TABLE OF CONTENTS

			Page
1.		uction	
2.		ture Review	
_	2.1	Seismicity	
3.		Work	
	3.1	General	
	3.2	Boring	
	3.3	Photographs	
	3.4	Sampling	
	3.5	Field Test.	
	3.6	Ground Water Table Monitoring	
4.		atory Tests and Results	
5.		Description	
6.		lation Analysis	
	6.1	General	
	6.2	Depth of Foundation	
	6.3	Computation of Bearing Capacity	
	6. 3.1	General	
	6.3.2	Sandy/Clayey Soil (IS 6403:1981)	
	6.3.3	Coefficient of sub-grade reaction(K)	
7.		ation of Peak Ground Acceleration and Probable EQ Magnitude	
8.	-	faction/Densification Suceptability	
	.1	General	
	8.2	Load Characterization	29
	8.3	Resistance Characterization29	
	8.4	Factor of Safety	30
9.		ssions	
10.		nmendations	
11.	Refere	ences	36
LIST	OF FIG	<u>GURE</u>	
Figure	1:	The location map of boreholes	3
Figure	2:	Seismic Zoning Map of Nepal	27
T TOT	OE TA	DI EG	
	OF TA		2
Table		Summary of Field Works	
Table		Test Results Summary Sheet	
Table		Soil Description	
Table		SPT Value Correction of Boreholes	
Table		Bearing capacity factors	
Table		Shape factors	
Table?		Computation of Bearing Capacity	
Table		Coefficient of Sub-grade Reaction	
Table		Summary of Bearing Capacity Analysis	
Table 1		Seismic Zoning factors for selected cities and municipalities	
Table	11:	Liquefaction Trigerring Analysis	31-34

APPENDICES

APPENDIX-A: Borehole Logs APPENDIX-B: Photographs APPENDIX-C: Test Result Sheets

1. INTRODUCTION

This report on Proposed building complex at Kohalpur, Banke discusses the details of soil investigation works and foundation recommendations for its proposed site at various locations. The investigation work included literature review, Percussion drilling, SPT Test, Laboratory Tests and Analysis of various test results to predict the allowable bearing capacity of sub-soil at the proposed Foundation and recommendation of the most suitable foundation compatible to the prevailing soil conditions. The details of the investigation work as well as that of findings of the analysis carried out are presented in the following paragraphs.

2. LITERATURE REVIEW

2.1 Seismicity

It has now been well understood that the Himalaya was formed by the most recent mountain building activity (tectonic activity) in the Earth's history and therefore it is called the youngest mountain on the earth. The origin of the Himalayas began around 70 million years ago at the time when the north moving Indian plate first collided with the Asian plate. Even after the collision the Indian plate continued pushing the Asian plate to the north. In the process Indian plate's leading edge was sliced, broken, folded and uplifted to form the youngest and the highest mountain range on our planet. The Indian plate is constantly moving to the north even at present and converges on Tibet by 50 mm annually (Patriat and Achache, 1984). This convergence builds up a very large storage of energy in the Himalayan region over a period of time. The energy is stored by building up elastic strain or deformation in the rock of the Himalayas and adjoining areas. When the accumulated energy exceeds the ultimate strength of the rock, the rock breaks and suddenly releases the accumulated energy as slip on faults giving rise to earthquakes. Since, as already mentioned above, the mountain building process is still under progress, the Himalayan and surrounding region are seismically one of the most active parts of the earth. The earthquake occurrence data of the last century shows that on an average Nepal was hit by a big earthquake in every 12 years (Nakarmi, 1997).

The Characteristics of seismic ground vibration expected at any locations depends upon the magnitude of earthquake, its depth of focus, distance from the epicenter, characteristics of path through the seismic waves travel and the soil strata on which the structure stand. The random earthquake ground motions, which cause structures to vibrate, can be resolved into three mutually perpendicular directions. The predominant direction of ground vibration is usually horizontal. Nepal lies in the zone which is highly vulnerable in the event earthquake.

3. FIELD WORK

3.1 General

The fieldwork included Percussion drilling, Sampling, SPT Test and Water Table Monitoring. The details of the field works carried out at the building site are presented in **Table 1.**

Soil Investigation of Building Complex at Kohalpur, Banke

Table 1: Summary of Field Works

S No	Boring	BH	Started	Completed	Depth
	Type		On	On	m
1	Percussion	BH1	22-12-2021	23-12-2021	20
2	Percussion	BH2	24-12-2021	25-12-2021	20
3	Percussion	ВН3	26-12-2021	27-12-2021	16
4	Percussion	BH4	28-12-2021	29-12-2021	20

3.2 Boring

The drilling work was carried out using percussion drilling. The boreholes were logged continuously in the field for the all boreholes. The borehole logs included visual classification of soil, records of SPT values at every 150 mm intervals of penetration till a total depth of penetration of 450mm and records position of water table. The field boreholes records were updated after completion of laboratory investigation works. The updated logs for the tower foundation sites are presented in **Appendix A.** The location of boreholes is shown in **Fig 1.**

3.3 Photographs

A set of color photographs was taken to show the record of ground investigation work. The photographs cover the location of borehole, sample recovery and soil samples. The photographs are presented in **Appendix B**.

3.4 Sampling

Before any disturbed samples were taken, the bore holes were washed clean to flush any loose disturbed soil particles deposited during the boring operation. The samples obtained during tests were preserved as representative disturbed samples. The disturbed samples recovered were placed in airtight doubled 0.5 mm thick transparent plastic bags, labeled properly for identification and finally sealed to avoid any loss of moisture. Only then the samples were transportation to the laboratory for further investigation.

3.5 Field Test.

Standard Penetration Test (SPT)

The field test conducted at the site consisted of Standard Penetration Test (SPT). This is most commonly used in-situ test, especially for cohesionless soil which cannot be easily sampled. This test is extremely useful for determining the bearing capacity of cohesionless soil, carrying out liquefaction susceptibility and slope stability analysis.

The test consists of driving into the soil a standard split barrel having 50.8 mm outside diameter, 35 mm inside diameter and of length around 650 mm. The sampler is connected to the end of boring rods. The sampler is driven into the soil at the bottom of a cased borehole by means of a 65 kg hammer falling freely through a height of 760 mm onto the top of the SPT rods. A guide assembly is used for the falling hammer and an anvil is used to transmit the blows of the hammer to the SPT rod. The bore hole must be cleaned up to the depth at which the test is to be conducted such that the test is conducted into the undisturbed material. The casing must not be driven below the level at which the test is to begin.

At first the sampler is driven 150 mm into the soil to seat the sampler and to bypass any disturbed material at the bottom of the borehole. The number of blows required for this depth of penetration is recorded. The sampler is further driven through 150 mm and the number of blows recorded. Likewise, the sampler is once again driven by another 150 mm and the number of blows recorded. The number of blows recorded for the first 150 mm of penetration is disregarded. The number of blows recorded for the last two 150 mm intervals are added. This added value is known as Standard Penetration Number. This is also called as SPT N-Value. If the number of blows reaches 50 before a penetration of 300 mm, no further blows are applied but the actual penetration is recorded. At the end of a test the sampler is withdrawn and the soil is taken out from the sampler. This sample is the best quality disturbed representative sample and is used to carry out tests for the classification of soil. The records of the SPT values obtained are presented in borehole logs in the **Appendix A**.

The recorded SPT values are without any correction of overburden and water table. The test was conducted without using liner. The maximum rod length used was 16.5m. The overburden correction has been carried out as per the IS: 2131 – 1981 chart. The SPT value obtained in the field are corrected for overburden pressure. The SPT was originally developed for cohesionless soils so that undisturbed samples would not have to be taken as it is difficult and costly procedure in such soils.

3.6 Ground Water Table Monitoring

The position of ground water table was measured at each borehole. The water level observed in the bore holes at the end of a 24 hours long period after completion of boring work was taken as the position of ground water table. The depth to ground water table from ground level after 24 hours of completion of boring work for all the boreholes are given in the borehole logs presented in the **Appendix A.**

4. LABORATORY TESTS AND RESULTS

The following laboratory tests were conducted:

- a) Grain Size Analysis (Sieve)
- b) Grain Size Analysis (Hydrometer)
- c) Atterberg's Limits
- d) Bulk Density
- e) Unconfined Compression Test
- f) Specific Gravity
- g) Natural water content
- h) Consolidation Test

The above laboratory tests were performed as per the specification laid down in the IS standard codes. The above tests were conducted at the Geotechnical Laboratory of MULTI Lab (P) Ltd. at Kopundole, Lalitpur. The results of laboratory tests were compiled in the form of Test Results Summary Sheet and are presented in **Table 2.** The test result sheets of individual tests are given in **Appendix C.**

MULTI Lab (P) Ltd.

Table 2. - Test Result Summary Sheet

Project: Soil Investigation of Proposed Nepalgunj Medical College

Location : Kholapur, Banke

ВН			% of	<u> </u>	A	Atterberg Lim	nits	Water	Specific	Unit V		q_{u}	m_{v}
		Gravel	Sand	Fines	LL	PL	PI	Content		Dry	Bulk		
No	m	Graver	Sand	Silt Cla	ıy	I L	11		Gravity	gm/cc	gm/cc	kN/m²	cm²/kg
	0.30-1.50	23.00	6.00	71.00	-	-	-	31.39	-	-	-	-	-
	1.50-3.00	0.00	2.00	98.00	-	-	-	33.06	-	-	-	-	-
	3.00-5.00	0.00	76.00	24.00	-	-	-	19.74	-	-	-	-	-
	5.00-10.50	0.00	2.00	56.00 42.	00 44.00	30.89	13.11	33.98	2.527	1.392	1.833	91.00	0.045
	10.50-12.50	4.00	72.00	24.00	-	-	-	20.90	-	-	-	-	-
	12.50-20.00	0.00	1.00	99.00	-	-	-	29.95	-	-	-	-	-
	0.30-3.00	0.00	2.00	98.00	-	-	-	33.69	-	-	-	-	-
	3.00-6.50	3.00	76.00	20.00	-	-	-	18.96	-	-	-	-	-
	6.50-8.50	42.00	43.00	15.00	-	-	-	14.86	-	-	-	-	-
2	8.50-12.00	2.00	10.00	52.00 36.	36.00	29.00	7.00	31.89	2.530	1.416	1.839	96.00	0.043
	12.00-13.50	7.00	83.00	9.00	-	-	-	13.09	-	-	-	-	-
	13.50-20.00	0.00	1.00	99.00	-	-	-	33.12	-	-	-	-	-
	0.00-1.50	1.00	16.00	83.00	-	-	-	18.04	-	-	-	-	-
	1.50-4.00	2.00	82.00	16.00	-	-	-	16.58	-	-	-	-	-
3	4.00-6.00	0.00	7.00	58.00 35.	35.00	29.63	5.37	32.49	2.536	1.398	1.824	95.00	0.047
	6.00-10.50	0.00	88.00	12.00	-	-	-	17.17	-	-	-	-	-
	10.50-16.00	3.00	4.00	93.00	-	-	-	32.90	-	-	-	-	-
	0.00-1.00	0.00	15.00	85.00	-	-	-	32.41	-	-	-	-	-
	1.00-3.00	65.00	33.00	2.00	-	-	-	12.89	-	-	-	-	-
4	3.00-5.00	31.00	2.00	67.00	-	-	-	26.46	-	-	-	-	-
	5.00-11.00	8.00	71.00	21.00	-	-	-	9.62	-	-	-	-	-
	11.00-20.00	5.00	6.00	51.00 38.	00 42.00	30.49	11.51	33.16	2.531	1.404	1.839	103.00	0.043

MULTI Lab (P). Ltd.

5. SOIL DESCRIPTION

The surface as well as sub-surface geological features existing at the building site is shown in the borehole logs presented in **Appendix A**. The soil types existing at the site are as shown in **Table 3** below.

Table 3: Soil Description

Table :	5: 5011	Description
S	Borehole	Soil Description
No	No	
1	BH-1	The soil from ground level to 0.3 m comprises of top soil. Below that depth, to the depth of 1.5 m soil is brown gravelly clayey silt. Beyond that depth to a depth of 3 m, brown to gray clayey silt with medium plasticity is found. Below that depth, to the depth of 5 m soil is brown silty fine sand. From that depth, brown to gray clayey silt with medium plasticity is found on investigating to a depth of 10.5 m. Below that depth, brown medium to fine sand with traces of gravels is found upto the depth of 12.5 m. On further boring to the investigated depth of 20 m, brown clayey silt of medium plasticity is found.
2	BH-2	The soil from ground level to 0.3 m comprises of top soil. Below that depth, to the depth of 3 m soil is brown clayey silt with medium plasticity. Beyond that depth to a depth of 6.5 m, brown silty fine sand with traces of gravels is found. Below that depth, to the depth of 8.5 m soil is gray to white silty gravelly sand. From that depth, brown to gray clayey silt of low plasticity with traces of gravels is found on investigating to a depth of 12 m. Below that depth, gray to white medium to coarse sand with traces of gravels is found upto the depth of 13.5 m. On further boring to the investigated depth of 20 m, brown clayey silt with medium plasticity is found.
3	BH-3	The soil from ground level to 1.5 m comprises of filling materials including sandy clayey silt. Below that depth, to the depth of 4 m soil is brown silty sand with traces of gravels. Beyond that depth to a depth of 6 m, gray to brown clayey silt of low plasticity is found. Below that depth, to the depth of 10.5 m soil is brown silty fine sand. On further boring to the investigated depth of 16 m, brown clayey silt with medium plasticity with traces of gravels is found.
4	BH-4	The soil from ground level to 1 m comprises of brown clayey silt of low plasticity. Below that depth, to the depth of 3 m soil is gray to white sandy gravels. Beyond that depth to a depth of 5 m, brown gravelly clayey silt is found. Below that depth, to the depth of 11 m soil is gray to white silty sand with traces of gravels. On further boring to the investigated depth of 20 m, brown clayey silt of medium plasticity with traces of gravels is found.

6. FOUNDATION ANALYSIS

6.1 General

Before selecting a given type of foundation vis-à-vis the particular set of conditions prevailing at a site, the probable performance of the foundation must be judged with respect to two types of potentially unsatisfactory behavior. In the first place, the bearing capacity of the foundation soil must be sufficient enough to ensure that the induced total or differential settlement is not detrimental. Secondly, the bearing capacity should be such that excessive shear strain, which could lead to shear failure, does not occur.

6.2 Depth of Foundation

The depth of foundation is governed mainly factors such as scour depth and the nature of the subsoil strata to place the foundation, basement requirement and other environmental factors. Isolated pad foundation is the type of foundation analyzed for the proposed building. The depths taken for the analysis are 1.5m, 2m and 3m for isolated foundation.

6.3 Computation of Bearing Capacity

6. 3.1 General

At the proposed site the soil is clayey to sandy at the different foundation level hence the bearing capacity analysis has been carried out using shear failure criteria as well as settlement criteria. The dimensions of foundation have been taken as 1.5m by 1.5m, 2m by 2m and 3.0m by 3.0m with respect to the presented depth above. The detail is provided in the computation table. The bearing capacity analysis is carried out based on the results of corrected SPT value based on drained shear parameter for granular and undrained parameter for clayey soil respectively. IS 6403:1981 method has been used to determine the bearing capacity from shear failure criteria as well as the settlement criteria and to check the probable allowable settlement the consolidation test data has been used. The detail is provided in the computation table. The bearing capacity analysis is carried out based on the results of SPT Value. The corrected SPT value is shown in **Table 4.** The minimum value obtained from shear failure criteria and settlement criteria has been recommended as the allowable bearing capacity. The details of the relation are presented below;

	SED NEPAI ie Correctio	L MEDICAL C	COLLE	GE				Table
H 1	ic Correcin	511				Location	ı:Kohalpu	r, Ban
Υ	kN/m ³	18	$\Upsilon_{ m sat}$	19	kN/m ³	Corrected SPT	GWT, m	4.5
S.No	Depth, m	Measured SPT	p _o	p _o '	C_N	Value (N)	Rem	arks
1	1.5	6	27	27.00	1.00	6		
2	3	12	54	54.00	1.18	14		
3	4.5	14	81	81.00	1.04	14		
4	6	9	109.5	94.79	1.00	9		
5	7.5	10	138	108.57	1.00	10		
6	9	14	166.5	122.36	1.00	14		
7	10.5	14	195	136.14	0.88	12		
8	12	30	223.5	149.93	0.85	25		
9	13.5	14	252	163.71	1.00	14		
10	15	16	280.5	177.50	1.00	16		
11	16.5	19	309	191.28	1.00	19		
12	18	20	337.5	205.07	1.00	20		
13	19.5	17	366	218.85	1.00	17		
H 2								
Υ	kN/m ³	18	$\Upsilon_{ m sat}$	19	kN/m ³	Corrected SPT	GWT, m	5
S.No	Depth, m	Measured SPT	p _o	p _o '	C_N	Value (N)	Rema	arks
1	1.5	8	27	27.00	1.00	8		
2	3	13	54	54.00	1.18	15		
3	4.5	14	81	81.00	1.04	14		
4	6	20	109	99.19	1.00	20		
5	7.5	32	137.5	112.98	0.95	30		
6	9	10	166	126.76	1.00	10		
7	10.5	12	194.5	140.55	1.00	12		
8	12	29	223	154.33	0.84	24		
9	13.5	13	251.5	168.12	1.00	13		
10	15	11	280	181.90	1.00	11		
11	16.5	12	308.5	195.69	1.00	12		
12	18	13	337	209.47	1.00	13		
13	19.5	12	365.5	223.26	1.00	12		

Table 4

SPT Value Correction

BH 3

Location: Kohalpur, Banke

								,
Υ	kN/m ³	18	$\Upsilon_{ m sat}$	19	kN/m ³	Corrected SPT	GWT, m	5
S.No	Depth, m	Measured SPT	p _o	p _o '	C_N	Value (N)	Ren	arks
1	1.5	15	27	27.00	1.38	20		
2	3	12	54	54.00	1.18	14		
3	4.5	11	81	81.00	1.00	11		
4	6	15	109	99.19	1.00	15		
5	7.5	14	137.5	112.98	0.95	13		
6	9	15	166	126.76	0.90	13		
7	10.5	12	194.5	140.55	1.00	12		
8	12	11	223	154.33	1.00	11		
9	13.5	12	251.5	168.12	1.00	12		
10	15	13	280	181.90	1.00	13		

BH 4

Υ	kN/m ³	18	$\Upsilon_{ m sat}$	19	kN/m ³	Corrected SPT	GWT, m	4
S.No	Depth, m	Measured SPT	p _o	p _o '	C_N	Value (N)	Rem	arks
1	1.5	27	27	27.00	1.38	37		
2	3	15	54	54.00	1.00	15		
3	4.5	13	81.5	76.60	1.00	13		
4	6	32	110	90.38	1.02	32		
5	7.5	29	138.5	104.17	0.98	28		
6	9	31	167	117.95	0.93	28		
7	10.5	30	195.5	131.74	0.89	26		
8	12	12	224	145.52	1.00	12		
9	13.5	14	252.5	159.31	1.00	14		
10	15	12	281	173.09	1.00	12		
11	16.5	13	309.5	186.88	1.00	13		
12	18	14	338	200.66	1.00	14		
13	19.5	12	366.5	214.45	1.00	12		

6.3.2 Sandy/Clayey Soil (IS 6403:1981)

Shear failure Criteria – The net ultimate bearing capacity of the foundation in terms of shear failure is given by the following equation.

a) In case of general shear failure, i.e. for $\phi \ge 36^{\circ}$

$$q_{nu} = cN_c s_c d_c i_c + q(N_q - 1)s_q d_q i_q + 0.5B\gamma N_\gamma s_\gamma d_\gamma i_\gamma R_w$$

b) In case of local shear failure, i.e. for $\phi \le 29^{\circ}$

$$q_{nu} = \frac{2}{3} c N_c' s_c d_c i_c + q (N_q' - 1) s_q d_q i_q + 0.5 B \gamma N_\gamma' s_\gamma d_\gamma i_\gamma R_w$$

The general, local shear failure and intermediate condition are interpolated as per the and Fig:1 of IS 6403:1981.

