Chap1. Probability 53+6*8

1.1 Fundamental

• geometric series
$$\frac{a(1-r^N)}{1-r} = a + ar + ar^2 + ar^3 + ... + ar^{N-1}$$

• binomial theorem
$$(x+y)^N = \sum_{n=0}^N C_n^N x^n y^{N-n}$$

• binomial theorem
$$(x+y)^N = \sum_{n=0}^N C_n^N x^n y^{N-n}$$

• Taylor series $df = \frac{f_x}{1!} (dx) + \frac{f_{xx}}{2!} (dx)^2 + \frac{f_{xxx}}{3!} (dx)^3 + \dots$ univariate

$$df = \begin{cases} \frac{f_x}{1!}(dx) + \frac{f_y}{1!}(dy) + \\ \frac{f_{xx}}{2!}(dx)^2 + 2\frac{f_{xy}}{2!}(dx)(dy) + \frac{f_{yy}}{2!}(dy)^2 + \\ \frac{f_{xxx}}{3!}(dx)^3 + 3\frac{f_{xxy}}{3!}(dx)^2(dy) + 3\frac{f_{xyy}}{3!}(dx)(dy)^2 + \frac{f_{yyy}}{3!}(dy)^3 + \dots \end{cases}$$
 bivariate

$$\Delta f = J_f(\Delta X) + \frac{1}{2!}(\Delta x)^T H(\Delta x) + \dots \quad where \ J_f = [f_{x_1}, f_{x_2}, \dots, f_{x_M}]$$
 multivariate

$$\Delta F = J_F(\Delta X) + \dots \qquad where \ J_F = \begin{bmatrix} J_{\rm f1} \\ J_{\rm f2} \\ \dots \\ J_{\rm fN} \end{bmatrix} \qquad {\rm multifunction}$$

• exponential
$$e^x = \sum_{n=0}^{N} \frac{x^n}{n!}$$

• Poisson
$$Pr(n \mid \lambda t) = e^{-\lambda t} \frac{(\lambda t)^n}{n!}$$

1.2 Exponential

• definition of exp
$$e^x = \sum_{n=0}^{N} \frac{x^n}{n!}$$

• definition of exp
$$e^x = \lim_{N \to \infty} \left(1 + \frac{x}{N}\right)^N$$

usage of exp

continuous discounting / continuous compounding

differentiation of exponential returns exponential

convolution of exponential returns exponential

product of exponential returns exponential

Fourier of exponential returns exponential

Euler identity, which is useful to model cycles

1.3 Distributions

	Gaussian	Bernoulli	Binomial	Geometric	Poisson	Exponential		
pdf	$\Pr(X = x \mid \mu\sigma)$	$Pr(\aleph = n \mid p)$	$\Pr(\aleph = n \mid Np)$	$\Pr(\aleph = n \mid p)$	$\Pr(\aleph = n \mid \lambda T)$	$\Pr(T=t\mid\lambda)$		
mean	μ	p	Np	1/ p	λT	1/λ		
var	σ^2	pq	Npq	$(1/p)\times(q/p)$	λT	$(1/\lambda)^2$		
char-fct	yes	yes	yes	yes	yes	yes		
sum	yes		yes		yes			
min	yes			yes		yes		
memoryless				yes		yes		
<u>comparison</u>						yes		
trick for mean			C_n^N	d/dp	N!	integration by parts		
trick for var			E[N(N-1)]	E[N(N-1)]	E[N(N-1)]	integration by parts		
Gaussian sum	$Gaussian(\mu_1\sigma_1)$	1)+Gaussian(μ ₂	$(2\sigma_2)$ =	$Gaussian(\mu_1 +$	$(\mu_2, \sqrt{\sigma_1^2 + \sigma_2^2})$			
Binomial sum	$Binomial(N_1p)$	$) + Binomial(N_2)$	(p) =	$Binomial(N_1 +$	$-N_2, p)$			
Poisson sum	$Poisson(\lambda_1 T)$	$-Poisson(\lambda_2 T)$	=	$Poisson(\lambda_1 + \lambda_2)$	$l_2,T)$			

1

Characteristic function of a random variable *X*

$$\begin{split} \varphi_X(z) &= E[e^{izX}] & \varphi_X: \Re \to C \\ &= \int_{-\infty}^{+\infty} izxd \Pr(X < x) & \text{where } \Pr(X < x) \text{ is cumulative distribution function of } X \\ &= \int_{-\infty}^{+\infty} izx \Pr(X = x) dx & \text{where } \Pr(X = x) \text{ is probability density function of } X \\ &= E[e^{izX}] \\ &= E\left[e^{izX}\right] \\ &= E\left[e^{iz0} + ize^{iz0}X + \frac{(iz)^2e^{iz0}X^2}{2!} + \frac{(iz)^3e^{iz0}X^3}{3!} + \frac{(iz)^4e^{iz0}X^4}{4!} + \dots\right] \\ &= 1 + izE[X] + \frac{(iz)^2}{2!}E[X^2] + \frac{(iz)^3}{3!}E[X^3] + \frac{(iz)^4}{4!}E[X^4] + \dots \text{ weighted sum of all moments} \end{split}$$

Identical characteristic functions implies equivalent sets of moments, in turn implies the same distribution:

$$\varphi_{X_1}(z) = \varphi_{X_2}(z)$$
 \longleftrightarrow $\Pr(X_1 = x) = \Pr(X_2 = x)$

1.3b Bernoulli

$$pdf \qquad \Pr(X = x \mid p) \qquad = \qquad \begin{bmatrix} p & if & x = 1 \\ 1 - p & if & x = 0 \end{bmatrix}$$

$$mean \qquad E[X \mid p] \qquad = \qquad p \times 1 + (1 - p) \times 0 \qquad = \qquad p$$

$$var \qquad V[X \mid p] \qquad = \qquad p \times 1^2 + (1 - p) \times 0^2 - E^2(X) \qquad = \qquad p - p^2 \qquad = \qquad pq$$

$$char-fct \qquad \varphi_X(z) \qquad = \qquad E(e^{izX})$$

$$= \qquad pe^{iz1} + qe^{iz0}$$

$$= \qquad 1 - p + pe^{iz}$$

 $Pr(Y = y \mid X_1 X_2) = \frac{d}{dy} Pr(Y \le y \mid X_1 X_2)$

1.3c-f About event waiting

Relationship among various event and waiting distributions:

binomial = #events poisson = #events per unit time geometric = #trials to first success negative binomial = #trials to Nth success gamma = time to Nth success

Other models include:

- bivariate Poisson, which is sum of two correlated Poissons
- compound Poisson, which is sum of N Poissons

1.3c Binomial

When we perform a sequence of N independent Bernoulli trials, the total number of successful trial is a discrete random variable \aleph , with distribution described by Binomial distribution, which is valid within range [0, N].

