Домашнее задание 2

Андрей Зотов

Апрель 2023

Задача 1

Ответ: 20 опрошенных не знают ни английского, ни испанского.

Решение. Пусть C - множество всех опрошенных, A - подмножество C тех, кто знает английский, B - подмножество C тех, кто знает испанский. Тогда $|C|=250, |A|=210, |B|=100, |A\cap B|=80$ и искомое число опрошенных, не знающих ни английского, ни испанского, будет: $|C|-|A\cup B|=|C|-(|A|+|B|-|A\cap B|)=250-(210+100-80)=20.$

Задача 2

Ответ: 151200 способами можно заполнить вакансии.

Решение. На первую вакансию можно взять любого из 10 кандидатов, на вторую любого из оставшихся 9 кандидатов, на третью любого из 8 и т.д. Т.е. всего имеется $10*9*8*7*6*5 = (A_{10}^6) = 151200$ способов заполнить вакансии.

Задача 3

Ответ: искомая вероятность будет 0.8488

Решение. Элементарным исходом считаем случайный шестизначный код, поэтому пространство элементарных исходов Ω будет состоять из 10^6 различных элементов (в каждый из 6 разрядов кода можно поместить любую из 10 цифр). Все элементарные исходы считаем равновероятными, поэтому вероятность любого элементарного исхода будет $\frac{1}{10^6}$, т.е. $\forall \omega \in \Omega \ P(\omega) = \frac{1}{10^6}$ и тогда, очевидно, $\sum_{\omega \in \Omega} P(\omega) = 1$. Пусть событие $A = \{ B \ случайном шестизначном коде имеется хотя бы$

Пусть событие $A=\{ B \text{ случайном шестизначном коде имеется хотя бы две одинаковые цифры} \}$, вероятность которого требуется найти. Тогда событие $B=\Omega\backslash A=\{ B \text{ случайном шестизначном коде все цифры разные} \}$. По определению вероятность события B будет $P(B)=\sum_{\omega\in B}P(\omega)=\frac{1}{10^6}*|B|$.

Найдем число элементарных исходов в событии B (т.е. |B|): в первом разряде подходящего кода (элементарного исхода) может стоять любая из 10 цифр, во втором - любая из 9 цифр и т.д., т.е. число подходящих кодов будет $A_{10}^6 = 151200$ (см. Задачу 2).

Таким образом |B|=151200 и следовательно $P(B)=\frac{151200}{10^6}=0.1512$. С другой стороны $P(B)=P(\Omega\setminus A)=1-P(A)$, т.е. искомая вероятность будет P(A)=1-0.1512=0.8488.

Задача 4

Ответ:

- а) Среди первого миллиона натуральных чисел больше тех, в записи которых нет единицы.
- б) Среди первых 10 миллионов натуральных чисел больше тех, в записи которых есть единица.

Решение. а) Т.к. в нашем курсе считаем, что натуральные числа начинаются с нуля, то рассматриваемое множество (первый миллион натуральных чисел) будет $A = \{0, 1, 2, \dots, 999999\}$. При этом, если $B_0 = \{x \in A | B$ записи x нет единицы $\}$ и $B_1 = \{x \in A | B$ записи x есть единица $\}$, то $A = B_0 \cup B_1$ и т.к. $B_0 \cap B_1 = \emptyset$, то $|A| = |B_0| + |B_1| = 1000000$. Поэтому достаточно найти $|B_0|$.

Заметим, что все множество B_0 можно разбить на 6 непересекающихся подмножеств $B_0^k=\{x\in B_0|x$ имеет k знаков $\}$, тогда $|B_0|=\sum_{k=1}^6|B_0^k|$. При этом $B_0^1=\{0,2,3,4,5,6,7,8,9\}$, т.е. $|B_0^1|=9$. В B_0^2 входят двузначные числа, в старшем разряде которых не может быть 0 и 1, а в младшем не может быть 1, т.е. $|B_0^2|=8*9$ и аналогично $|B_0^3|=8*9^2$. Т.е., вообще говоря, если k>1, то $|B_0^k|=8*9^{k-1}$.

Таким образом $|B_0| = \sum_{k=1}^6 |B_0^k| = 9 + 8 * \sum_{k=1}^5 9^k$, где последняя сумма - это сумма геометрической прогрессии, т.е. $|B_0| = 9 + 8 * \frac{9^6 - 9}{9 - 1} = 9^6$ (что как бы говорит нам, что проще было рассматривать B_0 как множество всех шестизначных кодов, в записи которых не встречается единица - и их число, очевидно, 9^6). И, следовательно, $|B_1| = |A| - |B_0| = 10^6 - 9^6 = 468559$, что меньше, чем $|B_0| = 9^6 = 531441$, т.е. среди первого миллиона натуральных чисел больше тех, в записи которых нет единицы.

б) В этом случае $A=\{0,1,2,\ldots,9999999\}$ и $|A|=10^7$. По аналогии с подзадачей а) рассмотрим множества B_0 и B_1 . И как было замечено в подзадаче а) B_0 - можно считать множеством семизначных кодов, в записи которых не встречается единица, т.е. $|B_0|=9^7=4782969$, что меньше чем $|B_1|=10^7-9^7=5217031$. Таким образом среди первых 10 миллионов натуральных чисел больше тех, в записи которых есть единица.

