

About Delhivery

Delhivery is the largest and fastest-growing fully integrated player in India by revenue in Fiscal 2021. They aim to build the operating system for commerce, through a combination of world-class infrastructure, logistics operations of the highest quality, and cutting-edge engineering and technology capabilities.

The Data team builds intelligence and capabilities using this data that helps them to widen the gap between the quality, efficiency, and profitability of their business versus their competitors.

```
In [1]: # importing dependencies
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   import scipy.stats as stats

In [2]: from google.colab import drive
   drive.mount('/content/drive')
   Mounted at /content/drive

In [3]: # Load data set
   df = pd.read_csv('/content/drive/MyDrive/[01]DataScience/Data sets/Python files/CSV df.head()
```

]:		data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_cei
	0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121,
	1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121 <i>i</i>
	2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121,
	3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121,
	4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121,

5 rows × 24 columns

 \triangleleft

Out[3]

1. Basic data cleaning and Exploration

```
In [4]: # shape of data
       rows, cols = df.shape
        print('Total count of rows :', rows)
        print('Total count of columns :', cols)
       Total count of rows : 144867
       Total count of columns: 24
In [5]: # checking columns
        df.columns
       Out[5]:
              'destination_name', 'od_start_time', 'od_end_time',
              'start_scan_to_end_scan', 'is_cutoff', 'cutoff_factor',
              'cutoff_timestamp', 'actual_distance_to_destination', 'actual_time',
              'osrm_time', 'osrm_distance', 'factor', 'segment_actual_time',
              'segment_osrm_time', 'segment_osrm_distance', 'segment_factor'],
             dtype='object')
In [6]: # checking entire data set with info() function
        df.info()
```

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 144867 entries, 0 to 144866 Data columns (total 24 columns):

```
# Column
                                 Non-Null Count Dtype
--- -----
                                 -----
0
    data
                                 144867 non-null object
                                 144867 non-null object
1 trip_creation_time
2 route_schedule_uuid
                                144867 non-null object
3 route type
                                 144867 non-null object
4 trip_uuid
                                 144867 non-null object
5
   source_center
                                 144867 non-null object
6
   source_name
                                 144574 non-null object
7
                                144867 non-null object
   destination_center
8 destination name
                                144606 non-null object
   od start time
                                144867 non-null object
10 od_end_time
                                144867 non-null object
11 start_scan_to_end_scan
                               144867 non-null float64
                                 144867 non-null bool
12 is_cutoff
13 cutoff_factor
                                144867 non-null int64
14 cutoff_timestamp
                                144867 non-null object
15 actual_distance_to_destination 144867 non-null float64
16 actual_time
                                 144867 non-null float64
                                 144867 non-null float64
17 osrm time
                                 144867 non-null float64
18 osrm distance
19 factor
                                 144867 non-null float64
20 segment_actual_time
                                144867 non-null float64
21 segment_osrm_time
                                144867 non-null float64
                                144867 non-null float64
22 segment_osrm_distance
23 segment_factor
                                 144867 non-null float64
dtypes: bool(1), float64(10), int64(1), object(12)
```

memory usage: 25.6+ MB

checking number of unique values in each columns In [7]: df.nunique()

0

Out[7]:

	U
data	2
trip_creation_time	14817
route_schedule_uuid	1504
route_type	2
trip_uuid	14817
source_center	1508
source_name	1498
destination_center	1481
destination_name	1468
od_start_time	26369
od_end_time	26369
start_scan_to_end_scan	1915
is_cutoff	2
cutoff_factor	501
cutoff_timestamp	93180
$actual_distance_to_destination$	144515
actual_time	3182
osrm_time	1531
osrm_distance	138046
factor	45641
segment_actual_time	747
segment_osrm_time	214
segment_osrm_distance	113799
segment_factor	5675

dtype: int64

In [8]: # Let's drop some unknown columns
df.drop(columns=['is_cutoff','route_schedule_uuid', 'cutoff_factor','cutoff_timesta
df.head(3)

Out[8]:		data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_cei
	0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121,
	1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121,
	2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121,

3 rows × 24 columns

```
In [9]: #converting to catogorical value for data and route type
    df[["data","route_type"]] = df[["data","route_type"]].astype("category")

#converting into datetime
    df["trip_creation_time"] = pd.to_datetime(df["trip_creation_time"])
    df["od_start_time"] = pd.to_datetime(df["od_start_time"])
    df["od_end_time"] = pd.to_datetime(df["od_end_time"])
In [10]: # statistical summary
    df.describe()
```

od_end_time start_scan_to_end_scan Out[10]: trip_creation_time od_start_time cutoff_fa 144867 144867 144867 144867.000000 144867.00 count 2018-09-22 2018-09-22 2018-09-23 961.262986 232.92 mean 13:34:23.659819264 18:02:45.855230720 10:04:31.395393024 2018-09-12 2018-09-12 2018-09-12 20.000000 9.00 min 00:00:16.535741 00:00:16.535741 00:50:10.814399 2018-09-17 2018-09-17 2018-09-18 25% 161.000000 22.00 2018-09-22 2018-09-22 2018-09-23 50% 449.000000 66.00 04:24:27.932764928 2018-09-27 2018-09-27 2018-09-28 **75**% 1634.000000 286.00 17:57:56.350054912 22:41:50.285857024 12:49:06.054018048 2018-10-03 2018-10-06 2018-10-08 7898.000000 1927.00 max 23:59:42.701692 04:27:23.392375 03:00:24.353479 NaN NaN 1037.012769 344.75. std NaN

```
In [11]: df['data'].unique() # two different sets of data present
Out[11]: ['training', 'test']
Categories (2, object): ['test', 'training']
In [12]: # Let's find out percentage of training/test data in df
df['data'].value_counts(normalize=True)
```

 Out[12]:
 proportion

 data
 training

 test
 0.276177

dtype: float64

since data team wants to build a forecasting model on the data, data has been divided into 70 % -> training and 30 % -> testing data

```
In [13]: duration_data = df['od_end_time'].max() - df['trip_creation_time'].min()
    print('Total duration of data is :', duration_data)

Total duration of data is : 26 days 03:00:07.817738

In [14]: # Lets handle null values
    df.isna().sum()
```

Out[14]: 0

0 data trip_creation_time 0 route_schedule_uuid 0 0 route_type 0 trip_uuid source_center 0 293 source_name destination_center 0 destination_name 261 od_start_time 0 0 od_end_time start_scan_to_end_scan 0 is_cutoff cutoff_factor 0 cutoff_timestamp 0 $actual_distance_to_destination$ 0 actual_time 0 osrm_time osrm_distance 0 0 factor 0 segment_actual_time segment_osrm_time 0 0 segment_osrm_distance segment_factor

dtype: int64

```
In [15]: # percentage of null values
  null_percentage = df.isna().sum()/df.shape[0]*100
  null_percentage
```

Out[15]: 0

```
0.000000
                        data
           trip_creation_time
                              0.000000
                              0.000000
         route_schedule_uuid
                  route_type
                              0.000000
                    trip_uuid
                              0.000000
               source_center
                              0.000000
                              0.202254
                source_name
           destination_center
                              0.000000
            destination_name
                              0.180165
                od_start_time
                              0.000000
                od_end_time
                              0.000000
       start scan to end scan
                              0.000000
                              0.000000
                    is cutoff
                cutoff_factor
                              0.000000
                              0.000000
            cutoff_timestamp
actual_distance_to_destination
                              0.000000
                              0.000000
                  actual_time
                  osrm_time
                              0.000000
               osrm_distance
                              0.000000
                       factor
                              0.000000
         segment_actual_time
                              0.000000
                              0.000000
         segment_osrm_time
      segment_osrm_distance
                              0.000000
              segment_factor 0.000000
```

