Assignment 2

b) "=1" has the highest probability because this response has the highest frequency.

$$P(\leq 1) = \frac{422}{1005} = 0.42$$

$$\rho(\infty) = \frac{201}{1005} = 0.2$$

$$\begin{array}{c} \text{A} & P(2 \text{ or more}) = P(2) + P(3) + P(3) + P(3) + P(3) + P(3) + P(3) \\ = 1 - P(4) = 1 - 0.42 = 0.58 \end{array}$$

48)

al

	Female (F)	Male (M)	Total
Uses Social media CA)	0,29	0,21	950
Doesn't use social Media (A ^C)	0,24	0,26	0,50
Total	0,53	0,47	1,00

$$\rho(A|F) = \frac{\rho(A \cap F)}{\rho(F)} = \frac{0.29}{0.53} = 0.55$$

$$P(A) \cdot P(F) = 0.50 \cdot 0.53 = 0.27$$

 $P(A) \cdot P(F) = 0.29$

Since PCANF) # PCA). P(F), the events are not independent

51)

ها	< 25,000	(25,000, 49,999)	(50.00°, 99.999)	>100000	Total
High School graduate CH)	0, 15	0,152	O,144	0,053	0,5
Bachelor's Degree (CB)	0,038	0,063	0,117	0,119	0,337
Manter's Degree	0,010	0,018	0,046	0,062	0,136
Ooctoral Degree (O)	0,001	0,003	0,006	0,017	0,027
Total	0,200	0,236	0,313	0,251	1,0

$$P(H \cap \angle 25.000) = 65644 = 0.151 \quad P(H \cap \angle 25000, 49999)) = 65644 = 0.182$$

$$P(H \cap \angle 50000, 99999) = \frac{9441}{65644} = 0.144 \quad P(H \cap > 100000) = \frac{3482}{65644} = 0.053 \quad of education$$

Rounded up due to decimals

$$P(7100000 | H) = \frac{P(71000000 AH)}{P(H)} = \frac{0.063}{0.5} = 0.106$$

$$\Delta P(425000 | H) = \frac{P(425000 n H)}{P(H)} = \frac{0,151}{0,5} = 0,302$$

56)

B: The event that the initial asking price is under \$150000
$$P(6) = \frac{100}{600} = 0,125$$

$$\rho(A | B) = \frac{\rho(A \cap B)}{\rho(B)} = \frac{0.0125}{0.125} = 0.100$$

The probability of event A given B is 10%

P(A) P(B) = 0,25.0,125 = 0,031
P(AnO) = 0,0125
Since P(AnO)
$$\neq$$
 P(A) P(B), the events are not independent

58)

F: the event that the undergraduate is female

M: the event that the undergraduate is male

A: the event that the undergraduate study abroad

A: the event that the undergraduate doesn't study abroad

P(A) = 0,095 -> P(A^c) = 0,905

P(F|A) = 0,6 -> P(M|A) = 0,4

P(F|A^c) = 0,49 -> P(M|A^c) = 0,51

ما

Given a female undergraduate student, the probability that she studies abroad is 11,4%

 $P(A|M) = \frac{P(M|A) \cdot P(A)}{P(M|A) \cdot P(A) + P(M|A^{c}) \cdot P(A^{c})}$ $P(A|M) = \frac{0.4 \cdot 0.095}{0.4 \cdot 0.095 + 0.51 \cdot 0.905} = \frac{0.076}{0.076}$

Given a male undergraduate student, the probability that he studies abroad is 7,6%

 $P(F) = P(F|A) \cdot P(A) + P(F|A^{c}) \cdot P(A^{c}) = 0.6 \cdot 0.095 + 0.49 \cdot 0.905$ = 0.5

PCfinding oil) = 1 - PCno oil) = 1-0,30 = 0,70

I assume that a positive soil test means that the oil is not usable. Therefore, the probability of finding oil decreases:

PCoil) = 0,40+0,04 = 0,44