Dostępna pamięć: <MEMORY_LIMIT> MB Limit czasu: <TIME_LIMIT> sekund

Złoty postęp

Cinomeusz i Coutolomeo wylądowali w Egipcie. Panuje tutaj faraon Re-allok VII, który właśnie rozpoczął najnowszy projekt architektoniczny. Usławszy o gościach w swoich imperium, faraon kazał sprowadzić ich do pałacu, celem poznania najnowszych nowinek architektonicznych na świecie. Coutolomeo, który niedawno poznał ciąg Fibonacciego (mający zastosowanie w architekturze), powiedział o nim faraonowi, który od razu zadecydował wybudować piramidę która wykorzystywałaby ten ciąg.

Dla uproszczenia, budowlę opiszemy jako ciąg sąsiednich kolumn ponumerowanych kolejno od 0 do w-1. W kolumnie o numerze i leży wieża o wysokości H_i .

Teraz zadaniem Coutolomea będzie odpowiadanie, czy spójny przedział kolumn [a, b] spełnia zasady ciągu Fibonacciego – czyli tytułowego złotego postępu. Ponieważ faraon jest fanatykiem arytmetyki modularnej, zależność liczymy modulo $10^9 + 7$. Przedział od kolumny a do b ($b - a \ge 2$) spełnia zasady złotego postępu gdy dla $i \ge a + 2$:

$$H_i \equiv H_{i-1} + H_{i-2} \pmod{10^9 + 7}$$

Tak więc kolumny [2, 3, 5, 8] spełniają złoty postęp, a [1, 1, 1, 3] nie.

Dodatkowo, budowla może się zmieniać – Coutolomeo musi być gotowy na to, że wysokość wszystkich wież w kolumnach od a do b zmieni się o x.

Wejście

<IN TEXT>

Wyjście

<OUT TEXT>

Przykłady

Wejście	Wyjście
<test_input_1></test_input_1>	<test_output_1></test_output_1>
Wejście	Wyjście
<test_input_2></test_input_2>	<test_output_2></test_output_2>

Wyjaśnienie do przykładu

<EXPLANATION_TEXT>