

1. Wprowadzenie

Dyskretne przekształcenie Fouriera (DFT) jest techniką matematyczną wykorzystywaną do wyznaczania zawartości częstotliwościowej sygnału dyskretnego [1]. Równanie pozwalające na obliczenie reprezentacji sygnału w dziedzinie częstotliwości ma następującą postać:

$$X(k) = \sum_{n=0}^{N-1} x(n) \cdot e^{-i \cdot \frac{2\pi \cdot k \cdot n}{N}}, \qquad k = 0, \dots, N-1,$$

gdzie:

X(k) - reprezentacja w dziedzinie częstotliwości (wektor liczb zespolonych postaci a+ib), x(n) - próbki reprezentujące sygnał w dziedzinie czasu,

i - jednostka urojona ($i^2 = -1$),

 ${\cal N}$ - liczba próbek sygnałów w dziedzinie czasu i częstotliwości.

2. Ćwiczenia

- 1. Proszę zaimplementować przekształcenie DFT na podstawie wzoru przedstawionego w punkcie 1.
- 2. Dla uzyskanej reprezentacji w dziedzinie częstotliwości $X(k), k = 0, \dots, N/2 1$:
 - obliczyć widmo amplitudowe: $M(k) = \sqrt{Re[X(k)]^2 + Im[X(k)]^2}$,
 - wartości amplitudy przedstawić w skali decybelowej: $M'(k) = 10 \cdot \log_{10} M(k)$,
 - wyznaczyć skalę częstotliwości: $f_k = k \cdot \frac{f_s}{N}$, gdzie f_s częstotliwość próbkowania syganału,
 - wykreślić wykres widma amplitudowego M'(k) (f_k oznaczają częstotliwości prążków widma).
- 3. Dla sygnałów uzyskanych na poprzednich laboratoriach proszę obliczyć DFT i wygenerować wykresy widm amplitudowych. Należy tak dobrać skale osi poziomych i pionowych (liniowe lub logarytmiczne) aby jak najwięcej prążków widma było widocznych na wykresie.
- 4. Wykonać obliczenia dla sygnałów z poprzednich laboratoriów z wykorzystaniem szybkiej transformaty Fouriera (FFT) zamiast DFT. Porównać czasy obliczeń dla poszczególnych sygnałów oraz sumaryczne czasy obliczeń. Wyniki zestawić w tabeli.

3. Uwagi

- W pliku tekstowym (wnioski.txt) należy opisać obserwacje i wnioski wynikające z przeprowadzonych eksperymentów i pomiarów.
- Przy implementacji DFT można wykorzystać następujący wzór Eulera: $e^{i\phi} = \cos(\phi) + i\sin(\phi)$.
- W przypadku obliczeń związanych z szybką transformatą Fouriera należy wykorzystać gotową implementacje algorytmu FFT.
- Kod do każdego z ćwiczeń powinien być umieszczony w osobnym katalogu wraz z plikami graficznymi reprezentującymi wygenerowane sygnały.
- Wszystkie pliki związane z wykonanym ćwiczeniem należy umieścić w repozytorium GIT w katalogu lab-2.
- Łączna liczba wykresów do wygenerowania ze wszystkich zadań wynosi 8 (widma amplitudowe sygnałów z poprzednich zajęć).

Literatura

[1] R. G. Lyons, Wprowadzenie do cyfrowego przetwarzania sygnałów, Wydawnictwa Komunikacji i Łączności, Warszawa 2010