

C5 Project: Multimodal Recognition

Week 3

Image Retrieval

Rubèn Pérez Tito rperez@cvc.uab.cat

Ernest Valveny ernest@cvc.uab.cat

Lei Kang lkang@cvc.uab.cat

C5 Project Stages and Schedule

Week 1 February 19-25

T1: Introduction to Pytorch - Image classification

Week 2

T2: Object Detection, recognition and segmentation Feb. 26 - march 3

Week 3

T3: Image Retrieval March 4 - 13

Week 4

March 18 - April 7

T4: Cross-modal Retrieval

EASTER HOLIDAYS (March 25 – April 1)

Deliverable: Report on object Detection and Segmentation, first version

Week 5

April 8 - 14

T5: Diffusion models

Week 5

April 15 - 21

T6: Multimodal human analysis

Week 7 April 22

Deliverable: Presentation

Deliverable: Report on object Detection and Segmentation, final version

Application approach

- Extract features from database images (train set).
- Extract features of the query image (val/test set).
- Retrieve the most similar images from the database.

Notice that image retrieval is not a training methodology, but an application!

By training the to classify. It will implicitly learn an image representation that is representative to perform retrieval.

Training strategies for image retrieval

- Classification
- Metric learning:
 - Siamese networks

By performing metric learning, we explicitly learn a representation that facilitates the retrieval of the images.

Training strategies for image retrieval

- Classification
- Metric learning:
 - Siamese networks
 - Triplet networks

By performing metric learning, we explicitly learn a representation that facilitates the retrieval of the images.

Training strategies for image retrieval

- Classification
- Metric learning:
 - Siamese networks
 - Triplet networks

By performing metric learning, we explicitly learn a representation that **facilitates** the retrieval of the images.

Training strategies for image retrieval

- Classification
- Metric learning:
 - Siamese networks
 - Triplet networks
 - **Quadruplet Networks**
 - Etc.

By performing metric learning. We explicitly learn a representation that facilitates the retrieval of the images.

Dataset: MIT Split

Training strategies for image retrieval

- Classification
- Metric learning:
 - Siamese networks
 - Triplet networks

Note: When you will read that models share parameters, you can use the same model.

```
1. img1 = model(img1)
2. img2 = model(img2)
3. loss = criterion(img1 emb, img2 emb)
```

Retrieval process

- Extract features from database images (train set).
- Extract features of the query image (val/test set).
- Retrieve the most similar images from the database.
 - NN, KNN...
 - Facebook AI Similarity Search (<u>FAIS</u>), getting started <u>documentation</u>.

Retrieval process

- Extract features from database images (train set) \rightarrow use torch.no grad()
- Extract features of the query image (val/test set) \rightarrow use torch.no grad()
- Retrieve the most similar images from the database.
 - NN, KNN...
 - Facebook AI Similarity Search (<u>FAIS</u>), getting started <u>documentation</u>.

Retrieval process

- Extract features from database images (train set).
- Extract features of the query image (val/test set).
- Retrieve the most similar images from the database.
 - o NN, KNN...
 - Facebook AI Similarity Search (<u>FAIS</u>), getting started <u>documentation</u>.

Evaluation / Metrics

- Mean Average Precision (MAP)
- Precision@K
- Recall@K
- Difference between object detection and information retrieval metrics <u>link</u>.

Tasks

- a. Image retrieval with pre-trained image classification model.
- b. Train the model on metric learning (Siamese network).
- c. Train the model on metric learning (Triplet network).
- d. Visualize the learned image representation of each of the previous tasks a-c
- e. Image Retrieval on COCO with Faster R-CNN or Mask R-CNN
- f. Continue writing the paper: Methodology and Experiments

Deliverable (for next week)

- Github repository with readme.md (code explanation & instructions)
- Presentation with all items listed in the tasks under the Project presentation title.
- One summary slide at the end of your presentation.
- **Report** on overlaf about object detection and segmentation.

Task (a): Image retrieval with pre-trained image classification model.