$$\begin{aligned} pdf & \text{PriN} & n \mid Np) & = & \mathbf{C}_{n}^{N} p^{n} q^{N-n} & \text{via} \in [0,N] \\ mean & E[\mathbb{N} \mid Np] & = & \sum_{N=1}^{N} \mathbf{C}_{n}^{N} p^{n} q^{N-n} n \\ & = & \sum_{N=1}^{N} \mathbf{C}_{n}^{N} p^{n} q^{N-n} n \\ & = & \sum_{N=1}^{N} \mathbf{C}_{n}^{N} p^{n} q^{N-n} n \\ & = & \sum_{N=1}^{N} \mathbf{C}_{n}^{N} p^{n} q^{N-n} n \\ & = & \sum_{N=1}^{N} \mathbf{C}_{n}^{N} p^{n} q^{N-n} n \\ & = & Np s \left[\sum_{N=1}^{N-1} \frac{(N-1)!}{((N-1)-m!)!(n-1)!} p^{n-1} q^{(N-1)-(n-1)} \right] \\ & = & Np s \left[\sum_{N=1}^{N-1} \frac{(N-1)!}{((N-1)-m!)!(n-1)!} p^{n} q^{(N-1)-m} \right] \\ & = & Np s \left[\sum_{N=1}^{N} \frac{(N-1)!}{((N-1)-m!)!(n-1)!} p^{n} q^{(N-1)-m} \right] \\ & = & Np s \left[\sum_{n=0}^{N} \mathbf{C}_{n}^{N} p^{n} q^{N-n} n(n-1) \right] \\ & = & \sum_{N=1}^{N} \mathbf{C}_{n}^{N} p^{n} q^{N-n} n(n-1) \\ & = & \sum_{N=1}^{N} \mathbf{C}_{n}^{N} p^{n} q^{N-n} n(n-1) \\ & = & \sum_{N=1}^{N} \mathbf{C}_{n}^{N} p^{n} q^{N-n} n(n-1) \\ & = & N(N-1)p^{2} s \left[\sum_{m=0}^{N-2} \frac{((N-2)!)}{((N-2)!} \frac{2)!}{(N-2)!} p^{n-2} q^{(N-2)-(n-2)} \right] \\ & = & N(N-1)p^{2} s \left[\sum_{m=0}^{N-2} \frac{((N-2)!)}{((N-2)-m)!nd} p^{m} q^{(N-2)-m} \right] \\ & = & N(N-1)p^{2} s \left[\sum_{m=0}^{N-2} \frac{((N-2)!)}{((N-2)-m)!nd} p^{m} q^{(N-2)-m} \right] \\ & = & N(N-1)p^{2} s \left[\sum_{m=0}^{N-2} \frac{((N-2)!)}{((N-2)-m)!nd} p^{m} q^{(N-2)-m} \right] \\ & = & N(N-1)p^{2} s \left[\sum_{m=0}^{N-2} \frac{((N-2)!)}{((N-2)!)} p^{m} q^{(N-2)-m} \right] \\ & = & N(N-1)p^{2} s \left[\sum_{m=0}^{N-2} \frac{((N-2)!)}{((N-2)!)} p^{m} q^{(N-2)-m} \right] \\ & = & N(N-1)p^{2} s \left[\sum_{m=0}^{N-2} \frac{((N-2)!)}{((N-2)!)} p^{m} q^{(N-2)-m} \right] \\ & = & N(N-1)p^{2} s \left[\sum_{m=0}^{N-2} \frac{((N-2)!)}{((N-2)!)} p^{m} q^{(N-2)-m} \right] \\ & = & N(N-1)p^{2} s \left[\sum_{m=0}^{N-2} \frac{((N-2)!)}{((N-2)!)} p^{m} q^{(N-2)-m} \right] \\ & = & N(N-1)p^{2} s \left[\sum_{m=0}^{N-2} \frac{((N-2)!)}{((N-2)!)} p^{m} q^{(N-2)-m} \right] \\ & = & N(N-1)p^{2} s \left[\sum_{m=0}^{N-2} \frac{((N-2)!)}{((N-2)!)} p^{m} q^{(N-2)-m} \right] \\ & = & N(N-1)p^{2} s \left[\sum_{m=0}^{N-2} \frac{((N-2)!)}{((N-2)!)} p^{m} q^{(N-2)-m} \right] \\ & = & N(N-1)p^{2} s \left[\sum_{m=0}^{N-2} \frac{((N-2)!)}{((N-2)!)} p^{m} q^{(N-2)-m} \right] \\ & = & N(N-1)p^{2} s \left[\sum_{m=0}^{N-2} \frac{((N-2)!)}{((N-2)!)} p^{m} q^{(N-2)-m} \right] \\ & = & N(N-1)p^{2} s \left[\sum_{m=0}^{N-2} \frac{((N-2)!)}$$

1.3d Geometric

Given a sequence of N independent Bernoulli trials, geometric distribution gives the number of trials until the first success.

 $\Pr(\aleph = n - n_0 \mid p)$

1.3e Poisson

Poisson distribution is a discrete distribution, which counts the number of events occur within a time period t, assuming:

- events occur with a **known** expected event rate λ and
- events occur independently of the time since last event occurred.

$$pdf \qquad \text{Pf}(N_{\text{hin}} - n, Np) \qquad - C_{n}^{N} p^{n} q^{N-n} \qquad \text{where Nn is binomial distributed random variable} \\ \text{Pi}(N = a \mid 2i) \qquad = & \lim_{N \to \infty} N(N = n \mid Np) \qquad \text{where N is is Paisson distributed random variable}, so that Np = 2i \\ \text{im } \sum_{N \to \infty} (N p^{n} q^{N-n} \\ N = \lim_{N \to \infty} (N p^{n} q^{N-n} \\ N = \lim_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{Im } \sum_{N \to \infty} (N - n)! d | M|^{n} (1 - \frac{2i}{N})^{N} = 0 \\ \text{I$$

$$\begin{split} sum & \aleph_k & \sim & Poisson(\lambda_k,t) \\ & \aleph & = & \sum_{k=1}^K \aleph_k \\ & \\ & \text{Pr}(\aleph = n \,|\, \aleph_1 ... \aleph_K) & = & \text{Pr}(\aleph_1 = n \,|\, \lambda_1 t) \otimes \text{Pr}(\aleph_2 = n \,|\, \lambda_2 t) \otimes ... \otimes \text{Pr}(\aleph_K = n \,|\, \lambda_K t) \\ & \varphi_\aleph(z) & = & \varphi_{\aleph_1}(z) \cdot \varphi_{\aleph_2}(z) \cdot ... \cdot \varphi_{\aleph_K}(z) \\ & = & e^{\lambda_1 t(\exp(iz) - 1)} e^{\lambda_2 t(\exp(iz) - 1)} ... e^{\lambda_K t(\exp(iz) - 1)} \\ & = & e^{(\lambda_1 + \lambda_2 + ... + \lambda_K) t(\exp(iz) - 1)} \\ & \aleph & \sim & Poisson(\sum_{k=1}^K \lambda_k, t) \end{split}$$

2 representations

Since time period t is fixed, some people like to replace λt by λ , resulting in simplier form

$$\begin{array}{lll} \Pr(\aleph = n \mid \lambda' = \lambda t) & = & \frac{\lambda'^n e^{-\lambda'}}{n!} \\ E[\aleph \mid \lambda' = \lambda t] & = & \lambda' \\ V[\aleph \mid \lambda' = \lambda t] & = & \lambda' \\ \varphi_{\aleph}(z) & = & e^{\lambda'(\exp(iz) - 1)} \end{array}$$

shooting star question

Suppose the probability of seeing one or more shooting stars in an hour is 0.44, what is that probability in half an hour?

$$\Pr(\aleph = 0 \mid \lambda t = c) = \frac{(\lambda t)^n e^{-\lambda t}}{n!} \Big|_{n=0,\lambda t=c} = 1-0.44$$

$$e^{-c} = 0.56$$

$$\Pr(\aleph = 0 \mid \lambda t = c/2) = e^{-c/2} = \sqrt{0.56}$$

$$\Pr(\aleph > 0 \mid \lambda t = c/2) = 1-\sqrt{0.56}$$

1.3f Exponential

Exponential distribution models the time to the first event of a sequence of Bernoulli trials.

