HW 2 - John Akujobi

22 Owner	J John Akujobi		
⊙ Туре	Homework		
O Created time	@September 3, 2023 10:13 PM		
	Not started		

Compiled using markdown with Notion Schematics created using Circuitverse

Α

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

В

А	В	С	Υ
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

С

Α	В	С	Υ
0	0	0	0
0	0	1	1

0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

For the above truth tables

- 1. For the above truth tables
 - a. Write in sigma notation

i.
$$A \rightarrow Y = \Sigma (1,2,3)$$

ii. B
$$\rightarrow$$
 Y = Σ (1,2,3,4,6)

iii.
$$C \rightarrow Y = \Sigma (1,6,7)$$

b. Write in canonical sum-of-products form

i.
$$A \rightarrow Y = A'B + AB' + AB$$

ii.
$$B \rightarrow [Y = A'.B'.C + A'.B.C' + A'.B.C + A.B'.C' + A.B.C']$$

iii.
$$C \rightarrow Y = A'.B'.C + A.B.C' + A.B.C$$

c. Draw the schematic for (b)

Schematic for B

2. For the above truth tables

a. Write in Pi notation

```
i. A \rightarrow Y = \Pi(0)
```

ii. B
$$\rightarrow$$
 Y = $\Pi(0,5,7)$

iii.
$$C \rightarrow Y = \Pi (0,2,3,4,5)$$

b. Write in the canonical product of sums form

i.
$$A \rightarrow Y = A+B$$

ii.
$$B \rightarrow Y = (A+B+C).(A'+B+C').(A'+B'+C')$$

iii.
$$C \rightarrow Y = (A+B+C).(A+B'+C).(A+B'+C').(A'+B+C).(A'+B+C')$$

c. Draw the schematic for (a)

Schematic for A

- 3. For truth table c minimize using Boolean algebra theorems. Label each theorem/step used.
 - $\bullet \quad Y = A'.B'.C + A.B$

```
Group the terms with common factors:

Y = A'.B'.C + A.B.(C' + C)

Identity law:

Y = A'.B'.C + A.B.(1)

Simplify:

Y = A'.B'.C + A.B
```

1. Draw the schematic

Minimized version of B

- 2. Compare the cost to the canonical form
 - a. Minimized form \Rightarrow 11
 - b. Original Canonical Form \Rightarrow 17

Canonical form

▼ A

Α	В	Υ	Min terms(SOP)	Max terms(POS)
0	0	0	A'B'	A+B
0	1	1	A'B	A+B'
1	0	1	AB'	A'+B
1	1	1	AB	A'+B'

Sigma Notation

- $\bullet \quad Y = \left[\Sigma \ (1,2,3) \right]$
 - The rows that give Y=1

Canonical sum-of-products form

 $\bullet \quad Y = A'B + AB' + AB$

 \circ These are the Min terms of the rows that give Y=1

o And in the min terms, A is 0 while A' is 1

PI Notation

 $\bullet \quad Y = \Pi(0)$

• Since it's only the 0th row that gives y=0

Canonical Product of sums form

 \bullet Y = A+B

 \circ Max terms of the rows that give Y=0

Schematic Drawing

▼ B

Α	В	С	Υ	Min Terms	Max Terms
0	0	0	0	A'.B'.C'	A+B+C
0	0	1	1	A'.B'.C	A+B+C'
0	1	0	1	A'.B.C'	A+B'+C
0	1	1	1	A'.B.C	A+B'+C'
1	0	0	1	A.B'.C'	A'+B+C
1	0	1	0	A.B'.C	A'+B+C'
1	1	0	1	A.B.C'	A'+B'+C

1 1 0 A.B.C A'+B'+C'

Sigma Notation

• $Y = \Sigma (1,2,3,4,6)$

Canonical sum-of-products form

 \bullet Y = A'.B'.C + A'.B.C' + A'.B.C + A.B'.C' + A.B.C'

PI Notation

 $\bullet \quad Y = \Pi(0,5,7)$

Canonical Product of sums form

• Y = (A+B+C).(A'+B+C').(A'+B'+C')

Schematic Drawing

B - Homework 1 - Digital Logic.cv

▼ C

Α	В	С	Υ	Min Terms	Max terms
0	0	0	0	A'.B'.C'	A+B+C
0	0	1	1	A'.B'.C	A+B+C'
0	1	0	0	A'.B.C'	A+B'+C
0	1	1	0	A'.B.C	A+B'+C'
1	0	0	0	A.B'.C'	A'+B+C
1	0	1	0	A.B'.C	A'+B+C'
1	1	0	1	A.B.C'	A'+B'+C

Α	В	С	Υ	Min Terms	Max terms
1	1	1	1	A.B.C	A'+B'+C'

Sigma Notation

 $\bullet \quad Y = \sum (1,6,7)$

Canonical sum-of-products form

• Y = A'.B'.C + A.B.C' + A.B.C

PI Notation

 $Y = \Pi (0,2,3,4,5)$

Canonical Product of sums form

• Y = (A+B+C).(A+B'+C).(A+B'+C').(A'+B+C).(A'+B+C')

Schematic Drawing

C - Digital Logic HW 1.cv

Minimized Boolean

 $\bullet \quad Y = A'.B'.C + A.B$

```
Group the terms with common factors:

Y = A'.B'.C + A.B.(C' + C)

Identity law:

Y = A'.B'.C + A.B.(1)

Simplify:

Y = A'.B'.C + A.B
```

Minimized Boolean Schematic Diagram

C minimized HW 1 - Digital Logic.cv

Cost

- Original = 17
- Minimized Boolean Algebra = 11