```
(R)
                                        Copyright 1985-2017 StataCorp LLC
                                 15.1
  Statistics/Data Analysis
                                        StataCorp
                                      4905 Lakeway Drive
                                      College Station, Texas 77845 USA
                                      800-STATA-PC
                                                              http://www.stata.com
                                      979-696-4600
                                                              stata@stata.com
                                      979-696-4601 (fax)
Single-user Stata perpetual license:
       Serial number: 301506228769
         Licensed to: Luca Tiberti
                       PEP
Notes:
      1. Unicode is supported; see help unicode_advice .
running c:\ado\personal\profile.do ...
. doedit "C:\Users\lutib\Dropbox\PEP_distance_Poverty Course (Exercises)\2019\weeks_sem
> aines 10-11\versions\BLOC4_COPY3.do"
. do "C:\Users\lutib\AppData\Local\Temp\STD130c_000000.tmp"
. // EXERCICE 1
. // Q1
. clear
. input w_1 w_2 w_3
           w_1
                     w_2
                                 w_3
 1.4
             20
                     12
  2.8
             12
                     0
 3.16
             16
                     24
 4.12
             12
                     16
 5. 28
             20
                     8
             16
                     12
  6.24
  7.
. end
. gen poor_union = (w_1<14) \mid (w_2<14) \mid (w_3<14)
. mean poor_union
                                  Number of obs
Mean estimation
                             Std. Err.
                                          [95% Conf. Interval]
                     Mean
                  .8333333
                              .1666667
                                              .404903
                                                         1.261764
 poor_union
```

. imdp_uhi w_1 w_2 w_3, pl1(7) pl2(7) pl3(7)

M.D. Poverty index : Union headcount index

Estimate		STE	LB	UB
Population	0.333	0.211	-0.091	0.758

. // Q2

. gen poor_inter = $(w_1<14)$ & $(w_2<14)$ & $(w_3<14)$

. mean poor_inter

Mean estimation

Number of obs =

6

	Mean	Std. Err.	[95% Conf.	Interval]
poor_inter	.1666667	.1666667	2617636	.595097

. imdp_ihi w_1 w_2 w_3, pl1(7) pl2(7) pl3(7)

M.D. Poverty index : Intersection headcount index

	Estimate	STE	LB	UB
Population	0.000	0.000	0.000	0.000

. // Q3

. /*

> The intersection headcount index is more sensitive, since we count only those with fu > 11 multiple deprivations.

> */

. // Q4

.

. gen dep_1 = $(w_1<14)$

. gen dep_2 = $(w_2<14)$

. gen dep_3 = $(w_3<14)$

. egen sum_dep = rowtotal(dep_*)

. gen af_poor = (sum_dep>=2)

. gen $w_af_poor = (sum_dep /3)* af_poor$

. /* Alkire and Foster H0 and M0 */ . mean af_poor w_af_poor

Mean estimation

Number of obs =

[95% Conf. Interval]

Mean Std. Err. .2236068 af_poor . 5 -.0747996 1.0748 w_af_poor .3888889 .1808758 -.0760671 .8538449

. // Q5

. imdp_afi w_1 w_2 w_3, dcut(2) w1(1) pl1(7) w2(1) pl2(7) w3(1) pl3(7)

Alkire and Foster (2007) MDP indices

The relative contribution of dimensions to the Alkire and Foster (2007) MDP indices estimated at population level (results in %).

Dimensions	MO	M1	M2
w_1	0.00	0.00	0.00
w_2	0.00	0.00	0.00
w_3	0.00	0.00	0.00
		•	•

. // Q6

```
. gen poor_union_targ1 = (w_1+4<14) | (w_2<14) | (w_3<14)
```

- . gen poor_union_targ2 = $(w_1<14)$ | $(w_2+4<14)$ | $(w_3<14)$
- . gen poor_union_targ3 = $(w_1<14)$ | $(w_2<14)$ | $(w_3+4<14)$

•

- . gen poor_inter_targ1 = $(w_1+4<14)$ & $(w_2<14)$ & $(w_3<14)$
- . gen poor_inter_targ2 = $(w_1<14)$ & $(w_2+4<14)$ & $(w_3<14)$
- . gen poor_inter_targ3 = $(w_1<14)$ & $(w_2<14)$ & $(w_3+4<14)$

. mean poor_union*

Mean estimation

Number of obs =

6

	Mean	Std. Err.	[95% Conf.	Interval]
poor_union	.8333333	.1666667	.404903	1.261764
poor_union_targ1	.8333333	.1666667	.404903	1.261764
poor_union_targ2	.8333333	.1666667	.404903	1.261764
poor_union_targ3	.6666667	.2108185	.1247404	1.208593

. mean poor_inter*

Mean estimation

Number of obs =

	Mean	Std. Err.	[95% Conf.	Interval]
poor_inter poor_inter_targ1 poor_inter_targ2 poor inter targ3	.1666667 .1666667 0	.1666667 .1666667 (omitted) .1666667	2617636 2617636 2617636	.595097 .595097

```
. /* With the union approach, we focus in less deprived individuals (the case of indiv > idual number 6, the is only deprived in dimension 3) */
```

.

