Solutions to HW-2

• Arjun Parasuram Prasad (NetID: ap9334)

Support Vector Machines: SVMs with Pegasos

Ans 1:

Tet Dike	be the domain of fx, which	
has subges	adient gu; of	
	$(\alpha) = \max_{i=1,\ldots,m} f_i(\alpha)$	
Case 1: Z	e \mathcal{Q}_{k_0} and $\alpha \in \mathcal{Q}_{k_0}$	
=> fo	r subgradient gk, we know that	
1 (Z) 7	1(a) + gko (z-x)	
) = 1(t) + t e Dz.	
\$ (Z) }	Zand of belong to the same	
≤ubdomain	write this expression as $f(x) + g(z-x)$ $z \text{ and } x \text{ belong to the same}$ of f , $\exists subgradient g \in \partial G$	(a))

· Case 2.	z and	a belong	lo different
xet	z e 10	1×2 and $2 \in C$	of 20 fx.
Let gi	← dC	(x))	
Let ge	e algo	e2(2))	
we know	for functi	on fx, and	d subgad. gz. (Z-N)
fx, Cz) I gk,	(x) + gk,	(z-n)
08 Z C	D1 =2	1 / (Z) i	7 fk,(2)
.0		. 7	
\$ K2 (2) I gk	(x) + gt	(z-7)
for ze	- Dju2,	1 k2(Z) =	162)

for	x 6	Dfly	1 84	(x)	= f(x)	
				te ou		
				g[z-		
				V		
2 (differ	ut su	bdoma	belong us	7 1	,
F	jk, suc	h ettal	94	€ ∂(,	f(x))	
Tu	us we	have	That			
	if g	have $c \in \mathcal{A}$	1 (g (a))		
4	euce	Prove	d.			
,						

Ans 2:

J(u) can be	ruon'tten	asI	Z1
$J(\omega)$	$= \begin{cases} 1 - y \omega^{7} \\ 0 \end{cases}$	a uwia	77.1
Take points	w_1 and w_2	=w, +d. t	$\omega_1 \neq \omega_2$
Case 1: ywith ? RHS T(w) = 0	+ of wa-w	(// I	to domain
= 0	+070	= JCw2)
$=7$ $J(\omega_2)$) 7 J(w,)	+ g T Cw2-u	()
=r J(w2 o° o g satisf for case.	ùs subgradiu	t condition	rus
Tor case.			
Case 2: yw, To RHS: To	c 7/1 and 1	1 × 2 × 1	
J (w) + g (wa wi)		1
$= 0 + 0 = 1$ LHS: $J(w_2) = 1$	$= 0 \qquad \text{Tg} = 0$		J
, o J (w2)) 7/ J(w1)-	+ g (wa-w))
Thus g satisfie	s subgradient	for case	I(W) 2.

Code 3:				
	yw, x	and y	w _l Tx <1	
RHS:	J T	U		
= P J((w) + g (u	υ2-W1) Τ		
= 1	- yw, Tx + ((-yx)'(w2:	$-\omega_{l}$	
= 1-	- yutst -	yw2 x + y	(q=	4x @ 101
	7-4	, n	-w ₁)	in = - Any a
= 1-	$y \omega_2 \cdot z \geq$		-y w27-1 <	a \
(since	y w2 12		-9 w2171 ~	
LHS!	: () >	1- w. 75	ά	
	0 >			
J (w)) 7/ 3	1(w) +	g(W2-1	(10
o g sat	Enfier sub	geodient	condi lio	ns for
J(w)) for co	0 de 3.		•
Case 4 ;	ywitz <	1 and	yw2 x <	
b				
	NπS = .	J (W) +	g (w2-w	U

