НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Лабораторная работа 4.3.4 «Преобразование Фурье в оптике»

Овсянников Михаил Александрович студент группы Б01-001 2 курс ФРКТ

г. Долгопрудный 2022 г.

Цель работы: пронаблюдать преобразование Фурье линзой, исследовать его свойства.

В работе используются: гелий-неоновый лазер, кассета с набором сеток разного периода, щель с микрометрическим винтом, линзы, экран, линейка.

Теоретические сведения

Анализ сложного волнового поля во многих случаях целесообразно проводить, разлагая его на простейшие составляющие, например, представляя его в виде разложения по плоским волнам. При этом оказывается, что если мы рассматриваем поле, полученное после прохождения плоской монохроматической волны через предмет или транспарант (изображение предмета на фотоплёнке или стеклянной пластинке) с функцией пропускания t(x), то разложение по плоским волнам соответствует преобразованию Фурье от этой функции. Если за предметом поставить линзу, то каждая плоская волна сфокусируется в свою точку в задней фокальной плоскости линзы. Таким образом, картина, наблюдаемая в фокальной плоскости линзы, даёт нам представление о спектре плоских волн падающего на линзу волнового поля. Поэтому можно утверждать, что с помощью линзы в оптике осуществляется пространственное преобразование Фурье.

В данной работе и предполагается пронаблюдать это преобразование и изучить его свойства.

Экспериментальная установка

Схема экспериментальной установки изображена на рисунке 1.

Рис. 1. Экспериментальная установка

Щель переменной ширины D, снабжённая микрометрическим винтом B, освещается параллельным пучком света, излучаемым He-Ne лазером (радиус кривизны фронта волны велик по сравнению с фокусными расстояниями используемых в схеме линз).

Увеличенное изображение щели с помощью линзы Π_1 проецируется на экран Э. Величина изображения D_1 зависит от расстояний от линзы до предмета — a_1 и до изображения — b_1 , т. е. от увеличения Γ системы:

$$\Gamma = \frac{D_1}{D} = \frac{b_1}{a_1}.$$

Изображение спектра щели образуется в задней фокальной плоскости Φ линзы Π_1 . Размещая в плоскости Φ двумерные решётки-сетки, можно влиять на первичное изображение и получать мультиплицированное изображение щели.

Убрав линзу, можно наблюдать на экране спектр щели, а если заменить щель решёткой — спектр решётки. Крупные решётки дают на экране очень мелкую картину спектра, которую трудно промерить. В этом случае используют две линзы: первая (длиннофокусная) формирует первичное изображение — спектр, вторая (короткофокусная) — проецирует на экран увеличенное изображение спектра.

А. Определение ширины щели

І. Определение ширины щели с помощью линзы

Установим тубус со щелью вплотную к выходному окну лазера. С помощью короткофокусной линзы Π_1 ($F_1=38$ мм) получим на экране Э увеличенное изображение щели.

Меняя ширину щели от 50 до 500 мкм, снимем зависимость размера изображения D_1 от ширины щели D. Данные занесем в таблицу 1:

D, MKM					l			l		
D_1 , MM	1,5	3,5	5	6	8	9,5	10,5	12	14,5	15,5

Таблица 1. Зависимость D_1 от D

Измерим расстояния a_1 и b_1 для определения увеличения Γ системы: $a_1=(43\pm1)$ мм, $b_1=(1318\pm1)$ мм. Также измерим расстояние от щели до экрана $L=a_1+b_1=1361$ мм. Тогда увеличение системы можно найти как $\Gamma=\frac{b_1}{a_1}\approx 30,7$.

$$\sigma_{\Gamma} = \Gamma \sqrt{\left(\frac{\sigma_{a_1}}{a_1}\right)^2 + \left(\frac{\sigma_{b_1}}{b_1}\right)^2} = 0, 7.$$

Тогда $\Gamma = (30, 7 \pm 0, 7)$.

