

CS224d-Lec ture13

CS224d: Deep NLP

Lecture 13: Convolutional Neural Networks (for NLP)

Richard Socher richard@metamind.io

Overview of today

- From RNNs to CNNs
- CNN Variant 1: Simple single layer
- Application: Sentence classification
- More details and tricks
- Evaluation
- Comparison between sentence models: BoV, RNNs2, CNNs
- · CNN Variant 2: Complex multi layer

Richard Socher

 Recursive neural nets require a parser to get tree structure

Recurrent neural nets cannot capture phrases without prefix context and often capture too much of last words in final vector

- RNN: Get compositional vectors for grammatical phrases only
- CNN: What if we compute vectors for every possible phrase?
- Example: "the country of my birth" computes vectors for:
 - the country, country of, of my, my birth, the country of, country of my, of my birth, the country of my, country of my birth
- · Regardless of whether it is grammatical
- Wouldn't need parser
- Not very linguistically or cognitively plausible

Richard Socher

5/12/16

What is convolution anyway?

- 1d discrete convolution generally: $(f*g)[n] = \sum_{m=-M}^{M} f[n-m]g[m]$.
- Convolution is great to extract features from images
- 2d example →
- Yellow shows filter weights
- Green shows input

1,	1 _{×0}	1,	0	0
0,0	1,	1,0	1	0
0,	0,×0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4

Image

Convolved Feature

Stanford UFLDL wiki 5/12/16

Richard Socher

• First layer: compute all bigram vectors

· Same computation as in RNN but for every pair

$$p = \tanh\left(W \left[\begin{array}{c} c_1 \\ c_2 \end{array} \right] + b\right)$$

This can be interpreted as a convolution over the word vectors

Richard Socher

5/12/16

From RNNs to CNNs

- Now multiple options to compute higher layers.
- First option (simple to understand but not necessarily best)
- Just repeat with different weights:

$$p = \tanh\left(W^{(2)} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + b\right)$$

Richard Socher

• First option (simple to understand but not necessarily best)

Richard Socher

5/12/16

From RNNs to CNNs

• First option (simple to understand but not necessarily best)

Single Layer CNN

- A simple variant using one convolutional layer and pooling_
- Based on Collobert and Weston (2011) and Kim (2014) "Convolutional Neural Networks for Sentence Classification"

 Word vectors: $\mathbf{x}_i \in \mathbb{R}^k$ word Vectors, \mathbf{k} dimensional
- Sentence: $\mathbf{x}_{1:n} = \mathbf{x}_1 \oplus \mathbf{x}_2 \oplus \ldots \oplus \mathbf{x}_n$ (vectors concatenated)
- · Concatenation of words in range: xi:i+i > sentence as very (2)
- Convolutional filter: $\mathbf{w} \in \mathbb{R}^{hk}$ (goes over window of h words)
- Could be 2 (as before) higher, e.g. 3:

5/12/16 Richard Socher

Single layer CNN

- Convolutional filter: $\mathbf{w} \in \mathbb{R}^{hk}$ (goes over window of h words)
- Note, filter is vector!
- Window size h could be 2 (as before) or higher, e.g. 3:
- · To compute feature for CNN layer:

$$c_i = f(\mathbf{\widetilde{w}}^T \mathbf{x}_{i:i+h-1} + b)$$

$$\begin{bmatrix} 0.4 \\ 0.3 \end{bmatrix} \begin{bmatrix} 2.1 \\ 3.3 \end{bmatrix} \begin{bmatrix} 7 \\ 7 \end{bmatrix} \begin{bmatrix} 4 \\ 4.5 \end{bmatrix} \begin{bmatrix} 2.3 \\ 3.6 \end{bmatrix}$$
the country of my birth

Richard Socher

5/12/16

Single layer CNN

- Filter w is applied to all possible windows (concatenated vectors)
- Sentence: $\mathbf{x}_{1:n} = \mathbf{x}_1 \oplus \mathbf{x}_2 \oplus \ldots \oplus \mathbf{x}_n$

Single layer CNN

- Filter w is applied to all possible windows (concatenated vectors)
- Sentence: $\mathbf{x}_{1:n} = \mathbf{x}_1 \oplus \mathbf{x}_2 \oplus \ldots \oplus \mathbf{x}_n$
- All possible windows of length h: $\{\mathbf{x}_{1:h},\mathbf{x}_{2:h+1},\ldots,\mathbf{x}_{n-h+1:n}\}$
- Result is a feature map: $\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$