And, the net safe bearing capacity is given by the following equation.

$$q_{ns} = \frac{q_{nu}}{F.S}$$

Where,

 $q_{nu} = Net ultimate bearing capacity$

 q_{ns} = Net safe bearing capacity

q = Effective pore pressure at the base of foundation

c = Cohesion of soil

 ϕ = Angle of shearing resistance

q = Effective pressure at base of foundation (q=Y.D_f)

B = Width of foundation

L = Length of foundation

 D_f = Depth of foundation

 Υ = Unit weight of soil

 N_c , N_q , N_Y , N'_c , N'_q , N'_Y = Bearing capacity factors

 s_c , s_q , s_Y = Shape factors

 d_c , d_q , d_Y = Depth factors

 i_c , i_q , i_Y = Ground inclination factors

 Rw_1 , Rw_2 = Water table correction factors

F.S = Factor of safety

The bearing capacity factors N_c , N_q , N_Y depends on the angle of shearing resistance of the soil ϕ (in degrees) as in the table given below:

Table 5: Bearing capacity factors

Ф	Nc	Nq	Νγ
0	5.14	1	0
5	6.49	1.57	0.45
10	8.35	2.47	1.22
15	10.98	3.94	2.65
20	14.83	6.4	5.39
25	20.72	10.66	10.88
30	30.14	18.4	22.4
35	46.12	33.3	48.03
40	75.31	64.2	109.41
45	138.88	134.88	271.76
50	266.89	319.07	762.89

For obtaining values of N'_c, N'_q and N'_Y, calculate $\phi' = \tan^{-1}(2/3\tan\phi)$ and read N_c, N_q, N_Y from the table above corresponding to the value of ϕ' instead of ϕ which are the values of N'_c, N'_q and N'_Y respectively.

The shape factors s_c , s_q , s_Υ depends on the type of the base of foundation as in the table given below:

Table 4: Shape factors

<u> </u>	" Shape facto			
S No	Shape Of Base		Shape Factors	
D.110.	Shape of base	$\mathbf{s_c}$	$\mathbf{S}_{\mathbf{q}}$	$\mathbf{s}_{\mathbf{\Upsilon}}$
i)	Continuous strip	1.00	1.00	1.00
ii)	Rectangle	1 + 0.2 B/L	1 + 0.2 B/L	1 - 0.4 B/L
iii)	Square	1.3	1.2	0.8
iv)	Circle	1.3	1.2	0.6

The depth factors d_c , d_q , d_Υ depends on the angle of shearing resistance of the soil ϕ , base width B and the depth of foundation D_f as given below:

$$\begin{split} d_c &= 1 + 0.2 \, D_f / B \, \sqrt{N_\phi} \\ d_q &= d_\gamma = 1 + 0.1 \, D_f / B \, \sqrt{N_\phi} \\ d_q &= d_\gamma = 1 + 0.1 \, D_f / B \, \sqrt{N_\phi} \end{split} \qquad \text{for } \phi < 10^\circ \end{split}$$

Where,

$$N_{\phi} = \tan^2(\pi/4 + \phi/2)$$

The ground inclination factors i_c , i_q , i_γ depends on the inclination of load with vertical α and given as below:

$$i_c = i_q = \left(1 - \frac{\alpha^{\circ}}{90^{\circ}}\right)^2$$

$$i_{\gamma} = \left(1 - \frac{\alpha^{\circ}}{\phi^{\circ}}\right)^{2}$$

Where,

 α° = inclination of the load with vertical

The effect of water table is considered as follows:

- a) If the water table is likely to remain at or below a depth of $(D_f + B)$ beneath the ground level surrounding the footing then W' = 1.
- b) If the water table is located at a depth D_f or likely to rise above the base of footing then the value of W' shall be taken as 0.5.
- c) If the water table is likely to remain at depth $D_f < D_w < (D_f + B)$, then the value of W' be obtained by linear interpolation.

The bearing capacity computation has been done for the worst water table condition in line with the saturation of base of the shallow foundation during the monsoon.

Settlement Criteria (IS: 8009 (Part I) –1976)

Granular soil

To check bearing capacity of granular soil on the basis of settlement criteria for the probable allowable settlement for different sizes based on standard penetration test is carried out.

Clayey soil

To check bearing capacity on the basis of settlement criteria of clayey soil the following relation can been used. To determine probable allowable settlement for different sizes based on consolidation test the relation presented below is to be used.

$$\delta = m_v * \Delta p * D_s$$

Where,

 δ = Expected Settlement

 m_v = Coefficient of volume compressibility

 Δp = Increase in Pressure Ds = Significant Depth

Using the appropriate relationships suggested above the analyses was carried out for 65mm allowable settlement. The bearing capacity is computed for the worst condition. The details of the analysis are shown in **Table 7**.

Table 7

Isolated Foundation With Different Sizes And Depths

Location: Kohalpur, Banke

Description	Unit	Symbol					Data					Remarks
BH no	-	-					BH 1					
Soil Type				Cohesive			Cohesive			Granular		
Depth	m	$D_{\rm f}$	1.5	1.5	1.5	2	2	2	3	3	3	
Width	m	В	1.5	2	3	1.5	2	3	1.5	2	3	
Length	m	L	1.5	2	3	1.5	2	3	1.5	2	3	
Unit Weight of Soil	kN/m ³	γ	18	18	18	18	18	18	18	18	18	
Saturated Unit Weight of Soil	kN/m ³	γ_{sat}	19	19	19	19	19	19	19	19	19	
Depth to water Table	m	Dw	0	0	0	0	0	0	0	0	0	
Undrained shear strength	kN/m ²	Cu	45	45	45	45	45	45	0	0	0	
Design SPT Value	-	N_{design}	10	11	10	14	14	12	14	12	11	
	-	S_{c}	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	
Shape factors	-	S_{q}	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	
	-	S_{γ}	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	
	-	d_c	1.20	1.15	1.10	1.27	1.20	1.13	1.71	1.53	1.35	
Depth factors	-	d_{q}	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.27	1.17	
	-	d_{γ}	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.27	1.17	
Angle of internal friction	degrees	ф	0	0	0	0	0	0	31	31	30	
	-	N_c	5.14	5.14	5.14	5.14	5.14	5.14	21.66	21.66	18.08	
Bearing Capacity factors	-	N_q	1.00	1.00	1.00	1.00	1.00	1.00	11.79	11.79	8.88	
	-	N_{γ}	0.00	0.00	0.00	0.00	0.00	0.00	13.15	13.15	8.81	
Water Table Correction Factor	-	W'	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
Effective overburden	kN/m ²	q'	13.79	13.79	13.79	18.38	18.38	18.38	27.57	27.57	27.57	
Net Ultimate Bearing capacity	kN/m ²	q_{nu}	360.83	345.79	330.76	380.87	360.83	340.78	579.43	571.55	417.57	
Factor of Safety	-	F	3	3	3	3	3	3	3	3	3	
Net Safe Bearing capacity	kN/m2	q_{ns}	120	115	110	127	120	114	193	191	139	

Description	Unit	Symbol					Data					Remarks
Depth to Center of First Clay Layer	m	Dc	0.75	0.75	0.75	0.50	0.50	0.50	2.13	2.50	3.25	
Thickness of First Compressible Layer	m	D_{s}	1.50	1.50	1.50	1.00	1.00	1.00	0.25	1.00	2.50	
Equivalent Width	m	Be	2.25	2.75	3.75	2.00	2.50	3.50	3.63	4.50	6.25	
Equivalent Length	m	Le	2.25	2.75	3.75	2.00	2.50	3.50	3.63	4.50	6.25	
Increase in Pressure	kN/m ²	Dp	95.56	95.74	80.64	143.44	143.36	102.86	573.43	143.41	57.37	
Expected Settlement of First Layer	mm	δ1	65	65	54	65	65	46	65	65	65	
Depth to Center of Second Clay Layer from FL	m	Dc	-	-	4.00	-	-	3.75	-	-	-	
Thickness of Second Compressible Layer	m	D_s	-	-	1.00	-	-	1.50	-	-	-	
Equivalent Width	m	Be	-	_	7.00	-	-	6.75	-	-	-	
Equivalent Length	m	Le		-	7.00	-	_	6.75	-	-	-	
Increase in Pressure	kN/m ²	Dp	-	-	23.14	-	-	27.65	-	-	-	
Expected Settlement of Second Layer	mm	δ2	-	-	10	-	-	19	-	-	-	
Total Expected Settlement	mm	δ	65	65	65	65	65	65	65	65	65	
Coefficient of Volume Compressibility	m ² /kN	m_{V}	0.00045	0.00045	0.00045	0.00045	0.00045	0.00045	0.00045	0.00045	0.00045	
Net safe Bearing Capacity	kN/m ²	q_{ns}	215	181	126	255	224	140	3349	726	249	
COMPUTATION OF BEARING CAP	ACITY	FROM	SETTLE	EMENT C	RITERIA	1						
			0=11=			_						
Description	Unit	Symbol					Data					Remarks
Description Allowable settlement	Unit		-	-	-	<u>-</u>	Data -	-	50	50	50	Remarks
*	1	Symbol	-	-	-		Data - -	-	50 0.50	50 0.50	50 0.50	Remarks
Allowable settlement	1	Symbol S	- - -	-	- -	-	-	- - -				Remarks
Allowable settlement Water Table correction Factor	mm - kN/m²	Symbol S W'	- - -	-	-	-	-	- - -	0.50	0.50	0.50	Remarks
Allowable settlement Water Table correction Factor Net Safe Bearing capacity CHECK AGAINST OVERSTRESSING	mm - kN/m²	Symbol S W' q _{ns}		-	-	-	-		0.50	0.50	0.50	Remarks
Allowable settlement Water Table correction Factor Net Safe Bearing capacity CHECK AGAINST OVERSTRESSING Description	mm - kN/m²	Symbol S W'	3.50	-	-	-	-	3.00	0.50	0.50	0.50	
Allowable settlement Water Table correction Factor Net Safe Bearing capacity CHECK AGAINST OVERSTRESSING Description Depth to top of Clay Layer from FL	mm - kN/m² - Unit	Symbol S W' q _{ns}	- - -	- - -	- - -	- - -	- - - Data	-	0.50 127	0.50 93	0.50 74	
Allowable settlement Water Table correction Factor Net Safe Bearing capacity CHECK AGAINST OVERSTRESSING Description Depth to top of Clay Layer from FL	mm - kN/m² - Unit m	Symbol S W' q _{ns} Symbol DT	3.50	3.50	3.50	3.00	- - - - Data 3.00	3.00	0.50 127 2.00	0.50 93 2.00	0.50 74 2.00	Remarks
Allowable settlement Water Table correction Factor Net Safe Bearing capacity CHECK AGAINST OVERSTRESSING Description Depth to top of Clay Layer from FL Equivalent Width	mm - kN/m ² Unit m m	Symbol S W' q _{ns} Symbol DT Be	3.50 5.00	- - - 3.50 5.50	- - - 3.50 6.50	3.00	- - - - Data 3.00 5.00	3.00	0.50 127 2.00 3.50	0.50 93 2.00 4.00	0.50 74 2.00 5.00	Remarks For safety
Allowable settlement Water Table correction Factor Net Safe Bearing capacity CHECK AGAINST OVERSTRESSING Description Depth to top of Clay Layer from FL Equivalent Width Equivalent Length	mm -	Symbol S W' qns Symbol DT Be Le	3.50 5.00 5.00	3.50 5.50 5.50	3.50 6.50 6.50	3.00 4.50 4.50	Data 3.00 5.00 5.00	3.00 6.00 6.00	0.50 127 2.00 3.50 3.50	0.50 93 2.00 4.00 4.00	0.50 74 2.00 5.00 5.00	Remarks For safety against
Allowable settlement Water Table correction Factor Net Safe Bearing capacity CHECK AGAINST OVERSTRESSING Description Depth to top of Clay Layer from FL Equivalent Width Equivalent Length Pressure on Top of Clay Layer Undrained shear strength	mm -	Symbol S W' q _{ns} Symbol DT Be Le q _T	3.50 5.00 5.00 10.82	3.50 5.50 5.50 15.24	3.50 6.50 6.50 23.49	3.00 4.50 4.50 14.11	Data 3.00 5.00 5.00 19.24	3.00 6.00 6.00 28.40	2.00 3.50 3.50 23.40	2.00 4.00 4.00 23.13	2.00 5.00 5.00 26.72	Remarks For safety against overstressing.
Allowable settlement Water Table correction Factor Net Safe Bearing capacity CHECK AGAINST OVERSTRESSING Description Depth to top of Clay Layer from FL Equivalent Width Equivalent Length Pressure on Top of Clay Layer Undrained shear strength	mm -	Symbol S W' qns Symbol DT Be Le qT Cu	3.50 5.00 5.00 10.82 45.00	3.50 5.50 5.50 15.24 45.00	3.50 6.50 6.50 23.49 45.00	3.00 4.50 4.50 14.11 45.00	Data 3.00 5.00 5.00 19.24 45.00	3.00 6.00 6.00 28.40 45.00	2.00 3.50 3.50 23.40 45.00	2.00 4.00 23.13 45.00	2.00 5.00 5.00 26.72 45.00	Remarks For safety against
Allowable settlement Water Table correction Factor Net Safe Bearing capacity CHECK AGAINST OVERSTRESSING Description Depth to top of Clay Layer from FL Equivalent Width Equivalent Length Pressure on Top of Clay Layer Undrained shear strength Bearing Capacity Factor	mm -	Symbol S W' qns Symbol DT Be Le qT Cu NC	3.50 5.00 5.00 10.82 45.00 5.14	3.50 5.50 5.50 15.24 45.00 5.14	3.50 6.50 6.50 23.49 45.00 5.14	3.00 4.50 4.50 14.11 45.00 5.14	Data 3.00 5.00 5.00 19.24 45.00 5.14	3.00 6.00 6.00 28.40 45.00 5.14	2.00 3.50 3.50 23.40 45.00 5.14	2.00 4.00 4.00 23.13 45.00 5.14	2.00 5.00 5.00 26.72 45.00 5.14	Remarks For safety against overstressing.

Table 7

Isolated Foundation With Different Sizes And Depths

Location: Kohalpur, Banke

Description	Unit	Symbol					Data					Remai
BH no	-	-					BH 2					
Soil Type				Cohesive			Cohesive			Granular		
Depth	m	$D_{\rm f}$	1.5	1.5	1.5	2	2	2	3	3	3	
Width	m	В	1.5	2	3	1.5	2	3	1.5	2	3	
Length	m	L	1.5	2	3	1.5	2	3	1.5	2	3	
Unit Weight of Soil	kN/m ³	γ	18	18	18	18	18	18	18	18	18	
Saturated Unit Weight of Soil	kN/m ³	γ_{sat}	19	19	19	19	19	19	19	19	19	
Depth to water Table	m	Dw	0	0	0	0	0	0	0	0	0	
Undrained shear strength	kN/m ²	Cu	48	48	48	48	48	48	0	0	0	
Design SPT Value	-	N _{design}	11	12	14	15	14	16	14	16	19	
	-	S_c	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	
Shape factors	-	S_{q}	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	
	-	S_{γ}	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	
	-	d_c	1.20	1.15	1.10	1.27	1.20	1.13	1.71	1.54	1.37	
Depth factors	-	d_q	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.27	1.18	
	-	d_{γ}	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.27	1.18	
Angle of internal friction	degrees	ф	0	0	0	0	0	0	31	32	33	
	-	N_c	5.14	5.14	5.14	5.14	5.14	5.14	21.66	25.89	30.78	
Bearing Capacity factors	-	N_{q}	1.00	1.00	1.00	1.00	1.00	1.00	11.79	15.37	19.61	
	-	N_{γ}	0.00	0.00	0.00	0.00	0.00	0.00	13.15	18.71	25.50	
Water Table Correction Factor	-	W'	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
Effective overburden	kN/m ²	q'	13.79	13.79	13.79	18.38	18.38	18.38	27.57	27.57	27.57	
Net Ultimate Bearing capacity	kN/m ²	q_{nu}	384.88	368.85	352.81	406.27	384.88	363.50	579.43	775.30	1055.26	
Factor of Safety	-	F	3	3	3	3	3	3	3	3	3	
Net Safe Bearing capacity	kN/m2	q_{ns}	128	123	118	135	128	121	193	258	352	

D 14	T7 *4	G 1 1					D-4-					D 1
Description	Unit	Symbol		ı	1	1	Data	1	1			Remarks
Depth to Center of First Clay Layer	m	Dc	0.75	0.75	0.75	0.50	0.50	0.50	-	-	-	
Thickness of First Compressible Layer	m	D_{s}	1.50	1.50	1.50	1.00	1.00	1.00	-	-	-	
Equivalent Width	m	Be	2.25	2.75	3.75	2.00	2.50	3.50	-	-	-	
Equivalent Length	m	Le	2.25	2.75	3.75	2.00	2.50	3.50	-	-	-	
Increase in Pressure	kN/m ²	Dp	100.00	100.50	100.48	150.19	150.40	150.61	-	-	-	
Total Expected Settlement	mm	δ	65	65	65	65	65	65	-	-	1	
Coefficient of Volume Compressibility	m^2/kN	m_V	0.00043	0.00043	0.00043	0.00043	0.00043	0.00043	-	ı	ı	
Net safe Bearing Capacity	kN/m ²	q_{ns}	225	190	157	267	235	205	-	-	1	
COMPUTATION OF BEARING (CAPACITY	FROM	SETTLE	EMENT C	RITERIA	4						
scription Unit Symbol Data Rer												
Allowable settlement	mm	S	=	-	-	=	-	=	50	50	50	
Water Table correction Factor	-	W'	-	-	-	-	-	-	0.50	0.50	0.50	
Net Safe Bearing capacity	kN/m ²	q_{ns}	-	-	-	-	-	-	127	140	152	
CHECK AGAINST OVERSTRESS	SING											
Description	Unit	Symbol					Data					Remarks
Depth to top of Clay Layer from FL	m	DT	7.00	7.00	7.00	6.50	6.50	6.50	5.50	5.50	5.50	
Equivalent Width	m	Be	8.50	9.00	10.00	8.00	8.50	9.50	7.00	7.50	8.50	
Equivalent Length	m	Le	8.50	9.00	10.00	8.00	8.50	9.50	7.00	7.50	8.50	_
Pressure on Top of Clay Layer	kN/m ²	q_{T}	4.00	6.07	10.58	4.76	7.10	12.08	5.85	9.95	18.99	For safety
Undrained shear strength	KN/m2	Cu	48.00	48.00	48.00	48.00	48.00	48.00	48.00	48.00	48.00	against overstressing
	-	$N_{\rm C}$	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14	$q_T \le q_S$
Bearing Capacity Factor		t _	246.72	246.72	246.72	246.72	246.72	246.72	246.72	246.72	246.72	41 = 48
Bearing Capacity Factor Net safe Bearing Capacity	kN/m ²	Q _{net}	246.72	240.72	240.72	270.72	240.72	2.0.72	210.72	240.72	270.72	
Bearing Capacity Factor Net safe Bearing Capacity Net Safe Bearing Capacity	kN/m^2 kN/m^2	Q_{net} q_{S}	82.24	82.24	82.24	82.24	82.24	82.24	82.24	82.24	82.24	

Table 7

Isolated Foundation With Different Sizes And Depths

Location: Kohalpur, Banke

Description	Unit	Symbol					Data					Remar
BH no							BH 3					
Soil Type				Granular			Granular			Granular		
Depth	m	$D_{\rm f}$	1.5	1.5	1.5	2	2	2	3	3	3	
Width	m	В	1.5	2	3	1.5	2	3	1.5	2	3	
Length	m	L	1.5	2	3	1.5	2	3	1.5	2	3	
Unit Weight of Soil	kN/m ³	γ	18	18	18	18	18	18	18	18	18	
Saturated Unit Weight of Soil	kN/m ³	γ_{sat}	19	19	19	19	19	19	19	19	19	
Depth to water Table	m	Dw	0	0	0	0	0	0	0	0	0	
Undrained shear strength	kN/m ²	Cu	0	0	0	0	0	0	0	0	0	
Design SPT Value	-	N_{design}	17	15	15	14	12	13	12	13	13	
	-	S_c	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	
Shape factors	-	S_{q}	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	
	-	S_{γ}	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	
	-	d_c	1.36	1.27	1.18	1.47	1.35	1.24	1.71	1.53	1.35	
Depth factors	-	d_q	1.18	1.14	1.09	1.24	1.18	1.12	1.35	1.27	1.18	
	-	d_{γ}	1.18	1.14	1.09	1.24	1.18	1.12	1.35	1.27	1.18	
Angle of internal friction	degrees	ф	32	32	32	31	31	31	31	31	31	
	-	N_c	25.89	25.89	25.89	21.66	21.66	21.66	21.66	21.66	21.66	
Bearing Capacity factors	_	N_{q}	15.37	15.37	15.37	11.79	11.79	11.79	11.79	11.79	11.79	
	-	N_{γ}	18.71	18.71	18.71	13.15	13.15	13.15	13.15	13.15	13.15	
Water Table Correction Factor	-	W'	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
Effective overburden	kN/m ²	q'	13.79	13.79	13.79	18.38	18.38	18.38	27.57	27.57	27.57	
Net Ultimate Bearing capacity	kN/m ²	q_{nu}	399.90	422.86	479.51	381.91	391.55	424.86	579.43	571.55	587.33	
Factor of Safety	-	F	3	3	3	3	3	3	3	3	3	
Net Safe Bearing capacity	kN/m2	q_{ns}	133	141	160	127	131	142	193	191	196	

