Hidden Soldier Detection

양지현 김근호 김미라 권형근 오석준 우유정

Index

- 1. Project Overview
- 2. EfficientDet
- 3. YOLO
- 4. Conclusion

1. Project Overview

Image Segmentation → Object Detection

1. Project Overview

2019.5.28

"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks"

Mingxing Tan, Quoc V. Le

https://arxiv.org/abs/1905.11946

2019.11.20

"EfficientDet: Scalable and Efficient Object Detection"

Mingxing Tan, Ruoming Pang, Quoc V. Le

https://arxiv.org/abs/1911.09070

<u>핵심 Point</u>

1. Efficient multi-scale feature fusion

- BiFPN 구조 고안
- 각 Input Feature에 가중치 부여

2. Model Scaling

- EfficientNet 기법(Compound Scaling) 활용
- Resolution, Depth, Width를 동시에 고려한 Scaling 기법

> Efficient multi-scale feature fusion - "BiFPN"

- Efficient multi-scale feature fusion "BiFPN"
 - FPN(Feature Pyramid Network)란?
 - → 이미지 내에서 구하고자 하는 특징을 추출하는 구조 중 하나

> Efficient multi-scale feature fusion - "BiFPN"

FPN(Feature Pyramid Network)

Bottom-up을 진행하면서 semantic 정보를 응축
Top-down을 진행하면서 local 정보를 다시 포함
→ Semantic적인 측면과 local 정보를 적절히 고려

(d) Feature Pyramid Network

Efficient multi-scale feature fusion - "BiFPN"

- ✓ Top-down과 bottom-up 조합 고려
- ✓ 불필요한 edge 제거
- ✓ 최대한 많은 정보 포함

> Efficient multi-scale feature fusion - "BiFPN"

Figure 3: EfficientDet architecture – It employs EfficientNet [31] as the backbone network, BiFPN as the feature network, and shared class/box prediction network. Both BiFPN layers and class/box net layers are repeated multiple times based on different resource constraints as shown in Table 1.

	mAP	#Params ratio	#FLOPS ratio
Top-Down FPN [16]	42.29	1.0x	1.0x
Repeated PANet [19]	44.08	1.0x	1.0x
NAS-FPN [5]	43.16	0.71x	0.72x
Fully-Connected FPN	43.06	1.24x	1.21x
BiFPN (w/o weighted)	43.94	0.88x	0.67x
BiFPN (w/ weighted)	44.39	0.88x	0.68x

Table 4: Comparison of different feature networks – Our weighted BiFPN achieves the best accuracy with fewer parameters and FLOPS.

Efficient multi-scale feature fusion – "Weighted Feature Fusion"

FPN을 통해 추출한 여러 개의 input feature들을 처리하는 방법

기존 model: resize를 통해 크기를 맞춘 뒤 단순하게 합치는 방식

EfficientDet: Input feature 간에 가중치를 주고 학습을 통해 적절한 가중치를 찾는 방식

$$O = \sum_{i} I_{i}$$

$$O = \sum_{i} w_i \cdot I_i$$

$$O = \sum_{i} \frac{e^{w_i}}{\sum_{j} e^{w_j}} \cdot I_i.$$

Conventional Feature Fusion

Unbounded Feature Fusion SoftMax-based Feature Fusion

$$O = \sum_{i} \frac{e^{w_i}}{\sum_{j} e^{w_j}} \cdot I_i. \qquad O = \sum_{i} \frac{w_i}{\epsilon + \sum_{j} w_j} \cdot I_i$$

Fast normalized **Feature Fusion**

Model	Softmax Fusion mAP	Fast Fusion mAP (delta)	Speedup
Model1	33.96	33.85 (-0.11)	1.28x
Model2	43.78	43.77 (-0.01)	1.26x
Model3	48.79	48.74 (-0.05)	1.31x

Compound Scaling

EfficientNet

기존 모델을 바탕으로 complexity를 높임으로써 정확도를 높이는 방법 존재

Complexity를 높이는 방법: width scaling, depth scaling, resolution scaling

3가지 방법을 적절하게 늘림으로써 정확도를 높임

Compound Scaling

Figure 2. **Model Scaling.** (a) is a baseline network example; (b)-(d) are conventional scaling that only increases one dimension of network width, depth, or resolution. (e) is our proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio.

Final EfficientDet

Figure 3: EfficientDet architecture – It employs EfficientNet [31] as the backbone network, BiFPN as the feature network, and shared class/box prediction network. Both BiFPN layers and class/box net layers are repeated multiple times based on different resource constraints as shown in Table 1.