- Use P1 or standard Image Classification method (ResNet) pre-trained for Image Classification on the MIT_Split dataset.
 - You might need to remove the last linear layer where you project the hidden size into the output (num_classes) size.
- Show (and analyze) precision-recall curve.
- Show qualitative results in your presentation.
- Show quantitative results in your presentation.
 - At least MAP, Prec@1, Prec@5
 - For MAP use the average precision score() function from the Sklearn library
 - Sklearn: Metrics, Basic models (NN, KNN, K-Means, SVMs)...
 - You will have to turn your integer targets [7, 3, 1, 3, ...]_{bs} to binary [0, 1, 0, 1, ... database size
- You can choose the retrieval method you prefer (NN, KNN, FAIS...)

Task (b): Train the model on metric learning (Siamese network)

• Include precision-recall curve, quantitative and qualitative results in your presentation.

Task (c): Train the model on metric learning (Triplet network)

Include precision-recall curve, quantitative and qualitative results in your presentation.

Task (d): Visualize the learned image representation of each of the previous tasks a-c

- You can use PCA, TSNE, UMAP or another you choose.
 - TSNE <u>paper</u> and implementation in <u>sklearn</u>.

Task (e): Image Retrieval on COCO with Faster R-CNN or Mask R-CNN

- Perform image retrieval on subset of COCO with triplet networks.
- Dataset: COCO 2014
 - /home/mcv/datasets/COCO/
 - train2014
 - val2014
 - Annotations
 - Train (metric learning) ← Train set (82K images: 100 %)
 - **Database** (image retrieval DB) ← Train set (1.9K images: 2.5 %)
 - Val (queries) ← Val set (1.1K images: 2.9 %)
 - Test (queries) ← Val set (1.9K images: 4.8 %)
 - Format:
 - Obj_M: [ImageId₀, ImageId₁, ImageId_N]

Task (e): Image Retrieval on COCO with Faster R-CNN or Mask R-CNN

- Evaluating correct / wrongly retrieved images:
 - The retrieved image contains at least one object of the queried image.
 - Selection
 - The retrieved image contains same objects as the queried image.
 - Aggregation
 - The retrieved image contains similar objects with similar quantities as the queried image.
 - Weighted aggregation

Task (e): Image Retrieval on COCO with Faster R-CNN or Mask R-CNN

- Evaluating correct / wrongly retrieved images:
 - The retrieved image contains at least one object of the queried image.
 - Selection
 - o The retrieved image contains same objects as the queried image.
 - Aggregation
 - o The retrieved image contains similar objects with similar quantities as the queried image.
 - Weighted aggregation

Task (f): Finish the paper.

- Abstract
- Introduction (½ page)
- Related Work (1 page)
- Methodology (1 page with diagram)
 - Faster R-CNN & Mask R-CNN
 - Other models you may have used in optional tasks
 - Methodology for Out-of-Context optional tasks, if applicable
- Experimental design
 - Datasets
 - Metrics
 - Implementation details
- Results
- Conclusion

Max: 6 pages w/o references

Interesting features to analyze

- 1. How different metric learning setups affect the results?
 - Different losses, different distances (Euclidean, Mahalanobis), different weights or margins.
 - Use of hard negative and different hard-negative mining strategies.
- How different retrieval methods (NN, KNN, FAIS) affect the results for the same learned image representations?
- How different visualization methods plot the same learned image representations?

General information requirements for the presentation

- Describe your method.
 - Was it necessary to perform any change? (remove the last fully connected layer).
- Describe the training strategies (loss function).
 - o Did you use any hard negative strategy? Which one?
- Describe the retrieval method.
- Describe the visualization method.

Extra material

- Siamese, Triplet <u>examples</u> (AdamBielski)
- Pytorch-metric-learning <u>library</u> (Kevin Musgrave)
 - Oficial Github <u>repository</u>
 - o CIFAR 10 examples

C5 – T3: Image Retrieval

Due date

March 18th, Monday, before 10:00 AM

Include **one** summary slide at the end of your presentation with main results and conclusions

One member of the group members will have to present this slide in
 1 minute during the follow-up session next week.