Ordinal and Multinomial Logistic Regression

A New Example Using Data From Multilevel Thinking

Andy Grogan-Kaylor

2023-10-16

Table of contents

1	Background	1
2	The Data	2
3	Setup	2
4	Ordinal Logistic Regression	3
5	Multinomial Logistic Regression	6

1 Background

Figure 1: A Tweet

2 The Data

Data are simulated data on parent behaviors and child outcomes from Multilevel Thinking.

Figure 2: Simulated Data on Countries of the World

use "https://github.com/agrogan1/multilevel-thinking/raw/main/simulate-and-analyze-multilevel-data

21 Apr 2023 12:38

note:

describe

Variables:

https://github.com/agrogan1/multilevel-thinking/raw/main/simulate-and-a > nalyze-multilevel-data/simulated_multilevel_data.dta redirected to https://raw.githubusercontent.com/agrogan1/multilevel-thinking/main/sim > ulate-and-analyze-multilevel-data/simulated_multilevel_data.dta

Contains data from https://github.com/agrogan1/multilevel-thinking/raw/main/sim

> ulate-and-analyze-multilevel-data/simulated_multilevel_data.dta
Observations: 3,000

______ Variable Storage Display Value type format label Variable label name float %9.0g country country id Human Development Index HDI float %9.0g float %9.0g family family id unique country family id id str7 %9s group float %9.0g arbitrary group variable physical_puni~t float %9.0g physical punishment in past week parental warmth in past week warmth float %9.0g %9.0g beneficial outcome float outcome

Sorted by: country family

3 Setup

We need to create a categorical outcome variable for demonstration purposes.

```
* create an outcome_group variable

egen outcome_group = cut(outcome), group(3) // divide outcome into groups

label define outcome_group 0 "low" 1 "medium" 2 "high" // define value labels

label values outcome_group outcome_group // attach value labels

tabulate outcome_group
```

Running C:\Users\agrogan\Desktop\GitHub\newstuff\categorical\ordinal-multinomia > l-logistic-regression-2\profile.do .

outcome_gro	1					
up	1	Freq.	Percent	Cum.		
	+	1 000	22 22	22 22		
low	I	1,000	33.33	33.33		
medium		1,000	33.33	66.67		
high		1,000	33.33	100.00		
Total		3,000	100.00			

4 Ordinal Logistic Regression

$$\ln\left(\frac{p(y \le k)}{p(y > k)}\right) = \beta_0 + \beta_1 x_1 + \dots$$

Because the data are clustered by countries, we will use the , <code>cluster(country)</code> option in each model. The <code>brant</code> command can be installed by typing <code>findit brant</code>, and installing the Long & Freese spost utilities.

```
ologit outcome_group physical_punishment warmth HDI i.group, or cluster(country) // ordinal logit
brant // brant test
margins, at(warmth = (1(1)7)) // margins at different values of warmth
marginsplot, title("Predicted Probabilities From Ordinal Logit") ///
plot(_outcome, labels("low" "medium" "high")) // graph w/ manual labels
graph export myologit.png, replace
```

Running C:\Users\agrogan\Desktop\GitHub\newstuff\categorical\ordinal-multinomia > 1-logistic-regression-2\profile.do .

Iteration 0: Log pseudolikelihood = -3295.8369

Iteration 1: Log pseudolikelihood = -3157.4676
Iteration 2: Log pseudolikelihood = -3157.0335
Iteration 3: Log pseudolikelihood = -3157.0333

Ordered logistic regression

Number of obs = 3,000Wald chi2(4) = 242.78

Prob > chi2 = 0.0000

Log pseudolikelihood = -3157.0333

Pseudo R2 = 0.0421

(Std. err. adjusted for 30 clusters in country)

outcome_gr~p	 Odds ratio +	Robust std. err.		P> z		interval]
physical_p~t warmth HDI 2.group		.0197074 .026044 .0058436 .0754851	-9.21 12.28 0.67 4.89	0.000 0.000 0.505 0.000	.7584964 1.232951 .9925017 1.182221	.8357781 1.335069 1.015409 1.478735
/cut1 /cut2	04647	.4096606 .426558			84939 .610776	.7564499 2.282853

Note: Estimates are transformed only in the first equation to odds ratios.

