CLAIMS

1. An ABC transporter inhibitor which comprises as an active ingredient a cyclic depsipeptide or its optical isomer or racemate of the formula (I):

$$\begin{array}{c|c}
R^{1} & 0 \\
0 & R^{2} \\
R^{6} & CH_{3} & 0
\end{array}$$

$$\begin{array}{c|c}
0 & H_{3}C - N & R^{3} \\
R^{5} & 0 & R^{4}
\end{array}$$

$$\begin{array}{c|c}
0 & R^{2} & CH_{3} & CH_{$$

wherein R¹, R³ and R⁵ are each independently a group selected from linear or branched alkyl having up to 8 carbon atoms; hydroxyalkyl; alkanoyloxyalkyl; alkoxyalkyl; aryloxyalkyl; mercaptoalkyl; alkylthioalkyl; alkylsulfinylalkyl; alkylsulfonylalkyl; carboxyalkyl; alkoxycarbonylalkyl; arylalkoxycarbonylalkyl; carbamoylalkyl; aminoalkyl; alkylaminoalkyl; dialkylaminoalkyl; guanidinoalkyl; alkoxycarbonylaminoalkyl;

9-fluorenylmethoxycarbonyl(Fmoc)aminoalkyl; alkenyl; cycloalkyl; cycloalkylalkyl; and arylalkyl optionally substituted with halogen, hydroxy, alkyl, or alkoxy, and R², R⁴ and R⁶ are each independently a group selected from linear or branched alkyl having up to 8 carbon atoms; hydroxyalkyl; alkanoyloxyalkyl; alkoxyalkyl; aryloxyalkyl; alkylthioalkyl;

alkylsulfinylalkyl; alkylsulfonylalkyl; carboxyalkyl; alkoxycarbonylalkyl; arylalkoxycarbonylalkyl; carbamoylalkyl; aminoalkyl; alkylaminoalkyl; dialkylaminoalkyl; alkoxycarbonylaminoalkyl; alkenyl; cycloalkyl; cycloalkylalkyl; and aryl or arylalkyl which are optionally substituted with halogen, hydroxy, alkyl, or alkoxy.

2. The ABC transporter inhibitor according to claim 1, wherein the cyclic depsipeptide is a compound of the formula (II):

wherein $R^{1'}$, $R^{3'}$ and $R^{5'}$ are each independently linear or branched lower(C_{1-4})alkyl.

- 3. The ABC transporter inhibitor according to claim 2, wherein the groups represented by $R^{1'}$, $R^{3'}$ and $R^{5'}$ are linear or branched propyl or butyl.
- 4. The ABC transporter inhibitor according to claim 3, wherein $R^{1'}$ and $R^{3'}$ are each isopyropyl, and $R^{5'}$ is any one of the

groups selected from isopropyl, sec-butyl, and isobutyl.

- 5. The ABC transporter inhibitor according to any one of claims 1 to 4, wherein the ABC transporter is MDR protein.
- 6. The ABC transporter inhibitor according to any one of claims 1 to 4, wherein the ABC transporter is CDR1 or CDR2 protein of Candida yeast.
- 7. The ABC transporter inhibitor according to any one of claims 1 to 4, wherein the ABC transporter is PDR5 protein of Saccharomyces yeast.
- 8. An inhibitor against the acquisition of drug resistance, which comprises as an active ingredient a cyclic depsipeptide or its optical isomer or racemate of the formula (I):

wherein R^1 , R^3 and R^5 are each independently a group selected from linear or branched alkyl having up to 8 carbon atoms;

hydroxyalkyl; alkanoyloxyalkyl; alkoxyalkyl; aryloxyalkyl; mercaptoalkyl; alkylthioalkyl; alkylsulfinylalkyl; alkylsulfonylalkyl; carboxyalkyl; alkoxycarbonylalkyl; arylalkoxycarbonylalkyl; carbamoylalkyl; aminoalkyl; alkylaminoalkyl; dialkylaminoalkyl; guanidinoalkyl; alkoxycarbonylaminoalkyl; 9-fluorenylmethoxycarbonyl(Fmoc)aminoalkyl; alkenyl; cycloalkyl; cycloalkylalkyl; and arylalkyl optionally substituted with halogen, hydroxy, alkyl, or alkoxy, and R², ${\ensuremath{\text{R}}}^4$ and ${\ensuremath{\text{R}}}^6$ are each independently a group selected from linear or branched alkyl having up to 8 carbon atoms; hydroxyalkyl; alkanoyloxyalkyl; alkoxyalkyl, aryloxyalkyl; alkylthioalkyl; alkylsulfinylalkyl; alkylsulfonylalkyl; carboxyalkyl; alkoxycarbonylalkyl; arylalkoxycarbonylalkyl; carbamoylalkyl; aminoalkyl; alkylaminoalkyl; dialkylaminoalkyl; alkoxycarbonylaminoalkyl; alkenyl; cycloalkyl; cycloalkylalkyl; and aryl or arylalkyl which are optionally substituted with halogen, hydroxy, alkyl, or alkoxy.