

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : G06F 1/00, 12/14	A1	(11) International Publication Number: WO 95/14266 (43) International Publication Date: 26 May 1995 (26.05.95)
(21) International Application Number: PCT/US94/12457		(81) Designated States: AU, CA, JP, KR, NO, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) International Filing Date: 28 October 1994 (28.10.94)		Published <i>With international search report.</i>
(30) Priority Data: 152,804 15 November 1993 (15.11.93) US		
(71) Applicant: HUGHES AIRCRAFT COMPANY [US/US]; 7200 Hughes Terrace, Los Angeles, CA 90045 (US).		
(72) Inventors: HAYES, John, L.; 175 B North Magnolia, Anaheim, CA 92801 (US). HYMAN, Paul, M.; 811 Azalea Avenue, Placentia, CA 92670 (US).		
(74) Agents: WALDER, Jeannette, M. et al; Hughes Aircraft Company, Building C1, M/S A126, P.O. Box 80028, Los Angeles, CA 90080-0028 (US).		
(54) Title: A METHOD AND SYSTEM FOR MAINTAINING ACCESS SECURITY OF INPUT AND OUTPUT OPERATIONS IN A COMPUTER SYSTEM		
(57) Abstract		
Disclosed is a computer system and a method under which a personal computer or a workstation may use commercial off-the-shelf software application packages with a commercially available operating system while providing features of multi-level security including mandatory access controls and propagation of classification levels and codewords when information is moved between documents. Users are allowed to manually reclassify documents (including downgrading) as necessary. The present invention may also be embodied to provide security when computer are on a network by means of a secure file server.		

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LJ	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

1 **A METHOD AND SYSTEM FOR**
2 **MAINTAINING ACCESS SECURITY OF INPUT AND OUTPUT**
3 **OPERATIONS IN A COMPUTER SYSTEM**

4 **BACKGROUND OF THE INVENTION**

5 1. Field of the Invention

6 This invention relates in general to computer security
7 systems, and, more particularly, to a computer security
8 system and a method for automatically limiting user access
9 to information stored in the computer in accordance with a
10 predetermined, but variable, user security profile of
11 permissible operations for each user that aids the user in
12 properly classifying documents.

13 2. Description of the Related Art

14 Previous implementations of secure computer
15 workstations required the use of a special operating system
16 and could not provide security when commercial off-the-
17 shelf ("COTS") software application packages were used.
18 Such systems, commonly called "Compartmented Workstations",
19 are notoriously inconvenient to use and do not allow for
20 data merger of documents and downgrading of documents.

21 In general, these previous implementations do not: (1)
22 run on the popular, commercially available computers; (2)
23 allow usage of a broad spectrum of COTS applications and
24 not just "trusted" applications that have been security
25 tested or qualified; (3) allow merger of data of different
26 security levels; (4) allow usage of the standard operating
27 system.

28 **OBJECTS AND SUMMARY OF THE INVENTION**

29 Therefore, it is an object of the present invention to
30 provide a method and system for providing security for
31 documents and data that does not require the use of
32 "trusted" applications only, but allows usage of commercial
33 off-the-shelf software application packages.

34 It is still another object of the present invention to

1 provide a method and system for providing security for
2 documents and data that provides propagation of security
3 labels when data is moved between documents.

4 It is still another object of the present invention to
5 provide a method and system for providing security for
6 documents and data that puts the users in control of their
7 documents provided that they have necessary security access
8 rights.

9 It is another object of the present invention to
10 provide a method and system for providing security for
11 documents and data that facilitates, rather than prevents,
12 data merger of documents classified at different security
13 levels.

14 It is yet another object of the present invention to
15 provide a method and system for providing security for
16 documents and data that not only prevents unauthorized
17 access to files and data, but which also aids the user in
18 properly classifying documents and data retained on the
19 system or manipulated by the method of the present
20 invention.

