Capítulo 1: Introdução

Este é o código-fonte de weaver, uma engine (ou motor) para desenvolvimento de jogos feita em C utilizando-se da técnica de programação literária.

Um motor é um conjunto de bibliotecas e programas utilizado para facilitar e abstrair o desenvolvimento de um jogo. Jogos de computador, especialmente jogos em 3D são programas sofisticados demais e geralmente é inviável começar a desenvolver um jogo do zero. Um motor fornece uma série de funcionalidades genéricas que facilitam o desenvolvimento, tais como gerência de memória, renderização de gráficos bidimensionais e tridimensionais, um simulador de física, detector de colisão, suporte à animações, som, fontes, linguagem de script e muito mais.

Programação literária é uma técnica de desenvolvimento de programas de computador que determina que um programa deve ser especificado primariamente por meio de explicações didáticas de seu funcionamento. Desta forma, escrever um software que realiza determinada tarefa não deveria ser algo diferente de escrever um livro que explica didaticamente como resolver tal tarefa. Tal livro deveria apenas ter um rigor maior combinando explicações informais em prosa com explicações formais em código-fonte. Programas de computador podem então extrair a explicação presente nos arquivos para gerar um livro ou manual (no caso, este PDF) e também extrair apenas o código-fonte presente nele para construir o programa em si. A tarefa de montar o programa na ordem certa é de responsabilidade do programa que extrai o código. Um programa literário deve sempre apresentar as coisas em uma ordem acessível para humanos, não para máquinas.

Por exemplo, para produzir este PDF, utiliza-se um programa chamado TEX, o qual por meio do formato MAGITEX instalado, compreende código escrito em um formato específico de texto e o formata de maneira adequada. O TEX gera um arquivo no formato DVI, o qual é convertido para PDF. Para produzir o motor de desenvolvimento de jogos em si utiliza-se sobre os mesmos arquivos fonte um programa chamado CTANGLE, que extrai o código C (além de um punhado de códigos GLSL) para os arquivos certos. Em seguida, utiliza-se um compilador como GCC ou CLANG para produzir os executáveis. Felizmente, há Makefiles para ajudar a cuidar de tais detalhes de construção.

Os pré-requisitos para se compreender este material são ter uma boa base de programação em C e ter experiência no desenvolvimento de programas em C para Linux. Alguma noção do funcionamento de OpenGL também ajuda.

1.1 - Copyright e licenciamento

Weaver é desenvolvida pelo programador Thiago "Harry" Leucz Astrizi. Abaixo segue a licença do software:

Copyright (c) Thiago Leucz Astrizi 2015

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/>.

A tradução não-oficial da licença é:

Copyright (c) Thiago Leucz Astrizi 2015

Este programa é um software livre; você pode redistribuí-lo e/ou modificá-lo dentro dos termos da Licença Pública Geral GNU como publicada pela Fundação do Software Livre (FSF); na versão 3 da Licença, ou (na sua opinião) qualquer versão.

Este programa é distribuído na esperança de que possa ser útil, mas SEM NENHUMA GARANTIA; sem uma garantia implícita de ADEQUAÇÃO a qualquer MERCADO ou APLICAÇÃO EM PARTICULAR. Veja a Licença Pública Geral GNU para maiores detalhes.

Você deve ter recebido uma cópia da Licença Pública Geral GNU junto com este programa. Se não, veja http://www.gnu.org/licenses/>.

A versão completa da licença pode ser obtida junto ao código-fonte Weaver ou consultada no link mencionado.

1.2 - Filosofia Weaver

Estes são os princípios filosóficos que guiam o desenvolvimento deste software. Qualquer coisa que vá de encontro à eles devem ser tratados como bugs.

1- Software é conhecimento sobre como realizar algo escrito em linguagens formais de computadores. O conhecimento deve ser livre para todos. Portanto, Weaver deverá ser um software livre e deverá também ser usada para a criação de jogos livres.

A arte de um jogo pode ter direitos de cópia. Ela deveria ter uma licença permisiva, pois arte é cultura, e portanto, também não deveria ser algo a ser tirado das pessoas. Mas weaver não tem como impedi-lo de licenciar a arte de um jogo da forma que for escolhida. Mas como Weaver funciona injetando estaticamente seu código em seu jogo e Weaver está sob a licença GPL, isso significa que seu jogo também deverá estar sob esta mesma licença (ou alguma outra compatível).

Basicamente isso significa que você pode fazer quase qualquer coisa que quiser com este software. Pode copiá-lo. Usar seu código-fonte para fazer qualquer coisa que queira (assumindo as responsabilidades). Passar para outras pessoas. Modificá-lo. A única coisa não permitida é produzir com ele algo que não dê aos seus usuários exatamente as mesmas liberdades.

As seguintes quatro liberdades devem estar presentes em Weaver e nos jogos que ele desenvolve: Liberdade 0: A liberdade para executar o programa, para qualquer propósito.

Liberdade 1: A liberdade de estudar o software.

Liberdade 2: A liberdade de redistribuir cópias do programa de modo que você possa ajudar ao seu próximo.

Liberdade 3: A liberdade de modificar o programa e distribuir estas modificações, de modo que toda a comunidade se beneficie.

2- Weaver deve estar bem-documentado.

As quatro liberdades anteriores não são o suficiente para que as pessoas realmente possam estudar um software. Código ofuscado ou de difícil compreensão dificulta que as pessoas a exerçam. Weaver deve estar completamente documentada. Isso inclui explicação para todo o código-fonte que o projeto possui. O uso de MAG1TEX e CWEB é um reflexo desta filosofia.

Algumas pessoas podem estranhar também que toda a documentação do código-fonte esteja em português. Estudei por anos demais em universidade pública e minha educação foi paga com dinheiro do povo brasileiro. Por isso acho que minhas contribuições devem ser pensadas sempre em como retribuir à isto. Por isso, o português brasileiro será o idioma principal na escrita deste software

Infelizmente, isso tamém conflita com o meu desejo de que este projeto seja amplamente usado no mundo todo. Geralmente espera-se que código e documentação esteja em inglês. Para lidar

com isso, pretendo que a documentação on-line e guia de referência das funções esteja em inglês. Os nomes de funções e de variáveis estarão em inglês. Mas as explicações aqui serão em português.

Com isso tento conciliar as duas coisas, por mais difícil que isso seja.

3- Weaver deve ter muitas opções de configuração para que possa atender à diferentes necessidades.

É terrível quando você tem que lidar com abominações como:

Arquivo: /tmp/dummy.c:

```
CreateWindow("nome da classe", "nome da janela", WS_BORDER | WS_CAPTION | WS_MAXIMIZE, 20, 20, 800, 600, handle1, handle2, handle3, NULL);
```

Cada projeto deve ter um arquivo de configuração e muito da funcionalidade pode ser escolhida lá. Escolhas padrão sãs devem ser escolhidas e estar lá, de modo que um projeto funcione bem mesmo que seu autor não mude nada nas configurações. E concentrando configurações em um arquivo, retiramos complexidade das funções. As funções não precisam então receber mais de 10 argumentos diferentes e não é necessário também ficar encapsulando os 10 argumentos em um objeto de configuração, o qual é mais uma distração que solução para a complexidade.

Em todo projeto Weaver haverá um arquivo de configuração conf/conf.h, que modifica o funcionamento do motor. Como pode ser deduzido pela extensão do nome do arquivo, ele é basicamente um arquivo de cabeçalho C onde poderão ter vários #define s que modificarão o funcionamento de seu jogo.

4- Weaver não deve tentar resolver problemas sem solução. Ao invés disso, é melhor propor um acordo mútuo entre usuários.

Computadores tornam-se coisas complexas porque pessoas tentam resolver neles problemas insolúveis. É como tapar o sol com a peneira. Você na verdade consegue fazer isso. Junte um número suficientemente grande de peneiras, coloque uma sobre a outra e você consegue gerar uma sombra o quão escura se queira. Assim são os sistemas modernos que usamos nos computadores.

Como exemplo de tais tentativas de solucionar problemas insolúveis, temos a tentativa de fazer com que Sistemas Operacionais proprietários sejam seguros e livres de vírus, garantir privacidade, autenticação e segurança sobre HTTP e até mesmo coisas como o gerenciamento de memória. Pode-se resolver tais coisas apenas adicionando camadas e mais camadas de complexidade, e mesmo assim, não funcionará em realmente 100% dos casos.

Quando um problema não tem uma solução satisfatória, isso jamais deve ser escondido por meio de complexidades que tentam amenizar ou sufocar o problema. Ao invés disso, a limitação natural da tarefa deve ficar clara para o usuário, e deve-se trabalhar em algum tipo de comportamento que deve ser seguido pela engine e pelo usuário para que se possa lidar com o problema combinando os esforços de humanos e máquinas naquilo que cada um dos dois é melhor em fazer.

5- Um jogo feito usando Weaver deve poder ser instalado em um computador simplesmente distribuindo-se um instalador, sem necessidade de ir atrás de dependências.

Este é um exemplo de problema insolúvel mencionado anteriormente. Para isso a API Weaver é inserida estaticamente em cada projeto Weaver ao invés de ser na forma de bibliotecas compartilhadas. Mesmo assim ainda haverão dependências externas. Iremos então tentar minimizar elas e garantir que as duas maiores distribuições Linux no DistroWatch sejam capazes de rodar os jogos sem dependências adicionais além daquelas que já vem instaladas por padrão.

6- Wever deve ser fácil de usar. Mais fácil que a maioria das ferramentas já existentes.

Isso é obtido mantendo as funções o mais simples possíveis e fazendo-as funcionar seguindo padrões que são bons o bastante para a maioria dos casos. E caso um programador saiba o que está fazendo, ele deve poder configurar tais padrões sem problemas por meio do arquivo conf/conf.h.

Desta forma, uma função de inicialização poderia se chamar Winit() e não precisar de nenhum argumento. Coisas como gerenciar a projeção das imagens na tela devem ser transparentessem precisar de uma função específica após os objetos que compõe o ambiente serem definidos.

1.3 - Instalando Weaver

Para instalar Weaver em um computador, assumindo que você está fazendo isso à partir do

código-fonte, basta usar o comando make e make install (o segundo comando como root).

Atualmente, os seguintes programas são necessários para se compilar Weaver:

ctangle ou notangle: Extrai o código C dos arquivos de cweb/.

clang ou gcc: Um compilador C que gera executáveis à partir de código C.

make: Interpreta e executa comandos do Makefile.

Os dois primeiros programas podem vir em pacotes chamados de **cweb** ou **noweb**. Adicionalmente, os seguintes programas são necessários para se gerar a documentação:

TEX e MAGITEX: Usado para ler o código-fonte CWEB e gerar um arquivo DVI.

dvipdf: Usado para converter um arquivo .dvi em um .pdf.

graphviz: Gera representações gráficas de grafos.

Além disso, para que você possa efetivamente usar Weaver criando seus próprios projetos, você também poderá precisar de:

emscripten: Compila código C para Javascript e assim rodar em um navegador.

opengl: Permite gerar executáveis nativos com gráficos em 3D.

xlib: Permite gerar executáveis nativos gráficos.

xxd: Gera representação hexadecimal de arquivos. Insere o código dos shaders no programa. Por motivos obscuros, algumas distribuições trazem este último programa no mesmo pacote do vim

1.4 - O programa weaver

Weaver é uma engine para desenvolvimento de jogos que na verdaade é formada por várias coisas diferentes. Quando falamos em código do Weaver, podemos estar nos referindo à código de algum dos programas executáveis usados para se gerenciar a criação de seus jogos, podemos estar nos referindo ao código da API Weaver que é inserida em cada um de seus jogos ou então podemos estar nos referindo ao código de algum de seus jogos.

Para evitar ambigüidades, quando nos referimos ao programa executável, nos referiremos ao programa Weaver. Seu código-fonte será apresentado inteiramente neste capítulo. O programa é usado simplesmente para criar um novo projeto Weaver. E um projeto é um diretório com vários arquivos de desenvolvimento contendo código-fonte e multimídia. Por exemplo, o comando abaixo cria um novo projeto de um jogo chamado pong:

weaver pong

A árvore de diretórios exibida parcialmente abaixo é o que é criado pelo comando acima (diretórios são retângulos e arquivos são círculos):

Quando nos referimos ao código que é inserido em seus projetos, falamos do código da **API Weaver**. Seu código é sempre inserido dentro de cada projeto no diretório **src/weaver/**. Você terá aceso à uma cópia de seu código em cada novo jogo que criar, já que tal código é inserido estaticamente em seus projetos.

Já o código de jogos feitos com Weaver são tratados por **projetos Weaver**. É você quem escreve o seu código, ainda que a engine forneça como um ponto de partida o código inicial de inicialização, criação de uma janela e leitura de eventos do teclado e mouse.

1.4.1- Casos de Uso do Programa Weaver

Além de criar um projeto Weaver novo, o programa Weaver tem outros casos de uso. Eis a lista deles:

Caso de Uso 1: Mostrar mensagem de ajuda de criação de novo projeto: Isso deve ser feito toda vez que o usuário estiver fora do diretório de um Projeto Weaver e ele pedir ajuda explicitamente passando o parâmetro --help ou quando ele chama o programa sem argumentos (caso em que assumiremos que ele não sabe o que fazer e precisa de ajuda).