dtype: float64

```
In [16]: # two columns have null values -> sourcename, destinationname
# before dropping null values, let us find out missing values
source_centers = df.loc[df['source_name'].isnull(), 'source_center'].unique()
destination_centers = df.loc[df['destination_name'].isnull(), 'destination_center']

In [17]: print('source centers missing values')
print(source_centers)
print('destination centers missing values')
print(destination_centers)
```

```
source centers missing values
          ['IND342902A1B' 'IND577116AAA' 'IND282002AAD' 'IND465333A1B'
           'IND841301AAC' 'IND509103AAC' 'IND126116AAA' 'IND331022A1B'
           'IND505326AAB' 'IND852118A1B']
          destination centers missing values
          ['IND342902A1B' 'IND577116AAA' 'IND282002AAD' 'IND465333A1B'
           'IND841301AAC' 'IND505326AAB' 'IND852118A1B' 'IND126116AAA'
           'IND509103AAC' 'IND221005A1A' 'IND250002AAC' 'IND331001A1C'
           'IND122015AAC']
In [18]: # drop missing data
          drop_missing = df.dropna(axis=0, how='any', inplace=True)
          # after dropped missing, checking null count
In [19]:
          df.isna().sum()
                                     0
Out[19]:
                                     0
                                data
                    trip_creation_time
                  route_schedule_uuid
                           route_type
                                     0
                            trip_uuid
                        source center
                         source_name 0
                    destination center
                     destination_name
                        od start time 0
                         od_end_time 0
                start_scan_to_end_scan
                            is_cutoff 0
                         cutoff_factor 0
                     cutoff_timestamp
          actual_distance_to_destination
                          actual_time
                                     0
                           osrm_time
                        osrm_distance 0
                               factor 0
                  segment_actual_time 0
                   segment_osrm_time
                segment_osrm_distance
                       segment_factor
```

dtype: int64

```
In [20]: # Summary statistics
    df.describe()
```

start_scan_to_end_scan	od_end_time	od_start_time	trip_creation_time	
144316.000000	144316	144316	144316	count
963.697698	2018-09-23 09:36:54.057172224	2018-09-22 17:32:42.435769344	2018-09-22 13:05:09.454117120	mean
20.000000	2018-09-12 00:50:10.814399	2018-09-12 00:00:16.535741	2018-09-12 00:00:16.535741	min
161.000000	2018-09-18 01:29:56.978912	2018-09-17 07:37:35.014584832	2018-09-17 02:46:11.004421120	25%
451.000000	2018-09-23 02:49:00.936600064	2018-09-22 07:35:23.038482944	2018-09-22 03:36:19.186585088	50%
1645.000000	2018-09-28 12:13:41.675546112	2018-09-27 22:01:30.861209088	2018-09-27 17:53:19.027942912	75%
7898.000000	2018-10-08 03:00:24.353479	2018-10-06 04:27:23.392375	2018-10-03 23:59:42.701692	max
1038.082976	NaN	NaN	NaN	std
		_		
1	144316.000000 1 963.697698 20.000000 161.000000 451.000000 1645.000000 7898.000000	144316 144316.000000 1 2018-09-23 963.697698 09:36:54.057172224 963.697698 2018-09-12 20.000000 00:50:10.814399 20.000000 2018-09-18 161.000000 2018-09-23 451.000000 2018-09-28 1645.000000 12:13:41.675546112 7898.000000 2018-10-08 7898.000000	144316 144316 144316.000000 1 2018-09-22 2018-09-23 963.697698 17:32:42.435769344 09:36:54.057172224 963.697698 2018-09-12 2018-09-12 20.000000 00:00:16.535741 00:50:10.814399 20.000000 2018-09-17 2018-09-18 161.000000 07:37:35.014584832 01:29:56.978912 451.000000 2018-09-22 2018-09-23 451.000000 07:35:23.038482944 02:49:00.936600064 451.000000 2018-09-27 2018-09-28 12:13:41.675546112 1645.000000 2018-10-06 2018-10-08 7898.000000 04:27:23.392375 03:00:24.353479 7898.000000	144316 144316 144316 144316.000000 1 2018-09-22 2018-09-22 2018-09-23 963.697698 13:05:09.454117120 17:32:42.435769344 09:36:54.057172224 963.697698 2018-09-12 2018-09-12 2018-09-12 20.000000 00:00:16.535741 00:00:16.535741 00:50:10.814399 20.000000 2018-09-17 2018-09-17 2018-09-18 161.000000 02:46:11.004421120 07:37:35.014584832 01:29:56.978912 161.000000 2018-09-22 2018-09-22 2018-09-23 451.000000 03:36:19.186585088 07:35:23.038482944 02:49:00.936600064 451.000000 2018-09-27 2018-09-27 2018-09-28 12:13:41.675546112 1645.000000 2018-10-03 2018-10-06 2018-10-08 7898.000000 23:59:42.701692 04:27:23.392375 03:00:24.353479 7898.000000