21 Other objects of the present invention are: it does
22 not require the development of a "trusted" operating
23 system, but rather exists as an extension to the existing
24 operating system; provides security of documents on a
25 network at the workstation level; concentrates on
26 "detection and audit" of "curious," "hostile" or
27 "mischievous" action by users as opposed to "prevention" of
28 such so that more trust is placed on the users allowing for
29 a more user friendly system.

30 The present invention provides a computer system and
31 a method under which a personal computer or a workstation
32 may use commercial off-the-shelf software application
33 packages with a commercially available operating system
34 while providing features of multi-level security including
35 mandatory access controls and propagation of classification
36 levels and codewords when information is moved between
37 documents. Users are allowed to manually reclassify

1 documents (including downgrading subject to restrictions)
2 as necessary. The present invention may also be embodied
3 to provide security when computer are on a network by means
4 of a secure file server.

5 The novel features of construction and operation of
6 the invention will be more clearly apparent during the
7 course of the following description, reference being had to
8 the accompanying drawings wherein has been illustrated a
9 preferred form of the device of the invention and wherein
10 like characters of reference designate like parts
11 throughout the drawings.

12 **BRIEF DESCRIPTION OF THE FIGURES**

13 FIGURE 1 is a block diagram flowchart showing the
14 general overall logic flow through a system incorporating
15 the present invention;

16 FIGURE 2 is an idealized block diagram flowchart
17 showing the general overall operational flow through a
18 system incorporating the present invention;

19 FIGURE 3 is an idealized diagram showing the various
20 input/output operations occurring in a system embodying the
21 present invention; and,

22 FIGURE 4 is an idealized block diagram showing a
23 structure for the User Access Table and acceptable sub-
24 field structure.

25 **DESCRIPTION OF THE PREFERRED EMBODIMENT**

26 A preferred form of the invention as embodied in a
27 method and computing system for providing occurrence level,
28 value based security protection, limiting for each user
29 access to preselected, but variable Input/Output operations
30 on selected data objects in the computer system is now
31 described.

32 In general, as shown in FIGURE 1, the invention is
33 found in a computer system interfacing Input/Output
34 requests between at least one user, identified by a unique
35 user identification symbol, and the computer system having

1 at least one data object containing data therein. The
2 method comprises operating the computer to automatically
3 perform the following steps.

4 A data object security access label, representing a
5 security profile defining a user security access level and
6 the Input/Output operations permitted on the data object,
7 is established and associated with each data object
8 selected for security protection 10. Such data objects are
9 always given this security access label and include "saved"
10 documents or text files generated by the application
11 programs that may be running on the computer system.

12 A user security access table is also established 12
13 that has, for each user selected to have Input/Output
14 access to the data objects in the computer system, a first
15 entry identifying the user by the unique user
16 identification symbol, and a second entry representing a
17 user security profile for the particular user. The second
18 entry is used to define the security access level of the
19 associated user.

20 A session security level "flag" is set to a
21 preselected default condition representing one of the
22 security access levels 14.

23 Each user request to the computer system is parsed to
24 extract each Input/Output request 16. For each of the
25 found Input/Output requests (1) the unique user
26 identification symbol of the user making the Input/Output
27 request; (2) the data object that is the subject of the
28 Input/Output request; and (3) the requested Input/Output
29 operation are then extracted.

30 The unique user identification symbol is compared with
31 the first entry of the user security access table. a user
32 security access "flag" at the computer system is set to an
33 "allowed" condition and a user security level "flag" is set
34 to the security access level defined by the second entry of
35 the user security access table associated with the user
36 identification symbol if a match is found, and otherwise
37 setting each "flag" to a "denied" condition 18.

1 The requested Input/Output operation being requested
2 is compared with the data object security access label
3 associated with the data object that is the subject of the
4 Input/Output request, and at the computer system a data
5 object security access "flag" is set to an "allowed"
6 condition if a match is found and otherwise to a "denied"
7 condition 20.

8 The session security level "flag" is compared to the
9 user security access level defined in the security profile
10 for the data object that is the subject of the Input/Output
11 request, and the session security level "flag" is set to
12 the predetermined "higher" security level 22.

13 Once the flags have been set, the Input/Output request
14 is returned to the computer system for processing whenever
15 the user security access "flag" and the data object
16 security access "flag" are both in the "allowed" condition
17 24.

18 It is also preferred that the method of the present
19 invention including writing at the computer system to a
20 security violation log the unique user identification
21 symbol whenever the user security access flag, the user
22 security level flag or the data object security access flag
23 is in said "denied" condition, and canceling the execution
24 of the parsed Input/Output request by the computer system.

25 Similarly, it is also preferred that when a violation
26 or attempted breach of security is discovered, the
27 invention returns a preselected message to the computer
28 system user whenever the user security access flag, the user
29 security level flag or the data object security access
30 flag is in the "denied" condition.

31 Also, for ease of changing the various security levels
32 on the various data objects held in the computer system, it
33 is preferred that the method allow the computer system user
34 to access and modify the data object security label
35 whenever the user security access flag, the user security
36 level flag, and the data object security access flag are
37 each in an "allowed" condition.

1 Finally, the data object security access label, the
2 user security access table and session security level flags
3 are preferably retained at the computer system until the
4 computer system user logs off the computer system.

5 In Figure 2, the present invention is shown in an
6 idealized block diagram flowchart showing the general
7 overall operational flow through a system incorporating the
8 present invention where a user 26 has launched two
9 applications 28, 30, respectively. As shown in the
10 drawing, the user 26 and each application 28, 30, has a
11 Security Label 26a, 28a, 30a respectively, associated with
12 it. The Security Labels are a data structure which defines
13 access requirements, and propagation restrictions for data
14 and/or files retained on the system. Examples of such
15 Security Labels include hierarchial classifications such as
16 Confidential, Secret, Top Secret and/or a series of
17 categories or "Tickets" such as various assigned
18 "codewords".

19 Whenever an application requests an input/output
20 operation on a document, such as a application 28
21 requesting to read a document 32, the document labels (here
22 shown as 32a) associated with the requested documents are
23 added to the application's label 28a. The application 28
24 cannot open any document to which the user 26 does not have
25 access as determined by the user label 26a associated with
26 the user at logon and user identification.

27 When an application label increases, the session label
28 34, displayed on the screen for the user, is also
29 increased.

30 Conversely, when an application such as 30 writes a
31 document (here shown as 36), any additional categories are
32 noted and written into the document's label 36a. If the
33 security level of the application as then running is higher
34 than the document's original security level, the higher
35 security level is noted. The user can see what the new
36 label is and either accept it or change it as described
37 below.

1 In Figures 3 and 4, the present invention is shown in
2 an idealized diagram showing the various input/output
3 operations occurring in a system embodying the present
4 invention. A user 40 generates an operator request 42 to
5 the operating system 44 to launch one or more system
6 included applications 46 resulting in an executing
7 "Instance" of those programs, for input/output operation on
8 files 54 available on the system. The applications
9 programs in turn make the necessary input/output requests
10 50 and 52 to read and write the user requested files.

11 There exists a Clipboard 55 which implements a
12 temporary holding buffer for data that is to be copied and
13 pasted between files. These read and write operations 56
14 and 57 are performed by the application instance per user
15 request.

16 In addition there is a means for the user 40 to
17 request that a user-selected portion of the screen 66 by
18 read 59 into the Clipboard 55 for subsequent pasting of
19 that image into any file 54. Each file, the Clipboard,
20 each Application Instance and the Screen has a Security
21 Label 58 associated with it as shown in Figure 3 containing
22 various fields of information. The Security Label 58
23 associated with of these objects 46, 54, 55 and 59, may
24 contain several fields, such as a Classification Level, any
25 required access "Tickets", and a Restrictions format such
26 as "no copy", "no print", "no export", or "originator only
27 downgrade". Likewise, a User Access Table 60 is
28 established for verification of the user's identity and
29 access profile and includes such fields 62 as: "user
30 identification", "user password", "user level access",
31 "user tickets map". At logon, the User Access Table 60 is
32 accessed by the system to determine and establish the
33 identity and classification access profile of the
34 individual user 40 requesting to login to the system 65.