Caso de Uso 2: Mostrar mensagem de ajuda do gerenciamento de projeto: Isso deve ser feito quando o usuário estiver dentro de um projeto Weaver e pedir ajuda explicitamente com o argumento --help ou se invocar o programa sem argumentos (caso em que assumimos que ele não sabe o que está fazendo e precisa de ajuda).

Caso de Uso 3: Mostrar a versão de Weaver instalada no sistema: Isso deve ser feito toda vez que Weaver for invocada com o argumento --version.

Caso de Uso 4: Atualizar um projeto Weaver existente: Para o caso de um projeto ter sido criado com a versão 0.4 e tenha-se instalado no computador a versão 0.5, por exemplo. Para atualizar, basta passar como argumento o caminho absoluto ou relativo de um projeto Weaver. Independente de estarmos ou não dentro de um diretório de projeto Weaver. Atualizar um projeto significa mudar os arquivos com a API Weaver para que reflitam versões mais recentes.

Caso de Uso 5: Criar novo módulo em projeto Weaver: Para isso, devemos estar dentro do diretório de um projeto Weaver e devemos passar como argumento um nome para o módulo que não deve começar com pontos, traços, nem ter o mesmo nome de qualquer arquivo de extensão .c presente em src/ (pois para um módulo de nome XXX, serão criados arquivos src/XXX.c e src/XXX.h).

Caso de Uso 6: Criar um novo projeto Weaver: Para isso ele deve estar fora de um diretório Weaver e deve passar como primeiro argumento um nome válido e não-reservado para seu novo projeto. Um nome válido deve ser qualquer um que não comece com ponto, nem traço, que não tenha efeitos negativos no terminal (tais como mudar a cor de fundo) e cujo nome não pode conflitar com qualquer arquivo necessário para o desenvolvimento (por exemplo, não deve-se poder criar um projeto chamado Makefile).

1.4.2- Variáveis do Programa Weaver

O comportamento de Weaver deve depender das seguintes variáveis:

inside_weaver_directory : Indicará se o programa está sendo invocado de dentro de um projeto Weaver.

argument : O primeiro argumento, ou NULL se ele não existir

project_version_major : Se estamos em um projeto Weaver, qual o maior número da versão do Weaver usada para gerar o projeto. Exemplo: se a versão for 0.5, o número maior é 0. Em versões de teste, o valor é sempre 0.

project_version_minor : Se estamos em um projeto Weaver, o valor do menor número da versão do Weaver usada para gerar o projeto. Exemplo, se a versão for 0.5, o número menor é 5. Em versões de teste o valor é sempre 0.

weaver_version_major : O número maior da versão do Weaver sendo usada no momento.

weaver_version_minor : O número menor da versão do Weaver sendo usada no momento.

arg_is_path : Se o primeiro argumento é ou não um caminho absoluto ou relativo para um

projeto Weaver.

<code>arg_is_valid_project</code> : Se o argumento passado seria válido como nome de projeto Weaver. <code>arg_is_valid_module</code> : Se o argumento passado seria válido como um novo módulo no projeto Weaver atual.

project_path : Se estamos dentro de um diretório de projeto Weaver, qual o caminho para a sua base (onde há o Makefile)

have_arg: Se o programa é invocado com argumento.

shared_dir : Deverá armazenar o caminho para o diretório onde estão os arquivos compartilhados da instalação de Weaver. Por padrão, será igual à "/usr/share/weaver", mas caso

exista a variável de ambiente WEAVER_DIR, então este será considerado o endereço dos arquivos compartilhados.

author_name , project_name e year : Conterão respectivamente o nome do usuário que está invocando Weaver, o nome do projeto atual (se estivermos no diretório de um) e o ano atual. Isso será importante para gerar as mensagens de Copyright em novos projetos Weaver.

return_value : Que valor o programa deve retornar caso o programa seja interrompido no momento atual.

1.4.3- Estrutura Geral do Programa Weaver

Todas estas variáveis serão inicializadas no começo, e se precisar serão desalocadas no fim do programa, que terá a seguinte estrutura:

```
Arquivo: src/weaver.c:

<Seção a ser Inserida: Cabeçalhos Incluídos no Programa Weaver>

<Seção a ser Inserida: Macros do Programa Weaver>

<Seção a ser Inserida: Funções auxiliares Weaver>
```

```
int main(int argc, char **argv){
  int return_value = 0; /* Valor de retorno. */
  bool inside_weaver_directory = false, arg_is_path = false,
    arg_is_valid_project = false, arg_is_valid_module = false,
    have_arg = false; /* Variáveis booleanas. */
  unsigned int project_version_major = 0, project_version_minor = 0,
    weaver_version_major = 0, weaver_version_minor = 0,
    year = 0;
  char *argument = NULL, *project_path = NULL, *shared_dir = NULL,
    *author_name = NULL, *project_name = NULL; /* Strings UTF-8 */
```

```
<Seção a ser Inserida: Inicialização>
```

```
<Seção a ser Inserida: Caso de uso 1: Imprimir ajuda de criação de projeto>
<Seção a ser Inserida: Caso de uso 2: Imprimir ajuda de gerenciamento>
<Seção a ser Inserida: Caso de uso 3: Mostrar versão>
<Seção a ser Inserida: Caso de uso 4: Atualizar projeto Weaver>
<Seção a ser Inserida: Caso de uso 5: Criar novo módulo>
<Seção a ser Inserida: Caso de uso 6: Criar novo projeto>
```

```
END_OF_PROGRAM:

<Seção a ser Inserida: Finalização>

return return_value;
```

1.4.4- Macros do Programa Weaver

O programa precisará de algumas macros. A primeira delas deverá conter uma string com a versão do programa. A versão pode ser formada só por letras (no caso de versões de teste) ou por um número seguido de um ponto e de outro número (sem espaços) no caso de uma versão final do programa.

Para a segunda macro, observe que na estrutura geral do programa vista acima existe um rótulo chamado END_OF_PROGRAM logo na parte de finalização. Uma das formas de chegarmos lá é por meio da execução normal do programa, caso nada dê errado. Entretanto, no caso de um erro, nós podemos também chegar lá por meio de um desvio incondicional após imprimirmos a

mensagem de erro e ajustarmos o valor de retorno do programa. A responsabilidade de fazer isso será da segunda macro.

Por outro lado, podemos também querer encerrar o programa previamente, mas sem que tenha havido um erro. A responsabilidade disso é da terceira macro que definimos.

Seção: Macros do Programa Weaver:

```
#define VERSION "Alpha"
#define ERROR() {perror(NULL); return_value = 1; goto END_OF_PROGRAM;}
#define END() goto END_OF_PROGRAM;
```

1.4.5- Cabeçalhos do Programa Weaver

```
Seção: Cabeçalhos Incluídos no Programa Weaver:
#include <sys/types.h> // stat, getuid, getpwuid, mkdir
#include <sys/stat.h> // stat, mkdir
#include <stdbool.h> // bool, true, false
#include <unistd.h> // get_current_dir_name, getcwd, stat, chdir, getuid
#include <string.h> // strcmp, strcat, strcpy, strncmp
#include <stdlib.h> // free, exit, getenv
#include <dirent.h> // readdir, opendir, closedir
#include <libgen.h> // basename
#include <stdio.h> // va_start, va_arg
#include <stdio.h> // printf, fprintf, fopen, fclose, fgets, fgetc, perror
#include <ctype.h> // isanum
#include <time.h> // localtime, time
#include <pwd.h> // getpwuid
```

1.4.6- Inicialização e Finalização do Programa Weaver

Inicializar Weaver significa inicializar as 14 variáveis que serão usadas para definir o seu comportamento.

1.4.6.1- Inicializando Variáveis inside_weaver_directory e project_path

A primeira das variáveis é inside_weaver_directory, que deve valer false se o programa foi invocado de fora de um diretório de projeto Weaver e true caso contrário.

Como definir se estamos em um diretório que pertence à um projeto Weaver? Simples. São diretórios que contém dentro de si ou em um diretório ancestral um diretório oculto chamado .weaver. Caso encontremos este diretório oculto, também podemos aproveitar e ajustar a variável project_path para apontar para o local onde ele está. Se não o encontrarmos, estaremos fora de um diretório Weaver e não precisamos mudar nenhum valor das duas variáveis, pois elas deverão permanecer com o valor padrão NULL .

Em suma, o que precisamos é de um loop com as seguintes características:

Invariantes: A variável complete_path deve sempre possuir o caminho completo do diretório .weaver se ele existisse no diretório atual.

Inicialização: Inicializamos tanto o complete_path para serem válidos de acordo com o diretório em que o programa é invocado.

Manutenção: Em cada iteração do loop nós verificamos se encontramos uma condição de finalização. Caso contrário, subimos para o diretório pai do qual estamos, sempre atualizando as variáveis para que o invariante continue válido.

Finalização: Interrompemos a execução do loop se uma das duas condições ocorrerem:

- a) complete_path == "/.weaver" : Neste caso não podemos subir mais na árvore de diretórios, pois estamos na raiz do sistema de arquivos. Não encontramos um diretório .weaver. Isso significa que não estamos dentro de um projeto Weaver.
- b) complete_path == ".weaver": Neste caso encontramos um diretório .weaver e descobrimos que estamos dentro de um projeto Weaver. Podemos então atualizar a variável project_path para o diretório em que paramos.

Para manipularmos o caminho da árvore de diretórios, usaremos uma função auxiliar que recebe como entrada uma string com um caminho na árvore de diretórios e apaga todos os últimos caracteres até apagar dois "/". Assim em "/home/alice/projeto/diretorio/" ele retornaria "/home/alice/projeto" efetivamente subindo um nível na árvore de diretórios:

Seção: Funções auxiliares Weaver:

```
void path_up(char *path){
  int erased = 0;
  char *p = path;
  while(*p != '\0') p ++; // Vai até o fim
  while(erased < 2 && p != path){
    p --;
    if(*p == '/') erased ++;
    *p = '\0'; // Apaga
  }
}</pre>
```

Note que caso a função receba uma string que não possua dois "/" em seu nome, obtemos um "buffer overflow" onde percorreríamos regiões de memória indevidas preenchendo-as com zero. Esta função é bastante perigosa, mas se limitarmos as strings que passamos para somente arquivos que não estão na raíz e diretórios diferentes da própria raíz que terminam sempre com "/", então não teremos problemas pois a restrição do número de barras será cumprida. Ex: "/etc/" e "/tmp/file.txt".

Para checar se o diretório .weaver existe, definimos directory_exist(x) como uma função que recebe uma string correspondente à localização de um arquivo e que deve retornar 1 se x for um diretório existente, -1 se x for um arquivo existente e 0 caso contrário:

Seção: Funções auxiliares Weaver (continuação):

```
int directory_exist(char *dir){
   struct stat s; // Armazena status se um diretório existe ou não.
   int err; // Checagem de erros
   err = stat(dir, &s); // .weaver existe?
   if(err == -1) return 0; // Não existe
   if(S_ISDIR(s.st_mode)) return 1; // Diretório
   return -1; // Arquivo
}
```

A última função auxiliar da qual precisaremos é uma função para concatenar strings. Ela deve receber um número arbitrário de srings como argumento, mas a última string deve ser uma string vazia. E irá retornar a concatenação de todas as strings passadas como argumento.

A função irá alocar sempre uma nova string, a qual deverá ser desalocada antes do programa terminar. Como exemplo, concatenate("tes", " ", "te", "") retorna "tes te".

Seção: Funções auxiliares Weaver (continuação):

```
char *concatenate(char *string, ...){
  va_list arguments;
  char *new_string, *current_string = string;
  size_t current_size = strlen(string) + 1;
  char *realloc_return;
  va_start(arguments, string);
```

```
new_string = (char *) malloc(current_size);
if(new_string == NULL) return NULL;
strcpy(new_string, string); // Copia primeira string

while(current_string[0] != '\0'){ // Pára quando copiamos o "".
    current_string = va_arg(arguments, char *);
    current_size += strlen(current_string);
    realloc_return = (char *) realloc(new_string, current_size);
    if(realloc_return == NULL){
        free(new_string);
        return NULL;
    }
    new_string = realloc_return;
    strcat(new_string, current_string); // Copia próxima string
}
return new_string;
}
```

É importante lembrarmos que a função concatenate sempre deve receber como último argumento uma string vazia ou teremos um buffer overflow. Esta função também é perigosa e deve ser usada sempre tomando-se este cuidado.