YOLO(You Only Look Once) - Real Time Object Detector

Advantages

1) 매우 빠른 속도 (Regression problem)

Advantages

1) 매우 빠른 속도 (Regression problem)

Real-Time De	etectors	Train	mAP	FPS	
100Hz DPM	[31]	2007	16.0	100	
30Hz DPM [3	31]	2007	26.1	30	
Fast YOLO		2007+2012	52.7	155	
YOLO		2007+2012	63.4	45	
Less Than Real-Time					
Fastest DPM	[38]	2007	30.4	15	
R-CNN Minu	s R [20]	2007	53.5	6	
Fast R-CNN	[14]	2007+2012	70.0	0.5	
Faster R-CNN	VGG-16[<mark>28</mark>]	2007+2012	73.2	7	
Faster R-CNN	N ZF [28]	2007+2012	62.1	18	
YOLO VGG-	16	2007+2012	66.4	21	

Advantages

- 1) 매우 빠른 속도 (Regression problem)
- 2) Image를 전역적으로 파악 → Contextual information

Figure 4: Error Analysis: Fast R-CNN vs. YOLO These charts show the percentage of localization and background errors in the top N detections for various categories (N = # objects in that category).

Advantages

- 1) 매우 빠른 속도 (Regression problem)
- 2) Image를 전역적으로 파악 → Contextual information
- 3) Generalizable representation 학습

			VOC 2007	Picasso		People-Art	
			AP	AP	Best F_1		AP
ı	YOLO		59.2	53.3	0.590		45
	R-CNN		54.2	10.4	0.226		26
Ī	DPM		43.2	37.8	0.458	'	32
	Poselets [2]]	36.5	17.8	0.271		
	D&T [4]		-	1.9	0.051		

Advantages

- 1) 매우 빠른 속도 (Regression problem)
- 2) Image를 전역적으로 파악 → Contextual information
- 3) Generalizable representation 학습

Limitations

1) 상대적으로 높은 localization error

Figure 4: Error Analysis: Fast R-CNN vs. YOLO These charts show the percentage of localization and background errors in the top N detections for various categories (N = # objects in that category).

Advantages

- 1) 매우 빠른 속도 (Regression problem)
- 2) Image를 전역적으로 파악 → Contextual information
- 3) Generalizable representation 학습

Limitations

- 1) 상대적으로 높은 localization error
- → 속도와 정확도 간의 Trade-Off

Figure 4: Error Analysis: Fast R-CNN vs. YOLO These charts show the percentage of localization and background errors in the top N detections for various categories (N = # objects in that category).

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [31]	2007	16.0	100
30Hz DPM [31]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45
Less Than Real-Time			
Fastest DPM [38]	2007	30.4	15
R-CNN Minus R [20]	2007	53.5	6
Fast R-CNN [14]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[28]	2007+2012	73.2	7
Faster R-CNN ZF [28]	2007+2012	62.1	18
VOLO VCC 16	2005 2012	(()	0.1
YOLO VGG-16	2007+2012	66.4	21

YOLO v1 Architecture

Figure 1: The YOLO Detection System. Processing images with YOLO is simple and straightforward. Our system (1) resizes the input image to 448×448 , (2) runs a single convolutional network on the image, and (3) thresholds the resulting detections by the model's confidence.

YOLO v1 Architecture

YOLO v1 Architecture

$$S * S * (5 * B + C)$$

(x, y, w, h, confidence) * B + C→ {objectness, $x_1, y_1, w_1, h_1, x_2, ... h_2, C1, ... Cn$ }

YOLO v1 Loss functions

$$\begin{split} \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ + \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \\ + \sum_{i=0}^{S^2} \mathbb{1}_i^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2 \end{split}$$

$$x_i, y_i, w_i, h_i$$

= normalized $x_{center}, y_{center}, w, h of i^{th}bbox$

$$C_i, p_i(c) = Confidence, class probabilities$$

$$\lambda_{coord} = 5$$

$$\lambda_{noobj} = .5$$

$$Confidence = Pr(Object) * IOU_{pred}^{truth}$$

Object Detection dataset(100k w/ 0.1k classes)은

Classification dataset(1m w/ 100k classes)에 비하면 제한적

- → Classification data를 이용해서 현재 detect system에 적용,
 - → 이를 학습시키는 joint training algorithm

	YOLO								YOLOv2
batch norm?		√	√	√	√	√	√	√	√
hi-res classifier?			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
convolutional?				√	\checkmark	✓	\checkmark	\checkmark	✓
anchor boxes?				\checkmark	\checkmark				
new network?					\checkmark	✓	√	\checkmark	✓
dimension priors?						√	\checkmark	\checkmark	✓
location prediction?						\checkmark	\checkmark	\checkmark	✓
passthrough?							√	√	√
multi-scale?								√	√
hi-res detector?									✓
VOC2007 mAP	63.4	65.8	69.5	69.2	69.6	74.4	75.4	76.8	78.6

