Bioinformatics 3

V 5 – Weak Indicators and Communities

Fri, April 27, 2018

Noisy Data — Clear Statements?

For **yeast**: ~ 6000 proteins → ~18 million potential interactions rough estimates: ≤ 100000 interactions occur

- \rightarrow 1 true positive for 200 potential candidates = **0.5**%
 - → decisive experiment must have accuracy << 0.5% false positives</p>

Different experiments detect different interactions

For yeast: 80000 interactions known, only 2400 found in > 1 experiment

Y2H: \rightarrow many false positives (up to 50% errors)

Co-expression: → gives indications at best

Combine weak indicators = ???

see: von Mering (2002)

Conditional Probabilities

Joint probability for "A and B":

$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

Solve for conditional probability for "A when B is true" → Bayes' Theorem:

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)} = \frac{P(B|A)}{P(B)} P(A)$$

P(A) = prior probability (marginal prob.) for "A" \rightarrow no prior knowledge about A

P(B) = prior probability for "B" \rightarrow normalizing constant

 $P(B \mid A) = \text{conditional probability for } "B \text{ given } A"$

 $P(A \mid B)$ = posterior probability for "A given B"

→ Use information about B to improve knowledge about A

What are the Odds?

Express Bayes theorem

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)} = \frac{P(B|A)}{P(B)} P(A)$$

in terms of odds:

- Also consider case "A does not apply": $P(\bar{A}|B) = \frac{P(B|A)}{P(B)} P(\bar{A})$
- odds for A when we know about B
 (we will interpret B as information or features):

$$O(A|B) = \frac{P(A|B)}{P(\bar{A}|B)} = \frac{P(B|A)}{P(B|\bar{A})} \frac{P(A)}{P(\bar{A})} = \Lambda(A|B) \ O(A)$$
 posterior odds for A likelihood ratio prior odds for A

 $\Lambda(A \mid B) \rightarrow \text{ by how much does our knowledge about } A \text{ improve?}$

2 types of Bayesian Networks

(1) Naive Bayesian network

→ independent odds

$$O(A|B,C) = \Lambda(A|B) \Lambda(A|C) O(A)$$

(2) Fully connected Bayesian network

→ table of joint odds

		В	!B	
_	С	0.3	0.16	$\Leftrightarrow \Lambda(A B,C)$
	!C	0.4	0.14	(7 11(11)15,0)

Bayesian Analysis of Complexes

A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data

Ronald Jansen, 1* Haiyuan Yu, 1 Dov Greenbaum, 1 Yuval Kluger, 1
Nevan J. Krogan, 4 Sambath Chung, 1,2 Andrew Emili, 4
Michael Snyder, 2 Jack F. Greenblatt, 4 Mark Gerstein 1,3 †

We have developed an approach using Bayesian networks to predict proteinprotein interactions genome-wide in yeast. Our method naturally weights and combines into reliable predictions genomic features only weakly associated with interaction (e.g., messenger RNA coexpression, coessentiality, and colocalization). In addition to de novo predictions, it can integrate often noisy, experimental interaction data sets. We observe that at given levels of sensitivity, our predictions are more accurate than the existing high-throughput experimental data sets. We validate our predictions with TAP (tandem affinity purification) tagging experiments. Our analysis, which gives a comprehensive view of yeast interactions, is available at genecensus.org/intint.

Science 302 (2003) 449

Improving the Odds

Is a given protein pair AB a complex (from all that we know)?

$$O_{post}(\operatorname{Complex}|f_1, f_2, \dots) = \Lambda(\operatorname{Complex}|f_1, f_2, \dots) O_{prior}(\operatorname{Complex})$$

likelihood ratio:

improvement of the odds when we know about features f_1 , f_2 ,

Idea: determine from known complexes and use for prediction of new complexes

prior odds for a random pair AB to be a complex

estimate (somehow)

Features used by Jansen et al (2003):

- 4 experimental data sets of complexes
- mRNA co-expression profiles
- biological functions annotated to the proteins (GO, MIPS)
- essentiality for the cell

Gold Standard Sets

To determine
$$\Lambda(\operatorname{Complex}|f_1,f_2,\dots) = \frac{P(f_1,f_2,\dots|\operatorname{Complex})}{P(f_1,f_2,\dots|\operatorname{no Complex})}$$

 \rightarrow use two data sets with **known** features $f_1, f_2, ...$ for **training**

Requirements for training data:

- i) independent of the data serving as evidence
- ii) large enough for good statistics
- iii) free of systematic bias