Por fim, podemos escrever agora o código de inicialização. Começamos primeiro fazendo complete_path ser igual à ./.weaver/:

Seção: Inicialização:

```
char *path = NULL, *complete_path = NULL;
path = getcwd(NULL, 0);
if(path == NULL) ERROR();
complete_path = concatenate(path, "/.weaver", "");
free(path);
if(complete_path == NULL) ERROR();
```

Agora iniciamos um loop que terminará quando complete_path for igual à /.weaver (chegamos no fim da árvore de diretórios e não encontramos nada) ou quando realmente existir o diretório .weaver/ no diretório examinado. E no fim do loop, sempre vamos para o diretório-pai do qual estamos:

Seção: Inicialização (continuação):

```
while(strcmp(complete_path, "/.weaver")){ // Testa se chegamos ao fim
   if(directory_exist(complete_path) == 1){ // Testa se achamos o diretório
        inside_weaver_directory = true;
        complete_path[strlen(complete_path)-7] = '\0'; // Apaga o '.weaver'
        project_path = concatenate(complete_path, "");
        if(project_path == NULL){ free(complete_path); ERROR(); }
        break;
   }
   else{
        path_up(complete_path);
        strcat(complete_path, "/.weaver");
   }
}
free(complete_path);
```

Como alocamos memória para project_path armazenar o endereço do projeto atual se estamos em um projeto Weaver, no final do programa teremos que desalocar a memória:

Seção: Finalização:

```
if(project_path != NULL) free(project_path);
```

1.4.6.2- Inicializando variáveis weaver_version_major e weaver version minor

Para descobrirmos a versão atual do Weaver que temos, basta consultar o valor presente na macro VERSION. Então, obtemos o número de versão maior e menor que estão separados por um ponto (se existirem). Note que se não houver um ponto no nome da versão, então ela é uma versão de testes. Mesmo neste caso o código abaixo vai funcionar, pois a função atoi iria retornar 0 nas duas invocações por encontrar respectivamente uma string sem dígito algum e um fim de string sem conteúdo:

Seção: Inicialização (continuação):

```
{
  char *p = VERSION;
  while(*p != '.' && *p != '\0') p ++;
  if(*p == '.') p ++;
  weaver_version_major = atoi(VERSION);
  weaver_version_minor = atoi(p);
}
```

1.4.6.3- Inicializando variáveis project_version_major e project_version_minor

Se estamos dentro de um projeto Weaver, temos que inicializar informação sobre qual versão do Weaver foi usada para atualizá-lo pela última vez. Isso pode ser obtido lendo o arquivo .weaver/version localizado dentro do diretório Weaver. Se não estamos em um diretório Weaver, não precisamos inicializar tais valores. O número de versão maior e menor é separado por um ponto.

Seção: Inicialização (continuação):

```
if(inside_weaver_directory){
   FILE *fp;
   char *p, version[10];
   char *file_path = concatenate(project_path, ".weaver/version", "");
   if(file_path == NULL) ERROR();
   fp = fopen(file_path, "r");
   free(file_path);
   if(fp == NULL) ERROR();
   p = fgets(version, 10, fp);
   if(p == NULL){ fclose(fp); ERROR(); }
   while(*p != '.' && *p != '\0') p ++;
   if(*p == '.') p ++;
   project_version_major = atoi(version);
   project_version_minor = atoi(p);
   fclose(fp);
}
```

1.4.6.4- Inicializando have_arg e argument

Uma das variáveis mais fáceis e triviais de se inicializar. Basta consultar argc e argv.

Seção: Inicialização (continuação):

```
have_arg = (argc > 1);
if(have_arg) argument = argv[1];
```

1.4.6.5- Inicializando arg_is_path

Agora temos que verificar se no caso de termos um argumento, se ele é um caminho para um projeto Weaver existente ou não. Para isso, checamos se ao concatenarmos / .weaver no argumento encontramos o caminho de um diretório existente ou não.

Seção: Inicialização (continuação):

```
if(have_arg){
  char *buffer = concatenate(argument, "/.weaver", "");
  if(buffer == NULL) ERROR();
  if(directory_exist(buffer) == 1){
    arg_is_path = 1;
  }
  free(buffer);
}
```

1.4.6.6- Inicializando shared_dir

A variável shared_dir deverá conter onde estão os arquivos compartilhados da instalação de Weaver. Se existir a variável de ambiente WEAVER_DIR, este será o caminho. Caso contrário, assumiremos o valor padrão de /usr/share/weaver.

Seção: Inicialização (continuação):

```
char *weaver_dir = getenv("WEAVER_DIR");
if(weaver_dir == NULL){
    shared_dir = concatenate("/usr/share/weaver/", "");
    if(shared_dir == NULL) ERROR();
}
else{
    shared_dir = concatenate(weaver_dir, "");
    if(shared_dir == NULL) ERROR();
}
```

E isso requer que tenhamos que no fim do programa desalocar a memória alocada para shared_dir:

Seção: Finalização (continuação):

```
if(shared_dir != NULL) free(shared_dir);
```

1.4.6.7- Inicializando arg_is_valid_project

A próxima questão que deve ser averiguada é se o que recebemos como argumento, caso haja argumento, pode ser o nome de um projeto Weaver válido ou não. Para isso, três condições precisam ser satisfeitas:

- 1) O nome base do projeto deve ser formado somente por caracteres alfanuméricos (embora uma barra possa aparecer para passar o caminho completo de um projeto).
 - 2) Não pode existir um arquivo com o mesmo nome do projeto no local indicado para a criação.
- 3) O projeto não pode ter o nome de nenhum arquivo que costuma ficar no diretório base de um projeto Weaver (como "Makefile"). Do contrário, na hora da compilação comandos como "gcc game.c -o Makefile" poderiam ser executados e sobrescreveriam arquivos importantes.

Para isso, usamos o seguinte código:

Seção: Inicialização (continuação):

```
if(have_arg && !arg_is_path){
  char *buffer;
  char *base = basename(argument);
  int size = strlen(base);
  int i;
  // Checando caracteres inválidos no nome:
  for(i = 0; i < size; i ++){</pre>
    if(!isalnum(base[i])){
      goto NOT_VALID;
    }
  }
  // Checando se arquivo existe:
  if(directory_exist(argument) != 0){
    goto NOT_VALID;
  // Checando se conflita com arquivos de compilação:
  buffer = concatenate(shared_dir, "project/", base, "");
  if(buffer == NULL) ERROR();
  if(directory_exist(buffer) != 0){
    free(buffer);
    goto NOT_VALID;
  free(buffer);
  arg_is_valid_project = true;
NOT_VALID:
```

1.4.6.8- Inicializando arg_is_valid_module

Checar se o argumento que recebemos pode ser um nome válido para um módulo só faz sentido se estivermos dentro de um diretório Weaver e se um argumento estiver sendo passado. Neste caso, o argumento é um nome válido se ele contiver apenas caracteres alfanuméricos e se não existir no projeto um arquivo .c ou .h em src/ que tenha o mesmo nome do argumento passado:

Seção: Inicialização (continuação):

```
if(have_arg && inside_weaver_directory){
  char *buffer;
  int i, size;
  size = strlen(argument);
  // Checando caracteres inválidos no nome:
```

```
for(i = 0; i < size; i ++){</pre>
   if(!isalnum(argument[i])){
      goto NOT_VALID_MODULE;
   }
 }
 // Checando por conflito de nomes:
 buffer = concatenate(project_path, "src/", argument, ".c", "");
 if(buffer == NULL) ERROR();
 if(directory_exist(buffer) != 0){
   free(buffer);
   goto NOT_VALID_MODULE;
 buffer[strlen(buffer) - 1] = 'h';
 if(directory_exist(buffer) != 0){
   free(buffer);
   goto NOT_VALID_MODULE;
 free(buffer);
  arg_is_valid_module = true;
NOT_VALID_MODULE:
```

1.4.6.9- Inicializando author_name

A variável author_name deve conter o nome do usuário que está invocando o programa. Esta informação é útil para gerar uma mensagem de Copyright nos arquivos de código fonte de novos módulos.

Para obter o nome do usuário, começamos obtendo o seu UID. De posse dele, obtemos todas as informações de login com um <code>getpwid</code>. Se o usuário tiver registrado um nome em /etc/passwd, obtemos tal nome na estrutura retornada pela função. Caso contrário, assumiremos o login como sendo o nome:

Seção: Inicialização (continuação):

```
struct passwd *login;
int size;
char *string_to_copy;
login = getpwuid(getuid()); // Obtém dados de usuário
if(login == NULL) ERROR();
size = strlen(login -> pw_gecos);
if(size > 0)
    string_to_copy = login -> pw_gecos;
else
    string_to_copy = login -> pw_name;
size = strlen(string_to_copy);
author_name = (char *) malloc(size + 1);
if(author_name == NULL) ERROR();
strcpy(author_name, string_to_copy);
}
```

Depois, precisaremos desalocar a memória ocupada por author_name :

```
Seção: Finalização (continuação):
```

```
if(author_name != NULL) free(author_name);
```

1.4.6.10- Inicializando project_name

Só faz sendido falarmos no nome do projeto se estivermos dentro de um projeto Weaver. Neste caso, o nome do projeto pode ser encontrado em um dos arquivos do diretório base de tal projeto em .weaver/name:

Seção: Inicialização (continuação):

```
if(inside_weaver_directory){
 FILE *fp;
 char *c, *filename = concatenate(project_path, ".weaver/name", "");
 if(filename == NULL) ERROR();
 project_name = (char *) malloc(256);
 if(project_name == NULL){
   free(filename);
   ERROR();
 }
 fp = fopen(filename, "r");
 if(fp == NULL){
   free(filename);
   ERROR();
 c = fgets(project_name, 256, fp);
 fclose(fp);
 free(filename);
 if(c == NULL) ERROR();
 project_name[strlen(project_name)-1] = '\0';
 project_name = realloc(project_name, strlen(project_name) + 1);
 if(project_name == NULL) ERROR();
```

Depois, precisaremos desalocar a memória ocupada por <code>project_name</code>:

Seção: Finalização (continuação):

```
if(project_name != NULL) free(project_name);
```

1.4.6.11- Inicializando year

O ano atual é trivial de descobrir usando a função localtime :

```
Seção: Inicialização (continuação):
```

```
{
  time_t current_time;
  struct tm *date;

  time(&current_time);
  date = localtime(&current_time);
  year = date -> tm_year + 1900;
}
```

1.4.7- Caso de uso 1: Imprimir ajuda de criação de projeto

O primeiro caso de uso sempre ocorre quando Weaver é invocado fora de um diretório de projeto e a invocação é sem argumentos ou com argumento --help. Nesse caso assumimos que o usuário não sabe bem como usar o programa e imprimimos uma mensagem de ajuda. A mensagem de ajuda terá uma forma semelhante a esta:

```
. . You are outside a Weaver Directory.
./ \. The following command uses are available:
\\ //
\\()// weaver
.={}=. Print this message and exits.
//''\\
' \ / ' weaver PROJECT_NAME
'' Creates a new Weaver Directory with a new project.
```

O que é feito com o código abaixo:

```
Seção: Caso de uso 1: Imprimir ajuda de criação de projeto:
```

1.4.8- Caso de uso 2: Imprimir ajuda de gerenciamento

O segundo caso de uso também é bastante simples. Ele é invocado quando já estamos dentro de um projeto Weaver e invocamos Weaver sem argumentos ou com um --help. Assumimos neste caso que o usuário quer instruções sobre a criação de um novo módulo. A mensagem que imprimiremos é semelhante à esta:

```
You are inside a Weaver Directory.

The following command uses are available:

//__//

weaver

Prints this message and exits.

V////

weaver NAME

Creates NAME.c and NAME.h, updating
the Makefile and headers
```

O que é obtido com o código:

```
Seção: Caso de uso 2: Imprimir ajuda de gerenciamento:
```

1.4.9- Caso de uso 3: Mostrar versão instalada de Weaver

Um caso de uso ainda mais simples. Ocorrerá toda vez que o usuário invocar Weaver com o argumento --version:

```
Seção: Caso de uso 3: Mostrar versão:
if(have_arg && !strcmp(argument, "--version")){
  printf("Weaver\t%s\n", VERSION);
  END();
}
```

1.4.10- Caso de Uso 4: Atualizar projetos Weaver já existentes

Este caso de uso ocorre quando o usuário passar como argumento para Weaver um caminho absoluto ou relativo para um diretório Weaver existente. Assumimos então que ele deseja atualizar o projeto passado como argumento. Talvez o projeto tenha sido feito com uma versão muito antiga do motor e ele deseja que ele passe a usar uma versão mais nova da API.

Naturalmente, isso só será feito caso a versão de Weaver instalada seja superior à versão do projeto ou se a versão de Weaver instalada for uma versão instável para testes. Entende-se neste caso que o usuário deseja testar a versão experimental de Weaver no projeto. Fora isso, não é possível fazer downgrades de projetos, passando da versão 0.2 para 0.1, por exemplo.

Versões experimentais sempre são identificadas como tendo um nome formado somente por caracteres alfabéticos. Versões estáveis serão sempre formadas por um ou mais dígitos, um ponto e um ou mais dígitos (o número de versão maior e menor). Como o número de versão é interpretado com um atoi, isso significa que se estamos usando uma versão experimental, então o número de versão maior e menor serão sempre identificados como zero.

Pela definição que fizemos até agora, isso significa também que projetos em versões experimentais de Weaver sempre serão atualizados, independente da versão ser mais antiga ou mais nova.

Uma atualização consiste em copiar todos os arquivos que estão no diretório de arquivos compartilhados Weaver dentro de project/src/weaver para o diretório src/weaver do projeto em questão.