$$pdf \qquad \Pr(T > t \mid \lambda) \qquad = \frac{(\lambda t)^n e^{-\lambda t}}{n!} \bigg|_{n=0} = e^{-\lambda t}$$

$$\Pr(T = t \mid \lambda) \qquad = \frac{\partial_t \Pr(T < t \mid \lambda)}{\partial_t (1 - \Pr(T > t \mid \lambda))}$$

$$= \frac{\partial_t (1 - \Pr(T > t \mid \lambda))}{\partial_t (1 - e^{-\lambda t})}$$

$$= \lambda e^{-\lambda t}$$

$$mean \qquad E[T \mid \lambda] \qquad = \int_0^\infty \lambda e^{-\lambda t} t dt$$

$$= -\int_0^\infty t de^{-\lambda t}$$

$$= -[te^{-\lambda t}]_0^\infty + \int_0^\infty e^{-\lambda t} dt$$

$$= -[te^{-\lambda t}]_0^\infty - [e^{-\lambda t}]_0^\infty / \lambda$$

$$= 1/\lambda$$

$$var \qquad E[T^2 \mid \lambda] \qquad = \int_0^\infty \lambda e^{-\lambda t} t^2 dt$$

$$= -\int_0^\infty t^2 de^{-\lambda t}$$

$$= -[t^2 e^{-\lambda t}]_0^\infty + 2\int_0^\infty t e^{-\lambda t} dt$$

$$= 2/\lambda^2$$

$$V[T \mid \lambda] \qquad = E(T^2) - E(T)^2$$

$$= 2/\lambda^2 - 1/\lambda^2 = 1/\lambda^2$$

L Hospital Rule $[e^{-\lambda t}]_0^{\infty}$ $1/e^{\lambda \infty} - 1/e^{\lambda 0}$ 0-1 = $\Rightarrow [e^{-\lambda t}]_0^{\infty} = -1$ Remark 1 $\lim_{t \to \infty} t/e^{\lambda t}$ $0/e^{\lambda 0}$ $\lim te^{-\lambda t}$ $\lim 1/(\lambda e^{\lambda t}) =$ Remark 2 $= 0 \qquad \Rightarrow [te^{-\lambda t}]_0^{\infty} = 0$ $\lim_{t \to 0} t e^{-\lambda t}$ 0/1 $\lim t^2 e^{-\lambda t}$ $\lim t^2/e^{\lambda t}$ $\lim 2t/(\lambda e^{\lambda t}) =$ $\lim 2/(\lambda^2 e^{\lambda t}) = 0$ Remark 3 $0 \qquad \Rightarrow \quad [t^2 e^{-\lambda t}]_0^\infty = 0$ $\lim t^2 e^{-\lambda t}$ $0^2/e^{\lambda 0}$ 0/1 Remark 4 $E_{\lambda}(t)$ $1/\lambda$ $\int_0^\infty \lambda e^{-\lambda t} t dt$ $1/\lambda$

$$\begin{array}{lll} char\text{-}fct & \varphi_T(z) & = & E[e^{izT}] \\ & = & \int_0^\infty \lambda e^{-\lambda t} e^{izt} dt \\ & = & \int_0^\infty \lambda e^{(-\lambda + iz)t} dt \\ & = & \frac{\lambda}{-\lambda + iz} [e^{(-\lambda + iz)t}]_0^\infty \\ & = & \frac{\lambda}{-\lambda + iz} [e^{izt} / e^{\lambda t}]_0^\infty \\ & = & \frac{1}{1 - iz/\lambda} & \text{why? see below} \end{array}$$

complex number $\cos(zt) + i\sin(zt)$ lies on the unit circle of Argand diagram for all values of t:

$$\lim_{t \to \infty} e^{izt} / e^{\lambda t} = \lim_{t \to \infty} \cos(zt) / e^{\lambda t} + i \lim_{t \to \infty} \sin(zt) / e^{\lambda t} = 0$$

$$\lim_{t \to 0} e^{izt} / e^{\lambda t} = e^{0} / e^{0} = 1$$

$$[e^{izt} / e^{\lambda t}]_{0}^{\infty} = 0 - 1 = -1$$

$$Sum \qquad T_k \qquad \sim \quad Exponential(\lambda_k)$$

$$T \qquad = \quad \sum_{k=1}^K T_k$$

$$\Pr(T=t \mid T_1...T_K) \qquad = \quad \Pr(T_1=t \mid \lambda_1) \otimes \Pr(T_2=t \mid \lambda_2) \otimes ... \otimes \Pr(T_K=t \mid \lambda_K)$$

$$\begin{split} \varphi_T(z) &= & \varphi_{T_1}(z) \cdot \varphi_{T_2}(z) \cdot \ldots \cdot \varphi_{T_K}(z) \\ &= & \frac{1}{1 - iz/\lambda_1} \frac{1}{1 - iz/\lambda_2} \cdots \frac{1}{1 - iz/\lambda_K} \end{split}$$

$$T$$
 ~ $Gamma(K, \lambda)$ if $\lambda_1 = \lambda_2 = ... = \lambda_K$

min and max $T_k \sim Exponential(\lambda_k) \quad \forall k \in [1, K]$

 T_{\min} = $\min_{k \in [1, K]} T_k$ T_{\max} = $\max_{k \in [1, K]} T_k$

$$\begin{array}{llll} \Pr(T_{\min} > t) & = & \Pr(T_1 > t, T_2 > t, ..., T_K > t) \\ & = & \Pr(T_1 > t) \Pr(T_2 > t) ... \Pr(T_K > t) \\ & = & \prod_{k=1}^K e^{-\lambda_k t} \\ & = & e^{-(\sum_{k=1}^K \lambda_k)t} \\ & = & e^{-\lambda t} & where \ \lambda = \sum_{k=1,K} \lambda_k \end{array}$$

$$\begin{array}{lll} \Pr(T_{\max} \le t) & = & \Pr(T_1 \le t, T_2 \le t, ..., T_K \le t) \\ & = & \Pr(T_1 \le t) \Pr(T_2 \le t) ... \Pr(T_K \le t) \\ & = & \prod_{k=1}^K (1 - e^{-\lambda_k t}) \\ & = & ... \\ & = & e^{-\lambda t} & where \ \lambda = \sum_{k=1,K} \lambda_k \end{array}$$

$$\begin{array}{llll} \Pr(T_{\min} = t) & = & \partial_t \Pr(T_{\min} < t) & & \Pr(T_{\max} = t) & = & \partial_t \Pr(T_{\max} \le t) \\ & = & \partial_t (1 - e^{-\lambda t}) & = & \partial_t \prod_{k=1}^K (1 - e^{-\lambda_k t}) \\ & = & \lambda e^{-\lambda t} & = & \dots \end{array}$$

$$\begin{array}{lll} \textit{memoryless} & & \Pr(T > t + s \mid T > s) & = & & \frac{\Pr(T > t + s)}{\Pr(T > s)} \\ & = & & \frac{e^{-\lambda(t + s)}}{e^{-\lambda s}} \\ & = & & e^{-\lambda t} \\ & = & & \Pr(T > t) \\ & & \Pr(T = t + s \mid T > s) & = & \Pr(T = t) \end{array}$$