- 1. Batch Normalization : Dropout 대신 Batch Normalization → Regularization 효과
- 2. High Resolution Classifier: input image size 224 x 224 → 416 x 416, mAP 4% 증가
- 3. Convolutional With Anchor Boxes:
 - 1) bounding box들을 직접 regression → Anchor box offset 예측
 - 2) grid 7x7 → 13x13, downsample factor = 32 : 큰 object의 center는 가운데 cell에 위치
 - 3) 한 cell에 objectness score 예측 → 각 bbox마다 objectness score 예측
- 4. Dimension Clusters: k-means clustering을 통해서 training data에서 제일 적합한 anchor box 후보군 찾기
- **5. Direct location prediction** : 1) offset 사용 2) grid cell의 위치에 상대적으로 anchor box를 predict → (x, y) in [0, 1]
- 6. Fine-Grained Features : concatenate(final layer 이전 layer의 feat map, final layer feat map) → 1% 성능 향상
- 7. Multi-Scale Training : iteration마다 model의 input 크기 다르게 → {320, 352, ..., 608} 임의의 image size 선택 후 학습

Darknet-19

Type	Filters	Size/Stride	Output
Convolutional	32	3×3	224×224
Maxpool		$2 \times 2/2$	112×112
Convolutional	64	3×3	112×112
Maxpool		$2 \times 2/2$	56×56
Convolutional	128	3×3	56×56
Convolutional	64	1×1	56×56
Convolutional	128	3×3	56×56
Maxpool		$2 \times 2/2$	28×28
Convolutional	256	3×3	28×28
Convolutional	128	1×1	28×28
Convolutional	256	3×3	28×28
Maxpool		$2 \times 2/2$	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1×1	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1 × 1	14×14
Convolutional	512	3×3	14×14
Maxpool		$2 \times 2/2$	7×7
Convolutional	1024	3×3	7×7
Convolutional	512	1×1	7×7
Convolutional	1024	3×3	7×7
Convolutional	512	1×1	7×7
Convolutional	1024	3×3	7×7
Convolutional	1000	1 × 1	7 × 7
Avgpool		Global	1000
Softmax			

정확도가 높으면서 빠른 속도의 network

- → 3x3 filter 사용
- → 19개의 Conv layer
- → 5개의 Pooling layer
- → FC Layer 대신 1x1 Conv Layer

Hierarchical Classification

ImageNet dataset : WordNet이라는 language dataset으로부터 파생 (계층적 data)

- → WordNet 기반으로 계층적 tree를 구조화
- → multi label 학습 진행
- → Can detect Wide Variety of Object Classes in Real-Time

$$\begin{split} Pr(\text{Norfolk terrier}) &= Pr(\text{Norfolk terrier}|\text{terrier}) \\ *Pr(\text{terrier}|\text{hunting dog}) \\ * \dots * \\ *Pr(\text{mammal}|Pr(\text{animal}) \\ *Pr(\text{animal}|\text{physical object}) \end{split}$$

YOLO v3: An Incremental Improvement

	Type	Filters	Size	Output
	Convolutional	32	3×3	256×256
	Convolutional	64	$3 \times 3 / 2$	128×128
	Convolutional	32	1 x 1	
1×	Convolutional	64	3×3	
	Residual			128 × 128
	Convolutional	128	$3 \times 3 / 2$	64×64
	Convolutional	64	1 × 1	
2x	Convolutional	128	3×3	
	Residual			64×64
	Convolutional	256	$3 \times 3 / 2$	32×32
	Convolutional	128	1 × 1	
8×	Convolutional	256	3×3	
	Residual			32×32
	Convolutional	512	$3 \times 3 / 2$	16×16
	Convolutional	256	1 × 1	
8×	Convolutional	512	3×3	
	Residual			16 × 16
	Convolutional	1024	$3 \times 3 / 2$	8 × 8
	Convolutional	512	1 × 1	
4×	Convolutional	1024	3×3	
	Residual			8 × 8
	Avgpool		Global	
	Connected		1000	
	Softmax			

Table 1. Darknet-53.

FPN(feature pyramid network)와 같이 **3개의 서로 다른 scale**을 적용한 box를 predict

Output = {3d tensor encoding bounding box, objectness, class predictions}

 \rightarrow N x N x [3 * (4 + 1 + 80)]

4 : bounding box offsets

1 : objectness prediction

80 : class predictions

- + 2 Layers previous → Concatenation
- → Meaningful semantic information, finer-grained info.

Batch norm, offsets 등은 그대로 사용

Conclusion

- EfficientDet, YOLO v3
- 현재 YOLO v3를 기준으로 잡고 있으며
- 다른 모델들과의 비교 후 Hidden Soldiers Detector 모델 확정 예정

Efficientdet YOLO v3

THANK YOU ☺