Задача 5

Ответ: вероятность выпадения дубля при броске двух кубиков будет $\frac{1}{6}$

Решение. Вероятностное пространство Ω задачи состоит из 36 элементарных исходов (число различных упорядоченных пар натуральных чисел от 1 до 6). Все элементарные исходы считаем равновероятными, поэтому $\forall \omega \in \Omega \ P(\omega) = 1/36$ и тогда, очевидно, $\sum_{\omega \in \Omega} P(\omega) = 1$. Рассмотрим событие $A = \{\Pi$ ри броске выпал дубль $\}$, вероятность которого и нужно найти, тогда $P(A) = \sum_{\omega \in A} P(\omega) = \frac{|A|}{36}$. При этом A состоит из 6 элементарных исходов (6 возможных дублей $(1,1), (2,2), \ldots, (6,6)$), т.е. |A| = 6. Таким образом искомая вероятность P(A) = 6/36 = 1/6.

Задача 6

Ответ: а) вероятность $\frac{17}{27} \approx 0.63$, б) вероятность $\frac{7}{27} \approx 0.26$.

Решение. Пространство элементарных исходов Ω участия команды в турнире состоит из упорядоченных четверок (r_1, r_2, r_3, r_4) , где r_i - один из двух результатов i-го матча: либо выигрыш, либо поражение. Можем считать, что $r_i \in \{0,1\}$, где 0 - это поражение, а 1 - выигрыш. Тогда $|\Omega|$ - это число различных двоичных кодов длины 4, т.е. 2^4 , а вероятности элементарных исходов вычисляются с помощью дерева событий, например, P(0101) = 1/2*1/3*1/3*1/3=1/54 (правило вычисления вероятности такое: первый множитель 1/2, далее переходы $0 \to 0$ и $1 \to 1$ дают множитель 2/3, а переходы $0 \to 1$ и $1 \to 0$ дают множитель 1/3). Т.к. на каждом шаге ветвления возникает множество исходов отдельного матча с суммарной вероятностью 1, то $\sum_{\omega \in \Omega} P(\omega) = 1$, т.е. наша построенная система элементарных событий Ω с функцией P будет конечным вероятностным пространством.

- а) Пусть событие $A=\{$ Команда выиграла не менее двух игр $\}$, тогда событие $\bar{A}=\Omega\setminus A=\{$ Команда выиграла не более одной игры за турнир $\}$, т.е. $\bar{A}=\{0000,1000,0100,0010,0001\}$. Поэтому $P(\bar{A})=P(0000)+P(1000)+P(0100)+P(0010)+P(0001)=1/2*2/3*2/3*2/3*2/3+1/2*1/3*2/3+1/2*1/3*2/3+1/2*2/3*1/3*1/3+1/2*2/3*2/3*1/3=\frac{4}{27}+\frac{2}{27}+\frac{1}{27}+\frac{1}{27}+\frac{1}{27}=\frac{10}{27}$. А т.к. $P(\bar{A})=1-P(A)$, то $P(A)=\frac{17}{27}$
- 6) Пусть событие $A=\{$ Команда выиграла ровно две игры за турнир $\}$, тогда $A=\{1100,1010,1001,0110,0101,0011\}$. Поэтому $P(A)=P(1100)+P(1010)+P(1001)+P(0110)+P(0101)+P(0011)=1/2*2/3*1/3*1/3*2/3+1/2*1/3*1/3*1/3+1/2*1/3*2/3*1/3+1/2*1/3*2/3*1/3+1/2*1/3*1/3+1/2*2/3*1/3*2/3=\frac{2}{27}+\frac{1}{54}+\frac{1}{27}+\frac{1}{54}+\frac{2}{27}$. Таким образом $P(A)=\frac{7}{27}$.

Задача 7

Ответ: a) $P(A) = \frac{7}{64} \approx 0.11$, б) $P(B) = \frac{219}{256} \approx 0.86$.

Решение. Пространство элементарных исходов Ω будем считать всевозможные восьмизначные двоичные коды, где 0 на k-м месте будет означать, что на k-м броске выпала решка, а 1 - что на k-м броске выпал орел. Тогда кол-во элементарных исходов будет $|\Omega|=2^8$. Все исходы считаем равновероятными, поэтому $\forall \omega \in \Omega$ $P(\omega)=1/2^8$ и тогда, очевидно, $\sum_{\omega \in \Omega} P(\omega)=1$.

- а) Пусть событие $A=\{$ Орел выпал 6 раз $\}$, тогда $P(A)=\sum_{\omega\in A}P(\omega)=\frac{|A|}{2^8}$, где $|A|=\binom{8}{6}=28$ кол-во разных восьмизначных двоичных кодов с ровно шестью единицами. Таким образом $P(A)=\frac{28}{2^8}=\frac{7}{64}\approx 0.109\dots$
- б) Пусть событие $B = \{$ Орел выпал не менее трех раз $\}$, тогда событие $\bar{B} = \Omega \setminus B = \{$ Орел выпал ноль, один или два раза $\}$ и $P(\bar{B}) = \frac{|\bar{B}|}{2^8}$. Пусть событие $B_k = \{$ Орел выпал k раз $\}$, $8 \ge k \ge 0$, тогда $\bar{B} = B_0 \cup B_1 \cup B_2$ и т.к. $B_i \cap B_j = \emptyset$ при $i \ne j$, то $|\bar{B}| = |B_0| + |B_1| + |B_2|$. Учитывая, что $|B_k| = {8 \choose k}$ ($8 \ge k \ge 0$), получаем

$$P(\bar{B}) = \frac{\binom{8}{0} + \binom{8}{1} + \binom{8}{1} + \binom{8}{2}}{2^8} = \frac{1+8+28}{2^8} = \frac{37}{2^8}$$

С другой стороны $P(\bar{B})=1-P(B),$ т.е. $P(B)=1-37/256=\frac{219}{256}\approx 0.855\dots$