

Evaluación 1

PROCESAMIENTO DE SEÑALES E IMÁGENES

Profesores:

Violeta Chang C.

• Leonel E. Medina

Ayudante: Luis Corral

Problema 1

1-. Determine de manera grafica que señal se obtiene luego de la convolución $y_j(t) = x(t) * h_j(t)$, utilizando como frecuencias $\omega_i = 2\pi$ y $\omega_c = 4\pi$:

$$x(t) = \frac{\sin \omega_i t}{\pi t},$$

$$h_1(t) = \delta(t),$$

$$h_2(t) = \frac{\sin \omega_c t}{\pi t},$$

$$h_3(t) = \sin(\pi t) + \cos(4\pi t).$$

2-. Determine de manera grafica que señal se obtiene luego de la convolución $y_1(t) = x(t) * h_1(t)$ del ejercicio anterior cuando $x(t) = x(t + t_0)$ con $t_0 = 0.5$.

Problema 2

Compruebe los resultados del Problema 1 utilizando la función conv de Matlab para realizar la convolución $y_j(t) = x(t) * h_j(t)$ y la función sinc de Matlab para obtener las señales x(t) y $h_2(t)$. Normalice los valores obtenidos de la convolución dividiendo por el valor máximo (utilizando la función max de matlab) de esta señal y la opción 'same' en la función conv. Adicionalmente, calcule el resultado para $y_4(t)$ con T = 0.5 y:

$$h_4(t) = \begin{cases} 1, & |t| < T \\ 0, & |t| > T \end{cases}$$

Referencias

[1] Oppenheim, A.V. & Willsky, A.S. & Nawab, S.H. (1997). Señales y sistemas (2nd ed.). Prentice Hall.