Но также можно его найти из данного соотношения:

$$\frac{1}{a_1} + \frac{1}{b_1} = \frac{1}{F_1}$$

Учитывая, что $L=a_1+b_1$, то $\frac{L}{F_1}=(a_1+b_1)\left(\frac{1}{a_1}+\frac{1}{b_1}\right)=2+\Gamma+\frac{1}{\Gamma}.$ Откуда получаем $\Gamma\approx 33,8$. В этом случае $\sigma_{\Gamma}\approx \sigma_{\frac{L}{F_1}}=\frac{\sigma_L}{F_1}=0,04.$ То есть $\Gamma=(33,80\pm0,04).$

Как видно, оба этих результата достаточно близки друг к другу, и в общем $\Gamma=(32,3\pm0,8).$

Зная увеличение линзы и размер изображения, рассчитаем ширину входной щели D_{π} :

$$D_{\scriptscriptstyle \rm JI} = \frac{D_1}{\Gamma}$$

D, MKM	50	100	150	200	250	300	350	400	450	500
D_1 , mm	1,5	3,5	5	6	8	9,5	10,5	12	14,5	15,5
$D_{\scriptscriptstyle \rm JI} = \frac{D_1}{\Gamma}, {\rm MKM}$	46	108	155	186	248	294	325	372	449	480

Таблица 2

Во всех случаях погрешность $\sigma_{D_{\pi}} = D_{\pi} \sqrt{\left(\frac{\sigma_{D_1}}{D_1}\right)^2 + \left(\frac{\sigma_{\Gamma}}{\Gamma}\right)^2}$.

Например, для последнего эксперимента $\sigma_{D_{\pi}}=33$ мкм.

Как видим, расчетное и измеренное значения D достаточно близки друг к другу во всех экспериментах.

II. Определение ширины щели по её спектру

Получим на экране спектр щели (рисунок 2). Измерим ширину спектра для самой маленькой щели. Для большей точности будем измерять расстояние X между удалёнными от центра минимумами, расположенными симметрично относительно центра картины, и отмечать порядок минимума m.

Рис. 2. Схема для определения ширины щели по спектру

Проведём серию измерений X(m), меняя ширину щели в пределах от 50 мкм до 500 мкм. Результаты занесем в таблицу 3.

D, MKM	X(m)), MM	$\left\langle \frac{X}{2m} \right\rangle$, MM
50	X(1) = 33	X(2) = 68	16,8
100	X(1) = 17	X(2) = 33	8,4
150	X(1) = 11	X(2) = 27	6,1
200	X(1) = 8	X(2) = 17	4,1
250	X(1) = 6	X(2) = 12	3,0
300	X(1) = 5	X(2) = 10	2,5
350	X(3) = 15	X(4) = 18	2,4
400	X(5) = 22	X(8) = 34	2,2
450	X(5) = 18	X(8) = 29	1,8
500	X(5) = 16	X(8) = 26	1,6

Таблица 3. Ширина спектра щели

Расстояние от щели до экрана L=1318 мм, длина волны лазера $\lambda=632,8$ нм.

По результатам измерений спектра рассчитаем ширину щели D_c :

$$D_c = \frac{\lambda L}{\frac{X}{2m}}.$$

Результаты запишем в таблицу 4.

Везде относительные погрешности $\delta_{D_c}^2 = \delta_X^2 + \delta_L^2$.

D, mkm	50	100	150	200	250	300	350	400	450	500
D_c , MKM	50	99	137	203	278	333	347	379	463	521
σ_{D_c} , MKM	2	6	11	25	46	67	36	22	32	41

Таблица 4. Сравнение расчетного и измеренного значений D

Построим зависимости $D_{\scriptscriptstyle \rm I\hspace{-1pt}I}=f(D)$ и $D_c=f(D)$ на одном графике:

Рис. 3. Сравнение полученных результатов

Видно, что результаты экспериментов достаточно близки друг к другу и в пределах погрешностей совпадают.

Вот графики для $D_{\pi}=f(D)$ и $D_{c}=f(D)$ по отдельности, чтобы можно было проанализировать их лучше.

Рис. 4. $D_{\pi} = f(D)$

Б. Определение периода решёток

І. Определение периода по спектру на удалённом экране

Поставим кассету с двумерными решётками вплотную к выходному окну лазера. Измерим расстояние L от кассеты до экрана: L=1343 мм.

