

UA776

PROGRAMMABLE LOW POWER SINGLE OPERATIONAL AMPLIFIERS

- MICROPOWER OPERATION
- NO FREQUENCY COMPENSATION REQUIRED
- WIDE PROGRAMMING RANGE
- HIGH SLEW RATE
- SHORT-CIRCUIT PROTECTION
- PROGRAMMABLE SINGLE OP-AMP

ORDER CODES

Part	Temperature	Package				
Number	Range	N	D			
UA776C	0°C, +70°C	•	•			
UA776I	-40°C, +105°C	•				
UA776M	-55°C, +125°C	•				
Example: UA776CN						

DESCRIPTION

The UA776 programmable operational amplifier is characterized by low supply current and low equivalent input noise voltage over a wide range of operating supply voltages.

Coupled with programmable electrical characteristics, it is a versatile amplifier for use in high accuracy, low power consumption analog applications.

Input noise voltage and current, power consumption and input current can be optimized by a single resistor or current source that sets the chip quiescent current for nano-watt power consumption or for characteristics similar to the UA741.

Internal frequency compensation, absence of latch up, high slew rate and short-circuit protection assure ease of use in long time integrators, active filters, and sample and hold circuits.

PIN CONNECTIONS (top view)

December 1997 1/8

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	UA776M	UA776I	UA776C	Unit
V _{cc}	Supply Voltage		V		
V _{id}	Differential Input Voltage		±30		V
Vi	Input Voltage - (note 1)		V		
P _{tot}	Power Dissipation	500	310	310	mW
	Output Short-circuit Duration	it Duration			
T _{oper}	Operating Free Air Temperature Range	-55 to +125	-40 to +105	0 to +70	°C
T _{stg}	Storage Temperature Range	-65 to +150	-65 to +150	-65 to +150	°C

Note: 1. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

ELECTRICAL CHARACTERISTICS $V_{CC} \pm 15V$, $T_{amb} = +25^{\circ}C$ (unless otherwise specified)

