## EP0605 Tutorial 7 – Magnetism

1. A long straight wire lies along the y-axis and carries a current I = 8.00 A in the -y-direction. In addition to the magnetic field due to the current in the wire, a uniform magnetic field  $\vec{B}_0$  with magnitude  $1.50 \times 10^{-6}$  T is in the +x-direction. What is the total field (magnitude and direction) at the following points in the xz-plane:



- (a) x = 0, z = 1.00 m,
- (b) x = 1.00 m, z = 0,
- (c) x = 0, z = -0.250 m?
- 2. A proton moves with a speed of  $1.00 \times 10^5$  m/s through Earth's magnetic field, which has a value of 55.0  $\mu$ T at a particular location. When the proton moves eastward, the magnetic force acting on it is directed straight upward and when it moves northward, no magnetic force acts on it.
  - (a) What is the direction of the magnetic field?
  - (b) What is the strength of the magnetic force when the proton moves eastward?
  - (c) Calculate the gravitational force on the proton. Take  $g = 9.80 \text{ m/s}^2$ .
  - (d) Calculate the electric force on the proton if there were an electric field with magnitude  $E = 1.50 \times 10^2$  N/C. The mass of proton is  $1.67 \times 10^{-27}$  kg.
- 3. A particle with a charge of  $-1.24 \times 10^{-8}$  C is moving with instantaneous velocity  $\mathbf{v} = (4.19 \times 10^4 \text{ m/s}) \, \mathbf{i} + (-3.85 \times 10^4 \text{ m/s}) \, \mathbf{j}$ . What is the force exerted on this particle by a magnetic field
  - (a)  $\mathbf{B} = (1.40 \text{ T}) \mathbf{i}$  and
  - (b)  $\mathbf{B} = (1.40 \text{ T}) \mathbf{k}$ ?
- 4. A particle with charge 7.80  $\mu$ C is moving with velocity  $\mathbf{v} = (-3.80 \times 10^3 \text{ m/s}) \, \mathbf{j}$ . The magnetic force on the particle is measured as  $\mathbf{F} = (7.60 \times 10^{-3} \, \text{N}) \, \mathbf{i} (5.20 \times 10^{-3} \, \text{N}) \, \mathbf{k}$ .
  - (a) Calculate all the components of the magnetic field you can from this information.
  - (b) Are there components of the magnetic field that are not determined by the measurement of the force? Explain.
  - (c) Calculate the scalar product **B.F**. What is the angle between **B** and **F**?
- 5. A singly charged lithium ion has a mass  $1.16 \times 10^{-26}$  kg. It is accelerated through a potential difference of 220 V and then enters a magnetic field with magnitude 0.723 T perpendicular to the path of the ion. What is the radius of the ion's path in the magnetic field?

Tutorial 7 Magnetism EP0605

6. (a) What is the speed of a beam of electrons when the simultaneous influence of an electric field of  $1.56 \times 10^4$  V/m and a magnetic field of  $4.62 \times 10^{-3}$  T with both fields normal to the beam and to each other, produces no deflection of the electrons?

- (b) When the electric field is removed, what is the radius of the electron orbit?
- (c) What is the period of the orbit?
- (d) In a diagram, show the relative orientation of the vectors **v**, **E** and **B**.
- 7. Singly ionized (one electron removed) atoms are accelerated and then passed through a velocity selector consisting of perpendicular electric and magnetic fields. The electric field is 155 V/m and the magnetic field is 0.0315 T. The ions next enter a uniform magnetic field of magnitude 0.0175 T that is oriented perpendicular to their velocity.
  - (a) How fast are the ions moving when they emerge from the velocity selector?
  - (b) If the radius of the path of the ions in the second magnetic field is 17.5 cm, what is their mass?
- 8. A wire carries a current of 22.0 A from west to east. Assume that at this location, the magnetic field of Earth is horizontal and directed from south to north and that it has a magnitude of  $0.500 \times 10^{-4}$  T.
  - (a) Find the magnitude and direction of the magnetic force on a 36.0 m length of wire.
  - (b) Calculate the gravitational force on the same length of wire if it is made of copper and has a cross sectional area of  $2.50 \times 10^{-6}$  m<sup>2</sup>. The density of copper is  $8.92 \times 10^3$  kg/m<sup>3</sup>.
- 9. Two singly ionized atoms move out of a slit at point S as shown, and into a magnetic field of magnitude 0.100 T pointing into the page. Each has a speed of  $1.00 \times 10^6$  m/s. The nucleus of the first atom contains one proton and has a mass of  $1.67 \times 10^{-27}$  kg, while the nucleus of the second atom contains a proton and a neutron and has a mass of  $3.34 \times 10^{-27}$  kg. Find their distance of separation when they strike a photographic plate at P.



- 10. A thin 50.0-cm long metal bar with mass 750 g rests on (but not attached to) two metallic supports in a uniform magnetic field of 0.450 T as shown in the figure. A battery and a 25.0  $\Omega$  resistor in series are connected to the supports.
  - (a) What is the highest voltage the battery can have without breaking the circuit at the supports?
  - (b) The battery voltage has the maximum value calculated in part (a). If the resistor suddenly gets partially short-circuited, decreasing its resistance to 2.0  $\Omega$ , find the initial acceleration of the bar. (Hint: Use Ohm's Law to calculate voltage).



## Answers

- 1. (a)  $-0.1 \mu \text{T} \hat{i}$ ; (b)  $2.19 \mu \text{T}$ ,  $46.8^{\circ}$  from x to z; (c)  $7.9 \mu \text{T} \hat{i}$
- 2. (a) North; (b)  $8.80 \times 10^{-19}$  N; (c)  $1.64 \times 10^{-26}$  N; (d)  $2.40 \times 10^{-17}$  N
- 3. (a)  $(-6.68 \times 10^{-4} \text{ N}) \text{ k}$ ; (b)  $(6.68 \times 10^{-4} \text{ N}) \text{ i} + (7.27 \times 10^{-4} \text{ N}) \text{ j}$
- 4. (a)  $B_x = -0.256 \text{ T}$ ,  $B_z = -0.175 \text{ T}$ ; (b)  $B_y$  is not determined; (c) **B.F** = 0, angle is  $90^\circ$
- 5. Radius =  $7.81 \times 10^{-3}$  m
- 6. (a)  $v = 3.38 \times 10^6$  m/s; (b)  $R = 4.17 \times 10^{-3}$  m; (c)  $7.74 \times 10^{-9}$  s



- (d)
- 7. (a)  $v = 4.92 \times 10^3 \text{ m/s}$ ; (b)  $9.96 \times 10^{-26} \text{ kg}$
- 8. (a)  $3.96 \times 10^{-2}$  N; (b) 7.87 N
- 9. 0.210 m
- 10. (a) 817 V; (b)  $113 \text{ m/s}^2$