Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

Лабораторная работа №2 по дисциплине

«Методы машинного обучения»

Тема: «Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных»

испо		TTT
исно	ЛНИТЕ	Лb

,,	2020 г
	Группа ИУ5-22М
	Колпаков М. О.

Цель лабораторной работы: изучение библиотек обработки данных Pandas и PandaSQL.

Залание

Часть 1. Выполните первое демонстрационное задание "demo assignment" под названием "Exploratory data analysis with Pandas" со страницы курса https://mlcourse.ai/assignments

Часть 2. Выполните следующие запросы с использованием двух различных библиотек - Pandas и PandaSQL.

- один произвольный запрос на соединение двух наборов данных
- один произвольный запрос на группировку набора данных с использованием функций агрегирования Сравните время выполнения каждого запроса в Pandas и PandaSQL.

Выполнение работы

Часть 1

Примечание: из-за того, что условия задания на английском языке, то и последующее выполнение оформлено на языке источника, ввиду возможных различий при переводе.

```
[4] import numpy as np
       import pandas as pd
       pd.set_option('display.max.columns', 100)
       %matplotlib inline
       import matplotlib.pyplot as plt
       import seaborn as sns
       # import warnings
       # warnings.filterwarnings('ignore')
  [ ] import plotly.express as pl
       from plotly.subplots import make_subplots
       import plotly.graph_objects as go
 [ ] import statistics
      import math
 [ ] data = pd.read_csv('/content/adult.data.csv')
      data.head()
C→
        age
                  workclass fnlwgt education education-num
                                                                   marital-status
                                                                                          occupation relationship
                                                                                                                      race
     0
         39
                    State-gov
                              77516
                                                              13
                                                                      Never-married
                                                                                          Adm-clerical
                                                                                                        Not-in-family White
                                       Bachelors
                                                                                                           Husband White
     1
              Self-emp-not-inc
                               83311
                                       Bachelors
                                                              13 Married-civ-spouse
                                                                                      Exec-managerial
     2
         38
                      Private 215646
                                         HS-grad
                                                               9
                                                                           Divorced
                                                                                     Handlers-cleaners
                                                                                                        Not-in-family White
     3
                      Private 234721
                                            11th
                                                               7 Married-civ-spouse
                                                                                     Handlers-cleaners
                                                                                                           Husband Black
         53
         28
                      Private 338409
                                                                                                               Wife Black
                                       Bachelors
                                                              13 Married-civ-spouse
                                                                                         Prof-specialty
[ ] for colName in data.columns:
      print(colName)
C→ age
    workclass
    fnlwgt
    education
    education-num
    marital-status
    occupation
    relationship
    race
    sex
    capital-gain
    capital-loss
    hours-per-week
    native-country
    salary
```

1. How many men and women (sex feature) are represented in this dataset?

```
sexStat = data['sex'].value_counts()
print(sexStat)
```

```
Male 21790
Female 10771
Name: sex, dtype: int64
```

2. What is the average age (age feature) of women?

```
[ ] womenData = data[data['sex'] == 'Female']
    averageWomanAge = np.mean(womenData['age'])
    print('Average woman age is ', averageWomanAge,'or rounded up', math.ceil(averageWomanAge))
```

Average woman age is 36.85823043357163 or rounded up 37

3. What is the percentage of German citizens (native-country feature)?

```
[ ] germanCitizensProportion = len(data[data['native-country']== 'Germany']) / len(data['native-country']) print('German citizens proportion is ', round( germanCitizensProportion * 100 , 2), '%')
```

German citizens proportion is 0.42 %

4-5. What are the mean and standard deviation of age for those who earn more than 50K per year (salary feature) and those who earn less than 50K per year?

```
[ ] salaryLess50K = data[data['salary']== '<=50K']
salaryMore50K = data[data['salary']== '>50K']

[ ] print('People who has salary more than 50K per year:')
print('Mean age: ', statistics.mean(salaryMore50K['age']))
print('Standard deviation of age: ', statistics.stdev(salaryMore50K['age']))
print('People who has salary less than 50K per year:')
print('Mean age: ', statistics.mean(salaryLess50K['age']))
print('Standard deviation of age: ', statistics.stdev(salaryLess50K['age']))

[ People who has salary more than 50K per year:
Mean age: 44.24984058155847
Standard deviation of age: 10.519027719851826
People who has salary less than 50K per year:
Mean age: 36.78373786407767
Standard deviation of age: 14.02008849082488
```

