Towards A Learning-based Heuristic Searching Reform Scheme

14 July 2010, Lisbon

Fan Xue, CY Chan, WH Ip, CF Cheung

Department of Industrial & Systems Engineering Hong Kong Polytechnic University

- 1 Introduction
- The presented method
- Traveling salesman: an example
- Staff rostering: another example
- Discussion and conclusion

Opportunity and background

Many combinatorial optimizations are NP-hard

¤"...no good algorithms..." (Edmonds, 1967)

☐ The larger, the much more difficult to solve ③

Objective value of min(X)

LUB by heuristics

Unknown optimum Known optimum

GLB by exact

Different metaheuristics have been proposed to improve searching (h), e.g.,

A typical problem solving progress

XUE et al: A Learning-based Searching Reform Scheme (EURO XXIV, Lisbon, 2010)

An inspiring game

- ❖ The game of *Tower of Hanoi* consists of:
 - ☐ Three rods,
 - □ A number of disks of different sizes.
- The puzzle starts with the disks in a neat stack in ascending order of size on one rod.
- The objective is to move the stack to another rod, obeying:
 - No disk on top of a smaller one

 One disk at a time.

 □
- To unveil the solving rules, play with 2 or 3 disks at first.
 - □ Learn from a small sample

A model of Tower of Hanoi (8 disks, Photo brought from Wikipedia)

Objective and assumptions

- The objective is to improve heuristics through learningbased revisions of assignments of variables
- Assumptions
 - □ Recognizable problems
 - "Homogeneous" variables
- Notes
 - ☐ The smaller, the much easier (NP-hardness ②)
 - ☐ The 1st assumption makes learning possible
 - ☐ The 2nd assumption further enables learning from a part of the problem (variables), it implicitly enables learning from near-optimal solutions
 - ☐ Large-scale problems are preferred

The proposed method

- The phases of the proposed method are:
 - □ 1. Start with a problem "P"
 - **■2**. Find a *small* "representative" part "P*"
 - 3. Obtain a good solution "S*" quickly

 ✓
 - **∡4**. Obtain rules about assignments from "S*" <u>as complete as possible</u>

 - □ 6. Reform the assignment process of heuristic searching "h" in the problem "P"

The proposed method

Notes

- $\ ^{\ }h^{*}\neq h$ (not necessarily same, nor necessarily heuristic)
- ☐ The indirect way of using the learning results
 - ×Rules with confidences from 100% down to 1% are potentially useful.
- □ Interpretations for different heuristics:
 - ×Weights for value assignments
 - ×Sorting for tests of local search
 - ×Interchanges for tests of binaries

×...

Traveling salesman as an example

- The Euclidean traveling salesman problem (TSP): finding a shortest tour that visits all given spatial points (cities).
 - ☐ Hamilton circle: two edges for each city
 - ™ Most of very long edges are not possible to appear in the optimal tour(s)
- How does the method work?
 - ☐ Indentify a weight for each edge candidate of each city
 - Reorder and reform the possible candidates by the weights (thus the candidate-set-based neighborhoods).
- How to indentify the weights?
 - Learn from a part of the given problem, with a set of attributes for the edge candidates

Traveling salesman: attributes

The attributes of an edge (c_i, n_j) for a city c_i

□G1 Global nearest

 \bowtie R1, R2, R3 Length indices comparing to $(c_i, n_1), (c_i, n_2), (c_i, n_3)$

 \square P1, P2, P3 R1-R3 of n_i

muQ1, Q2 S1, S2 of n_i

Ag, Ah Minimal / maximal

angular gap around ci

□ An Number of directions

around c_i

□ Opt Whether appears in the

training sample or not

Traveling salesman: sample data

Learning samples

G1	R1	R2	R3	S 1	S2	P1	P2	P3	Q1	Q2	Ag	Ah	An	Opt
0	3	1	1	1	0	4	3	2	0	0	3	10	7	0
0	9	3	3	1	0	6	6	2	0	1	3	10	7	1
0	9	3	3	1	0	10	4	2	1	1	3	10	7	1
	-							-						

❖ Sample rules ("Opt=1" only)