COMPUTATION OF SETTLEME	NT OF UN	DERLY	ING CL	AY LAYF	E R							
Description	Unit	Symbol			-		Data					Remarks
Depth to Center of First Clay Layer	m	Dc	-	2.75	3.50	2.13	2.50	3.00	1.63	2.00	2.00	
Thickness of First Compressible Layer	m	D_{s}	-	0.50	2.00	0.25	1.00	2.00	1.25	2.00	2.00	
Equivalent Width	m	Be	-	4.75	6.50	3.63	4.50	6.00	3.13	4.00	5.00	
Equivalent Length	m	Le	-	4.75	6.50	3.63	4.50	6.00	3.13	4.00	5.00	
Increase in Pressure	kN/m ²	Dp	-	274.61	68.80	548.95	137.28	68.75	109.90	68.75	68.76	
Total Expected Settlement	mm	δ	-	65	65	65	65	65	65	65	65	
Coefficient of Volume Compressibility	m ² /kN	m_V	-	0.00047	0.00047	0.00047	0.00047	0.00047	0.00047	0.00047	0.00047	
Net safe Bearing Capacity	kN/m ²	q_{ns}	-	1549	323	3206	695	275	477	275	191	
COMPUTATION OF BEARING O	CAPACITY	FROM	SETTLE	EMENT C	RITERIA	4						
Description	Unit	Symbol					Data					Remarks
Allowable settlement	mm	S	50	50	50	50	50	50	50	50	50	
Water Table correction Factor	-	W'	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
Net Safe Bearing capacity	kN/m ²	q_{ns}	163	133	120	127	93	92	102	103	92	
CHECK AGAINST OVERSTRESS	SING											
Description	Unit	Symbol					Data					Remarks
Depth to top of Clay Layer from FL	m	DT	2.50	2.50	2.50	2.00	2.00	2.00	1.00	1.00	1.00	
Equivalent Width	m	Be	4.00	4.50	5.50	3.50	4.00	5.00	2.50	3.00	4.00	
Equivalent Length	m	Le	4.00	4.50	5.50	3.50	4.00	5.00	2.50	3.00	4.00	
Pressure on Top of Clay Layer	kN/m ²	q_{T}	18.75	26.27	35.76	23.38	23.13	33.04	36.79	45.76	51.62	For safety
Undrained shear strength	KN/m2	Cu	47.00	47.00	47.00	47.00	47.00	47.00	47.00	47.00	47.00	against overstressing
Bearing Capacity Factor	-	N_{C}	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14	$q_T \le q_S$
Net safe Bearing Capacity	kN/m ²	Q _{net}	241.58	241.58	241.58	241.58	241.58	241.58	241.58	241.58	241.58	41 – 45
Net Safe Bearing Capacity	kN/m ²	q_{S}	80.53	80.53	80.53	80.53	80.53	80.53	80.53	80.53	80.53	
Remarks	$q_t < q$	_S OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	

Table 7

Spread Foundation With Different Sizes And Depths

Location: Kohalpur, Banke

Description	Unit	Symbol					Data					Remark
BH no	-	-					BH 4					
Soil Type				Granular			Granular			Cohesive		
Depth	m	$D_{\rm f}$	1.5	1.5	1.5	2	2	2	3	3	3	
Width	m	В	1.5	2	3	1.5	2	3	1.5	2	3	
Length	m	L	1.5	2	3	1.5	2	3	1.5	2	3	
Unit Weight of Soil	kN/m ³	γ	18	18	18	18	18	18	18	18	18	
Saturated Unit Weight of Soil	kN/m ³	γ_{sat}	19	19	19	19	19	19	19	19	19	
Depth to water Table	m	Dw	0	0	0	0	0	0	0	0	0	
Undrained shear strength	kN/m ²	Cu	0	0	0	0	0	0	51	51	51	
Design SPT Value		N _{design}	21	21	21	15	14	14	14	20	22	
	-	S_c	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	
Shape factors	-	S_{q}	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	
	-	S_{γ}	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	
	-	d_{c}	1.37	1.28	1.18	1.48	1.35	1.24	1.40	1.30	1.20	
Depth factors	-	d_{q}	1.18	1.14	1.09	1.24	1.18	1.12	1.00	1.00	1.00	
	-	d_{γ}	1.18	1.14	1.09	1.24	1.18	1.12	1.00	1.00	1.00	
Angle of internal friction	degrees	ф	33	33	33	32	31	31	0	0	0	
	-	N_c	30.78	30.78	30.78	25.89	21.66	21.66	5.14	5.14	5.14	
Bearing Capacity factors	-	N_q	19.61	19.61	19.61	15.37	11.79	11.79	1.00	1.00	1.00	
	-	N_{γ}	25.50	25.50	25.50	18.71	13.15	13.15	0.00	0.00	0.00	
Water Table Correction Factor	-	W'	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
Effective overburden	kN/m ²	q'	13.79	13.79	13.79	18.38	18.38	18.38	27.57	27.57	27.57	
Net Ultimate Bearing capacity	kN/m ²	q_{nu}	527.63	559.36	636.99	518.57	391.55	424.86	477.09	443.02	408.94	
Factor of Safety	-	F	3	3	3	3	3	3	3	3	3	
Net Safe Bearing capacity	kN/m2	q_{ns}	176	186	212	173	131	142	159	148	136	

COMPUTATION OF SETTLEME	NT OF UN	DERLY	ING CL	AY LAYI	ER							
Description	Unit	Symbol					Data					Remarks
Depth to Center of First Clay Layer	m	Dc	1.88	2.25	2.50	1.63	2.00	2.00	1.00	1.00	1.00	
Thickness of First Compressible Layer	m	D_s	0.75	1.50	2.00	1.25	2.00	2.00	2.00	2.00	2.00	
Equivalent Width	m	Be	3.38	4.25	5.50	3.13	4.00	5.00	2.50	3.00	4.00	
Equivalent Length	m	Le	3.38	4.25	5.50	3.13	4.00	5.00	2.50	3.00	4.00	
Increase in Pressure	kN/m ²	Dp	200.10	100.10	75.27	120.04	75.00	75.24	75.24	75.11	75.38	
Total Expected Settlement	mm	δ	65	65	65	65	65	65	65	65	65	
Coefficient of Volume Compressibility	m ² /kN	m_V	0.00043	0.00043	0.00043	0.00043	0.00043	0.00043	0.00043	0.00043	0.00043	
Net safe Bearing Capacity	kN/m ²	q_{ns}	1013	452	253	521	300	209	209	169	134	
COMPUTATION OF BEARING C	APACITY	FROM	SETTLE	EMENT C	RITERIA	4						
escription Unit Symbol Data Re												Remarks
Allowable settlement	mm	S	50	50	50	50	50	50	-	-	-	
Water Table correction Factor	-	W'	0.50	0.50	0.50	0.50	0.50	0.50	-	-	-	
Net Safe Bearing capacity	kN/m ²	q_{ns}	211	189	173	145	116	104	-	-	-	
CHECK AGAINST OVERSTRESS	SING											
Description	Unit	Symbol					Data					Remarks
Depth to top of Clay Layer from FL	m	DT	1.50	1.50	1.50	1.00	1.00	1.00	8.00	8.00	8.00	
Equivalent Width	m	Be	3.00	3.50	4.50	2.50	3.00	4.00	9.50	10.00	11.00	
Equivalent Length	m	Le	3.00	3.50	4.50	2.50	3.00	4.00	9.50	10.00	11.00	
Pressure on Top of Clay Layer	kN/m ²	q_{T}	43.97	60.88	76.84	52.33	51.58	58.54	3.96	5.91	9.97	For safety
Undrained shear strength	KN/m2	Cu	51.00	51.00	51.00	51.00	51.00	51.00	51.00	51.00	51.00	against overstressing
Bearing Capacity Factor	-	N _C	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14	5.14	$q_T \le q_S$
Net safe Bearing Capacity	kN/m ²	Q _{net}	262.14	262.14	262.14	262.14	262.14	262.14	262.14	262.14	262.14	41 – 45
Net Safe Bearing Capacity	kN/m ²	q_S	87.38	87.38	87.38	87.38	87.38	87.38	87.38	87.38	87.38	
Remarks	q _t <q< td=""><td>_s OK</td><td>OK</td><td>OK</td><td>OK</td><td>OK</td><td>OK</td><td>OK</td><td>OK</td><td>OK</td><td>OK</td><td></td></q<>	_s OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	

6.3.3 Coefficient of sub-grade reaction(K)

For the design of foundation the sub-grade modulus can be used which is defined as the unit pressure required to produce a unit settlement. This can be determined through plate load test directly which is both costly and time consuming hence indirectly through empirical relation proposed by Bowles or standard charts proposed by different designers it can be easily determined. The detail of the calculation based on the relation presented below and the computed values are presented in table 8 below.

i) Bowle's equation as:

$$_{\mathbf{i})}K = 25*(SF)*q_{all}$$

Where,

K = Modulus of subgrade rxn KN/m³ qall = allowable bearing capacity KN/m²

FS = Factor of safety

ii) Design chart:

Table 8: Coefficient of Sub-grade Reaction

2 40010 01 0001110101	or or our grade redection	
Soil	Туре	Ks(MN/m ³)
	Loose	8-25
Sand(dry or moist)	Medium	25-125
	Dense	125-375
	Loose	10-15
Sand Submerged	Medium	35-40
	Dense	130-150
	Stiff(qu=100-200KN/m ²)	12-15
Clay	Very Stiff(qu=200-400KN/m ²)	25-50
	Hard(qu>400KN/m²)	>50

A Summary of bearing capacity is given in **Table 9** below.

	Summary Of Bearing Capacity of Isolated Foundation With Different Sizes And Depths														
Bore Hole	Soil Type	Depth(m)	Foundation	Unit Wt(Y)	Angle of internal	Cohesion	Net Safe Be	aring Capacity	Allowable Bearing	Modulus of subgrade					
Bole Hole	Son Type	Depui(iii)	Size(B×L)	(kN/m^2)	Friction(Ø)	С	Shear (kN/m ²)	Settlement (kN/m^2)	Capacity (kN/m ²)	reaction (MN/m ³)					
			1.5 × 1.5	18	0	45	120	215	120	8					
	Cohesive	1.5	2.0×2.0	18	0	45	115	181	115	7					
			3.0×3.0	18	0	45	110	126	110	7					
			1.5×1.5	18	0	45	127	255	125	8					
BH 1	Cohesive	2	2.0×2.0	18	0	45	120	224	120	8					
			3.0×3.0	18	0	45	114	140	110	7					
	Granular		1.5×1.5 2.0×2.0	18	31	0	193	127	125	8					
		3		18	31	0	191	93	90	6					
			3.0×3.0	18	30	0	139	74	70	4					

Table-9

		Summa	ry Of Bearing (Capacity of	Isolated Foundation	on With Dif	ferent Sizes	And Depths		
Bore Hole	Soil Type	Depth(m)	Foundation	Unit Wt(Y)	Angle of internal	Cohesion		earing Capacity	Allowable Bearing	Modulus of subgrade
Dole Hole	Son Type	Depth(III)	Size(B×L) (kN/m^2) Friction(\emptyset)				Shear (kN/m ²)	Settlement (kN/m ²)	Capacity (kN/m ²)	reaction (MN/m ³)
			1.5 × 1.5	18	0	48	128	225	125	8
	Cohesive	1.5	2.0×2.0	18	0	48	123	190	120	8
			3.0×3.0	18	0	48	118	157	115	7
			1.5×1.5	18	0	48	135	267	135	8
BH 2	Cohesive	2	2.0×2.0	18	0	48	128	235	125	8
			3.0×3.0	18	0	48	121	205	120	8
			1.5 × 1.5	18	31	0	193	127	125	8
	Granular	3	2.0×2.0	18	32	0	258	140	135	8
			3.0×3.0	18	33	0	352	152	150	9

Table-9

		Summa	ry Of Bearing C	Capacity of	Isolated Foundation	on With Dif	ferent Sizes	And Depths		
Bore Hole	Soil Type	Donth(m)	Foundation	Unit Wt(Y)	Angle of internal	Cohesion		earing Capacity	Allowable Bearing	Modulus of subgrade
Bole Hole	Son Type	Depth(m)	Size(B×L)	(kN/m^2)	Friction(Ø)	С	Shear (kN/m ²)	Settlement (kN/m ²)	Capacity (kN/m ²)	reaction (MN/m ³)
			1.5 × 1.5	18	32	0	133	163	130	8
	Granular	1.5	2.0×2.0	18	32	0	141	133	130	8
			3.0×3.0	18	32	0	160	120	120	8
			1.5×1.5	18	31	0	127	127	125	8
BH 3	Granular	2	2.0×2.0	18	31	0	131	93	90	6
			3.0×3.0	18	31	0	142	92	90	6
			1.5×1.5	18	31	0	193	102	100	6
	Granular	3	2.0×2.0	18	31	0	191	103	100	6
			3.0×3.0	18	31	0	196	92	90	6

		Summa	ry Of Bearing (Capacity of	Spread Foundatio	n With Dif	ferent Sizes A	And Depths		
Bore Hole	Soil Type	Depth(m)	Foundation	Unit Wt(Y)	Angle of internal	Cohesion	Net Safe Be	aring Capacity	Allowable Bearing	Modulus of subgrade
Bole Hole	Soli Type Beptii(ii	Depth(III)	Size(B×L)	(kN/m ²)	Friction(Ø)	С	Shear (kN/m ²)	Settlement (kN/m^2)	Capacity (kN/m ²)	reaction (MN/m ³)
	Granular 1		1.5×1.5	18	33	0	176	211	175	11
		1.5	2.0×2.0	18	33	0	186	189	185	12
			3.0×3.0	18	33	0	212	173	170	11
			1.5×1.5	18	32	0	173	145	145	9
BH 4	Granular	2	2.0×2.0	18	31	0	131	116	115	7
			3.0×3.0	18	31	0	142	104	100	6
	Cohesive		1.5×1.5 2.0×2.0	18	0	51	159	209	155	10
		3		18	0	51	148	169	145	9
			3.0×3.0	18	0	51	136	134	130	8

7. Evaluation of Peak Ground Acceleration and Probable EQ Magnitude

A strong (7.8), 2015 April 25 earthquake hit Nepal in the area near Barpak, a mountain village between capital Kathmandu and tourist town Pokhara. The earthquake was followed by many powerful aftershocks and a new earthquake (6.7) hit Nepal on Sunday April 26. The earthquakes caused extensive damage to buildings and thousands of deaths and injuries and were even felt in Pakistan, India and Bangladesh. Many (historic) buildings collapsed, temples have been ruined, roads destroyed. Nearly 8000 deaths in Nepal and tens of deaths in India & Tibet. The quake was followed by more than 200 aftershocks and another huge earthquake (7.3) on May 12.

.The Seismic Hazard Map of Nepal as suggested by (NBC 105:2019)) shows that the Peak Ground Acceleration of study area is around 400 gal (0.40g). The Map is shown in Figure 2.

Figure 2: Seismic Zoning Map of Nepal Source: (NBC 105:2019) National Building Code of Nepal

The Seismic Zoning Map of Nepal as presented in fig 2 and table 10 as suggested by Nepal National building code (NBC 105:2019) shows that the Peak Ground Acceleration of area is 400 gal (0.40 g). The table is shown in **Table 10**.

Soil Investigation of Building Complex at Kohalpur, Banke

 Table10:
 Seismic Zoning factors for selected cities and municipalities

(NBC 105:2019)

Cities/Municipalities	PGA	Cities/Municipalities	PGA
Baglung	0.3	Janakpur	0.3
Beni	0.3	Jomsom	0.25
Besishar	0.3	Jumla	0.3
Bharatpur	0.4	Kalaiya	0.3
Bhimdatta	0.3	Kamalamai	0.4
Bhimeshwar	0.3	Kapilbastu	0.3
Bhojpur	0.35	Kathmandu	0.35
Bidur	0.3	Khalanga	0.3
Biratnagar	0.3	Khandbari	0.3
Birendranagar	0.35	Kusma	0.3
Birgunj	0.3	Lahan	0.3
Butwal	0.3	Libang	0.35
Chainpur	0.3	Malangwa	0.3

Where,

0.40g is used in the analysis.

PHA = Peak Horizontal Acceleration in cm/sec²

Using M = 7.6 (assumed for the site), we get,PHA = $400 \text{ cm/sec}^2 = 0.40 \text{g}$ As per the above references the PHA value is 0.40g hence, due to the site specific importance

8. LIQUEFACTION/DENSIFICATION SUCEPTABILITY

8.1 General

The liquefaction phenomena occur in saturated cohesionless soil. The generation of excess pore pressure below water table under undrained condition is a hall mark of liquefaction phenomena. Under earthquake a rapid dynamic loading takes place. As a result there is tendency of saturated sandy soil for densification but it cannot. This trend increases excess pore water pressure in saturated sand to rise and the effective stress to decrease. If the effective stress of soil becomes zero, the soil behaves as a liquid and any weight lying above it sinks in a level ground or soil flows like water in sloppy areas.

In Nepal Laboratory Testing facility for liquefaction analysis is not available. As liquefaction occurs in sands and non-plastic silty sands, simulation of field condition in the laboratory is very much difficult. Thus results of field test is much preferred and widely used.

Over the years a number of approaches to evaluation for potential for initiation of liquefaction haven developed. Out of these, the most common is the **cyclic stress approach** developed H B Seed between 1960s and 1970s at the University of California, Berkley. Liquefaction occurs when cyclic shear stress induced by a certain earthquake exceeds the shear strength of soil.

The cyclic stress approach is conceptually is quite simple. In this approach the earthquake induced loading is expressed in terms of cyclic shear stresses. It is then compared with the liquefaction resistance of the soil which is also expressed in terms of cyclic shear stresses. If the loading exceeds the soil resistance liquefaction is expected to occur.

Soil Investigation of Building Complex at Kohalpur, Banke

Seed and Idriss (1971) has given a simplified procedure to obtain uniform cyclic shear stress for level ground or gently sloping sites using SPT test. Since, then a lot of advancement in the liquefaction study has taken place. Accordingly in this report, simplified procedure for evaluation of liquefaction potential suggested by IS 1893 (Part 1): 2016 has been used.