2. Build some features to prepare the data for actual analysis. Extract features from the below fields:

```
# grouping data on trip_uuid, socurce center and destination center
          merged_df = df.groupby(by=['trip_uuid', 'source_center', 'destination_center'],
                                 axis=0, as_index=False).agg({'data':'first',
                                                               'route_type' : 'first',
                                                               'trip_creation_time' : 'first',
                                                               'source_name' : 'first',
                                                               'destination name' : 'last',
                                                               'od_start_time' : 'first',
                                                               'od_end_time' : 'last',
                                                               'start_scan_to_end_scan' : 'las
                                                               'actual_distance_to_destinatior
                                                               'actual_time' : 'last',
                                                               'osrm time' : 'last',
                                                               'osrm_distance' : 'last',
                                                               'segment_actual_time' : 'sum',
                                                               'segment_osrm_time' : 'sum',
                                                               'segment_osrm_distance' : 'sum'
          <ipython-input-21-979ef486d6d8>:2: FutureWarning: The 'axis' keyword in DataFrame.
         groupby is deprecated and will be removed in a future version.
           merged_df = df.groupby(by=['trip_uuid', 'source_center', 'destination_center'],
In [22]: merged_df.head()
```

```
Out[22]:
                        trip uuid
                                   source center destination center
                                                                      data route type trip creation time
                                                                                              2018-09-12
                            trip-
                                  IND209304AAA
                                                     IND00000ACB training
                                                                                   FTL
              153671041653548748
                                                                                          00:00:16.535741
                                                                                              2018-09-12
                             trip-
                                  IND462022AAA
                                                     IND209304AAA training
                                                                                   FTL
              153671041653548748
                                                                                          00:00:16.535741
                                                                                              2018-09-12
                            trip-
                                  IND561203AAB
                                                     IND562101AAA training
                                                                                Carting
              153671042288605164
                                                                                          00:00:22.886430
                                                                                              2018-09-12
                            trip-
                                  IND572101AAA
                                                     IND561203AAB training
                                                                                Carting
              153671042288605164
                                                                                          00:00:22.886430
                                                                                              2018-09-12
                            trip-
                                  IND00000ACB
                                                     IND160002AAC training
                                                                                   FTL
              153671043369099517
                                                                                          00:00:33.691250
In [23]:
           merged_df['od_total_time(mins)'] = (merged_df['od_end_time'] - merged_df['od_start_
           merged_df.head(3)
                                   source center destination center
Out[23]:
                        trip uuid
                                                                      data
                                                                            route_type
                                                                                       trip_creation_time
                                                                                              2018-09-12
                            trip-
                                                     IND00000ACB training
                                  IND209304AAA
                                                                                   FTL
              153671041653548748
                                                                                          00:00:16.535741
                            trip-
                                                                                              2018-09-12
                                  IND462022AAA
                                                     IND209304AAA training
                                                                                   FTL
              153671041653548748
                                                                                          00:00:16.535741
                                                                                              2018-09-12
                                  IND561203AAB
                                                     IND562101AAA training
                                                                                Carting
              153671042288605164
                                                                                          00:00:22.886430
In [24]:
           # grouping the data on trip unique ID
           new_df = merged_df.groupby(by = ["trip_uuid"],
                                     axis = 0,
                                     as_index = False).agg({'data' : 'first',
                                                               'route_type' : 'first',
'trip_creation_time' : 'first',
                                                                'source_name' : 'first',
                                                                'destination_name' : 'last',
                                                                'od_total_time(mins)' : 'last',
                                                                'start scan to end scan' : 'last',
                                                                'actual distance to destination' : 'l
                                                                'actual_time' : 'last',
'osrm_time' : 'last',
                                                                'osrm_distance' : 'last',
                                                                'segment_actual_time' : 'sum',
                                                                'segment osrm time' : 'sum',
                                                                'segment_osrm_distance' : 'sum'})
           <ipython-input-24-873bf041ab84>:2: FutureWarning: The 'axis' keyword in DataFrame.
           groupby is deprecated and will be removed in a future version.
             new_df = merged_df.groupby(by = ["trip_uuid"],
           new df.head()
In [25]:
```

```
Out[25]:
                       trip uuid
                                   data route type trip creation time
                                                                                               desti
                                                                             source name
                                                         2018-09-12
                                                                         Kanpur Central H 6
                                                                                               Kanpu
                           trip-
                                training
                                               FTL
             153671041653548748
                                                      00:00:16.535741
                                                                            (Uttar Pradesh)
                                                                                                  (1
                                                                    Doddablpur ChikaDPP D
                                                         2018-09-12
                           trip-
                                                                                          Doddablpu
                                training
                                            Carting
             153671042288605164
                                                      00:00:22.886430
                                                                               (Karnataka)
                                                                       Gurgaon_Bilaspur_HB
                                                         2018-09-12
                                                                                             Gurgao
                                training
                                               FTL
             153671043369099517
                                                      00:00:33.691250
                                                                                 (Haryana)
                                                         2018-09-12
                                                                              Mumbai Hub
                                                                                               Mum
                           trip-
                                training
                                            Carting
             153671046011330457
                                                      00:01:00.113710
                                                                             (Maharashtra)
                                                         2018-09-12
                                                                                             Sandur
                           trip-
                                                                       Bellary Dc (Karnataka)
                                               FTL
                                training
             153671052974046625
                                                      00:02:09.740725
In [26]:
          # New feature extraction from source
          # source state # destination state # source city # destination city
          import re
In [27]:
In [28]:
          # Define the function to extract state
          def extract_state(location):
              # Regex pattern to extract text inside parentheses
              match = re.search(r"\((.*?)\)", location)
              if match:
                   return match.group(1)
              return None
          new_df['source_state'] = new_df['source_name'].apply(extract_state)
In [29]:
          new_df['source_state'].unique()
          array(['Uttar Pradesh', 'Karnataka', 'Haryana', 'Maharashtra',
Out[29]:
                  'Tamil Nadu', 'Gujarat', 'Delhi', 'Telangana', 'Rajasthan',
                  'Assam', 'Madhya Pradesh', 'West Bengal', 'Andhra Pradesh',
                  'Punjab', 'Chandigarh', 'Goa', 'Jharkhand', 'Pondicherry',
                  'Orissa', 'Uttarakhand', 'Himachal Pradesh', 'Kerala',
                  'Arunachal Pradesh', 'Bihar', 'Chhattisgarh',
                  'Dadra and Nagar Haveli', 'Jammu & Kashmir', 'Mizoram', 'Nagaland'],
                 dtype=object)
          new_df["destination_state"] = new_df["destination_name"].apply(extract_state)
In [30]:
          new_df["destination_state"].unique()
          array(['Uttar Pradesh', 'Karnataka', 'Haryana', 'Maharashtra',
Out[30]:
                  'Tamil Nadu', 'Gujarat', 'Delhi', 'Telangana', 'Rajasthan',
                  'Madhya Pradesh', 'Assam', 'West Bengal', 'Andhra Pradesh',
                  'Punjab', 'Chandigarh', 'Dadra and Nagar Haveli', 'Orissa',
                  'Bihar', 'Jharkhand', 'Goa', 'Uttarakhand', 'Himachal Pradesh',
                  'Kerala', 'Arunachal Pradesh', 'Mizoram', 'Chhattisgarh',
                  'Jammu & Kashmir', 'Nagaland', 'Meghalaya', 'Tripura',
                  'Daman & Diu'], dtype=object)
          new df.head(2)
In [31]:
```

```
Out[31]:
                       trip uuid
                                   data route_type trip_creation_time
                                                                                                 desti
                                                                              source name
                           trip-
                                                          2018-09-12
                                                                          Kanpur Central H 6
                                                                                                Kanpu
                                               FTL
                                 training
             153671041653548748
                                                      00:00:16.535741
                                                                             (Uttar Pradesh)
                                                                                                    (1
                                                          2018-09-12 Doddablpur_ChikaDPP_D Doddablpu
                           trip-
                                 training
                                            Carting
             153671042288605164
                                                      00:00:22.886430
                                                                                 (Karnataka)
          cities = new_df['source_name'].str.split().str[0].str.split('_').str[0].unique()
In [32]:
          cities[:5]
In [33]:
          array(['Kanpur', 'Doddablpur', 'Gurgaon', 'Mumbai', 'Bellary'],
Out[33]:
                 dtype=object)
In [34]:
          city = []
          for i in cities:
            if len(i) > 3:
              pass
            else:
               city.append(i)
In [35]:
          city
          ['HBR',
Out[35]:
           'FBD',
           'CCU',
            'Goa',
            'MAA',
           'BOM',
           'Pen',
           'AMD',
           'BLR',
           'PNQ',
           'OK',
            'Del',
           'GZB',
           'Hyd',
            'Wai',
           'GGN',
           'Cjb',
           'Amd',
           'Blr',
           'Mau']
          #function to convert cities with 3 Letter short code name
In [36]:
          def city(city):
            c = city.split()[0].split('_')[0]
            if 'CCU' in city:
               return 'Kolkata'
            elif 'MAA' in city.upper():
               return 'Chennai'
            elif ('HBR' in city.upper()) or ('BLR' in city.upper()):
              return 'Bengaluru'
            elif 'FBD' in city.upper():
               return 'Faridabad'
            elif 'BOM' in city.upper():
               return 'Mumbai'
            elif 'DEL' in city.upper():
               return 'Delhi'
            elif 'OK' in city.upper():
```

```
return 'Delhi'
elif 'GZB' in city.upper():
 return 'Ghaziabad'
elif 'GGN' in city.upper():
 return 'Gurgaon'
elif 'AMD' in city.upper():
 return 'Ahmedabad'
elif 'CJB' in city.upper():
 return 'Coimbatore'
elif 'HYD' in city.upper():
 return 'Hyderabad'
elif "GOA" in city.upper():
 return "Goa"
elif "PNQ" in city.upper():
  return "Pune"
else:
  return c
```

```
In [37]: #extraction of city from source and destination name
  new_df["source_city"] = new_df["source_name"].apply(city)
  new_df["destination_city"] = new_df["destination_name"].apply(city)
  new_df["source_city"].unique()
```