35 While the above description emphasizes the method and
36 system of the present invention in comparing user access
37 levels with document access levels and disallowing access

1 when the user access does not match, there are other
2 important novel and non-obvious aspects of the present
3 invention described below.

4 One such additional important design consideration,
5 based on the needs of the users for which the system is
6 intended, is the capability to merge documents of different
7 classifications while aiding the user in determining the
8 proper classification for the resulting document.

9 For example, a user may wish to make a presentation
10 describing a plan that he is working on, and may copy text
11 and pictures from other documents having security labels of
12 different security levels to create a composite
13 presentation document in the course of making the
14 presentation. The system and method of the present
15 invention "observes" or intercepts all data which enters
16 the application being used to prepare the presentation
17 document, and determines a classification for all documents
18 written by the application based upon a preselected
19 weighing of all of the individual classifications found in
20 each separate document or piece of data being assembled
21 into the final presentation. Upon user request the
22 invention then offers its suggested classification for the
23 composite presentation document to the user.

24 If the user does nothing to reclassify the document,
25 the present invention automatically assigns the document
26 its suggested classification. The invention also
27 distinguishes for the user the original classification of
28 each document and the labels which it believes may have
29 been included in creating the composite presentation
30 document (via various cut and paste, and other I/O
31 operations such as reading a file).

32 The user is given the capability to accept the
33 suggested classification label or to downgrade or upgrade
34 the document as he sees fit. This is in contrast to
35 compartmented-mode workstations which require the user to
36 log in at a particular security level and not create any
37 documents classified at any lower level nor access

1 documents classified at a higher level, making such
2 workstations unsuitable for the task outlined above.

3 By treating applications as a "black box" and
4 observing all data going in and out of the applications,
5 the present invention allows the use of commercial-off-the
6 -shelf applications and does not require any special
7 security features in the applications software being run on
8 a system embodying the present invention, i.e., "trusted"
9 or "certified" software.

10 The actions of the invention are at times more complex
11 than that outlined above. For example, not only is the
12 classification level of each application maintained and
13 assigned to documents written by that particular
14 application, but the classification level of the entire
15 session is maintained as well. Therefore, if the user
16 takes a screen snapshot and pastes it in a document, the
17 entire session label is applied to that document, since
18 portions of the screen owned by any other concurrently
19 running applications displaying data, may have been
20 included in the screen snapshot.

21 The further operation of a method and system embodying
22 the present invention is now described using the following
23 terms:

24 Application Instance - an application currently
25 executing on the system;

26 Security Label - a data structure which defines access
27 requirements, and propagation restrictions for data and/or
28 files retained on the system. Examples of such Security
29 Labels include hierachial classifications such as
30 Confidential, Secret, Top Secret and/or a series of
31 categories or "Tickets" such as various assigned
32 "codewords".

33 Tickets - additional Security Labels restricting a
34 file or data to a select group granted a "ticket" for
35 access.

36 Clipboard - the operating system's inter-application
37 cut/copy/paste buffer utility;

1 Maximize - the combining of two security labels in
2 accord with a pre-determined algorithm such as a selected
3 set of weighted selection values.

4 The method and system of the present invention runs
5 concurrently with the operating system to intercept any
6 Input/output service calls to the operating system as
7 follows:

8 1. Whenever the operating system "launches" an
9 application (an Application Instance), this interception
10 entails the following steps:

11 A. The Security Label of the Application Instance is
12 set to the preselected Startup Application Security Label;

13 B. If the Security Label indicates that the Clipboard
14 buffer contains data which cannot be downgraded in
15 classification, it prompts the user to either allow the
16 read (and thus Maximize the Security Label of the
17 Application Instance with that of the Clipboard) or to
18 delete the contents of the Clipboard buffer, leaving the
19 Security Label of the Application Instance as it originally
20 was.

21 C. If the Application Instance performs an automatic
22 read of the Clipboard buffer, and the Security Label
23 indicates that the data does not contain data which cannot
24 be downgraded, then Maximize the Security Label of the
25 Application Instance with that of the Clipboard buffer.

26 D. Recalculate the Security Label of the screen as a
27 Maximization of the Security Labels of all Application
28 Instances.

29 2. Whenever an Application Instance performs an open
30 of a file, this interception entails the following steps:

31 A. Maximize the Security Label of the Application
32 Instance with the Security Label of the file being opened.

33 B. Recalculate the Security Label of the screen as a
34 Maximization of the Security Labels of all Application
35 Instances.

36 3. Whenever an Application Instance performs a write
37 to a file, this interception entails the following steps:

- 1 A. Set the Security Label of the file to the Security
2 Label of the Application Instance.
- 3 B. Do not allow any write if there is a "no copy"
4 restriction on the data or file.
- 5 4. Whenever an Application Instance terminates, this
6 interception entails the following steps:
 - 7 A. Recalculate the Security Label of the screen as a
8 Maximization of the Security Labels of all the remaining
9 Application Instances.
 - 10 5. Whenever an attempt is made to "boot" or start-up
11 the operating system of the computer in the system, this
12 interception entails the following steps:
 - 13 A. Prompt the user for username/password.
 - 14 B. If username/password does not exist in the User
15 Access Table, then shutdown and deny any further access to
16 the system.
 - 17 C. Otherwise, if the username/password is found in
18 the User Access Table, then set the Security Label of the
19 screen to the preselected Startup Screen Security Label.
 - 20 6. Whenever an Application Instance performs a read
21 from the Clipboard, this interception entails the following
22 steps:
 - 23 A. Maximize the Security Label of the Application
24 Instance with the Security Label of the Clipboard.
 - 25 B. Recalculate the Security Label of the screen as a
26 Maximization of the Security Labels of all Application
27 Instances.
 - 28 7. Whenever an Application Instance performs a write
29 to the Clipboard, this interception entails the following
30 steps:
 - 31 A. Set the Security Label of the Clipboard to the
32 Security Label of the Application Instance.
 - 33 8. Whenever an Application Instance performs a print
34 of a file, this interception entails the following steps:
 - 35 A. Do not allow the print if a "no print" restriction
36 on the data or file.
 - 37 B. Stamp the Security Label on all pages.

1 The following Utilities embody features found in the
2 present invention:

3 A first Utility provides a means to display and allow
4 the user to modify, with restrictions, the Security Label
5 of a file as follows:

6 A. Upon user request, the utility displays the
7 Security Label of the selected file;

8 B. The utility also provides a means to differentiate
9 for the user the Security Level and Tickets applied by the
10 security software from the Security Level and Tickets
11 applied by the user to the file.

12 C. The utility prohibits certain Security Label
13 changes based on user-tailorable Restrictions.

14 A second Utility, upon user request, provides a means
15 to display the Security Label of a selected Application
16 Instance.

17 A third Utility provides a means to display the
18 Security Label of the screen by making it always visible
19 during a user session. Thus, constantly reminding the user
20 of the various classification levels of documents appearing
21 on the screen.

22 A fourth Utility provides a means for the user to
23 select a portion of the screen and take a "picture" of it,
24 putting the results into the Clipboard buffer for later
25 manipulation by the user.

26 A fifth Utility provides a means for the operator to
27 define the User Access Table, the Security Levels and
28 "Tickets", the Startup Screen Security label, and the
29 Startup Application Security Label.

30 The invention described above is, of course,
31 susceptible to many variations, modifications and changes,
32 all of which are within the skill of the art. It should be
33 understood that all such variations, modifications and
34 changes are within the spirit and scope of the invention
35 and of the appended claims. Similarly, it will be
36 understood that Applicant intends to cover and claim all
37 changes, modifications and variations of the example of the

1 preferred embodiment of the invention herein disclosed for
2 the purpose of illustration which do not constitute
3 departures from the spirit and scope of the present
4 invention.

WHAT IS CLAIMED IS:

1. In a computer system interfacing Input/Output requests between at least one user, identified by a unique user identification symbol, and the computer system having at least one data object containing data therein, a method for providing occurrence level, value based security protection, limiting for each user access to preselected, but variable Input/Output operations on selected data objects in the computer system, said method comprising operating the computer to automatically perform the steps of:
 11. establishing and associating with each data object selected for security protection, a data object security access label representing a security profile defining a user security access level and the Input/Output operations permitted on the data object;
 16. establishing a user security access table having, for each user selected to have Input/Output access to the data objects in the computer system, a first entry identifying the user by the unique user identification symbol, and a second entry representing a user security profile associated therewith, said second entry defining the security access level of the associated user;
 23. set a session security level "flag" to a preselected default condition representing one of said security access levels;
 26. parsing each Input/Output request from the user to the computer system and extracting therefrom (1) the unique user identification symbol of the user making the Input/Output request; (2) the data object that is the subject of the Input/Output request; and (3) the requested Input/Output operation;
 32. comparing the unique user identification symbol with the first entry of the user security access table and setting at the computer system a user security access "flag" to an "allowed" condition and a user security level "flag" to the security access level defined by the second

37 entry of the user security access table associated with the
38 user identification symbol if a match is found, and
39 otherwise setting each "flag" to a "denied" condition;

40 comparing the requested Input/Output operation being
41 requested with the data object security access label
42 associated with the data object that is the subject of the
43 Input/Output request, and setting at the computer system a
44 data object security access "flag" to an "allowed"
45 condition if a match is found and otherwise to a "denied"
46 condition;

47 comparing the session security level "flag" to the
48 user security access level defined in the security profile
49 for the data object that is the subject of the Input/Output
50 request, and setting the session security level "flag" to
51 the predetermined "higher" security level;

52 returning the Input/Output request to the computer
53 system for processing whenever said user security access
54 "flag" and said data object security access "flag" are both
55 in said "allowed" condition.

1 2. A method as in claim 1, further including the
2 steps of:

3 writing at the computer system to a security violation
4 log the unique user identification symbol whenever said
5 user security access flag, said user security level flag or
6 said data object security access flag is in said "denied"
7 condition and canceling the execution of the parsed
8 Input/Output request by the computer system.

1 2. A method as in claim 1, further including the
2 steps of:

3 returning a preselected message to the computer system
4 user whenever said user security access flag, said user
5 security level flag or said data object security access
6 flag is in said "denied" condition and canceling the
7 execution of the parsed Input/Output request by the
8 computer system.

1 4. A method as in claim 1, further including the
2 steps of:

3 allowing the computer system user to access and modify
4 the data object security label whenever said user security
5 access flag, said user security level flag, and said data
6 object security access flag are each in said "allowed"
7 condition.

1 5. A method as in claim 1, further including the
2 steps of:

3 retaining said data object security access label, said
4 user security access table and said session security level
5 flag until the computer system user logs off the computer
6 system.

1 6. In a computer system interfacing Input/Output
2 requests between at least one user, identified by a unique
3 user identification symbol, and the computer system having
4 at least one data object containing data therein, a method
5 for providing occurrence level, value based security
6 protection, limiting for each user access to preselected,
7 but variable Input/Output operations on selected data
8 objects in the computer system, said method comprising
9 operating the computer to automatically perform the steps
10 of:

11 establishing and associating with each data object
12 selected for security protection, a data object security
13 access label representing a security profile defining a
14 user security access level and the Input/Output operations
15 permitted on the data object;

16 establishing a user security access table having, for
17 each user selected to have Input/Output access to the data
18 objects in the computer system, a first entry identifying
19 the user by the unique user identification symbol, and a
20 second entry representing a user security profile
21 associated therewith, said second entry defining the
22 security access level of the associated user;