6. Is it true that people who earn more than 50K have at least high school education? (education – Bachelors, Prof-school, Assoc-acdm, Assoc-voc, Masters or Doctorate feature)

Возможно, в задании ошибка, так как, я подозреваю, что тип образования HS-grad можно также отнести к high school education

• Без включения HS-grad

```
[ ] PieInfo = pd.DataFrame(data = salaryMore50K['education'].value_counts())
PieInfo
```

₽ education Bachelors 2221 HS-grad 1675 Some-college 1387 Masters 959 Prof-school 423 Assoc-voc 361 Doctorate 306 Assoc-acdm 265 10th 62 60 11th 40 7th-8th 33 27 5th-6th 16 1st-4th

```
[] def createHSProportion( HSgrades, PieInfo ):
    highEducationCounter = 0
    midleEducationCounter = 0
    for key in list(PieInfo.index.values):
    if(key in HSgrades):
        highEducationCounter += PieInfo['education'][key]
    else:
        midleEducationCounter += PieInfo['education'][key]
    aggregatedPieInfo = pd.DataFrame(data=[highEducationCounter, midleEducationCounter], columns=['count'], index=['High school education', 'Middle school education'])
    fig = pl.pie(aggregatedPieInfo, names=list(aggregatedPieInfo.index.values), values='count')
    fig.show()
```

Have created function that helps make pie chart with proportions of high school education

Answer: Actually, this is false. Not all people who earn more than 50K has a high school education and we can see that the about 57.8% of people has high education

• Включая HS-grad

```
[ ] createHSProportion(['Bachelors', 'Prof-school', 'Assoc-acdm', 'Assoc-voc', 'Masters', 'Doctorate', 'HS-grad'], PieInfo)
```


Answer: Actually, this is true. Not all but a lot of people (about 79.2%) with great salary has a high school education

```
[ ] pl.pie(forPieInfo, names=list(forPieInfo.index.values), values='education')
```


Let's have a look how educated people with big salary. One of the biggest part from all has a Small-college grade (about 17.7%). Other the biggest parts (greater then 10%) of chart indicate that the people has a high school education

7. Display age statistics for each race (race feature) and each gender (sex feature). Use groupby() and describe(). Find the maximum age of men of Amer-Indian-Eskimo race.

Female

[]	<pre>[] data[data['sex'] == 'Female'].groupby(['race'])['age'].describe()</pre>								
₽		count	mean	std	min	25%	50%	75%	max
	race								
	Amer-Indian-Eskimo	119.0	37.117647	13.114991	17.0	27.0	36.0	46.00	80.0
	Asian-Pac-Islander	346.0	35.089595	12.300845	17.0	25.0	33.0	43.75	75.0
	Black	1555.0	37.854019	12.637197	17.0	28.0	37.0	46.00	90.0
	Other	109.0	31.678899	11.631599	17.0	23.0	29.0	39.00	74.0
	White	8642.0	36.811618	14.329093	17.0	25.0	35.0	46.00	90.0

Male

						· • ·	1315		
	maleDescribeData = o maleDescribeData	ata[data	['sex'] ==	'Male'].gr	oupby	([ˈrac	e.])[age]	.descr
₽		count	mean	std	min	25%	50%	75%	max
	race								
	Amer-Indian-Eskimo	192.0	37.208333	12.049563	17.0	28.0	35.0	45.0	82.0
	Asian-Pac-Islander	693.0	39.073593	12.883944	18.0	29.0	37.0	46.0	90.0
	Black	1569.0	37.682600	12.882612	17.0	27.0	36.0	46.0	90.0
	Other	162.0	34.654321	11.355531	17.0	26.0	32.0	42.0	77.0
	White	19174.0	39.652498	13.436029	17.0	29.0	38.0	49.0	90.0
	VVIIILE	13174.0	33.032430	13.430023	17.0	25.0	30.0	45.0	30.0

Maximum age of men of Amer-Indian-Eskimo race

```
[ ] maleDescribeData['max']['Amer-Indian-Eskimo']

[ 2 82.0
```

8. Among whom is the proportion of those who earn a lot (>50K) greater: married or single men (marital-status feature)? Consider as married those who have a marital-status starting with Married (Married-civ-spouse, Married-spouse-absent or Married-AF-spouse), the rest are considered bachelors.

```
[ ] PieInfo = pd.DataFrame(data = salaryMore50K['marital-status'].value_counts())
PieInfo
```