array(['Kanpur', 'Doddablpur', 'Gurgaon', 'Mumbai', 'Bellary', 'Chennai', Out[37]: 'Bengaluru', 'Surat', 'Delhi', 'Pune', 'Faridabad', 'Shirala', 'Hyderabad', 'Thirumalagiri', 'Gulbarga', 'Jaipur', 'Allahabad', 'Guwahati', 'Narsinghpur', 'Shrirampur', 'Madakasira', 'Sonari', 'Dindigul', 'Jalandhar', 'Chandigarh', 'Deoli', 'Pandharpur', 'Kolkata', 'Bhandara', 'Kurnool', 'Bhiwandi', 'Bhatinda', 'RoopNagar', 'Bantwal', 'Lalru', 'Kadi', 'Shahdol', 'Gangakher', 'Durgapur', 'Vapi', 'Jamjodhpur', 'Jetpur', 'Mehsana', 'Jabalpur', 'Junagadh', 'Gundlupet', 'Mysore', 'Goa', 'Bhopal', 'Sonipat', 'Himmatnagar', 'Jamshedpur', 'Pondicherry', 'Anand', 'Udgir', 'Nadiad', 'Villupuram', 'Purulia', 'Bhubaneshwar', 'Bamangola', 'Tiruppattur', 'Kotdwara', 'Medak', 'Bangalore', 'Dhrangadhra', 'Hospet', 'Ghumarwin', 'Agra', 'Sitapur', 'Bilimora', 'SultnBthry', 'Lucknow', 'Vellore', 'Bhuj', 'Dinhata', 'Margherita', 'Boisar', 'Vizag', 'Tezpur', 'Koduru', 'Tirupati', 'Pen', 'Ahmedabad', 'Faizabad', 'Gandhinagar', 'Anantapur', 'Betul', 'Panskura', 'Rasipurm', 'Sankari', 'Jorhat', 'Srikakulam', 'Dehradun', 'Jassur', 'Sawantwadi', 'Shajapur', 'Ludhiana', 'GreaterThane', 'Tirupur', 'Salem', 'Darjeeling', 'Tiruchi', 'Noida', 'Thiruvarur', 'Ranchi', 'Guna', 'Raver', 'Jairampur', 'Chamoli', 'Pali', 'Kamareddy', 'Gopiganj', 'Varanasi', 'Dharmapuri', 'Hubli', 'Duddhi', 'Sasaram', 'Davangere', 'Panipat', 'Chittaurgarh', 'Solapur', 'Pratapgarh', 'Vinukonda', 'Ongole', 'LowerParel', 'Sagara', 'Tikamgarh', 'Ghaziabad', 'Chhapra', 'BiharSarif', 'Pallakad', 'Kanakapura', 'Mangalore', 'Aurangabad', 'Barh', 'Coimbatore', 'Bhadrak', 'Narnaul', 'Hisar', 'Bihta', 'Silchar', 'Sillod', 'Nellore', 'Katwa', 'Thamarassery', 'Safidon', 'Vijayawada', 'Machilipatnam', 'Nazirpur', 'Vikarabad', 'Rampurhat', 'Visakhapatnam', 'Lalgola', 'Rampur', 'Kakinada', 'Amalapuram', 'Muzaffrpur', 'Kalka', 'Buldhana', 'Karad', 'JoguGadwal', 'Madhepura', 'Simrahi', 'Atmakur', 'Hassan', 'Chikodi', 'Rohtak', 'Patiala', 'Ajmer', 'Channaraya', 'Naugchia', 'Ambala', 'Korba', 'Pithorgarh', 'Deoghar', 'Alwar', 'Gorakhpur', 'Bhatpara', 'Dumka', 'Bahadurgarh', 'Kanth', 'Nichlaul', 'Warangal', 'Aonla', 'Dhar', 'Bagnan', 'Naraingarh', 'Kashipur', 'Ratanpura', 'Gondia', 'Zahirabad', 'Samana', 'Bhadrachalam', 'Baraut', 'Sikar', 'Jamnagar', 'Kakdwip', 'Gadarwara', 'Gwalior', 'Akola', 'Kalluvathukal', 'Surendranagar', 'Buxar', 'Trivandrum', 'Etawah', 'Bhagalpur', 'Vadodara', 'Chhata', 'Luxettipet', 'Mancherial', 'Kottayam', 'Parakkdavu', 'Pthnmthitt', 'Dhule', 'DehriSone', 'Brahmapuri', 'Ramagundam', 'Gomoh', 'Kollam', 'Wardha', 'Barnala', 'Latur', 'Ghatampur', 'Upleta', 'Khammam', 'Akbarpur', 'Bhanvad', 'Basti', 'Mussoorie', 'Kalpetta', 'Phalodi', 'Guskhara', 'Mainaguri', 'Gosainganj', 'Bhusawal', 'Nalbari', 'Talegaon', 'SrinagarUK', 'Shimoga', 'Bailhongal', 'Gonda', 'Manapparai', 'Udaipur', 'Ghazipur', 'Guruvayoor', 'Chetpet', 'Wai', 'Karkala', 'Patancheru', 'Kumbakonam', 'Rameswram', 'Shirur', 'Degana', 'Pattukotai', 'Srisailam', 'Lalpet', 'Madurai', 'Sathyamangalam', 'Usilampatti', 'Khurai', 'Nuzvid', 'Koppa', 'Tiptur', 'Rajamundry', 'Haveri', 'Dumraon', 'Machhiwara', 'NeemKaThana', 'Baheri', 'Dharapuram', 'Mohania', 'Bilaspur' 'Naugarh', 'Patran', 'Mahbubabad', 'Tirunelveli', 'Bhavnagar', 'Dhanbad', 'Mahadevpur', 'Puttur', 'Jammikunta', 'Narsingpur', 'Jagtial', 'Manthani', 'Aligarh', 'Rudrapur', 'Manamelkudi', 'Malegaon' 'Sindhanun' 'Munhad' 'Madebal' 'Madebal' 'Manamelkudi', 'Malegaon', 'Sindhanur', 'Murbad', 'Medchal', 'Kanker', 'Unjha', 'Khambhat', 'Malda', 'Haridwar', 'Anjar', 'Pathankot', 'Bhubaneswar', 'Sholinghur', 'Jhansi', 'Silvassa', 'Balasore', 'Nagaur', 'Bhilwara', 'Ghanpur', 'Achrol', 'Hazaribag', 'Dharwad', 'Chhatarpur', 'Arrah', 'Udupi', 'Gooty', 'Bareilly', 'Kallachi', 'Devarakonda', 'Mahabubnagar', 'Hailakandi', 'Jeypore', 'Wanaparthy', 'Ramnthpurm', 'Sitamari', 'Makrana', 'Sankaramangalam', 'Ratnagiri', 'Meerut', 'Chikhli', 'Cumbum', 'Sakleshpur', 'Anthiyour', 'Khanna', 'Bharatpur', 'Bina', 'Lonavala', 'AurngbadBR', 'Ambah', 'Amreli', 'Dadri',

'SikandraRao', 'Kaman', 'Pukhrayan', 'Raichur', 'Raipur', 'Bellmpalli', 'Chinnur', 'Bankura', 'Bareli', 'Panagarh', 'Chhindwara', 'Mananthavady', 'Kharagpur', 'JognderNgr', 'Phagwara', 'Srivijaynagar', 'Thoppur', 'Bongaigaon',
'Rajgurunagar', 'Deoband', 'Chopan', 'Chomu', 'Satara', 'Rewari',
'Mainpuri', 'Nandigama', 'Kolhapur', 'Tirurangadi', 'Vadakara', 'Mariani', 'Baharampur', 'Almora', 'Sonepur', 'Karnal', 'Bettiah', 'YamunaNagar', 'Godda', 'Ratlam', 'Sagar', 'Kaptanganj', 'Katni', 'Umaria', 'Sambhal', 'Sitarganj', 'Vaijiapur', 'Akhnoor', 'Ashta', 'Aluva', 'ChrkhiDdri', 'Kattappana', 'Dharamshala', 'Dausa', 'Katihar', 'Shirpur', 'Bangarapet', 'Dwarka', 'Bagepalli', 'Khurja', 'Haldwani', 'Asangaon', 'Moodbidri', 'Deesa', 'Kodaikanal', 'Bhabhar', 'Khedbrahma', 'Kodinar', 'RaisingNgr', 'Mejia', 'Vidisha', 'Jammu', 'Malvan', 'Roha', 'Hoskote', 'Tezu', 'Hooghly', 'Mau', 'Sujangarh', 'Gohpur', 'Peterbar', 'Thrissur', , 'Polur', 'Ankola', 'Kanhangad', 'Chalakudy', 'Midnapore', 'Rajgir' 'Mungeli', 'Palampur', 'Mungaoli', 'SirhindFatehgarh', 'Jangipur', 'DalsinghSarai', 'Bewar', 'Pakur', 'Jasai', 'Kankavali', 'Hapur', 'Nanded', 'Palani', 'Palanpur', 'Narsapur', 'Dalkhola', 'Purnia', 'Airport', 'Kalpakkam', 'MughalSarai', 'Dohrighat', 'Manthuka', 'Bishwanath', 'Tulsipur', 'Aizawl', 'Tirur', 'Cochin', 'Uchila', 'Shevgaon', 'Athani', 'Amravati', 'Nilambur', 'Karimganj', 'Shamli', 'HanumanJNC', 'Bikramgang', 'Fatepur', 'Gangarampr', 'Itahar', 'Lakhnadon', 'Manikchak', 'Sihora', 'Jamtara', 'Giridih', 'Alappuzha', 'Bethamangala', 'Rajkot', 'Gola', 'Majalgaon', 'Hanumangarh', 'Kapurthala', 'Barmer', 'Tamluk', 'Palakonda', 'Mahad', 'Chamba', 'Krishnagiri', 'Tirchngode', 'Dholpur', 'Kabuganj', 'Bhadohi', 'Madnapalle', 'Kundapura', 'Irinjlkuda', 'Chapra', 'Lalitpur', 'Murshidabad', 'Bijapur', 'Beed', 'Madhupur', 'Hajipur', 'Khurdha', 'Wankaner', 'Hindupur', 'Bulndshahr', 'Aland', 'BariSadri', 'Husnabad', 'Bhuvanagiri', 'Islampure', 'Manjhaul', 'Bikaner', 'Siwan', 'Rupnarayanpur', 'Plassey', 'Mylduthuri', 'Modinagar', 'Nowda', 'Theni', 'Sagardighi', 'PaontSahib', 'Kaliyaganj', 'Taranagar', 'Jath', 'Chiplun', 'Suratgarh', 'Khonsa', 'Talala', 'Vadnagar', 'Arambag', 'Haldia', 'Sehore', 'Hura', 'Erode', 'Gadag', 'Shahganj', 'Balrampur', 'Mehkar', 'Kalyandurg', 'Berhampore', 'Dhaka', 'Bassi', 'Ukkadagatri', 'Sultana', 'Banka', 'Asifabad', 'Sivasagar', 'Jodhpur', 'Khatra', 'LakhimpurN', 'Kishangarh', 'Narktiganj', 'Aliganj', 'Bongaon', 'Nedumangad', 'Chandausi', 'Sujanpur', 'Karukachal', 'Kamarpukur', 'Keshiary', 'Firozabad', 'Melur', 'Thuraiyur', 'Nakashipara', 'Nasirabad', 'Nagamangala', 'Morgram', 'Triveninganj', 'Barhi', 'Bhatiya', 'Chotila', 'Falna', 'Kopargaon', 'Karimnagar', 'AnandprShb', 'Tinusukia', 'Modasa', 'Palasa', 'Dahanu', 'Gudur', 'Khanapur', 'Udala', 'Kathua', 'Moga', 'Ganga', 'Khed', 'Brajrajnagar', 'Sambalpur', 'Ghanashyampur', 'Seoni', 'Rajpura', 'Kadaba', 'Sangola', 'Jaleswar', 'Bhilad', 'Umreth', 'Pachore', 'Shegaon', 'Sundargarh', 'Sunam', 'Morbi', 'Fatehabad', 'Mundakayam', 'Vrindavan', 'Jalalabad', 'Angamaly', 'Asansol', 'Kadiri', 'Vadakkencherry', 'Balangir', 'Raxaul', 'Sirohi', 'Manmad', 'Halvad', 'Nagpur', 'Shoranur', 'Kaithal' 'Ranaghat', 'Sakri', 'Bangana', 'Kangayam', 'Palitana', 'Valsad', 'Dabhoi', 'Muktsar', 'Jhunir', 'Bheemunipatnam', 'Sedam', 'Virudhchlm', 'Gangavathi', 'Moradabad', 'Karanjia', 'Chimkurthy', 'Phusro', 'Jhajjar', 'Kozhikode', 'Kottarakkara', 'Shikohabad', 'Munger', 'Chhaygaon', 'Hathras', 'Kusumnchi', 'Pauri',
'Rishikesh', 'Khatauli', 'Baddi', 'Mandi', 'Merta', 'Kuthuparamba',
'Kaghaznagar', 'Auraiya', 'Giddarbaha', 'Paradip', 'Jharsuguda',
'Gobicheti', 'Arakkonam', 'Pilani', 'Simlapal', 'Baripada', 'Cuttack', 'Saharsa', 'Rajgarh', 'Durg', 'Balurghat', 'Dola', 'Pappadahandi', 'Sinnar', 'Barasat', 'Khanakul', 'Sendhwa', 'Ramgarh', 'BilaspurHP', 'Sidhmukh', 'Angul', 'SawaiMadhopur', 'Ambegaon', 'Thakurdwara', 'Malemruvathur', 'Bishnupur', 'Dhoraji',

