

Caden Adams [Quoted text hidden] Jacob Dunn <jacobdunn@oakland.edu>

Powered by Google				
Problem Solving 5 2 messages				
Jacob Dunn <jacobdunn@oakland.edu> To: cadenadams@oakland.edu</jacobdunn@oakland.edu>	Mon, Dec 5, 2022 at 4:05 PM			
Caden,				
Attached is our final version of Problem Solving 5 which is ready for sul your contribution to this exercise and that you agree it is ready for subn				
Jacob Dunn				
PS5.docx 813K				
Caden Adams <cadenadams@oakland.edu> To: Jacob Dunn <jacobdunn@oakland.edu></jacobdunn@oakland.edu></cadenadams@oakland.edu>	Mon, Dec 5, 2022 at 4:12 PM			
Hi Jacob,				
Lagree with all of the information in the word document, go shead and	submit it			

i.

		I	
Sensor Value	First Derivative	Second Derivative	
21			
	4		
25		0	
	4		
29		0	
	4		
33		1	
	5		
38		1	
	6		
44		-12	
	-6		
38		10	
	4		
42		0	
	4		
46		0	
	4		
50		0	
	4		
54			

It makes more sense to use the first derivative since the values are more consistent for this derivative. If the first derivative is < or > 4 then noise.

Sensor Value	First Derivative Second Derivative	
176		
	15	
191		2
	17	
208		2
	19	
227		2
	21	
248		2
	23	
271		-9
	14	
285		6
	20	
305		2
	22	
327		2
	24	
351		2
	26	
377		

It makes more sense to use the second derivative since the values are more consistent for this derivative. If the second derivative is < or > 2 then noise.

B:

35	43	46	24	21	13
43	53	59	38	34	22
43	58	61	42	34	24
22	39	43	44	35	24
19	<mark>35</mark>	36	37	28	20
14	24	27	26	21	13

Example calculation for row 2 column 5:

$$20*1/9 + 28*1/9 + 55*1/9 + 20*1/9 + 64*1/9 + 66*1/9 + 20*1/9 + 22*1/9 + 21*1/9 = 35$$

After the mean filter was applied, the noise was reduced to values more consistent with the rest of the table. The black and white noise are now gone.

C:

