

COM3503/4503/6503: 3D Computer Graphics Lecture 4: Polygon meshes

Dr. Steve Maddock Room G011, Regent Court s.maddock@sheffield.ac.uk

1. Representation of 3D objects

- Many alternative representations
 - Polygons, parametric patches, CSG, space subdivision, implicit representation, etc.
- The representation will determine:
 - Data structure and form of processing algorithms;
 - Ease of editing;
 - Cost of processing an object;
 - Final appearance of an object.

Kajiya, J.T. (1992). foreword, p.xi in 'Snyder, J.M. (1992). Generative Modeling for Computer Graphics and CAD. Academic Press'.

2. Polygons

- An object is represented by a mesh of polygonal facets
 - Set of points and connectivity information
- Most common representation in computer graphics is a mesh of triangles
- Referred to as a Boundary
 Representation or B-rep technique
- For curved surfaces, this is an approximation

3. Alternative polygon data structures

What data structure should be used?

3.1 Polygons index the vertices

- Polygons are individual entities
- Vertices are duplicated
- No representation for shared edges or vertices

$$V = (v1,v2,v3,v4,v5,v6, ...)$$

$$= ((x_1,y_1,z_1), ...)$$

$$p1 = (v1,v2,v3)$$

$$p2 = (v4,v5,v6)$$

3.1.1 Vertices not duplicated

- Same vertex indexed by more than one polygon
- Inefficient to find polygons which share an edge

$$V = (v1,v2,v3,v4, ...)$$

$$= ((x_1,y_1,z_1), ...)$$

$$p1 = (v1,v2,v4)$$

$$p2 = (v2,v3,v4)$$

See Element Buffer Objects example in Week 1 lab class

3.1.1 Vertices not duplicated

- Example: .obj file for a sphere represented as a mesh of triangles
- v 0.0 0.0 0.5
 - A vertex and its x,y,z, values
 - The first vertex is vertex number 1
- Optional:
 - vt vertex texture coordinates
 - vn vertex normal (x,y,z)
- f a/b/c a/b/c a/b/c
 - A polygon face with up to three index values for each vertex
 - vertex index / vertex texture index/ vertex normal index
 - Optional: vertex texture number and vertex normal number

```
# object SphereO1 to come
v 0.0 0.0 0.5
v 0.0 0.294 0.405
v -0.173 0.23799999 0.405
v - 0.28 \ 0.091 \ 0.405
# 42 vertices
 1 5 6
 80 faces
```

3.2 Face-vertex meshes

- Most widely used data structure
- Polygons index vertices
- Vertices index polygons

Face-Vertex Meshes

http://en.wikipedia.org/wiki/File: Mesh_fv.jpg

3.4 Winged edge meshes

- Widely used in modelling programs
- Flexible mesh geometry change
- Large storage requirements and increased complexity

An edge points to its two vertices, 4 of its adjoining edges (nearest CW and nearest CCW) and its adjacent polygons.

A vertex points to its connected edges.
A polygon points to its edges.

4. A hierarchical structure

- objects → surfaces → polygons → vertices
- This structure allows 'hard' (or real) edges to be distinguished

has implications for rendering. More Often implicit using usually duplicate vertices Surface is Polygo split into 1 n-sided rather than explicitly is n vertices polygon triangles represented Surface is n 4-sided Polygon is polygons four vertices Polygon is four vertices Surface is 1 n-sided polygon Polygon is n vertices

5. Other information in the data structure

- Vertex normals
- Polygon normals
- (A normal is a vector that is perpendicular to the 'underlying' surface at that point.)
- Surface colours
- Texture coordinates, etc.
- As the data structure is processed through the graphics pipeline, other information will be added such as shading information

5.1 Calculating normals

Easy for certain objects:

- Flat plane defined by two of the world axes
 - Normal is the remaining world axis
- Cube aligned with world axes
 - Multiple flat planes
- Sphere
 - Use line between centre of sphere and vertex to give vertex normal q-p
- Cylinder axis along one of the world axes
 - Use line between central axis and vertex on same plane (a circle in the plane) q-p
 - For cylinder caps (flat ends) use relevant world axis
- All normals must be normalised

5.2 Arbitrary mesh: Calculating a polygon normal

$$V = (x_1, y_1, z_1) - (x_0, y_0, z_0)$$

$$W = (x_2, y_2, z_2) - (x_0, y_0, z_0)$$

$$N = V \times W$$

$$= (v_x, v_y, v_z) \times (w_x, w_y, w_z)$$

$$= ((v_y w_z - v_z w_y), (v_z w_x - v_x w_z), (v_x w_y - v_y w_x))$$

$$= (N_x, N_y, N_z)$$

Normalising:

$$N = \left(\frac{N_{\chi}}{|N|}, \frac{N_{y}}{|N|}, \frac{N_{z}}{|N|}\right)$$

where

$$|N| = sqrt(N_x^2 + N_y^2 + N_z^2)$$

Same normal all over a triangle, wherever you measure it, since the triangle is flat

5.3 Arbitrary mesh: Calculating a vertex normal

• A vertex normal (that approximates the curvature of the underlying smooth surface approximated by the polygons) can be calculated by averaging the surrounding polygon normals:

$$N_A = (N_1 + N_2 + N_3 + N_4)/4$$

• Then normalise: $N_A = N_A / |N_A|$

Question

Given a triangle with vertex 1 at position (0,0,0), vertex 2 at position (0,0,2) and vertex 3 at position (3,0,0), with vertices ordered in an anticlockwise direction, write down the triangle normal in its normalised form.

Question

Given a triangle with vertex 1 at position (0,0,0), vertex 2 at position (0,0,2) and vertex 3 at position (3,0,0), with vertices ordered in an anticlockwise direction, write down the triangle normal in its normalised form.