'Meham', 'Uthangarai', 'Shadnagar', 'Bhiwani', 'Mahasamund', 'Mandla', 'Phulera', 'Sandur'], dtype=object)

```
In [38]: #extraction of year,month, day, weekday
    new_df['trip_creation_date'] = pd.to_datetime(new_df['trip_creation_time'].dt.date)
    new_df['trip_creation_year'] = new_df['trip_creation_time'].dt.wonth
    new_df['trip_creation_month'] = new_df['trip_creation_time'].dt.month
    new_df['trip_completion_month'] = df['od_end_time'].dt.month
    new_df['trip_creation_day'] = new_df['trip_creation_time'].dt.day
    new_df['trip_creation_weekday'] = new_df['trip_creation_time'].dt.day_name()
    new_df['trip_end_weekday'] = df['od_end_time'].dt.day_name()
    new_df['trip_end_day'] = df['od_end_time'].dt.day
```

In [39]: new_df.head(2)

Out[39]:		trip_uuid	data	route_type	trip_creation_time	source_name	desti
	0	trip- 153671041653548748	training	FTL	2018-09-12 00:00:16.535741	Kanpur_Central_H_6 (Uttar Pradesh)	Kanpu (I
	1	trip- 153671042288605164	training	Carting	2018-09-12 00:00:22.886430	Doddablpur_ChikaDPP_D (Karnataka)	Doddablpu

2 rows × 27 columns

```
#Setting Up Weekday Categories
In [40]:
         cats = [ 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunda
         # to check trip creation distribution through the weekdays
         daily_trip = new_df.groupby(by = 'trip_creation_weekday')['trip_uuid'].count().reir
         # to check trip end distribution through the weekdays
         daily_trip_end = new_df.groupby(by = 'trip_end_weekday')['trip_uuid'].count().reinc
         # to check trip creation distribution through the month time
         monthly_trip = new_df.groupby(by = 'trip_creation_day')['trip_uuid'].count().reset_
         # to check trip end distribution through the month time
         monthly_trip_end = new_df.groupby(by = 'trip_end_day')['trip_uuid'].count().reset_i
         # trips created during month
         monthly_created_trip = new_df.groupby(by = 'trip_creation_month')['trip_uuid'].cour
         monthly completed trip = new df.groupby(by = 'trip completion month')['trip uuid']
In [41]: # visualizations for trips
         plt.figure(figsize = (15, 10))
         plt.subplot(2,2,1)
         sns.lineplot(data = daily_trip,x = daily_trip['trip_creation_weekday'],y = daily_tr
         sns.lineplot(data = daily trip end,x = daily trip end['trip end weekday'],y = daily
         plt.title("trip creation and end during week")
         plt.subplot(2,2,2)
         sns.lineplot(data = monthly_trip,x = monthly_trip['trip_creation_day'],y = monthly_
         sns.lineplot(data = monthly_trip_end,x = monthly_trip_end['trip_end_day'],y = month
         plt.title("trip creation and end during month")
         plt.subplot(2,2,3)
         sns.barplot(data = monthly_created_trip,x = monthly_created_trip["trip_creation_mor
         sns.barplot(data = monthly_completed_trip, x =monthly_completed_trip["trip_completi
```

plt.title("trip created and completed during 9th and 10th months")
plt.show()

1. Highest number of trip cretion is being done on wednesday and highest number of trip completion is being done on wednesday and saturday

10.0

- 2. Highest number of trip cretion and trip complete is being done during mid month and start decresing after that. Very low trip completion during 2nd week of month
- 3. Highest number of trips are created and completed in 9th month

9.0

trip creation month

```
In [43]: plt.figure(figsize = (15, 5))
    plt.subplot(1,2,1)
    sns.barplot(data = trip_data,x = trip_data["data"],y = (trip_data['trip_uuid'] * 16
    plt.title("trip data")

plt.subplot(1,2,2)
    sns.barplot(data = trip_route,x = trip_route["route_type"],y = (trip_route['trip_uuplt.title("trip detail about routes")
    plt.show()
```


- 1. 70 % data is training data set
- 2. 60 % trips are made through carting route

```
In [46]: total_city_trip = city_source_destination_trip.groupby(by="city")["total_city_trips
    total_city_trip = total_city_trip.sort_values(ascending = False)

total_city_trip["Bengaluru"] = total_city_trip["Bengaluru"] + total_city_trip["Bangatotal_city_trip = total_city_trip.head(10).drop("Bangalore")
    total_city_trip
```

Out [46]: total_city_trips

city	
Mumbai	2990.0
Gurgaon	2090.0
Bengaluru	2899.0
Delhi	1663.0
Chennai	1163.0
Bhiwandi	1131.0
Hyderabad	1027.0
Pune	981.0
Kolkata	740.0

dtype: float64

```
In [47]: #barplot for top 10 cities according to total trips
         plt.figure(figsize = (15, 10))
         sns.set(style="whitegrid")
         sorted_values = total_city_trip.sort_values(ascending = False).index
         # Create a bar chart with state on the x-axis and the count on the y-axis
         barplot = sns.barplot(x="city", y="total_city_trips", data=total_city_trip.reset_ir
         # Rotate the x-axis labels for better readability
         plt.xticks(rotation=90)
         # Add a title and labels for the axes
         plt.title("top 10 cities according to total trips")
         plt.xlabel("city")
         plt.ylabel("total trips")
         plt.show()
         <ipython-input-47-5a293d5ef9cc>:8: FutureWarning:
         Passing `palette` without assigning `hue` is deprecated and will be removed in v0.
         14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.
           barplot = sns.barplot(x="city", y="total_city_trips", data=total_city_trip.reset
         _index(), order=sorted_values, palette="cividis")
```


