-сигнала. Особенностью является независимость от глубины модуляции (т.е. коэффициент модуляции сигнала может быть больше единицы).

4. Ход работы

Сгенерируем однотональный сигнал низкой частоты. Полученное КПД равно 0.9984.

Рис.1 Однотональный сигнал низкой частоты

Рис.2 Амплитудная модуляция

Рис. 3 Спектр модулированного сигнала

Рис.4 Модуляция с подавлением несущей

Рис.5 Спектр модулированного сигнала с подавленной несущей

Рис.6 Однополосная модуляция

Рис.7 Спектр однополосной модуляции

Рис.8 Сигнал после синхронного детектирования

Рис.9 Спектр сигнала после синхронного детектирования

5. Выводы

В ходе выполнения лабораторной работы исследована амплитудная модуляция/демодуляция сигнала. Без подавления несущей при $M{<}1$ основная мощность передаваемого информационного сигнала намного меньше мощности несущего колебания, поэтому амплитудная модуляция имеет низкий КПД. При подавлении несущей КПД модуляции равно 100%.