

Microeconomics III: Problem Set 6^a

Thor Donsby Noe (thor.noe@econ.ku.dk) & Christopher Borberg (christopher.borberg@econ.ku.dk) October 30 2019

Department of Economics, University of Copenhagen

^aSlides created for exercise class 3 and 4, with reservation for possible errors.

Outline

```
Kahoot!
PS6, Ex. 1 (A):
PS6, Ex. 2 (A):
PS6, Ex. 3: Dynamic games (imperfect information)
PS6, Ex. 4: The Mutated Seabass (imperfect information)
PS6, Ex. 5:
PS6, Ex. 6:
PS6, Ex. 7: To keep or split (imperfect information)
Code examples
```

1

Kahoot!

Kahoot: A exercises

Form a group for each table:

• Get prepared to answer the A exercises as a team (5 min).

2

PS6, Ex. 1 (A):

PS6, Ex. 1 (A):

PS6, Ex. 1 (A):

4

PS6, Ex. 2 (A):

PS6, Ex. 2 (A):

PS6, Ex. 2.a (A):

Find the SPNE in the four games.

Hints:

- It becomes much easier to grasp dynamic games with imperfect information if you write the part with imperfect information in normal form (bi-matrix).
- 2. Be careful to cover all of the strategy profile (in every subgame!) when writing up the subgame perfect Nash Equilibria (SPNE).

(a) Find the SPNE in the following game:

8

(a) Find the SPNE in the following game:

 2^{nd} and 3^{rd} stage in normal form:

		Player 2	
_		L	R
ayer	L_2	-3, -1	1, -2
<u>ره</u> ,	R_2	-2, 1	3, 0
_			

9

(a) Find the SPNE in the following game:

 2^{nd} and 3^{rd} stage in normal form:

		Player 2	
4		L	R
Ū	L_2	-3, -1	1, -2
<u>a</u> ,	R_2	-2, 1	3 , 0
-			

(a) Find the SPNE in the following game:

 2^{nd} and 3^{rd} stage in normal form:

Write up the SPNE!

(a) Find the SPNE in the following game:

 2^{nd} and 3^{rd} stage in normal form:

 $SPNE = \{s_1^*, s_2^*\} = \{(L_1, R_2), L\}$ with outcome (0,2).

(b) Find the SPNE in the following game:

(b) Find the SPNE in the following game:

2nd and 3rd stage in normal form:

		Player 2		
-		L	R	
yer	L_2	-6, -6	-1, -1	
بر بق	R_2	-1, -1	-3, -3	
_				

(b) Find the SPNE in the following game:

2nd and 3rd stage in normal form:

		Player 2	
Н		L	R
layer	L_2	-6, -6	-1, -1
Pla,	R_2	-1, -1	-3, -3
Pla	R_2	-1, -1	-3, -3

Two different pure strategy NE (PSNE) in the subgame. What now?

(b) Find the SPNE in the following game:

 R_1 is strictly dominated by L_1 and we have two subgame perfect solutions:

Write up the SPNE!

(b) Find the SPNE in the following game:

 R_1 is strictly dominated by L_1 and we have two subgame perfect solutions:

 $SPNE = \{s_1^*, s_2^*\} = \{(L_1, L_2), R; (L_1, R_2), L\} \text{ both with outcome (0,2)}.$

(c) Find the SPNE in the following game:

(c) Find the SPNE in the following game:

 1^{st} and 2^{nd} stage in normal form (taking the 3^{rd} stage as given):

		Player 2		
\vdash		L	R	
layer	L_1	2, 1	3, 0	
<u>Б</u> ,	R_1	3, 1	3, -1	
_				

(c) Find the SPNE in the following game:

1st and 2nd stage in normal form (taking the 3rd stage as given):

		Player 2	
Н		L	R
ayer	L_1	2, 1	3 , 0
Pla,	R_1	3, 1	3 , -1

Consider how many subgames there are and write up the SPNE.