Based on the above graph, Mumbai, Bengaluru and Gurgaon do the heighest number of trip creation and trip delivery

Out[49]:

	state	total_state_trips
0	Andhra Pradesh	877.0
1	Arunachal Pradesh	29.0
2	Assam	500.0
3	Bihar	718.0
4	Chandigarh	158.0
5	Chhattisgarh	86.0
6	Dadra and Nagar Haveli	32.0
7	Delhi	1382.0
8	Goa	117.0
9	Gujarat	1484.0
10	Haryana	3463.0
11	Himachal Pradesh	76.0
12	Jammu & Kashmir	37.0
13	Jharkhand	341.0
14	Karnataka	4437.0
15	Kerala	559.0
16	Madhya Pradesh	668.0
17	Maharashtra	5275.0
18	Mizoram	10.0
19	Nagaland	6.0
20	Orissa	226.0
21	Pondicherry	12.0
22	Punjab	1153.0
23	Rajasthan	1064.0
24	Tamil Nadu	2123.0
25	Telangana	1568.0
26	Uttar Pradesh	1565.0
27	Uttarakhand	236.0
28	West Bengal	1362.0

```
In [50]: #barplot for state wise total trips
plt.figure(figsize = (15, 10))
sns.set(style="whitegrid")

sorted_values = total_state_trip.sort_values(ascending = False).index

# Create a bar chart with state on the x-axis and the count on the y-axis
barplot = sns.barplot(x="state", y="total_state_trips", data=total_state_trip.reset

# Rotate the x-axis labels for better readability
```

```
plt.xticks(rotation=90)

# Add a title and Labels for the axes
plt.title("Total trips by State")
plt.xlabel("State")
plt.ylabel("total trips")
plt.show()
```

<ipython-input-50-fac1c81c2838>:8: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0. 14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

barplot = sns.barplot(x="state", y="total_state_trips", data=total_state_trip.re
set_index(), order=sorted_values, palette="viridis")

In [52]: df_corr = new_df[pairplot_columns].corr()
df_corr

Out[52]:

od total time(mins) 1.000000 1.000000 28.0 start_scan_to_end_scan 1.000000 1.000000 0.85 actual_distance_to_destination 1.00 0.852371 0.852376 actual time 0.962198 0.962201 0.89 osrm_time 0.924495 0.924501 0.94 osrm_distance 0.924276 0.924282 0.94 segment_actual_time 0.815792 0.815794 0.72 segment_osrm_time 0.791690 0.791695 0.76 0.77 segment_osrm_distance 0.799721 0.799726 plt.figure(figsize = (15, 10)) In [53]: sns.heatmap(data = df_corr, annot = True, cmap="coolwarm") plt.show() 1.00 od_total_time(mins) 0.85 0.92 0.92 0.82 0.79 0.8 0.85 0.92 0.92 0.82 0.79 0.8 start scan to end scan - 0.95 actual distance to destination 0.85 0.85 0.9 - 0.90 0.9 actual_time 0.84 0.81 0.82 osrm_time 0.92 0.92 0.81 0.85 0.85 - 0.85 0.81 0.85 osrm_distance 0.82 0.81 0.81 segment_actual_time 0.84 - 0.80 0.79 0.81 0.85 0.79 0.85 segment osrm time 0.75 segment_osrm_distance 0.8 0.8 0.82 0.85 0.86 segment_osrm_time segment osrm distance od total time(mins) start_scan_to_end_scan segment_actual_time actual distance to destination

od total time(mins) start scan to end scan actual distance to destin

• All correlation values are between 0.7 to 1 hence all columns shows a correlation but columns with correlation value 1 shows a strong correlation

3. IN DEPTH ANALYSIS AND FEATURE ENGINEERING

 Calculate the time taken between od_start_time and od_end_time and keep it as a feature. Drop the original columns, if required

• Compare the difference between Point a. and start_scan_to_end_scan. Do hypothesis testing/ Visual analysis to check.

```
In [54]: time_taken = new_df[["trip_uuid", "od_total_time(mins)","start_scan_to_end_scan"]]
    time_taken
```

Out[54]:		trip_uuid	od_total_time(mins)	start_scan_to_end_scan
	0	trip-153671041653548748	1000	999.0
	1	trip-153671042288605164	123	122.0
	2	trip-153671043369099517	3100	3099.0
	3	trip-153671046011330457	100	100.0
	4	trip-153671052974046625	81	80.0
	•••			
	14782	trip-153861095625827784	105	105.0
	14783	trip-153861104386292051	61	60.0
	14784	trip-153861106442901555	174	173.0
	14785	trip-153861115439069069	44	44.0
	14786	trip-153861118270144424	67	66.0

14787 rows × 3 columns

visual analysis

- Box plot: to visualize the distribution of the two variables and to detect any significant differences or outliers.
- Histogram: to show the distribution shapes and to identify whether the data is normally distributed or not
- Scatter plot: to see the relationship between two variables

```
In [55]: fig = plt.figure(figsize=(15, 10))
         # Boxplot
         plt.subplot(2, 2, 1)
         sns.boxplot(data=time_taken) #x="od_total_time(mins)", y="start_scan_to_end_scan")
         plt.title('Boxplot of OD Total Time vs Start Scan to End Scan')
         # Histogram
         plt.subplot(2, 2, 2)
         sns.histplot(data=time_taken)#, x="od_total_time(mins)", y="start_scan_to_end_scan'
         plt.title('Histplot of OD Total Time vs Start Scan to End Scan')
         # Scatter Plot
         plt.subplot(2, 2, 3)
         sns.scatterplot(data=time_taken, x="od_total_time(mins)", y="start_scan_to_end_scar
         plt.title('Scatter Plot of OD Total Time vs Start Scan to End Scan')
         # Display the plots
         plt.tight_layout()
         plt.show()
```


- based on histogram both variable does not follow normal distribution
- outliers are present in both variables
- Levene's Test: Statistic = 2.9409497054352514e-07,
- p-value = 0.9995673067810471
- The variances across the groups are equal.
- Variances across the variables are equal but it is not normally distributed hence we will perform non-paramatric Mann-Whitney U Test

• t_statistic: 109589340.0

p_value : 0.7215156248063554

- Thesre is no difference between total time taken and expected start_scan_to_end_scan
- Statistically od_total_time and start_scan_to_end_scan are similar.

Hypothesis testing/ visual analysis between actual_time aggregated value and OSRM time aggregated value

```
In [56]: actual_osrm = new_df[["trip_uuid","actual_time","osrm_time"]]
    actual_osrm
```

Out[56]: trip uuid actual time osrm time **0** trip-153671041653548748 830.0 388.0 42.0 1 trip-153671042288605164 96.0 **2** trip-153671043369099517 1528.0 2736.0 **3** trip-153671046011330457 59.0 15.0 **4** trip-153671052974046625 63.0 27.0 **14782** trip-153861095625827784 49.0 34.0 21.0 **14783** trip-153861104386292051 12.0 **14784** trip-153861106442901555 92.0 24.0 **14785** trip-153861115439069069 30.0 14.0 **14786** trip-153861118270144424 42.0 26.0

14787 rows × 3 columns

```
In [ ]:
         # Visual analysis
        fig = plt.figure(figsize=(10, 7))
In [58]:
         # Boxplot
         plt.subplot(2, 2, 1)
         sns.boxplot(data=actual_osrm)
         plt.title('Boxplot of actual time vs OSRM time')
         # Histogram
         plt.subplot(2, 2, 2)
         sns.histplot(data=actual osrm)
         plt.title('Histplot of actual time vs OSRM time')
         # Scatter Plot
         plt.subplot(2, 2, 3)
         sns.scatterplot(data=actual_osrm, x="actual_time", y="osrm_time")
         plt.title('Scatter Plot of actual time vs OSRM time')
         # Display the plots
         plt.tight_layout()
         plt.show()
```


- based on histogram both variable does not follow normal distribution
- outliers are present in both variables
- Levene's Test: Statistic = 615.4847491495041,
- p-value = 1.7065702203571972e-134
- The variances across the actual time and osrm time are not equal.