Ľ>

marital-status

Married-civ-spouse	6692
Never-married	491
Divorced	463
Widowed	85
Separated	66
Married-spouse-absent	34
Married-AF-spouse	10

```
[ ] marriedStatus = ['Married-civ-spouse', 'Married-spouse-absent', 'Married-AF-spouse']

MarriedCounter = 0
NotMarriedCounter = 0

for key in list(PieInfo.index.values):
    if(key in marriedStatus):
        MarriedCounter += PieInfo['marital-status'][key]
    else:
        NotMarriedCounter += PieInfo['marital-status'][key]

aggregatedPieInfo = pd.DataFrame(data=[MarriedCounter, NotMarriedCounter], columns=['count'], index=['Married','Not Married'])

pl.pie(aggregatedPieInfo, names=list(aggregatedPieInfo.index.values), values='count')
```

MarriedNot Married

The biggest part of people with great salary are married (85.9%)

- 9. What is the maximum number of hours a person works per week (hours-per-week feature)? How many people work such a number of hours, and what is the percentage of those who earn a lot (>50K) among them?
 - Maximum number of hours a person works per week

```
[ ] hoursPerWeekData = pd.DataFrame(data = data['hours-per-week'].value_counts())
maxHoursPerWeek = max(hoursPerWeekData['hours-per-week'].index.values)
maxHoursPerWeek
```

- [→ 99
 - Amount of people who works 99 hours per week
- [] totalCountOfHardWorkers = hoursPerWeekData['hours-per-week'][maxHoursPerWeek] totalCountOfHardWorkers
- E→ 85

· Proportion of hardworkers with big salary

```
[] hardworkersFrame = pd.DataFrame(data=data[data['hours-per-week'] == maxHoursPerWeek])
bigSalaryHardWorkersProportion = (hardworkersFrame['salary'].value_counts()['>50K'] / len(hardworkersFrame) )*100
print(round(bigSalaryHardWorkersProportion, 2), '%')
```

₽ 29.41 %

10. Count the average time of work (hours-per-week) for those who earn a little and a lot (salary) for each country (native-country). What will these be for Japan?

· Preparing data about people with the less salary

```
[ ] lessSalaryData = salaryLess50K.groupby(['native-country'])['hours-per-week'].describe()['mean']
lessSalaryData = lessSalaryData.drop(lessSalaryData.index[θ])
lessSalaryData = lessSalaryData.rename("<=50K")
len(lessSalaryData)</pre>
```

□ 41

· Preparing data about people with the bigger salary

```
[ ] biggerSalaryData = salaryMore50K.groupby(['native-country'])['hours-per-week'].describe()['mean']
biggerSalaryData = biggerSalaryData.drop(biggerSalaryData.index[0])
biggerSalaryData = biggerSalaryData.rename(">50K")
len(biggerSalaryData)
```

C→ 39

· Creating bar chart

```
[ ] dataForChart = pd.DataFrame(data=pd.concat([biggerSalaryData,lessSalaryData], ignore_index=False, axis=1))
    fig = go.Figure(data=[
        go.Bar(name='Bigger salary', x=dataForChart.index.values, y=dataForChart['>50K']),
        go.Bar(name='Less salary', x=dataForChart.index.values, y=dataForChart['<=50K'])
])

fig.update_layout(
        xaxis_title="Countries",
        yaxis_title="Mean age",
        barmode='group')
fig.show()</pre>
```


· Information about Japan:

Average age of people with salary greater then 50K

```
[ ] dataForChart['>50K']['Japan']
```

€ 47.958333333333336

```
[ ] dataForChart['<=50K']['Japan']

[> 41.0
```

Часть 2

```
[60] user_usage = pd.read_csv('/content/drive/My Drive/Colab Notebooks/MMO/2/user_usage.csv')
    user_device = pd.read_csv('/content/drive/My Drive/Colab Notebooks/MMO/2/user_device.csv')
    android_devices = pd.read_csv('/content/drive/My Drive/Colab Notebooks/MMO/2/android_devices.csv')
    print('user_usage\n', user_usage.head(2), '\n shape:', user_usage.shape)
    print('\nuser_device\n', user_device.head(2), '\n shape:', user_device.shape)
    print('\nandroid_devices\n', android_devices.head(2), '\n shape:', android_devices.shape )
```

```
□ user_usage
       outgoing_mins_per_month outgoing_sms_per_month monthly_mb use_id
                                          4.82 1557.33 22787
                     21.97
                    1710.08
                                          136.88 7267.55 22788
    shape: (240, 4)
   user_device
      use_id user_id platform platform_version device use_type_id
   0 22782 26980 ios 10.2 iPhone7,2
1 22783 29628 android 6.0 Nexus 5
                                                                2
                                                                3
    shape: (272, 6)
   android devices
      Retail Branding Marketing Name Device
                                                           Model
              NaN NaN AD681H Smartfren Andromax AD681H
               NaN
                            NaN FJL21
                                                          FJL21
    shape: (14546, 4)
```