$Comparison\ between\ two\ exponentials$

$$\begin{split} \Pr(T_1 < T_2) & = & \int_{t=0}^{t=\infty} d \Pr(T_1 < t, T_2 = t) \\ & = & \int_{t=0}^{t=\infty} \Pr(T_1 < t) d \Pr(T_2 = t) \\ & = & \int_{t=0}^{t=\infty} \Pr(T_1 < t) \Pr(T_2 = t) dt \\ & = & \int_{t=0}^{t=\infty} (1 - e^{-\lambda_1 t}) (\lambda_2 e^{-\lambda_2 t}) dt \\ & = & \int_{t=0}^{t=\infty} (\lambda_2 e^{-\lambda_2 t} - \lambda_2 e^{-(\lambda_1 + \lambda_2) t}) dt \\ & = & [-e^{-\lambda_2 t}]_0^{\infty} - [-\lambda_2 / (\lambda_1 + \lambda_2) \times e^{-(\lambda_1 + \lambda_2) t}]_0^{\infty} \\ & = & 1 - \lambda_2 / (\lambda_1 + \lambda_2) \\ & = & \lambda_1 / (\lambda_1 + \lambda_2) \end{split}$$

Chap2. Linear Algebra 66 + 21112(10)3

Types of matrix

- symmetric
- triangular
- diagonal
- linear independent
- orthogonal
- orthonormal

	decomposition	shape of A	shape of output			
rank	A = WR	A is rectangular	R is row linear independent			
	A = CW		C is column linear independent			
LU	A = LU	A is square	L/U are lower/upper triangular			
	PA = LU		P/Q are permutation			
	PAQ = LU					
	A = LDU		D is diagonal			
Cholesky	$A = LL^T$	A is symmatric	L/U are lower/upper triangular			
	$A = U^T U$					
LQ/QR	A = LQ	A is rectangular	L/U are lower/upper triangular			
	A = QR		Q is orthonormal			
SVD	$A = USV^T$	A is rectangular	<i>U,V</i> are orthonormal, S is diagonal			
eigen	$A = Q\Lambda Q^T$	A is symmetric	Q is orthonormal, Λ is diagonal			

2.1 Rank decomposition 2=[44]

2.1a Meaning of matrix multiplication

Given the following matrices:

- row vector matrix A with size N×M where N and M are the number and dimension of A
- transformation matrix (or projection matrix) Q with size $M' \times M$, which performs $\Re^M \to \Re^M$
- linear combination matrix (or weight matrix) W with size $N' \times N$, which generates N' vectors from N vectors

then we have 4 interpretations:

 AA^T $N \times N$ dot product of row-vector set A

 $A^T A$ $M \times M$ covariance of row-vector set A2.

 WAQ^T 3. $N' \times M'$ weighted sum of transformed A =Q is transformation matrix in this case

 $AQ^T(QQ^T)^{-1}Q$ $N \times M$ normalized projection of A on QQ is projection matrix in this case

dot product

length of projection \times magnitude of Q

 $AQ^T(QQ^T)^{-1}$ = length of projection

 $AQ^T(QQ^T)^{-1}Q$ projection vector of A on Q

2.1b Span and nullity

i.e. linear dependence $span(A) = \{x\} \ s.t. \ \exists w, x = wA$ i.e. zero projection $null(A) = \{x\}$ s.t. Ax = 0

A = WR where W is N×K and R is K×M i.e. A is decomposed into K linear independent row vectors R A = CW where C is N×K' and W is K'×M i.e. A is decomposed into K' linear independent column vectors C

K is called row rank.

K'is called column rank.

In general, we have: rank(span(A)) = K = K'

In general, we have: rank(span(A)) + rank(null(A)) = M

2.2 LU decomposition

LU decomposition is a sequence of elementary operations, including:

- swaping row vector *An1* with *An2*
- scaling row vector $A_n = scale \times A_n$
- linear operation on row vector $A_{n1} = A_{n1} + scale \times A_{n2}$

A = L'U where L' is lower triangular with all one diagonal

PA = L'U partial pivoting

PAQ = L'U full pivoting

A = L'DU' where L'U' are lower/upper triangular with all one diagonal

2.3 Cholesky decomposition

Cholesky makes use of symmetric property for decomposition.

$$A = LL^T \\ = \begin{bmatrix} l_{1,1} & 0 & 0 & \dots & 0 \\ l_{2,1} & l_{2,2} & 0 & \dots & 0 \\ l_{3,1} & l_{3,2} & l_{3,3} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ l_{N,1} & l_{N,2} & l_{N,3} & \dots & l_{N,N} \end{bmatrix} \begin{bmatrix} l_{1,1} & l_{2,1} & l_{3,1} & \dots & l_{N,1} \\ 0 & l_{2,2} & l_{3,2} & \dots & l_{N,2} \\ 0 & 0 & l_{3,3} & \dots & l_{N,3} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & l_{N,N} \end{bmatrix}$$

Here is the bootstrapping sequence :

$$\begin{array}{lllll} l_{11} &= \sqrt{a_{11}} \\ l_{21} &= a_{21}/l_{11} & l_{22} &= \sqrt{a_{22}-l_{21}^2} \\ l_{31} &= a_{31}/l_{11} & l_{32} &= (a_{32}-l_{31}l_{21})/l_{22} & l_{33} &= \sqrt{a_{33}-l_{31}^2-l_{32}^2} \\ l_{41} &= a_{41}/l_{11} & l_{42} &= (a_{42}-l_{41}l_{21})/l_{22} & l_{43} &= (a_{43}-l_{41}l_{31}-l_{42}l_{32})/l_{33} & l_{44} &= \sqrt{a_{44}-l_{41}^2-l_{42}^2-l_{43}^2} \end{array}$$

2.4 LQ/QR decomposition

For every iteration, find the remainder that cannot explaint by existing orthonormal basis.

$$\begin{bmatrix} A_{1} \\ A_{2} \\ A_{3} \\ ... \\ A_{N} \end{bmatrix} = \begin{bmatrix} l_{1,1} & 0 & 0 & ... & 0 \\ l_{2,1} & l_{2,2} & 0 & ... & 0 \\ l_{3,1} & l_{3,2} & l_{3,3} & ... & 0 \\ ... & ... & ... & ... & ... \\ l_{N,1} & l_{N,2} & l_{N,3} & ... & l_{N,N} \end{bmatrix} \begin{bmatrix} Q_{1} \\ Q_{2} \\ Q_{3} \\ ... \\ Q_{N} \end{bmatrix}$$

$$where An and Qn are row vectors$$

$$Q_{1} = \frac{A_{1}}{\|A_{1}\|}$$

$$Q_{2} = \frac{A_{2} - A_{2}Q_{1}^{T}Q_{1}}{\|A_{2} - A_{2}Q_{1}^{T}Q_{1}\|}$$

$$l_{11} = \|A_{1}\|$$

$$l_{21} = A_{2}Q_{1}^{T} \qquad l_{22} = \|A_{2} - A_{2}Q_{1}^{T}Q_{1}\|$$

$$Q_{3} = \frac{A_{3} - A_{3}Q_{1}^{T}Q_{1} - A_{3}Q_{2}^{T}Q_{2}}{\|A_{3} - A_{3}Q_{1}^{T}Q_{1} - A_{3}Q_{2}^{T}Q_{2}}$$

$$l_{31} = A_{3}Q_{1}^{T} \qquad l_{32} = A_{3}Q_{2}^{T} \qquad l_{22} = \|A_{3} - A_{3}Q_{1}^{T}Q_{1} - A_{3}Q_{2}^{T}Q_{2}\|$$

2.5 SVD decomposition

2.
$$SVD$$
 by eigen decomposition
$$AA^{T} = (USV^{T})(USV^{T})^{T} = US^{2}U^{T} \qquad eigen(AA^{T}) \text{ gives } U \text{ and } S^{2}$$
$$A^{T}A = (USV^{T})^{T}(USV^{T}) = VS^{2}V^{T} \qquad eigen(A^{T}A) \text{ gives } V \text{ and } S^{2}$$

2.6 Eigen decomposition

2.6a Three forms of eigen decomposition

 ΛQ

Eigen vectors *Q* are vectors, on applying transformation *A* gives scaled eigen vectors.

