Welcome to Week 3

Data Analysis and Visualisation

Session Outline

Introduction to Data Analysis

Types of Data

Data Cleaning Basics

Data Exploration – Analysis

Introduction to Data Visualization

Six Steps of Data Analysis Process

Introduction to Data Analysis

The process of inspecting, cleaning, transforming, and modeling data to discover useful information, draw conclusions, and support decision-making.

Key steps

Define Objectives: What are you trying to achieve?

Data Collection: Gather data relevant to your objectives.

Data Cleaning: Handle missing or inconsistent data.

Analysis: Explore and model the data.

Visualization: Represent data visually for insights.

But why do data analysis?

- Identifies trends, patterns, and anomalies.
- Aids in making informed decisions.

Types of Data

NOMINAL DATA

USED TO LABEL VARIABLES

Without any quantitative value

ORDINAL DATA

ORDERED CATEGORIES

The distances between the categories is not known

TYPES OF DATA

DISCRETE DATA

SPECIFIC COUNTABLE VALUES

Remains constant over a specific time

CONTINUOUS DATA

MEASUREMENT SCALE BETWEEN TWO REALISTIC POINTS

Can have different values over time

There are two types of categorical data: nominal and ordinal.

Nominal data

NOMINAL DATA

DEFINITION

Nominal data refers to data that can be categorized but not ranked or measured in a specific order. It is purely descriptive and does not have an inherent numerical value.

EXAMPLES

- The colors of a rainbow: red, orange, yellow, green, blue, indigo, and violet.
- Types of pets: dog, cat, fish, bird, and hamster.
- Names of countries: USA,
 France, Brazil, and Japan.

Ordinal data

In social scientific research, ordinal variables often include ratings about opinions or perceptions, or demographic factors that are categorised into levels or brackets (such as social status or income).

Discrete data

• Ticket sales: The number of ticket sales on one day is a common example of discrete data.

 Number of product reviews: The number of reviews a company's product receives in a specific time frame, such as one week, is another example of discrete data.

continuous data

quantitative data that can be measured

In this graph the days of the week are discrete data but the temperature is continuous data.

continuous data — infinite values discrete data — finite values

 The process of fixing or removing incorrect, corrupted, or irrelevant data.

Data Cleaning Basics

- Bad data could be:
- Empty cells
- Data in wrong format
- Wrong data
- Duplicates

Steps in cleaning data:

- Identify missing data (e.g., df.isnull() in Python).
- Handle duplicates (e.g., df.drop_duplicates()).
- Standardize formats (e.g., date formats).

- Example:
- Lab 2 covers handling missing values and removing duplicates in a dataset.

```
# Importing pandas and numpy
     import pandas as pd
     import numpy as np
     # Sample DataFrame with missing values
     data = {'First Score': [100, 90, np.nan,
     95],
             'Second Score': [30, 45, 56,
     np.nan],
             'Third Score': [np.nan, 40, 80,
 8
     98]}
     df = pd.DataFrame(data)
10
11
     # Checking for missing values using
12
     isnull()
     missing_values = df.isnull()
13
14
     print(missing_values)
15
```

Example 2: Filtering Data based on missing values

```
import pandas as pd

data = pd.read_csv("employees.csv")
bool_series = pd.isnull(data["Gender"])
missing_gender_data = data[bool_series]
print(missing_gender_data)
```

Output

Team	Senior Management	Bonus %	Salary	Last Login Time	Start Date	Gender	First Name	
Legal	True	4.934	64714	7:18 PM	4/22/1995	NaN	Lois	20
Client Services	True	18.816	90816	1:58 AM	3/8/2012	NaN	Joshua	22
Legal	False	5.218	122367	6:58 PM	7/11/1991	NaN	Scott	27
Product	False	12.752	88657	2:40 PM	2/20/2005	NaN	Joyce	31
Business Development	True	11.308	66582	1:08 AM	6/28/2015	NaN	Christine	41
Sales	False	3.055	113590	12:13 PM	1/24/1980	NaN	Chris	49
Sales	NaN	14.009	41126	8:29 AM	12/17/2011	NaN	NaN	51
Finance	True	17.578	40341	1:28 PM	3/3/2014	NaN	Alan	53
Distribution	False	4.271	48866	2:01 PM	11/23/2005	NaN	Paula	60
Business Development	False	18.771	77834	6:46 PM	4/11/1990	NaN	Kathleen	64
Finance	True	4.382	100863	4:31 PM	7/14/2015	NaN	Irene	69
Client Services	False	6.617	84692	2:26 PM	6/10/2003	NaN	Todd	70
	į		i				i	:
Client Services	False	2.147	70635	6:53 PM	7/28/1995	NaN	Ralph	939
Distribution	True	17.426	93712	12:44 PM	4/15/1989	NaN	Gerald	945
Legal	False	3.050	103050	9:37 PM	6/18/1989	NaN	Antonio	961
Sales	True	11.159	76381	2:49 PM	7/28/2006	NaN	Victor	972
Legal	False	1.909	85668	8:10 PM	7/10/1983	NaN	Stephen	985
Legal	False	3.794	38344	4:58 PM	2/10/1991	NaN	Justin	989
Distribution	False	16.655	132483	6:09 AM	11/23/2014	NaN	Henry	995

```
import pandas as pd
     import numpy as np
     # Sample DataFrame with missing values
     data = {'First Score': [100, 90, np.nan,
    95],
             'Second Score': [30, 45, 56,
     np.nan],
             'Third Score': [np.nan, 40, 80,
     98]}
9
     df = pd.DataFrame(data)
10
11
     # Checking for non-missing values using
     notnull()
     non_missing_values = df.notnull()
13
14
     print(non_missing_values)
```