Single layer CNN

- Filter w is applied to all possible windows (concatenated vectors)
- Sentence: $\mathbf{x}_{1:n} = \mathbf{x}_1 \oplus \mathbf{x}_2 \oplus \ldots \oplus \mathbf{x}_n$
- All possible windows of length h: $\{\mathbf{x}_{1:h},\mathbf{x}_{2:h+1},\ldots,\mathbf{x}_{n-h+1:n}\}$
- Result is a feature map: $\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$

Richard Socher

Single layer CNN: Pooling layer

- New building block: Pooling
- In particular: max-over-time pooling layer
- Idea: capture most important activation (maximum over time)

1) hat is the langth (syest Sentence? You can do list

+ra.ned

• Idea: capture most important activation (maximum over time) + rained
- mn-h+1
• Pooled single number: $\hat{c} = \max\{\mathbf{c}\}$
But we want more features! max overtime pooling layer
But we want more features! Max overtime pooling layer WANT: most important autivation Richard Socher * Can 25/12/16 pad to the left Solution: Multiple filters
Solution: Multiple filters
• Use multiple filter weights w • matrix multiplication
Useful to have different window sizes h
• Because of max pooling $\hat{c}=\max\{\mathbf{c}\}$, length of \mathbf{c} irrelevant $\mathbf{c}=[c_1,c_2,\ldots,c_{n-h+1}]\in\mathbb{R}^{n-h+1}$ • So we can have some filters that look at unigrams, bigrams, triagrams, 4-grams, etc.
• So we can have some filters that look at unigrams, bigrams, tri- grams, 4-grams, etc.
Bigrans trigrass have filters
Richard Socher 5/12/16
Richard Socher 5/12/16 hundred 5 5 filters for biggars Multi-channel idea
Initialize with pre-trained word vectors (word2vec or Glove)
• Start with two copies take word rentor from one of the chand)
Backprop into only one set, keep other "static"
Both channels are added to c _i before max-pooling
Mulli-chanel idea

Richard Socher

5/12/16

Classification after one CNN layer

- First one convolution, followed by one max-pooling
- To obtain final feature vector: $\mathbf{z} = [\hat{c}_1, \dots, \hat{c}_m]$ (assuming m filters w)
- Simple final softmax layer $y = softmax\left(W^{(S)}z + b
 ight)$

math: remember - which one is the max because the pron-max -> zero.

Richard Socher

Tricks to make it work better: Dropout

J. vopank

- Idea: randomly mask/dropout/set to 0 some of the feature weights z
- Create masking vector r of Bernoulli random variables with probability p (a hyperparameter) of being 1
- Delete features during training:

$$y = softmax \left(W^{(S)}(r \circ z) + b \right)$$

Reasoning: Prevents co-adaptation (overfitting to seeing specific feature constellations)

roul/ seeing specific word - some y

Richard Socher flis will lead to overfitting

Tricks to make it work better: Dropout

$$y = softmax \left(W^{(S)}(r \circ z) + b\right)$$

- At training time, gradients are backpropagated only through those elements of z vector for which r_i = 1
- At test time, there is no dropout, so feature vectors are larger.
- Hence, we scale final vector by Bernoulli probability p

$$\hat{W}^{(S)} = pW^{(S)}$$

Kim (2014) reports 2 – 4% improved accuracy and ability to use very large networks without overfitting

not allow any feature to over fit strongly

Another regularization trick

- Somewhat less common
- Constrain l₂ norms of weight vectors of each class (row in softmax weight W(S)) to fixed number s (also a hyperparameter)
- If $\|W_{c\cdot}^{(S)}\|>s$, then rescale it so that: $\|W_{c\cdot}^{(S)}\|=s$

Richard Socher

5/12/16

All hyperparameters in Kim (2014)

- Find hyperparameters based on dev set
- Nonlinearity: reLu
- Window filter sizes h = 3,4,5 (- Mereoting, no even bigram.
- Each filter size has 100 feature maps
- Dropout p = 0.5
- L2 constraint s for rows of softmax s = 3
- Mini batch size for SGD training: 50
- Word vectors: pre-trained with word2vec, k = 300

 During training, keep checking performance on dev set and pick highest accuracy weights for final evaluation

highest accuracy weights for final evaluation								
	Richard	d Socher		+	5/12/10	6 eA	trackal	aggar
Experiments not a	clea	m stor	o the	at m	whi a		1 char beat or	
Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA	
CNN-rand	76.1	45.0	82.7	89.6	91.2	79.8	83.4	
CNN-static	81.0	45.5	86.8	93.0	92.8	84.7	89.6	
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5	
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4	
RAE (Socher et al., 2011)	77.7	43.2	82.4	_	_	_	86.4	
MV-RNN (Socher et al., 2012)	79.0	44.4	82.9	_	_	_	_	

Experiments

not a clean story that multichand charel beat others.

