Lecture Notes: Vectors and Their Basic Operators

Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk

1 Vectors

We will use \mathbb{R} to denote the set of all the real values. Given an integer $d \geq 1$, we use \mathbb{R}^d to denote the d-dimensional space where each dimension has a domain of \mathbb{R} .

Definition 1. A d-dimensional vector is a sequence of d real values $v_1, v_2, ..., v_d$, and is represented as $[v_1, v_2, ..., v_d]$.

Each v_i $(1 \le i \le d)$ in the above definition is called a *component* of the vector. Henceforth, we will use boldfaces to denote vectors, e.g., $\mathbf{v} = [v_1, v_2, ..., v_d]$. We use $\mathbf{0}$ to represent the specific vector [0, 0, ..., 0] called the *zero vector*. We will be concerned primarily with d = 2 and d = 3.

Let $p_1 = (a_1, a_2, ..., a_d)$ and $p_2 = (b_1, b_2, ..., b_d)$ be two points in \mathbb{R}^d . They define a directed segment p_1, p_2 which is the segment connecting p_1 and p_2 , but also carrying a direction from p_1 to p_2 .

Definition 2. Let $\mathbf{v} = [v_1, v_2, ..., v_d]$ be a vector. An **instantiation** of \mathbf{v} is a directed segment $\overrightarrow{p_1, p_2}$ where the points $p_1 = (a_1, a_2, ..., a_d), p_2 = (b_1, b_2, ..., b_d)$ satisfy:

$$v_i = b_i - a_i, \forall i \in [1, d].$$

We say that $\overline{p_1}, \overline{p_2}$ is the **default instantiation** of v if $p_1 = (0, 0, ..., 0)$ and $p_2 = (v_1, v_2, ..., v_d)$.

Note that a vector has an infinite number of instantiations. Consider, for example, $\mathbf{v} = [1, 2, -3]$ (namely, d = 3). Its default instantiation is (0,0,0), (1,2,-3), but (10,20,30), (11,22,27) is also an instantiation, and so is (-5,8,-10), (-4,10,-13).

Definition 3. The length, also called the norm, of a vector $\mathbf{v} = [v_1, v_2, ..., v_d]$ is defined to be

$$|\boldsymbol{v}| = \sqrt{\sum_{i=1}^d v_i^2}.$$

We refer to \mathbf{v} as a unit vector if $|\mathbf{v}| = 1$.

Definition 4. Let $\mathbf{v} = [v_1, v_2, ..., v_d]$ be a vector that is not the zero vector. The direction of a vector $\mathbf{v} = [v_1, v_2, ..., v_d]$ is the ray¹ that emanates from the origin (0, 0, ...0) and passes the point $(v_1, v_2, ..., v_d)$.

 $^{^{1}}$ A ray emanating from a point p is a line segment that has p as an end point, and extends infinitely on the other end.

For example, [1, 2, 3] has the same direction as [2, 4, 6] and [5, 10, 15]. However, [1, 2, 3] does not have the same direction as [-1, -2, -3]. Note that the direction definition does not apply to the zero vector $\mathbf{0}$, which does not have a direction.

Henceforth, we say that a directed segment $\overline{p_1, p_2}$ is parallel to a ray, if the support line² of $\overline{p_1, p_2}$ is parallel to the support line of the ray. We have:

Lemma 1. All instantiations of a vector v are parallel to the direction of v.

Proof. We first show that any instantiation of $v = [v_1, ..., v_d]$ can be obtained from another by translation³. Let $\overrightarrow{p_1}, \overrightarrow{p_2}$ and $\overrightarrow{q_1}, \overrightarrow{q_2}$ be two instantiations of v. Suppose that

$$p_1 = (a_1, ..., a_d), p_2 = (b_1, ..., b_d)$$

 $q_1 = (x_1, ..., x_d), q_2 = (y_1, ..., y_d).$

By definition of instantiation, we know:

$$b_i - a_i = y_i - x_i = v_i, \forall i \in [1, d].$$

Hence:

$$x_i - a_i = y_i - b_i, \forall i \in [1, d].$$

This means that q_1 can be obtained from p_1 by applying the same translation as obtaining q_2 from p_2 . Hence, $\overline{q_1, q_2}$ can be obtained from $\overline{p_1, p_2}$ by translation. It thus follows that the support lines of $\overline{q_1, q_2}$ and $\overline{p_1, p_2}$ are parallel.