8.2 Load Characterization

Seed and Idriss (1971) has given a simplified procedure to obtain uniform cyclic shear stress for level ground or gently sloping sites. The suggested relation is:

$$\tau_{max} = \frac{a_{max}}{g} \times \frac{\sigma_v}{\sigma_v'} \times r_d$$

$$au_{cyc} = 0.65 imes rac{a_{max}}{g} imes rac{\sigma_v}{\sigma_v'} imes r_d$$

Where,

 τ_{max} = Maximum shear stress

 a_g = Peak ground surface acceleration

g = Acceleration due to gravity

 σ_v = Total vertical stress

 $\sigma_{\mathbf{v}}' = \text{Effective vertical stress}$

 r_d = Stress reduction factor at the depth of interest

The stress reduction factor is evaluated as:

$$r_d = 1 - 0.00765 \times z$$

for $0 < z \le 9.15 m$

$$r_d = 1.174 - 0.0267 \times z$$

for $9.15 < z \le 23.0 m$

8.3 Resistance Characterization

The cyclic resistance ratio *CRR* is obtained by correcting standard cyclic resistance ratio *CRR*_{7.5} for earthquake magnitude, high overburden stress level and high initial static shear stress using:

$$CRR = CRR_{7.5}(MSF)K_{\sigma}K_{\alpha}$$

Where,

 $CRR_{7.5}$ = standard cyclic resistance ratio for a 7.5 magnitude earthquake

MSF = magnitude scaling factor given by following equation:

$$MSF = 10^{2.24} / M_w^{2.56}$$

 K_{σ} = correction for high overburden stress (required for depth > 15m)

 K_{α} = correction for static shear stresses (only required for sloping ground)

In most of the countries the Standard Penetration test (SPT) has been the most commonly used in-situ test for characterization of liquefaction resistance. The SPT blow count N_{60} for a hammer efficiency of 60 percent is evaluated and normalized to an effective overburden pressure using:

$$(N_1)_{60} = C_N N_{60}$$

Where,

 $(N_1)_{60}$ = Corrected SPT value

 C_N = Overburden Correction Factor given by:

$$C_N = \sqrt{\frac{p_a}{\sigma_v'}} \le 1.7$$

 P_a = Atmospheric pressure

 $\sigma_{v}' =$ Effective vertical stress

 N_{60} = Standard penetration test blow count for a hammer efficiency of 60 percent given

as:

$$N_{60} = NC_{60}$$

 C_{60} = Correction for hammer efficiency given by:

$$C_{60} = \frac{E_m}{0.6 \times E_{ff}}$$

 E_m = Actual hammer efficiency

 E_{ff} = Theoritical free fall hammer efficiency

N = Measured SPT blow count

The effect of fines content FC (in percent) can be rationally accounted by correcting $(N_1)_{60}$ and finding $(N_1)_{60cs}$ as follows:

$$(N_1)_{60cs} = \alpha + \beta (N_1)_{60}$$

Where,

$$\begin{array}{ll} \alpha = 0 & \beta = 1 & \text{for } FC \leq 5 \text{ percent} \\ \alpha = e^{\left(1.76 - \frac{190}{FC^2}\right)} & \beta = 0.99 + \frac{FC^{1.5}}{1000} & \text{for } 5 < FC < 35 \text{ percent} \\ \alpha = 0.5 & \beta = 1.2 & \text{for } FC \geq 35 \text{ percent} \end{array}$$

Hence, Standard Cyclic Resistance Ratio CRR_{7.5} is given by:

$$\mathit{CRR}_{7.5} = \frac{1}{34 - (N_1)_{60CS}} + \frac{(N_1)_{60CS}}{135} + \frac{50}{[10 \times (N_1)_{60CS} + 45]^2} - \frac{1}{200}$$

This equation is valid for $(N_1)_{60} < 30$. For $(N_1)_{60} \ge 30$, clean granular soils are too dense to liquefy and are classed as non-liquefiable

8.4 Factor of Safety

The factor of safety is given by:

$$F = \frac{Cyclic\ shear\ stress\ required\ for\ liquefaction}{Equivalent\ cyclic\ shear\ stress\ induced\ by\ earthquake}$$

Using the above mentioned relationships the analysis is to be carried out.

Liquefaction Trigerring Analysis

BH 1 Location: Kohalpur, Banke

DILL																						LU	cation	ı. Kunarp	oui, Danke
Input Para	meters				Symbol	Unit	Data																		
Pear Groun	d Accelei	ration			a _{max}	-	0.40																		
Earthquake	Magnitu	de, Ritcher			M	-	7.60																		
Water Tabl	e Depth (m)			D_{w}	m	4.50																		
Unit Weigh	t above V	Vater Table			γ	kN/m^3	18.00																		
Unit Weigh	t below V	Water Table			γ_{sat}	kN/m^3	19.00																		
Borehole D	iameter				d	mm	150.00																		
Required C	orrection	for Sampler	r liners		C_s	-	NO																		
Required C	orrection	for High Ov	verburden	Stress	K_{σ}	-	NO																		
Required C	orrection	for Sloping	ground		K_{α}	-	NO																		
SPT Sample	_	Measured	Fines %	Energy Ratio	C _E	C_R	Cs	Св	N ₆₀	σ_{vo}	σ' _{vo}	C_N	(N ₁) ₆₀	Cor	Fines itent	(N ₁) _{60 - CS}	Stress Reduction Coefficien		MSF	\mathbf{K}_{σ}	\mathbf{K}_a	CRR for M = 7.5	CRR	FOS	REMARKS
Number	(m)	N		$\mathbf{E}_{\mathbf{R}}$			-							α	β		t r _d					& σ' _v = 1 atm			
1	1.50	6	98	60	1.00	0.75	1.00	1.05	4.73	27.00	27.00	1.70	8.03	0.50	1.20	10.14	0.99	0.26	0.97	1.00	1.00	0.11	0.11	0.43	NLIQ
1	3.00	12	24	60	1.00	0.80	1.00	1.05	10.08	54.00	54.00	1.37	13.79	4.18	1.11	19.45	0.98	0.25	0.97	1.00	1.00	0.21	0.20	0.79	LIQ
2	4.50	14	24	60	1.00	0.85	1.00	1.05	12.50	81.00	81.00	1.12	13.95	4.18	1.11	19.63	0.97	0.25	0.97	1.00	1.00	0.21	0.20	0.81	LIQ
3	6.00	9	98	60	1.00	0.95	1.00	1.05	8.98	109.50	94.79	1.03	9.27	0.50	1.20	11.62	0.95	0.29	0.97	1.00	1.00	0.13	0.12	NA	NLIQ
4	7.50	10	98	60	1.00	0.95	1.00	1.05	9.98	138.00	108.57	0.96	9.62	0.50	1.20	12.05	0.94	0.31	0.97	1.00	1.00	0.13	0.13	NA	NLIQ
5	9.00	14	98	60	1.00	0.95	1.00	1.05	13.97	166.50	122.36	0.91	12.69	0.50	1.20	15.73	0.93	0.33	0.97	1.00	1.00	0.17	0.16	NA	NLIQ
6	10.50	14	98	60	1.00	1.00	1.00	1.05	14.70	195.00	136.14	0.86	12.66	0.50	1.20	15.69	0.89	0.33	0.97	1.00	1.00	0.17	0.16	NA	NLIQ
7	12.00	30	24	60	1.00	1.00	1.00	1.05	31.50	223.50	149.93	0.82	25.85	4.18	1.11	32.81	0.85	0.33	0.97	1.00	1.00	1.08	1.05	NA	NLIQ
8	13.50	14	99	60	1.00	1.00	1.00	1.05	14.70	252.00	163.71	0.79	11.55	0.50	1.20	14.36	0.81	0.33	0.97	1.00	1.00	0.15	0.15	NA	NLIQ
9	15.00	16	99	60	1.00	1.00	1.00	1.05	16.80	280.50	177.50	0.75	12.67	0.50	1.20	15.71	0.77	0.32	0.97	1.00	1.00	0.17	0.16	NA	NLIQ
10	16.50	19	99	60	1.00	1.00	1.00	1.05	19.95	309.00	191.28	0.73	14.50	0.50	1.20	17.90	0.73	0.31	0.97	1.00	1.00	0.19	0.18	NA	NLIQ
11	18.00	20	99	60	1.00	1.00	1.00	1.05	21.00	337.50	205.07	0.70	14.74	0.50	1.20	18.19	0.69	0.30	0.97	1.00	1.00	0.19	0.19	NA	NLIQ
12	19.50	17	99	60	1.00	1.00	1.00	1.05	17.85	366.00	218.85	0.68	12.13	0.50	1.20	15.05	0.65	0.28	0.97	1.00	1.00	0.16	0.16	NA	NLIQ

PROPOSED NEPAL MEDICAL COLLEGE Liquefaction Trigerring Analysis

BH 2 Location: Kohalpur, Banke

Table 11

DH 2								
Input Para	meters				Symbol	Unit	Data	
Pear Groun	d Acceler	a_{max}	-	0.40				
Earthquake	Magnitue	de, Ritcher			M	-	7.60	
Water Tabl	e Depth (m)			$D_{\rm w}$	m	5.00	
Unit Weigh	t above V	Vater Table			γ	kN/m ³	18.00	
Unit Weigh	t below V	γ_{sat}	kN/m ³					
Borehole D	iameter				d	mm	150.00	
Required C	orrection	for Sampler	liners		C_s	-	NO	
Required C	orrection	for High Ov	erburden S	Stress	K_{σ}	-	NO	
Required C	orrection	for Sloping	ground		K_{α}	-	NO	
SPT Sample	Depth	Measured	Fines %	Energy Ratio	C _E	C_R	Cs	

SPT Sample Number Depth (m)	Denth	Measured		Energy										_	Fines itent		Stress Reduction	GGP				CRR for M = 7.5			
	N	Fines %	Ratio E _R	C_{E}	C_R	Cs	СВ	N ₆₀	σ _{vo}	σ' _{vo}	C _N	(N ₁) ₆₀	α	β	(N ₁) _{60 - CS}	Coefficien t r _d	CSR	MSF	K_{σ}	\mathbf{K}_{a}	& $\sigma'_v = 1$ atm	CRR	FOS	REMARKS	
1	1.50	8	98	60	1.00	0.75	1.00	1.05	6.30	27.00	27.00	1.70	10.71	0.50	1.20	13.35	0.99	0.26	0.97	1.00	1.00	0.14	0.14	0.54	NLIQ
1	3.00	13	20	60	1.00	0.80	1.00	1.05	10.92	54.00	54.00	1.37	14.93	3.61	1.08	19.74	0.98	0.25	0.97	1.00	1.00	0.21	0.20	0.81	LIQ
2	4.50	14	20	60	1.00	0.85	1.00	1.05	12.50	81.00	81.00	1.12	13.95	3.61	1.08	18.68	0.97	0.25	0.97	1.00	1.00	0.20	0.19	0.77	LIQ
3	6.00	20	20	60	1.00	0.95	1.00	1.05	19.95	109.50	94.79	1.03	20.59	3.61	1.08	25.84	0.95	0.29	0.97	1.00	1.00	0.31	0.30	1.04	NLIQ
4	7.50	32	15	60	1.00	0.95	1.00	1.05	31.92	138.00	108.57	0.96	30.79	2.50	1.05	34.77	0.94	0.31	0.97	1.00	1.00	-1.05	-1.02	NA	NLIQ
5	9.00	10	88	60	1.00	0.95	1.00	1.05	9.98	166.50	122.36	0.91	9.06	0.50	1.20	11.38	0.93	0.33	0.97	1.00	1.00	0.13	0.12	NA	NLIQ
6	10.50	12	88	60	1.00	1.00	1.00	1.05	12.60	195.00	136.14	0.86	10.85	0.50	1.20	13.52	0.89	0.33	0.97	1.00	1.00	0.15	0.14	NA	NLIQ
7	12.00	29	9	60	1.00	1.00	1.00	1.05	30.45	223.50	149.93	0.82	24.99	0.56	1.02	25.97	0.85	0.33	0.97	1.00	1.00	0.31	0.30	0.91	LIQ
8	13.50	13	99	60	1.00	1.00	1.00	1.05	13.65	252.00	163.71	0.79	10.72	0.50	1.20	13.37	0.81	0.33	0.97	1.00	1.00	0.14	0.14	NA	NLIQ
9	15.00	11	99	60	1.00	1.00	1.00	1.05	11.55	280.50	177.50	0.75	8.71	0.50	1.20	10.96	0.77	0.32	0.97	1.00	1.00	0.12	0.12	NA	NLIQ
10	16.50	12	99	60	1.00	1.00	1.00	1.05	12.60	309.00	191.28	0.73	9.16	0.50	1.20	11.49	0.73	0.31	0.97	1.00	1.00	0.13	0.12	NA	NLIQ
11	18.00	13	99	60	1.00	1.00	1.00	1.05	13.65	337.50	205.07	0.70	9.58	0.50	1.20	12.00	0.69	0.30	0.97	1.00	1.00	0.13	0.13	NA	NLIQ
12	19.50	12	99	60	1.00	1.00	1.00	1.05	12.60	366.00	218.85	0.68	8.56	0.50	1.20	10.77	0.65	0.28	0.97	1.00	1.00	0.12	0.12	NA	NLIQ

Liquefaction Trigerring Analysis

BH 3 Location: Kohalpur, Banke

Table 11

DHJ																
Input Para	meters				Symbol	Unit	Data									
Pear Groun	d Accelei	ation			a_{max}	-	0.40									
Earthquake	Magnitu	de, Ritcher			M	-	7.60									
Water Tabl	e Depth (m)			$D_{\rm w}$	m	5.00									
Unit Weigh	nt above V	Vater Table			γ	kN/m ³	18.00									
Unit Weigł	nt below V	Vater Table			γ_{sat}	kN/m ³	19.00									
Borehole D	iameter				d	mm	150.00									
Required C	orrection	for Sampler	liners		C_s	-	NO									
Required C	orrection	for High Ov	erburden S	Stress	K_{σ}	-	NO									
Required C	orrection	for Sloping	ground		K_{α}	-	NO									
SPT Sample	Depth	Measured	Fines %	Energy Ratio	C _E	C_R	Cs	C_{B}	N ₆₀	σ_{vo}	σ' _{vo}	C_N	(N ₁) ₆₀		Fines tent	(N ₁
Number	(m)	N	rines 70	E _R	C _E	℃ _R	C _S	C _B	1 1 1 60	Vo	U vo	C _N	(11/60	α	β	(11)
1	1.50	15	16	60	1.00	0.75	1.00	1.05	11.81	27.00	27.00	1.70	20.08	2.77	1.05	2
1	2.00	12	16	60	1.00	0.00	1.00	1.05	10.00	54.00	54.00	1 27	12.70	277	1.05	11

SPT Sample D	Depth	Measured N	Fines %	Energy Ratio	C _E	C_R	C_8	C_{B}	N ₆₀	_	·	C_N	(N ₁) ₆₀	_	Fines itent	(N ₁) ₆₀ cs	$\vec{N}_1)_{60-CS}$ Stress Reduction Coefficien $t r_d$ CSR		MSE	\mathbf{K}_{σ}	К"	CRR for M = 7.5	CRR	FOS	REMARKS
Number				E _R	C _E	C _R	Cs	C _B	1,460	$\sigma_{ m vo}$	σ' _{vo}	CN	(11)60	α	β	(11)60 - CS		WIST		Να	& σ' _v = 1 atm			NEATH INITIAL OF	
1	1.50	15	16	60	1.00	0.75	1.00	1.05	11.81	27.00	27.00	1.70	20.08	2.77	1.05	23.93	0.99	0.26	0.97	1.00	1.00	0.27	0.26	1.02	NLIQ
1	3.00	12	16	60	1.00	0.80	1.00	1.05	10.08	54.00	54.00	1.37	13.79	2.77	1.05	17.30	0.98	0.25	0.97	1.00	1.00	0.18	0.18	0.70	LIQ
2	4.50	11	93	60	1.00	0.85	1.00	1.05	9.82	81.00	81.00	1.12	10.96	0.50	1.20	13.66	0.97	0.25	0.97	1.00	1.00	0.15	0.14	NA	NLIQ
3	6.00	15	12	60	1.00	0.95	1.00	1.05	14.96	109.50	94.79	1.03	15.45	1.55	1.03	17.49	0.95	0.29	0.97	1.00	1.00	0.19	0.18	0.63	LIQ
4	7.50	14	12	60	1.00	0.95	1.00	1.05	13.97	138.00	108.57	0.96	13.47	1.55	1.03	15.45	0.94	0.31	0.97	1.00	1.00	0.16	0.16	0.51	LIQ
5	9.00	15	12	60	1.00	0.95	1.00	1.05	14.96	166.50	122.36	0.91	13.59	1.55	1.03	15.58	0.93	0.33	0.97	1.00	1.00	0.17	0.16	0.49	LIQ
6	10.50	12	93	60	1.00	1.00	1.00	1.05	12.60	195.00	136.14	0.86	10.85	0.50	1.20	13.52	0.89	0.33	0.97	1.00	1.00	0.15	0.14	NA	NLIQ
7	12.00	11	93	60	1.00	1.00	1.00	1.05	11.55	223.50	149.93	0.82	9.48	0.50	1.20	11.88	0.85	0.33	0.97	1.00	1.00	0.13	0.13	NA	NLIQ
8	13.50	12	93	60	1.00	1.00	1.00	1.05	12.60	252.00	163.71	0.79	9.90	0.50	1.20	12.38	0.81	0.33	0.97	1.00	1.00	0.13	0.13	NA	NLIQ
9	15.00	13	93	60	1.00	1.00	1.00	1.05	13.65	280.50	177.50	0.75	10.30	0.50	1.20	12.86	0.77	0.32	0.97	1.00	1.00	0.14	0.13	NA	NLIO

Liquefaction Trigerring Analysis

18.00

19.50

14

12

89

89

60

60

11

12

BH 4 Location: Kohalpur, Banke

Table 11

NLIQ

NLIQ

BH 4																						Lo	catior	<u>ı:Kohalp</u>	ur, Banke
Input Para	meters				Symbol	Unit	Data																		
Pear Groun	d Accelei	ration			a_{max}	-	0.40																		
Earthquake	Magnitu	de, Ritcher			M	-	7.60																		
Water Tabl	e Depth (m)			$D_{\rm w}$	m	4.00																		
Unit Weigh	nt above V	Vater Table			γ	kN/m^3	18.00																		
Unit Weigh	nt below V	Water Table			γ_{sat}	kN/m^3	19.00																		
Borehole D	iameter				d	mm	150.00																		
Required C	orrection	for Sampler	liners		C_s	-	NO																		
Required C	orrection	for High Ov	erburden S	Stress	K_{σ}	-	NO																		
Required C	orrection	for Sloping	ground		K_{α}	-	NO																		
SPT	Depth	Measured		Energy									A.		Fines itent	(A)	Stress Reduction	COR	» ran	•	***	CRR for M = 7.5	CRR	FOS	DELCA DEG
Sample Number	(m)	N	Fines %	Ratio E _R	CE	C_R	Cs	Св	N ₆₀	$\sigma_{ m vo}$	σ' _{vo}	C _N	(N ₁) ₆₀	α	β	(N ₁) _{60 - CS}	Coefficien t r _d	CSR	MSF	K_{σ}	Kα	& $\sigma'_v = 1$ atm			REMARKS
1	1.50	27	2	60	1.00	0.75	1.00	1.05	21.26	27.00	27.00	1.70	36.15	0.00	1.00	36.15	0.99	0.26	0.97	1.00	1.00	-0.20	-0.20	-0.76	NLIQ
1	3.00	15	67	60	1.00	0.80	1.00	1.05	12.60	54.00	54.00	1.37	17.23	0.50	1.20	21.18	0.98	0.25	0.97	1.00	1.00	0.23	0.22	NA	NLIQ
2	4.50	13	67	60	1.00	0.85	1.00	1.05	11.60	81.00	81.00	1.12	12.96	0.50	1.20	16.05	0.97	0.25	0.97	1.00	1.00	0.17	0.17	NA	NLIQ
3	6.00	32	21	60	1.00	0.95	1.00			109.50	94.79	1.03	32.95	3.78	1.09	39.57	0.95	0.29	0.97	1.00	1.00	0.11	0.11	NA	NLIQ
4	7.50	29	21	60	1.00	0.95	1.00			138.00	108.57		27.90	3.78	1.09	34.08	0.94	0.31	0.97	1.00	1.00	-11.56	-11.17	NA	NLIQ
5	9.00	31	21	60	1.00	0.95	1.00	1.05	30.92	166.50			28.09	3.78	1.09	34.30	0.93	0.33	0.97	1.00	1.00	-3.14	-3.03	NA	NLIQ
6	10.50	30	21	60	1.00	1.00	1.00	1.05	31.50	195.00	136.14	0.86	27.13	3.78	1.09	33.25	0.89	0.33	0.97	1.00	1.00	1.57	1.52	NA	NLIQ
7	12.00	12	89	60	1.00	1.00	1.00	1.05	12.60	223.50	149.93	0.82	10.34	0.50	1.20	12.91	0.85	0.33	0.97	1.00	1.00	0.14	0.13	NA	NLIQ
8	13.50	14	89	60	1.00	1.00	1.00	1.05	14.70	252.00	163.71	0.79	11.55	0.50	1.20	14.36	0.81	0.33	0.97	1.00	1.00	0.15	0.15	NA	NLIQ
9	15.00	12	89	60	1.00	1.00	1.00	1.05	12.60	280.50	177.50	0.75	9.50	0.50	1.20	11.91	0.77	0.32	0.97	1.00	1.00	0.13	0.13	NA	NLIQ
10	16.50	13	89	60	1.00	1.00	1.00	1.05	13.65	309.00	191.28	0.73	9.92	0.50	1.20	12.40	0.73	0.31	0.97	1.00	1.00	0.13	0.13	NA	NLIQ

1.05 | 14.70 | 337.50 | 205.07 | 0.70 | 10.32 | 0.50 | 1.20

0.68

8.56

1.05 12.60 366.00 218.85

1.00

1.00

1.00

1.00

1.00

1.00

12.88

10.77

0.50 1.20

0.69

0.65

0.30 0.97

0.28 0.97

1.00 1.00

1.00 1.00

0.13

0.12

NA

0.14

0.12

9. **DISCUSSIONS**

In the project site the soil types encountered during boring are described in detail in **Table 3**, **Section 6**. At the proposed site the soil is clayey to sandy at the different foundation level hence the bearing capacity analysis has been carried out using shear failure criteria as well as settlement criteria for the soil based on the results of corrected averaged corrected SPT value and unconfined strength. For the granular soil IS 6403:1981 method has been used to determine the bearing capacity from shear failure whereas IS: 8009 (Part I) –1976 has been used to determination bearing capacity from the settlement criteria and from the two methods least value has been recommended as the allowable bearing capacity of the soil. The dimensions of foundation have been taken according to the different sizes with respect to their sub-structural requirement.