RHS = $(I - y\omega_1^T x) + (-yx)(\omega_2 - \omega_1)$
=P
RHS = 1-ywta - ywzta + ywta
$= 1 - y w_{2}^{T} \chi = J(w_{2}) = LHS$
J(w2) J J(w1) + gT (w2-w1) Hence g satisfies subgradient conditions
$J(w_2)$ $J(w_1) + g^T(w_2-w_1)$ Hence g satisfies subgradient conditions for $J(w)$ for case 4.
Since g satisfies subgradient condition $J(z) = J(w) + gT(z-x)$
$\forall z_{1} = J(w) + g'(z-x)$ $\forall z_{1} = J(w) + g'(z-x)$
\forall $z_1 x$ in the domain of $J(w)$ of we have proved that $g \in \partial (J(w))$

Ans 3:

* SVM with Pegasox algorithm.
Aus 3
$\overline{J_{f}(\omega)} = \frac{\lambda}{\lambda} \omega ^{2} + \max \{0, 1 - y_{f} \omega^{T} x_{f}\}$
The above expression is not defined for
$(\alpha_i, y_i) \in \{(\alpha_i, y_i) \mid y_i w^T \alpha_i^* = 1\}$
$\forall \omega$, s.t. $y_f \omega^7 x_i^o \neq 1$, we have
$\forall w \in \Delta \cdot \mathcal{I} \cdot y_f w^7 x_f^2 \neq 1$, we have $\overline{V_w}(\overline{J_f^2(w)}) = \overline{V_w}(\frac{\lambda}{2} \omega^T w) + \overline{V_w}(\max_{1 \le i \le n} \{0, 1 - y_i \omega^T x_i\})$
$= \begin{cases} \lambda \omega + (-y_i^* \pi_i^*), & 0 > 1 - y_i^* \omega^T \pi_i^* \\ \lambda \omega + 0, & 0 < 1 - y_i^* \omega^T \pi_i^* \end{cases}$
$\lambda \omega + 0$ $O < 1 - y; \omega^7 x;$
$= \begin{cases} \lambda \omega - y_1^* \chi_1^*, & O7 1 - y_1 \omega^T \chi_1^0 \\ \lambda \omega & O6 1 - y_1 \omega^T \chi_1^0 \end{cases}$
$(\lambda \omega)$ $0 < 1 - \hat{y} \cdot \omega^{\dagger} \gamma_{i}$

Ans 4:

Ans 4) J(w) =	A wTw +	- max § o	, I- y; w ^{T.}	74° }
	$f_{i}(\omega)$	d [max	(f ₂ (w))	w ⁷ x; }]
we knou	that . fr + f2 +. (cf) = 2	ÿ		+ 2(fy)
d[](d (f, [w]		
		a	as filip is und different at all points	tiable Into J

= r a subgradient $g_1(w)$ of $f_1(w)$ is
$q_1(\omega) = \lambda \omega$
we also know that as subgradient
92 = S - 2049, 0 4:00 x x 1
O g yiwita 7/1
Crufel proof in Ane 2 cottached with this q. as well)
$\partial_{o} \partial (J(\omega)) = \partial (f_{1}(\omega)) + \partial (f_{2}(\omega))$
→ a subgradient of I(co) is
$g = \int \lambda \omega - \chi^{0}_{1} y^{0}_{1} g y^{0}_{1} \omega^{7} \chi \langle 1 \rangle$ Hence $\chi^{0}_{1} \omega = \chi^{0}_{1} \omega^{7} \chi \langle 1 \rangle$ $\chi^{0}_{2} \omega^{7} \chi \langle 1 \rangle$ $\chi^{0}_{3} \omega^{7} \chi \langle 1 \rangle$ $\chi^{0}_{4} \omega^{7} \chi \langle 1 \rangle$ $\chi^{0}_{5} \omega^{7} \chi $

please turn over

Ans 5:

```
def gen_sparse_bag_of_words(list_of_words):
    return Counter(list_of_words)
```

Ans 6:

```
X = list(map(lambda review : gen_sparse_bag_of_words(review[0 : len(review)
- 1]), data))
y = list(map(lambda review_label : review_label[-1], data))

X_train = X[0:1500]
X_test = X[1500:]
y_train = y[0:1500]
y_test = y[1500:]
```

