Assignment (Transaction Management)

Done By: Mohammed Aadil (IIT2018179)

Q1) Initial values of A and B is zero (given) and consistency requirement is A=0 V B=0

a. Only 2 possible permutations are possible $\mathbf{T_1T_2}$ and $\mathbf{T_2T_1}$:

Case 1:

	Α	В
Initial	0	0
After T ₁	0	1
After T ₂	0	1

Consistency is met as: 0 v 1 = 1 (True)

Case 2:

	Α	В
Initial	0	0
After T ₂	1	0
After T ₁	1	0

Consistency is met as: 1 v 0 = 1 (True)

b. Procedure Graph:

T ₁	T ₂
read(A)	1(D)
	read(B) read(A)
read(B)	reau(A)
If A = 0 then B = B+1	
	If B = 0 then A = A+1
writo(R)	write(A)
write(B)	

- **c.** No serializable schedule is possible even by parallel execution of the transactions. Suppose we start with :
 - (i) T1 read(A) -> Irrespective of the steps of T2 => B = 1
 - (ii) T1 completes -> Then T2 read(B) will give a value of 0 -> T2 completes => A=1

Thus
$$B = 1 \land A = 1 -> \neg (A = 0 \lor B = 0)$$

Similar result is obtained if we start with T_2 read(B).

Q2)

a. Lock and unlock instructions:

$$\begin{array}{lll} \textbf{T}_{31} & : & \textbf{lock-S}(A) & \textbf{T}_{32} & : & \textbf{lock-S}(B) \\ & \textbf{read}(A) & & \textbf{read}(B) & & \\ & & \textbf{lock-X}(B) & & \textbf{lock-X}(A) \\ & \textbf{read}(B) & & \textbf{read}(A) \\ & \textbf{lf} \ A = 0 \ \textbf{then} \ B := B + 1 & & \textbf{lf} \ B = 0 \ \textbf{then} \ A := A + 1 \\ & \textbf{write}(B) & & \textbf{write}(A) & & \\ & \textbf{unlock}(A) & & \textbf{unlock}(B) \\ & \textbf{unlock}(B) & & \textbf{unlock}(A) & & \\ \end{array}$$

b. Yes, the execution of these transactions result in a deadlock.

T ₃₁	T ₃₂
lock-S(A)	lock-S(B)
	lock-S(B) read(B)
read(A)	reau(D)
lock-X(B)	
ioon $\mathcal{N}(\mathcal{B})$	lock-X(A)

Now we are in a deadlock.