Hypothesis testing/ visual analysis between actual_time aggregated value and segment actual time aggregated value

```
In [59]: actual_segment = new_df[["trip_uuid","actual_time","segment_actual_time"]]
    actual_segment
```

Out[59]:

	trip_uuid	actual_time	segment_actual_time
0	trip-153671041653548748	830.0	1548.0
1	trip-153671042288605164	96.0	141.0
2	trip-153671043369099517	2736.0	3308.0
3	trip-153671046011330457	59.0	59.0
4	trip-153671052974046625	63.0	340.0
•••			
14782	trip-153861095625827784	49.0	82.0
14783	trip-153861104386292051	21.0	21.0
14784	trip-153861106442901555	92.0	281.0
14785	trip-153861115439069069	30.0	258.0
14786	trip-153861118270144424	42.0	274.0

14787 rows × 3 columns

```
In [60]: fig = plt.figure(figsize=(15, 10))
         # Boxplot
         plt.subplot(2, 2, 1)
         sns.boxplot(data=actual_segment)
         plt.title('Boxplot of actual time vs segment_actual_time')
         # Histogram
         plt.subplot(2, 2, 2)
         sns.histplot(data=actual_segment)
         plt.title('Histplot of actual time vs segment_actual_time')
         # Scatter Plot
         plt.subplot(2, 2, 3)
         sns.scatterplot(data=actual_segment, x="actual_time", y="segment_actual_time")
         plt.title('Scatter Plot of actual time vs segment_actual_time')
         # Display the plots
         plt.tight_layout()
         plt.show()
```


- These two variables does not follow the normal distribution
- outliers are present in both variables
- Levene's Test: Statistic = 363.2235493377645,
- p-value = 1.7012850612953372e-80
- The variances across the actual time and segment actual time are not equal.
- homogenity of Variances and normality of data assumptions are not satisfied hence we will perform non-paramatric Mann-Whitney U Test
- t_statistic : 162076565.0
- p_value : 0.0
- There is a difference between actual time and OSRM time

Based on statistical analysis actual time and OSRM time are not same.

Hypothesis testing/ visual analysis between osrm distance aggregated value and segment osrm distance aggregated value

Out[61]:

	trip_uuid	actual_time	segment_actual_time
0	trip-153671041653548748	830.0	1548.0
1	trip-153671042288605164	96.0	141.0
2	trip-153671043369099517	2736.0	3308.0
3	trip-153671046011330457	59.0	59.0
4	trip-153671052974046625	63.0	340.0
•••			
14782	trip-153861095625827784	49.0	82.0
14783	trip-153861104386292051	21.0	21.0
14784	trip-153861106442901555	92.0	281.0
14785	trip-153861115439069069	30.0	258.0
14786	trip-153861118270144424	42.0	274.0

14787 rows × 3 columns

```
In [62]: fig = plt.figure(figsize=(15, 10))
         # Boxplot
         plt.subplot(2, 2, 1)
         sns.boxplot(data=actual_segment)
         plt.title('Boxplot of actual time vs segment_actual_time')
         # Histogram
         plt.subplot(2, 2, 2)
         sns.histplot(data=actual_segment)
         plt.title('Histplot of actual time vs segment_actual_time')
         # Scatter Plot
         plt.subplot(2, 2, 3)
         sns.scatterplot(data=actual_segment, x="actual_time", y="segment_actual_time")
         plt.title('Scatter Plot of actual time vs segment_actual_time')
         # Display the plots
         plt.tight_layout()
         plt.show()
```


- These two variables does not follow the normal distribution
- outliers are present in both variables
- Levene's Test: Statistic = 363.2235493377645,
- p-value = 1.7012850612953372e-80
- The variances across the actual time and segment actual time are not equal.

Both variables does not follow assumptions of normality and varience of homogeneity for ttest, hence we will perform perform non-paramatric Mann-Whitney U Test

statistic: 84217886.5

p_value : 2.0025997464382218e-256

• There is a difference between actual time and segment actual time

Based on non paramatric Mann-Whitney U Test, actual time and segment actual time are not same.

Hypothesis testing/ visual analysis between osrm distance aggregated value and segment osrm distance aggregated value

```
In [64]: osrm_segment = new_df[["trip_uuid","osrm_distance", "segment_osrm_distance"]]
    osrm_segment
```

Out[64]:

	trip_uuid	osrm_distance	segment_osrm_distance
0	trip-153671041653548748	544.8027	1320.4733
1	trip-153671042288605164	56.9116	84.1894
2	trip-153671043369099517	2072.8556	2545.2678
3	trip-153671046011330457	19.6800	19.8766
4	trip-153671052974046625	29.5696	146.7919
•••			
14782	trip-153861095625827784	44.5639	64.8551
14783	trip-153861104386292051	16.0882	16.0883
14784	trip-153861106442901555	28.8492	104.8866
14785	trip-153861115439069069	16.0185	223.5324
14786	trip-153861118270144424	28.0484	80.5787

14787 rows × 3 columns

```
In [65]: fig = plt.figure(figsize=(15, 10))
         # Boxplot
         plt.subplot(2, 2, 1)
         sns.boxplot(data=osrm_segment)
         plt.title('Boxplot of osrm_distance vs segment_osrm_distance')
         # Histogram
         plt.subplot(2, 2, 2)
         sns.histplot(data=osrm_segment)
         plt.title('Histplot of osrm_distance vs segment_osrm_distance')
         # Scatter Plot
         plt.subplot(2, 2, 3)
         sns.scatterplot(data=osrm_segment, x="osrm_distance", y="segment_osrm_distance")
         plt.title('Scatter Plot of osrm_distance vs segment_osrm_distance')
         # Display the plots
         plt.tight_layout()
         plt.show()
```


- These two variables does not follow the normal distribution
- outliers are present in both variables

statistic: 82950404.0

p_value : 9.763204777245944e-283

• There is a difference between osrm distance and segment osrm distance

- Levene's Test: Statistic = 432.1415884126009,
- p-value = 2.6727169494145576e-95
- The variances across the osrm distance and segment osrm distance are not equal.
- Both variables does not follow assumptions of normality and varience of homogeneity for t-test, hence we will perform perform non-paramatric Mann-Whitney U Test

Based on non paramatric Mann-Whitney U Test, osrm distance and segment osrm distance are not same.

Hypothesis testing/ visual analysis between osrm time aggregated value and segment osrm time aggregated value

```
In [66]: osrm_segment_osrm_time = new_df[["trip_uuid","osrm_time", "segment_osrm_time"]]
    osrm_segment_osrm_time
```

Out[66]:

	trip_uuid	osrm_time	segment_osrm_time
0	trip-153671041653548748	388.0	1008.0
1	trip-153671042288605164	42.0	65.0
2	trip-153671043369099517	1528.0	1941.0
3	trip-153671046011330457	15.0	16.0
4	trip-153671052974046625	27.0	115.0
•••			
14782	trip-153861095625827784	34.0	62.0
14783	trip-153861104386292051	12.0	11.0
14784	trip-153861106442901555	24.0	88.0
14785	trip-153861115439069069	14.0	221.0
14786	trip-153861118270144424	26.0	67.0

14787 rows × 3 columns

```
In [67]: fig = plt.figure(figsize=(15, 10))
         # Boxplot
         plt.subplot(2, 2, 1)
         sns.boxplot(data=osrm_segment_osrm_time)
         plt.title('Boxplot of osrm_time vs segment_osrm_time')
         # Histogram
         plt.subplot(2, 2, 2)
         sns.histplot(data=osrm_segment_osrm_time)
         plt.title("Histplot of osrm_time vs segment_osrm_time")
         # Scatter Plot
         plt.subplot(2, 2, 3)
         sns.scatterplot(data=osrm_segment_osrm_time, x="osrm_time", y="segment_osrm_time")
         plt.title("Scatter Plot of osrm_time vs segment_osrm_time")
         # Display the plots
         plt.tight_layout()
         plt.show()
```


- Both variables, osrm_time, segment_osrm_time does not follow the assumptions of normality.
- outliers are present in both variables
- Levene's Test: Statistic = 540.1857224759467,
- p-value = 1.983498152793614e-118
- The variances across the osrm_time and segment_osrm_time are not equal.
- Both variables, osrm_time and segment_osrm_time does not follow assumptions of normality and varience of homogeneity for t-test, hence we will perform perform nonparamatric Mann-Whitney U Test
- statistic: 81360794.5
- p_value: 0.0
- There is a difference between osrm_time and segment_osrm_time