Id	Rule	Support	Confidence
1	R1=3, S1=1, Q1=1 => Opt=1	0.013	1.000
2	P1=3, S1=1, Q1=1 => Opt=1	0.013	1.000
3	R1=3, S1=1, Q2=0 => Opt=1	0.012	1.000
		•••	•••
30	G1=1 => Opt=1	0.022	0.913
983	R3=8 => Opt=1	0.048	0.010

Traveling salesman: revising the assignments

- Weights of edge candidates
 - Highest confidence of the rule that implies the edge should be in optimal tour (Opt=1)
 - \blacksquare Range [0, 1]
- Reorder (and reorganize) the candidates by
 - ☐ The weights descending
 - □ Distance × (1-weight) (Weighted Distance, WD) ascending
 - □ Grouping
 - ☐ Or other sorting plans...
- For those candidate sets not determine by Euclidean distance, a pseudo-distance could be defined.
 - Ξ E.g., a pseudo-distance = $\ln(\alpha$ -value) for the α -nearness

Traveling salesman: tests

- Inputs
 - □ 32 large Euclidean TSPs from industry, geography and random generation, grouped, ranging from 3,000 to 1,000,000 cities.
- Objective algorithm
 - □ 5-Opt (100 runs) initialized by Greedy, on 5-sized candidate sets
- Parameters (Class Association Rules, CARs)

 - \square Min confidence of learning = 0.01
 - \square Min support of learning = 0.001
 - Learn and reform 50-sized (if applicable) candidate sets
- Optional parameters
 - ☐ Length control of rules: |antecedent| < 6 (learns much faster

without much loss of rules)
XUE et al: A Learning-based Searching Reform Scheme (EURO XXIV, Lisbon, 2010)

Traveling salesman: tests

Groups of instances to test

Category	VLSI(BK)	E(BK)	TSPLIB(Optimum)
3k	lsn3119(9114*)	E3k.0(40634081*)E3k.1(40315287*)	pr2392(378032)
	lta3140(9517*)	E3k.2(40303394*)E3k.3(40589659*)	pcb3038(137694)
	fdp3256(10008*)	E3k.4(40757209)	fnl4461(182566)
10k	dga9698(27724)	E10k.0(71865826)E10k.1(72031630)	pla7397(23260728)
	xmc10150(28387)	E10k.2(71822483)	brd14051(469385)
31k	pbh30440(88328)	E31k.0(71865826)	pla33810(66048945)
	xib32892(96757)	E31k.1(72031630)	
		E100k.0(225787421)	
100k	sra104815(251433)	E100k.1(225659006)	pla85900(142382641)
316k	ara238025(578775)	E316k.0(401307462)	-
	lra498378(2168067)		
1M	lrb744710(1612132)	E1M.0(713189834)	

^{*} Also proved optimal

Traveling salesman: results

Average quality (% excess BK) comparison

		G-	+5-0pt @	NN	G+5-	-Opt @ Qu	ıadrant G+5-Opt @ α-nearne				
		Avg	Avg/WD	Imp(%)	Avg	Avg/WD	Imp(%)	Avg	Avg/WD	Imp(%)	
	3k	3.889	2.663	31.5	0.695	0.649	6.7	0.361	0.327	9.3	
VLSI	10k	4.236	3.300	22.1	0.863	0.693	19.7	0.526	0.503	4.5	
	31k	4.169	2.913	30.1	0.814	0.642	21.2	0.454	0.437	3.7	
AFSI	100k	6.657	6.467	2.9	0.842	0.752	10.7	0.339	0.328	3.2	
	316k	9.959	7.950	20.2	1.183	0.917	22.5	-	-	-	
	1M	4.682	4.385	6.3	0.857	0.762	11.1	-	-	-	
	3k	0.703	0.487	30.7	0.346	0.338	2.3	0.156	0.156	0.3	
	10k	0.862	0.490	43.1	0.375	0.370	1.4	0.179	0.178	0.2	
Е	31k	1.262	0.659	47.8	0.527	0.526	0.2	0.343	0.341	0.6	
L	100k	1.851	0.646	65.1	0.438	0.434	0.9	0.252	0.250	0.8	
	316k	1.660	0.679	59.1	0.430	0.422	1.9	-	-	-	
	1M	1.176	0.911	22.5	0.381	0.379	0.5	-	_	-	
	3k	0.456	0.358	21.4	0.340	0.321	5.4	0.143	0.134	6.5	
TSPLIB	10k	2.878	2.234	22.4	0.427	0.395	7.6	0.253	0.278	-10.1	
ISLUID	31k	2.297	1.677	27.0	0.913	0.517	43.4	0.560	0.617	-10.2	
	100k	2.065	1.476	28.5	0.761	0.445	41.5	0.932	0.978	-4.9	