Ans 7:

```
def pegasos_v1(X_train, y_train, lambda_reg, epochs, verbose = True,
tolerance = 0.001):
   W = \{\}
   n = len(X_train)
   err = np.inf
   for t in range(1, n*epochs+1):
       if(t%epochs == 0):
            # reshuffle the data
            data = list(zip(X_train, y_train))
            random.shuffle(data)
           X_train, y_train = zip(*data)
       eta = \frac{1}{(lambda_reg*t)}
       Xj = X_{train}[(t-1)%n]
       yj = y_train[(t-1)%n]
       margin = yj * dotProduct(W, Xj)
       if margin >= 1:
            for i, v in Xj.items():
               W[i] = (1 - (eta*lambda_reg))*W.get(i, 0)
        else:
           for i, v in Xj.items():
               W[i] = (1 - (eta*lambda_reg))*W.get(i, 0) + v*eta*yj
       if (t\%n == 0) and (verbose == True):
            clf_error = classification_error(X_train, y_train, W)
            print('----')
            print(f'epoch: {t/n}')
           print(f'classification error is: {clf_error}')
           print(f'W.size is : {len(W)}')
           if abs(err - clf_error) <= tolerance:</pre>
               break
           err = clf_error
   return W
```

Ans 8:

```
def pegasos_v2(X_train, y_train, lambda_reg, epochs, verbose = True,
tolerance = 0.001):
   W = \{\}
   s = 1
   n = len(X_train)
   err = np.inf
   for t in range(2, epochs*n + 1):
       if(t%epochs == 0):
           # reshuffle the data
           data = list(zip(X_train, y_train))
            random.shuffle(data)
           X_train, y_train = zip(*data)
       eta = 1 / (lambda_reg*t)
       Xj = X_{train}[(t-1)%n]
       yj = y_train[(t-1)%n]
       margin = yj * dotProduct(W, Xj) * s
       s = (1 - eta*lambda_req)*s
       if margin < 1:</pre>
           increment(W, (1/s)*eta*yj, Xj)
       if(t%n == 0 and verbose == True):
            clf_error = classification_error(X_train, y_train, scale(W, s))
           print('----')
            print(f'epoch: {t/n}')
           print(f'classification error is: {clf_error}')
           print(f'W.size is : {len(W)}')
           if abs(err - clf_error) <= tolerance:</pre>
               break
           err = clf_error
   return scale(W, s)
```

Ans 9:

```
print('epochs = 2')
begin = time.time()
pegasos_v1(X_train, y_train, lambda_reg= 0.01, epochs= 2, verbose= False,
tolerance= 0.001)
print(f'training time - pegasos_v1: {time.time() - begin}')
begin = time.time()
pegasos_v2(X_train, y_train, lambda_reg= 0.01, epochs= 2, verbose= False,
tolerance= 0.001)
print(f'training time - pegasos_v2: {time.time() - begin}')
print('epochs = 200. Tolerance has been disabled')
begin = time.time()
pegasos_v1(X_train, y_train, lambda_reg= 0.01, epochs= 200, verbose= False,
tolerance= -1)
print(f'training time - pegasos_v1: {time.time() - begin}')
begin = time.time()
pegasos_v2(X_train, y_train, lambda_reg= 0.01, epochs= 200, verbose= False,
tolerance= -1)
print(f'training time - pegasos_v2: {time.time() - begin}')
```

```
A9
epochs = 2
training time - pegasos_v1: 1.4444091320037842
training time - pegasos_v2: 1.3131685256958008
epochs = 200. Tolerance has been disabled
training time - pegasos_v1: 29.29502511024475
training time - pegasos_v2: 15.590850353240967
```

