Compendium of Mathematics & Physics

Nicolas Dewolf

August 10, 2021

Contents

Co	onter	nts	1
1	Intr 1.1	roduction Conventions	 21 21
Ι	Set	t Theory & Algebra	22
2	Set	Theory	23
	2.1	Axiomatization	 23
		2.1.1 ZFC	23
		2.1.2 Material set theory	24
		2.1.3 Universes	24
		2.1.4 Structural set theory	 24
		2.1.5 ETCS	 24
		2.1.6 Real numbers	 24
	2.2	Functions	 25
		2.2.1 Domain	 25
		2.2.2 Codomain	 25
		2.2.3 Functions	 25
	2.3	Collections	 26
	2.4	Set operations	 27
		2.4.1 Algebra of sets	 28
	2.5	Ordered sets	 29
		2.5.1 Posets	 29
		2.5.2 Bounds	 30
		2.5.3 Ordinals and cardinals \clubsuit	 30
		2.5.4 Lattices	 31
	2.6	Partitions	32
		2.6.1 Partition	 32
		2.6.2 Superpartition	 33
3	A los	gebra	35
J	3.1	Algebraic structures	35
	3.2	_	36
	3.2	Group theory	37
		9 1	37
		S S S S	37
		3.2.4 Group presentations	38
		3.2.5 Direct products	39
		3.2.6 Free groups	 40

	3.3	Group actions		 	 	 						42
	3.4	Group cohomology		 	 	 						43
	3.5	Rings		 	 	 						44
		3.5.1 Ideals		 	 	 						45
		3.5.2 Modules		 	 	 						46
		3.5.3 Semisimplicity		 	 	 						46
	3.6	Limits of algebraic structure	es	 	 	 						47
	3.7	Galois theory		 	 	 						47
		Ü										
тт	C -	4 (T)										40
II	Ca	ategory Theory										48
4	Cate	egory theory										49
	4.1	Categories		 	 	 						49
	4.2	Functors		 	 	 						50
		4.2.1 Natural transformati	ons	 	 	 						51
		4.2.2 Equivalences		 	 	 						52
		4.2.3 Stuff, structure and	property		 	 						53
		4.2.4 Adjunctions		 	 	 						53
	4.3	General constructions										54
		4.3.1 Fibred categories ♣		 	 	 						55
		4.3.2 Monads										56
	4.4	Morphisms and diagrams .		 	 	 						58
		4.4.1 Morphisms										58
		4.4.2 Initial and terminal										58
		4.4.3 Lifts										59
		4.4.4 Limits and colimits.										60
	4.5	Monoidal categories										66
		4.5.1 Braided categories .										67
		4.5.2 Monoidal functors .										68
	4.6	Internal structures										69
	1.0	4.6.1 Closed categories										71
	4.7	Enriched category theory										72
	1.,	4.7.1 Enriched constructio										73
		4.7.2 Weighted (co)limits										75
	4.8	Abelian categories										77
	4.0	4.8.1 Finiteness										80
	4.9	Higher category theory										81
	4.3	4.9.1 n -categories										81
		4.9.2 n -functors										82
		4.9.3 Higher (co)limits										84
	4.10	Groupoids										84
		Lawvere theories										84
	4.12	Operad theory										85
		4.12.1 Operads										85
		4.12.2 Algebraic topology .		 	 	 	 •		 ٠	 •	 ٠	85
5	Hon	nological algebra										87
•	5.1	Chain complexes										87
	5.2	Exact sequences										89
	5.3	Resolutions										89
	5.4	Derived functors										
				 	 	 - •	 •	•	 •	-		~ ~

		5.4.1	Modules		 					 							. 92
		5.4.2	Group coho	mology	 						 						. 93
	5.5	Spectra	al sequences														
		5.5.1	Exact coupl														
		5.5.2	Filtered con														
		5.5.3	Convergenc	•													
6	Log	ic and	Type theor	rv													99
	6.1			•	 					 	 						
		6.1.1	Languages .														
		6.1.2	Proposition														
		6.1.3	Predicate lo	_													
	6.2	Introdu	action to typ	_													
	6.3		constructions														
		6.3.1	Functions .														
		6.3.2	λ -calculus .														
		6.3.3	Identity typ														
		6.3.4															
		6.3.5	Proposition														
	6.4	Homot	opy type the	0 2													
		6.4.1	Introduction														
		6.4.2	Transport .														
		6.4.3	Equivalence														
		6.4.4	Equality ty														
	6.5	Modal	type theory														
	6.6		itability the														
		_	Functions .														
II	ΙT	opolog	Σ y														112
7	Cor	-															113
'	Ger	oral T	opology														
	7 1		opology														
	7.1	Topolo	gical spaces														. 113
	7.1	Topolo 7.1.1	gical spaces Neighbourh	oods .	 						 						. 113 . 114
	7.1	Topolo 7.1.1 7.1.2	gical spaces Neighbourh Separation	oods . axioms	 					 	 			 			. 113 . 114 . 115
		Topolo 7.1.1 7.1.2 7.1.3	gical spaces Neighbourh Separation Convergence	oods . axioms e	 	•	 	 	 	 	 			 	 •		. 113 . 114 . 115 . 116
	7.1 7.2	Topolo 7.1.1 7.1.2 7.1.3 Morph	gical spaces Neighbourh Separation Convergence isms	oods . axioms e	 	•	 	 	 	 	 	 	 	 	 	•	. 113 . 114 . 115 . 116
		Topolo 7.1.1 7.1.2 7.1.3 Morph 7.2.1	gical spaces Neighbourh Separation Convergence isms Continuity	oods . axioms e	 		 	 		 	 	 	 	 	 		. 113 . 114 . 115 . 116 . 116
	7.2	Topolo 7.1.1 7.1.2 7.1.3 Morph 7.2.1 7.2.2	gical spaces Neighbourh Separation Convergence isms Continuity Homeomorp	oods . axioms e	 		· · · · · · · · · · · · · · · · · · ·	 	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	 	 	 · · · · · · · ·	 		. 113 . 114 . 115 . 116 . 116 . 117
	7.2	Topolo 7.1.1 7.1.2 7.1.3 Morph 7.2.1 7.2.2 Constr	gical spaces Neighbourh Separation Convergence isms Continuity Homeomorp uctions	oods . axioms e bhisms	 	 	 · · · · · · · · · · · · · · · · · · ·	 		. 113 . 114 . 115 . 116 . 116 . 117
	7.2 7.3 7.4	Topolo 7.1.1 7.1.2 7.1.3 Morph 7.2.1 7.2.2 Constr Connec	gical spaces Neighbourh Separation Convergence isms Continuity Homeomorp uctions cted spaces	oods . axioms e ohisms .	 			 				 	 		 		. 113 . 114 . 115 . 116 . 116 . 117 . 117
	7.2	Topolo 7.1.1 7.1.2 7.1.3 Morph 7.2.1 7.2.2 Constr Connec Compa	gical spaces Neighbourh Separation Convergence isms Continuity Homeomorp uctions cted spaces act spaces	oods . axioms e bhisms .	 			 				 	 		 		. 113 . 114 . 115 . 116 . 116 . 117 . 117 . 119
	7.2 7.3 7.4	Topolo 7.1.1 7.1.2 7.1.3 Morph 7.2.1 7.2.2 Constr Connec Compa	gical spaces Neighbourh Separation Convergence isms Continuity Homeomorp uctions cted spaces ct spaces Compactnes	oods . axioms e bhisms				 				 	 		 		. 113 . 114 . 115 . 116 . 116 . 117 . 117 . 119 . 120
	7.2 7.3 7.4 7.5	Topolo 7.1.1 7.1.2 7.1.3 Morph 7.2.1 7.2.2 Constr Connec Compa 7.5.1 7.5.2	gical spaces Neighbourh Separation Convergence isms Continuity Homeomorp uctions cted spaces ct spaces Compactnes Compactific	oods . axioms e ohisms ss cations								 	 				. 113 . 114 . 115 . 116 . 116 . 117 . 117 . 119 . 120 . 120
	7.2 7.3 7.4 7.5	Topolo 7.1.1 7.1.2 7.1.3 Morph 7.2.1 7.2.2 Constr Connec Compa 7.5.1 7.5.2 Uniform	gical spaces Neighbourh Separation Convergence isms Continuity Homeomorp uctions cted spaces ct spaces Compactnee Compactific m spaces	oods . axioms e ohisms ss cations								 	 		 		. 113 . 114 . 115 . 116 . 116 . 117 . 117 . 119 . 120 . 121 . 122
	7.2 7.3 7.4 7.5	Topolo 7.1.1 7.1.2 7.1.3 Morph 7.2.1 7.2.2 Constr Connec Compa 7.5.1 7.5.2 Uniform	gical spaces Neighbourh Separation Convergence isms Continuity Homeomorp uctions cted spaces ct spaces Compactnes Compactific	oods . axioms e ohisms ss cations								 	 		 		. 113 . 114 . 115 . 116 . 116 . 117 . 117 . 120 . 120 . 121
8	7.2 7.3 7.4 7.5 7.6 7.7	Topolo 7.1.1 7.1.2 7.1.3 Morph 7.2.1 7.2.2 Constr Connec Compa 7.5.1 7.5.2 Uniform	gical spaces Neighbourh Separation Convergence isms Continuity Homeomorp uctions ceted spaces cete spaces Compactnee Compactific m spaces	oods . axioms e ohisms ss cations								 	 		 		. 113 . 114 . 115 . 116 . 116 . 117 . 117 . 120 . 120 . 121
8	7.2 7.3 7.4 7.5 7.6 7.7	Topolo 7.1.1 7.1.2 7.1.3 Morph 7.2.1 7.2.2 Constr Connec Compa 7.5.1 7.5.2 Uniforn Locales	gical spaces Neighbourh Separation Convergence isms Continuity Homeomorp uctions ceted spaces cete spaces Compactnee Compactific m spaces	oods . axioms e ohisms cations													. 113 . 114 . 115 . 116 . 116 . 117 . 117 . 119 . 120 . 121 . 122 . 122
8	7.2 7.3 7.4 7.5 7.6 7.7 Met	Topolo 7.1.1 7.1.2 7.1.3 Morph 7.2.1 7.2.2 Constr Connec Compa 7.5.1 7.5.2 Uniform Locales tric Spa Definit	gical spaces Neighbourh Separation Convergence isms Continuity Homeomorp uctions cted spaces ct spaces Compactnes Compactific m spaces	oods . axioms e ohisms cations													. 113 . 114 . 115 . 116 . 116 . 117 . 117 . 120 . 120 . 121 . 122 . 122
8	7.2 7.3 7.4 7.5 7.6 7.7 Met 8.1	Topolo 7.1.1 7.1.2 7.1.3 Morph 7.2.1 7.2.2 Constr Connec Compa 7.5.1 7.5.2 Uniform Locales tric Spa Definit Topolo	gical spaces Neighbourh Separation Convergence isms Continuity Homeomorp uctions cted spaces ct spaces Compactnes Compactific m spaces s aces ion	oods . axioms e ohisms cations													. 113 . 114 . 115 . 116 . 116 . 117 . 117 . 120 . 120 . 121 . 122 . 122

		8.4.1	Injective metric space														
		8.4.2	Convex metric spaces	з				 		 					 		127
	8.5	Compa	actness				 •	 		 							127
9	Alge	ebraic	Topology														128
	9.1	Homot	opy theory					 		 					 		128
		9.1.1	Homotopy					 		 					 		128
		9.1.2	Homotopy groups .					 		 					 		129
		9.1.3	CW complexes					 		 					 		132
		9.1.4	Fibrations														
		9.1.5	Rational homotopy th														
		9.1.6	Equivariant homotop	-													
	9.2		cial homology	-	-												
	9.2	9.2.1	= -														
			Simplices														
		9.2.2	Simplicial homology														
		9.2.3	Relative homology .														
		9.2.4	Examples														
	9.3	Singul	ar homology					 		 					 		141
	9.4	Axiom	atic approach 🗍					 		 					 		143
	9.5	Equiva	riant cohomology					 		 					 		144
10	Shea	af The	ory														145
	10.1	Preshe	aves					 		 					 		145
	10.2	Sheave	es					 		 					 		145
	10.3	Abelia	n sheaf cohomology .					 		 					 		148
			Derived cohomology														
			Čech cohomology														
	10 4		belian sheaf cohomolo														
	10.1		Čech cohomology														
	10.5		l spaces														
	10.5	Tinget	i spaces			 •	 •	 	•	 •	•	•	 •	•	 •	•	101
11		lel the	=														152
	11.1	Simpli	cial sets					 		 					 		152
		11.1.1	Kan complexes					 		 					 		154
		11.1.2	Homological algebra					 		 					 		155
	11.2	Localiz	zation					 		 					 		155
			categories														
			Homotopy category														
			Reedy model structur														
			Simplicial spaces														
			Segal spaces														
	11 /		dal structures														
	11.5		ant generation														
			Transfinite construct														
			Cofibrant generation														
	11.6		opy (co)limits \dots														
			Simplicially enriched	_													
		11.6.2	Simplicial nerve					 		 					 		171
. -			a .														a == -
12	_		Geometry														172
	12.1		omials														
		12.1.1	Polynomials					 		 					 		172

			Roots .															
			Ideals .															
1	2.2	Varietie	es					 			 							173
		12.2.1	Topology	·				 			 							175
		12.2.2	Varieties					 			 							176
		12.2.3	Projectiv	e varie	eties .			 			 							177
1	2.3	Scheme	s 🐥					 			 							179
		12.3.1	Spectrum	n of a r	ring .			 			 							179
		12.3.2	Affine scl	hemes				 			 							179
		12.3.3	Zariski ta	angent	spac	е		 			 							180
1	2.4	Algebra	ic groups	s				 			 							180
_	_	_																
	_	$\underset{-}{\text{os}}$ theo																181
			tary topo															
			l logic .															
			ric morp															
1	3.4		ndieck to	_														
		13.4.1	Topologi	cal she	eaves			 			 							187
		13.4.2	Lawvere-	Tierne	ey top	olog	gy	 			 							188
1	3.5	Stacks						 			 							189
		13.5.1	Stacks or	n a 1-s	ite			 			 							191
1	3.6	Higher	topoi					 			 							192
		13.6.1	Cohomol	ogy.				 			 							192
1	3.7		n															
IV	\mathbf{C}	alculus	5															195
			3															
14 C	Calc	culus																196
14 C	Calc 4.1	c ulus Introdu	ction															196 196
14 C	Calc 4.1 4.2	culus Introdu Sequenc	ction					 			 							196 196 196
14 C 1 1 1	Calc 4.1 4.2 4.3	culus Introdu Sequence Continu	ction ces					 	 		 							196 196 196 196
14 C 1 1 1 1	Calc 4.1 4.2 4.3 4.4	culus Introdu Sequence Continu Conver	ction ces gence			 		 	 		 	 		 	· ·	 		196 196 196 196 197
14 C 1 1 1 1	Calc 4.1 4.2 4.3 4.4	Eulus Introdu Sequence Continu Converg	ction ces gence			 		 		•	 			 		 	 · · · · · · · · · · · · · · · · · · ·	196 196 196 196 197 197
14 C 1 1 1 1	Calc 4.1 4.2 4.3 4.4 4.5	Eulus Introdu Sequence Continu Converg Differer 14.5.1	ction ces gence	s of or	ne var	 	le	 	 		 	 		 		 	 	196 196 196 196 197 197
14 C 1 1 1 1	Calc 4.1 4.2 4.3 4.4 4.5	Eulus Introdu Sequence Continu Converg Differer 14.5.1 Rieman	ction	s of or	ne var	 	le	 	· · · · · · · · · · · · · · · · · · ·		 	 		 		 	 	196 196 196 196 197 197 197
14 C 1 1 1 1 1	Calc 4.1 4.2 4.3 4.4 4.5	Introdu Sequence Continu Converg Differer 14.5.1 Rieman 14.6.1	ction ces	s of or	ne var		le	 		•	 	 		 		 	 	196 196 196 196 197 197 199
14 C 1 1 1 1 1	Calc 4.1 4.2 4.3 4.4 4.5	Sequence Continu Converge Differer 14.5.1 Rieman 14.6.1 Series	ction ces	s of or	ne var	 riabl ms .	le				 			 		 	 	196 196 196 197 197 197 199 199
14 C 1 1 1 1 1	Calc 4.1 4.2 4.3 4.4 4.5	Sequence Continu Convergible Convergible C	ction	s of or	ne van		le						 		 	 	196 196 196 197 197 197 199 199
14 C 1 1 1 1 1 1 1	Calc 4.1 4.2 4.3 4.4 4.5 4.6	Sequence Continue Converge Different 14.5.1 Riemant 14.6.1 Series 14.7.1 14.7.2	ction	s of or all	ne var heore		le							 		 	 	196 196 196 197 197 197 199 199 199 201
14 C 1 1 1 1 1 1 1	4.1 4.2 4.3 4.4 4.5 4.6 4.7	Eulus Introdu Sequence Continu Converg Differer 14.5.1 Rieman 14.6.1 Series 14.7.1 14.7.2 Euler in	ction	s of or all	ne var heore		le							 		 	 	196 196 196 197 197 197 199 199 201 201
14 C 1 1 1 1 1 1 1	4.1 4.2 4.3 4.4 4.5 4.6 4.7	Eulus Introdu Sequence Continu Converg Differer 14.5.1 Rieman 14.6.1 Series 14.7.1 14.7.2 Euler in	ction	s of or all	ne var heore		le							 		 	 	196 196 196 197 197 197 199 199 201 201
14 C 1 1 1 1 1 1 1 1 1 1	4.1 4.2 4.3 4.4 4.5 4.6 4.7	Sequence Continu Converge Differer 14.5.1 Rieman 14.6.1 Series 14.7.1 14.7.2 Euler in Gaussia	ction	s of or all	ne var heore		le							 		 	 	196 196 196 197 197 197 199 199 201 201 202
14 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.1 4.2 4.3 4.4 4.5 4.6 4.7	Sequence Continue Converge Differer 14.5.1 Riemann 14.6.1 Series 14.7.1 14.7.2 Euler in Gaussianplex A	ction	s of or all ental to ence te pansio	heore		le										 	196 196 196 197 197 197 199 199 201 201 202
14 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 Com 5.1	Sequence Continue Converge Differer 14.5.1 Rieman 14.6.1 Series 14.7.1 14.7.2 Euler ir Gaussia Inplex A Comple	ction	s of or all	heore		le											196 196 196 197 197 197 199 199 201 201 202 203
14 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 Com 5.1	Sequence Continue Converge Differer 14.5.1 Riemann 14.6.1 Series 14.7.1 14.7.2 Euler in Gaussia Complex A Complex Complex Complex Complex Riemann Riem	ction	s of or all	ne van heore ssts ns	iablias i	le											196 196 196 197 197 197 199 199 201 202 203 203 204
14 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.1 5.2	Sequence Continue Converge Differer 14.5.1 Riemann 14.6.1 Series 14.7.1 14.7.2 Euler ir Gaussian plex A Complee Complee 15.2.1	ction	s of or all	heore sts		le											196 196 196 197 197 197 199 199 201 201 202 203 204 204
14 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Calc 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 Com 5.1 5.2	Sequence Continue Converge Differer 14.5.1 Rieman 14.6.1 Series 14.7.1 14.7.2 Euler ir Gaussia Televica A Complex A Complex Complex 15.2.1 Contour	ction	s of or all	heore		le											196 196 196 197 197 197 199 199 201 201 202 203 204 204 204
14 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Calc 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 Com 5.1 5.2	Sequence Continue Converge Differer 14.5.1 Riemann 14.6.1 Series 14.7.1 14.7.2 Euler in Gaussia Complex A Complex Complex 15.2.1 Contour Laurent Contour Conto	ction	s of or all	heore ssts		le											196 196 196 197 197 197 199 199 201 202 203 204 204 204 205
14 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Calc 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.1 5.2 5.3 5.4	Sequence Continue Converge Differer 14.5.1 Rieman 14.6.1 Series 14.7.1 14.7.2 Euler in Gaussia Complex A Complex Complex 15.2.1 Contou Laurent 15.4.1	ction	s of or all	heore sts ns		le											196 196 196 197 197 197 199 199 201 201 202 203 204 204 204 205 206
14 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Calc 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.1 5.2 5.3 5.4	Sequence Continue Converge Differer 14.5.1 Riemann 14.6.1 Series 14.7.1 14.7.2 Euler ir Gaussia Complex A Complex Complex 15.2.1 Contou Laurent 15.4.1 Singula	ction	s of or all	heore sts ns													196 196 196 197 197 197 199 199 201 202 203 204 204 204 205 206 206

		5.5.2 Branch cuts
		5.5.3 Residue theorem
	15.6	imit theorems
16		ure Theory and Lebesgue Integration 209
	16.1	Measures
		6.1.1 General definitions
		6.1.2 Lebesgue measure
		6.1.3 Measurable functions
		6.1.4 Limit operations
	16.2	bebesgue integral
		6.2.1 Simple functions
		6.2.2 Measurable functions
		6.2.3 Integrable functions
		6.2.4 Convergence theorems
		6.2.5 Relation to the Riemann integral
	16.3	pace of integrable functions
		6.3.1 Distance
		6.3.2 Hilbert space L^2
		6.3.3 L^p -spaces
	16.4	Product measures
		6.4.1 Real hyperspace \mathbb{R}^n
		6.4.2 Construction of the product measure
		6.4.3 Fubini's theorem
	16.5	Radon-Nikodym theorem
	TD.D	i eneralizations
	10.0	Generalizations
	10.0	6.6.1 Lebesgue-Stieltjes integral
	10.0	
17		6.6.1 Lebesgue-Stieltjes integral
17	Dist	6.6.1 Lebesgue-Stieltjes integral
17	Dist	6.6.1 Lebesgue-Stieltjes integral
17	Dist	6.6.1 Lebesgue-Stieltjes integral 227 6.6.2 Signed measures 226 Substiens 226 Functionals 226
17	Dist 17.1	6.6.1 Lebesgue-Stieltjes integral
17	Dist 17.1	6.6.1 Lebesgue-Stieltjes integral 22. 6.6.2 Signed measures 22. ibutions 22. Functionals 22. 7.1.1 Support 22. 7.1.2 Derivatives 22.
17	Dist 17.1 17.2 17.3	6.6.1 Lebesgue-Stieltjes integral 227 6.6.2 Signed measures 228 Sunctionals 224 7.1.1 Support 228 7.1.2 Derivatives 226 Examples 226
17	Dist 17.1 17.2 17.3 17.4	6.6.1 Lebesgue-Stieltjes integral 22 6.6.2 Signed measures 22 Sunctionals 22 7.1.1 Support 22 7.1.2 Derivatives 22 Examples 22 Convolutions and kernels 22
17	Dist 17.1 17.2 17.3 17.4 17.5	6.6.1 Lebesgue-Stieltjes integral 22. 6.6.2 Signed measures 22. clbutions 22. 7.1.1 Support 22. 7.1.2 Derivatives 22. Examples 22. Convolutions and kernels 22. Fourier series 22.
17	Dist 17.1 17.2 17.3 17.4 17.5	6.6.1 Lebesgue-Stieltjes integral 22 6.6.2 Signed measures 22 Sunctionals 22 7.1.1 Support 22 7.1.2 Derivatives 22 Examples 22 Convolutions and kernels 22 Cransformations and integral representations 22
17	Dist 17.1 17.2 17.3 17.4 17.5	6.6.1 Lebesgue-Stieltjes integral 22 6.6.2 Signed measures 22 Sunctionals 22 7.1.1 Support 22 7.1.2 Derivatives 22 Examples 22 Convolutions and kernels 22 Fourier series 22 Cransformations and integral representations 22 Cempered distributions 22
17	Dist 17.1 17.2 17.3 17.4 17.5	6.6.1 Lebesgue-Stieltjes integral 22. 6.6.2 Signed measures 22. Sunctionals 22. 7.1.1 Support 22. 7.1.2 Derivatives 22. Examples 22. Convolutions and kernels 22. Cransformations and integral representations 22. Cransformations and integral representations 22. Crempered distributions 22. 7.6.1 Fourier transform 23.
	Dist 17.1 17.2 17.3 17.4 17.5 17.6 17.7	6.6.1 Lebesgue-Stieltjes integral 22 6.6.2 Signed measures 22 ibutions 22 Tunctionals 22 7.1.1 Support 22 7.1.2 Derivatives 22 Examples 22 Convolutions and kernels 22 Courier series 22 Cransformations and integral representations 22 Crempered distributions 22 7.6.1 Fourier transform 23 Analysis on groups ♣ 23 tarry differential equations 23
	Dist 17.1 17.2 17.3 17.4 17.5 17.6 17.7 Ord 18.1	6.6.1 Lebesgue-Stieltjes integral 22 6.6.2 Signed measures 22 ibutions 22 Functionals 22 7.1.1 Support 22 7.1.2 Derivatives 22 Examples 22 Convolutions and kernels 22 Fourier series 22 Cransformations and integral representations 22 Cempered distributions 22 7.6.1 Fourier transform 23 Analysis on groups 23 arry differential equations 23 Boundary conditions 23
	Dist 17.1 17.2 17.3 17.4 17.5 17.6 17.7 Ord 18.1 18.2	6.6.1 Lebesgue-Stieltjes integral 22 6.6.2 Signed measures 22 ibutions 22 Functionals 22 7.1.1 Support 22 7.1.2 Derivatives 22 Examples 22 Convolutions and kernels 22 Fourier series 22 Cransformations and integral representations 22 Crempered distributions 22 7.6.1 Fourier transform 23 Analysis on groups 23 cary differential equations 23 Existence and uniqueness 23
	Dist 17.1 17.2 17.3 17.4 17.5 17.6 17.7 Ord 18.1 18.2 18.3	6.6.1 Lebesgue-Stieltjes integral 22 6.6.2 Signed measures 225 Sibutions 22 Functionals 22 7.1.1 Support 22 7.1.2 Derivatives 22 Examples 22 Convolutions and kernels 22 Fourier series 22 Cransformations and integral representations 22 Cransformations and integral representations 22 Tempered distributions 22 7.6.1 Fourier transform 23 Analysis on groups 23 Analysis on groups 23 Soundary conditions 23 Existence and uniqueness 23 Cirst order ODEs 23
	Dist 17.1 17.2 17.3 17.4 17.5 17.6 17.7 Ord 18.1 18.2 18.3	6.6.1 Lebesgue-Stieltjes integral 22 6.6.2 Signed measures 22 ibutions 22 Functionals 22 7.1.1 Support 22 7.1.2 Derivatives 22 Examples 22 Convolutions and kernels 22 Fourier series 22 Cransformations and integral representations 22 Crempered distributions 22 7.6.1 Fourier transform 23 Analysis on groups 23 cary differential equations 23 Existence and uniqueness 23
	Dist 17.1 17.2 17.3 17.4 17.5 17.6 17.7 Ord 18.1 18.2 18.3	6.6.1 Lebesgue-Stieltjes integral 22 6.6.2 Signed measures 22 6.6.2 Signed measures 22 Functionals 22 7.1.1 Support 22 7.1.2 Derivatives 22 Examples 22 Convolutions and kernels 22 Fourier series 22 Cransformations and integral representations 22 Cempered distributions 22 7.6.1 Fourier transform 23 Analysis on groups ♣ 23 analysis on differential equations 23 Existence and uniqueness 23 Exist order ODEs 23 tecond order ODE's 23 tecond order ODE's 23 8.4.1 General solution 23
	Dist 17.1 17.2 17.3 17.4 17.5 17.6 17.7 Ord 18.1 18.2 18.3	6.6.1 Lebesgue-Stieltjes integral 22 6.6.2 Signed measures 225 ibutions 22 Functionals 22 7.1.1 Support 22 7.1.2 Derivatives 22 Examples 22 Convolutions and kernels 22 Fourier series 22 Cransformations and integral representations 22 Cempered distributions 22 7.6.1 Fourier transform 23 Analysis on groups 23 Evistence and uniqueness 23 Existence and uniqueness 23 Exist order ODEs 23 Jecond order ODE's 23
	Dist 17.1 17.2 17.3 17.4 17.5 17.6 17.7 Ord 18.1 18.2 18.3	6.6.1 Lebesgue-Stieltjes integral 22 6.6.2 Signed measures 22 6.6.2 Signed measures 22 Functionals 22 7.1.1 Support 22 7.1.2 Derivatives 22 Examples 22 Convolutions and kernels 22 Fourier series 22 Cransformations and integral representations 22 Cempered distributions 22 7.6.1 Fourier transform 23 Analysis on groups ♣ 23 analysis on differential equations 23 Existence and uniqueness 23 Exist order ODEs 23 tecond order ODE's 23 tecond order ODE's 23 8.4.1 General solution 23
	Dist 17.1 17.2 17.3 17.4 17.5 17.6 17.7 Ord 18.1 18.2 18.3 18.4	6.6.1 Lebesgue-Stieltjes integral
	Dist 17.1 17.2 17.3 17.4 17.5 17.6 17.7 Ord 18.1 18.2 18.3 18.4	6.6.1 Lebesgue-Stieltjes integral

	18.7	Applications	37
		8.7.1 Laplace equation	
		8.7.2 Helmholtz equation	37
19	Part	al differential equations 2	38
	19.1	General linear equations	38
	19.2	First order PDE	38
	19.3	Characteristics	39
		9.3.1 D'Alemberts method	40
	19 4	Separation of variables	
	10.1	9.4.1 Cartesian coordinates	
	10.5	Boundary conditions	
	10.0	9.5.1 Dirichlet problem	
	10.6	•	
	19.0	Higher dimensions	
	10.7	9.6.1 Symbols	
	19.7	Sobolev spaces	44
\mathbf{V}	т;,	ear Algebra 2	46
V	ПП	ear Aigeora 2	ŧυ
20	Line	r Algebra 2	47
_0		Vector spaces	
	20.1	20.1.1 Linear independence	
		20.1.2 Bases	
		20.1.3 Sum and direct sum	
	00.0	20.1.4 Algebras	
	20.2	inear maps	
		20.2.1 Homomorphisms	
		20.2.2 Dual maps	
		20.2.3 Convexity	
	20.3	nner product	
		20.3.1 Inner product space	
		20.3.2 Orthogonality $\dots \dots \dots$	54
	20.4	Matrices	55
		20.4.1 System of equations	57
		20.4.2 Coordinates and matrix representations	57
		20.4.3 Coordinate transformations	58
		20.4.4 Determinant	60
		20.4.5 Characteristic polynomial	61
		20.4.6 Matrix groups	62
		20.4.7 Matrix decompositions	
	20.5	Eigenvectors	
		20.5.1 Diagonalization	
		20.5.2 Multiplicity	
	20.6	Euclidean space	
		Grassmanians	
	۵0.1	STOODINGHOUND	JU
21	Vec	or & Tensor Calculus 2	67
			67
		21.1.1 Curvilinear coordinates	
	21.2	ntegration	
	-1.4	21.2.1 Line integrals	
		<u> </u>	50

		21.2.2 Integral theorems
	21.3	$\Gamma ensors \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	21.4	Γ ransformation rules
		Γ ensor operations
		21.5.1 General operations
		21.5.2 Complexification
	21.6	Exterior algebra
	21.0	21.6.1 Antisymmetric tensors
		21.6.2 Determinant
		21.6.3 Levi-Civita symbol
		21.6.4 Wedge product
		21.6.5 Exterior algebra
		$21.6.6 \ \text{Hodge star} \dots \dots \dots \dots \dots \dots \dots \dots \dots $
วา	Don	esentation Theory 279
44	_	· ·
		Group representations
		Irreducible representations
		Classification by Young tableaux
	22.4	Tensor operators
23	Fun	tional Analysis 283
20		Banach spaces
		Hilbert spaces
	۷۵.۷	•
		23.2.1 Generalized Fourier series
		23.2.2 Orthogonality and projections
		23.2.3 Separable Hilbert spaces
	23.3	Seminorms
		23.3.1 Topology $\dots \dots \dots$
		23.3.2 Locally convex spaces
		23.3.3 Tensor products
	23.4	Linear operators
		23.4.1 Operator topologies
		23.4.2 Bounded operators
		23.4.3 Self-adjoint operators
		23.4.4 Compact operators
		23.4.5 Spectrum
24	_	ator Algebras 295
	24.1	C^* -algebras
		24.1.1 Involutive algebras
		24.1.2 Positive maps
		24.1.3 Representations
		24.1.4 Gel'fand duality
	24.2	von Neumann algebras
		24.2.1 Factors
		24.2.2 Projection-valued measures
25		ord Algebra 300
	25.1	Clifford algebra
	25.2	Geometric algebra
	25.3	Classification
		25.3.1 Bott periodicity in category theory \(\begin{align*} \

	25.4	Pin group	303
		25.4.1 Clifford group	
		25.4.2 Pin and Spin	305
		•	
26	Non	commutative Algebra	307
	26.1	$\label{local:coalgebras} \begin{center} \textbf{Coalgebras} & \dots & $	307
	26.2	Hopf algebras	308
		26.2.1 Drinfel'd double	310
	26.3	Quantum groups	311
		Differential calculi	
27	Hig	ner-dimensional Algebra 🌲	314
	27.1	Graded vector spaces	314
		27.1.1 Supermatrices	316
		27.1.2 Berezin calculus	317
	27.2	Monoidal categories II: Duality	320
		Tensor and fusion categories	
		Ribbon and modular categories	
		Module categories	
	21.0	27.5.1 Over a monoidal category	
	27.6		
	21.0	Higher vector spaces	
		27.6.1 Kapranov-Voevodksy 2-vector spaces	
	07.7	27.6.2 Baez-Crans 2-vector spaces	
	27.7	Higher Lie theory	
		27.7.1 Lie superalgebras	
		27.7.2 Lie <i>n</i> -algebras	397
		9	
	27.8	Monoidal n -categories	329
	27.8	9	329
	27.8	Monoidal n -categories	329
3/1		Monoidal <i>n</i> -categories	329 330
VI		Monoidal <i>n</i> -categories	329
	D	Monoidal n-categories	329 330 332
	D Cur	Monoidal n-categories	329 330 332 333
	D Cur	Monoidal n-categories	329 330 332 333 333
	D Cur	Monoidal n-categories	329 330 332 333 333
	D Cur 28.1	Monoidal n-categories 27.8.1 Relation to group cohomology ifferential Geometry ves and Surfaces Curves 28.1.1 Arc length 28.1.2 Frenet-Serret frame	329 330 332 333 333 334
	D Cur 28.1	Monoidal n-categories 27.8.1 Relation to group cohomology ifferential Geometry ves and Surfaces Curves 28.1.1 Arc length 28.1.2 Frenet-Serret frame Surfaces	329 330 332 333 333 334 335
	D Cur 28.1	Monoidal n-categories 27.8.1 Relation to group cohomology ifferential Geometry ves and Surfaces Curves 28.1.1 Arc length 28.1.2 Frenet-Serret frame Surfaces Surfaces 28.2.1 First fundamental form	329 330 332 333 333 334 335 335
	D Cur 28.1	Monoidal n-categories 27.8.1 Relation to group cohomology ifferential Geometry ves and Surfaces Curves 28.1.1 Arc length 28.1.2 Frenet-Serret frame Surfaces Surfaces 28.2.1 First fundamental form 28.2.2 Isometries	329 330 332 333 333 334 335 335 336
	D Cur 28.1	Monoidal n-categories 27.8.1 Relation to group cohomology ifferential Geometry ves and Surfaces Curves 28.1.1 Arc length 28.1.2 Frenet-Serret frame Surfaces 28.2.1 First fundamental form 28.2.2 Isometries 28.2.3 Second fundamental form	329 330 332 333 333 334 335 335 336 336
	D Cur 28.1	Monoidal n-categories 27.8.1 Relation to group cohomology ifferential Geometry ves and Surfaces Curves 28.1.1 Arc length 28.1.2 Frenet-Serret frame Surfaces 28.2.1 First fundamental form 28.2.2 Isometries 28.2.3 Second fundamental form 28.2.4 Curvature of a surface	329 330 332 333 333 334 335 336 336 337
	D Cur 28.1	Monoidal n-categories 27.8.1 Relation to group cohomology ifferential Geometry ves and Surfaces Curves 28.1.1 Arc length 28.1.2 Frenet-Serret frame Surfaces 28.2.1 First fundamental form 28.2.2 Isometries 28.2.3 Second fundamental form 28.2.4 Curvature of a surface 28.2.5 Christoffel symbols and geodesics	329 330 332 333 333 334 335 336 336 337 339
	D Cur 28.1	Monoidal n-categories 27.8.1 Relation to group cohomology ifferential Geometry ves and Surfaces Curves 28.1.1 Arc length 28.1.2 Frenet-Serret frame Surfaces 28.2.1 First fundamental form 28.2.2 Isometries 28.2.3 Second fundamental form 28.2.4 Curvature of a surface	329 330 332 333 333 334 335 336 336 337 339
28	D Cur 28.1	Monoidal n-categories 27.8.1 Relation to group cohomology ifferential Geometry ves and Surfaces Curves 28.1.1 Arc length 28.1.2 Frenet-Serret frame Surfaces 28.2.1 First fundamental form 28.2.2 Isometries 28.2.3 Second fundamental form 28.2.4 Curvature of a surface 28.2.5 Christoffel symbols and geodesics 28.2.6 Theorema Egregium	329 330 332 333 333 334 335 336 336 337 339 340
28	D Cur 28.1 28.2	Monoidal n-categories 27.8.1 Relation to group cohomology ifferential Geometry ves and Surfaces Curves 28.1.1 Arc length 28.1.2 Frenet-Serret frame Surfaces 28.2.1 First fundamental form 28.2.2 Isometries 28.2.3 Second fundamental form 28.2.4 Curvature of a surface 28.2.5 Christoffel symbols and geodesics 28.2.6 Theorema Egregium	329 330 332 333 333 334 335 336 337 339 340
28	D Cur 28.1 28.2 Mai 29.1	Monoidal n-categories 27.8.1 Relation to group cohomology ifferential Geometry ves and Surfaces Curves 28.1.1 Arc length 28.1.2 Frenet-Serret frame Surfaces 28.2.1 First fundamental form 28.2.2 Isometries 28.2.3 Second fundamental form 28.2.4 Curvature of a surface 28.2.5 Christoffel symbols and geodesics 28.2.6 Theorema Egregium	329 330 332 333 333 334 335 336 337 339 340 341
28	D Cur 28.1 28.2 Mai 29.1 29.2	Monoidal n-categories 27.8.1 Relation to group cohomology ifferential Geometry ves and Surfaces Curves 28.1.1 Arc length 28.1.2 Frenet-Serret frame Surfaces 28.2.1 First fundamental form 28.2.2 Isometries 28.2.3 Second fundamental form 28.2.4 Curvature of a surface 28.2.5 Christoffel symbols and geodesics 28.2.6 Theorema Egregium iffolds Charts Tangent vectors	329 330 332 333 333 334 335 336 336 337 340 341 341 342
28	D Cur 28.1 28.2 Mai 29.1 29.2	Monoidal n-categories 27.8.1 Relation to group cohomology ifferential Geometry ves and Surfaces Curves 28.1.1 Arc length 28.1.2 Frenet-Serret frame Surfaces 28.2.1 First fundamental form 28.2.2 Isometries 28.2.3 Second fundamental form 28.2.4 Curvature of a surface 28.2.5 Christoffel symbols and geodesics 28.2.6 Theorema Egregium iffolds Charts Tangent vectors Submanifolds	329 330 332 333 333 334 335 336 336 337 339 340 341 342 344
28	D Cur 28.1 28.2 Mai 29.1 29.2	Monoidal n-categories 27.8.1 Relation to group cohomology ifferential Geometry ves and Surfaces Curves 28.1.1 Arc length 28.1.2 Frenet-Serret frame Surfaces 28.2.1 First fundamental form 28.2.2 Isometries 28.2.3 Second fundamental form 28.2.4 Curvature of a surface 28.2.5 Christoffel symbols and geodesics 28.2.6 Theorema Egregium iffolds Charts Tangent vectors Submanifolds 29.3.1 Immersions and submersions	329 330 332 333 333 334 335 336 336 337 340 341 341 342 344 344
28	D Cur 28.1 28.2 Mai 29.1 29.2	Monoidal n-categories 27.8.1 Relation to group cohomology ifferential Geometry ves and Surfaces Curves 28.1.1 Arc length 28.1.2 Frenet-Serret frame Surfaces 28.2.1 First fundamental form 28.2.2 Isometries 28.2.3 Second fundamental form 28.2.4 Curvature of a surface 28.2.5 Christoffel symbols and geodesics 28.2.6 Theorema Egregium iffolds Charts Tangent vectors Submanifolds	329 330 332 333 333 334 335 336 336 337 340 341 341 342 344 344
28	D Cur 28.1 28.2 Mai 29.1 29.2 29.3	Monoidal n-categories 27.8.1 Relation to group cohomology ifferential Geometry ves and Surfaces Curves 28.1.1 Arc length 28.1.2 Frenet-Serret frame Surfaces 28.2.1 First fundamental form 28.2.2 Isometries 28.2.3 Second fundamental form 28.2.4 Curvature of a surface 28.2.5 Christoffel symbols and geodesics 28.2.6 Theorema Egregium iffolds Charts Tangent vectors Submanifolds 29.3.1 Immersions and submersions	329 330 332 333 333 334 335 336 336 337 340 341 342 344 344 344

	29.5	Morse theory	 	 	 				346
		29.5.1 Morse functions	 	 	 				346
		29.5.2 Morse-Bott functions	 	 	 				347
	29.6	Surgery theory \clubsuit	 	 	 				347
30		groups and Lie algebras							348
	30.1	Lie groups							
		30.1.1 Left invariant vector fields	 	 	 				348
		30.1.2 One-parameter subgroups	 	 	 				349
	30.2	Lie algebras	 	 	 				349
		30.2.1 Definitions	 	 	 				349
		30.2.2 Exponential map	 	 	 				351
		30.2.3 Examples	 	 	 				352
		30.2.4 Solvable Lie algebras	 	 	 				353
		30.2.5 Simple Lie algebras							
		30.2.6 Central extensions							
	30.3	Representation theory							
	00.0	30.3.1 Lie groups							
		30.3.2 Lie algebras							
		30.3.3 Coadjoint orbits							
	20.4	Structure							
	30.4								
		30.4.1 Killing form							
		30.4.2 Weights, roots and Dynkin diagram							
		30.4.3 Highest weight theory							
		30.4.4 Kac-Moody algebras ♣							
		30.4.5 Universal enveloping algebra	 	 	 		 •	 •	
		30.4.6 Group contractions							
		30.4.6 Group contractions $30.4.7$ Lie algebra cohomology \clubsuit							
21	Fibr	30.4.7 Lie algebra cohomology ♣							366
31		30.4.7 Lie algebra cohomology ♣ re Bundles	 	 	 	 •			366 369
31	31.1	30.4.7 Lie algebra cohomology ♣ re Bundles Bundles	 	 	 				366 369 369
31	31.1 31.2	30.4.7 Lie algebra cohomology ♣ re Bundles Bundles	 	 	 	 		 	366 369 369 371
31	31.1 31.2 31.3	30.4.7 Lie algebra cohomology ♣ re Bundles Bundles	 	 	 	 	 	 	366 369 369 371 371
31	31.1 31.2 31.3	30.4.7 Lie algebra cohomology ♣ re Bundles Bundles	 	 	 	 	 	 	366 369 369 371 371
	31.1 31.2 31.3 31.4	30.4.7 Lie algebra cohomology ♣	 	 	 	 	 	 	366 369 369 371 371 372
	31.1 31.2 31.3 31.4 Vec	30.4.7 Lie algebra cohomology ♣ re Bundles Bundles	 	 	 	 	 	 	366 369 371 371 372
	31.1 31.2 31.3 31.4 Vec 32.1	30.4.7 Lie algebra cohomology ♣ re Bundles Bundles Constructions Sections etor Bundles Tangent bundle	 	 	 	 	 	 	366 369 371 371 372 373
	31.1 31.2 31.3 31.4 Vec 32.1	30.4.7 Lie algebra cohomology ♣		 	 	 	 	 	366 369 371 371 372 373 373
	31.1 31.2 31.3 31.4 Vec 32.1	30.4.7 Lie algebra cohomology ♣ re Bundles Bundles Bundle maps Constructions Sections tor Bundles Tangent bundle		 	 	 	 	 	366 369 371 371 372 373 373 375
	31.1 31.2 31.3 31.4 Vec 32.1	30.4.7 Lie algebra cohomology ♣ re Bundles Bundles Bundle maps Constructions Sections etor Bundles Tangent bundle Vector bundles		 	 	 	 	 	366 369 371 371 372 373 375 375 375
	31.1 31.2 31.3 31.4 Vec 32.1	30.4.7 Lie algebra cohomology re Bundles Bundles Bundle maps Constructions Sections Tangent bundles Vector bundles 32.2.1 Sections 32.2.2 Whitney sums 32.2.3 Associated vector bundles		 	 	 	 	 	366 369 371 371 372 373 373 375 375 376
	31.1 31.2 31.3 31.4 Vec 32.1 32.2	30.4.7 Lie algebra cohomology re Bundles Bundles Bundle maps Constructions Sections Ctor Bundles Tangent bundle Vector bundles 32.2.1 Sections 32.2.2 Whitney sums 32.2.3 Associated vector bundles 32.2.4 Grassmann bundle		 	 				366 369 369 371 371 372 373 375 375 376 377
	31.1 31.2 31.3 31.4 Vec 32.1 32.2	30.4.7 Lie algebra cohomology re Bundles Bundles Bundle maps Constructions Sections Ctor Bundles Tangent bundle Vector bundles 32.2.1 Sections 32.2.2 Whitney sums 32.2.3 Associated vector bundles 32.2.4 Grassmann bundle Vector fields		 					366 369 369 371 372 373 373 375 375 376 377
	31.1 31.2 31.3 31.4 Vec 32.1 32.2	30.4.7 Lie algebra cohomology re Bundles Bundles Bundle maps Constructions Sections Constructions Sections Tangent bundles 1 Vector bundles 32.2.1 Sections 32.2.2 Whitney sums 32.2.3 Associated vector bundles 32.2.4 Grassmann bundle Vector fields 32.3.1 Integral curves		 					366 369 369 371 372 373 373 375 375 376 377 377
	31.1 31.2 31.3 31.4 Vec 32.1 32.2	30.4.7 Lie algebra cohomology Bundles Bundles Bundle maps Constructions Sections tor Bundles Tangent bundle Vector bundles 32.2.1 Sections 32.2.2 Whitney sums 32.2.3 Associated vector bundles 32.2.4 Grassmann bundle Vector fields 32.3.1 Integral curves 32.3.2 Lie derivative		 					366 369 369 371 371 372 373 375 375 376 377 378 379
	31.1 31.2 31.3 31.4 Vec 32.1 32.2	30.4.7 Lie algebra cohomology Bundles Bundles Bundle maps Constructions Sections Ctor Bundles Tangent bundle Vector bundles 32.2.1 Sections 32.2.2 Whitney sums 32.2.3 Associated vector bundles 32.2.4 Grassmann bundle Vector fields 32.3.1 Integral curves 32.3.2 Lie derivative 32.3.3 Frobenius's theorem		 					366 369 369 371 372 373 373 375 375 376 377 378 379 380
	31.1 31.2 31.3 31.4 Vec 32.1 32.2	30.4.7 Lie algebra cohomology ♣ re Bundles Bundles Bundle maps Constructions Sections Tangent bundles Tangent bundles 32.2.1 Sections 32.2.2 Whitney sums 32.2.3 Associated vector bundles 32.2.4 Grassmann bundle Vector fields 32.3.1 Integral curves 32.3.2 Lie derivative 32.3.3 Frobenius's theorem Differential k-forms							366 369 371 371 372 373 375 375 375 376 377 378 379 380 380
	31.1 31.2 31.3 31.4 Vec 32.1 32.2	30.4.7 Lie algebra cohomology ♣							366 369 371 371 372 373 373 375 375 375 376 377 377 378 380 380 382
	31.1 31.2 31.3 31.4 Vec 32.1 32.2	30.4.7 Lie algebra cohomology ♣							366 369 369 371 372 373 373 375 375 376 377 378 380 380 382 383
	31.1 31.2 31.3 31.4 Vec 32.1 32.2	30.4.7 Lie algebra cohomology ♣							366 369 369 371 372 373 373 375 375 376 377 378 380 380 382 383
	31.1 31.2 31.3 31.4 Vec 32.1 32.2	30.4.7 Lie algebra cohomology ♣							366 369 371 371 372 373 373 375 375 376 377 378 380 380 382 383 383

32.5	Integration	n Theory
	32.5.1 Or	entation and densities
	32.5.2 Or	entation in homology
		egration of top-dimensional forms
		kes's theorem
		tributions
32.6		gy
		Rham complex
		egration \vdots
		homology with compact support
	_	ch-de Rham complex
		n-orientable manifolds
32.7		d operators
02.1		iptic complexes
39.8		nections
32.0		luced connections
	32.6.1 III	fuced connections
33 Pri	ncipal Bu	ndles 401
	_	oundles
00.1		sociated bundles
		etions
33.9		bundle
		ns
JJ. J		rtical vectors
		resmann connections
		nnection forms
		curer-Cartan form
		cal representations
		rallel transport
		lonomy group
33.4		derivatives
		szul connections
		terior covariant derivative
	33.4.3 Cu	rvature
	33.4.4 To	
		of the structure group
33.6		stic classes
	33.6.1 Cl	ern-Weil theory
		mplex bundles
	33.6.3 Re	al bundles
	33.6.4 Co	homology of Lie groups
33.7	Differenti	ul cohomology \clubsuit
	33.7.1 Di	ferential characters
	33.7.2 De	ligne cohomology
33.8		nnections
		ein geometry
		rtan geometry
34 Rie	mannian	Geometry 427
34.1	Riemanni	n manifolds
	34.1.1 M	tric
	34.1.2 Ri	emannian manifolds

		34.1.3 L	evi-Civita conn	ection	 					 									429
		34.1.4 K	Killing vectors		 					 									430
	34.2	Curvatu	re		 					 									431
	34.3	Spinor b	undles		 					 									432
		_	pin structures																
			Dirac operators																
			ndex theorem																
	34.4		al structures .																
			Conformal transf																
	34.5		\mathbf{s} oundles \mathbf{s}																
	01.0	iiiibor (ranaics		 	 •	•	• •	•	 	•		•		•	 •	•	• •	100
35	Sym	plectic	Geometry																437
			tic manifolds.		 					 									437
			nian vector field																
			ian submanifold																
			nian dynamics																
	00		Oynamical system																
			Hamilton-Jacobi																
			ntegrability .	_															
	35.5		tic reduction .																
	30.0		Hamiltonian acti																
			${ m Reduction}$																
			Poisson reduction																
			ie-Poisson redu																
	25.6		ctic structures																
	55.0	Metaple	stic structures		 	 •	•		•	 	•	• •	•		•	 •	•		447
36	Con	tact Geo	\mathbf{metrv}																448
36		tact Geo	•											_					
36		${\bf Contact}$	structure																448
36		Contact 36.1.1	structure Contact form .		 					 									448 448
36		Contact 36.1.1	structure		 					 									448 448
	36.1	Contact 36.1.1	structure Contact form . Reeb vector field		 					 									448 448
	36.1 Con	Contact 36.1.1 C 36.1.2 R aplex Ge	structure Contact form . Reeb vector field	S	 	 •			•	 									448 448 448 449
	36.1 Con 37.1	Contact 36.1.1 C 36.1.2 R aplex Ge Complex	structure Contact form . Reeb vector field	 .s	 	 •			•	 									448 448 448 449
	36.1 Con 37.1 37.2	Contact 36.1.1 C 36.1.2 R aplex Ge Complex Complex	structure Contact form . Reeb vector field cometry structures stdifferential for	s	 				•	 						 			448 448 448 449 449
	36.1 Con 37.1 37.2	Contact 36.1.1 C 36.1.2 R nplex Ge Complex Complex Kähler n	structure Contact form . Reeb vector field cometry structures differential for manifolds		 					 						 			448 448 448 449 449 451 452
	Com 37.1 37.2 37.3	Contact 36.1.1 C 36.1.2 R nplex Ge Complex Complex Kähler n 37.3.1 K	structure Contact form . Reeb vector field cometry structures differential for manifolds	s	 					 						 			448 448 448 449 449 451 452 453
	Com 37.1 37.2 37.3	Contact 36.1.1 C 36.1.2 R nplex Ge Complex Complex Kähler n 37.3.1 K Cohomol	structure Contact form . Reeb vector field cometry structures differential for manifolds Killing vectors logy		 											 			448 448 448 449 451 452 453 454
	Com 37.1 37.2 37.3	Contact 36.1.1 C 36.1.2 R nplex Ge Complex Complex Kähler n 37.3.1 K Cohomol	structure Contact form . Reeb vector field cometry structures differential for manifolds		 											 			448 448 448 449 451 452 453 454
37	Com 37.1 37.2 37.3	Contact 36.1.1 C 36.1.2 R nplex Ge Complex Complex Kähler n 37.3.1 K Cohomol	structure Contact form . Reeb vector field cometry structures differential for manifolds Killing vectors logy		 											 			448 448 448 449 451 452 453 454
37	Com 37.1 37.2 37.3 37.4	Contact 36.1.1 C 36.1.2 R nplex Ge Complex Complex Kähler n 37.3.1 K Cohomol 37.4.1 E culus of	structure Contact form . Reeb vector field cometry structures differential for manifolds		 	 										 			448 448 449 449 451 452 453 454 454
37	Com 37.1 37.2 37.3 37.4	Contact 36.1.1 C 36.1.2 R nplex Ge Complex Kähler n 37.3.1 K Cohomol 37.4.1 E culus of Constrai	structure Contact form . Reeb vector field cometry structures differential for manifolds		 														448 448 449 449 451 452 453 454 454 455
37	Com 37.1 37.2 37.3 37.4 Calc 38.1	Contact 36.1.1 C 36.1.2 R nplex Ge Complex Kähler n 37.3.1 K Cohomol 37.4.1 E culus of Constrai 38.1.1 H	structure Contact form . Reeb vector field cometry structures differential for manifolds Cilling vectors logy Dolbeault cohom	ms									- · · · · · · · · · · · · · · · · · · ·						448 448 449 449 451 452 453 454 454 455 455
37	Com 37.1 37.2 37.3 37.4 Calc 38.1	Contact 36.1.1 C 36.1.2 R nplex Ge Complex Kähler n 37.3.1 K Cohomol 37.4.1 C culus of Constrai 38.1.1 H Noether	structure Contact form	ms															448 448 449 449 451 452 453 454 454 455 455
37	Com 37.1 37.2 37.3 37.4 Calc 38.1 38.2	Contact 36.1.1 C 36.1.2 R nplex Ge Complex Kähler n 37.3.1 K Cohomol 37.4.1 E culus of Constrai 38.1.1 H Noether 38.2.1 C	structure Contact form . Reeb vector field cometry structures differential for manifolds	ms															448 448 449 449 451 452 453 454 455 455 455
37	Com 37.1 37.2 37.3 37.4 Calc 38.1 38.2	Contact 36.1.1 C 36.1.2 R nplex Ge Complex Kähler n 37.3.1 K Cohomol 37.4.1 E culus of Constrai 38.1.1 E Noether 38.2.1 C Jet bund	structure Contact form . Reeb vector field cometry structures differential for manifolds Cilling vectors logy Dolbeault cohom																448 448 449 449 451 452 453 454 455 455 455 455 457
37	Com 37.1 37.2 37.3 37.4 Calc 38.1 38.2	Contact 36.1.1 C 36.1.2 R nplex Ge Complex Kähler n 37.3.1 K Cohomol 37.4.1 E culus of Constrai 38.1.1 H Noether 38.2.1 C Jet bund 38.3.1 C	structure Contact form . Reeb vector field cometry structures differential for manifolds College																448 448 449 449 451 452 453 454 455 455 455 455 457 459
37	Com 37.1 37.2 37.3 37.4 Calc 38.1 38.2	Contact 36.1.1 C 36.1.2 R nplex Ge Complex Kähler n 37.3.1 K Cohomol 37.4.1 D culus of Constrai 38.1.1 H Noether 38.2.1 C Jet bund 38.3.1 C 38.3.2 P	structure Contact form . Reeb vector field cometry structures differential for manifolds College College College College College College College College		 · · · · · · · · · · · · · · · · · · ·														448 448 449 449 451 452 453 454 455 455 455 455 455 456 457 460
37	Com 37.1 37.2 37.3 37.4 Calc 38.1 38.2	Contact 36.1.1 C 36.1.2 R applex Ge Complex Kähler n 37.3.1 K Cohomol 37.4.1 E culus of Constrai 38.1.1 H Noether 38.2.1 C Jet bund 38.3.1 C 38.3.2 P 38.3.3 P	structure Contact form . Reeb vector field cometry structures differential for manifolds College College		 														448 448 449 449 451 452 453 454 455 455 455 455 455 460 461
37	Com 37.1 37.2 37.3 37.4 Calc 38.1 38.2	Contact 36.1.1 C 36.1.2 R nplex Ge Complex Kähler n 37.3.1 K Cohomol 37.4.1 E culus of Constrai 38.1.1 H Noether 38.2.1 C Jet bund 38.3.1 C 38.3.2 P 38.3.3 P Variation	structure Contact form . Reeb vector field cometry structures differential for manifolds		 · · · · · · · · · · · · · · · · · · ·														448 448 449 449 451 452 453 454 455 455 455 455 457 460 461 462
37	Com 37.1 37.2 37.3 37.4 Calc 38.1 38.2	Contact 36.1.1 C 36.1.2 R nplex Ge Complex Kähler n 37.3.1 K Cohomol 37.4.1 D culus of Constrai 38.1.1 H Noether 38.2.1 C Jet bund 38.3.1 C 38.3.2 P 38.3.3 P Variation 38.4.1 In	structure Contact form . Reeb vector field cometry structures differential for manifolds College College		 														448 448 449 449 451 452 453 454 455 455 455 455 455 460 461 462 467

39	K-tl	eory 🌲	3
	39.1	Preliminaries	3
	39.2	Fopological K-theory	3
		39.2.1 Introduction (degree 0) $\dots \dots \dots$	3
		39.2.2 Classification	4
		39.2.3 Negative degree	6
		39.2.4 Bott periodicity	7
		39.2.5 Clifford modules	8
		39.2.6 Cohomology theory	9
		39.2.7 Applications	
	39.3	Algebraic K -theory	
		39.3.1 Determinant	
40	-	netic Differential Geometry 48	_
	40.1	Neighbourhoods	2
	40.2	Affine connections	2
	40.3	Euclidean geometry	3
		40.3.1 Infinitesimal elements	3
		10.3.2 Calculus	4
41	_	er-dimensional Geometry 4	_
		Noncommutative geometry	
	41.2	Smooth spaces	
		11.2.1 Concrete sites	
		11.2.2 Supergeometry	
		11.2.3 Graded manifolds	
	41.3	Higher geometry	1
		11.3.1 Groups	1
		11.3.2 Spaces	3
	41.4	2-Bundles	4
	41.5	Space and quantity	6
VI	т т	robability Theory & Statistics 49	7
VI	1 1	Tobability Theory & Statistics 49	'
42	Prol	ability 49	8
		Probability	8
		Conditional probability	_
		Probability distribution	
		Moments	
	12.1	12.4.1 Expectation value	
		12.4.2 Correlation	_
		42.4.3 Conditional expectation	
	12.5	Joint distributions	_
	42.0	12.5.1 Conditional probability	_
	19.6	* v	
	42.0	Stochastic calculus	_
	40.7	12.6.1 Martingales	
		Markov processes	~
		Information theory	~
		Extreme value theory	
		Copulas	
	42.11	Randomness \clubsuit	U

43	Stat	istics 511
	43.1	Data samples
		43.1.1 Moment estimators
		43.1.2 Dispersion
		43.1.3 Multivariate data sets
	43.2	Probability distributions
		43.2.1 Empirical distribution
		43.2.2 Common distributions
	43.3	Errors
	10.0	43.3.1 Propagation of errors
	43.4	Parameter estimation
	10.1	43.4.1 General properties
		43.4.2 Common estimators
		43.4.3 Estimation error
		43.4.4 Likelihood function
		43.4.5 Maximum likelihood estimation
	40.5	43.4.6 Least squares estimation
		Bayesian modelling
	43.6	Confidence intervals
		43.6.1 Interval types
		43.6.2 General construction
		43.6.3 Interval for a sample mean
	43.7	Hypothesis testing
		43.7.1 Testing
	43.8	Comparison tests
		43.8.1 Post-hoc tests
	43.9	Goodness of fit
		43.9.1 χ^2 -test
		43.9.2 Runs test
44		rmation Geometry 530
	44.1	Statistical manifolds
		44.1.1 Divergences
		44.1.2 Exponential families
		44.1.3 Mixtures
		44.1.4 Compatible divergences
		44.1.5 Flat structures
	44.2	Projections
	44.3	Estimation and testing
		44.3.1 Estimation
45	Opt	imization Problems and Data Analysis 539
	45.1	Optimization
		45.1.1 Linear equations
		45.1.2 Descent methods
		45.1.3 Conjugate gradient
		45.1.4 Nonlinear conjugate gradients
		45.1.5 Krylov methods
		45.1.6 Constrained optimization
	45.2	Classification problems
	-	45.2.1 Clustering
		45.2.2 Nearest neighbour search

		Garden	
4	5.4	Support-vector machines	
		45.4.1 Kernel methods	47
		45.4.2 Decision boundaries	49
4	5.5	Time series analysis	51
		45.5.1 Stationarity	51
		45.5.2 Correlation	51
		45.5.3 Autoregressive models	
		45.5.4 Causality	
4	5.6	Prediction regions	
•	.0.0	45.6.1 Conformal prediction	
		101011 Comornium production 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00
46 F	uzz	sy Set Theory 55	58
		Fuzzy sets	58
		v	
VII	I	Classical Physics 56	60
	_		61
4	7.1	General quantities	
		47.1.1 Linear quantities	61
		47.1.2 Angular quantities	61
4	7.2	Kepler problem	63
4	7.3	Harmonic oscillator	63
	_	8	64
4	8.1	Action	64
4	8.2	Euler-Lagrange equations †	64
4	8.3	Hamilton's equations	65
		Poisson brackets	
4	8.5	Hamilton-Jacobi equation	66
		Analytical mechanics	
•		48.6.1 Phase space	
		48.6.2 Material derivative	
		48.6.3 Liouville's theorem	
		48.6.4 Continuity equation	
4	07		
		Dynamical systems	
		Fluid mechanics	
4	8.9	Gooding description	72
		48.9.1 Lagrangian formalism	
		48.9.2 Hamiltonian formalism	
		48.9.3 Symplectic structure on infinite-dimensional systems 5	74
40. 6	٦.	4 1 . 1	
			75 75
			75 70
		Gauge algebra	
		Fermionic systems	
4	9.4	BRST symmetry	
		49.4.1 Introduction	
		49.4.2 Irreducible constraints	
		49.4.3 Reducible constraints	86

50	Opt	ics 5	87
	50.1	General	587
		50.1.1 Conservation of energy	587
	50.2	Plane wave	587
		50.2.1 Photon	587
	50.3	Refraction	588
	50.4	Absorption	588
51			89
	51.1	Ellipsoidal coordinates	589
		51.1.1 Ellipsoid: $\tau = \lambda \dots \dots$	589
		51.1.2 One-sheet hyperboloid: $\tau = \mu$	590
		51.1.3 Two-sheet hyperboloid: $\tau = \nu$	590
		51.1.4 Hamiltonian function	590
		51.1.5 Hamilton-Jacobi equation	591
52	Elec	tricity and Magnetism 5	93
02		Resistance R	
		Ohm's law	
		Electric dipoles	
		Magnetic fields	
	02.4	52.4.1 Electric charges in a magnetic field	
		52.4.1 Electric charges in a magnetic field	,,,,
53	Max	twell Theory 5	96
	53.1	Lorentz force	596
	53.2	Differential Maxwell equations	596
	53.3	Potentials	597
		53.3.1 Decomposition in potentials	597
		53.3.2 Gauge transformations	
	53.4	Energy and momentum	
		Differential-geometric perspective	
IX	R	elativity Theory 6	00
54	Spec	cial Relativity 6	01
	54.1	Lorentz transformations	601
	54.2	Energy and momentum	301
	C		
99			303
			303
			304
		Black holes	
	55.4	Tetradic formulation	j05
\mathbf{X}	Qı	antum Mechanics 6	07
56	1 1/0-	ve and Matrix Mechanics	808
JU			
		0 1	808
		Heisenberg picture	509
	. 1(1)	VIIVELUGIIIUV DEHICIDIE	ハバ

57	Mat	thematical Formalism	610
	57.1	Postulates	610
		57.1.1 Observables	610
	57.2	Symmetries	611
		57.2.1 Quantum symmetries	
		57.2.2 Symmetric states	
	57.3	Interaction picture	
		Curved backgrounds	
K Q	0,110	antization 🗍	615
90		Geometric Quantization	
	56.1	58.1.1 Prequantization	
		•	
	E0 0	58.1.2 Coadjoint orbits	
	38.2	Constrained systems	
		58.2.1 Dirac procedure	
		58.2.2 BRST quantization	
		58.2.3 BFV quantization	620
5 9)	621
	59.1	General operator	621
	59.2	Rotations	622
		59.2.1 Infinitesimal rotation	622
		59.2.2 Spinor representation	622
	59.3	Coupling of angular momenta	
		59.3.1 Total Hilbert space	
		59.3.2 Clebsch-Gordan series	
60	Dine	ac Equation	624
UU		Dirac matrices	
	00.2	Spinors	
		60.2.1 Dirac equation	
		60.2.2 Chiral spinors	
		60.2.3 Dirac algebra in $D=4$	
		60.2.4 Fierz identities	626
61			627
	61.1	Rayleigh-Schrödinger theory	627
	61.2	Time-dependent perturbation theory	627
		61.2.1 Dyson series	627
	61.3	Variational method	628
	61.4	Adiabatic approximation	628
		61.4.1 Berry phase	628
62	Scat	ttering Theory	630
<u>, , , , , , , , , , , , , , , , , , , </u>		Lippman-Schwinger equations	
	04.1	Emphinan-penwinger equations	030
63	-		631
	63.1	Entanglement	
		63.1.1 Schmidt decomposition	631
		63.1.2 Bell states	631
	63.2	Density operators	632

XI	Q	uantu	m Field Theory			633
64	Clas	ssical I	Field Theory &			634
	64.1	Lagrar	ngian field theory			. 634
		64.1.1	Noether's theorem for fields			. 635
	64.2	Covari	iant phase space			. 635
		64.2.1	Zero Hamiltonian			. 636
		64.2.2	Field theory			. 636
	64.3		quantization			
			Homological interpretation			
65	Can	onical	Quantization			638
	65.1		Gordon field			
		65.1.1	Lagrangian and Hamiltonian			. 638
		65.1.2	Raising and lowering operators			. 638
		65.1.3	Scalar propagator			. 640
		65.1.4	Normalization constant			. 640
		65.1.5	Invariant integration measure			. 640
	65.2	Contra	actions and Wick's theorem			. 640
		65.2.1	Bosonic fields			. 640
		65.2.2	Fermionic fields			. 641
	65.3	Feynm	nan rules			. 642
		65.3.1	Scalar theory			. 642
66	Gau	ige The	eory			643
	66.1	Gauge	invariance			. 643
	66.2	Sponta	aneous symmetry breaking			. 644
		66.2.1	Higgs mechanism			. 645
67	Qua	ntum	chromodynamics			646
	67.1	Quant	um Chromodynamics			. 646
68	Con	formal	l Field Theory			647
	68.1	In dim	nension $d=2$. 647
			Intermezzo: Minkowski space ♣			
	68.2		ization			
		68.2.1	Radial quantization			. 649
		68.2.2	Virasoro algebra			. 650
		68.2.3	Representation theory			. 651
69	Sup	ersymi	metry			652
	69.1	Supers	symmetric quantum mechanics			. 652
		69.1.1	Loop space			. 653
		69.1.2	Morse theory			. 653
	69.2	Extens	sions of the Standard Model		 •	. 653
70		_	nent in QFT			655
	70.1	Lattice	e theories			. 655
71			QFT ♣			656
	71.1	Algebr	raic QFT			. 656
		71.1.1	Haag-Kastler axioms			. 656
		71.1.2	Weyl systems			. 657

	71.2	Topological QFT
		71.2.1 Atiyah-Segal axioms
		71.2.2 Open-closed TQFT
ΧI	тс	tatistical Mechanics & Condensed Matter Physics 659
ΛI	.I S	tatistical Mechanics & Condensed Matter Physics 659
72	The	emodynamics 66
	72.1	General definitions
	72.2	Postulates
	72.3	Gases
		72.3.1 Ideal gases
73	Stat	stical Mechanics 66
	73.1	Axioms
	73.2	Temperature
		Canonical ensemble
	73.4	Grand canonical ensemble
	73.5	Energy
	73.6	Black-body radiation
74	Mat	erial Physics 66
• -		Crystals
		74.1.1 Analytic representation
	74.2	Symmetries
		Crystal lattice
		74.3.1 Bravais lattice
		74.3.2 Reciprocal lattice
	74.4	Diffraction
		74.4.1 Constructive interference
		74.4.2 Intensity of diffracted beams
	74.5	Alloys
		Lattice defects
		Electrical properties
		74.7.1 Charge carriers
		74.7.2 Band structure
		74.7.3 Ferroelectricity
	74.8	Magnetic properties
		74.8.1 Paramagnetism
		74.8.2 Ferromagnetism
		74.8.3 Antiferromagnetism
		74.8.4 Ferrimagnetism
	T	OFF.
19		for Networks 673
	75.1	Matrix Product States
		75.1.2 Injectivity
		75.1.3 Gauge freedom and canonical forms
	75.0	75.1.4 Translation-invariant states
	15.2	Matrix product operators
		75.2.1 MPO-injectivity
		75.2.2 MPO-symmetries for SPT phases

XIII	Appendices	678
Appen	dix A Derivations: Mathematics	679
A.1	Group theory	. 679
	A.1.1 Explanation for property 3.3.12	. 679
A.2	Calculus	. 679
	A.2.1 Proof of method 14.7.16	. 679
A.3	Linear algebra	. 680
	A.3.1 Proof of equivalence of definitions 21.6.19 and 21.6.20	
A.4	Manifolds and bundles	
	A.4.1 Proof of equivalence of definitions 29.2.3 and 29.2.5	. 680
	A.4.2 Explanation for example 32.3.17	. 681
	A.4.3 Explanation for formula 32.3.18	. 682
	A.4.4 Explanation of remark 32.4.10	. 683
Appen	dix B G-Structures	684
Appen	dix C Derivations: Mathematical Physics	686
C.1	d'Alembert's principle	. 686
C.2	Hamilton's principle	. 688
C.3	Noether's theorem 64.1.1	. 689
Appen	dix D Derivations: Optics and Material Physics	690
D.1	Law of Lambert-Beer 50.4.1	. 690
D.2	Schottky defects 74.6.3	. 691
Appen	dix E Derivations: Classical Mechanics	692
	Moments of inertia	. 692
	E.1.1 Disk	. 692
	E.1.2 Solid sphere	. 692
Appen	dix F Scribblings	694
F.1	Functorial uncertainty measures	. 694
	F.1.1 Uncertainty	. 694
	F.1.2 Posets and categories	. 694
	F.1.3 Monoidal posets	. 695
	F.1.4 Countable additivity	. 696
	F.1.5 Outlook	. 696
List of	Symbols	697
Bibliog	graphy	699
Index		705

Chapter 1

Introduction

This compendium originated out of the necessity for a compact summary of important theorems and formulas during physics and mathematics classes at university. When the interest in more (and more exotic) subjects grew, this collection lost its compactness and became the chaos it now is. Although there should exist some kind of overall structure, it was not always possible to keep every section self-contained or respect the order of the chapters.

It should definitely not be used as a formal introduction to any subject. It is neither a complete work nor a fact-checked one, so the usefulness and correctness is not guaranteed. However it should be used as lookup table for theorems and formulas and as a guide to the literature. To this end each chapter begins with a list of useful references. At the same time only a small number of statements are proven in the text (or appendices). This was done to keep the text as short as possible. However, in some cases the major ideas underlying the proofs are given.

1.1 Conventions

Definitions, properties and formulas marked by a dagger symbol \dagger are explained and/or derived in one of the appendices. This has been done such that the summary itself contains only core notions and theorems. Sections and statements that require more advanced concepts, in particular concepts from later chapters or (higher) category theory, will be labelled by a *clubs* symbol \clubsuit .

Definitions of words in the middle of a text will be indicated by the use of **bold font**. Notions that have not been defined in this summary but that are relevant or that will be defined further on in the compendium are indicated by *italic text*. Names of authors will also be written in *italic*.

Objects from a general category will be denoted by a lower case letter (depending on the context we might also use upper case for clarity), functors will be denoted by upper case letters and the categories themselves will be denoted by symbols in **bold font**. In the later chapters on physics we will often adopt specific conventions for the different types of vectors. Vectors in Euclidean space will be denoted by a bold font letter with an arrow above, e.g. \vec{a} . Vectors in Minkowski space (4-vectors) and differential forms will be written without the arrow, e.g. \bf{a} . Matrices and tensors will always be represented by capital letters and dependent on the context a specific font will be adopted.

Part I Set Theory & Algebra

Chapter 2

Set Theory

For a formal introduction to the underlying axioms (and generalizations) of set theory, see Section 2.1 at the end of this chapter.

2.1 Axiomatization

2.1.1 ZFC

The following set of axioms and axiom schemata gives a basis for axiomatic set theory that fixes a number of issues in naive set theory where one takes the notion of set for granted. This theory is called **Zermelo-Frenkel** set theory (ZF). When extended with the axiom of choice (see further) it is called ZFC, where the C stand for "choice".

Axiom 2.1 (Power set).

$$\forall x : \exists y : \forall z [z \in y \iff \forall w (w \in z \implies w \in x)]$$
 (2.1)

The set y is called the power set P(x) of x.

Axiom 2.2 (Extensionality).

$$\forall x, y : \forall z [z \in x \iff z \in y] \implies x = y \tag{2.2}$$

This axiom allows us to compare two sets based on their elements.

Axiom 2.3 (Regularity 1).

$$\forall x : (\exists z \in x) \implies (\exists a \in x) \land \neg (\exists b \in a : b \in x)$$
 (2.3)

This axiom says that for every non-empty set x one can find an element $a \in x$ such that x and a are disjoint. Among other things this axiom implies that no set can contain itself.

The following axiom is technically not an axiom but an axiom schema, i.e. for every predicate φ one obtains an axiom:

Axiom 2.4 (Specification).

$$\forall w_1, \dots, w_n, A : \exists B : \forall x (x \in B \iff (x \in A \land \varphi(x, w_1, \dots, w_n, A))$$
 (2.4)

This axiom (schema) says that for every set x one can build another set of elements in x that satisfy a given predicate. By the axiom of extensionality this subset $B \subseteq A$ is unique.

¹Also called the axiom of foundation.

2.1.2 Material set theory

ZF(C) is an instance of material set theory. Every element of a set is itself a set and, hence, has some kind of internal structure.

Definition 2.1.1 (Pure set). A set U such that for every sequence $x_n \in x_{n-1} \in \cdots \in x_1 \in U$ all the elements x_i are also sets.

Definition 2.1.2 (Urelement²). An object that is not a set.

2.1.3 Universes

?? TODO ??

To be able to talk about sets without running into problems such as Russel's paradox, where one needs (or wants) to talk about the collection of all things satisfying a certain condition, one can introduce the concept of a universal set or universe (of discourse). This set takes the place of the "collection of things" and all operations performed on its elements, i.e. the sets that one wants to work with, act within this universe.

Definition 2.1.3 (Grothendieck universe). A Grothendieck universe U is a pure set satisfying the following axioms:

- 1. **Transitivity**: If $x \in U$ and $y \in x$, then $y \in U$;
- 2. Power set: If $x \in U$, then $P(x) \in U$;
- 3. **Pairing**: If $x, y \in U$, then $\{x, y\} \in U$; and
- 4. Unions: If $I \in U$ and $\{x_i\}_{i \in I} \subset U$, then $\bigcup_{i \in I} x_i \in U$.

2.1.4 Structural set theory

In contrast to material set theory, the fundamental notions in this theory are sets and the relations between them. An element of a set does not have any internal structure and only becomes relevant if one specifies extra structure (or relations) on the sets. This implies that elements of sets are not sets themselves. In fact this would be a meaningless statement since, by default, they lack internal structure. Even stronger, it is meaningless to compare two elements if one does not provide relations or extra structure on the sets.

?? COMPLETE ??

2.1.5 ETCS ♣

?? COMPLETE ??

Remark. ETCS is the abbreviation of "Elementary Theory of the Category of Sets".

Axiom 2.5. The category of sets is a well-pointed (elementary) topos.

2.1.6 Real numbers

Axiom 2.6 (Ordering). The set of real numbers is an ordered field $(\mathbb{R}, +, \cdot, <)$.

Axiom 2.7 (Dedekind completeness). Every non-empty subset of \mathbb{R} that is bounded above has a supremum.

Axiom 2.8. The rational numbers form a subset of the real numbers: $\mathbb{Q} \subset \mathbb{R}$.

²Sometimes called an **atom**.

Remark. There is only one way to extend the field of rational numbers to the field of reals such that it satisfies the previous axioms. This implies that for every two possible constructions, there exists a bijection between the two.

Definition 2.1.4 (Extended real line).

$$\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, \infty\} \equiv [-\infty, \infty] \tag{2.5}$$

2.2 Functions

2.2.1 Domain

Definition 2.2.1 (Domain). Let $f: X \to Y$ be a function. The set X is called the domain of f.

Notation 2.2.2. The domain of f is denoted by dom(f).

Definition 2.2.3 (Support). Let $f: X \to \mathbb{R}$ be a function with an arbitrary domain X. The support of f is defined as the set of points where f is nonzero.

Notation 2.2.4. The support of f is denoted by supp(f).

Notation 2.2.5. Let X, Y be two sets. The set of functions $f: X \to Y$ is denoted by Y^X or $\operatorname{Map}(X, Y)$. (See also Definition ?? for a generalization.)

2.2.2 Codomain

Definition 2.2.6 (Codomain). Let $f: X \to Y$ be a function. The set Y is called the codomain of f.

Definition 2.2.7 (Image). Let $f: X \to Y$ be a function. The following subset of Y is called the image of f:

$$\{y \in Y \mid \exists x \in X : f(x) = y\}.$$
 (2.6)

Notation 2.2.8. The image of a function f is denoted by im(f).

Remark. Some authors use these two notions interchangeably.

Definition 2.2.9 (Level set). Consider a function $f: X \to \mathbb{R}$. The following set is called the level set of f at $c \in \mathbb{R}$:

$$L_c(f) := f^{-1}(c) \equiv \{ x \in X \mid f(x) = c \}. \tag{2.7}$$

For $X = \mathbb{R}^2$ the level sets are called **level curves** and for $X = \mathbb{R}^3$ they are called **level surfaces**.

2.2.3 Functions

Definition 2.2.10 (Injective). A function $f: A \to B$ is said to be injective or **one-to-one** if the following condition is satisfied:

$$\forall a, a' \in A : f(a) = f(a') \implies a = a'. \tag{2.8}$$

Notation 2.2.11 (Injective map).

$$f:A\hookrightarrow B$$

Definition 2.2.12 (Surjective). A function $f: A \to B$ is said to be surjective or **onto** if the following condition is satisfied:

$$\forall b \in B, \exists a \in A : f(a) = b. \tag{2.9}$$

Notation 2.2.13 (Surjective map).

$$f:A \twoheadrightarrow B$$

Definition 2.2.14 (Bijection). A function that has an inverse. Equivalently, a function that gives a one-to-one correspondence between the elements of the domain and those of the codomain.

Notation 2.2.15 (Isomorphic). If two sets X, Y are isomorphic, this is denoted by

$$X \cong Y$$
.

Theorem 2.2.16 (Cantor-Bernstein-Schröder). Consider two sets A, B. If there exist injections $A \hookrightarrow B$ and $B \hookrightarrow A$, there exists a bijection $A \cong B$.

Definition 2.2.17 (Involution). A function $f: A \to A$ such that $f^2 = \mathrm{id}_A$, i.e. f is its own inverse. Every involution is in particular a bijection.

2.3 Collections

Definition 2.3.1 (Power set). Let S be a set. The power set is defined as the set of all subsets of S and is (often) denoted by P(S) or 2^S . The existence of this set is enforced by Axiom 2.1, the axiom of power set.

Corollary 2.3.2. All sets are elements of their power set: $S \in P(S)$.

Definition 2.3.3 (Collection). Let A be a set. A collection of elements in A is a subset of A.

Definition 2.3.4 (Family). Let A, I be two sets. A family of elements of A with **index set** I is a function $f: I \to A$. A family with index set I is often denoted by $(x_i)_{i \in I}$. In contrast to collections, a family can "contain" multiple copies of the same element.

Definition 2.3.5 (Helly family). A Helly family of order k is a pair (X, F) with $F \subset P(X)$ such that for every finite $G \subset F$:

$$\bigcap_{V \in G} V = \emptyset \implies \exists H \subseteq G : \left(\bigcap_{V \in H} V = \emptyset\right) \land \left(|H| \le k\right). \tag{2.10}$$

A Helly family of order 2 is sometimes said to have the **Helly property**.

Definition 2.3.6 (Diagonal). The diagonal of a set S is defined as follows:

$$\Delta_S := \{(a, a) \in S \times S \mid a \in S\}. \tag{2.11}$$

Definition 2.3.7 (Cover). A cover of a set S is a collection of sets $\mathcal{F} \subseteq P(S)$ such that

$$\bigcup_{V \in \mathcal{F}} V = S. \tag{2.12}$$

Definition 2.3.8 (Partition). A partition of X is a family of disjoint subsets $(A_i)_{i \in I} \subset P(X)$ such that $\bigcup_{i \in I} A_i = X$.

Definition 2.3.9 (Refinement). Let P be a partition of X. A refinement P' of P is a collection of subsets such that every $A \in P$ can be written as a disjoint union of elements in P'. It follows that every refinement is also a partition.

Definition 2.3.10 (Filter). Let X be a partially ordered set. A family $\mathcal{F} \subseteq P(X)$ is a filter on X if it satisfies following conditions:

- 1. Empty set: $\emptyset \notin \mathcal{F}$;
- 2. Closed under intersections: $\forall A, B \in \mathcal{F} : A \cap B \in \mathcal{F}$; and
- 3. Closed under inclusion: if $A \in \mathcal{F}$ and $A \subseteq B$, then $B \in \mathcal{F}$.

Definition 2.3.11 (Filtration). Consider a set A together with a collection of subsets F_iA indexed by a totally ordered set I. The collection is said to be a filtration of A if

$$i \le j \implies F_i A \subseteq F_j A.$$
 (2.13)

A filtration is said to be **exhaustive** if $\bigcup_i F_i A = A$ and **separated** if $\bigcap_i F_i A = \emptyset$.

Definition 2.3.12 (Associated grading). In the case where one can define quotient objects every filtration $\{F_iA\}_{i\in\mathbb{N}}$ of A defines an associated graded object $\{G_iA:=F_iA/F_{i-1}A\}$.

2.4 Set operations

Definition 2.4.1 (Symmetric difference).

$$A\Delta B := (A\backslash B) \cup (B\backslash A) \tag{2.14}$$

Definition 2.4.2 (Complement). Let Ω be the universe of discours (Section 2.1.3) and let $E \subseteq \Omega$. The complement of E is defined as follows:

$$E^c := \Omega \backslash E. \tag{2.15}$$

Formula 2.4.3 (de Morgan's laws).

$$\left(\bigcup_{i} A_{i}\right)^{c} = \bigcap_{i} A_{i}^{c} \tag{2.16}$$

$$\left(\bigcap_{i} A_{i}\right)^{c} = \bigcup_{i} A_{i}^{c} \tag{2.17}$$

$$\left(\bigcap_{i} A_{i}\right)^{c} = \bigcup_{i} A_{i}^{c} \tag{2.17}$$

Definition 2.4.4 (Relation). A relation between sets X and Y is a subset of the Cartesian product $X \times Y$. A relation on X is then simply a subset of $X \times X$. This definition can easily be extended to n-ary relations by working with subsets of n-fold products.

Definition 2.4.5 (Converse relation). Consider a relation $R \subset X \times Y$ between two sets X, Y. The converse relation R^t is defined as follows:

$$R^{t} := \{ (y, x) \in Y \times X \mid (x, y) \in R \}.$$
 (2.18)

Definition 2.4.6 (Composition of relations). Consider two relations $R \subset X \times Y$ and $S \subset X \times Y$ $Y \times Z$ between three sets X, Y and Z. The composition $S \circ R$ is defined as follows:

$$S \circ R := \{ (x, z) \in X \times Z \mid \exists y \in Y : (x, y) \in R \land (y, z) \in S \}.$$
 (2.19)

2.4.1 Algebra of sets

Definition 2.4.7 (Algebra of sets). A collection $\mathcal{F} \subset P(X)$ is a called an algebra over X if it is closed under finite unions, finite intersections and complements. The pair (X, \mathcal{F}) is also called a **field of sets**.

Definition 2.4.8 (\sigma-algebra). A collection $\Sigma \subset P(X)$ is called a σ -algebra over a set X if it satisfies the following 3 axioms:

- 1. Total space: $X \in \Sigma$,
- 2. Closed under complements: $\forall E \in \Sigma : E^c \in \Sigma$, and
- 3. Closed under countable unions: $\forall \{E_i\}_{i=1}^n \subset \Sigma : \bigcup_{i=1}^n E_i \in \Sigma$.

Remark 2.4.9. Axioms (2) and (3) together with de Morgan's laws (2.16) and (2.17) imply that a σ -algebra is also closed under countable intersections.

Corollary 2.4.10 (Algebra of sets). Every algebra of sets is a σ -algebra.

Property 2.4.11 (Intersections). The intersection of a family of σ -algebras is again a σ -algebra.

Definition 2.4.12 (Generated σ -algebras). A σ -algebra \mathcal{G} is said to be generated by a collection of sets \mathcal{A} if

$$\mathcal{G} = \bigcap \{ \mathcal{F} \mid \mathcal{F} \text{ is a } \sigma\text{-algebra that contains } \mathcal{A} \}. \tag{2.20}$$

Equivalently it is the smallest σ -algebra containing \mathcal{A} .

Notation 2.4.13. The σ -algebra generated by a collection of sets \mathcal{A} is often denoted by $\mathcal{F}_{\mathcal{A}}$ or $\sigma(\mathcal{A})$.

Construction 2.4.14 (Product σ -algebras). The product σ -algebra \mathcal{F} can be defined in the following equivalently ways:

 \bullet \mathcal{F} is generated by the collection

$$\mathcal{C} = \{A_1 \times \Omega_2 \mid A_1 \in \mathcal{F}_1\} \cup \{\Omega_1 \times A_2 \mid A_2 \in \mathcal{F}_2\}.$$

• \mathcal{F} is the smallest σ -algebra such that the following projections are measurable (see 16.1.32):

$$Pr_1: \Omega \to \Omega_1: (\omega_1, \omega_2) \mapsto \omega_1$$

$$Pr_2: \Omega \to \Omega_2: (\omega_1, \omega_2) \mapsto \omega_2.$$

• \mathcal{F} is the smallest σ -algebra containing the products $A_1 \times A_2$ for all $A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2$.

Definition 2.4.15 (Monotone class). Let \mathcal{A} be a collection of sets. \mathcal{A} is called a monotone class if it has the following two properties:

1. For every increasing sequence $A_1 \subset A_2 \subset \cdots$:

$$\bigcup_{i=1}^{+\infty} A_i \in \mathcal{A}.$$

2. For every decreasing sequence $A_1 \supset A_2 \supset \cdots$:

$$\bigcap_{i=1}^{+\infty} A_i \in \mathcal{A}.$$

Theorem 2.4.16 (Monotone class theorem). Let \mathcal{A} be an algebra of sets 2.4.7. If $\mathcal{G}_{\mathcal{A}}$ is the smallest monotone class containing \mathcal{A} then it coincides with the σ -algebra generated by \mathcal{A} .

2.5 Ordered sets

2.5.1 Posets

Definition 2.5.1 (Preordered set). A set equipped with a reflexive and transitive binary relation.

Definition 2.5.2 (Partially ordered set). A set P equipped with a binary relation \leq is called a partially ordered set (or **poset**) if the following 3 axioms are fulfilled for all elements $a, b, c \in P$:

- 1. Reflexivity: $a \leq a$,
- 2. Antisymmetry: $a \le b \land b \le a \implies a = b$, and
- 3. Transitivity: $a \le b \land b \le c \implies a \le c$.

Equivalently, it is a preordered set for which the binary relation is also antisymmetric.

Definition 2.5.3 (Totally ordered set). A poset P with the property that for all $a, b \in P$: $a \le b$ or $b \le a$ is called a (nonstrict) totally ordered set. This property is called **totality**.

Definition 2.5.4 (Strict total order). A nonstrict order \leq has an associated strict order < that satisfies $a < b \iff a \leq b \land a \neq b$.

Definition 2.5.5 (Linear order). A binary relation < on a set P satisfying the following conditions for all $x, y, z \in P$:

- 1. Irreflexivity: $x \not< x$,
- 2. Asymmetry: $x < y \implies y \not< x$,
- 3. Transitivity: $x < y \land y < z \implies x < z$,
- 4. Comparison: $x < z \implies x < y \lor y < z$, and
- 5. Connectedness: $x \not< y \land y \not< x \implies x = y$.

Remark 2.5.6. By negation one can freely pass between linear orders and total orders. However, without the law of the excluded middle, there exists no bijection between these two.

Definition 2.5.7 (Maximal element). An element m of a poset P such that for every $p \in P : m \le p \implies m = p$.

Definition 2.5.8 (Chain). A totally ordered subset of a poset.

Theorem 2.5.9 (Zorn's lemma³). Let (P, \leq) be a poset. If every chain in P has an upper bound in P, then P has a maximal element.

Definition 2.5.10 (Directed⁴ set). A set X equipped with a preorder \leq with the additional property that every 2-element subset has an upper bound, i.e. for every two elements $a, b \in X$, there exists an element $c \in X$ such that $a \leq c \land b \leq c$.

Definition 2.5.11 (Net). A net on a set X is a subset of X indexed by a directed set I.

³This theorem is equivalent to the axiom of choice.

⁴Sometimes called a **filtered** set or **upward** directed set. **Downward** directed sets are analogously defined with a lower bound for every two elements.

2.5.2 **Bounds**

Definition 2.5.12 (Supremum). The supremum $\sup(X)$ of a poset X is the smallest upper bound of X.

Definition 2.5.13 (Infimum). The infimum $\inf(X)$ of a poset X is the greatest lower bound of X.

Definition 2.5.14 (Maximum). If $\sup(X) \in X$, the supremum is called the maximum of X. This is denoted by $\max(X)$.

Definition 2.5.15 (Minimum). If $\inf(X) \in X$, the supremum is called the minimum of X. This is denoted by $\min(X)$.

2.5.3 Ordinals and cardinals &

Definition 2.5.16 (Well-ordering). A well-founded linear order, i.e. a linear order < such that every nonempty subset has a minimal element.

Definition 2.5.17 (Ordinal number). Consider the class of all well-ordered sets. An ordinal (number) is an isomorphism class of well-ordered sets. The class of ordinals is itself well-ordered by inclusion of "initial segments".

However, this definition gives problems within the ZF(C) framework of set theory since these equivalence classes are proper classes and not sets. To overcome this problem one can use a different approach. By using a well-defined construction one can for every class select a particular representative and call this representative the ordinal (rank) of all well-ordered sets isomorphic to it.

The most-used such construction is that by $Von\ Neumann$. For every well-ordered set W there exists an isomorphism $W \to P(W)$ that maps an element to the set of all subsets bounded from above by it. By analogy the Von Neumann ordinals are inductively defined as those well-ordered sets containing all smaller ordinals:

Definition 2.5.18 (Von Neumann ordinal). A set that is strictly well-ordered by membership and such that every element is also a subset.

The first few finite von Neumann ordinals are given as an example:

- \bullet 0 := \emptyset .
- $1 := \{0\} = \{\emptyset\},$
- $2 := \{0, 1\} = \{\emptyset, \{\emptyset\}\}, \text{ and }$
- ...

Definition 2.5.19 (Successor). Every ordinal number α has a **successor** α^+ (using the Von Neumann definition this is simply $\alpha^+ := \alpha \cup \{\alpha\}$). An ordinal that is not the successor of another ordinal number is called a **limit ordinal**.

Remark 2.5.20. The *Burali-Forti paradox* is the statement that the class of all ordinals (and by extension the class of all well-ordered sets) is not a set.

There also exist numbers representing the sizes of sets. These are called **cardinal numbers**. These "numbers" should satisfy the following conditions:

• Every set has a well-defined cardinality.

- Every cardinal number is the cardinality of some set.
- Bijective sets have the same cardinality.

Guided by these conditions one could naively use the following definition:

Definition 2.5.21 (Cardinal number). An isomorphism class of sets (under bijections).

However, similar to the problem encountered for ordinals above, these classes are not sets. To solve this one can also use a similar trick and select a specific representative. For cardinals the following choice is made:

Definition 2.5.22 (Cardinality). The cardinality of a set is the smallest ordinal rank of any well-order on it, i.e. any ordinal number bijective to it.⁵ The cardinal numbers inherit a well-ordering from the ordinal numbers.

Remark 2.5.23 (Ordering). The Cantor-Bernstein-Schröder theorem induces a partial ordering on cardinal numbers. However, without the axiom of choice this can never be a total ordering. This problem is also apparent in the above definition since the ordinal rank of sets is used and the well-orderability of all sets, i.e. the well-ordering theorem, is equivalent to the axiom of choice.

Similar to ordinal numbers one can also define successors of cardinal numbers:

Definition 2.5.24 (Successor). Given a cardinal κ , one defines its successor κ^+ as the smallest cardinal larger than κ .

Remark. It should be noted that the successor of a cardinal number is not necessarily the same as its successor as an ordinal number (in fact this is only the case for the finite cardinals).

2.5.4 Lattices

Definition 2.5.25 (Semilattice). A poset (P, \leq) for which every 2-element subset has a supremum (also called a **join**) in P is called a join-semillatice. Similarly, a poset (P, \leq) for which every 2-element subset has an infimum (also called a **meet**) in P is called a meet-semilattice.

Notation 2.5.26. The join of $\{a, b\}$ is denoted by $a \wedge b$. The meet of $\{a, b\}$ is denoted by $a \vee b$.

Definition 2.5.27 (Lattice). A poset (P, \leq) is called a lattice if it is both a join- and a meet-semilattice.

The above definition also allows for a purely algebraic formulation (in this case some authors might speak about lattice-ordered sets):

Alternative Definition 2.5.28 (Lattice). A lattice is an algebraic structure that admits operations \land , \lor and constants \top , \bot that satisfy the following axioms:

- 1. Both \wedge and \vee are idempotent, commutative and associative.
- 2. The absorption laws:

$$a \lor (a \land b) = a$$
 $a \land (a \lor b) = a.$ (2.21)

3. \top and \bot are the respective identities of \land and \lor .

⁵The well-ordering theorem (if assumed) assures that this definition coincides with the naive one above.

To go from this definition to the order-theoretic one, define the partial order

$$a \le b \iff a \land b = a$$
.

There exists an equivalent relation for the join.

Definition 2.5.29 (Bounded lattice). A lattice (P, \leq) that contains a greatest element (denoted by \top or 1) and a smallest element (denoted by \bot or 0) such that

$$\perp \le x \le \top \tag{2.22}$$

for all $x \in P$. These elements are the identities for the join and meet operations:

$$x \wedge \top = x \qquad \qquad x \vee \bot = x. \tag{2.23}$$

Definition 2.5.30 (Frame). A complete lattice⁶ (P, \leq) for which the **infinite distributivity** law is satisfied:

$$y \wedge \left(\bigvee_{i \in I} x_i\right) = \bigvee_{i \in I} (y \wedge x_i). \tag{2.24}$$

Definition 2.5.31 (Heyting algebra). A bounded lattice H such that for every two elements $a, b \in H$ there exists a greatest element $x \in H$ for which

$$a \wedge x < b. \tag{2.25}$$

This element is denoted by $a \to b$. The **pseudo-complement** $\neg a$ of an element $a \in H$ is then defined as $a \to \bot$.

Definition 2.5.32 (Boolean algebra). A Boolean algebra X is a Heyting algebra in which the *law of excluded middle* holds:

$$\forall x \in X : \neg \neg x = x. \tag{2.26}$$

This can be equivalently stated as

$$\forall x \in X : x \vee \neg x = \top. \tag{2.27}$$

2.6 Partitions

2.6.1 Partition

Definition 2.6.1 (Composition). Let $k, n \in \mathbb{N}$. A k-composition of n is a k-tuple (t_1, \ldots, t_k) such that $\sum_{i=1}^k t_k = n$.

Definition 2.6.2 (Partition). Let $n \in \mathbb{N}$. A partition of n is an ordered composition of n. Hence multiple different composition can determine the same partition.

Definition 2.6.3 (Young diagram⁷). A Young diagram is a visual representation of the partition of an integer n. It is a left justified system of boxes, where every row corresponds to a part of the partition:

Definition 2.6.4 (Conjugate partition). Let λ be a partition of n with associated Young diagram \mathcal{D} . The conjugate partition λ' is obtained by reflecting \mathcal{D} across its main diagonal.

Figure 2.1: A Young diagram representing the partition (5, 4, 4, 1) of 14.

Figure 2.2: A Young diagram representing the partition (4, 3, 3, 3, 1) of 14.

Example 2.6.5. Conjugating Diagram 2.1 gives Diagram 2.2 below. The associated partition is (4, 3, 3, 3, 1).

Definition 2.6.6 (Young tableau). Consider a Young diagram of shape λ . A Young tableau of shape λ is a filling of the corresponding Young diagram by the elements of a totally ordered set (with n elements). This tableau is said to be **standard** if every row and every column is increasing.

Formula 2.6.7 (Hook length formula). The hook $H_{i,j}$ is defined as the part of a Young diagram given by the cell (i, j) together with all cells below and to the right of (i, j). Given a hook $H_{i,j}$, define the hook length $h_{i,j}$ as the sum of all elements in $H_{i,j}$.

The number of all possible standard Young tableaux of shape λ (where λ defines a partition of n) is given by the following formula:

$$f^{\lambda} = \frac{n!}{\prod_{(i,j)\in\lambda} h_{i,j}}.$$
 (2.28)

Definition 2.6.8 (Young tabloid). A Young tabloid of shape λ is defined as the equivalence class of Young tableaux which are connected by permuting the elements within a row. These are often drawn as in Figure 2.3.

Figure 2.3: A Young tabloid associated to the Young diagram in Figure 2.1.

2.6.2 Superpartition

For the physical background of the notions introduced in this section, see Chapter 57.

⁶When working with categories this has to be restricted to "all small joins/meets" or, equivalently, the index category should be a set.

⁷Sometimes called a Ferrers diagram.

Definition 2.6.9 (Superpartition). Let $m, n \in \mathbb{N}$. A superpartition in the *m*-fermion sector is a sequence of integers of the following form:

$$\Lambda = (\Lambda_1, \dots, \Lambda_m; \Lambda_{m+1}, \dots, \Lambda_n), \tag{2.29}$$

where the first m numbers are strictly ordered, i.e. $\Lambda_i > \Lambda_{i+1}$ for all i < m, and the last n - m numbers form a normal partition.

Both sequences, separated by a semicolon, form in fact distinct partitions themself. The first one represents the *antisymmetric fermionic* sector (this explains the strict order) and the second one represents the *symmetric bosonic* sector. This amounts to the following notation:

$$\Lambda \equiv (\lambda^a; \lambda^s).$$

The degree of the superpartition is given by $|\Lambda| = \sum_{i=1}^{n} \Lambda_i$.

Notation 2.6.10. A superpartition of degree n in the m-fermion sector is said to be a superpartition of (n|m). To every superpartition Λ one can also associate a unique partition Λ^* by removing the semicolon and reordering the numbers such that they form a partition of n. The superpartition Λ can then be represented by the Young diagram belonging to Λ^* where the rows belonging to the fermionic sector are ended by a circle.

Chapter 3

Algebra

3.1 Algebraic structures

Definition 3.1.1 (Semigroup). A set G equipped with a binary operation \star such that the following axioms are satisfied:

- 1. Closure: G is closed under \star .
- 2. **Associativity**: \star is associative.

If the associativity axiom is dropped, a **magma** is obtained.

Definition 3.1.2 (Monoid). A set M equipped with a binary operation \star such that the following axioms are satisfied:

- 1. Closure: M is closed under \star .
- 2. **Associativity**: \star is associative.
- 3. Unitality: M contains an identity element with respect to \star .

Definition 3.1.3 (Nilpotent). An element x of a monoid for which there exists an integer $k \in \mathbb{N}$ such that $x^k = e$, where e is the identity element.

Property 3.1.4 (Eckmann-Hilton argument). Let $(M, \circ), (M, \otimes)$ be two monoid structures (or even unital magma structures) on a set M such that

$$(a \circ b) \otimes (c \circ d) = (a \otimes c) \circ (b \otimes d) \tag{3.1}$$

for all $a, b, c, d \in M$. The two monoid structures coincide and are in fact Abelian. (This property admits a vast generalization, see ??.)

Definition 3.1.5 (Group). A set G equipped with a binary operation \star such that the following axioms are satisfied:

- 1. Closure: G is closed under \star .
- 2. **Associativity**: \star is associative.
- 3. Unitality: G has an identity element with respect to \star .
- 4. **Inverses**: Every element in G has an inverse with respect to \star .

Notation 3.1.6 (Identity element). The identity element of a general group will be denoted by e. In certain cases, where this makes sense, the identity element will be denoted by 0 or 1 (additive and multiplicative conventions).

Definition 3.1.7 (Abelian group). Let (G, \star) be a group. If \star is commutative, then G is said to be an Abelian or **commutative** group.

Definition 3.1.8 (Morphism). A group **(homo)morphism** $\Phi : (G, \star) \to (H, \cdot)$ is a function $f : G \to H$ such that

$$\Phi(g \star g') = \Phi(g) \cdot \Phi(g') \tag{3.2}$$

for all $g, g' \in G$.

Definition 3.1.9 (Kernel). The kernel of a group morphism $\Phi: G \to H$ is defined as the set

$$\ker(\Phi) := \{ g \in G \mid \Phi(g) = e_H \}. \tag{3.3}$$

This set carries a group structure induced by that on G.

Theorem 3.1.10 (First isomorphism theorem). Consider a group morphism $\Phi: G \to H$. If Φ is surjective, then $G/\ker(\Phi) \cong H$.

3.2 Group theory

Definition 3.2.1 (Order of a group). The number of elements in the group. It is denoted by |G| or ord(G).

Definition 3.2.2 (Order of an element). The order of an element $a \in G$ is the smallest integer $n \in \mathbb{N}$ such that

$$a^n = e, (3.4)$$

where e is the identity element of G.

Definition 3.2.3 (Torsion group). A group in which all elements have finite order. The torsion set Tor(G) of a group G is the set of all elements $a \in G$ that have finite order. If G is Abelian, Tor(G) is a subgroup.

Theorem 3.2.4 (Lagrange). Let G be a finite group and let H be a subgroup. Then |H| is a divisor of |G|.

Corollary 3.2.5. The order of any element $g \in G$ is a divisor of |G|.

Construction 3.2.6 (Grothendieck completion). Let (A, \boxplus) be a commutative monoid. From this monoid one can construct an Abelian group G(A), called the Grothendieck completion of A, as the quotient of $A \times A$ by the equivalence relation

$$(a_1, a_1') \sim (a_2, a_2') \iff \exists c \in A : a_1 \boxplus a_2' \boxplus c = a_1' \boxplus a_2 \boxplus c. \tag{3.5}$$

The identity element, denoted by 0, is given by the equivalence class of (0,0). By the definition of G(A), this class contains all elements $\alpha \in \Delta_A$. In particular, [(a,b)] is the additive inverse of [(b,a)]: [(a,b)] + [(b,a)] = 0.

Universal Property 3.2.7. Let G(A) be the Grothendieck completion of A. Every monoid morphism $m:A\to B$, between an Abelian monoid and an Abelian group, factors uniquely through a group morphism $\varphi:G(A)\to B$.

Example 3.2.8 (Integers). The Grothendieck completion of the natural numbers is the additive group of integers \mathbb{Z} .

3.2.1 Cosets

Definition 3.2.9 (Coset). Let G be a group and let H be a subgroup. The left coset of H with respect to $g \in G$ is defined as the set

$$qH := \{qh \mid h \in H\}. \tag{3.6}$$

The right coset is defined analogously. If for all $g \in G$ the left and right cosets coincide, the subgroup H is said to be a **normal subgroup**, **normal divisor** or **invariant subgroup**.

Notation 3.2.10. The set of left (resp. right) cosets is denoted by G/H (resp. $H\backslash G$).

Alternative Definition 3.2.11 (Normal subgroup). Let G be a group and let H be a subgroup. Consider the **conjugacy classes** gHg^{-1} for all $g \in G$. If all classes coincide with H itself, then H is said to be a normal subgroup.

Notation 3.2.12. If N is a normal subgroup of G, this is often denoted by $N \triangleleft G$.

Definition 3.2.13 (Quotient group). Let G be a group and let $N \triangleleft$ be a normal subgroup. The coset space G/N can be turned into a group by equipping it with the product induced by that on G.

Definition 3.2.14 (Center). The center of a group G is defined as follows:

$$Z(G) := \{ z \in G \mid \forall g \in G : zg = gz \}. \tag{3.7}$$

This is a normal subgroup of G.

3.2.2 Abelian groups

Definition 3.2.15 (Commutator subgroup¹). The commutator subgroup [G, G] of G is defined as the group generated by the **commutators**

$$[g,h] := g^{-1}h^{-1}gh,$$

where $g, h \in G$. This group is a normal subgroup of G.

Property 3.2.16 (Abelianization). The Abelianization G/[G,G] is an Abelian group. A group G is Abelian if and only if [G,G] is trivial.

Property 3.2.17 (Abelian quotients). A quotient group G/H is Abelian if and only if $[G,G] \leq H$.

3.2.3 Symmetric group

Definition 3.2.18 (Symmetric group). The symmetric group S_n (on n elements) is defined as the set of all permutations of $\{1, \ldots, n\}$. The number n is called the **degree** of the symmetric group. The symmetric group $\operatorname{Sym}(X)$ on a finite set X is defined similarly (by first numbering the elements and then acting by S_n)².

When including infinite sets the symmetric group Sym(X) is defined as the group of all bijections from X to itself (the multiplication is given by function composition).

Theorem 3.2.19 (Cayley). Every group is isomorphic to a subgroup of the permutation group Sym(G).

¹Also called the **derived subgroup**.

 $^{^2}$ Two such choices are related through conjugation by a unique permutation. The resulting groups are isomorphic.

Definition 3.2.20 (Cycle). A k-cycle is a permutation of the form $(a_1 \ a_2 \ \dots \ a_k)$ sending a_i to a_{i+1} (and a_k to a_1). A **cycle decomposition** of an arbitrary permutation is the decomposition into a product of disjoint cycles.

Property 3.2.21 (Cycles are cyclic). Let τ be a k-cycle. Then τ is k-cyclic (hence the name):

$$\tau^k = e. (3.8)$$

Example 3.2.22. Consider the set $\{1, 2, 3, 4, 5, 6\}$. The permutation $\sigma : x \mapsto x + 2 \mod 6$ can be decomposed as $\sigma = (1\ 3\ 5)(2\ 4\ 6)$.

Definition 3.2.23 (Transposition). A permutation that exchanges two elements but leaves the other ones unchanged.

Property 3.2.24 (Decomposition). Any permutation can be decomposed as a product of transpositions. A permutation is said to be **even** (resp. **odd**) if the number of transpositions in its decomposition is even (resp. odd). One can prove that the parity of a permutation is well-defined, i.e. it is independent of the choice of decomposition.

Definition 3.2.25 (Alternating group). The alternating group A_n is the subgroup of S_n containing all even permutations, i.e. those permutations that can be decomposed as an even number of transpositions.

Definition 3.2.26 (Shuffle). A permutation $\sigma \in S_n$ is called a (p,q)-shuffle (where p+q=n) if there exist disjoint increasing sequences $I = \{i_1 < \ldots < i_p\}$ and $J = \{j_1 < \ldots < j_q\}$ such that

$$\sigma(x) = \begin{cases} k & x = i_k \\ k + p & x = j_k. \end{cases}$$
 (3.9)

The name stems from the idea of dividing a deck of cards into two piles and interleaving them. This way the order in each pile is strictly preserved.

An unshuffle $\tau \in S_n$ is defined as a permuation such that τ^{-1} is a shuffle, i.e. there exist disjoint increasing sequences $I = \{i_1 < \ldots < i_p\}$ and $J = \{j_1 < \ldots < j_q\}$ such

$$\tau(k) = \begin{cases} i_k & k \le p \\ j_{k-p} & k > p. \end{cases}$$
 (3.10)

3.2.4 Group presentations

Definition 3.2.27 (Generator). A set of elements $\{g_i\}_{i\in I}\subset G$ (where I can be infinite) is said to generate G if every element in G can be written as a product of the elements g_i . These elements are then called generators of G.

Definition 3.2.28 (Relations). Let G be a group. If the product of a number of elements $g \in G$ is equal to the identity e, this product is said to be a relation on G.

Definition 3.2.29 (Complete set of relations). Let G be a group generated by a set of elements S (note that this set does not have be a group itself) and let R be a set of relations on S. If G is uniquely (up to an isomorphism) determined by S and R, the set of relations is said to be complete.

Definition 3.2.30 (Presentation). Let G be a group with generators S and let R be a complete set of relations. The pair (S, R) is called a presentation of G.

If R is finite, G is said to be **finitely related**, while if S is finite, G is said to be **finitely generated**. If both S and R are finite, G is said to be **finitely presented**.

It is clear that every group can have many different presentations and that it is (very) difficult to tell if two groups are isomorphic by just looking at their presentations.

Notation 3.2.31. The presentation of a group G is often denoted by $\langle S|R\rangle$, where S is the set of generators and R the set of relations.

3.2.5 Direct products

Definition 3.2.32 (Direct product). Let G, H be two groups. The direct product $G \times H$ is defined as the set-theoretic Cartesian product $G \times H$ equipped with a group operation \cdot defined as

$$(g_1, h_1) \cdot (g_2, h_2) = (g_1 g_2, h_1 h_2),$$
 (3.11)

where the operations on the right-hand side are the group operations in G and H. This definition can be generalized to any number of groups, even an infinite number of them if one the n-tuples are replaced by elements of the infinite Cartesian product

If $g \in G_1 \times \cdots \times G_n$ can be written as (g_1, \ldots, g_n) for $g_i \in G_i$, the g_i are called the **components** of g.

Definition 3.2.33 (Weak direct product). Consider the direct product of groups. The subgroup consisting of all elements for which all components, except finitely many of them, are the identity, is called the weak direct product. In the case of Abelian groups this is often called the **direct sum**. For a finite number of groups, the direct product and direct sum coincide.

Notation 3.2.34. The direct sum is often denoted by \oplus (in accordance with the notation for vector spaces and other algebraic structures that will be introduced further on).

Definition 3.2.35 (Inner semidirect product). Let G be a group, $H \leq G$ a subgroup and $N \triangleleft G$ a normal subgroup. G is said to be the inner semidirect product of H and N, denoted by $N \bowtie H$, if it satisfies the following equivalent statements:

- $G = NH := \{nh \mid n \in N, h \in H\}, \text{ where } N \cap H = \{e\}.$
- For every $g \in G$ there exist a unique $n \in N, h \in H$ such that g = nh.
- For every $g \in G$ there exist a unique $n \in N, h \in H$ such that g = hn.
- There exists a group morphism $\rho: G \to H$ that satisfies $\rho|_H = e$ and $\ker(\rho) = N$.
- The composition of the natural embedding $i: H \to G$ and the projection $\pi: G \to G/N$ gives an isomorphism between H and G/N.

Whenever G is isomorphic to $N \rtimes H$, it is said to **split** over N.

Property 3.2.36 (Normal subgroups). If both H and N in the above definition are normal, the inner semidirect product coincides with the direct product. In particular this includes the case of direct products. For a finite number of groups the direct product is generated by the elements of the groups.

If the subgroups H and N have presentations $\langle S_H|R_H\rangle$ and $\langle S_N|R_N\rangle$, the direct product is given by

$$H \times N = \langle S_H \cup S_N | R_H \cup R_N \cup R_C \rangle, \tag{3.12}$$

where R_C is the set of relations that enforce the commutativity of H and N.

Definition 3.2.37 (Outer semidirect product). Let G, H be two groups and let $\varphi : H \to \operatorname{Aut}(G)$ be a group morphism. The outer semidirect product $G \rtimes_{\varphi} H$ is defined as the set-theoretic Cartesian product $G \times H$ equipped with a binary relation \cdot such that

$$(g_1, h_1) \cdot (g_2, h_2) = (g_1 \varphi(h_1)(g_2), h_1 h_2). \tag{3.13}$$

The structure $(G \rtimes_{\varphi} H, \cdot)$ forms a group.

By noting that the set $N = \{(g, e_H) \mid g \in G\}$ is a normal subgroup isomorphic to G, and that the set $B = \{(e_G, h) \mid h \in H\}$ is a subgroup isomorphic to H, one can also construct the outer semidirect product $G \rtimes_{\varphi} H$ as the inner semidirect product $N \rtimes B$.

Remark 3.2.38 (Direct products). The direct product of groups is a special case of the outer semidirect product where the group morphism is given by the trivial map $\varphi: h \mapsto e_G$.

Semidirect products can even be generalized further:

Definition 3.2.39 (Bicrossed product of groups). Consider a group G with two subgroups $K, H \leq G$ such that every element $g \in G$ can be uniquely decomposed as a product of an element in K and an element in H. This implies that for $k \in K, h \in H$ there exists a unique decomposition of kh of the form

$$kh = (k \cdot h)k^h$$

where $k \cdot h \in H$ and $k^h \in K$.

It can be checked that the associativity of the product implies that $-\cdot -: K \times H \to H$ defines a left action of K on H and that $-^-: K \times H \to K$ defines a right action of H on K. Some other properties are obtained in the same way:

- $e^h = e$,
- $k \cdot e = e$,
- $(kk')^h = k^{k' \cdot h} k'^h$, and
- $k \cdot (hh') = (k \cdot h)(k^h \cdot h')$.

Any two groups having this structure are said to form a **matched pair** (of groups). Given a matched pair of groups, one can define the bicrossed product $H \bowtie K$ as follows:

$$(h,k)(h',k') = (h(k \cdot h), k^{h'}k').$$
 (3.14)

3.2.6 Free groups

Definition 3.2.40 (Free group). Consider a set S. The free group on S is the group generated by words in S, i.e. finite sequences of elements in S.

The definition of a group presentation 3.2.30 can now be restated:

Alternative Definition 3.2.41 (Presentation). A group G is said to have a presentation $\langle S|R\rangle$ if it is isomorphic to the quotient of the free group on S by the normal subgroup generated by R.

Definition 3.2.42 (Free product). Consider two groups G, H. The free product G * H is defined as the set consisting of all words composed of elements in G and H together with the concatenation (and reduction³) as multiplication. Due to the reduction, every element in G * H has a unique expression of the form $g_1h_1g_2h_2\cdots g_nh_n$.

 $^{{}^{3}}$ Two elements of the same group, written next to each other, are replaced by their product.

Remark 3.2.43 (Cardinality). For nontrivial groups the free product is always infinite.

Alternative Definition 3.2.44 (Free product). The free product of two groups G and H can equivalently be defined as the free group on the set $G \cup H$. It follows that if G, H have presentations $\langle S_G | R_G \rangle$ and $\langle S_H | R_H \rangle$ respectively, the free product is given by

$$G * H = \langle S_G \cup S_H | R_G \cup R_H \rangle. \tag{3.15}$$

By comparing to (3.12) it can be seen that the free product is a generalization of the direct product.

Definition 3.2.45 (Free product with amalgamation). Consider three groups F, G, H together with two group morphisms $\phi: F \to G$ and $\psi: F \to H$. The free product with amalgamation $G *_F H$ is defined by adding the following set of relations to the presentation of the free product $G *_H$:

$$\{\phi(f)\psi(f)^{-1} = e \mid f \in F\}.$$
 (3.16)

This is the same as saying that the free product with amalgamation can be constructed as

$$G *_F H = (G * H)/N_F$$
 (3.17)

where N_F is the normal subgroup generated by elements of the form $\phi(f)\psi(f)^{-1}$.

Definition 3.2.46 (Free Abelian group). An Abelian group G is said to be freely generated on the generators $\{g_i\}_{i\in I}$ if every element $g\in G$ can be uniquely written as a formal linear combination of the generators:

$$G = \left\{ \sum_{i \in J} a_i g_i \, \middle| \, a_i \in \mathbb{Z}, J \subseteq I \text{ is finite} \right\}. \tag{3.18}$$

The set of generators is called a **basis**⁴ of G. The number of elements in the basis is called the **rank** of G.

Property 3.2.47 (Nielsen-Schreier). Every subgroup of a free group is free.

Theorem 3.2.48 (Fundamental theorem of finitely generated groups). Every finitely generated Abelian group G of rank n can either be decomposed as a quotient of two free, finitely generated, Abelian groups

$$G = F/F' \tag{3.19}$$

or as a direct sum of a free, finitely generated, Abelian group and a torsion group 3.2.3:

$$G = A \oplus T$$
 where $T \equiv Z_{h_1} \oplus \cdots \oplus Z_{h_m}$. (3.20)

In the second decomposition A has rank n-m and all Z_{h_i} are cyclic groups of order h_i , where h_i is the power a prime. The group T is called the **torsion subgroup**.

Property 3.2.49 (Uniqueness). The rank n-m and the numbers h_i from previous theorem are unique.

⁴In analogy with the basis of a vector space.

3.3 Group actions

Definition 3.3.1 (Group action). Let G be a group and let X be a set. A map $\rho: G \times X \to X$ is called an action of G on X if it satisfies the following conditions for all $g, h \in G$ and $x \in X$:

- 1. Identity: $\rho(e, x) = x$.
- 2. Compatibility: $\rho(gh, x) = \rho(g, \rho(h, x))$.

The set X is called a (left) G-space or G-set. Right G-spaces are defined a similar way.

Alternative Definition 3.3.2. A group action can equivalently be defined as a group morphism $\rho: G \to \operatorname{Sym}(X)$. It assigns a permutation of X to every element $g \in G$. If the set X is equipped with some extra algebraic structure, one should replace $\operatorname{Sym}(X)$ by $\operatorname{Aut}(X)$, i.e. the action of G should respect the structure.

Notation 3.3.3. The action $\rho(g,x)$ is often denoted by $g \cdot x$ or even gx if no confusion can arise.

Definition 3.3.4 (Equivariant map). Let X, Y be two G-spaces. An equivariant map between these sets is a function $f: X \to Y$ satisfying

$$g \cdot f(x) = f(g \cdot x), \tag{3.21}$$

where, by abuse of notation, the symbol \cdot represents the group actions on both X and Y. An equivariant map is sometimes called a G-map.⁵

Example 3.3.5 (*G*-module). An Abelian group M equipped with a left group action $\varphi: G \to \operatorname{Aut}(M)$, i.e. an action that acts by group morphisms. Equivariant maps of *G*-modules are also called **intertwining maps** or **intertwiners**.

Definition 3.3.6 (Orbit). The orbit of an element $x \in X$ with respect to the action a group G is defined as the set

$$G \cdot x \equiv \{g \cdot x \mid g \in G\}. \tag{3.22}$$

The relation

$$p \sim q \iff \exists q \in G : p = q \cdot q$$

induces an equivalence relation for which the equivalence classes coincide with the orbits of the G-action. The set of equivalence classes X/\sim , often denoted by X/G, is called the **orbit space**.

Definition 3.3.7 (Stabilizer). The stabilizer group (also called **isotropy group** or **little group**) of an element $x \in X$ with respect to the action of a group G is defined as the set

$$G_x := \{ q \in G \mid q \cdot x = x \}.$$
 (3.23)

This is a subgroup of G for all $x \in X$.

Theorem 3.3.8 (Orbit-stabilizer theorem). Let G be a group acting on a set X and let G_x be the stabilizer of some $x \in X$. The following relation holds:

$$|G \cdot x||G_x| = |G|. \tag{3.24}$$

Definition 3.3.9 (Free action). A group action is said to be free if $g \cdot x = x$ implies g = e for any $x \in X$. Equivalently, a group action is free if the stabilizer groups of all elements is trivial.

⁵G-spaces together with the G-maps constitute a category.

Definition 3.3.10 (Faithful action). A group action is said to be faithful or **effective** if the morphism $G \to \operatorname{Aut}(X)$ is injective. Alternatively, a group action is faithful if for every two group elements $g, h \in G$ there exists an element $x \in X$ such that $g \cdot x \neq h \cdot x$.

Definition 3.3.11 (Transitive action). A group action is said to be transitive if for every two elements $x, y \in X$ there exists a group element $g \in G$ such that $g \cdot x = y$. Equivalently, a group action is transitive if there is only one orbit.

Property 3.3.12 (†). Let X be a set equipped with a transitive action of a group G. There exists a bijection $X \cong G/G_x$, where G_x is the stabilizer of any element $x \in X$.

Definition 3.3.13 (Homogeneous space). A set equipped with a transitive group action.

Definition 3.3.14 (Principal homogenous space). If the action of a group G on a homogeneous space X is also free, then X is said to be a principal homogeneous space or G-torsor.

Example 3.3.15 (Affine space). The *n*-dimensional affine space \mathbb{A}^n is an \mathbb{R}^n -torsor.

Definition 3.3.16 (Crossed module). A crossed module is a quadruple (G, H, t, α) where:

- G, H are two groups,
- t is a group morphism $H \to G$, and
- α is a group morphism $G \to \operatorname{Aut}(H)$.

These data are required to satisfy two compatibility conditions:

1. *G*-equivariance:

$$t(\alpha(g)h) = gt(h)g^{-1}. (3.25)$$

2. Peiffer identity:

$$\alpha(t(h))h' = hh'h^{-1}.$$
 (3.26)

3.4 Group cohomology

Definition 3.4.1 (Group cohomology). Consider a group G together with a G-module A. Define the k^{th} chain group as

$$C^{k}(G;A) := \{ \text{all set-theoretic functions from } G^{k} \text{ to } A \}.$$
 (3.27)

The coboundary map $d^k: C^k(G;A) \to C^{k+1}(G;A)$ is defined as follows:

$$d^{k} f(g_{1}, \dots, g_{k}, g_{k+1}) = g_{1} \cdot f(g_{2}, \dots, g_{k}, g_{k+1}) + (-1)^{k+1} f(g_{1}, \dots, g_{k})$$

$$+ \sum_{i=1}^{k} (-1)^{i+1} f(g_{1}, \dots, g_{i}g_{i+1}, \dots, g_{k}, g_{k+1}).$$
(3.28)

The cohomology groups are defined as the following quotient groups:

$$H^k(G;A) := \frac{\ker(d^k)}{\operatorname{im}(d^k)}.$$
(3.29)

?? COMPLETE (ADD e.g. classification of extensions) ??

3.5 Rings

Definition 3.5.1 (Ring). Let R be a set equipped with two binary operations $+, \cdot$ (called **addition** and **multiplication**). $(R, +, \cdot)$ is a ring if it satisfies the following axioms:

- 1. (R, +) is an Abelian group.
- 2. (R, \cdot) is a monoid.
- 3. Multiplication is distributive with respect to addition.

Definition 3.5.2 (Field). A ring $(R, +, \cdot)$ for which the monoid $(R \setminus \{1_+\}, \cdot)$ is an Abelian group and $1_+ \neq 1$.

Definition 3.5.3 (Unit). An invertible element of a ring $(R, +, \cdot)$. The set of units forms a group under multiplication.

Definition 3.5.4 (Integral domain). A commutative ring R in which the product of two nonzero elements is again nonzero.

Definition 3.5.5 (Reduced ring). A ring that contains no nonzero nilpotents.

Construction 3.5.6 (Localization). Let R be a commutative ring and let S be a multiplicatively closed set in R. Define an equivalence relation \sim on $R \times S$ in the following way:

$$(r_1, s_1) \sim (r_2, s_2) \iff \exists t \in S : t(r_1 s_2 - r_2 s_1) = 0.$$
 (3.30)

The set $S^{-1}R := (R \times S)/\sim$, called the localization of R with respect to S, can now be turned into a ring by defining an addition and a multiplication. By writing $(r,s) \in S^{-1}R$ as the formal fraction $\frac{r}{s}$, these operations are defined in analogy with the those of ordinary fractions:

- Addition: $\frac{r_1}{s_1} + \frac{r_2}{s_2} = \frac{r_1s_2 + r_2s_1}{s_1s_2}$,
- Multiplication: $\frac{r_1}{s_1} \cdot \frac{r_2}{s_2} = \frac{r_1 r_2}{s_1 s_2}$.

Remark 3.5.7. The localization of R with respect to the set S can be interpreted as the ring obtained by collapsing S into a single unit of R.

Notation 3.5.8. For specific cases different notations are sometimes used. For example, choose an element $f \in R$ and let R_f denote the localization of R with respect to the set of powers of f, i.e. $S = \{f^n \mid n \in \mathbb{N}\}$. This is called the **localization at (the element)** f. Another example occurs when working with prime ideals. Let P be a prime ideal (see the next section). It is not hard to show that the complement $R \setminus P$ is multiplicatively closed. The localization of R with respect to this set is denoted by R_P and is called the **localization at (the prime ideal)** P.

Definition 3.5.9 (Valuation). Let k be a field and let Γ be a totally ordered⁶, Abelian group. The group law and the order relation on Γ can be extended to the union $\Gamma \cup \{\infty\}$ in the following way (the notation ∞ is only a convention):

- $q + \infty := \infty + q := \infty$ for all $q \in \Gamma$, and
- $g \leq \infty$ for all $g \in \Gamma$.

A valuation on k (with values in Γ) is a map $\nu: k \to \Gamma \cup \{\infty\}$ such that:

- 1. $\nu(a) = \infty \iff a = 0;$
- 2. $\nu(ab) = \nu(a) + \nu(b)$; and
- 3. $\min(\nu(a), \nu(b)) < \nu(a+b)$, where the equality holds if $\nu(a) \neq \nu(b)$.

⁶Definition 2.5.3.

3.5.1 Ideals

Definition 3.5.10 (Ideal). Let $(R, +, \cdot)$ be a ring with (R, +) its additive group. A subset $I \subseteq R$ is called a (two-sided) ideal of R if it satisfies the following conditions:

- 1. (I, +) is a subgroup of (R, +).
- 2. $\forall n \in I, \forall r \in R : n \cdot r, r \cdot n \in I$.

Definition 3.5.11 (Artinian ring). A ring is said to be Artin(ian) if it satisfies the **descending chain condition** on ideals, i.e. if it contains no infinite descending chain 2.5.8 of ideals.

Definition 3.5.12 (Noetherian ring). A ring is said to be Noether(ian) if it satisfies the **ascending chain condition** on ideals, i.e. if it contains no infinite ascending chain of ideals.

Definition 3.5.13 (Simple ring). A ring that has no nontrivial two-sided ideals. (Some authors require the ring to be Artinian.)

Definition 3.5.14 (Unit ideal). A ring considered as an ideal of itself.

Definition 3.5.15 (Proper ideal). An ideal that is not equal to the ring itself.

Definition 3.5.16 (Prime ideal). Let R be a ring. A proper ideal $I \subset R$ is a prime ideal if for any $a, b \in R$ the following relation holds:

$$ab \in I \implies a \in I \lor b \in I.$$
 (3.31)

Definition 3.5.17 (Maximal ideal). A proper ideal that is not contained in another proper ideal.

Property 3.5.18. Every maximal ideal is prime.

Definition 3.5.19 (Jacobson radical). The Jacobson radical of a ring R, often denoted by J(R), is the ideal obtained as the intersection of all maximal left (or right) ideals. Equivalently, it is the intersection of the *annihilators* of all simple, left (or right) R-modules.

Construction 3.5.20 (Generating ideals). Let R be a ring and let X be a subset of R. The two-sided ideal generated by X is defined as the intersection of all two-sided ideals containing X. An explicit construction is given by

$$I = \left\{ \sum_{i=1}^{n} l_i x_i r_i \middle| n \in \mathbb{N}, \forall i \le n : l_i, r_i \in R \land x_i \in X \right\}.$$
 (3.32)

Left and right ideals are generated in a similar fashion.

Notation 3.5.21. If the ideal I is generated by the elements $\{f_j\}_{j\in J}$ (for some index set J), it is often denoted by

$$I \equiv (f_1, f_2, \ldots). \tag{3.33}$$

Construction 3.5.22 (Extension). Let I be an ideal of a ring R and let $\iota: R \to S$ be a ring morphism. The extension of I with respect to ι is the ideal generated by the set $\iota(I)$.

Definition 3.5.23 (Principal ideal). An ideal that is generated by a single element.

Definition 3.5.24 (Principal ideal domain). An integral domain 3.5.4 in which every ideal is principal.

Definition 3.5.25 (Local ring). A ring for which a unique, maximal, left ideal exists. This also implies that there exists a unique, maximal, right ideal and that these ideals coincide.

Property 3.5.26 (Characterization by invertible complements). A ring R is local if and only if there exists a maximal ideal M such that every element in the complement $R \setminus M$ is invertible.

Property 3.5.27 (Prime localization). The localization of a ring R with respect to a prime ideal P is a local ring, where the maximal ideal is given by the extension of P with respect to the ring morphism $\iota: R \to R_P$. Equivalently, this says that the maximal ideal is given by PR_P .

Definition 3.5.28 (Residue field). Consider a local ring R and let I be its maximal ideal. The quotient ring R/I forms a field, called the residue field.

3.5.2 Modules

Definition 3.5.29 (R-module). Let $(R, +, \cdot)$ be a ring. A set X is said to be an R-module if it satisfies the same axioms as those of a vector space 20.1.1, but where the scalars are only elements of a ring instead of a field.

Definition 3.5.30 (Free module). An R-module M is said to be free if it admits a basis, i.e. there exists a set $\{x_i\}_{i\in I}$ (where I can be infinite) such that:

- 1. every element $m \in M$ can be written as a linear combination $\sum_{j \in J} r_j x_j$, where $J \subseteq I$ is finite.
- 2. the set $\{x_i\}_{i\in I}$ is linearly independent in the sense that

$$\sum_{j \in J \subseteq I} r_j x_j = 0 \implies \forall j \in J : r_j = 0. \tag{3.34}$$

Example 3.5.31 (Dual numbers). Let R be a ring. The R-algebra of dual numbers, often denoted by $R[\varepsilon]$, is defined as the free R-module with basis $\{1, \varepsilon\}$ subject to the relation $\varepsilon^2 = 0$.

Property 3.5.32 (Division rings). For a general R-module the existence of a basis is not guaranteed unless R is a division ring. (See Construction 20.1.9 for more information.)

Corollary 3.5.33. Since every field is in particular a division ring, the existence of a basis follows from the above property for *R*-modules.

Definition 3.5.34 (Projective module). A module P is said to be projective if P can be expressed as

$$P \oplus M = F, \tag{3.35}$$

where M is a module and F is a free module, i.e. if P is a direct sum and of a free module.

3.5.3 Semisimplicity

Definition 3.5.35 (Simple module). A module over a ring is said to be simple if it contains no nontrivial submodules. A module is said to be **semisimple** if it admits a decomposition as a direct sum of simple modules. A ring is said to be semisimple if it is semisimple as a module over itself.

Property 3.5.36 (Jacobson radical). A ring is semisimple if and only if it is Artinian and if its Jacobson radical 3.5.19 vanishes.

Theorem 3.5.37 (Artin-Wedderburn). Every semisimple ring is isomorphic to a direct sum of matrix rings over division rings D_i with multiplicity n_i . Furthermore, the integers D_i and n_i are unique (up to a permutation of the indices).

3.6 Limits of algebraic structures

Definition 3.6.1 (Direct system). Let (I, \leq) be a directed set 2.5.10 and let $\{A_i\}_{i \in I}$ be a family of algebraic objects (groups, rings, ...). Consider a collection of morphisms $\{f_{ij}: A_i \to A_j\}_{i,j \in I}$ between these objects with the following properties:

- for every $i \in I$: $f_{ii} = \mathbb{1}_{A_i}$, and
- for every $i \leq j \leq k \in I$: $f_{ik} = f_{jk} \circ f_{ij}$.

The pair (A_i, f_{ij}) is called a direct system (over I).

Definition 3.6.2 (Direct limit⁷). Consider a direct system (A_i, f_{ij}) over a directed set I. The direct limit A of this direct system is defined as follows:

$$\varinjlim A_i := \bigsqcup_{i \in I} A_i / \sim$$
(3.36)

where the equivalence relation is given by $x \in A_i \sim y \in A_j \iff \exists k \in I : f_{ik}(x) = f_{jk}(y)$. Informally put: two elements are equivalent if they eventually become the same.

The algebraic operations on A are defined such that the inclusion maps $\phi_i: A_i \to A$ are morphisms.

Definition 3.6.3 (Inverse system). Let (I, \leq) be a directed set 2.5.10 and let $\{A_i\}_{i\in I}$ be a family of algebraic objects (groups, rings, ...). Consider a collection of morphisms $\{f_{ij}: A_j \to A_i\}_{i,j\in I}$ between these objects with the following properties:

- for every $i \in I$: $f_{ii} = \mathbb{1}_{A_i}$, and
- for every $i \leq j \leq k \in I$: $f_{ik} = f_{ij} \circ f_{jk}$.

The pair (A_i, f_{ij}) is called an inverse system (over I).

Definition 3.6.4 (Inverse limit⁸). Consider an inverse system (A_i, f_{ij}) over a directed set I. The inverse limit A of this inverse system is defined as follows:

$$\varprojlim A_k := \left\{ \vec{a} \in \prod_{i \in I} A_i \, \middle| \, a_i = f_{ij}(a_j), \forall i \le j \right\}.$$
(3.37)

For all $i \in I$ there exists a natural projection $\pi_i : \underline{\lim} A_k \to A_i$.

Remark 3.6.5. The direct and inverse limit are each other's (categorical) dual. The former is a colimit while the latter is a limit in category theory.

3.7 Galois theory

Definition 3.7.1 (Field extension). Let k be a field. A field extension of k is a field K such that $k \subset K$ and such that the operations of k are the restrictions of those in K.

Notation 3.7.2. A field extension K of k is often denoted by K/k.

Definition 3.7.3 (Degree). If K + k is a field extension, then K can be given the structure of a k-vector space 20.1.1. The dimension of this vector space is called the degree of the extension K. It is often denoted by [K : k].

?? COMPLETE ??

⁷Also called an **inductive limit**.

⁸Also called a **projective limit**.

Part II Category Theory

Chapter 4

Category theory

For the general theory of categories, the classical reference is [16]. The main reference for (co)end calculus is [107], while a thorough introduction to the theory of enrichment is given in [13]. For the theory of higher categories and its applications to topology and algebra, the reader is referred to the book by *Baez et al.* [30]. A good starting point for bicategories (and more) is the paper by *Leinster* [82].

4.1 Categories

Definition 4.1.1 (Category). A category C consists of two collections, the objects ob(C) and the morphisms hom(C), that satisfy the following conditions:

- 1. Source and target: For every morphism $f \in \text{hom}(\mathbf{C})$ there exist two objects $s(f), t(f) \in \text{ob}(\mathbf{C})$, the source and target. The collection of all morphisms with source x and target y is denoted by $\text{Hom}_{\mathbf{C}}(x,y)$ or $\mathbf{C}(x,y)$.
- 2. Existence of composition: For every two morphisms $f \in \mathbf{C}(y,z)$ and $g \in \mathbf{C}(x,y)$, the composite $f \circ g$ is an element of $\mathbf{C}(x,z)$. Moreover, composition is required to be associative.
- 3. Existence of identity: For every $x \in \text{ob}(\mathbf{C})$, there exists an identity morphism $\mathbb{1}_x \in \mathbf{C}(x,x)$. Identity morphisms are required to satisfy $f \circ \mathbb{1}_x = f = \mathbb{1}_y \circ f$ for every morphism $f \in \mathbf{C}(x,y)$.

Remark 4.1.2. One technically does not need to consider objects as a separate notion since every object can be identified with its identity morphism (which exists by definition) and, hence, one can work solely with morphisms. It should be noted that for higher categories this remark can be omitted since the objects are always regarded as 0-morphisms in that context.

Definition 4.1.3 (Subcategory). A subcategory is said to be **full** if for every two objects $x, y \in \text{ob}(\mathbf{S})$:

$$\mathbf{S}(x,y) = \mathbf{C}(x,y). \tag{4.1}$$

A subcategory is said to be wide or lluf if it contains all objects, i.e. ob(S) = ob(C).

Definition 4.1.4 (Small category). A category \mathbb{C} for which both $ob(\mathbb{C})$ and $hom(\mathbb{C})$ are sets. A category \mathbb{C} is said to be locally small if for every two objects $x, y \in ob(\mathbb{C})$ the collection of morphisms $\mathbb{C}(x,y)$ is a set. A category equivalent to a small category is said to be **essentially small**.

Definition 4.1.5 (Opposite category). Let **C** be a category. The opposite category \mathbf{C}^{op} is constructed by reversing all arrows in **C**, i.e. a morphism in $\mathbf{C}^{op}(x,y)$ is a morphism in $\mathbf{C}(y,x)$.

Property 4.1.6 (Involution). From the definition of the opposite category it readily follows that op is an involution:

$$(\mathbf{C}^{op})^{op} = \mathbf{C}.\tag{4.2}$$

4.2 Functors

Definition 4.2.1 (Covariant functor). Let A, B be categories. A (covariant) functor is an assignment $F : A \to B$ satisfying the following conditions:

- 1. F maps every object $x \in ob(\mathbf{A})$ to an object $Fx \in ob(\mathbf{B})$.
- 2. F maps every morphism $\phi \in \mathbf{A}(x,y)$ to a morphism $F\phi \in \mathbf{B}(Fx,Fy)$.
- 3. F preserves identities, i.e. $F\mathbb{1}_x = \mathbb{1}_{Fx}$.
- 4. F preserves compositions, i.e. $F(\phi \circ \psi) = F\phi \circ F\psi$.

Property 4.2.2 (Category of categories). Small categories, together with (covariant) functors between them, form a category **Cat**. The restriction to small categories is important since otherwise one would obtain an inconsistency similar to *Russell's paradox*. In certain foundations one can also consider the "category" **CAT** of all categories, but this would not be a large category anymore. It would be something like a "very large" category.

Definition 4.2.3 (Contravariant functor). Let A, B be categories. A contravariant functor is an assignment $F : A \to B$ satisfying the following conditions:

- 1. F maps every object $x \in ob(\mathbf{A})$ to an object $Fx \in ob(\mathbf{B})$.
- 2. F maps every morphism $\phi \in \mathbf{A}(x,y)$ to a morphism $F\phi \in \mathbf{B}(Fy,Fx)$.
- 3. F preserves identities, i.e. $F\mathbb{1}_x = \mathbb{1}_{Fx}$.
- 4. F reverses compositions, i.e. $F(\phi \circ \psi) = F\psi \circ F\phi$.

A contravariant functor can also be defined as a covariant functor from the opposite category and, accordingly, from now on the word "covariant" will be dropped when talking about functors.

Definition 4.2.4 (Endofunctor). A functor of the form $F: \mathbb{C} \to \mathbb{C}$.

Definition 4.2.5 (Presheaf). A contravariant functor $G : \mathbf{C}^{op} \to \mathbf{Set}$. The collection of all presheaves on \mathbf{C} forms a category $\mathbf{Psh}(\mathbf{C})$ (also denoted by $\widehat{\mathbf{C}}$).

Example 4.2.6 (Hom-functor). Let **C** be a locally small category. Every object $x \in ob(\mathbf{C})$ induces a functor $h^x : \mathbf{C} \to \mathbf{Set}$ defined as follows:

- h^x maps every object $y \in ob(\mathbf{C})$ to the set $\mathbf{C}(x,y)$.
- For all $y, z \in ob(\mathbf{C})$, h^x maps every morphism $f \in \mathbf{C}(y, z)$ to the function

$$f \circ -: \mathbf{C}(x,y) \to \mathbf{C}(x,z) : g \mapsto f \circ g.$$

Remark 4.2.7. The contravariant hom-functor h_x is defined by replacing $\mathbf{C}(x, -)$ with $\mathbf{C}(-, x)$ and replacing postcomposition with precomposition.

Definition 4.2.8 (Faithful functor). A functor $F: \mathbf{A} \to \mathbf{B}$ for which the map

$$\mathbf{A}(x,y) \to \mathbf{B}(Fx,Fy)$$

is injective for all objects $x, y \in ob(\mathbf{A})$.

Definition 4.2.9 (Full functor). A functor $F: \mathbf{A} \to \mathbf{B}$ for which the map

$$\mathbf{A}(x,y) \to \mathbf{B}(Fx,Fy)$$

is surjective for all objects $x, y \in ob(\mathbf{A})$.

Definition 4.2.10 (Embedding). A fully faithful functor.

Definition 4.2.11 (Essentially surjective functor). A functor $F : \mathbf{A} \to \mathbf{B}$ such that for every object $y \in \text{ob}(\mathbf{B})$, there exists an object $x \in \text{ob}(\mathbf{A})$ with $Fx \cong y$.

Definition 4.2.12 (Profunctor¹). A functor of the form $F : \mathbf{B}^{op} \times \mathbf{A} \to \mathbf{Set}$. Such a functor is often denoted by $F : \mathbf{A} \to \mathbf{B}$. Elements of the set F(x,y) are sometimes called **heteromorphisms** (between x and y).

It should be noted that presheafs on \mathbb{C} are profunctors of the form $1 \longrightarrow \mathbb{C}$.

4.2.1 Natural transformations

Definition 4.2.13 (Natural transformation). Let $F, G : \mathbf{A} \to \mathbf{B}$ be two functors. A natural transformation $\psi : F \Rightarrow G^3$ consists of a collection of morphisms satisfying the following two conditions:

- 1. For every object $x \in ob(\mathbf{A})$, there exists a morphism $\psi_x : Fx \to Gx$ in $hom(\mathbf{B})$. This morphism is called the **component** of ψ at x. (It is often said that ψ_x is **natural in** x.)
- 2. For every morphism $f \in \mathbf{A}(x,y)$, the diagram below commutes:

$$\begin{array}{ccc}
Fx & \xrightarrow{Ff} & Fy \\
\psi_x & & & \downarrow \psi_y \\
\downarrow & & & \downarrow \psi_y \\
Gx & \xrightarrow{Gf} & Gy
\end{array}$$

Definition 4.2.14 (Functor category). Consider two categories \mathbf{A}, \mathbf{B} where \mathbf{A} is small. The functors $F: \mathbf{A} \to \mathbf{B}$ form the objects of a category with the natural transformations as morphisms. This category is denoted by $[\mathbf{A}, \mathbf{B}]$ or $\mathbf{B}^{\mathbf{A}}$ (the latter is a generalization of 2.2.5).

Definition 4.2.15 (Dinatural transformation). Consider two profunctors $F, G : \mathbf{A} \to \mathbf{A}$ or, more generally, two functors $F, G : \mathbf{A}^{op} \times \mathbf{A} \to \mathbf{B}$. A dinatural transformation is a family of morphisms

$$\eta_x: F(x,x) \to G(x,x)$$

that make diagram 4.1 commute for every morphism $f: y \to x$.

Definition 4.2.16 (Representable functor). Let \mathbb{C} be a locally small category. A functor $F: \mathbb{C} \to \mathbf{Set}$ is said to be representable if there exists an object $x \in \mathrm{ob}(\mathbb{C})$ such that F is naturally isomorphic to h^x . The pair $(x, \psi: F \Rightarrow h^x)$ is called a **representation** of F.

Theorem 4.2.17 (Yoneda lemma). Let \mathbb{C} be a locally small category and let $F: \mathbb{C} \to \mathbf{Set}$ be a functor. For every object $x \in ob(\mathbb{C})$, there exists a natural isomorphism⁴

$$\eta_x : \operatorname{Nat}(h^x, F) \to Fx : \psi \mapsto \psi_x(\mathbb{1}_x).$$
(4.3)

¹Sometimes called a **distributor**.

²This is the convention by *Borceux*. Some other authors, such as [17], use the opposite convention.

³This notation is in analogy with the general notation for 2-morphisms. See Section 4.9 for more information.

⁴Here, the fact that Nat $(h^-, -)$ can be seen as a functor $\mathbf{Set}^{\mathbf{C}} \times \mathbf{C} \to \mathbf{Set}$ is used.

Figure 4.1: Dinatural transformation.

Corollary 4.2.18 (Yoneda embedding). When F is another hom-functor h^y , the following result is obtained:

$$Nat(h^x, h^y) \cong \mathbf{C}(y, x). \tag{4.4}$$

Note that y appears in the first argument on the right-hand side.

Let $\mathbf{C}(f,-)$ denote the natural transformation corresponding to the morphism $f \in \mathbf{C}(y,x)$. The functor h^- , mapping an object $x \in \mathrm{ob}(\mathbf{C})$ to its hom-functor $\mathbf{C}(x,-)$ and a morphism $f \in \mathbf{C}(y,x)$ to the natural transformation $\mathbf{C}(f,-)$, can also be interpreted as a covariant functor $G: \mathbf{C}^{op} \to \mathbf{Set}^{\mathbf{C}}$. This way the Yoneda lemma can be seen to give rise to an embedding h^- of \mathbf{C}^{op} in the functor category $\mathbf{Set}^{\mathbf{C}}$.

As usual, all of this can be done for contravariant functors. This gives an embedding

$$\mathcal{Y} := h_{-} : \mathbf{C} \hookrightarrow \widehat{\mathbf{C}},\tag{4.5}$$

called the Yoneda embedding.

Definition 4.2.19 (Local object). Consider a collection of morphisms $S \subset \text{hom}(\mathbf{C})$. An object $c \in \text{ob}(\mathbf{C})$ is said to be S-local if the Yoneda embedding $\mathcal{Y}c$ maps morphisms in S to isomorphisms in Set. A morphism $f \in \text{hom}(\mathbf{C})$ is said to be S-local if its image under the Yoneda embedding of every S-local object is an isomorphism in Set.

4.2.2 Equivalences

Definition 4.2.20 (Equivalence of categories). Two categories A, B are said to be equivalent if there exist functors $F : A \to B$ and $G : B \to A$ such that $F \circ G$ and $G \circ F$ are naturally isomorphic to the identity functors.

A weaker notion is that of a **weak equivalence**. Two categories \mathbf{A}, \mathbf{B} are said to be weakly equivalent if there exist functors $F : \mathbf{A} \to \mathbf{B}$ and $G : \mathbf{B} \to \mathbf{A}$ that are fully faithful and essentially surjective. Assuming the axiom of choice, every weak equivalence is also a (strong) equivalence (in fact this statement is equivalent to the axiom of choice).

Definition 4.2.21 (Skeletal category). A category in which every isomorphism is necessarily an identity morphism. The **skeleton** of a category is an equivalent skeletal category (often taken to be a subcategory by choosing a representative from every isomorphism class).

If one does not assume the axiom of choice, the skeleton is merely a weakly equivalent skeletal category.

Definition 4.2.22 (Decategorification). Let C be an (essentially) small category. The set of isomorphism classes of C is called the decategorification of C. This amounts to a functor Decat: $Cat \to Set$.

4.2.3 Stuff, structure and property

To classify properties of objects and the *forgetfulness* of functors, it is interesting to make a distinction between stuff, structure and property. Consider for example a group. This is a set (*stuff*) equipped with a number of operations (*structure*) that obey some relations (*properties*).

Using these notions one can classify forgetful functors in the following way:

- A functor forgets nothing if it is an equivalence of categories.
- A functor forgets at most properties if it is fully faithful.
- A functor forgets at most structure if it is faithful.
- A functor forgets at most stuff if it is just a functor.

?? COMPLETE (see e.g. nLab or the paper "Why surplus structure is not superfluous" by Nicholas Teh et al.) ??

4.2.4 Adjunctions

Definition 4.2.23 (Hom-set adjunction). Let $F : \mathbf{A} \to \mathbf{B}$ and $G : \mathbf{B} \to \mathbf{A}$ be two functors. These functors form a (hom-set) adjunction $F \dashv G$ if the following isomorphism is natural in both x and y:

$$\Phi_{x,y}: \mathbf{B}(Fx,y) \cong \mathbf{A}(x,Gy). \tag{4.6}$$

The functor F (resp. G) is called the left (resp. right) adjoint and the image of a morphism under either of the natural isomorphisms is called the adjunct of the other morphism.⁵.

Notation 4.2.24. An adjunction $F \dashv G$ between categories A, B is often denoted by

$$\mathbf{B} \xrightarrow{F} \mathbf{A}.$$

Definition 4.2.25 (Unit-counit adjunction). Let $F : \mathbf{A} \to \mathbf{B}$ and $G : \mathbf{B} \to \mathbf{A}$ be two functors. These functors form a unit-counit adjunction if there exist natural transformations

$$\varepsilon: F \circ G \Rightarrow \mathbb{1}_{\mathbf{B}} \tag{4.7}$$

$$\eta: \mathbb{1}_{\mathbf{A}} \Rightarrow G \circ F \tag{4.8}$$

such that the following compositions are identity morphisms:

$$F \xrightarrow{F\eta} FGF \xrightarrow{\varepsilon F} F \tag{4.9}$$

$$G \xrightarrow{\eta G} GFG \xrightarrow{G\varepsilon} G. \tag{4.10}$$

These identities are sometimes called the **triangle** or **zig-zag identities** (the latter results from the shape of the associated *string diagram*). The transformations η and ε are called the **unit** and **counit** respectively.

⁵The terms "adjunct" and "adjoint" are sometimes used interchangeably (cf. French versus Latin).

Property 4.2.26 (Equivalence of the above definitions). Every hom-set adjunction induces a unit-counit adjunction. Let Φ be the natural isomorphism associated to the hom-set adjunction $F \dashv G$. The counit ε_y is obtained as the adjunct $\Phi_{Gy,y}^{-1}(\mathbb{1}_{Gy})$ of the identity morphism on $Gy \in \text{ob}(\mathbf{A})$, and the unit η_x is analogously defined as the adjunct $\Phi_{c,Fc}(\mathbb{1}_{Fx})$ of the identity morphism at $Fx \in \text{ob}(\mathbf{B})$.

Conversely, every unit-counit adjunction induces a hom-set adjunction. Consider a morphism $f: Fx \to y$. The (right) adjunct is defined as the composition

$$\widetilde{f} := Gf \circ \eta_x : x \to (G \circ F)x \to Gy.$$

To construct a (left) adjunct, consider a morphism $\tilde{g}: x \to Gy$:

$$g := \varepsilon_y \circ F\tilde{g} : Fx \to (F \circ G)y \to y.$$

Definition 4.2.27 (Reflective subcategory). A full subcategory is said to be reflective (resp. coreflective) if the inclusion functor admits a left (resp. right) adjoint.

Property 4.2.28 (Adjoint equivalence). Any equivalence of categories is part of an adjoint equivalence, i.e. an adjunction for which the unit and counit morphisms are invertible.

4.3 General constructions

Definition 4.3.1 (Dagger category). A category equipped with a contravariant involutive endofunctor, this functor is often denoted by $\dagger: \mathbf{C} \to \mathbf{C}$, similar to the adjoint operator for Hermitian matrices.

Remark 4.3.2. The concept of a dagger structure allows the usual definition of unitary and self-adjoint morphisms, i.e. morphism satisfying

$$f^{\dagger} = f^{-1} \qquad \text{or} \qquad f^{\dagger} = f. \tag{4.11}$$

Definition 4.3.3 (Comma category). Let A, B and C be three categories and let $F : A \to C$ and $G : B \to C$ be two functors. The comma category $F \downarrow G$ is defined as follows:

- Objects are triples (x, y, γ) where $x \in \text{ob}(\mathbf{A}), y \in \text{ob}(\mathbf{B})$ and $\gamma : Fx \to Gy$.
- Morphisms $(x, y, \gamma) \to (k, l, \sigma)$ are pairs (f, g) with $f: x \to k \in \text{hom}(\mathbf{A})$ and $g: y \to l \in \text{hom}(\mathbf{B})$ such that $\sigma \circ Ff = Gg \circ \gamma$.
- Composition of morphisms is defined componentwise.

Definition 4.3.4 (Arrow category). The comma category of the pair of functors ($\mathbb{1}_{\mathbb{C}}$, $\mathbb{1}_{\mathbb{C}}$). This is equivalently the functor category [2, C] where 2 is the **interval category/walking** arrow $\{0 \to 1\}$.

Definition 4.3.5 (Functorial factorization). A section of the composition functor

$$\circ: [\mathbf{3}, \mathbf{C}] \to [\mathbf{2}, \mathbf{C}],$$

where **3** is the poset $\{0 \to 1 \to 2\}$.

Definition 4.3.6 (Slice category). Let \mathbb{C} be a category and consider an object $x \in ob(\mathbb{C})$. The slice category \mathbb{C}/x of \mathbb{C} over x is defined as follows:

- The objects are morphisms in \mathbf{C} with codomain x.
- The morphisms $f \to g$ are morphisms h in \mathbb{C} such that $g \circ h = f$.

This category is also called the **over-category** of x. By dualizing one obtains the **under-category** of x.

4.3.1 Fibred categories ♣

Definition 4.3.7 (Fibre category). Let $\Pi: \mathbf{A} \to \mathbf{B}$ be a functor. The fibre category (of Π) over $y \in \text{ob}(\mathbf{B})$ is the subcategory of \mathbf{A} consisting of all objects $x \in \text{ob}(\mathbf{A})$ such that $\Pi x = y$ and all morphisms $m \in \text{hom}(\mathbf{A})$ such that $\Pi m = \mathbb{1}_y$. It will be denoted by \mathbf{A}_y .

Morphisms in **A** that are mapped to a morphism f in **B** are called f-morphisms and, in particular (using the identification of objects and their identity morphisms), morphisms in \mathbf{A}_y are called y-morphisms. Similarly, B-categories are defined as the categories equipped with a (covariant) functor to \mathbf{B} . (It is not hard to see that these form a 2-category under composition of functors that respects the \mathbf{B} -category structure.)

Definition 4.3.8 (Cartesian morphism). Consider a **B**-category $\Pi : \mathbf{A} \to \mathbf{B}$. A morphism f in \mathbf{A} is called Π -Cartesian if every Πf -morphism factors uniquely through a y-morphism, where y is the domain of Πf .

There also exists a notion of stronger notion. A **strongly Cartesian morphism** is a morphism $f \in \text{hom}(\mathbf{A})$ such that for every morphism $\varphi \in \text{hom}(\mathbf{A})$ with the same target and every factorization of $\Pi \varphi$ through Πf there exists a unique factorization of φ through f that maps to the given factorization of $\Pi \varphi$.

The following diagram (where the triangles commute) should clarify the above (technical) definitions:

The diagram for (weak) Cartesian morphisms is obtained by identifying the objects $\Pi x'$ and Πx_1 , i.e. by restricting to the case $\nu = \mathbb{1}_{\Pi x_1}$.

The Cartesian morphisms are said to be **inverse images** of their projections under Π and the object x_1 is called an **inverse image** of x_2 by Πf . The Cartesian morphisms of a fibre category are exactly the isomorphisms of that category.

Definition 4.3.9 (Fibred category). A **B**-category $\Pi : \mathbf{A} \to \mathbf{B}$ is called a fibred category or **Grothendieck fibration** if the following conditions are satisfied:

- 1. Each morphism in \mathbf{B} whose codomain lies in the range of Π has at least one inverse image (in the weak sense).
- 2. The composition of two Cartesian morphisms is again Cartesian (in the weak sense).

If one instead works with strongly Cartesian morphisms, the second condition follows from the first one. However, it should be noted that in a fibred category a morphism is weakly Cartesian if and only if it is strongly Cartesian.

Definition 4.3.10 (Cleavage). Given a **B**-category $\Pi : \mathbf{A} \to \mathbf{B}$, a cleavage is the choice of a Cartesian g-morphism $f : x \to y$ for every $y \in \mathrm{ob}(\mathbf{A})$ and morphism $g : b \to \Pi a'$. A **B**-category equipped with a cleavage is said to be **cloven**.

It is clear that the existence of cleavage is sufficient for a category to be fibred and, conversely (assuming the axiom of choice), every fibred category admits a cleavage.

The following example can be obtained as a Grothendieck fibration with discrete fibres:

Example 4.3.11 (Discrete fibration). A functor $F : \mathbf{A} \to \mathbf{B}$ such that for every object $x \in \text{ob}(\mathbf{A})$ and every morphism $f : y \to Fx$ in \mathbf{B} there exists a unique morphism $g : z \to x$ in \mathbf{A} such that Fq = f.

Example 4.3.12 (Groupoidal fibration). If every morphism is required to be Cartesian, the notion of a groupoid(al) fibration or a **category fibred in groupoids** is obtained. The reason for this name is that every fibre is a groupoid. An equivalent definition is that the associated pseudofunctor (see the construction below) factors through the embedding $\mathbf{Grpd} \hookrightarrow \mathbf{Cat}$.

Property 4.3.13 (Grothendieck construction \$\ldot\$). Every cloven category $\Pi: \mathbf{A} \to \mathbf{B}$ defines a $pseudofunctor^6 F: \mathbf{B}^{op} \to \mathbf{Cat}$ which sends objects to fibre categories and arrows f to the pullback functor f^* constructed from a Cartesian morphism covering f. Conversely, every pseudofunctor gives rise to a fibred category through the following construction. (These two constructions constitute a 2-equivalence of 2-categories.)

The Grothendieck construction gives a (2-)functor $\int : [\mathbf{C}^{op}, \mathbf{Cat}] \to \mathbf{Cat}/\mathbf{C}$. Consider a pseudofunctor $F : \mathbf{C}^{op} \to \mathbf{Cat}$. The "bundle" $\int F$ consists of the following data:

- The objects are pairs (x, y) with $x \in ob(\mathbf{C})$ and $y \in ob(Fx)$.
- The morphisms $(x,y) \to (x',y')$ are pairs $(f:x \to x', \alpha:y \to Ff(y'))$.

Given a cleavage, the morphisms of the Grothendieck construction are exactly the factorizations of f-morphisms through the canonical lifting of f in the cleavage.

Property 4.3.14 (Functors). A pseudofunctor is a functor if and only if the cleavage of the associated fibred category is **split(ting)**, i.e. it contains all identities and is closed under composition.

Example 4.3.15 (Category of elements). The Grothendieck construction applied to an ordinary presheaf $F: \mathbb{C}^{op} \to \mathbf{Set}$.

4.3.2 Monads

Definition 4.3.16 (Monad). A monad is a triple (T, μ, η) where $T : \mathbf{C} \to \mathbf{C}$ is an endofunctor and $\mu : T^2 \to T, \eta : \mathbb{1}_{\mathbf{C}} \to T$ are natural transformations satisfying the following (coherence) conditions:

1. As natural transformations from T^3 to T:

$$\mu \circ T\mu = \mu \circ \mu_T. \tag{4.12}$$

2. As natural transformations from T to itself:

$$\mu \circ T\eta = \mu \circ \eta_T = 1. \tag{4.13}$$

These conditions say that a monad is a monoid ?? in the category $\mathbf{End}_{\mathbf{C}}$ of endofunctors on \mathbf{C} . Accordingly, η and μ are often called the **unit** and **multiplication** maps.

Example 4.3.17 (Adjunction). Every adjunction $F \dashv G$, with unit ε and counit η , induces a monad of the form $(GF, G\varepsilon F, \eta)$.

Definition 4.3.18 (Algebra⁷ **over a monad).** Consider a monad (T, μ, η) on a category \mathbf{C} . An algebra over T is a couple (x, κ) , where $x \in \text{ob}(\mathbf{C})$ and $\kappa : Tx \to x$, such that the following conditions are satisfied:

⁶See Definition 4.9.9 towards the end of this chapter.

⁷A more suitable name would be "module over a monad", since these are modules over a monoid if monads are regarded as monoids in **End**_C.

- 1. $\kappa \circ T\kappa = \kappa \circ \mu_x$, and
- $2. \ \kappa \circ \eta_x = \mathbb{1}_x.$

Morphisms $(x, \kappa_x) \to (y, \kappa_y)$ of T-algebras are morphisms $f : x \to y$ in **C** such that $f \circ \kappa_x = \kappa_y \circ Tf$. An algebra of the form (Tx, μ_x) is said to be **free**.

Definition 4.3.19 (Eilenberg-Moore category). Given a monad T over a category \mathbf{C} , the Eilenberg-Moore category \mathbf{C}^T is defined as the category of T-algebras.

Definition 4.3.20 (Kleisli category). Consider a monad T on a category \mathbb{C} . The Kleisli category \mathbb{C}_T is defined as the full subcategory of \mathbb{C}^T on the **free** T-algebras. This is equivalently the category with objects $\mathrm{ob}(\mathbb{C}_T) := \mathrm{ob}(\mathbb{C})$ and morphisms $\mathbb{C}_T(x,y) := \mathbb{C}(x,Ty)$.

Definition 4.3.21 (Monadic adjunction). An adjunction between categories \mathbf{A} and \mathbf{B} is said to be monadic if there exists an equivalence between B and the Eilenberg-Moore category of the induced monad.

Definition 4.3.22 (Monadic functor). A functor is said to be monadic if it admits a left adjoint such that the adjunction is monadic.

The following theorem characterizes monadic functors (for more information on some of the concepts, see Section 4.4 further below):

Theorem 4.3.23 (Beck's monadicity theorem). Consider a functor $F: \mathbf{A} \to \mathbf{B}$. This functor is monadic if and only if the following conditions are satisfied:

- F admits a left adjoint.
- F reflects isomorphisms, i.e. all morphims in the preimage of an isomorphism are also isomorphisms.
- A has all coequalizers of F-split parallel pairs⁸ and F preserves these coequalizers.

Remark 4.3.24 (Crude monadicity theorem). A sufficient condition for monadicity is obtained by replacing the third condition above by the following weaker statement: "A has all coequalizers of reflexive pairs and F preserves these coequalizers."

Definition 4.3.25 (Closure operator). Consider a monad $(T : \mathbf{C} \to \mathbf{C}, \eta, \mu)$. This monad is called a closure operator or **modal operator** if the multiplication map is a natural isomorphism, i.e. if the monad is idempotent.

Given a closure operator $T: \mathbf{C} \to \mathbf{C}$, the object Tx is called the closure of $x \in \text{ob}(\mathbf{C})$ and the associated morphism η_x is called the **closing map**. $x \in \text{ob}(\mathbf{C})$ itself is said to be T-**closed** exactly if its closing map is an isomorphism.

An object $x \in ob(\mathbf{C})$ is called a **modal type** if the unit $\eta_x : x \to Tx$ is an isomorphism.

Remark 4.3.26 (Bicategories 4). A monad can be defined in any bicategory as a 1-morphism $t: x \to x$ together with two 2-morphisms that satisfy conditions similar to the ones above. The above definition is then just a specific case of this more general definition in the 2-category **Cat**.

In the general setting one can then also define a **module** over a monad. First of all, one can regard any object $x \in ob(\mathbf{C})$ as a functor from the terminal category 1. One can then replace 1 by any other category in the ordinary definition to obtain a general algebra (or module) over a given monad. It is this definition that readily generalizes to bicategories, i.e. a module is a 1-morphism $a: x \to y$ together with a 2-morphism that satisfies the same conditions as an algebra over a monad in \mathbf{Cat} .

⁸These are parallel pairs f, g such that the images Ff, Fg under F admit a split coequalizer.

4.4 Morphisms and diagrams

4.4.1 Morphisms

Definition 4.4.1 (Section). A section of a morphism $f: x \to y$ is a right-inverse, i.e. a morphism $g: y \to x$ such that $f \circ g = \mathbb{1}_y$. f itself is called a **retraction** of g and g is called a **retract** of g.

Definition 4.4.2 (Monomorphism). Let \mathbf{C} be a category. A morphism $\mu \in \mathbf{C}(x,y)$ is called a monomorphism, **mono** or **monic morphism** if for every object $z \in \text{ob}(\mathbf{C})$ and every two morphisms $\alpha_1, \alpha_2 \in \mathbf{C}(z,x)$ such that $\mu \circ \alpha_1 = \mu \circ \alpha_2$ one can conclude that $\alpha_1 = \alpha_2$.

Definition 4.4.3 (Epimorphism). Let \mathbb{C} be a category. A morphism $\varepsilon \in \mathbb{C}(x,y)$ is called an epimorphism, **epi** or **epic morphism** if for every object $z \in \text{ob}(\mathbb{C})$ and every two morphisms $\alpha_1, \alpha_2 \in \mathbb{C}(y, z)$ such that $\alpha_1 \circ \varepsilon = \alpha_2 \circ \varepsilon$ one can conclude that $\alpha_1 = \alpha_2$.

Definition 4.4.4 (Split monomorphism). A morphism $f: x \to y$ that is a section of some other morphism $g: y \to x$. It can be shown that every split mono is in fact a mono and even an **absolute mono**, i.e. it is preserved by all functors.

The morphism g can be seen to satisfy the dual condition and hence is called a **split epimorphism**. It can be shown to be an absolute epi.

Definition 4.4.5 (Balanced category). A category in which every monic epi is an isomorphism.

Definition 4.4.6 (Reflexive pair). Two parallel morphisms $f, g: x \to y$ are said to form a reflexive pair if they have a common section, i.e. if there exists a morphism $\sigma: y \to x$ such that $f \circ \sigma = g \circ \sigma = \mathbb{1}_y$.

Definition 4.4.7 (Subobject). Let **C** be a category and let $x \in ob(\mathbf{C})$ be any object. A subobject y of x is a mono $y \hookrightarrow x$.

In fact, one should work up to isomorphisms and, accordingly, the formal definition goes as follows. A subobject y of x in the category \mathbf{C} is an isomorphism class of monos $i: y \hookrightarrow x$ in the slice category \mathbf{C}/x .

Definition 4.4.8 (Well-powered category). A category \mathbb{C} is said to be well-powered if for every object $x \in ob(\mathbb{C})$ the class of subobjects Sub(x) is small.

4.4.2 Initial and terminal objects

Definition 4.4.9 (Initial object). An object \emptyset such that for every other object x there exists a unique morphism $\iota_x : \emptyset \to x$.

Definition 4.4.10 (Terminal object). An object 1 such that for every other object x there exists a unique morphism $\tau_x : x \to 1$.

Property 4.4.11 (Uniqueness). If an initial (or terminal) object exists, it is unique (up to isomorphisms).

Definition 4.4.12 (Zero object). An object that is both initial and terminal. The zero object is often denoted by 0.

Property 4.4.13 (Zero morphism). From the definition of the zero object it follows that for any two objects x, y there exists a unique morphism $0_{xy} : x \to 0 \to y$.

Definition 4.4.14 (Pointed category). A category containing a zero object.

Definition 4.4.15 (Global element). Let \mathbb{C} be a category with a terminal object 1. A global element of an object $x \in ob(\mathbb{C})$ is a morphism $1 \to x$.

Property 4.4.16. Every global element is monic.

Definition 4.4.17 (Pointed object). An object x equipped with a global element $1 \to x$. This morphism is sometimes called the **basepoint**.

Remark 4.4.18. In the category **Set** the elements of a set S are in one-to-one correspondence with the global elements of S. Furthermore, there is the the important property (axiom of functional extensionality) that two functions $f, g: S \to S'$ coincide if their values at every element $s \in S$ coincide or, equivalently, if their precompositions with global elements coincide.

However, this way of checking equality can fail in other categories. Consider for example \mathbf{Grp} , the category of groups, with its zero object $0 = \{e\}$. The only morphism from this group to any other group G is the one mapping e to the unit in G. It is obvious that precomposition with this morphism says nothing about the equality of other morphisms. To recover the extensionality property from \mathbf{Set} , the notion of an "element" should be generalized:

Definition 4.4.19 (Generalized element). Let \mathbb{C} be category and consider an object $x \in ob(\mathbb{C})$. For any object $y \in ob(\mathbb{C})$, a morphism $y \to x$ is called a generalized element of x. They are also called y-elements in x or elements of shape y in x.

Definition 4.4.20 (Generator). Let C be a category. A collection of objects $\mathcal{O} \subset ob(C)$ is called a collection of generators or **separators** for C if the generalized elements of shape \mathcal{O} are sufficient to distinguish between all morphisms in C:

$$\forall x, y \in \text{ob}(\mathbf{C}), \forall f, g \in \mathbf{C}(x, y) : \left(f \neq g \implies \exists o \in \mathcal{O}, \exists h \in \mathbf{C}(o, x) : f \circ h \neq g \circ h \right). \tag{4.14}$$

Definition 4.4.21 (Well-pointed category). A category for which the terminal object is a generator.

4.4.3 Lifts

Definition 4.4.22 (Lifts and extensions). A lift of a morphism $f: x \to y$ along an epi $e: z \to y$ is a morphism $g: x \to z$ satisfying $f = e \circ g$. Dualizing this definition gives the notion of extensions. (The epi/mono condition is often dropped in the literature.)

Definition 4.4.23 (Lifting property). A morphism $f: x \to y$ has the left lifting property with respect to a morphism $g: x' \to y'$ (or g has the right lifting property with respect to f) if for every commutative diagram

there exists a morphism $\psi: y \to x'$ such that the triangles commute. If the morphism ψ is unique, then f and g are said to be **orthogonal**.

Definition 4.4.24 (Injective and projective morphisms). Consider a class of morphisms $I \subseteq \text{hom}(\mathbf{C})$. A morphism $f \in \text{hom}(\mathbf{C})$ is said to be I-injective (resp. I-projective) if it has the right (resp. left) lifting property with respect to all morphisms in I.

Given a set of morphisms I, the sets of I-injective and I-projective morphisms are denoted by rlp(I) and llp(I), respectively.

Definition 4.4.25 (Injective and projective objects). If \mathbf{C} has a terminal object 1, an object x is called I-injective if its terminal morphism is I-injective. If \mathbf{C} has an initial object, I-projective objects can be defined dually. (See figure 4.2.)

Figure 4.2: Injective and projective objects.

If I is the class of monomorphisms (resp. epimorphisms), the terminology is simplified to **injective** (resp. **projective**) objects. For projective objects this is also equivalent to requiring that the (covariant) hom-functor preserves epimorphisms.

A category **C** is said to **have enough injectives** if for every object there exists a monomorphism into an injective object. The category is said to **have enough projectives** if for every object there exists an epimorphism from a projective object.

Definition 4.4.26 (Fibrations and cofibrations). Consider a category \mathbb{C} together with a class $I \subseteq \text{hom}(\mathbb{C})$ of morphisms. A morphism $f \in \text{hom}(\mathbb{C})$ is called an I-fibration (resp. I-cofibration) if it has the right (resp. left) lifting property with respect to all I-projective (resp. I-injective) morphisms.

4.4.4 Limits and colimits

Definition 4.4.27 (Diagram). A diagram in \mathbb{C} with index category \mathbb{I} is a (covariant) functor $D: \mathbb{I} \to \mathbb{C}$.

Definition 4.4.28 (Cone). Let $D: \mathbf{I} \to \mathbf{C}$ be a diagram. A cone from $c \in \text{ob}(\mathbf{C})$ to D consists of a family of morphisms $\psi_i: c \to Di$ indexed by \mathbf{I} such that $\psi_j = Df \circ \psi_i$ for all morphisms $f: i \to j \in \text{hom}(\mathbf{I})$. This is depicted in figure 4.3a.

Figure 4.3: Category of cones.

Alternative Definition 4.4.29. The above definition can be reformulated by defining an additional functor $\Delta_x : \mathbf{I} \to \mathbf{C}$ that maps every element $i \in \text{ob}(\mathbf{I})$ to x and every morphism $g \in \text{hom}(\mathbf{I})$ to $\mathbb{1}_x$, i.e. $\Delta : C \to [\mathbf{I}, \mathbf{C}]$ is the **diagonal functor**. The morphisms ψ_i can then be seen to be the components of a natural transformation $\psi : \Delta_x \Rightarrow D$. Hence, a cone (x, ψ) is an element of $[\mathbf{I}, \mathbf{C}](\Delta_x, D)$.

Definition 4.4.30 (Morphism of cones). Let $D: \mathbf{I} \to \mathbf{C}$ be a diagram and let (x, ψ) and (y, ϕ) be two cones over D. A morphism between these cones is a morphism of the apexes

 $f: x \to y$ such that the diagrams of the form 4.3b commute for all $i \in \text{ob}(\mathbf{I})$. The cones over D together with these morphisms form a category $\mathbf{Cone}(D)$, in fact this can easily be seen to be the comma category $\Delta \downarrow D$.

Definition 4.4.31 (Limit). Consider a diagram $D : \mathbf{I} \to \mathbf{C}$. The limit of this diagram, denoted by $\lim D$, is (if it exists) the terminal object of the category $\mathbf{Cone}(D)$.

Remark. In the older literature the name **projective limit** was sometimes used. The dual notion, a **colimit**, is often called an **inductive limit** in the older literature.

This definition leads to the following universal property:

Universal Property 4.4.32. Let $D : \mathbf{I} \to \mathbf{C}$ be a diagram. For every cone $(x, \psi) \in \mathbf{Cone}(D)$, there exists a unique morphism $f : x \to \lim D$. This defines a bijection

$$[\mathbf{I}, \mathbf{C}](\Delta_x, D) \cong \mathbf{C}(x, \lim D).$$

If all (small) limits exist, the limit functor $\lim : [\mathbf{I}, \mathbf{C}] \to \mathbf{C}$ can be defined. The universal property of limits then implies that it is right adjoint to the constant functor Δ .

For diagrams in **Set** one can use the fully faithfulness of the Yoneda embedding to obtain the following expression:

$$\lim D \cong [\mathbf{I}, \mathbf{Set}](\Delta_*, D). \tag{4.15}$$

Remark 4.4.33. In Section 4.7 on enriched category theory, a generalization (the so-called *weighted limits*) of the above construction will be given that is better suited to the enriched setting and allows to express a wide variety of constructions as (weighted) limits.

Example 4.4.34 (Terminal object). The terminal object 1 is the limit of the empty diagram.

Definition 4.4.35 (Finitely complete category). A category is said to be finitely complete if it has all finite limits. If all (small) limits exist, the category is said to be **complete**. The dual notion for colimits is called **(finite) cocompleteness**.

Example 4.4.36 (Presheaf categories). All presheaf categories are both complete and co-complete.

Definition 4.4.37 (Continuous functor). A functor that preserves all small limits.

Example 4.4.38 (Hom-functors). In a locally small category every hom-functor is continuous (in fact these functors even preserve limits that are not necessarily small). This implies for example that

$$\mathbf{C}(x, \lim D) \cong \lim \mathbf{C}(x, D). \tag{4.16}$$

In the case where C is small, one can characterize the Yoneda embedding through a universal property:

Universal Property 4.4.39 (Free cocompletion). The Yoneda embedding $\mathbf{C} \hookrightarrow \widehat{\mathbf{C}}$ turns the presheaf category $\widehat{\mathbf{C}}$ into the **free cocompletion** of \mathbf{C} , i.e. there exists an equivalence of categories between the functor category of cocontinuous functors $[\widehat{\mathbf{C}}, \mathbf{D}]_{\text{cont}}$ and the ordinary functor category $[\mathbf{C}, \mathbf{D}]$.

Definition 4.4.40 (Tiny object). An object in a locally small category for which the covariant hom-functor preserves small colimits. This is sometimes called a **small-projective** object since it is in particular projective⁹.

⁹Epimorphisms are characterized by a *pushout* (see 4.4.61 further below).

Definition 4.4.41 (Cauchy completion). Let \mathbf{C} be a small category. An important (small and full) subcategory of the free cocompletion of \mathbf{C} is given by the Cauchy completion, i.e. the subcategory of $\widehat{\mathbf{C}}$ on the tiny objects. It can be shown that the free cocompletion of the Cauchy completion coincides with the one on \mathbf{C} (up to equivalence).

A category is said to be **Cauchy-complete** if it is equivalent to its Cauchy completion. It can be shown that a category is Cauchy-complete if and only if it has all small absolute colimits.

Definition 4.4.42 (Filtered category). A category in which every finite diagram admits a cocone. For regular cardinals κ , this notion can be generalized. A category is said to be κ -filtered if every diagram with less than κ arrows admits a cocone. (In this terminology filtered categories are the same as ω -filtered categories.)

Definition 4.4.43 (Directed limit). Consider a diagram $D : \mathbf{I} \to \mathbf{C}$. The limit (resp. colimit) of D is said to be codirected (resp. directed) if \mathbf{I} is a downward (resp. upward) directed set 2.5.10.

The following definition is a categorification of the previous one:

Definition 4.4.44 (Filtered limit). Consider a diagram $D : \mathbf{I} \to \mathbf{C}$. The limit (resp. colimit) of D is said to be cofiltered (resp. filtered) if \mathbf{I} is a cofiltered (resp. filtered) category.

Property 4.4.45. A category has all directed colimits if and only if it has all filtered colimits. (A dual statement holds for limits.)

Definition 4.4.46 (Pro-object). A functor $F : \mathbf{I} \to \mathbf{C}$ where \mathbf{I} is a small cofiltered category. The names stems from the fact that one can interpret pro-objects as formal cofiltered (projective) limits.

Definition 4.4.47 (Compact object). An object for which the covariant hom-functor preserves all filtered colimits. These objects are also said to be **finitely presentable**.¹¹

Definition 4.4.48 (Product). Let **I** be a discrete category. The (co)limit over a diagram $D: \mathbf{I} \to \mathbf{C}$ is called a (co)product in \mathbf{C} .

Definition 4.4.49 (Equalizer). Consider a diagram of the form

$$x \stackrel{f}{\underset{g}{\Longrightarrow}} y.$$

The limit of this diagram is called the equalizer of f and g. It consists of an object e and a morphism $\varepsilon: e \to x$ such that the following **fork** diagram

$$e \xrightarrow{\varepsilon} x \xrightarrow{f} y$$
 (4.17)

is universal with respect to (e, ε) . By dualizing one obtains **cofork** diagrams $x \rightrightarrows y \to z$ and their universal versions, the **coequalizers**.

Definition 4.4.50 (Split coequalizer). A cofork diagram

$$x \stackrel{f}{\underset{g}{\Longrightarrow}} y \stackrel{\tau}{\xrightarrow{}} z$$

together with a section φ of f and a section σ of τ such that $\sigma \circ \tau = g \circ \varphi$.

¹⁰A generalization in the context of enriched categories is given by the *Karoubi envelope*.

¹¹This name derives from the fact that modules are finitely presented if and only if their covariant hom-functor preserves direct limits (i.e. directed colimits in the context of algebra).

Definition 4.4.51 (Regular morphisms). A mono (resp. epi) is said to be regular if it arises as an equalizer (resp. coequalizer) of two parallel morphisms.

Property 4.4.52 (Regular bimorphism). Both monic regular epimorphisms and epic regular monomorphisms are isomorphisms.

Alternative Definition 4.4.53 (Finitely complete category). A category is said to be finitely complete if it has a terminal object and if all binary equalizers and products exist.

Definition 4.4.54 (Span). A span in a category C is a diagram of the form 4.4a. By definition of a diagram, a span in C is equivalent to a functor $S: \Lambda \to \mathbb{C}$, where Λ is the category with three objects $\{-1,0,1\}$ and two morphisms $i:0\to -1$ and $j:0\to 1$. For this reason Λ is sometimes called the walking or universal span.

Figure 4.4: (Co)span diagrams.

Definition 4.4.55 (Pullback). The pullback or **fibre product** of two morphisms $f: x \to z$ and $g: y \to z$ is defined as the limit of cospan 4.4b. The full diagram characterizing the pullback, which has the form of a square, is sometimes called a **Cartesian square**.

Notation 4.4.56 (Pullback). The pullback of two morphisms $f: x \to z$ and $g: y \to z$ is often denoted by $x \times_z y$. The associated pullback square is sometimes written as

Property 4.4.57 (Product). If a terminal object 1 exists, the pullback $x \times_1 y$ is equal to the product $x \times y$.

Definition 4.4.58 (Kernel pair). Consider a morphism $f: x \to y$. Its kernel pair is defined as the pullback of f along itself.

Definition 4.4.59 (Pushout). The dual notion of a pullback, i.e. the colimit of a span.

Property 4.4.60. Pullbacks preserve monos and pushouts preserve epis.

Alternative Definition 4.4.61 (Epimorphism). A morphism whose cokernel pair is the identity.

Property 4.4.62 (Span category &). Consider a category \mathbf{C} with pullbacks. The category $\mathbf{Span}(\mathbf{C})$ is defined as the category with the same objects as \mathbf{C} but with spans as morphisms. Composition of spans is given by pullbacks. By including morphisms of spans, $\mathbf{Span}(\mathbf{C})$ can be refined to a bicategory.

Definition 4.4.63 (Wedge). Consider a profunctor $F: \mathbb{C} \to \mathbb{C}$. A wedge $e: w \to F$ is an object $w \in \text{ob}(\mathbf{Set})$ together with a collection of morphisms $e_x: w \to F(x, x)$ indexed by \mathbb{C} such that for every morphism $f: x \to y$ the following diagram commutes:

As was the case for cones, this can be reformulated in terms of (di)natural transformations. A wedge (w, e) of a profunctor $F : \mathbf{C} \to \mathbf{C}$ is a dinatural transformation from the constant profunctor Δ_w to F.

Definition 4.4.64 (End). The end of a profunctor $F: \mathbb{C} \to \mathbb{C}$ is defined as the universal wedge of F. The components of the wedge are called the **projection maps** of the end. This stems from the fact that for a discrete category the end coincides with the product $\prod_{x \in \text{ob}(\mathbb{C})} F(x, x)$.

This is equivalent to a definition in terms of equalizers. Consider the two canonical maps

$$\prod_{x \in \text{ob}(\mathbf{C})} \mathbf{C}(x, x) \rightrightarrows \prod_{f: x \to y} \mathbf{C}(x, y).$$

This diagram can be interpreted as the product of all lower halves of the wedge diagrams above. It is not hard to see that its equalizer (universally) satisfies the wedge condition for all $f \in \text{hom}(\mathbf{C})$.

Notation 4.4.65 (End). The end of a profunctor $F: \mathbf{C} \to \mathbf{C}$ is often denoted using an integral sign with subscript:

$$\int_{x \in \mathbf{C}} F(x, x).$$

For the dual construction, called a **coend**, an integral sign with superscript is used.

Example 4.4.66 (Natural transformations). Consider two functors $F, G : \mathbf{A} \to \mathbf{B}$. The map $(x, y) \mapsto \mathbf{B}(Fx, Gy)$ gives a profunctor $H : \mathbf{A} \to \mathbf{A}$. By looking at the wedge condition for this profunctor, the following equality for all morphisms $f : x \to y$ can be derived:

$$\tau_y \circ Ff = Gf \circ \tau_x,\tag{4.18}$$

where τ is the wedge projection. Comparing this equality to Definition 4.2.13 gives

$$\operatorname{Nat}(F,G) = \int_{x \in \mathbf{A}} \mathbf{B}(Fx, Gx). \tag{4.19}$$

Property 4.4.67. Using the continuity 4.4.37 of the hom-functor, one can prove the following equality which can be used to turn ends into coends and vice versa:

$$\mathbf{Set}\left(\int_{x\in\mathbf{C}}^{x\in\mathbf{C}}F(x,x),y\right) = \int_{x\in\mathbf{C}}\mathbf{Set}(F(x,x),y). \tag{4.20}$$

Using the above properties and definitions, one obtains the following two statements, called the **Yoneda reduction** and **co-Yoneda lemma**:

Property 4.4.68 (Ninja Yoneda lemma). Let $F: \mathbf{A} \to \mathbf{B}$ be a covariant functor (similar statements hold for contravariant functors).

$$\int_{x \in \mathbf{A}} \mathbf{Set}(\mathbf{A}(-,x), Fx) \cong F \tag{4.21}$$

$$\int_{x \in \mathbf{A}} \mathbf{Set}(\mathbf{A}(-,x), Fx) \cong F$$

$$\int^{x \in \mathbf{A}} \mathbf{A}(x,-) \times Fx \cong F.$$
(4.21)

For a generalization to the enriched setting see Definition 4.7.15.

Remark 4.4.69. A common remark at this point is the comparison with the Dirac distribution 17.15:

$$\int \delta(x-y)f(x) = f(y). \tag{4.23}$$

By interpreting the functor F as a function, the representable functors can be seen to behave as Dirac distributions.

Property 4.4.70.

$$\int_{F \in \mathbf{coPsh}(\mathbf{C})} \mathbf{Set}(Fx, Fy) \cong \mathbf{C}(x, y)$$
(4.24)

Definition 4.4.71 (Kan extension). Consider two functors $F: \mathbf{A} \to \mathbf{B}$ and $G: \mathbf{A} \to \mathbf{C}$. The right Kan extension of F along G is given by the universal functor $\operatorname{Ran}_G F: \mathbf{C} \to \mathbf{B}$ and natural transformation $\eta: \operatorname{Ran}_G F \circ G \Rightarrow F$:

The left Kan extension Lan_GF is obtained by dualizing this construction.

Property 4.4.72 (Complete categories). Complete (resp. cocomplete) categories admit all right (resp. left) Kan extensions.

Definition 4.4.73 (Preservation of Kan extension). A Kan extension Lan_GF is said to be absolute if every functor with the same codomain as preserves the Kan extension, i.e. a Kan extension is absolute if right whiskering it by another functor defines the Kan extension of the composition. If it is only preserved by all representable functors, the Kan extension is said to be **pointwise**.

Alternative Definition 4.4.74 (Kan extension). The construction above gives a functor Ran_G from the functor category $[\mathbf{A}, \mathbf{B}]$ to the functor category $[\mathbf{C}, \mathbf{B}]$. The right Kan extension Ran_G can be defined as the right adjoint to the pullback functor $G^*: F \mapsto F \circ G$. Similarly, the left Kan extension can be defined as the left adjoint to the pullback functor.

In the spirit of partial adjoints or partial limits, this definition can be used to define local Kan **extensions**. Although the left (or right) Kan extension functors do not have to exists globally, the extension of a single functor could still exist. This local version is defined by the following natural isomorphism (here given for a left extension):

$$[\mathbf{A}, \mathbf{B}](F, G^*-) \cong [\mathbf{C}, \mathbf{B}](\operatorname{Lan}_G F, -). \tag{4.25}$$

Remark 4.4.75. Using this equivalence of hom-spaces, Kan extensions can be generalized from Cat to any 2-category.

Example 4.4.76 (Limit). Denote the terminal category by **1**. By choosing the functor G in the definition of a right Kan extension to be the unique functor $!_{\mathbf{C}}: \mathbf{C} \to \mathbf{1}$, one obtain the universal property characterizing limits 4.4.32:

$$\lim F \cong \operatorname{Ran}_{!C} F. \tag{4.26}$$

Similarly, colimits can be obtained as left Kan extensions.

The existence of Kan extensions can also be used to determine the existence of adjoints:

Property 4.4.77 (Adjoint functors). A functor $F: \mathbf{A} \to \mathbf{B}$ admits a left (resp. right) adjoint if and only if the right (resp. left) Kan extension of the identity functor $\mathbb{1}: \mathbf{A} \to \mathbf{A}$ along F exists. If it exists as an absolute extension, the left adjoint is given exactly by this Kan extension.

Definition 4.4.78 (Codensity monad). Consider a general functor $F : \mathbf{A} \to \mathbf{B}$. If the right Kan extension $\operatorname{Ran}_F F$ exists, it defines a monad. Functors for which this monad is the identity are said to be **codense**. Left Kan extensions give, by duality, rise to *density comonads*.

4.5 Monoidal categories

Definition 4.5.1 (Monoidal category). A category C equipped with a bifunctor

$$-\otimes -: \mathbf{C} \times \mathbf{C} \to \mathbf{C}$$

called the **tensor product** or **monoidal product**, a distinct object 1 called the **unit object**, and the following three natural isomorphisms called the **coherence maps**:

- 1. Associator: $\alpha_{x,y,z}:(x\otimes y)\otimes z\cong x\otimes (y\otimes z);$
- 2. **Left unitor**: $\lambda_x : \mathbf{1} \otimes x \cong x$; and
- 3. Right unitor: $\rho_x : x \otimes \mathbf{1} \cong x$.

These natural transformations are required make the **triangle** and **pentagon** diagrams 4.5 and 4.6 commute.

Figure 4.5: Triangle diagram.

A monoidal category for which the associator and the unitors are identity transformations is often said to be **strict**.

Example 4.5.2 (Cartesian category). A monoidal category where the monoidal product is given by the ordinary product 4.4.48.

¹²Codense functors are usually defined in a different way, but one can show that this is an equivalent definition (hence the name).

Figure 4.6: Pentagon diagram.

Definition 4.5.3 (Scalar). In a monoidal category the scalars are defined as the endomorphisms $1 \to 1$. The set of scalars forms a commutative monoid.

Property 4.5.4. Every scalar $s: \mathbf{1} \to \mathbf{1}$ induces a natural transformation $s: \mathbb{1}_{\mathbf{C}} \Rightarrow \mathbb{1}_{\mathbf{C}}$ with components

$$s_x: x \cong \mathbf{1} \otimes x \stackrel{s \otimes \mathbb{1}_x}{\longrightarrow} \mathbf{1} \otimes x \cong x.$$

For every morphism $f \in \text{hom}(\mathbf{C})$, the naturality square $f \circ s_x = s_y \circ f$ alo defines a morphism $s \diamond f$ that is equivalently given by $\rho_y \circ (f \otimes s) \circ \rho_x^{-1}$ (one could have used the left unitors as well). These morphisms satisfy the following well-known rules of scalar multiplication from linear algebra:

- $s \diamond (s' \diamond f) = (s \circ s') \diamond f$,
- $(s \diamond f) \circ (s' \diamond q) = (s \circ s') \diamond (f \circ q)$, and
- $(s \diamond f) \otimes (s' \diamond g) = (s \circ s') \diamond (f \otimes g).$

Definition 4.5.5 (Weak inverse). Let $(\mathbf{C}, \otimes, \mathbf{1})$ be a monoidal category and consider an object $x \in \text{ob}(\mathbf{C})$. An object $y \in \text{ob}(\mathbf{C})$ is called a weak inverse of x if it satisfies $x \otimes y \cong \mathbf{1}$.

Remark 4.5.6. One can show that the existence of a one-sided weak inverse (as in the definition above) is sufficient to prove that it is in fact a two-sided weak inverse, i.e. $y \otimes x \cong \mathbf{1}$ also holds.

Theorem 4.5.7 (MacLane's coherence theorem). Consider two functors $F, G : \mathbf{A} \to \mathbf{B}$ between two monoidal categories \mathbf{A}, \mathbf{B} . Any two natural transformations $\eta, \varepsilon : F \Rightarrow G$, constructed solely from the associator and the unitors, coincide.

4.5.1 Braided categories

Definition 4.5.8 (Braided monoidal category). A monoidal category $(C, \otimes, 1)$ equipped with a natural isomorphism

$$\sigma_{x,y}: x \otimes y \cong y \otimes x$$

that makes the two **hexagon** diagrams 4.7a and 4.7b commute for all $x, y, z \in ob(\mathbf{C})$. The isomorphism σ is called the **braiding** (morphism).

Figure 4.7: Hexagon diagram.

Property 4.5.9 (Yang-Baxter equation). The components $\sigma_{x,x}$ of a braiding satisfy the *Yang-Baxter* equation. More generally, the braiding σ satisfies the following equation for all objects $x, y, z \in \text{ob}(\mathbf{C})$:

$$(\sigma_{y,z} \otimes \mathbb{1}_x) \circ (\mathbb{1}_y \otimes \sigma_{x,z}) \circ (\sigma_{x,y} \otimes \mathbb{1}_z) = (\mathbb{1}_z \otimes \sigma_{x,y}) \circ (\sigma_{x,z} \otimes \mathbb{1}_y) \circ (\mathbb{1}_x \otimes \sigma_{y,z}). \tag{4.27}$$

Remark 4.5.10. When drawing the above equality using string diagrams, it can be seen that the Yang-Baxter equation corresponds to the invariance of string diagrams under a *Reidemeister III move*.

Definition 4.5.11 (Symmetric monoidal category). A braided monoidal category where the braiding σ satisfies

$$\sigma_{x,y} \circ \sigma_{y,x} = \mathbb{1}_{x \otimes y} \,. \tag{4.28}$$

In Chapter 27 the theory of monoidal categories is continued.

4.5.2 Monoidal functors

Definition 4.5.12 (Monoidal functor). Let $(\mathbf{A}, \otimes, \mathbf{1}_{\mathbf{A}}), (\mathbf{B}, \otimes, \mathbf{1}_{\mathbf{B}})$ be two monoidal categories. A functor $F : \mathbf{A} \to \mathbf{B}$ is said to be monoidal if there exists:

1. A natural isomorphism $\psi_{x,y}: Fx \circledast Fy \Rightarrow F(x \otimes y)$ that makes diagram 4.8 commute.

$$(Fx \circledast Fy) \circledast Fz \xrightarrow{\alpha_{\mathbf{B}}} Fx \circledast (Fy \circledast Fz)$$

$$\downarrow^{1}_{Fx} \circledast \psi_{y,z}$$

$$F(x \otimes y) \circledast Fz \qquad Fx \circledast F(y \otimes z)$$

$$\downarrow^{\psi_{ax,y \otimes z}}$$

$$F((x \otimes y) \otimes z) \xrightarrow{F\alpha_{\mathbf{A}}} F(x \otimes (y \otimes z))$$

Figure 4.8: Monoidal functor.

2. An isomorphism $\phi: \mathbf{1_B} \to F\mathbf{1_A}$ that makes the two diagrams in figure 4.9 commute.

Figure 4.9: Unitality diagrams.

Remark 4.5.13. The maps ψ and ϕ are also called **coherence maps** or **structure morphisms**.

Property 4.5.14 (Canonical unit). For every monoidal functor F there exists a canonical isomorphism $\phi: \mathbf{1_B} \to F\mathbf{1_A}$ defined by the commutative diagram 4.10.

Figure 4.10: Canonical unit isomorphism.

Definition 4.5.15 (Lax monoidal functor). A monoidal functor for which the coherence maps are merely morphisms and not isomorphisms.

Definition 4.5.16 (Monoidal natural transformation). A natural transformation η between (lax) monoidal functors (F, ψ, ϕ_F) and $(G, \widetilde{\psi}, \phi_G)$ that makes the diagrams in figure 4.11 commute.

Figure 4.11: Monoidal natural transformation.

Definition 4.5.17 (Monoidal equivalence). An equivalence of monoidal categories consisting of monoidal functors and monoidal natural isomorphisms.

Theorem 4.5.18 (MacLane's strictness theorem). Every monoidal category is monoidally equivalent to a strict monoidal category.

4.6 Internal structures

Property 4.6.1 (Eckmann-Hilton argument). A monoid internal to the category of monoids is the same as a commutative monoid. (See also Property 3.1.4.)

Definition 4.6.2 (Internal category). Let \mathcal{E} be a category with pullbacks. A category \mathbf{C} internal to \mathcal{E} consists of the following data:

- 1. an object $C_0 \in ob(\mathcal{E})$ of objects;
- 2. an object $C_1 \in ob(\mathcal{E})$ of morphisms;
- 3. source and target morphisms $s, t \in \mathcal{E}(C_1, C_0)$;
- 4. an "identity-assigning" morphism $e \in \mathcal{E}(C_0, C_1)$ such that

$$s \circ e = \mathbb{1}_{C_0} \qquad \qquad t \circ e = \mathbb{1}_{C_0};$$

and

5. a composition morphism $c: C_1 \times_{C_0} C_1 \to C_1$ such that the following equations hold:

$$s \circ c = s \circ \pi_1 \qquad \qquad t \circ c = t \circ \pi_2$$

$$\pi_1 = c \circ (e \times_{C_0} \mathbb{1}) \qquad \qquad c \circ (\mathbb{1} \times_{C_0} e) = \pi_2$$

$$c \circ (c \times_{C_0} \mathbb{1}) = c \circ (\mathbb{1} \times_{C_0} c),$$

where π_1, π_2 are the canonical projections associated with the pullback $C_1 \times_{C_0} C_1$ of (s, t).

Morphisms between these categories, suitably called **internal functors**, are given by a pair of morphisms (in \mathcal{E}) between internal objects and morphisms, that preserve composition and identities. Internal natural transformations are defined in a similar way.

Notation 4.6.3. The *(bi)category* of internal categories in \mathcal{E} is denoted by $\mathbf{Cat}(\mathcal{E})$. It should be noted that for $\mathcal{E} = \mathbf{Set}$, the ordinary category of small categories $\mathbf{Cat}(\mathbf{Set}) = \mathbf{Cat}$ is obtained.

Alternative Definition 4.6.4. The above definition can be reformulated in a very elegant way. An internal category in \mathcal{E} is a monad in the bicategory $\mathbf{Span}(\mathcal{E})$ of spans in \mathcal{E} as shown in figure 4.12.

Figure 4.12: Internal category as a monad in $Span(\mathcal{E})$.

Functors between internal categories are not the only relevant morphisms. However, when defining (co)presheafs such as the hom-functor, a problem occurs. In **Cat** there exist, by definition, maps to the ambient category **Set** (ordinary category theory has a set-theoretic foundation). However, for internal categories there does not necessarily exist a morphism $\mathbf{C} \to \mathcal{E}$. To solve this problem one can consider a more general structure:

Definition 4.6.5 (Internal diagram). A left module over a monad in $Span(\mathcal{E})$. The dual notion is better known as an **internal presheaf**.

In fact, this is a specific instance of an even more general concept (for more information on the definitions and applications see [16, 17]):

Definition 4.6.6 (Internal profunctor). A bimodule between monads in $\mathbf{Span}(\mathcal{E})$. Together with the above definitions this gives rise to an equivalence $\mathbf{Mod}(\mathbf{Span}(\mathcal{E})) \cong \mathbf{Prof}(\mathcal{E})$.

Construction 4.6.7 (Internal Yoneda profunctor). Consider an internal functor $F : \mathbf{A} \to \mathbf{B}$. This functor induces two internal profunctors $F_* : \mathbf{B} \to \mathbf{A}$ and $F^* : \mathbf{A} \to \mathbf{B}$.

For F_* the object span is defined as (the profunctor F^* is defined similarly)

$$A_0 \stackrel{\pi_0}{\longleftarrow} A_0 \times_{B_0} B_1 \stackrel{t \circ \pi_1}{\longrightarrow} B_0.$$

The action of $f \in B_1$ is given by postcomposition with f in the second factor, while the action of $g \in A_1$ is given by precomposition with Fg in the second factor and changing to the domain of g in the first factor.

It can easily be shown that the profunctors induced by an identity functor $\mathbb{1}_{\mathbf{C}}$ have an object span that corresponds to the internal category \mathbf{C} with the actions given by (internal) composition. In the case of $\mathcal{E} = \mathbf{Set}$ this boils down to the hom-functor. The fact that the object span is equivalent to the category \mathbf{C} is essentially the Yoneda embedding. For this reason this profunctor is in general called the (internal) Yoneda profunctor $\mathcal{Y}(\mathbf{C})$.

4.6.1 Closed categories

Definition 4.6.8 (Internal hom). Let $(\mathbf{M}, \otimes, \mathbf{1})$ be a monoidal category. In this setting one can generalize the *currying* procedure, i.e. the identification of maps $x \times y \to z$ with maps $x \to (y \to z)$. The "internal" hom-functor <u>Hom</u> is defined by the following natural isomorphism:

$$\operatorname{Hom}(x \otimes y, z) \cong \operatorname{Hom}(x, \underline{\operatorname{Hom}}(y, z)). \tag{4.29}$$

The existence of all internal homs is equivalent to the existence of a right adjoint to the tensor functor.

Notation 4.6.9. The internal hom $\underline{\text{Hom}}(x,y)$ is also often denoted by [x,y]. From now on this convention will be followed (unless otherwise specified).

Definition 4.6.10 (Closed monoidal category). A monoidal category is said to be closed monoidal if it has all internal homs. If the monoidal structure is induced by a (Cartesian) product structure, the category is often said to be **Cartesian closed**.

A category for which all slice categories are Cartesian closed is said to be **locally Cartesian** closed. A locally Cartesian closed category with a terminal object is also Cartesian closed.

Definition 4.6.11 (Exponential object). In the case of Cartesian (monoidal) categories, the internal hom $\underline{\text{Hom}}(x,y)$ is called the exponential object. This object is often denoted by y^x .

In Cartesian closed categories a different, but frequently used, notation is $x \Rightarrow y$. However, this notation will not be used as it might be confusion with the notation for 2-morphisms.

Definition 4.6.12 (Cartesian closed functor). A functor between Cartesian closed categories that preserves products and exponential objects. As such it is the natural notion of functor between Cartesian closed categories.

Property 4.6.13 (Frobenius reciprocity). A functor R between Cartesian closed categories that admits a left adjoint L is Cartesian closed if and only if the natural transformation

$$L(y \times Rx) \to Ly \times x$$
 (4.30)

is a natural isomorphism.

Property 4.6.14 (Global elements). The following isomorphism is natural in both $x, y \in \text{ob}(\mathbf{M})$:

$$\mathbf{M}(\mathbf{1}, [x, y]) \cong \mathbf{M}(x, y). \tag{4.31}$$

It is this relation that gives the best explanation for the term "internal hom". One also immediately obtains the following natural isomorphism:

$$\mathbf{M}(x, [\mathbf{1}, y]) \cong \mathbf{M}(x, y). \tag{4.32}$$

Because the Yoneda embedding is fully faithful this implies that $[1, y] \cong y$. Although the global elements $\mathbf{M}(1, y)$ do not fully specify an object y, this does hold internally.

Property 4.6.15 (Symmetry). Let **M** be a closed monoidal category. The definition of an internal hom can also be internalized, i.e. there exists a natural isomorphism of the form

$$[x \otimes y, z] \cong [x, [y, z]]. \tag{4.33}$$

Furthermore, if M is also symmetric 4.5.11, there exists an internal isomorphism of the form

$$[x, [y, z]] \cong [y, [x, z]].$$
 (4.34)

Definition 4.6.16 (Strong adjunction). Consider a monoidal category M together with two endofunctors $L, R : M \to M$. These functors are said to form a strong adjunction if there exists a natural isomorphism

$$[Lx, y] \cong [x, Ry]. \tag{4.35}$$

Property 4.6.14 above implies that every strong adjunction is in particular an adjunction in the sense of Section 4.2.4.

4.7 Enriched category theory

The following definition is due to $B\'{e}nabou$. It should represent the "ideal place in which to do category theory":

Definition 4.7.1 (Cosmos). A complete and cocomplete closed symmetric monoidal category.

Definition 4.7.2 (Enriched category). Let $(\mathcal{V}, \otimes, \mathbf{1})$ be a monoidal category. A \mathcal{V} -enriched category, also called a \mathcal{V} -category¹³, consists of the following elements:

- 1. a collection of objects $ob(\mathbf{C})$, and
- 2. for every pair of objects $x, y \in ob(\mathbf{C})$, an object $\mathbf{C}(x, y) \in ob(\mathcal{V})$ for which the following morphisms exist:
 - $id_x: \mathbf{1} \to \mathbf{C}(x,x)$ giving the (enriched) identity morphism, and
 - $\circ_{xyz} : \mathbf{C}(y,z) \otimes \mathbf{C}(x,y) \to \mathbf{C}(x,z)$ replacing the usual composition.

¹³Not to be confused with the notation for fibre categories 4.3.7.

The associativity and unity properties are given by commutative diagrams for the id and \circ morphisms together with the associators and unitors in \mathcal{V} .

Definition 4.7.3 (Underlying category). Given a V-enriched category C, the underlying category C_0 is defined as follows:

- $ob(\mathbf{C}_0) := ob(\mathbf{C})$, and
- $C_0(x,y) := \mathcal{V}(1, C(x,y)),$

where **1** is the monoidal unit in \mathcal{V} . This construction can be obtained as the functor $\mathcal{V}\mathbf{Cat}(\mathcal{I}, -)$ where \mathcal{I} is the one-object \mathcal{V} -category with $\mathcal{I}(*, *) \equiv \mathbf{1}$.

Property 4.7.4 (\mathcal{V} as a \mathcal{V} -category). Consider a closed monoidal category \mathcal{V} . This category can be given the structure $\widetilde{\mathcal{V}}$ of a \mathcal{V} -category by taking the hom-objects to be the internal homs, i.e. $\widetilde{\mathcal{V}}(x,y) := [x,y]$ for all $x,y \in \mathcal{V}$. Property 4.6.14 then implies that there exists an isomorphism between the underlying category $\widetilde{\mathcal{V}}_0$ and the original category \mathcal{V} .

Given two V-enriched categories, one can define suitable functors between them:

Definition 4.7.5 (Enriched functor). A V-enriched functor $F: \mathbf{A} \to \mathbf{B}$ consists of the following data:

- 1. a function $F_0: ob(\mathbf{A}) \to ob(\mathbf{B})$ (as for ordinary functors), and
- 2. for every two objects $x, y \in \text{ob}(\mathbf{A})$, a morphism $F_{x,y} : \mathbf{A}(x,y) \to \mathbf{B}(Fx, Fy)$ in \mathcal{V} .

These have to satisfy the "usual" composition and unit conditions.

By extending Property 4.19 using enriched ends, one obtains a definition of enriched natural transformations and, therefore, also a definition of enriched functor categories.:

$$[\mathbf{A}, \mathbf{B}](F, G) := \int_{x \in \mathbf{A}} \mathbf{B}(Fx, Gx). \tag{4.36}$$

Given two V-enriched functors $F, G : \mathbf{A} \to \mathbf{B}$ one can also try to define V-natural transformations by extending the usual definition of natural transformations 4.2.13:

Definition 4.7.6 (Enriched natural transformation). An ordinary natural transformation consists of an ob(**A**)-indexed family of morphism $\eta_x : Fx \to Gx$. This can also be interpreted as an ob(**A**)-indexed family of morphisms $\eta_x : 1 \to \mathbf{B}(Fx, Gx)$ from the initial object (one-element set). By analogy, a \mathcal{V} -natural transformation is defined as an ob(**A**)-indexed family of morphisms $\eta_x : \mathbf{1} \to \mathbf{B}(Fx, Gx)$ from the monoidal unit. The usual naturality square is replaced by the naturality hexagon 4.13.

The question then becomes how these two definitions are related. The end (4.36) comes equipped with a projection $\varepsilon_x : [\mathbf{A}, \mathbf{B}](F, G) \to \mathbf{B}(Fx, Gx)$. Precomposing this morphism with a morphism in the underlying category, i.e. an element of $\mathcal{V}(\mathbf{1}, [\mathbf{A}, \mathbf{B}](F, G))$, exactly gives a \mathcal{V} -natural transformation. So the underlying category of $[\mathbf{A}, \mathbf{B}]$ is the ordinary category of \mathcal{V} -functors and \mathcal{V} -natural transformations.

4.7.1 Enriched constructions

Definition 4.7.7 (Functor tensor product). Consider a covariant functor $G: \mathbb{C} \to \mathcal{V}$ and a contravariant functor $F: \mathbb{C}^{op} \to \mathcal{V}$ into a monoidal category \mathcal{V} , where \mathbb{C} does not have to be enriched over \mathcal{V} . The tensor product of F and G is defined as the following coend:

$$F \otimes_{\mathbf{C}} G := \int^{x \in \mathbf{C}} Fx \otimes Gx. \tag{4.37}$$

Figure 4.13: V-naturality diagram.

It should be noted that the above tensor product does not produce a new functor, instead it only gives an object in \mathcal{V} . A different type of tensor product, one that does give a functor, exists in the enriched setting (note that there is no relation between these two definitions):

Definition 4.7.8 (Day convolution). Consider a monoidally cocomplete category \mathcal{V} , i.e. cocomplete monoidal category for which the tensor product bifunctor is cocontinuous in each argument, together with a \mathcal{V} -enriched category C. The convolution or tensor product (if it exists) of two \mathcal{V} -enriched functors $F,G: \mathbf{C} \to \mathcal{V}$ is defined as the following coend:

$$F \otimes_{\text{Day}} G := \iint^{x,y \in \mathbf{C}} \mathbf{C}(x \otimes y, -) \otimes Fx \otimes Gy. \tag{4.38}$$

Property 4.7.9 (Monoidal structure). In the case where M is a closed symmetric monoidal category, the Day convolution is associative and, hence, defines a monoidal structure on the functor category [C, M]. The tensor unit is given by the functor (co)represented by the tensor unit in **C**.

Definition 4.7.10 (Copower). Consider a V-enriched category C. The copower (or tensor) functor $\cdot: \mathcal{V} \times \mathbf{C} \to \mathbf{C}$ is defined by the following natural isomorphism:

$$\mathbf{C}(v \cdot x, y) \cong [v, \mathbf{C}(x, y)],\tag{4.39}$$

where the bracket [-,-] on the right-hand side denotes the internal hom in \mathcal{V} . Dually, the power (or cotensor) functor $[-,-]: \mathcal{V} \times \mathbf{C} \to \mathbf{C}$ is defined by the following natural isomorphism:

$$\mathbf{C}(x, [v, y]) \cong [v, \mathbf{C}(x, y)],\tag{4.40}$$

where the bracket [-,-] on the right-hand side again denotes the internal hom in \mathcal{V} . If an enriched category admits all (co)powers, it is said to be (co)powered (over its enriching category).

Remark 4.7.11. Equation (4.34) says that every (closed) symmetric monoidal category M is powered over itself, the power just being the internal hom. The same holds for the copower, which is just the usual tensor product functor.

Example 4.7.12 (Disjoint unions). Every (co)complete (locally) small category C admits the structure of a **Set**-(co)powered category:

$$x^S := \prod_{s \in S} x \tag{4.41}$$

$$x^{S} := \prod_{s \in S} x \tag{4.41}$$

$$S \cdot x := \bigsqcup_{s \in S} x. \tag{4.42}$$

The definition and properties of internal hom-functors and (co)powers can be formalized as follows:

Definition 4.7.13 (Two-variable adjunction). Consider three categories A, B and C. A two-variable adjunction $A \times B \to C$ consists of three bifunctors:

- 1. $-\otimes -: \mathbf{A} \times \mathbf{B} \to \mathbf{C}$,
- 2. $hom_L: \mathbf{A}^{op} \times \mathbf{C} \to \mathbf{B}$, and
- 3. $hom_R : \mathbf{B}^{op} \times \mathbf{C} \to \mathbf{A}$

admitting the following natural isomorphisms:

$$\mathbf{C}(x \otimes y, z) \cong \mathbf{A}(x, \hom_R(y, z)) \cong \mathbf{B}(y, \hom_L(x, z)). \tag{4.43}$$

It should be noted that fixing any of the variables gives rise to ordinary adjunctions in the sense of Section 4.2.4.

Property 4.7.14 (Powers and copowers). A category C enriched over a monoidal category \mathcal{V} is powered and copowered over \mathcal{V} exactly if the hom-functor $\mathbf{C}^{op} \times \mathbf{C} \to \mathcal{V}$ is the right adjoint in an enriched two-variable adjunction. The power and copower functors are then given by the other two adjoints.

The following definition constructs Kan extensions in the enriched setting (these can be shown to reduce to 4.4.71 when enriching over **Set**):

Alternative Definition 4.7.15 (Kan extension). Let A, B and C be categories enriched over a monoidal category V. If B is assumed to be copowered over V, one can define the left Kan extension of $F : A \to B$ along $G : A \to C$ as a coend:

$$\operatorname{Lan}_{G}F := \int^{x \in \mathbf{A}} \mathbf{C}(Gx, -) \otimes Fx. \tag{4.44}$$

If **B** is assumed to be powered over \mathcal{V} , one can define the right Kan extension as an end:

$$\operatorname{Ran}_{G}F := \int_{x \in \mathbf{A}} [\mathbf{C}(-, Gx), Fx]. \tag{4.45}$$

Remark 4.7.16. By choosing $V = \mathbf{Set}, \mathbf{C} = \mathbf{A}$ and $G = \mathbb{1}_{\mathbf{A}}$ in the previous definition, one obtains the ninja Yoneda lemma 4.4.68.

Property 4.7.17. Kan extensions computed using (co)ends as above are pointwise in the sense of Definition ??.

Alternative Definition 4.7.18 (Functor tensor product). Let **B** be a \mathcal{V} -enriched category. Consider a covariant functor $G: \mathbf{A} \to \mathbf{B}$ and a contravariant functor $F: \mathbf{A}^{op} \to \mathcal{V}$. The tensor product 4.7.7 can be generalized whenever **B** is copowered over \mathcal{V} :

$$F \otimes_{\mathbf{A}} G := \int^{x \in \mathbf{A}} Fx \cdot Gx. \tag{4.46}$$

4.7.2 Weighted (co)limits

In this section the definition of ordinary limits and, in particular, the defining universal property 4.4.32 is revisited. In this construction the constant functor Δ_x was one of the main ingredients. This functor can be factorized as $\mathbf{I} \to 1 \to \mathbf{C}$, where 1 denotes the terminal category. On the level of morphisms this factorization takes the form $\mathbf{I}(i,j) \to * \to \mathbf{C}(x,x)$, where * denotes the

terminal one-element set. However, whenever the enriching context is not **Set**, one does not necessarily have access to a terminal object.

To avoid this issue, limits will first be redefined as representing objects. To this end, consider a general diagram $D: \mathbf{I} \to \mathbf{C}$. By postcomposition with the Yoneda embedding one obtains the presheaf-valued diagram $\mathbf{C}(-, D-): \mathbf{I} \to [\mathbf{C}^{op}, \mathbf{Set}]$. Since presheaf categories are complete (Example 4.4.36), the limit of this diagram exists:

$$\mathbf{Set}(S, \lim \mathbf{C}(x, D-)) \cong [\mathbf{I}, \mathbf{Set}](\Delta_S, \mathbf{C}(x, D-)).$$

By restricting to the terminal set S = *, one obtains

$$\lim \mathbf{C}(x, D-) \cong [\mathbf{I}, \mathbf{Set}](\Delta_*, \mathbf{C}(x, D-)).$$

If this presheaf is representable, one can use the continuity of the hom-functor, together with the fact that the Yoneda embedding is fully faithful, to show that the representing object is (isomorphic to) $\lim D$, i.e.

$$[\mathbf{I}, \mathbf{Set}](\Delta_*, \mathbf{C}(x, D-)) \cong \mathbf{C}(x, \lim D). \tag{4.47}$$

?? CLEAN THIS UP (note that continuity and pointwise definition was already mentioned for ordinary limits) ??

Definition 4.7.19 (Weighted limit). This definition can now be generalized by replacing the constant functor Δ_* by any functor $W: \mathbf{I} \to \mathbf{Set}$. A representing object is then called the W-weighted limit of D. This object is often denoted by $\lim^W D$ or $\{W, D\}$. To distinguish weighted limits from ordinary ones, the latter are sometimes called **conical limits**.

Remark 4.7.20. A motivation for this construction is the following. As was already pointed out in Remark 4.4.18, the mere knowledge of global elements $1 \to x$ is often not enough to characterize an object x. In general one should look at the collection of generalized elements. When applying this ideology to the case of cones, one sees that replacing the functor Δ_* by a more general functor is the same as replacing the global elements $* \to Di$ by generalized elements $Wi \to Di$.

The generalization to the enriched setting is now evident. There is no reference to the terminal object left, so one can replace **Set** by any enriching category. In the enriched setting, (co)end formulas for (weighted) limits will often be used:

Formula 4.7.21 (Enriched weighted limits). By expressing the natural transformations as an end as in Equation (4.19) and by using the canonical powering in **Set**, one can express ordinary weighted limits as follows:

$$\lim^{W} D \cong \int_{i \in \mathbf{I}} [Wi, Di]. \tag{4.48}$$

The generalization to other enriching categories is now straightforward. Consider a diagram $D: \mathbf{I} \to \mathbf{C}$ and a weight functor $W: \mathbf{I} \to \mathcal{V}$, where \mathbf{C} is \mathcal{V} -enriched. If \mathbf{C} is powered over \mathcal{V} , the W-weighted limit of D is defined by the same formula as above:

$$\lim^{W} D := \int_{i \in I} [Wi, Di]. \tag{4.49}$$

In a similar way one can define weighted colimits in copowered V-categories as coends:

$$\operatorname{colim}^{W} D := \int^{i \in I} Wi \cdot Di. \tag{4.50}$$

Here the weight functor W is required to be contravariant since colimits (and cocones in general) are natural transformations between contravariant functors.

Property 4.7.22 (Weighted limits are Hom-objects). In the case C = V, the powering functor becomes the internal hom and, therefore, one sees that weighted limits are given by (enriched) natural transformations (as was the case for ordinary conical limits).

In the following example the weighted colimit is calculated with respect to the Yoneda embedding:

Example 4.7.23 (Hom-functor). Consider a diagram $D : \mathbf{I} \to \mathbf{C}$. When using the Yoneda embedding $\mathcal{Y}i = \mathbf{I}(-,i)$ as the weight functor, one obtains the following property by virtue of the Yoneda lemma:

$$\operatorname{colim}^{\mathcal{Y}i} D \cong Di. \tag{4.51}$$

A similar statement for weighted limits can be obtained with the covariant Yoneda embedding.

Alternative Definition 4.7.24 (Weighted (co)limits). The above property can be used to axiomatize small weighted (co)limits in bicomplete categories:

1. Yoneda: For every object $i \in ob(\mathbf{I})$ there exist isomorphisms

$$\lim^{\mathbf{I}(i,-)} D \cong Di$$
 and $\operatorname{colim}^{\mathbf{I}(-i)} D \cong Di$. (4.52)

2. Cocontinuity: The weighted (co)limit functors are cocontinuous in the weights.

One can also express Kan extensions as weighted limits:

Property 4.7.25 (Kan extensions). Consider functors $F : \mathbf{A} \to \mathbf{B}$ and $G : \mathbf{A} \to \mathbf{C}$. If for every $x \in \text{ob}(\mathbf{C})$ the weighted limit $\lim^{\mathbf{C}(x,G^-)}F$ exists, these limits can be combined into a functor that can be shown to be the right Kan extension Ran_GF . The left Kan extension can be obtained as a weighted colimit.

4.8 Abelian categories

Definition 4.8.1 (Pre-additive category). A (locally small) category enriched over **Ab**, i.e. a category in which every hom-set is an Abelian group and composition is bilinear.

Property 4.8.2. Let **A** be a pre-additive category. The following statements are equivalent for an object $x \in \text{ob}(\mathbf{A})$:

- x is initial,
- x is final, or
- $1_x = 0$.

It follows that every initial/terminal object in a pre-additive category is automatically a zero object 4.4.12.

Property 4.8.3 (Biproducts). In a pre-additive category the following isomorphism holds for all finitely indexed sets $\{x_i\}_{i\in I}$:

$$\prod_{i \in I} x_i \cong \bigsqcup_{i \in I} x_i. \tag{4.53}$$

Finite (co)products in pre-additive categories are often called **direct sums**. In general, if a product and coproduct exist and are equal, one also speaks of a **biproduct**.

Definition 4.8.4 (Additive category). A pre-additive category in which all finite products exist.

When working with additive categories, it is generally assumed that the associated functors are of a specific type:

Definition 4.8.5 (Additive functor). Let \mathbf{A}, \mathbf{A}' be additive categories. A functor $F : \mathbf{A} \to \mathbf{A}'$ is said to be additive if it preserves finite biproducts:

- 1. It preserves zero objects: $F 0_{\mathbf{A}} \cong 0_{\mathbf{A}'}$.
- 2. There exists a natural isomorphism $F(x \oplus y) \cong Fx \oplus Fy$.

This notion can be generalized to pre-additive categories. A functor between pre-additive categories is said to be additive if it acts as a group morphism on hom-spaces.

Definition 4.8.6 (Grothendieck group). Let **A** be an additive category and consider its decategorification 4.2.22. This set carries the structure of an Abelian monoid and, hence, the Grothendieck construction 3.2.6 can be applied to obtain an Abelian group $K(\mathbf{A})$. This group is called the Grothendieck group of **A**.

In a (pre-)additive category one can some classical notions from (homological) algebra such as images and kernels:

Definition 4.8.7 (Kernel). Let $f: x \to y$ be a morphism. A¹⁴ kernel of f is a morphism $k: z \to x$ such that:

- 1. $f \circ k = 0$.
- 2. Universal property: Every morphism $k': z' \to x$ such that $f \circ k' = 0$ factors uniquely through k.

This implies that a kernel of f could equivalently be defined as the equalizer of f and 0.

Notation 4.8.8 (Kernel). If the kernel of $f: x \to y$ exists, it is denoted by $\ker(f)$.

Definition 4.8.9 (Cokernel). Let $f: x \to y$ be a morphism. A cokernel of f is a morphism $p: y \to z$ such that:

- 1. $p \circ f = 0$.
- 2. Universal property: Every morphism $p': y \to z'$ such that $p' \circ f = 0$ factors uniquely through p.

This implies that a cokernel of f could equivalently be defined as the coequalizer of f and 0.

Notation 4.8.10 (Cokernel). If the cokernel of $f: x \to y$ exists, it is denoted by $\operatorname{coker}(f)$.

Remark 4.8.11. The name and notation of the kernel and the cokernel (in the categorical sense) is explained by remarking that ker(f) represents the functor

$$F: z \mapsto \ker \Big(\mathbf{C}(z, x) \to \mathbf{C}(z, y) \Big),$$

where ker denotes the algebraic kernel 3.1.9, and similarly for he cokernel.

Definition 4.8.12 (Pseudo-Abelian category). An additive category in which every projection/idempotent has a kernel.

¹⁴Note the word "a". The kernel of a morphism is only determined up to an isomorphism.

Definition 4.8.13 (Pre-Abelian category). An additive category in which every morphism has a kernel and cokernel.

Definition 4.8.14 (Abelian category). A pre-Abelian category in which every mono is a kernel and every epi is a cokernel or, equivalently, if for every morphism f there exists an isomorphism

$$\operatorname{coker}(\ker(f)) \cong \ker(\operatorname{coker}(f)).$$
 (4.54)

Property 4.8.15 (Injectivity and surjectivity). In Abelian categories a morphism is monic if and only if it is injective, i.e. its kernel is 0. Analogously, a morphism is epic if and only if it is surjective, i.e. its cokernel is 0.

Example 4.8.16 (k-linear category). Let \mathbf{Vect}_k denote the category of vector spaces over the base field k. A k-linear category is a category enriched over \mathbf{Vect}_k . (If the base field is clear, the subscript is often left implicit.)

Definition 4.8.17 (Exact functor). Let $F : \mathbf{A} \to \mathbf{A}'$ be an additive functor between additive categories.

- F is said to be left-exact if it preserves kernels.
- \bullet F is said to be right-exact if it preserves cokernels.
- F is said to be exact if it is both left- and right-exact.

Corollary 4.8.18. The previous definition implies the following properties (which can in fact be used as an alternative definition):

• If F is left-exact, it maps an exact sequence of the form

$$0 \longrightarrow x \longrightarrow y \longrightarrow z$$

to an exact sequence of the form

$$0 \longrightarrow Fx \longrightarrow Fy \longrightarrow Fz$$
.

• If F is right-exact, it maps an exact sequence of the form

$$x \longrightarrow y \longrightarrow z \longrightarrow 0$$

to an exact sequence of the form

$$Fx \longrightarrow Fy \longrightarrow Fz \longrightarrow 0.$$

• If F is exact, it maps short exact sequences to short exact sequences.

Notation 4.8.19 (Left or right). The category of left modules $_R$ Mod over a ring R is equivalent (as an Abelian category) to the category of right modules $Mod_{R^{op}}$ over the opposite ring R. For this reason one often makes no difference between left and right modules (only bimodules are truly relevant) and "the category of R-modules" is just denoted by RMod.

Theorem 4.8.20 (Freyd-Mitchell embedding theorem). Every small Abelian category admits a fully faithful, exact functor into a category of the form RMod for some unital ring R.

Theorem 4.8.21 (Eilenberg-Watts). Let R, S be two (not necessarily unital) rings. The tensor product functor induces an equivalence between the category of R-S-bimodules and the category of cocontinuous functors R**Mod** $\rightarrow S$ **Mod**.

4.8.1 Finiteness

Definition 4.8.22 (Simple object). Let **A** be an Abelian category. An object $a \in ob(\mathbf{A})$ is said to be simple if the only subobjects of a are 0 and a itself. An object is said to be semisimple if it is a direct sum of simple obejects.

Definition 4.8.23 (Semisimple category). A category is said to be semisimple if every object is semisimple (where in general the direct sums are taken over finite index sets).

Definition 4.8.24 (Jordan-Hölder series). A filtration

$$0 \longrightarrow x_1 \longrightarrow x_2 \longrightarrow \cdots \longrightarrow x_n = x$$

of an object x is said to be a Jordan-Hölder series if the quotient objects x_i/x_{i-1} are simple for all $i \leq n$. If the series has finite length, the object x is said to be **finite**.

Theorem 4.8.25 (Jordan-Hölder). If an object in an Abelian category is finite, all of its Jordan-Hölder series have the same length. In particular, the multiplicities of simple objects are the same for all such series.

Theorem 4.8.26 (Krull-Schmidt). Any object in an Abelian category of finite length admits a unique decomposition as a direct sum of indecomposable objects¹⁵.

Definition 4.8.27 (Locally finite). A k-linear Abelian category is said to be locally finite if it satisfies the following conditions:

- 1. every hom-space is finite-dimensional, and
- 2. every object has finite length.

Definition 4.8.28 (Finite). A k-linear Abelian category is said to be finite if it satisfies the following conditions:

- 1. It is locally finite.
- 2. It has enough projectives or, equivalently, every simple object has a projective cover.
- 3. The set of isomorphism classes of simple objects is finite.

Theorem 4.8.29 (Schur's lemma). Let **A** be an Abelian category. For every two simple objects x, y, all nonzero morphisms $x \to y$ are isomorphisms. In particular, if x, y are two non-isomorphic simple objects, then $\mathbf{A}(x,y) = 0$. Furthermore, $\mathbf{A}(x,x)$ is a division ring for every simple object x.

Corollary 4.8.30. If **A** is locally finite and k is algebraically closed, then $\mathbf{A}(x,x) \cong k$ for all simple objects x. This follows from the fact that the only finite-dimensional division algebra over an algebraically closed field is the field itself.

The Freyd-Mitchell theorem 4.8.20 can be adapted to the finite linear case as follows:

Theorem 4.8.31 (Deligne). Every finite k-linear Abelian category is k-linearly equivalent to a category of the form $A\mathbf{Mod}^{fin}$ for A a finite-dimensional k-algebra.

Construction 4.8.32 (Deligne tensor product). Let A, B be two Abelian categories. Their Deligne (tensor) product is defined (if it exists) as the category $A \boxtimes B$ for which there exists a bijection between right exact functors $A \boxtimes B \to C$ and right exact functors $A \times B \to C$ (the latter being right exact in each argument).

For finite Abelian categories it can be shown that their Deligne product always exists. By the Deligne embedding theorem one can find an explicit description. Consider two finite-dimensional k-algebras A, B. The category $A\mathbf{Mod}^{fin} \boxtimes B\mathbf{Mod}^{fin}$ is equivalent to the category $A \otimes_k B\mathbf{Mod}^{fin}$.

¹⁵An object is **indecomposable** if it cannot be written as a direct sum of its subobjects.

4.9 Higher category theory 4.9

4.9.1 *n*-categories

Definition 4.9.1 (*n*-category). A (strict) *n*-category consists of:

- objects (0-morphisms),
- 1-morphisms going between 0-morphisms,
- ...
- n-morphisms going between (n-1)-morphisms,

such that the composition of k-morphisms $(k \le n)$ is associative and satisfies the unit laws as required in an ordinary category. By generalizing this definition to arbitrary n one can define the notion of a (strict) ∞ -category.

If one relaxes the associativity and unit laws up to higher coherent morphisms, one obtains the notion a weak n-category. Explicit definitions for such categories have been constructed up to tetracategories (n = 4). However, this construction by Trimble takes about 50 pages of diagrams.

Remark. n-morphisms are also called n-cells. This makes their relation to topological spaces (and in particular simplicial spaces) more visible.

Example 4.9.2. The classical examples of a 1-category and 2-category are **Set** and **Cat**, respectively.

Property 4.9.3 (Composition in 2-categories). In a 2-category one can compose 2-morphisms in two different ways:

• Horizontal composition: Consider two 2-morphisms $\alpha: f \Rightarrow g$ and $\beta: f' \Rightarrow g'$ where $f' \circ f$ and $g' \circ g$ are well-defined. These 2-morphisms can be composed as

$$\beta \circ \alpha : f' \circ f \Rightarrow g' \circ g.$$

• Vertical composition: Consider two 2-morphisms $\alpha: f \Rightarrow g$ and $\beta: g \Rightarrow h$ where f, g and h have the same domain and codomain. These 2-morphisms can be composed as

$$\beta \cdot \alpha : f \Rightarrow h$$
.

As a consistency condition the horizontal and vertical composition are required to satisfy the following **interchange law**:

$$(\alpha \cdot \beta) \circ (\gamma \cdot \delta) = (\alpha \circ \gamma) \cdot (\beta \circ \delta). \tag{4.55}$$

Definition 4.9.4 ((n,r)-category). A higher (∞ -)category for which

- all parallel k-morphisms with k > n are equivalent and, hence, trivial.
- all k-morphisms with k > r are invertible (or equivalences in the fully weak ∞ -sense).

Definition 4.9.5 (Weak inverse). Let **C** be a 2-category. A 1-morphism $f: x \to y$ is weakly invertible if there exist a 1-morphism $g: y \to x$ and 2-isomorphisms $g \circ f \Rightarrow \mathbb{1}_x$ and $f \circ g \Rightarrow \mathbb{1}_y$.

At this point it should be obvious that the definition of a unit-counit adjunction 4.2.25 can be generalized to general 2-categories:

Definition 4.9.6 (Adjunction in 2-category). Let **C** be a 2-category. An adjunction in **C** is a pair of 1-morphisms $F: x \to y$ and $G: y \to x$ together with 2-morphisms $\varepsilon: F \circ G \Rightarrow \mathbb{1}_y$ and $\eta: \mathbb{1}_x \Rightarrow G \circ F$ that satisfy the zig-zag identities.

Remark 4.9.7 (Duals and adjunctions). By looking at the defining relations of duals in a rigid monoidal category (Section 27.2 further on), it should be clear that these are in fact the same as the defining relations of the unit and counit of an adjunction. This is a consequence of the fact that a 2-category with a single object can be regarded as a (strict) monoidal category where the composition in the 2-category becomes the tensor product in the monoidal category. Similarly, adjoint 1-morphisms in the 2-category become duals in the monoidal category.

Property 4.9.8 (Monoidal categories). Consider a monoidal category $(C, \otimes, 1)$. From this monoidal category one can construct the so-called **delooping** bicategory **BC** in the following way:

- There is a single object *.
- The 1-morphisms in **BC** are the objects in **C**.
- The 2-morphisms in **BC** are the morphisms in **C**.
- Horizontal composition in **BC** is the tensor product in **C**.
- Vertical composition in **BC** is composition in **C**.

Conversely, every 2-category with a single object comes from a monoidal category. Hence, the 2-category of (pointed) 2-categories with a single object and the 2-category of monoidal categories are equivalent. (This property and its generalizations are the content of the *delooping hypothesis*.)

In the same way one can deloop a braided monoidal category twice and find an identification with a one-object tricategory with one 1-morphism. However, this identification is not a trivial one as it makes use of the Eckmann-Hilton argument to identify different monoidal structures on this tricategory. (See also Section 27.8.)

4.9.2 n-functors

Definition 4.9.9 (2-functor). A 2-functor $F : \mathbf{A} \to \mathbf{B}$ (often called a **pseudofunctor**) is a morphism between bicategories. It consists of the following data:

- a function $F_0 : ob(\mathbf{A}) \to ob(\mathbf{B})$, and
- for every two objects $x, y \in \text{ob}(\mathbf{A})$, a functor $F_{x,y} : \mathbf{A}(x,y) \to \mathbf{B}(Fx, Fy)$.

The function F_0 and the functors $F_{x,y}$ are also often denoted by F by abuse of notation. This data is required to satisfy some coherence conditions. These are specified by the following data:

1. **Associator**: For every pair of composable 1-morphisms $f \circ g$ in hom(**A**), a 2-isomorphism $\gamma_{f,g} : Ff \circ Fg \Rightarrow F(f \circ g)$ such that for every triple of composable morphisms $f \circ g \circ h$ in hom(**A**) the following identity holds:

$$\gamma_{f \circ g, h} \circ (\gamma_{f, g} \cdot \mathbb{1}_{Fh}) = \gamma_{f, g \circ h} \circ (\mathbb{1}_{Ff} \cdot \gamma_{g, h}). \tag{4.56}$$

2. **Unitor**: For every object $x \in \text{ob}(\mathbf{A})$, a 2-isomorphism $\iota_x : \mathbb{1}_{Fx} \Rightarrow F\mathbb{1}_x$ such that for every morphism $f : x \to y$ in hom(\mathbf{A}) the following identities hold:

$$\iota_{y} \cdot \mathbb{1}_{Ff} = \gamma_{\mathbb{1}_{x},f} \tag{4.57}$$

$$\mathbb{1}_{Ff} \cdot \iota_x = \gamma_{f, \mathbb{1}_x}.\tag{4.58}$$

Note that to be completely formal one should have inserted the unitors and associators of the bicategories A, B.

Definition 4.9.10 (Lax natural transformation). Consider two 2-functors $F, G : \mathbf{A} \to \mathbf{B}$ between bicategories. A lax natural transformation $\eta : F \Rightarrow G$ consists of the following data:

- for every object $x \in ob(\mathbf{A})$, a 1-morphism $\eta_x : Fx \to Gx$, and
- for every 1-morphism $f: x \to y$ in hom(**A**), a 2-morphism $\eta_f: Gf \circ \eta_x \Rightarrow \eta_y \circ Ff$ such that the η_f are the components of a natural transformation $(\eta_x)^* \circ G \Rightarrow (\eta_y)_* \circ F$ and such that the assignment $f \mapsto \eta_f$ satisfies the "obvious" identity and composition axioms.

Remark 4.9.11. As usual in the context of higher category theory one can speak of lax 2-functors if the associator and unitors are merely required to be 2-morphisms and of strict 2-functors if these morphisms are required to be identities. If the natural transformations between morphism categories in the definition of a lax natural transformation are all isomorphisms, this is called a **pseudonatural transformation**. If the 1-morphisms η are equivalences, they are called lax natural equivalences.

Definition 4.9.12 (Modification). Consider two bicategories \mathbf{A}, \mathbf{B} , two 2-functors $F, G : \mathbf{A} \to \mathbf{B}$ and two parallel (lax) natural transformations $\alpha, \beta : F \Rightarrow G$. A modification $\mathfrak{m} : \alpha \Rightarrow \beta$ maps every object $x \in \text{ob}(\mathbf{A})$ to a 2-morphism $\mathfrak{m}_x : \alpha_x \Rightarrow \beta_x$ such that $\beta_f \circ (\mathbb{1}_{Gf} \cdot \mathfrak{m}_x) = (\mathfrak{m}_y \cdot \mathbb{1}_{Ff}) \circ \alpha_f$.

This is generalized as follows:

Definition 4.9.13 (Transfor). A k-transfor¹⁶ between two n-categories maps j-morphisms to (j + k)-morphisms (in a coherent way).

Example 4.9.14. The definitions for operations in bicategories above lead us to the following "explicit" expressions for k-transfors (for small k):

- k = 0: n-functors,
- k = 1: (n-)natural transformations,
- k = 2: modifications, and
- k=3: perturbations.

The following definition generalizes the notion of essential surjectivity 4.2.11 to higher category theory:

Definition 4.9.15 (n**-surjective functor).** An ∞ -functor $F: \mathbf{A} \to \mathbf{B}$ is said to be n-surjective if for any two parallel (n-1)-morphisms f,g in \mathbf{A} and n-morphism $\alpha: Ff \to Fg$ in \mathbf{B} , there exists an n-morphism $\widetilde{\alpha}$ in \mathbf{A} such that $F\widetilde{\alpha} \cong \alpha$.

Definition 4.9.16 (Indexed category). Consider a category **I**. An **I**-indexed category is a pseudofunctor $C: I^{op} \to Cat$, i.e. a 2-presheaf on **I**. Indexed functors and natural transformations are defined analogously.

¹⁶This name was first introduced by Crans in [81]. A different name that is sometimes used is (n,k)transformation, but this should not be confused with the natural transformations in the context of (n,r)categories.

4.9.3 Higher (co)limits

Definition 4.9.17 (Weighted 2-limit). Consider 2-categories \mathbf{I} , \mathbf{C} together with 2-functors $W: \mathbf{I} \to \mathbf{Cat}$ and $F: \mathbf{I} \to \mathbf{C}$. By direct generalization of the ordinary definition of weighted limits, one says that $\lim^W F$ is the W-weighted (2-)limit of F if there exists a pseudonatural equivalence

$$\mathbf{C}(x, \lim^{W} F) \cong [\mathbf{I}, \mathbf{Cat}](W, \mathbf{C}(x, F-)). \tag{4.59}$$

By restricting to the 2-category of strict 2-categories, strict 2-functors and strict natural transformations the resulting notion of a weighted 2-limit coincides with that of an ordinary weighted limit enriched in **Cat** (since strict 2-categories are simply **Cat**-enriched 1-categories.)

?? COMPLETE ??

4.10 Groupoids

Definition 4.10.1 (Groupoid). A (small) groupoid \mathcal{G} is a (small) category in which all morphisms are invertible.

Example 4.10.2 (Delooping). Consider a group G. Its delooping $\mathbf{B}G$ is defined as the one-object groupoid for which $\mathbf{B}G(*,*) = G$.

Property 4.10.3 (Representations). Consider a group G together with its delooping $\mathbf{B}G$. When considering representations as functors $\rho: \mathbf{B}G \to \mathbf{FinVect}$, one can see that the intertwiners 3.3.4 are exactly the natural transformations.

Definition 4.10.4 (Core). Let C be a (small) category. The core $Core(C) \in Grpd$ of C is defined as the maximal subgroupoid of C.

Definition 4.10.5 (Orbit). Let \mathcal{G} be a groupoid with O, M respectively the sets of objects and morphisms. On O one can define an equivalence $x \sim y \iff \exists \phi : x \to y$. The equivalence classes are called orbits and the set of orbits is denoted by O/M.

Definition 4.10.6 (Transitive component). Let \mathcal{G} be a groupoid with O, M respectively the sets of objects and morphisms and let s, t denote the source and target maps on M. Given an orbit $o \in O/M$, the transitive component of M associated to o is defined as $s^{-1}(o)$, or equivalently, as $t^{-1}(o)$.

Property 4.10.7. Every groupoid is a (disjoint) union of its transitive components.

Definition 4.10.8 (Transitive groupoid). A groupoid \mathcal{G} is said to be transitive if for all objects $x \neq y \in \text{ob}(\mathcal{G})$, the set $\mathcal{G}(x,y)$ is not empty.

4.11 Lawvere theories &

Definition 4.11.1 (Lawvere theory). Let **F** denote the skeleton of **FinSet**. A Lawvere theory consists of a small category **L** and a strict (finite) product-preserving *identity-on-objects* functor $\mathcal{L}: \mathbf{F}^{op} \to \mathbf{L}$.