•			•				DEM.
Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-rand	76.1	45.0	82.7	89.6	91.2	79.8	83.4
CNN-static	81.0	45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
RAE (Socher et al., 2011)	77.7	43.2	82.4	_	_	_	86.4
MV-RNN (Socher et al., 2012)	79.0	44.4	82.9	_	_	_	_
RNTN (Socher et al., 2013)	_	45.7	85.4	_	_	_	_
DCNN (Kalchbrenner et al., 2014)	_	48.5	86.8	_	93.0	_	_
Paragraph-Vec (Le and Mikolov, 2014)	_	48.7	87.8	_	_	_	_
CCAE (Hermann and Blunsom, 2013)	77.8	_	_	_	_	_	87.2
Sent-Parser (Dong et al., 2014)	79.5	-	_	_	_	_	86.3
NBSVM (Wang and Manning, 2012)	79.4	-	_	93.2	_	81.8	86.3
MNB (Wang and Manning, 2012)	79.0	_	_	93.6	_	80.0	86.3
G-Dropout (Wang and Manning, 2013)	79.0	-	_	93.4	_	82.1	86.1
F-Dropout (Wang and Manning, 2013)	79.1	-	_	93.6	_	81.9	86.3
Tree-CRF (Nakagawa et al., 2010)	77.3	_	_	_	_	81.4	86.1
CRF-PR (Yang and Cardie, 2014)	_	-	_	_	_	82.7	_
SVM _S (Silva et al., 2011)	_	-	_	_	95.0	_	-
	Richard	d Socher			5/12/1	6	mage
Problem with compa	arisc	n?				for	MI
 Dropout gives 2 – 4 % ac Several baselines didn't 				ent	•	معالم مان	don'
Still remarkable results a	and sir	nple a	rchited	cture!			the !

5/12/16

Problem with comparison?

- Dropout gives 2 4 % accuracy improvement
- Several baselines didn't use dropout
- Still remarkable results and simple architecture!
- Difference to window and RNN architectures we described in previous lectures: pooling, many filters and dropout
- Ideas can be used in RNN²s too
- Tree-LSTMs obtain better performance on sentence datasets

Richard Socher

 Fixed tree RNNs explored in computer vision: Socher et al (2012): "Convolutional-Recursive Deep Learning for 3D Object Classification"

Deep Learnig NLP Page 12

Lecture 1, Slide 26

Q: word count cut-off · No number.

Relationship between RNNs and CNNs

CNN **RNN**

But can extend it to have multiple where fifters.

Richard Socher 5/12/16

1 2%-4%,
improvement

1s it a botter
optimization
fechnique or
better model. aution:

Relationship between RNNs and CNNs CNN RNN

Richard Socher

5/12/16

Relationship between RNNs and CNNs

CNN

- Stride size flexible in CNNs, RNNs "weighted average pool"
- Tying (sharing) weights of filters inside vs across different layers
- ENN) multiple filters, additional layer type: max-pooling
- Balanced input independent structure vs input specific tree

Richard Socher

can trop2/16 different

CNN alternatives

Narrow vs wide convolution

- One of the first successful neural machine translation efforts
- Uses CNN for encoding and RNN for decoding
- Kalchbrenner and Blunsom (2013)
 "Recurrent Continuous Translation Models"

Richard Socher

Model comparison

Bag of Vectors: Surprisingly good baseline for simple classification problems. Especially if followed by a few layers!

Window Model: Good for single word classification for problems that do not need wide context

lagar doc

less usaful

for complex

system portiel 2 document CNNs. good for classification, unclear how to incorporate phrase level annotation (can only take a single label), need zero padding for shorter phrases, hard to interpret, easy to parallelize on GPUs

Richard Socher

Model comparison

- Recursive Neural Networks: most linguistically plausible, interpretable, provide most important phrases (for visualization), need parse trees
- **Recurrent Neural Networks**: Most cognitively plausible (reading from left to right), not usually the highest classification performance but lots of improvements right now with gates (GRUs, LSTMs, etc).
- Best but also most complex models: Hierarchical recurrent neural networks with attention mechanisms and additional memory → Last week of class :)

Richard Socher

Next week:

- Guest lectures next week:
- Speech recognition and state of the art machine translation

Richard Socher