Ans 10:

```
def classification_error(X, y, W):
    y_pred = get_predictions(X, W)
    return sum(np.array(y) != np.array(y_pred))/(len(y_pred))
```

```
print(f"validation set classification error using W_pegasos_v2: \
      {classification_error(X_test, y_test, W_pegasos_v2)}")
```

validation set classification error using W_pegasos_v2: 0.178

Ans 11:

```
def plot_lambda_vs_error(X_train, y_train, X_test, y_test, lambda_reg_list
= [], epochs = 100):
    error_list = []
    for lambda_reg in lambda_reg_list:
        W = pegasos_v2(X_train, y_train, lambda_reg= lambda_reg, epochs=
epochs, tolerance = -1, verbose=False)
        error_list.append(classification_error(X_test, y_test, W)*100)
    plt.figure(figsize=(10, 10))
    plt.plot([np.log10(i) for i in lambda_reg_list], error_list, 'bo-',
label='Lambda vs %Classification Error')
    plt.xlabel("log_lambda_reg")
    plt.ylabel("% classification error")
    plt.show()
```

```
plot_lambda_vs_error(X_train, y_train, X_test, y_test, \
    [1e-10, 1e-9, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 10, 100], epochs=100)
```


please turn over

Ans 12:

```
def plot_score_grps_vs_percentage_error(X, y, W, bins):
    scores = [dotProduct(i, W) for i in X]
    coupled_mat = np.column_stack((y, scores))
    coupled_mat = coupled_mat[coupled_mat[:, 1].argsort()[::-1]]
    range_start = 0
    range\_end = 0
    score_ranges = []
    classification_errors = []
    for i in np.linspace(0, coupled_mat.shape[0], bins, dtype=int):
        if i == range_end:
            continue
        range_start = range_end
        range\_end = i
        mat = coupled_mat[range_start:range_end, :]
        score_ranges.append(f"{np.min(mat[:, 1]):.2f} to {np.max(mat[:,
1]):.2f}")
        classification_errors.append(100 * (np.sum(mat[:, 0] !=
np.sign(mat[:, 1]))) / mat.shape[0])
    plt.figure(figsize=(10, 10))
    plt.plot(score_ranges, classification_errors, 'ro-', label='score
ranges vs classification erros')
    plt.xlabel("score ranges")
    plt.ylabel("%classification error")
    plt.xticks(fontsize=7)
    plt.yticks(fontsize=7)
    plt.show()
```

```
W_pegasos_v2 = pegasos_v2(X_train, y_train, lambda_reg= 1e-4, epochs= 50,
verbose= False, tolerance= 1e-3)
plot_score_grps_vs_percentage_error(X_test, y_test, W_pegasos_v2, bins= 8)
```


Observations

- Classification error is relatively low for those score ranges which have high magnitude, i.e. abs(score) is high.
- Classification error is relatively high for those score ranges which have lower magnitude of scores, i.e. abs(score) is low

Kernel Methods

Ans 13:

```
### Kernel function generators
def linear_kernel(X1, X2):
    Computes the linear kernel between two sets of vectors.
        X1 - an n1xd matrix with vectors x1_1,...,x1_n1 in the rows
        X2 - an n2xd matrix with vectors x2_1,...,x2_n2 in the rows
    Returns:
        matrix of size n1xn2, with x1_i^T x2_j in position i,j
    return np.dot(X1,np.transpose(X2))
def RBF_kernel(X1, X2, sigma):
    Computes the RBF kernel between two sets of vectors
        X1 - an n1xd matrix with vectors x1_1,...,x1_n1 in the rows
        X2 - an n2xd matrix with vectors x2_1,...,x2_n2 in the rows
        sigma - the bandwidth (i.e. standard deviation) for the
RBF/Gaussian kernel
    Returns:
        matrix of size n1xn2, with exp(-||x1_i-x2_j||^2/(2 sigma^2)) in
position i, j
    sq_euclidean_dist = scipy.spatial.distance.cdist(X1, X2, 'sqeuclidean')
    return np.exp((-1)*(1/(2*sigma*sigma))*sq_euclidean_dist)
def polynomial_kernel(X1, X2, offset, degree):
    Computes the inhomogeneous polynomial kernel between two sets of
vectors
    Args:
        X1 - an n1xd matrix with vectors x1_1,...,x1_n1 in the rows
        X2 - an n2xd matrix with vectors x2_1,...,x2_n2 in the rows
        offset, degree - two parameters for the kernel
    Returns:
        matrix of size n1xn2, with (offset + <x1_i, x2_j>)^degree in
position i, j
    \Pi \Pi \Pi
    return (np.dot(X1,np.transpose(X2)) + offset)**degree
```