Соединение наборов данных с помощью Pandas

 $_{\mbox{\hfill}}$ CPU times: user 2 $\mu s,$ sys: 1 $\mu s,$ total: 3 μs Wall time: 5.01 μs

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	platform	device
0	21.97	4.82	1557.33	22787	android	GT-19505
1	1710.08	136.88	7267.55	22788	android	SM-G930F
2	1710.08	136.88	7267.55	22789	android	SM-G930F
3	94.46	35.17	519.12	22790	android	D2303
4	71.59	79.26	1557.33	22792	android	SM-G361F

Соединение наборов данных с помощью PandaSQL

 $_{\mbox{\begin{tabular}{l} \limits}}$ CPU times: user 2 μs , sys: 1 μs , total: 3 μs Wall time: 6.91 μs

	outgoing_mins_per_month	outgoing_sms_per_month	${\tt monthly_mb}$	use_id	platform	device
0	21.97	4.82	1557.33	22787	android	GT-19505
1	1710.08	136.88	7267.55	22788	android	SM-G930F
2	1710.08	136.88	7267.55	22789	android	SM-G930F
3	94.46	35.17	519.12	22790	android	D2303
4	71.59	79.26	1557.33	22792	android	SM-G361F

Группировка набора данных с использованием функций агрегирования

Pandas:

```
[37] def pandas_agg(result):
      return result.groupby('device')['monthly_mb'].mean()
    res1 = pandas_agg(result)
    res1.head()
 CPU times: user 2 μs, sys: 0 ns, total: 2 μs
    Wall time: 4.53 μs
    device
    A0001
           15573.33
           1557.33
    C6603
              519.12
    D2303
          1557.33
    D5503
    D5803
             1557.33
    Name: monthly_mb, dtype: float64
```

PandaSQL:

```
[29] def pandasql_agg(result):
    aggr_query = '''
    SELECT
    avg(monthly_mb) as avg_traffic, device
    FROM result
    GROUP BY device
    '''
    return ps.sqldf(aggr_query, locals())

%time
    pandasql_agg(result).head()
```

Сравнение времени выполнения.

```
[52] import time
     # Метод подсчета времени
     def count_mean_time(func, params, N =50):
         total_time = 0
         for i in range(N):
             time1 = time.time()
             if len(params) == 1:
                  tmp_df = func(params[0])
             elif len(params) == 2:
                 tmp_df = func(params[0], params[1])
             time2 = time.time()
             total_time += (time2 - time1)
         return total_time/N
[53] ex1_times = []
     for count in range(1, 100):
         pandasql_time = count_mean_time(pandasql_merge, [user_usage, user_device])
         pandas_time = count_mean_time(pandas_merge, [user_usage, user_device])
         ex1_times.append({'count': count, 'pandasql_time': pandasql_time, 'pandas_time': pandas_time})
[57] ex1_times_df = pd.DataFrame(ex1_times)
     ex1_times_df.columns = ['steps', 'pandas time', 'pandasql time']
     ex1_times_df = ex1_times_df.set_index('steps')
     ax = ex1_times_df.plot(title = 'Merge two tables', subplots = True)
₽
                       Merge two tables
      0.013
      0.012
      0.011
     0.0036
              pandasgl time
     0.0034
     0.0032
```

Сравнение времени выполнения объединения таблиц показало, что pandasql справляется с этой задачей быстрее, чем pandas.

```
[58] ex2_times = []
for count in range(1, 100):
    pandasql_time = count_mean_time(pandasql_agg, [result])
    pandas_time = count_mean_time(pandas_agg, [result])
    ex2_times.append({'count': count, 'pandasql_time': pandasql_time, 'pandas_time': pandas_time})

ex2_times_df = pd.DataFrame(ex2_times)
    ex2_times_df.columns = ['steps', 'pandas time', 'pandasql time']
    ex2_times_df = ex2_times_df.set_index('steps')

ax = ex2_times_df.plot(title = 'Group by and aggregation', subplots = True)
```


Вывод: Возможно, ввиду небольшого объема данных, pandasql показал лучшее время выполнения, как запроса объединения двух таблиц, так и выполнения группировки с агрегатом.