A test of Knitr, pgfplotstable and gnuplot with LATEX

Guillermo Julián Moreno

July 9, 2015

First of all, let's see how does R behave.

```
data = read.table('datafile.txt');
first_col = data$V1
second_col = data$V2
mean(second_col) # Only the last line prints the output
## [1] 22.31191
```

Seems nice enough, isn't it? I can also inline R results, so I can say that there are 23 values in that datafile, and the maximum of the first colum is 6000. I could include those values in more complicated equations, such as

$$\max{\{\text{data}\}} - \min{\{\text{data}\}} = 6000 - 5780 = 220$$

If the file changes, the results change too.

On to a more real-life example: using R to create a plot. Just disabling the code output with echo = FALSE and setting a label to refer to the figure 1

Figure 1: This is the caption for the figure

We could also include a Gnuplot script: just input the .tex file and the results shows in figure 2. And, finally, the pgfplotstable sample: take a look at table 1.

Figure 2: A graph directly from Gnuplot

Column 1	Column 2
5,780	21.92
5,790	21.95
5,800	21.98
5,810	22.01
5,820	22.04
5,830	22.1
5,840	22.16
5,850	22.16
$5,\!860$	22.2
5,870	22.25
5,880	22.29
5,890	22.31
5,900	22.33
5,910	22.38
5,920	22.42
5,930	22.45
5,940	22.49
5,950	22.54
5,960	22.56
5,970	22.6
5,980	22.63
5,990	22.68
6,000	22.72

Table 1: A test table.