Ans 14:

```
linear_kernel(np.array([[-4], [-1], [0], [2]]), np.array([[-4], [-1], [0], [2]]))
```

```
array([[16, 4, 0, -8],
[ 4, 1, 0, -2],
[ 0, 0, 0, 0],
[-8, -2, 0, 4]])
```

Ans 15:

```
plot_step = .01
xpts = np.arange(-6.0, 6, plot_step).reshape(-1,1)
prototypes = np.array([-4, -1, 0, 2]).reshape(-1, 1)
# Linear kernel
y = linear_kernel(prototypes, xpts)
for i in range(len(prototypes)):
    label = "Linear@"+str(prototypes[i,:])
    plt.plot(xpts, y[i,:], label=label)
plt.legend(loc = 'best')
plt.show()
# Polynomial kernel
y = polynomial_kernel(prototypes, xpts, offset=1, degree=3)
for i in range(len(prototypes)):
    label = "Polynomial@"+str(prototypes[i,:])
    plt.plot(xpts, y[i,:], label=label)
plt.legend(loc = 'best')
plt.show()
# RBF kernel
y = RBF_kernel(prototypes, xpts, sigma= 1)
for i in range(len(prototypes)):
    label = "RBF@"+str(prototypes[i,:])
    plt.plot(xpts, y[i,:], label=label)
plt.legend(loc = 'best')
plt.show()
```

• set of functions $x \to k \text{linear}(x0,x)$ for $x0 \in DX$ and for $x \in [-6,6]$

• set of functions $x \to \text{kpoly}(1,3)(x0,x)$ for $x0 \in DX$ and for $x \in [-6,6]$

• set of functions $x \to kRBF(1)(x0,x)$ for $x0 \in DX$ and for $x \in [-6,6]$

please turn over

Ans 16:

```
class Kernel_Machine(object):
    def __init__(self, kernel, training_points, weights):
        Args:
            kernel(X1,X2) - a function return the cross-kernel matrix
between rows of X1 and rows of X2 for kernel k
            training_points - an nxd matrix with rows x_1,..., x_n
            weights - a vector of length n with entries alpha_1,...,alpha_n
        0.00
        self.kernel = kernel
        self.training_points = training_points
        self.weights = weights
    def predict(self, X):
        Evaluates the kernel machine on the points given by the rows of X
            X - an nxd matrix with inputs x_1, \ldots, x_n in the rows
        Returns:
            Vector of kernel machine evaluations on the n points in X.
Specifically, jth entry of return vector is
                Sum_{i=1}^R alpha_i k(x_j, mu_i)
        0.00
        K = self.kernel(X, self.training_points)
        return np.dot(K,self.weights)
```

```
prototypes = np.array([-1, 0, 1]).reshape(-1,1)
weights = np.array([1, -1, 1]).reshape(-1, 1)

Fx = Kernel_Machine(kernel= (lambda i, j : RBF_kernel(X1 = i, X2 = j, sigma=1)), \
    training_points= prototypes, weights=weights)

plot_step = .01
xpts = np.arange(-6.0, 6, plot_step).reshape(-1,1)
plt.plot(xpts, Fx.predict(xpts))
plt.show()
```


please turn over

Logistic Regression

Ans 17:

,			
Ans 17			
To prove \$	Show Tunt	ERM will for	mis loc. love
- A AUG	show that with a Bornor fix lic link four ce the same		100/100
and MLE	or 19 1. A	m response a	Co Col Bullow
and the	gostic lenk four	clion	
will produ	ce The Same	solution for	w .
, ,		'	