Mas para copiarmos os arquivos precisamos primeiro de uma função capaz de copiar um único arquivo. A função copy_single_file tenta copiar o arquivo cujo caminho é o primeiro argumento para o diretório cujo caminho é o segundo argumento. Se ela conseguir, retorna 1 e retorna 0 caso contrário.

Seção: Funções auxiliares Weaver (continuação):

```
int copy_single_file(char *file, char *directory){
  int block_size, bytes_read;
  char *buffer, *file_dst;
  FILE *orig, *dst;
```

```
// Inicializa 'block_size':
   <Seção a ser Inserida: Descobre tamanho do bloco do sistema de arquivos>
 buffer = (char *) malloc(block_size); // Aloca buffer de cópia
 if(buffer == NULL) return 0;
 file_dst = concatenate(directory, "/", basename(file), "");
 if(file_dst == NULL) return 0;
 orig = fopen(file, "r"); // Abre arquivo de origem
 if(orig == NULL){
   free(buffer);
  free(file_dst);
 return 0;
 }
 dst = fopen(file_dst, "w"); // Abre arquivo de destino
 if(dst == NULL){
  fclose(orig);
 free(buffer);
 free(file_dst);
   return 0;
 }
 while((bytes_read = fread(buffer, 1, block_size, orig)) > 0){
   fwrite(buffer, 1, bytes_read, dst); // Copia origem -> buffer -> destino
 }
 fclose(orig);
 fclose(dst);
 free(file_dst);
 free(buffer);
 return 1;
```

O mais eficiente é que o buffer usado para copiar arquivos tenha o mesmo tamanho do bloco do sistema de arquivos. Para obter o valor correto deste tamanho, usamos o seguinte trecho de código:

Seção: Descobre tamanho do bloco do sistema de arquivos:

```
{
  struct stat s;
  stat(directory, &s);
  block_size = s.st_blksize;
  if(block_size <= 0){
    block_size = 4096;
  }
}</pre>
```

De posse da função que copia um só arquivo, definimos uma função que copia todo o conteúdo de um diretório para outro diretório:

Seção: Funções auxiliares Weaver (continuação):

```
int copy_files(char *orig, char *dst){
  DIR *d = NULL;
  struct dirent *dir;
  d = opendir(orig);
  if(d){
    while((dir = readdir(d)) != NULL){ // Loop para ler cada arquivo}
}
```

```
char *file;
         file = concatenate(orig, "/", dir -> d_name, "");
         if(file == NULL){
           return 0;
         }
     #if (defined(__linux__) || defined(_BSD_SOURCE)) && defined(DT_DIR)
       // Se suportamos DT_DIR, não precisamos chamar a função 'stat':
       if(dir -> d_type == DT_DIR){
     #else
       struct stat s;
       int err;
       err = stat(file, &s);
       if(err == -1) return 0;
       if(S_ISDIR(s.st_mode)){
     #endif
         // Se concluirmos estar lidando com subdiretório via 'stat' ou
'DT_DIR':
         char *new_dst;
         new_dst = concatenate(dst, "/", dir -> d_name, "");
         if(new_dst == NULL){
           return 0;
         }
         if(strcmp(dir -> d_name, ".") && strcmp(dir -> d_name, "..")){
           if(!directory_exist(new_dst)) mkdir(new_dst, 0755);
           if(copy_files(file, new_dst) == 0){
             free(new_dst);
             free(file);
             closedir(d);
             return 0; // Não fazemos nada para diretórios '.' e '...
           }
         }
         free(new_dst);
       }
       else{
         // Se concluimos estar diante de um arquivo usual:
         if(copy_single_file(file, dst) == 0){
           free(file);
           closedir(d);
           return 0;
         }
       }
     free(file);
  } // Fim do loop para ler cada arquivo
   closedir(d);
 }
 return 1;
```

A função acima presumiu que o diretório de destino tem a mesma estrutura de diretórios que a origem.

De posse de todas as funções podemos escrever o código do caso de uso em que iremos realizar a atualização:

Seção: Caso de uso 4: Atualizar projeto Weaver:

```
if(arg_is_path){
 if((weaver_version_major == 0 && weaver_version_minor == 0) ||
     (weaver_version_major > project_version_major) ||
     (weaver_version_major == project_version_major &&
     weaver_version_minor > project_version_minor)){
   char *buffer, *buffer2;
   // |buffer| passa a valer SHARED_DIR/project/src/weaver
   buffer = concatenate(shared_dir, "project/src/weaver/", "");
   if(buffer == NULL) ERROR();
   // |buffer2| passa a valer PROJECT_DIR/src/weaver/
   buffer2 = concatenate(argument, "/src/weaver/", "");
   if(buffer2 == NULL){
     free(buffer);
     ERROR();
   if(copy_files(buffer, buffer2) == 0){
     free(buffer);
     free(buffer2);
     ERROR();
   free(buffer);
   free(buffer2);
 }
 END();
```

1.4.11- Caso de Uso 5: Adicionando um módulo ao projeto Weaver

Se estamos dentro de um diretório de projeto Weaver, e o programa recebeu um argumento, então estamos inserindo um novo módulo no nosso jogo. Se o argumento é um nome válido, podemos fazer isso. Caso contrário, devemos imprimir uma mensagem de erro e sair.

Criar um módulo basicamente envolve:

- a) Criar arquivos .c e .h base, deixando seus nomes iguais ao nome do módulo criado.
- b) Adicionar em ambos um código com copyright e licenciamento com o nome do autor, do projeto e ano.
- c) Adicionar no .h código de macro simples para evitar que o cabeçalho seja inserido mais de uma vez e fazer com que o .c inclua o .h dentro de si.
- d) Fazer com que o .h gerado seja inserido em src/includes.h e assim suas estruturas sejam acessíveis de todos os outros módulos do jogo.

A parte de imprimir um código de copyright será feita usando a nova função abaixo:

Seção: Funções auxiliares Weaver (continuação):

```
void write_copyright(FILE *fp, char *author_name, char *project_name, int year){
  char license[] = "/*\nCopyright (c) %s, %d\n\nThis file is part of %s.\n\n%s\
  is free software: you can redistribute it and/or modify\nit under the terms of\
  the GNU General Public License as published by\nthe Free Software Foundation,\
  either version 3 of the License, or\n(at your option) any later version.\
```

Já o código de criação de novo módulo passa a ser:

Seção: Caso de uso 5: Criar novo módulo:

```
if(inside_weaver_directory && have_arg){
 if(arg_is_valid_module){
   char *filename;
  FILE *fp;
  // Criando modulo.c
   filename = concatenate(project_path, "src/", argument, ".c", "");
   if(filename == NULL) ERROR();
   fp = fopen(filename, "w");
   if(fp == NULL){
     free(filename);
     ERROR();
   }
   write_copyright(fp, author_name, project_name, year);
   fprintf(fp, "#include \"%s.h\"", argument);
   fclose(fp);
   filename[strlen(filename)-1] = 'h'; // Criando modulo.h
   fp = fopen(filename, "w");
   if(fp == NULL){
     free(filename);
     ERROR():
   write_copyright(fp, author_name, project_name, year);
   fprintf(fp, "#ifndef _%s_h_\n", argument);
   fprintf(fp, "#define _%s_h_\n\n#endif", argument);
   fclose(fp);
   free(filename);
   // Atualizando src/includes.h para inserir modulo.h:
   fp = fopen("src/includes.h", "a");
   fprintf(fp, "#include \"%s.h\"\n", argument);
   fclose(fp);
 }
 else{
  fprintf(stderr, "ERROR: This module name is invalid.\n");
   return_value = 1;
 }
 END();
```

1.4.12- Caso de Uso 6: Criando um novo projeto Weaver

Criar um novo projeto Weaver consiste em criar um novo diretório com o nome do projeto, copiar para lá tudo o que está no diretório project do diretório de arquivos compartilhados e criar um diretório .weaver com os dados do projeto. Além disso, criamos um src/game.c e src/game.h adicionando o comentário de Copyright neles e copiando a estrutura básica dos arquivos do diretório compartilhado basefile.c e basefile.h. Também criamos um src/includes.h que por hora estará vazio, mas será modificado na criação de futuros módulos.

A permissão dos diretórios criados será drwxr-xr-x (0755 em octal).

```
Seção: Caso de uso 6: Criar novo projeto:
if(! inside_weaver_directory && have_arg){
 if(arg_is_valid_project){
   int err;
   char *dir_name;
   FILE *fp;
   err = mkdir(argument, S_IRWXU | S_IRWXG | S_IROTH);
  if(err == -1) ERROR();
  err = chdir(argument);
   if(err == -1) ERROR();
   mkdir(".weaver", 0755); mkdir("conf", 0755);
   mkdir("src", 0755); mkdir("src/weaver", 0755);
   mkdir("image", 0755); mkdir("sound", 0755);
   mkdir("music", 0755);
   dir_name = concatenate(shared_dir, "project", "");
   if(dir_name == NULL) ERROR();
   if(copy_files(dir_name, ".") == 0){
     free(dir_name);
     ERROR();
   free(dir_name); //Criando arquivo com número de versão:
   fp = fopen(".weaver/version", "w");
   fprintf(fp, "%s\n", VERSION);
   fclose(fp); // Criando arquivo com nome de projeto:
   fp = fopen(".weaver/name", "w");
   fprintf(fp, "%s\n", basename(argv[1]));
   fclose(fp);
   fp = fopen("src/game.c", "w");
   if(fp == NULL) ERROR();
   write_copyright(fp, author_name, argument, year);
   if(append_basefile(fp, shared_dir, "basefile.c") == 0) ERROR();
   fclose(fp);
   fp = fopen("src/game.h", "w");
   if(fp == NULL) ERROR();
   write_copyright(fp, author_name, argument, year);
   if(append_basefile(fp, shared_dir, "basefile.h") == 0) ERROR();
   fclose(fp);
```

```
fp = fopen("src/includes.h", "w");
    write_copyright(fp, author_name, argument, year);
    fclose(fp);
}
else{
    fprintf(stderr, "ERROR: %s is not a valid project name.", argument);
    return_value = 1;
}
END();
```

A única coisa ainda não-definida é a função usada acima append_basefile. Esta é uma função bastante específica para concatenar o conteúdo de um arquivo para o outro dentro deste trecho de código. Não é uma função geral, pois ela recebe como argumento um ponteiro para o arquivo de destino aberto e reebe como argumento o diretório em que está a origem e o nome do arquivo de origem ao invés de ter a forma mais intuitiva cat(origem, destino).

Definimos abaixo a forma da append_basefile:

Seção: Funções auxiliares Weaver (continuação):

```
int append_basefile(FILE *fp, char *dir, char *file){
  int block_size, bytes_read;
  char *buffer, *directory = ".";
  char *path = concatenate(dir, file, "");
  if(path == NULL) return 0;
  FILE *origin;
```

<Seção a ser Inserida: Descobre tamanho do bloco do sistema de arquivos>

```
buffer = (char *) malloc(block_size);
if(buffer == NULL){
 free(path);
 return 0;
origin = fopen(path, "r");
if(origin == NULL){
 free(buffer);
 free(path);
 return 0;
while((bytes_read = fread(buffer, 1, block_size, origin)) > 0){
 fwrite(buffer, 1, bytes_read, fp);
}
fclose(origin);
free(buffer);
free(path);
return 1;
```

 ${\bf E}$ isso conclui todo o código do Programa Weaver. Todo o resto de código que será apresentado à seguir, não pertence mais ao programa Weaver, mas à Projetos Weaver e à API Weaver.

1.5 - O arquivo conf.h

Em toda árvore de diretórios de um projeto Weaver, deve existir um arquivo cabeçalho C chamadoconf/conf.h. Este cabeçalho será incluído em todos os outros arquivos de código do Weaver no projeto e que permitirá que o comportamento da Engine seja modificado naquele projeto específico.

O arquivo deverá ter as seguintes macros (dentre outras):

- W_DEBUG_LEVEL : Indica o que deve ser impresso na saída padrão durante a execução. Seu valor pode ser:
 - 0) Nenhuma mensagem de depuração é impressa durante a execução do programa. Ideal para compilar a versão final de seu jogo.
 - 1) Mensagens de aviso que provavelmente indicam erros são impressas durante a execução. Por exemplo, um vazamento de memória foi detectado, um arquivo de textura não foi encontrado, etc.
 - 2) Mensagens que talvez possam indicar erros ou problemas, mas que talvez sejam inofensivas são impressas.
 - 3) Mensagens informativas com dados sobre a execução, mas que não representam problemas são impressas.
 - 4) Código de teste adicional é execuado apenas para garantir que condições que tornem o código incorreto não estão presentes. Use só se você está depurando ou desenvolvendo a própria API Weaver, não o projeto de um jogo que a usa.
- W_SOURCE : Indica a linguagem que usaremos em nosso projeto. As opções são:
 - W_C) Nosso projeto é um programa em C.
 - W_CPP) Nosso projeto é um programa em C++.
- W_TARGET : Indica que tipo de formato deve ter o jogo de saída. As opções são:
 - W_ELF) O jogo deverá rodar nativamente em Linux. Após a compilação, deverá ser criado um arquivo executável que poderá ser instalado com make install.
 - W_WEB) O jogo deverá executar em um navegador de Internet. Após a compilação deverá ser criado um diretório chamado web que conterá o jogo na forma de uma página HTML com Javascript. Não faz sentido instalar um jogo assim. Ele deverá ser copiado para algum servidor Web para que possa ser jogado na Internet. Isso é feito usando Emscripten.