23 set a session security level "flag" to a preselected
24 default condition representing one of said security access
25 levels;

26 parsing each Input/Output request from the user to the
27 computer system and extracting therefrom (1) the unique
28 user identification symbol of the user making the
29 Input/Output request; (2) the data object that is the
30 subject of the Input/Output request; and (3) the requested
31 Input/Output operation;

32 comparing the unique user identification symbol with
33 the first entry of the user security access table and
34 setting at the computer system a user security access
35 "flag" to an "allowed" condition and a user security level
36 "flag" to the security access level defined by the second
37 entry of the user security access table associated with the
38 user identification symbol if a match is found, and
39 otherwise setting each "flag" to a "denied" condition;

40 comparing the requested Input/Output operation being
41 requested with the data object security access label
42 associated with the data object that is the subject of the
43 Input/Output request, and setting at the computer system a
44 data object security access "flag" to an "allowed"
45 condition if a match is found and otherwise to a "denied"
46 condition;

47 comparing the session security level "flag" to the
48 user security access level defined in the security profile
49 for the data object that is the subject of the Input/Output
50 request, and setting the session security level "flag" to
51 the predetermined "higher" security level;

52 returning the Input/Output request to the computer
53 system for processing whenever said user security access
54 "flag" and said data object security access "flag" are both
55 in said "allowed" condition;

56 writing at the computer system to a security violation
57 log the unique user identification symbol whenever said
58 user security access flag, said user security level flag or
59 said data object security access flag is in said "denied"

60 condition and canceling the execution of the parsed
61 Input/Output request by the computer system;
62 returning a preselected message to the computer system
63 user whenever said user security access flag, said user
64 security level flag or said data object security access
65 flag is in said "denied" condition and canceling the
66 execution of the parsed Input/Output request by the
67 computer system;
68 allowing the computer system user to access and modify
69 the data object security label whenever said user security
70 access flag, said user security level flag, and said data
71 object security access flag are each in said "allowed"
72 condition;
73 retaining said data object security access label, said
74 user security access table and said session security level
75 flag until the computer system user logs off the computer
76 system.

1/4

FIG. 1.

2/4

FIG. 2.

3/4

FIG. 3.

4/4

FIG. 4.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 94/12457

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 G06F1/00 G06F12/14

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US,A,4 956 769 (SMITH) 11 September 1990 see abstract; figures 1,2 see column 1, line 50 - column 6, line 60 -----	I-3,5
Y	-----	4
Y	COMPUTERS & SECURITY, vol.6, no.6, December 1987, AMSTERDAM, NL; pages 479 - 492 M.B.THURAISINGHAM 'Security Checking in Relational Database Management Systems Augmented with Inference Engines' see page 479, right column, line 1 - line 39 see page 483, right column, line 27 - page 484, right column, line 40 -----	4

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- 'A' document defining the general state of the art which is not considered to be of particular relevance
- 'B' earlier document but published on or after the international filing date
- 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- 'O' document referring to an oral disclosure, use, exhibition or other means
- 'P' document published prior to the international filing date but later than the priority date claimed

'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

'Z' document member of the same patent family

1

Date of the actual completion of the international search

27 February 1995

Date of mailing of the international search report

07.03.95

Name and mailing address of the ISA

European Patent Office, P.B. 5318 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax (+31-70) 340-3016

Authorized officer

Powell, D

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 94/12457

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP,A,0 421 409 (IBM) 10 April 1991 see abstract; figures 7-9 see page 7, line 6 - page 8, line 27 see page 9, line 6 - line 25 -----	1-3

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 94/12457

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
US-A-4956769	11-09-90	NONE			
EP-A-0421409	10-04-91	US-A-	5048085	10-09-91	
		CA-A-	2026739	07-04-91	
		JP-A-	3237551	23-10-91	
		US-A-	5148481	15-09-92	