1.
$$A = Q\Lambda Q^T$$

where Q are row vectors (representation consistent with SVD)

$$\rightarrow A^T = Q^T \Lambda Q$$

 QA^T

where Q are row vectors (representation consistent with 2.1a3)

where A are row vectors of projection matrix (or transformation)

Now, by putting $A^T \to A$, we have the common representation found in most textbooks:

3.
$$Q_n A = \lambda Q_n$$

$$AQ_n = \lambda Q_n$$

where Q_n is a column vector

2.6b Span of eigen vectors

Span of eigen vectors sharing the same eigen value is also an eigen vector of the same eigen value.

$$Q_n A = \lambda Q_n$$

$$Q_m A = \lambda Q_m$$

$$\rightarrow (w_n Q_n + w_m Q_m) A = w_n Q_n A + w_m Q_m A$$

$$= w_n \lambda Q_n + w_m \lambda Q_m$$

$$= \lambda(w_nQ_n + w_mQ_m)$$

2.6c When A is special matrix

- When *A* is identity, any vectors are eigen vectors with eigen value 1.
- When *A* is diagonal, any unit vectors δ_n are eigen vectors with eigen value A_{nn} , where δ_n is all zero, but 1 for n^{th} element.
- When *A* is triangular, eigen values are roots of N degree polynomial:

$$Q_n A = \lambda Q_n$$

where Q_n is a row vector

$$\rightarrow Q_n A = Q_n(\lambda I)$$

$$\rightarrow$$
 0 = $\prod_{n=1}^{N} (A_{nn} - \lambda)$

2.6d When A is symmetric

When *A* is symmetric, eigen vectors are orthogonal.

$$Q_n A = \lambda_n Q_n$$

$$Q_n = \lambda_n Q_n A^{-1}$$

$$O A \equiv \lambda O$$

$$Q_n Q_m^T = \lambda_n Q_n A^{-1} \left(\frac{1}{\lambda_m} Q_m A\right)^T$$

$$= \frac{\lambda_n}{\lambda_m} Q_n A^{-1} A^T Q_m^T$$

$$= \frac{\lambda_n}{\lambda_m} Q_n A^{-1} A Q_m^T$$

$$= \frac{\lambda_n}{\lambda_m} Q_n Q_m^T$$

$$0 = \left(1 - \frac{\lambda_n}{\lambda_m}\right) Q_n Q_m^T$$

$$Q_n Q_m^T = 0$$

since
$$1 - \frac{\lambda_n}{\lambda_m} \neq 0$$

2.6e When A is semipositive definite

When *A* is semipositive definite, then all eigen values are positive.

$$\begin{array}{lllll} \boldsymbol{X}^T \boldsymbol{A} \boldsymbol{X} & \geq & 0 & & \forall \boldsymbol{X} \\ \boldsymbol{X}^T (Q \boldsymbol{\Lambda} Q^T) \boldsymbol{X} & \geq & 0 & & \forall \boldsymbol{X} \\ (\boldsymbol{X}^T Q) \boldsymbol{\Lambda} (\boldsymbol{X}^T Q)^T & \geq & 0 & & \forall \boldsymbol{X} \\ \boldsymbol{Y} \boldsymbol{\Lambda} \boldsymbol{Y}^T & \geq & 0 & & \text{where } \boldsymbol{Y} = \boldsymbol{X}^T Q \\ & & & & & & \\ \prod_{n=1}^N \boldsymbol{\Lambda}_{nn} \boldsymbol{y}_n^2 & \geq & 0 & & \forall \boldsymbol{Y} \\ \boldsymbol{\Lambda}_{nn} & \geq & 0 & & \forall \boldsymbol{n} \end{array}$$

2.6f Square root matrix and power matrix

•
$$A = Q\Lambda Q^{T}$$

 $A^{1/2}A^{1/2} = Q\Lambda^{1/2}\Lambda^{1/2}Q^{T} = (Q\Lambda^{1/2}Q^{T})(Q\Lambda^{1/2}Q^{T})$
 $A^{1/2} = Q\Lambda^{1/2}Q^{T}$
• $A = Q\Lambda Q^{T}$
 $A^{2} = (Q\Lambda Q^{T})(Q\Lambda Q^{T}) = Q\Lambda^{2}Q^{T}$
 $A^{3} = (Q\Lambda Q^{T})(Q\Lambda Q^{T})(Q\Lambda Q^{T}) = Q\Lambda^{3}Q^{T}$

2.6g Similar matrix

Similar matrices share the same eigen values.

$$B = XAX^{T} definition of similarity$$

$$= X(Q\Lambda Q^{T})X^{T}$$

$$= (XQ)\Lambda(XQ)^{T} hence B has the same eigen values as A$$

2.6h Implementation 1: characteristic equation

This method solves for all eigen values.

$$Q_n A = \lambda Q_n$$

 $Q_n (A - \lambda I) = 0$
 $\det(A - \lambda I) = 0$ \rightarrow solve polynomial for all λs

2.6i Implementation 2 : power method

This method solves for max eigen value only. Given initial guess row vector $V^{(1)}$, we repeatedly apply transformation A on it:

2.6j Implementation 3 : QR algorithm

This method solves for all eigen vectors. By repeated construction and decomposition :

<u>construction</u>		<u>decomposition</u>						
$A^{(1)}$	=	A	\rightarrow	$A^{(1)}$	=	$Q^{(1)}R^{(1)}$		
$A^{(2)}$	=	$R^{(1)}Q^{(1)}$	\rightarrow	$A^{(2)}$	=	$Q^{(2)}R^{(2)}$		
$A^{(3)}$	=	$R^{(2)}Q^{(2)}$	\rightarrow	$A^{(3)}$	=	$Q^{(3)}R^{(3)}$		
$A^{(T+1)}$	=	$R^{(T)}Q^{(T)}$						
	=	$Q^{(T)T}Q^{(T)}R^{(T)}Q^{(T)}$		Don't c	confus	e iteration T with transpose.		
	=	$Q^{(T)T}A^{(T)}Q^{(T)}$						
	=	$Q^{(T)T}Q^{(T-1)T}A^{(T-1)}Q^{(T-1)T}$	Repeat	Repeat the process on $A^{(T)}$				
	=							
	=	$(Q^{(1)}Q^{(2)}Q^{(T)})^T A(Q^{(T)})^T$	$(1)Q^{(2)}Q^{(T)}$					
	=	$Q^T A Q$		where	$Q = Q^{(}$	$Q^{(2)}Q^{(T)}$		

As T tends to infinity, it is proved that (not shown here):

$$\lim_{T \to \infty} A^{(T)} = U$$

2.7 Applications

2.7a Solving AX=B

Given AX = B, we can solve by :