Opcionalmente as seguintes macros podem ser definidas também (dentre outras):

 W_MULTITHREAD: Se a macro for definida, Weaver é compilado com suporte à múltiplas threads acionadas pelo usuário. Note que de qualquer forma vai existir mais de uma thread rodando no programa para que música e efeitos sonoros sejam tocados. Mas esta macro garante que mutexes e código adicional sejam executados para que o desenvolvedor possa executar qualquer função da API concorrentemente.

Ao longo das demais seções deste documento, outras macros que devem estar presentes ou que são opcionais serão apresentadas. Mudar os seus valores, adicionar ou removê-las é a forma de configurar o funcionamento do Weaver.

Junto ao código-fonte de Weaver deve vir também um arquivo conf/conf.h que apresenta todas as macros possíveis em um só lugar. Apesar de ser formado por código C, tal arquivo não será apresentado neste PDF, pois é importante que ele tenha comentários e CWEB iria remover os comentários ao gerar o código C.

O modo pelo qual este arquivo é inserido em todos os outros cabeçalhos de arquivos da API Weaver é:

Seção: Inclui Cabeçalho de Configuração:

```
#include "conf_begin.h"
#include "../../conf/conf.h"
```

Note que haverão também cabeçalhos conf_begin.h que cuidarão de toda declaração de inicialização que forem necessárias. Para começar, criaremos o conf_begin.h para inicializar as macros W_WEB e W_ELF:

Arquivo: project/src/weaver/conf_begin.h:

#define W_ELF 0

1.6 - Funções básicas Weaver

E agora começaremos a definir o começo do código para a API Weaver.

Primeiro criamos um weaver.h que irá incluir automaticamente todos os cabeçalhos Weaver necessários:

Arquivo: project/src/weaver/weaver.h:

Neste cabeçalho, iremos também declarar três funções.

A primeira função servirá para inicializar a API Weaver. Seus parâmetros devem ser o nome do arquivo em que ela é invocada e o número de linha. Esta informação será útil para imprimir mensagens de erro úteis em caso de erro.

A segunda função deve ser a última coisa invocada no programa. Ela encerra a API Weaver.

E a terceira função deve ser chamada no loop principal do programa e será responsável pro fazer coisas como desenhar na tela, ficar um tempo ociosa para não consumir 100% da CPU e coisas assim. O seu argumento representa quantos milissegundos devemos ficar nela sem fazer nada para evitar consumo de todo o tempo de CPU.

Nenhuma destas funções foi feita para ser chamada por mais de uma thread. Todas elas só devem ser usadas pela thread principal. Mesmo que você defina a macro <code>W_MULTITHREAD</code>, todas as outras funções serão seguras para threads, menos estas três.

Como não é razoável pedir para que um programador se preocupar com detalhes como o arquivo e linha de execução da função, abaixo das três funções definiremos funções de macro que tornarão tais informações transparentes e de responsabilidade do compilador. As três funções de macro (Winit, Wexit e Wrest) são aquelas que realmente serão usadas na prática.

Seção: Cabeçalhos Weaver (continuação):

```
void _awake_the_weaver(char *filename, unsigned long line);
void _may_the_weaver_sleep();
void _weaver_rest(unsigned long time);

#define Winit() _awake_the_weaver(__FILE__, __LINE__)
#define Wexit() _may_the_weaver_sleep()
#define Wrest(a) _weaver_rest(a)
```

Definiremos melhor a responsabilidade destas funções ao longo dos demais capítulos. Mas colocaremos aqui a definição delas no arquivo adequado. E no caso da função _weaver_rest , colocaremos aqui algum código mínimo.

A função _weaver_rest é a função a ser executada em cada frame do jogo. Ela executa de forma diferente se o programa está sendo compilado para um executável Linux ou para uma página de Internet via Emscripten.

Para dar uma pequena amostra do que ela faz, segue um código para ela em que a função limpa os buffers OpenGL (glClear), executa todo o código relevante ao loop principal do jogo (que iremos definir em breve), troca os buffers de desenho na tela (glXSwapBuffers , somente se formos um programa executável, não algo compilado para Javascript), pede que todos os comandos OpenGL pendentes sejam executados (glFlush) e, se pertinente, pede que o programa fique um tempo ocioso para não usar 100% da CPU (nanosleep , só para programa executável, não se compilado para Javascript).

```
Arquivo: project/src/weaver/weaver.c:
#include "weaver.h"
                  <Seção a ser Inserida: API Weaver: Definições>
void _awake_the_weaver(char *filename, unsigned long line){
                 <Seção a ser Inserida: API Weaver: Inicialização>
void _may_the_weaver_sleep(void){
                  <Seção a ser Inserida: API Weaver: Finalização>
  exit(0);
void _weaver_rest(unsigned long time){
  glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
#if W_TARGET == W_ELF
  struct timespec req = {0, time * 1000000};
#endif
                <Seção a ser Inserida: API Weaver: Loop Principal>
#if W_TARGET == W_ELF
  glXSwapBuffers(_dpy, _window);
#else
  glFlush();
#endif
#if W_TARGET == W_ELF
 nanosleep(&req, NULL);
#endif
    Mas isso é só uma amostra inicial e uma inicialização dos arquivos. Estas funções todas serão
mais ricamente definidas a cada capítulo à medida que definimos novas responsabilidades para o
nosso motor de jogo.
Seção: API Weaver: Loop Principal:
  // A definir...
Seção: API Weaver: Definições:
 // A definir...
Seção: API Weaver: Inicialização:
  // A definir...
Seção: API Weaver: Finalização:
```

// A definir...

Capítulo 2: Gerenciamento de memória

Alocar memória dinamicamente de uma heap é uma operação cujo tempo gasto nem sempre pode ser previsto. Isso é algo que depende da quantidade de blocos contínuos de memória presentes na heap que o gerenciador organiza. Por sua vez, isso depende muito do padrão de uso das funções malloc e free, e por isso não é algo fácil de ser previsto.

Jogos de computador tradicionalmente evitam o uso contínuo de malloc e free por causa disso. Tipicamente jogos programados para ter um alto desempenho alocam toda (ou a maior parte) da memória de que vão precisar logo no início da execução gerando um pool de memória e gerenciando ele ao longo da execução. De fato, esta preocupação direta com a memória é o principal motivo de linguagens sem garbage collectors como C++ serem tão preferidas no desenvolvimento de grandes jogos comerciais.

Um dos motivos para isso é que também nem sempre o malloc disponível pela biblioteca padrão de algum sistema é muito eficiente para o que está sendo feito. Como um exemplo, será mostrado posteriormente gráficos de benchmarks que mostram que após ser compilado para Javascript usando Emscripten, a função malloc da biblioteca padrão do Linux torna-se terrivelmente lenta. Mas mesmo que não estejamos lidando com uma implementação rápida, ainda assim há benefícios em ter um alocador de memória próprio. Pelo menos a práica de alocar toda a memória necessária logo no começo e depois gerenciar ela ajuda a termos um programa mais rápido.

Por causa disso, Weaver exisge que você informe anteriormente quanto de memória você irá usar e cuida de toda a alocação durante a inicialização. Sabendo a quantidade máxima de memória que você vai usar, isso também permite que vazamentos de memória sejam detectados mais cedo e permitem garantir que o seu jogo está dentro dos requisitos de memória esperados.

Weaver de fato aloca mais de uma região contínua de memória onde pode-se alocar coisas. Uma das regiões contínuas será alocada e usada pela própria API Weaver à medida que for necessário. A segunda região de memória contínua, cujo tamanho deve ser declarada em conf/conf.h é a região dedicada para que o usuário possa alocar por meio de Walloc (que funciona como o malloc). Além disso, o usuário deve poder criar novas regiões contínuas de memória dentro das quais pode-se fazer novas alocações. O nome que tais regiões recebem é arena.

Além de um Walloc , também existe um Wfree . Entretanto, o jeito recomendável de desalocar na maioria das vezes é usando uma outra função chamada Wtrash . Para explicar a ideia de seu funcionamento, repare que tipicamente um jogo funciona como uma máquina de estados onde mudamos várias vezes de estado. Por exemplo, em um jogo de RPG clássico como Final Fantasy, podemos encontrar os seguintes estados:

E cada um dos estados pode também ter os seus próprios sub-estados. Por exemplo, o estado "Jogo" seria formado pela seguinte máquina de estados interna:

Cada estado precisará fazer as suas próprias alocações de memória. Algumas vezes, ao passar de um estado pro outro, não precisamos lembrar do quê havia no estado anterior. Por exemplo, quando passamos da tela inicial para o jogo em si, não precisamos mais manter na memória a imagem de fundo da tela inicial. Outras vezes, podemos precisar memorizar coisas. Se estamos andando pelo mundo e somos atacados por monstros, passamos para o estado de combate. Mas uma vez que os monstros sejam derrotados, devemos voltar ao estado anterior, sem esquecer de informações como as coordenadas em que estávamos. Mas quando formos esquecer um estado, iremos querer sempre desalocar toda a memória relacionada à ele.

Por causa disso, um jogo pode ter um gerenciador de memória que funcione como uma pilha. Primeiro alocamos dados globais que serão úteis ao longo de todo o jogo. Todos estes dados só serão desalocados ao término do jogo. Em seguida, podemos criar um **breakpoint** e alocamos todos os dados referentes à tela inicial. Quando passarmos da tela inicial para o jogo em si, podemos desalocar de uma vez tudo o que foi alocado desde o último breakpoint e removê-lo. Ao entrar no jogo em si, criamos um novo breakpoint e alocamos tudo o que precisamos. Se entramos em tela de combate, criamos outro breakpoint (sem desalocar nada e sem remover o breakpoint anterior) e alocamos os dados referentes à batalha. Depois que ela termina, desalocamos tudo até o último breakpoint para apagarmos os dados relacionados ao combate e voltamos assim ao estado anterior de caminhar pelo mundo. Ao longo destes passos, nossa memória terá aproximadamente a seguinte estrutura:

			Combate	
	Tela Inicial		Jogo	Jogo
Globais	Globais	Globais	Globais	Globais

Sendo assim, nosso gerenciador de memória torna-se capaz de evitar completamente fragmentação tratando a memória alocada na heap como uma pilha. O desenvolvedor só precisa desalocar a memória na ordem inversa da alocação (se não o fizer, então haverá fragmentação). Entretanto, a desalocação pode ser um processo totalmente automatizado. Toda vez que encerramos um estado, podemos ter uma função que desaloca tudo o que foi alocado até o último breakpoint na ordem correta e elimina aquele breakpoint (exceto o último na base da pilha que não pode ser eliminado). Fazendo isso, o gerenciamento de memória fica mais simples de ser usado, pois o próprio gerenciador poderá desalocar tudo que for necessário, sem esquecer e sem deixar vazamentos de memória. O que a função Wtrash faz então é desalocar na ordem certa toda a memória alocada até o último breakpoint e destrói o breakpoint (exceto o primeiro que nunca é removido). Para criar um novo breakpoint, usamos a função Wbreakpoint.

Tudo isso sempre é feito na arena padrão. Mas pode-se criar uma nova arena (Wcreate_arena) bem como destruir uma arena (Wdestroy_arena). E pode-se então alocar memória na arena personalizada criada (Walloc_arena) e desalocar (Wfree_arena). Da mesmo forma, pode-se também criar um breakpoint na arena personalizada (Wbreakpoint_arena) e descartar tudo que foi alocado nela até o último breakpoint (Wtrash_arena).

Para garantir a inclusão da definição de todas estas funções e estruturas, usamos o seguinte código:

Seção: Cabeçalhos Weaver:

```
#include "memory.h"
```

E também criamos o cabeçalho de memória. À partir de agora, cada novo módulo de Weaver terá um nome associado à ele. O deste é "Memória". E todo cabeçalho .h dele conterá, além das macros comuns para impedir que ele seja inserido mais de uma vez e para que ele possa ser usado em C++, uma parte na qual será inserido o cabeçalho de configuração (visto no fim do capítulo anterior) e a parte de declarações, com o nome Declarações de NOME_DO_MODULO.