Equivalently, a Lawvere theory is a small category **L** with a **generic object** c_0 such that every object $c \in \text{ob}(\mathbf{L})$ is a finite power of c_0 .

Property 4.11.2. Lawvere theories $(\mathbf{L}, \mathcal{L})$ form a category **Law**. Morphisms between Lawvere theories are (finite) product-preserving functors.

Definition 4.11.3 (Model). A model or **algebra** over a Lawvere theory **L** is a (finite) product-preserving functor $A: \mathbf{L} \to \mathbf{Set}$.

?? COMPLETE ??

4.12 Operad theory ♣

4.12.1 Operads

Definition 4.12.1 (Plain operad¹⁷). Let $\mathcal{O} = \{P(n)\}_{n \in \mathbb{N}}$ be a collection of sets, called *n*-ary operations (where *n* is called the **arity**). The collection \mathcal{O} is called a plain operad if it satisfies following axioms:

- 1. P(1) contains an identity element 1.
- 2. For all positive integers n, k_1, \ldots, k_n there exists a composition map

$$\circ: P(n) \times P(k_1) \times \dots \times P(k_n) \to P(k_1 + \dots + k_n)$$

$$: (\psi, \theta_1, \dots, \theta_n) \mapsto \psi \circ (\theta_1, \dots, \theta_n)$$
 (4.60)

that satisfies two additional axioms:

• identity:

$$\theta \circ (\mathbb{1}, \dots, \mathbb{1}) = \mathbb{1} \circ \theta = \theta, \tag{4.61}$$

and

• associativity:

$$\psi \circ \left(\theta_1 \circ (\theta_{1,1}, \dots, \theta_{1,k_1}), \dots, \theta_n \circ (\theta_{n,1}, \dots, \theta_{n,k_n})\right)$$

$$= \left(\psi \circ (\theta_1, \dots, \theta_n)\right) \circ (\theta_{1,1}, \dots, \theta_{1,k_1}, \theta_{2,1}, \dots, \theta_{n,k_n}). \tag{4.62}$$

If the operad is represented using planar tree diagrams, the associativity obtains a nice intuitive form. When combining planar tree diagrams in three layers, the associativity axiom says that one can either first glue the first two layers together or one can first glue the last two layers together.

Remark 4.12.2. Plain operads can be defined in any monoidal category. In the same way symmetric operad can be defined in any symmetric monoidal category.

Example 4.12.3. Consider a vector space V. For every $n \in \mathbb{N}$, one can define the endomorphism algebra $\operatorname{End}(V^{\otimes n}, V)$. The endomorphism operad $\operatorname{End}(V)$ is defined as $\{\operatorname{End}(V^{\otimes n}, V)\}_{n \in \mathbb{N}}$.

Definition 4.12.4 (O-algebra). An object X is called an algebra over an operad O if there exist morphisms

$$O(n) \times X^n \to X$$

for every $n \in \mathbb{N}$ satisfying the usual composition and identity laws. Alternatively, this can be rephrased as the existence of a (plain) operad morphism $O(n) \to \mathcal{E} \operatorname{nd}(X)$.

Example 4.12.5 (Categorical O-algebra). An O-algebra in the category Cat.

4.12.2 Algebraic topology

Definition 4.12.6 (Stasheff operad). A topological operad \mathcal{K} such that $\mathcal{K}(n)$ is given by the n^{th} Stasheff polytope/associahedron. Composition is given by the inclusion of faces.

Definition 4.12.7 (A_{∞} -space). An algebra over the Stasheff operad. This induces the structure of a multiplication that is associative up to a coherent homotopy.

¹⁷Also called a **nonsymmetric operad** or **non-** Σ **operad**.

Definition 4.12.8 (Little k-cubes operad). A topological operad for which every topological space $\mathcal{P}(n)$ consists of all possible configurations of n embedded k-cubes in a (unit) k-cube. Composition is given by the obvious way of inserting one unit k-cube in one of the smaller embedded k-cubes.

Property 4.12.9 (Recognition principle). If a connected topological space X forms an algebra over the little k-cubes operad, it is (weakly) homotopy equivalent to the k-fold loop space $\Omega^k Y$ of another pointed topological space Y. For k=1, one should technically use the Stasheff operad, but it can be shown that this is related to the little interval operad.

?? COMPLETE ??

Chapter 5

Homological algebra

References for this chapter are [35, 36].

5.1 Chain complexes

Definition 5.1.1 (Chain complex). Let **A** be an additive category (often an Abelian category) and consider a collection $\{C_k\}_{k\in\mathbb{Z}}$ of objects and a collection $\{\partial_k: C_k \to C_{k-1}\}_{k\in\mathbb{Z}}$ of morphisms in **A** such that for all $k\in\mathbb{Z}$:

$$\partial_k \circ \partial_{k+1} = 0. \tag{5.1}$$

This structure is called a chain complex¹ and the morphisms ∂_k are called the **boundary** operators or differentials. Elements of $\operatorname{im}(\partial_k)$ are called **boundaries** and elements of $\operatorname{ker}(\partial_k)$ are called **cycles**. The chain complex $\{(C_k, \partial_k)\}_{k \in \mathbb{Z}}$ is often denoted by $(C_{\bullet}, \partial_{\bullet})$ or simply by C_{\bullet} if the choice of boundary operators is clear.

Morphisms between chain complexes are called **chain maps** and they are defined as a collection of morphisms $\{f_k: C_k \to D_k\}_{k \in \mathbb{Z}}$ such that for all $k \in \mathbb{Z}$ the following equation holds:

$$\partial_k' \circ f_k = f_{k-1} \circ \partial_k, \tag{5.2}$$

where ∂_k, ∂'_k are the boundary operators of C_{\bullet} and D_{\bullet} , respectively. Given an additive category \mathbf{A} , one can define the category $\mathbf{Ch}(\mathbf{A})$ of chain complexes and chain maps in \mathbf{A} .

Remark 5.1.2 (Reversal). Given a chain (resp. cochain) complex C one can easily construct a cochain (resp. chain) complex \widetilde{C} by setting $\widetilde{C}_k := C_{-k}$.

Definition 5.1.3 (Chain homology). Given a chain complex C_{\bullet} , one can define its homology groups $H_n(C_{\bullet})$. Since $\partial^2 = 0$, the kernel $\ker(\partial_k)$ is a subgroup of the image $\operatorname{im}(\partial_{k+1})$ and it is even a normal subgroup. This way one can define the quotient group:

$$H_k(C_{\bullet}) := \frac{\ker(\partial_k)}{\operatorname{im}(\partial_{k+1})}.$$
(5.3)

The kernel in this definition, i.e. the group of k-cycles, is denoted by $Z_k(C_{\bullet})$. The image in this definition, i.e. group of (k+1)-boundaries, is denoted by $B_k(C_{\bullet})$. The homology groups themselves also form a chain complex $H_{\bullet}(C_{\bullet})$, but with trivial differentials.

¹A **cochain complex** is constructed similarly with an ascending order $\partial_k : C_k \to C_{k+1}$.

Definition 5.1.4 (Quasi-isomorphism). A chain map for which the induced morphisms on homology are isomorphisms.

Definition 5.1.5 (Chain homotopy). Two chain maps $f, g: C_{\bullet} \to D_{\bullet}$ are said to be chain-homotopic if there exists a chain map $s: C_{\bullet} \to D_{\bullet}$ such that the following equation is satisfied:

$$f - g = s \circ \partial_C + \partial_D \circ s. \tag{5.4}$$

A chain map homotopy-equivalent to the zero map is said to be **null-homotopic**. If there exist two chain maps $f: C_{\bullet} \hookrightarrow D_{\bullet}: g$ such that both $f \circ g$ and $g \circ f$ are chain-homotopic to the identity, C_{\bullet} and D_{\bullet} are said to be (chain-)homotopy equivalent.

Property 5.1.6. Chain-homotopic maps induce coinciding maps in homology. In particular, every (chain-)homotopy equivalence is a quasi-isomorphism.

Corollary 5.1.7 (Vanishing homology). If a null-homotopic chain map $f: C_{\bullet} \to C_{\bullet}$ exists, then $H_{\bullet}(C_{\bullet})$ vanishes.

Definition 5.1.8 (Differential modulo differential). Consider a chain complex $(C_{\bullet}, \partial_{\bullet})$ together with a chain endomorphism d. This endomorphism is said to be a differential modulo ∂ if it satisfies the following conditions:

- 1. $d\partial + \partial d = 0$, and
- 2. $d^2 = [\partial, D]$ for some other chain endomorphism D, i.e. d^2 is ∂ -exact in End (C_{\bullet}) .

The first condition states that d descends to a chain endomorphism on $H_{\bullet}(C_{\bullet})$. The second condition states that d is actually a differential on $H_{\bullet}(C_{\bullet})$. The resulting homology theory is denoted by $H_{\bullet}(d|H_{\bullet}(C_{\bullet}))$.

The following definitions use the language of Chapter 27:

Definition 5.1.9 (Differential graded algebra). A differential graded algebra (often called a **dg-algebra**, **DGA** or **dga**) is a (co)chain complex that carries the structure of an algebra where the differential acts as a derivation. Equivalently, it is a graded algebra equipped with a nilpotent derivation of degree ± 1 .

Definition 5.1.10 (Connective DGA). A DGA A_{\bullet} with vanishing (co)homology in negative, i.e. $H_{<0}(A_{\bullet}) = 0$. For every connective DGA, one can find a quasi-isomorphic DGA concentrated in nonnegative degree.

Definition 5.1.11 (Semifree DGA). A DGA for which the underlying graded algebra is isomorphic (as a graded algebra) to the tensor algebra over a graded vector space.

Definition 5.1.12 (Differential graded-commutative algebra). A graded-commutative differential graded algebra. This is often abbreviated as **DGCA** or **dgca**.

Definition 5.1.13 (Semifree dgca). A DGCA for which the underlying graded-commutative algebra is isomorphic (as a graded-commutative algebra) to the exterior algebra over a graded vector space.

Definition 5.1.14 (Minimal model). Let $(C_{\bullet}, \partial_{\bullet})$ be a (cohomological) DGCA of finite type. A model for C_{\bullet} is a quasi-isomorphism $\rho: (A_{\bullet}, d_{\bullet}) \to (C_{\bullet}, \partial_{\bullet})$ from a semifree DGCA $(A_{\bullet}, d_{\bullet})$. This model is said to be **minimal** if A_{\bullet} is freely generated in degrees ≥ 2 and satisfies $dA \subseteq \Lambda^{\geq 2}A$.

Remark 5.1.15 (Model structure on DGCAs ♣). By Property 9.1.65, the (minimal) models of DGCAs are (minimal) Sullivan algebras. From a model theory point of view, the (minimal) Sullivan algebras are the cofibrant objects and the (minimal) models are the cofibrant replacements.

5.2 Exact sequences

Definition 5.2.1 (Exact sequence). Let **A** be an additive category and consider a sequence of objects and morphisms in **A**:

$$C_0 \xrightarrow{\Phi_1} C_1 \xrightarrow{\Phi_2} \cdots \xrightarrow{\Phi_n} C_n.$$
 (5.5)

This sequence is said to be exact if for every $k \in \mathbb{N}$:

$$im(\Phi_k) = \ker(\Phi_{k+1}). \tag{5.6}$$

In particular this means that $\Phi_{k+1} \circ \Phi_k = 0$ for all $k \in \mathbb{N}$, which in turn implies that exact sequences are a special type of chain complexes 5.1.1.

Definition 5.2.2 (Short exact sequence). A short exact sequence is an exact sequence with exactly three nonzero terms:

$$0 \longrightarrow C_0 \xrightarrow{\Phi_1} C_1 \xrightarrow{\Phi_2} C_3 \longrightarrow 0. \tag{5.7}$$

Usually, all other exact sequences are said to be long.

Property 5.2.3 (Morphisms in exact sequences). By looking at some small examples, one can derive some important constraints for certain exact sequences. Consider the sequence

$$0 \longrightarrow C \stackrel{\Phi}{\longrightarrow} D.$$

This sequence can only be exact if Φ is an injective morphism (monomorphism). This follows from the fact that the only element in the image of the map $0 \to C$ is 0 because the map is a morphism. It follows that the kernel of Φ is trivial and, hence, that Φ is injective.

Analogously, the sequence

$$C \xrightarrow{\Psi} D \longrightarrow 0$$

is exact if and only if Ψ is a surjective morphism (epimorphism). This follows from the fact that the kernel of the map $D \to 0$ is all of C, which implies that Ψ is surjective (by exactness).

Combining these two cases shows that

$$0 \longrightarrow C \stackrel{\Sigma}{\longrightarrow} D \longrightarrow 0$$

is exact if and only if Σ is a **bimorphism** (if **A** is Abelian, Σ is even an isomorphism by Property ??).

5.3 Resolutions

Consider some Abelian category \mathbf{A} and let $\mathbf{Ch}(\mathbf{A})$ denote the category of chain complexes with objects in \mathbf{A} .

Definition 5.3.1 (Acyclic complex). A chain complex $C_{\bullet} \in \mathbf{Ch}(\mathbf{A})$ is said to be acyclic if the sequence

$$\cdots \longrightarrow C_{k+1} \longrightarrow C_k \longrightarrow C_{k-1} \longrightarrow \cdots$$

is exact or, equivalently, if the homology complex $H_{\bullet}(C_{\bullet})$ vanishes.

Remark. Some references, especially the older ones, use a slightly different definition of acyclicity. In their definition, the sequence is exact except in degree 0, i.e. $H_0(C_{\bullet}) \neq 0$.

Definition 5.3.2 (Resolution). Consider an object X in \mathbf{A} . A resolution of X is given by an acyclic chain complex in \mathbf{A} of the form

$$\cdots \longrightarrow C_1 \longrightarrow C_0 \stackrel{\varepsilon}{\longrightarrow} X \longrightarrow 0. \tag{5.8}$$

This also implies that X is the zeroth homology group of the chain complex $C_{\bullet} := \{C_k\}_{k \geq 0}$. The morphism $\varepsilon : C_0 \to X$ is often called the **augmentation map** and the complex $C_{\bullet} \to X \to 0$ is called the **augmentation** of C_{\bullet} .

In practice it is often convenient to restrict to a specific type of resolution. For example, by considering chain complexes with only injective or projective objects (figures 4.2a and 4.2b), one obtains injective or projective resolutions. If every object in A admits a projective (resp. injective) resolution, A is said to have enough projectives (resp. injectives).

Theorem 5.3.3 (Homological perturbation). Consider a resolution $(C_{\bullet}, \partial_{\bullet})$ and denote the grading in C_{\bullet} by r. Furthermore, consider a differential d modulo ∂ of degree 0 and denote the associated grading by deg. There exists a differential s satisfying the following properties:

- deg(s) r(s) = 1, and
- $s = \delta + d + \sum_{i=1}^{\infty} s_{(i)}$ where $r(s_{(i)}) = i$ and $deg(s_{(i)}) = i + 1$.

Moreover, any differential that satisfies these properties has the same homology as d:

$$H_{\bullet}(s) \cong H_{\bullet}(d|H_{\bullet}(C_{\bullet})) \equiv H_{\bullet}(d|H_{0}(C_{\bullet})).$$
 (5.9)

Remark 5.3.4 (Ghost number). The total degree deg(x) - r(x) is sometimes called the ghost number (especially in quantum field theory).

5.4 Derived functors

Given an additive functor ??, one can define its **prolongation** on the category of chain complexes:

Definition 5.4.1 (Prolongation). Let $F : \mathbf{A} \to \mathbf{A}'$ be an additive functor. The prolongation of F is a functor $\overline{F} : \mathbf{Ch}(\mathbf{A}) \to \mathbf{Ch}(\mathbf{A}')$ obtained by applying F to every object in a chain complex and to every diagram in the definition of a chain map. As is common, by abuse of notation the prolongation will also often be denoted by F.

To understand and unify the various long exact sequences in (co)homology and to formulate general statements about these theories, one can introduce the concept of derived functors.

Definition 5.4.2 (Left derived functor). Let **A** be an Abelian category with enough projectives and consider a right-exact functor $F: \mathbf{A} \to \mathbf{A}'$. The left derived functors L_iF are defined in the following way.

Pick an object X in A and construct a projective resolution $P_{\bullet} \xrightarrow{\varepsilon} X \to 0$. Apply the prolongation to this resolution and construct the homology of the resulting chain complex:

$$L_i F(X) := H_i(FP_{\bullet}). \tag{5.10}$$

In particular, $L_0F(X) = F(X)$.

Right derived functors of left-exact functors can be constructed dually by choosing an injective resolution, applying the prolongation and taking the cohomology of the resulting cochain complex. In the remainder of this section all statements will be given for right-exact functors and left derived functors.

Remark 5.4.3 (Contravariant functors). The above construction was given for covariant functors. For contravariant functors one defines the derived functors as those of the opposite functor. This is equivalent to starting with an injective (resp. projective) resolution for the calculation of left (resp. right) derived functors since injective objects are projective in the opposite category and similarly homology becomes cohomology in the opposite category.

Property 5.4.4 (Exact functors). If F is exact, the above construction immediately implies that the derived functors L_i vanish for $i \geq 1$.

Property 5.4.5 (Projective objects). Consider a right-exact functor F together with its left derived functors L_iF . If an object P is projective, then $L_iF(P) = 0$ for all $i \ge 1$. This can easily be shown by remarking that every projective object P admits a projective resolution of the form

$$\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow P \longrightarrow P \longrightarrow 0.$$

Now of course one could wonder why the resolutions used in the construction of derived functors are required to be projective or injective. This seems to be a very strong requirement. The reason is that, when using the above definitions, the result is independent of the resolution used in the sense that the derived functors are naturally isomorphic. However, in certain situations one might want to work with a more general resolution. For example, in the next section, when considering the tensor product, it would be useful if one could just work with *flat* modules.

Definition 5.4.6 (Acyclic resolution). Consider a right-exact functor F together with its left derived functors L_iF . An object X is said to be F-acyclic if $L_iF(X) = 0$ for all $i \ge 1$. A resolution of an object is said to be F-acyclic if all objects in the resolution are F-acyclic.

Property 5.4.7 (Derived functors for acyclic resolutions). Derived functors of a right-exact (resp. left-exact) functor F constructed using an F-acyclic resolution are isomorphic to those obtained using a projective (resp. injective) resolution.

One of the motivating properties of derived functors are the long exact sequences in (co)homology. All of these are a result of the following property:

Property 5.4.8 (Long exact sequence). Let $F: \mathbf{A} \to \mathbf{A}'$ be a right-exact functor (the left-exact case proceeds in a similar way). Consider a short exact sequence in \mathbf{A} :

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0. \tag{5.11}$$

Now, choose projective resolutions for A and C. By the *horseshoe lemma*, one obtains a projective resolution for B that fits in a short exact sequence of chain complexes:

$$0 \longrightarrow A_{\bullet} \longrightarrow B_{\bullet} \longrightarrow C_{\bullet} \longrightarrow 0. \tag{5.12}$$

Since F is additive and the above sequence is exact, the induced complex is also exact, i.e. the sequence

$$0 \longrightarrow FA_{\bullet} \longrightarrow FB_{\bullet} \longrightarrow FC_{\bullet} \longrightarrow 0 \tag{5.13}$$

is exact and so the *zig-zag lemma* is applicable. This theorem gives the following long exact sequence in homology:

$$\cdots \longrightarrow H_i(FB_{\bullet}) \longrightarrow H_i(FC_{\bullet}) \longrightarrow H_{i-1}(FA_{\bullet}) \longrightarrow H_{i-1}(FB_{\bullet}) \longrightarrow \cdots . \tag{5.14}$$

These homology groups are by definition the same as the left derived functors $(L_i = H_i \circ F)$ and, accordingly, a long exact sequence relating the different derived functors is obtained.

Corollary 5.4.9. The above long exact sequence of derived functors shows that the first derived functor gives the obstruction to F being exact. Since exact functors have vanishing derived functors, one obtains the following result:

$$L_1 F = 0 \implies L_i F = 0 \qquad \forall i \ge 1, \tag{5.15}$$

and, more generally:

$$L_i F = 0 \implies L_j F = 0 \qquad \forall j \ge i.$$
 (5.16)

5.4.1 Modules

Consider the tensor and hom-bifunctors $-\otimes$ – and $\operatorname{Hom}(-,-)$ in the category **Mod** of modules over some ring. The tensor functor is right-exact in both arguments, while the hom-functor is left-exact in both arguments and, hence, one can construct the associated left and right derived functors. For simplicity, everything will be constructed with respect to the first argument of these bifunctors. A proof that the derived functors are *balanced*, i.e. that one can use a projective resolution for either argument and obtain isomorphic results, can be found in the references cited at the beginning of the chapter.

Definition 5.4.10 (Tor-functor). Consider a ring R and an R-module A. The Tor-functors $\operatorname{Tor}_n^R(-,A)$ are defined as the left derived functors of the tensor functor $-\otimes_R A$.

Definition 5.4.11 (Ext-functor). Consider a ring R and an R-module A. The Ext-functors $\operatorname{Ext}_R^n(-,A)$ are defined as the right derived functors of the hom-functor $\operatorname{Hom}_R(-,A)$.

Definition 5.4.12 (Flat module). An R-module M such that the induced tensor functor

$$-\otimes_R M: R\mathbf{Mod} \to R\mathbf{Mod} \tag{5.17}$$

is exact. By Property 5.4.4 this implies that a flat module is \otimes -acyclic 5.4.6, which in turn implies by Property 5.4.7 that these modules can be used to construct a good resolution for calculating Tor-functors.

Definition 5.4.13 (Koszul complex). Consider a commutative ring R together with a free rank-r module M over R. For every morphism $s: M \to R$ one defines the Koszul complex K(s) as follows:

$$0 \longrightarrow \Lambda^r M \longrightarrow \Lambda^{r-1} M \longrightarrow \cdots \longrightarrow M \stackrel{s}{\longrightarrow} R \longrightarrow 0, \tag{5.18}$$

where the exterior powers $\Lambda^k M$ are defined as in Section 21.6.4, i.e. they are the free modules spanned by totally antisymmetric k-tuples in M. The differentials are defined as

$$d_k(m_1 \wedge \ldots \wedge m_k) := \sum_{i=1}^k (-1)^{k+1} s(m_i) m_1 \wedge \ldots \wedge \widehat{m_i} \wedge \ldots \wedge m_k, \tag{5.19}$$

where the caret $\hat{\cdot}$ means that this element is omitted. It is clear that $d_1 = s$. The homology of this complex is called the **Koszul homology** of s.

Example 5.4.14. Every finite sequence (x_1, \ldots, x_n) in R (interpreted as a choice of basis for R^n) defines a morphism $s: R^n \to R$ by

$$s: \mathbb{R}^n \to \mathbb{R}: (r_1, \dots, r_n) \mapsto r_1 x_1 + \dots + r_n x_n.$$
 (5.20)

The associated Koszul complex is denoted by $K(x_1, \ldots, x_n)$.

Property 5.4.15 (Koszul resolution). Let R be a commutative ring. If (x_1, \ldots, x_n) is a **regular sequence** on R, i.e. for every $i \leq n$ the element x_i is a nonzero divisor of $R/(x_1, \ldots, x_{i-1})R$, the Koszul homology of $K(x_1, \ldots, x_n)$ satisfies:

$$H_{i>1}(K(x_1,\ldots,x_n))=0,$$
 (5.21)

i.e. $K(x_1, ..., x_n)$ is a resolution of $R/(x_1, ..., x_n)$, called the Koszul resolution. By the very construction of the Koszul complex, it is even a free resolution.

Property 5.4.16 (Koszul-Tate resolution). Consider a commutative ring R with an ideal I. For any element $x \in I$, one can construct the polynomial algebra R[t] on a formal generator t and extend the differential by $\partial t := x$. Because of this definition, the homology class of x in R[t] vanishes. This procedure is said to "kill" the homology of x.

In a similar way one can kill the higher homology of I. If $I \equiv (x_1, \ldots, x_k)$, one can consider the Koszul complex $(X^0, d^0) := (K(x_1, \ldots, x_k), d)$. Its homology is exactly the quotient A/I. However, since the sequence is not necessarily regular, the higher homology groups need not vanish. To this end, choose a generating set (x'_1, \ldots, x'_l) of $H_1(X^0, d^0)$. Now, consider the Koszul complex $(X^1, d^1) := (K(x_1, \ldots, x_k, x'_1, \ldots, x'_l), d')$ induced by the morphism

$$s': R^{k+l} \to R: (r_1, \dots r_{k+l}) \mapsto r_1 x_1 + \dots + r_k x_k + r_{k+1} x_1' + \dots + r_{k+l} x_l', \tag{5.22}$$

where the generators x_i are of degree 1 and the generators x_i' are degree 2 (in the definition of the Koszul complex one thus needs to replace the Grassmann algebra by the graded-commutative algebra 27.1.8). It should be clear that $H_0(X^1, d^1) \cong R/I$ and $H_1(X^1, d^1) = 0$. The direct limit of this construction is called the **Koszul-Tate resolution** of (R, I).

5.4.2 Group cohomology

In this section an important application of derived functors is given. In fact this was one of the motivating applications. In different areas of mathematics and physics, the concept of group cohomology pops up. Some examples are the obstruction to group extensions, the classification of projective representations and the application of these concepts to the study of symmetry-protected topological order in condensed matter physics. However, the literature on these applications often starts with an ad hoc construction based on maps from a group to a module (see Definition 3.4.1).

For simplicity only finite groups and Abelian coefficients groups will be considered. Every G-module 3.3.5 can be regarded as a module over the group ring $\mathbb{Z}[G]$, i.e. there exists an equivalences of categories between \mathbf{Ab} and $\mathbb{Z}[G]\mathbf{Mod}$. Assuming the axiom of choice, every module category over a ring has enough projectives and, hence, it makes sense to define group (co)homology using derived functors in $\mathbb{Z}[G]\mathbf{Mod}$. For groups an explicit construction of a resolution that is not just $\mathbb{Z}[G]$ -projective but even $\mathbb{Z}[G]$ -free will be given.

The homology and cohomology of a finite group G with coefficients in a G-module A is defined using the Ext- and Tor-functors defined above:

$$H^{\bullet}(G; A) := \operatorname{Ext}_{\mathbb{Z}[G]}^{\bullet}(\mathbb{Z}, A) \tag{5.23}$$

$$H_{\bullet}(G;A) := \operatorname{Tor}_{\bullet}^{\mathbb{Z}[G]}(A,\mathbb{Z}),$$
 (5.24)

where \mathbb{Z} carries the trivial G-module structure. To explicitly calculate the (co)homology groups, one has to find an acyclic resolution of \mathbb{Z} :

 $^{^{2}}$ If R is Noetherian, this is always possible.

Construction 5.4.17 (Normalized bar resolution). Let P'_k be a free rank-k G-module. The boundary maps are defined as follows:

$$\partial_k(g_1, \dots, g_k) = g_1(g_2, \dots, g_k) + \sum_{i=1}^k (-1)^i(g_1, \dots, g_i g_{i+1}, \dots, g_k) + (-1)^k(g_1, \dots, g_{k-1}).$$
 (5.25)

To obtain the normalized bar³ resolution (in inhomogeneous form), one has to quotient out the submodule of P'_n generated by tuples (g_1, \ldots, g_n) where one of the g_i 's is the identity. It can be shown that the resulting quotient modules P_n form a $\mathbb{Z}[G]$ -free resolution of \mathbb{Z} .

To explicitly calculate the cohomology groups $H^k(G;A) = H^k(\operatorname{Hom}_{\mathbb{Z}[G]}(P_{\bullet},A))$, it is often easier to work with a more explicit description of the involved hom-sets. Since P'_k is a free $\mathbb{Z}[G]$ -module on G^k , it is isomorphic (as a module) to $\mathbb{Z}[G^{k+1}]$. This can be seen as follows. The generating set consists of all k-tuples of elements in G:

$$S = \{(g_1, \dots, g_k) \mid \forall i \le k : g_i \in G\}.$$

Since the module is free over $\mathbb{Z}[G]$, one can write every element as a formal linear combination of elements of the form

$$g_0(q_1,\ldots,q_k).$$

One can now construct a morphism φ between this module and $\mathbb{Z}[G^{k+1}]$, which carries the diagonal G-action, in the following way. On the generating set S, define φ as follows:

$$\varphi(g_1, \dots, g_k) := (e, g_1, g_1 g_2, \dots, g_1 g_2 \cdots g_k). \tag{5.26}$$

It is not hard to show that this morphism is in fact an isomorphism (of G-modules) and that

$$H^{k}(G;A) = H^{k}(\operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}[G^{k+1}],A)). \tag{5.27}$$

By a little more algebra, it can also be shown that this hom-set is isomorphic to the (set-theoretic) mapping space $Map(G^k, A)$. This space can be given an Abelian group structure induced by the group structure on A. Combining these facts, one gets the following construction for the cohomology of groups:

Construction 5.4.18 (Group cohomology). Let G be a finite group and let A be a Gmodule. Denote by C^k the free Abelian group generated by the set-theoretic functions $f: G^k \to A$ with the property that if any of their arguments is the identity, the result is 0. The boundary
maps ∂^k , induced by the maps defined in Equation (5.25), are given by:

$$(\partial^k f)(g_1, \dots, g_{k+1}) = g_1 \cdot f(g_2, \dots, g_{k+1}) + \sum_{i=1}^k (-1)^i f(\dots, g_i g_{i+1}, \dots) + (-1)^{k+1} f(g_1, \dots, g_k).$$
(5.28)

This is exactly the relation used to obtain group cohomology in Definition 3.4.1.

Property 5.4.19 (Finiteness). Let G be a finite group and let A be a G-module such that the underlying group is finitely generated. Since in this case the hom-groups are themselves finitely generated, the cohomology groups $H^k(G;A)$ for $k \geq 1$ are also finitely generated. Furthermore, they are annihilated by the order of G, so in particular they are all torsion. It follows that all cohomology groups are finite.

³One of the possible explanations for this name is that the formal generating elements are often written as $[g_1|g_2|\dots|g_k]$.

Property 5.4.20 (Bockstein homomorphism). Let G be a group and consider a short exact sequence of $\mathbb{Z}[G]$ -modules

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0.$$

This exact sequence induces a long exact sequence in group cohomology. The connecting homomorphism

$$H^{\bullet}(G;C) \to H^{\bullet+1}(G;A)$$
 (5.29)

is called the Bockstein homomorphism.

5.5 Spectral sequences

Remark. In this section the homological convention is adopted, i.e. differentials lower the degree.

Definition 5.5.1 (Spectral sequence). Consider a collection $\{(E_i, d_i)\}_{i \in \mathbb{N}}$ of differential objects. This collection is called a spectral sequence if it satisfies

$$H(E_i, d_i) \cong E_{i+1} \tag{5.30}$$

for every $i \in \mathbb{N}$. A morphism of spectral sequences is a collection of morphisms $(\varphi_i)_{i \in \mathbb{N}}$ satisfying

- $\varphi_i \circ d_i = d'_i \circ \varphi_i$, and
- $\varphi_{i+1} = H(\varphi_i)$.

The objects E_i are often called the **pages** or **terms** of the spectral sequence.

5.5.1 Exact couples

Definition 5.5.2 (Exact couple). A tuple $(A, B, \alpha, \beta, \gamma)$ that fits in a commutative diagram of the form 5.1a. A morphism of exact couples is a pair of morphisms $(f, g) : (A, B) \to (A', B')$ that fit in a commutative diagram of the form 5.1b.

(b) Morphism of exact couples.

Figure 5.1: Category of exact couples.

From any exact couple $(A, B, \alpha, \beta, \gamma)$ one can construct a spectral sequence using the following prescription:

$$E_0 := B \tag{5.31}$$

$$d_0 := \beta \circ \gamma \tag{5.32}$$

:

$$E_n := \frac{\gamma^{-1}(\alpha^n(A))}{\beta(\alpha^{-n}(0))} \tag{5.33}$$

$$d_n := \beta \circ \alpha^{-n} \circ \gamma \tag{5.34}$$

It is not hard to see that $E_{n+1} = H(E_n, d_n)$, so this construction gives a functor from the category of exact couples to the category of spectral sequences. The higher exact couples $(\alpha^n D, E_n, \ldots)$ are sometimes called **derived couples**.

One can also define the term E_{∞} using the following limit procedure. For every n, take the elements in E_n that are closed under d_n and call these $E_{n,n+1}$. Since there exists a canonical surjection $E_{n,n+1} \to E_{n+1}$, one can then look at all the elements in $E_{n,n+1}$ for which the image in E_{n+1} is closed under d_{n+1} . Call the set of these elements $E_{n,n+2}$. The elements that remain after taking the limit of this operation form the set $E_{n,\infty}$. Now, take the direct limit of the $E_{n,\infty}$ to obtain E_{∞} . This is equivalent to

$$E_{\infty} := \frac{\bigcap_{i} Z(E_i)}{\bigcup_{i} B(E_i)},\tag{5.35}$$

i.e. E_{∞} contains the equivalence classes of elements that are cycles for all d_n but boundaries for none. If E_{∞} is the associated graded object of some filtered object G, one says that the spectral sequence **converges** to G.

Now, consider a differential object (C, d) together with a filtration $\{F_pC\}_{p\in\mathbb{N}}$. Definition 2.3.11 of a filtration immediately gives a short exact sequence for every $p\in\mathbb{N}$:

$$0 \longrightarrow F_{n-1}C \longrightarrow F_nC \longrightarrow F_nC/F_{n-1}C \longrightarrow 0. \tag{5.36}$$

This short sequence in turn gives rise to a long exact sequence in homology, which can be expressed as an exact triangle, and this triangle further leads to an exact couple:

$$D \xrightarrow{\alpha} D$$

$$\gamma \qquad \beta$$

$$E \qquad (5.37)$$

where $D_p = H(F_pC)$ and $E_p = H(F_pC/F_{p-1}C)$. From a more abstract, yet more useful, point of view one can consider the object E as a functor from the category of filtered (differential) objects to the category of graded objects. As such it is constructed from the composition of the homology functor H and the associated graded object-functor

$$\operatorname{Gr}: C \mapsto \left\{ G_p C := F_p C / F_{p-1} C \right\}_{p \in \mathbb{N}}.$$

On the other hand, one could of course also construct the composition $Gr \circ H$ that first maps a differential object to its homology object and then builds the graded object associated to the filtration

$$F_pH(C) := \operatorname{im}(H(F_pC) \to H(C)).$$

Some straightforward questions can arise at this point: "How are the functors $H \circ Gr$ and $Gr \circ H$ related?", "Do they coincide?", … The latter question is easy to answer: "No, they do not." However, they can be related and this exactly happens through a spectral sequence that says how the homology of the graded object associated to C can be related to the homology of C itself.

5.5.2 Filtered complexes

For the remainder of this section only graded differential objects will be considered, i.e. $(C_{\bullet}, d_{\bullet}) = (\{C_p\}_{p \in \mathbb{Z}}, d)$ such that $dC_p \subseteq C_p$. In this case the exact couple consist of $D_{p,q} := H_q(F_pC_{\bullet})$ and $E_{p,q} := H_q(G_pC_{\bullet})$ and, consequently, the objects are bigraded. The filtration is also required to be compatible with the differential, i.e. $dF_iC_j \subseteq F_iC_{j-1}$.

Remark. In contrast to most of the literature, the *complementary convention*, i.e. the convention where p+q denotes the total degree and hence $E_{p,q}=H_{p+q}(G_pC_{\bullet})$, is not adopted.

Before introducing an expression for a general page E_r , the terms of degree zero and one are considered to get some intuition. The differential on E_0 is given by

$$d_0: \frac{F_p C_q}{F_{p-1} C_q} \to \frac{F_p C_{q-1}}{F_{p-1} C_{q-1}}$$
 (5.38)

and is induced by the differential d on C_{\bullet} . The kernel of this map is clearly given by all elements $x \in F_pC_q$ such that $dx = 0 \mod F_{p-1}C_{q-1}$ (with the additional remark that one also has to take the quotient by $F_{p-1}C_q$). As a result one finds that the homology $E_1 = H(E_0, d_0)$ is given by

$$E_1^{p,q} := \frac{\{x \in F_p C_q \mid dx \in F_{p-1} C_{q-1}\}}{F_{p-1} C_q + dF_p C_{q+1}}.$$
 (5.39)

The first term in the denominator was already explained above. The second term comes from the $\operatorname{im}(d_0)$ -part in the definition of $H(E_0,d_0)$. One might suspect that some data is missing since the relevant map $d_0^{p,q+1}$ goes from $\frac{F_pC_{q+1}}{F_{p-1}C_{q+1}}$ to $\frac{F_pC_q}{F_{p-1}C_q}$. However, the image of $F_{p-1}C_{q+1}$ is a subspace of $F_{p-1}C_q$ and this is already included in the first term, so one might as well work with all of F_pC_{q+1} .

For arbitrary r > 0, one defines the page E_r as follows:

$$E_r^{p,q} := \frac{\{x \in F_p C_q \mid dx \in F_{p-r} C_{q-1}\}}{F_{p-1} C_q + dF_{p+r-1} C_{q+1}}.$$
 (5.40)

To relate this more to the usual notions of (co)homology, one can rephrase this in terms of (co)chains, (co)cycles and (co)boundaries. Consider again a filtered complex $F_{\bullet}C_{\bullet}$. The following definitions are used:

- 1. The elements of G_pC_q are called the (p,q)-chains (in filtering degree p).
- 2. The elements of

$$Z_{p,q}^r := \{ c \in G_p C_q \mid dc = 0 \bmod F_{p-r} C_{q-1} \}$$

are called r-almost (p, q)-cycles.

3. The elements of

$$B_{p,q}^r := dF_{p+r-1}C_{q+1}$$

are called r-almost (p, q)-boundaries.

It is then easy to see that the page E^r satisfies

$$E_{p,q}^r = Z_{p,q}^r / B_{p,q}^r, (5.41)$$

i.e. the homology is given by the quotient of the cycles by the boundaries. All these objects fit in a nice sequence of inclusions:

$$B_{p,q}^0 \hookrightarrow \cdots \hookrightarrow B_{p,q}^\infty \hookrightarrow Z_{p,q}^\infty \hookrightarrow \cdots \hookrightarrow Z_{p,q}^0.$$
 (5.42)

5.5.3 Convergence

Definition 5.5.3 (Limit term). Consider a spectral sequence $\{E_{p,q}^r\}$. If there exists a for every two integers $p, q \in \mathbb{Z}$ an integer $r(p,q) \in \mathbb{N}$ such that for all $r \geq r(p,q)$:

$$E_{p,q}^r \cong E_{p,q}^{r(p,q)},$$
 (5.43)

the object $E^{\infty} := \{E_{p,q}^{r(p,q)}\}$ is called the **limit term** and the sequence is said to **abut** to E^{∞} .

Example 5.5.4 (Collapsing sequence). If there exists an integer $r \in \mathbb{N}$ such that for all $s \geq r : d_s = 0$, the sequence is said to **collapse** at r and E^r is a limit term. A common example is where the nonvanishing elements of a term are concentrated in a single row or column.

Definition 5.5.5 (Convergence). A spectral sequence $E_{p,q}^r$ is said to converge to a graded object H_{\bullet} with filtering $F_{\bullet}H_{\bullet}$, denoted by

$$E_{p,q}^r \Rightarrow H_{\bullet},$$

if

$$E_{p,q}^{\infty} \cong G_p H_q \qquad \forall p, q \in \mathbb{Z}.$$
 (5.44)

Definition 5.5.6 (Bounded sequence). A spectral sequence is said to be bounded if for all numbers $n, r \in \mathbb{Z}$, there only exists a finite number of nonvanishing elements of the form $E_{k,n-k}^r$. A common example are the **first quadrant spectral sequences** where the only nonvanishing elements have $p, q \geq 0$.

Property 5.5.7. Every bounded spectral sequence abuts.

Property 5.5.8 (Filtered complex). If the spectral sequence of a filtered complex $F_{\bullet}C_{\bullet}$, it converges to the chain homology of the complex:

$$E_{p,q}^r \Rightarrow H_{\bullet}(C).$$
 (5.45)

?? COMPLETE ??

Chapter 6

Logic and Type theory

The main reference for this chapter is [23]. For a formal introduction to λ -calculus see [109].

In almost every section of this chapter (at least the ones about type theory) some cross-references to analogous definitions and propositions in other parts of this compendium could have been inserted (in particular the chapter on category theory 4). However, to reduce the number of references, these relations will only be mentioned and the reader is encouraged to take a look at the relevant chapters whilst or after reading this chapter.

6.1 Logic

6.1.1 Languages

Definition 6.1.1 (Language). An **alphabet** is a set of symbols. A **word** in the language is a string of symbols in the alfabet.

Consider an alphabet A. From this alphabet one can construct the free monoid A^* (the multiplication * is sometimes called the **Kleene star**). This monoid represents the set of all words in A and a (formal) language is a subset $L \subseteq A^*$.

Definition 6.1.2 (Signature). Consider an alphabet A and a language L. A signature is a tuple $(F, R, \operatorname{ar})$ that assigns a syntactic meaning to the symbols in A. F and R are respectively the sets of function symbols and relation symbols $(A = F \sqcup R)$. The function ar $: A \to \mathbb{N}$ assigns to every symbol its arity **arity**. Nullary function symbols are also called **constants**.

To give meaning to a language, some extra structure needs to be introduced:

Definition 6.1.3 (L-structure). Consider a (formal) language L. An L-structure consists of the following data:

- 1. A nonempty set U called the **universe**.
- 2. For each function symbol f, a function $\operatorname{ap}_f:U^{\operatorname{ar}(f)}\to U$. In particular, for each constant c, an element $u_c\in U$.
- 3. For each relation symbol \in , a set $R_{\in} \subseteq U^{\operatorname{ar}(\in)}$.

Definition 6.1.4 (L**-term).** A word in L, possibly containing new symbols (called **variables**), defined recursively as follows:

- 1. Every variable and every constant is a term.
- 2. For every n-ary function symbol f and terms $x_1, \ldots, x_n, f(x_1, \ldots, x_n)$ is also a term.

Definition 6.1.5 (L-formula). Consider a (formal) language L. An L-formula is a sentence consisting of terms in L together with parentheses and the following logical symbols (also called **logical connectives**):

• **Equality**: =,

• Negation: ¬,

• Conjunction: \wedge , and

• Existential quantification: \exists .

A variable is said to be **free** if it does not first appear next to a quantifier, otherwise it is said to be **bound**.

6.1.2 Propositional logic

Definition 6.1.6 (Proposition). A statement that is either *true* or *false* (not both).

Definition 6.1.7 (Paradox). A statement that cannot (consistently) be assigned a truth value.

Definition 6.1.8 (Contradiction). A statement that is always false.

Definition 6.1.9 (Tautology). A statement that is always *true*.

Notation 6.1.10 (Truth values). The truth values *true* and *false* are denoted by \top and \bot respectively.

Definition 6.1.11 (Logical connectives). The following logical operators are used in propositional logic:

- logical and (conjunction): $P \wedge Q$,
- logical or (**disjunction**): $P \vee Q$, and
- logical not (**negation**): $\neg P$.

This last symbol is in fact an abbreviation for the implication $P \to \bot$.

The basic inference rule is given by **modus ponens**:

If
$$P$$
 and $P \to Q$, then Q . (6.1)

The general deductive system for propositional logic is obtained by combining this rule with the following axioms:

- 1. If P, then $Q \to P$.
- 2. If $P \to Q \to R$, then $P \to Q$ implies $P \to R$.
- 3. If $P \wedge Q$, then both P and Q.
- 4. If P, then $P \vee Q$.
- 5. If Q, then $P \vee Q$.
- 6. If P, then Q implies $P \wedge Q$.
- 7. If $P \to Q$, then $R \to Q$ implies $P \lor R \to Q$.
- 8. If \perp , then P. This principle is often called **ex falso quodlibet**.

Remark 6.1.12 (Intuitionistic logic). The above axioms (together with modus ponens) define a specific type of propositional logic, called intuitionistic or **constructive** (propositional) logic. The main difference with classic logic is that the *law of the excluded middle* or, equivalently, the *double negation elimination* principle was not added. The reason why this makes the logic *constructive* is that to prove a statement it is not sufficient anymore to exclude the possibility of the statement being false. One has to explicitly construct evidence for the truth of the statement.

As was remarked in the chapter on topoi, intuitionistic logic can be defined internal to any elementary topos. All one needs is a Heyting algebra 2.5.31. ?? EXPLAIN THIS ??

6.1.3 Predicate logic

?? COMPLETE ??

6.2 Introduction to type theory

In ordinary set theory the main objects are sets and their elements (and derived concepts such as functions). The framework in which to state and prove propositions is (in general) given by first-order logic. See Section 2.1 for more on this.

In type theory, however, one puts all these notions on the same footing. That is, one considers all concepts such as functions, propositions, sets, etc. as specific instances of the general notion of types. A specific function, proof or element can then be seen as an *inhabitant* of a given type.

Definition 6.2.1 (Type judgement). A judgement of the form a:A, saying that a has the type A, is called a type judgement. Objects having a certain type are in general called **terms** (of that type).

Method 6.2.2 (Type definition). The general method for defining a new type consists of 4 steps/rules:

- 1. **Formation rule**: This rule says when the new type can be introduced (in general this depends on previously defined types).
- 2. **Introduction rule**: This rule gives a **constructor** of the new type (in general this depends on a **context**, i.e. a collection of existing terms).
- 3. Elimination rule: This rule says how the new type can be used.
- 4. Computation rule: This rule says how the elimination and introduction rules interact.

As in [23], a universe hierarchy à la Russell will be adopted, i.e. a sequence of universes $(\mathcal{U}_n)_{n\in\mathbb{N}}$ will be used where the terms of every universe are types and every universe is cumulative in the sense that $A:\mathcal{U}_n \implies A:\mathcal{U}_{n+1}$. In general the subscripts will be omitted. However, one should take into account that every well-typed judgement should admit a formulation in which subscripts can be assigned in a consistent way.

In contrast to ordinary set theory two kinds of equality will be introduced. First, there is the **judgemental equality** or **definition equality**. This says, as the name implies, that two judgements are equal by definition and as such its validity lives in the metatheory (it is not a proposition and, hence, cannot be proven). For example, if f(x) is defined as x^2 , then f(5) is by definition equal to 5^2 . Equalities of this sort will be denoted by the \equiv symbol (and in definitions : \equiv will be used instead of :=). The second equality is the **propositional equality**. This states that two judgements are provably equal. Again, consider the function $f(x) :\equiv x^2$. In this case the proposition f(5) = 25 can be proven, but it is not true by definition (it would depend on the definition of the natural numbers). This sort of equality will be denoted by an ordinary equals sign =.

6.3 Basic constructions

6.3.1 Functions

Functions can be introduced in two ways. Either through a direct definition, such as in the case of the default example $f(x) :\equiv x^2$, or through λ -abstraction. Although the former one is clearly more useful during explicit calculations, the latter will often be used when working with abstract proofs. (For an introduction to λ -calculus see the next section.)

Definition 6.3.1 (Function type). A general function type is introduced as follows:

- Formation rule: Given two types $A, B : \mathcal{U}$, one can form the function type $A \to B : \mathcal{U}$.
- Introduction rule: One can either define a function by an explicit definition $f(x) :\equiv \Phi$, where Φ is an expression possibly involving x, or by λ -abstraction $f :\equiv \lambda x.\Phi$.
- Elimination rule: If a:A and $\lambda x.\Phi:A\to B$, then $\lambda x.\Phi(a):B$.
- Computation rule¹: $\lambda x.\Phi(a) := \Phi(a)$, i.e. function application is equivalent to the substitution of a for the variable x in the expression Φ . (To be completely correct one should require the substitution to be *capture-avoiding*, i.e. free variables should remain free and dinstinct variables should not be assigned the same symbol.)

The uniqueness principle for function types should also be included in the definition, i.e. $\lambda x. f(x) \equiv f$. This says that every function is uniquely defined by its image.

An important generalization is obtained when the type of the output of a function is allowed to depend on the type of the input:

Definition 6.3.2 (Dependent function types). Given a type $A : \mathcal{U}$ and a type family $B : A \to \mathcal{U}$, one can form the dependent function type

$$\prod_{a:A} B(a): \mathcal{U}.$$

When B is a constant family, this type reduces to the ordinary function type $A \to B$. All other defining rules remain (formally) the same as in the nondependent setting.

Remark 6.3.3 (Scope). The Π -symbol scopes over all expressions to the right of the symbol, unless delimited (similar to λ -calculus), e.g.

$$\prod_{a:A} B(a) \to C(a) \equiv \prod_{a:A} \Big(B(a) \to C(a) \Big).$$

Example 6.3.4 (Polymorphic functions). An interesting example is obtained when the type A in the above definition is taken to be a universe \mathcal{U} (this is a valid choice since universes are types themselves) together with $B(A) :\equiv A$. In this case one obtains a function that takes a type as input and then acts on this type (or any other type constructed from it), e.g. the **polymorphic identity function**

$$id: \prod_{A:\mathcal{U}} A \to A \tag{6.2}$$

defined by

$$id :\equiv \lambda(A : \mathcal{U}).\lambda(a : A).a. \tag{6.3}$$

¹In λ -calculus this is often called β -reduction. (See the next section.)

6.3.2 λ -calculus

?? COMPLETE (e.g. Curry-Howard or even Curry-Howard-Lambek, typed vs. untyped calculus, ...)??

6.3.3 Identity types

One of the most important, but at the same time most subtle, concepts in type theory (especially when moving on to extensions such as homotopy type theory) is the identity type. Since in predicate (and even propositional) logic the equality of two terms is a proposition, one could expect that to every two terms a, b : A there corresponds an associated equality type $a =_A b : \mathcal{U}$. Note that the type of the terms is assumed to be the same since it does not make any sense to compare terms of different types.

Definition 6.3.5 (Equality type²). The type corresponding to a propositional equality is defined by the following rules:

- Formation rule: Given terms a, b : A, one can form the equlity type $a =_A b : \mathcal{U}$. When the type A is clear from the context, this is also often written as $a = b : \mathcal{U}$.
- Introduction rule: For every term a:A, there is a canonical identity element

$$refl_a: a = a. (6.4)$$

The notation points to the fact that this term can be seen as a proof of the reflexivity of equalities.

• Elimination and computation rules: Here, the so-called path induction principle for equality types is presented, for the equivalent based path induction principle see [23].

Given a type family

$$C: \prod_{a,b:A} a = b \to \mathcal{U}$$

and a term

$$I: \prod_{a:A} C(a, a, \operatorname{refl}_a),$$

there exists a function

$$f: \prod_{a,b:A} \prod_{p:a=b} C(a,b,p) \tag{6.5}$$

such that

$$f(a, a, \operatorname{refl}_a) :\equiv I(a) \tag{6.6}$$

for all a:A.

Informally this principle says that all terms of the form (a, b, p), with p : a = b, are inductively generated by the "constant" terms $(a, a, refl_a)$. (See the section on homotopy type theory for a more geometric perspective).

Using the notion of identity types one can say when a given type resembles a proposition:

Definition 6.3.6 (Mere proposition). A type $A: \mathcal{U}$ for which the type

$$isProp(A) :\equiv \prod_{a,b:A} a = b$$
 (6.7)

is inhabited.

²Sometimes called an **identity type**.

6.3.4 Products

As in classic set theory a basic notion is that of products. This construction is ubiquitous throughout all corners of mathematics (and computer science). However, as opposed to set theory à la ZFC, products are not explicitly constructed as the set of all pairs of elements of its constituents. On the contrary, in type theory one can prove that all elements necessarily have to be pairs.

Definition 6.3.7 (Product). First, the binary product of types is defined:

- Formation rule: Given any two types $A, B : \mathcal{U}$, one can form the product type $A \times B : \mathcal{U}$.
- Introduction rule: Given terms a:A,b:B, one can construct the term $(a,b):A\times B$. This is called the **pairing** of the terms a and b.
- Elimination and computation rules: Functions out of a product A × B are defined through currying, i.e. given a function A → B → C, one can define a function A × B → C. Instead of giving an explicit definition every time one wants to construct a new function, a universal point of view is adapted, a single function that turns terms f: A → B → C into terms g: A × B → C is constructed. To this end the recursor is defined:

$$\operatorname{rec}_{A \times B} : \prod_{C:\mathcal{U}} (A \to B \to C) \to A \times B \to C$$
 (6.8)

with the constraint

$$rec_{A\times B}(C, f, (a, b)) :\equiv f(a)(b). \tag{6.9}$$

Example 6.3.8 (Projections). Analogous to the projection functions associated to the Cartesian product, one should have functions $\pi_1: A \times B \to A$ and $\pi_2: A \times B \to B$ that act on constructors as

$$\pi_1(a,b) :\equiv a \quad \text{and} \quad \pi_2(a,b) :\equiv b$$
(6.10)

Using the recursor one can define these functions by taking C = A, $f = \lambda a.\lambda b.a$ and C = B, $f = \lambda a.\lambda b.b$, respectively.

Definition 6.3.9 (Nullary product). One can also define a nullary product. In this case it is called the **unit type 1**.

- Formation rule: $1:\mathcal{U}$.
- Introduction rule: There is a unique nullary constructor *:1.
- Elimination and computation rules: Since the constructor is a nullary operation, one does not expect to have projection maps and, likewise, one also does not expect function definition to be based on binary currying. Instead the recursor is defined as follows:

$$\operatorname{rec}_{\mathbf{1}}: \prod_{C:\mathcal{U}} C \to \mathbf{1} \to C.$$
 (6.11)

On the constructor *: 1 it is required to act trivially:

$$rec_1(C, c_0, *) :\equiv c_0.$$
 (6.12)

Definition 6.3.10 (Dependent functions). One can easily generalize the above recursion functions to **induction** functions, to allow for the definition of dependent functions out of product types (these functions are then said to be defined by an **induction principle**). In fact, one only has to change the type judgement of $rec_{A\times B}$. This is accomplished by replacing $C:\mathcal{U}$

by a type family $C: A \times B \to \mathcal{U}$ and by replacing nondependent function types by dependent function types (the form of the computation rules virtually remain the same):

$$\operatorname{ind}_{A \times B} : \prod_{C: A \times B \to \mathcal{U}} \left(\prod_{a:A} \prod_{b:B} C(a, b) \to \prod_{x:A \times B} C(x) \right), \tag{6.13}$$

$$\operatorname{ind}_{\mathbf{1}}: \prod_{C:\mathbf{1} \to \mathcal{U}} C(*) \to \prod_{x:\mathbf{1}} C(x). \tag{6.14}$$

Property 6.3.11 (Uniqueness principle). Using the induction principle, one can prove that every term $x: A \times B$ is necessarily of the form (a, b) for some a: A, b: B. Furthermore, one can also prove that $*: \mathbf{1}$ is the unique term in $\mathbf{1}$.

One can also generalize products such that the type of the second factor depends on the type of the first one (in classical set theory this would correspond to an indexed disjoint union):

Definition 6.3.12 (Dependent pair type). As with function types the definition is not given as explicit as for nondependent types. Suffice it to say that given a type $A : \mathcal{U}$ and a type family $B : A \to \mathcal{U}$, one can form the dependent pair type

$$\sum_{a \in A} B(a) : \mathcal{U}.$$

When B is a constant family, the type reduces to the ordinary product type $A \times B$. The recursion and induction functions are defined as in the product case, except for the obvious replacements, such as $A \times B \longrightarrow \sum_{a:A} B(a)$, needed to make everything consistent.

Remark 6.3.13. Dependent pair types are often called Σ -types (due to the notation).

Remark 6.3.14 (Scope). Like the Π -symbol, the Σ -symbol scopes over the rest of the expression unless delimited.

Definition 6.3.15 (Coproduct). Here, a standalone definition is given. The relation with the ordinary product will be mentioned afterwards.

- Formation rule: Given two types $A, B : \mathcal{U}$, one can form the coproduct type $A + B : \mathcal{U}$.
- Introduction rule: Since in ordinary mathematics (and in particular category theory) the coproduct is dual to the product, one expects the projections to be replaced by injections/inclusions. In fact, these are taken to be the constructors of coproduct types, i.e. given terms a: A and b: B, one can construct the terms $\iota_1(a): A+B$ and $\iota_2(b): A+B$.
- Elimination rules: Similar to the use of currying for the definition of functions out of a product, functions out of a coproduct are defined in steps. To this intent the recursion and induction functions are defined as follows:

$$rec_{A+B}: \prod_{C:\mathcal{U}} (A \to C) \to (B \to C) \to A+B \to C, \tag{6.15}$$

$$\operatorname{ind}_{A+B}: \prod_{C:A+B\to\mathcal{U}} \left(\prod_{a:A} C(\iota_1(a)) \right) \to \left(\prod_{b:B} C(\iota_2(b)) \right) \to \prod_{x:A+B} C(x). \tag{6.16}$$

• Computation rules: The recursion function acts on the constructors as follows (the induction function virtually has the same action):

$$\operatorname{rec}_{A+B}(C, f_1, f_2, \iota_1(a)) :\equiv f_1(a),$$
 (6.17)

$$\operatorname{rec}_{A+B}(C, f_1, f_2, \iota_2(b)) :\equiv f_2(b).$$
 (6.18)

Definition 6.3.16 (Nullary coproduct). As was the case for products, one can also define a nullary version of the coproduct, the **empty type 0**:

- Formation rule: $0:\mathcal{U}$.
- Introduction rule: There is no constructor for 0.
- Elimination and computation rules: Since there is no constructor for 0, one can always trivially "construct" a function out of **0**:

$$rec_{\mathbf{0}}: \prod_{CU} \mathbf{0} \to C \tag{6.19}$$

$$\operatorname{rec}_{\mathbf{0}}: \prod_{C:\mathcal{U}} \mathbf{0} \to C$$

$$\operatorname{rec}_{\mathbf{0}}: \prod_{C:\mathbf{0} \to \mathcal{U}} \prod_{x:\mathbf{0}} C(x).$$

$$(6.19)$$

This trivial function corresponds to the logical principle ex falso quodlibet as introduced in the section on logic above.

Since coproducts in set theory occur as binary disjoint unions, one could expect that there is a way to express coproducts in terms of dependent pair types:

Construction 6.3.17 (Coproducts as Σ -types). First, introduce the type 2: \mathcal{U} (in set theory this would be the 2-element set). The introduction rule constructs two terms 0,1:2. The elimination and computation rules say that one can use this type for binary indexing:

$$\operatorname{rec}_{\mathbf{2}}: \prod_{C:\mathcal{U}} C \to C \to \mathbf{2} \to C$$
 (6.21)

with

$$rec_2(C, c_0, c_1, 0) :\equiv c_0,$$
 (6.22)

$$rec_2(C, c_0, c_1, 1) :\equiv c_1.$$
 (6.23)

Using this type one can prove that A + B is judgementally equal to $\sum_{x:\mathbf{2}} \mathrm{rec}_{\mathbf{2}}(\mathcal{U}, A, B, x)$. The injections are given by pairing, i.e. $\iota_1(a) \equiv (0,a)$ and $\iota_2(b) \equiv (1,b)$. In a similar way one can obtain binary products as dependent function types over 2.

6.3.5Propositions as types

To conclude this section an overview of all the concepts introduced above is given from a propositions-as-types perspective. In intuitionistic logic this is often called the Brouwer-Heyting-Kolmogorov interpretation and, more specifically, it should be seen as an incarnation of the Curry-Howard correspondence.

- Types and their terms correspond to propositions and their proofs, respectively. In a proof-relevant context the fact that a type can have multiple terms makes it clear that, although distinct proofs eventually have the same result, the difference in their content can be important as well.
- Function types correspond to implications. A proof of the proposition $A \to B$ boils down to showing that every proof of A gives a proof of B.
- Π -types correspond to universal quantification, i.e. $\prod_{a:A} B(a)$ can be read as $\forall a \in A : B(a)$. Giving a proof of $\prod_{a:A} B(a)$ is the same as giving for every a:A a proof of B(a). This is indeed compatible with the fact that elements of Π -types are dependent functions, i.e. every element a:A gives rise to a (possibly) distinct type/proposition.

- Σ -types correspond to existential quantification, i.e. $\sum_{a:A} B(a)$ can be read as $\exists a \in A : B(a)$. Giving a proof of $\sum_{a:A} B(a)$ is the same as giving a proof for some (a, B(a)). This is compatible with the fact that Σ -types can be identified with disjoint unions and hence every element can be associated with a specific constituent type.
- The logical connectives (conjunction and disjunction) correspond to the product and coproduct types.
- The truth values, true and false, correspond to the unit and empty types, respectively. Furthermore, if the negation of A is defined as the type $\neg A :\equiv A \rightarrow \mathbf{0}$, this indeed corresponds to the logical negation by the statements above.

6.4 Homotopy type theory

6.4.1 Introduction

This section gives a reformulation or extension of the concept introduced before using the language of homotopy theory (and, more generally, algebraic topology). The relevant concepts can be found in Sections 9.1 and 4.10. The resulting theory is called homotopy type theory or **HoTT**.

The general idea is to associate types with topological spaces and terms with points in those spaces. The main novelty is given by the identification of (propositional) equalities with paths between points. Since everything happens in a proof-relevant context, two equalities $p, q: a =_A b$ are not necessarily equal themselves and, hence, one can consider equalities between equalities (and so on). In the topological picture this gives rise to homotopies between paths. By going all the way and working out all coherence laws, one obtains the structure of a (weak) ∞ -groupoid.³

It is also this interpretation that explains the name "path induction" for the induction principle of equality types. Namely, what this induction principle says is that the free path space ΩA is inductively generated by constant loops (ranging over all possible points). This principle, however, sounds quite crazy. How can one build a path between two distinct points from (constant) loops? Here it is important to remind that everything only has to be equal up to homotopy and any path is indeed homotopy-equivalent to a constant loop if one retracts one of the endpoints along the path. It is thus important that one does not require the homotopies to act rel endpoints (as is often done in classical homotopy theory).

Definition 6.4.1 (Pointed type). A type $A: \mathcal{U}$ together with a distinguished term a: A, called the **base point**. Pointed types are often denoted by a pair (A, a). It should be clear that the type of pointed types \mathcal{U}_{\bullet} is equal to $\sum_{A:\mathcal{U}} A$.

Definition 6.4.2 (Loop space). The loop space $\Omega(A, a)$ of a pointed type (A, a) is the pointed type $(a =_A a, \text{refl}_a)$.

Now, the important aspect of HoTT is that the ∞ -groupoid structure of a type can be derived solely from the (path) induction principle of the equality types. Some examples are given:

Property 6.4.3 (Inversion). For every type $A:\mathcal{U}$ and terms a,b:A, there exists a function

$$p \mapsto p^{-1} : (a = b) \to (b = a)$$
 (6.24)

such that $\operatorname{refl}_a^{-1} :\equiv \operatorname{refl}_a$ for all a : A.

³This characterization is strongly related to the homotopy hypothesis (or theorem when using the right model for ∞ -categories).

Property 6.4.4 (Concatenation). For every type $A : \mathcal{U}$ and terms a, b, c, d : A, there exists a function

$$p \mapsto q \mapsto p \cdot q : (a = b) \to (b = c) \to (c = d) \tag{6.25}$$

such that $\operatorname{refl}_a \cdot \operatorname{refl}_a := \operatorname{refl}_a$ for all a : A. (Note that the composition does not follow the usual convention of right-to-left. This is why the symbol \cdot and not \circ was used.)

Property 6.4.5. The above operations satisfy the group relations (up to higher equalities):

- $p \cdot \text{refl}_b = p$ and $\text{refl}_a \cdot p = p$ for all p : a = b.
- $p \cdot p^{-1} = \text{refl}_a$ and $p^{-1} \cdot p = \text{refl}_b$ for all p : a = b.
- $(p^{-1})^{-1} = p$ for all p : a = b.
- $p \cdot (q \cdot r) = (p \cdot q) \cdot r$ for all p : a = b, q : b = c, r : c = d.

6.4.2 Transport

The relation with homotopy theory and category theory becomes even stronger when looking at function types:

Property 6.4.6. Given a function $f: A \to B$, there exists an application function

$$ap_f: (a =_A b) \to (f(a) =_B f(b))$$
 (6.26)

such that $\operatorname{ap}_f(\operatorname{refl}_a) := \operatorname{refl}_{f(a)}$ for all a, b : A. Furthermore, this function behaves functorially in that it preserves concatenation, inverses and identities (again this should be interpreted in the full weak ∞ -sense). From the topological perspective this can be interpreted as if all functions are "continuous".

Notation 6.4.7. Because functors in category theory are generally given the same notation when acting on objects or morphisms, the application function ap_f is also often denoted by f.

For dependent functions one can obtain a similar result. However, for this generalization, one needs some kind of "parallel transport" since for two terms with a = b, it does not necessarily hold that f(a) and f(b) have the same type.

Property 6.4.8 (Transport). Given a type family $P: A \to \mathcal{U}$ and an equality $p: a =_A b$, there exists a **transport function**

$$p_*: P(a) \to P(b) \tag{6.27}$$

such that $(\operatorname{refl}_a)_* :\equiv \operatorname{id}(a)$ for all a : A. The pushforward notation is used since p_* can be (informally) interpreted as the pushforward of p along P.

From a topological perspective, this transport function allows to regard type families as fibrations 9.1.51. For every type family $P: A \to \mathcal{U}$, term $\alpha: P(a)$ and equality p: a = b, there exists a **lift**

$$lift(p,\alpha):(a,\alpha)=(b,p_*(\alpha)) \tag{6.28}$$

such that

$$\pi_1(\operatorname{lift}(p, u)) = p. \tag{6.29}$$

The equality lift(p, u) acts between terms of the Σ -type $\sum_{a:A} P(a)$, which can be interpreted as the total space of a **fibration** $\pi_1 : \sum_{a:A} P(a) \to A$. To take this terminology even further, one can could call functions $\sigma : \prod_{a:A} P(a)$ sections (of π_1).

Now, as mentioned before, for dependent functions one cannot just compare f(a) and f(b) if $a \not\equiv b$. However, the function lift (p,\cdot) gives a canonical path from one fibre to the other and every path between these fibres should factor through this canonical path essentially uniquely. Hence, one can define a path between α and β in the total space $\sum_{a:A} P(a)$, lying over p:a=b, to be a path $p_*(\alpha) = \beta$ (up to equivalence):

Property 6.4.9. Given a dependent function $f:\prod_{a:A}P(a)$, there exists a function

$$\operatorname{apd}_{f}: \prod_{p:a=b} p_{*}(f(a)) =_{P(b)} f(b). \tag{6.30}$$

Again, with some abuse of notation, this function is also denoted by f

Since an ordinary function is a specific instance of a Π -type, one might expect that the application functions ap_f and apd_f are related in this case. The following property shows that this intuition is not unreasonable:

Property 6.4.10. Consider two types $A, B : \mathcal{U}$ and a function $f : A \to B$. For every equality $p : a =_A b$ and term $\alpha : P(b)$, there exists an equality $\widetilde{p} : p_*(\alpha) =_{P(b)} \alpha$. Using this equality one can relate the application functions as follows:

$$\operatorname{apd}_{f}(p) = \widetilde{p}(f(a)) \cdot \operatorname{ap}_{f}(p). \tag{6.31}$$

6.4.3 Equivalences

In this paragraph the notions of equivalences and isomorphisms are considered in more detail. As is known from the chapter on category theory, the distinction between the various notions of similarity (or equality) is important yet subtle.

Lead by the intuition from topology a **homotopy** between functions is defined:

Definition 6.4.11 (Homotopy). Consider two sections $f, g : \prod_{a:A} P(a)$. A homotopy between f and g is a term of the type

$$f \sim g :\equiv \prod_{a \in A} f(a) = g(a). \tag{6.32}$$

It can be shown that homotopies induce equivalence relations on function types.

It has already been noted that functions can be regarded as functors between ∞ -groupoids. Since homotopies act between functions, one might expect that these can be regarded as (weak) natural transformations between the (∞ -)functors:

Property 6.4.12. Consider two sections $f, g : \prod_{a:A} P(a)$ and an equality p : a = b. If H is a homotopy between f and g, then

$$H(a) \cdot g(p) = f(p) \cdot H(b). \tag{6.33}$$

Using the notion of homotopy one can introduce a first kind of "equivalence":

Definition 6.4.13 (Quasi-inverse). Given a function $f: A \to B$, a quasi-inverse of f is a triple (g, α, β) , where $g: B \to A$ and

$$\alpha: f \circ q \sim \mathrm{id}_B$$
 $\beta: q \circ f \sim \mathrm{id}_B.$ (6.34)

From a homotopy theoretical perspective one would call the pair (f, g) a homotopy equivalence. The corresponding type is given by

$$\operatorname{qInv}(f) := \sum_{g:B \to A} (f \circ g \sim \operatorname{id}_B) \times (g \circ f \sim \operatorname{id}_A). \tag{6.35}$$

Now, although this type may seem to give the right notion of equivalence, it is better to generalize it since it is in general not very well-behaved. (This is similar to the fact that adjoint equivalences between categories are better behaved than ordinary equivalences.)

In general an equivalence should satisfy three requirements:

- 1. For every function $f: A \to B$, there exists a function $qInv(f) \to isEquiv(f)$.
- 2. For every function $f: A \to B$, there also exists a function is $\operatorname{Equiv}(f) \to \operatorname{qInv}(f)$.
- 3. For every two terms eq_1, eq_2 : isEquiv(f), there exists an equality $eq_1 = eq_2$.

So, inducing an equivalence is logically equivalent to admitting a quasi-inverse and as such finding a quasi-inverse is sufficient to show that a function induces an equivalence.

6.4.4 Equality types: revisited

In the section on (intensional) type theory equality types were introduced in a general and uniform way. The defining rules did not assume any specific structure on the underlying types. Although this made the technique of path induction widely applicable, it has the downside that one cannot leverage the internal structure of specific types to get more useful characterizations.

First, consider binary products (and by extension Σ -types). Can one express the equality of two elements $x, y: A \times B$ in terms of their projections? The answer is yes: there exists an equivalence

$$(x =_{A \times B} y) \simeq (\pi_1(x) =_A \pi_1(y)) \times (\pi_2(a) =_B \pi_2(y)). \tag{6.36}$$

However, one should bear in mind that this is merely an equivalence. A term (resp. proof) of one side gives a term (resp. proof) of the other side, but it is not a judgemental equality (it is not even a propositional one). One could see this as a problem or defect of the theory and to resolve this kind of (apparent) issue the univalence axiom will be introduced at the end of this section. Still, one can leverage this equivalence to give a practical alternative⁴ for the defining rules of the equality type in the case of product types:

Remark 6.4.14. The function $(\pi_1(a) = \pi_1(b)) \times (\pi_2(a) = \pi_2(b)) \to (a = b)$ associated to the above equivalence can be interpreted as an introduction rule of the equality type for binary products. At the same time one can take the application functions induced by the projections on $A \times B$ as elimination rules for the equality type. The homotopies associated to the equivalence in their turn induce the propositional computation rules and uniqueness principle.

One can also express the transport of properties along an equality $p: x =_{A \times B} y$ in terms of transport in the individual spaces:

Property 6.4.15. Consider two types $A, B : \mathcal{U}$ together with type families $P : A \to \mathcal{U}$ and $Q : B \to \mathcal{U}$. For every term α of the product family $(P \times Q)(x) :\equiv P(\pi_1(x)) \times Q(\pi_2(x))$ the following equality is inhabited:

$$p_*(\alpha) = (p_*(\pi_1(\alpha)), p_*(\pi_2(\alpha))). \tag{6.37}$$

Note that all three occurrences of the pushforward p_* denote a different operation or, more precisely, the same operation but applied to different types.

One would intuitively expect that given two functions $f, g: A \to B$ that take the same value at all points, i.e. f(a) = g(a) for all a: A, there exists an equality $f =_{A \to B} g$. However, this

⁴Note that this is not a judgementally equal alternative. It is merely a convenient interpretation.

cannot be proven within the frame work of intensional type theory. This issue should also not come as a shock, since two functions that are defined differently might still take the same value at all points. To resolve this apparent gap in the theory, the following axiom is introduced:

Axiom 6.1 (Function extensionality). Given two functions $f, g : \prod_{a:A} P(a)$, there exists an equivalence $(f = g) \to \prod_{a:A} f(a) = g(a)$ that sends refl_f to $f(\text{refl}_x)$.

Axiom 6.2 (Univalence axiom). Given two types $A, B : \mathcal{U}$, there exists an equivalence $(A =_{\mathcal{U}} B) \to (A \simeq B)$ that takes refl_A to id_A. A universe in which the univalence axiom holds is said to be univalent.

?? COMPLETE ??

6.5 Modal type theory

?? COMPLETE ??

6.6 Computability theory

6.6.1 Functions

Definition 6.6.1 (Recursively enumerable set). A set S of natural numbers is said to be recursively (or **computably**) enumerable if there exists a partial recursive function f such that dom(f) = S.

Definition 6.6.2 (Uniformly recursively enumerable). A sequence $(S_n)_{n\in\mathbb{N}}$ of sets of natural numbers is said to be uniformly recursively enumerable if there exists a sequence $(f_n)_{n\in\mathbb{N}}$ of uniformly partial recursive functions such that $dom(f_n) = S_n$ for all $n \in \mathbb{N}$.

?? COMPLETE ??

Part III

Topology

Chapter 7

General Topology

7.1 Topological spaces

Definition 7.1.1 (Topology). Let X be a set and consider a collection of subsets $\tau \subseteq 2^X$. The set τ is a topology on X if it satisfies the following axioms:

- 1. $\emptyset \in \tau$ and $X \in \tau$,
- 2. $\forall \mathcal{F} \subseteq \tau : \bigcup_{V \in \mathcal{F}} V \in \tau$, and
- 3. $\forall U, V \in \tau : U \cap V \in \tau$.

The elements of τ are called **open sets** and the couple (X, τ) is called a **topological space**. The **closed sets** are defined as the sets that have an open complement. Because complements are uniquely defined, one could just as well define a topology in terms of closed subsets.

Property 7.1.2 (Category of opens 4). Consider a topological space (X, τ) and let $U \subseteq V \in \tau$. The topology τ together with the collection of inclusion maps $U \hookrightarrow V$ forms a poset and, by extension, a small category $\mathbf{Open}(X)$.

Definition 7.1.3 (Pointed topological space). Let $x_0 \in X$ be any element of a topological space. The triple (X, τ, x_0) is called a pointed topological space with base point x_0 .

Example 7.1.4 (Relative topology¹). Any subset Y of a topological space (X, τ_X) can be turned into a topological space by equipping it with the following topology:

$$\tau_{\text{rel}} := \{ U_i \cap Y \mid U_i \in \tau_X \}. \tag{7.1}$$

Example 7.1.5 (Discrete topology). The topology in which every subset is open (and thus also closed).

Example 7.1.6 (Indiscrete topology). The topology in which only the empty set and the space itself are open.

Definition 7.1.7 (Interior). The interior Y° of a subset Y of a topological space X is defined as the union of all open subsets of Y. Elements of the interior are called **interior points** of Y.

Definition 7.1.8 (Closure). The closure \overline{Y} of a subset Y of a topological space X is defined as the intersection of all closed sets containing Y.

Definition 7.1.9 (Boundary). The boundary ∂Y of a subset Y of a topological space X is defined as $\overline{Y} \setminus Y^{\circ}$.

¹Sometimes called the **subspace topology**.

Definition 7.1.10 (Borel set). Let \mathcal{B} be the σ -algebra 2.4.8 generated by all open subsets of a topological space. The elements $B \in \mathcal{B}$ are called Borel sets.

Property 7.1.11 (Real line). For \mathbb{R} , the open, closed and half-open (both types) intervals all generate the same σ -algebra and, accordingly, the same Borel sets.

Definition 7.1.12 (Topological group). A group equipped with a topology such that both the multiplication and inversion morphisms are continuous.

7.1.1 Neighbourhoods

Definition 7.1.13 (Neighbourhood). A set $N \subseteq X$ is a neighbourhood of a point $x \in X$ if there exists an open set U such that $x \in U \subseteq N$.

Although the following two notions are often treated as synonyms in the literature, they can be given a separate meaning:

Definition 7.1.14 (Limit point). Let Y be a subset of X. A point $x \in X$ is called a limit point of Y if every neighbourhood of x contains at least one point of Y different from x.

By relaxing the last part of this definition, a slightly different notion is obtained:

Definition 7.1.15 (Adherent point). Let Y be a subset of X. A point $x \in X$ is called an adherent point of Y if every neighbourhood of x contains at least one point of S. A point x is an adherent point of Y if and only if it is an element of the closure \overline{Y} .

Definition 7.1.16 (Accumulation point²). Let $x \in X$ be a limit point of Y. It is called an accumulation point of Y if every open neighbourhood of x contains infinitely many points of Y.

Definition 7.1.17 (Basis). A collection $\mathcal{B} \subseteq \tau$ of open subsets of a topological space (X, τ) is a basis for (X, τ) if every $U \in \tau$ can be written as

$$U = \bigcup_{V \in \mathcal{F}} V,\tag{7.2}$$

where $\mathcal{F} \subseteq \mathcal{B}$.

Definition 7.1.18 (Local basis). A collection \mathcal{B}_x of open neighbourhoods of a point $x \in X$ is a local basis of x if every neighbourhood of x contains at least one element in \mathcal{B}_x .

Definition 7.1.19 (First-countable space). A topological space (X, τ) for which for every point $x \in X$ there exists a countable local basis.

Property 7.1.20 (Decreasing basis). Let $x \in X$. If there exists a countable local basis for x, there also exists a countable decreasing local basis for x.

Definition 7.1.21 (Second-countable space). A topological space (X, τ) for which there exists a countable (global) basis.

Property 7.1.22 (Closure). Let X be a topological space. The closure of a subset $Y \subseteq X$ is given by

$$\overline{Y} = \{ x \in X \mid \exists \text{ a net } (x_{\alpha})_{\alpha \in I} \text{ in } X : x_{\alpha} \longrightarrow x \}.$$
 (7.3)

This implies that the topology on X is completely determined by the convergence of nets 2.5.11.

²Sometimes called a **cluster point**.

Definition 7.1.23 (Fréchet-Urysohn space). A topological space for which the closure of every subset is equal to its sequential closure, i.e. the subset obtained as in (7.3), but with nets replaced by sequences.

Fréchet-Urysohn spaces form an important subclass of *sequential spaces*, i.e. topological spaces where the topology is uniquely determined by the convergence of sequences (a subset of a sequential space is closed if and only if every convergent sequence converges to a point in the set).

The following property is of great practical importance:

Property 7.1.24. Every first-countable space is Fréchet-Urysohn and, therefore, only convergent sequences have to be considerd in these spaces.

Definition 7.1.25 (Germ). Let X be a topological space and let Y be a set. Consider two functions $f, g: X \to Y$. If there exists a neighbourhood N of a point $x \in X$ such that

$$f(u) = g(u) \qquad \forall u \in N,$$

this property defines an equivalence relation denoted by $f \sim_x g$ and the equivalence classes are called germs.

7.1.2 Separation axioms

Definition 7.1.26 (Irreducible). A topological space is said to be irreducible if it is not the union of two proper closed subsets or, equivalently, if the intersection of two nonempty open subsets is again nonempty.

Definition 7.1.27 (T_0 -space). A topological space such that for every two distinct points at least one of them has a neighbourhood not containing the other. The points are said to be topologically distinguishable. T_0 -spaces are also said to carry a Kolmogorov topology.

Definition 7.1.28 (T_1 -space). A topological space such that for every two distinct points x, y there exists neighbourhood N, N' of x and y respectively such that $y \notin N$ and $x \notin N'$. The points are said to be **separated**. T_1 -spaces are also said to carry a **Fréchet topology** (not to be confused with Fréchet spaces from functional analysis).

Definition 7.1.29 (Hausdorff space). A topological space X is a Hausdorff space or T_2 -space if it satisfies the following condition:

$$\forall x, y \in X : \exists \text{ neighbourhoods } N \ni x, N' \ni y : N \cap N' = \emptyset. \tag{7.4}$$

The points are said to be **separated by neighbourhoods**. It can be shown that this definition is equivalent to requiring that the diagonal Δ_X is closed in the product space $X \times X$.

Property 7.1.30 (Closed points). Every singleton and, by extension, every finite subset is closed in a Hausdorff space.

Definition 7.1.31 (Urysohn space). A topological space is an Urysohn space or $T_{2^{1/2}}$ -space if every two distinct points are separated by closed neighbourhoods.

Definition 7.1.32 (Regular space). A topological space such that for every closed subset V and every point $x \notin V$ there exist disjoint open subsets U, U' such that $x \in U$ and $V \subset U'$.

Definition 7.1.33 (T_3 -space). A space that is both regular and T_0 .

Definition 7.1.34 (Normal space). A topological space such that every two closed subsets have disjoint neighbourhoods.

Definition 7.1.35 (T_4 -space). A space that is both normal and T_1 .

Property 7.1.36 (Nesting of axioms). A space satisfying the separation axiom T_k also satisfies all separation axioms $T_{i < k}$.

7.1.3 Convergence

Definition 7.1.37 (Convergence). A sequence $(x_n)_{n\in\mathbb{N}}$ in X is said to converge to a point $x\in X$ if

$$\forall$$
 neighbourhoods U of $x(\exists N \in \mathbb{N}_0 (\forall n > N : x_n \in U)).$ (7.5)

The "limit" of a convergent sequence does not have to be unique:

Property 7.1.38 (Uniqueness). The limit of a converging sequence in a Hausdorff space is unique.

Property 7.1.39 (Subsequences). Every subsequence of a converging sequence converges to the same point.

7.2 Morphisms

7.2.1 Continuity

Definition 7.2.1 (Continuity). A function between topological spaces is said to be continuous if the inverse image of every open set is also open. The set of all continuous functions between two topological spaces X, Y is often denoted by C(X, Y).

Definition 7.2.2 (Initial topology). Consider a collection of functions $\{f_i : X \to Y_i\}_{i \in I}$ between topological spaces. The initial topology on X with respect to this family is the coarsest topology on X for which all maps f_i are continuous.

Definition 7.2.3 (Final topology). Consider a collection of functions $\{f_i: Y_i \to X\}_{i \in I}$ between topological spaces. The final topology on X with respect to this family is the finest topology on X for which all maps f_i are continuous.

Property 7.2.4 (Continuity). Consider a function $f: X \to Y$ of topologial spaces, where X is first-countable. The following statements are equivalent:

- f is continuous.
- The sequence $(f(x_n))_{n\in\mathbb{N}}$ converges to $f(a)\in Y$ whenever the sequence $(x_n)_{n\in\mathbb{N}}$ converges to $a\in X$.

Corollary 7.2.5. If the space Y in the previous theorem is Hausdorff, the limit f(a) does not need to be known since it is unique by Property 7.1.38 above.

Remark 7.2.6. If the space X is not first-countable, one has to consider the convergence of nets 2.5.11.

Theorem 7.2.7 (Urysohn's lemma). A topological space X is normal 7.1.34 if and only if every two closed disjoint subsets $A, B \subset X$ can be separated by a continuous function $f: X \to [0,1]$, i.e. $\forall a \in A, b \in B$ there exists a continuous function $f: X \to [0,1]$ such that

$$f(a) = 0$$
 and $f(b) = 1$. (7.6)

The following, seemingly different, theorem is actually equivalent to Urysohn's lemma:

Theorem 7.2.8 (Tietze extension theorem). Consider a continuous function $f: V \to \mathbb{R}$, where V is a closed subset of normal space X. There exists a continuous function $F: X \to \mathbb{R}$ such that $\forall x \in V: F(x) = f(x)$. Furthermore, if the function f is bounded, then F can be chosen to be bounded by the same number.

7.2.2 Homeomorphisms

Definition 7.2.9 (Homeomorphism). A function f such that both f and f^{-1} are continuous and bijective.

Definition 7.2.10 (Embedding). A continuous function that is a homeomorphism onto its image.

Definition 7.2.11 (Local homeomorphism). A continuous function $f: X \to Y$ is a local homeomorphism if for every point $x \in X$ there exists an open neighbourhood U such that f(U) is open and such that $f|_U$ is an embedding. Local homeomorphisms are also called **étale** morphisms.

Definition 7.2.12 (Covering space). Consider two topological spaces X, C and a continuous surjection $p: C \to X$. C is said to be a covering space of X (and p is called a **covering map**) if for all points $x \in X$ there exists an open neighbourhood U of x such that $p^{-1}(U)$ can be written as a disjoint union $\bigsqcup_i C_i$ of open sets in C where every set C_i is mapped homeomorphically onto U. The neighbourhoods U are sometimes said to be **evenly covered**.

Notation 7.2.13. Because the covering map $p: C \to M$ is surjective, the space M can be left implicit. Therefore, covering spaces are often just denoted by the couple (C, p).

Definition 7.2.14 (Covering transformation). Consider two covering spaces (C, p) and (C', p'). A continuous function $f: C \to C'$ is called a covering transformation if $p' \circ f = p$.

Definition 7.2.15 (Deck transformation). Let $p: C \to X$ be a covering map. The automorphism group of (C, p) in the category of covering spaces (over X) is given by all homeomorphisms φ satisfying $p \circ \varphi = p$. These automorphisms are called deck transformations.

Definition 7.2.16 (Étalé space). Let X be a topological space. A topological space Y is called an étalé space over X if there exists a continuous surjection $\pi: Y \to X$ such that π is a local homeomorphism. The preimage $\pi^{-1}(x)$ of a point $x \in X$ is called the **stalk** of π over x.

Example 7.2.17. Every covering space is an étalé space.

Definition 7.2.18 (Pseudogroup &). Let X be a topological space. A pseudogroup is a collection \mathcal{G} of homeomorphisms $\phi: U \to V$ between open subsets of X such that:

- $\mathbb{1}_U \in \mathcal{G}$ for all open $U \subseteq X$.
- If $\phi \in \mathcal{G}$, then $\phi^{-1} \in \mathcal{G}$.
- If $V \subset U$ is open, then $\phi|_V \in \mathcal{G}$.
- If $U = \bigcup_{i \in I} U_i$ and $\phi|_{U_i} : U_i \to V$ is an element of \mathcal{G} for all $i \in I$, then $\phi \in \mathcal{G}$.
- If $\phi: U \to V$ and $\psi: U' \to V'$ are elements of \mathcal{G} and $V \cap U' \neq \emptyset$, then $\psi \circ \phi|_{\phi^{-1}(V \cap U')} \in \mathcal{G}$.

7.3 Constructions

Construction 7.3.1 (Product topology). First, consider the case with only a finite number of spaces $\{X_i\}_{i\in I}$. The Cartesian product $X:=\prod_{i\in I}X_i$ can be turned into a topological space by equipping it with the topology generated by the following basis:

$$\mathcal{B} := \left\{ \prod_{i \in I} U_i \, \middle| \, U_i \in \tau_i \right\}. \tag{7.7}$$

In the general case the topology can be defined using the canonical projections $\pi_i: X \to X_i$. The general product topology, called the **Tychonoff topology**, is the initial topology with respect to the projections π_i .

Construction 7.3.2 (Disjoint union). Let $\{X_i\}_{i\in I}$ be a family of topological spaces and consider the disjoint union

$$X := \bigsqcup_{i \in I} X_i \tag{7.8}$$

together with the canonical inclusion maps $\phi_i: X_i \to X: x_i \mapsto (i, x_i)$. The set X can be turned into a topological space by equipping it with the following topology:

$$\tau_X := \{ U \subseteq X \mid \forall i \in I : \phi_i^{-1}(U) \text{ is open in } X_i \}.$$
 (7.9)

Construction 7.3.3 (Quotient space). Consider a topological space X and a subset $Y \subseteq X$. The quotient X/Y is defined as the set $X \setminus Y \sqcup \{*\}$ where the point * can be regarded as the result of identifying all points in Y. This canonically turns the quotient space into a pointed space.

Let π be the canonical projection $X \to X/Y$. The quotient space can be turned into a topological space by equipping it with the following topology:

$$\tau_q := \{ U \subseteq X/Y \mid \pi^{-1}(U) \text{ is open in } X \}. \tag{7.10}$$

Remark 7.3.4 (Degenerate quotient). For the degenerate case $Y = \emptyset$ one can also apply the above definition. However, this has the awkward effect that it adjoins a new point to the space X instead of a collapsing it:

$$X/\emptyset = X \sqcup *. \tag{7.11}$$

Construction 7.3.5 (Wedge sum). Consider two pointed spaces $(X, x_0), (Y, y_0)$. The wedge sum $X \vee Y$ is defined as the quotient of the disjoint union $X \sqcup Y$ obtained by identifying the basepoints $x_0 \sim y_0$.

Definition 7.3.6 (Smash product). Consider two pointed topological spaces $(X, x_0), (Y, y_0)$. The smash product $X \wedge Y$ is defined as the quotient

$$X \wedge Y := (X \times Y)/(X \vee Y), \tag{7.12}$$

where $X \vee Y$ sits inside the product as the union of $X \times \{y_0\}$ and $\{x_0\} \times Y$.

Construction 7.3.7 (Suspension). Let X be a topological space. The suspension of X is defined as the following quotient space:

$$SX := (X \times [0,1]) / \{(x,0) \sim (y,0) \text{ and } (x,1) \sim (y,1) \mid x,y \in X\}.$$
 (7.13)

By the remark about degenerate quotients the suspension of the empty set is in fact not empty, but equal to the two-point space S^0 .

An often more interesting construction is the **reduced suspension** ΣX . This is obtained by taking the ordinary suspension SX of a pointed space (X, x_0) and identifying all copies of x_0 :

$$\Sigma X := SX/(x_0 \times [0, 1]). \tag{7.14}$$

An equivalent definition of the reduced suspension can be given in terms of the smash product:

$$\Sigma X = X \wedge S^1. \tag{7.15}$$

Example 7.3.8 (Spheres). Up to homeomorphisms the spheres are related by (reduced) suspensions:

$$SS^n \cong S^{n+1} \cong \Sigma S^n. \tag{7.16}$$

If one identifies the empty set with the (-1)-sphere, this relation can be continued to the case n = -1.

Construction 7.3.9 (Attaching space). Let X, Y be two topological spaces and consider a subspace $A \subseteq Y$. For every continuous function $f: A \to X$, called the **attaching map**, one can construct the attaching space (or **adjunction space**) $X \cup_f Y$ in the following way:

$$X \cup_f Y := (X \sqcup Y) / \{A \sim f(A)\}.$$
 (7.17)

Construction 7.3.10 (Join). Let $\{A_i\}_{i\leq n}$ be a finite collection of topological spaces. The join, denoted by $A=A_1\circ\cdots\circ A_n$, is defined as follows. Every point of A is defined by the following data:

- 1. an element of the standard *n*-simplex 9.2.1, i.e. an *n*-tuple of nonnegative numbers $\{t_i\}_{i\leq n}$ satisfying $\sum_i t_i = 1$;
- 2. for each index i such that $t_i \neq 0$, a point $a_i \in A_i$.

This point in A is denoted by $t_1a_1 \oplus \cdots \oplus t_na_n$.

In the case of two spaces there exists a more intuitive construction. Let A, B be two topological spaces. The join $A \circ B$ is equal to the quotient space $(A \times B \times [0,1])/\sim$, where the relation \sim is defined as follows:

- For all $a \in A$ and $b, b' \in B$: $(a, b, 0) \sim (a, b', 0)$.
- For all $a, a' \in A$ and $b \in B$: $(a, b, 1) \sim (a', b, 1)$.

This can be interpreted as collapsing one end of the cylinder $(A \times B) \times [0,1]$ to A and the other end to B.

Property 7.3.11 (Monoidal structure \clubsuit). The join induces a monoidal structure on the category **Top** where the tensor unit is given by the empty space \emptyset .

Construction 7.3.12 (Mapping cylinder). Let $f: X \to Y$ be a continuous function. The mapping cylinder M_f is defined as follows:

$$M_f := ([0,1] \times X \bigsqcup Y) / \sim_f, \tag{7.18}$$

where the equivalence relation \sim_f is generated by the relations $(0, x) \sim f(x)$. So the mapping cylinder of $f: X \to Y$ is the attaching space $\text{Cyl}(X) \cup_f Y$. From this definition it follows that the "top" of the cylinder is homeomorphic to X and the "base" is homeomorphic to $f(X) \subseteq Y$.

By also quotienting out the relation $(1, x) \sim (1, x')$, i.e. by collapsing the top of the cylinder to a point, one obtains the so-called **mapping cone** C_f .

Construction 7.3.13 (Mapping path space). Consider a continuous function $f: X \to Y$. The mapping path space P_f is defined as follows:

$$P_f := \{(x, p) \in X \times C([0, 1], Y) \mid p(0) = f(x)\}. \tag{7.19}$$

The topology is induced by the compact-open topology on C([0,1],Y).

7.4 Connected spaces

Definition 7.4.1 (Connected space). A topological space that cannot be written as the disjoint union of two non-empty open sets. Equivalently, a space is connected if the only clopen sets are the empty set and the space itself.

Property 7.4.2 (Locally constant implies constant). Let X be a connected space and let f be a function on X. If f is locally constant, i.e. for every $x \in X$ there exists a neighbourhood U on which f is constant, then f is constant on all of X.

Theorem 7.4.3 (Intermediate value theorem). Let X be a connected space and let $f: X \to \mathbb{R}$ be a continuous function. If $a, b \in f(X)$, then for every $c \in [a, b]: c \in f(X)$.

Definition 7.4.4 (Path-connected space³**).** Let X be a topological space. If for every two points $x, y \in X$ there exists a continuous function $\varphi : [0, 1] \to X$ (i.e. a **path**) such that $\varphi(0) = x$ and $\varphi(1) = y$, then the space is said to be path-connected.

Property 7.4.5 (Path-connected implies connected). Every path-connected space is connected. The converse does not hold. A connected and locally path-connected space is path-connected.

Remark 7.4.6 (Connected components). (Path-)connectedness defines an equivalence relation on the space X. The equivalence classes are closed in X and form a cover of X. The set of path components of X is often denoted by $\pi_0(X)$.

7.5 Compact spaces

7.5.1 Compactness

Definition 7.5.1 (Sequentially compact space). A topological space in which every sequence has a convergent subsequence (the sequence itself does not have to be convergent).

Definition 7.5.2 (Finite intersection property). A collection $\mathcal{F} \subseteq 2^X$ of subsets has the finite intersection property (FIP) if

$$\bigcap_{V \in \mathcal{F}'} V \neq \emptyset \tag{7.20}$$

for all finite $\mathcal{F}' \subset \mathcal{F}$.

Definition 7.5.3 (Locally finite cover). An open cover of a topological space X is said to be locally finite if every $x \in X$ has a neighbourhood that intersects only finitely many sets in the given cover.

Property 7.5.4 (First-countable spaces). A first-countable space is sequentially compact if and only if every countable open cover has a finite subcover.

Definition 7.5.5 (Lindelöf space). A space for which every open cover has a countable subcover.

Property 7.5.6. Every second-countable space is a Lindelöf space.

Definition 7.5.7 (Compact space). A topological space for which every open cover of has a finite subcover.

Theorem 7.5.8 (Heine-Borel⁴). If a topological space X is sequentially compact and second-countable, every open cover has a finite subcover and, therefore, X is compact.

Corollary 7.5.9 (Real numbers). A subset of \mathbb{R}^n is compact if and only if it is closed and bounded.

Theorem 7.5.10 (Tychonoff's theorem). Any product of compact topological spaces is compact under the (Tychonoff) product topology 7.3.1.

Definition 7.5.11 (Relatively compact space). A topological space for which its closure is compact.

 $^{^3}$ A similar notion is that of **arcwise-connectedness** where the function φ is required to be a homeomorphism.

⁴Also called the **Borel-Lebesgue** theorem.

Definition 7.5.12 (Locally compact space). A topological space in which every point has a compact neighbourhood.

Theorem 7.5.13 (Dini). Let (X,τ) be a compact space and let $(f_n)_{n\in\mathbb{N}}$ be a monotone sequence of continuous functions $f_n:X\to\mathbb{R}$. If $f_n\longrightarrow f$ pointwise to a continuous function f, the convergence is uniform.

Definition 7.5.14 (ω -bounded space). A topological space in which the closure of every countable subset is compact.

Definition 7.5.15 (Paracompact space). A topological space for which every open cover has a locally finite open refinement.

Property 7.5.16. Every paracompact Hausdorff space is normal.

Definition 7.5.17 (Partition of unity). A collection $\{f_i: X \to [0,1]\}_{i\in I}$ of continuous functions such that for every $x \in X$ the following conditions hold:

- 1. Locally finite: For every neighbourhood U of x, the set $\{f_i \mid \text{supp} f_i \cap U \neq \emptyset\}$ is finite.
- 2. Normalization: $\sum_{i} f_i = 1$.

Consider an open cover $\{V_i\}_{i\in I}$ of X. If there exists a partition of unity, also indexed by I, such that $\operatorname{supp}(\varphi_i)\subseteq U_i$, then this partition of unity is said to be **subordinate** to the given cover.

Property 7.5.18 (Hausdorff spaces). A paracompact space is Hausdorff if and only if it admits a partition of unity subordinate to any open cover.

Definition 7.5.19 (Numerable open cover). An open cover of a topological space is said to be numerable if the space admits a partition of unity subordinate to the given cover.

Definition 7.5.20 (Compact-open topology). Consider the mapping space C(X,Y) between two topological spaces. This space is often endowed with a topology generated by the subbasis of subsets of the form

$$U^K := \{ f : X \to Y \mid K \text{ compact}, U \text{ open and } f(K) \subseteq U \}.$$

$$(7.21)$$

Property 7.5.21 (Internal hom). Consider two topological spaces X, Y with X locally compact and equip the mapping space C(X,Y) with the compact-open topology. The following relation is satisfied for all topological spaces Z:

$$C(Z \times X, Y) \cong C(Z, C(X, Y)), \tag{7.22}$$

i.e. the mapping space C(X,Y) is an internal hom 4.6.8 in the category **Top** and, because the topological product is the product in **Top**, C(X,Y) is even an exponential object 4.6.11. For this reason the mapping spaces C(X,Y) are also sometimes denoted by Y^X .

7.5.2 Compactifications

Definition 7.5.22 (Dense). A subset $V \subseteq X$ is said to be dense in a topological space X if $\overline{V} = X$.

Definition 7.5.23 (Separable space). A topological space that contains a countable, dense subset

Property 7.5.24. Every second-countable space is separable.

Definition 7.5.25 (Compactification). A compact topological space (X', τ') is a compactification of a topological space (X, τ) if X is a dense subspace of X'.

Example 7.5.26. Standard examples of compactifications are the extended real line $\mathbb{R} \cup \{-\infty, +\infty\}$ and the extended complex plane $\mathbb{C} \cup \{\infty\}$ for the real line and the complex plane, respectively.

Remark. It is important to note that compactifications are not necessarily unique.

Definition 7.5.27 (One-point compactification). Let X be a Hausdorff space. A one-point compactification or **Alexandrov compactification** is a compactification \widehat{X} such that $\widehat{X} \setminus X$ is a singleton.

Example 7.5.28 (Real line). The classic example of a (one-point) compactification is that of the real line. By adjoining the points $\pm \infty$ and identifying them, the circle S^1 is obtained. In general one can obtain the *n*-dimensional sphere S^n as the one-point compactification of \mathbb{R}^n . This can be regarded as an *inverse stereographic projection*.

7.6 Uniform spaces

Definition 7.6.1 (Uniform structure). Consider a set X. A uniform structure on X consists of a collection \mathfrak{U} of subsets $U \subseteq X \times X$ that satisfy the following properties:

- 1. If $U \in \mathfrak{U}$ and $U \subset V$, then $V \in \mathfrak{U}$.
- 2. If $U, V \in \mathfrak{U}$, then $U \cap V \in \mathfrak{U}$.
- 3. If $U \in \mathfrak{U}$, then $\Delta_X \subset U$.
- 4. If $U \in \mathfrak{U}$, then there exists $V \in \mathfrak{U}$ such that $V \circ V = U$.
- 5. If $U \in \mathfrak{U}$, then $U^t \in \mathfrak{U}$.

The "transpose" U^t denotes the converse 2.4.5 of U and the composition \circ is the relational composition 2.4.6 of V and V. The elements of the uniformity $\mathfrak U$ are called **entourages**. If $(x,y) \in U$ for some entourage $U \in \mathfrak U$, then x and y are said to be U-close.

Remark 7.6.2. The first three conditions imply that a uniform structure is in particular a filter.

?? COMPLETE (Bourbaki) ??

7.7 Locales &

Property 7.7.1 (Opens form a frame). Consider the poset Open(X) of opens of a topological space X. This set is closed under finite intersections (limits) and arbitrary unions (colimits). Furthermore, arbitrary unions distribute over finite intersections:

$$V \cap \left(\bigcup_{i \in I} U_i\right) = \bigcup_{i \in I} (V \cap U_i). \tag{7.23}$$

This implies that the poset $\mathbf{Open}(X)$ is a frame 2.5.30.

Definition 7.7.2 (Locale). The previous property can be used to generalize the notion of topological spaces to include *pointless spaces*. Let **Frame** denote the category of frames together with frame homomorphisms. The category of locales is defined as the opposite category:

$$\mathbf{Loc} := \mathbf{Frame}^{op}$$
.

Construction 7.7.3 (From locale to topological space). There exists an adjunction

$$\mathbf{Loc} \xrightarrow[\mathrm{Point}]{\iota} \mathbf{Top},$$

where the right adjoint is defined as follows:

Let L be a locale. For a topological space the points are given by continuous functions $* \to X$ and, hence, by frame morphisms $\mathbf{Open}(X) \to 1 \equiv \Omega_{\mathrm{Frame}} = \{0,1\}$. Generalizing this to locales, one defines the set of points of L as the Ω_{Loc} -elements:

$$Point(L) := Loc(1, L).$$

This set can be given a topology by declaring for every $U \in L$ the set $\{p \in \text{Point}(L) \mid p^{-1}(U) = 1\}$ to be open.

Definition 7.7.4 (Sober space). A topological space X such that the map $X \to \operatorname{Point}(X)$ is a homeomorphism, i.e. the points of X are precisely determined by its frame of opens. Equivalently, a topological space such that every irreducible closed subset is the closure of a unique point.

?? COMPLETE ??

Chapter 8

Metric Spaces

8.1 Definition

Definition 8.1.1 (Metric). A metric (or **distance**) on a set M is a map $d: M \times M \to \mathbb{R}^+$ that satisfies the following properties:

- 1. Nondegeneracy: $d(x,y) = 0 \iff x = y$,
- 2. Symmetry: d(x,y) = d(y,x), and
- 3. Triangle inequality: $\forall x, y, z \in M : d(x, z) \leq d(x, y) + d(y, z)$.

A set M equipped with a metric d is called a **metric space**.

Definition 8.1.2 (Diameter). The diameter of a subset $U \subset (M, d)$ of a metric space is defined as follows:

$$\operatorname{diam}(U) := \sup_{x,y \in U} d(x,y). \tag{8.1}$$

Definition 8.1.3 (Bounded). A subset $U \subseteq M$ is bounded if $\operatorname{diam}(U) < +\infty$.

8.2 Topology

Multiple topological notions can be (re)formulated in terms of a metric. The most important ones are given below:

Definition 8.2.1 (Open ball). An open ball centered on a point $x_0 \in M$ with radius R > 0 is defined as the following set:

$$B(x_0, R) := \{ x \in M \mid d(x, x_0) < R \}. \tag{8.2}$$

Property 8.2.2 (Metric topology). Every metric space can be turned into a topological space by taking the open balls to be a basis.

Definition 8.2.3 (Closed ball). The closed ball $\overline{B}(x_0, R)$ is defined as the closure of the open ball $B(x_0, R)$:

$$\overline{B}(x_0, R) := \{ x \in M \mid d(x, x_0) \le R \}. \tag{8.3}$$

Definition 8.2.4 (Convergence). A sequence $(x_n)_{n\in\mathbb{N}}$ in a metric space (M,d) is said to converge to a point $a\in M$ if

$$\forall \varepsilon > 0 : \exists N_0 \in \mathbb{N} : \forall n \ge N_0 : d(x_n, a) < \varepsilon. \tag{8.4}$$

Definition 8.2.5 (Continuity). Let (M, d) and (M', d') be two metric spaces. A function $f: M \to M'$ is said to be continuous at a point $a \in \text{dom}(f)$ if

$$\forall \varepsilon > 0 : \exists \delta_{\varepsilon} > 0 : \forall x \in \text{dom}(f) : d(a, x) < \delta_{\varepsilon} \implies d'(f(a), f(x)) < \varepsilon. \tag{8.5}$$

Property 8.2.6. Let (M,d) be a metric space. The distance function $d: M \times M \to \mathbb{R}$ is a continuous function.

Definition 8.2.7 (Uniform continuity). Let (M, d) and (M', d') be two metric spaces. A function $f: M \to M'$ is said to be uniformly continuous if

$$\forall \varepsilon > 0 : \exists \delta_{\varepsilon} : \forall x, y \in \text{dom}(f) : d(x, y) < \delta_{\varepsilon} \implies d'(f(x), f(y)) < \varepsilon. \tag{8.6}$$

This is clearly a stronger notion than that of continuity since the number ε is equal for all points $y \in \text{dom}(f)$.

Definition 8.2.8 (Metrizable space). A topological space X is metrizable if it is homeomorphic to a metric space M or, equivalently, if there exists a metric function $d: X \times X \to \mathbb{R}$ such that it induces the topology on X.

Theorem 8.2.9 (Urysohn's metrization theorem). A space that is T_3 and second-countable is metrizable.

8.3 Examples

Example 8.3.1 (Product space). Consider the Cartesian product

$$M = M_1 \times M_2 \times \cdots \times M_n$$

where (M_i, d_i) is a metric space for all $i \leq n$. Equipped with the distance function

$$d(x,y) := \max_{1 \le i \le n} d_i(x_i, y_i)$$
(8.7)

this product space becomes a metric space.

Property 8.3.2 (Projections determine convergence). Let M be a product metric space. Consider the projections associated with the sets M_i :

$$\operatorname{pr}_{j}: M \to M_{j}: (a_{1}, \dots, a_{n}) \mapsto a_{j}. \tag{8.8}$$

A sequence in a product metric space M converges if and only if every component $(\operatorname{pr}_j(x_m))_{m\in\mathbb{N}}$ converges in (M_i, d_i) .

Example 8.3.3 (Supremum distance). Let $K \subset \mathbb{R}^n$ be a compact set. The following map defines a metric on $C(K,\mathbb{C})$:

$$d_{\infty}(f,g) := \sup_{x \in K} |f(x) - g(x)|. \tag{8.9}$$

Example 8.3.4 (p-metric). For every $p \ge 1$ one defines the L^p -norm on \mathbb{R}^n by the following formula:

$$d_p(x,y) := \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{1/p}.$$
(8.10)

Example 8.3.5 (Chebyshev distance). The Chebyshev distance is defined similarly to the supremum distance:

$$d_{\infty}(x,y) := \max_{1 \le i \le n} |x_i - y_i|. \tag{8.11}$$

This metric is also sometimes called the **maximum metric** or L^{∞} -metric.

Remark 8.3.6. The Chebyshev metric is also an example of a product metric defined on the Euclidean product space \mathbb{R}^n . The notation d_{∞} , which is also used for the supremum distance, can be justified if the space \mathbb{R}^n is identified with the set of maps $\{1, \ldots, n\} \to \mathbb{R}$ equipped with the supremum distance. Another justification is the following relation:

$$d_{\infty}(x,y) = \lim_{p \to \infty} d_p(x,y), \tag{8.12}$$

which is also the origin of the name L^{∞} -metric.

8.4 Completeness

Definition 8.4.1 (Cauchy sequence). A sequence $(x_n)_{n\in\mathbb{N}}$ in a metric space (M, d) is Cauchy (or has the Cauchy property) if

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall m, n \ge N : d(x_m, x_n) < \varepsilon. \tag{8.13}$$

A metric space (M, d) is said to satisfy the Cauchy criterion if a sequence converges to a point $x \in M$ if and only if it is Cauchy.

Definition 8.4.2 (Complete metric space). A metric space that satisfies the Cauchy criterion.

Property 8.4.3. Subsets of metric spaces have the following properties:

- Every closed subset of a complete metric space is complete.
- Every complete subset of a metric space is closed.

8.4.1 Injective metric spaces

Definition 8.4.4 (Metric retraction). Let (M, d) be a metric space. A function $f: X \to X$ is said to be a retraction of metric spaces if:

- f is idempotent, and
- f is non-expansive, i.e. the following relation holds for all $x, y \in M$:

$$d(f(x), f(y)) \le d(x, y). \tag{8.14}$$

The image of f is called a (metric) retract of M.

Definition 8.4.5 (Injective metric space). A metric space M is said to be injective if whenever M is isometric to a subspace Y of a metric space X, then Y is a metric retract of X.

Property 8.4.6. Every injective metric space is complete.

8.4.2 Convex metric spaces

Definition 8.4.7 (Convex space). A metric space (M, d) with the property that for every two points $x, y \in M$ there exists a third point $z \in M$ such that

$$d(x,z) = d(x,y) + d(y,z). (8.15)$$

Property 8.4.8 (Convex sets). A closed subset of Euclidean space is a convex metric space if and only if it is a convex set 20.2.22.

Definition 8.4.9 (Hyperconvex space). A convex space for which the set of closed balls has the Helly property 2.3.5.

Theorem 8.4.10 (Aronszajn & Panitchpakdi). A metric space is injective if and only if it is hyperconvex.

?? WHY IS THIS HERE ??

8.5 Compactness

See Section 7.5 for the general theory of compact spaces.

Theorem 8.5.1 (Stone). Every metric space is paracompact.

Definition 8.5.2 (Totally bounded). A metric space M is said to be totally bounded if it satisfies the following equivalent statements:

- For every $\varepsilon > 0$ there exists a finite cover \mathcal{F} of M with $\forall F \in \mathcal{F} : \operatorname{diam}(F) \leq \varepsilon$.
- For every $\varepsilon > 0$ there exists a finite subset $E \subset M$ such that $M \subseteq \bigcup_{x \in E} B(x, \varepsilon)$.

Property 8.5.3 (Boundedness). Every totally bounded set is in particular bounded and every subset of a totally bounded set is also totally bounded. Furthermore, every totally bounded space is second-countable.

The following theorem is a generalization of the Heine-Borel theorem for Euclidean spaces \mathbb{R}^n .

Theorem 8.5.4. For a metric space M the following statements are equivalent:

- M is compact.
- M is sequentially compact.
- M is complete and totally bounded.

Theorem 8.5.5 (Heine-Cantor). Let M, M' be two metric spaces with M compact. Every continuous function $f: M \to M'$ is also uniformly continuous.

Definition 8.5.6 (Equicontinuity). Let X be a topological space and let M be a metric space. A collection \mathcal{F} of maps $X \to M$ is equicontinuous in $a \in X$ if for all neighbourhoods U of a the following statements holds for all $\varepsilon \geq 0$:

$$\forall f \in \mathcal{F}, \forall x \in U : d(f(x), f(a)) \le \varepsilon. \tag{8.16}$$

Property 8.5.7. Let $I \subseteq \mathbb{R}$ be an open interval and let \mathcal{F} be a collection of differentiable functions such that $\{f'(t) \mid f \in \mathcal{F}, t \in I\}$ is bounded. Then \mathcal{F} is equicontinuous.

Theorem 8.5.8 (Arzelà-Ascoli). Let K be a compact topological space and let M be a complete metric space. The following statements are equivalent for any collection $\mathcal{F} \subseteq C(K, M)$:

- \mathcal{F} is compact with respect to the supremum distance (8.9).
- \mathcal{F} is equicontinuous, closed under uniform convergence and $\{f(x) \mid f \in \mathcal{F}\}$ is totally bounded for every $x \in K$.

Chapter 9

Algebraic Topology

References for this chapter are [1,2].

9.1 Homotopy theory

9.1.1 Homotopy

Definition 9.1.1 (Retraction). Let X be a topological space and let $A \subset X$ be a subspace. A continuous function $f: X \to A$ is called a retraction (and A is called a **retract** of X) if it satisfies f(a) = a for all $a \in A$.¹

Definition 9.1.2 (Homotopy). Let $f, g \in C(X, Y)$ where X, Y are topological spaces. If there exists a continuous function $H: X \times [0, 1] \to Y$ such that f(x) = H(x, 0) and g(x) = H(x, 1), then f and g are said to be homotopic. This relation induces an equivalence relation on C(X, Y) for which the quotient space is denoted by [X, Y].

Definition 9.1.3 (Deformation retraction). Let X be a topological space and let $A \subseteq X$ be a subspace. A is called a deformation retract if there exists a homotopy between the identity function on X and a retraction $f: X \to A$.

Definition 9.1.4 (Homotopy type). Two topological spaces X and Y are said to be **homotopy equivalent** or to be of the same homotopy type² if there exist continuous functions $f: X \to Y$ and $g: Y \to X$ such that $f \circ g$ is homotopic to $\mathbb{1}_Y$ and $g \circ f$ is homotopic to $\mathbb{1}_X$. The maps f, g are called **homotopy equivalences**.

Property 9.1.5 (Homeomorphisms). Every homeomorphism is a homotopy equivalence.

Definition 9.1.6 (Null-homotopic). A continuous function is said to be null-homotopic if it is homotopic to a constant function.

Definition 9.1.7 (Contractible space). A topological space X is said to be contractible if the identity map $\mathbb{1}_X$ is null-homotopic or, equivalently, if the space is homotopy-equivalent to a point.

Definition 9.1.8 (Good cover). Let X be a topological space with an open cover $\mathcal{U} = \{U_i\}_{i \in I}$. The cover \mathcal{U} is called a good cover (or **nice cover**) if every nonempty finite intersection $U_{i_1} \cap \ldots \cap U_{i_k}$ is contractible.

¹It is a retraction of the inclusion map $A \hookrightarrow X$ in the sense of 4.4.1.

²The associated equivalence classes are sometimes called **strong homotopy types** to distinguish them from the homotopy types associated to the weak equivalences introduced further on.

Property 9.1.9 (Path space). Consider a topological space X. By Property 7.5.21 functions $Y \to X^{[0,1]}$ to the path space represent functions $Y \times [0,1] \to X$, i.e. the path space represents homotopies to X.

9.1.2 Homotopy groups

In this subsection it will always be assumed that the spaces are pointed 7.1.3. The generic base point will be denoted by *.

Definition 9.1.10 (Loop space). The set of all **loops** in a pointed topological space (X, *), i.e. all continuous functions $\delta : (S^1, t_0) \to (X, *)$ for which $\delta(t_0) = *$. This space is denoted by ΩX . It can be turned into a topological space by equipping it with the *compact-open topology*.

When one drops the requirement of based loops, i.e. when one considers the space of all continuous functions $S^1 \to X$, the resulting space is called the **free loop space** on X. This space is denoted by LX.

Definition 9.1.11 (Loop group). In the case of topological groups one can define a group structure on the (free) loop space. With the *compact-open topology* it even becomes a topological group.

Remark 9.1.12 (*H*-structure \clubsuit). Loop spaces can be equipped with a multiplication corresponding to the concatenation of loops³. However, this operation is not strictly associative and, hence, it does not endow the loop space with a group structure. Instead it turns the loop space into an *H*-group (which is in particular an A_{∞} -space 4.12.7), i.e. a group up to homotopy.

Definition 9.1.13 (Fundamental group). The fundamental group $\pi_1(X, x_0)$ is defined as the loop space of (X, x_0) modulo homotopy, i.e. $\pi_1(X) := \pi_0(\Omega X)$ where π_0 denotes the set of path components 7.4.6. As the name implies, the fundamental group can be given the structure of a multiplicative group where the operation is inherited from that of the loop space.

Remark 9.1.14. In general, as the notation implies, the fundamental group depends on the base point x_0 . However, when the space X is path-connected, the fundamental groups belonging to different base points are isomorphic. It follows that one can speak of "the" fundamental group in the case of path-connected spaces.

Property 9.1.15 (Groups). The fundamental group of a topological group is Abelian. This follows from an Eckmann-Hilton argument 3.1.4.

Definition 9.1.16 (Fundamental groupoid &). Let X be a topological space. The fundamental (or **Poincaré**) groupoid $\Pi_1(X)$ is the groupoid that has the points of X as objects and the endpoint-preserving homotopy classes of continuous functions $f: S^1 \to X$ as morphisms. The fundamental group $\pi_1(X, x)$ can be recovered as the automorphism group of $x \in \text{ob}(\Pi_1(X))$.

Definition 9.1.17 (Simply-connected space). A topological space is said to be simply-connected if it is path-connected and if the fundamental group is trivial.

Definition 9.1.18 (Universal covering space). A covering space 7.2.12 is said to be universal if it is simply-connected.

Universal Property 9.1.19. Let X be a topological space and let \widetilde{X} be its the universal covering space. Every other covering space C of X is also covered by \widetilde{X} .

³It should be noted that the rate at which the concatenated loops are traversed is doubled because the parameter t should remain an element of $S^1 \cong [0,1]/_{0\sim 1}$.

Property 9.1.20 (Universal cover). Consider a topological space X and let \widetilde{X} be its universal covering space. The group of deck transformations $\operatorname{Aut}(\widetilde{X})$ from Definition 7.2.15 is isomorphic to the fundamental group $\pi_1(X)$. Hence one obtains

$$X \cong \widetilde{X}/\pi_1(X). \tag{9.1}$$

The definition of fundamental groups can be generalized to arbitrary dimensions. (Note that in the following definition the interval [0,1] is replaced by the sphere S^1 . This is nonrestrictive as one can construct S^n by identifying the boundary of $[0,1]^n$ with the basepoint x_0 .)

Definition 9.1.21 (Homotopy group). The homotopy group $\pi_n(X, x_0)$ is defined as the set of homotopy classes of continuous functions $f: S^n \to X$ based at $x_0 \in X$. The set $\pi_0(X, x_0)$ can be seen to be the set of path-connected components of X (Remark 7.4.6). This explains why the notation $\pi_0(X)$ was introduced before.

Property 9.1.22. For $n \ge 1$ the sets $\pi_n(X, x_0)$ are groups. For $n \ge 2$ the homotopy groups $\pi_n(X, x_0)$ are Abelian. This follows from an Eckmann-Hilton argument 3.1.4.

Property 9.1.23 (Path-connectedness). If X is path-connected, the homotopy groups for different basepoints are isomorphic.

Property 9.1.24 (Homeomorphisms). Homeomorphic spaces have isomorphic homotopy groups.

Formula 9.1.25 (Products). Let (X, x_0) and (Y, y_0) be pointed topological spaces with homotopy groups $\pi_n(X, x_0)$ and $\pi_n(Y, y_0)$. The homotopy groups of their product is given by

$$\pi_n(X \times Y, (x_0, y_0)) = \pi_n(X, x_0) \times \pi_n(Y, y_0). \tag{9.2}$$

Property 9.1.26 (Whitehead bracket \$\ldot*). Consider a simply-connected topological space X. The complex $\bigoplus_{n=1} \pi_n(X)$ obtains the structure of a graded Lie algebra when equipped with the Whitehead bracket.

Definition 9.1.27 (Weak homotopy equivalence). A continuous function that induces isomorphisms on all homotopy groups. Two spaces connected via a weak homotopy equivalence are said to have the same **homotopy type**.

Definition 9.1.28 (*n*-connected space). A topological space is said to be *n*-connected if it is path-connected and if its first *n* homotopy groups are trivial. A continuous function is said to be *n*-connected if its induced maps on homotopy groups are isomorphisms in degrees k < n and surjective in degree n.

Definition 9.1.29 (Homotopy n**-type).** A topological space for which the homotopy groups π_i vanish for i > n.

Definition 9.1.30 (Eilenberg-MacLane space). Let G be a group (regarded as a discrete topological space) and choose a positive integer $n \in \mathbb{N}_0$. An Eilenberg-MacLane space K(G, n) is a topological space with the following property:

$$\pi_i\Big(K(G,n)\Big) = \begin{cases} G & i = n \\ 0 & i \neq n. \end{cases}$$

$$\tag{9.3}$$

It follows from Property 9.1.22 above that for n > 1 the group G has to be Abelian.

Property 9.1.31 (Uniqueness). For every group G and integer $n \in \mathbb{N}_0$, the space K(G, n) is unique up to weak homotopy equivalences.

Property 9.1.32 (Loop spaces). For all groups G and integers $n \geq 2$, the loop space $\Omega K(G, n)$ is homotopy equivalent to K(G, n-1).

Definition 9.1.33 (Postnikov tower⁴). Consider a path-connected topological space X. A Postnikov tower of X is an inverse system of topological spaces (X_i, ϕ_i) with the following properties:

- for all $i \leq n$ there exists an isomorphism $\pi_i(X) \cong \pi_i(X^n)$, and
- for all n the space X^n is a homotopy n-type.

In some cases the morphisms $\phi: X_i \to X_{i-1}$ in the inverse system are required to be fibrations (this also implies that the fibres are Eilenberg-MacLane spaces).

The (categorically) dual notion is called the **Whitehead tower** of X. This consists of a sequence of topological spaces

$$\cdots \longrightarrow X_2 \longrightarrow X_1 \longrightarrow X \tag{9.4}$$

such that:

- for all i > n the induced maps $\pi_i(X_n) \to \pi_i(X)$ are isomorphisms, and
- for all n the space X_n is n-connected.

Again one can add the requirement that the maps $\phi_i: X_i \to X_{i-1}$ are fibrations.

The following conjecture is due to Baez. Proofs are available depending on which model is used for the definition of ∞ -groupoids.

Theorem 9.1.34 (Homotopy hypothesis \clubsuit). Top and ∞ Grpd are equivalent as $(\infty, 1)$ -categories. In particular this means that n-groupoids are equivalent to homotopy n-types.

Remark 9.1.35. The statement of the above theorem is sometimes used as a consistency condition for the definition of ∞ -categories and in some cases it is even used as the very definition of higher groupoids. It should also be noted that the relation is very important in homotopy type theory as introduced in Chapter 6.

Property 9.1.36 (Homotopy category \clubsuit). The homotopy category **hTop** has as objects the topological spaces and as morphisms the homotopy classes of continuous functions. It is immediately clear that there exists a functor $F: \mathbf{Top} \to \mathbf{hTop}$ that acts as the identity on spaces and maps continuous functions to their homotopy classes.

However, the above definition is often too restrictive. Quillen gave a more general construction. The homotopy category (in the sense of Quillen) is obtained as the localization ?? of **Top** with respect to the collection of weak homotopy equivalences. (See Section 11.3 for more information.)

Recall the reduced suspension functor Σ from Definition 7.3.7. The functors Σ and Ω are related in the following way:

Property 9.1.37 (Eckmann-Hilton duality). The reduced suspension functor Σ and the loop space functor Ω form an adjunction in the category of pointed topological spaces:

$$\operatorname{Map}_{*}(\Sigma X, Y) \cong \operatorname{Map}_{*}(X, \Omega Y).$$
 (9.5)

This also passes down to an equivalence in the associated homotopy category:

$$[\Sigma X, Y] \cong [X, \Omega Y]. \tag{9.6}$$

⁴Often called the **Moore-Postnikov tower** or **Postnikov system** (especially in category theory).

Corollary 9.1.38. By choosing $X = S^n$ and using the result from Example 7.3.8, one obtains the following important result for homotopy groups:

$$\pi_{n+1}(Y) \cong \pi_n(\Omega Y). \tag{9.7}$$

Theorem 9.1.39 (Freudenthal suspension theorem). The suspension morphism in homotopy

$$\pi_{n+k}(S^n) \to \pi_{n+k+1}(S^{n+1})$$
 (9.8)

is an isomorphism for all $k \leq n-2$.

9.1.3 CW complexes

Definition 9.1.40 (n-cell). An open n-cell is a subset of a topological space homeomorphic to an n-dimensional open ball. A closed n-cell is the image of an n-dimensional closed ball under an attaching map 7.3.9.

Definition 9.1.41 (CW complex). A CW complex is a Hausdorff space X together with a partition of X in open cells satisfying following conditions:

- A subset of X is closed if and only if it intersects the closure of each cell in a closed set.
- For each open n-cell C in the partition there exists an attaching map $f: \overline{B}_n \to X$ such that:
 - $-f|_{B_n}$ is homeomorphic to C, and
 - $-f(\partial \overline{B}_n)$ is covered by a finite number of open cells in the partition, each having dimension smaller than n.

Definition 9.1.42 (Regular CW complex). A CW complex such that for every open cell C the attaching map f is a homeomorphism onto the closure \overline{C} .

Definition 9.1.43 (Finite type). A CW complex is said to be of finite type if there are only a finite number of cells in each degree.

Construction 9.1.44. Every CW complex can be constructed inductively (up to isomorphism):

First, choose a discrete space X_0 . This space forms the collection of 0-cells. Then, one adds 1-cells C_1 using appropriate attaching maps $f: \partial \overline{B}_1 \to X_0$. This way a 1-dimensional CW complex X_1 is obtained. Inductively one obtains a sequence of nested n-dimensional CW complexes $X_0 \subset X_1 \subset \cdots \subset X_n$.

The spaces X_i are also called *i*-skeletons.

Remark 9.1.45. Infinite-dimensional CW complexes can be obtained by taking the direct limit 3.6.2 of the sequence above.

Theorem 9.1.46 (Whitehead). A continuous function between CW complexes is a homotopy equivalence if and only if it is a weak homotopy equivalence.

Theorem 9.1.47 (CW approximation theorem). For every topological space X there exists a CW complex Y together with a weak homotopy equivalence $f: X \to Y$.

Property 9.1.48 (Suspensions). The suspension and reduced suspension of a CW complex are weakly homotopy equivalent.

Because the unit $X \to \Omega \Sigma X$ of the Eckmann-Hilton adjunction is (2n + 1)-connected, the Freudenthal suspension theorem 9.1.39 can be generalized to CW complexes:

Theorem 9.1.49 (Freudenthal suspension theorem). If X is n-connected, the suspension morphism

$$\pi_k(X) \to \pi_{k+1}(\Sigma X)$$
 (9.9)

is an isomorphism for all $k \leq 2n$.

9.1.4 Fibrations

Definition 9.1.50 (Homotopy lifting property). Consider a continuous function $\pi: E \to B$. This function is said to have the homotopy lifting property with respect to a topological space X if for every homotopy $f: X \times [0,1] \to B$ and lift $\widetilde{f_0}: X \to E$ of $f_0:=f|_{X \times \{0\}}$ there exists a homotopy $\widetilde{f}: X \times [0,1]$ lifting f such that diagram 9.1 commutes.

Figure 9.1: Homotopy lifting property.

Definition 9.1.51 (Fibration). A continuous function satisfying the homotopy lifting property with respect to every topological space is called a **Hurewicz fibration**. If the homotopy lifting property only holds with respect to CW complexes, it is called a **Serre fibration**.

Property 9.1.52 (Model fibre). Consider a fibration $\pi: E \to B$ with B path-connected. All fibres, i.e. sets $\pi^{-1}(\{b\})$ with $b \in B$, are homotopy-equivalent. Therefore a fibration is often denoted by the diagram $F \hookrightarrow E \to B$.

Example 9.1.53 (Hopf fibration). The Hopf fibration is given by

$$S^1 \hookrightarrow S^3 \to S^2. \tag{9.10}$$

Adam's theorem states that this fibration can be generalized to other dimensions as $S^n \hookrightarrow S^{2n+1} \to S^{2n}$ only for $n \in \{0,1,3,7\}$. (It is not a coincidence that these dimensions correspond to the dimensions of Euclidean spaces where one can consistently define a cross product or the dimensions of the real division algebras as classified by the Hurwitz theorem 20.1.24)

Example 9.1.54. For all $n \in \mathbb{N}$ the following sequence forms a fibration:

$$SO(n) \hookrightarrow SO(n+1) \to S^n.$$
 (9.11)

Definition 9.1.55 (Homotopy extension property). Consider a continuous function $\iota:A\to X$. This function is said to have the homotopy extension property with respect to a topological space Y if for every homotopy $f:A\times [0,1]\to Y$ and extension $\widetilde{f_0}:X\to Y$ of $f_0:=f|_{A\times\{0\}}$ there exists a homotopy $\widetilde{f}:X\times [0,1]\to Y$ extending f such that diagram 9.2 (where Property 7.5.21 is used to represent homotopies in terms of the path space of Y).

Definition 9.1.56 (Cofibration). A continuous function $\iota: A \to X$ satisfying the homotopy extension property with respect to every topological space Y, i.e. every extension along ι induces an extension of homotopies or, equivalently, the extensions $C(A,Y) \to C(X,Y)$ pass down to extensions $[A,Y] \to [X,Y]$.

Figure 9.2: Homotopy extension property.

Example 9.1.57 (Mapping cone). Recall the mapping cone construction 7.3.12. The canonical map $\iota: Y \to C_f$ is a cofibration for all continuous functions $f: X \to Y$. Furthermore, if the image $\iota(Y)$ is closed, the coprojection $C_f \to Y/f(X)$ is a homotopy equivalence.

Example 9.1.58 (Homotopy fibre). Recall the mapping path space construction 7.3.13. The projection

$$\pi: P_f \to Y: (x, p) \mapsto p(1)$$
 (9.12)

is a fibration. The homotopy type of the fibres of this fibration is called the **homotopy fibre** or **mapping fibre** of f.

9.1.5 Rational homotopy theory \$\.\cdot\$

For the theory on differential graded algebras, see Chapter 27.

Definition 9.1.59 (Rational space). A simply connected topological space X for which the homotopy groups $\pi_n(X)$ are rational vector spaces.

Definition 9.1.60 (Rational homotopy equivalence). A continuous function $f: X \to Y$ for which the induced maps on rational homotopy groups

$$\pi_n(f) \otimes \mathbb{Q} : \pi_n(X) \otimes \mathbb{Q} \to \pi_n(Y) \otimes \mathbb{Q}$$
 (9.13)

are isomorphisms for all $n \in \mathbb{N}$. An equivalent requirement is that the induced map on rational (co)homology is an isomorphism (see the section on singular homology below).

Definition 9.1.61 (Rational homotopy category). Consider the category **Top** of topological spaces. The rational homotopy category is obtained as the localization 11.2.4 of **Top** with respect to the collection of rational homotopy equivalences.

Definition 9.1.62 (Polynomial differential forms). Consider the standard n-simplex Δ^n (Definition 9.2.1). On this topological space one can define differential forms analogous to those from Section 32.4. Let $\{t_i\}_{0 \le i \le n}$ be n+1 generators in degree 0 (the barycentric coordinates). Together with n+1 associated generators dt_i in degree 1, one can construct the free GCA over \mathbb{Q} . To preserve the geometric structure of Δ^n one has to quotient out the following relations:

$$\sum_{i=0}^{n} t_i = 1 \quad \text{and} \quad \sum_{i=0}^{n} dt_i = 0.$$
 (9.14)

The resulting graded algebra is denoted by $\Omega^{\bullet}_{\text{poly}}(\Delta^n)$. In degree 0 this complex can be identified with the space of polynomial functions on Δ^n . The ordinary differential forms can be obtained by taking the tensor product of $\Omega^{\bullet}_{\text{poly}}$ with the space of smooth functions on Δ^n . Under this isomorphism the generators dt_i are identified with the de Rham differentials of the barycentric coordinates.

Morphisms $f:[m] \to [n]$ in the simplex category Δ induce morphisms of simplices and these in turn induce morphisms $F: \Omega^{\bullet}_{\text{poly}}(\Delta^n) \to \Omega^{\bullet}_{\text{poly}}(\Delta^m)$ defined by the following action on generators:

$$F(t_i) := \sum_{f(j)=i} t_j. (9.15)$$

It can be seen that this turns the above construction into a functor $\Omega_{\text{poly}}^{\bullet}: \Delta^{\text{op}} \to \mathbf{dgcAlg}$. By passing to the opposite functor and taking a left Kan extension along the Yoneda embedding $\Delta \hookrightarrow \mathbf{sSet}$, one obtains a functor $\Omega_{\text{poly}}^{\bullet}: \mathbf{sSet} \to \mathbf{dgcAlg^{op}}$. Composition with the singular set functor $\mathrm{Sing}: \mathbf{Top} \to \mathbf{sSet}$ gives the **piecewise-polynomial differential forms** functor $\Omega_{\mathrm{pwpoly}}^{\bullet}$.

Definition 9.1.63 (Relative Sullivan algebra). An inclusion of DGCAs of the form

$$(A,d) \hookrightarrow (A \otimes \Lambda^{\bullet}V, d'),$$

where A is any DGCA and V is a \mathbb{N}_0 -graded vector space such that:

- there is a well-ordered set I indexing a linear basis $\{e_i\}_{i\in I}$ of V.
- for all $k \in I$ and all e_k one has that

$$d'e_k \in A \otimes \Lambda^{\bullet}V(\langle k), \tag{9.16}$$

where $V(\langle k \rangle) := \operatorname{span}\{e_i\}_{i \leq k}$.

If in addition the implication

$$i < j \implies \deg(e_i) \le \deg(e_i)$$
 (9.17)

holds for all $i, j \in I$, the relative Sullivan algebra is said to be **minimal**.

If the Sullivan algebra is defined relative to the tensor unit (k,0), where k is the underlying field, it is just called a **Sullivan algebra**.

Remark 9.1.64. The minimality condition admits an (equivalent) reformulation:

$$dV \subseteq A_{\geq 1} \otimes \Lambda^{\bullet}V + A \otimes \Lambda^{\geq 2}V. \tag{9.18}$$

Example 9.1.65. Consider the free DGCA $\Lambda(V)$ on a graded vector space V of finite type with $V_0 = V_1 = 0$. Then $(\Lambda(V), d)$ is a Sullivan algebra.

Definition 9.1.66 (Sullivan model). Let X be a simply-connected topological space. A (minimal) Sullivan model for X is a (minimal) Sullivan algebra equipped with a quasi-isomorphism to the DGA of piecewise-polynomial differential forms on X.

Property 9.1.67. Minimal Sullivan models are unique up to isomorphism.

There is also another approach due to *Quillen*. Instead of working with differential graded algebras, *Quillen* used differential graded Lie algebras, i.e. strict L_{∞} -algebras (Section 27.7.2).

Construction 9.1.68 (Sketch, Quillen). To every simply-connected topological space X one can associated a differential graded Lie algebra $L_{\bullet}(X)$ such that the homology of this complex is isomorphic to the (shifted) rational homotopy complex $\pi_{\bullet+1}(X) \otimes \mathbb{Q}$ of X.

9.1.6 Equivariant homotopy theory 4

In this section topological spaces equipped with an action of a topological group G will be considered (the group will often be a compact Lie group). Some notions will be defined very similarly to those in the previous section, but some others will look very differently.

Notation 9.1.69 (Fixed-point space). Consider a topological G-space X. The set of all its fixed points is denoted by X^G .

Definition 9.1.70 (Equivariant homotopy equivalence). A continuous function that is both an equivariant function and a homotopy equivalence in the ordinary sense.

Definition 9.1.71 (Weak equivariant homotopy equivalence). An equivariant continuous function that restricts to an ordinary weak equivalence between the fixed-point subspaces for all closed subgroups $H \subset G$.

Theorem 9.1.72 (Whitehead⁵). A continuous function between G-CW complexes is a weak equivariant homotopy equivalence if and only if it is a equivariant homotopy equivalence.

Definition 9.1.73 (Orbit category). Let G be a topological group. The orbit category \mathbf{Orb}_G is the category defined by the following data:

- 1. the coset spaces G/H with $H \subset G$ a closed subgroup as objects, and
- 2. the equivariant homomorphisms as morphisms.

Theorem 9.1.74 (Elmendorf). The map $(X, H) \mapsto X^H$ sending a G-space to its fixed-point spaces can be interpreted as a functor $X : \mathbf{Orb}_G^{op} \to \mathbf{Top}$ or, equivalently, as a \mathbf{Top} -valued presheaf on the orbit category. By taking this a step further, one obtains a functor sending every topological space X to such a presheaf.⁶ To study the homotopy theory on these categories, one needs a choice of weak equivalences. Similar to the model structure on \mathbf{sSet} , one can choose the weak equivalences on $\mathbf{Psh}(\mathbf{Orb}_G)$ to be the levelwise weak equivalences. This gives an $(\infty, 1)$ -equivalence

$$\mathbf{Ho}(G\mathbf{Top}) \cong \mathbf{Psh}(\mathbf{Orb}_G).$$
 (9.19)

?? COMPLETE ??

9.2 Simplicial homology

9.2.1 Simplices

Definition 9.2.1 (Simplex). A k-simplex $\sigma^k \equiv [t_0, \dots, t_k]$ is defined as the following set:

$$\sigma^k := \left\{ \sum_{i=0}^k \lambda_i t_i \, \middle| \, \sum_{i=0}^k \lambda_i = 1 \text{ and } \lambda_i \ge 0 \right\}. \tag{9.20}$$

where the **vertices** $t_i \in \mathbb{R}^n$ are **affinely independent**, i.e. the vectors $t_i - t_0$ are linearly independent. Equivalently, a simplicial k-simplex is the convex hull of the k + 1 vertices $\{t_0, \ldots, t_k\}$.

Remark 9.2.2 (Barycentric coordinates). The numbers λ_i from the previous definition are called barycentric coordinates. This terminology stems from the fact that the point $\sum_{i=0}^{k} \lambda_i t_i$ represents the *barycenter* of a gravitational system consisting of masses λ_i placed at the points t_i .

⁵This equivariant version of Theorem 9.1.46 is due to *Bredon*.

⁶This is the restriction of the Yoneda embedding to the subcategory \mathbf{Orb}_G of $G\mathbf{Top}$.

Example 9.2.3 (Standard simplex).

$$\Delta^k := \left\{ (x_0, \dots, x_k) \in \mathbb{R}^{k+1} \,\middle|\, \sum_i x_i = 1 \text{ and } x_i \ge 0 \right\}$$
(9.21)

Notation 9.2.4 (Face). Consider a k-simplex $[v_0, \ldots, v_k]$. The **face** opposite to the vertex v_i is the (k-1)-simplex $[v_0, \ldots, \widehat{v_i}, \ldots, v_k]$ obtained by removing the vertex v_i .

Definition 9.2.5 (Simplicial complex). A simplicial complex K is a set of simplices satisfying the following conditions:

- If σ is a simplex in \mathcal{K} , so are its faces.
- If $\sigma_1, \sigma_2 \in \mathcal{K}$, either $\sigma_1 \cap \sigma_2 = \emptyset$ or $\sigma_1 \cap \sigma_2$ is a face of both σ_1 and σ_2 .

A simplicial k-complex is a simplicial complex where every simplex has dimension at most k.

Definition 9.2.6 (Path-connected complex). A simplicial complex is said to be path-connected if every two vertices in are connected by an edge in.

Definition 9.2.7 (Polyhedron). Consider a simplicial complex. The polyhedron associated with it is the topological space constructed by equipping the complex with the Euclidean subspace topology.

Definition 9.2.8 (Triangulable spaces). Let X be a topological space and let \mathcal{K} be a polyhedron. If there exists a homeomorphism $\varphi : \mathcal{K} \to X$, then X is said to be triangulable and \mathcal{K} is called a **triangulation** of X.

Property 9.2.9 (Fundamental group). Let \mathcal{K} be a path-connected polyhedron with basepoint a_0 and consider a contractible one-dimensional subpolyhedron $\mathcal{C} \subset \mathcal{K}$ containing all vertices of \mathcal{K} . Let G be the free group 3.2.40 with generators g_{ij} corresponding to the ordered 1-simplices $[v_i, v_j] \in \mathcal{K}$. On this group one can define the following relations:

- $g_{ij} = e$ if $[v_i, v_j] \in \mathcal{C}$.
- $g_{ii}g_{ik} = g_{ik}$ for every ordered 2-simplex $[v_i, v_j, v_k] \in \mathcal{K} \setminus \mathcal{C}$.

The quotient group of G by these relations is isomorphic to the fundamental group $\pi_1(\mathcal{K}, a_0)$.

Corollary 9.2.10. Property 9.1.24, which states that homeomorphic spaces have the same homotopy groups, implies that the fundamental group of a triangulable space can be computed by looking at its triangulations.

9.2.2 Simplicial homology

Definition 9.2.11 (Chain group). Let \mathcal{K} be a simplicial n-complex. The k^{th} chain group $C_k(\mathcal{K})$ is defined as the free Abelian group generated by the k-simplices in \mathcal{K} :

$$C_k(\mathcal{K}) := \left\{ \sum_i a_i \sigma_i \,\middle|\, \sigma_i \text{ is a } k\text{-simplex in } \mathcal{K}, a_i \in \mathbb{Z} \right\}. \tag{9.22}$$

For k > n and k < 0, $C_k(\mathcal{K})$ is defined to be $\{0\}$.

Definition 9.2.12 (Boundary operator). The boundary operator $\partial_k : C_k(\mathcal{K}) \to C_{k-1}(\mathcal{K})$ is the group morphism defined by the following properties:

• Linearity:

$$\partial_k \left(\sum_i a_i \sigma_i \right) = \sum_i a_i \partial_k \sigma_i, \tag{9.23}$$

• Action on generators

$$\partial_k[v_0, \dots, v_k] = \sum_{i=0}^k (-1)^i [v_0, \dots, \hat{v}_i, \dots, v_k],$$
 (9.24)

$$\partial_0[v] = 0. (9.25)$$

Property 9.2.13 (Chain condition). The boundary operators satisfy the following relation:

$$\partial_k \circ \partial_{k+1} = 0. \tag{9.26}$$

This property turns the system (C_k, ∂_k) into a chain complex 5.1.1.

Definition 9.2.14 (Cycle group). The k^{th} cycle group $Z_k(\mathcal{K})$ is defined as the set of k-chains σ_k such that $\partial_k \sigma_k = 0$. These chains are called **cycles**.

Definition 9.2.15 (Boundary group). The k^{th} boundary group $B_k(\mathcal{K})$ is defined as the set of k-chains σ_k for which there exists a (k+1)-chain N such that $\partial_{k+1}N = \sigma_k$. These chains are called **boundaries**.

Definition 9.2.16 (Homology group). From Property 9.2.13 it follows that $B_k(\mathcal{K}) \subset Z_k(\mathcal{K})$ is a subgroup. One can thus define the k^{th} homology group $H_k(\mathcal{K})$ as the following quotient group:

$$H_k(\mathcal{K}) := Z_k(\mathcal{K})/B_k(\mathcal{K}). \tag{9.27}$$

Theorem 3.2.48 says that $H_k(\mathcal{K})$ can be written as $G_k \oplus T_k$. Both of these groups say something about \mathcal{K} . The rank of G_k , denoted by $R_k(\mathcal{K})$, is equal to the number of (k+1)-dimensional holes in \mathcal{K} . The torsion subgroup T_k says how the space \mathcal{K} is "twisted".

Definition 9.2.17 (Betti numbers). The ranks $R_k(\mathcal{K})$ are called the Betti numbers of \mathcal{K} .

Definition 9.2.18 (Euler characteristic). The Euler characteristic of a triangulable space X is defined as follows:

$$\chi(X) := \sum_{i} (-1)^{i} R_{i}(X). \tag{9.28}$$

This formula is sometimes called the **Poincaré** or **Euler-Poincaré** formula.

Property 9.2.19 (Isomorphisms). If two topological spaces have the same homotopy type, in particular when they are homeomorphic, they have isomorphic homology groups.

Corollary 9.2.20. As was the case for the fundamental group, it follows from the definition of a triangulation that one can study the homology groups of a given triangulable space by looking at its triangulations.

Although the homology invariants do not depend on the choice of triangulation, a remark about the existence of nonequivalent triangulations should be given.

Remark 9.2.21 (Hauptvermutung ♣). Before the construction of a counterexample it was believed (hence the terms *Hauptvermutung* in German or *main conjecture* in English) that every two triangulations of a topological space allowed a common refinement and, hence, where equivalent for many constructions. However, it was shown that this conjecture is generally false, e.g. for topological manifolds in dimensions 5 and higher there exist an infinite number of nonequivalent triangulations. In dimensions up to 4 it was proven by Radó and Moise that the Hauptvermutung holds for all topological manifolds (see also Theorem 29.1.8).

Construction 9.2.22. The definition of homology groups can be generalized by letting the (formal) linear combinations used in the definition of the chain group be of the following form:

$$c = \sum_{i} g_i \sigma_i^k, \tag{9.29}$$

where $g_i \in G$ for some Abelian group G. The k^{th} homology group of X with coefficients in G is denoted by $H_k(X; G)$.

Property 9.2.23 (Vanishing torsion). When G is a field, such as \mathbb{Q} or \mathbb{R} , the torsion subgroups T_k vanish. The relation between integral homology and homology with coefficients in a group is given by the *universal coefficient theorem*.

Formula 9.2.24 (Künneth formula). Let X, Y be two simplicial complexes. The homology groups of the Cartesian product $X \times Y$ with coefficients in a field F is given by

$$H_k(X \times Y; F) = \bigoplus_{k=i+j} H_i(X; F) \otimes H_j(Y; F). \tag{9.30}$$

When the requirement of F being a field is relaxed to it merely being a group, the torsion subgroups have to be taken into account. See the literature for this general form.

9.2.3 Relative homology

In this section the homology of a simplicial complex K "modulo" a subcomplex L is considered.

Definition 9.2.25 (Relative chain group). The k-chain group of K modulo L is defined as the following quotient group:

$$C_k(K, L) := C_k(K)/C_k(L).$$
 (9.31)

Equivalence classes will be denoted by square brackets [c], where $c \in C_{\bullet}(K)$.

Definition 9.2.26 (Relative boundary operator). The relative boundary operator $\overline{\partial}_k$ is defined as follows:

$$\overline{\partial}_k[c_k] := [\partial_k c_k], \tag{9.32}$$

where ∂_k on the right-hand side denotes the boundary operator in ordinary homology. This is a well-defined operation since $\partial C_{\bullet}(L) \subseteq C_{\bullet}(L)$.

Definition 9.2.27 (Relative homology groups). The relative cycle and relative boundary groups are defined analogous to their ordinary counterparts. The relative homology groups are defined as follows:

$$H_k(K,L) := \frac{\ker(\overline{\partial}_k)}{\operatorname{im}(\overline{\partial}_{k+1})}.$$
(9.33)

Elements $h_k \in H_k(K, L)$ can be represented as $h_k = z_k + C_k(L)$ such that $\partial_k z_k \in C_{k-1}(L)$.

Property 9.2.28 (Homotopy invariance). Consider two topological spaces X, Y with subspaces $A \subset X, B \subset Y$. If a continuous function $f: X \to Y$ is a homotopy equivalence such that the restriction to A gives a homotopy equivalence $f|_A: A \to B$, the relative homology complexes $H_{\bullet}(X, A)$ and $H_{\bullet}(Y, B)$ are isomorphic.

Property 9.2.29 (Long sequence for a pair). The relative homology groups fit in the following (long) exact sequence:

$$\cdots \longrightarrow H_k(L) \xrightarrow{i_*} H_k(K) \xrightarrow{j_*} H_k(K, L) \xrightarrow{\partial_k} H_{k-1}(L) \longrightarrow \cdots, \qquad (9.34)$$

where i_* and j_* are the homology morphisms induced by the inclusions $i:L\to K$ and $j:K\to (K,L)$.

Theorem 9.2.30 (Excision theorem). Let U, V and X be simplicial complexes such that $U \subset V \subset X$. If the closure \overline{U} is contained in the interior V° , then

$$H_k(X, V) \cong H_k(X \setminus U, V \setminus U).$$
 (9.35)

Definition 9.2.31 (Reduced homology). Consider the chain complex $C_{\bullet}(X)$. Example 9.2.34 says that a point $\{*\}$ has homology \mathbb{Z} concentrated in degree 0. However, it would be nice if the point * had vanishing homology. To this end one can augment 5.3.2 the chain complex $C_{\bullet}(X)$ of any topological space by the group \mathbb{Z} to obtain the reduced homology complex $\widetilde{H}_{\bullet}(X)$:

$$H_n(X) \cong \begin{cases} \widetilde{H}_0(X) \oplus \mathbb{Z} & n = 0\\ \widetilde{H}_n(X) & n \neq 0. \end{cases}$$
(9.36)

Property 9.2.32. Consider a pointed topological space (X, x_0) . The reduced homology $\widetilde{H}_{\bullet}(X)$ is isomorphic to the relative homology $H_{\bullet}(X, \{x_0\})$.

Property 9.2.33 (Good pair). Consider a topological space X together with a subspace A. The pair (X, A) is called a **neighbourhood deformation retract (NDR) pair**⁷ if there exists a neighbourhood $V \subset X$ of A such that V deformation retracts onto A. Equivalently, the inclusion $A \subset X$ is a closed cofibration 9.1.56.

Given an NDR pair (X, A), there exists an isomorphism

$$H_{\bullet}(X,A) \cong \widetilde{H}_{\bullet}(X/A).$$
 (9.37)

9.2.4 Examples

Example 9.2.34. Let X be a contractible space.

$$H_k(X) = \begin{cases} \mathbb{Z} & k = 0\\ 0 & \text{otherwise} \end{cases}$$
 (9.38)

Example 9.2.35. Let P be a path-connected simplicial complex.

$$H_0(P) = \mathbb{Z} \tag{9.39}$$

Furthermore, every point $p \in P$ determines a generator $\langle p \rangle \in H_0(P)$.

Example 9.2.36. The homology groups of the *n*-sphere S^n are given by

$$H_k(S^n) = \begin{cases} \mathbb{Z} & k = 0 \text{ or } k = n \\ 0 & \text{otherwise.} \end{cases}$$
 (9.40)

Definition 9.2.37 (Homology sphere). A n-dimensional manifold having the same homology groups as the n-sphere.

⁷Some people call this a **good pair**, while others define an NDR pair more restrictively.

Definition 9.2.38 (Degree). The example above says that $H_n(S^n) = \mathbb{Z}$. Given a map $f: S^n \to S^n$, the induced map f_* on homology is an endomorphism of \mathbb{Z} and, hence, is of the form f(x) = dx where $d \in \mathbb{Z}$. This coefficient is called the degree of f.

Property 9.2.39. Two maps $f: S^n \to S^n$ have the same degree if and only if they are homotopic.

Example 9.2.40. Consider the closed (or open) disks D_n .

$$H_k(D_n, \partial D_n) = \begin{cases} \mathbb{Z} & k = n \\ 0 & \text{otherwise} \end{cases}$$
 (9.41)

This holds for any n-skeleton X^n of a CW-complex.

9.3 Singular homology

Definition 9.3.1 (Singular simplex). Recall the **standard** k-simplex Δ^k from Example 9.2.3. A singular k-simplex in a topological space X is defined as a continuous function $\sigma: \Delta^k \to X$.

Remark. The name singular comes from the fact that the function σ need not be injective.

Definition 9.3.2 (Δ -complex). Let $\{\sigma_i : \Delta^n \to X\}_{i \in I}$ be a collection of singular simplices in X, where the dimension n may depend on the index $i \in I$. This collection forms a Δ -complex on X if it satisfies the following conditions:

- The restrictions $\sigma_i|_{\overset{\circ}{\Delta}^n}$ are injective and every point in X lies in the image of exactly one such restriction.
- The restriction of a simplex σ_i to any one of the faces of Δ^n is equal to some other σ_j .
- A set in X is open if and only if it all of its inverse images σ_i^{-1} are open.

Similar to a CW-complex or *cellular complex*, these conditions imply that every Δ -complex can be constructed inductively from a (discrete) set of vertices by gluing and identifying edges.

Definition 9.3.3 (Singular chain group). The singular chain group $S_k(X)$ with coefficients in a group G is defined as the set of formal linear combinations $\sum_i g_i \sigma_i$, where the σ_i are singular k-simplices in X. The basis of this free group is in most cases infinite as there are in general many ways to map Δ^k to X.

Before continuing, one first need to introduce an important concept in the context of simplicial objects:

Definition 9.3.4 (Face map). The face maps are morphisms $\varepsilon_i^k : \Delta^{k-1} \to \Delta^k$ that map Δ^{k-1} onto the i^{th} face of Δ^k . They are explicitly given by

$$\varepsilon_i^k(s_0, \dots, s_{k-1}) := (s_0, \dots, s_{i-1}, 0, s_i, \dots, s_{k-1}).$$
 (9.42)

Their defining property is the following relation:

$$\varepsilon_i^k \circ \varepsilon_i^{k-1} = \varepsilon_i^k \circ \varepsilon_{i-1}^{k-1}, \tag{9.43}$$

where $j \leq i$.

Remark. Some authors (for example the authors at nLab) call these maps degeneracy maps and call what in these notes are called degeneracy maps face maps. This is a consequence of working in a dual picture (they work in the opposite of the simplex category Δ).

Definition 9.3.5 (Singular boundary operator). The singular boundary operator ∂ (the same notation as for simplicial boundary operators is used for simplicity) is defined by its linear action on the singular chain groups $S_k(X;G)$. It follows that it is uniquely defined by its action on the singular k-simplices σ^k .

The action of the boundary operator on the singular k-simplex σ^k is given by

$$\partial_k \sigma^k = \sum_{i=0}^k (-1)^i \sigma^k \circ \varepsilon_i^k, \tag{9.44}$$

where the ε_i^k are the face maps defined above. The singular boundary operators satisfy the same relation as the the simplicial boundary operators:

$$\partial_{k-1} \circ \partial_k = 0. \tag{9.45}$$

It follows that $S_k(X;G)$ is also a chain complex.

Definition 9.3.6 (Singular homology group). The singular homology groups of a topological space with coefficients in an Abelian group G are defined as follows:

$$H_k(X;G) := \frac{\ker(\partial_k)}{\operatorname{im}(\partial_{k+1})}.$$
(9.46)

Property 9.3.7 (Simplicial homology). For triangulable spaces singular homology is isomorphic to simplicial homology. When X is not triangulable, this property is not valid. The singular approach to homology is strictly more general, but it is often more difficult to compute (even in the case of triangulable spaces).

Property 9.3.8 (Induced morphism). Consider a continuous function $f: X \to Y$ between topological spaces. This induces a morphism $f_*: S_k(X; G) \to S_k(Y; G)$ on the chain groups as follows:

$$f_*\left(\sum_{\sigma} c_{\sigma}\sigma\right) := \sum_{\sigma} c_{\sigma}f \circ \sigma. \tag{9.47}$$

This map takes cycle (resp. boundary) groups to (subgroups of) cycle (resp. boundary) groups and, hence, induces a morphism of homology groups, called the **pushforward**:

$$f_*: H_k(X) \to H_k(Y): \langle h \rangle \mapsto \langle f_*(h) \rangle.$$
 (9.48)

Corollary 9.3.9. H_k is a functor $\mathbf{Top} \to \mathbf{Ab}$ that maps topological spaces to their homology groups and continuous functions f to their pushforwards f_* .

Theorem 9.3.10 (Hurewicz). Let X be path-connected and let $[\cdot]$ and $\langle \cdot \rangle$ denote the equivalence classes in the homotopy and homology groups, respectively. Because every path can be obtained as a singular 1-chain, the map $h: \pi(X) \to H_1(X): [\gamma] \mapsto \langle \gamma \rangle$ defines a group morphism. Furthermore, this map induces an isomorphism $h': \pi(X)/[\pi(X), \pi(X)] \to H_1(X)$.

More generally, for every topological space X and every $n \in \mathbb{N}$ there exists a morphism $h_*: \pi_n(X) \to H_n(X)$. If Y is (n-1)-connected, then for every $k \leq n$ this morphism is in fact an isomorphism.

Definition 9.3.11 (Singular cohomology). The singular cohomology groups of a topological space X with coefficients in an Abelian group G are defined as follows:

$$H^k(X;G) := \operatorname{Hom}(H_k(X), G), \tag{9.49}$$

where on the right-hand side the integral (singular) homology of X is used. A continuous function $f: X \to Y$ induces a **pullback** morphism $f^*: H^{\bullet}(Y; G) \to H^{\bullet}(X; G)$ on cohomology by duality:

$$f^*g(\sigma) := g(f_*\sigma), \tag{9.50}$$

where f_* is the pushforward 9.3.8 induced by f.

Property 9.3.12 (Representability). Let X be a CW complex. There exists an isomorphism

$$[X, K(G, n)] \to H^n(X; G) \tag{9.51}$$

between the homotopy classes of maps $X \to K(G, n)$ and the n^{th} singular cohomology of X with coefficients in G. (This result can be widely generalized cf. Theorem 9.4.3 further below.)

Proof. Consider the Eilenberg-Maclane space K(G,n) for G (Definition 9.1.30). By the Hurewicz theorem there exists an isomorphism $H_n(K(G,n)) \cong \pi_n(K(G,n)) \cong G$. By definition of cohomology $H^n(K(G,n);G) = \operatorname{Hom}(H_n(K(G,n)),G)$ and thus $H^n(K(G,n);G) \cong \operatorname{Hom}(G,G)$. In particular, there corresponds a cohomology class ψ to the identity mapping on G. The cohomology class in $H^n(X;G)$ associated to a homotopy class of functions $f:X \to K(G,n)$ is given by $f^*\psi$.

9.4 Axiomatic approach .

Definition 9.4.1 (Eilenberg-Steenrod axioms). All (co)homology theories have a set of properties in common. By treating these properties as axioms, one can construct relative (co)homology theories as a sequence of functors $H_k : \mathbf{Top} \times \mathbf{Top} \to \mathbf{Ab}$ (technically one should replace $\mathbf{Top} \times \mathbf{Top}$ by the category consisting of subspace inclusions $A \hookrightarrow X$). The axioms are as follows:

1. **Homotopy invariance**: If f, g are homotopic maps, their induced homology maps are the same:

$$f \cong q \implies \forall k \in \mathbb{N} : H_k(f) = H_k(q).$$

- 2. Excision: If $U \subset V \subset X$ and $\overline{U} \subset V^{\circ}$, then $H_k(X,V) \cong H_k(X \setminus U, V \setminus U)$.
- 3. Additivity: If $X = \bigsqcup_i X_i$, then $H_k(X) \cong \bigoplus_i H_k(X_i)$.
- 4. **Exactness**: Each pair (X, A), where $A \subset X$, induces a long exact sequence

$$\cdots \longrightarrow H_k(A) \xrightarrow{i_*} H_k(X) \xrightarrow{j_*} H_k(X, A) \xrightarrow{\partial_k} H_{k-1}(A) \longrightarrow \cdots, \qquad (9.52)$$

where i_* and j_* are the pushforwards of the inclusions $i:A\to X$ and $j:X\to (X,A)$.

5. **Dimension**: If X is a singleton, then $H_k(X) = \{0\}$ for all $k \geq 1$. The group $H_0(X)$ is called the **coefficient group** and gives the coefficients used in the linear combinations of the chain group.

Remark 9.4.2. If the dimension axiom is removed from the set of axioms, the so-called extraordinary (or generalized) homology theories are obtained.

Although the following theorem sounds like more of a purely category-theoretic statement, its main application is the definition of cohomology theories:

Theorem 9.4.3 (Brown's representability theorem). Consider a presheaf H on the homotopy category of pointed connected topological spaces $Ho(\mathbf{Top}^{con}_*)$. This functor is representable if and only if it satisfies the following conditions:

- It maps coproducts to products.
- It maps weak pushouts to weak pullbacks. (Weak pushouts in the homotopy category $\mathbf{Ho}(\mathbf{Top})$ come from homotopy pushouts in \mathbf{Top} .)

Remark 9.4.4. If one constructs the homotopy category using the CW-model structure in **Top**, the second condition can be restated as a *Mayer-Vietoris axiom*. Consider a CW complex U and two subcomplexes V_1, V_2 . If $x \in H(V_1), y \in H(V_2)$ and x = y on the intersection $V_1 \cap V_2$, there exists a $z \in H(U)$ that restricts to x (resp. y) on V_1 (resp. V_2).

Corollary 9.4.5 (Cohomology). Every (generalized) cohomology theory is representable. Given cohomology functors $\{H^n\}_{n\in\mathbb{N}}$, there exists a sequence of pointed topological spaces $(X_n)_{n\in\mathbb{N}}$ such that

$$H^{n}(Y) := [Y, X_{n}] (9.53)$$

for all $n \in \mathbb{N}$.

For reduced cohomology theories there exist suspension isomorphisms

$$\widetilde{H}^n(Y) \cong \widetilde{H}^{n+1}(\Sigma Y).$$
 (9.54)

Under Brown's theorem these induce isomorphisms $X_n \cong \Omega X_{n+1}$. This endows the sequence of spaces $(X_n)_{n\in\mathbb{N}}$ with the following structure:

Definition 9.4.6 (Spectrum⁸). A sequence of pointed topological spaces $(X_n)_{n\in\mathbb{N}}$ such that $X_n \cong \Omega X_{n+1}$. (The isomorphism can be a weak homotopy equivalence or homeomorphism depending on the context.)

Property 9.4.7. Brown's representability theorem shows that there exists a bijection between isomorphism classes of (generalized) cohomology theories and homotopy-equivalence classes of spectra.

9.5 Equivariant cohomology

In this section topological spaces equipped with a continuous action of a topological group G will be considered. These spaces will be called topological G-spaces or just G-spaces.

Definition 9.5.1 (Equivariant cohomology). Let X be a topological G-space for which the G-action is free. The equivariant cohomology of X is defined as

$$H_G^{\bullet}(X) := H^{\bullet}(X/G), \tag{9.55}$$

where X/G is the orbit space with respect to the action of G on X.

If the action is not free, a more general construction needs to be used. Consider the universal bundle $\pi: EG \to BG$ from Definition 33.2.1. From this bundle one can construct the associated bundle $EG \times_G X$ (this is sometimes called the **Borel construction**). It gives a model for the homotopy quotient $X/\!\!/G$. The G-equivariant cohomology of X is then defined as the singular cohomology of the Borel construction:

$$H_G^{\bullet}(X) := H^{\bullet}(EG \times_G X). \tag{9.56}$$

?? COMPLETE (E.G. LECTURES OF TU ON YOUTUBE) ??

⁸Sometimes called an Ω -spectrum to distinguish it from other (possibly more general) spectra.

Chapter 10

Sheaf Theory

A reference aimed towards the study of differential geometry is [8]. For the concept of a sheaf in category theory, see Section 13.4.

10.1 Presheaves

Definition 10.1.1 (Presheaf). Let (X, τ) be a topological space. A presheaf on X consists of a choice of algebraic structure $\mathcal{F}(U)$ for every open set $U \in \tau$ and a morphism $\Phi_V^U : \mathcal{F}(U) \to \mathcal{F}(V)$ for every two open sets $U, V \in \tau$ with $V \subseteq U$ such that the following conditions are satisfied:

1.
$$\Phi_U^U = \mathbb{1}_{\mathcal{F}(U)}$$
, and

$$2. \ W \subseteq V \subseteq U \implies \Phi^U_W = \Phi^V_W \circ \Phi^U_V.$$

The set $\mathcal{F}(U)$ is called the set of **sections** over U and the morphisms Φ_V^U are called the **restriction maps**.

Definition 10.1.2 (Morphism of presheaves). Let $\mathcal{F}, \mathcal{F}'$ be two presheaves on a topological space X. A morphism $\mathcal{F} \to \mathcal{F}'$ is a set of morphisms $\Psi_U : \mathcal{F}(U) \to \mathcal{F}'(U)$ that commute with the restriction maps Φ_V^U .

Alternative Definition 10.1.3 (Categorical definition). Using the language of category theory one can give a more concise definition. Let \mathbf{C} be a category and let X be a topological space. A \mathbf{C} -valued presheaf on X is a contravariant functor $\mathcal{F}: \mathbf{Open}(X) \to \mathbf{C}$. A morphism of presheaves is a natural transformation between such functors. As such the category of presheaves on a topological space X is in fact the presheaf topos on $\mathbf{Open}(X)$.

Example 10.1.4 (Constant presheaf). Let S be any set. The constant presheaf on X with target S is defined by

$$\mathcal{F}(U) := S \tag{10.1}$$

for every open set $U \subseteq X$.

10.2 Sheaves

Definition 10.2.1 (Sheaf). Let (X, τ) be a topological space. A sheaf on X is a presheaf \mathcal{F} satisfying the following conditions:

1. Locality (or separation): Let $\{U_i\}_{i\in I}\subset \tau$ be an open cover of $U\subseteq X$ and consider sections $s,t\in \mathcal{F}(U)$. If $\forall i\in I: s|_{U_i}=t|_{U_i}$, then s=t. This is equivalent to saying that that $\mathcal{F}(U)$ injects into $\prod_i \mathcal{F}(U_i)$ for all open covers of U.

2. Gluing: Let $\{U_i\}_{i\in I} \subset \tau$ be an open cover of $U \subseteq X$ and let $\{s_i \in \mathcal{F}(U_i)\}_{i\in I}$ be a collection of local sections. If $\forall i, j \in I : s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$, there exists a section $s \in \mathcal{F}(U)$ such that $\forall i \in I : s|_{U_i} = s_i$.

Remark 10.2.2 (Separated presheaves). If a global section exists by the gluing condition, it is automatically unique by the separation axiom. In some texts these two conditions are combined in a single gluing condition that requires a unique global section. Presheaves satisfying only the first condition are said to be **separated**. (See also the footnote in Definition 13.4.10.)

Notation 10.2.3 (Category of sheaves). Similar to the case of presheaves, one can define a morphism of sheaves as a collection of morphisms that commute with the restriction maps. The sheaves and sheaf morphisms on a space X form a full subcategory of the category of presheaves, denoted by $\mathbf{Sh}(X)$.

Property 10.2.4 (Sheaf topos \clubsuit). The category of sheaves $\mathbf{Sh}(X)$ is in fact an elementary topos, called the sheaf topos on X. See Property 13.4.26.

Property 10.2.5. Let X be a topological space and let \mathcal{F} be a presheaf on X. \mathcal{F} is a sheaf on X if for any open $U \subseteq X$ and every open cover $\{U_i\}_{i\in I}$ of U the following diagram is an equalizer diagram:

$$\mathcal{F}(U) \to \prod_{i \in I} \mathcal{F}(U_i) \Longrightarrow \prod_{i,j \in I} \mathcal{F}(U_i \cap U_j).$$
 (10.2)

The two morphisms on the right are induced by the restriction morphisms $\Phi^{U_i}_{U_i \cap U_j}$ and $\Phi^{U_j}_{U_i \cap U_j}$.

Definition 10.2.6 (Stalk). Consider a point $x \in X$ together with the set of all neighbourhoods of x. This set can be turned into a directed set 2.5.10 by equipping it with the (partial) order relation

$$U > V \implies U \subseteq V$$
.

This turns the sheaf \mathcal{F} on X into a directed system. The stalk at x is defined as the following direct limit 3.6.2:

$$\mathcal{F}_x := \lim_{\substack{U \ni x}} \mathcal{F}(U). \tag{10.3}$$

The equivalence class of a section $s \in \mathcal{F}(U)$ in \mathcal{F}_x is called the **germ** of s at x. Two sections belong to the same germ at x if there exists a neighbourhood of x on which they coincide.

Notation 10.2.7. Similar to the notation of the restriction morphisms, the morphism that maps every section to its germ at x is denoted by Φ_x^U .

Property 10.2.8. Two subsheaves of a sheaf \mathcal{F} on X are equal if and only if their stalks are equal as subsets of \mathcal{F}_x for all points $x \in X$. However, this does not imply that two sheaves with isomorphic stalks are equal (or even isomorphic)!

Example 10.2.9 (Sheaf of sections). Consider a continuous function $f: X \to Y$. This function induces a sheaf on Y in the following way:

$$\mathcal{F}(U) := \{ s : U \to X \mid f \circ s = \mathbb{1}_U \}. \tag{10.4}$$

It is the sheaf that assigns to every open set the local sections of f in the sense of Definition 4.4.1.

Construction 10.2.10 (Associated sheaf). Consider a presheaf \mathcal{F} on a topological space X. From this presheaf one can construct a sheaf $\overline{\mathcal{F}}$, called the **sheafification** or associated sheaf of \mathcal{F} , in the following way. First, define $\overline{\mathcal{F}}$ as the a presheaf

$$\overline{\mathcal{F}}(U) := \left\{ (s_x)_{x \in U} \in \prod_{x \in U} \mathcal{F}_x \,\middle|\, \forall x \in U : \exists \text{ open } V \ni x, t \in \mathcal{F}(V) : \forall v \in V : s_v = \Phi_v^V(t) \right\}. \tag{10.5}$$

Sections of this sheaf are said to be **continuous**. This statement can be made formal using the concept of an étalé space (see Construction 10.2.14 further on). The restriction maps ρ_V^U are defined as follows:

$$\rho_V^U : (s_x)_{x \in U} \mapsto (s_x)_{x \in V}.$$
 (10.6)

It is easily proven that this presheaf is in fact a sheaf, the sheafification of \mathcal{F} . This construction also gives a canonical morphism $\varphi: \mathcal{F} \to \overline{\mathcal{F}}$ since the canonical injection

$$\varphi(s): U \to \prod_{x \in U} \mathcal{F}_x: x \mapsto s_x = \Phi_x^U(s),$$
(10.7)

where $s \in \mathcal{F}(U)$ and $x \in U$, takes image in $\overline{\mathcal{F}}(U)$.

Universal Property 10.2.11. Let \mathcal{F} be a presheaf on X with associated sheaf $\overline{\mathcal{F}}$. Every sheaf morphism $\mathcal{F} \to \mathcal{G}$ factors uniquely through the canonical morphism $\mathcal{F} \to \overline{\mathcal{F}}$.

Property 10.2.12 (Stalks). Let \mathcal{F} be a presheaf on X with associated sheaf $\overline{\mathcal{F}}$. The morphism $\varphi: \mathcal{F} \to \overline{\mathcal{F}}$ induces an isomorphism $\varphi_x: \mathcal{F}_x \to \overline{\mathcal{F}}_x$ for all $x \in X$.

Property 10.2.13. Let \mathcal{F} be a sheaf on X with associated sheaf $\overline{\mathcal{F}}$ (obtained by regarding \mathcal{F} as a presheaf). The morphism $\varphi: \mathcal{F} \to \overline{\mathcal{F}}$ is an isomorphism.

There exists another, more topological, construction of the associated sheaf:

Construction 10.2.14 (Étalé spaces). Let \mathcal{F} be a presheaf on X and consider the disjoint union

$$\mathcal{F}^* := \bigsqcup_{x \in X} \mathcal{F}_x. \tag{10.8}$$

Define for every local section $s \in \mathcal{F}(U)$ a function $\overline{s}: U \to \mathcal{F}^*: x \mapsto s_x \in \mathcal{F}_x$. The union \mathcal{F}^* can be turned into an étalé space 7.2.16 over X by equipping it with the topology with basis

$$\{\overline{s}(U) \mid U \text{ open in } X, s \in \mathcal{F}(U)\}.$$
 (10.9)

The projection map π is given by $\pi: s_x \mapsto x$. The sheafification $\overline{\mathcal{F}}$ is isomorphic to the sheaf of sections of \mathcal{F}^* .

Property 10.2.15 (Paracompact spaces). Let X be a paracompact space 7.5.15 and consider a sheaf F of Abelian groups on X. For every closed subset $V \subset X$ there exists an isomorphism

$$\varinjlim_{U\supset K} F(U) \cong F(K), \tag{10.10}$$

where F(K) is defined as the set of sections of the restriction of the étalé space F^* to K. By definition this means that every section over a closed subset can be extended to a local section over some open neighbourhood.

Definition 10.2.16 (Flabby sheaf). A sheaf F on a topological space X such that for every two open subsets $U \subseteq V \subseteq X$ the restriction morphism $F(V) \to F(U)$ is surjective.

Definition 10.2.17 (Soft sheaf). A sheaf on a topological space (often required to be paracompact Hausdorff) such that every section over a closed subset can be extended to a global section.

From the previous property and definition it is clear that (on a paracompact Hausdorff space) every flabby sheaf is soft.

The sheafification can even be constructed in a third way:

Construction 10.2.18 (Abstract nonsense). Consider the equalizer (10.2). To every presheaf \mathcal{F} one can assign a separated presheaf $\mathcal{F}^{\#}$ by defining $\mathcal{F}^{\#}(U)$ as the direct limit 3.6.2 of the equalizers over all open covers of U ordered by refinement. A sheaf is obtained by applying this construction a second time.

Example 10.2.19 (Constant sheaf). Consider the constant presheaf on X with target S (Example 10.1.4). The constant sheaf, denoted by \underline{S} or $\flat S$, is defined as the associated sheaf of this presheaf. The stalks at every point $x \in X$ can be identified with S. The continuous sections $\underline{S}(U)$ are the locally constant functions $f: U \to S$.

10.3 Abelian sheaf cohomology

In this section only Abelian sheaves will be considered, i.e. sheaves with values in \mathbf{Ab} (unless stated otherwise).

Definition 10.3.1 (Global sections functor). Let X be a topological space. The global sections functor $\Gamma(X, -)$ is defined as the functor $\Gamma(X, -) : \mathbf{Sh}(X) \to \mathbf{Set} : \mathcal{F} \to \mathcal{F}(X)$.

Property 10.3.2. The global sections functor is only left exact.

Because of Chapter 5 one can now construct derived functors. These give rise to a new cohomology theory. Although it will appear a lot more abstract than the (co)homology theories from Chapter 9, these theories are in fact specific instances.

10.3.1 Derived cohomology

Property 10.3.3 (Injective resolutions). Every Abelian sheaf admits an injective resolution or, equivalently, the category $\mathcal{AB}(X)$ of Abelian sheaves has enough injectives.

Because of Property 10.3.2, one can construct nontrivial (right) derived functors of $\Gamma(X, -)$:

Definition 10.3.4 (Sheaf cohomology group). Let \mathcal{F} be a sheaf on X. Given an injective resolution I of \mathcal{F} (as usual the result will be independent of the chosen resolution), the sheaf cohomology groups of \mathcal{F} on X are defined as the cohomology groups of the complex

$$\cdots \longrightarrow \Gamma(X, I^i) \longrightarrow \Gamma(X, I^{i+1}) \longrightarrow \cdots$$
 (10.11)

The cohomology group $H^0(X; \mathcal{F})$ is equal to $\Gamma(X, \mathcal{F})$.

Definition 10.3.5 (Acyclic sheaf). A sheaf is said to be acyclic if its higher cohomology groups vanish (cf. Definition 5.4.6).

Example 10.3.6 (Soft sheaves). Soft sheaves 10.2.17 are acylic. Let (M, \mathcal{O}_M) be a smooth manifold with its sheaf of smooth functions (resp. complex manifold with its sheaf of holomorphic functions). All sheaves of \mathcal{O}_M -modules are soft and, hence, acyclic.

The following theorem is a specific instance of Property 5.4.7:

Theorem 10.3.7 (de Rham & Weil). There exists an isomorphism between the sheaf cohomology groups obtained using injective resolutions and the ones obtained using an acyclic resolution.

Definition 10.3.8 (Image and kernel). Given a morphism of sheaves $\phi : \mathcal{F} \to \mathcal{G}$ on a space X one can define the kernel/image presheaves that assign to every open subset $U \subseteq X$ the image/kernel of ϕ_U .

The kernel presheaf is already a sheaf and will be denoted by $\ker(\phi)$. The sheafification of the image presheaf will be denoted by $\operatorname{im}(\phi)$. In a similar way one can also define cokernels or any other notion that makes sense in Abelian categories.

Definition 10.3.9 (Cohomology sheaves). Let \mathcal{F}^{\bullet} be a cochain complex of sheaves on X. The cohomology sheaves $\underline{H}^{i}(X; \mathcal{F}^{\bullet})$ are obtained by sheafifying the presheaves that assign to every open subset $U \subseteq X$ the quotient group $\ker(d_{U}^{i})/\operatorname{im}(d_{U}^{i-1})$.

10.3.2 Čech cohomology

Consider a chain complex $(A_{\bullet}, \partial_{\bullet}) \in \mathbf{Ch}(\mathcal{AB}(X))$ of Abelian sheaves on a topological space X (for simplicity assume that the complex is connective).

Definition 10.3.10 (Čech cohomology). For an open cover $\mathcal{U} = \{U_i \subseteq X\}_{i \in I}$, denote the intersection $U_{i_0} \cap \cdots \cap U_{i_k}$ by $U_{i_0...i_k}$. The cochain groups are defined for all $p \in \mathbb{N}$ as:

$$C^{p}(\mathcal{U}; A_{\bullet}) := \bigoplus_{\substack{p=k-n\\i_{0}<\dots< i_{k}}} A_{n}(U_{i_{0}\dots i_{k}}). \tag{10.12}$$

Since the (pre)sheaf takes values in Abelian groups, one can define the subtraction of elements and, hence, the following definition of the differential makes sense:

$$(d\omega)_{i_0\dots i_{k+1}} := \left(\partial\omega + (-1)^k \sum_{i=0}^k (-1)^i A_{\bullet}(\iota_i)\omega\right)_{i_0\dots i_{k+1}}$$

$$= \partial\omega_{i_0\dots i_{k+1}} + (-1)^k \sum_{j=0}^{k+1} (-1)^j \omega_{i_0\dots i_{j-1}i_{j+1}\dots i_{k+1}} \Big|_{U_{i_0\dots i_{k+1}}}, \tag{10.13}$$

where ι_i are the inclusion maps of the cover. The cohomology $\check{H}^{\bullet}(\mathcal{U}; A_{\bullet})$ of this complex is called the Čech cohomology of \mathcal{U} with values in A_{\bullet} .

By taking the direct limit over the direct system of open covers (the partial ordering is given by refinement of covers) one can define the Čech cohomology $\check{H}^{\bullet}(X; A_{\bullet})$ of X with values in A_{\bullet} .

Remark 10.3.11 (Hypercohomology). Two remarks should be made here. The above construction is essentially building a double complex and calculating the cohomology of the total complex. The definition (10.13) of the total differential might differ from others in the literature by a factor $(-1)^k$ as is often the case, since vertical and horizontal directions can be interchanged. Furthermore, sometimes the definition of Čech cohomology is only given with values in an Abelian group, such that the first term in (10.13) also vanishes. This case can be recovered from the above construction by considering chain complexes concentrated in a single degree. The more general case is sometimes called **hypercohomology**.

The following two properties characterize when Čech cohomology calculates the (derived) cohomology of sheaves:

Property 10.3.12. In degrees 0 and 1 one always has

$$\check{H}^{0,1}(X;\mathcal{F}) \cong H^{0,1}(X;\mathcal{F}).$$
 (10.14)

For a paracompact Hausdorff space, the Čech cohomology and (derived) sheaf cohomology coincide in all degrees.

Property 10.3.13 (Leray). An open cover $\mathcal{U} = \{U_i \subset X\}_{i \in I}$ of a topological space is said to be **acyclic** with respect to a sheaf \mathcal{F} if \mathcal{F} is acyclic with respect to any finite subcover of \mathcal{U} :

$$H^{\bullet \ge 1}(U_{i_1} \cap \ldots \cap U_{i_k}; \mathcal{F}) = 0 \tag{10.15}$$

for all $i_1, \ldots, i_k \in I$. If \mathcal{U} is acylic with respect to \mathcal{F} , then

$$\check{H}^{\bullet}(\mathcal{U};\mathcal{F}) \cong \check{H}^{\bullet}(X;\mathcal{F}) \cong H^{\bullet}(X;\mathcal{F}). \tag{10.16}$$

Example 10.3.14 (Good covers). Consider a topological space admitting a good cover 29.1.14. The Leray theorem applies since all intersections are contractible and higher Čech cohomology vanishes on contractible spaces. Accordingly, for all topological spaces admitting a good cover (e.g. finite CW complexes or Riemannian manifolds), the Čech and singular cohomologies coincide.

10.4 Non-Abelian sheaf cohomology

10.4.1 Čech cohomology

The issue with extending Čech cohomology to the non-Abelian context is that the whole definition made heavy use of operations that only exist in Abelian categories, e.g. images, kernels and addition. However, this problem can solved.

As a first step, the case of a single group G will be considered. The (would-be) differential d is defined as before (now with a multiplicative convention):

- 1. For every 0-cochain $\{\phi_i: U_i \to G\}_{i \in I}: (d\phi)_{ij} := \phi_i \phi_i^{-1}$.
- 2. For every 1-cochain $\{\psi_{ij}: U_i \cap U_j \to G\}_{i,j \in I}: (d\psi)_{ijk} := \psi_{ij}\psi_{ik}^{-1}\psi_{jk}.$
- 3. ...

But now a major issue ariseq. With this definition, the maps d_k are not group morphisms and the sets ker d_k , im d_k are not groups. To make matters worse, from k=2 onwards, d stops being a differential altogether.

For k=0,1 the situation can be saved. If $d\phi=e$ for some 0-cochain, e being the identity element in G, then $\phi_i=\phi_j$ on $U_i\cap U_j$. So by the sheaf condition one obtains a genuine function $\phi:X\to G$, i.e. $\check{H}^0(X;G)\cong C(X,G)$. For k=1 neither the cocycles nor coboundaries form a group, so forming a quotient is out of the question, but the 0-cochains do act on the 1-cocycles by conjugation

$$(\phi \cdot \psi)_{ij} := \phi_j \psi_{ij} \phi_i^{-1}. \tag{10.17}$$

So one can take the quotient $\check{H}^1(X;G)$, as a set, of the 1-cocycles by this action and define this to be the first cohomology set. In the Abelian case, this recovers the usual construction of $\check{H}^1(X;G)$.

Remark. The reason why higher cohomology $\check{H}^{\geq 2}(X;G)$ can only be defined for Abelian groups, is not completely obvious. However, when reformulating cohomology in terms of mapping spaces with values in deloopings (see Chapter 13), it becomes clear why this is the case.

10.5 Ringed spaces

Definition 10.5.1 (Ringed space). A topological space equipped with a sheaf of rings.

Definition 10.5.2 (Locally ringed space). A ringed space for which the stalk at every point is a local ring 3.5.25.

Chapter 11

Model theory ♣

General reference for this chapter are [12,59]. For more on monoidal model categories see [99]. A good reference for the section on simplicial spaces and in particular for the theory of Segal spaces is [77]. For more on Reedy model structures see [58]. A gentle introduction to the theory of homotopy (co)limits can be found in [113].

11.1 Simplicial sets

Definition 11.1.1 (Simplex category). The simplex category Δ has as objects the posets of the form $[n] = \{0, ..., n\}$ and as morphisms the order-preserving maps.

Definition 11.1.2 (Simplicial set). The category **sSet** of simplicial sets is given by the presheaf category $\mathbf{Psh}(\Delta)$. The set $X_n := X([n])$ is called the set of n-simplices in X.

Definition 11.1.3 (Simplicial object). By internalizing the notion of a simplicial set in any category one obtains the definition of a simplicial object, i.e. a simplicial object in a category C is a C-valued presheaf on Δ . This way a simplicial set is just a simplicial object in Set.

Remark 11.1.4. Note that the notion of simplicial category can mean two distinct things. In general it will mean a category enriched in sSet. However, conform the above definition, it can also mean a simplicial object in the (2-)category Cat. It can be shown that all simplicially enriched categories are a specific kind of degenerate simplicial object in Cat where the face and degeneracy maps are identity-on-objects.

Property 11.1.5. All morphisms in the simplex category Δ are generated by two types:

- For every n, the unique map $\delta_{n,i}:[n-1]\to[n]$ which misses the i^{th} element.
- For every n, the unique map $\sigma_{n,i}:[n+1]\to[n]$ which duplicates the i^{th} element.

Under the action of a presheaf this gives the **face** and **degeneracy** maps $d_{n,i}$ and $s_{n,i}$. (If the index n is clear, then it is often omitted in the notation.)

Their fundamental relations are called the **simplicial identities**:

- $d_i \circ d_i = d_{i-1} \circ d_i$ for i < j,
- $d_i \circ s_j = s_{j-1} \circ d_i$ for i < j,
- $d_i \circ s_j = \text{id for } i = j \text{ or } i = j+1$,
- $d_i \circ s_j = s_j \circ d_{i-1}$ for i > j+1, and
- $s_i \circ s_j = s_{j+1} \circ s_i$ for $i \leq j$.

Definition 11.1.6 (Standard simplex). For every n we define the standard simplicial n-simplex $\Delta[n]$ as the Yoneda embedding $\Delta(-,[n])$. We can also define a functor $\Delta_{\text{top}}: \Delta \to \text{Top}$ that maps [n] to the standard topological n-simplex Δ^n (see definition ??).

Property 11.1.7. By the Yoneda lemma there exists a natural bijection between the set of n-simplices of a simplicial set X and the set of maps $\Delta[n] \to X$.

Definition 11.1.8 (Connected components). Consider a simplicial set X. Its set of connected components $\pi_0 X$ is defined as the quotient of X_0 under the relation

$$X_1 \stackrel{d_0}{\underset{d_1}{\Longrightarrow}} X_0 \times X_0.$$

Construction 11.1.9 (Nerve and realization). Consider a general functor $F: \mathbf{S} \to \mathbf{C}$ into a cocomplete category (S will often be a category of geometric shapes such as the simplex category Δ or the cube category \square). Every such functor induces an adjunction

$$\mathbf{C} \xrightarrow{|-|}_{N} \mathbf{Psh}(\mathbf{S}). \tag{11.1}$$

The realization functor |-| is defined as the left Kan extension $\operatorname{Lan}_{\mathcal{Y}} F$. The nerve functor $N: \mathbf{C} \to \mathbf{Psh}(\mathbf{S})$ is defined as $Nc := \mathbf{C}(F-,c)$.

This definition also holds in an enriched setting, i.e. for $\mathbf{Psh}(\mathbf{S}) \equiv [\mathbf{S}^{op}, \mathcal{V}]$. If we furthermore assume that \mathbf{C} is copowered over \mathcal{V} , we can express the realization as a coend:

$$|X| = \int_{-\infty}^{s \in \mathbf{S}} Xs \cdot Fs. \tag{11.2}$$

Example 11.1.10 (Nerve of a category). To every small category \mathbf{C} we can associate a simplicial set $N\mathbf{C}$ in the following way. The set $N\mathbf{C}_0$ is given by the set of objects in \mathbf{C} . The set $N\mathbf{C}_1$ is given by the set of morphisms in \mathbf{C} . Now, for every two composable morphisms f, g one obtains a canonical commuting triangle. Let $N\mathbf{C}_2$ be the set of all these triangles. The higher simplices are defined analogously. Face maps act by composing morphisms or by dropping the exterior morphisms. Degeneracy maps act by inserting an identity morphism.

Equivalently, one can define the (simplicial) nerve functor in the following way: Every poset [n] as defined above admits a canonical category structure for which the order-preserving maps give rise to the associated functors. This inclusion $\Delta \hookrightarrow \mathbf{Cat}$ induces the functor

$$N: \mathbf{Cat} \to \mathbf{sSet} : \mathbf{C} \mapsto \mathbf{Cat}(-, \mathbf{C}).$$
 (11.3)

This way we obtain $N\mathbf{C}_k = \mathbf{Cat}([k], \mathbf{C})$. This object is by definition equivalent to the collection of all strings of k composable morphisms in \mathbf{C} .

Example 11.1.11 (Geometric realization). Consider a simplicial set X. From this object we can construct a topological space as follows: First we take a point for every element in X_0 . Then we glue 1-simplices between these points using the face maps. The higher (nondegenerate) simplices are attached analogously.

For simplicial topological spaces¹ this amounts to the following explicit formula:

$$|X| := \bigsqcup_{n \in \mathbb{N}} X_n \times \Delta^n / \sim \tag{11.4}$$

¹These include ordinary simplicial sets since every n-simplex X_n can be endowed with the discrete topology.

where the equivalence relation identifies the points (x, f_*y) and (f^*x, y) for all morphisms $f \in \text{hom}(\Delta)$.² For simplicial sets this can also be rewritten as a functor tensor product 4.7.7:

$$|X| = X \otimes_{\Delta} \Delta_{\text{top}}. \tag{11.5}$$

It immediately follows that

$$|\Delta[n]| = \Delta^n. \tag{11.6}$$

Example 11.1.12 (Singular set). Given a topological space X we can define a simplicial set Sing(X). Its components are defined as the set of morphisms from the standard (topological) n-simplex to X:

$$\operatorname{Sing}(X)_n := \mathbf{Top}(\Delta^n, X). \tag{11.7}$$

This is the object of relevance in the definition of singular (co)homology (see section 9.3).

Property 11.1.13 (Classifying space). For a (discrete) group G one can construct two important objects: the delooping $\mathbf{B}G$ and the classifying space BG (see definitions 4.10.2 and 33.2.1 respectively). As their notations imply there exists some relation between these space: By first taking the nerve of $\mathbf{B}G$ and then going to its geometric realization we obtain BG. In fact this method can be applied to any monoid A to obtain the so-called (two-sided) bar construction.

11.1.1 Kan complexes

Definition 11.1.14 (Horn). Consider the standard simplex $\Delta[n]$. For all $n \geq 1$ and $0 \leq k \leq n$ we define the (n, k)-horn $\Lambda^k[n]$ as the subsimplicial set obtained by removing the k^{th} face from $\partial \Delta[n]$. When k = 0 or k = n, the horn is said to be **outer**, otherwise it is said to be **inner**.

Definition 11.1.15 (Kan fibration). A morphism of simplicial sets that has the right lifting property with respect to all horn inclusions $\Lambda^k[n] \hookrightarrow \Delta[n]$.

Definition 11.1.16 (Kan complex). A simplicial set that has all horn fillers, or equivalently, a simplicial set for which the terminal morphism is a Kan fibration. The full subcategory on Kan complexes is denoted by **Kan**.

Property 11.1.17 (Horn filler condition). A simplicial set is the nerve of a (small) category if and only if all of its inner horns admit a unique filler. If we require all horns to admit a unique filler, then we obtain the nerve of a groupoid.

By relaxing the above requirements we can generalize the notion of a category (due to Boardman and Voqt):

Definition 11.1.18 (Quasicategory³). A simplicial set that has (not necessarily unique) fillers for all inner horns. This condition is sometimes called the **Boardman condition**.

Definition 11.1.19 (Homotopy category I). Let X be a quasicategory. The homotopy category $\mathbf{Ho}(X)$ consists of the following data:

- 1. $ob(\mathbf{Ho}(X)) := X_0$, and
- 2. the morphism object is the quotient of X_1 under the relation $f \circ g \sim h$ if there exists a 2-simplex with edges f, g and h.

²The morphisms f^*, f_* are the ones induced by X and $\Delta_{\text{top}} : \Delta \hookrightarrow \mathbf{Top}$.

³Some authors such as *Joyal* call these **logoi** (singular: **logos**).

Property 11.1.20 (Fundamental category). If X is a quasicategory, its homotopy category is equivalent to its **fundamental category** $\pi_1 X$, i.e. the image under the left adjoint of the (simplicial) nerve functor.

The following theorem is a restatement of property 11.1.17:

Theorem 11.1.21 (Joyal). A quasicategory is a Kan complex if and only if its homotopy category is a groupoid.

11.1.2 Homological algebra

In this section simplicial sets are related to homological algebra (Chapter 5). A basic introduction is [67].

Construction 11.1.22 (Alternating face map complex). Given a simplicial Abelian group A, one can construct a connective chain complex as follows. For every $n \in \mathbb{N}$:

$$(CA)_n := A_n. (11.8)$$

The boundary maps δ_n are defined as an alternating sum of the face maps:

$$\delta_n := \sum_{i=1}^n (-1)^i d_i. \tag{11.9}$$

Every group A_{n+1} contains subgroup $D(A_n)$ generated by the degeneracy maps:

$$D(A_n) := \left\langle \bigcup_{i=1}^n s_i(A_n) \right\rangle. \tag{11.10}$$

If these degenerate simplices are quotiented out, the **normalized complex** is obtained.

This construction can be generalized to any simplicial group:

Construction 11.1.23 (Moore complex). Let G be a simplicial group. For every $n \in \mathbb{N}$:

$$(NG)_n := \bigcap_{i=1}^n \ker d_i^n. \tag{11.11}$$

The differential ∂_n is given by the zeroth face map d_0^n .

Property 11.1.24. For simplicial Abelian groups, the Moore complex and normalized complex are isomorphic. Moreover, the inclusion of the normalized complex into the alternating face map complex is a quasi-isomorphism.

Theorem 11.1.25 (Dold-Kan correspondence). The functor that maps simplicial Abelian groups to normalized chain complexes gives an equivalence of categories $\mathbf{s}\mathbf{A}\mathbf{b} \to \mathbf{Ch}^+_{ullet}(\mathbf{A}\mathbf{b})$.

11.2 Localization

Definition 11.2.1 (Category with weak equivalences). A category C with a subcategory W such that:

- 1. W contains all isomorphisms in C.
- 2. Any two composable morphisms $f, g \in \text{hom}(\mathbf{W})$ satisfy the "2-out-of-3 property": If any two of $\{f, g, f \circ g\}$ are in $\text{hom}(\mathbf{W})$, so is the third.

Definition 11.2.2 (Weak factorization system). Consider a category \mathbf{C} . A pair (L, R) of classes of morphisms in \mathbf{C} is called a weak factorization system (WFS) if it satisfies the following 3 properties:

- 1. Every morphism in C factors as a composition $g \circ f$ where $f \in L$ and $g \in R$.
- 2. L consists of exactly those morphisms in \mathbf{C} that have the left lifting property 4.4.23 with respect to morphisms in R.
- 3. R consists of exactly those morphisms in \mathbb{C} that have the right lifting property with respect to morphisms in L.

Remark. The original definition by Quillen only required that L and R satisfied the lifting properties with respect to each other, not that they were closed under this condition.⁴ This was later fixed by introducing the condition that both L and R are closed under retracts in the arrow categories. (The latter being equivalent to our direct definition of closure.)

Definition 11.2.3 (Homotopical functor). Consider two categories with weak equivalences C, D. A functor $F : C \to D$ is said to be homotopical if it preserves weak equivalences.

Definition 11.2.4 (Gabriel-Zisman localization). Consider a category \mathbb{C} with a collection of morphisms $M \subset \text{mor}(\mathbb{C})$. The localization of \mathbb{C} with respect to M is constructed by adding for each morphism $f \in M$ a formal inverse to $\text{mor}(\mathbb{C})$. More specifically the localization consists of the following data:

- 1. a category $C[M^{-1}]$, and
- 2. a functor $F_M: \mathbf{C} \to \mathbf{C}[M^{-1}]$ that inverts all morphisms in M

such that F_M is universal with respect to inverting M: For every other category \mathbf{D} and functor $F: \mathbf{C} \to \mathbf{D}$ that inverts all morphisms in M, the following conditions are satisfied:

- There exists a functor $Z_F: \mathbf{C}[M^{-1}] \to \mathbf{D}$ such that $Z_F \circ F_M$ is naturally isomorphic to F.
- The precomposition functor $F_M^*: [\mathbf{C}[M^{-1}], \mathbf{D}] \to [\mathbf{C}, \mathbf{D}]$ is fully faithfull.

Definition 11.2.5 (Homotopy category II). When **C** is a category with weak equivalences W, the localization $\mathbf{C}[W^{-1}]$ is often called the homotopy category $\mathbf{Ho}(\mathbf{C})$. In this context the functor $\mathbf{C} \to \mathbf{Ho}(\mathbf{C})$ is also often denoted by $\gamma_{\mathbf{C}}$.

Remark 11.2.6 (Size issues). When C is small, so is its localization. However, even in the case were C is locally small, its localization might be large.

Definition 11.2.7 (Derived functor). Consider a homotopical functor $F: \mathbb{C} \to \mathbf{D}$ and let γ be the composition with the localization functor $\gamma_{\mathbf{D}}$ (we also assume the weak equivalences in \mathbb{C}, \mathbf{D} to satisfy the 2-out-of-3 property). The derived functor $\mathbf{Ho}(F): \mathbf{Ho}(\mathbb{C}) \to \mathbf{Ho}(\mathbb{D})$ is the functor obtained by the universal property of $\mathbf{Ho}(\mathbb{C})$ applied to this composition.

This definition can be rephrased in terms of Kan extensions: Consider a homotopical functor $F: \mathbf{C} \to \mathbf{D}$ between categories with weak equivalences. The left and right derived functors are defined as the following Kan extensions:

$$LF := \operatorname{Ran}_{\gamma_{\mathbf{C}}}(\gamma_{\mathbf{D}} \circ F) \tag{11.12}$$

$$RF := \operatorname{Lan}_{\gamma_{\mathbf{C}}}(\gamma_{\mathbf{D}} \circ F). \tag{11.13}$$

In fact we can drop the assumption that **D** has weak equivalences (here F should map weak equivalences to isomorphisms). In this case we simply have to replace $\gamma_{\mathbf{D}} \circ F$ by F in the above formulas.

⁴Model categories defined using the ''strong'' notion of weak factorization system were then called **closed** model categories.

Definition 11.2.8 (Derived category). Consider an Abelian category **A** together with its category of chain complexes $\mathbf{Ch}_{\bullet}(\mathbf{A})$. The derived category $\mathcal{D}(\mathbf{A})$ is defined as the localization of $\mathbf{Ch}_{\bullet}(\mathbf{A})$ at the collection of quasi-isomorphisms.

Remark 11.2.9. It can be shown in this case that one can first restrict to the naive homotopy category K(A), consisting of chain complexes and chain maps up to chain-homotopy, and then localize at the collection of quasi-isomorphisms.

11.3 Model categories

Definition 11.3.1 (Model structure). Let C be a category. A model structure (in the sense of Quillen) on C consists of 3 classes of morphisms:

- 1. weak equivalences W,
- 2. **fibrations** Fib, and
- 3. cofibrations Cof.

These are required to satisfy the following two conditions:

- W turns C into a category with weak equivalences 11.2.1.
- (Cof, Fib \cap W) and (Cof \cap W, Fib) are weak factorization systems on C (see definition 11.2.2).

The morphisms in Fib \cap W and Cof \cap W are said to be **acyclic** or **trivial**.

Remark. That W contains all isomorphisms in fact follows from the property that any class of morphisms satisfying a lifting property contains all isomorphisms.

Definition 11.3.2 (Model category). A complete and cocomplete category equipped with a model structure.⁵

Definition 11.3.3 (Proper model category). A model category is said to be left proper (resp. right proper) if weak equivalences are preserved by pushouts along cofibrations (resp. pullbacks along fibrations).

Definition 11.3.4 (Fibrant object). An object in a model category is said to be fibrant if terminal morphism is a fibration. Dually, an object in a model category is said to be cofibrant if its initial morphism is a cofibration.

Property 11.3.5 (Model structure on functor categories). Consider a (small) category C and a model category D. In certain cases, or under specific assumptions, the functor category [C, D] admits two canonical model structures:

- **Injective model structure**: The weak equivalences are the natural transformations that are objectwise weak equivalences and the cofibrations are the natural transformations that are objectwise cofibrations.
- **Projective model structure**: The weak equivalences are the natural transformations that are objectwise weak equivalences and the fibrations are the natural transformations that are objectwise fibrations.

Property 11.3.6 (Resolution). In a model category the (co)completeness property implies that the initial and terminal object always exist. The weak factorization property then implies that for every object X we can find a weakly equivalent fibrant replacement X^f and a weakly

⁵ Quillen's original definition only required finite limits and finite colimits.

equivalent cofibrant replacement X^c by suitably factorizing the initial and terminal morphisms. These replacements are also sometimes called **resolutions** or **approximations**.

If the weak factorization system is in fact functorial 4.3.5, (co)fibrant replacement defines an endofunctor that is weakly equivalent to the identity functor.

Definition 11.3.7 (Quillen adjunction). Let C, D be two model categories. An adjunction

$$\mathbf{D} \xrightarrow{F} \mathbf{C}$$

is called a **Quillen adjunction** if the left adjoint preserves cofibrations and acyclic cofibrations. The axioms imply that this is equivalent to requiring that the right adjoint preserves fibrations and acyclic fibrations. These adjoint functors are called (left and right) **Quillen functors**.

If (F,G) is a Quillen adjunction such that for all cofibrant objects A and fibrant objects B the morphism $FA \to B$ is a weak equivalence if and only if the adjunct morphism $A \to GB$ is a weak equivalence, then (F,G) is called a **Quillen equivalence**.

Quillen equivalences can also be characterized on the level of homotopy categories:

Property 11.3.8. Let $F \dashv G$ be a Quillen adjunction. This pair is a Quillen equivalence if and only if the left (resp. right) derived functor LF (resp. RG) is an equivalence.

Property 11.3.9 (Derived adjunction). If $(F \dashv G)$ is a Quillen adjunction, the derived functors (LF, RG) also form an adjunction.

Property 11.3.10 (Doubly categorical interpretation). The map that sends a model category to its homotopy category and a Quillen functor to its derived functor is a *double pseudo-functor*. Amongst other things this implies that the composition of derived functors is naturally weakly equivalent to the derived functor of the composition.

11.3.1 Homotopy category

Definition 11.3.11 (Homotopy). Before we can construct homotopies in general model categories, thereby generalizing the ideas from section 9.1, we have to define the counterpart of the unit interval in a model category \mathbf{M} . To this end consider an object $x \in \mathrm{ob}(\mathbf{M})$. By taking the product and coproduct of two copies of x we can construct the unique diagonal and codiagonal morphisms $\Delta: x \to x \times x$ and $\nabla: x \sqcup x \to x$. By factorizing these morphisms in \mathbf{M} we obtain two weak equivalences

$$x \to \text{Path}(x)$$
 (11.14)

$$Cvl(x) \to x.$$
 (11.15)

These objects are called the **path object** and **cylinder object** respectively. By choosing the morphism to be a fibration (resp. cofibration), we obtain the notion of **good** cylinder (resp. path) object.

Using these objects we can define left and right homotopies between parallel morphisms $f,g: x \to y$. A left homotopy between f and g is a morphism $\eta: \operatorname{Cyl}(x) \to y$ such that diagram 11.1a commutes. Analogously, a right homotopy between f and g is a morphism $\lambda: x \to \operatorname{Path}(y)$ such that diagram 11.1b commutes.

Property 11.3.12. If x is cofibrant, every left homotopy induces a right homotopy. Dually, if y is fibrant, every right homotopy induces a left homotopy.

(b) A right homotopy.

Corollary 11.3.13. Whenever x is cofibrant and y is fibrant the relations of being left homotopic (or equivalently right homotopic) coincide on $\mathbf{M}(x,y)$ and, in particular, define equivalence relations. The equivalence classes are denoted by [x,y].

Property 11.3.14 (Stability under composition). Homotopies are preserved under both precomposition and postcomposition by arbitrary morphisms.

Property 11.3.15 (Weak equivalences). A morphism is a weak equivalence if and only if it is a homotopy inverse.

Definition 11.3.16 (Homotopy equivalence). Two objects in a model category are said to be homotopy equivalent if there exists morphisms $f: x \hookrightarrow y: g$ such that $f \circ g$ and $g \circ f$ are homotopic to the identity. The morphisms f, g are then said to be homotopy equivalences.

In definition ?? it was shown that we can assign to every category with weak equivalences a "homotopy category". When the category has more structure, in this case that of a model category, we can construct an equivalent category:

Alternative Definition 11.3.17 (Homotopy category II). Let M be a model category. The homotopy category Ho(M) is the category defined by the following data:

- $ob(\mathbf{Ho}(\mathbf{M})) := ob(\mathbf{M})$, and
- $\operatorname{Hom}_{\mathbf{Ho}(\mathbf{M})}(X,Y) := [X^{cf}, Y^{cf}].$

In fact it is easier to restrict to the subcategory \mathbf{M}_{cf} of $\mathbf{Ho}(\mathbf{M})$ on the fibrant-cofibrant objects due to the following property (if we restrict to a subcategory, the resulting homotopy category is only equivalent and not isomorphic to the localization):

Property 11.3.18. The homotopy category of a model category coincides with those of the full subcategories on (co)fibrant objects:

$$Ho(M) \cong Ho(M_f) \cong Ho(M_c) \cong Ho(M_{cf}).$$
 (11.16)

Theorem 11.3.19 (Whitehead). A weak equivalence between objects that are both fibrant and cofibrant is a homotopy equivalence.

Property 11.3.20. A Quillen equivalence between model categories induces an equivalence of homotopy categories.

In some cases it is useful to consider categories weaker than model categories but stronger than categories with weak equivalences. The best example is given by the full subcategories of a model category on the (co)fibrant objects. These are often easier to handle in the setting of homotopy theory. To formalize this notion we introduce the following definition:

Definition 11.3.21 (Category of fibrant objects). A category C with weak equivalences $W \hookrightarrow C$ equipped with another subcategory $F \hookrightarrow C$, for which the morphisms are called **fibrations**, such that the following conditions are satisfied:

- 1. C admits finite products.
- 2. Fibrations and acyclic fibrations are preserved under arbitrary pullbacks.
- 3. Every object admits a good path object, i.e. a factorization of the product map $x \to x \times x$ as the composition of a weak equivalence and a fibration.
- 4. All objects are **fibrant**, i.e. the terminal map $x \to 1$ is a fibration for all objects $x \in ob(\mathbb{C})$.

Theorem 11.3.22 (Factorization lemma). Let C be a category of fibrant objects. Any morphism $f: x \to y$ can be factorized as the right inverse of an acyclic fibration followed by a fibration.

We now give an important theorem in characterizing when a functor preserves weak equivalences:

Theorem 11.3.23 (Ken Brown's lemma). Let C be a category of fibrant objects and let D be a category with weak equivalences. If a functor $F: \mathbf{C} \to \mathbf{D}$ maps acyclic fibrations to weak equivalences, it preserves all weak equivalences.

Remark 11.3.24. An analogous theorem exists for categories of cofibrant objects.

This lemma allows us to define derived functors for functors between model categories (in fact this one is better suited for working in the ∞ -setting):

Alternative Definition 11.3.25 (Derived functor). Let $F: \mathbf{M} \to \mathbf{N}$ be a left (resp. right) Quillen functor. The left (resp. right) derived functors are obtained by precomposition with the cofibrant (resp. fibrant) replacement functors.

Property 11.3.26 (Derived functors are absolute). It can be shown that derived functors built using (co)fibrant replacement are given by absolute (and in particular pointwise) Kan extensions. So even though homotopy categories often do not admit all (co)limits, the resulting Kan extensions do exist.

11.3.2 Reedy model structure

Consider a complete and cocomplete category M (in the remainder of this section we will often take $\mathbf{M} = \mathbf{sSet}$). For any full subcategory $\mathbf{D} \hookrightarrow \mathbf{C}$ we obtain an induced **truncation** functor (or **restriction**) functor tr: $\mathbf{M^C} \to \mathbf{M^D}$. The left and right adjoints of this functor are respectively called the **skeleton** and **coskeleton** functors.

Formula 11.3.27. The adjoint functors are defined by Kan extensions and hence we can express them in terms of (co)ends and weighted (co)limits:

$$\operatorname{sk}(X)c := \int^{d \in \operatorname{ob}(\mathbf{D})} \mathbf{C}(d, c) \cdot Xd = \operatorname{colim}^{\operatorname{tr}(\mathbf{C}(-, c))}$$
(11.17)

$$\operatorname{sk}(X)c := \int^{d \in \operatorname{ob}(\mathbf{D})} \mathbf{C}(d, c) \cdot Xd = \operatorname{colim}^{\operatorname{tr}(\mathbf{C}(-, c))}$$

$$\operatorname{cosk}(X)c := \int_{d \in \operatorname{ob}(\mathbf{D})} [\mathbf{C}(c, d), Xd] = \lim^{\operatorname{tr}(\mathbf{C}(c, -))} X.$$
(11.18)

Definition 11.3.28 (Skeletal sets). Let $\mathbf{M} = \mathbf{sSet}$ and consider the inclusion $\Delta_{\leq n} \hookrightarrow \Delta$ where the former category is the full subcategory on the objects $\{[0], \ldots, [n]\}$. The n-truncation functor tr_n discards all sets of degree higher than n (or in other words it "truncates" a simplicial set at degree n).

The n-skeleton functor sk_n takes a simplicial set S of degree $\leq n$ and freely adds degenerate simplices in degrees > n, i.e. it is the smallest simplicial set containing S as a simplicial subset. The n-coskeleton functor $cosk_n$ adds a simplex in degree > n whenever all of its faces are present, i.e. the m-simplices in $\cos k_n S$ are given by the collection of all (m+1)-tuples of (m-1)-simplices that are compatible (along lower simplices).

Property 11.3.29 (Simplicial nerve). The nerve functor $N: \mathbf{Cat} \to \mathbf{sSet}$ from definition 11.1.10 is a fully faithful functor to the category of 2-coskeletal simplicial sets. This follows from the fact that in ordinary categories, compositions of morphisms are unique and, hence, all higher-order tuples of composable morphisms are determined by composable pairs. In fact this is just the characterization of (small) categories as categories internal to \mathbf{Set} (under the isomorphism $C_2 \cong C_1 \times_{C_0} C_1$ which is just the first $Segal\ condition$ from definition 11.3.56).

Definition 11.3.30 (Reedy category). A category C equipped with a **degree** function $ob(C) \to \alpha$, where α is an ordinal 2.5.17, and two wide subcategories C_{\pm} that satisfy the following conditions:

- 1. Nontrivial morphisms in \mathbf{C}_{+} (strictly) increase the degree.
- 2. Nontrivial morphisms in C_{-} (strictly) decrease the degree.
- 3. All morphisms admit a unique factorization as a morphism in C_{-} followed by a morphism in C_{+} . This factorization is sometimes called the (canonical) Reedy factorization.

Property 11.3.31 (Minimality). The Reedy factorization is the (unique) factorization of minimal degree where the **degree** of a factorization $x \xrightarrow{f} y \xrightarrow{g} z$ is defined as the degree of y.

Property 11.3.32 (Isomorphisms are trivial). A morphism in a Reedy category is an isomorphism if and only if it is trivial.

Example 11.3.33. Some common examples of Reedy categories are discrete categories, finite posets, opposites of Reedy categories and the simplex category Δ .

For Reedy categories we can also define n-truncation, n-skeleton and n-coskeleton functors by restricting to the full subcategories on elements of degree $\leq n$. In this case we define the following notions:

Definition 11.3.34 (Matching and latching objects). Let **R** be a Reedy category and consider a diagram $X \in [\mathbf{R}, \mathbf{C}]$ where **C** is small. Consider the skeleton monad and coskeleton comonads (also often just called the skeleton and coskeleton functors) $\mathbf{sk}_n := \mathbf{sk}_n \circ \mathbf{tr}_n$ and $\mathbf{cosk}_n := \mathbf{cosk}_n \circ \mathbf{tr}_n$. The latching and matching objects of X are defined as the restrictions of \mathbf{sk}_{n-1} and \mathbf{cosk}_{n-1} to the degree n subcategory of R.

The counit of the skeleton adjunction and the unit of the coskeleton adjunction give rise to the **latching** and **matching** maps.

We can also define the latching and matching objects through (co)limits. Define the subcategory $R^+(r)$ as the subcategory of R^+/r on all objects except the identity. The latching object L_rX can be shown to be isomorphic to the colimit of X over $R^+(r)$.

Example 11.3.35 (Simplicial objects). The above property enables us to give a nice interpretation to latching objects in the case of $\mathbf{R} = \boldsymbol{\Delta}^{op}$. Using the *Eilenberg-Zilber* lemma it can be shown that the n^{th} latching object of a simplicial object is given by its collection of degenerate n-simplices.

Definition 11.3.36 (Boundary). The boundary of a representable presheaf $\mathbf{R}(-,r)$ is defined as the latching object of the Yoneda embedding $\mathcal{Y}: \mathbf{R} \to \mathbf{Psh}(\mathbf{R})$ at r. It is denoted by $\partial \mathbf{R}(-,r)$. It can be shown that $\partial \mathbf{R}(-,r)$ consists of exactly those morphisms that are not in \mathbf{R}^- or, equivalently, as $\mathbf{sk}_{n-1}\mathbf{R}(-,r)$.

The latching map coincides with the canonical inclusion $\partial \mathbf{R}(-,r) \hookrightarrow \mathbf{R}(-,r)$ if r is of degree n.

Formula 11.3.37. We can show that the latching and matching objects can be obtained through (co)limits weighted by boundaries:

$$M_r X \cong \lim^{\partial \mathbf{R}(r,-)} X \tag{11.19}$$

$$L_r X \cong \operatorname{colim}^{\partial \mathbf{R}(-,r)} X$$
 (11.20)

From here on we will also assume \mathbf{M} to be a model category (as was already the case in the previous section). We will define a model structure on the functor category $[\mathbf{R}, \mathbf{M}]$ for Reedy R.

Definition 11.3.38 (Relative matching and latching objects). Consider the (weighted) colimit bifunctor colim : $\mathbf{Psh}(\mathbf{R}) \times [\mathbf{R}, \mathbf{M}] \to \mathbf{M}$. The *Leibniz construction* (see definition 11.4.1 below) allows us to define the relative latching object of $f: X \to Y$ at $r \in ob(\mathbf{R})$ as the "Leibniz colimit" of the boundary inclusion $\partial \mathbf{R}(-, r) \hookrightarrow \mathbf{R}(-, r)$ and f.

By equations 4.51 and 11.20 the relative latching map is of the form $Xr \sqcup_{L_rX} L_rY \to Yr$ and the relative matching map is of the form $Xr \to Yr \times_{M_rY} M_rX$.

Property 11.3.39 (Reedy model structure). Let \mathbf{R} be a Reedy category and let \mathbf{M} be a model category. The functor category $[\mathbf{R}, \mathbf{M}]$ admits the following model structure:

- The weak equivalences are the objectwise weak equivalences.
- The (Reedy) fibrations are those morphisms for which the relative matching map is a fibration (in \mathbf{M}) for all $r \in \text{ob}(\mathbf{R})$.
- The (Reedy) cofibrations are those morphisms for which the relative latching map is a cofibration (in \mathbf{M}) for all $r \in \text{ob}(\mathbf{R})$.

Property 11.3.40 (Quillen (co)limit functors). Consider a \mathcal{V} -enriched model category \mathbf{M} and a Reedy category \mathbf{R} . For every Reedy cofibrant functor W in $[\mathbf{R}, \mathcal{V}]$ the weighted limit and colimit functors are right and left Quillen respectively.

11.3.3 Simplicial spaces

Example 11.3.41 (Topological spaces). As a first example of model structures we look at the category **Top** of topological spaces⁶. This category can be endowed with the structure of a model category by taking the weak equivalences to be the weak homotopy equivalences and by taking the fibrations to be the Serre fibrations.

Example 11.3.42 (Simplicial sets). As a second example we consider the category **sSet** of simplicial sets 11.1.2. This category can be turned into a model category by taking the weak equivalences to be the morphisms that induce weak homotopy equivalences between geometric realizations and by taking the fibrations to be Kan fibrations (fibrant objects are exactly the Kan complexes). The cofibrations are easily seen to be the levelwise injections, i.e. the cofibrations are the monomorphisms.

Notation 11.3.43 (Quillen's model structure). The model structure defined in the above example is generally called Quillen's model structure on simplicial sets and it is denoted by $\mathbf{sSet}_{Quillen}$.

Property 11.3.44. The adjoint pair of geometric realization and singular set functors (11.1.11 and 11.1.12) gives a Quillen equivalence between the above model categories. This result enables us to look at simplicial sets as if they were spaces and vice versa. Consequently, most of homotopy theory can be done in either categories.

⁶See chapter 7 and onwards.

Property 11.3.45. Equivalent categories have weakly equivalent nerves.

The converse is not true:

Remark 11.3.46. Because the information in nerves is not sufficient to distinguish between categories (and groupoids) since information about things such as invertibility is lost, i.e. weakly equivalent nerves do not necessarily come from equivalent categories, it is often useful to replace the model structure on **sSet** by an alternative one. Instead of taking the Kan complexes to be the fibrant object, *Joyal* and *Lurie* have shown that one can also take the (strictly weaker) quasicategories as fibrant objects to obtain a more informative structure, i.e. weak equivalences can distinguish between (nerves of) categories and groupoids. The fibrations will now be the inner Kan fibrations.

Definition 11.3.47 (Homotopy category III). Consider a simplicially enriched category C. Its homotopy category Ho(C) is defined as follows:

- $ob(\mathbf{Ho}(\mathbf{C})) := ob(\mathbf{C})$, and
- $\operatorname{Hom}_{\mathbf{Ho}(\mathbf{C})}(x,y) := \pi_0 \operatorname{Map}(x,y).$

Two points $f, g \in \operatorname{Map}(x, y)$ are said to be **homotopic** if they are identified in $\operatorname{Ho}(\mathbf{C})$. A point $f \in \operatorname{Map}(x, y)$ is called a **homotopy equivalence** if it admits both a left and a right inverse in $\operatorname{Ho}(\mathbf{C})$, if it becomes an isomorphism.

Definition 11.3.48 (Dwyer-Kan equivalence I). Consider a simplicial functor $F: \mathbf{C} \to \mathbf{D}$ between two simplicially enriched categories. This functor is called a Dwyer-Kan equivalence if:

- The induced map on Hom-objects is a weak equivalence. F is also said to be ∞ -fully faithful.⁷
- The induced map on connected components $\pi_0 F : \pi_0 \mathbf{C} \to \pi_0 \mathbf{D}$ is an equivalence (of categories). In fact we can relax this condition to $\pi_0 F$ being essentially surjective, since together with the previous condition this implies that $\pi_0 F$ is an equivalence.

Construction 11.3.49 (Hammock localization). Let (\mathbf{C}, W) be a category with weak equivalences. We construct its so-called hammock localization (or simplicial localization) $L^H \mathbf{C}$ as follows:

- 1. **Objects**: The objects of L^H **C** are the same as those of **C**.
- 2. Morphisms: For every integer $n \geq 1$ we construct a category whose objects are zigzags of morphisms in \mathbb{C} relating x and y such that all left-pointing morphisms are in W and the morphisms are endpoint-preserving "natural transformations" (in the sense that all triangles/squares in the resulting diagram commute). The mapping space $L^H\mathbb{C}(x,y)$ is then defined as the simplicial set obtained by taking the coproduct of the (simplicial) nerves of these morphism categories over all $n \in \mathbb{N}$ and quotienting out the equivalence relation generated by:
 - Inserting and removing identity morphisms.
 - Composing composable morphisms.

Property 11.3.50. Let (C, W) be a category with weak equivalences. It can be shown that

$$\pi_0(L^H \mathbf{C}) \cong \mathbf{C}[W^{-1}]. \tag{11.21}$$

This construction gives a more explicit description of the homotopy category. Furthermore, if \mathbf{M} is a simplicial model category, the categories \mathbf{M}_{cf} and $L^H\mathbf{M}$ are Dwyer-Kan equivalent.

⁷This is related to the fact that simplicial categories are models for ∞ -categories.

Property 11.3.51. Quillen equivalent model categories have Dwyer-Kan equivalent simplicial localizations.

Definition 11.3.52 (Simplicial resolution). Consider an object x in a model category M. A (co)simplicial resolution of x is a Reedy (co)fibrant (co)simplicial object X together with a weak equivalence $x \simeq X_0$.

Every object in a model category admits a (co)simplicial resolution by taking a (co)fibrant replacement of the constant (co)simplicial object.

Definition 11.3.53 (Bergner model structure). The catgory of simplicially enriched categories admits the following model structure:

- The weak equivalences are Dwyer-Kan equivalences.
- The cofibrant objects are *simplicial computads*.
- The fibrant objects are the **Kan**-enriched categories.

Construction 11.3.54 (Free resolution). Consider a (small) category C. From this category we can construct a simplicial category CC consisting of the following data:

- $ob(\mathfrak{C}C) := ob(C)$, and
- $hom(\mathfrak{CC})_n := hom(F^{n+1}\mathbb{C})$ where F is identity-on-objects and $F\mathbb{C}$ has as morphisms strings of composable morphisms in \mathbb{C} .

It can be shown that \mathfrak{CC} is a *simplicial computad* for any simplicially enriched category \mathbb{C} .

11.3.4 Segal spaces

Example 11.3.55 (Bisimplicial sets). We can also look at the simplicial objects in **sSet** (these are in particular **sSet**-enriched). These are often called bisimplicial sets or **simplicial spaces**⁸. Since **sSet** is a model category we know from property 11.3.5 above that **ssSet** itself admits a model structure. It can furthermore be shown that the injective model structure on **ssSet** coincides with the Reedy model structure.⁹

This allows us to define the notion of *Segal spaces*:

Definition 11.3.56 (Segal space). Consider a fibrant object X in the injective (or Reedy) model structure on **ssSet**. This bisimplicial set is called a Segal space if it satisfies the following weak form of the $Segal\ condition$:

$$X_n \xrightarrow{\simeq} X_1 \times_{X_0} \cdots \times_{X_0} X_1 \quad (n \text{ factors})$$
 (11.22)

is a weak equivalence for all $n \ge 1$.¹⁰ These maps are called **Segal maps** in general. They are the morphisms induced by **spine** inclusions, i.e. inclusions of the union of edge 1-cells.

Definition 11.3.57 (Segal category). A bisimplicial set X is called a **Segal precategory** if X_0 is discrete. It is called a Segal category if in addition all its Segal maps are weak equivalences.

Definition 11.3.58 (Mapping space). Consider a Segal space X. For every two points $x, y \in X_0$ we define the mapping space $\operatorname{Map}(x, y)$ as the fibre of $(d_1, d_0) : X_1 \rightrightarrows X_0 \times X_0$ over the point (x, y). The identity element can then be defined as s_0x for all $x \in X_0$.

 $^{^8}$ The latter name follows from the fact that topological spaces and simplicial sets are (Quillen) equivalent.

⁹This is, however, a highly nontrivial statement.

¹⁰If we omit the Reedy condition, the limit on the right-hand side has to be replaced by a homotopy limit.

The following two definitions should be compared to definitions 11.3.47 and 11.3.48:

Definition 11.3.59 (Homotopy category IV). Consider a Segal category X. Its homotopy category $\mathbf{Ho}(X)$ is defined as follows:

- $\operatorname{ob}(\mathbf{Ho}(X)) := X_0$, and
- $\operatorname{Hom}_{\mathbf{Ho}(X)}(x,y) := \pi_0 \operatorname{Map}(x,y).$

Two points $f, g \in \operatorname{Map}(x, y)$ are said to be **homotopic** if they are identified in $\operatorname{Ho}(X)$. A point $f \in \operatorname{Map}(x, y)$ is called a **homotopy equivalence** if it admits both a left and a right inverse in $\operatorname{Ho}(X)$, i.e. if it becomes an isomorphism. The subspace $X_{hoequiv} \subset X_1$ consists of the components that contain homotopy equivalences.¹¹

Definition 11.3.60 (Dwyer-Kan equivalence II). A map F of Segal spaces such that

- the induced map on mapping spaces is a weak equivalence, and
- the induced map between homotopy categories is an equivalence (of categories).

Definition 11.3.61 (Complete Segal space). A Segal space X for which the map $s_0: X_0 \to X_{hoeauiv}$ is a weak equivalence.

Property 11.3.62. A map of Segal spaces is a Dwyer-Kan equivalence if and only if it is a weak equivalence in the *complete Segal space model structure*. A map of complete Segal spaces is a Dwyer-Kan equivalence if and only if it is a levelwise weak equivalence.

Instead of changing the model structure on **sSet** to overcome the issues with taking nerves of categories or groupoids (as mentioned before) we can also change the construction of the nerve functor. Here we introduce an alternative notion introduced by Rezk:

Definition 11.3.63 (Classifying diagram). Consider a (small) category \mathbb{C} together with the functor category $\mathbb{C}^{[n]}$ where [n] is the totally ordered set on n+1 elements interpreted as a category. The classifying diagram of \mathbb{C} is the bisimplicial set $\widetilde{N}\mathbb{C}$ defined levelwise as follows:

$$\widetilde{N}\mathbf{C}_k := N(\operatorname{Core}(\mathbf{C}))$$
 (11.23)

where N is the ordinary nerve functor and the core Core was defined in 4.10.4.

The reason why this construction is better for distinguishing categories and groupoids comes from the fact that information about isomorphisms is already captured at level 0, while information about noninvertible morphisms is only captured from level 1 onwards.

Property 11.3.64. If C is small then \widetilde{N} C is a complete Segal space.

?? COMPLETE ??

11.4 Monoidal structures

Definition 11.4.1 (Pushout-product). Let (\mathbf{M}, \otimes) be a closed symmetric monoidal category and consider two morphisms $f: a \to b$ and $g: x \to y$ in \mathbf{M} . After taking tensor products we can form the span $a \otimes y \leftarrow a \otimes x \to b \otimes x$. If the pushout $a \otimes y \sqcup_{a \otimes x} b \otimes x$ of this diagram exists,

¹¹It should be noted that if any one point in a component is a homotopy equivalence, then all points in that component are homotopy equivalences.

the pushout-product $f \square g$ is defined as the unique morphism from this pushout to $b \otimes y$ defined by the obvious diagram

The dual concept (where one of the arguments is contravariant) is sometimes called a **pullback-hom**, **pullback-exponential** or **pullback-power** (depending on which bifunctor is used in the definition). In fact we can drop the requirement that M carries a monoidal structure and start from any bifunctor $\circledast: \mathbf{C} \times \mathbf{D} \to \mathbf{E}$. This more general construction is sometimes called the **Leibniz construction** and the case where the bifunctor is a tensor bifunctor is then called the **Leibniz tensor**.

Definition 11.4.2 (Quillen bifunctor). Any bifunctor satisfying the pushout-product axiom such that it preserves colimits in both variables is called a **(left) Quillen bifunctor**. It should be noted that the tensor product automatically satisfies this last property in the case of closed monoidal categories.

In fact the natural setting for defining Quillen bifunctors is that of two-variable adjunctions 4.7.13. Consider such a triple of bifunctors $(\otimes, \text{hom}_L, \text{hom}_R)$.

- The bifunctor $-\otimes -: \mathbf{C} \times \mathbf{D} \to \mathbf{E}$ is said to be **left Quillen** if its pushout-product of cofibrations is again a cofibration where the acyclicity of any of the domain morphisms implies the acyclicity of the result.
- The bifunctors $\hom_L: \mathbf{C}^{op} \times \mathbf{E} \to \mathbf{D}$ and $\hom_R: \mathbf{D}^{op} \times \mathbf{E} \to \mathbf{C}$ are said to be **right Quillen** if the Leibniz product of a cofibration and a fibration is a fibration where the acyclicity of any of the domain morphisms implies the acyclicity of the result.

In fact it can be shown that one of these bifunctors being Quillen implies that the other two are also Quillen.

Remark 11.4.3. The fact that in the two-variable adjunction approach we do not mention preservation of (co)limits follows from the property that left (resp. right) adjoints preserve colimits (resp. limits).

Definition 11.4.4 (Monoidal model category). A model category \mathbf{M} that carries the structure of closed symmetric monoidal category $(\mathbf{M}, \otimes, \mathbf{1})$ such that the following compatibility conditions are satisfied:

- 1. **Pushout-product**: The tensor bifunctor and internal homs define a Quillen two-variable adjunction.
- 2. Unit: For every cofibrant object x and every cofibrant replacement $\widetilde{\mathbf{1}}$ of $\mathbf{1}$, the induced morphism $\widetilde{\mathbf{1}} \otimes x \to x$ is a weak equivalence.

Definition 11.4.5 (Enriched model category). Let V be a monoidal model category. A category M is called a V-enriched model category if is satisfies the following conditions:

- 1. M is a V-enriched category that is both powered and copowered over V.
- 2. The underlying category M_0 is a model category.
- 3. The copower is a left Quillen bifunctor or, equivalently, the power is a right Quillen bifunctor.

Example 11.4.6 (Simplicial model category). A model category enriched over the standard model category of simplicial sets $\mathbf{sSet}_{Quillen}$. Furthermore, the full subcategory of a simplicial model category on fibrant-cofibrant objects is enriched over Kan-complexes.

Property 11.4.7 (Homotopy categories). The homotopy category of a monoidal model category has a closed monoidal structure defined by the induced derived adjunction. The homotopy category of an enriched model category is the underlying category of a category enriched, powered and copowered over the homotopy category of its enriching category, where the enriched structure is again given by the induced derived adjunction.

11.5 Cofibrant generation

11.5.1 Transfinite constructions

We first generalize some notions from ordinary category to the context of regular cardinals κ :

Definition 11.5.1 (κ -filtered category). A category in which every diagram with less than κ arrows admits a cocone.

Definition 11.5.2 (κ -directed limit). Consider a poset I such that every subposet of cardinality less than κ has a lower bound (upper bound for directed colimits). Such a set is said to be κ -(co)directed. A limit of a diagram over this poset is called a κ -(co)directed (co)limit.

The following definition is a categorification of the previous one:

Definition 11.5.3 (κ -filtered limit). Consider a diagram $D: \mathbf{I} \to \mathbf{C}$. The limit (resp. colimit) of D is said to be κ -cofiltered (resp. κ -filtered) if \mathbf{I} is a κ -cofiltered (resp. κ -filtered) category.

It should be noted that an analogue of property 4.4.45 also holds in the κ -context, i.e. a category has all κ -directed colimits if and only if it has all κ -filtered colimits (and analogously for limits).

Definition 11.5.4 (Small object). An object for which there exists a regular cardinal κ such that its covariant hom-functor preserves all κ -filtered colimits. These objects are also said to be κ -compact or κ -presentable.

Definition 11.5.5 (Accessible category). A locally small category \mathbf{C} for which there exists a regular cardinal κ such that \mathbf{C} has all κ -filtered colimits and such that \mathbf{C} contains a set of κ -small objects that generate all objects by κ -filtered colimits.

Definition 11.5.6 (Locally presentable category). A cocomplete accessible category.

For ordinary categories the axioms guarantee a (unique) composite of any finite number of (composable) morphisms. However, in some cases it is useful or even necessary to talk about the "composite" of an infinite amount of morphisms:

Definition 11.5.7 (Transfinite composition). Consider a category \mathbb{C} with a collection of morphisms $I \subseteq \text{hom}(\mathbb{C})$ and let α be an infinite ordinal¹². A (α -indexed) **transfinite sequence** of morphisms in I is a diagram of the form $D: \alpha \to \mathbb{C}$ such that:

- 1. Successor morphisms in α are mapped to elements of I.
- 2. D is continuous in the sense that for every limit ordinal $\beta < \alpha$: $D\beta \cong \underset{\alpha < \beta}{\text{colim}} D\gamma$.

¹²See definition 2.5.17 and beyond.

 $D\lambda$ denotes the restriction of D to the (full) subdiagram $\{\gamma : \gamma < \lambda\}$ of α . The transfinite composition of this sequence is the induced morphism $D_0 \to D\alpha \equiv \text{colim}D$.

Definition 11.5.8 (Cell complex). Consider a cocomplete category \mathbb{C} with a designated set of morphisms $I \subseteq \text{hom}(\mathbb{C})$. A **relative** I-cell complex is a transfinite composition of pushouts (of coproducts¹³) of morphisms in I. An I-cell complex is an object such that the unique morphism from the initial object is a relative I-cell complex.

Notation 11.5.9 (Relative cell complexes). The set of all relative I-cell complexes is often denoted by cell(I).

11.5.2 Cofibrant generation

We are now ready to state a famous result by Quillen:

Theorem 11.5.10 (Small object argument). Let \mathbb{C} be a locally presentable category with a designated set of morphisms $I \subseteq hom(\mathbb{C})$. Every morphism in \mathbb{C} can be factorized as the composition of a morphism in rlp(I) followed by a morphism in cell(I).

Remark 11.5.11. This theorem can be generalized to cocomplete categories where the morphisms in I are small relative 14 to cell(I). Sets of morphisms with this property are said to admit a small object argument.

Definition 11.5.12 (Cofibrantly generated model category). Consider a model category C. This category is said to be cofibrantly generated by two sets of morphisms $I, J \subseteq \text{hom}(C)$ if it satisfies the following conditions:

- 1. I and J both admit the small object argument.
- 2. The fibrations are given by rlp(J).
- 3. The acyclic fibrations are given by rlp(I).

It can be shown that the last two conditions are equivalent to the following ones:

- 2^* . The cofibrations are the retracts (in the arrow category) of cell(I).
- 3^* . The acyclic fibrations are retracts (in the arrow category) of cell(J).

The morphisms in I and J are called the **generating cofibrations** and **generating acyclic cofibrations** respectively.

Sometimes we want our model category \mathbf{M} to have more weak equivalences than it already has. To this end we could try to construct a new model structure \mathbf{M}_0 . If the cofibrations remain the same then this has some nice properties:

- The fibrations are a subclass of the original ones.
- The acyclic fibrations remain the same.
- The identity functors $\mathrm{Id}:\mathbf{M}_0 \leftrightarrows \mathbf{M}:\mathrm{Id}$ form a Quillen adjunction.
- Every object in \mathbf{M} is weakly equivalent (in \mathbf{M}_0) to one in \mathbf{M}_0 .

We will now make this procedure explicit for a specific class of model categories. Let \mathbf{M} be a left proper, cofibrantly generated simplicial model category and consider a class $S \subset \text{hom}(\mathbf{M})$ of cofibrations with cofibrant domain. First we introduce the notion of "S-local objects":

¹³It can be shown that closure under coproducts follows automatically.

 $^{^{14}}$ Small relative to a set of morphisms I is defined just as ordinary smallness, but with general κ -filtered colimits replaced by those that start from morphisms in I.

Definition 11.5.13 (Local object). A fibrant object x is said to be S-local if for all morphisms in S their image under its Yoneda embedding is an acyclic Kan fibration. Analogously, a morphism is said to be an S-local weak equivalence if for all S-local fibrant objects its image under their Yoneda embeddings is an acyclic Kan fibration.

Property 11.5.14. Every weak equivalence is also an S-local weak equivalence: $W \subset W_S$.

Construction 11.5.15 (Left Bousfield localization). Given a model category \mathbf{M} with the same assumptions as before, we define the (left) Bousfield localization $L_S\mathbf{M}$ as the same category but with the following model structure:

- 1. cofibrations: $cof(L_S\mathbf{M}) := cof(\mathbf{M})$, and
- 2. acyclic cofibrations: cofibrations that are also S-local weak equivalences.

?? FINISH ??

11.6 Homotopy (co)limits

Consider a category \mathbb{C} with weak equivalences together with diagrams $D, D' : \mathbb{I} \to \mathbb{C}$. Let us assume that there exists a weak equivalence between D and D', i.e. a natural transformation that consists of componentwise weak equivalences. Clearly this induces a morphism between (co)limits, but it would be nice if the construction of (co)limits would also preserve the homotopy structure, i.e. we want this morphism to be a weak equivalence itself.

The main purpose of this section is to introduce a correction of the ordinary (co)limit functors to take into account the underlying homotopical structure.

We first give a homotopical incarnation of (co)products:

Definition 11.6.1 (Homotopy (co)products). In ordinary categories the universal property of a product (and dually for coproducts) characterizes it as an object with an isomorphism

$$\mathbf{M}(-,m) \cong \prod_{i \in I} \mathbf{M}(-,m_i)$$
(11.24)

such that every I-indexed collection of morphisms $f_i: x \to m_i$ can be factorized as follows

To obtain a homotopical version, we relax the commutativity of this diagram up to a homotopy/path in the mapping space $Map(x, m_i)$. This leads us to defining a homotopy product as an object m with a natural weak (homotopy) equivalence

$$\operatorname{Map}(x,m) \xrightarrow{\simeq} \prod_{i \in I} \operatorname{Map}(x,m_i).$$
 (11.25)

The homotopy (co)products are unusual in the sense that they can be obtained as (co)limits in the homotopy category $\mathbf{Ho}(\mathbf{M})$.

For general homotopical categories we can define homotopy (co)limits by passing to derived functors:

Definition 11.6.2 (Homotopy (co)limits). Let C be a homotopical category and let D be small. The homotopy limit and colimit functors are defined as the derived functors of the limit and colimit functors (co)lim: $[D, C] \to C$.

Remark 11.6.3. The reason why (co)products can be obtained as ordinary (co)limits is related to the fact that their indexing categories are discrete. In this case the adjoint of the derived functor is equivalent to the diagonal functor on the homotopy category.

Property 11.6.4. Consider the specific case where C is a model category. If [D, C] admits a injective (resp. projective) model structure, the homotopy limit (resp. colimit) always exists and can be obtained through fibrant (resp. cofibrant) replacement as in definition 11.3.25.

Example 11.6.5 (Reedy source categories). Consider the general case where we look at diagrams $D: \mathbf{R} \to \mathbf{M}$ with \mathbf{R} Reedy. First note that the constant functor $\Delta: \mathbf{M} \to [\mathbf{R}, \mathbf{M}]$ maps weak equivalences to (pointwise) weak equivalences.¹⁵ If the Reedy structure is such that the constant functor preserves cofibrations, then this functor is left Quillen and Ken Brown's lemma 11.3.23 implies that its right Quillen adjoint, the limit functor, preserves weak equivalences. In this case we can define the **homotopy limit** holim D as the functor $\lim_{t \to \infty} (D \circ Q_f)$ where Q_f is the fibrant replacement-functor (which in this case acts pointwise). A dual construction gives rise to **homotopy colimits**.

11.6.1 Simplicially enriched diagrams

In the setting where we consider diagrams in categories enriched over **sSet** one can define homotopy (co)limits in a more sophisticated way. References are [115]. For a refresher on enriched category theory see section 4.7.

Definition 11.6.6 (Homotopy colimit). Consider a diagram $D : \mathbf{I} \to \mathbf{M}$ with \mathbf{M} sSetenriched. The homotopy colimit of D is defined as the following tensor product:

$$\operatorname{hocolim} D := N(-/\mathbf{I}) \otimes_{\mathbf{I}} D \stackrel{4.46}{=} \int^{i \in \mathbf{I}} N(i/\mathbf{I}) \cdot Di.$$
 (11.26)

A similar definition for homotopy limits makes use of a powering:

Definition 11.6.7 (Homotopy limit). Consider a diagram $D : \mathbf{I} \to \mathbf{M}$ with \mathbf{M} sSet-enriched. The homotopy limit of D is defined as the following hom-like object:

$$\operatorname{holim} D := \int_{i \in \mathbf{I}} [N(\mathbf{I}/i), Di]. \tag{11.27}$$

This is exactly the characterization of the holimit as the **sSet**-natural transformations between $N(\mathbf{I}/-)$ and D.

Remark 11.6.8 (Bousfield-Kan map). The expressions from the above formulas are also known as the *Bousfield-Kan formulas*. In fact the above definitions are not quite equivalent to the ones from the previous section. To be precise, the Bousfield-Kan formulas are strictly speaking only weakly equivalent (and hence give satisfying definitions) if we replace the objects in \mathbf{M} by their (co)fibrant replacements, i.e. postcompose D in the above expressions by a (co)fibrant replacement-functor.

¹⁵This is clearly also true even when \mathbf{R} is not Reedy.

11.6.2 Simplicial nerve

The nerve and realization functors 11.1.9 can also be modified to incorporate the higher homotopical data included in a simplicially enriched category.

First we define a cosimplicial simplicially enriched category $S: \Delta \to \mathbf{sSetCat}$ that assigns to every finite ordinal [n] the category consisting of the following data:

- $ob(S[n]) := [n] \equiv \{0, 1, \dots, n\}.$
- $S[n](i,j) := N(P_{ij})$ where N is the ordinary nerve functor on **Cat** and P_{ij} is the poset consisting of all subsets of $\{i,\ldots,j\}$ that contain both i and j.

The homotopy coherent nerve functor (or **simplicial nerve functor**¹⁶) is the nerve functor induced by this cosimplicial object.

Remark 11.6.9. The cosimplicial object $S: \Delta \to \mathbf{sSetCat}$ is in fact just the free resolution functor \mathfrak{C} in the Bergner model structure (see construction 11.3.54) restricted to the subcategory Λ

Property 11.6.10. The homotopy coherent nerve functor N is uniquely determined by the following relation:

$$\mathbf{sSet}(\Delta[n], N\mathbf{C}) = \mathbf{sSetCat}(S[n], \mathbf{C}). \tag{11.28}$$

Property 11.6.11 (Simplicial realization). The left adjoint to the homotopy coherent nerve functor, here called the simplicial realization functor, satisfies the following relation for all finite ordinals [n]:

$$|\Delta[n]| \cong S[n]. \tag{11.29}$$

Property 11.6.12 (Quasicategories). If C is Kan-enriched, its simplicial nerve is a quasicategory. By example 11.4.6 this allows us to associate a quasicategory to any simplicial model category by passing to the simplicial nerve of its fibrant-cofibrant subcategory.