Для каждой сетки измерим расстояние X между m-ми максимумами и отметим m — порядок максимума и определим период каждой решётки $d_c = f(\mathbb{N}^{\!_{2}}),$ используя соотношение:

$$d_c = \frac{\lambda L}{\frac{X}{2m}}.$$

Cemκa №1:

m	X(m), mm
1	62
2	126
3	211

Таблица 5. Сетка №1

$$d_c=rac{\lambda L}{\left\langle rac{X}{2m}
ight
angle}=26,2$$
 мкм.
$$\sigma_{d_c}=d_c\sqrt{\left(rac{\sigma_L}{L}
ight)^2+\left(rac{\sigma_X}{X}
ight)^2}=0,4$$
 мкм.
$$d_c=(26,2\pm0,4)$$
 мкм

Cemka №2:

m	X(m), mm
1	49
2	97
3	169

Таблица 6. Сетка №2

$$d_c=rac{\lambda L}{\left\langle rac{X}{2m}
ight
angle }=33,2$$
 мкм.
$$\sigma_{d_c}=d_c\sqrt{\left(rac{\sigma_L}{L}
ight)^2+\left(rac{\sigma_X}{X}
ight)^2}=0,7$$
 мкм.
$$d_c=(33,2\pm0,7)$$
 мкм

Сетка №3:

\overline{m}	X(m), mm
1	25
2	49
3	74

Таблица 7. Сетка №3

$$d_c=rac{\lambda L}{\left\langle rac{X}{2m}
ight
angle}=69$$
 мкм.
$$\sigma_{d_c}=d_c\sqrt{\left(rac{\sigma_L}{L}
ight)^2+\left(rac{\sigma_X}{X}
ight)^2}=3$$
 мкм.
$$d_c=(69\pm3)$$
 мкм

Cemka №4:

\overline{m}	X(m), mm
2	24
3	36
4	49

Таблица 8. Сетка №4

$$d_c=rac{\lambda L}{\left\langle rac{X}{2m}
ight
angle }=141$$
 мкм.
$$\sigma_{d_c}=d_c\sqrt{\left(rac{\sigma_L}{L}
ight)^2+\left(rac{\sigma_X}{X}
ight)^2}=6$$
 мкм.
$$d_c=(141\pm 6)$$
 мкм

Cemκa №5:

m	X(m), mm
3	28
4	36
5	46

Таблица 9. Сетка №5

$$d_c=rac{\lambda L}{\left\langle rac{X}{2m}
ight
angle}=185$$
 мкм.
$$\sigma_{d_c}=d_c\sqrt{\left(rac{\sigma_L}{L}
ight)^2+\left(rac{\sigma_X}{X}
ight)^2}=7$$
 мкм.
$$\boxed{d_c=(185\pm7)\ ext{мкм}}$$

Таким образом:

№ решетки	d_c , mkm
1	$26, 2 \pm 0, 4$
2	$33, 2 \pm 0, 7$
3	69 ± 3
4	141 ± 6
5	185 ± 7

Таблица 10. Общие результаты периодов решеток

II. Определение периода решёток по увеличенному изображению спектра

Рис. 6. Схема определения периода решётки по увеличенному изображению спектра

Линзу Π_2 с максимальным фокусом $F_2=110$ мм поставим на расстоянии $\sim F_2$ от кассеты. В плоскости Φ линза Π_2 даёт фурье-образ сетки — её спектр, а короткофокусная линза Π_3 с фокусом $F_3=25$ мм создаёт на экране увеличенное изображение этого спектра.

Измерим расстояния a_3 и b_3 : $a_3=(30\pm1)$ мм, $b_3=(1095\pm1)$ мм. Тогда увеличение линзы $\Pi_3:\Gamma_3=\frac{b_3}{a_3}.$ $\Gamma_3=(37\pm1).$

Измерим X и m для всех сеток, где это возможно. Зная увеличение линзы Π_3 , рассчитаем период сетки d_n :

$$d_{\scriptscriptstyle \Pi} = \frac{\lambda \Gamma_3 F_2}{\frac{X}{2m}}, \qquad \qquad \sigma_{d_{\scriptscriptstyle \Pi}} = d_{\scriptscriptstyle \Pi} \sqrt{\left(\frac{\sigma_{\Gamma_3}}{\Gamma_3}\right)^2 + \left(\frac{\sigma_X}{X}\right)^2}.$$

Cemκa №1:

\overline{m}	X(m), mm
1	195

Таблица 11. Сетка №1

$$d_{\scriptscriptstyle
m I} = (26, 4 \pm 0, 7)$$
 мкм

Cemka №2:

m	X(m), mm
1	165

Таблица 12. Сетка №2

$$d_{\scriptscriptstyle
m I} = (31, 2 \pm 0, 9)$$
 мкм

Cemκa №3:

m	X(m), mm
1	97
2	195

Таблица 13. Сетка №3

$$d_{\scriptscriptstyle
m J} = (53 \pm 2)$$
 мкм

Cemka №4:

$\lceil m \rceil$	X(m), mm	
1	37	
2	73	
3	110	

Таблица 14. Сетка №4

$$d_{\scriptscriptstyle
m J}=(140\pm5)$$
 мкм

Cemκa №5:

\overline{m}	X(m), mm
1	27
2	58
3	82

Таблица 15. Сетка №5

$$d_{\scriptscriptstyle
m J}=(185\pm9)$$
 мкм

Итого:

№ решетки	$d_{\scriptscriptstyle m J}$, мкм
1	$26, 4 \pm 0, 7$
2	$31, 2 \pm 0, 9$
3	53 ± 2
4	140 ± 5
5	185 ± 9

Таблица 16. Общие результаты периодов решеток

В. Мультиплицирование

Рис. 7. Схема для наблюдения мультиплицирования

Снова поставим тубус со щелью к окну лазера и найдем на экране резкое изображение щели с помощью линзы Π_2 . В фокальной плоскости Φ линзы Π_2 поставим кассету с сетками, которые будут «рассекать» фурьеобраз щели — осуществлять пространственную фильтрацию. Подберем такую ширину входной щели D, чтобы на экране можно было наблюдать мультиплицированное изображение для всех сеток.

Снимем зависимость Y — расстояние между удалёнными изображениями щели — и K — число промежутков между изображениями — от номера сетки для фиксированной ширины входной щели D=20 мкм.

Измерим расстояния a_2 и b_2 для расчёта увеличения второй линзы Γ_2 : $a_2=(115\pm1)$ мм, $b_2=(1230\pm1)$ мм. Тогда $\Gamma_2=\frac{b_2}{a_2}$. $\Gamma_2=(11,7\pm0,1)$.

№ сетки	K	Y, mm
1	4	112
2	6	93
3	8	76
4	10	48
5	12	43

Таблица 17. Зависимость Y и K от номера решетки

Рассчитаем периоды Δy «фиктивных» решёток, которые дали бы такую же периодичность на экране:

$$\Delta y = \frac{Y}{K\Gamma_2},$$
 $\sigma_{\Delta y} = \Delta y \sqrt{\left(\frac{\sigma_Y}{Y}\right)^2 + \left(\frac{\sigma_{\Gamma_2}}{\Gamma_2}\right)^2}.$

№ сетки	Δy , mm	$\sigma_{\Delta y}$, mm
1	28,0	0,4
2	15,5	0,2
3	9,5	0,2
4	4,8	0,1
5	3,6	0,1

Таблица 18. Зависимость Δy от номера решетки

Построим график зависимости $\Delta y = f(1/d_c)$:

Рис. 8. $\Delta y = f(1/d_c)$

Точки неплохо ложатся на прямую, как оно и должно быть теоретически, однако четвертая точка выбивается из этой тенденции, что связано с неточностью измерений.

Г. Влияние щелевой диафрагмы на изображение сетки

Рис. 9. Изначальная картина сетки

Поставим на место щели кассету с сетками и сфокусируем на экран изображение сетки. Поставим в плоскости Ф вертикальную щель и проследим за изменением изображения на экране при сужении щели.

Рис. 10. Картина сетки при вертикальной щели

Проделаем то же для щели, ориентированной горизонтально:

Видели на предоставление при предусмения и предоставление предо

Рис. 11. Картина сетки при горизонтальной щели И под углом 45° к вертикали.

Рис. 12. Картина сетки при положении щели под углом 45° к вертикали

Данные явления происходят потому, что линза осуществляет Фурьепреобразование изображения щели. **Вывод:** в данной работе мы пронаблюдали различные эффекты Фурье-оптики. Также были найдены периоды решеток: $d_1 = (26, 2 \pm 0, 4)$ мкм, $d_2 = (33, 2 \pm 0, 7)$ мкм, $d_3 = (69 \pm 3)$ мкм, $d_4 = (141 \pm 6)$ мкм, $d_5 = (185 \pm 7)$ мкм. Мы пронаблюдали эффект мультиплицирования. Было исследовано влияние щелевой диафрагмы на изображение сетки. Все ошибки и погрешности связаны с неточностью измерений и несовершенством их техники.