Traveling salesman: results

Set up time costs (dots = weighted distance)

Traveling salesman: results

Average time cost comparison

		G+5	5-0pt @ N	IN	G+5-0	pt @ Qua	drant G+5-Opt@α-nearno			
		Avg	Avg/WD	Imp/%	Avg	Avg/WD	Imp(%)	Avg	Avg/WD	Imp(%)
	3k	2.20	2.27	-3.1	1.93	1.48	23.0	2.32	2.21	4.6
VLSI	10k	8.09	7.84	3.2	8.72	6.64	23.9	10.32	9.69	6.1
	31k	33.20	31.79	4.3	37.66	29.40	21.9	42.88	46.18	-7.7
V LSI	100k	88.57	86.00	2.9	147.62	133.05	9.9	158.95	169.70	-6.8
	316k	479.84	421.65	12.1	675.39	649.52	3.8	-	-	-
	1M	1123.66	949.97	15.5	1665.11	1500.81	9.9	-	-	-
	3k	2.60	2.47	5.1	1.68	1.87	-11.6	1.98	2.08	-5.3
	10k	9.86	10.28	-4.2	7.94	7.56	4.8	8.91	8.56	3.9
Е	31k	41.81	45.40	-8.6	37.18	36.69	1.3	47.20	43.73	7.4
l E	100k	140.30	156.68	-11.7	141.62	139.84	1.3	161.85	167.15	-3.3
	316k	503.66	568.11	-12.8	601.57	596.53	8.0	-	-	-
	1M	2141.66	2432.96	-13.6	2986.15	3033.61	-1.6	-	-	-
	3k	2.71	2.68	1.3	2.18	1.84	15.6	1.88	4.07	-116.7
TSPLIB	10k	12.88	13.57	-5.3	12.60	11.17	11.3	13.40	13.57	-1.3
ISLUD	31k	97.50	97.02	0.5	81.40	65.16	19.9	84.44	97.27	-15.2
	100k	149.99	159.61	-6.4	174.31	166.20	4.7	134.96	150.73	-11.7

Traveling salesman: results interpretation

- The most popular search heuristic, local search, can be significantly benefited on different candidate sets (NN, Quadrant, α-nearness) over different families (especially industrial) of problems
- ☐ The additional time cost is pretty low in very large problems.

- □ Less effective in random than industrial ETSP
- Less effective for the α-nearness than the NN and the Quadrant candidate sets

Staff rostering as another example

Staff rostering

- ☐ Determine shifts for demands
- ☐ Construct work timetables*

Attributes

□ ID, CN Employee ID, Contract ID (group)

S1, S2 Shift on yesterday, on the day before yesterday

□ SQ Length of current consecutive working days

□DW Day of week

 \square St, Ed Level (log₂) of days from the beginning, to the end

Absolute difference of the current employee's workload against the average workload (till yesterday, rounded to integer).

□ JB Shift to determine

Staff rostering: tests

- Inputs
 - □ Problems (>10 staff, >20 days, fixed number of shifts) from http://www.cs.nott.ac.uk/~tec/NRP/
 - □ A set of enlarged problems (no day/shift on/off constraints, enlarged to same employees, 3 months)
- Objective algorithm
 - 4-Hybrid VDS (10 runs) initialized by Greedy
- Parameters (CARs)
 - $multipreserve P^* = \text{half scheduling period, or those before}$
 - \coprod Min confidence of learning = 0.01
 - \square Min support of learning = 0.05*
 - *: Less training examples (\sim 1,000) than in TSP (\sim 100,000)