. // EXERCICE 2

. // Q1

.

^{. /*} With the intersection approach, we focus in we focus in most deprived individuals > (the case of individual number 3, and we target the dimension 2) */

```
. input w_1 w_2 w_3
          w_1
                    w_2
                               w_3
 1.4
            20
                   12
 2.8
            12
                    0
 3.16
                    24
            16
 4. 12
           12
                    16
 5. 28
           20
                    8
 6.24
                    12
           16
 7. end
. cap drop ngap*
. gen ngap1 = (7-w_1)/7*(7>w_1)
. gen ngap2 = (7-w_2)/7*(7>w_2)
. gen ngap3 = (7-w_3)/7*(7>w_3)
. gen pi = ((1/3)*ngap1^1 + (1/3)*ngap2^1 + (1/3)*ngap3^1)^(1/1)
. if ngap1==0 \& ngap2==0 \& ngap3==0 replace pi=0
. qui sum pi
. scalar BC_0 = r(mean)'
. dis "The B&C index = " \%6.3f BC_0
The B&C index = 0.079
. // Q2
. imdp_bci w_1 w_2 w_3, alpha(1) gamma(1) b1(0.3333333) pl1(7) b2(0.3333333) pl2(7) b3(
> 0.3333333) pl3(7)
   M.D. Poverty index : Bourguignon and Chakravarty (2003)
```

	Estimate	STE	LB	UB
Population	0.079	0.056	-0.033	0.192

```
. // Q3
. gen nw_1 = (w_1+ w_2+w_3)/3
. gen nw_2 = (w_1+ w_2+w_3)/3
```

. clear

```
. gen nw_3 = (w_1+ w_2+w_3)/3

. imdp_bci nw_1 nw_2 nw_3, alpha(1) gamma(1) b1(0.3333333) p11(7) b2(0.3333333) p12(7)

> b3(0.3333333) p13(7)
```

M.D. Poverty index : Bourguignon and Chakravarty (2003)

	Estimate	STE	LB	UB
Population	0.008	0.008	-0.008	0.024

```
. /*
> The BC index decreases because the expenditure share of each dimension of each indiv
> idual (1/3)
> matches with the normative imposed expenditure shares (the parameter beta = 1/3).
  Thus, the generated utility is high and gap is low.
. // Q4
. gen b1=w_1/(w_1+w_2+w_3)
. gen b2=w_2/(w_1+w_2+w_3)
. gen b3=w_3/(w_1+w_2+w_3)
. replace pi = (b1*ngap1^1 + b2*ngap2^1 + b3*ngap3^1)^(1/1)
(2 real changes made)
. qui sum pi
. scalar BC_0 = r(mean)'
. dis "The B&C index = " %6.3f BC_0
The B&C index = 0.008
. /*
> The BC index decreases because now the beta parameters of each individual matches wi
> th their observed expenditure shares
> and this optimizes the utility.
> */
end of do-file
. use "C:\Users\lutib\Dropbox\PEP_distance_Poverty Course (Exercises)\2019\weeks_semain
> es 10-11\versions\Canada_Incomes&Taxes_1996_2005_random_sample_3.dta", clear
(Enquete sur la dynamique du travail et du revenu, 1996: FAMILLES ECONOMIQUES (FE)
. do "C:\Users\lutib\AppData\Local\Temp\STD130c_000000.tmp"
```

```
. // EXERCICE 3
. // Q1
end of do-file
. do "C:\Users\lutib\AppData\Local\Temp\STD130c_000000.tmp"
. preserve
. keep if year==2005
(91,664 observations deleted)
. #delimit ;
delimiter now;
. cnpe T B N, xvar(X) hsize(hhsize) type(dnp) min(1000) max(31000)
> title(Marginal rates of taxes and benefits)
> subtitle(Canada 2005)
> xtitle(Gross income)
> ytitle(Estimated marginal rates)
> ;
. #delimit cr
delimiter now cr
. restore
. // Q2
. preserve
. keep if year==1999
(90,765 observations deleted)
```

. digini X N, hs(hhsize)

Index	Estimate	Std. Err.	t	P> t	[95% Conf. In	iterval]
GINI_Dis1 GINI_Dis2	.4408765 .3329367	.0054663	80.6535 75.561	0.0000	.4301613 .3242996	.4515917 .3415738
diff.	1079398	.003527	-30.6039	0.0000	1148535	1010261