By definition 11.3.17 we can construct morphisms in a homotopy category as morphisms from a cofibrant replacement to a fibrant replacement. This allows us to define diagrams-up-to-homotopy (in two settings):

Definition 11.6.13 (Homotopy coherent diagram). A morphism in the homotopy category of the Bergner model category. When we consider diagrams taking values in a **Kan**-enriched category, we can use the free resolution functor to characterize them as functors $D: \mathfrak{C}\mathbf{I} \to \mathbf{C}$. Since the simplicial realization functor extends the free resolution functor \mathfrak{C} to simplicial sets, we can also define homotopy coherent diagrams on simplicial sets.

Natural transformations between such diagrams are given by homotopy coherent diagrams $\mathfrak{C}(\mathbf{I} \times \Delta[1]) \to \mathbf{C}$ in analogy with ordinary homotopies. However, these do no compose uniquely in the sense that we do not obtain a well-defined diagram on $\mathbf{I} \times \Delta[2]$. Therefore, we do not obtain a category of homotopy coherent diagrams. For simplicial sets I we can show that the natural structure is that of a quasicategory:

$$CohDgrm(I, \mathbf{C}) \cong (N\mathbf{C})^{I} \tag{11.30}$$

where N is the simplicial nerve functor.

?? COMPLETE ??

¹⁶We also use this terminology for the ordinary nerve functor taking values in **sSet**. In general it should be clear from the context which one we mean.

Chapter 12

Algebraic Geometry

References for this subject are [34,116]. For the basics on ring theory and ideals, see section 3.5. In order to not confuse the letter k, often used for fields, with various indices and dimensions we will denote fields by the letter K.

12.1 Polynomials

12.1.1 Polynomials

Definition 12.1.1 (Polynomial ring). Let R be a (unital commutative) ring. The polynomial ring on the indeterminates $X = \{x_i\}_{i \le n}$ is defined as the free commutative R-algebra on X. It will be denoted by $R[X] \equiv R[x_1, \ldots, x_n]$.

Definition 12.1.2 (Degree). The degree of a polynomial f is equal to the largest integer d such that f contains a monomial $x_1^{i_1} \cdots x_n^{i_n}$ for which $i_1 + \cdots + i_n = d$. It is often denoted by $\deg(f)$.

Definition 12.1.3 (Monic polynomial). A polynomial for which the highest degree term has coefficient 1.

Theorem 12.1.4 (Fundamental theorem of algebra). Consider a polynomial $f \in \mathbb{C}[x]$ with $\deg(f) \geq 1$. Then f has at least 1 root in \mathbb{C} .

Corollary 12.1.5. If $f \in \mathbb{C}[x]$ is a monic polynomial with $\deg(f) \geq 1$, we can write:

$$f(x) = \prod_{i=1}^{k} (x - a_i)^{n_i}$$

where $a_1, \ldots, a_k \in \mathbb{C}$ and $n_1, \ldots, n_k \in \mathbb{N}$.

Definition 12.1.6 (Transcendental element). Consider a field K and a field extension L/K. An element $x \in L$ for which there exist no nontrivial polynomials p over K such that p(x) = 0, is said to be transcendental, otherwise it is said to be **algebraic**.

Definition 12.1.7 (Algebraic dependence). Consider a commutative ring R and a subring $S \subset R$. An element $r \in R$ is said to be algebraically dependent on S if it is the root of a polynomial in S[x].

As a subcase of the above we have:

Definition 12.1.8 (Integral dependence). Consider a commutative ring R and a subring S. An element $r \in R$ is said to be integrally dependent on S if it is the root of a monic polynomial in S[x].

Remark 12.1.9. Since every nonzero element in a field is invertible, one can always turn a general polynomial into a monic polynomial. Hence over a field the concepts of algebraic and integral dependence coincide.

12.1.2 Roots

Formula 12.1.10 (Vieta). Consider a polynomial of order n. By the fundamental theorem of algebra this polynomial has n complex roots. Vieta's formulas relate the coefficients of the polynomial to its roots:

$$\sum_{1 \le I_1 \le \dots \le i_k \le n} \left(\prod_{j=1}^k r_{i_j} \right) = (-1)^k \frac{a_{n-k}}{a_n}$$
 (12.1)

where $k \leq n$. For k = 1 and k = n this gives the well-known sum and product formulas:

$$r_1 + r_2 + \dots + r_n = -\frac{a_{n-1}}{a_n}$$

$$r_1 r_2 \dots r_n = (-1)^n \frac{a_0}{a_n}.$$
(12.2)

$$r_1 r_2 \cdots r_n = (-1)^n \frac{a_0}{a_n}. (12.3)$$

Example 12.1.11. For quadratic polynomials ax^2+bx+c one recovers the following well-known formulas:

$$r_1 + r_2 = -\frac{b}{a}$$

$$r_1 r_2 = \frac{c}{a}.$$
(12.4)

$$r_1 r_2 = \frac{c}{a}. (12.5)$$

12.1.3Ideals

Theorem 12.1.12 (Weak Nullstellensatz). Consider an algebraically closed field K and form the polynomial ring $R = K[x_1, \ldots, x_n]$. An ideal $I \subset R$ is maximal if and only if it is of the form

$$(x_1-a_1,\ldots,x_n-a_n)$$

with $a_i \in K$ for all i < n.

Corollary 12.1.13. There exists a bijection between K^n and the set of maximal ideals of $K[x_1,\ldots,x_n].$

Corollary 12.1.14. Consider a collection of polynomials $\{f_i\}_{i\in I}\subset K[x_1,\ldots,x_n]$. If these polynomials do not have a common zero, then the ideal they generate is the unit ideal.

12.2 ${f Varieties}$

From here on we assume K to be an algebraically closed field. For notational simplicity and to differentiate between K^n as a vector space and as a set (or variety further down) we first introduce the notion of affine space:

Definition 12.2.1 (Affine space). By \mathbb{A}^n we denote the underlying set of the vector space K^n :

$$\mathbb{A}^n := \{ (a_1, \dots, a_n) \in K^n \}. \tag{12.6}$$

Definition 12.2.2 (Algebraic set). Consider a finite set of polynomials in $K[x_1, ..., x_n]$. It is not hard to show that the zero locus of these polynomials depends only on the ideal spanned by them and hence we define the algebraic set associated to an ideal $I \subset K[x_1, ..., x_N]$ to be

$$V(I) := \{ (a_1, \dots, a_n) \in \mathbb{A}^n : f(a_1, \dots, a_k) = 0 \ \forall f \in I \}.$$
 (12.7)

A set $S \in \mathbb{A}^n$ is said to be an **(affine) algebraic set** if there exists an ideal I such that S = V(I). An algebraic set $S \in \mathbb{A}^n$ is said to be **irreducible** if it is not the union of two strictly smaller algebraic sets. Irreducible algebraic sets are also called **affine varieties**.

Remark. Some authors (such as in [116]) make no distrinction between general algebraic sets and affine varieties.

Property 12.2.3. By *Hilbert's basis theorem* one can obtain any algebraic set as the zero locus of a finite number of polynomials.

Given an algebraic set S, one defines the set I(S) as the ideal of polynomials which vanish on S. The following theorem gives an important relation between algebraic sets and ideals.

Theorem 12.2.4 (Hilbert's Nullstellensatz). Let J be an ideal in $K[x_1, ..., x_n]$ and let \sqrt{J} denote its radical. The following relation holds for all J:

$$I(V(J)) = \sqrt{J}. (12.8)$$

Similar to the case of the weak Nullstellensatz we obtain the following result

Corollary 12.2.5. There exists a bijection between the algebraic subsets of \mathbb{A}^n and the radical ideals in $K[x_1, \ldots, x_n]$. The irreducible algebraic sets correspond to the prime ideals (by the *Noetherian decomposition theorem*).

Definition 12.2.6 (Morphism of varieties). Let $V_1 \subset \mathbb{A}^{n_1}$, $V_2 \subset \mathbb{A}^{n_2}$ be two algebraic sets. A morphism $\varphi: V_1 \to V_2$ is a function that can be expressed in the following way:

$$\varphi(x_1, \dots, x_{n_1}) = (f_1(x_1, \dots, x_{n_1}), \dots, f_{n_2}(x_1, \dots, x_{n_1}))$$
(12.9)

where $f_i \in K[x_1, \ldots, x_{n_1}]$ for all $i \leq n_2$.

A closely related notion is that of rational maps:

Definition 12.2.7 (Rational map). Consider two affine varieties X, Y. A rational map $f: X \to Y$ is an equivalence class of pairs (U, f_U) , where U is a nonempty open subset and where $f_U: U \to Y$, under the following relation: $(U, f_U) \sim (V, f_V)$ if and only if $f_U = f_V$ on a nonempty subset of $U \cap V$.

A rational map is said to be **dominant** if for one of its representatives (U, f) the image f(U) is dense. Dominance of rational maps assures that their composition exists and is well-defined.

A rational map $f: X \to Y$ is said to be **birational** if it is dominant and if there exists a rational map $g: Y \to X$ such that $f \circ g = \mathrm{id}_Y$ and $g \circ f = \mathrm{id}_X$.

Definition 12.2.8 (Coordinate ring). Consider the polynomial ring $K[x_1, ..., x_n]$ and let V be an algebraic set in \mathbb{A}^n . The coordinate ring of V is defined as the following quotient:

$$\Gamma(V) := K[x_1, \dots, x_n]/I(V).$$
 (12.10)

The elements of this ring are the K-valued polynomials in the coordinates on V.

If V is irreducible it follows from the Nullstellensatz that I(V) is a prime ideal and hence that $\Gamma(V)$ is an integral domain. This property allows us to construct the field of fractions K(V). This field is called the **function field** of V and the elements of K(V) are called **rational functions** on V. It can be shown that the rational functions are exactly the rational maps $V \to \mathbb{A}^1$.

It should be noted that every morphism of varieties induces an K-morphism on the associated affine ring by precomposition. This gives rise to the following property:

Property 12.2.9 (Affine varieties and finitely generated algebras). Γ gives an equivalence between the category of algebraic sets and the category of finitely-generated reduced K-algebras. This equivalences passes to an equivalence between the subcategories on affine varieties and integral domains.

Definition 12.2.10 (Dimension). The dimension of an affine variety V is given by the (Krull) dimension of its coordinate ring.

12.2.1 Topology

A topology on varieties can be constructed in the following way:

Definition 12.2.11 (Zariski topology). A set in \mathbb{A}^n is closed exactly if it is an algebraic set. A basis for this topology is given by the zero loci $B_f = \{x \in \mathbb{A}^n : f(x) \neq 0\}$ for $f \in K[x_1, \dots, x_n]$. This topology turns an affine variety into an irreducible space.

On an algebraic subset $V \subset \mathbb{A}^n$ one defines the Zariski topology as the induced topology of the one on \mathbb{A}^n . A basis for this induced Zariski topology is given by the sets B_f as above but where f is now an element in $\Gamma(V)$.

Property 12.2.12 (Density). Any open subset of an affine variety is dense.

By dualizing our point of view we can instead focus on the coordinate rings and construct varieties as a derived notion. To this intent we define the structure sheaf¹ of a variety:

Definition 12.2.13 (Structure sheaf). Consider an affine variety X and its associated coordinate ring R. Now for any point $x \in X$ one can consider the set of functions $m_x \subset R$ which vanish on x. This is a prime ideal so one can construct the localization of R at m_x :

$$\mathcal{O}_x := R_{m_x} = \{ f/g : f, g \in R \text{ and } g(x) \neq 0 \}.$$
 (12.11)

For every open subset $U \subset X$ we can then define the ring of functions on U as follows:

$$\mathcal{O}_X(U) := \bigcap_{x \in U} \mathcal{O}_x. \tag{12.12}$$

This way \mathcal{O}_X defines a sheaf with stalks given by \mathcal{O}_x . By property 3.5.27 all stalks \mathcal{O}_x are local rings and hence (X, \mathcal{O}_X) is a locally ringed space. The residue field of these local rings is equal to the base field K.

The elements of $\mathcal{O}_X(U)$ are called the **regular functions** on U. To make the above construction more explicit: A map $\varphi: X \to K$ is said to be regular at a point $x \in X$ if there exists an open neihgbourhood $U \ni x$ and polynomials $f, g \in R$ with $g \neq 0$ and $\varphi = f/g$ on U. As for continuous functions, we say the map φ is regular on X if it is regular at every point $x \in X$.

¹From here on the content of chapter 10 on sheaf theory will be a prerequisite.

Property 12.2.14. Let $f \in R = \Gamma(X)$ be a function on X and consider the set B_f , i.e. the complement of the zero locus of f. Then we have $\mathcal{O}_X(B_f) = R_f$ (where R_f denotes the localization of R at f conform 3.5.8). In particular we find for the global sections functor that

$$\Gamma(X, \mathcal{O}_X) = R. \tag{12.13}$$

This property explains the notation $\Gamma(X)$ introduced before.

Remark 12.2.15. Both the rings $\mathcal{O}_X(U)$ and \mathcal{O}_x are subrings of the function field K(X).

Alternative Definition 12.2.16 (Affine variety). Any topological space X equipped with a sheaf \mathcal{F} of K-valued functions such that X is isomorphic to an irreducible algebraic set Σ and such that \mathcal{F} is isomorphic to the structure sheaf \mathcal{O}_{Σ} is called an affine variety. An open subset of an affine variety is called a quasi-affine variety.

Using the notion of a regular function we can restate the definition of a morphism of affine varieties:

Alternative Definition 12.2.17 (Morphism). A continuous function between affine varieties $f: X \to Y$ such that precomposition by f preserves regular functions.

Property 12.2.18 (Identity theorem). If two regular maps coincide on a nonempty open subset then they are equal.

Definition 12.2.19 (Generic stalk). For the construction of the stalk of the structure sheaf over a point x one takes a direct limit over all open sets containing x. This way we obtained the local ring $\Gamma(X)_{m_x}$ which was a subring of the field of fractions K(X) of $\Gamma(X)$. Now, using a similar definition one can recover all of K(X).

Instead of taking a direct limit over the open sets containing a certain point $x \in X$, we take a direct limit over all open sets in X:

$$\mathcal{O}_{\tilde{x}} := \varinjlim_{U \subset \Sigma} \mathcal{O}_{\Sigma}(U). \tag{12.14}$$

This stalk is called the generic stalk of X and it is isomorphic to K(X).

12.2.2 Varieties

In this section we move from the global to the local picture. A first step is the definition of a prevariety:

Definition 12.2.20 (Prevariety). Let X be a topological space equipped with a sheaf \mathcal{O}_X of K-valued functions. The space X is said to be a prevariety if X is connected and if there exists a finite covering $\{U_i\}_{i\in I}$ of X such that every couple $(U_i, \mathcal{O}_X|_{U_i})$ forms an affine variety.

Definition 12.2.21 (Morphism). Consider two prevarieties (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) . A morphism between them is a continuous function $f: X \to Y$ such that

$$g \in \Gamma(V, \mathcal{O}_Y) \implies gf \in \Gamma(f^{-1}V, \mathcal{O}_X)$$
 (12.15)

for all open sets $V \subset Y$, i.e. morphism of prevarieties are just morphisms of ringed spaces.

Remark 12.2.22. It can be shown that every prevariety X is irreducible and hence the open sets form a direct system. This way we can, as in the case of affine varieties, define the **generic stalk** of an arbitrary sheaf \mathcal{F} . For the structure sheaf \mathcal{O}_X this generic stalk is called the **function field** K(X). It coincides with the function field of every open affine subset of X.

Construction 12.2.23 (Gluing). Consider two prevarieties X, Y together with an isomorphism $f: U \cong W$ between open subsets $U \subset X, V \subset Y$. The prevarieties can be glued together along f as follows: One first builds the attaching space² $U \sqcup_f Y$ with its canonical topology and then define the regular functions on a subset to be those that come from regular functions on (subsets of) X and Y.

Definition 12.2.24 (Variety³). A prevariety X for which the diagonal Δ_X is closed in $X \times X$. It should be noted that every affine variety is a variety, but not the other way around.

Remark 12.2.25. The motivation for this definition is property 7.1.29. In general topology it is well-known that a lot of pathological spaces can be excluded by restricting to Hausdorff spaces, i.e. spaces where distinct points admit disjoint neighbourhoods. Because open subsets of irreducible spaces have nonempty intersections this property is sadly enough not very useful in the study of varieties. However, the equivalent definition using closedness of the diagonal remains useful if we do not consider the product topology on $X \times X$ but instead use the "gluing"-topology from construction 12.2.23 above.

The following two closure properties are very important:

Property 12.2.26. Consider a prevariety morphism $f: X \to Y$ where Y is a variety. The graph of f is closed in $X \times Y$.

Property 12.2.27. Consider two prevariety morphisms $f, g: X \to Y$ where Y is a variety. The set on which f and g coincide is closed in X.

12.2.3 Projective varieties

Definition 12.2.28 (Projective space). Consider the vector space K^n (over K istelf). The projective space $\mathbb{P}_{n-1}(K)$ or $K\mathbb{P}^{n-1}$ is defined as the quotient space of K^n under the following equivalence relation:

$$(x_1, \dots, x_n) \sim (y_1, \dots, y_n) \iff \exists \lambda \in K^{\times} : \forall i \le n : x_i = \lambda y_i.$$
 (12.16)

The equivalence class of a vector (x_1, \ldots, x_n) will be denoted by $[x_1 : \cdots : x_n]$.

Consider the subset

$$K_{\text{hom}}[x_0,\ldots,x_n] \subset K[x_0,\ldots,x_n]$$

consisting of all homogeneous polynomials, i.e. all $f \in K[x_0, \ldots, x_n]$ such that $f(\lambda x_0, \ldots, \lambda x_n) = \lambda^d f(x_0, \ldots, x_n)$ for some $d \in \mathbb{N}$. This implies that $f(\lambda x_0, \ldots, \lambda x_n) = 0 \iff f(x_0, \ldots, x_n) = 0$ and hence zero loci of homogeneous polynomials are well-defined subsets of the projective space $\mathbb{P}_n(K)$.

Definition 12.2.29 (Projective algebraic set). So as in the case of affine algebraic sets we can define two operations: Let I be a homogeneous ideal, i.e. an ideal in $K[x_0, \ldots, x_n]$ that is generated by homogeneous polynomials. We define the projective algebraic set $V_p(I)$ as the zero locus of I:

$$V_p(I) := \{ x \in \mathbb{P}_p(K) : f(x) = 0 \ \forall f \in I \}. \tag{12.17}$$

Given a projective algebraic set $X \in \mathbb{P}_n(K)$ one can define the ideal $I_n(X)$ as follows:

$$I_P(X) := (f \in K_{\text{hom}}[x_0, \dots, x_n] \mid f(x) = 0 \ \forall x \in X)$$
 (12.18)

i.e. the ideal $I_p(X)$ is generated by all homogeneous polynomials vanishing on X. The Zariski topology on $\mathbb{P}_n(K)$ is defined such that the closed sets are exactly the projective algebraic sets.

²See definition 7.3.9.

³Sometimes also called a **separated prevariety**.

Theorem 12.2.30 (Projective Nullstellensatz). For all homogeneous ideals I, except $I_0 = (x_1, \ldots, x_n)$, one finds that

$$I_p(V_p(I)) = \sqrt{I}. (12.19)$$

Corollary 12.2.31. As before this implies that there exists a bijection between the projective algebraic sets in $\mathbb{P}_n(K)$ and the homogeneous radical ideals (except for I_0) in $K[x_0, \ldots, x_n]$.

Definition 12.2.32 (Coordinate ring). As for affine algebraic sets we define the coordinate ring of a projective algebraic set X as the following quotient:

$$\Gamma(X) := K[x_0, \dots, x_n]/I_p(X).$$
 (12.20)

The construction for regular functions on affine varieties (see definition 12.2.13) cannot be extended to projective spaces in a straightforward way. Consider for example a polynomial $f \in K[x_0, \ldots, x_n]$. This polynomial does not form a well-defined function on a projective algebraic set $V_p(I) \subset \mathbb{P}_n(K)$ even if f is homogeneous, since changing the homogeneous coordinates on $V_p(I)$ changes the value of f (only the zero locus is invariant). However, the ratio of two homogeneous polynomials of the same degree does form a well-defined function on $V_p(I)$.

Since the ideal I is homogeneous, the quotient $R = K[x_0, \dots, x_n]/I$ is a graded algebra. Let us denote by K(X) the zeroth order part of the localization of R by the homogeneous elements:

$$K(X) := \{ f/g \mid f, g \in R_n \text{ for some } n \in \mathbb{N} \}. \tag{12.21}$$

Now, although an element $f \in R_n$ does not give a well-defined function on X, the property $f(x) \neq 0$ is clearly preserved under scale transformations. Hence we can define a ring \mathcal{O}_x as before:

$$\mathcal{O}_x := \{ f/g \in K(X) : g(x) \neq 0 \}. \tag{12.22}$$

This ring has a maximal ideal $I_x = \{f/g \in K(X) : f(x) = 0, g(x) \neq 0\}$ such that all elements in \mathcal{O}_x are invertible and so by property 3.5.26 \mathcal{O}_x is a local ring. We can then construct a sheaf \mathcal{O}_X using the same procedure as for affine varieties to turn our projective space into a locally ringed space:

$$\mathcal{O}_X(U) = \bigcap_{x \in U} \mathcal{O}_x. \tag{12.23}$$

Property 12.2.33 (Variety). For every projective variety $X \subset \mathbb{P}_n(K)$ the pair (X, \mathcal{O}_X) is locally isomorphic to an affine variety and as such every projective variety is in particular a variety in the sense of definition 12.2.24.

Property 12.2.34 (\mathbb{A}^n in $\mathbb{P}_n(K)$). Consider the affine variety \mathbb{A}^n . This set admits a bijective mapping onto an open subset of $\mathbb{P}_n(K)$ as follows:

$$\varphi: \mathbb{A}^n \to U_0: (x_1, \dots, x_n) \mapsto [1: x_1: \dots : x_n].$$
 (12.24)

It can be shown that this map is a homeomorphism if we equip both spaces with the Zariski topology.

Property 12.2.35 (Schubert decomposition). The projective space $\mathbb{P}_n(K)$ admits a decomposition of the form

$$\mathbb{P}_n(K) = \bigcup_{i=0}^n K^i \tag{12.25}$$

where the union should be interpreted on the level of the underlying sets. In fact one can refine this to a statement in topology. The projective space $\mathbb{P}_n(K)$ admits the structure of a CW-complex where with one k-cell in every dimension (namely \mathbb{A}^k). These cells are also called **Bruhat cells Schubert cells**. (The precise distinction won't be of any relevance to us.)

Example 12.2.36 (Finite fields). Consider a finite field \mathbb{F}_q . Using the above decomposition we can easily compute the cardinality of $\mathbb{P}_n(\mathbb{F}_q)$:

$$|\mathbb{P}_n(\mathbb{F}_q)| = \sum_{i=0}^n |\mathbb{F}_q^i| = \sum_{i=0}^n q^i = [n+1]_q.$$

For example, the **Fano plane** $\mathbb{F}_2\mathbb{P}^2$ has cardinality 7.

Construction 12.2.37 (Blow-up). Consider an algebraic set $X \subseteq \mathbb{A}^n$ together with a set of regular functions $\{f_1, \ldots, f_k\} \subset \Gamma(X)$. Now define the subvariety Y by $X \setminus V(f_1, \ldots, f_k)$. By definition these functions do not all vanish simultaneously on Y and hence we have a well-defined map

$$f: Y \to \mathbb{P}_n(K): x \mapsto \Big(f_1(x), \dots, f_k(x)\Big).$$

The graph of this morphism is closed in $Y \times \mathbb{P}_{n-1}(K)$ by property 12.2.26, but not in $X \times \mathbb{P}_{n-1}(K)$. Its closure in the latter space is called the blow-up \widetilde{X} of X at f_1, \ldots, f_k . The obvious projection map $\pi : \widetilde{X} \to X$ is sometimes also called the blow-up (map). The graph Γ_f is clearly isomorphic to Y and its complement $\pi^{-1}(V(f_1, \ldots, f_k))$ in \widetilde{X} is called the **exceptional set** (of the blow-up).

If X is irreducible, then there exists a birational morphism $X \to \widetilde{X}$.

Property 12.2.38 (Explicit description). Consider an algebraic set $X \subseteq \mathbb{A}^n$ together with its blow-up \widetilde{X} at $\{f_1, \ldots, f_k\}$. One can prove that the following inclusion holds:

$$\widetilde{X} \subseteq \{(x,y) \in X \times \mathbb{P}_{n-1}(K) : y_i f_j(x) = y_j f_i(x) \ \forall i,j \le n\}.$$

$$(12.26)$$

In the case of $X = \mathbb{A}^n$ and $f_i(x) := x_i$ one can even prove that this inclusion is an equality. Since the zero locus of the coordinate functions is $\{0\}$ we find that the exceptional set of this blow-up is exactly $\mathbb{P}_{n-1}(K)$.

12.3 Schemes 4

12.3.1 Spectrum of a ring

Definition 12.3.1 (Spectrum). Let R be a commutative ring. The spectrum $\operatorname{Spec}(R)$ is defined as the set of prime ideals of R. This set can be turned into a topological space by equipping it with the **Zariski topology**: Let V_I be the set of prime ideals containing the ideal I. The collection of closed sets, inducing the Zariski topology, is given by $\{V_I\}_{I \text{ ideal of } R}$.

Remark 12.3.2. A basis for the above topology is given by the sets $D_f = \{I_p \not\ni f : f \in R, I_p \text{ is a prime ideal}\}.$

Property 12.3.3. Spec(R) is a compact T_0 space.

Definition 12.3.4 (Structure sheaf). Given a spectrum $X = \operatorname{Spec}(R)$, equipped with its Zariski topology, we can define a sheaf⁴ \mathcal{O}_X by setting $\forall f \in R : \Gamma(D_f, \mathcal{O}_X) = R_f^*$, where R_f^* is the localization of R with respect to the monoid of powers of f.

Property 12.3.5. The spectrum Spec(R) together with its structure sheaf forms a ringed space.

12.3.2 Affine schemes

Definition 12.3.6 (Affine scheme). A locally ringed space, isomorphic to the spectrum Spec(R) for some commutative ring R, is called an affine scheme.

Property 12.3.7. There exists an equivalence of categories $\mathbf{AffSch} \cong \mathbf{CRing}^{op}$.

 $^{^4}$ In fact this is merely a B-sheaf as it is only defined on the basis of the topology. However, every B-sheaf can be extended to a sheaf by taking the appropriate limits.

12.3.3 Zariski tangent space

Definition 12.3.8 (Tangent cone). Consider an affine variety X = V(I). The tangent cone to X at the origin is defined as the zero locus of the "initial ideal" of I:

$$C_0X := V(\{f^{in} : f \in I\}) \tag{12.27}$$

where f^{in} denotes the **initial part** of f, i.e. the sum of the smallest degree monomials in f.

Definition 12.3.9 (Tangent space). Consider a variety X and choose any point $x \in X$. By choosing a suitable affine chart we can assume that x = 0. This implies that any polynomial $f \in I(X)$ has a vanishing constant term. The tangent space at x is defined as follows:

$$T_x X := V(\{f^{[1]} : f \in I(X)\})$$
(12.28)

where $f^{[1]}$ denotes the linear part of a polynomial f.

Property 12.3.10. For x = 0 we obtain that $I(x) = (x_1, \dots, x_n)/I(X)$. Then there exists a natural isomorphism

$$I(x)/I(x)^2 \cong \operatorname{Hom}_K(T_x X, K). \tag{12.29}$$

The tangent space at X is thus the dual of $I(a)/I(a)^2$.

It is not so hard to prove that this property can in fact easily be transported to arbitrary points $x' \in X$ if we replace the ideal I(x) by the maximal ideal $\mathcal{O}_{x'}$ of the structure sheaf \mathcal{O}_X at x'. Therefore we can give the following general definition:

Definition 12.3.11 (Zariski tangent space). Consider a variety X with structure sheaf \mathcal{O}_X . At every point $x \in X$ the ring $\mathcal{O}_{X,x}$ is a local ring and hence we obtain a maximal ideal \mathfrak{m}_x . The quotient $\mathfrak{m}_x/\mathfrak{m}_x^2$ is a vector space over the residue field $\mathcal{O}_{X,x}/\mathfrak{m}_x$. It is called the Zariski cotangent space at $x \in X$. Its algebraic dual is called the Zariski tangent space at $x \in X$.

12.4 Algebraic groups

Definition 12.4.1 (Linear algebraic group). A subgroup of GL(n, F) defined by a (finite) set of polynomials in the matrix coefficients.

Property 12.4.2. From the definition it is immediately clear that intersections of algebraic groups are again algebraic.

?? COMPLETE ??

Chapter 13

Topos theory ♣

The main reference for this chapter is [17]. Other useful references include [111]. For an introduction to stacks and descent see [57].

13.1 Elementary topoi

Definition 13.1.1 (Subobject classifier). Consider a finitely complete category (in fact the existence of a terminal object suffices). A subobject classifier is a mono¹ true : $1 \hookrightarrow \Omega$ from the terminal object such that for every mono $\phi : a \hookrightarrow b$ there exists a unique morphism $\chi : b \to \Omega$ such that the following pullback square exists:

Figure 13.1: Subobject classifier.

Alternative Definition 13.1.2. Consider a well-powered category \mathbf{C} . The assignment of subobjects $\mathrm{Sub}(a)$ to an object $a \in \mathrm{ob}(\mathbf{C})$ is a contravariant functor $\mathrm{Sub}: \mathbf{C} \to \mathbf{Set}$. A subobject classifier Ω is a representation of this functor, i.e. the following isomorphism is natural in a:

$$Sub(a) \cong \mathbf{C}(a, \Omega). \tag{13.1}$$

Example 13.1.3. The category **Set** has a subobject classifier, namely the 2-element set.

Definition 13.1.4 (Elementary topos). An elementary topos is a finitely complete Cartesian closed category containing a subobject classifier. Equivalently, one can define an elementary topos as a finitely complete category in which all power objects exist.

The power object Pa of a is related to the subobject classifier Ω by the following relation:

$$Pa = \Omega^a. (13.2)$$

Remark 13.1.5 (Finite colimits). The original definition by *Lawvere* also required the existence of finite colimits. However, it can be proven that finite cocompleteness follows from the other axioms.

¹The symbol for this morphism will become clear in subsection 13.2.

Theorem 13.1.6 (Fundamental theorem of topos theory). Let C be a topos. For every object $c \in ob(\mathbb{C})$ the slice category \mathbb{C}/c is also a topos. The subobject classifier is given by $\pi_2 : \Omega \times c \to c$.

Property 13.1.7 (Balanced). All monos in a topos are regular. Hence, every mono arises as an equalizer and every epic equalizer is necessarily an isomorphism. It follows that every topos is balanced (see definition ??).

Property 13.1.8 (Epi-mono factorization). Every morphism $f: a \to b$ in a topos factorizes uniquely as an epi followed by a mono:

$$a \xrightarrow{e} c \xrightarrow{m} b.$$
 (13.3)

The mono is called the **image** of f.

13.2 Internal logic

In this subsection we consider finitely complete categories which admit a subobject classifier (they don't have to be a topos).

Definition 13.2.1 (Truth value). A global element of the subobject classifier, i.e. a morphism $1 \to \Omega$. The subobject classifier Ω is therefore sometimes called the **object of truth values**.

Property 13.2.2 (Internal Heyting algebra). For all objects x in an elementary topos, the poset of subobjects $\operatorname{Sub}(x)$ has the structure of a Heyting algebra 2.5.31. Hence every topos canonically gives an external Heyting algebra, namely $\operatorname{Sub}(1)$. Furthermore, every power object is an internal Heyting algebra. This in particular includes the subobject classifier $\Omega = P1$.

13.3 Geometric morphisms

Definition 13.3.1 (Base change). Consider a category \mathbb{C} with pullbacks. For every morphism $f: a \to b$ one can define a functor $f^*: \mathbb{C}/b \to \mathbb{C}/a$. This functor acts by pullback along f.

Definition 13.3.2 (Logical morphism). Let \mathcal{E}, \mathcal{F} be (elementary) topoi. A morphism $f: \mathcal{E} \to \mathcal{F}$ is called a logical morphism if it preserves finite limits, exponential objects and subobject classifiers.

Property 13.3.3. If a logical morphism has a left adjoint then it also has a right adjoint.

Definition 13.3.4 (Geometric morphism). Let \mathcal{E}, \mathcal{F} be (elementary) topoi. A geometric morphism $f: \mathcal{E} \to \mathcal{F}$ consists of an adjunction

$$\mathcal{E} \xrightarrow{f^*}_{f_*} \mathcal{F}$$

where the left adjoint preserves finite limits, i.e. is left exact. The right adjoint f_* is called the **direct image** part of f and the left adjoint is called the **inverse image** part. If f^* itself has a left adjoint, then f is said to be **essential**.

Definition 13.3.5 (Geometric embedding). A geometric morphism for which the direct image part is fully faithful.

Property 13.3.6 (Characterization of geometric embeddings). Let $f: \mathcal{E} \to \mathcal{F}$ be a geometric embedding and let $W \subset \text{hom}(\mathcal{E})$ be the collection of morphisms that are mapped to isomorphisms under f^* . \mathcal{F} is equivalent to the full subcategory of \mathcal{E} on W-local objects. It is also equivalent to the localization² $\mathcal{E}[W^{-1}]$ at W.

Property 13.3.7 (Base change). The base change functors on a topos are logical and admit a left adjoint (this is just the postcomposition functor). This implies that these functors can be refined to essential geometric morphisms.

Example 13.3.8 (Topological spaces). Every continuous map $f: X \to Y$ induces a geometric morphism

$$\mathbf{Sh}(X) \xrightarrow{f^*} \underbrace{\Box}_{f_*} \mathbf{Sh}(Y) \tag{13.4}$$

where the direct image functor f_* is defined as follows:

$$f_*F(U) := F(f^{-1}U)$$
 (13.5)

for any sheaf $F \in \mathbf{Sh}(X)$ and any open subset $U \in \mathbf{Open}(Y)$. The inverse image functor f^* is defined using the equivalence between sheaves on topological spaces and étalé bundles as noted above. Consider a sheaf $E \in \mathbf{Sh}(Y)$ as a bundle $\pi : E \to Y$. The inverse image of E along a continuous function $f: X \to Y$ is just the pullback of π and f.

By the previous example the global elements $* \to X$ of a topological space induce geometric morphisms of the form $\mathbf{Sh}(*) \to \mathbf{Sh}(X)$. By noting that $\mathbf{Sh}(*) = \mathbf{Set}$ we obtain the following generalization:

Definition 13.3.9 (Point). A point of a topos \mathcal{E} is a geometric morphism $\mathbf{Set} \to \mathcal{E}$.

Notation 13.3.10 (Category of topoi). The category of elementary topoi and geometric morphisms is a 2-category. We will denote this category by **Topos**.

In fact to obtain the structure of a 2-category we need to define an appropriate notion of 2-morphism. Because a geometric morphism consists of an adjunction one can consider two distinct conventions, namely one can choose the 2-morphisms in **Topos** to be natural transformations $f^* \Rightarrow g^*$ (with associated transformations $g_* \Rightarrow f_*$) or one can choose them to be natural transformations $f_* \Rightarrow g_*$ (and associated transformations $g^* \Rightarrow f^*$). We will follow [17] and use the inverse image convention, i.e. a 2-morphism $f \Rightarrow g$ consists of natural transformations $f^* \Rightarrow g^*$ and $g_* \Rightarrow f_*$.

13.4 Grothendieck topos

Definition 13.4.1 (Sieve). Let C be a small category. A sieve S on C is a fully faithfull discrete fibration $S \hookrightarrow C$.

A sieve S on an object $c \in \mathbf{C}$ is a sieve in the slice category \mathbf{C}/c . This means that S is a subset of $\mathrm{ob}(\mathbf{C}/c)$ that is closed under precomposition, i.e. if $b \to c \in S$ and $a \to b \in \mathrm{hom}(\mathbf{C})$ then the composition $a \to b \to c \in S$.

All of this can be summarized by saying that a sieve on an object $c \in ob(\mathbf{C})$ is a subfunctor of the hom-functor $\mathbf{C}(-,c)$.

²See definition ??.

Example 13.4.2 (Maximal sieve). Let **C** be a category. The maximal sieve on $c \in ob(\mathbf{C})$ is the collection of all morphisms $\{f \in hom(\mathbf{C}) \mid cod(f) = c\}$ or equivalently all of $ob(\mathbf{C}/c)$.

Example 13.4.3 (Pullback sieve). Consider a morphism $f: a \to b$. Given a sieve S on b one can construct the pullback sieve f^*S on a as the sieve of morphisms in S which factor through f:

$$f^*S(a) = \{ (g : c \to a) \mid f \circ g \in S(b) \}.$$
 (13.6)

Property 13.4.4 (Presheaf topos). Consider the presheaf category $\mathbf{Psh}(\mathbf{C})$ for an arbitrary (small) category \mathbf{C} . This category is in fact an elementary topos where the subobject classifier is defined on each object in the following way:

$$\underline{\Omega}(c) := \{ S \mid S \text{ is a sieve on } c \}. \tag{13.7}$$

The action on a morphism $f: a \to b$ in ${\bf C}$ gives the morphism $\underline{\Omega}(f)$ which sends a sieve S to its pullback sieve f^*S .

The morphism $\mathbf{true} : \underline{\mathbf{1}} \hookrightarrow \underline{\Omega}$ is defined as the natural transformation assigning to every object its maximal sieve. For every subobject $\underline{K} \hookrightarrow \underline{X}$ the characteristic morphism χ_K is defined as follows: Consider an object $c \in \mathrm{ob}(\mathbf{C})$ and element $c \in \underline{X}(c)$. The component $c \in \mathrm{ob}(\mathbf{C})$ is then given by

$$\chi_K|_c(x) = \{ f \in \mathbf{C}(d,c) \mid \underline{X}(f)(x) \in \underline{K}(d) \}. \tag{13.8}$$

The following definition is due to Giraud (the original definition used the notion of a *cover*, see at the end of this section):

Definition 13.4.5 (Grothendieck topology). A Grothendieck topology on a category is a function J assigning to every object a collection of sieves satisfying the following conditions:

- **Identity**³: For every object c the maximal sieve M_c is an element of J(c).
- Base change: If $S \in J(c)$ then $f^*S \in J(d)$ for every morphism $f: d \to c$.
- Locality: Consider a sieve S on c. If there exists a sieve $R \in J(c)$ such that for every morphism $(f: d \to c) \in R$ the pullback sieve $f^*S \in J(d)$, then $S \in J(c)$.

The sieves in J are called (J-)covering sieves. A collection of morphisms with codomain $c \in \text{ob}(\mathbf{C})$ is called a **cover**⁴ of c if the sieve generated by the morphisms is a covering sieve on c.

Example 13.4.6 (Topological spaces). These conditions have the following interpretation in the case of topological coverings:

- The collection of all open subsets covers a space U.
- If $\{U_i\}_{i\in I}$ covers U then $\{U_i\cap V\}_{i\in I}$ covers $U\cap V$.
- If $\{U_i\}_{i\in I}$ covers U and if for every $i\in I$ the collection $\{U_{ij}\}_{j\in J_i}$ covers U_i then $\{U_{ij}\}_{i\in I,j\in J_i}$ covers U.

The canonical Grothendieck topology on $\mathbf{Open}(X)$ is given by the sieves $S = \{U_i \hookrightarrow U\}_{i \in I}$ where $\bigcup_{i \in I} U_i = U$. This topology is denoted by $J_{\mathbf{Open}(X)}$.

³This condition can be rephrased in terms of isomorphisms: Sieves generated by an isomorphism are covering sieves. The name itself stems from the fact that the maximal sieve is generated from the identity morphism.

⁴Sometimes this term is also used to denote any collection of morphism with common codomain c, i.e. without reference to a covering sieve.

Definition 13.4.7 (Site). A (small) category equipped with a Grothendieck topology J.

Definition 13.4.8 (Matching family). Consider a presheaf $F \in \mathbf{Psh}(\mathbf{C})$ together with a sieve S on $c \in ob(\mathbf{C})$. A matching family for S with respect to F is a natural transformation $\alpha: S \Rightarrow F$ between S, regarded as a subfunctor of $\mathbf{C}(-,c)$, and F.

More explicitly it is an assignment of an element $x_f \in Fd$ to every morphism $(f: d \to c) \in S$ such that

$$F(g)(x_f) = x_{f \circ g} \tag{13.9}$$

for all morphisms $g: e \to d$. Equivalently, a matching family for S with respect to F is a set of elements $\{x_f\}_{f\in S}$ such that for all covering morphisms $f: d \to c, g: e \to c \in S$ and all morphisms $f': z \to d, g': z \to e$ such that $f \circ f' = g \circ g'$ the following equations holds:

$$F(f')(x_f) = F(g')(x_g). (13.10)$$

Given such a matching family one calls an element $z \in Fc$ an **amalgamation** if it satisfies

$$F(f)(z) = x_f (13.11)$$

for all morphisms $f \in S(d)$. The existence of such an element can also be stated in terms of natural transformations: Consider the obvious inclusion ι_S of S into the the hom-functor $\mathbf{C}(-,c)$. Every morphism with codomain c can be obtained from the identity morphism by precomposition and hence a natural transformation $\mathbf{C}(-,c) \Rightarrow F$ is determined by its action on the identity morphisms $\mathbb{1}_c$. The existence of an amalgamation is thus equivalent to the existence of an extension of S along ι_S .

Remark 13.4.9. If the base category has all pullbacks, for example if it is a topos on its own, then one can restrict the above commuting diagrams to the pullback diagrams of morphisms in the sieve S.

Definition 13.4.10 (Sheaf). Consider a site (C, J). A presheaf F on C is called a J-sheaf if every matching family for any covering sieve (on any object in C) in J admits a unique amalgamation⁵ or equivalently if all sieves admit a unique extension to representable presheafs.

The category $\mathbf{Sh}(\mathbf{C}, J)$ of J-sheaves on the site (\mathbf{C}, J) is the full subcategory of $\widehat{\mathbf{C}}$ on the presheaves which satisfy the above condition.

We can also restate this definition in terms of local objects 4.2.19:

Alternative Definition 13.4.11 (Sheaf). By definition every covering sieve admits a morphism into the Yoneda embedding: $\eta: S \hookrightarrow \mathcal{Y}c$. If we denote the collection of all these morphisms by \mathcal{S} , then a presheaf is a sheaf if and only if it is \mathcal{S} -local, i.e. if the following morphism is an isomorphism for all $\eta \in \mathcal{S}$:

$$Fc \cong \mathbf{Psh}(\mathcal{Y}c, F) \xrightarrow{\mathbf{Psh}(\eta, F)} \mathbf{Psh}(S, F).$$
 (13.12)

This is also called the **descent condition** of ordinary sheafs. In this context the collection of matching families Match(S, P) for a sieve S with respect to a presheaf F is often called the **descent object** of S with respect to P.

⁵If there exists at most one amalgamation then the presheaf is said to be **separated**.

Example 13.4.12 (Topological spaces). The usual category of sheaves $\mathbf{Sh}(X)$ on a topological space X is obtained as the category of sheaves on the site $(\mathbf{Open}(X), J_{\mathrm{open}(X)})$. Since the morphisms in the covering sieves are exactly the inclusion maps $U_i \hookrightarrow U$, the pullback of two such morphisms is given by the intersection $U_i \cap U_j$. Hence the condition for a matching family, as formulated in equation 13.4.8 above, gives the second part of definition 10.2.1. The uniqueness of an amalgamation is equivalent to the first part of that definition.

Example 13.4.13 (Canonical topology). The canonical topology on a category is the largest Grothendieck topology for which all representable presheafs are sheafs. A subcanonical topology is then defined as a subtopology of the canonical one, i.e. any Grothendieck topology for which all representable presheafs are sheafs.

Example 13.4.14 (Minimal and maximal topologies). The minimal Grothendieck topology on a category is the one for which only the maximal sieves are covering sieves. In this topology all presheafs are sheafs. The maximal Grothendieck topology is the one for which all sieves are covering sieves. In this topology only the terminal element of the associated presheaf category is a sheaf.

Definition 13.4.15 (Grothendieck topos). A category equivalent to the category of sheaves on a (small) site. This site is often called the **site of definition** for the given topos.

Property 13.4.16. Every Grothendieck topos is an elementary topos.

Property 13.4.17. For every Grothendieck topos there exists a site of definition for which the Grothendieck topology is (sub)canonical.

Construction 13.4.18 (Sheafification). Given a presheaf \mathcal{F} we can construct a sheaf $\overline{\mathcal{F}}$ along the same lines of construction 10.2.18.

Definition 13.4.19 (Global sections functor). Every Grothendieck topos \mathcal{E} admits a geometric morphism to **Set**, where the left adjoint assigns to an object X its set of global elements:

$$\Gamma: \mathcal{E} \to \mathbf{Set}: X \mapsto \mathcal{E}(1, X).$$
 (13.13)

When \mathcal{E} is the sheaf topos over a topological space, this is exactly the global sections functor 10.3.1. The left adjoint assigns to every set S the copower $S \cdot 1 \equiv \bigsqcup_{s \in S} 1$. When \mathcal{E} is a sheaf topos, this adjoint is exactly the constant sheaf functor and is sometimes denoted by LConst.

A different approach for defining sheaf topoi is through an embedding of sheafs into presheafs.

Definition 13.4.20 (Local isomorphism). A system of local isomorphisms in Psh(C) is a class of morphisms in Psh(C) forming a system of weak equivalences 11.2.1 closed under pullbacks along morphisms out of representable presheafs.

Property 13.4.21 (Local isomorphisms and Grothendieck topologies). A system of local isos induces a *system of local epis* in the following way: $f: X \to Y$ is a local epi if $\operatorname{im}(f) \to Y$ is a local iso. A Grothendieck topology is defined by declaring a presheaf $F \in \mathbf{Psh}(\mathbf{C})$ to be a covering sieve at $X \in \operatorname{ob}(\mathbf{C})$ if $F \hookrightarrow \mathcal{Y}X$ is a local epi.

Alternative Definition 13.4.22 (Sheaf topos). A category Sh(C) equipped with a geometric embedding into Psh(C).

Proof of equivalence. By property 13.3.6 such a category is equivalent to the full subcategory on S-local presheaves for some system of local isomorphisms S and therefore also to a sheaf topos in the sense of Grothendieck by the property above.

Remark 13.4.23 (Descent condition). This is essentially a restatement of the descent condition 13.4.11: Covering sieves, regarded as subfunctors, are in particular local isomorphisms. Stability of sieves under pullback together with the co-Yoneda lemma 4.4.68, which says that every presheaf is a colimit of representables, then generate the full collection of local isomorphisms.

As a last point we also introduce the weaker notion of coverages:

Definition 13.4.24 (Coverage). Let \mathbb{C} be a category. A coverage on \mathbb{C} is a map assigning to every object $c \in \text{ob}(\mathbb{C})$ a collection of families $\{f : d \to c\} \subset \text{hom}(\mathbb{C})$ satisfying the following condition: If $\{f : d \to c\}$ is a **covering family** on c, then for every morphism $g : c' \to c$ there exists a covering family $\{f' : d' \to c'\}$ on c' such that every composite $g \circ f'$ factors through some f.

It should be clear that every coverage generates a sieve (the smallest sieve containing the coverage). Furthermore, although coverages are weaker and easier to handle, they are in fact equivalent for the purpose of sheaf theory:

Property 13.4.25. Consider a covering family C and let S_C be the sieve it generates. A presheaf is a sheaf for C if and only if it is a sheaf for S_C .

13.4.1 Topological sheaves

See chapter 10 for the application of sheaves to topology.

Property 13.4.26 (Presheaf topos). Consider the presheaf category $\mathbf{Psh}(X) = \mathbf{Open}(X)$ over a topological space X. This category is an elementary topos where the subobject classifier Ω is defined as follows:

$$\Omega(U) := \{V : V \text{ is an open subset of } U\}. \tag{13.14}$$

Remark 13.4.27. In fact the presheaf category Psh(C) for any (small) category C is an elementary topos. See property 13.4.4 below.

Construction 13.4.28 (Sheaves and étalé bundles). Let X be a topological space. The functor

$$I: \mathbf{Open}(X) \to \mathbf{Top}/X: U \mapsto (U \hookrightarrow X)$$

induces the following adjunction:

$$\mathbf{Top}/X \xrightarrow{\stackrel{E}{\longleftarrow}} \mathbf{Psh}(X). \tag{13.15}$$

The slice category on the right-hand side is equivalently the category of (topological) bundles⁶ over X. Both directions of the adjunction have a clear interpretation. The right adjoint assigns to every bundle its sheaf of local sections. The left adjoint assigns to every presheaf its bundle of germs.

By restricting to the subcategories on which this adjunction becomes an adjoint equivalence we obtain the **étalé space** and **sheaf** categories respectively:

$$\mathbf{Et}(X) \cong \mathbf{Sh}(X). \tag{13.16}$$

The category on the right is the category of sheaves on a topological space X. The category on the left is the full subcategory on local homeomorphisms, i.e. étalé spaces as defined in chapter 10.

⁶See chapter 31.

Property 13.4.29 (Associated sheaf). The inclusion functor $\mathbf{Sh}(X) \hookrightarrow \mathbf{Psh}(X)$ admits a left adjoint. This is exactly the sheafification functor which assigns to every presheaf its associated sheaf. This functor is given by the composition $\Gamma \circ E$.⁷

The fact that the counit of adjunction 13.4.28 restricts to an isomorphism on the full subcategory $\mathbf{Sh}(X)$ is equivalent to the fact that the sheafification of a sheaf Γ is again Γ .

Definition 13.4.30 (Petit and gros topoi). Consider a topological space X together with its category of opens $\mathbf{Op}(X)$. The petit topos over X is defined as the usual sheaf topos $\mathbf{Sh}(X)$. It represents X as some kind of generalized space. (By construction 13.4.28 the objects in a small topos are the étale spaces over a given base space.) However, we can also build a topos whose objects are generalized spaces. To this end we choose a site S of "probes" and call the sheaf topos $\mathbf{Sh}(S)$ a gros topos. (See section 41.2 for more information.)

Property 13.4.31 (Localic reflection). Mapping a topological space to its sheaf of continuous sections defines a functor $\mathbf{Sh}: \mathbf{Top} \to \mathbf{Topos}$ by example 13.3.8. When restricted to the full subcategory of sober spaces 7.7.4 this functor becomes fully faithful. When generalizing to sober locales, we even obtain a reflective inclusion 4.2.27.

This property states that we lose no information when regarding (sober) topological spaces as sheaf topoi. This also explains the name "petit topos".

13.4.2 Lawvere-Tierney topology

Definition 13.4.32 (Lawvere-Tierney topology). As noted in section 13.2 on the internal logic of elementary topoi, the subobject classifier Ω has the structure of an internal Heyting algebra and in particular that of a meet-semilattice (where the meet is given by the pullback of morphisms). This internal poset, viewed as an internal category, admits the construction of a closure operator⁸ $j: \Omega \to \Omega$ satisfying the following condition:

$$j \circ \wedge = \wedge \circ (j \times j). \tag{13.17}$$

This condition states⁹ that j is (internally) order-preserving.

Remark 13.4.33. The condition satisfied by the unit morphism in the definition of a closure operator can also be reformulated as follows in this context:

$$j \circ \mathsf{true} = \mathsf{true}.$$
 (13.18)

The Lawvere-Tierney operator also induces a "closure operator" on all posets $\operatorname{Sub}(X)$ in the topos. Given an object X and a subobject $U \in \operatorname{Sub}(X)$ one defines the closure $j_*(U) \in \operatorname{Sub}(X)$ as the subobject classified by the characteristic map $j \circ \chi_U : X \to \Omega$.

Definition 13.4.34 (Dense object). Given a Lawvere-Tierney topology $j: \Omega \to \Omega$, a subobject $U \in \text{Sub}(X)$ is said to be dense (in X) if it satisfies $j_*(U) = X$.

Alternative Definition 13.4.35 (Sheaf). Given a Lawvere-Tierney topology $j: \Omega \to \Omega$ on a topos \mathcal{E} , one calls an object $S \in \text{ob}(\mathbf{E})$ a j-sheaf if for all dense morphisms $U \hookrightarrow X$ the induced map

$$\mathcal{E}(X,S) \to \mathcal{E}(U,S)$$

is a bijection.

⁷This amounts to construction 10.2.14.

⁸See definition 4.3.25.

⁹This is not a trivial statement.

Property 13.4.36. For the presheaf topos on a small category C, the Grothendieck topologies on C and Lawvere-Tierney topologies on Psh(C) are equivalent.

Sketch of proof. Since a Grothendieck topology assigns to every object a collection of sieves, we find by property 13.4.4 that $J(c) \subseteq \Omega_{\mathbf{Psh}}(c)$ for all $c \in \mathrm{ob}(\mathbf{C})$. By the base change condition of Grothendieck topologies this relation is natural in c and hence J is a subobject of $\Omega_{\mathbf{Psh}}$. We thus find a characteristic morphism $j: \Omega_{\mathbf{Psh}} \to \Omega_{\mathbf{Psh}}$ which can be proven (by the other conditions of Grothendieck topologies) to define a Lawvere-Tierney topology on $\mathbf{Psh}(\mathbf{C})$. Conversely, a Lawvere-Tierney topology is a morphism $j: \Omega \to \Omega$ and hence determines a unique subobject of $\Omega_{\mathbf{Psh}}$, i.e. a unique collection of sieves for every object $c \in \mathrm{ob}(\mathbf{C})$. From the conditions on Lawvere-Tierney topologies one can then prove that this collection satisfies the conditions of a Grothendieck topology.

Remark. We can conclude that Lawvere-Tierney topologies generalize Grothendieck topologies from presheaf topoi to general topoi.

13.5 Stacks

An important subject, especially in the context of gauge theories in physics, is that of groupoid-valued (pre)sheafs. We first generalize sites to 2-categories:

Definition 13.5.1 (2-coverage). Virtually the same as an ordinary coverage 13.4.24. However, instead of exact factorization, we only require factorization up to an isomorphism. A 2-category equipped with a 2-coverage is called a **2-site**.

As for 1-sites, every coverage generates a unique sieve. It is the full subcategory on those morphisms that factor through a covering map in the given coverage (again up to isomorphism).

Definition 13.5.2 (2-presheaf). Consider a 2-category \mathbb{C} . A 2-presheaf on \mathbb{C} is a pseudo-functor $F: \mathbb{C}^{op} \to \mathbb{C}$ at. When \mathbb{C} is the categorification of a 1-category, i.e. it has discrete Hom-categories, we often speak of **prestacks**.

As in the case of ordinary categories (Definition 13.4.11), one can define 2-sheafs through a descent condition:

Definition 13.5.3 (2-sheaf). A 2-presheaf $F: \mathbb{C}^{op} \to \mathbb{C}$ at on a 2-site (\mathbb{C}, J) is said to be a 2-sheaf with respect to J if for all sieves $S \in J$ the following functor is an equivalence:

$$Fc \cong \mathbf{Psh}_2(\mathcal{Y}c, F) \to \mathbf{Psh}_2(S, F)$$
 (13.19)

where the fist equivalence is just the 2-Yoneda lemma.

Remark 13.5.4. It should be noted that 2-(pre)sheafs can also be defined on ordinary (1-)sites. Sieves, regarded as subfunctors of the Yoneda embedding, take values in **Set**. By composing these with the embedding $\mathbf{Set} \hookrightarrow \mathbf{Cat}$ of sets as (discrete) categories we obtain 2-presheafs (in fact 2-subfunctors of the 2-Yoneda embedding). Often 2-sheafs over 1-sites are called **stacks** (although this terminology is also used for general 2-sites).

Definition 13.5.5 (Prestack of groupoids). Consider a category **C**. A prestack of groupoids is a **Grpd**-valued prestack on **C**.

The category of (groupoid-valued) prestacks becomes \mathbf{Grpd} -enriched if we take the Hom-object between two prestacks F, G to consist of the following data:

• The objects are natural transformations $\alpha: F \Rightarrow G$ (note that the components are themselves functors).

• The morphisms \mathfrak{m} are "strict modifications" (see also definition 4.9.12) in the sense that they map objects in \mathbf{C} to natural transformations satisfying the whiskering condition

$$\mathbb{1}_{Ff} \cdot \mathfrak{m}_b = \mathfrak{m}_a \cdot \mathbb{1}_{Gf}. \tag{13.20}$$

For ordinary sites and presheafs we defined descent in terms of matching families. Since we are now taking values in a 2-category, the matching families are a bit more complex. However, this structure is already familiar in differential geometry and algebraic topology where it is known under the name of the $\check{C}ech\ nerve$:

Definition 13.5.6 (Čech groupoid). Consider a site (C, J). To every covering family $\mathcal{U} := \{f_i : c_i \to c\}$ we assign an internal groupoid in presheafs $C(\mathcal{U})$ consisting of the following data:

- $ob(C(\mathcal{U})) := \bigsqcup_i \mathcal{Y}c_i$, and
- $hom(C(\mathcal{U})) := \bigsqcup_{i,j} \mathcal{Y}c_i \times_{\mathcal{Y}c} \mathcal{Y}c_j$.

This is equivalent to the (**Grpd**-valued) presheaf that assigns to every object $d \in \text{ob}(\mathbf{C})$ the groupoid consisting of the following data: Its objects are pairs $(i, g_i : d \to c_i)$ such that $c_i \in \mathcal{U}$ and Hom-objects between two such pairs consist of a unique arrow if and only if

$$f_i \circ g_i = f_j \circ g_j. \tag{13.21}$$

If we compare this last equation with the condition for matching families in definition 13.4.8 we could presume that the Čech groupoid is related to matching families. This intuition is indeed correct:

Property 13.5.7 (Matching families). Any ordinary presheaf F can be considered to be **Grpd**-valued by the embedding **Set** \hookrightarrow **Grpd**. For any covering family \mathcal{U} there exists an isomorphism

$$[\mathbf{C}^{op}, \mathbf{Grpd}](C(\mathcal{U}), F) \cong \mathrm{Match}(\mathcal{U}, F).$$
 (13.22)

Note that the left-hand side is an ordinary set since F is **Set**-valued. Because the Čech groupoid (co)represents a descent object it is sometimes called a **codescent object**.

It is exactly this (co)descent property of the Čech groupoid that will be used in chapter 41 to define (higher) smooth groupoids.

People with some experience in algebraic topology will also notice that the Čech groupoid only contains the first degrees of the Čech complex. The full Čech complex can be obtained from the following construction:

Definition 13.5.8 (Čech nerve). Consider a morphism $f: d \to c$ in a category \mathbf{C} . The Čech nerve $C_{\bullet}(U)$ is the *simplicial object* (see definition 11.1.3) that is defined as the (k+1)-fold pullback of f with itself in degree k. For a covering family $\mathcal{U} := \{f_i : c_i \to c\}$ we define its Čech nerve as $C_{\bullet}(\mathcal{U}) := C_{\bullet}(|\cdot|_i c_i \to c)$.

For ∞ -sheafs we will use the full Čech nerve, however for 2-sheafs and in particular stacks, we will only use its 3-coskeleton. This extra information will encode the *cocycle condition* well-known for example in the study of fibre bundles (see equation 31.1).

13.5.1 Stacks on a 1-site

In this section we will use the notion of fibred categories and their equivalence to **Cat**-valued pseudofunctors (see section 4.3.1).

Definition 13.5.9 (Descent datum). Consider a category \mathbf{C} with a covering family $\mathcal{U} := \{f_i : c_i \to c\}$ and a fibred \mathbf{C} -category F. The projections associated to the pullback $c_i \cap c_j := c_i \times_c c_j$ will be denoted by $\pi_{1,2}$ (and analogously for iterated pullbacks) and their (Catesian) pullback functors (induced by the cleavage on \mathbf{C}) will be denoted by π^* . A descent datum for \mathcal{U} with respect to F is a pair $\{x_i\}, \{f_{ij}\}$) where $\{x_i\}$ is a matching family for \mathcal{U} with respect to F and every f_{ij} is an isomorphism $\pi_1^*x_i \cong \pi_2^*x_j$. This data is required to satisfy the following **cocycle condition**:

$$\pi_{13}^* f_{ik} = \pi_{12}^* f_{ij} \circ \pi_{23}^* f_{jk}. \tag{13.23}$$

Morphisms $(\{x_i\}, \{f_{ij}\}) \to (\{y_i\}, \{g_{ij}\})$ between descent data are families of morphisms $\{\phi_i : x_i \to y_i\}$ that satisfy

$$\pi_1^* \phi_i \circ f_{ij} = g_{ij} \circ \pi_2^* \phi_j. \tag{13.24}$$

We will denote the category of descent data for \mathcal{U} with respect to F by Descent(\mathcal{U}, F)

Construction 13.5.10. Consider an object ξ in Fc. From this object we construct a descent datum as follows: The objects x_i are the pullbacks $f_i^*\xi$ and the isomorphisms $f_{ij}: \pi_2^* f_i^*\xi \cong \pi_1^* f_j^*\xi$ are obtained from the fact that both these objects are (Cartesian) pullbacks of the same morphisms. Arrows in Fc induce morphisms of descent data by (Cartesian) pullbacks along the covering maps.

This construction defines a functor $Fc \to \text{Descent}(\mathcal{U}, F)$. (It can be shown that all of this is independent of a choice of cleavage up to equivalence.)

Definition 13.5.11 (Stack). Consider a fibred category F over a site (C, J).

- F is called a **separated prestack** if for each covering family \mathcal{U} on $c \in ob(\mathbb{C})$ the functor $Fc \to Descent(\mathcal{U}, F)$ is fully faithful.
- F is called a **stack** if for each covering family \mathcal{U} on $c \in ob(\mathbf{C})$ the functor $Fc \to Descent(\mathcal{U}, F)$ is an equivalence.

This is a generalization of the descent condition 13.4.11. This can be seen by observing that $\operatorname{Descent}(\mathcal{U}, F) \cong \operatorname{Hom}_{\mathbf{C}}(S(\mathcal{U}), F)$ where $S(\mathcal{U})$ is the sieve generated by \mathcal{U} , regarded as a fibred category.

A more conceptual (although completely equivalent) generalization from (1-)sheafs to 2-sheafs can be obtained by starting from property 13.5.7. There it was shown that matching families for (1-)presheafs can be obtained as natural transformations from the Čech groupoid.

Property 13.5.12 (Descent data and Čech nerve). Let $C(\mathcal{U})$ denote the 3-coskeleton of the Čech nerve $C_{\bullet}(\mathcal{U})$. Pseudonatural transformations $C(\mathcal{U}) \to F$ can be shown to be equivalent to tuples $(x, \{x_i\}, \{x_{ij}\}, \{x_{ijk}\})$ where $x_i \in Fc_i$ that fit into cubes lying in the image of $C_2(\mathcal{U})$ in which all edges consist of Cartesian morphisms. Arrows between such cubes are given by arrows between the vertices that make the "obvious" diagrams commute.

By comparing these cubes to the above definition of descent data we obtain the following equivalence:

$$Descent(\mathcal{U}, F) \cong [\mathbf{C}^{op}, \mathbf{Cat}](C(\mathcal{U}), F). \tag{13.25}$$

Remark 13.5.13 (1-sheafs). Although most of the above looks very abstract and complex compared to ordinary sheafs, it is not really so. In fact, if we restrict to pseudofunctors of the form $\mathbf{C}^{op} \to \mathbf{Set}$, where we use the embedding $\mathbf{Set} \to \mathbf{Cat}$ to view sets as discrete categories, we obtain ordinary sheafs as a subcategory of stacks. For example: By the equivalence between pseudofunctors and Grothendieck fibrations, we know that the Cartesian pullbacks f^* are in fact just the images of morphism f under the pseudofunctor F. This way the condition $\pi_1^*x_i \cong \pi_2^*x_j$ can be rewritten as $Ff'_i(x_i) = Ff'_j(x_j)$, which is nothing but the matching family condition 13.10.

13.6 Higher topoi

In this section we generalize the notion of topos from ordinary category theory to higher category theory. In particular we will consider ∞ -sheafs. This will requires us to use a suitable foundation for ∞ -category theory. For this we will use the language of (simplicial) model categories as introduced in chapter 11.

Definition 13.6.1 (∞ -groupoid). Objects of the full simplicial subcategory of $\mathbf{sSet}_{Quillen}$ on Kan complexes. From property 11.1.17 we immediately see how this generalizes the definition of ordinary groupoids: For groupoids we need unique horn fillers (composition in ordinary categories is unique), while for ∞ -groupoids we allow this up to higher coherence.

Definition 13.6.2 ((∞ , 1)-category). An ∞ Grpd-enriched category, or equivalently, a simplicially enriched category for which all hom-objects are Kan complexes. The functor category between (∞ , 1)-categories is defined through the (simplicial) nerve and realization functors 11.1.10:

$$[\mathbf{C}, \mathbf{D}] := |\mathbf{sSet}(N\mathbf{C}, N\mathbf{D})|. \tag{13.26}$$

The most straightforward definition of an ∞ -sheaf generalizes definition 13.4.11:

Definition 13.6.3 (∞ -sheaf). Consider an ∞ -site (\mathbf{C}, J) and let S denote the collection of monomorphism in $\mathbf{Psh}_{\infty}(\mathbf{C})$ induced by the covering sieves. An ∞ -presheaf on \mathbf{C} is called a J-sheaf if it is S-local. A presheaf with values in an ∞ -category \mathbf{D} is called a sheaf if the representable $\mathbf{D}(d, F-)$ is a J-sheaf for all $d \in \mathrm{ob}(\mathbf{D})$.

Definition 13.6.4 (∞ -stack). An (∞ , 1)-sheaf taking values in ∞ **Grpd**.

?? PERHAPS MOVE infinity-CATEGORY STUFF TO CHAPTER "MODEL THEORY" ??

13.6.1 Cohomology

In this section, cohomology will be generalized to the ∞ -categorical setting.

First, take a topological space X and an ∞ -groupoid G. Geometric realization 11.1.11 gives an equivalence $\infty \mathbf{Grpd} \cong \mathbf{Top}$ and, therefore, one can define the intrinsic cohomology of X with coefficients in G as follows:

$$H(X;A) := \pi_0 \mathbf{Top}(X, |G|). \tag{13.27}$$

X can also be identified with its petit $(\infty$ -)topos $\mathbf{Sh}_{(\infty,1)}(X)$, in which X sits as the terminal object. From this point of view the intrinsic cohomology of X with coefficients in G is

$$\overline{H}(X;G) := \pi_0 \mathbf{Sh}_{(\infty,1)}(X)(X, \operatorname{LConst} G) \cong \pi_0 \Gamma \operatorname{LConst} G.$$
(13.28)

This is the **cohomology with constant coefficients** of X with respect to G. If X is paracompact, the two cohomologies coincide: $H(X;G) \cong \overline{H}(X;G)$.

Now, it is time to pass to general cohomology:

Definition 13.6.5 (Intrinsic cohomology). Consider a $(\infty, 1)$ -category **H**. For every two objects $X, A \in \mathbf{H}$, the hom-space $\mathbf{H}(X, A)$ is an ∞ -groupoid. Define the following notions:

- The objects $c \in \mathbf{H}(X, A)$ are called **cocycles**.
- The morphism $\lambda \in \mathbf{H}(X,A)$ are called **coboundaries**.
- The set of connected components

$$H(X;A) := \pi_0 \mathbf{H}(X,A) = \operatorname{Hom}_{\mathbf{Ho}(\mathbf{H})}(X,A), \tag{13.29}$$

where $\mathbf{Ho}(\mathbf{H})$ is the homotopy category (Section 11.3.1) of \mathbf{H} , is called the intrinsic cohomology of X with coefficients in A.

If the object A admits an n^{th} delooping $\mathbf{B}^n A$, the n^{th} cohomology group of X is defined as

$$H^{n}(X; A) := H(X; \mathbf{B}^{n} A).$$
 (13.30)

Example 13.6.6 (Singular cohomology). Consider a topological space X. For every group G one can define the first delooping 4.10.2, so one can also define the zeroth and first cohomology groups $H^{0,1}(X;G)$. Only when G is Abelian, do higher deloopings exists (in fact, if G is Abelian all higher deloopings exist), and so in this case higher cohomology groups $H^{\geq 2}(X;G)$ can be defined. It can be shown that these coincide with the singular cohomology groups of X.

13.7 Cohesion

In this section we will often talk about (Grothendieck) topoi **over** some base topos \mathcal{S} , i.e. topoi equipped with a geometric morphism to \mathcal{S} .

Definition 13.7.1 (Local topos). Consider a topos \mathcal{E} over a base topos \mathcal{E} . \mathcal{E} is said to be $(\mathcal{E}$ -)local if the geometric morphism $(f^* \dashv f_*) : \mathcal{E} \hookrightarrow \mathcal{E}$ admits a right adjoint $f^!$ such that one of the following equivalent statements:

- f! is fully faithful.
- f^* is fully faithful.
- f! is an S-indexed functor 4.9.16.
- f! is Cartesian closed 4.6.12.

If we take $S = \mathbf{Set}$, the conditions are automatically satisfied since all functors are \mathbf{Set} -indexed.

The left and right adjoints are sometimes also called the **discrete** and **codiscrete object functors** Disc and coDisc (in fact this terminology is applied more generally when \mathcal{E} is just a category). If these functors exist, we say \mathcal{E} has (**co**)discrete objects. This terminology derives from the case of the forgetful functor $\Gamma : \mathbf{Top} \to \mathbf{Set}$ where the (fully faithful) left and right adjoints equip a set with the (co)discrete topology.

Property 13.7.2. A topos is local if and only if 1 is tiny 4.4.40.

Definition 13.7.3 (Locally-connected topos). An object in a category is said to be **connected** if its representable functor preserves finite coproducts. A topos is said to be **locally-connected** if all objects can be written as coproducts of connected objects. This defines a functor

$$\Pi_0: \mathcal{E} \to \mathbf{Set}: \bigsqcup_{i \in I} X_i \mapsto I$$
(13.31)

left adjoint to the constant sheaf functor (which is itself left adjoint to the global section functor). This functor is suitably called the **connected component functor**.

A topos is locally-connected if and only if its global section geometric morphism is essential (and the left adjoint is an indexed functor, but this is again automatic over $S = \mathbf{Set}$). More generally, a topos over some base topos S is said to be **locally-connected** if its associated geometric morphism is essential and the left adjoint is S-indexed.

Definition 13.7.4 (Connected topos). A topos over a base topos is said to be **connected** if the inverse image part of the associated geometric morphism is fully faithful. For sheaf topoi over a topological space X this is exactly the requirement for X being connected.

For locally connected topoi this amounts to the property that the left adjoint in its adjoint triple preserves the terminal object. Furthermore, a locally connected topos is said to be **strongly connected** if the left adjoint in its adjoint triple preserves finite products (in particular turning it into a connected topos).

Property 13.7.5. Every local topos is connected.

Definition 13.7.6 (Cohesive topos). A local strongly connected topos. This implies the existence of an adjoint quadruple (Π_0 , Disc, Γ , coDisc) where both Disc and coDisc are fully faithful.

Property 13.7.7 (Cohesive modalities). The adjoint quadruple on a cohesive topos induces an adjoint triple of modalities 4.3.25, i.e. idempotent (co)monads (see Section 6.5 for a formal introduction in the conetxt of type theory):

$$(\int \dashv \flat \dashv \sharp) := (\operatorname{Disc} \circ \Pi_0 \dashv \operatorname{Disc} \circ \Gamma \dashv \operatorname{coDisc} \circ \Gamma). \tag{13.32}$$

These are respectively called the **shape**, **flat** and **sharp** modalities. The modal types of the flat and sharp modalities are called the **discrete** and **codiscrete objects**, respectively.

?? COMPLETE (e.g. work by Schreiber) ??

Part IV

Calculus

Chapter 14

Calculus

14.1 Introduction

Definition 14.1.1 (Domain). A connected open subset of \mathbb{R}^{n} .

14.2 Sequences

Definition 14.2.1 (Limit superior). Let $(x_i)_{i\in\mathbb{N}}$ be a sequence of real numbers. The limit superior is defined as follows:

$$\lim_{i \to +\infty} \sup x_i = \inf_{i \ge 1} \left\{ \sup_{k \ge i} x_k \right\}. \tag{14.1}$$

Definition 14.2.2 (Limit inferior). Let $(x_i)_{i\in\mathbb{N}}$ be a sequence of real numbers. The limit superior is defined as follows:

$$\liminf_{i \to +\infty} x_i = \sup_{i \ge 1} \left\{ \inf_{k \ge i} x_k \right\}.$$
(14.2)

Property 14.2.3. A sequence $(x_i)_{i\in\mathbb{N}}$ converges pointwise if and only if $\limsup_{i\to+\infty} x_i = \liminf_{i\to+\infty} x_i$.

14.3 Continuity

Definition 14.3.1 (Lipschitz continuity). A function $f: \mathbb{R} \to \mathbb{R}$ is said to be Lipschitz continuous if there exists a constant C > 0 such that

$$|f(x) - f(x')| \le C|x - x'| \tag{14.3}$$

for all $x, x' \in \mathbb{R}$.

Theorem 14.3.2 (Darboux). Every differentiable function defined on a closed interval has the intermediate value property².

Remark 14.3.3 (Darboux function). A function that has the intermediate value property.

Corollary 14.3.4 (Bolzano). If f(a) < 0 and f(b) > 0 (or vice versa) then there exists at least one point x_0 where $f(x_0) = 0$.

¹In fact one can replace \mathbb{R}^n by any vector space.

²This means that the function satisfies the conclusion of the intermediate value theorem 7.4.3.

Theorem 14.3.5 (Weierstrass' extreme value theorem). Let $I = [a, b] \subset \mathbb{R}$ be a closed interval and let f be a continuous function defined on I. Then f attains a minimum and maximum at least once on I.

Definition 14.3.6 (Absolute continuity). A function $f: \mathbb{R} \to \mathbb{R}$ is said to be absolutely continuous if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that for every finite collection of disjoint intervals $]x_i, y_i[$ satisfying

$$\sum_{i} (y_i - x_i) < \delta \tag{14.4}$$

the function f satisfies

$$\sum_{i} |f(y_i) - f(x_i)| < \varepsilon. \tag{14.5}$$

Property 14.3.7. The different types of continuity form the following hierarchy:

 $\label{lipschitz-continuous} Lipschitz-continuous \subset absolutely \ continuous \subset uniformly \ continuous \subset continuous$

Definition 14.3.8 (Function of bounded variation). A function f is said to be of bounded variation on the interval [a, b] if the following quantity is finite:

$$V_{a,b}(f) = \sup_{P \in \mathcal{P}} \sum_{i=0}^{|P|-1} |f(x_{i+1}) - f(x_i)|$$
(14.6)

where the supremum is taken over all partitions of [a, b].

Property 14.3.9. Every function of bounded variation can be decomposed as the difference of two monotonically increasing functions.

Property 14.3.10. Every absolutely continuous function is of bounded variation. Furthermore, the functions in the previous property are then also absolutely continuous.

14.4 Convergence

Definition 14.4.1 (Pointwise convergence). Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of functions. The sequence is said to converge pointwise to a limit function f(x) if

$$\forall x \in \text{dom}(f_n) : \lim_{n \to +\infty} f_n(x) = f(x). \tag{14.7}$$

Definition 14.4.2 (Uniform convergence). Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of functions. The sequence is said to converge uniformly to a limit function f(x) if

$$\sup_{x \in \text{dom}(f_n)} \left\{ \left| \lim_{n \to +\infty} f_n(x) - f(x) \right| \right\} = 0.$$
 (14.8)

14.5 Differentiation

14.5.1 Functions of one variable

Formula 14.5.1 (Derivative). Consider a function $f : \mathbb{R} \to \mathbb{R}$. The following limit is called the derivtive of f (if it exists):

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$
 (14.9)

Theorem 14.5.2 (Mean value theorem). Let f be continuous on the closed interval [a, b] and differentiable on the open interval [a, b]. Then there exists a point $c \in]a, b[$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}. (14.10)$$

Definition 14.5.3 (Differentiablity class). Let I be a set. Let f be a function defined on I. If f is n times continuously differentiable on I (i.e. $f^{(i)}$ exists and is continuous for $i = 1, \ldots, n$) then f is said to be of class $C^n(I)$.

Definition 14.5.4 (Smooth function). A function f is said to be smooth if it is of class C^{∞} .

Theorem 14.5.5 (Boman³). Consider a function $f : \mathbb{R}^d \to \mathbb{R}$. If for every smooth function $g : \mathbb{R} \to \mathbb{R}^d$ the composition $f \circ g$ is smooth then the function f is also smooth.

Definition 14.5.6 (Analytic function). A function f is said to be analytic if it is smooth and if its Taylor series expansion around any point x_0 converges to f in some neighbourhood of x_0 . The set of analytic functions defined on V is denoted by $C^{\omega}(V)$.

Theorem 14.5.7 (Schwarz⁴). Let $f \in C^2(\mathbb{R}^n, \mathbb{R})$. The mixed partial derivatives of f coincide for all indices $i, j \leq n$:

$$\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right). \tag{14.11}$$

Formula 14.5.8 (Derivative of $f(x)^{g(x)}$). Let us consider a function of the form

$$u(x) = f(x)^{g(x)}.$$

To find the derivative of this function we can use the derivative of the natural logarithm:

$$ln[u(x)] = g(x) ln[f(x)].$$

Taking the derivative gives us:

$$\frac{d\ln[u(x)]}{dx} = \frac{d}{dx}\Big(g(x)\ln[f(x)]\Big) = \frac{dg(x)}{dx}\ln[f(x)] + \frac{g(x)}{f(x)}\frac{df(x)}{dx}.$$

At the same time the derivative of a logarithm also satisfies

$$\frac{d\ln[u(x)]}{dx} = \frac{1}{u(x)}\frac{du}{dx}.$$

Combining these two equations finally gives us

$$\frac{d}{dx}\left[f(x)^{g(x)}\right] = f(x)^{g(x)}\left[\frac{dg}{dx}(x)\ln[f(x)] + \frac{g(x)}{f(x)}\frac{df}{dx}(x)\right]. \tag{14.12}$$

Definition 14.5.9 (Euler operator). On the space $C^r(\mathbb{R}^n, \mathbb{R})$, where r > 1, one can define the Euler operator \mathbb{E} as follows:

$$\mathbb{E} = \sum_{i=1}^{n} x_i \frac{\partial}{\partial x^i}.$$
 (14.13)

Theorem 14.5.10 (Euler). Let f be a homogeneous function, i.e.

$$f(ax_1, ..., ax_n) = a^n f(x_1, ..., x_n). (14.14)$$

This function satisfies the following equality:

$$\mathbb{E}(f) = n f(x_1, ..., x_n). \tag{14.15}$$

³In the context of Part VI: Differential Geometry, this theorem can be generalized to smooth manifolds by replacing \mathbb{R}^d with any smooth manifold M.

⁴Also called **Clairaut's theorem**.

14.6 Riemann integral

Definition 14.6.1 (Improper Riemann integral).

$$\int_{-\infty}^{+\infty} f(x)dx = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \int_{a}^{b} f(x)dx$$
 (14.16)

One-sided improper integrals are defined in a similar fashion.

14.6.1 Fundamental theorems

Theorem 14.6.2 (First fundamental theorem of calculus). Let f be a continuous function defined on the open interval I and consider an element $c \in I$. The following theorem establishes a link between integration and differentiation:

$$\exists F(x) : F'(x) = f(x)$$
 (14.17)

Furthermore this function F(x) is uniformly continuous on I and is given by the following integral:

$$F(x) = \int_{c}^{x} f(x')dx'.$$
 (14.18)

Remark 14.6.3. The function F(x) in the previous theorem is called a **primitive (function)** of f(x). Remark that F(x) is just 'a' primitive function as adding a constant to F(x) does not change anything because the derivative of a constant is zero.

Theorem 14.6.4 (Second fundamental theorem of calculus). Let f(x) be a C^1 -function defined on the interval [a,b]. We then find the following important theorem:

$$\int_{a}^{b} f'(x)dx = f(b) - f(a). \tag{14.19}$$

Formula 14.6.5 (Differentiation under the integral sign⁵).

$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(x,y) dy = f(x,b(x)) \cdot b'(x) - f(x,a(x)) \cdot a'(x) + \int_{a(x)}^{b(x)} \frac{\partial f(x,y)}{\partial x} dy$$
 (14.20)

14.7 Series

14.7.1 Convergence tests

Remark 14.7.1. A series $\sum_{i=1}^{+\infty} a_i$ can only converge if $\lim_{i\to+\infty} a_i = 0$.

Property 14.7.2 (Absolute/conditional convergence). If $S' = \sum_{i=1}^{+\infty} |a_i|$ converges then so does the series $S = \sum_{i=1}^{+\infty} a_i$ and S is said to be absolutely convergent. If S converges but S' does not, then S is said to be conditionally convergent.

Definition 14.7.3 (Majorizing series). Let $S_a = \sum_{i=1}^{+\infty} a_i$ and $S_b = \sum_{i=1}^{+\infty} b_i$ be two series. The series S_a is said to majorize S_b if for every k > 0 the partial sums satisfy $S_{a,k} \geq S_{b,k}$.

Method 14.7.4 (Comparison test). Let S_a, S_b be two series such that S_a majorizes S_b . We have the following cases:

• If S_b diverges, then S_a diverges.

⁵This is a more general version of the *Leibniz integral rule*.

- If S_a converges, then S_b converges.
- If S_b converges, nothing can be said about S_a .
- If S_a diverges, nothing can be said about S_b .

Method 14.7.5 (MacLaurin-Cauchy integral test). Let f be a non-negative continuous monotonically decreasing function defined on the interval $[n, +\infty[$. If $\int_n^{+\infty} f(x) dx$ is convergent then so is $\sum_{k=n}^{+\infty} f(k)$. On the other hand, if the integral is divergent, so is the series.

Remark 14.7.6. The function does not have to be non-negative and decreasing on the complete interval. As long as it does on the interval $[N, +\infty[$ for some $N \ge n$. This can be seen by writing $\sum_{k=n}^{+\infty} f(k) = \sum_{k=n}^{N} f(k) + \sum_{k=N}^{+\infty} f(k)$ and noting that the first term is always finite (the same argument applies to the integral).

Property 14.7.7. If the integral in the previous theorem converges, then the series is bounded in the following way:

$$\int_{n}^{+\infty} f(x)dx \le \sum_{i=n}^{+\infty} a_i \le f(n) + \int_{n}^{+\infty} f(x)dx \tag{14.21}$$

Method 14.7.8 (d'Alembert's ratio test).

$$R = \lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| \tag{14.22}$$

Following cases arise:

- R < 1: the series converges absolutely,
- R > 1: the series does not converge, and
- R = 1: the test is inconclusive.

Method 14.7.9 (Cauchy's root test).

$$R = \limsup_{n \to +\infty} \sqrt[n]{|a_n|} \tag{14.23}$$

We have the following cases:

- R < 1: the series converges absolutely,
- R > 1: the series does not converge,
- R=1 and the limit approaches strictly from above: the series diverges, and
- R = 1: the test is inconclusive.

Definition 14.7.10 (Radius of convergences). The number 1/R is called the radius of convergence.

Remark 14.7.11. The root test is stronger than the ratio test. However if the ratio test can determine the convergence of a series, then the radius of convergence of both tests will coincide and hence this is a well-defined quantity.

Method 14.7.12 (Gauss's test). If $u_n > 0$ for all n then we can write the ratio of successive terms as follows:

$$\left| \frac{u_n}{u_{n+1}} \right| = 1 + \frac{h}{n} + \frac{B(n)}{n^k} \tag{14.24}$$

where k > 1 and B(n) is a bounded function when $n \to \infty$. The series converges if h > 1 and diverges otherwise.

14.7.2 Series expansions

Theorem 14.7.13 (Hadamard lemma). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a smooth function defined on an open star-convex set U. One can expand the function as follows:

$$f(x) = f(x_0) + \sum_{i=1}^{n} (x^i - x_0^i)g_i(x_0)$$
(14.25)

where all functions g_i are also smooth on U.

From this expression one can also see that the functions g_i , evaluated at 0, give the partial derivatives of f. These functions are sometimes called the **Hadamard quotients**.

Remark 14.7.14. This lemma gives a finite order approximation of the Taylor expansion of f.

Definition 14.7.15 (Asymptotic expansion). Let f(x) be a continuous function. A series $\sum_{i=0}^{\infty} a_n x^n$ is called an asymptotic expansion of f(x) if there exists an $N \in \mathbb{N}$ such that:

$$f(x) - \sum_{n=0}^{N} a_n x^n = O(x^{N+1}).$$
(14.26)

Method 14.7.16 (Borel transform[†]). Consider the following function:

$$F(x) = \sum_{n=0}^{+\infty} \frac{a_n}{n!} x^n.$$

If the integral

$$\int_0^{+\infty} e^{-t} F(xt)dt < +\infty \tag{14.27}$$

for all $x \in \mathbb{R}$ then F(x) is called the Borel transform of f(x). Furthermore, the integral will give a convergent expression for f(x).

Theorem 14.7.17 (Watson). The uniqueness of the function F(x) is guaranteed if the function f(x) is holomorphic on the domain $\{z \in \mathbb{C} : |\arg(z)| < \frac{\pi}{2} + \varepsilon\}.$

14.8 Euler integrals

Formula 14.8.1 (Beta function). The beta function (also known as the Euler integral of the first kind) is defined as follows:

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt.$$
 (14.28)

Formula 14.8.2 (Gamma function). The gamma function (also known as the Euler integral of the second kind) is defined as follows:

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt.$$
 (14.29)

Formula 14.8.3. The following formula relates the gamma and beta functions:

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}. (14.30)$$

Property 14.8.4 (Recursion). The gamma function satisfies the following recursion relation for all points z in its domain:

$$\Gamma(z+1) = z\Gamma(z) \tag{14.31}$$

Formula 14.8.5 (Factorial). For integer numbers $n \in \mathbb{N}$ the gamma function can be expressed in terms of the factorial function:

$$\Gamma(n) = (n-1)! \tag{14.32}$$

Formula 14.8.6 (Stirling). Stirling's formula (originally stated for the factorial of natural numbers) gives an asymptotic expansion of the gamma function:

$$\ln \Gamma(z) \approx z \ln z - z + \frac{1}{2} \ln \left(\frac{2\pi}{z}\right). \tag{14.33}$$

14.9 Gaussian integrals

Formula 14.9.1 (*n*-dimensional Gaussian integral). A general Gaussian integral is an integral of the form

$$I(A, \vec{b}) = \int_{-\infty}^{+\infty} d^n x \exp\left(-\frac{1}{2}\vec{x} \cdot A\vec{x} + \vec{b} \cdot \vec{x}\right)$$
 (14.34)

where A is a real symmetric matrix. By performing the transformation $\vec{x} \to A^{-1}\vec{b} - \vec{x}$ and diagonalising A one can obtain the following expression:

$$I(A, \vec{\boldsymbol{b}}) = (2\pi)^{n/2} \det(A)^{-1/2} \exp\left(\frac{1}{2}\vec{\boldsymbol{b}} \cdot A^{-1}\vec{\boldsymbol{b}}\right)$$
(14.35)

Corollary 14.9.2. A functional generalisation is given by:

$$I(iA, iJ) = \int [d\varphi] \exp\left(-i \int d^n x d^n y \ \varphi(x) A(x, y) \varphi(y) + i \int d^n x \ \varphi(x) J(x)\right)$$
$$= C \det(A)^{-1/2} \exp\left(\frac{i}{2} \int d^n x d^n y \ J(x) A^{-1}(x, y) J(y)\right)$$
(14.36)

where we used the analytic continuation I(iA, iJ) of equation 14.35. One should pay attention to the normalisation factor C which is infinite in general.

Chapter 15

Complex Analysis

Complex algebra 15.1

The set of complex numbers \mathbb{C} forms a 2-dimensional vector space over the field of real numbers. Furthermore, the operations of complex addition and complex multiplication also turn the complex numbers into a field.

Definition 15.1.1 (Complex conjugate). Complex conjugation

$$\overline{z}: a + bi \mapsto a - bi \tag{15.1}$$

is an involution, i.e. $\overline{\overline{z}} = z$. It is sometimes denoted by z^* instead of \overline{z} , but we will adopt the former notation (unless this would cause confusion).

Formula 15.1.2 (Real/imaginary part). A complex number z can also be written as Re(z)+ $i \operatorname{Im}(z)$ where

$$Re(z) := \frac{z + \overline{z}}{2} \tag{15.2}$$

$$Re(z) := \frac{z + \overline{z}}{2}$$

$$Im(z) := \frac{z - \overline{z}}{2i}.$$

$$(15.2)$$

Definition 15.1.3 (Argument). Let z be a complex number expressed in *polar form* as follows: $z = re^{i\theta}$. The number θ is called the argument of z and it is denoted by $\arg(z)$.

Definition 15.1.4 (Riemann sphere). Consider the one-point compactification $\overline{\mathbb{C}} = \mathbb{C} \cup \mathbb{C}$ $\{\infty\}$. This set is called the Riemann sphere or **extended complex plane**. The standard operations on \mathbb{C} can be generalized to $\overline{\mathbb{C}}$ for all nonzero $z \neq \infty$ in the following way:

$$z + \infty = \infty$$

$$z * \infty = \infty$$

$$\frac{z}{\infty} = 0.$$
(15.4)

Since there exists no multiplicative inverse for ∞ the Riemann sphere does not form a field.

¹See definition 7.5.27.

15.2 Complex maps

15.2.1 Holomorphic maps

Definition 15.2.1 (Holomorphic function). A function f is said to be holomorphic on an open set U if it is complex differentiable at every point $z_0 \in U$, i.e. for every point $z_0 \in U$ the following limit exists:

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}.$$
 (15.5)

Definition 15.2.2 (Biholomorphic). A complex function f is said to be biholomorphic if both f and f^{-1} are holomorphic.

Definition 15.2.3 (Entire). A function holomorphic at every point $z \in \mathbb{C}$.

Property 15.2.4 (Cauchy-Riemann conditions). A holomorphic function f satisfies the following conditions:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$. (15.6)

These can be combined into one equation using the so-called Wirtinger derivative:

$$\frac{\partial f}{\partial \overline{z}} = 0. {15.7}$$

Theorem 15.2.5 (Looman-Menchoff²). Let f be a continuous complex-valued function defined on a subset $U \in \mathbb{C}$. If the partial derivatives of the real and imaginary part exist and if f satisfies the Cauchy-Riemann conditions then f is holomorphic on U.

Property 15.2.6. The functions u, v satisfying the CR-conditions are harmonic functions, i.e. they satisfy Laplace's equation.

Property 15.2.7. The functions u, v satisfying the CR-conditions have orthogonal level curves 2.2.9.

Property 15.2.8. Consider a real-valued function f defined on the complex plane. If it is holomorphic then the CR-conditions imply that f is a constant.

Theorem 15.2.9 (Identity theorem). If two holomorphic functions on a domain D coincide on a set containing an accumulation point of D then they coincide on all of D.

15.3 Contour integrals

In this and further sections, all contours have been chosen to be evaluated counter-clockwise (by convention). To obtain results concerning clockwise evaluation, most of the time adding a minus sign is sufficient.

Definition 15.3.1 (Contour). A complex-valued curve z(t) that can be parametrized by two real-valued functions:

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases} \longrightarrow z(t) = x(t) + iy(t). \tag{15.8}$$

²This is the strongest (most general) theorem on the holomorphy of continuous functions. It generalizes the original results by Riemann and Cauchy-Goursat.

Definition 15.3.2 (Contour integral). The contour integral of a function f(z) = u(z) + iv(z) is defined as the following line integral:

$$\int_{z_1}^{z_2} f(z)dz = \int_{(x_1, y_1)}^{(x_2, y_2)} \left[u(x, y) + iv(x, y) \right] (dx + idy). \tag{15.9}$$

Theorem 15.3.3 (Cauchy's Integral Theorem³). Let Ω be a simply-connected subset of \mathbb{C} and let f be a holomorphic function on Ω . Then for every closed rectifiable⁴ contour C in Ω :

$$\oint_C f(z)dz = 0. \tag{15.10}$$

Corollary 15.3.4 (Freedom of contour). The contour integral of a holomorphic function depends only on the limits of integration and not on the contour connecting them.

Formula 15.3.5 (Cauchy's Integral Formula). Let Ω be a connected subset of \mathbb{C} and let f be a holomorphic function on Ω . Consider a contour C in Ω . For every point z_0 inside C one can express the function f as follows:

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz.$$
 (15.11)

Corollary 15.3.6 (Analytic function). Let Ω be a connected subset of \mathbb{C} and let C be a closed contour in Ω . If f is holomorphic on Ω , then f is analytic 14.5.6 on Ω and

$$f^{(n)}(z_0) = \frac{1}{2\pi i} \oint_C f(z) \frac{n!}{(z - z_0)^{n+1}} dz.$$
 (15.12)

Furthermore, the derivatives are also holomorphic on Ω .

Theorem 15.3.7 (Morera). If f is continuous on a connected open set Ω and $\oint_C f(z)dz = 0$ for every closed contour C in Ω , then f is holomorphic on Ω .

Theorem 15.3.8 (Liouville). Every bounded entire function is constant.

Theorem 15.3.9 (Sokhotski-Plemelj⁵). Let f be a continuous complex-valued function defined on the real line and let a < 0 < b, then

$$\lim_{\varepsilon \to 0^+} \int_a^b \frac{f(x)}{x \pm i\varepsilon} dx = \mp i\pi f(0) + \mathcal{P} \int_a^b \frac{f(x)}{x} dx, \tag{15.13}$$

where \mathcal{P} denotes the Cauchy principal value.

15.4 Laurent series

Definition 15.4.1 (Laurent series). If f is a function, analytic on an $annulus^6$ A, then f can be expanded as the following series:

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n \quad \text{with} \quad a_n = \frac{1}{2\pi i} \oint \frac{f(z')}{(z' - z_0)^{n+1}} dz'.$$
 (15.14)

The subseries containing all negative degree terms is called the **principal part** of the Laurent series.

Property 15.4.2 (Convergence of Lauren series). The Laurent series of an analytic function f converges uniformly to f in the annulus $R_1 < |z - z_0| < R_2$, with R_1 and R_2 the distances from z_0 to the two closest poles.

³Also called the Cauchy-Goursat theorem.

⁴A contour with finite length.

 $^{^5}$ See for example [45], page 104.

⁶A ring-shaped region.

15.4.1 Analytic continuation

Definition 15.4.3 (Analytic continuation). Consider a function f analytic on an open subset $U \subset \mathbb{C}$. If $V \subset \mathbb{C}$ is an open subset containing U and if there exists an analytic function F on V such that F(z) = f(z) for all $z \in U$ then F is called the analytic continuation of f to V. Using the identity theorem for holomorphic functions one can prove that analytic continuations are unique (on connected domains).

Theorem 15.4.4 (Schwarz' reflection principle). Let f be analytic on the upper half plane. If $z \in \mathbb{R} \implies f(z) \in \mathbb{R}$, then

$$f(\overline{z}) = \overline{f(z)}. (15.15)$$

15.5 Singularities

15.5.1 Poles

Definition 15.5.1 (Pole). A function f has a pole of order m > 0 at a point z_0 if its Laurent series at z_0 satisfies $\forall n < -m : a_n = 0$ and $a_{-m} \neq 0$.

Definition 15.5.2 (Meromorphic). A function f is called meromorphic if it is analytic on the whole complex plane with exception of isolated poles and removable singularities. Every meromorphic function can be written as a fraction of two holomorphic functions where the poles coincide with the zeros of the denominator.

Definition 15.5.3 (Essential singularity). A function f has an essential singularity at a point z_0 if its Laurent series at z_0 satisfies $\forall n \in \mathbb{N} : a_{-n} \neq 0$, i.e. if its Laurent series has infinitely many negative degree terms.

Method 15.5.4 (Frobenius transformation). To study the behaviour of a function f(z) at $z \to \infty$, one can apply the Frobenius transformation h = 1/z and study the limit $\lim_{h\to 0} f(h)$. For example, a singularity at ∞ is defined as a singularity of f(1/z) at 0.

Property 15.5.5. An entire function f is polynomial if and only if it has a pole at ∞ .

Theorem 15.5.6 (Casorati-Weierstrass). Let f be holomorphic on the punctured open set $U\setminus\{z_0\}$ with an essential singularity at z_0 . For every neighbourhood V of z_0 contained in U, the image $f(V\setminus\{z_0\})$ is dense in \mathbb{C} .

Corollary 15.5.7. If f is an entire nonpolynomial function, then for every $c \in \mathbb{C}$ there exists a sequence $z_n \longrightarrow \infty$ such that $f(z_n) \longrightarrow c$.

Theorem 15.5.8 (Picard's little theorem). The range of a nonconstant entire function is the complex plane with at most a single exception.

Theorem 15.5.9 (Picard's great theorem). Let f be an analytic function with an essential singularity at z_0 . On every punctured neighbourhood of z_0 , f takes on all possible values, with at most a single exception, infinitely many times.

15.5.2 Branch cuts

Formula 15.5.10 (Roots). Let $z \in \mathbb{C}$. The n^{th} roots⁸ of $z = re^{i\theta}$ are given by

$$\left\{\sqrt[n]{r}\exp\left(i\frac{\theta+2\pi k}{n}\right): k \in \{0,1,\dots,n\}\right\}. \tag{15.16}$$

⁷Polynomials are excluded due to the property above.

⁸Also see the fundamental theorem of algebra 12.1.4.

Formula 15.5.11 (Complex logarithm). The natural logarithm can be continued into the complex plane (as a multi-valued function) as follows:

$$LN(z) = \left\{ \ln(r) + i(\theta + 2\pi k) : k \in \mathbb{Z} \right\}. \tag{15.17}$$

Definition 15.5.12 (Branch). The problem with these two formulas is that they represent multi-valued functions. To get an unambiguous image it is necessary to fix a value of the parameter k. By doing so there will arise curves, called **branch cuts**, in the complex plane where the function is discontinuous. A **branch** is then defined as a particular choice of the parameter k.

For the logarithm the choice for $arg(LN) \in [\alpha, \alpha + 2\pi]$ is often denoted by LN_{α} or \log_{α} .

Definition 15.5.13 (Principal value). The principal value of a multi-valued complex function is defined as the value associated with a choice of branch for which $\arg(f) \in]-\pi,\pi]$.

Definition 15.5.14 (Branch point). Let f be a complex-valued function. A point z_0 for which there exists no neighbourhood on which f is single-valued is called a branch point.

Definition 15.5.15 (Branch cut). A line connecting exactly two branch points (one possibly being ∞) is called a branch cut. In case there exist multiple branch cuts, they should never cross.

Example 15.5.16. Consider the complex function

$$f(z) = \frac{1}{\sqrt{(z-z_1)\cdots(z-z_n)}}.$$

This function has singularities at z_1, \ldots, z_n . If n is even, this function will have n (finite) branch points. This implies that the points can be grouped in pairs connected by non-intersecting branch cuts. If n is odd, this function will have n (finite) branch points and one branch point at infinity. The finite branch points will be grouped in pairs connected by non-intersecting branch cuts and the remaining branch point will be joined to infinity by a branch cut that does not intersect the others.

15.5.3 Residue theorem

Definition 15.5.17 (Residue). By applying Formula 15.3.2 to a polynomial function, one finds

$$\int_{C} (z - z_0)^n dz = 2\pi i \delta_{n,-1}$$
(15.18)

where C is a contour around the pole $z=z_0$. This means that integrating a Laurent series around a pole isolates the coefficient a_{-1} . This coefficient is therefore called the residue of the function at the given pole.

Notation 15.5.18. The residue of a complex function f(z) at a pole z_0 is denoted by

$$\operatorname{Res}[f(z)]_{z=z_0}$$
.

Formula 15.5.19. For a pole of order m, the residue is calculated as follows:

$$\operatorname{Res}[f(z)]_{z=z_j} := a_{-1} = \lim_{z \to z_0} \frac{1}{(m-1)!} \left(\frac{\partial}{\partial z}\right)^{m-1} (f(z)(z-z_0)). \tag{15.19}$$

For essential singularities the residue can be found by writing out the Laurent series explicitly.

Theorem 15.5.20 (Residue theorem). If f is a meromorphic function in Ω and if C is a closed contour in Ω which contains the poles z_i of f, then

$$\oint_C f(z)dz = 2\pi i \sum_j \text{Res}[f(z)]_{z=z_j}.$$
(15.20)

For poles on the contour C, only half of the residue contributes to the integral.

Formula 15.5.21 (Argument principle). Let f be a meromorphic function and denote the number of zeros and poles of f inside the contour C by $Z_f(C)$ and $P_f(C)$, respectively. From the residue theorem one can derive the following formula:

$$\frac{1}{2\pi i} \oint_C \frac{f(z)}{f'(z)} dz = Z_f(C) - P_f(C). \tag{15.21}$$

Definition 15.5.22 (Winding number). Let f be a meromorphic function and let C be a simple closed contour. For all $a \notin f(C)$ the winding number, also called the **index**, of a with respect to the function f is defined as follows:

$$Ind_f(a) := \frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z) - a} dz.$$
 (15.22)

This number is always an integer.

15.6 Limit theorems

Theorem 15.6.1 (Small limit theorem). Let f be a function that is holomorphic almost everywhere on \mathbb{C} and let the contour C be a circular segment with radius ε and central angle α . If z is parametrized as $z = \varepsilon e^{i\theta}$ then

$$\int_C f(z)dz = i\alpha A$$

with

$$A = \lim_{\varepsilon \to 0} f(z).$$

Theorem 15.6.2 (Great limit theorem). Let f be a function that is holomorphic almost every where on \mathbb{C} and let the contour C be a circular segment with radius R and central angle α . If z is parametrized as $z = Re^{i\theta}$ then

$$\int_C f(z)dz = i\alpha B$$

with

$$B = \lim_{R \to +\infty} f(z).$$

Theorem 15.6.3 (Jordan's lemma). Let g be a continuous function that can be decomposed as $g(z) = f(z)e^{bz}$ and let the contour C be a semicircle lying in the half-plane bounded by the real axis and oriented away of the point $\bar{b}i$. If z is parametrized as $z = Re^{i\theta}$ and

$$\lim_{R \to \infty} f(z) = 0,$$

then

$$\int_C g(z)dz = 0.$$

Chapter 16

Measure Theory and Lebesgue Integration

The main references for this chapter are [25, 40].

16.1 Measures

16.1.1 General definitions

Definition 16.1.1 (Measure). Let X be a set and let Σ be a σ -algebra over X. A function $\mu: \Sigma \to \overline{\mathbb{R}}$ is called a measure if it satisfies the following conditions:

- 1. Non-negativity: $\forall E \in \Sigma : \mu(E) \geq 0$,
- 2. Measure zero: $\mu(\emptyset) = 0$, and
- 3. σ -additivity: $\forall i \neq j : E_i \cap E_j = \emptyset \implies \mu(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i)$.

When μ only satisfies countable subadditivity, i.e. the equality in the last condition becomes an inequality \leq , for any collection of sets (disjoint or not) it is called an **outer measure**.

Remark 16.1.2. To show that two measures coincide on a σ -algebra, it suffices to show that they coincide on the generating sets and apply the monotone class theorem 2.4.16.

Definition 16.1.3 (Measure space). The pair (X, Σ) is called a measurable space. The elements $E \in \Sigma$ are called **measurable sets**. The triplet (X, Σ, μ) is called a measure space.

Definition 16.1.4 (Null set). A set $A \subset \mathbb{R}$ is said to be null if $\mu(A) = 0$.

Definition 16.1.5 (Almost everywhere¹). Let (X, Σ, μ) be a measure space. A property P is said to hold on X almost everywhere (a.e.) if it satisfies the following equation:

$$\mu(\{x \in X : \neg P(x)\}) = 0, \tag{16.1}$$

i.e. it holds everywhere except for a null set.

Definition 16.1.6 (Complete measure space). The measure space (X, Σ, μ) is said to be complete if for every $E \in \Sigma$ with $\mu(E) = 0$ the implication $A \subset E \implies A \in \Sigma$ holds. Additivity then necessarily implies that $\mu(A) = 0$.

Definition 16.1.7 (Completion). Let \mathcal{F}, \mathcal{G} be σ -algebras over a set X. \mathcal{G} is said to be the completion of \mathcal{F} if it is the smallest σ -algebra such that the measure space (X, \mathcal{G}, μ) is complete.

¹In probability theory this is often called **almost surely**.

Definition 16.1.8 (Borel measure). Consider a topological space together with its Borel σ -algebra 7.1.10. Any measure defined on this measurable space is called a Borel measure.

Definition 16.1.9 (Regular measure). Let μ be a measure on a measurable space (X, Σ) . μ is called a regular measure if it satisfies the following equations for every measurable set B:

$$\mu(B) = \inf \{ \mu(O) : O \text{ open and measurable}, O \supset B \}$$
 (16.2)

$$\mu(B) = \sup \{ \mu(F) : F \text{ compact and measurable}, F \subset B \}.$$
 (16.3)

A Borel regular measure can also be chracterized as a Borel measure such that for every subset $A \subseteq X$ there exists a Borel set B such that $A \subseteq B$ and inf $\{\mu(E) : A \subseteq E \in \Sigma\} = \mu(B)$.

Definition 16.1.10 (Radon measure). A Borel measure on a Hausdorff space that is outer regular, inner regular on open sets and **locally finite**, i.e. every point has a neighbourhood of finite measure. When restricted to locally-compact Hausdorff spaces, this is equivalent to requiring that every compact subset has finite measure.

Definition 16.1.11 (σ -finite measure). Let (X, Σ, μ) be a measure space. The measure μ is said to be σ -finite if there exists a sequence $(A_n)_{n\in\mathbb{N}}$ of measurable sets such that $\bigcup_{n=1}^{+\infty} A_n = X$ with $\forall n \in \mathbb{N} : \mu(A_n) < +\infty$.

Definition 16.1.12 (Measure-preserving map). Let (X, Σ, μ) be a measure space and consider a map $T: X \to X$. T is said to be measure-preserving if it satisfies the following equation:

$$\mu(T^{-1}(A)) = \mu(A) \tag{16.4}$$

for all $A \in \Omega$. This equation can also be written using a pushforward notation: $T_*\mu = \mu$. These form the morphisms in the category of measure spaces.

Definition 16.1.13 (Ergodic map). Let (X,Ω) be a measure space. Consider a measure-preserving map $T: X \to X$. T is said to be ergodic if the following conditions is satisfied:

$$T(A) = A \implies \mu(A) = 0 \lor \mu(X \backslash A) = 0. \tag{16.5}$$

This is equivalent to stating that for every set $A \in \Sigma$ with positive measure the following condition holds:

$$\mu\left(\bigcup_{n=1}^{\infty} T^{-n}(A)\right) = 1. \tag{16.6}$$

Property 16.1.14. Consider a topological space X with Borel σ -algebra \mathcal{B} . Almost every T-orbit is dense in the support of μ .

Definition 16.1.15 (Mixing). An endomorphism of a measure spaces (X, Σ, μ) is said to be mixing if for all measurable spaces A, B the following equality holds:

$$\lim_{n \to +\infty} \mu \left(T^{-n}(A) \cap B \right) = \mu(A)\mu(B) \tag{16.7}$$

Property 16.1.16. All mixing transformations are ergodic.

16.1.2 Lebesgue measure

Definition 16.1.17 (Lebesgue outer measure). Let $X \subseteq \mathbb{R}$ be a set. The (Lebesgue) outer measure of X is defined as follows:

$$\lambda^*(X) := \inf \left\{ \sum_{i=1}^{+\infty} l(I_i) \text{ with } (I_i)_{i \in \mathbb{N}} \text{ a sequence of open intervals that covers } X \right\}.$$
 (16.8)

Property 16.1.18. Let I be an interval. The outer measure equals the length: $\lambda^*(I) = l(I)$.

Property 16.1.19. The outer measure is translation-invariant: $\lambda^*(A+t) = \lambda^*(A)$ for all A, t.

Property 16.1.20. The Lebesgue outer measure is an outer measure in the sense of Definition 16.1.1.

Theorem 16.1.21 (Carathéodory's criterion). Let X be a subset of \mathbb{R} . If X satisfies the following equation, it is said to be **Lebesgue measurable**:

$$\forall E \subseteq \mathbb{R} : \lambda^*(E) = \lambda^*(E \cap X) + \lambda^*(E \cap X^c). \tag{16.9}$$

This is denoted by $X \in \mathcal{M}$ and the outer measure $\lambda^*(X)$ is called the Lebesgue measure of X. It is denoted by $\lambda(X)$.

Construction 16.1.22 (Carathéodory's extension theorem). In fact Carathéodory's criterion holds in a general setting. Every outer measure μ^* gives rise to a σ -algebra consisting of those sets that satisfy (16.9) with respect to μ^* . Furthermore, consider a **premeasure** μ_0 , i.e. a σ -additive function defined on an algebra of sets 2.4.7 such that $\mu_0(\emptyset) = 0$. Equation (16.8) can be used to define an outer measure μ^* in terms of the premeasure μ_0 (by taking covers in the algebra of sets). The σ -algebra generated by this outer measure contains the given algebra of sets and μ^* restricts to μ_0 . This shows that any premeasure can be extended to a genuine measure. Moreover, it can be shown that this measure is complete.

Corollary 16.1.23. The Lebesgue σ -algebra \mathcal{M} is the completion of the Borel σ -algebra \mathcal{B} . (This is in fact how the Lebesgue σ -algebra was introduced historically.)

Property 16.1.24. Any countable set is null with respect to the Lebesgue outer measure.

Property 16.1.25. The Lebesgue measure is a regular Borel measure 16.1.9. For every $A \subset \mathbb{R}$ there exists a sequence $(O_n)_{n \in \mathbb{N}}$ of open sets such that

$$A \subset \bigcap_{i} O_{i}$$
 and $\lambda \left(\bigcap_{i} O_{i}\right) = \lambda^{*}(A),$ (16.10)

and for every $E \in \mathcal{M}$ there exists a sequence $(F_n)_{n \in \mathbb{N}}$ of closed sets such that

$$\bigcup_{i} F_{i} \subset E \quad \text{and} \quad \lambda \left(\bigcup_{i} F_{i}\right) = \lambda(E). \tag{16.11}$$

Property 16.1.26. Let $E \subset \mathbb{R}$. $E \in \mathcal{M}$ if and only if for every $\varepsilon > 0$ there exist an open set $O \supset E$ and a closed set $F \subset E$ such that $\lambda^*(O \setminus E) < \varepsilon$ and $\lambda^*(E \setminus F) < \varepsilon$.

Property 16.1.27. Let $(A_n)_{n\in\mathbb{N}}$ be a sequence of sets with $\forall i: A_i \in \mathcal{M}$. The following two properties apply:

$$\forall i: A_i \subseteq A_{i+1} \implies \lambda \left(\bigcup_{i=1}^{+\infty} A_i\right) = \lim_{i \to +\infty} \lambda(A_i)$$
 (16.12)

$$\forall i: A_i \supseteq A_{i+1} \land \lambda(A_1) < +\infty \implies \lambda\left(\bigcap_{i=1}^{+\infty} A_i\right) = \lim_{i \to +\infty} \lambda(A_i). \tag{16.13}$$

Remark 16.1.28. This property is not only valid for the Lebesgue measure but for every σ -additive set function.

Construction 16.1.29 (Restriction). Let $B \in \mathcal{M}$ be a Lebesgue-measurable set with measure $\lambda(B) > 0$. The restriction of the Lebesgue measure to the set B is defined as follows:

$$\mathcal{M}_B := \{ A \cap B : A \in \mathcal{M} \} \quad \text{and} \quad \forall E \in \mathcal{M}_B : \lambda_B(E) := \lambda(E).$$
 (16.14)

Furthermore, the measure space $(B, \mathcal{M}_B, \lambda_B)$ is complete.

16.1.3 Measurable functions

Definition 16.1.30 (Measurable function). Consider two measurable spaces (X, Σ_X) and (Y, Σ_Y) . A function $f: X \to Y$ is said to be measurable if for every measurable set $A \in \Sigma_Y$ the inverse image $f^{-1}(A)$ is also measurable. Equivalently, the σ -algebra generated by the inverse images of measurable sets in Σ_Y should be a sub- σ -algebra of Σ_X .

Two important examples are given below:

Example 16.1.31 (Borel-measurable function). A continuous function $f: X \to Y$ is called Borel(-measurable) if for every open set $O \in \mathcal{B}_Y : f^{-1}(O) \in \mathcal{B}_X$.

Example 16.1.32 (Lebesgue-measurable function). A function $f : \mathbb{R} \to \mathbb{R}$ such that for every interval $I \subset \mathbb{R} : f^{-1}(I) \in \mathcal{M}$.

Remark 16.1.33. The inclusion $\mathcal{B} \subset \mathcal{M}$ implies that every Borel-measurable function is also Lebesgue-measurable.

Property 16.1.34. The class of Borel/Lebesgue-measurable functions defined on $E \in \mathcal{M}$ forms an algebra.

Example 16.1.35. Following types of functions are Lebesgue-measurable:

- monotonic functions,
- continuous functions, and
- indicator functions.

Corollary 16.1.36. Let f, g be Lebesgue-measurable functions and let $F : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a continuous function. The composition F(f(x), g(x)) is also measurable.

Property 16.1.37. Let f be a Lebesgue-measurable function. The level set $\{x : f(x) = a\}$ is measurable for all $a \in \mathbb{R}$.

Property 16.1.38. Define the following functions (which are measurable if f is measurable as a result of previous properties):

$$f^{+}(x) := \max(f, 0) = \begin{cases} f(x) & f(x) > 0\\ 0 & f(x) \le 0 \end{cases}$$
 (16.15)

$$f^{-}(x) := \max(-f, 0) = \begin{cases} 0 & f(x) > 0 \\ -f(x) & f(x) \le 0. \end{cases}$$
 (16.16)

The function $f : \mathbb{R} \to \mathbb{R}$ is measurable if and only if both f^+ and f^- are measurable. Furthermore, f is measurable if |f| is measurable (the converse is false).

16.1.4 Limit operations

Property 16.1.39. Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of Borel/Lebesgue-measurable functions. The following functions are also measurable:

- $\min_{i \le k} (f_i)$ and $\max_{i \le k} (f_i)$,
- $\inf_{i \in \mathbb{N}} (f_i)$ and $\sup_{i \in \mathbb{N}} (f_i)$, and

• $\liminf_{i \to +\infty} (f_i)$ and $\limsup_{i \to +\infty} (f_i)$.

Property 16.1.40. If f is a measurable function and g is a function such that f = g almost everywhere, then g is measurable as well.

Corollary 16.1.41. As a result of the previous two properties, if a sequence of measurable functions converges pointwise a.e., the limit is also a measurable function.

Definition 16.1.42 (Essential supremum).

$$\operatorname{esssup}(f) := \inf\{z : f \le z \text{ a.e.}\} \tag{16.17}$$

Definition 16.1.43 (Essential infimum).

$$\operatorname{essinf}(f) := \sup\{z : f \ge z \text{ a.e.}\} \tag{16.18}$$

Property 16.1.44. Every measurable function f satisfies the following inequalities:

- $f \leq \operatorname{esssup}(f)$ a.e. and $f \geq \operatorname{essinf}(f)$ a.e.
- $\operatorname{esssup}(f) \leq \sup(f)$ and $\operatorname{essinf}(f) \geq \inf(f)$.

The latter pair of inequalities becomes a pair of equalities if f is continuous.

Property 16.1.45. If f, g are measurable functions, then $\operatorname{esssup}(f+g) \leq \operatorname{esssup}(f) + \operatorname{esssup}(g)$. An analogous inequality holds for the essential infimum.

16.2 Lebesgue integral

16.2.1 Simple functions

Definition 16.2.1 (Indicator function).

$$\mathbb{1}_A(x) := \begin{cases} 1 & x \in A \\ 0 & x \notin A. \end{cases} \tag{16.19}$$

Definition 16.2.2 (Simple function). A function $f: X \to \mathbb{R}$ on a measurable space (X, Σ) that can be expressed in the following way:

$$f(x) = \sum_{i=1}^{n} a_i \mathbb{1}_{A_i}(x)$$
 (16.20)

for some $\{a_i \geq 0\}_{i \leq n}, \{A_i \in \Sigma\}_{i \leq n} \text{ and } n \in \mathbb{N}.$

Definition 16.2.3 (Step function). If $(X, \Sigma) \equiv (\mathbb{R}, \mathcal{M})$ and the sets A_i are intervals, the above function is often called a step function.

Definition 16.2.4 (Lebesgue integral of simple functions). Consider a simple function φ on a measure space (X, Σ, μ) . The Lebesgue integral of φ over a measurable set $A \in \Sigma$ with respect to μ is given by

$$\int_{A} \varphi \, d\mu = \sum_{i=1}^{n} a_i \mu(A \cap A_i). \tag{16.21}$$

As usual, if the domain of integration is not mentioned explicitly, an integral over the whole space X is implied.

Example 16.2.5. Let $\mathbb{1}_{\mathbb{Q}}$ be the indicator function of the set of rational numbers. This function is clearly a simple function. Previous formula makes it possible to integrate the rational indicator function over the real line (which is not possible in the sense of Riemann):

$$\int_{\mathbb{R}} \mathbb{1}_{\mathbb{Q}} d\lambda = 1 \times \lambda(\mathbb{Q}) + 0 \times \lambda(\mathbb{R} \backslash \mathbb{Q}) = 0$$
 (16.22)

where the measure of the rational numbers is 0 because it is a countable set (Corollary 16.1.24).

16.2.2 Measurable functions

Definition 16.2.6 (Integral for non-negative functions). The definition for simple functions can be generalized to non-negative measurable functions f as follows:

$$\int_{A} f \, d\mu := \sup \left\{ \int_{A} \varphi \, d\mu : \varphi \text{ a simple function such that } \varphi \le f \right\}. \tag{16.23}$$

This integral is always non-negative.

Formula 16.2.7. The following equality allows to change the domain of integrals:

$$\int_{A} f \, d\mu = \int_{X} f \mathbb{1}_{A} \, d\mu. \tag{16.24}$$

Property 16.2.8. The Lebesgue integral over a null set is 0.

Theorem 16.2.9 (Mean value theorem). If $a \le f(x) \le b$, then $a\lambda(A) \le \int_A f \, d\lambda \le b\lambda(A)$.

Property 16.2.10. Let f be a non-negative measurable function. There exists an increasing sequence $(\varphi_n)_{n\in\mathbb{N}}$ of simple functions such that $\varphi_n\nearrow f$. Moreover, if f is bounded on $A\in\Sigma$, the sequence can be chosen to be uniformly convergent on A.

16.2.3 Integrable functions

Definition 16.2.11 (Integrable function). Let A be a measurable subset of a measure space (X, Σ, μ) . A measurable function f is said to be integrable over A if both $\int_A f^+ d\mu$ and $\int_A f^- d\mu$ are finite. The Lebesgue integral of f over A is then defined as

$$\int_{A} f \, d\mu = \int_{A} f^{+} \, d\mu - \int_{A} f^{-} \, d\mu. \tag{16.25}$$

If only one of the functions f^+, f^- is finite, f is called quasi-integrable.

Property 16.2.12 (Absolute integrability). f is integrable if and only if |f| is integrable. Furthermore, $\int_A |f| d\mu = \int_A f^+ d\mu + \int_A f^- d\mu$.

Property 16.2.13. Let f, g be integrable functions on a measure space (X, Σ, μ) . The following important properties apply:

- The Lebesgue integral is linear.
- $f \leq g$ a.e. implies $\int_A f d\mu \leq \int_A g d\mu$.
- $\forall A \in \Sigma, \int_A f \, d\mu \leq \int_A g \, d\mu \implies f \leq g$ a.e.
- f is finite a.e.
- $\left| \int_A f \, d\mu \right| \le \int_A |f| \, d\mu$.

• $f \ge 0 \land \int_A f \, d\mu = 0 \implies f = 0$ a.e. and, more generally for all integrable f:

$$\int_{A} f \, d\mu = 0, \forall A \in \Sigma \implies f = 0 \text{ a.e.}$$
 (16.26)

Definition 16.2.14 (Lebesgue integrable functions). The set of functions integrable over a set $A \in \mathcal{M}$ forms the vector space $\mathcal{L}^1(A)$.

Property 16.2.15. Let $f \in \mathcal{L}^1$ and $\varepsilon > 0$. There exists a continuous (or step or even simple) function g, vanishing outside a finite (or even compact) set, such that $\int |f - g| d\mu < \varepsilon$.

Definition 16.2.16 (Locally integrable function). A measurable function is said to be locally integrable if it is integrable on every compact subset of its domain. The space of locally integrable functions is denoted by \mathcal{L}^1_{loc} .

Example 16.2.17. All continuous functions are locally integrable.

Property 16.2.18 (Absolute continuity). Let $f \geq 0$ be measurable. The mapping $A \mapsto \int_A f \, d\mu$ defines a measure (it is σ -finite if f is locally integrable and finite if f is integrable). Furthermore, this measure is said to be **absolutely continuous** (with respect to μ). See Section 16.5 for a generalization to arbitrary measures.

16.2.4 Convergence theorems

Theorem 16.2.19 (Fatou's lemma). Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of non-negative measurable functions.

$$\int_{A} \left(\liminf_{n \to \infty} f_n \right) d\mu \le \liminf_{n \to \infty} \int_{A} f_n d\mu \tag{16.27}$$

Theorem 16.2.20 (Monotone convergence). Let A be measurable and let $(f_n)_{n\in\mathbb{N}}$ be an increasing sequence of non-negative measurable functions such that $f_n \nearrow f$ pointwise a.e.

$$\int_{A} f \, d\mu = \lim_{n \to \infty} \int_{A} f_n(x) \, d\mu. \tag{16.28}$$

Method 16.2.21. To prove results concerning integrable functions in spaces such as \mathcal{L}^1 it is often useful to proceed as follows:

- 1. Verify that the property holds for indicator functions. (This often follows by definition.)
- 2. Use the linearity to extend the property to simple functions.
- 3. Apply the monotone convergence theorem to show that the property holds for all non-negative measurable functions.
- 4. Extend the property to all integrable functions by expanding $f = f^+ f^-$ and applying linearity again.

Theorem 16.2.22 (Dominated convergence). Let A be measurable and consider a sequence of measurable functions $(f_n)_{n\in\mathbb{N}}$ such that $\forall n\in\mathbb{N}: |f_n|\leq g$ a.e. for some function $g\in\mathcal{L}^1(A)$. If $f_n\to f$ pointwise a.e. then f is integrable over A and

$$\int_{A} f \, d\mu = \lim_{n \to \infty} \int_{A} f_n(x) \, d\mu. \tag{16.29}$$

Property 16.2.23. Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of nonnegative measurable functions. The following equality applies:

$$\int_{A} \sum_{n=1}^{+\infty} f_n(x) d\mu = \sum_{n=1}^{+\infty} \int_{A} f_n(x) d\mu.$$
 (16.30)

One cannot conclude that the right-hand side is finite a.e., so the series on the left-hand side need not be integrable.

Theorem 16.2.24 (Beppo Levi²). Suppose that

$$\sum_{i=1}^{\infty} \int_{A} |f_n|(x) d\mu \text{ is finite.}$$

The series $\sum_{i=1}^{\infty} f_n(x)$ converges a.e. Furthermore, the series is integrable and

$$\int_{A} \sum_{i=1}^{\infty} f_n(x) \, d\mu = \sum_{i=1}^{\infty} \int_{A} f_n(x) \, d\mu. \tag{16.31}$$

Theorem 16.2.25 (Riemann-Lebesgue lemma). Let $f \in \mathcal{L}^1$. The sequences

$$s_k = \int_{-\infty}^{+\infty} f(x) \sin(kx) dx$$

and

$$c_k = \int_{-\infty}^{+\infty} f(x) \cos(kx) dx$$

both converge to 0.

Theorem 16.2.26 (Birkhoff ergodicity). Let (X, Σ, μ) be a measure space and let T be a μ -ergodic map. For every measurable function f and for μ -almost every element $x \in X$ the integral of f can be computed as an average over the orbit of x:

$$\lim_{n \to +\infty} \frac{1}{n+1} \sum_{t=0}^{n} f(T^{n}(x)) = \int f \, d\mu. \tag{16.32}$$

16.2.5 Relation to the Riemann integral

Property 16.2.27. Let $f:[a,b]\to\mathbb{R}$ be a bounded function.

- f is Riemann-integrable if and only if f is continuous a.e. with respect to the Lebesgue measure on [a, b], i.e. the set of discontinuities of f has measure zero.
- Riemann-integrable functions on [a, b] are integrable with respect to the Lebesgue measure on [a, b] and the integrals coincide.

Property 16.2.28. If $f \geq 0$ and the improper Riemann integral 14.16 exists, the Lebesgue integral $\int_{\mathbb{R}} f \, d\mu$ exists and the two integrals coincide. Note that positivity of f is required here. Because the Lebesgue integral is absolute 16.2.12, positive and negative parts cannot cancel, i.e. Lebesgue integrals can never be conditionally convergent.

The following definition should be compared to 17.2.2.

²Note that various other theorems and variants of this theorem can be found in the literature under the same name.

Definition 16.2.29 (Dirac measure). Define the Dirac measure as follows:

$$\delta_a(A) = \begin{cases} 1 & a \in A \\ 0 & a \notin A. \end{cases}$$
 (16.33)

Integration with respect to the Dirac measure has the following nice property:

$$\int f \, d\delta_a = f(a). \tag{16.34}$$

16.3 Space of integrable functions

16.3.1 Distance

To define a distance between functions, a notion of the length of a function is introduced first. Normally this would not be a problem, one could use the integral of a function to define a norm. However, the fact that two functions differing on a null set have the same integral carries problems with it: a nonzero function could have a zero length. To avoid this issue one quotients out these degenerate functions::

Definition 16.3.1 (L^1 -space). Define the set of equivalence classes $L^1 = \mathcal{L}^1_{/\equiv}$ by introducing the following equivalence relation: $f \equiv g$ if and only if f = g a.e.

Property 16.3.2. L^1 is a Banach space 23.1.7. The norm on L^1 is given by

$$||f||_1 := \int |f| \, d\mu. \tag{16.35}$$

16.3.2 Hilbert space L^2

Property 16.3.3. L^2 is a Hilbert space 23.2.4. The norm on L^2 is given by

$$||f||_2 := \left(\int |f|^2 d\mu\right)^{\frac{1}{2}}.$$
 (16.36)

This norm is induced by the following inner product:

$$\langle f|g\rangle := \int \overline{f}g \, d\mu. \tag{16.37}$$

Formula 16.3.4 (Cauchy-Schwarz inequality). Let $f, g \in L^2(X, \mathbb{C})$. We have that $fg \in L^1(X, \mathbb{C})$ and

$$\left| \int \overline{f}g \, d\mu \right| \le \|fg\|_1 \le \|f\|_2 \|g\|_2. \tag{16.38}$$

Remark. This follows immediately from Formula 16.3.7.

16.3.3 L^p -spaces

Generalizing the previous two function classes leads to the notion of L^p -spaces with the following norm:

Formula 16.3.5. For all $1 \le p \le +\infty$, $L^p(X)$ is a Banach space when equipped with the following norm:

$$||f||_p := \left(\int_X |f|^p d\mu\right)^{\frac{1}{p}}.$$
 (16.39)

Remark 16.3.6. Note that L^2 is the only L^p -space that is also a Hilbert space. The other L^p -spaces do not have a norm induced by an inner product.

Formula 16.3.7 (Hölder's inequality). Let $\frac{1}{p} + \frac{1}{q} = 1$ with $p \ge 1$ (numbers satisfying this equality are called Hölder conjugates). For every $f \in L^p$ and $g \in L^q$ one has that

$$||fg||_1 \le ||f||_p ||g||_q. \tag{16.40}$$

This also implies that $fg \in L^1$.

Formula 16.3.8 (Minkowski's inequality). For every $p \ge 1$ and $f, g \in L^p$ one has that

$$||f + g||_p \le ||f||_p + ||g||_p. \tag{16.41}$$

This also implies that $f + g \in L^p$.

Property 16.3.9 (Inclusions). $L^1(X) \cap L^{\infty}(X) \subset L^2(X)$. Moreover, if X has finite measure, then $L^q(X) \subset L^p(X)$ whenever $1 \le p \le q < +\infty$.

Using the Hölder inequality one can prove the following property:

Property 16.3.10. Let p,q be Hölder conjugates. The spaces L^p and L^q are topological duals, i.e. every function $f \in L^p$ can be identified (one-to-one) with a continuous functional on L^q .

Definition 16.3.11 (Essentially bounded function). Let f be a measurable function satisfying esssup $|f| < +\infty$. The function f is said to be essentially bounded and the set of all such functions is denoted by L^{∞} (again after quotienting out all functions that are equal a.e.).

Formula 16.3.12. A norm on L^{∞} is given by

$$||f||_{\infty} := \operatorname{esssup} |f|. \tag{16.42}$$

This norm is called the **supremum norm** and it induces the supremum metric ??.

Property 16.3.13. Equipped with the above norm the space L^{∞} becomes a Banach space.

16.4 Product measures

16.4.1 Real hyperspace \mathbb{R}^n

The notions of intervals and lengths from the one dimensional case can be generalized to higher dimensions in the following way:

Definition 16.4.1 (Hypercube). Let I_1, \ldots, I_n be a sequence of intervals. The hypercube spanned by them is defined as the following set:

$$\mathbf{I} := I_1 \times \dots \times I_n. \tag{16.43}$$

Definition 16.4.2 (Generalized length). Let **I** be a hypercube induced by the set of intervals I_1, \ldots, I_n . The generalized length (or **volume**) of **I** is defined as

$$l(\mathbf{I}) := \prod_{i=1}^{n} l(I_i). \tag{16.44}$$

16.4.2 Construction of the product measure

In this section we will work with the general notation (Ω, \mathcal{F}, P) to denote a measure space. The general condition for multi-dimensional Lebesgue measures is given by the following equation which should hold for all $A_1 \in \mathcal{F}_1$ and $A_2 \in \mathcal{F}_2$:

$$P(A_1 \times A_2) = P_1(A_1)P_2(A_2). \tag{16.45}$$

Definition 16.4.3 (Section). Let $A = A_1 \times A_2$. The following two sets are called sections:

$$A_{\omega_1} := \{ \omega_2 \in \Omega_2 : (\omega_1, \omega_2) \in A \} \subset \Omega_2,$$

$$A_{\omega_2} := \{ \omega_1 \in \Omega_1 : (\omega_1, \omega_2) \in A \} \subset \Omega_1.$$

Property 16.4.4. Let $\mathcal{F} = \mathcal{F}_1 \times \mathcal{F}_2$. If $A \in \mathcal{F}$, then $A_{\omega_1} \in \mathcal{F}_2$ for each ω_1 and $A_{\omega_2} \in \mathcal{F}_1$ for each ω_2 . Equivalently, the sets $\mathcal{G}_1 = \{A \in \mathcal{F} \mid \forall \omega_1 : A_{\omega_1} \in \mathcal{F}_2\}$ and $\mathcal{G}_2 = \{A \in \mathcal{F} \mid \forall \omega_2 : A_{\omega_2} \in \mathcal{F}_1\}$ coincide with the product σ -algebra \mathcal{F} .

Property 16.4.5. The function $A_{\omega_2} \mapsto P(A_{\omega_2})$ is a step function:

$$P(A_{\omega_2}) = \begin{cases} P_1(A_1) & \omega_2 \in A_2 \\ 0 & \omega_2 \notin A_2. \end{cases}$$

Formula 16.4.6 (Product measure). From the previous property it follows that the product measure P(A) can be written in the following way:

$$P(A) = \int_{\Omega_2} P_1(A_{\omega_2}) dP_2(\omega_2). \tag{16.46}$$

Property 16.4.7. Let P_1, P_2 be finite measures. If $A \in \mathcal{F}$, the functions

$$\omega_1 \mapsto P_2(A_{\omega_1})$$
 and $\omega_2 \mapsto P_1(A_{\omega_2})$

are measurable with respect to \mathcal{F}_1 and \mathcal{F}_2 respectively and

$$\int_{\Omega_2} P_1(A_{\omega_2}) dP_2(\omega_2) = \int_{\Omega_1} P_2(A_{\omega_1}) dP_1(\omega_1). \tag{16.47}$$

Furthermore, the set function P is countably additive and if any other product measure coincides with P on all rectangles, it coincides with P on the whole product σ -algebra.

16.4.3 Fubini's theorem

Property 16.4.8. Let $f: \Omega_1 \times \Omega_2 \to \mathbb{R}$ be a non-negative function. If f is measurable with respect to $\mathcal{F}_1 \times \mathcal{F}_2$, then for each $\omega_1 \in \Omega_1$ the function $\omega_2 \mapsto f(\omega_1, \omega_2)$ is measurable with respect to \mathcal{F}_2 (and vice versa). Their integrals with respect to P_1 and P_2 respectively are also measurable.

Definition 16.4.9 (Section). The functions $\omega_1 \mapsto f(\omega_1, \omega_2)$ and $\omega_2 \mapsto f(\omega_1, \omega_2)$ are called sections of f.

Theorem 16.4.10 (Tonelli). Let $f: \Omega_1 \times \Omega_2 \to \mathbb{R}$ be a non-negative function. The following equalities hold:

$$\int_{\Omega_1 \times \Omega_2} f(\omega_1, \omega_2) d(P_1 \times P_2)(\omega_1, \omega_2) = \int_{\Omega_1} \left(\int_{\Omega_2} f(\omega_1, \omega_2) dP_2(\omega_2) \right) dP_1(\omega_1)
= \int_{\Omega_2} \left(\int_{\Omega_1} f(\omega_1, \omega_2) dP_1(\omega_1) \right) dP_2(\omega_2).$$
(16.48)

Corollary 16.4.11 (Fubini). Let $f \in L^1(\Omega_1 \times \Omega_2)$. The sections of f are integrable in the appropriate spaces. Furthermore, the functions $\omega_1 \mapsto \int_{\Omega_2} f dP_2$ and $\omega_2 \mapsto \int_{\Omega_1} f dP_1$ are in $L^1(\Omega_1)$ and $L^1(\Omega_2)$ respectively and equality (16.48) holds.

Remark 16.4.12. The previous construction and theorems also apply to higher dimensional product spaces. These theorems provide a way to construct higher-dimensional Lebesgue measures m_n by defining them as the completion of the product of n one-dimensional Lebesgue measures.

16.5 Radon-Nikodym theorem

Definition 16.5.1. Let (X, Σ) be a measurable space and let μ, ν be two measures defined on this space. Then ν is said to be **absolutely continuous** with respect to μ if

$$\forall A \in \Sigma : \mu(A) = 0 \implies \nu(A) = 0. \tag{16.49}$$

Notation 16.5.2. This relation is often denoted by $\nu \ll \mu$.

The following property relates the notion of absolute continuity above with that of Definition 14.3.6:

Property 16.5.3 (Absolute continuity). Let μ, ν be finite measures on a measurable space (X, Σ) . Then $\nu \ll \mu$ if and only if

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall A \in \Sigma : \mu(A) < \delta \implies \nu(A) < \varepsilon. \tag{16.50}$$

Definition 16.5.4 (Singular measures). Consider two measures μ, ν . If there exists a set A such that $\mu(A) = 0 = \nu(A^c)$, they are said to be singular (or **orthogonal**). This is denoted by $\mu \perp \nu$.

Theorem 16.5.5 (Lebesgue's decomposition theorem). Let μ, ν be two σ -finite measures. There exist two other σ -finite measures ν_a, ν_s such that $\nu = \nu_a + \nu_s$ where $\nu_a \ll \mu$ and $\nu_s \perp \mu$.

Definition 16.5.6 (Dominated measure). Let μ, ν be two measures defined on a measurable space (X, Σ) . Then μ is said to **dominate** ν if $0 \le \nu(F) \le \mu(F)$ for every $F \in \Sigma$.

Theorem 16.5.7 (Radon-Nikodym theorem for dominated measures).

Let μ be a finite measure on (X, Σ) and let ν be a measure dominated by μ . There exists a non-negative Σ -measurable function f such that $\nu(A) = \int_A f \, d\mu$ for all $A \in \Sigma$.

Definition 16.5.8 (Radon-Nikodym derivative). The function f in the previous theorem is called the Radon-Nikodym derivative of ν with respect to μ . It is generally denoted by $\frac{d\nu}{d\mu}$.

Theorem 16.5.9 (Radon-Nikodym theorem). Let (X, Σ) be a measurable space and let μ, ν be two σ -finite measures defined on Σ such that $\nu \ll \mu$. There exists a non-negative measurable function $f: X \to \mathbb{R}$ such that $\nu(A) = \int_A f \, d\mu$ for all $A \in \Sigma$.

Remark 16.5.10. The function f in this theorem is unique up to a μ -null (and thus ν -null) set.

Property 16.5.11. In general the Radon-Nikodym derivative is not integrable (unless the measures are finite). However, it is always locally integrable 16.2.16. Together with Property 16.2.18 this implies that (densities of) absolutely continuous measures are in bijection with locally integrable functions.

Property 16.5.12 (Change of variables). Let μ, ν be finite measures such that μ dominates ν and let $\frac{d\nu}{d\mu}$ be the associated Radon-Nikodym derivative. For every ν -integrable function f the following equality holds

$$\int_{A} f \, d\nu = \int_{A} f h_{\nu} \, d\mu \tag{16.51}$$

for all $A \in \Sigma$.

Property 16.5.13. Let λ, ν and μ be σ -finite measures. If $\lambda \ll \mu$ and $\nu \ll \mu$, then the following two properties hold:

- Linearity: $\frac{d(\lambda + \nu)}{d\mu} = \frac{d\lambda}{d\mu} + \frac{d\lambda}{d\mu}$.
- Chain rule: If $\lambda \ll \nu$, then $\frac{d\lambda}{d\mu} = \frac{d\lambda}{d\nu} \frac{d\nu}{d\mu}$ a.e.

16.6 Generalizations

The previous sections on integration theory (except for the section on the Radon-Nikodym theorem) where all stated in terms of the Lebesgue measure $\mu \equiv m$. However, all that was really needed was the fact that μ defined a genuine measure on some (complete) measurable space $(\mathbb{R}, \Sigma \subset 2^{\mathbb{R}})$, together with the properties that followed from it. The conclusion is that almost all statements hold for any measure on any complete measurable space. These include among others Fatou's lemma, the monotone and dominated convergence theorems and Fubini's theorem.

The general construction starts, as in the case of the Lebesgue measure, from an outer measure μ^* on a set X. The main point of deviation from the Lebesgue construction occurs at this point. Instead of starting from the Borel σ -algebra and going to the completion \mathcal{M} , Carathéodory's extension theorem 16.1.22 is applied to the outer measure μ^* .

16.6.1 Lebesgue-Stieltjes integral

As an example of the above considerations, one can construct an alternative measure (and associated integral) on the Borel σ -algebra of the real line \mathbb{R} . This construction will be important in the study of density functions in probability theory.

Consider a function F that is right-continuous, i.e. $F(x^+) = F(x)$, and monotonically increasing. The length of an interval can be generalized in the following way:

Definition 16.6.1 (*F*-length). The *F*-length of an interval [a,b] is defined as follows:

$$l_F([a,b]) := F(b) - F(a).$$
 (16.52)

The restriction to half-open intervals assures that this function is additive when taking unions of intervals. The footnote in Definition 7.1.10 also assures that the σ -algebra generated by these intervals is the usual Borel σ -algebra on \mathbb{R} .

An immediate extension of Definition 16.1.17 gives the outer measure associated to F:

Definition 16.6.2 (*F*-outer measure). Let $X \subseteq \mathbb{R}$ be a set. The *F*-outer measure of *X* is defined as follows:

$$\mu_F^*(X) := \inf \left\{ \sum_{i=1}^{+\infty} l_F(I_i) \text{ with } (I_i)_{i \in \mathbb{N}} \text{ a sequence of half-open intervals that cover } X \right\}.$$
(16.53)

Using this outer measure one can define the μ_F -measurable sets as those sets satisfying Carathéodory's criterion (with respect to μ_F^*). The main difference with the Lebesgue measure is that μ_F is not necessarily translation-invariant and that singletons are not necessarily null:

Property 16.6.3 (Singletons). The *F*-measure of a singleton $\{x\}$ is equal to the jump of *F* at x:

$$\mu_F(\{x\}) = F(x) - F(x^-). \tag{16.54}$$

Such elements are examples of *atoms*, sets of positive measure for which every proper measurable subset is null.

Corollary 16.6.4. It follows that the Lebesgue-Stieltjes measures having null singletons are exactly those for which F is continuous.

Property 16.6.5 (Regularity). The Lebesgue-Stieltjes measure is a regular Borel measure. Furthermore, every (finite) regular Borel measure μ on \mathbb{R} is equal to a Lebesgue-Stieltjes measure where

$$F(x) = \mu(]-\infty,x]).$$

Example 16.6.6 (Lebesgue measure). The Lebesgue measure is the Lebesgue-Stieltjes measure associated to

$$F(x) = x$$
.

Example 16.6.7 (Dirac measure). The Dirac measure at $a \in \mathbb{R}$ can be obtained as the Lebesgue-Stieltjes measure for

$$F = \mathbb{1}_{[a,\infty[}.$$

16.6.2 Signed measures

Definition 16.6.8 (Signed measure). Let X be a set and let Σ be a σ -algebra over X. A function $\mu: \Sigma \to]-\infty, +\infty]$ is called a signed measure if it satisfies the following conditions:

- 1. Measure zero: $\mu(\emptyset) = 0$, and
- 2. Countable additivity: $\forall i \neq j : E_i \cap E_j = \emptyset \implies \mu(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i)$.

Note that these requirements are the same as for an ordinary measure 16.1.1, except that now the function is allowed to become negative. The function is also not allowed to become $-\infty$ to exclude undefined expressions such as $\infty - \infty$.

Remark 16.6.9. An important consequence of this generalization is that signed measures are not necessarily monotonic, i.e. $A \subseteq B \Longrightarrow \mu(A) \le \mu(B)$. In fact this is a strict relation: a signed measure is monotonic if and only if it is a genuine measure.

Definition 16.6.10 (Total variation). Consider a signed measure μ on a measurable space (X, Σ) . The total variation $|\mu|$ is the measure defined as follows:

$$|\mu|(A) := \sup \left\{ \sum_{P \in \mathcal{P}} |\mu(P)| : \mathcal{P} \subset \Sigma, \mathcal{P} \text{ covers } A \right\}.$$
 (16.55)

Using this measure one can decompose the signed measure μ as a difference of two genuine measures:

$$\mu = \mu^{+} - \mu^{-}$$

$$= \frac{1}{2}(|\mu| + \mu) + \frac{1}{2}(|\mu| - \mu).$$
(16.56)

Furthermore, this decomposition is minimal in the sense that if $\mu = \lambda_1 - \lambda_2$ for any two measures, then $\mu^+ \leq \lambda_1$ and $\mu^- \leq \lambda_2$.

The following theorem generalizes both the Radon-Nikodym and Lebesgue decomposition theorems to the case of signed measures:

Theorem 16.6.11. Consider a σ -finite signed measure μ and a σ -finite measure ν on a measurable space (X, Σ) . There exists a ν -a.e. unique integrable function $f \in L^1(\nu)$ and a σ -finite measure $\mu_s \perp \nu$ such that for all $A \in \Sigma$:

$$\mu(A) = \int_{A} f d\nu + \mu_s(A).$$
 (16.57)

As before, the function is called f the Radon-Nikodym derivative of μ .

Theorem 16.6.12 (Hahn-Jordan). Consider a signed measure μ on a measurable space (X, Σ) . There exists a set $A \in \Sigma$ such that the minimal decomposition $\mu = \mu^+ - \mu^-$ in terms of two measures μ^{\pm} is given by

$$\mu^{+}(B) = \mu(A \cap B)$$
 $\mu^{-}(B) = \mu(A^{c} \cap B).$ (16.58)

Definition 16.6.13 (Integral with respect to a signed measure). Let μ be a signed measure on a measurable space (X, Σ) together with a measurable function f on $A \in \Sigma$. The integral of f with respect to μ is defined as follows:

$$\int_{A} f \ d\mu = \int_{A} f \ d\mu^{+} - \int_{A} f \ d\mu^{-}. \tag{16.59}$$

Definition 16.6.14 (Lebesgue-Stieltjes signed measure). Let F be a function of bounded variation. According to Property 14.3.9 it can be written as $F = F_1 - F_2$, where F_1, F_2 are monotonically increasing absolutely continuous functions. The Lebesgue-Stieltjes (signed) measure associated to F is defined as $\mu_F := \mu_{F_1} - \mu_{F_2}$.

Theorem 16.6.15 (Fundamental theorem of calculus). Let F be an absolutely continuous function on the closed interval [a,b]. Then F is differentiable m-a.e. (m being the Lebesgue measure) and its associated Lebesgue-Stieltjes measure μ_F has Radon-Nikodym derivative $\frac{d\mu_F}{dm} = F'$ m-a.e. Furthermore, for all $x \in [a,b]$ one has

$$F(x) - F(a) = \mu_F([a, x]) = \int_a^x F'(t)dt.$$
 (16.60)

Corollary 16.6.16. If F is absolutely continuous and F' = 0 m-a.e., then F is constant.

Chapter 17

Distributions

The main references for this chapter are [26, 40, 41]. Although this chapter is technically part of functional analysis and hence uses the language of normed spaces (Chapter 23), it is presented in the part on calculus due to its strong relation to measure and integration theory.

17.1 Functionals

Definition 17.1.1 (Distribution). The space of distributions or **generalized functions** on an open set $U \subset \mathbb{R}^n$ is defined as the set of continuous linear functionals on $\mathcal{D}(U) := C_c^{\infty}(U)$, the space of smooth functions with compact support. First $\mathcal{D}(U)$ has to be endowed with a topology. For every compact set $K \subset U$ and every $m \in \mathbb{N}$ a locally convex topology 23.3.9 on $\mathcal{D}_K^m(U) := C_K^m(U)$ is constructed using the following family of seminorms:

$$\left\{ \sup_{x \in K} \|f^{(i)}(x)\| \mid |i| \le m \right\}. \tag{17.1}$$

A topology on all of $\mathcal{D}^m(U)$ is then defined as the inductive limit over all compact subsets $K \subset U$, i.e. a subset of $\mathcal{D}^m(U)$ is open if and only if its intersection with all $\mathcal{D}_K^m(U)$ is open. All of these topologies are Fréchet 23.3.10. A topology on $\mathcal{D}(U)$ is then obtained by taking a further inductive limit of the $\mathcal{D}_K(U)$ over all compact subsets $K \subset U$.

The dual $\mathcal{D}'(U)$ is then equipped with the weak-* topology 23.1.3 and, accordingly, a sequence of distributions $(\phi_n)_{n\in\mathbb{N}}$ converges to a distribution ϕ if and only if $\langle \phi_n, f \rangle \longrightarrow \langle \phi, f \rangle$ for all $f \in \mathcal{D}(U)$. This definition immediately implies that two distributions ϕ, ψ are equal if and only if $\langle \phi, f \rangle = \langle \psi, f \rangle$ for all $f \in \mathcal{D}(U)$.

Property 17.1.2 (Equivalent seminorms). The seminorms used in the definition of the locally convex topology on $\mathcal{D}(U)$ can be replaced by the following equivalent ones:

$$p_{K,m}(f) := \sup_{|i| \le m} \sup_{x \in K} ||f^{(i)}(x)||$$
(17.2)

$$\sup_{x \in K} \sum_{|i| \le m} \|f^{(i)}(x)\| \tag{17.3}$$

$$\sum_{|i| \le m} \sup_{x \in K} ||f^{(i)}(x)||. \tag{17.4}$$

Property 17.1.3. A linear functional ϕ on $\mathcal{D}(U)$ is a distribution if and only if it satisfies one of the following equivalent statements:

• It is continuous when restricted to every $\mathcal{D}_K(U)$ for $K \subset U$ compact.

- If the sequence $(f_n)_{n\in\mathbb{N}}$ converges to 0 in $\mathcal{D}(U)$, then $\langle \phi, f_n \rangle \longrightarrow 0$.
- For every compact subset $K \subset U$ there exist a constant $C_K > 0$ and an integer $m_K \ge 0$ such that

$$|\langle \phi, f \rangle| \le C_K \, p_{K, m_K}(f) \tag{17.5}$$

for all $f \in \mathcal{D}_K(U)$.

Definition 17.1.4 (Order). The order of a distribution ϕ is the smallest integer m such that

$$|\langle \phi, f \rangle| \le C_K \, p_{K,m}(f) \tag{17.6}$$

for all $f \in \mathcal{D}_K(U)$ and all compact subsets $K \subset U$. Note that the integer m is independent of the compact set K.

Property 17.1.5. A distribution is of order k if and only if it can be (uniquely) extended to a continuous linear functional on $\mathcal{D}^k(U)$.

Theorem 17.1.6 (Riesz-Markov-Kakutani). The space of positive continuous functionals on $C_c(X)$, the space of continuous functions with compact support on a locally compact Hausdorff space X, is homeomorphic to the space of Radon measures 16.1.10 on X. Every functional Λ can be represented as

$$\Lambda(f) = \int_X f \, d\mu \tag{17.7}$$

for some Radon measure μ .

The topological dual of $C(\widehat{X})$, the continuous functions on the one-point compactification 7.5.27 (i.e. those functions that vanish at infinity), is isometrically isomorphic to the space of finite signed Radon measures (equipped with the total variation norm).

Example 17.1.7 (Ordinary function as generalized function). By property 16.2.18, every locally integrable function $f \in L^1_{loc}$ gives rise to a distribution:

$$\langle f, g \rangle = \int f(x)g(x) dx.$$
 (17.8)

Distributions of this form are also said to be **regular**.

Property 17.1.8. The space \mathcal{D} is dense in \mathcal{D}' .

Property 17.1.9 (Product with smooth functions). For every smooth function f and every distribution ϕ , the product $f\phi$ is defined as

$$\langle f\phi, q \rangle := \langle \phi, fq \rangle. \tag{17.9}$$

This turns \mathcal{D}' into a C^{∞} -module.

17.1.1 Support

Definition 17.1.10 (Support). The support of a distribution is defined as the smallest closed set on which it does not vanish.

Property 17.1.11. A distribution has compact support if and only if it can be extended to a continuous linear functional on $C^{\infty}(U)$.²

Property 17.1.12. Distributions with compact support have finite order.

Property 17.1.13. A distribution that is supported only at 0 can be written as a finite combination of derivatives of the Dirac delta measure.

To prove this one can work with a sequence of *regularizations*. (This uses the concept of convolutions defined further below.)

²This gives a nice duality: compactly supported function \leftrightarrow distribution and function \leftrightarrow compactly supported distribution.

17.1.2 Derivatives

Definition 17.1.14 (Derivative of a distribution). The derivative of a distribution ϕ is defined by duality:

$$\left\langle \frac{\partial \phi}{\partial x}, f \right\rangle := -\left\langle \phi, \frac{\partial f}{\partial x} \right\rangle.$$
 (17.10)

This formula makes sense, since if ϕ is regular, the above formula is the one obtained through integration by parts.

In general an function $g \in L^1_{loc}$ is said to be a **weak derivative** of a function $f \in L^1_{loc}$ if it satisfies the following equation for all $h \in \mathcal{D}$:

$$\langle f, h' \rangle = -\langle g, h \rangle. \tag{17.11}$$

Property 17.1.15. Every distribution is smooth, i.e. it is infinitely differentiable. Furthermore, it satisfies the conclusion of Schwarz's theorem 14.5.7.

Property 17.1.16. If a distribution T satisfies T' = 0, then T is a regular distribution induced by a constant function.

Definition 17.1.17 (Fundamental solution). Let D be a differential operator. A fundamental solution for D is a distribution ϕ such that

$$D\phi = \delta. \tag{17.12}$$

17.2 Examples

Definition 17.2.1 (Heaviside distribution). The Heaviside function is defined as follows:³

$$H(x) = \begin{cases} 0 & x < 0 \\ 1 & x > 0 \end{cases} \tag{17.13}$$

From this definition it follows that for every $f \in \mathcal{D}(U)$:

$$\langle H, f \rangle = \int_0^{+\infty} f(x) \ dx.$$
 (17.14)

Definition 17.2.2 (Dirac delta distribution). The Dirac delta distribution is defined as the weak derivative of the Heaviside function:

$$\langle \delta, f \rangle := \langle H', f \rangle$$

$$= -\langle H, f' \rangle$$

$$= -\int_0^{+\infty} f'(x) dx$$

$$= f(0)$$

Property 17.2.3 (Sampling property). The previous definition can be generalized in the following way (whenever $x_0 \in U$):

$$f(x_0) = \int_U f(x)\delta(x - x_0) \ dx \tag{17.15}$$

where we used the suggestive notation⁴ $\delta(x-x_0)$ to denote the Dirac delta distribution with support at x_0 .

 $^{^{3}}$ The case x=0 is often left undefined, but since this function will always enter formulas inside an integral this does not matter.

⁴See the section on *kernels* further on.

Definition 17.2.4 (Dirac comb).

$$III_b(x) = \sum_n \delta(x - nb) \tag{17.16}$$

Property 17.2.5. Let $f(x) \in C^1(\mathbb{R})$ be a function with roots at $x_1, x_2, ..., x_n$ such that $f'(x_i) \neq 0$. The Dirac delta distribution has the following property:

$$\delta[f(x)] = \sum_{i=1}^{n} \frac{1}{|f'(x_i)|} \delta(x - x_i). \tag{17.17}$$

Formula 17.2.6 (Differentiation across discontinuities). Let f(x) be a piecewise continuous function with discontinuities at $x_1, ..., x_n$. Let f satisfy the conditions to be a generalized function. Define $\sigma_i = f^+(x_i) - f^-(x_i)$, i.e. the jumps of f at its discontinuities. Next, define the (continuous) function

$$f_c(x) = f(x) - \sum_{i=1}^n \sigma_i H(x - x_i).$$

Differentiation of this formula gives

$$f'(x) = f'_c(x) + \sum_{i=1}^n \sigma_i \delta(x - x_i).$$

It follows that the derivative in the generalized sense of a piecewise continuous function equals the derivative in the classical sense plus a summation of delta functions at every jump discontinuity.

Example 17.2.7 (Principal value). The function $\frac{1}{x}$ is clearly not integrable on \mathbb{R} . However, its Cauchy principal value exists. This procedure also defines a distribution:

$$\left\langle \mathcal{P}\frac{1}{x}, f \right\rangle := \lim_{\varepsilon \downarrow 0} \int_{\varepsilon}^{+\infty} \frac{f(x) - f(x^{-})}{x} dx.$$
 (17.18)

Moreover, this defines the distributional derivative of $\ln |x|$.

17.3 Convolutions and kernels

Definition 17.3.1 (Direct product). Consider two distributions $\phi \in \mathcal{D}'(U)$ and $\psi \in \mathcal{D}'(V)$. The direct product distribution $\phi \times \psi \in \mathcal{D}'(U \times V)$ is defined by one of the following two equivalent formulas:

$$\langle \phi \times \psi, f \rangle := \langle \phi, \langle \psi, f \rangle \rangle \tag{17.19}$$

or

$$\langle \phi \times \psi, f \rangle := \langle \psi, \langle \phi, f \rangle \rangle. \tag{17.20}$$

Definition 17.3.2 (Convolution). The convolution of two distributions is defined as follows (if it exists):

$$\langle \phi * \psi, f \rangle := \langle \phi \times \psi, g \rangle \tag{17.21}$$

where g(x,y) := f(x+y). It should be noted that (if it exists) the convolution is commutative.

Property 17.3.3 (Convolution with delta distribution). For every distribution ϕ one has the following property:

$$\delta * \phi = \phi. \tag{17.22}$$

Formula 17.3.4 (Convolution of functions). The convolution of two (locally integrable) functions f * g on \mathbb{R}^n can be defined through Example 17.1.7:

$$(f * g)(x) = \int f(y)g(x - y)dy. \tag{17.23}$$

Property 17.3.5 (Young inequality). If $f, g \in L^1$, then f * g exists a.e. and

$$||f * g||_1 \le ||f||_1 \, ||g||_1. \tag{17.24}$$

This also implies that $f * g \in L^1$. Furthermore, consider p, q and $r \in [0, +\infty]$ such that

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1. \tag{17.25}$$

If $f \in L^p$ and $g \in L^q$, then

$$||f * g||_r \le ||f||_p \, ||g||_q. \tag{17.26}$$

This also implies that $f * g \in L^r$. A result similar to 16.3.7 holds for Hölder conjugates $(r = +\infty)$, their convolution is an element of L^{∞} . Furthermore, the convolution will also be uniformly continuous on all of \mathbb{R}^n and if either p or q > 1, the convolution vanishes at ∞ .

?? COMPLETE (kernels, ...) ??

17.4 Fourier series

Definition 17.4.1 (Dirichlet kernel). The Dirichlet kernel is the collection of functions of the form:

$$D_n(x) := \frac{1}{2\pi} \sum_{k=-n}^n e^{ikx}.$$
 (17.27)

Formula 17.4.2 (Sieve property). If $f \in C^1([-\pi, \pi])$, then

$$\lim_{n \to +\infty} \int_{-\pi}^{\pi} f(x) D_n(x) dx = 0.$$
 (17.28)

Formula 17.4.3. For 2π -periodic functions, the order-n Fourier approximation is given by the following convolution:

$$s_n(x) = \sum_{k=-n}^n \widetilde{f}(k)e^{ikx} = (D_n * f)(x).$$
 (17.29)

Property 17.4.4 (Convergence of the Fourier series). Let $f : \mathbb{R} \to \mathbb{R}$ be a 2π -periodic function. If f is piecewise C^1 on $[-\pi, \pi]$, then

$$(D_n * f)(x) \xrightarrow{n \to +\infty} \frac{f(x+) + f(x-)}{2}.$$
 (17.30)

Formula 17.4.5 (Generalized Fourier series). Let $f \in L^2[-l, l]$ be a 2l-periodic function. This function can be approximated by the following series:

$$f(x) = \sum_{n = -\infty}^{+\infty} \left(\frac{1}{2l} \int_{-l}^{l} e^{-i\frac{n\pi x'}{l}} f(x') dx' \right) e^{i\frac{n\pi x}{l}}.$$
 (17.31)

Formula 17.4.6 (Fourier coefficients). As seen in the above formula, the Fourier coefficient $\widetilde{f}(n)$ can be calculated by taking the inner product (23.7) of f with the n^{th} eigenfunction e_n :

$$\widetilde{f}(n) = \int_{-l}^{l} e_n^*(x) f(x) dx \quad \text{where} \quad e_n := \sqrt{\frac{1}{2l}} e^{i\frac{n\pi x}{l}}.$$
 (17.32)

Definition 17.4.7 (Periodic extension). Let f be piecewise C^1 on [-L, L]. The periodic extension f^L is defined by gluing "copies" of f together. The **normalized periodic extension** is defined as follows:

$$f^{L,\nu}(x) := \frac{f^L(x+) + f^L(x-)}{2}.$$
(17.33)

Property 17.4.8. If f is piecewise C^1 on [-L, L], the Fourier series approximation of f converges to $f^{L,\nu}$ for all $x \in \mathbb{R}$.

17.5 Transformations and integral representations

Formula 17.5.1 (Laplace transform).

$$\mathcal{L}\lbrace f\rbrace(s) := \int_0^\infty f(t)e^{-st}dt \tag{17.34}$$

Formula 17.5.2 (Bromwich integral).

$$f(t) = \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} \mathcal{L}\{f\}(s) e^{st} ds$$
 (17.35)

Formula 17.5.3 (Mellin transform).

$$\mathcal{M}\{f(x)\}(s) := \int_0^{+\infty} x^{s-1} f(x) dx$$
 (17.36)

Formula 17.5.4 (Inverse Mellin transform).

$$f(x) = \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} \mathcal{M}\{f(x)\}_{(s)} x^{-s} ds$$
 (17.37)

Formula 17.5.5 (Heaviside step function).

$$\theta(x) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{e^{ikx}}{k - i\varepsilon} dk$$
 (17.38)

Formula 17.5.6 (Dirac delta distribution).

$$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{ikx} dk \tag{17.39}$$

17.6 Tempered distributions

Definition 17.6.1 (Schwartz space). The Schwartz space of rapidly decreasing functions⁵ $\mathscr{S}(\mathbb{R}^n)$ is defined as follows:

$$\mathscr{S}(\mathbb{R}^n) := \left\{ f \in C^{\infty}(\mathbb{R}^n) \, \middle| \, \forall i, j \in \mathbb{N}^n, \forall x \in \mathbb{R}^n : \left| x^i f^{(j)}(x) \right| < +\infty \right\}, \tag{17.40}$$

⁵These functions are said to be rapidly decreasing because every derivative $f^{(j)}(x)$ decays faster than any inverse power x^i for $x \to +\infty$.

where for a multi-index i the symbol x^i denotes the monomial $x_1^{i_1}x_2^{i_2}\cdots$. An equivalent condition is the following: for every $p \in \mathbb{N}$ and $j \in \mathbb{N}^n$, there exists a constant $M_{p,j}(f)$ such that

$$\sup_{x \in \mathbb{R}^n} (1 + ||x||^2)^p ||f^{(j)}|| \le M_{p,j}(f). \tag{17.41}$$

Definition 17.6.2 (Functions of slow growth). The set of functions of slow growth $N(\mathbb{R}^n)$ is defined as follows:

$$N(\mathbb{R}^n) := \left\{ f \in C^{\infty}(\mathbb{R}^n) \mid \forall i \in \mathbb{N}, \exists M_i > 0 : \left| f^{(i)}(x) \right| = O(\|x\|^i) \text{ for } \|x\| \to +\infty \right\}.$$
 (17.42)

Property 17.6.3. If $f \in \mathscr{S}(\mathbb{R})$ and $f \in N(\mathbb{R})$, then $fg \in \mathscr{S}(\mathbb{R})$.

17.6.1 Fourier transform

The Fourier series can be used to expand a 2l-periodic function as an infinite series of exponentials. However, to expand a nonperiodic function $f \in L^1(\mathbb{R})$ one needs the integral Fourier transform:⁶

$$\mathcal{F}f(\omega) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt. \tag{17.43}$$

The inverse Fourier transform, if it exists, is given by

$$f(t) = \mathcal{F}^{-1}(\mathcal{F}f)(t) = \frac{1}{\sqrt{2\pi}} \mathcal{P} \int_{-\infty}^{\infty} \mathcal{F}f(\omega)e^{i\omega t}d\omega.$$
 (17.44)

Equation (17.43) is called the (forward) Fourier transform of f and equation (17.44) is called the inverse Fourier transform. The pair $(f, \mathcal{F}f)$ is called a **Fourier transform pair**.

Notation 17.6.4. The Fourier transform of a function f is often denoted by \widetilde{f} or \widehat{f} .

Property 17.6.5. From the Riemann-Lebesgue lemma 16.2.25 it follows that

$$\mathcal{F}f(\omega) \longrightarrow 0 \quad \text{if} \quad |\omega| \longrightarrow 0.$$
 (17.45)

Theorem 17.6.6 (Parceval). Let (f, \widetilde{f}) and (g, \widetilde{g}) be two Fourier transform pairs.

$$\int_{-\infty}^{+\infty} f(x)g(x)dx = \int_{-\infty}^{+\infty} \widetilde{f}(k)\widetilde{g}(k)dk \tag{17.46}$$

Corollary 17.6.7 (Plancherel). The integral of the square (of the modulus) of a Fourier transform is equal to the integral of the square (of the modulus) of the original function:

$$\int_{-\infty}^{+\infty} |f(x)|^2 dx = \int_{-\infty}^{+\infty} |\widetilde{f}(k)|^2 dk.$$
 (17.47)

This implies that the Fourier transform defines an isometry on L^2 . In this case it is often called the Fourier-Plancherel transform.

Now one can wonder why the Fourier transform is introduced in this chapter. The reason is that Fourier transforms can be generalized to distributions in a convenient way. One could try to extend the definition through duality, but for an arbitrary $\phi \in \mathcal{D}'$ it is not guaranteed that $\mathcal{F}\phi \in \mathcal{D}'$. This is where the Schwartz spaces come up:

Property 17.6.8. The Fourier transform defines an isomorphism on \mathscr{S} .

⁶All functions are required to be Lebesgue integrable to make the integral converge. Weaker conditions are possible (see the literature).

One can also show that every Schwartz space has the structure of a Fréchet space under the family of seminorms

$$s_{p,N}(\phi) := \sup_{x \in \mathbb{R}^n} \sup_{|j| \le N} \left| (1 + ||x||^2)^p \phi^{(j)}(x) \right|.$$
 (17.48)

The space of **tempered distributions** is then defined as the continuous dual of \mathscr{S} (equipped with the weak-* topology). These spaces have the following important property:

Property 17.6.9. \mathcal{D} is dense in \mathscr{S} . This implies that tempered distributions are determined by their values on \mathcal{D} .

Property 17.6.10. The Fourier transform of tempered distributions has some nice additional properties:

- The Fourier transform also defines an isomorphism on \mathscr{S}^* .
- The Fourier transform of a compactly supported function is of slow growth.
- The Fourier transform of a convolution is equal to the product of the individual Fourier transforms. (Here one should restrict to the case of a compactly supported and a tempered distribution such that the convolution is also tempered.)

Theorem 17.6.11 (Paley-Wiener). The Fourier transform of a compactly supported distribution can be extended to an analytic function on \mathbb{C}^n .

17.7 Analysis on groups 4

Definition 17.7.1 (Haar measure). A left (resp. right) Haar measure on a topological group is a regular Borel measure 16.1.9 that is finite on compact subsets and invariant under the left (resp. right) group action. For locally compact groups this is a Radon measure 16.1.10.

Example 17.7.2 (Lebesgue measure). Consider \mathbb{R}^n as an additive group. Property 16.1.19 implies that the Lebesgue measure is a left (and right) Haar measure.

Theorem 17.7.3 (Haar⁷). If G is locally compact, there exists a left Haar measure that is unique up to a scalar factor. Moreover, if G is compact, this constant can be fixed by requiring the normalization condition $\mu(G) = 1$.

Definition 17.7.4 (Pontryagin dual). Let G be a locally compact Abelian group. Its (Pontryagin) dual is defined as the group of continuous homomorphisms from G to the circle group:

$$G^{\vee} := \operatorname{Hom}(G, S^1). \tag{17.49}$$

In general this group is endowed with the compact-open topology. Elements of this group are called **group characters** of G.

Theorem 17.7.5 (Pontryagin duality). There exists a natural isomorphism $G \mapsto G^{\vee\vee}$.

Construction 17.7.6 (Fourier transform). Consider a locally compact Abelian group G together with its canonical Haar measure μ . For every $f \in L^1(G, \mu)$ one defines the Fourier transform as follows for all $\chi \in G^{\vee}$:

$$\widehat{f}(\chi) := \int_{G} f(g)\overline{\chi(g)}d\mu(g), \tag{17.50}$$

where the identification $S^1 \cong U(1)$ is used.

⁷A similar theorem holds for right Haar measures.

Theorem 17.7.7 (Bochner). Consider a locally compact Abelian group G. There is a bijective correspondence between normalized positive-definite continuous function on G and probability measures on G^{\vee} such that

$$f(g) = \int_{G^{\vee}} \chi(g) d\nu(\chi). \tag{17.51}$$

?? COMPLETE ??

Chapter 18

Ordinary differential equations

18.1 Boundary conditions

Unique solutions of a differential equation are obtained by supplying additional conditions. These are called boundary conditions.

Definition 18.1.1 (Periodic boundary conditions). Boundary conditions of the following form:

$$y(x) = y(x + \varphi). \tag{18.1}$$

By induction it follows that for every n

$$y(x) = y(x + n\varphi). \tag{18.2}$$

Definition 18.1.2 (Dirichlet boundary conditions). Boundary conditions of the following form:

$$y(x) = f(x) \tag{18.3}$$

for all $x \in \partial \Omega$ where Ω is the domain on which the problem is defined.

Definition 18.1.3 (Neumann boundary conditions). Boundary conditions of the following form:

$$\frac{\partial y}{\partial \hat{n}}(x) = f(x) \tag{18.4}$$

for all $x \in \partial \Omega$ where Ω is the domain on which the problem is defined.

18.2 Existence and uniqueness

Theorem 18.2.1 (Picard-Lindelöf). Consider an ordinary differential equation of the form

$$\dot{x}(t) = f(t, x(t)) \tag{18.5}$$

where f is defined on a subset $I \times U \subset \mathbb{R} \times \mathbb{R}^{n}$. If f is continuous on I and locally Lipschitzian on U, then for every point $(t_0, x_0) \in I \times U$ there exists a maximal interval $J \supseteq I$ such that there is a unique solution $x: J \to \mathbb{R}^n$ of the differential equation with initial condition (t_0, x_0) .

¹Generalizations to arbitrary Banach spaces exist, see e.g. [40].

18.3 First order ODEs

Definition 18.3.1 (First order ODE).

$$y'(t) + a(t)y(t) = R(t)$$
(18.6)

If the function R(t) is identically zero, then the ODE is said to be **homogenous**.

Formula 18.3.2. Let $U \subseteq \mathbb{R}$ be an open set. Let the functions $a(t), R(t) : U \to \mathbb{R}$ be continuous. The solutions $\varphi(t) : U \to \mathbb{R}$ of equation 18.6 are given by:

$$\varphi(t) = e^{-\int a(t)dt} \left(c + \int R(t)e^{\int a(t)dt}dt \right)$$
(18.7)

where c is a constant (in general determined by some kind of boundary condition).

18.4 Second order ODE's

Definition 18.4.1 (Second order ODE).

$$y''(t) + a(t)y'(t) + b(t)y(t) = R(t)$$
(18.8)

If the function R(t) is identically zero, then the ODE is said to be **homogenous**.

18.4.1 General solution

Formula 18.4.2. Let $\varphi: U \to \mathbb{R}$ be a nowhere zero solution of the homogeneous equation. The general solution of equation 18.8 is then given by

$$y(t) = c_1 \varphi + c_2 \varphi \int \frac{e^{-\int a}}{\varphi^2} + \psi_0$$
 (18.9)

where ψ_0 is a particular solution of equation 18.8.

Property 18.4.3. Let ψ_0 be a solution of equation 18.8. The set of all solutions is given by the affine space

$$\{\psi_0 + \chi : \chi \text{ is a solution of the homogeneous equation}\}.$$
 (18.10)

Property 18.4.4. Two solutions of the homogeneous equation are independent if the **Wronskian** is nonzero:

$$W(\varphi_1(x), \varphi_2(x)) := \begin{vmatrix} \varphi_1(x) & \varphi_2(x) \\ \varphi_1'(x) & \varphi_2'(x) \end{vmatrix} \neq 0.$$
 (18.11)

Formula 18.4.5 (Abel's identity). An explicit formula for the Wronskian is given by

$$W(x) = W(x_0) \exp\left(-\int_{x_0}^x a(x')dx'\right).$$
 (18.12)

18.4.2 Constant coefficients

Property 18.4.6. A function $\varphi: U \to \mathbb{C}$ is a complex solution of the homogeneous equation if and only if $\text{Re}(\varphi)$ and $\text{Im}(\varphi)$ are real solutions of the homogeneous equation.

Formula 18.4.7 (Characteristic equation). When studying an ODE of the form²

$$y''(t) + py'(t) + qy(t) = 0 (18.13)$$

where p and q are constants, we define the characteristic equation as follows:

$$\lambda^2 + p\lambda + q = 0. \tag{18.14}$$

This polynomial equation generally³ has two distinct (complex) roots λ_1 and λ_2 . From these roots we can derive the solutions of equation 18.13 using the following rules (c_1 and c_2 are constants):

- $\lambda_1 \neq \lambda_2$ with $\lambda_1, \lambda_2 \in \mathbb{R}$: $y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$,
- $\lambda_1 = \lambda_2$: $y(t) = c_1 e^{\lambda t} + c_2 t e^{\lambda t}$, and
- $\lambda_1 = \lambda_2^*$ with $\lambda_1 = a + ib$: $y(t) = c_1 e^{at} \cos(bt) + c_2 e^{at} \sin(bt)$.

18.4.3 Method of Frobenius

Method 18.4.8 (Frobenius). To find a solution of the homogeneous equation we assume a solution of the form

$$y(x) := \sum_{i=0}^{\infty} a_i (x - x_0)^{i+k}$$
(18.15)

where k is a constant.

Definition 18.4.9 (Indicial equation). After inserting the solution 18.15 into the homogeneous equation we obtain, after collecting all terms in x^i , an equation of the form $\sum_{i=n}^{\infty} H_i(k)x^i = 0$ where $n \in \mathbb{R}$ and $H_i(k)$ is a polynomial in k. This means that for every i we obtain an equation of the form $H_i(k) = 0$, due to the independence of polynomial terms. The equation for the lowest power will be quadratic in k and it is called the indicial equation.

Property 18.4.10. The indicial equation generally has two roots k_1, k_2 . We list the different possibilities:

- $k_1 = k_2$: Only one solution will be found with the method of Frobenius (another one can be found as in the second term of equation 18.9).
- $k_1 k_2 \in \mathbb{Z}$: A second independent solution might be obtained using this method. If not, then a second solution can be found as mentioned in the previous case.
- $k_1 k_2 \notin \mathbb{Z}$: Two independent solutions can be found using this method.

Theorem 18.4.11 (Fuchs). If a(x) and b(x) are analytic at $x = x_0$, then the general solution y(x) can be expressed as a Frobenius series.

18.5 Sturm-Liouville theory

Definition 18.5.1 (Sturm-Liouville boundary value problem). The following ODE, subject to mixed boundary conditions (given below), is called a Sturm-Liouville boundary value problem:

$$\frac{d}{dx}\left[p(x)\frac{dy}{dx}\right] + [g(x) + \lambda r(x)]y(x) = 0$$
(18.16)

where

²Any other form of homogeneous second order ODE's with constant coefficients can be rewritten in this form.

³See theorem 12.1.4 ("Fundamental theorem of algebra").

- p(x), q(x) and r(x) are continuous on [a, b],
- $p(x) \in C^1([a, b])$ with p(x) < 0 or p(x) > 0 on [a, b],
- $r(x) \ge 0$ or $r(x) \le 0$ on [a, b], and
- r(x) is not identically zero on any subinterval.

The boundary conditions are given by

$$\alpha_1 y(a) + \beta_1 y'(a) = 0 \alpha_2 y(b) + \beta_2 y'(b) = 0$$
 (18.17)

where at least one of the constants $\alpha_1, \alpha_2, \beta_1$ or β_2 is nonzero.

Formula 18.5.2. The solutions of a Sturm-Liouville problem are of the form

$$y(x) = c_1 u_1(x; \lambda) + c_2 u_2(x; \lambda). \tag{18.18}$$

Only for certain values of λ will these solutions (u_1, u_2) be non-trivial. The values of λ for which the solutions are nontrivial are called **eigenvalues** and the associated solutions are called **eigenfunctions**. Substituting this form in the boundary conditions gives the following determinant condition for nontrivial solutions, which is also the defining equation of the eigenvalues λ :

$$\begin{vmatrix} \alpha_1 u_1(a;\lambda) + \beta_1 u_1'(a;\lambda) & \alpha_1 u_2(a;\lambda) + \beta_1 u_2'(a;\lambda) \\ \alpha_1 u_1(b;\lambda) + \beta_1 u_1'(b;\lambda) & \alpha_1 u_2(b;\lambda) + \beta_1 u_2'(b;\lambda) \end{vmatrix} = 0.$$
 (18.19)

The independent eigenfunctions can be found by substituting the found eigenvalues in the ODE 18.16.

Definition 18.5.3 (Self-adjoint form). A Sturm-Liouville problem can be rewritten as⁴

$$\hat{\mathcal{L}}y(x) = \lambda y(x).$$

The operator

$$\hat{\mathcal{L}} = -\frac{1}{r(x)} \left(\frac{d}{dx} \left[p(x) \frac{d}{dx} \right] + g(x) \right)$$
 (18.20)

is called the self-adjoint form (since $\hat{\mathcal{L}}$ is a self-adjoint operator). Now, consider the following general linear ODE

$$\left[a_2(x)\frac{d^2}{dx^2} + a_1(x)\frac{d}{dx} + a_0(x)\right]y(x) = 0.$$
(18.21)

This equation can be rewritten in a self-adjoint form by setting

$$p(x) := \exp\left(\int \frac{a_1}{a_2} dx\right)$$
 and $g(x) := \frac{a_0}{a_2} \exp\left(\int \frac{a_1}{a_2} dx\right)$.

Property 18.5.4. The eigenfunctions corresponding to distinct eigenvalues are orthogonal with respect to the weight function r(x). This can be seen as an instance of property 20.5.16.

Theorem 18.5.5 (Oscillation theorem). The n^{th} eigenfunction of a Sturm-Liouville problem has n-1 roots.

⁴This explains the name "eigenvalue" for λ .

18.6 Bessel functions

18.6.1 Bessel's differential equation (BDE)

A Bessel's differential equation is an ordinary differential equation of the following form:

$$z^{2}y'' + zy' + (z^{2} - n^{2})y = 0. (18.22)$$

The solutions of this ODE are the Bessel functions of the first and second kind (also called respectively Bessel and Neumann functions):

$$J_n(z) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!(m+n)!} \left(\frac{z}{2}\right)^{2m+n}$$
 (18.23)

$$N_n(z) = \lim_{\nu \to n} \frac{\cos(\nu \pi) J_n(z) - J_{-n}(z)}{\sin(\nu \pi)}.$$
 (18.24)

Remark. Solution 18.23 can be found using Frobenius' method.

Property 18.6.1. For $n \notin \mathbb{N}$ the solutions $J_n(z)$ and $J_{-n}(z)$ are independent.

Remark 18.6.2. For $n \notin \mathbb{N}$ the limiting operation in function 18.24 is not necessary because $\sin(n\pi)$ will never become 0 in this case.

Formula 18.6.3 (Generating function). Consider the following function:

$$g(x,t) := \exp\left[\frac{x}{2}\left(t - \frac{1}{t}\right)\right]. \tag{18.25}$$

If we expand this function as a Laurent series, we obtain an expression of the form

$$g(x,t) = \sum_{n=-\infty}^{+\infty} J_n(x)t^n.$$
 (18.26)

By applying the residue theorem 15.5.20 we can express the functions $J_n(x)$ as follows:

$$J_n(x) = \frac{1}{2\pi i} \oint_C \frac{g(x,t)}{t^{n+1}} dt.$$
 (18.27)

One can show that these functions are exactly the Bessel functions 18.23. Therefore g(x,t) is called the generating function of the Bessel functions

?? SHOW THAT THESE ARE REALLY THE BESSEL FUNCTIONS ??

18.7 Applications

18.7.1 Laplace equation

When solving the Laplace equation in cylindrical coordinates we obtain a BDE with integer n, which has the cylindrical Bessel functions 18.23 and 18.24 as solutions.

18.7.2 Helmholtz equation

When solving the Helmholtz equation in spherical coordinates we obtain a variant of the BDE for the radial part:

$$z^{2}y'' + 2zy' + [z^{2} - n(n+1)]y = 0$$
(18.28)

where n is an integer. The solutions, called **spherical Bessel functions**, are related to the cylindrical Bessel functions in the following way (and similarly for the Neumann functions):

$$j_n(r) = \sqrt{\frac{\pi}{2x}} J_{n + \frac{1}{2}}(r). \tag{18.29}$$

Chapter 19

Partial differential equations

For a rigorous treatment of partial differential equations we need the language of distributions. For an introduction, see Chapter 17.

19.1 General linear equations

Definition 19.1.1 (Characteristic curve). A curve along which the highest-order partial derivatives are not uniquely defined.

19.2 First order PDE

Formula 19.2.1 (First order quasilinear PDE).

$$P(x, y, z)\frac{\partial z}{\partial x} + Q(x, y, z)\frac{\partial z}{\partial y} = R(x, y, z)$$
(19.1)

Formula 19.2.2 (Characteristic curve). The above PDE will have no unique solution if

$$\begin{vmatrix} P & Q \\ dx & dy \end{vmatrix} = 0 \tag{19.2}$$

and will have a nonunique solution if

$$\begin{vmatrix} P & R \\ dx & dz \end{vmatrix} = 0. ag{19.3}$$

The characteristic curves are thus defined by $\frac{dx}{P} = \frac{dy}{Q}$ and along these curves the condition $\frac{dx}{P} = \frac{dz}{R}$ should hold to ensure a solution.

Formula 19.2.3 (Lagrange-Charpit equations). The general solution of (19.1) is implicitly given by $F(\xi, \eta) = 0$ with $F(\xi, \eta)$ an arbitrary differentiable function where $\xi(x, y, z) = c_1$ and $\eta(x, y, z) = c_2$ are solutions of the Lagrange-Charpit equations:

$$\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R} \tag{19.4}$$

where c_1, c_2 are constants which are fixed by the boundary conditions.

Remark 19.2.4. Looking at the defining equations of the characteristic curve, it is clear that these fix the general solution of the PDE.

19.3 Characteristics

Formula 19.3.1 (Second order quasilinear PDE). Consider the following pseudolinear differential equation for the function u(x, y):

$$R(x,y)u_{xx} + S(x,y)u_{xy} + T(x,y)u_{yy} = W(x,y,u,p,q)$$
(19.5)

where $p = u_x$ and $q = u_y$.

Formula 19.3.2 (Equation of characteristics). Characteristic curves were defined as those curves $\psi(x,y) = \text{const}$ along which the highest-order terms in a PDE are not uniquely defined. For quasilinear second-order PDEs we can find an algebraic characterization as follows. Let us first consider the following system:

$$\begin{cases}
 u_{xx}dx + u_{xy}dy = dp \\
 u_{xy}dx + u_{yy}dy = dq.
\end{cases}$$
(19.6)

According to Cramer's rule 20.4.15 these equations, together with the PDE (19.5), give the following condition for the characteristic curves:

$$\begin{vmatrix} R(x,y) & S(x,y) & T(x,y) \\ dx & dy & 0 \\ 0 & dx & dy \end{vmatrix} = 0.$$
 (19.7)

This is equivalent to the following equation:

$$R\left(\frac{dy}{dx}\right)^2 - S\left(\frac{dy}{dx}\right) + T = 0. {19.8}$$

Accordingly this equation is often called the **characteristic equation** of the PDE (19.5).

Definition 19.3.3 (Types of characteristics). Equation (19.8) is quadratic in $\frac{dy}{dx}$. If this equation has two distinct real roots then the PDE is said to be **hyperbolic**. If the equation has only one root, the PDE is said to be **parabolic**. In the remaining case, where the equation has two distinct complex roots, the PDE is said to be **elliptic**.

Formula 19.3.4 (Canonical form). Consider the general change of variables $\xi = \xi(x, y)$, $\eta = \eta(x, y)$ and $\zeta \equiv u$. With this change, the PDE (19.5) becomes

$$A(\xi_x, \xi_y) \frac{\partial^2 \zeta}{\partial \xi^2} + B(\xi_x, \xi_y, \eta_x, \eta_y) \frac{\partial^2 \zeta}{\partial \xi \partial \eta} + A(\eta_x, \eta_y) \frac{\partial^2 \zeta}{\partial \eta^2} = F(\xi, \eta, \zeta, \zeta_\xi, \zeta_\eta)$$
(19.9)

where

- $A(a,b) = Ra^2 + Sab + Tb^2$
- B(a,b,c,d) = 2Rac + S(bc + ad) + 2Tbd.

The discriminant Δ of the quadratic equation (19.8) lets us rephrase the classification of characteristics in terms of canonical forms. The fact that this classification is well-defined follows from the result that the discriminant of equation (19.8) is, up to the square of the Jacobian of $(x,y) \to (\xi,\eta)$, equal to the discriminant $B(\xi_x,\xi_y,\eta_x,\eta_y)^2 - 4A(\xi_x,\xi_y)A(\eta_x,\eta_y)$.

To bring the differential equation to a simpler form we want the coefficients A(a,b) to vanish. Curves $\xi(x,y) = \text{const}$ along which the coefficient $A(\xi_x,\xi_y)$ vanishes are called **characteristic** (curves). Along such curves we have

$$\frac{d\xi}{dx} = \xi_x + \xi_i \frac{dy}{dx} = 0$$

and hence we can relate the slope $\frac{dy}{dx}$ to the ratio $-\frac{\xi_x}{\xi_y}$. Solving A(a,b)=0 is then equivalent to solving equation (19.8) and both notions of characteristic curves can be seen to coincide.

• hyperbolic PDE ($\Delta > 0$): The sign of the discriminant implies that the quadratic equation A = 0 has two real solutions $f_1(x, y)$ and $f_2(x, y)$. By choosing the transformation $\xi = f_1(x, y)$ and $\eta = f_2(x, y)$ we make the coefficients A(a, b) vanish and hence we obtain the canonical hyperbolic form

$$\frac{\partial^2 \zeta}{\partial \xi \partial \eta} = H(\xi, \eta, \zeta, \zeta_{\xi}, \zeta_{\eta}) \tag{19.10}$$

where $H = \frac{F}{2B}$.

• parabolic PDE ($\Delta = 0$): As in the hyperbolic case we perform the change of variables $\xi = f(x, y)$, however there is only one root of the defining equation, so the second variable can be chosen at will under the constraint that it should be independent of $f_1(x, y)$. From the condition $\Delta = 0$ it is also possible to derive the condition that $B(\xi_x, \xi_y \eta_x \eta_y) = 0$ and $A(\eta_x, \eta_y) \neq 0$. This gives the parabolic canonical form

$$\frac{\partial^2 \zeta}{\partial n^2} = G(\xi, \eta, \zeta, \zeta_{\xi}, \zeta_{\eta}) \tag{19.11}$$

where $G = \frac{F}{A(\eta_x, \eta_y)}$.

• elliptic PDE ($\Delta < 0$): In this case there are two complex roots. Writing $\xi = \alpha + i\beta$ and $\eta = \alpha - i\beta$ gives the following (real) equation

$$\frac{\partial^2 \zeta}{\partial \xi \partial \eta} = \frac{1}{4} \left(\frac{\partial^2 \zeta}{\partial \alpha^2} + \frac{\partial^2 \zeta}{\partial \beta^2} \right).$$

Substituting this in the PDE (together with A(a, b) = 0) results in the following elliptic canonical form:

$$\frac{\partial^2 \zeta}{\partial \alpha^2} + \frac{\partial^2 \zeta}{\partial \beta^2} = K(\alpha, \beta, \zeta, \zeta_{\alpha}, \zeta_{\beta}). \tag{19.12}$$

Theorem 19.3.5 (Maximum principle). Consider a differential equation of the parabolic or elliptic type. The maximum of the solution on a domain is to be found on the boundary of that domain.

19.3.1 D'Alemberts method

Consider the wave equation

$$\frac{\partial^2 u}{\partial x^2}(x,t) = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}(x,t). \tag{19.13}$$

By applying the method from the previous subsection it is clear that the characteristics are given by

$$\xi = x + ct \qquad \text{and} \qquad \eta = x - ct. \tag{19.14}$$

Furthermore, it follows that the wave equation is a hyperbolic equation that can be rewritten in the canonical form

$$\frac{\partial^2 u}{\partial \xi \partial \eta}(\xi, \eta) = 0 \tag{19.15}$$

Integration with respect to ξ and η and rewriting the solution in terms of x and t gives

$$u(x,t) = f(x+ct) + g(x-ct)$$
(19.16)

where f, g are arbitrary functions. This solution represents a superposition of a left-moving wave and a right-moving wave.

Now, consider the wave equation subject to the general boundary conditions

$$u(x,0) = v(x)$$
 and $\frac{\partial u}{\partial t}(x,0) = q(x)$. (19.17)

By inserting these conditions in the solution (19.16) it can be shown that the general solution subject to the given boundary conditions is given by

$$u(x,t) := \frac{1}{2} [v(x+ct) + v(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} q(z) dz.$$
 (19.18)

Remark 19.3.6. Because x is not bounded this solution is only valid for infinite strings.

19.4 Separation of variables

Remark. We begin this section by remarking that solutions obtained by separation of variables are generalized Fourier series, which tend to converge rather slowly. For numerical purposes, other techniques are recommended. However, the series solutions often give a good insight in the properties of the obtained solutions.

19.4.1 Cartesian coordinates

Method 19.4.1 (Separation of variables). Let $\hat{\mathcal{L}}$ be the operator associated with a partial differential equation such that $\hat{\mathcal{L}}u(x) = 0$ where $x := (x_1, \dots, x_n)$ is the set of variables. A useful method to find solutions is to assume a solution of the form

$$u(x) = \prod_{i=1}^{n} u_i(x_i). \tag{19.19}$$

By substituting this form in the PDE and using some (basic) algebra it is sometimes (!!) possible to reduce the partial differential equation to a system of n ordinary differential equations.

Example 19.4.2. Consider the following PDE:

$$\frac{\partial u}{\partial t} - a \frac{\partial^2 u}{\partial x^2} = 0. ag{19.20}$$

Substituting a solution of the form u(x,t) = X(x)T(t) gives

$$X(x)\frac{dT(t)}{dt} - aT(t)\frac{d^2X(x)}{dx^2} = 0$$

which can be rewritten as (the arguments are dropped for convenience)

$$\frac{1}{aT}\frac{dT}{dt} = \frac{1}{X}\frac{d^2X}{dx^2}.$$

Because both sides are independent, they must be equal to a constant λ . This results in the following system of ordinary differential equations:

$$\begin{cases} X''(x) = \lambda X(x) \\ T'(t) = a\lambda T(t). \end{cases}$$
 (19.21)

19.5 Boundary conditions

Formula 19.5.1 (Nonhomogeneous boundary condition).

$$\alpha u(a,t) + \beta \frac{\partial u}{\partial x}(a,t) = h(t)$$
 (19.22)

When h(t) is identically zero, the boundary condition becomes homogeneous.

Method 19.5.2 (Steady-state solution). Assume that the function h(t) is constant. In this case it is useful to rewrite the solution as

$$u(x,t) = v(x) + w(x,t).$$

The "time-independent" function is called the steady-state solution and the function w(x,t) represents the deviation of this steady-state scenario.

As the PDE is linear, we require the partial solutions v(x) and w(x,t) to individually satisfy the equation. Furthermore we require the function v(x) to also satisfy the given nonhomogeneous boundary conditions. This results in w(x,t) being the solution of a homogeneous PDE with homogeneous boundary conditions. This can be seen in the following proof:

Proof. Assume a boundary condition of the form $\alpha u(a,t) + \beta \frac{\partial u}{\partial x}(a,t) = u_0$. Due to the requirements of a steady-state solution we also have $\alpha v(a) + \beta \frac{\partial v}{\partial x}(a) = u_0$. Combining these two conditions gives

$$\alpha[v(a) + w(a,t)] + \beta \left[\frac{\partial v}{\partial x}(a) + \frac{\partial w}{\partial x}(a,t) \right] = \alpha v(a) + \beta \frac{\partial v}{\partial x}(a).$$

Using the conditions this can be rewritten as

$$\alpha w(a,t) + \beta \frac{\partial w}{\partial x}(a,t) = 0.$$

The steady-state deviation w(x,t) thus satisfies homogeneous boundary conditions.

Method 19.5.3. If the function h(t) is not a constant, we use a different method. Rewrite the solution as u(x,t) = v(x,t) + w(x,t) where we only require v(x,t) to be some function that satisfies the boundary conditions (and not the PDE)¹. This will lead to w(x,t) satisfying the homogeneous boundary conditions as in the previous method. After substituting the function v(x,t) in the PDE, we obtain a differential equation for w(x,t) but it can be nonhomogeneous.

Method 19.5.4. A third, sometimes useful, method is the following. If the problem consists of 3 homogeneous and 1 nonhomogeneous boundary condition then the problem can be solved by first applying the homogeneous conditions to restrict the values of the separation constant and obtain a series expansion. Afterwards the obtained series can be fitted to the nonhomogeneous condition to obtain the final remaining coefficients.

If there is more than 1 nonhomogeneous boundary condition, the method can be extended. Let there be j boundary conditions. Rewrite the general solution as $u(x,t) = \sum_{i=1}^{j} v_j(x,t)$ where $v_j(x,t)$ satisfies the j^{th} nonhomogeneous condition and the homogeneous versions of the other conditions. This way the general solution still satisfies all conditions and the first part of the method can be applied to all functions $v_j(x,t)$ to obtain a series expansion.

¹As there are infinitely many possible functions that satisfy the boundary conditions, the best choice for v(x,t) is the one that makes the equation for w(x,t) as simple as possible.

Method 19.5.5 (Nonhomogeneous PDE). A possible way to solve nonhomogeneous second order partial differential equations of the form

$$\hat{\mathcal{L}}u(x,t) = f(x,t)$$

given a set of homogeneous boundary conditions and initial value conditions $w(x,0) = \psi(x)$, is the following method (where we assume all involved functions to admit a generalized Fourier expansion):

- 1. Solve the homogeneous version of the PDE, which will result in a series expansion $\sum_{n} w_n(t)e_n(x)$, where $e_n(x)$ are a complete set of eigenfunctions in the variable x. This solution should satisfy the (homogeneous²) boundary conditions.
- 2. Expand the function f(x,t) in the same way as u(x,t). The coefficients f_n can be found by using the orthogonality relations of the functions $e_n(x)$.
- 3. Inserting these expansions in the original PDE and rewriting the equation will lead to a summation of the form:

$$\sum_{n} [(Dw_n(t))e_n(x)] = 0$$

where D is a linear first-order differential operator. As all terms are independent, this gives n first order ODEs to obtain the functions $w_n(t)$. These can be generally solved by using formula 18.7.

- 4. Initial value conditions for the functions $w_n(t)$ are applied by setting t = 0 in the series expansion of u(x,t) and equating it with the series expansion of $\psi(x)$. This results in $w_n(0) =: \Psi_n$.
- 5. The obtained ODEs together with the found boundary conditions $w_n(0) = \Psi_n$ will give the general solutions of $w_n(t)$.
- 6. Entering these solutions in the series expansion of u(x,t) will give the general solution of the nonhomogeneous PDE.

Remark 19.5.6. It is clear that the requirement that all involved functions admit a generalized Fourier expansion is restricting. Not all nonhomogeneous PDEs are solvable with this method.

19.5.1 Dirichlet problem

The (interior) Dirichlet problem is the problem of finding a solution to a PDE in a finite region, given the value of the function on the boundary of the region, i.e. given boundary conditions of the form $u|_{\partial\Omega} = 0$. The uniqueness of a solution can be proven with the maximum principle 19.3.5 if the PDE is of the elliptic kind (such as the Laplace equation).

Proof. Let ϕ, ψ be two solutions of the interior Dirichlet problem. Due to the linearity both $\psi - \phi$ and $\phi - \psi$ are solutions too (without applying the boundary conditions). According to the maximum principle, these solutions achieve their maximum on the boundary of the domain. Furthermore, due to the Dirichlet boundary conditions, $\phi(x) = \psi(x)$ for all $x \in \partial\Omega$. Combining these two facts gives $\max(\psi - \phi) = \max(\phi - \psi) = 0$ or alternatively $\psi \leq \phi$ and $\phi \leq \psi$ in the complete domain. Which means that $\phi = \psi$ in the complete domain.

Remark. There is also an exterior Dirichlet problem, where one has to find the solution of the PDE, given the boundary conditions, outside of the boundary.

Definition 19.5.7 (Green's function). A fundamental solution 17.1.17 of a Dirichlet problem

²Nonhomogeneous boundary conditions can be turned into homogeneous ones by the previous two methods.

19.6 Higher dimensions

19.6.1 Symbols

Definition 19.6.1 (Symbol). Consider a general k^{th} -order differential operator (we use multiindices α)

$$\hat{P} = \sum_{|\alpha| < k} c_{\alpha}(x) D^{\alpha}. \tag{19.23}$$

The symbol of this operator is defined by replacing the partial derivatives by indeterminates ξ^i :

$$p(\hat{P},\xi) := \sum_{|\alpha| \le k} c_{\alpha}(x)\xi^{\alpha}. \tag{19.24}$$

Definition 19.6.2 (Principal symbol). The principal symbol of a k^{th} -order differential operator \hat{P} is defined as the highest degree component of $p(\hat{P}, \xi)$:

$$\sigma_{\hat{P}}(\xi) := \sum_{|\alpha|=k} c_{\alpha}(x)\xi^{\alpha}. \tag{19.25}$$

For a system of partial differential equations, we replace the functions c_{α} by matrix-valued functions $(c_i^j)_{\alpha}$.

Property 19.6.3. The principal symbol of a differential operator transforms as a tensor.

Definition 19.6.4 (Ellipticity). A system of PDEs

$$\hat{P}f(x) = 0$$

is elliptic if and only if σ_P is invertible. Notice that this is only possible if the number of variables is smaller than the number of equations, hence if the system is at most determined.

19.7 Sobolev spaces

Using the theory of L^p -spaces and distributions (Chapters 16 and 17), one can define an important class of function spaces that are ubiquitous in the field of PDEs (and beyond).

Definition 19.7.1 (Sobolev space). For all nonnegative integers $m, p \in \mathbb{N}$, with $p \geq 1$, one defines the Sobolev space $W^{m,p}(U)$ as the space of functions in $L^p(U)$ for which the weak derivatives 17.1.14 up to order m are also in $L^p(U)$. When p = 2, i.e. when restricted to square-integrable functions, the notation $H^m(U)$ is frequently used.

This space can be turned into a normed space by equipping it with the following norm:

$$||f|| := \left(\sum_{|\alpha| \le m} ||f^{(\alpha)}||_{L^p}\right)^{1/p}.$$
 (19.26)

Using the fact that the Fourier transform \mathcal{F} defines an (isometric) isomorphism on L^2 , one can also define H^m in a different way:

$$H^{m}(\mathbb{R}^{n}) := \left\{ f \in L^{2}(\mathbb{R}^{n}) \, \middle| \, (1 + \|x\|^{2})^{-m/2} \mathcal{F} f \in L^{2}(\mathbb{R}^{2}) \right\}. \tag{19.27}$$

The Sobolev spaces inherit the following property from the L^p -spaces:

Property 19.7.2 (Completeness). Every Sobolev space is a Banach space. Moreover, one can show that the spaces H^m are Hilbert spaces.

The Sobolev spaces also satisfy the following density theorem:

Property 19.7.3. $\mathcal{D}(\mathbb{R}^n)$ is dense in $W^{m,p}(\mathbb{R}^n)$ for all $m \in \mathbb{N}$. However, only for m = 0 can this be proven for open subsets of \mathbb{R}^n .

Property 19.7.4 (Sobolev embedding). Consider two integers $m, n \in \mathbb{N}$. If $f \in H^m(\mathbb{R}^n)$ and m > n/2, then f vanishes at infinity.

The Sobolev norm is not always easy to work with, especially in practical applications. Luckily there exists a lemma showing that one can equivalently restrict to partial derivatives of order m:

Theorem 19.7.5 (Friedrich). For all bounded U one can introduce an equivalent norm on $H_0^m(U)$ as follows:

$$\langle f|g\rangle := \sum_{|\alpha|=m} \int_{U} f^{(\alpha)} \overline{g^{(\alpha)}} dx.$$
 (19.28)

Property 16.3.10 allows us to define the dual Sobolev spaces:

Definition 19.7.6. The space $W^{-m,p}(U) \subset \mathcal{D}'(U)$ is defined as the dual of $\overline{W^{m,p}(U)}$. For m=2 one can again use a characterization similar to (19.27). It can be shown that all elements in $W^{-m,p}(U)$ can be written as follows:

$$T = \sum_{|\alpha| \le m} f_{\alpha}^{(\alpha)},\tag{19.29}$$

where $f_{\alpha} \in L^{p'}(U), \forall \alpha$ with p' the Hölder conjugate of p.

?? COMPLETE (continue in AMP1) ??

Part V Linear Algebra

Chapter 20

Linear Algebra

20.1 Vector spaces

Definition 20.1.1 (K-vector space). Let K be a field. A K-vector space V is a set equipped with two operations, addition $V \times V \to V$ and scalar multiplication $K \times V \to V$, that satisfy the following axioms:

- 1. V forms an Abelian group under vector addition.
- 2. Scalar multiplication is associative: $\lambda(\mu v) = (\lambda \mu)v$ for all $\lambda, \mu \in K$ and $v \in V$.
- 3. The identity of the field K acts as a neutral element for scalar multiplication: $1_K v = v$ for all $v \in V$.
- 4. Scalar multiplication is distributive with respect to vector addition: $\lambda(v+w) = \lambda v + \lambda w$ for all $\lambda \in K$ and $v, w \in V$.

From here on the underlying field K will be left implicit unless the results depend on it.

20.1.1 Linear independence

Definition 20.1.2 (Linear combination). The vector w is a linear combination of elements in the set $\{v_i\}_{i\leq n}$ if it can be written as

$$w = \sum_{i=1}^{n} \lambda_i v_i \tag{20.1}$$

for some $\{\lambda_i\}_{i\leq n}\subset K$. One can generalize this to general subsets $S\subseteq V$, but the number of nonzero elements λ_i is always required to be finite.¹

Definition 20.1.3 (Linear independence). A finite set $\{v_i\}_{i\leq n}$ is said to be linearly independent if the following relation holds:

$$\sum_{i=1}^{n} \lambda_i v_i = 0 \iff \forall i \le n : \lambda_i = 0.$$
 (20.2)

A general set $S \subset V$ is linearly independent if every finite subset of it is linearly independent.

Definition 20.1.4 (Span). A set of vectors $S \subseteq V$ is said to span V if every vector $v \in V$ can be written as a linear combination of elements in S.

Definition 20.1.5 (Frame). A k-frame is an ordered set of k linearly independent vectors.

¹Generalizations are possible in the context of topological vector spaces (see Chapters 7 and 23), where one can define the notion of convergence.

20.1.2 Bases

Definition 20.1.6 (Basis). A set \mathcal{B} is said to be a basis of V if \mathcal{B} is linearly independent and if it spans V.

Property 20.1.7. Every spanning set contains a basis.

Remark 20.1.8. In the previous definition the concept of a *Hamel* basis was implicitly used. This concept is based on two conditions:

- 1. The basis is linearly independent.
- 2. Every element in the vector space can be written as a linear combination of a <u>finite</u> subset of the basis. (See the footnote above.)

For bases consisting of a finite number of vectors, one does not have to worry. For infinite bases one has to keep this in mind. An alternative construction, which allows for combinations of a countably infinite number of elements, is given by that of a *Schauder basis*. However, it can be shown that every vector space admits a Hamel basis:

Construction 20.1.9 (Hamel basis \clubsuit). Let V be a vector space and consider the set of all linearly independent subsets of V. Under the relation of inclusion this set becomes a partially ordered set 2.5.2. Zorn's lemma 2.5.9 then says that there exists at least one maximal linearly independent set.

Now, one can show that this maximal subset S is also a spanning set of V. Choose a vector $v \in V$ that is not already in S. From the maximality of S it follows that $S \cup v$ is linearly dependent and hence there exists a finite sequence of scalars (a^1, \ldots, a^n, b) and a finite sequence of elements (e_1, \ldots, e_n) in S such that:

$$\sum_{i=0}^{n} a^{i} e_{i} + bv = 0, \tag{20.3}$$

where not all scalars are zero. This then implies that $b \neq 0$, because otherwise the set $\{e_i\}_{i \leq n}$ and hence also S would be linearly dependent. It follows that v can be written as²

$$v = -\frac{1}{b} \sum_{i=0}^{n} a^{i} e_{i}.$$
 (20.4)

Because v was randomly chosen, one can conclude that S is a spanning set for V.

Remark. This construction clearly assumes the axiom of choice in set theory, only ZF does not suffice. It can even be shown that the existence of a Hamel basis for every vector space is equivalent to the axiom of choice (and thus also Zorn's lemma).

Property 20.1.10. Every basis of V has the same number of elements. For infinite-dimensional spaces this means that all bases have the same *cardinality*.

Definition 20.1.11 (Dimension). Let V be a finite-dimensional vector space and let \mathcal{B} be a basis for V that contains n elements. With the previous property in mind, the dimension of V is defined as follows:

$$\dim(V) := n. \tag{20.5}$$

Definition 20.1.12 (Subspace). Let V be a vector space. A subset W of V is a subspace if W is itself a vector space under (the restriction of) the operations of V:

$$W \le V \iff \forall w_1, w_2 \in W, \forall \lambda \in K : \lambda w_1 + w_2 \in W. \tag{20.6}$$

²It is this step that requires R to be a division ring in Property 3.5.32 because otherwise we would not generally be able to divide by $b \in R$.

20.1.3 Sum and direct sum

Definition 20.1.13 (Sum). Let V be a vector space and consider a collection of subspaces $\{W_1, \ldots, W_k\}$. The sum of these subspaces is defined as follows:

$$W_1 + \dots + W_k := \left\{ \sum_{i=1}^k w_i \, \middle| \, w_i \in W_i \right\}. \tag{20.7}$$

Definition 20.1.14 (Direct sum). If every element v of the sum can be written as a unique linear combination, the sum is called a direct sum.

Notation 20.1.15 (Direct sum). The direct sum of vector spaces is denoted by

$$W_1 \oplus \cdots \oplus W_k \equiv \bigoplus_{i=1}^k W_i.$$

Formula 20.1.16. Let V be a finite-dimensional vector space and consider two subspaces $W_1, W_2 \leq V$. The dimensions of these spaces can be related in the following way:

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2). \tag{20.8}$$

Property 20.1.17. Let V be a vector space and assume that V can be decomposed as $W = W_1 \oplus W_2$. If \mathcal{B}_1 is a basis of W_1 and if \mathcal{B}_2 is a basis of W_2 , then $\mathcal{B}_1 \cup \mathcal{B}_2$ is a basis of W.

Definition 20.1.18 (Complement). Let V be a vector space and let W be a subspace of V. A subspace W' of V is called a complement of W if $V = W \oplus W'$.

Property 20.1.19 (Existence of complements). Let V be a vector space and let U, W be two subspaces of V. If V = U + W, there exists a subspace $Y \leq U$ such that $V = Y \oplus W$. Furthermore, every subspace of V has a complement in V.

20.1.4 Algebras

Definition 20.1.20 (Algebra). Let V be a vector space equipped with a binary operation $\star: V \times V \to V$. The pair (V, \star) is called an algebra over K if it satisfies the following conditions:

- 1. Right distributivity: $(x + y) \star z = x \star z + y \star z$,
- 2. Left distributivity: $x \star (y+z) = x \star y + x \star z$, and
- 3. Compatibility with scalars: $(\lambda x) \star (\mu y) = \lambda \mu (x \star y)$.

These conditions say that the binary operation is bilinear. An algebra V is said to be unital if it contains an identity element with respect to the bilinear map \star .

Remark 20.1.21. More generally one can define an algebra over a commutative unital ring R. The defining conditions remain the same, except that one requires V to be an R-module instead of a vector space.

Definition 20.1.22 (Division algebra). A unital algebra in which every nonzero element has both a left and right multiplicative inverse. If the algebra is associative, these inverses coincide. A normed division algebra is a division algebra equipped with a multiplicative quadratic form q such that $\langle a|b\rangle := \frac{1}{2}[q(a+b)-q(a)-q(b)]$ is a nondegenerate inner product 20.3.

Theorem 20.1.23 (Frobenius). There exist three inequivalent finite-dimensional real associative division algebras: \mathbb{R} , \mathbb{C} and \mathbb{H} .

Theorem 20.1.24 (Hurwitz). There exist four inequivalent finite-dimensional real normed division algebras: \mathbb{R} , \mathbb{C} , \mathbb{H} and \mathbb{O} .

Example 20.1.25 (Frobenius algebra). An algebra A equipped with a nondegenerate bilinear form $\eta: A \times A \to A$ satisfying the following condition for all $a, b, c \in A$:

$$\eta(ab,c) = \eta(a,bc). \tag{20.9}$$

Example 20.1.26 (Temperley-Lieb algebra). Let R be a commutative unital ring and fix an element $\delta \in R$. The Temperley-Lieb algebra $\mathrm{TL}_n(\delta)$ is the unital R-algebra with generators $\{U_i\}_{i\leq n}$ that satisfy the **Jones relations**:

- 1. $U_i^2 = \delta U_i$,
- 2. $U_iU_j = U_jU_i$ if $|i-j| \neq 1$, and
- 3. $U_i U_j U_i = U_i$ if |i j| = 1.

One can represent the elements of a Temperley-Lieb algebra diagrammatically. All elements of $TL_n(\delta)$ are represented as diagrams with n inputs and n outputs:

The unit is given by the diagram where all inputs are connected to the outputs directly across the diagram. The generators $\{U_i\}_{i< n}$ are constructed by connecting the i^{th} input (resp. output) to the $i+1^{th}$ input (resp. output) and all other inputs are connected to the output directly across the diagram. Multiplication in $\mathrm{TL}_n(\delta)$ is performed diagrammatically by placing two diagrams side by side. Closed loops are replaced by a factor δ .

(a) Unit in
$$TL_4(\delta)$$
. (b) Generator U_2 in $TL_4(\delta)$.

20.2 Linear maps 3

20.2.1 Homomorphisms

Definition 20.2.1 (Homomorphism space). Let V, W be two vector spaces. The set of all linear maps between V and W is called the homomorphism space from V to W, or shorter, the **hom-space** from V to W:

$$\operatorname{Hom}_{K}(V, W) := \{ f : V \to W \mid f \text{ is linear} \}. \tag{20.10}$$

Formula 20.2.2. If V, W are two finite-dimensional vector spaces, then

$$\dim(\operatorname{Hom}_K(V, W)) = \dim(V)\dim(W). \tag{20.11}$$

Definition 20.2.3 (Endomorphism ring). The space $\operatorname{Hom}_K(V, V)$ with composition of maps as multiplication forms a ring, the endomorphism ring. It is denoted by $\operatorname{End}_K(V)$ or $\operatorname{End}(V)$ when the underlying field is clear.

Property 20.2.4 (Commutator). The endomorphism ring End(V) forms a Lie algebra (Property 30.2.23) when equipped with the commutator

$$[A, B] := A \circ B - B \circ A. \tag{20.12}$$

Property 20.2.5. Let V be finite-dimensional vector space and let $f: V \to V$ be an endomorphism. The following statements are equivalent:

³Also called linear mapping or linear transformation.

- f is injective.
- \bullet f is surjective.
- f is bijective.

Definition 20.2.6 (Automorphism). An isomorphism from V to V is called an automorphism. The set of all automorphisms on V, which in fact forms a group, is denoted by $\operatorname{Aut}(V)$. In some situations one speaks of the general linear group⁴ $\operatorname{GL}_K(V)$ or $\operatorname{GL}(V)$ when the underlying field is clear.

Remark 20.2.7. Sometimes automorphisms are also called linear operators. However, this terminology is also used for a general linear map in operator theory (Chapter 24) and so this term is not adopted in this text.

Definition 20.2.8 (Kernel). Consider a linear map $f: V \to W$. The kernel of f is defined as the following subspace of V:

$$\ker(f) := \{ v \in V \mid f(v) = 0 \}. \tag{20.13}$$

Property 20.2.9. A linear map $f: V \to W$ is injective if and only if $\ker(f) = 0$.

Definition 20.2.10 (Rank). The dimension of the image of a linear map.

Definition 20.2.11 (Nullity). The dimension of the kernel of a linear map.

Theorem 20.2.12 (Dimension theorem⁵). Let $f: V \to W$ be a linear map.

$$\dim(\operatorname{im}(f)) + \dim(\ker(f)) = \dim(V) \tag{20.14}$$

Corollary 20.2.13. Two finite-dimensional vector spaces are isomorphic if and only if they have the same dimension.

Definition 20.2.14 (Minimal polynomial). Let $f \in \text{End}(V)$ with V a finite-dimensional vector space. The monic polynomial μ_f of lowest order such that $\mu_f(f) = 0$ is called the minimal polynomial of f.

Property 20.2.15. Let $f \in \text{End}(V)$ with minimal polynomial μ_f and consider a polynomial $\varphi \in K[x]$. If $\varphi(f) = 0$, the minimal polynomial μ_f divides φ .

Property 20.2.16 (Jordan-Chevalley decomposition). Every endomorphism A can be decomposed as follows:

$$A = A_{ss} + A_n, \tag{20.15}$$

where

- A_{ss} is **semisimple**, i.e. for every invariant subspace of A_{ss} there exists an invariant complementary subspace.
- A_n is **nilpotent**, i.e. $\exists k \in \mathbb{N} : A_n^k = 0$.

Furthermore, this decomposition is unique and the endomorphisms A_{ss} , A_n can be written as polynomials in A.

⁴This group is isomorphic to the general linear group of invertible matrices 20.4.3 (hence the similar name and notation).

⁵Also called the **rank-nullity theorem**.

20.2.2 Dual maps

Definition 20.2.17 (Dual space). Let V be a vector space. The (algebraic) dual V^* of V is defined as the following vector space:

$$V^* := \text{Hom}_K(V, K) = \{ f : V \to K \mid f \text{ is linear} \}.$$
 (20.16)

The elements of V^* are called **linear forms** or (linear) **functionals**.

Property 20.2.18 (Dimension). From Theorem 20.2.2 it follows that $\dim(V^*) = \dim(V)$ whenever V is finite-dimensional. If V is infinite-dimensional, this property is <u>never</u> valid. In the infinite-dimensional case $\operatorname{card}(V^*) > \operatorname{card}(V)$ always holds.

Definition 20.2.19 (Dual basis). Let $\mathcal{B} = \{e_1, e_2, \dots, e_n\}$ be a basis for a finite-dimensional vector space V. One can construct a basis $\mathcal{B}^* = \{\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n\}$ for V^* , called the dual basis of \mathcal{B} , as follows:

$$\varepsilon_i: \sum_{j=1}^n a_i e_i \mapsto a_i. \tag{20.17}$$

The relation between a basis and its associated dual basis can also be expressed as

$$\varepsilon^i(e_j) = \delta^i_j. \tag{20.18}$$

Definition 20.2.20 (Natural pairing). The definition of the dual basis extends to a natural pairing of V and its dual V^* in terms of the following bilinear map:

$$\langle v, v^* \rangle := v^*(v). \tag{20.19}$$

See also 27.2.1 for a generalization of this map.

Definition 20.2.21 (Dual map). Let $f: V \to W$ be a linear map. The linear map

$$f^*: W^* \to V^*: \varphi \to \varphi \circ f \tag{20.20}$$

is called the dual map or **transpose** of f.

20.2.3 Convexity

Definition 20.2.22 (Convex set). A subset of X of a vector space V is said to be convex if $x, y \in X$ implies that $\{\lambda x + (1 - \lambda)y \mid \lambda \in [0, 1]\} \subset X$. The **convex hull** of a subset X is defined as the smallest convex subset containing X.

Definition 20.2.23 (Convex function). Let X be a convex subset of V. A function $f: X \to \mathbb{R}$ is said to be convex if for all $x, y \in X$ and $\lambda \in [0, 1]$:

$$f(\lambda x + (1 - \lambda)y) \le t\lambda(x) + (1 - \lambda)f(y). \tag{20.21}$$

For the definition of a **concave** function the inequality has to be turned around.

Property 20.2.24. A function $f: X \to \mathbb{R}$ is linear if and only if it is both convex and concave.

Theorem 20.2.25 (Karamata's inequality). Let $I \subset \mathbb{R}$ be an interval and let $f: I \to \mathbb{R}$ be a convex function. If (x_1, \ldots, x_n) is a tuple that majorizes (y_1, \ldots, y_n) , i.e.

$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i \tag{20.22}$$

and

$$x_{(1)} + \dots + x_{(k)} \ge y_{(1)} + \dots + y_{(k)}$$
 (20.23)

 $\forall k \leq n, \text{ where } x_{(i)} \text{ denotes the } i^{th} \text{ largest element of } (x_1, \ldots, x_n), \text{ then}$

$$\sum_{i=1}^{n} f(x_i) \ge \sum_{i=1}^{n} f(y_i). \tag{20.24}$$

The following inequality can be derived directly from the definition of convexity by induction:

Theorem 20.2.26 (Jensen's inequality). Let f be a convex function and consider weights $\{a_i\}_{i\leq n}$ such that $\sum_i a_i = 1$. Then Jensen's equality states that

$$f\left(\sum_{i} a_i x_i\right) \le \sum_{i} a_i f(x_i). \tag{20.25}$$

20.3 Inner product

In this section all vector spaces V will be defined over \mathbb{R} or \mathbb{C} .

20.3.1 Inner product space

Definition 20.3.1 (Inner product). A map $\langle \cdot | \cdot \rangle : V \times V \to \mathbb{C}$ is called an inner product on V if it satisfies the following properties for all $v, w \in V$ and $\lambda \in \mathbb{C}$:

- 1. Conjugate symmetry: $\langle v|w\rangle = \langle w|v\rangle^*$,
- 2. Linearity in the first argument: $\langle \lambda u + v | w \rangle = \lambda \langle u | w \rangle + \langle v | w \rangle$,
- 3. Nondegeneracy: $\langle v|v\rangle = 0 \iff v = 0$, and
- 4. Positive-definiteness: $\langle v|v\rangle \geq 0$.

Remark 20.3.2. Inner products are special cases of nondegenerate Hermitian forms which do not satisfy the positive-definiteness property (these often occur when working over \mathbb{C}).

Corollary 20.3.3. The first two properties have the result of conjugate linearity in the second argument:

$$\langle f|\lambda g + \mu h\rangle = \overline{\lambda}\langle f|g\rangle + \overline{\mu}\langle f|h\rangle \tag{20.26}$$

Therefore these two properties together are often combined into a **sesquilinearity** property. When the underlying field is restricted to \mathbb{R} , such that the conjugate symmetry property is replaced by symmetry, the inner product becomes a bilinear form.

Definition 20.3.4 (Inner product space⁶). A vector space equipped with an inner product $\langle \cdot | \cdot \rangle$.

Definition 20.3.5 (Metric dual⁷). Using the inner product (or any other nondegenerate Hermitian form) one can define the metric dual of a vector v by the following map:

$$L: V \to V^*: v \mapsto \langle v|\cdot \rangle.$$
 (20.27)

⁶Sometimes called a **pre-Hilbert space**.

⁷See also Definition 34.1.

Definition 20.3.6 (Adjoint operator). Let A be a linear operator on V. The (**Hermitian**) adjoint of A is defined as the linear operator A^{\dagger} that satisfies

$$\langle A^{\dagger}v|w\rangle = \langle v|Aw\rangle \tag{20.28}$$

for all $v, w \in V$. Alternatively, one can define the adjoint using the transpose and metric dual as follows:

$$A^{\dagger} = L^{-1} \circ A^T \circ L. \tag{20.29}$$

If $A = A^{\dagger}$, then A is said to be **Hermitian** or **self-adjoint**. (In Chapter 23 a distinction will be made between these two notions.)

Corollary 20.3.7. The Hermitian adjoint of a complex matrix $A \in \mathbb{C}^{m \times n}$ is given by

$$A^{\dagger} = \overline{A}^T, \tag{20.30}$$

where \overline{A} denotes the complex conjugate of A and A^T the transpose of A.

20.3.2 Orthogonality

Definition 20.3.8 (Orthogonal). Consider two vectors $v, w \in V$ in an inner product space. These vectors are said to be orthogonal, denoted by $v \perp w$, if they obey the following relation:

$$\langle v|w\rangle = 0. (20.31)$$

An **orthogonal system** is a collection of vectors, none of them equal to 0, that are mutually orthogonal.

Property 20.3.9. Orthogonal systems are linearly independent.

Definition 20.3.10 (Orthonormal). A collection of vectors S is said to be orthonormal if it forms an orthogonal system and if all the elements $v \in S$ obey the following relation:

$$\langle v|v\rangle = 1. (20.32)$$

Definition 20.3.11 (Orthogonal complement). Let W be a subspace of an inner product space V. The orthogonal complement of W is defined as the following subspace:

$$W^{\perp} := \{ v \in V \mid \forall w \in W : \langle v | w \rangle = 0 \}.$$
 (20.33)

Remark. W^{\perp} is pronounced as 'W-perp'.

Property 20.3.12 (Complements). Let V be a finite-dimensional inner product space. The orthogonal complement W^{\perp} is a complementary subspace to W, i.e. $W \oplus W^{\perp} = V$.

Corollary 20.3.13. Let $W \leq V$ where V is a finite-dimensional inner product vector space. Taking orthogonal complements defines an involution:

$$(W^{\perp})^{\perp} = W. \tag{20.34}$$

Definition 20.3.14 (Orthogonal projection). Let V be a finite-dimensional inner product vector space and consider a subspace $W \leq V$. Consider a vector $w \in W$ and let $\{w_1, \ldots, w_k\}$ be an orthonormal basis of W. The projections of $v \in V$ on W and $w \in W$ are defined as follows:

$$\operatorname{proj}_{W}(v) := \sum_{i=1}^{k} \langle v | w_{i} \rangle w_{i}$$
(20.35)

$$\operatorname{proj}_{w}(v) := \frac{\langle v|w\rangle}{\langle w|w\rangle}w. \tag{20.36}$$

Property 20.3.15. Orthogonal projections satisfy the following conditions:

- $\forall w \in W : \operatorname{proj}_W(w) = w$, and
- $\forall u \in W^{\perp} : \operatorname{proj}_{W}(u) = 0.$

Method 20.3.16 (Gram-Schmidt orthonormalization). Let $\{u_i\}_{i\leq n}$ be a set of linearly independent vectors. An orthonormal set $\{e_i\}_{i\leq n}$ can be constructed out of $\{u_i\}_{i\leq n}$ using the following procedure:

1. Orthogonalization:

$$w_{1} = u_{1}$$

$$w_{2} = u_{2} - \frac{\langle u_{2} | w_{1} \rangle}{||u_{2}||^{2}} w_{1}$$

$$\vdots$$

$$w_{n} = u_{n} - \sum_{i=1}^{n-1} \frac{\langle u_{n} | w_{i} \rangle}{||u_{n}||^{2}} w_{i}$$
(20.37)

2. Normalization:

$$e_{1} = \frac{w_{1}}{||w_{1}||}$$

$$e_{2} = \frac{w_{2}}{||w_{2}||}$$

$$\vdots$$

$$e_{n} = \frac{w_{n}}{||w_{n}||}$$
(20.38)

Definition 20.3.17 (Householder transformation). Let v be an element of an inner product space V. The Householder transformation generated by v is given by the linear map

$$\sigma_v: V \to V: w \mapsto w - 2\frac{\langle w|v\rangle}{\langle v|v\rangle}v.$$
 (20.39)

This transformation amounts to a reflection in the hyperplane orthogonal to v.

Definition 20.3.18 (Angle). Let v, w be elements of an inner product space V. The angle θ between v and w is defined by the following formula:

$$\cos \theta := \frac{\langle v|w\rangle}{||v||||w||}.\tag{20.40}$$

20.4 Matrices

Notation 20.4.1. The set of all $m \times n$ -matrices defined over the field K is denoted by $M_{m,n}(K)$. If m = n, the set is denoted by $M_n(K)$ or M(n, K).

Property 20.4.2 (Dimension). The dimension of $M_{m,n}(K)$ as a vector space is mn.

Definition 20.4.3 (General linear group). The set of invertible matrices is called the general linear group and is denoted by $GL_n(K)$ or GL(n, K).

Property 20.4.4. For all $A \in GL_n(K)$ one has:

- $A^T \in \operatorname{GL}_n(K)$, and
- $(A^T)^{-1} = (A^{-1})^T$.

Definition 20.4.5 (Trace). Let $A \equiv (a_{ij}) \in M_n(K)$. The trace of A is defined as follows:

$$tr(A) := \sum_{i=1}^{n} a_{ii}.$$
 (20.41)

Property 20.4.6. Let $A, B \in M_n(K)$. The trace satisfies the following properties:

- $\operatorname{tr}: M_n(K) \to K$ is a linear map,
- tr(AB) = tr(BA), and
- $\operatorname{tr}(A^T) = \operatorname{tr}(A)$.

Formula 20.4.7 (Hilbert-Schmidt norm). The Hilbert-Schmidt (or Frobenius) norm is given by the following formula:

$$||A||_{HS}^2 := \sum_{i,j} |A_{ij}|^2 = \operatorname{tr}(A^{\dagger}A).$$
 (20.42)

If one identifies $M_n(\mathbb{C})$ with \mathbb{C}^{2n} , this norm equals the standard Hermitian norm.

Formula 20.4.8 (Hadamard product). The Hadamard product of two matrices is defined as the entry-wise product:

$$(A \circ B)_{ij} := A_{ij}B_{ij}. \tag{20.43}$$

Property 20.4.9. Let $A \in M_{m,n}(K)$. Denote the set of columns as $\{A_1, A_2, \ldots, A_n\}$ and the set of rows as $\{R_1, R_2, \ldots, R_m\}$. The set of columns is a subset of K^m and the set of rows is a subset of K^n . Their spans satisfy the following property:

$$\dim(\operatorname{span}(A_1, \dots, A_n)) = \dim(\operatorname{span}(R_1, \dots, R_m)). \tag{20.44}$$

Definition 20.4.10 (Rank). Using the invariance relation from previous property, one can define the rank of a matrix $A \in M_{m,n}(K)$ as follows:

$$\operatorname{rk}(A) := \dim(\operatorname{span}(A_1, \dots, A_n)) \stackrel{20.4.9}{=} \dim(\operatorname{span}(R_1, \dots, R_m)).$$
 (20.45)

Property 20.4.11. Let $A \in M_{m,n}(K)$, $B \in GL_n(K)$, $C \in M_{n,r}(K)$ and $D \in M_{r,n}(K)$. The ranks of these matrices satisfy the following properties:

- $\operatorname{rk}(AC) \leq \operatorname{rk}(A)$ and $\operatorname{rk}(AC) \leq \operatorname{rk}(C)$,
- $\operatorname{rk}(BC) = \operatorname{rk}(C)$, and
- $\operatorname{rk}(DB) = \operatorname{rk}(D)$.

Property 20.4.12. Let $A \in M_{m,n}(K)$. The linear map

$$L_A: K^n \to K^m: v \mapsto Av \tag{20.46}$$

has the following property that $\operatorname{im}(L_A) = \operatorname{span}(A_1, \dots, A_n)$.

20.4.1 System of equations

Property 20.4.13. Let Ax = b with $A \in M_{m,n}(K), x \in K^n$ and $b \in K^m$ be a system of m equations in n variables and let L_A be the linear map as defined in equation (20.46). The following properties hold:

- The system is false if and only if $b \notin \text{im}(L_A)$.
- If the system is not false, the solution set is an affine space. If $x_0 \in K^n$ is a solution, the solution set is given by: $x_0 + \ker(L_A)$.
- If the system is homogeneous, i.e. b = 0, the solution set is equal to $\ker(L_A)$.

Property 20.4.14 (Uniqueness). Let AX = w with $A \in M_n(K)$ be a system of n equations in n variables. If rk(A) = n, then the system has a unique solution.

Formula 20.4.15 (Cramer's rule). Let Ax = b be a system of linear equations where the matrix A has a nonzero determinant. Then Cramer's rule gives a unique solution:

$$x_i = \frac{\det(A_i)}{\det(A)},\tag{20.47}$$

where A_i is the matrix obtained by replacing the i^{th} column of A by the column vector b.

20.4.2 Coordinates and matrix representations

Definition 20.4.16 (Coordinate vector). Let $\mathcal{B} = \{b_1, \ldots, b_n\}$ be a basis of V and consider $v = \sum_{i=1}^n \lambda_i b_i$. The coordinate vector of v with respect to \mathcal{B} is defined as the vector $(\lambda_1, \ldots, \lambda_n)^T$. The scalars λ_i are called the **coordinates** of v with respect to \mathcal{B} .

Definition 20.4.17 (Coordinate isomorphism). With the previous definition in mind one can define the coordinate isomorphism of v with respect to \mathcal{B} as follows:

$$\beta: V \to K^n: \sum_{i=1}^n \lambda_i b_i \mapsto (\lambda_1, \dots, \lambda_n)^T.$$
 (20.48)

Construction 20.4.18 (Matrix representation). Let V, W be m- and n-dimensional vector spaces with bases $\mathcal{B} = \{b_1, \ldots, b_m\}, \mathcal{C} = \{c_1, \ldots, c_n\}$ respectively and consider a linear map $f: V \to W$. The matrix representation of f with respect to \mathcal{B} and \mathcal{C} can be constructed as follows. For every $j \in \{1, \ldots, m\}$ one can write $f(b_j) = \sum_{i=1}^n a_{ij}c_i$. The matrix $A_{f,\mathcal{B},\mathcal{C}} \equiv (a_{ij}) \in M_{n,m}(K)$ is the matrix representation of f. This way the j^{th} column of $A_{f,\mathcal{B},\mathcal{C}}$ coincides with the coordinate vector of $f(b_j)$ with respect to \mathcal{C} .

Property 20.4.19. Let $(\lambda_1, \ldots, \lambda_n)^T$ be the coordinate vector of $v \in V$ with respect to \mathcal{B} and let $(\mu_1, \ldots, \mu_m)^T$ be the coordinate vector of f(v) with respect to \mathcal{C} . The following relation holds:

$$\begin{pmatrix} \mu_1 \\ \vdots \\ \mu_m \end{pmatrix} = A_{f,\mathcal{B},\mathcal{C}} \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}. \tag{20.49}$$

The following property shows that the matrix algebra $M_{m,n}(K)$ is isomorphic to the algebra⁸ of linear maps $\mathcal{L}(K^n, K^m)$, thereby explaining why the same notation for the space of invertible matrices 20.4.3 and the space of automorphisms 20.2.6 was used:

⁸Where the multiplication is given by the composition of linear maps.

Property 20.4.20 (Matrices and linear maps). For every matrix $A \in M_{m,n}(K)$ there exists a linear map $f: K^n \to K^m$ such that $A_{f,\mathcal{B},\mathcal{C}} = A$. Conversely, for every linear map $f: K^m \to K^n$ there exists a matrix $A \in M_{n,m}(K)$ such that $f = L_A$.

Corollary 20.4.21. Let $f \in \text{End}(V)$ and let A_f be the corresponding matrix representation. The linear map f is invertible if and only if A_f is invertible. Furthermore, if A_f is invertible,

$$(A_f)^{-1} = A_{f^{-1}}.$$

In other words, the linear isomorphism $\operatorname{End}(V) \to M_n(K)$ descends to a group isomorphism

$$\operatorname{GL}_K(V) \to \operatorname{GL}_n(K) : f \mapsto A_f,$$
 (20.50)

where $n = \dim(V)$.

Formula 20.4.22 (Linear forms). Let $V \cong K^n$ and consider a linear form $f \in V^*$. From construction 20.4.18 it follows that $A_f = (f(e_1), \dots, f(e_n)) \in M_{1,n}(K)$ with respect to the standard basis of V. This combined with property 20.4.19 gives

$$f((\lambda_1, \dots, \lambda_n)^T) = (f(e_1), \dots, f(e_n))(\lambda_1, \dots, \lambda_n)^T = \sum_{i=1}^n f(e_i)\lambda_i$$
 (20.51)

or alternatively in terms of the standard dual basis $\{\varepsilon_1, \ldots, \varepsilon_n\}$:

$$f = \sum_{i=1}^{n} f(e_i)\varepsilon_i. \tag{20.52}$$

Property 20.4.23. Let $f: V \to W$ be a linear map and let $f^*: W^* \to V^*$ be the corresponding dual map. If A_f is the matrix representation of f with respect to \mathcal{B} and \mathcal{C} , the transpose A_f^T is the matrix representation of f^* with respect to the dual basis of \mathcal{C} and the dual basis of \mathcal{B} .

20.4.3 Coordinate transformations

Definition 20.4.24 (Transition matrix). Let $\mathcal{B} = \{b_1, \ldots, b_n\}$ and $\mathcal{B}' = \{b'_1, \ldots, b'_n\}$ be two bases of V. By definition every element of \mathcal{B}' can be written as a linear combination of elements in \mathcal{B} :

$$b'_{j} = q_{1j}b_1 + \dots + q_{nj}b_n. (20.53)$$

The matrix $Q \equiv (q_{ij}) \in M_n(K)$ is called the transition matrix from \mathcal{B} to \mathcal{B}' .

Property 20.4.25. Let $\mathcal{B}, \mathcal{B}'$ be two bases of V and let Q be the transition matrix from \mathcal{B} to \mathcal{B}' . The following statements hold:

- $Q \in GL_n(K)$ and Q^{-1} is the transition matrix from \mathcal{B}' to \mathcal{B} .
- Let \mathcal{C} be an arbitrary basis of V with γ the corresponding coordinate isomorphism and define the following matrices:

$$B := (\gamma(b_1), \dots, \gamma(b_n))$$
 and $B' := (\gamma(b'_1), \dots, \gamma(b'_n)).$

In terms of these matrices one finds that BQ = B'.

• Consider $v \in V$. Let $(\lambda_1, \ldots, \lambda_n)^T$ be the coordinate vector with respect to \mathcal{B} and let $(\lambda'_1, \ldots, \lambda'_n)^T$ be the coordinate vector with respect to \mathcal{B}' , then

$$Q\begin{pmatrix} \lambda_1' \\ \vdots \\ \lambda_n' \end{pmatrix} = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} \lambda_1' \\ \vdots \\ \lambda_n' \end{pmatrix} = Q^{-1} \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}.$$

Corollary 20.4.26 (Basis change). Let V, W be two finite-dimensional vector spaces. Consider two bases $\mathcal{B}, \mathcal{B}'$ of V and two bases $\mathcal{C}, \mathcal{C}'$ of W. Let Q, P be the transition matrices from \mathcal{B} to \mathcal{B}' and from \mathcal{C} to \mathcal{C}' respectively. The matrix representations $A = A_{f,\mathcal{B},\mathcal{C}}$ and $A' = A_{f,\mathcal{B}',\mathcal{C}'}$ of a linear map $f: V \to W$ are related in the following way:

$$A' = P^{-1}AQ. (20.54)$$

Remark 20.4.27. From the definition of the transition matrix and the above property it follows that the basis vector and coordinate representations transform by Q and Q^{-1} respectively. That they transform in an inverse manner makes sense, since a vector should be independent from its coordinate representation:

$$v' = \sum_{i=1}^{n} \lambda'_{i} e'_{i} = \sum_{i,j,k=1}^{n} Q_{ji}^{-1} \lambda_{j} Q_{ik} e_{k} = \sum_{i,j,k=1}^{n} \delta_{jk} \lambda_{j} e_{k} = v.$$

This remark gives a new way to define a vector $v \in V$:

Alternative Definition 20.4.28 (Vector). Consider a vector space V and let $n = \dim(V)$. One can define an equivalence relation \sim on the set $\mathbb{R}^n \times FV$, where FV denotes the set of all bases of V, by saying that the pairs (c, \mathfrak{b}) and (c', \mathfrak{b}') are equivalent if and only if there exists a matrix $A \in \mathrm{GL}(\dim(V), \mathbb{R})$ such that c' = Ac and $\mathfrak{b} = A\mathfrak{b}'$. A vector $v \in V$ can then be defined as an equivalence class of such pairs.

Definition 20.4.29 (Matrix conjugation). Let $A \in M_n(K)$. In accordance with group theory (Definition 3.2.11) the set

$$\left\{ Q^{-1}AQ \mid Q \in \operatorname{GL}_n(K) \right\} \tag{20.55}$$

is called the conjugacy class of A. Another name for conjugation is **similarity transformation**.

Remark 20.4.30. If A is a matrix representation of a linear operator f, the conjugacy class of A consists of all matrix representations of f.

Property 20.4.31 (Trace). Property 20.4.6 implies that the trace of a matrix is invariant under conjugation:

$$\operatorname{tr}(Q^{-1}AQ) = \operatorname{tr}(A). \tag{20.56}$$

Definition 20.4.32 (Matrix congruence). Let $A, B \in M_n(K)$. If there exists a matrix P such that

$$A = P^T B P, (20.57)$$

the matrices are said to be congruent.

Property 20.4.33. Every matrix congruent to a symmetric matrix is also symmetric.

Property 20.4.34 (Orthogonality of basis changes). Let $(V, \langle \cdot | \cdot \rangle)$ be an inner product space and let $\mathcal{B}, \mathcal{B}'$ be two orthonormal bases of V with transition matrix Q. Q is *orthogonal* (Definition 20.4.58):

$$Q^T Q = \mathbb{1}_n. (20.58)$$

20.4.4 Determinant

Definition 20.4.35 (Minor). The (i, j)-th minor of A is defined as

$$\det(A_{ij}), \tag{20.59}$$

where $A_{ij} \in M_{n-1}(K)$ is the matrix obtained by removing the i^{th} row and the j^{th} column from A.

Definition 20.4.36 (Cofactor). The cofactor α_{ij} of the matrix element a_{ij} is equal to

$$(-1)^{i+j} \det(A_{ij}),$$
 (20.60)

where $det(A_{ij})$ is the minor as defined above.

Definition 20.4.37 (Adjugate matrix). The adjugate matrix of $A \in M_n(K)$ is defined as follows:

$$\operatorname{adj}(A) := \begin{pmatrix} \alpha_{11} & \alpha_{21} & \cdots & \alpha_{n1} \\ \alpha_{12} & \alpha_{22} & \cdots & \alpha_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_{1n} & \alpha_{2n} & \cdots & \alpha_{nn} \end{pmatrix}, \tag{20.61}$$

or in terms of the cofactors: $adj(A) = (\alpha_{ij})^T$.

Remark. It is important to notice that the transpose is taken after the elements have been replaced by their cofactor.

Formula 20.4.38 (Laplace). The determinant of a matrix $A \equiv (a_{ij}) \in M_n(K)$ can be evaluated as follows:

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+k} a_{ik} \det(A_{ik}). \tag{20.62}$$

Property 20.4.39. Let $A, B \in M_n(K)$ and denote the columns of A by A_1, \ldots, A_n . The determinant has the following properties:

- $\det(AB) = \det(A) \det(B)$,
- $\det(A^T) = \det(A)$,
- $\det(A_1,\ldots,A_i+\lambda A_i',\ldots,A_n) = \det(A_1,\ldots,A_i,\ldots,A_n) + \lambda \det(A_1,\ldots,A_i',\ldots,A_n)$ for all $A_i,A_i' \in M_{n,1}(K)$, and
- $\det(A_{\sigma(1)}, \ldots, A_{\sigma(n)}) = \operatorname{sgn}(\sigma) \det(A_1, \ldots, A_n)$

Items 2, 3 and 4 further imply that a matrix with two identical rows or columns has a vanishing determinant.

Property 20.4.40. Let $A \in M_n(K)$. The following statements are equivalent:

- $det(A) \neq 0$,
- $\operatorname{rk}(A) = n$, or
- $A \in \operatorname{GL}_n(K)$.

Property 20.4.41. For all $A \in M_n(K)$ one finds that $A \operatorname{adj}(A) = \operatorname{adj}(A)A = \operatorname{det}(A)I_n$.

Corollary 20.4.42. For all $A \in GL_n(K)$ one finds

$$A^{-1} = \det(A)^{-1} \operatorname{adj}(A). \tag{20.63}$$

Alternative Definition 20.4.43 (Minor). Let $A \in M_{m,n}(K)$ and $k \leq \min(m,n)$. A $k \times k$ -minor of A is the determinant of a $k \times k$ -partial matrix obtained by removing m-k rows and n-k columns from A.

