SOUTENANCE DE MÉMOIRE DE MASTER OPTION: ALGÈBRE COMMUTATIVE ET CRYPTOGRAPHIE SPÉCIALITÉ: THÉORIE DES FILTRATIONS

Présenté par M. KABLAM Edjabrou Ulrich Blanchard

Université NANGUI ABROGOUA
Unité de Formation et de Recherche des Sciences Fondamentales et Appliquées

10 Juillet 2024

<u>THÈME</u>: DÉPENDANCE INTÉGRALE, RÉDUCTION ET FILTRATIONS BONNES

Directeur de Mémoire : M. ASSANE Abdoulaye, M.C.

Encadrant scientifique: M. BROU Kouadio Pierre, M.A.

PLAN DE PRÉSENTATION

- PRÉLIMINAIRES
- ② DÉPENDANCE INTÉGRALE, RÉDUCTION ET FILTRATIONS BONNES
- CONCLUSION

FILTRATIONS

$$f=(I_n)_{n\in\mathbb{Z}}\in\mathbb{F}(A)$$
 si:

- (i) $I_0 = A$;
- (ii) $I_{n+1} \subset I_n, \forall n \in \mathbb{Z}$;
- (iii) $I_pI_q \subset I_{p+q}, \forall p, q \in \mathbb{Z}$.

PRÉLIMINAIRES FILTRATIONS

Remarque

On peut remarquer que pour tout $n \le 0$, $I_n = A$.

En effet, en utilisant la décroissance des idéaux (ii) et que $I_0 = A$ (i), il vient $I_n = A, n \le 0$ car pour tout $n \in \mathbb{Z}$, les I_n sont des idéaux de A.

Ainsi au lieu d'étudier la famille $f=(I_n)_{n\in\mathbb{Z}}$ nous pouvons nous ramener à étudier la famille $f=(I_n)_{n\in\mathbb{N}}$.

PRÉLIMINAIRES CLASSES DES FILTRATIONS

f I — adique	$I_n = I^n, \forall n \in \mathbb{N}^*.$
f I — bonne	$\exists \ n_0 \in \mathbb{N} \ ext{tel que } II_n = I_{n+1}, \forall n \geqslant n_0.$
f A.P.	$\exists (k_n)_{n\in\mathbb{N}} ext{ tel que } orall ext{ n,m} \in \mathbb{N}, \ I_{mk_n} \subset I_n^m ext{ et } \lim_{n \longrightarrow +\infty} rac{k_n}{n} = 1.$
f f.A.P.	$\exists k \geqslant 1, \forall n \in \mathbb{N}, \ I_{nk} = I_k^n.$
f noeth.	son anneau de Rees $R(A, f)$ est noethérien.
f f. noeth.	$\exists k \geqslant 1, \forall m, n \in \mathbb{Z}, \ m, n \geqslant k, I_m I_n = I_{m+n}.$
f E.P	$\exists N \geqslant 1, \forall n \geqslant N, \ I_n = \sum_{p=1}^N I_{n-p}I_p.$

PROPRIÉTÉ DES FILTRATIONS I-BONNES

ÉLÉMENT ENTIER ET RÉDUCTION

- (i) Un élément x de A est dit entier sur f s'il existe un entier $m \in \mathbb{N}$ tel que : $x^m + a_1 x^{m-1} + \cdots + a_m = x^m + \sum_{i=1}^m a_i x^{m-i} = 0$, $m \in \mathbb{N}^*$ où $a_i \in I_i$, pour tout $i = 1, \cdots, m$.
- (ii) f est une β -réduction de g si :
 - a) $f \leq g$;
 - b) $\exists k \geq 1 \text{ tel que } J_{n+k} = I_n J_k, \forall n \geq k.$

FILTRATIONS SUR UN MODULE

Soit M un A-module. On appelle filtration de M toute famille $\varphi = (M_n)_{n \in \mathbb{Z}}$ de sous-modules de M telle que :

- (a) $M_0 = M$;
- (b) Pour tout $n \in \mathbb{Z}, M_{n+1} \subset M_n$.

La filtration $f=(I_n)_{n\in\mathbb{Z}}$ de A et la filtration $\varphi=(M_n)_{n\in\mathbb{Z}}$ du A-module M sont dites compatibles si :

$$I_pM_q\subset M_{p+q}, \ \ \text{pour tout} \ \ p,q\in\mathbb{Z}.$$

FILTRATIONS f-BONNES

Soient
$$\varphi = (M_n)_{n \in \mathbb{Z}} \in \mathbb{F}(M)$$
, $f - compatible$, avec $f \in \mathbb{F}(A)$.

(a) φ est f- bonne s'il existe un entier naturel N \geqslant 1 tel que :

$$\forall n > N, M_n = \sum_{p=1}^N I_{n-p} M_p$$

- (b) Une filtration $f = (I_n)_{n \in \mathbb{Z}}$ est dite I bonne si :
 - (i) $\forall n \in \mathbb{N}, \quad II_n \subseteq I_{n+1}$;
 - (ii) $\exists k \in \mathbb{N}, II_n = I_{n+1}, n \geqslant k$.

