

CHE COSA VUOL DIRE "PRODURRE"?

"Dare, fornire come risultato di una serie di *lavorazioni* o *trasformazioni* operate dall'uomo" (IL NUOVO ZINGARELLI)

TIPOLOGIE DI PROCESSI DI PRODUZIONE

- Produzioni per Processo
- Produzioni per Parti o Manifatturiere

PRODUZIONI PER PROCESSO

- Gli elementi che costituiscono il prodotto finale non possono essere facilmente identificabili.
- Il prodotto non può essere scomposto a ritroso poiché i componenti originari non sono più distinguibili tra loro o hanno cambiato natura.

Dipartimento di Ingegneria Gestionale e della Produzion

Esempi

- Processi di Produzione per ottenere :
 - Acciaio
 - Carta
 - Cemento
 - Prodotti Chimici
 - Prodotti Farmaceutici
 - Prodotti Alimentari (Pasta)

PRODUZIONI PER PARTI MANIFATTURIERE

- Il prodotto finale risulta composto da un numero finito di componenti discreti (parti).
- Il processo produttivo è compreso da due fasi:
 - Fase di fabbricazione.
 - Fase di assemblaggio.

Dipariimento di Ingegneria Gestionale e della Produzion

Esempi

- Processi di Produzione per ottenere :
 - Automobili
 - Calcolatori
 - Elettrodomestici
 - Calzature
 - Giocattoli

FASE DI FABBRICAZIONE

Insieme delle *lavorazioni* (*trasformazioni*) che modificano la forma, le dimensioni, lo stato superficiale di parti singole.

Dipartimento di Ingegneria Gestionale e della Produzion

FASE DI ASSEMBLAGGIO

Insieme delle operazioni di giustapposizione di parti singole per formare un assieme.

Esempi:

- Trasformazione di forma e dimensioni (macrogeometria della parte);
- Trasformazione del grado di finitura di una superficie (microgeometria della parte);
- Trasformazione delle caratteristiche meccaniche (durezza, carico di rottura);
- Trasformazione di stato, di temperatura.

- Le trasformazioni comportano una variazione ΔM della massa del prodotto finito / semilavorato (M2) rispetto alla massa del grezzo / semilavorato di partenza (M1).
- Distinguiamo tre casi possibili:
 - ∆M = M2 M1 < 0
 - ∆M = M2 M1 = 0
 - ∆M = M2 M1 > 0

Energia Meccanica

- Lo scambio di energia avviene tramite forze che compiono lavoro;
- Esempi:
 - Piegatura
 - Asportazione di truciolo

Dipartimento di Ingegneria Gestionale e della Produzion

Energia Termica

- Lo scambio di energia avviene creando un'opportuna differenza di temperatura tra le parti interagenti;
- Esempi :
 - Fusione del burro in una pentola;
 - Fusione di un metallo;
 - Solidificazione di un cubetto di ghiaccio.

Energia Chimica

- Lo scambio di energia avviene sfruttando opportune reazioni chimiche.
- Esempi:
 - Eliminazione di macchie tramite detersivo.
 - Deposizione di rivestimenti di tipo CVD.

Dipartimento di Ingegneria Gestionale e della Produzion

LE TRASFORMAZIONI Trasformazione Dipartimento di Ingegneria Gestionale e della Produzione

LE TRASFORMAZIONI

- Le trasformazioni sono realizzate attraverso processi elementari (lavorazioni);
- Tali processi elementari possono essere classificati in base al tipo di energia utilizzata.

Dipartimento di Ingegneria Gestionale e della Produzion

Processi elementari che sfruttano energia meccanica

- Deformazione elastica (Es. : tirare elastico, comprimere molla);
- Deformazione plastica (Es. : piegare una lamiera, coniare monete);
- Frattura (Es.: spezzare lastra di vetro);
- Miscelazione (Es: Miscelare polveri).

Processi elementari che sfruttano energia termica

- Riscaldamento / Raffreddamento
 - (Es. Riscaldare un componente per dilatarlo o raffreddarlo per restringerlo Accoppiamenti forzati)
- Fusione
 - (Es. Fondere dello stagno per assemblare un componente Saldature)
- Solidificazione
 - (Es. Far solidificare acciaio fuso in una forma -Processi di fonderia)

Dipartimento di Ingegneria

Processi elementari che sfruttano energia termica

- Evaporazione
 - (Es. Essicazione di una forma al verde)
- Condensazione
 - (Es. Far condensare vapori di metallo su una superficie)

Processi elementari che sfruttano energia chimica

- Soluzione (Es. Soluzione dello zinco nel rame per ottenere ottone);
- Combustione (Es. combustione di idrocarburi)
- Diffusione (Es. atomi di carbonio penetrano per diffusione nella struttura dell'acciaio

cambiandone le proprietà - Cementazione)

• Indurimento (Es. fenomeno della "presa" del cemento)

- Informazioni tecnologiche:
 - Elenco di tipi di strumenti necessari per eseguire la trasformazione (macchine, utensili, attrezzature)
 - · Traiettoria di processo
- Informazioni gestionali:
 - · Quando eseguire la trasformazione
 - Su quale parte eseguire la trasformazione (tra possibili alternative).
 - Quali strumenti specifici usare (tra possibili alternative).