Checking for Missing Values Using notnull()

Example 4: Filtering Data with Non-Missing Values

```
import pandas as pd
 3
     # Reading data from a CSV file
     data = pd.read_csv("employees.csv")
 6
     # Identifying non-missing values in the
     'Gender' column
     non_missing_gender =
     pd.notnull(data["Gender"])
 9
    # Filtering rows where 'Gender' is not
10
     missing
     non missing gender data =
     data[non_missing_gender]
12
     display(non_missing_gender_data)
```

	First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	Senior Management	Team
0	Douglas	Male	8/6/1993	12:42 PM	97308	6.945	True	Marketing
1	Thomas	Male	3/31/1996	6:53 AM	61933	4.170	True	NaN
2	Maria	Female	4/23/1993	11:17 AM	130590	11.858	False	Finance
3	Jerry	Male	3/4/2005	1:00 PM	138705	9.340	True	Finance
4	Larry	Male	1/24/1998	4:47 PM	101004	1.389	True	Client Services
5	Dennis	Male	4/18/1987	1:35 AM	115163	10.125	False	Legal
6	Ruby	Female	8/17/1987	4:20 PM	65476	10.012	True	Product
7	NaN	Female	7/20/2015	10:43 AM	45906	11.598	NaN	Finance
8	Angela	Female	11/22/2005	6:29 AM	95570	18.523	True	Engineering
9	Frances	Female	8/8/2002	6:51 AM	139852	7.524	True	Business Development
:	i			Ė				
994	4 George	Male	6/21/2013	5:47 PM	98874	4.479	True	Marketing
996	B Phillip) Male	1/31/1984	4 6:30 AM	42392	19.675	5 False	Finance
997	7 Russel	l Male	5/20/2013	3 12:39 PM	96914	1.421	False	Product
998	B Larry	/ Male	4/20/2013	3 4:45 PM	60500	11.985	5 False	Business Development
999	Alber	t Male	5/15/2012	6:24 PM	129949	10.169) True	Sales

Data Analysis

The objective is to understand the dataset's structure and summary statistics.

Summary statistics: Mean, median, mode, range, standard deviation.

Data visualisation: Histograms, box plots.

Correlation snalysis: Relationships between variables.

• Lab 1 provides examples of running summary statistics and correlations?.

Introduction to Data Visualisation

The graphical representation of data to communicate insights effectively.

Why Visualise?

Makes complex data easier to understand.

Highlights patterns and outliers.

Choosing good colors for your charts is hard

There is a whole lot of material on this side of visualising data.

Lab 3 on DataVisualisation has an exercise on this.

https://blog.datawrapper.de/beautifulcolors/

Types of charts_1

Types of charts_2

Types of charts_3

Visualisation in Python

Some basic libraries:

- Matplotlib: Versatile but requires detailed coding.
- Seaborn: Simplifies statistical visualizations.

But actually.....there are many more

Data Analysis Stacks

Choosing the right visualisation

Pie Chart:

- Best for showing proportions.
- Example: Market share of companies in an industry.

Choosing the right visualisation

Heatmap:

- Best for showing correlations or intensity.
- Example: Correlation matrix for harvest in tons/year.

https://matplotlib.org/stable/gallery/images_contours_and fields/image_annotated_heatmap.html

Interactive Data Visualisation

Tools:

Plotly: For interactive plots.

Bokeh

Why Interactive?

Allows users to explore data.

Enhances engagement.

Lab 3 DataVisualisation showcases an example of interactive data visualisation

Data Storytelling

Combining data analysis, visuals, and narrative.

Key Components:

- Data: Ensure quality and relevance.
- Visuals: Choose the right charts.
- Narrative: Make the insights relatable.

Lab 3 DataVisualisation has elements of narrative

Labs

There are 3 Lab notebooks to work with – today is slightly different in that you have exercises and examples with running code and some explanation and solutions.

Explore them, make notes, ask questions!