ERM with logistic loss $ \mathcal{L} \in \mathbb{R}^d, \omega \in \mathbb{R}^d, y_{\pm} = \{+1, -1\} $ $ D = \{(u), y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\} $
$7=core = {\pi \times \pi $
y = eggn & xtwz
logistic lose function logistic (y, w) = log (1+ exp (-yw x))
$= \lambda = \frac{1}{n} \sum_{i=1}^{n} L_{logistic} \left(+ (n(i)), y(i) \right)$
$= \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + \exp\left(-y^{(i)} w^{T} z^{(i)}\right) \right)$
$\Rightarrow \hat{R}_{\Lambda} = \frac{1}{2\pi} \sum_{i=1}^{\Lambda} \left[(1+y^{ij}) \log (1+\exp(-\omega^{T} x^{(i)})) + \frac{1}{2\pi} \sum_{i=1}^{\Lambda} \left[(1+y^{(i)}) \log (1+\exp(-\omega^{T} x^{(i)}) + \frac{1}{2\pi} \sum_{i=1}^{\Lambda} \left[(1+y^{(i)}) \log (1+\omega^{T} x^{(i)}) +$
(1-y ^(b)) log (1+ enp(-w ^T x ⁽ⁱ⁾))]

MLE with a Bernoulli responer distributi	01)
MLE with a Bernoulli response distribution.	
	7
$\mathcal{H} \in \mathbb{R}^{\alpha}$, $Y_{\pm} \in \{-1, 1\}^2$, $\omega \in \mathbb{R}^{\alpha}$	-
$\mathcal{L} \in \mathbb{R}^{d}$, $Y_{\pm} \in \{-1, 1\}^{2}$, $\omega \in \mathbb{R}^{d}$ $D = \{(\omega)^{(3)}, y^{(3)}\}$ $(\mathcal{H}^{(2)}, y^{(2)})$	}
$P(y=1 x,\omega) = \frac{1}{1+\exp(-x^7\omega)}$	
$p(y=1 x,\omega) = \frac{1}{1+\exp(-x^{7}\omega)}$	
p (y=-1) x; w) = 1-p (y=1) x; w)	
= - 1	
1+exp (-x7w)	
$\Rightarrow \rho C_{y=-1} \pi_{i} \omega) = 1$	
(+ exp (nTw)	

Likelihood function.
$= \sum_{i=1}^{n} P(y^{(i)} x^{(i)},\omega)$
$= \int_{ -1 }^{1} \left(\frac{1}{1 + \exp(-x^{T}\omega)} \right)^{\left(\frac{1+y^{G}}{2}\right)} \left(\frac{1}{1 + \exp(-x^{T}\omega)} \right)^{\frac{1-y^{G}}{2}} $
$\int_{ x }^{ x } \left(\int_{ x }^{ x } \exp\left(-x(w)\right) \right) \left(\int_{ x }^{ x } \exp\left(-x(w)\right) \right)$
= the log likelihood function is:
$\log L(\omega) = \frac{1}{2} \sum_{i=1}^{n} \left[(1+y^{ij}) \log \left(1 + \exp(-z^{T}\omega) \right)^{-1} \right]$
+
$(1-y^{(i)})\log(1+\exp(x^{(i)}))$

LNOTE: $\chi^T w = w^T \chi$ as $\chi \in \mathbb{R}^d$, $w \in \mathbb{R}$ $\chi^T w = w^T \chi$
The negative log likelihood can be written as:
$NLL(\omega) = -\log L(\omega)$ $= \frac{1}{2} \sum_{i=1}^{\infty} \left[(1-y^{(i)}) \log \left(1 + \exp \left(-\omega^{T} x \right) \right) \right]$
$(l+y^{ij}) \log (l+\exp(\omega^7x))$
o. núniuizing the NLL(w)
=> $w \in \text{arg min} \left(\frac{1}{n}\right) \times LL(w)$