. restore

. preserve

. keep if year==2002
(91,116 observations deleted)

. digini X N, hs(hhsize)

Index	Estimate	Std. Err.	t	P> t	[95% Conf. In	nterval]
GINI_Dis1 GINI_Dis2	.4522923 .3445672	.0055367 .0045788	81.6899 75.2527	0.0000	.4414391 .3355917	.4631455 .3535427
diff.	1077251	.0035825	-30.0698	0.0000	1147476	1007026

. restore

. preserve

. keep if year==2005 (91,664 observations deleted)

. digini X N, hs(hhsize)

Index	Estimate	Std. Err.	t	P> t	[95% Conf. Ir	nterval]
GINI_Dis1 GINI_Dis2	.439986 .3359711	.0052274	84.1692 71.2528	0.0000	.429739 .3267281	.450233 .3452141
diff.	1040149	.0035911	-28.9646	0.0000	1110543	0969755

. restore

. // Q3

. iprog T, ginc(X) hsize(hhsize) gobs(year) type(t) index(ka)

Index : Kakwani progressivity index

Gross income variable : X Household size : hhsize Sampling weight : sweight : year gobs variable

	gobs	Estimate	STE	LB	UB
1993		0.067648	0.003749	0.060300	0.074996
1994		0.073560	0.004038	0.065645	0.081476
1996		0.101285	0.004609	0.092250	0.110320
1997		0.086321	0.006556	0.073470	0.099171
1998		0.102671	0.004524	0.093804	0.111539
1999		0.111415	0.003578	0.104401	0.118429
2000		0.106796	0.003699	0.099546	0.114046
2002		0.111500	0.004233	0.103202	0.119798
2003		0.112625	0.003303	0.106150	0.119099
2004		0.110759	0.003881	0.103152	0.118366
2005		0.115607	0.003546	0.108657	0.122558

. // Q4

. preserve

. keep if year==2005 (91,664 observations deleted) . cprog T, rank(X) hsize(X) type(t) appr(tr)
(8,336 real changes made)

(7,783 real changes made)

. restore

•

. // Q5

. preserve

. keep if year==2005

(91,664 observations deleted)

. iprog T, ginc(X) hsize(hhsize) gobs(province) type(t) index(ka)

Index : Kakwani progressivity index

Gross income variable : X

Household size : hhsize
Sampling weight : sweight
gobs variable : province

> ——— gobs	Estimate	STE	LB	
> UB	Bolimace	511	15	
>				
Newfoundland	0.080721	0.011745	0.057617	0.
> 103824				
Prince_Edward_Island	0.084045	0.009817	0.064704	0.
> 103386				
Nova_Scotia	0.105204	0.011450	0.082707	0.
> 127702				
New_Brunswick	0.097575	0.010682	0.076588	0.
> 118563				
Quebec	0.123007	0.007267	0.108754	0.
> 137260 Ontario	0.113571	0.006214	0.101386	0.
> 125755	0.1135/1	0.006214	0.101300	0.
Manitoba	0.100702	0.009570	0.081904	0.
> 119499	0.200,02	0.005570	0.001301	••
Saskatchewan	0.094838	0.006093	0.082874	0.
> 106803				
Alberta	0.130815	0.007674	0.115753	0.
> 145877				
British_Columbia	0.126228	0.010334	0.105942	0.
> 146515				

> _____

. igini X, hs(hhsize) hg(province)

Index : Gini index
Household size : hhsize
Sampling weight : sweight
Group variable : province

> -	UB	Group	 Estimate	STE	LB
> - 1:	Newfoundland 0.530917		0.490275	0.020733	0.449633
2:	Prince_Edward_Island		0.421796	0.020863	0.380899

> 0.462693			
3: Nova_Scotia	0.423137	0.018260	0.387342
> 0.458931			
4: New_Brunswick	0.463801	0.015796	0.432837
> 0.494765			
5: Quebec	0.449668	0.010670	0.428752
> 0.470584			
6: Ontario	0.430211	0.009545	0.411501
> 0.448921			
7: Manitoba	0.405863	0.017405	0.371745
> 0.439980			
8: Saskatchewan	0.452759	0.013695	0.425914
> 0.479604			
9: Alberta	0.436993	0.013981	0.409587
> 0.464399			
10: British_Columbia	0.430104	0.013511	0.403619
> 0.456588			
>			
Population	0.439986	0.005227	0.429739
> 0.450233	· -		

. restore

. /*

> The highest inequality in Gross incomes in 2005 was in Newfoundland.
> The highest progressivity in Taxes in 2005 was in British_Columbia.
> */

end of do-file