CP353201 Software Quality Assurance (1/2568)

Lab Worksheet

ชื่อ-นามสกุล นายตะวัน อุตมาน รหัสนศ. 663380210-2 Section 1

Lab#7 - White-box testing

วัตถุประสงค์การเรียนรู้

- 1. ผู้เรียนสามารถออกแบบการทดสอบแบบ White-box testing ได้
- 2. ผู้เรียนสามารถวิเคราะห์ปัญหาด้วย Control flow graph ได้
- 3. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Line coverage ได้
- 4. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Block coverage ได้
- 5. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Branch coverage ได้
- 6. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Condition coverage ได้
- 7. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Branch and Condition coverage ได้

โจทย์: CLUMP COUNTS

Clump counts (https://codingbat.com/prob/p193817)

เป็นโปรแกรมที่ใช้ในการนับการเกาะกลุ่มกันของข้อมูลภายใน Array โดยการเกาะกลุ่มกันจะนับสมาชิกใน Array ที่อยู่ติดกันและมีค่าเดียวกันตั้งแต่สองตัวขึ้นไปเป็นหนึ่งกลุ่ม เช่น

$$[1, 2, 2, 3, 4, 4] \rightarrow 2$$

$$[1, 1, 2, 1, 1] \rightarrow 2$$

$$[1, 1, 1, 1, 1] \rightarrow 1$$

ซอร์สโค้ดที่เขียนขึ้นเพื่อนับจำนวนกลุ่มของข้อมูลที่เกาะอยู่ด้วยกันอยู่ที่

https://github.com/ChitsuthaCSKKU/SOA/tree/2025/Assignment/Lab7 โดยที่ nums เป็น Array ที่ใช้ในการสนับสนุนการนับกลุ่มของข้อมูล (Clump) ทำให้ nums เป็น Array ที่จะต้องไม่มีค่าเป็น Null และมีความยาวมากกว่า 0 เสมอ หาก nums ไม่เป็นไปตามเงื่อนไขที่กำหนดนี้ โปรแกรมจะ return ค่า 0 แทนการ return จำนวนกลุ่มของข้อมูล

แบบฝึกปฏิบัติที่ 7.1 Control flow graph

จากโจทย์และ Source code ที่กำหนดให้ (CountWordClumps.java) ให้เขียน Control Flow Graph (CFG) ของเมธอด countClumps() จากนั้นให้ระบุ Branch และ Condition ทั้งหมดที่พบใน CFG ให้ครบถ้วน

<u>ตอบ</u>


```
CP353201 Software Quality Assurance (1/2568)
Lab instruction
```

```
Branch:
1-True: return 0;
1-Fasle: int count = 0;
       int prev = nums[0];
       boolean inClump = false;
5-True: nums[i] == prev && !inClump;
5-False: return count;
6-True: inClump = true;
       count += 1;
6-False: nums[i] != prev;
8-True: prev = nums[i];
       inClump = false;
8-False: i++;
Condition:
A: nums == null or nums.lenght == 0;
B: i < nums.lenght;
C: nums[i] == prev && !inClump
D: nums[i] != prev
```

แบบฝึกปฏิบัติที่ 7.2 Line Coverage

- จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1
 ให้ออกแบบกรณีทดสอบเพื่อให้ได้ Line coverage = 100%
- 2. เขียนกรณีทดสอบที่ได้ พร้อมระบุบรรทัดที่ถูกตรวจสอบทั้งหมด
- 3. แสดงวิธีการคำนวณค่า Line coverage

<u>ตอบ</u>

Test Case	Input(s)	Expected Result(s)	Path and Branch
No.			
1	null	0	Line No.: 6,7
2	[]	0	Line No.: 6,7
3	[1,1,1]	1	Line No.:
			6,10,11,12,14,15,16,17,20,25
4	[1,1,0,2,2]	2	Line No.:
			6,10,11,12,14,15,16,17,20,21,22,
			25

Line coverage = (13/13) * 100 = 100%

แบบฝึกปฏิบัติที่ 7.3 BLOCK COVERAGE

- 1. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบเพื่อให้ได้ Block coverage = 100%
- 2. เขียนกรณีทดสอบที่ได้ พร้อมระบุ Block ที่ถูกตรวจสอบทั้งหมด
- 3. แสดงวิธีการคำนวณค่า Block coverage

<u>ตอบ</u>

Test Case	Input(s)	Expected Result(s)	Path and Branch
No.			
5	[]	0	Block: 1,2
6	[1,1]	1	Block: 1,3,4,5,6,7,8,10,11
7	[1,2]	0	Block: 1,3,4,5,6,8,9,10,11
8	[0,0,0]	1	Block: 1,3,4,5,6,7,8,10,11