Ans 18:

Ans 18
Decision boundary of logs lic regression
$= \log \frac{P(y=1 \pi;\omega)}{P(y=-1 \pi;\omega)}$
$= \log \left(\frac{1}{1 + \exp(-\pi^{7}\omega)} \right) $ $= \left(\frac{1}{1 + \exp(\pi^{7}\omega)} \right)$
$= \log \left(\frac{1 + \exp(\pi T \omega)}{1 + \exp(-\pi T \omega)} \right)$
$= \log \left(\frac{1 + \exp(\pi^{T} \omega)}{(1 + \exp(\pi^{T} \omega)) / \exp(\pi^{T} \omega)} \right)$
= 2Tw

Ans 19:

Ane 19) log L(cw) =	-Σ (1+y(i)) [=] (2)	log (1+ exp	(-x ¹ Ew))	
	L	+	ر («گ ^{ار} (دمنه)))	7
	- '		γ ⁽¹⁾ χ ^τ (cω))	
de log L Card	مردث رثاب	yis xis (w)	exp Ey (i) xet 6	[(رمن
3 b	$g(L(c\hat{\omega})) =$		z ^{u³y} ω ^y z ^{u³y} ζωŷ	<u>)</u>

	livearly			
	برن مرن، ۲	û 70		
3 c	log (L Co	eŵ)) >	. 0	
, , , ,	Tre log	likelihoo	d Cand II	vére for
as c	2 increas	es es		
Therefore	re MLE ŵ cau	in not u be scale	ell defined ed to mak	in This
li keli'h	ood auti	travily	ed to mak large	

Ans 20:

Regularized hogistic Regression
$ \frac{1}{\sqrt{1 + \exp(-\frac{u}{2}w^{T}x^{(1)})}} + \frac{1}{1 + \exp(-\frac$
$J_{logishic}: \mathbb{R}^{\wedge} \longrightarrow \mathbb{R}$.
donn J _{byjistic} = R ⁿ and is a convex set. Checking convexity of J ₁ ->
$J_{1}(\omega) = \log C + \exp(-y\omega^{T}x)$ $= \log C + \exp(-yx^{T}\omega)$
Let $-yx^Tw = T$, $C + CR$
-r J(t) = log(1+exp(t))

J(t) = log (1+ exp (t))	
→ exp(t) is a convex function → 1 is a convex function.	
$J(t) = \omega_1 C_1 + \omega_2 (\exp(t))$	
$[\omega_1 = 1, \omega_2 = 1]$ (from 3.2.1 Rosenberg's notes on optimization)	
$= \int_{1}^{\infty} \int_$	
$J_{2}(w) = \lambda \ w\ _{2}^{2} \text{ is convex } [\lambda \lambda_{0}]$ $(Every norm on \mathbb{R}^{n} \text{ is convex})$ $(J_{2}(w) = w_{1} \ w\ _{2}^{2} [\omega_{1} = \lambda_{1}, \omega_{1}, \omega_{1}]$	
$(J_2(\tilde{\omega}) = \omega_1 \omega _2 \Sigma \omega_1 = \lambda, \omega_1 > 0])$	

$J(\omega) = \frac{1}{h} \left(\frac{h}{h-1} \left(\frac{1}{h} \left(\frac{1}{h} \right) \left(\frac{1}{h} \left(\frac{1}{h} \right) \right) + \left(\frac{1}{h} \right) \left(\frac{1}{h} \left(\frac{1}{h} \right) \right) \right)$
$= \left(\frac{1}{n}\right)J_{1}^{1}(\omega) + \left(\frac{1}{n}\right)J_{1}^{2}(\omega) + \left(\frac{1}{n}\right)J_{1}^{2}(\omega)$
$\frac{1}{n} J_{2}^{1}(\omega) + \left(\frac{1}{n}\right) J_{2}^{2}(\omega) - + \left(\frac{1}{n}\right) J_{2}^{2}(\omega)$
[where $J_{i}^{(i)}(\omega)$ and $J_{2}^{(i)}(\omega)$ have $x = x^{(i)}$ and $y = y^{(i)}$]
1/2 70 as 270
Therefore T(w) 3s a convex function.
(from 3.2.1 Resembergle notes on optimization)