Property 20.4.44. Let $A \in M_{m,n}(K)$ and $k \leq \min(m,n)$. Then $\operatorname{rk}(A) \geq k$ if and only if A contains a nonzero $k \times k$ -minor.

Property 20.4.45 (Invariance of determinant). Let $f \in \text{End}(V)$. The determinant of the matrix representation of f is invariant under basis transformations.

Definition 20.4.46 (Determinant of a linear operator). The previous property allows for an unambiguous definition of the determinant of $f \in \text{End}(V)$:

$$\det(f) := \det(A) \tag{20.64}$$

for any matrix representation A of f.

20.4.5 Characteristic polynomial

Definition 20.4.47 (Characteristic polynomial). Consider a linear map $f \in \text{End}(V)$ be a linear map and consider its matrix representation A_f . The function

$$\chi_f(x) := \det(x \mathbb{1}_n - A_f) \in K[x]$$
(20.65)

is a monic polynomial of degree n in the variable x. Furthermore, the polynomial does not depend on the choice of basis. The following equation is called the **characteristic equation** or **secular equation** of f:

$$\chi_f(x) = 0. (20.66)$$

Formula 20.4.48. Consider a matrix $A = (a_{ij}) \in M_n(K)$ with characteristic polynomial

$$\chi_A(x) = x^n + c_{n-1}x^{n-1} + \dots + c_1x + c_0.$$

The first and last of the coefficients c_i have a simple expression:

$$\begin{cases} c_0 = (-1)^n \det(A) \\ c_{n-1} = -\operatorname{tr}(A) \end{cases}$$
 (20.67)

Theorem 20.4.49 (Cayley-Hamilton). Consider a linear map $f \in \text{End}(V)$ with characteristic polynomial χ_f .

$$\chi_f(f) = f^n + \sum_{i=1}^{n-1} c_i f^i = 0.$$
 (20.68)

Corollary 20.4.50. From Theorem 20.2.15 and the Cayley-Hamilton theorem it follows that the minimal polynomial μ_f is a divisor of the characteristic polynomial χ_f .

20.4.6 Matrix groups

Definition 20.4.51 (Elementary matrix). An elementary matrix is a matrix of the following form:

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & c_{ij} & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & c_{ij} & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}, \cdots$$

i.e. it is equal to the sum of an identity matrix and a multiple of a matrix unit U_{ij} $(i \neq j)$.

Notation 20.4.52 (Elementary matrix). $E_{ij}(c)$ is the elementary matrix with the scalar c at position (i, j).

Property 20.4.53 (Invertibility). Elementary matrices have determinant 1. This implies that $E_{ij}(c) \in GL_n(K)$ for all $c \in K$.

Property 20.4.54. Multiplication by an elementary matrix has the following properties:

- Left multiplication by an elementary matrix $E_{ij}(c)$ comes down to replacing the i^{th} row of the matrix with the i^{th} row plus c times the j^{th} row.
- Right multiplication by an elementary matrix $E_{ij}(c)$ comes down to replacing the j^{th} column of the matrix with the j^{th} column plus c times the i^{th} column.

Property 20.4.55. Every matrix $A \in GL_n(K)$ can be written in the following way:

$$A = SD$$

where S is a product of elementary matrices and D = diag(1, ..., 1, det(A)).

Definition 20.4.56 (Special linear group). The subgroup of $GL_n(K)$ consisting of all matrices with determinant 1:

$$SL_n(K) := \{ A \in GL_n(K) \mid \det(A) = 1 \}.$$
 (20.69)

Property 20.4.57. By Property 20.4.55 every $A \in \mathrm{SL}_n(K)$ can be written as a product of elementary matrices.

Definition 20.4.58 (Orthogonal group). The orthogonal and special orthogonal group are defined as follows:

$$O(n, K) := \{ A \in \operatorname{GL}_n(K) \mid AA^T = A^T A = \mathbb{1}_n \}$$

$$SO(n, K) := O_n(K) \cap \operatorname{SL}_n(K).$$

Definition 20.4.59 (Unitary group). Consider a field K equipped with an involution σ : $\lambda \mapsto \overline{\lambda}$. The unitary and special unitary group are defined as follows:

$$U_n(K,\sigma) := \{ A \in GL_n(K) \mid A\sigma(A)^T = \sigma(A)^T A = \mathbb{1}_n \}$$

$$SU_n(K,\sigma) := U_n(K) \cap SL_n(K).$$

In practice K is often \mathbb{C} with complex conjugation as the involution. For this reason the notation $A^{\dagger} := \sigma(A)^T$ is common. Moreover, in the case $K = \mathbb{C}$ the notation is further simplified to $\mathrm{U}(n)$ and $\mathrm{SU}(n)$.

Definition 20.4.60 (Unitary equivalence). Let A, B be two matrices in $M_n(K)$. The matrices are said to be unitarily equivalent if there exists a unitary matrix U such that

$$A = U^{\dagger}BU$$
.

Property 20.4.61. For orthogonal matrices, conjugacy 20.4.29 and congruency 20.4.32 coincide. More generally, for unitary matrices conjugacy and unitary equivalence coincide.

Definition 20.4.62 (Symplectic group). Consider a vector space V with an antisymmetric nonsingular matrix Ω . The symplectic group $Sp(V,\Omega)$ is defined as follows:

$$\operatorname{Sp}(V,\Omega) := \{ A \in \operatorname{GL}(V) \mid A^T \Omega A = \Omega \}. \tag{20.70}$$

Over the real or complex numbers one can define the canonical symplectic matrix

$$\Omega_{st} := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}. \tag{20.71}$$

The groups of matrices that preserve this matrix are often denoted by $\mathrm{Sp}(n,\mathbb{R})$ and $\mathrm{Sp}(n,\mathbb{C})$.

Remark 20.4.63. Symplectic groups can only be defined on even-dimensional spaces because antisymmetric matrices can only be nonsingular if the dimension n is even.

Definition 20.4.64 (Compact symplectic group). The compact symplectic group is defined as follows (although the notation is confusing, it is standard):

$$Sp(n) := Sp(2n, \mathbb{C}) \cap U(2n). \tag{20.72}$$

This group is in fact isomorphic to the quaternionic unitary group in n quaternionic dimensions.

Example 20.4.65.

$$Sp(1) \cong SU(2)$$

20.4.7 Matrix decompositions

Method 20.4.66 (QR Decomposition). Every square complex matrix M can be decomposed as

$$M = QR (20.73)$$

where Q is unitary and R is upper-triangular. The easiest (but not the most numerically stable) way to do this is by applying the Gram-Schmidt orthonormalization process:

Let $\{v_i\}_{i\leq n}$ be a basis for the column space of M. By applying the Gram-Schmidt process to this basis one obtains a new orthonormal basis $\{e_i\}_{i\leq n}$. The matrix M can then be written as QR where:

- R is an upper-triangular matrix with entries $R_{ij} = \langle e_i | \operatorname{col}_j(M) \rangle$, where $\operatorname{col}_j(M)$ denotes the j^{th} column of M.
- $Q = (e_1, \dots, e_n)$ is the unitary matrix constructed by setting the i^{th} column equal to the i^{th} basis vector e_i .

Property 20.4.67. If M is invertible and if the diagonal elements of R are required to have positive norm, the QR-decomposition is unique.

?? COMPLETE (Cholesky, polar, ...) ??

20.5 Eigenvectors

Definition 20.5.1 (Eigenvector). A vector $v \in V \setminus \{0\}$ is called an **eigenvector** of the linear map $f: V \to V$ if it satisfies the equation

$$f(v) = \lambda v \tag{20.74}$$

for some $\lambda \in K$. The scalar λ is called the **eigenvalue** associated to v.

Definition 20.5.2 (Eigenspace). The subspace of V spanned by the eigenvectors of a linear map is called the eigenspace of that linear map. It is given by

$$\ker(\lambda \mathbb{1}_V - f). \tag{20.75}$$

It follows that the eigenvalues are exactly those scalars for which the linear map $\lambda \mathbb{1}_V - f$ is not injective. (This is generalized in Section 23.4.5.)

Theorem 20.5.3 (Characteristic equation). Let $f \in \text{End}(V)$ be a linear map. A scalar $\lambda \in K$ is an eigenvalue of f if and only if it satisfies the characteristic equation 20.66.

Theorem 20.5.4. A linear map $f \in \text{End}(V)$ defined over an n-dimensional vector space V has at most n different eigenvalues.

Method 20.5.5 (Finding the eigenvectors of a matrix). To calculate the eigenvectors of a matrix one should perform the following steps:

- 1. Find the eigenvalues λ_i of A by applying theorem 20.5.3.
- 2. Find the eigenvector v_i associated to the eigenvalue λ_i through the following equation:

$$(A - \lambda_i \mathbb{1}_V) v_i = 0. (20.76)$$

20.5.1 Diagonalization

Definition 20.5.6 (Diagonalizable map). Let V be a finite-dimensional vector space. A linear map $f \in \text{End}(V)$ is diagonalizable if f admits a diagonal matrix representation.

Property 20.5.7. Every diagonalizable map is semisimple 20.2.16. Conversely, in finite dimensions (and over an algebraically closed field), a semisimple map is diagonalizable.

Theorem 20.5.8. A matrix $A \in M_n(K)$ is diagonalizable if and only if there exists a matrix $P \in GL_n(K)$ such that $P^{-1}AP$ is diagonal.

Corollary 20.5.9. Using the fact that the trace of a linear map is invariant under similarity transformations (Property 20.56), the following useful formula can be proven:

$$\operatorname{tr}(f) = \sum_{i=0}^{n} \lambda_i, \tag{20.77}$$

where $\{\lambda_i\}_{i\leq n}$ are the eigenvalues of f.

Property 20.5.10. Let V be an n-dimensional vector space and let $f \in \text{End}(V)$ be a linear map. The eigenvectors/eigenvalues of f satisfy the following properties:

- \bullet The eigenvectors of f belonging to different eigenvalues are linearly independent.
- If f has exactly n eigenvalues, f is diagonalizable.
- If f is diagonalizable, then V is the direct sum of the eigenspaces of f belonging to the different eigenvalues of f.

Theorem 20.5.11. A linear map f defined on a finite-dimensional vector space V is diagonalizable if and only if the set of eigenvectors of f forms a basis of V.

20.5.2 Multiplicity

Definition 20.5.12 (Multiplicity). Let V be a vector space and let $f \in \text{End}(V)$ be a linear map with characteristic polynomial

$$\chi_f(x) = \prod_{i=1}^n (x - \lambda_i)^{n_i}.$$
 (20.78)

The multiplicities are defined as follows:

- 1. The algebraic multiplicity of an eigenvalue λ_i is equal to n_i .
- 2. The **geometric multiplicity** of an eigenvalue λ_i is equal to the dimension of the eigenspace belonging to that eigenvalue.

Remark 20.5.13. In the previous definition it was assumed that the characteristic polynomial can be completely factorized. However, this depends on the possibility to completely factorize the polynomial over K (i.e. if it has 'enough' roots in K). If not, f cannot even be diagonalized. In general there always exists a field F containing K, called a *splitting field*, where the polynomial has 'enough' roots.

Property 20.5.14. The algebraic multiplicity is always greater than or equal to the geometric multiplicity.

Theorem 20.5.15. Let $f \in \text{End}(V)$ be a linear map. f is diagonalizable if and only if for every eigenvalue the algebraic multiplicity is equal to the geometric multiplicity.

Property 20.5.16. Every Hermitian linear map $f \in \text{End}(\mathbb{C}^n)$ has the following properties:

- All the eigenvalues of f are real.
- Eigenvectors belonging to different eigenvalues are orthogonal.
- f is diagonalizable and there always exists an orthonormal basis of eigenvectors of f, in particular, the diagonalizing matrix P is unitary, i.e. $P^{-1} = P^{\dagger}$.

Property 20.5.17. Let $A, B \in \text{End}(V)$ be two diagonalizable maps. If the commutator [A, B] is zero, the two maps have a common eigenbasis.

Theorem 20.5.18 (Sylvester's law of inertia). Let S be a Hermitian matrix. The number of positive and negative eigenvalues is invariant with respect to †-congruence (or conjugation due to Property 20.4.61).

20.6 Euclidean space

A finite-dimensional \mathbb{R} -vector space is called a **Euclidean** or **Cartesian space**.

Notation 20.6.1. When working in a Euclidean space the inner product $\langle v|w\rangle$ is often written as $v \cdot w$ (or even vw).

Definition 20.6.2 (Orientation). Let $\mathcal{B}, \mathcal{B}'$ be two ordered bases of \mathbb{R}^n and let Q be the transition matrix from \mathcal{B} to \mathcal{B}' . If $\det(Q) > 0$, the bases are said to have the same orientation (or to be **consistently oriented**). If $\det(Q) < 0$, the bases are said to have an opposite orientation.

Corollary 20.6.3 (Positive orientation). The previous definition imposes an equivalence relation on the set of bases of \mathbb{R}^n with exactly two equivalence classes. The bases in one of these classes are said to be **positively** (or **directly**) oriented. The bases in the other class are then said to be **negatively** (or **indirectly**) oriented.

Remark 20.6.4. It is convenient to take the standard basis (e_1, \ldots, e_n) to be positively oriented.

20.7 Grassmanians

Definition 20.7.1 (Grassmannian). Let V be a vector space. The set of all subspaces of dimension k is called the Grassmannian Gr(k, V).

Property 20.7.2. GL(V) acts transitively 3.3.11 on all k-dimensional subspaces of V. Property 3.3.12 implies that the coset space $GL(V)/H_W$ for the stabilizer H_W of any $W \in Gr(k, V)$ is isomorphic (as a set) to Gr(k, V).

Definition 20.7.3 (Flag). Let V be a finite-dimensional vector space. A sequence of proper subspaces $V_1 < \cdots < V_n = V$ is called a flag of V. The sequence $(\dim V_1, \ldots, \dim V_n = \dim V)$ is called the **signature** of the flag. If for all i, dim $V_i = i$, the flag is called **complete**.

Grassmannians are a specific instance of the following object:

Definition 20.7.4 (Flag variety). The set of all flags of a given signature over a vector space V is called the (generalized) flag variety (of that signature). If the underlying field is the field of real (or complex) numbers, the flag variety is a smooth (or complex) manifold (Chapter 29), called the **flag manifold**.

Property 20.7.2 generalizes as follows:

Property 20.7.5 (Parabolic subgroups). Every flag variety has the structure of a homogeneous space: $Fl_{n,\underline{d}} \equiv \operatorname{GL}(V)/P_{n,\underline{d}}$ (where \underline{d} denotes the signature of the flags). The subgroups $P_{n,\underline{d}}$ are called **parabolic subgroups**. The maximal parabolic subgroups are those that define the Grassmannian variaties. The flag variety of all complete flags defines the **Borel subgroup** B_n . It can be shown that every parabolic subgroup contains the Borel subgroup.

Chapter 21

Vector & Tensor Calculus

References for this chapter are [39,40]. For a more geometric approach to some of the concepts and results in this chapter, see the content of Chapters 28 and 32 and Section 32.5.

Definition 21.0.1 (Vector field). A vector field will mean a smooth vector-valued function $\vec{f}(\vec{x}) \equiv (u(\vec{x}), v(\vec{x}), w(\vec{x}))$ on \mathbb{R}^3 , where smooth implies that all three functions u, v and w are smooth.

21.1 Nabla-operator

Remark. The geometric approach to this section is summarized in Remark 32.4.10.

Definition 21.1.1 (Gradient). Let φ be a smooth real-valued function on \mathbb{R}^3 .

$$\nabla \varphi := \left(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z} \right) \tag{21.1}$$

Formula 21.1.2. Let $\varphi : \mathbb{R}^3 \to \mathbb{R}$ be a smooth function. The total differential $d\varphi$ can be rewritten as follows:

$$d\varphi = \nabla \varphi \cdot d\vec{r}. \tag{21.2}$$

Property 21.1.3. The gradient of a smooth real-valued function is perpendicular to its level sets 2.2.9.

Definition 21.1.4 (Directional derivative). Let \hat{a} be a unit vector. The directional derivative $\nabla_{\hat{a}}\varphi$ is defined as the change of the function φ in the direction of \hat{a} :

$$\nabla_{\hat{a}}\varphi := (\hat{a} \cdot \nabla)\varphi. \tag{21.3}$$

Example 21.1.5. Let $\varphi: \mathbb{R}^3 \to \mathbb{R}$ be a smooth real-valued function and let $\frac{d\vec{r}}{ds}$ denote the tangent vector to a curve $\vec{r}(s)$ with natural parameter s. The variation of φ along $\vec{r}(s)$ is given by

$$\frac{\partial \varphi}{\partial s} = \frac{d\vec{r}}{ds} \cdot \nabla \varphi. \tag{21.4}$$

Definition 21.1.6 (Conservative vector field). A vector field obtained as the gradient of a scalar function.

¹See 28.1.4 for a formal definition.

Definition 21.1.7 (Gradient of a tensor). Let T be a tensor field on \mathbb{R}^3 and let \vec{e}^i be a (curvilinear) orthogonal frame². The gradient of T is defined as follows:

$$\nabla T := \frac{\partial T}{\partial x^i} \otimes \vec{e}^i. \tag{21.5}$$

Definition 21.1.8 (Divergence). Let \vec{A} be a vector field on \mathbb{R}^3 .

$$\nabla \cdot \vec{A} := \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$
 (21.6)

Definition 21.1.9 (Solenoidal vector field). A vector field \vec{A} is said to be solenoidal or divergence-free if it satisfies

$$\nabla \cdot \vec{A} = 0. \tag{21.7}$$

Definition 21.1.10 (Rotor / curl). Let \vec{A} be a vector field on \mathbb{R}^3 .

$$\nabla \times \vec{A} := \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}, \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}, \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)$$
(21.8)

Definition 21.1.11 (Irrotational vector field). A vector field \vec{A} is said to be irrotational if it satisfies

$$\nabla \times \vec{A} = 0. \tag{21.9}$$

Definition 21.1.12 (Laplacian). Let φ and \vec{A} be a smooth function and vector field on \mathbb{R}^3 respectively.

$$\Delta \varphi := \nabla^2 \varphi = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} \tag{21.10}$$

$$\triangle \vec{A} := \nabla^2 \vec{A} = \nabla \left(\nabla \cdot \vec{A} \right) - \nabla \times \left(\nabla \times \vec{A} \right) \tag{21.11}$$

The latter is sometimes called the **vector Laplacian**.

Property 21.1.13 (Mixed properties). The differential operators introduced above satisfy the following identities:

$$\nabla \times (\nabla \varphi) = 0 \tag{21.12}$$

$$\nabla \cdot \left(\nabla \times \vec{A} \right) = 0. \tag{21.13}$$

In Cartesian coordinates equation (21.11) can be rewritten as follows:

$$\nabla^2 \vec{A} = (\triangle A_x, \triangle A_y, \triangle A_z) \tag{21.14}$$

Corollary 21.1.14. All conservative vector fields are irrotational. However, the converse is only true if the domain is simply-connected 9.1.17. (All of this is formalized in the Poincaré lemma 32.6.9.)

Formula 21.1.15 (Helmholtz decomposition). If \vec{P} be a vector field that decays faster than 1/r when $r \to \infty$, it can be written as

$$\vec{P} = \nabla \times \vec{A} + \nabla \varphi. \tag{21.15}$$

for some vector field \vec{A} and smooth function φ

²See 32.2.4 for a formal definition.

21.1.1 Curvilinear coordinates

In this section the differential operators are generalized to curvilinear coordinates. To do this one needs the scale factors as formally defined in equation (28.2.5). Furthermore, the Einstein summation convention will not be used to make everything as explicit as possible.

Formula 21.1.16 (Unit vectors).

$$\frac{\partial \vec{r}}{\partial q^i} = h_i \hat{e}_i \tag{21.16}$$

Formula 21.1.17 (Gradient).

$$\nabla \varphi = \sum_{i=1}^{3} \frac{1}{h_i} \frac{\partial \varphi}{\partial q^i} \hat{e}_i \tag{21.17}$$

Formula 21.1.18 (Divergence).

$$\nabla \cdot \vec{A} = \frac{1}{h_1 h_2 h_3} \left(\frac{\partial}{\partial q^1} (A_1 h_2 h_3) + \frac{\partial}{\partial q^2} (A_2 h_3 h_1) + \frac{\partial}{\partial q^3} (A_3 h_1 h_2) \right)$$
(21.18)

Formula 21.1.19 (Rotor).

$$\left(\nabla \times \vec{A}\right)_i = \sum_{j,k=1}^3 \frac{\varepsilon_{ijk}}{h_j h_k} \left(\frac{\partial}{\partial q^j} (A_k h_k) - \frac{\partial}{\partial q^k} (A_j h_j)\right),\tag{21.19}$$

where ε_{ijk} is the 3-dimensional Levi-Civita symbol 21.6.8.

Formula 21.1.20 (Laplacian in different coordinate systems). In general the Laplace operator is defined as

$$\Delta f := \nabla \cdot \nabla f. \tag{21.20}$$

The Laplacian can also be expressed in different coordinate systems:

• Cylindrical coordinates (ρ, ϕ, z) :

$$\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2}{\partial \phi^2} + \frac{\partial^2}{\partial z^2}.$$
 (21.21)

• Spherical coordinates (r, ϕ, θ) :

$$\frac{1}{r^2} \left[\frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) \right]. \tag{21.22}$$

21.2 Integration

21.2.1 Line integrals

Formula 21.2.1 (Line integral of a continuous function). Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a continuous function and let Γ be a piecewise smooth curve with parametrization $\vec{\varphi}(t), t \in [a, b]$. The line integral of f along Γ is defined as follows:

$$\int_{\Gamma} f(s)ds = \int_{a}^{b} f(\vec{\varphi}(t))||\vec{\varphi}'(t)||dt. \tag{21.23}$$

Formula 21.2.2 (Line integral of a continuous vector field). Let \vec{F} be a continuous vector field on \mathbb{R}^3 and let Γ be a piecewise smooth curve with parametrization $\vec{\varphi}(t), t \in [a, b]$. The line integral of F along Γ is defined as follows:

$$\int_{\Gamma} \vec{F}(\vec{s}) \cdot d\vec{s} = \int_{a}^{b} \vec{F}(\vec{\varphi}(t)) \cdot \vec{\varphi}'(t) dt.$$
 (21.24)

Property 21.2.3 (Conservative vector fields). A vector field is conservative if and only if its line integral is path independent, i.e. it only depends on the values at the end points. (This is a corollary of Stokes' theorem 32.5.23.)

21.2.2 Integral theorems³

Theorem 21.2.4 (Fundamental theorem of calculus for line integrals). Let $\Gamma: \mathbb{R} \to \mathbb{R}^3$ be a piecewise smooth curve defined on the interval [a,b].

$$\int_{\Gamma} \nabla f(\vec{r}) \cdot d\vec{r} = \varphi(\Gamma(b)) - \varphi(\Gamma(a))$$
(21.25)

Theorem 21.2.5 (Kelvin-Stokes' theorem). Let \vec{A} be a vector field on \mathbb{R}^3 and let S be a smooth surface with boundary ∂S .

$$\oint_{\partial S} \vec{A} \cdot d\vec{l} = \iint_{S} (\nabla \times \vec{A}) dS \tag{21.26}$$

Theorem 21.2.6 (Divergence theorem⁴). Let \vec{A} be a vector field on \mathbb{R}^3 .

$$\iint_{\partial V} \vec{A} \cdot d\vec{S} = \iiint_{V} (\nabla \cdot \vec{A}) dV$$
(21.27)

Corollary 21.2.7 (Green's identity). Let ϕ, ψ be smooth real-valued functions on \mathbb{R}^3 .

$$\oint \int_{\partial V} (\psi \nabla \phi - \phi \nabla \psi) \cdot d\vec{\mathbf{S}} = \iiint_{V} (\psi \nabla^{2} \phi - \phi \nabla^{2} \psi) dV \tag{21.28}$$

21.3 Tensors

There are two possible (equivalent) ways to introduce the concept of a *tensor* on finite-dimensional vector spaces. One is to interpret tensors as multilinear maps, while the other is to interpret the components as expansion coefficients with respect to a chosen basis.

Definition 21.3.1 (Tensor product space). The tensor product of two (finite-dimensional!!) vector spaces V and W is defined as⁵ the set of bilinear maps on the Cartesian product $V^* \times W^*$. Let v, w be vectors in respectively V and W and let g, h be vectors in the corresponding dual spaces. The tensor product of v and w is then defined as follows:

$$(v \otimes w)(g,h) := v(g)w(h). \tag{21.29}$$

In this incarnation the tensor product is sometimes known as the **outer product**. Outer products are also frequently called **pure** or **simple tensors**.

 $^{^3{\}rm These}$ theorems follow from a more general theorem by Stokes 32.5.23.

⁴Also known as Gauss's theorem or the Gauss-Ostrogradsky theorem.

⁵"isomorphic to" would be a better terminology. See the "universal property" 21.3.3 below. For a complete proof and explanation, see [39].

Definition 21.3.2 (Tensor component). Let **T** be a tensor that takes r vectors and s covectors as input and returns a scalar (element of the underlying field). The components of **T** are defined as $T_{i...j}^{k...l} := \mathbf{T}(e_i, \ldots, e_j, e^k, \ldots, e^l)$.

The above definition can be restated as a universal property (this is also the right way to generalize tensors to infinite-dimensional spaces and avoid the awkward definition involving dual spaces):

Universal Property 21.3.3. Let Z be a vector space. For every bilinear map $T: V \times W \to Z$ there exists a unique linear map $f: V \otimes W \to Z$ such that $T = f \circ \varphi$ where $\varphi: V \times W \to V \otimes W$ is the bilinear map $(v, w) \mapsto v \otimes w$.

Corollary 21.3.4. The tensor product is unique up to linear isomorphisms. This results in the commutativity of the tensor product:

$$V \otimes W \cong W \otimes V. \tag{21.30}$$

Notation 21.3.5 (Tensor power).

$$V^{\otimes n} := \underbrace{V \otimes \cdots \otimes V}_{n \text{ copies}} \tag{21.31}$$

More generally, the tensor product of r copies of V and s copies of V^* is denoted by

$$\mathcal{T}_{s}^{r}(V) = V^{\otimes r} \otimes V^{* \otimes s}. \tag{21.32}$$

These tensors are said to be of **type** (r, s).

Definition 21.3.6 (Scalar). The scalars, i.e. the elements of the underlying field are by definition the (0,0)-tensors.

Definition 21.3.7 (Tensor algebra). The tensor algebra over a vector space V is defined as follows:

$$T(V) := \bigoplus_{k>0} V^{\otimes k}.$$
 (21.33)

The following remark is strongly related to Property 20.2.18:

Remark 21.3.8. For finite-dimensional vector spaces the space \mathcal{T}_1^1V is isomorphic to $\operatorname{End}(V)$ and the space \mathcal{T}_0^1V is isomorphic to V itself.

However, when including infinite-dimensional spaces, the space \mathcal{T}_1^1V is only isomorphic to the endomorphism space $\operatorname{End}(V^*)$ of the dual. This isomorphism is given by the map $\hat{T}:V^*\to V^*:\omega\mapsto \mathbf{T}(\cdot,\omega)$ for every $\mathbf{T}\in\mathcal{T}_1^1V$. Moreover, in this general setting, the spaces \mathcal{T}_1^0V and V^* are also isomorphic.

One can also define the tensor product space as follows:

Alternative Definition 21.3.9 (Tensor product). Consider two vector spaces V, W over a field K. First construct the free vector space $F(V \times W)$ over K. Then construct the subspace N of $F(V \times W)$ spanned by elements of the form

- (v + v', w) (v, w) (v', w).
- (v, w + w') (v, w) (v, w'),

- $(\lambda v, w) \lambda(v, w)$, or
- $(v, \mu w) \mu(v, w)$,

where $v \in V, w \in W$ and $\lambda, \mu \in K$. The tensor product $V \otimes W$ is defined as the quotient $F(V \times W)/N$. It can be shown that this construction is associative, i.e. $U \otimes (V \otimes W) \cong (U \otimes V) \otimes W$, and as such these brackets will be omitted in all expressions.

Now, consider the case where $W = V^*$. In this case the basis of the tensor product $\mathcal{T}_s^r(V)$ will be denoted by

$$\underbrace{e_i \otimes \cdots \otimes e_j}_{r \text{ basis vector}} \otimes \underbrace{\varepsilon^k \otimes \cdots \otimes \varepsilon^l}_{s \text{ dual basis vectors}}$$

and the expansion coefficients will be denoted by $T_{i...i}^{k...l}$.

Property 21.3.10 (Dimension). From the previous construction it follows that the dimension of $\mathcal{T}_s^r(V)$ is equal to rs.

For completeness the proof that the values of the tensor operating on r basis vectors and s basis covectors are equal to the corresponding expansion coefficients is given:

Proof. Consider a general tensor $\mathbf{T} = T_{i...j}^{k...l} e_k \otimes \cdots \otimes e_l \otimes \varepsilon^i \otimes \cdots \otimes \varepsilon^j$. Combining Definition 21.3.1 and the pairing of dual vectors (20.18) gives

$$\mathbf{T}(\varepsilon^{m}, \dots, \varepsilon^{n}, e_{a}, \dots, e_{b}) = T_{i \dots j}^{k \dots l} e_{k}(\varepsilon^{m}) \dots e_{l}(\varepsilon^{n}) \varepsilon^{i}(e_{a}) \dots \varepsilon^{j}(e_{b})$$

$$= T_{i \dots j}^{k \dots l} \delta_{k}^{m} \dots \delta_{l}^{n} \delta_{a}^{i} \dots \delta_{b}^{j}$$

$$= T_{a \dots b}^{m \dots n}.$$

21.4 Transformation rules

In this section the behaviour of tensors under basis transformations of the form $e'_i = A^i{}_j e_j$ is considered.

Definition 21.4.1 (Contravariant). A tensor component that transforms by the following rule is said to be contravariant:

$$v^{i} = A^{i}_{j} v^{\prime j}. (21.34)$$

Definition 21.4.2 (Covariant). A tensor component that transforms by the following rule is said to be covariant:

$$p_i' = A^j_{\ i} \, p_j. \tag{21.35}$$

Example 21.4.3 (Mixed tensor). This example gives the transformation rule of a mixed third-order tensor $T \in \mathcal{T}_2^1$:

$$T^{k}_{ij} = A^{k}_{w} (A^{-1})^{u}_{i} (A^{-1})^{v}_{j} T'^{w}_{uv}. {21.36}$$

Method 21.4.4 (Quotient rule). Assume that an equation such as $Q_i^{\ j}A_{jl}^{\ k}=B_{il}^{\ k}$ is given, with A and B two known tensors. The quotient rule asserts the following: "If the equation holds under all transformations, then Q is a tensor of the indicated type." Note that this rule does not necessarily hold when B=0 because transformation rules are not well-defined for the zero-tensor.

Remark. This rule is a useful substitute for the "illegal" division of tensors.

21.5 Tensor operations

21.5.1 General operations

Definition 21.5.1 (Contraction). Let A be a tensor of type (m, n). Taking a subscript and superscript to be equal and summing over all possible values of this index gives a new tensor of type (m-1, n-1). This operation is called the contraction of A. It is induced by the evaluation map/pairing 20.2.20.

Definition 21.5.2 (Direct product). Let A and B be two tensors. The tensor constructed by the componentwise multiplication of A and B is called the direct product of A and B. This is a generalization of the Hadamard product 20.4.8.

Example 21.5.3. Let $A^{i}_{\ k}$ and $B^{j}_{\ lm}$ represent two tensors. Their direct product is equal to

$$C^{i\ j}_{\ k\ lm} = A^{i}_{\ k} B^{j}_{\ lm}.$$

Formula 21.5.4 (Operator product). It is also possible to combine operators acting on different vector spaces to make them act on the tensor product space:

$$(A \otimes B)(v \otimes w) := Av \otimes Bw. \tag{21.37}$$

Remark. Consider an operator A acting on a vector space V_1 . When working with a tensor product space $V_1 \otimes V_2$, the operator A can be extended to the product as $A \otimes \mathbb{1}$. However, it is often still denoted by A.

Notation 21.5.5 (Symmetric part). Consider a second-order tensor T (here taken to be of covariant type for notational simplicity). The symmetric and antisymmetric part of T are sometimes denoted by

$$T_{(ij)} = \frac{1}{2}(T_{ij} + T_{ji}) \tag{21.38}$$

and

$$T_{[ij]} = \frac{1}{2}(T_{ij} - T_{ji}). \tag{21.39}$$

This notation is easily generalized to other types of tensors.

Property 21.5.6 (Gradient of tensor products). The gradient of a tensor product is defined through the Leibniz rule:

$$\nabla \cdot (v \otimes w) := (\nabla \cdot v)w + (v \cdot \nabla)w. \tag{21.40}$$

21.5.2 Complexification

Definition 21.5.7 (Complexification). Let V be a real vector space. The complexification of V is defined as the following tensor product:

$$V^{\mathbb{C}} := V \otimes \mathbb{C}. \tag{21.41}$$

This space can still be considered a real vector space, but it can also be turned into a complex vector space by generalizing the scalar product as follows:

$$\alpha(v \otimes \beta) := v \otimes (\alpha\beta) \tag{21.42}$$

for all $\alpha \in \mathbb{C}$.

Property 21.5.8. By noting that every element $v_{\mathbb{C}} \in V^{\mathbb{C}}$ can be written as

$$v_{\mathbb{C}} = (v_1 \otimes 1) + (v_2 \otimes i),$$

the complexification can be decomposed as

$$V^{\mathbb{C}} \cong V \oplus iV. \tag{21.43}$$

21.6 Exterior algebra

21.6.1 Antisymmetric tensors

Definition 21.6.1 (Antisymmetric tensor). A tensor that changes sign under the interchange of any two indices.

Notation 21.6.2 (Symmetric tensors). The space of symmetric (n, 0)-tensors is denoted by $S^n(V)$. The space of symmetric (0, n)-tensors is denoted by $S^n(V^*)$.

Notation 21.6.3 (Antisymmetric tensors). The space of antisymmetric (n, 0)-tensors is denoted by $\Lambda^n(V)$. The space of antisymmetric (0, n)-tensors is denoted by $\Lambda^n(V)$.

Property 21.6.4. Let $n = \dim(V)$. The space $\Lambda^r(V)$ equals the zero space for all $r \geq n$.

21.6.2 Determinant

Definition 21.6.5 (Form). An *n*-form is a totally antisymmetric element $\omega \in \mathcal{T}_n^0 V$.

Definition 21.6.6 (Volume form). A form of rank $\dim(V)$ is also called a **top form** or **volume form**.

Definition 21.6.7 (Determinant). Consider a finite-dimensional vector space V with basis $\{e_i\}_{i\leq n}$. Let φ be a tensor in $\mathcal{T}_1^1V\cong \operatorname{End}(V)$ and let ω be a volume form on V. The determinant of φ is defined as follows:

$$\det \varphi := \frac{\omega(\varphi(e_1), \dots, \varphi(e_n))}{\omega(e_1, \dots, e_n)}.$$
(21.44)

This definition is well-defined, i.e. it is independent of the choice of volume form and basis. Furthermore, it coincides with Definition 20.4.46.

One should note that the determinant is only well-defined for (1,1)-tensors. Although other types of tensors can also be represented as matrices, it would not be independent of a choice of basis anymore. A more general concept can be defined using the language principal bundles (Section 33).

21.6.3 Levi-Civita symbol

Definition 21.6.8 (Levi-Civita symbol). In n dimensions the Levi-Civita symbol is defined as follows:

$$\varepsilon_{i...n} = \begin{cases} 1 & \text{if } (i ...n) \text{ is an even permutation of } (12 ...n) \\ -1 & \text{if } (i ...n) \text{ is an odd permutation of } (12 ...n) \\ 0 & \text{if any of the indices occurs more than once.} \end{cases}$$
 (21.45)

Remark 21.6.9. The Levi-Civita symbol is not a tensor, it is a *pseudotensor*. This means that the sign changes under reflections or any transformation with determinant -1. (To turn it into a proper tensor one should multiply it by a factor \sqrt{g} , where g is the determinant of the metric.)

Formula 21.6.10 (Cross product). Using the Levi-Civita symbol, one can define the i^{th} component of the cross product⁶ as follows:

$$(v \times w)_i = \varepsilon_{ijk} v_j w_k. \tag{21.46}$$

Remark 21.6.11. It is important to note that this construction is only valid in 3 dimensions.

⁶The previous remark also implies that the cross product is in fact not a vector, but a instead it is a "pseudovector".

21.6.4 Wedge product

Definition 21.6.12 (Antisymmetrization). Let $S_k = \{P_i\}_{i \leq k}$ denote the permutation group on k elements, i.e. the group of all permutations of the ordered set $\{1, \ldots, k\}$. The antisymmetrization operator is defined as follows:

$$Alt(e_1 \otimes \cdots \otimes e_k) := \sum_i sgn(P_i) e_{P_i(1)} \otimes \cdots \otimes e_{P_i(k)}.$$
 (21.47)

Note that many authors introduce a factor (1/k!). This convention is not adopted here to keep the following definition clean. If the factor is included, Formula 21.6.15 below should be modified.

Definition 21.6.13 (Wedge product). Let $\{e_i\}_{i \leq \dim(V)}$ be a basis for V. The wedge product of basisvectors is defined as follows:

$$e_1 \wedge \ldots \wedge e_k = \text{Alt}(e_1 \otimes \cdots \otimes e_k)$$
 (21.48)

From this definition it immediately follows that the wedge product is (totally) antisymmetric.

Construction 21.6.14. Let $\{e_i\}_{i \leq \dim(V)}$ be a basis for V. The above definition implies that a basis for $\Lambda^r(V)$ is given by

$$\{e_{i_1} \wedge \ldots \wedge e_{i_r} : \forall k : 1 \leq i_k \leq \dim(V)\}.$$

Accordingly, the dimension of this space is given by

$$\dim \Lambda^r(V) = \binom{n}{r}.$$
 (21.49)

For r=0 this construction would be vacuous, so one just defines $\Lambda^0(V):=\mathbb{R}$.

Formula 21.6.15. Let $v \in \Lambda^r(V)$ and $w \in \Lambda^m(V)$. The wedge product 21.6.13 can be generalized as follows:

$$v \wedge w = \frac{1}{r!m!} \text{Alt}(v \otimes w),$$
 (21.50)

where the antisymmetrization operator Alt was defined in 21.6.12.

Definition 21.6.16 (Blades). Elements of $\Lambda^k(V)$ that can be written as the wedge product of k vectors are generally known as k-blades or pure k-vectors.

Formula 21.6.17. In dimension 3 there exists an important isomorphism $J: \Lambda^2(\mathbb{R}^3) \to \mathbb{R}^3$:

$$J(\lambda)^{i} = \frac{1}{2} \varepsilon^{i}_{jk} \lambda^{jk} \tag{21.51}$$

where $\lambda \in \Lambda^2(\mathbb{R}^3)$. See also the Hodge *-operator 21.6.25 further below.

Looking at the definition of the cross product 21.6.10, one can see that $v \times w$ is actually the same as $J(v \wedge w)$. One can thus use the wedge product to generalize the cross product to higher dimensions.

21.6.5 Exterior algebra

Definition 21.6.18 (Exterior power). In the theory of exterior algebras, the space $\Lambda^k(V)$ is often called the k^{th} exterior power of V. As mentioned before, its elements are called (exterior) k-forms

Definition 21.6.19 (Exterior algebra). One can define a graded vector space⁷ $\Lambda^{\bullet}(V)$ as follows:

$$\Lambda^{\bullet}(V) := \bigoplus_{k \ge 0} \Lambda^k(V). \tag{21.52}$$

This graded vector space can be turned into a graded algebra by taking the wedge product as the multiplication:

$$\wedge: \Lambda^k(V) \times \Lambda^l(V) \to \Lambda^{k+l}(V). \tag{21.53}$$

This algebra is called the exterior algebra or **Grassmann algebra** over V. Elements of the space $\bigotimes_{k \text{ even}} \Lambda^k(V)$ are said to be **Grassmann-even** and elements of $\bigotimes_{k \text{ odd}} \Lambda^k(V)$ are said to be **Grassmann-odd**.

Alternative Definition 21.6.20 (†). Let T(V) be the tensor algebra 21.3.7 over the vector space V, i.e.

$$T(V) = \bigoplus_{k>0} V^{\otimes k}.$$
 (21.54)

The exterior algebra over V is defined as the quotient of T(V) by the two-sided ideal I generated by the elements $\{v \otimes v : v \in V\}$.

Property 21.6.21. The exterior algebra is both a unital associative algebra (with identity $1 \in K$) and a coalgebra. Furthermore, it is also commutative in the graded sense (Definition 27.1.4).

Property 21.6.22. Graded-commutativity implies that the wedge product of any odd exterior form with itself is identically 0. The wedge product of an even exterior form with itself vanishes if and only if the form can be decomposed as a product of 1-forms, i.e. if it is a pure k-form.

21.6.6 Hodge star

Equation (21.49) says that the spaces $\Lambda^k(V)$ and $\Lambda^{n-k}(V)$ have the same dimension and , hence, that there exists a linear isomorphism between them. This map is given by the Hodge star operator. Note that this map can only be defined independently of the choice of (ordered) basis if one restrict to vector spaces equipped with a nondegenerate Hermitian form 20.3.2.

When equipped with an inner product and hence an orthonormal basis $\{e_i\}_{i \leq \dim V}$, every finite-dimensional vector space admits a canonical volume form given by

$$Vol = e_1 \wedge \ldots \wedge e_n. \tag{21.55}$$

This convention will also be adopted in the remainder of this section.

Definition 21.6.23 (Orientation). Let Vol(V) be the standard volume form on the vector space V as defined above. From the definition of a volume form it follows that every other $\dim(V)$ -form is a scalar multiple of Vol(V). Denote this number by r. This also implies that a choice of volume form induces an equivalence relation on top-dimensional forms. An equivalence class under this relation is called an orientation on V. If r > 0, the orientation is said to be **positive** and, if r < 0, the orientation is said to be **negative**.

⁷Definition 27.1.1.

Formula 21.6.24 (Inner product). Let V be equipped with an inner product $\langle \cdot | \cdot \rangle$. One can extend this to an inner product on $\Lambda^k(V)$ by first defining it on decomposable forms and extending it by linearity to all of $\Lambda^k(V)$:

$$\langle v_1 \wedge \ldots \wedge v_k | w_1 \wedge \ldots \wedge w_k \rangle_k = \det(\langle v_i | w_i \rangle). \tag{21.56}$$

For an orthogonal basis this formula factorizes as follows:

$$\langle v_1 \wedge \ldots \wedge v_k | w_1 \wedge \ldots \wedge w_k \rangle_k = \langle v_1 | w_1 \rangle \cdots \langle v_k | w_k \rangle. \tag{21.57}$$

Definition 21.6.25 (Hodge star). The Hodge star $*: \Lambda^k(V) \to \Lambda^{n-k}(V)$ is defined as the unique isomorphism such that for all $\omega \in \Lambda^k(V)$ and $\rho \in \Lambda^{n-k}(V)$ the following equality holds:

$$\omega \wedge \rho = \langle *\omega | \rho \rangle_{n-k} \text{Vol}(V), \tag{21.58}$$

where $\langle \cdot | \cdot \rangle_{n-k}$ is the inner product (21.56) on $\Lambda^{n-k}(V)$. The element $*\omega$ is often called the (Hodge) dual of ω .

Proof. Fix an element $\omega \in \Lambda^k(V)$. For every element $\rho \in \Lambda^{n-k}(V)$ one can see that $\omega \wedge \rho$ is an element of $\Lambda^n(V)$ and as such is a scalar multiple of $\operatorname{Vol}(V)$. This implies that it can be written as

$$c_{\omega}(\rho)\mathrm{Vol}(V)$$
.

The map $c_{\omega}: \Lambda^{n-k}(V) \to \mathbb{R}: \rho \mapsto c_{\omega}(\rho)$ is a bounded (and thus continuous) linear map, so Riesz's representation theorem 23.2.8 can be applied to identify c_{ω} with a unique element $*\omega \in \Lambda^{n-k}(V)$ such that

$$c_{\omega}(\rho) = \langle *\omega | \rho \rangle_{n-k}.$$

Formula 21.6.26. Let $\{e_i\}_{i\leq n}$ be a positively oriented orthonormal basis for V. An explicit formula for the Hodge star is given by the following construction:

Let $\{i_1, \ldots, i_k\}$ and $\{j_1, \ldots, j_{n-k}\}$ be two complementary index sets (with increasing subindices) and consider an element $\omega = e_{i_1} \wedge \ldots \wedge e_{i_k} \in \Lambda^k(V)$.

$$*\omega = \operatorname{sgn}(\tau) \prod_{m=1}^{n-k} \langle e_{j_m} | e_{j_m} \rangle e_{j_1} \wedge \ldots \wedge e_{j_{n-k}},$$
(21.59)

where τ is the permutation that maps $e_{i_1} \wedge \ldots \wedge e_{i_k} \wedge e_{j_1} \wedge \ldots \wedge e_{j_{n-k}}$ to Vol(V).

Using this formula one can easily prove the following important property:

Property 21.6.27. Consider an inner product space V. The double dual is involutive up to a factor:

$$**\omega = (-1)^{k(n-k)}\omega. \tag{21.60}$$

Taking the defining relation of the Hodge star operator together with the above property implies the following formula (which is often found in the literature as the defining relation):

Formula 21.6.28. For all $\omega \in \Lambda^k(V)$ and $\rho \in \Lambda^{n-k}(V)$ the Hodge star operator satisfies the following formula:

$$\omega \wedge *\rho = \langle \omega | \rho \rangle \text{Vol}(V). \tag{21.61}$$

Corollary 21.6.29. Consider three vectors $u, v, w \in \mathbb{R}^3$.

$$*(v \land w) = v \times w \tag{21.62}$$

$$*(v \times w) = v \wedge w \tag{21.63}$$

$$*(u \land v \land w) = u \cdot (v \times w) \tag{21.64}$$

Remark 21.6.30. Formula (21.51) is an explicit evaluation of the first equation (21.62).

Proof. The sign $\operatorname{sgn}(\tau)$ can be written using the Levi-Civita symbol ε_{ijk} as defined in 21.6.8. The factor $\frac{1}{2}$ is introduced to correct for the double counting due to the contraction over both the indices j and k.

Definition 21.6.31 (Self-dual). Let V be a 4-dimensional inner product space and consider $\omega \in \Lambda^2(V)$. Then ω is said to be self-dual if $*\omega = \omega$. Furthermore, every $\rho \in \Lambda^2(V)$ can be uniquely decomposed as the sum of a self-dual and an anti-self-dual 2-form.

Chapter 22

Representation Theory

References for this chapter are [39,52]. Sections 3.2 and 3.3 can be visited for an introduction to groups and group actions.

22.1 Group representations

Group actions on vector spaces are so important that they receive their own name:

Definition 22.1.1 (Representation). A representation of a group G on a vector space V is a group morphism $\rho: G \to \operatorname{GL}(V)$ from G to the automorphism group 20.2.6 of V.

Property 22.1.2 (Never free). Because every linear map takes the zero vector to itself, a representation can never be free.

Definition 22.1.3 (Subrepresentation). A subrepresentation of a representation on V is a subspace of V invariant under the action of the group G (together with the induced action).

Example 22.1.4 (Permutation representation). Consider a vector space V with basis $\{e_i\}_{i\leq n}$ and let $G=S_n$ be the symmetric group on n elements. Based on Definition 3.3.2, one can consider the action of G on the index set $\{1,\ldots,n\}$. This representation is given by

$$\rho(g): \sum_{i=1}^{n} v_i e_i \mapsto \sum_{i=1}^{n} v_i e_{g \cdot i}.$$
 (22.1)

Example 22.1.5. Consider a representation ρ on V. There exists a natural representation on the dual space V^* :

$$\rho^*(g) := \rho^T(g^{-1}) : V^* \to V^*, \tag{22.2}$$

where ρ^T is the transpose as defined in 20.2.21. It is implicitly defined by

$$\left\langle \rho^*(g)(v^*), \rho(g)(v) \right\rangle = \langle v^*, v \rangle,$$
 (22.3)

where $\langle \cdot, \cdot \rangle$ is the natural pairing.

Example 22.1.6. A group ρ that acts on vector spaces V, W also has a representation on the tensor product $V \otimes W$ in the following way:

$$\rho(g)(v \otimes w) := \rho(g)(v) \otimes \rho(g)(w). \tag{22.4}$$

Definition 22.1.7 (Intertwiner). If one views G-representations as G-modules, the natural morphisms are the intertwiners 3.3.4.

22.2 Irreducible representations

Definition 22.2.1 (Irreducibility). A representation is said to be irreducible if there exist no proper nonzero subrepresentation.

Example 22.2.2 (Standard representation). Consider the action of S_n on a vector space V with basis $\{e_i\}_{i\leq n}$. The line generated by $e_1+e_2+\ldots+e_n$ is invariant under the permutation action of S_n . It follows that the permutation representation (on finite-dimensional spaces) is never irreducible.

The (n-1)-dimensional complementary subspace

$$W = \left\{ \sum_{i=1}^{n} \lambda_i e_i \middle| \sum_{i=1}^{n} \lambda_i = 0 \right\}$$
 (22.5)

forms an irreducible representation. It is called the standard representation of S_n on V.

Theorem 22.2.3 (Schur's lemma). Let V, W be two finite-dimensional irreducible representations of a group G and let $\varphi: V \to W$ be an intertwiner.

- Either φ is an isomorphism or $\varphi = 0$.
- If V = W, then φ is constant, i.e. φ is a scalar multiple of the identity map $\mathbb{1}_V$.

Property 22.2.4 (Complementary representation). If W is a subrepresentation of V, there exists an invariant complementary subspace W'. This space can be found as follows. Choose an arbitrary complement U such that $V = W \oplus U$ with associated projection map $\pi_0: V \to W$. Averaging over G gives the G-equivariant map

$$\pi(v) := \sum_{g \in G} g \circ \pi_0(g^{-1}v). \tag{22.6}$$

On W it is given by multiplication by |G|. Its kernel is an invariant subspace of V complementary to W.

Theorem 22.2.5 (Maschke). Let G be a finite group with a representation space V such that the characteristic of the underlying field does not divide the order of G. The representation space can be uniquely decomposed as

$$V = V_1^{\oplus a_1} \oplus \dots \oplus V_k^{\oplus a_k}, \tag{22.7}$$

where all V_k 's are distinct irreducible representations.

22.3 Classification by Young tableaux

Definition 22.3.1 (Permutation module). Let λ be a partition. The permutation module M^{λ} is defined as the vector space generated by the Young tabloids of shape λ .

Definition 22.3.2 (Specht module). Consider a permutation module M^{λ} for some λ with $|\lambda| = n$. Since the permutation group S_n acts on Young tableaux by permuting the entries, it also has an induced action¹ on M^{λ} . In this module one can define a submodule as the span of the following elements (called **polytabloids**):

$$e_t := \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma)\sigma \cdot [t],$$
 (22.8)

where t ranges over the Young tableau t of shape λ ([t] denotes the Young tabloid associated to t). In fact one can just take the standard Young tableaux as generators. This is sometimes called the **Specht basis**.

¹This can be generalized to an action of the group algebra $K[S_n]$.

Property 22.3.3. A representation (over \mathbb{C}) of S_n is irreducible if and only if it is a Specht module S^{λ} for some partition λ of n.

One can restate the definition of a Specht module using the following operator:

Definition 22.3.4 (Young symmetrizer). Given a Young tableau t of shape λ , one can decompose the permutation group $S_{|\lambda|}$ as the union of two types of permutations. First one has the permutations that preserve the rows, denote these by P_{λ} . Then one has also the permutations that preserve the columns, denote these by Q_{λ} . These two subgroups induce elements in the group algebra $\mathbb{C}[S_{|\lambda|}]$ as follows:

$$a_{\lambda} := \sum_{p \in P_{\lambda}} p \tag{22.9}$$

$$a_{\lambda} := \sum_{p \in P_{\lambda}} p$$

$$b_{\lambda} := \sum_{q \in Q_{\lambda}} \operatorname{sgn}(q) q.$$

$$(22.9)$$

The product $c_{\lambda} := a_{\lambda}b_{\lambda}$ is called the Young symmetrizer of λ .

Alternative Definition 22.3.5 (Specht module). The space $\mathbb{C}[S_{|\lambda|}]c_{\lambda}$ is called the Specht module S_{λ} .

Consider a vector space V together with its general linear group GL(V). For all $n \in \mathbb{N}$ there is an induced (diagonal) representation on $V^{\otimes n}$ by GL(V). There is also an action by the permutation group S_n that permutes the elements in a monomial $v_1 \otimes \cdots \otimes v_n \in V^{\otimes n}$.

Theorem 22.3.6 (Schur-Weyl). The above representation of $GL(V) \times S_n$ can be decomposed as follows:

$$V^{\otimes n} \cong \bigoplus_{|\lambda|=n} V_{\lambda} \otimes S_{\lambda} V, \tag{22.11}$$

where:

- the sum ranges over all partitions of n or, equivalently, all Young diagrams with n boxes,
- the V_{λ} are Specht modules (and hence irreducible representations) of S_n , and
- the $S_{\lambda}V$ are (possibly zero) irreducible representations of GL(V) of the form $S_{\lambda}V$ $\operatorname{Hom}_{S_n}(V_{\lambda}, V^{\otimes n}).$

The spaces V_{λ} can be interpreted as multiplicity spaces. The spaces $S_{\lambda}V$ can be rewritten more explicitly as $V_{\lambda} \otimes_{S_n} V^{\otimes n}$ (Hom_{S_n} and \otimes_{S_n} are adjoint functors). By using the explicit characterization of Specht modules given above, one can see that the spaces $S_{\lambda}V$ are of the form $V^{\otimes n}c_{\lambda}$.

Because of the functoriality of the involved operations, one can also see that S_{λ} is in fact a functor, the **Schur functor**.

Example 22.3.7 (Algebraic curvature tensor). The above definition of the spaces $S_{\lambda}V$ allow for an easy description in terms of Young diagrams (and tableaux). Consider for example the Riemann curvature tensor R_{ijkl} from Chapter 34. This tensor has the following symmetries:

- $R_{ijkl} = -R_{jikl} = -R_{ijlk}$,
- $R_{ijkl} = R_{klij}$, and
- $R_{ijkl} + R_{iljk} + R_{iklj} = 0$.

By looking at the definition of the Young symmetrizer, one can see that these symmetries are exactly those of the irreducible component in $S_{\lambda}V$ associated to the partition (2, 2).

?? COMPLETE ??

22.4 Tensor operators

Definition 22.4.1 (Representation operators). An intertwiner $\rho : (\mathcal{R}, V_0) \to \operatorname{End}(V)$ from a G-representation on an auxiliary vector space V_0 to the space of linear maps on a G-vector space V (equipped with the adjoint action).

More explicitly, consider a set of operators $\{\hat{O}_i\}_{i\in I}\subset \operatorname{End}(V)$ acting on a vector space V equipped with a representation \mathcal{R} of the group G. This collection defines a representation operator with respect to G if there exists a matrix representation R of G such that the following equation holds:

$$\mathcal{R}(g)\hat{O}_i\mathcal{R}(g)^{-1} = \sum_j R(g)_{ij}\hat{O}_j. \tag{22.12}$$

Example 22.4.2 (Tensor operators). Consider G = SO(3) and $V_0 = \mathcal{T}_s^r(\mathbb{R}^3)$. With this choice a set of operators that transform as tensors under rotations is obtained. By choosing $V_0 = \mathbb{R}^3$ or $V_0 = \mathcal{H}_l(\mathbb{R}^3)$, the space of spherical harmonics of degree l, one obtains the **vector** and **spherical operators**.

The following property is often used in quantum mechanics to quickly find forbidden transitions in atomic or molecular systems:

Property 22.4.3 (Selection rules). Let G be a semisimple group and let W_1, W_2 be two inequivalent (finite-dimensional) irreducible unitary subrepresentations of the Hilbert space \mathcal{H} . Let ρ be a representation operator (indexed by a vector space V). For all $v \in V$, $w_i \in W_i$ one has

$$\langle w_1 | \rho(v) w_2 \rangle = 0, \tag{22.13}$$

unless $V \otimes W_2$ contains a subrepresentation equivalent to W_1 .

Theorem 22.4.4 (Wigner-Eckart). Consider two irreducible SU(2)-subrepresentations W_j and $W_{j'}$ of some unitary representation \mathcal{H} , together with two degree-q spherical tensors $\rho, \tilde{\rho}: V_0 \to \operatorname{End}(\mathcal{H})$. If there exists at least one index $k \leq q$ and one pair of vectors $(v, v') \in W_j \times W_{j'}$ such that

$$\langle v'|\rho_k v\rangle \neq 0,$$

then for all indices $k \geq 0$ and pairs $(v, v') \in W_i, W_{i'}$ the following equality holds

$$\langle v'|\tilde{\rho}_k'v\rangle = C\langle v'|\rho_k v\rangle \tag{22.14}$$

for some constant C that only depends on q, j and j'.

By noting that the Clebsch-Gordan coefficients are the components of the projection $W_q \otimes W_j \to W_{j'}$, which is itself an intertwiner, one can recast the Wigner-Eckart theorem as a statement about matrix elements:

Corollary 22.4.5. Consider an irreducible tensor operator T_j^m (with respect to the rotation group). The matrix elements of this operator with respect to a symmetry-adapted basis ("angular momentum" basis) decompose as a product of a Clebsch-Gordan coefficient and a factor that only depends on the eigenvalues of the Casimir operator:

$$\langle j', m' | R^{(q)} | j, m \rangle = \langle j' | | R_k^{(q)} | | j \rangle \langle j', m' | q, j; k, m \rangle.$$

$$(22.15)$$

The factor $\langle j'||R^{(q)}||j\rangle$ is sometimes called the **reduced matrix element**.

Chapter 23

Functional Analysis

In this chapter the term 'linear operator', which was previously reserved for vector space automorphisms, is now used instead of 'linear map'. This is to keep the terminology in sync with that of the standard literature on Banach spaces and operator spaces. In this chapter 'dual space' will mean the topological/continuous dual and not just the algebraic/linear dual (unless stated otherwise).

The main references for this chapter are [40,41]. For a revision of topological spaces and inner product spaces, see Chapter 7 and Section 20.3 respectively.

23.1 Banach spaces

Definition 23.1.1 (Topological vector space). A topological vector space (TVS) over a field K is a K-vector space for which the addition and scalar multiplication are continuous.

Definition 23.1.2 (Weak topology). The initial topology 7.2.2 on a TVS with respect to its dual, i.e. a net $(x_{\alpha})_{\alpha \in I}$ in X converges to x if and only if $\lambda(x_{\alpha}) \longrightarrow \lambda(x)$ for all $\lambda \in X^*$.

Definition 23.1.3 (Weak-* topology). Every TVS admits a canonical embedding into its double dual:

$$\iota: X \to X^{**}: x \mapsto \operatorname{ev}_x, \tag{23.1}$$

where the evaluation map ev_x is defined as

$$\operatorname{ev}_x: X^* \to K: \lambda \mapsto \lambda(x).$$
 (23.2)

The weak-* topology on the dual space X^* is defined as the weak topology with respect to the image $\iota(X) \subseteq X^{**}$. Equivalently, it is the topology defined by pointwise convergence of nets.

Definition 23.1.4 (Norm). Let V be a TVS over a field K. A function $\|\cdot\|: V \to [0, +\infty[$ is called a norm if it satisfies following conditions:

- 1. Nondegeneracy: $||v|| = 0 \iff v = 0$,
- 2. **Homogeneity:** for all scalars $\lambda \in K : ||\lambda v|| = |\lambda| ||v||$, and
- 3. Triangle equality (subadditivity): $||v+w|| \le ||v|| + ||w||$.

Remark 23.1.5 (Metric). A norm $\|\cdot\|$ induces a metric ?? by defining $d(x,y) := \|x-y\|$. The metric topology induced in this way is called the **norm topology** or **strong topology**.

Definition 23.1.6 (Normed vector space). A TVS equipped with a norm $\|\cdot\|$.

Definition 23.1.7 (Banach space). A normed vector space that is complete ?? in the norm-topology.

Property 23.1.8. The dual of a Banach space is also a Banach space.

Definition 23.1.9 (Reflexive space). A Banach space V for which the canonical inclusion $V \hookrightarrow V^{**}$ is an (isometric) isomorphism.

Property 23.1.10. Every finite-dimensional Banach spaces is reflexive.

Property 23.1.11. On a reflexive space, the weak and weak-* topologies coincide.

Property 23.1.12 (Weak duals). Consider a Banach space V. The dual of (V^*, weak^*) is isomorphic to V.

Property 23.1.13 (Continuity). Let X, Y be topological vector spaces and assume X to be finite-dimensional. Every linear map $\varphi: X \to Y$ is continuous. Moreover, if X is a normed vector space, every vector space isomorphism $\varphi: X \to Y$ is a homeomorphism.

Corollary 23.1.14. Two finite-dimensional normed vector spaces with the same dimension are homeomorphic. It follows that all metrics on a finite-dimensional normed vector space are equivalent.

Theorem 23.1.15 (Open mapping theorem¹). Let $f: V \to W$ be a continuous linear operator between two Banach spaces. If f is surjective, it is also open.

Theorem 23.1.16 (Banach-Alaoglu²). The closed unit ball in the dual of a normed space is compact in the weak-* topology.

23.2 Hilbert spaces

Remark 23.2.1. Let V be an inner product space. A norm on V can be induced by the inner product in the following way:

$$||v||^2 = \langle v|v\rangle. \tag{23.3}$$

However, the converse is not true: not every norm induces an inner product. Only norms that satisfy the **parallelogram law**

$$||v + w||^2 + ||v - w||^2 = 2(||v||^2 + ||w||^2)$$
(23.4)

can be used to define an inner product. This inner product can be recovered through the **polarization identity**:

$$4\langle v|w\rangle = \|v+w\|^2 - \|v-w\|^2 + i(\|v+iw\|^2 - \|v-iw\|^2).$$
 (23.5)

Property 23.2.2 (Cauchy-Schwarz inequality).

$$|\langle v|w\rangle| \le ||v|| \, ||w|| \tag{23.6}$$

The equality holds if and only if v and w are linearly dependent.

Corollary 23.2.3 (Triangle inequality). The Cauchy-Schwarz inequality can be used to prove the triangle inequality. Together with the properties of an inner product, this implies that an inner product space is indeed a normed space as mentioned in the beginning of this section.

¹Sometimes called the **Banach-Schauder** theorem.

²Apparently at least 12 different mathematicians should be named in this theorem.

Definition 23.2.4 (Hilbert space). A Banach space where the norm is induced by an inner product.

Example 23.2.5. Consider two square-integrable functions $f, g \in L^2([a, b], \mathbb{C})$. As shown in Section 16.3.2, the inner product of f and g is defined as follows:

$$\langle f|g\rangle = \int_{a}^{b} \overline{f(x)}g(x) dx.$$
 (23.7)

Formula 23.2.6. It is also possible to define an inner product with respect to a weight function $\phi(x)$:

$$\int_{a}^{b} \overline{f(x)}g(x)\phi(x) dx. \tag{23.8}$$

Using this formula it is possible to define orthogonality with respect to the given weight function.

Formula 23.2.7 (Pythagorean theorem). In an inner product space the triangle equality reduces to the well-known Pythagorean theorem for orthogonal vectors v, w:

$$||v + w||^2 = ||v||^2 + ||w||^2. (23.9)$$

This formula can be extended to any set of orthogonal vectors x_1, \ldots, x_n as follows:

$$\left\| \sum_{i=1}^{n} x_i \right\|^2 = \sum_{i=1}^{n} \|x_i\|^2. \tag{23.10}$$

Theorem 23.2.8 (Riesz's representation theorem). Let \mathcal{H} be a Hilbert space. For every continuous linear functional $\rho \in \mathcal{H}^*$ there exists a unique element $x_0 \in \mathcal{H}$ such that

$$\rho(h) = \langle h, x_0 \rangle \tag{23.11}$$

for all $h \in \mathcal{H}$. This implies that \mathcal{H} and \mathcal{H}^* are isometrically (anti)isomorphic. Furthermore, the operator norm of ρ is equal to the norm of x_0 .

Remark 23.2.9. This theorem justifies the bra-ket notation used in quantum mechanics where one associates to every ket $|\psi\rangle \in \mathcal{H}$ a bra $\langle \psi | \in \mathcal{H}^*$.

Remark 23.2.10 (Relation to Riesz-Markov theorem). Recall the Riesz-Markov theorem 17.1.6. Every continuous functional on $C(\widehat{X})$ can be written as the integration againt some Radon measure. By using the theorem that every Hilbert space is isomorphic to some function space $L^2(X, \mu_{\text{count}})$, together with equation (23.7), one can obtain the representation theorem above.

Definition 23.2.11 (H^* -algebra). A Hilbert space equipped with a unital associative algebra structure and an antilinear involution * that satisfies the following conditions:

- 1. $\langle ab, c \rangle = \langle b, a^*c \rangle$, and
- 2. $\langle ab, c \rangle = \langle a, cb^* \rangle$.

Example 23.2.12 (Linear operators). The canonical example of H^* -algebras is given by the algebra of linear operators on a Hilbert space \mathcal{H} , where the involution is given by taking adjoints and the inner product is the Hilbert-Schmidt inner product induced by the norm 20.4.7 (up to a factor k > 0):

$$\langle f, g \rangle_{HS} := k \operatorname{tr}(f^*g). \tag{23.12}$$

The resulting space is denoted by $L^2(\mathcal{H}, k)$. A result analogous to the Artin-Wedderburn theorem 3.5.37 states that every H^* -algebra can be decomposed as an orthogonal direct sum of finitely many algebras of the form $L^2(\mathcal{H}_i, k_i)$.

23.2.1 Generalized Fourier series

Property 23.2.13 (Bessel's inequality). The following general equality holds for all orthonormal vectors x_1, \ldots, x_n and scalars a_1, \ldots, a_n :

$$\left\| x - \sum_{i=1}^{n} a_i x_i \right\|^2 = \|x\|^2 - \sum_{i=1}^{n} |\langle x, x_i \rangle|^2 + \sum_{i=1}^{n} |\langle x, x_i \rangle - a_i|^2.$$
 (23.13)

This expression is minimized when the last term vanishes. This leads to Bessel's inequality

$$\sum_{i=1}^{n} |\langle x, x_i \rangle|^2 \le ||x||^2, \tag{23.14}$$

together with the property that the optimal choice in the generalized Fourier series for x is obtained by taking the coefficients to be the projections $a_i := \langle x, x_i \rangle$.

Corollary 23.2.14. The sum in (23.14) is bounded for all n, so the series $\sum_{i=1}^{+\infty} |\langle x, x_i \rangle|^2$ converges for all x. This implies that the sequence $(\langle x, x_n \rangle)_{n \in \mathbb{N}}$ belongs to l^2 .

Theorem 23.2.15. Consider a Hilbert space \mathcal{H} . Let $(x_n)_{n\in\mathbb{N}}$ be an orthonormal sequence in \mathcal{H} and let $(a_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{C} . The expansion $\sum_{i=1}^{+\infty} a_i x_i$ converges in \mathcal{H} if and only if $(a_n)_{n\in\mathbb{N}} \in l^2$. Furthermore, the expansion satisfies the following equality:

$$\left\| \sum_{i=1}^{+\infty} a_i x_i \right\|^2 = \sum_{i=1}^{+\infty} |a_i|^2. \tag{23.15}$$

Bessel's inequality implies that the sequence $(\langle x, x_n \rangle)_{n \in \mathbb{N}}$ belongs to l^2 , so the generalized Fourier series of $x \in \mathcal{H}$ converges in \mathcal{H} .

Remark 23.2.16. Although the convergence of the generalized Fourier series of $x \in \mathcal{H}$ can be established using the previous theorem, it does not follow that the expansion converges to x itself. One can merely say that the Fourier expansion is the best approximation of x with respect to the norm on \mathcal{H} .

Definition 23.2.17 (Complete set). Let $\{e_i\}_{i\in I}$ be a set (or a sequence) of orthonormal vectors in an inner product space V. This set is said to be complete if every vector $x \in V$ can be expressed as follows:

$$x = \sum_{i \in I} \langle x, x_i \rangle x_i. \tag{23.16}$$

This in particular implies that a complete set contains a basis for the vector space.

Alternative Definition 23.2.18. A complete set of orthonormal vectors in a Hilbert space \mathcal{H} is a set $S \subset \mathcal{H}$ such that we cannot add another vector w to it satisfying

$$\forall v_i \in S : \langle v_i, w \rangle = 0 \quad \text{and} \quad w \neq 0. \tag{23.17}$$

Theorem 23.2.19 (Parceval). Let $(x_n)_{n\in\mathbb{N}}$ be a complete sequence in a Hilbert space \mathcal{H} . Every vector $x\in\mathcal{H}$ has a unique Fourier series representation $\sum_{i=1}^{+\infty}a_ix_i$, where the Fourier coefficients $(a_n)_{n\in\mathbb{N}}$ belong to l^2 . Conversely, if Bessel's inequality becomes an equality for every $x\in\mathcal{H}$, the sequence $(x_n)_{n\in\mathbb{N}}$ is complete.

23.2.2 Orthogonality and projections

The basic notions on orthogonality in inner product space can be found in Section 20.3.2.

Property 23.2.20. Let S be a subset (not necessarily a subspace) of a Hilbert space \mathcal{H} . The orthogonal complement S^{\perp} is closed in \mathcal{H} .

Corollary 23.2.21. The previous property implies that the orthogonal complemement of some arbitrary subset of a Hilbert space is a Hilbert space itself.

Theorem 23.2.22 (Projection theorem). Let H be a Hilbert space and $S \leq H$ a complete subspace. For every $h \in H$ there exists a unique $h' \in S$ such that h - h' is orthogonal to every $s \in S$, i.e $h - h' \in S^{\perp}$.

Remark 23.2.23. An equivalent definition for the unique $h' \in S$ is the vector h' satisfying $||h - h'|| = \inf\{||h - s|| : s \in S\}.$

Corollary 23.2.24. It follows that given a complete (or closed) subspace S, the Hilbert space \mathcal{H} can be decomposed as $\mathcal{H} = S \oplus S^{\perp}$.

Definition 23.2.25 (Trace). Let \mathcal{H} be a Hilbert space wih orthogonal basis e_k . Given a bounded linear operator $S \in \mathcal{B}(\mathcal{H})$, one defines its trace as follows:

$$tr(S) := \sum_{k} \langle Se_k, e_k \rangle. \tag{23.18}$$

23.2.3 Separable Hilbert spaces

The definition of separable spaces in the sense of point-set topology is given in 7.5.23. An equivalent definition for Hilbert spaces is the following one:³

Alternative Definition 23.2.26 (Separable Hilbert space). A Hilbert space is separable if it contains a complete sequence (of orthonormal vectors).

Corollary 23.2.27. Using the Gram-Schmidt method it follows from the previous definition that every finite-dimensional Hilbert space is separable.

The following theorem shows that (up to an isomorphism) there are only 2 distinct types of separable Hilbert spaces:

Theorem 23.2.28. Let \mathcal{H} be separable. If \mathcal{H} is n-dimensional, it is isometrically isomorphic to \mathbb{C}^n . If \mathcal{H} is infinite-dimensional, it is isometrically isomorphic to l^2 .

Property 23.2.29. Every orthogonal subset of a separable Hilbert space is countable.

23.3 Seminorms

Definition 23.3.1 (Seminorm). Let V be a K-vector space. A function $p: V \to [0, +\infty[$ is called a seminorm if it satisfies the following conditions:

- 1. Homogeneity: $p(\lambda v) = |\lambda| p(v)$ for all scalars $\lambda \in K$, and
- 2. Triangle equality (subadditivity): $p(v+w) \le p(v) + p(w)$.

Theorem 23.3.2 (Hahn-Banach). Let X be a TVS. If f is a continuous linear functional on X such that $|f(y)| \le p(y)$ on a subspace $Y \le X$ for some seminorm p defined on X, then there exists a linear extension F of f to X such that

$$|F(x)| < p(x) \tag{23.19}$$

for all $x \in X$.

³Provided that one accepts Zorn's lemma.

23.3.1 Topology

In this subsection we denote by \mathscr{P} a family of seminorms defined on a TVS X. By I we denote the index family of \mathscr{P} .

Definition 23.3.3 (\mathscr{P} -open ball). A \mathscr{P} -open ball centered on x_0 is a subset $Y \subseteq X$ such that all points $y \in Y$ satisfy the following condition for a finite number of seminorms $p_i \in \mathscr{P}, i \in I$:

$$p_i(y - x_0) \le \varepsilon_i \tag{23.20}$$

where $\varepsilon_i > 0$.

Property 23.3.4. The set of \mathscr{P} -open balls generates a topology on X. This topology is often called the \mathscr{P} -topology.

Definition 23.3.5 (Separated family). A family of seminorms \mathscr{P} is said to be separated if for every point $x \in X$ there exists a seminorm $p \in \mathscr{P}$ such that $p(x) \neq 0$. If \mathscr{P} is separated then $\sum_i p_i$ is a norm.

Property 23.3.6. A family of seminorms \mathcal{P} is separated if and only if it generates a Hausdorff topology on X. Furthermore, the topology is metrizable if and only if \mathcal{P} is separated and countable. The (translation-invariant) metric is then given by

$$d(x,y) = \sum_{i < |\mathcal{P}|} \frac{1}{2^i} \frac{p_i(x-y)}{1 + p_i(x-y)}.$$
 (23.21)

Although the Hahn-Banach theorem 23.3.2 does not imply that the linear extension is unique, one can refine the statement in the case of dense subspaces:

Corollary 23.3.7. Let X be a TVS with a \mathscr{P} -topology and let Y be a dense subspace. If f is a linear form on Y, continuous under the subspace topology, then there exists a unique linear extension to X.

23.3.2 Locally convex spaces

Definition 23.3.8 (Locally convex space). Let V be a TVS. First some preliminary definitions:

- A **cone** is a subset $U \subseteq V$ such that for every vector $v \in U$ the line segment connecting it to the origin lies in U.
- A subset $U \subseteq V$ is said to be **balanced** if for every vector $v \in U$ the scalar multiples λv , with $|\lambda| < 1$, also lie in U. Such a subset is sometimes also called a **circled cone**.
- An **absolutely convex** set is a balanced convex set. Equivalently, this is a subset closed under linear combinations where the absolute values of the coefficients sum at most to 1.
- A subset $U \subseteq V$ is said to be **absorbent** if the union of all sets λU , where λ ranges over the base field, equals the total space.

A locally convex space is a topological vector space where the origin admits a local base of absorbent absolutely convex sets.

Using the notion of seminorms one can restate this definition as follows:

Alternative Definition 23.3.9 (Locally convex space). A topological vector space is locally convex if its topology is generated by a family of seminorms.

The following instance of locally convex spaces is important in functional analysis:

Definition 23.3.10 (Fréchet space). A locally convex topological vector space that admits a complete translation-invariant metric.

By Property 23.3.6 there exists an equivalent formulation:

Alternative Definition 23.3.11 (Fréchet space). A topological vector space that admits a topology induced by a separated countable family of seminorms such that it is also complete with respect to the induced metric.

Locally convex topological vector spaces are important in functional analysis because they are one of the most general types of spaces that lend themselves to the definition of differentiation. A first step in this process is the following generalization of the (directional) derivative:

Definition 23.3.12 (Gâteaux derivative). The Gâteaux differential of a continuous map of locally convex spaces $f: X \to Y$ is defined as follows:

$$df(x;h) := \lim_{t \to 0} \frac{f(x+th) - f(x)}{t}.$$
 (23.22)

If this limit exists for all $h \in X$, the function is said to be **Gâteaux differentiable** at $x \in X$. Moreover, if it is also continuous in both arguments, it is said to be of class C^1 . By iterating this construction one can define C^k - and even C^{∞} -maps.

Now, it should be noted that the map df(x; -) is not necessarily additive (and hence linear). If it is linear, the function $\delta_x f: X \to Y: v \mapsto df(x; v)$ is called the **Gâteaux derivative** of f at x. It can be shown that the Gâteaux differential of C^1 -functions is always linear and hence defines a Gâteaux derivative.

One can also introduce an alternative notion of differentiability:

Definition 23.3.13 (Fréchet derivative). Let $f: V \to W$ be a function of normed spaces. It is said to be **Fréchet differentiable** at $x \in V$ if there exists a bounded linear operator Df_x such that

$$\lim_{\|v\| \to 0} \frac{\|f(x+v) - f(x) + Df_x(v)\|}{\|v\|} = 0.$$
 (23.23)

If the linear operator Df exists, it is called the Fréchet derivative of f at x. If f is (Fréchet) differentiable at any point in V and if the map $V \to \mathcal{B}(V,W): x \mapsto Df_x$ is continuous, then f is said to be of class C^1 .

The relation between Gâteaux and Fréchet derivatives is clarified by the following property:

Property 23.3.14. If a function $f: V \to W$ between normed spaces has a continuous and linear Gâteaux differential (i.e. if it has a Gâteaux derivative), it is also Fréchet differentiable. Furthermore, the Gâteaux derivative df and Fréchet derivative Df coincide.

Although one can extend functional analysis to Fréchet spaces (or even locally convex spaces), they are less well-behaved than Banach spaces:

Property 23.3.15. The dual of a Fréchet space F is Fréchet if and only if F is Banach (and hence F^* will also be Banach). Furthermore, the space of linear maps between Fréchet spaces $\mathcal{L}(E,F)$ is Fréchet if and only if F is Banach.

23.3.3 Tensor products

When moving from finite-dimensional vector spaces to general topological vector spaces, the algebraic tensor product from Section 21.3 do not behave in the way one would expect them to. For example the (algebraic) tensor product of the smooth algebras $C^{\infty}(\mathbb{R}^m)$ and $C^{\infty}(\mathbb{R}^n)$ only injects into $C^{\infty}(\mathbb{R}^{m+n})$, i.e. not all bivariate smooth functions can be written as a finite sum of products of univariate smooth functions. In this section this will be remedied in different settings.

Definition 23.3.16 (Tensor product of Hilbert spaces). The algebraic tensor product of two Hilbert spaces V, W can be equipped with an inner product defined on outer products as

$$\langle v_1 \otimes w_1 | v_2 \otimes w_2 \rangle_{V \otimes W} := \langle v_1 | v_2 \rangle_V \langle w_1 | w_2 \rangle_W \tag{23.24}$$

and extended to all of $V \otimes W$ by linearity. The Hilbert space tensor product $V \widehat{\otimes} W$ (often denoted by $V \otimes_{\sigma} W$) is then defined as the completion of $V \otimes W$ with respect to this inner product.

Definition 23.3.17 (Tensor product of Banach spaces). Contrary to the case of Hilbert spaces, the norms on two Banach spaces V and W do not induce a unique natural norm on $V \otimes W$. Two common choices are the following ones:

$$||x||_{\text{proj}} := \inf \left\{ \sum_{i=1}^{n} ||a_i|| ||b_i|| \mid x = \sum_{i=1}^{n} a_i \otimes b_i \right\}$$
 (23.25)

and

$$||x||_{\text{inj}} := \sup \{ |(\mu \otimes \nu)(x)| \mid \mu \in V^*, \nu \in W^*, ||\mu|| = ||\nu|| = 1 \}.$$
 (23.26)

These two norms are called the **projective** and **injective** norm respectively. Accordingly, the completions $V \otimes_{\pi} W$ and $V \otimes_{\varepsilon} W$ of the algebraic tensor product $V \otimes W$ with respect to these norms are called the **projective** and **injective** tensor products.

Definition 23.3.18 (Tensor product of locally convex spaces). Let V, W be locally convex spaces. Definition 23.3.9 gives rise to both a family of projective and injective (semi)norms as in the definition above. These define the projective and injective tensor products $V \otimes_{\pi} W$ and $V \otimes_{\varepsilon} W$. Note that in general these spaces are not complete, even when both V and W are.⁴

Property 23.3.19 (Alternative characterizations). Let V, W be locally convex TVSs. The projective tensor product $V \otimes_{\pi} W$ carries the finest locally convex topology with respect to the canonical injection $V \times W \to V \otimes W : (v, w) \mapsto v \otimes w$.

23.4 Linear operators

23.4.1 Operator topologies

Definition 23.4.1 (Weak operator topology). The topology generated by the seminorms $\{T \to |\lambda(Tx)| \mid x \in V, \lambda \in V^*\}$. A net of linear operators $(T_{\alpha})_{\alpha \in I}$ on a space V converges to a linear operator T in the weak (operator) topology if $T_{\alpha}x \longrightarrow Tx$ for all x in the weak topology.

In the case of Hilbert spaces one can simplify the above definition using Riesz's representation theorem 23.2.8. The weak operator topology on a Hilbert space is generated by the seminorms $\{T \mapsto |\langle Tx|y \rangle| \mid x,y \in \mathcal{H}\}.$

 $^{^{4}}$ In fact, if both V and W are infinite-dimensional Banach spaces, their tensor product (in this sense) will never be complete.

Definition 23.4.2 (Strong operator topology). The topology generated by the seminorms $\{T \to ||Tx|| \mid x \in V\}$. A net of linear operators $(T_n)_{n \in \mathbb{N}}$ on a space V converges to a linear operator T in the strong (operator) topology if $T_{\alpha}x \longrightarrow Tx$ for all x in the norm (strong) topology.

Definition 23.4.3 (Operator norm). The operator norm of L is defined as follows:

$$||L||_{op} = \inf \{ M \in \mathbb{R} : \forall v \in V : ||Lv||_{W} \le M ||v||_{V} \}.$$
(23.27)

Equivalent definitions of the operator norm are:

$$||L||_{op} = \sup_{\|x\| \le 1} ||L(x)|| = \sup_{\|x\| = 1} ||L(x)|| = \sup_{x \ne 0} \frac{||L(x)||}{\|x\|}.$$
 (23.28)

Definition 23.4.4 (Norm topology⁵). A sequence of linear operators $(T_n)_{n\in\mathbb{N}}$ on a space V converges to a linear operator T in the norm topology if the sequence $(||T_n - T||)_{n\in\mathbb{N}}$ converges to 0. (Sequences suffice since the norm topology is metrizable and, therefore, sequential by Property 7.1.24.)

23.4.2 Bounded operators

Definition 23.4.5 (Bounded operator). Let $L: V \to W$ be a linear operator between two normed spaces. The linear operator is said to be bounded if it satisfies

$$||L||_{op} < \infty. \tag{23.29}$$

Notation 23.4.6. The space of bounded linear operators from V to W is denoted by $\mathcal{B}(V,W)$.

Property 23.4.7. If V is a Banach space, $\mathcal{B}(V)$ is also a Banach space.

The following property reduces the problem of continuity to that of boundedness (or vice versa):

Property 23.4.8. Consider a linear operator $f \in \mathcal{L}(V, W)$. The following statements are equivalent:

- \bullet f is bounded.
- f is continuous at 0.
- f is continuous on V.
- \bullet f is uniformly continuous.
- f maps bounded sets to bounded sets.

Property 23.4.9 (Eigenvalue bound). Let A be a bounded linear operator. The eigenvalues of A are bounded by its operator norm. Furthermore, every bounded linear operator on a Banach space has at least one eigenvalue.

Property 23.4.10 (BLT theorem⁶). Consider a bounded linear operator $f: X \to W$, where X is a dense subset of a normed space V and W is a Banach space. There exists a unique extension $F: V \to W$ such that $||f||_{op} = ||F||_{op}$.

Definition 23.4.11 (Schatten class operator). Consider the space of bounded linear operators on a Hilbert space \mathcal{H} . The **Schatten p-norm** is defined as

$$||T||_p = \operatorname{tr}\left(\sqrt{T^*T}^p\right)^{1/p}.$$
 (23.30)

Linear operators for which this norm is finite form the p^{th} Schatten class \mathcal{I}_p .

⁵Also called the **uniform (operator) topology**.

⁶'BLT' stands for "bounded linear transformation".

Property 23.4.12. The Schatten classes are Banach spaces with respect to the associated Schatten norms.

Example 23.4.13 (Trace class operator). The space of trace class operators on a Hilbert space \mathcal{H} is defined as follows:

$$\mathcal{B}_1(\mathcal{H}) := \{ S \in \mathcal{B}(\mathcal{H}) \mid \operatorname{tr}(|S|) < \infty \}, \tag{23.31}$$

where the trace functional was defined in 23.2.25 and $|S| := \sqrt{S^*S}$.

The following theorem can be seen as the analogue of Riesz's theorem for trace class operators:

Theorem 23.4.14. For every bounded linear functional ρ on the space of trace class operators $\mathcal{B}_1(\mathcal{H})$, there exists a unique bounded linear operator $T \in \mathcal{B}(\mathcal{H})$ such that

$$\rho(S) = \operatorname{tr}(ST) \tag{23.32}$$

for all $S \in \mathcal{B}_1(\mathcal{H})$. This implies that $\mathcal{B}_1(\mathcal{H})$ and $\mathcal{B}(\mathcal{H})$ are isometrically equivalent.

Example 23.4.15 (Hilbert-Schmidt operator). Consider the Hilbert-Schmidt norm $\|\cdot\|_2$ from equation 20.4.7. A linear operator $T \in \mathcal{B}(\mathcal{H})$ is said to be a Hilbert-Schmidt operator if it satisfies

$$||T||_2 < \infty. \tag{23.33}$$

This space is closed under taking adjoints.

A more general, but still well-behaved, class of linear operators is the space of closed operators:

Definition 23.4.16 (Closed operator). A linear operator $f: V \to W$ such that for every sequence $(x_n)_{n\in\mathbb{N}}$ in dom(f) converging to $x\in V$, where $f(x_n)$ converges to $y\in W$, one finds that $x\in dom(f)$ and f(x)=y.

Equivalently, one can define a closed linear operator as a linear operator for which its graph is a closed subset in the direct sum $V \oplus W$.

Definition 23.4.17 (Closure). Let $f: V \to W$ be a linear operator. Its closure (if it exists) is the closed linear operator \overline{f} such that the graph of \overline{f} is the closure of the graph of f in $V \oplus W$.

Theorem 23.4.18 (Closed graph theorem). A linear operator on a Banach space is closed if and only if it is bounded.

23.4.3 Self-adjoint operators

There is a multitude of different notions available in the literature that try to indicate in what sense a linear operator is related to its adjoint (not everyone agrees on the definitions). Here, an overview is given in the case of Hilbert spaces where all linear operators are allowed to be unbounded.

Definition 20.3.6 for finite-dimensional spaces can be generalized as follows:

Definition 23.4.19 (Adjoint). Let A be a linear operator on a Hilbert space \mathcal{H} . A linear operator A^* is said to be the adjoint of A if the following conditions are satisfied:

- 1. $\langle x|Ay\rangle = \langle A^*x|y\rangle$ for all $x \in \text{dom}(A^*)$ and $y \in \text{dom}(A)$.
- 2. Every other linear operator B satisfying this property is a restriction of A^* (i.e. the domain of A^* is maximal with respect to the above property).

Property 23.4.20. Let A be a bounded linear operator. Its adjoint A^* is also bounded and $||A||_{op} = ||A^*||_{op}$.

Definition 23.4.21 (Symmetric operator). A linear operator A on a Hilbert space \mathcal{H} such that $dom(A) \subseteq dom(A^*)$ and $Ax = A^*x$ for all $x \in dom(A)$.

Definition 23.4.22 (Self-adjoint operator). A linear operator A on a Hilbert space \mathcal{H} such that dom(A) is dense in \mathcal{H} and $A = A^*$.

The notion of Hermitian operator is the one where almost nobody agrees upon its definition. Here the definition from [118] is chosen:

Definition 23.4.23 (Hermitian operator). A bounded symmetric operator.

Theorem 23.4.24 (Hellinger-Toeplitz). A self-adjoint operator on a Hilbert space \mathcal{H} is bounded if and only if its domain is all of \mathcal{H} .

Theorem 23.4.25 (Stone). Consider a strongly continuous unitary one-parameter group, i.e. a family of unitary operators $U : \mathbb{R} \to U(\mathcal{H})$ such that

• U is continuous in the strong operator topology:

$$\lim_{t \to t_0} U(t)x = U(t_0)x$$

for all $t_0 \in \mathbb{R}, x \in \mathcal{H}$; and

• U forms a one-parameter group in the sense of Definition 30.1.9.

There exists a self-adjoint operator A such that $U(t) = e^{itA}$. Furthermore, the linear operator A is bounded if and only if U is continuous in the norm topology.

Definition 23.4.26 (Generator). The linear operator A is called the (infinitesimal) generator of the family U. It can be obtained through a formal derivative:

$$A = \left. \frac{dU(t)}{dt} \right|_{t=0}.$$
 (23.34)

23.4.4 Compact operators

Definition 23.4.27 (Compact operator). Let V, W be Banach spaces. A linear operator $A: V \to W$ is compact if the image of any bounded set in V is relatively compact 7.5.11.

Alternative Definition 23.4.28 (Compact operator). Let V, W be Banach spaces. A linear operator $A: V \to W$ is compact if for every bounded sequence $(x_n)_{n \in \mathbb{N}}$ in V the sequence $(Ax_n)_{n \in \mathbb{N}} \subset W$ has a convergent subsequence.

Notation 23.4.29. The space of compact bounded linear operators between Banach spaces V, W is denoted by $\mathcal{B}_0(V, W)$. If V = W, this is abbreviated to $\mathcal{B}_0(V)$ as usual.

Property 23.4.30. $\mathcal{B}_0(V)$ is a two-sided ideal in the (Banach) algebra $\mathcal{B}(V)$.

Property 23.4.31. Every compact operator is bounded.

Corollary 23.4.32. Every linear map between finite-dimensional Banach spaces is bounded.

Property 23.4.33. If A is a compact self-adjoint operator on a Hilbert space, then $-\|A\|$ or $\|A\|$ are an eigenvalue of A. Furthermore, the set of nonzero eigenvalues is either finite or converges to 0.

Definition 23.4.34 (Calkin algebra). Consider the algebra $\mathcal{B}(V)$ of bounded linear operators on V together with its two-sided ideal $\mathcal{B}_0(V)$ of compact operators. The quotient algebra $\mathcal{Q}(V) = \mathcal{B}(V)/\mathcal{B}_0(V)$ is called the Calkin algebra of V.

Definition 23.4.35 (Fredholm operator). A bounded linear operator $F \in \mathcal{B}(V, W)$ for which the kernel and cokernel are finite-dimensional.

By a theorem of Atkinson one can characterize Fredholm operators using the Calkin algebra:

Property 23.4.36 (Atkinson). A linear operator $F: V \to W$ is a Fredholm operator if and only if it is invertible modulo the Calkin algebra, i.e. there exists a bounded linear operator $G: W \to V$ and compact operators C_1, C_2 such that $\mathbb{1}_V - FG = C_1$ and $\mathbb{1}_W - GF = C_2$.

Definition 23.4.37 (Fredholm index). The index of a Fredholm operator T is defined as follows:

$$\operatorname{ind}(T) := \dim \ker(T) - \dim \operatorname{coker}(T). \tag{23.35}$$

23.4.5 Spectrum

Definition 23.4.38 (Resolvent operator). Let A be a bounded linear operator on a normed space V. The resolvent operator of A_{λ} for some $\lambda \in \mathbb{C}$ is defined as the linear operator $(A - \lambda \mathbb{1}_V)^{-1}$.

Definition 23.4.39 (Resolvent set). The resolvent set $\rho(A)$ consists of all scalars $\lambda \in \mathbb{C}$ for which the resolvent operator of A is a bounded linear operator on a dense subset of V. These scalars λ are called **regular values** of A.

Definition 23.4.40 (Spectrum). The set of scalars $\mu \in \mathbb{C} \setminus \rho(A)$ is called the spectrum $\sigma(A)$.

Remark 23.4.41. From Remark 20.5.2 it is clear that every eigenvalue of A belongs to the spectrum of A. The converse, however, is not true. This is remedied by introducing the following concepts:

Definition 23.4.42 (Point spectrum). The set of scalars $\mu \in \mathbb{C}$ for which $A - \mu \mathbb{1}_V$ fails to be injective is called the point spectrum $\sigma_p(A)$. This set coincides with the set of eigenvalues of A

Definition 23.4.43 (Continuous spectrum). The set of scalars $\mu \in \mathbb{C}$ for which $A - \mu \mathbb{1}_V$ is injective with dense image but fails to be surjective is called the continuous spectrum of A.

Definition 23.4.44 (Residual spectrum). The set of scalars $\mu \in \mathbb{C}$ for which $A - \mu \mathbb{1}_V$ is injective but fails to have a dense image is called the residual spectrum $\sigma(A)$.

Definition 23.4.45 (Essential spectrum). The set of scalars $\mu \in \mathbb{C}$ for which $A - \mu \mathbb{1}_V$ is not a Fredholm operator is called the essential spectrum $\sigma_{\text{ess}}(A)$.

From Atkinson's theorem⁷ one can derive the following result:

Property 23.4.46. Let A be a bounded linear operator and let T be a compact operator. The essential spectra of A and A + T coincide.

Property 23.4.47. A self-adjoint operator is bounded if and only if its spectrum is bounded. Furthermore, it is positive if and only if its spectrum lies in \mathbb{R}^+ .

⁷In fact one could (equivalently) define the essential spectrum in terms of the Calkin algebra using Atkinson's theorem. Then this property would be an obvious consequence.

Chapter 24

Operator Algebras

The main reference for this chapter is [24].

24.1 C^* -algebras

24.1.1 Involutive algebras

Definition 24.1.1 (Involutive algebra¹). An involutive algebra is an associative algebra A over a commutative involutive ring $(R, \overline{\cdot})$ together with an algebra involution $\cdot^* : A \to A$ such that:

1.
$$(a+b)^* = a^* + b^*$$
,

2.
$$(ab)^* = b^*a^*$$
, and

3.
$$(\lambda a)^* = \overline{\lambda} a^*$$

where $\lambda \in R$.

Definition 24.1.2 (C^* -algebra). A C^* -algebra is an involutive Banach algebra 23.1.7 such that the C^* -identity

$$||a^*a|| = ||a|| \ ||a^*|| \tag{24.1}$$

is satisfied.

The Artin-Wedderburn theorem 3.5.37 implies the following decomposition theorem:

Theorem 24.1.3. Let C be a finite-dimensional C^* -algebra. There exist unique integers N, d_1, \ldots, d_N such that

$$C \cong \bigoplus_{i=1}^{N} M_{d_i}(K). \tag{24.2}$$

This implies that every C^* -algebra can be represented using block matrices.

 $^{^{1}}$ Also called a *-algebra.

24.1.2 Positive maps

Definition 24.1.4 (Positive element). An element of a C^* -algebra is called positive if its spectrum is contained in $[0, +\infty[$.

Property 24.1.5. Every positive element a can be written as $a = b^*b$ for some element b. Hence every positive element is self-adjoint.

Definition 24.1.6 (Cuntz algebra). The n^{th} Cuntz algebra \mathcal{O}_n is defined as the (universal) unital C^* -algebra generated by n isometric elements s_i under the additional relation

$$\sum_{i=1}^{n} s_i^* s_i = 1 \tag{24.3}$$

where 1 is the unit element.

Definition 24.1.7 (Positive map). A morphism of C^* -algebras is called positive if every positive element is mapped to a positive element.

Definition 24.1.8 (Completely positive map). A morphism of C^* -algebras $T: A \to B$ is called completely positive if for all $k \in \mathbb{N}$ the following map is positive:

$$\mathbb{1}_k \otimes T : \mathbb{C}^{k \times k} \otimes A \to \mathbb{C}^{k \times k} \otimes B. \tag{24.4}$$

If T satisfies this condition only up to an integer n then it is said to be n-positive.

Definition 24.1.9 (State). Let A be a C^* -algebra. A state ψ on A is a positive linear functional of unit norm.

Definition 24.1.10 (Adjoint map). Consider a continuous linear map ϕ defined on the Schatten class \mathcal{I}_p . Given a trace functional tr on the C^* -algebra one can define the adjoint map ϕ^* defined on \mathcal{I}_q whenever p, q are Hölder conjugate. This adjoint is given by the following equation:

$$\operatorname{tr}((\phi^*(A))^*B) = \operatorname{tr}(A^*\phi(B))$$
(24.5)

where $A \in \mathcal{I}_q, B \in \mathcal{I}_p$.

Definition 24.1.11 (Trace-preserving map). A map ϕ is said to be trace-preserving if it satisfies

$$tr(\phi(A)) = tr(A) \tag{24.6}$$

for all trace class elements A. Using the above definition it is easily seen that on a unital C^* -algebra this is equivalent to

$$\phi^*(1) = 1. (24.7)$$

Property 24.1.12. A completely positive, trace preserving map ϕ satisfies:

$$||\phi||_1 = 1 \tag{24.8}$$

where the subscript 1 denotes the fact that this operator is defined on trace class elements.

Definition 24.1.13 (Positivity improving). A positive map ϕ is said to be positivity improving if it satisfies

$$A \ge 0, A \ne 0 \implies \phi(A) > 0. \tag{24.9}$$

Definition 24.1.14 (Ergodic map). A positive map ϕ is said to be ergodic if it satisfies

$$\forall A \ge 0, A \ne 0 : \exists t_A > 0 : \exp(t_A \phi) A > 0.$$
 (24.10)

24.1.3 Representations

Definition 24.1.15 (C^* -algebra representation). A representation of a C^* -algebra C is a unital *-morphism $C \to \mathcal{B}(\mathcal{H})$.

Definition 24.1.16 (Cyclic vector). A cyclic vector for a C^* -algebra representation $\rho: \mathcal{C} \to \mathcal{B}(\mathcal{H})$ is a vector $\xi \in \mathcal{H}$ such that $\{\rho(c)\xi: c \in \mathcal{C}\}$ is (norm) dense in \mathcal{H} .

Construction 24.1.17 (GNS² construction). Let \mathcal{C} be a C^* -algebra. Given a state ω on \mathcal{C} there exists a C^* -representation $\rho: \mathcal{C} \to \mathcal{B}(D)$ where $D \subset \mathcal{H}$ is a dense subspace of a Hilbert space \mathcal{H} such that the following conditions are satisfied:

- There exists a distinguished cyclic unit vector ξ such that $D = \{\rho(c)\xi : c \in \mathcal{C}\}.$
- For all elements $c \in \mathcal{C}$ the following equality holds:

$$\omega(c) = \langle \rho(c)\xi, \xi \rangle. \tag{24.11}$$

?? COMPLETE CONSTRUCTION ??

Theorem 24.1.18 (Gel'fand-Naimark). Every C^* -algebra is isometrically *-isomorphic to a norm closed $(C^*$ -)algebra of bounded operators on a Hilbert space \mathcal{H} .

24.1.4 Gel'fand duality

Definition 24.1.19 (Gel'fand spectrum). Consider a unital C^* -algebra A. Its set of characters, i.e. the algebra morphisms $A \to \mathbb{C}$, can be equipped with a compact³ Hausdorff topology (the weak-* topology 23.1.3). This topological space is called the Gel'fand spectrum.

Definition 24.1.20 (Gel'fand representation). Consider a C^* -algebra A and let Φ_A denote its Gel'fand spectrum. The Gel'fand transformation of an element $a \in A$ is defined as the morphism $\hat{a}: \Phi_A \to \mathbb{C}$ given by the following formula:

$$\hat{a}(\lambda) = \langle \lambda, a \rangle \tag{24.12}$$

where $\langle \cdot, \cdot \rangle$ denotes the pairing between A and Φ_A . By definition of the topology on the Gel'fand spectrum the functional \hat{a} is continuous for all $a \in A$. The mapping $a \mapsto \hat{a}$ is called the Gel'fand representation of A.

Theorem 24.1.21 (Gel'fand-Naimark). Let A be a commutative C^* -algebra. The Gel'fand representation gives an isometric *-isomorphism between A and the set of continuous functionals which vanish at infinity $C_0(\Phi_A)$ on its Gel'fand spectrum.

24.2 von Neumann algebras

Definition 24.2.1 (von Neumann algebra). A *-subalgebra of a C^* -algebra equal to its double commutant: M'' = M.

Definition 24.2.2 (Concrete von Neumann algebra). A weakly closed unital *-algebra of bounded operators on some Hilbert space.

Theorem 24.2.3 (Double Commutant theorem⁴). The above definitions are equivalent.

²Gel'fand-Naimark-Segal

³Locally compact if the algebra is non-unital.

⁴Often called von Neumann's double commutant theorem.

Definition 24.2.4 (Projection). An element p of a von Neumann algebra is called a projection if it satisfies

$$p = p^2 = p^*. (24.13)$$

Their name stems from the fact that if we view the von Neumann algebra as an algebra of bounded operators, then the projections are exactly the operators associated to an orthogonal projection.

Property 24.2.5. Any von Neumann algebra is generated by its projections.

Definition 24.2.6 (Murray-von Neumann equivalence). Two closed subspaces are said to be Murray-von Neumann equivalent if one is mapped isomorphically onto the other by a partial isometry. In terms of projections this means that $p \sim q$ if and only if there exists a partial isometry u such that $p = uu^*$ and $q = u^*u$.

Definition 24.2.7 (Finite projection). The collection of projections inherits the structure of a partial order from the partial order on the corresponding subspaces. A projection p is said to be finite if there exists no smaller projection q that is equivalent to p.

24.2.1 Factors

Definition 24.2.8 (Factor). Consider a von Neumann algebra M. A *-subalgebra A is called a factor of M if its center Z(A) is given by the scalar multiples of the idenity.

Definition 24.2.9 (Type I factor). A factor is of type I if it contains a minimal projection.

Property 24.2.10 (Type I_n factors). Any type I factor is isomorphic to the algebra of all bounded operators on a Hilbert space. To indicate the dimension n of this Hilbert space (which may be ∞) one sometimes uses the subclassification of type I_n factors.

Definition 24.2.11 (Powers index). Consider a Hilbert space \mathcal{H} together with its von Neumann algebra of bounded operators $\mathcal{B}(\mathcal{H})$. A unital *-endomorphism α has Powers index $n \in \mathbb{N}$ if the space $\alpha(\mathcal{B}(\mathcal{H}))$ is isomorphic to a type I_n factor.

Definition 24.2.12 (Type II factor). A factor is of type II if it contains nonzero *finite* projections but no minimal ones. If the identity is finite then the factor is sometimes said to be of type II_1 , otherwise it is of type II_{∞} .

Definition 24.2.13 (Type III factor). A factor is of type III if it does not contain any nonzero finite projections.

24.2.2 Projection-valued measures

This section focuses on the algebra of bounded operators $\mathcal{B}(\mathcal{H})$ on a (complex) Hilbert space \mathcal{H} .

Property 24.2.14 (Closed subspaces). There exists a bijection between the set of closed subspaces of \mathcal{H} and the set of projections in $\mathcal{B}(\mathcal{H})$. Furthermore, if the projection p corresponds to a subspace \mathcal{H}_p , then the projection $\mathbb{1}_{\mathcal{H}} - p$ corresponds to the orthogonal complement \mathcal{H}_p^{\perp} .

Definition 24.2.15 (Projection-valued measure⁵). Consider a topological space X and let Σ be a σ -algebra 2.4.8 on X. A projection-valued measure (PVM) on X is a map $P_-: \Sigma \to \mathcal{B}(\mathcal{H})$ satisfying the following conditions:

1. P_E is a projection for all $E \in \Sigma$,

⁵Also called a **spectral measure**.

- 2. $P_X = 1_{\mathcal{H}}$,
- 3. $P_A P_B = P_{A \cap B}$, and
- 4. for all $n \in \mathbb{N}$ and disjoint $\{E_i\}_{i \leq n} \subset \Sigma$:

$$\sum_{i \le n} P_{E_i} = P_{\cup_{i \le n} E_i}. \tag{24.14}$$

In fact one should also allow the sum on the left-hand side to run over all of N.

Property 24.2.16. For every two elements $x, y \in \mathcal{H}$ the map $E \mapsto \mu_{x,y}^P(E) := \langle x | P_E y \rangle$ defines a (complex) measure $\mu_{x,y}^P$ on X. The square of the norm of an element $x \in \mathcal{H}$ is then simply given by $\mu_{x,x}^P(X)$ for any PVM P due to the second condition above.

Property 24.2.17. Let $f: X \to \mathbb{C}$ be a measurable function on a measurable space (X, Σ) . Given a PVM P on X, one defines Δ_f to be the set of all $x \in \mathcal{H}$ for which $f \in L^2(X, \mu_{x,x}^P)$. The operator $\int_X f(\lambda) dP(\lambda) : \Delta_f \to \mathcal{H}$ defined by

$$\left\langle y \middle| \int_{X} f(\lambda) dP(\lambda) z \right\rangle = \int_{X} f(\lambda) d\mu_{y,z}^{P}(\lambda)$$
 (24.15)

is closed and normal. Furthermore, it satisfies the following two equalities:

$$\left(\int_{X} f(\lambda)dP(\lambda)\right)^{*} = \int_{X} \overline{f(\lambda)}dP(\lambda) \tag{24.16}$$

$$\left\| \int_X f(\lambda) dP(\lambda) y \right\|^2 = \int_X |f(\lambda)|^2 d\mu_{y,y}^P(\lambda). \tag{24.17}$$

If f is bounded, the above operator is bounded by the supremum norm of f:

$$\left| \left| \int_{X} f(\lambda) dP(\lambda) \right| \right| \le ||f||_{\infty}. \tag{24.18}$$

Theorem 24.2.18 (Spectral decomposition). Let A be a self-adjoint operator on a Hilbert space \mathcal{H} . There exists a unique projection-valued measure $P_A : \mathcal{B}(X) \to \mathcal{B}(\mathcal{H})$ on the Borel σ -algebra of the real line such that

$$A = \int_{\mathbb{R}} \lambda dP_A(\lambda). \tag{24.19}$$

Remark 24.2.19 (Normal operators). The above theorem extends to normal operators if one replaces \mathbb{R} by \mathbb{C} .

Property 24.2.20 (Spectrum and support). The spectrum of a self-adjoint operator A coincides with the support of its associated spectral measure P_A . A number $\lambda \in \mathbb{R}$ belongs to the point spectrum of A if and only if the PVM associated to A does not vanish on $\{\lambda\}$. A number $\lambda \in \mathbb{R}$ belongs to the continuous spectrum of A if the associated PVM vanishes on $\{\lambda\}$ but is nonvanishing on any open set containing λ .

The above property allows to compose self-adjoint operators with (measurable) functions similar to how one can compute f(X) for finite-dimensional operators by applying f to the eigenvalues of X:

Formula 24.2.21 (Function of operators). Let $f : \sigma(A) \to \mathbb{C}$ be a measurable function (with respect to the restriction of the Borel algebra on \mathbb{R}) and let $g : \mathbb{R} \to \mathbb{C}$ be any other measurable function that coincides with f on $\sigma(A)$.

$$f(A) := \int_{\sigma(A)} f(\lambda) dP_A(\lambda) = \int_{\mathbb{R}} g(\lambda) dP_A(\lambda) =: g(A).$$
 (24.20)

Chapter 25

Clifford Algebra

The main references for this chapter are [40,41,104]. One should note that there are various conventions for the different structures that arise in the study of Clifford algebras and their representations. Even the references we give do not agree on the conventions they adopt.

In general we will also assume that all metrics (and quadratic forms) are nondegenerate. A part of the theory can also be extended to the degenerate case, but we will not need this. See [104] for more information.

25.1 Clifford algebra

Definition 25.1.1 (Clifford algebra). Consider a unital associative algebra V together with a quadratic form $Q: V \to K$. The Clifford algebra over V associated to Q is the free algebra generated by V under the following relation:

$$v \cdot v = Q(v)1 \tag{25.1}$$

where 1 is the unit element in V. This condition implies that the square of a vector is a scalar.

Notation 25.1.2. The Clifford algebra corresponding to V and Q is often denoted by $C\ell(V,Q)$.

Construction 25.1.3. The previous definition can be given an explicit construction. First we construct the tensor algebra of V:

$$T(V) = \bigoplus_{k \in \mathbb{N}} V^{\otimes k}.$$
 (25.2)

Then, we construct a two-sided ideal I of V generated by $\{v \otimes v - Q(v)1_V \mid v \in V\}$. The Clifford algebra $C\ell(V,Q)$ can then be constructed as the quotient algebra T(V)/I.

Remark 25.1.4. Looking at definition 21.6.20 we see that the exterior algebra $\Lambda^{\bullet}(V)$ coincides with the Clifford algebra $C\ell(V,0)$. If $Q \neq 0$ then the two algebras are still isomorphic as vector spaces (if² char $(V) \neq 2$).

Property 25.1.5 (Dimension). If V has dimension n, then $C\ell(V,Q)$ has dimension 2^n .

Example 25.1.6. The classic example of a Clifford algebra is given by a vector space with Lorentzian signature (p,q), i.e. a vector space with a semidefinite form $g(\cdot,\cdot)$ admitting a basis

¹See definition 3.5.20.

²This condition will often come back in this chapter.

 $\{e_i\}_{i < p+q}$ such that

$$\begin{cases}
g(e_i, e_i) = 1 & 1 \le i \le p \\
g(e_i, e_i) = -1 & p < i \le p + q.
\end{cases}$$
(25.3)

The Clifford algebra $C\ell_{p,q}(K)$ or $K_{p,q}$ is then defined as the Clifford algebra generated under the relation $v \cdot v = -g(v, v)1$. In physics this convention would correspond to the "mostly pluses"-convention, which is mainly adopted in general relativity.

25.2 Geometric algebra

Definition 25.2.1 (Geometric algebra). Let V be a vector space equipped with a symmetric bilinear form $g: V \times V \to K$. The geometric algebra (GA) over V is defined as the Clifford algebra $C\ell(V,g)$. Here we implicitly used the classic relation Q(v) = g(v,v) since we used quadratic forms in definition 25.1.1. This identification is unique as long as $\operatorname{char}(V) \neq 2$.

Definition 25.2.2 (Inner and exterior product). Analogous to the inner product in linear algebra and the wedge product in exterior algebra one can define a(n) (a)symmetric product on the geometric algebra.

First of all we note that the product ab of two vectors a and b can be written as the sum of a symmetric and an antisymmetric part:

$$ab = \frac{1}{2}(ab + ba) + \frac{1}{2}(ab - ba).$$
 (25.4)

We can then define the inner product as the symmetric part:

$$a \cdot b := \frac{1}{2}(ab + ba) = \frac{1}{2}((a+b)^2 - a^2 - b^2) = g(a,b).$$
 (25.5)

Analogously we define the exterior (outer) product as the antisymmetric part:

$$a \wedge b := \frac{1}{2}(ab - ba).$$
 (25.6)

These definitions allow us the rewrite formula 25.4 as follows:

$$ab = a \cdot b + a \wedge b. \tag{25.7}$$

Remark. Looking at the last equality in the definition of the inner product 25.5 we see that condition 25.1 is indeed satisfied when a = b.

Definition 25.2.3 (Multivector). Any element of the GA over V is called a multivector. The simple multivectors of grade k, i.e. elements of the form $v_1v_2...v_k$ with $v_i \in V$ for all i, are called k-blades. (This should again remind the reader of the content of section 21.6.4.) Sums of multivectors of different grades are called **mixed** multivectors³.

Let $n = \dim(V)$. Multivectors of grade n are also called **pseudoscalars** and multivectors of grade n-1 are also called **pseudovectors**.

Definition 25.2.4 (Grade projection operator). Let a be a general multivector. The grade (projection) operator $\langle \cdot \rangle_k : \mathcal{G} \to \mathcal{G}_k$ is defined as the projection of a on the k-vector part of a.

Using these projection operators we can extend the inner and exterior product to the complete GA as follows:

³Although important, these elements do not represent a geometric structure.

Formula 25.2.5. Let A, B be two multivectors of respectively grades m and n. Their inner product is defined as

$$A \cdot B := \langle AB \rangle_{|m-n|} \tag{25.8}$$

and their exterior product is defined as

$$A \wedge B := \langle AB \rangle_{m+n}. \tag{25.9}$$

An explicit calculation for $A \in \mathcal{G}_1, B \in \mathcal{G}_k$ gives us:

$$A \cdot B = \frac{1}{2} \Big(AB - (-1)^k BA \Big) \tag{25.10}$$

$$A \wedge B = \frac{1}{2} \Big(AB + (-1)^k BA \Big). \tag{25.11}$$

25.3 Classification

Formula 25.3.1 (Dimensional reduction).

$$\mathbb{R}_{p+1,q+1} \cong \mathbb{R}_{p,q} \otimes M_2(\mathbb{R}) \tag{25.12}$$

Formula 25.3.2.

$$\mathbb{R}_{p+1,q} \cong \mathbb{R}_{q+1,p} \tag{25.13}$$

Formula 25.3.3.

$$\mathbb{R}_{p,q+2} \cong \mathbb{R}_{q,p} \otimes \mathbb{H} \tag{25.14}$$

The following theorem has deep implications in K-theory. It is also (through K-theory) related to the $tenfold\ way$ of $Altland\ \&\ Zirnbauer$ in condensed matter physics

Theorem 25.3.4 (Bott periodicity). The classification of (real) Clifford algebras is periodic modulo 8:

$$\mathbb{R}_{p,q+8} \cong \mathbb{R}_{p+8,q} \cong \mathbb{R}_{p,q} \otimes M_{16}(\mathbb{R}). \tag{25.15}$$

For complex Clifford algebras one has a similar statement, but with periodicity 2.

25.3.1 Bott periodicity in category theory &

Bott periodicity also has some implications in category theory. Here we will use the language of section 4.8. Furthermore, we will restrict to a specific kind of category:

Definition 25.3.5 (Banach category). An additive category enriched over (real) Banach spaces.

For every Banach category \mathbb{C} and finite-dimensional \mathbb{R} -algebra A we define the category \mathbb{C}^A as follows:

- 1. The objects are pairs (X, ρ) where $X \in ob(\mathbf{C})$ and $\rho : A \to End(X)$ is an A-representation on X.
- 2. The morphisms are A-equivariant morphisms/intertwiners.

Notation 25.3.6. For brevity we introduce specific notations for the cases $A = \mathbb{R}_{p,q}$ and $A = M_n(\mathbb{R})$: $\mathbf{C}^{p,q}$ and $\mathbf{C}(n)$.

Property 25.3.7 (Morita equivalence). Every pseudo-Abelian Banach category C is equivalent to C(n) for all $n \in \mathbb{N}$.

Property 25.3.8. For A, B two finite-dimensional \mathbb{R} -algebras and \mathbf{C} a pseudo-Abelian Banach category we have the following equivalences of categories:

$$\mathbf{C}^{A \oplus B} \cong \mathbf{C}^A \times \mathbf{C}^B \tag{25.16}$$

$$\mathbf{C}^{A\otimes B} \cong \left(\mathbf{C}^A\right)^B. \tag{25.17}$$

Property 25.3.9 (Bott periodicity). For C a pseudo-Abelian real Banach category, the equivalence classes of categories $\mathbb{C}^{p,q}$ are determined by $p-q \mod 8$.

Construction 25.3.10 (Grothendieck group). Consider a Banach functor $\varphi: \mathbf{C} \to \mathbf{C}'$ between Banach categories, i.e. a functor that acts linearly and continuously on hom-spaces. Furthermore, assume that φ is *quasi-surjective*, i.e. every object in C' is a direct summand of an object in the image of φ . To this functor we can assign an Abelian group $K(\varphi)$ as follows:

Let $\mathscr{V}(\varphi)$ denote the set of triples (X,Y,f) where $X,Y\in \mathrm{ob}(\mathbf{C})$ and $f:\varphi(X)\to \varphi(Y)$ is an isomorphism. Elements in $\mathscr{V}(\varphi)$ are said to be isomorphic if there exist isomorphisms in \mathbf{C} that make the "obvious" diagram in \mathbf{C}' commute. The sum of such triples is defined elementwise. Let $\mathscr{E}(\varphi)$ denote the subset of $\mathscr{V}(\varphi)$ consisting of triples (X,Y,f) where X=Y and f is homotopic to $\mathbb{1}_{\varphi(X)}$ in $\mathrm{Aut}(\varphi(X))$. The group $K(\varphi)$ is defined as the quotient of $\mathscr{V}(\varphi)$ by the following equivalence relation:

$$v \sim v' \iff \exists e, e' \in \mathscr{E}(\varphi) : v + e \cong_{\mathscr{V}} v' + e'.$$
 (25.18)

Definition 25.3.11 ($K^{p,q}$). Consider a pseudo-Abelian Banach category \mathbf{C} . The group $K^{p,q}(\mathbf{C})$ is defined as the Grothendieck group of the canonical functor $\mathbf{C}^{p+1,q} \to \mathbf{C}^{p,q}$ (this functor is sometimes called "restriction of scalars" since it is contravariantly induced by the inclusion $\mathbb{R}_{p,q} \to \mathbb{R}_{p+1,q}$). It follows from Bott periodicity that these groups only depend on $p-q \mod 8$.

Example 25.3.12 ($K^{0,0}(\mathbf{C})$). The functor $\mathbf{C}^{1,0} \to \mathbf{C}^{0,0}$ is (up to equivalence) the direct sum functor $\mathbf{C} \times \mathbf{C} \to \mathbf{C} : (X,Y) \mapsto X \oplus Y$.

Remark 25.3.13 (Complex spaces). The above constructions can also be done in the setting of complex Banach spaces and complex algebras. However, Bott periodicity will then give a $p-q \mod 2$ classification.

25.4 Pin group

25.4.1 Clifford group

Definition 25.4.1 (Transposition). Let $\{e_i\}_{i\leq n}$ be a basis for V. On the tensor algebra T(V) there exists an antiautomorphism v^t that reverses the order of the basis vectors:

$$\cdot^t : e_i \otimes e_j \otimes \cdots \otimes e_k \mapsto e_k \otimes \cdots \otimes e_j \otimes e_i.$$
 (25.19)

Because the ideal in the definition of a Clifford algebra is invariant under this map, it induces an antiautomorphism, called the transposition or **reversal**, on $C\ell(V)$.

Definition 25.4.2 (Main involution). Let V_0, V_1 be respectively the grade 0 and 1 components of the Clifford algebra $C\ell(V,Q)$. Consider the following operator:

$$\hat{v} = \begin{cases} v & v \in V_0 \\ -v & v \in V_1 \end{cases} \tag{25.20}$$

This operator can be generalized to all of $C\ell(V,Q)$ using linearity. The resulting operator is called the main involution or **inversion** on $C\ell(V,Q)$. It turns the Clifford algebra into a superalgebra⁴.

Formula 25.4.3 (Twisted conjugation). Let $v \in V$ be a vector and let $s \in C\ell(V,Q)$ be a unit of the Clifford algebra over V, i.e. $Q(s) \neq 0$. The twisted conjugation of v by s is given by the following map:

$$\chi: C\ell(V,Q) \to \operatorname{Aut}(C\ell(V,Q)) \quad \text{with} \quad \chi(s)v = sv\hat{s}^{-1}.$$
(25.21)

Definition 25.4.4 (Clifford group⁵). The Clifford group $\Gamma(V,Q)$ is defined as follows:

$$\Gamma(V,Q) = \left\{ s \in C\ell_{hom}(V,Q) : s \text{ is invertible and } v \in V \implies sv\hat{s}^{-1} \in V \right\}$$
 (25.22)

Because the units of $C\ell(V,Q)$ form a group, $\Gamma(V,Q)$ also forms a group.

Property 25.4.5. When restricting to the units of $C\ell(V)$ that belong to V itself, the twisted conjugation is given by a Householder transformation 20.3.17.

Property 25.4.6. Let us now restrict to the case where V is finite-dimensional and Q is nondegenerate. If we interpret the condition $\chi_s(v) \in V$ as stating the existence of a linear transformation⁶ $L \in \text{End}(V)$ such that

$$se_i\hat{s}^{-1} = L_i^j e_j,$$
 (25.23)

we see that L preserves the norm on V and accordingly that the map $s \mapsto L$ defines a surjective homomorphism⁷

$$\rho: \Gamma(V,Q) \to \mathcal{O}(V,Q): s \mapsto L. \tag{25.24}$$

Being a group morphism to a matrix group acting on V, it defines a representation called the **vector(ial) representation**. Furthermore, from the first isomorphism theorem ?? it follows that O(V,Q) is isomorphic to $\Gamma(V,Q)/\ker\chi$ where $\ker\chi=\mathbb{R}_0$. This isomorphism also implies⁸ that the Clifford group is given by the set of finite products of invertible elements $v \in V$:

$$\Gamma(V,Q) = \left\{ \prod_{i=1}^{n} s_i : s_i \text{ invertible in } V, n \in \mathbb{N} \right\}.$$
 (25.25)

Corollary 25.4.7. By noting that pure rotations can be decomposed as an even number of reflections we find that

$$\Gamma^+(V,Q)/\mathbb{R}_0 \cong SO(V,Q)$$
 (25.26)

where Γ^+ is the intersection of the even Clifford algebra and the Clifford group.

⁴See definition 27.1.6.

⁵Sometimes called the **Lipschitz group**.

 $^{^6\}mathrm{Here}$ we use the isomorphism between the degree-1 subspace of $C\ell(V)$ and V itself.

⁷In char(K) \neq 2, the surjectiveness of the map χ follows from the *Cartan-Dieudonné theorem*. For characteristic 2 one prove that the surjectiveness holds using different methods.

⁸Again using the *Cartan-Dieudonné theorem*, valid only when $char(K) \neq 2$. In fact this statement is more or less the *Cartan-Dieudonné* theorem in terms of geometric algebra.

Remark 25.4.8. As we noted in the beginning of this chapter, there is a variety of different conventions in use. One of the important distinctions is the definition (or choice) of conjugation map χ . Atiyah, Bott and Shapiro have introduced the twisted conjugation map that we used for the definition of the Clifford group. Before them, the common choice was the ordinary conjugation map⁹

$$ad_s: v \mapsto svs^{-1}. \tag{25.27}$$

Although the difference between these maps seems to be rather subtle, the implications are important. If we would have chosen the conjugation ad for our definition of the Clifford group, we would only have found a surjective homomorphism in the case of $\dim(V)$ being odd. Moreover, the action by a degree-1 element would not be given by a Householder transformation anymore, but instead it would be the negative of this operation. This distinction is in particular important for the next section.

25.4.2 Pin and Spin

Formula 25.4.9 (Spinor norm). On $\Gamma(V,Q)$ one can define the spinor norm¹⁰

$$\mathcal{N}(x): \Gamma(V, Q) \to K^{\times}: x \mapsto x^{t} x \tag{25.28}$$

where x^t is the transposition 25.19. On V, \mathcal{N} coincides with the norm induced by Q.

Definition 25.4.10 (Pin and spin groups). Using the spinor norm \mathcal{N} we can now define the pin and spins groups as follows:

$$Pin(V) := \{ s \in \Gamma(V, Q) : \mathcal{N}(s) = \pm 1 \}$$
 (25.29)

and

$$Spin(V) := Pin(V) \cap \Gamma^{+}(V, Q). \tag{25.30}$$

Remark 25.4.11. In the literature one can sometimes find the following alternative definition of the spinor norm:

$$\mathcal{N}(x) := \hat{x}^t x. \tag{25.31}$$

Alternative Definition 25.4.12. The Pin group can also be defined as the set of elements in $\Gamma(V,Q)$ that can be written as a product of unit Clifford vectors (here by unit we mean unit norm and not just invertible as before). The Spin group is then defined as the elements that can be written as the product of an even number of unit Clifford vectors.

Property 25.4.13. The Pin group satisfies the following isomorphism:

$$Pin(V,Q)/\mathbb{Z}_2 \cong O(V,Q). \tag{25.32}$$

An analogous relation holds for the Spin group and SO(V,Q). These relations imply that the Pin and Spin groups form a double cover¹¹ of respectively the orthogonal and special orthogonal groups.

⁹The notation ad_s comes from the fact that this map resembles the adjoint action of a group.

¹⁰This map can be generalized to the full Clifford algebra, but then the image will not just be the underlying field anymore.

¹¹A covering group is a topological group that is also a covering space. See definition 7.2.12 for more information about the latter.

Definition 25.4.14 (Spinor). Consider a vector space V equipped with a (faithful) representation of the group Spin(m, n). This representation is called the spin(or) representation. Elements of V are called spinors.

More precisely, if we consider the complex Clifford algebra $C\ell_{m,n}(\mathbb{C})$ then we can have two possibilities: either m+n is even or m+n is odd. In the even case (m+n=2k) one can prove (using the Artin-Wedderburn theorem 3.5.37) that the algebra is isomorphic to the matrix algebra $M(2^k, \mathbb{C})$. In the odd case (m+n=2k+1) the algebra is isomorphic to the direct sum $M(2^k, \mathbb{C}) \oplus M(2^k, \mathbb{C})$.

Inside these matrix algebras one can find a set of elements satisfying the Clifford relation 25.1 and thereby generating the Clifford algebra (the so-called **gamma matrices**). The real algebra generated by these elements is isomorphic to the real Clifford algebra $C\ell_{m,n}(\mathbb{R})$. The fundamental representation of this real algebra is often called the **Dirac representation**. If m+n is even then the representation splits into two irreducible representations called the **Weyl** or half-spin(or) representations.

Example 25.4.15. The following table gives some group isomorphisms for the spin group in dim n:

n	$\operatorname{Spin}(n)$
1	O(1)
2	U(1)
3	SU(2)
4	$SU(2) \times SU(2)$

For quadratic forms of signature (p,q) we find the following table:

$$\begin{array}{c|c} (1,n) & \mathrm{Spin}(1,n) \\ \hline (1,1) & \mathrm{GL}(1,\mathbb{R}) \\ (1,2) & \mathrm{SL}(1,\mathbb{R}) \\ (1,3) & \mathrm{SL}(2,\mathbb{C}) \end{array}$$

Formula 25.4.16. Consider the basis of $\mathfrak{su}(2)$ given by the Pauli matrices 59.12. An explicit (double) covering map $\rho : \mathrm{Spin}(3) \cong \mathrm{SU}(2) \to \mathrm{SO}(3)$ is given by:

$$\rho: U \mapsto \frac{1}{2} \operatorname{tr}(U\sigma_i U^{\dagger} \sigma^j). \tag{25.33}$$

Property 25.4.17. For all $m, n \in \mathbb{N}$ we have an isomorphism

$$Spin(m, n) \cong Spin(n, m). \tag{25.34}$$

Remark 25.4.18. Note that the above isomorphism only holds for the Spin-groups and not for the associated Pin-groups. This could have major consequences in physics. In general physicists freely switch between a (1,3)- and (3,1)-signature because all particles are assumed to be spinors (and not pinors). However, some pinors can only occur for a specific signature and this way it might be possible to detect the signature of the universe (see [68]).

¹²Note however that these matrices themselves will still be complex-valued.

Chapter 26

Noncommutative Algebra

References for this chapter are [10, 51].

26.1 Coalgebras

Dual (in the categorical sense) to the definition of a (unital associative) algebra we have:

Definition 26.1.1 (Coalgebra). A vector space C together with two linear maps $\Delta : C \to C \otimes C$ and $\varepsilon : C \to K$, called the **comultiplication** and **counit**, is called a coalgebra if it satisfies the following two axioms:

1.
$$(\mathbb{1} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathbb{1}) \circ \Delta$$
, and

2.
$$(1 \otimes \varepsilon) \circ \Delta = (\varepsilon \otimes 1) \circ \Delta = 1$$
.

Example 26.1.2. The simplest example is given by the vector space V with basis $\{e_i\}_{i\in I}$ where the comultiplication and counit are defined as follows:

$$\Delta(e_i) = e_i \otimes e_i \tag{26.1}$$

and

$$\varepsilon(e_i) = 1. \tag{26.2}$$

By linearity these maps can be extended to all of V. Important cases are the tensor algebra and exterior algebra over a vector space. (See definitions 21.3.7 and 21.6.19.)

Remark 26.1.3. This example shows that every algebra allows a coalgebra structure. However, this does not mean that every algebra allows the structure of a bialgebra (see below).

Definition 26.1.4 (Group-like element). An element c in a coalgebra (C, Δ, ε) that satisfies $\Delta(c) = c \otimes c$ and $\varepsilon(c) = 1$.

Remark. The name "group-like" stems from the fact that the coalgebra structure on the group algebra K[G] is obtained by defining $\Delta(g) = g \otimes g$ for all $g \in G$.

Definition 26.1.5 (Unital coalgebra). A coalgebra (C, Δ, ε) is said to be unital if it comes equipped with a coalgebra morphism $\eta: K \to C$. The element $\eta(1)$ is often also denoted by 1.

Definition 26.1.6 (Primitive element). An element c in a unital coalgebra (C, Δ, ε) that satisfies $\Delta(c) = c \otimes 1 + 1 \otimes c$.

Notation 26.1.7 (Sweedler notation). Let (C, Δ) be a coalgebra. For any element $c \in C$ the comultiplication $\Delta(c)$ is an element of $C \otimes C$ and can thus be written in the following form

$$\Delta(c) = \sum_{i} a_i \otimes b_i.$$

For lengthy calculations with a lot of different symbols this notation gets tedious and hence we introduce the following shorthand¹:

$$\Delta(c) = \sum_{(c)} c_{(1)} \otimes c_{(2)} \tag{26.3}$$

or even

$$\Delta(c) = c_{(1)} \otimes c_{(2)}. \tag{26.4}$$

Let us give an example: Due to coassociativity, i.e. $(\Delta \otimes 1) \circ \Delta = (1 \otimes \Delta) \circ \Delta$, we can write:

$$c_{(1)} \otimes c_{(2)} \otimes c_{(3)} = \sum_{(c)} c_{(1)(1)} \otimes c_{(1)(2)} \otimes c_{(2)} = \sum_{(c)} c_{(1)} \otimes c_{(2)(1)} \otimes c_{(2)(2)}.$$

Analogously, the counit law becomes

$$c = c_{(1)}\varepsilon(c_{(2)}) = \varepsilon(c_{(1)})c_{(2)}$$

and hence one can freely move the counit ε around.

26.2 Hopf algebras

Definition 26.2.1 (Bialgebra). Let A be a vector space over a field K. Suppose that the triple (A, ∇, η) defines a unital associative algebra and that the triple (A, Δ, ε) defines a counital coassociative coalgebra. Then the quintuple $(A, \nabla, \eta, \Delta, \varepsilon)$ defines a bialgebra if ∇ and Δ satisfy the following commutative diagrams:

Figure 26.1: Bialgebra conditions.

where these diagrams state that ∇ , η are coalgebra morphisms and Δ , ε are algebra morphisms.

Definition 26.2.2 (Convolution). Let $(A, \nabla, \eta, \Delta, \varepsilon)$ be a bialgebra. The convolution of two operators $f, g: A \to A$ is defined as follows:

$$f * g := \nabla \circ (f \otimes g) \circ \Delta. \tag{26.5}$$

When equipped with the convolution as multiplication, the space of operators on a bialgebra also becomes an algebra.

¹Sometimes one uses the notation $\Delta(c) = \Delta_1(c) \otimes \Delta_2(c)$.

Definition 26.2.3 (Hopf algebra). Let $(A, \nabla, \eta, \Delta, \varepsilon)$ be a bialgebra. A is called a Hopf algebra if it is equipped with a linear map $S: A \to A$ that satisfies

$$\nabla \circ (\mathbb{1}_A \otimes S) \circ \Delta = \nabla \circ (S \otimes \mathbb{1}_A) \circ \Delta = \eta \circ \varepsilon \tag{26.6}$$

or using the convolution on A:

$$\mathbb{1}_A * S = S * \mathbb{1}_A = \eta \circ \varepsilon. \tag{26.7}$$

The map S is called the **antipode** or **coinverse**.

Remark 26.2.4. Some authors require the antipode to be invertible.²

Property 26.2.5. Given a Hopf algebra structure on a bialgebra, the antipode S is an antihomomorphism. Furthermore, by noting that it is the inverse of the identity under convolutions, one can show that the antipode is unique (if it exists). Being a Hopf algebra is thus a property, not a structure.

Property 26.2.6 (Finite-dimensional bialgebras). Any finite-dimensional bialgebra admits an invertible antipode and hence, in particular, is a Hopf algebra.

Definition 26.2.7 (Quasi-triangular Hopf algebra³). A Hopf algebra H for which there exists an invertible element $R \in H \otimes H$ that satisfies

- 1. $R\Delta(a) = \sigma(\Delta(x))R$,
- 2. $(\Delta \otimes 1)(R) = R_{13}R_{23}$, and
- 3. $(\mathbb{1} \otimes \Delta)(R) = R_{13}R_{12}$

where $\sigma(x \otimes y) = y \otimes x$ is the braiding on H and where $R_{ij} \in H \otimes H \otimes H$ is defined using the components of R in the i^{th} and j^{th} position and the unit element $1 \in H$ in the other position, i.e. $(a \otimes b)_{13} = a \otimes 1 \otimes b$.

The element R is often called the **universal** R-**matrix**⁴. Any Hopf algebra admitting such an element is said to be **quasi-cocommutative**.

Remark 26.2.8 (Tensor product of modules). One could ask where bialgebras and especially Hopf algebras naturally arise. Consider an algebra A together with its category of modules **AMod**. Now one would like to define a monoidal structure on **AMod** induced by the tensor product on A. However, this monoidal structure should be compatible with the action of A.

The intuitive (left) action

$$A \otimes (M \otimes_A N) \to M \otimes_A N : a \otimes m \otimes n \mapsto (am) \otimes n$$

does not admit a suitable tensor unit due to its asymmetric definition. To obtain the correct definition we are inspired by group representations: $g \cdot (m \otimes n) = gm \otimes gn$. In this case one has the diagonal map $\Delta : G \to G \times G$ which can be used to act on both sides of the tensor product. One could then ask "Why not just define the action of an algebra in the same way?", i.e.:

$$a \otimes (m \otimes n) \mapsto (am) \otimes (an)$$

However, because we require the action to be linear (after all it should be compatible with the algebra morphisms), this definition is not valid. To resolve this issue, we require the existence

²In finite dimensions this is always the case as noted below.

³Sometimes called a **braided Hopf algebra**.

⁴This name is in general used for all elements $R \in H \otimes H$ satisfying the first condition above.

of an algebra morphism $A \to A \otimes A$ with which we can construct a suitable action as follows (we use Sweedler's notation):

$$A \otimes (M \otimes_A N) \to M \otimes_A N : a \otimes m \otimes n \mapsto (a_{(1)}m) \otimes (a_{(2)}n). \tag{26.8}$$

Together with the usual conditions of an algebra action one obtains exactly the requirement that A should be a bialgebra. So if A is a bialgebra then **AMod** will be a monoidal category (this is in fact an equivalence known as **Tannaka duality**).

Now, one could require some more structure on **AMod**, for example that it admits duals. Consider an A-module V together with its dual $V^* \cong \text{Hom}(V, \mathbb{C})$. Given a linear map $S: A \to A$ one could define a general action as follows:

$$(af)(v) = f(S(a)v). \tag{26.9}$$

The requirement that this is indeed an action leads us to the requirement S(ab) = S(b)S(a) on S, which is equivalent to requiring that S is an algebra antihomomorphism. Together with the other compatibility conditions, such as that the evaluation and coevaluation maps induced by the underlying vector spaces are also A-module morphisms, we are led to the requirement that A is a Hopf algebra. Hence if A is a Hopf algebra (with an invertible antipode) then AMod will be a rigid monoidal category.

One could even go further and require the representation category to be braided. This requirement then exactly leads to the Hopf algebra being quasi-triangular (this also explains why these Hopf algebras are sometimes said to be braided).

26.2.1 Drinfel'd double

One can easily generalize definition 3.2.39 (when written in terms of group algebras) to the case of bialgebras by replacing the group comultiplication by a general comultiplication:

Definition 26.2.9 (Bicrossed product of bialgebras). Two bialgebras A, B are said to form a **matched pair** (of bialgebras) if there exist actions $-\cdot -: A \otimes B \to B$ and $-^-: A \otimes B \to B$, compatible with the coalgebra structures, that satisfy the following equations:

- 1. $a \cdot (bc) = (a_{(1)} \cdot b_{(1)})(a_{(2)}^{b_{(2)}} \cdot c),$
- 2. $a \cdot 1 = \varepsilon(a)1$,
- 3. $(ab)^c = a^{b_{(1)} \cdot c_{(1)}} b_{(2)}^{c_{(2)}},$
- 4. $1^b = \varepsilon(b)1$, and
- 5. $a_{(1)}^{b_{(1)}} \otimes a_{(2)} \cdot b_{(2)} = a_{(2)}^{b_{(2)}} \otimes a_{(1)} \cdot b_{(1)}$.

Given such a matched pair one can define a Hopf algebra structure on $A \otimes B$ defined by the following operations:

- **Product**: $(a \otimes b)(c \otimes d) = a(b_{(1)} \cdot c_{(1)}) \otimes b_{(2)}^{c_{(2)}} d$,
- Coproduct: $\Delta(a \otimes b) = (a_{(1)} \otimes b_{(1)}) \otimes (a_{(2)} \otimes b_{(2)})$, and
- Counit: $\varepsilon(a \otimes b) = \varepsilon_A(a)\varepsilon_B(b)$.

If the bialgebras are equipped with antipodes, then the bicrossed product admits an induced antipode:

$$S(a \otimes b) = S_B(b_{(2)}) \cdot S_A(a_{(2)}) \otimes S_B(b_{(1)})^{S_A(a_{(1)})}.$$
(26.10)

Example 26.2.10 (Tensor product). In the case where the bialgebra actions are given by left multiplication with the counits, the bicrossed product is isomorphic to the tensor product.

Construction 26.2.11 (Drinfel'd double⁵). Consider a Hopf algebra H (with invertible antipode). It can be shown that H and $(H^{op})^*$ form a matched pair of bialgebras. The left and right actions are induced by pullback:

$$(a \cdot f)(b) = f(S^{-1}(a_{(2)})ba_{(1)})$$
(26.11)

$$a^{f} = f(S^{-1}(a_{(3)})a_{(1)})a_{(2)}$$
(26.12)

The resulting bicrossed product $(H^{op})^* \bowtie H$ is called the Drinfel'd double D(H).

Example 26.2.12 (Drinfel'd double for groups). Consider a finite group G together with its associated group algebra $\mathbb{C}[G]$. On this algebra one can put a Hopf algebra structure as follows:

$$\Delta(g) = g \otimes g \tag{26.13}$$

$$\varepsilon(g) = 1. \tag{26.14}$$

On the other hand one can also put a Hopf algebra structure on the dual $\mathbb{C}[G]^*$:

$$\Delta(P_g) = \sum_{hh'=g} P_h \otimes P_{h'} \tag{26.15}$$

$$\varepsilon(P_q) = \delta_{q,e} \tag{26.16}$$

where the basis for $\mathbb{C}[G]^*$ is given by the "projections" $P_g: h \mapsto \delta_{g,h}$. Antipodes for both algebras are given by $S(g) = g^{-1}$ and $S(P_g) = P_{g^{-1}}$.

?? COMPLETE ??

26.3 Quantum groups

This section heavily builds upon the theory presented in chapter 30. The content is partially based on talks by André Henriques.

Construction 26.3.1 (Jimbo-Drinfeld). Consider a Lie algebra \mathfrak{g} together with its universal enveloping algebra $U(\mathfrak{g})$ constructed using the Chevalley-Serre relations 30.4.53:

- 1. $[H_i, H_j] = 0$,
- 2. $[H_i, E_j] = a_{ij}E_j$,
- 3. $[H_i, F_i] = -a_{ij}F_i$,
- 4. $[E_i, F_i] = \delta_{ij} H_i$,
- 5. $\operatorname{ad}_{E_i}^{|a_{ij}|-1}(E_j) = 0$, and
- 6. $\operatorname{ad}_{F_i}^{|a_{ij}|-1}(F_j) = 0.$

To obtain the quantum group $U_q(\mathfrak{g})$, which is also called a **deformation** or **quantization** of $U(\mathfrak{g})$, one replaces the generators H_i by the following generators⁶:

$$K_i := q^{d_i H_i} \tag{26.17}$$

⁵Also known as the **quantum double** (especially in physics).

⁶To be complete one should also add generators K_i^{-1} which act formally as inverses of the generators K_i .

where $d_i := \frac{\langle \alpha_i, \alpha_i \rangle}{2}$ is related to the norm of the i^{th} simple root. So, instead of the H_i being functionals on the root lattice, one gets functions from the root lattice to the Laurent polynomials in q, i.e. to $\mathbb{C}[q, q^{-1}]$.

From this functional point of view one can rewrite the second and third relation as follows:

$$f \cdot E_i = E_i \tau_{\alpha_i}(f)$$
$$f \cdot F_i = F_i \tau_{-\alpha_i}(f)$$

where f is a polynomial in the H_i 's and $\tau_{\alpha_i}(f)(\lambda) := f(\lambda + \alpha_i)$. Replacing H_i by K_i one obtains the following relations:

$$2^*$$
. $K_i E_j = q^{d_i a_{ij}} E_j K_i$, and

$$3^*$$
. $K_i F_j = q^{-d_i a_{ij}} F_j K_i$.

The three relations between the E_i 's and the F_i 's are deformed using q-analog numbers. First we define the q-numbers⁷:

$$[n]_q := \frac{q^n - q^{-n}}{q - q^{-1}}. (26.18)$$

Using this definition Serre relation 4 becomes

4*.
$$[E_i, F_j] = \delta_{ij} [H_i]_{q^{d_i}} = \delta_{ij} \frac{K_i - K_i^{-1}}{a^{d_i} - a^{-d_i}}$$

where the factor $[H_i]_{q^{d_i}}$ should be interpreted as first evaluating H_i on a root and then taking the q-analog. The adjoint action relations (5 and 6) on E_i and F_i can be rewritten by replacing binomial coefficients by their q-analogs $(i \neq j)$:

5*.
$$\sum_{k=1}^{1+|a_{ij}|} (-1)^k \begin{bmatrix} 1+|a_{ij}| \\ k \end{bmatrix}_{q^{d_i}} E_i^{1+|a_{ij}|-k} E_j E_i^k = 0$$
, and

6*.
$$\sum_{k=1}^{1+|a_{ij}|} (-1)^k \begin{bmatrix} 1+|a_{ij}| \\ k \end{bmatrix}_{a^{d_i}} F_i^{1+|a_{ij}|-k} F_j F_i^k = 0.$$

26.4 Differential calculi

Definition 26.4.1 (First-order differential calculus). Let A be an algebra and let Γ be an A-bimodule. Together with an A-bimodule morphism $d: A \to \Gamma$ this structure is called a first-order differential calculus (FODC) if it satisfies the following two conditions:

- 1. **Leibniz rule**: d(ab) = (da)b + a(db); and
- 2. Standard form: Every element $q \in \Gamma$ can be written as

$$g = \sum_{i=1}^{n} a_i(db_i)$$

for some $n \in \mathbb{N}$ and (not necessarily unique) elements $\{a_i, b_i\}_{i \leq n}$.

If $\ker(d) \cong K$, where K is the underlying field, the calculus is said to be **connected**. A calculus is said to be **inner** if the differential d acts through a commutator, i.e. there exists an element $\theta \in A$ such that $da = [\theta, a]$ for all $a \in A$.

Note that q-numbers are often defined differently. This definition is equal to $\frac{1}{q^{n-1}}[n]_{q^2}$ when rewritten using the common definition.

An algebra morphism $\phi: A \to B$ is said to be differentiable, with respect to a choice of FODCs on A and B, if there exists an A-bimodule morphism $\phi_*: \Gamma_A \to \Gamma_B$ (A inherits an action on Γ_B through ϕ) such that $d \circ \phi = \phi_* \circ d$. If such a morphism exists, it is given by $\phi_*(adb) = \phi(a)d\phi(b)$.

Remark 26.4.2. The second condition can be rewritten in terms of a right action using the Leibniz rule.

Definition 26.4.3 (Cotangent dimension). If Γ is free over A with a basis of cardinality n, then it is said to be **parallelized with cotangent dimension** $\dim(A) - 1$.

This is in analogy with the case of function algebras $C^{\infty}(M)$ and the first de Rham space $\Omega^1(M)$ on a smooth manifold. If $\Omega^1(M)$ is free over $C^{\infty}(M)$, this implies that there exists a global basis of one-forms or, equivalently, a global frame of the tangent bundle. This is the same as saying that M is parallelizable. (The cotangent dimension will be explained later.)

Example 26.4.4 (Universal FODC). Consider an algebra A with multiplication μ . The bimodule $\Omega_{\text{uni}} := \ker(\mu)$ equipped with the operator $da := 1 \otimes a - a \otimes 1$ defines a first-order differential calculus on A. Furthermore, every other FODC over A can be obtained as quotient $\Omega_{\text{uni}}/\mathcal{N}$ for a subbimodule \mathcal{N} . The universal FODC is inner if and only if there exists a central element $F \in A \otimes A$ such that $\mu(F) = 1$.

Chapter 27

Higher-dimensional Algebra 🌲

The main reference for this chapter is the series of papers carrying the same name by Baez et al [62,63]. For Kapranov-Voevodsky 2-vector spaces the reader is referred to the original paper [31]. The paragraphs about the Chevalley-Eilenberg incarnation of L_{∞} -algebras is mainly based on [89]. For fusion and modular categories the main reference is [33].

27.1 Graded vector spaces

Definition 27.1.1 (Graded vector space). A vector space V that can be decomposed as

$$V = \bigoplus_{i \in I} V_i \tag{27.1}$$

for a collection of vector spaces $\{V_i\}_{i\in I}$ where I can be both finite or countable. The index i is often called the **degree** of the subspace V_i in V. One writes $\deg(v) = i$ if $v \in V_i$.

Definition 27.1.2 (Finite type). A graded vector space is said to be of finite type if it is finite-dimensional in each degree.

Definition 27.1.3 (Graded algebra). Let V be a graded vector space with the additional structure of an algebra (V, \star) . Then V is called a graded algebra if \star maps $V_k \times V_l$ to V_{k+l} .

Definition 27.1.4 (Graded-commutative algebra). A graded algebra (V, \star) such that

$$v \star w = (-1)^{\deg(v)\deg(w)} w \star v \tag{27.2}$$

holds for all homogeneous elements $v, w \in V$.

Definition 27.1.5 (Super vector space). A \mathbb{Z}_2 -graded vector space.

Example 27.1.6 (Superalgebra). A \mathbb{Z}_2 -graded algebra

$$A = A_0 \oplus A_1, \tag{27.3}$$

such that for all i, j:

$$A_i \star A_j \subseteq A_{i+j \bmod 2}. \tag{27.4}$$

Definition 27.1.7 (Parity and suspension). Consider the category **sVect** of super vector spaces. One can define the **parity functor** $\Pi : \mathbf{sVect} \to \mathbf{sVect}$ as the functor that interchanges even and odd subspaces:

$$(\Pi V)_0 := V_1 \tag{27.5}$$

$$(\Pi V)_1 := V_0. \tag{27.6}$$

A more general construction holds in \mathbb{Z} -Vect. For every graded vector space V, the k-shifted vector space or k-suspension V[k] is defined as follows (some authors use the opposite convention):

$$V[k]_i := V_{i-k}. (27.7)$$

Example 27.1.8 (Free GCA). Let V be a graded vector space. The free GCA Sym $^{\bullet}V$ on V is defined as the quotient of the tensor algebra T(V) by the relations

$$x \otimes y - (-1)^{\deg(x)\deg(y)} y \otimes x \tag{27.8}$$

ranging over all homogeneous elements $x, y \in V$. (The notation stems from the fact that it is inherited from the symmetric monoidal structure on $\mathbf{Ch}_{\bullet}(\mathbf{Vect})$.) This algebra can equivalently be obtained as the tensor product

$$\operatorname{Sym}^{\bullet} V = \operatorname{Sym}(V_{\text{even}}) \otimes \operatorname{Alt}(V_{\text{odd}}), \tag{27.9}$$

where Sym and Λ denote the symmetric and exterior algebras of ordinary vector spaces. It it not hard to see that this definition combines the definitions of Sym and Alt (for this reason it is sometimes also denoted by Sym $^{\bullet}V$). A similar definition gives a graded alternating algebra:

$$Alt^{\bullet}V = T(V)/(x \otimes y - (-1)^{\deg(x)\deg(y)}y \otimes x). \tag{27.10}$$

Note that both of these algebras actually carry a bigrading, the total degree coming from V and the **word length**:

$$\deg(v_1 \cdots v_n) := \deg(v_1) + \cdots + \deg(v_n) \tag{27.11}$$

$$wl(v_1 \cdots v_n) := n. \tag{27.12}$$

In general, only the word length is made explicit when writing down the space, i.e. $v \in \text{Alt}^{\text{wl}(v)}V$.

Remark 27.1.9 (Different conventions and décalage). Some authors use the notation $\Lambda^{\bullet}V$ for the free graded-commutative algebra on V. However, this might be confused with the notation for the Grassmann (exterior) algebra of an ordinary vector space.¹ In fact, there is a good reason why these notations are used in a seemingly interchangeable way for graded vector spaces. The suspension functor $V \to V[1]$ gives a way to relate the Grassmann algebra over an ordinary vector space V to the free GCA on the shifted space V[1], i.e. $\mathrm{Alt}^{\bullet}V \cong \mathrm{Sym}^{\bullet}V[1]$. However, at this point, the **décalage isomorphism**

$$\operatorname{dec}_k: \Lambda^k V[k] \cong \operatorname{Sym}^k V[1] \tag{27.13}$$

is only a linear isomorphism. There are two ways to see that it can be extended to an algebra isomorphism.

The first one defines the suspension functor as an intertwiner between the symmetrization and antisymmetrization operations to define Sym and Alt. Define the symmetric and antisymmetric Koszul signs of a permutation $\sigma \in S_n$ as follows:

$$\varepsilon(\sigma; v_1, \dots, v_n) := (-1)^{\# \text{ odd-odd neighbour transpositions in } \sigma}$$
 (27.14)

$$\chi(\sigma; v_1, \dots, v_n) := \operatorname{sgn}(\sigma)\varepsilon(\sigma; v_1, \dots, v_n). \tag{27.15}$$

Décalage then says that the suspension functor should satisfy

$$\varepsilon(\sigma; v_1, \dots, v_n) \sigma \circ [1]^{\otimes n} = [1]^{\otimes n} \circ \chi(\sigma; v_1, \dots, v_n) \sigma. \tag{27.16}$$

¹This inconvenient change of conventions can be found everywhere in the literature, so one should pay close attention to the conventions that are used.

Since both Sym and Alt can be defined in terms of the projectors

$$p_{\text{Sym}} := \sum_{\sigma \in S_n} \varepsilon(\sigma)\sigma$$
 and $p_{\text{Alt}} := \sum_{\sigma \in S_n} \chi(\sigma)\sigma,$ (27.17)

décalage interchanges symmetric and antisymmetric tensors. The most common choice is the following one:

$$[1]: V^{\otimes n} \to V[1]^{\otimes n}: v_1 \otimes \cdot \otimes v_n \mapsto (-1)^{\sum_{i=1}^n (n-i) \deg(v_i)} v_1[1] \otimes \cdots \otimes v_n[1]. \tag{27.18}$$

This choice is induced by the following definition of the suspension functor (one could also choose the convention where V is tensored on the right):

$$[1]: \mathbb{Z}\text{-}\mathbf{Vect}_k \to \mathbb{Z}\text{-}\mathbf{Vect}_k: V \mapsto k[1] \otimes V. \tag{27.19}$$

This definition also directly induces an algebra isomorphism in the following way. Consider two homogeneous elements $v, w \in V$. In Sym²V their product satisfies

$$vw = (-1)^{\deg(v)\deg(w)}wv.$$

After applying the suspension functor, the product on the left-hand side becomes:

$$v[1]w[1] \equiv (\underline{1} \otimes v)(\underline{1} \otimes w) \cong (-1)^{\deg(w)}\underline{1} \otimes (vw) \equiv (-1)^{\deg(w)}vw[2].$$

To calculate the suspension of the right-hand side, the braiding in \mathbb{Z} -**Vect**_k is used:

$$v[1]w[1] \equiv (v \otimes \underline{1})(w \otimes \underline{1}) \mapsto (-1)^{\deg(v) + \deg(w) + \deg(v) \deg(w) + 1}(w \otimes \underline{1})(v \otimes \underline{1})$$
$$= (-1)^{\deg(w) + \deg(v) \deg(w) + 1}(wv) \otimes \underline{1}$$
$$= (-1)^{\deg(w) + \deg(v) \deg(w) + 1}wv[2].$$

The difference in signs is $(-1)^{\deg(v)\deg(w)+1}$. If either v or w is even, this final sign is -1 or equivalently, the product is antisymmetric, while if both v and w are odd, the product is symmetric. This is exactly the opposite situation of that in $\operatorname{Sym}^2 V$. The most thorough review of these issues was found in [101].

27.1.1 Supermatrices

For this section the requirement that all algebraic structures are defined over a field K is relaxed to working over a supercommutative ring. This means that the objects will be (graded) modules instead of true vector spaces.

Definition 27.1.10 (Supermatrix). Every linear transformation between super vector spaces (V_0, V_1) and (W_0, W_1) can be decomposed as the sum of 4 linear transformations between the even/odd subspaces:

- \bullet $A: V_0 \to W_0$,
- $B: V_1 \to W_0$,
- $C: V_0 \to W_1$, and
- $D: V_1 \rightarrow W_1$.

If these transformations are represented as matrices, the full transformation can be represented as a block matrix

$$X = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

where the same notation is used to denote the matrices associated to the linear transformations.

These matrices can be decomposed according to their **parity**. Not all supermatrices preserve the grading or, equivalently, not all linear transformations of super vector spaces are morphisms of super vector spaces. The ones that are, are said to have even parity and they are of the form

$$X = \begin{pmatrix} \text{even} & \text{odd} \\ \text{odd} & \text{even} \end{pmatrix}$$

where even/odd means that the entries in these blocks have even/odd parity as elements of the underlying (graded) ring. It should be clear that these matrices indeed preserve the grading, since acting with an odd scalar on an odd vector gives an even vector (and similar for the other combinations). The matrices that do not preserve the grading are said to have odd parity and are of the form

$$X = \begin{pmatrix} \text{odd} & \text{even} \\ \text{even} & \text{odd} \end{pmatrix}.$$

Definition 27.1.11 (Supertrace). The supertrace of a supermatrix generalizes the trace of an ordinary matrix. Given the block matrix form from the previous definition, one defines the supertrace as follows:

$$str(X) = tr(A) - tr(D). \tag{27.20}$$

Property 27.1.12. As was the case for the ordinary trace, the supertrace is invariant under basis transformations. Furthermore, the cyclicity property also still holds if it is slightly modified as to be compatible with the grading:

$$\operatorname{str}(XY) = (-1)^{\operatorname{deg}(X)\operatorname{deg}(Y)}\operatorname{str}(YX). \tag{27.21}$$

Definition 27.1.13 (Berezinian). The Berezinian or **superdeterminant** generalizes the determinant of an ordinary matrix. It is (uniquely) defined through the following two conditions:

- 1. Ber(XY) = Ber(X)Ber(Y), and
- 2. Ber $(e^X) = e^{\operatorname{str}(X)}$.

An explicit formula is given by

$$Ber(X) = \det(A - BD^{-1}C)\det(D)^{-1} = \det(A)\det(D - CA^{-1}B)^{-1},$$
(27.22)

where the last expression involves the $Schur \ complement$ of A relative to X. It should be noted that the Berezinian is only well-defined for invertible even matrices.

27.1.2 Berezin calculus

This section is an application of the previous ones and, in particular, of the concept of exterior algebras 21.6.19. The concept of Grassmann numbers/variables is used in quantum field theory when performing calculations in e.g. the fermionic sector or Faddeev-Popov quantization. References for this section are [41,96].

Definition 27.1.14 (Grassmann numbers). Let V be a vector space spanned by a set of elements θ_i . The Grassmann algebra with Grassmann variables θ_i is the exterior algebra over V. The wedge symbol of Grassmann variables is often ommitted when writing the product:

$$\theta_i \wedge \theta_i \equiv \theta_i \theta_i$$
.

Remark 27.1.15. From the (anti)commutativity it follows that one can regard the Grassmann variables as being nonzero square roots of zero.

Notation 27.1.16 (Parity). In the case of superalgebras and, in particular, that of Grassmann numbers, the degree of an element is often called the (Grassmann) parity of the element. It is also often denoted by $\varepsilon(x)$ or ε_x instead of $\deg(x)$. In this text this convention is only adopted for graded algebras where there is both a supergrading and a (co)homological \mathbb{Z} -grading.

Property 27.1.17. Consider a one-dimensional Grassmann algebra (with generator θ). When constructing the polynomial ring $\mathbb{C}[\theta]$ generated by θ , it can be seen that, due to the anticommutativity, $\mathbb{C}[\theta]$ is spanned only by 1 and θ . All higher degree terms vanish because $\theta^2 = 0$. This implies that the most general polynomial over a one-dimensional Grassmann algebra is of the form

$$p(\theta) = a + b\theta \tag{27.23}$$

Definition 27.1.18. One can equip the exterior algebra Λ with Grassmann variables θ_i with an involution:

$$(\theta_i \theta_j \dots \theta_k)^* := \theta_k \dots \theta_j \theta_i. \tag{27.24}$$

Elements $z \in \Lambda$ such that $z^* = z$ are called (super)real, elements such that $z^* = -z$ are called (super)imaginary. This convention is called the **DeWitt convention**.

To keep this discussion on Grassmann variables self-contained, the calculus of Grassmann variables is also introduced here:

Definition 27.1.19 (Derivative of Grassmann variables). Consider the polynomial algebra $\mathbb{C}[\theta_1,\ldots,\theta_n]$ on n Grassmann variables (more general functions would be defined through a series expansion, but given that $\theta^2 = 0$, these always reduce to a simple polynomial). Differentiation on this ring is defined through the following relations:

$$\frac{\partial}{\partial \theta_j} \theta_i = \delta_i^j \qquad \qquad \theta_i \frac{\partial}{\partial \theta_j} + \frac{\partial}{\partial \theta_j} \theta_i = 0 \qquad (27.25)$$

The second relation implies that the partial derivatives are also Grassmann-odd. The odd parity in fact allows to introduce two distinct differentiation operations. One is the left derivative, this is the one that was just introduced. The other is the right derivative which acts as

$$\theta_i \frac{\partial^R}{\partial \theta^j} = \delta_i^j. \tag{27.26}$$

The left and right derivatives are also sometimes denoted by

$$\frac{\stackrel{\rightarrow}{\partial}}{\partial \theta^i} \qquad \text{and} \qquad \frac{\stackrel{\leftarrow}{\partial}}{\partial \theta^i}$$

respectively.

Next, one also needs some kind of integration theory. Instead of working with a definition à la Riemann, the integral will be defined purely axiomatically:

Definition 27.1.20 (Berezin integral: axiomatic). Consider a function f of n Grassmann variables $\{\theta_i\}_{1\leq i\leq n}$. The Berezin integral is defined by the following axioms:

- 1. The map $f \mapsto \int_B f(\theta) d\theta$ is linear.
- 2. The result $\int_B f(\theta)d\theta$ is independent of the variable(s) θ , i.e. it is a number.
- 3. The result is invariant under a translation of the integration variable.

Remark 27.1.21. Multiple integrals can be defined by adding the Fubini theorem as an additional axiom.

It can be shown that this definition is equivalent to the following one:

Alternative Definition 27.1.22 (Berezin integral: analytic). First consider functions on one Grassmann variable, i.e. $f(\theta) = a + b\theta$. The Berezin integral is then defined as follows:²

$$\int_{B} (a+b\theta)d\theta := b. \tag{27.27}$$

This means that the integral is equal to the coefficient of the "highest" degree term. As a simple generalization, define

$$\int_{B} f(\theta_{1}, \dots, \theta_{n}) d\theta := \text{coefficient of } \theta_{1} \cdots \theta_{n}.$$
(27.28)

Some authors reverse the order of the variables in the above definition. Depending on the number of variables, this might lead to a minus sign.

Remark 27.1.23. It is interesting to see that the (one-dimensional) Berezin integral is equal to the (Grassmann) derivative. This is completely different from the usual integral in calculus. It also gives some intuition for the distinct transformation behaviour of the Berezin integral as explained in the following property.

Formula 27.1.24 (Change of variables). Consider a general Berezin integral $\int_B f(\theta) d\theta$. Now suppose that a transformation to the Grassmann variables $\theta \to \xi(\theta)$ is applied. If J is the Jacobian matrix associated to this transformation then the transformation is given by the following formula:

$$\int_{B} f(\xi)d\xi = \int_{B} f(\theta)(\det J)^{-1}d\theta \tag{27.29}$$

The Berezin calculus above can easily be integrated in ordinary calculus by using the fact that ordinary coordinates (even parity) commute with Grassmann numbers (odd parity). A mixed derivative (resp. integral) can always be factorized as the composition of a Berezin derivative (resp. integral) and an ordinary one.³ The transformation behaviour is then generalized to this case by introducing the so-called superdeterminant or Berezinian (see section 27.1 and in particular definition 27.1.13):

Consider a set of ordinary coordinates $\{x_i\}_{1 \leq i \leq m}$ and a set of Grassmann variables $\{\theta_i\}_{1 \leq i \leq n}$. Now, assume that a general coordinate transformation is performed that may possibly mix up the ordinary and Grassmann variables, i.e. one obtains new even coordinates $y(x,\theta)$ (these can thus contain even combinations of the Grassmann variables) and ordd variables $\xi(x,\theta)$. The Jacobian of this transformation can be written as a block matrix

$$J = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

where A determines the mixing in the ordinary sector, D determines the mixing in the Grassmann sector and B, C determine the mixing between sectors. From the choice of transformation it should be clear that this is an even supermatrix. The Jacobian determinant in the transformation formula should now be replaced by the Berezian:

$$Ber(J) = \det(A - BD^{-1}C) \det(D)^{-1}$$
(27.30)

One immediately sees that if there is no mixing between the ordinary and Grassmann sector, i.e. B = C = 0, then this reduces to the simple cases above.

²Technically the axioms only imply this formula up to some multiplicative constant. The original paper by *Berezin* will be followed, i.e. this constant is chosen to be 1.

³The order is merely a convention.

27.2 Monoidal categories II: Duality

Definition 27.2.1 (Dual object). Let $(\mathbf{C}, \otimes, \mathbf{1})$ be a monoidal category and let $A \in \text{ob}(\mathbf{C})$. A left dual⁴ A^* of A is an object in \mathbf{C} together with two morphisms $\eta : \mathbf{1} \to A \otimes A^*$ and $\varepsilon : A^* \otimes A \to \mathbf{1}$, called the **unit** and **counit** morphisms⁵, such that the diagrams 27.1 and 27.2 commute. A is said to be **dualizable** if the object A^* and the morphisms η, ε exist.

Figure 27.1: Dual object I.

Figure 27.2: Dual object II.

Definition 27.2.2 (Rigid category⁶). A monoidal category in which all duals exist. If only left (resp. right) duals exist then the category is said to be left (resp. right) rigid.

Property 27.2.3 (Braided categories). In general it is not true that left and right duals coincide, however in a braided monoidal category this is the case.

Definition 27.2.4 (Compact closed category). A symmetric rigid category is also called a compact closed category.

Example 27.2.5 (FinVect). Consider the category **FinVect** of finite-dimensional vector spaces (the ground field is assumed to be \mathbb{R}). The categorical dual of a vector space V is the algebraic dual V^* . The unit morphism is given by the "resolution of the identity":

$$\eta: \mathbf{1} \to V \otimes V^*: 1 \mapsto \sum_{i=1}^{\dim(V)} e_i \otimes \phi^i$$
(27.31)

where $\{e_i\}$ and $\{\phi^i\}$ are bases of V and V^* respectively.

It should be noted that the category **Vect** of all vector spaces is not rigid. By property 27.2.3 above, left and right duals coincide in any braided monoidal category (such as **Vect**). However for infinite-dimensional vector spaces it is known that $A \cong (A^*)^*$ never holds and as such the rigidity cannot be extended to **Vect**.

⁴Analogously, A is called the **right dual** of A^* . The right dual of B is often denoted by *B.

⁵Also called the **coevaluation** and **evaluation** morphisms.

⁶Also called an **autonomous category**.

Property 27.2.6 (Tannaka duality). Consider the category $\mathcal{V} = \mathbf{FinVect}_K$, where the underlying ground field is now explicitly mentioned. Using coends one can reconstruct the base field from its modules, i.e. the objects in \mathcal{V} :⁷

$$\int^{V \in \mathcal{V}} V^* \otimes V \cong K. \tag{27.32}$$

A more general statement goes as follows:

$$\int^{V \in \mathcal{V}} \mathcal{V}(V, -) \otimes \mathrm{id}_{\mathcal{V}} V \cong \mathrm{id}_{\mathcal{V}}. \tag{27.33}$$

The components $\eta_V : \mathcal{V}(V, V) \to K$ of the coend can be shown to coincide with the trace and such the trace obtains a universal property.

Remark 27.2.7. This property can also be generalized by replacing \mathcal{V} by a category \mathbf{Mod}_A for some finite-dimensional algebra A. The end and coend than give respectively the algebra A and its dual A^* .

The trace on **FinVect** can be generalized as follows:

Definition 27.2.8 (Trace). Let $(C, \otimes, 1)$ be a rigid category and let $f \in \text{Hom}_{C}(A, A^{**})$. The left (categorical or quantum) trace of f is defined as the following morphism in $\text{End}_{C}(1)$:

$$\operatorname{tr}^{L}(f) := \varepsilon_{A^{*}} \circ (f \otimes \mathbb{1}) \circ \eta_{A}. \tag{27.34}$$

If $f \in \operatorname{Hom}_{\mathbf{C}}(A, {}^{**}A)$ then the right trace is defined similarly:

$$\operatorname{tr}^{R}(f) := \varepsilon_{**A} \circ (\mathbb{1} \otimes f) \circ \eta_{*A}. \tag{27.35}$$

Property 27.2.9. The following linear algebra-like properties hold for the categorical trace:

- $\operatorname{tr}^{L}(f) = \operatorname{tr}^{R}(f^{*}).$
- $\operatorname{tr}^L(f \otimes g) = \operatorname{tr}^L(f)\operatorname{tr}^L(g)$, and
- For additive categories: $\operatorname{tr}^L(f \oplus g) = \operatorname{tr}^L(f) + \operatorname{tr}^L(g)$.

The second and third property can be stated analogously for the right trace.

Definition 27.2.10 (Pivotal category). Let \mathbf{C} be a rigid monoidal category. A pivotal structure on \mathbf{C} is a monoidal natural isomorphism $a_A:A\cong A^{**}$.

Definition 27.2.11 (Dimension). Let (\mathbf{C}, a) be a pivotal category and consider an object $V \in \text{ob}(\mathbf{C})$. The dimension of V is defined as follows:

$$\dim_a(V) := \operatorname{tr}^L(a_V). \tag{27.36}$$

Definition 27.2.12 (Spherical category). Let (\mathbf{C}, a) be a pivotal category. If the left and right traces (with respect to a) coincide in \mathbf{C} , i.e. $\dim_a(V) = \dim_a(V^*)$, then the pivotal structure is said to be spherical.

Definition 27.2.13 (Symmetric monoidal dagger category). A symmetric monoidal category $(C, \otimes, 1)$ which also carries the structure of a dagger category 4.3.1 such that

$$(f \otimes g)^{\dagger} = f^{\dagger} \otimes g^{\dagger} \tag{27.37}$$

and such that the coherence and braiding morphisms are unitary.

⁷This result can be shown to hold for all compact closed categories \mathcal{V} . In this context it is known as **Tannaka** reconstruction.

Definition 27.2.14 (Dagger-compact category). A symmetric monoidal dagger category which is also a compact closed category such that the following diagram commutes:

27.3 Tensor and fusion categories

Some definitions might slightly differ from the ones in the main reference and some properties might be stated less generally. k denotes an algebraically closed field (often this will be \mathbb{C}).

Definition 27.3.1 (Tensor category). A monoidal category with the following properties:

- 1. it is rigid,
- 2. it is Abelian,
- 3. it is k-linear (and it is so in a way compatible with the Abelian structure),
- 4. End(1) $\cong k$, and
- 5. $-\otimes$ is bilinear on morphisms.

Some authors (such as [33]) also add "locally finite" as a condition (see definition??).

Remark 27.3.2. If k is not algebraically closed one should exchange the last condition by the condition that $\mathbf{1}$ is a simple object. However, if k is algebraically closed then these statements are equivalent.

Definition 27.3.3 (Pointed tensor category). A tensor category is said to be pointed if all of its simple objects are (weakly) invertible.

Definition 27.3.4 (Fusion category). A semisimple finite tensor category.

Property 27.3.5. Let M be a fusion category. There exists a natural isomorphism $X \cong X^{**}$.

Remark. Although any fusion category admits a natural isomorphism between an object and its double dual, this morphism does not need to be monoidal. The fact that all fusion categories are pivotal was conjectured by Etingof, Ostrik and Nikshych. Currently the best one can do for a general fusion category is a monoidal natural transformation between the identity functor and the fourth dualization functor $X \cong X^{****}$.

Definition 27.3.6 (Categorical dimension). Consider a fusion category \mathbf{M} and choose a natural isomorphism $a: \mathrm{id}_{\mathbf{M}} \xrightarrow{\sim} **$. For every simple object X one can define a dimension function, sometimes called the **norm squared**, in the following way:

$$|X|^2 = \operatorname{tr}(a_X)\operatorname{tr}((a_X^{-1})^*). \tag{27.38}$$

If **M** is pivotal then this becomes $|X|^2 = \dim_a(X) \dim_a(X^*)$. In particular, when **M** is spherical, this becomes $|X|^2 = \dim_a(X)^2$.

The categorical dimension⁸ is then defined as follows:

$$\dim(\mathbf{M}) = \sum_{X \in \mathcal{O}(\mathbf{M})} |X|^2 \tag{27.39}$$

where $\mathcal{O}(\mathbf{M})$ denotes the set of isomorphism classes of simple objects.

⁸Sometimes called the Müger dimension.

Remark 27.3.7. It should be noted that the above quantities do not depend on the choice of isomorphism $a_X: X \cong X^{**}$ since all of them only differ by a scale factor.

Property 27.3.8. For any fusion category \mathbf{M} one has that $\dim(\mathbf{M}) \neq 0$. In particular, if $k = \mathbb{C}$ then $\dim(\mathbf{M}) \geq 1$ (since the norm squared of any simple object is then also positive).

Definition 27.3.9 (G-graded fusion category). A semisimple linear category C is said to have a G-grading, where G is a finite group, if it can be decomposed as follows:

$$\mathbf{C} \cong \bigoplus_{g \in G} \mathbf{C}_g,\tag{27.40}$$

where every \mathbf{C}_g is again linear and semisimple. A fusion category \mathbf{C} is said to be a (G-)graded fusion category if it admits a G-grading such that the tensor product functor maps $\mathbf{C}_g \times \mathbf{C}_h$ into \mathbf{C}_{gh} .

Example 27.3.10 (G-graded vector spaces). Define the category \mathbf{Vect}_G^{ω} as having the same objects and morphisms as \mathbf{Vect}_G (the category of G-graded vector spaces) but with the associator given by the the 3-cocycle $\omega \in H^3(G; k^{\times})$.

Property 27.3.11. Any pointed fusion category is equivalent to a category of the form \mathbf{Vect}_G^{ω} for some G and $\omega \in H^3(G; k^{\times})$.

Theorem 27.3.12 (Tannaka duality). The representation category of a weak Hopf algebra has the structure of a fusion category. Conversely, any fusion category can be obtained as the representation category of a weak Hopf algebra.

27.4 Ribbon and modular categories

Definition 27.4.1 (Ribbon structure). Consider a braided monoidal category $(\mathbf{M}, \otimes, \mathbf{1})$ with braiding σ . A **twist** or **balancing** is a natural transformation θ such that the following equation is satisfied for all $X, Y \in \text{ob}(\mathbf{M})$:

$$\theta_{X \otimes Y} = (\theta_X \otimes \theta_Y) \circ \sigma_{Y,X} \circ \sigma_{X,Y}. \tag{27.41}$$

If in addition **M** is rigid and the twist satisfies $\theta_{X^*} = (\theta_X)^*$ for all $X \in ob(\mathbf{M})$ then one speaks of a ribbon category.

Definition 27.4.2 (Drinfeld morphism). Let $(\mathbf{M}, \otimes, \mathbf{1})$ be a rigid braided monoidal category with braiding σ . This structure admits a canonical natural isomorphism $X \cong X^{**}$ defined as follows:

$$X \xrightarrow{\mathbb{1}_X \otimes \eta_{X^*}} X \otimes X^* \otimes X^{**} \xrightarrow{\sigma_{X,X^*} \otimes \mathbb{1}_{X^{**}}} X^* \otimes X \otimes X^{**} \xrightarrow{\varepsilon_X \otimes \mathbb{1}_{X^{**}}} X^{**}. \tag{27.42}$$

Property 27.4.3. Let **M** be a braided monoidal category. Consider the canonical natural isomorphism $u_X: X \cong X^{**}$ defined above. Any natural isomorphism $\psi_X: X \cong X^{**}$ can be written as $u_X \theta_X$ where $\theta \in \operatorname{Aut}(\mathbb{1}_{\mathbf{M}})$. It is not hard to see that this natural isomorphism is monoidal (hence pivotal) exactly when θ is a twist. If **M** is a fusion category then the pivotal structure is spherical if and only if θ gives a ribbon structure.

Definition 27.4.4 (Premodular category). A ribbon fusion category. Equivalently, a spherical braided fusion category.

Definition 27.4.5 (S-matrix). Given a premodular category M (with braiding σ) one defines the S-matrix as follows:

$$S_{X,Y} := \operatorname{tr}(\sigma_{Y,X} \circ \sigma_{X,Y}) \tag{27.43}$$

where X, Y are (isomorphism classes of) simple objects.

Since in a premodular category there are only finitely many isomorphism classes of simple objects (denote this number by \mathcal{I}), one can see that S is a $\mathcal{I} \times \mathcal{I}$ -matrix.

Definition 27.4.6 (Modular category⁹). A premodular category for which the S-matrix is invertible

Property 27.4.7. Let \mathbf{M} be a modular category with S-matrix S. If E denotes the matrix such that $E_{X,Y}$ is 1 if $X = Y^*$ and 0 otherwise, the following relation with the categorical dimension of \mathbf{M} is obtained:

$$S^2 = \dim(\mathbf{M})E. \tag{27.44}$$

Formula 27.4.8 (Verlinde). Consider a modular category M with S-matrix S. Let $\mathcal{O}(M)$ denote the set of isomorphism classes of simple objects and let $\dim(R)$ denote the dimension of an object R defined using the spherical structure on M. Using the formula

$$S_{X,Y}S_{X,Z} = \dim(X) \sum_{W \in \mathcal{O}(\mathbf{M})} N_{Y,Z}^W S_{X,W}$$
 (27.45)

for all $X, Y, Z \in \mathcal{O}(\mathbf{M})$ one obtains the following important relation:

$$\sum_{W \in \mathcal{O}(\mathbf{M})} \frac{S_{W,Y} S_{W,Z} S_{W,X^*}}{\dim(W)} = \dim(\mathbf{M}) N_{Y,Z}^X.$$
(27.46)

This property implies that the S-matrix of a modular category determines the fusion coefficients of the underlying fusion category.

27.5 Module categories

27.5.1 Over a monoidal category

By categorifying the definition of a module over a ring one obtains the notion of a module category:

Definition 27.5.1 (Module category). Let \mathbf{M} be a monoidal category. A left \mathbf{M} -module (category) is a linear category \mathbf{C} equipped with a bilinear functor $\triangleright : \mathbf{M} \times \mathbf{C} \to \mathbf{C}$ together with natural isomorphisms that categorify the associativity and unit conditions of modules (these are also required to be compatible with the associator and unitors of \mathbf{M}).

Remark 27.5.2. Similar to how a G-set can be defined as a functor $\mathbf{B}G \to \mathbf{Set}$, one can define a module category as a 2-functor $\mathbf{BM} \to \mathbf{Cat}$.

Analogous to definition ?? one can also define internal homs for module categories:

Definition 27.5.3 (Internal hom). Consider a left M-module C. Given two objects $c, c' \in ob(\mathbf{C})$ one defines their internal hom (if it exists) as the object $\underline{Hom}(c, c') \in ob(\mathbf{M})$ satisfying the following condition

$$\mathbf{C}(m \triangleright c, c') \cong \mathbf{M}(m, \underline{\mathrm{Hom}}(c, c')) \tag{27.47}$$

for all $m \in ob(\mathbf{M})$.

Property 27.5.4. It should be noted that for the case $C \equiv M$ (where the action is given by the tensor product in M) one obtains Definition ?? as a particular case.

⁹A modular (tensor) category is often abbreviated as MTC.

27.6 Higher vector spaces

27.6.1 Kapranov-Voevodksy 2-vector spaces

The guiding principle for this definition of 2-vector spaces will be the generalization of certain observations from studying the category \mathbf{Vect} of ordinary vector spaces. Linear maps between vector spaces can (at least for finite dimensions) be represented as matrices with coefficient in the ground field k. Coincidentally this ground field is also the tensor unit in \mathbf{Vect} . At the same time all finite-dimensional vector spaces are isomorphic to spaces of the form k^n (where n is given by the dimension of the vector space).

Definition 27.6.1 (2-vector space). To define 2-vector spaces, Kapranov and Voevodsky lifted these observations to 1 dimension higher by replacing the ground field \mathbb{C} by the category **Vect**. To wit **2Vect** is defined as the 2-category consisting of the following data:

- 1. objects: Finite products of the form \mathbf{Vect}^n ;
- 2. 1-morphisms: **2-matrices**, i.e. collections $||A_{ij}||$ of finite-dimensional vector spaces; and
- 3. 2-morphisms: collections (a_{ij}) of linear maps (between finite-dimensional vector spaces).

The multiplication (composition) of 1-morphisms is defined in analogy to the multiplication of ordinary matrices, but where the usual sum and product are replaced by the direct sum and tensor product.

A seemingly more formal definition uses the concepts of ring and module categories:

Alternative Definition 27.6.2. A 2-vector space is a lax module category over the ring category Vect which is module-equivalent to \mathbf{Vect}^n for some $n \in \mathbb{N}$. The 2-category 2Vect is then defined as the 2-category with objects these 2-vector spaces, as 1-morphisms the associated Vect-module functors and as 2-morphisms the module natural transformations.

27.6.2 Baez-Crans 2-vector spaces

Definition 27.6.3 (2-vector space). A category internal to **Vect**. ¹⁰ The relevant notion of morphism is that of a **linear functor**, i.e. a functor internal to **Vect**.

Remark 27.6.4. The above definition should not be confused with that of categories and functors enriched over **Vect**.

Example 27.6.5 (Ground field). The ground field k can be categorified to a 2-vector spaces by taking $K_0 = K_1 := k$ and $s = t = e := \mathbb{1}_k$. This object serves a unit for the tensor product on **2Vect**.

Property 27.6.6 (Chain complexes). There exists an equivalence between the (2-)categories of 2-vector spaces and 2-term chain complexes.

Sketch of construction. Given a 2-vector space (V_0, V_1) , one can build a chain complex C_{\bullet} as follows:

- $C_0 := V_0$,
- $C_1 := \ker(s)$, and
- $d := t|_{C_1}$

where s, t are the source morphism and target morphisms.

¹⁰For the definition of internal categories see 4.6.2.

Remark 27.6.7. The equivalence (on the level of ordinary categories) is an instance of the Dold-Kan correspondence ??.

Definition 27.6.8 (Arrow part). Consider a 2-vector space $V = (V_0, V_1)$. For any morphism $f \in V_1$ one defines the arrow part as follows:

$$\vec{f} := f - e(s(f)) \tag{27.48}$$

where e, s are the identity and source morphisms in V. Any map can thus be recovered from its arrow part and its source. This allows us to identify a map $f \in V_1$ with the pair $(s(f), \vec{f})$. Using arrow parts one can rewrite the composition law of morphisms in an intuitive way:

$$g \circ f = \left(s(f), \vec{f} + \vec{g}\right). \tag{27.49}$$

Definition 27.6.9 (Antisymmetric natural morphism). A natural morphism between *n*-linear functors in **2-Vect** is said to be **completely antisymmetric** if its arrow part is completely antisymmetric.

27.7 Higher Lie theory

27.7.1 Lie superalgebras

Definition 27.7.1 (Internal Lie algebra). Let $(\mathbf{C}, \otimes, \mathbf{1})$ be a linear symmetric monoidal category with braiding σ . A Lie algebra internal to \mathbf{C} is an object $A \in \text{ob}(\mathbf{C})$ and a morphism

$$[\cdot,\cdot]:A\otimes A\to A$$

satisyfing the following conditions:

- 1. **Antisymmetry**: $[\cdot,\cdot] + [\cdot,\cdot] \circ \sigma_{A,A} = 0$, and
- 2. **Jacobi identity**: $[\cdot, [\cdot, \cdot]] + [\cdot, [\cdot, \cdot]] \circ \tau + [\cdot, [\cdot, \cdot]] \circ \tau^2 = 0$,

where $\tau = (\mathbb{1} \otimes \sigma_{A,A}) \circ (\sigma_{A,A} \otimes \mathbb{1})$ denotes cyclic permutation.

Example 27.7.2 (Lie superalgebra). When using the braiding $\sigma(a \otimes b) = (-1)^{\deg(a) \deg(b)} b \otimes a$ in **sVect**, a Lie superalgebra (also called a super Lie algebra) is obtained.

Example 27.7.3 (dg-Lie algebras). Lie algebras internal to $Ch_{\bullet}(Vect)$ or its generalization to graded vector spaces. Sometimes these are also called strict L_{∞} -algebras (see further below).

Definition 27.7.4 (Semistrict Lie 2-algebra). A (Baez-Crans) 2-vector space $V \equiv (V_0, V_1)$ equipped with the following morphisms:

- 1. an antisymmetric bilinear functor $[\cdot,\cdot]:V\times V\to V$ (the **bracket**), and
- 2. a completely antisymmetric trilinear natural isomorphism

$$J_{x,y,z}:[[x,y],z] \to [x,[y,z]] + [[x,z],y],$$
 (27.50)

called the **Jacobiator**.

These structures are required to satisfy the *Jacobiator identity* (which is just the *Zamolodchikov tetrahedron equation*). If the Jacobiator is trivial, a **strict** Lie 2-algebra is obtained. By further relaxing the antisymmetry, one can obtain the fully weak version of Lie 2-algebras (see for example the work by *Roytenberg*).

From the previous section it follows that one can define (weak) Lie 2-algebras as 2-term chain complexes equipped with a coherent Lie bracket:

Alternative Definition 27.7.5 (Lie 2-algebra). Consider a 2-term chain complex in the category FinVect:

$$0 \longrightarrow L_1 \longrightarrow L_0 \longrightarrow 0. \tag{27.51}$$

This complex L is called a Lie 2-algebra if it comes equipped with the following structures:

- 1. a chain map $[\cdot,\cdot]:L\otimes L\to L$ called the **bracket**,
- 2. a chain homotopy $S: [\cdot, \cdot] \Rightarrow -[\cdot, \cdot] \circ \sigma$ called the **alternator**, and
- 3. a chain homotopy

$$J: [\cdot, [\cdot, \cdot]] \Rightarrow [[\cdot, \cdot], \cdot] + [\cdot, [\cdot, \cdot]] \circ (\sigma \otimes \mathbb{1}), \tag{27.52}$$

called the **Jacobiator**.

These chain homotopies are again required to satisfy higher coherence relations. From the previous definition it follows that the vanishing of the alternator implies that L is semistrict. Analogously, one calls a Lie 2-algebra for which the Jacobiator vanishes **hemistrict**. Note that this definition of weak Lie 2-algebras, when translated to the 2-vector space setting, would imply that the alternator and Jacobiator are merely natural transformations (and not isomorphisms)!

27.7.2 Lie n-algebras

Definition 27.7.6 (Semistrict Lie ω -algebra). By replacing internal categories by internal ω -categories and by relaxing the Jacobiator identity up to coherent homotopy, i.e. up to a completely antisymmetric quadrilinear modification which in turn satisfies an identity up to higher multilinear transfors, one obtains the definition of L_{∞} -algebras. Similar to A_{∞} -algebras, these too can be obtained as algebras over a suitable operad (however, in this case the operad is "slightly" more complex: the cofibrant replacement of the $Lie\ operad$).

It can be shown that these structures are equivalent to the L_{∞} -algebras of *Stasheff* defined below.

Definition 27.7.7 (L_{∞} -algebra¹¹). A graded vector space V equipped with a collection of morphisms $l_n: V^{\otimes n} \to V, n \in \mathbb{N}_0$ of degree n-2 subject to the relations

$$l_n(v_{\sigma(1)}\dots v_{\sigma(n)}) = \chi(\sigma; v_1, \dots, v_n)l_n(v_1\dots v_n)$$
(27.53)

and

$$\sum_{\substack{i+j=n+1\\ \sigma \in \text{Unshuff}(i,j-1)}} (-1)^{i(j-1)} \chi(\sigma; v_1, \dots, v_n) l_i \left(l_j (v_{\sigma(1)} \cdots v_{\sigma(j)}) v_{\sigma(j+1)} \cdots v_{\sigma(n)} \right) = 0, \qquad (27.54)$$

where Unshuff denotes the collection of unshuffles 3.2.26.

The l_1 map turns the L_{∞} -algebra into a chain complex. The l_2 map is a generalized Lie bracket since it is (graded-)antisymmetric. Higher l_n 's can be identified with the Jacobiator and its generalizations. In the next section a bottom-up approach will be given.

Remark 27.7.8. The definition can be rephrased in terms of graded maps $\hat{l}_n : \text{Alt}^{\bullet}V \to V$.

¹¹Also called a **strong(ly) homotopy Lie algebra** (abbreviated to **sh Lie algebra**).

Remark 27.7.9 (Curvature). The above definition can be generalized by including a nullary bracket l_0 . Such L_{∞} -algebras are often said to be **curved**. The reason for this is that the coherence condition for l_0 says that

$$l_1 \circ l_1 = l_2(l_0, -). \tag{27.55}$$

This terminology stems from the situation where l_1 is identified with the exterior covariant derivative on an associated vector bundle (Formula 33.4.15).

Example 27.7.10 (Lie algebra). It can easily be checked that the L_{∞} -algebra with V concentrated in degree 1 is equivalent to the structure of an ordinary Lie algebra. Similarly one obtains the notion of a Lie n-algebra by truncating an L_{∞} -algebra at degree n.

Property 27.7.11. 2-term L_{∞} -algebras, or equivalently semistrict Lie 2-algebras, are in correspondence with isomorphism classes of tuples $(\mathfrak{g}, V, \rho, l_3)$ where \mathfrak{g} is a Lie algebra, (V, ρ) is Lie algebra representation of \mathfrak{g} and l_3 is a V-valued Lie algebra 3-cocycle (Section 30.4.7).

Sketch of construction. Using the representation ρ , one can extend the Lie bracket from \mathfrak{g} to the complex $0 \to V \to \mathfrak{g} \to 0$ through the formulas $[g,v] := \rho(g)v$ and [v,g] := -[g,v]. The cocycle condition for l_3 gives rise to the Jacobiator.

Example 27.7.12. If one chooses a finite-dimensional Lie algebra \mathfrak{g} with the trivial representation on \mathbb{R} (or, more generally, the underlying field of \mathfrak{g}), one obtains

$$H^3(\mathfrak{g};\mathbb{R}) \cong \mathbb{R}. \tag{27.56}$$

The different classes can be represented by scalar multiples of the Killing cocycle from Example 30.4.74. For every such scalar $\lambda \in \mathbb{R}$, one denotes the resulting Lie 2-algebra by \mathfrak{g}_{λ} .

Lie algebras and L_{∞} -algebras can also be dually characterized in terms of their Chevalley-Eilenberg algebra 30.4.64:

Alternative Definition 27.7.13 (Lie algebra). Consider a finite-dimensional Lie algebra \mathfrak{g} . The transpose/dual of the Lie bracket $[\cdot,\cdot]:\mathfrak{g}\wedge\mathfrak{g}\to\mathfrak{g}$ is a morphism $\delta:\mathfrak{g}^*\to\mathfrak{g}^*\wedge\mathfrak{g}^*$:

$$\delta\omega(q,h) := \omega([q,h]). \tag{27.57}$$

In fact, it is not hard to see that this is exactly the Chevalley-Eilenberg differential of $CE(\mathfrak{g})$. Conversely, given a semifree DGCA $(\Lambda^{\bullet}V^*,d)$, for some finite-dimensional vector space V, one obtains a finite-dimensional Lie algebra by restricting the differential to V^* and taking the transpose. In fact, the nilpotency condition $d^2 = 0$ is equivalent to the Jacobi identity.

More generally, by passing to graded vector spaces of finite type concentrated in positive degree, one can characterize L_{∞} -algebras as semifree DGCAs:

Alternative Definition 27.7.14 (L_{∞} -algebra). The (graded) Leibniz rule implies that the differential δ is completely defined by its restriction to the generators $V^* \leq \text{Alt}^{\bullet} V^*$. The differential can be decomposed as follows:

$$\delta t^a := -\sum_{k=1}^{\infty} \frac{1}{k!} [t_{a_1}, \dots, t_{a_k}]_k^a t^{a_1} \wedge \dots \wedge t^{a_k}, \qquad (27.58)$$

where the basis t^a of V^* is dual to the basis t_a of V. Because δ is of degree 1, the coefficients $[\cdots]_k^a$ define a multilinear operator $[\cdots]_k$: Alt $V \to V$ of degree n-1 (some sources rephrase these brackets as morphism from the symmetric algebra $\operatorname{Sym}^{\bullet} V$, in which case their degree is just -1, cf. décalage 27.1.9).

The nilpotency condition $\delta^2 = 0$ implies a list of (quadratic) relations on the brackets $[\cdots]_k$ (with $d := [\cdot]_1$):

$$d^2 = 0$$

$$d[\cdot, \cdot]_2 = [d\cdot, \cdot]_2 + [\cdot, d\cdot]_2$$

$$[[v_1, v_2], v_3]_2 + \text{cyc. perm.} = d[v_1, v_2, v_3]_3 - [dv_1, v_2, v_3]_3 - [v_1, dv_2, v_3]_3 - [v_1, dv_2, dv_3]_3$$

$$\vdots$$

These relations can be interpreted as follows:

- \bullet d is a differential.
- d acts as a derivation with respect to the binary bracket.
- The Jacobi identity holds up to a chain homotopy (given by the ternary bracket).
- The higher relations are similar to the chain homotopy for the Jacobi identity.

When written out it in full detail it can be checked that this is exactly the definition of an L_{∞} -algebra.

Definition 27.7.15 (Maurer-Cartan element). An element a of an L_{∞} -algebra V that satisfies the equation

$$\sum_{k=0}^{\infty} \frac{1}{k!} [a, \dots, a]_k = 0.$$
 (27.59)

For dg-Lie algebras this reduces to the ordinary Maurer-Cartan equation 33.3.23:

$$da + \frac{1}{2}[a, a] = 0. (27.60)$$

This is no coincidence since the complex $\Omega^{\bullet}(M) \otimes \mathfrak{g}$ of Lie algebra-valued differential forms on a smooth manifold M carries a canonical dg-Lie algebra structure.

27.8 Monoidal *n*-categories

Definition 27.8.1 (Monoidal n-category). In general one can define a monoidal n-category as a one-object (n + 1)-category, similar to how monoidal categories give one-object bicategories by delooping (see 4.9.8).

For the explicit definitions of monoidal bi- and tricategories, see the papers [84] and [83] respectively.

If one would put multiple compatible monoidal products on an *n*-category then by some kind of Eckmann-Hilton argument all of these structures will be equivalent to a "commutative" monoidal structure. By varying the number of compatible structures the "commutativity" can be increased. This gives rise to the following definition which is stated in different terms (based on the *delooping hypothesis*):

Definition 27.8.2 (k-tuply monoidal n-categories). A pointed (n + k)-category (strict or weak) in which all parallel j-arrows for j < k are equivalent. These categories form an (n + k + 1)-category kMonnCat.

Example 27.8.3. For small values of k and n the resulting structures coincide with some well-known constructions:

```
• n = 0:
```

-k=0: pointed set,

-k=1: monoid, and

 $-k \ge 2$: Abelian monoid.

• n = 1:

-k=0: pointed¹² category,

-k=1: monoidal category,

-k=2: braided monoidal category, and

 $-k \ge 3$: symmetric monoidal category.

The stabilization occurring for higher values of k is the content of the following "hypothesis" (by Baez & Dolan):

Theorem 27.8.4 (Stabilization hypothesis). For values $k \ge n+2$ the structure of a k-tuply monoidal n-category becomes maximally symmetric. Formally this means that the inclusion $k\text{Mon}n\text{Cat} \hookrightarrow (n+2)\text{Mon}n\text{Cat}$ is an equivalence.

27.8.1 Relation with group cohomology¹⁴

Consider a finite group G. As a first step, construct the group algebra $\mathbb{C}[G]$. As a monoid one can consider this object as a G-graded monoidal 0-category. The ordinary multiplication q * h = qh can be twisted to obtain a monoid $\mathbb{C}[G]^{\omega}$ with multiplication

$$q * h := e^{i\omega(g,h)}qh. \tag{27.61}$$

If associativity is still required to hold on the nose, one is led to the property that ω is in fact a group 2-cocycle. The equivalence classes of such twisted group algebras are then in correspondence with the second cohomology class $H^2(G; U(1))$.

Before really going to higher category theory, one should first reflect on the different structures in the previous paragraph. Since the monoid is regarded as a monoidal category (call it M for convenience), one has a bifunctor $\mu: M \otimes M \to M$ (given by the twisted multiplication) that differs from the ordinary group multiplication by a phase. This phase can be viewed categorically as a natural isomorphism between the "tensor products" in $\mathbb{C}[G]$ and M. At the same time, all the higher coherence conditions¹⁵ (associativity, ...) are required to hold identically.

Now, drop the restriction on the product and take this to be a more general monoidal product bifunctor. To this end replace the monoid $\mathbb{C}[G]$ by the G-graded monoidal category \mathbf{Vect}_G and relax the associativity constraint up to a natural isomorphism α . When restricted to the simple objects of \mathbf{Vect}_G this is given by a phase factor $e^{i\omega(g,h,k)}$. The pentagon condition for monoidal categories then implies that the function ω is a group 3-cocycle. In analogy with the case of monoids above the equivalence classes of (twisted) monoidal structures on \mathbf{Vect}_G is in correspondence with the third cohomology group $H^3(G; \mathrm{U}(1))$.

To go yet another step higher, move up a level in the chain of coherence conditions and relax the associativity constraint even more (for "simplicity" the one-object n-category point of view

¹²As in category with a specified element not as in category with a zero object (definition ??).

 $^{^{13}}$ For certain definitions of higher categories this has been proven in full generality.

¹⁴See definition 3.4.1 or section 5.4.2 for more information on group cohomology.

¹⁵These can be parametrized by the *Stasheff polytopes/associahedra*.

is adopted here). Instead of a natural isomorphism it only has to be an adjoint equivalence and at the same time the pentagon condition is replaced by an invertible modification (3-morphism). The coherence condition on this **pentagonator** then implies a classification of (twisted) monoidal bicategories, equivalent to $\mathbf{2Vect}_G^{\omega}$, by the fourth group cohomology $H^4(G; U(1))$.

In a completely analogous way one can define more and more general structures. E.g. for monoidal tricategories one can translate the K_6 associahedron into an equation for an invertible perturbation (4-morphism) which by the G-graded structure is equivalent to a group 5-cocycle.

Remark 27.8.5. This section is strongly related to the twisting procedure in n-dimensional Dijkgraaf-Witten theories.

Part VI Differential Geometry

Chapter 28

Curves and Surfaces

28.1 Curves

Definition 28.1.1 (Regular curve). Let $c(t): I \to \mathbb{R}^n$ be a curve defined on an interval I. c(t) is said to be regular¹ if $\frac{dc}{dt}(t) \neq \mathbf{0}$ for all $t \in I$.

Definition 28.1.2 (Geometric property). A geometric property is a property that is invariant under:

- 1. parameter transformations, and
- 2. orientation-preserving (orthonormal) basis transformations.

Property 28.1.3. Let c(t), d(t) be two curves with the same image. The following relation holds for all t:

$$c(t)$$
 regular $\iff d(t)$ regular. (28.1)

28.1.1 Arc length

Definition 28.1.4 (Natural parameter). Let c(t) be a curve. The parameter t is said to be a natural parameter if

$$\left| \left| \frac{dc}{dt} \right| \right| = 1 \tag{28.2}$$

for all values of t.

Formula 28.1.5 (Arc length). The following function is a bijective map and a natural parameter for the curve c:

$$\phi(t) := \int_{t_0}^t ||\dot{c}(t)|| dt. \tag{28.3}$$

Remark. The arc length as defined above is often denoted by the letter s.

Property 28.1.6. Let c(t) be a curve and let u be an alternative parameter of c(t). It is a natural parameter if and only if there exists a constant α such that

$$u = \pm s + \alpha$$

where s is the integral as defined in equation 28.1.5.

Remark. This property implies that there does not exist a unique natural parameter for any curve.

¹This is generalized in property 29.3.7.

28.1.2 Frenet-Serret frame

Definition 28.1.7 (Tangent vector). Let c(s) be a curve parametrized by arc length. The tangent vector (field) t(s) is defined as follows:

$$t(s) := c'(s). (28.4)$$

Property 28.1.8. From the definition of the natural parametrization 28.1.4 and the previous definition it follows that the tangent vector is automatically a unit vector.

Definition 28.1.9 (Principal normal vector). Let c(s) be a curve parametrized by arc length. The principal normal vector (field) is defined as follows:

$$n(s) := \frac{t'(s)}{||t'(s)||}. (28.5)$$

Property 28.1.10. From property 28.1.8 and the definition of the principal normal vector it follows that the tangent vector and principal normal vector are always orthogonal.

Definition 28.1.11 (Binormal vector). Let c(s) be a curve parametrized by arc length. The binormal vector (field) is defined as follows:

$$b(s) := t(s) \times n(s). \tag{28.6}$$

Definition 28.1.12 (Frenet-Serret frame). Because the vectors t(s), n(s) and b(s) are mutually orthonormal and linearly independent, we can use them to construct an oriented orthonormal basis. The ordered basis $\{t(s), n(s), b(s)\}$ is called the Frenet-Serret frame.

Remark. This basis does not have to be the same for every value of the parameter s.

Definition 28.1.13 (Curvature). Let c(s) be a curve parametrized by arc length. The curvature of c(s) is defined as follows:

$$\frac{1}{\rho(s)} := ||t'(s)||. \tag{28.7}$$

Definition 28.1.14 (Torsion). Let c(s) be a curve parametrized by arc length. The torsion of c(s) is defined as follows:

$$\tau(s) := \rho(s)^2 (t \ t' \ t'') \tag{28.8}$$

where (abc) denotes the triple product $a \cdot (b \times c)$.

Formula 28.1.15 (Frenet formulas). The derivatives of the tangent, principal normal and binormal vector fields can be written as a linear combination of those vectors themselves:

$$\begin{cases} t'(s) &= \frac{1}{\rho(s)} n(s) \\ n'(s) &= -\frac{1}{\rho(s)} t(s) + \tau(s) b(s). \\ b'(s) &= -\tau(s) n(s) \end{cases}$$
 (28.9)

Theorem 28.1.16 (Fundamental theorem for curves). Let $k(s), w(s) : U \to \mathbb{R}$ be two C^1 -functions with $k(s) \geq 0, \forall s \in U$. There exists an interval $] - \varepsilon, \varepsilon[\subset U \text{ and a curve } c(s) :] - \varepsilon, \varepsilon[\to \mathbb{R}^3 \text{ with natural parameter } s \text{ such that } c(s) \text{ has } k(s) \text{ as its curvature and } w(s)$ as its torsion.

28.2 Surfaces

Notation 28.2.1. Let $\sigma(q^1, q^2)$ be the parametrization of a surface². The derivative of σ with respect to the coordinate q^i is written as follows:

$$\sigma_i := \frac{\partial \sigma}{\partial q^i}.\tag{28.10}$$

Definition 28.2.2 (Tangent plane). Let $P(q_0^1, q_0^2)$ be a point on the surface Σ . The tangent space $T_P\Sigma$ to Σ in P is defined as follows:

$$T_P \Sigma := \{ v \in \mathbb{R}^3 : \left[v - \sigma(q_0^1, q_0^2) \right] \cdot \left[\sigma_1(q_0^1, q_0^2) \times \sigma_2(q_0^1, q_0^2) \right] = 0 \}.$$
 (28.11)

Definition 28.2.3 (Normal vector). The cross product in equation 28.2.2 is closely related to the normal vector to Σ at the point P. The normal vector at the point (q_0^1, q_0^2) is defined as

$$N := \frac{\sigma_1 \times \sigma_2}{||\sigma_1 \times \sigma_2||}.$$
 (28.12)

This way we see that the tangent plane $T_P\Sigma$ is exactly the set of vectors that are orthogonal to the normal vector $N(q_0^1, q_0^2)$.

28.2.1 First fundamental form

Definition 28.2.4 (Metric coefficients). Let σ be the parametrization of a surface. The metric coefficients g_{ij} are defined as follows:

$$g_{ij} := \sigma_i \cdot \sigma_j. \tag{28.13}$$

Definition 28.2.5 (Scale factor). The following factors are often used in vector calculus:

$$g_{ii} =: h_i^2$$
. (28.14)

Definition 28.2.6 (First fundamental form). Let σ be the parametrization of a surface. We can define a bilinear form $I_P: T_P\Sigma \times T_P\Sigma \to \mathbb{R}$ that restricts the inner product on $mathbbR^3$ to $T_P\Sigma$:

$$I_P(v,w) := v \cdot w. \tag{28.15}$$

This bilinear form is called the first fundamental form or **metric**.

Corollary 28.2.7. All vectors $v, w \in T_P\Sigma$ are linear combinations of the tangent vectors σ_1, σ_2 . This enables us to relate the first fundamental form and the metric coefficients 28.13:

$$I_P(v,w) = v^i \sigma_i \cdot w^j \sigma_j = g_{ij} v^i w^j.$$
(28.16)

Notation 28.2.8. The (arc) length 28.1.5 of a curve c(t) can be written as follows:

$$s = \int ||\dot{c}(t)|| dt = \int \sqrt{ds^2}$$
 (28.17)

where the second equality is formally defined. The two equalities together can be combined into the following notation for the metric (which is often used in physics):

$$ds^2 := g_{ij}dq^idq^j. (28.18)$$

Formula 28.2.9 (Inverse metric). Let (g_{ij}) denote the metric tensor. We define the matrix (g^{ij}) as its inverse:

$$(g^{ij}) := \frac{1}{\det(g_{ij})} \begin{pmatrix} g_{22} & -g_{12} \\ -g_{12} & g_{11} \end{pmatrix}. \tag{28.19}$$

²The symbol σ denotes the surface as a vector field while Σ denotes the geometric image of σ .

28.2.2 Isometries

Definition 28.2.10 (Isometry). An isometry is a distance-preserving map, i.e. a smooth map $\Phi: \Sigma \to \Sigma'$ that maps arc segments in Σ to arc segments with the same length in Σ' . In differential geometry this map is usually assumed to be diffeomorphic.

Property 28.2.11. A diffeomorphism Φ is an isometry if and only if the metric coefficients of σ and σ' are the same.

Definition 28.2.12 (Conformal map). A diffeomorphism $\Phi: \Sigma \to \Sigma'$ is said to be conformal or **isogonal** if it maps two intersecting curves in Σ to intersecting curves in Σ' with the same intersection angle.

Property 28.2.13. A diffeomorphism Φ is conformal if and only if the metric coefficients of σ and σ' are proportional.

Definition 28.2.14 (Area-preserving map). A diffeomorphism $\Phi: \Sigma \to \Sigma'$ is said to be area-preserving if it maps a subset of Σ to a subset of Σ' with the same area.

Property 28.2.15. A diffeomorphism Φ is area-preserving if and only if the metric coefficients of σ and σ' satisfy

$$g'_{11}g'_{22} - (g'_{12})^2 = g_{11}g_{22} - g_{12}^2 (28.20)$$

for all points (q^1, q^2) , i.e. if it preserves the determinant of the metric.

Corollary 28.2.16. A map that is area-preserving and conformal is also isometric.

28.2.3 Second fundamental form

Definition 28.2.17 (Second fundamental form). Let σ be the parametrization of a surface. The second fundamental form is the bilinear form $II_P: T_P\Sigma \times T_P\Sigma \to \mathbb{R}$ defined as follows:

$$II_P(v,w) := L_{ij}(q^1, q^2)v^iw^j$$
 (28.21)

where $L_{ij} := N \cdot \sigma_{ij}$.

Definition 28.2.18 (Normal curvature). Let c be a curve embedded as

$$c(s) := \sigma(q^1(s), q^2(s)).$$

The normal curvature of c at the point $(q^1(s), q^2(s))$ is defined as

$$\frac{1}{\rho_n(s)} := c''(s) \cdot N(s). \tag{28.22}$$

From the definition of the second fundamental form it follows that the normal curvature can be written as follows:

$$\frac{1}{\rho_n(s)} = II(t,t) = \frac{II(\dot{c}(\lambda), \dot{c}(\lambda))}{I(\dot{c}(\lambda), \dot{c}(\lambda))}$$
(28.23)

where the last equality holds for any given parameter λ .

Theorem 28.2.19 (Meusnier). Let c,d be two curves defined on a surface σ . The curves have the same normal curvature at the point $(q^1(t_0), q^2(t_0))$ if the following two conditions are satisfied:

•
$$c(t_0) = d(t_0)$$
, and

• $\dot{c}(t_0) || \dot{d}(t_0)$.

Furthermore, the osculating circles of all curves with the same normal curvature at a given point form a sphere.

Property 28.2.20. The normal curvature of a **normal section**³ at a given point is equal to the curvature of the section at that point.

Definition 28.2.21 (Geodesic curvature). Let c be a curve embedded as

$$c(s) := \sigma(q^1(s), q^2(s)).$$

The geodesic curvature of c at the point $(q^1(s), q^2(s))$ is defined as follows:

$$\frac{1}{\rho_g(s)} := (N(s) \ t(s) \ t'(s)). \tag{28.24}$$

Formula 28.2.22. Let c be a curve defined on a surface σ . From the definitions of the normal and geodesic curvature it follows that

$$\frac{1}{\rho^2} = \frac{1}{\rho_n^2} + \frac{1}{\rho_q^2}. (28.25)$$

28.2.4 Curvature of a surface

Definition 28.2.23 (Weingarten map⁴). Let P be a point on the surface Σ . The Weingarten map $L_P: T_P\Sigma \to T_P\Sigma$ is the linear map defined as follows:

$$L_P(\sigma_1) := -N_1$$
 and $L_P(\sigma_2) := -N_2$. (28.26)

Formula 28.2.24. Let $v, w \in T_P\Sigma$. The following equalities relate the second fundamental form and the Weingarten map:

$$L_P(v) \cdot w = L_P(w) \cdot v = II_P(v, w).$$
 (28.27)

Formula 28.2.25. Let (g^{ij}) be the inverse of the metric. The matrix elements of L_P can be expressed as follows:

$$L_j^k = g^{ki} L_{ij}. (28.28)$$

Formula 28.2.26 (Weingarten formulas).

$$N_j = -L_j^k \sigma_k \tag{28.29}$$

Definition 28.2.27 (Principal curvatures). The eigenvalues of the Weingarten map are called the principal curvatures of the surface and they are denoted by

$$\frac{1}{R_1}$$
 and $\frac{1}{R_2}$.

Let h_1, h_2 denote the eigenvectors of L_P . By the formulas above, the principal curvatures are given by $II_P(h_i, h_i)$ and they are the extreme values of the normal curvature. The associated tangent vectors are called the **principal directions**. Furthermore, they form a basis for the tangent plane.

³The intersection of the surface with a normal plane at the point.

⁴Sometimes called the **shape operator**.

Property 28.2.28. If the principal curvatures at a point P are not equal, the principal directions are orthogonal. If they are equal, the point P is said to be an **umbilical point** or **umbilic**.

Definition 28.2.29 (Line of curvature). A curve is said to be a line of curvature if the tangent vector at every point P is a principal direction of the surface at P.

Formula 28.2.30 (Rodrigues' formula). A curve is a line of curvature if and only if it is a solution of the following differential equation:

$$\frac{dN}{dt}(t) = -\frac{1}{R(t)}\frac{dc}{dt}(t). \tag{28.30}$$

If the curve satisfies this formula, then the scalar function 1/R(t) coincides with the principal curvature along the curve.

Formula 28.2.31 (Differential equation for curvature lines).

$$\begin{vmatrix} (\dot{q}^2)^2 & -\dot{q}^1 \dot{q}^2 & (\dot{q}^1)^2 \\ g_{11} & g_{12} & g_{22} \\ L_{11} & L_{12} & L_{22} \end{vmatrix} = 0$$
(28.31)

Property 28.2.32. From definition 28.2.27 we know that the principal directions are determined by orthogonal vectors. It follows that on a surface containing no umbilics the curvature lines form an orthogonal web.

Definition 28.2.33 (Gaussian curvature). The Gaussian curvature K of a surface is defined as the determinant of the Weingarten map:

$$K := \frac{1}{R_1 R_2}. (28.32)$$

Definition 28.2.34 (Mean curvature). The mean curvature H of a surface is defined as the trace of the Weingarten map:

$$H := \frac{1}{2} \left(\frac{1}{R_1} + \frac{1}{R_2} \right). \tag{28.33}$$

Property 28.2.35. The principal curvatures are the solutions of the following equation:

$$x^2 - 2Hx + K = 0. (28.34)$$

This is the characteristic equation 20.66 of the Weingarten map.

Definition 28.2.36. Let P be a point on the surface Σ .

- P is said to be **elliptic** if K > 0 in P.
- P is said to be **hyperbolic** if K < 0 in P.
- P is said to be **parabolic** if K = 0 and $\frac{1}{R_1}$ or $\frac{1}{R_2} \neq 0$ in P.
- P is said to be **flat** if $\frac{1}{R_1} = \frac{1}{R_2} = 0$ in P.
- P is said to be **umbilical** if $\frac{1}{R_1} = \frac{1}{R_2}$ in P.

Remark. From previous definition it follows that a flat point is a special type of umbilic.

Property 28.2.37. A surface Σ containing only umbilics is either part of a sphere or part of a plane.

Formula 28.2.38. In the neighbourhood of a point of a surface with principal curvatures $1/R_1$ and $1/R_2$, the surface is locally given by the quadric

$$x_3 = \frac{1}{2} \left(\frac{x_1^2}{R_1} + \frac{x_2^2}{R_2} \right) \tag{28.35}$$

up to order $O(x^2)$.

Formula 28.2.39 (Euler's formula). Let h_1, h_2 be the eigenvectors of the Weingarten map. The normal curvature of a couple (P, v) where $v = h_1 \cos \theta + h_2 \sin \theta \in T_P \Sigma$ is given by

$$\frac{1}{\rho_n} = \frac{\cos^2 \theta}{R_1} + \frac{\sin^2 \theta}{R_2}.$$
 (28.36)

Definition 28.2.40 (Asymptotic curve). A curve which is at every point tangent to a direction with zero normal curvature.

Formula 28.2.41 (Differential equation for asymptotic curves).

$$L_{11}(\dot{q}^1(t))^2 + 2L_{12}\dot{q}^1(t)\dot{q}^2(t) + L_{22}(\dot{q}^2(t))^2 = 0$$
(28.37)

Property 28.2.42. A curve on a surface is an asymptotic curve if and only if the tangent plane and the *osculation plane* coincide at every point P on the curve.

28.2.5 Christoffel symbols and geodesics

Formula 28.2.43 (Gauss' formulas). The second derivatives of the surface σ are given by

$$\sigma_{ij} = L_{ij}N + \Gamma^k_{ij}\sigma_k \tag{28.38}$$

where the Christoffel symbols Γ^{k}_{ij} are defined as

$$\Gamma^k_{ij} := g^{kl} \sigma_l \cdot \sigma_{ij}. \tag{28.39}$$

Corollary 28.2.44. From the expression of the Christoffel symbols we can derive an alternative expression only in terms of the metric g_{ij} :

$$\Gamma^{k}_{ij} = \frac{1}{2} g^{kl} \left(\frac{\partial g_{il}}{\partial q^{j}} - \frac{\partial g_{ij}}{\partial q^{l}} + \frac{\partial g_{jl}}{\partial q^{i}} \right). \tag{28.40}$$

Definition 28.2.45 (Geodesic). A curve with zero geodesic curvature⁵.

Property 28.2.46. A curve on a surface is a geodesic if and only if the tangent plane and the osculation plane are orthogonal at every point of the surface.

Formula 28.2.47 (Differential equation for geodesic). If the curve is parametrized by arc length, it is a geodesic if the functions $q^1(s)$ and $q^2(s)$ satisfy the following differential equation:

$$q''^k + \Gamma^k_{ij} q'^i q'^j = 0. (28.41)$$

⁵See definition 28.24.

28.2.6 Theorema Egregium

Formula 28.2.48 (Codazzi-Mainardi equations).

$$\frac{\partial L_{ij}}{\partial q^k} - \frac{\partial L_{ik}}{\partial q^j} = \Gamma^l_{ik} L_{lj} - \Gamma^l_{ij} L_{lk}$$
(28.42)

Definition 28.2.49 (Riemann curvature tensor).

$$R^{l}_{ijk} := \frac{\partial \Gamma^{l}_{ik}}{\partial q^{j}} - \frac{\partial \Gamma^{l}_{ij}}{\partial q^{k}} + \Gamma^{s}_{ik} \Gamma^{l}_{sj} - \Gamma^{s}_{ij} \Gamma^{l}_{ks}$$

$$(28.43)$$

Formula 28.2.50 (Gauss's equations).

$$R^{l}_{ijk} = L_{ik}L^{l}_{j} - L_{ij}L^{l}_{k} (28.44)$$

Theorem 28.2.51 (Theorema Egregium). The Gaussian curvature K is completely determined by the metric tensor g_{ij} and its derivatives:

$$K = \frac{R^l_{121}g_{l2}}{g_{11}g_{22} - g_{12}^2}. (28.45)$$

Remark. This theorem is remarkable due to the fact that the coefficients L_{ij} , which appear in the general formula of the Gaussian curvature, cannot be expressed in terms of the metric.

Property 28.2.52. From the condition of isometries 28.2.11 and the previous theorem it follows that if two surfaces are connected by an isometric map, the corresponding points have the same Gaussian curvature.

Corollary 28.2.53. There exists no isometric projection from the sphere to the plane. This also implies that a perfect (i.e. isometric) map of the Earth cannot be created.

Chapter 29

Manifolds

References for this chapter (and Part VI in general) are [4, 27, 40, 41, 50, 54].

29.1 Charts

Definition 29.1.1 (Chart). Consider a topological space M and consider an open subset of $U \subseteq M$ such that there exists a homeomorphism $\varphi : U \to O$, where O is an open subset of \mathbb{R}^n . The pair (U, φ) is called a chart on M.

Definition 29.1.2 (Transition map). Let (U_1, φ_1) and (U_2, φ_2) be two charts on M. The mapping $\varphi_1^{-1} \circ \varphi_2$, defined on the intersection $U_1 \cap U_2$, is called the transition map between the charts.

If $\varphi_1^{-1} \circ \varphi_2$ is continuous, the charts are said to be C^0 -compatible. However, because the composition of any two continuous functions is also continuous, every two charts on a topological space are automatically C^0 -compatible.

Definition 29.1.3 (Atlas). Let M be a topological space and let $\{(U_i, \varphi_i)\}_i$ be a collection of pairwise compatible charts covering M. This collection of charts is called an atlas on M. From the above remark on C^0 -compatibility it follows that every atlas is a C^0 -atlas. By requiring the transition functions to satisfy additional conditions, other types of atlases can be defined.

Definition 29.1.4 (Maximal atlas). Let A_1 and A_2 be two atlases on the same topological space. If $A_1 \cup A_2 = A$ is again an atlas, the atlases are said to be **equivalent** or **compatible**. A maximal union of compatible atlases is called a maximal atlas.

Definition 29.1.5 (Manifold). A topological space equipped with a maximal C^0 -atlas is called a **topological** manifold. An alternative definition (often used in topology) is that of a locally Euclidean Hausdorff space. The topology is generated by the collection of charts.

Remark. In the literature second-countability is often added to the definition of a topological manifold. This ensures that the space has (among others) the property of paracompactness 7.5.15 and, hence, lends itself to the construction of partitions of unity (which are for example necessary for the introduction of integration theory as in Section 32.5).

For an alternative definition of manifolds in the context of smooth spaces see Section 41.2.

If all transition maps are C^k -diffeomorphisms, the manifold is called a C^k -manifold. The limiting case, a C^{∞} -manifold, is also called a **smooth manifold**. If the transition maps are not only smooth, but even analytic 14.5.6, the manifold is called an **analytic** or C^{ω} -manifold. A topological manifold equipped with a maximal atlas for which the transition maps are piecewise linear is called a **PL manifold**.

Definition 29.1.6 (Structure sheaf \clubsuit **).** Let M be a C^k -manifold. The structure sheaf \mathcal{O}_M is defined as the sheaf 10.2.1 that assigns to every open set $U \subseteq M$ the set of C^k -functions $f: U \to \mathbb{R}$.

Generally, one can define for all $j \leq k$ the sheaf \mathcal{O}_M^j as the sheaf that assigns to every open set $U \subseteq M$ the set of C^j -functions $f: U \to \mathbb{R}$.

From the "sheafy" point of view one can equivalently define a smooth manifold as a locally ringed space 10.5.2 that is locally isomorphic to \mathbb{R}^n equipped with its standard space of differentiable functions. (This is an extension of the algebro-geometric constructions from Sections 12.2 and 12.3.)

Theorem 29.1.7 (Whitney). Every C^k -atlas on a paracompact space contains a C^{∞} -atlas. Furthermore, two C^k -atlases are equal if and only if they contain the same C^{∞} -atlas. It follows that every differentiable manifold is automatically smooth.

Theorem 29.1.8 (Radó-Moise). In dimensions 1, 2 and 3 there exists for every topological manifold a unique smooth structure.

Theorem 29.1.9. For dimensions higher than 4 there exist only finitely many distinct smooth structures on compact manifolds. In fact, for PL manifolds the number of smooth structures is fixed for each dimension (except for 4).

Remark. In dimension 4 there only exist partial results. For noncompact manifolds there uncountably many distinct smooth structures exist, while for compact manifolds no complete characterization has been found.

Definition 29.1.10 (Smooth function). Let $f: M \to N$ be a function between two smooth manifolds. It is said to be smooth if there exist charts (U, φ) and (V, ψ) for M and N with $f(U) \subseteq V$ such that the function

$$f_{\varphi\psi} = \psi \circ f \circ \varphi^{-1} \tag{29.1}$$

is smooth on \mathbb{R}^n . This function is called a **local representation** of f.

Definition 29.1.11 (Diffeomorphism). A homeomorphism f such that both f and f^{-1} are smooth.

Notation 29.1.12. The set of all C^{∞} -functions on a manifold M, defined on a neighbourhood of $p \in M$, is denoted by $C_p^{\infty}(M)$. This set forms a commutative ring when equipped with the usual sum and product (composition) of functions.

Remark 29.1.13. Depending on the choice of chart one can define other types of functions in the same way, e.g. C^k -functions or piecewise linear functions.

Definition 29.1.14 (Differentiably good cover). A good cover 9.1.8 for which the intersections are diffeomorphic to \mathbb{R}^n for some $n \in \mathbb{N}$.

If a manifold admits a finite (differentiably) good cover, it is said to be of **finite type**.

Property 29.1.15. Every paracompact smooth manifold admits a (differentiably) good cover. Furthermore, if the manifold is compact, it admits a finite good cover.

29.2 Tangent vectors

Definition 29.2.1 (Tangent vector). Let M be a smooth manifold and consider a point $p \in M$. A tangent vector to M at p is a differential operator on the germs of smooth functions at p, i.e. a map $v_p : C_p^{\infty}(M) \to \mathbb{R}$ satisfying the properties

- 1. Linearity: $v_p(\lambda f + g) = \lambda v_p(f) + v_p(g)$, and
- 2. Leibniz property: $v_p(fg) = f(p)v_p(g) + g(p)v_p(f)$

for all $f, g \in C_p^{\infty}(M)$ and $\lambda \in \mathbb{R}$. Maps with these properties are also called **derivations**¹.

Property 29.2.2 (Constant functions). Constant functions $c: p \mapsto c$ lie in the kernel of all tangent vectors:

$$v_p(c) = 0. (29.2)$$

Definition 29.2.3 (Tangent space). The set of all tangent vectors at a point $p \in M$ admits the structure of a vector space T_nM . A canonical choice of basis vectors is given by

$$\frac{\partial}{\partial x^i}\bigg|_p: C_p^{\infty}(M) \to \mathbb{R}: f \mapsto \frac{\partial}{\partial x^i} (f \circ \varphi^{-1})(\varphi(p)), \tag{29.3}$$

where (U, φ) is a coordinate chart such that $p \in U$ with local coordinates (x^1, \dots, x^n) . The above basis vector are also often denoted by ∂_i .

Due to the explicit dependence of the tangent vectors on the point $p \in M$, it is clear that for curved manifolds the tangent spaces belonging to different points are not the same. However, they are related through the following property:

Property 29.2.4. For a smooth connected manifold, the tangent spaces satisfy

$$\dim(T_p M) = \dim(M) \tag{29.4}$$

for all $p \in M$. Theorem 20.2.13 then implies that the tangent spaces over two distinct points $p, q \in M$ are isomorphic. A way to relate distinct tangent spaces will be presented in Sections 32.8 and 33.4.

Alternative Definition 29.2.5 (Tangent space \dagger). Let (U, φ) be a chart around the point $p \in M$. Two smooth curves γ_1, γ_2 through $p \in M$ are said to be tangent at p if their local representations are tangent at 0:

$$\frac{d(\varphi \circ \gamma_1)}{dt}(0) = \frac{d(\varphi \circ \gamma_2)}{dt}(0). \tag{29.5}$$

This defines an equivalence relation² on the set of smooth curves through p. The tangent space at p is then defined as the set of equivalence classes of tangent curves through p. These equivalence classes can be explicitly constructed as follows. The tangent vector to the curve c(t) through p is defined by the following formula:

$$v_p(f) := \left. \frac{d(f \circ c)}{dt} \right|_{t=0}. \tag{29.6}$$

Applying the chain rule gives

$$v_p(f) = \frac{\partial (f \circ \varphi^{-1})}{\partial x^i} (\varphi(p)) \frac{dx^i}{dt} (0), \tag{29.7}$$

where $x^i := (\varphi \circ c)^i$. The first factor depends only on the point p, while the second factor is equal for all tangent curves through p. It is thus clear that curves satisfying equation (29.5) define the same tangent vector.

¹More generally, every operation that satisfies the Leibniz property is called a derivation.

 $^{^{2}}$ The relation is well-defined because the transition maps (and their Jacobian matrices) are invertible and thus nonsingular.

29.3 Submanifolds

29.3.1 Immersions and submersions

In this section the tangent map induced by a smooth function $f: M \to N$ is denoted by $T_p f: T_p M \to T_{f(p)} N$. A formal definition is given in equation (32.1). For now this will be the map that is locally represented by the Jacobian of f.

Definition 29.3.1 (Immersion). A differentiable function $f: M \to N$ between smooth manifoldsfor which the derivative is everywhere injective or, equivalently, such that its derivative has maximal rank everywhere:

$$\operatorname{rk}(T_n f) = \dim(M) \qquad \forall p \in M.$$
 (29.8)

Definition 29.3.2 (Critical point). A point $p \in \text{dom}(f)$ is said to be critical if the rank of the Jacobian $T_p f$ is not maximal. The image of a critical point is called a **critical value**.

At a critical point $p \in M$ the Hessian of f gives a well-defined quadratic form. A critical point is said to be **nondegenerate** if the Hessian is nonsingular there.

Property 29.3.3 (Criticality). A point $p \in \text{dom}(f)$ is critical if and only if there exists a chart (U, φ) containing p for which $\partial_i f(p) = 0$.

Theorem 29.3.4 (Sard). Consider a differentiable function $\psi : M \to N$, where dim M = m and dim N = n and let $k_0 = \max\{1, m - n + 1\}$. If ψ is of class C^k , with $k \ge k_0$, the set of critical values of ψ has Lebesgue measure θ .

Definition 29.3.5 (Regular point). A regular point of f is a point $p \in M$ such that $T_p f$ is surjective.

Definition 29.3.6 (Regular value). Let $f: M \to N$ be a differentiable function between smooth manifolds. A point $y \in N$ is called a **regular value** if every point in the preimage $f^{-1}(y)$ is a regular point or, equivalently, if it is not a critical value.

Corollary 29.3.7. It follows from Property 29.3.3 that a point $p \in \text{dom}(f)$ is regular if and only if $\partial_i f(p) \neq 0$ for all charts (U, φ) containing p.

Definition 29.3.8 (Submersion). A differentiable function $f: M \to N$ between smooth manifolds such that all $p \in M$ are regular or, equivalently, such that

$$\operatorname{rk}(T_n f) = \dim(N) \qquad \forall p \in M. \tag{29.9}$$

Definition 29.3.9 (Embedding). A differentiable function between smooth manifolds that is both an immersion and an embedding in the topological sense 7.2.10. This implies that the submanifold topology coincides with the subspace topology 7.1.4.

29.3.2 Submanifolds

Definition 29.3.10 (Embedded submanifold). Let M be a manifold. A smooth manifold N is called an embedded or **regular submanifold** (of M) if there exists an embedding $f: M \hookrightarrow N$.

Definition 29.3.11 (Slice). Consider two positive integers m < n. The space \mathbb{R}^m can be canonically identified with a subspace of \mathbb{R}^n as follows:

$$\mathbb{R}^m \cong \mathbb{R}^m \times \{0, \dots, 0\} \hookrightarrow \mathbb{R}^m \times \mathbb{R}^{n-m} \cong \mathbb{R}^n, \tag{29.10}$$

Subspaces obtained in this way, i.e. by setting a number of coordinates equal to 0 (or any other constant), are called slices.

Alternative Definition 29.3.12 (Embedded submanifold). A subset of M such that there exists a positive integer k and such that for every point $p \in N$ there exists a chart (U, φ) that satisfies

$$\varphi(U \cap N) = \varphi(U) \cap (\mathbb{R}^k \times \{\underbrace{0, \dots, 0}_{\dim(M) - k}\}). \tag{29.11}$$

The set $U \cap N$ is called a **slice** of (U, φ) in analogy with the previous definition of a (standard) slice.

Definition 29.3.13 (Immersed submanifold). Let M, N be smooth manifolds. N is said to be an immersed submanifold of M if there exists an immersion $i: N \hookrightarrow M$. Locally every immersed submanifold looks like a regular submanifold. Globally, however, the topology does not have to coincide with the subspace topology.

Theorem 29.3.14 (Submersion theorem³). Consider a smooth map $f: M_1 \to M_2$ between smooth manifolds and let $y \in M_2$ be a regular value. Then $N = f^{-1}(y)$ is a submanifold of M_1 with codimension $\dim(M_2)$.

Definition 29.3.15 (Closed embedded manifold). Let N be an immersed submanifold of M. If the inclusion map $i: N \hookrightarrow M$ is closed (or, equivalently, proper), N is in fact an embedded submanifold. It is called a closed embedded manifold.

Example 29.3.16 (Stiefel manifold). Let V be an inner product space (Section 20.3) over a field K. The set of orthonormal k-frames can be embedded in $K^{n \times k}$. It is a compact embedded submanifold, called the Stiefel manifold of k-frames over V.

Definition 29.3.17 (Transversal intersection). Consider a smooth manifold M. Two submanifolds $X, Y \subset M$ are said to be transversal (or to intersect transversally) if at each intersection point p the following relation holds:

$$T_p X + T_p Y = T_p M.$$
 (29.12)

If the dimensions of X and Y are complementary (in M), the sum becomes a direct sum. If two submanifolds do not intersect at all, they are vacuously transversal (independent of their dimension).

Property 29.3.18 (Codimension). The codimension of transversal intersections is equal to the sum of the codimensions of the intersecting submanifolds. It follows that if the submanifolds have complementary dimensions, the intersection consists of isolated points.

29.4 Manifolds with boundary

Definition 29.4.1 (Manifold with boundary). Let \mathbb{H}^n denote the upper half space:

$$\mathbb{H}^n := \mathbb{R}^{n-1} \times \mathbb{R}^+ = \{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid x_n \ge 0 \}.$$
 (29.13)

An *n*-dimensional manifold with boundary is defined as a topological space M equipped with a maximal atlas consisting of (regular) charts (U, φ) such that U is diffeomorphic to \mathbb{R}^n (these points are called **interior points**) and **boundary charts** (V, ϕ) such that V is diffeomorphic to \mathbb{H}^n (these points are called **boundary points**).

Remark 29.4.2 (Boundary). The boundary ∂M , consisting of all boundary points of M as defined in the above definition, should not be confused with the topological boundary of M. In general these are different sets. Similarly, the interior $\text{Int}(M) = M \setminus \partial M$, in the sense of manifolds, should not be confused with the topological interior.

³Also called the **regular value theorem**.

Property 29.4.3. Let M be an n-dimensional manifold with boundary and let (U, φ) be a chart for $p \in \partial M$.

$$\varphi(p) \in \partial \mathbb{H}^n = \{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid x_n = 0 \}$$
(29.14)

Definition 29.4.4 (Manifold with corners). Analogous to the definition of a manifold with boundaries one can define a manifold with corners using **corner charts** of the form

$$\varphi: U \to \mathbb{R}^k \times (\mathbb{R}^+)^l$$
.

In contrast to the case of manifolds with boundary one does need to add an extra requirement when working with higher order corners. For every two charts (U, φ) and (V, ψ) the transition function should preserve the corners:

$$\varphi \circ \psi^{-1}(V \cap \{0\} \times \mathbb{R}^k) \subset \{0\} \times \mathbb{R}^k.$$

Remark 29.4.5. In the topological setting every manifold with corners (even higher order ones) is homeomorphic to a manifold with boundary. However, when working with smooth structures this result fails. There exists no such diffeomorphism and accordingly one has to make a distinction between the type of corners.

29.4.1 Cobordisms &

Definition 29.4.6 (Cobordism). Two manifolds X, Y are said to be **(co)bordant** if there exists a manifold with boundary M such that $\partial M = X \sqcup Y$. The manifold M is said to be a **(co)bordism between** X and Y.

Remark. In the category of oriented manifolds one can also define a cobordism, but there the manifolds X, Y should respect the orientation of ∂M .

Definition 29.4.7 (Cobordism group). Under the operation of disjoint union the closed n-dimensional manifolds, modulo cobordisms, form a commutative group Ω_n . Under Cartesian products these match together to form a commutative graded ring $\Omega = \bigoplus_{n=0}^{\infty} \Omega_n$.

?? COMPLETE ??

29.5 Morse theory

29.5.1 Morse functions

Definition 29.5.1 (Morse function). Let M be a smooth manifold. A smooth function is called a Morse function if it has no degenerate critical points 29.3.2.

Property 29.5.2 (Density). The set of Morse functions is open and dense in the C^2 -topology (see Section 38.3 on jet spaces).

Definition 29.5.3 (Morse index). Consider a Morse function $f \in C^{\infty}(M)$. The number of negative eigenvalues at a critical point $p \in M$ is called the (Morse) index of f at p. This is often denoted by $\lambda_p(f)$.

To any Morse function one can associate a series called the Morse counting-series:

$$M_t(f) := \sum_{p \in \operatorname{crit}(f)} t^{\lambda_p(f)}.$$
(29.15)

If M is compact, the nondegeneracy condition implies that the above sum only has a finite number of terms.

Property 29.5.4 (Morse lemma). Consider a Morse function $f: M \to \mathbb{R}$ and let $p \in M$ be a nondegenerate critical point of f. There exists a chart (U, x_1, \ldots, x_n) around p such that $x_i(p) = 0$ and

$$f|_{U}(x) = f(p) - x_1^2 - \dots + x_k^2 + \dots,$$
 (29.16)

where k is the Morse index of f.

Corollary 29.5.5. The critical points of a Morse function are isolated.

?? COMPLETE ??

29.5.2 Morse-Bott functions

By the Morse lemma, the critical points of a Morse function are isolated. When this condition is relaxed, a more general class of functions is obtained (it is assumed that M comes equipped with a covariant derivative):

Definition 29.5.6 (Morse-Bott function). A smooth function $f: M \to \mathbb{R}$ for which the critical set Crit(f) is a submanifold of M and at every point $p \in Crit(f)$ the tangent space is the kernel of the Hessian of f, i.e. its Hessian is nondegenerate in the normal directions at every critical point.

29.6 Surgery theory 4

Definition 29.6.1 (Dehn twist). Consider an orientable surface M together with a simple closed curve c. A tubular neighbourhood⁴ T of c is homeomorphic to an annulus and hence allows a parametrization $(e^{i\alpha}, t)$ where $\alpha \in [0, 2\pi[$ and $t \in [0, 1]$. A Dehn twist about c is an automorphism that is given by $(e^{i\alpha}, t) \mapsto (e^{i(\alpha+2\pi t)}, t)$ on T and restricts to the identity outside of it.

?? COMPLETE ??

⁴See Definition 32.1.14 for a formal definition.

Chapter 30

Lie groups and Lie algebras

References for this chapter are [39,52]. For some concepts such as vector fields and pushforwards we refer to chapter 32.

30.1 Lie groups

Definition 30.1.1 (Lie group). A group that is also a differentiable manifold such that both the multiplication and inversion maps are smooth functions.¹

Definition 30.1.2 (Lie subgroup). A subset of a Lie group is called a Lie subgroup if it is both a subgroup and an immersed submanifold. If it is a regular submanifold, then it is sometimes called a **regular Lie subgroup**.

Theorem 30.1.3 (Closed subgroup theorem²). If H is a subgroup of a Lie group G, closed with respect to the topology of G, then H is an regular Lie subgroup of G.

Property 30.1.4 (Generating neighbourhoods). Let G be a connected Lie group. Every neighbourhood U_e of the identity e generates G, i.e. every element $g \in G$ can be written as a word in U_e .

Definition 30.1.5 (Isogeny). Let G, H be two Lie groups. G and H are said to be isogenous if one is a covering space 7.2.12 of the other. The covering map is then called an isogeny between G and H.

30.1.1 Left invariant vector fields

Definition 30.1.6 (Left-invariant vector field). Let G be a Lie group and let X be a vector field on G. X is saoid to be left-invariant if the following equivariance relation holds for all $g \in G$:

$$L_{q,*}X(h) = X(gh) \tag{30.1}$$

where L denotes the regular (left) action on G. The term "left-invariant vector field" is often abbreviated as **LIVF**.

Property 30.1.7. The set $\mathfrak{X}^L(G)$ of LIVFs on a (real) Lie group G is a vector space over \mathbb{R} .

Property 30.1.8 (Tangent space). The map $L_{g,*}$ is an isomorphism for every $g \in G$. It follows that a LIVF is uniquely determined by its value at the identity of G. Furthermore, for every $v \in T_eG$ there exists a LIVF $X \in \mathfrak{X}^L(G)$ such that X(e) = v and this mapping is an isomorphism from T_eG to $\mathfrak{X}^L(G)$.

¹For complex Lie groups one requires the definition of a complex manifold (see chapter 37).

²Sometimes called **Cartan's theorem**.

30.1.2 One-parameter subgroups

Definition 30.1.9 (One-parameter subgroup). A one-parameter subgroup (of a Lie group G) is a Lie group morphism $\Phi : \mathbb{R} \to G$ from the additive group of real numbers to G.

Property 30.1.10. Let $\Phi : \mathbb{R} \to G$ be a one-parameter subgroup of G and let $\Psi : G \to H$ be a Lie group morphism. Then $\Psi \circ \Phi : \mathbb{R} \to H$ is a one-parameter subgroup of H.

Remark 30.1.11. The above definition and property can be generalized to the topological setting if we replace Lie group and Lie group morphism by topological group and continuous group morphism.

Property 30.1.12 (Left-invariant vector fields). All LIVFs X are complete³, i.e. for every LIVF X we can find an integral curve γ_X with initial condition $\gamma_X(0) = e$ for which the maximal flow domain⁴ D(X) is \mathbb{R} . This implies that the associated flow σ_t determines a one-parameter subgroup of G. Conversely, for every one-parameter subgroup $\phi(t)$ we can construct a LIVF by taking $X := \phi'(0)$. This correspondence is in fact a bijection.

30.2 Lie algebras

There are two ways to define a Lie algebra. The first one is purely algebraic and consists of a vector space equipped with a multiplication operation satisfying certain conditions. The second one establishes a direct correspondence between Lie groups and Lie algebras.

30.2.1 Definitions

Definition 30.2.1 (Lie algebra). Let V be a vector space equipped with a binary operation $[\cdot,\cdot]:V\times V\to V$, called the **Lie bracket**. $(V,[\cdot,\cdot])$ is a Lie algebra if the Lie bracket satisfies the following conditions:

- 1. **Bilinearity**: [ax + y, z] = a[x, z] + [y,],
- 2. Alternativity: [v, v] = 0, and
- 3. Jacobi identity: [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

Remark 30.2.2. Note that often the alternativity condition is replaced by an antisymmetry condition. However, this is only equivalent over fields of characteristic $\neq 2$. For $\operatorname{char}(K) = 2$ we only have that alternativity implies antisymmetry. Since we will almost exclusively work over fields such as \mathbb{R} or \mathbb{C} , this will not pose any problems and hence we will always use the antisymmetry condition.

Definition 30.2.3 (Poisson algebra). A vector space V equipped with two bilinear operations \star and $\{\cdot,\cdot\}$ that satisfy the following conditions:

- 1. The couple (V, \star) is an associative algebra.
- 2. The couple $(V, \{\cdot, \cdot\})$ is a Lie algebra.
- 3. The **Poisson bracket** $\{\cdot,\cdot\}$ acts as a derivation 29.2.1 with respect to the operation \star , i.e.

$$\{x, y \star z\} = \{x, y\} \star z + y \star \{x, z\}.$$

 $^{^3}$ See definition 32.3.12 for a general statement.

⁴See definition 32.3.10.

Definition 30.2.4 (Structure constants). Because Lie algebras are closed under the Lie bracket, the Lie bracket of two basis elements can again be expressed in terms of the same basis $\{X_k\}_{k\in I}$:

$$[X_i, X_j] = \sum_{k \in I} c_{ij}^{\ k} X_k \tag{30.2}$$

The coefficients $c_{ij}^{\ \ k}$ are called the structure constants of the Lie algebra. (Note that these constants are basis-dependent.)

Property 30.2.5 (Isomorphism). Two Lie algebras \mathfrak{g} , \mathfrak{h} are isomorphic if one can find bases \mathcal{B} for \mathfrak{g} and \mathcal{C} for \mathfrak{h} such that the associated structure constants are equal the same.

Example 30.2.6 (Lie algebra of LIVFs). Consider the vector space $\mathfrak{X}^L(G)$ of LIVFs on a Lie group G. Using property 32.22 we can show that the commutator (Lie bracket) also defines a LIVF on G. It follows that $\mathfrak{X}^L(G)$ is closed under Lie brackets and hence is a Lie algebra.

For the following alternative definition we use property 30.1.8 to relate the above Lie algebra of left-invariant vector fields and the tangent space to the identity:

Alternative Definition 30.2.7 (Lie algebra of Lie group). Let G be a Lie group. The tangent space $\mathfrak{g} := T_e G$ has the structure of a Lie algebra where the Lie bracket is induced by the commutator of vector fields 32.22 in the following way:

$$[A, B]_{\mathfrak{g}} := L_{q^{-1},*}[L_{q,*}A, L_{q,*}B] \tag{30.3}$$

where $A, B \in T_eG$ and where $[\cdot, \cdot]$ denotes the Lie bracket on $\mathfrak{X}^L(G)$. This induces an isomorphism of Lie algebras: $\mathfrak{g} \cong \mathfrak{X}^L(G)$. We will freely use this isomorphism throughout this text (and thereby also abuse the notation $[\cdot, \cdot]$).