Block coverage = (11/11) * 100 = 100%

แบบฝึกปฏิบัติที่ 7.3 Branch Coverage

- 4. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบเพื่อให้ได้ Branch coverage = 100%
- 5. เขียนกรณีทดสอบที่ได้ พร้อมระบุ Path และ Branch ที่ถูกตรวจสอบทั้งหมด
- 6. แสดงวิธีการคำนวณค่า Branch coverage

<u>ตอบ</u>

Test Case	Input(s)	Expected Result(s)	Path and Branch
No.			
9	[]	0	Path: 1-2
			Branch: 1:T
10	[1]	0	Path: 1-3-4-5-11
			Branch: 1:F, 5:F
11	[1,1]	1	Path: 1-3-4-5-6-7-8-10-5-11
			Branch: 1:F, 5:T, 5:F, 6:T, 8:F
12	[1,2]	0	Path: 1-3-4-5-6-8-9-10-5-11
			Branch: 1:F, 5:T, 5:F, 6:T, 8:F
13	[0,0,0]	1	Path: 1-3-4-5-6-7-8-10-5-6-8-9-10-
			5-11
			Branch: 1:F, 5:T, 5:F, 6:T, 6:F, 8:T,
			8:F
			Path:

	Branch:
	Path:
	Branch:
	Path:
	Branch:

Branch coverage = (8/8) * 100 = 100%

แบบฝึกปฏิบัติที่ 7.4 CONDITION COVERAGE

- จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1
 ให้ออกแบบกรณีทดสอบเพื่อให้ได้ Condition coverage = 100%
- 2. เขียนกรณีทดสอบที่ได้ พร้อมระบุ Path และ Condition ที่ถูกตรวจสอบทั้งหมด เช่น Condition A = T และ Condition B = F
- 3. แสดงวิธีการคำนวณค่า Condition coverage

<u>ตอบ</u>

Test Case	Input(s)	Expected	Path and Condition
No.		Result(s)	
14	null	0	P = 1-2
			C = nums == null or
			nums.lenght == 0 = True
15	[]	0	P = 1-2

			C = nums == null or
			nums.lenght == 0 = True
16	[1,1]	1	P = 1-3-4-5-6-7-8-10-5-11
			C = i <nums.lenght =="" td="" true,<=""></nums.lenght>
			nums[i] == prev && !inClump =
			False, i <nums.lenght =="" false<="" td=""></nums.lenght>
17	[1,2]	0	P = 1-3-4-5-6-8-9-10-5-11
			C = i <nums.lenght =="" td="" true,<=""></nums.lenght>
			nums[i] == prev && !inClump =
			True, nums[i] != prev = True, i <nums.lenght =="" false<="" td=""></nums.lenght>

Condition coverage = (6/6) * 100 = 100%

แบบฝึกปฏิบัติที่ 7.5 Branch and Condition Coverage (C/DC coverage)

- 1. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบให้ได้ C/DC coverage = 100%
- 2. เขียนกรณีทดสอบที่ได้ พร้อมระบุ Path, Branch, และ Condition ที่ถูกตรวจสอบทั้งหมด
- 3. แสดงวิธีการคำนวณค่า C/DC coverage
- 4. เขียนโค้ดสำหรับทดสอบตามกรณีทดสอบที่ออกแบบไว้ด้วย JUnit และบันทึกผลการทดสอบ

ตอบ

Test	Input(s)	Expected Result(s)	Actual Result(s)	Path, Branch, and
Case No.				Condition
18	null	0		P = 1-2
			Pass/Fail: Pass	B = 1:T
				C = nums == null or
				nums.lenght == 0 =
				True

19	[]	0		P = 1-2
			Pass/Fail: Pass	B = 1:T
				C = nums == null or
				nums.lenght == 0 =
				True
20	[1]	0		P = 1-3-4-5-11
			Pass/Fail: Pass	B = 1:F, 5:F
21	[0,0]	1		P = 1-3-4-5-6-7-8-10-5-
			Pass/Fail: Pass	11
				B = 1:F, 5:T, 5:F, 6:T,
				8:F
				C = i < nums.lenght =
				True,
				nums[i] == prev
				&& !inClump = True,
				nums[i] != prev = False,
				i < nums.lenght = False
22	[1,2]	0		P = 1-3-4-5-6-8-9-10-5-
			Pass/Fail: Pass	11

23	[4,3,3]	1	Pass/Fail: Pass	B = 1:F, 5:T, 5:F, 6:T, 8:T C = i < nums.lenght = True, nums[i] == prev && !inClump = False, nums[i] != prev = True, i < nums.lenght = False P = 1-3-4-5-6-7-8-10-5- 6-8-9-10-5-11 B = 1:F, 5:T, 5:F, 6:T, 6:F, 8:T C = i < nums.lenght = True, nums[i] == prev && !inClump = True, nums[i] != prev = False, nums[i] != prev && !inClump = True, nums[i] != prev = True
				nums[i] != prev = True
			Pass/Fail:	

	Pass/Fail:	
	Pass/Fail:	

C/DC coverage =