Gold Standard Positive Set (GP):

8250 complexes from the hand-curated MIPS catalog of protein complexes (MIPS stands for Munich Information Center for Protein Sequences)

Gold Standard Negative Set (GN):

2708746 (non-)complexes formed by proteins from different cellular compartments (assuming that such protein pairs likely do not interact)

Prior Odds

$$O_{prior}(\text{Complex}) = \frac{P(\text{Complex})}{P(\text{no Complex})} = \frac{P(\text{Complex})}{1 - P(\text{Complex})}$$

Jansen et al:

- estimated ≥ 30000 existing complexes in yeast
- 18 Mio. possible complexes

→
$$P(Complex) \approx 1/600$$

$$\rightarrow$$
 Oprior = 1/600

- → The odds are 600:1 against picking a real complex at random
- → expect 50% good hits (TP \geq FP) when $\Lambda \approx 600$ and higher

Note: Oprior is mostly an educated guess

Essentiality

Test whether both proteins are essential (E) for the cell or not (N)

→ for protein complexes, EE or NN should occur more often

pos/neg: # of gold standard positives/ negatives with essentiality information

$$L(\text{Ess}) = \frac{P(\text{Ess} | \text{pos})}{P(\text{Ess} | \text{neg})}$$

Essentiality	pos	neg	P(Ess pos)	P(Ess neg)	L(Ess)
EE	1114	81924	5,18E-01	1,43E-01	3,6
NE	624	285487	2,90E-01	4,98E-01	0,6
NN	412	206313	1,92E-0	3,60E-01	0,5
sum	2150	573724	1,00	1,00	$ \qquad \qquad \uparrow$
possible values of the feature	overlap standard feature In the "pos essentiality wa for 2150 o complexes stand	sets with values " case, the as only known ut of 8250 of the gold-	feature) 518 —	likelihood ratios 0.19 = 0.5

mRNA Co-Expression

Publicly available expression data from

- the Rosetta compendium
- the yeast cell cycle

- Correlation between the data sets
- → use principal component

Expression correlation			Gold stand	ard overlap			
		# protein pairs	pos	neg	P(exp pos)	P(exp neg)	
	0.9	678	16	45	2.10E-03	1.68E-0	5
	0.8	4,827	137	563	1.80E-02	2.10E-0	4
	0.7	17,626	530	2,117	6.96E-02	7.91E-0	4
	0.6	42,815	1,073	5,597	1.41E-01	2.09E-0	3
	0.5	96,650	1,089	14,459	1.43E-01	5.40E-0	3
	0.4	225,712	993	35,350	1.30E-01	1.32E-0	2
	0.3	529,268	1,028	83,483	1.35E-01	3.12E-0	2
	0.2	1,200,331	870	183,356	1.14E-01	6.85E-02	2
က္သ	0.1	2,575,103	739	368,469	9.71E-02	1.38E-0	1
values	0	9,363,627	894	1,244,477	1.17E-01	4.65E-0	1
Š	-0.1	2,753,735	164	408,562	2.15E-02	1.53E-0°	1
	-0.2	1,241,907	63	203,663	8.27E-03	7.61E-02	2
	-0.3	484,524	13	84,957	1.71E-03	3.18E-02	2
	-0.4	160,234	3	28,870	3.94E-04	1.08E-02	2
	-0.5	48,852	2	8,091	2.63E-04	3.02E-03	3
	-0.6	17,423	-	2,134	0.00E+00	7.98E-04	4
	-0.7	7,602	-	807	0.00E+00	3.02E-04	4
	-0.8	2,147	-	261	0.00E+00	9.76E-0	5
	-0.9	67	-	12	0.00E+00	4.49E-06	ô
	Sum	18,773,128	7,614	2,675,273	1.00E+00	1.00E+00	J

-> Co-expression is a much better feature than essentiality!

Biological Function

Use MIPS function catalog and Gene Ontology function annotations

- determine functional class shared by the two proteins; small values (1-9)
 Indicate highest MIPS function or GO BP similarity
- count how many of the 18 Mio potential pairs share this classification

			Gold stand	ard overlap						
MIPS function similarity		# protein pairs	pos	neg	sum(pos)	sum(neg)	sum(pos)/ sum(neg)	P(MIPS pos)	P(MIPS neg)	L
	1 9	6,584	171	1,094	171	1,094	0.16	2.12E-02	8.33E-04	25.5
န္တ	10 99	25,823	584	4,229	755	5,323	0.14	7.25E-02	3.22E-03	22.5
흝	100 1000	88,548	688	13,011	1,443	18,334	0.08	8.55E-02	9.91E-03	8.6
\$	1000 10000	255,096	6,146	47,126	7,589	65,460	0.12	7.63E-01	3.59E-02	21.3
	10000 Inf	5,785,754	462	1,248,119	8,051	1,313,579	0.01	5.74E-02	9.50E-01	0.1
	Sum	6,161,805	8,051	1,313,579	-	-	-	1.00E+00	1.00E+00	1.0