Symbol	Parameter		I _{set} = 1.5μA			I _{set} = 15μA		
	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Vio	Input Offset Voltage							mV
	$T_{amb} = +25^{\circ}C$		2	5 6		2	5 6	
I.	T _{min.} ≤ T _{amb} ≤ T _{max.}			0			0	n ^
l _{io}	Input Offset Current T _{amb} = +25°C		0.7	3		2	15	nA
	$T_{min.} \le T_{amb} \le T_{max.}$		0	10		_	40	
I_{ib}	Input Bias Current					4.5	50	nA
	T _{amb} = +25°C UA776M UA776I,C		2 2	7.5 10		15 15	50 50	
	$T_{\text{min.}} \le T_{\text{amb}} \le T_{\text{max.}}$		_	20		.0	100	
A_{vd}	Large Signal Voltage Gain (V _O ±10V)							V/mV
	$T_{amb} = +25^{\circ}C$ $R_{L} = 5kΩ$ $R_{L} = 75kΩ$	200	400		100	400		
	$T_{min.} \le T_{amb} \le T_{max.}$ $R_L = 75k\Omega$	100	400					
	$R_L = 5k\Omega$				75			
SVR	Supply Voltage Rejection Ratio ($R_S \le 10k\Omega$) $T_{amb} = +25^{\circ}C$	77	92		77	92		dB
	$T_{amb} = +23 G$ $T_{min.} \le T_{amb} \le T_{max.}$	77	92		77	92		
Icc	Supply Current, no load							μΑ
	$T_{amb} = +25^{\circ}C$		20	25		160	180	
١/.	Tmin. ≤ Tamb ≤ Tmax.	±10		30	±10		200	V
V _{icm} CMR	Input Common Mode Voltage Range Common-mode Rejection Ratio (R _S ≤ 10kΩ)	±10			±10			dB
CIVIN	$T_{amb} = +25^{\circ}C$							uБ
	$T_{min.}^{-} \le T_{amb} \le T_{max.}$	70	90		70	90		
1	Output Chart sireuit Current	70	2	4.5	70	10	20	A
los	Output Short-circuit Current	0.5	3	15	6	12	30	mA V
±V _{OPP}	Output Voltage Swing $T_{amb} = +25^{\circ}C$ $R_{L} = 5k\Omega$							V
	$R_L = 75k\Omega$	40	4.4		10	13		
	$T_{min.} \le T_{amb} \le T_{max.}$ $R_L = 75k\Omega$	12 10	14		10			
Vior	Offset Voltage Adjustment Range		9			18		mV
SR	Slew Rate ($V_i = \pm 10V$, $C_L = 100pF$, unity gain)							V/ms
	$R_L = 5k\Omega$				0.0	0.0		
	$R_L = 75k\Omega$	0.01	0.1		0.2	0.8		
t _r	Rise Time ($V_i = \pm 20$ mV, $C_L = 100$ pF, unity gain)	0.0.	0					ms
	$R_L = 5k\Omega$					0.05		
	$R_L = 75k\Omega$		1.6			0.35		
Kov	Overshoot ($V_i = \pm 20$ mV, $CL = 100$ pF, unity gain)		1.0					%
01	$R_L = 5k\Omega$, ,
	$R_L = 75k\Omega$		0			10		
Rı	Input Resistance		50			5		ΜΩ
C _{id}	Differential Input Capacitance		2			2		pF
R _o	Output Resistance		5			1		kΩ
GBP	Gain Bandwidth Product ($C_L = 100pF, T_{amb} = 25^{\circ}C$)					<u> </u>		MHz
- '-	$f = 100kHz$ $R_L = 5k\Omega$							
	$f = 10kHz$ $R_L = 75k\Omega$	0.3	0.1		0.4	0.7		
THD	Total Harmonic Distortion (f = 1kHz, A _V = 20dB,	0.0	0.1					%
	$V_O = 2V_{PP}, C_L = 100pF, T_{amb} = 25^{\circ}C$							70
	$R_L = 5k\Omega$ $R_L = 75k\Omega$					0.025		
	17[- 10/22		0.8			0.023		
en	Equivalent Input Noise Voltage							nV
	$(f = 1kHz, R_s = 100\Omega)$		40			20		√Hz

ELECTRICAL CHARACTERISTICS $V_{CC} \pm 3V$, $T_{amb} = +25^{\circ}C$ (unless otherwise specified)

