# SVD Factorization for Tall and Fat Matrices on Map/Reduce Architectures

Burak Bayramlı

October 15, 2013

#### Abstract

We demonstrate an implementation for an approximate rank-k SVD factorization combining well-known randomized projection techniques with previously implemented map/reduce solutions in order to compute various steps of this procedure, such as local QR and local SVD implementations that can run on a single machine. We structure the problem in a way reduces to single machine Cholesky and SVD factorizations on  $k \times k$  matrices, thereby greatly easing the computability of the problem.

### 1 Introduction

[1] presents many excellent techniques for utilizing map/reduce architectures to compute QR and SVD for the so-called tall-and-skinny matrices. The ideas are based on the fact that QR factorization can be turned into an  $A^TA$  computation problem which is easy to compute using map/reduce. First idea is,

$$A^T A = (QR)^T (QR) = R^T Q^T QR = R^T R$$

Then, we take a look at Cholesky factorization of an  $n \times n$  symmetric positive definite matrix which is

$$A = LL^T$$

where L is an  $n \times n$  lower triangular matrix. R is upper triangular. Then if we factorize A into L and  $L^T$ , and  $LL^T = RR^T$ , we have a method of calculating QR using Cholesky factorization on  $A^TA$ . The key observation here is that after  $A^TA$  computation is completed we will have an  $n \times n$ 

matrix and if A is "skinny" then n is relatively small (in the thousands), and Cholesky decomposition can be executed on this small matrix on a single computer. We can calculate SVD based on QR. SVD decomposition is represented as

$$A = U\Sigma V^T$$

Expand it with A = QR

$$QR = U\Sigma V^T$$

$$R = Q^T U \Sigma V^T$$

Let's call  $\tilde{U} = Q^T U$ 

$$R = \tilde{U}\Sigma V^T$$

This means if we run a local SVD on R (we just calculated above with Cholesky) which is an  $n \times n$  matrix, we will have calculated  $\tilde{U}$ , and the real  $\Sigma$ , and real  $V^T$ . Hence we have a map/reduce way of calculating QR and SVD on  $m \times n$  matrices where n is small.

## 1.1 Approximate rank-k SVD

Computing SVD with large n which are "fat" that might have columns in the billions would require reducing the dimensionality of the problem. According to [2], one way to achieve is through random projection. First we draw an  $n \times k$  Gaussian random matrix  $\Omega$ . Then we calculate

$$Y = A\Omega$$

We perform QR decomposition on Y

$$Y = QR$$

Then form  $k \times n$  matrix

$$B = Q^T A$$

Then we can calculate SVD on this small matrix

$$B = \hat{U}\Sigma V^T$$

Then form the matrix

$$U=Q\hat{U}$$

The main idea based on

$$A = QQ^T A$$

if replace Q which comes from random projection Y,

$$A \approx \tilde{Q}\tilde{Q}^T A$$

Q and R of the random projection are close to that of A. In the multiplication above R is called B where  $B = \tilde{Q}^T A$ , and,

$$A \approx \tilde{Q}B$$

then, as in [1], we can take SVD of B and apply the same transition rules to obtain an approximate U of A.

The reason the approximate works has to do with the fact that projecting points to a random subspace preserves distances between points, or in detail, projecting the n-point subset onto a random subspace of  $O(\log n/\epsilon^2)$  dimensions only changes the interpoint distances by  $(1 \pm \epsilon)$  with positive probability [3]. It is also said that Y is a good representation of the span of A.

### References

- [1] Gleich, Benson, Demmel,  $Direct\ QR\ factorizations\ for\ tall-and-skinny$  matrices in  $MapReduce\ architectures$
- [2] N. Halko, Randomized methods for computing low-rank approximations of matrices
- [3] S. Dangupta, A. Gupta An Elementary Proof of a Theorem of Johnson and Lindenstrauss