Optymalizacja wielokryterialna				
Dominik Wróbel	21 V 2018	Pon 08:00, s. 111		
Numery zadań		1, 3		

Spis treści

D	hi í	.tt_
Pr	zebieg ćv	
2.1	Zadan	ie 1 - Dwójnik elektryczny
	2.1.1	Opis problemu
	2.1.2	Analityczne wyznaczenie kryteriów jakości
	2.1.3	Wyznaczenie wykresów kryteriów jakości
	2.1.4	Zależność pomiędzy kryteriami
	2.1.5	Wyznaczenie zbioru rozwiązań kompromisowych
-		ie 3 - Preparat medyczny
	2.2.1	Opis problemu
	2.2.2	Sposób rozwiązania
	2.2.3	Rozwiązanie programowe

1 Cel ćwiczenia

Celem ćwiczenia jest rozwiązanie zadań optymalizacyjnych z wykorzystaniem podejścia opartego o optymalizację wielokryterialną. Podobnie jak inne zadania optymalizacji, zadania te polegać będą na znalezieniu rozwiązania optymalnego dla problemu, jednak w tym przypadku będą analizowane różne kryteria zależne od tych samych zmiennych decyzyjnych. Celem optymalizacji wielokryterialnej jest taki dobór zmiennych decyzyjnych aby w idealnym przypadku znaleźć optymalną wartość wszystkich wskaźników, nie zawsze jest to jednak możliwe i wówczas w zadaniu wyznaczany jest tzw. zbiór rozwiązań kompromisowych.

2 Przebieg ćwiczenia

2.1. Zadanie 1 - Dwójnik elektryczny

2.1.1. Opis problemu

W zadaniu rozważany jest układ dwójnika elektrycznego przedstawiony na Rysunku 1.

Rysunek 1: Analizowany układ dwójnika elektrycznego

Zadanie polega na wyznaczeniu optymalnej wartości zmiennej decyzyjnej x przy przyjętych kryteriach. Zmienna x dana jest wzorem:

$$x = \frac{R_a}{R_i}, \quad x \in [0, \infty)$$

Na zmienną R_i nałożone jest ograniczenie równościowe:

$$R_i = n = 16$$

Przyjęte kryteria jakości to maksymalna wartość współczynnika sprawności η oraz maksymalna moc P wydzielana na obciążeniu.

2.1.2. Analityczne wyznaczenie kryteriów jakości

• Sprawność η jest to stosunek mocy wydzielanej na rezystorze R_a do mocy wydzielanej na rezystorach R_a oraz R_i :

$$\eta = \frac{P_a}{P_i + P_a}, \quad P_a = U_a I = I^2 R_a, \quad P_i = U_i I = I^2 R_i$$

$$\eta = \frac{R_a}{R_a + R_i} = \frac{\frac{R_a}{R_i}}{\frac{R_a}{R_i} + 1} = \frac{x}{x + 1}$$

Moc wydzielana na rezystorze

$$P_a = R_a I^2 = \frac{R_a}{(R_a + R_i)^2} E^2 = \frac{R_a}{(R_a + R_i)} \frac{1}{(R_a + R_i)} E^2 = \frac{x}{(x+1)} \frac{1}{(\frac{R_a}{R_i} + 1)} \frac{E^2}{R_i} = \frac{x}{(x+1)^2} \frac{E^2}{R_i}$$

Ostatecznie więc wskaźnikami jakości są funkcje:

$$Q_1(x) = \frac{x}{x+1}, \quad Q_2(x) = \frac{E^2}{R_i} \frac{x}{(x+1)^2}$$

2.1.3. Wyznaczenie wykresów kryteriów jakości

Wykresy wskaźników zostały wyznaczone przyjmując wartość napięcia E=1. W przypadku wskaźnika Q_1 nie ma to wpływu na przebieg wykresu. Również wartość opornika R_i nie ma większego wpływu na kształt wykresu.

Z kolei dla wyznaczenia wskaźnika Q_2 wartości opornika R_i ma już duże znaczenie, przyjęto wartość zgodną z ograniczeniem $R_i = 16$.

Wykresy przedstawiają Rysunki 2 i 3.

Rysunek 2: $Q_1(x)$, E = 1, $R_i = 16$

Rysunek 3: $Q_2(x)$, E = 1, $R_i = 16$

Kod wykorzystany do rysowania wykresów przedstawia Listing 1.

```
clear all;
2
   close all;
 3
 4
   max_x_axes = 500;
5
   Ri = 16;
 6
   Ra = 0:0.1:max_x_axes;
 7
   x_1 = Ra/Ri;
8
   fun_1 = x_1./(x_1+1);
9
10
   plot (x_1, fun_1);
11
12
   axis([0 20 0 1 ]);
13
14
   xlabel('x') % x-axis label
15
   ylabel('Q1(x)') % y-axis label
16
   title('Wskaznik Q1(x)')
17
   coef = 1/Ri;
18
   x_3 = Ra/Ri;
19
   fun_3 = coef .* (x_3 ./ ((x_3+1).^2));
20
21
   % hold on;
23
   figure()
24
   plot (x_3, fun_3);
25
   xlabel('x') % x-axis label
```

```
27  ylabel('Q2(x)') % y-axis label
28  title('Wskaznik Q2(x)')
30  axis([0 5 0 0.03]);
```

Listing 1: Kryteria jakości

2.1.4. Zależność pomiędzy kryteriami

Następnie w celu wyznaczenia zbioru rozwiązań kompromisowych wyznaczono zależność pomiędzy wskaźnikiem Q_1 i Q_2 .

Wychodząc z równania na Q_1 :

$$Q_1 = \frac{x}{x+1} \implies x = \frac{Q_1}{1-Q_1}$$

Wyrażenie to podstawiono do wyrażenia na drugi ze wskaźników:

$$Q_2 = \frac{E^2}{R_i} \frac{\frac{Q_1}{1 - Q_1}}{(\frac{Q_1}{1 - Q_1} + 1)^2} = -\frac{E^2}{R_i} (Q_1 - 1)Q_1$$

2.1.5. Wyznaczenie zbioru rozwiązań kompromisowych

W celu wyznaczenie zbioru rozwiązań kompromisowych narysowano zależność pomiędzy wskaźnikami obliczoną w poprzednim punkcie. Podobnie jak w poprzednich punktach przyjęto, że napięcie E ma wartość 1

Z Rysunku 2 widać, że dla $x \in [0, \infty)$, wskaźnik Q_1 przyjmuje wartości $Q_1 \in [0, 1)$ dlatego też zależność pomiędzy wskaźnikami analizowana jest tylko w tej dziedzinie. Otrzymany wykres wraz z zaznaczonym zbiorem kompromisowym przedstawia Rysunek 4.

Rysunek 4: Zależność pomiędzy Q_1 i Q_2 , czerwone punkty to znaleziony obszar rozwiązań kompromisowych.

Kod użyty do narysowania wykresu. przedstawia Listing 2.

```
clear all;
   close all;
   Q1 = 0:0.01:1;
   Ri = 16;
   coef = 1/Ri;
   coef = -coef;
   fun_4 = coef .* ((Q1-1).*Q1);
   hold on;
   plot (Q1, fun_4);
11
   hold on;
12
   Q1_half = 0.5:0.01:1;
13
   fun_4 = coef .* (( Q1_half-1 ).*Q1_half);
14
   plot(Q1_half,fun_4,'*');
15
16
17
   axis([0 1 0 0.02 ]);
18
19
   xlabel('Q2(x)');
   ylabel('Ql(x)');
```

Listing 2: Wykres ze zbiorem punktów kompromisowych

2.2. Zadanie 3 - Preparat medyczny

2.2.1. Opis problemu

W zadaniu dane są dane o preparacie medycznym, który w różnych wariantach ma różne efekty leczenia (Q_1) oraz różną nietolerancje (nieskuteczność Q_2). Dane są przedstawione w tabeli poniżej. Zgodnie z numerem na liście ćwiczeniowej przyjęto n=16.

Preparat medyczny						
Wariant	Q_1	Q_2	$Q_1 - Q_2$			
1*	40	10 + 2n = 42	-2			
2	60	30 + 2n = 62	-2			
3*	60	20 + 2n = 52	8			
4	10 - 2n = -22	30	-52			
5*	20	5 + 2n = 37	-17			
6	30	20 + 2n = 52	-22			
7	40	25 + 2n = 57	-17			

Gwizdką zaznaczono znalezione warianty podczas działania algorytmu. Jak widać prawie wszystkie ze znalezionych wariantów, to te dla których wartość różnicy Q_1-Q_2 ma największą wartość.

2.2.2. Sposób rozwiązania

Problem zostanie rozwiązany przy użyciu punktów ze zbioru Pareto, czyli punktów, dla których znalezione rozwiązania dają najlepsze wyniki dla przyjętych kryteriów. Algorytm postępowania jest następujący :

- Jeżeli wariant ma ujemny wskaźnik Q_1 to jest odrzucany ze względu na to, że nie ma sensu stosować leku o ujemnej skuteczności bez względu na jego nieskuteczność.
- Jeśli wariant jest lepszy od wariantu ze zbioru Pareto, to zamień go z wariantem ze zbioru Pareto,
- Jeśli wariant jest gorszy od wariantu ze zbioru Pareto, to przejdź do analizy następnego wariantu,
- Jeśli nie zachodzi żadne z powyższych, to dodaj wariant do zbioru Pareto

2.2.3. Rozwiązanie programowe

Kod użyty do znalezienie punktów Pareto przedstawia Listing 3.

```
clear all;
   close all;
   n = 16;
   % Wartosci Q1 i Q2 z tabelki
   Q1 = [40, 60, 60, 10-2*n, 20, 30, 40];
   Q2 = [10+2*n, 30+2*n, 20+2*n, 30, 5+2*n, 20+2*n, 25+2*n];
8
   wsk_1 = Q1;
9
   wsk_2 = Q2;
10
   % Numery wariantow
11
   war = 1:1:10;
12
13
```

```
% Na poczatku zbior Pareto zawiera 1 wariant
15
   pareto = [ 1 ];
16
   flag_dodanie = 0;
17
18
   flag = 0;
   sizer = size(Q1);
19
   sizer = sizer(2);
2.0
   for i = 2 : sizer
21
22
      sizer = size(pareto);
23
      sizer = sizer(2);
24
25
      for j = 1 : sizer
26
27
       % Jesli wariant jest lepszy od wariantu ze zbioru Pareto, to
28
       % zamien go z wariantem ze zbioru Pareto
       if ( wsk_1(i) >= wsk_1(pareto(j)) && wsk_2(i) <= wsk_2(pareto(j)) )</pre>
29
30
            pareto(j) = i;
31
            flag = 1;
32
            break;
33
34
35
        % Jesli wariant jest gorszy od wariantu ze zbioru pareto, to
36
        % przejdz do analizy nastepnego wariantu
37
        elseif( ( wsk_1(i) <= wsk_1(pareto(j)) && wsk_2(i) >= ...
        wsk_2(pareto(j)) ) || wsk_1(i) <=0 )</pre>
38
            flag = 1;
39
            break;
40
41
       end
        % Jesli nie zachodzi zadne z powyzszych, to dodaj wariant do
42
       % zbioru pareto
43
      end
44
45
       if( flag == 0 )
46
            sizer = size(pareto);
47
48
            sizer = sizer(2);
49
            pareto(sizer+1) = i;
50
       end
51
        flag = 0;
52
   end
53
   x = size(pareto);
54
55
   x = x(2);
   for k = 1:x
56
       Q_par_1(k) = wsk_1(pareto(k));
57
58
       Q_par_2(k) = wsk_2(pareto(k));
59
   end
60
   figure();
   plot (wsk_1, wsk_2, '*');
61
   hold on;
62
63
   plot (Q_par_1,Q_par_2,'o');
64
   xlabel('Wskaznik Q1');
6.5
   ylabel('Wskaznik Q2');
```

Listing 3: Wyznaczanie zbioru pareto

Rysunek 5: Punkty Pareto zaznaczono czerwonym okręgiem.

3 Wnioski końcowe

Zastosowanie optymalizacji wielokryterialnej pozwala na rozważaniem problemów optymalizacji z uwzględnieniem różnych kryteriów. Ważne jest aby podczas rozwiązywania zadania wykorzystać wszystkie relacje pomiędzy kryteriami jakości i zmiennymi decyzyjnymi.

Dzięki takiemu podejściu możliwe jest wyznaczenie zbioru kompromisów, co ogranicza uniwersum poszukiwań wartości minimalnych.

W zadaniu 3 optymalizacja wielokryterialna została wykorzystana do badania określonych punktów. Takie podejście pozwala na zastosowanie optymalizacji wielokryterialnej do skończonego zbioru przeszukiwań i pozwala wybrać z punktów dopuszczalnych te, które najlepiej pasują do przyjętych kryteriów.