Микроквазары

МФК 'Космические тайны рентгеновского неба'

Фельдшеров Сергей

20 Апреля 2022

Ярчайшие объекты во вселенной

Активные ядра галактик - объекты с мощным электромагнитным излучением, состоящие из:

- сверхмассивной чёрной дыры
- окружающего её аккреционного диска

Ярчайшие объекты во вселенной

Активные ядра галактик - объекты с мощным электромагнитным излучением, состоящие из:

- сверхмассивной чёрной дыры
- окружающего её аккреционного диска

Электромагнитное излучение исходит от разогретого трением вещества аккреционного диска.

Аккреционный диск квазара ULAS J1120+0641, обнаруженного в 2011 году, в представлении художника.

Объекты, определяемые в эту группу: радиогалактики, Сейфертовские галактики, квазары.

Микроквазары

Микроквазарами называют двойные звёздные системы с похожим принципом 'подпитки' энергией. Они состоят из компактного объекта, перетягивающего на себя веществом звезды-компаньона.

микроквазар в представлении художника

схема микроквазара

Активные ядра галактик vs микроквазары

Энергия АЯГ появляется благодаря сверхмассивной чёрной дыре ($\geq 10^6 M\odot$). Рентгеновские двойные системы формируются обычной звездой и 'выроджденным' объектом (нейтронной звездой или чёрной дырой в несколько солнечных масс).

Некоторые известные микроквазары: SS 433

В 1979 году был открыт необычный объект, излучавший в рентгене и радиодиапазоне:

Созвездие Орёл

Схематическое изображение SS 433, Hirofumi Noda

Некоторые известные микроквазары: GRS 1915+105

Радиотелескопы VLA

Наложенные последовательности изображений, сделанных в течение нескольких дней и в течение месяца

Что известно об образовании микроквазаров

Механизмы, объясняющие присутствие компактного объекта в двойной системе, зависят от массы компаньона:

- 1. звезда малой массы: формирование нейтронной звезды/компактного объекта предшествовало появлению двойной системы
- 2. тяжёлая $(\geq 5M\odot)$ звезда: масштабный перенос массы до взрыва сверхновой

Аккреция и перенос энергии

Перенос материи сопровождается двумя процессами:

 Благодаря силам вязкости угловой момент аккрецируемой материи перераспределяется, и кольцо становится диском.

Аккреция и перенос энергии

Перенос материи сопровождается двумя процессами:

- Благодаря силам вязкости угловой момент аккрецируемой материи перераспределяется, и кольцо становится диском.
- Происходит рассеивание тепла, возникающего из-за 'трения'.

Аккреция и перенос энергии

Перенос материи сопровождается двумя процессами:

- Благодаря силам вязкости угловой момент аккрецируемой материи перераспределяется, и кольцо становится диском.
- Происходит рассеивание тепла, возникающего из-за 'трения'.

Температура достигает максимума на орбите с наибольшей скоростью:

$$T_{in} \simeq 2 \cdot 10^7 \left(\frac{M_X}{M_{\odot}} \right)^{-1/4} K,$$

что и даёт Рентгеновское излучение бинарных систем с компактным объектом околозвёздной массы.

Однако, существует ограничение на то, какое количество энергии высвобождается при аккреции. Это связано с тем, что давление излучения может превысить гравитацию компактного объекта.

Высвобождение джетов: формирование магнитной спирали

Наличие небольшого вертикального магнитного поля приводит его 'наматыванию'.

Высвобождение джетов: формирование магнитной спирали

Наличие небольшого вертикального магнитного поля приводит его 'наматыванию'.

Высвобождение джетов: ветер

Падение энергии диска аккреции ведёт к лавинообразному падению материи на компактный объект. Падающая материя 'утягивает' за собой магнитное поле, и может произойти его замыкание, что приводит к прерыванию джетов.

Сильные магнитные поля и рентгеновские пульсары

Наличие сильного магнитного поля предотвращает формирование джетов. Однако, аккрецирующие нейтронные звёзды с сильным магнитным полем также излучают в рентгеновском диапазоне.

