Esercitazione 2

Argomento: approssimazione di funzioni e di dati

1. Determinare i polinomi di grado n=5,9,13 che interpolano la funzione di Runge $f(x)=1/(1+x^2)$ in nodi equidistanti nell'intervallo [-5,5] e, per ciascuno dei tre casi, rappresentare graficamente la funzione di Runge, il polinomio interpolante e i dati di interpolazione. Ripetere l'esercizio utilizzando i nodi di Chebyshev

$$t_i = -\cos\left(\frac{(2i-1)\pi}{2(n+1)}\right), \quad i = 1, ..., n+1$$

definiti sull'intervallo [-1,1] e opportunamente trasformati in punti dell'intervallo di interesse [a,b], mediante la trasformazione $x_i = \frac{b-a}{2}t_i + \frac{b+a}{2}$. Al crescere del grado del polinomio, quale delle due scelte di nodi consente di definire un'approssimazione della funzione di Runge sempre più accurata?

2. Approssimare con i polinomi interpolanti di grado n=5,10,15 le funzioni $f_1(x)=\sin(x)$ nell'intervallo $[0,\pi]$ e $f_2(x)=1/(1+x^2)$ nell'intervallo $[-2\pi,2\pi]$. Utilizzare sia i nodi equispaziati che i nodi di Chebyshev-Lobatto

$$t_i = -\cos\left(\frac{(i-1)\pi}{n}\right), \quad i = 1, ..., n+1$$

opportunamente trasformati nell'intervallo di interesse. Per ciascun valore di n, rappresentare graficamente l'errore assoluto d'interpolazione in 100 punti equidistanti nell'intervallo di interpolazione e stampare il massimo errore assoluto. Per ciascuna funzione, confrontare i grafici degli errori di interpolazione corrispondenti alle due scelte di nodi e dedurre quale delle due risulti essere più conveniente.

- 3. Rappresentare graficamente la spline cubica soddisfacente la condizione "not-a-knot" e interpolante la funzione $f(x) = 1/(1+x^2)$ in 6, 10, 14 nodi equidistanti nell'intervallo [-5,5]. Confrontare i grafici ottenuti con quelli dell'esercizio 1 e commentare i risultati.
- 4. Utilizzare la function spline di MATLAB per costruire le spline cubiche, S₃(x) soddisfacente la condizione "not a knot" e \(\bar{S}_3(x)\) soddisfacente le condizioni \(\bar{S}_3'(x_0) = f'(x_0)\) e \(\bar{S}_3'(x_n) = f'(x_n)\), interpolanti la funzione \(f(x) = (1 x^2)^{5/2}\) nei nodi \(x_i = -1 + 2i/n\), \(i = 0, 1, \ldots, n\), \(n = 2^k\), \(k = 2, 3, 4, 5\). Rappresentare graficamente gli errori commessi nelle due approssimazioni in 100 punti equidistanti dell'intervallo di interpolazione \([-1, 1]\)] e individuare quale delle due approssimazioni \(\delta\) più accurata. Stampare, per ogni valore di \(k\), il massimo errore assoluto commesso e dedurre, dandone una giustificazione, quale delle due spline, not-a-knot e vincolata, rappresenti un'approssimazione più accurata.

1

5. Secondo la banca dati della qualità dell'aria della regione Piemonte, nel giorno 13/11/2015 la centralina, posta presso il Lingotto, ha rilevato le seguenti concentrazioni di ossidi di azoto nell'aria (microgrammi/metro cubo) a intervalli di un'ora, a partire dalle ore 13:00 fino alle ore 8:00 del giorno successivo:

ora	ossidi di azoto	ora	ossidi di azoto
1	243	11	138
2	209	12	95
3	181	13	56
4	179	14	32
5	180	15	21
6	166	16	12
7	163	17	11
8	157	18	61
9	187	19	146
10	192	20	186

Si determini un'approssimazione dei livelli di concentrazione di ossidi di azoto alle ore 14:30 e alle ore 7:30 utilizzando una spline lineare.