GEMM3: Constant-Workspace High-Performance Multiplication of Three Matrices for Matrix Chaining

Krzysztof A. Drewniak

The University of Texas at Austin

April 13, 2018

Matrix chaining problem

- ▶ Problem: compute $A_1A_2 \cdots A_N$ efficiently
- ▶ $O(N \log N)$ algorithm¹, also $O(N^3)$ with dynamic programming²
- ► Fewer flops → more performance?
- ► Ex: $WXYZ \Rightarrow ((WX)Y)Z$, (WX)(YZ), W(X(YZ)), ...

¹Hu and Shing, 1984

²Barthels 2018

Generalized matrix chaining

- ▶ In reality transposes, inverses, properties
- ► Ensemble Kalman filter³ $X_i^b S_i (Y_i^b)^T R_i^{-1}$ Tridiagonalization⁴ $\tau_u \tau_v v v^T A u u^T$ Two-sided triangular solve⁵ $L^{-1}AL^{-H}$ (L lower triangular)
- ▶ Performance with BLAS/LAPACK⁶ must be expert
- Less performance with Matlab, numpy, etc. (left-to-right)
- ▶ Linnea⁷: expression \rightarrow BLAS calls automagically

³Rao 2017

⁴Choi 1995

⁵Poulson 2011

⁶Dongarra 1990, Anderson 1999

⁷Barthels 2018

GEMM3 — Why bother?

- ► All multiply three matrices as a subproblem
- Not all problems subdivide like this

GEMM3 — Why a new algorithm?

- ▶ Current approach: parentheses, multiply twice, store temporary *T*
- ► T often eats memory (& performance)
- We can do better!
- ▶ Use how GEMM works to nest computations
- \triangleright O(1) extra memory, maybe more performance

Section 2

High-Performance GEMM

Drewniak (UT Austin) GEMM3 6 / 38

Memory hierarchy

Important matrix shapes

Block

Row panel

GEMM: The kernels

GEMM: The kernels

Packing very important⁸ ⁸Henry 1992

GEMM: The algorithm⁹

⁹Goto 2008

Data reuse

▶ Every loop reads *something* repeatedly

Want:

Section 3

The $\operatorname{GEMM}3$ algorithm

Key concept of the algorithm

- ▶ We want G += D(EF), (dimensions: m, k, l, n in order)
- ► EF first needed in packing step
- Don't do computation until then

Deriving GEMM3: Partitionings

 $m \times n_C$

 $m \times k$

$$\leftrightarrow$$

 $k \times 1$

1.
$$m \times n$$

$$k \times n$$

$$| I \times n$$

 $m \times k$

$$k \times I$$

 $I \times n_C$

3.

$$m \times n_C$$
 $+=$ $\begin{pmatrix} m \times k_C \end{pmatrix}$

 $k_C \times n_C$

 \leftrightarrow

$$k_C \times I$$

 $I \times n_C$

Deriving GEMM3: Inner algorithm

$$EF: k_C \times n_C = E: k_C \times I$$

$$F: I \times n_C$$

- ▶ Only point to compute *EF* in constant memory
- GEMM algorithm needs tweaks

Inner algorithm tweaks: Removing the outer loop

Inner algorithm tweaks: Microkernel packed writes

Inner algorithm tweaks: Halving n_C

Inner algorithm tweaks: Small k_C reduction

Drewniak (UT Austin) GEMM3 20 / 38

Inner algorithm tweaks: Small k_C reduction

Drewniak (UT Austin) GEMM3 20 / 38

The algorithm

The small drawback

Problem shape:

$$\widetilde{EF}: k_C \times n_C = E: k_C \times I$$

$$F: I \times n_C$$

Reuse problem: *m* small

Section 4

Experiments and Results

Implementation details

- Multilevel Optimization of Matrix Multiply Sandbox (MOMMS)¹⁰
- Extended to support three matrices
- Implement both GEMM3 and pair of GEMM algorithms
- ► GEMM (from BLIS¹¹) port performs like BLIS
- Machine: 3.5 GHz (one core used), 15 GB RAM, 32 KB L1 cache, 256 KB L2, 8 MB L3. Peak perf 56 GFLOPS/s.

	ı	
	GЕММ3	GEMM algorithm
m_R	6	6
n_R	8	8
m_C	72	72
k_C	252	256
I_C	256	
n _C	2040	4080

Table: Parameters for Haswell CPUs

¹⁰Smith 2018

¹¹van Zee 2016

Experiments

- 1. G += D(EF), square matrices
 - ▶ Inputs column-major, outputs row-major for fairness
- 2. $G^T += F^T(E^TD^T)$, square matrices
 - ► After transpose, all row major
- 3. G += D(EF), rectangles (one dimension small)

Workspace usage, square matrices

API simplicity

```
double *T = malloc(k * n * sizeof(double));
dgemm("N", "N", k, l, n,
      1, E, lde, F, ldf,
      0, T, k);
dgemm("N", "N", m, k, n,
      alpha, D, ldd, T, k,
      beta, G, ldg);
free(T);
VS.
dgemm3("R", "N", "N", "N", m, k, 1, n,
       alpha, D, ldd, E, lde, F, ldf,
       beta, G, ldg);
```

G += D(EF), square matrices

G += D(EF), square matrices

$$G += (DE)F$$

- ▶ Putting parentheses there sometimes better
- Deriving directly doesn't work bad shape
- ▶ However, $G += (DE)F \Leftrightarrow G^T += F^T(E^TD^T)$

$$G += (DE)F$$

- ▶ Putting parentheses there sometimes better
- Deriving directly doesn't work bad shape
- ▶ However, $G += (DE)F \Leftrightarrow G^T += F^T(E^TD^T)$

G += (DE)F, square matrices

G += (DE)F, square matrices

G += D(EF), rectangular matrices

G += D(EF), narrow dimension = 9

Conclusions

- ▶ GEMM structure lets us make GEMM3
- Constant memory
- ► Cleaner API
- ► Comparable performance

Future Work

- ► Parallel case
- ► More architectures
- ▶ Variants (matrices with properties), autogeneration

Acknowledgments

- ▶ Prof. Robert van de Geijn advising and providing inspiration
- Dr. Tyler Smith writing MOMMS and algorithm design
- Prof. Tze Meng Low performance fixes
- ▶ NSF awards CCF-1714091 and ACI-1550493 funding

Questions?

Picking parameters: m_R , n_R

- ▶ Determine microkernel
- Based on microarchitecture register width, FMA properties
- ▶ We're reusing BLIS's work
- \triangleright Can swap m_R and n_R

Picking parameters: k_C

L1

Placing memory in cache: [tag][set #][offset in line]

Maximizing k_C improves performance

$$C_{B} = \left\lceil \frac{n_{R}k_{C}S_{elem}}{N_{L1}C_{L1}} \right\rceil$$
$$= \left\lceil \frac{n_{R}}{m_{R}}C_{A} \right\rceil$$
$$C_{A} \le \left\lceil \frac{W_{L1} - 1}{1 + \frac{n_{R}}{m_{R}}} \right\rceil$$

Picking parameters: m_C and n_C

- ▶ For m_C : reserve ways for B and C
- ► Then take all you can
- \triangleright n_C , leave out what architecture requires, then divide
- ▶ L3 is very big, tuning is much less needed