RELATION ENTRE ÉLÉMENT ENTIER, RÉDUCTION ET FILTRATION I-ADIQUE

Proposition

Soient A un anneau, I un idéal de A et $x \in A$.

x est entier sur I si et seulement si I est une réduction de I + (x) = I + xA.

(i) Supposons que x est entier sur I. Alors il existe $n \in \mathbb{N}^*$ tel que

$$x^{n} = \sum_{i=1}^{n} (-a_{i})x^{n-i}$$
, avec $a_{i} \in I^{i}, i = 1, \cdots, n$.

Montrons que I est une réduction de I+(x). C'est à dire que $(I+(x))^n=I(I+(x))^{n-1}$. On rappelle que pour tout $n\in\mathbb{N}, nI=I$. Ainsi :

$$(I+(x))^n=(I+(x))(I+(x))^{n-1}=I(I+(x))^{n-1}+(x)(I+(x))^{n-1}.$$

En prouvant que
$$(x)(I+(x))^{n-1} \subset I(I+(x))^{n-1}$$
 on aura :

$$(I + (x))^n = I(I + (x))^{n-1}.$$

$$(x)(I+(x))^{n-1}=(x)\sum_{i=0}^{n-1}I^{i}(x)^{n-1-i}.$$

$$(x)(I+(x))^{n-1}=\sum_{i=0}^{n-1}I^{i}(x)^{n-i}.$$

$$(x)(I+(x))^{n-1}=(x)^n+I\sum_{i=1}^{n-1}I^{i-1}(x)^{n-i}.$$

Donc
$$(x)(I+(x))^{n-1}=(x)^n+I\sum_{i=0}^{n-2}I^i(x)^{n-1-i}\subset (x)^n+\sum_{i=0}^{n-1}I^i(x)^{n-1-i}.$$
d'où $(x)(I+(x))^{n-1}\subset (x)^n+I(I+(x))^{n-1}.$
De plus, $x^n=\sum_{i=1}^n a_ix^{n-i}\in \sum_{i=1}^n I^ix^{n-i}.$
Ainsi $x^n\in I\sum_{i=1}^n I^{i-1}x^{n-i}=I\sum_{i=0}^{n-1}I^ix^{n-1-i}=I(I+(x))^{n-1}.$
alors $(x)^n\in I(I+(x))^{n-1}.$

En somme
$$(x)(I+(x))^{n-1} \subset I(I+(x))^{n-1}$$
.

D'où
$$(I + (x))^n = I(I + (x))^{n-1}$$
.

Par conséquent I est une réduction de I + (x).


```
(ii) Supposons que I est une réduction de I + (x).
Alors il existe n \in \mathbb{N}^* tel que (I + (x))^{n+1} = I(I + (x))^n.
On a: x^{n+1} \in (I + (x))^{n+1} = I(I + (x))^n.
Alors x^{n+1} \in I \sum_{i=1}^{n} I^{i}(x)^{n-i} = \sum_{i=1}^{n} I^{i+1}(x)^{n-i}.
D'où x^{n+1} \in \sum_{i=1}^{n+1} I^{i}(x)^{n+1-i}.
Alors x^{n+1} = \sum_{i=1}^{n+1} a_i x^{n+1-i}, avec a_i \in I^i.
```


Ainsi x est donc entier sur 1.

- PRÉLIMINAIRES
- DÉPENDANCE INTÉGRALE, RÉDUCTION ET FILTRATIONS BONNES
- CONCLUSION

DÉPENDANCE INTÉGRALE, RÉDUCTION ET FILTRATION BONNE

Résultats

Soient A noethérien, $f = (I_n)_{n \in \mathbb{N}} \leq g = (J_n)_{n \in \mathbb{N}} \in \mathbb{F}(A)$.

Si f est fortement noethérienne et g est noethérienne alors les assertions sont équivalentes et dans ce cas g est fortement noethérienne :

- (i) f est une réduction de g.
- (ii) I_n est une réduction de J_n pour tout n assez grand.
- (iii) Il existe un entier $k \ge 1$ tel que $g^{(k)}$ est I_k bonne

DÉPENDANCE INTÉGRALE, RÉDUCTION ET FILTRATION BONNE

Résultats

- (iv) g est entière sur f.
- (v) g est fortement entière sur f.
- (vi) g est f fine.
- (vii) g est f bonne.
- (viii) g est faiblement f bonne.
 - (ix) P(f) = P(g)

- PRÉLIMINAIRES
- ② DÉPENDANCE INTÉGRALE, RÉDUCTION ET FILTRATIONS BONNES
- CONCLUSION

CONCLUSION

BILAN ET PERSPECTIVES

- Propriétés des filtrations I bonnes.
- 2 Réduction minimale des filtrations bonnes.
- Étendre ces résultats aux autres classes de filtrations (noethériennes,...).
- Étendre ces résultats à des objets algébriques qui ne respectent pas forcement la décroissance.

MERCI POUR VOTRE AIMABLE ATTENTION

