

New convex-based metamorphic relations and large scale ML model evaluation

The 37th International Conference on Testing Software and Systems
17 September 2025

Jessy COLONVAL¹ and Fabrice BOUQUET¹

¹Université Marie et Louis Pasteur, CNRS, insitut FEMTO-ST (UMR 6174), F-25000 Besancon, France

Table of contents

7

- Context
- State-of-the-art metamorphic relations
- Convex-based metamorphic relations
- Mon-convex metamorphic relations
- 5 Experimentations
- 6 Conclusion

Oracle problem

Oracle hypothesis: it's possible to determine if an output is correct

Oracle problem

Oracle hypothesis: it's possible to determine if an output is correct

In reality:

- no oracle;
- too difficult too implement.

Oracle problem

Oracle hypothesis: it's possible to determine if an output is correct

In reality:

- no oracle;
- too difficult too implement.

Machine learning models have an oracle problem!

Oracle problem

Metamorphic relations:

- No verification of each input / output;
- Verification of properties between input / output.
- Ligthen the problem of the oracle!

Table of contents

7

- Context
- State-of-the-art metamorphic relations
- Convex-based metamorphic relations
- Mon-convex metamorphic relations
- Experimentations
- Conclusion

Identity relation [5] — MR 1

When two models have the same:

- training algorithm;
- meta-parameters;
- data sets.

Identity relation [5] — MR 1

When two models have the same:

- training algorithm;
- meta-parameters;
- data sets.
- Outputs must be identical!

Points shuffle relation [9] — MR 2

	attr0	attr1	class	
	2.91	0.59	0	
}	2.14	-0.47	0	}···.
	:	:	:	
÷,	0.19	0.29	1	$: \longrightarrow$
··	1.12	0.95	2	k
	:	:	:	
	0.01	-1.42	3	
	3.67	2.13	3	

attr0	attr1	class
2.91	0.59	0
1.12	0.95	2
:	:	
0.19	0.29	1
2.14	-0.47	0
:	:	:
0.01	-1.42	3
3.67	2.13	3

Points shuffle relation [9] — MR 2

	attr0	attr1	class	
	2.91	0.59	0	
≯	2.14	-0.47	0	···
	:	:	:	
÷.	0.19	0.29	1	$: \Longrightarrow $
٠	1.12	0.95	2	⊀ ····
	:	:	:	
	0.01	-1.42	3	
	3.67	2.13	3	

attr0	attr1	class
2.91	0.59	0
1.12	0.95	2
:	:	:
0.19	0.29	1
2.14	-0.47	0
:	:	:
0.01	-1.42	3
3.67	2.13	3

Outputs must be identical!

Except when part of points are used.

Attributes shuffle [4,5] — MR 3

attr1	attr0	class
0.59	2.91	0
0.95	1.12	2
:	:	:
-1.42	0.01	3
2.13	3.67	3

Attributes shuffle [4,5] — MR 3

attr1	attr0	class
0.59	2.91	0
0.95	1.12	2
:	:	:
-1.42	0.01	3
2.13	3.67	3

Except when part of attributes are used.

Transformation relation [4,5] — MR 4

attr0	attr1	class
2.91	$0.59 + \alpha$	0
2.14	$-0.47 + \alpha$	0
:	:	:
0.01	$-1.42 + \alpha$	3
3.67	$2.13 + \alpha$	3

Transformation relation [4,5] — MR 4

	attr0	attr1	class
	2.91	$0.59 + \alpha$	0
	2.14	$-0.47 + \alpha$	0
•	:	:	:
	0.01	$-1.42 + \alpha$	3
	3.67	$2.13 + \alpha$	3

Class permutation relation [4,5] — MR 5

attr0	attr1	class
2.91	0.59	0
2.14	-0.47	0
:	:	:
0.01	-1.42	3
3.67	2.13	3

attr0	attr1	class
2.91	0.59	5
2.14	-0.47	5
:	:	:
0.01	-1.42	3
3.67	2.13	3

Class permutation relation [4,5] — MR 5

attr0	attr1	class
2.91	0.59	5
2.14	-0.47	5
:	:	i
0.01	-1.42	3
3.67	2.13	3

Table of contents

7

- Context
- State-of-the-art metamorphic relations
- Convex-based metamorphic relations
- Mon-convex metamorphic relations
- Experimentations
- Conclusion

Convex definition

Definition

A part H of \mathbb{R}^n said to be convex if, for all pairs (x,y) of elements of H, the segment [x,y] is entirely contained within H. In other words, H is convex when $\forall x,y\in H$ and $\forall \lambda\in[0;1], \lambda x+(1-\lambda)y\in H$ [10].

(a) A convex

(b) A non-convex

How they are created?

- ▶ Using the algorithm QuickHull nD (QHull¹).
- Approximation of influence areas of classes.

Membership relation — MR 6

Hypothesis:

- Convex = one area of class.
- Point inside similar characteristics.
 - identical class.

Superposition relation — MR 7

Observations:

- Shared areas.
- ▶ Which choice will the models make? ➡ We don't choose!

Attachment relation — MR 8

Hypothesis:

- Model extrapolation.
- Nearest convex(es) similar characteristics.
 - identical class.

Limits & Robustness

Tests evaluate values:

- within the limits;
- at the limits;
- off limits.

Limits & Robustness

Tests evaluate values:

- within the limits;
- at the limits;
- off limits.

Limits & Robustness

Tests evaluate values:

- within the limits;
- at the limits;
- off limits.

- in the domain;
- borders of the domain;
- outside the domain.

Models must:

- Do not produce an error: Robustness MR 9
- Do not produce an error when the value is outside the domain: **Boundary**

Robustness — MR 10

Illustration of the use of limits

Values:

all at the limits;

Illustration of the use of limits

Values:

- all at the limits;
- only one at the limits;

Illustration of the use of limits

Values:

- all at the limits;
- only one at the limits;
- one out of limits.

Table of contents

7

- Context
- State-of-the-art metamorphic relations
- Convex-based metamorphic relations
- Non-convex metamorphic relations
- 5 Experimentations
- 6 Conclusion

Non-convex metamorphic relations

Precision relation — MR 12

(a) Data set

(b) Expected predictions

Non-convex metamorphic relations

Outliers relation — MR 13

Origin:

- added to the dataset;
- already existing.

Non-convex metamorphic relations

Outliers relation — MR 13

Origin:

- added to the dataset:
- already existing.

Models shoudn't predict them correctly!

Table of contents

7

- Context
- State-of-the-art metamorphic relations
- Convex-based metamorphic relations
- Non-convex metamorphic relations
- Experimentations
- Conclusion

Experimentations

Synthetic data sets

Points	Attributes	Classes	Noises	Distribution	Ratio
s – 250	s – 10	b	n	ho	у
s – 250	m – 100	p – 5	y - 60%	he	n
s – 250	I – 1 000	b	y – 10%	ho	n
m – 25 000	s – 10	b	y – 60%	he	у
m – 25 000	m – 100	p – 5	y – 10%	ho	у
m – 25 000	I – 1 000	b	n	he	у
I – 125 000	s – 10	p – 5	y – 10%	he	у
I – 125 000	m – 100	b	y – 60%	ho	у
I – 125 000	m – 100	b	n	ho	у

Experimentations

Algorithms

5 paradigms:

- (1) decision trees;
- (2) support vector machines;
- (3) overall distribution of classes;
- (4) neural networks;
- ► (5) neighborhoods.

Experimentations

Results

Analysis:

- 2 failures MR 1;
- ▶ robustness ✓ ;
- too many failures -MR 5.

Table of contents

7

- Context
- State-of-the-art metamorphic relations
- 3 Convex-based metamorphic relations
- Mon-convex metamorphic relations
- Experimentations
- 6 Conclusion

Conclusion

- 5 state-of-the-art relations;
- 8 new metamorphic relations;
 - 6 based on convexes;
 - 2 not.
- evaluation of 21 algorithms with 70 276 models;
- revealed the probable existence of bugs.

Thanks for your attention!

Bibliography

- [4] X. Xie, J. W. K. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen, "Testing and validating machine learning classifiers by metamorphic testing," Journal of Systems and Software, vol. 84, pp. 544–558, Apr. 2011.
- [5] P. Saha and U. Kanewala, "Fault Detection Effectiveness of Metamorphic Relations Developed for Testing Supervised Classifiers," in 2019 IEEE International Conference On Artificial Intelligence Testing (AITest), pp. 157–164, Apr. 2019.
- [9] A. Dwarakanath, M. Ahuja, S. Sikand, R. M. Rao, R. P. J. C. Bose, N. Dubash, and S. Podder, "Identifying implementation bugs in machine learning based image classifiers using metamorphic testing," in Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2018, (New York, NY, USA), pp. 118–128, Association for Computing Machinery, July 2018.
- [10] V. Klee, "What Is a Convex Set?," The American Mathematical Monthly, vol. 78,pp. 616–631, June 1971.