Symbol	Parameter		I _{set} = 1.5μA			I _{set} = 15μA		
Jynnoon	Faranietei	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
V _{io}	Input Offset Voltage			_			_	mV
	$T_{amb} = +25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$		2	5 6		2	5 6	
lio	Input Offset Current							nA
	$ T_{amb} = +25^{\circ}C $ $ T_{min.} \le T_{amb} \le T_{max}. $		0.7	3 10		2	15 40	
l _{ib}	$ \begin{array}{ll} \text{Input Bias Current} \\ T_{amb} = +25^{\circ}\text{C} & \text{UA776M} \\ \text{UA776I,C} \\ T_{min.} \leq T_{amb} \leq T_{max.} \end{array} $		2 2	7 10 20		15 15	50 50 100	nA
A _{vd}	$ \begin{array}{ll} \text{Large Signal Voltage } \text{Gain} \left(V_O \pm 10 V \right) \\ \text{$T_{amb} = +25^{\circ}$C} & \text{$R_L = 5$k$\Omega} \\ \text{$R_L = 75k\Omega} & \text{$T_{min.} \leq T_{amb} \leq T_{max.}$} \\ \text{$R_L = 5k\Omega} & \text{$R_L = 75$k$\Omega} \\ \end{array} $	50	200		50 25	200		V/mV
SVR	Supply Voltage Rejection Ratio (R _S ≤ 10kΩ)	20						dB
	$T_{amb} = +25 ^{\circ} C$ $T_{min.} \leq T_{amb} \leq T_{max.}$	77 77	92		77 77	92		42
Icc	Supply Current, no load $T_{amb} = +25^{\circ}C$ $T_{min.} \leq T_{amb} \leq T_{max.}$		13	20 25		130	160 180	μΑ
V_{icm}	Input Common Mode Voltage Range	±1			±1			V
CMR	Common-mode Rejection Ratio (R _S ≤ 10kΩ)							dB
	$T_{amb} = +25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$	70 70	90		70 70	90		
los	Output Short-circuit Current	0.5	3	15	2	5	20	mA
±V _{OPP}		2 2	2.4		2 1.9 2 1.9	2.4 2.1		V
V _{ior}	Offset Voltage Adjustment Range		9		1.0	18		mV
SR	Slew Rate (V _i = ±10V, C _L = 100pF, unity gain)	+	<u> </u>			10		V/ms
OIX	$R_{L} = 5k\Omega$ $R_{L} = 75k\Omega$		0.03			0.35		V/III3
t _r	Rise Time (V _i = ± 20 mV, C _L = 100pF, unity gain) R _L = 5 k Ω R _L = 75 k Ω		3			0.6		μs
K _{OV}	Overshoot (V _i = ± 20 mV, CL = 100pF, unity gain) R _L = 5 k Ω R _L = 75 k Ω		0			5		%
Rı	Input Resistance		50			5		MΩ
C_{id}	Differential Input Capacitance		2			2		pF
Ro	Output Resistance		5			1		kΩ
GBP	$ \begin{array}{ll} \text{Gain Bandwidth Product (C_L= 100pF,T_{amb} = 25°C) \\ \text{f} = 100\text{kHz} & \text{R}_L = 5\text{k}\Omega \\ \text{f} = 10\text{kHz} & \text{R}_L = 75\text{k}\Omega \end{array} $		0.075			0.5		MHz
THD	Total Harmonic Distortion (f = 1kHz, A $_V$ = 20dB, V_O = 2 V_{PP} , C_L = 100pF, T_{amb} = 25 $^{\circ}$ C) R_L = 5k Ω R_L = 75k Ω		1			0.03		%
en	Equivalent Input Noise Voltage $(f = 1kHz, R_s = 100\Omega)$		20			20		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$

BIASING CIRCUITS

RESISTOR BIASING

TRANSISTOR CURRENT SOURCE BIASING

FET CURRENT SOURCE BIASING

OFFSET VOLTAGE NULL CIRCUIT

TRANSIENT RESPONSE TIME TEST CIRCUIT

TYPICAL APPLICATIONS

HIGH ACCURACY SAMPLE AND HOLD

MULTIPLEXING AND SIGNAL CONDITIONING WITHOUT FETS

NANO-WATT AMPLIFIER

HIGH INPUT IMPEDANCE AMPLIFIER

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC DIP

Dim.	Millimeters			Inches				
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α		3.32			0.131			
a1	0.51			0.020				
В	1.15		1.65	0.045		0.065		
b	0.356		0.55	0.014		0.022		
b1	0.204		0.304	0.008		0.012		
D			10.92			0.430		
E	7.95		9.75	0.313		0.384		
е		2.54			0.100			
e3		7.62			0.300			
e4		7.62			0.300			
F			6.6			0260		
i			5.08			0.200		
L	3.18		3.81	0.125		0.150		
Z			1.52			0.060		

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC MICROPACKAGE (SO)

Dim.	Millimeters			Inches			
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α			1.75			0.069	
a1	0.1		0.25	0.004		0.010	
a2			1.65			0.065	
a3	0.65		0.85	0.026		0.033	
b	0.35		0.48	0.014		0.019	
b1	0.19		0.25	0.007		0.010	
С	0.25		0.5	0.010		0.020	
c1		•	45°	(typ.)	•		
D	4.8		5.0	0.189		0.197	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		3.81			0.150		
F	3.8		4.0	0.150		0.157	
L	0.4		1.27	0.016		0.050	
М			0.6			0.024	
S	8° (max.)						

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

 \odot 1997 SGS-THOMSON Microelectronics – Printed in Italy – All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

