WHAT IS CLAIMED IS:

1. A method of increasing speed of a silver halide color photosensitive material by at least one type of a compound represented by the following general formula (M) or general formula (C):

5

10

15

20

25

in the general formula (M), R_{101} represents a hydrogen atom or substituent; Z represents a group of non-metallic atoms required to form a 5-membered azole ring containing 2 to 4 nitrogen atoms, wherein the azole ring may have a substituent, including a fused ring; and X represents a hydrogen atom or substituent; and

in the general formula (C), Za represents -NH- or -CH(R $_3$)-; Zb and Zc independently represent -C(R $_4$)= or -N=; R $_1$, R $_2$ and R $_3$ independently represent an electron attractive group having a Hammett constant σ p value of 0.2 to 1.0; R $_4$ represents a hydrogen atom or substituent wherein when there are two R $_4$ s in the formula, they may be the same or different; and X represents a hydrogen atom or substituent.

2. The method of increasing speed of a silver halide color photosensitive material according to claim 1, wherein, in the formula (M), the total number of carbon atoms of the substituents on the azole ring,

including R_{101} , X and Z, is from 13 to 60%.

5

10

15

20

3. The method of increasing speed of a silver halide color photosensitive material according to claim 1, wherein the method comprises adding, to the silver halide color photosensitive material, the compound represented by the general formula (M):

wherein R₁₀₁ represents a hydrogen atom or substituent; Z represents a group of non-metallic atoms required to form a 5-membered azole ring containing 2 to 4 nitrogen atoms, wherein the azole ring may have a substituent, including a fused ring; and X represents a hydrogen atom or substituent.

4. The method of increasing speed of a silver halide color photosensitive material according to claim 3, wherein the general formula (M) is represented by general formula (M-1):

$$\begin{array}{cccc}
R_{11} & X \\
N & NH \\
N & R_{12} & (M-1)
\end{array}$$

wherein R_{11} and R_{12} independently represent a substituent; and X represents a hydrogen atom or substituent.

5. The method of increasing speed of a silver halide color photosensitive material according to

claim 3, wherein the general formula (M) is represented by general formula (M-3):

wherein R_{11} and R_{13} independently represent a substituent; and X represents a hydrogen atom or substituent.

5

10

15

- 6. The method of increasing speed of a silver halide color photosensitive material according to claim 1, wherein the addition of the compound represented by the general formula (M) or (C) changes a film pAg (Δ pAg_F) of the silver halide color photosensitive material by 0 to 0.3.
- 7. The method of increasing speed of a silver halide color photosensitive material according to claim 1, wherein the compound represented by the general formula (M) or (C) has a pKa value of 6.0 to 8.4.
- 8. The method of increasing speed of a silver halide color photosensitive material according to claim 1, wherein the compound represented by the general formula (M) or (C) has a reactivity (CRV) with an oxidized color developing agent of 0.01 to 0.1.
- 9. The method of increasing speed of a silver halide color photosensitive material according to

claim 1, wherein the method comprises adding, to a red-sensitive silver halide emulsion layer of the silver halide color photosensitive material, the compound represented by the general formula (M) or (C), wherein R_{101} , Z, X, R_1 , R_2 , Z_a , Z_b and Z_c have the same meanings as those in claim 1, respectively.

5

10

- 10. The method of increasing speed of a silver halide color photosensitive material according to claim 1, wherein the method comprises adding, to a blue-sensitive silver halide emulsion layer of the silver halide color photosensitive material, the compound represented by the general formula (M) or (C), wherein R_{101} , Z, X, R_{1} , R_{2} , Z_{3} , Z_{4} and Z_{5} have the same meanings as those in claim 1, respectively.
- 11. The method of increasing speed of a silver halide color photosensitive material according to claim 4, wherein, in the general formula (M-1), X represents an alkyl group, alkoxycarbonyl group, carbamoyl group or a group that leaves by a reaction with an oxidized developing agent.
 - 12. The method of increasing speed of a silver halide color photosensitive material according to claim 4, wherein the compound represented by the general formula (M-1) has a reactivity (CRV) with an oxidized color developing agent of 0.01 to 0.1.
 - 13. The method of increasing speed of a silver halide color photosensitive material according to

claim 5, wherein the compound represented by the general formula (M-3) has a reactivity (CRV) with an oxidized color developing agent of 0.01 to 0.1.

14. The method of increasing speed of a silver halide color photosensitive material according to claim 11, wherein the compound represented by the general formula (M-1) has a reactivity (CRV) with an oxidized color developing agent of 0.01 to 0.1.

- 15. The method of increasing speed of a silver halide color photosensitive material according to claim 3, wherein the addition of the compound represented by the general formula (M) changes a film $^{-}$ pAg (Δ pAg_F) of the silver halide color photosensitive material by 0 to 0.3.
- 16. The method of increasing speed of a silver halide color photosensitive material according to claim 3, wherein the compound represented by the general formula (M) has a pKa value of 6.0 to 8.4.
- 17. The method of increasing speed of a silver halide color photosensitive material according to claim 3, wherein the compound represented by the general formula (M) has a reactivity (CRV) with an oxidized color developing agent of 0.01 to 0.1.
- 18. The method of increasing speed of a silver

 25 halide color photosensitive material according to

 claim 3, wherein the compound represented by the

 general formula (M) is added to a red-sensitive silver

halide emulsion layer of the silver halide color photosensitive material.

- 19. The method of increasing speed of a silver halide color photosensitive material according to claim 3, wherein the compound represented by the general formula (M) is added to a blue-sensitive silver halide emulsion layer of the silver halide color photosensitive material.
- 20. The method of increasing speed of a silver

 halide color photosensitive material according to claim

 1, wherein a layer of the photosensitive material
 containing tabular grains having an average aspect

 ratio of 8 or more, contains at least one compound
 represented by the general formula (M) or genera

 formula (C) described in claim 1.