Università degli studi di Catania Corso di laurea Triennale in Matematica Prova scritta di Fisica Matematica Appello del 24.06.2022

Un sistema materiale S, posto in un piano verticale Π , é costituito da una circonferenza γ omogenea di raggio R, centro C e massa 3m, e da un'asta omogenea CB di lunghezza R e massa m saldata a γ in un suo punto B. Sul punto di γ diametralmente opposto a B é saldato un pattino A attorno a cui γ puó ruotare mantenendosi nel piano verticale Π . Nell'ipotesi che A scorra su una guida r di Π inclinata di $\pi/3$ rispetto alla verticale discendente, che tutti i vincoli siano lisci, e che sul sistema agiscano anche le forze

$$\left\{ F_1 = -\frac{2mg}{R} (B - B'), B \right\} \quad e \quad \left\{ F_2 = -\frac{mg}{R} (A - O), A \right\}$$

essendo O un punto di r e B' la proiezione ortogonale di B sull'orizontale per O (asse \vec{x}). Scegliendo come coordinate lagrangiane l'angolo ϑ che AB forma con la verticale discendente passante per A, ed s la distanza del punto A dal punto O sulla guida r (vedi figura) si chiede di:

- 1. Determinare tutte le possibili configurazioni di equilibrio del sistema studiando la stabilità-instabilità, delle suddette configurazioni.
- 2. Scrivere le equazioni di moto, determinando gli eventuali integrali primi.
- 3. Studiare i moti in prima approssimazione attorno alla configurazione di equilibrio nella quale $O \equiv A$ e B é sulla verticale discendente per O.
- 4. Supponendo, infine che, a differenza dei punti precedenti, il piano Π ruoti uniformemente, con velocitá angolare ω attorno all'asse \vec{y} , calcolare il potenziale delle forze apparenti associato all'intero sistema S.

