Analysis: Maximum Gain

Test Set 1

One straightforward way to solve this problem is to simulate the process with a recursive brute force method. Let us define the following variables:

- Ai: The pointer to the start of array A. The pointer moves one step ahead after answering the first question from A, i.e. Ai becomes Ai + 1.
- Aj: The pointer to the end of array $\bf A$. The pointer moves one step back after answering the last question from $\bf A$, i.e. Aj becomes Aj-1.
- Bi: The pointer to the start of array \mathbf{B} .
- Bj: The pointer to the end of array **B**.
- k: The remaining number of questions to answer.

With these variables, we can write down the recursive equation as follows:

$$f(Ai,Aj,Bi,Bj,k) = \begin{cases} -\inf, & \text{if } (Ai-1) + (\mathbf{N}-Aj) > \mathbf{N} \text{ or } (Bi-1) + (\mathbf{M}-Bj) > \mathbf{M}. \\ 0, & \text{if } k = 0. \\ \max \begin{pmatrix} f(Ai+1,Aj, & Bi, & Bj, & k-1) + \mathbf{A}[Ai] \\ f(Ai, & Aj-1,Bi, & Bj, & k-1) + \mathbf{A}[Aj] \\ f(Ai, & Aj, & Bi+1,Bj, & k-1) + \mathbf{B}[Bi] \\ f(Ai, & Aj, & Bi, & Bj-1,k-1) + \mathbf{B}[Bj] \end{pmatrix}, \text{ otherwise.} \end{cases}$$

The maximum points we can get by answering ${\bf K}$ questions from arrays ${\bf A}$ and ${\bf B}$ would be the return value of $f(1,{\bf N},1,{\bf M},{\bf K})$. Be careful that indexes $Ai,\,Aj,\,Bi$, and Bj may go out of bounds of arrays ${\bf A}$ and ${\bf B}$. The out-of-bounds values are defined to be zeros in the equations above.

However, the time complexity of the recursion above is $O(4^{\mathbf{K}})$. To improve the performance, we can use dynamic programming: keep the return values in a 4-dimensional array to avoid repeated computation. Notice that the memoization array does not need to keep parameter k since it can be derived from the other four parameters with

 $k = \mathbf{K} - (Ai - 1) - (\mathbf{N} - Aj) - (Bi - 1) - (\mathbf{M} - Bj)$. With memoization, the time complexity of this method is $O(\mathbf{K}^4)$, and space complexity is $O(\mathbf{K}^4)$.

Test Set 2

Notice that the order of questions to answer does not affect the points we get from them. Therefore, we can always answer questions in the first array $\bf A$ first, and then in the second array $\bf B$. This observation allows us to divide the problem into two sub-problems: find the maximum points P_A we can get by answering K_A questions in the first array $\bf A$, and the maximum points P_B by answering K_B questions in the second array $\bf B$. Enumerating all possible combinations of (K_A,K_B) where $K_A+K_B={\bf K}$, the total maximum points we can get by answering ${\bf K}$ questions would be the maximum value of all P_A+P_B .

Now we want to find a way to get the maximum points P_A by answering K_A questions in the first array \mathbf{A} . Since the order of questions to answer does not matter, we can answer K_{AStart} questions from the start of the array first, and then K_{AEnd} questions from the end of the array, such that $K_{AStart} + K_{AEnd} = K_A$. The points we get would be:

$$P_A' = (\mathbf{A}_1 + \mathbf{A}_2 + \dots + \mathbf{A}_{K_{AStart}}) + (\mathbf{A}_{\mathbf{N} - K_{AEnd} + 1} + \mathbf{A}_{\mathbf{N} - K_{AEnd} + 2} + \dots + \mathbf{A}_{\mathbf{N}})$$

= $\operatorname{Prefix}(\mathbf{A}, K_{AStart})$ + $\operatorname{Suffix}(\mathbf{A}, K_{AEnd})$

Therefore, we can find the maximum points P_A by enumerating all combinations of (K_{AStart},K_{AEnd}) where $K_{AStart}+K_{AEnd}=\min(K_A,\mathbf{N})$, and find the maximum values of all P_A' with the equation aforementioned. With the prebuilt prefix sum and suffix sum arrays, we can get P_A' in O(1) time, and the maximum points P_A in $O(K_A)$ time.

We can apply the same algorithm to find the maximum points P_B by answering K_B questions in the second array \mathbf{B} . The time complexity for this method would be:

- O(N + M) to prebuild the prefix and suffix arrays for A and B.
- O(K²) to get the total maximum points.
 - \circ O(1) to get the points with a pair (K_{AStart},K_{AEnd}) or (K_{BStart},K_{BEnd}) .
 - $O(\mathbf{K})$ to enumerate all (K_{AStart}, K_{AEnd}) pairs and get P_A maximum points by answering questions from array \mathbf{A} . Same for array \mathbf{B} .
 - $O(\mathbf{K}^2)$ to enumerate all (K_A, K_B) pairs and get the total maximum points.
- Overall: $O(\mathbf{K}^2 + \mathbf{N} + \mathbf{M})$.

If you would like to explore more tasks like Audio Validation and Image Labeler Tasks on the Crowdsource app and directly train Google's artificial intelligence systems to make Google products work <u>equally well for everyone, everywhere</u>, you can <u>download it here</u>.