Guía 1

1. Suponga que a, b son números reales no nulos simultáneamente. Hallar números reales c y d tales que,

$$\frac{1}{a+bi} = c + di$$

Respuesta.- Hallemos $c \in \mathbb{R}$ como sigue,

$$\frac{1}{a+bi} = c+di$$

$$\frac{1}{a+bi} - di = c+di-di$$

$$c = \frac{1}{a+bi} - di$$

Ya que,
$$i^4 = i^3 i = (-i)i = -(i^2) = -(-1) = 1$$
 y
$$i^3 = i^2 i = (-1)i = -i,$$

Luego hallamos $d \in \mathbb{R}$,

$$\begin{array}{rcl} \displaystyle \frac{1}{a+bi} & = & c+di \\ di & = & \displaystyle \frac{1}{a+bi}-c \\ di \cdot i^3 & = & \displaystyle i^3 \left(\frac{1}{a+bi}-c\right) \\ d & = & \displaystyle \frac{-i}{a+bi}+ci \end{array}$$

Así,
$$c = \frac{1}{a+bi} - di$$
; $d = \frac{-i}{a+bi} + ci$.

2. Hallar dos raíces cuadradas distintas de i.

Respuesta.- $x^2 - 1 = 0$ v $x^2 - 4 = 0$.

3. Probar que $\alpha + \beta = \beta + \alpha$, para todo $\alpha, \beta \in \mathbb{C}$.

Demostración.- Sea $\alpha=a+bi$ y $\beta=c+di$, entonces por definición de números complejos para la adición, tenemos que,

$$\begin{array}{rcl} \alpha+\beta & = & (a+bi)+(c+di) \\ & = & (c+di)+(a+bi) \\ & = & \beta+\alpha \in \mathbb{C} \end{array}$$

De donde se demuestra la proposición dada.

4. Probar que $(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$, para todo $\alpha, \beta, \lambda \in \mathbb{C}$.

Demostración.- Sea $\alpha = a + bi$, $\beta = c + di$ y $\lambda = e + fi$ entonces,

$$(\alpha + \beta) + \lambda = [(a+bi) + (c+di)] + (e+fi)$$

= $(a+bi) + [(c+di) + (e+fi)]$
= $\beta + (\alpha + \lambda)$

Así,
$$(\alpha + \beta) + \lambda = \beta + (\alpha + \lambda)$$
.

5. Probar que para todo $\alpha \in \mathbb{C}$, existe un único $\beta \in \mathbb{C}$ tal que $\alpha + \beta = 0$.

Demostración.- La existencia queda demostrada por la propiedad identidad para la adición.

Ahora demostremos su unicidad de la siguiente manera:

Supongamos que existen β' , $\beta \in \mathbb{C}$ tales que $\alpha + \beta = 0$ y $\alpha + \beta' = 0$ que implica,

$$\alpha + \beta = \alpha + \beta' \implies \beta = \beta'.$$

Y por lo tanto, queda demostrada la unicidad.

Demostrada la existencia y unicidad concluimos que se cumple la propiedad del inverso aditivo para \mathbb{C} .

6. Probar que para todo $\alpha \in \mathbb{C} - \{0\}$, existe un único $\beta \in \mathbb{C}$ tal que $\alpha\beta = 1$.

Demostración.- Similar al anterior ejercicio podemos demostrar la existencia de β por la propiedad de identidad para la multiplicación. Luego demostremos la unicidad de la siguiente manera:

Sean $\beta,\beta^{'}\in\mathbb{C}$ tales que $\alpha\beta=1$ y $\alpha\beta=1$ entonces

$$\alpha\beta = \alpha\beta'$$

como $\alpha \neq 0$, nos queda que, $\beta = \beta'$.

Así, queda demostrada la propiedad del inverso multiplicativo para \mathbb{C} .

7. Hallar $x \in \mathbb{R}^4$ tal que (4, -3, 1, 7) + 2x = (5, 9, -6, 8).

Respuesta.- se tiene que,

$$\begin{array}{rcl} (4,-3,1,7) + 2x & = & (5,9,-6,8) \\ 2x & = & (5,9,-6,8) - (4,-3,1,7) \\ 2x & = & (5-4,9+3,-6-1,8-7) \\ 2x & = & (1,12,-7,1) \end{array}$$

De donde
$$x = (\frac{1}{2}, 6, -\frac{7}{2}, \frac{1}{2})$$
.

8. Probar que (x+y)+z=x+(y+z) para todo $x,y,z\in {\mathbb F}^n.$

Demostración.-