The Binomial Distribution

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

Plan

Derive the Bernoulli and binomial distributions

Analyze the empirical-probability estimator

Bernoulli distribution

Coin flip such that probability of heads is $\boldsymbol{\theta}$

Bernoulli random variable with parameter θ

$$p_{\theta}(1) = \theta$$

$$p_{\theta}\left(0\right)=1-\theta$$

Coin flips

We flip a coin with bias θ independently n times, probability of a heads?

Strategy: Decompose into union of events

$$\{a \text{ heads}\} = \{H_1, H_2, \dots, H_a, T_{a+1}, T_{a+2}, \dots, T_n\}$$

$$\cup \{H_1, T_2, H_3, \dots, H_{a+1}, T_{a+2}, \dots, T_n\}$$

$$\cup \dots$$

Coin flips

$$P(\lbrace H_1, H_2, \dots, H_a, T_{a+1}, T_{a+2}, \dots, T_n \rbrace)$$

$$= P(H_1) \cdots P(H_a) P(T_{a+1}) \cdots P(T_n)$$

$$= \theta^{a} (1 - \theta)^{n-a}$$

What about $\{H_1, T_2, H_3, \dots, H_{a+1}, T_{a+2}, \dots, T_n\}$?

Example: Coin flips

How many possible orders are there?

$$\binom{n}{a} := \frac{n!}{a! (n-a)!}$$

$$P({a \text{ heads}}) = \binom{n}{a} \theta^a (1-\theta)^{n-a}$$

Binomial distribution

The pmf of a binomial random variable \tilde{a} with parameters n and θ is

$$p_{\tilde{a}}(a) = \binom{n}{a} \theta^a (1-\theta)^{(n-a)}$$
 $a = 0, 1, \dots, n$

Binomial n = 20, $\theta = 0.2$

Binomial n = 20, $\theta = 0.5$

Binomial n = 20, $\theta = 0.8$

Empirical probability

Statistical estimator for the probability of an event

Let A be an event in a sample space Ω

Let $X := \{x_1, x_2, \dots, x_n\}$ be a set of data with values in Ω

The empirical probability of A is

$$P_X(A) := \frac{\sum_{i=1}^n 1_{x_i \in A}}{n}$$

where $1_{x_i \in A}$ is one if $x_i \in A$ and zero otherwise

We can use the binomial distribution to analyze this estimator

Coin flip

We simulate a fair coin flip twenty times

Heads (out of 20)	15	13	10	9	9	8	9	9	12	8
Empirical prob.	0.75	0.65	0.5	0.45	0.45	0.4	0.45	0.45	0.6	0.4

Analysis of empirical probability

Assume $P(A) = \theta_{true}$

 $B_i := data \ point \ i \ belongs \ to \ A$

Data are independent

 S_1, S_2, \ldots, S_n (where S_i is B_i or B_i^c) are all mutually independent

We model number of data in A by random variable \tilde{c}

Distribution of \tilde{c} ?

Distribution of empirical probability

Binomial with parameters n and $\theta_{\text{true}}!$

$$p_{\tilde{c}}(c) = \binom{n}{c} \theta_{\mathsf{true}}^{c} (1 - \theta_{\mathsf{true}})^{(n-c)} \quad c = 0, 1, 2, \dots, n$$

The empirical probability estimator is $ilde{ heta}:=rac{ ilde{c}}{n}$ so

$$\begin{aligned} p_{\tilde{\theta}}(t) &= \mathrm{P}(\tilde{c} = nt) \\ &= \binom{n}{nt} \theta_{\mathsf{true}}^{nt} \left(1 - \theta_{\mathsf{true}}\right)^{n-nt} \quad t = 0, \frac{1}{n}, \frac{2}{n}, \dots, 1 \end{aligned}$$

Coin flip

We simulate a fair coin flip twenty times

Heads (out of 20)	15	13	10	9	9	8	9	9	12	8
Empirical prob.	0.75	0.65	0.5	0.45	0.45	0.4	0.45	0.45	0.6	0.4

Distribution of empirical probability

What have we learned?

Definition of the Bernoulli and binomial distributions

How to analyze the empirical-probability estimator