Arquivo: project/src/weaver/memory.h:

Arquivo: project/src/weaver/memory.c:

```
#include "memory.h"
```

No caso, as Declarações de Memória que usaremos aqui começam com os cabeçalhos que serão usados, e posteriormente passarão para as declarações das funções e estruturas de dado a serem usadas nele:

Seção: Declarações de Memória:

```
#include <sys/mman.h> // |mmap|, |munmap|
#include <pthread.h> // |pthread_mutex_init|, |pthread_mutex_destroy|
#include <string.h> // |strncpy|
#include <unistd.h> // |sysconf|
#include <stdlib.h> // |size_t|
#include <stdio.h> // |perror|
#include <math.h> // |ceil|
#include <stdbool.h>
```

Outra coisa relevante a mencionar é que à partir de agora assumiremos que as seguintes macros são definidas em conf/conf.h:

- W_MAX_MEMORY : O valor máximo em bytes de memória que iremos alocar por meio da função Walloc de alocação de memória na arena padrão.
- W_WEB_MEMORY: A quantidade de memória adicional em bytes que reservaremos para uso caso compilemos o nosso jogo para a Web ao invés de gerar um programa executável. O Emscripten precisará de memória adicional e a quantidade pode depender do quanto outras funções como malloc e Walloc_arena são usadas. Este valor deve ser aumentado se forem encontrados problemas de falta de memória na web. Esta macro será consultada na verdade por um dos Makefiles, não por código que definiremos neste PDF.

2.7 - Estruturas de Dados Usadas

Vamos considerar primeiro uma arena. Toda arena terá a seguinte estrutura:

+	+	L				-+
•	•			•		•
l Cabecalho	Breaknoint	Breakpoints e	alocações	l Não	alocado	-
Oabcyaino	Dicampoint	Dicampoints c	arocações	Nao	arocado	•
+	+	L				

A terceira região é onde toda a ação de alocação e liberação de memória ocorrerá. No começo estará vazia e a área não-alocada será a maioria. À medida que alocações e desalocações ocorrerem, a região de alocação e *breakpoints* crescerá e diminuirá, sempre substituindo o espaço não-alocado ao crescer. O cabeçalho e *breakpoint* inicial sempre existirão e não poderão ser removidos. O primeiro *breakpoint* é útil para que o comando Wtrash sempre funcione e seja definido, pois sempre existirá um último *breakpoint*.

2.7.1- Cabeçalho da Arena

O cabeçalho conterá todas as informações que precisamos para usar a arena. Chamaremos sua estrutura de dados de $\mbox{struct arena_header}$.

O tamanho total da arena nunca muda. O cabeçalho e primeiro breakpoint também tem tamanho constante. A região de breakpoint e alocações pode crescer e diminuir, mas isso sempre implica que a região não-alocada respectivamente diminui e cresce na mesma proporção.

As informações encontradas no cabeçalho são:

- •Total: A quantidade total em bytes de memória que a arena possui. Como precisamos garantir que ele tenha um tamanho suficientemente grande para que alcance qualquer posição que possa ser alcançada por um endereço, ele precisa ser um <code>size_t</code>. Pelo padrão ISO isso será no mínimo 2 bytes, mas em computadores pessoais atualmente está chegando a 8 bytes. Esta informação será preenchida na inicialização da arena e nunca mais será mudada.
- •Usado: A quantidade de memória que já está em uso nesta arena. Isso nos permite verificar se temos espaço disponível ou não para cada alocação. Pelo mesmo motivo do anterior, precisa ser um <code>size_t</code>. Esta informação precisará ser atualizada toda vez que mais memória for alocada ou desalocada. Ou quando um breakpoint for criado ou destruído.
- •Último Breakpoint: Armazenar isso nos permite saber à partir de qual posição podemos começar a desalocar memória em caso de um Wtrash. Outro size_t. Eta informação precisa ser atualizada toda vez que um breakpoint for criado ou destruído. Um último breakpoint sempre existirá, pois o primeiro breakpoint nunca pode ser removido.
- •Último Elemento: Endereço do último elemento que foi armazenado. É útil guardar esta informação porque quando criamos um novo elemento com Walloc ou Wbreakpoint, o novo elemento precisa apontar para o último que havia antes dele. Esta informação precisa ser atualizada após qualquer operação de alocação, desalocação ou breakpoint. Sempre existirá um último elemento na arena, pois se nada foi alocado um primeiro breakpoint sempre estará posicionado após o cabeçalho e este será nosso último elemento.
- •Posição Vazia: Um ponteiro para a próxima região contínua de memória não-alocada. É preciso saber disso para podermos criar novas estruturas e retornar um espaço ainda não-utilizado em caso de Walloc. Outro size_t. Novamente é algo que precisa ser atualizado após qualquer uma das operações de memória sobre a arena. É possível que não hajam mais regiões vazias caso tudo já tenha sido alocado. Neste caso, o ponteiro deverá ser NULL.
- •Mutex: Opcional. Só precisamos definir isso se estivermos usando mais de uma thread. Neste caso, o mutex servirá para prevenir que duas threads tentem modificar qualquer um destes valores ao mesmo tempo. Caso seja usado, o mutex precisa ser usado em qualquer operação de memória, pois todas elas precisam modificar elementos da arena. Em máquinas testadas, isso gasta cerca de 40 bytes se usado.
- •Uso Máximo: Opcional. Só precisamos definir isso se estamos rodando o programa em um nível alto de depuração e por isso queremos saber ao fim do uso da arena qual a quantidade máxima de memória que alocamos nela ao longo da execução do programa. Desta forma, se nosso programa sempre disser que usamos uma quantidade pequena demais de memória, podemos ajustar o valor para alocar menos memória. Ou se chegarmos perto demais do valor máximo de alocação, podemos mudar o valor ou depurar o programa para gastarmos menos memória. Se estivermos monitorando o valor, precisamos verificar se ele precisa ser atualizado após qualquer alocação ou criação de breakpoint.

Caso usemos todos estes dados, nosso cabeçalho de memória ficará com cerca de 88 bytes em máquinas típicas. Nosso cabeçalho de arena terá então a seguinte definição na linguagem C:

Seção: Declarações de Memória (continuação):

```
struct _arena_header{
    size_t total, used;
    struct _breakpoint *last_breakpoint;
    void *empty_position, *last_element;

#ifdef W_MULTITHREAD
    pthread_mutex_t mutex;

#endif

#if W_DEBUG_LEVEL >= 3
    size_t max_used;

#endif
};
```

Pela definição, existem algumas restrições sobre os valores presentes em cabeçalhos de arena. Vamos criar um código de depuração para testar que qualquer uma destas restrições não é violada:

```
Seção: Declarações de Memória (continuação):
```

```
#if W_DEBUG_LEVEL >= 4
void _assert__arena_header(struct arena_header *);
#endif
```

```
Arquivo: project/src/weaver/memory.c:
```

```
#if W_DEBUG_LEVEL >= 4
void _assert__arena_header(struct arena_header *header){
 // O espaço máximo disponível na arena sempre deve ser maior ou
 // igual ao máximo que já armazenamos nela.
 if(header -> total < header -> max_used){
   fprintf(stderr,
           "ERROR (4): MEMORY: Arena header used more memory than allowed!\n");
   exit(1);
 }
 // Já o máximo que já armazenamos deve ser maior ou igual ao que
 // estamos armazenando no instante atual (pela definição de
 // 'máximo')
 if(header -> max_used < header -> used){
   fprintf(stderr,
            "ERROR (4): MEMORY: Arena header not registering max usage!\n");
   exit(1);
 }
 // O último breakpoint é o último elemento ou está antes do último
 // elemento. Já que breakpoints são elementos, mas há outros
 // elementos além de breakpoints.
 if(header -> last_element < header -> last_breakpoint){
   fprintf(stderr,
           "ERROR (4): MEMORY: Arena header storing in wrong location!\n");
   exit(1);
 }
 // O espaço não-alocado não existe ou fica depois do último elemento
 // alocado.
```

Quando criamos a arena e desejamos inicializar o valor de seu cabeçalho, tudo o que precisamos saber é o tamanho total que a arena tem. Os demais valores podem ser deduzidos. Portanto, podemos usar esta função interna para a tarefa:

Arquivo: project/src/weaver/memory.c (continuação):

```
static bool _initialize_arena_header(struct _arena_header *header,
                                     size_t total){
 header -> total = total;
 header -> used = sizeof(struct _arena_header) - sizeof(struct _breakpoint);
 header -> last_breakpoint = (struct _breakpoint *) (header + 1);
 header -> last_element = (void *) header -> last_breakpoint;
 header -> empty_position = (void *) (header -> last_breakpoint + 1);
#ifdef W_MULTITHREAD
 if(pthread_mutex_init(&(header -> mutex), NULL) != 0){
   return false;
 }
#endif
#if W_DEBUG_LEVEL >= 3
 header -> max_used = header -> used;
#endif
#if W_DEBUG_LEVEL >= 4
  _assert__arena_header(header);
#endif
 return true;
```

É importante notar que tal função de inicialização só pode falhar se ocorrer algum erro inicializando o mutex. Por isso podemos representar o seu sucesso ou fracasso fazendo-a retornar um valor booleano.

2.7.2- Breakpoints

A função primária de um breakpoint é interagir com as função Wbreakpoint e Wtrash . As informações que devem estar presentes nele são:

•**Tipo:** Um número mágico que corresponde sempre à um valor que identifica o elemento como sendo um *breakpoint*, e não um fragmento alocado de memória. Se o elemento realmente for um

breakpoint e não possuir um número mágico correspondente, então ocorreu um $buffer\ overflow$ em memória alocada e podemos acusar isso. Definiremos tal número como 0x11010101.

- •Último breakpoint: No caso do primeiro breakpoint, isso deve apontar para ele próprio (e assim o primeiro breakpoint pode ser identificado diante dos demais). nos demais casos, ele irá apontar para o breakpoint anterior. Desta forma, em caso de Wtrash, poderemos restaurar o cabeçalho da arena para apontar para o breakpoint anterior, já que o atual está sendo apagado.
- •Último Elemento: Para que a lista de elementos de uma arena possa ser percorrida, cada elemento deve ser capaz de apontar para o elemento anterior. Desta forma, se o breakpoint for removido, podemos restaurar o último elemento da arena para o elemento antes dele (assumindo que não tenha sido marcado para remoção como será visto adiante). O último elemento do primeiro breakpoint é ele próprio.
- Arena: Um ponteiro para a arena à qual pertence a memória.
- Tamanho: A quantidade de memória alocada até o breakpoint em questão. Quando o breakpoint for removido, a quantidade de memória usada pela arena passa a ser o valor presente aqui.
- Arquivo: Opcional para depuração. O nome do arquivo onde esta região da memória foi alocada.
- •Linha: Opcional para depuração. O número da linha onde esta região da memória foi alocada. Sendo assim, a nossa definição de breakpoint é:

Seção: Declarações de Memória (continuação):

```
struct _breakpoint{
  unsigned long type;
  void *last_element;
  struct _arena_header *arena;
  struct _breakpoint *last_breakpoint;
  size_t size;
#if W_DEBUG_LEVEL >= 1
  char file[32];
  unsigned long line;
#endif
};
```

Se todos os elementos estiverem presentes, espera-se que um breakpoint tenha por volta de 72 bytes. Naturalmente, isso pode variar dependendo da máquina.

As seguintes restrições sempre devem valer para tais dados:

- a) $type = 0 \times 11010101$.
- b) $last_breakpoint \leq last_element$.

Pode-se definir uma função para inicializar tais valores. As informações externas necessárias são todos os elementos, exceto o tipo (type) e o tamanho que pode ser deduzido pela arena:

Arquivo: project/src/weaver/memory.c (continuação):

```
static void _initialize_breakpoint(struct _breakpoint *self,
\Psi\Psi\Psi\Psi
       void *last_element,
ΨΨΨΨ
       struct _arena_header *arena,
\Psi\Psi\Psi\Psi
       struct _breakpoint *last_breakpoint,
\Psi\Psi\Psi\Psi
       char *file, unsigned long line){
  self -> type = _BREAKPOINT_T;
  self -> last_element = last_element;
  self -> arena = arena;
  self -> last_breakpoint = last_breakpoint;
  self -> size = arena -> used - sizeof(struct _breakpoint);
#if W_DEBUG_LEVEL >= 1
  if((void *) self -> last_breakpoint > self -> last_element){
   fprintf(stderr,
```

```
# "Something is very wrong! Arena with last breakpoint greater than "
# "last element: %s: %lu\n", file, line);
exit(-1);
}
strncpy(self -> file, file, 32);
self -> line = line;
#endif
}
```

Notar que assumimos que quando vamos inicializar um breakpoint, todos os dados do cabeçalho da arena já foram atualizados como tendo o breakpoint já existente. E como consultamos tais dados, o mutex da arena precisa estar bloqueado para que coisas como o tamanho da arena pão mudem

O primeiro dos breakpoints é especial e pode ser inicializado como abaixo. Para ele não precisamos nos preocupar em armazenar o nome de arquivo e número de linha em que é definido.