(c) Find the SPNE in the following game:

1st and 2nd stage in normal form (taking the 3rd stage as given):

$$\textit{SPNE} = \{s_1^*, s_2^*\} = \{(\textit{R}_1, \textit{L}_2, \textit{R}_2), \textit{L}\} \text{ with outcome (3,1)}.$$

(d) Find the SPNE in the following game:

(d) Find the SPNE in the following game:

 2^{nd} and 3^{rd} stage in normal form (Player 1 knows her own action in 1^{st} stage):

(d) Find the SPNE in the following game:

 2^{nd} and 3^{rd} stage in normal form (Player 1 knows her own action in 1^{st} stage):

(d) Find the SPNE in the following game:

 2^{nd} and 3^{rd} stage in normal form (Player 1 knows her own action in 1^{st} stage):

(d) Find the SPNE in the following game:

 2^{nd} and 3^{rd} stage in normal form (Player 1 knows her own action in 1^{st} stage):

 $SPNE = \{s_1^*, s_2^*\} = \{(R_1, L_2), L\}$ with outcome (3,1).

PS6, Ex. 4: The Mutated Seabass (imperfect information)

PS6, Ex. 4:

Go back to exercise 4 in problem set 5. Write up the game tree for the situation in part (c), where the choice to acquire the weapon is not observed. Find the SPNE. What has changed?

Last class we actually solved this part and discussed it as an extension...

PS6, Ex. 5:

PS6, Ex. 5:

PS6, Ex. 5.a:

PS6, Ex. 6:

PS6, Ex. 6:

PS6, Ex. 6.a:

Consider the following 2 \times 2 game where payoffs are monetary:

	L	R
Т	3, 3	0, 4
В	4, 0	1, 1

Before this game is played, Player 1 can choose whether, after the game is played, players should keep their own payoffs or split the aggregate payoff evenly between them. Player 2 observes this choice.

- (a) Write down the game tree of this two-stage game: be careful to represent the simultaneous-move game in the second stage using information sets.
- (b) Find the subgame perfect Nash Equilibria (SPNE).
- (c) Now suppose that Player 2 cannot observe Player 1's choice in the first stage. Draw the game tree (again using information sets) and find the pure strategy Nash Equilibria (PSNE).

(a) Write down the game tree of this two-stage game: be careful to represent the simultaneous-move game in the second stage using information sets.

 1^{st} stage: Player 1 chooses Keep or Split. Player 2 observes the choice.

 2^{nd} stage: Player 2 chooses L or R (L' or R'). The action is private information.

 3^{rd} stage: Player 1 chooses T or B (T' or B') without knowing what Player 2 did.

The order of stage 2 and 3 is arbitrary, but the 2nd stage must be private information.

(b) Find the subgame perfect Nash Equilibria (SPNE).

(b) Find the subgame perfect Nash Equilibria (SPNE).

Т

В

(b) Find the subgame perfect Nash Equilibria (SPNE).

Т

В

(b) Find the subgame perfect Nash Equilibria (SPNE).

Т

В

Write up the full strategy profiles for the subgame perfect Nash Equilibria (SPNE).

(b) Find the subgame perfect Nash Equilibria (SPNE).

R'

2, 2

1, 1

B'

2, 2

1, 1

Т

В

4, 0

 $SPNE = \{(Split, B, T'), (R, L')\}$ with outcome (3,3).

(c) Now suppose that Player 2 cannot observe Player 1's choice in the first stage. *Draw the game tree (again using information sets)* and find the pure strategy Nash Equilibria (PSNE).

(c) Now suppose that Player 2 cannot observe Player 1's choice in the first stage. Draw the game tree (again using information sets) and find the pure strategy Nash Equilibria (PSNE).

(c) Find the pure strategy Nash Equilibria (PSNE).

 2^{nd} and 3^{rd} stage in normal form (Player 1 knows her own action in 1^{st} stage):

В

Code examples

Code examples

Matrix, no player names:

	L (q)	R (1-q)
T (p)		
B (1-p)		

Matrix, no colors:

Matrix, with colors:

