# Correlation Analysis (상관관계분석)

### 1. 소개



상관관계는 연속적 속성을 갖는 두 변인들 간 상호연관성에 대한 기술 통계를 제공할 뿐 아니라, <u>두 변인 간의 상호 연관성에</u> 대한 <u>통계적 유의성을</u> 검증해 주는 통계분석 기법

- → Pearson 상관계수는 두 연속형 변수 사이의 <u>선형적인</u> 상관성(linear correlation)을 분석
- → 커뮤니케이션 분야에서는 흔히 피어슨(곱적률) 상관계수 r을 자주 사용: -1 +1 사이
- → Karl Pearson → Pearson's product-moment coefficients of correlation = Pearson correlation coefficient = Zero order correlation coefficient  $\rightarrow r$



- 일반적 r=.30 약한 관계, r=.50 중간 관계, r=.70 강한 관계
- 두 변인간의 강도와 방향을 산포도(scatterplot)로 표현: 2 차원 공간에서 변인 X() 가로축)와 Y() 세로축)에 대한 각 케이스 값들 나타냄: r이 커질수록 두 변인간의 관계를 나타내는 데이터들이 점점 조밀, 반대의 경우 변인간 데이터들은 점점 흩어짐

- -r의 절대값이 클수록 (1 에 가까울수록) 두 변수의 값들은 직선 가까이에 위치하며 따라서 두 변수 사이의 선형적인 상관성은 커진다
- r 이 절대값이 1 일 때 두 변수의 값은 모두 직선 위에 위치 (perfect correlation) → 한 변인의 값을 알면 다른 변인의 값을 정확하게 예측할 수 있음
- -r이 0일 때 두 변수 사이에 선형적인 상관성은 없다  $\rightarrow$  한 변인의 값을 알아도 다른 변인의 값을 전혀 예측할 수 없음
- → 상관관계 계수(correlation coefficient)와 공변량(covariance)의 비교

〈표 14-5〉 공변량과 상관관계 계수

COVxy = 
$$\frac{\sum (X - X평균) (Y - Y평균)}{N-1}$$
r (상관관계 계수)=  $\frac{COVxy}{SxSy}$ 

〈표 14-6〉 〈교육〉과 〈텔레비전시청시간〉의 가상 데이터

| OFFTI | 1 3/15    | 교육              | 텔레비전시청시간 |                 |  |
|-------|-----------|-----------------|----------|-----------------|--|
| 응답자   | 원 점수      | 차이 점수           | 원 점수     | 차이 점수           |  |
| 1 1   | 2         | 2 - 3.2 = - 1.2 | 3        | 3 - 3.4 = -0.4  |  |
| 2     | 2         | 2 - 3.2 = - 1.2 | 2        | 2 - 3.4 = -1.4  |  |
| 3     | 3         | 3 - 3.2 = -0.2  | 4        | 4 - 3.4 = + 0.6 |  |
| 4     | 4         | 4 - 3.2 = + 0.8 | 3        | 3 - 3.4 = - 0.4 |  |
| 5     | 5         | 5 - 3.2 = + 1.8 | 5        | 5 - 3.4 = + 1.6 |  |
| 평균    | 3.2       |                 | 3.4      |                 |  |
| 표준편차  | F 150 151 | 1.30            | 11. 四个 在 | 1.14            |  |

공변량 = 
$$\frac{(-1.2)(-0.4) + (-1.2)(-1.4) + (-0.2)(0.6) + (0.8)(0.4) + (1.8)(1.6)}{4}$$
= 
$$\frac{(0.48) + (1.68) + (-0.12) + (0.32) + (2.88)}{4}$$
= 1.15

- 상관관계 계수와 공변량은 둘 다 두 변인 사이의 상관관계의 강도(strength)를 나타냄
- 공변량은 측정단위에 따라 변함 (예: 170cm 과 2,000g 의 공변량 > 1.7m 와 2kg 의 공변량)

- 상관관계 계수는 공변량을 각 변인의 표준편차를 곱한 값으로 나눈 것이기에 측정단위에 따라 변하지 않음

# 2. 연구절차

<데이터>

〈표 14-3〉 상관관계분석의 가상 데이터

| 응답자 | 연령  | 수입  | 영화<br>관람비 | 책<br>구입비 | 응답자   | 연령    | 수입  | 영화<br>관람비 | 책<br>구입비 |
|-----|-----|-----|-----------|----------|-------|-------|-----|-----------|----------|
| 1   | 1   | 200 | 5         | 2        | 14    | 3     | 300 | 3         | 3        |
| 2   | 1 1 | 100 | 3         | 2        | 15    | 3     | 400 | 5         | 2        |
| 3   | 1 1 | 200 | 4         | 1        | 16    | 4     | 400 | 3         | 4        |
| 4   | 1   | 300 | 2         | 4        | 17    | 4     | 300 | 3         | 3        |
| 5   | 1   | 200 | 3         | 3        | 18    | 4     | 300 | 4         | 3        |
| 6   | 2   | 100 | 2         | 2        | 19    | 4     | 500 | 3         | 4        |
| 7   | 2   | 200 | 3         | 1        | 20    | 4     | 400 | 2         | 5        |
| 8   | 2   | 300 | 3         | 2        | 21    | 5     | 400 | 1         | 3        |
| 9   | 2   | 300 | 3         | 4        | 22    | 5     | 300 | 2         | 4        |
| 10  | 2   | 400 | 4         | 3        | 23    | 5     | 300 | 3         | 5        |
| 11  | 3   | 300 | 2         | 4        | 24    | 5     | 400 | 2         | 3        |
| 12  | 3   | 400 | 2         | 3        | 25    | 5     | 500 | 1         | 4        |
| 13  | 3   | 400 | 3         | 3        | Lel M | Fater | PER | 18/4/2    | MH       |

# 변인

- 연령: 5 점 척도(1=10 대, 2=20 대, 3=30 대, 4=40 대, 5=50 대 이상)로 측정된 나이
- 수입: 월 평균소득(단위: 만원)
- 영화관람비: 월평균 영화관람비(단위: 만원)
- 책구입비: 월평균 책구입비(단위: 만원)

### <SPSS 실행방법>

1)



2)



#### [실행방법 2]

[이변량 상관계수] 창이 나타나면, 왼쪽 칸에서 오른쪽 [변수(V)] 칸으로 분석하고자 하는 변인을 클릭하여 이동시킨다(➡). [상관계수]의 [☑ Pearson], [유의성 검정]의 [◉ 양쪽(T)], [☑ 유의한 상관계수 별표시(F)]는 기본으로 설정되어 있다. 오른쪽의 [옵션]을 클릭한다.

3)



#### [실행방법 3]

[이변량 상관계수: 옵션] 창이 나타나면, [통계량]의 [☑ 평균과 표준편차(M)], [☑ 교차곱 편차와 공분산(C)]을 클릭한다. [결측값]의 [◉ 대응별 결측값 제외(P)]는 기본으로 설정되어 있다. 아래의 [계속]을 클릭한다. [실행방법 2]의 [이변량 상관계수]창으로 다시돌아가 [확인]을 클릭한다.

### <결과분석>

1) 상관관계 계수와 유의도 검증 결과 해석

| 구분    | 연 령                   | 수 입                 | 영화관람비                 | 책구입비                  |
|-------|-----------------------|---------------------|-----------------------|-----------------------|
| 연 령   | 1.00                  | 0.649<br>p = 0.000  | - 0.449*<br>p = 0.024 | 0.563*<br>p = 0.003   |
| 수 입   | 0.649*<br>p = 0.000   | 1.00                | - 0.241<br>p = 0.245  | 0.532*<br>p = 0.006   |
| 영화관람비 | - 0.449*<br>p = 0.024 | -0.241<br>p = 0.245 | 1.00                  | - 0.440*<br>p = 0.028 |
| 책구입비  | 0.563*<br>p = 0.003   | 0.532*<br>p = 0.006 | - 0.440*<br>p = 0.028 | 1.00                  |

## 2) 결정계수의 의미: 설명변량

- 상관관계 계수(r)를 제곱한 값(r²)을 결정계수(coefficient of determination)라 부름 - 이 값은 두 변인이 겹친 부분으로서 설명변량(explained variance)의 비율을 의미함 (예: 연령과 수입의 r 이 0.649 라면 r²는 0.421 → 이는 두 변인 변량(variance)의 42.1%가 겹친 부분으로 설명될 수 있음을 의미 → 이는 한 변인의 변화량에 따라 다른 한 변인의 변화량이 42.1% 만큼 설명될 수 있음을 의미)



표, 그림 출처: 최현철. (2013). *사회과학 통계분석*. 나남

# 3. 상관관계 계수 해석 시 주의할 점

- 두 변인간 관계를 설명하는 피어슨 r이 높게 나타났지만, 실제로는 두 변인 간에 이론적으로 아무런 연관성이 없을 수 있음 → 이를 "거짓관계(spurious relationship)"

(예: 한도시의 아이스크림 판매량을 보면 수영장에서 익사율이 높을 때 아이스 크림 판매량 역시 증가하는 것을 알 수 있음 → 피어슨 r 높을것 임 → 그러나 실제로는 여름에는 아이스크림 판매량이 증가할 뿐만 아니라 무더위를 피하기 위해 수영장을 찾는 이용객도 많을 것이므로 익사율이 높아 질 것 → 익사율의 원인은 아이스크림 판매량이 아니라 무더위를 피하기 위한 수영장 이용임)