Sources de lumière

Source primaire:

Source secondaire :

Produit la lumière qu'elle émet.

Diffuse la lumière qu'elle reçoit.

Spectre : Intensité de chaque longueur d'onde contenue dans une lumière.

Source ponctuelle monochromatique: Extension spatiale nulle, une seule raie.

Réflexion, réfraction

- Le rayon réfléchi est dans le plan d'incidence;

- Le rayon réflracté est dans le plan d'incidence;

 $-n_1\sin(i_1) = n_2\sin(i_2)$

 $n_2 > n_1$

Le rayon se rapproche de la normale. Angle de réfraction limite :

 $i_{2lim} = \arcsin\left(\frac{n_1}{n_2}\right)$

Le rayon s'éloigne de la normale. Réflexion totale au-delà de l'angle

 $n_1 > n_2$

Indice d'un milieu

Milieu homogène : Identique en tout point.

Milieu isotrope: Toutes les directions sont équivalentes.

vitesse de la lumière vitesse de la lumière v=dans le vide dans le milieu indice optique du milieu

Optique géométrique

Modèle : La lumière se propage en ligne droite.

Rayon lumineux : Trajet de la lumière, épaisseur nulle.

Limites: N'explique pas la diffraction, les interférences.

• Géométrique

Systèmes optiques

réel : Les rayons passent effectivement par le point.

virtuel: On prolonge les rayons jusqu'à leur intersection.

Système stigmatique

Système non stigmatique

Conditions de Gauss : Stigmatisme approché pour des rayons peu inclinés par rapport à l'axe optique et proches de l'axe optique.

Stigmatisme approché

Il y a stigmatisme approché lorsque l'image d'un point est une tache plus petite qu'un pixel du capteur.

l'oeil

Le cristallin est une lentille convergente de vergence variable. Il se déforme pour former l'image des objets regardés sur la

plage d'accomodation

lentilles sphériques minces

Les rayons qui passent par le centre optique (O) de la lentille ne sont pas déviés.

Les rayons qui arrivent parallèles à l'axe optique ressortent en passant par le foyer principal image (F').

Les rayons qui arrivent en passant par le foyer principal objet (F) ressortent parallèles à l'axe optique.

foyer secondaire foyer secondaire image objet

Formule de conjugaison

Objet ou image à l'infini

Newton

 $\overline{FA} \times \overline{F'A'} =$

Pour obtenir une image réelle d'un objet réel par une lentille convergente, il faut que :

D > 4f'