10. RECOMMENDATIONS

On the basis of foundation analysis the following recommendations have been made.

- A detailed description of soil types existing at the site is provided in **Table 3** in **Section 5**.
- The foundation analyzed is an isolated foundation .
- The depths adopted are 1.5m, 2.0m to 3m with 0.5m of increment.
- The recommended bearing capacities with the foundation classification are given in **Table 9** above.
- The bearing capacity is computed for the expected allowable settlement of as 65mm as per IS: 8009 (Part I).
- The soil at the site is susceptible to liquefaction at the time of major earthquake.
- For the antiliquefaction measures gravel pile of dia 400mm with 12m length is proposed at the C/C spacing of 2m in a triangular pattern.
- MULTI Lab will provide its every assistance in this regard as and when requested at the cost of the employer.
- The foundation designer need not follow strictly the depth and dimensions adopted in the analysis presented in this report. He is free to select any other dimensions for depth and width depending upon the actual loads and moments to be transmitted to the foundation soil. At this juncture it is worth mentioning that the allowable bearing capacity depends on many variables such as allowable settlement, type of foundation, size and depth of foundation, importance of structure, cost of project etc. Therefore, on the basis of soil index properties data and engineering properties data provided in this report (i.e. data furnished in test result summary sheet Table 2 and bore hole logs presented in Appendix A), the foundation designer is free to refine the calculations wherever he feels necessary.

11. REFERENCES

- a. Bowles, J. E (1988), "Foundation Analysis and Design", 4th Edition, McGraw Hill and Company, USA.
- b. Murthy, V. N. S. (1991), "Soil Mechanics and Foundation Engineering", Vol. II, "Foundation Engineering", Sai Kripa Technical Consultants, Bangalore.
- c. Terzaghi, K. and Peck R. B. (1967), "Soil Mechanic in Engineering Practice," John Wiley and Sons Inc. New York, USA.
- d. Peck, R. B., Hanson W. E. and Thornburn T. H (1974), "Foundation Engineering", Wiley Eastern Limited, New Delhi.
- e. Geotechnical Engineering Investigation Handbook, "Earthquakes" pp-915
- f. IS 1893 (Part 1) 2002, "Criteria for earthquake resistance design of structures".
- g. IS: 1892: "Code of practice for subsurface investigation of foundation".
- h. IS: 1498: "Classification and identification of soil for general engineering purpose".
- i. IS: 2131: "Method for standard penetration test for soil".
- j. IS: 2132: "Method for collecting undisturbed soil samples".
- k. IS: 8763 "Method for Undisturbed sampling in cohesion less soil".
- 1. IS: 6935 "Method for determining the ground water table in bore hole".
- m. IS: 6403- 1981, "Code of Practice for Determination of Bearing Capacity of Shallow Foundation".
- n. IS: 8009 (Part I) –1976, code of practice for calculation of settlements of Foundations"

Appendix-A Borehole Logs

BORE HOLE LOG

Project : Nepalgunj Medical College

Location : Kohalpur, Banke

Client

 Bore Hole No
 :
 1

 Diameter of BH, mm
 :
 150

 RL of GWT
 :
 4.50 m

Date : 22nd Dec, 2021 to 23rd Dec, 2021

Scale Depth		Thickness	Samp	iling		Group	Soil	SPT	(Field Re	cord)	
1=50cm Each			Depth	Туре	Soil Classification	Symbol	Symbol				Value
Eacn	m 0-0.30	0.30	m		Top soil	FM		15 cm	30 cm	45 cm	N
	1.50	1.20	1.50	SPT	Brown gravelly clayey silt	ML	Ш	3	3	3	6
	3.00	1.50	3.00	SPI	Brown to gray clayey silt with medium plasticity	ML		3	4	8	12
	5.00	2.00	4.50	SPI	Brown silty fine sand			4	8	б	14
			6.00 6.50	SPI				4	4	5	9
		5.50	7.50	รษา	Brown to gray clayey silt with medium plasticity	MI		4	б	4	10
			9.00	SPI				б	6	8	14
	10.50		10.50	รยา				6	1	1	14
	12.50	2.00	12.00	SPI	Brown medium to fine sand with traces of gravels	SM		10	14	16	30
			13.50	รษา				б	1	1	14
			15.00	SPI				8	8	8	16
		7.50	16.50	รยเ	Brown clayey silt of medium plasticity	MI		8	9	10	19
			18.00	รยเ				8	10	10	20
	20.00		19.50	รยเ				8	8	9	17

BORE HOLE LOG

Project : Nepalgunj Medical College

Location : Kohalpur, Banke

Client

 Bore Hole No
 :
 2

 Diameter of BH, mm
 :
 150

 RL of GWT
 :
 5.0 m

Date : 24th Dec, 2022 to 25th Dec, 2022

Scale			Group	Soil	SPT (Field Record)						
1=50cm			Depth	Туре	Soil Classification	Symbol	Symbol				Value
Each	m	m	m					15 cm	30 cm	45 cm	N
	0-0.30	0.30			Top soil	FM					
		2.70	1.50	รษา	Brown clayey silt with medium plasticity	MI		3	4	4	8
	3.00		3.00	SPT				3	5	8	13
		3.50	4.50	SPT	Brown silty fine sand with traces of gravels	SM		4	8	6	14
	6.50		6.00	SPI				4	8	12	20
	8.50	2.00	7.50	SPI	Gray to white silty gravelly sand	SM		10	1/	15	32
	0.00		9.00	SPT				4	5	5	10
		3.50	9.50 10.50	UDS SPT	Brown to gray clayey silt of low plasticity with traces of gravels	ML		3	6	6	12
	12.00		12.00	SPI				8	15	14	29
	13.50	1.50	13.50	SPI	Gray to white medium to coarse sand with traces of gravels	SP-SM		6	б	1	13
			15.00	SPI				5	5	6	11
		6.50	16.50	16.50 SPT Brown clayey silt of medium plasticity	MI		4	6	6	12	
			18.00	รษา				5	6	1	13
	20.00		19.50	SPI				6	б	6	12

BORE HOLE LOG

Project : Nepalgunj Medical College

Location : Kohalpur, Banke

Client

 Consultants
 :
 3

 Diameter of BH, mm
 :
 150

 RL of GWT
 :
 5.00 m

Date : 26th Dec, 2021 to 27th Dec, 2021

Scale	Depth	Thickness	Samp	iling		Group	Soil	SPT ((Field Re	ield Record)	
l=50cm Each	m	m	Depth m	Туре	Soil Classification	Symbol	Symbol	15 cm	30 cm	45 cm	Value N
	0.00	1.50	1.50	SPI	Filling materials including sandy clayey silt	FM	XXX	t.	,	.,	a =
	1.50	2.50	3.00	3F1	Brown silty sand with traces of gravels	SM	000	3	6	8	15
	4.00		4.50	SPT				3	5	6	11
		2.00	5.00	บบร	Gray to brown clayey silt of low plasticity			3		0	•
	6.00		6.00	SPT				6	7	8	15
			7.50	SPI				1	1	1	14
		4.50	9.00	รษา	Brown silty fine sand	SM		7	1	8	15
	10.50		10.50	SPT				6	б	6	12
			12.00	SPI				5	5	6	11
		5.50	13.50	SPI	Brown clayey silt with medium plasticity with traecs of gravels			6	6	6	12
			15.00	SPI				5	б	1	13
	16.00										

BORE HOLE LOG

Project : Nepalgunj Medical College

Location : Kohalpur, Banke

Client

 Bore Hole No
 :
 4

 Diameter of BH, mm
 :
 150

 RL of GWT
 :
 4.00 m

Date : 28th Dec, 2021 to 29th Dec, 2021

Scale	Depth	Thickness		Sampiling				SPT (
1=50cm Each			Depth	Type	Soil Classification	Symbol	Symbol	45	20	45	Value
Each	m 0.00	m	m					15 cm	30 cm	45 cm	N
	1.00	1.00			Brown clayey silt of low plasticity	ML					
			1.50	SPT				13	13	14	27
		2.00			Gray to white sandy gravels						
	3.00		3.00	SPI				6	8	1	15
		2.00	4.50	148	Brown gravelly clayey silt	MG		6	6	(13
	5.00		1.00	0						'	
			6.00	SPI				12	14	18	32
			0.00	SF I				12	14	10	32
			7.50	SPI				10	12	1/	29
		6.00			Gray to white silty sand with traces of gravels	SM					
			9.00	SPI				12	15	16	31
			10.50	SPI				10	14	16	30
	11.00										
			12.00	SPI				6	6	6	12
			12.50	บบร							
			13.50	SPI				5	1	1	14
										-	
			15.00	SPI				5	6	6	12
			13.00	31 1	Brown clayey silt of medium plasticity with			3	0	0	12
		9.00			traces of gravels	MI					
			16.50	SPI	<u>-</u>			6	6	1	13
			18.00	SPT				5	1	1	14
			19.50	SPI				5	5	1	12
	20.00		<u> </u>								

Appendix-B Photographs

Appendix-C Test Result Sheets

ATTERBERG LIMITS

Project: Proposed Building Site BH No.: BH-1

 Location
 :
 Nepalgunj, Banke
 Date
 :
 10th Jan, 2022

 Depth (m)
 :
 5.00-10.50
 Checked by
 :
 S.K. Jha

Tested by : Manoj Subedi : Madhu Sudan KC

PLASTIC LIMIT

Determination No.		1		2		3	
Continer No		1	2				
Weight of Container + wet soil	gms	34.10	33.50				
Weight of container + Dry soil	gms	28.20	28.00				
Weight of water	gms	5.90	5.50				
Weight of container	gms	9.20	10.10				
Weight of dry soil	gms	19.00	17.90				
Water content	%	31.05	30.73				
Plastic limit	%	30.	89		-		-

LIQUID LIMIT

Determination No.		1	2	3	4	5	6
Container No		3	4	5			
Weight of container + Wet soil	gms	43.20	40.80	42.10			
Weight of container +Dry soil	gms	31.40	31.60	35.60			
Weight of water	gms	11.80	9.20	6.50			
Weight of container	gms	11.10	10.80	13.50			
Weight of dry soil	gms	20.30	20.80	22.10			
Water content	%	58.13	44.23	29.41			
Number of blows		18.00	25.00	36.00			

Plascicity Index, PI 13.11

ATTERBERG LIMITS

Project: Proposed Building Site BH No. : BH-2

 Location
 :
 Nepalgunj, Banke
 Date
 :
 10th Jan, 2022

 Depth (m)
 :
 8.50-12.00
 Checked by
 :
 S.K. Jha

Tested by : Manoj Subedi : Madhu Sudan KC

PLASTIC LIMIT

Determination No.		1		2	3	
Continer No		1	2			
Weight of Container + wet soil	gms	33.90	34.20			
Weight of container + Dry soil	gms	28.50	28.70			
Weight of water	gms	5.40	5.50			
Weight of container	gms	10.10	9.50			
Weight of dry soil	gms	18.40	19.20			
Water content	%	29.35	28.65			
Plastic limit	%	29	00			

LIQUID LIMIT

Determination No.		1	2	3	4	5	6
Container No		3	4	5			
Weight of container + Wet soil	gms	45.00	42.20	40.80			
Weight of container +Dry soil	gms	33.30	33.50	35.50			
Weight of water	gms	11.70	8.70	5.30			
Weight of container	gms	12.00	11.10	10.80			
Weight of dry soil	gms	21.30	22.40	24.70			
Water content	%	54.93	38.84	21.46			
Number of blows		17.00	23.00	35.00			

Liquid Limit, W_L

Plastic Limit, W_p

Plascicity Index, PI

36.00 29.00 7.00

Remarks:

ATTERBERG LIMITS

Project: Proposed Building Site BH No.: BH-3

 Location
 :
 Nepalgunj, Banke
 Date
 :
 10th Jan, 2022

 Depth (m)
 :
 4.00-6.00
 Checked by
 :
 S.K. Jha

Tested by : Manoj Subedi Certified by : Madhu Sudan KC

PLASTIC LIMIT

Determination No.		1		2	3	
Continer No		1	2			
Weight of Container + wet soil	gms	33.80	34.10			
Weight of container + Dry soil	gms	28.20	28.20			
Weight of water	gms	5.60	5.90			
Weight of container	gms	9.10	8.50			
Weight of dry soil	gms	19.10	19.70			
Water content	%	29.32	29.95			
Plastic limit	%	29.	63			

LIQUID LIMIT

Elect Elivin							
Determination No.		1	2	3	4	5	6
Container No		3	4	5			
Weight of container + Wet soil	gms	42.20	41.80	43.60			
Weight of container +Dry soil	gms	31.60	33.50	37.50			·
Weight of water	gms	10.60	8.30	6.10			·
Weight of container	gms	9.50	10.50	12.00			
Weight of dry soil	gms	22.10	23.00	25.50			
Water content	%	47.96	36.09	23.92			
Number of blows		17.00	24.00	36.00			

Liquid Limit, W _L	35.00
Plastic Limit, W _p	29.63
Plascicity Index, PI	5.37

Remarks:

ATTERBERG LIMITS

Project: Proposed Building Site BH No. : BH-4

 Location
 :
 Nepalgunj, Banke
 Date
 :
 10th Jan, 2022

 Depth (m)
 :
 11.00-20.00
 Checked by
 :
 S.K. Jha

Tested by : Manoj Subedi : Madhu Sudan KC

PLASTIC LIMIT

Determination No.		1		2		3	
Continer No		1	2				
Weight of Container + wet soil	gms	34.20	33.90				
Weight of container + Dry soil	gms	28.50	28.20				
Weight of water	gms	5.70	5.70				
Weight of container	gms	10.10	9.20				
Weight of dry soil	gms	18.40	19.00				
Water content	%	30.98	30.00				
Plastic limit	%	30.	49		-		

LIQUID LIMIT

EIQUID EIVIII							
Determination No.		1	2	3	4	5	6
Container No		3	4	5			
Weight of container + Wet soil	gms	43.60	42.00	42.10			
Weight of container +Dry soil	gms	32.30	33.00	35.00			
Weight of water	gms	11.30	9.00	7.10			
Weight of container	gms	11.50	12.00	10.80			
Weight of dry soil	gms	20.80	21.00	24.20			
Water content	%	54.33	42.86	29.34			
Number of blows		16.00	24.00	38.00			

Liquid Limit, $ m W_L$	
Plastic Limit, W _p	
Plascicity Index. PI	

42.00
30.49
11.51

Remarks:

Project: Proposed Building Site

Location: Nepalgunj, Banke **BH No.:** 1

Wt. of Sample (gms):450.00Tested by :Manoj SubediDate :10th Jan, 2022Checked by:Sandeep Kr. JhaDepth (m):5.00-10.50Certified by:Madhu Sudan KC

Depth (m):	5.00-10.50		Certified by:	Madhu Sudan KC
Seive	Wt. of	Cumulative	Cumulative	Percent
Size	Soil Retained	Weight	Percentage	Passing
		Retained	Retained	C
mm	gms	gms	%	%
80.000		0.00	0.00	100.00
63.000		0.00	0.00	100.00
50.000	0.00	0.00	0.00	100.00
40.000		0.00	0.00	100.00
31.500	0.00	0.00	0.00	100.00
25.000		0.00	0.00	100.00
20.000		0.00	0.00	100.00
16.000		0.00	0.00	100.00
12.500		0.00	0.00	100.00
10.000		0.00	0.00	100.00
6.300		0.00	0.00	100.00
4.750		0.00	0.00	
2.360		0.00		
1.180		0.00	0.00	100.00
0.600		0.00	0.00	100.00
0.425		0.00	0.00	100.00
0.300		1.00	0.22	99.78
0.150		5.00	1.11	98.89
0.075	3.00	8.00	1.78	98.22
0.057				90.96
0.041				87.71
0.029				84.46
0.021				79.59
0.015				74.71
0.011		rom Hydrometer A	analysis	71.46
0.008				64.97
0.006				56.85
0.004				48.73
0.003				43.85
0.001				40.60

HYDROMETER ANALYSIS

Project : Proposed Building Site

BH No : 1

Volume of Hydrometer (cucm) : 50.00 Location : Nepalgunj, Banke

Qty of Dispersing Agent (gms) : 4.00 **Depth (m)** : 5.00-10.50

Specific Gravity: 2.530 Date: : 10th Jan, 2022

Minus 75 micron Seive : 50.00 Hydrometer No : 1

Meniscus Correction (C_m): : 0.50 Unit Wt water (gm/cc) : 1.00

Dispersing Agent: : (NaPo₃)₆ Area of Jar (sqcm) : 38.46

Tested by : Manoj Subedi h_o : 7.50

Certified by: : Madhu Sudan KC Checked by : S.K. Jha

Certified	ı by.			•	Madnu S	uuan KC		Checked	Эy	•	S.K. Jna	
Time	Elapses	Hyd.	Temp.	Comp.	Cor.	Eff.	$R_{h2} =$	η	M	$(H_e/t)^{0.5}$	Particle	%age
	Time	Reading		Cor.	Read	Depth					Size	Finer
					$R_{h1} =$	H_{e}					D	N
	min	R_h	° C	C	$R_h + C_m$	cm	$R_h + C$				mm	%
10.31	0.50	31.00	22.00	-1	31.5	8.495	30	0.00961	0.01373	4.122	0.0566	99.22
10.32	1.00	30.00	22.00	-1	30.5	8.765	29	0.00961	0.01373	2.961	0.0406	95.91
10.34	2.00	29.00	23.00	-1	29.5	9.035	28	0.00938	0.01356	2.125	0.0288	92.60
10.38	4.00	27.50	23.00	-1	28	9.44	26.5	0.00938	0.01356	1.536	0.0208	87.64
10.46	8.00	26.00	23.00	-1	26.5	9.845	25	0.00938	0.01356	1.109	0.015	82.68
11.01	15.00	25.00	23.00	-1	25.5	10.12	24	0.00938	0.01356	0.821	0.0111	79.37
11.33	30.00	23.00	24.00	-1	23.5	10.66	22	0.00916	0.0134	0.596	0.008	72.76
12.33	60.00	20.50	24.00	-1	21	11.33	19.5	0.00916	0.0134	0.435	0.0058	64.49
2.33	120.00	18.00	24.00	-1	18.5	12.01	17	0.00916	0.0134	0.316	0.0042	56.22
6.33	240.00	16.50	23.00	-1	17	12.41	15.5	0.00938	0.01356	0.227	0.0031	51.26
10.31	1440.00	15.50	22.00	-1	16	12.68	14.5	0.00961	0.01373	0.094	0.0013	47.95