Staff rostering: results

Comparisons on two groups of problems

	9		4-HVDS	0.01011	4-HV	Δ time		
Problem	BK	avg	stddev	time(s)	avg	stddev 1	time(s)	(%)
BCV-2.46.1(46x28)	1572*	1576	8.7	631.8	1582	10.8	616.2	-2.47
BCV-3.46.1(46x26)	3280^	3314	7.4	1590	3307	11.7	1808	13.7
BCV-3.46.2(46x26)	894*^	896.1	1.8	1148	898	1.6	1014	-11.7
BCV-6.13.1(13x30)	768	884.9	101.9	211.1	833.5	82.1	204.6	-3.07
BCV-A.12.1(12x31)	1294^	2217	493.5	1678	1983	403.2	2003	19.4
BCV-A.12.2(12x31)	1953^	2440	188.8	2819	2486	298.5	2160	-23.4
ORTEC01(16x31)	270*^	2254	915.5	29.4	2128	1731	26.2	-10.9
QMC-1(19x28)	13*	31.3	3	61.6	34.7	2.9	50.1	-18.7
SINTEF(24x21)	0*	9	1.9	12.6	8.8	2.3	13.5	6.92
Valouxis-1(16x28)	20*	422	7.9	6.2	476	98.3	4.6	-26
* Also proved optimal; ^ found b	y the H	ybrid VD	S					
EBCV-4.13.1 (13x3m)	-	155.8	28.6	352.3	153.9	98.8	413.6	17.4
EBCV-5.4.1 (4x3m)	-	525.9	132.3	0.8	462.7	0.5	1.5	89.6
EGPost-B (8x3m)	-	3223	1939	68	2599	1411	63.2	-7.1
EMillar-2Shift-DATA1(8x3m)	-	3650	97.2	8.5	3640	51.6	6.9	-18.2
EMillar-2Shift-DATA1.1(8x3m)	-	3640	51.6	1.6	3620	42.2	2.7	68.3
EValouxis-1 (16x3m)	-	1656	252.8	109.3	1632	161.2	143.8	31.5

XUE et al: A Learning-based Searching Reform Scheme (EURO XXIV, Lisbon, 2010)

Staff rostering: results interpretation

- □ Fits large-scale problems better
- According to *limited* evidences, the Hybrid VDS can be benefited in quality, if certain criteria (such as "large-enough") are met

- □ Although the additional time costs by machine learning are low, the iteration time increases by some percent
- ☐ Preliminary tests only. There might be some other reasons for the quality change (i.e., possibly no improvements by the learning in fact)...

Some characteristics:

- ☐ The parameters of learning (including non-CARs) are easy to determine: set to feasibly minimal
- ☐ The design of decision attributes is the key to a successful application: decentralized, able to borrow the attributes from human heuristics
- Beyond the two tests, more challenges await
 - ☐ Heuristics/ CO problems incompatible (not homogeneous)?
 - ☐ Problems with many arbitrary global constraints (e.g., SAT)
 - ☐ Constraint satisfaction methods (e.g., revising backtracks?)
 - Some exact methods (e.g., branch-and-bound?)

 Some exact methods (e.g., branch-and-bound?)
 - □ An encapsulated general purpose (or a list of purposes) optimization program module

Conclusion and future works

- We present an efficient metaheuristic-like approach
 - ☐ Small-problem-oriented learning (thus fast)
 - □ Enhance problem solving with the rules learnt
 - Transparent to the embedded heuristic
- We find the results of tests encouraging.
- We hope it unveils a direction to take the power of machine learning in large-scale optimization.
- Possible future works
 - □ An general guide of designing the attributes
 - □ Special plan guide for special industrial practice
 - ☐ Challenges listed on last page

- Edmonds, J. (1967). Optimum branchings, Journal of Research of the National Bureau of Standards, 71B: 233-240.
- TSP benchmark data
 - □ http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
 - http://www.research.att.com/~dsj/chtsp/
 - http://www.tsp.gatech.edu/vlsi/
 - http://www.akira.ruc.dk/~keld/research/LKH/DIMACS_results.html
- Rostering benchmark data
 - □ http://www.cs.nott.ac.uk/~tec/NRP/

Thank you for your attention!

E-mail addr.: Dewolf.xue@polyu.edu.hk Dewolf_matri_x@msn.com