			Gold stand	ard overlap						
GO biological process similarity		# protein pairs	pos	neg	sum(<i>pos</i>)	sum(neg)	sum(pos)/ sum(neg)	P(GO pos)	P(GO neg)	L
	1 9	4,789	88	819	88	819	0.11	1.17E-02	1.27E-03	9.2
စ္ထ	10 99	20,467	555	3,315	643	4,134	0.16	7.38E-02	5.14E-03	14.4
흝	100 1000	58,738	523	10,232	1,166	14,366	0.08	6.95E-02	1.59E-02	4.4
>	1000 10000	152,850	1,003	28,225	2,169	42,591	0.05	1.33E-01	4.38E-02	3.0
	10000 Inf	2,909,442	5,351	602,434	7,520	645,025	0.01	7.12E-01	9.34E-01	0.8
	Sum	3,146,286	7,520	645,025	-	-	-	1.00E+00	1.00E+00	1.0

-> Co-Functionality is a semi-weak feature!

Experimental Data Sets

In vivo pull-down: Gavin et al, *Nature* **415** (2002) 141 31304 pairs

Ho et al, Nature **415** (2002) 180 25333 pairs

HT-Y2H: Uetz et al, *Nature* **403** (2000) 623 981 pairs

Ito et al, PNAS 98 (2001) 4569 4393 pairs

4 experiments on overlapping PP pairs

 \rightarrow 2⁴ = 16 categories — table represents fully connected Bayes network

Coude	u_	1104-	14.	# mmatain		Gold-standard overlap						
Gavin (g)	Ho (h)	(u)	(i)	# protein pairs	pos	neg	sum(pos)	sum(neg)	sum(pos)/ sum(neg)	P(g,h,u,i pos)	P(g,h,u,i neg)	L
1	1	1	0	16	6	0	6	0	-	7.27E-04	0.00E+00	-
1	0	0	1	53	26	2	32	2	16.0	3.15E-03	7.38E-07	4268.3
1	1	1	1	11	9	1	41	3	13.7	1.09E-03	3.69E-07	2955.0
1	0	1	1	22	6	1	47	4	11.8	7.27E-04	3.69E-07	1970.0
1	1	0	1	27	16	3	63	7	9.0	1.94E-03	1.11E-06	1751.1
1	0	1	0	34	12	5	75	12	6.3	1.45E-03	1.85E-06	788.0
1	1	0	0	1920	337	209	412	221	1.9	4.08E-02	7.72E-05	529.4
0	1	1	0	29	5	5	418	227	1.8	6.06E-04	1.85E-06	328.3
0	1	1	1	16	1	1	413	222	1.9	1.21E-04	3.69E-07	328.3
0	1	0	1	39	3	4	421	231	1.8	3.64E-04	1.48E-06	246.2
0	0	1	1	123	6	23	427	254	1.7	7.27E-04	8.49E-06	85.7
1	0	0	0	29221	1331	6224	1758	6478	0.3	1.61E-01	2.30E-03	70.2
0	0	1	0	730	5	112	1763	6590	0.3	6.06E-04	4.13E-05	14.7
0	0	0	1	4102	11	644	1774	7234	0.2	1.33E-03	2.38E-04	5.6
0	1	0	0	23275	87	5563	1861	12797	0.1	1.05E-02	2.05E-03	5.1
0	0	0	0	2702284	6389	2695949	8250	2708746	0.0	7.74E-01	9.95E-01	0.8

Statistical Uncertainties

Carrie		11-4-		4	Gold					
Gavin (g)	(h)	Uetz (u)	(i)	# protein pairs	pos	neg		P(g,h,u,i pos)	P(g,h,u,i neg)	L
1	1	1	0	16	6	0		7.27E-04	0.00E+00	_
1	0	0	1	53	26	2	Г	3.15E-03	7.38E-07	4268.3
1	1	1	1	11	9	1		1.09E-03	3.69E-07	2955.0
1	0	1	1	22	6	1	Г	7.27E-04	3.69E-07	1970.0
1	1	0	1	27	16	3		1.94E-03	1.11E-06	1751.1
1	0	1	0	34	12	5		1.45E-03	1.85E-06	788.0

1) L(1111) < L(1001)

statistical uncertainty: $\Delta N = \sqrt{N+1}$

Overlap with all experiments is smaller → larger uncertainty

2) L(1110) = NaN?

Use conservative lower bound \rightarrow assume 1 overlap with GN \rightarrow $L(1110) \ge 1970$

Overview

Data type	Dataset	# protein pairs	Used for		
Evacrimental	In-vivo pull-	Gavin et al.		31,304	Integration of
Experimental interaction	down	Ho et al.			experimental
data	Yeast two-	Uetz et al.		981	interaction
uata	hybrid	Ito et al.		4,393	data (PIE)
	mRNA	Rosetta compendium		19,334,806	
Other	Expression	Cell cycle		17,467,005	De novo
genomic	Biological	GO biological process			prediction
features	function	MIPS function		6,161,805	(PIP)
	Essentiality			8,130,528	
Gold	Positives	Proteins in the same MIPS complex		8,250	Training &
standards	Negatives	Proteins separated by localization		2,708,746	testing

Performance of complex prediction

Predictions

Experimental data

None of the individual evidences alone was enough to get a likelihood ratio > 600, neither predicted nor experimental evidences

Given a pair of query proteins that potentially interact (QA, QB), try to find representative structures for the individual subunits (MA, MB) in the PDB, where available, or from homology model databases.

For each subunit, find both close and remote structural neighbors.

A 'template' for the interaction exists whenever a PDB structure contains a pair of inter-acting chains (e.g. NA_1-NB_3) that are structural neighbors of MA and MB, respectively.

A **model** is constructed by **superposing** the individual subunits, MA and MB, on their corresponding structural neighbors, NA₁ and NB₃.

QB

Follow-up work: PrePPI (2012)

We assign 5 empirical-structure-based scores to each interaction model and then calculate a likelihood for each model to represent a true interaction by combining these scores using a Bayesian network trained on a high-confidence data set of positive interactors and a reference set of non-interactors.

We finally combine the structure-derived score (SM) with non-structural evidence associated with the query proteins (for example, co-expression, functional similarity) using a **naive Bayesian classifier**.

Results of PrePPI

Receiver-operator characteristics (ROC) for predicted yeast complexes.

Examined features:

- structural modeling (SM),
- GO similarity,
- protein essentiality (ES) relationship,
- MIPS similarity,
- co-expression (CE),
- phylogenetic profile (PP) similarity.

Also listed are 2 combinations:

- NS for the integration of all non-structure clues, i.e. GO, ES, MIPS, CE, and PP, and
- PrePPI for all structural and non-structure clues).

This gave 30.000 high-confidence PP interactions for yeast and 300.000 for human.

Summary: Bayesian Analysis

Combination of weak features yields powerful predictions

- boosts odds via Bayes' theorem
- Gold standard sets for training the likelihood ratios

Bayes vs. other **machine learning** techniques: (voting, unions, SVM, neuronal networks, decision trees, ...)

- → arbitrary types of data can be combined
- → weight data according to their reliability
- → include conditional relations between evidences
- → easily accommodates missing data (e.g., zero overlap with GN)
- → transparent procedure
- → predictions easy to **interpret**

Bioinformatics 3 - SS 18 V 4 - 20

Connected Regions

Observation: there are more interactions inside a complex

than to the outside

- → how can one identify highly connected regions in a network?
- 1) Fully connected region: Clique

clique :=
$$G' = (V', E' = V'^{(2)})$$

Problems with cliques:

- finding cliques is NP-hard
 (but can be done in O(N²) for sparsely connected biological networks)
- biological protein complexes are not always fully connected

Communities

Community := subset of vertices, for which the **internal** connectivity is **denser** than to the outside

Aim: map network onto tree that reflects the community structure

Radicchi et al, *PNAS* **101** (2004) 2658:

Bioinformatics 3 – SS 18 V 4 – 29

Define communities by agglomerative clustering

- 1) Assign a weight W_{ij} to each pair of vertices i, j that measures how "closely related" these two vertices are.
- 2) Iteratively add edges between pairs of nodes with decreasing W_{ij}

Measures for W_{ij} :

1) Number of **vertex-independent paths** between vertices *i* and *j* (vertex-independent paths between *i* and *j*: no shared vertex except *i* and *j*)

Menger (1927): the number of vertex-independent paths equals the number of vertices that have to be removed to cut all paths between *i* and *j* → measure for network robustness