 $M = [0.03h/(G-1)]^{0.5}$

 $D=M\,\left(H_e/t\right)^{0.5}$

 $N = (G/G-1)(R_{h2}/W) \times 100$

Project: Proposed Building Site

Location: Nepalgunj, Banke **BH No.:** 2

Wt. of Sample (gms): 595.00 Tested by: Manoj Subedi

Date: 10th Jan, 2022 Checked by: Sandeep Kr. Jha

Denth (m): 8 50-12 00 Certified by: Madbu Sudan KC

Depth (m):	8.50-12.00		Certified by:	Madhu Sudan KC
Seive	Wt. of	Cumulative	Cumulative	Percent
Size	Soil Retained	Weight	Percentage	Passing
		Retained	Retained	_
mm	gms	gms	%	%
80.000	0.00	0.00	0.00	100.00
63.000	0.00	0.00	0.00	100.00
50.000	0.00	0.00	0.00	
40.000	0.00	0.00	0.00	
31.500	0.00	0.00	0.00	100.00
25.000	0.00	0.00	0.00	100.00
20.000	0.00	0.00	0.00	100.00
16.000	0.00	0.00	0.00	100.00
12.500	0.00	0.00	0.00	100.00
10.000	0.00	0.00	0.00	100.00
6.300	0.00	0.00	0.00	100.00
4.750	9.00	9.00	1.51	98.49
2.360	0.00			98.49
1.180	9.00	18.00		
0.600	7.00	25.00		
0.425	3.00	28.00	4.71	95.29
0.300	4.00	32.00	5.38	94.62
0.150	12.00	44.00	7.39	92.61
0.075	25.00	69.00	11.60	88.40
0.057				80.40
0.041				77.48
0.029				73.09
0.021				68.71
0.015				64.32
0.011	Data F	rom Hydrometer A	analysis	58.47
0.008				52.63
0.006				46.78
0.004				40.93
0.003				38.01
0.001				35.08

HYDROMETER ANALYSIS

Project: Proposed Building Site

BH No : 2

Volume of Hydrometer (cucm) : 50.00 Location : Nepalgunj, Banke

Qty of Dispersing Agent (gms) : 4.00 **Depth (m)** : 8.50-12.00

Specific Gravity : 2.530 Date: : 10th Jan, 2022

Minus 75 micron Seive : 50.00 Hydrometer No : 1

Meniscus Correction (C_m): : 0.50 Unit Wt water (gm/cc) : 1.00

Dispersing Agent: : (NaPo₃)₆ Area of Jar (sqcm) : 38.46

Tested by : Manoj Subedi h₀ : 7.50

Certified by: : Madhu Sudan KC Checked by : S.K. Jha

Ctrunct	ı by.			•	Madilu 5	udun IXC	,	CHECKEU	, y	•	S.IX. JIIa	
Time	Elapses	Hyd.	Temp.	Comp.	Cor.	Eff.	$R_{h2} =$	η	M	$(H_e/t)^{0.5}$	Particle	%age
	Time	Reading		Cor.	Read	Depth					Size	Finer
					$R_{h1} =$	H_{e}					D	N
	min	R_h	° C	C	$R_h + C_m$	cm	$R_h + C$				mm	%
10.31	0.50	30.50	22.00	-1	31	8.63	30	0.00961	0.01373	4.155	0.057	97.56
10.32	1.00	29.50	22.00	-1	30	8.9	28.5	0.00961	0.01373	2.983	0.041	94.25
10.34	2.00	28.00	23.00	-1	28.5	9.305	27	0.00938	0.01356	2.157	0.0293	89.29
10.38	4.00	26.50	23.00	-1	27	9.71	25.5	0.00938	0.01356	1.558	0.0211	84.33
10.46	8.00	25.00	23.00	-1	25.5	10.12	24	0.00938	0.01356	1.124	0.0152	79.37
11.01	15.00	23.00	23.00	-1	23.5	10.66	22	0.00938	0.01356	0.843	0.0114	72.76
11.33	30.00	21.00	24.00	-1	21.5	11.2	20	0.00916	0.0134	0.611	0.0082	66.14
12.33	60.00	19.00	24.00	-1	19.5	11.74	18	0.00916	0.0134	0.442	0.0059	59.53
2.33	120.00	17.00	24.00	-1	17.5	12.28	16	0.00916	0.0134	0.32	0.0043	52.92
6.33	240.00	16.00	23.00	-1	16.5	12.55	15	0.00938	0.01356	0.229	0.0031	49.61
10.31	1440.00	15.00	22.00	-1	15.5	12.82	14	0.00961	0.01373	0.094	0.0013	46.30

 $M = [0.03h/(G-1)]^{0.5}$

 $D = M \left(H_e/t\right)^{0.5}$

 $N = (G/G-1)(R_{h2}/W) \times 100$

Project: Proposed Building Site

Location: Nepalgunj, Banke **BH No.:** 3

Wt. of Sample (gms): 595.00 Tested by: Manoj Subedi

Date: 10th Jan, 2022 Checked by: Sandeep Kr. Jha

Depth (m): 4.00-6.00 Certified by: Madhu Sudan KC

Depth (m):	4.00-6.00		Certified by:	Madhu Sudan KC
Seive	Wt. of	Cumulative	Cumulative	Percent
Size	Soil Retained	Weight	Percentage	Passing
		Retained	Retained	J
mm	gms	gms	%	%
80.00		0.00	0.00	100.00
63.00	0.00	0.00	0.00	100.00
50.00	0.00	0.00	0.00	100.00
40.00			0.00	100.00
31.50			0.00	
25.00			0.00	100.00
20.00			0.00	100.00
16.00			0.00	100.00
12.50			0.00	100.00
10.00			0.00	100.00
6.30			0.00	100.00
4.75			0.00	
2.36				
1.18			0.00	100.00
0.60			0.00	100.00
0.42			0.67	99.33
0.30			2.02	97.98
0.15			3.70	
0.07		42.00	7.06	92.94
0.05				84.53
0.04				79.92
0.02				75.31
0.02				70.70
0.01				64.55
0.01		From Hydrometer A	analysis	55.33
0.00				49.18
0.00				46.11
0.00				39.96
0.00				36.88
0.00	1			33.81

HYDROMETER ANALYSIS

Project: Proposed Building Site

BH No : 3

Volume of Hydrometer (cucm) : 50.00 Location : Nepalgunj, Banke

Qty of Dispersing Agent (gms) : 4.00 Depth (m) : 4.00-6.00

Specific Gravity: 2.530 Date: : 10th Jan, 2022

Minus 75 micron Seive : 50.00 Hydrometer No : 1

Meniscus Correction (C_m): : 0.50 Unit Wt water (gm/cc) : 1.00

Dispersing Agent: : (NaPo₃)₆ **Area of Jar (sqcm)** : 38.46

Tested by : Manoj Subedi h_o : 7.50

Certified by: : Madhu Sudan KC Checked by : S.K. Jha

Certifiet	ı by.			•	Madilu 3	udan KC		Checkeu) y	•	S.K. Jila	
Time	Elapses	Hyd.	Temp.	Comp.	Cor.	Eff.	$R_{h2} =$	η	M	$(H_e/t)^{0.5}$	Particle	%age
	Time	Reading		Cor.	Read	Depth					Size	Finer
					$R_{h1} =$	H_{e}					D	N
	min	R_h	° C	C	$R_h + C_m$	cm	$R_h + C$				mm	%
10.31	0.50	30.50	22.00	-1	31	8.63	30	0.00961	0.01373	4.155	0.057	97.56
10.32	1.00	29.00	22.00	-1	29.5	9.035	28	0.00961	0.01373	3.006	0.0413	92.60
10.34	2.00	27.50	23.00	-1	28	9.44	26.5	0.00938	0.01356	2.173	0.0295	87.64
10.38	4.00	26.00	23.00	-1	26.5	9.845	25	0.00938	0.01356	1.569	0.0213	82.68
10.46	8.00	24.00	23.00	-1	24.5	10.39	23	0.00938	0.01356	1.139	0.0155	76.07
11.01	15.00	21.00	23.00	-1	21.5	11.2	20	0.00938	0.01356	0.864	0.0117	66.14
11.33	30.00	19.00	24.00	-1	19.5	11.74	18	0.00916	0.0134	0.625	0.0084	59.53
12.33	60.00	18.00	24.00	-1	18.5	12.01	17	0.00916	0.0134	0.447	0.006	56.22
2.33	120.00	16.00	24.00	-1	16.5	12.55	15	0.00916	0.0134	0.323	0.0043	49.61
6.33	240.00	15.00	23.00	-1	15.5	12.82	14	0.00938	0.01356	0.231	0.0031	46.30
10.31	1440.00	14.00	22.00	-1	14.5	13.09	13	0.00961	0.01373	0.095	0.0013	42.99

 $M = [0.03h/(G-1)]^{0.5}$

 $D=M\,\left(H_e/t\right)^{0.5}$

 $N = (G/G-1)(R_{h2}/W) \times 100$

Project: Proposed Building Site

Location: Nepalgunj, Banke **BH No.:** 4

Wt. of Sample (gms): 772.00 Tested by: Manoj Subedi

Date: 10th Jan, 2022 Checked by: Sandeep Kr. Jha

Depth (m): 11.00-20.00 Certified by: Madhu Sudan KC

Depth (m):	11.00-20.00		Certified by:	Madhu Sudan KC
Seive	Wt. of	Cumulative	Cumulative	Percent
Size	Soil Retained	Weight	Percentage	Passing
		Retained	Retained	C
mm	gms	gms	%	%
80.000		0.00	0.00	100.00
63.000	0.00	0.00	0.00	100.00
50.000	0.00	0.00	0.00	100.00
40.000	0.00	0.00	0.00	100.00
31.500	0.00	0.00	0.00	100.00
25.000		0.00	0.00	100.00
20.000			0.00	100.00
16.000		0.00	0.00	100.00
12.500		0.00	0.00	100.00
10.000		0.00	0.00	100.00
6.300		0.00	0.00	100.00
4.750		38.00	4.92	95.08
2.360				
1.180			6.61	93.39
0.600		57.00	7.38	92.62
0.425		59.00	7.64	92.36
0.300		65.00	8.42	91.58
0.150		73.00	9.46	90.54
0.075		85.00	11.01	88.99
0.057				82.41
0.041				77.99
0.030				70.63
0.022				64.75
0.016				60.33
0.012		'rom Hydrometer A	analysis	54.45
0.008				45.62
0.006				42.67
0.004				41.20
0.003				39.73
0.001				36.79

HYDROMETER ANALYSIS

Project: Proposed Building Site

BH No : 4

Volume of Hydrometer (cucm) : 50.00 Location : Nepalgunj, Banke

Qty of Dispersing Agent (gms) : 4.00 **Depth (m)** : 11.00-20.00

Specific Gravity: 2.530 Date: : 10th Jan, 2022

Minus 75 micron Seive : 50.00 Hydrometer No : 1

Meniscus Correction (C_m): : 0.50 Unit Wt water (gm/cc) : 1.00

Dispersing Agent: : (NaPo₃)₆ Area of Jar (sqcm) : 38.46

Tested by : Manoj Subedi h_o : 7.50

Certified by: : Madhu Sudan KC Checked by : S.K. Jha

Certifiet	ı by.			•	Madilu 3	uuan KC		Checkeu	у	•	S.K. Jila	
Time	Elapses	Hyd.	Temp.	Comp.	Cor.	Eff.	$R_{h2} =$	η	M	$(H_e/t)^{0.5}$	Particle	%age
	Time	Reading		Cor.	Read	Depth					Size	Finer
					$R_{h1} =$	H_{e}					D	N
	min	R_h	° C	C	$R_h + C_m$	cm	$R_h + C$				mm	%
10.31	0.50	31.00	22.00	-1	31.5	8.495	30	0.00961	0.01373	4.122	0.0566	99.22
10.32	1.00	29.50	22.00	-1	30	8.9	28.5	0.00961	0.01373	2.983	0.041	94.25
10.34	2.00	27.00	23.00	-1	27.5	9.575	26	0.00938	0.01356	2.188	0.0297	85.99
10.38	4.00	25.00	23.00	-1	25.5	10.12	24	0.00938	0.01356	1.59	0.0216	79.37
10.46	8.00	23.50	23.00	-1	24	10.52	22.5	0.00938	0.01356	1.147	0.0156	74.41
11.01	15.00	21.50	23.00	-1	22	11.06	20.5	0.00938	0.01356	0.859	0.0116	67.80
11.33	30.00	18.50	24.00	-1	19	11.87	17.5	0.00916	0.0134	0.629	0.0084	57.88
12.33	60.00	17.50	24.00	-1	18	12.14	16.5	0.00916	0.0134	0.45	0.006	54.57
2.33	120.00	17.00	24.00	-1	17.5	12.28	16	0.00916	0.0134	0.32	0.0043	52.92
6.33	240.00	16.50	23.00	-1	17	12.41	15.5	0.00938	0.01356	0.227	0.0031	51.26
10.31	1440.00	15.50	22.00	-1	16	12.68	14.5	0.00961	0.01373	0.094	0.0013	47.95

 $M = [0.03h/(G-1)]^{0.5}$

 $D=M\,\left(H_e/t\right)^{0.5}$

 $N = (G/G-1)(R_{h2}/W) \times 100$

MULTI Lab (P) Ltd consolidation test

Project: Proposed Building Site		Location:	Nepalgunj, Banke
BH. No. 1		Depth (m):	6.50 m UDS
Analyzed by: S.K. Jha		Certified by:	Madhu Sudan KC
Description of soil :		Date :	2nd to 8th Jan, 2022
Consolidometer Type:	Fixed Ring	Ring No:	1
Multiplication ratio of load device:	10	Height(cm):	2
Ring Diameter (cm):	6	Dial Constant (cn	0.001
Specific Gravity:	2.54	Volume V(cm ³):	56.55
Area(cm²):	28.27		
SOIL PROPERTY DETERMINATION	N		
Weight of can + wet soil (gms):			300.600
Weight of can + dry soil (gms):			276.000
Weight of can (gms):			197.000
Weight of water (gms):			24.600
weight of wet soil (gms):			103.600
weight of dry soil (gms):			79.000
Natural water content (%)			31.139
Weight of ring (gms):			197.000
Weight of ring+ wet soil after test (gms):			301.500
Weight of ring+dry soil after test (gms):			276.000
Weight of wet soil after test (gms):			104.500
Weight of dry soil (gms) :			79.000
Weight of water after test (gms):			25.500
Final water content (%):			32.278
Initial dial reading (div):			1655.000
Final dial reading (div) :			1455.000
Change in height (cms):			0.200
Final height of sample (cms)			1.800
Height of solids (cms):			1.100
Final height of voids (cms):			0.700
Final void ratio			0.636
Initial height of voids			0.900
Initial voids ratio			0.818
Unit weight of soil (gm/cc):			1.832

MULTI Lab (P) Ltd. CONSOLIDATION TEST RESULT SHEET

Sheet 2 of 2

0.077

0.060

0.042

0.028

0.043

0.035

0.025

0.017

Project : Proposed Building Site Nepalguni, Banke **Location:** BH No: 6.50 m UDS Depth (m): Date : 2nd to 8th Jan, 2022 Analyzed by: S.K. Jha Certified By: Madhu Sudan KC $\Delta e = ((1+e_f) / H_f) \times \Delta H$ Applied Initial Final Diff. ΔH Total Sample Δe Total Void m_{v} Dial DH Height Load Dial De Ratio Reading Reading cm cm cm²/kg cm²/kg cm e 0.1 1655 1648 7 0.007 0.0072.000 0.006 0.006 0.812 0.5 1648 1610 38 0.038 0.045 1.962 0.035 0.0410.777 0.082 0.045

1.922

1.874

1.820

1.762

1.800

0.036

0.044

0.049

0.053

-0.041

0.077

0.121

0.170

0.223

0.182

0.741

0.697

0.648

0.595

0.636

0.154

1610

1570

1522

1468

1410

4

8

0.1

1570

1522

1468

1410

1455

0.040

0.048

0.054

0.058

-0.045

40

48

54

58

-45

0.085

0.133

0.187

0.245

0.200

MULTI Lab (P) Ltd consolidation test

Project:	Proposed Building Site		Location :	Nepalgunj, Banke
BH. No.	2		Depth (m):	9.50 m UDS
Analyzed by	: S.K. Jha		Certified by:	Madhu Sudan KC
Description	of soil :		Date:	2nd to 8th Jan, 2022
Consolidomet	er Type:	Fixed Ring	Ring No:	1
Multiplication	ratio of load device:	10	Height(cm):	2
Ring Diamete	r (cm):	6	Dial Constant (cm	0.001
Specific Grav	ity:	2.54	Volume V(cm ³):	56.55
Area(cm ²):		28.27		
SOIL PRO	PERTY DETERMINATION			
Weight of car	n + wet soil (gms):			299.000
Weight of car	n + dry soil (gms):			274.900
Weight of car	gms):			195.000
Weight of wa	ter (gms):			24.100
weight of wet	soil (gms):			104.000
weight of dry	soil (gms):			79.900
Natural water	content (%)			30.163
Weight of ring	g (gms):			195.000
Weight of ring	g+ wet soil after test (gms):			299.400
Weight of ring	g+dry soil after test (gms):			274.900
Weight of we	t soil after test (gms):			104.400
Weight of dry	soil (gms):			79.900
Weight of wa	ter after test (gms):			24.500
Final water co	ontent (%):			30.663
Initial dial rea	iding (div):			1765.000
Final dial read	ding (div):			1585.000
Change in hei	ght (cms):			0.180
Final height of	of sample (cms)			1.820
Height of soli	ds (cms):			1.113
Final height o	f voids (cms):			0.707
Final void rat	io			0.636
Initial height	of voids			0.887
Initial voids r	atio			0.798
Unit weight o	f soil (gm/cc):			1.839
•		•		

MULTI Lab (P) Ltd. CONSOLIDATION TEST RESULT SHEET

Sheet 2 of 2

Project:Proposed Building SiteLocation:Nepalgunj, BankeBH No:2Depth (m):9.50 m UDSDate:2nd to 8th Jan, 2022Analyzed by:S.K. JhaCertified By:Madhu Sudan KC $\Delta e = ((1+e_f) / H_f) \times \Delta H$ Applied Initial Final Diff. ΔH Total Sample Δe Δe Total Void c_c c_c a_v m_v Load Dial Dial Reading R

Applied	Initial	Final	Diff.	ΔH	Total	Sample	Δe	Total	Void	c_{c}	$a_{\rm v}$	$m_{\rm v}$
Load	Dial	Dial			DH	Height		De	Ratio			
	Reading	Reading		cm	cm	cm			e		cm²/kg	cm²/kg
0.1	1765	1758	7	0.007	0.007	2.000	0.006	0.006	0.791			
0.5	1758	1722	36	0.036	0.043	1.964	0.032	0.039	0.759		0.077	0.043
1	1722	1683	39	0.039	0.082	1.925	0.035	0.074	0.724		0.074	0.042
2	1683	1642	41	0.041	0.123	1.884	0.037	0.111	0.687	0.131	0.055	0.032
4	1642	1595	47	0.047	0.170	1.837	0.042	0.153	0.645		0.038	0.023
8	1595	1545	50	0.050	0.220	1.787	0.045	0.198	0.600		0.025	0.015
0.1	1545	1585	-40	-0.040	0.180	1.820	-0.036	0.162	0.636			
	_	_										

MULTI Lab (P) Ltd consolidation test

Project: Proposed Building Site		Location:	Nepalgunj, Banke
BH. No. 3		Depth (m):	5.0 m UDS
Analyzed by: S.K. Jha		Certified by:	Madhu Sudan KC
Description of soil :		Date:	2nd to 8th Jan, 2022
Consolidometer Type:	Fixed Ring	Ring No:	1
Multiplication ratio of load device:	10	Height(cm):	2
Ring Diameter (cm):	6	Dial Constant (cn	n 0.001
Specific Gravity:	2.54	Volume V(cm ³)	: 56.55
Area(cm²):	28.27		
SOIL PROPERTY DETERMINATION	J		
Weight of can + wet soil (gms):			294.500
Weight of can + dry soil (gms):			270.200
Weight of can (gms):			191.000
Weight of water (gms):			24.300
weight of wet soil (gms):			103.500
weight of dry soil (gms):			79.200
Natural water content (%)			30.682
Weight of ring (gms):			191.000
Weight of ring+ wet soil after test (gms):			295.100
Weight of ring+dry soil after test (gms):			270.200
Weight of wet soil after test (gms):			104.100
Weight of dry soil (gms):			79.200
Weight of water after test (gms):			24.900
Final water content (%):			31.439
Initial dial reading (div):			1585.000
Final dial reading (div):			1365.000
Change in height (cms):			0.220
Final height of sample (cms)			1.780
Height of solids (cms):			1.103
Final height of voids (cms):			0.677
Final void ratio			0.614
Initial height of voids			0.897
Initial voids ratio			0.814
Unit weight of soil (gm/cc):			1.830

