МЕТОД СКОЛЬЗЯЩЕГО КОНТРОЛЯ ДЛЯ ОЦЕНКИ КАЧЕСТВА РЕКОМЕНДАТЕЛЬНЫХ ИНТЕРНЕТ-СЕРВИСОВ

А.Ю. Каминская, Р.А. Магизов

Научный руководитель – Д.И. Игнатов

Государственный университет — Высшая школа экономики, Москва, Россия 2010

Содержание

- Постановка задачи
- Мотивация
- Примеры моделей рекомендательных систем
 - User-based RS
 - Item-based RS
- Выбор меры (метрики) сходства
- Методика сравнения
- Данные MovieLens и Yahoo
- Результаты
- Выводы и дальнейшая работа

Постановка задачи

- Зная предпочтения конкретного пользователя и остальных, выдать ему релевантную рекомендацию
- Оценка (проверка) качества рекомендаций

Мотивация

- Существует огромное количество РС
- Требуются эффективные алгоритмы
 - Время выполнения
 - Качество рекомендаций
- Количество ошибок и полнота рекомендаций

User-based RS

- целевой пользователь u_0
- u_0^{I} предметы, которые он оценивал
- $sim(u_0, u)$ сходство с пользователем u
- $N(u_0) = \{u \mid sim(u_0, u) \ge \theta\}$ top-n ближайших к

нему соседей, n определяет θ

- $N(u_0 \mid i) = \{u \mid i \in u^I \& u \in N(u_0)\}$ пользователи из $N(u_0)$, которые оценили предмет i
- r_{ui} оценка предмета i пользователем u
- предсказанная системой оценка для целевого пользователя:

$$\hat{r}_{u_0i} = \frac{\displaystyle\sum_{u \in N(u_0|i)} sim(u_0, u) \times r_{ui}}{\displaystyle\sum_{u \in N(u_0|i)} sim(u_0, u)}$$

Item-based RS

- целевой пользователь u_0
- u_0^I предметы, которые он оценивал
- sim(i,j) сходство товара i с товаром j
- $N(i) = \{j \mid sim(i,j) \ge \theta\}$ top-n ближайших к нему товаров, top-n определяет θ
- $N(i \mid u_0) = \{j \mid j \in u_0^I \& i \notin u_0^I \& j \in N(i)\}$ для u_0
- r_{ui} оценка предмета i пользователем u
- предсказанная системой оценка для целевого

пользователя:

Пример

User-based RS

Пользователь	Сходство	«Мастер и Маргарита»	ВО «Мастер и Маргарита»	«Преступление и наказание»	ВО Преступление и наказание»	Рей Бредбери. Рассказы.	ВО Рей Бредбери. Рассказы.	Е. Гришковец. «Планета»	ВО «Планета»
V.M.		4.0		3.0		0.0		4.0	
SKY	0.5	4.0		4.0		3	3.5×0.5=1.75	4.5	
OLA	0.5	4.5		4.0		3.0	3.0×0.5=1.5	4.0	
GRY	0.94	4.0		2.5		1.0	1.0×0.94=0.94	3.5	
IDI	0.87	2.0		2.5		3.0	3.0×0.87=2.6	1.5	

$$\frac{1.75 + 1.5 + 2.6 + 0.94}{0.5 + 0.5 + 0.87 + 0.94} = \frac{6.79}{2.81} = 2.4 \approx 2.5$$

Выбор меры (метрики) сходства

• Сходство, основанное на расстоянии:

— Евклида
$$d(x,y) = \sqrt{\sum_{i} (x_{i} - y_{i})^{2}}$$
— Хемминга
$$d(x,y) = \sum_{x_{i} \neq y_{i}} 1$$

$$> s = \frac{1}{1+d}$$

$$| 1/2 | 1/4 |$$

- Корреляция как сходство:
 - коэффициент Пирсона
- Kосинусная мера $cos(x, y) = \frac{(x, y)}{|x| \cdot |y|}$
- Коэффициент Жаккара $J(X,Y) = \frac{|X \cap Y|}{|X \cup Y|}$

Корреляция Пирсона

- Недостатки
 - не определена на векторах с постоянными значениями: (4,4,4,...,4)
 - теряются рекомендации

$$a=(0,5,5,4)$$

$$b=(0,4,5,0)$$

Методика сравнения

- Метрики качества: точность и полнота рекомендаций
- Скользящий контроль (кросс-валидация)

Точность и полнота

 Полнота – число релевантных рекомендаций к числу всех выбранных пользователем товаров

$$recall = \frac{|r_n(u) \cap u^I|}{|u^I|}$$

• Точность – число релевантных к числу всех рекомендаций

$$precision = \frac{|r_n(u) \cap u^T|}{|r_n(u)|}$$

Скользящий контроль

• Разбиение на тестовую и обучающую выборки:

$$U = U_{training} \cup U_{test}, sole \ U_{training} \cap U_{test} = \emptyset$$

- Сокрытие признаков для тестирования рекомендаций: $I_{hidden} \subseteq I$
- Вычисление точности и полноты для $u \in U_{test}$ на признаках $i \in I_{hidden}$:

$$recall = \frac{|r_n(u) \cap u^I \cap I_{hidden}|}{|u^I \cap I_{hidden}|}$$

$$precision = \frac{|r_n(u) \cap u^I \cap I_{hidden}|}{|r_n(u) \cap I_{hidden}|}$$

Точность и полнота: раскрытие неопределенностей

$$recall = \frac{|r_n(u) \cap u^I \cap I_{hidden}|}{|u^I \cap I_{hidden}|} \qquad |u^I \cap I_{hidden}| = 0 \Rightarrow recall = 1$$

$$\left| u^I \cap I_{hidden} \right| = 0 \Longrightarrow recall = 1$$

$$precision = \frac{|r_n(u) \cap u^I \cap I_{hidden}|}{|r_n(u) \cap I_{hidden}|} \qquad |r_n(u) \cap I_{hidden}| = 0:$$
$$u^I = 0 \Rightarrow precision = 1$$

$$\left|r_n(u) \cap I_{hidden}\right| = 0$$
:
$$u^I = 0 \Rightarrow precision = 1$$
 else $precision = 0$

Алгоритм

• Параметры:

- test% размер тестового множества
- hidden% размер скрытого множества признаков
- р число повторений разбиения на тестовое и обучающее множество
- q число повторений разбиения на оцененное и неоцененное множества признаков
- Выход: средние значения точности и полноты по множеству U_{test} и I_{hidden}

Данные MovieLens и Yahoo

- MovieLens 100K dataset:
 - 943 пользователя
 - 1,682 фильма
 - Каждый оценил как минимум 20 фильмов,
 всего 100,000 оценок
- Yahoo binary dataset:
 - **2,000 фирм**
 - 3,000 рекламных словосочетаний
 - 92,345 ненулевых ячеек

Зависимость точности от количества скрытых признаков

Зависимость полноты от количества скрытых признаков

Зависимость точности и полноты от числа соседей

Зависимость точности и полноты от размера тестового множества для метода user-based

Зависимость точности и полноты от количества скрытых признаков для метода user-based

Зависимость точности и полноты от размера тестового множества для метода item-based

Зависимость точности и полноты от количества скрытых признаков для метода Item based

Выводы и дальнейшая работа

- Предложенная методика позволяет оценить качество работы рекомендательной системы вне зависимости от выбора метода
- По-видимому, впервые в экспериментах исследуется точность и полнота в зависимости от количества скрытых признаков
- Для сравнения методов необходимо проведение аналогичных экспериментов для более совершенных моделей РС, например, основанных на бикластеризации

Спасибо за внимание!