•	matrix inverse	$A^T AX$	=	$A^T B$	X	=	$(A^T A)^{-1} (A^T B)$			
•	LU decomposition	$A^T AX$	=	$A^T B$	LUX	=	$A^T B$	X	=	$U^{-1}L^{-1}A^TB$
•	Cholesky decomposition	$A^T AX$	=	$A^T B$	$LL^T X$	=	A^TB	X	=	$(L^T)^{-1}L^{-1}A^TB$
•	LQ decomposition	AX	=	В	QRX	=	В	X	=	$R^{-1}Q^TB$
•	SVD decomposition	AX	=	В	USV^TX	=	В	X	=	$VS^{-1}U^TB$
•	eigen decomposition	$A^T AX$	=	$A^T B$	$Q\Lambda Q^T X$	=	В	X	=	$Q\Lambda^{-1}Q^TB$

$$\begin{bmatrix} l_{1,1} & 0 & 0 & \dots & 0 \\ l_{2,1} & l_{2,2} & 0 & \dots & 0 \\ l_{3,1} & l_{3,2} & l_{3,3} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ l_{M,1} & l_{M,2} & l_{M,3} & \dots & l_{M,M} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ x_M \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \dots \\ b_M \end{bmatrix} \begin{bmatrix} x_1 = b_1/l_{11} \\ x_2 = (b_2 - l_{21}x_1)/l_{22} \\ x_3 = (b_3 - l_{31}x_1 - l_{32}x_2)/l_{33} \\ \dots \\ x_M = (b_M - l_{M1}x_1 - l_{M2}x_2 - \dots)/l_{MM} \end{bmatrix}$$

- inverse of L and U is bootstrapping
- inverse of S and Λ is simply element inverse
- *inverse of Q is simply transpose*

2.7b Determinant

Given square matrix *A*, its determinant can be found :

- Cramer rule
- $\begin{array}{llll} \bullet & LU \ decomposition & \det(A) & = & \det(LU) & = & \det(L) \det(U) & = & \prod_{n=1}^N l_{n,n} \prod_{n=1}^N u_{n,n} \\ \bullet & Cholesky \ decomposition & \det(A) & = & \det(LL^T) & = & \det(L) \det(L^T) & = & (\prod_{n=1}^N l_{n,n})^2 \\ \bullet & LQ \ decomposition & \det(A) & = & \det(QR) & = & \det(Q) \det(R) & = & \prod_{n=1}^N r_{n,n} \end{array}$
- SVD decomposition $\det(A) = \det(USV^T) = \det(U)\det(S)\det(V^T) = \prod_{n=1}^{N} s_{n,n}$
- $\bullet \quad \textit{eigen decomposition} \qquad \qquad \det(A) \quad = \quad \det(Q \wedge Q^T) \qquad = \quad \det(Q) \det(\Lambda) \det(Q^T) \qquad = \quad \prod_{n=1}^N \lambda_n$

2.7c PCA

Find the projection Q such that covariance of AQ is maximized and diagonalized. Here we try to hackle the first objective.

$$L = (AQ)^T AQ - \lambda (Q^T Q - I)$$
 maximize covariance (after projection) such that $Q^T Q = I$
$$= Q^T (A^T A)Q - \lambda (Q^T Q - I)$$

$$\frac{\partial L}{\partial Q} = 0$$

$$(A^T A)Q = \lambda Q$$

$$Q_{opt} = eigenvector(A^T A)$$

Comparison

Three different approaches for 2D linear regression:

2.7c PCA as covariance maximization $Q_{opt} = eigenvector(A^T A)$ 3.2h non-vertical 2D linear regression $slope = \frac{cov(x, y)}{var(x)}$ 3.3d PCA as constrainted regression $X_{opt} = eigenvector((A - l\overline{A})^T W(A - l\overline{A}))$

Chap3. Linear Regression [333]955

3.1 From likelihood to least square

Let's start with maximum likelihood. Given a set of data points (observations), likelihood is defined as joint probability conditional on a hypothetic parameter set θ .

- joint probability
- product of probability
- $= \prod_{n=1}^{N} \Pr(D_n = d_n \mid \theta)$ $= \sum_{n=1}^{N} \ln \Pr(D_n = d_n \mid \theta)$ sum of log probability

We apply linear regression model AX-B and Gaussian noise model:

We finally convert maximum likelihood to minimum error, i.e. various least square regressions:

- OLS ordinary least square for uncorrelated-homoskedasticity when $\Sigma = I$, $\Sigma^{-1} = I$, $\det(\Sigma) = 1$
- when $\Sigma = [\sigma_n^2]$, $\Sigma^{-1} = [\sigma_n^{-2}]$, $\det(\Sigma) = \prod_{i=1}^N \sigma_n^2$ WLS weighted least square for uncorrelated-heteroskedasticity
- GLSgeneralized least square for correlated Gaussian

3.2 Various least square regressions

We will discuss 7 regressions and 2 interpretations:

- $L = (AX B)^T (AX B)$ OLS
- $L = (AX B)^T W (AX B)$ WLS
- $L = (AX B)^{T} \Sigma^{-1} (AX B)$ GLS
- $L = (AX B)^T \Sigma^{-1} (AX B) + (X X_0)^T \Sigma_O^{-1} (X X_0)$ given anchor X_0 Tikhonov regularization
- $L = (F(A \mid X) B)^{T} \Sigma^{-1} (F(A \mid X) B)$
 $$\begin{split} L &= (F(A \mid X) - B)^T \Sigma^{-1}(F(A \mid X) - B) & \textit{given initial guess } X_0 \\ L &= (F(A \mid X) - B)^T \Sigma^{-1}(F(A \mid X) - B) + \lambda (\Delta X)^T (\Delta X) & \textit{given initial guess } X_0 \end{split}$$
 nonlinear - Gauss Newton
- nonlinear Levenberg Marq
- $L = \sum_{n=1}^{N} g(A_n X b_n)$ nonlinear noise model - iterWLS
- interpretation in 2D slope = cov(x, y) / var(x)
- interpretation in regressor space $AX = proj_A(B)$

Here are the corresponding solutions:

- OLS
- WLS
- GLS
- $\begin{array}{lll} \partial_x L = 2A^T (AX B) & \rightarrow & X_{OLS} = (A^T A)^{-1} (A^T B) \\ \partial_x L = 2A^T W (AX_{WLS} B) & \rightarrow & X_{WLS} = (A^T W A)^{-1} (A^T W B) \\ \partial_x L = 2A^T \Sigma^{-1} (AX_{GLS} B) & \rightarrow & X_{GLS} = (A^T \Sigma^{-1} A)^{-1} (A^T \Sigma^{-1} B) \\ \partial_x L = 2A^T \Sigma^{-1} (AX_{TR} B) + 2\Sigma_Q^{-1} (X_{TR} X_0) & \rightarrow & X_{TR} = (A^T \Sigma^{-1} A + \Sigma_Q^{-1})^{-1} (A^T \Sigma^{-1} B + \Sigma_Q^{-1} X_0) \end{array}$ Tikhonov regularization

$$\begin{split} L &= (F(A \mid X) - B)^T \Sigma^{-1}(F(A \mid X) - B) \\ &= (F(A \mid X^{(t)}) + J_F \Delta X - B)^T \Sigma^{-1}(F(A \mid X^{(t)}) + J_F \Delta X - B) \\ &= (J_F \Delta X - (B - F(A \mid X^{(t)})))^T \Sigma^{-1}(J_F \Delta X - (B - F(A \mid X^{(t)}))) \\ \partial_{\Delta x} L &= 2J_F^T \Sigma^{-1}(J_F \Delta X - (B - F(A \mid X^{(t)}))) \\ \Delta X &= (J_F^T \Sigma^{-1} J_F)^{-1}(J_F^T \Sigma^{-1} (B - F(A \mid X^{(t)}))) \end{split}$$