Brant test of parallel regression assumption

	1	chi2	p>chi2	df
All		1.98	0.739	4
physical_punishment	İ	1.45	0.229	1
warmth		0.20	0.656	1
HDI		0.05	0.818	1
2.group	1	0.18	0.672	1

A significant test statistic provides evidence that the parallel regression assumption has been violated.

Predictive margins Model VCE: Robust

Number of obs = 3,000

```
1._predict: Pr(outcome_group==0), predict(pr outcome(0))
```

```
1._at: warmth = 1
```

$$5._at: warmth = 5$$

^{2.}_predict: Pr(outcome_group==1), predict(pr outcome(1))

^{3.}_predict: Pr(outcome_group==2), predict(pr outcome(2))

 $^{2.}_at: warmth = 2$

 $^{3.}_at: warmth = 3$

 $^{4.}_at: warmth = 4$

 $^{6.}_{at: warmth = 6}$

ļ	Delta-method					
1	Margin	std. err.	Z	P> z	[95% conf.	interval]
1 1	.4715116	.0239632	19.68	0.000	.4245446	.5184785
1 2	.411902	.0219914	18.73	0.000	.3687996	.4550044
1 3	.3547047	.0204707	17.33	0.000	.3145829	.3948265
14	.3012864	.0194346	15.50	0.000	.2631953	.3393776
1 5	. 2526558	.0187163	13.50	0.000	.2159724	.2893391
1 6	.2094156	.0180743	11.59	0.000	.1739907	. 2448405
17	.1717793	.0173168	9.92	0.000	.137839	.2057196
2 1	.3210415	.0100789	31.85	0.000	.3012872	.3407958
2 2	.3376888	.0091914	36.74	0.000	.3196739	.3557037
2 3	.3465153	.0092644	37.40	0.000	.3283575	.3646731
24	.3467361	.010075	34.42	0.000	.3269895	.3664827
25	.3383307	.0114619	29.52	0.000	.3158658	.3607955
26	.3220464	.0133672	24.09	0.000	.2958472	.3482456
27	.2992734	.0156422	19.13	0.000	.2686153	.3299314
3 1	.207447	.0183764	11.29	0.000	.1714298	.2434641
3 2	.2504092	.0196723	12.73	0.000	.2118522	.2889661
3 3	.29878	.021223	14.08	0.000	.2571838	.3403763
3 4	.3519775	.0231631	15.20	0.000	.3065787	.3973762
3 5	.4090136	.0255026	16.04	0.000	.3590294	.4589977
3 6	.468538	.0280772	16.69	0.000	.4135078	.5235682
3 7	.5289473	.0305829	17.30	0.000	.469006	.5888886

Variables that uniquely identify margins: warmth

file myologit.png saved as PNG format

Figure 3: marginsplot from ologit

5 Multinomial Logistic Regression

$$\ln\left(\frac{P(y=y_2)}{P(y=y_1)}\right) = \ln\left(\frac{P(y=\text{something else})}{P(y=\text{something})}\right)$$

$$= \beta_0 + \beta_1 x_1 + \dots$$

$$\ln\left(\frac{P(y=y_3)}{P(y=y_1)}\right) = \ln\left(\frac{P(y=\text{something else altogether})}{P(y=\text{something})}\right)$$

$$= \beta_0 + \beta_1 x_1 + \dots$$

Because the *Brant* test was insignificant, the results below are likely to look similar. Imagine, however, if the *Brant* test were statistically significant, suggesting that we should estimate separate regression coefficients for each value of the outcome. Imagine, in addition, if we were estimating an outcome that were truly multinomial in nature, such as *post-secondary* education pursued: *none*, *vocational*, *university*. For heuristic purposes, we will relabel the outcome accordingly.

```
label define outcome_group2 0 "none" 1 "vocational" 2 "university" // define value labels
label values outcome_group outcome_group2 // attach NEW value labels
tabulate outcome_group
mlogit outcome_group physical_punishment warmth HDI i.group, rr cluster(country)
margins, at(warmth = (1(1)7)) // margins at different values of warmth
marginsplot, title("Predicted Probabilities From Multinomial Logit") ///
plot(_outcome, labels("none" "vocational" "university")) // graph w/ manual labels
graph export mymlogit.png, replace
```

Running C:\Users\agrogan\Desktop\GitHub\newstuff\categorical\ordinal-multinomia > l-logistic-regression-2\profile.do .

outcome_gro				
up	1	Freq.	Percent	Cum.
none vocational		1,000 1,000	33.33 33.33	33.33 66.67
university	+	1,000	33.33	100.00
Total	1	3,000	100.00	

Iteration 0: Log pseudolikelihood = -3295.8369Iteration 1: Log pseudolikelihood = -3159.3121

```
Iteration 2: Log pseudolikelihood = -3157.2541
Iteration 3: Log pseudolikelihood = -3157.2532
Iteration 4: Log pseudolikelihood = -3157.2532
Multinomial logistic regression
                                                       Number of obs = 3,000
                                                       Wald chi2(8) = 216.92
                                                       Prob > chi2 = 0.0000
Log pseudolikelihood = -3157.2532
                                                       Pseudo R2 = 0.0420
                              (Std. err. adjusted for 30 clusters in country)
______
                           Robust
outcome_gr~p | RRR std. err. z P>|z| [95% conf. interval]
       | (base outcome)
vocational
physical_p~t | .8284144 .0268834 -5.80 0.000
                                                       .7773647 .8828166

    warmth | 1.172042
    .0323704
    5.75
    0.000
    1.110284
    1.237235

    HDI | 1.003045
    .0039244
    0.78
    0.437
    .9953822
    1.010766

    2.group | 1.244621 .1034633
                                      2.63 0.008
                                                       1.057495 1.46486
     _cons | .7248303 .2045156 -1.14 0.254 .4169312 1.26011
university |
                                                        .6841767 .7862183
physical_p~t | .733425 .0260105 -8.74 0.000

    warmth | 1.402776
    .0404291
    11.74
    0.000
    1.325733
    1.484296

    HDI | 1.005061
    .0080327
    0.63
    0.528
    .9894402
    1.020929

    2.group | 1.454744 .1119325
                                      4.87 0.000
                                                       1.251102 1.691534
      _cons | .3950266 .227379 -1.61 0.107 .1278413 1.220623
Note: _cons estimates baseline relative risk for each outcome.
Predictive margins
                                                        Number of obs = 3,000
Model VCE: Robust
1._predict: Pr(outcome_group==none), predict(pr outcome(0))
2._predict: Pr(outcome_group==vocational), predict(pr outcome(1))
3._predict: Pr(outcome_group==university), predict(pr outcome(2))
1._at: warmth = 1
2._at: warmth = 2
3._at: warmth = 3
4._at: warmth = 4
5._at: warmth = 5
6._at: warmth = 6
7._at: warmth = 7
                        Delta-method
            | Margin std. err. z > |z| [95% conf. interval]
```

_predict#_at |

1 1	-	.4655491	.0256453	18.15	0.000	.4152852	.515813
1 2		.4108856	.0225268	18.24	0.000	.3667338	.4550374
1 3		.3566849	.020455	17.44	0.000	.3165938	.3967761
1 4		.3043247	.0194768	15.62	0.000	.2661507	.3424986
1 5		.2551027	.0192162	13.28	0.000	.2174397	.2927657
1 6		.210102	.0191257	10.99	0.000	.1726162	.2475877
1 7		.170087	.0187808	9.06	0.000	.1332774	.2068966
2 1		.3312655	.0149681	22.13	0.000	.3019286	.3606025
2 2		.3403628	.010943	31.10	0.000	.318915	.3618106
2 3		.3438888	.0090929	37.82	0.000	.3260671	.3617104
2 4		.3414688	.010569	32.31	0.000	.3207539	.3621838
2 5		.3331582	.014179	23.50	0.000	.3053679	.3609485
2 6		.3194468	.0184628	17.30	0.000	.2832603	.3556333
2 7		.301194	.0227261	13.25	0.000	.2566517	.3457363
3 1		.2031854	.0183179	11.09	0.000	.1672829	.2390879
3 2	-	.2487516	.0194812	12.77	0.000	.2105691	.2869341
3 3		.2994263	.0210267	14.24	0.000	.2582148	.3406379
3 4		.3542065	.0231943	15.27	0.000	.3087464	.3996666
3 5		.4117391	.0260214	15.82	0.000	.3607381	.4627401
3 6		.4704512	.0292975	16.06	0.000	.4130291	.5278733
3 7		.528719	.0326555	16.19	0.000	.4647153	.5927227

Variables that uniquely identify margins: warmth

file mymlogit.png saved as PNG format

Figure 4: marginsplot from mlogit