MULTI Lab (P) Ltd. CONSOLIDATION TEST RESULT SHEET

Sheet 2 of 2

0.037

0.027

0.018

Project : Proposed Building Site Nepalguni, Banke **Location:** BH No: 5.0 m UDS Depth (m): Date : 2nd to 8th Jan, 2022 Analyzed by: S.K. Jha Certified By: Madhu Sudan KC $\Delta e = ((1+e_f) / H_f) \times \Delta H$ Applied Initial Final Diff. ΔH Total Sample Δe Total Void m_{v} Dial DH Height Load Dial De Ratio Reading Reading cm cm cm²/kg cm²/kg cm e 0.1 1585 1576 9 0.009 0.009 2.000 0.008 0.008 0.805 0.5 1576 1538 38 0.038 0.047 1.962 0.034 0.043 0.771 0.085 0.047 1538 1496 0.042 0.089 1.920 0.038 0.081 0.733 0.081 0.046 42

1.869

1.809

1.746

1.780

0.046

0.054

0.057

-0.039

0.127

0.181

0.238

0.199

0.687

0.632

0.575

0.614

0.167

0.063

0.045

0.030

1496

1445

1385

1322

4

8

0.1

1445

1385

1322

1365

0.051

0.060

0.063

-0.043

60

63

-43

0.140

0.200

0.263

0.220

MULTI Lab (P) Ltd consolidation test

Project:	Proposed Building Site		Location :	Nepalgunj, Banke
BH. No.	4		Depth (m):	12.50 m UDS
Analyzed by	: S.K. Jha		Certified by:	Madhu Sudan KC
Description	of soil :		Date:	2nd to 8th Jan, 2022
Consolidome	ter Type:	Fixed Ring	Ring No:	1
Multiplication	ratio of load device:	10	Height(cm):	2
Ring Diamete	er (cm):	6	Dial Constant (cm	0.001
Specific Grav	ity:	2.54	Volume V(cm ³):	56.55
Area(cm ²):		28.27		
SOIL PRO	PERTY DETERMINATION	Ţ		
Weight of car	n + wet soil (gms):			291.900
Weight of car	n + dry soil (gms):			267.200
Weight of car	n (gms):			188.000
Weight of wa	ter (gms):			24.700
weight of wet	soil (gms):			103.900
weight of dry	soil (gms):			79.200
Natural water	content (%)			31.187
Weight of rin	g (gms):			188.000
Weight of rin	g+ wet soil after test (gms):			292.500
Weight of rin	g+dry soil after test (gms):			267.200
Weight of we	t soil after test (gms):			104.500
Weight of dry	soil (gms):			79.200
Weight of wa	ter after test (gms):			25.300
Final water co	ontent (%):			31.944
Initial dial rea	nding (div):			1366.000
Final dial read	ding (div):			1182.000
Change in hei	ght (cms):			0.184
Final height	of sample (cms)			1.816
Height of soli	ds (cms):			1.103
Final height o	f voids (cms):			0.713
Final void rat	io			0.647
Initial height	of voids			0.897
Initial voids r	atio			0.814
Unit weight o	f soil (gm/cc):			1.837

MULTI Lab (P) Ltd. CONSOLIDATION TEST RESULT SHEET

Sheet 2 of 2

0.699

0.656

0.609

0.647

0.139

0.057

0.039

0.026

0.033

0.023

0.015

Project : Proposed Building Site Nepalguni, Banke **Location:** BH No: 12.50 m UDS Depth (m): Date : 2nd to 8th Jan, 2022 Analyzed by: S.K. Jha Certified By: Madhu Sudan KC $\Delta e = ((1+e_f) / H_f) \times \Delta H$ Applied Initial Final Diff. ΔH Total Sample Δe Total Void m_{v} Dial DH Height Load Dial De Ratio Reading Reading cm cm cm²/kg cm²/kg cm e 0.1 1366 1360 0.006 0.0062.000 0.005 0.005 0.808 6 0.5 1360 1323 37 0.037 0.043 1.963 0.034 0.039 0.775 0.078 0.043 1323 1284 39 0.039 0.082 1.924 0.035 0.074 0.739 0.074 0.042

1.880

1.832

1.780

1.816

0.040

0.044

0.047

-0.038

0.114

0.158

0.205

0.167

1284

1240

1192

1140

4

8

0.1

1240

1192

1140

1182

44

48

52

-42

0.044

0.048

0.052

-0.042

0.126

0.174

0.226

0.184

Project: Soil Investigation of Proposed Building Complex

Location: Kohalpur BH No.: 1

Wt. of Sample (gms): 400.00 Tested by: Manoj Subedi

Date: 5th Jan, 2022 Checked by: S.K.Jha

Depth (m): 0.30-1.50 **Certified by:** Madhusudan K.C

Deptn (m):	0.30-1.50		Certified by:	Madnusudan K.C
Seive	Wt. of	Cumulative	Cumulative	Percent
Size	Soil Retained	Weight	Percentage	Passing
		Retained	Retained	
mm	gms	gms	%	%
80.0		0.00		
63.0				
50.0				
40.0				
31.5		0.00	0.00	
25.0				
20.0				
16.0				
12.5				
10.0				
6.3				
4.7				
2.3				
1.1				
0.6		91.00		
0.4				
0.3				
0.1				
0.0	75 8.00	116.00	29.00	71.00
P	an			

Project: Soil Investigation of Proposed Building Complex

Location: Kohalpur BH No.: 1

Wt. of Sample (gms): 558.00 Tested by: Manoj Subedi

Date: 5th Jan, 2022 Checked by: S.K.Jha

Depth (m): 1.50-3.00 **Certified by:** Madhusudan K.C

Deptn (m):	1.50-3.00		Certified by:	Madnusudan K.C
Seive	Wt. of	Cumulative	Cumulative	Percent
Size	Soil Retained	Weight	Percentage	Passing
		Retained	Retained	
mm	gms	gms	%	%
	0.00			
	0.00			
	0.00			
	0.00			
	500 0.00	0.00	0.00	
	0.00			
	0.00			
	0.00			
	500 0.00			
	0.00			
	300 0.00			
	750 0.00			
	360 0.00			
	180 0.00			
	600 0.00	0.00	0.00	
	425 0.00			
	300 1.00			
	150 3.00			
0.	075 5.00	9.00	1.61	98.39
	Pan			

Project: Soil Investigation of Proposed Building Complex

Location: Kohalpur BH No.: 1

Wt. of Sample (gms): 464.00 Tested by: Manoj Subedi

Date: 5th Jan, 2022 Checked by: S.K.Jha

Depth (m): 3.00-5.00 **Certified by:** Madhusudan K.C

Deptn (m):	3.00-5.00		Certified by:	Madnusudan K.C
Seive	Wt. of	Cumulative	Cumulative	Percent
Size	Soil Retained	Weight	Percentage	Passing
		Retained	Retained	
mm	gms	gms	%	%
80.000		0.00		
63.000		0.00		
50.000		0.00		
40.000		0.00		
31.500		0.00	0.00	
25.000	0.00	0.00	0.00	
20.000		0.00	0.00	
16.000		0.00	0.00	100.00
12.500	0.00	0.00	0.00	
10.000	0.00	0.00	0.00	100.00
6.300	0.00	0.00	0.00	
4.750	0.00	0.00	0.00	
2.360		4.00	0.86	
1.180	9.00	13.00	2.80	
0.600	19.00	32.00		
0.425		64.00		
0.300		103.00		
0.150		299.00		
0.075	53.00	352.00	75.86	24.14
Pan				

Project: Soil Investigation of Proposed Building Complex

Location: Kohalpur BH No.: 1

Wt. of Sample (gms): 540.00 Tested by: Manoj Subedi

Date: 5th Jan, 2022 Checked by: S.K.Jha

Depth (m): 10.50-12.50 **Certified by:** Madhusudan K.C

Depui (iii):	10.30-12.30		Cerunea by:	Madhusudan K.C
Seive	Wt. of	Cumulative	Cumulative	Percent
Size	Soil Retained	Weight	Percentage	Passing
		Retained	Retained	
mm	gms	gms	%	%
80.000		0.00		
63.000		0.00		
50.000		0.00	0.00	
40.000		0.00		
31.500	0.00	0.00	0.00	
25.000	0.00	0.00	0.00	100.00
20.000	0.00	0.00	0.00	
16.000		0.00		
12.500	0.00	0.00	0.00	
10.000	0.00	0.00		
6.300	0.00	0.00	0.00	
4.750	22.00	22.00	4.07	95.93
2.360	0.00	22.00	4.07	95.93
1.180	9.00	31.00	5.74	94.26
0.600	10.00	41.00	7.59	92.41
0.425	65.00	106.00	19.63	80.37
0.300	42.00	148.00	27.41	72.59
0.150	221.00	369.00	68.33	31.67
0.075	44.00	413.00	76.48	23.52
Par	n			

Project: Soil Investigation of Proposed Building Complex

Location: Kohalpur BH No.: 1

Wt. of Sample (gms): 481.00 Tested by: Manoj Subedi

Date: 5th Jan, 2022 Checked by: S.K.Jha

Depth (m): 12.50-20.00 **Certified by:** Madhusudan K.C

Deptn (m):	12.50-20.00		Certified by:	Madnusudan K.C
Seive	Wt. of	Cumulative	Cumulative	Percent
Size	Soil Retained	Weight	Percentage	Passing
		Retained	Retained	
mm	gms	gms	%	%
80.000		0.00		
63.000		0.00		
50.000		0.00		
40.000		0.00		
31.500		0.00	0.00	
25.000	0.00	0.00	0.00	
20.000	0.00	0.00	0.00	100.00
16.000		0.00	0.00	100.00
12.500	0.00	0.00	0.00	
10.000	0.00	0.00	0.00	100.00
6.300	0.00	0.00	0.00	
4.750	0.00	0.00	0.00	
2.360	0.00	0.00	0.00	
1.180	0.00	0.00		
0.600	0.00	0.00	0.00	
0.425	0.00	0.00	0.00	
0.300	1.00	1.00	0.21	99.79
0.150	3.00	4.00	0.83	
0.075	2.00	6.00	1.25	98.75
Pan				

Project: Soil Investigation of Proposed Building Complex

Location: Kohalpur BH No.: 2

Wt. of Sample (gms): 415.00 Tested by: Manoj Subedi

Date: 5th Jan, 2022 Checked by: S.K.Jha

Depth (m): 0.30-3.00 **Certified by:** Madhusudan K.C

Depth (m).	,	2150 5100		certifica by.	Triadilabadail IX.C
Seive		Wt. of	Cumulative	Cumulative	Percent
Size		Soil Retained	Weight	Percentage	Passing
			Retained	Retained	G
mm		gms	gms	%	%
8	30.000	0.00	0.00	0.00	100.00
(53.000	0.00	0.00	0.00	100.00
	50.000	0.00	0.00	0.00	100.00
	40.000	0.00	0.00	0.00	
	31.500	0.00	0.00	0.00	100.00
	25.000	0.00	0.00	0.00	
	20.000	0.00	0.00	0.00	
	16.000	0.00	0.00	0.00	100.00
]	12.500	0.00	0.00	0.00	100.00
]	10.000	0.00	0.00	0.00	100.00
	6.300	0.00	0.00	0.00	
	4.750	0.00	0.00	0.00	
	2.360	0.00	0.00	0.00	100.00
	1.180	0.00	0.00	0.00	
	0.600	0.00	0.00	0.00	
	0.425	0.00	0.00	0.00	
	0.300	1.00	1.00	0.24	
	0.150	3.00	4.00	0.96	
	0.075	5.00	9.00	2.17	97.83
	Pan				

Project: Soil Investigation of Proposed Building Complex

Location: Kohalpur BH No.: 2

Wt. of Sample (gms): 544.00 Tested by: Manoj Subedi

Date: 5th Jan, 2022 Checked by: S.K.Jha

Depth (m): 3.00-6.50 **Certified by:** Madhusudan K.C

Deptn (m):	3.00-6.50		Certified by:	Madnusudan K.C
Seive	Wt. of	Cumulative	Cumulative	Percent
Size	Soil Retained	Weight	Percentage	Passing
		Retained	Retained	
mm	gms	gms	%	%
80.000				
63.000				
50.000				
40.000		0.00	0.00	
31.500	0.00	0.00	0.00	
25.000	0.00	0.00	0.00	100.00
20.000	0.00	0.00	0.00	100.00
16.000	0.00	0.00	0.00	100.00
12.500	0.00	0.00	0.00	
10.000	0.00	0.00	0.00	100.00
6.300	0.00	0.00	0.00	100.00
4.750	14.00	14.00	2.57	97.43
2.360	13.00	27.00		
1.180	16.00	43.00	7.90	
0.600	26.00	69.00	12.68	
0.425	30.00	99.00	18.20	
0.300				
0.150				
0.075	43.00	436.00	80.15	19.85
Par	1			

Project: Soil Investigation of Proposed Building Complex

Location: Kohalpur BH No.: 2

Wt. of Sample (gms): 745.00 Tested by: Manoj Subedi

Date: 5th Jan, 2022 Checked by: S.K.Jha

Depth (m): 6.50-8.50 **Certified by:** Madhusudan K.C

Deptn (m):	6.50-8.50		Certified by:	Madnusudan K.C	
Seive	Wt. of	Cumulative	Cumulative	Percent	
Size	Soil Retained	Weight	Percentage	Passing	
		Retained	Retained		
mm	gms	gms	%	%	
80.000		0.00			
63.000		0.00			
50.000		0.00			
40.000		0.00			
31.500		0.00	0.00		
25.000		0.00			
20.000	125.00	125.00	16.78		
16.000		125.00	16.78		
12.500	37.00	162.00	21.74	78.26	
10.000	31.00	193.00	25.91	74.09	
6.300	41.00	234.00	31.41		
4.750	81.00	315.00	42.28		
2.360	107.00	422.00			
1.180	113.00	535.00			
0.600	7.00	542.00	72.75		
0.425		559.00			
0.300		587.00			
0.150		623.00			
0.075	11.00	634.00	85.10	14.90	
Pan					

Project: Soil Investigation of Proposed Building Complex

Location: Kohalpur BH No.: 2

Wt. of Sample (gms): 575.00 Tested by: Manoj Subedi

Date: 5th Jan, 2022 Checked by: S.K.Jha

Depth (m): 12.00-13.50 **Certified by:** Madhusudan K.C

Deptn (m):	12.00-13.50		Certified by:	Madnusudan K.C	
Seive	Wt. of	Cumulative	Cumulative	Percent	
Size	Soil Retained	Weight	Percentage	Passing	
		Retained	Retained		
mm	gms	gms	%	%	
80.000		0.00			
63.000		0.00			
50.000		0.00			
40.000		0.00			
31.500		0.00	0.00		
25.000		0.00			
20.000		0.00	0.00		
16.000		0.00			
12.500		0.00			
10.000		0.00			
6.300		0.00			
4.750		41.00			
2.360		84.00			
1.180		154.00			
0.600		282.00			
0.425		372.00			
0.300		457.00			
0.150		509.00			
0.075	12.00	521.00	90.61	9.39	
Pan					

Project: Soil Investigation of Proposed Building Complex

Location: Kohalpur BH No.: 2

Wt. of Sample (gms): 580.00 Tested by: Manoj Subedi

Date: 5th Jan, 2022 Checked by: S.K.Jha

Depth (m): 13.50-20.00 **Certified by:** Madhusudan K.C

Deptn (m):	13.50-20.00		Certified by:	Madnusudan K.C	
Seive	Wt. of	Cumulative	Cumulative	Percent	
Size	Soil Retained	Weight	Percentage	Passing	
		Retained	Retained		
mm	gms	gms	%	%	
80.00					
63.00					
50.00					
40.00					
31.50		0.00	0.00		
25.00					
20.00					
16.00					
12.50					
10.00					
6.30					
4.75					
2.36					
1.18					
0.60		0.00	0.00		
0.42					
0.30					
0.15				99.83	
0.07	5 2.00	3.00	0.52	99.48	
Pa	n				

Project: Soil Investigation of Proposed Building Complex

Location: Kohalpur **BH No.:** 3

Wt. of Sample (gms): 588.00 Tested by: Manoj Subedi

Date: 5th Jan, 2022 Checked by: S.K.Jha

Depth (m): 0.00-1.50 **Certified by:** Madhusudan K.C

Depui (iii):	0.00-1.30		Certified by:	Madhusudan K.C	
Seive	Wt. of	Cumulative	Cumulative	Percent	
Size	Soil Retained	Weight	Percentage	Passing	
		Retained	Retained		
mm	gms	gms	%	%	
80.000	0.00	0.00	0.00		
63.000	0.00	0.00	0.00	100.00	
50.000	0.00	0.00	0.00		
40.000	0.00	0.00	0.00	100.00	
31.500	0.00	0.00	0.00		
25.000	0.00	0.00	0.00	100.00	
20.000	0.00	0.00	0.00	100.00	
16.000	0.00	0.00	0.00	100.00	
12.500	0.00	0.00	0.00		
10.000	0.00	0.00	0.00	100.00	
6.300	0.00	0.00	0.00	100.00	
4.750	7.00	7.00	1.19	98.81	
2.360	10.00	17.00	2.89	97.11	
1.180	10.00	27.00	4.59	95.41	
0.600	8.00	35.00	5.95	94.05	
0.425	4.00	39.00	6.63	93.37	
0.300	8.00	47.00	7.99	92.01	
0.150	36.00	83.00	14.12	85.88	
0.075	16.00	99.00	16.84	83.16	
Par	n				

Project: Soil Investigation of Proposed Building Complex

Location: Kohalpur **BH No.:** 3

Wt. of Sample (gms): 660.00 Tested by: Manoj Subedi

Date: 5th Jan, 2022 Checked by: S.K.Jha

Depth (m): 1.50-4.00 **Certified by:** Madhusudan K.C

Deptn (m):	1.50-4.00		Certified by:	Madnusudan K.C	
Seive	Wt. of	Cumulative	Cumulative	Percent	
Size	Soil Retained	Weight	Percentage	Passing	
		Retained	Retained		
mm	gms	gms	%	%	
80.000		0.00			
63.000		0.00			
50.000		0.00			
40.000		0.00			
31.500		0.00	0.00		
25.000	0.00	0.00	0.00		
20.000		0.00	0.00		
16.000		0.00	0.00	100.00	
12.500	0.00	0.00	0.00		
10.000	0.00	0.00	0.00		
6.300	0.00	0.00	0.00		
4.750	10.00	10.00	1.52		
2.360	24.00	34.00	5.15		
1.180	40.00	74.00		88.79	
0.600	116.00	190.00	28.79		
0.425		281.00			
0.300		387.00			
0.150		513.00			
0.075	40.00	553.00	83.79	16.21	
Pan					

Project: Soil Investigation of Proposed Building Complex

Location: Kohalpur **BH No.:** 3

Wt. of Sample (gms): 450.00 Tested by: Manoj Subedi

Date: 5th Jan, 2022 Checked by: S.K.Jha

Depth (m): 6.00-10.50 **Certified by:** Madhusudan K.C

Deptii (iii):	0.00-10.30		Cerunea by:	Madifusudali K.C	
Seive	Wt. of	Cumulative	Cumulative	Percent	
Size	Soil Retained	Weight	Percentage	Passing	
		Retained	Retained		
mm	gms	gms	%	%	
80.00	0.00	0.00	0.00		
63.00	0.00	0.00	0.00	100.00	
50.00	0.00	0.00	0.00	100.00	
40.00	0.00	0.00	0.00	100.00	
31.50	0.00	0.00	0.00		
25.00	0.00	0.00	0.00	100.00	
20.00	0.00	0.00	0.00		
16.00		0.00	0.00		
12.50	0.00	0.00	0.00	100.00	
10.00					
6.30	0.00	0.00	0.00	100.00	
4.75					
2.36	0 11.00	11.00	2.44	97.56	
1.18	0 23.00	34.00	7.56		
0.60	0 102.00	136.00	30.22		
0.42	5 100.00	236.00	52.44		
0.30					
0.15		372.00		17.33	
0.07	5 22.00	394.00	87.56	12.44	
Pa	n				