The lemma then follows from the obvious fact that the default instantiation of v is parallel to the direction of v.

Remark. It is clear from Definitions 3 and 4 that a vector \boldsymbol{v} has both a length and a direction. Henceforth, we will use the term scalar as a synonym for "real value" (e.g., 15.235, 0, and -3 are all scalars). The introduction of this term is to emphasize that real values do not have directions, unlike vectors.

2 Equality, Addition, Subtraction, and Scalar Multiplication

Definition 5. Two vectors $\mathbf{a} = [a_1, ..., a_d]$ and $\mathbf{b} = [b_1, ..., b_d]$ are equivalent if $a_i = b_i$ for all $i \in [1, d]$.

If a and b are equivalent, we write a = b; otherwise, we write $a \neq b$. Next, we define the operators + and - on vectors.

Definition 6. Given two vectors $\mathbf{a} = [a_1, ..., a_d]$ and $\mathbf{b} = [b_1, ..., b_d]$, we define $\mathbf{a} + \mathbf{b}$ as the vector $[a_1 + b_1, a_2 + b_2, ..., a_d + b_d]$, and $\mathbf{a} - \mathbf{b}$ as the vector $[a_1 - b_1, a_2 - b_2, ..., a_d - b_d]$

It is easy to prove by definition that the + and - operators have the following properties:

• (Commutativity) a + b = b + a.

²The support line of a segment is the line that passes the segment.

³Translating a geometric object (such as a directed segment, line, circle, etc.) is to move the object in \mathbb{R}^d without applying any rotation.

Figure 1: Geometric view of vector addition and subtraction

- (Associativity) (a + b) + c = a + (b + c).
- a b c = a (b + c).
- If c = a + b, then b = c a and a = c b.

The addition operator has an important geometric property:

Lemma 2. Suppose that \overrightarrow{PA} and \overrightarrow{AB} are instantiations of \boldsymbol{a} and \boldsymbol{b} , respectively. Then, \overrightarrow{PB} is an instantiation of $\boldsymbol{a} + \boldsymbol{b}$; see Figure 1a.

Proof. Suppose that $\mathbf{a} = [a_1, a_2, ..., a_d]$ and $\mathbf{b} = [b_1, b_2, ..., b_d]$. Also, assume that $P = (p_1, p_2, ..., p_d)$, $A = (x_1, x_2, ..., x_d)$, and $B = (y_1, y_2, ..., y_d)$.

Because \overrightarrow{PA} and \overrightarrow{AB} are instantiations of \boldsymbol{a} and \boldsymbol{b} , we know by definition that

$$a_i = x_i - p_i, \forall i \in [1, d]$$

 $b_i = y_i - x_i, \forall i \in [1, d].$

It thus follows that

$$a_i + b_i = y_i - p_i, \forall i \in [1, d].$$

Therefore, \overrightarrow{PB} is an instantiation of a + b.

Corollary 1. Suppose that \overrightarrow{PA} and \overrightarrow{PB} are instantiations of a and b, respectively. Then, \overrightarrow{AB} is an instantiation of b - a; see Figure 1b.

Next we define a multiplication operator between a vector and a scalar:

Definition 7. Given a vector $\mathbf{v} = [v_1, ..., v_d]$ and a scalar (a.k.a., a real value) c, we define the product of \mathbf{v} and c—denoted as $c\mathbf{v}$ or $\mathbf{v}c$ —as the vector $[cv_1, cv_2, ..., cv_d]$.

Specifically, we will denote by -v as the product of v and -1. It is easy to prove by definition the following properties:

- $\bullet \ c(\boldsymbol{a} + \boldsymbol{b}) = c\boldsymbol{a} + c\boldsymbol{b}.$
- a + (-a) = 0.

When d = 3, we define 3 special unit vectors:

$$i = [1, 0, 0], j = [0, 1, 0], k = [0, 0, 1].$$

This allows us to represent a 3d vector $\mathbf{v} = [v_1, v_2, v_3]$ as $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$ (note that all the operators in this equation are now well defined). Similarly, when d = 2, we define 2 special unit vectors:

$$i = [1, 0], j = [0, 1].$$

A 2d vector $\mathbf{v} = [v_1, v_2]$ can therefore be represented as $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j}$.