Arquivo: project/src/weaver/memory.c (continuação):

```
static void _initialize_first_breakpoint(struct _breakpoint *self,

ΨΨΨΨ struct _arena_header *arena){
    _initialize_breakpoint(self, self, arena, self, "", 0);
}
```

Por fim, vamos à definição da memória alocada. Ela é formada basicamente por um cabeçalho, o espaço alocado em si e uma finalização. No caso do cabeçalho, precisamos dos seguintes elementos:

Tipo: Um número que identifica o elemento como um cabeçalho de dados, não um breakpoint. No caso, usaremos o número mágico 0×10101010 . Tamanho Real: Quantos bytes tem a região alocada para dados. É igual ao tamanho pedido mais alguma quantidade adicional de bytes de preenchimento para podermos manter o alinhamento da memória. Tamanho Pedido: Quantos bytes foram pedidos na alocação, ignorando o preenchimento. Último Elemento: A posição do elemento anterior da arena. Pode ser outro cabeçalho de dado alocado ou um breakpoint. Este ponteiro nos permite acessar os dados como uma lista encadeada. Arena: Um ponteiro para a arena à qual pertence a memória. Flags: Permite que coloquemos informações adicionais. o último bit é usado para definir se a memória foi marcada para ser apagada ou não. Arquivo: Opcional para depuração. O nome do arquivo onde esta região da memória foi alocada. Linha: Opcional para depuração. O número da linha onde esta região da memória foi alocada.

A definição de nosso cabeçalho de dados é:

Seção: Declarações de Memória (continuação):

```
struct _memory_header{
  unsigned long type;
  void *last_element;
  void *arena;
  size_t real_size, requested_size;
  unsigned long flags;
#if W_DEBUG_LEVEL >= 1
  char file[32];
  unsigned long line;
#endif
};
```

E por fim, precisamos definir os 2 números mágicos que mencionamos em nossa descrição das estruturas de memória:

Seção: Declarações de Memória (continuação):

```
#define _BREAKPOINT_T 0x11010101
```

2.8 - Criando e destruindo arenas

Criar uma nova arena envolve basicamente alocar memória usando mmap e tomando o cuidado para alocarmos sempre um número múltiplo do tamanho de uma página (isso garante alinhamento de memória e também nos dá um tamanho ótimo para paginarmos). Em seguida preenchemos o cabeçalho da arena e colocamos o primeiro breakpoint nela.

A função que cria novas arenas deve receber como argumento o tamanho mínimo que ela deve ter em bytes. Já destruir uma arena requer um ponteiro para ela:

Seção: Declarações de Memória (continuação):

```
void *Wcreate_arena(size_t);
int Wdestroy_arena(void *);
```

2.8.1- Criando uma arena

O processo de criar a arena funciona alocando todo o espaço de que precisamos e em seguida preenchendo o cabeçalho inicial e breakpoint:

Arquivo: project/src/weaver/memory.c (continuação):

```
void *Wcreate_arena(size_t size){
  void *arena;
  size_t real_size = 0;
  struct _breakpoint *breakpoint;
```

<Seção a ser Inserida: Aloca 'arena' com cerca de 'size' bytes e preenche 'realsize'>

```
return arena;
}
```

Então usar esta função nos dá como retorno NULL ou um ponteiro para uma nova arena cujo tamanho total é no mínimo o pedido como argumento, mas talvez será maior por motivos de alinhamento e paginação. Partes desta região contínua serão gastos com cabeçalhos da arena, das regiões alocadas e *breakpoints*. Então pode ser que obtenhamos como retorno uma arena onde caibam menos coisas do que caberia no tamanho especificado como argumento.

Mas qual será o tamanho real da arena se não é necessariamente o que pedimos como argumento? Resposta: será o menor tamanho que é maior ou igual ao valor pedido e que seja múltiplo do tamanho de uma página do sistema. Usamos a chamada de sistema mmap para obter a memória. Outra opção seria o brk, mas usar tal chamada de sistema criaria conflito caso o usuário tentasse usar o malloc da biblioteca padrão ou usasse uma função de biblioteca que usa internamento o malloc. Como até um simples sprintf usa malloc, não podemos usar o brk, pois isso criaria muitos conflitos com outras bibliotecas:

Seção: Aloca 'arena' com cerca de 'size' bytes e preenche 'realsize':

E para desalocar uma arena, fazemos simplesmente:

```
Seção: Desaloca 'arena':
```

```
{
  if(munmap(arena, ((struct _arena_header *) arena) -> total) == -1){
    arena = NULL;
  }
}
```

2.8.2- Destruindo uma arena

Destruir uma arena é uma simples questão de finalizar o seu mutex caso estejamos criando um programa com muitas threads e usar um munmap . Entretanto, se estamos rodando uma versão em desenvolvimento do jogo, com depuração, este será o momento no qual informaremos a existência de vazamentos de memória. E dependendo do nível da depuração, podemos imprimir também a quantidade máxima de memória usada:

Arquivo: project/src/weaver/memory.c (continuação):

```
int Wdestroy_arena(void *arena){
#if W_DEBUG_LEVEL >= 1
  struct _arena_header *header = (struct _arena_header *) arena;
     < Seção a ser Inserida: Checa vazamento de memória em 'arena' dado seu
'header'>
#endif
#if W_DEBUG_LEVEL >= 3
 fprintf(stderr,
Ψ "WARNING (3): Max memory used in arena %s:%lu: %lu/%lu\n",
Ψ header -> file, header -> line, (unsigned long) header -> max_used,
Ψ (unsigned long) header -> total);
#endif
#ifdef W_MULTITHREAD
   struct _arena_header *header = (struct _arena_header *) arena;
   if(pthread_mutex_destroy(&(header -> mutex)) != 0){
      return 0;
   }
 }
#endif
                      <Seção a ser Inserida: Desaloca 'arena'>
 if(arena == NULL){
   return 0;
 }
 return 1;
```

}

Agora resta apenas definir como checamos a existência de vazamentos de memória. Cada arena tem em seu cabeçalho um ponteiro para seu último elemento. E cada elemento tem um ponteiro para um elemento anterior. Sendo assim, basta percorrermos a lista encadeada e verificarmos se encontramos um cabeçalho de memória alocada que não foi desalocado. Tais cabeçalhos são identificados como tendo o último bit de sua variável flags como sendo 1. E devemos percorrer a lista até chegarmos ao primeiro breakpoint.

Seção: Checa vazamento de memória em 'arena' dado seu 'header':

```
struct _memory_header *p = (struct _memory_header *) header -> last_element;
while(p -> type != _BREAKPOINT_T ||

\( (struct _breakpoint *) p) -> last_breakpoint !=
\( (struct _breakpoint *) p) \{
    if(p -> type == _DATA_T && p -> flags % 2) \{
        fprintf(stderr, "WARNING (1): Memory leak in data allocated in %s:%lu\n",
\( \Psi = ) = (struct _memory_header *) p -> last_element;
\)
}

p = (struct _memory_header *) p -> last_element;
}
```

A única coisa que não temos como checar é se toda arena criada é depois destruída. Caso um programador decida manipular manualmente suas arenas, ele deverá assumir responsabilidade por isso.

2.9 - Alocação e desalocação de memória

Seção: Declarações de Memória (continuação):

```
void *_alloc(void *arena, size_t size, char *filename, unsigned long line);
void _free(void *mem, char *filename, unsigned long line);
```

Alocar memória significa basicamente atualizar informações no cabeçalho de sua arena indicando quanto de memória estamos pegando e atualizando o ponteiro para o último elemento e para o próximo espaço disponível para alocação. Podemos também ter que atualizar qual a quantidade máxima de memória usada por tal arena. E podemos precisar usar um mutex para isso.

Além do cabeçalho da arena, temos também que colocar o cabeçalho da região alocada e o seu rodapé. Mas nesta parte não precisaremos mais segurar o mutex.

Podemos ter que alocar uma quantidade ligeiramente maior que a pedida para preservarmos o alinhamento dos dados na memória. A memória sempre se manterá alinhada com um long. O verdadeiro tamanho alocado será armazenado em real_size.

O que pode dar errado é que podemos não ter espaço na arena para fazer a alocação. Neste caso, teremos que retornar NULL e se estivermos em fase de depuração, imprimiremos uma mensagem avisando isso:

Arquivo: project/src/weaver/memory.c (continuação):

```
void *_alloc(void *arena, size_t size, char *filename, unsigned long line){
   struct _arena_header *header = arena;
   struct _memory_header *mem_header;
   void *mem = NULL, *old_last_element;
#ifdef W_MULTITHREAD
   pthread_mutex_lock(&(header -> mutex));
#endif
   mem_header = header -> empty_position;
```

```
old_last_element = header -> last_element;
 //Parte 1: Calcular o verdadeiro tamanho a se alocar:\\
  size_t real_size = (size_t) (ceil((float) size / (float) sizeof(long)) *
          sizeof(long));
 //Parte 2: Atualizar o cabeçalho da arena:\\
 if(header -> used + real_size + sizeof(struct _memory_header) >
    header -> total){
#if W_DEBUG_LEVEL >= 1
   fprintf(stderr, "WARNING (1): No memory enough to allocate in %s:%lu.\n",
     filename, line);
#endif
#ifdef W_MULTITHREAD
   pthread_mutex_unlock(&(header -> mutex));
#endif
   return NULL;
 }
 header -> used += real_size + sizeof(struct _memory_header);
 mem = (void *) ((char *) header -> empty_position +
ΨΨ sizeof(struct _memory_header));
 header -> last_element = header -> empty_position;
 header -> empty_position = (void *) ((char *) mem + real_size);
#if W_DEBUG_LEVEL >= 3
 if(header -> used > header -> max_used){
   header -> max_used = header -> used;
 }
#endif
 //Parte 3: Preencher o cabeçalho do dado a ser alocado:\\
 mem_header -> type = _DATA_T;
 mem_header -> last_element = old_last_element;
 mem_header -> real_size = real_size;
 mem_header -> requested_size = size;
 mem_header -> flags = 0x1;
 mem_header -> arena = arena;
#if W_DEBUG_LEVEL >= 1
  strncpy(mem_header -> file, filename, 32);
 mem_header -> line = line;
#ifdef W_MULTITHREAD
 pthread_mutex_unlock(&(header -> mutex));
#endif
 return mem;
```

E agora precisamos só de uma função de macro para cuidar automaticamente da tarefa de coletar o nome de arquivo e número de linha para mensagens de depuração:

Seção: Declarações de Memória (continuação):

```
#define Walloc_arena(a, b) _alloc(a, b, __FILE__, __LINE__)
```

Para desalocar a memória, existem duas possibilidades. Podemos estar desalocando a última memória alocada ou não. No primeiro caso, tudo é uma questão de atualizar o cabeçalho da arena

modificando o valor do último elemento armazenado e também um ponteiro pra o próximo espaço vazio. No segundo caso, tudo o que fazemos é marcar o elemento para ser desalocado no futuro.

Caso o elemento realmente seja desalocado (seja o último elemento alocado), temos que percorrer os elementos anteriores desalocando todos aqueles que foram marcados para desalocar e parar no primeiro elemento que ainda estiver em uso.

Arquivo: project/src/weaver/memory.c (continuação):

```
void _free(void *mem, char *filename, unsigned long line){
  struct _memory_header *mem_header = ((struct _memory_header *) mem) - 1;
 struct _arena_header *arena = mem_header -> arena;
 void *last_freed_element;
 size_t memory_freed = 0;
#ifdef W_MULTITHREAD
 pthread_mutex_lock(&(arena -> mutex));
#endif
 // Primeiro checamos se não estamos desalocando a ultima memória. Se
 // é a ultima memória, precisamos manter o mutex ativo para impedir
 // que hajam novas escritas na memória depois dela no momento:
 if((struct _memory_header *) arena -> last_element != mem_header){
#ifdef W_MULTITHREAD
   pthread_mutex_unlock(&(arena -> mutex));
#endif
   mem_header -> flags = 0x0;
#if W_DEBUG_LEVEL >= 2
   fprintf(stderr,
    "WARNING (2): %s:%lu: Memory allocated in %s:%lu should be"
     " freed first.\n", filename, line,
    ((struct _memory_header *) (arena -> last_element)) -> file,
     ((struct _memory_header *) (arena -> last_element)) -> line);
#endif
   return;
 }
 memory_freed = mem_header -> real_size + sizeof(struct _memory_header);
 last_freed_element = mem_header;
 mem_header = mem_header -> last_element;
 while(mem_header -> type != _BREAKPOINT_T && mem_header -> flags == 0x0){
   memory_freed += mem_header -> real_size + sizeof(struct _memory_header);
   last_freed_element = mem_header;
   mem_header = mem_header -> last_element;
 }
 arena -> last_element = mem_header;
 arena -> empty_position = last_freed_element;
  arena -> used -= memory_freed;
#ifdef W_MULTITHREAD
  pthread_mutex_unlock(&(arena -> mutex));
#endif
```

E agora a macro que automatiza a obtenção do nome de arquivo e número de linha:

Seção: Declarações de Memória (continuação):

```
#define Wfree(a) _free(a, __FILE__, __LINE__)
```

2.10 - Usando a heap descartável

Graças ao conceito de *breakpoints*, pode-se desalocar ao mesmo tempo todos os elementos alocados desde o último *breakpoint* por meio do Wtrash . A criação de um *breakpoit* e descarte de memória até ele se dá por meio das funções declaradas abaixo:

Seção: Declarações de Memória (continuação):

```
int _new_breakpoint(void *arena, char *filename, unsigned long line);
void _trash(void *arena);
```

As funções precisam receber como argumento apenas um ponteiro para a arena na qual realizar a operação. Além disso, elas recebem também o nome de arquivo e número de linha como nos casos anteriores para que isso ajude na depuração:

Arquivo: project/src/weaver/memory.c (continuação):

```
int _new_breakpoint(void *arena, char *filename, unsigned long line){
  struct _arena_header *header = (struct _arena_header *) arena;
 struct _breakpoint *breakpoint, *old_breakpoint;
 void *old_last_element;
  size_t old_size;
#ifdef W_MULTITHREAD
 pthread_mutex_lock(&(header -> mutex));
  if(header -> used + sizeof(struct _breakpoint) > header -> total){
#if W_DEBUG_LEVEL >= 1
   fprintf(stderr, "WARNING (1): No memory enough to allocate in %s:%lu.\n",
      filename, line);
#endif
#ifdef W_MULTITHREAD
   pthread_mutex_unlock(&(header -> mutex));
#endif
   return 0;
 old_breakpoint = header -> last_breakpoint;
  old_last_element = header -> last_element;
 old_size = header -> used;
 header -> used += sizeof(struct _breakpoint);
  breakpoint = (struct _breakpoint *) header -> empty_position;
 header -> last_breakpoint = breakpoint;
 header -> empty_position = ((struct _breakpoint *) header -> empty_position) +
 header -> last_element = header -> last_breakpoint;
#if W_DEBUG_LEVEL >= 3
  if(header -> used > header -> max_used){
   header -> max_used = header -> used;
 }
#endif
#ifdef W_MULTITHREAD
 pthread_mutex_unlock(&(header -> mutex));
```

```
#endif
  breakpoint -> type = _BREAKPOINT_T;
  breakpoint -> last_element = old_last_element;
  breakpoint -> arena = arena;
  breakpoint -> last_breakpoint = (void *) old_breakpoint;
  breakpoint -> size = old_size;
#if W_DEBUG_LEVEL >= 1
  strncpy(breakpoint -> file, filename, 32);
  breakpoint -> line = line;
#endif
  return 1;
}
```

E a função para descartar toda a memória presente na heap até o último breakpoint:

Arquivo: project/src/weaver/memory.c (continuação):

```
void _trash(void *arena){
 struct _arena_header *header = (struct _arena_header *) arena;
 struct _breakpoint *previous_breakpoint =
   ((struct _breakpoint *) header -> last_breakpoint) -> last_breakpoint;
#ifdef W_MULTITHREAD
 pthread_mutex_lock(&(header -> mutex));
#endif
 if(header -> last_breakpoint == previous_breakpoint){
   header -> last_element = previous_breakpoint;
   header -> empty_position = (void *) (previous_breakpoint + 1);
   header -> used = previous_breakpoint -> size + sizeof(struct _breakpoint);
 }
 else{
   struct _breakpoint *last = (struct _breakpoint *) header -> last_breakpoint;
   header -> used = last -> size;
  header -> empty_position = last;
   header -> last_element = last -> last_element;
   header -> last_breakpoint = previous_breakpoint;;
#ifdef W_MULTITHREAD
 pthread_mutex_unlock(&(header -> mutex));
#endif
```

E para finalizar, as macros necessárias para usarmos as funções sem nos preocuparmos com o nome do arquivo e número de linha:

Seção: Declarações de Memória (continuação):

```
#define Wbreakpoint_arena(a) _new_breakpoint(a, __FILE__, __LINE__)
#define Wtrash_arena(a) _trash(a)
```

2.11 - Usando as arenas de memória padrão

Ter que se preocupar com arenas muitas vezes é desnecessário. O usuário pode querer simplesmente usar uma função Walloc sem ter que se preocupar com qual arena usar. Usando simplesmente a arena padrão. E associada à ela deve haver as funções Wfree, Wbreakpoint e Wtrash.

Primeiro precisaremos declarar duas variáveis globais. Uma delas será uma arena padrão do usuário, a outra deverá ser uma arena usada pelas funções internas da própria API. Ambas as variáveis devem ficar restritas ao módulo de memória, então serão declaradas como estáticas:

Arquivo: project/src/weaver/memory.c (continuação):

```
static void *_user_arena, *_internal_arena;
```

Vamos precisar inicializar e finalizar estas arenas com as seguinte funções:

Seção: Declarações de Memória (continuação):

```
void _initialize_memory();
void _finalize_memory();
```

Note que são funções que sabem o nome do arquivo e número de linha em que estão para propósito de depuração. Elas são definidas como sendo:

Arquivo: project/src/weaver/memory.c (continuação):

```
void _initialize_memory(void){
   _user_arena = Wcreate_arena(W_MAX_MEMORY);
   _internal_arena = Wcreate_arena(4000);
}
void _finalize_memory(){
   Wdestroy_arena(_user_arena);
   Wtrash_arena(_internal_arena);
   Wdestroy_arena(_internal_arena);
}
```

Passamos adiante o número de linha e nome do arquivo para a função de criar as arenas. Isso ocorre porque um usuário nunca invocará diretamente estas funções. Quem vai chamar tal função é a função de inicialização da API. Se uma mensagem de erro for escrita, ela deve conter o nome de arquivo e número de linha onde está a própria função de inicialização da API. Não onde tais funções estão definidas.

A invocação destas funções se dá na inicialização da API, a qual é mencionada na Introdução. Da mesma forma, na finalização da API, chamamos a função de finalização:

Seção: API Weaver: Inicialização (continuação):

```
_initialize_memory(filename, line);
```

Seção: API Weaver: Finalização (continuação):

```
// Em ''desalocações'' desalocamos memória alocada com |Walloc|:

<Seção a ser Inserida: API Weaver: Desalocações>
_finalize_memory();
```

Agora para podermos alocar e desalocar memória da arena padrão e da arena interna, criaremos a seguinte funções:

Seção: Declarações de Memória (continuação):

```
void *_Walloc(size_t size, char *filename, unsigned int line);
#define Walloc(n) _Walloc(n, __FILE__, __LINE__)
void *_Winternal_alloc(size_t size, char *filename, unsigned int line);
```

```
#define _iWalloc(n) _Winternal_alloc(n, __FILE__, __LINE__)
```

Arquivo: project/src/weaver/memory.c (continuação):

```
void *_Walloc(size_t size, char *filename, unsigned int line){
   return _alloc(_user_arena, size, filename, line);
}
void *_Winternal_alloc(size_t size, char *filename, unsigned int line){
   return _alloc(_internal_arena, size, filename, line);
}
```

O Wfree já foi definido e irá funcionar sem problemas, independente da arena à qual pertence o trecho de memória alocado. Sendo assim, resta definir apenas o Wbreakpoint e Wtrash:

Seção: Declarações de Memória (continuação):

```
int _Wbreakpoint(char *filename, unsigned long line);
void _Wtrash();
#define Wbreakpoint() _Wbreakpoint(__FILE__, __LINE__)
#define Wtrash() _Wtrash()
```

E a definição das funções segue abaixo:

Arquivo: project/src/weaver/memory.c (continuação):

```
int _Wbreakpoint(char *filename, unsigned long line){
   return _new_breakpoint(_user_arena, filename, line);
}
void _Wtrash(){
   _trash(_user_arena);
}
```

2.12 - Medindo o desempenho

Existem duas macros que são úteis de serem definidas que podem ser usadas para avaliar o desempenho do gerenciador de memória definido aqui. Elas são:

Seção: Cabeçalhos Weaver (continuação):

```
#include <stdio.h>
#include <sys/time.h>

#define W_TIMER_BEGIN() { struct timeval _begin, _end; \
gettimeofday(&_begin, NULL);

#define W_TIMER_END() gettimeofday(&_end, NULL); \
printf("%ld us\n", (1000000 * (_end.tv_sec - _begin.tv_sec) + \
_end.tv_usec - _begin.tv_usec)); \
}
```

Como a primeira macro inicia um bloco e a segunda termina, ambas devem ser sempre usadas dentro de um mesmo bloco de código, ou um erro ocorrerá. O que elas fazem nada mais é do que usar gettimeofday e usar a estrutura retornada para calcular quantos microssegundos se passaram entre uma invocação e outra. Em seguida, escreve-se na saída padrão quantos microssegundos se passaram.

Como exemplo de uso das macros, podemos usar a seguinte função main para obtermos uma medida de performance das funções Walloc e Wfree:

```
Arquivo: /tmp/dummy.c:
```

```
// Só um exemplo, não faz parte de Weaver
```

```
int main(int argc, char **argv){
  unsigned long i;
  void *m[1000000];
  Winit();
  W_TIMER_BEGIN();
  for(i = 0; i < 1000000; i ++){
    m[i] = Walloc(1);
  }
  for(i = 0; i < 1000000; i ++){
      Wfree(m[i]);
  }
  Wtrash();
  W_TIMER_END();
  Wexit();
  return 0;
}</pre>
```

Rodando este código em um Pentium B980 2.40GHz Dual Core, obtemos os seguintes resultados para o Walloc / Wfree (em vermelho) comparado com o malloc / free (em azul) da biblioteca padrão (Glibc 2.20) comparado ainda com a substituição do segundo loop por uma única chamada para Wtrash (em verde):

O alto desempenho do uso de <code>Walloc</code> / <code>Wtrash</code> é compreensível pelo fato da função <code>Wtrash</code> desalocar todo o espaço ocupado pelo último milhão de alocações no mesmo tempo que <code>Wfree</code> levaria para desalocar uma só alocação. Isso explica o fato de termos reduzido pela metade o tempo de execução do exemplo.

Entretanto, tais resultados positivos só são obtidos caso usemos a macro <code>W_DEBUG_LEVEL</code> ajustada para zero, como é recomendado fazer ao compilar um jogo pela última vez antes de distribuir. Caso o jogo ainda esteja em desenvolvimento e tal macro tenha um valor maior do que zero, o desempenho de <code>Walloc</code> e <code>Wfree</code> pode tornar-se de duas à vinte vezes pior devido à estruturas adicionais estarem sendo usadas para depuração e devido à mensagens poderem ser escritas na saída padrão.

Os bons resultados são ainda mais visíveis caso compilemos nosso programa para a Web (ajustando a macro W_TARGET para W_WEB). Neste caso, o desempenho do malloc tem uma queda brutal. Ele passa a executar 20 vezes mais lentamente no exemplo acima, enquanto as funções que desenvolvemos ficam só 1,8 vezes mais lentas. É até difícil mostrar isso em gráfico devido à diferença de escala entre as medidas. Nos testes, usou-se o Emscripten versão 1.34.

Mas e se usarmos várias threads para realizarmos este milhão de alocações nesta máquina com 2 processadores? Supondo que exista a função test que realiza todas as alocações e desalocações de um milhão de posições de memória divididas pelo número de threads e supondo que executemos o seguinte código:

Arquivo: /tmp/dummy.c:

```
// Só um exemplo, não faz parte de Weaver
int main(int argc, char **argv){
  pthread_t threads[NUM_THREADS];
  int i;
  Winit();
  for(i = 0; i < NUM_THREADS; i ++)
    pthread_create(&threads[i], NULL, test, (void *) NULL);
  W_TIMER_BEGIN();
  for (i = 0; i < NUM_THREADS; i++)
    pthread_join(threads[i], NULL);
  W_TIMER_END();
  Wexit();</pre>
```

```
pthread_exit(NULL);
return 0;
}
```

O resultado é este:

O desempenho de Walloc e Wfree (em vermelho) passa a deixar muito à desejar comparado com o uso de malloc e free (em azul). Isso ocorre porque na nossa função de alocação, para alocarmos e desalocarmos, precisamos bloquear um mutex. Desta forma, neste exemplo, como tudo o que as threads fazem é alocar e desalocar, na maior parte do tempo elas ficam bloqueadas. As funções malloc e free da biblioteca padrão não sofrem com este problema, pois cada thread sempre possui a sua própria arena para alocação. Nós não podemos fazer isso automaticamente porque no nosso gerenciador de memória, para que possamos realizar otimizações, precisamos saber com antecedência qual a quantidade máxima de memória que iremos alocar. Não temos como deduzir este valor para cada thread.

Mas nós podemos criar manualmente arenas ara as nossas threads por meio de Wcreate_arena e depois podemos usar Wdestroy_arena pouco antes da thread encerrar. Desta forma podemos usar Walloc_arena para alocar a memória em uma arena particular da thread. Com isso, conseguimos desempenho equivalente ao malloc para uma ou duas threads. Para mais threads, conseguimos um desempenho ainda melhor em relação ao malloc, já que nosso desempenho não sofre tanta degradação se usamos mais threads que o número de processadores. Podemos analisar o desempenho no gráfico mais abaixo por meio da cor verde.

Mas se reservamos manualmente uma arena para cada thread, então somos capazes de desalocar toda a memória da arena por meio da Wtrash_arena . Sendo assim, economizamos o tempo que seria gasto desalocando memória. O desempenho desta forma de uso do nosso alocador pode ser visto no gráfico em amarelo.

O uso de threads na web por meio de Emscripten no momento da escrita deste texto ainda está experimental. Somente o Firefox Nightly suporta o recurso no momento. Por este motivo, testes de desempenho envolvendo threads em programas web ficarão pendentes.