• nonlinear - Levenberg Marq

$$\begin{split} L &= (F(A \mid X) - B)^T \Sigma^{-1} (F(A \mid X) - B) + \lambda (\Delta X)^T (\Delta X) \\ &= (F(A \mid X^{(t)}) + J_F \Delta X - B)^T \Sigma^{-1} (F(A \mid X^{(t)}) + J_F \Delta X - B) + \lambda (\Delta X)^T (\Delta X) \\ &= (J_F \Delta X - (B - F(A \mid X^{(t)})))^T \Sigma^{-1} (J_F \Delta X - (B - F(A \mid X^{(t)}))) + \lambda (\Delta X)^T (\Delta X) \\ \partial_{\Delta X} L &= 2J_F^T \Sigma^{-1} (J_F \Delta X - (B - F(A \mid X^{(t)}))) + 2\lambda J \Delta X \\ \Delta X &= (J_F^T \Sigma^{-1} J_F + \lambda I)^{-1} (J_F^T \Sigma^{-1} (B - F(A \mid X^{(t)}))) \end{split}$$

• non Gauss noise model - iterWLS

$$\begin{array}{lll} l - iterWLS & L & = & \sum_{n=1}^{N} g(A_{n}X - b_{n}) & where \ regression \ model \ AX = B \ is \ linear \\ & \partial_{\Delta x} L & = & \sum_{n=1}^{N} \frac{\partial g(e_{n})}{\partial e_{n}} \frac{\partial e_{n}}{\partial X} & where \ e_{n} = A_{n}X - b_{n} \\ & = & \sum_{n=1}^{N} w_{n}e_{n} \frac{\partial e_{n}}{\partial X} & where \ w_{n} = \frac{1}{e_{n}} \frac{\partial g(e_{n})}{\partial e_{n}} \\ & = & \frac{1}{2} \sum_{n=1}^{N} w_{n} \frac{\partial e_{n}^{2}}{\partial X} \\ & = & \frac{1}{2} \frac{\partial}{\partial X} \sum_{n=1}^{N} w_{n}e_{n}^{2} \end{array}$$

• *interpretation in 2D, let's consider :*

$$A = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \dots & \dots \\ x_N & 1 \end{bmatrix} \qquad B = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_N \end{bmatrix}$$

$$W = diag(w_1, w_2, \dots, w_N)$$

$$X = \begin{bmatrix} m \\ c \end{bmatrix}$$

we then have:

$$A^{T}WA = \begin{bmatrix} \sum_{n=1}^{N} w_{n}x_{n}x_{n} & \sum_{n=1}^{N} w_{n}x_{n} \\ \sum_{n=1}^{N} w_{n}x_{n} & \sum_{n=1}^{N} w_{n}x_{n} \end{bmatrix} = \begin{bmatrix} S_{wxx} & S_{wx} \\ S_{wx} & S_{w} \end{bmatrix}$$

$$A^{T}WB = \begin{bmatrix} \sum_{n=1}^{N} w_{n}x_{n}y_{n} \\ \sum_{n=1}^{N} w_{n}y_{n} \end{bmatrix} = \begin{bmatrix} S_{wxy} \\ S_{wy} \end{bmatrix}$$

$$m = \frac{S_{wxy}S_{w} - S_{wx}S_{wy}}{S_{wxx}S_{w} - S_{wx}S_{wx}} = \frac{cov(x, y)}{var(x)}$$

$$c = \frac{S_{wxx}S_{wy} - S_{wx}S_{wxy}}{S_{wxx}S_{w} - S_{wx}S_{wxy}} = \frac{S_{wxx}S_{wy} - S_{wx}S_{wxy}}{var(x)}$$

• interpretation in regressor space

AX = span of column vector A, weighted by X

 $then\ distance\ between\ span\ of\ A\ and\ vector\ B\ is\ minimised\ when\ span\ of\ A\ equals\ to\ the\ projection\ of\ B\ on\ A:$

$$AX_{OLS} = proj_A(B)$$
 (visualise the case when $N >> M = 2$)
 $= A(A^TA)^{-1}A^TB$
 $> X_{OLS} = (A^TA)^{-1}A^TB$

3.3 Various constraints

We will discuss 5 constraints:

• linear constraint 1
$$\min_{X} ||AX - B||_{W}^{2}$$
 so that $X_{1} = X_{1}^{*}$ where $X_{1} = column_matrix(K \times 1)$
• linear constraint 2 $\min_{X} ||AX - B||_{W}^{2}$ so that $X_{1} = CX_{2} + D$ where $X_{1} = column_matrix(K \times 1)$
• linear constraint 3 $\min_{X} ||AX - B||_{W}^{2}$ so that $CX = D$
• quad constraint 1 $\min_{X,y} ||AX - Iy||_{W}^{2}$ so that $X^{T}X = 1$ where $I = ones(N \times 1)$ and y is scalar, distance to origin $AX = cov(A)X$ and $AX = cov(A)X$ and $AX = cov(A)X$ and $AX = cov(A)X$ so that $AX = cov(A)X$ s

Here are the corresponding solutions:

•
$$L$$
 = $(AX - B)^T W(AX - B)$
= $(A_1X_1 + A_2X_2 - B)^T W(A_1X_1 + A_2X_2 - B)$
= $(A_2X_2 - (B - A_1X_1^*))^T W(A_2X_2 - (B - A_1X_1^*))$
0 = $2A_2^T W(A_2X_2 - (B - A_1X_1^*))$ differentiate L wrt X_2 , set it zero X_2 = $(A_2^T WA_2)^{-1}(A_2^T W(B - A_1X_1^*))$
• L = $(AX - B)^T W(AX - B)$
= $(A_1X_1 + A_2X_2 - B)^T W(A_1X_1 + A_2X_2 - B)$
= $(A_1(CX_2 + D) + A_2X_2 - B)^T W(A_1(CX_2 + D) + A_2X_2 - B)$
= $((A_1C + A_2)X_2 - (B - A_1D))^T W((A_1C + A_2)X_2 - (B - A_1D))$
0 = $2(A_1C + A_2)^T W(A_1C + A_2)X_2 - (B - A_1D)$ differentiate L wrt X_2 , set it zero X_2 = $((A_1C + A_2)^T W(A_1C + A_2))^{-1}((A_1C + A_2)^T W(B - A_1D))$

•
$$AX = B$$
 so that $CX = D$
 $AVV^TX = B$ so that $USV^TX = D$
 $A'X' = B$ so that $USX' = D$ where $A' = AV$ and $X' = V^TX$
 $X' = S^{-1}U^TD$

$$\begin{bmatrix} X'_1 \\ X'_2 \end{bmatrix} = \begin{bmatrix} S_1^{-1} \\ S_2^{-1} \end{bmatrix}U^TD \text{ ignore null space } S_2 \text{ of constraint}$$

$$X'_1 = S_1^{-1}U^TD$$

$$\underset{X}{\arg\min(AX-B)^TW(AX-B)} \Rightarrow \qquad \underset{X'}{\arg\min(A'X'-B)^TW(A'X'-B)} \\ s.t. \quad CX = D \qquad \qquad s.t. \quad X'_1 = S_1^{-1}U^TD$$

By transforming the problem, we can apply technique in solving linear constraint 1:

$$X'_{2} = (A'_{2}^{T} WA'_{2})^{-1} - (A'_{2}^{T} W(B - A'_{1} X'_{1}))$$

$$X = VX'$$

$$= \begin{bmatrix} VX'_{1} \\ VX'_{2} \end{bmatrix}$$

$$= \begin{bmatrix} V(S_{1}^{-1}U^{T}D) \\ V(A'_{2}^{T} WA'_{2})^{-1}(A'_{2}^{T} W(B - A'_{1} X'_{1})) \end{bmatrix}$$

