Creating Light Sources

Light sources have a number of properties, such as color, position, and direction. The following sections explain how to control these properties and what the resulting light looks like. The command used to specify all properties of lights is glLight*(); it takes three arguments: to identify the light whose property is being specified, the property, and the desired value for that property.

void **glLight**{if}(GLenum *light*, GLenum *pname*, *TYPE param*); void **glLight**{if}v(GLenum *light*, GLenum *pname*, *TYPE *param*);

Creates the light specified by *light*, which can be GL_LIGHTO, GL_LIGHT1, ..., or GL_LIGHT7. The characteristic of the light being set is defined by *pname*, which specifies a named parameter (see Table 5-1). *param* indicates the values to which the *pname* characteristic is set; it's a pointer to a group of values if the vector version is used, or the value itself if the nonvector version is used. The nonvector version can be used to set only single-valued light characteristics.

Parameter Name	Default Value	Meaning
GL_AMBIENT	(0.0, 0.0, 0.0, 1.0)	ambient RGBA intensity of light
GL_DIFFUSE	(1.0, 1.0, 1.0, 1.0)	diffuse RGBA intensity of light
GL_SPECULAR	(1.0, 1.0, 1.0, 1.0)	specular RGBA intensity of light
GL_POSITION	(0.0, 0.0, 1.0, 0.0)	(x, y, z, w) position of light
GL_SPOT_DIRECTION	(0.0, 0.0, -1.0)	(x, y, z) direction of spotlight
GL_SPOT_EXPONENT	0.0	spotlight exponent
GL_SPOT_CUTOFF	180.0	spotlight cutoff angle
GL_CONSTANT_ATTENUATION	1.0	constant attenuation factor
GL_LINEAR_ATTENUATION	0.0	linear attenuation factor

Table 5-1 Default Values for pname Parameter of glLight*()

Open 61 drgs. garde \$5 18.

parameter Name	Default Value	Meaning
GL_QUADRATIC_ATTENUATION	0.0	quadratic attenuation factor

Table 5-1 Default Values for pname Parameter of glLight*() (continued)

Note: The default values listed for GL_DIFFUSE and GL_SPECULAR in Table 5-1 apply only to GL_LIGHTO. For other lights, the default value is (0.0, 0.0, 0.0, 1.0) for both GL_DIFFUSE and GL_SPECULAR.

Example 5-2 shows how to use glLight*():

Example 5-2 Defining Colors and Position for a Light Source

```
GLfloat light_ambient[] = { 0.0, 0.0, 0.0, 1.0 };
GLfloat light_diffuse[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat light_specular[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };

glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);
glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);
glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);
```

As you can see, arrays are defined for the parameter values, and glLightfv() is called repeatedly to set the various parameters. In this example, the first three calls to glLightfv() are superfluous, since they're being used to specify the default values for the GL_AMBIENT, GL_DIFFUSE, and GL_SPECULAR parameters.

Note: Remember to turn on each light with glEnable(). (See "Enabling Lighting" on page 195 for more information about how to do this.)

All the parameters for glLight*() and their possible values are explained in the following sections. These parameters interact with those that define the overall lighting model for a particular scene and an object's material properties. (See "Selecting a Lighting Model" on page 192 and "Defining Material Properties" on page 195 for more information about these two topics. "The Mathematics of Lighting" on page 205 explains how all these parameters interact mathematically.)

Selection highling Model

Whether lighting calculations should be performed differently for both the front and back faces of objects

This section explains how to specify a lighting model. It also discusses how to enable lighting—that is, how to tell OpenGL that you want lighting calculations performed.

The command used to specify all properties of the lighting model is glLightModel*(). glLightModel*() has two arguments: the lighting model property and the desired value for that property.

void glLightModel(if)(GLenum pname, TYPE param): void glLightModel{if}v(GLenum pname, TYPE *param);

Sets properties of the lighting model. The characteristic of the lighting model being set is defined by pname, which specifies a named parameter (see Table 5-1). param indicates the values to which the pname characteristic is set; it's a pointer to a group of values if the vector version is used, or the value itself if the nonvector version is used. The nonvector version can be used to set only single-valued lighting model characteristics, not for GL LIGHT MODEL AMBIENT.

Parameter Name	Default Value	Meaning
GL_LIGHT_MODEL_AMBIENT	(0.2, 0.2, 0.2, 1.0)	ambient RGBA intensity of the entire scene
GL_LIGHT_MODEL_LOCAL_VIEWER	0.0 or GL_FALSE	how specular reflection angles are computed
GL_LIGHT_MODEL_TWO_SIDE	0.0 or GL_FALSE	choose between one-sided or two-sided lighting

Default Values for pname Parameter of glLightModel*()

Global Ambient Light

As discussed earlier, each light source can contribute ambient light to a scene. In addition, there can be other ambient light that's not from any particular source. To specify the RGBA intensity of such global ambient light, use the GL_LIGHT_MODEL_AMBIENT parameter as follows:

Open 61 Prog. Guide

Selecting a Lighting Model

Mathematics of Lighting" on page 205 for the equations used in the lighting and material-property calculations.) Most of the material properties are conceptually similar to ones you've already used to create light sources. The mechanism for setting them is similar, except that the command used is called glMaterial*().

void glMaterial{if}(GLenum face, GLenum pname, TYPE param);
void glMaterial{if}v(GLenum face, GLenum pname, TYPE *param);

Specifies a current material property for use in lighting calculations. *face* can be GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK to indicate which face of the object the material should be applied to. The particular material property being set is identified by *pname* and the desired values for that property are given by *param*, which is either a pointer to a group of values (if the vector version is used) or the actual value (if the nonvector version is used). The nonvector version works only for setting GL_SHININESS. The possible values for pname are shown in Table 5-3. Note that GL_AMBIENT_AND_DIFFUSE allows you to set both the ambient and diffuse material colors simultaneously to the same RGBA value.

Parameter Name	Default Value	Meaning
GL_AMBIENT	(0.2, 0.2, 0.2, 1.0)	ambient color of material
GL_DIFFUSE	(0.8, 0.8, 0.8, 1.0)	diffuse color of material
GL_AMBIENT_AND_DIFFUSE		ambient and diffuse color of material
GL_SPECULAR	(0.0, 0.0, 0.0, 1.0)	specular color of material
GL_SHININESS	0.0	specular exponent
GL_EMISSION	(0.0, 0.0, 0.0, 1.0)	emissive color of material
GL_COLOR_INDEXES	(0,1,1)	ambient, diffuse, and specular color indices

Table 5-3 Default Values for pname Parameter of glMaterial*()

As discussed in "Selecting a Lighting Model" on page 192, you can choose to have lighting calculations performed differently for the front- and back-facing polygons of objects. If the back faces might indeed be seen, you can supply different material properties for the front and the back surfaces

Open 61 Proj Guide