Вынуждённые колебания в электрическом контуре

Цель работы

Исследование вынужденных колебаний и процессов их установления.

Оборудование

Генератор звуковой частоты ($\Im\Gamma$), осциллограф ($\Im O$), вольтметр, частотометр, ёмкость, индуктивность, магазин сопротивлений, универсальный мост.

Экспериментальная установка

Рис. 1: Схема установки для исследования вынуждённых колебаний

Теоретическая часть

Для экспериментального исследования резонансной кривой тока в последовательном колебательном контуре можно снять зависимость амплитуды напряжения на резситоре R от частоты генератора (при постоянной амплитуде выходного напряжения генератора). Но импеданс этого контура включает в себя выходной импеданс генератора. Мы должны быть уверены, что выходной импеданс генератора много меньше импеданса контура и не влияет на процессы, происходящие в этом контуре.

Для устранения этого влияния можно использовать схему, представленную на рисунке (1): синусоидальный синал с генератора подаётся на параллельный колебательный контур

через небольшую разделительную ёмкость C_1 . Напряжение с ёмкости кнтура C поступает на вертикальный вход 90.

Зависимость амплитуды этого напряжения от частоты генератора будет практически совпадать с резонансной кривой для последовательного контура, если импедансы возбуждающей и измеряющей цепей (сопротивления переменному току) намного превосходят импеданс самого контура вблизи резонанса $Z_{\text{pes}} \approx L/(RC) = Q/(\Omega C)$. Разделительная ёмкость C_1 выбирается настолько малой, что в рабочем диапазоне частот её импеданс $Z_{C_1} = 1/(\Omega C_1)$ много меньше импеданса контура, поэтому в цепи генератора течёт ток практически с постоянной амплитудой, а колебательный контур выполняет роль нагрузочного сопротивления, которое, в свою очередь, зависит от частоты. Поскольку в резонансе сопротивление $Z_{
m pes}$ параллельного контура максимально, то и напряжение на ёмкости C (неизменный ток, умноженный на максимальное сопротивление) тоже максимально. Входное сопротивление осциллографа (измеряющей цепи) достаточно велико: $R_{\Theta O} \approx 1 \text{MOM}$.

Таким образом, при выполнении условий

$$Z_{C_1} = \frac{1}{\Omega C_1} \gg |Z| = \frac{Q}{\Omega C}, \quad R_{\Theta O} \gg \frac{Q}{\Omega C}$$

и при условии, что действительная часть импеданса катушки много меньше её мнимой части, резонансная кривая в нашем контуре бует выглядеть так же, как в последовательном: максимум амплитуды при резонансе. Ширина резонансной кривой определяет важную характеристику контура — добротность.

Добротность контура может быть определена и другими способами, например, по скорости нарастания амплитуды вынужденных колебаний при резонансе или по скорости затухания свободных колебаний. Нарастание и затухание колебаний можно наблюдать на экране осциллографа, если на контур подаются цуги — отрезки синусоиды, разделённые интервалами, в течение которых сигнал отсутствует. Чем выше добротность, тем медленне нарастают и медленнее затухают колебания в контуре. Количественные оценки можно сделать, сли определить логарифмический декремент затухания по скорости нарастания или затухания колебаний. В условиях резонанса огибающая затухающих колебаний это перевёрнутая огибающая нарастающего участка, поэтому при расчёте логарифмического декремента по затуханию нет необходимости

использовать амплитуду установившихся колебаний U_0 , которая в контуре с высокой добротностью иногда не успевает установиться за время продолжительности цуга.

Обработка результатов измерений

Теоретическая и найденная экспериментально резонансная частота:

$$u_0 = 1575 \, \Gamma \text{ц}; \quad \nu_{0_{\text{теор}}} = \frac{1}{2\pi \sqrt{LC}} = 1592.4 \, \Gamma \text{ц}$$

Таблица 1: Из- Таблица 2: Из- мерения при мерения при $R=100~{\rm Om}$ $R=0~{\rm Om}$

ν , к Γ ц	U, B		ν , к Γ ц	U,B
1.522	7.2		1.360	1.40
1.530	8.4		1.408	1.80
1.537	9.4		1.443	2.20
1.540	10.0		1.468	2.60
1.548	12.0		1.493	3.00
1.555	14.0		1.516	3.40
1.561	16.0		1.538	3.80
1.567	18.0		1.551	4.00
1.575	18.6		1.575	4.15
1.581	18.0		1.616	3.90
1.587	16.0		1.653	3.40
1.593	14.0		1.682	3.00
1.600	12.0		1.700	2.80
1.608	10.0		1.717	2.60
1.613	9.6		1.742	2.40
1.618	8.8		1.766	2.20
1.627	7.6		1.794	2.00
1.634	6.8		1.841	1.80
		-	1.887	1.60
			1.955	1.40
			2.055	1.20

Рис. 2: График зависимости U/U_0 от ν/ν_0

Найдём добротность из графика по формуле:

$$Q=\frac{\omega_0}{2\Delta\Omega}$$

$$Q_0=25\pm1 \quad Q_{100}=7.6\pm0.5$$

Рассчитаем добротность контура по скорости нарастания и затухания колебаний:

Рис. 3: Нарастание и затухание колебаний

	Нарастание				Затухание			
U_k , дел	12	12	14	20	30	29	29	28
U_{k+n} , дел	14	20	26	30	27	24	26	23
n	1	4	7	8	3	4	3	4
Q	36.1	30.9	27.9	25.6	25.2	23.3	26.4	25.9
σQ	2.8	2.4	2.0	2.1	1.7	1.6	1.7	1.7

Таблица 3: Данные нарастаний и затуханий цуги при R=0 Ом

	Нарастание				Затухание			
U_k , дел	10	19	28	33	32	27	33	37
U_{k+n} , дел	18	32	36	38	15	9	9	5
n	2	2	2	2	2	2	3	5
Q	7.6	7.6	7.4	7.7	6.3	8.7	7.3	7.8
σQ	1.1	1.0	0.9	0.9	0.7	1.1	1.0	1.1

Таблица 4: Данные нарастаний и затуханий цуги при $R=100~{
m Om}$

R, Om	$Q_{\text{воз}}$	$Q_{3\mathrm{ar}}$		
0	30.1 ± 2.2	25.2 ± 1.8		
100	7.5 ± 0.9	7.5 ± 0.9		

Вывод

$$Q_{\rm reop} = R\sqrt{\frac{C}{L}}$$

	R, Om	$R_{\rm akt}$, Om	$Q_{ m rpa \phi}$	$Q_{\text{воз}}$	$Q_{ m 3ar}$	$Q_{ m reop}$
	0	25.075	25 ± 1	30.1 ± 2.2	25.2 ± 1.8	25.7 ± 1
ĺ	100	25.075	7.6 ± 0.5	7.5 ± 0.9	7.5 ± 0.9	7.7 ± 0.5

Полученное экспериментально значение добротности с учетом погрешности совпадает с теоретическим. Метод определения доротности по графику даёт довольно точные результаты.