Based on non paramatric Mann-Whitney U Test, osrm time and segment osrm time are not same.

one-hot encoding of categorical variables

```
In [69]: from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()
new_df["route_type_encoded"] = label_encoder.fit_transform(new_df["route_type"])
new_df["data_type_encoded"] = label_encoder.fit_transform(new_df["data"])
new_df.head(5)
```

e dest	source_name	trip_creation_time	route_type	data	trip_uuid		Out[69]:	
	Kanpur_Central_H_6 (Uttar Pradesh)	2018-09-12 00:00:16.535741	FTL	training	trip- 153671041653548748	0		
•	Doddablpur_ChikaDPP_D (Karnataka)	2018-09-12 00:00:22.886430	Carting	training	trip- 153671042288605164	1		
_	Gurgaon_Bilaspur_HB (Haryana)	2018-09-12 00:00:33.691250	FTL	training	trip- 153671043369099517	2		
	Mumbai Hub (Maharashtra)	2018-09-12 00:01:00.113710	Carting	training	trip- 153671046011330457	3		
Sandur_	Bellary_Dc (Karnataka)	2018-09-12 00:02:09.740725	FTL	training	trip- 153671052974046625	4		

5 rows × 29 columns

Normalization Standardization of the numerical features using MinMaxScaler or StandardScaler.

```
new_df.columns
In [70]:
           Index(['trip_uuid', 'data', 'route_type', 'trip_creation_time', 'source_name',
Out[70]:
                   'destination_name', 'od_total_time(mins)', 'start_scan_to_end_scan',
                   'actual_distance_to_destination', 'actual_time', 'osrm_time',
                   'osrm_distance', 'segment_actual_time', 'segment_osrm_time', 'segment_osrm_distance', 'source_state', 'destination_state',
                   'source_city', 'destination_city', 'trip_creation_date',
                   'trip_creation_year', 'trip_creation_month', 'trip_completion_month', 'trip_creation_day', 'trip_creation_weekday', 'trip_end_weekday',
                   'trip_end_day', 'route_type_encoded', 'data_type_encoded'],
                  dtype='object')
           #MinMaxScaler
In [71]:
           num_column_scale = ['od_total_time(mins)', 'start_scan_to_end_scan',
                   'actual_distance_to_destination', 'actual_time', 'osrm_time',
                   'osrm_distance', 'segment_actual_time', 'segment_osrm_time',
                   'segment osrm distance']
           from sklearn.preprocessing import MinMaxScaler
           scaler = MinMaxScaler()
           new df[num column scale] = scaler.fit transform(new df[num column scale])
           new df.head(5)
```

12/12/24, 6:20 PM

Delhivery Out[71]: data route_type trip_creation_time trip uuid source name desti trip-2018-09-12 Kanpur Central H 6 Kanpu **FTL** training 153671041653548748 00:00:16.535741 (Uttar Pradesh) (1 Doddablpur_ChikaDPP_D 2018-09-12 Doddablpu training Carting 153671042288605164 00:00:22.886430 (Karnataka) 2018-09-12 Gurgaon_Bilaspur_HB Gurgao FTL training 153671043369099517 00:00:33.691250 (Haryana) 2018-09-12 Mumbai Hub Mum triptraining Carting 153671046011330457 00:01:00.113710 (Maharashtra) 2018-09-12 Sandur trip-FTL Bellary_Dc (Karnataka) training 153671052974046625 00:02:09.740725 5 rows × 29 columns In [72]: #StandardScaler num_column_scale = ['od_total_time(mins)', 'start_scan_to_end_scan', 'actual_distance_to_destination', 'actual_time', 'osrm_time', 'osrm_distance', 'segment_actual_time', 'segment_osrm_time', 'segment_osrm_distance'] from sklearn.preprocessing import StandardScaler scaler = StandardScaler() new_df[num_column_scale] = scaler.fit_transform(new_df[num_column_scale])

new_df.head(5) Out[72]:

:		trip_uuid	data	route_type	trip_creation_time	source_name	desti
	0	trip- 153671041653548748	training	FTL	2018-09-12 00:00:16.535741	Kanpur_Central_H_6 (Uttar Pradesh)	Kanpu (l
1	1	trip- 153671042288605164	training	Carting	2018-09-12 00:00:22.886430	Doddablpur_ChikaDPP_D (Karnataka)	Doddablpu
	2	trip- 153671043369099517	training	FTL	2018-09-12 00:00:33.691250	Gurgaon_Bilaspur_HB (Haryana)	Gurgao
	3	trip- 153671046011330457	training	Carting	2018-09-12 00:01:00.113710	Mumbai Hub (Maharashtra)	Mum
	4	trip- 153671052974046625	training	FTL	2018-09-12 00:02:09.740725	Bellary_Dc (Karnataka)	Sandur_

5 rows × 29 columns

In [73]: new_df.info()

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 14787 entries, 0 to 14786 Data columns (total 29 columns):

Data	columns (cocal 29 columns):					
#	Column	Non-Null Count	Dtype			
0	trip_uuid	14787 non-null	object			
1	data	14787 non-null	category			
2	route_type	14787 non-null	category			
3	trip_creation_time	14787 non-null	datetime64[ns]			
4	source_name	14787 non-null	object			
5	destination_name	14787 non-null	object			
6	od_total_time(mins)	14787 non-null	float64			
7	start_scan_to_end_scan	14787 non-null	float64			
8	<pre>actual_distance_to_destination</pre>	14787 non-null	float64			
9	actual_time	14787 non-null	float64			
10	osrm_time	14787 non-null	float64			
11	osrm_distance	14787 non-null	float64			
12	segment_actual_time	14787 non-null	float64			
13	segment_osrm_time	14787 non-null	float64			
14	segment_osrm_distance	14787 non-null	float64			
15	source_state	14787 non-null	object			
16	destination_state	14787 non-null	object			
17	source_city	14787 non-null	object			
18	destination_city	14787 non-null	object			
19	trip_creation_date	14787 non-null	datetime64[ns]			
20	trip_creation_year	14787 non-null	int32			
21	trip_creation_month	14787 non-null	int32			
22	trip_completion_month	14689 non-null	float64			
23	trip_creation_day	14787 non-null	int32			
24	trip_creation_weekday	14787 non-null	object			
25	trip_end_weekday	14689 non-null	object			
26	trip_end_day	14689 non-null	float64			
27	route_type_encoded	14787 non-null	int64			
28	data_type_encoded	14787 non-null	int64			
dtype	es: category(2), datetime64[ns](<pre>int32(3), int64(2), object(9)</pre>				
memory usage: 2.9+ MB						

Insights:

- 1. Since data scientist team wants to create a forecastingmodel, data set is already been devided into training(72%) and test data(28%)
- 2. Entire data is of 26 days
- 3. 20 source name and 18 destination name is missing in data set. If drop those null values , it will lead to miscalculation for further analysis
- 4. Highest number of trip cretion is being done on wednesday and highest number of trip completion is being done on wednesday and saturday
- 5. Highest number of trip cretion and trip completion is being done during mid month and start decresing after that. Very low trip completion during 2nd week of month
- 6. Highest number of trips are created and completed in 9th month
- 7. 60 % trips are made through carting route and 40% trips are made through FTL
- 8. Mumbai, Gurgaon and Bengaluru has done the more number of total trips(created and completed). Hence Maharashtra, Karnataka and Haryana has also done the more number of total trips.

9. od_total_time and start_scan_to_end_scan are statistically similar with 95% confidence.

- 10. With 95% confidence actual_time and OSRM_time are not similar. This will give a wrong information to customore about estimate delivery date.
- 11. With 95 % confidence actual_time and segment_actual_time are statistically different.
- 12. osrm_distance and segment_osrm_distance are statistically different with 95% confidence.
- 13. osrm_time and segment_osrm_time are also statistically different with 95% confidence.

Recommandations:

- 1. An open-source routing engine(OSRM) for time, distance, segment time and distance calculator needs to be optimized to reduced the error between computed data and actual data to give a nearly right estimated information about delevery package.
- 2. The reason for difference between actual_time and segment_actual_time can be due to the delivery person is not taking the predefine route or not starting the trip on time after scanning. Teams need to look into it.
- 3. Team should increase the number of delivery partenrs in mumbai, bengaluru and gurgaon during fetival seasons.