Qualsiasi trasformazione per essere compiuta necessita di opportune risorse.

Macchina Fornisce l'energia necessaria per

attuare la trasformazione e gestisce

la traiettoria di processo.

Utensile Consente di trasferire l'energia dalla

macchina al grezzo / semilavorato.

Attrezzatura Consente al grezzo / semilavorato di

essere integrato nella macchina.

Dipartimento di Ingegneria Gestionale e della Produzion

SISTEMA TECNOLOGICO DELLE TRASFORMAZIONI

Insieme alla parte grezza / semilavorata le risorse consentono di definire il sistema tecnologico di trasformazione.

Esso risulta perciò composto da :

- Parte grezza \ semilavorata
- Macchina
- Attrezzatura
- Utensile

Utensile

Macchina

Attrezzatura

Grezzo di lavorazione

ROBOT ANTROPOMORFO

Robot da saldatura

Robot per taglio AWJ

Robot per taglio laser

TRASFORMAZIONI REALI

- La variabilità del risultato finale dipende da una miriade di differenti cause (disturbi) che concorrono a determinare la variabilità dell'output e sono nella pratica ineliminabili.
- Il processo può essere però anche soggetto a variazioni che sono dovute a cause specifiche identificabili ed eliminabili:
 - Usura/rottura utensili
 - Usura/Rottura di componenti meccanici della macchina
 - Introduzione di operatori inesperti
 -

Come si tiene conto dei disturbi?

- La presenza di disturbi implica che l'output della trasformazione non sarà mai unico, bensì variabile all'interno di un certo intervallo di possibili valori.
- I disturbi legati a cause assegnabili vanno identificati ed eliminati (carte di controllo).
- Una volta eliminati i disturbi dovuti a cause assegnabili il problema è quello di garantire che i possibili output della trasformazione siano contenuti all'interno di un intervallo di tolleranza definito in fase di progettazione (specifiche).

RIDUZIONE DELLA VARIABILITA' DELL' OUTPUT

Nel caso la variabilità dell' output ottenibile sia superiore alla tolleranza imposta si può:

- Migliorare il processo
- Cambiare il processo

Dipartimento di Ingegneria Gestionale e della Produzion

Esempio di miglioramento del processo

FORATURA

Risultato richiesto:

Ottenere un foro cieco il cui asse disti d=10 mm dalla superficie di riferimento.

La tolleranza specificata per tale misura è ± 0.1 mm.

Bisogna determinare il processo che consente di realizzare tale foro garantendo le tolleranze richieste.

FATTIBILITÀ TECNICA DEL PROCESSO

Il processo che realizza il prodotto deve garantire:

- le specifiche tecniche del prodotto indicate nel disegno tecnico (tolleranze, rugosità, etc.);
- i volumi richiesti (capacità produttiva);
- il rispetto delle normative ambientali;
- il rispetto delle normative di sicurezza (Es.: Legge 626).

Dipartimento di Ingegneria Gestionale e della Produzioni

FATTIBILITÀ ECONOMICA DEL PROCESSO

- Oltre alla fattibilità tecnica del processo di produzione bisogna verificare anche la fattibilità economica del processo stesso.
- Ciò significa che i costi associati al processo devono essere sostenibili rispetto al ricavato derivante dall'utilizzo della sua capacità produttiva.

FATTIBILITÀ ECONOMICA DEL PROCESSO

L'attività produttiva deve garantire all'azienda un profitto (UTILE) in termini monetari, attraverso cui essa può autosostenersi.

In prima approssimazione, trascurando i proventi finanziari (ordinari e straordinari) l'utile deriva dalla differenza tra il valore della produzione e i costi della produzione.

UTILE = VALORE DELLA PRODUZIONE - COSTI DELLA PRODUZIONE

Dipartimento di Ingegneria Gestionale e della Produzion

VALORE DELLA PRODUZIONE

- Ricavi delle vendite e delle prestazioni
- Variazioni delle rimanenze di prodotti in corso di lavorazione, semilavorati e finiti
- Incrementi di immobilizzazioni per lavori interni
- Altri ricavi e proventi

COSTI DI PRODUZIONE

- · Per materie prime, sussidiarie
- Per materiale di consumo
- · Ammortamenti e svalutazioni
- Per il personale
- Per servizi
- Per il godimento di beni di terzi
- Variazioni delle rimanenze di materie prime, sussidiarie, di consumo e merci
- Accantonamenti per rischi
- Oneri diversi di gestione