5.4 Hard edges

- Multiple normals for a vertex on a hard edge
- A solution: Duplicate vertices separate surfaces may be explicitly represented in the data structure

6. Techniques for creating polygonal objects

Lots of techniques. Here's a few:

- Purchase
- Scanning
- Modelling software
- Mathematical generation
- Sweeping
- Procedural techniques

www.turbosquid.com

6.1 Digital acquisition of shape

- 3D digitiser manual
- Laser ranger automatic
- Multiple photographs, e.g. Autodesk
 123D Catch

http://www.3d-microscribe.com

http://www.artec3d.com/hardware/artec-spider/

6.1.1 Digital acquisition of shape using a laser ranger

6.2 Modelling software

- Mesh editing, e.g. 3ds Max, Maya, Blender, ...
- Sculpting, e.g. Mudbox, ZBrush

Zbrush, www.pixologic.com

6.3 Mathematical description

- Discretise the surface described by a function
- Example: z = sin x + cos y

Wire-frame view of a 50 x 50 height map, giving 4802 triangles.

6.4 Sweeping

Alternatives:

- Rotational sweep or surface of revolution;
- Translational sweep or extrusion;
- Ducted solids or generalised cylinders.

6.4 Sweeping

• Translational sweep or extrusion;

6.4.1 Examples

6.4.2 Issues

- Arc length parameterisation;
- Curvature;
- Reference frames, e.g.
 Frenet frames.

Frenet frames:

Jules Bloomenthal, "Calculation of Reference Frames along a Space Curve", in Graphics Gems, Academic Press, 1990. pp. 567-571 http://webhome.cs.uvic.ca/~blob/courses/305/notes/pdf/ref-frames.pdf W. Wang, B. Jüttler, D. Zheng, and Y. Liu, "Computation of rotation minimizing frames", ACM Transactions on Graphics (TOG), Volume 27 Issue 1, March 2008

6.4.3 Sweeping in a photo...

 Tao Chen, Zhe Zhu, Ariel Shamir, Shi-Min Hu, Daniel Cohen-Or 3-Sweep: Extracting Editable Objects from a Single Photo Proc. Siggraph Asia 2013

https://www.youtube.com/watch?v=Oie1ZXWceqM

6.5 Procedural techniques

- Parameterize surface attributes to create variations on a model.
- Example: A truncated pyramid and a cuboid are stochastically distributed on the surface of a sphere to produce a more complex object (produced using a 3ds Max plug-in).

6.6 Procedural technique: Fractal objects

 Recursively subdivide each edge, generating a displacement in a direction normal to the plane of the original facet.

Further details: Fournier, A., D.Fussell and L.Carpenter (1982). Computer rendering of stochastic models. Comm. ACM, 25(6), pp.371-84

7. Level-of-detail (LOD)

- For a complex object, large numbers of polygons are needed to capture the detail
- If such an object projects onto a small area of the screen, effort is wasted
- A solution is to use a Level of Detail (LOD) approach:
 - A series of models, each with successively less polygons

7.1 Progressive meshes (Hoppe, 1996)

http://research.microsoft.com/~hoppe/

8. Summary

- Polygons are ubiquitous:
 - Can model any complex object
 - Efficient rendering
- Lots of alternative data structures
 - Face-vertex is common
- Level of Detail approach to choose mesh based on viewing distance
 - (Further info: Luebke et al, Level of Detail for 3D Graphics, Morgan Kaufmann, 2003 (http://lodbook.com/)
 - Special techniques for terrain (http://www.vterrain.org)
- Many ways of producing polygon models from scanning to procedural generation

A.1 Progressive meshes (Hoppe, 1996)

 Mesh optimisation techniques on highest detail layer Mⁿ to construct lower layers

Hoppe, H. (1996). Progressive meshes. Proc SIGGRAPH'96. pp.99-108.

A.1 Progressive meshes (Hoppe, 1996)

- Edge collapse operation: Two vertices combined into one
- Store coarsest level of detail M_0 and information to ascend from layer to layer to highest detail layer M_n
- (progressive meshes were added in DirectX 8)

Hoppe, H. (1996). Progressive meshes. Proc SIGGRAPH'96. pp.99-108.

A.1 Progressive meshes (Hoppe, 1996)

 'geomorphs', which are geometric blends in 3D space

$$V_c \in \left| V_t, V_s, \frac{V_t + V_s}{2} \right|$$

Linear interpolation of v_c to v_t and also to v_s

Figure 6: Example of a geomorph $M^G(\alpha)$ defined between $M^G(0) = M^{175}$ (with 500 faces) and $M^G(1) = M^{425}$ (with 1,000 faces).

A.2 A simple criterion for edge collapse

- Hoppe uses a fairly complex collapse criterion based on minimising an energy function over the mesh
- A simple metric that can be used to decide the edge for collapse is:

$$\frac{\left|\mathbf{V}_{s}-\mathbf{V}_{t}\right|}{\left|\mathbf{N}_{s}\cdot\mathbf{N}_{t}\right|}$$

which is the length of an edge (V_s-V_t) divided by the dot product of its two vertex normals

 When it is continually applied the mesh will reach a point where it begins to 'collapse'

B. Data transfer between CPU and GPU

- Draw each triangle separately inefficient
- Triangle strip compress connectivity information
- Array of vertices transfer arrays of information
- Display list used with fixed function pipeline
 - Transfer data to GPU once
 - Single call to redraw the list stored on the GPU
 - If edit vertices then re-send all data
- Vertex Buffer Objects commonly used when using the programmable pipeline
 - Advantages of both vertex array and display list
 - Store on GPU, but can edit the individual vertices
 - Can use separate buffers for vertex data and index data