- 2) Number of **edge-independent paths** between *i* and *j*
- 3) **Total number of paths** L between i and j but L = 0 or $\infty \rightarrow \text{weight paths with their length } \alpha^L \text{ with } \alpha < 1$

Problem: vertices with a single link are separated from the communities

Bioinformatics 3 – SS 18 V 4 – 30

Vertex Betweenness

Freeman (1927): count on how many shortest paths a vertex is visited

For a graph G = (V, E) with |V| = n

Betweenness for vertex v:

$$C_B(\nu) = \frac{\sum_{s \neq \nu \neq t \in V} \sigma_{st}(\nu)}{(n-1)(n-2)}$$

 $\sigma_{\rm st}$ (v): shortest path including v.

There are n - 1 other vertices besides v.

They have shortest paths to n - 2 vertices.

-> Computing shortest paths takes $O(n^2)$ operations

Alternative: edge betweenness

→ to how many shortest paths does this edge belong

Girvan-Newman Algorithm

Girvan, Newman, PNAS 99 (2002) 7821:

For a graph G = (V, E) with |V| = n, |E| = m

- 1) Calculate **betweenness** for all *m* edges
- 2) Remove edge with highest betweenness
- 3) Recalculate betweenness for all affected nodes
- 4) **Repeat** from 2) until no more edge is left (at most *m* iterations)
- 5) Build up tree from V by reinserting vertices in reverse order

Works well, but **slow**: $O(mn^2) \approx O(n^3)$ for scale-free networks (|E| = 2 |V|)

Reason for complexity: compute shortest paths (n^2) for m edges

→ recalculating a global property is expensive for larger networks

Zachary's Karate Club

- observed friendship relations of 34 members over two years
- correlate fractions at break-up with calculated communities

administrator's fraction

instructor's fraction

with number of edge-independent paths:

Girvan, Newman, PNAS 99 (2002) 7821

Collaboration Network

Vertices: scientists at the Santa Fe Institute.

Edge: two authors have co-authored a joint paper.

Show is the largest component of the Santa Fe Institute collaboration network.

The primary divisions detected by the GN algorithm are indicated by different vertex shapes.

Bioinformatics 3 – SS 18 V 4 – 34

Determining Communities Faster

Radicchi et al, PNAS 101 (2004) 2658:

Determine edge weights via edge-clustering coefficient

- → local measure
 - → much faster, esp. for large networks

Modified edge-clustering coefficient:

→ fraction of potential triangles with edge between i and j

$$C_{i,j}^{(3)} = \frac{z_{i,j}^{(3)} + 1}{\min[(k_i - 1), (k_j - 1)]}$$

Here, $z_{i,j}^{(3)}$ is the number of triangles, k_i and k_j are the degrees of nodes i and j.

Note: "+ 1" to remove degeneracy for $z_{i,j}^{(3)} = 0$

$$C^{(3)} = (2+1) / 3 = 1$$

Algorithm works exactly like GN-algorithm except that at each iteration, the edge is removed with smallest $C_{i,j}^{(3)}$

Performance

Instead of triangles: **cycles** of higher order g $C_{i,j}^{(g)} = \frac{z_{i,j}^{(g)} + 1}{s_{i,j}^{(g)}}$ \rightarrow continuous transition to a global measure

Radicchi et al-algorithm: $O(N^2)$ for large networks

Comparison of algorithms

Data set: football teams from US colleges; different symbols = different conferences, teams played ca. 7 intraconference games and 4 interconference games in 2000 season.

Girven-Newman algorithm

Radicchi with g = 4

→ very similar communities

Strong Communities

"Community := subgraph with more interactions inside than to the outside"

A subgraph *V* is a **community** in a...

...**strong** sense when:

$$k_i^{in}(V) > k_i^{out}(V) \quad \forall i \in V$$

→ Check every node individually

...weak sense when:

$$\sum_{i \in V} k_i^{in}(V) > \sum_{i \in V} k_i^{out}(V)$$

→ allow for borderline nodes

Radicchi et al, *PNAS* **101** (2004) 2658

•
$$\sum k_{in} = 2$$
, $\sum k_{out} = 1$
 $\{k_{in}, k_{out}\} = \{1,1\}, \{1,0\}$

→ community in a weak sense

•
$$\Sigma k_{in} = 10$$
, $\Sigma k_{out} = 2$
 $\{k_{in}, k_{out}\} = \{2,1\}, \{2,0\}, \{3,1\}, \{2,0\}, \{1,0\}$

→ community in a strong and weak sense