Ans 21:

Ans 22:

```
X_train, y_train, X_val, y_val = load_data()
X_train, X_val = std_scaler(X_train, X_val)
X_train = np.hstack((X_train, np.ones((X_train.shape[0], 1)))) # Add bias
term
X_{val} = np.hstack((X_{val}, np.ones((X_{val}.shape[0], 1))))
y_{train} = np.where(y_{train} == 0, -1, y_{train})
y_val = np.where(y_val == 0, -1, y_val)
print(f'X_train.shape: {X_train.shape}')
print(f'y_train.shape: {y_train.shape}')
print(f'X_val.shape: {X_val.shape}')
print(f'y_val.shape: {y_val.shape}')
theta = fit_logistic_reg(X_train, y_train, f_objective, 0.01)
print(f'theta.shape: {theta.shape}')
print(f'classification error - training set: {classification_error(X_train,
y_train, theta)}')
print(f'classification error - validation set: {classification_error(X_val,
y_val, theta)}')
```

```
X_train.shape: (1600, 21)
y_train.shape: (1600,)
X_val.shape: (400, 21)
y_val.shape: (400,)
theta.shape: (21,)
classification error - training set: 0.255
classification error - validation set: 0.26
```

Ans 23:

```
def plot_lambda_reg_vs_log_likelihood(X_train, y_train, X_test, y_test, \
    lambda_reg = [1e-7, 1e-6, 1e-5, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2]):
    log_likelihoods = []
    for l in lambda_reg:
        theta = fit_logistic_reg(X_train, y_train, f_objective, l)
        log_likelihoods.append(log_likelihood(theta, X_test, y_test))
    plt.figure(figsize=(10, 10))
    plt.plot([np.log10(i) for i in lambda_reg], log_likelihoods, 'bo-', \
        label = 'log-lambda values vs log likelihoods')
    plt.xlabel('log10-lambda')
    plt.ylabel('NLL')
    plt.show()
```

```
plot_lambda_reg_vs_log_likelihood(X_train, y_train, X_val, y_val)
```


please turn over

Ans 24:

```
def plot_predicted_prob_calibration(theta, X, y, bins = 5):
    y_pred_prob = sigmoid(X @ theta)
    coupled_mat = np.column_stack((y, y_pred_prob))
    coupled_mat = coupled_mat[coupled_mat[:, 1].argsort()[::-1]]
    range_start = 0
    range_end = 0
    probability_ranges = []
    percentage_positive_samples = []
    for i in np.linspace(0, coupled_mat.shape[0], bins, dtype=int):
        if i == range_end:
            continue
        range_start = range_end
        range\_end = i
        mat = coupled_mat[range_start:range_end, :]
        probability_ranges.append(f"{np.min(mat[:, 1]):.2f} to
{np.max(mat[:, 1]):.2f}")
        percentage_positive_samples.append((np.sum(mat[:, 0] == 1)) /
mat.shape[0])
    plt.figure(figsize=(10, 10))
    plt.plot(probability_ranges, percentage_positive_samples, 'ro-',
label='score ranges vs classification erros')
    plt.xlabel("predicted probability ranges")
    plt.ylabel("positive examples ratio")
    plt.xticks(fontsize=7)
    plt.yticks(fontsize=7)
    plt.show()
```

```
plot_predicted_prob_calibration(X= X_val, y= y_val, theta= theta, bins= 5)
```


Observations

- The % of positive examples in each prediction probability range changes almost linearly with the mean of the predicted probability ranges having value similar to the % of positive labelled samples in that
- $sigmoid((W.T)(X)) \sim (number of positive samples in class / total number of samples in class)$