• Setting up a Lagrangian, firstly take derivative wrt y, secondly substitute result into Lagrangian, finally take derivative wrt X:

$$L = (AX - ly)^T W(AX - ly) + \lambda (1 - X^T X)$$

$$0 = l^{T}W(AX - ly)$$

$$y = \frac{l^{T}WAX}{l^{T}Wl} = \overline{A}X$$

$$= (AX - \overline{lAX})^T W(AX - \overline{lAX}) + \lambda(1 - X^T X)$$

$$= ((A-l\overline{A})X)^T W((A-l\overline{A})X) + \lambda(1-X^T X)$$

$$0 = 2(A - l\overline{A})^T W(A - l\overline{A})X - 2\lambda X$$

$$\lambda X = \operatorname{cov}(A)X$$

L

firstly take derivative wrt y

where
$$l^TWl = \sum_{n=1}^{N} w_n = scalar$$
 and $l^TWA = \sum_{n=1}^{N} w_n A_n$

secondly substitute result into Lagrangian

finally take derivative wrt X

where
$$cov(A) = (A - l\overline{A})^T W(A - l\overline{A})$$

Setting up a Lagrangian, firstly take derivative wrt X, secondly substitute result into constraint, finally solve for multiplier:

$$L = (AX - B)^T W(AX - B) + \lambda (1 - X^T X)$$

$$0 = 2A^T W(AX - B) - 2\lambda X$$

 $= (A^T WA - \lambda I)X - (A^T WB)$

$$X = (A^T W A - \lambda I)^{-1} (A^T W B)$$

 $1 = X^T X$

$$= ((A^{T}WA - \lambda I)^{-1}(A^{T}WB))^{T}((A^{T}WA - \lambda I)^{-1}(A^{T}WB))$$

$$f(\lambda) = ((A^T WA - \lambda I)^{-1} (A^T WB))^T ((A^T WA - \lambda I)^{-1} (A^T WB)) - 1$$

firstly take derivative wrt X

secondly substitute result into constraint

finally solve for λ using Newton Raphson

3.4 Various applications

concentric circles fitting

$$\begin{bmatrix} 2x_1 & 2y_1 & -\delta_{c_1} \\ 2x_2 & 2y_2 & -\delta_{c_2} \\ 2x_3 & 2y_3 & -\delta_{c_3} \\ \dots & \dots & \dots \\ 2x_N & 2y_N & -\delta_{c_N} \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ \eta^2 - x_c^2 - y_c^2 \\ \dots \\ r_M^2 - x_c^2 - y_c^2 \end{bmatrix} = \begin{bmatrix} x_1^2 + y_1^2 \\ x_2^2 + y_2^2 \\ x_3^2 + y_3^2 \\ \dots \\ x_N^2 + y_N^2 \end{bmatrix}$$

rectangle fitting

$$\begin{bmatrix} x_1 & 1 & 0 & 0 & 0 \\ -y_2 & 0 & 1 & 0 & 0 \\ x_3 & 0 & 0 & 1 & 0 \\ -y_4 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} m \\ c_1 \\ mc_2 \\ c_3 \\ mc_4 \end{bmatrix} = \begin{bmatrix} y_1 \\ x_2 \\ y_3 \\ x_4 \end{bmatrix}$$

homo-inspect

$$\begin{bmatrix} (1-r_{x_1})(1-r_{y_1}) & (1-r_{x_1})r_{y_1} & r_{x_1}(1-r_{y_1}) & r_{x_1}r_{y_1} \\ (1-r_{x_2})(1-r_{y_2}) & (1-r_{x_2})r_{y_2} & r_{x_2}(1-r_{y_2}) & r_{x_2}r_{y_2} \\ (1-r_{x_3})(1-r_{y_3}) & (1-r_{x_3})r_{y_3} & r_{x_3}(1-r_{y_3}) & r_{x_3}r_{y_3} \\ \dots & \dots & \dots & \dots \\ (1-r_{x_N})(1-r_{y_N}) & (1-r_{x_N})r_{y_N} & r_{x_N}(1-r_{y_N}) & r_{x_N}r_{y_N} \end{bmatrix} \begin{bmatrix} a_{00} \\ a_{01} \\ a_{10} \\ a_{11} \end{bmatrix} = \begin{bmatrix} ins(x_1, y_1) \\ ins(x_2, y_2) \\ ins(x_3, y_3) \\ \dots \\ ins(x_N, y_N) \end{bmatrix}$$

template-inspect

$$\begin{bmatrix} lrn_1(x_1, y_1) & lrn_2(x_1, y_1) & \dots & lrn_M(x_1, y_1) & 1 \\ lrn_1(x_2, y_2) & lrn_2(x_2, y_2) & \dots & lrn_M(x_2, y_2) & 1 \\ lrn_1(x_3, y_3) & lrn_2(x_3, y_3) & \dots & lrn_M(x_3, y_3) & 1 \\ \dots & \dots & \dots & \dots & \dots \\ lrn_1(x_N, y_N) & lrn_2(x_N, y_N) & \dots & lrn_M(x_N, y_N) & 1 \\ \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \dots \\ a_M \\ b \end{bmatrix} = \begin{bmatrix} ins(x_1, y_1) \\ ins(x_2, y_2) \\ ins(x_3, y_3) \\ \dots \\ ins(x_3, y_3) \\ \dots \\ ins(x_N, y_N) \end{bmatrix}$$

alignment, given cost function $L = \sum_{n=1}^{N} [(x_n^{ins} - x_n^{lrnTrans}) \times \cos(\alpha_n^{lrn}) + (y_n^{ins} - y_n^{lrnTrans}) \times \sin(\alpha_n^{lrn})]^2$

$$\begin{bmatrix} x_1^{lm} \cos(\alpha_1^{lm}) + y_1^{lm} \sin(\alpha_1^{lm}) & -y_1^{lm} \cos(\alpha_1^{lm}) + x_1^{lm} \sin(\alpha_1^{lm}) & \cos(\alpha_1^{lm}) & \sin(\alpha_1^{lm}) \\ x_2^{lm} \cos(\alpha_2^{lm}) + y_2^{lm} \sin(\alpha_2^{lm}) & -y_2^{lm} \cos(\alpha_2^{lm}) + x_2^{lm} \sin(\alpha_2^{lm}) & \cos(\alpha_2^{lm}) & \sin(\alpha_1^{lm}) \\ \vdots & \vdots & \vdots & \vdots \\ x_N^{lm} \cos(\alpha_N^{lm}) + y_N^{lm} \sin(\alpha_N^{lm}) & -y_N^{lm} \cos(\alpha_N^{lm}) + x_N^{lm} \sin(\alpha_N^{lm}) & \cos(\alpha_N^{lm}) & \sin(\alpha_N^{lm}) \end{bmatrix} \begin{bmatrix} a \\ b \\ \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} x_1^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ x_2^{ins} \cos(\alpha_2^{lm}) + y_2^{ins} \sin(\alpha_2^{lm}) \\ \vdots & \vdots \\ x_N^{ins} \cos(\alpha_2^{lm}) + y_N^{ins} \sin(\alpha_N^{lm}) \end{bmatrix} \begin{bmatrix} a \\ b \\ \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} x_1^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_N^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_N^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_N^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_N^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_N^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_N^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_1^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_1^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_1^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_1^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_1^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_1^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_1^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_1^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_1^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_1^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_1^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_1^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_1^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_1^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_1^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_1^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_1^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_1^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_1^{ins} \cos(\alpha_1^{lm}) + y_1^{ins} \sin(\alpha_1^{lm}) \\ \vdots & \vdots \\ x_$$