Notation 30.2.8. Lie algebras are generally denoted by fraktur symbols. For example, the Lie algebra associated with the Lie group G is often denoted by \mathfrak{g} .

Theorem 30.2.9 (Ado). Every finite-dimensional Lie algebra can be embedded as a subalgebra of $\mathfrak{gl}_n \cong M_n$.

Theorem 30.2.10 (Lie's third theorem). Every finite-dimensional Lie algebra \mathfrak{g} is the Lie algebra of a unique simply-connected Lie group G.

Definition 30.2.11 (Lie algebra morphism). A map $\Phi : \mathfrak{g} \to \mathfrak{h}$ is a Lie algebra morphism if it satisfies the following condition

$$\Phi([X,Y]) = [\Phi(X), \Phi(Y)] \tag{30.4}$$

for all $X, Y \in \mathfrak{q}$.

Property 30.2.12 (Homomorphism theorem⁵). Let G, H be two Lie groups with G simply-connected. Every Lie algebra morphism $\Phi : \mathfrak{g} \to \mathfrak{h}$ corresponds to a unique Lie group morphism $\phi : G \to H$ such that $\Phi = \phi_*$. Conversely, every Lie group morphism induces a Lie algebra morphism through its differential (see formula 30.3.8).

Definition 30.2.13 (Derivation). Given a Lie algebra \mathfrak{g} we define the space of derivations $Der(\mathfrak{g})$ as the space of linear maps d such that

$$d([x,y]) = [dx,y] + [x,dy]$$
(30.5)

for all $x, y \in \mathfrak{g}$. This vector space becomes a Lie algebra when equipped with the commutator of linear maps.

⁵Also called **Lie's second theorem**.

30.2.2 Exponential map

Formula 30.2.14 (Exponential map). Let X be a LIVF on G. We define the exponential map $\exp : \mathfrak{g} \to G$ as

$$\exp(X) := \gamma_X(1) \tag{30.6}$$

where γ_X is the associated one-parameter subgroup defined in property 30.1.12.

Property 30.2.15 (Uniqueness). The exponential map is the unique map $\mathfrak{g} \to G$ such that $\exp(0) = e$ and for which the restrictions to the lines through the origin in \mathfrak{g} are one-parameter subgroups of G.

Corollary 30.2.16. Because the identity element $\mathbb{1}_{\mathfrak{g}} = \exp_*$ is an isomorphism, the inverse function theorem 32.1.11 implies that the image of exp will contain a neighbourhood of the identity $e \in G$. If G is connected then property 30.1.4 implies that the exponential map generates all of G.

Together with the property that $\psi \circ \exp = \exp \circ \psi_*$ for every Lie group morphism $\psi : G \to H$, we can conclude that if G is connected, a Lie group morphism $\psi : G \to H$ is completely determined by its differential ψ_* at the identity $e \in G$.

Example 30.2.17 (Matrix Lie groups). For matrix Lie groups we can define the classic matrix exponential:

$$e^{tX} := \sum_{k=0}^{+\infty} \frac{(tX)^k}{k!}.$$
 (30.7)

This operation defines a one-parameter subgroup $\gamma(t)$ of G and from the uniqueness property above it follows that this matrix exponential is in fact the exponential map for G. It should be noted that this formula converges for every $X \in M_{m,n}$ and that it is invertible with inverse given by $\exp(-X)$. Using Ado's theorem 30.2.9 one can then use this matrix exponential to represent the exponential map for any (finite-dimensional) Lie algebra.

Remark 30.2.18. If G is a compact Lie group, the exponential map is surjective. However, because the associated Lie algebra \mathfrak{g} is clearly noncompact, the exponential map cannot be homeomorphic and hence cannot be injective.

Formula 30.2.19 (Baker-Campbell-Hausdorff formula). Consider the equation

$$Z = \log(\exp(X)\exp(X)) \tag{30.8}$$

where $X, Y \in \mathfrak{g}$. The solution is given by the following formula:

$$e^X e^Y = \exp\left(X + Y + \frac{1}{2}[X, Y] + \frac{1}{12}[X, [X, Y]] - \frac{1}{12}[Y, [X, Y]] + \cdots\right).$$
 (30.9)

One should note that this formula will only converge if X,Y are sufficiently small (for matrix Lie algebras this means that $||X|| + ||Y|| < \frac{\ln(2)}{2}$ under the Hilbert-Schmidt norm 20.4.7). Due to the closure under the Lie bracket, the exponent in the BCH formula is also an element of the Lie algebra. So this formula gives an expression for Lie group multiplication in terms of (Lie brackets of) Lie algebra elements (whenever the formula converges).

Corollary 30.2.20 (Lie product formula⁶). Let \mathfrak{g} be a Lie algebra. The following formula applies to any $X, Y \in \mathfrak{g}$:

$$e^{X+Y} = \lim_{n \to +\infty} \left(e^{\frac{X}{n}} e^{\frac{Y}{n}} \right)^n. \tag{30.10}$$

⁶Also called the **Lie-Trotter formula**. Later, extensions where given by *Kato* and *Suzuki* for certain unbounded operators.

30.2.3 Examples

Example 30.2.21. The cross product $\times : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$ turns \mathbb{R}^3 into a Lie algebra.

Example 30.2.22. An interesting example is the Lie algebra associated to the Lie group of invertible complex⁷ matrices $GL(n,\mathbb{C})$. This Lie group is a subset of its own Lie algebra $\mathfrak{gl}(n,\mathbb{C}) = M_n(\mathbb{C})$. It follows that for every $A \in GL(n,\mathbb{C})$ and every $B \in \mathfrak{gl}(n,\mathbb{C})$ the following equality holds:

$$L_{A,*}(B) = L_A(B).$$
 (30.11)

Corollary 30.2.23. By noting that the endomorphism ring $\operatorname{End}(V)$ of an *n*-dimensional vector space V is given by the matrix ring $M_n(K)$, we see that $\operatorname{End}(V)$ also forms a Lie algebra when equipped with the commutator of linear maps.

Example 30.2.24 (Isometries). The Lie algebra associated with the group of isometries Isom(V) of a nondegenerate Hermitian form satisfies the condition

$$\langle Xv, w \rangle = -\langle v, Xw \rangle \tag{30.12}$$

for all Lie algebra elements X. It follows that the Lie algebra consists of all skew-Hermitian operators.

We give two explicit examples:

Example 30.2.25 (Lie algebra of O(3)). This Lie algebra is isomorphic to the set of 3×3 skew-symmetric matrices. It is important to note that $\mathfrak{o}(3) = \mathfrak{so}(3)$. The structure constants of this Lie algebra are given by the Levi-Civita symbol 21.6.8, i.e. $c_{ijk} = \varepsilon_{ijk}$.

Example 30.2.26 (Lie algebra of SU(2)). This Lie algebra is isomorphic to the set of 2×2 traceless skew-Hermitian matrices. This result can be generalized to arbitrary $n \in \mathbb{N}$.

Another important example is obtained by restricting $GL(2,\mathbb{C})$ to the subset of matrices with unit determinant:

Example 30.2.27 (Lie algebra of SL(2, \mathbb{C})). To compute the Lie bracket of the Lie algebra $\mathfrak{sl}(2,\mathbb{C})$ we need to find the action of $l_{q,*}$ on any vector $Y \in \mathfrak{sl}(2,\mathbb{C})$. This is given by:

$$l_{\begin{pmatrix} a & b \\ c & d \end{pmatrix}, *} \begin{pmatrix} \frac{\partial}{\partial x^{i}} \Big|_{e} \end{pmatrix} = \begin{pmatrix} a & 0 & b \\ -b & a & 0 \\ c & 0 & \frac{1+bc}{a} \end{pmatrix}_{i}^{m} \frac{\partial}{\partial x^{m}} \Big|_{\begin{pmatrix} a & b \\ c & d \end{pmatrix}}$$
(30.13)

where we used the coordinate chart (U, ϕ) defined by

$$U = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}(2,\mathbb{C}) : a \neq 0 \right\}$$

and

$$\phi: U \to \mathbb{C}^3: \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto (a, b, c).$$

One can then use this formula to work out the Lie bracket of the basis vectors $X_i = \frac{\partial}{\partial x^i}\Big|_e$ to obtain the following structure constants:

$$[X_1, X_2] = 2X_2$$

 $[X_1, X_3] = -2X_3$ (30.14)
 $[X_2, X_3] = X_1$.

⁷This result is also valid for real matrices.

30.2.4 Solvable Lie algebras

Definition 30.2.28 (Normalizer). The normalizer of a subset of a Lie algebra $S \subset \mathfrak{g}$ is the space of elements $x \in \mathfrak{g}$ that satisfy $[x, S] \subseteq S$.

Definition 30.2.29 (Centralizer). The centralizer of a subset of a Lie algebra $S \subset \mathfrak{g}$ is the space of elements $x \in \mathfrak{g}$ that satisfy [x, S] = 0.

Definition 30.2.30 (Derived algebra). Let \mathfrak{g} be a Lie algebra. The derived Lie algebra is defined as follows:

$$[\mathfrak{g},\mathfrak{g}] := \left\{ [x,y] \,\middle|\, x, y \in \mathfrak{g} \right\}. \tag{30.15}$$

Definition 30.2.31 (Solvable Lie algebra). Consider the sequence of derived Lie algebras

$$g \ge [g, g] \ge [[g, g], [g, g]] \ge \cdots$$
 (30.16)

If this sequence ends in the zero-space, then the Lie algebra \mathfrak{g} is said to be solvable.

Remark 30.2.32. In general one can define the derived series for any ideal $\mathfrak{J} \leq \mathfrak{g}$, and accordingly, define solvability for ideals.

Definition 30.2.33 (Radical). The largest solvable ideal of a Lie algebra.

30.2.5 Simple Lie algebras

Definition 30.2.34 (Direct sum). The direct sum of two Lie algebras \mathfrak{g} , \mathfrak{h} is defined as the direct sum 20.1.14 in the sense of vector spaces and the Lie bracket is extended using the relation

$$[x, y] = 0 (30.17)$$

for all $x \in \mathfrak{g}$ and $y \in \mathfrak{h}$.

Definition 30.2.35 (Semidirect product). The semidirect product (or sum) $\mathfrak{g} \ltimes \mathfrak{h}$ of two Lie algebras $\mathfrak{g}, \mathfrak{h}$ with respect to a Lie algebra morphism $\rho : \mathfrak{g} \to \operatorname{Der}(\mathfrak{h})$ is defined as the direct sum in the sense of vector spaces and the Lie bracket is extended using the relation

$$[g,h] := \rho(g)(h)$$
 (30.18)

for all $g \in \mathfrak{g}, h \in \mathfrak{h}$. This also turns \mathfrak{h} into an ideal.

Definition 30.2.36 (Simple Lie algebra). A Lie algebra is said to be simple if it is non-Abelian and if it has no nontrivial ideals.

Definition 30.2.37 (Semisimple Lie algebra). A Lie algebra is said to be semisimple if it is the direct sum of simple Lie algebras.

Theorem 30.2.38 (Levi decomposition). Let \mathfrak{g} be a finite-dimensional Lie algebra. It can be decomposed as follows:

$$\mathfrak{g} = \mathfrak{R} \ltimes (\mathfrak{L}_1 \oplus \cdots \oplus \mathfrak{L}_n) \tag{30.19}$$

where \mathfrak{R} is the radical of \mathfrak{g} and the algebras \mathfrak{L}_i are simple subalgebras.

Definition 30.2.39. The semisimple subalgebra $\mathcal{L}_1 \oplus \cdots \oplus \mathcal{L}_n$ in the Levi decomposition of \mathfrak{g} is called the **Levi subalgebra** or **Levi factor** of \mathfrak{g} .

30.2.6 Central extensions

Definition 30.2.40 (Central extension). A central extension of a Lie algebra \mathfrak{g} by an Abelian Lie algebra \mathfrak{a} is an exact sequence of Lie algebras of the form

$$0 \longrightarrow \mathfrak{a} \longrightarrow \mathfrak{h} \longrightarrow \mathfrak{g} \longrightarrow 0, \tag{30.20}$$

where the image of \mathfrak{a} lies in the center of \mathfrak{h} .

Construction 30.2.41 (Extension by cocycles). Consider a Lie algebra morphism $\Theta : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{a}$ with the following properties:

- 1. Θ is bilinear,
- 2. Θ is antisymmetric, and
- 3. $\Theta([a,b],c) + \Theta([b,c],a) + \Theta([c,a],b) = 0.$

Such a morphism is called a **Lie algebra 2-cocycle**.⁸ Now, every 2-cocycle $\Theta: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{a}$ induces a central extension of \mathfrak{g} by \mathfrak{a} in the following way:

Because the exact sequences characterizing central extensions (of Lie algebras) are in particular short exact sequences of vector spaces, they always split and hence we can always choose $\mathfrak{h}=\mathfrak{g}\oplus\mathfrak{a}$ to be the underlying vector space. The Lie bracket on this space is then defined as follows:

$$[g \oplus \lambda, g' \oplus \mu] := [g, g']_{\mathfrak{g}} \oplus \Theta(g, g'). \tag{30.21}$$

30.3 Representation theory

30.3.1 Lie groups

Definition 30.3.1 (Representation of Lie groups). Let G be a Lie group and let V be a vector space. A representation of G on V is a Lie group morphism $\rho: G \to GL(V)$.

Example 30.3.2 (Adjoint representation of Lie groups). Let G be a Lie group. Consider the adjoint action $Ad_g : h \mapsto ghg^{-1}$. The adjoint representation of G on \mathfrak{g} is defined as the differential $Ad_{g,*}$ at the identity element. For matrix Lie groups this becomes (where we use the same notion)

$$Ad_g: T_eG \to T_eG: X \mapsto gXg^{-1}. \tag{30.22}$$

30.3.2 Lie algebras

Definition 30.3.3 (Representation of Lie algebras). Let \mathfrak{g} be a Lie algebra and let V be a vector space. A representation of \mathfrak{g} on V is a Lie algebra morphism $\rho: \mathfrak{g} \to \operatorname{End}(V)$.

Formula 30.3.4 (Adjoint representation of Lie algebras). Using the fact that the adjoint representation of Lie groups is smooth we can define the adjoint representation of Lie algebras as

$$\operatorname{ad}_X := \operatorname{Ad}_{q,*} \tag{30.23}$$

where $g = e^{tX}$. More explicitly, the adjoint map is given by

$$\operatorname{ad}_{X}(Y) = [X, Y], \tag{30.24}$$

for all $X, Y \in \mathfrak{g}$.

⁸See section 30.4.7 further below for more information.

Property 30.3.5 (Ad is faithful). The adjoint representation ad_X is faithful.

Property 30.3.6 (Jacobi identity). Given the antisymmetry of the Lie bracket, the Jacobi identity is equivalent to ad: $\mathfrak{g} \to \operatorname{End}(\mathfrak{g})$ being a Lie algebra morphism, i.e. $\operatorname{ad}_{[X,Y]} = [\operatorname{ad}_X, \operatorname{ad}_Y]$.

Formula 30.3.7 (Structure constants). Let $\{e_i\}_{i\leq n}$ be a basis of the Lie algebra \mathfrak{g} . The structure constants are related to the adjoint representation as follows:

$$(ad_{e_i})_k^j = C_{ik}^j.$$
 (30.25)

Formula 30.3.8 (Induced morphism). Let $\phi: G \to H$ be a Lie group morphism⁹ with G connected and simply-connected. This morphism induces a Lie algebra morphism¹⁰ $\Phi: \mathfrak{g} \to \mathfrak{h}$ given by

$$\Phi(X) := \frac{d}{dt}\phi(e^{tX})\bigg|_{t=0}$$
(30.26)

or, equivalently,

$$\phi(e^{tX}) = e^{t\Phi(X)}. (30.27)$$

The morphism induced by $Ad: G \to H$ is precisely $ad: \mathfrak{g} \to \mathfrak{h}$. Informally we can thus say that the infinitesimal version of the similarity transformation is given by the commutator:

Corollary 30.3.9 (Commutator). For the algebra of the general linear group GL_n the Lie bracket is given by the commutator:

$$[X,Y] := XY - YX.$$
 (30.28)

This follows from (30.24): $[X,Y] = \frac{d}{dt} \operatorname{Ad}_{\gamma(t)}(Y)|_{t=0}$ with $\gamma(0) = e$ and $\gamma'(0) = X$.

30.3.3 Coadjoint orbits

The main reference for this section is [97].

Definition 30.3.10 (Coadjoint representation). The representation of a Lie group G on the dual space \mathfrak{g}^* defined by

$$\langle \operatorname{Ad}_{q}^{*}(\omega), v \rangle := \langle \omega, \operatorname{Ad}_{q}^{-1}(v) \rangle.$$
 (30.29)

Infinitesimally this induces a representation of \mathfrak{g} on its linear dual. It is given by

$$\operatorname{ad}_X^*: \omega \mapsto -\omega \circ \operatorname{ad}_X.$$
 (30.30)

Definition 30.3.11 (Coadjoint orbit). Given an element $\omega \in \mathfrak{g}^*$, one defines the coadjoint orbit Ω_{ω} as the orbit of ω under the action of G. This orbit can also be defined as the homogeneous space G/G_{ω} .

The following important construction shows that every coadjoint orbit is in fact canonically a symplectic manifold (Chapter 35):

Definition 30.3.12 (Kirillov-Kostant-Souriau form). Consider a coadjoint orbit Ω_{α} . Because α is an element of the coadjoint representation of G, the tangent vectors to Ω_{α} (at α) are naturally elements of the induced representation of \mathfrak{g} , i.e. for any tangent vector v one can write $v = \operatorname{ad}_X^*(\alpha)$ for some $X \in \mathfrak{g}$. Now, a symplectic form on Ω_{α} is defined as follows:

$$\omega_{\alpha}(\operatorname{ad}_{X}^{*}(\alpha), \operatorname{ad}_{Y}^{*}(\alpha)) = \langle \alpha, [X, Y] \rangle. \tag{30.31}$$

⁹Continuity (inherent to the definition of a Lie group morphism) is needed to ensure that $\phi(e^{tX})$ is also a one-parameter subgroup (see 30.1.10).

 $^{^{10}}$ See also Property 30.2.12.

30.4 Structure

30.4.1 Killing form

Definition 30.4.1 (Killing form). Let \mathfrak{g} be a finite-dimensional Lie algebra. The Killing form (sometimes **Cartan-Killing** form) on \mathfrak{g} is defined as the following symmetric bilinear form:

$$K(X,Y) := \operatorname{tr}(\operatorname{ad}_X \circ \operatorname{ad}_Y). \tag{30.32}$$

The trace can be calculated by choosing a (finite-dimensional) representation of the Lie algebra using Ado's theorem 30.2.9.

From Formula 30.3.7 one can find out the value of the Killing form on the basis $\{e_i\}_{i\leq n}$:

$$K_{ij} = c_{ik}^l c_{il}^k, (30.33)$$

where c_{ij}^k are the structure constants of the Lie algebra.

Theorem 30.4.2 (Cartan's criterion). A Lie algebra is semisimple if and only if its Killing form is nondegenerate.

Property 30.4.3. If a Lie group G is compact, the Killing form of its associated Lie algebra \mathfrak{g} is negative-definite.

Corollary 30.4.4. Let G be a compact Lie group. If its Lie algebra is semisimple, the Killing form K induces a metric

$$g: (X,Y) \mapsto -\operatorname{tr}(\operatorname{ad}_X \circ \operatorname{ad}_Y) = -K(X,Y), \tag{30.34}$$

which turns the corresponding Lie group G into a Riemannian manifold.

Property 30.4.5 (Killing form is invariant). The Killing-form is Ad-invariant:

$$K(\mathrm{Ad}_q(X), \mathrm{Ad}_q(Y)) = K(X, Y) \tag{30.35}$$

for all $g \in G$. From this it follows that Ad is a morphism $G \to \operatorname{Aut}(\mathfrak{g})$.

Corollary 30.4.6. The adjoint map ad_Z is antisymmetric with respect to the Killing form:

$$K(\operatorname{ad}_{Z}X, Y) = -K(X, \operatorname{ad}_{Z}Y). \tag{30.36}$$

Property 30.4.7 (Invariant forms). For a simple Lie algebra, every (ad-)invariant symmetric bilinear form is a scalar multiple of the Killing form.

Example 30.4.8. For $\mathfrak{su}(n)$ the trace can easily be seen to be ad-invariant and hence satisfies the above property. The exact relation is given by

$$tr(XY) = 2nK(X,Y). (30.37)$$

Property 30.4.9 (Antisymmetric structure constants). When the Lie algebra \mathfrak{g} is compact and semisimple, i.e. when the Killing form induces a metric, one can find a basis of \mathfrak{g} , constructed by orthonormalizing a given basis with respect to the Killing metric¹¹, such that the structure constants are invariant under cyclic permutation of the indices:

$$C_{ijk} = C_{jki}. (30.38)$$

A corollary of this property is also that the structure constants become totally antisymmetric.

¹¹The proof uses the ad-invariance of the Killing form.

Construction 30.4.10 (Induced Killing form). Let \mathfrak{g} be a Lie algebra and let V be a vector space equipped with a Lie algebra representation $\rho: \mathfrak{g} \to \operatorname{End}(V)$. We can define a Killing form associated with ρ in the following way:

$$K_{\rho}(X,Y) := \operatorname{tr}(\rho(X) \circ \rho(Y)) \tag{30.39}$$

This definition is a generalization of (30.32) which reduces to the Killing form K when choosing V to be \mathfrak{g} the adjoint representation.

30.4.2 Weights, roots and Dynkin diagrams

From here on we assume the base field to be algebraically closed (in fact, let us choose \mathbb{C} for simplicity).

Definition 30.4.11 (Cartan subalgebra). Let \mathfrak{g} be a Lie algebra. A subalgebra \mathfrak{h} is called a Cartan subalgebra if it satisfies the following two conditions:

1. **Nilpotency**: Its lower central series terminates:

$$\exists n \in \mathbb{N} : \underbrace{[\mathfrak{h}, [\mathfrak{h}, [\mathfrak{h}, \ldots]]]}_{n \text{ times}} = 0. \tag{30.40}$$

2. Self-normalizing:

$$\forall X \in \mathfrak{h} : [X, Y] \in \mathfrak{h} \implies Y \in \mathfrak{h}. \tag{30.41}$$

From here one we will also assume that all Lie algebras are finite-dimensional. This assumption is motivated by the following property:

Property 30.4.12. Every finite-dimensional Lie algebra contains a Cartan subalgebra.

Property 30.4.13. If \mathfrak{g} is semisimple, then its Cartan subalgebra is Abelian.

Construction 30.4.14. Let $\mathfrak g$ be a semisimple Lie algebra. A Cartan subalgebra $\mathfrak h$ can be constructed as follows:

Choose an integer $k \leq \dim(\mathfrak{g})$ together with k linearly independent vectors $\{h_i\}_{i\leq k}$ such that for all $i, j \leq k : [h_i, h_j] = 0$. If this set can be extended to a basis $\{h_i\}_{i\leq k} \cup \{g_j\}_{j\leq \dim(\mathfrak{g})-k}$ of \mathfrak{g} such that every g_j is a nontrivial eigenvector of the adjoint map ad_{h_i} for all $i \in I$, then the algebra $\mathfrak{h} = \mathrm{span}\{h_i\}_{i\leq k}$ is a Cartan subalgebra.

Definition 30.4.15 (Weight space). Let V be a representation of a Lie algebra \mathfrak{g} with Cartan subalgebra \mathfrak{h} . For every linear functional λ on \mathfrak{h} we define the weight space V_{λ} with **weight** λ as follows:

$$V_{\lambda} := \{ v \in V : h \cdot v = \lambda(H)v, \forall h \in \mathfrak{h} \}. \tag{30.42}$$

Nonzero elements of a weight space are called **weight vectors**. If the representation V can be decomposed as a direct sum of weight spaces, it is called a **weight module**:

$$V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\lambda}. \tag{30.43}$$

In the case where V is the adjoint representation, the (nonzero) weights are called **roots**:

¹²The existence of such a choice, which is equivalent to requiring simultaneous diagonalization, is only guaranteed for semisimple Lie algebras.

Definition 30.4.16 (Root). Let \mathfrak{g} be a Lie algebra with Cartan subalgebra \mathfrak{h} . From the definition of a Cartan subalgebra it follows that for all $h \in \mathfrak{h}$:

$$[h, g_j] = \alpha_j(h)g_j \tag{30.44}$$

where $\{g_j\}_{j\in J}$ is the basis extension of \mathfrak{g} with respect to \mathfrak{h} . We have written the eigenvalues $\alpha_j(h)$ suggestively as maps acting on \mathfrak{h} . However, due to the definition of the g_j 's and the structure of the above formula, the α_j 's are linear maps. By comparing the formula to the definition of weights above, we see that the α_j 's are the weights of the adjoint representation. The nonzero weights are called the roots of \mathfrak{g} and form the so-called **root system** Φ .

It follows that there exists a weight space decomposition of g:

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\lambda \in \Phi} \mathfrak{g}_{\lambda} \tag{30.45}$$

where the one-dimensional spaces \mathfrak{g}_{λ} are the weight spaces associated to the roots λ (\mathfrak{h} is equal to \mathfrak{g}_{0} in this notation).

Property 30.4.17. If $\alpha \in \Phi$ then $-\alpha \in \Phi$. Furthermore, if $\alpha \in \Phi$ and $c\alpha \in \Phi$, then $c = \pm 1$.

This property says that the root system Φ is not linearly independent. To introduce some kind of basis we define the following notion:

Definition 30.4.18 (Simple root). The set of simple roots Δ is a linearly independent subset of Φ such that every element $\lambda \in \Phi$ can be written as

$$\lambda = \pm \sum_{i}^{n} a_i \lambda_i \tag{30.46}$$

where $a_i \in \mathbb{N}$ and $\lambda_i \in \Delta$. (Such a set always exists.) This definition enforces the expansion coefficients a_i of a certain root λ to be either all positive or all negative.

More generally one can define the following equivalence relation on a root system:

Definition 30.4.19 (Positive roots). Let Φ be the root system of a given Lie algebra \mathfrak{g} . Because the only scalar multiples of a root $\lambda \in \Phi$ in the root system are $\pm \lambda$, we can define a set of positive roots Φ^+ as follows:

- 1. $\lambda \in \Phi^+ \implies -\lambda \not\in \Phi^+$, and
- 2. $\alpha, \beta \in \Phi^+ \land \alpha + \beta \in \Phi \implies \alpha + \beta \in \Phi^+$.

The simple roots are then exactly the elements in Φ^+ that cannot be written as a sum of other elements in Φ^+ .

Definition 30.4.20 (Triangular decomposition). Given a choice of positive roots Φ^+ one can decompose the Lie algebra \mathfrak{g} as follows:

$$\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+ \tag{30.47}$$

where $\mathfrak{n}_{\pm} = \bigoplus_{\alpha \in \Phi^{\pm}} \mathfrak{g}_{\alpha}$. The subalgebra $\mathfrak{h} \oplus \mathfrak{n}_{+}$ is called the **Borel subalgebra**. It is the maximal solvable subalgebra of \mathfrak{g} .

Property 30.4.21 (Rank). Let \mathfrak{h} be a Cartan subalgebra. The set of simple roots Δ forms a basis for the dual space \mathfrak{h}^* (over \mathbb{C}) and hence the cardinality of Δ is equal to the dimension of the Cartan subalgebra. This dimension is called the **rank** of the Lie algebra.

Definition 30.4.22 (Weyl group). For every simple root λ we construct a Householder transformation σ_{λ} (Definition 20.3.17) as follows:

$$\sigma_{\lambda} : \operatorname{span}_{\mathbb{R}}(\Delta) \to \operatorname{span}_{\mathbb{R}}(\Delta) : \mu \mapsto \mu - 2 \frac{\langle \lambda, \mu \rangle}{\langle \lambda, \lambda \rangle} \lambda.$$
 (30.48)

The Weyl group W is defined as the group generated by all these transformations.

Property 30.4.23 (Weyl group symmetries). Every root $\phi \in \Phi$ can be written as $\phi = \sigma(\mu)$ for some $\mu \in \Delta$ and $\sigma \in W$. Furthermore, the root system Φ is closed under the action of W. In particular we can show that the Weyl group W is precisely the symmetry group of the root system Φ and the isometry group of the Killing form (and its dual).

Definition 30.4.24 (Coroot). Consider the real span \mathfrak{h}_0^* of the roots of \mathfrak{g} . Using the restriction of the (dual¹³ Killing form to this real subspace one can construct a dual space $\mathfrak{h}_0 \subset \mathfrak{h}$. The coroot $\alpha^{\vee} \in \mathfrak{h}_0$ associated to a root α is then defined by the following formula (where we make use of the metric isomorphism $\mathfrak{h}_0 \cong \mathfrak{h}_0^{**}$):

$$\alpha^{\vee} := 2 \frac{\langle \alpha, \cdot \rangle}{\langle \alpha, \alpha \rangle} \equiv 2 \frac{\alpha}{\langle \alpha, \alpha \rangle}. \tag{30.50}$$

With this definition the Weyl transformations can be rewritten as follows:

$$\sigma_{\lambda} : \operatorname{span}_{\mathbb{R}}(\Delta) \to \operatorname{span}_{\mathbb{R}}(\Delta) : \mu \mapsto \mu - \mu(\lambda^{\vee})\lambda.$$
 (30.51)

In the remainder of this chapter we will often implicitly use this identification between \mathfrak{h}_0 and \mathfrak{h}_0^* .

Notation 30.4.25 (Coroot). Sometimes it is more favourable to denote the coroot associated to α by H^{α} . We will adopt this convention in the remainder of this chapter.

Definition 30.4.26 (Weyl chamber). Given a choice of positive roots Φ^+ , we define the closed (fundamental) Weyl chamber associated to this ordering as the subset $\mathcal{W} \subset \mathfrak{h}_0$ that contains the elements w satisfying the following equation for all $\gamma \in \Phi^+$:

$$w(H^{\gamma}) \ge 0. \tag{30.52}$$

Elements of this Weyl chamber are called **dominant weights**.

Property 30.4.27 (Weyl group). The Weyl group acts transitively on the set of Weyl chambers and accordingly on the orderings of the root system.

Property 30.4.28. Let $\alpha \in \Phi$ be a root. Choose a generating element E^{α} of the weight space \mathfrak{g}_{α} associated to α and let F^{α} be the generator of the weight space $\mathfrak{g}_{-\alpha}$ such that span $\{E^{\alpha}, F^{\alpha}, [E^{\alpha}, F^{\alpha}]\}$ is a one-dimensional simple Lie algebra. Then the following relations hold (for $\beta \neq \pm \alpha$):

- $\beta(H^{\alpha}) = 2 \frac{\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z},$
- $[H^{\alpha}, E^{\alpha}] = \alpha(H^{\alpha})E^{\alpha} = 2E^{\alpha}$, and
- $[H^{\alpha}, F^{\alpha}] = -\alpha(H^{\alpha})F^{\alpha} = -2F^{\alpha}$

$$K^*(\cdot,\cdot) = K(\cdot^{\sharp},\cdot^{\sharp}). \tag{30.49}$$

¹³Consider the *sharp* map 34.2 where the metric g is given by the Killing form K. The dual Killing form K^* is then a proper inner product (when restricted to the real span of Δ) defined as

where the inner product $\langle \cdot, \cdot \rangle$ is the dual Killing form.

Definition 30.4.29 (Cartan matrix). Let $\lambda_i, \lambda_j \in \Delta$ be simple roots. Because the Weyl group is the symmetry group of the root system

$$\sigma_{\lambda_i}(\lambda_j) = \lambda_j - 2 \frac{\langle \lambda_i, \lambda_j \rangle}{\langle \lambda_i, \lambda_i \rangle} \lambda_i$$

is a root. From the properties above it then follows that the quantity

$$C_{ij} := 2 \frac{\langle \lambda_i, \lambda_j \rangle}{\langle \lambda_i, \lambda_i \rangle} = \lambda_j(H^{\lambda_i})$$
(30.53)

is an integer. The matrix formed by these numbers is called the Cartan matrix.

Property 30.4.30 (Properties of Cartan matrix). The Cartan matrix C_{ij} is a matrix satisfying the following properties:

- $C_{ii} = 2$,
- $C_{ij} \in \mathbb{Z}_{\leq 0}$ if $i \neq j$, and
- $C_{ij} = 0 \iff C_{ji} = 0$.

This last property does not imply that the Cartan matrix is symmetric. The fact that it is not symmetric can immediately be seen from its definition. However:

- it is *symmetrizable*, i.e. there exist a positive diagonal matrix D and a symmetric matrix S such that C = DS.
- it is positive definite.

Definition 30.4.31 (Bond number). For all indices $i \neq j$ the bond number n_{ij} is defined as follows:

$$n_{ij} := C_{ij}C_{ji}. (30.54)$$

Using the definition of the coefficients C_{ij} we see that n_{ij} is an integer equal to $4\cos^2 \triangleleft (\lambda_i, \lambda_j)$. This implies that n_{ij} can only take on the values 0, 1, 2, 3. The value 4 would only be possible if the angle between λ_i and λ_j is 0, but this can only occur in the case where i = j (which was excluded from the definition).

Remark 30.4.32. In the case of $n_{ij} = 2$ or $n_{ij} = 3$ two possibilities arise: $C_{ij} > C_{ji}$ or $C_{ij} < C_{ji}$ for i < j. From the definition of the Cartan integers and the symmetry of the dual Killing form these cases correspond to $\langle \lambda_i, \lambda_i \rangle < \langle \lambda_j, \lambda_j \rangle$ and $\langle \lambda_i, \lambda_i \rangle > \langle \lambda_j, \lambda_j \rangle$.

Construction 30.4.33 (Dynkin diagram). For a semisimple Lie algebra \mathfrak{g} with simple roots Δ we can draw a so-called Dynkin diagram by using the following rules:

- 1. For every simple root $\lambda \in \Delta$ draw a circle \bigcirc .
- 2. Draw n_{ij} lines between the circles associated to λ_i and λ_j .
- 3. If $n_{ij} = 2$ or 3, add a < or > sign based on the relation between their lengths (see previous remark).

Property 30.4.34 (Classification). The Dynkin diagrams can be classified as follows (for every type the first three examples are given):

 \bullet A_n:

• $B_n, n \geq 2$:

• $C_n, n \geq 2$:

• $D_n, n \ge 4$:

These are the only possible diagrams for simple Lie algebras with exception of E_6, E_7, E_8, F_4 and G_2 , the so-called *exceptional Lie algebras*.

Example 30.4.35 (Special linear group). By looking at the Lie brackets in equation 30.14 we see that the one-element set $\{X_1\}$ forms a Cartan subalgebra of $\mathfrak{sl}(2,\mathbb{C})$. From the same equation it is also immediately clear that the simple root set Δ is given by the one-element set $\{\lambda \in \mathfrak{sl}^*(2,\mathbb{C}) : \lambda(X_1) \mapsto 2\}$. Hence the Dynkin diagram for $\mathfrak{sl}(2,\mathbb{C})$ is A_1 .

Theorem 30.4.36 (Cartan & Killing). Every finite-dimensional simple Lie algebra (over \mathbb{C}) can be reconstructed from its set of simple roots Δ .

Construction 30.4.37 (Chevalley-Serre). Given a Dynkin diagram of a simple Lie algebra, one can reconstruct the original Lie algebra \mathfrak{g} (over \mathbb{C}) up to isomorphism:

The number of nodes is equal to the number of simple roots and hence gives determines the rank n of \mathfrak{g} . First, construct the free Lie algebra on 3n generators $\{E_i, F_i, H_i\}_{i \leq n}$. The Cartan subalgebra $\mathfrak{h} \leq \mathfrak{g}$ is constructed from the generators H_i by imposing the following relations:

- $[H_i, H_i] = 0$,
- $\bullet \ [H_i, E_i] = a_{ij} E_i,$
- $[H_i, F_i] = -a_{ij}F_i$, and
- $[E_i, F_j] = \delta_{ij}H_j$,

where the numbers a_{ij} form the Cartan matrix obtained by reversing construction 30.4.33. To complete the reconstruction one imposes the following additional relations:

- $\operatorname{ad}_{E_i}^{|a_{ij}|+1}(E_j) = 0$, and
- $\operatorname{ad}_{F_{\cdot}}^{|a_{ij}|+1}(F_i) = 0.$

The first set of relations are called the **Chevalley relations** and the last two are called the **Serre relations**. The full construction is called the **Chevalley-Serre presentation**.

Remark 30.4.38. For composite diagrams that correspond to semisimple Lie algebras, one first has to construct the Lie algebras corresponding to every simple diagram and then take the direct sum.

Property 30.4.39 (\mathfrak{sl}_2). For every Cartan matrix A of rank n, the triplets $\{E_i, F_i, H_i\}$ with $i \leq n$ generate \mathfrak{sl}_2 -algebras. All (semi)simple Lie algebras are thus in some sense built up from \mathfrak{sl}_2 -algebras, similar to how in algebraic topology simplicial complexes are constructed by gluing simplices together.

30.4.3 Highest weight theory

Definition 30.4.40 (Algebraically integral). An element $H \in \mathfrak{h}_0$ is said to be algebraically integral if its value on every root is an integer. The set of all algebraically integral elements is called the **weight lattice**.

Definition 30.4.41 (Fundamental weight). Let $\Delta = \{\alpha_i\}_{i \leq \mathrm{rk}(\mathfrak{g})}$ be the set of simple roots. The fundamental weights $\{\omega_i\}_{i \leq \mathrm{rk}(\mathfrak{g})}$ are defined as the elements of \mathfrak{h}_0^* for which the following formula is satisfied for all $i, j \leq |\Delta|$:

$$\omega_i(H^{\alpha_j}) = \delta_{ij}. \tag{30.55}$$

This implies that an element $\lambda \in \mathfrak{h}_0$ is algebraically integral if it is an integral combination of fundamental weights.

Definition 30.4.42 (Ordering of weights). Let Φ^+ be a choice of positive roots. We can define a partial ordering on the set of weights \mathfrak{h}_0^* in the following way:

$$\lambda \ge \mu \iff \lambda - \mu \in \operatorname{span}_{\mathbb{N}}(\Phi^+).$$
 (30.56)

Definition 30.4.43 (Highest weight vector). Consider a representation V of a Lie algebra \mathfrak{g} . An element $v \in V$ is said to be a highest weight vector if it is a weight vector that is annihilated by all positive roots. A highest weight module is a weight module that is generated by a highest weight vector.

Theorem 30.4.44 (Highest weight theorem). Let g be a finite-dimensional Lie algebra. The following statements hold:

- Every finite-dimensional irreducible representation of g has a unique dominant integral highest weight.
- If two irreducible representations have the same highest weight, then they are isomorphic.
- Every dominant integral weight is the highest weight of an irreducible finite-dimensional representation.

30.4.4 Kac-Moody algebras ♣

Construction 30.4.45 (Kac-Moody algebra). Consider the Cartan matrix A associated to a finite-dimensional (semi)simple Lie algebra. This matrix has the properties listed in 30.4.30. If one drops the positivity condition, the definition of a **generalized Cartan matrix** is obtained. For such a matrix one can construct a (possibly infinite-dimensional) Lie algebra using an analogue of the Chevalley-Serre relations.

Since a generalized Cartan matrix might have a vanishing determinant, one cannot use the Chevalley-Serre presentation as given in Construction 30.4.37, because the constructed roots might be linearly dependent. However, this problem can easily be solved:

Let A be an $n \times n$ (generalized) Cartan matrix. First, choose a complex vector space \mathfrak{h} equipped with for every $i \leq n$ a simple root α_i (resp. coroot H^{α_i}) in \mathfrak{h}^* (resp. \mathfrak{h}) such that these are linearly independent and satisfy the condition $\alpha_i(H^{\alpha_j}) = A_{ij}$. (Such a choice, called a **realization**, always exists.) It can be shown that \mathfrak{h} satisfies $\dim(\mathfrak{h}) \geq 2n - \operatorname{rk}(A)$. A minimal realization, i.e. one that satisfies $\dim(\mathfrak{h}) = 2n - \operatorname{rk}(A)$, is unique up to isomorphism.

Then, construct the direct sum \mathfrak{g} of the free Lie algebra on 2n generators $\{E_i, F_i\}_{i \leq n}$ with \mathfrak{h} and take the quotient by the following relations:

•
$$[E_i, F_i] = \delta_{ij} H^{\alpha_i}$$
,

- [H, H'] = 0 for $H, H' \in \mathfrak{h}$,
- $[H, E_i] = \alpha_i(H)E_i$ for $H \in \mathfrak{h}$, and
- $[H, F_i] = -\alpha_i(H)F_i$ for $H \in \mathfrak{h}$.

Given this Lie algebra one can find the unique maximal ideal $\mathfrak{m} \leq \mathfrak{g}$ for which $\mathfrak{m} \cap \mathfrak{h} = \{0\}$. The quotient algebra $\mathfrak{g}/\mathfrak{m}$ is called the Kac-Moody algebra associated to $A.^{14}$ Although an analogue of the Serre relations is not included, it can be shown that these relations still hold (see for example [108]). In fact when A is symmetrizable, the ideal \mathfrak{m} is exactly generated by the Serre relations.

Remark 30.4.46 (Classification). There exist three distinct classes of Kac-Moody algebras (based on the definiteness of A):

- If A is positive-definite, one obtains a finite-dimensional (semi)simple Lie algebra. A is also said to be of **finite type**.
- If A is positive-semidefinite, one obtains a Kac-Moody algebra of **affine type**. In fact, it can be shown for generalized Cartan matrices A that affinity is equivalent to the existence of a unique (up to scaling) real vector v such that Av = 0.
- If A is indefinite, one obtains a Kac-Moody of **indefinite type**.

Definition 30.4.47 (Loop algebra). Consider a finite-dimensional Lie algebra \mathfrak{g} . Its associated **loop algebra** $L\mathfrak{g}$ is defined as follows. The underlying vector space is given by $\mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$ and the Lie bracket is given by

$$[g \otimes t^k, g' \otimes t^l] := [g, g']_{\mathfrak{g}} \otimes t^{k+l}. \tag{30.57}$$

Because this strongly resembles the definition of the ring of Laurent polynomials $K[t, t^{-1}]$ over a field K, the loop algebra is sometimes denoted by $\mathfrak{g}[t, t^{-1}]$.

Equivalently, one can obtain the loop algebra as the space of polynomial maps from S^1 to \mathfrak{g} (hence the name). Furthermore, if G is the Lie group associated to \mathfrak{g} and LG denotes its (free) loop group 9.1.11, then LG has the natural structure of a (infinite-dimensional) Lie group and its Lie algebra is precisely $L\mathfrak{g}$.

Definition 30.4.48 (Affine Lie algebra). Given a simple Lie algebra \mathfrak{g} , one can define the affine Lie algebra $\widehat{\mathfrak{g}}$ as the central extension of the loop algebra $L\mathfrak{g}$ by \mathbb{C} associated to the cocycle

$$\Theta: (g \otimes t^k, g' \otimes t^l) \mapsto kK(g, g')\delta_{k+l,0}$$

where $K(\cdot, \cdot)$ is the Killing form on \mathfrak{g} . The generator c of the extending vector space is often called the **central element** (since it is mapped to an element in the center of $\widehat{\mathfrak{g}}$). This cocycle can also be defined using the residue 15.5.17 of a Laurent polynomial:

$$\Theta(f, g) := \operatorname{Res}[K(f, g)]_{t}, \tag{30.58}$$

where the Killing form is extended from \mathfrak{g} to $L\mathfrak{g}$ by $K(a \otimes t^k, b \otimes t^l) := K(a, b)t^{k+l}$.

However, to obtain a well-behaved affine Kac-Moody algebra one also needs to extend this affine Lie algebra by a derivation. Observe that the loop algebra, and accordingly, the affine Lie algebra is \mathbb{Z} -graded. A well-defined derivation is then obtained through multiplication by

 $^{^{14}}Kac$ proved that for symmetrizable A this construction is equivalent to the Chevalley-Serre presentation with the generators as given here.

the grading. To this intent, add a formal generator d together with the following relations (the central element from the previous step will be denoted by c):

$$[d, g \otimes P(t)] = g \otimes t \frac{d}{dt} P(t)$$
(30.59)

$$[d, c] = 0, (30.60)$$

where $P(t) \in \mathbb{C}[t, t^{-1}]$.

Definition 30.4.49 (Extended Cartan matrix). Consider a simple Lie algebra \mathfrak{g} with Cartan matrix A. Denote the associated Chevalley generators by $\{E_i, F_i, H_i\}_{i \leq n}$. There exist unique (up to scaling) nonzero elements E_0, F_0 such that

$$[E_0, F_i] = 0 (30.61)$$

$$[F_0, E_i] = 0 (30.62)$$

for all $1 \le i \le n$. This also implies that $[E_0, F_0] =: H_0$ is a linear combination of $\{H_i\}_{i \le n}$. The elements E_0, F_0 can be normalized by enforcing the following Chevalley-type relations:

$$[H_0, E_0] = 2E_0 \tag{30.63}$$

$$[H_0, F_0] = -2F_0. (30.64)$$

The extended Cartan matrix \widehat{A} is defined by adjoining a new row and column to A. These new entries are defined by

$$[H_0, E_i] =: a_{0i} E_i \tag{30.65}$$

$$[H_i, E_0] =: a_{i0}E_0. (30.66)$$

Definition 30.4.50 (Twisted Kac-Moody algebra). Consider an indecomposable generalized Cartan matrix. Such a matrix is of affine type if and only if all its proper principal minors are positive-definite. Hence by deleting the first row and column one obtains the Cartan matrix B for a finite-dimenionsal simple Lie algebra $\mathfrak{g}(B)$. It can be shown that the affine Kac-Moody algebra $\mathfrak{g}(A)$, as defined in 30.4.45, is isomorphic to the affine Kac-Moody algebra as constructed above starting from the simple Lie algebra $\mathfrak{g}(B)$ if and only if $A = \widehat{B}$.

All affine Kac-Moody algebras that are isomorphic to Lie algebras defined in this way are said to be **untwisted**. All other affine Kac-Moody algebras are said to be **twisted**.

Property 30.4.51. Let \mathfrak{g} be a simple Lie algebra with Cartan matrix A. The affine Lie algebra $\widehat{\mathfrak{g}}$ is isomorphic to the derived subalgebra $[\mathfrak{g}(\widehat{A}),\mathfrak{g}(\widehat{A})]$ of the Kac-Moody algebra $\mathfrak{g}(\widehat{A})$.

30.4.5 Universal enveloping algebra

Definition 30.4.52 (Universal enveloping algebra). Let \mathfrak{g} be a Lie algebra and consider its tensor algebra $T(\mathfrak{g})$. The universal enveloping algebra $U(\mathfrak{g})$ is defined as the quotient of $T(\mathfrak{g})$ by the two-sided ideal generated by the elements $g \otimes h - h \otimes g - [g, h]$, where g, h range over \mathfrak{g} .

Construction 30.4.53. If we regard the Chevalley-Serre presentation from construction 30.4.37 as a presentation for a unital associative algebra instead of as a Lie algebra presentation (by replacing the Lie bracket by the commutator constructed from the algebra multiplication) we obtain the universal enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g} .

Theorem 30.4.54 (Poincaré-Birkhoff-Witt). Let \mathfrak{g} be a Lie algebra with a totally ordered basis $\{g_i\}_{i\leq \dim(\mathfrak{g})}$. The monomials of the form $g_1^{m_1}g_2^{m_2}\cdots g_N^{m_N}$ constitute a basis for $U(\mathfrak{g})$.

Definition 30.4.55 (Casimir invariant¹⁵). Let \mathfrak{g} be a Lie algebra. A Casimir invariant J is an element in the center of $U(\mathfrak{g})$.

Formula 30.4.56 (Quadratic Casimir invariant). Consider a Lie algebra representation $\rho: \mathfrak{g} \to \operatorname{End}(V)$ on a vector space V and let $\{X_i\}_{i \leq \dim(\mathfrak{g})}$ be a basis for \mathfrak{g} . The (quadratic) Casimir invariant associated with ρ is given by

$$\Omega_{\rho} := \sum_{i=0}^{\dim(\mathfrak{g})} \rho(X_i) \circ \rho(\xi_i)$$
(30.67)

where the set $\{\xi_i\}_{i\leq n}$ is defined by the relation $K_{\rho}(X_i,\xi_j)=\delta_{ij}$ using the Killing form (30.39).

Property 30.4.57 (Casimir invariants of irreducible representations). When the representation $\rho: \mathfrak{g} \to \operatorname{End}(V)$ is irreducible, Schur's lemma 22.2.3 tells us that

$$\Omega_{\rho} = c_{\rho} \mathbb{1}_{V}. \tag{30.68}$$

By taking the trace of this formula and using formula (30.39) we see that $c_{\rho} = \frac{\dim \mathfrak{g}}{\dim V}$.

Definition 30.4.58 (Verma module). Consider a finite-dimensional Lie algebra \mathfrak{g} with Borel subalgebra \mathfrak{b} . The Verma module with highest weight λ is defined as follows¹⁶:

$$V(\lambda) := U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda} \tag{30.69}$$

where \mathbb{C}_{λ} is the one-dimensional left \mathfrak{b} -module where the Cartan subalgebra acts by weight λ and $\mathfrak{n}_+ \subset \mathfrak{b}$ acts trivially. $U(\mathfrak{g})$ contains $U(\mathfrak{b})$ as a subalgebra by the PBW theorem and hence is a right $U(\mathfrak{b})$ -module through right multiplication. Since $U(\mathfrak{g})$ is trivially a left module over itself, the Verma module also becomes a left $U(\mathfrak{g})$ -module.

The Verma module with highest weight λ can also be defined using a quotient construction:

Alternative Definition 30.4.59. Let $I_{\lambda} \subset U(\mathfrak{g})$ be the left ideal generated by the following elements (these relations precisely give the conditions for a highest weight vector):

- $X_{\alpha} \in \mathfrak{g}_{\alpha}$ for all positive roots α , and
- $H \lambda(H)\mathbf{1}$ for all $H \in \mathfrak{h}$.

The Verma module $V(\lambda)$ is then defined as the quotient $U(\mathfrak{g})/I_{\lambda}$.

The importance of Verma modules is given by the following property:

Property 30.4.60 (Highest weight modules). The Verma module $V(\lambda)$ is a highest weight module with highest weight vector $\mathbf{1} \otimes \mathbf{1}$ (here we used the first definition of Verma modules). Furthermore, every highest weight module with highest weight λ is a quotient of the Verma module $V(\lambda)$.

Property 30.4.61 (Basis of Verma module). A basis for $V(\lambda)$ is given by the monomials $F_{\alpha_1}^{m_1} F_{\alpha_2}^{m_2} \cdots F_{\alpha_N}^{m_N} v_{\lambda}$ where v_{λ} is the highest weight vector, α_i are negative roots, $m_i \in \mathbb{N}$ and $F_{\alpha_i} \in \mathfrak{g}_{\alpha_i}$.

 $^{^{15}\}mathrm{Also}$ known as a Casimir operator or Casimir element.

¹⁶This can be seen as an "extension of scalars" procedure where we turn a $U(\mathfrak{b})$ -module in a $U(\mathfrak{g})$ -module.

30.4.6 Group contractions

Definition 30.4.62 (Inönü-Wigner contraction). Consider an n-dimensional Lie group G with Lie algebra \mathfrak{g} . Choose a basis $\{e_i\}_{i\leq n}$ for \mathfrak{g} . A nonsingular transformation of the basis would leave the structure of the group unchanged. However, we can rewrite this nonsingular transformation in terms of a singular transformation:

$$U = u + \varepsilon w$$
.

The group contraction is obtained by taking the limit $\varepsilon \to 0$. In terms of the structure constants this is equivalent to setting some of the structure constants to zero thereby obtaining a subalgebra (and its associated subgroup). It can be shown that there exists a bijection between continuous subgroups and group contractions. The Lie algebra elements belonging to the contracted subalgebra form an Abelian invariant subalgebra and hence generate an Abelian invariant subgroup. The group contraction \widetilde{G} is obtained as the quotient group of G with respect to this Abelian subgroup.

Example 30.4.63 (Galilei group). The Galilei group in d dimensions can be obtained as a group contraction of the inhomogeneous Lorentz group in d + 1 (spacetime) dimensions with respect to time displacements and spatial rotations.

30.4.7 Lie algebra cohomology ♣

Although the construction of Lie algbra-cohomology can be generalized almost unchaged to the infinite-dimensional case, it is only state for finite dimensions (the following definition is only valid for finite-dimensional algebras¹⁷):

Definition 30.4.64 (Chevalley-Eilenberg algebra). Let \mathfrak{g} be a finite-dimensional Lie algebra. Consider a basis $\{t_a\}_{a \leq \dim(\mathfrak{g})}$ of \mathfrak{g} and let $\{t^a\}_{a \leq \dim(\mathfrak{g})}$ be its linear dual. The Chevalley-Eilenberg algebra $\mathrm{CE}(\mathfrak{g})$ is defined as the Grassmann algebra $\Lambda^{\bullet}\mathfrak{g}^*$ with a dg-algebra structure induced by the differential¹⁸

$$dt^a := -\frac{1}{2}c^a_{bc}t^b \wedge t^c, \tag{30.70}$$

where c_{bc}^a are the structure constants of \mathfrak{g} .

By analogy with the case of group (co)homology, one defines the (co)homology of a Lie algebra through the Tor- and Ext-functors. The natural choice of ring in the case of Lie algebras is the universal enveloping algebra $U(\mathfrak{g})$. The tensor and Hom operations underlying the construction are defined with respect to the trivial $U(\mathfrak{g})$ -module k (the underlying field of the Lie algebra). This gives:

$$H^{i}_{\mathrm{Lie}}(\mathfrak{g}; M) := \mathrm{Ext}^{i}_{U(\mathfrak{g})}(k, M) \tag{30.71}$$

$$H_i^{\text{Lie}}(\mathfrak{g}; M) := \text{Tor}_i^{U(\mathfrak{g})}(k, M), \tag{30.72}$$

where M is a \mathfrak{g} -module and, by extension, a $U(\mathfrak{g})$ -module.

For simplicity only cohomology will be considered here. The chapter on homological algebra, in particular Section 5.4.1, says that one has to find a projective resolution of k to determine the Ext-functor in terms of hom-sets $\operatorname{Hom}(\cdot, M)$. It can be shown that such a resolution is given by the tensor product $U(\mathfrak{g}) \otimes \Lambda^{\bullet}\mathfrak{g}$:

$$\operatorname{Ext}_{U(\mathfrak{g})}^{i}(k,M) = H^{i}(\operatorname{Hom}_{\mathfrak{g}}(U(\mathfrak{g}) \otimes_{k} \Lambda^{\bullet} \mathfrak{g}, M)) \cong H^{i}(\operatorname{Hom}_{k}(\Lambda^{\bullet} \mathfrak{g}, M)), \tag{30.73}$$

 $^{^{17}}$ In infinite dimensions the Chevally-Eilenberg complex is the complex of antisymmetric forms on \mathfrak{g} .

¹⁸In Section ?? it is explained how this differential can be obtained as the dual of the Lie bracket.

where the differential of the (middle) complex is given by

$$d(u \otimes g_1 \wedge \dots \wedge g_n) := \sum_{i} (-1)^{i+1} u g_i \otimes (g_1 \wedge \dots \wedge \hat{g}_i \wedge \dots \wedge g_n)$$

$$+ \sum_{i < j} (-1)^{i+j} u \otimes [g_i, g_j] \wedge \dots \wedge \hat{g}_i \wedge \dots \wedge \hat{g}_j \wedge \dots \wedge g_n,$$
(30.74)

where as usual the caret $\hat{\cdot}$ indicates the omission of a factor. In the case M=k, the Hom-complex can easily be seen to be the Chevalley-Eilenberg algebra $CE(\mathfrak{g}) \cong \Lambda^{\bullet}\mathfrak{g}^*$ (as stated above, this latter identification is only valid for finite-dimensional algebras). By a change of coefficients, the general case can be shown to be isomorphic to $\Lambda^{\bullet}\mathfrak{g}^* \otimes M$, where the usual differential on $\Lambda^{\bullet}\mathfrak{g}^*$ gets extended by an additional term $(-1)^n dm \otimes \omega$ with $dm(g) := g \cdot m$.

Property 30.4.65 (H^0 and H^1). The zeroth cohomology group $H^0(\mathfrak{g}; M)$ is equal to the algebra of \mathfrak{g} -invariants in M:

$$H^0(\mathfrak{g}; M) = \{ m \in M \mid \forall g \in \mathfrak{g} : g \cdot m = m \}. \tag{30.75}$$

The first cohomology group with coefficients in k is isomorphic to the quotient of \mathfrak{g} by its first derived ideal:

$$H^1(\mathfrak{g}) \cong \mathfrak{g}/[\mathfrak{g}, \mathfrak{g}].$$
 (30.76)

Property 30.4.66 (Whitehead lemma). If \mathfrak{g} is semisimple, the cohomology groups $H^1(\mathfrak{g})$ and $H^2(\mathfrak{g})$ vanish. Conversely, a Lie algebra \mathfrak{g} is semisimple if and only if $H^1(\mathfrak{g}; M)$ vanishes for all finite-dimensional \mathfrak{g} -modules M.

Property 30.4.67 (Classification of central extensions). The 2-cocycles (with values in k) from Construction 30.2.41 define classes in $H^2(\mathfrak{g})$. Furthermore, a central extension is trivial if and only if its associated cocycle is a coboundary. This says that the central extensions of \mathfrak{g} by k are classified by $H^2(\mathfrak{g})$.

Corollary 30.4.68. Semisimple Lie algebras do not admit nontrivial central extensions.

Definition 30.4.69 (Weil algebra). Consider a Lie algebra \mathfrak{g} . Its Weil algebra is defined as the dg-algebra $\Lambda^{\bullet}(\mathfrak{g}^* \oplus \mathfrak{g}^*[1])$ with differential $d_W := d_{\text{CE}} + \Pi$, where d_{CE} is the differential on the Chevalley-Eilenberg subalgebra $\text{CE}(\mathfrak{g}) \subset W(\mathfrak{g})$ and Π shifts the degree by 1. The action of d_{CE} on shifted generators is defined through the relation $[\Pi, d_{\text{CE}}] = 0$.

Definition 30.4.70 (Horizontal elements). The elements of the subalgebra $\Lambda^{\bullet}\mathfrak{g}^*[1]$ are sometimes called the horizontal elements.

From here on the subscript will be dropped and the differential of the Weil algebra will be denoted by d. It is clear that the above constructions fit in a short exact sequence

$$0 \to \ker(p) \to W(\mathfrak{g}) \stackrel{p}{\to} \mathrm{CE}(\mathfrak{g}) \to 0, \tag{30.77}$$

where p is the obvious projection map. An important subpace of ker(p) is given by the algebra of invariant polynomials $inv(\mathfrak{g})$:

Definition 30.4.71 (Invariant polynomial). A horizontal element ω for which $d\omega$ is also horizontal. (Sometimes the horizontality condition is replaced by $d\omega = 0$.)

It should be noted that although this definition might seem complicated, it is (for ordinary Lie algebras¹⁹) equivalent to the definition in terms of Ad-invariant polynomials:

¹⁹The above definition leads to an easy generalization in the context of L_{∞} -algebras.

Alternative Definition 30.4.72 (Invariant polynomial). Let G be a Lie group with Lie algebra \mathfrak{g} . A polynomial $P \in k[\mathfrak{g}]$, where k is the base field, is said to be invariant (or Ad-invariant) if

$$P(X) = P(gXg^{-1}) (30.78)$$

for all $X \in \mathfrak{g}$ and $g \in G$. This subalgebra of $k[\mathfrak{g}]$ is denoted by $k[\mathfrak{g}]^G$.

A concept that will be important later on in the study of characteristic classes on fibre bundles is the transgression map:

Definition 30.4.73 (Transgression). The exact sequence (30.77) induces a long exact sequence in cohomology. An invariant polynomial is said to be in transgression with a cocycle in $CE(\mathfrak{g})$ if their cohomology classes are related by the connecting morphism. More explicitly, by definition of invariant polynomials one has $d\omega = 0$ and, since $W(\mathfrak{g})$ has vanishing cohomology, there exists an element c_{ω} such that $\omega = dc_{\omega}$. By restricting c_{ω} to $CE(\mathfrak{g})$, one obtains a \mathfrak{g} -cocycle, since $d_{CE}c_{\omega} = 0$.

Example 30.4.74 (Killing form). Consider the invariant polynomial $\langle \cdot, \cdot \rangle$ induced by the Killing form on a semisimple Lie algebra. By transgression one obtains the canonical 3-cocycle $\langle \cdot, [\cdot, \cdot] \rangle$.

Chapter 31

Fibre Bundles

This chapter is formulated in sufficient generality so as to encompass both the topological and smooth setting (or any other one might find useful). To this end the generic terms "space", "group" and "morphism" are used. The reader should choose in which category he wants to work, e.g. topological space, topological group and continuous map in the case of **Top**.

31.1 Bundles

Definition 31.1.1 (Bundle). A triple (E, B, π) where E and B are spaces and π is a morphism. Sometimes one requires that the map π is also surjective. However, under this additional restriction one cannot make the association $\mathbf{Bundle}(X) \cong \mathbf{C}/X$ of categories anymore.

An explicit example in the category **Diff** is the following:

Example 31.1.2 (Fibred manifold). A surjective submersion 29.3.8

$$\pi: E \to B$$
,

where E is called the **total space**, B the **base space** and π the **projection**. For every point $p \in B$, the set $\pi^{-1}(p)$ is called the **fibre over** p.

The most important example of a bundle is a fibre bundle. Before being able to give the definition, an important tool needs to be introduced:

Definition 31.1.3 (Cocycle). Let B be a space and G a group. A G-valued cocycle on B with respect to an open cover $\{U_i\}_{i\in I}$ is a family of morphisms $g_{ij}: U_i \cap U_j \to G$ that satisfy the following condition (it is called the **Čech cocycle condition**):

$$g_{ij} = g_{ik} \circ g_{kj}. \tag{31.1}$$

Two cocycles (U_i, g_{ij}) and (V_i, h_{ij}) are said to be equivalent if there exist morphisms $\lambda_{i,j}$: $U_i \cap V_j \to G$ such that

$$\lambda_{i,r}g_{ij}\lambda_{i,s}^{-1} = h_{rs} \tag{31.2}$$

whenever this is well-defined. The resulting quotient set is denoted by $\check{H}^1(B;G)$.

 $^{^{1}}$ The notation stems from the fact that this is the first Čech cohomology group with values in G (Section 10.3.2).

Property 31.1.4. Let $\{g_{ij}\}_{i,j\in I}$ be a cocycle on B. It satisfies the following properties for all $x\in B$:

- $g_{ij}(x) = (g_{ji}(x))^{-1}$, and
- $q_{ii}(x) = e$.

Definition 31.1.5 (Fibre bundle). A tuple (E, B, π, F, G) where E, B and F are spaces and G is a group, called the **structure group**, such that there exists a surjective morphism

$$\pi: E \to B$$

and an open cover $\{U_i\}_{i\in I}$ of B together with a family of isomorphisms $\{\varphi_i : \pi^{-1}(U_i) \to U_i \times F\}_{i\in I}$ that make the following diagram commute for all $i \in I$:

As for general bundles, one calls E and B the **total space** and **base space**, respectively. The space F is called the **(typical) fibre**. The pair (U_i, φ_i) is sometimes called a **bundle chart** and the set $\{(U_i, \varphi_i)\}_{i \in I}$ is often called a **local trivialization**². The cover $\{U_i\}_{i \in I}$ itself is called a **trivializing cover** of the bundle.

The **transition maps** $\varphi_j \circ \varphi_i^{-1} : (U_i \cap U_j) \times F \to (U_i \cap U_j) \times F$ can be identified with a cocycle $g_{ji} : U_i \cap U_j \to G$ as follows. The transition maps restrict to the identity on B and, hence, act as

$$\varphi_j \circ \varphi_i^{-1}(b, x) = (b, g_{ji}(b) \cdot x). \tag{31.3}$$

The compatibility conditions satisfied by the functions g_{ji} , obtained by considering triple intersections, are exactly the cocycle conditions (31.1). Moreover, it can be shown that this action of G on every fibre is faithful 3.3.10.

Remark 31.1.6. One should pay attention to the fact that the bundle charts are not coordinate charts in the sense of manifolds 29.1.1 because the image of φ_i is not an open subset of \mathbb{R}^n . However, they serve the same purpose as they are used to locally describe the total space P.

Notation 31.1.7. A fibre bundle (E, B, π, F, G) is often denoted by $F \hookrightarrow E \xrightarrow{\pi} B$ or even $\pi: E \to B$ if the fibre is not important. A drawback of such notations is that the structure group of the bundle is not shown.

Definition 31.1.8 (Numerable fibre bundle). A fibre bundle that admits a local trivialization over a numerable open cover.

Definition 31.1.9 (Compatible³ bundle charts). A bundle chart (V, ψ) is said to be compatible with a trivializing cover $\{(U_i, \varphi_i)\}_{i \in I}$ if, whenever $V \cap U_i \neq \emptyset$, there exists a map $h_i : V \cap U_i \to G$ such that

$$\psi \circ \varphi_i^{-1}(b, x) = (b, h_i(b)x)$$
 (31.4)

for all $b \in V \cap U_i$ and $x \in F$. Two trivializing covers are said to be equivalent if all bundle charts are mutually compatible. As in the case of manifolds, this gives rise to the notion of a G-atlas. A G-bundle is then defined as a fibre bundle equipped with an equivalence class of G-atlases.

²This name follows from the fact that the bundle is locally isomorphic to a (trivial) product space: $E \cong U \times F$.

³Also called an **admissible chart**.

31.2 Bundle maps

Definition 31.2.1 (Bundle map). A bundle map between two fibre bundles $\pi_1 : E_1 \to B_1$ and $\pi_2 : E_2 \to B_2$ is a pair (f_E, f_B) of morphisms that make diagram 31.1 commute. The map f_E is said to **cover** f_B . If such a couple exists, the base map f_B is uniquely determined by f_E and therefore a bundle map is often just denoted by $f_E : E_1 \to E_2$.

Figure 31.1: Bundle map between fibre bundles.

Definition 31.2.2 (Equivalent fibre bundles). Two fibre bundles $\pi_1: E_1 \to B$ and $\pi_2: E_2 \to B$, with the same typical fibre and structure group, are said to be equivalent if there exist trivializations $\{(U_i, \varphi_i)\}_{i \in I}$ and $\{(U_i, \varphi_i')\}_{i \in I}$ such that the associated cocycles are equivalent (note that the cover $\{U_i\}_{i \in I}$ is the same for both trivializations). An explicit form of the functions λ is given by

$$\lambda_i := \varphi_i' \circ \varphi_i^{-1}. \tag{31.5}$$

Property 31.2.3. Two fibre bundles over the same base space are equivalent if and only if they are isomorphic.

Definition 31.2.4 (Trivial bundle). A fibre bundle (E, B, π, F) is said to be trivial if there exists an equivalence $E \cong B \times F$.

31.3 Constructions

Construction 31.3.1 (Fibre bundle construction theorem⁴). Let B and F be spaces and let G be a group equipped with a faithful (left) action on F. Suppose that a cover $\{U_i\}_{i\in I}$ of B and a collection of morphisms $\{g_{ji}: U_i \cap U_j \to G\}$ that satisfy the cocycle condition 31.1.3 are given. A fibre bundle over B can then be constructed as follows:

- 1. First, construct for every set U_i the Cartesian product $U_i \times F$.
- 2. Then, construct the disjoint union $T := \bigsqcup_{i \in I} U_i \times F$ and equip it with the disjoint union topology 7.3.2.
- 3. From this disjoint union construct a quotient space, equipped it with the quotient space topology 7.10, through the following equivalence relations for all $i, j \in I$:

$$(p,f) \sim (p, g_{ii}(x) \cdot f), \tag{31.6}$$

where $x \in U_i \cap U_j$ and $f \in F$.

4. The fibre bundle is equal to the quotient space $E := T/\sim$, where the projection π is the quotient space projection $\pi: E \to B: [(x, f)] \mapsto x$.

⁴Sometimes also called the **clutching theorem**, see below for an explanation.

5. Local trivializations are given by the maps $\varphi_i:\pi^{-1}(U_i)\to U_i\times F$ that satisfy

$$\varphi_i^{-1}: (x, f) \mapsto [(x, f)],$$
 (31.7)

where [A] denotes the equivalence class of A in E.

Property 31.3.2 (Homotopy invariance). Homotopic transition functions give rise to equivalent bundles.

Remark 31.3.3 (Clutching). The above construction is often called the clutching construction, especially when constructing vector bundles over a sphere S^n . There, the covering consists of two hemispheres that intersect on the equator S^{n-1} and the function g_{21} is in that case also called the clutching function.

Property 31.3.4 (Vector bundles over a sphere). The clutching theorem and the homotopy invariance imply that vector bundles over the sphere are determined by homotopy classes of functions $S^{n-1} \to \mathrm{GL}_p(k)$, i.e. they are classified by the homotopy group $\pi_{n-1}(\mathrm{GL}_p(k))$.

Definition 31.3.5 (Subbundle). A subbundle of a fibre bundle $\pi: E \to B$ is a triple (E', B', π') such that $E' \subset E$, $B' \subset B$ and $\pi' = \pi|_{E'}$.

Definition 31.3.6 (Pullback bundle). Let $\pi: E \to B$ be a fibre bundle and let $f: B' \to B$ be a morphism of spaces. The total space of the pullback bundle f^*E is defined as follows:

$$f^*E := \{ (b', e) \in B' \times E \mid f(b') = \pi(e) \}. \tag{31.8}$$

The topology on f^*E is induced by the subspace topology of the product $B' \times E$. The projection onto the second factor gives a map of total spaces $f^*E \to E$.

Definition 31.3.7 (Fibre product). Let (F_1, B, π_1) and (F_2, B, π_2) be two fibre bundles over the same base space B. Their fibre product is defined as follows:

$$F_1 \diamond F_2 := \{ (f, g) \in F_1 \times F_2 \mid \pi_1(f) = \pi_2(g) \}. \tag{31.9}$$

31.4 Sections

Definition 31.4.1 (Section). A (global) section of a fibre bundle $\pi: E \to B$ is a morphism $s: B \to E$ such that $\pi \circ s = \mathbb{1}_B$. For any open subset $U \subset B$, a **local** section is defined as a morphism $s_U: U \to E$ such that $\pi \circ s_U = \mathbb{1}_U$.

Notation 31.4.2. The set of all global sections of a bundle E is denoted by $\Gamma(E)$. The set of local sections over U is sometimes denoted by $\Gamma(U, E)$. With this latter notation one also has $\Gamma(E) \equiv \Gamma(B, E)$.

Property 31.4.3 (Pullback of sections). The sections of a fibre bundle E pullback to the pullback bundle f^*E by setting $f^*s := s \circ f$.

Chapter 32

Vector Bundles

The main reference for this chapter is [22].

32.1 Tangent bundle

The tangent space, as introduced in Section 29.2, can also be introduced in a more natural way. Because it is the most important example of a vector bundle, tangent bundles are introduced first.

Construction 32.1.1 (Tangent bundle). Let M be an n-dimensional manifold with atlas $\{(U_i, \varphi_i)\}_{i \leq n}$. Construct for every open set U an associated set $TU := U \times \mathbb{R}^n$ and construct for every smooth function f an associated smooth function on TU, called the **differential** or **derivative** of f, by

$$Tf: U \times \mathbb{R}^n \to f(U) \times \mathbb{R}^n : (p, v) \mapsto (f(p), Df(p)v),$$
 (32.1)

where $Df(p): \mathbb{R}^n \to \mathbb{R}^n$ is the linear operator represented by the Jacobian matrix of f at p.

By applying this definition to the transition functions ψ_{ji} one obtains a new set of functions

$$\widetilde{\psi}_{ii} := T\psi_{ii} : TU_i \to TU_i$$

given by

$$\widetilde{\psi}_{ii}(\varphi_i(p), v) := (\varphi_i(p), D(\varphi_i \circ \varphi_i^{-1})(\varphi_i(p))v). \tag{32.2}$$

Because the transition functions are diffeomorphisms, the associated Jacobians are invertible. This implies that the maps $\widetilde{\psi}_{ji}$ are elements of $\mathrm{GL}(\mathbb{R}^n)$. The tangent bundle is then obtained by applying the fibre bundle construction theorem 31.3.1 to the triple $(M, \mathbb{R}^n, \mathrm{GL}(\mathbb{R}^n))$ together with the cover $\{U_i\}_{i\leq n}$ and the cocycle $\{\widetilde{\psi}_{ji}\}_{i,j\leq n}$.

Remark 32.1.2 (Topology). Although the tangent bundle is by construction bijective (as a set) to the Cartesian product $M \times \mathbb{R}^n$ or the disjoint union $\bigsqcup_{p \in M} T_p M$, this does not hold on the level of topologies. It is not equipped with the disjoint union topology.

Definition 32.1.3 (Natural chart). The charts in the atlas on this bundle are sometimes called **natural charts** or **adapted charts** because the first n coordinates are equal to the coordinates on the base space.

Definition 32.1.4 (Tangent space). Consider a point $p \in M$. The definition of the tangent space in the above setting is given by the fibre

$$T_p M := \pi_{TM}^{-1}(p). \tag{32.3}$$

If one uses the natural charts to map T_pM to the set $\varphi_i(p) \times \mathbb{R}^n$, it can be seen that T_pM is isomorphic to \mathbb{R}^n (as a vector space).

Property 32.1.5 (Smooth structure). An atlas on TM is given by the charts (TU_i, θ) with

$$\theta: TM \to \mathbb{R}^{2n}: (p, X) \mapsto (\varphi_i \circ \pi(p), X^1, \dots, X^n), \tag{32.4}$$

where (U_i, φ_i) is a around $p \in M$ with local coordinates (x^1, \dots, x^n) such that X can be expressed as $X^i \partial_i \in T_p M$.

Property 32.1.6 (Dimension). Let M be an n-dimensional manifold. Using the natural charts on TM and the charts on M one can see that TM is locally isomorphic to \mathbb{R}^{2n} . This implies that

$$\dim TM = 2\dim M. \tag{32.5}$$

Remark 32.1.7 (Physics). Now it is clear that the statement "a vector is something that transforms like a vector", which one often hears in introductory physics courses, comes from the fact that

a vector
$$v \in T_pM$$
 is tangent to $\varphi_i(p)$ in a chart (U_i, φ_i)

if and only if

$$D(\varphi_j \circ \varphi_i^{-1})(\varphi_i(p))v$$
 is tangent to $\varphi_j(p)$ in a chart (U_j, φ_j) .

Definition 32.1.8 (Differential). The map T defined in equation (32.1) can be generalized to arbitrary smooth manifolds as the map $Tf:TM\to TN$, where the Jacobian now acts on the (linear) fibres. Furthermore, let $p\in U\subseteq M$ and let V=f(U). By looking at the restriction of Tf to T_pM , denoted by T_pf , one sees that it maps T_pU to $T_{f(p)}V$ linearly.

Property 32.1.9. The map $Tf:TM\to TN$ has the following properties¹:

- T preserves identities: $T \mathbb{1}_M = \mathbb{1}_{TM}$.
- Let f, g be two smooth functions on smooth manifolds, then $T(f \circ g) = Tf \circ Tg$.

Definition 32.1.10 (Rank). Let $f: M \to N$ be a differentiable function between smooth manifolds. Using the fact that Tf is fibrewise linear, the rank of f at $p \in M$ is defined as the rank (in the sense of 20.2.10) of the differential $Tf: T_pM \to T_{f(p)}N$.

Theorem 32.1.11 (Inverse function theorem). A smooth function $f: M \to N$ between smooth manifolds is a local diffeomorphism at $p \in M$ if and only if its differential $Tf: T_pM \to T_{f(p)}N$ is an isomorphism at p.

Definition 32.1.12 (Parallelizable manifold). A manifold is said to be parallelizable if its tangent bundle is trivial.

Definition 32.1.13 (Normal bundle). Consider a smooth manifold M with a submanifold S and consider for every point $p \in S$ the tangent spaces T_pS and T_pM . Since T_pS is a subspace of T_pM , one can construct the quotient space $N_pS := T_pM/T_pS$. The normal bundle of S in M is defined as the vector bundle with fibres N_pS .

 $^{^{1}}$ This turns the map T into an endofunctor on the category of smooth manifolds. Hence, one can view T as a "functorial derivative".

Definition 32.1.14 (Tubular neighbourhood). Consider a smooth manifold M with an embedded submanifold S. A tubular neighbourhood of S in M is a vector bundle $\pi: E \to S$ such that (an open neighbourhood of the zero section of) E is diffeomorphic to an open neighbourhood of S in M.

Theorem 32.1.15 (Tubular neighbourhood theorem). Every embedded submanifold admits a tubular neighbourhood, namely its normal bundle. Furthermore, all tubular neighbourhoods are diffeomorphic.

Corollary 32.1.16 (Submanifolds and NDR pairs). Consider a smooth manifold M and a submanifold S. The pair (M,S) is an NDR pair 9.2.33. In particular, consider a smooth fibre bundle $\pi: E \to B$. If π admits a global section, one can embed B in E as a submanifold and hence the pair (E,B) is an NDR pair.

32.2 Vector bundles

Instead of restricting the typical fibre to be a Euclidean space with the same dimension as the base manifold, one can generalize the construction of the tangent bundle in the following way:

Construction 32.2.1 (Vector bundle). Consider an n-dimensional manifold M with atlas $\{(U_i, \varphi_i)\}_{i \leq n}$ together with a cocycle $\{g_{ji}: U_i \cap U_j \to G\}_{i,j \leq n}$ with values in a group G and a representation $\rho: G \to \operatorname{GL}(V)$ on a (finite-dimensional) vector space V. A bundle can then be constructed using Construction 31.3.1. The dimension of the typical fibre V is called the **rank** of the vector bundle.

Remark 32.2.2. As was also the case for tangent bundles, the choice of charts on E is not random. To preserve the structure of fibres, the use of the natural charts is imperative.

Example 32.2.3 (Line bundle). A vector bundle with a one-dimensional fibre. A common example is the \mathbb{C} -line bundle over some smooth manifold whose sections in quantum mechanics correspond to the wave functions describing a given system. See Section 58.1 on geometric quantization for more information.

32.2.1 Sections

Definition 32.2.4 (Frame). A frame of a vector bundle E is a tuple (s_1, \ldots, s_n) of smooth sections such that $(s_1(b), \ldots, s_n(b))$ is a basis for the fibre $\pi^{-1}(b)$ for all $b \in B$.

Property 32.2.5. A vector bundle is trivial if and only if there exists a global frame.

Theorem 32.2.6 (Serre & Swan). The set of all smooth sections of a vector bundle with base space M is a finitely-generated projective $C^{\infty}(M)$ -module.

Property 32.2.7 (Zero section). The zero section s_0 of a vector bundle $E \to M$ is the map that assigns to every point $p \in M$ the zero vector of the associated vector space E_p . For every smooth vector bundle $\pi: E \to M$ one can embed the base manifold M in the bundle E through the zero section $s_0: M \to E$. The complement of the image of this section is often denoted by E_0 .

32.2.2 Whitney sums

Definition 32.2.8 (Whitney sum). Consider two vector bundles E, E' with typical fibres W, W' over the same base manifold. One can construct a new vector bundle $E \oplus E'$ by taking the typical fibre to be the direct sum $W \oplus W'$, i.e. the fibre over p is given by $W_p \oplus W'_p$. This operation is called the Whitney sum or **direct sum** of vector bundles.

Property 20.1.19 from linear algebra can be generalized in the following way:

Property 32.2.9. Let M be a paracompact Hausdorff space and let E be a vector bundle over M. Every vector subbundle F of E admits an orthogonal complement F^{\perp} .

Property 32.2.10. Let M be a compact Hausdorff space. Every vector bundle E over M admits a complementary vector bundle E^c such that $E \oplus E^c \cong M \times \mathbb{R}^n$ for some $n \in \mathbb{N}$.

Definition 32.2.11 (Stable isomorphism). Two vector bundles E, E' over a base space M are said to be stably isomorphic if there exist integers $m, n \in \mathbb{N}$ such that

$$E \oplus (M \times \mathbb{R}^m) \cong E' \oplus (M \times \mathbb{R}^n). \tag{32.6}$$

32.2.3 Associated vector bundles

Construction 32.2.12 (Associated vector bundle). Consider a representation

$$\rho: \mathrm{GL}(\mathbb{R}^n) \to \mathrm{GL}(\mathbb{R}^l)$$

together with the tangent bundle cocycle $\{t_{ji} := D(\psi_{ji}) \circ \varphi_i\}_{i,j \le n}$. The composite

$$\rho \circ t_{ji} : U_i \cap U_j \xrightarrow{t_{ji}} \mathrm{GL}(\mathbb{R}^n) \xrightarrow{\rho} \mathrm{GL}(\mathbb{R}^l)$$

is again a cocycle and can thus be used to define a new vector bundle on M through Construction 31.3.1. The vector bundle $E \equiv \rho(TM)$ is called the associated (vector) bundle of the tangent bundle induced by ρ .

Example 32.2.13 (Contravariant vectors). By noting that the k^{th} tensor power \otimes^k induces a representation given by the tensor product of representations, one can construct the bundle of order-k (contravariant) tensors $\otimes^k(TM)$.

Example 32.2.14 (Cotangent bundle). Another useful construction is given by the contragredient representation $A \mapsto (\rho^T)^{-1} = (\rho^{-1})^T$. The vector bundle constructed this way, where the cocycle is given by $(t_{ji}^T)^{-1}$, is called the cotangent bundle on M and is denoted by T^*M . Elements of the fibres are called **covariant vectors** or **covectors**.

Notation 32.2.15. A combination of the cocycle t_{ji} and its dual $(t_{ji}^T)^{-1}$ can also be used to define the bundle of (k, l)-tensors on M. This bundle is denoted by $T^{(k,l)}M$.

Definition 32.2.16 (Twisted bundle). Given a vector bundle $\pi: E \to M$ and a line bundle $\psi: L \to M$, one calls the tensor product $E \otimes L$ the "L-twisted" version of E. Often the vector bundle E will be a bundle of k-forms such that one obtains the L-valued differential forms of Section 32.4.5 below.

For every vector bundle one can define a canonical line bundle:

Construction 32.2.17 (Determinant line bundle). Consider a rank-n vector bundle $\pi : E \to M$. The determinant map induces an associated line bundle $\det(\pi) : \det(E) := \bigwedge^n E \to M$ where the transition functions on the fibres are given by the determinant of the transition functions of E. Bundles twisted by a determinant line bundle are called **densitized bundles**.

Example 32.2.18 (Canonical bundle). Consider a smooth n-dimensional manifold M. The canonical (line) bundle of M is given by $\det(T^*M) \equiv \bigwedge^n T^*M$, i.e. the determinant line bundle of the cotangent bundle of M.

32.2.4 Grassmann bundle

Looking at Property 20.7.2 and noting that $GL_n(\mathbb{R})$ is a Lie group, it is clear that one can endow the Grassmannian $Gr(k,\mathbb{R}^n)$ from Definition 20.7.1 with a differentiable structure, thereby turning it into a smooth manifold. This allows the construction of a new bundle by applying the construction theorem 31.3.1. Because the Grassmannian is not a vector space, the resulting bundle will be a general fibre bundle and not a vector bundle.

Construction 32.2.19 (Grassmann bundle). One first defines a new set of transition functions

$$\psi_{ji}: (\varphi_i(p), V) \mapsto (\varphi_j(p), t_{ji}(p) \cdot V), \tag{32.7}$$

where $\{t_{ji}\}_{i,j\leq n}$ is the tangent bundle cocycle. These transition functions can be used to create a new fibre bundle with typical fibre $Gr(k,\mathbb{R}^n)$. The fibre over a point $p\in M$ is the Grassmannian $Gr(k,T_pM)$ associated to the tangent space over p.

By replacing the tangent bundle TM by an arbitrary vector bundle E (and accordingly replacing the cocycle t with the cocycle of E) one can define the Grassmann bundle for a general vector bundle.

Notation 32.2.20. The Grassmann k-plane bundle of a vector bundle E is denoted by Gr(k, E).

Definition 32.2.21 (Tautological bundle). Consider the Grassmannian Gr(n, V) of an (n + k)-dimensional vector space V. The total space of the tautological k-bundle $\gamma_{n,k}$ is defined as the set of points (W, w) where $W \in Gr(n, V)$ and $w \in W$. Local trivializations are constructed as follows:

$$\varphi_Z : \pi^{-1}(U) \to \operatorname{Gr}(n, V) \times Z : (W, w) \mapsto (W, \operatorname{proj}_Z(w)),$$
 (32.8)

where proj_Z is the orthogonal projection onto the subspace $Z \in \operatorname{Gr}(n, V)$. This bundle inherits a natural vector bundle structure from V.

Definition 32.2.22. Consider the tautological line bundle J over a projective space $\mathbb{CP}^n = \operatorname{Gr}(1,\mathbb{C}^n)$. The dual line bundle $\operatorname{Hom}(J,\mathbb{C})$ is often denoted by $\mathcal{O}_{\mathbb{CP}^n}(1)$ or $\mathcal{O}(1)$ and is sometimes called **Serre's twisting sheaf**. Tensor powers of this bundle are accordingly denoted by $\mathcal{O}_{\mathbb{CP}^n}(k)$. To also allow for factors of J one can extend the notation to negative indices: $\mathcal{O}_{\mathbb{CP}^n}(-k)$, e.g. the tautological bundle is denoted by $\mathcal{O}_{\mathbb{CP}^n}(-1)$.

Property 32.2.23 (Euler sequence). The dual bundle $\mathcal{O}_{\mathbb{CP}^n}(1)$ fits in a short exact sequence

$$0 \longrightarrow \underline{\mathbb{C}} \longrightarrow \mathcal{O}_{\mathbb{CP}^n}(1)^{\oplus (n+1)} \longrightarrow T\mathbb{CP}^n \longrightarrow 0, \tag{32.9}$$

where \mathbb{C} denotes the trivial line bundle.

Sketch of proof. Note that vector fields on \mathbb{CP}^n can be obtained by pairing (coordinate-induced) basis vectors ∂_i on \mathbb{C}^{n+1} with linear functions on \mathbb{C}^{n+1} , i.e. with sections of $\mathcal{O}_{\mathbb{CP}^n}(1)$. The kernel of this map is given by the Euler vector field $\mathbb{E} := x^i \partial_i$ and its scalar multiples.

32.3 Vector fields

Definition 32.3.1 (Vector field). A smooth section $s \in \Gamma(TM)$ of the tangent bundle. By the Serre-Swan theorem 32.2.6 the set of vector fields forms a $C^{\infty}(M)$ -module.

Notation 32.3.2. The set of all vector fields on a smooth manifold M is often denoted by $\mathfrak{X}(M)$.

Definition 32.3.3 (Index). Consider a smooth vector field X on an n-dimensional smooth manifold M and let $p \in M$ be an isolated zero of X. Because p is isolated, one can find a small (n-1)-sphere around p that does not contain any other zeroes of X. The index $\operatorname{ind}_X(p)$ of X at p is defined as the degree 9.2.38 of the function $f: S^{n-1} \to S^{n-1}: m \mapsto \frac{X(m)}{||X(m)||}$.

Property 32.3.4 (Winding number). The winding number of a vector field X along a smooth curve γ (where it is assumed that X does not vanish on γ) is equal to the sum of indices of zeroes of X lying inside γ .

Theorem 32.3.5 (Poincaré-Hopf). Let M be a compact smooth manifold and consider a vector field X having only isolated zeroes.

$$\sum_{p:X(p)=0} \text{ind}_X(p) = \chi(M), \tag{32.10}$$

where χ denotes the Euler characteristic 9.2.18.

An immediate consequence of the Poincaré-Hopf theorem is the following well-known result:

Theorem 32.3.6 (Hairy ball theorem). There exists no nowhere-vanishing vector field on an even-dimensional sphere S^{2n} .

Definition 32.3.7 (Pullback). Let X be vector field on N and let $\varphi : M \to N$ be a diffeomorphism. The pullback of X along φ is defined as

$$(\varphi^* X)_p := T \varphi^{-1}(X_{\varphi(p)}). \tag{32.11}$$

Definition 32.3.8 (Pushforward). Let X be a vector field on M and let $\varphi : M \to N$ be a diffeomorphism. Using the differential $T\varphi$ one can define the pushforward of X along φ as

$$(\varphi_* X)_{\varphi(p)} := T\varphi(X_p). \tag{32.12}$$

This can be rewritten using the pullback as follows:

$$\varphi_* X = (\varphi^{-1})^* X. \tag{32.13}$$

Equivalently, one can define a vector field on N by

$$(\varphi_* X)_q(f) := X_{\varphi^{-1}(q)}(f \circ \varphi) \tag{32.14}$$

for all smooth functions $f: N \to \mathbb{R}$ and points $q \in N$.

32.3.1 Integral curves

Definition 32.3.9 (Integral curve). Let $X \in \mathfrak{X}(M)$ and let $\gamma :]a,b[\to M$ be a smooth curve on M. γ is said to be an integral curve of X if

$$\gamma'(t) = X(\gamma(t)) \tag{32.15}$$

for all $t \in [a, b]$ where $\gamma'(t) := T\gamma(t, 1)$.

This equation can be viewed as a system of ordinary differential equations. Using the Picard-Lindelöf existence theorem 18.2.1, together with the initial value condition $\gamma(0) = p$, one can find a unique maximal curve satisfying the defining equation 32.3.9. This solution, denoted by γ_p , is called the **integral curve of** X **through** p.

Definition 32.3.10 (Flow). Let $X \in \mathfrak{X}(M)$ and consider its integral curve γ_p through a point $p \in M$. The function σ_t defined by

$$\sigma_t(p) := \gamma_p(t), \tag{32.16}$$

is called the flow of X at time t. The flow domain is defined as the set

$$D(X) := \{ (t, p) \in \mathbb{R} \times M \mid p \in M, t \in]a_p, b_p[\},$$
(32.17)

where $]a_p, b_p[$ is the maximal interval on which $\gamma_p(t)$ is defined.

Property 32.3.11. Suppose that $D(X) = \mathbb{R} \times M$. The flow σ_t has the following properties for all $s, t \in \mathbb{R}$:

- $\sigma_0 = 1_M$
- $\sigma_{s+t} = \sigma_s \circ \sigma_t$, and as a consequence
- $\bullet \ \sigma_{-t} = (\sigma_t)^{-1}.$

These three properties say that σ_t is a bijective group action of the additive group of real numbers on M. This implies that σ_t is indeed a **flow** in the general mathematical sense.

Definition 32.3.12 (Complete vector field). A vector field X is said to be complete if the flow domain for every flow is all of $\mathbb{R} \times M$.

Property 32.3.13. The flow σ_t of a vector field is of class C^{∞} . If X is complete, it follows from the previous property that every flow is a diffeomorphism from M onto itself.

Property 32.3.14. If the manifold M is compact, every vector field $X \in \mathfrak{X}(M)$ is complete.

Property 32.3.15 (Winding number). The winding number of a vector field along a closed integral curve is 1.

32.3.2 Lie derivative

Formula 32.3.16 (Lie derivative for smooth functions). Let $X \in \mathfrak{X}(M)$ and let $f \in C^{\infty}(M)$. The Lie derivative of f with respect to X at $p \in M$ is defined as

$$\mathcal{L}_X f(p) := \lim_{t \to 0} \frac{f(\gamma_p(t)) - f(p)}{t}.$$
(32.18)

This closely resembles the definition of the ordinary derivative on Euclidean space.

Formula 32.3.17 (†). Working out the previous formula and rewriting it as an operator equality gives

$$\mathcal{L}_X = \sum_k X_k \frac{\partial}{\partial x^k}.$$
 (32.19)

It is clear that this is just the vector field X expanded in the basis 29.2.3. One also recovers the behaviour of a tangent vector as a derivation. For smooth functions $f: M \to \mathbb{R}$ this gives

$$\mathcal{L}_X f(p) = X_p(f). \tag{32.20}$$

Formula 32.3.18 (Lie derivative for vector fields[†]). Let $X, Y \in \mathfrak{X}(M)$.

$$\mathcal{L}_X Y(p) := \left. \frac{d}{dt} (\sigma_t^* X) (\gamma_p(t)) \right|_{t=0}. \tag{32.21}$$

Property 32.3.19. Let $X, Y \in \mathfrak{X}(M)$ be vector fields of class C^k . The Lie derivative has the following properties:

- $\mathcal{L}_X Y$ is a vector field.
- Lie bracket: The Lie derivative of vector fields coincides with the commutator:

$$\mathcal{L}_X Y = [X, Y]. \tag{32.22}$$

The fact that this is indeed a derivation on $C^{k-1}(M,\mathbb{R})$ follows Schwarz's theorem 14.5.7. This result shows that the Lie derivative on vector fields turns the space $\mathfrak{X}(M)$ into a real Lie algebra.

• The previous point also implies that the Lie derivative is antisymmetric:

$$\mathcal{L}_X Y = -\mathcal{L}_Y X. \tag{32.23}$$

Definition 32.3.20 (Holonomic basis). Consider a smooth manifold M and an open subset $U \subseteq M$. A local frame $\{e_i\}_{i \leq \dim(M)}$ for TU is said to be holonomic if all the Lie derivatives vanish on U:

$$\mathcal{L}_{e_i}e_j = 0. \tag{32.24}$$

Equivalently, a basis is holonomic if the associated structure coefficients of the Lie algebra $\mathfrak{X}(M)$ vanish on U.

Property 32.3.21. For every holonomic basis there exists a coordinate system on M such that the basis coincides with the coordinate-induced basis.

32.3.3 Frobenius's theorem

Definition 32.3.22 (Distribution). A smooth section of the Grassmann k-plane bundle 32.2.19.

Definition 32.3.23 (Integrable). Let M be a smooth manifold and let $W \in \Gamma(Gr(k, TM))$ be a distribution of k-planes. A submanifold $N \subseteq M$ is said to integrate W with initial condition $p_0 \in M$ if for every $p \in N$ one has that $W(p) = T_p N$ and $p_0 \in N$. W is said to be integrable if there exists such a submanifold N.

Property 32.3.24. If a distribution on M is integrable, M can be written as the (disjoint) union of maximal connected integrable manifolds. These submanifolds are also called the **leaves** of the distribution (the decomposition in leaves defines a *foliation*).

Definition 32.3.25 (Frobenius's integrability condition). A distribution W on a smooth manifold M is said to satisfy the Frobenius integrability condition on an open set $U \subseteq M$ if for every two vector fields X, Y defined on U, such that $X(p) \in W(p)$ and $Y(p) \in W(p)$ for all $p \in U$, the Lie bracket [X, Y](p) is also an element of W(p) for all $p \in U$.

Theorem 32.3.26 (Frobenius's integrability theorem). Let W be a distribution over a smooth manifold M. W is integrable if and only if it satisfies the Frobenius integrability condition.

32.4 Differential k-forms

Definition 32.4.1 (Differential form). A differential k-form is a map

$$\omega: T^k M \to \mathbb{R} \tag{32.25}$$

such that the restriction of ω to each fibre of the bundle T^kM is multilinear and antisymmetric.

The space of all differential k-forms on a manifold M is denoted by $\Omega^k(M)$. Just like $\mathfrak{X}(M)$, it forms a $C^{\infty}(M)$ -module. The space $\Omega^0(M)$ is defined as the space of smooth functions $C^{\infty}(M)$.

Differential forms can also be constructed as sections of an associated vector bundle 32.2.12:

Alternative Definition 32.4.2. Consider the representation

$$\rho_k : \operatorname{GL}(\mathbb{R}^{m*}) \to \operatorname{GL}(\Lambda^k \mathbb{R}^{m*}) : A \mapsto A \wedge \cdots \wedge A.$$

This representation induces an associated vector bundle $\rho_k(\pi_{T^*M})$ of the cotangent bundle on M. A differential k-form is then given by a section of $\rho_k(\pi_{T^*M})$:

$$\Omega^k(M) := \Gamma(\rho_k(\pi_{T^*M})). \tag{32.26}$$

Construction 32.4.3 (Exterior algebra). One can construct a Grassmann algebra 21.6.19 by equipping the graded vector space

$$\Omega^{\bullet}(M) := \bigoplus_{k \ge 0} \Omega^k(M) \tag{32.27}$$

with the wedge product of differential forms which is induced by the wedge product on $\Lambda^k \mathbb{R}^m$. This graded algebra is associative, graded-commutative and unital with the constant function $1 \in C^{\infty}(M)$ as the identity element.

Definition 32.4.4 (Pullback). Let $f: M \to N$ be a smooth function between smooth manifolds and let ω be a differential k-form on N. The pullback of ω by f is defined as

$$f^*(\omega) := \omega \circ f_*. \tag{32.28}$$

This defines a map $f^*: \Omega^{\bullet}(N) \to \Omega^{\bullet}(M)$.

Definition 32.4.5 (Pushforward). Let $f: M \to N$ be a diffeomorphism between smooth manifolds and let ω be a differential k-form on M. The pushforward of ω by f is defined as

$$f_*(\omega) := \omega \circ (f^{-1})_*.$$
 (32.29)

Remark. Note that the pushforward of differential k-forms is only defined for diffeomorphisms, in contrast to pullbacks which only require smooth functions. This also explains why differential forms are the most valuable elements in differential geometry. Vector fields cannot even be pulled back by general smooth maps.

Formula 32.4.6 (Dual basis). Consider the coordinate basis from definition 29.2.3 for the tangent space T_pM . From this set one can construct a natural dual basis for the cotangent space T_p^*M using the natural pairing:

$$\left\langle \frac{\partial}{\partial x^i}, dx^j \right\rangle = \delta_i^j. \tag{32.30}$$

It should be noted that dx^i is not just a notation. In the next section it will be shown that these basis vectors can be obtained by applying the "exterior derivative" to the coordinate functions x^i .

32.4.1 Exterior derivative

Definition 32.4.7 (Exterior derivative). The exterior derivative d_k is a map constructed on the graded algebra of differential k-forms:

$$d_k: \Omega^k(M) \to \Omega^{k+1}(M). \tag{32.31}$$

For k = 0 it is defined by

$$df := \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i \tag{32.32}$$

The object $df \in \Omega^1(M)$ is often called the **differential** of f. This formula can be generalized to higher degree forms as follows:

$$d(fdx_{i_1} \wedge \dots \wedge dx_{i_k}) := df \wedge dx_{i_1} \wedge \dots \wedge dx_{i_k}. \tag{32.33}$$

Remark 32.4.8. Formula 32.32 should be compared with the (informal) formula for the differential of a function that is often used in physics. The main difference is that here the quantities dx^i are not infinitesimal quantities but vectors of unit norm.

Property 32.4.9. The exterior derivatives satisfy the following properties for all $k \geq 0$:

• For all $\omega \in \Omega^k(M)$:

$$d_k \circ d_{k+1} = 0. (32.34)$$

• d_k is an \mathbb{R} -linear map.

These two items say that $(\Omega^{\bullet}(M), d)$ is not just a graded algebra, but in fact a dg-algebra 5.1.9.

• **Graded Leibniz rule** (hence *d* is a graded derivation):

$$d(\omega_1 \wedge \omega_2) = d\omega_1 \wedge \omega_2 + (-1)^j \omega_1 \wedge d\omega_2 \tag{32.35}$$

where $\omega_1 \in \Omega^j(M)$ and $\omega_2 \in \Omega^k(M)$.

• Naturality: If $f \in C^{\infty}(M)$, then $f^*(d\omega) = d(f^*\omega)$.

Remark 32.4.10 (†). The gradient, rotor (curl) and divergence from standard vector calculus² can be rewritten using exterior derivatives as follows: Let $\mathbf{f} := (f_1, f_2, f_3)$ with f_i smooth for every i and let f be a smooth function. Denote the canonical isomorphism between \mathbb{R}^3 and \mathbb{R}^{3*} by \sim .

$$\sim df = \nabla f \tag{32.36}$$

$$\sim (*d\alpha) = \nabla \times \mathbf{f} \tag{32.37}$$

$$*d\omega = \nabla \cdot \mathbf{f} \tag{32.38}$$

The properties in section 21.1.13 now follow from the identity $d^2 = 0$.

Example 32.4.11. Let $f \in C^{\infty}(M, \mathbb{R})$ and let γ be a curve on M. From the definition 32.4.6 of the basis $\{dx_k\}_{k \le n}$ one obtains the following result:

$$\langle df(x), \gamma'(t) \rangle = \sum_{k} \frac{\partial f}{\partial x_k}(x) \gamma_k'(t) = (f \circ \gamma')(t).$$
 (32.39)

²See section 21.1.

Example 32.4.12. An explicit formula for the exterior derivative of a k-form Φ is

$$d\Phi(X_1, \dots, X_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i+1} X_i(\Phi(X_1, \dots, \hat{X}_i, \dots, X_{k+1}))$$

$$+ \sum_{i < j} (-1)^{i+j} \Phi([X_i, X_j], X_1, \dots, \hat{X}_i, \dots, \hat{X}_j, \dots, X_{k+1})$$
(32.40)

where \hat{X} means that this argument is omitted.

32.4.2 Lie derivative

Formula 32.4.13 (Lie derivative of differential forms).

$$\mathcal{L}_X \omega(p) := \lim_{t \to 0} \frac{\sigma_t^* \omega - \omega}{t}(p) \tag{32.41}$$

Formula 32.4.14 (Lie derivative of smooth functions). Using the definition of the exterior derivative of smooth functions 32.32 and the definition of the dual basis 32.4.6, one can rewrite the Lie derivative 32.19 as

$$Xf(p) = df_p(X(p)). \tag{32.42}$$

Property 32.4.15. The Lie derivative has the following Leibniz-type property with respect to differential forms (this follows from equations 32.40 and 32.22):

$$\mathcal{L}_X(\omega(Y)) = (\mathcal{L}_X\omega)(Y) + \omega(\mathcal{L}_XY) \tag{32.43}$$

where X, Y are two vector fields and ω is a 1-form.

32.4.3 Interior product

Definition 32.4.16 (Interior product). Aside from the differential (exterior derivative) one can also define another operation on the algebra of differential forms:

$$\iota_X : (\iota_X \omega)(v_1, \dots, v_{k-1}) \mapsto \omega(X, v_1, \dots, v_{k-1}). \tag{32.44}$$

This antiderivation of degree -1 is called the **interior product** or **interior derivative**. It can be seen as a generalization of the contraction map 21.5.1.

Notation 32.4.17. In certain situations the above notation might become cumbersome. For this reason the notation $X - \omega$ is frequently used.

Formula 32.4.18 (Cartan's magic formula³). Let X be a vector field and let ω be a differential k-form. The Lie derivative of ω along X is given by the following formula:

$$\mathcal{L}_X \omega = \iota_X (d\omega) + d(\iota_X \omega). \tag{32.45}$$

32.4.4 Lie derivative of tensor fields

Formula 32.4.19 (Lie derivative of tensor fields). By comparing the definitions of the Lie derivatives of vector fields 32.3.18 and differential forms 32.4.13, one can see that both definitions are identical upon replacing X by ω . This leads to the following definition of the Lie derivative of a general tensor field $\mathcal{T} \in \Gamma(T^{(k,l)}M)$:

$$\mathcal{L}_X \mathcal{T}(p) := \left. \frac{d}{dt} \sigma_t^* \mathcal{T}(\gamma_p(t)) \right|_{t=0}. \tag{32.46}$$

³Sometimes called Cartan's (infinitesimal) homotopy formula.

Alternative Definition 32.4.20 (Lie derivative of tensor fields). The Lie derivative of tensor fields can also be defined as the unique differential operator satisfying the following axioms:

- 1. \mathcal{L}_X coincides with X on $C^{\infty}(M)$.
- 2. \mathcal{L}_X satisfies the Leibniz rule with respect to tensor products.
- 3. \mathcal{L}_X satisfies the Leibniz rule with respect to the contraction of forms and vector fields.
- 4. \mathcal{L}_X commutes with the exterior derivative.

Property 32.4.21. Every derivation D of the tensor algebra can be decomposed as

$$D = \mathcal{L}_X + S \tag{32.47}$$

for some vector field X and some endomorphism S.

32.4.5 Vector-valued differential forms

Definition 32.4.22 (Vector-valued form). Consider a vector space V and let $E \to M$ be a vector bundle with typical fibre V. A vector-valued differential form on M can be defined in two ways: One can define a vector-valued k-form as a map $\omega : \Gamma(T^kM) \to V$. However, a more general definition is based on sections of an associated bundle:

$$\Omega^k(M;E) := \Gamma(E \otimes \Lambda^k T^* M). \tag{32.48}$$

The latter construction could also be called a "vector bundle-valued differential form".

Construction 32.4.23 (Wedge product). Let $\omega \in \Omega^p(M; E_1)$ and $\nu \in \Omega^q(M; E_2)$. The wedge product of these differential forms is defined as follows:

$$\omega \wedge \nu(v_1, \dots, v_{p+q}) := \frac{1}{p!q!} \sum_{\sigma \in S_{p+q}} \operatorname{sgn}(\sigma) \omega(v_{\sigma(1)}, \dots, v_{\sigma(p)}) \otimes \nu(v_{\sigma(p+1)}, \dots, v_{\sigma(q)}).$$
(32.49)

This is a direct generalization of the formula for the wedge product of ordinary differential forms, where the scalar product (product in the algebra \mathbb{R}) is replaced by the tensor product (product in the tensor algebra). It should be noted that the result of this operation is not a section of any of the original bundles E_1 or E_2 , but rather of the product bundle $E_1 \otimes E_2$.

Construction 32.4.24 (Exterior derivative). The definition of an exterior derivative on E-valued differential forms is more involved than in the case of ordinary forms. The logical thing to do would be defining a derivative through the Leibniz formula. However, without further structure on E there is no natural way of differentiating sections of E.

If E is flat, i.e. if its transition functions are locally constant, one can choose a frame of sections $e^i: U \to E|_U$ induced by the trivializing maps $E|_U \to U \times \mathbb{R}^n$. Locally, one can then express any E-valued differential form as $\omega|_U = \sum_i \omega_i \otimes e^i$ where the ω_i are ordinary differential forms. After setting $de^i := 0$ one can again define an exterior derivative through the Leibniz formula.

Remark 32.4.25. It should be noted that the definition of d depends on the choice of trivialization since the sections e^i depend on this choice.

Definition 32.4.26 (Lie algebra-valued form). A vector-valued differential form where the vector space V is equipped with a Lie algebra structure.

Formula 32.4.27 (Wedge product). Let $\omega \in \Omega^p(M; \mathfrak{g})$ and $\nu \in \Omega^q(M; \mathfrak{g})$ where \mathfrak{g} is a Lie algebra. The wedge product of these differential forms is defined as follows:

$$[\omega \wedge \nu](v_1, \dots, v_{p+q}) := \frac{1}{p!q!} \sum_{\sigma \in S_{p+q}} \operatorname{sgn}(\sigma) [\omega(v_{\sigma(1)}, \dots, v_{\sigma(p)}), \nu(v_{\sigma(p+1)}, \dots, v_{\sigma(q)})]$$
(32.50)

where $[\cdot, \cdot]$ denotes the Lie bracket on \mathfrak{g} .

Formula 32.4.28. Let $\{e_{\mu}\}_{\mu \leq \dim(\mathfrak{g})}$ be a basis for the Lie algebra \mathfrak{g} . One can write any Lie algebra-valued differential forms as $\phi = \phi^{\mu} \otimes e_{\mu}$ and $\psi = \psi^{\nu} \otimes e_{\nu}$, where ϕ^{μ} and ψ^{ν} are ordinary differential forms. The above formula for the wedge product can now be rewritten more elegantly as

$$[\phi \wedge \psi] = (\phi^{\mu} \wedge \psi^{\nu}) \otimes [e_{\mu}, e_{\nu}] \tag{32.51}$$

where \wedge is the wedge product on $\Omega^{\bullet}(M)$ and $[\cdot,\cdot]$ denotes the Lie bracket on \mathfrak{g} .

Corollary 32.4.29 (Graded algebra). Using the above formula it is easy to verify a number of properties similar to the ones of ordinary differential forms. As an example the analogue of the graded-commutativity property on $\Omega^{\bullet}(M)$ is given:

$$[\phi \wedge \psi] = (-1)^{pq+1} [\psi \wedge \phi] \tag{32.52}$$

where $\phi \in \Omega^p(M; \mathfrak{g})$ and $\psi \in \Omega^q(M; \mathfrak{g})$. Here the extra factor -1 arises due to the antisymmetry of the Lie bracket.

Analogously, one can prove that the Lie algebra-valued wedge product satisfies a graded Jacobi-type identity:

$$(-1)^{pr} [\phi \wedge [\psi \wedge \theta]] + (-1)^{pq} [\psi \wedge [\theta \wedge \phi]] + (-1)^{qr} [\theta \wedge [\phi \wedge \psi]] = 0$$
(32.53)

where $\theta \in \Omega^r(M; \mathfrak{g})$.

32.5 Integration Theory

For the theory of measure spaces and Lebesgue integration see chapter 16.

32.5.1 Orientation and densities

One can define an orientation of manifolds by generalizing the situation for vector spaces 21.6.23:

Definition 32.5.1 (Orientable manifold). First, the definition of the volume element needs to be slightly modified. A **volume form** on M is a nowhere-vanishing top-dimensional differential form $\text{Vol} \in \Omega^n(M)$ where $n = \dim(M)$. The definition of an orientation is now virtually the same as for vector spaces.

An **oriented atlas** is given by all charts of M for which the pullback of the Euclidean volume form is a positive multiple of Vol. This also implies that the transition functions have a positive Jacobian determinant. The existence of such a volume form turns a differentiable manifold into an **orientable manifold**.

Alternatively, an orientable manifold with volume form Vol is said to be **positively oriented** if it comes equipped with a smooth choice of bases $\{v_1, \ldots, v_n\}$ for T_pM such that

$$\operatorname{Vol}_{p}(v_{1},\ldots,v_{n})>0.$$
 (32.54)

Example 32.5.2. Let $M = \mathbb{R}^n$. The canonical Euclidean volume form is given by the determinant map

$$\det: (u_1, \dots, u_n) \mapsto \det(u_1, \dots, u_n)$$
 (32.55)

where the u_n 's are expressed in the canonical basis (e_1, \ldots, e_n) . The terminology of "volume forms" is justified by noting that the determinant map gives the signed volume of the *n*-dimensional parallelotope spanned by the vectors $\{u_1, \ldots, u_n\}$.

Property 32.5.3. Let ω_1, ω_2 be two volume forms on M. Because the space of top-degree forms is one-dimensional, there exists a smooth function f such that

$$\omega_1 = f\omega_2$$
.

Furthermore, the sign of this function is constant on every connected component of M.

One can also rephrase orientability of manifolds in terms of bundles:

Definition 32.5.4 (Orientation bundle). Consider a smooth manifold M. The transition function A of TM is given by the Jacobian of the transitions functions on M. The associated line bundle with transition function $\operatorname{sgn} \det(A)$ is called the orientation bundle o(M).

In general one can define the orientation bundle o(E) for any vector bundle E, where one replaces the Jacobian in the above construction by the transition maps of E. From this it is clear that the orientation bundle o(M) is the same as o(TM).

Alternative Definition 32.5.5 (Orientable manifold). A smooth manifold is orientable if its orientation bundle is trivial.

Remark 32.5.6. By definition of the orientation bundle, the transition functions are those that have a positive determinant. This gives the equivalence with Definition 32.5.1. In the next chapter on principal bundles yet another (equivalent) definition of orientability in terms of G-structures will be given (see Example 33.5.5).

Further below integration theory will be generalized from orientable manifolds to non-orientable manifolds. To achieve this goal the notion of differential forms needs to be generalized. A good introduction for this is [114].

Definition 32.5.7 (Pseudoscalars). Let G be a Lie group and consider a group morphism $\phi: G \to \mathrm{O}(p,q)$ for some $p,q \in \mathbb{N}$. The pseudoscalar representation of G, induced by ϕ , is defined as the one-dimensional representation given by

$$\mathbf{1}_{\operatorname{sgn}}: g \mapsto \det(\phi(g)). \tag{32.56}$$

The notation $\mathbf{1}_{sgn}$ refers to the fact that this representation is a generalization of the alternating (or sign) representation of the permutation groups S_n .

Sections of a vector bundle with transition functions defined by $\mathbf{1}_{sgn}$ are generally called **pseudoscalar fields**. When using the pseudoscalar representation of the transition functions of the tangent bundle TM to construct an associated bundle, one obtains the pseudoscalar bundle Ψ_M . A vector bundle twisted by the pseudoscalar bundle Ψ often receives the prefix "pseudo", e.g. the Ψ -twisted k-form bundle is called the bundle of k-pseudoforms.

Any Riemannian manifold admits a canonical pseudoscalar bundle Ψ associated to its (orthogonal) frame bundle.

Definition 32.5.8 (Tensor density). Consider a vector bundle $E \to M$ defined by transition maps A. The associated bundle of (tensor) s-densities is obtained by using the representation

$$\rho: A \mapsto \det(A)^{-s} \tag{32.57}$$

The number s is called the **weight** of the density. For $E \equiv TM$ one obtains the (tensor) s-densities on M, which in the case of s = 1 are equivalent to top-dimensional forms on M. When twisting a vector bundle by an s-density bundle, the prefix "s-weighted" is often added.

Example 32.5.9 (Pseudovectors). The representation

$$\rho: A \mapsto \operatorname{sgn} \det(A)A, \tag{32.58}$$

gives rise to a bundle similar to the tangent bundle where the sign of the cocycles t_{ji} now has an influence on the fibres. Sections of such bundles are called **pseudovector fields**. This construction is equivalent to twisting the tangent bundle by the pseudoscalar bundle Ψ , hence its name.

Remark 32.5.10 (Honest densities). Now one should pay incredible attention to the definition of a **density** (i.e. without the prefix "tensor"). A density is defined as an n-pseudoform, i.e. a section of the **density bundle** $|\Omega|(M) := \Omega^n(M) \otimes o(M)$. Here the transition function is $|\det(A)|$, where A is the transition function of T^*M . These are the objects one can integrate over any manifold, even the non-orientable ones. They are essentially maps $\Gamma(\det(T^*M)) \to C^{\infty}(M)$.

A naive way to construct a density on a manifold M is by choosing a volume form Vol(M) and taking the absolute value |Vol(M)|. Honest s-densities are defined analogous to tensor s-densities, namely they transform according to the character $|\det(A)|^s$.

Property 32.5.11 (Orientability). A smooth manifold is orientable if and only if its canonical line bundle 32.2.18 is trivial. Furthermore, for orientable manifolds there exists an isomorphism $\Gamma(\det(T^*M)) \cong \Gamma(|\Omega|(M))$.

32.5.2 Orientation in homology

In this section a characterization of orientability in terms of the homology of a manifold is given. See sections 9.2 and 9.3 for an introduction to homology.

Let us begin with the canonical example \mathbb{R}^n . Intuitively one would expect an orientation on Euclidean space to be a property that is preserved under rotations and reversed by reflections. On the sphere these operations have degree 1 and -1 respectively, so the perfect choice for an orientation would be the generator of $H_n(S^n; \mathbb{Z}) \cong \mathbb{Z}$. Luckily for us, there is the isomorphism $H_n(S^n; \mathbb{Z}) \cong H_n(\mathbb{R}^n, \mathbb{R}^n \backslash *; \mathbb{Z})$. So for every point $x \in \mathbb{R}^n$ one can define a local orientation as a choice of generator of the local homology group $H_n(\mathbb{R}^n, \mathbb{R}^n \backslash x; \mathbb{Z})$.

For a given manifold M one then defines a global orientation (if it exists) as a choice of local orientation for every point $p \in M$ such that every two points admitting a common covering chart have consistent local orientations.

Property 32.5.12 (Orientability). If a closed connected manifold is $(\mathbb{Z}$ -)orientable, there exists an isomorphism

$$H_n(M; \mathbb{Z}) \cong H_n(M, M \setminus p; \mathbb{Z})$$
 (32.59)

⁴One can also define honest s-densities $|\Omega|^s(M)$ by combining definition 32.5.8 with the orientation bundle to obtain transition maps $|\det(A)|^s$ (for A the cotangent transition map). This is also the only possible way to generalize the s-densities of definition 32.5.8 to real s.

for all points $p \in M$. A choice of class in $H_n(M; \mathbb{Z})$ that maps to a generator of $H_n(M, M \setminus p; \mathbb{Z})$ for all $p \in M$ is called a **fundamental class** or **orientation class**.

In the case where M is disconnected, the fundamental class equals the direct sum of the generators of the connected components⁵.

We can generalize the above definition and property to arbitrary unital rings R:

Definition 32.5.13 (*R*-orientability). A manifold is *R*-orientable if a consistent choice of local *R*-orientation exists or, equivalently, if $H_n(M;R) \cong R$.

Property 32.5.14 (Non-orientable manifolds). If M is not R-orientable, the map

$$H_n(M;R) \to H_n(M,M\backslash p;R)$$

is still injective with image $\{r \in R : 2r = 0\}$. In particular, every closed manifold is \mathbb{Z}_2 -orientable.

Property 32.5.15 (Orientability implies R-orientability). By the universal coefficient theorem it follows that a \mathbb{Z} -orientable manifold is also R-orientable for all unital rings R. Conversely, a manifold is \mathbb{Z} -orientable if it is R-orientable for all unital rings R.

32.5.3 Integration of top-dimensional forms

Definition 32.5.16 (Measure zero). A subset $U \subset M$ of an orientable manifold is said to be of measure zero if it is the countable union of inverse images (with respect to the chart maps on M) of null sets in \mathbb{R}^n .

Definition 32.5.17 (Integrable form). A differential form is said to be integrable if its components with respect to any basis of $\Omega^k(M)$ are Lebesgue integrable on \mathbb{R}^n .

Formula 32.5.18 (Integration with compact support). Consider a top-dimensional form $\omega \in \Omega^{\dim(M)}$ on M with compact support on a coordinate patch $U \subset M$.

$$\int_{M} \omega = \int_{U} \omega := \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \omega_{12...n}(x) dx^{1} dx^{2} \cdots dx^{n}. \tag{32.60}$$

This integral is well-defined because under an orientation-preserving change of coordinates the component $\omega_{1...n}$ transforms as $\omega'_{1...n} = \det(J)\omega_{1...n}$ where J is the Jacobian of the coordinate transformation. Inserting this in the integral and replacing dx_i by dx'_i then gives the well-known change-of-variables formula from Lebesgue integration theory.

If one requires the manifold M to be paracompact, such that every open cover $\{U_i \subseteq M\}_{i \in I}$ admits a subordinate partition of unity $\{\phi_i\}_{i \in I}$, one can define the integral of a general compactly supported form $\omega \in \Omega^n(M)$ as follows:

$$\int_{M} \omega := \sum_{i \in I} \int_{U_{i}} \rho_{i} \omega. \tag{32.61}$$

Remark 32.5.19. Although integration was only defined for compactly supported forms, the general formula can also be applied to general forms in certain cases. It is well-defined whenever the forms $\rho_i \omega$ are integrable and the sum in the definition converges.

Property 32.5.20 (Compact manifolds). Let M be a smooth compact manifold. Because every form on M is automatically compactly supported, all forms are integrable on M.

⁵Following the idea of the additivity axiom (see 9.4.1).

Property 32.5.21 (Invariance under pullbacks). Consider an orientation-preserving diffeomorphism $f: M \to N$.

$$\int_{M} f^* \omega = \int_{N} \omega \tag{32.62}$$

Notation 32.5.22. Because the integral of differential forms is linear in the integrand and additive over disjoint unions, it can be interpreted as a linear pairing. This inspires the following notation:

$$\langle M, \omega \rangle := \int_{M} \omega.$$
 (32.63)

32.5.4 Stokes's theorem

Theorem 32.5.23 (Stokes's theorem). Let M be an orientable smooth manifold with boundary ∂M and let ω be a differential k-form on M.

$$\int_{\partial M} \omega = \int_{M} d\omega. \tag{32.64}$$

Corollary 32.5.24. The Kelvin-Stokes theorem 21.26, the divergence theorem 21.27 and Green's identity 21.28 are immediate results of this (generalized) Stokes's theorem.

32.5.5 Distributions

For more information on the theory of distributions on Euclidean space see chapter 17.

There are two ways to introduce distributions on general manifolds. Either one uses the locally Euclidean character, defines distributions on charts and glues them together using some compatibility data (see for example [40]) or one defines them as the dual of the space of smooth functions (with compact support) as in the Euclidean case. In this section the second approach is followed.

The base manifold M will be required to be paracompact and second-countable. Moreover, it is assumed that a Riemannian metric g is given (see chapter 34 for more information). This data allows one to turn the space of smooth sections of any tensor bundle over M into a Fréchet space using a generalization of the seminorms 17.2 where the (partial) derivatives ∂_i are replaced by (Levi-Civita) covariant derivatives ∇_i . The norm will now also be the one induced (fibrewise) by g. In a similar way one can for every compact subset $K \subset M$ define the space $\mathcal{D}(K, \otimes^p)$ of smooth p-tensor fields with support in K and by taking the direct limit (with its associated topology) one obtains the space of smooth compactly supported p-tensor fields $\mathcal{D}(M, \otimes^p)$.

Definition 32.5.25 (Tensor distribution). The space of tensor distributions of order p is defined as the continuous dual of $\mathcal{D}(M, \otimes^p)$.

Much of the theory of distributions on Euclidean space can be generalized to smooth manifolds without too much trouble (for example one again obtains a dense inclusion $\mathcal{D} \hookrightarrow \mathcal{D}'$). An interesting generalization is the definition of the covariant derivative:

Definition 32.5.26 (Covariant derivative). Let (M, g) be a Riemannian manifold with associated Levi-Civita connection ∇ . The covariant derivative of a tensor distribution T is defined using duality as follows (as in the case of Euclidean space this can be interpreted as an extension of the integration by parts formula):

$$\langle \nabla T, \sigma \rangle := -\langle T, g \cdot \nabla \sigma \rangle \tag{32.65}$$

where $g \cdot \nabla \sigma$ denotes the internal contraction (generalizing the divergence of a vector field) which, in local coordinates, is given by

$$(g \cdot \nabla \sigma)^{i_1 \dots i_p} = \nabla_i \sigma^{j i_1 \dots i_p}. \tag{32.66}$$

?? COMPLETE? ??

32.6 Cohomology

32.6.1 de Rham complex

Definition 32.6.1 (Exact form). If $\omega \in \Omega^k(M)$ can be written as $\omega = d\chi$ for some $\chi \in \Omega^{k-1}(M)$, it is said to be exact:

$$\operatorname{im}(d_k) = \{ \omega \in \Omega^{k+1}(M) \mid \omega \text{ is exact} \}. \tag{32.67}$$

Definition 32.6.2 (Closed form). Let $\omega \in \Omega^k(M)$. If $d\omega = 0$, it is said to be closed:

$$\{\omega \in \Omega^k(M) \mid \omega \text{ is closed}\} \subseteq \ker(d_k).$$
 (32.68)

Remark 32.6.3. From the first item of Property 32.4.9 it follows that every exact form is closed. The converse, however, is not true (see 32.6.9 below for more information).

Definition 32.6.4 (de Rham complex). The sequence

$$0 \longrightarrow \Omega^{0}(M) \longrightarrow \Omega^{1}(M) \longrightarrow \cdots \longrightarrow \Omega^{\dim(M)}(M) \longrightarrow 0$$
 (32.69)

together with the sequence of exterior derivatives d_k forms a cochain complex by property 32.4.9. This complex is called the de Rham complex $H_{dR}^{\bullet}(M)$.

The relation between closed and exact forms can be used to define the de Rham cohomology groups:

Definition 32.6.5 (de Rham cohomology). Following definition 5.1.3 we define the k^{th} de Rham cohomology group on M as the following quotient space:

$$H_{dR}^k(M) := \frac{\ker(d_k)}{\operatorname{im}(d_{k-1})}.$$
 (32.70)

This quotient space is a vector space. Two elements of the same equivalence class in $H_{dR}^k(M)$ are said to be **cohomologous**.

Definition 32.6.6 (Integral form). A closed k-form ω that lies in the image of the inclusion $H^k(M,\mathbb{Z}) \hookrightarrow H^k(M,\mathbb{R})$. Equivalently, a closed k-form is integral if integrating it over any k-cycle with integral coefficients gives an integer.

Formula 32.6.7 (Cup product). Let $[\nu] \in H_{dR}^k$ and $[\omega] \in H_{dR}^l$. The cup product on de Rham cohomology is given by

$$[\nu] \smile [\omega] := [\nu \wedge \omega]. \tag{32.71}$$

The following theorem allows to write $H^{\bullet}(M)$ for the de Rham cohomology on M:

Theorem 32.6.8 (de Rham). The de Rham cohomology over a smooth manifold M is isomorphic to the singular cohomology⁶ over M.

⁶See section 9.3 for more information.

Theorem 32.6.9 (Poincaré lemma⁷). For every point $p \in M$ there exists a neighbourhood on which the de Rham cohomology is trivial:

$$\forall p \in M : \exists U \subseteq M : H^k(U) = 0. \tag{32.72}$$

This implies that every closed form is locally exact, i.e. if $d\omega = 0$ at the point $p \in M$ then there exist a neighbourhood $U \subseteq M$ of p and a differential form λ such that

$$\omega = d\lambda \tag{32.73}$$

at all points $p' \in U$. More generally, this lemma says that the following isomorphism exists for every smooth manifold M:

$$H^{\bullet}(M \times \mathbb{R}^n) \cong H^{\bullet}(M). \tag{32.74}$$

In fact, this can even be further generalized due to the homotopy axiom of de Rham cohomology:

$$H^{\bullet}(E) \cong H^{\bullet}(M) \tag{32.75}$$

for every vector bundle E over M.

Definition 32.6.10 (Relative cohomology). Consider the submanifold inclusion $\iota: S \hookrightarrow M$. The relative de Rham complex is defined as follows:

$$\Omega^{n}(M,S) := \Omega^{n}(M) \oplus \Omega^{n-1}(S) \tag{32.76}$$

where the coboundary operator d is defined by $d(\omega, \lambda) := (d\omega, \iota^*\omega - d\lambda)$. The relative de Rham cohomology $H^{\bullet}(M, S)$ is defined as the cohomology of this complex. Classes are represented by closed forms on M that restrict to exact forms on S.

This definition can in fact be generalized to any smooth map $f: M \to N$ by replacing ι^* in the coboundary by f^* . This cohomology ring is denoted by $H^{\bullet}(f)$. For all smooth maps f we obtain the following long exact sequence:

$$\cdots \longrightarrow H^k(f) \longrightarrow H^k(M) \longrightarrow H^k(N) \longrightarrow H^{k+1}(f) \longrightarrow \cdots . \tag{32.77}$$

The de Rham theorem above can be generalized to the setting of equivariant cohomology 9.5.1:

Property 32.6.11 (Equivariant de Rham theorem). Consider a smooth manifold M with a smooth G-action and let $W(\mathfrak{g})$ be the Weil algebra 30.4.69 of G. Construct the tensor product dgca $\Omega^{\bullet}(M) \otimes W(\mathfrak{g})$ with differential $d_{dR} + d_W$. The infinitesimal G-action gives a map $\mathfrak{g} \to \mathfrak{X}(M)$, so Cartan calculus can be extended to all of $\Omega^{\bullet}(M) \otimes W(\mathfrak{g})$. The **basic differential forms** are defined as the kernel of the Cartan operators $\iota_{\xi}, \mathcal{L}_{\xi}$ for all $\xi \in \mathfrak{g}$. This subcomplex, with the induced differential $d_{dR} + d_W$, is called the **Weil model** of equivariant de Rham cohomology.

If G is compact and connected, the cohomology of the Weil model is isomorphic to the G-equivariant cohomology $H^{\bullet}_{G}(M)$.

Property 32.6.12 (Cohomological models). The intersection of the basic subcomplex with $\Omega^{\bullet}(M)$ can be identified with the complex of tensorial (basic) differential forms 33.3.14, i.e. the pullback $\pi^*\Omega^{\bullet}(M) \subset \Omega^{\bullet}(P)$. On the other hand, the intersection with the Weil algebra gives a model for the classifying space BG (the Weil algebra itself gives a model for the total spacee EG).

⁷The original theorem states that on a contractible space (see definition 9.1.7) every closed form is exact.

32.6.2 Integration

Now, we can also give a little side note about why the de Rham cohomology groups 32.6.5 really form a cohomology theory. For this we need some concepts from homology which can be found in section 9.2. Let M be a compact differentiable manifold and let $\{\lambda_i : \Delta^k \to M\}$ be the set of singular k-simplexes on M.

Suppose that we want to integrate a form over a singular k-chain $C = \sum_{i=0}^{k} a_i \lambda_i$ on M. By integration we can pair the k-form ω and the chain C as if they are dual objects (hence p-forms are also called p-cochains) to produce a real number⁸:

$$\langle \cdot, C \rangle : \Omega^n(M) \to \mathbb{R} : \omega \mapsto \int_C \omega = \sum_{i=0}^k a_i \int_{\Delta_k} \lambda_i^* \omega$$
 (32.78)

where λ_i^* pulls ω back to Δ^k (which is a subset of \mathbb{R}^k as required). Stokes's theorem 32.5.23 then tells us that

$$\int_{C} d\omega = \int_{\partial C} \omega. \tag{32.79}$$

Using the pairing $\langle \cdot, \cdot \rangle$ this can be rewritten more explicitly as

$$\langle d\omega, C \rangle = \langle \omega, \partial C \rangle. \tag{32.80}$$

The operators d and ∂ can thus be interpreted as formal adjoints. After checking (again using Stokes' theorem) that all chains C and cochains ω belonging to the same equivalence classes $[C] \in H_k(M;\mathbb{R})$ and $[\omega] \in H^k(M;\mathbb{R})$ give rise to the same number $\langle \omega, C \rangle$, we see that the singular homology groups and the de Rham cohomology groups on M are well-defined dual groups. The name cohomology is thus well-chosen for 32.6.5.

32.6.3 Cohomology with compact support

Because of integration is involved in all statements in this section, we will assume all manifolds and bundles to be orientable unless states otherwise.

The following definition characterizes cohomology with compact support directly through its relation to compact sets:

Alternative Definition 32.6.13 (Cohomology with compact support). Consider a (not necessarily orientable) manifold M. The cohomology with compact support $H_c^{\bullet}(M)$ can be defined as the following direct limit:

$$H_c^{\bullet}(M) := \varinjlim_{\text{compact } K} H^{\bullet}(M, M \backslash K). \tag{32.81}$$

Property 32.6.14 (Relation to reduced cohomology). For any topological space X, the inclusion $U \hookrightarrow X$ for any open U induces a long exact sequence in compactly supported cohomology. Performing excision by $V := X \setminus U$ in the above definition of compact cohomology gives $H^{\bullet}(X, X \setminus K \cup V) \cong H^{\bullet}(U, U \setminus K)$ and thus $H^{\bullet}_{c}(X, V) \cong H^{\bullet}_{c}(U)$.

If we choose X to be the one-point compactification \widehat{M} of M and take U=M, the aforementioned long exact sequence implies that

$$H_c^{\bullet}(M) \cong H^{\bullet}(\widehat{M}, *) \cong \widetilde{H}^{\bullet}(\widehat{M}),$$
 (32.82)

where it is used that both * and \widehat{M} are compact (this is true for Hausdorff spaces).

⁸This requires the chain group to have real coefficients instead of integer coefficients as is mostly used in homology.

Theorem 32.6.15 (Poincaré duality). Let M be a smooth m-dimensional manifold. The pairing $\int : H^k(M) \otimes H_c^{m-k}(M) \to \mathbb{R}$ induces an isomorphism on cohomology:

$$H^k(M) \cong \left(H_c^{m-k}(M)\right)^*. \tag{32.83}$$

If M is of finite type, the converse also holds:

$$H_c^k(M) \cong \left(H^{m-k}(M)\right)^*. \tag{32.84}$$

Corollary 32.6.16 (Poincaré lemma for compact cohomology). Let M be a (not necessarily orientable) smooth manifold of finite type. For every rank-n vector bundle E over M the following isomorphism exists

$$H_c^{\bullet}(E) \cong H_c^{\bullet - n}(M).$$
 (32.85)

Definition 32.6.17 (Poincaré dual). Let M be a smooth m-dimensional manifold and let $i: S \to M$ be a closed k-dimensional submanifold. The Poincaré dual of S in M is the unique cohomology class $[\eta_S] \in H^{m-k}(M)$ such that

$$\int_{S} i^* \omega = \int_{M} \omega \wedge \eta_S \tag{32.86}$$

for all compactly supported $\omega \in H_c^k(M)$. If S is compact in M, two Poincaré duals exist:

- Closed dual: The Poincaré dual obtained by using the fact that S is compact and hence closed in M.
- Compact dual: Because S is compact, all forms $\omega \in H^k(M)$ (not only the compactly supported ones) can be integrated over S and, assuming M is of finite type, Poincaré duality implies that there exists a unique cohomology class with compact support η'_S such that

$$\int_{S} i^* \omega = \int_{M} \omega \wedge \eta_S' \tag{32.87}$$

for all $\omega \in H^k(M)$.

Remark 32.6.18. Because the compact Poincaré dual induces a pairing on all closed forms ω , which include the compactly supported ones, the compact dual is equal to the closed Poincaré dual as a differential form. However, as elements in cohomology these can be quite different.

Property 32.6.19 (Localization principle). The support of the compact Poincaré dual of a compact submanifold S may be shrunk to any neighbourhood of S. More generally, the support of the (closed) Poincaré dual of a closed submanifold S can be shrunk to any tubular neighbourhood of S.

Formula 32.6.20 (Transversal intersections). The Poincaré dual of a transversal intersection is equal to the wedge product of the individual Poincaré duals:

$$\eta_{S \pitchfork T} = \eta_S \wedge \eta_T. \tag{32.88}$$

Definition 32.6.21 (Compact vertical cohomology). Let $\pi: E \to M$ be a smooth vector bundle over M. A differential form $\omega \in \Omega^{\bullet}(E)$ is an element of $\Omega^{\bullet}_{cv}(E)$ if $\operatorname{supp}(\omega) \cap \pi^{-1}(K)$ is compact for every compact subset $K \subset M$. The cohomology of this complex is called the **de Rham cohomology with compact support in the vertical direction**.

Remark. The above definition implies that $\omega \in \Omega_{cv}^{\bullet}(E)$ is compactly supported on each fibre $\pi^{-1}(p), p \in M$. This observation explains the name of the cohomology theory.

Definition 32.6.22 (Fibre integration). Differential forms with vertically compact support on a rank-n vector bundle $\pi: E \to M$ can be divided into two classes:

- **Type 1**: those locally of the form $f(x, u)\pi^*\phi \wedge (du_{i_1} \wedge \cdots \wedge du_{i_k})$, where ϕ is a form on the base manifold M, f has compact support and k < n.
- **Type 2**: those locally of the form $f(x, u)\pi^*\phi \wedge (du_1 \wedge \cdots \wedge du_n)$ where ϕ is a form on the base manifold M and f has compact support.

We define the fibre integration map $\pi_*: \Omega_{cv}^{\bullet}(E) \to \Omega^{\bullet - n}(M)$ as follows. If ω is of type 1, then $\pi_*\omega := 0$. If ω is of type 2, then

$$\pi_*\omega := \left(\int \dots \int f(x, u) du_1 \dots du_n \right) \phi. \tag{32.89}$$

Formula 32.6.23 (Projection formula). Consider a rank-n vector bundle $\pi: E \to M$. For every pair of forms $\phi \in \Omega^{\bullet}(M)$ and $\omega \in \Omega^{\bullet}_{cv}(E)$, the following formula holds:

$$\pi_*(\pi^*\phi \wedge \omega) = \phi \wedge \pi_*\omega. \tag{32.90}$$

Furthermore, if $\phi \in \Omega_c^k(M)$ and $\omega \in \Omega_{cv}^{m+n-k}(E)$,

$$\int_{E} \pi^* \phi \wedge \omega = \int_{M} \phi \wedge \pi_* \omega. \tag{32.91}$$

Theorem 32.6.24 (Thom isomorphism). For every rank-n vector bundle $\pi : E \to M$, where M is (not necessarily orientable and) of finite type, fibre integration gives the following isomorphism:

$$\pi_*: H^{\bullet}_{cv}(E) \cong H^{\bullet - n}(M): \mathcal{T}. \tag{32.92}$$

Corollary 32.6.25 (Poincaré lemma for vertically compact cohomology).

$$H_{cv}^{\bullet}(M \times \mathbb{R}^n) \cong H^{\bullet - n}(M).$$
 (32.93)

Formula 32.6.26 (Thom isomorphism). Because \mathcal{T} and π_* are mutual inverses and, hence, $\pi_*\Phi = 1$, the projection formula implies that

$$\mathcal{T}(\omega) = \pi^* \omega \wedge \Phi, \tag{32.94}$$

where $\Phi := \mathcal{T}(1) \in H^0(M)$ is the **Thom class** of M.

Property 32.6.27 (Orientation class). The Thom class Φ restricts to a generator of the cohomology of the typical fibre:

$$H_c^n(V) \cong \widetilde{H}^n(S^n) \cong H^n(S^n).$$

For compact orientable manifolds (e.g. S^n) such a generator gives rise to a generator of the homology group H_n , i.e. it gives rise to an orientation class 32.5.12.

Property 32.6.28 (Poincaré dual). The Poincaré dual of a closed submanifold is equal to the Thom class of its normal bundle.

The construction of the Thom isomorphism involves some technicalities. For example, throughout the literature, the Thom isomorphism is stated in various forms using compactly supported cohomology, relative cohomology or reduced cohomology.

Definition 32.6.29 (Thom space). Let $E \to M$ be a vector bundle. For every fibre in E one can construct its one-point compactification 7.5.27 and by gluing these together the **sphere** bundle Sph(E) is obtained. The quotient space Sph(E)/B, where all the adjoined points are identified, is called the Thom space Th(E).

By equipping E with a metric (Chapter 34), one can give an alternative definition. Let V be the typical fibre of E. A new bundle, the unit sphere bundle S(E), where the typical fibre is the unit sphere $S(V) := \{v \in V \mid ||v|| = 1\}$, can now be constructed. (It should be noted that this new bundle is not a vector bundle since the unit sphere is not a vector space.) A similar construction leads to the unit disk bundle D(E), where the typical fibre is the unit disk $D(V) := \{v \in V \mid ||v|| \le 1\}$. The Thom space Th(E) can be shown to be isomorphic to the quotient space S(E)/D(E).

Property 32.6.30. If the base manifold M is compact, the Thom space is obtained as the one-point compactification of the total space E.

Property 32.6.31 (Different forms of Thom isomorphism). Let $E \to M$ be a vector bundle and denote the complement of the zero section by E_0 as in 32.2.7. Homotopy invariance implies that

$$H^{\bullet}(D(E), S(E)) \cong H^{\bullet}(E, E_0). \tag{32.95}$$

Then, using Result 32.1.16 together with the dual of Property 9.2.33, one can show that the reduced cohomology of the Thom space Th(E) is isomorphic to the relative cohomology of the pair (E, E_0) :

$$\widetilde{H}^{\bullet}(\operatorname{Th}(E)) \cong H^{\bullet}(E, E_0).$$
 (32.96)

To relate this to vertically compact cohomology, Property 32.6.14 can be adapted. Compact support gave rise to the (reduced) cohomology of the compactified space. By analogy, vertically compact support corresponds to compactifications of the fibres, which is exactly how the Thom space is constructed.

The above arguments finally lead to the following triangle of isomorphisms:

$$\widetilde{H}^{\bullet}(\operatorname{Th}(E))$$

$$\cong \qquad \cong \qquad \cong$$

$$H^{\bullet}(E, E_{0}) \xrightarrow{\cong} H^{\bullet}_{cv}(E)$$

$$(32.97)$$

Definition 32.6.32 (Thom spectrum). Let $E \to M$ be a vector bundle. The Thom spectrum of E is defined as the suspension spectrum of its Thom space:

$$(\Sigma^{\infty} \operatorname{Th}(E))_n \cong \operatorname{Th}(\mathbb{R}^n \oplus E), \tag{32.98}$$

where $\operatorname{Th}(\mathbb{R}^n \oplus E) \cong \Sigma^n \operatorname{Th}(E)$ was used.

Now, consider the sequence $(\xi_n)_{n\in\mathbb{N}}$ of universal vector bundles. For every ξ_n , define the n^{th} component space as follows:

$$MO_n := \text{Th}(\xi_n). \tag{32.99}$$

The Whitney sum $\xi_n \oplus \mathbb{R}$ can be obtained as a pullback of ξ_{n+1} . This map induces a morphism $\Sigma MO_n \to MO_{n+1}$, which gives the n^{th} structure map of "the" Thom spectrum $MO.^9$

⁹Note that the Thom spectrum as defined here is not an Ω -spectrum 9.4.6, it is merely a sequential spectrum (prespectrum).

Definition 32.6.33 (Euler class). Consider a vector bundle $E \to M$ together with its Thom class Φ . The Euler class e(E) is defined as the pullback $s_0^*\Phi$ of the Thom class along the zero section of E.

Property 32.6.34. If the orientation of E is reversed, the Euler class changes sign.

The following property distinguishes the Euler class among all characteristic classes of E:

Property 32.6.35 (Normalization). If the vector bundle admits a nowhere-vanishing section, its Euler class vanishes.

32.6.4 Čech-de Rham complex

Theorem 32.6.36 (Mayer-Vietoris sequence). Consider a smooth manifold M with an open covering $U \cup V$. The cohomology of U, V is related to that of M by the following short exact sequence:

$$0 \longrightarrow H^{\bullet}(M) \stackrel{\iota_U \oplus \iota_V}{\longrightarrow} H^{\bullet}(U) \oplus H^{\bullet}(V) \stackrel{\pi_2 - \pi_1}{\longrightarrow} H^{\bullet}(U \cap V) \longrightarrow 0.$$
 (32.100)

Definition 32.6.37 (Čech-de Rham complex). The Čech complex 10.3.10 associated to constant sheaf $b\mathbb{R}$.

The Mayer-Vietoris sequence can be generalized to a statement for the Čech-de Rham complex:

Property 32.6.38 (Mayer-Vietoris sequence). The horizontal complex

$$0 \longrightarrow \Omega^{\bullet}(M) \longrightarrow \prod_{i_0} \Omega^{\bullet}(U_{i_0}) \longrightarrow \prod_{i_0, i_1} \Omega^{\bullet}(U_{i_0 i_1}) \longrightarrow \cdots$$
 (32.101)

is acyclic, i.e. the δ -cohomology of the Čech-de Rham complex vanishes.

An important corollary is that one can compute the (de Rham) cohomology of M using the above double complex:

Theorem 32.6.39. The restriction map $\Omega^{\bullet}(M) \to C^{\bullet}(\mathcal{U}; \Omega^{\bullet})$ induces an isomorphism in cohomology.

One can also augment the Čech-de Rham complex in the other direction by the kernel of the de Rham differential in degree 1. These are the locally constant functions on the intersections $U_{i_0...i_p}$. The cohomology of this augmenting sequence $C^{\bullet}(\mathcal{U}, \flat \mathbb{R})$ is called the **Čech cohomology** of M. By the same reason as for why the Mayer-Vietoris sequence implied the above theorem, we obtain the following theorem:

Theorem 32.6.40 (Čech = **de Rham).** For a smooth manifold M, admitting a good cover \mathcal{U} , the Čech cohomology of \mathcal{U} is isomorphic to the de Rham cohomology of M:

$$H^{\bullet}(M) \cong \check{H}^{\bullet}(\mathcal{U}; \flat \mathbb{R}).$$
 (32.102)

By noting that good covers are *cofinal* in the set of open covers, one can pass to the full Čech cohomology:

$$H^{\bullet}(M) \cong \check{H}^{\bullet}(M; \flat \mathbb{R}).$$
 (32.103)

Corollary 32.6.41. All compact manifolds admit a finite good cover and hence have finite-dimensional de Rham cohomology.

Property 32.6.42 (Exponential sequence). Consider the following exact sequence of topological groups:

$$0 \longrightarrow \mathbb{Z} \xrightarrow{2\pi} \mathbb{C} \xrightarrow{\exp} U(1) \longrightarrow 0. \tag{32.104}$$

Let (M, \mathcal{O}_M) be a complex manifold (or a smooth manifold and restrict the above sequence to the real numbers). The exact sequence induces an exact sequence of structure sheaves:

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathcal{O}_M \longrightarrow \mathcal{O}_M^{\times} \longrightarrow 0. \tag{32.105}$$

This in turn induces a long exact sequence in cohomology and by Example 10.3.6 (if M is paracompact) the connecting homomorphism leads to an isomorphism

$$H^{\bullet+1}(M;\mathbb{Z}) \cong \check{H}^{\bullet}(M;\mathrm{U}(1)). \tag{32.106}$$

Note that the cohomology on the right-hand side is not singular cohomology. Singular U(1)-valued cohomology could also be related to integral cohomology through the *universal coefficient theorem*, but extra terms involving Ext functors would appear.

32.6.5 Non-orientable manifolds

Definition 32.6.43 (Twisted cohomology). Let $E \to M$ be a flat vector bundle over M. By construction 32.4.24 the algebra $\Omega^{\bullet}(M) \otimes E$ can be given the structure of a differential graded algebra 5.1.9 and, hence, gives rise to a cohomology theory $H^{\bullet}(M; E)$. This is called the E-twisted de Rham cohomology of M.

Remark 32.6.44. According to the remark following Construction 32.4.24 attention should be payed to what trivialization was used in the construction of $H^{\bullet}(M; E)$. However, it can be shown that two trivializations give rise to the same E-twisted cohomology if they admit a common refinement for which the induced sections differ by a locally constant matrix $a \in GL(n, \mathbb{R})$.

If one takes E = o(M) to be the orientation line bundle over M, the (honest) densities of Remark 32.5.10 are obtained. The cohomology of this complex is simply called the **twisted de Rham cohomology**.

Property 32.6.45 (Isomorphism). The twisted cohomologies defined by two trivializations induced from atlases on M are isomorphic.¹⁰

Property 32.6.46 (Trivial twisting). If M is orientable, its twisted cohomology is isomorphic to its ordinary (de Rham) cohomology. More generally, the E-twisted de Rham cohomology is isomorphic to the ordinary de Rham cohomology whenever E is trivial.

Poincaré duality 32.6.15 can be translated almost verbatim to the twisted case:

Theorem 32.6.47 (Poincaré duality). Integration of densities induces the following isomorphism:

$$H^{k}(M) \cong \left(H_{c}^{m-k}(M; o(M))\right)^{*}.$$
 (32.107)

If M is of finite type, the converse also holds:

$$H_c^k(M) \cong \left(H^{m-k}(M; o(M))\right)^*.$$
 (32.108)

The Thom isomorphism also holds for non-orientable bundles:

Theorem 32.6.48 (Thom isomorphism). Let $E \to M$ be a rank-n vector bundle. Fibre integration gives the following isomorphism:

$$H_{cv}^{\bullet+n}(E) \cong H^{\bullet}(M; o(E)).$$
 (32.109)

 $^{^{-10}}$ Although one almost always works with a natural trivialization, i.e. the open subsets of M are obtained from charts on M, this is not technically necessary. For more "exotic" cases, the isomorphisms not always exist.

32.7 Differential operators

In this section the study of PDEs is generalized to vector bundles. The case of PDEs on \mathbb{R}^n was treated in chapter 19.

Definition 32.7.1 (Differential operator). A (linear) differential operators between two vector bundels E, F over the same base manifold X is a linear map $\Gamma(E) \to \Gamma(F)$ that can locally be expressed as a system of partial differential equations.

The principal symbol of this operator is defined as the principal symbol 19.6.2 of the associated PDE. By extension one says the differential operator is **elliptic** (hyperbolic, ...) if its associated PDE is elliptic (hyperbolic, ...).

Definition 32.7.2 (Normally hyperbolic operators). Consider a (pseudo)Riemannian vector bundle E (see chapter 34). A linear differential operator on E is said to be normally hyperbolic if its principal symbol is proportional to the given metric.

32.7.1 Elliptic complexes

Definition 32.7.3 (Elliptic complex). Consider a collection of vector bundles $\{\pi_i : E_i \to M\}_{i \in \mathbb{N}}$ together with a collection of differential operators $\{D_i : C^{\infty}(E_i) \to C^{\infty}(E_{i+1})\}_{i \in \mathbb{N}}$. This system is called an elliptic complex if it is a cochain complex, i.e. $D_{i+1} \circ D_i = 0$, and if the induced sequence $\{\sigma_p(\xi)(D_i)\}_{i \in \mathbb{N}}$ is exact for all $x \in M$ and $\xi \neq 0$.

?? COMPLETE ??

32.8 Linear connections

Definition 32.8.1 (Koszul connection). Let $\pi : E \to M$ be a vector bundle over a smooth manifold M. A Koszul connection (or **linear connection**) on E is a (smooth) linear map $\nabla : \Gamma(E) \to \Gamma(T^*M \otimes E)$ satisfying the Leibniz property

$$\nabla(f\sigma) = f\nabla\sigma + df\otimes\sigma\tag{32.110}$$

for all $f \in C^{\infty}(M)$.

Property 32.8.2. Because $\nabla \sigma$ takes a vector field as input, which is a $C^{\infty}(M)$ -linear operation, the connection satisfies the following linearity property:

$$\nabla_{fX+Y}\sigma = f\nabla_X\sigma + \nabla_Y\sigma. \tag{32.111}$$

Formula 32.8.3. Let E, E' be two vector bundles over the same manifold M. Koszul connections on E and E' induce a connection on the tensor product bundle $E \otimes E'$ as follows:

$$\nabla(X \otimes Y) := \nabla X \otimes Y + X \otimes \nabla Y \tag{32.112}$$

for $X \in \Gamma(E), Y \in \Gamma(E')$.

Example 32.8.4 (Affine connection). Let M be a smooth manifold. An affine connection $\nabla : \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ is a Koszul connection on the tangent bundle.

Property 32.8.5 (Local behaviour). Consider a vector $v \in T_pM$. If two vector fields $X, Y \in \Gamma(TM)$ are equal on some neighbourhood U of p, then $\nabla_v X = \nabla_v Y$ at p. Furthermore, given a curve $c : [0,1] \to M$ and two vector fields $X, Y \in \Gamma(TM)$ such that $X \circ c = Y \circ c$ one finds that $\nabla_{\dot{c}} X = \nabla_{\dot{c}} Y$. This implies that an affine connection only depends on the local behaviour of the given section.

Remark 32.8.6. The above property shows the major difference between the Lie derivative and the covariant derivative when acting on sections of the tangent bundle σ . Lie derivatives depend on the local behaviour of both X and σ . The covariant derivative on the other hand only depends on the value of X at $p \in M$ and on the local behaviour of σ .

Property 32.8.7 (Affinity). Consider two affine connections $\nabla, \overline{\nabla}$ on a smooth manifold M. The operator $\nabla - \overline{\nabla}$ is an endormorphism of E, i.e. $\nabla - \overline{\nabla} \in \Omega^1(M; \operatorname{End}(E))$. It follows that the set of affine connections forms an affine space (hence the name).

Definition 32.8.8 (Parallel tensor fields). A tensor field T is said to be parallel with respect to a connection ∇ if it satisfies $\nabla T = 0$. It is said to be parallel with respect to a vector field X if $\nabla_X T = 0$.

Example 32.8.9. Important examples in the case of the Levi-Civita connection on a Riemannian manifold are the volume form Vol and the metric g (Chapter 34).

Definition 32.8.10 (Connection coefficients). Let E be a smooth rank-k vector bundle. Consider a Koszul connection ∇ , a (local) frame $\{e_i\}_{1 \leq i \leq k}$ and a (local) coframe $\{f^i\}_{1 \leq i \leq k}$ on E. For every vector field e_i one can (locally) write

$$\nabla e_i = \Gamma^k_{\ ii} e_k \otimes f^j. \tag{32.113}$$

The quantities Γ^k_{ji} are called the connection coefficients or **Christoffel symbols** of ∇ . For a general vector field $\sigma = \sigma^i e_i$ one then obtains (if $\{e_i, f^i\}_{1 \le i \le k}$ are coordinate-induced):

$$\nabla \sigma = (\nabla \sigma^{i}) \otimes e_{i} + \sigma^{i}(\nabla e_{i})$$

$$= (\partial_{j} \sigma^{k}) e_{k} \otimes f^{j} + \sigma^{i}(\Gamma^{k}_{ji} e_{k} \otimes f^{j})$$

$$= (\partial_{j} \sigma^{k} + \Gamma^{k}_{ji} \sigma^{i}) e_{k} \otimes f^{j}.$$
(32.114)

32.8.1 Induced connections

Formula 32.8.11 (Connection on tensors). Applying the Leibniz property of a Koszul connection to tensor contractions gives us the following form of the induced connection on the (k, l)-tensor bundle:

$$\nabla_{Y}T(\omega^{1},\ldots,\omega^{k},X_{1},\ldots,X_{l}) := Y\left(T(\omega^{1},\ldots,\omega^{k},X_{1},\ldots,X_{l})\right)$$

$$-\sum_{i=1}^{k}T(\omega^{1},\ldots,\nabla_{Y}\omega^{i},\ldots,\omega^{k},X_{1},\ldots,X_{l})$$

$$-\sum_{i=1}^{l}T(\omega^{1},\ldots,\omega^{l},X_{1},\ldots,\nabla_{Y}X_{i},\ldots,X_{l}) \qquad (32.115)$$

where $Y, X_1, \dots, X_l \in \mathfrak{X}(M)$ and $\omega^1, \dots, \omega^k \in \Omega^1(M)$.

Corollary 32.8.12. By noting that the covariant derivative of a vector field is a vector-valued differential form, one can use the previous formula to compute the covariant derivative of the covariant derivative:

$$(\nabla_X \nabla)_Y Z = \nabla_X (\nabla_Y Z) - \nabla_{\nabla_X Y} Z - \nabla_Y (\nabla_X Z). \tag{32.116}$$

Parentheses were added to make it clear that the outer covariant derivatives act on the result of the inner derivatives. If these parentheses would not have been added, these terms could have been confused with the second covariant derivative (whose definition also follows from a Leibniz-type argument):

$$\nabla_{X,Y}^2 S := \nabla_X(\nabla_Y S) - \nabla_{\nabla_X Y} S. \tag{32.117}$$

As an example of the second covariant derivative the definition of the Hessian on arbitrary smooth manifolds is given:

Definition 32.8.13 (Hessian). Consider a smooth manifold with connection ∇ . The Hessian of a function $f \in C^{\infty}(M)$ is defined as the iterated covariant derivative:

$$\operatorname{Hess}(f) := \nabla^2 f \tag{32.118}$$

where one should note that by the above definition the first covariant derivative also acts on the second one, i.e

$$\nabla^2 f(X, Y) = \nabla_X(\nabla_Y f) - \nabla_{\nabla_X Y} f. \tag{32.119}$$

For a scalar function one knows that $\nabla f = df$ and for covector fields one knows that (in local coordinates)

$$\nabla_i \sigma_j = \partial_i \sigma_j - \Gamma_{ij}^k \sigma_k$$

where Γ_{ij}^k are the connection coefficients. Combining these facts one obtains the following local formula for the Hessian of f:

$$\operatorname{Hess}(f) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j} - \Gamma^k_{ij} \frac{\partial f}{\partial x_k}\right) dx^i \otimes dx^j. \tag{32.120}$$

Definition 32.8.14 (Pullback connection). Let $E \to N$ be a vector bundle with Koszul connection ∇ and let $f: M \to N$ be a smooth map. On the pullback bundle 31.3.6 there exists a unique Koszul connection ∇' satisfying

$$\nabla'(f^*\chi) = f^*(\nabla\chi) \tag{32.121}$$

for any section χ of E.

Definition 32.8.15 (Invariant connection). Let G be a Lie group acting on a vector bundle $E \to M$. A Koszul connection ∇ on E is said to be invariant with respect to the G-action if it satisfies:

$$g^* \nabla = \nabla \tag{32.122}$$

for all $g \in G$.

Chapter 33

Principal Bundles

The main reference for this chapter is [3]. The theory of principal bundles uses the language of (Lie) group theory quite heavily. For all things related to group theory the reader is referred to sections 3.2 and 3.3. For more information on Lie groups and their associated Lie algebras the reader is referred to chapter 30.

33.1 Principal bundles

Definition 33.1.1 (Principal bundle). A principal bundle is a (smooth) fibre bundle $\pi: P \to M$ equipped with a right action $\rho: P \times G \to P$ that satisfies two properties:

- 1. Free action: ρ is free. This implies that the orbits are isomorphic to the structure group.
- 2. **Fibrewise transitivity**: The action preserves fibres, i.e. $y \cdot g \in F_b$ for all $y \in F_b, g \in G$. In turn this implies that the fibres over M are exactly the orbits of ρ .

Together these properties imply that the typical fibre F and structure group G can be identified. The right action of G on P will often be denoted by R_g (unless this would give conflicts with the same notation for the action of G on itself).

Remark 33.1.2 (*G*-torsor). Although the fibres are homeomorphic to G, they do not carry a group structure due to the lack of a distinct identity element. This turns them into G-torsors. However, it is possible to locally (i.e. in a neighbourhood of a point $p \in M$) endow the fibres with a group structure by choosing an element of every fibre to be the identity element.

Property 33.1.3. A corollary of the definition is that the bundle $\pi: P \to M$ is isomorphic to the bundle $\xi: E \to E/G$ where E/G denotes the orbit space of E with respect to the G-action (which can be proven to be proper) and ξ is the quotient projection.

In fact this property can be used to give an alternative characterization of principal bundles:

Property 33.1.4. Consider a smooth manifold P equipped with a free and proper (right) action of a Lie group G. The following statements hold:

- The orbit space P/G is a smooth manifold.
- The projection $P \to P/G$ is a submersion.
- P is principal G-bundle over P/G.

Property 33.1.5 (Dimension). The dimension of P is given by

$$\dim P = \dim M + \dim G. \tag{33.1}$$

Property 33.1.6. Every local trivialization φ_i is G-equivariant:

$$\varphi_i(z \cdot g) = \varphi_i(z) \cdot g. \tag{33.2}$$

Definition 33.1.7 (Principal bundle map). A bundle map $F: P_1 \to P_2$ between principal G-bundles is a pair of smooth maps (f_B, f_P) such that:

- 1. (f_B, f_P) is a bundle map in the sense of fibre bundles.
- 2. f_P is G-equivariant.

The map f_P is said to **cover** f_B .

The following property proves that the equivariance condition on principal bundle maps is in fact a very strong condition:

Property 33.1.8. Every principal bundle map covering the identity is an isomorphism.

Definition 33.1.9 (Vertical automorphism). Consider a principal G-bundle $\pi: P \to M$. An automorphism f of this bundle is said to be vertical if it covers the identity, i.e. $\pi \circ f = \pi$. It is the subgroup $\operatorname{Aut}_V(P) \subset \operatorname{Aut}(P)$ of vertical automorphisms that is known as the **group of gauge transformations** or **gauge group**¹ in physics.

Remark. It should be clear that the above definition can easily be generalized to arbitrary fibre bundles

33.1.1 Associated bundles

Construction 33.1.10 (Associated principal bundle). For every fibre bundle one can construct an associated principal G-bundle by replacing the fibre F by G itself using the fibre bundle construction theorem 31.3.1 where the left action of G is given by left multiplication in G.

Property 33.1.11. A fibre bundle ξ is trivial if and only if its associated principal bundle is trivial. More generally, two fibre bundles are isomorphic if and only if their associated principal bundles are isomorphic.

Example 33.1.12 (Frame bundle). Let V be an n-dimensional vector space and denote the set of ordered bases (or **frames**) of V by FV. It follows from the fact that every basis transformation is given by the action of an element of the general linear group that FV is isomorphic to $GL(V) \cong GL(\mathbb{R}^n)$.

Given an *n*-dimensional vector bundle E, one can thus construct an associated principal bundle by replacing every fibre $\pi^{-1}(b)$ by $F(\pi^{-1}(b)) \cong GL(\mathbb{R}^n)$. The right action on this bundle by $g \in GL(\mathbb{R}^n)$ is given by the basis transformation $\widetilde{e}_i = g_i^i e_i$.

Construction 33.1.13 (Associated bundle to a principal bundle). Consider a principal G-bundle $\pi: P \to M$ and let F be a smooth manifold equipped with a left G-action \triangleright . One can then construct an associated bundle $P_F \equiv P \times_{\triangleright} F$ in the following way:

1. Define an equivalence relation \sim_G on the product manifold $P \times F$ by

$$(p,f) \sim_G (p',f') \iff \exists g \in G : (p',f') = (p \cdot g, g^{-1} \rhd f).$$
 (33.3)

 $^{^{1}}$ This should not be confused with the structure group G, which is also sometimes called the gauge group in physics.

2. The total space of the associated bundle is given by the following quotient manifold:

$$P_F := (P \times F) / \sim_G. \tag{33.4}$$

3. The projection map $\pi_F: P_F \to M$ is defined as

$$\pi_F: [p, f] \mapsto \pi(p) \tag{33.5}$$

where [p, f] is the equivalence class of $(p, f) \in P \times F$ in the quotient manifold P_F .

Example 33.1.14 (Tangent bundle). Starting from the frame bundle FM over a manifold M one can reconstruct (up to a bundle isomorphism) the tangent bundle TM in the following way:

Consider the left G-action \triangleright given by

$$\triangleright: G \times \mathbb{R}^n \to \mathbb{R}^n : (g \triangleright f)^i = g^i{}_i f^j. \tag{33.6}$$

The tangent bundle is isomorphic to the associated bundle $FM \times_{\triangleright} \mathbb{R}^n$ where the bundle map is defined as $[e, v] \mapsto v^i e_i \in TM$.

Construction 33.1.15 (Associated bundle map). Given a principal bundle map (f_P, f_B) between two principal bundles one can construct an associated bundle map between any two of their associated bundles with the same typical fibre in the following way:

1. The total space map $\widetilde{f}_P: P \times_G F \to P \times_{G'} F$ is given by

$$\widetilde{f}_P([p,f]) := [f_P(p), f].$$
 (33.7)

2. The base space map is simply given by f_B itself:

$$\widetilde{f}_B(b) = f_B(b). \tag{33.8}$$

33.1.2 Sections

Although every vector bundle has at least one global section, namely the zero section, a general principal bundle does not necessarily have a global section. This is made clear by the following property:

Property 33.1.16 (Trivial bundles). A principal G-bundle P is trivial if and only if there exists a global section of P. Furthermore, there exists a bijection between the set of global sections $\Gamma(P)$ and the set of trivializations $\operatorname{Triv}(P)$.

Corollary 33.1.17. Every local section $\sigma: U \to P$ induces a local trivialization φ by

$$\varphi^{-1}: (m,g) \mapsto \sigma(m) \cdot g. \tag{33.9}$$

The converse is also true: Consider a local trivialization $\psi^{-1}: U \times G \to \pi^{-1}(U)$. A local section can be obtained by taking $\sigma(u) := \psi^{-1}(u, e)$.

Property 32.2.5 can now be reformulated as follows:

Property 33.1.18 (Trivial vector bundles). A vector bundle is trivial if and only if its associated frame bundle admits a global section. This can easily be interpreted as follows: If one can for every fibre choose a basis in a smooth way, then one can also express the restriction of any vector field to a fibre in terms of this basis in a smooth way.

Property 33.1.19 (Higgs fields). Let (P, M, π, G) be a principal bundle and let P_F be an associated bundle. There exists a bijection between the sections of P_F and the G-equivariant maps $\phi: P \to F$, i.e. maps satisfying $\phi(p \cdot g) = g^{-1} \cdot \phi(p)$.

An explicit correspondence is given by

$$\sigma_{\phi}: M \to P_F: m \mapsto [p, \phi(p)],$$
 (33.10)

where p is any point in $\pi^{-1}(\{m\})$. This is well-defined due to equation (33.3). In the other direction one finds

$$\phi_{\sigma}: P \to F: p \mapsto j_p^{-1} \circ \sigma(\pi(p)),$$
 (33.11)

where $j_p: F \to P_F: f \mapsto [p, f]$. Either of these maps is sometimes called a **Higgs field** in the physics literature.

33.2 Universal bundle

Definition 33.2.1 (Universal bundle). Consider a topological group G. A universal bundle of G is any principal bundle of the form

$$G \hookrightarrow EG \to BG$$

where EG is weakly contractible. The space BG is called the classifying space of G.

Property 33.2.2. A principal G-bundle $EG \to BG$ is universal if and only if EG is weakly contractible.

Definition 33.2.3 (*n*-universal bundle). A principal bundle with an (n-1)-connected total space.

Property 33.2.4 (Delooping). For every topological group one can prove that the loop space of BG is (weakly) homotopy equivalent to G, i.e. $\Omega BG \cong G$. As such it also deserves the name of delooping.

Property 33.2.5 (Groups). Let G be a group (regarded as a discrete toological space). Because the fundamental group of a topological group is Abelian by Property 9.1.15, the classifying space BG is a group if and only if G is Abelian.

This also has an abstract nonsense generalization. The classifying space functor $B: \mathbf{TopGrp} \to \mathbf{Top}$ is product-preserving and, hence, it maps group objects to group objects. So Abelian groups are mapped to topological groups and, even better, to Abelian topological groups. An important consequence is that all Abelian topological groups are in particular infinite loop spaces.

Property 33.2.6 (Classification). The collection of principal G-bundles over a paracompact Hausdorff space X is in bijection with [X, BG], the set of homotopy classes of continuous functions $f: X \to BG$. This bijection is given by the pullback-construction $f \mapsto f^*EG$.

Due to the homotopical nature of this classification one can also replace G by any homotopy equivalent space. For Lie groups the natural choice is a maximal compact subgroup since these are deformation retracts and hence homotopy equivalent.

Corollary 33.2.7 (Vector bundles). Since every vector bundle is uniquely related to its frame bundle, there exists a bijection between principal GL-bundles and vector bundles. This implies that rank-k vector bundles are also classified by the homotopy mapping space $[X, BGL_k]$. Because O(n) is the maximal compact subgroup of GL(n), one also obtains the result that any real vector bundle over a paracompact space admits a bundle metric.

Property 31.3.4 now follows from Eckmann-Hilton duality 9.1.37 together with the above delooping property.

Remark 33.2.8. There also exists a slightly different notion of universal bundles and their associated classifying property. When one requires the total space of the universal bundle to be contractible instead of weakly contractible, the mapping space [X, BG] only classifies numerable principal bundles 31.1.8, but now over arbitrary base spaces X.

An explicit construction of the numerable universal bundle for any topological group G was given by Milnor:

Construction 33.2.9 (Milnor \clubsuit). First, consider the infinite join E_{∞} equipped with the strong topology. This space is constructed as the direct limit of finite joins 7.3.10

$$E_n = \underbrace{G \circ \cdots \circ G}_{n \text{ times}},$$

where E_n is embedded in E_{n+1} using the identity element, i.e. every element of E_{∞} corresponds to an element of some finite join. Then, construct the quotient of E_n (resp. E_{∞}) by the canonical right action of G on E_n (resp. E_{∞}). The bundle $p_n : E_n \to B_n$ (resp. $p : E_{\infty} \to B_{\infty}$) is an n-universal bundle (resp. ∞ -universal bundle). It follows from the above property that $p : E_{\infty} \to B_{\infty}$ is a universal bundle for G.

Construction 33.2.10 (Category theory \clubsuit). Let G be a topological group and consider the delooping (groupoid) $\mathbf{B}G$ from Definition 4.10.2. This groupoid can also be obtained as the action groupoid associated to the trivial action of G on $\{*\}$. The regular action of G on itself also induces an action groupoid $\mathbf{E}G := G/\!/G$. The map $G \to \{*\}$ in turn induces a map of groupoids $\mathbf{E}G \to \mathbf{B}G$ which under geometric realisation gives us a universal bundle map.

33.3 Connections

33.3.1 Vertical vectors

Because smooth fibre bundles are also smooth manifolds, one can define the traditional notions such as the tangent bundle. Due to the composite nature of these geometric objects, one can decompose the tangent bundle in horizontal and vertical (sub)bundles:

Definition 33.3.1 (Vertical vector). Let $\pi: E \to M$ be a smooth fibre bundle. The subbundle $\operatorname{Vert}(TE) := \ker(\pi_*)$ of TE is called the vertical (sub)bundle over E. Elements of the vertical space $\operatorname{Vert}(T_pE)$ are called vertical vectors.

For principal G-bundles an alternative definition exists:

Alternative Definition 33.3.2. Consider a smooth principal G-bundle (P, M, π, G) . First construct a map ι_p for every element $p \in P$:

$$\iota_p: G \to P: g \mapsto p \cdot g \equiv pg. \tag{33.12}$$

Then define a tangent vector $v \in T_pP$ to be vertical if it lies in the image of $\iota_{p,*}$, i.e. $\operatorname{Vert}(T_pP) := \operatorname{im}(\iota_{p,*})$. This definition is equivalent to the previous one because of the short exact sequence

$$0 \longrightarrow \mathfrak{g} \xrightarrow{\iota_{p,*}} T_p P \xrightarrow{\pi_*} T_p M \longrightarrow 0. \tag{33.13}$$

Property 33.3.3 (Dimension of vertical bundle). It follows from the second definition that the vertical vectors of a principal G-bundle are nothing but the pushforward of the Lie algebra \mathfrak{g} under the right action of G on P. Furthermore, the exactness of the sequence implies that $\iota_{p,*}:\mathfrak{g}\to \mathrm{Vert}(T_pP)$ is an isomorphism of vector spaces. In particular, it implies that

$$\dim \operatorname{Vert}(T_n P) = \dim \mathfrak{g} = \dim G. \tag{33.14}$$

Definition 33.3.4 (Fundamental vector field). Consider a principal G-bundle. Let $A \in \mathfrak{g}$, where \mathfrak{g} is the Lie algebra corresponding to G. The vertical vector field $A^{\#}: P \to TP$, given by

$$A^{\#}(p) := \iota_{p,*}(A) \in \text{Vert}(T_p P),$$
 (33.15)

is called the fundamental vector field associated to A. The action of the vector field $A^{\#}$ is given by

$$A_p^{\#}(f) = \frac{d}{dt} f(p \cdot \exp(tA)) \Big|_{t=0},$$
 (33.16)

where $f \in C^{\infty}(P)$.

Property 33.3.5. The map $(\cdot)^{\#}: \mathfrak{g} \to \Gamma(TP)$ is a Lie algebra morphism:

$$[A, B]^{\#} = [A^{\#}, B^{\#}] \tag{33.17}$$

where the Lie bracket on the left is the one in \mathfrak{g} and the Lie bracket on the right is the one in $\mathfrak{X}(M)$ given by 32.22.

Property 33.3.6. The vertical bundle satisfies the following equivariance condition:

$$R_{g,*}(\operatorname{Vert}(T_p P)) = \operatorname{Vert}(T_{pg} P). \tag{33.18}$$

By differentiating the equality

$$R_q \circ \iota_p = \iota_{pq} \circ \operatorname{ad}_{q^{-1}}$$

and using equations 30.3.2 and 33.3.4, one obtains the following algebraic reformulation:

$$R_{g,*}(A^{\#}(p)) = (\mathrm{Ad}_{g^{-1}}A)^{\#}(pg).$$
 (33.19)

33.3.2 Ehresmann connections

Definition 33.3.7 (Ehresmann connection). Consider a smooth fibre bundle E. An (Ehresmann) connection on E is the selection of a subspace $\operatorname{Hor}(T_e E) \leq T_e E$ for every $e \in E$ such that:

- 1. The horizontal and vertical bundles are complementary: $Vert(T_eE) \oplus Hor(T_eE) = T_eE$.
- 2. The choice of subspace depends smoothly on $e \in E$. (This is meant in the sense of distributions 32.3.22.)

The vectors in $Hor(T_eE)$ are said to be **horizontal** (with respect to the chosen connection).

Definition 33.3.8 (Horizontal bundle). The horizontal (sub)bundle $\operatorname{Hor}(TE)$ is defined as $\bigsqcup_{e \in E} \operatorname{Hor}(T_e E)$ with the bundle structure induced from TE.

Definition 33.3.9 (Principal connection). A principal connection on a smooth principal G-bundle P is a G-equivariant Ehresmann connection, i.e. an Ehresmann connection for which the horizontal subspaces satisfy the following G-equivariance condition:

$$R_{q,*}(\operatorname{Hor}(T_p P)) = \operatorname{Hor}(T_{pq} P). \tag{33.20}$$

Remark 33.3.10. Note that this condition was automatically satisfied for vertical bundles as in equation (33.18).

Property 33.3.11 (Dimension). Properties 33.1.5 and 33.3.3, together with the direct sum decomposition of TP, imply the following relation for all $p \in P$:

$$\dim \operatorname{Hor}(T_p P) = \dim M. \tag{33.21}$$

All dimensional relations between the data of a principal bundle (P, M, π, G) are now summarized:

$$\dim P = \dim M + \dim G$$

$$\dim M = \dim \operatorname{Hor}(T_p P)$$

$$\dim G = \dim \operatorname{Vert}(T_p P)$$
(33.22)

for all $p \in P$.

Definition 33.3.12 (Dual connection). First define the dual of the horizontal bundle:

$$Hor(T_p^*P) := \{ h \in T_p^*P \mid h(v) = 0, v \in Vert(T_pP) \}.$$
(33.23)

It is the space of one-forms that vanish on the vertical subspace. A dual connection can then be defined as the selection of a vertical covector bundle $\operatorname{Vert}(T_p^*P)$ satisfying the conditions of Definitions 33.3.7 and 33.3.9 (where Vert and Hor should now be interchanged). Note that here the horizontal bundle is canonically defined.

Definition 33.3.13 (Horizontal and vertical forms). Let $\theta \in \Omega^k(P)$ be a differential k-form.

• θ is said to be horizontal if

$$\theta(v_1, \dots, v_k) = 0 \tag{33.24}$$

whenever at least one of the v_i is in $Vert(T_pP)$.

• θ is said to be vertical if

$$\theta(v_1, \dots, v_k) = 0 \tag{33.25}$$

whenever at least one of the v_i is in $\text{Hor}(T_nP)$.

For functions $f \in \Omega^0(P)$ it is vacuously true that they are both vertical and horizontal.

Definition 33.3.14 (Tensorial form). Consider a differential form θ on a principal G-bundle P with values in a vector space V equipped with a representation $\rho: G \to V$. This form is said to be **tensorial** or **basic of type** (V, ρ) if it is horizontal and if it satisfies the equivariance condition

$$R_g^* \theta = \rho(g^{-1})\theta. \tag{33.26}$$

33.3.3 Connection forms

Definition 33.3.15 (Connection one-form). Let P be a principal bundle G-bundle. A connection one-form, associated to a given principal connection, is a \mathfrak{g} -valued 1-form $\omega \in \Omega^1(P; \mathfrak{g})$ that satisfies the following two conditions:

1. Cancellation of fundamental vector fields:

$$\omega(A^{\#}) = A,\tag{33.27}$$

and

2. G-equivariance:

$$\omega \circ R_{g,*} = \operatorname{Ad}_{q^{-1}} \circ \omega. \tag{33.28}$$

The horizontal subspaces are recovered as the kernel of the connection one-form: $\operatorname{Hor}(T_p P) = \ker \omega|_p$.

Property 33.3.16 (Connection form from principal connection). Consider a principal G-bundle P. Given a principal connection on P, the associated connection one-form is given by the following map:

$$\omega := (\iota_{p,*})^{-1} \circ \operatorname{pr}_{\operatorname{Vert}}, \tag{33.29}$$

where pr_V is the projection $TP \to \operatorname{Vert}(TP)$ associated to the decomposition in Definition 33.3.7.

Property 33.3.17. Consider two principal G-bundles P_1, P_2 . Let ω be a connection one-form on P_1 and let $F: P_1 \to P_2$ be a bundle map. The pullback $F^*\omega$ defines a principal connection on P_2 called the **pullback connection**.

33.3.4 Maurer-Cartan form

Definition 33.3.18 (Maurer-Cartan form). For every $g \in G$ the tangent space T_gG is isomorphic to $T_eG \equiv \mathfrak{g}$. A canonical isomorphism $T_gG \to \mathfrak{g}$ is given by the Maurer-Cartan form

$$\Omega := L_{q^{-1},*}. (33.30)$$

Construction 33.3.19. Consider the one-point manifold $M = \{*\}$. When constructing a principal G-bundle over M, one can see that the total space $P = \{*\} \times G$ can be identified with the structure group G. From the relations in Property 33.3.11 it follows that the horizontal spaces are null-spaces (this trivially defines a smooth distribution and thus a connection according to 33.3.7) and that the vertical spaces are equal to the tangent spaces, i.e. $\operatorname{Vert}(T_g G) = T_g G$ (where the identification $P \cong G$ is used).

The simplest way to define a connection form ω on this bundle would be the trivial projection $\mathbb{1}_{TP}: TP \to TP \equiv \mathrm{Vert}(TP)$. However, the image of this map would be T_gG and not \mathfrak{g} as required. This can be solved by using the Maurer-Cartan form:

$$\omega(v) := \Omega(v). \tag{33.31}$$

Property 33.3.20. The Maurer-Cartan form is the unique principal connection on the bundle $G \hookrightarrow G \to \{*\}$.

Definition 33.3.21 (Darboux derivative). Consider a smooth function $f: M \to G$ between a smooth manifold and a Lie group. The Darboux derivative of f is defined as follows:

$$\omega_f := f^* \Omega. \tag{33.32}$$

The function f is said to be an **integral** or **primitive** of ω_f .

Property 33.3.22. Let M be a smooth connected manifold. If two functions $f, f': M \to G$ have the same Darboux derivative, there exists an element $g \in G$ such that $f(p) = g \cdot f'(p)$ for all $p \in M$.

Theorem 33.3.23 (Fundamental theorem of calculus). Consider a smooth manifold M and a Lie group G with Lie algebra \mathfrak{g} . If $\omega : TM \to \mathfrak{g}$ satisfies the Maurer-Cartan equation

$$d\omega + \frac{1}{2}[\omega \wedge \omega] = 0, \tag{33.33}$$

then (locally) there exists a smooth function $f: M \to G$ such that $\omega = f^*\Omega$.

33.3.5 Local representations

Definition 33.3.24 (Yang-Mills field). Consider a principal G-bundle $P \to M$ and an open subset $U \subseteq M$. Given a principal connection ω on P and a local section $\sigma: U \to P$, the Yang-Mills field $\omega^U \in \Omega^1(U; \mathfrak{g})$ is defined as follows:

$$\omega^U := \sigma^* \omega. \tag{33.34}$$

Definition 33.3.25 (Local representation). Consider a principal bundle $P \to M$ and let (U, φ) be a bundle chart on P. The local representation of a principal connection ω on P with respect to the chart (U, φ) is defined as $(\varphi^{-1})^*\omega$.

Formula 33.3.26. Consider a principal connection ω on a principal G-bundle $P \to M$. Because of Property 33.1.17 every local section $\sigma: U \to P$ induces both a Yang-Mills field ω^U and a local representation of ω . These two forms are related by the following equation:

$$\sigma^* \omega|_{(m,q)}(v,X) = \mathrm{Ad}_{q^{-1}}(\omega_m^U(v)) + \Omega_q(X), \tag{33.35}$$

where $v \in T_m U$, $X \in \mathfrak{g}$ and Ω is the Maurer-Cartan form on G.

Formula 33.3.27 (Compatibility condition). Consider a principal G-bundle $P \to M$ and two open subsets U, V of M. Given two local sections $\sigma_U : U \to P$, $\sigma_V : V \to P$ and a principal connection ω on P, one can define two Yang-Mills field ω^U and ω^V .

On the intersection $U \cap V \subset M$ there exists a (unique) gauge transformation $\xi : U \cap V \to G$ such that $\sigma_V(m) = \sigma_U(m) \cdot \xi(m)$. Using this gauge transformation one can relate ω^U and ω^V as follows:

$$\omega^{V}|_{m} = \mathrm{Ad}_{\xi(m)^{-1}}\omega^{U}|_{m} + \xi^{*}\Omega|_{m},$$
(33.36)

where Ω is the Maurer-Cartan form on G.

Example 33.3.28 (General linear group²). Let $G = GL(\mathbb{R}^n)$. The second term in equation (33.36) can be written as follows:

$$(\xi^* \Omega)^i{}_j = (\xi(m)^{-1})^i{}_k \frac{\partial}{\partial x^\mu} \xi(p)^k{}_j dx^\mu$$
 (33.37)

at every point $m \in M$. Formally this can be written coordinate-independently as

$$\xi^* \Omega = \xi^{-1} d\xi. \tag{33.38}$$

Example 33.3.29 (Christoffel symbols). Let $\Gamma^i_{j\mu}$, $\overline{\Gamma}^k_{l\nu}$ be the Yang-Mills fields corresponding to a connection on the frame bundle of some manifold M, where the sections are induced by a choice of coordinates (x^i and y^i respectively). In this case, the expansion coefficients of the Yang-Mills field are called the **Christoffel symbols**³. Using equations (33.36) and (33.38) this becomes:

$$\overline{\Gamma}^{i}_{j\mu} = \frac{\partial y^{\nu}}{\partial x^{\mu}} \left(\frac{\partial x^{i}}{\partial y^{k}} \Gamma^{k}_{l\nu} \frac{\partial y^{l}}{\partial x^{j}} + \frac{\partial x^{i}}{\partial y^{k}} \frac{\partial^{2} y^{k}}{\partial x^{j} \partial x^{\nu}} \right). \tag{33.39}$$

 $^{^2\}mathrm{A}$ derivation can be found in Lecture 22 of [4].

³See also Definition 32.8.10.

33.3.6 Parallel transport

Definition 33.3.30 (Horizontal lift). Consider a principal bundle (P, M, π, G) and a curve $\gamma : [0,1] \to M$. Given an Ehresmann connection Hor, for every point $p_0 \in \pi^{-1}(\gamma(0))$ there exists a unique curve $\widetilde{\gamma}_{p_0} : [0,1] \to P$ satisfying the following conditions:

- 1. $\widetilde{\gamma}_{p_0}(0) = p_0$,
- 2. $\pi \circ \widetilde{\gamma}_{p_0} = \gamma$, and
- 3. $\widetilde{\gamma}'_{p_0}(t) \in \operatorname{Hor}(T_{\widetilde{\gamma}_{p_0}(t)}P)$ for all $t \in [0,1]$.

The curve $\widetilde{\gamma}_{p_0}$ is called the **horizontal lift** of γ starting at p_0 . When it is clear from the context what the basepoint p_0 is, the subscript is often omitted and one writes $\widetilde{\gamma}$ instead of $\widetilde{\gamma}_{p_0}$.

Remark 33.3.31 (Horizontal curve). Curves satisfying the last condition in the above property are said to be horizontal.

Method 33.3.32. Consider a principal bundle (P, M, π, G) . Let $\gamma(t)$ be a curve in M and let ω be a principal connection one-form on P. For general structure groups G, the horizontal lift can be found as follows:

Let $\delta(t)$ be a curve in P that projects onto $\gamma(t)$, i.e. $\pi \circ \delta = \gamma$, such that $\widetilde{\gamma}_{p_0}(t) = \delta(t) \cdot g(t)$ for some curve g(t) in G. The curve g(t) can be found as the unique solution of the following first order ODE:

$$Ad_{g(t)^{-1}}\omega_{\delta(t)}(X_{\delta,\delta(t)}) + \Omega_{g(t)}(Y_{g,g(t)}) = 0,$$
(33.40)

where X_{δ}, Y_g are tangent vectors to the curves $\delta(t)$ and g(t) respectively and where Ω is the Maurer-Cartan form on G. The solution is uniquely determined through the initial value condition $\delta(0) \cdot g(0) = p_0$.

Remark 33.3.33. When given a local section $\sigma: U \to P$, one can rewrite the above ODE in a more explicit form. First, remark that the section induces a curve $\delta = \sigma \circ \gamma$. Taking the derivative then yields $X_{\delta} = \sigma_*(X_{\gamma})$. Using this one can rewrite the ODE as

$$Ad_{g(t)^{-1}}\omega_{\delta(t)}(\sigma_* X_{\gamma,\gamma(t)}) + \Omega_{g(t)}(Y_{g,g(t)}) = 0.$$
(33.41)

After using the equality $f^*\omega = \omega \circ f_*$ and introducing the Yang-Mills field $A = \sigma^*\omega$ this becomes

$$Ad_{g(t)^{-1}}A(X_{\gamma,\gamma(t)}) + \Omega_{g(t)}(Y_{g,g(t)}) = 0.$$
(33.42)

Example 33.3.34. For matrix Lie groups this ODE can be reformulated as follows: Given the trivial section $s: U \to U \times G: x \mapsto (x, e)$, where U is an open subset of M, the horizontal lift of $\gamma(t)$ can locally be parametrized as

$$\widetilde{\gamma}(t) = \underbrace{(s \circ \gamma)(t)}_{\delta(t)} \cdot g(t) = (\gamma(t), g(t)),$$

where g(t) is a curve in G. To determine $\widetilde{\gamma}(t)$ it is thus sufficient to find g(t). The ODE (33.40) then becomes

$$g'(t) = -\omega(\gamma(t), e, \gamma'(t), 0)g(t). \tag{33.43}$$

Using the trivial section s one can further rewrite this formula. First, consider the action of the Yang-Mills field $s^*\omega$ on the derivative $\gamma_* = (\gamma(t), \gamma'(t))$. Using the fact that it is linear in the second argument, it can be rewritten as

$$s^*\omega(\gamma(t), \gamma'(t)) = A(\gamma(t))\gamma'(t)$$

where $A: M \to \operatorname{Hom}(\mathbb{R}^{\dim M}, \mathfrak{g})$ gives a linear map for each point $\gamma(t) \in M$. The action can also be rewritten using the relation $f^*\omega = \omega \circ f_*$ as

$$s^*\omega(\gamma(t),\gamma'(t)) = \omega\Big(s_*(\gamma(t),\gamma'(t))\Big) = \omega(\gamma(t),e,\gamma'(t),0).$$

Combining these relations with the ODE (33.43) gives

$$\left(\frac{d}{dt} + A(\gamma(t))\gamma'(t)\right)g(t) = 0 \tag{33.44}$$

where $\frac{d}{dt}$ is the matrix given by element-wise multiplication of the derivative $\frac{d}{dt}$ and the identity matrix I.

The ODE (33.40) can now be solved. Direct integration and iteration gives

$$g(t) = \left[I - \int_0^t dt_1 A(\gamma'(t_1)) + \int_0^t dt_1 \int_0^{t_1} dt_2 A(\gamma'(t_1)) A(\gamma'(t_2)) - \dots\right] g(0)$$
 (33.45)

where A is the Yang-Mills field associated to the local section σ . This can be rewritten using the standard "square integration" or Dyson trick⁴ as

$$g(t) = \left[I - \int_0^t dt_1 A(\gamma'(t_1)) + \frac{1}{2!} \int_0^t dt_1 \int_0^t dt_2 \mathcal{T} \left(A(\gamma'(t_1)) A(\gamma'(t_2)) \right) - \dots \right] g(0). \tag{33.46}$$

By noting that this formula is equal to the path-ordered exponential series one finds

$$g(t) = \mathcal{T} \exp\left(-\int_0^t dt' A(\gamma'(t'))\right) g(0). \tag{33.47}$$

Definition 33.3.35 (Parallel transport). The parallel transport map along the curve γ is defined as follows:

$$\operatorname{Par}_{t}^{\gamma}: \pi^{-1}(\gamma(0)) \to \pi^{-1}(\gamma(t)): p_{0} \mapsto \widetilde{\gamma}_{p_{0}}(t).$$
 (33.48)

This map is G-equivariant and it is an isomorphism of fibres. The group element given by the path-ordered exponential in equation (33.47) is generally called the **holonomy** along the curve γ .

Using the above constructions that assign Lie group elements to paths, one can give an alternative definition of principal connections:

Alternative Definition 33.3.36 (Principal connection \clubsuit). Let M be a smooth manifold and consider its path groupoid⁵ $\mathcal{P}_1(M)$ which has the points of M as objects and homotopy classes of smooth paths in M as morphisms. Let (P, M, π, G) be a principal G-bundle over M and denote the delooping 4.10.2 of G by $\mathbf{B}G$. The assignment of holonomies to smooth paths locally defines a functor

$$\text{hol}_i: \mathcal{P}_1(U_i) \to \mathbf{B}G$$
 (33.49)

for every chart $U_i \subseteq M$. Globally these can be glued together using the transition cocycles g_{ij} (in there incarnation as natural isomorphisms) to obtain a functor

$$\text{hol}: \mathcal{P}_1(M) \to \mathbf{Trans}_1(P) \subset G\mathbf{Torsor}$$
 (33.50)

where $Trans_1(P)$ is the full subcategory of the category of G-torsors on the fibres of P (see also remark 33.1.2).

It can be shown that any functor of this type gives rise to a principal connection on P and, conversely, every principal connection gives rise to a holonomy functor through the parallel transport constructions as given above. ?? COMPLETE ??

⁴Well-known from the Dyson series 61.9.

⁵See definition 41.3.20 for a rigorous exposition.

33.3.7 Holonomy group

Definition 33.3.37 (Holonomy group). Consider a principal bundle (P, M, π, G) and choose a point $m \in M$. Let $\Omega_m^{ps}M \subset \Omega_m M$ be the subset of the based loop space consisting of piecewise smooth loops with basepoint $m \in M$. The holonomy group $\operatorname{Hol}_p(\omega)$ based at $p \in \pi^{-1}(m)$ with respect to the connection form ω is given by

$$\operatorname{Hol}_{p}(\omega) := \{ g \in G \mid p \sim p \cdot g \} \tag{33.51}$$

where two points $p, q \in P$ are equivalent if there exists a loop $\gamma \in \Omega_m^{ps} M$ such that the horizontal lift $\widetilde{\gamma}$ connects p and q.

Definition 33.3.38 (Reduced holonomy group). The reduced holonomy group $\operatorname{Hol}_p^0(\omega)$ is defined as the subset of $\operatorname{Hol}_p(\omega)$ consisting of contractible loops.

Definition 33.3.39 (Holonomy bundle). Let M be a smooth path-connected manifold. Consider a principal bundle P over M with principal connection ω . One can equip P with an equivalence relation \sim such that $p \sim q$ if and only if there exists a horizontal curve connecting p and q. For every point $p \in P$ one can then construct the following set:

$$H(p) := \{ q \in P \mid p \sim q \}. \tag{33.52}$$

Path-connectedness of the base manifold implies that H(p) and H(q) are isomorphic for all $p, q \in P$. Using this fact one can show that $\sqcup_p H(p)$ is in fact a principal bundle itself. Its structure group is $\operatorname{Hol}_p(\omega)$ for any $p \in P$.

33.4 Covariant derivatives

33.4.1 Koszul connections

Definition 33.4.1 (Horizontal lifts on associated bundles). Let $P_F := P \times_G F$ be an associated bundle of a principal bundle (P, M, π, G) and let γ be a curve in M with horizontal lift $\widetilde{\gamma}_p$ in P. The horizontal lift of γ to P_F through the point $[p, f] \in P_F$ is defined as follows:

$$\widetilde{\gamma}_{[p,f]}^{P_F}(t) := [\widetilde{\gamma}_p(t), f]. \tag{33.53}$$

Although the element f seems to stay constant along the horizontal lift, it in fact changes according to equation (33.3).

Definition 33.4.2 (Parallel transport). Similar to the case of principal bundles P, the parallel transport map on an associated bundle P_F is defined as

$$\operatorname{Par}_t^{\gamma}: \pi_F^{-1}(\gamma(0)) \to \pi_F^{-1}(\gamma(t)): [p, f] \mapsto \widetilde{\gamma}_{[p, f]}^{P_F}(t). \tag{33.54}$$

Example 33.4.3 (Vector bundles). Consider a principal bundle (P, M, π, G) . Suppose that the Lie group G acts on a vector space V through a representation $\rho: G \to \mathrm{GL}(V)$. One can then construct an associated vector bundle $\pi_1: P \times_{GL(V)} V \to M$. Moreover, by working over a chart (U, φ) once can locally write P and P_V as product bundles. Parallel transport on this vector bundle is then defined as follows:

Let $\gamma(t)$ be a curve in M such that $\gamma(0) = x_0$ and $\gamma(1) = x_1$. Furthermore, let the horizontal lift $\widetilde{\gamma}(t) = (\gamma(t), g(t))$ satisfy $\widetilde{\gamma}(0) = (x_0, h)$ as initial condition. Parallel transport of the point $(x_0, v_0) \in U \times V$ along γ is given by the following map:

$$\operatorname{Par}_{t}^{\gamma}: \pi_{1}^{-1}(x_{0}) \to \pi_{1}^{-1}(\gamma(t)): (x_{0}, v_{0}) \mapsto (\gamma(t), \rho(g(t)h^{-1})v_{0}). \tag{33.55}$$

It should be noted that this map is independent of the initial element $h \in G$ (despite the presence of the factor h^{-1}). Moreover, $\operatorname{Par}_t^{\gamma}$ is an isomorphism of vector spaces and can thus be used to identify distant fibres (as long as they lie in the same path-component).

Remark 33.4.4. For every vector bundle one can construct the frame bundle and use the parallel transport map on this bundle to define parallel transport of vectors. Therefore, the previous construction is applicable to any vector bundle.

Definition 33.4.5 (Covariant derivative). Consider a vector bundle $\pi: E \to M$ with model fibre space V and its associated principal $\mathrm{GL}(V)$ -bundle with principal connection ω . Let $\sigma: M \to E$ be a section of the vector bundle and let X be a vector field on M. The covariant derivative of σ with respect to X is defined as

$$\nabla_X \sigma|_{x_0} := \lim_{t \to 0} \frac{(\operatorname{Par}_t^{\gamma})^{-1} \sigma(\gamma(t)) - \sigma(x_0)}{t}$$
(33.56)

where $\gamma(t)$ is any curve satisfying $\gamma(0) = x_0$ and $\gamma'(0) = X(x_0)$.

One can also rephrase the above definition in terms of the horizontal vector field associated to the lift $\tilde{\gamma}$ (akin to Definition 32.3.16). By Property 33.1.19 every section σ of an associated bundle corresponds to a G-equivariant map $\phi(\sigma): P \to V$. In terms of this map one obtains

$$\phi(\nabla_X \sigma) = X^H(\phi(\sigma)) \tag{33.57}$$

where X^H acts componentwise on V.

Property 33.4.6. The map

$$\Gamma(TM) \times \Gamma(E) \to \Gamma(E) : (X, \sigma) \mapsto \nabla_X \sigma$$
 (33.58)

defines a Koszul connection 32.8.1. It follows that every principal connection on a principal bundle induces a Koszul connection on all of its associated vector bundles.

33.4.2 Exterior covariant derivative

Definition 33.4.7 (Exterior covariant derivative). Let P be a principal bundle equipped with a principal connection ω and let $\theta \in \Omega^k(P)$ be a differential k-form. The exterior covariant derivative $D\theta$ is defined as follows:

$$D\theta(v_0, \dots, v_k) := d\theta(v_0^H, \dots, v_k^H)$$
(33.59)

where d is the exterior derivative 32.4.7 and v_i^H is the projection of v_i on the horizontal subspace $\text{Hor}(T_pP)$. From this definition it follows that the exterior covariant derivative $D\theta$ is a horizontal form 33.3.13.

Remark 33.4.8. The exterior covariant derivative can also be defined for general vector-valued k-forms. This can be done by defining it component-wise with respect to a given basis. Afterwards one can prove that the choice of basis plays no role.

For tensorial forms of type (V, ρ) this is given by the following expression:

$$D\theta = d\theta + \omega \bar{\wedge} \theta \tag{33.60}$$

where $\overline{\wedge}$ denotes the combination of the wedge product and the action ρ .

Property 33.4.9. If Φ is an equivariant form, then $D\Phi$ is a tensorial form.

Formula 33.4.10. Using the Koszul connection on the tangent bundle TP one can rewrite the action of the exterior covariant derivative as follows:

$$D\theta(v_0, \dots, v_k) = \sum_{i}^{k} (-1)^i \nabla_{v_i} \theta(v_0, \dots, \hat{v}_i, \dots, v_k)$$

$$+ \sum_{i < j}^{k} (-1)^{i+j} \theta([v_i, v_j], v_0, \dots, \hat{v}_i, \dots, \hat{v}_j, \dots, v_k)$$
(33.61)

where, as usual, \hat{v}_i means that this vector is omitted. This formula should remind the reader of the analogous formula for the ordinary exterior derivative 32.40. As an example the formula for a one-form Φ is given:

$$D\Phi(X,Y) = \nabla_X(\Phi(Y)) - \nabla_Y(\Phi(X)) - \Phi([X,Y]). \tag{33.62}$$

Because of property 33.1.19 one can use the following construction to find an explicit expression for the covariant derivative on an associated vector bundle:

Construction 33.4.11. Let (P, M, π, G) be a principal bundle and let $P_V := P \times_G V$ be an associated vector bundle. Given a section $\sigma : M \to P_V$, one can construct a G-equivariant map $\phi : P \to V$ using formula 33.11. The exterior covariant derivative of ϕ is given by formula 33.60:

$$D\phi(X) = d\phi(X) + \omega \triangleright \phi(X) \tag{33.63}$$

where $X \in T_pP$. Now, given an additional (local) section $\varphi : U \subseteq M \to P$, one can pull back this derivative to the base manifold M. This gives

$$(\varphi^* D\phi)(Y) = d(\varphi^* \phi)(Y) + \varphi^* \omega \triangleright \varphi^* \phi(Y)$$
(33.64)

where $Y = \pi_* X \in T_m M$. After introducing the notations $S := \varphi^* \phi$ and $\nabla_Y S := (\varphi^* D \phi)(Y)$ and remembering the definition of the Yang-Mills field 33.3.24, this becomes

$$\nabla_Y S = dS(Y) + \omega^U(Y) \triangleright S. \tag{33.65}$$

Example 33.4.12. Let $G = GL(\mathbb{R}^n)$. In local coordinates equation 33.65 can be rewritten as follows:

$$(\nabla_Y S)^i = \frac{\partial S^i}{\partial x^k} Y^k + \Gamma^i{}_{jk} S^j Y^k. \tag{33.66}$$

This is exactly the formula known from classical differential geometry and relativity.

33.4.3 Curvature

Definition 33.4.13 (Curvature). Let ω be a principal connection one-form. The curvature Ω of ω is defined as the exterior covariant derivative $D\omega$.

Definition 33.4.14 (Flat connection). A principal connection is said to be flat if its curvature vanishes everywhere. A bundle is said to be flat if it admits a flat connection.

Formula 33.4.15 (Curvature on associated bundles). The above definition of the curvature, together with equation (33.60) or, equivalently, Construction 33.4.11 one can express the action of the curvature on sections of associated bundles as follows:

$$D^2\phi = \Omega \triangleright \phi, \tag{33.67}$$

where $\phi \in \Omega^{\bullet}(M; E)$.

Example 33.4.16. Let ω_G be the Maurer-Cartan form on a Lie group G. Because the only horizontal vector field on the bundle $G \hookrightarrow G \to \{*\}$ is the zero vector, the curvature of ω_G is 0. It follows that the Maurer-Cartan form is a flat connection.

Property 33.4.17 (Second Bianchi identity). Let ω be a principal connection one-form with curvature Ω . The curvature is covariantly constant:

$$D\Omega = 0. (33.68)$$

Remark 33.4.18. One should pay attention to the fact that this result does not generalize to arbitrary differential forms. Only the exterior derivative satisfies the coboundary condition $d^2 \equiv 0$, the exterior covariant derivative does not.

Formula 33.4.19 (Cartan structure equation). Let ω be a principal connection one-form and let Ω be its curvature form. The curvature can be expressed in terms of the connection as follows:

$$\Omega = d\omega + \frac{1}{2} [\omega \wedge \omega]. \tag{33.69}$$

The Maurer-Cartan equation in the (geometric) fundamental theorem of calculus 33.3.23 exactly states the vanishing of the algebraic curvature associated to a general \mathfrak{g} -valued one-form.

The following property is an immediate consequence of Frobenius's integrability theorem 32.3.26 and the fact that a connection vanishes on the horizontal subbundle:

Property 33.4.20. Let ω be a principal connection one-form. The associated horizontal distribution 32.3.22

$$p \mapsto \operatorname{Hor}(T_p P)$$

is integrable if and only if the connection ω is flat. In contrast, the vertical distribution is always integrable.

Similar to definition 33.3.24 one can also define the Yang-Mills field strength:

Definition 33.4.21 (Field strength). Let $\pi: P \to M$ be a principal bundle equipped with a principal connection one-form ω and associated curvature Ω . Given a local section $\sigma: U \subseteq M \to P$, one defines the (Yang-Mills) field strength F as the pullback $\sigma^*\Omega$.

Theorem 33.4.22 (Ambrose-Singer). The Lie algebra of the holonomy group $Hol_p(\omega)$ (Definition 33.3.37) is spanned by the elements of the form $\Omega_q(X,Y)$ where q ranges over the holonomy bundle H(p) (Definition 33.3.39) and X,Y are horizontal.

33.4.4 Torsion

Definition 33.4.23 (Solder form). Let (P, M, π, G) be a principal bundle and let V be a dim M-dimensional vector space equipped with a representation $\rho: G \to GL(V)$ such that $TM \cong P \times_G V$ as associated bundles. A solder(ing) form θ on P is a tensorial one-form 33.3.14 of type (V, ρ) .

Definition 33.4.24 (Torsion). Let (P, M, π, G) be a principal bundle equipped with a principal connection ω and a solder form θ . The torsion Θ is defined as the exterior covariant derivative $D\theta$. This is the content of the **Cartan structure equation**:

$$\Theta = d\theta + \omega \bar{\wedge} \theta, \tag{33.70}$$

where the wedge product is defined analogously to 32.4.23 and 32.4.27 using the induced representation of \mathfrak{g} on V:

$$\omega \bar{\wedge} \theta(v, w) := \omega(v) \triangleright \theta(w) - \omega(w) \triangleright \theta(v). \tag{33.71}$$

Property 33.4.25 (First Bianchi identity). Let ω be a principal connection one-form, Ω its associated curvature, θ a solder form and Θ its associated torsion.

$$D\Theta = \Omega \bar{\wedge} \theta \tag{33.72}$$

⁶In general this will be $V = \mathbb{R}^{\dim M}$ and $G = GL(n, \mathbb{R})$.

33.5 Reduction of the structure group

Definition 33.5.1 (Reduction). Consider a principal bundle $G \hookrightarrow P \to M$ and let H be a subgroup of G. If the transition functions of P can be chosen to take values in H, it is said that the structure group G can be reduced to H.

More generally, a principal bundle $H \hookrightarrow \widetilde{P} \to M$ with structure group H is called an H-reduction of P if there exists a bundle isomorphism $\widetilde{P} \times_H G \to P$. This allows for morphisms besides inclusions, such as covering maps $\lambda : H \to G$. (See for example the definition of spinor bundles in Section 34.3.) As such the name "reduction" is not the best choice of terminology. For covering maps the term $\mathbf{lift(ing)}$ is sometimes used.

Definition 33.5.2 (*G*-structure). Consider a manifold M. A G-structure on M is the reduction of the structure group GL(n) of the frame bundle FM to the group $\iota: G \to GL(n)$.

Definition 33.5.3 (Integrability). A G-structure $P \to M$ is said to be integrable if for every point $m \in M$ there exists a chart $U \ni m$ such that the associated holonomic frame $\{\partial_i\}_{i \leq \dim(M)}$ induces a local section of P.

Property 33.5.4. Consider a smooth manifold M equipped with a G-structure. If this structure is integrable, it admits a torsion-free connection.

Example 33.5.5 (Orientable manifold). An n-dimensional manifold is orientable if and only if the structure group can be reduced to $GL^+(n)$, the group of invertible matrices with positive determinant. Furthermore, this structure is always integrable if it exists.

Example 33.5.6 (Riemannian manifold). An O(n)-structure turns M into a Riemannian manifold 34.1.2. Because the cotangent bundle T^*M transforms under the contragredient representation, which coincides with the regular representation in the case of O(n), of the transition maps of the tangent bundle TM, these two bundles are equivalent. The isomorphism is given by the musical isomorphism(s) 34.1.3. Riemannian structures are always integrable.

The following property gives a classification of bundle reductions:

Property 33.5.7 (Equivariant morphisms). Consider a principal G-bundle P and let F be a space that admits a transitive action $\varphi: G \to \operatorname{Aut}(F)$. For every $f \in F$ and every equivariant morphism $\psi: P \to F$ there exists a reduction of G to the isotropy subgroup G_f defined by

$$P_f := \{ p \in P \mid \psi(p) = f \}. \tag{33.73}$$

One can generalize this definition to arbitrary Lie group actions by restricting to the equivariant morphisms that take value in a single orbit.⁷ Furthermore, one can restrict to the case where F is a vector space without loss of generality (at least in the finite-dimensional case).

Consider a subgroup inclusion $\iota: H \hookrightarrow G$. If H is closed, the action of G on G/H is transitive and one can specialize the above construction to the free vector space $\mathbb{R}[G/H]$. It follows that reductions are classified by equivariant maps into the coset space G/H or, according to Property 33.1.19, by the (global) sections of the associated coset bundle $P \times_G G/H$.

Corollary 33.5.8. If G is connected, every principal G-bundle is reducible to a maximal compact subgroup of G, since G/H is a vector space.

Definition 33.5.9 (Reducible connection). Consider a principal G-bundle P equipped with a connection one-form ω . If a bundle map F induces an H-reduction of P, then the connection ω is said to be reducible (and to be compactible with the given reduction) if $F^*\omega$ takes values in \mathfrak{h} .

⁷Since transitive actions have a unique orbit, this is a well-defined generalization.

Property 33.5.10. Consider a principal bundle P together with a reduction P_f induced by an equivariant morphism $\psi: P \to F$ with $f \in F$. A principal connection on P is reducible to P_f if and only if ψ is parallel with respect to this connection, i.e. $D\psi = 0.8$

The following two properties characterize bundle reductions in terms of holonomy bundles:

Property 33.5.11 (Holonomy bundles and reductions). The holonomy bundle H(p) is a reduction of P for every $p \in P$. Furthermore, any connection ω is reducible to H(p) and it can be proven that this reduction is minimal, i.e. there exists no further reduction.

Corollary 33.5.12. A principal bundle (and any associated connection) is irreducible to a subgroup of the structure group⁹ if and only if it is equivalent to its holonomy bundle.

The following property is less known in the literature:

Property 33.5.13 (Flat connections). A bundle is flat if and only if its structure group G can be lifted to the discrete group G^{δ} , i.e. the same group but with the discrete topology. An equivalent condition is that the structure group can be lifted to the fundamental group of the base space $\pi_1 M$ (this latter condition is related to the fact that for flat connections parallel transport is path-independent and hence fully characterized by the loops in M).

Note, however, that once such a lift is chosen or, equivalently, if the structure group of the bundle is discrete, a unique flat connection exists.

Remark 33.5.14. The above condition can also be applied to define flatness for topological bundles where the notion of connections does not make sense.

33.6 Characteristic classes

Definition 33.6.1 (Characteristic class). Let M be a smooth manifold. A characteristic class is a map from each isomorphism class of vector bundles or principal bundles $E \to M$ to a cohomology class $c(E) \in H^*(M; R)$ such that if there exists a morphism $f: N \to M$, then $c(f^*E) = f^*c(E) \in H^*(N; R)$. The coefficient ring R is often assumed to be the base field (\mathbb{R} or \mathbb{C}), but this is not always the case (e.g. Stiefel-Whitney classes).

Using the classification property 33.2.6, one can give a concise construction of characteristic classes in the case of principal bundles:

Construction 33.6.2. Consider a principal bundle (P, M, π, G) with classifying map $\varphi \in [M, BG]$. For every $c \in H^*(BG)$ one defines a characteristic class $c(P) \in H^*(M)$ as the pullback of c under φ .

As the definition implies, both vector bundles and principal bundles admit a theory of characteristic classes. However, in the literature most authors always focus on either one of them and hence it is not always easy to see which theorems can be translated and how to do this if possible. The relation between the two theories is given by the associated bundle construction 33.1.10 (see [5] for more information). The characteristic classes of a vector bundle are defined as the ones of its frame bundle. Because of this duality one can freely switch between the language of vector bundles and principal bundles, depending on where the results will be applied.

Because the statement of the "splitting principle" is quite different when given in the language of principal bundles or that of vector bundles, it will be stated twice. First an additional construction is needed:

⁸A possible proof could go through the Ambrose-Singer theorem 33.4.22 and the holonomy characterization below.

⁹Lifts as in the case of Spin-structures do not fall under the holonomy classification.

Definition 33.6.3 (Flag bundle). Let $\pi: E \to M$ be vector bundle. Using the definition of the flag manifold 20.7.4 one can construct for every fibre E_p a space $Fl(E_p)$ that has the complete flags of E_p as points (expressed as a sequence of one-dimensional subspaces). Using the bundle construction theorem, one can then obtain the flag bundle $\pi_{Fl}: Fl(E) \to M$ that has the flag manifolds as fibres.

Theorem 33.6.4 (Splitting principle). Consider a vector bundle $\pi : E \to M$. Its flag bundle has the following properties:

- The pullback bundle π_{Fl}^*E can be decomposed as a Whitney sum of line bundles.
- The induced morphism on cohomology $\pi_{Fl}^*: H^*(M) \to H^*(Fl(E))$ is injective.

For the following form of the splitting principle, see [6,7].

Theorem 33.6.5 (Splitting principle). Consider a principal bundle $G \hookrightarrow P \to M$ where the structure group G is compact. Every compact Lie group contains a maximal torus $T \cong \mathbb{T}^n$ where \mathbb{T} is the standard 1-torus $S^1 \cong U(1)$. The inclusion $\iota : T \hookrightarrow G$ induces a G-bundle $B\iota : BT \to BG$, with fibre G/T and total space EG, and the pullback of $B\iota$ along the classifying map $p \in [M, BG]$ of P defines another G-bundle $\rho : p^*B\iota \to M$ (also with fibre G/T). This fibre bundle has the following properties:

- ρ^*p admits a reduction of the structure group to T.¹⁰
- The induced morphism on cohomology $\rho^*: H^*(M) \to H^*(\rho^*P)$ is injective.

Because $B\mathbb{T}^n \cong (B\mathbb{T})^n$, one can use the fibration $B\iota$ to pull back any class $c \in H^*(BG)$ to a tuple of classes in $H^*(BU(1))$. Therefore, every characteristic class of ρ^*P is a tuple of characteristic classes of circle bundles. The injectivity of ρ^* then implies that every characteristic class of P can also be characterized by such a tuple.

33.6.1 Chern-Weil theory

The characteristic classes of a vector bundle can be constructed from the connection and curvature forms on the vector bundle. In fact the expressions are polynomial in the curvature forms as is described in this section.

Definition 33.6.6 (Chern-Weil morphism). Let $\pi: E \to M$ be a vector bundle with structure group G and denote the connection one-form and curvature two-form by ω and Ω respectively. There exists a morphism of algebras

$$K[\mathfrak{g}]^G \to H_{dR}^*(E) : P \mapsto P(\Omega),$$
 (33.74)

where K is the base field, satisfying:

- $P(\Omega)$ is closed.
- $P(\Omega)$ pulls back uniquely to a (closed) form $\overline{P}(\Omega) := \pi^* P(\Omega)$ on M.
- $\overline{P}(\Omega)$ does not depend on the chosen connection, i.e. for two connections one-forms ω, ω' the difference $\overline{P}(\Omega) \overline{P}(\Omega')$ is exact.

¹⁰See Section 33.5 further below for more information.

33.6.2 Complex bundles

In this section only complex bundles are considered. This allows the choice of $\mathfrak{u}(n)$ -valued connection one-forms. See Chapter 37 for more information.

Definition 33.6.7 (Chern class). Consider a rank-n vector bundle $\pi : E \to M$ with curvature two-form Ω . Using Chern-Weil theory one defines the Chern classes $c_k(E)$ as follows:

$$\det\left(1 + \frac{it}{2\pi}\Omega\right) =: \sum_{k=1}^{n} c_k(E)t^k. \tag{33.75}$$

The i^{th} Chern class is a cohomology class in $H_{dR}^{2i}(M)$.

Definition 33.6.8 (Chern polynomial). Let $c_k(E)$ denote the k^{th} Chern class of E. The Chern polynomial is defined as follows:

$$c_t(E) := \sum_{i=1}^{\infty} c_i(E)t^i.$$
 (33.76)

The **total Chern class** is defined by taking t = 1.

Formula 33.6.9 (Whitney product formula¹¹). The following equality holds for all bundles E_1, E_2 :

$$c_t(E_1 \oplus E_2) = c_t(E_1)c_t(E_2).$$
 (33.77)

Corollary 33.6.10 (Chern root). The product formula and the splitting principle imply that the Chern polynomial of any rank-n vector bundle can be decomposed as follows:

$$c_t(E) = \prod_{i=1}^{n} (1 + x_i t), \tag{33.78}$$

where in the case of decomposable vector bundles $E \equiv \bigoplus_{i=1}^{n} L_i$ the x_i are the first Chern classes $c_1(L_i)$. The factors x_i are called the **Chern roots**.

By working out the above formula one can see that the coefficient in degree k, i.e. the k^{th} Chern class, is given by the k^{th} elementary symmetric polynomial:

$$c_k(E) = \sum_{i_1 < \dots < i_k} x_{i_1} \cdots x_{i_k}.$$
 (33.79)

Definition 33.6.11 (Canonical class). Consider a smooth manifold M. The first Chern class of the canonical bundle $\bigwedge^n T^*M$ is called the canonical class of M.

Definition 33.6.12 (Theta characteristic). Consider a smooth manifold M together with its canonical class K_M . The theta characteristic, if it exists, is a characteristic class Θ such that $\Theta \cup \Theta = K_M$ where \cup is the cup-product in cohomology 32.6.7.

After finding the Chern roots of a vector bundle E, one can use them to define various other classes:

Construction 33.6.13 (Genus). Let $f \in K[[t]]$ be a formal power series with constant term 1. For any $k \in \mathbb{N}$ one can easily see that $f(x_1) \cdots f(x_k)$ is a symmetric power series (also with constant term 1). For every such f define the f-genus by the formula¹²

$$G_f(E) := \det f\left(\frac{it}{2\pi}\Omega\right).$$
 (33.80)

The coefficients of this power series define characteristic classes of E.

¹¹This formula is also called the Whitney sum formula.

¹²In the case that E splits as a sum for line bundles, one simply obtains the product $f(x_1) \cdots f(x_k)$.

Example 33.6.14 (Chern class). The total Chern class is recovered as the genus of f = 1 + x.

The following genus is very important, especially in the context of the Atiyah-Singer index theorem (see further below):

Example 33.6.15 (Todd genus). Consider the function

$$Q(x) := \frac{x}{1 - e^{-x}} = 1\frac{x}{2} + \sum_{i=1}^{\infty} \frac{(-1)^{i-1}B_i}{(2i)!}x^{2i}$$
(33.81)

where B_i is the i^{th} Bernoulli number. Let $\pi: E \to M$ be rank-n vector bundle. If x_i are the Chern roots of E, the Todd class is defined as

$$td(E) := \prod_{i=1}^{n} Q(x_i).$$
 (33.82)

The characteristic function of the Todd genus is the unique power series with constant term 1 that has the property that for all $n \in \mathbb{N}$ the n^{th} degree term in $f(x)^{n+1}$ has coefficient 1.

Another genus that is used in the context of the index theorems is the following one:

Example 33.6.16 (\hat{A} -genus¹³). The \hat{A} -genus is defined through the following function:

$$Q(x) := \frac{\sqrt{x/2}}{\sinh(\sqrt{x/2})} = 1 - \frac{x}{24} + \frac{7x^2}{5760} - \dots$$
 (33.83)

33.6.3 Real bundles

In the case of real vector bundles, which will be assumed to come equipped with a fibre metric as to allow for $\mathfrak{o}(n)$ -valued connection one-forms, one can also define a set of characteristic classes.

Definition 33.6.17 (Pontryagin class). Consider a vector bundle $\pi: E \to M$. The Pontryagin classes of E are defined as follows:

$$p_i(E) := (-1)^i c_{2i}(E^{\mathbb{C}}) \in H^{4i}(M),$$
 (33.84)

where $E^{\mathbb{C}}$ is the complexification of E.

When the vector bundles in question are orientable, one can further reduce the structure group to SO(n) as explained in section 33.5 further below. If the rank is even, one can define the following characteristic class:

Definition 33.6.18 (Euler class). Let $\pi: E \to M$ be an orientable vector bundle of rank 2k. The Euler class of E is defined as follows:

$$e(E) := p_k(E) \smile p_k(E).$$
 (33.85)

Property 33.6.19. Using the fact that one can write the total Pontryagin class using Chern-Weil theory as

$$p(E) = \det\left(1 - \frac{1}{2\pi}\Omega\right) \tag{33.86}$$

and that the determinant is the square of the Pfaffian, one can equivalently define the Euler class as follows:

$$e(E) := \operatorname{Pf}\left(-\frac{1}{2\pi}\Omega\right). \tag{33.87}$$

¹³This is pronounced as A-roof genus.

33.6.4 Cohomology of Lie groups

Using the language of characteristic classes one can find a concise description of the (continuous) group cohomology of Lie groups. First of all there is the isomorphism between continuous group cohomology and cohomology of classifying spaces:

$$H^*(BG; \mathbb{Z}) \cong H_c^*(G; \mathbb{Z}). \tag{33.88}$$

?? COMPLETE ??

33.7 Differential cohomology 4

In the foregoing sections a multitude of objects were introduced that are related to principal fibre bundles. For example, connections and their associated curvature forms could be used to construct differential quantities, while characteristic classes contained data about the topology of the bundle. However, even in the simple case of U(1)-bundles, neither the (first) Chern class, nor the curvature form are are able to

33.7.1 Differential characters

In this section all (co)chains, (co)cycles and (co)boundaries are assumed to be smooth. By doing this no generality is lost since every continuous chain is homotopic to a smooth one.

Definition 33.7.1 (Differential character). Consider a positive integer $k \geq 1$ and let M be a smooth manifold. A (**Cheeger-Simons**) differential character of **degree** k is a group homomorphism $\chi: Z_{k-1}(M; \mathbb{Z}) \to \mathrm{U}(1)$ that is given by integration on boundaries: ¹⁴

$$\chi(\partial\gamma) = \exp\left(2\pi i \int_{\gamma} \omega\right) \tag{33.89}$$

for some $\omega \in \Omega^k(M)$. The group of differential characters of degree k is denoted by $\hat{H}^k(M; \mathbb{Z})$. For k = 0 the convention $\hat{H}^0(M; \mathbb{Z}) := H^0(M; \mathbb{Z})$ is used.

Property 33.7.2 (Thin invariance). Differential characters vanish on boundaries of thin chains, i.e. for chains $\gamma \in C_k(M; \mathbb{Z})$ such that $\int_{\gamma} \omega = 0$ for all $\omega \in \Omega^k(M)$ one has $\chi(\partial \gamma) = 1$.

Property 33.7.3 (Curvature). Every differential character is represented by a unique, closed and integral k-form. The map curv : $\hat{H}^k(M;\mathbb{Z}) \to \Omega^k_{\rm int}(M)$ is called the curvature map. If ${\rm curv}(\chi) = 0$, the character χ is said to be **flat**.

Property 33.7.4 (Characteristic class). Every differential character gives rise to a characteristic class as follows. The group of cocycles is free and the quotient map $\mathbb{R} \to \mathrm{U}(1)$ is onto, so every differential character lifts to a group homomorphism $\widetilde{\chi}: Z_{k-1}(M; \mathbb{Z}) \to \mathbb{R}$ such that $h(z) = \exp(2\pi i \widetilde{h}(z))$. The map

$$ch: C_k(M; \mathbb{Z}) \to \mathbb{Z}: \gamma \mapsto \int_{\gamma} curv(\chi) - \widetilde{\chi}(\partial \gamma)$$
 (33.90)

induces a well-defined map ch : $\hat{H}^k(M; \mathbb{Z}) \to H^k(M; \mathbb{Z})$. If $\mathrm{ch}(\chi) = 0$, the character χ is said to be **topologically trivial**. The characteristic class associated to a differential character is sometimes called the **Dixmier-Douady** class (see e.g. [8]).

¹⁴Some authors omit the exponential function by working modulo \mathbb{Z} . This just replaces the multiplicative U(1)-group by the isomorphic additive \mathbb{R}/\mathbb{Z} -group.

Example 33.7.5 (Circle bundles). Consider a U(1)-bundle $\pi: P \to M$ with connection ω . Holonomy around closed curve γ gives a parallel transport map

$$P \to P: p \mapsto p \cdot g(p, \gamma) \tag{33.91}$$

for a smooth function $g: \Omega_p P \to \mathrm{U}(1)$. In fact g only depends on the homology of γ and the projection $\pi(p)$, so one obtains a map $g \in \hat{H}^2(M;\mathbb{Z})$ with curvature $\mathrm{curv}(g) = \frac{-1}{2\pi i}\Omega$ and characteristic class $\mathrm{ch}(g)$ the first Chern class of P. The converse also holds, every different character of degree 2 determines a principal $\mathrm{U}(1)$ -bundle with connection (up to connection-preserving isomorphism). This leads to the following equivalence:

$$\hat{H}^2(M; \mathbb{Z}) \cong \{\text{isomorphism classes of } (P, \nabla) \mid P \text{ a circle bundle and}$$
 (33.92)
$$\nabla \text{ a principal connection} \}.$$

The curvature and characteristic class maps fit in some exact sequences:

Property 33.7.6 (Curvature exact sequence). The first sequence is induced by the curvature map. A vanishing curvature form says that the character vanishes identically on boundaries. This is exactly the property satisfied by cohomology classes:

$$0 \longrightarrow H^{k-1}(M; \mathrm{U}(1)) \longrightarrow \hat{H}^k(M; \mathbb{Z}) \xrightarrow{\mathrm{curv}} \Omega^k_{\mathrm{int}}(M) \longrightarrow 0 \tag{33.93}$$

The first cohomology group classifies flat circle bundles by Property 33.5.13, so this sequence says that, by extending the above example to higher n-bundles (this can be formalized cf. bundle qerbes), two circle n-bundles with the same curvature differ by a flat circle (n-1)-bundle.

Property 33.7.7 (Characteristic class exact sequence).

$$0 \longrightarrow \Omega^{k-1}(M)/\Omega_{\rm int}^{k-1}(M) \longrightarrow \hat{H}^k(M; \mathbb{Z}) \stackrel{\rm ch}{\longrightarrow} H^k(M; \mathbb{Z}) \longrightarrow 0$$
 (33.94)

The first map is induced by the holonomy functional

$$\iota: \Omega^{k-1}(M) \to \hat{H}^k(M; \mathbb{Z}) : \omega \to \exp\left(2\pi i \int_{-\omega} \omega\right)$$
 (33.95)

which has the closed integral forms as kernel. This exact sequence says that two connections on the same principal U(1)-bundle differ by a global connection form (up to an integral form).

33.7.2 Deligne cohomology

The following theorem states that the differential characters are essentially the unique objects with these properties and that they define a generalized cohomology theory:

Theorem 33.7.8 (Simons-Sullivan). There is an essentially unique functor

$$\hat{H}^{ullet}(-;\mathbb{Z}):\mathbf{Diff}\to\mathbf{Ab}^{\mathbb{Z}}$$

such that there exist four natural transformations

- 1. Flat class: $j: H^{\bullet-1}(-; U(1)) \to \hat{H}^{\bullet}(-; \mathbb{Z}),$
- 2. Topological trivialization: $\iota: \Omega^{\bullet-1}/\Omega_{int}^{\bullet-1} \to \hat{H}^{\bullet}(-; \mathbb{Z}),$
- 3. Characteristic class: $ch: \hat{H}^{\bullet}(-;\mathbb{Z}) \to H^{\bullet}(-;\mathbb{Z})$, and
- 4. Curvature: $curv: \hat{H}^{\bullet}(-; \mathbb{Z}) \to \Omega_{int}^{\bullet}$

that fit in the following commutative diagram, where the diagonal sequences are exact:

Functors satisfying the above properties are said to define **ordinary differential cohomology theories**.

Another approach to differential cohomology is given by the Deligne complex.

Definition 33.7.9 (Deligne complex). Let $\mathbf{B}^k \mathrm{U}(1)_{\mathrm{conn}}$ denote the cochain complex of Abelian sheaves

$$\mathcal{O}_M^{\times} \xrightarrow{d \log} \Omega^1 \xrightarrow{d} \cdots \xrightarrow{d} \Omega^k.$$
 (33.96)

(Smooth) Deligne cohomology is defined as follows:

$$H_D^{k+1}(M; \mathbb{Z}) := \check{H}^0(M; \mathbf{B}^k \mathbf{U}(1)_{\text{conn}}),$$
 (33.97)

where \check{H}^{\bullet} denotes Čech cohomology 10.3.10 and the cochain complex $\mathbf{B}^k\mathrm{U}(1)_{\mathrm{conn}}$ is turned into a cochain complex by inverting the degrees.

Example 33.7.10 (Circle bundles). A (Čech-)Deligne cocycle in degree 2 consists of data (A_i, g_{ij}) such that

$$A_{i} \hookrightarrow A_{i} - A_{j} = d \log g_{ij} = g_{ij}^{-1} dg_{ij}$$

$$\uparrow d \log$$

$$g_{ij} \hookrightarrow g_{jk} g_{ki}^{-1} g_{ij} = 1$$

where the inclusion arrows denote the restriction to intersections $U_{ij} := U_i \cap U_j$. Property 33.3.27 and the subsequent example, specialized in the case of U(1)-bundles, show that the above data are exactly the components of a principal circle bundle with connection.

Remark 33.7.11. As was the case for differential characters, higher Deligne cohomology classes classify higher U(1)-bundles with connection. The main benefit of this approach is that one gets an "explicit" description of the local data. See [110] for a good introduction.

?? COMPLETE ??

33.8 Cartan connections

In the first part of this section a short overview of Klein's *Erlangen program* which unifies (and generalizes) Euclidean and non-Euclidean geometries will be given. In the second part of this section Cartan's generalization in terms of bundle theory is explained. A reference for this section is [9] (there a definition of Cartan geometries using charts and atlases, similar to the definition of smooth manifolds, is also given).

33.8.1 Klein geometry

Definition 33.8.1 (Klein geometry). Consider a Lie group G together with a closed subgroup H. If it is connected, the orbit space G/H is called a Klein geometry, while G is called the **principal group**. If the principal space is also connected, the Klein geometry is said to be **geometrically oriented**.

If the associated Lie algebras are denoted by $\mathfrak{g},\mathfrak{h}$ respectively, the pair $(\mathfrak{g},\mathfrak{h})$ is called a **Klein** pair. In fact, any pair $(\mathfrak{g},\mathfrak{h} \leq \mathfrak{g})$ can be called a Klein pair.

Property 33.8.2. It is clear that every Klein geometry gives a homogeneous space and hence a principal bundle of rank $\dim(G) - \dim(H)$.

Definition 33.8.3 (Effective Klein pair). The action of G on G/H is not necessarily effective, i.e. the kernel

$$\ker(\rho) = \{ x \in G : g^{-1}xg \in H, \forall g \in G \},$$
 (33.98)

is not necessarily trivial. If it is, the Klein geometry is said to be effective. In terms of the associated Klein pair this means that $\mathfrak h$ contains no nontrivial ideals of $\mathfrak g$. A Klein geometry is said to be locally effective if the kernel is discrete.

Definition 33.8.4 (Reductive Klein pair). A Klein pair $(\mathfrak{g}, \mathfrak{h})$ is said to be reductive if \mathfrak{g} admits a decomposition of the form

$$\mathfrak{g} = \mathfrak{h} + \mathfrak{m} \tag{33.99}$$

where \mathfrak{m} is an \mathfrak{h} -module.

Example 33.8.5 (Euclidean space). Consider the Euclidean group $\operatorname{Euc}(n) \equiv \mathbb{R}^n \rtimes \operatorname{O}(n)$, i.e. the symmetry group of the Euclidean space \mathbb{R}^n . This group clearly acts transitively and, furthermore, the subgroup $\operatorname{O}(n)$ can be seen to leave the origin fixed. This implies that \mathbb{R}^n is a homogenous space and even a Klein geometry of the form $\operatorname{Euc}(n)/\operatorname{O}(n)$.

Definition 33.8.6 (Model geometry). A model geometry consists of the following data:

- 1. an effective Klein pair $(\mathfrak{g}, \mathfrak{h})$,
- 2. a Lie group H such that $Lie(H) = \mathfrak{h}$, and
- 3. a representation $Ad: H \to Aut(\mathfrak{g})$ that restricts to the adjoint representation $Ad_H: H \to Aut(\mathfrak{h})$.

Definition 33.8.7 (Local Klein geometry). A local Klein geometry consists of the following data:

- 1. a Lie group G,
- 2. a closed subgroup $H \subset G$, and
- 3. a subgroup $\Gamma \subset G$ acting by covering transformations on G/H such that the left coset space $\Gamma \backslash G/H$ is connected.

33.8.2 Cartan geometry

The definition of a Klein geometry can be rephrased in the language of bundle theory. First an alternative characterization of Lie groups in terms of the Maurer-Cartan connection is given:

Property 33.8.8 (Lie group). Let M be a smooth manifold and let \mathfrak{g} be a Lie algebra. Assume that M comes equipped with a \mathfrak{g} -valued one-form ω satisfying the following conditions:

- 1. Maurer-Cartan equation: $d\omega + \frac{1}{2}[\omega, \omega] = 0$,
- 2. Soldering: ω restricts to an isomorphism on every fibre, and
- 3. Completeness: ω is complete, i.e. every vector field that maps constantly to \mathfrak{g} is complete.

In a similar way Klein geometries can be characterized as follows:

Property 33.8.9. The bundle $\pi: G \to G/H$ of a Klein geometry G/H admits a one-form $\omega: TG \to \mathfrak{g}$ that satisfies the following conditions:

- 1. ω restricts to an isomorphism on each fibre.
- 2. ω is *H*-equivariant: $R_h^*\omega = \operatorname{Ad}(h^{-1})\omega$.
- 3. ω cancels \mathfrak{h} -fundamental vector fields: $\omega(A^{\#}) = A$ for all $A \in \mathfrak{h}$.
- 4. ω satisfies the Maurer-Cartan equation.
- 5. ω is complete.

The second and third conditions show that ω defines a principal connection one-form, while the fourth condition states that this connection is flat. In fact this one-form is exactly the Maurer-Cartan form on G, where conditions 3 and 4 are obtained by restricting to the subgroup $H \subset G$.

By dropping the flatness and completeness conditions, one obtain the notion of Cartan connections:

Definition 33.8.10 (Cartan geometry). Consider a principal H-bundle $\pi: P \to M$ and a Lie algebra \mathfrak{g} such that $\mathfrak{h} \leq \mathfrak{g}$ (in general it is assumed that these form a model geometry). A Cartan geometry is defined by a one-form $\omega: TP \to \mathfrak{g}$ satisfying the following conditions:

- 1. ω restricts to an isomorphism on each fibre.
- 2. ω is *H*-equivariant.
- 3. ω cancels \mathfrak{h} -fundamental vector fields: $\omega(A^{\#}) = A$ for all $A \in \mathfrak{h}$.

The form ω is called the Cartan connection.

Definition 33.8.11 (Curvature). By analogy with the Maurer-Cartan condition and the Cartan structure equation 33.4.19, the curvature of a Cartan connection is defined as follows:

$$\Omega := d\omega + \frac{1}{2} [\omega \wedge \omega]. \tag{33.100}$$

By restricting to reductive model spaces an important decomposition of the Cartan connection is obtained:

Property 33.8.12. Consider a Cartan geometry $\pi: P \to M$ with a reductive model space $(\mathfrak{g}, \mathfrak{h})$ such that the Cartan connection can be decomposed as $\omega = \omega_{\mathfrak{h}} + \omega_{\mathfrak{m}}$. This decomposition has the following important properties:

- The form $\omega_{\mathfrak{h}}$ defines a principal connection on the Cartan geometry P.
- The form $\omega_{\mathfrak{m}}$ defines a solder form on M.
- The decomposition of the associated curvature form Ω gives the curvature and torsion of the induced principal connection and solder forms respectively.

Furthermore, the Cartan geometry $\pi: P \to M$ gives a reduction of the frame bundle FM (induced by the solder form $\omega_{\mathfrak{m}}$).

?? COMPLETE ??

Chapter 34

Riemannian Geometry

The main reference for this chapter is [53].

34.1 Riemannian manifolds

34.1.1 Metric

Definition 34.1.1 (Bundle metric). Consider the bundle of (0, 2)-tensors. From definition 21.3.1 it follows that every section g of this bundle defines a bilinear map

$$g_p: T_pM \times T_pM \to \mathbb{R}$$

for all $p \in M$. If this map is symmetric and nondegenerate it is called a **Lorentzian** or **pseudo-Riemannian metric**. If the map is also positive, it is called a **Riemannian metric**.¹ The collection $\{\langle \cdot | \cdot \rangle_p : p \in M\}$ is called a **bundle metric** or **fibre metric**.

Definition 34.1.2 (Pseudo-Riemannian manifold). A smooth manifold equipped with a pseudo-Riemannian metric. A **Riemannian manifold** is defined similarly.

A Riemannian metric induces a duality between TM and T^*M (the Reisz representation theorem 23.2.8). This is given by the *flat* and *sharp* isomorphisms:

Definition 34.1.3 (Musical isomorphisms). Let $g: TM \diamond TM \to \mathbb{R}$ be a Riemannian metric on M. The **flat** isomorphism is defined as follows:

$$b: v \mapsto q(v, \cdot). \tag{34.1}$$

The **sharp** isomorphism is defined as the inverse map. For an arbitrary covector field ω it is implicitly given by

$$g(\omega^{\sharp}, v) = \omega(v). \tag{34.2}$$

These **musical isomorphisms** can be used to raise and lower tensor indices. In index-notatio they are given by contraction with metric tensor:

$$b: v^{\mu} \mapsto v_{\lambda} := g_{\lambda\mu}v^{\mu}$$

$$\sharp: \omega_{\mu} \mapsto \omega^{\lambda} := q^{\lambda\mu}\omega_{\mu}.$$

¹See also the section about Hermitian forms and metric forms 20.3.

Definition 34.1.4 (Codifferential). Using the de Rham differential d and the Hodge star operator 21.6.25 one can define a boundary operator $\delta: \Omega^k(M) \to \Omega^{k-1}(M)$:

$$\delta := (-1)^k *^{-1} d * = (-1)^{n(k+1)+1} * d *.$$
(34.3)

It is not hard to check that this is indeed a boundary operator according to definition 5.1.1.

Definition 34.1.5 (Hodge Laplacian²). Using the de Rham differential and codifferential one can define a derivation on $\Omega^k(M)$:

$$\Delta := d\delta + \delta d. \tag{34.4}$$

It should be noted that, in contrast to the differential d, the Hodge Laplacian depends on the metric through the definition of the codifferential.

Definition 34.1.6 (Harmonic form). An element of the kernel of the Hodge Laplacian Δ . The space of harmonic k-forms is often denoted by $\mathcal{H}^k(M)$.

Theorem 34.1.7 (Hodge decomposition). Let M be a closed Riemannian manifold. Every differential k-form admits a decomposition of the form

$$\omega = d\alpha + \delta\beta + h \tag{34.5}$$

where $h \in \mathcal{H}^k(M)$.

Corollary 34.1.8. The k^{th} de Rham cohomology group is isomorphic (as an Abelian group) to the space of harmonic k-forms:

$$H^k(M;\mathbb{R}) \cong \mathcal{H}^k(M).$$
 (34.6)

34.1.2 Riemannian manifolds

Definition 34.1.9 (Riemannian isometry). Consider two pseudo-Riemannian manifolds (M, g_M) and (N, g_N) . A smooth map $f: M \to N$ is called an isometry if $f^*g_N = g_M$, i.e. if it preserves the metric tensor.

Property 34.1.10. Let M be a pseudo-Riemannian manifold. For every $p \in M$ there exists a splitting $T_pM = P \oplus N$ where P is a subspace on which the metric is positive-definite and N is a subspace on which the metric is negative-definite. This splitting is not unique, only the dimensions of the two subspaces are well-defined invariants.

Due to the continuity of the metric, the dimensions of this splitting will be the same for all points in a connected neighbourhood. For connected manifolds this amounts to a global invariant:

Definition 34.1.11 (Index). Let M be a connected pseudo-Riemannian manifold. The dimension of the "negative" subspace N in the above splitting $T_pP = P \oplus N$ is called the index of the manifold.

Theorem 34.1.12 (Whitney's embedding theorem). Every smooth paracompact³ manifold M can be embedded in $\mathbb{R}^{2\dim M}$.

Theorem 34.1.13 (Whitney's immersion theorem). Every smooth paracompact manifold M can be immersed in $\mathbb{R}^{2\dim M-1}$.

 $^{^2\}mathrm{Sometimes}$ called the $\mathbf{Hodge\text{-}de}$ Rham or Laplace-de Rham operator.

 $^{^3}$ See definition 7.5.15.

The following theorem is slightly stronger:

Theorem 34.1.14 (Immersion conjecture). Every smooth paracompact manifold M can be immersed in $\mathbb{R}^{2\dim M - a(\dim M)}$ where a(n) is the number of 1's in the binary expansion of n.

Definition 34.1.15 (Riemannian cone). Let (M, g) be a Riemannian manifold. Consider the product manifold $M \times]0, +\infty[$. This manifold can also be turned into a Riemannian manifold by equipping it with the metric $t^2g + dt^2$. This manifold is called the Riemannian cone or **metric cone** of (M, g).

34.1.3 Levi-Civita connection

Definition 34.1.16 (Riemannian connection). An affine connection ∇ on (M, g) is said to be Riemannian if it satisfies the following two conditions:

1. ∇ is **metric**(-compatible):

$$\nabla g = 0 \tag{34.7}$$

or, equivalently,

$$X(g(Y,Z)) = g(\nabla_X Y, Z) + g(Y, \nabla_X Z)$$
(34.8)

for all vector fields X, Y and Z.

2. ∇ is torsion-free:

$$\nabla_X Y - \nabla_Y X = [X, Y] \tag{34.9}$$

for all vector fields X, Y.

A Riemannian connection is also often called a Levi-Civita connection.

Because the existence of a metric is equivalent to the integrability of an O(n)-structure by example 33.5.6, properties 33.5.4 and 33.5.10 imply that there exists a torsion-free connection that preserves this structure. The following theorem gives an even sharper result:

Theorem 34.1.17 (Fundamental theorem). Every pseudo-Riemannian manifold (M, g) admits a unique Levi-Civita connection.