Project: Soil Investigation of Proposed Building Complex

Location: Kohalpur **BH No.:** 3

Wt. of Sample (gms): 560.00 Tested by: Manoj Subedi

Date: 5th Jan, 2022 Checked by: S.K.Jha

Depth (m): 10.00-16.00 **Certified by:** Madhusudan K.C

Deptn (m):	10.00-16.00		Certified by:	Madnusudan K.C
Seive	Wt. of	Cumulative	Cumulative	Percent
Size	Soil Retained	Weight	Percentage	Passing
		Retained	Retained	·
mm	gms	gms	%	%
80.00			0.00	
63.00	0.00	0.00	0.00	
50.00	0.00	0.00	0.00	
40.00			0.00	
31.50	0.00	0.00	0.00	100.00
25.00			0.00	
20.00			0.00	
16.00			0.00	
12.50			0.00	
10.00			0.00	
6.30			0.00	
4.75	14.00	14.00	2.50	
2.36	13.00	27.00	4.82	
1.18	8.00	35.00	6.25	
0.60	00 4.00	39.00	6.96	
0.42	0.00	39.00	6.96	
0.30	0.00	39.00	6.96	
0.15			6.96	
0.07	0.00	39.00	6.96	93.04
Pa	ın			

Project: Soil Investigation of Proposed Building Complex

Location: Kohalpur **BH No.:** 4

Wt. of Sample (gms): 458.00 Tested by: Manoj Subedi

Date: 5th Jan, 2022 Checked by: S.K.Jha

Depth (m): 0.00-1.00 **Certified by:** Madhusudan K.C

Deptn (m):	0.00-1.00		Certified by:	Madnusudan K.C	
Seive	Wt. of	Cumulative	Cumulative	Percent	
Size	Soil Retained	Weight	Percentage	Passing	
		Retained	Retained		
mm	gms	gms	%	%	
80.000		0.00			
63.000		0.00			
50.000		0.00			
40.000		0.00			
31.500		0.00	0.00		
25.000	0.00	0.00	0.00		
20.000	0.00	0.00	0.00	100.00	
16.000		0.00	0.00	100.00	
12.500	0.00	0.00	0.00		
10.000	0.00	0.00	0.00	100.00	
6.300	0.00	0.00	0.00		
4.750	0.00	0.00	0.00		
2.360		0.00	0.00		
1.180	0.00	0.00			
0.600	0.00	0.00			
0.425		15.00			
0.300		15.00			
0.150		45.00			
0.075	25.00	70.00	15.28	84.72	
Pan					

Project: Soil Investigation of Proposed Building Complex

Location: Kohalpur BH No.: 4

Wt. of Sample (gms): 812.00 Tested by: Manoj Subedi

Date: 5th Jan, 2022 Checked by: S.K.Jha

Depth (m): 1.00-3.00 **Certified by:** Madhusudan K.C

Deptn (m):	1.00-3.00		Certified by:	Madnusudan K.C	
Seive	Wt. of	Cumulative	Cumulative	Percent	
Size	Soil Retained	Weight	Percentage	Passing	
		Retained	Retained		
mm	gms	gms	%	%	
	0.00				
	0.00				
	0.00				
	000 54.00	54.00	6.65		
	500 0.00	54.00			
	000 102.00			80.79	
	000 103.00				
	0.00				
	500 0.00				
	000 75.00				
	300 104.00				
	750 93.00				
	360 0.00				
	180 0.00				
	52.00				
	425 32.00				
	300 45.00				
	150 95.00				
0.	075 40.00	795.00	97.91	2.09	
	Pan				

Project: Soil Investigation of Proposed Building Complex

Location: Kohalpur BH No.: 4

Wt. of Sample (gms): 619.00 Tested by: Manoj Subedi

Date: 5th Jan, 2022 Checked by: S.K.Jha

Depth (m): 3.00-5.00 **Certified by:** Madhusudan K.C

Depui (iii):	3.00-3.00		Certified by:	Madhusudan K.C	
Seive	Wt. of	Cumulative	Cumulative	Percent	
Size	Soil Retained	Weight	Percentage	Passing	
		Retained	Retained		
mm	gms	gms	%	%	
80.00					
63.00	0.00	0.00	0.00		
50.00	0.00	0.00	0.00	100.00	
40.00	0.00	0.00	0.00	100.00	
31.50	0.00	0.00	0.00		
25.00	0.00	0.00	0.00	100.00	
20.00	0.00	0.00	0.00		
16.00	0.00	0.00	0.00	100.00	
12.50	0.00	0.00	0.00	100.00	
10.00	0 63.00	63.00	10.18	89.82	
6.30	0.00	63.00	10.18	89.82	
4.75	0 126.00	189.00	30.53	69.47	
2.36	0 11.00	200.00	32.31	67.69	
1.18	0 4.00	204.00	32.96	67.04	
0.60	0.00	204.00	32.96	67.04	
0.42	5 0.00	204.00	32.96	67.04	
0.30	0.00	204.00	32.96	67.04	
0.15	0.00	204.00	32.96	67.04	
0.07	0.00	204.00	32.96	67.04	
Pa	n				

Project: Soil Investigation of Proposed Building Complex

Location: Kohalpur BH No.: 4

Wt. of Sample (gms): 605.00 Tested by: Manoj Subedi

Date: 5th Jan, 2022 Checked by: S.K.Jha

Depth (m): 5.00-11.00 **Certified by:** Madhusudan K.C

Deptn (m):	5.00-11.00		Certified by:	Madnusudan K.C	
Seive	Wt. of	Cumulative	Cumulative	Percent	
Size	Soil Retained	Weight	Percentage	Passing	
		Retained	Retained		
mm	gms	gms	%	%	
80.000		0.00			
63.000		0.00			
50.000		0.00			
40.000		0.00			
31.500		0.00			
25.000	0.00	0.00	0.00		
20.000		0.00	0.00		
16.000		0.00	0.00	100.00	
12.500	0.00	0.00	0.00		
10.000	0.00	0.00	0.00	100.00	
6.300	0.00	0.00	0.00		
4.750	50.00	50.00			
2.360		81.00	13.39		
1.180	38.00	119.00			
0.600	81.00	200.00	33.06		
0.425		245.00	40.50		
0.300	98.00	343.00	56.69		
0.150		453.00			
0.075	27.00	480.00	79.34	20.66	
Pan					

MULTI Lab (P) Ltd. SPECIFIC GRAVITY

Project : Proposed Building Site

Location: Nepalgunj, Banke

Date: 8th Jan, 2022

Tested by: Manoj Subedi

Checked by: S.K. Jha

Certified By: Madhu Sudan KC

SPECIFIC GRAVITY

BH No		1	2	3	4
		1			-
Depth (m)		5.00-10.50	8.50-12.00	4.00-6.00	11.00-20.00
Weight of Pycnometer gms		32.40	32.40	32.40	32.40
Weight of Pycnometer + soil sample	gms	84.20	86.80	82.10	84.80
Weight of Pycnometer + water + soil	gms	180.40	182.00	179.20	180.80
Weight of Pycnometer + water	gms	149.10	149.10	149.10	149.10
Weight of Sample ,	gms	51.80	54.40	49.70	52.40
Temperature of Water,	deg.	21.00	21.00	21.00	21.00
Specific Gravity of Water,		1.00	1.00	1.00	1.00
Specific Gravity of Soil Sample,		2.527	2.530	2.536	2.531

UNCONFINED COMPRESSION TEST

Project : Proposed Building Site Nepalgunj,Banke Location: Borehole No.: Depth: 6.50 m UDS Diameter: 3.8 Height: cm 7.60 cm Volume: Area: 86.184 сс 11.34 cm^2 Load Dial Const: 0.3028 0.001 Kg/Div **Strain Dial Const** cm Wet Weight: **Bulk Unit wt.:** 158.00 gms 1.833 gm/cc Dry Weight: 120.00 **Dry Unit Wt.:** 1.392 gm/cc gms Date: 2nd Jan, 2022 **Prov. Ring No: SSTC 111**

Tested by: Manoj Subedi Checked by: Sandeep Kr. Jha

Certified by: Madhu Sudan KC

Strain	Load	Load	Total	Unit	1-Unit	Corrected	Stress	
Dial	Dial		Strain	strain	Strain	Area		
(div)	(div)	Kg	cm			cm²	kN/m^2	
0	0.00	0.00	0.00	0.00	1.00	11.34	0.00	
50	1.00	0.30	0.05	0.66	0.99	11.42	2.65	
100	2.00	0.61	0.10	1.32	0.99	11.49	5.27	
150	3.50	1.06	0.15	1.97	0.98	11.57	9.16	
200	5.00	1.51	0.20	2.63	0.97	11.65	13.00	
250	6.50	1.97	0.25	3.29	0.97	11.73	16.79	
300	8.00	2.42	0.30	3.95	0.96	11.81	20.52	
400	11.50	3.48	0.40	5.26	0.95	11.97	29.09	
500	15.00	4.54	0.50	6.58	0.93	12.14	37.42	
600	18.00	5.45	0.60	7.89	0.92	12.31	44.27	
700	22.00	6.66	0.70	9.21	0.91	12.49	53.33	
800	26.00	7.87	0.80	10.53	0.89	12.67	62.12	
900	30.00	9.08	0.90	11.84	0.88	12.86	70.62	
1000	33.00	9.99	1.00	13.16	0.87	13.06	76.52	
1200	38.00	11.51	1.20	15.79	0.84	13.47	85.45	
1400	42.00	12.72	1.40	18.42	0.82	13.90	91.49	
1600	43.00	13.02	1.60	21.05	0.79	14.36	90.65	
1800	42.00	12.72	1.80	23.68	0.76	14.86	85.59	
2000	35.00	10.60	2.00	26.32	0.74	15.39	68.86	

Unconfined Strength (kN/m²): 91.00 Shear Strength (kN/m²): 45.50

UNCONFINED COMPRESSION TEST

Project : Proposed Building Site Nepalgunj,Banke Location: Borehole No.: 2 Depth: 9.50 m UDS Diameter: 3.8 Height: cm 7.60 cm Volume: 86.184 Area: сс 11.34 cm^2 Load Dial Const: 0.3028 **Strain Dial Const** 0.001 Kg/Div cm Wet Weight: **Bulk Unit wt.:** 1.839 158.50 gms gm/cc Dry Weight: 122.00 **Dry Unit Wt.:** 1.416 gm/cc gms Date: 2nd Jan, 2022 **Prov. Ring No: SSTC 111**

Tested by: Manoj Subedi Checked by: Sandeep Kr. Jha

Certified by: Madhu Sudan KC

e er errett sj		1,100110 500011	110					
Strain	Load	Load	Total	Unit	1-Unit	Corrected	Stress	
Dial	Dial		Strain	strain	Strain	Area		
(div)	(div)	Kg	cm			cm²	kN/m^2	
0	0.00	0.00	0.00	0.00	1.00	11.34	0.00	
50	1.50	0.45	0.05	0.66	0.99	11.42	3.98	
100	3.00	0.91	0.10	1.32	0.99	11.49	7.91	
150	4.50	1.36	0.15	1.97	0.98	11.57	11.78	
200	6.00	1.82	0.20	2.63	0.97	11.65	15.60	
250	8.00	2.42	0.25	3.29	0.97	11.73	20.66	
300	10.00	3.03	0.30	3.95	0.96	11.81	25.65	
400	13.00	3.94	0.40	5.26	0.95	11.97	32.89	
500	16.00	4.84	0.50	6.58	0.93	12.14	39.91	
600	20.00	6.06	0.60	7.89	0.92	12.31	49.19	
700	24.00	7.27	0.70	9.21	0.91	12.49	58.18	
800	28.00	8.48	0.80	10.53	0.89	12.67	66.90	
900	32.00	9.69	0.90	11.84	0.88	12.86	75.33	
1000	35.00	10.60	1.00	13.16	0.87	13.06	81.16	
1200	40.00	12.11	1.20	15.79	0.84	13.47	89.94	
1400	44.00	13.32	1.40	18.42	0.82	13.90	95.85	
1600	45.00	13.63	1.60	21.05	0.79	14.36	94.86	
1800	42.00	12.72	1.80	23.68	0.76	14.86	85.59	
2000	35.00	10.60	2.00	26.32	0.74	15.39	68.86	

Unconfined Strength (kN/m²): 96.00 Shear Strength (kN/m²): 48.00

UNCONFINED COMPRESSION TEST

Project : Proposed Building Site Nepalgunj,Banke Location: Borehole No.: 3 Depth: 5.0 m UDS Diameter: 3.8 Height: cm 7.60 cm Volume: Area: 86.184 сс 11.34 cm^2 Load Dial Const: 0.3028 0.001 Kg/Div **Strain Dial Const** cm Wet Weight: **Bulk Unit wt.:** 157.20 gms 1.824 gm/cc Dry Weight: 120.50 **Dry Unit Wt.:** 1.398 gm/cc gms Date: 2nd Jan, 2022 **Prov. Ring No: SSTC 111**

Checked by:

Sandeep Kr. Jha

Certified by: Madhu Sudan KC

Manoj Subedi

Tested by:

cer timed by.		Madilu Sudali	KC				
Strain	Load	Load	Total	Unit	1-Unit	Corrected	Stress
Dial	Dial		Strain	strain	Strain	Area	
(div)	(div)	Kg	cm			cm²	kN/m^2
0	0.00	0.00	0.00	0.00	1.00	11.34	0.0
50	1.00	0.30	0.05	0.66	0.99	11.42	2.6
100	2.50	0.76	0.10	1.32	0.99	11.49	6.5
150	4.00	1.21	0.15	1.97	0.98	11.57	10.4
200	5.50	1.67	0.20	2.63	0.97	11.65	14.3
250	7.00	2.12	0.25	3.29	0.97	11.73	18.0
300	9.00	2.73	0.30	3.95	0.96	11.81	23.0
400	12.00	3.63	0.40	5.26	0.95	11.97	30.3
500	15.00	4.54	0.50	6.58	0.93	12.14	37.4
600	19.00	5.75	0.60	7.89	0.92	12.31	46.7
700	23.00	6.96	0.70	9.21	0.91	12.49	55.7
800	27.00	8.18	0.80	10.53	0.89	12.67	64.5
900	30.00	9.08	0.90	11.84	0.88	12.86	70.6
1000	33.50	10.14	1.00	13.16	0.87	13.06	77.6
1200	40.00	12.11	1.20	15.79	0.84	13.47	89.9
1400	43.00	13.02	1.40	18.42	0.82	13.90	93.6
1600	45.00	13.63	1.60	21.05	0.79	14.36	94.8
1800	45.00	13.63	1.80	23.68	0.76	14.86	91.7
2000	43.00	13.02	2.00	26.32	0.74	15.39	84.6
2200	36.00	10.90	2.20	28.95	0.71	15.96	68.3

Unconfined Strength(kN/m²): 95.00 Shear Strength (kN/m²): 47.50

UNCONFINED COMPRESSION TEST

Project : Proposed Building Site Nepalgunj,Banke Location: Borehole No.: 4 Depth: 12.50 m UDS Diameter: 3.8 Height: cm 7.60 cm Volume: 86.184 Area: 11.34 сс cm^2 Load Dial Const: 0.3028 0.001 Kg/Div **Strain Dial Const** cm Wet Weight: **Bulk Unit wt.:** 1.839 158.50 gms gm/cc Dry Weight: 121.00 **Dry Unit Wt.:** 1.404 gm/cc gms Date: **SSTC 111**

2nd Jan, 2022 **Prov. Ring No:**

Tested by: Manoj Subedi Checked by: Sandeep Kr. Jha

Certified by: Madhu Sudan KC

Strain	Load	Load	Total	Unit	1-Unit	Corrected	Stress
Dial	Dial		Strain	strain	Strain	Area	
(div)	(div)	Kg	cm			cm²	kN/m²
0	0.00	0.00	0.00	0.00	1.00	11.34	0.00
50	1.50	0.45	0.05	0.66	0.99	11.42	3.98
100	3.00	0.91	0.10	1.32	0.99	11.49	7.91
150	4.50	1.36	0.15	1.97	0.98	11.57	11.78
200	6.00	1.82	0.20	2.63	0.97	11.65	15.60
250	8.50	2.57	0.25	3.29	0.97	11.73	21.95
300	11.00	3.33	0.30	3.95	0.96	11.81	28.21
400	15.00	4.54	0.40	5.26	0.95	11.97	37.94
500	19.00	5.75	0.50	6.58	0.93	12.14	47.40
600	23.00	6.96	0.60	7.89	0.92	12.31	56.57
700	27.00	8.18	0.70	9.21	0.91	12.49	65.45
800	30.00	9.08	0.80	10.53	0.89	12.67	71.67
900	34.00	10.30	0.90	11.84	0.88	12.86	80.04
1000	37.00	11.20	1.00	13.16	0.87	13.06	85.80
1200	42.00	12.72	1.20	15.79	0.84	13.47	94.44
1400	46.00	13.93	1.40	18.42	0.82	13.90	100.20
1600	49.00	14.84	1.60	21.05	0.79	14.36	103.29
1800	50.00	15.14	1.80	23.68	0.76	14.86	101.89
2000	49.00	14.84	2.00	26.32	0.74	15.39	96.41
2200	42.00	12.72	2.20	28.95	0.71	15.96	79.68

Unconfined Strength(kN/m²): 51.50 103.00 Shear Strength (kN/m²):

WATER CONTENT DETERMENATION

Project : Soil Investigation of Proposed Building Complex

Location: Nepalgunj

Date: 2nd Jan, 2022

Tested by: Manoj Subedi

Checked by: S. K. Jha

Certified by: Madhusudan K.C

		Ī											
Bore Hole No.				1	[2	2		
Depth (m)		0.30-1.50	1.50-3.00	3.00-5.00	5.00-10.50	10.50-12.50	12.50-20.00	0.30-3.00	3.00-6.50	6.50-8.50	8.50-12.00	12.00-13.50	13.50-20.00
Container No.		1	2	3	4	5	6	7	8	9	10	11	12
Wt of cont.+wet soil,	gms	812.00	910.00	810.00	652.00	795.00	810.00	966.00	1065.00	865.00	981.00	942.00	698.00
Wt of cont.+dry soil,	gms	640.00	710.00	690.00	512.00	670.00	642.00	745.00	912.00	765.00	768.00	842.00	545.00
Wt of container,	gms	92.00	105.00	82.00	100.00	72.00	81.00	89.00	105.00	92.00	100.00	78.00	83.00
Wt of water,	gms	172.00	200.00	120.00	140.00	125.00	168.00	221.00	153.00	100.00	213.00	100.00	153.00
Wt of dry sample	gms	548.00	605.00	608.00	412.00	598.00	561.00	656.00	807.00	673.00	668.00	764.00	462.00
Moisture content,	%	31.39	33.06	19.74	33.98	20.90	29.95	33.69	18.96	14.86	31.89	13.09	33.12

WATER CONTENT DETERMENATION

Project : Soil Investigation of Proposed Building Complex

Location : Nepalgunj

Date : 2nd Jan, 2022

Tested by: Manoj Subedi

Checked by: S. K. Jha

Certified by: Madhusudan K.C

Bore Hole No.				3			4					
Depth (m)		0.00-1.50	1.50-4.00	4.00-6.00	6.00-10.50	10.50-16.00	0.00-1.00	1.00-3.00	3.00-5.00	5.00-11.00	11.00-20.00	
Container No.		13	14	15	16	17	18	19	20	21	22	
Wt of cont.+wet soil,	gms	910.00	851.00	1032.00	965.00	718.00	895.00	1302.00	981.00	720.00	595.00	
Wt of cont.+dry soil,	gms	785.00	745.00	802.00	835.00	565.00	695.00	1165.00	795.00	664.00	468.00	
Wt of container,	gms	92.00	105.00	94.00	78.00	100.00	78.00	102.00	92.00	82.00	85.00	
Wt of water,	gms	125.00	106.00	230.00	130.00	153.00	200.00	137.00	186.00	56.00	127.00	
Wt of dry sample	gms	693.00	640.00	708.00	757.00	465.00	617.00	1063.00	703.00	582.00	383.00	
Moisture content,	%	18.04	16.56	32.49	17.17	32.90	32.41	12.89	26.46	9.62	33.16	