Formula 34.1.18 (Koszul formula). The Levi-Civita connection ∇ on a pseudo-Riemannian manifold (M, g) is implicitly defined by the following formulae:

$$2g(\nabla_X Y, Z) = \mathcal{L}_X g(Y, Z) + d(\iota_X g)(Y, Z)$$

$$= X(g(Y, Z)) + Y(g(Z, X)) - Z(g(X, Y))$$

$$+ g([X, Y], Z) - g([Z, X], Y) - g([Y, Z], X).$$
(34.11)

The following (local) formula is often useful in calculations (especially in general relativity, Chapter 55):

Formula 34.1.19 (Divergence). Consider the Riemannian volume form

$$Vol = \sqrt{\det(g)} dx^1 \wedge \dots \wedge dx^n.$$
 (34.12)

The divergence of a vector field X is defined as follows:

$$\mathcal{L}_X \text{Vol} =: \text{div}(X) \text{Vol}.$$
 (34.13)

With respect to an orthonormal frame field this is equivalent to

$$\operatorname{div}(X) = \frac{1}{2} \sum_{i=1}^{n} (\mathcal{L}_X g)(e_i, e_i).$$
 (34.14)

Let ∇ be the Levi-Civita connection. Using the Koszul formula one can show that the above formula implies the following equality

$$\operatorname{div}(X) = \operatorname{tr}(Y \mapsto \nabla_Y X) \equiv \nabla_\mu X^\mu. \tag{34.15}$$

where tr denotes the contraction (or trace) induced by g. This makes it clear that the covariant divergence is indeed a good generalization of the divergence 21.1.8 from vector calculus.

Using the metric determinant one can locally write the divergence in terms of ordinary partial derivatives:

$$\nabla_{\mu}V^{\mu} = \frac{1}{\sqrt{\det(g)}}\partial_{\mu}(\sqrt{\det(g)}V^{\mu}). \tag{34.16}$$

Definition 34.1.20 (Laplace-Beltrami operator). Consider a Riemannian manifold (M, g). The Laplace-Beltrami operator on M is defined as the Laplace operator 21.1.20, i.e. as the divergence of the gradient.

The geodesic equation 28.41 can be generalized as follows:

Definition 34.1.21 (Geodesic). A curve γ on a Riemannian manifold (M, g) that is autoparallel with respect to the Levi-Civita connection:

$$\nabla_{\dot{\gamma}}\dot{\gamma} = 0. \tag{34.17}$$

?? COMPLETE (HESSIAN, ...) ??

34.1.4 Killing vectors

Definition 34.1.22 (Killing vector). Let (M, g) be a pseudo-Riemannian manifold. A vector field X satisfying

$$\mathcal{L}_X g = 0 \tag{34.18}$$

is called a Killing vector field.

Formula 34.1.23. Given a Levi-Civita connection ∇ on (M,g) one can rewrite the Killing condition as follows:

$$\nabla_{(\mu} X_{\nu)} = 0. {(34.19)}$$

Definition 34.1.24 (Killing tensor). Let ∇ be the Levi-Civita connection on (M, g). A tensor T satisfying

$$\nabla_{(\mu_N} T_{\mu_1 \dots \mu_{N-1})} = 0 \tag{34.20}$$

is called a Killing tensor. It is obvious that this **generalized Killing condition** is a true generalization of the Killing condition as given above.

34.2 Curvature

Formula 34.2.1 (Riemann curvature tensor). The Riemann (curvature) tensor R is defined as the following (1,3)-tensor:

$$R(v, w)z := [\nabla_v, \nabla_w]z - \nabla_{[v,w]}z \tag{34.21}$$

where ∇ is the Levi-Civita connection. In index notation it is given by

$$R_{ikl}^{i}e_{i} = R(e_{k}, e_{l})e_{j}. (34.22)$$

Property 34.2.2 (Bianchi identity). The first (or algebraic) Bianchi identity reads

$$R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0. (34.23)$$

The second (or differential) Bianchi identity is a similar identity for the covariant derivative:

$$(\nabla_Z R)_{X,Y} W + (\nabla_X R)_{Y,Z} W + (\nabla_Y R)_{Z,X} W = 0.$$
 (34.24)

Formula 34.2.3 (Directional curvature operator⁴).

$$R_v(w) := R(w, v)v \tag{34.25}$$

Formula 34.2.4 (Sectional curvature).

$$\sec(v, w) := \frac{g(R(w, v)v, w)}{g(v, v)g(w, w) - g(v, w)^2} = \frac{g(R_v(w), w)}{g(v \land w, v \land w)}$$
(34.26)

An important result states that the sectional curvature only depends on the span of v, w.

Remark 34.2.5. For surfaces the sectional curvature coincides with the Gaussian curvature K (see Gauss's Theorema Egregium 28.2.51). Generally, the sectional curvature gives the Gaussian curvature of the plane spanned by the vectors v, w.

Formula 34.2.6 (Ricci tensor). In coordinate-free notation the Ricci tensor is defined as the following trace:

$$Ric(v, w) := tr(x \mapsto R(x, v)w)$$
(34.27)

or, equivalently,

$$Ric(v, w) = \sum_{i=1}^{n} g(R(e_i, v)w, e_i).$$
(34.28)

In index notation this becomes

$$R_{\mu\nu} \equiv \operatorname{Ric}_{\mu\nu} := R^{\lambda}_{\ \mu\nu\lambda}. \tag{34.29}$$

Property 34.2.7. The Ricci tensor can also be rewritten in terms of the sectional curvature whenever ||v|| = 1. Let $\{e_1, \ldots, e_{n-1}\}$ be a set of orthonormal vectors such that $\{e_1, \ldots, e_{n-1}, v\}$ forms an orthonormal basis.

$$Ric(v, v) = \sum_{i=1}^{n-1} sec(v, e_i).$$
 (34.30)

It follows that the Ricci tensor can be interpreted as an averaged (sectional) curvature.

⁴Also called the **tidal force operator** (mostly in physics).

Formula 34.2.8 (Ricci scalar).

$$R := R^{\mu}_{\ \mu} \tag{34.31}$$

This (scalar) quantity is also called the scalar curvature.

Formula 34.2.9 (Einstein tensor).

$$G_{\mu\nu} := R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R\tag{34.32}$$

Property 34.2.10. For 4-manifolds the Einstein tensor $G_{\mu\nu}$ is the only tensor containing at most second derivatives of the metric that satisfies

$$\nabla_{\mu}G^{\mu\nu} = 0. \tag{34.33}$$

Definition 34.2.11 (Einstein manifold). A Riemannian manifold for which the Ricci tensor is proportional to the metric.

Remark. This name is justified by the fact that Einstein manifolds are exactly the solutions of the Einstein field equations 55.3 (with a cosmological constant).

34.3 Spinor bundles

Remark. In this section all (pseudo)Riemannian manifolds are assumed to be orientable since this assures that the structure group of TM can be reduced to the special orthogonal group. For the more general definition of Pin-bundles see [41].

34.3.1 Spin structures

From Definition 20.4.28 it is known that one can define a (complex) vector $v \in V$ as an equivalence class of couples (c, \mathfrak{b}) where $\lambda \in \mathbb{C}^{\dim(V)}$ is a (coordinate) vector and ψ is a (linear) frame of V. We will now extend this definition to Clifford algebras and spinors.⁵

Definition 34.3.1 (Spinor). Let V be a vector space equipped with a metric form g of signature (p,q). Consider the set $\mathbb{C}^{2^k} \times F_{SO}V \times \operatorname{Spin}(p,q)$ where $k = \lfloor \frac{p+q}{2} \rfloor$ and $F_{SO}V$ is the set of orthonormal frames in V. One can define an equivalence relation on this set as follows: Two triples $(c_1, \mathfrak{b}_1, \Lambda_1)$ and $(c_2, \mathfrak{b}_2, \Lambda_2)$ are said to be equivalent if and only if

$$c_2 = \Lambda c_1$$
 $\mathfrak{b}_1 = L\mathfrak{b}_2$ $\Lambda = \Lambda_2 \Lambda_1^{-1}$ $\rho(\Lambda) = L$ (34.34)

where ρ is the 2-to-1 covering map $\mathrm{Spin}(p,q) \to \mathrm{SO}(p,q)$. An equivalence class as defined above (or a representative thereof) is called a **spinor**. The 2^k numbers in c_1 are called the **components** of this spinor in the **spin frame** $(\mathfrak{b}_1, \Lambda_1)$.

It should be noted that the two elements of a spin frame (\mathfrak{b}, Λ) are not independent. Choose a "fiducial frame" (\mathfrak{b}_0, e) where e is the identity element of $\mathrm{Spin}(p, q)$. The couple (\mathfrak{b}, Λ) is a well-defined spin frame if and only if $\rho(\Lambda) = L$ whenever $\mathfrak{b} = L\mathfrak{b}_0$.

Definition 34.3.2 (Spinor field). Let (M, g) be a (pseudo)Riemannian manifold. Every tangent space T_pM is a vector space equipped with a nondegenerate bilinear form and hence we can use the above definition to construct a spinor space at p. If the orthonormal frame bundle

⁵This section was not placed in the chapter on Clifford algebras because the theory of spinors is in general always used in a manifold setting.

⁶Different choices of fiducial frame give different, yet isomorphic, spinor spaces.

 $F_{SO}M$ is trivial, one can choose a section $p \mapsto \mathfrak{b}(p)$ and define the fiducial frame field to be $p \mapsto (\mathfrak{b}(p), e)$.

However, if $F_{SO}M$ is not trivial, this construction only works locally. To be able to extend it to the whole manifold, one needs to patch the different frame fields together. The required compatibility conditions reads as follows:

$$\rho(\Lambda_i(x)\Lambda_i^{-1}(x)) = L_{ij}(x) \tag{34.35}$$

whenever

$$\mathfrak{b}_i(x) = L_{ij}(x)\mathfrak{b}_j(x) \tag{34.36}$$

for all $x \in U_i \cap U_i$.

It can be shown that a manifold admits the definition of a global spin frame field if and only if it admits a spin structure:

Definition 34.3.3 (Spin structure). Consider the orthonormal frame bundle

$$\pi_{SO}: F_{SO}M \to M$$

which is obtained by reducing the structure group of the frame bundle FM from GL(n) to SO(n). Furthermore, let $\pi_{spin}: P_{spin} \to M$ be a principal Spin(n)-bundle over M.

The smooth manifold M is said to have a spin structure if there exists an equivariant 2-fold lifting of F_{SO} to P_{spin} , i.e. a morphism $\xi: P_{spin} \to F_{SO}M$ together with the 2-fold covering map $\rho: \operatorname{Spin}(n) \to \operatorname{SO}(n)$ that satisfy

- $\pi_{SO} \circ \xi = \pi_{spin}$, and
- $\xi(p \triangleleft q) = \xi(p) \cdot \rho(q)$

for all $g \in \text{Spin}(n)$, where \triangleleft and \cdot denote the right actions of the respective structure groups. If M admits a spin structure it is often called a **spin manifold** and the principal Spin(n)-bundle P_{spin} is called the **spin frame bundle**.

Definition 34.3.4 (Spin bundle). A spin bundle is a vector bundle associated to a spin frame bundle. Sections of a spin bundle are called spinor fields.

The classification of spin manifolds can be stated in terms of characteristic classes. However, instead of the usual \mathbb{R} - or \mathbb{Z} -valued cohomology classes, one needs classes in \mathbb{Z}_2 -cohomology.

Property 34.3.5 (Orientability). A smooth manifold is orientable if and only if its first Stiefel-Whitney class vanishes.

Property 34.3.6 (Spin manifold). A smooth orientable manifold M is spin if and only if its second Stiefel-Whitney class vanishes. Furthermore, the distinct spin structures form an affine space over $H^1(M, \mathbb{Z}_2)$.

Example 34.3.7. A special case occurs when dim M=3. A 3-manifold is spin if it is compact and orientable.

Example 34.3.8. Any parallelizable or stably parallelizable manifold is spin.

34.3.2 Dirac operators

In this section the partial derivatives ∂_i and gradient operator $\sum_{i=1}^n e_i \partial_i$ are generalized to Clifford algebras and Clifford modules.

Definition 34.3.9 (Clifford bundle). Consider a (pseudo-)Riemannian manifold (M, g) of signature (p, q). For every point $p \in M$ one can construct a Clifford algebra associated to the tangent space (T_pM, g_p) . Using these Clifford algebras one can construct an associated bundle to TM which has $C\ell_{p,q}(\mathbb{R})$ as its typical fibre. A vector bundle with a Clifford algebra as typical fibre, for which the local trivializations respect the algebra structure, is called a Clifford bundle.⁷

Definition 34.3.10 (Clifford module bundle). Consider a (pseudo-)Riemannian manifold (M,g) with its associated Clifford bundle $C\ell(TM)$. Any vector bundle that admits a left $C\ell(TM)$ -action is called a Clifford module (bundle) over M.

To be able to define a Dirac operator on spin bundles, one first needs to define the Dirac operator on \mathbb{R}^n . This Dirac operator is obtained by composing the ordinary gradient

$$\partial := \sum_{i=1}^{n} e_i \partial_i \tag{34.37}$$

with the linear map $\iota_{C\ell}: e_i \mapsto \gamma_i$ that sends a basis for \mathbb{R}^n to the corresponding generators of $C\ell_n(\mathbb{R})$:

$$\underline{\partial} := \sum_{i=1}^{n} \gamma_i \partial_i. \tag{34.38}$$

To extend this definition to Clifford modules one simply needs to replace partial derivatives by covariant derivatives as usual:

Property 34.3.11. Let (M,g) be a (pseudo-)Riemannian manifold and let ∇ be the associated Levi-Civita connection. For every Clifford module E over M there exists a unique connection $\nabla^E : \Gamma(E) \to \Gamma(T^*M \otimes E)$ that respects the Clifford action:

$$\nabla^{E}(\iota_{C\ell}(X) \cdot \sigma) = \iota_{C\ell}(\nabla X) \cdot \sigma + \iota_{C\ell}(X) \cdot \nabla^{E} \sigma \tag{34.39}$$

where $\iota_{C\ell}:TM\to C\ell(TM)$ is the canonical map that embeds a vector field in $C\ell(TM)$.

Definition 34.3.12 (Dirac operator). Consider a (pseudo-)Riemannian manifold (M, g) together with a Clifford module E. If ∇^E is the compatible connection from the previous property, then the Dirac operator on E is defined as follows:

$$\underline{D} := \sum_{i=1}^{n} \iota_{C\ell}(e_i) \cdot \nabla_{e_i}^E \sigma. \tag{34.40}$$

where $\{e_i\}_{i\leq n}$ is a local (orthonormal) frame field.

Property 34.3.13 (Ellipticity). The Dirac operator is a self-adjoint elliptic differential operator.

34.3.3 Index theorem

Property 34.3.14. The \hat{A} -genus 33.6.16 of a spin manifold is an integer.

?? COMPLETE ??

 $^{^{7}}$ Note that one can use this construction to turn any vector bundle that admits a fibre metric into a Clifford bundle.

34.4 Conformal structures

34.4.1 Conformal transformations

Definition 34.4.1 (Conformal transformation). Consider two (pseudo-)Riemannian manifolds (M, g) and (M', g'). A smooth map $f: M \to M'$ is said to be conformal if it leaves the metric invariant up to a scale transformation⁸, i.e. if

$$f^*g' = \Omega g \tag{34.41}$$

for some smooth positive function $\Omega:M\to\mathbb{R}^+$. If f is a diffeomorphism, it is called a **conformal transformation**.

Infinitesimally these maps are characterized by a special type of vector field:

Definition 34.4.2 (Conformal Killing vector). Consider a pseudo-Riemannian manifold (M,g). A vector field X is called a conformal Killing vector field, with conformal factor $\kappa: M \to \mathbb{R}$, if it satisfies

$$\mathcal{L}_X g = \kappa g. \tag{34.42}$$

In local coordinates this amounts to

$$\nabla_{\mu} X_{\nu} + \nabla_{\nu} X_{\mu} = \kappa g_{\mu\nu} \tag{34.43}$$

where ∇ is the Levi-Civita connection associated to (M, g). Equivalently, a vector field is a conformal Killing vector field if its flow determines a conformal transformation.

By parametrizing an infinitesimal transformation as $x^{\mu} \to x^{\mu} + \varepsilon^{\mu}$, one obtains the following infinitesimal generators:

- Translations: $a^{\mu}\partial_{\mu}$,
- Rotations (orthogonal transformations): $\omega^{\mu}_{\ \nu} x^{\nu} \partial_{\mu}$,
- **Dilations**: $\lambda x^{\mu} \partial_{\mu}$, and
- Special conformal transformations: $x^2b^{\mu}\partial_{\mu} 2(b \cdot x)x^{\mu}\partial_{\mu}$.

As usual, exponentiating these generators gives the finite transformations. One immediately notices that the Poincaré group is a subgroup of the conformal group. However, the conformal group of a (pseudo-)Riemannian manifold M is not just the group of conformal transformations of M:

Definition 34.4.3 (Conformal group). The conformal group Conf(M) is the connected component of the identity in the conformal diffeomorphism group of the conformal compactification of M.

Property 34.4.4. The conformal group of (pseudo-)Euclidean space in signature (p,q) is isomorphic to SO(p+1,q+1).

34.5 Hilbert bundles &

Definition 34.5.1 (Hilbert bundle). A vector bundle where the typical fibre is a Hilbert space.

⁸Compare this to definition 28.2.12.

Definition 34.5.2 (Compatible Hilbert bundle). Consider the isomorphisms

$$l_x^{-1}: \mathcal{H} \to F_x: h \mapsto \varphi_i^{-1}(x, h) \in \pi^{-1}(x)$$
 (34.44)

where \mathcal{H} is the typical fibre and where $\{(U_i, \varphi_i)\}_{i \in I}$ is a trivializing cover. The maps l_x are called **point-trivializing maps**.

Using these maps we can extend the metric structure of the typical fibre \mathcal{H} to the fibres F_x for all x by:

$$\langle v|w\rangle_x := \langle l_x(v)|l_x(w)\rangle_{\mathcal{H}}.\tag{34.45}$$

The Hilbert bundle is said to be compatible (with the metric structure on \mathcal{H}) if the above extension is valid for all $v, w \in F_x$.

Remark. For compatible Hilbert bundles, the transition maps $l_{x\to y} = l_y^{-1} \circ l_x : \pi^{-1}(x) \to \pi^{-1}(y)$ are easily seen to be isometries.

?? COMPLETE (B. Iliev OR S. Lang) ??

Chapter 35

Symplectic Geometry

References for this chapter are [29,43].

35.1 Symplectic manifolds

Definition 35.1.1 (Symplectic form). Le M be a smooth manifold. A two-form $\omega \in \Omega^2(M)$ is said to be symplectic if it satisfies the following properties:

- 1. Closedness: $d\omega = 0$, and
- 2. Nondegeneracy: $\iota_X\omega=0 \implies X=0$.

If the closedness condition is dropped, one obtains an almost symplectic form.

Definition 35.1.2 (Symplectic manifold). A manifold M equipped with a symplectic 2-form.

Property 35.1.3 (Dimension). From the antisymmetry and the nondegeneracy of the symplectic form it follows that M is necessarily even-dimensional.

Theorem 35.1.4 (Darboux). Let (M, ω) be a symplectic manifold. For every neighbourhood Ω in T^*M there exists an adapted coordinate system (q^i, p^i) such that

$$\omega|_{\Omega} = \sum_{i} dp^{i} \wedge dq^{i}. \tag{35.1}$$

The adapted charts in this theorem are called **Darboux charts**. Any symplectic manifold admits a covering by Darboux charts.

Remark 35.1.5. The Darboux theorem shows that all symplectic manifolds of the same dimension are locally isomorphic and therefore admit no local invariants. This is in stark contrast to for example Riemannian manifolds.

Formula 35.1.6. In Darboux coordinates the components of the symplectic form ω are given by

$$\omega_{ij} = \begin{pmatrix} 0 & -1 \\ \hline 1 & 0 \end{pmatrix}. \tag{35.2}$$

Using the nondegeneracy condition one can define the "dual" or inverse ω^{\sharp} as

$$(\omega^{\sharp})^{ij} = \left(\begin{array}{c|c} 0 & \mathbb{1} \\ \hline -\mathbb{1} & 0 \end{array}\right). \tag{35.3}$$

Note that the literature is very divided on what convention to use. Some authors use the opposite of the above convention.

Property 35.1.7. In the language of G-structures¹ one can restate the definition of symplectic manifolds. A smooth 2n-dimensional manifold is almost symplectic exactly if it admits an $\operatorname{Sp}(2n)$ -structure. It is symplectic exactly if the $\operatorname{Sp}(2n)$ -structure is integrable, which by Darboux's theorem is equivalent to first order integrability, i.e. $d\omega = 0$.

Definition 35.1.8 (Symplectic potential). By the Poincaré lemma 32.6.9 the symplectic form ω (locally) defines a one-form θ :

$$\omega = d\theta. \tag{35.4}$$

This one-form is sometimes called the sympletic potential of (M, ω) .

Construction 35.1.9 (Liouville one-form²). Let M be a smooth manifold. The cotangent bundle T^*M comes equipped with a canonical symplectic form. Let (q, p) denote the local coordinates on T^*M and define a one-form α by

$$\alpha := p_i dq^i$$
.

In coordinate-free notation this can be written as follows:

$$\alpha(z) = \pi_2(z) \left(\pi_*(z) \right) \tag{35.5}$$

where $z \in TT^*M$ and where $\pi : T^*M \to M$ and $\pi_2 : TT^*M \to T^*M$ are the obvious bundle projections. This one-form serves as a symplectic potential for the cotangent bundle:

$$\omega = d\alpha$$
.

Definition 35.1.10 (Multisymplectic structure). In analogy to the definition of a symplectic structure one can also define multisymplectic (or n-plectic) structures as (n + 1)-forms ω that satisfy the same conditions:

- 1. Closedness: $d\omega = 0$, and
- 2. Nondegeneracy: $\iota_X \omega = 0 \implies X = 0$.

Construction 35.1.11. One can generalize the construction of the canonical one-form on cotangent bundles T^*M to exterior powers of the cotangent bundle through equation 35.5:

$$\alpha(X_1, \dots, X_n) := y(\pi_* X_1, \dots, \pi_* X_n) \tag{35.6}$$

where $X_1, \ldots, X_n \in T_v \Lambda^n T^* M$.

Example 35.1.12 (Killing form). The transgression 3-cocycle 30.4.74 induced by the Killing form of a compact simple Lie group turns this group into a 2-plectic manifold.

Definition 35.1.13 (Symplectomorphism). A symplectomorphism is an isomorphism of symplectic manifolds, i.e. a diffeomorphism $f:(M,\omega_M)\to(N,\omega_N)$ satisfying

$$f^*\omega_N = \omega_M. \tag{35.7}$$

These maps form an infinite-dimensional Lie group called the **symplectomorphism group**. This should not be confused with the symplectic group Sp(n).

Definition 35.1.14 (Symplectic vector field). A vector field is said to be symplectic if its flow preserves the symplectic form ω :

$$\mathcal{L}_X \omega = 0. \tag{35.8}$$

Equivalently, a vector field is symplectic if its flow is a symplectomorphism. These vector fields form a Lie subalgebra of $\mathfrak{X}(M)$.

¹See section 33.5.

²Also known as the **canonical one-form**.

35.2 Hamiltonian vector fields

Definition 35.2.1 (Hamiltonian vector field). Let (M, ω) be a symplectic manifold. For every function $f \in C^{\infty}(M)$ the associated Hamiltonian vector field X_f is defined by the following equation³:

$$\omega(X_f, \cdot) = -df(\cdot). \tag{35.9}$$

This can be rewritten by using ω^{\sharp} as

$$X_f(\cdot) = \omega^{\sharp}(-df, \cdot). \tag{35.10}$$

Hamiltonian vector fields form a Lie subalgebra of the Lie algebra of symplectic vector fields. The flow associated to a Hamiltonian vector field is sometimes called a **Hamiltonian symplectomorphism**.⁴

Definition 35.2.2 (Poisson bracket). Let (M, ω) be a symplectic manifold. The Poisson bracket of two functions $f, g \in C^{\infty}(M)$ is defined as

$$\{f,g\} := X_f(g)$$
 (35.11)

or, equivalently, as

$$X_{\{f,g\}} := [X_f, X_g] \tag{35.12}$$

where X_f, X_g are the Hamiltonian vector fields associated to f and g. In darboux coordinates, the Poisson bracket of the coordinates is represented by the dual matrix ω^{\sharp} . The bracket operation represented by the symplectic form itself is often called the **Lagrange bracket**.

Property 35.2.3. The Poisson bracket induced by the symplectic form turns the structure $(C^{\infty}(M), \{\cdot, \cdot\})$ into a Lie algebra and the second equation above gives a (surjective⁵) Lie algebra morphism $(C^{\infty}(M), \{\cdot, \cdot\}) \to (\{X \mid X \text{ is a HVF on M}\}, [\cdot, \cdot])$. Furthermore, together with the pointwise multiplication the structure becomes a Poisson algebra 30.2.3.

Definition 35.2.4 (Poisson manifold). A smooth manifold on which the algebra of smooth functions can be equipped with a Poisson algebra structure. This is equivalently encoded in a bivector field $\Pi \in \Gamma(\Lambda^2 TM)$ such that

$$\{f, g\} = df \wedge dg(\Pi). \tag{35.13}$$

Property 35.2.5. Every symplectic manifold is a Poisson manifold. The converse, however, is not true.

By generalizing this structure even more, one obtains Jacobi manifolds:

Definition 35.2.6 (Jacobi manifold). A smooth manifold on which the algebra of smooth functions can be equipped with a Lie algebra structure $\{\cdot,\cdot\}$ such that

$$\operatorname{supp}(\{f, g\}) \subseteq \operatorname{supp}(f) \cap \operatorname{supp}(g). \tag{35.14}$$

This is equivalent to the existence of a vector field $v \in \Gamma(TM)$ and a bivector field $\Pi \in \Gamma(\Lambda^2 TM)$ such that

$$\{f,g\} = (fdg - gdf)(v) + df \wedge dg(\Pi). \tag{35.15}$$

³A lot of different conventions exist in the literature. Here the one that is compatible with the Hamiltonian equations 48.3.3 (which are universally accepted) is used.

⁴The fact that the Hamiltonian flow indeed preserves the symplectic form follows from the closedness of ω .

⁵The kernel is given by the constant functions and hence it is not a bijection.

Remark 35.2.7. Most of this section can be generalized to multisymplectic manifolds. For example, the definitions of Hamiltonian vector fields and the induced Lie algebra structure remain virtually the same. However, given a (n-1)-form f there might not exist a vector field X_f that satisfies equation 35.9. If one restricts to the subspace $\operatorname{Ham}(M)$ of such **Hamiltonian** forms that do induce a Hamiltonian vector field, one can define a generalized Poisson structure as follows:

$$\{f,g\} := \mathcal{L}_{X_g} f. \tag{35.16}$$

Since the Lie derivative of a function along a vector field is equal to the action of the vector field on the function, it can be seen that this definition reduces to the ordinary definition in the case of n = 1. For n > 1 the structure is not exactly Poisson because the bracket is only antisymmetric up to an exact form. Following [76] this will be called the **hemi-bracket**.

For n = 1 one can equivalently define the Poisson bracket as

$$\{f,g\}_s := \iota_{X_g} \iota_{X_f} \omega. \tag{35.17}$$

For n > 1, however, this structure differs from the hemi-bracket by an exact form:

$$\{f,g\} = \{f,g\}_s + d\iota_{X_f}g.$$
 (35.18)

The **semi-bracket** $\{\cdot,\cdot\}_s$ does satisfy antisymmetry, but instead it fails to satisfy the Jacobi identity. Although these brackets do not define a Lie algebra, they do define a Lie 2-algebra 27.7.5 where $L_1 := C^{\infty}(M)$ and $L_0 := \operatorname{Ham}(M)$. They are isomorphic as Lie 2-algebras.

Remark 35.2.8 (Presymplectic manifolds). A manifold equipped with a closed two-form (sometimes required to satisfy certain conditions on its rank). In contrast to symplectic manifolds, which also satisfy a nondegeneracy condition, there is no surjective correspondence between smooth functions and Hamiltonian vector fields as given in property 35.2.3. In this setting a Hamiltonian vector field should really be viewed as a pair (X, h) of a smooth function h and a vector field X such that $X = X_h$.

35.3 Lagrangian submanifolds

Definition 35.3.1 (Symplectic complement). Let (M,ω) be a symplectic manifold and let $S \subset M$ be an embedded submanifold $\iota: S \hookrightarrow M$. The symplectic orthogonal complement $T_p^{\perp}S$ (sometimes denoted by $T_p^{\omega}S$) at the point $p \in S$ is defined as the subspace

$$T_p^{\perp}S := \{ v \in T_pM \mid \omega(v, \iota_* w) = 0, \forall w \in T_pS \}.$$
 (35.19)

Definition 35.3.2 (Isotropic submanifold). Let (M, ω) be a symplectic manifold. An embedded submanifold $\iota: S \hookrightarrow M$ is said to be isotropic if $\iota_* T_p S \subset T_p^{\perp} S$ or, equivalently, if $\omega|_S \equiv 0$. It is said to be coisotropic if $T_p^{\perp} S \subset \iota_* T_p S$.

Property 35.3.3 (Characteristic distribution). Consider a symplectic manifold M and let $\iota: S \hookrightarrow M$ be a coisotropic submanifold. The orthogonal complement $T^{\perp}S$ defines an integrable distribution so that S is foliated by isotropic leaves. More generally, if $\iota: S \hookrightarrow M$ is an embedded submanifold, the intersection $TS \cap T^{\perp}S$ defines an isotropic foliation of S (if the intersection is of constant rank).

Definition 35.3.4 (Lagrangian submanifold). Let (M, ω) be a symplectic manifold. An embedded submanifold $\iota: S \hookrightarrow M$ is said to be Lagrangian if $\iota_* T_p S = T_p^{\perp} S$. This is equivalent to S being isotropic and satisfying $\dim(S) = \frac{1}{2}\dim(M)$. Therefore they are sometimes called maximal isotropic submanifolds.

Example 35.3.5 (Closed sections). Consider a closed section of a cotangent bundle T^*M , i.e. a map $\sigma: M \to T^*M$ such that $d\sigma = 0$. The graph of σ is a Lagrangian submanifold.

Theorem 35.3.6 (Maslov & Hörmander). Let M be a smooth manifold and consider a smooth function $W: M \times \mathbb{R}^k \to \mathbb{R}$ where $k \geq 0$. If 0 is a regular value of the map

$$\frac{\partial W}{\partial u}: M \times \mathbb{R}^k \to \mathbb{R}^k,$$

the subset $\Lambda \subset T^*M$, locally defined by the equations

$$\frac{\partial W}{\partial u^{\alpha}} = 0 p_i = \frac{\partial W}{\partial q^i}, (35.20)$$

is a Lagrangian submanifold. Conversely, if $\Lambda \stackrel{\iota}{\hookrightarrow} T^*M$ is a Lagrangian submanifold, then at every $\lambda_0 \in \Lambda$ there exists an integer

$$k_0 \ge \dim(M) - rk(D(\pi \circ \iota)|_{\lambda_0})$$

such that locally around λ_0 the submanifold Λ is described by some function $W: M \times \mathbb{R}^{k_0}$ satisfying the above equations.

Any function W generating a Lagrangian submanifold through the above equations will be called a **generating function**. Functions satisfying both the equations and the regularity condition are called **Morse families**.

Definition 35.3.7 (Real polarization). A (real) polarization of a symplectic manifold (M, ω) is a foliation by Lagrangian submanifolds, i.e. a subbundle $P \subset TM$ such that the following conditions are satisfied:

- 1. Maximality: $\dim TM = 2 \dim P$,
- 2. **Isotropy**: $\iota_X \omega = 0$ for all $X \in P$, and
- 3. Involutivity: [X, Y] = 0 for all $X, Y \in P$.

The last condition characterizes P as an integrable subbundle by Frobenius's theorem. In fact this implies that TM is locally spanned by Hamiltonian vector fields.

More generally one can define a (complex) polarization:

Definition 35.3.8 (Polarization). An integrable Lagrangian subbundle \mathcal{P} of the complexified tangent bundle $T_{\mathbb{C}}M$ with the additional property that $\dim(\mathcal{P} \cap \overline{\mathcal{P}} \cap TM)$ is constant throughout the entire manifold.

A real polarization is (after complexifying it) the same as a complex polarization for which $\mathcal{P} = \overline{\mathcal{P}}$.

Remark 35.3.9. The constant rank condition implies that there exists a real subbundle $D \subset TM$ such that $D \otimes \mathbb{C} \cong \mathcal{P} \cap \overline{\mathcal{P}}$.

Example 35.3.10 (Vertical polarization). Consider the cotangent bundle T^*M of a smooth manifold M. Define the bundle \mathcal{P} at every point $\alpha \in T^*_{\mathbb{C}}M$ as

$$\ker(\pi_*) = T_{\alpha} T_{\pi(\alpha)}^* M \otimes \mathbb{C} = \operatorname{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial p_i} \mid p_i \text{ is a Darboux coordinate on } T^*M \right\}$$

where $\pi: T^*_{\mathbb{C}}M \to M$ is the (complexified) cotangent bundle projection. It can be shown that this polarization is real.

Definition 35.3.11 (Admissible polarization). Let \mathcal{P} be a polarization of a manifold M. This defines two new subbundles $D := \mathcal{P} \cap \overline{\mathcal{P}} \cap TM$ and $E := (\mathcal{P} + \overline{\mathcal{P}}) \cap TM$ which are each others symplectic complement. These are sometimes called the **isotropic** and **coisotropic** distributions respectively. Since \mathcal{P} is integrable, D is too. A polarization is said to be (strongly) admissible if E is also integrable and the leaf sets M/D and M/E are smooth manifolds. (Sometimes the projection $M/D \to M/E$ is required to be a submersion.)

Definition 35.3.12 (Kähler polarization). A polarization \mathcal{P} such that $\mathcal{P} \cap \overline{\mathcal{P}} = \emptyset$. In this case \mathcal{P} is always admissible and E = TM. Every Kähler manifold (see chapter 37) admits such a polarization, namely its (anti)holomorphic tangent bundle, and, conversely, the existence of a Kähler polarization implies that the manifold is (pseudo)Kähler. More generally, the (anti)holomorphic tangent bundles of any complex bundle are called the (anti)holomorphic polarization.

35.4 Hamiltonian dynamics

35.4.1 Dynamical systems

Definition 35.4.1 (Dynamical system). Let (M, ω) be a symplectic manifold and let $H \in C^{\infty}(M)$ be a distinguished "observable". The triple (M, ω, H) is called a dynamical system with **Hamiltonian** H. The time derivative of any observable $F \in C^{\infty}(M)$ is defined by⁶

$$\dot{F} := \{H, F\} \tag{35.21}$$

where $\{\cdot,\cdot\}$ is the Poisson bracket on M. The time evolution is completely governed by the Hamiltonian flow $\exp(tX_H)$.

Definition 35.4.2 (Conserved quantity). Let (M, ω, H) be a dynamical system. An observable $F \in C^{\infty}(M)$ is said to be conserved if it satisfies $\dot{F} \equiv \{H, F\} = 0$.

Corollary 35.4.3 (Noether's theorem). *Noether's theorem* (at least in its form from classical mechanics) is just an application of the antisymmetry of the Poisson bracket:

$$\{H, Q\} = 0 \iff \{Q, H\} = 0.$$
 (35.22)

From here on a specific type of Hamiltonian function, called a **mechanical Hamiltonian**, is considered. Let (Q,g) be a Riemannian manifold and equip the cotangent bundle $M:=T^*Q \xrightarrow{\pi} Q$ with its canonical symplectic structure. The Hamiltonians that will be considered are of the form (in local Darboux coordinates)

$$H(q,p) = \frac{1}{2}g(p,p) + V(q)$$
 (35.23)

where V(q) is a smooth function. These Hamiltonians have two types of symmetries (conserved quantities):

Definition 35.4.4 (Kinematical symmetry). Consider a conserved quantity C. The symmetry is said to be kinematical if $\pi_*(X_C) \in \Gamma(TQ)$ exists and $\mathcal{L}_{\pi_*(X_C)}g = 0$.

Remark. The second condition says that $\pi_*(X_C)$ is a Killing vector. (See definition 34.1.22.)

Definition 35.4.5 (Dynamical symmetry). Any symmetry that is not a kinematical symmetry.

⁶Note that this construction can in fact be generalized to Poisson manifolds 35.2.4.

The following algorithm gives a way to find conditions to check whether a given observable is conserved:

Method 35.4.6 (Van Holten's algorithm). Let the conserved quantity be analytic, i.e.

$$C(q,p) = \sum_{k=0}^{N} \frac{1}{k!} a^{(n_1 \dots n_k)}(q) p_{n_1} \dots p_{n_k}$$

for some $N \in \mathbb{N}$, where the brackets around indices denote symmetrization. For a manifold where q does not depend on q, one can rewrite $\{C, T + V\} = 0$ as

$$\sum_{n=1}^{N} \left[\frac{1}{(k-1)!} a^{n_1 \dots n_{k-1} i} p_{n_1} \dots p_{n_{k-1}} \frac{\partial V}{\partial q^i} - \frac{2}{k!} \frac{\partial}{\partial q^i} a^{n_1 \dots n_k} p_{n_1} \dots p_{n_k} g^{im} p_m \right] = 0$$

Because two polynomials are equal if and only if their corresponding coefficients are equal, one obtains the following equations:

1.
$$0^{th}$$
 order: $a^k \frac{\partial V}{\partial q^k} = 0$,

2.
$$1^{st}$$
 order: $a^{(n_1i)}\frac{\partial V}{\partial q^i} - 2\frac{\partial a}{\partial q^i}g^{in_1} = 0$, and

3.
$$N^{th}$$
 order:
$$\frac{1}{N!}a^{(n_1...n_Ni)}\frac{\partial V}{\partial q^i} - \frac{2}{(N-1)!}\frac{\partial}{\partial q^i}a^{(n_1...n_{N-1}}g^{i)n_N} = 0.$$

where one should pay attention to the symmetrization brackets in the second term of the last equation. Pulling down the indices by multiplying with the metric $g_{n_i m_i}$ gives

$$a_{(m_1...m_N)}{}^i \partial_i V - 2N \partial_{(m_N} a_{m_1...m_{N-1})} = 0.$$
 (35.24)

The upper bound N in the series expansion is determined by the generalized Killing condition 34.20:

$$\partial_{(m_{N+1}} a_{m_1 \dots m_N)} = 0 \implies a_{(m_1 \dots m_{N+1})} = 0.$$
 (35.25)

Remark 35.4.7. The above algorithm still holds for curved manifolds when replacing all partial derivatives ∂_i by (Levi-Civita) covariant derivatives ∇_i .

35.4.2 Hamilton-Jacobi equation

Definition 35.4.8 (Hamilton-Jacobi equation). Consider a smooth manifold M such that its cotangent bundle comes equipped with a Hamiltonian function $H: T^*M \to \mathbb{R}$. The Hamilton-Jacobi equation for H is the differential equation (for a function $S: M \to \mathbb{R}$) of the following form:

$$H \circ dS = 0. \tag{35.26}$$

This can be rewritten as

$$H\left(q, \frac{\partial S}{\partial q}\right) = 0. \tag{35.27}$$

Because of property 35.3.5 one immediately sees that the solutions of the Hamilton-Jacobi equation define a Lagrangian submanifold of the cotangent bundle. Furthermore, they have the property that they are transversal to the fibres of the projection $\pi: T^*Q \to Q$. By relaxing this transversality condition one obtains the following more general notion:

Definition 35.4.9 (Geometric solution). A Lagrangian submanifold of the level set $H^{-1}(0)$ for some smooth function $H: T^*M \to \mathbb{R}$.

Remark 35.4.10. It can be proven that geometric solutions can locally be described by a solution of the Hamilton-Jacobi equation.

35.4.3 Integrability

Definition 35.4.11 (Integrable system). Consider a smooth vector-valued function

$$F \equiv (F_1, \dots, F_n) : M \to \mathbb{R}^n$$

on a symplectic manifold (M, ω) . This map defines a **completely integrable system** (CIS) if it satisfies the following conditions:

- 1. The dimension is maximal, i.e. $\dim M = 2n$.
- 2. The Hamiltonian vector fields $\{X_{F_i}\}_{i \le n}$ are almost everywhere linearly independent.
- 3. For all $i, j \leq n : \{F_i, F_j\} = 0$.

Property 35.4.12. Because the Poisson brackets 35.2.2 are related to the commutator of Hamiltonian vector fields, a CIS gives rise to a maximal set of mutually commuting vector fields. Frobenius's theorem 32.3.26 then says that a CIS also gives rise to a maximally integrable distribution and hence an n-dimensional regular foliation.

35.5 Symplectic reduction

35.5.1 Hamiltonian actions

Alternative Definition 35.5.1 (Hamiltonian torus action). Let (M, ω) be a symplectic manifold. First, consider the case of an action of $G = \mathbb{R}$ or $G = S^1$ on M. If G acts by Hamiltonian symplectomorphisms, the action is said to be **Hamiltonian**. For $G = \mathbb{R}^n$ or $G = T^n$, the action is said to be Hamiltonian, if the restriction to every factor \mathbb{R} or S^1 is Hamiltonian.

For general Lie groups one needs the concept of a moment map:

Definition 35.5.2 (Moment map). Consider a Lie group G with associated Lie algebra \mathfrak{g} acting on a symplectic manifold M. A map $\mu: M \to \mathfrak{g}^*$ such that:

1. For every $\xi \in \mathfrak{g}$, the map

$$\mu^{\xi}: M \to \mathbb{R}: p \mapsto \langle \mu(p), \xi \rangle$$
 (35.28)

is the Hamiltonian function for the fundamental vector field 33.3.4 associated to ξ , i.e. the vector field X_{ξ} generated by one-parameter group $e^{t\xi}$.

- 2. μ is an intertwiner between the G-action on M and the coadjoint representation 30.3.10 on \mathfrak{g}^* .
- 2*. Equivalently, this says that the assignment of Hamiltonian vector fields $\xi \mapsto X_{\xi}$ is G-equivariant, i.e. $X_{g^{-1}\xi g} = g^*X_{\xi}$.

The G-action on M is said to be **Hamiltonian** with moment map μ . If only the first condition holds, the action is said to be **weakly Hamiltonian**.

Definition 35.5.3 (Toric manifold). A closed connected symplectic 2n-manifold equipped with a faithful Hamiltonian torus action of \mathbb{T}^n .

Property 35.5.4. A symplectic S^1 -action on a symplectic manifold for which $[\omega] \in H^2(M)$ is a positive multiple of the first Chern class is Hamiltonian.

⁷Equivalently, one can require that the Jacobian *DF* has full rank almost everywhere.

Property 35.5.5 (Obstruction). If G is compact and connected, G-equivariance of a weakly Hamiltonian action is equivalent to the assignment $\xi \mapsto H_{\xi}$ being a Lie algebra morphism with respect to the Poisson algebra structure on $C^{\infty}(M)$. This also explains the terminology "moment map", an action is Hamiltonian if the moment map is constant along the Hamiltonian flow, just like ordinary linear and angular momenta.

The obstructino to a weakly Hamiltonian action being Hamiltonian is given by a class in Lie algebra cohomology 30.4.7. Let $H: \mathfrak{g} \to C^{\infty}(M): \xi \mapsto H_{\xi}$ be a map assigning Hamiltonian functions to infinitesimal generators. The obstruction

$$\tau(\xi,\zeta) := \{H_{\xi}, H_{\zeta}\} - H_{[\xi,\zeta]} \tag{35.29}$$

satisfies the 2-cocycle condition

$$\tau([\xi,\zeta],\theta) + \tau([\zeta,\theta],\xi) + \tau([\theta,\xi],\zeta) = 0, \tag{35.30}$$

i.e. this obstruction determines a class $[\tau] \in H^2(\mathfrak{g})$. Furthermore, this class vanishes if and only if the action is Hamiltonian.

Theorem 35.5.6 (Atiyah-Guillemin-Sternberg). Let (M, ω) be a closed connected symplectic manifold and consider a Hamiltonian torus action $\mathbb{T}^n \to Symp(M, \omega)$ with moment map $\mu: M \to \mathbb{R}^n$. The image $\mu(M)$ is a convex polytope. More precisely, the fixed point set of the action is a finite disjoint union of connected symplectic submanifolds C_i , the moment map is constant on every component and the image $\mu(M)$ is the convex hull of the points $\mu(C_i)$.

Definition 35.5.7 (Delzant polytope). A polytope $\Delta \subset \mathbb{R}^n$ satisfying the following conditions:

- 1. **Symplicity**: There are n edges meeting at every vertex.
- 2. **Rationality**: The edges meeting at a given vertex p are of the form $p + \lambda v_i$ with $v_i \in \mathbb{Z}^n$.
- 3. Smoothness: For every vertex p, the slopes $\{v_i\}_{i\leq n}$ form a basis of \mathbb{Z}^n .

Theorem 35.5.8 (Delzant). The symplectomorphism classes of toric 2n-manifolds are in bijection with the isomorphism classes of Delzant polytopes.

Theorem 35.5.9 (Duistermaat-Heckman). Consider a symplectic manifold (M, ω) and a Hamiltonian G-action with moment map $\mu: M \to \mathfrak{g}^*$. The pushforward of the Liouville measure along μ is a piecewise polynomial measure:

$$\int_{M} (f \circ \mu) \frac{\omega^{n}}{n!} = \int_{\sigma^{*}} f P d\lambda \tag{35.31}$$

for all $f \in L^1(\mathfrak{g}^*)$, where P is piecewise polynomial and λ is the Lebesgue measure on \mathfrak{g}^* .

Corollary 35.5.10 (Localization). Consider a circle action on a closed symplectic n-manifold (M,ω) , generated by a Morse function f (Definition 29.5.1). The Fourier transform of the Liouville measure is a piecewise polynomial function:

$$\int_{M} e^{-\lambda f} \frac{\omega^{n}}{n!} = \sum_{p \in \text{Crit}(f)} \frac{e^{-\lambda f(p)}}{\lambda^{n} e(p)},$$
(35.32)

where $e: M \to \mathbb{Z}$ is the product of the weights obtained by considering the tangent space T_pM as an S^1 -representation.

35.5.2 Reduction

Property 35.5.11 (Coisotropic reduction). If the leaf space of the characteristic distribution 35.3.3 of a coisotropic submanifold $\iota: S \hookrightarrow (M, \omega)$ is itself a smooth manifold, it admits a symplectic form that pulls back to $\iota_*\omega$. This is for example the case when the coisotropic submanifold is **regular**, i.e. when there exists a submanifold $W \subset S$ such that $TS = TW \oplus T^{\perp}S$ and W intersects every leaf of S only once.

Definition 35.5.12 (Reduced vector field). Let M be a smooth manifold and G a Lie group that acts freely and properly on M (this implies that the quotient space M/G is smooth again). Now, suppose that G acts as a symmetry group on some vector field $X \in \mathfrak{X}(M)$, i.e. $\Phi_g^*X = X$ for all $g \in G$. The reduced vector field $\overline{X} \in \mathfrak{X}(M/G)$ is defined through the following equation:

$$\overline{X}(\pi(m)) := \pi_* X(m), \tag{35.33}$$

where $\pi: M \to M/G$ is the quotient projection.

?? CHECK (cursus Antwerpen) ??

Theorem 35.5.13 (Marsden-Weinstein & Meyer). Consider a Hamiltonian action of a connected Lie group G on a symplectic manifold (M,ω) with moment map $\mu: M \to \mathfrak{g}^*$. Let $M_0 := \mu^{-1}(0)$ and consider the quotient space $\overline{M} := M_0/G$. If G acts freely and properly on M_0 , \overline{M} is a smooth manifold and, moreover, it is symplectic with the symplectic form $\overline{\omega}$ defined by the following equation:

$$\iota^* \omega = \pi^* \overline{\omega},\tag{35.34}$$

where $\iota: M_0 \to M$ is the canonical inclusion and $\pi: M_0 \to \overline{M_0}$ the quotient projection.

Remark 35.5.14. The quotient $M/\!\!/G := \mu^{-1}(0)/G$ is called the Marsden-Weinstein reduction of M by G. There exists a more general construction, where instead of the level set of 0, the inverse image of a coadjoint orbit is considered. Furthermore, if one only requires 0 to be a regular value, the reduction process still applies, but the result is only a *symplectic orbifold*.

35.5.3 Poisson reduction

Definition 35.5.15 (Poisson map). Let $(M, \{\cdot, \cdot\})$ and $(N, [\cdot, \cdot])$ be two Poisson manifolds. A Poisson map $\Phi: M \to N$ is a map satisfying the following equality for all $f, g \in C^{\infty}(N)$:

$$\Phi^*[f, g] = \{\Phi^*f, \Phi^*g\}. \tag{35.35}$$

Definition 35.5.16 (Poisson action). Let G be a Lie group and let $(M, \{\cdot, \cdot\})$ be a Poisson manifold. A G-action on M is called a Poisson action or **canonical action** if every $g \in G$ acts by a Poisson map.

Theorem 35.5.17 (Poisson reduction). Let G be a Lie group which acts freely and properly on a Poisson manifold $(M, \{\cdot, \cdot\})$. If the action is canonical, the Poisson bracket on M descends (uniquely) to a Poisson bracket on the quotient manifold M/G. Furthermore, the projection $\pi: M \to M/G$ is a Poisson map with respect to this structure.

Property 35.5.18. Let $H: M \to \mathbb{R}$ be a G-invariant Hamiltonian function. Its Hamiltonian vector field X_H is also G-invariant and the Hamiltonian vector field of the reduced Hamiltonian $h: M/G \to \mathbb{R}$, defined by $H:=h \circ \pi$, is given by the reduced vector field of X_H .

35.5.4 Lie-Poisson reduction

In the case of Lie-Poisson reductions one considers the cotangent bundle T^*G of a Lie group G as the configuration manifold. It is not too hard to show that $T^*G/G \cong \mathfrak{g}^*$.

Formula 35.5.19 (Lie-Poisson equations). First assign to any vector field $X: Q \to TQ$ a linear function $\mu_X: T^*Q \to \mathbb{R}$ by the following formula:

$$\mu_X(\alpha|_q) := \alpha(X)|_q. \tag{35.36}$$

For these functions one has $\{\mu_X, \mu_Y\} = -\mu_{[X,Y]}$.

Now, choose a basis $\{E^i\}_{i \leq \dim(\mathfrak{g})}$ for \mathfrak{g}^* . This basis induces a basis $\{(E^i)_L\}$ of left-invariant one-forms on G. The projection of a one-form $\alpha \in T^*G$ onto its component associated to the basis element $(E^i)_L$ gives a map $\mu_i : \mathfrak{g}^* \to \mathbb{R}$ by the following formula:

$$\mu_i \circ \pi : \alpha_k(E^k)_L \mapsto \alpha_i \tag{35.37}$$

where $\pi: T^*G \to T^*G/G \cong \mathfrak{g}$ is the quotient map defined by $(E^i)_L \mapsto E^i$. It can be shown that $\mu_i \circ \pi$ is exactly the linear function associated to the corresponding left-invariant vector field $(E_i)_L$.

The Lie-Poisson equations for G are the following set of equations:

$$\dot{\mu}_i = \{\mu_i, h\}_{\mathfrak{g}^*} = -C_{ij}^k \mu_k \frac{\partial h}{\partial \mu_i}$$
(35.38)

where the Poisson bracket on \mathfrak{g}^* is defined by applying the Poisson reduction theorem to T^*G .

35.6 Metaplectic structures

Definition 35.6.1 (Metaplectic group). Consider the symplectic group $Sp(2n, \mathbb{R})$ as defined in 20.4.62. This group admits a double covering called the metaplectic group $Mp(2n, \mathbb{R})$.

Remark 35.6.2. In contrast to the Spin groups that are the double covers of SO(n) by Property 25.4.13, the metaplectic groups are not matrix groups, i.e. they do not admit a faithful finite-dimensional representation.

Definition 35.6.3 (Metaplectic structure). Consider a symplectic manifold (M, ω) of dimension 2n. By property 35.1.7 the frame bundle FM can be reduced to a Sp(2n)-bundle $\pi_{Sp}: F_{Sp}M \to M$. Now, let $\pi_{meta}: P_{meta} \to M$ be a principal Mp(2n)-bundle over M.

The smooth manifold M is said to have a metaplectic structure if there exists an equivariant 2-fold lifting of $F_{\rm Sp}$ to $P_{\rm meta}$, i.e. a morphism $\xi: P_{\rm meta} \to F_{\rm Sp} M$ together with a 2-fold covering map $\rho: {\rm Mp}(2n) \to {\rm Sp}(2n)$ that satisfies:

- $\pi_{Sp} \circ \xi = \pi_{meta}$, and
- $\xi(p \triangleleft g) = \xi(p) \cdot \rho(g)$

for all $g \in Mp(2n)$, where \triangleleft and \cdot denote the right actions of the respective structure groups.

?? COMPLETE ??

Chapter 36

Contact Geometry

36.1 Contact structure

36.1.1 Contact form

Definition 36.1.1 (Contact element). Let M be a smooth n-dimensional manifold. A contact element at the point $p \in M$, called the **contact point**, is a (n-1)-dimensional subspace of the tangent space T_pM .

Property 36.1.2. Because every (n-1)-dimensional subspace of the tangent space can be constructed as the kernel of a linear functional (living in T_p^*M), one can construct the space of contact elements as a quotient of the cotangent bundle:

$$PT^*M = (T^*M \setminus \{0_M\}) / \sim \tag{36.1}$$

where the equivalence relation \sim is defined by $\omega \sim \rho \iff \exists \lambda \in \mathbb{R}_0 : \omega = \lambda \rho$.

Definition 36.1.3 (Contact structure). Let M be a (2n+1)-dimensional smooth manifold. A distribution ξ of contact elements on M is called a contact structure on M if the (locally) defining one-form α satisfies the following non-integrability condition¹:

$$\alpha \wedge (d\alpha)^n \neq 0. \tag{36.2}$$

If the one-form α is defined globally on M, it is called a **contact form** and the pair (M, α) is accordingly called a **contact manifold**.

Property 36.1.4 (Coorientable distribution). A contact form α such that $\xi = \ker(\alpha)$ can be defined globally if and only if the distribution ξ is coorientable, i.e. the line bundle TM/ξ is trivial (or orientable).

36.1.2 Reeb vector fields

Definition 36.1.5 (Reeb vector field). Let (M, α) be a contact manifold. A Reeb vector field on M is a vector field X such that $\alpha(X) = 1$ and $\iota_X d\alpha = 0$.

Property 36.1.6. Given a contact manifold, there exists a unique Reeb vector field associated to it.

?? COMPLETE ??

¹In fact it is maximally non-integrable. (Compare with Frobenius' theorem ?? TODO (FORM VERSION) ??.)

Chapter 37

Complex Geometry

37.1 Complex structures

Definition 37.1.1 (Almost complex structure). Let M be a smooth manifold. An almost complex structure on M is a (complexified) smooth (1,1)-tensor field $J:TM^{\mathbb{C}}\to TM^{\mathbb{C}}$ such that $J|_p:T_pM^{\mathbb{C}}\to T_pM^{\mathbb{C}}$ satisfies $J|_p^2=-1$ for all $p\in M$.

This definition implies the following property:

Property 37.1.2. An almost complex manifold is even-dimensional and orientable.

An almost complex structure induces a decomposition of the tangent bundle in so-called holomorphic and antiholomorphic components:

$$TM^{\mathbb{C}} = TM^{+} \oplus TM^{-}$$

where both bundles have the same dimension. When the coordinates on M are denoted by $\{x^k\}_{k\leq 2n}$, bases for these two subbundles are given by

$$\left\{ \frac{\partial}{\partial z^k} := \frac{1}{2} \left(\frac{\partial}{\partial x^{2k-1}} - i \frac{\partial}{\partial x^{2k}} \right) \right\}_{k \le n}$$

and

$$\left\{\frac{\partial}{\partial\overline{z}^k}:=\frac{1}{2}\bigg(\frac{\partial}{\partial x^{\,2k-1}}+i\frac{\partial}{\partial x^{\,2k}}\bigg)\right\}_{k\leq n}$$

respectively.

Remark 37.1.3. The reason that the almost complex structure is defined on the complexified tangent bundle has to do with the fact that J is only diagonalizable on a complex vector space (because it squares to a negative value).

Example 37.1.4 (Complex vector spaces). Consider a complex vector space V. By looking at property 21.5.8 and using the canonical isomorphism $V \cong T_v V$ for vector spaces, one can see that the automorphism $v \mapsto iv$ induced by the imaginary unit gives rise to an almost complex structure on V.

Property 37.1.5 (Reduction of structure group). A manifold M admits an almost complex structure if and only if the structure group of the tangent bundle TM can be reduced from $GL(\mathbb{R}^{2n})$ to $GL(\mathbb{C}^n)$.

Definition 37.1.6 (Complex manifold). A topological space M for which there exists an open cover $\{U_i\}_i$ such that for every U_i there exists a homeomorphism $\varphi_i: U_i \to \mathbb{C}^n$ onto some open subset of \mathbb{C}^n . The transition functions $\varphi_{ji}: \varphi_i(U_i \cap U_j) \to \varphi_j(U_i \cap U_j)$ are also required to be holomorphic.

Definition 37.1.7 (Complex dimension). The integer n in previous definition is called the complex dimension of M. It is denoted by $\dim_{\mathbb{C}}(M)$.

Property 37.1.8. An almost complex manifold is complex if and only if the $GL(\mathbb{C}^n)$ -structure is integrable. The integrability condition can be rephrased algebraically as follows:

Theorem 37.1.9 (Newlander-Nirenberg). An almost complex manifold is complex if and only if the Nijenhuis tensor N_I vanishes for all vector fields:

$$N_J(X,Y) = [JX, JY] - J[JX, Y] - J[X, JY] - [X, Y] = 0.$$
(37.1)

When working in a local coordinate-induced basis the following condition is obtained:

$$J^{\nu}_{\sigma}\partial_{\nu}J^{\mu}_{\sigma} - J^{\nu}_{\sigma}\partial_{\nu}J^{\mu}_{\sigma} - J^{\mu}_{\nu}\partial_{\rho}J^{\nu}_{\sigma} + J^{\mu}_{\nu}\partial_{\sigma}J^{\mu}_{\sigma} = 0. \tag{37.2}$$

Definition 37.1.10 (Metalinear structure). Consider the complex linear group $GL(n, \mathbb{C})$ together with the morphism $\det : GL(n, \mathbb{C}) \to \mathbb{C}^{\times}$. The metalinear group can be considered as the domain of the holomorphic square root of det:

$$\mathrm{ML}(n,\mathbb{C}) := \left\{ (A,z) \in \mathrm{GL}(n,\mathbb{C}) \times \mathbb{C}^{\times} : \det(A) = z^{2} \right\}. \tag{37.3}$$

An equivalent definition, which will be used in the remainder of the text, makes use of the special linear group:

$$\mathrm{ML}(n,\mathbb{C}) = \frac{\mathrm{SL}(n,\mathbb{C}) \times \mathbb{C}}{2\mathbb{Z}}$$
 (37.4)

where \mathbb{Z} acts on the product group as follows: $k:(A,z)\mapsto (e^{-2\pi ik/n})A, z+2\pi ik/n$). This group is the double cover of $\mathrm{GL}(n,\mathbb{C})$.

Similar to the definition of spinor and metasymplectic structures (see definitions 34.3.3 and 35.6.3 respectively), one can also define metalinear structures on a manifold. The metalinear frame bundle is a lift of the (complex) frame bundle along the canonical morphism $\mathrm{ML}(n,\mathbb{C}) \to \mathrm{GL}(n,\mathbb{C})$ such that it "commutes" with the bundle map $F_{\mathrm{ML}}M \to FM$.

Property 37.1.11 (Existence). A manifold M admits a metalinear structure if and only if its first Stiefel-Whitney class $w_1 \in H^1(M; \mathbb{Z}_2)$ squares to 0. In particular, every orientable manifold admits a metalinear structure. The set of nonequivalent metalinear structures is parametrized by $H^1(M; \mathbb{Z}_2)$.

Remark 37.1.12. The above definitions can be restricted to real manifolds and real metalinear structures.

Definition 37.1.13 (Half-form). Consider a smooth manifold M equipped with a metalinear frame bundle $F_{\rm ML}M$. The bundle of half-forms $M^{1/2}$ is defined as the associated \mathbb{C} -line bundle defined by the action $(g,\lambda)\mapsto e^{nz/2}\lambda$ where $g\equiv (A,z)\in {\rm ML}(n,\mathbb{C})$.

Now, consider the bundle of 1-densities $|\Omega^1|(M)$ from definition 32.5.10. There exists a map $\Gamma(M^{1/2}) \times \Gamma(M^{1/2}) \to \Gamma(|\Omega|^1(M))$ defined by sending the pair (μ, ν) to the (tensor) product $\mu \overline{\nu}$ along the covering map $F_{\rm ML}M \to FM$. If one does not perform the conjugation, a section of the ordinary n-form bundle $\Omega^n(M)$ is obtained. In this sense the existence of a metalinear structure is equivalent to the existence of a square root of the determinant line bundle.

Property 37.1.14 (Metaplectic structure). Let (M, ω) be a symplectic manifold and consider a Lagrangian subbundle $L \subset TM$. The tangent bundle TM admits a metaplectic structure if and only if L admits a metalinear structure.

37.2 Complex differential forms

Property 37.2.1. On a complex manifold there exist coordinates $\{z^i\}_{i\leq n}$ such that the almost complex structure J can be written as

$$J = i\partial_k \otimes dz^k - i\partial_{\overline{k}} \otimes d\overline{z}^k. \tag{37.5}$$

This coordinate expression can be used to find a coordinate transformation from the real coordinates $\{x^i\}_{i\leq 2n}$ to the complex coordinates $\{z^i,\overline{z}^i\}_{i\leq n}$.

Using the basis forms $dz^i, d\overline{z}^i$ one can also define complex Grassmann spaces $\Omega^{p,q}(M)$, analogous to $\Omega^k(X)$ for smooth manifolds, for any point $m \in M$:

$$\Omega_m^{1,0}(M) := \operatorname{span}_{\mathbb{C}} \{ dz_m^i \} \tag{37.6}$$

$$\Omega_m^{0,1}(M) := \operatorname{span}_{\mathbb{C}} \{ d\overline{z}_m^i \} \tag{37.7}$$

$$\Omega_m^{p,q}(M) := \left(\bigwedge_{i=1}^p \Omega_m^{1,0}\right) \wedge \left(\bigwedge_{j=1}^q \Omega_m^{0,1}\right). \tag{37.8}$$

Property 37.2.2. The spaces $\Omega^{1,0}(M)$ and $\Omega^{0,1}(M)$ are stable, i.e. they transform tensorially, under holomorphic coordinate transformations. On the space

$$\Omega^k(M) = \bigoplus_{p+q=k} \Omega^{p,q}(M)$$

of forms of total degree k one can then define the canonical projection maps $\pi^{p,q}:\Omega^k\to\Omega^{p,q}$.

Definition 37.2.3 (Dolbeault operator). Consider a general (p+q)-form $\omega \in \Omega^{p,q}(M)$. The de Rham differential maps this form to a (p+q+1)-form. This form is in general an element of $\sum_{r+s=p+q+1} \Omega^{r,s}(M)$. Using the projection maps $\pi^{p,q}$ one defines the Dolbeault operators:

$$\partial := \pi^{p+1,q} \circ d \tag{37.9}$$

$$\overline{\partial} := \pi^{p,q+1} \circ d. \tag{37.10}$$

Property 37.2.4. By explicitly writing out the action of the de Rham differential d on a general (p,q)-form one obtains the following decomposition:

$$d = \partial + \overline{\partial}. \tag{37.11}$$

By using the coboundary property of d one also obtains

$$\partial^2 = \overline{\partial}^2 = 0 \tag{37.12}$$

$$\partial \overline{\partial} + \overline{\partial} \partial = 0. \tag{37.13}$$

Remark 37.2.5. It can be shown that J is integrable if and only if the induced Dolbeault operator $\overline{\partial}$ squares to zero.

Formula 37.2.6. Analogous to the definition of the de Rham codifferential 34.3, one can define the adjoints of the Dolbeault operators:

$$\partial^{\dagger} := - * \partial * \tag{37.14}$$

$$\overline{\partial}^{\dagger} := -*\overline{\partial}* \tag{37.15}$$

where the fact that the real dimension of a complex manifold is even is used: $(-1)^{n(k+1)+1} = -1$.

Corollary 37.2.7. Using these definitions one can write the Hodge Laplacian 34.4 as:

$$\Delta = 2(\partial \partial^{\dagger} + \partial^{\dagger} \partial) = 2(\overline{\partial} \overline{\partial}^{\dagger} + \overline{\partial}^{\dagger} \overline{\partial}). \tag{37.16}$$

37.3 Kähler manifolds

In analogy with the definition of Riemannian manifolds 34.1.2 one can also define metrics for complex vector bundles:

Definition 37.3.1 (Hermitian manifold). A complex vector bundle equipped with a Hermitian bundle metric. A connection that is compatible with this metric is called a Hermitian connection.

Definition 37.3.2 (Kähler manifold). Consider a smooth manifold equipped with a Riemannian structure (M, g), a symplectic structure (M, ω) and an almost complex structure J. This manifold is called a Kähler manifold if the structures satisfy any of the following (equivalent) sets of compatibility conditions:

- 1. The almost complex structure J is integrable¹, and
- 2. The symplectic form is compatible with the almost complex structure:

$$\omega(v, w) = \omega(Jv, Jw) \tag{37.17}$$

and

$$\omega(v, Jv) > 0; \tag{37.18}$$

or

- 1. M is Hermitian with metric h(v, w) := g(v, w) + ig(v, Jw), and
- 2. The fundamental two-form $\omega(v, w) := g(v, Jw)$ is closed and hence symplectic²;

 or^3

- 1. M is Hermitian with metric h(v, w) := g(v, w) + ig(v, Jw), and
- 2. J is parallel with respect to the Levi-Civita connection on (M, q):

$$\nabla_X J = 0. (37.19)$$

Remark 37.3.3. The property that says that J acts isometrically can be interchanged for the statement that J acts as a symplectomorphism. These two statements are equivalent on a Kähler manifold.

Definition 37.3.4 (Kähler form). The central object in all these definitions is the Kähler form⁴:

$$\omega(v, w) := g(v, Jw). \tag{37.20}$$

Formula 37.3.5. The metric $g = g_{ij}dx^i \otimes dx^j$ can be rewritten as

$$g = g_{i\overline{j}} (dz^i \otimes d\overline{z}^j + d\overline{z}^j \otimes dz^i). \tag{37.21}$$

The Kähler form can then be written as

$$\omega = ig_{i\bar{j}}dz^i \wedge d\bar{z}^j. \tag{37.22}$$

¹If not, the manifold is said to be almost Kähler.

²The nondegeneracy condition is automatically satisfied because of the nondegeneracy of the metric.

³Here the symplectic structure can be recovered using the Kähler form defined below.

⁴Sometimes called the **Hermitian form** or **fundamental form**.

Definition 37.3.6 (Kähler potential). Using the $\partial \overline{\partial}$ -lemma 37.4.4 one can locally write the Kähler form as

$$\omega = i\partial \overline{\partial} K(z, \overline{z}) \tag{37.23}$$

where the real function $K \in \Omega^0(M)$ is called the **Kähler potential**.

Corollary 37.3.7. Formula 37.22 implies that one can locally rewrite the metric as

$$g_{i\bar{j}} = \partial_i \partial_{\bar{j}} K(z, \bar{z}). \tag{37.24}$$

Property 37.3.8. The Christoffel symbols associated to the Levi-Civita connection on (M,g) admit a simple expression when M is Kähler. Only the Γ_{ij}^{k} and $\Gamma_{\overline{ij}}^{\overline{k}}$ components do not vanish. They are given by

$$\Gamma_{ij}^{\ k} = g^{k\overline{m}} \partial_i g_{j\overline{m}} \tag{37.25}$$

$$\Gamma_{i\bar{j}}^{\bar{k}} = g^{\bar{k}m} \partial_{\bar{i}} g_{\bar{j}m}. \tag{37.26}$$

Accordingly, the only nonvanishing component of the Riemann curvature tensor is

$$R_{\bar{i}j\bar{k}l} = g_{\bar{k}m} \partial_{\bar{i}} \Gamma_{jl}^{\ m}. \tag{37.27}$$

Definition 37.3.9 (Kähler transformation). From definition 37.23 one can conclude that the Kähler potential is not defined unambiguously. The following transformation leaves the Kähler form invariant:

$$K'(z,\overline{z}) = K(z,\overline{z}) + f(z) + \overline{f}(\overline{z}). \tag{37.28}$$

On overlapping coordinate charts the transformation between Kähler potentials is exactly of this form.

Definition 37.3.10 (Hyperkähler manifold). A manifold is said to be hyperkähler if it is *hypercomplex* and if it admits a (Riemannian) metric which is Kähler with respect to all complex structures. Explicitly this means that:

- 1. there exist distinct complex structures I, J, K such that $I^2 = J^2 = K^2 = IJK = -1$, and
- 2. the Kähler forms induced by I, J and K are closed.

37.3.1 Killing vectors

Definition 37.3.11 (Holomorphic Killing vector). Consider the set of Killing vector fields X_A associated to the metric g. Within this set of vector fields one can consider the set of vector fields k_A satisfying

$$\mathcal{L}_{k_A} J = 0. \tag{37.29}$$

or, equivalently by the Kähler condition,

$$\mathcal{L}_{k,a}\omega = 0. \tag{37.30}$$

These are called holomorphic Killing vector fields because their components are holomorphic in the sense of complex analysis. This can easily be shown by writing the Killing condition in terms of covariant derivatives and by using expression 37.5.

Definition 37.3.12 (Moment map). Let k be a holomorphic Killing vector field. From $d\omega = 0$ one can, using Cartan's magic formula 32.4.18 and the above condition, derive that $\iota_k \omega$ is closed. Poincaré's lemma then implies that there exists a real function $\mathcal{P}(z, \overline{z})$ such that

$$\iota_k \omega = d\mathcal{P}. \tag{37.31}$$

Using the expression 37.22 one can then find the following expression for the Killing vector fields:

$$k^{i} = -ig^{i\bar{j}}\partial_{\bar{j}}\mathcal{P}. \tag{37.32}$$

37.4 Cohomology

37.4.1 Dolbeault cohomology

Theorem 37.4.1 (Hodge decomposition). Let M be a compact Kähler manifold. For all $k \in \mathbb{N}$ one finds that

$$H_{dR}^{k}(M) \cong \bigoplus_{p+q=k} H^{p,q}(M). \tag{37.33}$$

By analogy with the Poincaré lemma for smooth manifolds one can prove the following theorems:

Theorem 37.4.2 (∂ -lemma). Let $\alpha \in \Omega^{p,q}(M)$. If $\partial \alpha = 0$, then locally there exists a complex form $\beta \in \Omega^{p-1,q}$ such that $\alpha = \partial \beta$.

Theorem 37.4.3 ($\overline{\partial}$ -lemma). Let $\alpha \in \Omega^{p,q}(M)$. If $\overline{\partial}\alpha = 0$, then locally there exists a complex form $\beta \in \Omega^{p,q-1}$ such that $\alpha = \overline{\partial}\beta$.

Theorem 37.4.4 ($\partial \overline{\partial}$ -lemma). Let $\alpha \in \Omega^{p,q}(M)$. If $d\alpha = 0$, then locally there exists a complex form $\beta \in \Omega^{p-1,q-1}$ such that $\alpha = \partial \overline{\partial} \beta$.

?? COMPLETE ??

Chapter 38

Calculus of Variations

The standard references for global variational calculus are [55,60].

38.1 Constrained systems

38.1.1 Holonomic constraints

Definition 38.1.1 (Holonomic constraint). A constraint f(q,t) = 0 is said to be holonomic if it only depends on the coordinates q^i and t.

Method 38.1.2 (Holonomic constraints). The Euler-Lagrange equations of a system with k holonomic constraints $f_k(q,t) = 0$ can be obtained from the generalized action functional

$$\int_{a}^{b} \left[L(q(t), \dot{q}(t), t) + \sum_{j=1}^{k} \lambda_{j}(t) f_{j}(q(t), t) \right] dt$$
 (38.1)

where $\lambda_i(t)$ are undetermined (Lagrange) multipliers.

38.2 Noether symmetries

38.2.1 Classical systems

Definition 38.2.1 (Noether symmetry). Consider an integral quantity I defined through some Lagrangian function L(q, u):

$$I_M = \int_M L(q, u, \partial u) dq \tag{38.2}$$

where u are (analytic) functions of the variables q. A transformation $q \longrightarrow q', u \longrightarrow u'$ of the variables¹ is called a Noether symmetry for L if it satisfies

$$\int_{M'} L(q', u', \partial u') dq' = \int_{M} L(q, u, \partial u) dq$$
(38.3)

for arbitrary M.

Following Lie we introduce the notion of a group of transformations:

¹The transformations of the derivatives ∂u are induced by the ones for u.

Definition 38.2.2 (Finite continuous group). A collection of analytic functions, closed under inverses and composition, such that every function depends analytically on a finite number of parameters. In this chapter we will denote these groups by \mathfrak{G}_k (where k is the number of independent parameters).

Remark 38.2.3. It should be clear that this is the same as a finite-dimensional Lie group (see definition 30.1.1).

Instead of a parameters, one can also generalize to functions:

Definition 38.2.4 (Infinite continuous group). A collection of analytic functions, closed under inverses and composition, such that every function depends analytically on a finite number of arbitrary (analytic) functions. In this chapter we will denote these groups by $\mathfrak{G}_{\infty,k}$ (where k is the number of independent functions).

Remark 38.2.5. In physics terminology the infinite groups would be the symmetry groups obtained by gauging a global symmetry \mathfrak{G}_k .

Theorem 38.2.6 (Noether). Consider an integral quantity I that is invariant under some group \mathfrak{G} .

- If \mathfrak{G} is finite continuous (and hence of the form \mathfrak{G}_k), there exist k independent (linear) combinations among the Lagrangian expressions of I that are equal to divergences. Conversely, if there exist k independent combinations among the Lagrangian expressions that are divergences, then I is invariant under a group of the form \mathfrak{G}_k .
- If \mathfrak{G} is infinite continuous (and hence of the form $\mathfrak{G}_{\infty,k}$), there exist k independent relations among the Lagrangian expressions and their derivatives². Conversely, if k such relations exist, then the integral I is invariant under a group of the form $\mathfrak{G}_{\infty,k}$.

Remark 38.2.7. In fact the first theorem is also valid in the limit of an infinite number of parameters.

Definition 38.2.8 (Improper relations). Divergence relations $\sum_i \psi_i \delta u_i = \nabla \cdot B$ obtained in a variational problem with symmetry group \mathfrak{G}_k can be classified into two groups:

- If the quantities B are linear combinations of Lagrangian expressions (and their derivatives) then the divergence relations are said to be improper. It can be shown that this is the case if and only if \mathfrak{G}_k is a subgroup of an infinite continuous symmetry group $\mathfrak{G}_{\infty,k}$.
- In all other cases the divergence relations are said to be proper.

For Lagrangians describing "point particles", hence where $M \subseteq \mathbb{R}$, we can obtain the following result:

Example 38.2.9 (One dimension). Infinitesimal transformations

$$\begin{split} q^i &\longrightarrow q^i + \varepsilon \xi^i(q^k,t) \\ t &\longrightarrow t + \varepsilon \tau(q^k,t) \\ \dot{q}^i &\longrightarrow \dot{q}^i + \varepsilon (\dot{\xi}^i - \dot{q}^i \dot{\tau}) \end{split}$$

generate Noether symmetries if they leave the Lagrangian invariant up to a total derivative (in first order) for every subinterval $[t_0, t_1] \subseteq [a, b]$ and for some function f(q, t):

$$\int_{\tilde{t}_0}^{\tilde{t}_1} L(\tilde{q}, \dot{\tilde{q}}, \tilde{t}) d\tilde{t} = \int_{t_0}^{t_1} L(q, \dot{q}, t) dt + \varepsilon \int_{t_0}^{t_1} \frac{df}{dt} dt + O(\varepsilon^2).$$
(38.4)

 $^{^{2}}$ The order up to which the derivatives occur is equal to the order of derivatives up to which the transformations depend on the k arbitrary functions.

This is equivalent to requiring that the transformation is a solution of the following differential equation:

$$\frac{\partial L}{\partial \tau} + \frac{\partial L}{\partial q^i} \xi^i + \frac{\partial L}{\partial \dot{q}^i} (\dot{\xi}^i - \dot{q}^i \dot{\tau}) + L \dot{\tau} = \dot{f}. \tag{38.5}$$

By Noether's (first) theorem we obtain for every such symmetry a conserved quantity of the following form

$$F := f - \left[L\tau + \frac{\partial L}{\partial \dot{q}^i} (\xi^i - \dot{q}^i \tau) \right]. \tag{38.6}$$

?? IS THIS A GENUINE GENERALIZATION OR NOT ??

38.3 Jet bundles

Although the following constructions can be defined in the general context of fibred manifolds we will only consider them in the case of smooth fibre bundles. Only the notion of a jet will be defined in general for maps between smooth manifolds (such that we can define the Whitney topology on the space of smooth functions).

Definition 38.3.1 (Jet). Consider two smooth manifolds M, N. Morphism $\sigma, \xi \in C^{\infty}(M, N)$ with local coordinates (σ^i) and (ξ^i) define the same r-jet at a point $p \in M$ if and only if

$$\frac{\partial^{\alpha} \sigma^{i}}{\partial x^{\alpha}} \bigg|_{p} = \frac{\partial^{\alpha} \xi^{i}}{\partial x^{\alpha}} \bigg|_{p} \tag{38.7}$$

for all $0 \le i \le \dim M$ and every multi-index α with $0 \le |\alpha| \le r$. It is clear that this relation defines an equivalence relation. The r-jet at $p \in M$ with representative σ is denoted by $j_p^r \sigma$. The number r is called the **order** of the jet.

Definition 38.3.2 (Whitney C^k -topology). Let M, N be two smooth manifolds and consider the manifold³ of k-jets $J^k(M, N)$. A basis for the Whitney C^k -topology on $C^{\infty}(M, N)$ is given by the sets

$$S^{k}(U) := \{ f \in C^{\infty}(M, N) \mid J^{k} f \in U \}$$
 (38.8)

where U is open in $J^k(M,N)$.

Property 38.3.3. When the manifold M is compact, the Whitney and compact-open topologies on $C^{\infty}(M,N)$ coincide. In general the Whitney topology is the topology of global uniform convergence.

Remark 38.3.4. The k-jet construction is easily carried over to the theory of bundles. To construct the jet space of sections on a (smooth) fibre bundle (E, B, π) one just sets M = B and N = E in the previous definition. From this point on we will restrict to this case.

Definition 38.3.5 (Jet manifold). Consider a fibre bundle (E, B, π) . The r-jet manifold $J^r(\pi)$ of the projection π is defined as follows:

$$J^{r}(\pi) := \{ j_{p}^{r} \sigma \mid \sigma \in \Gamma(E), p \in B \}. \tag{38.9}$$

The set $J^0(\pi)$ is identified with the total space E.

³This manifold will be constructed further down this section in the case of fibre bundles.

Definition 38.3.6 (Jet projections). Let (E, B, π) be a fibre bundle with r-jet manifolds $J^r(\pi)$. The source projection π_r and target projection $\pi_{r,0}$ are defined as the maps

$$\pi_r: J^r(\pi) \to B: j_p^r \sigma \mapsto p \tag{38.10}$$

$$\pi_{r,0}: J^r(\pi) \to E: j_p^r \sigma \mapsto \sigma(p).$$
 (38.11)

These projections satisfy $\pi_r = \pi \circ \pi_{r,0}$. We can also define a k-jet projection $\pi_{r,k}$ as the map

$$\pi_{r,k}: J^r(\pi) \to J^k(\pi): j_p^r \sigma \mapsto j_p^k \sigma$$
 (38.12)

where $k \leq r$. The k-jet projections satisfy the transitivity property $j_{k,m} = j_{r,m} \circ j_{k,r}$.

Remark. The names "source" and "target" come from the fact that for trivial bundles (or local trivializations) sections of $\pi: B \times F \to B$ are characterized by (global) functions $B \to F$. It follows that the jet bundles $J^k(\pi)$ and $J^k(B,F)$ are isomorphic.

Definition 38.3.7 (Prolongation). Let σ be a section of a fibre bundle $\pi: E \to B$. The r-jet prolongation $j^r \sigma$ corresponding to σ is defined as the following map:

$$j^r \sigma: B \to J^r(\pi): p \mapsto j_p^r \sigma.$$
 (38.13)

Definition 38.3.8 (Jet bundle). The r-jet bundle corresponding to the projection π is defined as the triple $(J^r(\pi), B, \pi_r)$. The bundle charts (U_i, φ_i) on E define induced bundle charts on $J^r(\pi)$ in the following way:

$$U_i^r := \{ j_n^r \sigma \mid \sigma(p) \in U_i \} \tag{38.14}$$

$$\varphi_i^r := \left(x^k, u^\alpha, \left. \frac{\partial^I u^\alpha}{\partial x^I} \right|_p \right) \tag{38.15}$$

where I is a multi-index such that $0 \le |I| \le r$. The partial derivatives

$$\frac{\partial^I u^\alpha}{\partial x^I}\bigg|_p$$

are called the **derivative coordinates** on $J^r(\pi)$.

Definition 38.3.9 (Holonomic section). Consider a fibre bundle $\pi: E \to M$. A (local) section σ of π gives rise to a (local) section of π_r given by the r-jet prolongation of σ . Sections of $J^r(E)$ which lie in the image of j^r are said to be holonomic.

Definition 38.3.10 (Infinite jet bundle). The inverse limit 3.6.4 of the projections $\pi_{k,k-1}$: $J^k(\pi) \to J^{k-1}(\pi)$. It can be shown (in an algebro-geometric fashion) that the smooth functions on the infinite jet bundle $J^{\infty}(\pi)$ are (at least locally) given by smooth functions on some finite jet bundle. This just means that we define the infinite jet bundle by taking its algebra of smooth functions to be the direct limit of those on the finite jet bundles. By extension it can be shown that any smooth morphism $J^{\infty}(E) \to E'$ into a finite-dimensional manifold factorizes through a finite jet bundle. Furthermore, we say a map $Q \to J^{\infty}(E)$ or $J^{\infty}(E) \to J^{\infty}(E')$ is smooth if the composition with any smooth map is again smooth.

Alternative Definition 38.3.11 (Differential operator). Let E_1, E_2 be two smooth fibre bundles over the same base manifold M. A differential operator $\widetilde{D}: E_1 \to E_2$ is a bundle morphism $J^{\infty}(E_1) \to E_2$. This induces a map of sections $D: \Gamma(E_1) \to \Gamma(E_2)$ such that $D = \widetilde{D} \circ j^{\infty}$. It is said to be of **order** k if it factors through a finite jet bundle, i.e. if j^{∞} can be replaced by j^k . If the bundle morphism \widetilde{D} is a vector bundle morphism, the differential operator is said to be **linear**.

Property 38.3.12 (Formal adjoints). Consider two differential operators $D, D^{\dagger}: \Gamma(E) \to \Gamma(E^* \otimes \Lambda^{\dim(M)}(M))$. These operators are said to be formally adjoint if there exists a bilinear differential operator $K: \Gamma(E) \otimes \Gamma(E) \to \Omega^{\dim(M)}(M)$ such that the following condition is satisfied for all sections σ_1, σ_2 of E:

$$\langle D(\sigma_1), \sigma_2 \rangle - \langle \sigma_1, D^{\dagger}(\sigma_2) \rangle = dK(\sigma_1, \sigma_2).$$
 (38.16)

This formula can be interpreted as a generalization of Green's identities. In the case where M is compact, Stokes's theorem 32.5.23 shows that D and D^{\dagger} are related through integration by parts.

Definition 38.3.13 (Generalized vector field). Consider a vector bundle $\pi: E \to M$. A generalized vector field on E is locally defined by smooth functions on the infinite jet bundle $J^{\infty}(E)$.

38.3.1 Contact structure

Every jet space J^k carries a natural constact structure (Chapter 36):

Definition 38.3.14 (Contact form). Given a fibre bundle $\pi: E \to M$ and one of its jet bundles $J^k(E)$, a differential form $\omega \in \Omega^{\bullet}(J^k(E))$ is called a contact form if it is annihilated by all jet prolongations, i.e. $(j^{k+1}\sigma)^*\omega = 0$ for all sections $\sigma \in \Gamma(E)$.

The space of such contact forms generates a differential ideal and this in turn defines a distribution, called the **Cartan distribution**. For finite-order jet spaces this distribution is completely nonintegrable, but for infinite jet bundles (where Frobenius's theorem need not hold) the distribution becomes involutive and integrable.

Locally, the differential ideal is generated by the following contact forms:

$$\theta_I^{\alpha} := \mathbf{d} u_I^{\alpha} - \sum_i u_{I,i}^{\alpha} \mathbf{d} x^i, \tag{38.17}$$

where the x^i and u_I^{α} are the independent and dependent variables, respectively.

Property 38.3.15 (Cartan connection). There exists a connection on the infinity-jet bundle $J^{\infty}(E)$ where the horizontal subbundle is exactly given by the Cartan distribution. Furthermore, this connection is flat.

Now, consider a (generalized) vector field X on the total space E. There exists a vector field on $J^k(E)$, called the prolongation of X:

Definition 38.3.16 (Prolongation of vector fields). Given a generalized vector field X on a fibre bundle $\pi: E \to M$, there exists a unique vector field $j^k E$ on the jet bundle $J^k(E)$ defined by the following conditions:

- 1. X and $j^k X$ coincide on $C^{\infty}(E)$.
- 2. $j^k X$ preserves the contact ideal, i.e. if θ is a contact form, then $\mathcal{L}_{j^k X} \theta$ is also a contact form.

Locally, the prolongation of a vector field

$$X = X^{\mu} \partial_{\mu} + X^{\alpha} \partial_{\alpha} \tag{38.18}$$

is given by $(|I| \le k)$:

$$(j^k X)_I^{\alpha} = D_I(X^{\alpha} - u_{\mu}^{\alpha} X^{\mu}) + u_{\mu I}^{\alpha} X^{\mu}, \tag{38.19}$$

where the "total derivative" operator⁴

$$D_{\mu}f := \frac{\partial f}{\partial x^{\mu}} + \frac{\partial f}{\partial u^{\alpha}} u^{\alpha}_{,\mu} + \frac{\partial f}{\partial u^{\alpha}_{,\nu}} u^{\alpha}_{,\nu\mu} + \cdots$$
 (38.20)

was introduced.

A similar definitions exists for vector fields on the base manifold:

Definition 38.3.17 (Total vector field). Given a vector field $X \in \Gamma(TM)$, we define its total vector field tot X by the following conditions:

- 1. X and totX coincide on $C^{\infty}(M)$, and
- 2. $tot X \omega = 0$ if ω is a contact form.

An explicit formula can be obtained by replacing partial derivatives by total derivatives:

$$X = X^{\mu} \partial_{\mu} \longrightarrow \text{tot} X = X^{\mu} D_{\mu}. \tag{38.21}$$

In particular, the total vector fields associated to a coordinate-induced basis ∂_{μ} are exactly the total derivatives D_{μ} .

38.3.2 Partial differential equations

In this section a partial differential equations of the form

$$f(x, u, u_I) = 0 (38.22)$$

is considered, where f is a given smooth function. A partial differential equation is regarded as an algebraic equation involving derivatives and, hence, f can be interpreted as a function on the jet bundle $J^k(\mathbb{R}^m)$, where k is the order of the PDE and m is the number of independent variables.

Definition 38.3.18 (Solution). In this framework one can define a solution of the above PDE as a function ϕ satisfying $f \circ j^k \phi = 0$. This can be rephrased in a geometric way. Every PDE of order k defines a subbundle Σ^0 of the finite jet bundle $J^k(E)$ and a solution is then simply a section of Σ^0 .

Remark 38.3.19. For every $l \in \mathbb{N}$, define the subspace

$$\Sigma^{l} := \{ (x, u, u_{I}) \in J^{k+l}(E) \mid \forall r \leq l : D^{r} f(x, u, u_{I}) = 0 \},$$

i.e. the set of holonomic sections of $J^{k+l}(E)$ that are l^{th} -order tangent to Σ^0 . A function $\phi \in \Gamma(E)$ is a solution if there exists some $l \in \mathbb{N}$ such that the image of $j^{k+l}\phi$ lies in Σ^l and, conversely, $j^{k+l}\phi$ lies in Σ^l for all $l \in \mathbb{N}$ if ϕ is a solution.

Definition 38.3.20 (Formal integrability). A PDE $\pi: \Sigma^0 \to J^k(E)$ is called formally integrable if

- all prolongations Σ^l are smooth manifolds.
- all projections $\Sigma^{l+1} \to \Sigma^l$ are smooth fibre bundles.

⁴In fact this formula is virtually the same as the one for the true total derivative. However, partial derivatives are replaced by jet coordinates.

Property 38.3.21 (Diffiety). The leaves of the Cartan distribution on $J^{\infty}(E)$ are the graphs of infinity-prolongations $j^{\infty}\phi$ for local sections $\phi \in \Gamma(E)$. When restricting the distribution to the PDE subbundle Σ^0 , the leaves are given by the graphs of the infinity-prolongations of (local) solutions.

A pair $(\Sigma, \mathcal{C}(\Sigma))$ consisting of a smooth manifold Σ and a finite-dimensional distribution $\mathcal{C}(\Sigma)$ such that Σ is locally isomorphic to the infinity-prolongation of a PDE and $\mathcal{C}(\Sigma)$ is locally isomorphic to the associated Cartan distribution is called a **diffiety** (short for "differential variety").

Remark 38.3.22. The reason for the terminology "differential variety" stems from the apparent similarity with algebraic varieties. A variety is (locally) defined by a set of algebraic equations together with all algebraic consequences, i.e. it is defined by the ideal generated by the algebraic equations. Similarly, a diffiety is (locally) defined by a set of differential equations together with all differential consequences, i.e. it is defined by the differential ideal generated by the differential equations.

?? COMPLETE ??

38.3.3 Pseudogroups ♣

Example 38.3.23 (Diffeomorphism jets). Let M be a smooth manifold. Consider the set $\mathcal{D}^{\omega}(M)$ of local analytic diffeomorphisms $\phi: M \to M: z \mapsto \phi(z) \equiv Z$. The locality property turns this set into a (smooth) pseudogroup 7.2.18.

By the inverse function theorem 32.1.11 we can define the diffeomorphism jet bundle $\mathcal{D}^r(M)$ as the subbundle of $J^r(M,M)$ for which

$$\det\left(\frac{\partial Z^{\alpha}}{\partial z^{\beta}}\right) \neq 0.$$

It is also possible to endow this jet bundle with the structure of a groupoid 4.10.1. Using the source and target projections one can check that two elements $f, g \in \mathcal{D}^r(M)$ can be multiplied if and only if $\pi_r(g) = \pi_{r,0}(f)$. The derivative coordinates can be found using the Faá di Bruno formula.

Furthermore, every pseudogroup $\mathcal{G} \subset \mathcal{D}^{\omega}$ induces a subbundle $\mathcal{G}^{(r)} \subset \mathcal{D}^{(r)}$. This structure gives rise to the following notions:

Definition 38.3.24 (Regular pseudogroup). Consider a smooth manifold M. Let $\mathcal{D}^{\omega}(M)$ be its diffeomorphism pseudogroup and let $\mathcal{G} \subset \mathcal{D}^{\omega}$ be another pseudogroup. If there exists an $N \in \mathbb{N}_0$, where N is called the **order**, such that for all $r \geq N$ the jets $\pi_r : \mathcal{G}^{(r)} \to M$ form an embedded submanifold of $\Pi_r : \mathcal{D}^{(r)} \to M$ and such that the jet projections $\pi_{r+1,r} : \mathcal{G}^{(r+1)} \to \mathcal{G}^{(r)}$ are fibrations then we say that \mathcal{G} is a regular pseudogroup.

Definition 38.3.25 (Lie pseudogroup). Let $\mathcal{G} \subset \mathcal{D}^{\omega}$ be a regular analytic pseudogroup of order k. If every local diffeomorphism $\phi \in \mathcal{D}^{\omega}$ satisfying $j^k \phi \in \mathcal{G}^{(k)}$ is also an element of \mathcal{G} then \mathcal{G} is called a Lie pseudogroup.

Property 38.3.26. Let \mathcal{G} be a Lie pseudogroup of order k. The regularity condition implies that the jet bundle $\mathcal{G}^{(r)}$ is described by a set of r^{th} -order PDEs

$$F\left(z, Z^{(r)}\right) = 0$$

for all $r \ge n$. The (local) solutions to these equations are exactly the analytic functions which have $(z_0, Z_0^{(r)})$ as local coordinates of their r-jet at $z_0 \in M$.

The Lie condition on \mathcal{G} implies that every solution to the system is in fact an element of \mathcal{G} . This system of equations is called the **determining system** of the Lie pseudogroup.

Definition 38.3.27 (Lie completion). Let \mathcal{G} be a regular pseudogroup. The Lie completion $\overline{\mathcal{G}}$ of \mathcal{G} is defined as the set of all (local) analytic diffeomorphisms solving the determining system of \mathcal{G} . This completion is itself a Lie pseudogroup. If \mathcal{H} is a Lie pseudogroup then $\overline{\mathcal{H}} = \mathcal{H}$.

?? COMPLETE (IS THIS EVEN USEFUL?) ??

38.4 Variational bicomplex 4

In this section we heavily use the language of jet bundles as introduced in the previous section. A smooth function on the infinite jet bundle will be denoted by f[u], i.e. the arguments will be written inside square brackets.

In the remainder of this section we will consider a smooth fibre bundle $\pi: E \to M$ over a base manifold of dimension m.⁵ We begin by decomposing the de Rham operator **d** on the infinite jet bundle $J^{\infty}(E)$:

$$\mathbf{d} = d + \delta$$
.

The **horizontal derivative** d lifts the de Rham differential on M to E (hence the name). On smooth functions $C^{\infty}(J^{\infty}(E))$ it acts as follows:

$$df := D_{\mu} f \mathbf{d} x^{\mu}. \tag{38.23}$$

The horizontal de Rham operator can be extended to all of $\Omega^{\bullet}(J^{\infty}(E))$ through the Leibniz property and the condition

$$d \circ \delta = -\delta \circ d \tag{38.24}$$

which follows from the nilpotency of all differentials. The differentials d, δ turn $\Omega^{\bullet}(J^{\infty}(E))$ into a bigraded complex called the variational bicomplex.

Remark 38.4.1. Some authors use the term variational bicomplex for the bicomplex of local forms $\Omega_{loc}^{\bullet}(M \times \Gamma(E))$ which is defined as the image of $\Omega^{\bullet}(J^{\infty}(E))$ under the prolongation map $M \times \Gamma(E) \to J^{\infty}(E)$. This way they can work with forms over the (trivial) field bundle, while maintaining the property that all objects only depend on finite-order jets. Furthermore, when working in full generality they also twist the de Rham complex over M by the orientation bundle 32.5.4 (see remark 32.5.10 for more information).

Definition 38.4.2 (Local Lagrangian). A top-degree horizontal form on $J^{\infty}(E)$. Because $\Omega^{m,0}(J^{\infty}(E))$ is one-dimensional, every such form is proportional to the volume form:

$$\mathbf{L} = L \text{Vol} \tag{38.25}$$

where L is a smooth function on the infinite jet bundle. By its very nature this implies that L (locally) only depends on partial derivatives up to some finite order.

Definition 38.4.3 (Evolutionary vector field). A generalized vector field on that projects to 0 on the base manifold. The space of evolutionary vector fields is denoted by $\text{Ev}(J^{\infty}(E))$.

The prolongation of an evolutionary vector field to $J^{\infty}(E)$ will still project to 0 on M. By extension we call all vector fields on $J^{\infty}(E)$ that preserve the contact ideal and project to 0 on M evolutionary vector fields. Such vector fields are of the form

$$X = X_I^{\alpha}[u]\partial_{\alpha}^I. \tag{38.26}$$

⁵In fact we can replace the fibre bundle with any smooth fibred manifold.

The name stems from the fact that such vector fields define PDEs that (locally) describe the evolution of the fibres.

Property 38.4.4 (Prolongation of evolutionary vector fields). The prolongation of an evolutionary vector field can be written as follows:

$$j^{\infty}X = \sum_{|I|=0}^{\infty} (D_I X^{\alpha}) \partial_{\alpha}^{I}.$$
 (38.27)

Furthermore, by writing out Cartan's magic formula 32.4.18 (with respect to **d**), we can prove that the prolongation of an evolutionary vector field also satisfies this formula with respect to δ and that $\iota_{j^{\infty}X}$ and d anticommute.

Property 38.4.5 (Evolutionary decomposition). Consider a generalized vector field X on $\pi: E \to M$. By extending the tot-construction to generalized vector fields as

$$totX := tot(\pi_*X), \tag{38.28}$$

we can define the evolutionary part of X as follows:

$$X_{ev} := X - (\pi_{\infty,0})_*(\text{tot}X).$$
 (38.29)

Locally this can be written as

$$X_{ev} = \left(X^{\alpha} - X^{\mu} u^{\alpha}_{,\mu}\right) \partial_{\alpha} \tag{38.30}$$

for

$$X = X^{\mu} \partial_{\mu} + X^{\alpha} \partial_{\alpha}$$
.

Using this definitions we can decompose the prolongation of X as follows:

$$j^{\infty}X = j^{\infty}X_{ev} + \text{tot}X. \tag{38.31}$$

Property 38.4.6 (Total differential operators). A total differential operator is a differential operator $P : \text{Ev}(J^{\infty}(E)) \to \Omega^{\bullet}(J^{\infty}(E))$ that can locally be written as

$$P(X) = \sum_{|I|=0}^{k} (D_I X^{\alpha}) P_{\alpha}^{I}$$
 (38.32)

where the P_{α}^{I} are smooth forms. By a formal "integration-by-parts" operation we can rewrite this (again locally) as

$$P(X) = \sum_{|I|=0}^{k} D_I \left(X^{\alpha} Q_{\alpha}^I \right) \tag{38.33}$$

where the smooth forms Q^I_{α} can be expressed as follows:

$$Q_{\alpha}^{I} = \sum_{|J|=0}^{k-|I|} {|I|+|J| \choose |J|} (-1)^{|J|} D_{J} P_{\alpha}^{IJ}.$$
(38.34)

The zeroth-order part Q_{α} defines itself a total differential operator:

$$E_P(X) := X^{\alpha} Q_{\alpha}. \tag{38.35}$$

This operator is called the **Euler operator** (associated to P).

Property 38.4.7 (Decomposition of total differential operators). Consider a total differential operator $P : \text{Ev}(J^{\infty}(E)) \to \Omega^{m,n}(J^{\infty}(E))$. On each coordinate chart U we can find a total differential operator R_U that satisfies the following equation:

$$P(X) = E_P(X) + dR_U(X). (38.36)$$

Furthermore, the Euler operator E_P is the unique (globally defined) total differential operator satisfying this equation. The operators R_U can locally be expressed as follows:

$$R_U(X) = \sum_{|I|=0}^{k-1} D_I (X^{\alpha} D_{\mu} - Q_{\alpha}^{\mu I}).$$
 (38.37)

Example 38.4.8 (Euler-Lagrange operator). Consider a local Lagrangian L. This form induces a total differential operator as follows:

$$P_{\mathbf{L}}(X) := \mathcal{L}_{j \infty X} \mathbf{L}. \tag{38.38}$$

The coefficients from 38.33 associated to this operator are given by the following formula (to turn these coefficients into true forms we should multiple by the volume form):

$$E_{\alpha}^{I}(L) := \sum_{|J|=0}^{k-|I|} {|I|+|J| \choose |J|} (-1)^{|J|} D_{J} (\partial_{\alpha}^{IJ} L).$$
 (38.39)

The induced Euler operator is exactly the Euler-Lagrange operator associated to variational problems. For this reason and the fact that they are induced by a Lie derivative, we call the coefficients E^I_{α} Lie-Euler operators.

Given a local Lagrangian L, its Euler-Lagrange form is defined as

$$\delta_{\mathrm{EL}} \mathbf{L} := E_{\alpha}(L) \delta u^{\alpha} \wedge \mathrm{Vol}. \tag{38.40}$$

An explicit formula for the Euler-Lagrange derivative is given by the following formula (this is just equation 38.39 for |I| = 0):

$$\delta_{\rm EL} L := \left(\frac{\partial L}{\partial u^{\alpha}} - D_{\mu} \frac{\partial L}{\partial u^{\alpha}_{\mu}} + \cdots \right) \delta u^{\alpha}$$

$$= (-D)_{I} \frac{\partial L}{\partial u^{\alpha}_{I}} \delta u^{\alpha}. \tag{38.41}$$

The set of functions that satisfy $\delta_{\text{EL}}L = 0$ is called the **shell**. The functions for which also all higher-order derivatives vanish, i.e. the elements of $\{x \in J^{\infty}(E) \mid \forall I : D_I \delta_{\text{EL}}L(x) = 0\}$, are said to be **on-shell**.

The following property generalizes the property that the Euler-Lagrange equations remain invariant under addition of a divergence to the Lagrangian:

Property 38.4.9. If a smooth function is locally an order-k divergence, i.e. $f = D_I A^I$ for smooth functions A^I and |I| = l, then the Lie-Euler operators E^J_{α} vanish on f for all |J| < l.

Example 38.4.10 (Interior Euler operator). For every smooth form $\omega \in \Omega^{p,q}(J^{\infty}(E))$ we can define a total differential operator as follows:

$$P_{\omega}(X) := j^{\infty} X - \omega. \tag{38.42}$$

As for the previous example this operator induces (higher) Euler operators. Since in this case they arise from interior multiplication, we call them interior Euler operators:

$$F_{\alpha}^{I}(\omega) := \sum_{|J|=0}^{k-|I|} {|I|+|J| \choose |J|} (-1)^{|J|} D_{J} (\partial_{\alpha}^{IJ} - \omega). \tag{38.43}$$

For $p = \dim(M)$ we again have a globally defined Euler operator (also called the interior Euler operator):

$$I(\omega) := \frac{1}{q} \delta u^{\alpha} \wedge F_{\alpha}(\omega). \tag{38.44}$$

The interior Euler operator defines a sequence of spaces, the so-called spaces of **functional forms**, as follows:

$$\mathcal{F}^q(J^{\infty}(E)) := \{ \omega \in \Omega^{m,q}(J^{\infty}(E)) \mid I(\omega) = \omega \}. \tag{38.45}$$

Property 38.4.11. The interior Euler operator has the following important properties:

- It is a projector $I^2 = I$.
- It vanishes on (locally) d-exact forms.
- $\delta_V := I \circ \delta$ gives $\mathcal{F}^{\bullet}(J^{\infty}(E))$ the structure of a cochain complex.
- $\delta_{\text{EL}} \mathbf{L} = \delta_V \mathbf{L}$ for all local Lagrangians \mathbf{L} .

Property 38.4.12 (Functional decomposition). The de Rham spaces on $J^{\infty}(E)$ admit the following decomposition:

$$\Omega^{p,q}(J^{\infty}(E)) = \mathcal{F}^q(J^{\infty}(E)) \oplus d\Omega^{p-1,q}(J^{\infty}(E))$$
(38.46)

where the functional part is obtained by applying I to a form.

The forms in \mathcal{F}^q are said to be functional due to the following property:

Property 38.4.13 (Functionals). To every smooth k-form $\omega \in \Omega^{\bullet}(J^{\infty}(E))$, compact subset $V \subset E$ and k-m generalized vector fields on E we can assign a functional on $\Gamma(U)$, where U is a chart containing V, by the following formula:

$$W_{\omega}(X_1, \dots, X_{k-m})[\sigma] := \int_V (j^{\infty}\sigma)^* \omega(j^{\infty}X_1, \dots, j^{\infty}X_{k-m}). \tag{38.47}$$

The number k-m is called the **degree** of W_{ω} . In general these functionals are invariant under the addition of a d-exact form, however, the assignment $\omega \mapsto W_{\omega}$ becomes a bijection (for a fixed subset V and generalized vector fields X_i).

Construction 38.4.14. The differential δ_V on \mathcal{F}^{\bullet} induces a differential on the space of functionals of the above form:

$$\delta W_{\omega} := W_{\delta_{V}\omega}.\tag{38.48}$$

An equivalent definition can be given by a formula similar to 32.40 where an evolutionary vector field X acts on a degree-0 functional by Lie derivation:

$$X(W_{\omega}[\sigma]) := \int_{V} (j^{\infty}\sigma)^{*} (\mathcal{L}_{j^{\infty}X}\omega). \tag{38.49}$$

The forms in \mathcal{F}^1 admit the following characterization:

Definition 38.4.15 (Source form). A differential form $\omega \in \Omega^{m,1}(J^{\infty}(E))$ such that the evaluation on a vector field only depends on the projection $(\pi_{\infty,0})_*X \in TE$ where $\pi_{\infty,0}: J^{\infty}(E) \to E$ is the jet bundle target projection. After pulling back along the prolongation map j^{∞} this can be written as follows:

$$\Omega_{\text{source}}^{m,1}(E) := \delta C^{\infty}(E) \wedge \Omega^{m,0}(E), \tag{38.50}$$

i.e. locally it can be written as

$$\omega = \omega_{\alpha}(x, u, u_I)\delta u^{\alpha} \wedge \text{Vol.}$$
(38.51)

The PDEs associated to the source form ω are called **source equations**.

Remark. In fact one can extend the above definition to all of $\Omega^{\bullet,1}(J^{\infty}(E))$. So in general \mathcal{F}^1 is only a subspace of the space of source forms.

The degree-2 functional forms also admit a local characterization:

Property 38.4.16. Consider a collection of smooth functions $A_{\alpha\beta}^I \in C^{\infty}(J^{\infty}(U))$ on some chart $U \subset E$ such that

$$A_{\alpha\beta}^{I} = (-1)^{|I|+1} A_{\beta\alpha}^{I}. \tag{38.52}$$

The (local) (m, 2)-form

$$w^{|I|} := \delta u^{\alpha} \wedge \left(A_{\alpha\beta}^{I} \delta u_{I}^{\beta} + D_{I} (A_{\beta\alpha}^{I} \delta u^{\beta}) \right) \wedge \text{Vol}$$
(38.53)

is an element of $\mathcal{F}^2(J^{\infty}(U))$. Furthermore, every degree-2 functional form can locally be expressed as a sum of the form

$$\omega = w^0 + w^1 + w^2 + \cdots {38.54}$$

Although local characterizations for functional forms $\omega \in \mathcal{F}^q(J^\infty(E))$ with $q \geq 2$ are still not well-understood, there exists a more high-level characterization:

Property 38.4.17 (Characterization of functional forms). A form $\omega \in \Omega^{m,q}(J^{\infty}(E))$ is functional if and only if there exists a linear formally skew-adjoint⁶ differential operator P: $\mathrm{Ev}(J^{\infty}(E)) \to \Omega^{m,q-1}(J^{\infty}(E))$ such that

$$\omega = \delta u^{\alpha} \wedge P_{\alpha}. \tag{38.55}$$

This representation is unique if it exists.

?? COMPLETE ALL BELOW ??

$$j^{\infty}X - P(Y) + j^{\infty}Y - P(X) = dK \tag{38.56}$$

for all $X, Y \in \text{Ev}(J^{\infty}(E))$.

⁶This is a generalization of 38.3.12: P is said to be formally skew-adjoint if there exists an (m-1, q-1)-form K such that

Property 38.4.18 (First variational formula). Given a local Lagrangian L we can look at solutions of the associated variational principle. This implies that we look at perturbations of a field configuration $[u_0]$. Such perturbations are generated by evolutionary vector fields and hence we can write the extremality condition as

$$\mathcal{L}_{j^{\infty}X}\mathbf{L} = 0 \qquad \forall X \in \text{Ev}(J^{\infty}(E)). \tag{38.57}$$

Because of property 38.4.7 we can decompose the above operator as follows:

$$\mathcal{L}_{j^{\infty}X}\mathbf{L} = j^{\infty}X - \delta_{\mathrm{EL}}\mathbf{L} + j^{\infty}X - d\gamma. \tag{38.58}$$

Using Cartan's magic formula, the fact that \mathbf{L} is horizontal and that the above formula holds for all evolutionary vector fields, we arrive at the following decomposition (often called the first variational formula):

$$\delta \mathbf{L} = \delta_{\mathrm{EL}} \mathbf{L} + d\gamma. \tag{38.59}$$

(Such decompositions follow more generally from property 38.4.12.)

Definition 38.4.19 (Lepage form). An m-form $\rho \in \Omega^{\bullet}(J^{\infty}(E))$ such that $\pi^{m,0}(X - \mathbf{d}\rho) = 0$ for all $\pi_{\infty,0}$ -vertical vector fields X. Given a local Lagrangian $\mathbf{L} \in \Omega^{m,0}(J^{\infty}(E))$, we say that \mathbf{L} and ρ are Lepage equivalent if $\pi^{m,0}\rho = \mathbf{L}$.

Property 38.4.20 (Lepage equivalent). Consider the first variational formula for a local Lagrangian L. A Lepage equivalent is given by the form $L + \gamma$.

38.4.1 Inverse problem

The inverse problem in the calculus of variations asks when a given system of PDEs can be obtained from a variational problem, i.e. when a source form Δ can be written in the form $\delta_{\rm EL} {\bf L}$.

Helmholtz was the first to study the inverse problem, and hence the following sufficient conditions are named after him:

Property 38.4.21 (Helmholtz conditions). A source form Δ can be obtained from a local Lagrangian if

$$\mathcal{L}_{j^{\infty}X}\Delta = \delta_{\mathrm{EL}}(X - \Delta) \tag{38.60}$$

for all evolutionary vector fields X. This can also be rewritten in terms of the variational differential δ_V :

$$\delta_V \Delta = 0. \tag{38.61}$$

Source forms satisfying this condition are said to be **locally variational**.

Formula 38.4.22 (Local expression). Consider a source form that admits the local expression

$$\Delta = P_{\alpha}[u]\delta u^{\alpha} \wedge \text{Vol.}$$

The Helmholtz conditions can locally be expressed as follows:

$$(-1)^{|I|}\partial_{\alpha}^{I}P_{\beta} = E_{\beta}^{I}(P_{\alpha}) \tag{38.62}$$

where E^I_{β} are the Lie-Euler operators 38.39.

Example 38.4.23 (Volterra-Vainberg formula). If E is trivial and $\Delta \equiv F_{\alpha} \delta u^{\alpha} \wedge \text{Vol satisfies the Helmholtz conditions, then$

$$\mathbf{L} = \int_0^1 u^{\alpha} F_{\alpha}[tu] dt \tag{38.63}$$

satisfies $\Delta = \delta_{\text{EL}} \mathbf{L}$. If Δ is homogeneous of degree k in u, then this can be expressed as

$$\mathbf{L} = \frac{1}{k+1} \iota_R \Delta \tag{38.64}$$

with $R := u^{\alpha} \partial_{\alpha}$ the (vertically) radial vector field on E.

38.4.2 Structure of the bicomplex

Morphisms of infinite jet bundles should factorize through finite jet bundles, so the pullback of a form $\omega \in \Omega^p(J^\infty(E'))$ of order k along a morphism $\Phi: J^\infty(E) \to J^\infty(E')$ will be some form $\phi^*\omega \in \Omega^p(J^\infty(E))$ of degree k' > k. A well-defined morphism of variational bicomplexes should preserve the bigrading of forms, but this will clearly not be the case in general. Therefore we introduce a "projected pullback":

$$\Phi^{\sharp}: \Omega^{p,q}(J^{\infty}(E')) \to \Omega^{p,q}(J^{\infty}(E)): \omega \mapsto \pi^{p,q}(\Phi^*\omega). \tag{38.65}$$

Here the projection $\pi^{p,q}$ is the projection of the variational bicomplex, not the one of jet bundles (which is denoted by subscripts).

Remark 38.4.24. The projection $\pi^{p,q}: \Omega^{p+q}(J^{\infty}(E)) \to \Omega^{p,q}(J^{\infty}(E))$ is defined by substituting $\mathbf{d}u_I^{\alpha} \longrightarrow \delta u_I^{\alpha} + u_{\mu I}^{\alpha} dx^{\mu}$ and then projecting onto the correct horizontal and vertical degrees. Note that this does not preserve the order of forms due to the presence of the factor $u_{\mu I}^{\alpha}$.

The main argument for introducing the projected pullback is that functionals of the form 38.47 only care about (m, q)-forms for a specific q (in particular **action functionals**, i.e. q = 0).

Formula 38.4.25 (Local Lagrangians). For local Lagrangians $\mathbf{L} \equiv L \operatorname{Vol}_{E'}$ the projected pullback acts as follows:

$$\Phi^{\sharp} \mathbf{L} = (L \circ \Phi) \det(D_{\mu} f^{\mu}) \operatorname{Vol}_{E}$$
(38.66)

where $\pi'(\Phi[u]) = (f^{\mu})$. So we obtain the usual formula for pullbacks of top-dimensional forms, but with partial derivatives replaced by total derivatives.

An important property of the de Rham differential is its naturality (see property 32.4.9). The following property states the "naturality" of the different operators on the variational bicomplex with respect to the projected pullback:

Property 38.4.26. Consider a morphism of infinite jet bundles $\Phi: J^{\infty}(E) \to J^{\infty}(E')$.

- Φ^{\sharp} and δ commute if and only if Φ covers a morphism of base manifolds.
- Φ^{\sharp} and d commute if and only if Φ^{*} preserves the contact ideal.
- Φ^{\sharp} commutes with both differentials if and only if it coincides with Φ^{*}

Furthermore, the projected pullback defines a contravariant functor on the subcategory on morphisms that satisfy at least one of the above properties.

The following property gives an infinitesimal analogue of the above considerations:

Property 38.4.27. Consider a vector field $X \in \mathfrak{X}(J^{\infty}(E))$. Its Lie derivative will in general not respect the bigrading of the variational bicomplex (unless X is evolutionary on E) and therefore we introduce the "projected Lie derivative":

$$\mathcal{L}_X^{\sharp}: \Omega^{p,q}(J^{\infty}(E)) \to \Omega^{p,q}(J^{\infty}(E)): \omega \mapsto \pi^{p,q}(\mathcal{L}_X\omega). \tag{38.67}$$

This operator satisfies the following properties:

- It commutes with δ if and only if X is π_{∞} -related to a vector field on M.
- It commutes with d if and only if X is the prolongation of a generalized vector field on E.

Note that this does not simply follow from the previous property since X does not necessarily define as flow on $J^{\infty}(E)$.

Aside from the differentials on the variational bicomplex, we should also look at the structure of the "functional complex" $(\mathcal{F}^{\bullet}, \delta_V)$. It can be shown that requiring both $[I, \Phi^{\sharp}] = 0$ and $[\delta, \Phi^{\sharp}] = 0$ is very restricting. Furthermore, a complete characterization of those morphisms Φ that satisfy only $[I, \Phi^{\sharp}] = 0$ is not fully understood. However, the infinitesimal version is easier to handle since it only contains linear equations:

Property 38.4.28. Let n be the rank of E and consider a vector field X on $J^{\infty}(E)$.

• If n = 1, then \mathcal{L}_X^{\sharp} commutes with I if and only if X is locally the prolongation of a generalized vector field on E of the form

$$Y = -\frac{\partial S}{\partial u_{\mu}} \partial_{\mu} + \left(S - u_{\mu} \frac{\partial S}{\partial u_{\mu}} \right) \partial_{u}$$
 (38.68)

where S is a function the first jet bundle $J^1(U)$.

• If n > 1, then \mathcal{L}_X^{\sharp} commutes with I if and only if X is the prolongation of vector field on E.

The next step is to define operators that do preserve the functional complex. For this we use the projection property of I:

$$\Phi^{\sharp}: \Omega^{m,q}(J^{\infty}(E)) \to \mathcal{F}^{q}(J^{\infty}(E')): \omega \mapsto (I \circ \Phi^{\sharp})\omega \tag{38.69}$$

$$\mathcal{L}_X^{\sharp}: \Omega^{m,q}(J^{\infty}(E)) \to \mathcal{F}^q(J^{\infty}(E)): \omega \mapsto (I \circ \mathcal{L}_X^{\sharp})\omega. \tag{38.70}$$

Property 38.4.29. The above operators satisfy the following properties:

- If Φ is a contact transformation, then Φ^{\natural} commutes with both I and δ_{V} .
- If X is a generalized vector field on E, then $\mathcal{L}_{j^{\infty}X}^{\natural}$ commutes with both I and δ_V .
- Φ^{\dagger} preserves locally variational forms.

The projected and functionally projected operators also satisfy the following relations:

Property 38.4.30 (Euler-Lagrange operator). Consider a local Lagrangian L. If Φ is a contact transformation, then

$$\delta_{\rm EL}(\Phi^{\sharp}\mathbf{L}) = \Phi^{\sharp}(\delta_{\rm EL}\mathbf{L}). \tag{38.71}$$

If X is a generalized vector field on E', then

$$\delta_{\mathrm{EL}}(\mathcal{L}_{j^{\infty}X}^{\sharp}\mathbf{L}) = \mathcal{L}_{j^{\infty}X}^{\sharp}(\delta_{\mathrm{EL}}\mathbf{L}). \tag{38.72}$$

Formula 38.4.31 (Functionally projected Lie derivative). Let X be a generalized vector field on E and let $\omega \in \mathcal{F}^{\bullet}$ be a functional form.

$$\mathcal{L}_{j^{\infty}X}^{\natural}\omega = \delta_{V}(j^{\infty}X_{ev} - \omega) + I(j^{\infty}X_{ev} - \delta_{V}\omega). \tag{38.73}$$

If X is an evolutionary vector field, $X = X_{ev}$ and hence we can replace X_{ev} by X on the right-hand side. For projectable vector fields we can replace the left-hand side by the ordinary Lie derivative $\mathcal{L}_{i^{\infty}X}\omega$.

Definition 38.4.32 (Distinguished symmetry). A distinguished (generalized) symmetry of a source form $\Delta \in \mathcal{F}^1(J^{\infty}(E))$ is a (generalized) vector field X on E such that

$$\mathcal{L}_{j^{\infty}X}^{\natural} \Delta = 0. \tag{38.74}$$

As for the formula above, we can replace the projected Lie derivative by an ordinary Lie derivative when X is projectable.

Definition 38.4.33 (Bessel-Hagen symmetry). A Bessel-Hagen or **divergence** symmetry of a Euler-Lagrange form $\Delta \equiv \delta_{\text{EL}}(\mathbf{L})$ is a generalized vector field X such that

$$\mathcal{L}_{j^{\infty}X}^{\natural}\mathbf{L} = d\eta \tag{38.75}$$

for some (m-1,1)-form η .

If this condition holds locally, then distinguished symmetries and Bessel-Hagen symmetries coincide. However, if the Bessel-Hagen condition is required to hold globally, then the Bessel-Hagen symmetries form only a subset of the distinguished symmetries.

Definition 38.4.34 (Local conservation law). A generator of a local conservation law of a source form $\Delta \in \mathcal{F}^1(J^{\infty}(E))$ is an evolutionary vector field X such that

$$\delta_{\rm EL}(j^{\infty}X - \Delta) = 0. \tag{38.76}$$

Property 38.4.35 (Lie algebra of symmetries). Given a source form $\Delta \in \mathcal{F}^1(J^{\infty}(E))$, we can equip the vector space of generalized vector fields satisfying the following two conditions with the structure of a Lie algebra:

- They are distinguished symmetries.
- Their evolutionary part is a generator of local conservation laws.

Theorem 38.4.36 (Noether). If $\Delta \in \mathcal{F}^1(J^{\infty}(E))$ is locally variational, then a generalized vector field on E is a distinguished symmetry if and only if its evolutionary part is a generator of local conservation laws.

In the remainder of this section we will study the homological properties of the variational bicomplex over a local chart (or equivalently, over a trivial bundle). To prove the acyclicity of the various subcomplexes we will follow the usual approach of finding a null-homotopy (see property 5.1.7), i.e. we look for a cochain map $h: C_{\bullet} \to C_{\bullet}$ such that

$$id = d \circ h + h \circ d. \tag{38.77}$$

Property 38.4.37 (Vertical complex is exact). Homotopy operators $h_V^{p,q}: \Omega^{p,q} \to \Omega^{p,q-1}$ for the vertical complex

$$0 \longrightarrow \Omega^{p}(M) \xrightarrow{\pi_{\infty}^{*}} \Omega^{p,0} \xrightarrow{\delta} \Omega^{p,1} \xrightarrow{\delta} \cdots$$
 (38.78)

are given by the following formula

$$h_V^{p,q}(\omega) = \int_0^1 \frac{1}{t} \Phi_{\log t}^*(j^{\infty} R - \omega) dt$$
 (38.79)

where $R := u^{\alpha} \partial_{\alpha}$ is the (vertically) radial vector field and $\Phi_{\varepsilon} : [x, u] \mapsto [x, e^{\varepsilon}u]$. It is not too difficult to check that for source forms this gives rise to formula 38.63.

The analogous statement for the horizontal complex is a bit more involved:

Property 38.4.38 (Augmented horizontal complex is exact). The homotopy operators $h_H^{p,q}: \Omega^{p,q} \to \Omega^{p-1,q}$ for the augmented horizontal complex

$$0 \longrightarrow \Omega^{0,q} \stackrel{d}{\longrightarrow} \Omega^{1,q} \longrightarrow \cdots \longrightarrow \Omega^{m,q} \stackrel{I}{\longrightarrow} \mathcal{F}^q \stackrel{I}{\longrightarrow} 0$$
 (38.80)

are given by the following formula

$$h_H^{p,q}(\omega) = \frac{1}{q} \sum_{|I|=0}^{k-1} \frac{|I|+1}{m-p+|I|+1} D_I \left(\delta u^{\alpha} \wedge F_{\alpha}^{I\mu}(D_{\mu} - \omega) \right)$$
 (38.81)

where the F_{α}^{I} are the interior Euler operators 38.43.

Using the above properties we can prove the acyclicity of the **Euler-Lagrange complex** \mathcal{E} (again over a local chart), i.e. the following sequence is exact:

$$0 \longrightarrow \mathbb{R} \longrightarrow \Omega^{0,0} \xrightarrow{d} \Omega^{1,0} \longrightarrow \cdots \longrightarrow \Omega^{m,0} \xrightarrow{\delta_{\mathrm{EL}}} \mathcal{F}^1 \xrightarrow{\delta_V} \mathcal{F}^2 \xrightarrow{\delta_V} \cdots . \tag{38.82}$$

Explicit formulas are not shown since these are too complicated for the current objective. See [55] for a full account.

Remark 38.4.39. Although we have stated (local) exactness of the variational bicomplex, it should be noted that we have not found an optimal solution. Consider the example of locally variational source forms. From the form of the homotopy operator $\mathcal{F}^1 \to \Omega^{m,0}$ it should be clear that an order-k source form is mapped to an order-k Lagrangian. However, the Euler-Lagrange operator δ_{EL} will in general map order-k Lagrangians to order-k source forms. Hence, we see that the homotopy operator will in general not result in a Lagrangians of minimal order.

A last subject that we will consider in this section is the restriction of the variational bicomplex to finite jet bundles. However, as is clear from the definition of the horizontal differential, that forms of order k are mapped to forms of order k+1. Therefore we will have to restrict our attention to a specific subcomplex of $\Omega^{\bullet}(J^{\infty}(E))$:

$$\Omega_k^{\bullet}(E) \subset \Omega^{\bullet}(J^{k+1}(E)) := \delta$$
-closure of $\Omega^{\bullet}(J^k(E))$. (38.83)

From the basic definitions and properties of the two differentials d, δ it follows that Ω_k^{\bullet} is generated by $C^{\infty}(J^k(E))$, the horizontal basis $\{dx^{\mu}\}_{\mu \leq \dim(M)}$ and the contact basis $\{\delta u_I^{\alpha}\}_{\mu \leq \dim(M)}^{|I| \leq k}$. The next step is to further restrict to a horizontally closed subcomplex. Consider forms $\omega \in \Omega_k^{p,q}(E)$ of the form

$$\omega = \left[du_{I_1}^{\alpha_1} \wedge \ldots \wedge du_{I_r}^{\alpha_r} \wedge d\delta u_{J_1}^{\beta_1} \wedge \ldots \wedge d\delta u_{J_s}^{\beta_s} \right] \wedge f dx^{\kappa_1} \wedge \ldots \wedge dx^{\kappa_{p-r-s}}$$
(38.84)

where $|I_i|, |J_i| = k - 1$ and $f \in C^{\infty}(J^{k-1}(E))$. It is immediately clear that the subcomplex of such forms is also horizontally closed. The factor in between square brackets can also be rewritten as follows:

$$J = \frac{1}{(r+s)!} \frac{D(u_{I_1}^{\alpha_1}, \dots, u_{I_r}^{\alpha_r}, \delta u_{J_1}^{\beta_1}, \dots, \delta u_{J_s}^{\beta_s})}{D(x^{\mu_1}, \dots, x^{\mu_r}, x^{\nu_1}, \dots, x^{\nu_s})} dx^{\mu_1} \wedge \dots \wedge dx^{\mu_r} \wedge dx^{\nu_1} \wedge \dots \wedge dx^{\nu_s}.$$
(38.85)

This factor has the form of a Jacobian determinant (with respect to total derivatives) and as such we call the subcomplex spanned by the above forms the **Jacobian (sub)complex** $\mathcal{J}_k^{\bullet,\bullet}(E)$.

Property 38.4.40 (Alternative characterizations). The Jacobian complexes can also be characterized as follows:

• Consider the projection $\pi^{\bullet,0}: \Omega^{\bullet} \to \Omega^{\bullet,0}$ (note that this maps forms in $\Omega^r(J^k(E))$ to forms in $\Omega^{r,0}_{k+1}(E)$ due to Remark 38.4.24).

$$\mathcal{J}_{k}^{p,q}(E) = \Omega^{p,q}(J^{\infty}(E)) \cap \delta\text{-closure of } \pi^{\bullet,0} \Big[\Omega^{\bullet}(J^{k-1}(E)) \Big]. \tag{38.86}$$

• For p < m the Jacobian complex contains those forms for which d does not increase the order:

$$\mathcal{J}_k^{p,q}(E) = \{ \omega \in \Omega_k^{p,q} : d\omega \in \Omega_k^{p+1,q}(E) \}. \tag{38.87}$$

• If $\omega \in \mathcal{J}_k^{p,q}(E)$, then ω is a polynomial in u_i^{α} 's and δu_I^{α} 's of degree $\leq r$ with |I| = k.

It can be shown that the Jacobian subcomplex is (locally) exact and that it respects the structure of the Euler-Lagrange complex:

Property 38.4.41 (Exactness). Let E be trivial. If $\delta_{\mathrm{EL}}\omega = 0$ for $\omega \in \Omega_k^{m,q=0}(E)$ or $I(\omega) = 0$ for $\omega \in \Omega_k^{m,q \geq 1}(E)$, then $\omega \in \mathcal{J}_k^{m,q}(E)$ and $\omega = d\eta$ for $\eta \in \mathcal{J}_k^{m-1,q}(E)$.

Property 38.4.42 (Functional dependence of Lagrangians). If Δ is a locally variational source form of order k, then it is polynomial of degree m in k^{th} -order derivatives of the u^{α} .

Chapter 39

K-theory ♣

In this chapter all topological (base) spaces are supposed to be both compact and Hausdorff (unless stated otherwise). This ensures that the complex of K-theories satisfies the Eilenberg-Steenrod axioms 9.4.1. In general we will work over an arbitrary field k. If necessary we will specialize to a specific field such as \mathbb{R} or \mathbb{C} .

The main reference for this chapter is [48].

39.1 Preliminaries

Definition 39.1.1 (Stable general linear group). Let R be a (unital) ring. For every two integers m < n there exists a canonical inclusion $GL(m, R) \hookrightarrow GL(n, R)$ through extension (direct sum) by $\mathbb{1}_{n-m}$. This allows us to define the stable general linear group (or infinite general linear group) as a direct limit:

$$GL(R) := \lim_{n \in \mathbb{N}} GL(n, R). \tag{39.1}$$

Remark 39.1.2. A similar construction leads to the stable orthogonal and stable unitary groups O and U.¹

39.2 Topological K-theory

In this section we will work over a general field k. Certain statements will be given for the specific cases $k = \mathbb{R}$, \mathbb{C} , since these are the most relevant for us.

39.2.1 Introduction (degree 0)

Definition 39.2.1 (K-theory). Let $\operatorname{Vect}(X)/\sim$ be the set of isomorphism classes of finite-dimensional vector bundles over a base space X. Because this set is well-behaved with respect to Whitney sums, the structure $(\operatorname{Vect}(X)/\sim, \oplus)$ forms an Abelian monoid. The Grothendieck completion 3.2.6 of this monoid is called the (real) K-theory of X.

Notation 39.2.2. The K-theory of a space X is denoted by $K^0(X)$.

Example 39.2.3 (Point). Let * be the one-point space. The K-theory $K^0(*)$ is isomorphic to the additive group of integers $(\mathbb{Z}, +)$.

¹One sometimes uses the notations $O(\infty)$ and $U(\infty)$ (when $R = \mathbb{R}$ and $R = \mathbb{C}$ respectively).

Definition 39.2.4 (Virtual vector bundle). The elements of $K^0(X)$ are pairs ([E], [E']) that can formally be written as a difference [E] - [E'] of vector bundles. Such pairs are called virtual (vector) bundles.

Definition 39.2.5 (Virtual rank). The virtual rank of the virtual bundle ([E], [E']) is defined as follows:

$$rk([E], [E']) := rk(E) - rk(E').$$
 (39.2)

Property 39.2.6. Property 32.2.10 implies that every virtual bundle is of the form $[E]-[X\times\mathbb{R}^n]$ for some vector bundle E and integer $n\in\mathbb{N}$.

Definition 39.2.7 (Reduced K**-theory).** Let (X, x_0) be a pointed space. The inclusion $\{x_0\} \hookrightarrow X$ induces a group morphism $\rho: K^0(X) \to K^0(x_0)$ given by the restriction of virtual bundles to the basepoint x_0 . The reduced K-theory $\widetilde{K}^0(X)$ is given by $\ker(\rho)$.

Alternative Definition 39.2.8. One can define the reduced K-theory $\widetilde{K}(X)$ equivalently as follows: Consider the stable isomorphism classes² of vector bundles over X. Under Whitney sums these define a commutative group $(\operatorname{Vect}(X)/\sim_{stable}, \oplus)$ which is (naturally) isomorphic to $\widetilde{K}^0(X)$.

The following construction is very similar to 25.3.10. In fact it is the one obtained for the Banach functor that restricts vector bundles to subspaces.

Definition 39.2.9 (Relative K-theory). Consider a space X and a closed subspace Y. Let $\mathcal{V}(X,Y)$ denote the set of triples (E,E',f) where E,E' are vector bundles over X and f is an isomorphism between the restrictions $E|_Y$ and $E'|_Y$. Elements in $\mathcal{V}(X,Y)$ are said to be isomorphic if there exist isomorphisms of vector bundles that make the "obvious" diagram commute. The sum of such triples is defined elementwise. Let $\mathscr{E}(X,Y)$ denote the subset of $\mathcal{V}(X,Y)$ consisting of triples (F,F',g) where F=F' and g is homotopic to $\mathbb{1}_{F|_Y}$ in $\operatorname{Aut}(F|_Y)$.

The relative K-theory $K^0(X,Y)$ is defined as the quotient of $\mathscr{V}(X,Y)$ by the following equivalence relation:

$$x \sim x' \iff \exists e, e' \in \mathscr{E}(X, Y) : x + e \cong_{\mathscr{V}} x' + e'.$$
 (39.3)

So elements of relative K-theory are pairs of vector bundles over X that coincide on the subspace Y modulo a relation akin to that from the Grothendieck construction. It should also be clear that choosing $Y = \emptyset$ gives exactly the Grothendieck construction and hence $K^0(X, \emptyset) \equiv K^0(X)$.

Alternative Definition 39.2.10. Consider a space X with a closed subspace Y.

$$K^{0}(X,Y) := \ker(K^{0}(X) \to K^{0}(Y)).$$
 (39.4)

Property 39.2.11 (Excision). Consider a space X together with a closed subspace Y. The relative K-theory is related to the reduced K-theory as follows:

$$K^0(X,Y) \cong \widetilde{K}^0(X/Y). \tag{39.5}$$

39.2.2 Classification

Property 39.2.12 (Classifying space of orthogonal group). Here we consider the classifying space (see definition 33.2.1) of the orthogonal group O(n). Recall the Grassmannian

²See definition 32.2.11.

 $Gr(n,\mathbb{R}^N)$ of *n*-dimensional subspaces in \mathbb{R}^k . There exists a canonical inclusion of Grassmannians:

$$\iota_k : \operatorname{Gr}(n, \mathbb{R}^k) \hookrightarrow \operatorname{Gr}(n, \mathbb{R}^{k+1}) : W \mapsto W.$$
 (39.6)

By taking the direct limit of these inclusions, one obtains the infinite Grassmannian:

$$BO(n) := \lim_{k \in \mathbb{N}} Gr(n, \mathbb{R}^k). \tag{39.7}$$

As the name implies, it can be shown that this is the classifying space of O(n).

There also exists a canonical inclusion of Grassmannians

$$\iota_{n,k}: \operatorname{Gr}(n,\mathbb{R}^k) \hookrightarrow \operatorname{Gr}(n+1,\mathbb{R}^{k+1}): W \mapsto W \oplus \operatorname{span}\{e_{k+1}\}.$$
 (39.8)

This in turn induces an inclusion $BO(n) \hookrightarrow BO(n+1)$ of classifying spaces. The direct limit over this system of inclusions is denoted by BO, it is the classifying space of the stable orthogonal group O.

Remark. A similar construction allows us to construct the classifying space $B\mathrm{U}(n)$ by starting from complex Grassmannians.

Remark 39.2.13. It should be noted that neither BO nor BU can be expressed as classifying spaces of a group over some infinite-dimensional Hilbert space. This follows from Kuiper's theorem which states that such groups are contractible and hence have vanishing homotopy groups (which does not hold for our classifying spaces).

Property 39.2.14 (Homotopy classification). For all spaces X the K-theory can be represented as follows:

$$K^{0}(X) = [X, BGL(k) \times \mathbb{Z}]. \tag{39.9}$$

When specializing to $k = \mathbb{R}, \mathbb{C}$ this becomes

$$K^0_{\mathbb{R}}(X) = [X, BO \times \mathbb{Z}] \tag{39.10}$$

and

$$K^0_{\mathbb{C}}(X) = [X, BU \times \mathbb{Z}]. \tag{39.11}$$

due to homotopy invariance. Reduced K-theory can be obtained by considering basepoint-preserving homotopies. For connected spaces this is equivalent to [X, BGL].

Remark 39.2.15 (Noncompact spaces). If we consider noncompact spaces one can still use either the Grothendieck construction or the representable definition for topological K-theory. However, these will not coincide anymore although there does exist an injection from the Grothendieck K-theory to the representable K-theory.

The following theorem should be compared to remark 39.2.13 above (in fact this theorem can be proven through Kuiper's theorem):

Theorem 39.2.16 (Atiyah-Jänich). The space of Fredholm operators³ on a separable and infinite-dimensional Hilbert space forms a classifying space for K-theory.

 $^{^{3}}$ See definition 23.4.35.

39.2.3 Negative degree

Definition 39.2.17 (K^{-1}) . For every field k we define (again, this can also be seen as a property when using a different definition) the relative K-functor K^{-1} as follows:

$$K^{-1}(X,Y) := [X/Y, GL(k)]_*$$
 (39.12)

where the asterisk denotes the fact that we consider basepoint-preserving homotopies. We can obtain $K^{-1}(X)$ by considering $Y = \emptyset$ and recalling relation 7.11:

$$K^{-1}(X) := [X, GL(k)].$$
 (39.13)

For $k = \mathbb{R}, \mathbb{C}$ one can use homotopy invariance to obtain

$$K_{\mathbb{R}}^{-1}(X) := [X, O]$$
 (39.14)

$$K_{\mathbb{C}}^{-1}(X) := [X, U].$$
 (39.15)

To define lower degree groups it will be useful to extend K-theory to locally compact spaces:

Definition 39.2.18 (K-theory of locally compact spaces). Let X be a locally compact space and denote its one-point compactification 7.5.27 by \widehat{X} . We define the groups $K^0(X)$ and $K^{-1}(X)$ as follows:

$$K^{0}(X) := \ker \left(K^{0}(\widehat{X}) \to K^{0}(\{\infty\}) \right)$$
 (39.16)

$$K^{-1}(X) := \ker \left(K^{-1}(\widehat{X}) \to K^{-1}(\{\infty\}) \right)$$
 (39.17)

So we define the K-theory of a locally compact space as the reduced K-theory of its one-point compactification.

Corollary 39.2.19 (Relative K-theory and complements). Consider a space X with a closed subspace Y. We can identify $(X/Y)\setminus\{y_0\}$ with $X\setminus Y$ and hence we obtain

$$K^{0}(X\backslash Y) = \widetilde{K}^{0}(X/Y). \tag{39.18}$$

When combined with the excision property this gives a result akin of ordinary (singular) cohomology where the relative cocycles were those defined on the complement $X \setminus Y$:

$$K^0(X,Y) \cong K^0(X\backslash Y). \tag{39.19}$$

Definition 39.2.20 (K^{-n}) . We can generally define lower relative K-groups as follows:

$$K^{-n}(X,Y) := K^0((X\backslash Y) \times \mathbb{R}^n). \tag{39.20}$$

By taking $Y = \emptyset$ we obtain the groups $K^{-n}(X)$ as K^0 -groups of trivial line bundles:

$$K^{-n}(X) := K^{0}(X \times \mathbb{R}^{n}). \tag{39.21}$$

Before relating this to reduced K-theory we first warn the reader about a possible confusion. Homotopy invariance of K-theory would seem to imply that the above definition is senseless, since $X \cong X \times \mathbb{R}^n$ in the homotopy category. However, $X \times \mathbb{R}^n$ is not compact (even if X is) and hence we should work with definition 39.2.18.

It can be shown through a series of homeomorphisms that the above definition is equivalent to the following one:

$$K^{-n}(X,Y) \cong \widetilde{K}^0(\Sigma^n(X/Y)) \tag{39.22}$$

where Σ denotes the reduced suspension functor 7.3.7. As such, the reduced suspension functor gives us a way to move down in the tower of K-groups.

39.2.4 Bott periodicity

Definition 39.2.21 (Cup product). We first generalize the Whitney sum and tensor product constructions to vector bundles over different base spaces. Let E, E' be vector bundles over the base spaces B, B'. Consider the projection maps $\pi: B \times B' \to B$ and $\pi: B \times B' \to B'$. The exterior sum $E \oplus E' \to B \times B'$ is defined as the Whitney sum $\pi^*(E) \oplus \pi'^*(E')$. Analogously we define the exterior product bundle as the tensor product $\pi^*(E) \otimes \pi'^*(E')$. Fibrewise, this is just the ordinary direct sum and tensor product of vector spaces.

The exterior product induces a bilinear map on K-theory as follows: From definition 39.2.4 we know that every element $x \in K^0(X)$ can be written as formal difference [E] - [E'] of vector bundles over X. Using this decomposition we define the cup product $x \cup y$ through the following formula:

$$([E] - [E']) \cup ([F] - [F']) := [E \otimes F] + [E' \otimes F'] - [E \otimes F'] - [E' \otimes F]. \tag{39.23}$$

We can now extend this definition to locally compact spaces. Every element of $K^0(Y)$, for Y locally compact, defines an element in $K^0(\widehat{Y})$ and for such elements the cup product was defined above. By restricting to $Y \times Y'$ one can then obtain an element of $K^0(Y \times Y')$:

$$K^{0}(Y) \times K^{0}(Y') \xrightarrow{\iota \times \iota'} K^{0}(\widehat{Y}) \times K^{0}(\widehat{Y'}) \xrightarrow{\cup} K^{0}(\widehat{Y} \times \widehat{Y'}) \xrightarrow{\text{res}} K^{0}(Y \times Y')$$
 (39.24)

where ι, ι' are the inclusions induced by 39.16.

Property 39.2.22 (Ring structure). By precomposing with the diagonal morphism $K^0(X \times X) \to K^0(X)$ we can endow $K^0(X)$ with a commutative ring structure. (At least over commutative fields such as \mathbb{R}, \mathbb{C} .)

Property 39.2.23. If we recall definition 39.2.20 we immediately see that the cup product on K^0 also defines a bilinear operation $K^{-m}(X) \times K^{-n}(X) \to K^{-m-n}(X)$. Furthermore, as above, this induces a multiplicative structure on the complex $K^{\bullet}(X) := \bigoplus_{n=0}^{\infty} K^{-n}(X)$. This multiplication can be shown to endow the K-complex with the structure of a graded-commutative algebra 27.1.4.

By using the isomorphism 39.19 we can also extend the cup product to an operation on relative K-theory:

$$K^{-m}(X,Y) \to K^{-n}(X',Y') \to K^{-m-n}(X \times X', X \times Y' \cup X' \times Y).$$
 (39.25)

Notation 39.2.24 (Bott element). Let us consider the complex relative K-group

$$K^0_{\mathbb{C}}(D^2, S^1) \cong \widetilde{K}^0_{\mathbb{C}}(S^2) \cong K^0_{\mathbb{C}}(\mathbb{R}^2)$$

of the unit disk with respect to its boundary. By β we will denote the element represented by the triple $(D^2 \times \mathbb{C}^2, D^2 \times \mathbb{C}^2, \alpha : (x, v) \mapsto xv)$.

Theorem 39.2.25 (Complex Bott periodicity). The cup product with the Bott element β gives an isomorphism $K_{\mathbb{C}}^{-n}(X,Y) \cong K_{\mathbb{C}}^{-n}(X \times D^2, X \times S^1 \cup Y \times D^2) \cong K_{\mathbb{C}}^{-n-2}(X,Y)$. This also implies that cupping with β gives an isomorphism $K_{\mathbb{C}}^0(X) \cong K_{\mathbb{C}}^0(X \times \mathbb{R}^2)$.

Corollary 39.2.26. Applying Bott periodicity to the case $X = *, Y = \emptyset$ and comparing to example 39.2.3, we obtain $K^0_{\mathbb{C}}(D^2, S^1) \cong \mathbb{Z}$. We also conclude that β is a generator of $K^0_{\mathbb{C}}(D^2, S^1)$.

Corollary 39.2.27 (Spheres). Bott periodicity and equation 39.22 also allow us to compute the reduced K-theory of spheres:

$$\widetilde{K}^0_{\mathbb{C}}(S^n) = \begin{cases} 0 & n \text{ odd} \\ \mathbb{Z} & n \text{ even.} \end{cases}$$
 (39.26)

For n even we can see that the generator is given by $\beta^{n/2}$.

Property 39.2.28 (Homotopy groups of unitary group). Property 31.3.4 can be generalized to the stable linear group to obtain an isomorphism $\widetilde{K}_k^0(S^n) \cong \pi_{n-1}(\mathrm{GL}(k))$. By specializing to $k = \mathbb{C}$, recalling that $\mathrm{GL}(m,\mathbb{C})$ deformation retracts onto $\mathrm{U}(m)$ and applying Bott periodicity, we obtain that the homotopy groups of the stable unitary group are mod 2-periodic. Furthermore, by using the fibration

$$U(n) \to U(n+1) \to S^{2n+1},$$
 (39.27)

in particular its induced long exact sequence, one can show that for n > i/2 the homotopy groups $\pi_i(U(n))$ satisfy the same periodic relation.

Theorem 39.2.29 (Real Bott periodicity). The cup product with the real Bott element, i.e. the generator of $K_{\mathbb{R}}^{-8}(*) \cong \mathbb{Z}$, gives an isomorphism

$$K_{\mathbb{R}}^{-n}(X,Y) \to K_{\mathbb{R}}^{-n-8}(X,Y).$$
 (39.28)

Theorem 39.2.30 (Weak Bott periodicity). The following spaces are homotopy equivalent:⁴

$$GL(\mathbb{R}) \sim \Omega^8 GL(\mathbb{R})$$
 (39.29)

$$O \sim \Omega^8 O$$

$$U \sim \Omega(\mathbb{Z} \times BU) \tag{39.30}$$

$$\mathbb{Z} \times BU \sim \Omega U.$$
 (39.31)

Corollary 39.2.31. Through Eckmann-Hilton duality this implies the periodicity in the homotopy groups of the stable orthogonal and unitary groups (cf. property 39.2.28).

Property 39.2.32. One can also relate real and quaternionic K-theory through the following homotopy equivalences:

$$\mathbb{Z} \times BGL(\mathbb{R}) \sim \Omega^4(BGL(\mathbb{H})) \tag{39.32}$$

$$\mathbb{Z} \times BGL(\mathbb{H}) \sim \Omega^4(BGL(\mathbb{R})).$$
 (39.33)

Remark 39.2.33 (Positive degree). Bott periodicity allows to define K-groups in positive degree.

39.2.5 Clifford modules

One can restate the above sections in terms of **Clifford modules** (also called **Clifford module bundles**), i.e. vector bundles for which the fibres carry a representation of a Clifford algebra. We will mainly use the content of section 25.3.1.

From definition 25.3.10 and example 25.3.12 it should be clear that what we called $K^0(X)$ is in fact equivalent to $K^{0,0}(\mathbf{C})$ for $\mathbf{C} = \mathrm{Vect}(X)$. In a similar vein one can prove that $K^{-1}(X)$ is equivalent to $K^{1,0}(\mathrm{Vect}(X))$.

This relation is in fact generalizable to all values for p,q (writing $K^{p,q}(X)$ for $K^{p,q}(\text{Vect}(X))$):

⁴For an extensive list see [48].

Property 39.2.34. The $K^0(X)$ -modules $K^{p,q}(X)$ and $K^{q-p}(X)$ are isomorphic.

Property 25.3.9 then implies the Bott periodicity for the groups $K^{q-p}(X)$. For complex K-theory one can use remark 25.3.13. The most important takeaway for this section is that one can rephrase K-theory in terms of Clifford modules and canonically induced functors between them.

39.2.6 Cohomology theory

Property 39.2.35 (Excision). It can be shown that the excision property 39.2.11 holds at every degree $n \in \mathbb{Z}$:

$$K^{n}(X/Y, \{y_0\}) \cong K^{n}(X, Y).$$
 (39.34)

More generally this can be stated as

$$K^n(X\backslash U, Y\backslash U) \cong K^n(X, Y).$$
 (39.35)

where $\overline{U} \subset \mathring{Y}$.

Property 39.2.36 (Homotopy invariance). Homotopic maps induce equal morphisms in K-theory at every degree. In particular this implies that homotopy equivalences induce isomorphisms in K-theory.

Remark 39.2.37 (Generalized cohomology). The above properties imply that the complex of K-groups satisfies the Eilenberg-Steenrod axioms 9.4.1 except for the dimension axiom. As such it is a generalized cohomology theory.

39.2.7 Applications

In this section we list some applications to mathematics. ?? REFER TO PHYSICS ??

Property 39.2.38 (Degree). Recall the definition 9.2.38 of degree from algebraic topology. In the same way one can assign to every continuous function $f: S^n \to S^n$ a degree through its induced action on K-theory. In fact, the topological degree and the K-theoretic degree coincide.

One can also extend this to "multidegrees". For example in the case of bidegree we consider continuous functions $\mu: S^n \times S^n \to S^n$. The bidegree (p,q) of μ is defined as the pair of degrees of the maps $x \mapsto \mu(x,x_0)$ and $y \mapsto (x_0,y)$ for a fixed basepoint x_0 .

Definition 39.2.39 (*H*-space). A sphere S^n is said to be an *H*-space if it admits a continuous function $\mu: S^n \times S^n \to S^n$ of bidegree (1,1), i.e. it admits such a function for which the pointwise maps are homotopic to the identity.⁵

Property 39.2.40 (Puppe sequence). The mapping cone C_f from definition 7.3.12 fits in an exact sequence:

$$X \longrightarrow Y \longrightarrow C_f \longrightarrow \Sigma X \longrightarrow \Sigma Y.$$
 (39.36)

Reduced K-theory maps this to an induced exact sequence (whenever the reduced K-theory is defined for X, Y):

$$\widetilde{K}^0(\Sigma X) \longrightarrow \widetilde{K}^0(\Sigma Y) \longrightarrow \widetilde{K}^0(C_f) \longrightarrow \widetilde{K}^0(X) \longrightarrow \widetilde{K}^0(Y).$$
 (39.37)

 $^{^5}$ This second formulation can also be used for other topological spaces, e.g. the H-structure on loop groups 9.1.12.

The Puppe sequence in K-theory allows us to prove an important theorem in the case of mappings of spheres:

Definition 39.2.41 (Hopf invariant). The Puppe sequence for $f: S^{2n-1} \to S^n$ with n even implies that $\widetilde{K}^0(C_f) \cong \mathbb{Z} \oplus \mathbb{Z}$ where the generators are induced by the Bott elements of the spheres. The relation $\beta_{2n} = \beta_n \cup \beta_n$ of Bott elements gives an induced relation $a^2 = \lambda b$ of generators in $K^0(C_f)$. The integer λ is called the Hopf invariant of f^0 .

One can show that every "multiplication" map $\mu: S^{n-1} \times S^{n-1} \to S^{n-1}$ of bidegree (p,q)induces a map $S^{2n-1} \to S^n$ of Hopf invariant pq.

Theorem 39.2.42 (Atiyah-Adams). Let n be even. If a continuous function $S^{2n-1} \to S^n$ has odd Hopf invariant, then n = 2, 4 or 8.

Corollary 39.2.43. A sphere S^{n-1} can only admit a multiplication map of bidegree (1,1), or equivalently, admit an H-structure, if n = 2, 4 or 8.7

Theorem 39.2.44 (Atiyah-Hirzebruch). Let X be a compact Hausdorff space. The Chern character induces the following isomorphisms:

$$K^0_{\mathbb{C}}(X) \otimes \mathbb{Q} \cong \bigoplus_{i \in \mathbb{Z}} H^{2i}(X; \mathbb{Q})$$
 (39.38)

$$K^{0}_{\mathbb{C}}(X) \otimes \mathbb{Q} \cong \bigoplus_{i \in \mathbb{Z}} H^{2i}(X; \mathbb{Q})$$

$$K^{1}_{\mathbb{C}}(X) \otimes \mathbb{Q} \cong \bigoplus_{i \in \mathbb{Z}} H^{2i+1}(X; \mathbb{Q}).$$

$$(39.38)$$

For noncompact spaces one needs to work with rational K-theory.

Algebraic K-theory 39.3

39.3.1 Determinant

Over noncommutative rings R the determinant of a matrix is not as easily defined as over commutative rings such as field. For example in the 2×2 case one could choose either ad - bcor da - bc (or any other permutation), there exists no canonical choice. To fix this we take a look at the most important properties of the determinant map:

- It is invariant under elementary row/column operations (see item 3 of property 20.4.39).
- It is invariant under augmentation by the identity, i.e. under the transformation $A \mapsto A \oplus \mathbb{1}$.

To implement the second property we will have to move from the finite-dimensional general linear groups GL(n,R) to their stable version from definition 39.1.1. On this group one can then define an equivalence relation by saying that two matrices are equivalent if they belong to the same coset with respect to the subgroup E(R) generated by the elementary matrices 20.4.51. It can also be shown that E(R) is equal to the commutator subgroup [GL(R), GL(R)].

The determinant map is then abstractly defined as the quotient map from the following definition:

Definition 39.3.1 (K_1) . The first algebraic K-group of a ring R is defined as the Abelianization of its stable general linear group:

$$K_1(R) := GL(R)/[GL(R), GL(R)].$$
 (39.40)

The quotient map $\pi: GL(R) \to K_1(R)$ is called the **determinant map**.

⁶The choice of generator a corresponding to β_n is not relevant due to the relations $b^2 = ab = 0$ obtained by dimensional arguments.

⁷The case S^0 can be proven in a different way.

To obtain lower K-groups we will define a "suspension functor":

Definition 39.3.2 (Suspension). Let R be a ring. By Mat(R) we now denote the infinite matrix ring over R, i.e. the set of matrices with a finite number of nonzero entries in each row and column. This ring contains an ideal $Mat_{fin}(R)$ generated by all matrices that are zero outside a block of finite size. The suspension of R is then defined as follows:

$$\Sigma R := \operatorname{Mat}(R)/\operatorname{Mat}_{fin}(R). \tag{39.41}$$

Definition 39.3.3 (Lower K-groups). For all integers $n \geq 1$ one defines the K-groups as follows:

$$H_n(R) := K_{1-n}(\Sigma^n R).$$
 (39.42)

Example 39.3.4 (K_0). It can be shown that $K_0(R)$ corresponds to the Grothendieck group associated to the monoid of finitely-generated projective R-modules. The relation to its topological counterpart is given by the Serre-Swan theorem 32.2.6.

Chapter 40

Synthetic Differential Geometry 4

40.1 Neighbourhoods

Definition 40.1.1 (Neighbourhood relation). A reflexive and symmetric relation \sim with the additional property that the morphisms in the category under consideration preserve this relationship.

Example 40.1.2 (Monad). Let M be a set. Given a neighbourhood relation \sim on M, the (first order) monad around $x \in M$ is defined as

$$\underline{\mathfrak{M}}(x) := \{ y \in M : y \sim x \}. \tag{40.1}$$

Definition 40.1.3 (Infinitesimal simplex). An infinitesimal k-simplex with respect to a neighbour relation \sim is a collection of k+1 points $\{x_i\}_{i\leq k}$ such that $x_i\sim x_j$ for every $i,j\leq k$.

Definition 40.1.4 (Geometric distribution). Let M be a set equipped with a neighbourhood relation \sim . A (geometric) distribution on M is a reflexive symmetric refinement \approx of \sim . A distribution is said to be **involutive** if

$$(x \approx y) \land (y \approx z) \land (x \sim z) \implies x \approx z$$
 (40.2)

for all $x, y, z \in M$.

Definition 40.1.5 (Integral subset). Let M be a set equipped with a neighbourhood relation \sim and an associated distribution \approx . A subset $N \subseteq M$ is said to be integral with respect to \approx if \approx and \sim coincide on N.

Theorem 40.1.6 (Frobenius' theorem). An involutive distribution admits maximal connected integral subsets, these are called **leaves**.

40.2 Affine connections

Definition 40.2.1 (Affine connection). An affine connection is a map $\lambda(x,y,z)$ which for every three points $x,y,z\in M$ such that $y\sim x$ and $z\sim x$ gives a point $w\in M$ such that $w\sim z$ and $w\sim y$. Graphically this is given by a completion of diagram 40.1a to diagram 40.1b.

Remark. By looking at these diagrams the concept of parallel transport can be made a lot more intuitive than in classic differential geometry, e.g. diagram 40.1b shows the parallel transport of the point z along xy.

(b) Connection in synthetic theories.

Definition 40.2.2 (Symmetric connection). An affine connection λ is said to be symmetric or torsion-free if $\lambda(x, y, z) = \lambda(x, z, y)$.

Definition 40.2.3 (Flat connection). An affine connection λ is said to be flat or **curvature-free** if parallel transporting a point around an infinitesimal 2-simplex gives that same point again.

Definition 40.2.4 (Curvature). Let λ be an affine connection on M. The curvature of λ is the map \mathcal{R} which assigns to every infinitesimal 2-simplex $\{x_0, x_1, x_2\}$ the following automorphism:

$$\underline{\mathfrak{M}}(x_0) \to \underline{\mathfrak{M}}(x_0) : z \mapsto \text{result of parallel transporting z around } \{x_0, x_1, x_2\}.$$

Definition 40.2.5 (Geodesic). A subset $S \subseteq M$ stable under the affine connection λ .

40.3 Euclidean geometry

40.3.1 Infinitesimal elements

Definition 40.3.1 (Infinitesimal line). Let R be the line. By picking two distinct points, labelled 0 and 1, we can turn the real line into a commutative ring¹ $(R, +, \cdot)$. The infinitesimal line is then defined as the following set:

$$\Delta := \{ x \in R : x^2 = 0 \}. \tag{40.3}$$

A neighbourhood relation on R is induced by setting $\mathfrak{M}(0) = \Delta$.

Remark 40.3.2. If we would follow the Euclidean doctrine, this set would be $\{0\}$. However, by not requiring R to be a field, we obtain a larger set.

Axiom 40.1 (Kock-Lawvere). For every map $f: \Delta \to R$ there exists a unique element $b \in R$, called the **slope** of f, such that

$$f(d) = f(0) + d \cdot b \tag{40.4}$$

for all $d \in \Delta$.

Corollary 40.3.3. The map $\alpha: R \times R \to R^{\Delta}: (a,b) \mapsto (f:d \mapsto a+d \cdot b)$ is invertible and hence an isomorphism².

Corollary 40.3.4. Let $a, b \in R$. If $d \cdot a = d \cdot b$ for all $d \in \Delta$, then a = b.

¹In fact an algebra over the rationals \mathbb{Q} .

²If one equips the set $R \times R$ with the multiplication rule $(a,b) \cdot (a',b') = (a \cdot a', a \cdot b' + a' \cdot b)$, this becomes an R-algebra isomorphism.

Notation 40.3.5. Analogous to the infinitesimal line we define the subsets \mathbb{D}^k in the following way:

$$\mathbb{D}^k := \{ x \in R : x^{k+1} = 0 \}. \tag{40.5}$$

With this notation we also have $\Delta \equiv \mathbb{D}^1$.

40.3.2 Calculus

Formula 40.3.6 (Taylor expansion). From axiom 40.1 we derive the following exact Taylor expansion:

$$f(x+d) = f(x) + d \cdot f'(x)$$
(40.6)

where f'(x) can be interpreted as the derivative of f at the point $x \in R$.

Remark. If f also depends on additional parameters in R, then we can define the partial derivatives in a similar fashion.

Property 40.3.7. Using axiom 40.1 it can be easily proven that the derivative is linear and satisfies Leibniz's rule.

Using the sets \mathbb{D}^k we can derive higher-order expansions. First we generalize axiom 40.1:

Axiom 40.2. For every $g: \mathbb{D}^k \to R$ there exist unique elements $\{b_1, \dots, b_k\}$ in R such that

$$f(d) = f(0) + \sum_{j} d^{j} \cdot b_{j}$$
 (40.7)

for all $d \in \mathbb{D}^k$.

Corollary 40.3.8. Let $f: R \to R$ and $d \in D_k$.

$$f(x+d) = f(x) + d \cdot f'(x) + \dots + \frac{d^k}{k!} \cdot f^{(k)}(x)$$
(40.8)

Chapter 41

Higher-dimensional Geometry 4

In this chapter we generalize certain constructions and theorems introduced in the previous chapters to the setting of higher categories. As such it can been as an analogue to Chapter 27 for (differential) geometry.

The main references are [65,66]. For a refresher on (higher) category theory see chapter 4. The section on smooth spaces is inspired by [61]. Section 27.7.2 gives a different approach to the higher-dimensional analogues of Lie algebras.

?? CITE BAEZ, SCHREIBER, BARTELS, ... ??

41.1 Noncommutative geometry

Definition 41.1.1 (Quantum metric). Consider an FODC (A, Γ) as in definition 26.4.1. A generalized inner-product is a bimodule morphism $\langle \cdot | \cdot \rangle : \Gamma \otimes \Gamma \to A$. A (generalized) metric with respect to an inner product $\langle \cdot | \cdot \rangle$ is an element $g \in \Gamma \otimes \Gamma$ such that

$$\langle \omega | \cdot \rangle \otimes \mathbb{1}(q) = \omega = \mathbb{1} \otimes \langle \cdot | \omega \rangle (q)$$
 (41.1)

for all $\omega \in \Gamma$. This condition represents the invertibility of the metric.

41.2 Smooth spaces

In this section we consider some generalizations of spaces that are better behaved when considering their properties as a whole. Before moving to the smooth setting, we will first give a bit of history starting in the ordinary topological setting.

The first problem in the study of the global properties of spaces arose in algebraic topology. When consider mapping spaces we sometimes like to use the currying operation

$$C(X \times Y, Z) \to C(X, C(Y, Z)).$$

However, in general, this is not a homeomorphism, i.e. currying does not define an adjunction and therefore **Top** is not Cartesian closed 4.6.10. This problem was treated by *Steenrod* and others, and the solution was simply to restrict to a smaller class of better behaved spaces: the compactly generated Hausdorff spaces.¹

Whilst studying varieties in algebraic geometry people experienced similar problems. For this reason *Grothendieck* invented schemes (see Chapter 12 and Section 12.3 in particular). The

¹This is in general not a problem since all interesting spaces, such as CW complexes, belong to this class.

main takeaway of this approach was that it is often better to work with a well-behaved category containing some "nasty" objects, than to work with a "nasty" category containing only nice objects.

The category **Diff** of finite-dimensional smooth manifolds suffers the same problems, namely the space of smooth functions $C^{\infty}(X,Y)$ is in general some kind of infinite-dimensional manifold. It becomes even worse if we consider mapping spaces between those. *Kriegl* and *Michor* have introduced a framework in which we can work safely, but the main problem with their solution is that not all interesting spaces are included. Certain other operations such as quotients and (co)limits are also not guaranteed to stay within that category.

In the rest of this section we study one type of generalization that leads to a Cartesian closed category that also admits all (co)limits:

41.2.1 Concrete sites

Definition 41.2.1 (Diffeological space). Let X be a set. A diffeology \mathcal{D} on X is defined as a collection of functions $f: U \subseteq \mathbb{R}^n \to X$, called **plots**, satisfying the following conditions (where U, V and W are open sets):

- 1. If f is constant, then $f \in \mathcal{D}$. Equivalently, every function $f: \mathbb{R}^0 \to X$ is a plot.
- 2. If $\{U_i\}_{i\in I}$ is an open cover of U and if $f|_{U_i}\in\mathcal{D}$ for all $i\in I$, then $f\in\mathcal{D}$.
- 3. If $f \in \mathcal{D}$ and $g: W \subseteq \mathbb{R}^m \to \text{dom}(f)$ is smooth, then $f \circ g \in \mathcal{D}$.

The set X can be turned into a topological space by equipping it with the \mathcal{D} -topology, i.e. the final topology with respect to \mathcal{D} .

Remark 41.2.2. The domain of different plots can be subsets of different Euclidean spaces \mathbb{R}^m and \mathbb{R}^n .

Definition 41.2.3 (Smooth map). Let (X, \mathcal{D}) and (Y, \mathcal{D}') be diffeological spaces. A map $g: X \to Y$ is said to be smooth if for every $f \in \mathcal{D}$ the composition $g \circ f \in \mathcal{D}'$.

The diffeological spaces together with their differentiable morphisms form a category **DiffSp**.

Definition 41.2.4 (Chen space). If we replace the open sets U in the definition of a diffeological space by convex sets, we obtain a notion of smooth space due to Chen.

Alternative Definition 41.2.5 (Manifold). Let M be a diffeological space. M is called an n-manifold if it is locally diffeomorphic to \mathbb{R}^n . A map between manifolds is smooth in the diffeological sense if and only if it smooth in the sense of Definition 29.1.10.

There exist two trivial smooth structures:

Example 41.2.6 (Discrete structure). The smooth structure defined by taking the plots to be the constant functions.

Example 41.2.7 (Indiscrete structure). The smooth structure obtained by taking all the functions to be plots.

Property 41.2.8. There exists an adjunction

$$\mathbf{Top} \xrightarrow{diff}^{top} \mathbf{C}^{\infty}. \tag{41.2}$$

The functor diff endows a topological space X with the smooth structure for which every continuous map $U \to X$ is a plot. The adjoint functor top sends a smooth space to the topological space equipped with the finest topology for which all plots become continuous maps.

Definition 41.2.9 (Smooth set). By omitting the reference to an underlying set in the definition of smooth spaces above, we can obtain a more general definition. This way we define the category **SmoothSet** as the sheaf category on the site of Cartesian spaces **Sh(CartSp_{diff})**. The topology on this site is generated by the coverage of differentiably good covers 29.1.14 (in fact this topology coincides with the usual one consisting of open covers). Diffeological spaces can then be recovered by passing to the full subcategory on *concrete sheafs*.

We will sometimes denote the category of smooth spaces/sets by \mathbb{C}^{∞} .

?? ADD INFORMATION ON CONCRETE SHEAFS ??

Example 41.2.10 (Differential forms). Consider the k^{th} de Rham functor Ω^k on the category **Diff**. This functor assigns to every smooth manifold its space of differential k-forms. Local forms can be glued together if they agree on intersections and hence they satisfy the sheaf condition. This shows that Ω^k is a smooth space, albeit one that is far from an ordinary smooth manifold.

We can go even further. Consider the subfunctor Ω_{cl}^2 that assigns closed two-forms to a smooth manifold. This also defines a smooth space and hence we can consider the slice category $\mathbf{C}^{\infty}/\Omega_{cl}^2$. It is not hard to show that the category \mathbf{SpMfd} of symplectic manifolds admits an embedding into this slice category.

Definition 41.2.11 (Smooth algebra). For any smooth manifold M we have that

$$C^{\infty}(M) \equiv C^{\infty}(M, \mathbb{R}) = \operatorname{Hom}_{\mathbf{Diff}}(M, \mathbb{R}).$$

Since hom-functors are (finite) product-preserving, we see that the multiplication $C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$ is induced by the multiplication on \mathbb{R} :

$$C^{\infty}(M, \mathbb{R} \times \mathbb{R}) \cong C^{\infty}(M) \times C^{\infty}(M).$$

Furthermore, we also know that the hom-functor is covariant in the second argument and hence we obtain a copresheaf on the category $\mathbf{CartSp_{diff}}$ of Euclidean (Cartesian) spaces and smooth morphisms. Generalizing this situation we define smooth algebras as finite product-preserving copresheaves on $\mathbf{CartSp_{diff}}$. This (functor) category is denoted by $\mathbf{C}^{\infty}\mathbf{Alg}$.

Given a smooth algebra R, we define its **underlying algebra** U(R) as the set $R(\mathbb{R})$ equipped with the canonically induced ring operations.

Definition 41.2.12 (Finitely generated smooth algebra). Since ordinary R-algebras are finitely generated if and only if they are of the form $R[x_1, \ldots, x_k]/J$ for some integer $k \in \mathbb{N}$ and some ideal J, we say that a smooth algebra is finitely generated if it is of the form $C^{\infty}(\mathbb{R}^n)/J$ for some $n \in \mathbb{N}$ and some ideal J in the ordinary ring underlying the smooth algebra.

Definition 41.2.13 (Smooth locus). Let $\mathbf{C}^{\infty}\mathbf{Alg^{fin}}$ denote the category of finitely generated smooth algebras. We define the category of **smooth loci** as $(\mathbf{C}^{\infty}\mathbf{Alg^{fin}})^{op}$. The smooth locus corresponding to a smooth algebra R is often denoted by ℓR .

41.2.2 Supergeometry

In this section we generalize the definition of smooth spaces (and sets) to the odd (fermionic) sector, i.e. we will define "super smooth sets". We will again use the ideas from Chapter 12 introduced by *Grothendieck*, i.e. instead of starting from the geometric side we will start from an algebraic object.

Definition 41.2.14 (Infinitesimally thickened space). Let us first consider a point \mathbb{R}^0 . Its infinitesimal thickening should be a space such that every function that vanishes at the origin is actually nilpotent. The straightforward definition is the following one:

$$\mathbb{D} := \operatorname{Spec}(A), \tag{41.3}$$

where $A := \mathbb{R} \oplus V$ with V a finite-dimensional nilpotent ideal. A Euclidean space can be infinitesimally thickened by taking the product with \mathbb{D} (or at the algebraic level by taking the tensor product with A). A morphism of such spaces is defined by an R-algebra homomorphism between their assciated algebras. These form the category **FormalCartSp**_{diff}.

Example 41.2.15 (First-order neighbourhood). By taking $A = \mathbb{R}[\varepsilon]/\varepsilon^2$ we exactly obtain the first-order infinitesimal neighbourhood of Definition 40.3.1. The morphism dual to the mapping implied by the Kock-Lawvere axiom 40.1 gives an inclusion map $\mathbb{D}^1 \hookrightarrow \mathbb{R}^1$. (This example can easily be generalized to k^{th} -order neighbourhoods.)

Property 41.2.16 (Morphisms). First, consider the morphisms from a Euclidean space into an infinitesimal neighbourhood \mathbb{D}^k . Since such morphisms are dual to algebra homomorphisms, we should look at homomorphisms of the form $\mathbb{R}[\varepsilon]/\varepsilon^{k+1} \to C^{\infty}(\mathbb{R}^n)$. However, being an algebra homomorphism implies that f(1) = 1 and that nilpotents are mapped to nilpotents. The algebra of smooth functions on a Euclidean space does not contain nilpotents and hence their exists a unique function into an infinitesimal neighbourhood (the one that factorizes through the one-point set).

For morphisms out of (first-order) infinitesimal neighbourhoods we obtain the property known from synthetic geometry that morphisms of the form $\mathbb{R}^n \times \mathbb{D}^1 \to \mathbb{R}^n$ are in bijection with vector fields on \mathbb{R}^n .

We are now ready to generalize these statement to arbitrary spaces:

Definition 41.2.17 (Formal smooth set). A sheaf on the site of infinitesimally thickened Euclidean spaces (covers are of the form $\{U_i \times \operatorname{Spec}(A) \mid U_i \hookrightarrow \mathbb{R}^n\}$). The category of formal smooth sets, equivalently the sheaf topos on **FormalCartSp**_{diff}, is also called the **Cahiers topos**. The sets in the image of a formal smooth set X are called the sets of plots of X and can be interpreted as sets of functions into X (in analogy with the definition of smooth spaces).

Definition 41.2.18 (Reduction). Given an infinitesimally thickened space $\mathbb{R}^n \times \mathbb{D}$, we define its reduction \mathfrak{R} to be \mathbb{R}^n . Every reduction induces a canonical morphism $\mathbb{R}^n \hookrightarrow \mathbb{R}^n \times \mathbb{D}$. Plots get can be reduced by "precomposing" with a reduction morphism.

The **infinitesimal neighbourhood** (to arbitrary order) of a formal smooth subset $Y \hookrightarrow X$ is defined by taking its plots to be those plots of X for which the reductions factorize through plots of Y.

Definition 41.2.19 (Shape modality). The infinitesimal shape or **de Rham shape** $\mathfrak{J}X$ of a formal smooth set X is the formal smooth set obtained by reducing the plots of X:

$$\mathfrak{J}X(U) := X(\mathfrak{R}(U)). \tag{41.4}$$

For its incarnation as a modal operator, see Section 6.5.

Property 41.2.20 (Mapping spaces). Consider an infinitesimally thickened Euclidean space X and a formal smooth set Y. The "mapping space" [X,Y] is defined as follows:

$$[X,Y](U) := Y(U \times X). \tag{41.5}$$

If the plots of Y are interpreted as functions into Y, the above definition is the usual one of an internal hom.

In analogy to Definition 7.2.11 we can also define local diffeomorphisms between formal smooth sets:

Definition 41.2.21 (Local diffeomorphism²). A morphism of formal smooth sets $f: X \to Y$ such that the thickened plots of X can be identified with those of Y whose reduction comes from a Euclidean plot of X. More elegantly (or abstractly) this means that the naturality square of the shape modality (interpreted as a monad) forms a pullback square:

$$\begin{array}{ccc}
X & \xrightarrow{\eta_X} & \mathfrak{J}X \\
f & & \text{pb} & & \mathfrak{J}f \\
\downarrow & & & & & \downarrow \\
Y & \xrightarrow{\eta_Y} & \mathfrak{J}Y
\end{array}$$
(41.6)

Alternative Definition 41.2.22 (Smooth manifold). A diffeological space (in its incarnation as a smooth formal set) equipped with a family of local diffeomorphisms from Euclidean spaces (also regarded as formal smooth sets) such that every point of the space lies in the image of at least one such morphism and such that the final topology induced by the plots of the smooth set is paracompact Hausdorff.

Although we started this section by claiming that we would generalize spaces to the fermionic setting, we have only constructed bosonic spaces. However, everything introduced in this section was formulated in such a way that supergeometry can be included through a minor modification:

Definition 41.2.23 (Superpoint). A space of the form $\operatorname{Spec}(A)$ where $A := \mathbb{R} \oplus V$ with V a finite-dimensional superalgebra 27.1.6 that forms a nilpotent ideal of A. When we take A to be the Grassmann algebra 21.6.19 on n generators we obtain the odd space $\mathbb{R}^{0|n}$. The **super Euclidean space** $\mathbb{R}^{m|n}$ is obtained as the product of an ordinary Euclidean space \mathbb{R}^m and the superpoint $\mathbb{R}^{0|n}$, i.e. its algebra of smooth functions is $C^{\infty}(\mathbb{R}^m \times \Pi\mathbb{R}^m)$.

Definition 41.2.24 (Super smooth set). A sheaf on the category of super Euclidean spaces **SuperCartSp**diff.

41.2.3 Graded manifolds

In this section some of the notions from Part VI will be generalized to the supermanifolds and even general graded manifolds. The general notation (x^i) will be used for the collection of both even and odd coordinates.

Example 41.2.25 (Supermanifold). A super smooth set in the form of a locally ringed space (M, \mathcal{A}) that is locally isomorphic to a super Euclidean space, i.e. \mathcal{A} is locally given by $C^{\infty}(M) \otimes \Lambda^{\bullet} \mathbb{R}^n$ for some $n \in \mathbb{N}$. More generally, a **graded manifold** is a locally ringed space that is locally isomorphic to $(\mathbb{R}^m, C^{\infty}(\mathbb{R}^m) \otimes \operatorname{Sym}(V^*))$ for a graded vector space V. (A supermanifold can be recovered by taking $V = \Pi \mathbb{R}^n$.)

Theorem 41.2.26 (Batchelor). Let (M, A) be an \mathbb{N} -graded manifold. There exists a vector bundle $E \to M$ such that A is isomorphic to the structure sheaf of $\Gamma(\Lambda^{\bullet}E)$, i.e. A is locally given by $Sym(\Lambda^{\bullet}E^{*})$. If (M, A) is a supermanifold, there exists a vector bundle $E \to N$ such that A is locally given by $\Lambda^{\bullet}E^{*}$.

Definition 41.2.27 (Vector fields). A graded vector field of degree k is a degree-k derivation on $C^{\infty}(M)$. The integer k is called the **degree**.

²Also called a (formally) étale morphism.

Definition 41.2.28 (Cohomological vector field). A graded vector field X of degree 1 that satisfies [X, X] = 0. Every degree-1 graded vector field satisfies

$$[X, X] = 2X \circ X,\tag{41.7}$$

which implies that every cohomological vector field defines a coboundary operator on $C^{\infty}(M)$.

The de Rham complex $\Omega^{\bullet}(M)$ is given by $(\Pi TM, Q)$, where Q is the cohomological vector field locally given by

$$Q := \sum_{i=1}^{n} dx^{i} \partial_{i}. \tag{41.8}$$

Note that the dx^i are here regarded as coordinate functions on ΠTM . The **degree** of a homogeneous element of $\Omega^{\bullet}(M)$ is defined as the difference of its graded degree and its form degree.

Definition 41.2.29 (Poisson manifold). Consider a degree-k symplectic form ω . This form induces a Poisson structure on the algebra $C^{\infty}(M)$ as follows:

$$\{f,g\} := f \stackrel{\leftarrow}{\partial_i} (\omega^{-1})^{ij} \stackrel{\rightarrow}{\partial_j} g.$$
 (41.9)

It is not hard to check that this operation is graded-commutative. As in Section 35.2, a Hamiltonian vector field can be defined for any smooth function $H \in C^{\infty}(M)$:

$$\omega(X_H, \cdot) = -dH(\cdot). \tag{41.10}$$

Property 41.2.30 (Euler vector field). Consider the graded vector field

$$E := \sum_{i=1}^{n} \deg(x^i) x^i \partial_i. \tag{41.11}$$

The Lie derivative \mathcal{L}_E , defined through the Cartan formula

$$\mathcal{L}_E := \iota_E d + (-1)^{\deg(E)} d\iota_E, \tag{41.12}$$

acts on homogeneous forms by multiplication by their degree.

Property 41.2.31. Every closed differential form of degree k > 0 is exact. More generally it holds that the de Rham cohomology of a graded manifold is isomorphic to the de Rham cohomology of its body.

Corollary 41.2.32. Consider a Hamiltonian cohomological vector field Q. There exists a Hamiltonian function S such that

$$Qf = \{S, f\} \tag{41.13}$$

for all $f \in C^{\infty}(M)$. If the symplectic form has degree k, the function S can be chosen to be of degree k+1 and, accordingly, $\{S,S\}$ will be of degree k+2. Now, the identity [Q,Q]=0 also implies that $\{S,S\}$ is a constant and since all constants are of degree 0, it follows that

$$\{S, S\} = 0 \tag{41.14}$$

whenever $k \neq -2$. This equation is often called the **classical master equation**.

If ω if of degree 1, it was shown by *Schwarz* that (M,ω) is symplectomorphic to ΠTM , such that the Poisson bracket is mapped to the Schouten-Nijenhuis bracket and the Hamiltonian S is mapped to a Poisson bivector field exactly if it satisfies the master equation.

Definition 41.2.33 (BV integral). Consider a symplectic m|m-dimensional supermanifold (M,ω) where ω is odd. Let ψ , the **gauge fixing fermion**, be an odd function of half of the coordinates (denote these by q). This function determines a projectable Lagrangian submanifold $L_{\psi} \subset \Pi T^* \mathbb{R}^m$ by the Maslow-Hörmander theorem 35.3.6. The Batalin-Vilkovisky integral of a function $f \in C^{\infty}(M)$ with respect to ψ is defined as

$$\int_{L_{\psi}} f := \int f \bigg|_{p_i = \partial_{a^i} \psi} d^m q. \tag{41.15}$$

Define the odd (BV) Laplacian as

$$\Delta_{\text{BV}} := \sum_{i=1}^{m} (-1)^{\deg(q^i)} \frac{\partial^2}{\partial q^i \partial p_i}.$$
 (41.16)

This operator satisfies $\Delta_{\rm BV} f = -\frac{1}{2} {\rm div} X_f$ for all $f \in C^\infty(M)$, where div denotes the divergence 34.1.19 with respect to the standard Berezinian volume form. The BV integral and BV Laplacian interact in the following way:

- 1. If $f = \Delta_{\text{BV}}g$, then $\int_{L_{\psi}} f = 0$ for all gauge fixing fermions ψ (whenever the BV integral is defined).
- 2. If $\Delta_{\mathrm{BV}} f = 0$, $\frac{d}{dt} \int_{L_{\psi_t}} f = 0$, where $\{\psi_t\}_{t \in \mathbb{R}}$ is a continuous family of gauge fixing fermions (whenever the BV integral is defined).

Formula 41.2.34 (Quantum master equation). Consider the case of a function $f := e^{i/\hbar S}$ where S is even. Because

$$\Delta f = \frac{i}{\hbar} \Delta S e^{i/\hbar S} + \left(\frac{i}{\hbar}\right)^2 \frac{1}{2} \{S, S\} e^{i/\hbar S}, \tag{41.17}$$

the condition that f is harmonic is equivalent to S satisfying

$$\frac{1}{2}\{S,S\} - i\hbar\Delta S = 0. \tag{41.18}$$

This equation is called the quantum master equation. Expanding S as a power series in \hbar shows that the constant term satisfies the classical master equation 41.14.

41.3 Higher geometry

In this section some notions of groups, Lie groups and groupoids (Sections 3.2, 30.1 and 4.10 respectively) are extended the setting of higher category theory.

41.3.1 Groups

Definition 41.3.1 (Lie groupoid³). A groupoid internal to Diff.

Note that Definition 4.6.2 requires the existence of pullbacks (of the source and target morphisms). In the category **Diff** this is equivalent to assuming that the source and target morphisms are (surjective) submersions.

Remark 41.3.2. In the Ehresmannian approach one gives the manifold of composable morphisms $D_1 \times_{D_0} D_1$ as part of the data. Hence we do not have to assume anything about the source and target morphisms.

³In a similar way we could define topological groupoids, étalé groupoids, ...

Definition 41.3.3 (Lie algebroid). A vector bundle $\pi: E \to M$ together with a vector bundle morphism $\rho: E \to TM$, called the **anchor map**, and a Lie bracket on $\Gamma(E)$ such that the following Leibniz-type property is satisfied:

$$[X, fY] = f[X, Y] + \rho(X)(f)Y.$$
 (41.19)

This property also implies that ρ preserves the Lie bracket:

$$\rho([X,Y]) = [\rho(X), \rho(Y)]. \tag{41.20}$$

Example 41.3.4 (Tangent Lie algebroid). The tangent bundle over a smooth manifold is a Lie algebroid with $\rho \equiv \mathrm{id}$.

Both the fundamental groupoid $\Pi_1(M)$ (see definition 9.1.16) and the pair groupoid 4 $M \times M$ integrate the tangent Lie algebroid.

One can generalize the dual construction of L_{∞} -algebras 27.7.14 even further:

Definition 41.3.5 (L_{∞} -algebroid). Consider the construction of the Chevalley-Eilenberg algebra for a L_{∞} -algebra. By replacing the base field by a smooth algebra $C^{\infty}(M)$ for some smooth manifold M and the (graded) vector space V by a module of sections $\Gamma(E)$ of a (graded) vector bundle $E \to M$, one obtains the notion of a L_{∞} -algebroid.

Property 41.3.6. L_{∞} -algebras can be recovered by considering the special case $M = \{*\}$.

Example 41.3.7 (de Rham complex). Consider the tangent algebroid of a smooth manifold M. The associated Chevalley-Eilenberg complex

Definition 41.3.8 (Weak 2-group). Let $(C, \otimes, 1)$ be a monoidal category. This category is called a weak 2-group, **categorical group** or **gr-category** if it satisfies the following conditions:

- All morphisms are invertible.
- Every object is weakly invertible with respect to the monoidal structure.

By property 4.9.8 we can equivalently define a weak 2-group as a 2-category with a single object, weakly invertible 1-morphisms and invertible 2-morphisms.

Definition 41.3.9 (2-groupoid). A 2-groupoid is a 2-category in which all 1-morphisms are invertible and every 2-morphisms has a "vertical" inverse. (The "horizontal" inverse can be constructed from the other ones.)

Definition 41.3.10 (∞ -groupoid). A ∞ -category in which all morphisms are invertible. This is equivalent to a (∞ , 0)-category in the language of (n, r)-categories.

Definition 41.3.11 (Strict 2-group). A (strict) 2-group is defined as a (strict) 2-groupoid with only one object. From this it follows that the set of 1-morphisms forms a group and so does the set of 2-morphisms under horizontal composition. However, the 2-morphisms do not form a group under vertical composition⁵.

This definition is equivalent to the following internal version: a (strict) 2-group is a group object in **Cat** or an internal category in **Grp**. If we replace **Grp** by **Lie** we obtain the notion of a (strict) Lie 2-group.

⁴The objects are the elements of M and between every two objects there exists exactly one morphism, i.e. $hom(\mathbf{M} \times \mathbf{M}) \equiv M \times M$.

⁵Because the sources/targets may not match up.

Property 41.3.12 (Lie crossed modules). The 2-category of (strict) 2-groups is biequivalent to the 2-category of (Lie) crossed modules 3.3.16. Given a 2-group \mathcal{G} , we obtain a crossed module as follows:

- $G := ob(\mathcal{G}),$
- $H := \{ h \in \text{hom}(\mathcal{G}) : \mathfrak{s}(f) = e \},$
- $t(h) := \mathfrak{t}(h)$, and
- $\bullet \ \alpha(g)h := \mathbb{1}_g h \mathbb{1}_g^{-1}$

where $\mathfrak{s},\mathfrak{t}$ are the source and target morphisms in \mathcal{G} .

To every Lie crossed module we can also assign a **differential crossed module**. This consists of the following data:

- 1. two Lie algebras $\mathfrak{g}, \mathfrak{h}$,
- 2. a Lie algebra morphism $\partial:\mathfrak{h}\to\mathfrak{g}$, and
- 3. a Lie algebra morphism $\rho: \mathfrak{g} \to \mathrm{Der}(\mathfrak{h})$.

The equivariance and Peiffer conditions induce similar conditions for the above data:

- $\partial(\rho(h)g) = [h, \partial g]$, and
- $\rho(\partial h)(h') = [h, h']$

where $g \in \mathfrak{g}$ and $h, h' \in \mathfrak{h}$. The biequivalence of crossed modules and strict 2-groups induces a biequivalence of differential crossed modules and strict Lie 2-algebras.

Example 41.3.13 (Automorphism 2-group). Given a Lie group H, we can construct a crossed module with $G := \operatorname{Aut}(H)$, t assigning inner automorphisms (conjugations) and α the obvious map. The associated 2-group $\operatorname{AUT}(H)$ gives a 2-group of symmetries of H, i.e. it is the automorphism 2-group of H in the 2-category Lie .

Definition 41.3.14 (Exponentiable groups). Smooth groups for which every smooth function $f:[0,1] \to \mathfrak{g}$ corresponds to a smooth function $g:[0,1] \to G$ such that

$$\frac{d}{dt}g(t) = f(t)g(t) \tag{41.21}$$

with g(0) = e, are said to be exponentiable. A smooth 2-group is said to be exponentiable if both of its component groups are exponentiable. Since all Lie groups are exponentiable, all Lie 2-groups are also exponentiable

Remark 41.3.15 (Lie's third theorem). In ordinary Lie theory Lie's third theorem states that every (finite-dimensional) Lie algebra can be obtained as the infinitesimal version of a Lie group. However, this does not carry over to the 2-group setting. Consider for example the Lie 2-algebras \mathfrak{g}_{λ} constructed in Example 27.7.12. As shown in [63] only \mathfrak{g}_0 gives rise to a Lie 2-group (or even a topological 2-group).

41.3.2 Spaces

Definition 41.3.16 (Smooth 2-space). To overcome the problem encountered in Definition 41.3.1 above, we should pass from **Diff** to \mathbb{C}^{∞} . It can be shown that this category admits all pullbacks, quotients, path spaces, etc. As such we define a smooth 2-space as a category internal to \mathbb{C}^{∞} .

In the remainder of this chapter we will assume all spaces to be smooth in the general sense. The notions of 2-groups as introduced in the previous section are easily generalized to this wider setting.

Definition 41.3.17 (2-group action). Consider a smooth 2-group \mathcal{G} and a smooth 2-space E. A strict action of \mathcal{G} on E is a smooth homomorphism $\mathcal{G} \to \mathrm{AUT}(E)$, i.e. a smooth map preserving products and inverses.

Definition 41.3.18 (Thin homotopy). Let M be a smooth manifold. A smooth homotopy $H:[0,1]^2 \to M$ is said to be thin if

$$H(s,t) = F(s) \tag{41.22}$$

for some smooth F near t = 0, 1 and if it pulls back⁶ every two-form to 0:

$$\forall \omega \in \Omega^2(M) : H^*\omega = 0. \tag{41.23}$$

Definition 41.3.19 (Lazy path⁷). Let M be a smooth manifold. A path $f:[0,1] \to M$ is said to be lazy if it is locally constant on some neighbourhoods of 0 and 1.

Definition 41.3.20 (Path groupoid). Let M be a smooth space. The path groupoid $\mathcal{P}_1(M)$ is the groupoid (in fact a smooth groupoid and hence a smooth 2-group) which has the points of M as objects and the thin homotopy classes of lazy paths with fixed endpoints on M as morphisms.⁸

In fact by suitably generalizing the smoothness properties of the homotopies and paths, we can "easily" extend this definition to surface, volumes and so on. This results in the n-path n-groupoid $\mathcal{P}_n(M)$.

Remark. The restriction to lazy paths is required to ensure the smoothness of composite paths. The quotient by thin homotopies is required to ensure the validity of the associativity and invertibility properties.

?? COMPLETE ??

41.4 2-Bundles

A first step is the generalization of the categorical definition of a bundle 31.1.1, i.e. as an object of a slice category:

Definition 41.4.1 (2-bundle). A smooth 2-bundle is a triple (E, B, π) where both E and B are smooth 2-spaces and π is a smooth map.

Definition 41.4.2 (Locally trivial 2-bundle). For a smooth 2-space we define a locally trivial 2-bundle with typical fibre F as a 2-bundle (E, B, π) with an open cover $\{U_i\}_{i \in I}$ of B such that for every $i \in I$ there exists an equivalence $\varphi_i : E|_{U_i} \cong U_i \times F$ that makes the diagram below commute.

We should note that the existence of such a cover is not a trivial matter. The general definition becomes quite involved when allowing for arbitrary smooth 2-spaces B. For convenience we will always assume that B is an ordinary smooth space regarded as a 2-space with only trivial morphisms.

⁶See section 32.4.

⁷Also called a path with **sitting instants**.

⁸The laziness combined with the first condition of thin homotopies implies that the morphisms of the groupoid are (locally) constant near the full boundary of their domain.

As was the case in Definition 31.1.5, we can also characterize locally trivial 2-bundles by their transition data. Since the trivilizations φ_i are equivalences, they admit an inverse (up to an invertible 2-map) and we can thus construct transition maps $\varphi_i \varphi_j^{-1} = U_{ij} \times F \cong U_{ij} \times F$ as usual. By the commutative diagram above, these transition maps only act on the fibre F. Because $\varphi_i \varphi_j^{-1}$ is itself an (auto)equivalence, the action on F is given by a functor $g_{ij}: U_{ij} \to \operatorname{AUT}(F)$ where the 2-space $\operatorname{AUT}(F)$ is the coherent 2-group⁹ of autoequivalences of F together with invertible 2-maps between them.

The interesting (and important) part is how the cocycle conditions 31.1 and 31.1.4 for the maps g_{ij} are modified. Since the equivalences g_{ij} are only invertible up to 2-maps, we cannot expect these conditions to hold as equations. Instead we obtain 2 higher transition maps (i.e. natural isomorphisms) $h_{ijk}: g_{ij} \circ g_{jk} \Rightarrow g_{ik}$ and $k_i: g_{ii} \Rightarrow \text{id}$. These higher data should in turn satisfy the necessary conditions coming from associativity and unitality constraints (similar to the coherence conditions in section 27.8.1).

Definition 41.4.3 (\mathcal{G} **-bundle).** A locally trivial 2-bundle with typical fibre F is said to have the 2-group \mathcal{G} as its structure (2-)group if the transition data factor through an action $\mathcal{G} \to \operatorname{AUT}(F)$. If $F = \mathcal{G}$, we call the 2-bundle a **principal** \mathcal{G} **-2-bundle**.

Remark 41.4.4 (Gerbes). If we choose the transition maps k_i to be trivial and let \mathcal{G} be respectively the trivial Lie 2-group associated to an Abelian Lie group G or the automorphism 2-group of a Lie group H, we obtain Abelian and non-Abelian gerbes. In fact it can be shown that the 2-category of principal 2-bundles is equivalent to the 2-category of gerbes for every Lie 2-group of the aforementioned type.

By categorifying Definition 33.3.36 of principal connections we can define connections for principal n-bundles:

Definition 41.4.5 (n-connection). Let M be a smooth space and let G be a Lie n-groupoid. Given a locally trivial principal n-bundle P over M we define an n-connection with n-holonomy through the following data:

1. for every coordinate chart $U_i \subset M$ a local holonomy n-functor

$$\text{hol}_i: \mathcal{P}_n(U_i) \to G;$$
 (41.24)

2. for every double intersection U_{ij} a 1-transfor (i.e. an n-natural transformation)

$$g_{ij}: \text{hol}_i \Rightarrow \text{hol}_i;$$
 (41.25)

3. for every triple intersection U_{ijk} a 2-transfor

$$f_{ijk}: g_{ij} \circ g_{jk} \Rightarrow g_{ik}; \tag{41.26}$$

⁹Instead of the strict invertibility of maps in our definition of 2-groups, we should allow them to be invertible up to 2-isomorphisms which themselves satisfy certain coherence conditions.

4. and so on...

This is equivalently given by a global *n*-functor

$$\text{hol}: \mathcal{P}_n(M) \to \mathbf{Trans}_n(P).$$
 (41.27)

?? ADD GERBES (e.g. BRYLINSKI) ??

41.5 Space and quantity

In this section we move our focus back from (differential) geometry to the general notion of what spaces and observables are. From the start we will assume that we are working in an enriched setting where \mathcal{V} is a cosmos 4.7.1. The categories \mathbf{C} of interest will be assumed to be small and \mathcal{V} -enriched.

In the previous sections we defined spaces modelled on a base space X, or more generally on a category of spaces S, as sheaf or even a concrete sheaf on a suitable site. Here we relax this notion as much as possible:

Definition 41.5.1 (Space). A (generalized) space modelled on a category **C** is a presheaf on **C**.

As before we can interpret the object X(C) as the collection of "probes" from C to X. The Yoneda lemma and embedding assure that ordinary test spaces in \mathbb{C} can be viewed as spaces modelled on \mathbb{C} and that their probes are indeed the ordinary maps in \mathbb{C} .

In a similar vein we can define observables as maps out of a space:

Definition 41.5.2 (Quantity). A (generalized¹⁰) quantity on a category C is a copresheaf on C.

Property 41.5.3 (Isbell duality). Given a space X we can look at the quantities that live on it (in ordinary geometry this would have been its algebra of functions). This defines a functor:

$$\mathcal{O}: \mathbf{Psh}(\mathbf{C}) \to \mathbf{coPsh}^{op}(\mathbf{C}): X \mapsto \mathrm{Hom}_{\mathbf{Psh}(\mathbf{C})}(X, \mathcal{Y}-).$$
 (41.28)

Similarly, given a quantity Q we can ask on which space it behaves as the algebra of functions. This also defines as functor:

Spec:
$$\operatorname{\mathbf{coPsh}}^{op}(\mathbf{C}) \to \operatorname{\mathbf{Psh}}(\mathbf{C}) : Q \mapsto \operatorname{Hom}_{\operatorname{\mathbf{coPsh}}(\mathbf{C})}(\mathcal{Y}^{op}, Q)$$
 (41.29)

where \mathcal{Y}^{op} denotes the co-Yoneda embedding $\mathbf{C} \to [\mathbf{C}, \mathcal{V}]^{op} : c \mapsto \mathbf{C}(, -)$.

The incredible result is now that $(\mathcal{O} \dashv \operatorname{Spec})$ is an adjunction (suitably called the **Isbell adjunction**). Objects that are preserved (up to isomorphism) under the associated (co)monad are said to be **Isbell self-dual**.

Example 41.5.4 (Cartesian spaces). When working over the site **CartSp** (with its usual topology) and restrict to coherent sheaves and product-preserving presheaves, the Isbell adjunction maps spaces to smooth algebras.

¹⁰It is generalized because it is "measured" on category instead of on a single object.

Part VII Probability Theory & Statistics

Chapter 42

Probability

The majority of this chapter uses the language of measure theory. For an introduction see chapter 16.

42.1 Probability

Definition 42.1.1 (Axioms of probability). The following list of axioms (introduced by Kolmogorov) states when a measure space (Ω, Σ, P) defines a space that supports probability theory:

- 1. $P(E) \ge 0$,
- 2. $P(\bigcup_{i\in I} E_i) = \sum_{i\in I} P(E_i)$ if all E_i are mutually exclusive¹, and
- 3. $P(\Omega) = 1$.

Remark 42.1.2. The second axiom is exactly the same as saying that the probability P should be a σ -additive function. Together with the first axiom and the consequence that $P(\emptyset) = 0$ this means that the probability function P is a measure.

Definition 42.1.3 (Probability space). Let (Ω, Σ, P) be a measure space. This measure space is called a probability space if P(X) = 1. Furthermore, the measure P is called a probability measure or simply probability.

Definition 42.1.4 (Random variable). Let (Ω, Σ, P) be a probability space. A function $X: \Omega \to \mathbb{R}$ is called a random variable if $\forall a \in \mathbb{R}: X^{-1}([a, +\infty[)]) = \{\omega \in \Omega: X(\omega) \geq a\} \in \Sigma$.

Definition 42.1.5 (\sigma-algebra of a random variable). Let X be a random variable defined on a probability space (Ω, Σ, P) . The following family of sets is a σ -algebra:

$$X^{-1}(\mathcal{B}) := \{ S \in \Sigma : S = X^{-1}(B \in \mathcal{B}) \}.$$
 (42.1)

Notation 42.1.6. The σ -algebra generated by the random variable X is often denoted by \mathcal{F}_X , analogous to notation 2.4.13.

Definition 42.1.7 (Sample space). Let X be a random variable. The set of all possible outcomes of X is called the sample space. The sample space is often denoted by Ω .

¹Some people require I to be finite. However, this is not necessary if we use σ -algebras (as we always do for measure spaces).

Definition 42.1.8 (Event). Let (Ω, Σ, P) be a probability space. An element S of the σ -algebra Σ is called an event.

From this definition it is clear that a single possible outcome of a measurement can be a part of multiple events. So although only one outcome can occur at the same time, multiple events can occur simultaneously.

Remark. When working with measure-theoretic probability spaces it is more convenient to use the σ -algebra 2.4.8 of events instead of the power set 2.3.1 of all events. Intuitively this seems to mean that some possible outcomes are not treated as events. However, we can make sure that the σ -algebra still contains all "useful" events by using a "nice" definition of probability spaces (see the reference chapter on measure theory).

Formula 42.1.9 (Union). Let A, B be two events. The probability that at least one of them occurs is given by the following formula:

$$P(A \cup B) = P(A) + P(B) + P(A \cap B). \tag{42.2}$$

Definition 42.1.10 (Disjoint events). Two events A and B are said to be disjoint if they cannot happen at the same time:

$$P(A \cap B) = 0. \tag{42.3}$$

Corollary 42.1.11. If A and B are disjoint, the probability that both A and B occur is just the sum of their individual probabilities.

Formula 42.1.12 (Complement). Let A be an event. The probability of A being false is denoted as $P(\overline{A})$ and is given by

$$P(\overline{A}) = 1 - P(A). \tag{42.4}$$

Corollary 42.1.13. From the previous equation and de Morgan's laws (2.16) and (2.17), one can derive the following formula:

$$P(\overline{A} \cap \overline{B}) = 1 - P(A \cup B). \tag{42.5}$$

42.2 Conditional probability

Definition 42.2.1 (Conditional probability). Let A, B be two events. The probability of A given that B is true is denoted as P(A|B):

$$P(A|B) = \frac{P(A \cap B)}{P(B)}. (42.6)$$

By interchanging A and B in previous equation and by observing that this has no effect on the quantity $P(A \cap B)$ the following important result can be deduced:

Theorem 42.2.2 (Bayes). Let A, B be two events. From the definition above it is possible to derive the following important statement:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}. (42.7)$$

Formula 42.2.3. Let $(B_n)_{n\in\mathbb{N}}$ be a sequence of pairwise disjoint events. If $\bigsqcup_{n=1}^{+\infty} B_n = \Omega$ then the total probability of a given event A can be calculated as follows:

$$P(A) = \sum_{n=1}^{+\infty} P(A|B_n)P(B_n). \tag{42.8}$$

Definition 42.2.4 (Independent events). Let A, B be two events. A and B are said to be independent if they satisfy the following relation:

$$P(A \cap B) = P(A)P(B). \tag{42.9}$$

Corollary 42.2.5. If A and B are two independent events then Bayes' theorem simplifies to

$$P(A|B) = P(A). \tag{42.10}$$

The above definition can be generalized to multiple events:

Definition 42.2.6. The events A_1, \ldots, A_n are said to be independent if for each choice of k events the probability of their intersection is equal to the product of their individual probabilities.

This definition can be stated in terms of σ -algebras:

Definition 42.2.7. The σ -algebras $\mathcal{F}_1, \ldots, \mathcal{F}_n$ defined on a probability space (Ω, \mathcal{F}, P) are said to be independent if for all choices of distinct indices i_1, \ldots, i_k and for all choices of sets $F_{i_n} \in \mathcal{F}_{i_n}$ the following equation holds:

$$P(F_{i_1} \cap \dots \cap F_{i_k}) = P(F_{i_1}) \cdots P(F_{i_k}).$$
 (42.11)

Corollary 42.2.8. Let X, Y be two random variables. X and Y are independent if the σ -algebras generated by them are independent.

42.3 Probability distribution

Definition 42.3.1 (Probability distribution). Let X be a random variable defined on a probability space (Ω, Σ, P) . The following function is a measure on the Borel σ -algebra of \mathbb{R} :

$$P_X(B) = P(X^{-1}(B)). (42.12)$$

This measure is called the probability distribution of X.

Definition 42.3.2 (Density). Let $f \geq 0$ be integrable function and recall theorem 16.2.18. The function f is called the **density** of the measure $P(E) := \int_E f dm$ (with respect to the Lebesgue measure m). Measures of this form are often called **cumulative distribution functions** and denoted by F. More generally, by the Radon-Nikodym theorem from Section 16.5, every absolutely continuous distribution function F is of the form

$$F(E) = \int_{E} f(x)dx \tag{42.13}$$

for some integrable function f.

Theorem 42.3.3 (Skorokhod's representation theorem). Let $F : \mathbb{R} \to [0,1]$ be a function that satisfies the following 3 properties:

- \bullet F(x) is nondecreasing.
- $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to +\infty} F(x) = 1$.
- F(x) is right-continuous: $\lim_{y\to^+y_0} F(y) = F(y_0)$.

There exists a random variable $X : [0,1] \to \mathbb{R}$ defined on the probability space $([0,1], \mathcal{B}, m_{[0,1]})$ such that $F = F_X$.

Theorem 42.3.4 (Theorem of the unconscious statistician). Consider a random variable X on a probability space (Ω, P) . The following equality holds for every integrable function $g \in L^1(\mathbb{R})$:

$$\int_{\Omega} g(X(\omega))dP(\omega) = \int_{\mathbb{R}} g(x)dP_X(x). \tag{42.14}$$

Remark 42.3.5. The name of this theorem stems from the fact that many scientists take this equality to be a definition of the expectation value E[g(X)]. However, this equality should be proven since the measure on the right-hand side is the one belonging to the random variable X and not g(X).

Formula 42.3.6. Consider an absolutely continuous probability function P_X defined on the product space \mathbb{R}^n . Let f_X be the density associated with P_X and let $g: \mathbb{R}^n \to \mathbb{R}$ be integrable with respect to P_X .

$$\int_{\mathbb{R}^n} g(x)dP_X(x) = \int_{\mathbb{R}^n} f_X(x)g(x)dx \tag{42.15}$$

Corollary 42.3.7. The previous formula together with equality (42.14) gives rise to

$$\int_{\Omega} g(X)dP = \int_{\mathbb{R}^n} f_X(x)g(x)dx. \tag{42.16}$$

Formula 42.3.8. Let X be random variable with density function f and let $g : \mathbb{R} \to \mathbb{R}$ be smooth and strictly monotone. The random variable g(X) has an associated density f_g given by

$$f_g(y) = f(g^{-1}(y)) \left| \frac{dg^{-1}}{dy}(y) \right|.$$
 (42.17)

Definition 42.3.9 (Convergence in distribution). A sequence $(X_n)_{n\in\mathbb{N}}$ of random variables is said to converge in distribution to a random variable Y if the associated distribution functions F_n converge pointwise to F_Y , i.e. $\lim_{n\to\infty} F_n(x) = F_Y(x)$ for all $x\in\mathbb{R}$.

Notation 42.3.10. If a sequence $(X_n)_{n\in\mathbb{N}}$ converges in distribution to a random variable Y then this is often denoted by $X_n \stackrel{d}{\longrightarrow} Y$. Sometimes the d (for ''distribution'') is replaced by the \mathcal{L} (for ''law'').

Theorem 42.3.11 (Slutsky). Let $(X_n)_{n\in\mathbb{N}}$, $(Y_n)_{n\in\mathbb{N}}$ be two sequences of random variables converging in probability to a random variable X and a constant c respectively. The following statements hold:

- $\bullet \ X_n + Y_n \xrightarrow{d} X + c,$
- $\bullet \ X_nY_n \xrightarrow{d} cX$, and
- $\bullet \ X_n/Y_n \xrightarrow{d} X/c.$

Definition 42.3.12 (Giry monad \clubsuit). Consider the category **Meas** of measurable spaces. On this space we can define a monad 4.3.16 that sends a space X to its collection of probability distributions equipped with the σ -algebra generated by all evaluation maps ev_U , where U runs over measurable subsets of X.

The unit of the Giry monad G is defined by assigning Dirac measures:

$$\eta_X(x) := \delta_x. \tag{42.18}$$

The multiplication map is defined as follows:

$$\mu_X(Q)(U) := \int_{P \in GX} \text{ev}_U(P) dQ.$$
 (42.19)

42.4 Moments

42.4.1 Expectation value

Definition 42.4.1 (Expectation value). Let X be random variable defined on a probability space (Ω, Σ, P) .

$$E[X] := \int_{\Omega} X dP \tag{42.20}$$

Notation 42.4.2. Other notations that are common in the literature are $\langle X \rangle$ and μ_X .

Definition 42.4.3 (Moment of order r). The moment of order r is defined as the expectation value of the rth power of X and by equation (42.16) this becomes

$$E[X^r] = \int x^r f_X(x) dx. \tag{42.21}$$

Definition 42.4.4 (Central moment of order r).

$$E[(X - \mu)^r] = \int (x - \mu)^r f_X(x) dx$$
 (42.22)

Remark 42.4.5. Moments of order n are determined by central moments of order $k \leq n$ and central moments of order n are determined by moments of order $k \leq n$.

Definition 42.4.6 (Variance). The central moment of order 2 is called the variance:

$$Var[X] := E[(X - \mu)^2].$$
 (42.23)

Definition 42.4.7 (Standard deviation).

$$\sigma_X := \sqrt{V[X]} \tag{42.24}$$

Property 42.4.8. If $E[|X|^n]$ is finite for n > 0, then $E[X^k]$ exist and is finite for all $k \le n$.

Definition 42.4.9 (Moment generating function).

$$M_X(t) := \mathbf{E}\left[e^{tX}\right] = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx \tag{42.25}$$

Property 42.4.10. If the moment generating function exists, the moments $E[X^n]$ can be expressed in terms of M_X (using the series expansion of the exponential function):

$$E[X^n] = \frac{d^n M_X(t)}{dt^n} \bigg|_{t=0}.$$
 (42.26)

Definition 42.4.11 (Characteristic function).

$$\varphi_X(t) := \mathbf{E}\big[e^{itX}\big] \tag{42.27}$$

Property 42.4.12. The characteristic function has the following properties:

- $\varphi_X(0) = 1$,
- $|\varphi_X(t)| \leq 1$, and
- $\varphi_{aX+b}(t) = e^{itb}\varphi_X(at)$.

Formula 42.4.13. If $\varphi_X(t)$ is k times continuously differentiable, then X has a finite k^{th} moment and

$$E[X^k] = \frac{1}{i^k} \frac{d^k}{dt^k} \varphi_X(0). \tag{42.28}$$

Conversely, if X has a finite k^{th} moment, then $\varphi_X(t)$ is k times continuously differentiable and the above formula holds.

Formula 42.4.14 (Inversion formula). Let X be a random variable. If the CDF of X is continuous at $a, b \in \mathbb{R}$, then

$$F_X(b) - F_X(a) = \lim_{c \to +\infty} \frac{1}{2\pi} \int_{-c}^{c} \frac{e^{-ita} - e^{-itb}}{it} \varphi_X(t) dt.$$
 (42.29)

Formula 42.4.15. If $\varphi_X(t)$ is integrable, then the CDF is given by:

$$f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-itx} \varphi_X(t) dt. \tag{42.30}$$

Remark 42.4.16. From previous formula it is clear that the density function and the characteristic function are Fourier transformed quantities.

42.4.2 Correlation

Property 42.4.17. Let X, Y be two random variables. They are independent if and only if E[f(X)g(Y)] = E[f(X)]E[g(Y)] holds for all Borel measurable bounded functions f, g.

The value E[XY] is equal to the inner product $\langle X|Y\rangle$ as defined in (16.37). It follows that independence of random variables implies orthogonality. To generalize this concept, we introduce following notions.

Definition 42.4.18 (Centred random variable). Let X be a random variable with finite expectation value E[X]. The centred random variable X_c is defined as $X_c = X - E[X]$.

Definition 42.4.19 (Covariance). Let X, Y be two random variables. The covariance of X and Y is defined as follows:

$$cov(X, Y) := \langle X_c | Y_c \rangle = E[(X - E[X])(Y - E[Y])].$$
 (42.31)

Some basic math gives

$$cov(X,Y) = E[XY] - E[X]E[Y]. \tag{42.32}$$

Definition 42.4.20 (Correlation). Let X, Y be two random variables. The correlation is defined as the cosine of the angle between X_c and Y_c :

$$\rho_{XY} := \frac{\text{cov}(X, Y)}{\sigma_X \sigma_Y}.$$
(42.33)

Corollary 42.4.21. From Theorem 42.4.17 it follows that independent random variables are also uncorrelated.

Corollary 42.4.22. If the random variables X and Y are uncorrelated, they satisfy E[XY] = E[X]E[Y].

Formula 42.4.23 (Bienaymé formula). Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of independent random variables (in fact it is enough for them to be uncorrelated). Their variances satisfy the following equation:

$$\operatorname{Var}\left[\sum_{i=1}^{+\infty} X_i\right] = \sum_{i=1}^{+\infty} \operatorname{Var}[X_i]. \tag{42.34}$$

42.4.3 Conditional expectation

Let (Ω, Σ, P) be a probability space. Consider a random variable $X \in L^2(\Omega, \Sigma, P)$ and a sub- σ -algebra $\mathcal{G} \subset \Sigma$. Property 16.3.3 implies that the spaces $L^2(\Sigma)$ and $L^2(\mathcal{G})$ are complete and hence the projection theorem 23.2.22 can be applied: for every $X \in L^2(\Sigma)$ there exists a random variable $Y \in L^2(\mathcal{G})$ such that X - Y is orthogonal to $L^2(\mathcal{G})$. This has the following result:

$$\forall Z \in L^2(\mathcal{G}) : \langle X - Y | Z \rangle \equiv \int_{\Omega} (X - Y) Z dP = 0. \tag{42.35}$$

Since $\mathbb{1}_G \in L^2(\mathcal{G})$ for every $G \in \mathcal{G}$, equation (16.24) can be rewritten as

$$\int_{G} XdP = \int_{G} YdP \tag{42.36}$$

for all $G \in \mathcal{G}$. This leads to the introduction of the following definition:

Definition 42.4.24 (Conditional expectation). Let (Ω, Σ, P) be a probability space and let \mathcal{G} be a sub- σ -algebra of Σ . For every Σ -measurable random variable $X \in L^2(\Sigma)$ there exists a unique (up to a null set) random variable $Y \in L^2(\mathcal{G})$ that satisfies equation (42.36) for every $G \in \mathcal{G}$. This variable Y is called the conditional expectation of X given \mathcal{G} and it is denoted by $\mathbb{E}[X|\mathcal{G}]$:

$$\int_{G} E[X|\mathcal{G}]dP = \int_{G} XdP. \tag{42.37}$$

Remark 42.4.25. Although this construction was based on orthogonal projections (this benefits the intuition), one could as well have used the (signed) Radon-Nikodym theorem 16.6.11 since $G \mapsto \int_G X dP$ is absolutely continuous with respect to $P|_{\mathcal{G}}$.

Property 42.4.26. Let (Ω, Σ, P) be a probability space and consider a sub- σ -algebra $\mathcal{G} \subset \Sigma$. If the random variable X is \mathcal{G} -measurable, then

$$E[X|\mathcal{G}] = X \text{ a.s.} \tag{42.38}$$

On the other hand, if X is independent of \mathcal{G} , then

$$E[X|\mathcal{G}] = E[X] \text{ a.s.} \tag{42.39}$$

42.5 Joint distributions

Definition 42.5.1 (Joint distribution). Let X,Y be two random variables defined on the same probability space (Ω, Σ, P) . Consider the vector random variable $(X,Y): \Omega \to \mathbb{R}^2$. The distribution of (X,Y) is defined on the Borel algebra of \mathbb{R}^2 and it is given by the following measure:

$$P_{(X,Y)}(B) = P((X,Y) \in B). \tag{42.40}$$

Definition 42.5.2 (Joint density). If the probability measure from previous definition can be written as

$$P_{(X,Y)}(B) = \int_{B} f_{(X,Y)}(x,y) dx dy$$
 (42.41)

for some integrable $f_{(X,Y)}$, it is said that X and Y have a joint density.

Definition 42.5.3 (Marginal distribution). The distributions of one-dimensional random variables is determined by the joint distribution:

$$P_X(A) = P_{(X,Y)}(A \times \mathbb{R}) \tag{42.42}$$

$$P_Y(A) = P_{(X,Y)}(\mathbb{R} \times A). \tag{42.43}$$

Corollary 42.5.4. If the joint density exists, the marginal distributions are absolutely continuous and the associated density functions are given by

$$f_X(x) = \int_{\mathbb{R}} f_{(X,Y)}(x,y)dy$$
 (42.44)

$$f_Y(y) = \int_{\mathbb{R}} f_{(X,Y)}(x,y) dx.$$
 (42.45)

The converse, however, is not always true. The one-dimensional distributions can be absolutely continuous without the existence of the joint density.

Property 42.5.5. Let X, Y be two random variables with joint distribution $P_{(X,Y)}$. X and Y are independent if and only if the joint distribution coincides with the product measure:

$$P_{(X,Y)} = P_X \otimes P_Y. \tag{42.46}$$

If X and Y are absolutely continuous, the previous properties also applies to the densities instead of the distributions.

Formula 42.5.6 (Sum of random variables). Consider two independent random variables X, Y and let Z = X + Y denote their sum. The density f_Z is given by the following convolution:

$$f_Z(z) := f * g(z) = \int_{-\infty}^{+\infty} g(x)h(z-x)dx = \int_{-\infty}^{+\infty} g(z-y)h(y)dy,$$
 (42.47)

where g, h denote the densities of X, Y respectively.

Formula 42.5.7 (Product of random variables). Consider two independent random variables X, Y and let Z = XY denote their product. The density f_Z is given by

$$f_Z(z) = \int_{-\infty}^{+\infty} g(x)h(z/x)\frac{dx}{|x|} = \int_{-\infty}^{+\infty} g(z/y)h(y)\frac{dy}{|y|},$$
 (42.48)

where g, h denote the densities of X, Y respectively.

Corollary 42.5.8. Taking the Mellin transform 17.5.3 of both the positive and negative part of the above integrand (to be able to handle the absolute value) gives the following relation:

$$\mathcal{M}{f} = \mathcal{M}{g}\mathcal{M}{h}. \tag{42.49}$$

42.5.1 Conditional probability

Formula 42.5.9 (Conditional density). Let X, Y be two random variables with joint density $f_{(X,Y)}$. The conditional density of Y given $X \in A$ is

$$h(y|X \in A) = \frac{\int_{A} f_{(X,Y)}(x,y)dx}{\int_{A} f_{X}(x)dx}.$$
 (42.50)

For $X = \{a\}$ this equation fails as the denominator would become 0. However, it is possible to avoid this problem by formally setting

$$h(y|A=a) := \frac{f_{(X,Y)}(a,y)}{f_{X}(a)}$$
(42.51)

where $f_X(a) \neq 0$. This last condition is nonrestrictive because the probability of having a measurement $(X,Y) \in \{(x,y) : f_X(x) = 0\}$ is 0. One can thus define the conditional probability of Y given X = a as follows:

$$P(Y \in B|X = a) = \int_{B} h(y|X = a)dy.$$
 (42.52)

Formula 42.5.10 (Conditional expectation).

$$E[Y|X](\omega) = \int_{\mathbb{R}} yh(y|X(\omega))dy$$
 (42.53)

Let \mathcal{F}_X denote the σ -algebra generated by the random variable X as before. Using Fubini's theorem we can prove that for all sets $A \in \mathcal{F}_X$ the following equality holds:

$$\int_{A} E[Y|X]dP = \int_{A} YdP. \tag{42.54}$$

This implies that the conditional expectation E[Y|X] on \mathcal{F}_X coincides with definition 42.4.24. Furthermore, applying property 42.4.26 to the case $\mathcal{G} = \mathcal{F}_X$ gives us the law of total expectation:

Property 42.5.11 (Law of total expectation).

$$E[E[Y|X]] = E[Y] \tag{42.55}$$

Theorem 42.5.12 (Bayes's theorem). The conditional density can be computed without prior knowledge of the joint density:

$$g(x|y) = \frac{h(y|x)f_X(x)}{f_Y(y)}. (42.56)$$

42.6 Stochastic calculus

Definition 42.6.1 (Stochastic process). A sequence of random variables $(X_t)_{t\in T}$ for some index set T. In practice T will often be a totally ordered set, e.g. (\mathbb{R}, \leq) in the case of a time series. This will be assumed from here on.

Definition 42.6.2 (Filtered probability space). Consider a probability space (Ω, Σ, P) together with a filtration 2.3.11 of Σ , i.e. a collection of σ -algebras $\mathbb{F} = (\mathbb{F}_t)_{t \in T}$, such that $i \leq j \implies \mathbb{F}_i \subseteq \mathbb{F}_j$. The quadruple $(\Omega, \Sigma, \mathbb{F}, P)$ is called a filtered probability space.

Often the filtration is required to be exhaustive and separated (where \emptyset is replaced by $\mathbb{F}_0 = \{\emptyset, \Omega\}$ since any σ -algebra has to contain the total space).

Definition 42.6.3 (Adapted process). A stochastic process $(X_t)_{t\in T}$ on a filtered probability space $(\Omega, \Sigma, \mathbb{F}, P)$ is said to be adapted to the filtration \mathbb{F} if X_t is \mathbb{F}_t -measurable for all $t \in T$.

Definition 42.6.4 (Predictable process). A stochastic process $(X_t)_{t\in T}$ on a filtered probability space $(\Omega, \Sigma, \mathbb{F}, P)$ is said to be predictable if X_{t+1} is \mathbb{F}_t -measurable for all $t \in T$.

Definition 42.6.5 (Stopping time). Consider a random variable τ on filtered probability space $(\Omega, \Sigma, \mathbb{F}, P)$ where the codomain of τ coincides with the index set of \mathbb{F} . This variable is called a stopping time for \mathbb{F} if

$$\{\tau \le t\} \in \mathbb{F}_t \tag{42.57}$$

for all t. The stopping time is a "time indicator" that only depends on the knowledge of the process up to time $t \in T$.

42.6.1Martingales

From here on the index set T will be $\mathbb{R}_+ \equiv [0, +\infty[$ so that the index t can be interpreted as a true time parameter. The discrete case $T = \mathbb{N}$ can be obtained as the restriction of most definitions or properties and, if necessary, this will be made explicit.

Definition 42.6.6 (Martingale). Consider a filtered probability space $(\Omega, \Sigma, \mathbb{F}, P)$. A stochastic process $(X_t)_{t\in T}$ is said to be a martingale relative to \mathbb{F} if it satisfies the following conditions:

- 1. $(X_t)_{t\in T}$ is adapted to \mathbb{F} .
- 2. Each random variable X_t is integrable, i.e. $X_t \in L^1(P)$ for all $t \geq 0$.
- 3. For all $t > s \ge 0$: $\mathbb{E}[X_t | \mathbb{F}_s] = X_s$.

If the equality in the last condition is replaced by the inequality \leq (resp. \geq), the stochastic process is called a **supermartingale** (resp. **submartingale**).

Theorem 42.6.7 (Doob decomposition). Any integrable adapted process $(X_t)_{t\in T}$ can be decomposed as $X_t = X_0 + M_t + A_t$ where $(M_t)_{t \in T}$ is a martingale and $(A_t)_{t \in T}$ is a predictable process. These two processes are constructed iteratively as follows:

$$A_0 = 0 M_0 = 0 (42.58)$$

$$A_0 = 0 M_0 = 0 (42.58)$$

$$\Delta A_t = \mathbb{E}[\Delta X_t | \mathbb{F}_{t-1}] \Delta M_t = \Delta X_t - \Delta A_t. (42.59)$$

Furthermore, $(X_t)_{t\in T}$ is a submartingale if and only if $(A_t)_{t\in T}$ is (almost surely) increasing.

Corollary 42.6.8. Consider the special case $X = Y^2$ for some martingale Y. One can show the following property:

$$\Delta A_t = \mathbb{E}[(\Delta Y_t)^2 | \mathbb{F}_{t-1}] \qquad \forall t \in \mathbb{R}_+. \tag{42.60}$$

The process $(A_t)_{t\in T}$ is often called the quadratic variation process of $(X_t)_{t\in T}$ and is denoted by $([X]_t)_{t\in T}$.

Definition 42.6.9 (Discrete stochastic integral²). Let $(M_n)_{n\in\mathbb{N}}$ be a martingale on a filtered probability space $(\Omega, \Sigma, \mathbb{F}, P)$ and let $(X_n)_{n \in \mathbb{N}}$ be a predictable stochastic process (with respect to \mathbb{F}). The (discrete) stochastic integral of X with respect to M is defined as follows:

$$(X \cdot M)_t(\omega) = \sum_{i=1}^t X(\omega)_i \Delta M_i(\omega), \tag{42.61}$$

where $\omega \in \Omega$. For t = 0 the convention $(X \cdot M)_0 = 0$ is used.

Property 42.6.10. If the process $(X_n)_{n\in\mathbb{N}}$ is bounded, the stochastic integral itself defines a martingale.

Property 42.6.11 (Itô isometry). Consider a martingale $(M_n)_{n\in\mathbb{N}}$ and a predictable process $(X_n)_{n\in\mathbb{N}}$. Using the Doob decomposition theorem one can show the following equality:

$$E\left[(X \cdot M)_n^2 \right] = E\left[(X^2 \cdot [M])_n \right]$$
(42.62)

for all $n \geq 0$.

It is this property that allows for the definition of integrals with respect to continuous martingales, since although the martingales are not in general of bounded variation (and hence do not induce a well-defined Lebesgue-Stieltjes integral), their quadratic variations are (e.g. the Wiener process).

²Sometimes called the martingale transform.

42.7 Markov processes

Definition 42.7.1 (Markov process). A Markov process (or chain) is a stochastic process $(X_t)_{t\in T}$ adapted to a filtration $(\mathbb{F}_t)_{t\in T}$ such that

$$P(X_t|\mathbb{F}_s) = P(X_t|X_s) \tag{42.63}$$

for all $t, s \in T$. For discrete processes, the first-order Markov chains are the most common. These satisfy

$$P(X_t|X_{t-1},\dots,X_{t-r}) = P(X_t|X_{t-1})$$
(42.64)

for all $t, r \in \mathbb{N}$.

42.8 Information theory

Definition 42.8.1 (Self-information). The self-information of an event x described by a distribution P is defined as follows:

$$I(x) := -\ln P(x). \tag{42.65}$$

This definition is modeled on the following (reasonable) requirements:

- Events that are almost surely going to happen, i.e. events x such that P(x) = 1, contain only little information I(x) = 0.3
- Events that are very rare contain a lot of information.
- Independent events contribute additively to the information.

Definition 42.8.2 (Shannon entropy). The amount of uncertainty in a distribution P is characterized by its (Shannon) entropy

$$H(P) := E[I(X)] = -\sum_{i} p_i \ln(p_i).$$
 (42.66)

Definition 42.8.3 (Kullback-Leibler divergence⁴). Let p, q be two probability distributions. The Kullback-Leibler divergence of p with respect to q is defined as follows:

$$D_{\mathrm{KL}}(p||q) := \int_{\Omega} p \log\left(\frac{p}{q}\right). \tag{42.67}$$

This quantity can be interpreted as the information gained when using the distribution p instead of q. Instead of a base-10 logarithm, any other logarithm can be used since this simply changes the result by a (positive) scaling constant.

Property 42.8.4 (Gibbs's inequality). By noting that the logarithm is a concave function and applying Jensen's equality 20.25 one can prove that the Kullback-Leibler divergence is nonnegative:

$$D_{\text{KL}}(p||q) \ge 0.$$
 (42.68)

Furthermore, the Kullback-Leibler divergence is zero if and only if p and q are equal almost everywhere.

³And by extension $P(x) \approx 1 \implies I(x) \approx 0$.

⁴Sometimes called the **relative entropy**.

42.9 Extreme value theory

Definition 42.9.1 (Conditional excess). Consider a random variable X with distribution F. The conditional probability that X is larger than a given threshold is given by the conditional excess distribution:

$$F_u(y) = \Pr(X - u \le y | X > u) = \frac{F(u+y) - F(u)}{1 - F(u)}.$$
 (42.69)

Definition 42.9.2 (Extreme value distribution). The extreme value distribution is given by the following formula:

$$F(x;\xi) = \exp\left(-(1+x\xi)^{-1/\xi}\right). \tag{42.70}$$

In the case that $\xi = 0$ one can use the definition of the Euler number to rewrite the definition as

$$F(x;0) = \exp(-e^{-x}). \tag{42.71}$$

The number ξ is called the **extreme value index**.

Definition 42.9.3 (Maximum domain of attraction). The (maximum) domain of attraction of a distribution function H consist of all distribution functions F for which there exist sequences $(a_n > 0)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ such that $F^n(a_n x + b_n) \longrightarrow H(x)$.

Theorem 42.9.4 (Fischer, Tippett & Gnedenko). Consider a sequence of i.i.d. random variables with distribution F. If F lies in the domain of attraction of G, then G has the form of an extreme value distribution.

Theorem 42.9.5 (Pickands, Balkema & de Haan). Consider a sequence of i.i.d. random variables with conditional excess distribution F_u . If the distribution F lies in the domain of attraction of the extreme value distribution, the conditional excess distribution F_u converges to the generalised Pareto distribution when $u \longrightarrow \infty$.

42.10 Copulas

Property 42.10.1. Consider a continuous random variable X. Let U be the result of the probability integral transformation, i.e. $U = F_X(X)$. This transformed random variable has a uniform cumulative distribution, i.e. $F_U(u) = u$.

Definition 42.10.2 (Copula). The joint cumulative distribution function of a random variable with uniform marginal distributions.

The following alternative definition is more analytic in nature:

Alternative Definition 42.10.3 (Copula). A function $C: [0,1]^d \to [0,1]$ satisfying the following properties:

- 1. $C(x_1, \ldots, x_d) = 0$ if any one of the x_i is zero.
- 2. **Uniformity:** $C(1, 1, ..., x_i, 1, ...) = x_i$ for all $1 \le i \le d$.
- 3. d-nondecreasing: For every box $B = \prod_{1 \le i \le d} [a_i, b_i] \subseteq [0, 1]^d$ the C-volume is nonnegative:

$$\int_{B} dC(x) = \sum_{\mathbf{z} \in \prod_{i} \{a_{i}, b_{i}\}} (-1)^{N_{b}(\mathbf{z})} C(\mathbf{z}) \ge 0$$
(42.72)

where $N_B(\mathbf{z}) = \operatorname{Card}(\{i : a_i = z_i\}).$

Theorem 42.10.4 (Sklar). For every joint distribution function H with marginals F_i there exists a unique copula C such that

$$H(x_1, \dots, x_d) = C(F_1(x_1), \dots, F_d(x_d)).$$
 (42.73)

Property 42.10.5 (Fréchet-Hoeffding). Every copula $C:[0,1]^d \to [0,1]$ is bounded in the following way:

$$\max\left(\sum_{i=1}^{d} u_i - d + 1, 0\right) \le C(u_1, \dots, u_d) \le \min_{i} u_i \tag{42.74}$$

for all $(u_1, \ldots, u_d) \in [0, 1]^d$. Furthermore, the upper bound is sharp, i.e. $\min_i u_i$ is itself a copula.⁵

Definition 42.10.6 (Extreme value copula). A copula C for which there exists a copula \widetilde{C} such that

$$\left[\widetilde{C}(u_1^{1/n}, \dots, u_d^{1/n})\right]^n \longrightarrow C(u_1, \dots, u_d) \tag{42.75}$$

for all $(u_1, \ldots, u_d) \in [0, 1]^d$.

Property 42.10.7. A copula C is an extreme value copula if and only if it is stable in the following sense:

$$C(u_1, \dots, u_d) = \left[C(u_1^{1/n}, \dots, u_d^{1/n}) \right]^n$$
(42.76)

for all $n \geq 1$.

42.11 Randomness &

Note that this section is strongly related to Section 6.6 on computability theory.

Definition 42.11.1 (Kolmogorov randomness). Consider a universal Turing machine U. The **Kolmogorov complexity** $C(\kappa)$ of a finite bit string κ (with respect to U) is defined as

$$C(\kappa) := \min\{|\sigma| : \sigma \text{ is finite}, U(\sigma) = \kappa\}.$$
 (42.77)

A finite bit string is said to be Kolmogorov random (with respect to U) if there exists an integer $n \in \mathbb{N}$ such that $C(\kappa) \geq |\sigma| - n$.

Property 42.11.2. For every universal Turing machine there exists at least one Kolmogorov random string. This easily follows from the pigeonhole principle since for every $n \in \mathbb{N}$ there are 2^n strings of length n but only $2^n - 1$ programs of length less than n.

Remark 42.11.3. Note that, although universal Turing machines can emulate each other, the randomness of a string is not absolute. Its randomness depends on the chosen machine.

It would be pleasing if this notion of randomness could easily be extended to infinite bit strings, for example by giving such a string the label random if there exists a uniform choice of constant k such that all initial segments of the string are k-random. However, a result by $Martin-L\ddot{o}f$ there does not exist any string satisfying this condition.

⁵The lower bound is only a copula for d=2. In general this bound is only pointwise sharp.

Chapter 43

Statistics

In this chapter, most definitions and formulas will be based on either a standard calculus approach or a data-driven approach. For a measure-theory based approach see chapter 42. For some properties we will also use the language of information geometry as introduced in the previous chapter 44.

43.1 Data samples

43.1.1 Moment estimators

Formula 43.1.1 (r^{th} sample moment).

$$\overline{x^r} := \frac{1}{N} \sum_{i=1}^N x_i^r \tag{43.1}$$

Formula 43.1.2 (r^{th} central sample moment).

$$m_r := \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^r$$
 (43.2)

Definition 43.1.3 (Arithmetic mean). The arithmetic mean is used to average out differences between measurements. It is defined as the 1^{st} sample moment:

$$\overline{x} := \frac{1}{N} \sum_{i=1}^{N} x_i. \tag{43.3}$$

Definition 43.1.4 (Weighted mean). Let $f : \mathbb{R} \to \mathbb{R}^+$ be a weight function. The weighted mean is given by:

$$\overline{x} := \frac{\sum_{i} f(x_i) x_i}{\sum_{i} f(x_i)}.$$
(43.4)

Example 43.1.5 (Binned mean). If the data has been grouped in bins, the weight function is given by the number of elements in each bin. Knowing this the (binned) mean becomes:

$$\overline{x} = \frac{1}{N} \sum_{i=1} n_i x_i. \tag{43.5}$$

Remark 43.1.6. In the above definitions, the measurements x_i can be replaced by function values $f(x_i)$ to calculate the mean of the function $\underline{f}(x)$. This follows from Theorem 42.3.4. However, it is also important to keep in mind that $\overline{f}(x) \neq f(\overline{x})$. The equality only holds for linear functions.

Definition 43.1.7 (Geometric mean). Let $\{x_i\}$ be a data set taking values in either \mathbb{R}_+ or \mathbb{R}_- . The geometric mean is used to average out *normalised* measurements, i.e. ratios with respect to a reference value.

$$g := \left(\prod_{i=1}^{N} x_i\right)^{1/N} \tag{43.6}$$

The following relation exists between the arithmetic and geometic mean:

$$ln g = \overline{\ln x}.$$
(43.7)

Definition 43.1.8 (Harmonic mean).

$$h := \left(\frac{1}{N} \sum_{i=1}^{N} x_i^{-1}\right)^{-1} \tag{43.8}$$

The following relation exists between the arithmetic and harmonic mean:

$$\frac{1}{h} = \overline{x^{-1}}.\tag{43.9}$$

Property 43.1.9. Let $\{x_i\}$ be a data set taking values in \mathbb{R}_+ .

$$h \le g \le \overline{x} \tag{43.10}$$

The equalities only hold when all x_i are equal.

Definition 43.1.10 (Mode). The most occurring value in a data set.

Definition 43.1.11 (Median). The value x_i in a data set such that half of the values is greater than x_i and half of the values is smaller than x_i .

43.1.2 Dispersion

Definition 43.1.12 (Range). The simplest indicator for statistical dispersion:

$$R := x_{\text{max}} - x_{\text{min}}.\tag{43.11}$$

However, it is very sensitive for outliers.

Definition 43.1.13 (Mean absolute difference).

$$MD := \frac{1}{N} \sum_{i=1}^{N} |x_i - \overline{x}|$$
 (43.12)

Definition 43.1.14 (Sample variance).

$$Var(x) := \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^2$$
(43.13)

Formula 43.1.15. The variance can also be rewritten in the following way:

$$Var(x) = \overline{x^2} - \overline{x}^2. \tag{43.14}$$

Remark 43.1.16 (Bessel corection). A better estimator for the variance of a sample is given by the following formula:

$$\hat{s} := \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2. \tag{43.15}$$

See Remark 43.4.9 for more information.

Definition 43.1.17 (Skewness). The skewness γ describes the asymmetry of a distribution. It is defined as the proportionality constant relating the third central moment m_3 and the standard deviation σ :

$$m_3 = \gamma \sigma^3. \tag{43.16}$$

A positive skewness indicates a tail to the right or alternatively a median smaller than \overline{x} . A negative skewness indicates a median larger than \overline{x} .

Definition 43.1.18 (Pearson's mode skewness).

$$\gamma_P := \frac{\overline{x} - \text{mode}}{\sigma} \tag{43.17}$$

Definition 43.1.19 (Kurtosis). The kurtosis c is an indicator for the "tailedness". It is defined as the proportionality constant relating the fourth central moment m_4 and the standard deviation σ :

$$m_4 = c\sigma^4. (43.18)$$

Definition 43.1.20 (Excess kurtosis). The excess kurtosis is defined as c-3. This fixes the excess kurtosis of all univariate normal distributions at 0. A positive excess is an indicator for long "fat" tails, a negative excess indicates short "thin" tails.

Definition 43.1.21 (Percentile). The *p*-percentile c_p is defined as the value that is larger than p% of the measurements. The median is the 50-percentile.

Definition 43.1.22 (Interquartile range). The difference between the upper and lower quartile (75- and 25-percentiles respectively).

Definition 43.1.23 (Full Width at Half Maximum). The difference between the two values of the independent variable where the dependent variable is half of its maximum. This quantity is often denoted by the abbreviation **FWHM**.

Property 43.1.24. For Gaussian distributions the following relation exists between the FWHM and the standard deviation σ :

$$FWHM = 2.35\sigma. \tag{43.19}$$

43.1.3 Multivariate data sets

When working with bivariate (or even multivariate) distributions it is useful to describe the relationship between the different random variables. The following two definitions are often used.

Definition 43.1.25 (Covariance). Let X, Y be two random variables. The covariance of X and Y is defined as follows:

$$cov(x,y) := \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y}) = \overline{x}\overline{y} - \overline{x} \overline{y}.$$
 (43.20)

The covariance is also often denoted by σ_{xy} .

Formula 43.1.26. The covariance and standard deviation are related by the following equality:

$$\sigma_x^2 = \sigma_{xx}. (43.21)$$

Definition 43.1.27 (Correlation coefficient).

$$\rho_{xy} := \frac{\operatorname{cov}(x, y)}{\sigma_x \sigma_y} \tag{43.22}$$

The correlation coefficient is bounded to the interval [-1,1]. It should be noted that its magnitude is only an indicator for the linear dependence.

Remark 43.1.28. For multivariate distributions the above definitions can be generalized using matrices:

$$V_{ij} = \text{cov}(x_{(i)}, x_{(i)}) \tag{43.23}$$

$$\rho_{ij} = \rho_{(i)(j)},\tag{43.24}$$

where $cov(x_{(i)}, x_{(j)})$ and $\rho_{(i)(j)}$ are defined as in equations 43.20 and 43.22.

43.2 Probability distributions

In the following sections and subsections, all distributions will be taken to be continuous. The formulas can be modified for use with discrete distributions by replacing the integral with a summation.

Definition 43.2.1 (Percentile). The p-percentile c_p of a distribution F is defined as:

$$c_p = F^{-1}(p). (43.25)$$

Definition 43.2.2 (Parametric family). A family of probability densities indexed by one or more parameters θ .

Example 43.2.3 (Mixture family). Consider a collection of distributions $\mathcal{P} = \{P_i\}_{i \leq n}$. The mixture family generated by \mathcal{P} consist of all convex combinations of elements in \mathcal{P} :

$$\left\{ \sum_{i=1}^{n} w_i P_i : w_i \ge 0, \sum_{i=1}^{n} w_i = 1 \right\}. \tag{43.26}$$

Every element of this family is called a **mixture distribution**.

43.2.1 Empirical distribution

Definition 43.2.4 (Empirical distribution function). The (discrete) empirical probability distribution function is defined as the uniform mixture distribution with Dirac measures at the observations:

$$p_n := \frac{1}{n} \sum_{i=1}^n \delta_{x_i}.$$
 (43.27)

The associated cumulative distribution is then given by

$$F_n(x) := \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{]-\infty,x]}(x_i)$$
(43.28)

where $\mathbb{1}_A(x)$ is the indicator function 16.2.1.

Theorem 43.2.5 (Borel's law of large numbers). If the sample size approaches infinity, the observed frequencies approach the theoretical propabilities.

Corollary 43.2.6 (Frequentist probability¹).

$$\Pr(x) := \lim_{n \to \infty} \frac{f_n(x)}{n} \tag{43.29}$$

The law of large numbers can also be phrased in terms of the empirical distribution function:

Theorem 43.2.7 (Glivenko-Cantelli). Consider a cumulative distribution function F on a probability space Ω . Denote the empirical distribution function of n random variables on Ω by F_n . If the random variables are i.i.d. according to F, then

$$\sup_{x \in \Omega} |F(x) - F_n(x)| \xrightarrow{a.s.} 0. \tag{43.30}$$

Remark 43.2.8. The law of the large numbers implies pointwise convergence of the empirical distribution function, while the Glivenko-Cantelli theorem strengthens this to uniform convergence.

The quantity in the Glivenko-Cantelli theorem is important enough to get its own name:

Definition 43.2.9 (Kolmogorov-Smirnov statistic). Let F(x) be a given cumulative distribution function. The n^{th} Kolmogorov-Smirnov statistic is defined as follows:

$$D_n := \sup_{x} |F_n(x) - F(x)|. \tag{43.31}$$

Definition 43.2.10 (Kolmogorov distribution).

$$F_{\text{Kol}}(x) := 1 - 2\sum_{i=1}^{+\infty} (-1)^{i-1} e^{-2i^2 x^2} = \frac{\sqrt{2\pi}}{x} \sum_{i=1}^{+\infty} e^{-(2i-1)^2 \pi^2 / (8x^2)}$$
(43.32)

Property 43.2.11 (Kolmogorov-Smirnov test). Let the null hypothesis H_0 state that a given data sample is described by a distribution function F(x). The null hypothesis is rejected at significance level α if

$$\sqrt{n}D_n > K_\alpha \tag{43.33}$$

where K_{α} is defined by the Kolmogorov distribution: $F_{\text{Kol}}(K_{\alpha}) = 1 - \alpha$.

¹Also called the **empirical probability**.

43.2.2 Common distributions

Formula 43.2.12 (Uniform distribution).

$$f(x; a, b) := \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{elsewhere} \end{cases}$$
 (43.34)

$$E[x] = \frac{a+b}{2} \tag{43.35}$$

$$Var[x] = \frac{(b-a)^2}{12}$$
 (43.36)

Formula 43.2.13 (Gaussian distribution).

$$\mathcal{G}(x;\mu,\sigma) := \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$(43.37)$$

This distribution is also called a (univariate) **normal distribution**.

Formula 43.2.14 (Standard normal distribution).

$$\mathcal{N}(z) := \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \tag{43.38}$$

The cumulative distribution of \mathcal{N} is given by the *error function*.

Remark 43.2.15. Every Gaussian distribution can be transformed into a standard normal distribution by passing to the random variable $Z = \frac{X-\mu}{\sigma}$. This transformation is often called **standardization**.

Theorem 43.2.16 (Central limit theorem). A sum of n i.i.d. random variables X_i distributed according to a distribution with mean μ and variance σ^2 satisfies the following property:

$$\sqrt{n} \left(\sum_{i=1}^{n} X_i - \mu \right) \xrightarrow{d} \mathcal{N}(0, \sigma^2). \tag{43.39}$$

Remark 43.2.17. If the random variables are not independent, property 2 will not be fulfilled. However, a generalization to distributions that are not identical exists. These are the *Lyapunov* and *Lindeberg CLT*. (This generalization does require additional conditions on the higher moments.)

Remark 43.2.18. The sum of Gaussians is always Gaussian.

Formula 43.2.19 (Exponential distribution).

$$f(x;\tau) := \frac{1}{\tau} e^{-\frac{x}{\tau}} \tag{43.40}$$

$$E[x] = \tau \tag{43.41}$$

$$Var[x] = \tau^2. \tag{43.42}$$

Property 43.2.20. The exponential distribution is memoryless:

$$\Pr(X > x_1 + x_2 | X > x_2) = \Pr(X > x_1). \tag{43.43}$$

Formula 43.2.21 (Bernoulli distribution). A random variable that can only take 2 possible values is described by a Bernoulli distribution. When the possible values are 0 and 1, with respective chances ρ and $1 - \rho$, the distribution is given by

$$p(k;\rho) := \rho^k (1-\rho)^{1-k} \tag{43.44}$$

$$E[k] = \rho \tag{43.45}$$

$$Var[k] = \rho(1 - \rho). \tag{43.46}$$

Formula 43.2.22 (Binomial distribution). A process with n i.i.d. Bernoulli trials with probability ρ , is described by a binomial distribution:

$$p(k; \rho, n) := \binom{n}{k} \rho^k (1 - \rho)^{n-k}$$
(43.47)

$$E[k] = n\rho \tag{43.48}$$

$$Var[k] = n\rho(1-\rho). \tag{43.49}$$

Formula 43.2.23 (Poisson distribution). A process with known possible outcomes but an unknown number of events is described by a Poisson distribution with average expected number of events λ .

$$p(r;\lambda) := \frac{e^{-\lambda}\lambda^r}{r!} \tag{43.50}$$

$$E[r] = Var[r] = \lambda. \tag{43.51}$$

Property 43.2.24. If two Poisson processes, with expectations λ_a and λ_b respectively, occur simultaneously, then the probability of r events is also described by a Poisson distribution with average $\lambda_a + \lambda_b$. The number of events coming from the process described by λ_a is given by a binomial distribution $p(r_a; \Lambda_a, r)$ with $\Lambda_a = \frac{\lambda_a}{\lambda_a + \lambda_b}$.

Remark 43.2.25. For $\lambda \to \infty$, the Poisson distribution $p(r; \lambda)$ can be approximated by a Gaussian distribution $\mathcal{G}(x; \lambda, \sqrt{\lambda})$.

Formula 43.2.26 (χ^2 -distribution). The sum of k squared independent (standard) normally distributed random variables Y_i defines the random variable:

$$\chi_k^2 := \sum_{i=1}^k Y_i^2,\tag{43.52}$$

where k is said to be the number of **degrees of freedom**. The associated density is

$$f(\chi^2; n) := \frac{\chi^{n-2} e^{-\frac{\chi^2}{2}}}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})}$$
(43.53)

Remark 43.2.27. Due to the CLT 43.2.16 the χ^2 -distribution approximates a Gaussian distribution for large k: $f(\chi^2; k) \xrightarrow{k>30} \mathcal{G}(\sqrt{2\chi^2}; \sqrt{2k-1}, 1)$.

Formula 43.2.28 (Student-t distribution). The Student-t distribution describes the difference between the true mean and a sample average with estimated standard deviation $\hat{\sigma}$:

$$f(t;n) := \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)\left(1 + \frac{t^2}{n}\right)^{\frac{n+1}{2}}},\tag{43.54}$$

where

$$t := \frac{(x-\mu)/\sigma}{\hat{\sigma}/\sigma} = \frac{z}{\sqrt{\chi^2/n}}.$$
 (43.55)

Formula 43.2.29 (Cauchy distribution²). The general desnity $f(x; x_0, \gamma)$ is given by

$$f(x; x_0, \gamma) := \frac{1}{\pi} \frac{\gamma}{(x - x_0)^2 + \gamma^2}.$$
 (43.56)

The associated characteristic function is given by

$$E[e^{itx}] = e^{ix_0t - \gamma|t|}. (43.57)$$

Property 43.2.30. Both the mean and variance of the Cauchy distribution are undefined.

43.3 Errors

Definition 43.3.1 (Systematic error). Errors that always have the same effect independent of the measurements itself, i.e. they shift all values in the same way, and cannot be directly inferred from the measurements. Note they are not necessarily independent of each other.

Formula 43.3.2 (Inverse-variance averaging). When performing a sequence of measurements x_i with different variances σ_i^2 , it is impossible to use the arithmetic mean (43.3) in a meaningful way because the measurements are not of the same type. Therefore it is also impossible to apply the CLT 43.2.16.

These problems can be resolved by the using the weighted mean 43.1.4:

$$\overline{x} := \frac{\sum_{i} \frac{x_i}{\sigma_i^2}}{\sum_{i} \frac{1}{\sigma_i^2}}.$$
(43.58)

The variation of the weighted mean is given by

$$\operatorname{Var}(\overline{x}) := \frac{1}{\sum_{i} \sigma_{i}^{-2}}.$$
(43.59)

43.3.1 Propagation of errors

Formula 43.3.3. Let X be random variable with variance Var[X]. The variance of a linear function f(X) = aX + b is given by

$$Var[f] = a^2 Var[X]. \tag{43.60}$$

Formula 43.3.4. Let X be random variable with **small** (!!) variance Var[X]. The variance of a general function f(X) is given by

$$\operatorname{Var}[f] \approx \left(\frac{df}{dx}\right)^2 \operatorname{Var}[x].$$
 (43.61)

²Also known (especially in particle physics) as the **Breit-Wigner** distribution.

Corollary 43.3.5. The correlation coefficient ρ (43.22) of a random variable X and a linear function of X is independent of σ_x and is always equal to ± 1 .

Formula 43.3.6 (Law of error propagation). Let X be a vector random variable with small variance. The variance of a general function f(X) is given by

$$\operatorname{Var}[f] = \sum_{p} \left(\frac{\partial f}{\partial X_{(p)}}\right)^{2} \operatorname{Var}\left[X_{(p)}\right] + \sum_{p} \sum_{q \neq p} \left(\frac{\partial f}{\partial X_{(p)}}\right) \left(\frac{\partial f}{\partial X_{(q)}}\right) \operatorname{cov}\left[X_{(p)}, X_{(q)}\right]. \tag{43.62}$$

Definition 43.3.7 (Fractional error). Let X, Y be two independent random variables. The standard deviation of f(X, Y) = XY is given by the fractional error:

$$\left(\frac{\sigma_f}{f}\right)^2 = \left(\frac{\sigma_x}{x}\right)^2 + \left(\frac{\sigma_y}{y}\right)^2. \tag{43.63}$$

The fractional error of a variable is equal to the fractional error of the reciprocal of that variable.

Property 43.3.8 (Logarithm). Let X be a random variable. The error of the logarithm of X is equal to the fractional error of X.

Formula 43.3.9 (Covariance of functions).

$$cov[f,g] = \sum_{p} \sum_{q} \left(\frac{\partial f}{\partial X_{(p)}}\right) \left(\frac{\partial g}{\partial X_{(q)}}\right) cov[X_{(p)}, X_{(q)}]$$
(43.64)

Corollary 43.3.10. Let $\mathbf{f} = (f_1, \dots, f_k)$ be a vector-valued function. The covariance matrix $Var[\mathbf{f}]$ is given by

$$Var[\mathbf{f}] = JVar[\mathbf{X}]J^T, \tag{43.65}$$

where J is the Jacobian matrix of \mathbf{f} .

43.4 Parameter estimation

43.4.1 General properties

Definition 43.4.1 (Consistency). An estimator \hat{a} is said to be consistent if it is asymptotically equal to the true parameter:

$$\lim_{N \to \infty} \hat{a} = a. \tag{43.66}$$

Definition 43.4.2 (Unbiased estimator). An estimator \hat{a} is said to be unbiased if its expectation value is equal to the true parameter:

$$\langle \hat{a} \rangle = a. \tag{43.67}$$

Note that neither consistency, nor unbiasedness implies the other.

Definition 43.4.3 (Bias).

$$B(\hat{a}) := |\langle \hat{a} \rangle - a|. \tag{43.68}$$

Definition 43.4.4 (Mean squared error).

$$MSE(\hat{a}) := B(\hat{a})^2 + Var(\hat{a}). \tag{43.69}$$

Remark 43.4.5. If an estimator is unbiased, the MSE is equal to the variance of the estimator.

43.4.2 Common estimators

Property 43.4.6 (Unbiased mean). The CLT 43.2.16 implies that the sample mean (43.3) is an consistent and unbiased estimator of the population mean.

Formula 43.4.7 (Standard error of the mean). Using the Bienaymé formula 42.4.23 one can show that the standard error of the mean, i.e. the standard deviation of the sample mean, is given by the following formula:

$$Var(\overline{x}) = \frac{\sigma^2}{N}.$$
 (43.70)

Formula 43.4.8 (Variance estimator for known mean). If the true mean μ is known, a consistent and unbiased estimator for the variance is given by

$$\widehat{\text{Var}[X]} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2.$$
 (43.71)

Formula 43.4.9 (Variance estimator for unknown mean). If the true mean is unknown and the sample mean has been used to estimate it, a consistent and unbiased estimator is given by

$$s^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2}.$$
 (43.72)

The modified factor $\frac{1}{N-1}$ is called the **Bessel correction**. It corrects the bias of the estimator given by the sample variance 43.1.14. The consistency is guaranteed by the CLT.

43.4.3 Estimation error

Formula 43.4.10 (Variance of the estimator of the variance).

$$\operatorname{Var}\left(\widehat{V[x]}\right) = \frac{(N-1)^2}{N^3} \langle (x - \langle x \rangle)^4 \rangle - \frac{(N-1)(N-3)}{N^3} \langle (x - \langle x \rangle)^2 \rangle^2$$
(43.73)

Formula 43.4.11 (Variance of the estimator of the standard deviation).

$$\operatorname{Var}(\widehat{\sigma}) = \frac{1}{4\sigma^2} \operatorname{Var}\left(\widehat{V[x]}\right) \tag{43.74}$$

Remark 43.4.12. The previous result is a little odd, as one has to know the true standard deviation to compute the variance of the estimator. This problem can be solved in two ways. Either a value (hopefully close to the real one) inferred from the sample is used as an estimator, or a guess is used in the design phase of an experiment to see what the possible outcomes are.

43.4.4 Likelihood function

Definition 43.4.13 (Likelihood). The likelihood $\mathcal{L}(a; \vec{x})$ is the probability to find a set of measurements $\vec{x} = \{x_1, \dots, x_N\}$ given a density f(X; a):

$$\mathcal{L}(a; \vec{\boldsymbol{x}}) = \prod_{i=1}^{N} f(x_i; a). \tag{43.75}$$

Definition 43.4.14 (Log-likelihood).

$$\log \mathcal{L}(a; \vec{x}) = \sum_{i} \ln f(x_i; a)$$
(43.76)

Property 43.4.15. The expectation value of an estimator \hat{a} is given by

$$\langle \hat{a} \rangle = \int \hat{a} \mathcal{L}(\hat{a}; X) dX.$$
 (43.77)

Theorem 43.4.16 (Cramer-Rao bound). The variance of an unbiased estimator has a lower bound called the Cramer-Rao bound or minimum variance bound (MVB):

$$\operatorname{Var}(\hat{a}) \ge \frac{1}{\left\langle \left(\frac{d \ln \mathcal{L}}{da}\right)^2 \right\rangle}.$$
 (43.78)

For a biased estimator with bias b, the MVB takes on the following form:

$$\operatorname{Var}(\hat{a}) \ge \frac{\left(1 + \frac{db}{da}\right)^2}{\left\langle \left(\frac{d \ln \mathcal{L}}{da}\right)^2 \right\rangle}.$$
(43.79)

Remark 43.4.17.

$$\left\langle \left(\frac{d \ln \mathcal{L}}{da} \right)^2 \right\rangle = -\left\langle \frac{d^2 \ln \mathcal{L}}{da^2} \right\rangle \tag{43.80}$$

Definition 43.4.18 (Fisher information).

$$I_X(a) := \left\langle \left(\frac{d \ln \mathcal{L}}{da}\right)^2 \right\rangle = N \int \left(\frac{d \ln f}{da}\right)^2 f \, dX$$
 (43.81)

Using this definition one can rewrite the Cramer-Rao inequality as follows:

$$Var(\hat{a}) \ge I_X(a). \tag{43.82}$$

Definition 43.4.19 (Finite-sample efficiency). An unbiased estimator is said to be (finite-sample) efficient if it saturates the Cramer-Rao bound. In general the **efficiency** of (unbiased) estimators is defined through the Cramer-Rao bound as follows:

$$e(\hat{a}) := \frac{I_X(a)^{-1}}{\operatorname{Var}(\hat{a})}.$$
 (43.83)

43.4.5 Maximum likelihood estimation

From definition 43.4.13 it follows that the estimator \hat{a}_{MLE} that makes the given measurements most probable is the value of a for which the likelihood function is maximal. It is therefore not the most probable estimator.

Using Bayes's theorem one finds $f(a|x) = f(x|a) \frac{f(a)}{f(x)}$. The prior density f(x) is fixed since the values x_i are given by our measurement and hence does not vary and the density f(a) is generally assumed to be uniform if there is no prior knowledge about a. It follows that f(a|x) and f(x|a) are proportional and hence the logarithms of these functions differ only by an additive constant. This leads us to following method for finding an estimator \hat{a} :

Method 43.4.20 (Maximum likelihood estimator). The maximum likelihood estimator \hat{a} is obtained by solving the following equation:

$$\left. \frac{d \ln \mathcal{L}}{da} \right|_{a=\hat{a}} = 0. \tag{43.84}$$

Remark 43.4.21. MLE estimators are mostly consistent but often biased.

Property 43.4.22. MLE estimators are invariant under parameter transformations.

Corollary 43.4.23. The invariance implies that the two estimators \hat{a} and $\widehat{f(a)}$ cannot both be unbiased at the same time.

Property 43.4.24. Every consistent estimator asymptotically becomes unbiased and efficient.

Property 43.4.25 (Minimizing KL-divergence). It can be shown that maximizing the log-likelihood is equivalent to minimizing the Kullback-Leibler divergence 42.8.3 between the would-be distribution $p(x;\theta)$ and the true distribution q(x):

$$\begin{split} \arg\max_{\theta} \ln \mathcal{L} &= \arg\max_{\theta} \sum_{i \in I} \ln p(x_i; \theta) \\ &= \arg\max_{\theta} \sum_{i \in I} \ln p(x_i; \theta) - \ln q(x_i) \\ &= \arg\min_{\theta} \frac{1}{n} \sum_{i \in I} \ln \frac{q(x_i)}{p(x_i; \theta)} \\ &\longrightarrow \arg\min{\theta} \int p(x; \theta) \ln \frac{q(x)}{p(x; \theta)} dx = \arg\min_{\theta} D_{\mathrm{KL}}(p_{\theta} || q), \end{split}$$

where the law of large numbers was used in the last line.

43.4.6 Least squares estimation

To fit a (parametric) function y = f(x; a) to a set of 2 variables (x, y), where the x values are exact and the y values have an uncertainty σ_i , we can use the following method:

Method 43.4.26 (Least squares).

- 1. For every event (x_i, y_i) define the residual $d_i := y_i f(x_i; a)$.
- 2. Determine the χ^2 -statistic (analytically):

$$\chi^2 := \sum_{i} \frac{d_i^2}{f_i} \tag{43.85}$$

where $f_i = f(x_i; a)$.

3. Find the most probable value of \hat{a} by solving the equation

$$\frac{d\chi^2}{da} = 0.$$

Property 43.4.27. The optimal (minimal) χ^2 is (asymptotically) distributed according to a χ^2 -distribution 43.53 $f(\chi^2; n)$. The number of degrees of freedom n is equal to the number of events N minus the number of fitted parameters k. (See more in section 43.9.1.)

Formula 43.4.28 (Linear fit). When all uncertainties σ_i are equal, the slope \hat{m} and intercept \hat{c} are given by the following formulas:

$$\hat{m} = \frac{\overline{xy} - \overline{x} \, \overline{y}}{\overline{x^2} - \overline{x}^2} = \frac{\text{cov}(x, y)}{\text{Var}(x)} \tag{43.86}$$

$$\hat{c} = \overline{y} - \hat{m}\overline{x} = \frac{\overline{x^2} - \overline{x}\overline{y}}{\overline{x^2} - \overline{x}^2}.$$
(43.87)

Remark 43.4.29. The equation $\overline{y} = \hat{c} + \hat{m}\overline{x}$ means that the linear fit passes through the center of mass $(\overline{x}, \overline{y})$.

Formula 43.4.30 (Errors of linear fit).

$$Var(\hat{m}) = \frac{1}{N(\overline{x^2} - \overline{x}^2)} \sigma^2 \tag{43.88}$$

$$\operatorname{Var}(\hat{c}) = \frac{\overline{x^2}}{N(\overline{x^2} - \overline{x}^2)} \sigma^2 \tag{43.89}$$

$$\operatorname{cov}(\hat{m}, \hat{c}) = \frac{-\overline{x}}{N(\overline{x^2} - \overline{x}^2)} \sigma^2 \tag{43.90}$$

The least squares method is very useful to fit data that has been grouped in bins (histograms):

Method 43.4.31 (Binned least squares).

- 1. N i.i.d. events with distributions f(X; a) divided in N_B intervals where the interval j is centered on the value x_j , has a width W_j and contains n_j events.
- 2. The ideally expected number of events in the j^{th} interval: $f_j = NW_j f(x_j; a)$.
- 3. The real number of events has a Poisson distribution: $\overline{n}_j = \sigma_j^2 = f_j$.
- 4. Define the binned χ^2 as

$$\chi^2 := \sum_{i=1}^{N_B} \frac{(n_i - f_i)^2}{f_i^2}.$$

43.5 Bayesian modelling

Definition 43.5.1 (Conjugate distributions). Consider a prior distribution $F(\theta)$ and a posterior distribution $F(\theta|X)$. If these distributions belong to the same family, e.g. they are both Gaussians, then they are said to be conjugate. In this case the prior $F(\theta)$ is said to be a **conjugate prior** for the likelihood $F(X|\theta)$.

Example 43.5.2. The simplest example is the case of binomial distributions, for these the conjugate prior is the Beta distribution. This can be generalized to multi-class situations. The conjugate prior of a *categorical* (or even multinomial) distribution is the *Dirichlet distribution*.

43.6 Confidence intervals

The true value of a parameter ε can never be known exactly. However, it is possible to construct an interval I in which this value should lie with a certain confidence C.

Example 43.6.1 (Prediction interval). Let X be a normally-distributed random variable. The measurement x lies in the interval $[\mu - 1.96\sigma, \mu + 1.96\sigma]$ with 95% probability. The true value μ lies in the interval $[x - 2\sigma, x + 2\sigma]$ with 95% confidence.

Remark. In the previous example we made some assumptions: all possible values (left or right side of peak) are given the same probability due to the Gaussian distribution. If one removes this symmetry condition a more careful approach is required. Furthermore, the apparent symmetry between the uncertainty and confidence levels is only valid for Gaussian distributions.

43.6.1 Interval types

Definition 43.6.2 (Two-sided confidence interval).

$$\Pr(x_{-} \le X \le x_{+}) = \int_{x_{-}}^{x_{+}} f(x)dx = C \tag{43.91}$$

There are three possible (often used) two-sided intervals:

- symmetric interval: $x_+ \mu = \mu x_-$,
- shortest interval: $|x_+ x_-|$ is minimal, or
- central interval: $\int_{-\infty}^{x_{-}} f(x)dx = \int_{x_{+}}^{\infty} f(x)dx = \frac{1-C}{2}$.

The central interval is the most widely used confidence interval.

Remark 43.6.3. For Gaussian distributions these three definitions are equivalent.

Definition 43.6.4 (One-sided confidence interval).

$$\Pr(x \ge x_{-}) = \int_{x_{-}}^{+\infty} f(x)dx = C \tag{43.92}$$

$$\Pr(x \le x_+) = \int_{-\infty}^{x_+} f(x)dx = C \tag{43.93}$$

Definition 43.6.5 (Discrete central confidence interval). For a discrete distribution it is often impossible to find integers x_{\pm} such that the real value lies with exact confidence C in the interval $[x_{-}, x_{+}]$.

$$x_{-} = \arg\min_{\theta} \left[\frac{1 - C}{2} - \sum_{x=0}^{\theta - 1} p(x) \right]$$
 (43.94)

$$x_{+} = \arg\min_{\theta} \left[\frac{1 - C}{2} - \sum_{x=\theta+1}^{+\infty} p(x) \right]$$
 (43.95)

43.6.2 General construction

For every value of the true parameter X it is possible to construct a confidence interval. This leads to the construction of two functions $x_{-}(X)$ and $x_{+}(X)$. The 2D diagram obtained by plotting $x_{-}(X)$ and $x_{+}(X)$ with the x-axis horizontally and X-axis vertically is called the **confidence region**.

Method 43.6.6. Let x_0 be a point estimate of the parameter X. From the confidence region it is possible to infere a confidence interval $[X_-(x), X_+(x)]$, where the upper limit X_+ is not the limit such that there is only a $\frac{1-C}{2}$ chance of having a true parameter $X \geq X_+$, but the limit such that if the true parameter $X \geq X_+$ then there is a chance of $\frac{1-C}{2}$ to have a measurement x_0 or smaller.

43.6.3 Interval for a sample mean

Formula 43.6.7 (Interval with known variance). If the sample size is large enough, the real distribution is unimportant, because the CLT ensures a Gaussian distribution of the sample mean \overline{X} . The α -level confidence interval such that $\Pr(-z_{\alpha/2} < Z < z_{\alpha/2})$ with $Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{N}}$ is given by

$$\left[\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{N}}, \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{N}}\right]. \tag{43.96}$$

Remark 43.6.8. If the sample size is not sufficiently large, the measured quantity must follow a normal distribution.

Formula 43.6.9 (Interval with unknown variance). To account for the uncertainty of the estimated standard deviation $\hat{\sigma}$, the student-t distribution 43.54 is used instead of a Gaussian distribution to describe the sample mean \overline{X} . The α -level confidence interval is given by

$$\left[\overline{X} - t_{\alpha/2;(n-1)} \frac{s}{\sqrt{N}}, \overline{X} + t_{\alpha/2;(n-1)} \frac{s}{\sqrt{N}}\right]$$
(43.97)

where s is the estimated standard deviation 43.4.9.

Formula 43.6.10 (Wilson score interval). For a sufficiently large sample, a sample proportion \hat{P} is approximately Gaussian distributed with expectation value π and variance $\frac{\pi(\pi-1)}{N}$. The α -level confidence interval is given by

$$\left[\frac{(2N\hat{P}+z_{\alpha/2}^2)-z_{\alpha/2}\sqrt{z_{\alpha/2}^2+4N\hat{P}(1-\hat{P})}}{2(N+z_{\alpha/2}^2)},\frac{(2N\hat{P}+z_{\alpha/2}^2)+z_{\alpha/2}\sqrt{z_{\alpha/2}^2+4N\hat{P}(1-\hat{P})}}{2(N+z_{\alpha/2}^2)}\right].$$
(43.98)

Remark. The expectation value and variance are these of a binomial distribution 43.47 with r = X/N.

43.7 Hypothesis testing

Definition 43.7.1 (Simple hypothesis). A hypothesis is called simple if the distribution is fully specified.

Definition 43.7.2 (Composite hypothesis). A hypothesis is called composite if the distribution is given relative to some parameter values.

43.7.1 Testing

Definition 43.7.3 (Type I error). Rejecting a true null hypothesis.

Definition 43.7.4 (Type II error). Accepting a false null hypothesis.

Definition 43.7.5 (Significance). The probability of making a type I error:

$$\alpha := \int_{\Omega} P_I(x) dx. \tag{43.99}$$

Property 43.7.6. Let $\alpha_1 > \alpha_2$. An α_2 -level test is also significant at the α_1 -level.

Remark 43.7.7. For discrete distributions it is not always possible to achieve an exact level of significance.

Remark. Type I errors occur occasionally. They cannot be prevented, one can only try to control them.

Definition 43.7.8 (Power). The probability of not making a type II error:

$$\beta := \int_{\Omega} P_{II}(x) dx \longrightarrow \text{power: } 1 - \beta.$$
 (43.100)

Remark 43.7.9. A good test is a test with a small significance and a large power. The probabilities $P_I(x)$ and $P_{II}(x)$ should be as different as possible.

Definition 43.7.10 (Likelihood ratio test). The null hypothesis $H_0: \theta = \theta_0$ is rejected in favour of the alternative hypothesis $H_1: \theta = \theta_1$ if the likelihood ratio Λ satisfies the following condition:

$$\Lambda(x) = \frac{\mathcal{L}(\theta_0|x)}{\mathcal{L}(\theta_1|x)} \le \eta \tag{43.101}$$

where $P(\Lambda(x) \leq \eta | H_0) = \alpha$.

Remark. In some references the reciprocal of $\Lambda(x)$ is used as the definition of the likelihood ratio.

Theorem 43.7.11 (Neyman-Pearson lemma). The likelihood ratio test is the most powerful test at significance level α .

Construction 43.7.12 (Bonferroni correction). Consider a set of hypotheses $\{H_i\}_{1 \leq i \leq n}$. The higher the number of tests, the higher the chance that by statistical fluctuations at least one of these hypotheses will be rejected. To avoid this problem of multiple comparisons, one can try to control the "family-wise error rate", i.e. the probability of falsely rejecting at least one hypothesis. The easiest way to control this error rate is by modifying the individual significance levels:

$$\alpha \longrightarrow \frac{\alpha}{n}.$$
 (43.102)

43.8 Comparison tests

Definition 43.8.1 (McNemar test). Consider two models or hypotheses describing a given data set. Construct the contingency table describing the number of true positives and true negatives for both models:

$$\begin{array}{c|cccc} & \text{TP (model 1)} & \text{TN (model 1)} \\ \hline \text{TP (model 2)} & a & b \\ \hline \text{TN (model 2)} & c & d \\ \end{array} \tag{43.103}$$

The null hypothesis of the McNemar test is that there is no significant difference between the predictive power of the model, i.e. $p_a + p_c = p_a + p_b$ and $p_b + p_d = p_c + p_d$ where p_i indicates the proportion of the variable i. By noting that the diagonal values are redundant in this description one can write the hypotheses more concisely:

$$H_0: b=c$$

$$H_1: b \neq c$$
.

The test statistic is the McNemar chi-squared statistic: $\chi^2 = \frac{(b-c)^2}{b+c}$. When the values of b and c are large enough (> 25) one can approximate this distribution by an ordinary χ^2 -distribution with 1 degree of freedom.

Remark 43.8.2 (Edwards correction). It is common to apply a continuity correction (similar to the *Yates-correction* for the ordinary chi-squared test):

$$\chi^2 := \frac{(|b-c|-1)^2}{b+c}. (43.104)$$

This follows from the fact that for small b, c the exact p-values should be compared with a binomial test which compares b to b + c (note the factor of 2):

$$p = 2\sum_{i=b}^{b+c} {b+c \choose i} 0.5^{i} (1-0.5)^{b+c-i}.$$
 (43.105)

Definition 43.8.3 (Wilcoxon signed-rank test). Consider a paired data sample, i.e. two dependent data samples for which the i^{th} entries are paired together. This test checks if the population means are different. The test statistic is defined as follows:

First one calculates the differences d_i and ranks their absolute values (ties are assigned an average rank). Then one calculates the sums of the ranks R_+, R_- for positive and negative differences and takes smallest of these:

$$T := \min(R_+, R_-). \tag{43.106}$$

For small data samples (n < 25) one can look up critical values in the literature. For larger data samples one can (approximately) use a standard normal distribution with statistic

$$z := \frac{T - \frac{1}{4}n(n+1)}{\sqrt{\frac{1}{24}n(n+1)(2n+1)}}.$$

Remark 43.8.4. The major benefit of this test over a signed t-test is that the Wilcoxon test does not require the data samples to be drawn from a normal distribution. However in the case where the assumptions for a paired t-test are met, the t-test is more powerful.

Definition 43.8.5 (Family-wise error). Given a collection of hypothesis tests, the family-wise error is defined as the probability of making at least one type-I error.

Definition 43.8.6 (Friedman test). Consider k models tested on N data sets. For every data set one ranks the models according to decreasing performance. For every $i \leq k$ one defines the average rank $R_i = \frac{1}{N} \sum_{j \leq N} r_i^j$ where r_i^j is the rank of the i^{th} model on the j^{th} data set. Under the null hypothesis (all models perform equally well) the average ranks should be the same for all models.

The Friedman statistic

$$\chi_F^2 := \frac{12N}{k(k+1)} \left(\sum_{i \le k} R_i^2 - \frac{k(k+1)^2}{4} \right) \tag{43.107}$$

follows a χ^2 -distribution with k-1 degrees of freedom when N>10 and k>5. For smaller values of these parameters one can look up the exact critical values in the literature.

Remark 43.8.7. It was shown that the original Friedman test is rather conservative and that a better statistic is

$$F := \frac{(N-1)\chi_F^2}{N(k+1) - \chi_F^2}. (43.108)$$

This follows an F-distribution with k-1 and (N-1)(k-1) degrees of freedom. As a further remark we mention that the (nonparametric) Friedman test is weaker than (parametric) repeated-measures ANOVA whenever the assumptions for the latter hold (similar to the case of the Wilcoxon signed-rank test).

43.8.1 Post-hoc tests

After successfully using one of the multi-model tests from the previous section to reject the null hypothesis of equal performance one is often interested in exactly which model outperforms the others. For this one can use one of the following pairwise tests:

Definition 43.8.8 (Nemenyi test). Consider the average ranks R_i from the Friedman test. As a test statistic one uses

$$z := \frac{R_i - R_j}{\sqrt{\frac{k(k+1)}{6N}}} \tag{43.109}$$

where k is the number of models and N is the number of data sets. The exact critical values can either be found in the literature or one can approximately use a normal distribution.

Definition 43.8.9 (Bonferroni-Dunn test). If all one wants to do is see if a particular model performs better than a given baseline model than the Nemenyi test is too conservative since it corrects for k(k-1)/2 model comparisons instead of k-1. Therefore it is better to use a general method to control the family-wise error for multiple measurements. The Bonferroni-Dunn test modifies the Nemenyi test by performing a Bonferroni correction with n-1 degrees of freedom.

A more powerful test is given by the following strategy:

Definition 43.8.10 (Holm test). Consider the p-values of the Nemenyi test. Instead of comparing all values to a single Bonferroni-corrected significance, one can use a so-called "step-down" method. First we order the p-values in ascending order and compare the smallest one to $\frac{\alpha}{k-1}$. If this value is significant, i.e. the hypothesis that the associated models perform equally well is rejected, then one compares p_2 to $\frac{\alpha}{k-2}$ and so on until one finds a hypothesis that cannot be rejected. All remaining hypotheses are retained as well.

Remark 43.8.11. It is possible that the post hoc test fails to report a significant difference even though the Friedman test rejected the null hypothesis. This is a consequence of the lower power of the post hoc tests.

43.9 Goodness of fit

Let $f(x;\theta)$ be the fitted function obtained using N measurements.

Definition 43.9.1 (Akaike information criterion). Consider a model $f(x, \theta)$ with k parameters fitted to a given data sample and let \mathcal{L}_0 be the maximum of the associated likelihood function. The Akaike information criterion is defined a follows:

$$AIC := 2k - 2\ln(\mathcal{L}_0). \tag{43.110}$$

From this definition it is immediately clear that the AIC rewards goodness-of-fit but penalizes overfitting due to the first term.

This criterion is often useful when trying to select the best model/parameters to describe a certain data set. However it should be noted that it is not an absolute measure of quality.

43.9.1 χ^2 -test

Property 43.9.2. If there are N-n fitted parameters we have:

$$\int_{\chi^2}^{\infty} f(\chi^2|n) d\chi^2 \approx 1 \implies \begin{cases}
\circ \text{ good fit} \\
\circ \text{ errors were overestimated} \\
\circ \text{ selected measurements} \\
\circ \text{ lucky shot}
\end{cases} (43.111)$$

Property 43.9.3 (Reduced chi-squared). The reduced chi-squared statistic is defined as follows:

$$\chi_{\text{red}}^2 := \chi^2 / n \tag{43.112}$$

where n is the number of degrees of freedom. Depending on the value of this statistic one can draw the following conclusions (under the right assumptions):

• $\chi^2_{\rm red} \gg 1$: poor modelling,

• $\chi^2_{\rm red} > 1$: bad modelling or underestimation of the uncertainties,

• $\chi^2_{\rm red} \approx 1$: good fit, or

• $\chi^2_{\rm red} < 1$: (improbable) overestimation of the uncertainties.

43.9.2 Runs test

A good χ^2 -test does not mean that the fit is good. As mentioned in property 43.111 it is possible that the errors were overestimated. Another condition for a good fit is that the data points vary around the fit, i.e. there are no long sequences of points that lie above/underneath the fit. (It is a result of the "randomness" of a data sample.) This condition is tested with a runs test 43.113.

Remark 43.9.4. The χ^2 -test and runs test are complementary. The χ^2 -test only takes the absolute value of the differences between the fit and data points into account, the runs test only takes the signs of the differences into account.

Formula 43.9.5 (Runs distribution). Let N_+ and N_- denote the number of points above and below the fit. Under the hypothesis that all points were independently drawn from the same distribution the number of runs is distributed as follows (approximately Gaussian):

$$P(r_{even}) = 2 \frac{C_{\frac{r}{2}-1}^{N_{+}-1} C_{\frac{r}{2}-1}^{N_{-}-1}}{C_{N_{+}}^{N}}$$

$$P(r_{odd}) = \frac{C_{\frac{r-3}{2}}^{N_{+}-1} C_{\frac{r-1}{2}}^{N_{-}-1} + C_{\frac{r-3}{2}}^{N_{-}-1} C_{\frac{r-1}{2}}^{N_{+}-1}}{C_{N_{+}}^{N}}$$

$$(43.113)$$

where C_k^n is the binomial coefficient $\binom{n}{k}$. The first two moments of this distribution are given by the following formulas:

$$E[r] = 1 + 2\frac{N_{+}N_{-}}{N} \tag{43.114}$$

$$Var[r] = 2\frac{N_{+}N_{-}}{N} \frac{2N_{+}N_{-} - N}{N(N-1)}.$$
(43.115)

Remark 43.9.6. For r > 10 a 15 the runs distribution approximates a Gaussian distribution.

Chapter 44

Information Geometry

For more information on differential geometry, see chapter 29 and onwards. The main reference for this chapter is [18].

44.1 Statistical manifolds

In the current section an important subclass of Riemannian manifolds that admit two related flat connections will be introduced. These manifolds will formalize form the geometric backbone of many statistical concepts and methods.

Definition 44.1.1 (Conjugate connections). Consider a Riemannian manifold (M, g) with an affine connection ∇ . The conjugate (or dual) connection $\widetilde{\nabla}$ is defined by the following equation:

$$X(g(Y,Z)) = g(\nabla_X Y, Z) + g(Y, \widetilde{\nabla}_X Z). \tag{44.1}$$

where $X, Y, Z \in TM$. It should be noted that the conjugate connection, defined by the above formula, always exists and is unique. Moreover, this construction is involutive:

$$\overset{\approx}{\nabla} = \nabla.$$

Property 44.1.2. Consider a pair of conjugate connections $\nabla, \widetilde{\nabla}$ on a Riemannian manifold (M,g) and denote their parallel transport maps by \mathcal{P} and \mathcal{P}' respectively. Although the metric is in general not preserved under either \mathcal{P} or \mathcal{P}' , it is preserved under conjugate (or dual) transport:

$$g(v,w) = g\left(\mathcal{P}_{\gamma}v, \widetilde{\mathcal{P}}_{\gamma}w\right) \tag{44.2}$$

for any smooth path γ .

Property 44.1.3. Consider two conjugate connections $\nabla, \widetilde{\nabla}$ on a Riemannian manifold (M, g). The connection

$$\overline{\nabla} := \frac{\nabla + \widetilde{\nabla}}{2} \tag{44.3}$$

is metric (-preserving), i.e. $\overline{\nabla}g=0$. Furthermore, if both ∇ and $\widetilde{\nabla}$ are torsion-free, then $\overline{\nabla}$ necessarily coincides with the Levi-Civita connection of g.

The above properties lead to the following definition:

Definition 44.1.4 (Statistical manifold). A Riemannian manifold (M, g) equipped with a torsion-free connection that satisfies the *Codazzi condition*

$$\nabla_X g(Y, Z) = \nabla_Y g(X, Z), \tag{44.4}$$

i.e. ∇g is totally symmetric, is called a statistical manifold.¹ The rank-3 tensor $T := \nabla g$ is sometimes called the **cubic tensor** or **Amari-Chentsov** tensor. In local coordinates the cubic tensor gives the difference between the Christoffel symbols of ∇ and $\widetilde{\nabla}$:

$$T_{ijk} = \widetilde{\Gamma}_{ijk} - \Gamma_{ijk}. \tag{44.5}$$

In the case where ∇ has nonvanishing torsion one can generalize this definition by also relaxing the Codazzi equation:

$$\nabla_X g(Y, Z) - \nabla_Y g(X, Z) = -g(T^{\nabla}(X, Y), Z). \tag{44.6}$$

If this equation is satisfied for all X, Y and $Z \in TM$, then the dual connection is torsion-free and the tuple (M, g, ∇) is called a **statistical manifold admitting torsion**.² The existence of a torsion-free connection is sufficient to turn a (pseudo-)Riemannian manifold into a statistical manifold admitting torsion.

Definition 44.1.5 (Dually flat manifold). Consider a statistical manifold (M, g, ∇) . If ∇ is flat, then its conjugate $\widetilde{\nabla}$ is also flat and the tuple $(M, g, \nabla, \widetilde{\nabla})$ is called a dually flat manifold.

Because the affine connections are flat, they endow the manifold with an *affine structure*, i.e. there exist coordinate charts such that the coordinate-induced vector fields satisfy

$$\nabla_{\partial_i} \partial_i = 0 \tag{44.7}$$

for all $i, j \leq n$ and such that the transition functions are affine transformations. It can be shown that the conjugate metric induces a similar $\widetilde{\nabla}$ -affine coordinate chart such that the coordinate-induced vector fields satisfy the following orthonormality condition:

$$g\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial y_i}\right) = \delta_i^j. \tag{44.8}$$

This coordinate system is called the dual (coordinate) system.

44.1.1 Divergences

Definition 44.1.6 (Divergence). Let M be a set. A smooth function $D(\cdot||\cdot): M \times M \to \mathbb{R}$ with the following properties is called a divergence (measure) on M:

- 1. Positivity: $D(p||q) \geq 0$ for all $p, q \in M$, and
- 2. Nondegeneracy: D(p||q) = 0 if and only if p = q.

The dual divergence D^* is defined by $D^*(p||q) := D(q||p)$ for all $p, q \in M$.

Property 44.1.7 (Induced metric). An interesting feature of these functions is that one can use their Hessians (with respect to either of the two arguments) to construct a Riemannian metric if M is a smooth manifold:

$$g_{ij}(\theta) := \left. \frac{\partial^2 D}{\partial p^i \partial p^j}(p||q) \right|_{p=q=\theta} = \left. \frac{\partial^2 D}{\partial q^i \partial q^j}(p||q) \right|_{p=q=\theta} = \left. - \frac{\partial^2 D}{\partial p^i \partial q^j}(p||q) \right|_{p=q=\theta}. \tag{44.9}$$

¹In fact the Codazzi condition implies vanishing torsion and vice versa.

²This situation arises in the study of quantum systems and density operators.

Example 44.1.8 (f-divergences and α -divergences). Let f be a smooth convex function such that f(1) = 0 and let p, q be two probability distributions such that p is absolutely continuous with respect to q. The f-divergence is defined as follows:

$$D_f(p||q) := \int_{\Omega} f\left(\frac{dp}{dq}\right) dq. \tag{44.10}$$

In the case where both p and q are absolutely continuous with respect to some given measure $d\mu$ (with Radon-Nikodym derivatives g, h), one can rewrite the above formula as

$$D_f(p||q) = \int_{\Omega} h(x) f\left(\frac{g(x)}{h(x)}\right) d\mu(x). \tag{44.11}$$

It is not hard to see that f-divergences remain invariant under affine transformations of the form

$$f(x) \longrightarrow f(x) + c(x-1),$$
 (44.12)

where the shift x-1 is necessary to preserve the condition f(1) = 0. This implies that one can always choose f'(1) = 0 without loss of generality. Moreover, one can also easily see that these divergences transform linearly under scale transformations and, hence, one can also always choose f''(1) = 1. f-divergences with these properties are said to be **standard**.

A particular class of f-divergences are the α -divergences (in the sense of $Csisz\acute{a}r^3$) where

$$f_{\alpha}(x) = \frac{1 - x^{\alpha}}{\alpha(1 - \alpha)}. (44.13)$$

Note that some authors replace $(1-x^a)$ by $(x-x^a)$ since this does not make any difference when calculating the divergence for normalised distributions. For the cases $\alpha=0,1$ one can use a workaround. For $\alpha=0$ one can take the limit of the above definition to obtain $f_0(x)=-\ln x$. This results in $D_0(p||q)=D_{\mathrm{KL}}(q||p)$. For $\alpha=1$ one can look at the general expression of D_α and notice that it is invariant under the simultaneous exchanges $(\alpha \leftrightarrow 1-\alpha)$ and $(p \leftrightarrow q)$. Using this trick one sees that $D_1(p||q)=D_{\mathrm{KL}}(p||q)$.

Definition 44.1.9 (Bregman divergence). Let $F : \mathbb{R}^n \to \mathbb{R}$ be a convex function. Because the function is convex, at every point $q \in \mathbb{R}^n$, the tangent plane to the graph of F is a supporting hyperplane, i.e. it lies underneath the graph everywhere and it touches the graph only at q. Using this hyperplane one can define the Bregman divergence as follows:

$$D_F(p||q) := F(p) - F(q) - \vec{\nabla}F(q) \cdot (p - q), \tag{44.14}$$

where the gradient is denoted by $\vec{\nabla}$ to avoid confusion with further occurrences of the ∇ -symbol for affine connections. This function gives the difference in "height" between the function value at p and the position of the tangent plane (defined by q) at p. Because the gradient of a convex function is monotonic, this difference will always increase the further the points are spread apart. (For convex functions this will in general only be nondecreasing. However, in the remainder of this chapter strict convexity will almost always be assumed.)

Example 44.1.10. The Kullback-Leibler divergence 42.8.3 can be obtained as the Bregman divergence associated to the (negative) Shannon entropy $F(\rho) := \sum_{i=1}^{n} \rho_i \ln \rho_i$. It is also equal to the f-divergence associated to the choice $f = \ln$.

³ Tsallis and Rényi introduced different divergences/entropies with the same name.

A Bregman divergence can also be used to endow the underlying manifold with further structure. By restricting to strictly convex functions, i.e. requiring that the Hessian is positive-definite, one can perform a Legendre transformation to obtain a new function:

$$\widetilde{F}(x^*) := x^* \cdot y - F(y), \tag{44.15}$$

where $x^* = \vec{\nabla} F(y)$.⁴ It can be shown that \widetilde{F} is again (strictly) convex and hence also defines a Bregman divergence. This second Bregman divergence coincides with the dual divergence D_F^* :

$$D_F(p||q) = D_{\widetilde{F}}(q^*||p^*). \tag{44.16}$$

Using this relation one can also rewrite the original expression for the Bregman divergence:

$$D_F(p||q) = F(p) + \widetilde{F}(q) - x^i(p)y_i(q). \tag{44.17}$$

Now, the two convex functions F, \widetilde{F} define two coordinate systems that are related as follows:

$$y = \vec{\nabla}F$$
 and $x = \vec{\nabla}\widetilde{F}(y)$. (44.18)

However, convexity of functions is not preserved under arbitrary coordinate transformations and hence one should restrict the class of allowed coordinate transformations. To preserve convexity only affine transformations are allowed. In affine coordinates one can express any geodesic, i.e. any path γ such that $\nabla_{\dot{\gamma}}\dot{\gamma}=0$, as a straight line:

$$\gamma_{q \to p}(t) \equiv tx(p) + (1 - t)x(q). \tag{44.19}$$

Geodesics for the conjugate connection are called **dual geodesics**. It is important to note that the Legendre transform that maps the primary coordinates to the dual coordinates is in general not an affine transformation and hence does not preserve the dual structure. Moreover, it can be shown that neither of the parallel transport maps, although completely trivial due to the affine structure, are metric-preserving. However, parallel transporting one vector by ∇ and the other by $\widetilde{\nabla}$ does preserve the metric. The metric structures induced by the Hessians are also intertwined:

$$g_{ij} = \frac{\partial^2 F}{\partial x^i \partial x^j}$$
 and $\tilde{g}^{ij} = \frac{\partial^2 \tilde{F}}{\partial y_i \partial y_j}$ (44.20)

are mutual inverses. Manifolds with this structure are said to be **dually flat** (see also the section with this name further below.)

Example 44.1.11 (Euclidean distance). On \mathbb{R}^n the most common choice of divergence measure is the Euclidean distance:

$$D_{\text{eucl}}(p||q) := \frac{1}{2}||p - q||. \tag{44.21}$$

It is not hard to show that this function is in fact self-dual with respect to Legendre transformations. This also implies that the primary and dual structures on \mathbb{R}^n (with respect to the Euclidean distance) coincide. The associated connections are equal to the (trivial) Levi-Civita connection.

Property 44.1.12 (Dually flat manifold). The dually flat structure on a dually flat manifold $(M, g, \nabla, \widetilde{\nabla})$ enables one to define two affine coordinate systems through two functions ψ, ϕ (called **potentials**). Because the connection ∇ is torsion-free and the metric is symmetric by definition, a function ψ can (locally) be found such that

$$g_{ij} = \partial_i \partial_j \psi. \tag{44.22}$$

The positive-definiteness of g further implies that ψ is convex. This implies that ψ can be used to define a Bregman divergence. The induced dually flat structure is exactly $(M, g, \nabla, \widetilde{\nabla})$.

⁴For general convex functions this relation is not necessarily invertible.

44.1.2 Exponential families

The primary and dual affine geodesics are often given the names e-geodesic and m-geodesic in the literature. In this and the following section, this naming convention is explained.

Definition 44.1.13 (Exponential family). Let $X : \Omega \to \mathbb{R}^k$ be a random variable. For every integer $n \in \mathbb{N}$, every collection of smooth functions $\{h_i : \mathbb{R}^k \to \mathbb{R}\}_{1 \le i \le n}$ and any smooth function $\lambda : \mathbb{R}^k \to \mathbb{R}$ one can define the following family of distributions indexed by some parameter $\theta \in \mathbb{R}^n$:

$$p(X;\theta) := \exp\left(h_i(X)\theta^i + \lambda(X) - \psi(\theta)\right). \tag{44.23}$$

The function $\psi(\theta)$ is introduced as a normalisation function:

$$\psi(\theta) := \ln \int \exp(h_i(X)\theta^i) d\mu(X). \tag{44.24}$$

The function λ is often included in a redefinition of the measure:

$$d\mu(X) \longrightarrow d\nu(X) := \exp(\lambda(X)) d\mu(X).$$

Remark 44.1.14. The function ψ is actually the cumulant-generating function (or free energy in physics terminology) of p.

Such a family of exponential distributions forms a manifold with affine coordinates θ^i (these are also called the **natural parameters**). The dual coordinates $\nabla \psi(\theta)$ are the expectation values $\mathrm{E}[X]$ and the associated dual convex function ϕ is the Shannon entropy. Accordingly, the Bregman divergence associated to ψ is given by the (dual) Kullback-Leibler divergence:

$$D_{\psi}(\theta||\theta') = D_{\text{KL}}(\theta'||\theta). \tag{44.25}$$

The metric induced by this structure is the Fisher information:

$$g_{ij} = \mathcal{I}_{ij}[X;\theta] := \mathbb{E}\left[\left(\frac{\partial}{\partial \theta^i} \ln p(X;\theta)\right) \left(\frac{\partial}{\partial \theta^j} \ln p(X;\theta)\right)\right].$$
 (44.26)

Now, consider an affine combination of natural parameters (hence an affine geodesic in the manifold of an exponential family):

$$\theta(t) := t\theta_2 + (1-t)\theta_1$$
.

The probability distributions along this path can themselves be interpreted as constituting an exponential family with natural parameter t and, therefore, one calls the primary geodesic $\theta(t)$ an **e-geodesic** ('e' for exponential).

44.1.3 Mixtures

Another important class of probability distributions is given by the mixture families:

Definition 44.1.15 (Mixture). Consider a collection of probability distributions $\{p_i(X)\}_{i\leq n}$. For every point $\eta \equiv (\eta_0, \dots, \eta_n)$ in the probability simplex Δ^n , one can define the distribution

$$p(X;\eta) := \sum_{i=0}^{n} \eta_i p_i(X). \tag{44.27}$$

This mixture family forms a manifold with affine coordinates $\{\eta_i\}_{1\leq i\leq n}$ (note that η_0 can be calculated from the other weights and is therefore not an independent coordinate).

The (negative) Shannon entropy of a mixture defines a convex function φ and, as noted before, it induces the Kullback-Leibler divergence:

$$D_{\varphi}(\eta||\eta') = D_{\mathrm{KL}}(\eta||\eta'). \tag{44.28}$$

Example 44.1.16 (Discrete distribution). An interesting example of mixtures is given by the class of discrete (or categorical) distributions:

$$p(X;\eta) = \sum_{i=0}^{n} \eta_i \delta_i(X)$$
(44.29)

where $\eta \in \Delta^n$. At the same time these models can be considered as distributions in an exponential family with affine coordinates $\theta^i := \ln \frac{p_i}{p_0}$. For these models the primary coordinates $\overline{\theta}$, dual to η , coincide with the natural parameters θ .

Consider two points with dual coordinates η_1, η_2 . The dual geodesic connecting these points is of the form

$$\eta(t) = t\eta_2 + (1 - y)\eta_1.$$

In the case of discrete distributions, where the dual coordinates are given by elements of the probability simplex Δ^n , one can see that such a geodesic induces a linear interpolation of distributions and accordingly defines a mixture family. For this reason one generally calls a dual geodesic an **m-geodesic** ('m' for mixture).⁵

Remark 44.1.17. The reader should be aware of an important source of confusion. The above sections would point to the following naming convention:

 $\begin{array}{lll} \text{e-geodesic} & \leftrightarrow & \text{primary geodesic} \\ \text{m-geodesic} & \leftrightarrow & \text{dual geodesic} \end{array}$

However, because the Kullback-Leibler divergence is the most widely used divergence measure, equation (44.25) where the KL-divergence is the dual divergence, made it possible that the above convention got reversed in the bulk of the literature. This reversal also forces one to interchange "primary" and "dual" in most statements such as the Pythagorean and projections theorems. (This is actually what happens in the literature.)

To prevent confusion it is important that one pays attention to which divergence is used. In this text a distinction has been made (as much as possible) between the e/m-convention and the primary/dual convention. The second convention is the main choice here since this one is uniquely determined once one knows the divergence that is used.

44.1.4 Compatible divergences

The question to be answered in this section is the following one: "Given a dually flat manifold, which divergences are compatible with this structure?". In the previous sections it was shown that exponential families and mixture families naturally give rise to the Kullback-Leibler divergence, but not all dually flat manifolds are induced by such families.

A basic requirement, as is generally the case with geometric structures, is the requirement that the divergences are invariant under coordinate transformations. To this end one introduces the *monotonicity criterion of Chentsov*. This criterion states that no transformation should increase the divergence between two points (this corresponds to the idea that transformations can never increase the amount of information). However, there exists a class of (noninvertible) transformations that do leave the divergence invariant:

⁵For arbitrary families the dual geodesic does not necessarily induce a mixture of distributions.

Definition 44.1.18 (Sufficient statistic). Consider a random variable X following the distribution $p(X;\theta)$. A transformation $\xi(X)$ is said to be sufficient (with respect to θ) if the distribution of X conditioned on $\xi(X)$ is independent of θ . The **Fisher-Neyman factorisation theorem** states that this is equivalent to the existence of the following decomposition

$$p(X;\theta) = f(X)g_{\theta}(\xi(X)) \tag{44.30}$$

for some nonnegative functions f, g_{θ}

The invariance criterion states that these transformations are the only transformations that leave the divergence invariant:

Axiom 44.1 (Invariance criterion). Consider a dually flat manifold M. Compatible divergences should satisfy the following inequality for all transformations $\overline{x} := \xi(x)$:

$$\overline{D}(\theta||\theta') \le D(\theta||\theta'). \tag{44.31}$$

The equality holds if and only if the transformed variable \overline{x} is a sufficient statistic.

Example 44.1.19 (f-divergences). An important class of invariant divergences on the manifold Δ^n is given by the f-divergences introduced in the beginning of this chapter. These also have the additional property that they are **decomposable**:

$$D_f(p||q) = \sum_{i=0}^{n} d(p_i, q_i)$$
(44.32)

for some nonnegative function d.

The following result gives a partial characterization of invariant divergences on the manifold of discrete distributions Δ^n :

Property 44.1.20. A divergence D on Δ^n (n > 1) is invariant and decomposable if and only if it it an f-divergence. If the induced geometric structure is required to be flat, then $D = D_{\text{KL}}$. When extended to \mathbb{R}^n_+ (the discrete positive measures), the collection of all α -divergences is recovered.

Corollary 44.1.21. Because every Bregman divergence is flat, we see that D_{KL} is the only Bregman divergence that is also an f-divergence.

One can also go a step further and ask which metrics can arise on such invariant structures. The answer is quite simple (at least for discrete distributions):

Theorem 44.1.22 (Chentsov). Up to scaling, the only invariant metric that exists on Δ^n is the Fisher information metric. Extending this result to the manifold \mathbb{R}^n_+ of discrete positive measures, the only invariant metric on \mathbb{R}^n_+ is the Euclidean metric.

Remark. Extensions to other families/manifolds of distributions can be found in the literature. However, most of these theorems have to make additional assumptions.

44.1.5 Flat structures

In this paragraph the flat structures on \mathbb{R}^n_+ are considered. By one of the properties above these are exactly the α -divergences. Following Amari, the transformation $\alpha = 2q - 1$ is performed (this maps the $Csisz\acute{a}r$ divergences to the Tsallis divergences). Given a discrete positive measure with coefficients m_i , the affine coordinates are defined as follows:

$$\theta^i \equiv h_\alpha(m_i) := m_i^{\frac{1-\alpha}{2}}. (44.33)$$

It is not hard to see that the inverse function $\theta^i \mapsto m_i$ is convex (for $|\alpha| \le 1$) and hence one can define a potential as follows:

$$\psi_{\alpha}(\theta) := \frac{1-\alpha}{2} \sum_{i=0}^{n} m_{i} = \frac{1-\alpha}{2} \sum_{i=0}^{n} (\theta^{i})^{\frac{2}{1-\alpha}}.$$
 (44.34)

The dual coordinates are then given by

$$\eta_i \equiv h_{-\alpha(m_i)} = m_i^{\frac{1+\alpha}{2}}.$$
(44.35)

It should be noted that the normalization constraint $\sum_{i=0}^{n} m_i = 1$ that embeds Δ^n in \mathbb{R}^n_+ is a nonlinear constraint on the affine coordinates except for $\alpha = -1$ (for the dual coordinates this happens for $\alpha = 1$). This recovers the fact that the Kullback-Leibler divergence is the only flat, invariant and decomposable structure on Δ^n .

For any monotonic function h the so-called h-representation of x is defined as h(x). Using this representation, one can define the h-mean as follows:

$$m_h(x,y) := h^{-1} \left(\frac{h(x) + h(y)}{2} \right).$$
 (44.36)

The α -representations are exactly the ones inducing linearly scaling h-means:

$$m_{\alpha}(\lambda x, \lambda y) = \lambda m_{\alpha}(x, y).$$
 (44.37)

It is not hard to see that all well-known means, such as the ordinary, geometric and harmonic means, are examples of α -means. Given an α -representation, one can define an α -mixture of distributions as the α -mean of the distributions (up to normalization). By allowing for weighted sums, the so-called α -family or α -integration of distributions with coordinate system $\{w_i\}_{1\leq i\leq N}$ are obtained. The cases $\alpha=-1$ and $\alpha=1$ can be seen to correspond to mixtures and exponential families respectively.

44.2 Projections

The following theorem generalizes the classic Pythagorean theorem on \mathbb{R}^n (and reduces to it when one chooses the Euclidean distance as the divergence measure)

Theorem 44.2.1 (Pythagoras). Consider a triangle PQR on a dually flat manifold M with canonical divergence D. If the geodesic PQ and the dual geodesic QR are orthogonal, the following equation holds:

$$D(P||R) = D(P||Q) + D(Q||R). \tag{44.38}$$

One obtains a similar statement by dualizing all quantities.

In Euclidean space (and in general Hilbert spaces) one of the most powerful theorems is the projection theorem, which states that the shortest path from a point to a subspace is given by orthogonal projection. First the notion of an orthogonal projection should be defined:

Definition 44.2.2 (Orthogonal projection). Consider a point $p \in M$ and a submanifold S of a dually flat manifold M such that $p \notin S$. A geodesic (orthogonal) projection of p on S is a point $p^* \in \partial S$ such that the affine geodesic connecting p and p^* is orthogonal to all of $T_{p^*}S$. Similarly one can obtain the notion of a dual geodesic projection.

Because in general there exist multiple projections, a strict minimality theorem cannot be formulated:

Theorem 44.2.3 (Projection theorem). The extremal points of the map $s \mapsto D(p||s)$ are geodesic projections of p onto S. The dual statement also holds.

The strict projection theorem for Hilbert spaces only holds for affine subspaces. In the manifold setting this is reflected by a flatness condition:

Property 44.2.4. If the submanifold S is $\widetilde{\nabla}$ -flat, the geodesic projection of $p \notin S$ is unique and it minimizes the map $s \mapsto D(p||s)$. The dual statement also holds.

The e/m-terminology also exists for projections:

Definition 44.2.5 (Projections). The e- and m-projections are defined as follows:

- e-projection: $\pi_e(p) := \arg\min_{q \in S} D_{\mathrm{KL}}(q||p)$, and
- m-projection: $\pi_m(p) := \arg\min_{q \in S} D_{\mathrm{KL}}(p||q).$

Theorem 44.2.6 (Sanov). Consider a probability distribution q on a finite set S and draw n i.i.d. samples. Let P_n be the empirical distribution function of the samples (43.2.4). Further, let Γ be a collection of probability distributions such that $P_n \in \Gamma$. The joint distribution q^n satisfies the following inequality:

$$q^{n}(P_{n} \in \Gamma) \le (n+1)^{|S|} 2^{-nD_{\text{KL}}(p^{*}||q)},$$
(44.39)

where p^* is the information projection of q on Γ . If $\Gamma = \overline{\Gamma}{}^{\circ}$, this can be restated as

$$\lim_{n \to \infty} \frac{1}{n} q^n (P_n \in \Gamma) = -D_{KL}(p^*||q). \tag{44.40}$$

44.3 Estimation and testing

44.3.1 Estimation

Consider a sample $\mathbf{x} := \{x_1, \dots, x_n\}$ drawn from a distribution $P(\mathbf{x}; \theta)$ in an exponential family. The likelihood (43.75) is given by

$$p(\mathbf{x};\theta) = \prod_{i=1}^{n} P(x_i;\theta).$$

The m-coordinates of the observed point are

$$\eta = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}. \tag{44.41}$$

The optimal value for θ can be found by maximizing the log-likelihood $\log p(\mathbf{x}; \theta)$ or, equivalently according to Property 43.4.25, by minimizing the Kullback-Leibler divergence between the observed point and the "true" distribution $P(x;\xi)$. The latter is found by m-projecting the observed point η on the submanifold S of "admissible" distributions.

Chapter 45

Optimization Problems and Data Analysis

Although a part of this chapter is a continuation of the previous one, the focus here lies more on the computational aspect of the analysis of large data sets. For this reason the chapter starts with some sections on applied linear algebra (for a refresher see chapter 20). The main reference for the sections on optimization problems is [112]. For the geometry of clustering methods, see [69].

45.1 Optimization

45.1.1 Linear equations

Method 45.1.1 (Normal equation¹). Given the equation

$$Ax = b$$

as in Section 20.4.1, one can try to numerically solve for x by minimizing the ℓ^2 -norm $||Ax - b||^2$:

$$\hat{x} := \arg\min_{x} (Ax - b)^{T} (Ax - b).$$
 (45.1)

This leads to the so-called normal equation

$$A^T A x = A^T b. (45.2)$$

This can be formally be solved by $x = (A^T A)^{-1} A^T b$ where $(A^T A)^{-1} A^T$ is the pseudoinverse of A.

Remark 45.1.2. It is easy to see that the above linear problem is obtained when trying to extremize the quadratic form associated to a symmetric matrix A.

Method 45.1.3 (Tikhonov regularization). Consider a linear (regression) problem

$$Ax = b$$
.

The most straightforward way to solve for x is the least squares method introduced in Chapter 43, where the solution is (formally) given by the normal equation: $x = (A^T A)^{-1} A^T b$. However, sometimes it might happen that A is nearly singular (**ill-conditioned**). In this case a regularization term can be added to the minimization problem:

$$||Ax - b||^2 + ||\Gamma x||^2, (45.3)$$

¹The name stems from the fact that the equation $A^TAx = A^Tb$ implies that the residual is orthogonal (normal) to the range of A.

where Γ is called the **Tikhonov matrix**. In the case that $\Gamma = \lambda \mathbb{1}$, one speaks of ℓ^2 -regularization. This regularization technique benefits solutions with smaller norms.

Remark 45.1.4. The ℓ^2 -regularization can be generalized by replacing the 2-norm by any p-norm $||\cdot||_p$. For p=1 and p=2 the names **lasso** and **ridge** regression are often used. For general $p \geq 0$ one sometimes speaks of **bridge** regression.

The minimization procedures for $p \leq 1$ have the important property that they not only shrink the coefficients, but that they even perform feature selection, i.e. some coefficients become identically zero. However, it can be shown that the optimization problem for p < 1 is nonconvex and hence is harder to solve. In general it is found that lasso regression gives the best results.

A benefit of ℓ^2 -regularization is that it can be derived from a Bayesian approach. By choosing a Gaussian prior $\mathcal{N}(0,\lambda^{-1})$, Bayesian inference immediately gives the ℓ^2 -regularized cost function as the posterior distribution. Accordingly the ℓ^2 -regularized linear regressor is equivalent to the maximum a posteriori estimator with Gaussian priors. One can obtain ℓ^p -regularization in a similar way by replacing the Gaussian priors with generalized normal distributions (such as the Laplace distribution for p=1).

Definition 45.1.5 (Multicollinearity). Consider a finite set of random variables $\{X_i\}_{1 \leq i \leq n}$. These random variables are said to be perfectly (multi)collinear if there exists an affine relation between them, i.e. there exist variables $\{\lambda_i\}_{0 \leq i \leq n}$ such that

$$\lambda_0 + \lambda_1 X_1 + \dots + \lambda_n X_n = 0. \tag{45.4}$$

The same concept can be applied to data samples. The data is said to be (multi)collinear if the above equation holds for all entries of the data set. However, in this case one also defines "near multicollinearity" if the variables X_i are related as above up to some error term ε . If the variance of ε is small, the matrix X^TX might have an ill-conditioned inverse which might render the algorithms unstable.

Definition 45.1.6 (Variance inflation factor). The VIF is an estimate for how much the variance of a coefficient is inflated by multicollinearity. The VIF of a coefficient β_i is defined as follows:

$$VIF_i := \frac{1}{1 - R_i^2} \tag{45.5}$$

where R_i^2 is the R^2 -value obtained after regressing the predictor \hat{X}_i on all other predictors. The rule of thumb is that VIF ≥ 10 implies that a significant amount of multicollinearity is present in the model.

45.1.2 Descent methods

The gradient descent algorithm is first introduced in the case of quadratic forms:

Method 45.1.7 (Steepest descent). Consider the quadratic form

$$f(x) = \frac{1}{2}x^T A x - b^T x + c.$$

Assume that A is symmetric and positive-definite such that Ax = b gives the minimum of f. Like most recursive algorithms, gradient descent starts from an arbitrary guess x_0 . It then takes a step in the direction of steepest descent (or largest gradient), i.e. in the direction opposite to $f'(x_0) = Ax_0 - b =: -r_0$:

$$x_{i+1} := x_i + \alpha r_i. \tag{45.6}$$

The quantities r_i are called the **residuals**. This procedure is repeated until convergence, i.e. until the residual vanishes up to a fixed numerical tolerance.

A naive gradient descent method would require the user to fine-tune the step size α . However, a more efficient method is given by the 'line search' algorithm, where the value of α is optimized in every step as to minimize f along the line defined by r_i . A standard calculus argument leads to the following form of the step size:

$$\alpha_i = \frac{r_i^T r_i}{r_i^T A r_i}. (45.7)$$

This choice forces the descent direction to be orthogonal to the previous one since $\frac{d}{d\alpha}f(x_i) = -f'(x_i)^T f'(x_{i-1})$. As a consequence, this minimization scheme often results in a chaotic zigzag trajectory through the configuration space. The higher the **condition number** $\kappa = \frac{|\lambda_{\text{max}}|}{|\lambda_{\text{min}}|}$, the worse the zigzag motion will be. A very narrow valley (or some higher-dimensional analogue) will make the trajectory bounce back and forth between the walls, instead of moving towards the minimum.

45.1.3 Conjugate gradient

As noted in the previous section, a common problem with gradient descent is that the direction of steepest descent is often not the same as the direction pointing to the optimal solution and hence convergence occurs only after a long time.

A simple solution can be obtained by considering multiple orthogonal directions and taking a suitable step once in every direction. This way one obtains an algorithm that converges in n steps, where n is the dimension of the coefficient matrix A. By requiring that the error at step i+1 is orthogonal to the direction d_i , it is assured that no direction is used twice. However, the main problem with this idea is that the exact error e_i is not known and hence one cannot calculate the required steps.

By modifying the orthogonality condition one can avoid this problem. This is the idea behind "conjugate direction" methods:

Definition 45.1.8 (Conjugate vectors). Consider a symmetric positive-definite matrix A. Any such matrix induces an inner product as follows:

$$\langle v|w\rangle_A := v^T A w. \tag{45.8}$$

Two vectors v, w are said to be (A-)conjugate if they are orthogonal with respect to $\langle \cdot | \cdot \rangle_A$. The general approach to obtain a basis of A-conjugate vectors is a modified version of the Gram-Schmidt procedure (20.3.16) where we replace the ordinary Euclidean inner product by (45.8). This modification is called the **Arnoldi method**.

By taking the input vectors of the Arnoldi method to be the residuals r_i , one obtains the **conjugate gradient** (CG) algorithm. It is interesting to note that the residuals themselves satisfy a recurrence relation:

$$r_{i+1} = r_i - \alpha_i A d_i, \tag{45.9}$$

where the step size α_i is defined similar to steepest descent:

$$\alpha_i = \frac{d_i^T r_i}{d_i^T A d_i}. (45.10)$$

Since the direction vectors are constructed using the residuals, they span the same subspace. By denoting the subspace spanned by the first i directions by \mathcal{D}_i , the relation $r_{i+1} \in \mathcal{D}_i + Ad_i$ leads to the following expression because of the above recurrence relation:

$$\mathcal{D}_i = \text{span}\{r_0, Ar_0, \dots, A^{i-1}r_0\}. \tag{45.11}$$

Because of their prominence in the literature on numeric optimization techniques, these subspaces have earned their own name:

Definition 45.1.9 (Krylov subspace). A vector space \mathcal{K} of the form

$$\mathcal{K} := \operatorname{span}\{v, Av, \dots, A^n v\} \tag{45.12}$$

for some matrix A, vector v and natural number $n \in \mathbb{N}$. Given such an A and v, one often denotes the associated Krylov subspace of dimension n by $\mathcal{K}_n(A, v)$.

The fact that the spaces \mathcal{D}_i are Krylov spaces also has an import implication for the numerical complexity of the CG algorithm. The residual r_{i+1} can be shown to be orthogonal to the space \mathcal{D}_{i+1} (this is generally called the **Galerkin condition**). But since $A\mathcal{D}_i \subset \mathcal{D}_{i+1}$ this also implies that r_{i+1} is A-conjugate to \mathcal{D}_i . It follows that the only relevant contribution in the Arnoldi method is given by the last direction d_i . This reduces the complexity (both time-wise and memory-wise) per iteration from $O(n^2)$ to O(n).

The steps in the CG algorithm are summarized below:

Method 45.1.10 (Conjugate gradient). Let x_0 be the initial guess with associated residual $r_0 := b - Ax_0$ acting as the first direction vector d_0 . The following steps give an iterative n-step (n being the dimension of the coefficient matrix A) algorithm to obtain the solution to Ax = b:

$$\alpha_i := \frac{r_i^T r_i}{d_i^T A d_i} \tag{45.13}$$

$$x_{i+1} := x_i + \alpha_i d_i \tag{45.14}$$

$$r_{i+1} := r_i - \alpha_i A d_i \tag{45.15}$$

$$d_{i+1} := r_{i+1} + \frac{r_{i+1}^T r_{i+1}}{r_i^T r_i} d_i. (45.16)$$

Remark 45.1.11. In exact arithmetic the above optimization scheme would result in an exact solution after n iterations (in fact the number of iterations is bounded by the number of distinct eigenvalues of A). However, in real life one is not working in exact arithmetic and one has to take into account the occurrence of floating-point errors. These not only ruin the accuracy of the residual recurrence relation 45.15, but more importantly² it might result in the search directions not being A-conjugate.

Now, what about general coefficient matrices A (for example those resulting in under- or overdetermined systems)? For nonsymmetric or nondefinite square matrices we can still solve the normal equation 45.2 using the same methods, since A^TA is both symmetric and positive-definite. For underdetermined systems an exact solution does not always exact, but the numerical methods will always be able to find a solution that minimizes the ℓ^2 -error. For overdetermined systems we are again lucky since A^TA will be nonsingular and the numerical methods can find an exact solution. However, the condition number of A^TA is the square of that of A and hence the algorithms will convergence much slower.

²The residual problem can be solved by computing the residual "exactly", i.e. by the formula $r_i = b - Ax_i$, every k iterations.

A different approach exists. Where we do not apply CG to the matrix A^TA , but work with the individual matrices A, A^T directly. This way we generate not one Krylov space, but two "copies"

$$\mathcal{D}_i := \operatorname{span} \left\{ r_0, A r_0, \dots, A^{i-1} r_0 \right\}$$
$$\widetilde{\mathcal{D}}_i := \operatorname{span} \left\{ \widetilde{r}_0, A^T \widetilde{r}_0, \dots, (A^T)^{i-1} \widetilde{r}_0 \right\}$$

where \tilde{r}_0 does not have to be related to r_0 . In this case there are two Galerkin conditions $r_i \perp \mathcal{D}_i$ and $\tilde{r}_i \perp \tilde{\mathcal{D}}_i$ (only the first one is relevant). The residuals form biorthogonal bases of the Krylov subspaces:

$$\langle r_i | r_j \rangle = ||r_i||^2 \delta_{ij}. \tag{45.17}$$

As a consequence the search directions form biconjugate bases:

$$\langle d_i | d_j \rangle_A = ||d_i||_A^2 \delta_{ij}. \tag{45.18}$$

45.1.4 Nonlinear conjugate gradients

Of course, many real-world applications are determined by nonlinear equations and hence it would be pleasing if we could salvage some of the above ideas even when linear algebra is not the natural language. The main requirement is that we can calculate the gradient of the function f that we are trying to minimize.

On the level of the implementation the structure of the algorithm remains more or less the same. What does change is the form of Arnoldi method. In particular the prefactor in equation 45.16. For linear CG there are multiple equivalent formulas, but for nonlinear CG these do not lead to the same algorithm. We give the two most common choices below:

Method 45.1.12 (Nonlinear CG). Since there is no linear equation related to the minimization problem, we always define the residual as $r_i := -f'(x_i)$. The algorithm consists of the following iterations:

$$\alpha_i := \arg\min_{\alpha} f(x_i + \alpha d_i) \tag{45.19}$$

$$x_{i+1} := x_i + \alpha_i d_i \tag{45.20}$$

$$r_{i+1} := -f'(x_i) \tag{45.21}$$

$$d_{i+1} := r_{i+1} + \beta_{i+1} d_i. \tag{45.22}$$

where β_{i+1} is computed by one of the following formulas:

• Fletcher-Reeves formula:

$$\beta_{i+1} := \frac{r_{i+1}^T r_{i+1}}{r_i^T r_i}. (45.23)$$

• Polak-Ribière formula:

$$\beta_{i+1} := \max \left\{ \frac{r_{i+1}^T (r_{i+1} - r_i)}{r_i^T r_i}, 0 \right\}. \tag{45.24}$$

Some general remarks have to be made concerning the nonlinear CG algorithm:

Remark 45.1.13. As was already mentioned for the linear version, floating-point errors might lead to a loss of conjugacy. For the nonlinear extension this becomes worse: the more f deviates from a quadratic function, the quicker conjugacy is lost (for quadratic formulas the Hessian is exactly the matrix A, but for higher-degree functions the Hessian varies from point to point). Another problem, one that did not occur for quadratic functions, is that nonlinear functions might have multiple local minima. The CG method does not care about local vs. global and hence it will not necessarily converge to the global one. A last remark concerns the fact that there is no theoretical guarantee that the method will converge in n steps. Since the Gram-Schmidt procedure can only construct n conjugate vectors, the simplest solution is to perform a restart of the algorithm every n iterations.³

For linear CG we had a simple formula for finding the optimal value of α_i . However, for nonlinear CG we cannot solve equation 45.19 as easily. The main idea, i.e. that f' should be orthogonal to the previous search direction remains, is still valid. Here we only consider the Newton-Raphson approach.⁴ This gives us

$$\alpha_i = \frac{f'(x_i)^T d_i}{d_i^T f''(x_i) d_i}.$$
 (45.25)

To obtain the optimal α -value one should iteratively apply the Newton-Raphson method in every CG iteration and if the action of the Hessian f'' on d_i cannot be simplified, i.e. if the full Hessian has to be computed in every iteration, then this can lead to considerable computational overhead. The general rule of thumb is to perform only a few Newton-Raphson iterations and obtain a less accurate but more efficient algorithm. To make sure that the search descent direction is indeed a direction of descent (and not one of ascent) one can check that $r^T d \geq 0$ and restart the procedure if it is negative.

45.1.5 Krylov methods

For sake of completeness we add this section on the general properties of Krylov subspace-based methods. We also include some other optimization algorithms based on Krylov subspaces.

Generally one starts from an iterative fixed-point based technique to solve the linear equation Ax = b as before, i.e. one iterates $x_{i+1} = b + (1 - A)x_i$. Using the residuals $r_i = b - Ax_i$ this can be rewritten as

$$x_i = x_0 + \sum_{k=0}^{i-1} r_k = x_0 + \sum_{k=0}^{i-1} (1 - A)^k r_0.$$
 (45.26)

It is clear that this results in $x_i - x_0 \in \mathcal{K}_i(A, r_0)$. The main idea is then to find optimal degree-k polynomials P_k such that $x_i - x_0 = \sum_{k=0}^{i-1} P_k(A) r_0$.

Method 45.1.14 (Jacobi method). Consider a linear problem Ax = b where A has spectral radius less than 1. First we decompose A as the sum of a diagonal matrix D and and a matrix E with zero diagonal elements. If we assume that D is invertible, then we obtain the following recursive scheme:

$$x_{i+1} := D^{-1}(b - Ex_i). (45.27)$$

A sufficient condition for convergence is strict diagonal dominance, i.e. $|D_{ii}| > \sum_{i \neq i} |E_{ij}|$.

?? COMPLETE (e.g. Lanczos)??

 $^{^{3}}$ The max operation in (45.24) is already a form of restarting, due to the fact that the Polak-Ribière version of nonlinear CG sometimes results in cyclic behaviour.

⁴Another common method is the *secant method*.

45.1.6 Constrained optimization

A common generalization of the above optimization problems is the addition of constraints involving equalities:

$$\arg\min_{x} f(x)$$
 such that $g_i(x) = 0$ $\forall 1 \le i \le n$. (45.28)

The general approach to solving such constrained problems is by extending the optimization loss:

Method 45.1.15 (Lagrange multipliers). Given a constrained optimization problem of the form (45.28), one can construct the enhanced loss function

$$\mathcal{L}(x,\lambda_1,\ldots,\lambda_n) := f(x) + \sum_{i=1}^n \lambda_i g_i(x). \tag{45.29}$$

The solution to the original problem is obtained by extremizing this loss with respect to x and the Lagrange multipliers λ_i (as usual this might fail globally for nonconvex problems):

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial x} = 0 \\ \frac{\partial \mathcal{L}}{\partial \lambda_i} = 0 \end{cases} \qquad \forall 1 \le i \le n.$$
 (45.30)

The situation becomes much more interesting when one also allows constraints involving inequalities:

$$\underset{x}{\arg\min} f(x) \quad \text{such that} \quad \begin{cases} g_i(x) = 0 & \forall 1 \le i \le m \\ h_j(x) \le 0 & \forall 1 \le j \le n. \end{cases}$$
 (45.31)

Problems of this form are called **primal optimization problems**. By defining an enhanced loss using Lagrange multipliers as before

$$\mathcal{L}(x,\alpha,\beta) := f(x) + \sum_{i=1}^{m} \alpha_i g_i(x) + \sum_{i=1}^{n} \beta_i h_i(x), \tag{45.32}$$

it is not hard to see that

$$\max_{\alpha,\beta;\beta_j \ge 0} \mathcal{L}(x,\alpha,\beta) = \begin{cases} \infty & \text{if a constraint is violated} \\ f(x) & \text{if all constraints are satisfied.} \end{cases}$$
(45.33)

Definition 45.1.16 (Primal optimization problem). Denote the maximum of $\mathcal{L}(x, \alpha, \beta)$ by $\theta_P(x)$.

$$p^* := \min_{x} \theta_P(x) = \min_{x} \max_{\alpha, \beta: \beta_i > 0} \mathcal{L}(x, \alpha, \beta). \tag{45.34}$$

By interchanging the max and min operators in the primal formulation, another problem is obtained:

Definition 45.1.17 (Dual optimization problem).

$$d^* := \max_{\alpha,\beta;\beta_i \ge 0} \theta_D(\alpha,\beta) = \max_{\alpha,\beta;\beta_i \ge 0} \min_x \mathcal{L}(x,\alpha,\beta). \tag{45.35}$$

From basic calculus it is known that max min \leq min max and hence that $d^* \leq p^*$. The difference $p^* - d^*$ is called the **duality gap** and, if $d^* = p^*$, one says that **strong duality** holds. The real question then becomes: "When does strong duality hold?".

Definition 45.1.18 (Slater conditions). Consider a convex optimization problem, i.e. a problem of the form (45.31) where f is convex, the g_i are convex and the h_j are affine. This problem is said to satisfy the Slater condition(s) if there exists an x that is strictly **feasible**, i.e. $h_j(x) < 0$ for all $1 \le j \le n$.

Property 45.1.19. If a convex problem satisfies the Slater conditions, strong duality holds. The solutions x and (α, β) that attain this duality are called primal optima and dual optima respectively.

The following property gives a set of sufficient conditions:

Property 45.1.20 (Karush-Kuhn-Tucker conditions). If there exist x, α and β such that strong duality holds, the following conditions are satisfied:

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial x} = 0 \\ \frac{\partial \mathcal{L}}{\partial \alpha_{i}} = 0 \end{cases} \quad \forall 1 \leq i \leq m \quad \text{and} \quad \begin{cases} \beta_{j} h_{j}(x) = 0 \\ h_{j}(x) \leq 0 \\ \beta_{j} \geq 0. \end{cases} \quad \forall 1 \leq j \leq n \quad (45.36)$$

Conversely, if there exists values x, α and β that satisfy the KKT conditions, they give strongly dual solutions for the primal and dual problems.

Remark 45.1.21 (Complementary slackness). The third equation in the KKT conditions has an important implication. It says that if there is an index j such that the constraint h_j is not **active**, i.e. $h_j(x) < 0$, then the associated Lagrange multiplier is 0 and, conversely, if there is an index j such that the Lagrange multiplier $\beta_j > 0$, then the constraint h_j is active.

Remark. It is not hard to see that the KKT conditions reduce to the conditions for Lagrange multipliers when all h_j are identically 0. For this reason the quantities α and β are called the KKT multipliers.

45.2 Classification problems

45.2.1 Clustering

Probably the most well-known and simplest algorithm for clustering in the unsupervised setting is the k-means algorithm:

Method 45.2.1 (k-means algorithm). Assume that an unlabelled dataset $\mathcal{D} \subset \mathbb{R}^n$ is given. For every integer $k \in \mathbb{N}$, usually satisfying $k \ll |\mathcal{D}|$, and any choice of k distinct **centroids** $\{c_i \in \mathbb{R}^n\}_{i < k}$, the k-means algorithm is defined through the following iterative scheme:

1. To every point $d \in \mathcal{D}$ assign a cluster C_i based on the following criterion:

$$i = \arg\min_{j \le k} ||d - c_j||^2.$$
 (45.37)

2. Update the centroids c_i to represent the center of mass of the associated cluster C_i :

$$c_i \longleftarrow \frac{1}{|C_i|} \sum_{d \in C_i} d. \tag{45.38}$$

This algorithm is in fact a way to optimize the following global cost function with respect to the centroids c_i :

$$\mathcal{L}_{k\text{means}}(c_1, \dots, c_k) = \sum_{i=1}^k \sum_{d \in C_i} ||d - c_i||^2.$$
(45.39)

Given the above idea, one could ask for a more general algorithm where clustering is performed with respect to a given divergence function 44.1.6. In the case of Bregman divergences 44.1.9 it can be shown that all one needs to do is replace the Euclidean distance by the divergence D_f :

Property 45.2.2 (Centroid position). Let D_f be a Bregman divergence. The minimizer

$$\arg\min_{\kappa} \sum_{i=1}^{k} D_f(x_i||\kappa) \tag{45.40}$$

is given by the arithmetic average

$$\kappa = \frac{1}{k} \sum_{i=1}^{k} x_i. \tag{45.41}$$

If instead of a cluster $C = \{x_i \in \mathbb{R}^n\}_{i \leq k}$, one is given a probability distribution p, one simply has to replace the arithmetic average by the expectation value with respect to p. It can be furthermore be shown that for any Bregman divergence the k-means algorithm always convergences in a finite number of steps (however, the clustering is not necessarily optimal).

The cluster boundaries $H(c_1, c_2) = \{x \in \mathbb{R}^n : D_f(x||c_1) = D_f(x||c_2)\}$ admits a simple geometric construction:

Property 45.2.3 (Cluster boundaries). Let D_f be a Bregman divergence and consider the k-means problem associated to D_f for k=2 (higher-dimensional problems can be treated similarly). The boundary $H(c_1, c_2)$ is exactly the dual geodesic hypersurface orthogonal to the affine geodesic connecting c_1 and c_2 . This partitioning of the data manifold is a generalization of *Voronoi diagrams* to (Bregman) divergences.⁵

45.2.2 Nearest neighbour search

?? COMPLETE ??

45.3 Garden

?? ADD (e.g. trees, forests)??

45.4 Support-vector machines

45.4.1 Kernel methods

This section will introduce the mathematics of kernel methods. This mainly involves the language of Hilbert spaces (see chapter 23 for a refresher).

Definition 45.4.1 (Kernel⁶). A function $k: X \times X \to \mathbb{C}$ that is (conjugate) symmetric and for which the Gram-matrix $K_{ij} := K(x_i, x_j)$ is positive-definite for all $n \in \mathbb{N}$ and $\{x_i \in X\}_{i \le n}$.

⁵See [70] for more information. This is also introduced in [18], but there the author has confusingly interchanged the affine and dual coordinates.

⁶Also called a **Mercer kernel**. See Mercer's theorem below for more information.

Definition 45.4.2 (Reproducing kernel Hilbert space). A Hilbert space $\mathcal{H} \subset \operatorname{Map}(X,\mathbb{C})$ for some set X for which all evaluation functionals $\delta_x : f \mapsto f(x)$ are bounded (or continuous by property 23.4.8). Reproducing kernel Hilbert spaces are often abbreviated as **RKHS**s.

Using the Riesz representation theorem 23.2.8 one can express every evaluation functional δ_x on a RKHS \mathcal{H} as a function $K_x \in \mathcal{H}$. This allows for the construction introduce of a kernel on X:

Definition 45.4.3 (Reproducing kernel). Let \mathcal{H} be a RKHS on a set X. The (reproducing) kernel k on X is defined as follows:

$$k(x,y) := \delta_x(K_y) \stackrel{\text{Riesz}}{=} \langle K_x | K_y \rangle_{\mathcal{H}}. \tag{45.42}$$

Because k is given by a metric, it is not hard to see that the reproducing kernel is a Mercer kernel 45.4.1.

Starting from a kernel one can also characterize an RKHS as follows:

Alternative Definition 45.4.4 (RKHS). A Hilbert space $\mathcal{H} \subset \operatorname{Map}(X,\mathbb{C})$ of functions over a set X such that there exists a kernel k on X with the following properties:

- 1. Reproducing property: For all $x \in X, f \in \mathcal{H}$ the evaluation functional δ_x satisfies $\delta_x(f) = \langle k(\cdot, x) | f \rangle_{\mathcal{H}}$.
- 2. **Density**: The span of $\{k(\cdot, x) : x \in X\}$ is dense in \mathcal{H} .

One often replaces the density property by the property that $k(\cdot, x) \in \mathcal{H}$ for all $x \in X$.

Property 45.4.5 (Convergence). In an RKHS, convergence in norm implies pointwise convergence.

Theorem 45.4.6 (Moore-Aronszajn). There exists a bijection between RKHSs and kernels.

Proof. One direction of the theorem is, as mentioned before, rather simple to see. The other direction is constructive. Given a kernel k, one defines for all $x \in X$ the function $K_x := k(\cdot, x)$. The RKHS is then constructed as the Hilbert completion of span $\{k_x : x \in X\}$, where the inner product is defined as follows

$$\left\langle \sum_{x \in X} a_x K_x \middle| \sum_{y \in X} b_y K_y \right\rangle_{\mathcal{H}} := \sum_{x,y \in X} \overline{a_x} b_y k(x,y). \tag{45.43}$$

Formula 45.4.7. Let \mathcal{H} be an RKHS with kernel k. If $\{e_i\}_{i \leq \dim(\mathcal{H})}$ is an orthonormal basis for \mathcal{H} , then

$$k(x,y) = \sum_{i \le \dim(\mathcal{H})} e_i(x) \overline{e_i(y)}.$$
 (45.44)

Remark 45.4.8. Note that one can use different conventions in the above definitions, e.g. by choosing the definition $k(x,y) = \langle K_y | K_x \rangle_{\mathcal{H}}$.

Theorem 45.4.9 (Mercer). Let X be a finite measure space and consider a (conjugate) symmetric function $k \in L^2(X \times X, \mathbb{C})$. If k satisfies the **Mercer condition**

$$\iint_{X \times X} k(x, y) \overline{f(x)} f(y) dx dy \ge 0 \tag{45.45}$$

for all $f \in L^2(X,\mathbb{C})$, then the Hilbert-Schmidt operator

$$T_k: L^2(X, \mathbb{C}) \to L^2(X, \mathbb{C}): f \mapsto \int_X k(\cdot, x) f(x) dx$$
 (45.46)

admits a countable orthonormal basis $\{e_i\}_{i\in\mathbb{N}}$ with nonnegative eigenvalues $\{\lambda_i\}_{i\in\mathbb{N}}$ such that

$$k(x,y) = \sum_{i=1}^{\infty} \lambda_i e_i(x) \overline{e_i(y)}.$$
 (45.47)

Theorem 45.4.10 (Bochner). A continuous function satisfies the Mercer condition if and only if it is a kernel.

Alternative Definition 45.4.11 (Kernel). Consider a set X. A function $k: X \times X \to \mathbb{C}$ is called a kernel on X if there exists a Hilbert space \mathcal{H} (not necessarily finite-dimensional) together with a function $\phi: X \to \mathcal{H}$ such that

$$k(x,y) = \langle \phi(x) | \phi(y) \rangle_{\mathcal{H}}. \tag{45.48}$$

When using Mercer's theorem, the feature maps are given by $\phi_i: x \mapsto \sqrt{\lambda_i} e_i(x)$.

45.4.2 Decision boundaries

Consider a linear model for classification problem $y = w^T x + b$. The object x_i is said to belong to the positive (resp. negative) class if y > 0 (resp. y < 0). This is implemented by applying to the sign activation function

$$sgn(y) = \begin{cases} 1 & y > 0 \\ -1 & y < 0 \end{cases}$$
 (45.49)

to the linear model. The **decision boundary** y=0, where the decision becomes ambiguous, forms a hyperplane in the feature space. However, it should be clear that in generic situations there are multiple hyperplanes that can separate the two classes for a finite number of data points. The problem then becomes to obtain the hyperplane with the maximal separation, i.e. the hyperplane for which the distance to the nearest data point is maximal.

The unit vector $\frac{w}{||w||}$ defines the normal to the hyperplane and, therefore, one can obtain the distance d(x) from a data point x to the decision boundary by projecting onto this unit vector. The point $x - d(x) \frac{w}{||w||}$ is an element of the decision boundary and hence satisfies the hyperplane equation. Rewriting this gives an expression for the distance

$$d(x) = \frac{w^T x + b}{||w||}. (45.50)$$

To account for the direction of the arrow, this number should be multiplied by the class $sgn(y) = \pm 1$. This result is called the **geometric margin** $\gamma(x) := sgn(y)d(x)$. The numerator in the geometric margin is called the **functional margin**. The geometric margin is preferable since it is invariant under simultaneous scale transformations of the parameters w, b.

The optimization objective now becomes

$$\max_{w} \frac{\gamma}{||w||} \quad \text{such that} \quad y_i(w^T x_i + b) \ge \gamma ||w|| \qquad \forall 1 \le i \le n, \tag{45.51}$$

where $\gamma = \min_{i=1,...,n} \gamma(x_i)$ for x_i ranging over the training set. The problem is formulated in terms of the functional margin $\gamma||w||$ to avoid the nonconvex constraint ||w|| = 1. This allows the

application of the Slater conditions for strong duality. Since the geometric margin is invariant under scale transformations, one can without loss of generality work with the assumption $\gamma||w||=1$. The optimization problem is then equivalent to the following minimization problem:

$$\min_{w} ||w||^2 \quad \text{such that} \quad y_i(w^T x_i + b) \ge 1 \qquad \forall 1 \le i \le n.$$
 (45.52)

The KKT conditions for this problem give the following results:

$$w = \sum_{i=1}^{n} \beta_i y_i x_i \tag{45.53}$$

and

$$\sum_{i=1}^{n} \beta_i y_i = 0, \tag{45.54}$$

where the quantities β_i are the KKT multipliers for the affine constraints $1 - y_i(w^T x_i + b) \le 0$. Using these relations the quantity y can be expressed for a new data point as follows:

$$y \equiv w^T x + b = \sum_{i=1}^n \beta_i y_i \langle x_i | x \rangle + b.$$
 (45.55)

Two observations can be made now. First of all, complementary slackness 45.1.21 implies that the only relevant vectors x_i in this calculation are the ones that satisfy $\gamma(x_i) = 0$. These are called the **support vectors** and they give their name to a class of models called **support-vector machines** (SVMs). These are the models that are trained using the above optimization problem. Furthermore, y can be written in terms of an inner product. It is exactly this last observation that allows for the generalization of the above model to nonlinear decision boundaries. The previous section showed that inner products are equivalent to (Mercer) kernels. Hence, by choosing a nonlinear kernel functions, one can implicitly work with nonlinear feature maps. This is often called the **kernel trick**. As an example, polynomial kernels represent feature maps from x to monomials in the coefficients of x.

However, as often happens with data analysis algorithms, the procedure is sensitive to outliers. This is especially the case for kernels that are based on feature maps to infinite-dimensional spaces (e.g. the RBF kernel). To solve this problem one can introduce a regularization term to the cost function. The simplest such term for support-vector machines is a simple ℓ^1 -penalty:

$$\min_{w} ||w||^2 + C \sum_{i=1}^{n} \xi \quad \text{such that} \quad \begin{cases} \xi_i \ge 0 & \forall 1 \le i \le n \\ y_i(w^T x_i + b) \ge 1 - \xi_i & \forall 1 \le i \le n. \end{cases}$$
 (45.56)

The resulting KKT conditions are as follows:

$$0 \le \beta_i \le C \tag{45.57}$$

and

$$\beta_i = 0 \implies y_i(w^T x_i + b) \ge 1 \tag{45.58}$$

$$\beta_i = C \implies y_i(w^T x_i + b) \le 1 \tag{45.59}$$

$$\beta_i \in [0, C] \implies y_i(w^T x_i + b) = 1 \tag{45.60}$$

?? COMPLETE (e.g. geometry)??

45.5 Time series analysis

Definition 45.5.1 (Time series). A \mathbb{N} - or \mathbb{Z} -indexed stochastic process. Since \mathbb{N} and \mathbb{Z} are isomorphic in a very simple way, the two conventions for time series will be used interchangeably.

45.5.1 Stationarity

Definition 45.5.2 (Strict stationarity). A time series $\{X_t\}_{t\in\mathbb{N}}$ is (strictly) stationary if for any two integers $r, s \in \mathbb{N}$, the joint distribution satisfies the following condition:

$$P(X_{t_1}, \dots, X_{t_r}) = P(X_{t_1+s}, \dots, X_{t_r+s}). \tag{45.61}$$

Definition 45.5.3 (Weak stationarity). A time series $\{X_t\}_{t\in\mathbb{Z}}$ is weakly (or **covariance**) stationary if it satisfies the following conditions:

- 1. Mean-stationary: $E[X_t] = E[X_0]$ for all $t \in \mathbb{N}$.
- 2. Finite covariance: $cov(X_i, X_j) < \infty$ for all $i, j \in \mathbb{N}$.
- 3. Covariance-stationary: $cov(X_i, X_{i+j}) = cov(X_0, X_j)$ for all $i, j \in \mathbb{N}$.

The following definition is a reformulation of Birkhoff ergodicity 16.2.26:

Definition 45.5.4 (Ergodicity). A time series $\{X_t\}_{t\in\mathbb{Z}}$ is ergodic if for every measurable function f we have the following equation:

$$\lim_{T \to +\infty} \frac{1}{2T+1} \sum_{t=-T}^{T} f(X_t) = E[f(X_t)]. \tag{45.62}$$

Intuitively this means that state space averages can be evaluated as time averages.

45.5.2 Correlation

Definition 45.5.5 (Autocorrelation function). Consider a time series $\{X_t\}_{t\in\mathbb{N}}$. The autocovariance (resp. autocorrelation) function of this time series is defined as the covariance (resp. autocorrelation) function of the random variables $\{X_t\}_{t\in\mathbb{N}}$.

Definition 45.5.6 (Spectral density). Consider a (weakly) stationary time series $\{X_t\}_{t\in\mathbb{N}}$. If the associated autocovariance autocovariance is required to be in ℓ^1 , one can define the spectral density as the discrete Fourier transform of the autocovariance function:

$$f(\omega) = \frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} \gamma(k) e^{i\omega k}, \qquad (45.63)$$

where $\gamma(k)$ is the autocovariance function at lag k.

Under the assumption that the spectral density exists, the time series is said to have **short** memory if f(0) is finite. Otherwise the series is said to have **long memory**.

Definition 45.5.7 (Lag operator⁷). The lag operator sends a variable in a time series to the preceding value:

$$BX_t = X_{t-1}. (45.64)$$

⁷Also called the **backshift operator**.

An important concept (especially in the context of autoregressive models) is that of a **lag polynomial** (the notation for these is not completely fixed in the literature, but the θ -notation is a common choice):

$$\theta(B) = 1 + \sum_{i=1}^{k} \theta_i B^i \tag{45.65}$$

$$\varphi(B) = 1 - \sum_{i=1}^{k} \varphi_i B^i. \tag{45.66}$$

Notation 45.5.8 (Difference operator). The difference operator Δ is defined as follows:

$$\Delta = 1 - B. \tag{45.67}$$

In the same way one can define the **seasonal** difference operator:

$$\Delta_s = 1 - B^s. \tag{45.68}$$

Method 45.5.9 (Ljung-Box test). The Ljung-Box test checks if a given set of autocorrelations of a time series is different from zero. Consider a data sample of n elements and let $\{\rho_i\}_{1\leq i\leq k}$ be the first k lagged autocorrelation functions. The test statistic is defined as

$$Q = n(n+2) \sum_{i=1}^{k} \frac{\rho_k}{n-k}.$$
 (45.69)

If the null hypothesis "there is no correlation" is true, the Q-statistic will asymptotically follow a χ^2 -distribution with k degrees of freedom.

Method 45.5.10 (Augmented Dickey-Fuller test). Consider a time series $\{X_t\}_{t\leq T}$. The (augmented) Dickey-Fuller test checks if the time series is (trend) stationary. For this test one considers the following regression model (similar to the ARIMA-models discussed in the next section):

$$\Delta X_t = \alpha + \beta t + \gamma X_{t-1} + \sum_{i=1}^{p-1} \theta_i \Delta X_{t-i} + \varepsilon_t. \tag{45.70}$$

The test statistic is

$$DF = \frac{\gamma}{SE(\gamma)} \tag{45.71}$$

where SE denotes the standard error. The null hypothesis states that $\gamma = 0$, i.e. there is a *unit* root (1 - B) present in the model. Comparing the test statistic to tabulated critical values will give an indication whether to reject the hypothesis or not (the more negative the statistic, the more significant the result).

45.5.3 Autoregressive models

Definition 45.5.11 (AR(p)-model). Consider a time series $\{X_t\}_{t\leq T}$. The autogressive model of order p is defined as the multiple linear regression model of X_t with respect to the first p lagged values X_{t-1}, \ldots, X_{t-p} of the time series:

$$X_t = \beta_0 + \beta_1 X_{t-1} + \dots + \beta_p X_{t-p} + \varepsilon_t.$$
 (45.72)

Definition 45.5.12 (Partial autocorrelation function). The p^{th} autocorrelation function is defined as the p^{th} coefficient in the AR(p)-model.

Remark 45.5.13. The optimal order p of an autoregressive model is the one for which all higher partial autocorrelation functions (almost) vanish.

Definition 45.5.14 (MA(p)-model). Consider a time series $\{X_t\}_{t\leq T}$ where every X_t contains a white noise contribution $\varepsilon_t \sim \mathcal{N}(0, \sigma^2)$. The moving average model of order p is defined as the multiple linear regression model of X_t with respect to the first p lagged values $\varepsilon_{t-1}, \ldots, \varepsilon_{t-p}$ of the error term:

$$X_t = \beta_0 + \beta_1 \varepsilon_{t-1} + \dots + \beta_p \varepsilon_{t-p} + \varepsilon_t. \tag{45.73}$$

Since the error terms are assumed to have mean zero we see that the intercept term β_0 gives the mean of the time series.

Remark 45.5.15. The optimal order p of an autoregressive model is the one for which all higher autocorrelation functions (almost) vanish.

Definition 45.5.16 (Invertibility). An MA(q)-model is said to be invertible if all roots of its associated lag polynomial $\theta(B)$ lie outside the unit circle. This condition implies that the polynomial is invertible, i.e. $1/\theta(B)$ can be written as a convergent series in the operator B. This then implies⁸ that one can write the MA(q)-model as an AR(p)-model where possibly $p = \infty$. The analogous property for AR(p)-models leads to a definition of stationarity.

In practice it is not always possible to describe a data set using either an autoregressive or a moving average model. However, nothing stops us from combining these two types of models:

Definition 45.5.17 (ARMA(p,q)-model).

$$X_t = \alpha_0 + \sum_{i=1}^p \alpha_i X_{t-i} + \sum_{j=1}^q \beta_j \varepsilon_{t-j} + \varepsilon_t$$

$$(45.74)$$

As above one can find the optimal values for p and q by checking the autocorrelation and partial autocorrelation functions.

Using the lag polynomials one can rewrite the ARMA(p,q)-model as follows:

$$\varphi(B)X_t = \alpha_0 + \theta(B)\varepsilon_t. \tag{45.75}$$

By considering the special case where the polynomial \mathcal{B}_{α}^{-} has a unit root 1 - B with multiplicity d we can obtain a generalization of our model:

$$\varphi(B)(1-B)^d X_t = \alpha_0 + \theta(B)\varepsilon_t. \tag{45.76}$$

The interpretation of this additional factor $(1-B)^d$ is related to the stationarity of the time series. The operator 1-B is a "differencing operator":

$$(1-B) X_t = X_t - X_{t-1}$$

$$(1-B)^2 X_t = (X_t - X_{t-1}) - (X_{t-1} - X_{t-2})$$

By successively applying it one can obtain a stationary time series from a nonstationary time series. This combination of differencing, autoregression and moving averages is called the **ARIMA**-model⁹.

⁸Sometimes this is used as a definition of invertibility.

⁹The 'I' stands for 'integrated''.

Remark 45.5.18. Including so-called *exogenous* variables, i.e. external predictors, leads to an \mathbf{ARIMAX} -model.

Remark 45.5.19 (Fitting AR- and MA-models). As is clear from the definition of an AR(p)-model the parameters θ_i can easily be found using standard techniques for multivariate linear regression such as ordinary least squares. However in contrast to AR-models where the predictors are known, the estimation of coefficients in MA-models is harder since the error terms ε_t are by definition unknown.

To estimate the coefficients in a MA-model people have introduced multiple techniques (see for example [102]). One of the most famous ones is Durbin's method:

Method 45.5.20 (Durbin). By restricting to invertible MA(q)-models (or by approximating a noninvertible model by an invertible one) we can first fit an AR(p)-model with p > q to obtain estimates for the errors ε_t . Then, in a second step, one can again use a least squares-method to solve for the coefficients in the MA-model.

As a last modification we can introduce seasonal components. Simple trends such as a linear growth are easily removed from the time series by detrending or differencing. However, a periodic pattern is harder to remove and in general ARIMA-models are not made to accompany this type of features. Luckily one can easily modify the ARIMA-model to incorporate seasonal variations.

The multiplicative SARIMA-model is obtained by inserting operators similar to the ones of the ordinary ARIMA-model where we replace the lag operator B by a seasonal lag operator B^s (where s is the period of the seasonal variation):

Definition 45.5.21 (ARIMA $(p, q, d)(P, Q, D)_s$ -model).

$$\Phi(B^s)\varphi(B)\Delta_s^D\Delta^dX_t = \theta(B)\Theta(B^s)\varepsilon_t \tag{45.77}$$

45.5.4 Causality

Definition 45.5.22 (Granger causality). Consider two time series $\{X_t\}_{t\in\mathbb{N}}$ and $\{Y_t\}_{t\in\mathbb{N}}$. The time series X_t is said to Granger-cause Y_t if past values of X_t help to predict future values of Y_t . More formally this can be stated as follows:

$$P[Y_{t+k} \in A | \Omega(t)] \neq P[Y_{t+k} \in A | \Omega \setminus X(t)]$$
(45.78)

for some k where $\Omega(t)$ and $\Omega \setminus X(t)$ denote the available information at time t with and without removing the variable X from the universe.

This formulation of causality was introduced by Granger under the following two assumptions:

- The cause always happens prior to the effect.
- The cause has unique information about the effect.

Remark 45.5.23. A slightly different but for computational purposes often more useful¹⁰ notion of Granger-causality is as follows. A time series X_t is said to Granger-cause a time series Y_t if the variance of predictions of Y_t becomes smaller when we take the information contained in X_t into account.

Remark 45.5.24. Assume that we are given two uncorrelated models giving predictions of a time series X_t . One way to check if they have the same accuracy is the *Diebold-Mariano test*. However, when testing for Granger-causality one should pay attention. This test is not valid for nested models and hence is not applicable to two models that only differ by a set of extra predictors (in this case an external time series).

¹⁰In fact this was the original definition by Granger.

45.6 Prediction regions

To characterize the quality of prediction regions one can use different measures. One of the truly probabilistic notions is that of validity:

Definition 45.6.1 (Validity). Consider a region predictor C^{α} at confidence level $\alpha \in [0, 1]$. We distinguish two types of validity:

• Conservative validity:

$$P(y_{true} \in C^{\alpha}) \ge 1 - \alpha. \tag{45.79}$$

• Exact validity:

$$P(y_{true} \in C^{\alpha}) = 1 - \alpha. \tag{45.80}$$

In practice we will always prefer models that are as exact as possible.

45.6.1 Conformal prediction

A very general framework for the construction of prediction intervals in a model-independent manner is given by the conformal prediction framework by $Vovk\ et\ al.$ (a good introduction is [78], for a full treatment see [14]). The main ingredients for the construction are randomization and conformity measures.

The first step will be studying the behaviour under randomization of the existing data (be it measurements or past predictions). To ensure that the procedure satisfies the required confidence (or probability) bounds, one has to make some assumptions. One of the main benefits of this framework is that we can relax the condition of the data being i.i.d. to it being exchangeable:

Definition 45.6.2 (Exchangeable data). Consider a data sample $(z_i)_{1 \le i \le N}$. The joint distribution $P(z_1, \ldots, z_N)$ is said to be exchangeable if it is invariant under any permutation of the data points. A generalization for infinite data sets is obtained by requiring exchangeability of any finite subset.

This definition can be restated in a purely combinatorial way. First we define the notion of a bag: The bag obtained from the (ordered) data sample $(z_i)_{1 \leq i \leq N}$ is just the (unordered) set \mathcal{B} containing these elements. The joint distribution F is then said to be exchangeable if the probability of finding any sequence of data points is equal to the probability of drawing this same sequence from the bag of these elements. Since this latter probability is purely combinatorial and hence completely independent of the ordering, it should be clear that this coincides with the first definition.

Definition 45.6.3 (Nonconformity measure). Consider a bag of elements \mathcal{B} together with a new element z^* . A noncomformity measure is a function that gives a number indicating how different z^* is from the content of \mathcal{B} . Although this definition does not state specific requirements for the functions, it should be obvious that the better the function detects dissimilarities, the better the resulting prediction regions will be.

Remark. One could easily well use conformity measures everywhere (hence looking at similarities instead of dissimilarities). It will become clear that the procedure is invariant under monotone transformations and hence we can just multiply everything by -1.

Example 45.6.4 (Point predictors). A general class of nonconformity measures is obtained from point predictors. Given a point predictor ρ that takes a bag \mathcal{B} as input one can define a nonconformity measure as follows:

$$A_{\rho}(\mathcal{B}, z^*) := d(\rho(\mathcal{B}), z^*) \tag{45.81}$$

where $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is any distance function (in general just the Euclidean distance).

?? FIX DEFINITION OF POINT-PREDICTOR (DOES DEPEND ON BAG AND NEW POINT) ??

Construction 45.6.5 (Conformal predictor). Consider a data sample given as a bag \mathcal{B} together with a given nonconformity measure A. Let α denote the confidence level at which we want to construct a prediction region. For any new element z^* we proceed as follows:

- 1. Let μ^* denote the nonconformity $A(\mathcal{B}, z^*)$.
- 2. For any element z in \mathcal{B} we can similarly define μ_z by replacing z by z^* in the bag and calculating the nonconformity.
- 3. Let p^* denote the fraction of elements z of \mathcal{B} for which $\mu_z \geq \mu^*$.
- 4. The element z^* belongs to the α -level prediction region C^{α} if $p^* > \alpha$.

It should be noted that in general the construction of these regions can be quite time-consuming. For low-dimensional regions it can often be achieved by solving inequalities derived from the specific form of the given nonconformity measure.

Property 45.6.6 (Optimality). Given any confidence predictor satisfying the three properties below¹¹, there exists a conformal predictor that is more efficient:

- Ordering is irrelevant, i.e. the procedure only depends on the bag of prior elements.
- Regions are (conservatively) valid, i.e. $P(z^* \in C^{\alpha}) \ge 1 \alpha$ and $P(p^* \le \alpha) \le \alpha$.
- Regions are nested, i.e. $\alpha \leq \alpha' \implies C^{\alpha} \subseteq C^{\alpha'}$.

Now we could wonder if the assumption of exchangeability is a realistic assumption. Obviously if we apply this to independent observations then everything is fine (i.i.d. sequences are clearly exchangeable). However, some important sequences of data are clearly not exchangeable. The main example for us will be that of time series. For this kind of data we in general take advantage of prior knowledge and hence the exchangeability assumption is almost always violated. However, a solution exists. One can restate the construction above using an explicit randomization as is done in [79]. There one replaces the nonconformity measure by a function that acts on ordinary sequences instead of unordered bags. The fraction p^* can then be expressed as follows:

$$p^* = \frac{1}{|S_{N+1}|} \sum_{\sigma \in S_{N+1}} \mathbb{1}(A(\sigma \cdot \vec{z}) \ge A(\vec{z}))$$
 (45.82)

where $\vec{z} \equiv (z_1, \dots, z_N, z^*)$. Using this language of explicit permutations one can generalize the construction to arbitrary randomization schemes, i.e. to subgroups of S_{N+1} . However, we should take into account that this generically will ruin the validity of the procedure. As was proven in the [79] if we choose the permutations as those ?? FINISH ??

We now introduce a modification of the original CP construction. The main reason is the computational inefficiency of conformal prediction. If we choose the distance with respect to

¹¹CPs always satisfy these conditions.

a point-predictor as the nonconformity measure in construction 45.6.5, we have to retrain the predictor for every bag in step 2 of the algorithm. For most applications, especially those in machine learning and big data, this leads to considerable computational overhead. To overcome this issue *Papadopoulos et al.* introduced the following modification:

Construction 45.6.7 (Inductive CP). First one splits the full dataset \mathcal{D} into a training set \mathcal{T} and a "calibration" set \mathcal{C} . Using \mathcal{T} one trains the point-predictor $\rho \equiv \rho(\mathcal{T})$. For every point z in \mathcal{C} one then constructs the nonconformity measure $\mu_z = d(\rho(z), z^*)$. For a new observation z^* we define p^* as the fraction of points in \mathcal{C} for which the nonconformity measure is larger than the one for z^* . As in the original CP algorithm a new observation z^* will belong to the prediction region if $p^* > \alpha$.

It is clear that we only have to train the predictor once. An easy way to proceed is order all the nonconformity measures for \mathcal{C} and look at the α -quantile. This will be the cut-off determining the prediction region C^{α} .

Remark 45.6.8. The name "inductive CP" stems from the fact that we induce the general behaviour from a small subset of all observations. For this reason one sometimes calls the original algorithm a "transductive" method.

The above off-line ICP algorithm can be generalized to an on-line algorithm:

Construction 45.6.9 (On-line ICP). Consider an increasing sequence of positive integers $(m_n)_{n\in\mathbb{N}}$ such that for every "update threshold" m_k a calibration set

$$C_k := \{(x_1, y_1), \dots, (x_{m_k}, y_{m_k})\}$$

is given. The confidence region $C^{\alpha}(\mathcal{S})$ for the data sample $\mathcal{S} := \{(x_1, y_1), \dots, (x_n, y_n)\}$ is defined as follows:

- If $n \leq m_1$: Use a fixed conformal predictor to construct $C^{\alpha}(\mathcal{S})$.
- If $n > m_1$: Find the integer k such that $m_k < n \le m_{k+1}$, then construct $C^{\alpha}(\mathcal{S})$ as follows:

$$C^{\alpha}(\mathcal{S}) := \left\{ y \in Y : \frac{|\{m_k < j \le n : \alpha_j \ge \alpha_n\}|}{n - m_k} > \varepsilon \right\},\tag{45.83}$$

where

$$\alpha_j := A(\mathcal{B}(\mathcal{C}_k), (x_j, y_j))$$
$$\alpha_n := A(\mathcal{B}(\mathcal{C}_k), (x_n, y)).$$

It is clear that for $k \ll |\mathcal{C}|$ the off-line ICP algorithm approximates the on-line version.

Property 45.6.10 (Validity). It can be shown that the on-line ICP algorithm is conservative. Because of the remark about off-line ICP above, the off-line version produces approximately conservative prediction regions.

?? COMPLETE ??

Chapter 46

Fuzzy Set Theory

We start this chapter with a small organizational remark: Although the content of the current chapter fits better in the parts on general set theory and logic, it does use more advanced concepts from for example topology and category theory. Furthermore, the main application (for us) is the characterization of uncertainty in statistics and machine learning. For that reason we decided to add this chapter here.

The main reference for the basics on fuzzy sets is the original paper [75]. For the basics of (ordered) sets, see section 2.5 at the beginning of this compendium.

46.1 Fuzzy sets

Definition 46.1.1 (Fuzzy set). Consider a set X (this set corresponds to the universe of discours in e.g. type theory or category theory). A fuzzy subset of X is a function $A: X \to [0,1]$. One can interpret the value A(x) at a point $x \in X$ as the grade of membership of x in A. If the function A only takes on values in $\{0,1\}$, one obtains the indicator function of an ordinary subset.

A fuzzy set is said to be **empty** if its defining function is identically zero.

Remark 46.1.2. In fact one can generalize this definition by replacing [0, 1] by a more general poset (with the necessary properties).

Definition 46.1.3 (Pullback). Consider two sets X, Y and a fuzzy subset A of Y. Given a function $f: X \to Y$ one can define the pullback f^*A as usual:

$$f^*A(x) := A(f(x)). (46.1)$$

The following definition is an immediate generalization of definition 2.4.4:

Definition 46.1.4 (Fuzzy relation). A fuzzy subset of the product set $X \times X$. This definition can be extended to n-ary relation by considering fuzzy subsets of the n-fold product $X \times \cdots \times X$.

The composition in 2.4.6 can be extended through the following formula:

$$S \circ R(x,z) := \sup_{y \in X} \min \left(R(x,y), S(y,z) \right). \tag{46.2}$$

A more exotic construction for fuzzy sets is the following one (note that this only works if the codomain of fuzzy sets is [0,1]):

Definition 46.1.5 (Convex combination). Consider three fuzzy sets A, B, Λ . The convex combination $C \equiv (A, B; \Lambda)$ is defined as follows in analogy to 20.2.22:

$$C(x) := \Lambda(x)A(x) + (1 - \Lambda(x))B(x). \tag{46.3}$$

Part VIII Classical Physics

Chapter 47

Equations of Motion

47.1 General quantities

47.1.1 Linear quantities

Axiom 47.1 (Force). Newton's second law (in fact an axiom) states that the force acting on a system can be related to its change of momentum in the following way:

$$\vec{F} := \frac{d\vec{p}}{dt}.\tag{47.1}$$

Formula 47.1.1 (Work).

$$W := \int \vec{F} \cdot d\vec{l} \tag{47.2}$$

Definition 47.1.2 (Conservative force). If the work done by a force is independent of the path taken, the force is said to be **conservative**:

$$\oint_C \vec{F} \cdot d\vec{l} = 0. \tag{47.3}$$

Stokes's theorem 21.26 together with relation 21.12 lets us rewrite the conservative force as the gradient of a scalar field:

$$\vec{F} = -\nabla V. \tag{47.4}$$

Definition 47.1.3 (Central force). A force that only depends on the relative position of two objects:

$$\vec{F}_c \equiv F(||\vec{r}_2 - \vec{r}_1||)\hat{e}_r. \tag{47.5}$$

Formula 47.1.4 (Kinetic energy). For a free particle with momentum \vec{p} the kinetic energy is given by the following formula:

$$E_{kin} := \frac{p^2}{2m}.\tag{47.6}$$

47.1.2 Angular quantities

In this section r always denotes the distance from the object's center of mass to the axis around which the object rotates.

Formula 47.1.5 (Angular velocity).

$$\omega := \frac{v}{r} \tag{47.7}$$

Formula 47.1.6 (Angular frequency).

$$\nu := \frac{\omega}{2\pi} \tag{47.8}$$

Formula 47.1.7 (Moment of inertia). For a symmetric object the moment of inertia is given by

$$I := \int_{V} r^2 \rho(r) dV. \tag{47.9}$$

For a general body we can define the moment of inertia tensor:

$$\mathcal{I} := \int_{V} \rho(\vec{r}) (r^{2} \mathbb{1} - \vec{r} \otimes \vec{r}) dV. \tag{47.10}$$

Definition 47.1.8 (Principal axes of inertia). Let I be the matrix of inertia, i.e. the matrix associated with the inertia tensor 47.10. This is a real symmetric matrix and, by property 20.5.16, admits an eigendecomposition of the form

$$I = Q\Lambda Q^T. (47.11)$$

The columns of Q determine the principal axes of inertia. The eigenvalues are called the **principal moments of inertia**.

Example 47.1.9 (Objects with azimuthal symmetry[†]). Let r denote the radius of the object.

• Solid disk: $I = \frac{1}{2}mr^2$

• Cylindrical shell: $I = mr^2$

• Hollow sphere: $I = \frac{2}{3}mr^2$

• Solid sphere: $I = \frac{2}{5}mr^2$

Theorem 47.1.10 (Parallel axis theorem¹). Consider a rotation about an axis ψ through a point A. Let ψ_{CM} be a parallel axis through the center of mass. The moment of inertia about ψ is related to the moment of inertia about ψ_{CM} in the following way:

$$I_A = I_{CM} + M||\vec{r}_A - \vec{r}_{CM}||^2 \tag{47.12}$$

where M is the mass of the rotating body.

Formula 47.1.11 (Angular momentum).

$$\vec{\boldsymbol{L}} := \vec{\boldsymbol{r}} \times \vec{\boldsymbol{p}} \tag{47.13}$$

Given the angular velocity vector we can compute the angular momentum as follows:

$$\vec{L} = \mathcal{I}(\vec{\omega}) \tag{47.14}$$

where \mathcal{I} is the moment of inertia tensor. If $\vec{\omega}$ is parallel to a principal axis, then the formula reduces to

$$\vec{L} = I\vec{\omega} \tag{47.15}$$

with I the corresponding principal moment of inertia.

¹Also called **Steiner's theorem**.

Formula 47.1.12 (Torque). For angular momenta there exists a formula analogous to Newton's second law:

$$\vec{\tau} := \frac{d\vec{L}}{dt}.\tag{47.16}$$

For constant bodies this formula can be rewritten as follows:

$$\vec{\tau} = I\vec{\alpha} = \vec{r} \times \vec{F}. \tag{47.17}$$

Remark 47.1.13. From the previous definitions it follows that both the angular momentum and torque vectors are in fact pseudovectors and accordingly change sign under coordinate transformations with det = -1.

Formula 47.1.14 (Rotational energy).

$$E_{rot} := \frac{1}{2} \mathcal{I}(\omega) \cdot \omega \tag{47.18}$$

47.2 Kepler problem

Formula 47.2.1 (Potential for a point mass).

$$V = -G\frac{M}{r} \tag{47.19}$$

where $G = 6.67 \times 10^{-11} \frac{Nm^2}{\text{kg}^2}$ is the **gravitational constant**.

47.3 Harmonic oscillator

Formula 47.3.1 (Harmonic potential).

$$V = \frac{1}{2}kx^2 (47.20)$$

or

$$V = \frac{1}{2}m\omega^2 x^2 \tag{47.21}$$

where we have set $\omega = \sqrt{\frac{k}{m}}$.

Formula 47.3.2 (Solution). The solution of the equations of motion of a particle moving in a harmonic potential is given by the following expression:

$$x(t) = A\sin\omega t + B\cos\omega t. \tag{47.22}$$

Chapter 48

Lagrangian and Hamiltonian Mechanics

48.1 Action

Definition 48.1.1 (Generalized coordinates). The generalized coordinates q_k are independent coordinates that completely describe the current configuration of a system (relative to a reference configuration).

When a system is characterized by N parameters and n_c constraints, there are $(N - n_c)$ generalized coordinates. Furthermore, every set of generalized coordinates describing the same system contains exactly $(N - n_c)$ coordinates. (Chapter 49 explains how one can extract the relevant degrees of freedom.)

Definition 48.1.2 (Generalized velocities). The generalized velocities \dot{q}_k are the derivatives of the generalized coordinates with respect to time.

Definition 48.1.3 (Conjugate momentum).

$$p_k := \frac{\partial L}{\partial \dot{q}^k} \tag{48.1}$$

Notation 48.1.4. Given a Lagrangian function, depending on n generalized coordinates and their associated velocities, the following shorthand notation is often used:

$$L(q(t), \dot{q}(t), t) \equiv L(q_1(t), \dots, q_n(t), \dot{q}_1(t), \dots, \dot{q}_n(t), t)$$
(48.2)

Definition 48.1.5 (Action). The action is a functional on the space of paths in configuration space:

$$S[q] := \int_{t_1}^{t_2} L(q(t), \dot{q}(t), t) dt. \tag{48.3}$$

48.2 Euler-Lagrange equations †

Formula 48.2.1 (Euler-Lagrange equation of the first kind).

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}^k}\right) - \frac{\partial T}{\partial q^k} = Q_k,\tag{48.4}$$

where T is the total kinetic energy and Q_k are the **generalized forces**:

$$Q_k := \sum_i \vec{F}_i \cdot \frac{\partial \vec{r}_i}{\partial q^k}.$$
 (48.5)

Note that the constraint forces do not contribute to this quantity because they are always perpendicular to the motion.

Formula 48.2.2 (Euler-Lagrange equation of the second kind).

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}^k} \right) - \frac{\partial L}{\partial q^k} = 0 \tag{48.6}$$

Definition 48.2.3 (Cyclic coordinate). If the Lagrangian L does not explicitly depend on a coordinate q_k , the coordinate is said to be cyclic.

Property 48.2.4 (Noether's theorem). The conjugate momentum of a cyclic coordinate is a conserved quantity:

$$\dot{p}_k \stackrel{48.1.3}{=} \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}^k} \right) \stackrel{(48.6)}{=} \frac{\partial L}{\partial q^k} = 0. \tag{48.7}$$

48.3 Hamilton's equations

Definition 48.3.1 (Canonical coordinates). Consider the Lagrangian coordinates (q, \dot{q}, t) . From these one can define a new set of coordinates, called canonical coordinates, by exchanging the time-derivatives \dot{q}^i in favour of the conjugate momenta p_i . (To be able to do this one would need some regularity conditions, i.e. the transformation $(q, \dot{q}) \leftrightarrow (q, p)$ should be invertible.)

Definition 48.3.2 (Hamiltonian function). Given a Lagrangian L, one defines the Hamiltonian function as follows:

$$H(q, p, t) := \sum_{i} p_i \dot{q}^i - L(q, p, t). \tag{48.8}$$

Formula 48.3.3 (Hamilton's equations¹). Using the above definition in the action 48.1.5 and applying the variational principle results in the following equations:

$$\dot{q}^i = \frac{\partial H}{\partial p_i} \tag{48.9}$$

$$\dot{p_i} = -\frac{\partial H}{\partial q^i}. (48.10)$$

Systems obeying these equations are called **Hamiltonian systems**. (See Section 35.4 for a formal introduction).

The formula to obtain the Hamiltonian from the Lagrangian is an application of the following more general **Legendre transformation**:

Definition 48.3.4 (Legendre transformation). Consider an equation of the following form:

$$df = udx + vdy, (48.11)$$

where
$$u = \frac{\partial f}{\partial x}$$
 and $v = \frac{\partial f}{\partial y}$.

¹Also known as the **canonical equations of Hamilton**.

Suppose one wants to perform a coordinate transformation $(x, y) \to (u, y)$ that preserves the general form of (48.11). To this end, consider the function (x) is taken to be a fixed parameter):

$$g(u,y) := f(x,y) - ux. (48.12)$$

Differentiation gives

$$dq = vdy - xdu$$
.

which has the form of (48.11) as desired. The quantities v and x are now given by

$$x = -\frac{\partial g}{\partial u}$$
 and $v = \frac{\partial g}{\partial y}$. (48.13)

The transformation $f \to g$ defined by equations (48.11) and (48.12) is called a Legendre transformation.

Remark 48.3.5. Although the previous derivation used only 2 coordinates, the definition of Legendre transformations can easily be generalized to more coordinates.

48.4 Poisson brackets

Definition 48.4.1 (Poisson bracket). To stick with the conventions of Definition 35.2.2, the Poisson bracket is defined as

$$\{A, B\} = \frac{\partial A}{\partial p} \frac{\partial B}{\partial q} - \frac{\partial A}{\partial q} \frac{\partial B}{\partial p},$$
 (48.14)

where q, p are the generalized coordinates in the Hamiltonian formalism.

Remark. As noted before, some authors define the Poisson bracket with the opposite sign. One should always pay attention to which convention is used.

Formula 48.4.2 (Total time derivative). Hamilton's equations imply the following expression for the total time-derivative:

$$\frac{dF}{dt} = \frac{\partial F}{\partial t} + \{H, F\},\tag{48.15}$$

where $\{\cdot,\cdot\}$ is the Poisson bracket as defined above and H is the Hamiltonian 48.3.2.

48.5 Hamilton-Jacobi equation

For a formal introduction see Section 35.4.2.

Definition 48.5.1 (Canonical transformations). A canonical transformation is a transformation that leaves the Hamiltonian equations of motion unchanged. Mathematically this means that the transformations leave the action invariant up to a constant or, equivalently, they leave the Lagrangian invariant up to a complete time-derivative:

$$\sum_{i} p_{i} \dot{q}^{i} - H(q, p, t) = \sum_{i} P_{i} \dot{Q}^{i} - K(Q, P, t) - \frac{dG}{dt}(Q, P, t). \tag{48.16}$$

The function G is called the **generating function** of the canonical transformation. The choice of G uniquely determines the transformation (the converse is not true).

Formula 48.5.2 (Hamilton-Jacobi equation). Sufficient conditions for a function S to be a generating function of canonical transformations are:

$$p_i = \frac{\partial S}{\partial q^i},$$
$$Q^i = \frac{\partial S}{\partial P_i}$$

and

$$K = H + \frac{\partial S}{\partial t}.$$

Choosing the new Hamiltonian function K to be 0 gives the Hamilton-Jacobi equation:

$$H\left(q, \frac{\partial S}{\partial q}, t\right) + \frac{\partial S}{\partial t} = 0.$$
 (48.17)

The function S is called **Hamilton's principal function**.

Property 48.5.3. The new coordinates P_i and Q^i are all constants of motion. This follows immediately from the choice K = 0.

Definition 48.5.4 (Hamilton's characteristic function). For time-independent systems the HJE can be rewritten as follows:

$$H\left(q, \frac{\partial S}{\partial q}\right) = -\frac{\partial S}{\partial t} := E.$$
 (48.18)

After a redefinition of H this is the same as equation 35.27. One thus obtains the classical result that for time-independent systems the Hamiltonian function is a constant of motion (the **energy**). Integration with respect to time then gives the following form of the principal function:²

$$S(q, p, t) = W(q, p) - Et. (48.19)$$

The time-independent function W is called Hamilton's characteristic function.

Property 48.5.5 (Stäckel condition). The Hamilton-Jacobi equation is separable if and only if the potential is of the form

$$V(q) = \sum_{i=1}^{n} \frac{W_i(q^i)}{G_i^2(q)},$$
(48.20)

whenever the Hamiltonian function can be written as

$$H(q,p) = \frac{1}{2} \sum_{i} \frac{p_i^2}{G_i^2(q)} + V(q). \tag{48.21}$$

Potentials of this form are called **Stäckel potentials**.

48.6 Analytical mechanics

48.6.1 Phase space

Definition 48.6.1 (Phase space). The set of all possible n-tuples³ (q^i, p_i) of generalized coordinates and associated momenta is called the phase space of the system.

²Note that often E will be the energy, however, this is not a general fact.

³Not only those as given by the equations of motion.

Definition 48.6.2 (Libration). A closed trajectory for which the coordinates take on only a subset of the allowed values. It is the generalization of an oscillation. Topologically it is characterized by a contractible, closed trajectory.

Definition 48.6.3 (Rotation). A closed trajectory for which at least one of the variables takes on all possible values. Topologically it is characterized by a noncontractible, closed trajectory.

Definition 48.6.4 (Separatrix). When plotting different (closed) trajectories in the phase space of a system, the curve that separates regions of librations and rotations is called the separatrix.⁴

48.6.2 Material derivative

Definition 48.6.5 (Lagrangian derivative⁵). The $a(q, \dot{q}, t)$ be a quantity defined on phase space. Its Lagrangian derivative along a path $(q(t), \dot{q}(t))$ in phase space is given by

$$\begin{split} \frac{Da}{Dt} &= \lim_{\Delta t \to 0} \frac{a(q + \Delta q, \dot{q} + \Delta \dot{q}, t + \Delta t) - a(q, \dot{q}, t)}{\Delta t} \\ &= \frac{\partial a}{\partial t} + \frac{d\vec{q}}{dt} \cdot \frac{\partial a}{\partial \vec{q}} + \frac{d\dot{\vec{q}}}{dt} \cdot \frac{\partial a}{\partial \dot{\vec{q}}} \\ &= \frac{\partial a}{\partial t} + \dot{\vec{q}} \cdot \nabla a + \frac{d\dot{\vec{q}}}{dt} \cdot \frac{\partial a}{\partial \dot{\vec{q}}} \,. \end{split}$$
(48.22)

The second term $\dot{\vec{q}} \cdot \nabla a$ in this equation is called the **advective** term.

Remark 48.6.6. In the case that $a(q, \dot{q}, t)$ is a tensor field, the gradient ∇ has to be replaced by the covariant derivative. The advective term is then sometimes called the **convective** term.

Corollary 48.6.7. If one takes $a(q, \dot{q}, t) = \vec{q}$, one obtains

$$\frac{D\vec{q}}{Dt} = \dot{\vec{q}}.\tag{48.23}$$

48.6.3 Liouville's theorem

Formula 48.6.8 (Liouville's lemma). Consider a phase space volume element dV_0 moving along a path $(\vec{q}(t), \dot{\vec{q}}(t)) \equiv \vec{x}(t)$. The Jacobian $J(\vec{x}, t)$ associated with this motion is given by

$$J(\vec{x}(t)) = \frac{dV}{dV_0} = \det\left(\frac{\partial \vec{x}}{\partial \vec{x}_0}\right) = \sum_{ijklmn} \varepsilon^{ijklmn} \frac{\partial x^1}{\partial x_0^i} \frac{\partial x^2}{\partial x_0^j} \frac{\partial x^3}{\partial x_0^j} \frac{\partial x^4}{\partial x_0^l} \frac{\partial x^5}{\partial x_0^m} \frac{\partial x^6}{\partial x_0^n}.$$
 (48.24)

The Lagrangian derivative of this Jacobian then becomes

$$\frac{DJ}{Dt} = (\nabla \cdot \vec{x})J. \tag{48.25}$$

Furthermore, using Hamilton's equations 48.3.3 it is easy to prove that

$$\nabla \cdot \vec{x} = 0, \tag{48.26}$$

and hence that the material derivative of J vanishes.

⁴In general the separatrix of a dynamical system is a curve that separates regions with different behaviour.

⁵Also known as the **material derivative**, especially when applied to fluid mechanics.

Theorem 48.6.9 (Liouville). Let V(t) be a moving phase space volume containing a fixed set of particles. Applying Liouville's lemma gives

$$\frac{DV}{Dt} = \frac{D}{Dt} \int_{\Omega(t)} d^6x = \frac{D}{Dt} \int_{\Omega_0} J(\vec{x}, t) d^6x_0 = 0.$$
 (48.27)

This implies that the phase space volume of a Hamiltonian system is invariant with respect to time-evolution.

Remark 48.6.10 (†). Any phase space admits a symplectic form ω such that the Hamiltonian equations of motion are encoded in a vector field X_H . By noting that the volume in phase space is calculated through the symplectic volume form $\operatorname{Vol}_{\omega} \sim \omega^n$, this theorem easily follows from the fact that time evolution is the flow of the Hamiltonian vector field, which preserves the symplectic form.

Formula 48.6.11 (Boltzmann's transport equation). Let $F(\vec{q}, \dot{\vec{q}}, t)$ be the mass distribution function

$$M_{\text{tot}} = \int_{\Omega(t)} F(\vec{\boldsymbol{q}}, \dot{\vec{\boldsymbol{q}}}, t) d^6 x. \tag{48.28}$$

From the conservation of mass we can derive the following formula:

$$\frac{DF}{Dt} = \frac{\partial F}{\partial t} + \frac{d\vec{q}}{dt} \cdot \frac{\partial F}{\partial \vec{q}} - \nabla V \cdot \frac{\partial F}{\partial \dot{\vec{q}}} = \left[\frac{\partial F}{\partial t}\right]_{\text{col}}$$
(48.29)

where the right-hand side gives the change of F due to collisions.⁶ This partial differential equation in 7 variables can be solved to obtain F.

Consider a Hamiltonian system with a phase space \mathcal{V} . By Liouville's theorem, the phase flow generated by the equations of motion is a volume- or measure-preserving map $g: \mathcal{V} \to \mathcal{V}$. This gives rise to the following theorem:

Theorem 48.6.12 (Poincaré recurrence theorem). Let V_0 be the initial phase space volume of the system. For every point $x_0 \in V_0$ and for every neighbourhood U of x_0 , there exists a point $y \in U$ such that $g^n(y) \in U$ for every $n \in \mathbb{N}$.

Theorem 48.6.13 (Strong Jeans's theorem⁷). The distribution function $F(\vec{q}, \dot{\vec{q}})$ of a time-independent system, for which almost all orbits are regular, can be expressed in terms of 3 integrals of motion.

The constants in Jeans's theorem are called the **isolating integrals** of the system.

48.6.4 Continuity equation

Formula 48.6.14 (Reynolds transport theorem⁸). Consider a quantity

$$F = \int_{V(t)} f(\vec{\boldsymbol{q}}, \dot{\vec{\boldsymbol{q}}}, t) dV.$$

Combining equation (48.25) with the divergence theorem 21.27 gives

$$\frac{DF}{Dt} = \int_{V} \frac{\partial f}{\partial t} dV + \oint_{\partial V} f \dot{\vec{q}} \cdot d\vec{S}. \tag{48.30}$$

 $^{^6}$ The collisionless form of this equation is sometimes called the **Vlasov equation**.

⁷Actually due to *Donald Lynden-Bell*.

⁸This is a 3D extension of the *Leibniz integral rule*.

Formula 48.6.15 (Continuity equations). For a conserved quantity the equation above becomes:

$$\frac{Df}{Dt} + (\nabla \cdot \dot{\vec{q}})f = 0 \tag{48.31}$$

$$\frac{\partial f}{\partial t} + \nabla \cdot (f\dot{\vec{q}}) = 0. \tag{48.32}$$

If one sets $f = \rho$ (the mass density), the first equation is called the **Lagrangian continuity** equation and the second equation is called the **Eulerian continuity equation**. Both equations can be found by pulling the Lagrangian derivative inside the integral on the left-hand side of 48.6.14.

The difference between these two equations corresponds to the way we observe the system. In the Eulerian approach one observes a fixed point in space and measures how a given quantity at that point evolves. In the Lagrangian approach one observes a given point (or particle) in the system and measures how a given quantity evolves around the chosen point as it moves throughout space.

Corollary 48.6.16. Combining the Reynolds transport theorem with the Lagrangian continuity equation gives the following identity for an arbitrary function f:

$$\frac{D}{Dt} \int_{V} \rho f dV = \int_{V} \rho \frac{Df}{Dt} dV. \tag{48.33}$$

48.7 Dynamical systems

The following property, although seemingly innocuous, is rather important:

Property 48.7.1. For dynamical systems governed by ODEs satisfying the Picard-Lindelöf conditions 18.2.1, different trajectories never intersect (this follows from their uniqueness).

The above property has an important consequence⁹

Theorem 48.7.2 (Poincaré-Bendixson). In a phase plane, i.e. a two-dimensional phase space, the only trajectories inside of a closed bounded subregion without fixed points are either closed orbits or trajectories spiralling into closed orbits.

Corollary 48.7.3. In two-dimensional (Cartesian) phase spaces there cannot exist chaos, i.e. no strange attractors can exist.

Definition 48.7.4 (Lypanuov exponents). Consider two trajectories of a system throughout phase space. Let $s_0 := s(t_0)$ be the distance between these trajectories at a time t_0 (one can take this time to be 0 without loss of generality). If after some time t one can write

$$s(t) \approx e^{\lambda t} s_0,\tag{48.34}$$

 λ is called the Lyapunov exponent of the system.

Definition 48.7.5 (Limit cycle). Consider a closed trajectory C. If there exist curves that asymptotically $(t \to \pm \infty)$ converge to C, i.e. their **limit set** is C, one calls C a limit cycle.

⁹The proof is a bit more involved than that.

Definition 48.7.6 (Poincaré map). Consider a dynamical system determined by a phase flow ϕ . Let S be a codimension-1 hypersurface in the phase space Q that is transversal to ϕ , i.e. all trajectories intersect S at isolated points.

Intuitively, the Poincaré map $P: S \to S$ is defined as the "first return map", i.e. for every point $x \in S$ the image P(x), if it exists, is given by $\phi_T(x)$ with $T =: \min\{t \in \mathbb{R}^+ \mid \phi_t(x) \in S\}$.

One can give a more formal definition (one that also avoids the fact that P would only be partially defined). The Poincaré map P is defined as follows:

- 1. $P:U\to S$ is a differentiable map, where $U\subset S$ is open and connected.
- 2. $P|_{P(U)}$ is a diffeomorphism.
- 3. For every point $u \in U$, the positive semi-orbit of u intersect S for the first time at P(u).

The usefulness of this map lies in the fact that it preserves (quasi)periodicity whilst reducing the dimensionality of the space. It is especially useful for the study of 3-dimensional spaces, where the section S is 2-dimensional and hence easily visualized.

Property 48.7.7. Fixed points of the Poincaré map correspond to closed orbits.

48.8 Fluid mechanics

Theorem 48.8.1 (Cauchy's stress theorem¹⁰). Knowing the stress vectors acting on the coordinate planes through a point A is sufficient to calculate the stress vector acting on an arbitrary plane passing through A.

Cauchy's stress theorem is equivalent to the existence of the following tensor:

Definition 48.8.2 (Cauchy stress tensor). The Cauchy stress tensor is a (0, 2)-tensor **T** that gives the relation between a stress vector associated to a plane and the normal vector \vec{n} to that plane:

$$\vec{t}_{(\vec{n})} = \mathbf{T}(\vec{n}). \tag{48.35}$$

Example 48.8.3. For identical particles the stress tensor is given by

$$\mathbf{T} = -\rho \langle \vec{\boldsymbol{w}} \otimes \vec{\boldsymbol{w}} \rangle, \tag{48.36}$$

where $\vec{\boldsymbol{w}}$ is the random component of the velocity vector and $\langle \cdot \rangle$ denotes the expectation value 42.4.1.

Theorem 48.8.4 (Cauchy's lemma). The stress vectors acting on opposite planes are equal in magnitude but opposite in direction:

$$\vec{\boldsymbol{t}}_{(-\vec{\boldsymbol{n}})} = -\vec{\boldsymbol{t}}_{(\vec{\boldsymbol{n}})}.\tag{48.37}$$

Formula 48.8.5 (Cauchy momentum equation). From Newton's second law 47.1 it follows that

$$\frac{D\vec{P}}{Dt} = \int_{V} \vec{f}(\vec{x}, t)dV + \oint_{\partial V} \vec{t}(\vec{x}, t)dS,$$
(48.38)

¹⁰Also known as Cauchy's fundamental theorem.

where \vec{P} is the momentum density, \vec{f} are the "body" forces and \vec{t} are the surface forces (such as *shear stress*). Using Cauchy's stress theorem and the divergence theorem 21.27 one obtains

$$\frac{D\vec{P}}{Dt} = \int_{V} \left[\vec{f}(\vec{x}, t) + \nabla \cdot \mathbf{T}(\vec{x}, t) \right] dV. \tag{48.39}$$

The left-hand side can be rewritten using 48.33 as

$$\int_{V} \rho \frac{D\vec{\boldsymbol{v}}}{Dt} dV = \int_{V} \left[\vec{\boldsymbol{f}}(\vec{\boldsymbol{x}}, t) + \nabla \cdot \mathbf{T}(\vec{\boldsymbol{x}}, t) \right] dV. \tag{48.40}$$

48.9 Geometric description

In this section we reformulate the current chapter in a differential geometric framework (for an introduction to differential geometry see chapter 29 and onwards). This section is based on [71].

We first begin by reformulating ordinary Newtonian mechanics. The general setting here is a Riemannian manifold¹¹ (M, g) together with a second-order ODE in the form of a vector field on TM such that $\pi_*(X_v) = v$ (where π denotes the tangent bundle projection). For integral curves γ of second-order ODEs it is easy to show that they are the tangent vector fields of their projections. If $q_i(t)$ are the local coordinates of the base curve $\sigma := \pi(\gamma)$, then it can be shown that the tangent coordinates \dot{q}^i of γ are exactly the derivatives of the coordinates q_i :

$$\dot{q}^i(t) = \frac{dq^i}{dt}(t) \tag{48.41}$$

As such the abuse of notation \dot{q}^i is justified. Furthermore, it can be shown that a vector field on TM is second-order if and only if this is true for any local chart, i.e. if the vector field $X \in \mathfrak{X}(TM)$ can be expressed as follows:

$$X = \dot{q}^i \frac{\partial}{\partial q^i} + F^i(q, \dot{q}) \frac{\partial}{\partial \dot{q}^i}.$$
 (48.42)

By writing this vector field as a system of differential equations we get the second-order ODE (hence the terminology)

$$\frac{d^2q^i}{dt^2} = F^i(q, \dot{q}). {48.43}$$

The prime example of such a second-order ODE is the vector field generating the geodesic flow on TM, i.e. the integral curves are the tangent curves of geodesics on M. The similarity between the above equation and equation 28.41 is therefore striking. By adopting the notation of equation 34.1.21 one can generalize the geodesic equation to obtain Newton's equation for an arbitrary smooth "potential" $U: M \to \mathbb{R}$:

Formula 48.9.1 (Newton's equation). Let (M,g) be a Riemannian manifold and let $U: M \to \mathbb{R}$ be a smooth function. Newton's equation for a curve $\sigma: [a,b] \to M$ reads

$$\nabla_{\dot{\sigma}}\dot{\sigma} = -\text{grad}(U) \tag{48.44}$$

where ∇ indicates the Levi-Civita connection and grad denotes the gradient operator.

¹¹The metric is mainly for defining the kinetic term $\frac{1}{2}g(v,v)$.

48.9.1 Lagrangian formalism

We now turn to Noether's theorem and in particular the version concerning cyclic coordinates 48.2.4. Any diffeomorphism of M induces a diffeomorphism on TM by pushforward. A symmetry of the Lagrangian function $L:TM\to\mathbb{R}$ is a diffeomorphism ϕ of M such that $\phi^*L=L$. Infinitesimal symmetries (or infinitesimal symmetry generators) are then the vector fields for which the flow is a symmetry. Given a complete vector field X, one can define the conjugate momentum $\widehat{X}:TM\to\mathbb{R}$ as follows:

$$\widehat{X}(v) := g(X_{\pi(v)}, v). \tag{48.45}$$

Using this definition we can reformulate Noether's theorem 48.2.4 as follows:

Theorem 48.9.2 (Noether's theorem). The conjugate momentum of an infinitesimal symmetry is a constant of motion.

If one denotes the conjugate momenta of the coordinate-induced vector fields ∂_i by P_i , the nondegeneracy of g implies that the set $\{q^i, P_i\}_{i \leq n}$ gives well-defined coordinate functions on T^*M . The equivalence of the Lagrangian action principle and the Newtonian equations of motion imply that the second-order ODE associated to the potential U takes the following form:

$$X^{U} := \dot{q}^{i} \frac{\partial}{\partial q^{i}} + \frac{\partial L}{\partial q^{i}} \frac{\partial}{\partial P_{i}}.$$
(48.46)

After performing the Legendre transformation $E := P_i \dot{q}^i - L$ to obtain the (Hamiltonian) energy function¹², we can rewrite Newton's equations in the Hamiltonian form:

$$X^{E} = \frac{\partial E}{\partial P_{i}} \frac{\partial}{\partial q^{i}} - \frac{\partial E}{\partial q^{i}} \frac{\partial}{\partial P_{i}}.$$
(48.47)

48.9.2 Hamiltonian formalism

The procedure of mapping a (complete) vector field to its conjugate momentum can be generalized to an isomorphism $TM \to T^*M$ as follows:

Definition 48.9.3 (Fibre derivative). Let $L:TM\to\mathbb{R}$ be a smooth Lagrangian. The fiber derivative of L is defined as the Fréchet derivative

$$\langle FL(v), w \rangle := \frac{d}{dt} \Big|_{t=0} L(v+tw).$$
 (48.48)

Because $FL(v) \in \mathcal{L}(TM, \mathbb{R}) \equiv T^*M$ by definition of the derivative, we see that FL defines a map $TM \to T^*M$. In local coordinates (q^i, \dot{q}^i) the fiber derivative is given by

$$FL: (q^i, \dot{q}^i) \mapsto \left(q^i, \frac{\partial L}{\partial \dot{q}^i}\right) \equiv (q^i, p_i).$$
 (48.49)

As such we obtain the classical definition 48.1.3 for conjugate momenta. In the case of kinetic Lagrangians defined by a metric g, it is not hard to see that this boils down to equation 48.45 of conjugate momenta given in the previous paragraph.

Remark 48.9.4 (Legendre transform). The fibre derivative FL is often called the Legendre transformation of L. Although this does not exactly coincide with definitions 44.15 or 48.12, the relation is simple enough. The Legendre transformation $L \mapsto E$ (on the tangent bundle) is implemented as $E(X) = \langle FL(X), X \rangle - L(X)$.

 $^{^{12}}$ We refrain from calling the Hamiltonian function, as we reserve this terminology for objects on the cotangent bundle.

Lagrangians for which the Legendre transformation is invertible, i.e. for which FL is a diffeomorphism, give rise to mechanics on the cotangent bundle: Given such a Lagrangian one constructs the associated energy function E by a Legendre transformation and maps it to a Hamiltonian H on the cotangent bundle as $H := E \circ FL^{-1}$. (By abuse of notation we set $L \equiv L \circ FL^{-1}$.) The transformation also induces a Hamiltonian vector field on T^*M by $X^H := FL_*X^E$ or alternatively by $X^E = FL^*X^H$. If we choose cotangent coordinates $p_i(\alpha) := \alpha(\partial_i)$, then we easily see that $p_i \circ FL = P_i$. This way the Hamiltonian equations remain virtually unchanged when transporting them to the cotangent bundle.

For any choice of coordinates such that the symplectic form on T^*M takes the standard Darboux form $\omega = dp_i \wedge dq^i$, the Newtonian equations of motion take on a Hamiltonian form. If there exists a coordinate chart in which the Hamiltonian function H does not depend on any of the base coordinates q^i , then we call the coordinates **action-angle** variables and the system is said to be **completely integrable**.

48.9.3 Symplectic structure on infinite-dimensional systems

Although we could have put this section in chapter 35, we thought it better fit here, since the study of these manifolds is almost always related to the study of physical phenomena such as solitons.

The general definition of a symplectic manifold (M, ω) remains the same, i.e. it is a smooth manifold M equipped with a closed, nondegenerate 2-form ω . Even though we remain in the 2-plectic setting, the content of remark 35.2.7 applies also to infinite-dimensional systems. If we restrict to the space of Hamiltonian functions (and vector fields) we can define a Poisson structure as follows:

$$\{F,G\} := \omega(X^G, X^F).$$
 (48.50)

?? COMPLETE (e.g. Palais, cursus Antwerpen)??

Chapter 49

Constrained dynamics

The foundations for this subject were laid down by *Dirac* in [56]. By introducing constraints, the coordinates and their momenta are not independent anymore. This implies for example that the Hamiltonian equations of motion have to be modified.

49.1 Constraint surface

First, recall the Lagrangian equations of motion 48.6. By expanding these equations, it can be shown that the accelerations \ddot{q} are uniquely determined by the coordinates and velocities (q, \dot{q}) if and only if the Hessian of the Lagrangian is invertible. If the Hessian is not invertible, the definition of the conjugate momenta 48.1.3 cannot be inverted to express velocities in terms of momenta. Alternatively, the momenta p and coordinates q are not independent and there must exist relations of the form

$$\phi(q, p) = 0. \tag{49.1}$$

These constraints are called **primary constraints**. They do not serve to constrain the range of the coordinates q. They only couple the coordinates and the momenta.

Axiom 49.1 (Regularity conditions). It will always be assumed that the independent constraints, i.e. the minimal subset of constraints that imply the others, satisfy the following (equivalent) conditions:

- The constraints can locally serve as the first coordinates of a new (regular) coordinate system.
- The gradients $d\phi_m$ are locally linearly independent.
- The variations $\delta \phi_m$ are of order ε whenever the variations $\delta q^i, \delta p_i$ are of the order ε . (This is the original condition due to Dirac.)

A constrained dynamical system consists of a dynamic system (M, ω, H) together with a finite collection of constrained equations $\phi_m(q, p) = 0$ for $m \in I$. These equations are called the **primary constraints**. If this system was derived from a Lagrangian $L(q, \dot{q})$, the calculus of variations easily extends to these constrained systems, where it gives the following modified Hamiltonian equations:

$$\dot{q}^i = \frac{\partial H}{\partial p_i} + \sum_{m \in I} u_m \frac{\partial \phi_m}{\partial p_i} \tag{49.2}$$

$$\dot{p}_i = -\frac{\partial H}{\partial q^i} - \sum_{m \in I} u_m \frac{\partial \phi_m}{\partial q^i},\tag{49.3}$$

where u_m are functions of the coordinates and velocities that play a role similar to ordinary Lagrange multipliers.

Remark 49.1.1. The above relations follow from the general property that the general solutions to $\lambda_i \delta q^i + \mu_i \delta p^i = 0$ for variations $\delta q^i, \delta p_i$ tangent to the constraint surface are of the form

$$\begin{cases} \lambda_i = \sum_{m \in I} u_m \frac{\partial \phi_m}{\partial q^i} \\ \mu^i = \sum_{m \in I} u_m \frac{\partial \phi_m}{\partial p_i}. \end{cases}$$
(49.4)

Combining this result with the usual derivation of Hamilton's equations from a Lagrangian action principle gives the above modified equations.

In terms of Poisson brackets the time evolution of a (time-independent) function is then given by

$$\dot{f} = \{H, f\} + \sum_{m \in I} u_m \{\phi_m, f\}. \tag{49.5}$$

Method 49.1.2 (General Poisson brackets). Until now Poisson brackets were only defined for functions depending on the canonical coordinates (q, p). This definition can be generalized to arbitrary functions through the Lie algebra properties (linearity, antisymmetry and the Jacobi identity) together with the Leibniz property. Furthermore, after working out the Poisson brackets one can use the constraint equations to drop all terms that are proportional to ϕ_m .

For example, equation 49.5 can be rewritten as

$$\dot{f} = \{ H + \sum_{m \in I} u_m \phi_m, f \}. \tag{49.6}$$

To prove the equivalence, one can use the linearity and Leibniz properties. This involves the following equality

$$\{u_m \phi_m, f\} = \{u_m, f\} \phi_m + u_m \{\phi_m, f\}. \tag{49.7}$$

The Poisson brackets in the second term only involve functions depending on (q, p) and can be calculated in the usual way. The first term, however, involves a Poisson bracket of the Lagrange multiplier u_m . In general these do not simply depend on q and p. The problem is solved because the term is proportional to the constraints, and as such vanishes on-shell. It is important that the constraints are only applied after the Poisson brackets have been fully worked out.

Notation 49.1.3 (Weak equality). The constraints ϕ_m are only 0 on-shell. To distinguish between functional equalities, i.e. equalities that also hold off-shell, and on-shell equalities (also called **weak equalities**) the latter are often denoted by the \approx symbol. For example, the condition $\phi_m \approx 0$ is only a weak equality.

Using the above definitions one can write an arbitrary time derivative as

$$\dot{f} \approx \{H_T, f\},\tag{49.8}$$

where $H_T := H + \sum_{m \in I} u_m \phi_m$.

Remark 49.1.4 (Strong becomes weak). An important remark regarding weak equalities can be found by taking a Poisson bracket of an f that is strongly 0, i.e. a function that vanishes on-shell and whose variation also vanishes. In this case $\{f,g\} \approx 0$ for all functions g, i.e. the brackets only vanish weakly. Furthermore, if $f \approx 0$, then $\{f,g\}$ does not even have to vanish at all.

Property 49.1.5 (Consistency conditions). By taking $f = \phi_n$ for any $n \in I$ in equation 49.5 a set of consistency conditions is obtained:

$$\{H, \phi_n\} + \sum_{m \in I} u_m \{\phi_m, \phi_n\} \approx 0.$$
 (49.9)

It is possible that this condition reduces to an inconsistency of the type $1 \approx 0$. In this case the equations of motion are inconsistent and the theory is not physical. If this is not the case, multiple possibilities can arise:

- After imposing the primary constraints, a tautology 0 = 0 is found. This gives no new information
- The equation reduces to an equation not involving the Lagrange multipliers u_m . This gives an additional constraint

$$\chi(q, p) = 0. \tag{49.10}$$

These are called **secondary constraints**.

• The last possibility is that a condition on the coefficients u_m is obtained.

After having found a set of secondary constraints, this procedure can be iterated until no new contraints or conditions are found. Because the consistency condition are linear in the coefficients u_m , the general solution can be written as

$$u_m = U_m + v_a V_m^a \tag{49.11}$$

where U_m is a solution of the nonhomogeneous equation and the V_m^a are linearly independent solutions of the homogeneous equation

$$\sum_{m \in I} u_m \{ \phi_m, \phi_n \} = 0. \tag{49.12}$$

The resulting coefficients v_a are completely arbitrary functions of time. Therefore, the total Hamiltonian can be written in the form

$$H_T = H'(q, p) + v_a(t)\phi^a(q, p)$$
(49.13)

where $\phi^a := \sum_{m \in I} V_m^a \phi_m$. The occurrence of arbitrary functions in the Hamiltonian implies that the evolution of the phase space variables is not unique and, accordingly, that the theory has a gauge freedom.

Definition 49.1.6 (First- and second-class). A function f(q,p) is said to be first-class if its Poisson bracket with every constraint (both primary and secondary) is weakly zero. The function is said to be second-class otherwise. It can be shown that both the total Hamiltonian H_T and the primary constraints ϕ^a are first-class. The number of arbitrary coefficients v_a is equal to the number of primary first-class constraints.

Notation 49.1.7. To distinguish between first- and second-class constraints, one often denotes the latter by a separate symbol χ .

Property 49.1.8. The Poisson bracket of two primary first-class functions is first-class. So is the Poisson bracket of the total Hamiltonian and a first-class primary constraint.

Remark 49.1.9 (Dirac conjecture). The primary first-class constraints ϕ^a generate gauge transformations in the sense that variations in the coefficients v_a , which are arbitrary, give rise to phase space variations that leave the physical state invariant. Some secondary constraints

might also generate gauge transformations and *Dirac* even conjectured that this was the case for all constraints. Although by now counterexamples have been found, a common workaround is just to restrict to systems where the conjecture is true. From now on the distinction between primary and secondary will be dropped. From this point of view it makes sense to define the extended Hamiltonian

$$H_E := H_T + v_b(t)\phi^b(q, p),$$
 (49.14)

where b ranges over all secondary first-class constraints. For gauge invariant functions, i.e. those whose Poisson bracket with all first-class constraints vanishes, evolution with all three Hamiltonians H, H_T and H_E is identical. For general functions only H_E takes into account the full gauge freedom.¹

Corollary 49.1.10. The first-class constraints form a Lie algebra with respect to the Poisson bracket and the associated gauge transformations define a submanifold in phase space by Frobenius's theorem 32.3.26.

Formula 49.1.11 (Degrees of freedom). The number of degrees of freedom is given by the following formula:

 $2 \times \text{number of d.o.f.} = \text{number of canonical coordinates}$

- number of initial second-class constraints
- $-2 \times$ number of initial first-class constraints.

Definition 49.1.12 (Dirac bracket). To take care of second-class constraints, *Dirac* introduced a modification of the Poisson bracket:

$$\{f,g\}_D := \{f,g\} - \{f,\chi_a\}C^{ab}\{\chi_b,g\},$$
 (49.15)

where the χ_a 's are the second-class constraints and the (invertible) matrix C^{ab} is the inverse of the matrix $C_{ab} := \{\chi_a, \chi_b\}$.

The benefit of using the Dirac bracket (after the Poisson bracket has been used to separate constraints in first-class and second-class constraints) is that second-class constraints become strong equalities, i.e. they can be used even before evaluating further (Dirac) brackets. The Dirac bracket satisfies the same algebraic properties as the Poisson bracket. From here on, all constraints will be assumed to be first-class, i.e. the Poisson bracket will be assumed to be the one obtained after applying the Dirac procedure to all second-class constraints.

Remark 49.1.13. Instead of splitting the constraints in first- and second-class instances and having to work with the nontrivial Dirac bracket, one can also try to remove second-class constraints in a different way. In the above formula for the degrees of freedom, the factor 2 on the right-hand side is obtained by the introduction of gauge fixing conditions. What these actually do is turning first-class constraints in second-class ones. In fact, the converse is also possible. One can obtain all second-class constraints as gauge fixed first-class constraints after enlarging the system (although this procedure is not unique). After doing this, there is no need for the Dirac bracket anymore and one can simply work with the Poisson bracket (with the added complexity that all constraints are now only weak).

Definition 49.1.14 (Gauge-invariant functions). Consider the algebra of smooth functions on phase space $C^{\infty}(M)$. In the spirit of algebraic geometry the space of functions on the constraint surface Σ is given by the quotient algebra $C^{\infty}(\Sigma) := C^{\infty}(M)/\mathcal{N}$, where \mathcal{N} is the ideal having Σ as its zero locus, i.e. \mathcal{N} is the ideal generated by the constraints. The elements of $C^{\infty}(\Sigma)$ that

Note that H_T is the Hamiltonian that corresponds to a Lagrangian approach. H_E gives a more general theory.

are gauge-invariant, i.e. first-class with respect to first-class constraints, should be considered as the **classical observables**.

The restriction to gauge-invariant functions is also imperative if one wants to extend the bracket operation to $C^{\infty}(\Sigma)$. In general the ideal \mathcal{N} is not an ideal of the Dirac bracket. The gauge-invariant subalgebra is in fact the maximal subalgebra of $C^{\infty}(\Sigma)$ for which \mathcal{N} is again an ideal.

Property 49.1.15 (Geometric characterization). Restricted to a first-class constraint surface, the "symplectic" form becomes maximally degenerate with rank $\operatorname{rk}(\omega) = \dim(M) - 2\dim(\Sigma)$. This essentially says that the constraint surface is coisotropic and, as a consequence, that the Poisson bracket is ill-defined (since this would involve the inverse of the symplectic form). After passing to the **reduced phase space**, i.e. the leaf space of the Hamiltonian foliation generated by the constraints, one again obtains a well-defined Poisson bracket that coincides with the ordinary Poisson bracket without any constraints.

The opposite situation arises for constraint surfaces that only involve second-class constraints. Here, the induced symplectic form is of maximal rank $\operatorname{rk}(\omega) = \dim(M) - \dim(\Sigma)$, which implies that the surface is isotropic. Furthermore, the induced Poisson bracket coincides with the restriction of the Dirac bracket.

Remark 49.1.16 (Algebraic characterization). The fact that first-class constraints define a coisotropic submanifold is not a peculiarity. A multiplicative ideal of a Poisson algebra 30.2.3, that is also closed under the Poisson bracket, is often called a **coisotrope** (or coisotropic ideal). Coisotropic submanifolds of a Poisson manifold 35.2.4 are exactly the zero loci of such coisotropes. In fact one can restate the above constructions in purely algebraic terms. Given a Poisson algebra P and a coisotrope \mathcal{I} , one can pass to the quotient $N(\mathcal{I})/\mathcal{I}$, where N denotes the normalizer in P. This quotient is again a Poisson algebra, called the **reduced Poisson algebra**. This construction is more general than the symplectic case considered above. Moreover, the sections further on could also be generalized to this setting.

49.2 Gauge algebra

In this section the gauge symmetries of local action S, i.e. an action

$$S[y] := \int L(y, \dot{y}, \dots, t) dt$$

where the Lagrangian depends on the derivatives up to a finite order k, are considered. A **gauge** transformation of this action is a coordinate transformation that depends arbitrarily on the time variable, but leaves the action invariant. The most general form of such a transformation is

$$\delta_{\varepsilon} y^{i} = R_{0,j}^{i} \varepsilon^{j} + R_{1,j}^{i} \dot{\varepsilon}^{j} + \dots + R_{l,j}^{i} \frac{d^{s} \varepsilon^{j}}{dt^{s}}, \tag{49.16}$$

where the coefficients R^i are arbitrary functions of time.

Invariance of the action implies that

$$\delta_{\varepsilon}S = \frac{\delta S}{\delta y^{i}} \delta_{\varepsilon} y^{i} = \frac{\delta S}{\delta y^{i}} R_{j,k}^{i} \frac{d^{j} \varepsilon^{k}}{dt^{j}} = 0.$$
 (49.17)

Beause this should hold for any value of the transformation parameters ε , one immediately obtains the variational Noether identities:

Property 49.2.1 (Noether identities). If a local action is invariant under the transformation 49.16, then

$$\frac{\delta S}{\delta y^i} R^i_{j,k} = 0 (49.18)$$

for all indices j, k. In contrast to Noether's theorem 48.2.4, these identities do not imply conserved quantities. Instead they show that the equations of motion are not independent.

The structure of the infinitesimal gauge transformations is easily seen to be that of a (real) Lie algebra, whilst that of finite (exponentiated) transformations is a Lie group. However, the gauge algebra $\overline{\mathcal{G}}$ is very large (in fact it is infinite-dimensional) and contains a lot of physically irrelevant information. The simplest example is that of the **zilch symmetries** as referred to by Freedman and Van Proeyen [37]:

Definition 49.2.2 (Trivial gauge symmetry). All transformations of the form

$$\delta_{\varepsilon} y^i = \varepsilon^{ij} \frac{\delta S}{\delta y^j},\tag{49.19}$$

where ε is antisymmetric, are trivially gauge transformations. These are physically irrelevant since they are not generated by constraints. The trivial gauge transformations form an ideal \mathcal{N} of the gauge algebra and the physically relavent algebra is the quotient $\mathcal{G} := \overline{\mathcal{G}}/\mathcal{N}$.

In fact one can show that any gauge transformation, satisfying suitable conditions, that vanishes on-shell is equal to some trivial transformation. ?? EXPLAIN (see HENNEAUX and TEITELBOIM) ??

A further problem with the gauge algebra is that independent transformations might lead to dependent Noether identities wich implies that there is still some redundancy. To fix this one defines the following minimal set:

Definition 49.2.3 (Generating set). A generating set² of the gauge algebra is a set of transformations $\delta_{\varepsilon}y^{i}=R_{i}^{i}\varepsilon^{j}$ such that every gauge transformation can be written as follows:

$$\delta y^i = R_j \varepsilon^j + M^{ij} \frac{\delta S}{\delta y^j},\tag{49.20}$$

where $M^{ij} = -M^{ji}$. Because the coefficients might be functions of the coordinates y, \dot{y}, \ldots , the generating set is generally not a basis for the gauge algebra. Because the gauge algebra is a Lie algebra, there must exist structure functions C^i_{kl} and M^{ij}_{kl} such that

$$R_k^j \frac{\delta R_l^i}{\delta u^j} - R_l^i \frac{\delta R_k^j}{\delta u^i} = C_{kl}^m R_m^i + M_{kl}^{ij} \frac{\delta S}{\delta u^j}, \tag{49.21}$$

where $M_{kl}^{ij} = -M_{kl}^{ji}$. If all M are 0, the algebra is said to be **closed** (even though the generating set itself might not be closed as a Lie algebra because the C's are functions) and otherwise it is said to be **open**. A generating set is said to be **irreducible** if there exist no nontrivial combinations of elements:

$$\varepsilon_j R_j^i = M^{ij} \frac{\delta S}{\delta y^j} \implies \varepsilon^j = N^{jk} \frac{\delta S}{\delta y^k}.$$
(49.22)

²Sometimes called a **complete set** of gauge symmetries

49.3 Fermionic systems

In this section the study of constrained systems with "fermionic" or odd statistics is considered. For an introduction to Grassmann numbers, see Section 27.1.2. In general the phase space will be assumed to be a *supermanifold*.

First one extends the ordinary Poisson bracket to Grassmann-odd coordinates as follows:

$$\{\theta^i, \theta^j\} = 0 = \{\pi_i, \pi_j\} \tag{49.23}$$

and

$$\{\theta^i, \pi_j\} = \delta^i_j = \{\pi_j, \theta^i\}.$$
 (49.24)

By defining the matrix $C^{ij} := \{z^i, z^j\}$, where z can be any of the q, p, θ or π , one can then succintly extend the Poisson bracket to all superfunctions as follows:

$$\{f,g\} := \frac{\partial^R f}{\partial z^i} C^{ij} \frac{\partial^L g}{\partial z^j}.$$
 (49.25)

Note that this is virtually the same expression as the ordinary Poisson bracket where the matrix C was the inverse of the symplectic matrix. Writing out all terms gives

$$\{f,g\} = \left(\frac{\partial f}{\partial p_i}\frac{\partial g}{\partial q^i} - \frac{\partial f}{\partial q^i}\frac{\partial g}{\partial p_i}\right) + (-1)^{\deg(f)}\left(\frac{\partial f}{\partial \pi_i}\frac{\partial g}{\partial \theta^i} + \frac{\partial f}{\partial \theta^i}\frac{\partial g}{\partial \pi_i}\right). \tag{49.26}$$

The algebraic properties of this generalized Poisson bracket are graded generalizations of those of the ordinary one:

$$\{f,g\} = -(-1)^{\deg(f)\deg(g)}\{g,f\} \tag{49.27}$$

$$0 = \{f, \{g, h\}\} + (-1)^{[\deg(f) + \deg(g)] \deg(h)} \{h, \{f, g\}\}$$

$$+(-1)^{\deg(f)[\deg(g)+\deg(h)]}\{g,\{h,f\}\}$$
 (49.28)

$$\{f, gh\} = \{f, g\}h + (-1)^{\deg(f)\deg(g)}f\{g, h\}$$
(49.29)

$$\deg(\{f, g\}) = \deg(f) + \deg(g). \tag{49.30}$$

The first two properties state that the generalized Poisson bracket gives rise to a Lie superalgebra 27.7.2. The third property states that it is in fact a $Poisson\ superalgebra$, in fact this is the example that lends its name to the algebraic structure. Geometrically the matrix C gives rise to a $supersymplectic\ structure$.

49.4 BRST symmetry

49.4.1 Introduction

Consider a dynamical system (M, ω, H) together with a set of first-class constraints $\{\phi_a\}_{a\in I}$. For further convenience the constraints will be assumed to be **irreducible**, i.e. their Jacobian is assumed to be of full rank on the constraint surface. As was shown before, these constraints generate an algebra under the Poisson bracket. However, more structure exists. One first enlarges the phase space by introducing for every constraint and every relation between constraints ϕ_a a Grassmann-odd³ **ghost variable** η^a and its canonical conjugate \overline{P}_a , i.e.

$$\{\overline{P}_a, \eta^b\} := -\delta_a^b, \tag{49.31}$$

of degrees $gh(\overline{P}_a) = -1$ and $gh(\eta^a) = 1$.

³In fact one can generalize this section to phase spaces which already contain odd variables. In that case the ghost variables should have the opposite parity of the associated constraint.

Remark 49.4.1 (Nonminimal sectors). In certain situations it might be useful to futher extend the phase space by additional conjugate pairs, e.g. the Lagrange multipliers from an action principle. Such descriptions are said to belong to the nonminimal sector. An example would be the *Nakanishi-Lautrup field B*, introduced when quantizing Yang-Mills theory, which is the BRST-partner of the Faddeev-Popov antighost field \bar{c} , i.e. $\{\bar{c}, \Omega\} = B$.

Definition 49.4.2 (BRST operator). To any dynamical system governed by first-class constraints $\{\phi_a\}_{a\in I}$ one can associate a BRST operator Ω defined by the following conditions:

1. It is of degree 1:

$$gh(\Omega) = 1. (49.32)$$

2. It is nilpotent with respect to the Poisson bracket:

$$\{\Omega, \Omega\} = 0. \tag{49.33}$$

3. It is Hermitian:

$$\Omega^* = \Omega. \tag{49.34}$$

4. It is proportional to the constraints in lowest order:

$$\Omega = \eta^a \phi_a + \text{terms in ghost momenta.}$$
 (49.35)

Example 49.4.3 (Abelian constraint algebra). In the case where the constraints form an Abelian algebra, i.e. $\{\phi_a, \phi_b\} = 0$, the BRST operator has a simple expression:

$$\Omega = \eta^a \phi_a. \tag{49.36}$$

Example 49.4.4 (Closed constraint algebra). In the case where the constraints form a closed algebra, i.e. $\{\phi_a, \phi_b\} = C_{ab}^c \phi_c$ with C_{ab}^c constant, the BRST operator has a slightly more complex expression since the zeroth order term in the BRST expansion is not nilpotent on its own. However, since the structure functions C_{ab}^c are constants, all higher order terms do vanish:

$$\Omega = \eta^a \phi_a - \frac{(-1)^{\varepsilon_b}}{2} \eta^b \eta^c C_{bc}^a \overline{P}_a. \tag{49.37}$$

Remark 49.4.5. It should be noted that the nilpotency of the BRST operator holds not only on-shell, but everywhere on M. In this sense the ghost momenta appearing in its definition are the fields necessary to close the algebra outside the constraint surface. In fact it is important to work in the Hamiltonian formalism if one wants to achieve this off-shell nilpotency. It has been shown that in the Lagrangian formalism this property cannot hold for gauge transformations that only close on-shell. (This latter property is related to the fact that the structure coefficients are generally functions of the canonical variables. Only when they are constants, does the algebra of canonical transformations generated by the constraints close off-shell.)

Because of the algebraic properties above, the BRST operator defines a cohomology theory:

Property 49.4.6 (BRST cohomology). For all functions f on the extended phase space, one has the following equality:

$$\{\{f,\Omega\},\Omega\} = 0.$$
 (49.38)

In view of this structure one defines a BRST-closed function as a function f satisfying

$$\{f,\Omega\} = 0\tag{49.39}$$

and a BRST-exact function as a function f that can be written as

$$f = \{g, \Omega\} \tag{49.40}$$

for some function g. It is clear that BRST cohomology is gauge invariant, since Ω is gauge invariant.

It can also be shown that the BRST operator only depends on the constraint surface and not on the choice of a local description:

Property 49.4.7 (Uniqueness). Any two BRST generators Ω, Ω' associated to the same constraint surface are related by a canonical transformation on the extended phase space.

For negative ghost numbers it can be shown that BRST cohomology vanishes. In degree 0 the BRST cohomology is characterized as follows:

Property 49.4.8 (Gauge invariant functions). $H^0(\Omega)$ is isomorphic to the set of equivalence classes of gauge invariant functions f(q,p) under the identification $f \sim g \iff f \approx g$.

Given a BRST-closed function f of ghost-degree 0, the **classical observable** associated to it is obtained as the term of antighost-number 0 in its BRST expansion. Conversely, any BRST-closed function of ghost-number 0 is called a **BRST-invariant extension** of its term of antighost-number 0.

Property 49.4.9. The Poisson bracket decends to $H^0(\Omega)$ and defines a (graded) Poisson algebra structure. Furthermore, if f and g are BRST-invariant extensions of f_0 and g_0 respectively, the functions fg and $\{f,g\}$ are BRST-invariant extensions of f_0g_0 and $\{f_0,g_0\}$, respectively.

Example 49.4.10 (Extension of constraints). Consider a constraint ϕ_a . A BRST-invariant extension is given by the Poisson bracket

$$G_a := \{ -\mathcal{P}_a, \Omega \}. \tag{49.41}$$

This immediately shows that the extension G_a corresponds to the observable 0, since it is Ω -exact and, hence, vanishes in cohomology. If the constraints form a closed algebra, so do their extensions (due to the property above). However, in general, the BRST-extensions do not obey any kind of algebra-like condition.

Remark. The interpretation of higher cohomology groups will be addressed in Chapter 58.

Definition 49.4.11 (Gauge-fixing). Consider a classical Hamiltonian H_0 and its BRST extension H. One can change the Hamiltonian H by a BRST exact term $\{K, \Omega\}$ without changing the cohomology, i.e. without changing the dynamics of BRST-invariant functions. However, the dynamics of noninvariant functions is modified. For this reason the function K is called the **gauge-fixing fermion**.

49.4.2 Irreducible constraints

In this section only systems with irreducible constraints are considered, i.e. there exists no relations between the constraints. To formulate the BRST complex in terms of invariant geometric notions, a homological and differential geometric approach will be adopted.

A first step is expressing the algebra of on-shell functions $C^{\infty}(\Sigma)$ in an invariant way. The idea is to rewrite the quotient $C^{\infty}(M)/\mathcal{N}$ as a homology group (which is invariant by its very nature). To this end one passes to the Koszul complex 5.4.15 associated to the first-class constraints ϕ_a .⁴ One then finds that $H_0(\delta) \cong C^{\infty}(M)/\mathcal{N} \cong C^{\infty}(\Sigma)$, where δ is the Koszul differential.

Definition 49.4.12 (Antighost number). The degree induced by δ is called the **antighost number**. The Koszul generators \mathcal{P}_a , associated to the constraints ϕ_a , have antighost number 1 and have fermionic parity $\varepsilon_a + 1$.

A second step is to characterize the gauge structure on the constraint surface Σ . To this end a special exterior derivative on the phase space is introduced. Although the gauge algebra spanned by the constraints ϕ_a does not necessarily generate a closed gauge group on the full phase space, it does when restricted to the constraint surface. The |I|-dimensional leaves of the foliation generated by the constraints are called the **gauge orbits**. The **reduced phase space** is defined as the leaf space of this foliation.

The Hamiltonian vector fields associated to the first-class constraints are tangent to the gauge orbits. Furthermore, by the irreducibility of the constraints, the vector fields form a frame field for the tangent bundle of the gauge orbits.

Definition 49.4.13 (Longitudinal complex). Vector fields that are tangent to the gauge orbits are called longitudinal or vertical vector fields (not to be confused with the vertical vector fields from Section 33.3). A frame field is given by the Hamiltonian vector fields $X_a := \{\phi_a, \cdot\}$.

Longitudinal forms η^a are defined as the multilinear duals to the longitudinal vector fields. The complex of longitudinal forms can be obtained as follows. The tangent bundle of Σ in M can be decomposed as follows:

$$TM|_{\Sigma} = T\mathcal{F} \oplus N\Sigma,$$
 (49.42)

where $T\mathcal{F}$ denotes the tangent bundle to the foliation generated by the constraints and $N\Sigma$ denotes the normal bundle to the foliation. This decomposition also turns the de Rham complex $\Omega(\Sigma) := \Omega(M)|_{\Sigma}$ into a bicomplex $\Omega^{\bullet,\bullet}(\Sigma) = \Lambda^{\bullet}T^*\mathcal{F} \otimes \Lambda^{\bullet}N^*\Sigma$. The longitudinal (or vertical) complex is then exactly $\Omega^{\bullet,0}(\Sigma)$ and the longitudinal exterior derivative is the projection of the total de Rham differential on the longitudinal subcomplex, i.e. $\mathbf{d}: \Omega^{\bullet,0}(\Sigma) \to \Omega^{\bullet+1,0}(\Sigma)$:

$$\mathbf{d}f := df = \{\phi_a, f\} \, \eta^a, \tag{49.43}$$

$$\mathbf{d}\eta^a := -\frac{1}{2}\eta^b \wedge \eta^c C^a_{bc}(q, p), \tag{49.44}$$

where $C_{bc}^a(q,p)$ are the structure functions of the constraint algebra. The fermionic parity of the forms η^a is taken to be $\varepsilon_a + 1$. Note that the action of **d** is exactly the action of the Chevalley-Eilenberg differential from Section 30.4.7. (This is not a coincidence, see further on for more information.)

The longitudinal complex can be extended to all of M by taking its elements to be the forms

$$A \equiv A_{i_1\dots i_k}(q,p)\eta^{i_1} \wedge \dots \wedge \eta^{i_k}, \tag{49.45}$$

where the coefficients are equivalence classes of functions in $C^{\infty}(M)$ that are weakly equal.

Definition 49.4.14 (Ghost number). The form degree of a longitudinal differential form is called the **(pure) ghost number**. It is denoted by "pure gh".

⁴Independence of the constraints is exactly says that they form a regular sequence and, hence, the complex gives a homological resolution.

Note that the number of Koszul generators is the same as the number of ghost fields since both of these are induced by the constraints ϕ^a . To extend the Poisson bracket to the **extended phase space** containing phase space functions, ghost fields and ghost momenta, the following convention is introduced:

$$\{\mathcal{P}_a, \eta^b\} = -(-1)^{(\varepsilon_a + 1)(\varepsilon_b + 1)} \{\eta^b, \mathcal{P}_a\} := -\delta_a^b.$$
 (49.46)

Definition 49.4.15 (Ghost number). The total ghost number of an element in the coordinate superalgebra $C^{\infty}(M) \otimes \mathbb{C}[\eta^a] \otimes \mathbb{C}[\mathcal{P}_a]$ on the extended phase space is defined as follows:

$$gh(A) := pure gh(A) - antigh(A).$$
 (49.47)

It satisfies

$$gh(AB) = gh(A) + gh(B). \tag{49.48}$$

It can be obtained as the eigenvalue of the operator

$$\mathcal{G} := i\eta^a \mathcal{P}_a. \tag{49.49}$$

When passing to longitudinal forms on all of M, the operator \mathbf{d} fails to be a differential, i.e. $\mathbf{d}^2 \neq 0$ on M. It is only weakly zero outside Σ . When extending the longitudinal derivative \mathbf{d} to the extended phase space one has the freedom to choose the action on the ghost momenta under the constraint that $gh(\mathbf{d}) = 1$ and $antigh(\mathbf{d}) = 0.5$ By making the choice

$$\mathbf{d}\mathcal{P}_a := (-1)^{\varepsilon_a} \eta^c C_{ca}^b \mathcal{P}_b, \tag{49.50}$$

the Koszul differential and longitudinal derivative satisfy $[\delta, \mathbf{d}] = 0$. This also turns \mathbf{d} into a differential modulus δ (Definition 5.1.8). The homology of δ can be generalized to the full extended phase space by tensoring the Koszul resolution of $C^{\infty}(\Sigma)$ by $\mathbb{C}[\eta^a]$. Because the latter is a free, and in particular projective, module, the homology of the tensor product is the tensor product of the homology by this module. The cohomology of [modulo δ on M can be shown to coincide with the cohomology of \mathbf{d} on Σ . This cohomology theory is exactly the **BRST cohomology** from the previous section.

Homological perturbation theory 5.3.3 now also says that there exists a true differential s on the extended phase space generating BRST cohomology with the following additional properties:

$$s = \delta + \mathbf{d} + \cdots$$

$$\varepsilon(s) = 1$$

$$gh(s) = 1.$$
(49.51)

This operator can be induced by a **BRST function** Ω such that

$$sA := \{A, \Omega\} \tag{49.52}$$

as before.

⁵Because δ is a boundary operator, i.e. it decreases the degree, there is less freedom in defining $\delta \eta^a$. Only $\delta \eta^a = 0$ is allowed.

49.4.3 Reducible constraints

In this section, the irreducibility requirement for the first-class constraints is relaxed. To recover the BRST complex as a homological object, one has to modify the construction from the previous section. First of all the Koszul complex is not a resolution for $C^{\infty}(\Sigma)$ anymore. Because higher-order relations exist among the constraints, the higher-order homology does not vanish. Mathematically, the issue is that the constraints do not form a regular sequence anymore. However, they still generate a module and so the Koszul-Tate resolution 5.4.16 exists. Instead of only introducing ghost momenta corresponding to constraints, one also introduces ghost-of-ghosts corresponding to relations between the constraints.

A second problem occurs when trying to define the longitudinal complex and trying to combine this with Koszul-Tate complex. The number of ghost momenta is now greater than the number of longitudinal (ghost) fields and, furthermore, the longitudinal algebra is not a tensor product $C^{\infty}(\Sigma) \otimes \mathbb{C}[\eta^a]$ anymore, due to the existence of relations among the constraints. The solution here is again to pass to a larger structure that has the correct "homotopical" structure. In this case this will be a Sullivan model, i.e. the Chevalley-Eilenberg algebra associated to a L_{∞} -algebroid.

Formula 49.4.16 (Ghost number). Due to the introduction of ghost-of-ghosts, Formula (49.49) has to be modified. Let η^{a_1} denote the ghost fields, i.e. fields of (pure) ghost number 1, η^{a_2} the ghost-of-ghosts, i.e. fields of (pure) ghost number 2, etc. The total ghost number is then given by

$$\mathcal{G} := i \sum_{i=1}^{\infty} \eta^{a_i} \mathcal{P}_{a_i} + \text{ constants due to operator ordering,}$$
 (49.53)

where \mathcal{P}_{a_i} are the ghost-of-ghost momenta of antighost number i.

Remark 49.4.17 (Irreducible constraints). The case of irreducible constraints can be recovered from the situation considered in the current section by throwing away all higher-order generators.

Remark 49.4.18 (Chevalley-Eilenberg complex). As has been noted a couple of times in this chapter, there are some relations to Chevalley-Eilenberg algebras. In fact these relations are no mere coincidences. The constraint "algebra"

$$\{\phi_a, \phi_b\} = C_{ab}^c \phi_c \tag{49.54}$$

defines a Lie algebroid in the case of irreducible constraints and a (truncated) L_{∞} -algebroid in the case of reducible constraints. Similar to the case of Lie algebra cohomology (Equation 30.75), one can characterize invariants of Lie algebroids in terms of their Chevalley-Eilenberg cohomology. From this point of view, gauge-invariant functions do not just resemble elements of the zeroth cohomology group of a Chevalley-Eilenberg differential, they are exactly such elements.

Optics

50.1 General

50.1.1 Conservation of energy

From the law of conservation of energy we can derive the following formula:

$$T + R + A = 1 \tag{50.1}$$

where

- T is the transmission coefficient,
- \bullet R is the reflection coefficient, and
- A is the absorption coefficient.

50.2 Plane wave

Definition 50.2.1 (Wave number). Consider a (plane) wave with wavelength λ . Its wave number is defined as follows:

$$k := \frac{2\pi}{\lambda}.\tag{50.2}$$

Formula 50.2.2 (Plane wave). The following equations represent a plane wave, (linearly) polarized in the *xy*-plane, that moves in the *x*-direction:

$$\vec{E}(x,t) = \text{Re}\left\{A \exp[i(kx - \omega t + \phi)]\right\} \vec{e}_y$$
 (50.3)

$$= \operatorname{Re}\left\{A \exp\left[2\pi i \left(\frac{x}{\lambda} - \frac{t}{T} + \frac{\phi}{2\pi}\right)\right]\right\} \vec{e}_y. \tag{50.4}$$

50.2.1 Photon

Formula 50.2.3 (Energy).

$$E = h\nu = \hbar\omega = \frac{hc}{\lambda} \tag{50.5}$$

Formula 50.2.4 (Momentum).

$$p = \frac{h}{\lambda} = \hbar k \tag{50.6}$$

where definition 50.2.1 was used in the last step.

50.3 Refraction

Formula 50.3.1 (Refractive index). The relative refractive index between two materials is defined as follows:

$$n := \frac{v_1}{v_2} \tag{50.7}$$

where v_1, v_2 are the speeds of light in the first and second material respectively. If we choose the first material to be the vacuum, i.e. $v_1 = c$, then we obtain the usual refractive index.

Formula 50.3.2 (Dielectric function). In the case of non-magnetic materials ($\mu_r \approx 1$), we can write the dielectric function as follows:

$$\epsilon = \epsilon_r + i\epsilon_i = \widetilde{n}^2 = (n + ik)^2 \tag{50.8}$$

where \widetilde{n} is the complex refractive index and k is the extinction coefficient.

50.4 Absorption

Theorem 50.4.1 (Law of Lambert-Beer †). Let I be the intensity of a light beam.

$$\frac{I(x)}{I(0)} = exp\left(-\frac{4\pi\nu k}{c}x\right) \tag{50.9}$$

Definition 50.4.2 (Absorption coefficient). The scale factor in the Lambert-Beer law is called the absorption coefficient:

$$\alpha = \frac{4\pi\nu k}{c}.\tag{50.10}$$

Astronomy

51.1 Ellipsoidal coordinates

We start from the following parametrized equation:

$$f(\tau) = \frac{x^2}{\tau + \alpha} + \frac{y^2}{\tau + \beta} + \frac{z^2}{\tau + \gamma} - 1$$
 (51.1)

where $\alpha < \beta < \gamma < 0$. By multiplying by the denominators and choosing $f(\tau) = 0$ we obtain a polynomial equation of degree 3 in τ . This polynomial can be formally factorised as

$$-(\tau - \lambda)(\tau - \mu)(\tau - \nu) = 0. \tag{51.2}$$

This equation has solutions (λ, μ, ν) that obey the following rules:

- $\nu \in]-\gamma, -\beta[$,
- $\mu \in]-\beta, -\alpha[$, and
- $\lambda \in]-\alpha, +\infty[$.

From the previous two equations we can find a solution for x^2 by multiplying the equation by $(\tau + \alpha)$ and taking the limit $\tau \to -\alpha$. Solutions for y^2 and z^2 can be found in a similar way:

$$\begin{cases} x^2 = \frac{(\lambda + \alpha)(\mu + \alpha)(\nu + \alpha)}{(\beta - \alpha)(\gamma - \alpha)} \\ y^2 = \frac{(\lambda + \beta)(\mu + \beta)(\nu + \beta)}{(\beta - \alpha)(\beta - \gamma)} \\ z^2 = \frac{(\lambda + \gamma)(\mu + \gamma)(\nu + \gamma)}{(\alpha - \gamma)(\beta - \gamma)}. \end{cases}$$
(51.3)

These solutions can be divided in different families depending on the value of τ .

51.1.1 Ellipsoid: $\tau = \lambda$

First we look at the surfaces defined by fixing $\tau = \lambda$ in equation 51.1. By noting that all denominators are positive in this case, we see that the obtained surface is an ellipsoid with the x-axis as the shortest axis. By taking the limit $\lambda \to +\infty$ we obtain the equation of a sphere with radius $\sqrt{\lambda}$. If $\lambda \to -\alpha$ we get an ellipse in the yz-plane. This ellipse is called the **focal ellipse**.

51.1.2 One-sheet hyperboloid: $\tau = \mu$

By fixing $\tau = \mu$ in 51.1 we obtain the equation of a one-sheet hyperboloid (also called a **hyperbolic hyperboloid**) around the x-axis. By taking the limit $\mu \to -\alpha$ the hyperboloid collapses on the yz-plane and we obtain the surface outside the focal ellipse. If $\mu \to -\beta$ the hyperboloid becomes degenerate and we get the surface inside the **focal hyperbola** defined by

$$\frac{x^2}{\alpha - \beta} + \frac{z^2}{\gamma - \beta} = 1. \tag{51.4}$$

This hyperbola intersects the z-plane in the foci of the focal ellipse.

51.1.3 Two-sheet hyperboloid: $\tau = \nu$

By fixing $\tau = \nu$ in 51.1 we obtain the equation of a two-sheet hyperboloid (also called an **elliptic hyperboloid**) around the z-axis. By taking the limit $\nu \to -\beta$ the hyperboloid becomes degenerate and we obtain the surface outside the focal hyperbola 51.4. If $\nu \to -\gamma$ the two sheets coincide in the xy-plane.

51.1.4 Hamiltonian function

When writing out the kinetic energy in ellipsoidal coordinates by applying the chain rule for differentiation to the (Cartesian) kinetic energy, while noting that mixed terms of the form $\frac{\partial x^a}{\partial \lambda^i} \frac{\partial x^a}{\partial \lambda^j}$ cancel out due to 51.3, it is clear that the Hamiltonian function can be separated:

$$H = \frac{1}{2} \left(\frac{p_{\lambda}^2}{Q_{\lambda}^2} + \frac{p_{\mu}^2}{Q_{\mu}^2} + \frac{p_{\nu}^2}{Q_{\nu}^2} \right) + V \tag{51.5}$$

where $Q_j^2 = \sum_i \left(\frac{\partial x^i}{\partial \lambda^j}\right)^2$ are the metric coefficients in ellipsoidal coordinates.

These coefficients can be calculated using $\frac{\partial x^i}{\partial \lambda} = \frac{1}{x^i} \frac{\partial (x^i)^2}{\partial \lambda}$ and by putting $\frac{1}{(\lambda + \alpha)(\lambda + \beta)(\lambda + \gamma)}$ in front. Furthermore, the coefficients belonging to λ^2, μ^2, ν^2 , mixed terms and others can easily be calculated. By doing so we obtain following result

$$Q_{\lambda}^{2} = \frac{1}{4} \frac{(\lambda - \mu)(\lambda - \nu)}{(\lambda + \alpha)(\lambda + \beta)(\lambda + \gamma)}$$
(51.6)

which is also valid for μ and ν after applying cyclic permutation to the coordinates.

Because of the Stäckel conditions 48.20 the potential must be of the form

$$V = \sum_{i} \frac{W_i(\lambda^i)}{Q_i^2} \tag{51.7}$$

if we want to obtain a separable Hamilton-Jacobi equation. Due to the disjoint nature of λ , μ and ν we can consider W_{λ} , W_{μ} and W_{ν} as three parts of a single function $G(\tau)$ given by:

$$G(\tau) := -4(\tau + \beta)W_{\tau}(\tau). \tag{51.8}$$

The 3D potential is thus completely determined by a 1D function $G(\tau)$.

51.1.5 Hamilton-Jacobi equation

If we consider a time-independent system we can use 48.18 as our starting point. If we multiply this equation by $(\lambda - \mu)(\lambda - \nu)(\mu - \nu)$ we obtain

$$(\mu - \nu) \left[2(\lambda + \alpha)(\lambda + \beta)(\lambda + \gamma) \left(\frac{dS^{\lambda}(\lambda)^{2}}{d\lambda} \right) - (\lambda + \alpha)(\lambda + \gamma)G(\lambda) - \lambda^{2}E \right] + \text{cyclic permutations} = 0 \quad (51.9)$$

where we rewrote the multiplicative factor in the form $a\lambda^2 + b\mu^2 + c\nu^2$ before multiplying the RHS of 48.18. This equation can be rewritten as

$$(\mu - \nu)U(\lambda) + (\lambda - \mu)U(\nu) + (\nu - \lambda)U(\mu) = 0.$$
 (51.10)

Differentiating twice with respect to any λ^i gives $U''(\tau) = 0$ or equivalently

$$U(\tau) = I_3 - I_2 \tau (51.11)$$

where I_2 and I_3 are two new first integrals of motion.

Using the Hamiltonian-Jacobi equation 48.17 one can obtain the conjugate momenta $p_{\tau} = \frac{dS^{\tau}}{d\tau}$. After a lengthy calculation we get

$$p_{\tau}^{2} = \frac{1}{2(\tau + \beta)} [E - V_{\text{eff}}(\tau)]$$
 (51.12)

where the effective potential is given by

$$V_{\text{eff}} = \frac{J}{\tau + \alpha} + \frac{K}{\tau + \gamma} - G(\tau). \tag{51.13}$$

The two conserved quantities J and K are given by

$$J = \frac{\alpha^2 E + \alpha I_2 + I_3}{\alpha - \gamma}$$
 and $K = \frac{\gamma^2 E + \gamma I_2 + I_3}{\gamma - \alpha}$.

To be physically acceptable, p_{τ}^2 should be positive. This leads to following conditions on the energy:

$$\begin{cases}
E & \geq V_{\text{eff}}(\lambda) \\
E & \geq V_{\text{eff}}(\mu) \\
E & \leq V_{\text{eff}}(\nu).
\end{cases}$$
(51.14)

The generating $G(\tau)$ function should also satisfy some conditions. First we note that we can rewrite our Stäckel potential $V(\lambda, \mu, \nu)$ as

$$V = -\frac{1}{\lambda - \nu} \left(\frac{F(\lambda) - F(\mu)}{\lambda - \mu} - \frac{F(\mu) - F(\nu)}{\mu - \nu} \right) \le 0 \tag{51.15}$$

where $F(\tau) = (\tau + \alpha)(\tau + \gamma)G(\tau)$. For $\lambda \to +\infty$ (or $r^2 \to +\infty$) we get $V \approx -\frac{F(\lambda)}{\lambda^2} \approx -G(\lambda)$. Because $V \sim \lambda^{-1}$ it is clear that $G(\tau)$ cannot decay faster than $\lambda^{-1/2}$ at infity. Furthermore we can interpret 51.15 as an approximation of $-F''(\tau)$. So it follows that $F(\tau)$ should be convex. For $\tau \to -\gamma$ we get

$$\begin{cases} \alpha + \tau < 0 \\ \tau + \gamma \to 0. \end{cases}$$

So if $G(\tau)$ decays faster than $\frac{1}{\tau + \gamma}$, then $F(\tau) \to -\infty$, which is not possible for a convex function.

To fulfil these conditions we assume that the generating function can be written as

$$G(\tau) = \frac{GM}{\sqrt{\gamma_0 + \tau}} \tag{51.16}$$

where G is the gravitational constant and M is the galactic mass.

Theorem 51.1.1 (Kuzmin's theorem). The spatial mass density function generated by a Stäckel potential is completely determined by a function of the form $\rho(z)$.

Corollary 51.1.2. For triaxial mass models in ellipsoidal coordinates the axial ratios are inversely proportional to the axial ratios of the coordinate system.

Electricity and Magnetism

Definition 52.0.1 (Capacitance). The capacitance is a (geometrical) value that reflects the amount of charge an object can store:

$$C := \frac{q}{U}.\tag{52.1}$$

52.1 Resistance R

Definition 52.1.1 (Drift velocity). The average speed of independent charge carriers is the drift velocity $\vec{v_d}$. It is important to remark that v_d is not equal to the propagation speed of the electric signal¹.

Formula 52.1.2 (Mobility).

$$\mu := \frac{v_d}{E} \tag{52.2}$$

where E is the applied electric field.

Formula 52.1.3 (Conductivity).

$$\sigma := nq\mu \tag{52.3}$$

Formula 52.1.4 (Resistivity).

$$\rho := \frac{1}{\sigma} \tag{52.4}$$

Formula 52.1.5 (Pouillet's law). The resistance of a wire is given by the following formula:

$$R = \frac{l}{A}\rho \tag{52.5}$$

where:

- ρ is the resistivity of the material,
- \bullet l is the length of the resistor, and
- A is the cross-sectional area of the resistor.

¹It is several orders of magnitude smaller.

52.2 Ohm's law

Formula 52.2.1 (Free current). The current density generated by free charges is given by

$$\vec{J} = nq\vec{v}_d. \tag{52.6}$$

Formula 52.2.2 (Ohm's law).

$$\vec{J} = \sigma \cdot \vec{E} \tag{52.7}$$

where σ is the conductivity tensor. (Compare this to equations 52.1.2 and 52.1.3 for 1D systems.)

Formula 52.2.3 (Ohm's law in wires). The following formula can be found by combining equations 52.1.3, 52.1.4 and 52.2.2 and by assuming that the conductivity tensor is a scalar (this follows from the isotropic behaviour of most resistors):

$$U = RI. (52.8)$$

?? CHECK THIS ARGUMENT ??

52.3 Electric dipoles

Formula 52.3.1 (Electric dipole).

$$\vec{\boldsymbol{p}} := q\vec{\boldsymbol{a}} \tag{52.9}$$

where:

- q is the positive charge, and
- \vec{a} is the vector pointing from the negative charge to the positive charge.

Formula 52.3.2 (Energy). If an electric dipole is placed in an electric field, its potential energy is given by

$$U = -\vec{\boldsymbol{p}} \cdot \vec{\boldsymbol{E}}.\tag{52.10}$$

Formula 52.3.3 (Torque). If an electric dipole is placed in an electric field, the torque on this system is given by

$$\vec{\tau} = \vec{p} \times \vec{E}. \tag{52.11}$$

52.4 Magnetic fields

The magnetizing field \vec{H} is the field generated by all external sources. When applying an external (magnetic) field, some materials will try to oppose this external influence. Similar to polarization in the case of electricity, one can define the magnetization:

$$\vec{\boldsymbol{M}} := \chi \vec{\boldsymbol{H}} \tag{52.12}$$

where χ is the magnetic susceptibility.

The **magnetic induction** \vec{B} is the field generated by both the external sources and the internal magnetization. It is only this field that one can measure. In vacuum we have the following relation between the magnetic induction, the magnetizing field and the magnetization:

$$\vec{B} = \mu_0 \left(\vec{H} + \vec{M} \right). \tag{52.13}$$

By combining the previous two formulas we obtain (this equation is only valid in linear media)

$$\vec{\mathbf{B}} = \mu_0 (1 + \chi) \vec{\mathbf{H}}. \tag{52.14}$$

The proportionality constant in this formula is called the **magnetic permeability**:

$$\mu := \mu_0(1+\chi) \tag{52.15}$$

where μ_0 is the magnetic permeability of the vacuum. The factor $1 + \chi$ is called the **relative permeability** and it is often denoted by μ_r .

Remark 52.4.1 (Tensorial formulation). In anisotropic materials we have to use a tensorial formulation:

$$B_i = \sum_{i} \mu_{ij} H_j \tag{52.16}$$

$$B_i = \sum_j \mu_{ij} H_j$$

$$M_i = \sum_j \chi_{ij} H_j.$$
(52.16)

Both μ and χ are (1,1)-tensors, i.e. linear maps.

Electric charges in a magnetic field

Formula 52.4.2 (Gyroradius). A charge q entering a magnetic field B with velocity \vec{v} will start to follow a circular path with radius

$$r = \frac{mv_{\perp}}{|q|B}. (52.18)$$

Formula 52.4.3 (Gyrofrequency²).

$$\omega = \frac{|q|B}{m} \tag{52.19}$$

²Also called the **Larmor** or **cyclotron frequency**.

Maxwell Theory

53.1 Lorentz force

Formula 53.1.1 (Lorentz force).

$$\vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right) \tag{53.1}$$

Formula 53.1.2 (Lorentz force density).

$$\vec{f} = \rho \vec{E} + \vec{J} \times \vec{B} \tag{53.2}$$

53.2 Differential Maxwell equations

Formula 53.2.1 (Gauss's law for electricity).

$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon} \tag{53.3}$$

Formula 53.2.2 (Gauss's law for magnetism).

$$\nabla \cdot \vec{B} = 0 \tag{53.4}$$

If magnetic charges would exist, then the right-hand side would contain a density as in the case of electricity.

Formula 53.2.3 (Faraday's law).

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \tag{53.5}$$

Formula 53.2.4 (Maxwell's law¹).

$$\nabla \times \vec{\boldsymbol{B}} = \varepsilon \mu \frac{\partial \vec{\boldsymbol{E}}}{\partial t} + \mu \vec{\boldsymbol{J}}$$
 (53.6)

¹Also called the law of Maxwell-Ampère.

53.3 Potentials

53.3.1 Decomposition in potentials

The Helmholtz decomposition 21.1.15 together with Gauss's law 53.4 imply the following general form for \vec{B} :

$$\vec{B} = \nabla \times \vec{A} \tag{53.7}$$

where \vec{A} is the so-called magnetic potential.

Combining equation 53.7 with Faraday's law 53.5 (and doing some rewriting) gives the following general form for \vec{E} :

$$\vec{E} = -\nabla V - \frac{\partial \vec{A}}{\partial t} \tag{53.8}$$

where V is the **electrostatic potential**.

Property 53.3.1. Substituting the previous two expressions into 53.3 and 53.6 gives the following two (coupled) conditions for the electromagnetic potentials:

$$\triangle \vec{\boldsymbol{A}} - \varepsilon \mu \frac{\partial^2 \vec{\boldsymbol{A}}}{\partial t^2} = \nabla \left(\nabla \cdot \vec{\boldsymbol{A}} + \varepsilon \mu \frac{\partial V}{\partial t} \right) - \mu \vec{\boldsymbol{J}}$$
 (53.9)

$$\Delta V - \varepsilon \mu \frac{\partial^2 V}{\partial t^2} = -\frac{\partial}{\partial t} \left(\nabla \cdot \vec{\boldsymbol{A}} + \varepsilon \mu \frac{\partial V}{\partial t} \right) - \frac{\rho}{\varepsilon}. \tag{53.10}$$

53.3.2 Gauge transformations

Looking at equation 53.7, it is clear that a transformation $\vec{A} \longrightarrow \vec{A} + \nabla \psi$ has no effect on \vec{B} due to property 21.12. To compensate for this in equation 53.8, we also have to perform a transformation $V \longrightarrow V - \frac{\partial \psi}{\partial t}$.

The (scalar) function $\psi(\vec{r},t)$ is called a **gauge function** and the transformations are called **gauge transformations**.

Definition 53.3.2 (Gauge fixing conditions). Conditions that fix a certain gauge (or class of gauge transformations). These select one of many physically equivalent configurations. Mathematically this corresponds to picking a representative for any orbit of the gauge transformations. (See chapter 66 for more.)

Remark 53.3.3. It often happens that a gauge condition does not completely fix the gauge, i.e. the condition does not pick a unique representative but only fixes a subset of the gauge orbit that still has some remaining symmetry or freedom.

Example 53.3.4 (Lorenz gauge). A first example of a gauge fixing condition is the Lorenz gauge²:

$$\nabla \cdot \vec{\boldsymbol{A}} + \varepsilon \mu \frac{\partial V}{\partial t} = 0. \tag{53.11}$$

When using this gauge fixing condition, equations 53.9 and 53.10 uncouple. This allows u to rewrite them as

$$\Box \vec{A} = -\mu \vec{J} \tag{53.12}$$

$$\Box V = -\frac{\rho}{\varepsilon}.\tag{53.13}$$

²Named after Ludvig Lorenz. Not to be confused with Hendrik Lorentz.

To see which gauge functions ψ are valid in this case we perform a transformation as explained above:

$$\vec{A}' = \vec{A} + \nabla \psi$$
 and $V' = V - \frac{\partial \psi}{\partial t}$. (53.14)

Substituting these transformations in equation 53.11 and using the fact that both sets of potentials (\vec{A}, V) and (\vec{A}', V') satisfy the Lorenz gauge 53.11 gives the following condition for the gauge function ψ :

$$\Box \psi = 0. \tag{53.15}$$

Example 53.3.5 (Coulomb gauge). Apart from the Lorenz gauge there is also the Coulomb gauge:

$$\nabla \cdot \vec{A} = 0. \tag{53.16}$$

53.4 Energy and momentum

Definition 53.4.1 (Poynting vector).

$$\vec{S} := \vec{E} \times \vec{H} \tag{53.17}$$

Formula 53.4.2 (Energy density).

$$W = \frac{1}{2} \left(\vec{E} \cdot \vec{D} + \vec{B} \cdot \vec{H} \right) \tag{53.18}$$

53.5 Differential-geometric perspective

Using the tools introduced in chapter 32 (e.g. differential forms) we can rewrite all of the above formulas in a more elegant form. This will also allow us to generalize them to higher dimensions and to more general settings. See for example [3] for a complete derivation and interpretation. (It should be noted that we use *Gaussian units* throughout this section.)

Definition 53.5.1 (Field strength). Define

$$\mathbf{E} = E_1 dx^1 + E_2 dx^2 + E_3 dx^3$$

and

$$\mathbf{B} = B_1 dx^2 \wedge dx^3 + B_2 dx^3 \wedge dx^1 + B_3 dx^1 \wedge dx^2$$

as the electric and magnetic field forms. Using these differential forms we can write the field strength as follows:

$$\mathbf{F} = \mathbf{B} - dt \wedge \mathbf{E}.\tag{53.19}$$

Formula 53.5.2 (Maxwell's equations). Define the electric 4-current as

$$\mathbf{J} = \rho dt - J_1 dx^1 - J_2 dx^2 - J_3 dx^3.$$

Maxwell's equations can now be rewritten as follows:

$$d\mathbf{F} = 0 \tag{53.20}$$

$$*d(*\mathbf{F}) = 4\pi\mathbf{J} \tag{53.21}$$

where * is the Hodge operator 21.59.

Definition 53.5.3 (Potential). The homogeneous equation 53.20 and Poincaré's lemma³ imply that there exists a differential 1-form **A** such that

$$\mathbf{F} = d\mathbf{A}.\tag{53.22}$$

This 1-form is called the potential or **gauge field**. This field can be related to the ordinary scalar potential V and vector potential \vec{A} as follows:

$$\mathbf{A} = -Vdt + A_1 dx^1 + A_2 dx^2 + A_3 dx^3. (53.23)$$

Property 53.5.4 (Gauge transformation). Because $d^2 \equiv 0$ the above equation is invariant under a transformation $\mathbf{A} \longrightarrow \mathbf{A} + df$ for any $f \in C^{\infty}(\mathbb{R}^3)$. When written out in coordinates, this gives us exactly the gauge transformations from equation 53.14.

?? COMPLETE ??

 $^{^{3}}$ See theorem 32.6.9.

Part IX Relativity Theory

Special Relativity

In this chapter, as will be the case in the chapters on quantum field theory, we adopt the mostlyminuses convention for the Minkowski signature unless stated otherwise, i.e. the signature is (+,-,-,-). Furthermore, we also work in natural units unless stated otherwise, i.e. $\hbar=c=1$. This follows the introductory literature such as [38,44].

54.1 Lorentz transformations

Notation 54.1.1. In the context of special relativity it is often useful to introduce the following quantities:

$$\beta := \frac{v}{c} \tag{54.1}$$

$$\beta := \frac{v}{c}$$

$$\gamma := \frac{1}{\sqrt{1 - \beta^2}}.$$

$$(54.1)$$

The latter quantity is called the **Lorentz factor**.

Formula 54.1.2 (Lorentz transformations). Let V be a 4-vector. A Lorentz boost along the x^1 -axis is given by the following transformation:

$$V^{0} = \gamma (V^{0} - \beta V^{1}) \tag{54.3}$$

$$V^{\prime 1} = \gamma \left(V^1 - \beta V^0 \right) \tag{54.4}$$

$$V^{\prime 2} = V^2 \tag{54.5}$$

$$V^{\prime 3} = V^3. (54.6)$$

Remark 54.1.3. Putting $c = +\infty$ in the previous formulas recovers the Galilei transformations from classical mechanics (cf. the Inönü-Wigner contraction 30.4.62).

54.2Energy and momentum

Formula 54.2.1 (4-velocity). In analogy to the definition of velocity in classical mechanics we define the 4-velocity as follows:

$$\mathbf{U} := \left(\frac{dx^0}{d\tau}, \frac{dx^1}{d\tau}, \frac{dx^2}{d\tau}, \frac{dx^3}{d\tau}\right). \tag{54.7}$$

By applying the formulas for proper time and time dilatation we obtain:

$$\mathbf{U} = (\gamma c, \gamma \mathbf{\vec{u}}). \tag{54.8}$$

Formula 54.2.2 (4-momentum). The 4-momentum is defined as follows:

$$\mathbf{p} = m_0 \mathbf{U},\tag{54.9}$$

or after defining $E := cp^0$:

$$\mathbf{p} = \left(\frac{E}{c}, \gamma m_0 \vec{\mathbf{u}}\right). \tag{54.10}$$

Definition 54.2.3 (Relativistic mass). The factor γm_0 in the momentum 4-vector is called the relativistic mass. By introducing this quantity (let us denote it by m), the classical formula $\vec{p} = m\vec{u}$ for the 3-momentum can be generalized to 4-momenta \mathbf{p} .

Formula 54.2.4 (Relativistic energy relation).

$$E^2 = p^2 c^2 + m^2 c^4 (54.11)$$

This formula is often called the **Einstein relation**.

General Relativity

In this chapter we do not use the same signature convention as in the previous chapter. For general relativity it is often more convenient to use the mostly-pluses convention (this simply reduces the number of minus signs).

See chapter 34 for the theory of Riemannian manifolds. References for this chapter are [19, 20].

55.1 Causal structure

Definition 55.1.1 (Null coordinate). Consider a vector $v \in T_pM$ on a pseudo-Riemannian manifold (M, g). This vector at $p \in M$ is said to be null (or **lightlike**) if it satisfies the following condition:

$$g(v,v) = 0. (55.1)$$

One can also define **timelike** and **spacelike** vectors. In the our signature a timelike vector then has negative norm while a spacelike vector has positive norm.¹

Spacelike, lightlike and timelike curves are defined as curves for which every tangent vector is respectively spacelike, lightlike or timelike.

Definition 55.1.2 (Time-orientability). A Lorentzian manifold is said to be time-orientable if there exists a nowhere-vanishing timelike vector field. It should be noted that, in contrast to ordinary orientability, this notion is not purely topological. Moreover, neither orientability nor time-orientability implies the other, they are independent notions.

Definition 55.1.3 (Causal curve). Consider a smooth curve $\gamma:]0,1[\to (M,g)$. This curve is said to be causal if it satisfies

$$q(\dot{\gamma}(t), \dot{\gamma}(t)) < 0 \tag{55.2}$$

for all $t \in]0,1[$. If the inequality is replaced by a strict inequality then we recover the definition of a timelike curve. In general causal curves can be partially lightlike and timelike.

Definition 55.1.4 (Causal cone). Let M be a Lorentzian manifold. The causal cone of a point $p \in M$ is defined as the set of points $S \subset M$ such that every point $s \in S$ is connected to p by a (smooth) causal curve.

Definition 55.1.5 (Causal closure). Let S be a subset of a Lorentzian manifold. The causal closure of S is defined as the causal complement of the causal complement of S. A **causally closed set** is then defined as a set which is equal to its causal closure.

¹For a mostly-minuses signature one interchanges these definitions.

Definition 55.1.6 (Stationary spacetime). A spacetime (M,g) is called stationary if there exists a timelike Killing vector. By the *flowbox theorem* there always exists a coordinate chart such that locally one can choose the Killing vector field to be ∂_0 and hence we see that a spacetime is stationary if we can find a coordinate system for which the metric coefficients are time-independent.

55.2 Einstein field equations

Formula 55.2.1 (Einstein field equations). The Einstein field equations (without a cosmological constant Λ) read as follows (here we insert all fundamental constants for completeness):

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} \tag{55.3}$$

where $G_{\mu\nu}$ is the Einstein tensor 34.32 and $T_{\mu\nu}$ is the stress-energy tensor 64.8.

By taking the trace of both sides one obtains T = -R and hence we can rewrite the Einstein field equations as

$$R_{\mu\nu} = \widehat{T}_{\mu\nu} \tag{55.4}$$

where $\hat{T}_{\mu\nu} = T_{\mu\nu} - \frac{1}{2}g_{\mu\nu}T$ is the **reduced stress-energy tensor**.

Formula 55.2.2 (Einstein-Hilbert action). The (vacuum) field equations can be obtained by applying the variational principle to the following action:

$$S_{EH}[g_{\mu\nu}] := \int_{M} \sqrt{-g}R. \tag{55.5}$$

For manifolds with boundary one needs an extra term to make the boundary contributions vanish (as to obtain a well-defined variational problem). This term is due to Gibbons, Hawking and York:

$$S_{GH}[g_{\mu\nu}] := \oint_{\partial M} \epsilon \sqrt{h} K \tag{55.6}$$

where h_{ab} is the induced metric on the boundary, K_{ab} is the extrinsic curvature and $\epsilon = \pm 1$ is a "function" depending on whether the boundary is timelike or spacelike.

55.3 Black holes

Formula 55.3.1 (Schwarzschild metric).

$$ds^{2} := \left(1 - \frac{R_{s}}{r}\right)c^{2}dt^{2} - \left(1 - \frac{R_{s}}{r}\right)^{-1}dr^{2} - r^{2}d\Omega^{2}$$
(55.7)

where R_s is the Schwarzschild radius given by

$$R_s := \frac{2GM}{c^2}. (55.8)$$

Theorem 55.3.2 (Birkhoff). The Schwarzschild metric is the unique solution of the vacuum field equation under the additional constraints of asymptotic flatness and staticity.

²Einstein had in fact already introduced a variant, the $\Gamma\Gamma$ -Lagrangian.

Formula 55.3.3 (Reissner-Nordström metric). If we allow the black hole to have an electric charge Q, the Schwarzschild metric must be modified in the following way:

$$ds^{2} := \left(1 - \frac{2GM}{r} + \frac{GQ^{2}}{4\pi r^{2}}\right)c^{2}dt^{2} - \left(1 - \frac{2GM}{r} + \frac{GQ^{2}}{4\pi r^{2}}\right)^{-1}dr^{2} - r^{2}d\Omega^{2}.$$
 (55.9)

Remark 55.3.4. A computation of the electric field generated by the black hole gives us

$$E^r = \frac{Q}{4\pi r^2}. ag{55.10}$$

Although the coordinate r is not the proper distance, it still acts as a parameter for the surface of a sphere (as it does in a Euclidean or Schwarzschild metric). This explains why the above formula is the same as the one in classical electromagnetism.

?? ADD KERR-NEWMAN, ERGOSPHERE, PENROSE MECHANISM, KRUSKAL ??

55.4 Tetradic formulation

The mathematical background for this section can be found in section 33.8.

We will start from the geometric interpretation of the (weak) equivalence principle, i.e. spacetime is locally modelled on Minkowski space. The natural language for this kind of geometry is that of Cartan geometries. By the Erlangen program we know that the Minkowski spacetime \mathcal{M}^4 can be described as the coset space ISO(3,1)/SO(3,1). The natural generalization is given by a Cartan geometry with model geometry ($\mathfrak{iso}(3,1),\mathfrak{so}(3,1)$).

Property 55.4.1 (Cartan connection). This way we obtain a SO(3,1)-structure on the spacetime manifold M, i.e. a choice of Lorentzian metric g. The Cartan connection $\widetilde{\nabla}$ can also be decomposed as $\nabla + \mathbf{e}$ where

- ∇ defines a $\mathfrak{so}(3,1)$ -valued principal connection, and
- e defines a \mathcal{M}^4 -valued solder form.

The principal connection ∇ is called the **spin connection** and **e** is called the **vierbein** or **tetrad**. These objects are well-known in general relativity. The connection ∇ is the ordinary Levi-Civita connection associated to the (pseudo-)Riemannian manifold M (in case of vanishing torsion) and **e** gives the isometry between local (flat) Minkowski coordinates and "global" coordinates:

$$g := \mathbf{e}^* \eta \tag{55.11}$$

or locally

$$g_{\mu\nu} = e^i_{\mu} e^j_{\nu} \eta_{ij}. \tag{55.12}$$

Using the tetrad field we can rewrite the Einstein-Hilbert action in a very elegant way. To this end we first define a new curvature form:

$$F^{i}_{j\mu\nu} := e^{i}_{\rho}e^{\sigma}_{j}R^{\rho}_{\sigma\mu\nu} \tag{55.13}$$

where $R^{\rho}_{\sigma\mu\nu}$ is the ordinary Riemann curvature tensor. The Einstein-Hilbert action is then equivalent³ to the following Yang-Mills-like action:

³At least in the case of pure gravity (see [20]).

Formula 55.4.2 (Palatini action).

$$S[e, \nabla] := \int_{M} \mathbf{e} \wedge \mathbf{e} \wedge *F. \tag{55.14}$$

This action is sometimes called the **tetradic Palatini action** and the resulting formulation of general relativity is called the **first order formulation**. If one considers the same action but only as a functional of the tetrad field, one obtains the **second order formulation** of gravity.⁴

Variation of the Palatini action gives the following EOM:

- $\delta \nabla$: $T(\mathbf{e}) = 0$ or equivalently $\nabla(\mathbf{e}) \equiv \nabla$, i.e. the torsion vanishes and hence the connection ∇ is on-shell equal to the Levi-Civita connection on M.
- δe : The metric g satisfies the Einstein field equations.

Because of its importance in general relativity we give the first factor in the Palatini action a name:

Definition 55.4.3 (Plebanski form).

$$\Sigma := \mathbf{e} \wedge \mathbf{e} \tag{55.15}$$

Because of its internal antisymmetric Lorentz indices one can interpret this object as a $\mathfrak{so}(3,1)$ -valued two-form.

As was the case for 4D Yang-Mills theory one can introduce a topological term that leaves the EOM invariant (up to boundary terms):

Definition 55.4.4 (Holst action⁵).

$$S[\mathbf{e}, \nabla] := \int_{M} \mathbf{e} \wedge \mathbf{e} \wedge *F + \frac{1}{\gamma} \int_{M} \mathbf{e} \wedge \mathbf{e} \wedge F$$
$$= \int_{M} \left(*\mathbf{e} \wedge \mathbf{e} + \frac{1}{\gamma} \mathbf{e} \wedge \mathbf{e} \right) \wedge F. \tag{55.16}$$

The coupling constant γ is called the **Barbero-Immirzi** constant.

?? COMPLETE ??

⁴These formulations are equivalent for pure gravity, however, when coupling the theory to fermions they differ by a four-fermion vertex. This follows from the introduction of torsion due to the fermions.

⁵Holst was actually the second author to include this term.

$\begin{array}{c} {\rm Part} \; X \\ \\ {\rm Quantum \; Mechanics} \end{array}$

Wave and Matrix Mechanics

56.1 Schrödinger picture

Formula 56.1.1 (TISE). The following partial differential equation is called the TISE or time-independent Schrödinger equation:

$$\hat{H}\psi(x) = E\psi(x). \tag{56.1}$$

The operator \hat{H} is the Hamiltonian of the system and ψ is an element of the vector space $L^2(\mathbb{R}) \otimes \mathcal{H}$ with \mathcal{H} the internal Hilbert space (describing for example the spin or charge of a particle). This is an eigenvalue equation for the energy levels of the system.

Property 56.1.2 (Orthogonality). Let $\{\psi_i\}_{i\in I} \subset L^2(\mathbb{R})$ be a collection of eigenfunctions of the TISE (the internal space is hidden for convenience). These functions can be normalised such that they obey the following relation:

$$\int_{\mathbb{R}} \psi_i^*(x)\psi_j(x)dx = \delta_{ij}.$$
 (56.2)

The time evolution of a wave function is defined through the following equation:

Formula 56.1.3 (TDSE). The following partial differential equation is called the (time-dependent) Schrödinger equation:

$$i\hbar \frac{\partial}{\partial t}\psi(x,t) = \hat{H}\psi(x,t).$$
 (56.3)

In case \hat{H} is time-independent, the TISE can be obtained from this equation by separation of variables (Section 19.4).

Example 56.1.4 (Massive particle in a stationary potential).

$$i\hbar \frac{\partial}{\partial t}\psi(x,t) = \left(\frac{\hat{p}^2}{2m} + \hat{V}(x)\right)\psi(x,t)$$
 (56.4)

Formula 56.1.5 (General solution). A general solution of the time-dependent Schrödinger equation (for time-independent Hamiltonians) is given by the following formula (cf. (18.7)):

$$\psi(x,t) = \sum_{E} c_E \psi_E(x) e^{-\frac{i}{\hbar}Et}, \qquad (56.5)$$

where the functions $\psi_E(x)$ are the eigenfunctions of the TISE (56.1). The coefficients c_E can be found using the orthogonality relations

$$c_E = \left(\int_{\mathbb{R}} \psi_E^*(x') \psi(x', t_0) dx' \right) e^{\frac{i}{\hbar} E t_0}.$$
 (56.6)

?? COMPLETE ??

56.2 Heisenberg picture

This is the right place to reflect on what the wave function is and how it relates to the state of a system. At every point it gives the probability of observing a particle (or whatever object is being studied). But what if one wants to express this information in terms of momenta instead of positions? The information about the state should not depend on the chosen "representation". To this end a state vector $|\psi\rangle$ that represents the state of the system as an abstract vector in some Hilbert space is introduced.

Notation 56.2.1 (Dirac notation). This notation is often called the *braket* notation. State vectors $|\psi\rangle$ are called **ket**'s and their duals $\langle\psi|$ are called **bra**'s. The inner product of a state $|\phi\rangle$ and a state $|\psi\rangle$ is denoted by $\langle\phi|\psi\rangle$.

But then, how does one recover the position (configuration) representation $\psi(x)$? This is simply a projection of the state vector $|\psi\rangle$ on the "basis function" $\delta(x)$, i.e. $\psi(x)$ represents an expansion coefficient. In the same way one can obtain the momentum representation $\psi(p)$ by projecting on the plane waves e^{ipx} .

Remark 56.2.2. It should be noted that neither the "basis states" $\delta(x)$, nor the plane waves e^{ipx} are square-integrable and, hence, they are not elements of the Hilbert space $L^2(\mathbb{R})$. In the next chapter this issue will be resolved through the introduction of rigged Hilbert spaces.

Formula 56.2.3 (Matrix representation). The following formula gives the matrix representation of an operator \hat{A} with respect to the orthonormal basis $\{|\psi_i\rangle\}_{i\leq n}$ cf. Section 20.4.18:

$$A_{ij} := \langle \psi_i | \hat{A} | \psi_j \rangle. \tag{56.7}$$

Remark 56.2.4. The basis $\{|\psi_i\rangle\}_{i\leq n}$ need not consist out of eigenfunctions of \hat{A} .

?? COMPLETE ??

56.3 Uncertainty principle

Definition 56.3.1 (Compatible observables). Let \hat{A}, \hat{B} be two observables. If there exists a complete set of mutual eigenvectors, the two operators are said to be compatible.

Definition 56.3.2 (Expectation value). The expectation value of an operator \hat{A} in a state $|\psi\rangle$ is defined as

$$\langle \hat{A} \rangle_{\psi} := \langle \psi | \hat{A} | \psi \rangle. \tag{56.8}$$

The subscript ψ is often left implicit. As in ordinary statistics (43.14), the uncertainty or variance is defined as follows:

$$\Delta A := \langle \hat{A}^2 \rangle - \langle \hat{A} \rangle^2. \tag{56.9}$$

Formula 56.3.3 (Uncertainty relation). Let \hat{A}, \hat{B} be two operator and let $\Delta A, \Delta B$ be the corresponding uncertainties. The (Robertson) uncertainty relation reads as follows:

$$\Delta A \Delta B \ge \frac{1}{4} \left| \left\langle \left[\hat{A}, \hat{B} \right] \right\rangle \right|^2. \tag{56.10}$$

Mathematical Formalism

The main reference for the mathematically rigorous treatment of quantum mechanics, in particular in the infinite-dimensional setting, is [100]. Relevant chapters in this compendium are 17, 23 and 24.

?? COMPLETE LIST ??

57.1 Postulates

Axiom 57.1 (State spaces). The states of a (closed) system are represented by vectors in a (complex) Hilbert space. In the infinite-dimensional setting one often further restricts to separable spaces, i.e. the spaces are required to admit a countable Hilbert basis.

Axiom 57.2 (Observables). A self-adjoint operator. In the finite-dimensional case this is equivalent to an operator that admits a complete set of eigenfunctions.

Axiom 57.3 (Rays). The dynamics of the system do not depend on the global phase or normalization, states are represented as rays in a projective Hilbert space.

57.1.1 Observables

Formula 57.1.1. Let $|\Psi\rangle$ be a state vector representing a given system and let the set $\{|\psi_i\rangle\}_{i\in I}$ be a complete set of eigenvectors of some observable of the system. The state vector $|\Psi\rangle$ can be expressed as a linear combination of the eigenfunctions:

$$|\Psi\rangle = \sum_{i} c_i |\psi_i\rangle + \int c_a |\psi_a\rangle da,$$
 (57.1)

where the summation ranges over the discrete spectrum and the integral over the continuous spectrum.

Formula 57.1.2 (Closure relation). For a complete set of discrete eigenvectors the closure relation (also called the **resolution of the identity**) is given by

$$\sum_{n} |\psi_n\rangle\langle\psi_n| = 1. \tag{57.2}$$

For a complete set of continuous eigenvectors the following counterpart holds:

$$\int |x\rangle\langle x|dx = 1. \tag{57.3}$$

For a mixed set of eigenvectors a similar relation is obtained by summing over the discrete part and integrating over the continuous part. For simplicity the notation of equation (57.2) will also be used for the continuous part.

Definition 57.1.3 (Canonical commutation relations). Two observables A, B are said to obey a canonical commutation relation (CCR) if they satisfy (up to a constant \hbar)

$$[A, B] = i. (57.4)$$

The prime examples are the position and momentum operators \hat{x}, \hat{p} . Through functional calculus one can also define the exponential operators e^{isA} and e^{itB} . The above relation then induces the so-called Weyl form of the CCR:

$$e^{isA}e^{itB} = e^{ist}e^{itB}e^{isA}. (57.5)$$

Theorem 57.1.4 (Stone-von Neumann). All pairs of irreducible unitary one-parameter subgroups satisfying the Weyl form of the CCR are unitarily equivalent.

Corollary 57.1.5. The Stone-von Neumann theorem implies that the Schrödinger and Heisenberg pictures are unitarily equivalent.

57.2 Symmetries

57.2.1 Quantum symmetries

Definition 57.2.1 (State space). By the postulates of quantum mechanics, the states in a quantum theory are given by rays in the projective Hilbert space $\mathbb{P}\mathcal{H}$. Probabilities are then defined through the *Fubini-Study metric* on $\mathbb{P}\mathcal{H}$ as follows:

$$\mathcal{P}(\psi,\phi) := \cos^2\left[d_{\text{FS}}(\psi,\phi)\right] = \frac{|\langle\psi|\phi\rangle|^2}{\langle\psi|\psi\rangle\langle\phi|\phi\rangle},\tag{57.6}$$

where $|\psi\rangle, |\phi\rangle$ are representatives of the states ψ, ϕ in $\mathbb{P}\mathcal{H}$.

Definition 57.2.2 (Symmetry). A quantum symmetry (or quantum automorphism) is an isometric automorphism of $P\mathcal{H}$. The group of such symmetries is denoted by $\operatorname{Aut}_{QM}(\mathbb{P}\mathcal{H})$.

The following theorem due to Wigner gives a (linear) characterization of quantum symmetries:¹

Theorem 57.2.3 (Wigner). Every quantum automorphism of $\mathbb{P}\mathcal{H}$ is induced by a unitary or anti-unitary operator on \mathcal{H} .

This is equivalent to saying that the group morphism

$$\pi: \operatorname{Aut}(\mathcal{H}, \mathcal{P}) := \operatorname{U}(\mathcal{H}) \times \operatorname{AU}(\mathcal{H}) \to \operatorname{Aut}_{\operatorname{OM}}(\mathbb{P}\mathcal{H})$$

is surjective. Together with the kernel U(1), given by phase shifts, this forms a short exact sequence:

$$1 \longrightarrow U(1) \longrightarrow Aut(\mathcal{H}, \mathcal{P}) \longrightarrow Aut_{OM}(\mathbb{P}\mathcal{H}) \longrightarrow 1. \tag{57.7}$$

In the case of symmetry breaking (e.g. lattice systems), the full symmetry group is reduced to a subgroup $G \subset \operatorname{Aut}_{\mathrm{QM}}(\mathbb{P}\mathcal{H})$. The group of operators acting on \mathcal{H} is then given by the pullback \widetilde{G} of the diagram

$$\operatorname{Aut}(\mathcal{H}, \mathcal{P}) \longrightarrow \operatorname{Aut}_{\mathrm{OM}}(\mathbb{P}\mathcal{H}) \longleftarrow G.$$

 $^{^{1}}$ In fact it is a particular case of a more general theorem in projective geometry.

It should also be noted that the kernel of the homomorphism $\widetilde{G} \to G$ is again U(1). This leads to the property that \widetilde{G} is a \mathbb{Z}_2 -twisted (hence noncentral) U(1)-extension of G (where the twist is induced by the homomorphism $\phi : \operatorname{Aut}(\mathcal{H}, \mathcal{P}) \to \mathbb{Z}_2$ that says whether an operator is unitary or anti-unitary).

?? COMPLETE ??

57.2.2 Symmetric states

Axiom 57.4 (Symmetrization postulate). Let \mathcal{H} be the single-particle Hilbert space. A system of n identical particles is described by a state $|\Psi\rangle$ belonging to either $S^n(\mathcal{H})$ or $\Lambda^n(\mathcal{H})$, i.e. bosonic and fermionic states are of the form

$$|\Psi_B\rangle = \sum_{\sigma \in S_n} |\psi_{\sigma(1)}\rangle \cdots |\psi_{\sigma(n)}\rangle$$
 (57.8)

and

$$|\Psi_F\rangle = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) |\psi_{\sigma(1)}\rangle \cdots |\psi_{\sigma(n)}\rangle,$$
 (57.9)

respectively, where the $|\psi_i\rangle$ are single-particle states and S_n is the permutation group on n elements.

Remark 57.2.4. In ordinary quantum mechanics this is a postulate, but in quantum field theory this is a consequence of the *spin-statistics theorem*.

Definition 57.2.5 (Slater determinant). Let $\{\phi_i(\vec{q})\}_{i\leq N}$ be a set of wave functions, called **spin orbitals**, describing a system of N identical fermions. The totally antisymmetric wave function of the system is given by

$$\psi(\vec{q}_1, \dots, \vec{q}_N) = \frac{1}{\sqrt{N!}} \det \begin{pmatrix} \phi_1(\vec{q}_1) & \cdots & \phi_N(\vec{q}_1) \\ \vdots & \ddots & \vdots \\ \phi_1(\vec{q}_N) & \cdots & \phi_N(\vec{q}_N) \end{pmatrix}.$$
(57.10)

A similar function can be defined for bosonic systems using the concept of permanents.

57.3 Interaction picture

Let $\hat{H}(t) = \hat{H}_0 + \hat{V}(t)$ be the total Hamiltonian of a system, where $\hat{V}(t)$ is the interaction potential. Let $|\psi(t)\rangle$ and \hat{O} denote a state and operator in the Schrödinger picture.

Definition 57.3.1 (Interaction representation). In the interaction picture the state vector is defined as follows:

$$|\psi(t)\rangle_I := e^{\frac{i}{\hbar}\hat{H}_0 t} |\psi(t)\rangle. \tag{57.11}$$

From this it follows that the operators in the interaction picture are given by

$$\hat{O}_I(t) = e^{\frac{i}{\hbar}\hat{H}_0 t} \,\hat{O} \,e^{-\frac{i}{\hbar}\hat{H}_0 t}. \tag{57.12}$$

Formula 57.3.2 (Schrödinger equation). Using the previous formulas, the Schrödinger equation can be rewritten as follows:

$$i\hbar \frac{d}{dt} |\psi(t)\rangle_I = \hat{V}_I(t) |\psi(t)\rangle_I. \tag{57.13}$$

The time-evolution of operators in the interaction picture is given by

$$\frac{d}{dt}\hat{O}_I(t) = \frac{i}{\hbar} \left[\hat{H}_0, \hat{O}_I(t) \right]. \tag{57.14}$$

So states evolve solely based on the interaction terms and operators evolve according to the free (time-independent) Hamiltonian.

Theorem 57.3.3 (Adiabatic theorem). If a perturbation is acting slowly enough on a system such that the system can adapt its configuration at every single moment, the system will remain in the same eigenstate.

Remark. The original formulation by *Born* and *Fock* also required the system to be *gapped*, however, later this was shown to be inessential.

57.4 Curved backgrounds \$\.*\$

Using the tools of distribution theory and differential geometry (Chapters 17, 31 and onwards), one can introduce quantum mechanics on curved backgrounds (in the sense of 'space', not 'spacetime'). The main reference is [4].

Remark 57.4.1 (Rigged Hilbert spaces). A first important remark to be made is that the classical definition of the wave function as an element of $L^2(\mathbb{R}^d, \mathbb{C})$ is not sufficient, even in flat Cartesian space. A complete description requires the introduction of the so-called *Gelfand triple* or *rigged Hilbert space*, where the space of square-integrable functions is replaced by the Schwartz space 17.6.1 of rapidly decreasing functions. The linear functionals on this space are then given by the tempered distributions.

Construction 57.4.2. When working on curved spaces or even in non-Cartesian coordinates on flat space, one can encounter problems with the definition of the self-adjoint operators \hat{q}^i and \hat{p}_i . The naive definition $\hat{q}^i = q^i, \hat{p}_i = -i\partial_i$ gives rise to extra terms when calculating inner products that break the canonical commutation relations and the self-adjointness of the operators (e.g. the angular position operator $\hat{\varphi}$ on the circle together with its conjugate \hat{L}).

An elegant solution to this problem is obtained by giving up the definition of the wave function as a function $\psi: \mathbb{R}^d \to \mathbb{C}$. Assume that the physical space has the structure of a Riemannian manifold (M,g) and that the "naive" wave functions take values in a vector space V. Then, construct a vector bundle E with typical fibre V over M. By Property 33.1.19 an invariant description of the "true" wave function is a map $\Psi: F(E) \to V$ or, locally, the pullback $\psi := \varphi^* \Psi$ for some local section $\varphi: U \subseteq M \to F(E)$. The Levi-Civita connection on M also induces a covariant derivative ∇ on E that can be used to define differential operators.

Now we introduce a general inner product

$$\langle \psi, \phi \rangle := \int d^d x \sqrt{\det(g)} \psi^*(x) \phi(x).$$
 (57.15)

Because the factor $\sqrt{\det(g)}$ transforms in the inverse manner of the measure d^dx , the integrand is invariant under coordinate transforms (something that is generally required of physical laws). Using this new inner product one can for example check the self-adjointness of the momentum

operator $\hat{P}_i := -i\nabla_i$:

$$\begin{split} \langle \psi, \hat{P}_{i} \phi \rangle &= \int d^{d}x \sqrt{\det(g)} \psi^{*}(x) (-i\nabla_{i}) \phi(x) \\ &= \int d^{d}x \sqrt{\det(g)} \psi^{*}(x) (-i\partial_{i} - i\omega_{i}) \phi(x) \\ &= i \int d^{d}x \Big(\partial_{i} \sqrt{\det(g)} \Big) \psi^{*}(x) \phi(x) + \int d^{d}x \sqrt{\det(g)} (-i\partial_{i}\psi)^{*}(x) \phi(x) \\ &- i \int d^{d}x \sqrt{\det(g)} \psi^{*}(x) \omega_{i} \phi(x) \\ &= \langle \hat{P}_{i}\psi, \phi \rangle - i \int d^{d}x \sqrt{\det(g)} \psi^{*}(x) \omega_{i}^{*} \phi(x) \\ &+ i \int d^{d}x \Big(\partial_{i} \sqrt{\det(g)} \Big) \psi^{*}(x) \phi(x) - i \int d^{d}x \sqrt{\det(g)} \psi^{*}(x) \omega_{i} \phi(x). \end{split}$$

Self-adjointness then requires that

$$\sqrt{\det(g)}(\omega_i + \omega_i^*) = \partial_i \sqrt{\det(g)}$$
(57.16)

or using the identity $(\ln f)' = \frac{f'}{f}$:

$$2\operatorname{Re}(\omega_i) = \partial_i \ln \left(\sqrt{\det(g)} \right). \tag{57.17}$$

?? COMPLETE ??

Quantization &

Given the content of Chapter 57, the general quantization procedure can be axiomatized as follows:

Method 58.0.1 (Abstract quantization). A quantization of a symplectic manifold (M, ω) is a pair $(\mathcal{H}, \mathcal{O})$ where:

- 1. \mathcal{H} is a (complex) separable Hilbert space.
- 2. \mathcal{O} takes real functions $C^{\infty}(M)$ to self-adjoint operators.
- 3. \mathcal{O} is \mathbb{C} -linear.
- 4. $\mathcal{O}(1) = 1_{\mathcal{H}}$.
- 5. Dirac correspondence: $[\mathcal{O}(f), \mathcal{O}(g)] = i\hbar \mathcal{O}(\{f, g\}).$

Because a Hilbert space forms an irreducible representation of any complete set of observables, it makes sense to additionally require the following axiom:

Axiom 58.1 (Irreducibility postulate). Let (M, ω) be a 2n-dimensional symplectic manifold. If the observables $\{f_i\}_{i\leq n}$ form a complete set, i.e. any function that Poisson commutes with all f_i is necessarily constant, the quantum state space \mathcal{H} is required to be irreducible with respect to the action of $\{\mathcal{O}(f_i)\}_{i\leq n}$. Equivalently, if a group G acts transitively on M, the state space is required to be an irreducible representation of a U(1)-central extension of G.

The simplest example is again $T^*\mathbb{R}^n$. Here, the usual choice of observables are the coordinate and momentum functions $\{q^i, p_i\}_{i \leq n}$. The group G is given by the Heisenberg group, a U(1)-central extension of the translation group \mathbb{R}^{2n} . Irreducible representations are characterized by the Stone-von Neumann theorem 57.1.4.

Although the above procedure sounds reasonable, it is known to be inconsistent. *Groenewold* and $Van\ Hove$ showed that there does not exist a map \mathcal{O} , satisfying the axioms 58.0.1, that takes the entire (Lie) algebra of classical observables to the (Lie) algebra of corresponding quantum observables.

58.1 Geometric Quantization

In this section the constant \hbar has been set to 1.

58.1.1 Prequantization

Definition 58.1.1 (Prequantum line bundle). Consider a symplectic manifold (M, ω) . A prequantum line bundle on M is a Hermitian line bundle equipped with a connection ∇ such that $\omega = F_{\nabla}$, where F_{∇} denotes the curvature two-form associated to ∇ .

Property 58.1.2. Complex line bundles are classified by the (first) Chern class $c_1 \in H^2(M; \mathbb{Z})$ which is proportional to the curvature form through Chern-Weil theory 33.6.1. Therefore, a prequantum line bundle exists if and only if the symplectic form is integral 32.6.6 (up to a factor of 2π). For simply-connected manifolds this is equivalent to

$$\forall \text{ 2-cycles } S \subset M : \int_{S} \omega \in 2\pi \mathbb{Z}.$$
 (58.1)

This condition resembles the "old" *Bohr-Sommerfeld condition* and is in general known as the **Weil integrality condition**.

There are two contributions to the moduli space of prequantum line bundles (or, essentially, U(1)-principal bundles with connection). The latter are known to be classified by differential U(1)-cohomology. Since the curvature is fixed by the sympletic form, prequantum line bundles are classified by lifts from curvature forms to differential cohomology along the curvature projection. Differential cohomology consists of two parts, roughly corresponding to the following two aspects: there can exist topologically nonequivalent bundles and there can exist nonequivalent connections on the same bundle differing by a flat connection, where two flat connections are in turn nonequivalent if they differ by a closed one-form that is neither integral nor exact. The former are classified by integral curvature forms $H^2_{\rm dR}(M)$, while the latter are classified by the Čech cohomology group $H^1(M; {\rm U}(1))$ or $(H^2(M; \mathbb{Z})$ by isomorphism (32.106)).

?? ADD REFERENCE TO DELIGNE COHOMOLOGY ??

Corollary 58.1.3 (Dirac quantization condition). One can derive the Dirac quantization condition from Weil integrality. If one couples the system to a gauge potential, the minimal coupling procedure gives $\omega \longrightarrow \omega + eF$. Weil integrality then implies that e is an integer.

Definition 58.1.4 (Prequantum Hilbert space). Consider a symplectic manifold (M, ω) together with its prequantum line bundle L. The prequantum Hilbert space $\mathcal{H}_{\mathbb{P}}$ is defined as (the L^2 -completion of) the space of square-integrable sections of L (with respect to the metric on L and the Liouville volume form on M).

To every smooth function $f \in C^{\infty}(M, \mathbb{C})$ one can associate a (**Segal-Kostant-Souriau**) prequantum operator $\hat{f}: \Gamma(L) \to \Gamma(L)$ by the following formula:

$$\hat{f}: \psi \to -i\nabla_{X_f} \psi + f \cdot \psi \tag{58.2}$$

where X_f is the Hamiltonian vector field 35.2.1 associated to f and, locally, $\nabla = d - i\theta$ with θ the Liouville one-form (symplectic potential). This operator can also be interpreted in terms of a Hamiltonian flow. The Hamiltonian flow of X_f can be lifted (up to a phase) to an automorphism ψ_t^f on L that preserves both the metric and the connection. The prequantum operator \hat{f} is then simply given by

$$\hat{f}s = -i \frac{d}{dt} (\psi_t^f s) \bigg|_{t=0}. \tag{58.3}$$

Example 58.1.5 (Spinning particle). Consider as phase space the 2-sphere $S^2(r)$ with radius $r \in \mathbb{R}$. In this case the symplectic form can be written as $\omega = r^2 \sin \theta d\theta \wedge d\varphi$. This form is only integral for a discrete set of values of r, namely for $r \in \mathbb{Z}/2$. Up to a factor \hbar this is exactly the

quantization rule for angular momentum. The reason for this is that S^2 is a homogeneous space for SU(2), the group characterizing spinning particles. In fact, using the theory of coadjoint orbits (see further below), one can show that this quantization procedure coincides with the KKS quantization of the coadjoint orbit $S^2 = SU(2)/U(1)$.

At this point it can easily be seen that there is a problem with the dimension of the prequantum state space. For the cotangent bundle $T^*\mathbb{R}^n = \mathbb{R}^n \times \mathbb{R}^n$ the resulting state space would be $L^2(\mathbb{R}^{2n})$. However, from ordinary quantum theory it is well-known that the right Hilbert space is $L^2(\mathbb{R}^n)$. In general the above procedure would give wave functions that depend on 2n variables instead of the n coordinates of configuration space that are normally found in quantum mechanics.

A solution is obtained by making a choice of "configuration space" or, in terms of ordinary quantum mechanics, to choose a "representation" of the system:

Construction 58.1.6 (Quantization). Consider a symplectic manifold (M, ω) . A quantization of (M, ω) is given by a prequantum line bundle L together with a polarization P of M. The "naive" quantum state space \mathcal{H} would be given by the subspace of $\mathcal{H}_{\mathbb{P}}$ of those sections that are covariantly constant along P, i.e. those sections $s \in \Gamma(L)$ that satisfy $\nabla_X s = 0$ for all $X \in P$. These sections are also called **polarized sections**.

The fact that a polarization is required, and not merely an n-dimensional involutive distribution, follows from an additional consistency condition imposed by the condition $\nabla_X s = 0$ for all $X \in \mathcal{P}$. Because ω also represents the curvature of the connection on L, one obtains

$$\omega(X,Y)s = [\nabla_X, \nabla_Y]s - \nabla_{[X,Y]}s = 0 \tag{58.4}$$

for all $X, Y \in \mathcal{P}$. This implies that \mathcal{P} defines an isotropic submanifold. For a completely integrable system 35.4.11, a natural choice would be given by the distribution spanned by the Hamiltonian vector fields.

Now, if the prequantum operators ought to represent genuine operators on the quantum state space, one should have

$$\nabla_X s = 0 \implies \nabla_X (\hat{f}s) = 0$$

for all sections $s \in \Gamma(L)$ and $X \in P$. Using the general formula for iterated covariant derivatives and the fact that the leaves of P are Lagrangian, one finds the following condition:

$$[X, X_f] = 0 (58.5)$$

for all $X \in P$. So in general one should restrict to the subspace of $C^{\infty}(M)$ on those functions whose Hamiltonian flow preserves P.

There is, however, a problem with this construction. Nothing ensures that $\mathcal{H}_{\mathbb{P}}$ contains any polarized sections. As an example consider a cotangent bundle with its vertical polarization. In this case the polarized sections are given by functions that only depend on the base coordinates q^i and not on the fibre (momentum) coordinates p_i . However, because the fibres are noncompact, the integral of such a section with respect to the Liouville measure will always diverge. For this example this can be solved by integrating over $M \cong T^*M/D$.

However, even though a possible divergence coming from noncompact fibres is resolved, another problem arises. To integrate over M one needs a volume form, but there is not always a canonical choice. A solution is given by working with densities (see section 32.5):

Method 58.1.7 (Half-form quantization). For this method the polarization is assumed to be real and have simply-connected leaves. Furthermore, the manifold M is assumed to admit a metaplectic structure or, by virtue of property 37.1.14, P is assumed to admit a metalinear structure. Using this structure one can define the half-form bundle $\delta^{1/2}$. Given a prequantum line bundle L, one defines the twisted bundle of L-valued half-forms $L \otimes \delta^{1/2}$. A wave function is defined as a section ψ of $L \otimes \delta^{1/2}$ such that locally $\psi = \lambda \otimes \mu$ with $\nabla_X \lambda = 0$ and $\mathcal{L}_X \mu = 0$ for all $X \in P$. By pairing two wave functions one obtains a 1-density on M which can be integrated. The quantum state space is then defined as the L^2 -completion of the space of wave functions.

To extend the definition of operators to half-form quantized manifolds, one simply needs to extend the definition to density bundles. Because \hat{f} represents the Hamiltonian flow, a natural choice is the Lie derivative:

$$\hat{f}(s\mu) := (\hat{f}s) \otimes \mu - is \otimes \mathcal{L}_{X_f}\mu. \tag{58.6}$$

Example 58.1.8 (Kähler quantization). For this method the polarization is assumed to be positive Kähler, i.e. *P* is the antiholomorphic tangent bundle of a Kähler manifold. By taking the (local) symplectic potential to be the holomorphic derivative of the Kähler potential, one obtains the space of holomorphic sections as the prequantum state space (a different choice of potential results in a phase transformation). It can be shown that a natural inner product is given by

$$\langle \psi_1 | \psi_2 \rangle = \int_{\mathbb{C}^n} \overline{\psi_1(z)} \psi_2(z) \exp(-|z|^2/2) dz^n.$$
 (58.7)

This is often called the **Bargmann**, **Segal-Bargmann** or **Bargmann-Fock** representation. The coordinates z, \overline{z} are represented by the operators z and ∂_z . These are easily interpreted as creation and annihilation operators.

Remark 58.1.9. If the positivity assumption would be dropped, the Kähler potential K, which was $-|z|^2/2$ above, would be indefinite. This would in turn imply that the integral diverges.

Method 58.1.10 (Bohr-Sommerfeld quantization). Here the polarization P is again assumed to be real, but the leaves are allowed to not be simply-connected. The partial connection ∇ along P is flat when restricted to a single leaf $\Lambda_m \subset M$. When Λ_m is not simply-connected, the holonomy group can be nontrivial. However, the defining condition of \mathcal{H} is that sections should be covariantly constant. This implies that either the section is zero or that the holonomy around any loop vanishes. The support of all sections in \mathcal{H} is therefore given by the union S of all leaves on which ∇ is trivial. This space is called the Bohr-Sommerfeld variety.

Vanishing holonomy implies

$$\exp\left(i\oint_{\gamma}\theta\right) = 1\tag{58.8}$$

for all loops γ , where θ is the symplectic potential/connection one-form. In terms of Darboux coordinates this gives

$$\oint_{\gamma} p_i dq^i \in \mathbb{Z}.$$
(58.9)

This is exactly the old Bohr-Sommerfeld quantization condition. When using half-density quantization, an additional contribution coming from the covariant derivative on densities would have to be added to the right-hand side:

$$\oint_{\gamma} p_i dq^i = 2\pi (k_{\gamma} + d_{\gamma}) \tag{58.10}$$

where $k_{\gamma} \in \mathbb{Z}$.

58.1.2 Coadjoint orbits

?? COMPLETE (SEE ALSO 30.3.3) ??

58.2 Constrained systems

In this section classical systems with constraints, i.e. dynamical systems (M, ω, H) with an algebra of first-class constraints $\{\phi_m\}_{m\in I}$, are considered as in Chapter 49.

58.2.1 Dirac procedure

The first approach to the quantization of constraint systems is due to Dirac. Instead of trying to pass to the reduced phase space or introducing additional gauge fixing conditions, Dirac simply worked with all variables and represented these as operators acting on an enlarged Hilbert space. The constraints, represented by operators \hat{G}_a , then satisfy

$$\hat{G}_a|\psi\rangle = 0 \tag{58.11}$$

for all physical states $|\psi\rangle$. The constraint algebra $\{\phi_a,\phi_b\}=C^c_{ab}\phi_c$ gives rise to a quantum algebra

$$[\hat{G}_a, \hat{G}_b] = i\hbar \mathcal{C}_{ab}^c \hat{G}_c + \hbar^2 \hat{D}_{ab}, \tag{58.12}$$

where \hat{D}_{ab} represents a **quantum anomaly**, i.e. a correction term resulting from the quantization of the classical algebra. The issue here is that both the left-hand side and the first term on the right-hand side vanish exactly on physical states, so \hat{D}_{ab} should also vanish on these states for all $a, b \in I$. However, if this would be true, the physical Hilbert space would be heavily restricted (in certain cases it even becomes empty). The conclusion is that the quantum anomaly breaks the first-class structure of the constraints and, therefore, the constraints do not generate gauge transformations anymore (this is why the anomy is sometimes called a **gauge anomaly**). A similar issue appears when quantizing the classical evolution equation

$$\{H, \phi_a\} = V_a^b \phi_b. \tag{58.13}$$

58.2.2 BRST quantization

For this approach one starts from the classical BRST construction from Section 49.4 and tries to find a Hilbert space representation of extended algebra containing the classical functions, the ghosts and the ghost momenta. The BRST charge then becomes a self-adjoint operator satisfying

$$[\Omega, \Omega] = 2\Omega^2 = 0. \tag{58.14}$$

However, in stark contrast to the classical situation, where a BRST charge always exists, the quantum case does not necessarily admit such a construction.

Property 58.2.1 (Ghost states). If the state space can be decomposed according to ghost number, the following statements hold:

• The ghost number of a homogeneous state is of the form

$$g = g_0 + z \in \mathbb{Z} \tag{58.15}$$

for g_0 either 0 or $\frac{1}{2}$. Fractional ghost numbers occur when the number of constraints is odd.

• The inner product of two homogeneous states with ghost numbers g, g' vanishes if $g+g' \neq 0$. This implies that states with nonzero ghost number are null states.

Definition 58.2.2 (Physical state space). The physical states are defined similarly to the gauge-invariant functions in the classical setting, i.e. states are deemed physical if they are BRST-closed:

$$\Omega|\psi\rangle = 0. \tag{58.16}$$

This operation is linear and hence selects a linear subspace as required. Furthermore, BRST-closed operators (the **physical observables**) preserve this subspace and the BRST-exact operators give vanishing transition elements (and are, therefore, not physically observable as desired). This also implies that acting with a BRST-exact operator on a state, leaves the physical state unchanged. It follows that the true physical state space is given by $H^0(\Omega)$.

58.2.3 BFV quantization

The extended phase space M_{ext} is defined by introducing dynamical Lagrange multipliers and their momenta:

$$\{\lambda^m, \pi_n\} := \delta_n^m, \tag{58.17}$$

together with two collections of (homologically) odd-degree ghosts and their momenta:

$$\{C^i, \overline{P}_j\} := \delta^i_j \tag{58.18}$$

$$\{P^i, \overline{C}_j\} := \delta^i_j \tag{58.19}$$

Note that the Poisson brackets for the ghost is a graded Poisson bracket. The subalgebra on the variables (q, p, C, \overline{P}) is called the **minimal subalgebra**, while the subalgebra on the variables $(\lambda, \pi, P, \overline{C})$ is called the **auxiliary subalgebra**.

A quantized algebra of observables is obtained through the (graded) Dirac correspondence. This algebra is naturally graded with respect to the ghost number defined by the self-adjoint operator

$$\mathcal{G} := \frac{1}{2} \left(C^i \overline{P}_i - \overline{P}^i C_i + P^i \overline{C}_i - \overline{C}_i P^i \right). \tag{58.20}$$

This operator acts on observables as follows:

$$[\mathcal{G}, A] = i\hbar \operatorname{gh}(A)A. \tag{58.21}$$

BFV quantization is obtained by defining a nilpotent BRST operator $\Omega = \Omega_{min} + \Omega_{aux}$.

Angular Momentum

In this chapter we consider the general angular momentum operator $\hat{J} = (\hat{J}_x, \hat{J}_y, \hat{J}_z)$.

59.1 General operator

Property 59.1.1. The angular momentum operators generate a Lie algebra 30.2.1. The Lie bracket is defined by following commutation relation:

$$\left[\hat{J}_i, \hat{J}_j\right] = i\hbar \varepsilon_{ijk} \hat{J}_k. \tag{59.1}$$

Since rotations correspond to actions of the orthogonal group SO(3) it should not come as a surprise that the above relation is that of the Lie algebra $\mathfrak{so}(3)$ (see example 30.2.25).

Property 59.1.2. The mutual eigenbasis of \hat{J}^2 and \hat{J}_z is defined by the following two eigenvalue equations:

$$\hat{J}^2|j,m\rangle = j(j+1)\hbar^2|j,m\rangle \tag{59.2}$$

$$\hat{J}_z|j,m\rangle = m\hbar|j,m\rangle. \tag{59.3}$$

Definition 59.1.3 (Ladder operators¹). The raising and lowering operators² \hat{J}_{+} and \hat{J}_{-} are defined as follows:

$$\hat{J}_{+} = \hat{J}_{x} + i\hat{J}_{y}$$
 and $\hat{J}_{-} = \hat{J}_{x} - i\hat{J}_{y}$. (59.4)

Corollary 59.1.4. From the commutation relations of the angular momentum operators we can derive the commutation relations of the ladder operators:

$$\left[\hat{J}_{+}, \hat{J}_{-}\right] = 2\hbar \hat{J}_{z}.\tag{59.5}$$

Formula 59.1.5. The total angular momentum operator \hat{J}^2 can now be expressed in terms of \hat{J}_z and the ladder operators using the commutation relation 59.1:

$$\hat{J}^2 = \hat{J}_+ \hat{J}_- + \hat{J}_z^2 - \hbar \hat{J}_z. \tag{59.6}$$

Remark 59.1.6 (Casimir operator). From the definition of \hat{J}^2 it follows that this operator is a Casimir invariant 30.4.55 for $\mathfrak{so}(3)$.

¹Also called the **creation** and **annihilation** operators (especially in quantum field theory).

²These operators will only affect the z-projection, not the total angular momentum.

59.2 Rotations

59.2.1 Infinitesimal rotation

Formula 59.2.1. An infinitesimal rotation $\hat{R}(\delta \vec{\varphi})$ is given by the following formula:

$$\hat{R}(\delta\vec{\varphi}) = 1 - \frac{i}{\hbar}\vec{J} \cdot \delta\vec{\varphi}. \tag{59.7}$$

A finite rotation can then be produced by applying this infinitesimal rotation repeatedly. This gives

$$\hat{R}(\vec{\varphi}) = \left(1 - \frac{i}{\hbar} \vec{J} \cdot \frac{\vec{\varphi}}{n}\right)^n = \exp\left(-\frac{i}{\hbar} \vec{J} \cdot \vec{\varphi}\right). \tag{59.8}$$

Formula 59.2.2 (Matrix elements). Applying a rotation over an angle φ around the z-axis to a state $|j, m\rangle$ gives

$$\hat{R}(\varphi \vec{e}_z)|j,m\rangle = \exp\left(-\frac{i}{\hbar}\hat{J}_z\varphi\right)|j,m\rangle = \exp\left(-\frac{i}{\hbar}m\varphi\right)|j,m\rangle.$$
 (59.9)

Multiplying these states with a bra $\langle j', m'|$ and using the orthonormality of the eigenstates gives the matrix elements of the rotation operator:

$$\hat{R}_{ij}(\varphi \vec{e}_z) = \exp\left(-\frac{i}{\hbar}m\varphi\right)\delta_{jj'}\delta_{mm'}.$$
(59.10)

From the expression of the angular momentum operators and the rotation operator it is clear that a general rotation has no effect on the total angular momentum number j. This means that the rotation matrix will be block diagonal with respect to j. This amounts to the following reduction of the representation of the rotation group:

$$\langle j, m' | \hat{R}(\varphi \vec{n}) | j, m \rangle = \mathcal{D}_{m,m'}^{(j)}(\hat{R})$$
(59.11)

where the functions $\mathcal{D}_{m,m'}^{(j)}(\hat{R})$ are called the **Wigner D-functions**.

Remark (Wigner D-functions). For every value of j there are (2j+1) values for m. The matrix $\mathcal{D}^{(j)}(\hat{R})$ is thus a $(2j+1) \times (2j+1)$ -matrix.

59.2.2 Spinor representation

For more information about spinors, see chapter 25 for the mathematical background or chapter 60 for their use in physics.

Definition 59.2.3 (Pauli matrices).

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 (59.12)

From this definition it is clear that the Pauli matrices are Hermitian and unitary. Together with the 2×2 identity matrix³ they form a basis for the space of 2×2 Hermitian matrices.

Formula 59.2.4. In the spinor representation $(J=\frac{1}{2})$ the Wigner-D matrix reads as follows:

$$\mathcal{D}^{(1/2)}(\varphi \vec{e}_z) = \begin{pmatrix} e^{-i/2\varphi} & 0\\ 0 & e^{i/2\varphi} \end{pmatrix}. \tag{59.13}$$

³In the context of relativistic QM one often denotes the 2×2 identity matrix as σ_0 .

59.3 Coupling of angular momenta

59.3.1 Total Hilbert space

Let \mathcal{H}_i denote the Hilbert space of the i^{th} particle. The Hilbert space of the total system is given by the following tensor product:

$$\mathcal{H} = \mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n$$
.

Due to the tensor product structure, the angular momentum operator \hat{J}_i should now be interpreted as $\mathbb{1} \otimes \cdots \otimes \hat{J}_i \otimes \cdots \otimes \mathbb{1}$. This implies that the angular momentum operators $\hat{J}_{l\neq i}$ do not act on the space \mathcal{H}_i , so one can pull these operators through the tensor product:

$$\hat{J}_i|j_1\rangle\otimes\cdots\otimes|j_n\rangle=|j_1\rangle\otimes\cdots\otimes\hat{J}_i|j_i\rangle\otimes\cdots\otimes|j_n\rangle.$$

The basis used above is called the **uncoupled basis**.

59.3.2 Clebsch-Gordan series

Let \vec{J} denote the total angular momentum defined as

$$\vec{J} = \hat{J}_1 + \hat{J}_2. \tag{59.14}$$

With this operator we can define a **coupled** state $|\mathbf{J}, \mathbf{M}\rangle$ where \mathbf{M} is the total magnetic quantum number which ranges from $-\mathbf{J}$ to \mathbf{J} .

Formula 59.3.1 (Clebsch-Gordan coefficients). Because both bases (coupled and uncoupled) span the total Hilbert space \mathcal{H} there exists a transformation between them. The transformation coefficients can be found by using the resolution of the identity:

$$|\mathbf{J}, \mathbf{M}\rangle = \sum_{m_1 = -j_1}^{j_1} \sum_{m_2 = -j_2}^{j_2} |j_1, j_2, m_1, m_2\rangle\langle j_1, j_2, m_1, m_2|\mathbf{J}, \mathbf{M}\rangle.$$
 (59.15)

These coefficients are called the Clebsch-Gordan coefficients.

Property 59.3.2. By acting with the operator \hat{J}_z on both sides of equation 59.15 it is possible to prove that the Clebsch-Gordan coefficients are nonzero if and only if $\mathbf{M} = m_1 + m_2$.

Dirac Equation

References for this chapter are [37]. (Note that the authors use the mostly-pluses signature there.) For the mathematical background of Clifford algebras and Spin groups, see chapter 25 and in particular section 25.4.2. For the extension to (pseudo-)Riemannian manifolds see section 34.3.

60.1 Dirac matrices

Property 60.1.1. The Dirac matrices are defined by the following equality:

$$\{\gamma^{\mu}, \gamma^{\nu}\}_{+} = 2\eta^{\mu\nu} \mathbb{1} \tag{60.1}$$

where $\eta^{\mu\nu}$ is the Minkowski metric. This has the form of equation 25.5. The Dirac matrices can thus be used as the generating set of a Clifford algebra, called the **Dirac algebra**.

Definition 60.1.2 (Dirac matrices¹). There exist multiple different representations of the Clifford generators in signature (1,3). The first one is the **Dirac representation**. Here, the timelike Dirac matrix γ^0 is defined as

$$\gamma^0 := \begin{pmatrix} \mathbb{1}_2 & 0\\ 0 & -\mathbb{1}_2 \end{pmatrix}. \tag{60.2}$$

The spacelike Dirac matrices γ^k (k=1,2,3) are defined using the Pauli matrices 59.12 σ^k :

$$\gamma^k := \begin{pmatrix} 0 & \sigma^k \\ -\sigma^k & 0 \end{pmatrix}. \tag{60.3}$$

The Weyl or chiral representation² is defined by replacing the timelike matrix γ^0 by

$$\gamma^0 := \begin{pmatrix} 0 & \mathbb{1}_2 \\ \mathbb{1}_2 & 0 \end{pmatrix}. \tag{60.4}$$

In signature (3,1) one obtains the Weyl representation by defining $\sigma^{\mu} := (1,\sigma_i)$ and $\overline{\sigma}^{\mu} := \sigma_{\mu}$:

$$\gamma^{\mu} := \begin{pmatrix} 0 & \sigma_{\mu} \\ \overline{\sigma}_{\mu} & 0 \end{pmatrix}. \tag{60.5}$$

Remark 60.1.3. In the remainder of this compendium we will adopt the Weyl representation.

¹Often just called the **gamma matrices**.

²This representation is widely used in advanced field theory and supergravity.

Notation 60.1.4 (Feynman slash notation). Let $\mathbf{a} = a^{\mu} \mathbf{e}_{\mu} \in V$ be a general 4-vector. The Feynman slash is defined as follows:

$$\phi := a^{\mu} \gamma_{\mu}. \tag{60.6}$$

In fact this is just a vector space morphism:

$$/: V \to C\ell(V, \eta) : a^{\mu} \mathbf{e}_{\mu} \mapsto a^{\mu} \gamma_{\mu}.$$
 (60.7)

60.2 Spinors

60.2.1 Dirac equation

Formula 60.2.1 (Dirac equation). In covariant form the Dirac equation reads

$$(i\hbar\partial - mc)\psi = 0 \tag{60.8}$$

where m is the mass of the fermion and c the speed of light.

Definition 60.2.2 (Dirac adjoint).

$$\overline{\psi} := \psi^{\dagger} \gamma^0 \tag{60.9}$$

When working in the Weyl representation one should add a factor i to this definition.

Definition 60.2.3 (Majorana adjoint). In the context of SUSY it is often convenient to work with a different adjoint spinor. Let $\mathcal{C} := i\gamma^3\gamma^1$ denote the charge conjugation operator. The Majorana adjoint is then defined by

$$\overline{\psi} := \psi^t C. \tag{60.10}$$

Formula 60.2.4 (Parity). The parity operator is defined as follows:

$$\hat{P}(\psi) = \gamma^0 \psi. \tag{60.11}$$

60.2.2 Chiral spinors

In even dimensions one can define an additional matrix which also satisfies equation 60.1:

Definition 60.2.5 (Chiral matrix). Assume that the dimension, given by d = m + n, is even. The chiral (helicity) matrix can then be defined as follows:³

$$\gamma_{d+1} := \gamma_1 \gamma_2 \dots \gamma_d. \tag{60.12}$$

In odd dimensions (d = 2m + 1) a generating set for the Clifford algebra can be obtained by taking the generating set from one dimension lower and adjoining the element $k\gamma_*$ where $k^2 = (-1)^{n+d/2}$. This gives two inequivalent representations of the Clifford algebra (depending on the sign). From here on we will use the redefinition

$$\gamma_{d+1} \longrightarrow k\gamma_{d+1}.$$
 (60.13)

This has the benefit that $\gamma_{d+1}^2 = 1$.

In d = 3 + 1 one generally takes the following representation for γ_5 :

$$\gamma_{d+1} := \begin{pmatrix} \mathbb{1} & 0\\ 0 & -\mathbb{1} \end{pmatrix}. \tag{60.14}$$

³Some authors add a constant to this definition.

⁴Such a block diagonal form can always (i.e. for all even d) be chosen by working in a helicity-adapted basis.

Definition 60.2.6 (Chiral projection). The chiral projections of a spinor ψ are defined as follows:

$$\psi_L := \frac{1 + \gamma_{d+1}}{2} \psi \tag{60.15}$$

and

$$\psi_R := \frac{1 - \gamma_{d+1}}{2} \psi. \tag{60.16}$$

Every spinor can then be written as a sum of its chiral parts:

$$\psi = \psi_L + \psi_R. \tag{60.17}$$

60.2.3 Dirac algebra in D=4

For a lot of calculations, especially in quantum electrodynamics, one needs the properties of the gamma matrices. Therefore we list the most relevant relations in D = 3 + 1:

Formula 60.2.7 (Trace algebra).

$$\operatorname{tr}(\gamma^{\mu}) = \operatorname{tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}) = 0 \tag{60.18}$$

$$\operatorname{tr}(\gamma^{\mu}\gamma^{\nu}) = 4\eta^{\mu\nu} \tag{60.19}$$

$$\operatorname{tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{\kappa}\gamma^{\lambda}) = 4(\eta^{\mu\nu}\eta^{\kappa\lambda} - \eta^{\mu\kappa}\eta^{\nu\lambda} + \eta^{\mu\lambda}\eta^{\nu\kappa}) \qquad (60.20)$$

$$\operatorname{tr}(\gamma^5) = \operatorname{tr}(\gamma^\mu \gamma^5) = \operatorname{tr}(\gamma^\mu \gamma^\nu \gamma^5) = \operatorname{tr}(\gamma^\mu \gamma^\nu \gamma^\rho \gamma^5) = 0 \tag{60.21}$$

$$\operatorname{tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{\kappa}\gamma^{\lambda}\gamma^{5}) = -4i\varepsilon^{\mu\nu\kappa\lambda} \tag{60.22}$$

$$\operatorname{tr}(\gamma^{\mu_1} \cdots \gamma^{\mu_k}) = \operatorname{tr}(\gamma^{\mu_k} \cdots \gamma^{\mu_1}) \tag{60.23}$$

Formula 60.2.8 (Contraction identities).

$$\gamma^{\mu}\gamma_{\mu} = 4 \tag{60.24}$$

$$\gamma^{\mu}\gamma^{\nu}\gamma_{\mu} = -2\gamma^{\nu} \tag{60.25}$$

$$\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma_{\mu} = 4\eta^{\nu\rho} \tag{60.26}$$

$$\gamma^{\mu}\gamma^{\nu}\gamma^{\kappa}\gamma^{\lambda}\gamma_{\mu} = -2\gamma^{\lambda}\gamma^{\kappa}\gamma^{\nu} \tag{60.27}$$

60.2.4 Fierz identities

Using a spinor $u \in S$ and a cospinor $\overline{v} \in S^*$ one can build a bilinear form $\overline{v}u$. However, for two spinors u, ω and two cospinors $\overline{v}, \overline{\rho}$ one can interpret the expression $(\overline{v}u)(\overline{\rho}\omega)$ either as a quadrilinear form on $u \otimes \overline{v} \otimes \omega \otimes \overline{\rho}$ or as a quadrilinear form on $\omega \otimes \overline{v} \otimes u \otimes \overline{\rho}$. Because $C\ell_{3,1}(\mathbb{C})$ is isomorphic to the endomorphism ring on S there must exist coefficients a^{ij} where $i, j = 1, \ldots, 2^D$ such that

$$(\overline{v}u)(\overline{\rho}\omega) = \sum_{i,j=1}^{2^{D}} a^{ij}(\overline{v}\gamma_{i}\omega)(\overline{\rho}\gamma_{j}u). \tag{60.28}$$

By using the trace orthogonality relations one can find that

$$\alpha^{ij} = \begin{cases} 0 & i \neq j \\ \frac{1}{2^{|D/2|}} & i = j. \end{cases}$$
 (60.29)

The above equality can then also be rewritten as follows:

$$\delta_b^a \delta_d^c = \frac{1}{2^{\lfloor D/2 \rfloor}} \sum_{i=1}^{2^D} (\gamma_i)_d^a (\gamma_i)_b^c.$$
 (60.30)

This expression (and the techniques used to find it) allow one to rearrange almost all multilinear expressions involving spinors and cospinors.

Perturbation Theory

61.1 Rayleigh-Schrödinger theory

The basic of assumptions of Rayleigh-Schrödinger perturbation theory are that the perturbing Hamiltonian is time-independent and that the eigenfunctions of the unperturbed Hamiltonian \hat{H}_0 also form a complete set for the perturbed Hamiltonian.

Formula 61.1.1. The perturbed eigenfunctions and eigenvalues can be expanded in the following way, where we assume that λ is a small (perturbation) parameter:

$$|\psi_n\rangle = \sum_{i=0}^{+\infty} \lambda^i |\psi_n^{(i)}\rangle \tag{61.1}$$

$$E_n = \sum_{i=0}^{+\infty} \lambda^i E_n^{(i)} \tag{61.2}$$

where i is called the **order** of the perturbation.

61.2 Time-dependent perturbation theory

In this section we consider perturbed Hamiltonians of the following form:

$$\hat{H}(t) = \hat{H}_0 + \lambda \hat{V}(t). \tag{61.3}$$

61.2.1 Dyson series

Formula 61.2.1 (Tomonaga-Schwinger equation). The evolution operator $\hat{U}(t)$ satisfies the following Schrödinger-type equation in the interaction picture¹:

$$i\hbar \frac{d}{dt}\hat{U}_I|\psi(0)\rangle_I = \hat{V}_I(t)\hat{U}_I|\psi(0)\rangle_I. \tag{61.4}$$

Formula 61.2.2 (Dyson series). Together with the initial value condition $\hat{U}_I(0) = 1$ the Tomonaga-Schwinger equation becomes an initial value problem. A particular solution is given by

$$\hat{U}_{I}(t) = 1 - \frac{i}{\hbar} \int_{0}^{t} \hat{V}_{I}(t') \hat{U}_{I}(t') dt'. \tag{61.5}$$

¹See section 57.3.

This solution can be iterated to obtain a series expansion of the evolution operator:

$$\hat{U}(t) = 1 - \frac{i}{\hbar} \int_0^t \hat{V}(t_1) dt_1 + \left(-\frac{i}{\hbar}\right)^2 \int_0^t dt_1 \int_0^{t_1} dt_2 \hat{V}(t_1) \hat{V}(t_2) + \dots$$
 (61.6)

It is clear that the integrands obey a time-ordering. By introducing the **time-ordering operator** \mathcal{T}

$$\mathcal{T}\Big(\hat{V}(t_1)\hat{V}(t_2)\Big) = \begin{cases} \hat{V}(t_1)\hat{V}(t_2) & t_1 \ge t_2\\ \hat{V}(t_2)\hat{V}(t_1) & t_2 > t_1 \end{cases}$$
(61.7)

the integrals can be rewritten in a more symmetric form:

$$\hat{U}(t) = 1 - \frac{i}{\hbar} \int_0^t \hat{V}(t_1) dt_1 + \frac{1}{2!} \left(-\frac{i}{\hbar} \right) \int_0^t dt_1 \int_0^t dt_2 \mathcal{T}(\hat{V}(t_1)\hat{V}(t_2)) + \dots$$
 (61.8)

By comparing this expression with the series expansion for exponential functions, we obtain the following concise formula:

$$\hat{U}(t) = \mathcal{T}\left(e^{-\frac{i}{\hbar}\int_0^t \hat{V}(t')dt'}\right). \tag{61.9}$$

This formula is called the **Dyson series**.

61.3 Variational method

Definition 61.3.1 (Energy functional).

$$E[\psi] = \frac{\langle \psi | \hat{H} | \psi \rangle}{\langle \psi | \psi \rangle} \tag{61.10}$$

Property 61.3.2. The energy functional 61.10 satisfies the following inequality:

$$E[\psi] \ge E_0 \tag{61.11}$$

where E_0 is the ground state energy.

Method 61.3.3. Assume that the trial function $|\psi\rangle$ depends on a set of parameters $\{c_i\}_{i\in I}$. The "optimal" wave function (the one extremizing the energy functional) is found by solving the following system of equations:

$$\frac{\partial \psi}{\partial c_i} = 0. ag{61.12}$$

61.4 Adiabatic approximation

61.4.1 Berry phase

Consider a system for which the adiabatic approximation is valid. We then have a wave function of the form

$$\psi(t) := C_a(t)\psi_a(t) \exp\left(-\frac{i}{\hbar} \int_{t_0}^t E_a(t')dt'\right). \tag{61.13}$$

It follows from the orthonormality of the eigenstates $\psi_k(t)$ that the coefficient $C_a(t)$ is just a phase factor, so we can write it as

$$C_a(t) = e^{i\gamma_a(t)}. (61.14)$$

By substituting this ansatz in the wave function, the Schödinger equation gives a differential equation for the phase factor $\gamma_a(t)$. Integration gives

$$\gamma_a(t) = i \int_{t_0}^t \left\langle \psi_a(t') \middle| \frac{\partial \psi_a(t')}{\partial t'} \right\rangle dt'. \tag{61.15}$$

Due to time evolution the wave function accumulates a phase over the period $t_0 - t_f$ through the coefficient $C_a(t)$. This phase is called the **Berry phase**.

Let us try to apply a phase transformation to remove the Berry phase:

$$\psi_a'(t) := \psi_a(t)e^{i\eta(t)}. (61.16)$$

Inserting this in equation 61.15 gives

$$\bar{\gamma}_a'(t) = \bar{\gamma}_a(t) - \eta(t_f) + \eta(t_0)$$
 (61.17)

where the bar denotes the integration between t_0 and t_f in equation 61.15. If the system is cyclic then $\psi_a(t_0) = \psi_a(t_f)$. Combining this with equation 61.16 gives us

$$\eta(t_f) - \eta(t_0) = 2k\pi \tag{61.18}$$

for some $k \in \mathbb{N}$. This implies that the Berry phase cannot be eliminated through a basis transformation and this phase is thus physically observable.

Definition 61.4.1 (Berry connection). The quantity

$$\mathbf{A}(\vec{x}) := i \langle \psi_a(\vec{x}) | \nabla_{\vec{x}} \psi_a(\vec{x}) \rangle \tag{61.19}$$

where $\nabla_{\vec{x}}$ denotes the gradient in phase space, is called the Berry connection (or Berry gauge potential). Applying Stokes' theorem to 61.15 gives us

$$\bar{\gamma}_a = \int \mathbf{\mathcal{B}} \cdot d\vec{\mathbf{S}} \tag{61.20}$$

where $\mathcal{B} = \nabla_{\vec{x}} \times \mathbf{A}(\vec{x})$ is called the **Berry curvature**. Although the Berry connection is gauge dependent, the Berry curvature is gauge invariant!

Remark 61.4.2. Using the language of differential geometry one immediately finds that the accumulated phase $\bar{\gamma}_a$ is simply the holonomy associated with the Berry connection along the considered trajectory. (See chapter 33.)

Scattering Theory

Formula 62.0.1 (Differential cross section).

$$\frac{d\sigma}{d\Omega} = \frac{N(\theta, \varphi)}{F} \tag{62.1}$$

where F is the incoming particle flux and N the detected flow rate¹.

Formula 62.0.2 (Fermi's golden rule). The transition probability from state i to state f is given by

$$\Gamma_{i \to f} = \frac{2\pi}{\hbar} |\langle f | \hat{H} | i \rangle|^2 \frac{dn}{dE_f}.$$
 (62.2)

62.1 Lippman-Schwinger equations

In this section we consider Hamiltonians of the following form: $\hat{H} = \hat{H}_0 + \hat{V}$ where \hat{H}_0 is the free Hamiltonian and \hat{V} the scattering potential. We will also assume that both the total Hamiltonian and the free Hamiltonian have the same eigenvalues.

Formula 62.1.1 (Lippman-Schwinger equation).

$$|\psi^{(\pm)}\rangle = |\varphi\rangle + \frac{1}{E - \hat{H}_0 \pm i\varepsilon} \hat{V} |\psi^{(\pm)}\rangle$$
 (62.3)

where $|\varphi\rangle$ is an eigenstate of the free Hamiltonian with the same energy as $|\psi\rangle$, i.e. $\hat{H}_0|\varphi\rangle = E|\varphi\rangle$.

Remark 62.1.2. The term $\pm i\varepsilon$ is added to the denominator because otherwise it would be singular. The term has no real physical meaning.

Formula 62.1.3 (Born series). If we rewrite the Lippman-Schwinger equation as

$$|\psi\rangle = |\varphi\rangle + \hat{G}_0 \hat{V} |\psi\rangle \tag{62.4}$$

where \hat{G}_0 is the Green's operator, then we can derive the following series expansion by iterating the above expression:

$$|\psi\rangle = |\varphi\rangle + \hat{G}_0\hat{V}|\varphi\rangle + (\hat{G}_0\hat{V})^2|\varphi\rangle + \cdots.$$
 (62.5)

Convergence issues of this series can be resolved through a Borel resummation procedure (see method 14.7.16).

Formula 62.1.4 (Born approximation). If we cut off the Born series at the first order term in \hat{V} then we obtain the Born approximation:

$$|\psi\rangle = |\varphi\rangle + \hat{G}_0 \hat{V} |\varphi\rangle. \tag{62.6}$$

 $^{^{1}}$ Because N is not defined as a flux but as a rate, the differential cross section has the dimension of area.

Quantum Information Theory

63.1 Entanglement

63.1.1 Schmidt decomposition

Construction 63.1.1 (Schmidt decomposition). Consider a bipartite state $|\psi\rangle \in \mathcal{H}_1 \otimes \mathcal{H}_2$. For any such state there exist orthonormal sets $\{|e_i\rangle, |f_j\rangle\}_{i,j < \kappa}$ such that

$$|\psi\rangle = \sum_{i=1}^{k} \lambda_i |e_i\rangle \otimes |f_i\rangle$$
 (63.1)

where the coefficients λ_i are nonnegative real numbers. Together with the expansion vectors they can be obtained from a singular value decomposition of the coefficient matrix \mathbf{C} of $|\psi\rangle$ in given bases of \mathcal{H}_1 and \mathcal{H}_2 . The number κ is called the **Schmidt rank** of $|\psi\rangle$.

Definition 63.1.2 (Entangled states). Consider a state $|\psi\rangle$ and find its Schmidt decomposition. If the Schmidt rank is 1, i.e. the state can be written as $|\psi\rangle = |v\rangle \otimes |w\rangle$, the state is said to be **separable**. Otherwise the state is said to be entangled.

63.1.2 Bell states

Definition 63.1.3 (Bell state). A (binary) Bell state (also called a **cat state** or **EPR**¹ **pair**) is defined as the following entangled state:

$$|\Phi^{+}\rangle := \frac{1}{\sqrt{2}} \Big(|00\rangle + |11\rangle \Big). \tag{63.2}$$

In fact this state can be extended to a full maximally entangled basis for the 2-qubit Hilbert space:

$$|\Phi^{-}\rangle := \frac{1}{\sqrt{2}} \Big(|00\rangle - |11\rangle \Big) \tag{63.3}$$

$$|\Psi^{+}\rangle := \frac{1}{\sqrt{2}} \Big(|01\rangle + |10\rangle \Big) \tag{63.4}$$

$$|\Psi^{-}\rangle := \frac{1}{\sqrt{2}} \Big(|01\rangle - |10\rangle \Big). \tag{63.5}$$

 $^{^1}Einstein\text{-}Podolsky\text{-}Rosen$

²Sometimes called **superdense coding**.

Method 63.1.4 (Dense coding²). Consider the Bell state $|\Phi^+\rangle$. By acting with one of the (unitary) spin-flip operators X, Y, Z one can obtain any of the other three Bell states:

$$X|\Phi^{+}\rangle = |\Phi^{-}\rangle$$

$$Y|\Phi^{+}\rangle = |\Psi^{+}\rangle$$

$$Z|\Phi^{+}\rangle = |\Psi^{-}\rangle.$$
(63.6)

If we set up a typical Alice-and-Bob-style experiment we can ask the question if this observation allows us to achieve a better-than-classical communication channel. If Alice performs a spin flip on her qubit then, although the resulting state has instantly changed (cf. spooky action at a distance), Bob still cannot uniquely determine what this state is (since the resulting state is still maximally entangled). However, if Alice sends her qubit to Bob, the latter can perform a measurement on the composite system to find out what the state is and in this way determine which operation Alice performed (1, X, Y, Z). Alice has thus effectively sent 2 classical bits of information through 1 qubit.

Definition 63.1.5 (GHZ³**state).** The GHZ state is defined as the multiparticle qudit (d, N > 2) version of the Bell state above (and is hence also referenced to as a cat state):

$$|GHZ\rangle = \frac{1}{\sqrt{d}} \sum_{i=0}^{d-1} |i\rangle^{\otimes N}.$$
 (63.7)

63.2 Density operators

Definition 63.2.1 (Reduced density operator). Let $|\Psi\rangle_{AB}$ be the state of a bipartite system. The reduced density operator $\hat{\rho}_A$ of system A is defined as follows:

$$\hat{\rho}_A := \operatorname{Tr}_B |\Psi\rangle_{ABAB} \langle\Psi|. \tag{63.8}$$

Definition 63.2.2 (Purification). Let $\hat{\rho}_A$ be the density operator of a system A. A purification of $\hat{\rho}_A$ is a pure state $|\Psi\rangle_{AB}$ of some composite system AB such that

$$\hat{\rho}_A = \text{Tr}_B |\Psi\rangle_{ABAB} \langle\Psi|. \tag{63.9}$$

Property 63.2.3. Any two purifications of the same density operator $\hat{\rho}_A$ are related by a transformation $\mathbb{1}_A \otimes \hat{V}$, where \hat{V} is a unitary operator on \mathcal{H}_B .

?? COMPLETE CHAPTER ??

 $^{^3}$ Greenberger-Horne-Zeilinger

Part XI Quantum Field Theory

Classical Field Theory

Rigorous definitions and statements about the mathematical concepts used in this chapter can be found in chapters 31, 32, 34 and 38.

64.1 Lagrangian field theory

The physical space will be assumed to be a (pseudo-)Riemannian manifold (M, g) with the fields being sections of a fibre bundle $E \to M$ (often the tangent bundle TM). In general a Lagrangian (function) is a mapping $L: J^{\infty}(E) \to \mathbb{R}$ from the infinity-jet bundle to the real numbers. This is often given by a mapping $\Gamma(J^{\infty}E) \to \Omega^n(M)$ followed by integration of the top-dimensional form over M (when expressed as $LVol_g$ the function is L is called the **Lagrangian density**). However, when the theory is sufficiently local, i.e. if the Lagrangian depends only on a finite number of derivatives, one can restrict the configuration space to a finite-dimensional jet bundle $J^k(E)$.

Associated to this manifold one can construct a cochain complex similar to the de Rham complex $\Omega^{\bullet}(M)$. This structure takes two geometric features into account. On the one hand one has the ordinary de Rham differential d on the base manifold M, while on the other hand one has a differential δ along the jet fibres, induced by the variation of fields. The total differential will be the sum of these as is standard in the context of bicomplexes. This defines the variational bicomplex (see section 38.4).

We quickly recall some key concepts from the calculus of variations. The variational derivative or Euler-Lagrange derivative 38.41 is defined as follows (partial derivatives are denoted by subscripted commas, e.g. $\partial_{\mu}\partial_{\nu}\phi \equiv \phi_{,\mu\nu}$):

$$\frac{\delta L}{\delta \phi} := \frac{\partial L}{\partial \phi} - \partial_{\mu} \left(\frac{\partial L}{\partial \phi_{,\mu}} \right) + \partial_{\mu} \partial_{\nu} \left(\frac{\partial L}{\partial \phi_{,\mu\nu}} \right) - \cdots$$
 (64.1)

By comparing this formula to the formula for the variation of the Lagrangian density one obtains the following expression (the first variational formula 38.59):

$$\delta L = \frac{\delta L}{\delta \phi^I} \delta \phi^I - d\Theta[\phi]. \tag{64.2}$$

The first term vanishes on-shell because it is proportional to the Euler-Lagrange equation associated to the field ϕ^I . The last term contains the boundary terms obtained after performing integration by parts. The (n-1,1)-form Θ is called the **presymplectic potential**.

The **presymplectic current**¹ ω is obtained by taking the variation of the presymplectic potential:

$$\omega[\phi] = \delta\Theta[\phi]. \tag{64.3}$$

On-shell this form is closed, i.e. $d\omega \approx 0$. It can be shown that if the variations $\delta \phi^I$ satisfy the linearised equations of motion, for every gauge transformation ξ there exists a (n-2,1)-form $k_{\xi}[\phi]$ such that $\omega \approx dk[\phi]$. (More details can be found in [32].)

64.1.1 Noether's theorem for fields

In the context of field theory the Lagrangian density is often denoted by \mathcal{L} instead of L. This convention will be adopted here as well.

Theorem 64.1.1 (Noether's first theorem[†]). Consider a general field transformation

$$\phi \to \phi + \alpha \delta \phi \tag{64.4}$$

where α is an infinitesimal quantity and $\delta \phi$ is a small variation. In case of a symmetry one obtains a conservation law of the following form:

$$\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial \phi_{,\mu}} \delta \phi - \mathcal{J}^{\mu} \right) = 0. \tag{64.5}$$

The factor between parentheses can be interpreted as a conserved current $j^{\mu}(x)$.

The above conservation law can also be expressed in terms of a charge (such a current and its associated charge are generally called the **Noether current** and **Noether charge**):

$$Q[\Sigma] := \int_{\Sigma} j^0 d^3 x, \tag{64.6}$$

where Σ is a spacelike hypersurface. The conservation law can then simply be restated as

$$\frac{dQ}{dt} = 0.$$

Definition 64.1.2 (Stress-energy tensor). Consider the translation of a scalar field:

$$\phi(x) \to \phi(x+a) = \phi(x) + a^{\mu} \partial_{\mu} \phi(x).$$

Because the Lagrangian is a scalar quantity, it transforms in the same way as the fields:

$$\mathcal{L} \to \mathcal{L} + a^{\mu} \partial_{\mu} \mathcal{L} = \mathcal{L} + a^{\nu} \partial_{\mu} (\mathcal{L} \delta^{\mu}_{\nu}). \tag{64.7}$$

On a D-dimensional manifold this leads to the existence of D conserved currents. These can be used to define the stress-energy tensor:

$$T^{\mu}_{\ \nu} = \frac{\partial \mathcal{L}}{\partial \phi_{,\mu}} \partial_{\nu} \phi - \mathcal{L} \delta^{\mu}_{\ \nu}. \tag{64.8}$$

64.2 Covariant phase space

First the formalism for classical mechanical systems will be introduced, i.e. no fields will be considered. Then the formalism, originally developed by *Peierls*, will be introduced in the absence of local gauge symmetries.

¹In general this form is not symplectic.

64.2.1 Zero Hamiltonian

In Chapter 49 dynamical systems with constraints were considered. Using the tools from that chapter one can turn any system evolving under a physical, but nondynamical or external, time parameter t into a system having time as a canonical parameter. In this setting the time variable is treated on the same footing as the other coordinates. Such a system is called a **generally covariant system**.

If one starts from the action

$$S[q,p] = \int (p_i \dot{q}^i - H_0) dt, \qquad (64.9)$$

one can introduce time as a generalized coordinate with momentum p_0 by modifying the action as follows:

$$S[q, p, t, p_0, u] = \int \left[p_0 t' + p_i q'^i - u(p_0 + H_0) \right] d\tau, \tag{64.10}$$

where the quotes indicate derivatives with respect to the parameter τ . It is easily checked that the resulting equations of motion are the same as for the original action.

The system now involves a single constraint $H_0 = p_0$, which is first-class. It is often called the **Hamiltonian constraint**. Aside from this constraint, the extended action contains no first-class Hamiltonian. So evolution is solely determined by a constraint and therefore is given by a gauge transformation.

Remark 64.2.1 (Nonholonomic constraints). In Chapter 49 all constraints were assumed to be holonomic, i.e. they did not explicitly depend on time. The presence of time derivatives is not compatible with the Poisson/Dirac bracket. However, when passing to a generally covariant system as above, the time variable loses its peculiar character and all constraints can be handled in the same way.

Property 64.2.2 (Vanishing Hamiltonian). If the canonical coordinates (q, p) transform as scalars under τ -reparametrizations, the Hamiltonian is weakly zero.

64.2.2 Field theory

Since the classical notion of phase space as the set of (q, p)-points in coordinate-momentum space, at a given time t, is clearly not covariant (the choice of a time slice ruins any form of relativistic invariance) one has to embrace a new approach:

Definition 64.2.3 (Covariant phase space). Let $S[\phi]$ be a local action functional. The covariant phase space \mathcal{P} associated to S is the set of solutions of the equations of motion

$$\frac{\delta S}{\delta \phi} = 0. \tag{64.11}$$

The physical observables are then defined as the smooth functions on this new phase space \mathcal{P} . These can be described more generally: Let M be the set of all field histories/configurations (the covariant phase space is a submanifold of this space). The ring of physical observables $C^{\infty}(\mathcal{P})$ is then obtained as the quotient of $C^{\infty}(M)$ by the ideal of functions vanishing on-shell.

64.3 BRST quantization

64.3.1 Homological interpretation

Here the content of Section 49.4 will be further formalized using the language of homological algebra (see Chapter 5). This will allow for extensions in the context of quantum field theory, especially when considering systems on curved backgrounds.

Recall that a constrained system is a dynamical system (M, ω, H) together with a set of constraint equations $\phi^m(q,p)=0$. These define a constraint surface Σ and the algebra of physically relevant functions can be at most the quotient $C^\infty(\Sigma):=C^\infty(M)/\mathcal{N}$ where the ideal \mathcal{N} is generated by the constraint equations. In fact the constraint surface contains redundant information since it is foliated by the gauge orbits of the canonical transformations generated by the constraints. The classical observables are therefore given by the elements of $C^\infty(\Sigma)$ that are constant along these orbits. In Section 49.4 these functions were constructed in terms of a BRST operator and its associated (co)homology.

Now, regard $C^{\infty}(M)$ as the degree-0 part of a chain complex and define the differential δ on $C^{\infty}(M)$ by

$$\delta z^i := 0 \tag{64.12}$$

for all phase space variables z^i . The requirement that δ acts as a derivation implies $\ker(\delta) = C^{\infty}(M)$. The Koszul-Tate resolution 5.4.16 of this complex with respect to the ideal \mathcal{N} is easily seen to satisfy $H_0(\delta) \cong C^{\infty}(\Sigma)$. The degree-1 generators that are added in this construction are exactly the ghost momenta \overline{P}_m . In this setting the degree is also called the **antighost number**.

?? COMPLETE ([11]) ??

Canonical Quantization

The main reference is [38].

?? CHECK THIS CHAPTER AND FIX IT ??

65.1 Klein-Gordon field

65.1.1 Lagrangian and Hamiltonian

The "simplest" Lagrangian (density) is given by

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^2 \phi^2. \tag{65.1}$$

Using the principle of least action we obtain the following Euler-Lagrange equation 48.6:

$$(\partial^{\mu}\partial_{\mu} + m^2)\phi = 0. \tag{65.2}$$

This can be rewritten using the **d'Alembertian** $\Box = \partial_u \partial^{\mu}$:

$$(\Box + m^2)\phi = 0. \tag{65.3}$$

This equation is called the **Klein-Gordon equation**. In the limit $m \to 0$ this equation reduces to the well-known wave equation.

From the Lagrangian 65.1 we can also derive a Hamiltonian function using relations 48.1.3 and 48.3.2:

$$H = \int d^3x \frac{1}{2} \left[\pi^2(x) + (\nabla \phi(x))^2 + m^2 \phi^2(x) \right].$$
 (65.4)

65.1.2 Raising and lowering operators

Fourier transforming the scalar field $\phi(\vec{x},t)$ in momentum space and inserting it into the Klein-Gordon equation gives

$$(\partial_t^2 + p^2 + m^2)\phi(\vec{p}, t) = 0. (65.5)$$

This is the equation for a simple harmonic oscillator with frequency $\omega = \sqrt{p^2 + m^2}$.

Analogous to ordinary quantum mechanics we define the raising and lowering operators $a_{\vec{p}}^{\dagger}$ and $a_{\vec{p}}$ such that

$$\phi(\vec{x}) = \iiint \frac{d^3p}{(2\pi)^{3/2}} \frac{1}{\sqrt{2\omega_{\vec{p}}}} \left(a_{\vec{p}} e^{i\vec{p}\cdot\vec{x}} + a_{\vec{p}}^{\dagger} e^{-i\vec{p}\cdot\vec{x}} \right)$$
(65.6)

$$\pi(\vec{\boldsymbol{x}}) = \iiint \frac{d^3 p}{(2\pi)^{3/2}} (-i) \sqrt{\frac{\omega_{\vec{\boldsymbol{p}}}}{2}} \left(a_{\vec{\boldsymbol{p}}} e^{i\vec{\boldsymbol{p}} \cdot \vec{\boldsymbol{x}}} - a_{\vec{\boldsymbol{p}}}^{\dagger} e^{-i\vec{\boldsymbol{p}} \cdot \vec{\boldsymbol{x}}} \right). \tag{65.7}$$

An equivalent definition is obtained by performing the transformation $\vec{p} \to -\vec{p}$ in the second term of $\phi(\vec{x})$ and $\pi(\vec{x})$:

$$\phi(\vec{x}) = \iiint \frac{d^3p}{(2\pi)^{3/2}} \frac{1}{\sqrt{2\omega_{\vec{p}}}} \left(a_{\vec{p}} + a_{-\vec{p}}^{\dagger} \right) e^{i\vec{p}\cdot\vec{x}}$$

$$(65.8)$$

$$\pi(\vec{\boldsymbol{x}}) = \iiint \frac{d^3p}{(2\pi)^{3/2}} (-i) \sqrt{\frac{\omega_{\vec{\boldsymbol{p}}}}{2}} \left(a_{\vec{\boldsymbol{p}}} - a_{-\vec{\boldsymbol{p}}}^{\dagger} \right) e^{i\vec{\boldsymbol{p}}\cdot\vec{\boldsymbol{x}}}. \tag{65.9}$$

When we impose the commutation relation

$$[a_{\vec{p}}, a_{\vec{q}}^{\dagger}] := \delta(\vec{p} - \vec{q}) \tag{65.10}$$

we obtain the following commutation relation for the scalar field and its conjugate momentum:

$$[\phi(\vec{x}), \pi(\vec{y})] = i\delta(\vec{x} - \vec{y}). \tag{65.11}$$

Now, the Hamiltonian can be calculated explicitly:

$$H = \int \frac{d^3p}{(2\pi)^3} \omega_{\vec{p}} \left(a_{\vec{p}}^{\dagger} a_{\vec{p}} + \frac{1}{2} [a_{\vec{p}}, a_{\vec{p}}^{\dagger}] \right). \tag{65.12}$$

It is however clear from 65.10 that the second term in this integral diverges. There are two reasons for this divergence. First, space is infinite, i.e. the d^3x integral in 65.4 diverges. This problem can be resolved by restricting the system to a (finite) part of space or by considering the energy density instead of the energy itself. Secondly, by including very large values for p in the integral we enter a parameter range where our theory is likely to break down. So we should introduce a "high p" cut-off.

A more practical solution however is to note that only energy differences are physical and so we can drop the second term altogether as it is merely a "constant".

A corollary of equation 65.12 together with the canonical commutation relations is

$$[H, a_{\vec{p}}^{\dagger}] = \omega_p a_{\vec{p}}^{\dagger} \tag{65.13}$$

$$[H, a_{\vec{p}}] = -\omega_p a_{\vec{p}}. \tag{65.14}$$

As was the case for the quantum harmonic oscillator, the creation and annihilation operators deserve their names and we can write:

$$|\vec{k}_1, \dots, \vec{k}_n\rangle = a^{\dagger}(\vec{k}_1) \cdots a^{\dagger}(\vec{k}_n)|0\rangle$$
 (65.15)

Furthermore, this equation together with the canonical commutation relations imply that the Klein-Gordon fields are bosonic fields.

65.1.3 Scalar propagator

Formula 65.1.1 (Pauli-Jordan function).

$$i[\phi(x), \phi(y)] = \underbrace{\int \frac{d^3p}{(2\pi)^3} \frac{1}{2\omega_p} \left(e^{-i\mathbf{p}\cdot(\mathbf{x}-\mathbf{y})} - e^{i\mathbf{p}\cdot(\mathbf{x}-\mathbf{y})} \right)}_{i\Delta(x-y)}$$
(65.16)

In the case that $x^0 = y^0$ (ETCR) or $(x - y)^2 < 0$ (spacelike curves) the Pauli-Jordan function is identically 0.1

65.1.4 Normalization constant

Under a general Lorentz boost Λ the delta function $\delta^{(3)}(\vec{p} - \vec{q})$ transforms² as $\delta^{(3)}(\Lambda \vec{p} - \Lambda \vec{q}) \frac{\Lambda E}{E}$. Although this is clearly not Lorentz invariant, we see that the quantity $E_p \delta^{(3)}(\vec{p} - \vec{q})$ is invariant.

The correct normalisation for the momentum representation thus becomes

$$\sqrt{2E_p}a_{\mathbf{p}}^{\dagger}|0\rangle = |\mathbf{p}\rangle \tag{65.17}$$

and hence

$$\langle \mathbf{p} | \mathbf{q} \rangle = 2E_p(2\pi)^3 \delta^{(3)}(\vec{p} - \vec{q})$$
(65.18)

where the constants are a matter of convention (we have added them to cancel the constants in expression 65.6).

65.1.5 Invariant integration measure

The factor $2E_p$ does not only occur in the normalisation conditions. To find a Lorentz invariant integration measure in spacetime we consider the following integral:

$$\int \frac{d^3p}{2E_p} = \int d^4p \, \delta(p^2 - m^2) \bigg|_{p^0 > 0}.$$
 (65.19)

By using this measure we ensure that the integral of any Lorentz invariant function f(p) is again Lorentz invariant.

Example 65.1.2 (One-particle identity operator).

$$\hat{1} = \int \frac{d^3 p}{2E_p} |\mathbf{p}\rangle\langle\mathbf{p}| \tag{65.20}$$

65.2 Contractions and Wick's theorem

65.2.1 Bosonic fields

In the following definitions (field) operators will be decomposed as

$$\phi = \phi^{(+)} + \phi^{(-)}$$

where the + symbol denotes the "positive frequency" part, i.e. the part consisting of annihilation operators³. The "negative frequency" part is defined analogously.

 $^{^{1}\}mathrm{See}$ also the axiom of microcausality 71.1

²This follows from property 17.17.

³The classic Fourier integral is defined using an exponential $e^{-i\mathbf{k}\cdot\mathbf{x}}$. By looking at equation 65.6 and remembering that we are working in the (1,3) Minkowski signature, we see that the annihilators always occur together with a positive frequency exponential.

Definition 65.2.1 (Contraction for neutral bosonic fields).

$$\overline{\phi(x)}\phi(y) := \begin{cases}
[\phi(x)^{(+)}, \phi(y)^{(-)}] & x^0 > y^0 \\
[\phi(y)^{(+)}, \phi(x)^{(-)}] & y^0 > x^0
\end{cases}$$
(65.21)

Formula 65.2.2 (Feynman propagator).

$$\overline{\phi(x)}\phi(y) := i \underbrace{\lim_{\varepsilon \to 0^+} \int \frac{d^4k}{(2\pi)^4} \frac{e^{-i\mathbf{k}\cdot(\mathbf{x}-\mathbf{y})}}{k^2 - m^2 + i\varepsilon}}_{\Delta_E(\mathbf{x}-\mathbf{y})}$$
(65.22)

Definition 65.2.3 (Contraction for charged bosonic fields).

$$\overline{\phi(x)}\overline{\phi}(y) := \begin{cases}
[\phi(x)^{(+)}, \overline{\phi}(y)^{(-)}] & x^0 > y^0 \\
[\phi(y)^{(+)}, \overline{\phi}(x)^{(-)}] & y^0 > x^0
\end{cases}$$
(65.23)

Definition 65.2.4 (Normal ordering). The normal ordering⁴ \mathcal{N} of a sequence of field operators is defined as the permuted sequence in which all annihilation operators appear on the right of the creation operators, e.g.:

$$\mathcal{N}\Big(\phi(x)\phi^{\dagger}(y)\phi(z)\Big) = \phi^{\dagger}(y)\phi(x)\phi(z).$$

In fact the normal ordering operator is not a map between CCR-algebras since this would lead to a contradiction⁵:

$$b_i b_j^{\dagger} = b_j^{\dagger} b_i + \delta_{ij} \implies \mathcal{N}(b_i b_j^{\dagger}) = \mathcal{N}(b_j^{\dagger} b_i + \delta_{ij}) = \mathcal{N}(b_j^{\dagger} b_i) + \delta_{ij} \implies \delta_{ij} \equiv 0.$$

The solution is given by the fact that inside the normal ordering all operators commute and hence this ordering can be axiomatized as an algebra morphism $\mathcal{N}: F(A) \to A$ where A is the CCR-algebra of the field theory and F(A) is the free algebra on A.

Property 65.2.5. From this definition it immediately follows that the vacuum expectation value of a normal ordered sequence is 0.

Formula 65.2.6 (Wick's theorem for bosonic fields).

$$\mathcal{T}\Big(\phi(x_1)\phi(x_2)\cdots\phi(x_n)\Big) = \mathcal{N}\Big(\phi(x_1)\cdots\phi(x_n) + \text{all possible contractions}\Big)$$
 (65.24)

Remark 65.2.7. In the case of charged bosons, only contractions of the form $\phi(x)\overline{\phi}(y)$ will remain because $[a,b^+]=0$.

65.2.2 Fermionic fields

Definition 65.2.8 (Contraction).

$$\overline{\psi(x)}\overline{\psi}(y) := \begin{cases} \{\psi(x)^{(+)}, \overline{\psi}(y)^{(-)}\}_{+} & x^{0} > y^{0} \\ -\{\psi(y)^{(+)}, \overline{\psi}(x)^{(-)}\}_{+} & y^{0} > x^{0} \end{cases}$$
(65.25)

Remark 65.2.9. Only contractions of the form $\psi(x)\psi(y)$ will remain because $\{a,b^{\dagger}\}_{+}=0$.

⁴Sometimes denoted by colons: :.

⁵This is a common paradox.

Formula 65.2.10 (Feynman propagator).

$$\overline{\psi(x)}\overline{\psi}(y) := i \underbrace{\lim_{\varepsilon \to 0^+} \int \frac{d^4p}{(2\pi)^4} \frac{\not p + m}{p^2 - m^2 + i\varepsilon} e^{-ip\cdot(x-y)}}_{S_F(x-y)}$$
(65.26)

Remark 65.2.11 (Normal ordering). One should take into account the Fermi-Dirac statistics when permuting fermionic field operators under a normal ordering. A general factor sgn(P), where P is the permutation of the operators, will arise in every term, e.g.:

$$\mathcal{N}\left(\psi(x)\overline{\psi}(y)\psi(z)\right) = -\overline{\psi}(y)\psi(x)\psi(z)$$

A similar remark should be made for the time-ordering operator \mathcal{T} . As was the case for bosonic theories one should pay attention to the nature of the normal ordering. It is not a morphism between CAR-algebras, but instead it is an algebra morphism between a free (odd) algebra and a CAR-algebra.

65.3 Feynman rules

65.3.1 Scalar theory

By expanding the correlation functions in perturbation theory and applying Wick's theorem we can rewrite every term using the following dictionary for Feynman diagrams (for these rules we assume that every coupling constant in the Lagrangian is divided by the necessary permutation factors, e.g. in ϕ^4 -theory we assume the constant to be of the form $\lambda/4!$):

• Propagator $D_F(x-y)$:

• Interaction vertex⁶ $-i\lambda \int d^4z$:

The main idea of these rules is to draw all possible diagrams consistent with the given interaction Lagrangian and translate them into analytic expressions. However, to obtain the correct normalization we should take the following remark into account:

Remark 65.3.1. Symmetry factors of diagrams should be accounted for in analytic expressions. As an example consider the following vacuum bubble:

This diagram has **symmetry factor** 2 (one can interchange the two legs) and hence this diagram gives the analytic expression $-\frac{i\lambda}{2}\int d^4z D_F(z-z)$.

⁶Four legs were drawn as an example, but this can be generalized to any order of interaction term.

Gauge Theory

Using the tools of differential geometry, as presented in chapter 31 and onwards, we can introduce the general formulation of gauge theories and in particular Yang-Mills theories. Valuable references for these subjects are [3,4,54,93].

66.1 Gauge invariance

Consider a general Lie group¹ G, acting on a Hilbert bundle² \mathcal{H} of physical states over a base manifold M. A general gauge transformation has the form

$$\psi'(x) = U(x)\psi(x) \tag{66.1}$$

where $\psi, \psi': M \to \mathcal{H}$ are sections of the physical Hilbert bundle and $U: M \to G$ encodes the local behaviour of the gauge transformation (U is assumed to be a unitary representation with respect to the Hilbert structure on \mathcal{H}). As such a gauge transformation constitutes a vertical automorphism of the Hilbert bundle.

Axiom 66.1 (Local gauge principle). The Lagrangian functional $\mathcal{L}[\psi]$ is invariant under the action of the gauge group G:

$$\mathcal{L}[U\psi] = \mathcal{L}[\psi]. \tag{66.2}$$

Generally this gauge invariance can be achieved in the following way. Denote the Lie algebra corresponding to G by \mathfrak{g} . Because the gauge transformation is local, the information on how it varies from point to point should be able to propagate through space. This is done by introducing a new field $B_{\mu}(x)$, called the **gauge field**. The most elegant formulation uses the concept of covariant derivatives:

Definition 66.1.1 (Covariant derivative). When gauging a certain symmetry group one replaces the ordinary partial derivatives by the following covariant derivative (this is called **minimal coupling**):

$$\mathcal{D}_{\mu} = \partial_{\mu} + igB_{\mu}(x) \tag{66.3}$$

where $B_{\mu}: M \to \mathfrak{g}$ is a new field with values in the Lie algebra of the gauge group. Here we should also note that the explicit action of the covariant derivative depends on the chosen

¹This group is often called the **gauge group** in the physics literature.

²As explained in chapter 64 this bundle is in general obtained as an associated bundle of the frame bundle (or a reduction thereof), possibly tensored with another bundle when we want extra symmetries.

representation of \mathfrak{g} on \mathcal{H} . Furthermore, one should pay attention to the fact that we used the physics convention where one multiplies³ the gauge field B by a factor ig.

So to achieve gauge invariance one should replace all derivatives by the covariant derivative. However, for this to be a well-defined operation, one should check that the covariant derivative itself satisfies the local gauge principle, i.e. $\mathcal{D}'\psi' = U\mathcal{D}\psi$ (from here on we will suppress the coordinate dependence of all fields):

$$U^{-1}\left(\frac{\partial}{\partial x^{\mu}} + igB'_{\mu}\right)\psi' = U^{-1}\left(\frac{\partial}{\partial x^{\mu}} + igB'_{\mu}\right)U\psi$$
$$= U^{-1}\frac{\partial U}{\partial x^{\mu}}\psi + \frac{\partial\psi}{\partial x^{\mu}} + igU^{-1}B'_{\mu}U\psi. \tag{66.4}$$

This expression can only be equal to $\mathcal{D}\psi$ if

$$igB_{\mu} = U^{-1}\frac{\partial U}{\partial x^{\mu}} + igU^{-1}B'_{\mu}U \tag{66.5}$$

which can be rewritten as

$$B'_{\mu} = UB_{\mu}U^{-1} - \frac{1}{ig}(\partial_{\mu}U)U^{-1}$$
(66.6)

or in coordinate-independent form as

$$\mathbf{B}' = U\mathbf{B}U^{-1} - \frac{1}{iq}dUU^{-1}. (66.7)$$

Up to conventions this is exactly the content of equations 33.36 and 33.38 appearing in the study of connections on principal bundles. This should not come as a surprise since the physical fields are sections of associated vector bundles and hence the principal bundle structure lurks in the background. We conclude that adding interactions is mathematically equivalent to coupling the physical manifold to a principal bundle.

Example 66.1.2 (QED). For quantum electrodynamics, which has $U(1) \cong S^1$ as its gauge group, we use the parametrization $U(x) = e^{ie\chi(x)}$ where $\chi : \mathbb{R}^n \to \mathbb{R}$. By minimal coupling we obtain

$$\partial_{\mu} \longrightarrow \mathcal{D}_{\mu} = \partial_{\mu} + ieA_{\mu}$$
 (66.8)

$$A_{\mu} \longrightarrow A'_{\mu} = A_{\mu} - \partial_{\mu}\chi \tag{66.9}$$

where A_{μ} is the classic electromagnetic potential. These are indeed the formulas that we introduced in chapter 53.

66.2 Spontaneous symmetry breaking

Theorem 66.2.1 (Goldstone). Consider a QFT with Lie group G. Denote the generators of the corresponding Lie algebra by \mathbf{X}_a . Generators that do not destroy the vacuum⁴, i.e. $\mathbf{X}_a v \neq 0$, correspond to massless scalar particles.

The massless bosons from this theorem are called **Goldstone bosons**.

 $^{^3{\}rm The}$ imaginary unit turns anti-Hermitian fields into Hermitian fields.

⁴This corresponds to a transformation that leaves the vacuum invariant.

66.2.1 Higgs mechanism

In Property 33.1.19 the equivariant maps corresponding to global sections of a principal bundle where already called **Higgs fields**. In this section a clarification is given.

The Higgs vacuum of a G-gauge theory with a invariant potential V is given by the solutions of the following equations:

$$V(\phi) = 0, \tag{66.10}$$

$$D\phi = 0, (66.11)$$

where D is the covariant derivative induced by the G-action. If the space of solutions \mathcal{M}_0 to the first equation admits a transitive G-action (this holds for reasonable potentials), i.e. it is a homogeneous space, one can write

$$\mathcal{M}_0 \cong G/H,\tag{66.12}$$

where H is the stabilizer of any solution, by Property 3.3.12.

Since V is invariant, a well-defined choice of vacuum configurations corresponds to a an equivariant map $P \to G/H$ and, by Property 33.5.7, to a reduction of the structure group from G to H, i.e. symmetry breaking to the subgroup H. For this reason all such equivariant morphism or, equivalently, global sections are called Higgs fields. Furthermore, the second condition, $D\phi = 0$, implies by Property 33.5.10 that also the connection can be reduced to the Lie subalgebra \mathfrak{h} .

?? COMPLETE ??

Quantum chromodynamics

67.1 Quantum Chromodynamics

Property 67.1.1 (OZI rule¹). Decay processes for which the corresponding Feynman diagrams become disconnected (initial states and final states are disconnected) when removing internal gluon lines are suppressed with respect to other processes.

¹Okubo, Zweig and Iizuka

Conformal Field Theory

References for this chapter are [28] and the lecture notes by Schellekens. For an introduction to Riemannian and conformal geometry, see chapter 34.

Property 68.0.1 (Stress-energy tensor). Let us consider a theory that is invariant under conformal transformations. The generator of general coordinate transformations is the stressenergy tensor T (the associated current is $\mathcal{J}_{\mu} = T_{\mu\nu}\varepsilon^{\nu}$). Requiring conformal invariance then leads to the stress-energy tensor being traceless:

$$T^{\mu}_{\ \mu} = 0.$$
 (68.1)

68.1 In dimension d=2

In dimension 2 (in Euclidean signature) something special happens. By inserting d=2 in the conformal Killing equation we obtain the Cauchy-Riemann equations. The scale factor can thus be written as

$$\Omega(x) = \left| \frac{\partial f}{\partial z} \right|^2 \tag{68.2}$$

for some analytic function f(z). Because of this we will from here one always work in complex coordinates. Switching to complex coordinates also has important consequences for the metric and stress-energy tensor:

$$g_{zz} = g_{\overline{z}\overline{z}} = 0$$
 $g_{z\overline{z}} = \frac{1}{2}$ (68.3)
 $\partial_z T_{\overline{z}\overline{z}} = \partial_{\overline{z}} T_{zz} = 0$ $T_{z\overline{z}} = 0$.

$$\partial_z T_{\overline{z}\overline{z}} = \partial_{\overline{z}} T_{zz} = 0 \qquad T_{z\overline{z}} = 0.$$
 (68.4)

The stress-energy tensor thus contains a meromorphic² component $T_{zz} \equiv T(z)$ and an antimeromorphic component $T_{\overline{z}\overline{z}} \equiv \overline{T}(\overline{z})$.

Definition 68.1.1 (Witt algebra). Infinitesimally this gives us an infinite-dimensional algebra. As generators³ we choose

$$l_n(z) := -z^{n+1}\partial_z \tag{68.5}$$

$$\bar{l}_n(\bar{z}) := -\bar{z}^{n+1} \partial_{\bar{z}}. \tag{68.6}$$

¹and because we in general look at conformal compactifications (see below)

²The literature often just calls this holomorphic. ³These generate the transformation $z\mapsto z-z^{n+1}$ and $\overline{z}\mapsto \overline{z}-\overline{z}^{n+1}$ respectively.

These differential operators generate isomorphic Lie algebras with the following commutation relation:

$$[l_m, l_n] = (m-n)l_{m+n}. (68.7)$$

This Lie algebra is called the **Witt algebra**.

Remark 68.1.2. Often one finds in the literature that the conformal group of a 2D CFT is infinite-dimensional. However, this statement is not entirely true. It is true that the Witt algebra is infinite-dimensional, but one cannot globally exponentiate all generators l_m . First of all it should be remarked that the space of all holomorphic functions does not even have a group structure because the composition of holomorphic functions does not have to be holomorphic. The correct conformal group for 2D Euclidean CFT's is the Möbius group PSL(2, \mathbb{C}). This group is obtained as the Lie group generated by l_0 and $l_{\pm 1}$ (the only generators that can be exponentiated globally).

What is true is that the conformal group of 2D Minkowski space is infinite-dimensional. It can be shown that $Conf(\mathbb{R}^{1,1})$ is isomorphic to $Diff(S^1)_+ \times Diff(S^1)_+$ where the (orientation-preserving) diffeomorphism group $Diff(S^1)_+$ is indeed an infinite-dimensional Lie group (see the intermezzo further below).

At last we should comment that although the conformal group of $\mathbb{R}^{2,0}$ is finite-dimensional, the infinite-dimensionality of the Witt algebra (and of its extensions) is sufficient for all physical purposes. The algebraic constraints turn this theory into an integrable theory and allow us to solve it exactly.

Definition 68.1.3 (Primary field). A quasi-primary field is defined as any field that transforms tensorially under global conformal transformations:

$$\phi'(z',\overline{z}') = \left(\frac{\partial f}{\partial z}\right)^h \left(\frac{\partial f}{\partial \overline{z}}\right)^{\overline{h}} \phi(f(z),\overline{f}(\overline{z})). \tag{68.8}$$

Fields that satisfy this relation for all conformal transformations are called primary fields. The tuple (h, \overline{h}) is called the **conformal weight** of the field.

68.1.1 Intermezzo: Minkowski space 4

As mentioned in the remark above, the conformal group of 2D Minkowski space is infinite-dimensional. The theory of infinite-dimensional manifolds is however a bit more intricate than the theory of finite-dimensional manifolds. A little introduction is therefore in order. ?? MOVE THIS TO CHAPTER 'INFINITE' ??

Definition 68.1.4 (Fréchet manifold). A Fréchet manifold is a Hausdorff space M together with an atlas of coordinate charts (U, φ) such that $\varphi : U \to F_U$ are homeomorphisms onto a Fréchet space and such that the transition functions are smooth maps (of Fréchet spaces).

Using the above definitions we can start to analyze the group $Diff(S^1)_+$. First of all we look at the space of all smooth maps $S^1 \to S^1$. This space has the structure of a Fréchet manifold modelled on the Fréchet space $\mathfrak{X}(S^1)$ of vector fields on the circle⁴:

$$\mathfrak{X}(S^1) = \left\{ \xi(\theta) \frac{\partial}{\partial \theta} : \theta \in C^{\infty}(S^1) \right\}. \tag{68.9}$$

⁴By this definition we see that $\mathfrak{X}(S^1)$ is isomorphic (as a Lie algebra) to the mapping space $C^{\infty}(S^1,\mathbb{R})$. Henceforth we identify vector fields v with their corresponding function ξ .

Let V_0 be the set of vector fields which have norm $||v|| \leq \pi$ and let U_0 be the set of smooth mappings $f \in C^{\infty}(S^1, S^1)$ such that $f(\theta) \neq -\theta$ for all $\theta \in S^1$. Then there exists a diffeomorphism $\psi : V_0 \to U_0$ which assigns to any vector field v the function $\psi_v : S^1 \to S^1$ such that the arc between θ and $\psi_v(\theta)$ has length $||v(\theta)||$. If we choose an open subset $U \subset U_0$ of diffeomorphisms then we obtain a chart (U, ψ^{-1}) around the identity map. Charts around any diffeomorphism $f: S^1 \to S^1$ are obtained by left multiplication of U.

The Lie algebra of $\text{Diff}(S^1)_+$ is accordingly given by $\mathfrak{X}(S^1)$, but the induced Lie bracket is the commutator of vector fields with the opposite sign:

$$[\cdot,\cdot]_{Lie} = -[\cdot,\cdot]_{\mathfrak{X}(S^1)}.$$

Now it is interesting to note that the Witt algebra is actually a subalgebra of $\mathfrak{X}(S^1)$. Consider the maps $\xi_n(\theta) := -ie^{in\theta}$ (the minus sign is a convention). The associated vector fields then satisfy

$$\left[\xi_k(\theta)\frac{\partial}{\partial \theta}, \xi_l(\theta)\frac{\partial}{\partial \theta}\right] = -i(l-k)\xi_{k+l}(\theta)\frac{\partial}{\partial \theta}.$$
 (68.10)

These are exactly the relations for the Witt algebra.

68.2 Quantization

Remark. From here one we will always work in 2 dimensions.

68.2.1 Radial quantization

The charge of a conserved current \mathcal{J}^{μ} is generally given by the following formula⁵:

$$Q = \int_{\Sigma} \mathcal{J}^0(x, t) \tag{68.11}$$

where Σ is a spacelike hypersurface. Often we will compactify the spatial dimension (this can be seen as some kind of regularization) and Wick rotate the time dimension. By a conformal transformation one can then go back to the plane (mapping one end of the cylinder to the origin and the other side to a circle at $+\infty$). After these transformations we obtain the following form for an operator on the plane:

$$Q_{\varepsilon} = \frac{1}{2\pi i} \oint dz \varepsilon(z) T(z) + \frac{1}{2\pi i} \oint d\overline{z} \varepsilon(\overline{z}) \overline{T}(\overline{z}). \tag{68.12}$$

As usual we expect an infinitesimal transformation of a field ϕ to be given by the commutator $[Q_{\varepsilon}, \phi(w, \overline{w})]$ or in integral form by⁶

$$\frac{1}{2\pi i} \oint dz \varepsilon(z) [T(z)\phi(w, \overline{w}) - \phi(w, \overline{w})T(z)].$$

However, because all the objects in this formula are operators we should take into account the operator ordering. On the plane this is given by the so-called **radial ordering**:

$$\mathcal{R}(A(z,\overline{z})B(w,\overline{w})) = \begin{cases} A(z,\overline{z})B(w,\overline{w}) & |z| > |w| \\ B(w,\overline{w})A(z,\overline{z}) & |w| > |z|. \end{cases}$$
(68.13)

⁵See Noether's theorem 64.1.1.

⁶We implicitly assumed a holomorphic split such that we can ignore (antiholomorphic) $\overline{T}(\overline{z})$ contributions.

After a deformation of the integration contour we obtain the following general formula:

$$[Q_{\varepsilon}, \phi(w, \overline{w})] = \frac{1}{2\pi i} \oint dz \varepsilon(z) \mathcal{R}(T(z)\phi(w, \overline{w}))$$
 (68.14)

where the contour is now a circle around the point w. For primary fields with conformal weight h one can also write an infinitesimal transformation as

$$\delta_{\varepsilon}\phi(z,\overline{z}) = h(\partial_{z}\varepsilon(z))\phi(z,\overline{z}) + \partial_{z}\phi(z,\overline{z}).$$

Comparing these two expressions leads us to the following form of the operator product:

$$\mathcal{R}(T(z)\phi(w,\overline{w})) = \frac{h}{(z-w)^2}\phi(w,\overline{w}) + \frac{1}{z-w}\partial_w\phi(w,\overline{w}) + \text{higher order in } (z-w).$$
 (68.15)

An expression of this form is called an **operator product expansion** (OPE).

68.2.2 Virasoro algebra

When going from classical systems to quantum systems we have to replace symmetry actions by (unitary) projective representations. As in the case of ordinary groups, the projective representations of Lie groups are related to central extensions. As an example of the Lie group-Lie algebra correspondence it can be shown that central extensions of Lie algebras (see section 30.2.6) are in correspondence with central extensions of Lie groups.

If we now want a quantum theory equipped with an action of the conformal group, then we need to construct a central extension of the Witt algebra. By applying the construction of section 30.2.6 we obtain the **Virasoro algebra** as a (universal) central extension of the Witt algebra by 7 $\mathbb C$ associated to the cocycle

$$\Theta: (L_m, L_n) \mapsto \frac{c}{12} m(m^2 - 1) \delta_{m+n,0}.$$
 (68.16)

To obtain the Virasoro algebra from a more physical point of view we look at the stress-energy tensor. If we choose the current $\mathcal{J}^n(z) := z^{n+1}T(z)$, we expect to obtain the transformation $z \longrightarrow z - z^{n+1}$. In analogy with the generators of the Witt algebra (definition 68.1.1) we call this generator L_n :

$$L_n := \frac{1}{2\pi i} \oint dz z^{n+1} T(z). \tag{68.17}$$

This relation can be inverted using the residue theorem to obtain the following expression for (the holomorphic component of) the stress-energy tensor:

$$T(z) = \sum_{n \in \mathbb{Z}} z^{-n-2} L_n. \tag{68.18}$$

Using the above expression and the product operator expansion of T(z)T(w) one obtains exactly the commutation relations of the Virasoro algebra:

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}m(m^2 - 1)\delta_{m+n,0}.$$
 (68.19)

The occurrence of the central charge c gives a conformal anomaly on quantization (see the definition of the vacuum further below). However, the central charge does not affect the $\mathfrak{sl}(2,\mathbb{C})$ subalgebra spanned by L_{-1}, L_0 and L_1 . This implies that concepts such as the conformal weight are still useful

⁷The reason why we extend by $\mathbb C$ instead of $\mathbb R$ is that we are working with complexified Lie algebras.

68.2.3 Representation theory

Definition 68.2.1 (Highest weight state). A state with minimal eigenvalue for L_0 . Equivalently, a state that is annihilated by all generators L_n for $n \ge 1$:

$$L_n|h\rangle = 0. ag{68.20}$$

Definition 68.2.2 (Vacuum). Consider the Virasoro generators $\{L_n\}_{n\in\mathbb{Z}}$. The vacuum $|0\rangle$ is defined as the maximally symmetric state. In terms of generators this means that

$$L_n|0\rangle = 0$$

for as many $n \in \mathbb{Z}$ as possible. However, due to the Virasoro commutation relations (and in particular the central charge) this is not possible for all $n \in \mathbb{Z}$. Instead one can only require that this expression vanishes for all $n \geq -1$.

Definition 68.2.3 (Descendants). By acting with the generators L_n , where $n \leq -1$, on a highest weight state $|h\rangle$ one obtains a whole family of states. These are called the descendants of $|h\rangle$ and together they span the Verma module 30.4.58 associated to $|h\rangle$.

Chapter 69

Supersymmetry

This chapter is not meant to be an in-depth study of supersymmetry and its implications for (particle) physics. It will only introduce some concepts and constructions that are widely used in the study of supersymmetric theories. It also contains some sections on certain interesting mathematical properties that arise while studying supersymmetry.

The main reference for supersymmetric quantum mechanics is the seminal paper [64] by Witten. For an introduction to algebraic superstructures, see section 27.1.

69.1 Supersymmetric quantum mechanics

In this section we consider a general graded Hilbert space \mathcal{H} . We equip this space with an algebra of bounded operator $A \subset \mathcal{B}(\mathcal{H})$ together with a set of N odd self-adjoint operators $\{D^i\}_{i \leq N}$. More precisely we consider a spectral triple $(\mathcal{H}, A, \{D^i\}_{i \leq N})$.

This data defines an SQM system if the Hamiltonian H satisfies the following condition:

$$\{D^i, D^j\}_+ = 2\delta^{ij}H.$$
 (69.1)

For N=2 we can rephrase the whole theory in terms of a nilpotent operator $d\sim D^1+iD^2$ and its adjoint:

$$\{d, d^{\dagger}\}_{+} \sim H.$$
 (69.2)

Example 69.1.1 (Particle on a manifold). The archetypal example of such N=2 systems is the situation where d is the exterior derivative on a smooth manifold M, A is the algebra of smooth functions $C^{\infty}(M)$ and \mathcal{H} is the Hilbert space of square-integrable forms with respect to the Hodge metric

$$\langle \alpha | \beta \rangle = \int_{M} \alpha \wedge *\beta. \tag{69.3}$$

The above superalgebra is that of a D = 1, N = 2 theory, i.e. there are two generators acting on a one-dimensional manifold. However, this system can be deformed to represent a D = 2, N = 1 theory.

An important feature of these theories is that they can be deformed. Let $e^{W(t)}$ be a one-parameter subgroup of invertible operator. The W-deformed operators are defined as follows:

$$d^W := e^{-W(t)} \circ d \circ e^{W(t)} \tag{69.4}$$

$$(d^W)^{\dagger} := e^{W(t)^{\dagger}} \circ d^{\dagger} \circ e^{-W(t)^{\dagger}}. \tag{69.5}$$

It is not hard to see that these deformed operators preserve the superalgebra. Although many authors assume W to be a smooth function, this is not necessary. In fact many interesting examples involve more exotic choices. For example, [65] considers a loop space ΩM (i.e. he considers a theory of closed strings) where the deformation operator at a point $\gamma \in \Omega M$ is given by

$$W(\gamma)\omega := \int_{\gamma} dt \ B_{\mu\nu}(\gamma(t))dx^{\mu}(t) \wedge dx^{\nu}(t) \wedge \omega(t), \tag{69.6}$$

i.e. the operator takes the exterior product with a given 2-form field (e.g. the Kalb-Ramond field) and integrates over the loop γ (at least after pairing with a set of vector fields). When restricting to the class of skew-Hermitian operators, the deformations can be shown to be pure gauge.

69.1.1 Loop space

An interesting setting for supersymmetric quantum mechanics is the situation mentioned at the end of the previous section, namely where the base manifold is a loop space ΩM . In this case the tangent space $T_p\Omega M$ is the space of vector fields along the path p. As such they carry two indices, one with respect to a (local) frame field on M and one coming from the S^1 -parametrization of loops. A holonomic basis is given by functional derivatives:

$$\partial_{\mu,\sigma} := \frac{\delta}{\delta X^{\mu}(\sigma)} \tag{69.7}$$

where $X^{\mu}(\sigma)$ is the μ^{th} coordinate of the loop at the parameter $\sigma \in [0, 2\pi[$.

69.1.2 Morse theory

?? INSERT WITTEN ??

69.2 Extensions of the Standard Model

Theorem 69.2.1 (Coleman-Mandula). Consider a quantum field theory with the following constraints:

- 1. There exists a mass gap.
- 2. For every mass M there exist only finitely many particle species with mass $\leq M$.
- 3. The two-point scattering amplitudes are nonvanishing for almost every energy.
- 4. The (two-point) scattering amplitudes are analytic in the particle momenta.

If the symmetry group (of the S-matrix) contains a subgroup isomorphic to the Poincaré group¹, then it can be written as the direct product of the Poincaré group and an internal gauge group.

Remark. In other words, it is impossible to combine the Poincaré group in a nontrivial way with the internal symmetry group.

Now the question arises if one can do better, i.e. is there a nontrivial way to extend this total symmetry group. A first possibility was given by conformal field theories in chapter 68. CFTs do not admit an S-matrix and hence the above theorem is clearly not applicable. However, a second and more intricate possibility is given by supersymmetry. Here one does not work with

¹To be precise: its universal cover.

an ordinary symmetry Lie algebra 2 but with a Lie superalgebra. By allowing superspaces, or equivalently fermionic symmetry generators, one can generalize the Coleman-Mandula theorem. The resulting generalization was proven by Sohnius, Lopuszański and Haag.

²See the original paper [98] for why exactly the algebra plays an essential role.

Chapter 70

Entanglement in QFT

This chapter should be seen as a generalization of the content of chapter 63 to the continuum setting (in particular the characterization and computation of entanglement). The main reference is [15,74].

70.1 Lattice theories

In this section we remind the reader of the most important definitions and constructions in ordinary quantum information theory by applying it to a lattice theory. Taking the lattice spacing to zero will then let us extend the definitions to continuum field theories (up to some technicalities that we will explain when necessary). For simplicity we will assume that the local Hilbert space is finite-dimensional.

Consider a bipartite subdivision $A \cup A^c$ of the lattice, given by a codimension-1 hypersurface ∂A (called the **entangling surface**). This induces a binary factorization of the total Hilbert space (we assume that all degrees of freedom are confined to individual vertices) and hence we can compute the reduced density matrix for either (A or its complement A^c). The eigenvalues (which solely depend on the entangling surface ∂A) allow us to calculate the von Neumann entropy:¹

$$S(\rho_A) := -\operatorname{tr}(\rho_A \ln \rho_A) = -\sum_i \rho_i \ln \rho_i. \tag{70.1}$$

In the same way we can also introduce the Rényi q-entropy:

$$S_q(\rho_A) := \frac{1}{1-q} \ln \left(\sum_i \rho_i^q \right). \tag{70.2}$$

Property 70.1.1 (Limiting case). First of all one can analytically continue the definition of the q-entropy to arbitrary positive real numbers. The limit $q \to 1$ coincides with the von Neumann entropy.

¹Certain assumption ought to be made as to keep the entropy finite whenever the state-space is infinite-dimensional since it can be shown that the set of states with infinite von Neumann entropy is trace norm-dense (see [73]).

Chapter 71

Axiomatic QFT 🌲

For the sections on the Haag-Kastler framework and its extensions we refer to the work of *Brunetti*, *Fredenhagen et al.* A reference for the remaining sections on algebraic QFT is [21]. For the section on TQFTs we refer to the original paper of *Atiyah* [72].

71.1 Algebraic QFT

71.1.1 Haag-Kastler axioms

Axiom 71.1 (Local net of observables). To every causally closed set¹ O one associates a C^* -algebra $\mathcal{A}(O)$. We require this assignment to satisfy the following conditions:

- 1. **Isotony**: If $O_1 \subset O_2$, then $\mathcal{A}(O_1) \hookrightarrow \mathcal{A}(O_2)$.
- 2. (Causal) locality²: If O_1 and O_2 are spacelike separated, then $[\mathcal{A}(O_1), \mathcal{A}(O_2)] = 0$ (as a graded commutator) within a larger algebra $\mathcal{A}(O)$ such that $O_1, O_2 \subset O$.

Remark. The isotony condition implies that local nets of observables are modelled by copresheaves $\mathbf{Mink} \to \mathbf{C}^* \mathbf{Alg}$ that map (mono)morphisms to monomorphisms.

Axiom 71.2 (Poincaré covariance). For all causally closed sets O and Poincaré transformations Λ there exists an isomorphism $\alpha_{\Lambda}^{O}: \mathcal{A}(O) \to \mathcal{A}(\Lambda O)$ such that the following conditions are satisfied:

- 1. If $O_1 \subset O_2$, then $\alpha_{\Lambda} \circ \iota_{O_1,O_2} = \iota_{\Lambda O_1,\Lambda O_2} \circ \alpha_{\Lambda}$.
- 2. The isomorphisms satisfy a composition rule: $\alpha^{\Lambda O}_{\Lambda'}\circ\alpha^O_{\Lambda}=\alpha^O_{\Lambda'\Lambda}$.

Axiom 71.3 (Spectrum). For all spacetime regions O one can construct a faithful C^* -algebra representation ρ_O of $\mathcal{A}(O)$ on a fixed Hilbert space (see the GNS construction 24.1.17). The different representations should be compatible, i.e. if $O_1 \subset O_2$ then the restriction of ρ_{O_2} to $\mathcal{A}(O_1)$ should equal ρ_{O_1} . Furthermore, all spacetime translations are to be implemented unitarily:

$$U(a)\rho_O(c)U(a)^{-1} = \rho_{O+a}(\alpha_a^O(c))$$
(71.1)

for all $c \in \mathcal{A}(O)$, where U is a unitary representation of the translation subgroup. In addition we require that the generators of the translation subgroup have a spectrum that is contained in the future light cone.

¹See definition 55.1.5.

²Also called microcausality or Einstein causality.

The following axiom is not part of the standard Haag-Kastler framework but can be added to introduce a notion of time evolution:

Axiom 71.4 (Time slice). Consider two spacetime regions O_1, O_2 . If O_1 contains a Cauchy surface of O_2 then the morphism $\mathcal{A}(O_1 \hookrightarrow O_2)$ of C^* -algebras is an isomorphism.

Axiom 71.5 (Haag duality). Let \overline{O} denote the spacelike complement of O and let A' denote the commutant of A. Haag duality states that³

$$\mathcal{A}(\overline{O})' = \mathcal{A}(O) \tag{71.2}$$

for all causally closed sets O.

Remark 71.1.1. Haag duality is known to hold for all free theories and even for some interacting theories. However, it is also known to fail in the case of symmetry breaking [103].

To generalize the above axiom system to globally hyperbolic space times, we must enter the realm of category theory. We will follow the notation⁴ of [49] (?? AND OTHERS ??): Let **Loc** be the category of globally hyperbolic space times with orientation- and causal structure-preserving isometries. Let **Obs** be the category of relevant algebras⁵ together with suitable algebra morphisms. The assignment of algebras is then given by a functor $\mathfrak{U}: \mathbf{Loc} \to \mathbf{Obs}$. The Haag-Kastler framework is recovered when we restrict **Loc** to the subcategory of globally hyperbolic subsets of some manifold (with inclusions as morphisms).

71.1.2 Weyl systems

Definition 71.1.2 (Weyl system). Let (L, ω) be a symplectic vector space and let K be a complex vector space. Consider a map W from L to the space of unitary operators on K. The pair (K, W) is a Weyl system over (L, ω) if it satisfies

$$W(z)W(z') = e^{\frac{i}{2}\omega(z,z')}W(z+z')$$
(71.3)

for all $z, z' \in L$.

Remark 71.1.3. This is a generalization of the canonical commutation relations in their Weyl form. (See definition 57.1.3.)

Definition 71.1.4 (Heisenberg system). The generators (which exist by Stone's theorem 23.4.25) $\phi(z)$ of the maps $t \mapsto W(tz)$ are said to form a Heisenberg system. These operators satisfy the following properties:

- $\lambda \phi(z) = \phi(\lambda z)$ for all $\lambda > 0$,
- $[\phi(z), \phi(z')] = -i\omega(z, z')$, and
- $\phi(z+z')$ is the closure 23.4.17 of $\phi(z) + \phi(z')$.

71.2 Topological QFT

For convenience we remind the reader of some of the notations that we use. **FinVect** will denote the category of finite-dimensional vector spaces over \mathbb{C} . **Bord**^d_{d-1} will denote the category of d-dimensional cobordisms (see definition 29.4.6).

³Here it should be understood that $\mathcal{A}(\overline{O})$ is the algebra generated by all algebras $\mathcal{A}(Q)$ where Q ranges over the causally closed sets in \overline{O} .

⁴This may cause confusion with other notations used in this text. **Loc** here has nothing to do with the category of locales from chapter 7.

⁵Commutative algebras for classical physics and C^* -algebras for quantum theories.

71.2.1 Atiyah-Segal axioms

Axiom 71.6 (Atiyah-Segal). A d-dimensional topological quantum field theory (TQFT) is a symmetric monoidal functor $F : \mathbf{Bord}_{d-1}^d \to \mathbf{FinVect}$. This means (among other things) that F is a map satisfying the following axioms:

- 1. Normalization: $F(\emptyset) = \mathbb{C}$.
- 2. Disjoint union: $F(M \sqcup M') = F(M) \otimes F(M')$.
- 3. Composition: If $N = M \cup M'$, where ∂M and $\partial M'$ have opposite orientations, then

$$F(N) = F(M) \circ F(M').$$

4. **Invariance**: If $f: M \to M'$ is a diffeomorphism rel boundary then $F \circ f = F$.

In the above conditions M, M' are d-dimensional cobordisms between (d-1)-dimensional (closed) smooth manifolds.

Example 71.2.1 (1D). In 1D a TQFT functor gives rise to the following correspondence:

$$\begin{array}{lll} \text{Point with orientation} + & \text{Vector space } V \\ \text{Point with reversed orientation} - & \text{Dual space } V^* \\ \text{Line between points} & \text{Linear map } f:V \to V \\ \text{Cap between } \emptyset \text{ and points} +, - & \text{Cup between points} -, + \text{ and } \emptyset \\ \end{array}$$

Essentially this gives us the structure of a (finite-dimensional) vector space and its dual.

Example 71.2.2 (2D). In 2D one can obtain a similar result by drawing all possible configurations. However, the existence and combination of "pair of pants"-diagrams gives a richer structure. For 2D TQFTs the corresponding object is a (finite-dimensional) commutative and cocommutative Frobenius algebra (see definition 20.1.25).

In dimensions 3 and higher the definition above is intractable. To allow the construction to be generalized to higher dimensions one considers the following (extended) definition:

Definition 71.2.3 (Extended TQFT). A d-dimensional extended TQFT is a symmetric monoidal functor $F : \mathbf{Bord}_1^d \to \mathbf{FinVect}$ satisfying the Atiyah-Segal axioms where the invariance axiom is required only at the highest level of k-morphisms.

71.2.2 Open-closed TQFT

For a complete definition we refer to the original paper [88].

In the case of ordinary TQFTs as defined in the previous section one considers cobordisms between closed manifolds, hence the relevant objects in this category are manifolds with boundary. A generalization is obtained by relaxing the constraint on the cobordisms and allowing the notion of manifolds with corners (see section 29.4). For simplicity we will only consider the case of 2D TQFTs (as in the original definition).

?? COMPLETE ??

Part XII

Statistical Mechanics & Condensed Matter Physics

Chapter 72

Thermodynamics

72.1 General definitions

Definition 72.1.1 (System). The part of space, and the objects contained in it, that we are interested in.

Definition 72.1.2 (Environment). The complement of the system in space. More specifically this denotes the part of space aside of the system that has a potential influence on the system.

Definition 72.1.3 (Thermodynamic coordinates). Macroscopical (i.e. it does not depend on any microscopic description) variables that describe the system. These are also called **state** variables.

Definition 72.1.4 (Intensive coordinate). Coordinate that does not depend on the total amount of material (or equivalently on the system size). The opposite notion is called an **extensive coordinate**.

Definition 72.1.5 (Thermodynamic equilibrium). A system in thermodynamic equilibrium is simultaneously in thermal, mechanical and chemical equilibrium. The system is fully described by a set of constant coordinates.

Property 72.1.6. During thermodynamic equilibrium all intensive coordinates are uniform throughout the system.

Definition 72.1.7 (Isolated system). An isolated system cannot interact with its environment (e.g. due to the presence of impenetrable walls).

Definition 72.1.8 (Diathermic wall). A wall that allows heat transfer (and only heat transfer). This should be distinguished from an **adiabatic wall**, i.e. a wall that does not allow any transfer of heat.

Definition 72.1.9 (Heat bath). A heat bath or **thermal reservoir** is a thermodynamic system (often part of the environment) for which the temperature remains constant under exchanging of heat (due to a virtually infinite heat capacity).

Definition 72.1.10 (Open system). A system that is allowed to interact with its environment.

Definition 72.1.11 (Quasistatic process). A sequence of equilibrium states separated by infinitesimal changes.

Definition 72.1.12 (Path). The sequence of equilibrium states in a thermodynamic process is called its path.

72.2 Postulates

Axiom 72.1 (Zeroth law). If two objects are in thermal equilibrium with a third object, they are also in thermal equilibrium with each other.

Axiom 72.2 (First law). The change in internal energy is given by

$$\Delta U = Q + W,\tag{72.1}$$

or infinitesimally by

$$dU = \delta Q + \delta W \tag{72.2}$$

where W denotes the work done on the system and Q denotes the heat that was extracted from the environment.

Remark. The δ in the heat and work differentials implies that these are "inexact" differentials. This means that they are not the differential of functions of the thermodynamic coordinates alone. See section 32.4 for more information on differential forms.

Axiom 72.3 (Kelvin-Planck formulation of the second law). No machine can absorb an amount of heat and completely transform it into work.

Axiom 72.4 (Clausius formulation of the second law). Heat cannot be passed from a cooler object to a warmer object without performing work.

Formula 72.2.1 (Clausius' inequality). In differential form the inequality reads as

$$\frac{\delta Q}{T} \ge 0. \tag{72.3}$$

?? COMPLETE THIS STATEMENT (WHICH INEQUALITY?) ??

Axiom 72.5 (Third law). No process can reach absolute zero through a finite sequence of operations.

72.3 Gases

72.3.1 Ideal gases

Theorem 72.3.1 (Ideal gas law).

$$PV = nRT (72.4)$$

where R is the ideal gas constant $R \approx 8.314 \frac{J}{K.mol}$.

Chapter 73

Statistical Mechanics

73.1 Axioms

Axiom 73.1 (Ergodic principle). All microstates corresponding to the same macroscopic state are equally probable.

Axiom 73.2 (Boltzmann formula). The central axiom of statistical mechanics gives the following formula for the entropy:

$$S := k \ln \Omega(E, V, N, \alpha) \tag{73.1}$$

where Ω denotes the number of microstates corresponding to the system with energy E, volume V, number of particles N and any other state variable (these are denoted by α). In general S will be the Shannon entropy 42.8.2.

73.2 Temperature

Formula 73.2.1. The temperature of a system in contact with a heat bath is defined as follows:

$$T := \left(\frac{\partial E}{\partial S}\right)_{V}.\tag{73.2}$$

73.3 Canonical ensemble

Formula 73.3.1 (Partition function). The partition function for discrete systems is defined as

$$Z(T) := \sum_{i} g_i e^{-\beta \varepsilon_i}.$$
 (73.3)

The analogue for continuous systems is

$$Z(T) := \int \Omega(E, V, N) e^{-\beta E} dE. \tag{73.4}$$

Formula 73.3.2. Consider a system of N indistinguishable non-interacting particles. Let ε_i be the energy associated with the i^{th} energy level and let g_i be its degeneracy. The probability p_i of finding a particle in the i^{th} energy level is given by

$$p_i = \frac{g_i e^{-\beta \varepsilon_i}}{Z}. (73.5)$$

Definition 73.3.3 (Helmholtz free energy). The Helmholtz free energy is in general defined as follows:

$$F := -k_B T \ln Z. \tag{73.6}$$

For the canonical ensemble it can be shown that this is equal to Legendre transformation of the energy: F = E - TS.

In fact one can also obtain the Helmholtz free energy as a different Legendre transform using the ideas of information theory (see chapter 44). There we saw that the convex potentials related to exponential families were related to the free energy. If we compare definition 44.24 to the above one, we see that

$$\psi = -\beta F$$
.

This quantity is sometimes called the (Helmholtz) free entropy or Massieu potential to distinguish it from the (Helmholtz) free energy. We also saw that the associated dual coordinates are the expectation values, in this case the internal energy (up to a sign), and the dual potential was equal to the (negative) Shannon entropy. Putting this together gives us:

$$\eta = \beta \frac{\partial \psi}{\partial \beta} - \psi$$

$$\iff -S = \beta(-U) - (-\beta F)$$

$$\iff -TS_B = -U + F$$

where we used that the Boltzmann entropy S_B is equal to the Shannon entropy S up to the Boltzmann constant k_B .

73.4 Grand canonical ensemble

Formula 73.4.1 (Grand canonical partition function). The partition function of the i^{th} energy level is defined as

$$\mathcal{Z}_i := \sum_{n_k} e^{\beta n_k (\mu - \varepsilon_i)}. \tag{73.7}$$

The grand canonical partition function is then given by

$$\mathcal{Z} := \prod_{i} \mathcal{Z}_{i} = \sum_{n_{k}, \varepsilon_{i}} e^{\beta n_{k}(\mu - \varepsilon_{i})}.$$
 (73.8)

Remark 73.4.2. In the case of fermions, i.e. $n_i \in \{0,1\}$, this formula reduces to $\mathcal{Z} = e^{\beta \mu} Z$.

Definition 73.4.3 (Fugacity).

$$z := e^{\mu N} \tag{73.9}$$

Formula 73.4.4 (Quantum). For quantum-mechanical systems one can rewrite the partition function as follows:

$$\mathcal{Z} = \operatorname{tr} \exp\left(-\frac{\hat{H} - \mu \hat{N}}{T}\right). \tag{73.10}$$

This reduces to the above expressions when working in the single-particle eigenbasis (this is only possible for free theories).

73.5 Energy

Theorem 73.5.1 (Virial theorem).

$$\langle T \rangle = -\frac{1}{2} \sum_{k} \langle \vec{r}_k \cdot \vec{F}_k \rangle \tag{73.11}$$

Corollary 73.5.2. For potentials of the form $V = ar^{-n}$ this becomes

$$2\langle T \rangle = -n\langle V \rangle. \tag{73.12}$$

Theorem 73.5.3 (Equipartition theorem). Let x be a generalized coordinate.

$$\left\langle x^k \frac{\partial H}{\partial x^l} \right\rangle = k_b T \delta_{kl} \tag{73.13}$$

Corollary 73.5.4. For quadratic Hamiltonians this can be rewritten using Euler's theorem for homogeneous functions 14.5.10:

$$\langle T \rangle = \frac{1}{2} k_b T. \tag{73.14}$$

73.6 Black-body radiation

Formula 73.6.1 (Planck's law).

$$B_{\nu}(\nu,T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{\frac{h\nu}{kt}} - 1}$$
 (73.15)

Formula 73.6.2 (Wien's displacement law).

$$\lambda_{max}T = b \tag{73.16}$$

where the constant $b = 2.8977729(17) \times 10^{-3}$ Km is called **Wien's displacement constant**.

Chapter 74

Material Physics

74.1 Crystals

Theorem 74.1.1 (Steno's law). The angles between crystal faces of the same type are constant and do not depend on the total shape of the crystal.

Definition 74.1.2 (Zone). The collection of faces parallel to a given axis. The axis itself is called the **zone axis**.

74.1.1 Analytic representation

Definition 74.1.3 (Miller indices). Let a, b, c be the lengths of the (not necessarily orthogonal) basis vectors of the crystal lattice. The lattice plane intersecting the axes at $\left(\frac{a}{h}, \frac{b}{k}, \frac{c}{k}\right)$ is denoted by the Miller indices $(h \ k \ l)$.

Notation 74.1.4. Negative numbers are often written as \overline{a} instead of -a.

Formula 74.1.5 (Axes). Let a, b, c denote the lengths of the basis vectors. The axis formed by the intersection of the planes $(h_1 \ k_1 \ l_1)$ and $(h_2 \ k_2 \ l_2)$ is denoted by $[u \ v \ w]$. Its direction is determined by the point (au, bv, cw) where

$$u = \begin{vmatrix} k_1 & l_1 \\ k_2 & l_2 \end{vmatrix} \qquad v = \begin{vmatrix} l_1 & h_1 \\ l_2 & h_2 \end{vmatrix} \qquad w = \begin{vmatrix} h_1 & k_1 \\ h_2 & k_2 \end{vmatrix}.$$
 (74.1)

Theorem 74.1.6 (Hauy's law of rational indices). The Miller indices of every natural face of a crystal will always have rational proportions.

74.2 Symmetries

Definition 74.2.1 (Equivalent planes/axes). When applying certain symmetries to a plane or axis, it often happens that we obtain a set of equivalent planes and axes. These equivalence classes are denoted by $\{h \ k \ l\}$ and $\langle h \ k \ l \rangle$ respectively.

Property 74.2.2 (Rotational symmetry). Only 1, 2, 3, 4 and 6-fold rotational symmetries can occur.

74.3 Crystal lattice

Formula 74.3.1. For an orthogonal crystal lattice, the distance between planes of the family $(h \ k \ l)$ is given by

$$d_{hkl} = \frac{1}{\sqrt{\left(\frac{h}{a}\right)^2 + \left(\frac{k}{b}\right)^2 + \left(\frac{l}{c}\right)^2}}.$$
 (74.2)

74.3.1 Brayais lattice

Definition 74.3.2 (Bravais lattice). A crystal lattice generated by a certain point group symmetry. There are 14 different Bravais lattices in 3 dimensions. These are the only possible ways to place (infinitely) many points in 3D space by applying symmetry operations consistent with the given point group.

Definition 74.3.3 (Wigner-Seitz cell). The part of space consisting of all points closer to a given lattice point than to any other.

Theorem 74.3.4 (Neumann's principle). The symmetry elements of the physical properties of a crystal should at least contain those of the point group of the crystal.

74.3.2 Reciprocal lattice

Formula 74.3.5 (Reciprocal basis vectors). The reciprocal lattice corresponding to a given Bravais lattice with primitive basis $\{\vec{a}, \vec{b}, \vec{c}\}$ is defined by the following reciprocal basis vectors:

$$\vec{a}^* := 2\pi \frac{\vec{b} \times \vec{c}}{\vec{a} \cdot (\vec{b} \times \vec{c})}.$$
 (74.3)

The vectors $\vec{\boldsymbol{b}}^*$ and $\vec{\boldsymbol{c}}^*$ are obtained by cyclic permutation of (a,b,c). These vectors satisfy the relations

$$\vec{a} \cdot \vec{a}^* = 2\pi$$

$$\vec{b} \cdot \vec{b}^* = 2\pi$$

$$\vec{c} \cdot \vec{c}^* = 2\pi$$
(74.4)

Notation 74.3.6 (Reciprocal lattice vector). The reciprocal lattice vector \vec{r}_{hkl}^* is defined as follows:

$$\vec{r}_{hkl}^* := h\vec{a}^* + k\vec{b}^* + l\vec{c}^*. \tag{74.5}$$

Property 74.3.7. The reciprocal lattice vector \vec{r}_{hkl}^* has the following properties:

- \vec{r}_{hkl}^* is perpendicular to the family of planes $(h \ k \ l)$ of the direct lattice, and
- $\bullet ||\vec{r}_{hkl}^*|| = \frac{2\pi n}{d_{hkl}}.$

74.4 Diffraction

74.4.1 Constructive interference

Formula 74.4.1 (Laue conditions). Suppose that an incident beam makes angles α_0 , β_0 and γ_0 with the lattice axes. A diffracted beam, making angles α , β and γ with the axes, will be

observed if the following conditions are satisfied:

$$a(\cos \alpha - \cos \alpha_0) = h\lambda$$

$$b(\cos \beta - \cos \beta_0) = k\lambda$$

$$c(\cos \gamma - \cos \gamma_0) = l\lambda$$
(74.6)

If these conditions have been met, we observe a diffracted beam of order hkl.

Remark 74.4.2. Further conditions can be imposed on the angles, such as the Pythagorean formula for orthogonal axes. This has the consequence that the only two possible ways to obtain a diffraction pattern are:

- a fixed crystal and a polychromatic beam, or
- a rotating crystal and a monochromatic beam.

Formula 74.4.3 (Vectorial Laue conditions). Let \vec{k}_0, \vec{k} denote the wave vectors of the incident and diffracted beams respectively. The Laue conditions can be reformulated in the following way:

$$\vec{k} - \vec{k}_0 = \vec{r}_{hkl}^*. \tag{74.7}$$

Formula 74.4.4 (Bragg's law). Another equivalent formulation of the Laue conditions is given by the following formula:

$$2d_{hkl}\sin\theta = n\lambda\tag{74.8}$$

where

- λ is the wavelength of the incoming beam,
- θ is the **Bragg angle**, and
- d_{hkl} is the distance between neighbouring planes.

Remark 74.4.5. The angle between the incident and diffracted beams is 2θ .

Construction 74.4.6 (Ewald sphere). A simple construction to determine if Bragg diffraction will occur is the Ewald sphere: Put the origin of the reciprocal lattice at the tip of the incident wave vector \vec{k}_i . Construct a sphere with radius $\frac{2\pi}{\lambda}$ centred on the start of \vec{k}_i . All points on the sphere that coincide with a reciprocal lattice point satisfy the vectorial Laue condition 74.7. Therefore Bragg diffraction will occur in the direction of all the intersections of the Ewald sphere and the reciprocal lattice.

74.4.2 Intensity of diffracted beams

Definition 74.4.7 (Systematic extinctions). Every particle in the motive emits its own waves. These waves will interfere and some will cancel out. This leads to the absence of certain diffraction spots. These absences are called systematic extinctions.

Definition 74.4.8 (Atomic scattering factor). The waves produced by the individual electrons of an atom, which can have a different phase, can be combined into a resulting wave. The amplitude of this wave is called the atomic scattering factor.

Definition 74.4.9 (Structure factor). The waves coming from the individual atoms in the motive can also be combined into a resulting wave (again taking into account the different phases). The amplitude of this wave is called the structure factor and it is given by

$$F(hkl) = \sum_{j} f_{j} \exp\left[2\pi i(hx_{j} + ky_{j} + lz_{j})\right]$$
(74.9)

where f_j is the atomic scattering factor of the j^{th} atom in the motive.

Example 74.4.10. A useful example of systematic extinctions is the structure factor of an FCC or BCC lattice for the following specific situations: If h + k + l is odd, F(hkl) = 0 for a BCC lattice. If h, k and l are not all even or all odd, F(hkl) = 0 for an FCC lattice.

Definition 74.4.11 (Laue indices). Higher order diffractions can be rewritten as a first order diffraction in the following way:

$$2d_{nhnknl}\sin\theta = \lambda$$
 with $d_{nhnknl} = \frac{d_{hkl}}{n}$. (74.10)

Following from the interpretation of the Bragg law as diffraction being a reflection in the lattice plane $(h \ k \ l)$, we can introduce the (fictitious) plane with indices $(nh \ nk \ nl)$. These indices are called Laue indices.

Remark. In contrast to Miller indices which cannot possess common factors, the Laue indices obviously can.

74.5 Alloys

Property 74.5.1 (Hume-Rothery conditions). An element can be dissolved in a metal (forming a solid solution) if the following conditions are met:

- The difference between the atomic radii is < 15%.
- The crystal structures are the same.
- The elements have a similar electronegativity.
- The valence is the same.

74.6 Lattice defects

Definition 74.6.1 (Interstitial). An atom placed at a position which is not a lattice point.

Definition 74.6.2 (Vacancy). A lattice point where an atom is missing. This is also called a **Schottky defect**.

Formula 74.6.3 (Concentration of Schottky defects \dagger). Let N, n denote the number of lattice points and vacancies respectively. The following relation gives the temperature dependence of Schottky defects:

$$\frac{n}{n+N} = e^{-E_v/kT} \tag{74.11}$$

where T denotes the temperature and E_v the energy needed to create a vacancy.

Remark. A similar relation holds for interstitials.

Definition 74.6.4 (Frenkel pair). An atom displaced from a lattice point to an interstitial location (thereby creating a vacancy-interstitial pair).

Formula 74.6.5 (Concentration of Frenkel pairs). Let n_i denote the number of atoms displaced from the bulk of the lattice to any of N_i possible interstitial positions and thereby creating n_i vacancies. The following relation holds:

$$\frac{n_i}{\sqrt{NN_i}} = e^{-E_{fr}/2kT} \tag{74.12}$$

where E_{fr} denotes the energy needed to create a Frenkel pair.

Remark 74.6.6. In compounds, the number of vacancies can be much higher than in monoatomic lattices.

Remark 74.6.7. The existence of these defects creates the possibility of diffusion.

74.7 Electrical properties

74.7.1 Charge carriers

Formula 74.7.1 (Conductivity). Definition 52.1.3 can be modified to account for both positive and negative charge carriers:

$$\sigma := n_n q_n \mu_n + n_p q_p \mu_p. \tag{74.13}$$

Remark. The difference between the concentration of positive and negative charge carriers can differ by orders of magnitude (up to 20) across different materials.

74.7.2 Band structure

Definition 74.7.2 (Valence band). The energy band corresponding to the outermost (partially) filled atomic orbital.

Definition 74.7.3 (Conduction band). The first unfilled energy band.

Definition 74.7.4 (Band gap). The energy difference between the valence and conduction bands (if they do not overlap). It is the energy zone where no electron states can exist.¹

Definition 74.7.5 (Fermi level). The energy level having a 50% chance of being occupied at thermodynamic equilibrium.

Formula 74.7.6 (Fermi function). The following distribution gives the probability of a state with energy E_i being occupied by an electron:

$$f(E_i) = \frac{1}{e^{(E_i - E_f)/kT} + 1}$$
(74.14)

where E_f is the Fermi level as defined above.

Formula 74.7.7. Let n denote the charge carrier density as before. We find the following temperature dependence:

$$n \propto e^{-E_g/2kt} \tag{74.15}$$

where E_g is the band gap. This formula can be directly derived from the Fermi function by noting that for intrinsic semiconductors the Fermi level sits in the middle of the band gap, i.e. $E_c - E_f = E_q/2$, and that for most semiconductors $E_q \gg kT$.

Definition 74.7.8 (Doping). Intentionally introducing impurities to modify the (electrical) properties.

Definition 74.7.9 (Acceptor). A group-III element added to create an excess of holes in the valence band. The resulting semiconductor is called a **p-type semiconductor**.

Definition 74.7.10 (Donor). A group-IV element added to create an excess of electrons in the valence band. The resulting semiconductor is called an **n-type semiconductor**.

¹For a basic derivation see [46].

74.7.3 Ferroelectricity

Some materials can exhibit certain phase transitions between a para-electric and ferroelectric state.

Para-electric materials have the property that the polarisation \vec{P} and the electric field \vec{E} are proportional. Ferroelectric materials have the property that they exhibit permanent polarization, even in the absence of an electric field. This permanent behaviour is the result of symmetry breaking: The ions in the lattice have been shifted out of their "central" positions, which induces a permanent dipole moment.

The temperature at which this phase transition occurs is called the **ferroelectric Curie temperature**. Above this temperature the material will behave as a para-electric material.

Remark 74.7.11. Ferroelectricity can only occur in crystals with unit cells that do not have a center of symmetry. This would rule out the possibility of having the asymmetry needed for the dipole moment.

Definition 74.7.12 (Saturation polarization). The maximum polarization obtained by a ferroelectric material. It it obtained when the *domain formation* reaches a maximum.

Definition 74.7.13 (Remanent polarization). The residual polarization of the material when the external electric field is turned off.

Definition 74.7.14 (Coercive field). The electric field needed to cancel out the *remanent* polarization.

Definition 74.7.15 (Piezoelectricity). Materials that obtain a polarization when exposed to mechanical stress are called piezoelectric materials.

Remark 74.7.16. All ferroelectric materials are piezoelectric, but the converse is not true. Moreover, all crystals without a center of symmetry are piezoelectric. This property is however only a necessary (and not a sufficient) condition for ferroelectricity, as mentioned above.

Example 74.7.17 (Transducer). A device that converts electrical energy to mechanical energy (and vice versa).

74.8 Magnetic properties

Definition 74.8.1 (Diamagnetism). In diamagnetic materials, the magnetization is oriented oppositely to the applied field, so B < H. The susceptibility is small, negative and independent of the temperature.

Remark 74.8.2. All materials exhibit diamagnetic behaviour.

Definition 74.8.3 (Paramagnetism). The susceptibility is small, positive and inversely proportional to the temperature.

Definition 74.8.4 (Ferromagnetism). Spontaneous magnetization can occur. The susceptibility is large and dependent on the applied field and temperature. Above a certain temperature, the **ferromagnetic Curie temperature**, the materials will behave as if they were only paramagnetic.

74.8.1 Paramagnetism

Formula 74.8.5 (Curie's law). If the interactions between the particles can be neglected, we obtain the following law:

$$\chi = \frac{C}{T}. (74.16)$$

Materials that satisfy this law are called **ideal paramagnetics**.

Formula 74.8.6 (Curie-Weiss law). If the interactions between particles cannot be neglected, we obtain the a slight correction to Curie's law:

$$\chi = \frac{C}{T - \theta} \tag{74.17}$$

where $\theta = CN_W$ with N_W the **Weiss-constant**. This deviation of Curie's law is due to the intermolecular interactions that induce an internal magnetic field $H_m = N_W M$.

Formula 74.8.7 (Brillouin function).

$$B_J(y) := \frac{2J+1}{2J} \coth\left(\frac{2J+1}{2J}y\right) - \frac{1}{2J} \coth\left(\frac{y}{2J}\right)$$
 (74.18)

where $y := \frac{g\mu_B JB}{kT}$.

Remark 74.8.8. Because $coth(y \to \infty) = 1$ we have:

if
$$T \to 0$$
 then $M = Ng\mu_B J B_J(y \to \infty) = Ng\mu_B J.$ (74.19)

This value is called the absolute saturation magnetization.

74.8.2 Ferromagnetism

Ferromagnetics are materials that have strong internal interactions which lead to large scale (with respect to the lattice constant) parallel ordering of the atomic magnetic (dipole) moments. This leads to the spontaneous magnetization of the material and consequently to a nonzero total dipole moment.

Remark. In reality ferromagnetic materials do not always spontaneously possess a magnetic moment in the absence of an external field. When stimulated by a small external field, they will however display a magnetic moment, much larger than paramagnetic materials would.

Definition 74.8.9 (Domain). The previous remark is explained by the existence of Weiss domains. These are spontaneously magnetized regions in a magnetic material. The total dipole moment is the sum of the moments of the individual domains. If not all the domains have a parallel orientation then the total dipole moment can be 0, a small external field is however sufficient to change the domain orientation and produce a large total magnetization.

Definition 74.8.10 (Bloch walls). A wall between two magnetic domains.

Definition 74.8.11 (Ferromagnetic Curie temperature). Above this temperature the material loses its ferromagnetic properties and it becomes a paramagnetic material following the Curie-Weiss law.

Remark 74.8.12. For ferromagnetic (and ferrimagnetic) materials it is impossible to define a magnetic susceptibility as the magnetization is nonzero even in the absence of a magnetic field.² Above the critical temperature (Curie/Néel) it is however possible to define a susceptibility as the materials become paramagnetic in this region.

²This can be seen from equation 52.12: $M = \chi H$. The susceptibility should be infinite.

74.8.3 Antiferromagnetism

When the domains in a magnetic material have an antiparallel order (whenever this is energetically more favourable) the total dipole moment will be small. If the temperature rises, the thermal agitation however will disturb the orientation of the domains and the magnetic susceptibility will rise.

Definition 74.8.13 (Néel temperature). At the Néel temperature, the susceptibility will reach a maximum. Above this temperature $(T > T_N)$ the material will become paramagnetic, satisfying the following formula:

$$\chi = \frac{C}{T + \theta}.\tag{74.20}$$

This resembles a generalization of the Curie-Weiss law with a negative and therefore a virtual critical temperature.

74.8.4 Ferrimagnetism

Materials that are not completely ferromagnetic nor antiferromagnetic, due to an unbalance between the sublattices, will have a nonzero dipole moment even in the absence of an external field. The magnitude of this moment will however be smaller than that of a ferromagnetic material. These materials are called ferrimagnetic materials.

Formula 74.8.14 (Néel hyperbola). Above the Néel temperature it is possible to define a susceptibility given by

$$\frac{1}{\chi} = \frac{T}{C} - \frac{1}{\chi_0} - \frac{\sigma}{T - \theta'}.\tag{74.21}$$

Chapter 75

Tensor Networks

75.1 Matrix Product States

75.1.1 Finite-dimensional lattices

Definition 75.1.1 (Matrix product state). Let \mathcal{H}_n be the local Hilbert spaces of dimension d_n where $n \in \{1, \ldots, N\}$. A state $|\psi\rangle$ in the total Hilbert space $\bigotimes_i \mathcal{H}_i$ is a matrix product state (with periodic boundary conditions) if there exist matrices $A^{i_n}(n) \in \mathcal{L}(\mathbb{C}^{D_n}, \mathbb{C}^{D_{n-1}})$ with $i_n \leq d_n$ such that

$$|\psi\rangle = \sum_{\{i_k\}} \operatorname{tr}\left(\prod_{n=1}^{N} A^{i_n}(n)\right) |i_1 \dots i_N\rangle.$$
 (75.1)

For each lattice site n the set of matrices $\{A_{\alpha\beta}^{i_n}(n)\}$ can be regarded as the content of one rank-3 tensor. The periodic boundary condition requires that $D_0 = D_N$ (otherwise the trace would be ill-defined). Different boundary conditions can be implemented by inserting an additional factor X at the end of the trace.

Notation 75.1.2. In the continuation of this chapter we will abbreviate matrix product states as **MPS**.

Remark 75.1.3 (Physical and virtual spaces). For each *physical* index i_n one can regard the matrix $A^{i_n}(n)$ as a linear map between *virtual* (or ancilla) spaces \mathbb{C}^{D_n} .

Formula 75.1.4 (MPS projector). Consider an MPS given by tensors $\{A(n)\}_{n\leq N}$. The associated MPS projector is defined as

$$\mathcal{P}(A) := \sum_{i,\alpha,\beta} A^{i}_{\alpha\beta}(n)|i\rangle\langle\alpha\beta|. \tag{75.2}$$

Formula 75.1.5 (Transfer operator). Give the MPS tensors $\{A(n)\}_{n\leq N}$ one can define a transfer operator:

$$\mathbb{E}(n) := \sum_{i=1}^{d_n} A^i(n) \otimes \overline{A^i}(n). \tag{75.3}$$

Formula 75.1.6 (Superoperator). More generally we can define for every local observable \hat{O}_n a superoperator in $\mathcal{L}(\mathbb{C}^{D_n} \otimes \overline{\mathbb{C}^{D_n}}, \mathbb{C}^{D_{n-1}} \otimes \overline{\mathbb{C}^{D_{n-1}}})$:

$$\mathbb{E}_{O_n}(n) := \sum_{i,i'=1}^{d_n} \langle i | \hat{O}_n | i' \rangle A^{i'}(n) \otimes \overline{A^i}(n). \tag{75.4}$$

Comparing with the definition of the transfer operator we see that \mathbb{E} is given by the superoperator associated to the unit operator. Given two sets of MPS tensors $\{A(n)\}, \{B(n)\}$ we define a generalized superoperator by

$$\mathbb{E}_{B}^{A}(n) := \sum_{i=1}^{d_{n}} A^{i}(n) \otimes \overline{B^{i}}(n). \tag{75.5}$$

Example 75.1.7. Using these definitions we can rewrite the formulas for expectation values more efficiently. Given a product operator $\hat{O} = \bigotimes_{i}^{N} \hat{O}_{i}$ we find that

$$\langle \psi[A]|\hat{O}|\psi[A]\rangle = \operatorname{tr}\left(\mathbb{E}_{O_1}(1)\cdots\mathbb{E}_{O_N}(N)\right).$$
 (75.6)

Formula 75.1.8. Associated to the superoperator $\mathbb{E}_O(n)$ one can define a map acting on the virtual operators:

$$\mathcal{E}_{O_n}^{(n)}(\phi) = \sum_{i,i'=1}^{d_n} \langle s|\hat{O}_n|s'\rangle A^{i'}(n)\phi A^{i}(n)^{\dagger}$$
 (75.7)

$$\tilde{\mathcal{E}}_{O_n}^{(n)}(\phi) = \sum_{i,i'=1}^{d_n} \langle s|\hat{O}_n|s'\rangle A^i(n)^{\dagger} \sigma A^{i'}(n)$$
(75.8)

where $\phi \in \mathcal{L}(\mathbb{C}^{D_n}), \sigma \in \mathcal{L}(\mathbb{C}^{D_{n-1}}).$

Property 75.1.9. The map $\mathcal{E}_{\mathbb{I}}^{(n)}$ associated to the transfer operator is a CP map 24.1.8 and the associated Kraus operators are the MPS matrices $A^{i}(n)$.

75.1.2 Injectivity

For translation-invariant MPS one can use an easier definition:

Alternative Definition 75.1.10 (Injective MPS). A translation-invariant MPS is said to be injective if its transfer operator has a unique maximal eigenvalue.

In the next sections we will always assume the MPS to be injective unless stated otherwise.

75.1.3 Gauge freedom and canonical forms

Property 75.1.11 (Gauge freedom). As is clear from the construction of matrix product states there exists some freedom in the representation of the MPS tensors. One can always perform a transformation of the form $A(n) \to X^{-1}(n)A(n)X(n+1)$.

Remark 75.1.12. If we use periodic boundary conditions then we must require that X(L+1) = X(1) where L is the lattice size.

Using the gauge freedom in the representation of a generic MPS one can construct certain forms which have useful properties:

Construction 75.1.13 (Left canonical form¹). This form is specified by the following property:

$$\begin{array}{c}
A_L \\
\hline
A_L
\end{array} =$$
(75.9)

¹Also called the **left isometric form**, **left orthogonal form** or just **left gauge**.

Any MPS can be brought in this form. First we construct the transfer operator $\mathbb{E}(n)$ for every site and find its maximal eigenvector. By the *Perron-Frobenius theorem* this eigenvector (which is in fact a matrix itself) is positive and hence allows a decomposition of the form $\lambda(n) = L^{\dagger}(n)L(n)$. The left orthogonal forms are then defined by

$$A_L(n) := L(n)A(n)L^{-1}(n+1). (75.10)$$

Remark. In a similar manner one can construct the right orthogonal form A_R .

Method 75.1.14 (Vidal). Given a general quantum state in terms of an n-leg tensor there exists an efficient way of constructing the left (or right) canonical forms introduced by Vidal [87]. For this we perform a cut between the first and second site and apply a singular value decomposition to obtain a tensor of the form $U^{[1]}SV^{[2,...]}$. One can now recursively apply this procedure to the product of the singular values S and the right unitary V.

Construction 75.1.15 (Mixed canonical form). We can combine the left and right canonical forms. Let L(n) and R(n) be the decompositions of the left and right eigenvectors of the transfer operator at site n, i.e. $\lambda(n) = L^{\dagger}(n)L(n)$ and $\rho(n) = R(n)R^{\dagger}(n)$. The left and right canonical forms are then related by a matrix C(n) in the following way: $A_L(n)C(n+1) = C(n)A_R(n)$. These matrices are given by

$$C(n) = L(n)R(n). (75.11)$$

75.1.4 Translation-invariant states

Definition 75.1.16 (Uniform MPS). By setting all MPS tensors A(n) = B for a given tensor B one obtains a translation-invariant (TI) state, i.e. a state invariant under a shift of the index n. These MPS form the variational class of uniform MPS.

Remark 75.1.17 (TIMPS). Not every TIMPS is uniform, there should only exist a local gauge transformation $A'(n) = U(n-1)A(n)U(n)^{-1}$ such that A'(n) is uniform (in certain cases this is only possible by enlarging the bond dimension).

75.2 Matrix product operators

Definition 75.2.1 (Matrix product operator²). Starting from the general form of an MPS one can easily construct more general objects. By replacing the rank-3 tensors $A^{i}(n)$ with rank-4 tensors $A^{i,j}(n)$ and $|i_1 \cdots i_n\rangle$ by $|i_1\rangle\langle j_1|\otimes \cdots \otimes |i_n\rangle\langle j_n|$ one obtains the notion of a matrix product operator:

$$\hat{O} = \sum_{\{i_k, j_l\}} \operatorname{tr}\left(\prod_{m,n=1}^N O^{i_m, j_n}(n)\right) |i_1 \cdots i_N\rangle \langle j_1 \cdots j_n|, \tag{75.12}$$

or in terms of a basis $\{\hat{O}_i\}$ for the space of local operators:

$$\hat{O} = \sum_{\{i_k\}} \operatorname{tr}\left(\prod_{n=1}^{N} A^{i_n}(n)\right) \hat{O}_{i_n}.$$
(75.13)

Method 75.2.2 (Local Hamiltonian to MPO). Given a local Hamiltonian $\hat{H} = \sum_i \hat{H}^{(i)}$ one can build an MPO which generates this Hamiltonian³:

$$\hat{H} := \sum_{\{i_k, j_l\}} \operatorname{tr}\left(\prod_{m, n=1}^N A^{i_m, j_n}(n)\right) |i_1 \cdots i_N\rangle \langle j_1 \cdots j_n|.$$
 (75.14)

²As in the case of matrix product states we will abbreviate this as **MPO**.

³In fact one can use this procedure to turn any local operator into an MPO.

To obtain this MPO form one uses the concept of a cellular automaton. This is a set of possible states together with a set of rules that tell you how you can go from one state to another. To obtain the set of states in our case we look at a given site i. All distinct combinations of 1-site operators to the right of i give rise to a distinct state μ . The transition rules are obtained by looking at which operator can be placed at the site i in a way consistent with the form of the given Hamiltonian.

Example 75.2.3. Consider a 2-site Hamiltonian of the form

$$\hat{A} \otimes \hat{B} \otimes \mathbb{1} \otimes \cdots + \mathbb{1} \otimes \hat{A} \otimes \hat{B} \otimes \mathbb{1} \otimes \cdots + \cdots$$

Looking at a specific site i we obtain 3 distinct possibilities:

- 1. We have only identity operators acting to the right of i.
- 2. Immediately to the right we have the operator \hat{B} acting on i+1.
- 3. Somewhere to the right we find the combination $\hat{A} \otimes \hat{B}$.

The transition rules for this automaton are then given by the following list:

- $1 \to 2$: 1,
- $1 \rightarrow 2$: \hat{B} ,
- $2 \rightarrow 3$: \hat{A} , and
- $3 \to 3$: 1.

What is useful for us is that this set of transition rules can be turned into a matrix:

$$T = \begin{pmatrix} \mathbb{1} & \hat{B} & 0 \\ 0 & 0 & \hat{A} \\ 0 & 0 & \mathbb{1} \end{pmatrix}.$$

The MPO is then obtained by setting the MPO matrix A equal to T at every site.

75.2.1 MPO-injectivity

The main reference for this section is [85].

Definition 75.2.4 (MPO-injective PEPS). Consider a trivalent PEPS network on a manifold M and select a simply-connected subregion $\Omega \subset \Lambda$. By contracting the tensors withing this region one obtains a linear map

$$A_{\Lambda}: (\mathbb{C}^D)^{\otimes |\Lambda|} \to (\mathbb{C}^d)^{\otimes |\partial \Lambda|}$$

from the virtual spaces on the edges to the physical space living in the bulk. This PEPS is said to be MPO-injective if there exists a linear map (four-leg tensor)

$$M: \mathbb{C}^D \otimes \mathbb{C}^m \to \mathbb{C}^D \otimes \mathbb{C}^m$$

such that for every subregion $\Omega \subset \Lambda$ the linear map A_{Λ} is injective on a (maximal) subspace S for which the projector onto S can be written as an MPO constructed from the tensors M living on the boundary $\partial \Lambda$. (See figure 75.1: the tensors M are given by crossings of black and red lines.)

Axiom 75.1 (Pulling-through). One of the key features of topological order is that this cannot be detected locally, only a global measurement can show the existence of topologically ordered states. To this end we introduce an axiom such that one can pull an MPO through the lattice. Graphically this is shown in figure 75.2.

Figure 75.1: MPO-injective PEPS.

Figure 75.2: Pulling-through condition.

75.2.2 MPO-symmetries for SPT phases

One can generalize the above framework to include not only pure topological order but also symmetry-protected topological order (see reference [86]). For this one has to slightly modify the axioms from the last section:

Axiom 75.2 (Pulling-through for SPT phases). When pulling a symmetry-MPO through a tensor one has to act with a unitary on the physical level. Graphically this is shown in figure 75.3.

Figure 75.3: Pulling-through condition for SPT phases.

Part XIII

Appendices

Appendix A

Derivations: Mathematics

A.1 Group theory

A.1.1 Explanation for property 3.3.12

Pick an element $x \in X$. The stabilizer of x with respect to G is the set

$$S_x := \{ g \in G : g \cdot x = x \}.$$

Due to the transitivity of the group action we have that

$$\forall x, y \in X : \exists h \in G : h \cdot x = y.$$

So for every $z \in X$ we can choose a group element g_z such that $g_z \cdot x = z$. For all elements in the coset $g_z S_x = \{g_z s \in G : s \in S_x\}$ the following equality is satisfied:

$$(g_z s) \cdot x = g_z \cdot (s \cdot x) = g_z \cdot x = z.$$

This implies that the map $\Phi: G/S_x \to X$ is surjective.

Now we need to prove that Φ is also injective. We give a proof by contradiction. Choose two distinct cosets gS_x and hS_x . Then there exist two elements $G, H \in X$ such that $g \cdot x = G$ and $h \cdot x = H$. Assume that G = H. This means that

$$g \cdot x = h \cdot x$$

$$\iff (h^{-1}g) \cdot x = x$$

$$\iff h^{-1}g \in S_x$$

$$\iff hS_x \ni h(h^{-1}g) = g.$$

This would imply that $gS_x = hS_x$ which is in contradiction with our assumptions. It follows that $G \neq H$ and hence that Φ is injective.

A.2 Calculus

A.2.1 Proof of method 14.7.16

The function F(x) is defined as follows:

$$F(x) := \sum_{n=0}^{+\infty} \frac{a_n}{n!} x^n. \tag{A.1}$$

We now perform a Borel transform:

$$\int_{0}^{+\infty} F(xt)e^{-t}dt = \sum_{n=0}^{N} \int_{0}^{+\infty} \frac{a_{n}}{n!} x^{n} t^{n} e^{-t} dt
= \sum_{n=0}^{N} \frac{a_{n}}{n!} x^{n} \int_{0}^{+\infty} t^{n} e^{-t} dt
= \sum_{n=0}^{N} \frac{a_{n}}{n!} x^{n} \Gamma(n+1)
= \sum_{n=0}^{N} a_{n} x^{n}$$
(A.2)

where we used the definition of the Gamma function 14.29 on line 3 and the relation between the factorial function and the Gamma function 14.32 on line 4.

A.3 Linear algebra

A.3.1 Proof of equivalence of definitions 21.6.19 and 21.6.20

$$(u+v)\otimes(u+v) - u\otimes u - v\otimes v = u\otimes v + v\otimes u \tag{A.3}$$

The LHS is an element of the ideal I generated by $\{v \otimes v; v \in V\}$. Using the ideal generated by elements such as in the RHS gives the usual definition of the exterior algebra based on the wedge product as defined in 21.6.13 because it imposes the relation $u \wedge v = -v \wedge u$.

We do however have to pay attention to one little detail. As mentioned in 21.6.20 the general definition uses the ideal I to construct the quotient space. The other construction is only equivalent when are working over a field with characteristic different from 2. This follows from the fact that we have to divide by 2 when trying to obtain the ideal I from the RHS when setting u = v.

A.4 Manifolds and bundles

A.4.1 Proof of equivalence of definitions 29.2.3 and 29.2.5

Let (U, φ) be a chart around the point $p \in M$. Using the first definition of a tangent vector (29.2.3), i.e.

$$\left. \frac{\partial}{\partial q^i} \right|_p : \mathcal{F}_p(M, \mathbb{R}) \to \mathbb{R} : f \mapsto \frac{\partial}{\partial q^i} (f \circ \varphi^{-1})(\varphi(p))$$

we can rewrite equation 29.7

$$v_p(f) = \frac{\partial (f \circ \varphi^{-1})}{\partial q^i} (\varphi(p)) \frac{dq^i}{dt} (0)$$

as follows:

$$v_p(f) = \frac{\partial f}{\partial q^i} \bigg|_{n} \frac{dq^i}{dt}(0).$$

Because the partial derivatives as defined in 29.2.3 form a basis for the tangent space (by construction), we see that this equation is in fact an expansion of the tangent vector v_p in terms of that basis. It follows that vectors tangent to curves¹ are also tangent vectors according to the first definition.

¹More precisely: representatives of equivalence classes of vectors tangent to curves.

To prove the other direction we have to show that the partial derivative operators can be constructed as vectors tangent to curves.

A tangent vector can be expressed, according to the first construction, in the following way:

$$v_p = v^i \frac{\partial}{\partial q^i} \bigg|_p$$

where we also define $v = (v^1, ..., v^n)$. We can then construct the curve $\gamma : t \mapsto \varphi^{-1}(q_0 + vt)$. It is obvious that the tangent vector v_p is tangent to the curve γ . From this it follows that we have an isomorphism between the tangent vectors from to the first definition and the equivalence classes of vectors tangent to curves from the second definition. These definitions are thus equivalent. \square

Although the previous equivalence implies that the tangent space construction using germs of curves gives us a vector space we could also check the vector space axioms directly. First we prove that the sum of vectors tangent to the curves γ and δ is again a vector tangent to some curve $\chi: \mathbb{R} \to M$. For this let us define the curve

$$\chi(t) \equiv \varphi^{-1} \circ \left(\varphi \circ \gamma(t) + \varphi \circ \delta(t) - \varphi(p) \right)$$

where φ is again the coordinate map in some chart (U, φ) around $p \in M$. Using equation 29.7 we find

$$v_{p,\chi}(f) = \frac{\partial (f \circ \varphi^{-1})}{\partial q^{i}} (\varphi(p)) \frac{d(\varphi^{i} \circ \chi)}{dt} (0)$$

$$= \frac{\partial (f \circ \varphi^{-1})}{\partial q^{i}} (\varphi(p)) \frac{d}{dt} (\varphi^{i} \circ \gamma + \varphi^{i} \circ \delta - \varphi^{i}(p))$$

$$= \frac{\partial (f \circ \varphi^{-1})}{\partial q^{i}} (\varphi(p)) \left(\frac{d(\varphi^{i} \circ \gamma)}{dt} + \frac{d(\varphi^{i} \circ \delta)}{dt} \right)$$

$$= v_{p,\gamma}(f) + v_{p,\delta}(f).$$

The constant term $-\varphi(p)$ in the definition of $\chi(t)$ is necessary to make sure that $\chi(0) = \gamma(0) = \delta(0) = p$. The scalar multiplication by a number $\lambda \in K$ can be proven by defining the curve $\chi(t) = \varphi^{-1} \circ \left[\lambda \left(\varphi \circ \gamma(t)\right)\right]$.

A.4.2 Explanation for example 32.3.17

In this derivation we use the Landau little-o notation o(t), i.e.:

$$\lim_{t \to 0} \frac{o(t)}{t} = 0 \tag{A.4}$$

Now assume that X is a smooth vector field and f is a smooth function. Because the Lie derivative is a local operation we can work in a local chart such that γ is (again locally) equivalent

to a curve² $\beta_p: U \to \mathbb{R}^n$ and such that we can expand $\beta_p(t)$ around $p \in U$:

$$\mathcal{L}_{X}f(p) = \lim_{t \to 0} \left[\frac{f(\beta_{p}(0) + t\beta'_{p}(0) + o(t)) - f(p)}{t} \right]$$

$$= \lim_{t \to 0} \left[\frac{f(p + tX(p) + o(t)) - f(p)}{t} \right]$$

$$= \lim_{t \to 0} \left[\frac{f(p) + tDf(p) \cdot X(p) + o(t) - f(p)}{t} \right]$$

$$= \sum_{k} \frac{\partial f}{\partial x^{k}}(p)X_{k}(p) + \lim_{t \to 0} \frac{o(t)}{t}$$

$$= \sum_{k} \frac{\partial f}{\partial x^{k}}(p)X_{k}(p)$$
(A.5)

where we used the defining condition 32.3.9 for integral curves on the second line. If we now rewrite this equation as an operator equality, we obtain

$$\mathcal{L}_X = \sum_k X_k \frac{\partial}{\partial x^k}.$$
 (A.6)

A.4.3 Explanation for formula 32.3.18

For vector fields we cannot just take the difference at two different points because the tangent spaces generally do not coincide. We can solve this by using the flow 32.3.10:

$$\mathcal{L}_X Y = \lim_{t \to 0} \frac{(T\sigma_t)^{-1} [X(\gamma_p(t))] - X(p)}{t} \tag{A.7}$$

where the $T\sigma_t$ is the differential 32.1.8 of the flow which satisfies $(T\sigma)^{-1} = T\sigma_{-t}$. To see that this definition makes sense we have to show that $(T\sigma_t)^{-1}[X(\gamma_p(t))] \in T_pM$. This goes as follows:

$$(T\sigma_t)^{-1}[X(\gamma_p(t))](f) = T\sigma_{-t}[X(\gamma_p(t))](f)$$

$$= X(\sigma_{-t} \circ \gamma_p(t))(f \circ \sigma_{-t})$$

$$= X(\sigma_{-t} \circ \sigma_t(p))(f \circ \sigma_{-t})$$

$$= X(p)(f \circ \sigma_{-t})$$

$$\in T_pM$$

for all $f \in C^k(M, \mathbb{R})$. On the third line we used the definition of the flow 32.3.10.

We can also rewrite the second term in the numerator of A.7 using the flow:

$$X(p) = X(\sigma_0(p)) = T\sigma_0(X)$$

Using the definition of the pushforward of vector fields 32.12 the Lie derivative can be rewritten as follows:

$$\mathcal{L}_X Y = \lim_{t \to 0} \frac{\sigma_{-t*} X(\gamma_p(t)) - \sigma_{0*} X(\gamma_p(0))}{t}$$
$$= \frac{d}{dt} (\sigma_{-t*} X)(\gamma_p(t)) \Big|_{t=0}.$$

Or finally by using the relation between pushforward and pullback 32.13 this becomes

$$\mathcal{L}_X Y = \frac{d}{dt} (\sigma_t^* X) (\gamma_p(t)) \bigg|_{t=0}. \tag{A.8}$$

²The vector field X(p) = (p, Y(p)) where Y is a smooth vector field on \mathbb{R}^n can also be identified with Y itself. This is implicitly done in the derivation by using the notation X for both vector fields.

A.4.4 Explanation of remark 32.4.10

Looking at formula 32.32 for the exterior derivative of a smooth function and remembering the definition of the gradient 21.1.1 we see that these two definitions appear very similar. The major difference lies in the fact that ∇f is a vector in \mathbb{R}^3 and df is a covector in \mathbb{R}^{*3} . However there exists an isomorphism between these spaces and so we can identify ∇f and df.

Similar relations hold for the rotor 21.1.10 and divergence 21.1.8, however here we have to use a different construction as we will be working with the spaces Λ^1 and Λ^2 . However we can use the Hodge star 21.6.25 to obtain the correct dimensions.

Consider a vector $\vec{f} = (f_1, f_2, f_3)$ where f_i is smooth. Using these functions f_i we can construct a 1-form $\alpha = f_1 dx_1 + f_2 dx_2 + f_3 dx_3$ and a 2-form $\omega = f_1 dx_2 \wedge dx_3 + f_2 dx_3 \wedge dx_1 + f_3 dx_1 \wedge dx_2$. After applying the exterior derivative (in the corresponding spaces) we obtain

$$d\alpha = \left(\frac{\partial f_3}{\partial x_2} - \frac{\partial f_2}{\partial x_3}\right) dx_2 \wedge dx_3 + \left(\frac{\partial f_1}{\partial x_3} - \frac{\partial f_3}{\partial x_1}\right) dx_3 \wedge dx_1 + \left(\frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2}\right) dx_1 \wedge dx_2$$
$$d\omega = \left(\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} + \frac{\partial f_3}{\partial x_3}\right) dx_1 \wedge dx_2 \wedge dx_3.$$

Using result 21.6.29 and the canonical isomorphism $\sim \mathbb{R}^{3*} \to \mathbb{R}^{3}$ we can rewrite this as

$$\sim df = \nabla f \tag{A.9}$$

$$\sim (*d\alpha) = \nabla \times \vec{f} \tag{A.10}$$

$$*d\omega = \nabla \cdot \vec{f}. \tag{A.11}$$

Appendix B

G-Structures

In the following table we give an overview of the more common G-structures one can define on a smooth (simply-connected) manifolds M^n .

Geometric structure	Structure group	Remarks
Orientation	$\mathrm{SL}(n,\mathbb{R})$	$\operatorname{GL}^+(n,\mathbb{R})$ is sufficient for orientability. The special linear group gives
Riemannian metric	O(n)	rise to a volume form.
Almost-symplectic structure*	$\mathrm{Sp}(n,\mathbb{R})$	Integrability (in the form of a closed form) gives a symplectic manifold.
Almost-complex structure*	$\mathrm{GL}(k,\mathbb{C})$	Integrability (in the form of Newlander-Nirenberg) gives a complex manifold.
Almost-Hermitian structure*	$\mathrm{U}(k)$	Integrability gives a Kähler manifold.
Calabi-Yau*	$\mathrm{SU}(k)$	
Hyperkähler**	$\operatorname{Sp}(k)$	Hyperkähler implies Calabi-Yau.
Almost quaternionic**	$(GL(k, \mathbb{H}) \times \mathbb{H}^{\times})/\mathbb{R}^{\times}$	Integrability gives a quaternionic manifold. We also require $k \geq 2$ because for $k = 1$ we would otherwise obtain that every orientable 4-manifold is quaternionic (amongst other things).
Quaternionic-Kähler**	$(\operatorname{Sp}(k) \times \operatorname{Sp}(1))/\mathbb{Z}_2$	These manifolds are not strictly Kähler since the structure group is not a subgroup of $U(2k)$.

Structures marked with * require the real dimension n = 2k to be even. Structures marked with ** require the real dimension n = 4k to be a multiple of 4.

Remark. This table is strongly related to the classification of (*irreducible* simply-connected

The $\mathrm{SL}(n,\mathbb{R})$ -structure is technically not part of the original classification since it is not a subgroup of $\mathrm{O}(n)$

nonsymmetric) Riemannian manifolds by Berger. A more general classification for manifolds which are not necessarily Riemannian was initiated by Berger and finished by others. However we will only mention this extension here, for references see [27].

Since not all concepts from this classification were defined throughout the compendium we will explain them here:

- Irreducible: A Riemannian manifold is said to be irreducible if it is not locally isomorphic to a product of Riemannian manifolds.
- **Symmetric**²: A smooth manifold, locally modelled on $V \cong \mathbb{R}^n$, is said to be symmetric if the curvature mapping $F(M) \to \Lambda^2 V^* \otimes \mathfrak{g}$ is covariantly constant.

Remark B.0.1. Although most manifolds from the above list admit an explicit definition, the quaternionic Kähler manifolds are exactly defined by their structure group/holonomy group.

It is also clear that hyperkähler manifolds are a specific class of quaternionic Kähler manifolds since Sp(k) can be embedded in $Sp(k) \cdot Sp(1)$. To exclude this class we can just require the holonomy group to be all of $Sp(k) \cdot Sp(1)$. This is equivalent to requiring that quaternionic Kähler manifolds have a nonvanishing scalar curvature. This is related to the following property:

Property B.0.2. Every quaternionic Kähler manifold is Einstein 34.2.11. The hyperkähler manifolds are then exactly the quaternionic Kähler manifolds with vanishing scalar curvature (which is constant by the manifold being Einstein).

and hence the manifold is not necessarily Riemannian.

²or locally symmetric

Appendix C

Derivations: Mathematical Physics

C.1 d'Alembert's principle

In the following derivation the mass is assumed to be constant.

$$\sum_{k} \left(\vec{F}_{k} - \dot{\vec{p}}_{k} \right) \cdot \dot{\vec{r}}_{k} = 0$$

$$\iff \sum_{k} \left(\vec{F}_{k} - \dot{\vec{p}}_{k} \right) \cdot \left(\sum_{l} \frac{\partial \vec{r}_{k}}{\partial q_{l}} \dot{q}_{l} \right) = 0$$

$$\iff \sum_{l} \left(\sum_{k} \vec{F}_{k} \cdot \frac{\partial \vec{r}_{k}}{\partial q_{l}} - \sum_{k} m \ddot{\vec{r}}_{k} \cdot \frac{\partial \vec{r}_{k}}{\partial q_{l}} \right) \dot{q}_{l} = 0$$

$$\iff \sum_{l} \left(Q_{l} - \sum_{k} m \ddot{\vec{r}}_{k} \cdot \frac{\partial \vec{r}_{k}}{\partial q_{l}} \right) \dot{q}_{l} = 0$$
(C.1)

Now, look at the following derivative:

$$\frac{d}{dt} \left(\dot{\vec{r}} \cdot \frac{\partial \vec{r}}{\partial q_l} \right) = \ddot{\vec{r}} \cdot \frac{\partial \vec{r}}{\partial q_l} + \dot{\vec{r}} \cdot \frac{d}{dt} \left(\frac{\partial \vec{r}}{\partial q_l} \right)
\iff \ddot{\vec{r}} \cdot \frac{\partial \vec{r}}{\partial q_l} = \frac{d}{dt} \left(\dot{\vec{r}} \cdot \frac{\partial \vec{r}}{\partial q_l} \right) - \dot{\vec{r}} \cdot \frac{d}{dt} \left(\frac{\partial \vec{r}}{\partial q_l} \right)
\iff \ddot{\vec{r}} \cdot \frac{\partial \vec{r}}{\partial q_l} = \frac{d}{dt} \left(\dot{\vec{r}} \cdot \frac{\partial \vec{r}}{\partial q_l} \right) - \dot{\vec{r}} \cdot \left(\frac{\partial \dot{\vec{r}}}{\partial q_l} \right).$$
(C.2)

To evaluate the factor indicated by A, one can consider another derivative:

$$\frac{\partial \dot{\vec{r}}}{\partial \dot{q}_l} = \frac{\partial}{\partial \dot{q}_l} \left(\sum_k \frac{\partial r}{\partial q_k} \dot{q}_k \right)$$

$$= \sum_k \frac{\partial r}{\partial q_k} \delta_{kl}$$

$$= \frac{\partial \vec{r}}{\partial q_l}$$

$$= \frac{\partial}{\partial q_l}$$

Substituting this in formula C.2 gives

$$\ddot{\vec{r}} \cdot \frac{\partial \vec{r}}{\partial q_l} = \frac{d}{dt} \left(\dot{\vec{r}} \cdot \frac{\partial \dot{\vec{r}}}{\partial \dot{q}_l} \right) - \dot{\vec{r}} \cdot \left(\frac{\partial \dot{\vec{r}}}{\partial q_l} \right)
= \frac{d}{dt} \left(\frac{1}{2} \frac{\partial \dot{\vec{r}}^2}{\partial \dot{q}_l} \right) - \frac{1}{2} \frac{\partial \dot{\vec{r}}^2}{\partial q_l}.$$
(C.3)

If one multiplies this by the mass m and sums over all masses, the following expression is obtained:

$$\sum_{k} m_{k} \ddot{\vec{r}}_{k} \cdot \frac{\partial \vec{r}_{k}}{\partial q_{l}} = \frac{d}{dt} \frac{\partial}{\partial \dot{q}_{l}} \left(\sum_{k} \frac{1}{2} m \dot{\vec{r}}_{k}^{2} \right) - \frac{\partial}{\partial q_{l}} \left(\sum_{k} \frac{1}{2} m \dot{\vec{r}}_{k}^{2} \right) \\
= \frac{d}{dt} \frac{\partial T}{\partial \dot{q}_{l}} - \frac{\partial T}{\partial q_{l}}, \tag{C.4}$$

where the total kinetic energy is denoted by T in the last line. Plugging this result into formula C.1 gives

$$\sum_{l} \left(Q_{l} - \frac{d}{dt} \frac{\partial T}{\partial \dot{q}_{l}} - \frac{\partial T}{\partial q_{l}} \right) \dot{q}_{l} = 0.$$
 (C.5)

Because all the coordinates q_l are independent, the following relation should hold for all l:

$$Q_{l} - \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{l}} \right) - \frac{\partial T}{\partial q_{l}} = 0$$

$$\iff \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{l}} \right) - \frac{\partial T}{\partial q_{l}} = Q_{l}. \tag{C.6}$$

This last equation is known as a Lagrange equation of the first kind.

If the system only contains conservative forces, the force on the i^{th} mass can be written as

$$F_i = -\nabla_i V. \tag{C.7}$$

With this in mind, one can relate the partial derivatives of the potential to the generalized forces:

$$\frac{\partial V}{\partial q_l} = \sum_{i} (\nabla_i V) \cdot \frac{\partial \vec{r}_i}{\partial q_l}
= -Q_l.$$
(C.8)

Furthermore, the derivative of V with respect to the generalized velocities vanishes. This combined with formula C.6 gives

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{l}} \right) - \frac{\partial T}{\partial q_{l}} = Q_{l}$$

$$\iff \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{l}} \right) - \frac{\partial T}{\partial q_{l}} = -\frac{\partial V}{\partial q_{l}} + \frac{\partial V}{\partial \dot{q}_{l}}$$

$$\iff \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{l}} - \frac{\partial V}{\partial \dot{q}_{l}} \right) - \frac{\partial}{\partial q_{l}} (T - V) = 0.$$
(C.9)

If one introduces a new variable L := T - V, called the **Lagrangian**, one gets the **Lagrangian** equation of the second kind:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_l} \right) - \frac{\partial L}{\partial q_l} = 0. \tag{C.10}$$

C.2 Hamilton's principle

In this section one starts from the principle of least action. First, recall the definition of the action:

$$I[y] := \int_{t_1}^{t_2} L(y(t), \dot{y}(t), t) dt.$$
 (C.11)

The principle of least action (Hamilton's principle) postulates that the action is minimal for the physically relevant path. To this end one defines a family of paths

$$y(t,\alpha) = y(t) + \alpha \eta(t), \tag{C.12}$$

where $\eta(t)$ is an arbitrary function satisfying the following boundary conditions:

$$\begin{cases} \eta(t_1) = 0\\ \eta(t_2) = 0. \end{cases}$$
 (C.13)

If the action integral is extended to such a family of paths, the integral C.11 becomes a function of α :

$$I(\alpha) = \int_{t_1}^{t_2} L(y(t,\alpha), \dot{y}(t,\alpha), t) dt.$$
 (C.14)

Requiring that the action integral is stationary for the physical path y(t), i.e. $\alpha = 0$, is equivalent to requiring that the derivative at $\alpha = 0$ vanishes:

$$\left. \frac{dI}{d\alpha} \right|_{\alpha=0} = 0. \tag{C.15}$$

As one evaluates this derivative at $\alpha = 0$, $y(t, \alpha)$ can be replaced by y(t) due to definition C.12:

$$\frac{dI}{d\alpha} = \int_{t_1}^{t_2} \left[\frac{\partial L}{\partial y} \frac{\partial y}{\partial \alpha} + \frac{\partial L}{\partial \dot{y}} \frac{\partial \dot{y}}{\partial \alpha} \right] dt$$

$$= \int_{t_1}^{t_2} \left[\frac{\partial L}{\partial y} \eta(t) + \frac{\partial L}{\partial \dot{y}} \dot{\eta}(t) \right] dt. \tag{C.16}$$

By applying integration by parts to the second term in this integral, one obtains

$$\frac{dI}{d\alpha} = \int_{t_1}^{t_2} \left[\frac{\partial L}{\partial y}(t)\eta(t) + \frac{\partial L}{\partial \dot{y}}(t)\dot{\eta}(t) \right] dt$$

$$= \int_{t_1}^{t_2} \left[\frac{\partial L}{\partial y}(t)\eta(t) + \frac{\partial L}{\partial \dot{y}}(t)\frac{d\eta}{dt} \right] dt$$

$$= \int_{t_1}^{t_2} \frac{\partial L}{\partial y}(t)\eta(t)dt + \eta(t_2)\frac{\partial L}{\partial \dot{y}}(t_2) - \eta(t_1)\frac{\partial L}{\partial \dot{y}}(t_1) - \int_{t_1}^{t_2} \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}} \right) \eta(t) dt. \tag{C.17}$$

Due to the initial conditions C.15 for the function $\eta(t)$, the second and third term vanish:

$$\frac{dI}{d\alpha} = \int_{t_1}^{t_2} \left[\frac{\partial L}{\partial y} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}} \right) \right] \eta(t) dt.$$
 (C.18)

Furthermore, because the function $\eta(t)$ was arbitrary, the only possible way that this derivative zero is when the integrand itself is zero:

$$\frac{\partial L}{\partial y} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}} \right) = 0. \tag{C.19}$$

Comparing this result with formula C.10 shows that one can also obtain the **Lagrangian** equations of the second kind by starting from the principle of least action (where the variable y represents the generalized coordinates q_l and the variable \dot{y} represents the generalized velocities \dot{q}_l).

Remark C.2.1. Differential equations of the form

$$\frac{\partial f}{\partial y}(y, \dot{y}, x) = \frac{d}{dx} \left(\frac{\partial f}{\partial \dot{y}}(y, \dot{y}, x) \right)$$
 (C.20)

are known as Euler-Lagrange equations.

C.3 Noether's theorem 64.1.1

The general transformation rule for the Lagrangian is

$$\mathcal{L}(x) \to \mathcal{L}(x) + \alpha \ \delta \mathcal{L}(x).$$
 (C.21)

To have a symmetry, i.e. to keep the action invariant, the deformation factor has to be a 4-divergence:

$$\mathcal{L}(x) \to \mathcal{L}(x) + \alpha \partial_{\mu} \mathcal{J}^{\mu}(x).$$
 (C.22)

To obtain formula 64.5 we vary the Lagrangian explicitly:

$$\delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \phi} \delta \phi + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta(\partial_{\mu} \phi)$$

$$= \frac{\partial \mathcal{L}}{\partial \phi} \delta \phi + \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta \phi \right) - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) \delta \phi$$

$$= \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta \phi \right) + \left[\frac{\partial \mathcal{L}}{\partial \phi} - \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right] \delta \phi.$$

The second term vanishes due to the Euler-Lagrange equation C.19. Combining these formulas gives us

$$\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta \phi \right) - \partial_{\mu} \mathcal{J}^{\mu}(x) = 0. \tag{C.23}$$

From this equation we can conclude that the current

$$j^{\mu}(x) = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} \delta\phi - \mathcal{J}^{\mu}(x)$$
 (C.24)

is conserved.

Appendix D

Derivations: Optics and Material Physics

D.1 Law of Lambert-Beer 50.4.1

From formula 50.8 we now that the complex refractive index can be written as

$$\widetilde{n} = n + ik$$

where k is called the **extinction coefficient**. From classic optics we also know that in a material the speed of light obeys the following relation:

$$c = \tilde{n}v$$
.

It readily follows that the wave number (sadly also denoted by the letter k) can be written as

$$k = \frac{\omega}{v} = \widetilde{n} \frac{\omega}{c}$$
.

From classic electromagnetism we know that a plane wave can be written as

$$E(x,t) = \operatorname{Re}\{A \exp[i(kx - \omega t + \phi)]\}.$$

So after putting everything together we obtain

$$E(x,t) = \operatorname{Re}\left\{A \exp\left[i\left((n+ik)\frac{\omega}{c}x - \omega t + \phi\right)\right]\right\}.$$

or also:

$$E(x,t) = \mathrm{Re} \Big\{ A \, \exp \Big(i n \frac{\omega}{c} x \Big) \cdot \exp \Big(- k \frac{\omega}{c} x \Big) \cdot \exp (-i \omega t) \cdot \exp (i \phi) \Big\}$$

We also know that the intensity is given by the following relation:

$$I(x) = |E(x)|^2 = E^*(x) \cdot E(x).$$

This implies that only the second exponential factor will remain. Dividing the result by its value at x=0 gives

$$\frac{I(x)}{I(0)} = \frac{E(x) \cdot E^*(x)}{E(0) \cdot E^*(0)} = \exp\left(-\frac{2k\omega}{c}x\right) = \exp(-\alpha x)$$

where α is the absorption coefficient as defined in formula 50.4.2.

D.2 Schottky defects 74.6.3

Let E_v be the energy needed to remove a particle from its lattice point and move it to the surface. We will neglect any surface effects and assume that the energy E_v is independent of the distance to the surface.

The total energy of all vacancies is then given by $E = nE_v$. The number of possible microstates is

$$\Omega = \frac{(N+n)!}{N!n!} \tag{D.1}$$

where we used the fact that the removal of n particles creates n more lattice points at the surface. Using Boltzmann's entropy formula 73.1 and Stirling's formula we obtain

$$S(N,n) = k \ln \Omega = k \lceil (N+n) \ln(N+n) - n \ln n - N \ln N \rceil. \tag{D.2}$$

Using 73.2.1 we can find the temperature

$$\frac{1}{T} = \left(\frac{\partial S}{\partial E}\right)_{N,V} = \frac{dS}{dn}\frac{dn}{dE} = \frac{k}{E_v}\ln\frac{N+n}{n}$$
 (D.3)

which can be rewritten as

$$\frac{n}{N+n} = \exp\left(-\frac{E_v}{kT}\right). \tag{D.4}$$

The density of Frenkel pairs can be derived analogously.

Appendix E

Derivations: Classical Mechanics

E.1 Moments of inertia

In this section we will use formula 47.1.7 to calculate the moment of inertia.

E.1.1 Disk

The volume of a (solid) disk is given by

$$V_{disk} = \pi R^2 d \tag{E.1}$$

where R is the radius and d is the thickness. The mass density is then given by

$$\rho = \frac{M}{\pi R^2 d}. (E.2)$$

Using cylindrical coordinates the moment of inertia becomes

$$I = \frac{M}{\pi R^2 d} \int_0^{2\pi} d\varphi \int_0^d dz \int_0^R r^3 dr$$
 (E.3)

$$=\frac{M}{\pi R^2 d} 2\pi d \frac{R^4}{4} \tag{E.4}$$

$$=\frac{1}{2}MR^2. (E.5)$$

E.1.2 Solid sphere

The volume of a solid sphere is given by

$$V_{sphere} = \frac{4}{3}\pi R^3 \tag{E.6}$$

where R is the radius. The mass density is then given by

$$\rho = \frac{M}{\frac{4}{3}\pi R^3}.\tag{E.7}$$

We will use spherical coordinates to derive the moment of inertia, but we have to be careful. The r in formula 47.1.7 is the distance between a point in the body and the axis of rotation. So it is not the same as the r in spherical coordinates which is the distance between a point

and the origin. However, the relation between these two quantities is easily found using basic geometry to be:

$$r = r' \sin \theta \tag{E.8}$$

where r' is the spherical coordinate. Now we can calculate the moment of inertia as follows:

$$I = \frac{M}{\frac{4}{3}\pi R^3} \int_0^{2\pi} d\varphi \int_0^R r'^4 dr' \int_0^{\pi} \sin^3\theta d\theta$$
 (E.9)

$$= \frac{M}{\frac{4}{3}\pi R^3} 2\pi \frac{R^5}{5} \frac{4}{3}$$

$$= \frac{2}{5}MR^2.$$
(E.10)

$$= \frac{2}{5}MR^2.$$
 (E.11)

Appendix F

Scribblings

F.1 Functorial uncertainty measures

F.1.1 Uncertainty

Let us for now assume that we work on finite spaces Ω , i.e. $|\Omega| < \infty$. In this case one can characterize a probability measure as a set-theoretic function $P: 2^{\Omega} \to [0,1]$ with the following properties:

- 1. $P(\emptyset) = 0 \text{ and } P(\Omega) = 1;$
- 2. Additivity: If $A, B \subset \Omega$ are disjoint, then

$$P(A \cup B) = P(A) + P(B). \tag{F.1}$$

When we want to quantify the uncertainty in the prediction of a random variable X we can also take the cardinality of all possible values of X as an indicator, i.e. a situation where we predict that X can take on a value in $\{1, 2, 3, 4, 5\}$ has more uncertainty than a prediction where $X \in \{1, 2\}$. From the logical side we can characterize this through an indicator function $\Pi: 2^{\Omega} \times 2^{\Omega} \to \{0, 1\}$ where given a subset Z the function Π_Z tells us if a prediction $W \in 2^{\Omega}$ has any overlap with Z. (Here the cardinality of the set Z quantifies the degree of uncertainty, the larger Z the less certain we are.) This function should satisfy the following conditions:

- 1. $\Pi_Z(\emptyset) = 0$;
- 2. $\Pi_Z(\Omega) = 1$;
- 3. Maxitivity¹: If $A, B \subset \Omega$ are disjoint, then

$$P_Z(A \cup B) = \max(P_Z(A), P_Z(B)). \tag{F.2}$$

F.1.2 Posets and categories

We know want to unify these notions and for this we need to find the common structure behind addition and taking maxima. For this it is better if we consider the (co)domains of our operations as posets (partially ordered sets) and their associated categorical structure:

Definition F.1.1 (Poset). A set X will a binary operation \leq that satisfies the following conditions:

1. Reflexivity: $x \leq x$;

¹I didn't invent this name.

- 2. Antisymmetry: $x \le y \land y \le x \implies x = y$;
- 3. Transitivity: $x \le y \land y \le z \implies x \le z$.

Property F.1.2 (Posets are categories). Let (X, \leq) be a poset. This set admits the structure of a category X by taking ob(X) := X and

$$\operatorname{Hom}_{\mathbf{X}}(a,b) = \begin{cases} \{*\} & a \leq b \\ \emptyset & \text{otherwise.} \end{cases}$$

So a (unique) morphism between two objects a, b exists if and only if $a \le b$. (One can generalize this to *preorders* and *thin* categories. Posets are then exactly the *skeletal* thin categories.)

So what about out operations? It is easily shown that both the union and the operation of taking maxima define coproducts on the posets under consideration.

By restricting to disjoint subsets we find that equation F.2 in fact tell us that the Π_Z (for any $Z \subset \Omega$) are coproduct-preserving functors. We are left with to issues: How do we extend this structure to not necessarily disjoint subsets $A, B \subset \Omega$? How do we interpret equation F.1 as addition is not a coproduct (at most it defines a *cowedge*)?

F.1.3 Monoidal posets

Let us first introduce a different kind of structure on posets:

Definition F.1.3 (Monoidal poset). A poset (X, \leq) equipped with a monotone bifunctor \otimes , i.e. a function $\otimes : X \times X \to X$ such that

$$a \le x \land b \le y \implies a \otimes b \le x \otimes y.$$
 (F.3)

and an object 1 such that $(X, \otimes, 1)$ is a monoid. For those of us that like internal structures, monoidal posets are exactly the monoid objects in the category **Poset**.

The natural notion of morphism between monoidal posets is that of monoidal monotone

Definition F.1.4 (Monoidal monotone). Consider two monoidal posets $(X, \leq, \otimes, \mathbf{1}_X)$ and $(Y, \leq, \odot, \mathbf{1}_Y)$. A monoidal monotone $f: X \to Y$ is a monotone function satisfying the following conditions:

- 1. $f(\mathbf{1}_X) = \mathbf{1}_Y$;
- 2. $f(x \otimes x') = f(x) \odot f(x')$ for all $x, x' \in X$.

If the equalities are relaxed then we obtain the notion of **lax** monoidal monotones. Reversing the direction of the inequalities gives **oplax** monoidal monotones. For this reason one sometimes calls ordinary monoidal monotones **strong/strict** (especially true categorists do this since they always work with weak/lax functors).

The existence of (finite) coproducts gives rise to a monoidal structure and it should not be too hard to see that F.3 is satisfied for the partial orders that we considered in the previous section. Furthermore, equation F.2 tells us that the functions Π_Z are (strong) monoidal monotones (again when restricted to disjoint subsets).

The reason why we introduced these monoidal structures is twofold. First of all it is not hard to show that $([0,1], \leq, \oplus)$ is in fact also a monoidal poset (where \oplus denotes truncated addition).

Secondly, it allows us to extend our functors to not necessarily disjoint subsets. In those cases we have to relax the equality in equation F.1, i.e.

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \le P(A) + P(B)$$
 (F.4)

for all $A, B \subset \Omega$. BY the above definitions this is the same as relaxing the strong monoidal monotone to an oplax one.

F.1.4 Countable additivity

In the beginning of this chapter we made a nontrivial assumption, namely that our sample space Ω was finite. Although this assumption was never explicitly used throughout the above sections, it remains important. It allows us to restrict our attention to finite unions in equations F.1 and F.2. However, the completely rigorous definition of a (probability) measure actually requires countable additivity (also called σ -additivity):

$$P\left(\bigcup_{A\in\mathcal{P}}A\right) = \sum_{A\in\mathcal{P}}P(A) \tag{F.5}$$

for any finite or countable collection $\mathcal{P} \subset 2^{\Omega}$ of disjoint subsets of Ω .

On the level of coproducts this is not a problem. One can perfectly well take countable (or even uncountable) coproducts. However, for monoidal products this is a different matter. Here one usually defines the structure through a (bi)functor and hence it is not as clear on how to pass to the countable setting.

F.1.5 Outlook

- In Leinster's 'Higher operads, higher categories' the author introduced the notion of unbiased monoidal categories. Unbiased in the sense that the monoidal operation was not just defined in terms of binary and nullary operations, but that one can take arbitrary (finite) monoidal products (the link to operads is rather straightforward). An extension to the infinite setting can be made by suitably generalizing the definition of Leinster to transfinite ordinals. It should be examined if equation F.5 can be obtained as the defining property for a monoidal functor between ω -ary² unbiased monoidal categories.
- The study of the combination of monoid structures on posets (or in fact lattices) culminates in the definition of *quantales*. It might be interesting to study this further.
- The structures that we encountered above are in fact not mere monoidal posets. They carry more structure. They not only have a bottom element (which plays the role of monoidal unit), but they also contain a top element and admit all joins/meets. They form so-called **complete quasi-monoidal lattices** which form the basic notion of fuzzy topology. The application of fuzzy topology (or fuzzy sets) to probability theory and the quantification of uncertainty is not new. It would make sense if these are connected.
- The whole idea of monoidal posets (and their applications) was established in the book "Seven Sketches in Compositionality" (and preceding work) by Fong & Spivak. A thorough study of the relevant chapters might help.

 $^{^{2}\}omega$ being the first transfinite ordinal, i.e. the ordinal type of N.

List of Symbols

The following symbols are used throughout the summary:

Abbreviations

BCH Baker-Campbell-Hausdorff
CFT conformal field theory
LIVF left-invariant vector field

NDR neighbourhood deformation retract

OPE operator product expansion

Operations

Adjoint representation of a Lie group G. ad $_X$ Adjoint representation of a Lie algebra \mathfrak{g} .

e identity element of a group

 $\Gamma(E)$ set of global sections of a fibre bundle E

 $\operatorname{Par}_t^{\gamma}$ parallel transport map with respect to the curve γ

 $\begin{array}{ll} \partial X & \text{boundary of a topological space } X \\ \overline{X} & \text{closure of a topological space } X \\ X^{\circ}, \mathring{X} & \text{interior of a topological space } X \end{array}$

 $\sphericalangle(\cdot,\cdot)$ angle between two vectors

 $X \times Y$ cartesian product of the sets X and Y $\mathbb{1}_X$ identity morphism on the object X

 \approx is approximately equal to

 \hookrightarrow is included in \cong is isomorphic to

 \mapsto mapsto

Collections

 $C_p^{\infty}(M)$ ring of smooth functions $f:M\to\mathbb{R}$ on a neighbourhood of $p\in M$ set of continuous functions between two topological spaces X and Y

Diff category of smooth manifold.

 D^n standard n-disk

 \mathcal{E} nd endomorphism operad **Grpd** category of groupoids

 $\operatorname{Hol}_p(\omega)$ holonomy group at p with respect to the connection ω

hTop Homotopy category

LIST OF SYMBOLS 698

Law category of Lawvere theories

Lie category of Lie groups

category of Lie algebras

 \mathfrak{X}^L space of left-invariant vector fields on a Lie group

LX Free loop space on X. **Man**^p category of C^p -manifolds

NC The simplicial nerve of a small category C.

 $\mathbf{Open}(X)$ category of open subsets of a topological space X $\mathbf{Psh}(\mathbf{C})$, $\widehat{\mathbf{C}}$ category of presheaves on a (small) category \mathbf{C} $\mathbf{Sh}(X)$ Category of sheaves over a topological space X.

 Δ The simplex category. S^n standard n-sphere

 T^n standard *n*-torus, i.e. Cartesian *n*-fold product of S^1

Top category of topological spaces

 $U(\mathfrak{g})$ Universal enveloping algebra of a Lie algebra \mathfrak{g} .

 $\mathbf{Vect}(X)$ Category of vector bundles over a topological space X.

 \emptyset empty set

 $\pi_n(X, x_0)$ n^{th} homotopy space over X with basepoint x_0 .

[a,b] closed interval [a,b[open interval

 ΩX (Based) loop space on X.

 $\Omega^k(M)$ $C^{\infty}(M)$ -module of differential k-forms on the manifold M.

 $\mathfrak{X}(M)$ $C^{\infty}(M)$ -module of vector fields on the manifold M.

Bibliography

- [1] William S. Massey. A Basic Course in Algebraic Topology. Springer.
- [2] Will J. Merry. Algebraic topology. https://www.merry.io/algebraic-topology.
- [3] Stephen B. Sontz. Principal Bundles: The Classical Case. Springer.
- [4] Frederic Schuller. Lectures on the geometric anatomy of theoretical physics. https://www.youtube.com/channel/UC6SaWe7xe0p31Vo8cQG1oXw.
- [5] Derek Sorensen. An introduction to characteristic classes. http://derekhsorensen.com/docs/sorensen-characteristic-classes.pdf, 2017.
- [6] Peter May. A note on the splitting principle. *Topology and its Applications*, 153(4):605--609, 2005.
- [7] Arun Debray. Characteristic classes. https://web.ma.utexas.edu/users/a.debray/lecture_notes/u17_characteristic_classes.pdf.
- [8] Jean-Luc Brylinski. Loop Spaces, Characteristic Classes and Geometric Quantization. Birkhauser.
- [9] Richard W. Sharpe. Differential geometry: Cartan's generalization of Klein's Erlangen program, volume 166. Springer Science & Business Media, 2000.
- [10] Edwin J Beggs and Shahn Majid. Quantum Riemannian Geometry. Springer, 2020.
- [11] Marc Henneaux and Claudio Teitelboim. Quantization of gauge systems. Princeton university press, 1992.
- [12] Mark Hovey. Model categories. Number 63. American Mathematical Soc., 2007.
- [13] Gregory M. Kelly. Basic concepts of enriched category theory, volume 64. CUP Archive, 1982.
- [14] Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic learning in a random world. Springer Science & Business Media, 2005.
- [15] Mukund Rangamani and Tadashi Takayanagi. *Holographic Entanglement Entropy*. Springer, 2017.
- [16] Saunders Mac Lane. Categories for the working mathematician, volume 5. Springer Science & Business Media, 2013.
- [17] Peter T. Johnstone. Topos Theory. Dover Publications, 2014.
- [18] Shun-ichi Amari. Information Geometry and Its Applications. Springer Publishing Company, Incorporated, 2016.

[19] Charles W. Misner, Kip S. Thorne, and John A. Wheeler. *Gravitation*. Princeton University Press, 2017.

- [20] Carlo Rovelli and Francesca Vidotto. Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory. Cambridge University Press, 2014.
- [21] John C. Baez, Irving E. Segal, and Zhengfang Zhou. *Introduction to algebraic and constructive quantum field theory*. Princeton University Press, 2014.
- [22] Raoul Bott and Loring W. Tu. Differential Forms in Algebraic Topology. Graduate Texts in Mathematics. Springer New York, 1995.
- [23] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.
- [24] Bruce Blackadar. Operator Algebras: Theory of C*-Algebras and von Neumann Algebras. Springer, 2013.
- [25] Marek Capinski and Peter E. Kopp. *Measure*, integral and probability. Springer Science & Business Media, 2013.
- [26] Georgiev Svetlin. Theory of Distributions. Springer, 2015.
- [27] Gerd Rudolph and Matthias Schmidt. Differential Geometry and Mathematical Physics: Part II. Fibre Bundles, Topology and Gauge Fields. Springer, 2017.
- [28] Martin Schottenloher. A Mathematical Introduction to Conformal Field Theory, volume 759. 2008.
- [29] Dusa McDuff and Deitmar Salamon. *Introduction to Symplectic Topology*. Oxford graduate texts in mathematics. Oxford University Press, 2017.
- [30] John C. Baez and Peter May. Towards Higher Categories, volume 152 of IMA Volumes in Mathematics and its Applications. Springer, 2009.
- [31] Mikhail. M. Kapranov and Vladimir A. Voevodsky. 2-categories and Zamolodchikov tetrahedra equations, volume 56 of Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI, 1994.
- [32] Geoffrey Compère. Advanced lectures on general relativity, volume 952. Springer, 2019.
- [33] Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. *Tensor categories*, volume 205. American Mathematical Soc., 2016.
- [34] David Mumford. The Red Book of Varieties and Schemes: Includes the Michigan lectures (1974) on curves and their Jacobians, volume 1358. Springer Science & Business Media, 1999.
- [35] Charles A. Weibel. An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1994.
- [36] Peter J. Hilton and Urs Stammbach. A Course in Homological Algebra. Springer.
- [37] Antoine Van Proeyen and Daniel Freedman. Supergravity. Cambridge University Press.
- [38] Michael E. Peskin and Daniel V. Schroeder. An Introduction to Quantum Field Theory. Westview Press.
- [39] Nadir Jeevanjee. An Introduction to Tensors and Group Theory for Physicists. Birkhauser.

[40] Yvonne Choquet-Bruhat, Cecile DeWitt-Morette, and Margaret Dillard-Bleick. *Analysis*, *Manifolds and Physics*, *Part 1: Basics*. North-Holland.

- [41] Yvonne Choquet-Bruhat and Cecile DeWitt-Morette. Analysis, Manifolds and Physics, Part 2. North-Holland.
- [42] Herbet Goldstein, John L. Safko, and Charles P. Poole. Classical Mechanics. Pearson.
- [43] Franco Cardin. Elementary Symplectic Topology and Mechanics. Springer.
- [44] Walter Greiner and Joachim Reinhardt. Field Quantization. Springer.
- [45] Walter Greiner. Quantum Mechanics. Springer.
- [46] B. H. Bransden and Charles J. Joachain. Quantum Mechanics. Prentice Hall.
- [47] Heydar Radjavi and Peter Rosenthal. Invariant Subspaces. Dover Publications.
- [48] Max Karoubi. K-Theory: An Introduction. Springer.
- [49] Damien Calaque and Thomas Strobl. *Mathematical Aspects of Quantum Field Theories*. Springer, 2015.
- [50] Ivan Kolar, Peter W. Michor, and Jan Slovak. Normal Operations in Differential Geometry. Springer.
- [51] Stephen B. Sontz. Principal Bundles: The Quantum Case. Springer.
- [52] William Fulton and Joe Harris. Representation Theory: A First Course. Springer.
- [53] Peter Petersen. Riemannian Geometry. Springer.
- [54] Charles Nash and Siddharta Sen. Topology and Geometry for Physicists. Dover Publications.
- [55] Ian M. Anderson. The Variational Bicomplex.
- [56] Paul A. M. Dirac. Generalized hamiltonian dynamics. *Canadian Journal of Mathematics*, 2:129–148, 1950.
- [57] Angelo Vistoli. Notes on grothendieck topologies, fibered categories and descent theory. arXiv:math/0412512, 2004.
- [58] Emily Riehl and Dominic Verity. The theory and practice of reedy categories. *Theory and Applications of Categories*, 29, 2013.
- [59] Emily Riehl. Homotopical categories: from model categories to $(\infty, 1)$ -categories. 2019. arXiv:1904.00886.
- [60] Floris Takens. A global version of the inverse problem of the calculus of variations. *Journal of Differential Geometry*, 14(4):543--562, 1979.
- [61] John Baez and Alexander Hoffnung. Convenient categories of smooth spaces. *Transactions* of the American Mathematical Society, 363(11):5789--5825, 2011.
- [62] John C. Baez and Alissa S. Crans. Higher-dimensional algebra vi: Lie 2-algebras. 2003. arXiv:math/0307263.
- [63] John C. Baez and Aaron D. Lauda. Higher-dimensional algebra v: 2-groups. 2003 arXiv:math/0307200.
- [64] Edward Witten. Supersymmetry and morse theory. J. diff. geom, 17(4):661--692, 1982.

[65] Urs Schreiber. From loop space mechanics to nonabelian strings. arXiv:hep-th/0509163, 2005.

- [66] John C Baez and Urs Schreiber. Higher gauge theory. 2005. arXiv:math/0511710.
- [67] Jade Master. Why is homology so powerful? 2020. arXiv:2001.00314.
- [68] Marcus Berg, Cécile DeWitt-Morette, Shangjr Gwo, and Eric Kramer. The Pin groups in physics: C, P and T. *Reviews in Mathematical Physics*, 13(08):953--1034, 2001.
- [69] Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, and Joydeep Ghosh. Clustering with Bregman divergences. *Journal of machine learning research*, 6(Oct):1705--1749, 2005.
- [70] Jean-Daniel Boissonnat, Frank Nielsen, and Richard Nock. Bregman Voronoi diagrams. Discrete & Computational Geometry, 44(2):281--307, 2010.
- [71] Richard Palais. The symmetries of solitons. Bulletin of the American Mathematical Society, 34(4):339--403, 1997.
- [72] Michael F. Atiyah. Topological quantum field theory. *Publications Mathématiques de l'IHÉS*, 68:175--186, 1988.
- [73] Jens Eisert, Christoph Simon, and Martin B Plenio. On the quantification of entanglement in infinite-dimensional quantum systems. *Journal of Physics A: Mathematical and General*, 35(17):3911--3923, 2002.
- [74] Benoît Tuybens. Entanglement entropy of gauge theories. 2017.
- [75] Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8(3):338 -- 353, 1965.
- [76] John Baez, Alexander Hoffnung, and Christopher Rogers. Categorified symplectic geometry and the classical string. *Communications in Mathematical Physics*, 293:701--725, 2010.
- [77] Charles Rezk. A model for the homotopy theory of homotopy theory. Transactions of the American Mathematical Society, 353(3):973--1007, 2001.
- [78] Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. *J. Mach. Learn.* Res., 9:371---421, 2008.
- [79] Victor Chernozhukov, Kaspar Wüthrich, and Zhu Yinchu. Exact and robust conformal inference methods for predictive machine learning with dependent data. In *Proceedings of the 31st Conference On Learning Theory*, volume 75 of *Proceedings of Machine Learning Research*, pages 732--749. PMLR, 2018.
- [80] Irina Markina. Group of diffeomorphisms of the unite circle as a principal U(1)-bundle.
- [81] Sjoerd E. Crans. Localizations of transfors. 1998.
- [82] Tom Leinster. Basic bicategories. 1998. arXiv:math/9810017.
- [83] Alexander E. Hoffnung. Spans in 2-categories: A monoidal tricategory. 2011. arXiv:1112.0560.
- [84] Eugenia Cheng and Nick Gurski. The periodic table of *n*-categories for low dimensions ii: degenerate tricategories. 2007. arXiv:0706.2307.
- [85] Mehmet B. Şahinoğlu, Dominic Williamson, Nick Bultinck, Michael Mariën, Jutho Haege-man, Norbert Schuch, and Frank Verstraete. Characterizing topological order with matrix product operators. 2014. arXiv:1409.2150.

[86] Dominic J. Williamson, Nick Bultinck, Michael Mariën, Mehmet B. Şahinoğlu, Jutho Haegeman, and Frank Verstraete. Matrix product operators for symmetry-protected topological phases: Gauging and edge theories. *Phys. Rev. B*, 94:205150, 2016.

- [87] Guifré Vidal. Efficient classical simulation of slightly entangled quantum computations. *Phys. Rev. Lett.*, 91, 2003.
- [88] Aaron D. Lauda and Hendryk Pfeiffer. Open-closed strings: Two-dimensional extended TQFTs and Frobenius algebras. *Topology and its Applications*, 155(7):623--666, 2008.
- [89] Domenico Fiorenza. An introduction to the batalin-vilkovisky formalism. 2004 arXiv:math/0402057v2.
- [90] Stefan Cordes, Gregory Moore, and Sanjaye Ramgoolam. Lectures on 2d Yang-Mills theory, equivariant cohomology and topological field theories. arXiv:hep-th/9411210v2.
- [91] Donald C. Ferguson. A theorem of Looman-Menchoff. http://digitool.library.mcgill.ca/thesisfile111406.pdf.
- [92] Holger Lyre. Berry phase and quantum structure. arXiv:1408.6867.
- [93] Florin Belgun. Gauge theory. http://www.math.uni-hamburg.de/home/belgun/Gauge4.pdf.
- [94] Vladimir Itskov, Peter J. Olver, and Francis Valiquette. Lie completion of pseudogroups. Transformation Groups, 16:161--173, 2011.
- [95] Richard Borcherds. Lie groups. https://math.berkeley.edu/~reb/courses/261/.
- [96] Andrei Losev. From Berezin integral to Batalin-Vilkovisky formalism: A mathematical physicist's point of view. 2007.
- [97] Edward Witten. Coadjoint orbits of the Virasoro group. Comm. Math. Phys., 114(1):1--53, 1988.
- [98] Sidney R. Coleman and Jeffrey E. Mandula. All possible symmetries of the S-matrix. *Phys. Rev.*, 159, 1967.
- [99] Emily Riehl. Monoidal algebraic model structures. *Journal of Pure and Applied Algebra*, 217(6):1069--1104, 2013.
- [100] Valter Moretti. Mathematical foundations of quantum mechanics: An advanced short course. *International Journal of Geometric Methods in Modern Physics*, 13, 2016.
- [101] Antonio Michele Miti. Homotopy comomentum maps in multisymplectic geometry, 2021.
- [102] Niclas Sandgren and Petre Stoica. On moving average parameter estimation. Technical Report 2006-022, Department of Information Technology, Uppsala University, 2006.
- [103] John E. Roberts. Spontaneously broken gauge symmetries and superselection rules. 1974.
- [104] Jean Gallier. Clifford algebras, Clifford groups, and a generalization of the quaternions, 2008. arXiv:0805.0311.
- [105] Bozhidar Z. Iliev. Normal frames for general connections on differentiable fibre bundles. arXiv:math/0405004.
- [106] Piotr Stachura. Short and biased introduction to groupoids. arXiv:1311.3866.
- [107] Fosco Loregian. Coend calculus. arXiv:1501.02503.

[108] Nima Amini. Infinite-dimensional Lie algebras. https://people.kth.se/~namini/PartIIIEssay.pdf.

- [109] Peter Selinger. Lecture notes on lambda calculus.
- [110] Nigel Hitchin. Lectures on special lagrangian submanifolds. https://arxiv.org/abs/math/9907034v1, 1999.
- [111] Olivia Caramello. Lectures on topos theory at the university of Insubria. https://www.oliviacaramello.com/Teaching/Teaching.htm.
- [112] Jonathan R. Shewchuk. An introduction to the conjugate gradient method without the agonizing pain. Technical report, 1994.
- [113] PASCAL LAMBRECHTS.
- [114] Chris Tiee. Contravariance, covariance, densities, and all that: An informal discussion on tensor calculus. https://ccom.ucsd.edu/~ctiee/notes/tensors.pdf, 2006.
- [115] Emily Riehl. Homotopy (limits and) colimits. http://www.math.jhu.edu/~eriehl/hocolimits.pdf.
- [116] Andreas Gathmann. Algebraic geometry. https://www.mathematik.uni-kl.de/~gathmann/class/alggeom-2019/alggeom-2019.pdf.
- [117] Stacks project. https://stacks.math.columbia.edu/.
- [118] The nlab. https://ncatlab.org/nlab.
- [119] Wikipedia. https://www.wikipedia.org/.

Index

	1.1
*-algebra, see algebra, involutive	object, 91
A_{∞} -space, 85	Adam, 133
C^k -topology, see also Whitney	adapted
L_{∞} -algebra, 327, 328	chart, see natural chart
Δ -complex, 141	process, 506
Σ -type, 105	additive
α -divergence, 532	category, 78
χ^2 -test, 528	functor, 78
∂ -lemma, 454	adherent point, 114
σ	adiabatic
additivity, 209	theorem, 613
algebra, $28, 498$	adjoint, 254, 292, 296, 459
finite, 210	representation, 354
f-divergence, 532	adjugate matrix, 260
n-plectic manifold, 438	adjunction, 53, 75
étale morphisms, 117	monadic, 57
Čech	strong, 72
cohomology, 149	Ado, 350
2-vector space	affine
Baez-Crans, 325	algebra, 363
Kapranov-Voevodsky, 325	space, 173
	Akaike information criterion, 528
2	Alexandrov compactification, 122
group, 492	algebra, 84, 249
groupoid, 492	involutive, 295
Abel	of sets, 28
	over a monad, 56
Abelian group, 36	over an operad, 85
identity for ODE's, 234 Abelian	algebraic, 172
	set, 174, 177
category, 79	almost everywhere, 209
Abelianization, 37	alternator, 327
absorption, 588	amalgamation, 41
accessible, 167	,
accumulation point, see also limit point	Ambrose-Singer, 415
action, 468, 564	analytic, 198, 205
Einstein-Hilbert, 604	analytic continuation, 206
Holst, 606	anchor, 492
Palatini, 606	angle, 255
action-angle coordinates, 574	annulus, 205
acyclic, 89, 150, 157	antipode, 309

antisymmetry, 274, 326	integral, 491
	bath, 660
arc	•
connected, see path-connected length, 333	Bayes, 499, 506
argument, 203	Beck's monadicity theorem, 57 Bell state, 631
principle, 208	,
	Beppo Levi, 216
arity, 85 arrow, 326	Berezin
Artin	integral, 318
ring, 45	Bergner model structure, 164
Artin-Wedderburn, 46	Bernoulli, see also distribution
Arzelà-Ascoli, 127	number, 420
associahedron, 330	Berry
associated associated	connection, 629
	phase, 628
bundle, 402 vector bundle, 376	Bessel
	correction, 513, 520
asymptotic 220	differential equation, 237
curve, 339	function, 237
expansion, 201 Atiyah-Adams, 480	generating function, 237
Atiyah-Guillemin-Sternberg, 445	inequality, 286
Atiyah-Hirzebruch, 480	Bessel-Hagen, see symmetry
Atiyah-Jänich, 475	beta function, 201
Atiyah-Segal, 658	Betti number, 138
Atkinson, 294	bialgebra, 308
atlas, 341	Bianchi identity, 414, 415, 431
atom, 24, 222	bias, 519
attaching space, 119	bicrossed product, 40, 310
augmentation, 90	Bienaymé, 503
autocorrelation, 551	bijection, 26
automorphism, 251	bimorphism, 63
quantum, 611	biproduct, 77
autoregressive model, 552	birational, see rational
autoregressive model, 002	Birkhoff, see also ergodic, 604
backshift, see lag	blade, 275, 301
Baker-Campbell-Hausdorff formula, 351	Bloch
ball, 124, 288	walls, 671
Banach	Boardman condition, 154
category, 302	Bochner, 232, 549
space, 284	Bockstein homomorphism, 95
Banach-Alaoglu, 284	Bohr-Sommerfeld, 616, 618
Banach-Schauder, 284	Boltzmann
band gap, 669	entropy, 662
bar construction, 154	transport equation, 569
Barbero-Immirzi constant, 606	Bolzano, 196
barycenter, 136	Boman, 198
base change, 182	bond number, 360
basic, 407	Bonferroni correction, 526
basis, 41, 114, 343, 381	Boolean
Hamel, 248	algebra, 32
Schauder, 248	Borel
Batalin-Vilkovisky	construction, 144

measure, 210, 222	cardinal, 31
set, 114	Cartan, 348
subalgebra, 358	(connection) form, see Maurer-Cartan
subgroup, 266	connection, 459
transform, 201	criterion, 356
Borel-Lebesgue, 120	distribution, 459
Born	geometry, 425
approximation, 630	magic formula, 383, 490
series, 630	matrix, 360, 362, 364
Bott	structure equation, 415
element, 477	subalgebra, 357
periodicity, 302, 477	Cartan-Killing, see Killing form, 361
boundary, 87, 113, 137, 139, 161, 345	Cartesian, see also Euclidean
condition, 233	closed, 71
bounded, 98	•
operator, 291	morphism, 55
totally, 127	square, 63 Casimir
bounded variation, 197	
Bousfield-Kan map, 170	invariant, 365, 621
Bragg, 667	Casorati-Weierstrass, 206
braiding, 67	category, 192
branch, 207	arrow, 54
Bravais lattice, 666	autonomous, 320
Bregman divergence, 532	balanced, 58
Breit-Wigner, see Cauchy distribution	comma, 54
Brillouin function, 671	compact closed, 320
Bromwich	complete, 61, 63
integral, 229	dagger, 54, 321
Brown's representability theorem, 143	enriched, 72, 166
BRST, 582	filtered, 62, 167
Bruhat cell, 178	indexed, 83
bundle, 369, 494	linear, 79
canonical, 376	model, see model category
determinant, 376	reflective, 54
flat, 414	rigid, 320
map, 371, 402, 403	skeletal, 52
vertical, 405	slice, 54
Burali-Forti paradox, 30	Cauchy
	completion, 62
C^* -algebra, 295	criterion, 126
Cahiers topos, 488	distribution, 518
calculus, 312	fundamental theorem, 571
Calkin algebra, 294	integral formula, 205
canonical	integral theorem, 205
class, 419	lemma, 571
coordinates, 565	momentum equation, 571
form, see Liouville	root test, see convergence
transformation, 566	sequence, 126
Cantor-Bernstein-Schröder, 26	stress tensor, 571
capacitance, 593	Cauchy-Riemann conditions, 204
Carathéodory	Cauchy-Schwarz, 217, 284
criterion, 211	causal

closure, 603	diagram, 165
cone, 603	space, 154, 404, 474
causality	Clausius
Granger, 554	inequality, 661
Cayley, 37	cleavage, 55
Cayley-Hamilton, 261	Clebsch-Gordan coefficients, 623
CCR, 611	Clifford
Cech	algebra, 300
cohomology, 396	bundle, 434
groupoid, 190	group, 304
nerve, 190	module, 434, 478
cell, 132	closed, 390
complex, 168	category, 71
center, 37	graph theorem, 292
central	operator, 292
moment, 502	closure, 113, 292
central extension	operator, 57
Lie algebra, 354	relation, 610
central limit theorem, 516	cloven, see cleavage
centralizer, 353	clustering, 546
chain, 29, 139, 141	clutching, 371, 372
complex, 87	co-
group, 137	chain, 392
homotopy, 88	completion, 61
rule, 221	cycle, 369
character, 231	dense, 66
characteristic, 239	power, 74
class, 417	product, 62
curve, 238	vector, 376
equation, 235, 261, 264	co-isotrope, 578
function, 502	coadjoint, 355
polynomial, 261	coalgebra, 307
chart, 341	cobordism, 346
Chebyshev	cocycle
distance, 126	Lie algebra, 354
Cheeger-Simons, see differential character	Codazzi condition, 531
Chen space, 486	Codazzi-Mainardi, 340
Chentsov, 536	codifferential, 428
Chern	codomain, 25
class, 419	cofactor, 260
root, 419	cofibration, 133
Chern-Weil, 418	coherence
Chevalley-Eilenberg algebra, 366	maps, 68
Chevalley-Serre construction, 361	theorem, 67
chiral	cohesion, 193
basis, see Weyl basis	cohomology, 142, 192
matrix, 625	compact support, 392
Christoffel symbols, 339, 399, 409	de Rham, 390
CIS, 444	finite groups, 93
Clairaut, 198	Lie algebra, 366
classifying	Lie group, 421
·	<u> </u>

of groups, 43	conservation law, 470
sheaf, 148	conservative, 267, 270, 561
twisted, 397	consistency, 519
vertical support, 393	contact
Coleman-Mandula, 653	element, 448
collection, 26	form, 459
collinearity, 540	structure, 448
commutativity, 36	continuity, 116, 125, 196
commutator, 37, 250, 265, 355	absolute, 197
compact, 62, 120	absolute continuity, 215, 220
operator, 293	equation, 570
compactification, 121	functor, 61
compatible, 341	contour, 204
bundle charts, 370	contractible, 128
complement, 27, 32, 249, 254, 499	contraction, 273, 641
complete	contradiction, 100
connection, 424	contravariant, 272, 376
measure space, 209	convergence, 98, 116, 124, 197, 199
set, 286	comparison test, 199
space, 126	Gauss's test, 200
vector field, 379	in distribution, 501
complex conjugate, 203	integral test, 200
complex conjugate, 203 complexification, 273	radius, 200
composition, 32, 167	•
of relations, 27	ratio test, 200
•	root test, 200
conditional density, 505 conduction band, 669	converse, 27
	convex, 127, 252, 288, 559
conductivity, 669	convolution, 227, 308 coordinate
cone, 60, 288 confidence, 523	
	ellipsoidal, 589
conformal, 336, see also CFT	ring, 174, 178
group, 435	coorientable, 448
weight, 648	coproduct, 105
congruence, 259	copula, 509
conjugacy class, 37, 259	core, 84
conjugate	coroot, 359
distribution, 523	correlation, 503, 514, see also
gradient, 541, 543	autocorrelation
connected, 119, 130, 153, 194	coset, 37
connection	cosmos, 72
affine, 398, 482	Coulomb
conjuagte, 530	gauge, 598
Ehresmann, 406	countability axiom, 114
flat, 414, 483	covariance, 503, 514, 519
form, 407	covariant, 272, 376
invariant, 400	derivative, 389, 413, 414, 643
Koszul, 398	cover, 26, 128, 184, 342
principal, 406, 411, 495	coverage, 187, 189
pullback, 400, 408	covering
reducible, 416	sieve, 184
connective, 88	space, 117

CP map, see positive, completely	Dedekind
Cramer's rule, 257	completeness, 24
Cramer-Rao, 521	degeneracy map, 152
critical	degree, 172, 314
point, 344	of extension, 47
cross	of factorization, 161
product, 275	of functional, 465
section, 630	of map, 141, 479
cross product, 274	of symmetric group, 37
cumulant, 534	Dehn twist, 347
cumulative distribution function, 500	Deligne, 80
Cuntz algebra, 296	tensor product, 80
cup product, 390, 477	delooping, 404
Curie, 671	of groups, 84
ferromagnetic Curie temperature, 671	of monoidal categories, 82
Curie-Weiss, 671	Delzant, 445
curl, 268	dense, 121, 188
current	coding, 631
presymplectic, 635	density, 376, 387, 500
curvature, 328, 334, 414, 421, 425, 483	operator, 632
Gaussian, 338	derivation, 342, 350
geodesic, 337	derivative, see also Radon-Nikodym
line, 338	of distributions, 226
mean, 338	derived
normal, 336	algebra, 353
principal, 337	category, 157
curve	functor, 90, 156, 160
causal, 603	subgroup, 37
CW	descendant, 651
approximation theorem, 132	descent, 185, 191
complex, 132	determinant, 261, 274, 386, 480
cycle, 38, 87, 138, <i>see also</i> limit	line bundle, see bundle, determinant
cyclic	DeWitt
vector, 297	convention, 318
cyclotron, 595	dg-algebra, 88
d'Alembert	diagonal, 26
ratio test, see convergence	functor, 60
wave operator, 638	diagram, 60, 71
déalage, 315	diameter, 124
Darboux, 437	Dickey-Fuller test, 552
derivative, 408	dielectric constant, 588
function, 196	diffeology, 486
theorem for differentiable functions, 196	diffeomorphism, 342
Day convolution, 74	difference, 552
de Morgan's laws, 27	differentiable, 312
de Rham, 390, 391	differential, 87, 312, 374, see also exterior
cohomology, see cohomology	derivative
shape, 488	character, 421
de Rham-Weil, 149	cohomology, 421
decategorification, 53	crossed module, 493
deck transformation, 117, 130	operator, 398, 458, 463

1.66	
differential form, 380	exponential, 516, 534
Lie algebra-valued, 384	involutive, 482
vector-valued, 384	Kolmogorov, 515
differentiation, 197	mixture, 534
diffiety, 461	normal, 516
diffraction, 666	of k -planes, 380
dimension, 175, 248, 255, 313, 321, 322	Poisson, 517
Dini, 121	runs, 529
dipole, 594	Student- t , 518
Dirac, 217	tensor, 389
adjoint, 625	uniform, 516
algebra, 624	distributor, 51
basis, 624	divergence, 268, 269, 382, 429, 531
bracket, 578	symmetry, 470
comb, 227	theorem, 270
condition, 616	division
,	algebra, 249
conjecture, 577	division ring, 46
delta function, 226, 229	Dixmier-Douady class, 421
equation, 625	Dolbeault
matrix, 624	operator, 451
measure, 222	Dold-Kan correspondence, 155
notation, 609	domain, 25, 196
operator, 434	
spinor, 306	integral, 44
direct	principal ideal, 45
image, 182	dominant, 174
limit, 47	dominated convergence theorem, 215
sum, 77, 249, 375	Doob, 507
system, 47	Drinfel'd
direct product, 273	quantum double, 311
of groups, 39	dual
of distributions, 227	connection, 407
direct sum, 353	$\mathrm{map},252$
of groups, 39	numbers, 46
directed set, 29	object, 320
directional derivative, 267	Poincaré, see Poincaré duality
Dirichlet	self-dual, 278
kernel, 228	space, $252, 320$
problem, 243	Duitstermaat-Heckman localization, 445
discrete	Durbin, 554
	dynamical
object, 194	system, 442
smooth structure, 486	Dynkin diagram, 360
topology, 113	Dyson
disjoint union, 118	series, 628
distance, 124, 217	Dyson series, 627
distinguishable, 115	,
distribution, 224	Eckmann-Hilton
$\chi^2, 517$	argument, 69
Bernoulli, 517	Eckmann-Hilton argument, 35
binomial, 517	Eckmann-Hilton duality, 131
empirical, 514	Edwards correction, 526

-ff4:	D V 169 165
effective	Dwyer-Kan, 163, 165
action, see faithful	Murray-von Neumann, 298
efficient, 521	of categories, 52
eigenfunction	equivariant
expansion, 610	cohomology, 144, 391
eigenvalue, 264	map, 42
eigenvector, 264	ergodic, 210, 216, 296, 551
Eilenberg-MacLane space, 130	principle, 662
Eilenberg-Moore category, 57	error, 518, 525, 527
Eilenberg-Steenrod axioms, 143	function, 516
Eilenberg-Watts, 79	essential
Eilenberg-Zilber, 161	infimum, 213
Einstein	singularity, 206
causality, 656	spectrum, 294
energy relation, 602	supremum, 213
field equations, 604	etale
manifold, 432	space, 117
tensor, 432	Euclidean space, 265
Einstein-Podolsky-Rosen, see Bell state	Euler
element, 56	characteristic, 138
elementary matrix, 262	class, $396, 420$
ellipsoid, 589	formula for normal curvature, 339
elliptic	homogeneous function theorem, 198
operator, 244, 398	integral, 201
PDE, 239	operator, 198, 463, 464
Elmendorf, 136	sequence, 377
embedding, 51, 117, 182, 344	Euler-Lagrange, see Lagrange
theorem, see Freyd-Mitchell	operator, 464
empty, 558	Euler-Poincaré formula, 138
end, 64	event, 499
endofunctor, 50	evolutionary vector field, 462
endomorphism, 250	Ewald sphere, 667
operad, 85	exact, 390
energy, 561, 563, 567, 601, 628, 663	couple, 95
free, 534	functor, 79
entanglement, 631	sequence, 89
entangling surface, 655	exchangeability, 555
entire, 204	excision, 140, 474, 479
entropy	expectation, 502
free, 663	conditional, 504, 506
Rényi, 655	exponentiable, 493
relative, 508	exponential
Shannon, 508	object, 71
environment, 660	exponential map, 351
epimorphism, 58, 63 equality, 101, 103	Ext, 92 extension, 59
equalizer, 62	ideal, 45
equicontinuity, 127	extensionality, 23
equipartition theorem, 664	exterior
equivalence	algebra, 276
adjoint, 54	covariant derivative, 413

derivative 282	flag 266 418
derivative, 382 power, 276	flag, 266, 418
product, 301	flat, 194, 421
extinction, 667	module, 92 Fletcher-Reeves formula, 543
extinction, 607	
Faá di Bruno formula, 461	flow, 379
face, 137	focal
map, 141, 142, 152	ellipse, 589
factor, 298	hyperboloid, 590
factorization	foliation, 380
functorial, 54	Forbenius
lemma, 160	reciprocity, 72
weak, 156	force, 561
faithful, 50	forgetful, 53
action, 43	fork, 62
family, 26	form, 274, 276
Fano plane, 179	formal set, 488
Faraday, 596	formula, 100
Fatou, 215	Fourier
Fermi	generalized series, 286
function, 669	series, 228
golden rule, 630	transform, 230
level, 669	Fréchet
fermion, 34	derivative, 289
Ferrers diagram, see Young diagram	space, 289
Feynman	topology, 115
propagator, 641, 642	Fréchet-Urysohn space, 115
slash, 625	fractional error, 519
fibrant, 157, 159	frame, 247, 375, 402
fibration, 55, 60, 108, 133, 157, 159	bundle, 402
fibre, 369	set theory, 32
bundle, 370	Fredholm
category, 55	operator, 294
derivative, 573	free, 42
intregation, 394	group, 40
product, see also pullback, 372	module, 46
fibred	product, 41
category, 55	Frenet formulas, 334
manifold, 369	Frenet-Serret, 334
field, 44	Frenkel pair, 668, 691
extension, 47	Freudenthal suspension theorem, 132, 133
strength, 598	Freyd-Mitchell, 79
filter, 27	Friedrich, 245
filtered set, see directed set	Frobenius, 249
filtration, 27	algebra, 250
finite, 80	integrability theorem, 380, 482
intersection property, 120	norm, see Hilbert-Schmidt
type, 132, 314, 342	series, 235
Fisher	transformation, 206
information, 521	Fubini, 220
Fisher-Neyman, 536	Fuchs, 235
fixed point, 136	fugacity, 663
. /	○

full, 51	function, 224
subcategory, 49	generating
function, 102	function, 453
field, 174	generating function, 441
functor, 50, 73	generator, 38, 59, 293
category, 51	genus, 419
homotopical, 156	geodesic, 339, 430, 483
monadic, 57	geometric
representable, 51	algebra, 301
fundamental	realization, 153
category, 155	gerbe, 495
class, 387	germ, 115, 145, 146
form, 335, 336, 452	ghost
solution, 226	number, 90, 584, 585
fundamental theorem	Giry monad, 501
for curves, 334	Glivenko-Cantelli, 515
for line integrals, 270	global
of algebra, 172	element, 59
of calculus, 199, 223, 408	sections, 148, 186
of finitely generated groups, 41	GNS construction, 297
of Riemannian geometry, 429	Goldstone bosons, 644
of topos theory, 182	goodness of fit, 528
fusion	graded
category, 322	algebra, 314
fuzzy	commutativity, 314
relation, 558	vector space, 314
set, 558	gradient, 267269, 273, 382
FWHM, 513	Grassmann
	algebra, 276
G	bundle, 377
grading, 323	number, 317
G-structure, 416	Grassmannian, 266
Gâteaux derivative, 289	gravity, 563
Galerkin condition, 542	Green
gamma function, 201	identity, 270
gamma matrix, 306, see Dirac matrix	Green's function, 243
gauge, 491	Greenberger-Horne-Zeilinger state, 632
field, 599	Groenewold-Van Hove, 615
transformation, 371, 402, 597, 599	Grothendieck, see also topos
Gauss	completion, 36
distribution, 516	construction, 56
equation for Riemann curvature, 340	fibration, see fibred category
formula for surfaces, 339	
integral, 202	group, 78, 303 topology, 184
laws for electricity and magnetism, 596	universe, 24
Gel'fand, see also GNS	•
duality, 297	group, 35 action, 42, 494
spectrum, 297	action, 42, 494 alternating, 38
general linear group, 251, 255	- ·
generalized	categorical, 492 fundamental, 129
coordinate, 564 force, 564	•
10100, 304	topological, 114

groupoid, 84, 192	operator, 293
fundamental, 129	Hessian, 400
path, 494	heteromorphism, 51
Н	Heyting
*-algebra, 285	algebra, 32
H-space, 129, 479	Higgs
Hölder	field, 404
conjugates, 218	mechanism, 645
inequality, 218	Hilbert
Haag	basis theorem, 174
duality, 657	bundle, 435
Haar measure, 231	Nullstellensatz, 174
Hadamard	reproducing kernel, 548
lemma, 201	rigged Hilbert space, 613
product, 256	space, 285
Hahn-Banach, 287	Hilbert-Schmidt
Hahn-Jordan, 223	norm, 256, 285
hairy ball theorem, 378	operator, 292
half-form, 450	Hodge
Hamilton	decomposition, 428, 454
action, 444	Laplacian, 428
characteristic function, 567	star, 277
constraint, 636	holomorphic, 204
equations, 565	holonomic
function, 442, 565	basis, 380
principal function, 567	holonomy, 412
vector field, 439	bundle, 412
Hamilton-Jacobi, 443, 567	homeomorphism, 117
harmonic	homogeneous, 198
form, 428	space, 43
Hausdorff	homology, 87
space, 115	reduced, 140
Hauy, 665	relative, 139
Heaviside	simplicial, 138
function, 226	singular, 142
step function, 229	sphere, 140
Heine-Borel, 120, 127	homotopy, 109, 128, 158
Heine-Cantor, 127	(co)limits, 170
Heisenberg	(co)product, 169
system, 657	category, 154, 156, 159, 163, 165
uncertainty relation, 609	diagram, 171
Hellinger-Toeplitz, 293	equivalence, 136, 159
Helly family, 26	fibre, see mapping fibre
Helmholtz	group, 130
conditions, 467	thin, 494
decomposition, 268	type, 128, 130
equation, 237	weak equivalence, 130
free energy, 663	homotopy hypothesis, 131
hemistrict, 327	hook length, 33
Hermitian, 254, 265, see also manifold	Hopf
form, 253, 452	algebra, 309

£1	::
fibration, 133	injective, 25
invariant, 480	metric space, 126
horizontal, 406	morphism, 59
curve, 410	MPS, 674
elements, 367	object, 60
form, 407	inner
lift, 410, 412	product, 253, 277, 301
vector, 406	integrable, 214, 388, 415, 444
horn, 154	G-structure, 416
Householder transformation, 255	complex structure, 450
hull, 252	manifold, 380
Hume-Rothery conditions, 668	integral, 408
Hurewicz, see also fibration, 142	contour, 205
Hurwitz, 250	curve, 378
hyperbolic, 398	form, 390
PDE, 239	signed measure, 223
hyperboloid, 590	stochastic, 507
hypercohomology, 149	subset, 482
hyperconvex, 127	interaction
hypercube, 218	picture, 612
hypothesis, 525	interchange law, 81
ideal, 45	interior, 113, 345
generating set, 45	product, 383
principal, 45	intermediate value theorem, 120
ideal gas constant, 661	internal, 69
identity	hom, 71, 324
operator, 640	interstitial, 668
theorem, 204	intertwiner, 42, 279
image, 25, 182	interval
immersion, 344	category, 54
conjecture, 429	invariant
Inönü-Wigner, 366	polynomial, 367, 368
indecomposable, 80	subgroup, see normal subgroup
independence, 500, 503	inverse
index, 346, 378, 428	image, 182
Fredholm, 294	limit, 47
Miller, 665	quasi, 109
of map, 208	system, 47
refractive, 588	inverse function theorem, 374
indicator function, 213	inversion, 304
indicial equation, 235	formula, 503
induction, 104, 594	invertibility, 553
inductive	involution, 26, 304
limit, 47, 61	irreducible
inertia, 562, 692	algebraic set, 174
infimum, 30	representation, 280
infinitesimal, 483, 488	space, 115
information, 508	irrotational, 268
initial	Isbell duality, 496
	isogeny, 348
part, 180	
injection, 105	isolating integrals, 569

isometry 226 252 428	Kirillov-Kostant-Souriau form, 355
isometry, 336, 352, 428 isomorphism	Klimov-Kostant-Souriau form, 555 Kleene star, 99
theorem, 36	Klein
isotropic, 440	
isotropy group, 42	geometry, 424 Klein-Gordon equation, 638
Itô	Kleisli category, 57
	Kock-Lawvere axiom, 483
isometry, 507	Kolmogorov
Jacobi	randomness, 510
identity, 349	topology, 115
manifold, 439	Kolmogorov-Smirnov test, 515
method, 544	Koszul
Jacobiator, 326	complex, 92
Jacobson radical, 45	connection, 413
Jeans, 569	formula, 429
Jensen's inequality, 253	•
jet, 457	sign, 315
Jimbo-Drinfeld, 311	Koszul-Tate resolution, 93
join, 31, 119	Krull-Schmidt, 80
joint distribution, 504	Krylov subspace, 542
Jones	Kullback-Leibler divergence, 508, 532
relations, 250	kurtosis, 513
Jordan, 208	Kuzmin, 592
Jordan-Chevalley decomposition, 251	ladder operators, 621
Jordan-Hölder, 80	lag, 551
Joyal, 155	Lagrange
Joyal-Tierney calculus, 166	bracket, 439
Joyar-Tierney calculus, 100	derivative, see material derivative
K-theory, 473	equations of motion, 564
Kähler	function, 462
manifold, 452	multipliers, 545
polarization, 442	submanifold, 440
potential, 453	theorem for finite groups, 36
Künneth formula, 139	Lagrange-Charpit equations, 238
Kac-Moody algebra, 362, 364	Lagrangian, 686
Kan	Lambert-Beer, 588
complex, 154	Landau
extension, 65, 75, 77	little-o notation, 681
fibration, 154	language, 99
Karamata, 252	Laplace
Karoubi	determinant formula, 260
envelope, 62	equation, 237
Karush-Kuhn-Tucker conditions, 546	operator, 268, 269, see also
Ken Brown, 160	Laplace-Beltrami
Kepler	transform, 229
problem, 563	Laplace-Beltrami operator, 430
kernel, 36, 63, 78, 251, see also Mercer	Larmor frequency, 595
Killing	lasso, 540
conformal vector, 435	latching object, 161
form, 356, 438	lattice, 31
tensor, 430	Laue
vector, 430, 453	conditions, 666
vector, 400, 400	conditions, 000

indices, 668	estimator, 521
Laurent	ratio, 526
series, 205	limit, 61, 66, 98, 196
law of excluded middle, 32	conical, 76
law of large numbers, 515	cycle, 570
Lawvere	directed, 62, 167
theory, 84	filtered, 62, 167
Lawvere-Tierney, 188	ordinal, see ordinal
lax	•
monoidal functor, 69	point, 114 theorem, 208
•	
leaf, 380, 482	weighted, 75, 84 Lindelöf
least squares, 522	
Lebesgue	space, 120
integral, 213, 214, 388	line
measure, 211, 222	bundle, 375
outer measure, 210	integral, 269
restricted measure, 211	linear
Legendre	fit, 522
transformation, 533, 565, 573	form, 252
Leibniz	functor, 325
construction, 165	Liouville
integral rule, 199, 569	form, 438
rule, 382, 484	theorem on entire functions, 205
length, 221	theorem on phase spaces, 569
Lepage equivalent, 467	Lipschitz
Leray, 150	continuity, 196
level set, 25	group, 304
Levi	little
decomposition, 353	group, 42
subalgebra, 353	Ljung-Box test, 552
Levi-Civita	local
connection, see Riemann connection	diffeomorphism, 489
symbol, 274	homeomorphism, 117
libration, 568	isomorphism, 186
Lie	object, 52, 169
2-algebra, 327	representation, 342
algebra, 326, 328, 349	ring, 45
algebroid, 492	topos, 193
bracket, 326, 349, 380	trivialization, 370
completion, 462	locale, 122
derivative, 379, 383, 490	localic reflection, 188
group, 348	locality, 656
groupoid, 491	localization, 44, 393
pseudogroup, 461	Bousfield, 169
third theorem, 350, 493	Gabriel-Zisman, 156
Lie-Euler operator, 464	hammock, 163
Lie-Poisson equations, 447	locally
Lie-Trotter formula, 351	finite, 210
lift, 59, 108	integrable, 215
lightlike, 603	locally-connected, 193
likelihood, 520	logarithm, 207

1 . 154	M
logos, 154	Maurer-Cartan
Looman-Menchoff, 204	equation, 329, 408
loop	form, 408
algebra, 363	maximum, 30
group, 129	principle, 240
space, 107, 129	Maxwell, 596
Lorentz	Mayer-Vietoris, 143
factor, 601	Mayer-Vietoris sequence, 396
force, 596	mean, 511
Lorenz gauge, 597	value theorem, 198, 214
luff, see wide subcategory	measurable
MacLane	function, 212
	set, 209, 211
strictness theorem, 69	measure, 209, 388
MacLaurin-Cauchy, see convergence	conformity, 555
magma, 35	dominated, 220
magnetization, 594	projection-valued, 298
Majorana	signed, 222
adjoint, 625	singular, 220
majorization, 199	median, 512
manifold, 341, 486, 489	meet, 31
affine, 531	Mellin, 229
complex, 450	memory, 516, 551
Hermitian, 452	Mercer
statistical, 531	kernel, 547
toric, 444	meromorphic, 206
mapping	meta
cone, 119, 134	linear group, 450
cylinder, 119	metaplectic
fibre, 134	_
path space, 119	group, 447
space, 121, 129	structure, 447
mapping space, 164	metric, 124, 335, 404, 427, 485
marginal distribution, 505	coefficients, 335
Markov	metrizable, 125
process, 508	Meusnier, 336
Marsden-Weinstein	microcausality, see locality
reduction, 446	Milnor
martingale, 507	construction, 405
transform, see integral, stochastic	minimal
Maschke, 280	coupling, 643
Maslov-Hörmander, 441	polynomial, 251
Massieu potential, 663	minimum, 30
matched pair, 40	variance bound, 521
matching	Minkowski
family, 185	inequality, 218
object, 161	minor, 260, 261
material	mixing, 210
derivative, 568	mixture, 514
matrix	modal
conjugation, 259	type, 57
exponentiation, 351	modal operator, see closure operator
	-

mode, 512	Morse
model, 84, 88	family, 441
category, 157, 168	function, 346
geometry, 424	lemma, 347
modification, 83	Morse-Bott function, 347
modular	moving average, 553
category, 324	MPO, 675
module	injectivity, 676
category, 324	MPS, 673
crossed, 43, 493	multi
over a group, 42	vector, 301
over a group, 42 over a ring, 46	multiplicity, 265
weight, 357	musical isomorphism, 427
G ,	masion isomorphism, 12.
modus ponens, 100	n-category, 81
moment, 502, 511	Néel, 672
generating function, 502	Nakanishi-Lautrup field, 582
map, 444, 453	natural
momentum, 601	chart, 373
conjugate, 564	pairing, 252
monad, 56, 482	parameter, 333
codensity, 66	transformation, 51, 64, 73
monoid, 35	NDR pair, 140
monoidal	neighbourhood, 114, 482
n-category, 329	nerve, 153, 161
category, 66, 82	net, 29
equivalence, 69	Neumann, 666
functor, 68	function, 237
model category, 166	Newton
monotone, 695	equation, 572
poset, 695	Neyman-Pearson, 526
monomorphism, 58	Nielsen-Schreier, 41
monotone	Nijenhuis
class, 28	tensor, 450
convergence theorem, 215	nilpotent, 35 , 251
Moore	Noether, 470, 565
complex, 155	charge, 635
Moore-Aronszajn, 548	ring, 45
Morera, 205	theorem, 442 , 456 , 573 , 635
Morita equivalence, 303	norm, 283
morphism	normal, 115
geometric, 182	bundle, 374
induced, 355	curvature, 336
logical, 182	equation, 539
of G -sets, 42	ordering, 641
of cones, 60	section, 337
of groups, 36	subgroup, 37
of Lie algebras, 350	vector, 334, 335
of presheaves, 145	normalized
of prevarieties, 176	complex, 155
of varieties, 174, 176	normalizer, 353
of vector spaces, 250	null

set, 209, 388	subgroup, 266
vector, 603	paracompactness, 121
nullity, 251	paradox, 100
Nullstellensatz, 173, see also Hilbert, 178	parallel, 399
numerable, 121, 370	transport, 411, 412
121, 570	parallelizable, 313, 374
observable, 610	
compatibility, 609	parallelogram law, 284
Ohm, 594	parametric family, 514
on-shell, 464	Parceval, 230, 286
one-parameter subgroup, 349	parity, 314, 316, 318, 625
one-to-one, see injective	partition, 26, 32, 34
onto, see surjective	function, 662
open	of unity, 121
algebra, 580	path, 660
system, 660	connected, 120, 137
open mapping theorem, 284	integral, see line integral
operad, 85	lazy, 494
little k -cubes, 86	Pauli
operator	matrix, 622
norm, 291	Pauli-Jordan function, 640
topology, 290	PDE, 460
opposite, 50	nonhomogeneous, 243
orbit, 42, 84	Pearson
category, 136	skewness, see skewness
order, 29, 36, 225, 457, 461	Peiffer, 43
linear, 29	pentagonator, 331
•	percentile, 513
partial, 29 total, 29	periodic
ordinal, 30	extension, 229
orientation, 276, 385, 386, 416	permanent, 612
R, 388	permeability, 595
class, 387	permutation
time, 603	module, 280
orthogonal, 254	perturbation, 83
group, 262	phase space, 567, 636
lifting, 59	Picard, 206
measure, see measure, singular	Picard-Lindelöf, 233
orthonormal, 254	piezoelectricity, 670
oscillation theorem, 236	pin group, 305
osculating circle, 336	pivotal structure, 321
outer	PL manifold, 341
measure, 209, 221	Plancherel, 230
product, 270	Planck, 664
OZI rule, 646	Plebanski form, 606
021 Tule, 040	plot, 486
page, 95	Poincaré, 391
pair, 105	dual, 394
groupoid, 492	duality, 393, 397
pairing, 104	groupoid, 129
Paley-Wiener, 231	lemma, 393, 394
parabolic	map, 571
-	~ ′

,1 FCO	4 1 100 101
recurrence theorem, 569	prestack, 189, 191
Poincaré-Bendixson, 570	prevariety, 176
Poincaré-Birkhoff-Witt, 364	primary
Poincaré-Hopf, 378	field, 648
point, 183	primitive, 408
pointed	element, 307
category, 58	principal
object, 59	axis, 562
tensor category, 322	bundle, 401, 495
topological space, 113	part, 205
type, 107	symbol, 244
Poisson	value, 207, 227
algebra, 349	pro
bracket, 349, 439, 566	functor, 51, 71
manifold, 439	object, 62
map, 446	probability, 498
reduction, 446	conditional, 499
Polak-Ribière formula, 543	distribution, 500
polar	space, 498, 506
form, 203	product, 62, 63, 104
polarization, 441, 670	measure, 219
identity, 284	space, 125
pole, 206	topology, 117
polyhedron, 137	projection, 104, 125, 254, 298, 301, 537
polymorphicity, 102	finite, 298
polynomial, 172	formula, 394
polytabloid, 280	projective
polytope, 445	limit, 47, 61
Pontryagin	module, 46
class, 420	morphism, 59
dual, 231	object, 60
poset, 29, see also monoidal	space, 177
positive, 296	prolongation, 90, 458, 459
completely, 296	propagation, 519
Postnikov tower, 131	proper
potential, 597, 599	model category, 157
presymplectic, 635	proposition, 100, 103
Pouillet, 593	pseudo
power, 74, 525	functor, 82
set, 23, 26	group, 117, 461
Powers, 298	natural transformation, 83
Poynting vector, 598	scalar, 301, 386
predictable, 506	vector, 301, 387
premeasure, 211	pullback, 63, 142, 378, 381, 558
preorder, see order	bundle, 372
prequantum line bundle, 616	pulling-through condition, 676, 677
presentable, 62, 167	Puppe sequence, 479
presentation, 38, 40	pure
presheaf, 50, 145, 189	set, 24
separated, 185	vector, 275
topos, 184	purification, 632

1.6	D 1 440
pushforward, 142, 378, 381	Reeb, 448
pushout, 63, 165	Reedy category, 161
Pythagoras, 537	refinement, 27
Pythagorean theorem, 285	regular, 115
0.70	curve, 333
QR	function, 175
decomposition, 263	morphism, 63
quantity, 496	pseudogroup, 461
quantization, 617	sequence, 93
quantum	value, 344
geometry, 485	regularity, 23
quasi	Reidemeister move, 68
cocommutative, 309	relation, 27, 38
isomorphism, 88	representation, 51, 279, 354
quasicategory, 154	operator, 282
Quillen	residual, 540
adjunction, 158	
bifunctor, 166	residue, 207
model structure, 162	field, 46
quotient	theorem, 208
group, 37	resolution, 90, 157, 164
space, 118	(co)simplicial, 164
space, 110	bar, 94
R-matrix, 309	of the identity, 320, 610
Radó-Moise, 342	resolvent, 294
radial ordering, 649	retract, 58, 128
radical, 353	metric, 126
Radon	Reynolds
measure, 210	transport theorem, 569
Radon-Nikodym, 220, 223	Ricci
random variable, 498, 503	scalar, 432
range, 512	tensor, 431
rank, 251, 256	ridge, 540
of a group, 41	Riemann
of function, 374	cone, 429
of Lie algebra, 358	connection, 429
9 ,	curvature, 431
of vector bundle, 375, 474	curvature tensor, 340
rank-nullity theorem, 251	
rational	integral, 199
function, 174	manifold, 427
homotopy equivalence, 134	Riemann-Lebesgue lemma, 216
map, 174	sphere, 203
space, 134	Riesz
Rayleigh-Schrödinger theory, 627	representation theorem, 285
real numbers, 24	Riesz-Markov-Kakutani, 225
realization, 362	ring, 44
reciprocal lattice, 666	ringed space, 151
recognition principle, 86	Robertson, see Heisenberg uncertainty
rectifiable curve, 205	relation
recursion, 104	Rodrigues' formula, 338
reduced ring, 44	root, 206, 358
reduction, 416, 488	rotation, 568

1 000 000	101
rotor, see curl, 269, 382	space, 121
runs test, 529	state, 631
S-matrix, 323	separated, 115
sample space, 498	separation axioms, 115
Sanov, 538	separator, see generator
Sard, 344	separatrix, 568
scalar, 67, 271	sequence, 196
	sequential
curvature, 432 scale	space, 115
factor, 335	Serre, see also fibration
,	twisting sheaf, 377
scattering	Serre-Swan, 375
factor, 667	sesquilinear, 253
Schatten class, 291	set
scheme, 179	enumerable, 111
Schmidt	shape, 59, 488
decomposition, 631	modality, 194
Schottky	operator, see Weingarten map
defect, 668, 691	sharp
Schrödinger	modality, 194
equation, 608	sheaf, 145, 185, 188, 192
Schubert	acyclic, 148
cell, 178	flabby, 148
decomposition, 178	flasque, see flabby
Schur functor, 281	of sections, 146
Schur's lemma, 80, 280	•
Schur-Weyl duality, 281	soft, 148
Schwartz	sheafification, 147, 186
space, 229	shuffle, 38
Schwarz	sieve, 183
reflection principle, 206	signature, 99, 266, 327
theorem for second derivatives, 198	significance, 525
Schwarzschild metric, 604	Simons-Sullivan, 422
Schwinger	simple
Lippman-Schwinger equation, 630	function, 213
section, 58, 108, 145, 219, 372	Lie algebra, 353
continuous, 147	module, 46
holonomic, 458	object, 80
sectional	ring, 45
curvature, 431	simplex, 136, 153
Segal	category, 152
category, 164	infinitesimal, 482
	singular, 141
space, 164	standard, 137
self-adjoint, 54, 254, 293	•
semidirect product, 39, 353	simplicial
semifree, 88	complex, 137
semigroup, 35	object, 152
seminorm, 287	set, 152
semisimple	simply-connected, 129
module, 46	$\operatorname{singular}$
operator, 251, 264	set, 154
separable	site, 185, 189

sitting instants, 494	spinor, 306, 432, 433
skeleton, 132, 160	norm, 305
skewness, 513	split, 39, 56, 58, 62
Skorokhod, 500	splitting principle, 418
Slater	Stäckel potential, 567
conditions, 546	stabilization hypothesis, 330
determinant, 612	stabilizer, 42
slice, 344	stable
slope, 483	group, 473
Slutsky, 501	isomorphism, 376
small, 49, 167	stack, 189, 191, 192
small object argument, 168	stalk, 117, 146
smash product, 118	generic, 176
smooth, see also formal	standard
algebra, 487	deviation, 502
function, 198, 289, 342, 486	error, 520
locus, 487	standardization, 516
manifold, 341	Stasheff
set, 487, 489	operad, 85
space, 485	state, 296
sober, 123	stationarity, 551, 553
Sobolev Sobolev	steady-state
space, 244	method for boundary conditions, 242
Sokhotski-Plemelj, 205	Steiner, 562
solder form, 415	Stene, 665
solenoidal, 268	step function, 213
solvable, 353	Stiefel
source, 466	manifold, 345
space, 496	Stirling, 202
spacelike, 603	stochastic
span, 63, 247	process, 506
Specht module, 280	Stokes
specification, 23	Kelvin-Stokes theorem, 270
spectral	theorem for differential forms, 389
density, 551	Stone, 293
sequence, 95	theorem on paracompactness, 127
spectral measure, 298	Stone-von Neumann, 611
spectrum, 144, 179, 294	stopping time, 506
Thom, 395	stress-energy tensor, 635
sphere	reduced, 604
bundle, 395	structure
spherical structure, 321	constants, 350, 356
spin	factor, 667
bundle, 433	group, 370
connection, 605	sheaf, 175, 179, 342
frame, 433	Sturm-Liouville theory, 235
group, 305	sub
orbitals, 612	bundle, 372
representation, 306	submersion, 344
structure, 433	theorem, 345
spine, 164	subobject, 58

alogaifier 191	Tomporley Lieb algebra 250
classifier, 181	Temperley-Lieb algebra, 250
successor, 30, 31	tensor
Sullivan	algebra, 271
algebra, 135	category, 322
model, 135	density, 387
sum, 249	operator, see representation operator
super algebra, 314	power, 271
manifold, 489	product, 66, 73, 75, 80, 270, 271, 279,
•	290
operator, 673	type, 271
point, 489 space, 489	tensorial, 407
	term, 99, 101
vector space, 314	test
support, 25, 225	Bonferonni-Dunn, 528
support-vectopr machine, 550	Friedman, 527
supremum, 30, 218	Holm, 528
surjective, 26, 83	McNemar, 526
essentially, 51	Nemenyi, 528
suspension, 118, 314, 481	Wilcoxon, 527
Sweedler, 308	tetrad, 605
Sylvester's law of inertia, 265	Theorema Egregium, 340
symbol, 244	theta characteristic, 419
symmetric 27	thickened space, 488
group, 37	thin, 421
operator, 293	Thom
part, 273	class, 394
symmetric difference, 27	isomorphism, 394, 397
symmetrization postulate, 612	space, 395
symmetry, 470, 611	tidal force operator, 431
dynamical, 442	Tietze extension theorem, 116
kinematical, 442	Tikhonov
symplectic	regularization, 539
form, 437	time series, 551
group, 263	timelike, 603
manifold, 437, 438	tiny, 61
potential, 438	Todd
symplectomorphism, 438	class, 420
system, 660	Tomonaga-Schwinger equation, 627
tangent	Tonelli, 219
bundle, 373	topology, 113
cone, 180	canonical, 186
plane, 335	compact-open, 121
space, see also Zariski, 180, 343, 374	final, 116
vector, 334, 342	initial, 116
Tannaka duality, 310, 321, 323	metric, 124
tautological	weak, 283
bundle, 377	weak-*, 283
tautology, 100	topos, 186
Taylor	cohesive, 194
expansion, 484	elementary, 181
temperature, 662	Grothendieck, 186
, 00 -	Groundidon, 100

petit & gros, 188	lemma, 116
Tor, 92	metrization theorem, 125
torque, 563	space, 115
torsion, 36, 41, 334, 415, 483	F 3.33, 123
torsor, 43, 401	vacancy, see Schottky defect
total	vacuum, 651
derivative, 459	valence band, 669
vector field, 460	validity, 555
totality, 29	valuation, 44
TQFT, 658	Van Holten, 443
trace, 256, 264, 287, 292, 317, 321	variable, 99
transcendental, 172	variance, 502, 512, 518
transducer, 670	estimator, 520
transfer	variation, 222
operator, 673	quadratic, 507
transfor, 83	variational
transgression, 368	form, 467
transitive	variational method, 628
action, 43	variety, 174, 177
component, 84	affine, 176
groupoid, 84	vector, 259
transport, 108	bundle, 372, 375, 404, 474
transposition, 38, 303	space, 283
transversality, 345	vector field, 267, 377, 489
triangle	fundamental, 406
identities, 53	generalized, 459
triangulation, 137	left-invariant, 348
trivial, 371	symplectic, 438
Trotter expansion, see Lie-Trotter formula	Verma module, 365
truth value, 182	vertex, 136
tubular neighbourhood, 375	vertical
twisting, 376	automorphism, 402
Tychonoff	form, 407
compactness theorem, 120	polarization, 441
topology, 117	Vidal, 675
type	vielbein, 605
judgement, 101	Vieta, 173
umbilical point, 338	VIF, 540
uniform	Virasoro algebra, 650
continuity, 125	virial theorem, 664
unit, 44, 53	virtual
type, 104	rank, 474
unitary, 54	vector bundle, 474
univalence, 111	Vlasov equation, 569
universal	Volterra-Vainberg formula, 468
bundle, 404	volume, 218, 385
enveloping algebra, 364	form, 274
property, 271	von Neumann
universe, 99	algebra, 297
urelement, 24	ordinal, 30
Urysohn	Voronoi diagram, 547
- <i>V</i> /	

walking	embedding theorem, 428
arrow, 54	immersion theorem, 428
Watson, 201	product formula, 419
wave	sum, 375
equation, 240	Wick
function, 375	theorem for time-ordered integrals, 641
number, 587	wide
weak	subcategory, 49
derivative, 226	Wien, 664
equivalence, 155, 157	Wigner, 611
inverse, 67, 81	D-function, 622
wedge, 64	Wigner-Eckart, 282
product, 275, 384, 385	,
sum, 118	Wilner-Seitz cell, 666
Weierstrass	Wilson score interval, 525
	winding number, 208, 378, 379
extreme value theorem, 197	Wirtinger, 204
weight, 357	Witt algebra, 647
dominant, 359	word, 40
fundalental, 362	word length, 315
lattice, 362	work, 561
Weil	Wronskian, 234
algebra, 367	
integrality, 616	Yang-Baxter, 68
Weingarten	Yang-Mills
formulas, 337	field, 409
$\mathrm{map},337$	field strength, 415
Weiss, see Curie-Weiss	Yoneda
domain, 671	embedding, 61
well	lemma, 51 , 65
pointed, 59	Young
powered, 58	diagram, 32
well-founded, 30	inequality, 228
well-order, 30	symmetrizer, 281
Weyl	tableau, 33
basis, 624	,
chamber, 359	Zamolodchikov tetrahedron equation, 326
group, 359	Zariski
relations, 611	tangent space, 180
spinor, 306	topology, 175, 177, 179
system, 657	zero
Whitehead, 132, 136, 159	object, 58, 77
lemma, 367	zig-zag, see triangle identity
tower, 131	zilch, 580
Whitney, 342	zone, 665
C^k -topology, 457	Zorn's lemma, 29
5 topology, 101	2011 5 10111110, 20